INTRODUCTION
Microbial infections and inflammatory conditions in the male genital tract are responsible for approximately 15.0% of male infertility cases in developed countries, and this ratio can be much higher in undeveloped countries. Epididymitis and orchitis are more likely to contribute to male infertility than inflammatory conditions in the accessory sexual glands, including the prostate and seminal vesicle glands. Epididymitis is more common than orchitis in outpatient visitors. Orchitis often occurs with epididymitis and is termed epididymo-orchitis. Epididymitis can take an acute form with symptoms lasting several weeks, or it can be chronic lasting more than 3 months. Acute epididymitis can be caused by the reflux of urine into the ejaculatory ducts or by retrograde bacterial infection ascending the urogenital tracts. The mumps virus can induce epididymitis as epididymo-orchitis syndrome. However, many epididymitis cases lack evidence of microbial infections in the reproductive tract. Various risk factors for noninfectious epididymitis have been identified including a previous systemic infection, adverse reaction to a medication, physical trauma of the scrotum, and prolonged sitting or bicycle riding. The mechanisms by which these risk factors induce noninfectious epididymitis are unknown.

Most male germ cells are generated in puberty, when a considerable time has passed since the establishment of self-tolerance to autoantigens during the fetal and neonatal periods. Therefore, male germ cells produce immunogenic antigens that may induce an autoimmune response. Male germ cells do not induce inflammation in the testis under physiological conditions because of the immunoprivileged status of the testis. However, autoimmune orchitis can occur under certain pathological conditions, such as physical trauma, and exposure to chemical toxins or high temperature that may damage germ cells. The accumulation of apoptotic germ cells related to defective clearance mechanisms in the testis favors autoimmune orchitis. We previously demonstrated that damaged male germ cells (DMGCs) induce an innate immune response in Sertoli cells, thereby upregulating the expression of pro-inflammatory cytokines and chemokines that promote inflammation. These previous studies suggested that DMGCs might induce endogenous inflammation in the testis.

Although the epididymis is also considered an immunoprivileged organ, immunosuppression in the epididymis is not as complete as in the testis. Therefore, we hypothesized that DMGCs induce epididymitis when they are present in the epididymis. Busulfan is an alkyl sulfonate, a cell cycle nonspecific alkylating antineoplastic agent. Busulfan severely damages male germ cells. We used a busulfan-induced male germ cell damage model to provide substantial evidence that DMGCs induce epididymitis in mice. Therefore, DMGC might be an etiological factor in noninfectious epididymitis associated with various risk factors that may damage male germ cells.

Keywords: busulfan; epididymitis; innate immune response; male germ cell; male infertility
MATERIALS AND METHODS

Animals

C57BL/6J mice were obtained from the Laboratory Animal Center of the Peking Union Medical College (Beijing, China). Tumor necrosis factor-α knockout (TNF-α−/−) mice (B6/129S6-TNFm1GK1/J) on a C57BL/6J background were purchased from the Jackson Laboratory (Bar Harbor, ME, USA). Wild-type (WT) mice were obtained by backcrossing knockout mice to C57BL/6J mice. The mice were maintained in a specific pathogen-free facility with a 12 h/12 h light/dark cycle and were provided with food and water ad libitum. The mice were handled in compliance with the guidelines (ACUC-A01-2018-008) for the Care and Use of Laboratory Animals established by the Chinese Council on Animal Care. The experimental procedures were approved by the Institutional Animal Care and Use Committee of the Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (Beijing, China).

Antibodies and major reagents

Rat monoclonal anti-F4/80 (ab6640), rabbit polyclonal anti-CD45 (ab10558), rabbit monoclonal anti-CD14 (ab183685), rabbit polyclonal anti-CD8 (ab203035), and rat monoclonal anti-B220 (ab64100) antibodies and pan-cytokeratin (ab7753) were purchased from Abcam (Cambridge, UK). Horseradish peroxidase (HRP)-conjugated secondary antibodies and 3,3’-diaminobenzidine (DAB) were purchased from Zhongshan Biotechnology Co. (Beijing, China). Collagenase type IV (C0130-100MG), hyaluronidase (H3506-100MG), and busulfan (S85543-229) were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Busulfan injection

Busulfan was dissolved in dimethyl sulfoxide (DMSO) at 5 mg ml−1 and diluted with 2× phosphate-buffered saline (PBS) at a ratio of 1:1. Ten-week-old male mice received an intraperitoneal injection of a single dose of busulfan (25 mg kg−1). Mice injected with the same volume of a mixture of DMSO and PBS served as the controls. Five mice per group were injected for one experiment, and the total number of mice in the study is listed in Supplementary Table 1.

Histology and immunohistochemical staining

For histological analysis, the testes and epididymides were fixed in 4% formaldehyde (Sigma-Aldrich) for 24 h. Ten-week-old male mice were dissected and fixed in 4% paraformaldehyde (Sigma-Aldrich) for 4 h. The tissues were then dehydrated in a graded series of ethanol and embedded in paraffin. Sections 5 μm thick were cut and rehydrated in a graded series of ethanol before being mounted with neutral balsam (Zhongshan Biotechnology Co.) for observation by a light microscope (BX-51, Olympus, Osaka, Japan).

For immunohistochemical staining, the sections were soaked in citrate buffer (11 mmol l−1, pH 6.0; Zhongshan Biotechnology Co.) and heated in a microwave oven at 100°C for 15 min to retrieve the antigens. The sections were washed three times with 1× PBS and then incubated in 1× PBS containing 3% (v/v) H2O2 (Zhongshan Biotechnology Co.) for 15 min to inhibit endogenous peroxidase activity. After washing three times, the sections were blocked with 5% (v/v) normal goat sera (Zhongshan Biotechnology Co.) in PBS for 1 h at room temperature and then incubated with the primary antibodies overnight at 4°C. The sections were washed three times with PBS and incubated with the appropriate HRP-conjugated secondary antibodies at room temperature for 30 min. The HRP activity was visualized using the DAB method. The negative controls were incubated with preimmune rabbit sera (Zhongshan Biotechnology Co.) instead of primary antibodies. The sections were counterstained with hematoxylin and mounted with neutral balsam for observation.

Cell isolation

Primary epididymal epithelial cells (EECs) were isolated from 4-week-old C57BL/6J mice based on previously described procedures. In brief, mice were anesthetized with CO2 and euthanized by cervical dislocation. The entire epididymis of each mouse was collected and incubated with 10 mg ml−1 collagenase type IV (Sigma-Aldrich) in F12 Dulbecco’s modified Eagle’s medium (DMEM; Life Technologies Inc., Gaithersburg, MD, USA) at 37°C for 30 min to remove the interstitial cells. The epididymal tubules were collected after filtration through an 80-μm copper mesh and then treated with 0.5 mg ml−1 hyaluronidase (Sigma-Aldrich) in F12/DMEM at 37°C for 15 min to remove peritubular smooth muscle cells. The tubules were cut into small pieces (approximately 1 mm) and treated with 1.0 mg ml−1 hyaluronidase at 37°C for 30 min with occasional gentle pipetting. The suspensions were filtered through an 80-μm copper mesh. EECs were collected and cultured in a humidified atmosphere containing 5% (v/v) CO2 at 37°C in F12/DMEM supplemented with 1.2 mg ml−1 sodium bicarbonate (Sinopharm Chemical Reagent Co., Ltd., Beijing, China), 10% (v/v) fetal bovine serum (Life Technologies), 100 U ml−1 penicillin, and 100 μg ml−1 streptomycin. The EEC purity was >95% from assessment by immunofluorescence staining for pan-cytokeratin, a marker of pan-epithelial cells.

Male germ cells were isolated from 10-week-old mice on the basis of previously described procedures. Briefly, the testes were decapsulated and incubated with 1 mg ml−1 collagenase type IV at 37°C for 15 min with gentle oscillation. The suspensions were filtered through an 80-μm copper mesh to remove the interstitial cells. The seminiferous tubules were cut into small pieces of approximately 1 mm and incubated with 0.5 mg ml−1 hyaluronidase at 37°C for 10 min with pipetting. After filtration through an 80-μm copper mesh, cell suspensions were collected and cultured in F12/DMEM at 37°C for 6 h. During that time, the testicular somatic cells attached to the culture dishes, and the germ cells were subsequently recovered by collecting the nonadherent cells. The purity of the germ cells was >95% from immunostaining for mouse vasa homolog (MVH), a marker of germ cells. The germ cells were cultured in serum-free F12/DMEM to induce damage, and more than 80% of the germ cells underwent apoptosis or necrosis 24 h after culture. The apoptotic and necrotic cells, as well as cellular debris, were collected after centrifugation (Beijing Jingli Centrifuge Co., Ltd., Beijing, China) at 300 g for 5 min and were used as DMGCs.

Immunofluorescence staining

For immunofluorescence staining, EECs were cultured on Lab-Tek chamber slides (Merck Millipore, Billica, MA, USA). The cells were fixed with methanol at −20°C for 30 min and then permeabilized with 0.5% (v/v) Triton X–100 in PBS for 10 min. After being blocked with 10% (v/v) normal goat sera in PBS at room temperature for 30 min, the cells were incubated with the primary antibodies at 37°C for 2 h. After being washed three times with PBS, the cells were incubated with appropriate tetramethylrhodamine-5-(and-6)-isothiocyanate (TRITC)-conjugated secondary Abs (Zhongshan Biotechnology Co.) for 30 min. The cells were counterstained with 4’, 6’-diamidino-2-phenylindole (DAPI; Zhongshan Biotechnology Co.) according to the manufacturer’s instructions. The slides were mounted with Antifade Mounting Medium (Vector Laboratories, Inc., Burlingame, CA, USA) for observation by a fluorescence microscope BX-51 (Olympus, Tokyo, Japan).

Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR)

Total RNA was extracted from EECs using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) in accordance with the manufacturer’s instructions. The extracted RNA was treated with DNase I to remove any DNA contamination before being reverse transcribed to cDNA using a Transcriptor High Fidelity Reverse Transcription Kit (Roche, Mannheim, Germany). The qRT-PCR was performed using a Bio-Rad CFX96 Real-Time System (Bio-Rad, Hercules, CA, USA) with a 2× QuantiTect SYBR Green Master Mix (Qiagen, Germany). The primers for qRT-PCR were designed using the Primer-BLAST tool and verified using the NCBI Primer-BLAST tool. The qRT-PCR was performed in triplicate, and the relative gene expression level was calculated using the 2−ΔΔCT method. The expression levels of the target genes were normalized to the expression levels of the endogenous control gene (beta-actin). The results were expressed as the fold change compared to the control group.
instructions. RNA was treated with RNase-free DNase I (Invitrogen) to remove genomic DNA contaminants. RNA (1 μg) was reverse transcribed into cDNA in a 20-μl reaction mixture containing 2.5 μmol l⁻¹ random primer, 2 μmol l⁻¹ dinucleotide triphosphates, and 200 U Moloney murine leukemia virus reverse transcriptase (Promega, Madison, WI, USA). PCR was performed with a Power SYBR Green PCR master mix kit (Applied Biosystems, Foster City, CA, USA) in an ABI PRISM 7300 real-time cycler (Applied Biosystems). The relative mRNA levels were determined using the comparative 2⁻ΔΔCt method by normalizing to β-actin as described in Applied Biosystems User Bulletin No. 2 (P/N 4303859). The primer sequences are listed in Supplementary Table 2.

Stimulation of EECs with DMGCs

EECs were cultured in 6-well plates at a density of 5 × 10⁵ cells per well. DMGCs (1 × 10⁶ per well) were added to the EECs. At specific time points after stimulation, DMGCs were removed and EECs were collected for analysis of gene expression.

Enzyme-linked immunosorbent assay (ELISA)

Cytokine levels were measured with ELISA kits according to the manufacturer’s instruction. A mouse tumor necrosis factor (TNF-α) ELISA kit (CME0004) was purchased from Beijing 4A Biotech (Beijing, China). ELISA kits for mouse monocyte chemoattractant protein-1 (MCP-1; BMS6005) and C-X-C motif chemokine 10 (CXCL10; BMS6018) were purchased from eBioscience (San Diego, CA, USA).

Statistical analyses

All data were presented as the mean ± standard deviation (s.d.). Statistical significance between individual comparisons was determined using the Student’s t-test. For multiple comparisons, one-way analysis of variance (ANOVA) with a Bonferroni (selected pairs) post hoc test was used. The calculations were performed using SPSS version 13.0 (SPSS, Chicago, IL, USA), and P < 0.05 was considered statistically significant.

RESULTS

Busulfan-induced male germ cell damage

To determine the extent of busulfan-induced male germ cell damage, 25 mg kg⁻¹ of busulfan was intraperitoneally injected into 10-week-old C57BL/6J mice. Germ cell damage was evaluated once each week for 8 weeks after busulfan injection (Figure 1). All stages of male germ cells, including spermatogonia (black arrows), spermatocytes (white arrows), round spermatids (black arrowheads), and elongating spermatids (white arrowheads), were observed 1 week after busulfan injection. Spermatogonia and spermatocytes had mostly disappeared at 2 weeks after busulfan injection, whereas round and elongated spermatids remained. Only elongating spermatids were observed in the seminiferous tubules at 3 weeks. The germ cells were almost completely absent except for a few elongating spermatids within a certain seminiferous tubule (asterisks) at 4 weeks. However, the germ cells were gradually recovered at 5–8 weeks after the busulfan injection (Figure 1, lower panels).

Cell infiltration in the epididymis

The structure of the epididymis was histologically examined after H and E staining (Figure 2). At 1 week (Figure 2a, left panels) and 2 weeks (Figure 2a, right panels) after busulfan injection, the epididymides displayed a normal histological structure. The corpus and cauda epididymal tubules were filled with many elongated spermatozoa (asterisks). At 3 weeks (Figure 2b, left panels) after busulfan injection, massive cell infiltration (arrows) was observed in the stroma of 75.0% (15/20) of the cauda epididymal tubules. Cell infiltration was not evident in the caput or corpus epididymis 3 weeks after busulfan injection.
after busulfan injection. Cell infiltrations were observed in 83.3% (25/30) of the cauda epididymis (Figure 2b, right panels) 4 weeks after busulfan injection. By contrast, cell infiltration was not present in the epididymides of the control mice 4 weeks after injection with DMSO alone (Figure 2c). Many degenerated spermatozoa (arrowheads) were observed within the lumen of the cauda epididymal tubules of mice 3 and 4 weeks after busulfan injection (Figure 2d). Degenerated spermatozoa were not observed in the epididymides of the control mice (Figure 2d, left panel). The incidence of epididymitis at different time points after busulfan injection is shown in Supplementary Table 1. Cell infiltration in the epididymis was not observed in the control mice injected with 50.0% DMSO alone (data not shown).

Immune cells in the epididymitis

Cell infiltration into the epididymis suggested epididymitis. Therefore, we characterized the immune cell types in the epididymitis. Immunohistochemical staining for immune cell markers showed that most infiltrating cells were macrophages (black arrows) positively stained for F4/80 (Figure 3a, middle and right panels). Few macrophages were detected in the epididymides of the control mice injected with DMSO (Figure 3a, left panel). Immunostaining for CD45 demonstrated that pan-lymphocytes (black arrowheads) were increased in the epididymitis (Figure 3b, middle and right panels) compared with the controls (left panel). CD4+ lymphocytes (white arrows) were markedly increased in the epididymitis (Figure 3c). By contrast, CD8+ lymphocytes (white arrowheads) were rare in both epididymitis and the controls (Figure 3d). B lymphocytes were not detected by staining for B220 (Figure 3e). The specificity of antibodies for detecting lymphocytes was confirmed by immunohistochemical staining of the mouse spleen (Figure 3f).

Busulfan injection and induction of epididymitis in mice lacking germ cells

To confirm that epididymitis was induced by DMGCs after busulfan injection, mice that lacked germ cells in the testis were injected with a second dose of busulfan, 4 weeks after the first busulfan injection. The testis and epididymis were analyzed 4 weeks after the second busulfan injection. Germ cells were completely lost in the testis of all 20 mice (Figure 4a). Only Sertoli cells (black arrows) were observed within the seminiferous tubules. Massive cell infiltration (black arrowheads) was found in 1 of the 20 mice (Figure 4b), but not in the other 19 mice (data not shown). Immunohistochemical staining showed many macrophages (white arrows) in the epididymitis (Figure 4c). However, CD45+ lymphocytes (white arrowheads) were not increased (Figure 4d).
cytokines and chemokines in EECs after stimulation with DMGCs. The purity of EECs was >95.0% by immunofluorescence staining for pan-cytokeratin (Figure 5a). Real-time qRT-PCR results showed that the presence of DMGCs upregulated the expression of major pro-inflammatory cytokines, including TNF-α, interleukin (IL)-6, and IL-1β, in a time-dependent manner (Figure 5b). The mRNA levels of the pro-inflammatory cytokines were significantly upregulated at 4 h \((P < 0.01)\), 8 h \((P < 0.01)\), and 16 h \((IL-6 \text{ and } IL-1β, P < 0.05)\) after the presence of DMGCs. Moreover, DMGCs also significantly upregulated the expression of several chemokines, including monocyte chemotactic protein-1 (MCP-1), monocyte chemotactic protein-5 (MCP-5), and chemokine ligand-10 (CXCL10), in EECs at 8 h \((P < 0.01)\), 16 h \((P < 0.01)\), and 24 h \((MCP-1, P < 0.05; \text{MCP-5 and CXCL10, } P < 0.01)\) (Figure 5c). In contrast, DMGCs did not significantly upregulate other chemokines, including chemokine (C-C motif) ligand 3 (CCL3), CCL17, or CCL22 (Figure 5d). ELISA results confirmed that the presence of DMGCs significantly increased the secretion of TNF-α, MCP-1, and CXCL10 in the culture media of EECs at 24 h \((P < 0.01); \text{Figure 5e})

![Figure 3: Identification of immune cells. Mice were injected with busulfan for 4 weeks (middle panels) and with DMSO for the controls (left panels). Paraffin sections of the cauda epididymis were immunohistochemically stained for (a) macrophages, (b) pan-lymphocytes, (c) CD4, (d) CD8, and (e) B lymphocytes using specific primary antibodies against F4/80, CD45, CD4, CD8, and B220, respectively. Right panels show high magnification of the marked squares. (f) Assessment of antibody specificity. Paraffin sections of mouse spleens were immunohistochemically stained using the antibodies against the indicated markers. Insets in the upper right corners represent the negative controls. The white arrow and arrowheads indicate macrophages and cell infiltrations. (g) Spleen sections were from one mouse. DMSO: dimethyl sulfoxide.](Image 328x402 to 526x714)

Figure 4: Male germ cell damage and epididymitis after a second busulfan injection. Busulfan was intraperitoneally injected into mice for 4 weeks, and then the mice were given a second busulfan injection. The testes and epididymides were collected 4 weeks after the second busulfan injection. (a) Germ cell damage. The paraffin sections of the testis were stained with H and E. The marked square (left panel) is magnified for high resolution (right panel). Black arrows indicate Sertoli cells. (b) Cell infiltrations. Paraffin sections of the cauda epididymis were stained with H and E. Black arrowheads indicate cell infiltrations. (c) Macrophages and (d) pan-lymphocytes were identified by immunohistological staining using specific antibodies against F4/80 and CD45, respectively. The insets in the upper right corners represent the negative controls. The white arrow and arrowheads indicate macrophages and lymphocytes, respectively. Images are the results from one mouse. H and E: hematoxylin and eosin stain.

Role of TNF-α in the epididymitis after busulfan injection

Given that TNF-α plays an important role in orchitis and epididymitis,19,20 we assessed the role of TNF-α in the epididymitis after busulfan injection into TNF-α−/− mice. Germ cells were comparably damaged in TNF-α−/− (Figure 6a, right panels) and WT (left panels) mice 4 weeks after busulfan injection. In controls, mice injected with DMSO alone had normal germ cells. Only Sertoli cells (black arrows) were observed in the seminiferous tubules after busulfan injection (Figure 6a). Cell infiltration (black arrowheads) was observed in the epididymides of WT mice (Figure 6b, left panels). However, we did not find cell infiltration in TNF-α−/− mice 4 weeks after busulfan injection (Figure 6b, right panels). DMGCs were abundant within the epididymal tubules (asterisks) of WT and TNF-α−/− mice (Figure 6b). Immunohistochemical results confirmed many F4/80+ macrophages (white arrows) in the caudal epididymides of WT mice (Figure 6c, left panel). There were considerably fewer macrophages in the cauda epididymides of TNF-α−/− mice (Figure 6c, right panel) than in WT mice. More CD45+ lymphocytes (white arrowheads) were
found in the cauda epididymides of WT mice (Figure 6d, left panel) than in TNF-α−/− mice (right panel) 4 weeks after busulfan injection. The expression of chemokines in WT and TNF-α−/− EECs after stimulation with DMGCs was also examined. The mRNA levels of MCP-1 (P < 0.01), MCP-5 (P < 0.01), and CXCL10 (P < 0.01) were markedly upregulated in WT EECs 8 h after the presence of DMGCs (Figure 6e). The upregulation was significantly lower in TNF-α−/− EECs than in WT EECs. ELISA results confirmed that TNF-α was absent from the culture medium of TNF-α−/− EECs, whereas MCP-1 (middle panel) and CXCL10 (right panel) levels were insignificantly increased in TNF-α−/− EECs 24 h after the presence of DMGCs. Recombinant TNF-α significantly induced the production of MCP-1 (P < 0.01) and CXCL10 (P < 0.01) in both WT and TNF-α−/− EECs (Figure 6g).

DISCUSSION

Epididymitis is the most frequently experienced case of intrascrotal inflammation, which can lead to male infertility.21,22 While microbial infections are among the etiological factors responsible for inflammation in the male genital tract, a large number of epididymitis patients lack any evidence of microbial infections.5 Knowledge regarding noninfectious epididymitis is rather limited. Understanding the mechanisms underlying noninfectious epididymitis might benefit the diagnosis and therapy of this disease.23 The present study demonstrated that DMGCs induced epididymitis in mice.

Several risk factors for noninfectious epididymitis have been proposed including a previous systemic infection,24 certain medications,25,26 and vasectomy.27 Moreover, strenuous labor and long-term sitting or bicycle riding are also associated with epididymitis. However, the causative agents of noninfectious epididymitis remain to be defined. A recent study demonstrated that intraperitoneal injection of lipopolysaccharide (LPS) resulted in epididymitis in mice.28 Epididymitis after LPS injection was associated with an accumulation of PMN in the epididymis, suggesting that DMGCs trigger epididymitis caused by a postsystemic infection.29 The present study confirmed that DMGCs induce epididymitis after an intraperitoneal injection of busulfan in mice through the activation of innate immune responses in EECs, which may be an etiological factor of medication-associated epididymitis. It would be interesting to clarify whether DMGCs are triggers of human noninfectious epididymitis associated with different risk factors because most risk factors can damage male germ cells.

Most male germ cells develop a long time after the establishment of immune tolerance to self-antigens, thus allowing them to produce immunogenic antigens. Augmentation of the apoptosis of male germ cells resulted in inflammatory conditions in the testis. Moreover, a defect in the phagocytic removal of apoptotic male germ cells by Sertoli cells favored autoimmune orchitis.11 These early studies suggested that DMGCs might induce orchitis. Although DMGCs may be transmitted luminally to the epididymis from the testis, whether DMGCs induce epididymitis has not been investigated. The present study demonstrated...
that busulfan injection results in epididymitis concomitant with germ cell damage in the testis and an accumulation of DMGCs in the epididymis. Epididymitis was not induced after a second busulfan injection in mice lacking germ cells in the testis. These results provide substantial evidence that DMGCs induce epididymitis.

We did not observe orchitis when male germ cells were damaged in the testis after busulfan injection. The different inflammatory conditions in the testis and the epididymis may be explained by their immune microenvironments. The testis is a remarkable immunoprivileged organ that is tightly controlled by tissue structure, cellular interaction, and dense immunosuppressive networks. Although the epididymis has immunoprivileged properties that protect spermatozoa from detrimental immune responses, the immune privilege of the epididymis is not as complete as that of the testis. Many immune cells reside in the epididymis. Notably, most dendritic cells are localized in the caput epididymis, which is thought to support self-tolerance toward sperm antigens. Conversely, blood and lymphatic capillaries are predominantly distributed in the cauda epididymal tubules. The differential distributions of immune cells and circulating capillaries might lead to variable susceptibilities to antigen stimulation in different regions of the epididymis, resulting in the predominance of caudal epididymitis. The accumulation of DMGCs in the cauda epididymal tubules should also predominantly induce inflammation in the cauda segment. Accordingly, caudal epididymitis is frequently observed in outpatients, which corresponds to the observations in the present study.

To understand the mechanism by which DMGCs induce epididymitis, we examined the expression and function of cytokines that facilitate inflammation. Toll-like receptors (TLR) initiate innate immune responses in many cell types after challenge with TLR ligands, and this facilitates inflammatory conditions by inducing the expression of inflammatory cytokines. Various TLRs are expressed in the epididymis and initiate an innate immune response in EECs. High-mobility group box 1 (HMGB1) and heat shock proteins (HSPs) are well-defined endogenous TLR ligands.

Figure 6: Role of TNF-α in epididymitis. (a) Germ cell damage in the testis. Busulfan was intraperitoneally injected into WT and TNF-α−/− mice for 4 weeks. Mice injected with DMSO alone served as the Ctrls. Paraffin sections of the testes were stained with H and E. Black arrows indicate Sertoli cells. (b) Cell infiltrations. Paraffin sections of the cauda epididymides were stained with H and E at 4 weeks after busulfan injection. Asterisks and black arrowheads indicate epididymal tubules with DMGCs and cell infiltrations. (c) Macrophages. Paraffin sections were stained with specific antibodies against F4/80. (d) Lymphocytes. Paraffin sections of the epididymides were stained with primary antibodies against CD45. The insets in the upper right corners represent the negative controls. Images are representatives of at least five mice. (e) Expression of chemokines. EECs were cultured in the presence or absence (Ctrl) of DMGCs for 8 h. The relative mRNA levels of MCP-1, MCP-5, and CXCL10 were determined by real-time qRT-PCR. (f) Cytokine secretion. EECs were treated as described in e for 24 h. The protein levels of TNF-α, MCP-1, and CXCL10 in culture media were measured by ELISA. (g) Effect of TNF-α on MCP-1 and CXCL10 production. EECs were stimulated with 5 ng ml−1 recombinant mouse TNF-α for 24 h. MCP-1 and CXCL10 levels in media were measured by ELISA. The data are expressed as the mean ± s.d. of three independent experiments. *P < 0.05 and **P < 0.01. qRT-PCR: quantitative reverse transcription polymerase chain reaction; ELISA: enzyme-linked immunosorbent assay; s.d.: standard deviation; Ctrl: control; TNF-α: tumor necrosis factor-α; WT: wild-type; DMSO: dimethyl sulfoxide; DMGCs: damaged male germ cells; MCP: monocyte chemotactic protein; CXCL10: chemokine ligand-10; EECs: epididymal epithelial cells.
certain HSPs are abundantly expressed in male germ cells and can be released under stress conditions.46,47 Therefore, it is reasonable to speculate that DMGCs release endogenous TLR ligands that trigger innate immune responses in EECs. We previously demonstrated that DMGCs induce inflammatory cytokine expression in Sertoli cells through the activation of TLR2 and TLR4. However, we did not observe immune cell infiltration in the testis. The lower immune privilege of the epididymis may explain why epididymitis occurs more frequently than orchitis in humans.1

We demonstrated that DMGCs induce the expression of major pro-inflammatory cytokines in EECs, including TNF-α, IL-6, and IL-1β, suggesting that innate immune responses can be triggered by endogenous TLR ligands in EECs. Our recent study demonstrated that TNF-α is critical for LPS-induced epididymitis.48 An early study showed that TNF-α has a role in the pathogenesis of experimental autoimmune orchitis.19 Therefore, we assessed the role of TNF-α in the development of epididymitis after busulfan injection in the present study. Epididymitis was not observed in TNF-α−/− mice after busulfan injection, suggesting that TNF-α also plays an important role in DMGC-induced epididymitis. This result confirms that DMGCs induce immune responses in wild-type mice, but this might be because TNF-α−/− mice have a defective immune system.

The expression of major chemokines in EECs in the presence of DMGCs was examined to understand the mechanisms underlying leukocyte infiltration. We found that MCP-1, MCP-5, and CXCL10 were significantly upregulated in EECs after challenge with DMGCs, whereas the expressions of CCL3, CCL17, and CCL22 were unaltered. MCP-1 and MCP-5 promote macrophage migration. Accordingly, macrophages were dramatically increased in the epididymitis after busulfan injection. CXCL10 is a pleiotropic cytokine involved in the pathogenesis of autoimmune diseases by recruiting leukocytes and inducing apoptosis.49 We recently demonstrated that the production of CXCL10 by Sertoli cells induced male germ cell apoptosis.49 The role of CXCL10 produced by EECs in the pathogenesis of epididymitis remains unclear. Notably, the upregulation of MCP-1, MCP-5, and CXCL10 was significantly reduced in TNF-α−/− EECs, suggesting that TNF-α is involved in the upregulation of chemokines. We confirmed that recombinant TNF-α significantly upregulated the production of MCP-1 and CXCL10 in EECs. These results correspond to previous observations in other cell types.49,51 Therefore, TNF-α might play a central role in the initiation of epididymitis through the induction of chemokines in EECs.

Epididymitis was observed in 83.3% of mice 4 weeks after busulfan injection, and this incidence was markedly reduced thereafter. These results suggest that DMGCs might transiently induce epididymitis, which should be mostly recovered. These phenomena correspond to the clinical observations that only minor acute epididymitis advances to chronic disease in humans. Therefore, epididymitis in mice after busulfan injection should be a useful model to investigate the pathomechanism of human noninfectious epididymitis. However, we cannot explain why busulfan injection did not induce epididymitis in some mice.

CONCLUSION

The present study showed that DMGCs induce epididymitis in mice. DMGC-induced TNF-α production in EECs plays a central role in the initiation of epididymitis. It would be interesting to clarify whether germ cell damage is a common etiological factor for human noninfectious epididymitis associated with various risk factors that may damage germ cells. The identification of the specific male germ cell antigens that induce epididymitis might aid in the development of diagnostic and therapeutic strategies for noninfectious epididymitis.

AUTHOR CONTRIBUTIONS

DSH and WHL conceived and designed the experiments and wrote the paper. FW, XQY, HW, MLG, RC, WJZ, RQH, AYL, and YMC performed all the experiments. All authors read and approved the final manuscript.

COMPETING INTERESTS

All authors declared no competing interests.

ACKNOWLEDGMENTS

This work was supported by grants from the CAMS Initiative for Innovative Medicine (No. 2017-I2M-B8R-06 and No. 2017-I2M-3-007), the Major State Basic Research Project of China (No. 2016YFA0101001 and No. 2018YFC1003902), the National Natural Science Foundation of China (No. 81701430), and the China Postdoctoral Science Foundation (No. 2017M611931).

Supplementary Information is linked to the online version of the paper on the Asian Journal of Andrology website.

REFERENCES

1. Fijak M, Plätz A, Hedger MP, Nicolas N, Bhushan S, et al. Infections, inflammatory and autoimmunity male factor infertility: how do rodent models inform clinical practice? Hum Reprod Update 2018; 24: 416–41.
2. Ekwere PD. Immunological infertility among Nigerian men: incidence of circulating antisperm auto-antibodies and some clinical observations: a preliminary report. Br J Urol 1995; 76: 366–70.
3. Niederberger C, WHO manual for the standardized investigation, diagnosis and management of the infertile male. Urol 2000; 57: 208.
4. Trojan TH, Lishnak TS, Heiman D. Epididymis and orchitis: an overview. Am Fam Physician 2009; 79: 583–7.
5. Kaver I, Matzkin H, Braf ZF. Epididymo-orchitis: a retrospective study of 121 patients. J Urol Pract 1990; 30: 548–52.
6. McGonaghy JR, Pancal B. Epididymitis: an overview. Am Fam Physician 2016; 94: 723–6.
7. Emerson C, Dinsmore WW, Quah SP. Are we missing mumps epididymo-orchitis? Int J STD AIDS 2007; 18: 341–2.
8. Chan PT, Schlegel PN. Inflammatory conditions of the male excurrent ductal system. Part I. J Androl 2002; 23: 453–60.
9. Fijak M, Meinhardt A. The testis in immune privilege. Immunol Rev 2006; 213: 66–81.
10. Schuppe HC, Meinhardt A, Allam JP, Bergmann M, Weidner W, et al. Chronic orchitis: a neglected cause of male infertility? Andrologia 2008; 40: 84–91.
11. Palietter RM, Yoon SR, Akoov CD, Silvas E, Vitale ML. Defects in the regulatory clearance mechanisms favor the breakdown of self-tolerance during spontaneous autoimmune orchitis. Am J Physiol Regul Integr Comp Physiol 2009; 296: R743–62.
12. Zhang X, Wang T, Deng T, Xiong W, Liu P, et al. Damaged spermatogenic cells induce inflammatory gene expression in mouse Sertoli cells through the activation of Toll-like receptors 2 and 4. Mol Cell Endocrinol 2013; 365: 162–73.
13. Hedger MP. Immunophysiology and pathology of inflammation in the testis and epididymis. J Androl 2011; 32: 625–40.
14. Buff S, Lambert V, Marchal T, Guerin P. Isolation, culture and characteristics of epididymal epithelial cells from adult cats. Theriogenology 2005; 64: 1603–18.
15. Graves CL, Harden SW, LaPata M, Nelson M, Amador B, et al. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function. J Immunol Methods 2014; 414: 20–31.
16. Wang T, Zhang X, Chen Q, Deng T, Zhang Y, et al. Toll-like receptor 3-initiated antifungal responses in mouse male germ cells in vitro. Biol Reprod 2012; 86: 106.
17. Encinas G, Zaghi B, Stumpf T. Detection of four germ cell markers in rats during testis morphogenesis: differences and similarities with mice. Cells Tissues Organs 2012; 195: 443–55.
18. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25: 402–8.
19. Yule TD, Tung KS. Experimental autoimmune orchitis induced by testis and sperm antigen-specific T cell clones: an important pathogenic cytokine is tumor necrosis factor. Endocrinology 1993; 133: 1098–107.
20. Wang F, Liu W, Jiang Q, Gong M, Chen R, et al. Lipopolysaccharide-induced testicular dysfunction and epididymitis in mice: a critical role of tumor necrosis factor alpha. Biol Reprod 2019; 100: 849–61.
21. Haidl G, Allam JP, Schuppe HC. Chronic epididymitis: impact on semen parameters and therapeutic options. Andrologia 2008; 40: 92–6.
Male germ cells and epididymitis

WH Liu et al

22. Luzzi GA, O’Brien TS. Acute epididymitis. BJU Int 2001; 87: 747–55.
23. Haidi G, Haidi F, Allam JP. Therapeutic options in male genital tract inflammation. Andrologia 2018; e13207.
24. Somekh E, Gorenstein A, Serour F. Acute epididymitis in boys: evidence of a post-infectious etiology. J Urol 2004; 171: 391–4.
25. Nikolau M, Ikonomidou I, Lekakis I, Tsiodras S, Kremastinos D. Amiodarone-induced epididymitis: a case report and review of the literature. Int J Cardiol 2007; 121: e15–6.
26. Gasparich JP, Mason JT, Greene HL, Berger RE, Krieger JN. Amiodarone-associated epididymitis: drug-related epididymitis in the absence of infection. J Urol 1988; 133: 971–2.
27. West AF, Leung HY, Powell PH. Epididymectomy is an effective treatment for scrotal pain after vasectomy. BJU Int 2000; 85: 1097–9.
28. O’Neill DA, McVicar CM, McClure N, Maxwell P, Cooke I, et al. Reduced sperm yield from testicular biopsies of vasectomized men is due to increased apoptosis. Fertil Steril 2007; 87: 834–41.
29. Shiraiishi K, Naito K, Yoshida K. Vasectomy impairs spermatogenesis through germ cell apoptosis mediated by the p53-Bax pathway in rats. J Urol 2001; 166: 1565–71.
30. Yin Y, DeWolff WC, Morgenstaller A. Experimental cryptorchidism induces testicular germ cell apoptosis by p53-dependent and -independent pathways in mice. Biol Reprod 1998; 58: 492–6.
31. Goldacre MJ, Wotton CJ, Seagroatt V, Yeates D. Immune-related disease before and after vasectomy: an epidemiological database study. Hum Reprod 2007; 22: 1273–8.
32. Nistal M, Riestra ML, Paniagua R. Focal orchitis in undescended testes: discussion of pathogenetic mechanisms of tubular atrophy. Arch Pathol Lab Med 2002; 126: 64–9.
33. Li N, Wang T, Han D. Structural, cellular and molecular aspects of immune privilege in the testis. Front Immunol 2012; 3: 152.
34. Flickinger CJ, Bush LA, Howards SS, Herr JC. Distribution of leukocytes in the epithelium and interstitium of four regions of the Lewis rat epididymis. Anat Rec 1997; 248: 380–90.
35. Da Silva N, Cortez-Retamozo V, Reinecker HC, Wildgruber M, Hill E, et al. A dense network of dendritic cells populates the murine epididymis. Exp Cell Res 2011; 141: 653–63.
36. Hirai S, Naito M, Terayama H, Ning Q, Miura M, et al. Difference in abundance of blood and lymphatic capillaries in the murine epididymis. Med Mol Morphol 2010; 43: 37–42.
37. Leifer CA, Medvedev AE. Molecular mechanisms of regulation of Toll-like receptor signaling. J Leukoc Biol 2016; 100: 927–41.
38. Zhu W, Zhao S, Liu Z, Cheng L, Wang Q, et al. Pattern recognition receptor-initiated innate antiviral responses in mouse epididymal epithelial cells. J Immunol 2015; 194: 4825–35.
39. Cheng L, Chen Q, Zhu W, Wu H, Wang Q, et al. Toll-like receptors 4 and 5 cooperatively initiate the innate immune responses to unpathogenic Escherichia coli infection in mouse epididymal epithelial cells. Biol Reprod 2016; 94: 58.
40. Chase MA, Wheeler DS, Lieri KM, Hughes VS, Wong HR, et al. Hsp72 induces inflammation and regulates cytokine production in airway epithelium through a TLR4- and NF-kappaB-dependent mechanism. J Immunol 2007; 179: 6318–24.
41. Roelofs MF, Boelens WC, Joosten LA, Abdollahi-Roodsaz S, Geurts J, et al. Identification of small heat shock protein BB (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J Immunol 2006; 176: 7021–7.
42. Vabulas RM, Ahmad-nejad P, da Costa C, Miettike T, Kirschning CJ, et al. Endocylcysed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 2001; 276: 31332–9.
43. Wheeler DS, Chase MA, Sentf AP, Poynter SE, Wong HR, et al. Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4. Respir Res 2009; 10: 31.
44. Curtin JF, Liu N, Cansizff M, Xiong W, Assi H, et al. HMGBl mediates endogenous TLR2 activation and brain tumor regression. PLoS Med 2009; 6: e10.
45. Park JS, Gamboni-Robertson F, He Q, SvetskaIkaite D, Kim JY, et al. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol 2006; 290: C917–24.
46. Biggiogera M, Tanguay RM, Marin R, Wu Y, Martin TE, et al. Localization of heat shock proteins in mouse male germ cells: an immunoelectron microscopic study. Exp Cell Res 1996; 229: 77–85.
47. Zetterstrom CK, Strand ML, Soder O. The high mobility group box chromosomal protein 1 is expressed in the human and rat testis where it may function as an antibacterial factor. Hum Reprod 2006; 21: 2801–9.
48. Antonelli A, Ferrari SM, Gugliotti D, Ferrannini E, Ferri C, et al. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun Rev 2014; 13: 272–80.
49. Jiang Q, Wang F, Shi L, Zhao X, Gong M, et al. C-X-C motif chemokine ligand 10 produced by mouse Sertoli cells in response to mumps virus infection induces Neutrophil chemotaxis. Cell Death Dis 2017; 8: e3146.
50. Mukaida N, Zachariae CC, Gusella GL, Matsushima K. Dexamethasone inhibits the induction of monocyte chemotactic-activating factor production by IL-1 receptor signaling pathway in innate immune cells. J Immunol 2000; 166: 1565–71.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

©The Author(s) (2019)
Supplementary Table 1: Incidence of epididymitis

Busulfan (weeks)	Total mice (n)	Incidence of epididymitis (n)	Percentage with epididymitis
1	20	0	0
2	20	0	0
3	20	15	75.0
4	30	25	83.3
5	20	10	50.0
6	20	2	10.0
7	20	1	5.0
8	20	1	5.0

C57BL/6J male mice (10-old-week) were intraperitoneally injected with 25 mg kg⁻¹ body weight for the indicated durations. The incidence and percentage of males with epididymitis were determined from histological analysis and immunohistochemical staining.

Supplementary Table 2: Primers used for quantitative reverse transcription polymerase chain reaction

Target genes	Forward	Reverse
β-Actin	GAAATCGTGCGACATCAAAG	TGTAGTTTCATGGATGCCACAG
TNF-α	CATCTTCTCAAAATTGAGTGCAAA	TGGGAGTAGACAAGGTAACCC
IL-6	GAGGATACCACTCCCAACAGACC	AAGTGCATCATGTGTTGTCATA
IL-1β	CAACCAACAGTGATATCCTCCATG	GATCCACACTTCACCTG
MCP-1	TTAAGCCCTGATCGGAAACCAA	GCATTAGCTTGATTTACGGGT
MCP-5	CCGTGTCGCTGACACATCCCAA	GAGGTGCTGATGACCTAGTGG
CCL3	TGTCCTGACACATCTGCCAAC	CACGATGATGCGTGGA
CXCL10	TCTCAGCCACCACATGG	TCCCTAAGGCCCCATATCG
CCL17	TGTCGAGCCACCAATGTAG	ACACGACAAACAGATGGCA
CCL22	ACCTCTGACGACGCCTCCA	CCTCCGCCAGATTGTGAGG

TNF-α: tumor necrosis factor-α; IL-6: interleukin-6; IL-1β: interleukin-1β; MCP-1: monocyte chemotactic protein-1; MCP-5: monocyte chemotactic protein-5; CCL3: chemokine (C-C motif) ligand 3; CXCL10: chemokine ligand-10