HOCHSCHILD AND CYCLIC HOMOLOGY OF THE QUANTUM KUMMER SPACES

SAFDAR QUDDUS

Abstract. We study the quotient space obtained by the flip action on the quantum n-tori. The Hochschild, cyclic and periodic cyclic homology are calculated.

0. Introduction

Spanier [S] studied the Kummer (non-smooth) manifolds obtained by the action of \mathbb{Z}_2 on the $2n$ dimensional torus. He concluded that the space is homeomorphic to $\mathbb{R}P^{2n-1}$. It has 2^{2n} double points and is simply connected with vanishing odd homology. Alternatively, a link of fixed-points after the quotient is homeomorphic to $\mathbb{R}P^{2n-1}$. The non-commutative geometry currently does not have a well defined notion of “non-commutative knots/links” but we shall see that homologically the \mathbb{Z}_2 quotient of the n-quantum torus A_Θ is similar to the Kummer manifold/variety. The dimension of cyclic homology is the same as the Betti numbers for the classical Kummer manifolds.

The Hochschild homology for these orbifolds for the case $n = 2$ was done in [O] [B] and [Q]. We here are inspired by the proof of [Q] and extending the methodology there into higher dimensions. It maybe noted that the periodic cyclic homology of $A_\Theta \times \mathbb{Z}_2$, the noncommutative smooth torus \mathbb{Z}_2 computed in a recent work [CTY] matches in dimension to what we have calculated in this article for the quantum/algebraic noncommutative torus with \mathbb{Z}_2 action. It is also expected that for “sufficiently” good Θ, the \mathbb{Z}_2 quotient of the noncommutative smooth n-torus A_Θ shares similar Hochschild homological property but even for $n = 2$, such a computation was tricky[C]. What is known rather is that the odd periodic homology vanishes which does hint the vanishing of odd Hochschild homology. Other than having a striking similarity with the smooth quotients, the Hochschild homology of the quantum tori themselves have been studied [W1] and [T]. Readers can refer to [BRT, Page 353] for the comparison table therein for various homological and algebraic properties between the smooth non-commutative 2-torus and the quantum/algebraic non-commutative 2-torus.

1. Statement

THEOREM 1.1. Let Θ be a skew symmetric $n \times n$ matrix such that its entries are unimodular but none are roots of unity.

a) $H_0(\mathcal{A}_\Theta \times \mathbb{Z}_2) \cong \mathbb{C}^{2n+1}$ and

b) $H_\bullet(\mathcal{A}_\Theta \times \mathbb{Z}_2) \cong \mathbb{C}(\bullet)$ for $\bullet = 2k$ for some $k > 0$ and 0 otherwise.

2010 Mathematics Subject Classification. 58B34; 18G60

Date: July 9, 2020.

Key words and phrases. Homology, non-commutative N-torus, Hochschild.
COROLLARY 1.2. \(\dim_C(HC_\bullet(\mathcal{A}_\Theta \rtimes \mathbb{Z}_2)) = \sum_{2k \leq \bullet} \binom{n}{2k} + 2^n \) for \(\bullet \) even, 0 otherwise.

COROLLARY 1.3. The periodic homology are as follows:

a) \(HP_{\text{even}}(\mathcal{A}_\Theta \rtimes \mathbb{Z}_2) \cong \mathbb{C}^{3 \cdot 2^{n-1}} \) and

b) \(HP_{\text{odd}}(\mathcal{A}_\Theta \rtimes \mathbb{Z}_2) = 0. \)

2. STRATEGY OF THE PROOF

We shall study the Hochschild homology using the paracyclic spectral decomposition of the homology of the crossed product algebra. [GJ]

\[
H_\bullet(\mathcal{A}_\Theta \rtimes \mathbb{Z}_2) \cong H_\bullet(\mathcal{A}_\Theta)^{\mathbb{Z}_2} \oplus H_\bullet(-\mathcal{A}_\Theta)^{\mathbb{Z}_2},
\]

where \(-\mathcal{A}_\Theta\) is the algebra \(\mathcal{A}_\Theta\) with (left) \(\mathbb{Z}_2\)-twisted \(\mathcal{A}_\Theta^e\) module structure.

Hence our proof will investigate each of the summands in the above decomposition by firstly understanding the associated Hochschild homology and then locating the \(\mathbb{Z}_2\) invariant cycles. We shall use Nest’s resolution (which is similar to Wambst’s resolution for quantum symmetric algebras [W2]) and also Connes’ resolution as and when we find suitable.

3. NEST’S KOZUL RESOLUTION REVISITED

Nest [N] introduced a Koszul resolution for higher dimensional non-commutative tori. We briefly describe his resolution below.

The algebra \(\mathcal{A}_\Theta\) for a skew symmetric complex matrix \(\Theta\) is generated by unitaries \(\nu_1, \nu_2, \ldots, \nu_n\), satisfying the commutation relations

\[
\nu_i \nu_j = \lambda_{ij} \nu_j \nu_i, \quad \text{for } 1 \leq i, j \leq n
\]

such that \(|\lambda_{ij}| = 1\).

The enveloping algebra \(\mathcal{A}_\Theta^e\) is the algebraic tensor of \(\mathcal{A}_\Theta\) and its opposite algebra.

\[
\mathcal{A}_\Theta^e = \mathcal{A}_\Theta \otimes \mathcal{A}_\Theta^{op}.
\]

An element of \(\mathcal{A}_\Theta^e\) is denoted by \(a \otimes b^\circ\) for \(a \in \mathcal{A}_\Theta\) and \(b^\circ \in \mathcal{A}_\Theta^{op}\). We set \(V = \mathbb{C}^n\) with orthonormal basis \(e_1, e_2, \ldots, e_n\). We have the standard bar resolution of \(\mathcal{A}_\Theta\) is given as below:

\[
\cdots \to \Lambda_s(\mathcal{A}_\Theta) \xrightarrow{b} \Lambda_{s-1}(\mathcal{A}_\Theta) \xrightarrow{b} \cdots \xrightarrow{b} \Lambda_2(\mathcal{A}_\Theta) \xrightarrow{b} \Lambda_1(\mathcal{A}_\Theta) \xrightarrow{b} \Lambda_0(\mathcal{A}_\Theta) \xrightarrow{b} \mathcal{A}_\Theta,
\]

where \(\Lambda_s(\mathcal{A}_\Theta) = \mathcal{A}_\Theta^e \otimes \mathcal{A}_\Theta^{s\circ}\), \(\epsilon\) is the augmentation map and \(b : \Lambda_n(\mathcal{A}_\Theta) \to \Lambda_{n-1}(\mathcal{A}_\Theta)\);

\[
a_0 \otimes a_1 \otimes \cdots \otimes a_n \mapsto \sum_{i=0}^{n-1} (-1)^i a_0 \otimes \cdots \otimes a_ia_{i+1} \cdots a_n + (-1)^n a_n a_0 \otimes a_1 \otimes \cdots \otimes a_{n-1}.
\]

We set \(E_s = \mathcal{A}_\Theta^e \otimes \Lambda^sV\) and consider the following maps:

\[
h_s : E_s \to \Lambda_s(\mathcal{A}_\Theta);
\]

\[
1 \otimes e_{i_1} \wedge e_{i_2} \wedge \cdots \wedge e_{i_n} \mapsto \sum_{\sigma \in S_s} \text{sgn}(\sigma)(\nu_{\sigma(i_1)} \nu_{\sigma(i_2)} \cdots \nu_{\sigma(i_s)})^{-1} \otimes \nu_{\sigma(i_1)} \otimes \nu_{\sigma(i_2)} \otimes \cdots \otimes \nu_{\sigma(i_s)}.
\]

\[
\alpha_s : E_s \to E_{s-1};
\]

where \(E_0 = \mathcal{A}_\Theta^e \otimes \Lambda^0V\).
where

\[1 \otimes e_{i_1} \wedge e_{i_2} \wedge \ldots \wedge e_{i_n} \mapsto \sum_{k=1}^{n} (-1)^k (1 - \nu_{i_k}^{-1} \otimes \nu_{i_k}^0) \otimes e_{i_1} \wedge e_{i_2} \wedge \ldots \wedge e_{i_k} \wedge \ldots \wedge e_{i_n}. \]

\[k_s : \Lambda_s(\mathcal{A}_\Theta) \to E_s; \]

\[k((\nu_{i_1}, \nu_{i_2}, \ldots, \nu_{i_n})^{-1} \otimes \nu_{i_1} \otimes \nu_{i_2} \otimes \cdots \otimes \nu_{i_n}) = \sum_{i_1 > i_2 > \ldots > i_n} \rho_i ((\nu_{i_1})^{-1} \otimes (\nu_{i_1})) \wedge \rho_{i_2} ((\nu_{i_2})^{-1} \otimes (\nu_{i_2})) \wedge \cdots \wedge \rho_{i_n} ((\nu_{i_n})^{-1} \otimes (\nu_{i_n})). \]

Where for \(E_s \cong \mathcal{A}_\Theta \otimes \Lambda^s V \otimes \mathcal{A}_\Theta \) has a graded product structure \([N]\), for \(\pi = (\pi_1, \pi_2, \ldots, \pi_s) \in \mathbb{Z}^s \), \(\nu^\pi := \nu_{1}^{\pi_1} \nu_{2}^{\pi_2} \ldots \nu_{s}^{\pi_s} \) and \(\rho_i : \Lambda_1(\mathcal{A}_\Theta) \to E_1 \) as defined as below.

Note: The formula for \(\rho_i((\nu_{i_1})^{-1} \otimes \nu_{i_1}) \) in \([N][Page \text{1050}]\) has a misprint and the correct formula, which we shall use in our study is as follows:

\[\rho_i((\nu_{i_1})^{-1} \otimes \nu_{i_1}) = (\nu_{i_1}^{1-i})^{-1} (\sum_{s=0}^{\pi_i-1} \nu_{i_s}^{-k} \otimes \nu_{i_s}^{k})(\nu_{i_1}^{1-i}). \]

where

\[
\begin{aligned}
\sum_{i=0}^{n'} = \begin{cases}
\sum_{i=0}^{n} & \text{for } n \geq 0, \\
0 & \text{for } n = -1, \\
-1 & \text{for } n < -1.
\end{cases}
\end{aligned}
\]

and \(\nu^{1-i}_{1-p-1} := \nu^{p}_{1} \cdots \nu^{n}_{1}. \)

Though Nest gave this resolution for smooth non-commutative \(n \)-tori \(\mathcal{A}_\Theta \), but it is also a resolution of the quantum tori \(\mathcal{A}_\Theta \), the proof is easy and similar to the proof that Connes’ resolution is a resolution for quantum 2-torus.[Q]

4. Invariant cycles, \(H_*(\mathcal{A}_\Theta)^{\mathbb{Z}^2} \)

Using the Nest resolution we can easily compute \(H_0(\mathcal{A}_\Theta) \) explicitly, they zeroth cocycles are the \(\mathcal{A}_\Theta/im(\alpha_1) \), where

\[\alpha_1(a^i \otimes 1 \otimes e_i) = a^i \otimes (1 - \nu^{-1}_i \otimes \nu^0_i) = a^i - \nu^{-1}_i a^i \nu_i. \]

Clearly, the zeroth Hochschild homology \(H_0(\mathcal{A}_\Theta) \) is generated by the equivalence class of elements supported at \(a_0 \). These scalars are invariant under \(\nu_i \mapsto \nu_i^{-1} \), hence \(H_0(\mathcal{A}_\Theta)^{\mathbb{Z}^2} = \mathbb{C}. \)

To compute \(H_*(\mathcal{A}_\Theta)^{\mathbb{Z}^2} \) for \(\bullet > 1 \) we shall firstly observe \(H_*(\mathcal{A}_\Theta) \) using the Nest’s Koszul resolution and then locate the invariant cycles. Wambst [W1] computed these \(k \)-Hochschild cycles of the quantum tori \(\mathcal{A}_\Theta \), they were generated by elements \(\{((x^\pi)^{-1} \otimes x^\pi)_{\pi \in (0,1)^n} \} \) with \(|\pi| = k \). But in this article, we shall restrict ourselves with the notation of Nest [N].

Let us consider \(E_s \) in the Nests’ Koszul resolution, using the following map it is straightforward to see that \(H_s(\mathcal{A}_\Theta) \) is generated by elements \(a_0 \otimes e_{i_1} \wedge \ldots \wedge e_{i_s} \) where \(\{i_1, \ldots, i_s\} \subset \{1, 2, \ldots, n\} \). We want to locate the \(E_2 \) Hochschild \(k \)-cycle using the Koszul resolution of \(\mathcal{A}_\Theta. \)

\[(1 \otimes d_s) : \mathcal{A}_\Theta \otimes E_s \to \mathcal{A}_\Theta \otimes E_{s-1}. \]
Let $a_0 \otimes 1 \otimes e_{i_1} \land \cdots \land e_{i_s} \in ker(1 \otimes d_s)$, to check if it is invariant under \mathbb{Z}_2 action we push the cycle into the bar complex using the map h_s.

\[
\begin{array}{c}
\cdots \rightarrow E_2 \xrightarrow{\alpha_2} E_1 \xrightarrow{\alpha_1} E_0 \xrightarrow{\alpha_0} \mathcal{A}_\Theta \rightarrow 0 \\
\downarrow h \quad \downarrow k_2 \quad \downarrow h_1 \quad \downarrow k_1 \quad \downarrow h_0 = id \quad \downarrow k_0 = id \quad \downarrow id \\
\cdots \rightarrow \mathcal{A}^{\otimes 4}_\Theta \xrightarrow{b'} \mathcal{A}^{\otimes 3}_\Theta \xrightarrow{b'} \mathcal{A}^{\otimes 2}_\Theta \xrightarrow{b'} \mathcal{A}_\Theta \rightarrow 0
\end{array}
\]

\[(1 \otimes h_s)(a_0 \otimes 1 \otimes e_{i_1} \land \cdots \land e_{i_s}) = a_0 \otimes \sum_{\sigma \in S_s} sgn(\sigma)(\nu_{\sigma(i_1)} \cdots \nu_{\sigma(i_s)})^{-1} \otimes \nu_{\sigma(i_1)} \otimes \cdots \otimes \nu_{\sigma(i_s)}.
\]

Now,

\[
(1 \otimes k_s)(a_0 \otimes \sum_{\sigma \in S_s} sgn(\sigma)(\nu_{\sigma(i_1)}^{-1} \cdots \nu_{\sigma(i_s)}^{-1})^{-1} \otimes \nu_{\sigma(i_1)}^{-1} \otimes \cdots \otimes \nu_{\sigma(i_s)}^{-1})
\]

\[= sgn(\psi)a_0 \otimes k_s((\nu_{\psi(i_1)}^{-1} \cdots \nu_{\psi(i_s)}^{-1})^{-1} \otimes \nu_{\psi(i_1)}^{-1} \otimes \cdots \otimes \nu_{\psi(i_s)}^{-1}) \]

Where $\psi \in S_k$ is the permutation such that $\psi(i_1) > \psi(i_1) > \cdots \psi(i_s)$. We have used the fact that $\rho_i((\nu^\pi)^{-1} \otimes \nu^\pi) = 0$ if $(\pi)_i = 0$.

\[
\rho_{\psi_j}(\nu_{\psi(i_j)}^{-1} \otimes \nu_{\psi(i_j)}^{-1}) = - (\nu_{\psi_j} \otimes e_{\psi_j} \otimes \nu_{\psi_j}^{-1}).
\]

Therefore,

\[
(1 \otimes k_s)(a_0 \otimes \sum_{\sigma \in S_s} sgn(\sigma)(\nu_{\sigma(i_1)}^{-1} \cdots \nu_{\sigma(i_s)}^{-1})^{-1} \otimes \nu_{\sigma(i_1)}^{-1} \otimes \cdots \otimes \nu_{\sigma(i_s)}^{-1})
\]

\[= (-1)^s sgn(\psi)sgn(\psi)^{-1}a_0 \otimes 1 \otimes e_{i_1} \land \cdots \land e_{i_s}.
\]

Hence for s even all the s-cycles are \mathbb{Z}_2 invariant and for s odd none are. This was exactly the case in [Q, Page 329, 331], for the 1-cycles and the 2-cycle of the quantum 2-torus with $SL_2(\mathbb{Z})$ action. We have the following:

LEMMA 4.1. $H_\bullet(\mathcal{A}_\Theta)^{\mathbb{Z}_2} = \mathbb{C}^{(s)}$ if $\bullet = 2k$, 0 otherwise.

5. Twisted invariant cycles, $H_\bullet(\mathcal{A}_\Theta)^{\mathbb{Z}_2}$

To calculate $H_\bullet(\mathcal{A}_\Theta)$ we need to consider the \mathbb{Z}_2 twisted Koszul chain complex. For $s = 0$ we can explicitly see that the \mathbb{Z}_2 twisted zeroth cycle.

\[
H_0(\mathcal{A}_\Theta) = -\mathcal{A}_\Theta / -\alpha_1.
\]

where

\[
-\alpha_1(a^i \otimes 1 \otimes e_i) = a^i \otimes (1 - \nu_i^{-1} \otimes \nu_i^\pi) = a^i - \nu_i a^i \nu_i.
\]

Hence $H_0(\mathcal{A}_\Theta)$ is generated by the equivalence class of elements of the form $(a_\beta)_{\beta \in \{0,1\}^n}$. Therefore $H_0(\mathcal{A}_\Theta) = \mathbb{C}^{2^n}$. Under the action of \mathbb{Z}_2, an element (a_β) is mapped to homologous element $(a_{-\beta})$ hence

\[
H_0(\mathcal{A}_\Theta)^{\mathbb{Z}_2} = \mathbb{C}^{2^n}.
\]

Observe that for $a \in H_n(\mathcal{A}_\Theta) = ker(1 \otimes d_n)$, $a = \nu_i a^i \nu_i$ for all i. Hence $H_n(\mathcal{A}_\Theta) = 0$.

We shall proceed by induction, we shall induct on the dimension of the torus.

We state that for the n-dimensional quantum torus $(n > 1)$, $H_\bullet(\mathcal{A}_\Theta) = 0$ for all $0 < \bullet < n$. As we noted earlier, the above statement holds for the case $n = 2$. Let us assume that for
all torus of dimensions less than \(n \) it holds. We shall prove that \(H_s(-\mathcal{A}_\Theta) = 0 \) for all \(0 < \bullet < n \). The proof is now divided into two cases:

5.1. **Case I: \(\bullet > 1 \).**

Lemma 5.1. In this case we shall prove that \(H_s(-\mathcal{A}_\Theta) = 0 \) for \(n - 1 > \bullet > 0 \) then \(H_s(-\mathcal{A}_\Theta^n) = 0 \) for all \(n > \bullet > 1 \).

Proof. We notice that \(\binom{n}{s} = \binom{n-1}{s} + \binom{n-1}{s-1} \). Hence we have the following identification.

\[
(\pi_1, \pi_2) : -\mathcal{A}_\Theta \otimes E_s^n = -\mathcal{A}_\Theta \otimes E_{s-1}^{n-1} \oplus -\mathcal{A}_\Theta \otimes E_{s-1}^{n-1} \wedge e_n
\]

Therefore to show that \(\mathcal{A}_\Theta \otimes E_s^n \) is acyclic at \(s \) it is enough to show that

\[
-\mathcal{A}_\Theta \otimes E_{s+1}^n \bigoplus -\mathcal{A}_\Theta \otimes E_s^n \wedge e_n \xrightarrow{1 \otimes -\alpha_{s+1}} -\mathcal{A}_\Theta \otimes E_s^n \bigoplus -\mathcal{A}_\Theta \otimes E_s^n \wedge e_n \xrightarrow{1 \otimes -\alpha_s} -\mathcal{A}_\Theta \otimes E_{s-1}^{n-1} \bigoplus -\mathcal{A}_\Theta \otimes E_{s-2}^{n-1} \wedge e_n
\]

is middle exact.

We notice that the map \(1 \otimes -\alpha_s \) does mix the direct summands. Explicitly,

\[
(1 \otimes -\alpha_s)(-\mathcal{A}_\Theta \otimes E_{s-1}^{n-1}) \subset -\mathcal{A}_\Theta \otimes E_{s-1}^{n-1};
\]

\[
(1 \otimes -\alpha_s)(-\mathcal{A}_\Theta \otimes E_{s-1}^{n-1} \wedge e_n) \subset -\mathcal{A}_\Theta \otimes E_{s-1}^{n-1} \bigoplus -\mathcal{A}_\Theta \otimes E_{s-2}^{n-1} \wedge e_n.
\]

Hence for \(\gamma \in \ker (1 \otimes -\alpha_s) \), \(\pi_2(\gamma) \in \ker (1 \otimes -\alpha_{s+1}) \subset -\mathcal{A}_\Theta \otimes E_{s-1}^{n-1} \wedge e_n \). But, since by hypothesis \(H_{s-1}(-\mathcal{A}_\Theta) = 0 \), there exists \(\mu_2 \in -\mathcal{A}_\Theta \otimes E_{s-1}^{n-1} \) such that

\[
(1 \otimes -\alpha_s)(\mu_2) = \pi_2(\gamma).
\]

Therefore, \(\pi_2(1 \otimes -\alpha_{s+1})(\mu_2 \wedge e_n) = \pi_2(\gamma) \).

We are now left to prove that there exists a \(\mu_1 \in -\mathcal{A}_\Theta \otimes E_{s-1}^{n-1} \), such that \(\pi_1(1 \otimes -\alpha_{s+1})(\mu_1) = \pi_2(\gamma) \). A kernel relation over \(-\mathcal{A}_\Theta \otimes E_{s-1}^{n-1} \) having the indices \(e_{r_1} \wedge e_{r_2} \wedge \cdots \wedge e_{r_{s-1}} \) such that \(r_i \neq n \) for any \(i \) looks like

\[
\psi^{p_1} V_{p_1} + \psi^{p_2} V_{p_2} + \cdots + \psi^{p_{n-s}} V_{p_{n-s}} + \psi^{p_n} V_{p_n} = 0.
\]

Where \(V_{e_i} := (1 - \nu_i \otimes \nu_i^{-1}) \), \(p_i \neq e_j \) for any \(i, j \) and \(\psi^k \in -\mathcal{A}_\Theta \). It can be observed that \(\psi^{p_n} = -\epsilon^{p_1} V_{p_1} - \epsilon^{p_2} V_{p_2} - \cdots - \epsilon^{p_{n-1}} V_{p_{n-1}} \), where \(\epsilon^k \) are the coefficients of \(e_{r_1} \wedge e_{r_2} \wedge \cdots \wedge e_{r_{s-1}} \wedge e_{p_k} \wedge e_n \in E_{s-1}^{n} \wedge e_n \). Since for \(a \in -\mathcal{A}_\Theta \), \(aV_i = aV_i V_i \) for all \(i \), the above kernel relation is hence reduced to one of the following form

\[
\psi^{p_1} V_{p_1} + \psi^{p_2} V_{p_2} + \cdots + \psi^{p_{n-s}} V_{p_{n-s}} = 0.
\]

Which has a solution by induction hypothesis, \(H_s(-\mathcal{A}_\Theta) = 0 \) for the \(n - 1 \) dimensional torus. Hence we are done. \(\Box \)
5.2. Case II: \(\bullet = 1 \). We prove for this case by induction over the dimension of torus and using the techniques of \([Q]\). The \(\ker(1 \otimes d_s) \subseteq \mathcal{A}_\Theta \otimes E_s \) are represented as diagrams in the \((n_s)\)-dimensional lattice space. For \(\gamma \in \ker(1 \otimes d_s) \), consider a its diagram, \(\text{Diag}(\gamma) \).

Without loss of generality we may assume that \(\text{Diag}(\gamma) \) is a connected sub-lattice of \(\mathbb{Z}^{(n_s)} \) assembled by \((n_s) \) dimensional polytopes. The case \(2s = n = 2 \) corresponds to the quantum 2-torus. Here \(s = 1 \), hence consider an arbitrary 1-cocycle \(\gamma \) and its \(\text{Diag}(\gamma) \subseteq \mathbb{Z}^n \). We shall prove that \(\gamma \) is homologous to 0 in a similar way as we did in \([Q]\). We firstly change the basis of the Koszul resolution, while the basis of Connes’ Koszul resolution is \(1 \otimes u_1 \) and \(1 \otimes u_2 \) for the 2 dimensional case and \((1 \otimes u_{i_1} \otimes u_{i_2} \otimes \ldots \otimes u_{i_s}) \) in general, the basis for the Nest’s Koszul resolution is anti symmetrised \(\{ (u_{i_1} u_{i_2} \ldots u_{i_s}) \}^{-1} \otimes u_{i_1} \otimes u_{i_2} \otimes \ldots u_{i_s} \).

While Nest’s resolution is computationally convenient, Connes’ basis is more convenient for diagrammatic approach \([Q]\). In this subsection, we shall consider the Generalized Connes’ Koszul resolution. An element of \(\mathcal{A}_\Theta \otimes E_s \) is finitely supported in \(\mathbb{Z}^n \), hence there exists \(l > 0 \) such that \(\text{Diag}(\gamma) \subseteq B_l(\bar{0}) \). The hyperplanes \(x_1 = l \) and \(x_1 = -l \) contain \(\text{Diag}(\gamma) \) between them.

A connected component of \(\text{Diag}(\gamma) \) is an assembly of \(n \)-hypercubes with no edges, i.e. diagram of the following form does not exist.

A typical kernel diagram in \(\mathbb{Z}^3 \) looks like as below. It is cubes connected by the kernel relation, the bullet dots represents a non-zero element of \(\mathcal{A}_\Theta^{\oplus n} \).

Lemma 5.2. \(H_1(\mathcal{A}_\Theta) = 0 \).

Proof. We prove by induction, let us assume that for all tori of dimension less than \(n \) the first Hochschild homology vanishes. Consider \(\text{Diag}(\gamma) \cap \{ x_1 = l \} \), we choose the \(a_i \otimes e_1 \wedge e_i \) such that the projection of \((1 \otimes a_i^0)(a_i \otimes e_1 \wedge e_i) \) on the hyperplane \(\{ x_1 = l \} \) kills \(\text{Diag}(\gamma) \cap \{ x = l \} \). This can be done by ordering the non-zero lattice points in the \(i \)th dimension and using \(e_1 \wedge e_i \) with appropriate coefficients to kill them. Thus, what remains is a cycle which is not supported on \(\{ x_1 = l \} \) and is homologous to \(\gamma \). Repeating this for each hyper plane \(\{ x_i = d \} \), \(d < l \) we end up with a diagram which represents a cycle \(\gamma_{d_0} \) homologous to \(\gamma \) and lies entirely in \(\{ x_1 = d_0 \} \) for some \(d_0 \geq -l \). But we observe that \(\gamma_{d_0} \) is also a 1-cycle for \(n - 1 \) torus and hence homologous to 0 by induction hypothesis. \[\square \]
Proof of Theorem 1.1. It follows from Lemma 4.1, Lemma 5.1 and Lemma 5.2.

\[\square\]

6. Cyclic Homology

Connes introduced an S, B, I long exact sequence relating the Hochschild and cyclic homology of an algebra A,

\[\cdots \xrightarrow{B} HH_n(A) \xrightarrow{L} HC_n(A) \xrightarrow{S} HC_{n-2}(A) \xrightarrow{B} HH_{n-1}(A) \xrightarrow{L} \cdots \]

The cyclic homology

Proof of Corollary 1.2 and 1.3. The \mathbb{Z}_2 action on \mathcal{A}_Θ commutes with the map -1α, we obtain the following exact sequence

\[\cdots \xrightarrow{B} (HH_n(\mathcal{A}_\Theta))^{\mathbb{Z}_2} \xrightarrow{L} (HC_n(\mathcal{A}_\Theta))^{\mathbb{Z}_2} \xrightarrow{S} (HC_{n-2}(\mathcal{A}_\Theta))^{\mathbb{Z}_2} \xrightarrow{B} (HH_{n-1}(\mathcal{A}_\Theta))^{\mathbb{Z}_2} \xrightarrow{L} \cdots \]

Using the above long exact sequence we deduce the cyclic homology of $\mathcal{A}_\Theta \times \mathbb{Z}_2$[Corollary 1.2]. The \mathbb{Z}_2 invariant periodic cyclic homology for \mathcal{A}_Θ is $HP^{even}(\mathcal{A}_\Theta)^{\mathbb{Z}_2} = \mathbb{C}^{2^n}$ and $HP^{odd}(\mathcal{A}_\Theta)^{\mathbb{Z}_2} = 0$. Similarly for the untwisted case $HP^{even}(\mathcal{A}_\Theta)^{\mathbb{Z}_2}$ has dimension $\sum_{\bullet=2k}^{n} \left(\begin{array}{c} n \\ \bullet \end{array} \right),$ hence;

\[HP^{even}(\mathcal{A}_\Theta)^{\mathbb{Z}_2} = \mathbb{C}^{2^{n-1}} \text{ and } HP^{odd}(\mathcal{A}_\Theta)^{\mathbb{Z}_2} = 0. \]

By using the paracyclic spectral decomposition we have:

\[HP^{even}(\mathcal{A}_\Theta \times \mathbb{Z}_2) \cong HP^{even}(\mathcal{A}_\Theta)^{\mathbb{Z}_2} \oplus HP^{even}(\mathcal{A}_\Theta)^{\mathbb{Z}_2} = \mathbb{C}^{2^n} \oplus \mathbb{C}^{2^{n-1}} = \mathbb{C}^{3 \cdot 2^{n-1}} \]

and

\[HP^{odd}(\mathcal{A}_\Theta \times \mathbb{Z}_2) = 0. \]

\[\square\]

References

[B] Baudry J.; Invariants du tore quantique, Bull. Sci. Math., 134 (2010), 531-547.
[BRT] Berest, Y., Ramadoss, A, Tang, X.; The Picard group of a noncommutative algebraic torus. J. Noncommut. Geom. 7 (2013), no. 2, 335-356.
[C] A. Connes: Noncommutative differential geometry, IHES Publ. Math., 62 (1985), 257-360.
[CTY] Chakraborty S., Tang X., Yao Y.; Smooth Connes–Thom isomorphism, cyclic homology, and equivariant quantisation, preprint, arXiv:1907.09051.
[GJ] E. Getzler and J.D.S. Jones: The cyclic homology of crossed product algebras, J. Reine Angew. Math., 445 (1993), 161-174.
[N] Nest, R.; Cyclic cohomology of noncommutative tori; Canad. J. Math. 40 (1988), no. 5, 1046-1057.
[O] A. Oblomkov: Double affine Hecke algebras of rank 1 and affine cubic surfaces, Int. Math. Res. Not., no. 18 (2004), 877-912.
[Q] Quddus S.; Hochschild and cyclic homology of the crossed product of algebraic irrational rotational algebra by finite subgroups of $SL(2, \mathbb{Z})$. J. Algebra 447 (2016), 322-366.
[S] Spanier, E.; The homology of Kummer manifolds ; Proc. Amer. Math. Soc. 7 (1956), 155-160.
[T] Takhtadjian L.; Non-commutative homology of quantum torii; Funkt. Anal. Pril., 24 (2) (1989), pp. 75-76.
[W1] Wambst, M.; Hochschild and cyclic homology of the quantum multiparametric torus; J. Pure Appl. Algebra 114 (1997), no. 3, 321-329.
[W2] Wambst, M.; Complexes de Koszul quantiques. [Quantum Koszul complexes] Ann. Inst. Fourier (Grenoble) 43 (1993), no. 4, 1089-1156.

Safdar Quddus,
Department of Mathematics, India Institute of Science, Bengaluru
Email: safdarquddus@iisc.ac.in .