Site Condition Characteristics for Earthquake Disaster Mitigation at Kima Area, Aswan, Egypt

Abdelnasser Mohamed¹,⁰ and Hiroaki Yamanaka²

¹ Department of Seismology, National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo, Egypt
² Tokyo Institute of Technology, Tokyo, Japan

* Correspondence: nassermhmd@nriag.sci.eg

Abstract

The Kima area is located in the southeastern part of Aswan city where the Aswan wastewater treatment plant and one of the giant factories in the Middle East for chemical and fertilization. The area is very close to the main active seismic zone in South Egypt, where November 7, 2010 earthquake (M 4.6) occurred. The earthquake was felt strongly and caused minor damage (cracks) to different buildings in the Kima area. This earthquake motivates us to perform the current study for earthquake disaster mitigation in this area. The main target of the study is the evaluation of the local soil conditions based on Multichannel Analysis of Surface Waves and Horizontal to Vertical Spectral Ratio seismic techniques. The outputs results include different parameters (Vs₃₀, the resonance frequency, the amplification factor, and the NEHRP site classification). The predominant NEHRP site class is class D occupying the middle part of the Kima area. The resonance frequency ranged from 0.62 to 13.8 Hz over all the investigated areas and has a small range close to the factory site (0.62–0.78 Hz).

Keywords: Kima; Frequency; Site condition; MASW; Microtremors

1. Introduction

Recently, after the occurrence of many large earthquakes caused a lot of damages in different parts in whole world, site characteristics study became one of the most valuable studies which has a significant effect on earthquake ground motion and on the degree of damage to structures. Long back, Milen (1898) studied the 1819 Japan earthquake and concluded that the sediments sites have higher ground motion than the hard rock. This conclusion acts as an indicator for the importance of the site characteristics studies which include the geotechnical parameters of rocks and unconsolidated deposits, the fundamental frequency, amplification factor, the shear wave velocity….etc. In earthquake engineering problems, one of the very significant parameters is the shear-wave velocity (Vs) especially in microzonation studies (Iwasaka et al., 1978; Anbazhagan and Sitharma, 2008; Ansal et al., 2009; Rahman et al., 2016). The pilot study area is Kima zone which is situated in the southeastern part of Aswan (Fig. 1) on the eastern bank of the River Nile. This area is a dense populated region with poor designed buildings and includes one of the biggest factories in the Middle East, Kima factory for chemical industries and fertilization. Also, inside this area the main wastewater treatment plant in Aswan is located. Because of the changes in the soil characteristics and the geometry, the spatial variability of the ground motion can be very significant over short distance and due to the location of DOI: 10.46717/igi.55.2B.2Ms-2022-08-18
Kima area very close to the principle seismic zone in South Egypt, it is very important to perform the ongoing research work for seismic hazard mitigation. The principle objective of the research is the studying the seismic site characteristics within Kima area based on the active Multichannel Analysis of Surface Waves (MASW) technique to build the subsurface Vs profile, V_{s30} and NEHRP soil classification and the passive Horizontal to Vertical Spectral Ratio (HVSR) technique to calculate the resonance frequency and the amplification factor.

2. Geological Setting

Many researchers have previously described the geology of Aswan area (e.g. Said, 1962 and 1981; Issawi, 1968; Butzer and Hansen, 1968; El Ramly, 1973; El Shazly et al., 1974 and 1976, Klitzsch and Wycisk, 1987; Issawi and Jux, 1982; Barber and Carr, 1981). They are confirmed that the oldest sedimentary unit exposed is the Nubian Formation and unconformably lies over the Precambrian basement complex. The geological section of the area (Fig. 1) can be described as follows:

- The Precambrian rocks which are mainly granites and schist is locating on the east and west sides of the area.
- The Nubian sandstone of the Upper Cretaceous age overlies the Precambrian basement rocks with total thickness from ranging 20 to 85 m (Attia, 1954).
- In the middle part of the area, the Quaternary sediments exposed and are represented mainly by alluvial sands, gravel and clays as described from geological cross section of the drilled well in this part close to Kima factory with thickness of about 100 m (Mohamed et al., 2021b).

Fig. 1. Geological investigation of the pilot area and Aswan region, blue star is Kima factory site
3. Materials and Methods

To investigate S-wave velocity the essential parameter for seismic site characteristics and to calculate the fundamental frequency with its associated amplification factor (maximum amplitude) across the study area, MASW method (Park et al., 1999) and HVSR technique (Nakamura, 1989) were applied.

3.1. Multichannel Analysis of Surface Waves Method

MASW is well-known as a valuable non-invasive seismic technique to estimate shear-wave velocity for site characterization. It is faster, less expensive and more accurate for information about soil dynamic properties (Xia et al., 1998, 1999, 2000a, 2000b; Park et al., 1999; Miller et al., 1999; Louie, 2001; Anbazhagan et al., 2009; Karastathis et al., 2010; Raef et al., 2015; Rahman et al., 2016).

3.2. HVSR Technique

Nakamura (1989) technique which called the HVSR is a very widely used method in site characterization studies to determine resonance frequency and its associated maximum amplitude (amplification factor). Nakamura (1996) concluded from his extensive studies that the HVSR technique is providing reliable estimation of the fundamental frequency and corresponding amplification. Bard (2000) based on microtremor studies, reviewed the site characterization problem and inferred that the technique is inexpensive and a simple experimental application for response studies. In urban areas with high noise level such as Kima, the microtremor method is very useful due to its stable response curve for site characterization. Nakamura H/V ratios proved by many pioneers (Duval et al., 1995; Field and Jacob, 1995; Seekins et al., 1996; Lachet et al., 1996 and Riepl et al., 1998) that are much more constant than raw noise spectra. During the last decade, the approach became one of the valuable applied methods in Egypt for site characterization. The technique was applied by many investigators (Mohamed and Fat-Helbary, 2010; Mohamed et al., 2013, 2015, 2020, 2021a, 2021b; Abdel-Hafiez and Toni, 2019; Abudeif et al., 2019; Fat-Helbary et al., 2019; Meneisy et al., 2020) in many new and important projects across the Egyptian territories and gave good and acceptable results.

4. Data Acquisition and Analysis

MASW method for data acquisition can be divided into active and passive technique. In our study, the active MASW method was applied to acquire shear wave velocity (Vs) utilizing 24 geophones (4.5 Hz) line up in a straight line and placed vertically on the ground with 2 m geophone interval and connected to geometrics Strata Visor-NZ seismograph. A sledgehammer of 10 kg was used as a dynamic source for generating surface waves at 21 selected sites (Fig. 2) with forward, middle and reverse shot points with 5 m offset. The data were collected using a 1-ms sampling rate and a 1000-ms recording length. Seisimager/SW (2006) software used for the acquired MASW data processing and interpretation to compute the Vs by generating the dispersion curve at each measured site.

For HVSR technique, the ambient measurements were collected in 34 different sites over the study area (Fig. 2) using Trillium 120s velocity sensor. The number of the measured points is bigger than the MASW sites with different locations because the H/V acquisition can be conducted in a very small site not like the MASW which needs accessible wide area. The ground vibrations data is recorded continuously for two hours at each site. The data collection following the Site EffectS assessment using Ambient Excitation (SESAM, 2004) European project guidelines and recommendations for data acquisition. The acquired data were analyzed using the Geopsy software to compute the resonance frequency and its maximum H/V amplitude (amplification factor).
5. Results and Discussion

To produce the 1-D velocity profile, the Vs at Kima area was analyzed depending on Seisimager/SW software (2006). MASW lines show the distribution of the shear wave velocity from the surface of the ground down to 30 m depth. A direct signal of the bearing capacity and its soil rigidity is the shear wave velocity (Kramer, 1996).

Generally, two layers of different soil shear wave velocity rigidity were found in the most of MASW profiles (Fig. 3). The low Vs values (138-962 m/s) are represented in the surface layer with depth ranges from 0 to 10 m (Fig. 4). The second layer has relatively moderate shear wave velocity from 206 to 1278 m/s (Fig. 5) and the third (bedrock) layer has high velocity value (357-1550 m/s).

![Fig. 2. Location of the measured sites, blue circles for MASW, red triangles for HVSR and blue star is Kima factory site](image)

Depending on the results, the Vs of the upper 30 m depth (Vs30) that is used for soil classification by National Earthquake Hazards Reduction Program (NEHRP, 2001) was computed with the following equation:

\[
Vs30 = \frac{30}{\sum_{i=1}^{N} \frac{d_i}{v_i}}
\] (1)

Where di and vi refer to the thickness (in meters) and the shear wave velocity in m/s of the ith Formation or layer, respectively. N denotes to the number of layers within 30 m. The calculated shear wave velocities for the top most 30 m (Vs30) almost vary from 208 to 1258 m/s (Table 1). Based on NEHRP (Table 2), the predominant site class is D (180<Vs30<360) found in the middle part of the investigated area where the Quaternary sediments have more than 100 m thickness followed by site class C (360<Vs30<760) on both sides of the area, while site class B (760<Vs30<1500) is representing only in site 32 (Figs. 6&7). The geology and soil characteristics of the measured sites are reflecting by the H/V response curves derived from the microtremor measurements along the study area. The H/V curves are having more or less flat curves with rock outcrops while in areas with thick sediments have a peak curve with high amplification at low frequencies. From the H/V results (Table 3), the tested
sites in the middle part close to Kima factory where a thick layers of sand have low frequency values started from around 0.62 to 1.1 Hz. While the eastern and western parts of the area have high frequency values from 4.2 to 8.65 and from 10.04 to 13.8 Hz respectively and some sites with basement rocks at the surface have flat H/V curves without noticeable peaks. The resonance frequency and the maximum amplitude (amplification factor) through the study area are represented in 2D maps (Figs. 8&9). From these maps, it was recognized that the frequency has its low value at the central part of the area (0.622 Hz) while the highest frequency value found on the western part of the area (13.8 Hz).

Fig. 3. An example of the 1D velocity model at the area

Fig. 4. The distribution of the Vs at the surface layer, blue star is Kima factory site.
Fig. 5. The distribution of the shear wave velocity at the second layer, blue star is Kima factory site.

Table 1. The V_{S30} and NEHRP site classification across the area

Site No.	Latitude	Longitude	V_{S30} m/s	NEHRP site class
1	24.063445	32.919597	325	D
2	24.067332	32.919167	283	D
3	24.072397	32.918679	280	D
4	24.067615	32.923974	313	D
5	24.073403	32.92349	286	D
6	24.076992	32.918088	312	D
7	24.07508	32.913367	298	D
8	24.071527	32.914336	291	D
11	24.058575	32.920545	402	C
12	24.060959	32.924785	543	C
13	24.045273	32.916741	308	D
15	24.047359	32.919589	300	D
16	24.053859	32.921406	437	C
18	24.085203	32.916253	208	D
25	24.049175	32.912822	322	D
26	24.054192	32.909888	485	C
27	24.057995	32.908768	433	C
29	24.058036	32.926109	758	C
30	24.048782	32.922822	680	C
32	24.065911	32.905759	1258	B
33	24.067626	32.91089	610	C
Table 2. Site characteristics of NEHRP based on V_{s30} (BSSC, 2001).

Soil Profile type	Rock/Soil Description	V_{s30} (m/s)
A	Hard Rock	>1500
B	Rock	760-1500
C	Very dense soil/soft rock	360-760
D	Stiff soil	180-360
E	Soft soil	<180
F	Special soil requiring, site specific evaluation	-

Fig. 6. The distribution of the V_{s30} at the study area, blue star is Kima factory site

Fig. 7. Soil classification map of the investigated area, blue star is Kima factory site
Table 3. Results of the H/V technique in Kima area

Site No.	Latitude	Longitude	Frequency (F_o)	Amplitude (A_o)
1	24.063445	32.919597	4.38	0.693
2	24.067332	32.919167	4.3	0.622
3	24.072397	32.918679	5	0.685
4	24.067615	32.923974	2.7	1.44
5	24.073403	32.92349	2.9	0.639
6	24.076992	32.918088	3.2	0.675
7	24.07508	32.913367	5.1	0.812
8	24.071527	32.914439	2.8	0.647
9	24.071559	32.91058	Flat curve	Flat curve
10	24.048668	32.915151	2.9	0.821
11	24.058575	32.920545	3.5	6.64
12	24.060959	32.924785	3.4	6.61
13	24.045273	32.916741	5.1	0.8
14	24.044682	32.912277	2.6	1.13
15	24.047359	32.919589	2.4	1.1
16	24.053859	32.921406	3.8	4.2
17	24.078992	32.923431	Flat curve	Flat curve
18	24.085203	32.916253	2.5	0.618
19	24.079671	32.912219	Flat curve	Flat curve
20	24.077971	32.910287	Flat curve	Flat curve
21	24.074981	32.910244	Flat curve	Flat curve
22	24.067556	32.914963	5.4	0.75
23	24.080414	32.916329	Flat curve	Flat curve
24	24.063675	32.925472	3.5	8.65
25	24.049175	32.91281	4.9	0.797
26	24.054192	32.909888	Flat curve	Flat curve
27	24.057995	32.908768	Flat curve	Flat curve
28	24.061757	32.907952	Flat curve	Flat curve
29	24.058036	32.926109	2.7	0.615
30	24.048782	32.922822	Flat curve	Flat curve
31	24.084327	32.913985	Flat curve	Flat curve
32	24.065911	32.905759	2.8	13.8
33	24.067626	32.91089	3.1	10.04
34	24.059264	32.914819	5.5	0.76
Fig. 8. The frequency distribution over the study area, blue star is Kima factory site.

Frequency (Hz)	32.905	32.91	32.915	32.92	32.925
Amplitude					
Km	0.2	0.5	0.75	1	

Fig. 9. The maximum amplitude (amplification factor) distribution across the area, blue star is Kima factory site.
6. Conclusions

The utilized techniques (MASW and HVSR) are the most approved approaches in the site characterization studies. The methods are applied along the selected sites over the area, where some sites are occupied by both techniques and the others are measured by the HV method only depending on the surveyed areas where the investigated part is located inside a dense dwelling zone where there are no wide areas for MASW survey. From the site characteristics study in Kima area, it can be concluded that the middle part of the investigated region has alluvial thick sediments with low shear wave velocity, low frequency and high amplification factor. The eastern and western parts of the area lying on compacted and basement rocks and this is confirmed and coincident with the geological setting of the area where the eastern and western parts have low amplification, high frequency with high shear wave velocities and shallow thickness of the surface sediments layer. The site class D is a predominant soil classification across the area and is concentrated at the central part of the area. This sector is a more hazardous zone in the area and will have a direct impact on the strong ground motion. The investigation’s outputs are very important for decision-makers and should take into consideration for design in this area of earthquake disaster mitigation.

Acknowledgements

The authors would like to express their gratitude to Aswan Earthquake Researcher Center, National Research Institute of Astronomy and Geophysics (NRIAG), Egypt for providing the used instruments in data acquisition. The authors are very grateful to the reviewers, Editor in Chief Prof. Dr. Salih M. Awadh, the Secretary of Journal Mr. Samir R. Hijab, and the Technical Editors for their great efforts and valuable comments.

References

Abdel-Hafiez, H., Toni, M., 2019. Ambient noise level and site characterization in Northern Egypt, Pure and Applied Geophysics 176 (11).
Abudeif, A., Fat-Helbary, R., Mohammed, M., El-Khashab, H., Masoud, M., 2019. Estimation of the site effect using microtremortechneque at new Akhlmim city, Akhlmim, Sohag, Egypt, Russian Geology and Geophysics, 60 (2), 231–239.
Anbazhagan, P., Sitharam, T. G., 2008. Site characterization and site response studies using shear wave velocity, Journal of Seismology and Earthquake Engineering, 10(2), 53-67.
Anbazhagan, P., Sitharam, T. G., Vipin, K. S., 2009. Site classification and estimation of surface level seismic hazard using geophysical data and probabilistic approach. Journal Applied Geophysics, 68(2), 219-230.
Ansai, A., Tonuk, G., Kurtulus, A., 2009. Microzonation for urban planning, Tankut (ed) Earthquakes and tsunamis, geotechnical, geological, and earthquake engineering, 11, 133–152.
Attia, M. I., 1954. Deposits in the Nile Valley and Delta, Cairo: Geological Survey of Egypt.
Iwasaka, T., Tatsuoka, F., Tokida, K., Yasuda, S., 1978. A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan, Proc., 2nd Int. Conf. on Microzonation, San Francisco, 885–896.
Barber, W., Carr, D. P., 1981. Water management capabilities of the alluvial aquifer system of the Nile Valley, Upper Egypt. Technical Report, 11, Water Master Plan, Ministry of Irrigation, Cairo, Egypt.
Bard, P. Y., 2000. Lecture note and Exercise note on Seismology, Seismic data analysis, Hazard Assessment and Risk Analysis, Potsdam, 160.
(BSSC) Building Seismic Safety Council, 2001. The 2000 NEHRP Recommended Provisions for New Buildings and Other Structures, Part I (Provisions) and Part II (Commentary), FEMA 368/369, Washington, D.C.
Butzer, K. W., Hansen, C. L., 1968. Desert and Rivers in Nubia, Geomorphology and prehistoric Environment at Aswan Reservoir, University of Wisconsin presses. Madison, Milwaukee, U.S.A.
Duval, A. M., Bard P. Y., Meneroud, J. P., Vidal, S., 1995. Mapping site effects with Microtremors, Proceedings of 5th International Conference on Seismic Zonation, II, 1522-1529.
El Shazly, E. M., Abdel Hady, M. A., El Ghawaby, M. A., El Kassas I. A., 1974. Geologic interpretation of ERTS-1 satellite images for west Aswan area, Egypt. Proceedings of the ninth international symposium on remote sensing of environment, Arbor. Michigan, U. S. A., 119-131.

El Shazly, E. M., Abdel Hady, M. A., El Kassas, I. A., Salman, A. B., El Shazly, M. M., El Amin, H., Abdel Megid, A. A., 1976. Geology of Kharga-Dakhla Oasis area, Western Desert, Egypt, from NASA land sat.1 Satellite images; Remote Sensing Research project, Academy of Scientific Research and Technology, Cairo, Egypt, 41.

EL-Ramly, I. M., 1973. Final report on geomorphology, hydrology, planning for groundwater resources and land reclamation in Lake Nasser region and its Environs, Regional planning of Aswan, Lake Nasser development center and Desert Research Institute, Cairo, Egypt.

Fat-Helbary, R., El-Faragawy, K., Hamed, A. 2019. Application of HVSR technique in the site effects estimation at the south of Marsa Alam city, Egypt, Journal of African Earth Sciences, 154, 89-100.

Field, E.H., Jacob, K.H., 1995. A comparison and test of various site-response estimation techniques, including three that are not reference-site dependent. Bulletin of the seismological society of America, 85(4), 1127-1143.

Issawi, B., 1968. The geology of Kurkur-Dungul area, Egypt, Geological Survey of Egypt, Cairo, (46), 102.

Issawi B., Jux U., 1982. Contribution to the stratigraphy of the Paleozoic rocks in Egypt, GeolSurv Egypt, Cairo, 64, 1–28.

Karasthisis, V. K., Karmis, P., Novikova, T., Roumelioti, Z., Gerolymatou, E., Papanastassiou, D., Liakopoulos, S., Tsombos, P., Papadopoulos, G. A., 2010. The contribution of geophysical techniques to site characterization and liquefaction risk assessment: Case study of Nafplion City, Greece, Journal Applied Geophysics, 72(3), 194-211.

Klitzsch, E., Wycisk, P., 1987. Geology of the sedimentary basins of Northern Sudan and bordering areas, Berlin Geowiss Abh, 75(1), 97–136.

Kramer, S. L., 1996. Geotechnical Earthquake Engineering. Prentice-Hall Editor. Upper Saddle River, New Jersey.

Lachet, C., Hatzfel D., Bard P.-Y., Theodulidis N., Papaioannou C., Savvaaidis A., 1996. Site effects and microzonation in the city of Thessaloniki (Greece) - Comparison of different approaches, Bulletin of Seismological America, 86(6), 1692-1703.

Louie, J. N., 2001. Faster, better: shear-wave velocity to 100 meters depth from refraction microtremors arrays, BSSA, 91, 347-364.

Meneisy, A., Toni, M., Omran, A., 2020. Soft sediment characterization using seismic techniques at BeniSuef city, Egypt, Journal of Environmental and Engineering Geophysics, 25(3).

Milne, J., 1898. Seismology 1st edn (Kegan Paul, Trench, Truber, London, 1898).

Miller, R. D., Xia, J., Park, C. B., Ivanov, J., 1999. Multichannel analysis of surface waves to map bedrock, Leading Edge, 18, 1392–1396.

Mohamed, A., Fat-Helbary, R., 2010. Microtremors measurements for site effect investigation at Aswan new city, Egypt, Proceeding of the 14th European Conference of Earthquake Engineering (14ECCEE), Ohrid, Macedonia.

Mohamed, A., Fat-Helbary, R., Basheer, A., Dojcinovski, D., 2013. Using ambient vibrations for site characterization at the new Aswan University site, southern Egypt, SE50EEE International Conference on Earthquake Engineering, Skopje, Macedonia, 29-31.

Mohamed, A., Lindholm, C., Girgis, M., 2015. Site characterization and seismic site response study of the Sahary area, South Egypt, ActaGeodyn. Geomater., 12, 4 (180), 427–436.

Mohamed, A., Ali, S., Mostafa, A., 2020. Estimation of seismic site effect at the new Tiba City proposed extension, Luxor, Egypt, Journal of Astronomy and Geophysics, 9 (1), 499-511.

Mohamed, A., El khateeb, S.; Dosoky, W., Abbas, M., 2021a. Site effect estimation using microtremor measurements at new Luxor city proposed site, South Egypt, Journal of Geoscience and Environment Protection, 9, 131-149.

Mohamed, A., Fat-Helbary, R., Elamin, E., 2021b. Microtremors for site effect evaluation at the new Kima factory, Aswan, Egypt, IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG), 9, 6, 32-40.
Nakamura, Y., 1989. A method for dynamic characteristic estimation of subsurface using microtremors on the ground surface, QR of RTRI, 30, 25–33.

Nakamura, Y., 1996. Real-time information systems for hazards mitigation, Proceedings of the Xth World Conference on Earthquake Engineering, Acapulco, 2134, Elsevier.

NEHRP, 2001. National Earthquake Hazards Reduction Program: Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, FEMA P-750, Building Seismic Safety Council (BSSC), Federal Emergency Management Agency, Washington DC, USA.

Park, C. B., Miller, R. D., Xia, J., 1999. Multichannel analysis of surface waves, Geophysics, 64, 800–807.

Raef, A., Gad, S., Tucker-Kulesza, S. 2015. Multichannel analysis of surface-waves and integration of down hole acoustic televiewer imaging, ultrasonic Vs and Vp, and vertical seismic profiling in an NEHRP-standard classification, South of Concordia, Kansas, USA, Journal Applied Geophysics. 121, 149-161.

Rahman, M. Z., Siddiqua, S., Kamal, ASMM, 2016. Shear wave velocity estimation of the near-surface materials of Chittagong City, Bangladesh for seismic site characterization, Journal of Applied Geophysics, 134, 210–225.

Riepl, J., Bard, P. Y., Hatzfeld, D., Papaioannou, C., Nechstein, N., 1998. Detailed evaluation of site response estimation methods across and along the sedimentary Valley of Vi (Euroseistest). Bulltein Seismic Society America, 88(2), 488-502.

Said, R., 1962. The Geology of Egypt, New York, Elsevier.

Said, R., 1981. The Geological Evolution of the Nile River. Springer-Verlag, New York, 151.

Seekins, L. C., L. Wennerberg, L. M., Liu, H. P., 1996. Site amplification at five locations in San Francisco, California: A Comparison of S Waves, Codas and Microtremors, Bulltein Seismic Society America, 86,627-635.

SeisImager, 2006. Windows software for analysis of surface waves. Pickwin_v.3.2, WaveEq_v. 2.2 and GeoPlot v.8.2.5. Manual v. 2.2 including an explanation of surface wave data acquisition using Geometric Seis module Controller software (v. 9.14) for ES-3000, Geode and Strata Visor NZ seismographs Geometrics, Inc.

SESAME, 2004. Site Effects Assessment Using Ambient Excitations: Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation, European research project, WP12.

Xia, J., Miller R. D., Park, C. B., 1998. Construction of vertical section of near-surface shear-wave velocity from ground roll, Technical Program, The Society of Exploration Geophysicists and the Chinese Petroleum Society Beijing 98, International Conference, 29–33.

Xia, J., Miller, R. D., Park, C. B., 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh wave, Geophysics, 64, 691–700.

Xia, J., Miller, R. D., Park, C. B., Hunter, J. A., Harris, J. B., 2000a. Comparing shear-wave velocity profiles from MASW with borehole measurements in unconsolidated sediments, Fraser River Delta, B.C., Canada, Journal of Environmental and Engineering Geophysics, 5, 3, 1–13.

Xia, J., Miller, R. D., Park, C. B., 2000b. Advantage of calculating shear-wave velocity from surface waves with higher modes, Technical Program with Biographies, SEG, 70th Annual Meeting, Calgary, Canada, 1295–1298.