Gas-Phase Infrared Spectroscopy of Neutral Peptides: Insights from the Far-IR and THz Domain

Sjors Bakels, Marie-Pierre Gaigeot,* and Anouk M. Rijs*

ABSTRACT: Gas-phase, double resonance IR spectroscopy has proven to be an excellent approach to obtain structural information on peptides ranging from single amino acids to large peptides and peptide clusters. In this review, we discuss the state-of-the-art of infrared action spectroscopy of peptides in the far-IR and THz regime. An introduction to the field of far-IR spectroscopy is given, thereby highlighting the opportunities that are provided for gas-phase research on neutral peptides. Current experimental methods, including spectroscopic schemes, have been reviewed. Structural information from the experimental far-IR spectra can be obtained with the help of suitable theoretical approaches such as dynamical DFT techniques and the recently developed Graph Theory. The aim of this review is to underline how the synergy between far-IR spectroscopy and theory can provide an unprecedented picture of the structure of neutral biomolecules in the gas phase. The far-IR signatures of the discussed studies are summarized in a far-IR map, in order to gain insight into the origin of the far-IR localized and delocalized motions present in peptides and where they can be found in the electromagnetic spectrum.

CONTENTS
1. Introduction 3234
2. Gas-Phase Spectroscopy of Neutral Molecules 3237
 2.1. IR−UV Ion Dip Spectroscopy 3237
 2.1.1. Resonance Enhanced Multiphoton Ionization 3237
 2.1.2. Far-IR Spectroscopy 3238
 2.2. Experimental Implementations: Neutral Biomolecules in the Gas Phase 3238
 2.2.1. Laser Desorption 3239
 2.2.2. Molecular Beams 3239
 2.2.3. Time-of-Flight Mass Spectrometry 3240
 2.2.4. Far-IR Laser Sources: Use of the FELIX Free Electron Lasers 3240
3. Theoretical Approaches 3240
 3.1. Overview and General Introduction of Theoretical Methods 3240
 3.2. DFT-MD for Vibrational Spectroscopy 3241
 3.3. Graph Theory and Assignment of the Far-IR Vibrational Modes 3242
4. Characterization of the Far-IR Signatures of Dipeptides 3243
 4.1. Secondary Structure of Dipeptides 3243
 4.2. Far-IR Spectroscopy of Dipeptides 3244
 4.2.1. Spectral Assignment Using Far-IR Ion Dip Spectroscopy and DFT-MD Calculations 3244
 4.2.2. Unprecedented Structural Far-IR Fingerprints 3244
4.2.3. Far-IR Conformational Selectivity 3245
4.3. Insights on Dipeptides from the Far-IR Region 3245
 4.3.1. Localized Modes 3245
 4.3.2. Delocalized Backbone Modes (0−400 cm⁻¹) 3246
 4.3.3. Hydrogen Bond Signatures (0−250 cm⁻¹) 3246
5. Peptide Clusters 3246
 5.1. Static-DFT versus DFT-MD for a Simple Peptide and Its Dimer 3247
 5.1.1. Z-Ala Monomer 3247
 5.1.2. Z-Ala Dimer 3247
 5.2. Use of Graph Theory on Ac-Phe-OMe and Its β-Sheet Dimer 3248
 5.2.1. NH Wagging Motion (450−650 cm⁻¹) 3248
 5.2.2. Delocalized Motions at 250−280 cm⁻¹ 3249
 5.2.3. Torsional Delocalized Motions at ~200 cm⁻¹ 3250
6. Outlook to Larger Systems 3250
 6.1. Mini-proteins: How Large Can We Go in the Far-IR? 3250
7. Concluding Remarks and Outlook 3251
 Associated Content 3252

Special Issue: Bond Specific Spectroscopy of Peptides and Proteins

Received: September 3, 2019
Published: February 19, 2020
Gas-phase infrared spectroscopy is a continuously developing method for the structural determination of biological molecules under isolated conditions. Vibrational or infrared spectroscopy brings detailed insights into the 3-dimensional structure of molecules and the intra- and intermolecular interactions via diagnostic vibrational modes. Due to the close relationship between structure and structural changes with biomolecular function, IR action spectroscopy has been extensively applied to probe gas-phase structural details of a large variety of molecules and clusters such as peptides and proteins, large variety of molecules and clusters such as peptides and proteins, extensively applied to probe gas-phase structural details of a

![Figure 1](https://dx.doi.org/10.1021/acs.chemrev.9b00547)

Figure 1. Signatures of common far- and mid-infrared vibrational modes, categorized by their delocalized (top) or localized character (bottom). An indication for the effect of hydrogen bonding on the frequency of modes is given by a gray scale: ranging from weak (light gray) to strong (black) hydrogen bonds.

1. INTRODUCTION

Gas-phase infrared spectroscopy is a continuously developing method for the structural determination of biological molecules under isolated conditions. Vibrational or infrared spectroscopy brings detailed insights into the 3-dimensional structure of molecules and the intra- and intermolecular interactions via diagnostic vibrational modes. Due to the close relationship between structure and structural changes with biomolecular function, IR action spectroscopy has been extensively applied to probe gas-phase structural details of a large variety of molecules and clusters such as peptides and proteins, large variety of molecules and clusters such as peptides and proteins, extensively applied to probe gas-phase structural details of a large variety of molecules and clusters such as peptides and proteins, extensively applied to probe gas-phase structural details of a large variety of molecules and clusters such as peptides and proteins, extensively applied to probe gas-phase structural details of a large variety of molecules and clusters such as peptides and proteins.

Traditionally, IR spectroscopy probes the fingerprint signatures focusing mainly on the amide II (NH bend), amide I (C=O stretch), and amide A (NH stretch) modes in the 1000–2000 cm⁻¹ and 3300–3800 cm⁻¹ region, see Figure 1. Recently, IR action spectroscopic experiments have advanced into the far-IR and THz regime. The terms far-IR and THz are often used interchangeably, although strictly speaking the definition of THz spectroscopy is limited to 0.3–3 THz, whereas IR spectroscopy is defined as 10–100 cm⁻¹ (0.3–3 THz). However, no such distinction will be made and the term far-IR is used for the full 10–800 cm⁻¹ (0.3–24 THz) region. In this far-IR region, large amplitude and collective motions are probed such as backbone torsional vibrations, out-of-plane modes, and hydrogen bond dynamics (Figure 1). The rotational and vibrational transitions in molecules, collective vibrations in condensed-phase media, or low-energy excitations and carrier dynamics in electronic materials can be studied using this part of the electromagnetic spectrum. This diversity in physical properties makes it a scientific field with great potential. For example, in solid state physics, the far-IR/THz frequencies correspond to physical phenomena of electronic materials including electron transport in semiconductors, nanomaterials, and correlated electron materials. THz radiation can be used to probe these electronic materials without the need of making contacts, which is particularly important for nanomaterials. Other applications are more analytical in nature; here, the low-frequency vibrations in molecules are probed to identify an unknown substance. This approach can for example be applied to identify explosives and illegal drugs in a security setting, as many explosives and drugs have a unique THz fingerprint.

The most recent developments in condensed phase THz spectroscopy focus on imaging. By using spatially broad THz pulses, two-dimensional images can be recorded within seconds. Since the THz/far-IR vibrational modes function as fingerprints for many molecules, the resulting two-dimensional images are molecule specific. These studies have also been extended to the imaging of brain tumors in rats and other tissues. In the study of biomolecular structure, far-IR action spectroscopy adopts a unique position as the frequency range which is probing in this part of the electromagnetic spectrum corresponds predominantly to delocalized modes, providing structural information beyond the local view provided by the mid-IR. This makes it a diverse tool for the study of biomolecules in different media. In crystallized biomolecules, the structural sensitivity of far-IR spectroscopy was demonstrated by its ability to differentiate between polypeptides where either a single amino acid was exchanged or where the sequence was altered. Detailed information in biomolecular function was obtained by probing for example the channel-breathing motion in a polypeptide nanotube and the clamping motion of a catalytic protein. Specifically, the Markelz group showed that the effect of an inhibitor binding to the HEWL protein could be observed via a change in the direction of the clamping motion using crystal anisotropy THz microscopy (CATM). – Most studies focus on the hydration shell of biomolecules, as intramolecular motions of biomole-
cules themselves are difficult to observe due to their strong coupling to coordinated water. For example, the effect of hydrogen bonding of the studied protein with the surrounding water molecules can be observed as a disturbance in the dynamics of these water molecules. This retardation can extend up to 25 Å (8 water molecule layers) away from the studied protein, depending on the number of hydrogen bonds between the water and the protein.72−74 This strong interaction between protein and its hydration shell was used to probe (time-dependent) conformational changes such as folding or denaturing as was for example shown for different antifreeze proteins.75−79 More detailed studies on the motions of biomolecules in solution are complicated by their strong coupling to water. However, a recent breakthrough using optical Kerr-effect (OKE) spectroscopy has demonstrated the presence of underdamped motions in DNA.80,81

Gas-phase far-IR action spectroscopy has been developed and applied predominantly to probe the 3D structures of metal clusters,82 water and solvated ions,83 astrophysical and astrochemical related molecules, organic, hydrogen bonded molecules,84 and biomolecules.14,86,87 Far-IR action spectroscopy is often combined with cold methods such as molecular beam expansions and cold ion traps, using typically action spectroscopic methods such as IRPD (Infrared Photon Dissociation) of tagged ions and IR-UV ion dip spectroscopy of cooled neutral molecules.88 To obtain structural information in the far-IR spectral region, intense and widely tunable radiation from far-IR Free Electron Lasers (FELs)89−91 is essential.

Over the years a number of techniques have been developed in order to measure the far-IR or THz response of (bio)molecules in the gas phase. The most relevant ones will be reviewed here. FT-IR spectroscopy is widely adopted, especially due to the commercially available experimental setups and versatility of this method. It is mainly used for studies in solution and condensed phases. However, gas-phase experiments on volatile molecules using either gas cells, supersonic expansions, slit jets or weakly interacting matrices were also performed, yielding high resolution spectra of for example acetylene,92,93 methane,94 benzene,95 methanol,96 and CO.97 These spectra usually cover a narrow region (e.g., a single band) of the far-IR spectrum. Additionally, broad range FT-IR spectra of small biomolecules have been obtained for molecules such as N-methylformamide,98 glycine, alanine, and their dimers.99 Another technique, which is mainly advanced by the group of Saykally, is THz vibration−rotation-tunneling spectroscopy (THz-VRT spectroscopy).100−102 Here, tunable THz light is generated either by using the sum and difference frequencies that are obtained by mixing the output of an IR gas laser with tunable frequency-modulated microwaves103 or by using quantum cascade lasers.104 The light is then directed into a multipass cell to coincide with a supersonic expansion containing the sample molecules. By detecting the emitted radiation, very high resolution spectra can be obtained, as was shown for water complexes105 and the propane−water dimer.106 Broadband microwave spectroscopy, although technically accessing the adjacent spectral region (but overlapping the THz domain), is known for its ability to obtain precise structural information from the recorded rotational spectra. With the introduction of chirped pulse excitation,108 molecules of interest include mostly volatile organic molecules such as odorants, chiral molecules, and PAHs.84,107−109 In combination with laser ablation techniques, single amino acids and recently small peptides have become within reach.110−113

Another important technique addressing the far-IR region is Raman spectroscopy. The groups of Balabin and Bar combine Raman spectroscopy with a supersonic expansion.114−117 In general, virtual states of the molecules are populated by visible light which is guided into a multipass cell. After this, the molecules will fall back to vibrational states of the electronic ground state and the molecule will emit this light which is consequently detected. Raman spectroscopy can probe states which are not allowed by IR spectroscopy, which makes the two techniques complementary. Typically, small and volatile molecules are studied with this Raman inelastic scattering processes technique, thereby elucidating structural properties of alkanes114 and small amino acids such as glycine115 and alanine.116 Raman bands can also be used in a similar scheme as used in IR-UV ion dip spectroscopy, in a technique named ionization-loss stimulated Raman spectroscopy (ILSRS). Using REMPI as the excitation and ionization step, first the molecules are excited to a virtual state, and then a second laser (both visible SRS lasers require ∼30 mJ/pulse) is employed to scan the vibrational states.117−119 With the second laser on resonance with a vibrational state, a dip in the spectrum will be observed as the virtual states will fall back quickly to the electronic and vibrational ground state to be probed by the REMPI lasers. Molecules that are probed by this technique are relatively small, such as tryptamine18 and 2-phenylethylamine.119

Conformation specific far-IR spectra can also be obtained with Laser-Induced fluorescence (LIF) and/or dispersed fluorescence spectroscopy, thereby obtaining the same peak positions as in IR-UV ion dip spectroscopy.20,120 Molecules that have been studied using this technique include tryptamine,121 phenol (dimer),122 phenol-acetylene aggregates,123 and adenine.124 In a similar fashion, the far-IR vibrations can also be probed via stimulated emission pumping (SEP), in which a UV pump–dump scheme is used to excite the molecules to a certain vibrational energy level of the electronic ground state. This technique holds that it is only applied to study small, volatile molecules.125−128

Ideally, to obtain and understand far-IR signatures of biomolecules, conformational selectivity, mass selectivity, and the ability to measure larger, cooled neutral peptides (i.e., using laser desorption) are combined in one single experiment. Although each of the above-mentioned techniques have their specific strengths, they are mainly limited to smaller biomolecules and/or miss the required selectivity. At this moment, far-IR ion dip spectroscopy combines these necessities and is the only method able to record the far-IR signatures of peptides of significant size and their clusters and complexes with water. Therefore, this review focuses on the results obtained with this technique.

To examine the feasibility of far-IR UV ion dip spectroscopy, phenol derivatives, such as catechol, saligenin, salicylic acid, ethylvanillin, etc., have been used as model systems.40,85,129 These molecules were selected for their propensity to form intramolecular hydrogen bonds as well as for their ability to absorb UV light allowing us to apply IR-UV ion dip spectroscopy. However, compared to for example peptides, they are relatively small and mostly rigid, thereby reducing the number of degrees of freedom. This makes them ideal candidates to evaluate the performance of different static and dynamic DFT computational techniques used to predict far-IR
absorption features. Two diagnostic vibrational modes that are expected to be diagnostic for the hydrogen bond strength have been identified in the far-IR, namely the hydrogen bonded OH torsion and the hydrogen bond stretching modes; see Figure 1. Their frequency is assessed with respect to the hydrogen bond strength via the hydrogen bonded OH bond length (Figure 2).

Figure 2. Relation between the OH bond length and (a) the hydrogen bonded OH torsion frequency and (b) the hydrogen bonded OH stretching frequency. In black, the vibrations of the OH groups of the bare phenol derivatives; in green, the OH moieties of the phenol derivatives hydrogen bonded to one or more water molecules; and in blue, the OH vibrations of the intermolecularly hydrogen bonded water molecules. Reprinted with permission from ref 130.

Figure 2a presents the far-IR torsion frequency, while Figure 2b shows the traditional mid-IR OH stretching vibration. Both plots show that the shifts in frequency correlate linearly to the OH length. This holds for intramolecular (in black), but also for intermolecular hydrogen bonds (in green and blue) when studying molecule—water clusters. In contrast, the measured frequency of these hydrogen bond deforming modes behaves asymptotically as a function of the hydrogen bond length itself, toward the frequency expected for their free OH torsion or stretch vibration, since the hydrogen bond strength decreases for increasing bond lengths. These insights provided a natural starting point for a bottom-up study into far-IR spectroscopy of isolated biological systems.

Far-IR spectroscopy offers a wealth of complementary information with respect to the mid-IR. In the first place the vibrational region that is probed is extended, but more importantly, the nature of the vibrations in that region is different. The mid-IR region probes predominantly local bend or stretch vibrations, providing information about the local environment. In contrast, the soft far-IR vibrational modes are typically delocalized over large parts of the molecule and hence are expected to be highly sensitive to the global conformational structure of molecules, i.e. to secondary structural motifs in the case of peptides. Moreover, these far-IR modes are more structurally unique. Different conformations that have identical interactions, and thus local modes, can now in principle be distinguished based on delocalized skeletal vibrations. Second, the IR spectra of larger molecules (peptides) often suffer from increasing spectral congestion in the mid-IR region as a result of an increasing number of similar oscillators. Therefore, for large and complex systems only structural families can be identified rather than the exact structure of a single conformer. Besides orthogonal techniques, such as ion mobility combined with mass spectrometry for ionic molecules or the use of double or triple resonance spectroscopic schemes for neutral molecules, far-IR spectra often show a wealth of well resolved absorption bands, allowing for enhanced structural assignments, provided theoretical calculations are accurate enough in finalizing the assignment. A third advantage is that the delocalized motions can give much more fundamental insight in biomolecular function. Biomolecules are typically large systems, such as proteins and DNA, which exhibit motions across the whole molecule. These motions are not only diagnostic for their secondary structure and folding conformation, but are also involved in biomolecular function and activity. This can be either the folding of proteins into their active conformation, motions that are involved in enzymatic activity, for instance upon ligand binding or the formation of peptide aggregates.

In this review, we discuss the current state-of-the-art on gas-phase far-IR and THz spectroscopy of mass- and conformationally selected neutral peptides. Early experiments on tryptophan reported on the presence of resolved bands down to 100 cm−1. However, due to poor agreement between experimental and theoretical IR spectra, this far-IR region was not used for structural assignment or mode analysis. Cirtog et al. have studied the far-IR signatures (<800 cm−1) of the model peptide Ac-Phe-NH2 (NAPA) and its hydrated clusters using IR-UV ion dip spectroscopy with the free electron laser FELIX. Two conformations of Ac-Phe-NH···H2O clusters were identified in which the water molecule bridges the NH and C=O moieties of the Phe residue. The IR experiments revealed three strong, intermolecular IR-active modes of these hydrates, namely the wagging motion of the free OH moiety of water (~160 cm−1) and the in-plane (~400 cm−1) and out-of-plane (~600 cm−1) librations (out-of-plane wagging motions) of water; see Figure 3. The shifts in the far-IR signatures between the different hydrates showed that these peptide—water modes strongly depend on the peptide conformation. Finally, the comparison between experimental features and theoretical frequencies revealed that this far-IR region is challenging for the theory, even for DFT with recent functionals and anharmonic corrections. Current assignment still relies heavily on the combination of the commonly
used mid-IR and the newly explored far-IR regime. In this review, we will highlight the endeavors undertaken to use dynamic DFT calculations, density functional theory molecular dynamics (DFT-MD, also referred to as BOMD for Born–Oppenheimer molecular dynamics), to assign the nature of the far-IR modes and to be able to use this rich far-IR regime for structural analysis of peptides.

In section 2, the spectroscopic approaches employed to record mass- and conformer-selective far-IR spectra of peptides and typical experimental setups and strategies to perform IR-UV ion dip spectroscopy are described. Subsequently, in section 3, theoretical considerations will be lined out discussing DFT-MD simulations for vibrational spectroscopy and the newly developed graph theory for far-IR analyses. In sections 4−6, we review and discuss some of the results obtained from far-IR action spectroscopy combined with DFT-MD computations to probe specific sets of peptides ranging from dipeptides to peptide-clusters. Here, we focus first on the spectral assignment and the observed far-IR vibrational modes, followed by the theoretical developments to describe the far-IR modes. Section 6 addresses the largest peptides studied with far-IR action spectroscopy. The present review aims to shed light on experimental and theoretical strategies to decipher structural information along with scientific insights on neutral peptides from far-IR spectroscopy.

2. GAS-PHASE SPECTROSCOPY OF NEUTRAL MOLECULES

2.1. IR−UV Ion Dip Spectroscopy

The combination of experimental methods, including IR action spectroscopy, molecular beam expansion, and mass spectrometry, with quantum-chemical calculations has proven to be an excellent approach to unravel structural information on neutral, isolated biomolecules.6,9,17,20,31,86,140−149 Biomolecules often exist in multiple, stable conformations in the gas phase. The low temperature resulting from the molecular beam environment allows the neutral molecules, brought into the gas phase by thermal evaporation or laser desorption, to be probed in a conformation selective manner by using double-resonance spectroscopic schemes. These action spectroscopic methods measure a change in properties of the studied molecules resulting from its interaction with light, rather than measuring the marginal effect of molecules on the incoming light as in conventional absorption spectroscopy. In this section, the experimental methods that are currently used to obtain mass- and conformer-selective far-IR spectra have been reviewed.

2.1.1. Resonance Enhanced Multiphoton Ionization.

Essential in an IR−UV ion dip spectroscopic experiment is to record the UV excitation spectrum of the studied biomolecule. This is generally done via resonance enhanced multiphoton ionization (REMPI).150,151 Here, the molecules are resonantly excited to typically their first electronic excited state and subsequently ionized by the absorption of a second photon (Figure 4a). The resulting UV excitation spectrum shows features from all conformers present in the molecular beam, including their vibrational progressions. For the experiments discussed in this review predominantly one-color, (1 + 1) REMPI has been used, where the molecules are ionized by two photons of the same energy originating from a single laser via an intermediate electronically excited state (see Figure 4a, left side). However, for molecules in which the excited state energy is smaller than half of the ionization energy, two-color (1 + 1′) REMPI has to be employed (see Figure 4a, right side). This requires the use of two independent lasers, but brings experimental flexibility as the photon energy of the second laser can be chosen freely so that one can select the amount of energy deposited in the ionized molecule. The resonantly ionized molecules are subsequently detected in a time-of-flight based mass spectrometer (section 2.2.3) adding mass selectivity to the experiment.

Most of the peptides discussed in this review contain a UV absorbing moiety (chromophore) in the form of a phenyl ring either as part of the amino acid (for example phenylalanine), or added as a cap on the N- or C-terminus. Typically, resonant ionization occurs via their π−π* transition in a (1 + 1) REMPI scheme with UV photons of about 260 nm. The studied peptides are nonrigid molecules and can adapt multiple conformations with different intramolecular interactions in the gas phase. These small changes in the chemical environment of the chromophore can lead to large differences in the REMPI spectra. This results in conformer selectivity of the REMPI technique; for example, by selecting a single wavelength, a single conformer can be ionized. A typical REMPI spectrum shows a wealth of peaks besides the S0−S1 origin transition (Figure 4b). Transitions from the vibrionic ground state to the vibrationally excited states of the electronically excited state are observed at higher photon energies (highlighted in violet in Figure 4b), forming a vibrational progression. Another feature that can be seen in REMPI spectra is the so-called hot band, which can be used to determine the vibrational temperature of the molecule (section 2.2.1). This hot band can be found, even with supersonic cooling by the molecular beam, on the red side of the origin and originates from the transition from an excited vibrational state in the electronic ground state to the electronic excited state.

Figure 4. Schematic overview of the discussed spectroscopic methods, with (a) (1 + 1) and (1 + 1′) REMPI for two different conformers; (b) the resulting REMPI spectrum of the REMPI scheme show in (a), with corresponding colors; (c) IR ion dip spectroscopy; (d) a typical on/off IR spectrum; and (e) its corresponding absorbance spectrum.
2.1.2. Far-IR Spectroscopy. By selecting a specific wavelength from the REMPI spectrum, a single conformer is excited, ionized, and detected, which results in a constant ion signal. The fixed UV pulse is preceded, typically by several tens to hundreds of nanoseconds, by a tunable IR laser pulse to obtain an infrared spectrum. When this IR frequency is resonant with a vibrational transition of the selected conformer, IR photon(s) are absorbed and population is transferred from the vibrational ground state to a vibrational excited level of the electronic ground state; see Figure 4c. This creates a dip in the ion signal created by the UV laser as the number of produced ions is reduced, which results from either (i) different spacing between the vibrational levels in the electronic ground and excited state, (ii) reduced Franck–Condon factors, (iii) possible fragmentation of the molecule after intramolecular vibrational energy redistribution (IVR), or a combination of the three.131 This IR–UV double resonance technique, first developed by Lee et al.,152 is often named infrared ion dip spectroscopy (IR-IDS)88 or, alternatively, resonant ion dip infrared spectroscopy (RIDIRS).140 The mass and conformer selective IR spectra are typically obtained in an on/off fashion, with the UV laser probing the abundance every shot and the IR laser alternating on and off to correct for fluctuations in the signal (Figure 4d).

In IR action spectroscopy, such as the applied IR–UV ion dip method, the effect of the IR radiation on the molecules is probed rather than the absorption or attenuation of light by the molecules. By carefully selecting the experimental parameters, the ion dip spectra can be converted into absorbance spectra to compare to calculated spectra (Figure 4e). Ideally, to obtain absolute absorption cross sections, all experimental variables that influence the signal intensity have to be taken into account, such as the laser beam area, pulse length, power, photon energy, and the transmission of the windows. To obtain absolute absorbance values, the following formula is used, derived from rate equations and assuming a one photon process:

$$A_{\text{abs}} = \text{Constant} \cdot \nu \cdot G(\nu) \cdot \log_{10}\left(\frac{N_{\text{off}}}{N_{\text{on}}(\nu)}\right)$$

with Constant a collection of constants, namely nLhc. Here, n is the number density of the molecules [m⁻³], L the path length [m], h Planck’s constant, and c the speed of light. \(\nu\) is the wavenumber of the IR light [cm⁻¹] and is intrinsically correcting for the photon flux; \(N_{\text{off}}\) is the amount of detected ions when no IR light is present, and \(N_{\text{on}}(\nu)\) is the amount of detected ions when IR light is present. The collection \(G(\nu)\), given by

$$G(\nu) = \frac{S(\nu)}{T_{\text{win}}(\nu)P_{0}(\nu)\Delta s(\nu)}$$

represents a set of parameters that is dependent on the wavelength of the light, with \(S(\nu)\) the surface of the light beam [m²], \(T_{\text{win}}(\nu)\) the transmission of the window(s), \(P_{0}(\nu)\) the initial power of the light [W], and \(\Delta s(\nu)\) the laser pulse length [s]. Note that since absolute absorbance intensities are difficult to determine in a molecular beam experiment (all the parameters in \(G(\nu)\) have to be measured online), usually only relative intensities are calculated. For experiments performed in this review, we take for eqs 1 and (2) that \(C = 1\) and that \(T_{\text{win}}(\nu), \Delta s(\nu), \text{and } S(\nu)\) are constant. This results in an equation for the absorbance of

$$A = \nu \cdot \frac{P_{0}(\nu)}{L} \cdot \log_{10}\left(\frac{N_{\text{off}}}{N_{\text{on}}(\nu)}\right)$$

2.2. Experimental Implementations: Neutral Biomolecules in the Gas Phase

Molecules are typically brought into the gas phase via heating16,141,153 or laser desorption.140,154–166 Subsequently, the intact molecules are cooled down to their lowest rovibrational states by seeding them into a supersonic molecular beam expansion. Finally, the studied molecules are probed spectroscopically and detected by time-of-flight mass spectrometry. A number of research groups study neutral
biomolecules in the gas phase by means of IR laser spectroscopy, thereby mainly focusing on the 3 μm and fingerprint region. The general principle of the laser desorption–molecular beam setups used by these groups is the same as for the in Figure 5 presented far-IR experiment. Minor differences between the laser desorption sources used in various research groups will be briefly discussed in the next paragraphs.

2.2.1. Laser Desorption. Nonvolatile molecules or thermally labile molecules such as peptides and other biomolecules can be brought intact into the gas phase using laser desorption coupled to a molecular beam.154,164,165,167 The particular implementation of the laser desorption source varies between the several research groups. Typically, the molecules are deposited on the surface of a matrix, typically a graphite sample bar, which stimulates the intact desorption. Besides the choice of sample bar material, variations can be found in (i) sample preparation, i.e. deposition, mixed, doped, premixed, and pressed; (ii) sample bar shape, i.e. rods, bars, pressed discs, etc.; and (iii) the choice of desorption laser wavelength and power.

In general, the studied molecules are being deposited on the surface of a sample bar, which is placed just in front of the orifice of the nozzle of a pulsed valve. A low intensity, nanosecond laser, most often a Nd:YAG laser operating at the fundamental (1064 nm) or second harmonic (532 nm) wavelength is mildly focused on the surface of the sample bar. This sample bar is translated with a stepper motor to ensure that new sample is provided at each laser shot. A disadvantage of the use of a pressed disk or disc is the large amount of material that has to be used. A third possible sample matrix is a cylindrical graphite rod, comparable to the one used in the Smalley sources, as is used by the groups of Müller and Fernández.147,166 Lastly a sample bar, in a similar fashion linearly translatable as the pellet from Mons, is used by groups of de Vries,154,155 Rijs,1,6,13,34,40 Kuiper,159,178 Zehnacker,179,180 and Zwier,141,181 Here, the sample is deposited on the surface of a graphite sample bar; therefore, only a submilligram quantity of the sample is required. Typically, the sample is premixed with graphite or carbon black in a 1:1 ratio. Moreover, with the addition of an air-lock to the setup, a linear sample bar alignment allows for quick change of sample. An example of a source using a sample bar as used in the group of Rijs is presented in the inset of Figure 5. Figure 6c shows a novel modification of this source, where an extra section is placed behind the desorption region to advance cooling and cluster formation. Kuiper and co-workers designed a fully translational laser desorption source in the x, y, and z directions to combine with their deflection setup which allows for spatial separation of conformers using electrostatic deflection.159,178 Additional differences between the various laser desorption setups can be found in the type of molecular beam valves that are used. Predominantly, a General Valve (Parker) with either a 0.5 or 0.8 mm diameter nozzle is employed, with the exception of for example the group of Fujii (Even–Lavie valve)182 the groups of Kuiper and de Vries (cantilever piezo valve)183 and the groups of de Vries and Rijs (Jordan valve).

2.2.2. Molecular Beams. In order to record high-resolution far-IR spectra, thermally evaporated or laser desorbed molecules are cooled into their rotational and vibrational ground state using a molecular beam. A supersonic expansion of inert carrier gas, such as helium and argon, is...
created by expanding the gas from a high-pressure reservoir into a region of (high) vacuum. Supersonic jets have been present since the 20s of the previous century.184,185 Molecular beam sources are nowadays considered a very reliable and efficient technique to cool down molecules for spectroscopic investigations.186

In the experiments discussed here, molecules are laser-desorbed into the collision zone of a pulsed supersonic expansion. The molecules are seeded in the carrier gas pulse, and in this expansion, the sample molecules are accelerated in the same direction as the seed gas atoms. This translational cooling takes place directly at the nozzle–desorption interface. Subsequently, low energy collisions occur, decreasing the internal energy of the large molecules. This process cools the internal degrees of freedom of the seeded molecules, so that the ensemble of molecules becomes both rotationally (1–10 K) and vibrationally (15–50 K) cold, strongly depending on the mass and complexity of the molecule.154,163,173,187–189 The cooling that occurs in the supersonic expansion is strongest immediately after the pulsed valve and decreases further downstream, so that the temperature asymptotically approaches its final value at about a distance of about 25–30 nozzle diameters downstream from the valve. The choice of the carrier gas is also of importance: Generally, more efficient cooling is obtained for larger molecules using heavier carrier gas.185 Apart from that, it should always be taken into account that some atoms tend to form complexes with the molecules being studied, which can lead to additional observed conformers.190

The peptides discussed in this review often can adopt multiple conformations. It is assumed that these different conformations are populated according to a Boltzmann distribution at a temperature of about 500 K before they are cooled by the molecular beam expansion.191–194 This cooling effectively freezes the peptides in local energy minima conformers as adopted due to the Boltzmann distribution. However, they are able to convert to lower energy structures when the interconversion barrier is low enough to cross. A rule of thumb that can be used for this interconversion barrier is 800 cm\(^{-1}\). This means that in the end a mix of conformers can exist that comprises the thermodynamically most stable conformers but also kinetically trapped conformers.

2.2.3. Time-of-Flight Mass Spectrometry. After the neutral molecules are desorbed and cooled by the combined laser desorption and molecular beam approach, they are typically excited and ionized in a (1 + 1) REMPI process; see section 2.1.1. The mass-to-charge ratio of the formed ions can then easily be detected in a time-of-flight mass spectrometer (TOF-MS), as introduced by Wiley and McLaren.195 This also allows identification of the mass of interest and to discriminate over formed fragments, clusters, and other ion signals resulting from contaminations. The ions of interest are accelerated using charged plates into a field free flight tube. The potential energy of the ions is converted to kinetic energy. A relation can then be made between the time \(t_{\text{TOF}}\) that the ions fly from the moment of entering the flight tube and its mass over charge via

\[
 t_{\text{TOF}} = \frac{L}{v} = \frac{L}{\sqrt{2U}} \frac{m}{z} = k \frac{m}{z}
\]

with \(t_{\text{TOF}}\) the flight time in seconds, \(L\) the length of the field free region of the time-of-flight tube, and \(v\) the velocity of the ion. The kinetic energy is converted to the charge \((z)\) times the electric potential difference \(U\). Under the assumption that the electric field is homogeneous and that the molecules are ionized halfway between the repeller and extractor plate (see Figure 5), \(U\) is equal to \(\frac{1}{2}(V_R + V_E)\), with \(V_R\) and \(V_E\) the voltage on the repeller and extractor plate, respectively. This can be summarized in the proportionality constant \(k\), which depends on the TOF and its settings, and the mass over charge ratio \((m/z)\), allowing easy calibration with molecules with known \(m/z\) values. Ions are detected using multichannel plate detectors, which create electron cascades after ion impact. An important improvement to the time-of-flight mass spectrometer came in the 70s when the reflectron was introduced.196

This configuration is positioned at the end of the TOF tube, shown in Figure 5, and consists of a series of cylindrically shaped electrodes with a gradually increased DC bias voltage which reflects the ions, thereby both increasing the length \(L\) of the TOF tube as well as correcting for ions with different initial velocities. This enhances the mass resolution considerably.197 It should be noted that the above equations follow a simple approximation for a single potential difference and the multiple charged plates in the detector make for a more complex potential landscape within the flight tube. However, the travel time of an ion still follows \(t \propto \frac{m}{q}\) and since all other parameters are constant within a single measurement, accurate mass separation is possible.

2.2.4. Far-IR Laser Sources: Use of the FELIX Free Electron Lasers. Free electron lasers offer the possibility to explore the low frequency vibrational motions of (bio)-molecules. Since the absorption cross section of the long wavelength vibrations for biomolecules is typically very low compared to the vibrations in the fingerprint region, these high intensity IR sources with a wide tunability are needed. For far-IR spectroscopic purposes, the most utilized free electron lasers are the FELs in Berlin (Fritz Haber Institute),91,198 Nijmegen (FELIX),90,199 and Orsay (CILIO).89,200 From which the latter two are open user facilities. These free electron lasers all have a typical micro- and macro-pulse structure. For the experiments discussed in this review, the Free Electron Laser for Infrared eXperiments (FELIX) has been used. FELIX has typical macropulse energies of 50–200 mJ and covers the region between 2.7 and 150 \(\mu\)m, or 67 cm\(^{-1}\) to 3700 cm\(^{-1}\), with approximately a spectral bandwidth of 0.5% of the energy in wavenumbers.

3. THEORETICAL APPROACHES

3.1. Overview and General Introduction of Theoretical Methods

The two main aspects in the theoretical calculations for gas-phase infrared spectroscopy are (1) to find the relevant 3D conformations and rank them by increasing order of energy (potential energy or free energy, including entropic effects) and (2) to calculate infrared spectra for a selection of these conformers in order to assign the experimentally observed spectroscopic fingerprints to 3D structures. Usually, the conformers with lower energies are selected at this stage. We are briefly reviewing both of these issues and will especially emphasize on DFT-MD dynamical IR spectroscopy and its advantages for the far-IR and THz spectral domain where vibrational anharmonicities and mode couplings have to be carefully assessed in order to achieve a 1-to-1 theory–experiment comparison. All theoretical strategies reviewed hereby rely on classical nuclei; that is, the nuclei are not treated.
at the quantum mechanical level but rather are treated as classical particles. Whenever the term “classical” is employed in our text, it strictly refers to “classical nuclei”.

Finding minima on the potential energy surface (PES) of gas-phase molecules and clusters nowadays relies on the following general strategies. In a first stage, a dynamical exploration of the potential energy surface is performed, typically using a classical level of representation of the interactions through force field molecular dynamics simulations (FF-MD). Sufficiently high temperatures (or internal energies) are employed in order to ensure an exhaustive conformational sampling of the PES, which is especially essential for floppy gas-phase biomolecules. This step is followed by clustering of the explored conformations into families of 3D-structures, ranked by increasing order of energy (at this level of representation), thus providing a first conformational screening of the PES. A certain number of these structural families are subsequently subjected to geometry optimizations using a more precise quantum level of representation of the interactions, typically at the DFT level for a rather good compromise between accuracy and computational cost. Of course, higher levels of quantum representations can be applied at this second stage, their use being limited only by computational costs. An intermediate step consisting of a semiempirical electronic representation could also be applied, before the more computationally costly DFT level, in order to improve the first conformational screening. Semiempirical MD can also be used for the first conformational screening. These steps ensure that a large number of minima on the PES can be found, using appropriate minimization algorithms. As a final stage, clustering of the optimized 3D-structures leads to a final energy ranking of the conformations at the highest level of electronic representation one can computationally afford.

Harmonic frequencies have to be calculated in order to check that the conformations hence generated are minima on the potential energy surface. Such strategies can be found in e.g., refs 1, 2, 8, and 201–216 for various gas-phase molecular systems. Exploring and localizing minima on the PES are nowadays a routine performed by all well-known classical MD and quantum chemistry packages (e.g., GROMACS, LAMMPS, Schrodinger suite, Gaussian, TURBOMOLE, ADF, GAMESS, NWChem, ORCA, and for most other popular packages used in the gas-phase community). In the literature, the theoretical methods and algorithms used for conformational searches on potential energy surfaces are discussed.207,217 Note that MD simulations can also be coupled to more elaborate techniques such as parallel tempering,207 thereby enhancing the phase space sampling. In order to assign more elaborate techniques such as parallel tempering, the theoretical methods and algorithms used for conformational searches on potential energy surfaces are discussed.207,217

Conformational mixing can be included by a Boltzmann weighting of the individual static (harmonic or anharmonic) IR spectra or can be directly accounted for through molecular dynamics simulations (for sufficiently low energy barriers separating the conformers). In the following section, we will only review the calculation and assignment of vibrational anharmonica spectra through finite temperature molecular dynamics simulations, especially within the DFT (density functional theory) electronic representation. DFT-MD anharmonic vibrational spectroscopy is the main methodology applied up-to-now in interpreting far-IR/THz gas-phase vibrational spectra of flexible peptides, as reviewed in the application sections of this paper. We refer the reader to a recent review207 where one can find details and discussions on the merits and some limitations on the calculation of static harmonic IR spectra and on discussions over static anharmonic spectra calculations, especially on using VSCF/VCI methodologies. The more recent papers by Bowman et al.228,229 Gerber et al.,230 Barone et al.,232 and Sibert et al.233 provide up-to-date perspectives on method developments on static anharmonic spectra calculations.

3.2. DFT-MD for Vibrational Spectroscopy

Within the well-known time-correlation function formalism in linear response theory,234,235 a dynamical IR absorption spectrum is obtained via

\[
I(\omega) = \frac{2\pi\omega}{3hV} \int_{-\infty}^{+\infty} dt e^{i\omega t} \langle \delta \mu(t) \cdot \delta \mu(0) \rangle
\]

where \(\beta = 1/kT, \omega \) is the frequency of the absorbed light, \(c \) is the speed of light in vacuum, \(V \) is the volume of the system, \(h \) is Planck’s constant, \(\mu(t) \) is the instantaneous dipole moment vector of the system at time \(t \), \(\delta \mu(t) = \mu(t) - \mu \) is the fluctuation with respect to the mean value and \(\langle ... \rangle \) refers to the equilibrium time correlation function (i.e., equilibrium trajectories). In this equation \(D(\omega) \) is a quantum correction factor, multiplying the classical line shape to correct for the violation of the detailed balance conditions by the classical treatment of nuclei and to account for zero-point motion effects related to the presence of hydrogen atoms. It is an empirical correction, which we have shown to be chosen equal to \(1 - e^{-\beta \omega} \).236 This correction is one of the most reliable empirical corrections from the literature.236–238 Only IR intensities are affected by this term. With such correction, one ends up with the following equation, written either in terms of time correlation function of the dipole moment fluctuations or in terms of the time correlation function of the dipole moment derivatives fluctuations:

\[
I(\omega) = \frac{2\pi\beta h \omega^2}{3V} \int_{-\infty}^{+\infty} dt e^{i\omega t} \langle \delta \mu(t) \cdot \delta \mu(0) \rangle
\]

\[
= \frac{2\pi\beta}{3V} \int_{-\infty}^{+\infty} dt e^{i\omega t} \left\langle \frac{d\mu(t)}{dt} \cdot \frac{d\mu(0)}{dt} \right\rangle
\]
We refer elsewhere207,229,239,240 for details on the advantages and limitations of dynamical anharmonic spectra calculations over static harmonic/anharmonic spectra calculations.

No harmonic approximations have been made in eq 6, neither on the potential energy surface nor on the dipole moment. The only ingredients are the time evolution and fluctuations of the dipole moment of the molecular system, which are naturally obtained from MD simulations. There is therefore no need for any harmonic expansion of the transition dipole moment, nor for normal modes, in contrast to static (an)-harmonic calculations. Importantly, the vibrational modes and their frequencies are therefore not directly related to the curvature of the potential energy surface at the minima, but rather to the time evolution of the electric dipole moment of the molecular system. This is governed by the conformational dynamics at the finite temperature of the simulation. Put in other words, dynamical—anharmonic IR calculations through eq 6 only rely on the time evolution of the dipole moment of the molecule, while static—harmonic IR calculations rely both on the geometry of the molecule on a minimum stationary point on the potential energy surface (PES) and on the diagonalization of a Hessian matrix to extract the frequency modes. These latter hence require an accurate calculation of the (PES) at the minimum energy geometry, as the frequencies of the vibrational modes directly reflect the curvature of the PES at this minimum stationary point. That is not the case for the dynamical—anharmonic IR calculations; there, the PES is not directly included in any of the terms in eq 6. Instead, what has to be described accurately is the dipole moment surface and, more than that, the fluctuations in time of this dipole moment. As a consequence, dynamical anharmonic spectra and static harmonic spectra rely on strictly different properties, and dynamical/static spectra presumably require different levels of accuracy for the evaluation of the underlying properties.

Hence, the use for very accurate PES at a high quantum level of representation241,242 might not be needed for dynamical spectra, instead accurate dipolar surfaces207,245 or accurate “on the fly” calculations of dipole moments207,245 are required. Note also that the fluctuations of the molecular dipole moment are the ingredients in eq 6 rather than the absolute dipole moment values. The peak positions, intensities, and shapes directly follow from eq 6. In particular the shape and broadening of the peaks result from the underlying dynamics, e.g. conformational/isomeric dynamics, H-bond dynamics, etc., and the mode-couplings sampled at a given temperature (internal energy).

Regarding the DFT-accuracy used for the electronic level of representation in all trajectories presented throughout this work; it is shown that the BLYP-D2/D3246–248 level of representation provides a robust electronic representation for dynamical spectroscopy, transferable from gas-phase molecules and clusters,13,207,229,249,250 to liquid water and aqueous peptides236,251 to inhomogeneous solid–water and air–water interfaces.252–254 Using BLYP-D3, far-IR/THz spectroscopy of gas-phase peptides typically shows sharp IR peaks and on average 7–10 cm-1 deviations of the dynamical IR band-positions from the IR-UV ion dip experimental peaks, while deviations of the order of 20–40 cm-1 can be obtained in the mid-IR region.1,256,258 Higher levels of DFT, especially hybrid functionals (typically B3LYP, PBE0, or HSE06) increase the computational costs of the DFT-MD trajectories significantly, while their merits for dynamical vibrational spectroscopy of gas-phase molecules have not been proved.255 All trajectories discussed here are obtained with classical nuclei; however, the IR line shapes are corrected for quantum nuclei effects through the prefactor in eq 6, which allows us to have confidence in the rather small deviations in the peak positions between DFT-MD IR spectra and experiments.

The initial conditions for the molecular dynamics, i.e. the positions and velocities of the atoms, are respectively taken from geometry optimizations and a Boltzmann distribution centered at a given temperature T. A more elaborate distribution of the kinetic energy within the vibrational modes can be achieved at the initial time of the trajectory, thereby mimicking zero point energy (ZPE) quantum effects.258,256–258 Leakage of the ZPE between the modes is however observed in such (classical nuclei) trajectories,258–260 thus not conserving the ZPE per vibrational mode).

3.3. Graph Theory and Assignment of the Far-IR Vibrational Modes

Assigning vibrational modes from MD simulations is not an easy task, and several methods have been developed with variable success.261–267 None of these methods are routinely used by the MD spectroscopy theory community. Recently, an alternative theoretical method has been developed that combines atomic polar tensors (APT)—weighted dynamical IR spectral calculations and graph theory.87 Such methodology overcomes well-known issues on the equipartition of energy within the vibrational modes that impedes a reliable extraction of “effective normal modes” from the MD trajectories while it directly reveals all couplings between the molecular motions (these couplings being, by construction, absent from the “effective normal modes” analyses in the literature). In a nutshell, and as shown in ref 268, eq 6 can be rewritten into

$$ I(\omega) = \frac{2\pi I}{3V} \sum_m \frac{\partial \mu}{\partial R_m} \frac{\partial \mu}{\partial R_m} \int_{-\infty}^{+\infty} dt \exp \left(\frac{i}{\hbar} \left(\hat{R}_m(t) \cdot \hat{R}_m(0) \right) \right) $$

where $\langle \hat{R}_m(t) \cdot \hat{R}_m(0) \rangle$ and $\langle \hat{R}_m(t) \cdot \hat{R}(0) \rangle$ are respectively the self- and cross-correlation functions of the derivatives of the internal coordinates ($3N - 6$ nonredundant internal coordinates (IC)) and $\frac{\partial \mu}{\partial \gamma}$ are the derivatives of the dipole moment with respect to the internal coordinates. Within a transformation these latter are the equivalent of APTs obtained in Cartesian coordinates (and readily extracted from e.g. the Gaussian quantum chemistry package). The IC velocities $\hat{R}_m(t)$ (\textit{Vf} and \textit{Vf}) are calculated by numerical derivation with a five points central difference algorithm.

Equation 7 shows that the IR spectrum of any molecular system can be decomposed into components arising either from each IC (self-part in eq 7) or from its correlation with any other ICs (cross-part in eq 7). The most important advantage of eq 7 is that all self- and cross-terms take into account the IR activity of each of these components into the final decomposition, thanks to the APT components in the prefactors (i.e., $\frac{\partial \mu}{\partial \gamma}$). As a consequence, each IR band located at frequency ω_a within the $I(\omega)$ total spectrum can be decomposed into well identified self- and cross-correlation contributions as follows:
The delocalized character of a mode can be determined. The number of connected elements in the graph, the localized or connected elements and/or disconnected elements. By the vibrational mode. Moreover, the graphs also directly visualize the term contributions of the internal coordinates into the given graph is plotted, one can immediately see the self- and cross- when using this theory for mode assignments. As soon as the spectrum is reconstructed from the sum of the spectral component, the surface area of each of the peaks in the practice, the surface area of each of the peaks in the IR band through the w_{ml} weights. This provides the individual contributions of the internal coordinates into the intensity of that particular band. Such reconstruction includes both the self-part contribution of the internal coordinates as well as all cross-parts, which is the main issue in reconstructing the full IR activity of one given band. Cut-off values for including contributions are applied. By applying graph theory to the decomposition of the IR intensity bands described above, $I_{\text{IC}}(\omega_x) = \sum I_{\text{IC}}(\omega_x)$ self- $(m = l)$ and cross- $(m \neq l)$ contributions to any given $IR(\omega_x)$ IR band are presented by a colored indirect graph, in which the vertices are composed of the self-terms and the edges are given by the cross-terms. In these graphs the weight of each of these self- and cross-terms is assigned to the corresponding vertex/edge of the graph, directly providing the composition of the anharmonic mode at a given ω_x frequency. There is one graph per IR band, see Figures 12 and 13 in section 5.2 and Figure S5 for examples.

Various aspects of the graph theory are highly advantageous when using this theory for mode assignments. As soon as the graph is plotted, one can immediately see the self- and cross-term contributions of the internal coordinates into the given vibrational mode. Moreover, the graphs also directly visualize whether a vibrational mode is constructed of coupled or uncoupled internal motions; that is, a graph is made of connected elements and/or disconnected elements. By the number of connected elements in the graph, the localized or delocalized character of a mode can be determined. The weights displayed on the graph provide the information on the “electronic” vs “mechanic” couplings at play in the motions in a very efficient way. ICs can be mechanically correlated without participating in the final IR. In that case, the weight of the edge on the graph would have a high value but low or even zero value on one of the connected vertices. The ultimate advantage of the graphs is the natural capability for comparing graphs and hence extract similarities, ideal for comparing vibrational modes within one molecular system or between molecular systems, as is illustrated in section 5.2.

4. CHARACTERIZATION OF THE FAR-IR SIGNATURES OF DIPEPTIDES

4.1. Secondary Structure of Dipeptides

The first far-IR ion dip experiments on neutral, isolated dipeptides aimed to unravel whether structural information could be extracted from their far-IR signatures. Until then, the far-IR region was not commonly employed to study the secondary structure of peptides in the gas phase, owing to the absence of strong tunable far-IR light sources, the low intensity of the vibrational transitions, and the difficulty in assigning the observed modes by quantum chemical calculations. To advance far-IR ion dip spectroscopy and to learn about the nature of the soft delocalized vibrations in biomolecules, a series of capped Ac-Phe-AA-NH$_2$ dipeptides was studied. These dipeptides all contain a phenylalanine (Phe) residue, which was used as UV chromophore for resonance enhanced excitation and ionization, and a second, variable amino acid residue (AA): glycine (Gly), alanine (Ala), proline (Pro), cysteine (Cys), serine (Ser), or valine (Val). These dipeptides have been studied in detail by IR-UV ion dip spectroscopy in the mid-IR amide A, amide I, and II regions, revealing their structural preferences and conformations present. This series is therefore a good test for (i) the feasibility of far-IR ion dip spectroscopy providing an indication of what signal strengths can still be measured and (ii) the current static and dynamical DFT-based theoretical methods and their performance in the far-infrared spectral domain. Once the theoretical method is validated, the origin of the far-IR vibrational modes can be revealed.

The capped Ac-Phe-AA-NH$_2$ dipeptides typically fold in either a γ-turn (C7) or a β-turn (C10) geometry; see Figure 7.

![Figure 7. Typical conformational structures of Ac-Phe-AA-NH$_2$ dipeptides showing (a) a γ-turn, enclosing a ring of 7 atoms and (b) a β-turn, enclosing a ring of 10 atoms. Colors: Red, oxygen; blue, nitrogen; dark gray, carbon; and light gray, hydrogen.](https://dx.doi.org/10.1021/acs.chemrev.9b00547)
to the formation of a ten-membered ring (β-turn) and one to a seven-membered ring (γ-turn).142,175,269,270

4.2. Far-IR Spectroscopy of Dipeptides

4.2.1. Spectral Assignment Using Far-IR Ion Dip Spectroscopy and DFT-MD Calculations. The far-IR part of the absorption spectrum of gas-phase peptides was in many aspects still an uncharted territory. The first reported far-IR spectra, on the single amino acid tryptophan, did not provide explicit information on the modes present.137,138 Successively, a study on capped phenylalanine–water clusters did report on the conformer selective intermolecular modes of the hydrates; however, they noted that the current level of theory was not sufficient for a detailed structural analysis.139 In the past years, the far-IR has been explored, focusing on the above-mentioned series of capped Phe-AA dipeptides. All spectra are obtained as described in section 2.1.2 using the free electron laser FELIX as the IR source. As can be seen from the black trace of Figure 8a the far-IR spectrum of Ac-Phe-Ala-NH₂ shows a wealth of well-resolved, narrow, and rather intense peaks throughout the complete far-IR region recorded down to 100 cm⁻¹ with typical line widths of about 3 cm⁻¹ (fwhm),36 limited by the bandwidth of the free electron laser. Synergy between experimental observation and theoretical calculated spectra is essential to obtain structural information from these low frequency motions. To go beyond the insufficient static DFT calculations, dynamical DFT-MD (section 3.2) was employed to structurally assign the obtained far-IR spectra. Ac-Phe-Ala-NH₂ was assigned by Mons et al. to a γ-turn structure based on the amide A (3 μm) region.142 The excellent agreement between the observed far-IR experimental spectrum (black trace) with the dynamical DFT-MD spectrum calculated for the assigned FA1 γ-turn structure (red trace) confirms this assignment; see Figure 8a. The far-IR vibrations are extremely well reproduced by the dynamical DFT-MD spectrum, especially in the region below 500 cm⁻¹ with deviations between experiment and theory of maximum 10 cm⁻¹ (which lies almost within the spectral resolution). At the 500–800 cm⁻¹ region the agreement is still very good, although slightly increased deviations were observed from the experiment.

In contrast, the static, harmonic DFT calculated spectrum (green trace) was not able to accurately reproduce the far-IR signatures. Significant deviations from the experiment were observed, for both the B3LYP as well as the BLYP functional, especially for the 400–600 cm⁻¹ region. Below 400 cm⁻¹ several peaks were not predicted or band positions are significantly misplaced by the static DFT calculations. The B97-D functional performed reasonably well in the far-IR regime for this Ac-Phe-Ala-NH₂ dipeptide, while in earlier work it was found that also the B97-D functional had significant problems in predicting the delocalized far-IR vibrations in amino acids and peptide–water clusters.7

Recently, additional calculations using BLYP with the D3 empirical dispersion factor were performed for the Phe-AA dipeptides discussed in this review; see Figure 8b. In general, as expected, the addition of the D3 term shows an improvement over the static calculations without the D3 term. These initial results show that the static DFT spectra with dispersion correction can be used to understand the far-IR signatures of peptides with limited or weak interactions. This is consistent with the findings for Z-Ala-OH discussed in section 5.1. However, the static-DFT spectra do not provide a consistent picture; for example, they do not provide a good agreement with the far-IR spectra of NAPA–water or have an unreliable prediction for the N–H bending vibrations in the Phe-AA dipeptides.

4.2.2. Unprecedented Structural Far-IR Fingerprints. Figure 8b presents the experimental far-IR spectrum of Ac-Phe-Gly-NH₂ (FG) (in black) together with the dynamical DFT-MD spectra of two iso-energetic conformers. The experimental spectra reveal well-resolved, narrow peaks down to 100 cm⁻¹. The dynamical spectra of the two FG conformers show that only the FG3 (red trace) calculated peaks coincide with the experiment. The unique peak pattern between 100 and 350 cm⁻¹ is well-reproduced by the dynamical DFT-MD spectrum of FG3 and not at all by FG4 (blue trace). Although these two iso-energetic γ-turn conformations, a C7-equatorial (FG3) and C7-axial (FG4) conformer, give indistinguishable mid-IR spectra, their far-IR signatures are unique. This particular experiment showed that the far-IR brings unprecedented structural details on the present conformations and the dynamical DFT-MD spectra can be used for conclusive structural assignment.
4.2.3. Far-IR Conformational Selectivity. The third example assesses the conformational selectivity of far-IR UV ion dip spectroscopy.14 These studies focused on the far-IR signatures of the dipeptide Ac-Phe-Pro-NH2. Experiments performed in the 3 μm region, probing the NH stretch vibrations, have shown that the backbone of this peptide can be folded in two conformations, namely a γ-turn (C7) or a β-turn (C10) geometry.175 These two conformations coexist after laser desorption in the molecular beam. The mass- and conformer-selective experimental far-IR spectra of the C7 (top trace) and C10 conformer (bottom trace) are presented in Figure 8c together with their DFT-MD spectra (red and blue trace, respectively). Both experimental spectra show many well-resolved peaks in the far-IR region with typical peak widths of 3 cm⁻¹, limited by the free electron laser, as was observed for Ac-Phe-Ala-NH2 and Ac-Phe-Gly-NH2 as well. Similar to previous experiments on this dipeptide family, theory and experiments show a remarkable agreement. Most theoretical band shapes, positions, and intensities match with the experiment; however, it was observed that some bands either lack intensity or carry too much intensity. This latter issue is well-known in gas-phase MD simulations because of the difficulty of achieving equipartition in the rather short time-scales of the DFT-MD, hence possibly affecting the intensities of IR bands of certain modes. One of the main goals of this combined experiment/DFT-MD study was to provide conformer selective signatures for the γ-turn versus β-turn conformers in the far-IR region. As is shown in Figure 8c, the 400–550 cm⁻¹ domain provided this distinction between the two conformations, where a 30–40 cm⁻¹ red shift is observed for the hydrogen bond signatures of the weaker C7 γ-turn.15

This region predominately shows NH out-of-plane/wagging motions, thereby indirectly probing the NH···O hydrogen bond motions (see section 4.3).

4.3. Insights on Dipeptides from the Far-IR Region

Besides calculating the IR spectra in order to obtain insight in the 3D conformation present in the experiment, it is key to understand the origin of the modes that contribute to observed IR absorption peaks. This can be visualized by a similar approach as was used to calculate the IR spectrum. Instead of using the total dipole moment of the system (see eq 4), the intramolecular coordinate–time correlation function (named ICDOS) is determined:66

\[I_{\text{ICDOS}}(\omega) = \int_{-\infty}^{\infty} \sum_i \sum_j \langle |C_i(t)|C_j(0)\rangle e^{i\omega t} dt \]

(9)

where \(C_i(t) \) is the time evolution of the selected internal coordinate \(i \). This intramolecular coordinate can for instance be a bond length, e.g. the C═O bond length to study the C═O vibration, a dihedral angle, as used for wagging motions or even large-scale motions, where the distance between two atoms far apart is selected to look at backbone “breathing” vibrations. Only autocorrelation functions \((i = j) \) were included for the calculation of these spectra; cross-correlations and couplings between internal coordinates can be calculated but they were ignored in the presented work. Note that they were taken into account in the dynamics. Equation 9 gives the position in frequency of the selected internal coordinate, but the quantification of how much this particular internal coordinate contributes to the observed peak is not determined. Furthermore, when taking the time correlation of the intramolecular coordinate, the change in dipole moment is not included in this equation; for example, selection rules for vibrational spectroscopy are not taken into account. Equations 7 and 8 in section 3.3 do include the change in the dipole moment derivatives and would include the correct intensity of each band. However, this has not been included in the analyses presented with eq 9 in this work, as here the focus lied only on assigning the motions of the modes.

The first studies focused on finding discriminating modes as highlighted above for Ac-Phe-Pro-NH2. To generate a universal understanding of the type of motions in the far-IR domain, similarly as is present for the mid-IR fingerprint region, a general map of the motions that are responsible for the spectroscopic signatures recorded in the far-IR domain has been developed; see Figure 1. Several possible structural selective modes from the Ac-Phe-AA-NH2 dipeptides series have been evaluated. Two types of modes are found in the far-IR/THz domain, i.e. local modes, where only one major coordinate is involved in the motion, and delocalized modes, which are a result of a large number of internal coordinates. The far-IR spectra of all the studied Ac-Phe-AA-NH2 dipeptides together with their DFT-MD of the assigned conformers are summarized in Figure S1.

4.3.1. Localized Modes. The local modes found in the far-IR spectral range are predominantly out-of-plane wagging motions of the hydrogen atoms, i.e. \(\omega(\text{NH}), \omega(\text{CH}), \omega(\text{SH}), \) and \(\omega(\text{OH}) \), and hindered rotational motions of CH3 groups. The ICDOS spectra of the dihedral angles have proven to be well suited to visualize these motions since one atom has a major contribution to the wagging motion.13

4.3.1.1. \(\omega(\text{CH}) \) of the Phenylalanine Ring (700–750 cm⁻¹).15 Two types of \(\omega(\text{CH}) \) out-of-plane vibrations of the phenyl ring from in the phenylalanine residue are observed, i.e. in-phase modes, where the variation in dipole moment of the individual CH moieties add up resulting in intense far-IR peaks, and out-of-phase modes, where the dipole moment variations cancel each other out. The latter were only observed when coupled to other internal coordinates. For all the capped Ac-Phe-AA-NH2 dipeptides, three absorption bands were identified by the ICDOS analysis at 710, 730, and 750 cm⁻¹.13 Although different interactions are present in the various dipeptides, such as \((\text{NH})_{\text{AA}} \pi \) interaction for the γ-turns with AA = Gly, Ala, Cys, Ser, and Val and for the β-turn of Ac-Phe-Cys-NH2 or the proline ring–π interaction for both the γ- and β-turn for Ac-Phe-Pro-NH2, the \(\omega(\text{CH}) \) out-of-plane bending motions constantly appear at the same frequencies. This indicates that the \(\omega(\text{CH}) \) modes are unique for these phenyl ring out-of-plane bending modes, but they are not conformer selective as they do not depend on the local peptide environment. These findings were later confirmed with the studies on the Ac-Phe-OMe monomer and dimer.47

4.3.1.2. \(\omega(\text{NH}) \) Out-of-Plane Wagging Modes:13 The ICDOS analysis showed an amide V wagging signature for each of the two backbone NH amide groups. The \(\omega(\text{NH}) \) mode is located between 470 and 510 cm⁻¹ (highlighted in blue) and the \(\omega(\text{NH})_{\text{AA}} \) wagging between 530 and 640 cm⁻¹ (gray); see Figure 9. The \(\omega(\text{NH}) \) is observed within a window of 40 cm⁻¹, which is not surprising as for all Ac-Phe-AA-NH2 dipeptides this NH group is involved in a weak C=S interaction with the C=O moiety of the same Phe residue. For the β-turn (C10) conformer of Ac-Phe-Cys-NH2, where the NH group is free, the \(\omega(\text{NH}) \) was found around 410–490 cm⁻¹. The \(\omega(\text{NH})_{\text{AA}} \) amide V vibrations appeared in a larger frequency window, and its position depends on the chemical...
where NHCys has only a weak interaction with the phenyl ring, activity at 288 and 310 cm⁻¹. These findings were confirmed by a later study on the Ac-Phe-OMe β-sheet dimer.

4.3.1.3. Other Local Modes:

The NH₂ moiety gives rise to symmetric and antisymmetric out-of-plane wagging motions. For the antisymmetric motion (580–720 cm⁻¹), the ICDOS showed a strong correlation between its frequency and the NH₂···O=C hydrogen bond length: the stronger the hydrogen bond, the more blue-shifted the out-of-plane wagging motion. This relation was not observed for other internal coordinates, which are typically observed in the 220 to 260 cm⁻¹ window.

4.3.2. Delocalized Backbone Modes (0–400 cm⁻¹).

Collective vibrational modes delocalized over the peptide backbone are present at the full far-IR range; however, their intensity dominates the range 0–400 cm⁻¹. The most prominent motions are the bending (100–400 cm⁻¹) and torsional (0–100 cm⁻¹) large amplitude and collective motions, which are coupled and delocalized over the peptide backbone. For the dipeptides, these motions were followed by the ICDOS analysis of backbone dihedral angles. Multiple signatures of each internal coordinate were observed in the spectra, and several dihedral angles provided the same spectral signature; that is, they were observed at the same frequency. This indeed indicates that the modes are collective and delocalized over the peptide backbone. Although it is not possible to determine the percentage of participation of each internal motion to the final mode from the ICDOS, the ICDOS do reveal how many angles and dihedral angles are involved in a peak. Furthermore, principle component analysis (PCA) was used to identify which internal coordinates are connected and which do contribute to specific observed peaks in the experimental IR spectrum.

4.3.3. Hydrogen Bond Signatures (0–250 cm⁻¹).

Studies on substituted benzenes revealed two diagnostic vibrational modes related to hydrogen bond strengths in the far-IR, namely the hydrogen bonded OH torsion (ω(OH)) and the hydrogen bond stretching (ν(H-bond)) modes. For the dipeptides, the hydrogen bond signatures have not yet fully been explored. Initial studies show that the hydrogen bond motion can be addressed via three internal coordinates, namely (i) the ν(H-bond) corresponding to the ICDOS of the hydrogen bond length, (ii) the angle NH···O δ(H-bond), and (iii) the dihedral angle NH···O=C ω(H-bond). These modes are however strongly coupled to other motions, complicating direct analysis.

All the discussed far-IR motions for peptides are summarized in Figure 1 together with well-known mid-IR vibrational modes.

5. PEPTIDE CLUSTERS

Peptide clusters are of interest in a wide range of research fields, ranging from biomedicine to bioengineering. A well-known example is the aggregation of partly unfolded peptides into long, organized fibrillar structures, as observed to coincide with a number of neurodegenerative diseases. Elucidation of the structures of small peptide clusters in the gas phase can shed light on the mechanisms that are fundamental to the aggregate formation processes. It is not trivial to prepare neutral peptide clusters in the gas phase, and since the pioneering work of Gerhards et al. on the dimer of Ac-Phe-OMe, only a few papers have been published on dimers. Recently Rijs et al. demonstrated the formation of higher order peptide clusters up to the tetradecamer formed in a molecular beam via laser desorption.
The presented studies mainly focused on the mid-IR using the amide A, I, II, and III modes for structural assignment. The position of the peaks depends on the hydrogen bond interactions and is well characterized both experimentally and theoretically.\(^{142}\)

As the size and complexity increases, and hence the number of intra- and intermolecular interactions, structural elucidation becomes more challenging. The combination of mid-IR spectroscopy and static quantum chemical calculations results in the identification of structural families such as for example conformers with parallel beta-sheets, rather than providing an assignment to one specific structure with known exact orientations of side groups and side chains,\(^{132}\) a direct result from the increasing spectral congestion. The experiments in this section show that it is insightful to include the far-IR region, especially for peptide clusters as intermolecular hydrogen bonds are probed in this far-IR regime. These bands possibly contain a wealth of extra information on the hydrogen bonded complexes. In order to relate the observed peaks to specific modes, quantum chemical calculations are essential. Results on phenol-like molecules\(^{129}\) showed that static DFT works well for molecules with no or only weak interactions. This relation is examined for peptides as well, using a small peptide and its dimer; see sections 5.1 and 5.2. In general, static DFT works well to predict the far-IR spectrum of the observed monomer conformation for the simplest peptides only. For Ac-Phe-OMe, the far-IR is necessary to determine the orientation of the phenyl side-chain (see section 5.2). For the peptide dimers the static calculations start to fail to predict certain peaks, when strong intermolecular interactions begin to play a role, and for these more anharmonic modes DFT-MD becomes more important. Moreover, recently Galimberti et al. explored the experimental and theoretical signatures in the far-IR of the monomer and dimer formation of Ac-Phe-OMe, initially studied in the mid-IR by Gerhards et al.\(^{143,280,281}\) The newly developed graph theory (see section 5.2) was shown to be a novel method to reveal the character of the observed far-IR modes.\(^{87}\)

5.1. Static-DFT versus DFT-MD for a Simple Peptide and Its Dimer

5.1.1. Z-Ala Monomer

Z-L-alanine–OH, abbreviated as Z-Ala (m/z 223.2), is a simple capped peptide, with the N-terminus containing a Z-cap to introduce the required UV chromophore for the IR-IDS experiments. Z-Ala is a molecule that is easy to desorb and ionize via \((1 + 1)\) REMPI at 37589 cm\(^{-1}\). The REMPI spectrum, see Figure S3, shows one dominant peak, which was used to obtain the far-IR spectrum (black trace of Figure 10a). Using both the mid- and far-IR regions, this IR spectrum is assigned to a linear \(\beta_h\) structure (lowest in energy). It has the Z-capped group pointing in the same direction as the alanine side-group. Both static DFT (B3LYP-D3/6-311++G**) and dynamic DFT-MD calculations (details are provided in section 3.2) have been performed on the assigned structure, and their calculated IR spectra are shown in Figure 10a in green and red, respectively. A scaling factor of 0.976 was used to correct for anharmonicity in the static DFT spectrum. This is the same scaling factor as was used in the mid-IR region and provides the best possible overlap in both regions. The peaks above 500 cm\(^{-1}\) are generally better described by the scaled static DFT calculations; below 500 cm\(^{-1}\) DFT-MD has a slightly better agreement regarding the peak positions. For the monomer of Z-Ala both calculation methods perform well, even for the NH out-of-plane bending region around 450 cm\(^{-1}\). The absence of strong intramolecular hydrogen bonding can explain this lack of anharmonicity and thus the good overlap of the static DFT spectrum with experiment.

5.1.2. Z-Ala Dimer

The dimer of Z-Ala shows a broadened REMPI spectrum with respect to the monomer (see Figure S3), with its main transition at 37420 cm\(^{-1}\). Compared to the monomer, where only weak intramolecular hydrogen bonds are involved in the \(\beta_h\) structure, the dimer can contain stronger intermolecular hydrogen bonds. An extensive conformational search was performed to map the conformational landscape. However, none of the calculated mid- and far-IR spectra of the low energetic structures showed a reasonable overlap with experiment, while only a few of the considerably higher energetic structures (over 42 \text{kJ/mol} higher) show good agreement. The common denominator of these latter structures is that all the monomeric units within these dimers have the same orientation of the backbone as the assigned monomer (\(\beta_h\)) and are part of the same structural family. This is in line with previous findings, where it was demonstrated that the structures of the monomers are largely retained in the dimeric structures, favoring the stronger intermolecular hydrogen bonds over the weaker intramolecular hydrogen bonds.\(^{132}\) However, the monomeric peptides forming the dimer are not engaged in intermolecular hydrogen bonding; that is, they are only connected through weak ring interactions.

The experimental, static, and dynamic DFT spectra are presented in Figure 10b. Both calculated spectra have a good agreement with the experimental IR spectrum, especially when compared to other structural families; see Figure S4. The dynamic DFT-MD spectrum agrees better below 400 cm\(^{-1}\), with especially the peaks around 100 cm\(^{-1}\) being predicted well. The static DFT spectrum on the other hand is slightly better above 400 cm\(^{-1}\), most notably the two peaks around 470 cm\(^{-1}\). The frequencies of the set of peaks between 650 and 800 cm\(^{-1}\) are better predicted by the dynamical spectrum, but intensities by the static DFT. The differences between the two
spectra are minimal; only minor alternations between the two computational approaches are observed.

Far-IR action spectroscopy on dipeptides, as discussed in section 4, can be a powerful tool in combination with dynamic DFT-MD calculations. Static DFT is not able to predict the far-IR vibrations for these relatively strong intramolecularly hydrogen bonded dipeptides. The Z-Ala monomer is different in this respect as it is only weakly hydrogen bonded (C5 interaction), leading to a better agreement with static DFT. The dimer of Z-Ala is an interesting case since it does not adopt the lowest energy structure but appears to be a weakly bonded complex of two βL monomers via π-interactions rather than hydrogen bonds. This explains the observed similar static DFT and the dynamic DFT-MD spectra in Figure 10b, where no large differences are observed, also not in the 400–550 cm⁻¹ region. As observed before, the conformational search for dimers and higher order clusters is challenging, since the heating step in simulated annealing often results in breaking of the intermolecular hydrogen bonds. However, extensive conformational searches have to be performed in order to find the exact conformation. For this particular example, where the two monomers are frozen into their βL structures and are not changing their structures in order to form stronger intermolecular hydrogen bonds, static DFT would be sufficient. For other systems, such as the strong hydrogen bonded parallel beta-sheet dimer Ac-Ala-Ala-OBn, DFT-MD would be required in the far-IR to explain all the band positions.

5.2. Use of Graph Theory on Ac-Phe-OMe and Its β-Sheet Dimer

The peptide Ac-Phe-OMe is a known model for β-sheets in the gas phase. The REMPI spectrum of the Ac-Phe-OMe monomer shows a wealth of highly resolved peaks resulting from a single conformer. As was previously observed for all the dipptides presented in section 4, the experimental far-IR spectrum showed many narrow far-IR peaks with their widths depending on the bandwidth of the free electron laser (black trace in Figure 11a). The DFT-MD (details in section 3.2) calculated spectrum of the assigned βL(g⁺) conformer (red) and the βL(g⁻) conformer (blue) is included in Figure 11a. The theoretical spectrum of βL(g⁻) provides a remarkable agreement with the experiment, especially in the more conformer selective region 90–400 cm⁻¹. Here, all peaks in this region result in delocalized bending motions along the backbone and the side chain.

The experimental far-IR spectrum of the dimer of Ac-Phe-OMe is obtained with the UV laser at 37538.5 cm⁻¹ and is assigned to a βL(g⁺)-βL(g⁻) configuration. It is plotted in Figure 11b together with its DFT-MD calculated spectrum, again showing an excellent agreement. In the next section, we will discuss a number of selected IR bands below 800 cm⁻¹ as an example of how graph theory can be used for the assignments of the modes. The graph theory method is described in section 3.3 of this review. By analyzing the graphs, insights can be obtained in which modes originate from the monomer peptides and which result from the interaction between both monomers forming the dimer.

5.2.1. NH Wagging Motion (450–650 cm⁻¹). The ω(NH) out-of-plane NH wagging motion is defined by the out-of-phase torsion of φ (labeled −C8−N− in the graphs) and ω (labeled −N−C9− in the graphs) using the current definitions of nonredundant internal coordinates (Figure 12a).

The monomer graphs show that the IR peaks located at 463 cm⁻¹ for the g⁺ conformer and 453 cm⁻¹ for g⁻ are dominated by the ω(NH) out-of-plane NH wagging (Figure 12b). The large values (i.e., 134 and 39 for g⁺, 123 and 46 for g⁻) of these two motions on the vertices of the two graphs indicate that these two modes are highly localized. Only small mechanical couplings with the backbone (values on the edges, −3 and 6) are found. The out-of-phase motion between the φ and ω torsions, which appears with large negative values at the edges, defines the out-of-plane wagging motion of the NH group.

There are two main bands in the assigned dimer conformer g⁺−g⁻ that originate from the ω(NH) wagging motions, and are found at 542 and 640 cm⁻¹ (Figure 12c). The dimer ω(NH) wagging motions are ~100–200 cm⁻¹ blue-shifted with respect to the monomer bands. This blue-shift is the result of the NH···O = C hydrogen bonds forming the β-sheet structure in the dimer. Blue-shifts in the ω(NH) out of plane wagging motions in the far-IR/THz domain were also observed for the dipeptides discussed in section 4 and are highlighted in Figure 1.

The graphs for the g⁺−g⁻ dimer are more branched than the graphs for each monomer, illustrating the higher complexity arising from the intermolecular hydrogen bonded motions. The notation in the graphs with green circles carrying the ± sign indicates which monomer peptide in the dimer carries the motion, with ± for the g⁺/g⁻ peptide in the dimer, respectively. The left part of Figure 12c shows the graph for the 542 cm⁻¹ mode that is composed of a single graph of connected lines, with several colored connected vertices. The main contributors to this mode are both NH wagging motions (−N−C9− and −C₈−N− for both g⁺ and g⁻), which are mechanically coupled (see the values on the edges in the graph). The values on the vertices also show that the NH on the g⁻ peptide strand dominates the motion, despite both NH wagging motions contributing to the final IR mode. The intermolecular hydrogen bond, indicated with the yellow vertex (NH···O₁), is also coupled to the NH wagging motions and is a large contributor to the final activity of the mode. The right part of
Figure 12c shows the second mode at 640 cm$^{-1}$, assigned to the ω(NH) wagging motions, and consists of four disconnected subgraphs. The red rectangles in both graphs of Figure 12c show the similarities of the left subgraph of the 640 cm$^{-1}$ mode to the 542 cm$^{-1}$ mode, with the same coupling to the intermolecular hydrogen bond. Other minor contributing motions, which can be seen from the values next to the vertices, to the 640 cm$^{-1}$ mode include C\equivO stretching and backbone bending modes, indicated by the red and blue vertices, respectively.

5.2.2. Delocalized Motions at 250–280 cm$^{-1}$. The graphs of the g$^+$ and g$^-$ monomers corresponding to the peaks at 276 and 265 cm$^{-1}$, respectively, show highly delocalized modes distributed over several coupled bending motions of the backbones (Figure 13). The graphs of both peaks exhibit the same dominant contributions for the COC C-terminal bending (red rectangles) and for the CNC “central” bending of the
backbone, but also for the N-terminal N–C==O and N–C–C bending motions. The values on the edges of the graph of the 276 cm⁻¹ mode of the g⁺ conformer are positive, originating from in-phase coupled motions, while they can be positive or negative for the 265 cm⁻¹ mode of g⁻ as a result of in-phase and out-of-phase couplings.

In the g⁺–g⁻ hydrogen bonded dimer, the discussed delocalized modes of the two peptide monomers are shifted to 271 and 257 cm⁻¹, but they consist of similar contributions as was observed for the two individual monomers. Both modes are dominated by the COC C-terminal bending as indicated by the larger values on the C11–O2–C12 vertices in both graphs. This contribution is highlighted with the red rectangles, one for g⁺ (271 cm⁻¹) and one for g⁻ (257 cm⁻¹). Both COC C-terminal bending motions are systematically coupled to the intermolecular hydrogen bond motions, either through the intermolecular O···H stretching or the intermolecular – O···H– torsion. The COC C-terminal bending also couples to other backbone C-terminal bending motions, such as the OC=O and CCO bending motions. These can either be located on the same strand or on the other strand. The positive values on the edges of the graphs indicate the in-phase coupled motions. The “central” backbone CNC bending, which had a dominant contribution to the modes of both individual monomer conformations, does not participate in the dimer modes. This motion is inhibited by the intermolecular hydrogen bond in the peptide dimer. The contributions to the discussed delocalized modes are both of electronic and mechanical nature, as indicated by the nonzero values of the weights on the vertices and edges.

5.2.3. Torsional Delocalized Motions at ~200 cm⁻¹. A final example in the low far-IR domain is a highly delocalized torsional mode for the g⁺ monomer at 200 cm⁻¹, where the coupling between the backbone motions and the side chain bending is nicely visualized (Figure S5). Each of these two motions is mechanically coupled to several other torsion and bending motions; however, these couplings do not contribute to the final IR activity (as indicated by the lack of values on the associated vertices). Similarly, the dimer mode at 197 cm⁻¹ also shows multiple, decoupled bending and torsional and hydrogen bonded motions.

The use of graph theory is a powerful tool in the assignment of far-IR modes. The graphs show how many motions (stretch, bending, torsion, or hydrogen bond) are involved in each vibrational mode by means of the number of vertices. It demonstrates whether the mode is constructed of localized or delocalized motions by the edges between the vertices. It specifies the number of coupled motions that participate in this mode, along with the weight each of the motions brings to the final IR mode. Graph theory makes it easy to compare between two graphs, which makes this method ideal to characterize the far-IR modes of peptide clusters. The evaluation of the monomer and dimer graphs provides information on (dis-)similarities between the far-IR modes.

6. OUTLOOK TO LARGER SYSTEMS

The application of far-IR spectroscopy with DFT-MD has proven to be successful for the structural analysis for medium-sized peptides and their aggregates as discussed in sections 4 and 5. The important next challenge would be to evaluate its use for larger peptides. In a preliminary study, the far-IR signatures of a series of capped polyalanine peptides, namely Z-Ala₁₋₇-NHMe, Z-Ala₁₋₇-NH₂, and Z-Ala₆₋₇-NH₂, are explored to unravel present intramolecular hydrogen bond stretching vibrations. For all three peptides it holds that the far-IR spectra all show well-resolved peaks; even for the largest Z-Ala₆₋₇-NH₂, sharp peaks are observed in the region below 200 cm⁻¹, where the hydrogen bond stretching vibrations are expected (see Figure S6). Furthermore, for this review we have studied the far-IR response of gramicidin A and C, two 15 amino acid residue peptides, which were previously studied in the mid-IR in a collaboration with de Vries et al.155,283

6.1. Mini-proteins: How Large Can We Go in the Far-IR?

Gramicidin is found in the bacteria Basillus Brevis and is often used as an exemplar channel protein.284–286 It is a linear polypeptide built up of 15 (hydrophobic) amino acids, with a formyl cap on the N-terminal side and an ethanolamine cap on the C-terminal side. Bacterial gramicidin is a mixture of three types of gramicidin which differ by the amino acid residue on the 11th position, resulting in gramicidin A (gA, with tryptophan on position 11), gramicidin B (gB, phenylalanine), and gramicidin C (gC, tyrosine). Additionally, each type also exhibits a minor second alteration (5–20%), where the valine residue on the first place is replaced by isoleucine. As can be seen from the mass spectrum in Figure 14, gA has the most dominant contribution (about 80%), followed by gC (15%) and only 5% of gramicidin is made up of gB. In contradiction to most natural occurring proteins, gramicidin contains not only L-forms but also D-isomers, in an alternating fashion.287

In the condensed phase it is found that gramicidin forms a β-helix,288 which is preserved in the gas phase as shown by the IR-UV ion dip experiments in the 3 μm region283 and the 1000–1800 cm⁻¹ fingerprint region.255

In this review, we present results on a recent far-IR study of gramicidin A and C. Gramicidin B was not included as the contribution of gB in the natural gramicidin sample is too low to record the far-IR with a decent signal-to-noise ratio. The far-IR spectra of gA and gC, recorded from 90 to 850 cm⁻¹ are presented in Figure 15. In coincidence with the mid-IR results, the two far-IR spectra of gA and gC show strong resemblance, although the spectrum of gC appears somewhat noisier resulting from the lower contribution in the sample which
corresponds to a weaker UV signal. In the far-IR region a number of peaks can be distinguished from a broad continuous IR activity. A clear and intense peak at 739 cm$^{-1}$ is observed and a second, smaller peak at 573 cm$^{-1}$. At lower frequencies a number of distinct bands can be observed: Two broader peaks at 429 cm$^{-1}$ and a large one at 393 cm$^{-1}$, a feature around 305 cm$^{-1}$ and a smaller peak around 220 cm$^{-1}$. In agreement with the experimental far-IR spectra, the static DFT calculations (at the DFT/SV(P) level of theory employing a TPSS functional) show a similar large density of modes in this region with a few intense bands at specific frequencies. However, the exact positions of the calculated frequencies should be handled with care. Dynamic-DFT calculations are currently on their way.

Although at first sight the two far-IR spectra of gA and gC appear to be very similar, when their difference spectrum is plotted (gA minus gC), clear deviations between their two far-IR signatures appear; see the bottom panel of Figure 15. We highlight two main differences between the two spectra: a distinct higher intensity feature at 221 cm$^{-1}$, which is more pronounced for gA, and the most prominent difference with a gain for gC at 300 cm$^{-1}$. The increased band for gA at 221 cm$^{-1}$ originates most likely from butterfly motions of the four tryptophan residues present in gA, whereas gC has only 3. A characteristic peak at 300 cm$^{-1}$ is observed in gC with respect to gA (and also to gB, not shown here). Since these three varieties of gramicidin only differ in their sequences at the 11th position, this peak most likely results from the OH out-of-plane torsion of the tyrosine of gC.

The out-of-plane torsion vibration of the OH moiety in relation to its hydrogen bond strength has been extensively studied via far-IR experiments focusing on a number of phenol-like molecules, such as catechol and salginin. In phenol, in essence the same as the side group of tyrosine, the OH out-of-plane torsional mode was observed at 309 cm$^{-1}$, which was confirmed by both static (an)-harmonic and dynamic DFT calculations. As a result of this high similarity of the tyrosine residue with the unperturbed phenol, the similarities between the far-IR spectra of gA and gC, except for this peak, and the theoretical calculations point to a large contribution of this mode; see the star in the blue trace in Figure 15. We assign this peak to the out-of-plane torsional mode of a free OH group. This confirms that the tyrosine OH is not involved in hydrogen bonding.

These far-IR studies on large peptides and mini-proteins show that well-resolved signatures are still present when going to larger and more complex systems. Currently, DFT-MD calculations for gramicidin are under way. Gaigeot et al. have shown recently that DFT-MD can be routinely applied to molecular systems composed of >1000 atoms and on systems in the condensed phase, both of comparable or larger size than the molecules shown here.255

7. CONCLUDING REMARKS AND OUTLOOK

This review discusses the recent developments in far-IR action spectroscopy of neutral peptides. The use of far-IR light opened up a novel and complementary direction to provide insights into the structure of biomolecules. Additional vibrational modes, both local and delocalized, are available in the far-IR regime, often providing unprecedented structural characterization and insights in collective backbone motions of the studied peptides. We have provided a detailed overview of the various techniques that have to be employed to obtain the mass- and conformation-selective far-IR spectra (section 2) of cold, gas-phase peptides. The application of IR spectroscopy to larger molecules has relied on the significant experimental progress in the last few years. With advances in laser desorption, it is now possible not only to vaporize low vapor pressure small and medium-sized peptides intact into the gas phase but also to employ this method to large peptide aggregates and mini-proteins. The understanding of the observed far-IR signatures depends heavily on the interplay between experiment and theory. Coinciding with the experimental progress also the theoretical methods have been advanced for the far-IR analysis of large biomolecules (section 3). We have shown that finite temperature DFT-based molecular dynamics (DFT-MD) simulations is a suitable theoretical strategy for extracting local and delocalized modes, especially those that have an anharmonic character such as the out-of-plane wagging motions. The (an)-harmonic static DFT calculations work well in combination with the near- and mid-IR spectroscopy to assign the structure of biomolecules and to find a reasonable match between experiment and theory; however, they are inconsistent in predicting peak positions and intensities in the far-IR region. The work presented here shows that DFT-based molecular dynamics simulations are successful in elucidating the 3D structures of peptides (section 4), peptide clusters (section 5), and their interactions in the far-IR/THz spectral domain. We also review the use of graph theory for vibrational modes assignments, revealing the intra- and intermolecular motions responsible for these vibrational modes. It should be noted that the experimental and theoretical methods discussed in this review are not restricted to peptides only. Far-IR action spectroscopy has recently been applied to nucleobases, polyaromatic hydrocarbons (PAHs), and (hydrated) benzene-derivatives and has proven to be equally powerful for those systems as well.

The next important challenge is to evaluate the application of far-IR spectroscopy with DFT-MD for the structural analysis

![Figure 15. Experimental (black) spectra of gramicidin A (top) and C (middle panel), together with their static DFT calculations. The asterisk in the gramicidin C spectrum indicates the position of the OH torsional mode. The lower panel shows the difference spectrum between the two (gA−gC), meaning intensity below the zero line (black dots) is more intense for gramicidin C and vice versa. The two main deviations are indicated with the black arrows.](image-url)
of larger and more complex biomolecular systems. Where the mid-IR region of for example a hexapeptide is already congested with overlapping absorption bands, the far-IR regime still shows a striking collection of resolved absorption bands with a full width at half-maximum of 3 cm$^{-1}$ down to 100 cm$^{-1}$. When moving toward the 15 amino-acid peptide gramicidin, spectral congestion also starts to play a role in the far-IR region. However, unique features are still present in the far-IR spectra (section 6). The use of DFT-MD does not only allow us to reveal the modes present in the far-IR; possible conformational dynamics present in the studied molecule are included in the simulation, provided that the energy barrier separating the conformations is low enough to surpass at a given temperature. Resulting signatures of conformational changes, which involve collective large amplitude motions, will be found in the far-IR regime. Currently, far-IR spectroscopy is only applied to study cold, neutral molecules. In recent experiments, we have shown that far-IR spectroscopy can be exploited in combination with room temperature mass spectrometry to study the far-IR signatures of deprotonated nucleotides; far-IR ion spectra down to 300–400 cm$^{-1}$ using infrared multiple photon dissociation (IRMPD) were recorded.209 As the field of gas-phase far-IR spectroscopy to probe biomolecular structure and structural changes is still relatively new, novel developments and research directions are expected to emerge from future endeavors.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00547.

Experimental far-IR spectra of dipeptides, their assigned DFT-MD spectra and additional static BLYP-D3 calculations; REMPI spectra, experimental and calculated IR spectra of the Z-alanine dimer; graph theory on delocalized torsional modes of the monomers and dimer of Ac-Phe-OMe; experimental far-IR spectra of larger alanine containing peptides (PDF)

AUTHOR INFORMATION

Corresponding Authors

Marie-Pierre Gaigeot — LAMBE CNRS UMR8887, Université d’Evry val d’Essonne, 91025 Evry, France; orcid.org/0000-0002-3409-5824; Email: mgaigeot@univ-evry.fr

Anouk M. Rijs — Radboud University, Institute for Molecules and Materials, FELIX Laboratory, 6525 ED Nijmegen, The Netherlands; orcid.org/0000-0002-7446-9907; Email: a.rijs@science.ru.nl

Author

Sjors Bakels — Radboud University, Institute for Molecules and Materials, FELIX Laboratory, 6525 ED Nijmegen, The Netherlands

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00547

Notes

The authors declare no competing financial interest.

Biographies

Sjors Bakels received his B.Sc. in Natural Science and his M.Sc. in Science at the Radboud University in Nijmegen, The Netherlands, in 2013 and 2016, respectively. Currently he is a Ph.D. student in the group of Anouk M. Rijs at the FELIX Laboratory, located at the Radboud University in Nijmegen, where he studies different aggregation processes of peptides in the gas phase, by using infrared action spectroscopy to unravel their structures and structural changes upon aggregating.

Marie-Pierre Gaigeot is Professor at the University of Evry val d’Essonne—University Paris-Saclay in Paris, France. She is an expert in DFT-based molecular dynamics simulations applied to vibrational spectroscopies. She has been characterizing the vibrational spectroscopies of gas-phase molecules and clusters (IR-MPD, IR-PD, IR-UV ion dip), including the pioneering work reviewed here on THz vibrations of peptides and their aggregates, of the IR and Raman features of liquid water and immersed solutes, and of the challenging air/water and mineral/water SFG (sum frequency generation) spectroscopies at aqueous interfaces. The credo of the Gaigeot group is to systematically link theoretical spectroscopy with spectroscopic measurements, allowing a 1-to-1 comprehension of spectroscopic features and providing a comprehensive assignment of the features in terms of conformations. M. P. Gaigeot has also been for several years Subject Editor in Chemistry for the Royal Society Proceedings A, a member of the Editorial Boards of the Royal Society Proceedings A & Philosophical Transactions A, Spectrochimica Acta A, has been appointed recently at the Advisory board of Physical Chemistry Chemical Physics (PCCP), and is FRSC Fellow of the Royal Society of Chemistry.

Anouk Rijis is an associate professor in physical chemistry within the FELIX Laboratory of the Radboud University (Nijmegen, The Netherlands). She obtained her Ph.D. in femtosecond imaging and photoelectron spectroscopy from the Vrije Universiteit Amsterdam in 2003. During her postdoc period at University of Amsterdam and University of California Santa Barbara, she started to advance molecular spectroscopy to characterize complex molecules. She is an expert in infrared and terahertz action spectroscopy, interfaced with mass spectrometry and molecular beam technologies for large biomolecules. By focusing on the characterization of structure, molecular interactions, and probing structural changes, her group aims to obtain a fundamental understanding of protein folding interactions and the mechanism of peptide aggregation. Within the Radboud Consortium for Glycoscience, she has recently expanded these methods to carbohydrates and their glycosylation reactions. In addition to her work at Radboud University, she is the deputy-chair of the editorial board of Physical Chemistry Chemical Physics (PCCP) of the Royal Society of Chemistry and Fellow of the Royal Society of Chemistry.

ACKNOWLEDGMENTS

We gratefully acknowledge the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) for the support of the FELIX Laboratory. We thank the FELIX team for their experimental support and helpful discussions. Calculations were performed at the SurfSARA Cartesius cluster under NWO Rekentijd contract 17603 or at HPC resources from GENCI-France under Grant No. 072484 (CINES/IDRIS/TGCC). No such works could have been achieved without the involvements of numerous Ph.D. and Post-Doctorate collaborators. We want to stress that most of our collaborators have been involved both in the experiments and in the simulations.
This is an important aspect of the experiment-theory investigations performed by our two groups. We are grateful to the former and current bachelor, master, and Ph.D. students of our two groups, who all contributed to the results described in this review. Among the Rijs experimental group, Sander Jaeqx, Bin Yan, Daniel Bakker, Vasyl Yatsyna, Sander Lemmens, and Kas Houthuijs, and among the Gaigeot theory group, Jérôme Mahé, Daria Ruth Galimberti, and Sana Bougueroua are specifically acknowledged for their outstanding participations in the works reviewed here.

ABBREVIATIONS

AA amino acid
Ala alanine
APT atomic polar tensor
BOMD Born–Oppenheimer molecular dynamics
Cys cysteine
DFT density functional theory
DFT-MD density functional theory–molecular dynamics
DNA deoxyribonucleic acid
FEL free-electron laser
FELIX free-electron lasers for infrared experiments
FF-MD force-field molecular dynamics
fwhm full-width at half maximum
Gly glycine
IC internal coordinate
ICDOS internal coordinate density of states
IR infrared
IR-IDS infrared ion dip spectroscopy
IRPD infrared photon dissociation
IVR intramolecular vibrational energy redistribution
MD molecular dynamics
MS mass spectrometry
NAPA N-acetyl-phenylalanine-amine
Nd:YAG neodymium-doped yttrium aluminum garnet
PCA principle component analysis
PES potential energy surface
Phe phenylalanine
Pro proline
REMPI resonance enhanced multiphoton ionization
RIDIRS resonant ion dip infrared spectroscopy
Ser serine
THz terahertz
TOF time-of-flight
UV ultraviolet
Val valine
Z-cap benzyl formate cap
ZPE zero-point energy

REFERENCES

(1) Rijs, A. M., Oomens, J., Eds. Gas-Phase IR Spectroscopy and Structure of Biological Molecules; Springer, 2007.
(2) Schermann, J. P. Spectroscopy and Modeling of Biomolecular Building Blocks; Elsevier, 2007.
(3) Hoffmann, W.; Koltermann, K.; Moschner, J.; Huang, X.; von Berlepsch, H.; Koksch, B.; Bowers, M. T.; von Helden, G.; Pagel, K. NFGAII: Amyloid Oligomers: The Onset of Beta-Sheet Formation and the Mechanism for Fibrill Formation. J. Am. Chem. Soc. 2018, 140, 244–249.
(4) Scutelnic, V.; Lopez, A. M. A.; Marianski, M.; Warnke, S.; Gregor, A.; Rothlisberger, U.; Bowers, M. T.; Baldauf, C.; von Helden, G.; Rizzo, T. R.; et al. The Structure of the Protonated Serine Octamer. J. Am. Chem. Soc. 2018, 140, 7554–7560.
(5) Seo, J.; Warnke, S.; Pagel, K.; Bowers, M. T.; von Helden, G. Infrared Spectrum and Structure of the Homochiral Serine Octameric-Dichloride Complex. Nat. Chem. 2017, 9, 1263–1268.
(6) Bakels, S.; Porskamp, S. B. A.; Rijs, A. M. Formation of Neutral Peptide Aggregates as Studied by Mass-Selective IR Action Spectroscopy. Angew. Chem., Int. Ed. 2019, 58, 10537–10541.
(7) Cirtog, M.; Rijs, A. M.; Loquais, Y.; Brenner, V.; Tardivel, B.; Gloaguen, E.; Mons, M. Far/Mid-Infrared Signatures of Solvent Solute Interactions in a Microhydrated Model Peptide Chain. J. Phys. Chem. Lett. 2012, 3, 3307–3311.
(8) Gloaguen, E.; Mons, M. Isolated Neutral Peptides. Top. Curr. Chem. 2014, 364, 225–270.
(9) Habka, S.; Sohn, W. Y.; Vaquero-Vara, V.; Geleoc, M.; Tardivel, B.; Brenner, V.; Gloaguen, E.; Mons, M. On the Turn-Inducing Properties of Aspartic Acid: The Structuring Role of the Amide Side Chain, from Isolated Model Peptides to Crystallized Proteins. Phys. Chem. Chem. Phys. 2018, 20, 3411–3423.
(10) Habka, S.; Very, T.; Donon, J.; Vaquero-Vara, V.; Tardivel, B.; Charnay-Pouget, F.; Mons, M.; Atkén, D. J.; Brenner, V.; Gloaguen, E. Identification of Ion Pairs in Solution by IR Spectroscopy: Crucial Contributions of Gas Phase Data and Simulations. Phys. Chem. Chem. Phys. 2019, 21, 12798–12805.
(11) Jaeqx, S.; Du, W. N.; Meijer, E. J.; Oomens, J.; Rijs, A. M. Conformational Study of Z-Glu-OH and Z-Ar-OH: Dispersion Interactions versus Conventional Hydrogen Bonding. J. Phys. Chem. A 2013, 117, 1216–1227.
(12) Jaeqx, S.; Oomens, J.; Rijs, A. M. Gas-Phase Salt Bridge Interactions Between Glutamic Acid and Arginine. Phys. Chem. Chem. Phys. 2013, 15, 16341–16352.
(13) Mahe, J.; Bakker, D. J.; Jaeqx, S.; Rijs, A. M.; Gaigeot, M. P. Mapping Gas Phase Dipeptide Motions in the Far-Infrared and Terahertz Domain. Phys. Chem. Chem. Phys. 2017, 19, 13778–13877.
(14) Mahe, J.; Jaeqx, S.; Rijs, A. M.; Gaigeot, M. P. Can Far-IR Action Spectroscopy Combined with BOMD Simulations be Conformation Selective? Phys. Chem. Chem. Phys. 2015, 17, 25905–25914.
(15) Rijs, A. M.; Ohansson, G.; Oomens, J.; Meijer, G.; von Helden, G.; Compagnon, I. Anharmonic Simulations of the Neutral Dichloride Complex. Nat. Chem. 2014, 6, 611–616.
(16) Seo, J.; Warnke, S.; Pagel, K.; Bowers, M. T.; von Helden, G.; Kleinermanns, K. Internal Proton Transfer Leading to Stable Zwitterionic Structures in a Neutral Isolated Peptide. Angew. Chem., Int. Ed. 2010, 49, 2332–2335.
(17) Boldissar, S.; de Vries, M. S.; Vrieze, B.; Vrieze, M. S. How Nature Covers its Bases. Angew. Chem., Int. Ed. 2010, 49, 2332–2335.
Spectroscopy for the Analysis of Glycan Mixtures. Anal. Chem. 2019, 91, 4876–4882.

(25) Ellerin, H.; Mensink, R. A.; Casteljins, W. W. A.; Jensen, O.; Brukens, J. P. J.; Martens, J.; Oomens, J.; Rijks, A. M.; boltje, T. J. The Glycosylation Mechanisms of 6,3-Uronic Acid Lactones. Angew. Chem., Int. Ed. 2019, 58, 8746–8751.

(26) Ellerin, H.; Severinjen, M. E.; Martens, J.; Mensink, R. A.; Berden, G.; Oomens, J.; Ruitjes, F.; Rijks, A. M.; Boltje, T. J. Direct Experimental Characterization of Glycosyl Cations by Infrared Ion Spectroscopy, J. Am. Chem. Soc. 2018, 140, 6034–6038.

(27) Manz, C.; Pagel, K. Glycan Analysis by Ion Mobility-Mass Spectrometry and Gas-Phase Spectroscopy. Curr. Opin. Chem. Biol. 2018, 42, 16–24.

(28) Maselli, C.; Khanal, N.; Kamrath, M. Z.; Clemmer, D. E.; Rizzo, T. R. Cryogenic Vibrational Spectroscopy Provides Unique Fingerprints for Glycan Identification. J. Am. Soc. Mass Spectrom. 2017, 28, 2217–2222.

(29) Mucha, E.; Lettow, M.; Marianski, M.; Thomas, D. A.; Struwe, W. B.; Harvey, D. J.; Meijer, G.; Seeberger, P. H.; von Helden, G.; Pagel, K. Fucose Migration in Intact Protonated Glycan Ions: A Universal Phenomenon in Mass Spectrometry. Angew. Chem., Int. Ed. 2018, 57, 7440–7443.

(30) Mucha, E.; Stuckmann, A.; Marianski, M.; Struwe, W. B.; Meijer, G.; Pagel, K. In-Depth Structural Analysis of Glycans in the Gas Phase. Chem. Sci. 2019, 10, 1272–1284.

(31) Rijks, A. M.; Sandig, N.; Blom, M. N.; Oomens, J.; Hanann, J. S.; Leigh, D. A.; Zerbetto, F.; Buma, W. J. Controlled Hydrogen-Bond Breaking in a Rotaxane by Discrete Solvation. Angew. Chem., Int. Ed. 2010, 49, 3896–3900.

(32) Rijks, A. M.; Crews, B. O.; de Vries, M. S.; Hannam, J. S.; Leigh, D. A.; Fantii, M.; Zerbetto, F.; Buma, W. J. Shaping of a Conformationally Flexible Molecular Structure for Spectroscopy. Angew. Chem., Int. Ed. 2008, 47, 3174–3179.

(33) Rijks, A. M.; Compagnon, I.; Oomens, J.; Hanann, J. S.; Leigh, D. A.; Buma, W. J. Still, and Sticky in the Right Places: Binding Interactions in Isolated Mechanically Interlocked Molecules Probed by Mid-Infrared Spectroscopy. J. Am. Chem. Soc. 2009, 131, 2428–2429.

(34) Rijks, A. M.; Kay, E. R.; Leigh, D. A.; Buma, W. J. IR Spectroscopy on Jet-Cooled Isolated Two-Station Rotaxanes. J. Phys. Chem. A 2011, 115, 9669–9675.

(35) Fieilcice, A.; Kirilvuk, A.; Ratsch, C.; Behler, J.; Scheffler, M.; von Helden, G.; Meijer, G.; Struwe, W. J. Structure Determination of Isolated Metal Clusters via Far-Infrared Spectroscopy. Phys. Rev. Lett. 2004, 93, 4.

(36) Gruene, P.; Rayner, D. M.; Redlich, B.; van der Meer, A. F. G.; Lyon, J. T.; Meijer, G.; Fieilcice, A.; Structures of Neutral Au13, Au128, and Au132 Clusters in the Gas Phase. Science 2008, 321, 674–676.

(37) Lang, S. M.; Bernhardt, T. M.; Kiawi, D. M.; Bakker, J. M.; Barnett, R. N.; Landman, U. The Interaction of Water with Free MnO4⁻ Clusters: Deprotonation and Adsorption-Induced Structural Transformations. Angew. Chem., Int. Ed. 2015, 54, 15113–15117.

(38) Lushchikova, O. V.; Huitema, D. M. M.; Lopez-Tarifa, P.; Visscher, L.; Jamshidi, Z.; Bakker, J. M. Structures of Cu3⁺ (n = 3–10) Clusters Obtained by Infrared Action Spectroscopy. J. Phys. Chem. Lett. 2019, 10, 2151–2155.

(39) Asmis, K. R.; Pironova, N. L.; Santambrogio, G.; Brummer, M.; Kaposta, C.; Neumark, D. M.; Woste, L. Gas-Phase Infrared Spectrum of the Protonated Water Dimer. Science 2003, 299, 1375–1377.

(40) Bakker, D. J.; Deij, A.; Tabor, D. P.; Ong, Q.; Mahe, J.; Gaiegeot, M. P.; Sibert, E. L.; Rijks, A. M. Fingerprints of Inter- and Intramolecular Hydrogen Bonding in Saligenin-Water Clusters Revealed by Mid- and Far-Infrared Spectroscopy. Phys. Chem. Chem. Phys. 2017, 19, 20343–20356.

(41) Berend, D. J.; Dietrich, F.; Fatima, M.; Perez, C.; Plobotki, A.; Jansen, G.; Suhm, M. A.; Schnell, M.; Gerhards, M. Multi-Spectroscopic and Theoretical Analyses on the Diphenyl Ether-tert-butil Alcohol Complex in the Electronic Ground and Electronically Excited State. Phys. Chem. Chem. Phys. 2017, 19, 18076–18088.
(99) Lee, J. J.; Albrecht, M.; Rice, C. A.; Suhm, M. A.; Stamm, A.; Zimmer, M.; Gerhards, M. Adaptive Aggregation of Peptide Model Systems. J. Phys. Chem. A 2013, 117, 7050–7063.

(100) Blake, G. A.; Laughlin, K. B.; Cohen, R. C.; Busarow, K. L.; Gwo, D. H.; Schmuttenmaer, C. A.; Steyert, D. W.; Saykally, R. J. The Berkeley Tunable Far Infrared-Laser Spectrometers. Rev. Sci. Instrum. 1991, 62, 1701–1716.

(101) Blake, G. A.; Laughlin, K. B.; Cohen, R. C.; Busarow, K. L.; Gwo, D. H.; Schmuttenmaer, C. A.; Steyert, D. W.; Saykally, R. J. Tunable Far Infrared-Laser Spectrometers. Rev. Sci. Instrum. 1991, 62, 1693–1700.

(102) Cole, W. T. S.; Yonder, O.; Sheikh, A. A.; Fellers, R. S.; Viant, M. R.; Saykally, R. J.; Farrell, J. D.; Wales, D. J. Terahertz VRT Spectroscopy of the Water Hexamer-h12 Cage: Dramatic Libration-Induced Enhancement of Hydrogen Bond Tunneling Dynamics. J. Phys. Chem. A 2018, 122, 7421–7436.

(103) Lin, W.; Steyert, D. W.; Hlavacek, N. C.; Mukhopadhyay, A.; Page, R. H.; Siegel, P. H.; Saykally, R. J. Terahertz Vibration-Rotation-Tunneling Spectroscopy of the Propylene-Water Dimer: The Ortho-state of a 20 cm−1 Torison. Chem. Phys. Lett. 2014, 612, 167–171.

(104) Cole, W. T. S.; Hlavacek, N. C.; Lee, A. W. M.; Kao, T. Y.; Hsu, Q.; Reno, J. L.; Saykally, R. J. Terahertz VRT Spectrometer Employing Quantum Cascade Lasers. Chem. Phys. Lett. 2015, 638, 144–148.

(105) Cole, W. T. S.; Fellers, R. S.; Viant, M. R.; Leforestier, C.; Saykally, R. J. Far-Infrared VRT Spectroscopy of the Water Dimer: Characterization of the 20 μm Out-of-Plane Librational Vibration. J. Chem. Phys. 2015, 143, 154306.

(106) Brown, G. G.; Dian, B. C.; Douglass, K. O.; Geyer, S. M.; Shipman, S. T.; Pate, B. H. A Broadband Fourier Transform Microwave Spectrometer based on Chirped Pulse Excitation. Rev. Sci. Instrum. 2008, 79, No. 053103.

(107) Patterson, D.; Schnell, M.; Doyle, J. M. Enantiomer-Specific Detection of Chiral Molecules via Microwave Spectroscopy. Nature 2013, 497, 475–477.

(108) Mouhib, H.; Stahl, W.; Luthy, M.; Buchel, M.; Kraft, P. Cassis Odor through Microwave Eyes: Olfactory Properties and Gas-Phase Structures of all the Cassyran Stereoisomers and its Dihydro Derivatives. Angew. Chem., Int. Ed. 2011, 50, 5576–5580.

(109) Puzzarini, C.; Biczysko, M.; Barone, V.; Pena, I.; Cabezás, C.; Alonso, J. L. Accurate Molecular Structure and Spectroscopic Properties of Nucleobases: a Combined Computational-Microwave Spectroscopic and Computational Study. Phys. Chem. Chem. Phys. 2017, 19, 23999–24008.

(110) Mayorkas, N.; Izbitski, S.; Bernat, A.; Bar, I. Simultaneous Ionization-Detected Stimulated Raman and Visible–Visible–Ultra-violet Hole-Burning Spectra of Two Tryptamine Conformers. J. Phys. Chem. Lett. 2012, 3, 603–607.

(111) Golan, A.; Mayorkas, N.; Rosenwaks, S.; Bar, I. Raman Spectral Signatures as Conformational Probes of Gas Phase Flexible Molecules. J. Phys. Chem. 2009, 113, No. 024305.

(112) Schmitt, M.; Spiering, F.; Zhaunerchych, V.; Jongma, R. T.; Jaeqs, S.; Rijs, A. M.; van der Zande, W. J. Far-Infrared Spectra of the Tryptamine A Conformer by IR-UV Ion Gain Spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 32116–32124.

(113) Schmitt, M.; Feng, K.; Boehm, M.; Kleinnerners, K. Low Frequency Backbone Vibrations of Individual Conformational Isomers: Tryptamine. J. Chem. Phys. 2006, 125, 144303.

(114) Schmitt, M.; Henrichs, U.; Muller, H.; Kleinnerners, K. Intermolecular Vibrations of the Phenol Dimer Revealed by Spectral Hole-Burning and Dispersed Fluorescence Spectroscopy. J. Chem. Phys. 1995, 103, 9918–9928.

(115) Boning, M.; Stahlmann, B.; Engler, G.; Kleinnerners, K. Isomer-Selective Vibrational Spectroscopy of Jet-Cooled Phenol-Acetylene Aggregates. J. Phys. Chem. A 2013, 117, 3214–3220.

(116) Kim, N. J.; Kang, H.; Park, Y. D.; Kim, S. K. Dispersed Fluorescence Spectroscopy of Jet-Cooled Adenine. Phys. Chem. Chem. Phys. 2004, 6, 2802–2805.

(117) Kittrell, C.; Abramson, E.; Kinsey, J. L.; Mcdonald, S. A.; Reiner, D. E.; Field, R. W.; Katayama, D. H. Selective Vibrational-Excitation by Stimulated-Emission Pumping. J. Chem. Phys. 1981, 75, 2056–2059.

(118) Cooper, D. E.; Klimcak, C. M.; Wessel, J. E. Ion Dip Spectroscopy - a New Technique of Multi-Photon Ionization Spectroscopy Applied to I-. Phys. Rev. Lett. 1981, 46, 324–328.

(119) Suzuki, T.; Mikami, N.; Ito, M. 2-Color Stimulated-Emission Spectroscopy of Trans-Stilbene - Large-Amplitude Torsional Motion in the Ground-State and Its Role in Intramolecular Vibrational Redistribution. J. Phys. Chem. 1986, 90, 6431–6440.

(120) Ibata, T.; Ito, M. Ground-State IVR of Jet-Cooled P-Alkylphenols and P-Alkylanilines Studied by Stimulated-Emission Ion Dip and Stimulated Raman-UV Optical Double-Resonance Spectroscopies. J. Phys. Chem. 1992, 96, 3224–3231.

(121) Bakker, D. J.; Ong, Q.; Dey, A.; Mahe, J.; Gaigeot, M. P.; Rijs, A. M. Anharmonic, Dynamic and Functional Level Effects in Far-infrared Spectroscopy: Phenol Derivatives. J. Mol. Spectrosc. 2017, 342, 4–16.

(122) Bakker, D. J. Ph.D. Dissertation, Radboud University, 2017, https://repository.uwb.nl/bitstream/handle/2066/177068/177068.pdf?sequence=1, (accessed January 28, 2020).

(123) Nagornova, N. S.; Rizzo, T. R.; Boyarkin, O. V. Exploring the Mechanism of IR-UV Double-Resonance for Quantitative Spectroscopy of Protonated Polypeptides and Proteins. Angew. Chem., Int. Ed. 2013, 52, 6002–6005.

(124) Bakels, S.; Meijer, E. M.; Greuell, M.; Porspark, S. B. A.; Rouwhorst, G.; Mahe, J.; Gaigeot, M. P.; Rijs, A. M. Interactions of Aggregating Peptides Probed by IR-UV Action Spectroscopy. Faraday Discuss. 2019, 217, 322–342.

(125) Freundenberg, H.; Sligar, S. G.; Wolynes, P. G. The Energy Landscapes and Motions of Proteins. Science 1991, 254, 1596–1603.

(126) Callender, R. H.; Dyer, R. B.; Gilmanshin, R.; Woodruff, W. H. Fast Events in Protein Folding: The Time Evolution of Primary Processes. Annu. Rev. Phys. Chem. 1998, 49, 173–202.

(127) Takahashi, S.; Yeh, S.-R.; Das, T. K.; Chan, C.-K.; Gottfried, D. S.; Rousseau, D. L. Folding of Cytochrome C Initiated by Submillisecond Mixing. Nat. Struct. Mol. Biol. 1997, 4, 44.

(128) Burton, D. A.; Senn, H. M.; Harwood, T.; Lathorn, A. J.; Ellis, E. M.; Wynne, K. Terahertz Underdamped Vibrational Motion Governs Protein-Ligand Binding in Solution. Nat. Commun. 2014, 5, 3999.
(175) Chin, W.; Mons, M.; Dognon, J. P.; Piuze, F.; Tardivel, B.; Dimicoli, I. Competition Between Local Conformational Preferences and Secondary Structures in Gas-Phase Model Tripeptides as Revealed by Laser Spectroscopy and Theoretical Chemistry. *Phys. Chem. Chem. Phys.* 2004, 6, 2700–2709.

(176) Mons, M.; Dimiccoli, I.; Piuze, F.; Tardivel, B.; Elhanine, M. Tautomeration of the DNA Base Guanine and Its Methylated Derivatives as Studied by Gas-phase Infrared and Ultraviolet Spectroscopy. *J. Phys. Chem. A* 2002, 106, 5088–5094.

(177) Gloaguen, E.; Valdes, H.; Pagliarulo, F.; Pellet, R.; Tardivel, B.; Hobza, P.; Piuze, F.; Mons, M. Experimental and Theoretical Investigation of the Aromatic–Aromatic Interaction in Isolated Capped Dipeptides. *J. Phys. Chem. A* 2010, 114, 2973–2982.

(178) Teschmit, N.; Horke, D. A.; Kupper, J. Spatially Separating the Conformers of a Dipeptide. *Angew. Chem., Int. Ed.* 2018, 57, 13775–13779.

(179) Zehnacker, A.; Suhm, M. A. Chirality Recognition between Neutral Molecules in the Gas Phase. *Angew. Chem., Int. Ed.* 2008, 47, 6970–6992.

(180) Perez-Mellor, A.; Alata, I.; Lepere, V.; Zehnacker, A. Conformational Study of the Jet-Cooled Diketopiperazine Peptide Cyclo Tyrosoyl-Prolyl. *J. Phys. Chem. B* 2019, 123, 6023–6033.

(181) Gotch, A. J.; Ziewer, T. S. Multiphoton Ionization Studies of Clusters of Immiscible Liquids: \(\text{C}_6\text{H}_6(\text{H}_2\text{O})_n, n = 1,2 \). *J. Chem. Phys.* 2008, 129, 034301.

(182) Smalley, R. E.; Wharton, L.; Levy, D. H. Molecular Optical Spectroscopy. *Rev. Sci. Instrum.* 1984, 55, 2973–2982.

(183) Cismesia, A. P.; Bell, M. R.; Tesler, L. F.; Alves, M.; Polfer, N. C. Infrared Ion Spectroscopy: An Analytical Tool for the Study of Metalloswitches. *Analytical Chemistry* 2018, 143, 1615–1623.

(184) Stern, O. Zur Methode der Molekülarstrahlen. *I. Eur. Phys. J. A* 1926, 39, 751–763.

(185) Dunoyer, L. Comptes Rendus Acad. Sc. *Paris* 1911, 152, 594.

(186) Kantrowitz, A.; Grey, J. A. High Intensity Source for the Molecular Beam. *I. Theoretical. Rev. Sci. Instrum.* 1951, 22, 328–332.

(187) Smalley, R. E.; Wharton, L.; Levy, D. H. Molecular Optical Spectroscopy with Supersonic Beams and Jets. *Acc. Chem. Res.* 1977, 10, 139–145.

(188) Johnston, M. V. Supersonic Jet Expansions in Analytical Spectroscopy. *TAC, Trends Anal. Chem.* 1984, 3, 58–61.

(189) Miller, T. A. Chemistry and Chemical Intermediates in Supersonic Free Jet Expansions. *Science* 1984, 223, 545–553.

(190) Gloaguen, E.; de Courcy, B.; Piquemal, J. P.; Pilme, J.; Parisel, G.; Compagnon, I.; Ohanessian, G. Globule to Helix Transition in Sodiated Polyalanes. *J. Phys. Chem. Lett.* 2012, 3, 3320–3324.

(191) Stedwell, C. N.; Galindo, J. F.; Roitberg, A. E.; Polfer, N. C. In *Annu. Rev. Anal. Chem.*; Cooks, R. G., Pemberton, J. E., Eds.; 2013; Vol. 6, pp 267–285.

(192) Cismesia, A. P.; Bell, M. R.; Tesler, L. F.; Alves, M.; Polfer, N. C. Infrared Ion Spectroscopy: An Analytical Tool for the Study of Metalloswitches. *Analytical Chemistry* 2018, 143, 1615–1623.

(193) Stearns, J. A.; Boyarkin, O. V.; Rizzo, T. R. Spectroscopic Signatures of Gas-phase Helices: Ac-Phe-(Ala)\(_n\)-Lys-H\(^+\) and Ac-Phe-(Ala)\(_n\)-Lys-H\(^+\). *J. Am. Chem. Soc.* 2007, 129, 15820–15821.

(194) Rizzo, T. R.; Stearns, J. A.; Boyarkin, O. V. Spectroscopic Studies of Cold, Gas-Phase Biomolecular Ions. *Int. Rev. Phys. Chem.* 2009, 28, 481–515.

(195) Gaigeot, M.-P.; Spezia, R. Theoretical Methods for Vibrational Spectroscopy and Collision Induced Dissociation in the Gas Phase. *Top. Curr. Chem.* 2014, 364, 99–151.

(196) Dunbar, R. C.; Martens, J.; Berden, G.; Oomens, J. Binding of Divalent Metal Ions with Deprotonated Peptides: Do Gas-Phase Anions Parallel the Condensed Phase? *J. Phys. Chem. A* 2018, 122, 5589–5596.

(197) van Outersterp, R. E.; Martens, J.; Berden, G.; Steil, J. D.; Oomens, J.; Rijs, A. M. Structural Characterization of Nucleotide 5'-Triphosphates by Infrared Ion Spectroscopy and Theoretical Studies. *Phys. Chem. Chem. Phys.* 2018, 20, 28319–28330.

(198) Compagnon, I.; Oomens, J.; Bakker, J.; Meijer, G.; von Helden, G. Vibrational Spectroscopy of a Non-Aromatic Amino Acid-based Model Peptide: Identification of the Gamma-turn Motif of the Peptide Backbone. *Phys. Chem. Chem. Phys.* 2005, 7, 13–15.

(199) Barnes, L.; Schindler, B.; Chambert, S.; Allouche, A. R.; Compagnon, I. Conformational Preferences of Protonated N-Acetylated Hexosamines Probed by Infrared Multiple Photon Dissociation (IRMPD) Spectroscopy and Ab Initio Calculations. *Int. J. Mass Spectrom.* 2017, 421, 116–123.

(200) Kyle, J.; Miyazaki, M.; Fujii, M.; Dopfer, O. Sequential Microhydration of Cationic S-Hydroxynidole (SH\(^+\)): Infrared Photodissociation Spectra of SH\(^+\)-W Clusters (\(W = \text{H}_2\text{O}, n \leq 4 \)). *Phys. Chem. Chem. Phys.* 2018, 20, 3092–3108.

(201) Ishii, S.; Sasaki, Y.; Lisy, J. M.; Fuji, M. Ion-Peptide Interactions between Alkalai Metal Ions and a Termini-protected Dipeptide: Modeling a Portion of the Selectivity Filter in K\(^+\) Channels. *Phys. Chem. Chem. Phys.* 2019, 21, 561–571.

(202) Bittner, V.; Nicely, A. L.; Sieffert, N.; Gaigeot, M.-P.; Lisy, J. M. High Energy Conformers of \(\text{M}(\text{APE})(\text{H}_2\text{O})_{n-1},n \geq 1 \), Clusters Revealed by Combined IR-PD and DFT-MD Anharmonic Vibrational Spectroscopy. *Phys. Chem. Chem. Phys.* 2014, 16, 13086–13095.

(203) Rodriguez, J. D.; Lisy, J. M. Probing Ionophore Selectivity in Argon-Tagged Hydrated Alkalai Metal Ion-Crown Ether Systems. *J. Am. Chem. Soc.* 2011, 133, 11136–11146.

(204) Fischer, K. C.; Voss, J. M.; Zhou, J.; Garand, E. Probing Solvation-Induced Structural Changes in Conformationally Flexible Peptides: IR Spectroscopy of Gly\(^2\)-H\(^+\)(\(\text{H}_2\text{O} \)). *J. Phys. Chem. A* 2018, 122, 8213–8221.
Design of Therapeutic Strategies for Amyloid Diseases. Biophysical and Structural Studies of Protein Self-Assembly to the Phys. Chem. Chem. Phys. Hydrogen Bond Interactions. Chem. Rev. pubs.acs.org/CR

NH2 and Ac-Phe-Cys-NH2: Probing the SH Laser Spectroscopy of Isolated Model Peptides. Cysteine Side Chains and Backbone Conformations, Revealed by Residue Interactions in Proteins: Interplay between Serine or 2015 Phys. J. Chem. Phys. 139, 244518. J. Chem. Phys. Finite Temperature. Extracting Effective Normal Modes from Equilibrium Dynamics at Molecular Dynamics Simulations: Application to Small Peptides. Spectroscopy in the Gas and Liquid Phase from First Principle Simulation Methods for Liquid Water. Leakage in Condensed Phase Dynamics: An Assessment of Quantum Chemical Dynamics Simulations. II. Solvent-Induced Frequency Fluctuations in Dynamics Simulations. I. Theory, Limitations, and a Normal-mode analysis without the Hessian: A driven molecular-dynamics approach. J. Chem. Phys. 2003, 119, 664–650. Kaledin, M.; Brown, A.; Kaleidin, A. L.; Bowman, J. M. Normal Mode Analysis using the Driven Molecular Dynamics Method. II. An Application to Biological Macromolecules. J. Chem. Phys. 2004, 121, 5646–5653. Galimberti, D. R.; Milano, A.; Tommasini, M.; Castiglioni, C.; Gaigeot, M.-P. Combining Static and Dynamical Approaches for Infrared Spectra Calculations of Gas Phase Molecules and Clusters. J. Chem. Theory Comput. 2013, 13, 3802–3813.

(259) Nierhaus, H. K.; Davis, D. H.; Vallee, B. L.; Kuriyan, J. The Structure of the Ribosome. Annu. Rev. Biochem. 1993, 62, 1457–1480.

(260) Habershon, S.; Manolopoulos, D. E. Zero Point Energy Leakage in Condensed Phase Dynamics: An Assessment of Quantum Simulation Methods for Liquid Water. J. Chem. Phys. 2009, 131, 244518.

(261) Martinez, M.; Gaigeot, M. P.; Borgis, D.; Vuilleumier, R. Extracting Effective Normal Modes from Equilibrium Dynamics at Finite Temperature. J. Chem. Phys. 2006, 125, 241406–241406.

(262) Gaigeot, M.-P.; Martinez, M.; Vuilleumier, R. Infrared Spectroscopy in the Gas and Liquid Phase from First Principle Molecular Dynamics Simulations: Application to Small Peptides. Mol. Phys. 2007, 105, 2857–2878.

(263) Mathias, G.; Ivanov, S. D.; Witt, A.; Baer, M. D.; Marx, D. Infrared Spectroscopy of Fluxional Molecules from (ab Initio) Molecular Dynamics: Resolving Large-Amplitude Motion, Multiple Conformations, and Permutational Symmetries. J. Chem. Theory Comput. 2012, 8, 224–234.

(264) Schmitz, M.; Tavan, P. Vibrational Spectra from Atomic Fluctuations in Dynamics Simulations. I. Theory, Limitations, and a Sample Application. J. Chem. Phys. 2004, 121, 12233–12246.

(265) Schmitz, M.; Tavan, P. Vibrational Spectra from Atomic Fluctuations in Dynamics Simulations. II. Solvent-Induced Frequency Fluctuations at Femtosecond Time Resolution. J. Chem. Phys. 2004, 121, 12247–12258.

(266) Bowman, J. M.; Zhang, X. B.; Brown, A. Normal-mode analysis without the Hessian: A driven molecular-dynamics approach. J. Chem. Phys. 2003, 119, 664–650.

(267) Kaledin, M.; Brown, A.; Kaleidin, A. L.; Bowman, J. M. Normal Mode Analysis using the Driven Molecular Dynamics Method. II. An Application to Biological Macromolecules. J. Chem. Phys. 2004, 121, 5646–5653.

(268) Galimberti, D. R.; Milano, A.; Tommasini, M.; Castiglioni, C.; Gaigeot, M.-P. Combining Static and Dynamical Approaches for Infrared Spectra Calculations of Gas Phase Molecules and Clusters. J. Chem. Theory Comput. 2013, 13, 3802–3813.

(269) Alauddin, M.; Biswal, H. S.; Gloaguen, E.; Mons, M. Intra-Residue Interactions in Proteins: Interplay between Serine or Cysteine Side Chains and Backbone Conformations, Revealed by Laser Spectroscopy of Isolated Model Peptides. Phys. Chem. Chem. Phys. 2015, 17, 2169–2178.

(270) Yan, B.; Jaeqx, S.; van der Zande, W. J.; Rijis, A. M. A Conformation-Selective IR-UV Study of the Dipeptides Ac-Phe-Ser-NH2 and Ac-Phe-Cys-NH2: Probing the SH—O and OH—O Hydrogen Bond Interactions. Phys. Chem. Chem. Phys. 2014, 16, 10770–10778.

(271) Cremades, N.; Dobson, C. M. The Contribution of Biophysical and Protein Structural Studies to the Design of Therapeutic Strategies for Amyloid Diseases. Neurobiol. Dis. 2018, 109, 178–190.

(272) te Brinke, E.; Groen, J. H.; Herrmann, A.; Heus, H. A.; Rivas, G.; Spruijt, E.; Huck, W. T. S. Dissipative Adaptation in Driven Self-Assembly Leading to Self-Dividing Fibrils. Nat. Nanotechnol. 2018, 13, 849–855.

(273) Okesola, B. O.; Mata, A. Multicomponent Self-Assembly as a Tool to Harness New Properties from Peptides and Proteins in Material Design. Chem. Soc. Rev. 2018, 47, 3721–3736.

(274) Tao, K.; Levin, A.; Adler-Abramovich, L.; Gazit, E. Fmoc-Modified Amino Acids and Short Peptides: Simple Bio-Inspired Building Blocks for the Fabrication of Functional Materials. Chem. Soc. Rev. 2016, 45, 3935–3953.

(275) Hartl, F. U. In Annu. Rev. Biochem.; Kornberg, R. D., Ed.; 2017; Vol. 86, pp 21–26.

(276) Chiti, F.; Dobson, C. M. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu. Rev. Biochem. 2017, 86, 27–68.

(277) Eisenberg, D. S.; Sawaya, M. R. Structural Studies of Amyloid Proteins at the Molecular Level. Annu. Rev. Biochem. 2017, 86, 69–95.

(278) Gerhards, M.; Unterberg, C.; Gerlach, A.; Jansen, A. β-Sheet Model Systems in the Gas Phase: Structures and Vibrations of Ac-Phe-NHMe and its Dimer (Ac-Phe-NHMe)2. Phys. Chem. Chem. Phys. 2004, 6, 2682–2690.

(279) Vaden, T. D.; Govers, S. A. N.; Snoek, L. C. Observation of β-Sheet Aggregation in a Gas-Phase Tau-Peptide Dimer. J. Am. Chem. Soc. 2009, 131, 2472–2474.