Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Perinatal outcomes in critically ill pregnant women with coronavirus disease 2019

OBJECTIVE: Early reports suggested that pregnant women were not at an increased risk for severe disease or death from coronavirus disease 2019 (COVID-19). However, few publications have described critical illness in pregnant patients with COVID-19. This study describes the clinical characteristics and outcomes of critically ill mothers and their neonates within our health network since the onset of the COVID-19 pandemic in New Jersey.

STUDY DESIGN: This institutional review board–approved, retrospective case series describes all pregnant women and their neonates requiring critical care for severe COVID-19 within our network’s 2 largest hospitals in March 2020 and April 2020. Maternal demographic information, delivery method and indication, clinical symptomatology, imaging and laboratory findings, and treatment data were collected. Neonatal outcomes were also collected, including real-time polymerase chain reaction (RT-PCR) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

RESULTS: There were 1053 deliveries between both hospitals during the study period, with 73 (6.9%) documented symptomatic pregnant patients with COVID-19. Of the 73 patients, 31 (42%) were admitted for management of COVID-19 symptoms. Among the 31 patients, 8 (26%) required intensive care unit (ICU) admission, 6 (19%) required intubation, and 1 (3.2%) was supported with extracorporeal membrane oxygenation (ECMO). Therefore, 8 of 73 (11%) patients who exhibited COVID-19 symptoms developed critical illness.

Table 1 describes the maternal demographics, clinical characteristics, and treatments of the 8 critically ill patients treated during the study period. Mean age and body mass index were 30.5 ± 9.0 years and 34 ± 7.9 kg/m², respectively. Median gravidity and parity were 2.5 (3.5) and 1 (2.75). Mean gestational age at presentation was 30.6 weeks, and mean gestational age at delivery was 31.4 weeks. Of note, 7 (87.5%) of the women were Hispanic, despite the 2 health centers having Hispanic populations of 24.7% and 8%, respectively. Two women had preexisting conditions (chronic hypertension, asthma), and 1 presented with hemolysis, elevated liver enzyme, and low platelet (HELLP) syndrome. Among the 8 critically ill patients, 7 (87.5%) died of disease requiring preterm delivery by cesarean delivery, and 1 is yet to deliver.

Furthermore, among the 8 critically ill patients, 5 had an oxygen saturation less than 94% on admission. Only 1 was febrile on admission, although 5 (62.5%) developed fever during hospitalization. Most had cough (75%) and dyspnea (87.5%). All had elevated transaminases and D-dimer levels. Moreover, C-reactive protein (CRP), lactate dehydrogenase, and interleukin-6 levels were elevated in all women who received these tests.

Treatments are summarized in the Supplemental Figure. All required oxygen supplementation; most received a combination of medical interventions. Of the 8 critically ill patients, 6 (75%) required intubation, and 1 (12.5%) received venovenous ECMO for 12 days. Three women required norepinephrine and prone positioning, which was accomplished after delivery. All women were discharged in stable condition.

Patients 1 through 8 in Table 1 are paired with neonates 1 through 8 in Table 2 (patient 5 is yet to deliver). All neonates were premature and required neonatal ICU admission. Respiratory distress (85.7%) was universal and predominantly severe. Neonatal morbidities were significant. All neonates tested negative by RT-PCR for SARS-CoV-2.

CONCLUSION: Our case series illustrates the potential severity of COVID-19 in pregnant women and provides a model of management that may be useful for obstetrical providers. Most women in our series were Hispanic, which is disproportionately high given the demographics of our institutions. Information on other social determinants of health was not available. This finding warrants further investigation considering emerging racial disparities of COVID-19–related deaths. Most women had rapid onset of disease, developed severe hypoxia, and had significant findings on lung imaging. Fever on initial presentation was uncommon. All had elevation of liver transaminases, CRP, and D-dimer.

There are conflicting data on the risk for preterm delivery associated with COVID-19 in pregnancy. In this study, 7 of 8 women with critical respiratory illness required preterm delivery with the goal of reducing respiratory compromise by decreasing oxygen requirements and enhancing diaphragmatic excursion. Antenatal corticosteroids were not given universally because of the theoretical potential to exacerbate COVID-19 and pulmonary edema. Rapid deterioration was another limiting factor.

All women were discharged home in good health following multimodal and multidisciplinary approaches including intubation, prompt delivery, off-label use of experimental therapies (eg, remdesivir, convalescent plasma), and ECMO. Although there was a significant burden of prematurity, each neonate improved as expected with neonatal intensive care, and there was no evidence of vertical transmission.

Obstetrical providers should be aware of the potential for COVID-19 to progress to critical illness in pregnancy. Without clear guidelines for treatment, providers are left with unproven therapies without sufficient safety data, and
Patient number	1	2	3	4	5	6	7	8
Demographic information								
Age	41	21	36	32	43	26	19	26
Gravidity/parity	G3P2	G1P0	G2P0	G5P3	G5P3	G2P0	G1P0	G4P2
BMI (kg/m²)	49	27	26	36	36	33	26	39
Race/ethnicity	Hispanic	Hispanic	Asian	Hispanic	Hispanic	Hispanic	Hispanic	Hispanic
Gestational age at presentation (wk)	30 5/7	33 0/7	35 0/7	30 0/7	26 4/7	27 6/7	31 1/7	30 1/7
Gestational age at delivery (wk)	30 5/7	33 3/7	35 0/7	30 1/7	Undelivered	28 1/7	31 6/7	30 2/7
Medical/obstetrical comorbidities								
Chronic hypertension, hypothyroidism	None	None	Asthma	None	None	None	Preeclampsia	None
Delivery method	Primary CD with tubal ligation	Primary CD	Primary CD	Primary CD	Undelivered	Primary CD	Primary CD	Primary CD
Reason for CD	Respiratory failure	Respiratory failure	Respiratory failure	Respiratory failure	N/A	Respiratory failure	HELLP syndrome	Respiratory failure
Clinical data, on admission (maximum)								
Oxygen saturation (%)	78	93	93	97	96	93	98	87
Temperature (°F), presentation (Tmax)	98.9 (100.9)	97.6 (100)	100.1 (100.5)	101.4 (101.4)	100.3 (100.3)	99 (101.6)	97.6 (100.2)	98.3 (101.5)
Cough	Yes	No	Yes	Yes	Yes	Yes	No	Yes
Dyspnea	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
Chest x-ray/CT findings	Severe diffuse interstitial and airspace disease	Patchy peripheral bilateral lung opacities	Patchy bilateral lower lung infiltrates	Moderate patchy bilateral airspace disease	Low lung volumes, patchy bilateral infiltrates	Left upper lobe and right lower lobe opacities	Negative	Bilateral opacities consistent with pneumonia
Ferritin (ng/mL)	510 (540)	487 (487)	1118 (1899)	57.6 (91)	64 (114)	192 (218)	437 (437)	183 (183)
AST (U/L)	73 (84)	300 (300)	23 (117)	30 (107)	35 (44)	50 (99)	20 (1343)	76 (76)
ALT (U/L)	27 (49)	248 (248)	26 (95)	14 (74)	18 (18)	35 (45)	6 (246)	79 (79)
D-dimer (µg/mL)	2.7 (2.7)	1.6 (2.9)	1.3 (1.3)	1.1 (3.3)	0.96 (1.1)	0.93 (1.4)	26 (46.3)	0.94 (6.2)
WBC (×10³ cells/mL)	6.3 (14.8)	3.6 (15.5)	7.5 (10.5)	5.9 (16.8)	11 (18)	5.4 (12)	10.6 (20.6)	3.9 (17.7)
Absolute lymphocytes (cells/µL)	720	670	2380	1620	900	700	2600	400
Patient number	1	2	3	4	5	6	7	8
---------------	-------	-------	-------	-------	-------	-------	-------	-------
Platelets (×10³ cells/mL)	229 (413)	110 (508)	269 (469)	169 (376)	344 (774)	129 (379)	280 (322)	121 (223)
C-reactive protein (mg/dL)	7.8 (14.3)	6.0 (11.9)	14.2 (17.7)	10.6 (13.0)	17.4 (24.3)	0.56 (0.56)	23.6 (23.6)	16.8 (16.8)
LDH (U/L)	524 (1042)	379 (465)	268 (432)	261 (568)	226 (386)	222 (222)	172 (1785)	257 (403)
IL-6 (pg/mL)	7 (138)	<5 (39)	24 (45)	6 (441)	17 (17)	N/A	N/A	N/A
Standard and critical care treatments								
Antenatal corticosteroids	No	Yes	No	No	No	Yes	Yes	Yes
Supplemental O₂ by nasal cannula	Yes							
Hydroxychloroquine	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
Azithromycin	Yes	Yes	Yes	Yes	No	Yes	No	Yes
Ascorbic acid	Yes	Yes	No	Yes	No	Yes	No	Yes
Methylprednisolone	Yes	Yes	Yes	Yes	No	Yes	No	No
Ceftriaxone	Yes	No	Yes	Yes	No	Yes	Yes	Yes
Convalescent plasma	No	Yes	No	No	Yes	No	No	No
Intubation	Yes	Yes	Yes	Yes	No	Yes	No	Yes
Prone positioning	Yes	Yes	No	No	No	Yes	No	No
Tocilizumab	Yes	Yes	No	Yes	No	Yes	No	Yes
Remdesivir	Yes	Yes	Yes	Yes	No	Yes	No	Yes
Heparin/enoxaparin (prophylactic)	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
Vasopressor (norepinephrine)	Yes	Yes	No	Yes	No	No	No	No
VV ECMO	Yes	No						

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CD, cesarean delivery; COVID-19, coronavirus disease 2019; CT, computed tomography; HELLP, hemolysis, elevated liver enzyme, and low platelet syndrome; IL-6, interleukin-6; LDH, lactate dehydrogenase; N/A, not applicable; VV ECMO, venovenous extracorporeal membrane oxygenation; WBC, white blood cell count.

Romagano. Perinatal outcomes in critically ill pregnant women with COVID-19. AOGF MFM 2020.
Neonate	1	2	3	4	5 (undelivered)	6	7	8
Maternal labor	No	No	No	No	—	No	No	No
Length of rupture of membranes	At delivery	At delivery	At delivery	At delivery	—	At delivery	At delivery	At delivery
Category II or III fetal heart tracing	No	No	No	No	—	No	No	No
Gestational age (wk)	30 5/7	33 3/7	35 0/7	30 1/7	—	28 1/7	31 6/7	30 2/7
Birthweight (g), size category	1400, AGA	2410, AGA	2680, AGA	1530, AGA	—	1250, AGA	1310, SGA	1710, AGA
Antenatal corticosteroids	No	Yes	No	No	—	Yes	Yes	Yes
Sex	Female	Male	Female	Female	—	Male	Female	Male
Apgar score (1, 5, 10 min)	1, 4	3, 4, 9	7, 9	7, 8	—	1, 7	3, 5, 7	4, 9
Resuscitation	O₂, CPAP, PPV, intubation, surfactant	O₂, CPAP, PPV, intubation	O₂, CPAP, PPV	O₂, CPAP	—	CPAP, PPV	O₂, CPAP, PPV, intubation, surfactant, tracheal suctioning	
Separated immediately after delivery	Yes	Yes	Yes	Yes	—	Yes	Yes	Yes
Length of stay (d)	39	15	7	34+	—	35+	13+	16+
Final disposition	Home	Home	Home	Remains hospitalized	—	Remains hospitalized	Remains hospitalized	Remains hospitalized
Respiratory distress present	Yes, RDS	Yes, RDS	Yes, TTN	Yes, RDS	—	Yes, RDS	Yes, RDS	Yes, RDS
Respiratory support required	Mechanical ventilation, CPAP, HHFNC	Mechanical ventilation, CPAP, HHFNC	CPAP	Mechanical ventilation, CPAP, HHFNC	—	Mechanical ventilation, CPAP, HHFNC	Mechanical ventilation, CPAP, HHFNC	Mechanical ventilation, CPAP, HHFNC
Lowest leukocyte count in first 7 d (×10⁹/µL)	5.5	6.3	13.7	8.3	—	8.6	9.1	10.3
Lowest neutrophil count in first 7 d (×10⁹/µL)	1.54	2.74	—	2.7	—	4.6	6.4	6.0

Romagano. Perinatal outcomes in critically ill pregnant women with COVID-19. AJOG MFM 2020. (continued)
TABLE 2
Characteristics, treatments, and outcomes of 7 neonates born to mothers with COVID-19 (continued)

Neonate	1	2	3	4	5 (undelivered)	6	7	8
Lowest lymphocyte count in first 7 d ($\times 10^3$/µL)	3.36	2.62	—	4.89	—	3.6	3.8	2.4
Lowest hemoglobin in first 7 d (g/dL)	14.7	16.6	17.6	14.4	—	11.5	18.5	19.4
Highest C-reactive protein in first 7 d (mg/dL)	0.55	—	0.08	—	—	0.11	—	—
Other neonatal morbidities	Apnea, hyperbilirubinemia of prematurity, feeding problems, temperature instability, observation and evaluation for sepsis	Hyperbilirubinemia of prematurity, feeding problems, temperature instability	Hyperbilirubinemia of prematurity, extraocular pulmonary sequestration, observation and evaluation for sepsis, feeding problems	Apnea, hyperbilirubinemia of prematurity, temperature instability, IVH	—	Apnea, hyperbilirubinemia of prematurity, anemia of prematurity, NEC, temperature instability	Apnea, hyperbilirubinemia of prematurity, temperature instability, feeding problems	Apnea of prematurity, temperature instability, feeding problems
Treatments administered	Antibiotics for 48 h, TPN, surfactant, caffeine, phototherapy	TPN, phototherapy	Intravenous fluids, antibiotics for 48 h, phototherapy	TPN, surfactant, caffeine, phototherapy	—	Antibiotics for 48 h, TPN, surfactant, caffeine, phototherapy	TPN, caffeine, phototherapy	TPN, caffeine, surfactant
Head ultrasound results	Normal, day 7 of life	—	—	Unilateral grade 1 IVH on day 8 of life	—	Normal, day 5 of life	Normal, day 5 of life	Normal, day 5 of life
SARS-CoV-2 RT-PCR testing done	Yes	Yes	Yes	—	—	Yes	Yes	Yes
Specimen type and timing	NP at 24 h and 7 d	NP at 24 h	NP at 24 h and 7 d	NP at 24 h and 7 d	—	NP at 24 h, 72 h, and 10 d	NP at 48 h and 72 h	NP at 48 h and 72 h
SARS-CoV-2 test result	Negative	Negative	Negative	Negative	—	Negative	Negative	Negative
Type of feeding provided and feeding method	Formula, no maternal breast milk	Formula	Formula, no maternal breast milk	Donor breast milk, no maternal breast milk	—	Donor breast milk	Donor breast milk	Expressed maternal and donor breast milk
Discharge	Discharged to father (SARS-CoV-2 negative)	Discharged to father (SARS-CoV-2 negative)	Discharged to father (PUI)	Remains hospitalized	—	Remains hospitalized	Remains hospitalized	Remains hospitalized

AGA, appropriate for gestational age; COVID-19, coronavirus disease 2019; CPAP, continuous positive airway pressure; HHFNC, humidified high-flow nasal cannula; IVH, intraventricular hemorrhage; NEC, necrotizing enterocolitis; NICU, neonatal intensive care unit; NP, nasopharyngeal; PPV, positive pressure ventilation; PUI, person under investigation; RDS, respiratory distress syndrome; RT-PCR, real-time polymerase chain reaction; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SGA, small for gestational age; TPN, total parenteral nutrition; TTN, transient tachypnea of the newborn.

Romagano. Perinatal outcomes in critically ill pregnant women with COVID-19. AJOG MFM 2020.
although treatment was ultimately successful in all patients, it is impossible to state whether any individual intervention is an improvement over standard supportive care. As research evolves during this crisis, management options will be clarified. Providers should recognize clinical deterioration in pregnant women and intervene swiftly to limit maternal and fetal harm.

Matthew P. Romagano, DO
Kerly Guerrero, MD
Department of Obstetrics and Gynecology
Hackensack University Medical Center
Hackensack, NJ

Nicole Spillane, MD
Department of Pediatrics
Hackensack University Medical Center
Hackensack, NJ

Emre Kayaalp, MD, PhD
Department of Obstetrics and Gynecology
Hackensack Meridian School of Medicine at Seton Hall University
Nutley, NJ

Scott W. Smilen, MD
Department of Obstetrics and Gynecology
Hackensack Meridian School of Medicine at Seton Hall University
Nutley, NJ

Manuel Alvarez, MD
Jesus Alvarez-Perez, MD
Antonia Francis Kim, MD
Department of Obstetrics and Gynecology
Hackensack University Medical Center

Hackensack, NJ

Department of Obstetrics and Gynecology
Hackensack Meridian School of Medicine at Seton Hall University
Nutley, NJ

Judy Aschner, MD
Department of Pediatrics
Hackensack University Medical Center
Hackensack, NJ

Abdulla Al-Khan, MD
Department of Obstetrics and Gynecology
Hackensack University Medical Center
Hackensack, NJ

This paper is part of a supplement that represents a collection of COVID-related articles selected for publication by the editors of AJOG MFM without additional financial support.

The authors report no conflict of interest.

REFERENCES

1. Liu D, Li L, Wu X, et al. Pregnancy and perinatal outcomes of women with coronavirus disease (COVID-19) pneumonia: a preliminary analysis. AJR Am J Roentgenol 2020. [Epub ahead of print].
2. Yancy CW. COVID-19 and African Americans. JAMA 2020. [Epub ahead of print].
3. Zhu H, Wang L, Fang C, et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl Pediatr 2020;9:51–60.
4. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020;395:809–15.
5. Fuchs A, McLaren R Jr, Saunders P, Karakash S, Minkoff H. Human metapneumovirus infection and acute respiratory distress syndrome during pregnancy. Obstet Gynecol 2017;130:630–2.
6. Tomlinson MW, Caruthers TJ, Whitty JE, Gorik B. Does delivery improve maternal condition in the respiratory-compromised gravida? Obstet Gynecol 1998;91:108–11.

© 2020 Elsevier Inc. All rights reserved. https://doi.org/10.1016/j.ajogmf.2020.100151