Importance of the telemedicine network for neurosurgery in Slovenia

Tomaz Velnar, Tilen Zele, Roman Bosnjak

ORCID number: Tomaz Velnar (0000-0002-6283-4348); Tilen Zele (0000-0002-9555-8702); Roman Bosnjak (0000-0001-7365-0989).

Author contributions: Velnar T, Zele T, and Bosnjak R contributed equally to this work; Velnar T designed the research; Zele T and Bosnjak R analyzed the data; Velnar T, Zele T, and Bosnjak R wrote the paper.

Conflict-of-interest statement: No conflicts of interest to disclose.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Received: September 28, 2018
Peer-review started: September 28, 2018
First decision: November 29, 2018
Revised: December 16, 2018
Accepted: January 5, 2019
Article in press: January 6, 2019
Published online: January 18, 2019

Abstract

The number of invasive procedures in medicine is increasing, as is the employment of new technological achievements. In the era of information-communication technology, one such achievement is also the telemedicine network. In Slovenia, it is known as the Telekap (TeleStroke) network, which was primarily designed for fast and efficient management of stroke patients. In the neurosurgical community, the system is frequently used also for conveying information regarding subarachnoid haemorrhage and trauma. Especially in neurosurgical emergencies, this communication system offers thorough information about the extent and location of bleeding and facilitates the preoperative planning of neurosurgical interventions. From our experience so far, the system should be expanded to other neuro-centres as well to all neurosurgery departments in order to facilitate patient management, their acute hospital care, and inter-speciality collaboration.

Key words: Telemedicine; Neurosurgery; Neurosurgical planning; Neuroimaging; Slovenia

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The telemedicine network in Slovenia is known as the Telekap (TeleStroke) network, which was primarily designed for fast and efficient management of stroke. In the neurosurgical community, the system is frequently used for conveying information regarding subarachnoid haemorrhage and trauma. It offers thorough information about the extent and location of the pathology and facilitates the neurosurgical intervention.

Citation: Velnar T, Zele T, Bosnjak R. Importance of the telemedicine network for neurosurgery in Slovenia. World J Methodol 2019; 9(1): 20-25
URL: https://www.wjgnet.com/2222-0682/full/v9/i1/20.htm
INTRODUCTION

The number of invasive procedures and the use of new technological achievements in medicine are increasing. Telemedical connections are one of such important acquisitions in the era of information-communication technology (ICT)\(^1\,^2\). Telemedicine is defined as the use of medical data, mostly in emergencies, which emergency services are sharing between themselves by using electronic communication and with the purpose to improve healthcare, health and educational services in outpatient and emergency situations\(^1\,^3\). Hospital and outpatient neurology is one of the emerging subspecialties in neurology that was developed to improve access to neurological care in areas without specialised neurology centres\(^3\,^4\). Telemedical network system is not used only by neurological professions, and it is also very useful for neurosurgery.

IMPLEMENTATION OF THE TELEKAP SYSTEM IN NEUROSURGERY

In Slovenia, the telemedicine network is called Telekap (TeleStroke) and it has been used since 2015. All hospitals in the country are connected in this network, which provides continuous access to the data and connections with consulting specialists in the tertiary centre. The main idea during establishing this system was that telemedicine may provide care for all neuropathology patients in the country with quick and easy accessibility. This telemedicine network was initially designed for fast and efficient treatment of patients with a stroke. The Telekap system enables clinical and radiological assessment of location and scope of stroke, tumour, hydrocephalus, or head and spine injuries, and fast decision-making about further diagnostic procedures. It also provides triage for patients and thus enables a suitable therapy. When the patient is admitted to a peripheral hospital, the images are forwarded directly to the telemedicine centre, where neurosurgeons may plan the optimal treatment strategy. According to the conveyed images, the resuscitation and surgical team may be properly prepared for the operation during the transport of the patient. Additionally, the postoperative accommodation and care of such a patient may be forecast and organised. Increased prevalence and mortality due to stroke is partially the consequence of slow treatment due to large distances to specialised neurology centres\(^5\). The time of treatment is therefore extremely important, and it affects the outcome of the treatment. The patient suffering from stroke must not only be transferred to an appropriate centre as soon as possible, and data about the disease that provide fast and expert assessment, planning, and correct action during admittance are also important. However, this is possible only if the data is promptly available. Similarity also applies for neurosurgical pathology where fast action is needed\(^5\,^6\).

The Telekap system is being used in neurology principally in relation to haemorrhagic and ischemic strokes as it provides fast informing and transfer of data from remote hospitals to centres that are specialised in stroke treatment\(^5\,^6\). However, the telemedicine system is useful not only for informing and preparation for stroke treatment but also for other types of pathology. Beside neurology, the Telekap system is extremely valuable for neurosurgeons. They are using it frequently for acquiring significant information, mostly in relation to subarachnoid haemorrhage, tumours, and head injuries, being most frequent indications\(^8\).

In Slovenia there are two referral tertiary neurosurgical centres for the 1.8 million population. Due to the specifics of neurosurgical pathology, the paucity of neurosurgery experts in peripheral emergency departments, and the lacking availability of a range of effective treatments there, the patients with corresponding pathology and in need of emergency treatment are transferred for the specialist management to the either centre always when possible. On some occasions, the worsening clinical condition would direct immediate action and preclude the transport. In these sceneries, the Telekap is particularly valuable. Numerous factors have all contributed to optimal conditions for Telekap implementation in Slovenia, including the opportunity to improve access and quality of care, narrow window of time frame and treatment efficacy, the resources required for ground and helicopter
medical transportation, and the expansions and improvements of the medical care dedicated ICT. As a result, the Telekap is being used extensively in the national health care and its use is still rising.

On some occasions, the surgeons in local hospitals are capable of exerting immediate neurosurgical treatment for the patients who need urgent action and where transport would deteriorate the worsening condition due to the time required for reaching neurosurgical department\[11-13\]. These are in the most cases the trauma settings with intracranial pressure (ICP) monitor placement and operations where evacuation of acute blood is needed from the brain in order to prevent a high rise of ICP and brain herniation. In such cases, only immediate surgical decompression can save the patient\[14-16\]. Mostly these emergency procedures in Slovenia are connected with acute subdural, epidural, and rare superficial intracerebral hematomas and decompressive craniectomies as well as when there are difficulties encountered with the subsequent postemergency neurosurgical care.

This communication system is especially important in neurosurgery cases as it provides complete information on the extent and location of haemorrhage, and it simplifies pre-operative planning of a neurosurgical procedure. Information that is available from images on the computer system and is important for the neurosurgeon includes the type and precise location of the intracranial pathological process (injury, bleeding, ischemia, tumour, and hydrocephalus, the extent of affected brain tissue due to oedema or adjoining ischemia, and combined injuries or pathological processes which may also affect extracranial parts, such as cranial and facial bones, as well as scalp and facial soft tissues\[17,18\]. Data on the optical nerve channel, eyeballs, pyramid bones, or sinuses are also extremely important, especially in the acute setting, such as head and face injuries. This information is crucial for planning surgical treatment where interdisciplinary operation is necessary, especially in patients with combined injuries. In such difficult medical emergencies, the help of maxillofacial surgeons, ophthalmologists, or otorhinolaryngologists is always welcome and leads to increased treatment quality and faster patient care\[12-19\].

The Telekap has been designed to provide any patient with symptoms and signs consistent with acute neurosurgical pathology with a quick expert clinical evaluation, a review of diagnostic findings, a diagnosis, decision making, emergency treatment recommendations, and postoperative advice. It is the most reasonable to perform the Telekap consultation in collaboration with the treating physicians and nurses, as they are the ones that know the patient’s condition in detail.

When the patient is accepted to a general hospital, the system submits images directly to the telemedicine centre. According to the information, neurosurgeons can optimally plan the treatment, which depends on the type of pathology. Additionally, the reanimation and surgical team can suitably prepare for the surgical procedure during the transport of the patient. It is also possible to plan and organise postoperative management of such patients, often needing intensive care and prolonged hospitalisation\[18-23\].

Time is an important factor in brain injury, which may affect the final treatment outcome. The delays in providing adequate resuscitation and definitive care in a timely fashion and appropriate management are often detrimental for patients with brain injury\[19\]. Thus, the telemedicine network is indispensable for neurosurgeons for the treatment of patients with urgent surgical situations, especially for those who were transferred from remote centres where time plays an important role\[20\]. The Telekap can be used regardless of the hospital location, emergency department versus other unit, time of day, and proximity to the nearest neurosurgical centre. According to previous extremely positive experience, we propose that such a system should be expanded to other centres with neurological patients, and also to all neurosurgery departments in the country in order to facilitate preparation for procedures for such patients, their acute hospital treatment, and interdisciplinary collaboration. The process is still ongoing and we are expecting further expansion, modifications, and improvements of the system in the following years.

Decision making is a central function of a telestroke network. In hospitals without neurosurgical experience and neurocritical care units, the surgeon on call may perform the initial intervention. In such typical neurosurgical setting taking part in the Telekap service, medical consultations are delivered to local hospitals from specialists in the referral centre who are located at distant sites and they have unusually no connection with the patients and their treatments in the local hospitals. The referral centre is frequently an academic medical centre and provides the neurosurgical Telekap services to distant sites within its geographic region. The most numerous emergencies are those related to the high ICP for various reasons. It is essentially to release this high ICP in order to assure the best possible recovery for the patient. With the Telekap network, the operating surgeon in a distant hospital may sometime be guided with the audio-video support of a neurosurgeon. Later on, when
the decompression is achieved, the ICP rescued, and the patient stable, a transport into the tertiary centre may be organised in order to completely accomplish the surgical procedure. In case the patient requires a higher level of care following the Telesstroke evaluation, a transfer to the corresponding neurosurgical canter is facilitated. When the transfer is indicated, the referral centre typically receives the patient from the local hospital and can provide continuity of care, having already observed the patient virtually. Alternatively, the neurosurgeon may be transferred to the local hospital. In our clinical practice, the latter is a frequent event, where the neurosurgeon may take over the operation in the local hospital in case of difficulties and advises during the immediate postoperative care.

OUR EXPERIENCE WITH THE TELEKAP

In the period of using the Teleknap system in University Medical Centre Ljubljana, we surgically treated patients at the neurosurgery department for various pathologies. Those included cerebral vascular diseases (aneurysms, arteriovenous malformations, ischemic and haemorrhagic strokes), injuries (contusions, epidural and subdural haematomas, cranial and facial fractures, and soft tissue injuries), brain oedema of various aetiologies, and primary and secondary brain tumours where oedema or bleeding occurred and the neurological status of patients deteriorated due to a sudden increase of ICP. The larger share of patients included those with ischemic and haemorrhagic strokes where surgical intervention was required by inserting a sensor for measuring ICP, external ventricular drainage, evacuation of brain haemorrhage, or decompressive craniectomy for lowering refractory increased ICP.

Worldwide, the value of telemedicine has been confirmed clinically and scientifically. In 2009, the American Heart and American Stroke Association reported about the evidence of telemedicine significance in the stroke schemes of care and made recommendations for telestroke implementation[19,23]. The 2009 policy statement included guidelines with the recommendations that were based on class I evidence[23]. Key recommendations emphasized the value of telestroke system to support the assessment of acute stroke severity, the equivalence to that of a bedside evaluation, the review of imaging results by remotely located stroke specialists, and urgent decisions about further treatment[24-26]. In our experience, such evidence may directly mirror the neurosurgical practice. The Telekap proved to be an invaluable tool in the management and care of patients, as perceived by the treating surgeons and consulting neurosurgeons in the two Slovenian referral centres. As communicated in the current stroke guidelines, telestroke remains a standard care in hospitals that cannot provide an acute stroke team[24,27]. In recent years since implementation of the Telekap in the emergency neurology services, we have successfully broadened its applications also into neurosurgical practice. We may therefore state that in Slovenia the Telekap system has developed in the last three years into a standard and indispensable tool for communication, connection, and flow of medical information between the hospitals that cannot provide a neurosurgical team and the referral centres. It now remains a standard element of the treatment strategy for neurosurgical patients from distant locations.

The monitoring of the image transmission from primary diagnostic centre (i.e., emergency or radiology centre in the local hospital) as well as the flow and quality of video, audio, and Internet connectivity should be a part of technology workflow. In order to perform the consultation, surgical and postoperative guidance soundly and to achieve good treatment results, a flawless operation of all systems involved and a god technical support are mandatory[28,29].

Considering the positive experience, we believe that it would be necessary to expand the use of Telekap also to other medical specialities in order to facilitate the flow of important medical and treatment related information. Especially, emergency medical services among the hospitals in the country may be connected, including prehospital units, interventional specialities, and traumatology, as well as paediatric units and internal medicine emergency services, in order to improve and speed up the management of urgent conditions and to improve treatment outcomes.

CONCLUSION

Progress in the treatment of intracranial pathology included the development and expansion of computer systems, networks, and applications for fast and simple informing and data transfer from the location of primary diagnostics to specialised centres. Beside technical support, which includes information communication
technology, a close cooperation of various experts is also important for the efficient operation of the entire treatment mechanism. Such a multidisciplinary team includes, in addition to neurologists and neuroradiologists, also interventional radiologists, intensive care specialists, anaesthesiologists, and neurosurgeons. It would be useful to provide such an information network, which would be intended for other specialists in medicine as well, to all hospitals and diagnostic centres in Slovenia in order to significantly improve the speed and quality of healthcare and thus improve the treatment efficacy for patients even more.

REFERENCES

1. Mutgi SA, Zha AM, Behrouz R. Emerging Subspecialties in Neurology: Telestroke and telenurology. Neurology 2015; 84: e191-e193 [PMID: 26033342 DOI: 10.1212/NEU.0000000000001634]
2. Hess DC, Audebert HJ. The history and future of telestroke. Nat Rev Neurosci 2013; 9: 340-350 [PMID: 23649102 DOI: 10.1038/nrneurol.2013.86]
3. Blacquiere D, Lindsay MP, Foley N, Taralson C, Alcocq S, Balg C, Bhogal S, Cole J, Eastace M, Gallagher P, Ghanem A, Hoechsmann A, Hunter G, Khan K, Marrero A, Moses B, Rayner K, Samis A, Smits E, Vibe M, Gubitz G, Dowlatshahi D, Phillips S, Silver FL; Heart and Stroke Foundation Canadian Stroke Best Practice Committees. Canadian Stroke Best Practice Recommendations: Telestroke Best Practice Guidelines Update 2017. Int J Stroke 2017; 12: 886-895 [PMID: 28441928 DOI: 10.1111/ijst.1357629]
4. Müller-Barn P, Hubert GJ, Boy S, Bogdahn U, Wiedmann S, Heuschmann PU, Audebert HJ. Telestroke units serving as a model of care in rural areas: 10-year experience of the TeleMedical project for integrative stroke care. Stroke 2014; 45: 2739-2744 [PMID: 25147327 DOI: 10.1161/STROKEAHA.114.006414]
5. Wang S, Lee SB, Pardue C, Ramsingh D, Waller J, Gross H, Nichols FT 3rd, Hess DC, Adams RJ. Remote evaluation of acute ischemic stroke: reliability of National Institutes of Health Stroke Scale via telestroke. Stroke 2003; 34: e188-e191 [PMID: 14500929 DOI: 10.1161/01.STR.0000091847.82140.9D]
6. Vucković I, Dilberović F, Kapur E, Woljevica A, Blačkoš N, Selak I. The principles of teledmedicine in practice. Bosn J Basic Med Sci 2003; 3: 54-60 [PMID: 16223139 DOI: 10.17325/bjoms.2003.349]
7. Van Hooff RJ, Cantelba A, Dymally P, Espinoza AV, Van de Cassee R, Converta A, Hulbloue I, De Keyser J, Brouns R. Prehospital unassisted assessment of stroke severity using teledmedicine: a feasibility study. Stroke 2013; 44: 2907-2909 [PMID: 23920133 DOI: 10.1161/STROKEAHA.113.002209]
8. Barlinn J, Gerber J, Barlinn K, Pallesen LP, Steippman T, Zerna C, Wojciechowski C, Puetz V, von Kummer R, Reichmann H, Linn J, Bodechtel Ú. Acute endovascular treatment delivery to ischemic stroke patients transferred within a telestroke network: a retrospective observational study. Int J Stroke 2017; 12: 502-509 [PMID: 27899742 DOI: 10.11177/1747493016668108]
9. Sanders KA, Patel R, Kiely JM, Gwinn MW, Johnston LH. Improving Telestroke Treatment Times in an Expanding Network of Hospitals. J Stroke Cerebrovasc Dis 2016; 25: 288-291 [PMID: 26654667 DOI: 10.1016/j.jstrokecerebrovasdis.2015.09.035]
10. Backhaus R, Schachtzitzki F, Rackl W, Baldaravon D, Leitzmann M, Hubert GJ, Müller-Barn P, Schuierer G, Bogdahn U, Boy S. Intracranial hemorrhage: frequency, location, and risk factors identified in a TeleStroke network. Neuroreport 2015; 26: 81-87 [PMID: 25306117 DOI: 10.1097/WNR.0000000000000354]
11. Barber MA, Helmer SD, Morgan JT, Haan JM. Placement of intracranial pressure monitors by non-neurosurgeons: excellent outcomes can be achieved. J Trauma Acute Care Surg 2012; 73: 558-563; discussion 563-565 [PMID: 22929484 DOI: 10.1097/TA.0b013e318265cb75]
12. Young PJ, Bowling WM, Midlevel practitioners can safely place intracranial pressure monitors. J Trauma Acute Care Surg 2012; 73: 431-434 [PMID: 22946951 DOI: 10.1097/TA.0b013e3182624375]
13. Ekeh AP, Ilyas S, Saxe JM, Whitmill M, Parikh P, Schweitzer JS, McCarthy MC. Successful placement of intracranial pressure monitors by trauma surgeons. J Trauma Acute Care Surg 2016; 81-87 [PMID: 25536117 DOI: 10.1097/WNR.0000000000000354]
14. Koenig MA. Cerebral Edema and Elevated Intracranial Pressure. Continuum (Minneap Minn) 2018; 24: e188-e191 [PMID: 14500929 DOI: 10.1161/01.STR.0000091847.82140.9D]
15. Freeman WD. Management of Intracranial Pressure. Continuum (Minneap Minn) 2015; 21: 1299-1323 [PMID: 26426229 DOI: 10.1212/CON.0000000000000255]
16. Clarici GC. [Surgical techniques for severe brain injury : With special emphasis on polytrauma]. LjesnaLaktes 2017; 120: 734-738 [PMID: 28781011 DOI: 10.1161/01.STR.0000000000000255]
17. Denaerschak BM, Bobrov B, Raman R, Ernstrohm K, Hoxworth J, Patel AC, Kriemen TE, Aguilar MI, Ingall TJ, Dodick DW, Meyer BC; Stroke Team Remote Evaluation Using a Digital Observation Camera (STReEk DOC) in Arizona—the Initial Mayo Clinic Experience (AZ TIME) Investigators. CT interpretation in a telestroke network: agreement among a stroke radiologist, hub vascular neurologist, and hub neuroradiologist. Stroke 2012; 43: 3095-3097 [PMID: 22904017 DOI: 10.1161/01.STR.0000132980.0957]
18. Puetz V, Bodechtel Ú, Gerber JC, Dzialowski I, Kunz A, Wolz M, Hentschel H, Schultheiss T, Kepplinger J, Schneider H, Wiedemann B, Wojciechowski C, Reichmann H, Gahn G, von Kummer R. Reliability of brain CT evaluation by stroke neurologists in telenurology. Neurology 2013; 80: 332-338 [PMID: 23255831 DOI: 10.1212/WNL.0b013e3182707463]
19. Schwamm LH, Holloway RG, Amarenco P, Audebert HJ, Bakas T, Chambers NR, Handschu R, Jauch EC, Knight WA 4th, Levine SR, Mayberg M, Meyer BC, Meyers PM, Skalabin E, Wechsler LR; American Heart Association Stroke Council; Interdisciplinary Council on Peripheral Vascular Disease. A review of the evidence for the use of telestroke within stroke systems of care: a scientific statement from the American Heart Association/American Stroke Association.
20. Audebert HJ, Wimmer ML, Hahn R, Schenkel J, Bogdahn U, Horn M, Haberl RL; TEMPIS Group. Can telemedicine contribute to fulfill WHO Helsingborg Declaration of specialized stroke care? Cerebrovasc Dis 2005; 20: 362-369 [PMID: 15763500 DOI: 10.1159/000082476]

21. Verhoeven F, Tanja-Dijkstra K, Nijland N, Eysenbach G, van Gemert-Pijnen L. Asynchronous and synchronous teleconsultation for diabetes care: a systematic literature review. J Diabetes Sci Technol 2010; 4: 666-684 [PMID: 20513335 DOI: 10.1177/193229681000400323]

22. Beach M, Goodall I, Miller P. Evaluating telemedicine for minor injuries units. J Telemed Telecare 2000; 6 Suppl 1: S90-S92 [PMID: 10793984 DOI: 10.1258/1357633001934276]

23. Schwamm LH, Audebert HJ, Amarenco P, Chamberler NR, Frankel MR, George MG, Corellick PB, Horton KB, Kaste M, Lackland DT, Levine SR, Meyers PM, Patterson V, Stranne SK, White CJ. American Heart Association Stroke Council; Council on Epidemiology and Prevention; Interdisciplinary Council on Peripheral Vascular Disease; Council on Cardiovascular Radiology and Intervention. Recommendations for the implementation of telemedicine within stroke systems of care: a policy statement from the American Heart Association. Stroke 2009; 40: 2635-2660 [PMID: 19423851 DOI: 10.1161/STROKEAHA.109.192361]

24. Demaerschalk BM. Remote Evaluation of the Patient With Acute Stroke. Continuum (Minneap Minn) 2017; 23: 259-267 [PMID: 28357754 DOI: 10.1212/CON.0000000000000433]

25. Kostopoulos P, Walter S, Ziegler K, Schmidt K, Kubuls D, Grunwald I, Schlechtriemen T, Liu Y, Volk T, Reith W, Fassbender K. Mobile stroke unit for diagnosis-based triage of persons with suspected stroke. Neurology 2012; 78: 1849-1852 [PMID: 22592363 DOI: 10.1212/WNL.0b013e3182578677]

26. Wendt M, Ebinger M, Kunz A, Rozanski M, Waldschmidt C, Weber JE, Winter B, Koch PM, Freitag E, Reich J, Schremmer D, Audebert HJ; STEMO Consortium. Improved prehospital triage of patients with stroke in a specialized stroke ambulance: results of the pre-hospital acute neurological therapy and optimization of medical care in stroke study. Stroke 2015; 46: 740-745 [PMID: 25634001 DOI: 10.1161/STROKEAHA.114.008159]

27. Jauch EC, Saver JL, Adams HP Jr, Bruno A, Connors JJ, Demaerschalk BM, Khatiri P, McAllister WR Jr, Qureshi AI, Rosenfield P, Summers DR, Wang DZ, Wintemuth M, Yonas H; American Heart Association Stroke Council; Council on Cardiovascular Nursing; Council on Peripheral Vascular Disease; Council on Clinical Cardiology. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013; 44: 870-947 [PMID: 23370205 DOI: 10.1161/STR.0b013e31828456a]

28. Lewis BM. Two simple tables for interpreting blood gas measurements. Postgrad Med 1973; 53: 195-199 [PMID: 4512034 DOI: 10.3357/ASEM.3790.2013]

29. Nelson RE, Saltzman GM, Skalabrin EJ, Demaerschalk BM, Majersik J]. The cost-effectiveness of telestroke in the treatment of acute ischemic stroke. Neurology 2011; 77: 1590-1598 [PMID: 21917781 DOI: 10.1212/WNL.0b013e318234332d]

P- Reviewer: Wan TTH
S- Editor: Ji FF L- Editor: Wang TQ E- Editor: Song H
