Ultrastructural effect on mastitis pathogens by extract of endophytic fungi associated with ethnoveterinary plant, *Hibiscus sabdariffa* L.

Archana Nath, S.R. Joshi *

Microbiology Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793 022, Meghalaya, India

Abstract

Three endophytic fungi isolated from different parts of *Hibiscus sabdariffa* L. were identified using morphological and molecular approaches. Ethanolic extract of endophytic fungi as well as plant extracts were evaluated for *in vitro* antibacterial activity by using well diffusion method and their minimum inhibitory concentration estimated. The culture extract of one endophytic fungus *Glomerella acutata* EF15 was found to be potent antibacterial agent against pathogenic coliform bacteria *Klebsiella pneumoniae* and *Escherichia coli* responsible for causing clinical mastitis. Scanning electron microscopy (SEM) revealed the ultrastructural alteration in the cells of *K. pneumoniae* and *E. coli* when treated with crude ethanolic extract of *G. acutata*. The ethanolic extract of the endophytic fungus revealed potential to be bioprospected as antibacterial agent against pathogens causing coliform mastitis, the existing havoc of dairy industries.

© 2014 Saudi Society of Microscopes. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Medicinal plants constitute a source of both traditional and modern medicines [1]. About 80% of rural population depends on herbal medicine as their first line curative medicine. There are reports on the antimicrobial activity of the ethnoveterinary plants [2,3] but no reports are available on the antibacterial activity of the fungal endophytes isolated from these ethnoveterinary plants. Rosselle (*Hibiscus sabdariffa* L.; Family Malvaceae) also known as Ranga tenganamara in Assamese is mostly used as an ethnoveterinary plant by the local people of Northeast India to treat various ailments of the livestock [4]. The leaf juice is mostly fed to the animal in empty stomach for the treatment of dysentery. Several reports on the antimicrobial activity of the plant *H. sabdariffa* have also been reported [5,6].

Escherichia coli and *Klebsiella pneumoniae* are characterized under Enterobacteriaceae family that normally inhabit the digestive tract of human and animals but can be transmitted through contaminated food and water and become a cause for enterobacterial infections [7]. The coliform bacteria, *E. coli* and *K. pneumoniae* are also the most common gram-negative causes of clinical mastitis [8–10]. *K. pneumoniae* is the most common *Klebsiella* species found to cause mastitis. *Klebsiella* mastitis causes more losses in livestock industry in comparison to the losses made by *E. coli* mastitis in terms of milk production and survival [11,12]. *E. coli* infections respond well toward the treatment and take a shorter time to recover as compared to *Klebsiella* infections [8,13].

Endophytic fungi are fungi that colonize living, internal tissues of various parts of the plants without harming them [14]. Antimicrobial activity of the natural
products from plants have been extensively studied against newly emerged antibiotic resistant pathogens in a view that these new inhibitory agents from natural products are effective, have low toxicity and have a low environmental impact [15]. Recently endophytes are viewed as outstanding source of secondary metabolites and bioactive antimicrobial natural products [16]. The aim of the present study was to assess the antibacterial effect of endophytic fungi isolated from the H. sabdariffa plant. This study reports the isolation and antimicrobial potential, against mastitis pathogens, of endophytic fungi associated with ethnoveterinary plant H. sabdariffa used in treatment of cows, buffaloes and goats. The antimicrobial effect on the ultrastructure of the pathogens was evaluated using scanning electron micrographs.

2. Materials and methods

2.1. Plant collection and isolation of endophytic fungi

Fresh plants (stem, root and leaves) of H. sabdariffa L. were collected from Assam, India under sterilized condition in polythene bags. The plant parts were separated and cut into small pieces and washed thoroughly with tap water. They were surface sterilized in 70% ethanol for 3 min, 4% sodium hypochlorite for 1 min and again in 70% ethanol for 3 min and rinsed twice in sterile distilled water. Samples were blotted dry with sterile paper towels, then dried in laminar air flow and placed on potato dextrose agar (PDA) containing 100 μg/ml of streptomycin sulphate to suppress bacterial growth. Plates were incubated at 25 °C until the outgrowth of endophytic fungi from the explants was observed. The outgrowths were subcultured to produce pure culture on PDA plates [17]. All isolates were maintained in PDA slants and kept at 4 °C.

2.2. Morphological features

The endophytic fungal isolates were identified initially by their morphological characteristics such as hyphal feature, arrangement of spores and reproductive structures.

2.3. Molecular characterization of the endophytic fungi

Fungal mycelia grown in potato dextrose broth (PDB) for more than one week were taken and fungal genomic DNA was extracted using the HiPurA fungal DNA isolation kit (Himedia) following manufacturer’s instruction. Fungal rDNA–ITS region was amplified from the extracted genomic DNA by using fungal domain specific primer ITS1F and ITS4R [18]. PCR was performed in a GeneAmp 9700 Thermal Cycler (Applied Biosystems, USA) under the following conditions, initial denaturation step at 94 °C for 5 min, followed by 30 cycles of 94 °C for 1 min, 52 °C for 30 s, and 72 °C for 1 min, with a final extension step of 72 °C for 10 min. The PCR amplicons were excised and purified using a QIA Quick Gel Extraction Kit (Qiagen, Germany). The amplicons were sequenced in Applied Biosystems 3700 Genetic Analyser (Applied Biosystems, USA) with Big Dye Terminator ver. 3.1. The sequences were then compared with the GenBank database by the BLASTN program. Sequences obtained were then searched for similarity with other deposited sequences in GenBank. Alignments and phylogenetic analysis were performed using MEGA 4.0 software [19].

2.4. Preparation of plant extract

The collected plants were first washed properly with distilled water and then dried in an oven at 50 °C for 72 h with forced air, after which the dried plant were ground into a fine powder using a clean pestle and mortar. Dried sample (approximately 100 g) was soaked in ethanol (300 mL) for 4 days at room temperature (25 ± 2 °C) with an intermittent stirring to allow the powder to fully dissolve in the ethanol. The mixture was then filtered through Whatman No. 1 paper and then the filtrate was concentrated under vacuum using a rotary evaporator. The dry crude extracts were then finally dissolved in dimethylsulfoxide (DMSO) to make a final concentration of 1 mg/ml and then sterilized by filtration using a 0.22 μm membrane for antimicrobial assay [20]. The resultant extract was kept at 4 °C for further analysis.

2.5. Fungal broth fermentation and preparation of culture extract

Endophytic fungi were cultured in potato dextrose broth (PDB) at 25 °C for 4 weeks. The mycelia of fungi were separated from the fermentation broth by filtration. The mycelia filtrates were extracted thrice with an equal volume of 70% ethanol. Ethanol was then evaporated to dryness under reduced pressure at 45 °C using a rotary evaporator to obtain the crude extract [21] of the mycelial product. The dry crude extracts were then finally dissolved in dimethylsulfoxide (DMSO) to make a final concentration of 1 mg/ml of stock solution which was further used for antimicrobial assay.

2.6. Antimicrobial assay using well diffusion method

The crude ethanolic fungal extracts were screened for antimicrobial activity against two pathogenic coliform bacteria K. pneumoniae and E. coli isolated from bovine mastitis samples which were collected from College of Veterinary Science, Assam. The test organisms were grown overnight at 37 °C in brain heart infusion broth. The antimicrobial assay using the crude extract was carried out on Mueller Hinton agar medium plates. One milliliter of inoculum was swabbed on molten agar plates. Using the sterile cork borer 7 mm wells were made in the plates in which 50 μL of fungal extract was loaded. The control well was loaded with DMSO. The plates were incubated for 24 h at 37 °C and then were observed for zone of inhibition [22].

2.7. Determination of minimal inhibitory concentration

Minimum inhibitory concentration of all the fungal extract and plant extract were done by using microtiter broth dilution technique of Keskin et al. [23] with minor modification. A sterile 96 round-bottom well plate was used and was labeled properly. Crude extract of volume 100 μL was added into the first row of the plate.
To rest of the wells, 50 μL of potato dextrose broth was added and then serial dilutions were performed using a micropipette (A1–A10). Then, 50 μL of broth containing bacterial suspension (10^6 cfu/mL) was added to each well. Single antimicrobial extract in progressive dilutions was added in each column of wells. Each plate had a set of both growth (A11) and sterility control (A12). Plates were sealed with parafilm and placed in an incubator at 37 °C for 24 h. After incubation, 10 μL of 0.2% 2,3,5-triphenyl tetrazolium chloride (TTC) solution was added to each well. The plates having TTC were then incubated at 37 °C for 1 h. A visible color changes from purple to pink, indicated growth of microorganism and were recorded as negative. The MIC value of the extract was taken as the lowest concentration that showed no microbial growth.

2.8. Scanning electron microscopic analysis

Mastitis pathogens (*K. pneumoniae* and *E. coli*) having susceptibility to growth in presence of fungal extract were analyzed under scanning electron microscope (JSM-6360, Jeol) for their ultrastructural deformities implicated on the cells. Test organisms were treated with 4× concentration of the MIC of the fungal extracts and kept under overnight incubation at 37 °C. Then the cells were pelleted after centrifugation at 8000 rpm for 15 min. The pellets were then washed with PBS pH 7.3 several times to remove the debris and fixed in 2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.2) for 4 h. Glutaraldehyde was drained carefully and placed in three consecutive 1 h washes of 0.1 M cacodylate buffer. The samples were dehydrated with acetone series (50%, 70%, 80%, 90%, 95% and 100%) and the drying was done with TMS (trimethyl silane). Cells were immersed in TMS for 10 min in two changes at 4 °C and are brought to room temperature for drying. Finally, samples were sputter coated with a thin layer of gold–palladium and scanned under SEM.

3. Results

3.1. Isolation and identification

A total of eight isolates were isolated from different parts of the plant *H. sabdariffa* L. most being isolated from the leaf segments. The colony morphological trait of the isolate such as hyphal features and arrangement of spores were used for the tentative identification. Molecular characterization was considered for confirmatory identification of the isolate in which rDNA-ITS region was amplified, the sequence data was aligned using BLAST and the endophytic fungi were found to be closest homolog of *Aspergillus niger* (EF13), *Corynespora cassicola* (EF14) and *Glomerella acutata* (EF15). The ITS sequences for the fungi were deposited to NCBI and accessions obtained as KF928291, KF928292 and KF928293 respectively (Fig. 1).

3.2. Antimicrobial screening

The crude ethanolic extract of different endophytic fungi along with the plant extract was evaluated for the antimicrobial efficacy against two clinically significant animal pathogens. Among the eight isolates, only three isolates showed potent antimicrobial activity. Crude ethanolic plant extract also showed the antimicrobial activity. The fungal isolate EF15 showed the highest antimicrobial activity against both the tested animal pathogen followed by plant extract and the fungal isolates EF13 and EF14 (Table 1). The control well with DMSO did not show any zone of inhibition.

Table 1	Antimicrobial activity of endophytic fungal plant and the host plant extract by well diffusion method measured as zone of inhibition (mm).	
Fungal isolates and the host plant	Test organisms with growth inhibition zone	
	Klebsiella pneumoniae	Escherichia coli
Aspergillus niger EF13	++	+
Corynespora cassicola EF14	+	++
Glomerella acutata EF15	+++	+++
Hibiscus sabdariffa L.	++	++
+ indicates inhibition zone between 12 and 14 mm; ++ indicates inhibition zone between 14 and 18 mm; +++ indicates inhibition zone between 18 and 22 mm.		

Table 2	MIC values of the crude ethanolic extract of endophytic fungi and the shot plant.	
Fungal isolates and the host plant	MIC (mg/ml)	
	Klebsiella pneumoniae	Escherichia coli
Aspergillus niger EF13	0.083 ± 0.021	0.33 ± 0.08
Corynespora cassicola EF14	0.25 ± 0.00	0.20 ± 0.041
Glomerella acutata EF15	0.021 ± 0.005	0.016 ± 0.00
Hibiscus sabdariffa L.	0.032 ± 0.00	0.16 ± 0.041

3.3. Minimum inhibitory concentration (MIC)

All active extracts showing potent antimicrobial activity were further determined for their MIC by a microtiter broth dilution technique. The ethanolic extract of the fungal isolate EF15 showed MIC of 0.021 ± 0.005 mg/ml and 0.016 ± 0.00 mg/ml for *K. pneumoniae* and *E. coli* respectively (Table 2), which showed its efficacy as a potent antimicrobial. The findings of the MIC corroborated with the results obtained for well diffusion assay during primary screening.

3.4. Scanning electron micrographs

The antibacterial effect of the isolate EF15 on *K. pneumoniae* and *E. coli* was prominent on the cellular ultrastructure as revealed by scanning electron micrographs. The treatment of the mastitis pathogens with 4× concentrations of the MIC value of the fungal extract of EF15, the cells became sticky and shrunken when compared to control cells (Figs. 4 and 5). The normal pathogenic bacterial cells without any treatment revealed normal rod shape cell structure with smooth and regular surface without any shrinkage or cavity formation (Figs. 2 and 6). The treated bacterial cells showed multiple deformities and cells...
exhibited crumpled or shrunken surfaces with large number of cavity formation (Figs. 3, 4, 7–9).

4. Discussion

Drug resistance among microbes has become a global concern and there is an urgent need to develop new antimicrobial agents [20]. Endophytes are known to be a source of bioactive and pharmacologically active metabolites and an increasing number of novel compounds are being isolated from endophytic fungi [24]. The traditional ethno-veterinary medicinal practices are mostly followed by the rural folk for the management of most of the veterinary diseases. Our study on H. sabdariffa L. showed the presence of the fungi A. niger, C. cassicola and G. acutata which are first time report and were not reported from the same plant by Kumaresan et al. [25]. Mastitis is one of the most serious problems creating havoc in dairy industry causing great economic losses in terms of decreased milk production [26]. Coliform bacteria are responsible for many cases of acute clinical mastitis. They also cause subclinical infections that persist for longer period of time. Coliform bacteria like K. pneumoniae, E. coli, Enterobacter aerogenes and Serratia marcescens are four coliform bacteria that cause mastitis. Among them K. pneumoniae and E. coli are more common [27]. Research has shown that contaminated bedding is the main cause of udder infection and clinical mastitis. In the present study, the endophytic fungi G. acutata EF15 showed potent activity against both the test
Fig. 4. Micrograph showing shrunken and wrinkled *Klebsiella pneumoniae* bacterial cell.

Fig. 5.Collapsed and disintegrated *Klebsiella pneumoniae* bacterial cells losing their normal morphology.

Fig. 6. Scanning electron micrograph of *Escherichia coli* having normal rod shaped cells.

Fig. 7. Micrographs showing rupturing of the cell membrane of *Escherichia coli*.

Fig. 8. Cavity formation in the bacterial cells of *Escherichia coli* treated with endophytic fungi extract.

Fig. 9. Deformed *Escherichia coli* bacterial cells losing their normal cell morphology after treatment.
pathogens *K. pneumoniae* and *E. coli* which is in agreement with earlier reports [28]. The study indicated the ethanolic extract of endophytic fungi showing better antimicrobial activity when compared to the ethanolic plant extract of the host plant. One of the mechanisms involved in bacterial cell destruction is the action of antimicrobial agents on the cell membrane of the bacteria [29,30] leading to complete damage of the cells. The scanning electron micrographs clearly indicated that the bacterial cells crumpled, shrunken and cavities formation were prominent on the cell membrane of the bacteria which lead to complete damage of the cells corroborating earlier findings on bacterial cell damage [30]. This finding confirms the potential for investigating endophytic fungi from ethnoveterinary plant, *H. sabdariffa* L. as a potent antimicrobial agent against coliform bacteria causing mastitis.

Conflict of interest

None declared.

References

[1] Karimi E, Jaafar HZE. HPLC and GC–MS determination of bioactive compounds in microwave obtained extracts of three varieties of *Labisia pumila* Benth. Molecules 2011;16:6791–805.

[2] Kalayou S, Haileselassie M, Gebre-egziabher G, Tiku’e T, Sahle S, Taddele H, et al. In vitro antimicrobial activity screening of some ethnoveterinary medicinal plants traditionally used against mastitis, wound and gastrointestinal tract complication in Tigray Region, Ethiopia. Asian Pacific J Trop Biomed 2012;2:516–22.

[3] Adamu M, Naidoo V, Eloff JN. The antibacterial activity, antioxidant activity and selectivity index of leaf extracts of thirteen South African tree species used in ethnoveterinary medicine to treat helminth infections. BMC Vet Res 2014;10:52.

[4] Saikia B, Borthakur SK. Use of medicinal plants in animal healthcare—a case study from Gohpur, Assam. Indian J Trad Knowl 2010;9:49–51.

[5] Alaa G. Antioxidant and antibacterial activities of *Hibiscus sabdariffa* L. extracts. Afr J Food Sci 2012;21:506–11.

[6] El-kamali H, Moneer M. Antibacterial activity of *Hibiscus sabdariffa* and *Acacia seyal* against upper respiratory tract pathogens. Sudan Med J 2006;2:121–6.

[7] Guentzel MN, Escherichia, Klebsiella, Enterobacter, Serratia, Citrobacter, and Proteus. In: Baron S, editor. Medical microbiology. 4th ed. Galveston, TX: University of Texas Medical Branch at Galveston; 1996 [Chapter 26].

[8] Smith KL, Todhunter DA, Schoenberger PS. Environmental mastitis: cause, prevalence, prevention. J Dairy Sci 1985;68:1531–53.

[9] Erskine RJ, Tyler JW, Riddell Jr MC, Wilson RC. Theory, use, and realities of efficacy and food safety of antimicrobial treatment of acute coliform mastitis. J Am Vet Med Assoc 1991;198:980–4.

[10] Todhunter DA, Smith KL, Hogan JS, Schoenberger PS. Gram-negative bacterial infections of the mammary gland in cows. Am J Vet Res 1991;52:184–8.

[11] Erskine RJ, Barlett PC, VanLente JL, Phipps CR. Efficacy of systemic ceftiofur as a therapy for severe clinical mastitis in dairy cattle. J Dairy Sci 2002;85:2571–5.

[12] Grohn YT, Wilson DJ, Gonzalez RN, Hertel JA, Schulte H, Bennett G, et al. Effect of pathogen-specific clinical mastitis on milk yield in dairy cows. J Dairy Sci 2004;87:3358–74.

[13] Roberson JR, Warnick LD, Moore M. Mild to moderate clinical mastitis: efficacy of intramammary amoxicillin, frequent milk-out, a combined intramammary amoxicillin, and frequent milk-out treatment versus no treatment. J Dairy Sci 2004;87:583–92.

[14] Bacon CW, Stone JF, White EF. An overview of endophytic. Microbiol Endophytes 2000;1:1–29.

[15] Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J. Antimicrobial potential of endophytic fungi derived from three sea-grass species: *Cymodocea serrulata*, *Halophila ovalis* and *Thalassia hemprichii*. PLOS ONE 2013;8:e72529.

[16] Jalganwala RE, Mohite BV, Mahajan RT. Evaluation of endophytes for their antimicrobial activity from indigenous medicinal plants belonging to North Maharashtra region, India. Int J Pharm Biol Res 2010;1:136–41.

[17] Nath A, Chattopadhyay A, Joshi SR. Biological activity of endophytic fungi of *Rouwolfia serpentina* Benth, an ethnomedicinal plant used in folk medicines in Northeast India. Proc Natl Acad Sci India B: Biol Sci 2013, http://dx.doi.org/10.1007/s40011-013-0184-8.

[18] Bhagabaty HK, Joshi SR. Multi-loci molecular characterisation of endophytic fungi isolated from five medicinal plants of Meghalaya, India. Mycobiology 2011;39:71–8.

[19] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGAS: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2732–9.

[20] Vijayarathna S, Zakaria Z, Chen Y, Latha LY, Kanwar JR, Sasidharan S. The antimicrobial efficacy of *Ellaeis guineensis*: characterization, in vitro and in vivo studies. Molecules 2012;17:4860–77.

[21] Nath A, Joshi SR. Bioactivity assessment of endophytic fungi associated with the ethnomedicinal plant *Potentilla fulgens*. World J Pharmaceut Res 2013;2:5296–607.

[22] Nath A, Raghunathna P, Joshi SR. Diversity and biological activities of endophytic fungi of *Emblia officinalis*, an ethnomedicinal plant of India. Mycobiology 2012;40:18–30.

[23] Keskin D, Oskay D, Oskay M. Antibacterial activity of selected plant spices marketed in the west Anatolia. Int J Agric Biol 2010;12:916–20.

[24] Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 2003;67:491–502.

[25] Kumaresan V, Veeramohan R, Shivastava P, Deepika R, Suganya M, Venula S, et al. Fungal endophytes of some green leafy vegetables. World J Agric Sci 2013;9:415–20.

[26] Mubarak HM, Doss A, Dhanabal R, Venkataswamy R. In-vitro antimicrobial effects of some selected plants against bovine mastitis pathogens. Hygeia J Drugs Med 2011;3:71–5.

[27] Munoz MA, Alishroem, Rauch BJ, Zadoks RN. Fecal shedding of *Klebsiella pneumoniae* by dairy cows. J Dairy Sci 2006;89:3425–30.

[28] Veerla ML, Hughes AF, Gil VB, Vaz AB, Alves TM, Zani CL, et al. Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant *Solanum cernuum* Vell. (Solanaceae). Can J Microbiol 2012;58:54–66.

[29] Hyldegaard M, Mygind T, Meyer RL. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 2012;3:12.

[30] Darai I, Lim SH, Nithiansantham K. Effects of methanol extract of *Wedelia chinesis* Osbeck (asteraceae) leaves against pathogenic bacteria with emphasis on *Bacillus cereus*. Indian J Pharm Sci 2013;75:533–9.