A new insight into the evolution and functional divergence of FRK genes in *Pyrus bretschneideri*

Yunpeng Cao¹, Shumei Li¹, Yahui Han², Dandan Meng¹, Chunyan Jiao¹, Muhammad Abdullah¹, Dahui Li¹, Qing Jin¹, Yi Lin¹ and Yongping Cai¹

¹School of Life Sciences, Anhui Agricultural University, Hefei 230036, People’s Republic of China
²State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People’s Republic of China

In plants, plant fructokinases (FRKs) are considered to be the main gateway of fructose metabolism as they can phosphorylate fructose to fructose-6-phosphate. Chinese white pears (*Pyrus bretschneideri*) are one of the popular fruits in the world market; sugar content is an important factor affecting the quality of the fruit. We identified 49 FRKs from four Rosaceae species; 20 of these sequences were from Chinese white pear. Subsequently, phylogenetic relationship, gene structure and micro-collinearity were analysed. Phylogenetic and exon–intron analysis classified these FRKs into 10 subfamilies, and it was aimed to further reveal the variation of the gene structure and the evolutionary relationship of this gene family. Remarkably, gene expression patterns in different tissues or different development stages of the pear fruit suggested functional redundancy for *PbFRKs* derived from segmental duplication or genome-wide duplication and sub-functionalization for some of them. Additionally, *PbFRK11*, *PbFRK13* and *PbFRK16* were found to play important roles in regulating the sugar content in the fruit. Overall, this study provided important insights into the evolution of the FRK gene family in four Rosaceae species, and highlighted its roles in both pear tissue and fruits. Results presented here provide the appropriate candidate of *PbFRKs* that might contribute to fructose efflux in the pear fruit.
1. Introduction

Sucrose, fructose and glucose are the major soluble sugars in fruits [1]; however, sucrose is unstable and easily hydrolysed into glucose and fructose under the action of invertase. Hexose metabolism is a basis for photosynthetic products to enter another metabolism during fruit development stages. Though hexokinase (HXK) and fructokinase (FRK) could catalyse phosphorylation of fructose, the affinity of FRK to fructose is much higher than that of HXK [2], signifying that FRK plays an important role in fructose metabolism. Fructose could be subjected to glycolysis and oxidized pentose pathways under the catalysation of FRK via phosphorylation, which could also be used for starch synthesis. In addition, FRK can be used as a plant hexose receptor to regulate plant growth sugar signalling. Some previous studies reported that phosphorylated fructose can help to establish sink tissue [3,4], therefore, the study of fructose metabolism and FRK gene expression pattern in the fruit can help to expose the mechanism of sugar metabolism in the pear, and provides a scientific basis for improving fruit quality.

The FRK gene belongs to the phosphofructokinase B (pfkB) gene family, and the region where ATP binds to sugar is highly conserved [5]. In the higher plant tissues, the protein encoded by the FRK gene is present as a dimer. In the plant kingdom, the first time the FRK gene was isolated and identified was in tomatoes, and four family members were named LeFRK1–4 [6–9]. LeFRK2 and LeFRK3 were expressed in most tissues, LeFRK3 showed the highest expression in leaves and apical tissues, and LeFRK4 was only expressed in stamens. Subsequently, more and more FRK was studied and reported in other plants, such as Arabidopsis thaliana [10–12], rice [13], poplar [14] and loquat [15] etc. In recent years, the research progress on the plant FRK gene has been accelerated. More and more plant genome sequencing has been completed, which provides more data support for the research of the FRK gene family. For example, the FRK gene family has been systematically and comprehensively studied in sugarcane and Arabidopsis genomes [16,17]. Subsequently, the functionally divergent FRK gene family members were identified in sugarcane, such as SsFRK2 and SsFRK7 presenting lower expression levels in response to drought stress than the other SsFRK genes; SsFRK7 was under neutral selection, whereas SsFRK2 was under strong positive selection [16].

Pear, peach, mei and strawberry, belonging to the Rosaceae family, have important economic value [18–20]. Owing to its economic prominence, the peach [21], mei [22], strawberry [23] and pear genomes [24], as well as the proteome and transcriptome of pear fruit development were sequenced. Among the main fruit varieties of China’s foreign exports, the Chinese pear (Pyrus bretschneideri) accounts for more than 60% of the world pear production. Sugar content is an important factor affecting the taste and quality of the fruit [25]. To further expand the knowledge of FRK-catalysed phosphorylation, and understand the structure and evolutionary history of the FRK gene family, we investigated members of the FRK gene family in pear, peach, mei and strawberry. Gene structure, phylogenetic, micro-collinearity and positive selection analyses were conducted on the FRK gene family, and their effects on function are further discussed. Finally, the pear genome information was used and the results were verified by quantitative real-time polymerase chain reaction (qRT-PCR) experiments. The current study provides valuable information about FRK members, and highlights the potential candidates for further functional analysis of this important gene family, which may regulate sugar content in fruits.

2. Results

2.1. Identification of fructokinase genes

In the present study, the FRK domain (PF00294) and A. thaliana FRK proteins were used as queries to search against the genomes, and then 56 FRK genes were identified in four Rosaceae species (i.e. pear, peach, mei and strawberry). After filtering redundant genes and scanning the complete FRK domain as tested by the Pfam database, SMART database and HMMER website, 49 genes were identified as FRK genes for further analysis (table 1). The FRK genes from these four species were renamed as PbFRK01–PbFRK20, PmFRK01–PmFRK15, PfFRK01–PfFRK08 and FvFRK01–FvFRK06, respectively. Remarkably, we found more FRK genes in pear than in mei, peach and strawberry, suggesting a greater expansion in the pear FRK genes. This phenomenon could be owing to the recent genome-wide duplication that occurred in the pear, but not in mei, peach and strawberry. However, we also noticed more FRK genes in mei than in peach and strawberry, despite the lack of the recent genome-wide duplication, implying that other duplication modes might play a role in the expansion of PmFRK genes.
Table 1. List of FRK genes identified in pear, peach, mei and strawberry.

name	gene identifier	chromosome	length (aa)	pl	mol. wt (Da)
PbFRK11	Pbr014370.1	chr9	386	5.25	41144.97
PbFRK13	Pbr009994.1	chr11	375	5.78	39589.12
PbFRK19	Pbr024522.1	chr17	386	5.24	41188.12
PbFRK03	Pbr018801.2	chr2	667	7.56	73113.69
PbFRK08	Pbr013899.1	chr7	358	5.77	38558.16
PbFRK18	Pbr012599.1	chr17	327	5.83	35075.25
PbFRK02	Pbr032790.1	chr1	532	6.42	57735.59
PbFRK01	Pbr010680.1	chr1	341	5.37	37579.94
PbFRK17	Pbr020141.1	chr15	370	5.38	39460.31
PbFRK16	Pbr005935.1	chr15	378	5.6	40214.17
PbFRK10	Pbr006128.1	chr8	370	4.93	39225.94
PbFRK12	Pbr021232.1	chr10	371	5.12	39869.69
PbFRK07	Pbr025309.1	chr5	371	4.96	39715.45
PbFRK06	Pbr032941.1	chr5	359	4.93	38271.95
PbFRK04	Pbr037899.1	chr3	292	6.45	31281.46
PbFRK15	Pbr029982.1	chr13	558	5.79	62894.34
PbFRK09	Pbr039958.1	chr7	369	6.18	39192.2
PbFRK14	Pbr014240.1	chr11	390	5.96	42116.14
PbFRK05	Pbr042273.1	chr3	323	5.9	34868.18
PbFRK20	Pbr018461.1	unanchored	430	8.03	45780.04
FvFRK02	mma31198.1	chr2	361	8.5	38864.51
FvFRK06	mma07640.1	unanchored	245	5.53	26436.39
FvFRK01	mma21131.1	chr1	138	4.35	14842.82
FvFRK04	mma18777.1	chr6	604	5.48	69101.57
FvFRK05	mma07944.1	chr6	313	4.97	33625.52
FvFRK03	mma21673.1	chr4	323	4.94	34772.94
PmFRK05	Pm014346	chr4	383	5.19	40157.04
PmFRK07	Pm018088	chr5	370	6.55	40190.09
PmFRK03	Pm007366	chr2	310	5.3	33476.53
PmFRK09	Pm019407	chr5	358	5.33	38510.97
PmFRK13	Pm022802	chr6	327	6.11	35159.53
PmFRK08	Pm018523	chr5	341	5.22	37548.9
PmFRK14	Pm030129	unanchored	341	5.22	37645.84
PmFRK04	Pm011272	chr3	315	9.73	33427.31
PmFRK02	Pm005845	chr2	374	5.48	39740.71
PmFRK11	Pm020464	chr6	433	5.87	46558.24
PmFRK15	Pm030602	unanchored	744	5.26	84046.86
PmFRK12	Pm021646	chr6	419	6.4	44670.5
PmFRK10	Pm019581	chr5	432	4.62	46075.21
PmFRK06	Pm017762	chr5	130	9.17	14417.05
PmFRK01	Pm000564	chr1	446	6.09	48771.86

(Continued.)
Based on the above findings, the chromosome location of 49 FRK genes were randomly placed on chromosomes of the four Rosaceae species (figure 1). The PpFRK genes were dispersed on five chromosomes (chr 1, 2, 3, 6 and 8), the FeFRK genes were distributed on four chromosomes (chr 1, 2, 4 and 6) and the PmFRK genes mainly found on six chromosomes (chr 1, 2, 3, 4, 5 and 6), while PbFRK genes were distributed on twelve out of 17 chromosomes (chr 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15 and 17). Among these genes, the longest protein was encoded by PbFRK03, which contains 667 amino acids (aa). However, PmFRK06 encodes the shortest protein (130 aa). The significant difference was observed in the aa sequence length between the members. These results might be owing to the different length of the N-terminal sequence (with unknown function) or different numbers of additional insertions. As previously reported, FRKs active in plants are between 319 aa (Solanum tuberosum FRK, whose GenBank accession number is CAA78283) and 389 aa long (Solanum lycopersicum FRK3, whose GenBank accession number is NP_001234396 and includes a chloroplast transit peptide), whereas SfFRK2 (GenBank accession number: XP_004239035) is greater than 600 aa long [16,26]. Common characteristics might be shared by these proteins and active FRKs, while the additional N-terminal sequences and insertions may generate loops that might interfere with fructose binding, which has been reported by Riggs and Callis [27]. We also found that the theoretical pI values of most FRK proteins were less than 7, indicating that they were acidic, whereas four proteins by the other FRK genes (PbFRK03, PbFRK20, PmFRK04 and PmFRK06) were alkaline (greater than 7). Additionally, the average molecular weight of these proteins was 42.0 kDa, with a range from 14.4 to 73.1 kDa (table 1).
Figure 2. Phylogenetic analysis of all FRK proteins from pear, peach, mei, strawberry and Arabidopsis. The neighbour-joining tree of 56 FRK genes was generated by MEGA 5.0. The different colored shadow marks the different subfamilies (A–J) of the FRK genes.

2.2. Phylogenetic analyses

To evaluate phylogenetic relationships of FRK genes in these four Rosaceae species (peach, mei, strawberry and pear) and A. thaliana, a phylogenetic analysis was performed using the MEGA 5.0 software with the neighbour-joining (NJ) method. In A. thaliana, AtFRK genes have been described as the FRKs, which are essential for plant growth and development [28]. In our study, the NJ tree can be divided into two main classes (classes I–II) and 10 subfamilies (A–J), based on the topology and bootstrap values of the phylogenetic tree (figure 2). Remarkably, we found that class II only contained pear and mei FRK genes, except for PpFRK08 (figure 2). This might be the reason why there are more pear and mei FRK genes than peach, strawberry and Arabidopsis FRK genes. At the same time, FRK genes from pear and mei are more closely related according to the evolutionary relationship, which is supported by a previous report showing the closer relationship between pear and mei versus pear and peach/strawberry [29].

2.3. Sequence feature analyses

In the present study, the exon–intron organization of FRK genes was variable in both exon size and number among the examined plant species. The exon numbers range from 1 (PbFRK05) to 17 (PbFRK03) as shown in figure 3. Furthermore, we found that the genes of each subfamily contained similar gene structures. For example, the subfamily B contained seven exons except for FvFRK05, which had six exons; the subfamily C contained five exons except for PmFRK06, which had three exons (figure 3). These results demonstrate that both exon gain and loss has occurred after the split of monocots and dicots during the evolution of the FRK genes, which might clarify the functional diversity of
closely related genes from the FRK gene family (figure 3). The FRK paralogous or/and orthologous gene pairs’ exon–intron structure was further investigated. The number of exons in eight gene pairs has changed, including PbFRK08/PbFEK02, PbFRK03/PmFRK07, PmFEK06/PpFRK07, FvFRK06/FvFRK01, FvFRK04/PpFRK06, PmFRK15/PpFRK02, PbFRK14/PbFRK05 and PbFRK09/PmFRK10. Among these gene pairs, we found that FvFRK06, PbFRK14 and PbFRK09 gained one exon during the long evolutionary period, while FvFRK01, PbFEK05 and PmFRK10 lost one exon. The cause of these events may be a single intron loss or gain during the evolutionary process.

To further understand the diversity and structure characteristics of FRK genes, the MEME web server was used to predict the conserved domains which were shared with the 56 FRK proteins of five species (figure 3 and the electronic supplementary material, table S1). Twenty distinct motifs were found, whose distribution matched the FRK clustering pattern in the phylogenetic tree. The Pfam and SMART database were used to annotate each of the putative motifs. Motif 1, motif 2, motif 3, motif 5, motif 8, motif 9, motif 10, motif 15, motif 16, motif 17, motif 18, motif 19 and motif 20 were authenticated to encode the PfkB carbohydrate kinase domain, while the other motifs’ function requires further investigation (electronic supplementary material, table S1). In addition, we found motif 1 and motif 3 mainly distributed in class I, and motif 8 distributed in class II, indicating they are necessary for the FRK proteins in these classes. To further understand the function of the different FRK proteins, we searched the gene ontology (GO) database, which provided clues on the function of 49 FRK proteins. Subsequently, we found that most FRK genes have some common functions,
such as FRK activity, cellular metabolic process, transferase activity, biological process and molecular function (electronic supplementary material, table S2).

2.4. Micro-collinearity analyses

In our study, 29 paired micro-collinearity relationships were identified among four Rosaceae species. Among them, in pear and other species were found 20 micro-collinearity gene pairs (electronic supplementary material, table S3). Based on the result of MCSCANX, these micro-collinearity relationships are formed by genome-wide duplication or segmental duplication. Remarkably, pear and mei micro-collinear gene pairs are much larger than those of pear and peach/strawberry; this conclusion is supported by previous reports that the relationship between pear and mei is much closer than that between pear and peach/strawberry [24,29]. At the same time, we also investigated micro-collinearity relationships among the same species. We identified six micro-collinearity gene pairs in pear, two micro-collinearity gene pairs in mei and one micro-collinearity gene pair in peach. To further understand the micro-collinearity relationships of pear FRK genes, the micro-collinearity diagram was generated using the MCSCANX software. As shown in figure 4, all of the FRK gene micro-collinearity occurs in the sense direction among the pear genome.

2.5. Strong purifying selection for fructokinase genes in pear

The results of the previous section indicated that the expansion of the pear FRK gene family occurred by gene duplication. To better understand the evolutionary constraints acting on the FRK gene family, Ka/Ks values of six duplicated gene pairs were calculated among the pear FRK gene family. In general, Ka/Ks less than 1, equal to 1, and greater than 1 indicates purifying selection, neutral selection and positive selection, respectively. In the present study, we discovered that all the Ka/Ks values of six pear FRK duplicated gene pairs were less than 0.3 (electronic supplementary material, table S4). These results indicated that the FRK gene family had undergone a strong purifying selection, resulting in a slow evolution of the pear FRK gene family at the protein level. Remarkably, all the Ka/Ks ratios of 29 FRK duplicated gene pairs were less than 1, further indicating that this FRK gene family has undergone a purifying selection during evolution (electronic supplementary material, table S4).

Previous studies have shown that overall strong purifying selection may mask some of the individual codon sites [30]. Therefore, a sliding-window analysis of Ka/Ks values was carried out for each pear
FRK duplicated gene pair. As presented in the electronic supplementary material, figure S1, many sites or/and regions experience neutral selection, or strong negative/purifying selection. Consequently, we found that most Ka/Ks values across the coding sites/regions were much lower than 1; however, one or several distinct peaks (Ka/Ks > 1) were observed in the electronic supplementary material, figure S1. Surprisingly, the domains of FRK genes generally had higher Ka/Ks ratios (peaks) than the regions outside of them (valleys). A sliding-window analysis of PbFRK13/PbFRK04 duplicated gene pairs revealed sites with higher Ka/Ks ratios (peaks: Ka/Ks values greater than 1) in FRK domains, implying positive selection in this site/region. Additionally, although positive selection contributes to higher values of Ka/Ks, it does not mean or ensure that the gene-average Ka/Ks ratio exceeds 1. To sum up, the above Ka/Ks values and sliding-window analyses strongly suggests that purifying selection might play a key role in the pear FRK gene family during evolution.

2.6. Cis-acting element analysis

Cis-acting elements play key roles in plant growth and development, such as determining the tissue-specific or stress-responsive expression patterns of genes. In our study, we identified the three categories of cis-acting elements, including plant growth and development, phytohormone responses, and biotic and abiotic stress responses (electronic supplementary material, table S5). In the promoter regions, numerous cis-acting elements were widespread, such as Skn-1-motif and GCN4_motif for endosperm expression, Box 4 and MRE for light responsiveness, and CAT-box and CCGTCC-box for meristem expression. Remarkably, there was a higher amount of cis-acting elements for plant growth and development, contrasting with the cis-acting elements of phytohormone responses and biotic and abiotic stress responses. These findings suggest that a number of the FRK gene family may have a special role in plant growth and development.

Figure 5. qRT-PCR expression levels of 20 PbFRK genes in four different tissues. Units on the y-axis indicate the relative expression levels. Mean values and standard deviations indicate three technical replicates derived from one bulked biological replicate.
2.7. Expression profiles of pear fructokinase genes in different tissues

It is well known that gene identification makes it possible to explore the potential function of gene families through gene expression analyses. To further characterize the pear FRK genes functions, we performed comparative gene expression analyses during different developmental stages of fruits and three different tissues (root, stem and leaf) by qRT-PCR experiments. In the present study, we found that some PbFRK genes were highly expressed in specific tissues or fruit development stages. For example, the expressions of nine genes (PbFRK01, PbFRK02, PbFRK03, PbFRK04, PbFRK06, PbFRK08, PbFRK09, PbFRK10 and PbFRK19) were highly expressed in roots (PbFRK01, PbFRK03, PbFRK04, PbFRK06 and PbFRK08 were upregulated by more than 2.5-fold and PbFRK01 showed the greatest upregulation (by more than five-fold)); PbFRK07, PbFRK12, PbFRK13, PbFRK15, PbFRK17 and PbFRK20 had high expression in leaves (PbFRK12, PbFRK15 and PbFRK17 were strongly upregulated (by more than 2.8-fold, 2.9-fold and 2.0-fold)); while PbFRK05, PbFRK14 and PbFRK18 peaked in stems (PbFRK18 were highly expressed by more than 9.8-fold). These results showed a negative correlation with fructose levels, implying that these genes may play key roles in the development of specific tissues (figure 5). Interestingly, PbFRK11, PbFRK13 and PbFRK16 were detected as downregulated during pear fruit development (electronic supplementary material, figure S2). These results showed a negative correlation with fructose levels, implying that these genes may play important roles for fructose efflux and regulate the sugar content in fruit. Moreover, some PbFRK genes were highly expressed at 133 days after flowering than other genes, such as PbFRK03, PbFRK04 and PbFRK06 and PbFRK08 were upregulated by more than 2.5-fold and PbFRK01 showed the greatest upregulation (by more than five-fold)); PbFRK07, PbFRK12, PbFRK13, PbFRK15, PbFRK17 and PbFRK20 had high expression in leaves (PbFRK12, PbFRK15 and PbFRK17 were strongly upregulated (by more than 2.8-fold, 2.9-fold and 2.0-fold)); while PbFRK05, PbFRK14 and PbFRK18 peaked in stems (PbFRK18 were highly expressed by more than 9.8-fold). These results indicated that different PbFRK genes may play key roles in the development of specific tissues (figure 5). Interestingly, PbFRK11, PbFRK13 and PbFRK16 were detected as downregulated during pear fruit development (electronic supplementary material, figure S2). These results showed a negative correlation with fructose levels, implying that these genes may play important roles for fructose efflux and regulate the sugar content in fruit. Moreover, some PbFRK genes were highly expressed at 133 days after flowering than other genes, such as PbFRK03, PbFRK04 and PbFRK06 and PbFRK08 were upregulated by more than 2.5-fold and PbFRK01 showed the greatest upregulation (by more than five-fold)); PbFRK07, PbFRK12, PbFRK13, PbFRK15, PbFRK17 and PbFRK20 had high expression in leaves (PbFRK12, PbFRK15 and PbFRK17 were strongly upregulated (by more than 2.8-fold, 2.9-fold and 2.0-fold)); while PbFRK05, PbFRK14 and PbFRK18 peaked in stems (PbFRK18 were highly expressed by more than 9.8-fold). These results indicated that different PbFRK genes may play key roles in the development of specific tissues (figure 5). Interestingly, PbFRK11, PbFRK13 and PbFRK16 were detected as downregulated during pear fruit development (electronic supplementary material, figure S2). These results showed a negative correlation with fructose levels, implying that these genes may play important roles for fructose efflux and regulate the sugar content in fruit. Moreover, some PbFRK genes were highly expressed at 133 days after flowering than other genes, such as PbFRK03, PbFRK04 and PbFRK06 and PbFRK08 were upregulated by more than 2.5-fold and PbFRK01 showed the greatest upregulation (by more than five-fold)); PbFRK07, PbFRK12, PbFRK13, PbFRK15, PbFRK17 and PbFRK20 had high expression in leaves (PbFRK12, PbFRK15 and PbFRK17 were strongly upregulated (by more than 2.8-fold, 2.9-fold and 2.0-fold)); while PbFRK05, PbFRK14 and PbFRK18 peaked in stems (PbFRK18 were highly expressed by more than 9.8-fold). These results indicated that different PbFRK genes may play key roles in the development of specific tissues (figure 5). Interestingly, PbFRK11, PbFRK13 and PbFRK16 were detected as downregulated during pear fruit development (electronic supplementary material, figure S2).

3. Discussion

3.1. Identification and phylogenetic analysis in the fructokinase gene family

It is well known that the FRK genes play an important role in the development of various plant organs, in fructose metabolism and in response to abiotic stresses [16,17,31,32]. Previously, the FRK gene family has been reported in Arabidopsis and Saccharum [16,17]. However, FRK genes were exclusive owing to the complex Rosaceae genome, especially in pear. In this report, we identified 49 FRK genes from four Rosaceae species; 20 of these sequences were from Chinese white pear, and six, eight and 15 FRK genes from strawberry, peach and mei, respectively. In pear, we identified a comparatively large gene family, which contained 20 FRK gene family members. Compared with mei, peach and strawberry, the pear genome has undergone two genome-wide duplication events [24,33]. It is believed that the expansion of the FRK gene family in pear might have occurred in a recent genome-wide duplication event.

Based on the topology and bootstrap values of the phylogenetic tree, all FRK genes were divided into two classes with 10 subfamilies (A–J). As shown in the phylogenetic tree, we observed differences between different subfamilies, suggesting that they have different biological functions. Among them, class I clustered together with the known function of the Arabidopsis FRK genes, whereas class II only contained the FRK genes from four Rosaceae species. These results indicated that we still need to explore in the future the function of these genes for different subfamilies. In addition, the pear FRK genes (PbFRK16–PbFRK17) from the same chromosome (no. 15) cluster together, implying the similarity of these genes. Remarkably, this duplication gene pair was not formed by tandem duplication events, because the distance between the two genes on the chromosome was greater than 200 kb [34].

3.2. Micro-collinearity analyses in the fructokinase gene family

Based on the micro-collinearity analyses, we identified 15761 micro-collinearity gene pairs in the pear genome to each other, 21119 gene pairs between the pear and mei genome, and 21773 gene pairs between the pear and strawberry genome, indicating the existence of strong micro-collinearity between segments of some chromosomes. Additionally, we found that a segment of chr 15 in the pear genome was micro-collinear with chr 2 in the mei genome. The FRK genes PbFRK17 and PbFRK16 on chr 15 were micro-collinear with PbFRK10 on chr 8; and PbFRK17 and PbFRK16 on chr 15 were micro-collinear with PmFRK02 on chr 2 of mei. Interestingly, 14 micro-collinearity gene pairs were discovered between pear and mei, which were more than that between pear and peach (five), and pear and strawberry (zero), findings consistent with those of previously published manuscripts, in which the divergence of pear,
mei and peach occurred after the divergence of strawberry from the common ancestor of pear, mei and peach [24,29]. At the same time, the current manuscript may provide novel resources for the study of the evolution of the FRK genes among different species.

3.3. Expression analyses of fructokinase genes in pear

Promoter elements are closely associated with potential gene functions and regulatory mechanisms, such as tissue-specific expression patterns. Previous studies have shown that FRK genes play an important role in fruit and seed development and play diverse functional roles in different tissues [16,28,36–38]. Chen et al. [16] found that most Saccharum FRK genes were expressed in different tissues and different developmental stages of seedlings; however, expression of several FRK genes was low in specific tissues. They also found that low-expressed genes in the tested tissues (such as leaf and stem) may not play the main role in fructose metabolism, such as SsFRK2 and SsFRK7 [16]. In the current study, we also found that some PbFRK genes showed low expression levels in leaves and stems, such as PbFRK01, which was consistent with it having fewer cis-acting elements for plant growth and development. Additionally, PbFRK18, which had three Skn-1 motifs and one GCN4 motif, was highly expressed in fruits and stems, suggesting that this gene might primarily regulate the development of these tissues, which is consistent with tomato SIFRK3, which can reduce the stem xylem area and contribute to stem development [39]. Remarkably, the current study shows that almost all PbFRKs have low expression in roots, compared to other tissues (i.e. stem, leaf, and flower). Similar results have been verified for FRKs from other plants, such as Solanum lycopersicum and Cassava, which participate in the development of roots [16,40]. The expression of PbFRK01 and PbFRK10 was detected by qRT-PCR, to be mainly in stems and roots, with lower expression in leaves. This result was similar to that of the FRK1 and FRK2 genes in maize [41], indicating that these genes may play an important role in the metabolism of sink tissues. In general, the expression pattern of duplicated gene pairs should be similar [42]. In our study, we found that some of the paralogous gene pairs (PbFRK02/08, PbFRK11/19 and PbFRK10/16) have similar expression patterns, indicating that these genes were found to be non-divergent after duplication and might retain redundant functions in regulating tissue development (figure 5). However, three duplicate gene pairs (PbFRK04/13, PbFRK10/16 and PbFRK16/17) were divergent, implying that these genes displayed sub-functionalization for some of them (figure 5).

Pear is one of the most important commercial fruit crops in the world. Sugar content is an important factor measuring fruit quality, which directly affects the flavour of the fruit. FRK genes have been reported to affect fructose accumulation in fruits [43,44]. Sugar transport is essential for plant development, and organisms can control sugar influx and efflux depending on supply and demand [45]. The activity and expression of FRK gradually decreased, while the sugar content gradually increased with the development of fruit [46]. As previously reported, sugar efflux and influx are regulated by related genes [47]. Here, PbFRK11, PbFRK13 and PbFRK16 were found to have a negative correlation with fructose levels during pear fruit development. These results indicated that these genes may play a key role in the balance of fructose levels during fruit development. To sum up, our study provides new ideas and directions for FRK gene function in the pear.

In the present study, 49 FRK genes from four Rosaceae species were identified; a systematic analysis including their physical locations, phylogenetic relationships, gene structure, micro-synteny and the expression patterns of pear FRK genes was carried out. Based on the phylogenetic analysis, all FRK genes were divided into two classes with 10 subfamilies. Additionally, the characteristics and composition of motif and exon/intron structure were relatively conserved in each subfamily. Our study suggested that the vast majority of PbFRK genes were expanded by segmental duplication or genome-wide duplication. Subsequently, these genes were found to undergo strong purifying selection, indicating their evolution at the protein level was slow. Furthermore, the expression patterns of PbFRK genes identified that these genes play key roles during pear fruit development.

4. Material and methods

4.1. Data sources and sequence retrieval

First of all, the peach [21], mei [22], strawberry [23] and pear [24] genome files were obtained from the GigaDB (http://gigadb.org/site/index), Phytozome database (https://phytozome.jgi.doe.gov/pz/portal.html) and GDR database (http://www.rosaceae.org/), respectively. The A. thaliana FRK genes were obtained from Riggs et al. [17] and were downloaded from the TAIR database (http://www.
The seed of FRK domain PF00294 were obtained from the Pfam database (http://pfam.xfam.org/) [48]. Subsequently, the FRK genes were searched against the fully sequenced genome of four Rosaceae species (peach, strawberry, mei and pear) using the HMMER3 software package (E-value less than 1×10^{-10}) [49] and the BLASTP software. After filtering, according to the results of further analysis for sequence identification numbers, chromosomal location and sequence alignment, we deleted redundant protein sequences. At the same time, to verify the putative FRK genes, all the proteins for the presence of FRK domain PF00294 were taken from the SMART [50], Pfam [48] and HMMER website (https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan).

4.2. Phylogenic and gene structure analysis

Coding sequence alignments for 56 FRK proteins from A. thaliana, peach, mei, strawberry and pear were conducted using the MUSCLE program with default settings in the MEGA 5.0 software [51]. Based on alignments, the NJ trees were generated by the MEGA 5.0 software with bootstrap 1000. To identify the exon–intron organization, we compared the CDS sequence with its corresponding DNA sequence and submitted the GSDS website [52] for visualization. The conserved motifs analysis of the FRK proteins was performed by using the MEME software according to previous studies [29,30,42,53]. The GO annotations of the FRK proteins were analysed using the BLAST2GO software according to previous studies [54].

4.3. Chromosome location analysis

According to the publicly available annotation information of chromosome locations in the GigaDB database (http://gigadb.org/site/index) and the Phytozome database (http://www.phytozome.net), chromosomal location images of FRK genes were drawn by the TBTOOLS software.

4.4. Cis-acting elements analysis

To analyse the cis-acting elements, the 2000 bp upstream genomic DNA sequences with the initiation code (ATG) of FRK genes were obtained from the pear, mei, peach and strawberry genome, respectively. The presence of different cis-acting elements was determined by using the PlantCARE website (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) [55].

4.5. Micro-synteny analysis

First of all, we downloaded the whole-genome sequences of the four Rosaceae species to our local server. Subsequently, the MCSCAN X software [56] was used for detecting the collinear blocks relation of each pair of species. The procedure in COLINEAR SCAN was used to evaluate the resulting collinearity chains with an E-value of less than 1×10^{-10}. The CODEML program of PAML [57] was used to calculate the non-synonymous substitution rate (Ka) and the synonymous substitution rate (Ks). The selection pressure in evolution was detected by using the values of Ka/Ks between each gene pair.

4.6. RNA extraction and quantitative real-time polymerase chain reaction analysis

RNA isomate for Plant Tissue Kit (Takara, Dalian, China) was used to extract total RNA from each frozen tissue. RNA (1 µg) was used as the template to synthesize first-strand cDNAs using the PrimeScript™ RT reagent Kit with the gDNA Eraser (Takara, Dalian, China). qRT-PCR was performed using SYBR® Premix Ex Taq™ II (Takara, Dalian, China) with a CFX Connect™ Real-Time PCR Detection System (BIO-RAD) by following the manufacturer’s instructions. The specific primers of 20 PbFRK genes used for amplification were designed by the BEACON DESIGNER 7 software (electronic supplementary material, table S6). In the present study, three biological replicates were carried out. The $2^{-\Delta\Delta CT}$ method was used to calculate the relative expression level [58]. As the internal control gene, the Pyrus tubulin gene was selected according to previous studies [59].

Data accessibility. Sequences of the here described genes and the accession numbers of publically available sequences that were used in this study are listed in table 1. We uploaded the experimental data as the electronic supplementary material.

Authors’ contributions. Y.-P. Cao conceived and designed the experiments, and performed the experiments. Y.-P. Cao, D.-D.M. and Y.-H.H. analysed the data. Y.-P. Cao, S.-M.L., Y.-H.H., D.-D.M., C.-Y.J., D.-H.L., Y.L. and Y.-P. Cai contributed reagents/materials/analysis tools. Y.-P. Cao. Y.-H.H. and M.A. wrote the paper. All the authors gave their final approval for publication.
References

1. Shi L, Cao S, Shao J, Chen W, Zheng Y, Jiang Y, Yang Z. 2014 Relationship between sucrose metabolism and anthocyanin biosynthesis during ripening in Chinese bayberry fruit. J. Agric. Food Chem. 62, 10 522–10 528. (doi:10.1021/jf503377k)
2. Renz A, Stitt M. 1995 Substrate specificity and product inhibition of different forms of fructokinases and hexokinases in developing potato tubers. Plants 190, 166–175. (doi:10.1080/ BFO0196680)
3. Rolland F, Baena-Gonzalez E, Sheen J. 2006 Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant Biol. 57, 675–709. (doi:10.1146/annurev.arplant.57.030205.105441)
4. Granot D. 2007 Role of tomato hexose kinases. Plant Sci. 173, 27–38. (doi:10.1016/j.plantsci.2006.06.006)
5. Kanayama Y, Granot D. 2015 Identification and biochemical characterization of the fructokinase family in Arabidopsis thaliana. BMC Plant Biol. 15, 573. (doi:10.1186/s12870-015-1031-5)
6. Cai Y, Li G, Nie J, Liu Y, Nie F, Zhang J, Xu Y. 2010 Study of the structure and biosynthetic pathway of lignin in stone cells of pear. Sci. Hortic. 125, 374–379. (doi:10.1016/j.scienta.2010.04.029)
7. Jin Q, Yan C, Qiu J, Zhang N, Lin Y, Cai Y. 2013 Structural characterization and deposition of stone cell lignin in Dainghsuan Shu pear. Sci. Hortic. 155, 123–130. (doi:10.1016/j.scienta.2013.02.008)
8. Farinati S, Rasori A, Vanotto S, Bonghi C. 2017 Rosaceae fruit development, ripening and post-harvest: an epigenetic perspective. Front. Plant Sci. 8, 1247. (doi:10.3389/fpls.2017.01247)
9. Verde I et al. 2017 The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genet. 49, 487–494. (doi:10.1038/ ng.2586)
10. Zhang Q et al. 2012 The genome of Prunus mume. Nat. Commun. 3, 118. (doi:10.1038/ncomms12290)
11. Shulave A et al. 2011 The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 43, 109–116. (doi:10.1038/ ng.2760)
12. Wu J et al. 2013 The genome of the peach (Prunus persica ‘Rezende Ne ///). Genome Res. 23, 396–408. (doi:10.1101/gr.144311.112)
13. Beilux DM. 2012 Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L). Fruit. Postharvest Biol. Technol. 63, 129–140. (doi:10.1016/j.postharbiov.2011.05.016)
14. Stein O, Granot D. 2018 Plant fructokinases: evolutionary, developmental, and metabolic aspects in sink tissues. Front. Plant Sci. 9, 339. (doi:10.3389/fpls.2018.00395)
15. Riggs JW, Cavales PC, Chapman SM, Callis J. 2017 Fructokinase genes are differentially expressed in Arabidopsis thaliana. BMC Plant Biol. 17, 83. (doi:10.1186/s12870-017-0909-4)
16. Stein O, Avin-Wittenberg T, Krahnbir I, Zemach H, Bogal V, Daron A, Aloni R, Ferrie AR, Granot D. 2016 Arabidopsis fructokinases are important for seed oil accumulation and vascular development. Front. Plant Sci. 7, 2047. (doi:10.3389/fpls.2016.02047)
17. Cao Y, Han Y, Li D, Lin Y, Cai Y. 2016 MYB transcription factors in Chinese pear (Pyrus bretschneideri Rehbt.). genome-wide identification, classification, and expression profiling during fruit development. Front. Plant Sci. 7, 577. (doi:10.3389/fpls.2016.00577)
18. Cao YP, Han Y, Jin Q, Lin Y, Cai Y. 2016 Comparative genomic analysis of the GFB genes in Chinese pear (Pyrus bretschneideri Rehbt.), poplar (Populus), grape (Vitis vinifera), Arabidopsis and rice (Oryza sativa). Front. Plant Sci. 7, 1750. (doi:10.3389/fpls.2016.01750)
19. Ray S, Agarwal P, Arora R, Kapoor S, Tsyagi AK. 2007 Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol. Genet. Genomics 278, 493–505. (doi:10.1007/s00438-007-0267-4)
20. Kami L, Aloni B. 2002 Fructokinase and hexokinase from pollen grains of bell pepper (Capsicum annuum L.): possible role in pollen germination under conditions of high temperature and O2 enrichment. Ann. Bot. 90, 607–612. (doi:10.1093/aob/mcf234)
21. Fawcett JA, Maere S, Van der Peer Y. 2009 Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proc. Natl Acad. Sci. USA 106, 5727–5742. (doi:10.1073/pnas.0900906106)
22. Rodgers-Melnick E, Mane SP, Dharwadkarpana P, Slavov GT, Crasta OR, Strauss SH, Brunner AM, DiFazio SP. 2012 Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus. Genome Res. 22, 95–105. (doi:10.1101/gr.125466.111)
23. Lee T-H, Tang H, Wang X, Paterson AH. 2013 PGD: a database of gene and genome duplication in plants. Nucleic Acids Res. 41, D1152–D1155. (doi:10.1093/nar/ gkt1104)
24. Kanayama Y, Kogawa M, Yamaguchi M, Kanahama K. 2005 Fructose content and the activity of fructose-related enzymes in the fruit of eating-quality peach cultivars and native-type peach cultivars. J. Jpn Soc. Hortic. Sci. 74, 431–436. (doi:10.2530/jshs.74.431)
25. Granot D, David-Schwartz R, Kelly G. 2013 Hexose kinases and their role in sugar-sensing and plant development. Front. Plant Sci. 4, 44. (doi:10.3389/fpls.2013.00044)
26. Suzuki Y, Odanaka S, Kanayama Y. 2001 Fructose content and fructose-related enzyme activity during the fruit development of apple and Japanese pear. J. Jpn Soc. Hortic. Sci. 70, 16–20. (doi:10.2530/jshs.70.16)
27. Stein O et al. 2015 The tomato plastidic fructokinase SIFRK3 plays a role in xylem development. New Phytol. 209, 1484–1495. (doi:10.1111/npp.13205)
40. Yao Y et al. 2017 Identification, expression, and functional analysis of the fructokinase gene family in cassava. *Int. J. Mol. Sci.* 18, 2298. (doi:10.3390/ijms18112398)

41. Zhang SN, Dong JG. 2003 Cloning and characterization of two fructokinases from maize. *Plant Sci.* 165, 1051–1058. (doi:10.1016/S0168-9452(03)00298-X)

42. Cao Y, Han Y, Meng D, Li D, Jin Q, Lin Y, Cai Y. 2016 Structural, evolutionary, and functional analysis of the class III peroxidase gene family in Chinese pear (*Pyrus bretschneideri*). *Front. Genet.* 7, 1874. (doi:10.3389/fgene.2016.01874)

43. Dai N, Germain MA, Matsevitz T, Hanael R, Swartzberg D, Yeselson Y, Petreikov M, Schaffer AA, Granot D. 2002 LeFRK2, the gene encoding the major fructokinase in tomato fruits, is not required for starch biosynthesis in developing fruits. *Plant Sci.* 162, 423–430. (doi:10.1016/S0168-9452(01)00583-0)

44. Martinez-Barajas E, Randall DD. 1996 Purification and characterization of fructokinase from developing tomato (*Lycopersicon esculentum Mill.*) fruits. *Planta* 199, 451–458. (doi:10.1007/BF00197379)

45. Lemoine R et al. 2013 Source-to-sink transport of sugar and regulation by environmental factors. *Front. Plant Sci.* 4, 272. (doi:10.3389/fpls.2013.00272)

46. Qin OP, Zhang SL, Chen IW, Wu YI, Chen KS. 2004 The relationship of fructokinase and sugar accumulation during fruit development in satsuma mandarin. *Acta Photophysiol. Sinica* 30, 435.

47. Chen LQ, Qu XD, Hou BH, Soso D, Osorio S, Fernie AR, Frommer WB. 2012 Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. *Science* 335, 207–211. (doi:10.1126/science.1213515)

48. Punta M et al. 2011 The Pfam protein families database. *Nucleic Acids Res.* 39, D120–D127. (doi:10.1093/nar/gkr1065)

49. Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. 2013 Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. *Nucleic Acids Res.* 41, 2. (doi:10.1093/nar/gkt626)

50. Letunic I, Doerks T, Bork P. 2012 SMART 7: recent updates to the protein domain annotation resource. *Nucleic Acids Res.* 40, D302–D306. (doi:10.1093/nar/gkr931)

51. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011 MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol. Biol. Evol.* 28, 2731–2739. (doi:10.1093/molbev/msr127)

52. Hu B, Jin J, Guo YM, Zhang H, Luo J, Gu G. 2014 GDS5 2.0: an upgraded gene feature visualization server. *Bioinformatics* 31, 1296. (doi:10.1093/bioinformatics/btu187)

53. Cao Y, Han Y, Meng D, Li D, Li J, Abdullah M, Jin Q, Lin Y, Cai Y. 2017 Genome-wide analysis suggests the relaxed purifying selection affect the evolution of WOX genes in *Pyrus bretschneideri*, *Prunus persica*, *Prunus mume*, and *Fragaria vesca*. *Front. Genet.* 8, 78. (doi:10.3389/fgene.2017.00078)

54. Muthamilarasan M, Bonthala VS, Khandelwal R, Jaishankar J, Shweta S, Nawaz K, Prasad M. 2015 Global analysis of WRKY transcription factor superfamily in *Setaria* identifies potential candidates involved in abiotic stress signaling. *Front. Plant Sci.* 6, 910. (doi:10.3389/fpls.2015.00910)

55. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauds S. 2002 PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. *Nucleic Acids Res.* 30, 325–327. (doi:10.1093/nar/gsf021)

56. Wang Y et al. 2012 MCScanX: a toolkit for detection and evolutionary analysis of gene synten and collinearity. *Nucleic Acids Res.* 40, e49. (doi:10.1093/nar/gks1293)

57. Yang Z. 2007 PAML 4: phylogenetic analysis by maximum likelihood. *Mol. Biol. Evol.* 24, 1586–1591. (doi:10.1093/molbev/msm088)

58. Livak KJ, Schmittgen TD. 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. *Methods* 25, 402–408. (doi:10.1006/meth.2001.1262)

59. Wang Y, Zhang R, Gu C, Wu J, Wan H, Zhang S, Zhang S. 2012 Evaluation of candidate reference genes for real-time quantitative PCR normalization in pear fruit. *Afr. J. Agric. Res.* 7, 3701–3704. (doi:10.5897/AJARR11.1842)