Aryl hydrocarbon receptor signaling regulates NF-κB RelB activation during dendritic-cell differentiation.

Permalink
https://escholarship.org/uc/item/5873x2rr

Journal
Immunology and cell biology, 91(9)

ISSN
1440-1711

Authors
Vogel, Christoph FA
Wu, Dalei
Goth, Samuel R
et al.

Publication Date
2013-10-01

DOI
10.1038/icb.2013.43

Peer reviewed
Aryl hydrocarbon receptor signaling regulates NF-κB RelB activation during dendritic-cell differentiation

Christoph FA Vogel1,2, Dalei Wu2, Samuel R Goth3, Jaeeun Baek2, Anna Lollies2, Rowena Domhardt2, Annemarie Grindel2 and Isaac N Pessah3

How the aryl hydrocarbon receptor (AhR) regulates dendritic-cell (DC) differentiation is unknown. We show that activation of AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) caused enhanced differentiation from immature DCs (IDCs) to mature DCs (MDCs) in the bone-marrow-derived DCs (BMDC) from B6 wild-type mice but not in the BMDCs from AhR-null mice as indicated by the expression of CD11c and class II major histocompatibility complex (MHC). Enhanced maturation of BMDCs was associated with elevated levels of CD86 and an increased AhR-dependent nuclear accumulation of nuclear factor-kappa-light-chain enhancer of activated B cell (NF-κB) member RelB in BMDCs. The expression of interleukin (IL) 10 and chemokine DC-CK1 was suppressed, whereas that of CXCL2, CXCL3 and IL-22 was significantly increased in AhR-activated BMDCs. Furthermore, TCDD induced expression of the regulatory enzymes indoleamine 2,3-dioxygenase (IDO1) and indoleamine 2,3-dioxygenase-like 1 (IDO2). Increased expression of IDO2 was associated with coexpression of the cell-surface marker CCR6. Interestingly, mRNA expression of the chemokine receptor CCR6 was drastically decreased in AhR-null IDCs and MDCs. Overall, these data demonstrate that AhR modifies the maturation of BMDCs associated with the induction of the regulatory enzyme IDO and altered expression of cytokine, chemokines and DC-specific surface markers and receptors.

Immunology and Cell Biology (2013) 91, 568–575; doi:10.1038/icb.2013.43; published online 3 September 2013

Keywords: AhR; chemokines; DC; IDO; NF-κB RelB; TCDD

Numerous studies have shown that activation of the aryl hydrocarbon receptor (AhR) through binding of a variety of ligands has immunomodulatory effects. For instance, the prototype of AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to be among the most immunosuppressive chemicals known.1 Early studies showed that both humoral and cell-mediated immunity are affected after chronic or acute exposure to TCDD.2–4 Studies with AhR-null mice have shown clearly the requirement of AhR to mediate the immunosuppressive effects of TCDD.5 Despite extensive studies, the precise mechanism by which activation of AhR affects immunity is unknown. Studies have revealed that dendritic cells (DCs), similar to lymphocytes, are also sensitive cellular targets of TCDD within the immune system.1 Altered expression of cytokines and chemokines is observed in the bone marrow (BM) of AhR-null mice compared with wild-type mice.6 The central role of DCs as regulators of immune responses8 has stimulated investigations into which intracellular signaling pathways regulate gene expression that controls the differentiation of precursors into DCs; especially the nuclear factor-kappa-light-chain enhancer of activated B cells (NF-κB) family of transcription factors is critically involved in this process.7 AhR is a transcription factor that can interact with NF-κB RelA and RelB and modulate immune responses.6,9 The interaction of AhR with NF-κB RelB to regulate chemokine expression (interleukin (IL)-8) was first described in human macrophages.10 AhR was also shown to interact with NF-κB RelA to suppress acute-phase gene SAA, IgH, or induce Pai-2.11–13

Recent findings suggest that AhR activation changes the function of inflammatory DCs and that immunoregulatory genes within DC are critical targets of AhR.14–16 Several studies show that exposure to AhR agonists such as TCDD leads to an increase in regulatory FoxP3+ T cells (Treg)1,17 and promotes the development of IL-10-producing Tr1 cells in synergy with cMaf.18 Initially, we showed that activation of AhR induces the expression of immunoregulatory enzymes IDO1 and IDO2 in various tissues of mice as well as in human DCs,16 which could be responsible for an increased number of FoxP3+ Tregs. The AhR-dependent induction of IDO has been confirmed in other cell types including Langerhans cells (LC).14,19,20 On the other hand, exposure to AhR ligands such as the tryptophan metabolite 6-formylindolo[3,2-b]carbazole may promote the differentiation of inflammatory T helper (Th)17 cells.21,22 A recent study shows that the AhR is involved in the development of IL-22-producing Th17 cells.
coexpressing the chemokine receptor CCR6.23 Most recent studies show that the AhR is a key regulator for the development and function of IL-22-secreting innate lymphoid cells (ILCs) in the lamina propria,24 and activation of AhR by dietary substances such as indole-3-carbinol is required in maintaining intestinal immune function and host-defense mechanisms.25

The current study addresses the mechanisms by which AhR regulates the differentiation of DC and regulation of DC-specific markers. The endogenous role of AhR in DCs and the exact genesis and development of the different types and subsets of DCs and their inter-relationship are only marginally understood at the moment. AhR is a critical regulator of T-cell immunity, and AhR activation may generate tolerogenic DCs. Therefore, a better understanding of AhR function in DCs is of interest for immunotherapy studies. Here we show that AhR has a critical role in the expression of DC-specific genes and in the process of maturation of DCs, which is important in understanding the development of the different types and subsets of DCs.

RESULTS

AhR activation promotes the differentiation of CD11c+ DCs from GM-CSF-expanded murine bone marrow cultures

Pooled bone marrow cells from C57BL/6 female mice (AhR+/+) and AhR-null mice (AhR−/−) were plated in GM-CSF (granulocyte–monocyte colony-stimulating factor)-containing medium. TCDD was added to the culture medium to 10 nM on day 1. Six days later, nonadherent cells were harvested, counted, antibody-stained and analyzed using flow cytometry; MHC II and CD11c expression levels for the different culture conditions are shown as dot plots (Figure 1). Figure 1 shows that the culture conditions generated four distinct cell subpopulations based on antibody epitope expression: double-negative (DN) cells (region R7), CD11c+ class II MHCNEG (region 6), CD11c+ class II MHCINT (region 5) and CD11c+ class II MHCHI (region 4). DC populations were identified by CD11c expression and DC maturation status by their class II MHC expression. Thus, CD11c+ class II MHCNEG, CD11c+ class II MHCINT and CD11c+ class II MHCHI were classed as precursor DCs, immature DCs (IDCs) and mature DCs (MDCs), respectively. The percentage of class II MHCHI DCs (MDCs) was increased by TCDD, whereas that of CD11c+ class II MHCINT (IDCs) was decreased in bone-marrow-derived DC (BMDC) from AhR+/+ mice (Figures 1a and b). The number of class II MHCNEG precursor DCs remained unchanged under TCDD in the culture of BMDC from AhR+/+ mice (Figure 1b). The percentages of CD11c+ class II MHCINT and CD11c+ class II MHCHI were consistently higher for control cells compared with AhR−/− mice, which was because of the increased proportion of precursor DCs and DN in the cultures of AhR−/− (Figures 1c and d). TCDD did not significantly change the percentage of DC subpopulations derived from AhR−/− compared with that from the vehicle-treated control group (Figures 1c and d).

Activation of AhR alters the expression of DC-specific markers

To identify the mechanisms by which AhR influences the differentiation of BMDCs, bone-marrow cells derived from B6 wt and AhR-null mice were cultured in the absence or presence of 10 nM TCDD for 6 days. To examine DC-differentiation status, nonadherent cells were harvested and prepared for separation into DC populations according to their maturation status by their MHC II and CD11c expression levels, as shown in Figure 1. Cells were then harvested for RNA extraction and analyzed for expression of DC-maturation markers CD80, CD86 and RelB via real-time polymerase chain reaction (PCR) as shown (Figures 2a–c). The basal expression levels of the co-stimulatory and adhesion molecules CD80 and CD86 were significantly increased in IDC and MDC in wt mice but not in AhR-null mice. CD80 mRNA was induced by TCDD only in IDC and MDC in wt mice but not in AhR-null mice. CD80 mRNA was induced by TCDD only in wt MDC.

TCDD increases nuclear accumulation and DNA-binding activity of RelB in BMDC

Results from western blot analysis showed that TCDD increases the AhR level in the nuclei of BMDC from B6 wt mice but not in the BMDCs from AhR-null mice (Figure 3a). We detected an increased accumulation of RelB by TCDD only in B6 wt BMDCs but not in AhR-null BMDCs (Figure 3a), suggesting that the TCDD-mediated translocation of RelB into the nucleus involved a functional AhR. The TCDD-stimulated increased accumulation of AhR and RelB in the nuclei correlated with a decreased level in the cytosolic extract of BMDC. The increased accumulation of RelB in the nucleus was associated with increased DNA-binding activity of RelB and AhR on a RelB-binding element (Figure 3b) previously described on the promoter of IL-8.10 In order to test whether the AhR physically interacted with RelB, we performed co-immunoprecipitation studies with nuclear
IDO1, IDO2 was also significantly induced in precursor DC and MDC subpopulations of AhR$^{+/−}$ (wt) mice. In order to test an associated expression of the chemokine receptor CCR6 with IDO as described earlier,27 we analyzed the expression of CCR6 in DC subpopulations. Similar to IDO2, we found significantly increased level of CCR6 in precursor DCs, IDCs and MDCs of wt BMDCs; the basal expression of CCR6 was lower in IDCs and MDCs from AhR-null mice compared with wt mice (Figure 4c). IDO1 protein level was not increased by TCDD in MDCs of wt mice, whereas IDO2 protein increased in IDCs and MDCs of wt mice (Figure 4d), which was in line with the mRNA expression profiles of IDO1 and IDO2. The induced expression of IDO1 and IDO2 was associated with increased IDO enzymatic activity in BMDC subsets of mice (Figure 4e).

TCDD alters the expression of cytokines, chemokines and receptors in unstimulated and TLR4-activated BMDC

The function of DCs and their immunoregulatory role in T-cell differentiation depend on the regulation and expression of cytokines and chemokines. Here we analyzed the mRNA expression of cytokines IL-6, IL-10, IL-12, IL-22 and IL-23, as well as of chemokines DC-CK1 (CCL18), CXCL2 and CXCL3, in unstimulated and lipopolysaccharide (LPS)-stimulated BMDCs (Table 1). The expression of IL-6 was unchanged by TCDD in unstimulated BMDCs; however, TCDD increased IL-6 mRNA expression in LPS-stimulated BMDCs. The level of IL-10 mRNA was significantly decreased by TCDD in the absence of LPS; however, TCDD led to a three-fold increase in IL-10 in LPS-stimulated BMDCs. No significant effect was found by TCDD on the expression of IL-12 in BMDCs. The most significant effect by TCDD was found on the expression of IL-22, which was increased to 212-fold in unstimulated BMDCs and increased up to 6845-fold in LPS-stimulated BMDCs. LPS alone increased the expression of IL-22 about 60-fold compared with vehicle-treated controls. TCDD did not significantly increase the expression of IL-23 in unstimulated BMDCs but led to a two-fold increase in IL-23 in LPS-stimulated BMDCs. Expression of TNFα was not changed by TCDD. The DC-specific chemokine DC-CK1 (CCL18) was >70% suppressed by TCDD in unstimulated BMDCs, and in contrast to IL-10 TCDD also suppressed the increased expression of DC-CK1 in LPS-activated BMDCs (Table 1).

We extended the expression analysis to genes critical for the function of DCs using the Profiler PCR array system for DCs and APC (QiagenSA Biosciences, Valencia, CA, USA). After verification by real-time PCR, we found that TCDD increases the expression of chemokines CXCL2 (3.5-fold) and CXCL3 (6.5-fold) in unstimulated BMDCs, and TCDD led to a further increase in LPS-stimulated BMDCs. The chemokine receptor CCR3 was induced 3.6-fold by TCDD, whereas LPS led to an 80% decrease in CCR3 mRNA levels. TCDD did not lead to a significant induction of CCR3 in LPS-activated BMDCs. We also found a significant increase in the Complement C3a receptor 1 (C3aR1) mRNA by TCDD. LPS did not alter the expression of C3aR1. Furthermore, we identified the immunosuppressive scavenger receptor A (SRA1) as a target for TCDD. SRA1 was 4.6-fold increased in unstimulated BMDCs and over 80-fold increased by TCDD in LPS-activated BMDCs.

DISCUSSION

The results of the current study provide new insight into the mechanism of AhR modifying the differentiation of BMDCs and promoting the differentiation of MDCs recruited from IDCs (Figure 5). The results extend previous studies showing a suppressed maturation of BMDCs in the presence of an AhR antagonist28 as well
as TCDD-enhanced maturation of BMDCs expressing elevated levels of CD86 and MHC II. Another study using LCs also indicate the involvement of AhR in the maturation of LCs, as AhR-null LCs showed less capacity to mature compared with LCs derived from B6 mice.

Besides DCs and LCs, the AhR may also control the differentiation and homeostasis of mast cells. On the other hand, studies have shown that activation of AhR may inhibit the function and maturation of DCs or LCs. The different effects of AhR on DC differentiation and function may depend on the type of ligand-activating AhR, the cellular context and the DC-differentiation model used. The results using TCDD to activate AhR are likely to extend to polycyclic aromatic hydrocarbons and other persistent organic pollutants with a high AhR affinity; however, natural or endogenous ligands such as indole-3-carbinol or 6-formylindolo[3,2-b]carbazole may have different effects on DCs. The findings of this study were obtained from GM-CSF-stimulated BMDCs, and a different response from different subsets of steady-state DCs in the intact animal must be considered, which indicates the limitation of extrapolating data from a DC model to the more complex role of DCs in vivo. As reported earlier, AhR may exhibit anti-inflammatory and immunosuppressive roles in several settings, and AhR agonists can repress NF-κB-responsive genes. However, AhR ligands can also transactivate NF-κB-responsive genes and promote Th17 polarization.

DC maturation is regulated by the NF-κB-signaling pathway, and the NF-κB family member RelB. Addition of antibodies against Actin (lane 5) and RelA (lane 6) did not cause a supershift or decrease in binding activity. A 200-nM excess of wild-type cold-competition oligonucleotide (lane 5) has also been included as control. An arrow indicates a binding reaction (supershift and/or decrease in bandshift intensity). Ab, Antibody; Comp, competition; Ctrl, control; Treat, treatment. One representative experiment out of three independently performed experiments is shown. (d) Detection of the AhR/RelB complex in nuclear extracts of BMDC. Bone marrow cells were cultured in RPMI containing 20 ng ml⁻¹ GM-CSF for 7 days. RelB and AhR immunoprecipitates were prepared with nuclear extracts collected from wt BMDC. The antigen–antibody complexes were visualized via chemoluminescence. Polyclonal NF-κB member RelB (Active Motif, Carlsbad, CA, USA) and polyclonal AhR (Novus Biologicals, Littleton, CO, USA) antibodies were used for western blot, Supershift in EMSA and co-immunoprecipitation. Data are representative of three independent experiments.
degree of maturation.36 Maturation of DCs is induced, for instance, through interaction with the CD40 ligand (CD40L), which is well known to mediate nuclear localization and activation of a RelB.37 It is noteworthy that CD40L clearly caused constitutive AhR activation and induction of Cytochrome P4501a1 (CYP1a1) in B cells,38 which supports the results from the current study that not only RelB but also AhR activation has a physiological role in DC differentiation and maturation.

Here we have shown that TCDD induces the regulatory enzyme IDO1 in IDCs of wt mice but not in IDCs of AhR-null mice. A recent report has shown that the expression and induction of IDO1 by LPS can also be observed in RelB-deficient DCs.39 However, both the activity of IDO and expression of RelB in DCs were required to achieve long-term tolerance in an autoimmune model, indicating the important role of RelB in tolerance. In contrast to IDO1, IDO2 expression level increased from double-negative cells differentiating into precursor DCs and IDCs and slightly decreased in MDCs, indicating an association of IDO2 expression with the maturation of DC subsets of wt mice. The AhR-dependent induction of IDO2 in DC subsets was associated with the increased expression of CCR6. Interestingly, a discrete subset of IDO-positive APCs has been identified by coexpression of the cell-surface marker CCR6.27 Coexpression of CCR6 has also been found for IL-22-producing Th17 cells,25 and the AhR seems to be required for the expression of IL-22.25 In the current study, the most significant effect by TCDD was found on the expression of IL-22 in unstimulated as well as LPS-activated BMDCs. The results confirm recent findings showing an AhR-dependent activation of IL-22 in CD4(+) T cells by TCDD in mice,80 which is in line with a long-lasting effect on human CD4(+) T cells to produce IL-22 and not other T-cell cytokines, with no effect
on T regulatory cells after exposure to dioxins in humans. IL-22 exerts both proinflammatory and tissue-protective functions, and various cell types may produce IL-22, such as ILCs, NK, NKT and γδ T cells, and the cell types that produce IL-22 are all of hematopoietic origin. IL-22-producing ILCs have been found to be an important component of the mucosal antimicrobial host defense. It is interesting to note that the AhR-dependent expression of IDO may also support an efficient antimicrobial function as recently shown in mice and macrophages. As most recent studies show that AhR is a key regulator in the development and function of IL-22-secreting ILCs in the lamina propria, and activation of AhR by dietary substances such as indole-3-carbinol is obviously required in maintaining intestinal immune function and host-defense mechanisms, these data suggest an important role for AhR in regulating not only IL-22 but also IDO in maintaining mucosal immunity.

Furthermore, the results show that TCDD suppresses the expression of DC-CK1 in unstimulated and LPS-activated BMDCs, which agrees with findings in human DCs. DC-CK1 primarily targets lymphocytes and DCs and is mainly expressed by a broad range of monocytes/macrophages and DCs. It has been shown that IL-10 may increase the expression of DC-CK1 in DCs. Therefore, it is possible that suppression of IL-10 by TCDD consequently leads to a decreased expression of DC-CK1; however, the TCDD-induced expression of IL-10 in LPS-activated BMDCs does not support this hypothesis. The specific expression of DC-CK1 by DCs at the site of initiation of an immune response, combined with its chemotactic activity for naive T cells, suggests that the AhR-mediated suppression of DC-CK1 may contribute to the immunosuppressive effect TCDD.

The current study shows that AhR activation modulates not only the expression of cytokines and chemokines but also that of critical surface markers and receptors such as C3aR1 and SRA1. An increased expression of C3aR1 mRNA was found in TCDD-treated BMDCs. Complement activation has been shown to modulate DC-mediated T-cell activation, but whether complement affects the capability of DCs to enhance their function in T-cell stimulation has been unclear. A recent report showed that engagement of C3aR1 on the surface of DCs leads to a potent negative regulation of inflammatory cytokines. Furthermore, we identified the SRA1 as a target of TCDD in BMDCs and detected a significant increase in SRA1 in unstimulated and LPS-activated BMDCs. The class A SR SRA1 is expressed on most macrophages and on DCs, where they act as phagocytic receptors mediating non-opsonic phagocytosis of pathogenic microbes. Another important function of some SR is to act as co-receptors to TLR, modulating the inflammatory response to TLR agonists. The maturation of DCs and their capacity to capture Ag from live cells have been shown to be associated with a switch in expression from type II SRA to the immunosuppressive scavenger receptor SRA1 splice variant. SRA1 silencing in DC enhanced antitumor immunity and increased the number of tumor-infiltrating CD8(+) cells, underlining the immunosuppressive function of SRA1 in DCs.

One open question is how critical the contribution of RelB is in mediating the induction of DC-specific genes by AhR ligands. RelB is a critical factor in the development and maturation of DCs including myeloid and splenic DCs. Studies with mice and DCs deficient in RelB have shown that the upregulation of MHC class II and CD80/86 and co-stimulatory capacity depend on RelB. Furthermore, RelB seems to be critical in promoting IDO activity. Thus, it is possible that enhanced DC maturation and expression of CD86 as well as induction of IDO promoted by AhR activation involve the integrity of RelB.

As described above, AhR signaling controls the differentiation of DCs, which involves activation of the NF-κB subunit RelB, and the absence of AhR in DCs may change the control of RelB in DC differentiation and function. Activation of AhR also leads to altered expression of the key factors critical for the function of DCs. The AhR mediates induction of the immunosuppressive enzymes IDO1 and IDO2 as well as of anti-inflammatory IL-10 and SRA1, which may negatively regulate the immunogenicity of DCs.

METHODS

Materials

Recombinant murine GM-CSF (rmGM-CSF) was purchased from Sigma (St Louis, MO, USA) or R&D Systems (Minneapolis, MN, USA). Antibodies (all purchased from BD Pharmingen, San Diego, CA, USA) to the following
murine marker epitopes are as follows, with the clone names in parentheses: MHC II (2C9 or M5/141.15.2), CD11c-APC and -PE (HL3), CD86-PE (GL1), biotinylated anti-CD8δ (53-6.7), CD45R/B220-PE (RA3-682), CD11b-FITC (M1/70) and unconjugated anti-invariant chain (In-1) and anti-CD16/32 (2.4G2). Fluorophore-conjugated isotype control rat IgG2a (R35-95), IgG2b (A95-1), monoclonal antibodies and hamster IgG (G235-2356) were purchased from BD Pharmingen, and isotype control mouse IgG2a (5-205) monoclonal antibody was purchased from Accurate Chemical (Westbury, NY, USA). Dimethylsulfoxide (DMSO) and LPS were obtained from Sigma. [γ-32P]ATP (6000 Ci mmol−1) was purchased from ICN Biochemicals, Inc (Costa Mesa, CA, USA). TCDD (>99% purity) was obtained from Dow Chemical Co (Midland, MI, USA).

Animals and cell culture
Female C57BL/6 mice aged 6–8 weeks were obtained from JAX West Inc (Davis, CA, USA) and were euthanized in accordance with a protocol approved by the UC Davis Animal Resources Service. AhR-null (AhR−/−) mice were generated and kindly provided by Christopher Bradfield and coworkers from the McArdle laboratory for Cancer Research at the University of Wisconsin. Extracted bone marrow was depleted of red blood cells by ammonium chloride lysis. The R10 medium used to culture bone marrow and sorted DCs was RPMI 1640 (Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (Hyclone, Logan, UT, USA), 2 mM L-glutamine, 2 mM sodium pyruvate and 1000 IU penicillin and 1000 μg streptomycin (Invitrogen) per 500 ml of medium. 2-Mercaptoethanol (Sigma; 50 μM final) was added to R10 for cells cultured at 20% O2, 3% CO2 and 7% N2 (standard culture conditions). Generation of BMDCs was then carried out according to the protocol published by Goth et al. using either 10-cm diameter or six-well uncoated sterile plastic Petri dishes for culture. For every 78 cm2 of culture medium supplemented with 20 ng ml−1 rmGM-CSF was added per plate. Vehicle, LPS or TCDD was added to the culture medium at the indicated time points. Nonadherent cells were harvested and prepared for flow cytometry and RNA analysis between days 6 and 7. BMDCs were purified (≥85–90%) with anti-CD11c-APC and anti-APC beads (Miltenyi Biotech, Auburn, CA, USA) using MACS separation columns as per the manufacturer’s instructions.

Flow cytometric cell sorting and analysis
For flow sorting, bulk or gradient fractionated nonadherent cells were preblocked with 2 μl anti-CD16/32 and 0.5 μl hamster IgG per 1 × 108 for 10 min on ice. Then saturating anti-MHC II (2C9) and anti-CD11c monoclonal antibodies were added to bind for 15 min. The stained cells were washed, passed through a sterile 35-μm nylon mesh and propidium iodide added (0.5 μg ml−1) immediately before aseptic sorting on a MoFlo cytometer (Cytometric, Fort Collins, CO, USA). Single stained and unstained controls were used to define sorting gates and adjust fluorescence compensation. CD11c-positive cells were considered DCs, which were then further graded as precursor DCs, IDCs or MDCs depending on staining intensity (negative, intermediate or high) for MHC II. Sorted cells of DC subsets were collected for RNA analysis using a Moflow cytometer (Cytometric).

Electromobility-shift assay
Nuclear extracts were isolated from BMDCs, as described previously. DNA–protein-binding reactions were performed at room temperature for 20 min in a total volume of 20 μl containing 10 μg nuclear protein, 60,000 cpm of double-stranded DNA ReBaHRE oligonucleotide (5′-AGATGAGGGTGCCATA AGTTC-3′), 5% glycerol and 1 μg poly (dI-dC), and in (mM) Tris buffer (pH 7.5), 50 NaCl, 1 EDTA and 0.5 dithiothreitol. The samples were incubated at room temperature for 20 min. Competition experiments were performed in the presence of a 100-fold molar excess of unlabeled DNA fragments. Protein–DNA complexes were resolved by 4% nondenaturing polyacrylamide gel electrophoresis and visualized by exposure of the dehydrated gels to X-ray films. For quantitative analysis, the respective bands were quantified using a ChemiImager4400 (Alpha Innotech Corporation, San Leandro, CA, USA).

Nuclear complex co-immunoprecipitation assay and western blot analyses
Preparation of nuclear extracts and co-immunoprecipitation were performed according to the manufacturer’s protocol (Active Motif, Carlsbad, CA, USA). To analyze the levels of AhR and RelB proteins in the cytosol and nuclei, protein extracts (15 μg) were separated using 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and blotted onto a polyvinylidene difluoride membrane (ImmuNoBlot; Bio-Rad Laboratories, Hercules, CA, USA). The antigen–antibody complexes were visualized using the chemiluminescence substrate SuperSignal, West Pico (Pierce Chemical Co, Rockford, IL, USA), as recommended by the manufacturer.

Quantitative real-time reverse transcription-PCR
Total RNA was isolated from BMDCs using a Quick-RNA Mini Prep isolation kit (Zymo Research, Irvine, CA, USA), and complementary DNA synthesis was performed as previously described. Quantitative detection of rps13 and differentially expressed genes was performed with a LightCycler Real-Time PCR System LC480 (Roche Molecular Diagnostics, Pleasanton, CA, USA) using Fast SYBR Green Master Mix (Life Technologies, Grand Island, NY, USA) according to the manufacturer’s instructions. The primers for each gene (Supplementary Table 1) were designed on the basis of the respective complementary DNA or mRNA sequences so that the targets were 100–200 bp in length. Amplification specificity of the PCR products was confirmed by melting curve analysis.

Statistics
All data were obtained from more than three independent experiments performed in duplicate, with results reported as mean ± s.d. Statistical significance was determined with one-sided Student’s t-tests at P<0.05.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
This work was supported by NIEHS and USA grants R01ES019898 and 5R21ES015846. RD, AL and AG were supported by the DAAD RISE program. Additional support was from P01ES11269 from the National Institute of Environmental Health Sciences and Award Numbers R833292 and R829388 from the Environmental Protection Agency (INP and SG).

1 Kerkvliet NI. Recent advances in understanding the mechanisms of TCDD immunotoxicity. Int Immunopharmacol 2002; 2: 277–291.
2 Holappa MP, Morris DL, Wood SC, Snyder NK. 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced changes in immunocompetence: possible mechanisms. Annu Rev Pharmacol Toxicol 1991; 31: 73–100.
3 Vogel C, Donat S, Dohr O, Kremer J, Esser C, Roller M et al. Effect of subchronic 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on immune system and target gene responses in mice: calculation of benchmark doses for CYP1A1 and CYP1A2 related enzyme activities. Arch Toxicol 1997; 71: 372–382.
4 Vorderstrasse BA, Steppan LB, Silverstone AE, Kerkvliet NI. Aryl hydrocarbon receptor-deficient mice generate normal immune responses to model antigens and are resistant to TCDD-induced immune suppression. Toxicol Appl Pharmacol 2001; 171: 157–164.
5 Marshall NB, Kerkvliet NI. Dioxin and immune regulation: emerging role of aryl hydrocarbon receptor in the generation of regulatory T cells. Ann N Y Acad Sci 2010; 1183: 23–29.
6 Steirnman RM, Lasker Basic Medical Research Award. Dendritic cells: volatile controllers of the immune system. Annu Rev Pharmacol Toxicol 1997; 71: 1155–1159.
7 Shilt-VF, Davis-Turk J, Macal M, Huang JQ, Poromateri J, Kearns JD et al. Control of Reib during dendritic cell activation integrates canonical and noncanonical NF-kappaB pathways. Nat Immunol 2012; 13: 1162–1170.
8 Tian Y. Ah receptor and NF-kappaB interaction on the stage of epigenome. Biochem Pharmacol 2009; 77: 670–680.
9 Vogel CF, Matsunuma F. A new cross-talk between the aryl hydrocarbon receptor and Reib, a member of the NF-kappaB family. Biochem Pharmacol 2009; 77: 734–745.
10 Vogel CF, Sculillo E, Li W, Wong P, Lazurenc G, Matsunuma F, Reib A new partner of aryl hydrocarbon receptor-mediated transcription. Mol Endocrinol 2007; 21: 2941–2955.
11 Patel RD, Murray IA, Flavney CA, Kusnadi A, Perdew GH. Ah receptor represses acute-phase response gene expression without binding to its cognate response element. Lab Invest 2009; 89: 695–707.
The Supplementary Information that accompanies this paper is available on the Immunology and Cell Biology website (http://www.nature.com/icb).

25 Kiss EA, Vonarbourg C, Kopfmann S, Hobeika E, Finke D, Esser C et al. Nat Immunol 2008; 9: 639–640.

32 Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K, Nohara K et al. J Immunol 2008; 181: 531–536.

30 Zhou Y, Tung HY, Tsai YM, Hsu SC, Chang HW, Kawasaki H et al. Arterioscler Thromb Vasc Biol 2006; 26: 1280–1286.

12 Sulevic CE, Kang JS, Na YI, Kaminski NE. Interactions at a dioxin responsive element (DRE) and an overlapping kappaB site within the hsd4 domain of the 3-alpha immunoglobulin heavy chain enhancer. Toxicology 2004; 200: 236–246.

13 Sekine H, Muraoka M, Oshima M, Okawa H, Kanno J, Igarashi K et al. Hypersensitivity of aryl hydrocarbon receptor-deficient mice to lipopolysaccharide-induced septic shock. Mol Cell Biol 2009, 29: 6391–6400.

14 Bankoti J, Rase B, Simones T, Shepherd DM. Functional and phenotypic effects of AHR activation in inflammatory dendritic cells. Toxicol Appl Pharmacol 2010; 246: 18–28.

15 Jin GB, Moore AJ, Head JL, Neumiller JJ, Lawrence BP. Aryl hydrocarbon receptor activation reduces dendritic cell function during influenza virus infection. Toxicol Sci 2010; 116: 514–522.

16 Vogel CF, Goto SR, Dong B, Pessah IN, Matsumura F. Aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Proc Natl Acad Sci USA 2010; 107: 6391–6400.

17 Mitchell KA, Lawrence BP. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) renders influenza virus-specific CD8 T cells hyporesponsive to antigen. Toxicol Sci 2003; 74: 74–84.

2011; Science 2009; 334: 280–285.

21 Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E et al. The aryl hydrocarbon receptor ligands induce differentiation of type 1 regulatory T cells and Langerhans dendritic cells. J Immunol 2013; 189: 144–151.

22 Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC et al. The aryl hydrocarbon receptor receptors TH17-cell-mediated autoimmunity to environmental toxins. Nature 2008; 453: 106–109.

23 Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. Identification of a human helper T(H)-17, T(H)1 and T(H)2 cells. Nature 2008; 453: 65–71.

24 Ilchmann A, Krause M, Heilmann M, Burgdorf S, Vieths S, Toda M. Impact of culture medium on maturation of bone marrow-derived murine dendritic cells via the aryl hydrocarbon receptor. Toxicol Sci 2010; 116: e1094–e1107.

25 Jiang L, Wu MY, Shu YJ, Li Y, Wang Y, He Y et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells. Proc Natl Acad Sci USA 2011; 108: 531–536.

26 Mezrich JD, Nguyen LP, Kennedy G, Nukaya M, Fechner JH, Zhang X et al. A VEGF receptor inhibitor and ligand of the AHR, represents a new alternative for immunomodulation. PLoS One 2012; 7: e44547.

27 Mitchell KA, Lawrence BP. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces dioxin-expressing helper T(H)17 cells and alters immune responses to Th17 cell-specific antigens. Cell Immunol 2008; 257: 120–127.

28 Ilchmann A, Krause M, Heilmann M, Burgdorf S, Vieths S, Toda M. Impact of culture medium on maturation of bone marrow-derived murine dendritic cells via the aryl hydrocarbon receptor. Toxicol Sci 2010; 116: e1094–e1107.

29 Sibilano R, Frossi B, Calvaruso M, Danelli L, Betto E, Dall'Agnese A et al. The aryl hydrocarbon receptor modulates acute and late mast cell responses. Cell Immunol 2013; 308: 179–191.

30 Zhou Y, Tung HY, Tsai YM, Hsu SC, Chang HW, Kawasaki H et al. CD8alpha+CD11c+ dendritic cells are the major source of aryl hydrocarbon receptor activity in human lung. Am J Pathol 2012; 180: 2001–2008.

31 Aguilera-Montilla N, Chamorro S, Nieto C, Sanchez-Cabo F, Dopazo A, Fernandez-Salguero PM et al. Opposing biological functions of tryptophan catabolizing enzymes during intracellular infection. Proc Natl Acad Sci USA 2011; 108: 1561–1565.

32 Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K, Nohara K et al. Immunobiology 2013; 218: 1055–1062.

33 Schulz VJ, van Roest M, Bol-Schoenmakers M, van den Berg M, Pieters RH et al. Aryl hydrocarbon receptor activation affects the dendritic cell differentiation of human monocytes and Langerhans dendritic cells. J Immunol 2009; 183: 66–74.

34 O’Sullivan BJ, MacDonald KP, Pettit AR, Thomas R, Reib nuclear translocation regulates CD8 alpha+ dendritic cells. J Immunol 2000; 165: 11421–11426.

35 Dejardin E. The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem Pharmacol 2006; 72: 1161–1179.

36 Allan LL, Sher DH. Constitutive activation and environmental chemical induction of the aryl hydrocarbon receptor/retinoid factor in activated human B lymphocytes. Mol Pharmacol 2005; 67: 1749–1750.

37 O’Sullivan BJ, Pai S, Street, An X, MacDonald KP, Wong M et al. Immunotherapy with costimulatory dendritic cells to control autoimmunization. J Immunol 2011; 187: 4018.

38 Rohlman D, Pham D, Yu Z, Steppan LB, Kerkvliet NL. Aryl hydrocarbon receptor-mediated perturbations in gene expression during early stages of CD4+ T-cell differentiation. Front Immunol 2012; 3: 223.

39 O’Sullivan BJ, MacDonald KP, Pettit AR, Thomas R, Reib nuclear translocation regulates CD8 alpha+ dendritic cells. J Immunol 2000; 165: 11421–11426.

40 Rohlman D, Pham D, Yu Z, Steppan LB, Kerkvliet NL. Aryl hydrocarbon receptor/retinoid factor in activated human B lymphocytes. Mol Pharmacol 2005; 67: 1749–1750.

41 Rani R, Jordan MB, Divanovic S, Herbert DR. IFN-gamma-driven IDO production from macrophages protects IL-4/IL-12-deficient mice against lethality during Schistosoma mansoni infection. Am J Pathol 2012; 180: 2001–2008.

42 Simonian PL, Wehrmann F, Roark CL, Born WK, O’Brien RL, Fontenot AP. In vivo dioxin fexes intercellulin-22 production by human CD4+ T cells in an aryl hydrocarbon receptor (AHR)-dependent manner. PLoS One 2011; 6: e18741.

43 Dejardin E. The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem Pharmacol 2006; 72: 1161–1179.

44 O’Sullivan BJ, MacDonald KP, Pettit AR, Thomas R, Reib nuclear translocation regulates CD8 alpha+ dendritic cells. J Immunol 2000; 165: 11421–11426.

45 Dejardin E. The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem Pharmacol 2006; 72: 1161–1179.