On the weight distribution of some minimal codes

Daniele Bartoli1 · Matteo Bonini2 · Marco Timpanella3

Received: 28 April 2020 / Revised: 18 November 2020 / Accepted: 20 November 2020 / Published online: 9 January 2021
© Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Minimal codes are a class of linear codes which gained interest in the last years, thanks to their connections to secret sharing schemes. In this paper we provide the weight distributions and the parameters of families of minimal codes recently introduced by C. Tang, Y. Qiu, Q. Liao, Z. Zhou, answering some open questions.

Keywords Linear code · Minimal code · Weight distribution

Mathematics Subject Classification 94B05 · 94A62

1 Introduction

A codeword c in a linear code C is called minimal if its support (i.e., the set of nonzero coordinates of c) does not contain the support of any other independent codeword. A minimal code is a linear code whose nonzero codewords are minimal. Minimal codewords and minimal codes in general have interesting connections to linear code-based secret sharing schemes (SSS); see \cite{22,23}.

A SSS is a method to distribute shares of a secret to each of the participants P in such a way that only the authorized subsets of P could reconstruct the secret; see \cite{6,24}.

In \cite{22,23} Massey considered the use of linear codes for realizing a perfect (i.e. all authorized sets of participants can recover the secret while unauthorized sets of participants cannot...}
determine any shares of the secret) and ideal (i.e. the shares of all participants are of the same size as that of the secret) SSS. It turns out that the access structure of the secret-sharing scheme corresponding to an \([n, k]_q\)-code \(C\) is specified by the support of minimal codewords in the dual code \(C^\perp\) having 1 as the first component.

In general, it is quite hard to find the whole set of minimal codewords of a given linear code; see [5,9]. For this reason, minimal codes have been widely investigated in the last years; see for instance [11,25]. Most of the known families of minimal codes are in characteristic two.

A sufficient criterion for a linear code to be minimal is given by Ashikhmin and Barg [2].

Lemma 1.1 A linear code \(C\) over \(\mathbb{F}_q\) is minimal if

\[
\frac{w_{\min}}{w_{\max}} > \frac{q - 1}{q},
\]

where \(w_{\min}\) and \(w_{\max}\) denote the minimum and maximum nonzero Hamming weights in \(C\), respectively.

Families of minimal linear codes satisfying Condition (1.1) have been considered in several papers; e.g. see [10,14,17,27]. However, Condition (1.1) is not necessary and examples of minimal codes not satisfying Condition (1.1) have been constructed in i.e. [1,3,4,7,12,13,18,19,26].

In this paper we provide the weight distribution and the parameters of families of minimal codes recently introduced in [26], answering to some open questions.

The constructions of minimal codes presented in [26] can be described in a geometrical way, thanks to connections of minimal codes with cutting blocking sets. The characterization of minimal codes using cutting blocking sets was also provided by [1] independently. Consider the affine space \(AG(k, q) \cong \mathbb{F}_q^k\) of dimension \(k\) over the finite field \(\mathbb{F}_q\), \(q\) a prime power.

Let \(D = \{P_1, \ldots, P_n\}\) be a multiset of points in \(AG(k, q)\) corresponding to the columns of a generator matrix of an \([n, k]_q\) linear code \(C_D\). For a hyperplane \(H : \alpha_1x_1 + \cdots + \alpha_kx_k = 0\) through the origin of \(AG(k, q)\) and a point \(P = (\overline{x}_1, \ldots, \overline{x}_k) \in AG(k, q)\), \(H(P)\) denotes \(\alpha_1\overline{x}_1 + \cdots + \alpha_k\overline{x}_k\).

With this notation,

\[C_D := \{ (H(P_1), \ldots, H(P_n)) : H \text{ is an hyperplane of } AG(k, q) \text{ through the origin} \}.\]

The authors of [26], following [15,16], call \(D\) the defining set of \(C_D\). They also presented an interesting machinery which provides new minimal codes from old ones; see [26, Theorem 43], where they make use of the concept of vectorial cutting blocking set [7].

Theorem 1.2 Let \(k \geq 2\). Let \(M_1\) and \(M_2\) be two vectorial cutting blocking sets in \(AG(k, q)\) such that \(M_1 = a \cdot M_1\) for any \(a \in \mathbb{F}_q^k\). Consider the following subset of \(AG(k + 1, q)\)

\[
[M_1, M_2] := \{(x, 1) \in AG(k + 1, q) : x \in M_1\} \bigcup \{(x, 0) \in AG(k + 1, q) : x \in M_2\}.
\]

Then, \([M_1, M_2]\) is a vectorial cutting blocking set in \(AG(k + 1, q)\). In particular, \(C_{[M_1, M_2]}\) is a minimal code of length \((\#M_1 + \#M_2)\) and dimension \((k + 1)\).

In [26] the authors constructed several families of minimal codes not satisfying Condition (1.1). They left the determination of the weight distribution of some of them as open problems. In general, the computation of the weight distribution or of the weight spectrum (i.e. the set of its nonzero weights) of codes could be a challenging task. On the other hand,
this computation provides important information, since for instance the weight distribution of a code allows the computation of the probability of error detection and correction with respect to some error detection and error correction algorithms; see [21] for more details.

Therefore our aim is to provide the weight spectrum or the weight distribution of specific minimal codes constructed in [26]. In particular, we consider the following families of defining sets.

(1) **Family 1.**

\[D_1 = \left\{ (x_1, \ldots, x_k) \in AG(k, q) \setminus \{0\} : \left(\sum_{i=1}^{h} x_i \right) \prod_{i=1}^{h} x_i = 0 \right\}, \]

where \(4 \leq h \leq k \); see [26, Open Problem 37].

(2) **Family 2.**

\[D_2 = \left\{ (x_1, \ldots, x_k) \in AG(k, q) \setminus \{0\} : \prod_{1 \leq i < j \leq h} (x_i + x_j) = 0 \right\}, \]

where \(3 \leq h \leq k \); see [26, Open Problem 38].

(3) **Family 3.**

\[D_3 = \left\{ (x_1, \ldots, x_k) \in AG(k, q) \setminus \{0\} : \prod_{i=1}^{h} x_i \prod_{1 \leq i < j \leq h} (x_i + x_j) = 0 \right\}, \]

where \(3 \leq h \leq k \); see [26, Open Problem 39].

(4) **Family 4.**

\[D_4 = \left\{ (x_1, \ldots, x_k) \in AG(k, q) \setminus \{0\} : \prod_{i=1}^{h} x_i = 0 \right\}, \]

where \(3 \leq h \leq k \); see [26, Open Problem 48].

We determine the weight distribution of \(C_{D_1}, C_{[D_1, D_1]} \), and \(C_{[D_4, D_4]} \) and the parameters of the codes \(C_{D_2} \) and \(C_{D_3} \).

Remark 1.3 Our computations also show that the Singleton defect of these families of minimal codes is large. This is not uncommon since usually minimal codes are not optimal from an error-correction point of view.

2 Preliminaries

Throughout this paper \(AG(k, q) \) denotes the affine space of dimension \(k \) over the Galois field \(\mathbb{F}_q \), where \(q = p^r \) is a prime power. We recall in this section some basic definitions from coding theory; for a detailed exposition see [20].

Definition 2.1 Let \(C \) be a \(k \)-dimensional vector subspace of \(\mathbb{F}_q^n \). Then \(C \) is an \(\mathbb{F}_q \)-linear code of dimension \(k \) and length \(n \). An element of \(C \) is called a codeword.

Definition 2.2 For any two vectors \(x, y \in \mathbb{F}_q^n \), the **Hamming distance** of \(x \) and \(y \), denoted by \(d(x, y) \), is the number of coordinates where the two vectors differ. Also, the **Hamming weight** \(w(x) \) of \(x \in \mathbb{F}_q^n \) is defined as the Hamming distance of \(x \) and the null vector of \(\mathbb{F}_q^n \).
Definition 2.3 The minimum distance of a linear code C (or simply distance) is the minimum Hamming distance between any two different codewords of C.

If C is an \mathbb{F}_q-linear code with length n, dimension k and minimum distance d, we say that C is an $[n, k, d]_q$ linear code.

Definition 2.4 For an $[n, k, d]_q$ linear code C, we denote by A_i the number of codewords of weight i. The set $\{A_i\}_{i=1, \ldots, n}$ is also called the weight distribution of C, whereas the A_i’s are also called the weight elements of C. The set $\{i \mid A_i \neq 0\}$ is called the weight spectrum of C.

3 Family 1

By [26, Theorem 23] it is readily seen that the dimension of C_{D_1} is k. By [26, Lemma 32] and [26, Theorem 33], C_D is a minimal code of length

$$n = q^{k-h-1} (q^{h+1} - (q - 1)^{h+1} + (-1)^h (q - 1)) - 1.$$

In order to compute the weight distribution of C_D it is useful to consider the following integers

$$\psi_s := \# \{ (x_1, \ldots, x_s) \in AG(s, q) : \sum_{i=1}^s x_i = 0 \text{ and } x_i \neq 0 \text{ for any } i = 1, \ldots, s \},$$

$$\phi_s := \# \{ (x_1, \ldots, x_s) \in AG(s, q) : \sum_{i=1}^s x_i = 1 \text{ and } x_i \neq 0 \text{ for any } i = 1, \ldots, s \}.$$

As generalization of [26, Lemma 31], we have

$$\psi_s = \frac{(q - 1)^s + (-1)^s(q - 1)}{q}, \quad \phi_s = \frac{(q - 1)^s - \psi_s}{q - 1}.$$

In particular note that $\psi_0 = 1$ and $\phi_0 = 0$.

Consider now $a_1, \ldots, a_s \in \mathbb{F}_q^*$. It is readily seen that

$$\psi_s = \# \{ (x_1, \ldots, x_s) \in AG(s, q) : \sum_{i=1}^s a_i x_i = 0 \text{ and } x_i \neq 0 \text{ for any } i = 1, \ldots, s \},$$

$$\phi_s = \# \{ (x_1, \ldots, x_s) \in AG(s, q) : \sum_{i=1}^s a_i x_i = 1 \text{ and } x_i \neq 0 \text{ for any } i = 1, \ldots, s \}.$$

Let π be the hyperplane of $AG(k, q)$ through the origin with affine equation

$$a_i x_i + \cdots + a_s x_s + b_{j_1} x_{j_1} + \cdots + b_{j_r} x_{j_r} = 0, \quad (3.1)$$

where $s \geq 0, r \geq 0, a_i, \ldots, a_s, b_{j_1}, \ldots, b_{j_r} \in \mathbb{F}_q^*, i_1, \ldots, i_s \in \{1, \ldots, h\}$ and $j_1, \ldots, j_r \in \{h + 1, \ldots, k\}$.

For the weight distribution of C_{D_1}, we need to investigate the number of solutions Λ of the system

$$\begin{cases} a_i x_i + \cdots + a_s x_s + b_{j_1} x_{j_1} + \cdots + b_{j_r} x_{j_r} = 0, \\
(x_1 + \cdots + x_h)x_1 \cdots x_h = 0. \end{cases} \quad (3.2)$$
Indeed, the weight of the codeword induced by \(\pi \) is \(n - \Lambda + 1 \).

Proposition 3.1 Let \(r \geq 1 \). Then

\[
\Lambda = q^{k-1} - q^{k-h-1}(q-1)^h + \psi_h q^{k-h-1} = q^{k-h-1}(q^h + \psi_h - (q-1)^h).
\]

Proof An easy computation shows that the number of solutions of the system

\[
\begin{align*}
\{ & a_{i_1}x_{i_1} + \cdots + a_{i_s}x_{i_s} + b_{j_1}x_{j_1} + \cdots + b_{j_r}x_{j_r} = 0, \\
& x_1 \cdots x_h = 0.
\}
\end{align*}
\]

is \(q^{k-1} - q^{k-h-1}(q-1)^h \). Therefore it remains to compute the number of solutions of

\[
\begin{align*}
\{ & a_{i_1}x_{i_1} + \cdots + a_{i_s}x_{i_s} + b_{j_1}x_{j_1} + \cdots + b_{j_r}x_{j_r} = 0 \\
& x_1 + \cdots + x_h = 0, \\
& x_1 \cdots x_h \neq 0.
\}
\end{align*}
\]

The above system (3.3) is equivalent to

\[
\begin{align*}
\{ & x_{j_1} = -\alpha_{i_1}x_{i_1} - \cdots - \alpha_{i_s}x_{i_s} - \beta_{j_2}x_{j_2} - \cdots - \beta_{j_r}x_{j_r}, \\
& x_1 + \cdots + x_h = 0, \\
& x_1 \cdots x_h \neq 0,
\}
\end{align*}
\]

with \(\alpha_{i_j} = a_{i_j}/b_{j_j} \) and \(\beta_{j_r} = b_{j_1}/b_{j_r} \). Since the number of solutions of (3.4) is \(\psi_h q^{k-h-1} \), we obtain \(\Lambda = q^{k-1} - q^{k-h-1}(q-1)^h + \psi_h q^{k-h-1} = q^{k-h-1}(q^h + \psi_h - (q-1)^h) \). \(\square \)

Proposition 3.2 Let \(l \geq 1 \), \(r_1, \ldots, r_l \geq 1 \), and consider \(l \) pairwise distinct nonzero elements \(\alpha_1, \ldots, \alpha_l \) of \(\mathbb{F}_q \). Let \(A_{r_1, \ldots, r_l} \) be the number of solutions of the system

\[
S_{r_1, \ldots, r_l}(\gamma): \begin{cases}
\{ & x_{1}^{(1)} + \cdots + x_{r_1}^{(1)} + x_{2}^{(2)} + \cdots + x_{r_2}^{(2)} + \cdots + x_{l}^{(l)} + \cdots + x_{r_l}^{(l)} = \gamma, \\
& \alpha_1(x_1^{(1)} + \cdots + x_{r_1}^{(1)}) + \alpha_2(x_2^{(2)} + \cdots + x_{r_2}^{(2)}) + \cdots + \alpha_l(x_l^{(l)} + \cdots + x_{r_l}^{(l)}) = 0, \\
& \prod_{i, j} x_j^{(i)} \neq 0.
\end{cases}
\]

Then, for \(l = 1 \), \(A_{r_1} = \psi_{r_1} \) if \(\gamma = 0 \) and \(A_{r_1} = 0 \) otherwise, and for \(l > 1 \)

\[
\begin{cases}
A_{r_1, \ldots, r_l} = \psi_{r_1} \cdots \psi_{r_l} (\gamma_l - 1) A_{r_1, \ldots, r_{l-1}}, & \text{if } \gamma = 0; \\
(\psi_{r_1} \cdots \psi_{r_l} - A_{r_1, \ldots, r_{l-1}})/(q-1), & \text{if } \gamma \neq 0.
\end{cases}
\]

Proof We proceed by induction on \(l \) and we also show that the number of solutions does not depend on the values \(\alpha_1, \ldots, \alpha_l \). If \(l = 1 \), it is clear that if \(\gamma \neq 0 \) then the number of solutions is 0. Also, if \(\gamma = 0 \), this number is precisely \(\psi_{r_1} \). Clearly, this does not depend on the value \(\alpha_1 \).

Suppose that Formula (3.6) holds for \(\ell \geq 1 \) and that the number of solutions does not depend on the values \(\alpha_1, \ldots, \alpha_{\ell} \). Consider \(\ell + 1 \). We first deal with \(\gamma = 0 \). The system \(S_{r_1, \ldots, r_{\ell}, r_{\ell+1}}(0) \) can be written as

\[
S'_{r_1, \ldots, r_{\ell}, r_{\ell+1}}(0): \begin{cases}
\{ & x_{1}^{(1)} + \cdots + x_{r_1}^{(1)} + x_{2}^{(2)} + \cdots + x_{r_2}^{(2)} + \cdots + x_{l}^{(l)} + \cdots + x_{r_l}^{(l)} = 0, \\
& (\alpha_1 - \alpha_{r_1+1})x_1^{(1)} + \cdots + x_{r_1}^{(1)} + (\alpha_2 - \alpha_{r_2+1})x_2^{(2)} + \cdots + x_{r_2}^{(2)} + \cdots + (\alpha_{\ell} - \alpha_{r_{\ell}+1})x_{r_{\ell}}^{(r_{\ell})} + \cdots + x_{r_{\ell}}^{(r_{\ell})} = 0, \\
& \prod_{i, j} x_j^{(i)} \neq 0.
\end{cases}
\]
Each solution of \(S'_{r_1, \ldots, r_l, r_{l+1}}(0) \) is a solution of precisely one of the following systems
\[
S'_{r_1, \ldots, r_l, r_{l+1}}(\gamma) : \begin{cases}
\sum_{i=1}^{r_1} x_1^{(i)} + \cdots + \sum_{i=1}^{r_l} x_l^{(i)} + x_{r_l+1}^{(i)} = \gamma, \\
\sum_{i=1}^{r_l} x_{r_l+1}^{(i)} = -\gamma, \\
(\alpha_1 - \alpha_{l+1})(x_1^{(i)} + \cdots + x_1^{(j)}) + (\alpha_2 - \alpha_{l+1})(x_2^{(i)} + \cdots + x_2^{(j)}) + \cdots + (\alpha_l - \alpha_{l+1})(x_l^{(i)} + \cdots + x_l^{(j)}) = 0, \\
\prod_{i,j} x_{r_l+1}^{(i,j)} \neq 0.
\end{cases}
\]

Vice versa, each solution of a particular \(S'_{r_1, \ldots, r_l, r_{l+1}}(\gamma) \) is a solution of \(S_{r_1, \ldots, r_l, r_{l+1}}(0) \).

The number of solutions of \(S'_{r_1, \ldots, r_l, r_{l+1}}(\gamma) \) is \(A_{r_1, \ldots, r_l} \psi_{rl+1} \) if \(\gamma = 0 \), and
\[
\psi_{rl+1} - A_{r_1, \ldots, r_l} \psi_{rl+1} = \psi_{rl+1} - A_{r_1, \ldots, r_l} \psi_{rl+1} = \psi_{rl+1} - A_{r_1, \ldots, r_l} \psi_{rl+1} + (-1)^{r_{l+1}} A_{r_1, \ldots, r_l}.
\]

It is readily seen that the number of solutions of \(S_{r_1, \ldots, r_l, r_{l+1}}(\gamma) \) is \(S_{r_1, \ldots, r_l, r_{l+1}}(\delta) \) for any non-zero \(\gamma, \delta \in \mathbb{F}_q \). The claim follows. \(\square \)

Remark 3.3 From Proposition 3.2 it follows that
\[
A_{r_1, \ldots, r_l} = \psi_{r_1+\cdots+r_{l-1}} \psi_{rl} + (q-1)^{r_l+\cdots+r_{l-1}} \psi_{rl} + \sum_{i=1}^{l-2} (-1)^{r_{l-i+1}+\cdots+r_{l-1}} \psi_{r_1+\cdots+r_{l-i-1}} \psi_{r_{l-i}}.
\]

As a notation, for \(r_1, \ldots, r_l \) all distinct from 0, we denote by \(A_{r_1, \ldots, r_l, 0} \) the integer \(A_{r_1, \ldots, r_l} \).

Proposition 3.4 Let \(r = 0 \). Then the number of solutions of (3.2) is
\[
\Lambda = q^{k-1} - (q-1)^{h-s} q^{k-h} \psi_s + q^{k-h} A_{r_1, \ldots, r_l, h-s}.
\]

Proof Without loss of generality we can assume \((i_1, \ldots, i_s) = (1, \ldots, s) \). As in Proposition 3.1 we count the number of solutions of two different systems, namely
\[
\begin{cases}
a_1 x_1 + \cdots + a_s x_s = 0, \\
x_1 \cdots x_h = 0,
\end{cases}
\]
and
\[
\begin{cases}
x_1 + \cdots + x_h = 0, \\
a_1 x_1 + \cdots + a_s x_s = 0, \\
x_1 \cdots x_h \neq 0.
\end{cases}
\]

In order to count the number of solutions of (3.7), we consider
\[
\begin{cases}
a_1 x_1 + \cdots + a_s x_s = 0, \\
x_1 \cdots x_h \neq 0.
\end{cases}
\]

Here, we have \((q-1)^{h-s} q^{k-h} \psi_s \) choices for \(x_{s+1}, \ldots, x_k \), while for the remaining coordinates we have \(\psi_s \) possibilities: in total \((q-1)^{h-s} q^{k-h} \psi_s \) solutions.
This shows that System (3.7) has \(q^{k-1} - (q - 1)^{h-s} q^{k-h} \psi_s \) solutions. We now deal with System (3.8).

We write (3.8) [up to a permutation of \((1, \ldots, s)\)] in blocks of proportionality as

\[
\begin{aligned}
x_1 + \cdots + x_s + x_{s+1} + \cdots + x_l &= 0, \\
\alpha_l(x_1 + \cdots + x_{r_1}) + \cdots + \alpha_l(x_{s-r_l+1} + \cdots + x_s) &= 0, \\
x_1 \cdots x_s \cdot x_{s+1} \cdots x_h \neq 0,
\end{aligned}
\tag{3.9}
\]

for some \(l \geq 1, r_1, \ldots, r_l \geq 1 \) such that \(r_1 + \cdots + r_l = s, \alpha_l \) pairwise distinct and nonzero. Note that if \(s = h \) then the number of solutions of (3.9) is \(q^{k-h} \psi_0 A_{r_1, \ldots, r_l} = q^{k-h} \psi_0 A_{r_1, \ldots, r_l, 0} \).

Suppose now \(s < h \). Each solution of (3.9) is a solution of a certain

\[
S_y : \begin{cases}
x_1 + \cdots + x_s = \gamma, \\
x_{s+1} + \cdots + x_h = -\gamma, \\
\alpha_l(x_1 + \cdots + x_{r_1}) + \cdots + \alpha_l(x_{s-r_l+1} + \cdots + x_s) = 0, \\
x_1 \cdots x_s \cdot x_{s+1} \cdots x_h \neq 0.
\end{cases}
\tag{3.10}
\]

By Proposition 3.2, for \(\gamma = 0 \) System (3.10) has \(q^{k-h} \psi_{h-s} A_{r_1, \ldots, r_l} \) solutions, whereas for \(\gamma \neq 0 \), the number of solutions is \(q^{k-h} \psi_{h-s} (\psi_{r_1+\cdots+r_l - A_{r_1, \ldots, r_l}})/(q - 1) \). Summing up, the number of solutions of (3.8) is

\[
q^{k-h} \psi_{h-s} A_{r_1, \ldots, r_l} + q^{k-h} \psi_{h-s} (\psi_{r_1+\cdots+r_l - A_{r_1, \ldots, r_l}}) = q^{k-h} (\psi_{r_1+\cdots+r_l \psi_{h-s} + (-1)^{h-s} A_{r_1, \ldots, r_l}}) = q^{k-h} A_{r_1, \ldots, r_l, h-s}
\]

The claim follows.

Finally, we provide the weight spectrum and the weight distribution of the code \(C_{D_3} \) answering to [26, Open Problem 37].

For an \(l \)-tuple \(r_1, \ldots, r_l \), we say that it is of type \((i_1, \ldots, i_j)\) if there are \(j \) distinct values among \(r_1, \ldots, r_l \) and they are repeated \(i_1, \ldots, i_j \) times.

Theorem 3.5 The weight spectrum of the minimal code \(C_{D_3} \) is

\[
\{ n - q^{k-h-1} (q^h + \psi_h - (q - 1)^h) + 1, n - q^{k-1} - (q - 1)^{h-s} q^{k-h} \psi_s + q^{k-h} A_{r_1, \ldots, r_l, h-s} + 1 \}
\]

where \(s \) ranges in \(1, \ldots, h \) and \(r_1 + \cdots + r_l = s \). Moreover, the number \(B_i \) of codewords of weight \(i \) is

(i) \(q^k - q^h \), if \(i = n - q^{k-h-1} (q^h + \psi_h - (q - 1)^h) + 1; \)

(ii) \(\binom{h}{s} \binom{r_1+\cdots+r_l}{i_1+\ldots+i_j} \binom{q-1}{s-1} \), if \(i = n - q^{k-1} - (q - 1)^{h-s} q^{k-h} \psi_s + q^{k-h} A_{r_1, \ldots, r_l, h-s} + 1 \)

and \(r_1, \ldots, r_l \) is of type \((i_1, \ldots, i_j)\).

Proof The claim on the weight spectrum follows from Propositions 3.1 and 3.4.

Let \(\tilde{i} = n - q^{k-h-1} (q^h + \psi_h - (q - 1)^h) + 1 \). By Proposition 3.1, every hyperplane \(H : \alpha_1 x_1 + \cdots + \alpha_k x_k = 0 \) with \((\alpha_{h+1}, \ldots, \alpha_k) \neq (0, \ldots, 0)\) induces a codeword of weight \(\tilde{i} \), whence \(B_{\tilde{i}} = q^k - q^h \).

Assume now \(i = n - q^{k-1} - (q - 1)^{h-s} q^{k-h} \psi_s + q^{k-h} A_{r_1, \ldots, r_l, h-s} + 1 \) for a partition \((r_1, \ldots, r_l)\) of \(s, s \in [1, \ldots, h], l \geq 1, \) of type \(i_1, \ldots, i_j \). We count the number of \(k \)-tuples of \((\mathbb{F}_q)^k \) such that the last \(k - h \) entries are zero and that admit, among the first \(h \) entries, \(l \) distinct nonzero values and \(h - s \) zeros.
Table 1 Weight distribution of C_{D_1} for $q = 3$, $h = 4$, and $k = 5$

Weight i	132	138	142	144	150	
B_i	1	10	30	162	20	20

Table 2 Weight distribution of C_{D_1} for $q = 5$, $h = 4$, and $k = 5$

Weight i	1480	1660	1680	1684	1700	1720	1740	
B_i	1	20	180	240	2500	24	40	120

Table 3 Weight distribution of C_{D_1} for $q = 7$, $h = 4$, and $k = 5$

Weight i	6636	7686	7728	7746	7770	7896	7938	
B_i	1	30	450	1200	14406	360	60	300

The $h - s$ zero entries can be chosen in $\binom{h}{s}$ ways among the first h entries. The possible l-tuples of nonzero elements of F_q are $\binom{q-1}{l}$. Finally for any chosen l-tuple $\alpha_1, \ldots, \alpha_l$, (r_1, \ldots, r_l) counts the number s-tuples where $\alpha_1, \ldots, \alpha_l$ appear exactly r_1, \ldots, r_l times.

Each hyperplane H corresponding to such a k-tuple induces, by Proposition 3.4, a code-word of weight i.

Remark 3.6 The weights in Theorem 3.5 (ii) are not all distinct. For instance, let $h = 4$ and $k \geq h$. Then the weights corresponding to the choices $s = 4$, $r_1 = 3$, $r_2 = 1$ and $s = 2$, $r_1 = 1$, $r_2 = 1$ are equal.

We end this section with explicit tables showing the weight distributions of the codes C_{D_1} (Tables 1, 2, 3).

Remark 3.7 The weight distribution of codes C_{D_1} can be determined using a MAGMA program [8]. For the sake of completeness we include here an example. It can be used to check the correctness of our results. After specifying $q, k,$ and h one can run the following program. Similar programs can be easily obtained for the other codes considered in this paper.

```
V:=VectorSpace(GF(q),k);
P:=PolynomialRing(GF(q),k);
fp:=0;
fm:=1;
for i in [1..h] do
   fp:=P.i;
   fm:=P.i;
end for;
f:=fp*fm;
DS:=[v: v in V| Evaluate(f,ElementToSequence(v)) eq 0 and v ne 0];
WeightDistribution(LinearCode(Transpose(Matrix(GF(q),#DS,k,DS))));
```

4 Family 2

By [26, Theorem 23] it is readily seen that the dimension of C_{D_2} is k.

Proposition 4.1 Let

$$\Gamma(h, q) := \min(h, (q-1)/2)\sum_{s=1}^{\min(h, (q-1)/2)} \frac{(q-1)(q-3)\cdots(q-2s+1)}{s!} S(h, s),$$

$$= \frac{1}{2}\left((q-1)(q-3)\cdots(q-2s+1)\right)^{\frac{1}{2}} S(h, s)$$

$$= \left((q-1)(q-3)\cdots(q-2s+1)\right)^{\frac{1}{2}} S(h, s)$$

$$= \left((q-1)(q-3)\cdots(q-2s+1)\right)^{\frac{1}{2}} S(h, s)$$

$$= \left((q-1)(q-3)\cdots(q-2s+1)\right)^{\frac{1}{2}} S(h, s)$$
where $S(x, y)$ is the number of surjective functions from a set of size x to a set of size $y \leq x$.

The code C_{D_2} has length

$$
\begin{align*}
q^{k-h} (q^h - q(q-1) \cdots (q-h+1)) - 1, & \quad \text{if } p = 2 \text{ and } h \leq q; \\
q^k - 1, & \quad \text{if } p = 2 \text{ and } h > q; \\
q^{k-h} (q^h - \Gamma(h, q) - h\Gamma(h-1, q)) - 1, & \quad \text{if } p > 2.
\end{align*}
$$

Proof First, we count the number of h-tuples for which

$$
n\text{no pairs of entries } (x_i, x_j), 1 \leq i < j \leq h, \text{ satisfy } x_i + x_j = 0. \quad (4.1)
$$

Assume $p = 2$. In this case the number of h-tuples for which at least one pair of entries $(x_i, x_j), 1 \leq i < j \leq h,$ satisfies $x_i + x_j = 0$ is $q^{h} - q(q-1) \cdots (q-h+1)$ (in particular it is q^h if $h > q$).

From now on, let us consider the case $p > 2$. We distinguish two cases.

(1) All entries are nonzero. Suppose that the h entries assume exactly s distinct values $\alpha_1, \ldots, \alpha_s$ of \mathbb{F}_q^*. Since $\alpha_i \neq \pm \alpha_j$ for any $i \neq j$, s can be at most $(q-1)/2$. For a given chosen number $s \in \{1, \ldots, \min(h, (q-1)/2)\}$, there are $(q-1)(q-3) \cdots (q-2s+1)/s!$ possible choices for the set $\{\alpha_1, \ldots, \alpha_s\}$. In fact α_1 can be chosen in $q-1$ ways, $\alpha_2 \neq \pm \alpha_1$, $\alpha_3 \notin \{\pm \alpha_1, \pm \alpha_2\}$ and so on. Now, when the set $\{\alpha_1, \ldots, \alpha_s\}$ is fixed, the h entries can assume only values $\{\alpha_1, \ldots, \alpha_s\}$. The number of possible h-tuples equals the number $S(h, s)$ of surjective functions from $\{1, \ldots, h\}$ to $\{\alpha_1, \ldots, \alpha_s\}$. The number of h-tuples satisfying (4.1) is $\Gamma(h, q)$.

(2) One entry is 0. In this case, any other entry is nonzero. To the other $h-1$ entries we can apply the same argument as above. Since the unique 0 entry can appear in h different positions, the case the number of h-tuples satisfying (4.1) is $h\Gamma(h-1, q)$.

Summing up, there are in total $\Gamma(h, q) + h\Gamma(h-1, q)$ h-tuples satisfying (4.1): the number of h-tuples for which at least one pair of entries $(x_i, x_j), 1 \leq i < j \leq h,$ satisfies $x_i + x_j = 0$ is $q^{h} - \Gamma(h, q) - h\Gamma(h-1, q)$. The length of the code C_{D_2} is given by the number of k-tuples in \mathbb{F}_q for which the first h entries can be chosen in $q^h - \Gamma(h, q) - h\Gamma(h-1, q)$ ways. \hfill \Box

Proposition 4.2 Let $q > 5$ and $p > 2$. Then the minimum weight in C_{D_2} is realized by the hyperplanes $x_i + x_j = 0$, $1 \leq i < j \leq h$.

Proof It is readily seen that all the hyperplanes $x_i + x_j = 0$, $1 \leq i < j \leq h$, contain $q^{k-1} - 1$ points of D_2 and therefore they correspond to minimum weight codewords. Let H be an hyperplane different from $x_i + x_j = 0$, $1 \leq i < j \leq h$.

- If $H : x_i + \alpha x_j = 0$ for some $i \neq j$ and $\alpha \neq 1$ then the point

$$
\left(1, \ldots, 1, \frac{-\alpha}{i}, 1, \ldots, 1\right) \in H \setminus (D_2 \cup \{0\})
$$

and therefore $w(e_H) > n - q^{k-1} + 1$, where n is the length of C_{D_2}.

- Suppose now that $H : x_i = \beta x_l + \sum_{j \in J} \alpha_j x_j$, with $\#J \geq 1$, $\beta \neq 0$, $-1, l \notin J$. Let $\lambda \in \mathbb{F}_q \setminus \{-1, -(\sum_{j \in J} \alpha_j)/\beta\}$. Then the point

$$
\left(1, \ldots, 1, \frac{\lambda}{l}, 1, \ldots, 1, \frac{\lambda \beta + \sum_{j \in J} \alpha_j}{\beta}, 1, \ldots, 1\right) \in H \setminus (D_2 \cup \{0\})
$$
therefore \(w(c_H) > n - q^{k-1} + 1 \).

- Consider now the case \(H : x_i = -x_i - x_j - \sum_{j \in J} x_j \), with \(\# J \geq 0 \). Let \(\lambda \in \mathbb{F}_q \setminus \{-1, -\# J\} \), \(\mu \in \mathbb{F}_q \setminus \{-1, -\lambda, -\# J, 1 - \lambda - \# J\} \). Then the point

\[
\left(1, \ldots, 1, \lambda, 1, \ldots, 1, \mu, 1, \ldots, 1, -\lambda - \mu - \# J, 1, \ldots, 1 \right) \in H \setminus (D_2 \cup \{0\})
\]

therefore \(w(c_H) > n - q^{k-1} + 1 \). \(\square \)

5 Family 3

By [26, Theorem 23] it is readily seen that the dimension of \(C_{D_3} \) is \(k \).

Proposition 5.1 Let \(\Gamma(h, q) \) be defined as in Proposition 4.1. The code \(C_{D_3} \) has length

\[
\begin{cases}
q^{k-h} (q^h - (q - 1) \cdots (q - h)) - 1, & \text{if } p = 2 \text{ and } h < q; \\
q^{k-h} (q^h - \Gamma(h, q)) - 1, & \text{if } p = 2 \text{ and } h \geq q; \\
q^{k-h} (q^h - (q - 1) \cdots (q - h)) - 1, & \text{if } p > 2.
\end{cases}
\]

Proof First, we investigate the number of \(h \)-tuples for which

no coordinates are zero and no pairs \((x_i, x_j)\), \(1 \leq i < j \leq h\), satisfy \(x_i + x_j = 0 \). (5.1)

Assume first \(p > 2 \). By the proof of Proposition 4.1 [case (1)] the number of \(h \)-tuples satisfying (5.1) equals \(\Gamma(h, q) \). Therefore the number of \(h \)-tuples for which one coordinate is zero or at least one pair of entries \((x_i, x_j), 1 \leq i < j \leq h\), satisfies \(x_i + x_j = 0 \) is \(q^h - \Gamma(h, q) \). The length of the code \(C_{D_3} \) is given by the number of \(k \)-tuples in \(\mathbb{F}_q \) for which the first \(h \) entries are chosen in such \(q^h - \Gamma(h, q) \) ways.

Assume now \(p = 2 \). In this case the number of \(h \)-tuples for which one coordinate is zero or at least one pair of entries \((x_i, x_j), 1 \leq i < j \leq h\), satisfies \(x_i + x_j = 0 \) is \(q^h - (q - 1) \cdots (q - h) \) (in particular it is \(q^h \) if \(h \geq q \)). The claim follows. \(\square \)

Proposition 5.2 Let \(q > 5 \) and \(p > 2 \). Then the minimum weight in \(C_{D_3} \) is realized by the hyperplanes \(x_i + x_j = 0 \) and \(x_i = 0 \), \(1 \leq i < j \leq h \).

Proof Clearly, for \(1 \leq i < j \leq h \), any hyperplane \(x_i + x_j = 0 \) or \(x_i = 0 \) contains \(q^{k-1} - 1 \) points of \(D_3 \) and hence such hyperplanes correspond to minimum weight codewords. We will show that if \(H \) is an hyperplane (through the origin) different from \(x_i + x_j = 0 \), \(1 \leq i < j \leq h \), and \(x_i = 0 \), \(1 \leq i \leq h \), then there exists a point \(P \in H \setminus D_3 \). We argue as in the proof of Proposition 4.2, the only difference being that \(P \) must not have zero coordinates.

- If \(H : x_i + \alpha x_j = 0 \) for some \(i \neq j \) and \(\alpha \neq 0, 1 \) then the point

\[
\left(1, \ldots, 1, -\alpha, 1, \ldots, 1 \right) \in H \setminus (D_3 \cup \{0\})
\]

and therefore \(w(c_H) > n - q^{k-1} + 1 \), where \(n \) is the length of \(C_{D_3} \).
• Suppose now that $H : x_i = \beta x_i + \sum_{j \in J} \alpha_j x_j$, with $\# J \geq 1, \beta \neq 0, -1, 1 \not\in J$. Let $\lambda \in \mathbb{F}_q \setminus \{0, -1, -\lambda, \ldots, -\lambda, 0\}$. Then the point

$$
\left(1, \ldots, 1, \frac{\lambda}{l}, 1, \ldots, 1, \lambda \beta + \sum_{j \in J} \alpha_j, 1, \ldots, 1\right) \in H \setminus (D_3 \cup \{0\})
$$

therefore $w(c_H) > n - q^{k-1} + 1$.

• Consider now the case $H : x_i = -x_i - x_j - \sum_{j \in J} x_j$, with $\# J \geq 0$. Let $\lambda \in \mathbb{F}_q \setminus \{0, -1, -\lambda, \ldots, -\lambda, 0\}$. Then the point

$$
\left(1, \ldots, 1, \frac{\lambda}{l}, 1, \ldots, 1, \mu, 1, \ldots, 1, -\lambda - \mu - \# J, 1, \ldots, 1\right) \in H \setminus (D_3 \cup \{0\})
$$

therefore $w(c_H) > n - q^{k-1} + 1$.

\[\square \]

6 Family 4

In this section we deal with codes $C_{[0, D]}$ as defined in Theorem 1.2. Note that if D is a subset of $AG(k, q)$ such that $aD = D$ for every $a \in \mathbb{F}_q^*$ and $\# D = n$, then

$$
D = \mathbb{F}_q^* P_1 \cup \mathbb{F}_q^* P_2 \cup \cdots \cup \mathbb{F}_q^* P_{n/(q-1)},
$$

for some $P_1, \ldots, P_{n/(q-1)} \in D$. Also observe that the weight of any codeword of $C_{[D, D]}$ is divisible by $q - 1$.

Since the defining set of $C_{[D, D]}$ is

$$
\{(x_1, \ldots, x_k, 0) : (x_1, \ldots, x_k) \in D\} \cup \{(x_1, \ldots, x_k, 1) : (x_1, \ldots, x_k) \in D\} \subset AG(k + 1, q),
$$

it follows that for any hyperplane $H \subset AG(k + 1, q)$ through the origin, the corresponding codeword $c_H \in C_{[D, D]}$ can be written as $(c_{H, 0}, c_{H, 1})$ where

$$
c_{H, 0} = (H(x_1, \ldots, x_k, 0))_{x \in (\mathbb{F}_q^*)^\nu} \quad \text{and} \quad c_{H, 1} = (H(x_1, \ldots, x_k, 1))_{x \in (\mathbb{F}_q^*)^\nu}.
$$

Clearly, $w(c_H) = w(c_{H, 0}) + w(c_{H, 1})$.

Proposition 6.1 For $H : \alpha_1 x_1 + \cdots + \alpha_k x_k + \alpha_{k+1} x_{k+1} = 0$, let $\tilde{H} : \alpha_1 x_1 + \cdots + \alpha_k x_k = 0$.

If $c_H \in C_{[D, D]}$ and $c_{\tilde{H}} \in C_D$ are the codewords corresponding to H and \tilde{H} respectively, then

(i) If $\alpha_{k+1} = 0$ then $w(c_{H, 1}) = w(c_{H, 0})$ and $w(c_H) = 2w(c_{\tilde{H}})$.

(ii) If $\alpha_{k+1} \neq 0$ then $w(c_H) = n + \frac{q-2}{q-1}w(c_{\tilde{H}})$.

Proof Point (i) is clear.

Suppose now that $\alpha_{k+1} \neq 0$. From the assumptions on D, for each $P = (x_1, \ldots, x_k) \in D$ and $a \in \mathbb{F}_q^*$, the point aP is in D. We distinguish two cases:
(a) If $\tilde{H}(P) = 0$ then $\tilde{H}(Q) = 0$ for any $Q \in \mathbb{F}_q^*P$. In this case the entries corresponding to \mathbb{F}_q^*P in $c_{H,0}$ are 0, whereas those in $c_{H,1}$ are nonzero.

(b) If $\tilde{H}(P) \neq 0$ then there exists a unique value $a \in \mathbb{F}_q^*$ such that $H((ax_1, \ldots, ax_k, 1)) = \tilde{H}(aP) + a_{h+1} = 0$. In this case no entry corresponding to \mathbb{F}_q^*P in $c_{H,0}$ is 0, whereas exactly one in $c_{H,1}$ vanishes.

Therefore

$$w(c_{H,1}) = n - \frac{w(c_{\tilde{H}})}{q - 1}$$

and

$$w(c_{H,1}) + w(c_{H,0}) = n - \frac{w(c_{\tilde{H}})}{q - 1} + w(c_{\tilde{H}}) = n + \frac{(q - 2)w(c_{\tilde{H}})}{q - 1}.$$

\[\square \]

Proposition 6.1 shows that the weight distribution of $C_{[D,\tilde{D}]}$ is uniquely determined by the weight distribution of C_D. As a corollary of Proposition 6.1 the following holds.

Corollary 6.2 Let A_i be the number of codewords of weight i in C_D. Then the weight spectrum of $C_{[D,\tilde{D}]}$ is

$$\bigcup_{i=1}^n \left\{ 2i, n + \frac{q - 2}{q - 1} i : A_i \neq 0 \right\}.$$

Moreover, if B_i denotes the number of codewords of weight i in $C_{[D,\tilde{D}]}$, then

$$B_i = \eta_i A_i + (q - 1)\eta_{i-n} \frac{q - 1}{q - 2} A_{i-n} \frac{q - 1}{q - 2}$$

where

$$\eta_s = \begin{cases} 1, & \text{if } s \in \mathbb{Z}; \\ 0, & \text{otherwise.} \end{cases}$$

In what follows we will focus on the computation of the weight distribution of the code $C_{[\tilde{D},D_4]}$, where $D_4 = \left\{ (x_1, \ldots, x_k) \in AG(k,q) \setminus \{0\} : \prod_{i=1}^k x_i = 0 \right\}$. First, we report some information on C_{D_4} proved in [26, Theorem 23].

Proposition 6.3 C_{D_4} is a $[n, k, n - q^{k-1} + 1, q]$-code, where $n = q^{k-h}(q^h - (q - 1)^h) - 1$. Moreover,

- C_{D_4} has weight spectrum
 $$\left\{ n - q^{k-1} + q^{k-h-1}(q - 1)^h + 1, n - q^{k-1} + q^{k-h}(q - 1)^{h-s} \psi_s + 1 \right\},$$
 where $s = 1, \ldots, h$.

- If A_i denotes the number of codewords of C_{D_4} of weight i, then
 $$A_i = \begin{cases} q^k - q^h, & \text{if } i = n - q^{k-1} + q^{k-h-1}(q - 1)^h + 1; \\ \binom{h}{s} \psi_s (q - 1)^s, & \text{if } i = n - q^{k-1} + q^{k-h}(q - 1)^{h-s} \psi_s + 1. \end{cases}$$
Table 4 Weight distribution of $\tilde{C}_{[D_4, D_4]}$ for $q > 3$

Weight i	B_i
0	1
n	$q - 1$
$2w_s$, for $s = 1, \ldots, h$	$\binom{h}{s}(q-1)^s$
$n + w_s \frac{q-2}{q-1}$, for $s = 1, \ldots, h$	$\binom{h}{s}(q-1)^{s+1}$
$2w$	$q^k - q^h$
$n + w \frac{q-2}{q-1}$	$(q^k - q^h)(q-1)$

As a notation, let

$$w_s = n - q^{k-1} + q^{k-h}(q-1)^{h-s} \psi_s + 1,$$
$$w = n - q^{k-1} + q^{k-h-1}(q-1)^h + 1.$$

Note that if $h = k$, $A_w = 0$.

We are now in position to address [26, Open Problem 48], providing the parameters and the weight distribution of the code $\tilde{C}_{[D_4, D_4]}$.

Proposition 6.4 $\tilde{C}_{[D_4, D_4]}$ is a $[2n, k+1, n]_q$-code, where n is the length of C_{D_4}. Moreover, the weight spectrum of $\tilde{C}_{[D_4, D_4]}$ is

- for $k > h$
 $$\{0, n, 2w_s, n + w_s \frac{q-2}{q-1}, 2w, n + w \frac{q-2}{q-1}\}_{s=1,\ldots,h};$$
- for $k = h$
 $$\{0, n, 2w_s, n + w_s \frac{q-2}{q-1}\}_{s=1,\ldots,h}.$$

Proof The claim on the weight spectrum is a consequence of Propositions 6.1 and 6.3. We only need to prove that the minimum weight of $\tilde{C}_{[D_4, D_4]}$ equals n. By Proposition 6.1, the only candidates as minimum weights are those arising from the minimum weight codewords in C_{D_4} and from the null word of C_{D_4}. Therefore, the minimum distance of $\tilde{C}_{[D_4, D_4]}$ is

$$\min \left(n, 2(n - q^{k-1} + 1), (n - q^{k-1} + 1) \frac{q-2}{q-1} \right) = n.$$

Clearly there may be collisions between two weights in the weight spectrum of Proposition 6.4. In the next proposition we provide a deeper analysis of the weight distribution of $\tilde{C}_{[D_4, D_4]}$.

Proposition 6.5 Let B_i be the number of codewords of $\tilde{C}_{[D_4, D_4]}$ of weight i. If $q > 3$ the weight distribution of $\tilde{C}_{[D_4, D_4]}$ is given in Table 4.
The claim follows by Corollary 6.2 and Proposition 6.4, after proving that there are no collisions between two weights in the weight spectrum of $C_{[D_s,D_h]}$. First, observe that while w and w_s are divisible by $q - 1$, they are not divisible by $(q - 1)^2$ (possibly with the only exception of w_h). Indeed,

$$\frac{w}{q - 1} = \frac{w_s}{q - 1} = \frac{q^k - 1}{q - 1} - \frac{q^{k-1} - 1}{q - 1} = q^{k-1} \equiv 0 \mod q - 1$$ \hspace{1cm} (6.2)

for $s = 1, \ldots, h - 1$, while if $s = h$

$$\frac{w_h}{q - 1} = q^{k-h-1}(q^h + (-1)^h) \mod q - 1.$$ \hspace{1cm} (6.3)

We now consider all the possible cases of collision between two weights.

- If $k > h + 1$ it is readily seen that $n \neq 2w_s$ and $n \neq 2w$, since $n \equiv -1 \mod q$ whereas $w, w_s \equiv 0 \mod q$. If $k = h + 1$ or $k = h$, a direct computation shows that $n < \min\{2w, 2w_s\}$. Indeed,

$$2w_s - n = n - 2q^{k-1} + 2q^{k-h}(q - 1)^{h-s} \psi_s + 2 > n - 2q^{k-1} + 1 = q^k - q^{k-h}(q - 1)^h - 2q^{k-1} > 0,$$

for $q > 3$. The same argument yields $n < 2w$.

- $n = n + w \frac{q^2 - 2}{q - 1}$ or $n = n + w_s \frac{q^2 - 2}{q - 1}$ cannot occur for $q > 3$.

- $w_s = w$ (which yields $2w_s = 2w$ and $n + w_s \frac{q^2 - 2}{q - 1} = n + w \frac{q^2 - 2}{q - 1}$) implies

$$(q - 1)^{h-s}q^{k-h} \psi_s = (q - 1)^h q^{k-h-1}$$

that is

$$q \psi_s = (q - 1)^s$$

a contradiction.

- As observed above, since $(q - 1)$ divides w and w_s but $(q - 1)^2$ does not (except possibly for w_h), we have

$$2w_s \neq n + \frac{q - 2}{q - 1} w$$

for $s = 1, \ldots, h$, and

$$2w \neq n + \frac{q - 2}{q - 1} w_s$$

for $s = 1, \ldots, h - 1$.

It remains to check if it is possible that $2w = n + \frac{q^2 - 2}{q - 1} w_h$. Note first that if h is odd then $\frac{w_h}{q - 1} \neq 0 \mod q - 1$, whence the same argument as above applies and $2w \neq n + \frac{q^2 - 2}{q - 1} w_h$.

Assume now h even. Then $2w = n + \frac{q^2 - 2}{q - 1} w_h$ reads

$$2(n - q^{k-1} + q^{k-h-1}(q - 1)^h + 1) = n + (q - 2)(q^{k-h-1}(q^h - (q - 1)^h) + q^{k-h-1}),$$

that is

$$n = q^k - q^{k-h}(q - 1)^h + q^{k-h} - 2q^{k-h-1} - 2,$$ \hspace{1cm} (6.4)

a contradiction to $n \equiv -1 \mod q$.

Springer
Table 5 Weight distribution of $C_{[D_4, D_4]}$ for $q = 3$ and $k = h + 1$

Weight i	B_i
0	1
n	2
$2w_s$, for $s = 1, \ldots, k - 1$	$(\frac{k-1}{s})^{2s}$
$n + w_s/2$, for $s = 1, \ldots, k - 2$	$(\frac{k-1}{s})^{2s+1}$
$2w$	$3^k - 3^{k-1}$
$n + w/2$	$2(3^k - 3^{k-1})$

Table 6 Weight distribution of $C_{[D_4, D_4]}$ for $q = 3$, $h = 4$, and $k = 5$

Weight i	B_i
0	1
194	2
228	8
251	16
252	32
257	64
259	324
260	194
263	48
264	16
276	24

Table 7 Weight distribution of $C_{[D_4, D_4]}$ for $q = 5$, $h = 4$, and $k = 5$

Weight i	B_i
0	1
1844	4
2440	16
2759	64
2920	256
2939	1024
2951	10,000
2952	2500
2954	2024
2960	256
2999	384
3080	96

• If $w_s = w_{s'}$ for some $s, s' \in \{1, \ldots, h\}$ with $s' > s$, then
 $$(-1)^s(q - 1)^{h-s'} + 1 = (-1)^s(q - 1)^{h-s+1}$$
 that is
 $$(-1)^{s-s'}(q - 1)^{s'-s} = 1,$$
 a contradiction to $q > 3$.
• If $2w = n + w\frac{q-2}{q-1}$, then $(q - 1)n = qw$; a contradiction, since n is not divisible by q.
The same argument also shows that $2w_s \neq n + w_s\frac{q-2}{q-1}$.

\[\square\]

Remark 6.6 If $q = 3$, almost the same argument in Proposition 6.5 applies; the only difference arises from Eq. (6.4) when $k = h + 1$. Indeed, in this case, $2w = n + w\frac{q-2}{q-1}$, Table 5 shows the weight distribution of $C_{[D_4, D_4]}$ for $q = 3$ and $k = h + 1$.

The following tables show the weight distributions of $C_{[D_4, D_4]}$ for $h = 4$, $k = 5$ and $q = 3, 5$ (Tables 6, 7).

As an application of Proposition 6.1 we provide the weight distribution of the code $C_{[D_1, D_4]}$. In this case we will not deal with possible collisions of two weights (since this problem is already hard to study for the weight distribution of C_{D_4}).

Proposition 6.7 With the same notation as in Theorem 3.5, the weight distribution of $C_{[D_1, D_4]}$ is given in Table 8.
Table 8 Weight distribution of $C_{[D_1,D_1]}$

Weight i	B_i
0	1
n	$q - 1$
$2(n - q^{k-1})$	$q^k - q^h$
$n + (n - q^{k-1})$	$(q - 1)(q^k - q^h)$
$2(n - q^{k-1}) - (q - 1)^{h-s}$	$(q - 1)\left(\binom{h}{s} \binom{h}{l} \binom{i}{l} \binom{i}{j} \binom{q-1}{l} \right)$
$n + (n - q^{k-1}) - (q - 1)^{h-s}$	$(q - 1)\left(\binom{h}{s} \binom{h}{l} \binom{i}{l} \binom{i}{j} \binom{q-1}{l} \right)$

The following table shows the weight distribution of $C_{[D_1,D_1]}$ for $h = 4, k = 5$ and $q = 3$ (Table 9).

Finally, we present the following open problems.

Open Problem 6.8 Determine the weight distribution (without collisions) of C_{D_1} and $C_{[D_1,D_1]}$.

Open Problem 6.9 Determine the weight distribution of C_{D_2} and C_{D_3}.

Acknowledgements The research of D. Bartoli, M. Bonini, and M. Timpanella was partially supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA-INdAM).

References

1. Alfarano G.N., Borello M., Neri A.: A geometric characterization of minimal codes and their asymptotic performance. Adv. Math. Commun. https://doi.org/10.3934/amc.2020104.
2. Ashikhmin A., Barg A.: Minimal vectors in linear codes. IEEE Trans. Inf. Theory 44(5), 2010–2017 (1998).
3. Bartoli D., Bonini M.: Minimal linear codes in odd characteristic. IEEE Trans. Inf. Theory 65(7), 4152–4155 (2019).
4. Bartoli D., Bonini M., Gunes B.: An inductive construction of minimal codes. arXiv:1911.09093 (2019).
5. Berlekamp E.R., McEliece R.J., van Tilborg H.C.A.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978).
6. Blakley G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS National Computer Conference, New York, USA, pp. 313–317 (1979).
7. Bonini M., Borello M.: Minimal linear codes arising from blocking sets. J. Algebr. Comb. https://doi.org/10.1007/s10801-019-00930-6.
8. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).
9. Bruck J., Naor M.: The hardness of decoding linear codes with preprocessing. IEEE Trans. Inf. Theory 36(2), 381–385 (1990).
10. Carlet C., Ding C., Yuan J.: Linear codes from highly nonlinear functions and their secret sharing schemes. IEEE Trans. Inf. Theory 51(6), 2089–2102 (2005).
11. Chabanne H., Cohen G., Patey A.: Towards secure two-party computation from the wire-tap channel. In: Information Security and Cryptology—ICISC 2013, Heidelberg, Germany, pp. 34–46 (2014).
12. Chang S., Hyun J.Y.: Linear codes from simplicial complexes. Des. Codes Cryptogr. 86(10), 2167–2181 (2018).
13. Cohen G.D., Mesnager S., Patey A.: On minimal and quasi-minimal linear codes. In: IMACC 2013, Heidelberg, Germany, pp. 85–98 (2013).
14. Ding C.: Linear codes from some 2-designs. IEEE Trans. Inf. Theory 60(6), 3265–3275 (2015).
15. Ding C., Niederreiter H.: Cyclotomic linear codes of order 3. IEEE Trans. Inf. Theory 53, 2274–2277 (2007).
16. Ding C., Luo J., Niederreiter H.: Two weight codes punctured from irreducible cyclic codes. In: Li Y., Ling S., Niederreiter H., Wang H., Xing C., Zhang S. (eds.) Proceedings of the First International Workshop on Coding Theory and Cryptography, pp. 119–124. Singapore, World Scientific (2008).
17. Ding C., Li N., Li C., Zhou Z.: Three-weight cyclic codes and their weight distributions. Discret. Math. 339(2), 415–427 (2016).
18. Ding C., Heng Z., Zhou Z.: Minimal binary linear codes. IEEE Trans. Inf. Theory 64(10), 6536–6545 (2018).
19. Heng Z., Ding C., Zhou Z.: Minimal linear codes over finite fields. Finite Fields Appl. 54, 176–196 (2018).
20. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2010).
21. Kløve T.: Codes for Error Detection. World Scientific, Singapore (2007).
22. Massey J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish–Russian International Workshop on Information Theory, Sweden, pp. 276–279 (1993).
23. Massey J.L.: Some applications of coding theory in cryptography. In: Codes and Cyphers: Cryptography and Coding IV, Essex, England, pp. 33–47 (1995).
24. Shamir A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979).
25. Song Y., Li Z., Li Y.M.: Secret sharing with a class of minimal linear codes. Acta Electron. Sin. 41, 220–226 (2013).
26. Tang C., Qiu Y., Liao Q., Zhou Z.: Full Characterization of Minimal Linear Codes as Cutting Blocking Sets. arXiv:1911.09867 (2019).
27. Yuan J., Ding C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory 52(1), 206–212 (2006).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.