Dihydropyridine Receptor α Subunits in Normal and Dysgenic Muscle In Vitro: Expression of α₁ Is Required for Proper Targeting and Distribution of α₂

Bernhard E. Flucher,* Johanna L. Phillips,‡ and Jeanne A. Powell*†

*Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892; and †Department of Biological Sciences, Smith College, Northampton, Massachusetts 01063

Abstract. We have studied the subcellular distribution of the α₁ and α₂ subunits of the skeletal muscle dihydropyridine (DHP) receptor with immunofluorescence labeling of normal and dysgenic (mdg) muscle in culture. In normal myotubes both α subunits were localized in clusters associated with the T-tubule membranes of longitudinally as well as transversely oriented T-tubules. The DHP receptor-rich domains may represent the sites where triad junctions with the sarcoplasmic reticulum are being formed. In cultures from dysgenic muscle the α₁ subunit was undetectable and the distribution patterns of the α₂ subunit were abnormal. The α₂ subunit did not form clusters nor was it discretely localized in the T-tubule system. Instead, α₂ was found diffusely distributed in parts of the T-system, in structures in the perinuclear region and in the plasma membrane. These results suggest that an interaction between the two α subunits is required for the normal distribution of the α₂ subunit in the T-tubule membranes. Spontaneous fusion of normal non-muscle cells with dysgenic myotubes resulted in a regionalexpression of the α₁ polypeptide near the foreign nuclei, thus defining the nuclear domain of a T-tubule membrane protein in multi-nucleated muscle cells. Furthermore, the normal intracellular distribution of the α₂ polypeptide was restored in domains containing a foreign “rescue” nucleus; this supports the idea that direct interactions between the DHP receptor α₁ and α₂ subunits are involved in the organization of the junctional T-tubule membranes.

The dihydropyridine (DHP) receptor of skeletal muscle plays a major role in the transduction of membrane depolarization into muscle contraction, called excitation-contraction (E–C) coupling. Located in the membrane of the T-tubules, the DHP receptor is believed to function as voltage sensor in E–C coupling as well as slow, L-type Ca²⁺ channel (see reference 3 for review).

The purified DHP receptor isolated from T-tubule membranes is composed of at least four polypeptides. The α₁ subunit has a molecular mass of 170–200 kDa, carries the DHP-binding site (5, 12, 41, 42) and reacts with a mAb that inhibits slow Ca²⁺ currents (28). The cDNA encoding this protein has been cloned and shown to contain the characteristics of a voltage-gated ion channel (43). The presence of a sequence similar to the putative voltage-sensing element of the Na channel (29) supports the idea that the α₁ subunit of the DHP receptor is the voltage sensor involved in E–C coupling. The expression of the cDNA encoding the α₁ polypeptide in L-cells was accompanied by the appearance of Ca²⁺ currents, indicating that this subunit alone is sufficient for channel activity (33).

Three other polypeptides copurify with the α₁ subunit of the DHP receptor: α₂, β, and γ. However, the functions of these polypeptides as well as their possible interactions with the α₁ polypeptide are unknown. The α₂ subunit is a glycoprotein of 140 kDa molecular mass under reducing conditions and 170–200 kDa without reduction (24, 26, 42, 45, 46). The differences in molecular mass values upon reduction of the disulfide bonds may be accounted for by the dissociation of a small polypeptide, referred to as the δ subunit. The primary structure of the α₂ polypeptide contains three putative membrane spanning domains and a large extracellular domain but it does not show any sequence similarities to other known proteins (10). Although the α₂ polypeptide is not required for DHP sensitive Ca²⁺ conductance (33), coexpression of the α₂ subunit with the cardiac α₁ subunit in Xenopus oocytes causes a doubling of the Ca²⁺ current (25). We have previously demonstrated the colocalization of the α₂ subunit and the α₁ subunit in the membranes of the junctional T-tubules of skeletal muscle in vivo (13). During development, however, the two α polypeptides are expressed differentially in that α₁ is abundant in muscle of newborn rats while levels of α₁ subunit expression are initially low but rise dramatically two weeks postnatally (27). These results suggest that the function of the α₂ subunit may not be limited to its association with the muscle DHP receptor.

1. Abbreviations used in this paper: DHP, dihydropyridine; E–C, excitation-contraction; HS, horse serum; mdg, muscular dysgenesis; SR, sarcoplasmic reticulum.

© The Rockefeller University Press, 0021-9525/91/12/1345/12 $2.00
The Journal of Cell Biology, Volume 115, Number 5, December 1991 1345-1356 1345
Muscular dysgenesis (mdg) in mice is a lethal recessive mutation characterized by the inability of skeletal muscle to contract (6, 30). Myotubes grown in culture from muscle of homozygous mdg/mdg mice lack E-C coupling (21, 36), the slow DHP-sensitive Ca\(^{2+}\) current (2), as well as the charge movement associated with voltage sensing in this process (1). Microinjection of an expression plasmid carrying the gene of the \(\alpha_1\) subunit of the skeletal muscle DHP receptor can restore E-C coupling and the slow Ca\(^{2+}\) current (1, 44). These results suggest that the primary defect of the mdg mutant is in the gene of the \(\alpha_1\) subunit. The mutation is believed to reside in the structural gene, resulting in a failure to express the \(\alpha_1\) polypeptide. The lack of the \(\alpha_1\) subunit does not seem to alter the expression of the DHP receptor \(\alpha_2\) subunit (22), however, the cytological distribution of the \(\alpha_2\) subunit in dysgenic muscle has not been described.

Co-cultures of dysgenic myotubes with spinal cord cells and fibroblasts from normal mice have also been shown to restore E-C coupling (8, 23) and slow Ca\(^{2+}\) conductance (2, 40). This "rescue" of normal functions in dysgenic muscle cells has been explained by spontaneous fusion of normal non-muscle cells with dysgenic myotubes (7). Normal non-muscle nuclei that are incorporated into the defective myotubes are believed to be capable of expressing the \(\alpha_1\) polypeptide and thus reconstituting E-C coupling functions. However, direct evidence for the de novo expression of the \(\alpha_1\) polypeptide in rescued myotubes is still missing.

In the present study we have used mAbs against the \(\alpha_1\) and the \(\alpha_2\) subunits of the skeletal muscle DHP receptor to study the expression and distribution patterns of the DHP receptor \(\alpha\) subunits in cultured myotubes from normal and dysgenic mice. We report the colocalization of both \(\alpha\) subunits in clusters associated with the membranes of the developing T-tubules in normal myotubes. Furthermore, we show that the absence of \(\alpha_1\) in dysgenic myotubes causes an aberrant distribution of the \(\alpha_2\) subunit and that the lack of \(\alpha_1\) as well as the abnormal distribution of \(\alpha_2\) can be reversed by rescue with normal non-muscle cells. These results provide strong evidence that an interaction between the \(\alpha_1\) and the \(\alpha_2\) subunit of the DHP receptor is required for their normal organization in the junctional T-tubule membranes.

Materials and Methods

Animals

Newborn and embryonic mice, both homozygous mutant dysgenic, mdg/mdg, and their normal littermates, +/mdg? (+/+ or +/mdg) were obtained by timed pregnancies of heterozygous matings. No morphological, histological, or physiological differences between control +/+ and the strain or +/mdg? mice have been reported. Sprague-Dawley rats (Charles River Breeding Laboratories, Wilmington, MA) were mated overnight and timed pregnancies were assessed by remains of vaginal plugs. 15-d embryonic rats were used to obtain spinal cord cells.

Cell Cultures

Primary muscle cultures were prepared from 18-d embryonic or newborn mdg/mdg or +/mdg? mice. Myoblasts were harvested using a modification of previously published methods (8, 21). Hindlimb muscle was digested at 37°C for 15 min with intermittent aspiration in a solution of 0.125% trypsin and 0.05% pancreatin in Ca\(^{2+}\) and Mg\(^{2+}\) free HBSS. Digestion was stopped by adding an equal volume of complete medium, consisting of DME with 10% horse serum (HS; Gibco Laboratories, Grand Island, NY), 10% FBS (Gibco Laboratories), and 2% chick embryo extract. The cell suspension was filtered through gauze and centrifuged. The pellet was resuspended in plating medium which contains three parts complete medium to one part conditioned medium reserved from 5-d muscle cultures. Dysgenic cultures were preplated for 1 h on plastic Petri dishes to enrich for myoblasts which were plated onto carbon-coated coverslips with 0.1% gelatin at 5 x 10^6 cells per 13-mm coverslip (two coverslips per 35-mm dish). Normal cultures, which tended to have fewer myoblasts and form fewer myotubes if plated by the same method, were preplated at 3.5 x 10^6 cells per 1% gelatin-coated 60-mm Primaria dishes. After 48 h, as an additional myoblast enrichment step, the normal cultures were treated with Disappe and replated onto coverslips prepared as above (9). Dysgenic cultures treated with Disappe were similar to untreated cultures, so the conventional plating method was followed. Once myotubes had formed and cultures were near confluency, the cultures were treated with 10 µM 1 β-arabinofuranosylcytosine hydrochloride, Ara-C (Sigma Chemical Co., St. Louis, MO) to prevent fibroblastic overgrowth. Cultures were maintained in contraction medium (DME, 10% HS, 1.25% chick embryo extract) in a humidified 37°C incubator. Quiescent cultures (both dysgenic and normal) were fed medium containing 12 mM K+. Our experience over many years (37) in microscopic and electrophysiological studies of normal and dysgenic muscle proves that spontaneous action potentials (in dysgenic) and contraction in normal myotubes are completely absent at this K+ concentration. Cultures were fixed two to three weeks following plating.

For "rescued" co-cultures, dysgenic myoblasts were plated as above. Rat cells (spinal cord or fibroblasts) were added at the onset of fusion, 3-5 d after initial plating. The degree of rescue, indicated by the onset of spontaneous contractions, was similar in co-cultures of dysgenic muscle with either spinal cord cells or fibroblasts (8). Co-cultures were treated with Ara-C and maintained in contraction medium as above.

Rat spinal cord cells were prepared from spinal cords of 15-d embryos by a method similar to that used for harvesting embryonic mouse spinal cord cells (8) except that most of the spinal ganglia were retained. Cells were mechanically dissociated in contraction medium and added to fusing dysgenic myotubes at 1 x 10^6 cells per 35-mm dish. Rat fibroblasts were obtained from two cell lines. FR cells (American Type Culture Collection, Rockville, MD) were maintained in DME with 10% HS. Alternatively, fibroblast cells (JRF) were derived from a spontaneous transformation within a culture prepared from newborn rat sciatic nerve sheath. These cells were maintained in DME, 10% HS, 5% FBS. Both fibroblast lines were equally fusible with dysgenic myotubes and were equivalent in their ability to effect rescue. Cells were routinely passed once a week and were added to fusing dysgenic myoblasts at 2 x 10^6 cells per 35-mm dish. Rescued cultures were fixed 11 to 18 d following addition of rat cells.

Immunofluorescence Labeling of Cultured Muscle Cells

The co-cultures used in the "rescue" experiments were incubated in 10 µg/ml Hoechst nuclear dye #33342 (Polysciences, Inc., Warrington, PA) for 45 min at room temperature and rinsed several times in PBS, pH 7.3, before fixation. All cultures were fixed at -20°C in methanol for 10 min and then rinsed in several changes of PBS. Subsequently, the cultures were incubated with 10% normal goat serum in PBS. 0.1% BSA (PBS/BSA) for 30 min or longer and then incubated in primary antibodies for at least 2 h at room temperature or overnight at 4°C. After washing in five changes of PBS/BSA the cultures were incubated in fluorochrome-conjugated secondary antibodies for 1-2 h at room temperature and washed again. Finally, they were mounted in 90% glycerol, 0.1 M Tris, pH 8.0, with 5 mg/ml p-phenylene diamine to retard photobleaching.

Quantitative Analysis of Rescued Cultures

To quantitate the expression of the \(\alpha_1\) subunit in rescued co-cultures, coverslips were screened for myotubes which were free of fibroblastic overgrowth. The analyzable myotubes were scored as positive or negative with respect to expression of the \(\alpha_1\) subunit. Then coverslips were rescanned for myotubes which contained at least one foreign nucleus. Quantitation of normally distributed \(\alpha_2\) subunit in rescued myotubes required more stringency. Myotubes were screened segment by segment (one segment extending ~150 µm) and scored for normal or abnormal \(\alpha_2\) distribution patterns. A few segments with ambiguous staining patterns were not counted. Subsequently, myotubes were rescanned for the presence of foreign nuclei.
Tubule membranes and dysgenic mice using mAbs against both DHP receptor receptor a, and a2 subunits in muscle cultures of normal

We have studied the distribution and association of the DHP receptor.

Results

Antibodies

The following primary antibodies were used: mouse mAb 1A (specific for the a1 subunit of the DHP receptor) (26) and mAb 20A (specific for the a2 subunit) (27) both used at a concentration of 0.1 μM IgG. Rabbit affinity purified antibody aTT (against T-tubule proteins), aPM (against plasma membrane proteins) both described in reference 14, and an affinity purified antibody against α-actinin (4). As secondary antibodies, rhodamine-conjugated goat anti-mouse IgG (Biorad, Hercules, CA) and fluorescein-conjugated goat anti-rabbit IgG (Miles Laboratories, Inc., Elkhart, IN) were used at dilutions of 1:500 and 1:400, respectively. For specificity of antibodies, see Table 1.

Normal Myotubes

Normal mouse muscle cells were cultured for approximately three weeks under conditions permitting a high degree of spontaneous contractile activity. Cultures immunolabeled with antibodies against several myofibrillar components (α-actinin, myosin, actin, and titin) showed that the myotubes in any culture dish reach varying degrees of sarcomeric organization (Flucher et al., unpublished results). Some myotubes showed no cross striation of any of the myofibrillar components. Many myotubes achieved cross-striated organization of myofibrillar components that assemble early in development but showed no cross striations under phase contrast optics. A smaller number of cells were cross-striated with respect to all examined myofibrillar proteins as well as under phase contrast optics. The transverse organization of the T-tubule system, which occurs late in sarcomere formation (14) was achieved only in a small proportion of the myotubes.

Immunofluorescence labeling of myotubes with the antibodies against the a1 and a2 subunits of the DHP receptor resulted in punctate labeling patterns, suggesting that both subunits are concentrated in small clusters rather than diffusely distributed in the membranes (Fig. 1). These DHP receptor clusters were located throughout the cytoplasm. Double labeling of either a subunit antibody with the T-tubule antibody (aTT) showed that the DHP receptor clusters in the cytoplasm coincide with the tubules of the developing T-tubule system. In poorly differentiated myotubes containing randomly oriented T-tubules the DHP receptor-rich do-

Antigen	Code	Type	Tissue sections (in vivo)	Cell culture (in vitro)
DHP, a1	1A	mouse mAb	+*	+
DHP, a2	20A	mouse mAb	+*	+
T-tubule	aTT	rabbit AP	+*	+
Sarcolemma	aPM	rabbit AP	+	+
α-Actinin	-	rabbit AP	+	+

Tissuesections Cell culture

The antibodies have been previously used in immunofluorescence and immunogold (*) studies on tissue sections and cultures from rat as well as from mouse skeletal muscle. AP, affinity purified antibody.

The following primary antibodies were used: mouse mAb 1A (specific for the a1 subunit of the DHP receptor) (26) and mAb 20A (specific for the a2 subunit) (27) both used at a concentration of 0.1 μM IgG. Rabbit affinity purified antibody aTT (against T-tubule proteins), aPM (against plasma membrane proteins) both described in reference 14, and an affinity purified antibody against α-actinin (4). As secondary antibodies, rhodamine-conjugated goat anti-mouse IgG (Biorad, Hercules, CA) and fluorescein-conjugated goat anti-rabbit IgG (Miles Laboratories, Inc., Elkhart, IL) were used at dilutions of 1:500 and 1:400, respectively. For specificity of antibodies, see Table 1.

Dysgenic Myotubes

Muscle cultures from homozygous dysgenic mice (mdg/ mdg) and their normal siblings (+/mdg?) were compared with respect to the expression and distribution patterns of the DHP receptor a subunits. Dysgenic myotubes were noncontractile and the rate at which they developed following fusion was slower than that of normal myotubes. A smaller number of myotubes achieved as high a degree of organization in their contractile elements than that found in normal cultures (Flucher et al., manuscript in preparation).

Immunolabeling with the antibody against the a1 subunit of the DHP receptor under conditions that labeled normal myotubes, resulted in no immunolabeling of dysgenic myotubes (Fig. 2 a). The absence of a1 label was complete in all cells of dysgenic cultures, supporting the idea that the mdg/mdg mutation results in the complete absence of a1 subunit expression in skeletal muscle cells. Double labeling for a1, and T-tubules (with the αTT antibody) demonstrated the presence of an extensive T-tubule network in α1 negative cultures (Fig. 2 b), suggesting that the development of the T-tubules is not dependent upon expression of the a1 polypeptide. Immunolabeling of the α2 subunit of the DHP receptor yielded a strong fluorescent signal in dysgenic myotubes. However, the labeling patterns were different from the α2 distribution in normal myotubes (compare Fig. 1 c and d to Fig. 2 c). Myotubes that had an apparently normal T-system (Fig. 2 d) did not show the normal punctate distribution of DHP receptor-rich domains but showed patches of a1 label colocalizing only with parts of the T-tubules, whereas much of the T-system contained no a1 (Fig. 2, c and d). In many myotubes in which these patches coincided with the T-system, the a1 patches appeared wider than the typical T-tubules suggesting that they represent distortions of the T-system or of its precursor. In addition to cytoplasmic structures labeled with a2, diffuse or patchy a2 labeling of the

Flucher et al. DHP Receptor α Subunits in Cultured Myotubes

1347
Figure 1. Normal mouse myotubes were double immunofluorescence labeled with antibodies against the α subunits of the skeletal muscle DHP receptor (a, b, c, and d) and against T-tubules (a', b', c', and d'). The corresponding phase contrast images are shown in a'', b'', c'', and d''. Both the α_1 (a and b) and the α_2 (c and d) subunits of the DHP receptor appeared in punctate staining patterns, which colocalized with T-tubules at different stages of development: randomly oriented tubules (a' and c') as well as longitudinal oriented tubules (between arrows in d') showed no periodicity of the DHP receptor clusters, whereas in more highly differentiated myotubes with beginning transverse orientation of the T-tubules (examples indicated with arrows in b') the DHP receptor clusters were aligned in rows across the myotube (b; arrows). N, nuclei. Bars, 10 μm.
plasma membrane was commonly observed in dysgenic myotubes (Fig. 2c).

The aberrant distribution patterns of α2 immunolabel varied widely in dysgenic cultures. Two more examples of typical α2 labeling patterns in dysgenic myotubes with the corresponding fluorescence images of the T-tubule system are shown in Fig. 3 to demonstrate that the normal differentiation of the T-tubule system is not hindered by the lack of organization in the DHP receptor complex. In many cells the T-tubule system appeared normal whereas the α2 label was restricted to compartments which were frequently located in the perinuclear region and contained α2 as well as T-tubule antigens (Fig. 3a). These compartments appeared dilated, and more like cisternae than tubular structures. Henceforth these structures will be called α2/TT-containing compartments. Normal looking T-tubules that did not label with the antibody against α2 could often be observed in close proximity to the abnormal α2/TT-containing structures (Fig. 3a'). In some regions of dysgenic myotubes α2 label was completely absent from cytoplasmic structures. However, even in such extreme cases of α2 deficiency the T-system developed normally, as seen by the transverse arrangement of the T-tubules (Fig. 3b'). Phase contrast images of dysgenic myotubes show that their general appearance was normal (Fig. 3b'; Fig. 4b'). Double labeling of normal and dysgenic myotubes with antibodies against the α2 subunit and against the myofibrillar component α-actinin (Fig. 4, a and b) shows that the myofibrillar development was similar in myotubes of the normal and the mutant phenotype of α2 distribution. Thus, distorted α2 distribution patterns do not result from a lack of differentiation or from degeneration of dysgenic myotubes.

We attempted the further characterization of the α2/TT-containing compartments in dysgenic cells. The perinuclear location of these structures was reminiscent of ER or Golgi apparatus staining and suggested the possibility that the α2 subunits were partially retained in compartments of the biosynthetic pathway. However, double labeling of myotubes with antibodies against α2 and markers for the ER or fluorescent WGA showed no colocalization of α2 with the ER or Golgi apparatus, respectively (not shown). Our observation that α2 in dysgenic myotubes occurs diffusely distributed or in patches in the plasma membrane, suggests the possibility of faulty targeting of this polypeptide to the plasma membrane. Indeed, double labeling of α2 with an affinity-purified antibody against plasma membranes that did not cross-react with T-tubules in normal myotubes (14), revealed the existence of specific plasma membrane components in the α2/TT-containing compartments (Fig. 5, a and b).

Since mdg/mdg myotubes are noncontractile and contractile activity seems to promote differentiation of cultured mouse muscle cells (37), we compared the aberrant α2 distribution patterns in dysgenic myotubes with the distribution patterns of "quiet" normal (+/mdg?) cultures (Fig. 5, c and d). The lack of contractile activity achieved by elevating the KCl concentration in the culture medium to 12 mM (37) had

Figure 2. Dysgenic (mdg/mdg) muscle cultures double labeled with antibodies against the α subunits of the DHP receptor and with a T-tubule antibody. Dysgenic myotubes showed no α1 label (a; myotube outlined with dashed line) but often labeled intensely for the α2 subunit (c). The structure of the T-tubule system appeared normal (b and d) but the distribution patterns of the α2 subunit were abnormal (c) in dysgenic myotubes: label for the α2 subunit was patchy (arrows) and colocalized only with parts of the T-system (c and d). In addition, α2 label could be observed in the plasma membrane (c; arrowheads). Bars, 10 μm.
no apparent effect on the distribution of the DHP receptor \(\alpha_2 \) subunits. Normal quiescent cultures did not exhibit as many cross-striated myotubes as active cultures. However, in many of the normal myotubes rendered quiescent for 14 d myofibrillar cross striations were apparent (not shown) and the \(\alpha_2 \) subunits occurred in normal clusters colocalized with the T-tubules of longitudinal as well as cross-striated organization (Fig. 5, c and d). The \(\alpha_2/TT \)-containing compartments seen in dysgenic myotubes were not found in silent normal cultures, suggesting that the lack of contraction is not responsible for the loss of normal \(\alpha_2 \) distribution in dysgenic cells.

Rescued Myotubes

Dysgenic muscle cells are capable of spontaneously fusing with normal muscle as well as with non-muscle cells (7) and such fusion has been shown to restore slow Ca\(^{2+} \) currents as well as E–C coupling to dysgenic myotubes (8). Fusion of mdg/mdg myotubes with rat non-muscle cells created heterokarya of mouse myotubes with a small proportion of rat nuclei, which could be reliably distinguished from the host cell nuclei by the lack of heterochromatin that characterizes the mouse nuclei (see Figs. 6 and 7).

Immunolabeling of dysgenic myotubes co-cultured with normal non-muscle cells with the antibody against the DHP receptor \(\alpha_1 \) subunit resulted in regionally confined labeling of some myotubes (Fig. 6, a and c). Double labeling with the fluorescent nuclear dye (Hoechst #33342) showed that these \(\alpha_1 \)-positive regions always coincided with at least one rat nucleus (Fig. 6). However, not all rat nuclei incorporated into dysgenic myotubes displayed \(\alpha_1 \) expression. Quantitation of \(\alpha_1 \) expression with respect to the number of rat nuclei incorporated into dysgenic cultures showed that 32.7\% (±3.2) of all myotubes (\(n = 149 \)) possessed foreign nuclei and 10.9\% (±1.3) of all myotubes expressed the \(\alpha_1 \) polypeptide in regions where at least one foreign nucleus was located. Thus, a third of the rat non-muscle nuclei incorporated into mdg/mdg myotubes were expressing the \(\alpha_1 \) subunit of the skeletal muscle DHP receptor and could therefore be considered “rescue” nuclei.

The distribution patterns of \(\alpha_1 \) in rescued myotubes were punctate (Fig. 6, a and c) and the DHP receptor clusters colocalized with the T-tubules (not shown). This organization resembled that of the DHP receptor-rich domains of normal myotubes. Furthermore, in rescued myotubes the \(\alpha_1 \) antibody did not label any cytoplasmic structures similar to the \(\alpha_2/TT \)-containing compartments found in dysgenic myotubes. The segment of the myotube in which \(\alpha_1 \) was expressed could be as short as 40 \(\mu \)m or up to 500-\(\mu \)m long with an average of 270 \(\mu \)m in length. Typically it would con-
Normal and dysgenic myotubes double labeled for the DHP receptor α2 subunit (a and b) and the myofibrillar protein α-actinin (a' and b'), with the corresponding phase contrast images (a'' and b''). Punctate (a) and dysgenic α2 labeling patterns (b) can be observed in normal and mdg/mdg myotubes, respectively, which show the same degree of myofibrillar differentiation. Whereas in normal myotubes α2 clusters begin to align transversely in regions of α-actinin cross-striations (arrowheads), no relationship between the α2 patches (arrows) and α-actinin cross striations can be observed in dysgenic myotubes. Bars, 10 μm.

This distribution pattern is similar to that observed in the myogenic cell line C2 using the same antibody (M. E. Morton, Holy Cross College, Worcester, MA; personal communication). The clusters of DHP receptors colocalized with the tubules of the developing T-tubule system, a finding that is consistent with the localization of the DHP receptor in the T-tubule membranes of mature muscle (13, 16, 20, 24). The non-uniform distribution of DHP receptors in the developing T-tubules suggests that the T-tubule membranes consist of at least two membrane domains: DHP receptor-rich domains, which may be the sites where triad junctions with the SR form, and unspecialized membrane regions in between the DHP receptor clusters. Electron microscopic studies show that junctions between T-tubules and SR (diads, triads, and other constellations) are formed in myotubes of comparable developmental stages in vivo (17, 34) and in vitro (8, 40). Presently we do not have evidence as to whether DHP receptor-rich domains exist in the absence of a close contact with the SR membranes. It is conceivable that DHP receptor clustering precedes the first interactions with the SR and that these specialized domains of the T-tubule membranes subsequently form junctions with the SR. However, reports that triads can be found in rare cases in the absence of the DHP receptor α1 subunit in dysgenic muscle cells (8, 34) and more frequently in dysgenic myotubes treated with calcitonin gene-related peptide (18) suggest that DHP receptor α1 subunit clustering is not a prerequisite for triad formation.

Our finding that both α subunits appeared as clusters with
identical distribution patterns in cultured muscle suggests that the α₁ and α₂ subunits are colocalized in the DHP receptor-rich domains developing in muscle in vitro. Using the same antibodies as in the present study, Western blot analysis revealed that the expression of the α₁ and α₂ subunits during development is differentially regulated (27). Skeletal muscle of newborn rats expresses the α₂ subunit in substantial amounts and its concentration increases steadily over a period of three weeks. In contrast, expression of the α₁ subunit is very low at birth but increases dramatically two weeks later. In the present immunocytochemical study on cultured muscle, however, we have found no evidence for a pool of the α₂ subunit apart from the α₁ subunit. On the contrary, the localization of both subunits seemed to be closely associated in normal myotubes of all developmental stages observed.

Localization of the DHP Receptor α Subunits in Dysgenic Muscle

Immunolabeling of dysgenic myotubes with the antibody against the α₁ subunit gave no detectable signal in any of the myotubes. The mdg mutation is believed to reside in the structural gene, resulting in the lack or severe underexpression of the α₁ polypeptide (22, 44). Our results support this idea by demonstrating the complete absence of the α₁ subunit on the cellular level. If there were still a low level of α₁ expression and the remaining subunits behave normally, one could expect them to form DHP receptor clusters, which would be detectable with immunofluorescence, in reduced quantities. However, the total lack of α₁ label shown in our experiments provides further evidence that the α₁ subunit is not expressed in muscles of dysgenic mice.

The α₂ subunit of the DHP receptor was expressed in dysgenic myotubes, confirming existing evidence from immunoblot analysis of dysgenic muscle (22). However, the distribution patterns of α₂ were grossly altered in mdg/mdg cultures. Normal DHP clusters were not found. Parts of the T-tubule system were devoid of α₂ and wherever α₂ and the T-tubule antigens were colocalized in the cytoplasm, the α₂/TT-containing structures were distinct from normal T-tubule profiles. In electron microscopic studies of dysgenic muscle in vivo and in vitro swollen membrane compartments have been noted (35; Powell, unpublished results), and it is possible that some of the membrane compartments described as swollen SR may actually correspond to the α₂/TT-containing structures seen with immunofluorescence. The frequent observations of diffuse α₂ label in the plasma membrane of dysgenic myotubes and the finding that the plasma membrane specific components are colocalized with the perinuclear α₂/TT-containing structures suggests that the lack of the α₁ subunit may cause problems with the targeting of specific components to the plasma membrane and T-tubules. The completely aberrant distribution of α₂ in dysgenic myotubes was not due to a general state of degener-
Figure 6. Restoration of DHP receptor α1 expression in dysgenic myotubes by fusion with normal cells. Co-cultures of mdg/mdg myotubes and normal non-muscle cells from rat were double labeled with the α1 subunit antibody (a and c) and the nuclear dye (Hoechst #33342) (b and d). The chromatin of rat nuclei (RN) appears homogeneous; in contrast, the mouse host cell nuclei (MN) exhibit heterochromatin. Immunolabel for the α1 subunit could be seen in regions of dysgenic myotubes containing at least one rat nucleus. Expression of α1 was restricted to a nuclear domain that usually contained several mouse nuclei in addition to the rat nucleus (a and b; between double arrowheads). The regions outside the “rescued” domain and “non-rescued” myotubes (arrowheads) show no α1 expression. In the rescued regions α1 appeared in its normal punctate distribution pattern (c). Bar, 10 μm.

Rescue of the Expression and Distribution of the DHP Receptor α Subunits

If the described aberrations in the expression and distribution patterns of the DHP receptor α2 subunit are caused by the lack of the α1 subunit of the DHP receptor, reconstitution of dysgenic myotubes with the α1 polypeptide should restore normal structures and functions. Expression and normal distribution of the α1 subunit was restored in dysgenic myotubes fused with normal cells. This finding is in agreement with results from electrophysiological studies on rescued mdg/mdg muscle showing that the slow Ca\(^{2+}\) current and voltage gating are restored (1, 2). Our immunocytochemical localization of the α1 subunit in myotubes with foreign nuclei showed that a third of the normal (rat) nuclei in rescued myotubes expressed the α1 subunit. Pavlath and her colleagues (31) reported that not all heterokaryons of mouse myoblast and human non-myogenic cells expressed the foreign protein, e.g., 49% expressed human sarcomeric myosin heavy chain and 87% expressed human sarcolemmal neuronal cell adhesion molecule. In the present study, those foreign nuclei that apparently did not express the α1 polypeptide may reflect a population of the non-muscle cells which was capable of fusing with the muscle cells, but was insensitive to the regulatory signals inducing the expression of muscle specific gene products. Alternatively, the coexis-
Figure 7. Restoration of normal distribution patterns of the DHP receptor \(\alpha_2 \) subunit in regions of dysgenic myotubes containing normal foreign nuclei. Co-cultures of \(mdg/mdg \) myotubes and normal non-muscle cells were triple labeled with antibodies against the \(\alpha_2 \) subunit (a and d) and T-tubules (c and f) as well as with the nuclear dye (b and e). The distribution patterns of both antigens in the cytoplasm were normal in rescued domains of poorly differentiated (a–c) as well as highly differentiated myotubes (d–f). Immunolabel of \(\alpha_2 \) was punctate and coincided with the T-tubules. Whereas aberrant \(\alpha_2/TT \)-containing structures (as shown in Figs. 2 and 3) were absent from these regions, diffuse \(\alpha_2 \) label in the plasma membrane, unaccompanied by T-tubule staining could be observed (a and d; arrowheads). RN, rat nucleus; MN, mouse nucleus. Bars, 10 \(\mu \)m.

Immunolabel for \(\alpha_2 \) was always found associated with a foreign rat nucleus, covering an area (i.e., “nuclear domain”) of the myotube that often included several host mouse nuclei. Nuclear domains appear to vary in size depending on the nature of the protein and the target organelle of the molecule (for review see reference 19). For instance, the distribution of certain proteins targeted for nuclei (39), the Golgi apparatus, or the contractile apparatus (31) is limited to the source nucleus and a few neighboring nuclei, whereas soluble cytoplasmic proteins become widely distributed in the myotube (19, 39). Both situations, limited as well as wide distribution, have been described for plasma membrane proteins (31, 38).
This is the first report of the nuclear domain of a membrane protein localized in the T-tubule system and shows that a normal nucleus incorporated into a diseased muscle cell may be capable of providing its gene products to a region that corresponds to approximately four host nuclei and is finite in length. The distribution of the DHP receptor in its nuclear domain may occur by local insertion of transport vesicles, capable of providing its gene products to a region that corresponds to approximately four host nuclei and is finite in length. The rescue nucleus itself (11), leaving behind a trail of α2 subunits which in turn aggregate the α2 subunits in DHP receptor-rich domains of the T-tubules as well.

In addition to the rescue of α2 subunit expression per se, the normal distribution patterns of both α subunits were restored by the fusion of dysgenic myotubes with normal cells. This could clearly be seen when the α1 subunit appeared in its normal clustered distribution in rescued cultures. Furthermore, in rescued cultures labeled for α1, regions of apparently normal α1 distribution were observed in the midst of distorted labeling patterns. Wherever such “normal” regions were found they coincided with the location of a foreign nucleus. However, more than half of the foreign nuclei in rescued myotubes were not localized in regions of “normal” α2 distribution. Since two thirds of the foreign nuclei were not expressing α1, we believe that the same population of nuclei is responsible for both phenomena. Thus, newly synthesized α1 subunits in rescued myotubes did not only assume a normal clustered distribution themselves, but apparently caused the aggregation of the α2 subunits in DHP receptor-rich domains of the T-tubules as well.

The subunit composition of the DHP receptor complex has been proposed on the basis of the co-purification of the α1, α2, β, and γ polypeptides from isolated triads (24). However, up to now, there has been relatively little evidence for in situ interactions between the subunits or for possible functions of the subunits other than α1. In the present study we have demonstrated that: (a) the α subunits of the skeletal muscle DHP receptor coexist in DHP receptor-rich domains of the developing T-tubule system; (b) the α2 subunit fails to form clusters in the absence of the α1 subunit; and (c) that reconstitution of α1 subunit expression restores the normal organization of the α2 subunit in the T-tubule membranes. Taken together these results provide strong evidence for a direct interaction between the two α subunits of the skeletal muscle DHP receptor and suggest a possible role for these interactions in the specialization of the junctional membrane of the T-tubules.

We thank S. Haynes for her excellent technical assistance and Drs. S. B. Andrews and M. P. Daniels for critical reading and discussion of the manuscript.

This study was supported by grants from the Muscular Dystrophy Association of America and the Smith College Blackeslee Endowment Fund (to J. A. Powell) and the Sally Wilens Memorial Scholarship Fund (to J. L. Phillips).

Received for publication 15 March 1991 and in revised form 1 July 1991.

References

1. Adams, B. A., T. Tanabe, A. Mikami, S. Numa, and K. G. Beam. 1990. Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature (Lond.) 346: 569–572.

2. Beam, K. G., C. M. Knudson, and J. A. Powell. 1986. A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells. Nature (Lond.) 320: 168–170.

3. Bean, B. J. 1989. More than Ca2+ channel? Trends Neurosci. 12: 128–130.

4. Bloci, R. J., M. Velez, J. G. Krikorian, and D. Axelrod. 1989. Microfilaments and actin-associated proteins at sites of membrane-substrate attachment within acetylcholine receptor clusters. Exp. Cell Res. 182: 583–596.

5. Borsotto, M., J. Barhanin, M. Fosset, and M. Lazdunski. 1985. The 1,4-dihydropyridine receptor associated with the skeletal muscle voltage-dependent Ca2+ channel - purification and subunit composition. J. Biol. Chem. 260: 14255–14263.

6. Bowden-Easten, F. 1972. An in vitro study of normal and mutant myogenesisis the mouse. Dev. Biol. 27: 351–354.

7. Chaudhari, N., R. Delay, and K. G. Beam. 1989. Restoration of normal function in genetically defective myotubes by spontaneous fusion with fibroblasts. Nature (Lond.) 341: 445–447.

8. Courbin, P., J. Koenig, A. Ressouche, K. G. Beam, and J. A. Powell. 1989. Rescue of excitation-contraction coupling in dystgenic muscle by addition of fibroblasts in vitro. Neuron. 2: 1342–1350.

9. Danies, M. P. 1990. Localization of actin β-spectrin, 43 x 103Mr and 58 x 103 Mr proteins to receptor-enriched domains of newly formed acetylcholine receptor aggregates in isolated myotube membranes. J. Cell Biol. 97: 615–626.

10. Ellis, S. B., M. E. Williams, N. R. Wais, R. Brenner, A. H. Sharp, A. T. Leung, K. P. Campbell, E. McKenna, W. J. Koch, A. Hui, A. Schwartz, and M. M. Harpold. 1988. Sequence and expression of mRNAs encoding the α1-, and α2 subunits of a DHP-sensitive calcium channel. Science (Wash. DC) 241: 1661–1664.

11. Engelder, E. L., and L. L. Rubin. 1987. Acetylcholine receptor clustering and nuclear movement in muscle fibers in culture. J. Cell Biol. 104: 87–95.

12. Flockerzi, V., H.-J. Oeken, F. Hofmann, D. Pelzer, A. Cavaillé, and W. Trautwein. 1986. Purified dihydropyridine-binding site from skeletal muscle t-tubes is a functional calcium channel. Nature (Lond.) 323: 66–68.

13. Flucher, B. E., M. E. Morton, S. C. Froehner, and M. P. Daniels. 1990. Localization of the α1 and α2 subunits of the dihydropyridine receptor and ankyrin in skeletal muscle triads. Neuron. 5: 329–351.

14. Flucher, B. E., M. E. Morton, S. C. Froehner, and M. P. Daniels. 1991. Biogenesis of transverse tubules in skeletal muscle in vitro. Dev. Biol. 145: 77–90.

15. Fontaine, B., and J.-P. Changeux. 1989. Localization of nicotinic acetylcholine receptor α-subunit transcripts during myogenesis and motor end-plate development in the chick. J. Cell Biol. 108: 1025–1037.

16. Fosset, M., E. Jamioovich, E. Delpont, and M. Lazdunski. 1983. [3H]Nifedipine receptors in skeletal muscle: properties and preferential localization in transverse tubules. J. Biol. Chem. 258: 6086–6092.

17. Franzini-Armstrong, C., M. Pinçon-Raymond, and F. Reiger. 1991. Muscle fibers from dystogenic mouse in vivo lack a surface component of peripheral couplings. Dev. Biol. 146: 364–376.

18. Garcia, L., M. Pinçon-Raymond, G. Romey, J.-P. Changeux, M. Lazdunski, and F. Rieger. 1990. Induction of normal ultrastructure by CGRP treatment in myotubes. FEBS (Fed. Eur. Biol. Soc.) Letters 263: 147–152.

19. Hall, Z. W., and E. Ralston. 1989. Nuclear domains in muscle cells. Cell. 59: 771–772.

20. Jorgensen, A. O., A. C. Shen, W. Arnold, A. T. Leung, and K. P. Campbell. 1989. Subcellular distribution of the 1,4-dihydropyridine receptor in rabbit skeletal muscle in situ: an immunohistochemical and immunocytological gold-labeling study. J. Cell Biol. 109: 135–147.

21. Klaus, M. M., S. P. Scordilis, J. M. Rapalus, R. T. Briggs, and J. A. Powell. 1983. Evidence for dysfunction in the regulation of cytosolic Ca2+ in excitation-contraction uncoupled dystrophic muscle. Dev. Biol. 99: 152–165.

22. Kud慢性, C. M., N. Chaudhari, A. H. Sharp, J. A. Powell, K. G. Beam, and K. P. Campbell. 1989. Specific absence of the α1 subunit of the dihydropyridine receptor in mice with muscular dystrophy. J. Biol. Chem. 264: 1345–1348.

23. Koenig, J., R. Bournaud, J. A. Powell, and F. Rieger. 1982. Appearance of contractile activity in muscular dystrophy (mdg/mdg) mouse myotubes during co-culture with normal spinal cord cells. Dev. Biol. 92: 188–196.

24. Leung, A. T., T. Imagawa, B. Block, C. Franzini-Armstrong, and K. P. Campbell. 1988. Biochemical and ultrastructural characterization of the 1,4-dihydropyridine receptor from rabbit skeletal muscle. J. Biol. Chem. 263: 994–1001.

25. Mikami, A., K. Inoto, T. Tanabe, T. Nidome, Y. Morii, H. Takahashi, S. Naramiya, and S. Numa. 1989. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature (Lond.) 340: 230–233.

26. Morton, M. E., and S. C. Froehner. 1987. Monoclonal antibody identifies a 200-kDa subunit of the dihydropyridine-sensitive calcium channel. J. Biol. Chem. 262: 11904–11907.

27. Morton, M. E. and S. C. Froehner. 1989. The α1 and α2 polypeptides of the dihydropyridine-sensitive calcium channel differ in develop-
mental expression and tissue distribution. Neuron. 2:1499-1506.

28. Morton, M. E., J. M. Caffrey, A. M. Brown, and S. C. Froehner. 1988. Monoclonal antibody to the α,-subunit of the dihydropyridine-binding complex inhibits calcium currents in BC3H1 myocytes. J. Biol. Chem. 263:613-616.

29. Noda, M., T. Ikeda, T. Kayano, H. Suzuki, H. Takahama, M. Kurasaki, H. Takahashi, and S. Numa. 1986. Existence of distinct sodium channel messenger RNAs in rat brain. Nature (Lond.). 320:188-192.

30. Pai, A. C. 1965. Developmental genetics of a lethal mutation, muscular dysgenesis (mdg) in the mouse. 2. Developmental analysis. Dev. Biol. 11:93-109.

31. Pavlath, G. K., K. Rich, S. G. Webster, and H. M. Blau. 1989. Localization of muscle gene products in nuclear domains. Nature (Lond.). 337:570-573.

32. Pellegrino, C., and C. Armstrong. 1963. An electron microscope study of denervation atrophy in red and white muscle fibers. J. Cell Biol. 38:323-338.

33. Perez-Reyes, E., H. S. Kim, A. E. Lacerda, W. Horne, X. Wei, D. Rampe, K. P. Campbell, A. M. Brown, and L. Birnbaumer. 1989. Induction of calcium currents by the expression of the α,-subunit of the dihydropyridine receptor from skeletal muscle. Nature (Lond.). 340:233-236.

34. Pinçon-Raymond, M., F. Rieger, M. Fosset, and M. Lazdunski. 1987. Restoration of dysgenic muscle contraction and calcium channel function by co-culture with normal spinal cord neurons. Nature (Lond.). 330:563-566.

35. Platzer, A. C., and S. Gluecksohn-Waelsch. 1972. Fine structure of mutant (muscular dysgenesis) embryonic mouse muscle. Dev. Biol. 28:242-252.

36. Powell, J. A., and D. M. Fambrough. 1973. Electrical properties of normal and dysgenic mouse skeletal muscle in culture. J. Cell Physiol. 82:21-38.

37. Powell, J. A., B. Friedman, and A. Cossi. 1979. Tissue culture study of murine muscular dysgenesis: role of spontaneous action potential generation in the regulation of muscle maturation. Annu. N. Y. Acad. Sci. 317:550-570.

38. Ralston, E., and Z. W. Hall. 1989. Intracellular and surface distribution of a membrane protein (CD8) derived from a single nucleus in multinucleated myocytes. J. Cell Biol. 109:2345-2352.

39. Ralston, E., and Z. W. Hall. 1989. Transfer of a protein encoded by a single nucleus to nearby nuclei in multinucleated myocytes. Science (Wash. DC). 244:1066-1069.

40. Rieger, F., R. Bournaud, T. Shimabara, L. Garcia, M. Pinçon-Raymond, G. Romey, and M. Lazdunski. 1987. Restoration of dysgenic muscle contraction and calcium channel function by co-culture with normal spinal cord neurons. Nature (Lond.). 330:563-566.

41. Striessnig, J., K. Moosburger, A. Goll, D. Ferry, and H. Glossmann. 1986. Stereoselective photoaffinity labeling of the purified 1,4-dihydropyridine receptor of the voltage-dependent calcium channel. Eur. J. Biochem. 161:603-609.

42. Takahashi, M., M. J. Seagar, J. F. Jones, B. F. X. Reber, and W. A. Catterall. 1987. Subunit structure of the dihydropyridine-sensitive calcium channels from skeletal muscle. Proc. Natl. Acad. Sci. USA. 84:5478-5482.

43. Tanabe, B., H. Takahama, A. Mikami, V. Flockerzi, H. Takahashi, K. Kangawa, M. Komima, H. Matsuo, T. Hirose, and S. Numa. 1987. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature (Lond.). 328:313-318.

44. Tanabe, B., K. G. Beam, J. A. Powell, and S. Numa. 1988. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature (Lond.). 336:134-139.

45. Vaghy, P. L., J. Striessnig, K. Miwa, H.-G. Knaps, K. Itagaki, E. McKenna, H. Glossmann, and A. Schwartz. 1987. Identification of a novel 1,4-dihydropyridine- and phenylalkylamine-binding polypeptide in calcium channel preparations. J. Biol. Chem. 262:14337-14342.

46. Vandaele, S., M. Fosset, J.-P. Galizzi, and M. Lazdunski. 1987. Monoclonal antibodies that coimmunoprecipitate the 1,4-dihydropyridine and phenylalkylamine receptors and reveal the Ca²⁺ channel structure. Biochemistry. 26:5-9.