Evaluation of local onion lines from northwest Spain

A. Rivera Martínez, J. Fernández Paz and J. L. Andrés Ares*
Centro de Investigaciones Agrarias de Mabegondo.
Ctra. Betanzos-Santiago, km 7.5. 15318 Abegondo (A Coruña). Spain

Abstract

Traditional onion (Allium cepa L.) varieties are still produced in certain regions of Spain due to their high quality and acceptance in local markets. The evaluation of morphological traits for 18 local northwestern Spanish onion lines showed the existence of three different groups attending exclusively to bulb shape traits and six classes if we consider bulb shape traits as well as skin and flesh colours. There was a positive correlation between storage quality and percentage of dry matter content. The importance of considering well defined descriptors in order to characterize correctly onion germplasm is also discussed in this paper.

Additional key words: Allium cepa, characterization, dry matter, germplasm, storage quality.

Introduction

Onions (Allium cepa L.) are cultivated all around the world. Among the great genetic variation, existing worldwide, certain genotypes can even complete their cycle in regions with short summers. In Spain, 900 ha of onion are located in the northwestern part of the country —the total Spanish onion growing area is 22,700 hectares— and it is considered as the fourth vegetable crop in Galicia (northwest Spain), according to either surface area or production (MAPA, 2002). It is mainly a traditional crop in this part of the country were there is an important number of local landraces with excellent organoleptic qualities.

The introduction of new varieties represents an important increase in the number of cultivars available for growers, which is not only an advantage for them but also for markets and processing industries. However, the traditional varieties are still produced in certain regions due to their high quality and acceptance at local and foreign markets (Casallo et al., 1991).

Evaluations of local onion lines have been carried out all over the world. Most of these characterizations are based either on morphological, agronomical or physical and chemical measurements. The chemical measurements most frequently used are soluble solids contents (Jitendra et al., 1992; Ashish et al., 1995; Llamazares et al., 2002), dry matter (Szalay, 1971; Szalay, 1981; Llamazares et al., 2002), piruvic acid (Vavrina and Smittle, 1993; Ashish et al., 1995; Duff et al., 2002; Llamazares et al., 2002) or sugar contents (Lai et al., 1994).

Another important criterion for onion bulb characterizations is storage quality. There are some morphological and chemical traits related to storage...
quality such as bulb size (Mattana and Lobo, 1980; Patil and Kale, 1985b; Rajapakse et al., 1992), dry matter (Mattana and Lobo, 1980), total soluble solids (Albert and Cuquerella, 1979; Patil and Kale, 1985a) or sugar contents (Patil and Kale, 1985a).

In 1998, the horticultural research group at the CIAM (Centro de Investigaciones Agrarias de Mabegondo) collected seeds of local onion varieties in the main productive regions in northwest Spain. As a result of this sampling, 20 onion lines are kept at the CIAM germplasm bank. This work presents the results obtained from the evaluation of morphological, agronomical and storage quality characters for 18 of these lines in comparison with four commercial varieties, frequently used by growers in this part of the country.

Material and Methods

Twenty-two lines of onion were evaluated in northwest Spain over four years from 1999 to 2002. The site is located at Mabegondo (43º 15'N, 8º 18'W) near the coast. Eighteen of the total number of lines corresponded to local onion landraces collected as seeds obtained by farmers in the main growing regions of northwest Spain (Table 1). The characterizations comprised morphological and agronomical measurements, carried out in 1999 and 2000, as well as a storage quality evaluation which took place in 2001 and 2002.

All of the lines as well as four commercial varieties were sown under greenhouse conditions, the seedlings were transplanted to the field in May and the harvest took place in September. The experimental design was a complete randomized block design with three replications for a total of 84 plants per plot (0.25 × 0.15 m).

The following measurements were recorded on 25 bulbs per landrace, which were randomly collected at the end of the experiment: bulb height (cm), diameter (cm), weight (g), and neck width (cm). The remaining parameters corresponding to bulb shape, skin colour, flesh colour and number of axes – were determined following the TG/46/6 UPOV (1999) guidelines.

In order to carry out the storage quality evaluations, 100 healthy, non sprouted, bulbs were collected randomly per line after harvest and stored in wooden boxes at 10-15°C for the following 24 weeks. Every 4 weeks each line was evaluated counting and weighting the sprouted, rotted and healthy bulbs.

Genotype	Origin	Type of genotype	Type of evaluation
1. Ribadeo 1	Lugo	Local line	Mor, Yie, Sto
2. Ribadeo 2	Lugo	Local line	Mor, Yie, Sto
3. Betanzos	A Coruña	Local line	Mor, Yie, Sto
4. Ameixenda	A Coruña	Local line	Mor, Yie, Sto
5. S-Xulián	Lugo	Local line	Mor, Yie, Sto
6. Baldaio	A Coruña	Local line	Mor, Yie, Sto
7. Mondoñedo	Lugo	Local line	Mor, Yie, Sto
8. Chata-Miño	A Coruña	Local line	Mor, Yie, Sto
9. Oimbra	Ourense	Local line	Mor, Yie, Sto
10. Caldas	Pontevedra	Local line	Mor, Yie, Sto
11. Pontearnelas	Pontevedra	Local line	Mor, Yie, Sto
12. Vilagarcía 1	Pontevedra	Local line	Mor, Yie, Sto
13. Vilagarcía 2	Pontevedra	Local line	Mor, Yie, Sto
14. Outes	A Coruña	Local line	Mor, Yie, Sto
15. Arcade	Pontevedra	Local line	Mor, Yie, Sto
16. Ponteareas	Pontevedra	Local line	Mor, Yie, Sto
17. A Garda	Pontevedra	Local line	Mor
18. Cea	Ourense	Local line	Mor, Sto
19. Paja Virtudes	Spain	Commercial variety	Mor, Sto
20. Babosa	Spain	Commercial variety	Mor, Sto
21. Castillo	Spain	Commercial variety	Mor, Sto
22. Arctic	Spain	Commercial variety	Mor, Sto

Type of evaluation: Mor: morphological. Yie: yield. Sto: storage.
At the beginning of the storage experiments the percentage of dry matter was estimated for each of the studied lines: a representative 500 g sample was obtained mixing 20 slices cut from 20 bulbs randomly sampled from each line. The sample was then dried at 80ºC for a period of 48 h by means of a stove, calculating the percentage of dry matter as a relation between fresh and dry weights.

An analysis of variance of these morphological traits was carried out independently for each year of evaluation. The statistical model used for these data was the following (Cubero and Flores, 1995):

\[X_{ij} = \mu + g_i + E_{ijk} \]

where: \(\mu \) is the overall average, \(g_i \) is the line effect, and \(E_{ijk} \) is the residual effect.

Yield data from plots were analysed using the following model (Cubero and Flores, 1995):

\[X_{ij} = \mu + b_i + g_i + E_{ijk} \]

where: \(b_i \) is the block effect, and \(E_{ijk} \) is the residual (i.e. within plot) effect. The block effect was considered a random effect.

Multivariate relationships among lines were revealed with a principal component analysis (PCA) using a correlation matrix derived from the significant traits after the analysis of variance. Components with eigenvalues greater than one were used through hierarchical clustering analysis, based on Euclidean distance computed between each population. The dendogram formed by this method was cut at the third level cluster, each cluster being represented on the Principal Component Plan 1-2.

Regression analyses were performed to determine the influence of dry matter contents on storage quality (percentage of sprouted bulbs 24 weeks after harvest). Curves with the highest \(R^2 \) were chosen as best fit.

Results

Morphological characterization of the lines

There were certain characters with great variation between lines, i.e.: traits related to bulb size (height, diameter and shape) as well as skin colour (Table 2). The analysis of variance (ANOVA) for morphological quantitative characters showed highly significant differences between lines for all of the traits under study: bulb height, weight, diameter, height-diameter ratio and neck width (Table 3). According to these traits, the lines could be classified into three different groups by means of a PCA which absorbed 58% of the

Line	Weight (g)	Height (cm)	Diameter (cm)	Width of neck (mm)	D/H	Bulb shape	Skin colour	Flesh colour	Nax
1. Ribadeo 1	123.1	5.1	6.8	8.8	1.3	R	Brown	Absent	Few
2. Ribadeo 2	171	5.5	7.5	10.9	1.4	R	Brown	Absent	Very few
3. Betanzos	124	3.9	7.4	8.4	1.9	TNE	Pale yellow	Absent	Very few
4. Ameixenda	164.8	4.8	7.8	9.9	1.6	TE	Yellow-brown	Absent	Very few
5. S. Xulián	114.4	3.8	7.2	9.7	1.9	TNE	Brown-red	Absent	Very few
6. Baldaio	146.7	4.2	7.6	12.2	1.8	TNE	Yellow-brown	Absent	Very few
7. Mondoñedo	122.1	4.1	7.3	11.1	1.8	TNE	Yellow-brown	Absent	Very few
8. Chata-Miño	128.8	3.9	7.5	9.2	1.9	TNE	Brown	Absent	Very few
9. Oimbra	170.2	5.5	7.6	11.4	1.4	R	Yellow-brown	Absent	Few
10. Caldas	158	4.8	7.6	11.3	1.6	TE	Yellow-brown	Absent	Very few
11. Pontearnelas	139.7	4	7.5	10	1.9	TNE	Brown	Absent	Very few
12. Vilagarcía 1	158	5.4	7	11.5	1.3	R	Pale yellow	Absent	Very few
13. Vilagarcía 2	134.1	4.7	7.1	11.5	1.5	TE-R	Pale yellow	Absent	Very few
14. Outes	139.5	4.8	7.2	11.7	1.5	TE-R	Yellow-brown	Absent	Very few
15. Arcade	155.4	4.6	7.6	11.4	1.6	TE	Pale yellow	Absent	Very few
16. Ponteareas	145.6	4.3	7.7	12.1	1.8	TNE	Yellow-brown	Absent	Very few
17. A Garda	158.7	4.5	7.9	11.3	1.8	TNE	Yellow-brown	Absent	Very few
18. Cea	122.2	4.7	7	12.3	1.5	TE-R	Yellow-brown	Absent	Very few

The bulb characterization was carried out following TG/46/6 UPOV descriptors: D/H: diameter/height ratio. Bulb Shape: R-rhombic. TNE: transverse narrow elliptic. TE: transverse elliptic. Nax: number of axes.
accumulated variance (Fig. 1). These corresponded to: lines with rhombic bulb – such as ‘Ribadeo’, ‘Oimbra’, ‘Vilagarcía’, ‘Outes’ and ‘Cea’–, with transverse narrow elliptic shape – ‘Betanzos’, ‘S. Xulián’, ‘Mondoñedo’, ‘Chata-Miño’ and ‘Pontearnelas’ – and lines with bulb shapes ranging from transverse elliptic to transverse narrow elliptic – ‘Ameixenda’, ‘Baldaio’, ‘Caldas’, ‘Arcade’, ‘Ponteareas’ and ‘A Garda’ –. A Duncan’s multiple range test was carried out on these traits between the three defined groups obtaining significant differences between the groups for all of the traits except for the neck width in 2000 (Table 4).

The yield results correspond with those of the experiment carried out on 2002. ***: significant at 0.001 level.

Table 3. ANOVA for morphological quantitative characters on 18 local onion lines evaluated at Mabegondo (A Coruña) in 1999 and 2000

Characters	1999 Mean	Range	Lines	2000 Mean	Range	Lines
Bulb characters 1999						
Height-H (cm)	4.49	3.47-5.48	***			
Diameter-D (cm)	7.28	6.39-7.87	***			
Weight (g)	133.14	99.46-180.74	***			
Index (H/D)	1.67	1.29-2.01	***			
Neck width (cm)	1.08	8.44-12.34	***			
Bulb characters 2000						
Height-H (cm)	4.70	3.84-5.81	***			
Diameter-D (cm)	7.60	7.10-8.15	***			
Weight (g)	153.49	114.92-195.93	***			
Index (H/D)	1.65	1.32-1.92	***			
Neck width (cm)	1.28	0.96-1.77	***			

The yield results correspond with those of the experiment carried out on 2002. ***: significant at 0.001 level.

Table 4. Means of the different groups obtained from the ascendent hierarchical classification

Groups	I	II	III
Lines	1.2.9.12.13.14.18	4.6.10.15.16.17	3.5.7.8.11

Bulb quantitative characters (1999)

Characters	1999 Mean	Range	Lines	2000 Mean	Range	Lines
Height-H (cm)	5.04 a	4.43 b	3.80 c			
Diameter-D (cm)	7.05 c	7.61 a	7.23 b			
Weight (g)	135.56 b	145.05 a	115.46 c			
Index (H/D)	1.42 c	1.74 b	1.93 a			
Neck width (cm)	1.140 a	1.114 a	0.968 b			

Bulb quantitative characters (2000)

Characters	1999 Mean	Range	Lines	2000 Mean	Range	Lines
Height-H (cm)	5.21 a	4.64 b	4.07 c			
Diameter-D (cm)	7.43 b	7.89 a	7.49 b			
Weight (g)	156.82 a	164.58 a	135.57 b			
Index (H/D)	1.45 c	1.72 b	1.85 a			
Neck width (cm)	1.229 a	1.338 a	1.280 a			

Other morphological characters

Characters	Brown-yellow	Yellow-brown	Brown-yellow
Skin colors	R	TE/TNE	TNE
Shape			

Means in the same line followed by the same letter are not significantly different from each other based on Duncan’s multiple range test at P = 0.05. Shape: R-rhombic. TNE: transverse narrow elliptic. TE: transverse elliptic.
This classification differs to that carried out according to the bulb skin colour trait. In this case the lines can be grouped into four different classes: lines with brown, pale yellow, brownish yellow and brownish red skins. Most of the lines had symmetrical bulbs with one vegetative axe and white flesh (Table 2).

Commercial production

Commercial production of the best local onion lines was slightly higher than that of the commercial varieties (with no significant differences) in 2001, and significantly higher in 2002 (Table 6). There were also great differences between the yields obtained in the different years, probably due to the different climatic conditions. The lines that had the highest yields were ‘Ameixenda’—the most productive line in 2001 and 2002—and ‘Baldaio’—outstanding in 2002—which clearly exceeded the productions obtained by the commercial cultivars. The yield range of the local lines was shorter than that of commercial varieties, either in 2001 or 2002, and the mean yields of these lines were higher than those of commercial ones.

Dry matter contents

The percentage of dry matter was, in general, slightly higher in the local lines, with the exception of that obtained in the variety ‘Paja Virtudes’, which was significantly higher than the rest of the varieties and local lines, either in 2001 or 2002 (Table 6). Among the local lines, the highest values were obtained for ‘S. Xulián’ and ‘Betanzos’, which were clearly evident in the two experiments. Either the means or the percentage ranges were similar in the two group of lines, obtaining higher levels in 2002 than in the previous experiment.

Storage quality

The storage quality, defined by Castell and Diez (2000) as the percentages of sprouted bulbs 12, 16, 20 and 24 weeks after harvest, was better in certain local lines than in the commercial varieties: ‘Betanzos’, ‘San Xulián’, ‘Caldas de Reis’ and ‘Vilagarcía’ (lines 1 and 2) had similar or even lower percentages of sprouted bulbs than ‘Paja Virtudes’, the commercial variety with the best storage qualities (Table 7). The quality ranged, either in the local or in the commercial cultivars, from

Table 5. Local northwestern onion lines grouping attending to Castell and Diez (2000) criteria

Type¹	Skin colour	Flesh colour	Subgroup¹	Bulb shape	Studied lines
Grain type¹	Brown	White	4.1.1	Rounded	Castell and Diez¹
Red	Purple	4.1.2	Round	C/R²	
Viuguetana type¹	White	White	4.2.1	Elliptic	BE
Red	Purple	4.2.2	Round	/elliptic	BE/C
Red Storage type¹	White	White	4.3.1	Oval	TE/TNE
Brown	White	4.3.2	Oval	TE/TNE	
Brown	Purple	4.3.3	Oval	TE/TNE	
Conical type¹	Brown	White	4.4.1	Conical	R
Purple	White	4.4.2	Conical	R	
Babosa type¹	White	White	4.5.1	Inverted	Conical
Brown	White	4.5.2	Inverted	Conical	
Brown	Purple	4.5.3	Inverted	Conical	
Other types³	Pale yellow	White	—	Conical	R
Pale yellow	White	—	Oval	TNE	
Pale yellow	White	—	Oval	TE	

¹ Onion groups, subgroups and bulb shape following Castell and Diez (2000). ² Onion bulb shape out following TG/46/6 UPOV descriptors. ³ Onion types different to those described by Castell and Diez (2000). ⁴ Shape: C: circular. R: -rhombic. BE: broad elliptic. TE: transverse elliptic. TNE: transverse narrow elliptic. BO: broad obovate.
lines with very low quality to those specified before which had high level quality following the descriptors of Castell and Díez (2000).

Discussion

Considering the grouping criteria used by Castell and Díez (2000)—employed to characterize local onion lines collected all over Spain—based mainly on the bulb type as well as the skin and flesh colours, the situation differs from that described in this work. Most of the Galician local lines are situated in the 4.3.2 subgroup of the red storage type (Table 5), including either transverse elliptic or transverse narrow elliptic bulb lines. Only five lines were situated in different groups: ‘S. Xulián’ can be considered as a Red Storage type line belonging to the 4.3.4 subgroup and ‘Ribadeo’, ‘Oimbra’, ‘Outes’ and ‘Cea’ may be included in the 4.4.1 subgroup of the conical type class. It is important to mention that four of the eighteen lines cannot be clearly included in any of the groups defined by Castell and Díez (2000), mainly because of the skin colour. Most of the northwestern local lines have a skin colour ranging from dark brown to pale yellow and should not be all included in the same subgroup. A similar situation takes place with bulb shape: the descriptors used for characterization of the Spanish local lines do not distinguish well between transverse elliptic and transverse narrow elliptic shapes (UPOV, 1999) being all considered oval bulbs. This is specially important if we consider the fact that there were no northwestern entries in the catalogue described by these authors (Castell and Díez, 2000). The redefinition of classes using more precisely defined descriptors—such as the UPOV (1999) descriptors for example—and an increase in the number of entries, including several from the northwest and other parts of Spain, would improve the characterization.

Percentages of dry matter content are negatively correlated with percentages of sprouted bulbs (Fig. 2)—though the R^2 of the regression is relatively low—which is to say that storage quality, measured by the percentages of sprouted bulbs, is positively correlated with percentages of dry matter content. Mattana and Lobo (1980) reported increases in the storage quality of onion lines with higher percentages of dry matter contents as well as of lines with smaller bulbs. This usually takes place with onions that develop bulbs during long-day periods. Patil and Kale (1985) reported that storage losses were positively correlated with protein content and negatively correlated with ash, potassium, and dry matter content, as well as total soluble solids and nonreducing sugars. Storage quality is also reported to be negatively correlated with certain bulb morphological traits such as bulb and neck

Table 6. Yields (t ha$^{-1}$) and dry matter content (%) of the local and commercial onion (*Allium cepa* L.) lines studied

Lines	Yields 2001	Yields 2002	% dry matter content 2001	% dry matter content 2002
Local lines				
1. Ribadeo 1	13.2 ab	30.1 bc	8.46	9.00
2. Ribadeo 2	16.0 ab	28.5 c	8.23	9.70
3. Betanzos	14.4 ab	31.6 bc	9.59	12.50
4. Ameixenda	23.8 a	38.2 ab	7.96	8.00
5. S. Xulián	15.6 ab	31.2 bc	10.31	11.70
6. Baldaio	17.9 ab	43.4 a	7.64	9.70
7. Mondoñedo	13.9 ab	28.3 c	8.77	9.40
8. Chata-Miño	12.2 ab	32.4 bc	7.89	12.20
9. Oimbra	15.7 ab	27.0 c	6.51	9.00
10. Caldas	18.8 ab	24.8 cd	8.84	9.10
12. Vilagarcía1	22.3 a	30.4 bc	9.21	9.80
13. Vilagarcía2	18.9 ab	31.0 bc	9.56	9.60
14. Outes	20.5 ab	31.0 bc	8.04	8.40
15. Arcade	23.2 a	28.8 c	8.06	8.00
16. Ponteareas	18.9 ab	26.3 cd	8.41	10.00
Commercial varieties				
19. Paja Virtudes	13.7 ab	17.4 de	11.87	13.0
20. Babosa	4.5 b	32.5 bc	7.50	8.00
21. Castillo	18.1 ab	28.0 c	7.12	8.20
22. Arctic	9.9 b	29.3 c	7.40	9.80

Yield mean, in t ha$^{-1}$, of three replicates per line and year. Means of the same column followed by the same letter are not significantly different based on a Waller-Duncan multiple range test at $P = 0.05$.

Figure 2. Regression curve for percentage of sprouted bulbs 24 weeks after harvest vs. % dry matter content.
These correlations could not be confirmed by the data presented in this paper. If further research confirms that storage quality is correlated with certain chemical or morphological traits, the measurements of these characters would be of great use in breeding programs.

From the evaluations carried out in this work it can be concluded that the 18 local lines of northwestern origin can be grouped into three different classes according to morphological traits and into six classes if we also consider the flesh and skin colour. The most productive lines had the worst storage qualities and vice versa. Some of these lines had excellent storage qualities as well as good yields and will be employed in breeding programs in the future.

Acknowledgements

We specially thank Juan Piñeiro Andion for his scientific assistance.

Table 7. Storage quality of local and commercial onion (Allium cepa L.) lines studied

Lines	Weeks after harvest¹ (2001)	Storage quality²	Weeks after harvest¹ (2002)	Storage quality²									
	12	16	20	24	% of sprouted bulbs		12	16	20	24	% of sprouted bulbs		
Local lines					Medium							Medium	
1. Ribadeo 1	7.3	9.8	20.4	26.5	Medium	0.0	1.2	6.1	12.5	High			
2. Ribadeo 2	8.9	13.6	18.8	27.2	Medium	0.0	3.4	6.6	21.1	Medium			
3. Betanzos	4.4	7.8	12.0	17.0	High	0.0	0.0	2.1	2.1	High			
4. Ameixeixa	10.6	15.0	29.4	34.7	Low	1.7	7.6	29.0	52.9	Low			
5. S. Xulián	3.9	5.4	9.5	15.4	High	0.0	0.0	1.8	10.0	High			
6. Baldaio	11.2	16.7	26.5	32.0	Low	1.8	5.7	16.6	32.0	Medium			
7. Mendoñedo	10.1	18.2	30.0	46.1	Low	5.6	11.2	32.5	52.5	Low			
8. Chata-Miño	24.1	34.4	42.4	45.0	Very Low	0.0	0.0	3.9	11.6	High			
9. Oimbra	33.5	43.6	45.6	40.5	Very Low	18.0	28.2	34.2	42.8	Very Low			
10. Caldas de Reis	6.1	6.1	12.4	14.0	High	0.0	2.5	6.8	17.7	High			
11. Vilagarcía 1	5.2	9.7	13.1	20.3	High	1.2	1.2	2.5	8.6	High			
12. Vilagarcía 2	2.5	2.5	7.3	9.6	High	0.0	1.4	1.4	4.0	High			
13. Outes	5.5	17.0	33.4	44.1	Low	0.0	2.7	7.5	27.8	Medium			
14. Arcade	6.6	8.3	17.3	39.1	Medium	0.7	1.7	5.6	15.8	High			
15. Ponteareas	14.0	20.5	30.6	32.0	Low	3.7	7.0	21.7	48.0	Low			
16. Cea	6.4	7.3	16.4	23.8	Medium	—	—	—	—	—			
Commercial varieties						1 Percentages of sprouted bulbs 12, 16, 20 and 24 weeks after harvest. ² Storage quality evaluation following Castell and Díez (2000).							

References

ALBERT A., CUQUERELLA J., 1979. Nota sobre la frigoconservación de la cebolla variedad «grano». An INIA/ Ser Tecnol Agr 5, 333-344.
ASHISH K., SOOD D.R., PANDEY U.C., KALRA A., 1995. Studies on growth, pungency and flavour characteristics of different varieties of onions during bulbs development. J Food Sci Tech Mys 32(3), 189-192.
CASALLO A., MATEO J.M., SOBRINO E., 1991. Variedades tradicionales de cebolla cultivadas en España. Hortofruticultura 2, 38-44.
CASTELL V., DÍEZ M.J., 2000. Colección de semillas de cebolla del Centro de Conservación y Mejora de la Agrodiversidad Valenciana. Monografías INIA: Agrícola No. 8. Ministry of Science and Technology. Madrid. 99 pp.
COSTA N.D., RESENDE G.M., DIAS R., 2000. Evaluation of onion cultivars at Petrolina-PE. Horticultura Brasileira 18(1), 57-60.
CUBERO J.I., FLORES F., 1995. Métodos estadísticos para el estudio de la estabilidad varietal en ensayos agrícolas. Monografía No. 12/94. Junta de Andalucía. Consejería de Agricultura y Pesca. 176 pp.
Evaluation of local onion lines from northwest Spain

DRAGLAND S., BERENTSEN E., 1991. Evaluation trials of vegetables. I. Set-grown onions for early harvesting. II Winter cabbage cultivars. Faginfo 21, 20.

DUFF A.A., O’DONNEL W.E., NAPIER T., 2002. Onions. Queensland style, are mild onions the future? Proceedings of Onions 2002 Conference, National Vegetable Industry Centre, Yanco Agricultural Institute, Australia, June 3-7. pp. 24-30.

GANDIN C.L., GUIMARAES D.R., THOMAZELLI L.F., 1992. Characterization of four cultivars released in Santa Catarina State, Brazil. Pesqui Agropecu Bras 29(12), 1941-1945.

JIRIK J., POSPISILOVA J., 1981. Sensory evaluation of the principal onion (Allium cepa) cultivars and new selections. Bulletin Vyzkumnny a Slechtitelsky Ustav Zelinskary Olomouc 25-26, 3-18.

JITENDRA S., PANDEY U.C., RANA M.K., SRIVASTAVA V.K., SINGH J., 1992. Evaluation of rabi onion cultivars. Haryana Agric Univ J Res 22(2), 81-85.

KATWALE T. R., SARAF R. K., 1991. Evaluation of onion (Allium cepa L.) varieties for rainy season in Satpura zone of Madhya Pradesh. Orissa J Hortic 19(1-2), 6-10.

LAI S.H., CHEN N.C., SHANMUGASUNDARAM S., TSOU S.C.S., MIDMORE D.J., 1994. Evaluation of onion cultivars at AVRDC. Acta Horti 358, 221-230.

LLAMAZARES A., PÉREZ L.P., PÁRAMO J., 2002. Parámetros que caracterizan a la cebolla (1). Informaciones Técnicas 110. Gobierno de Aragón. 16 pp.

MAGGIONI L., ASTLEY D., RABONOWITCH H., KELLER J., LIPMAN E., (compilers) 1999. Report of a Working Group IPGRI on Allium. International Plant Genetic Resources Institute, Plovdiv, Bulgaria, Oct 23-25. 102 pp.

MAPA, 2002. Anuario de Estadística Agraria 2001. Ministry of Agriculture, Fisheries and Food. Madrid. 701 pp.

MATTANA S., LOBO P., 1980. Amazenamiento de cebola. Inf. Agropec. Belo Horizonte 6(62), 65-70.

MINGOCHI D.S., MPANDE E.K., 1992. Evaluation of some short-day onion cultivars in Taiwan. Onion Newsletter for the Tropics 4, 45-48.

MOHANT B.K., PRUSTI A.M., 2000. Assessment of onion cultivars for horticultural traits in Orissa during kharif season. JNKVV Res J 34(1-2), 20-24.

MOHANT B.K., HOSSAIA H.M., PRUSTI A.M., 2002. Performance of onion cultivars in Kharif season. Adv Plant Sci 15(2), 603-606.

PATIL R.S., KALE P.N., 1985 a. Correlation studies on chemical composition and keeping quality of some onion cultivars. Journal of Maharashtra Agricultural Universities 10(2), 154-155.

PATIL R.S., KALE P.N., 1985 b. Correlation studies on bulb characteristics and storage losses in onion. Journal of Maharashtra Agricultural Universities 10(1), 38-39.

RAJAPAKSE N.C., ANDERSEN C.R., PIKE L.M., 1992. Storage potential of short day onion cultivars: contribution of water loss, diseases and sprouting. Trop Sci 32(1), 33-40.

SZALAY F., 1971. Evaluation of performance of onion varieties. Agrartudomanyi Kozlmenynek 30(4), 619-624.

SZALAY F., 1981. Characterisation of Makoi onion cultivars on the basis of bulb development. Zoldsegtermesztesi Kutato Intezet Ulletinje 15, 5-13.

UPOV, 1999. Guidelines for the conduct tests for distinctness, uniformity and stability. Onion and shallot (Allium cepa L., Allium ascalonicum L.). TG/46/6, Geneva. 40 pp.

VAVRINA C.S., SMITTLE D.A., 1993. Evaluating sweet onion cultivars for sugar concentrations and pungency. HortScience 28(8), 804-806.

ZIMMERMANN H., 1976. Utilization of onion varieties cultivated in the German Democratic Republic for planting and storage. Gartenbau 23(9), 265-266.