Sterile Neutrinos in E_6

Jonathan L. Rosner

Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
*E-mail: rosner@hep.uchicago.edu
hep.uchicago.edu/˜rosner

The opportunity to accommodate three flavors of sterile neutrinos exists within the exceptional group E_6. Implications of this description are discussed.

Keywords: Sterile neutrinos; exceptional groups; E_6

1. Introduction

Sterile neutrinos are weak isosinglet neutrinos, visible through mixing with one or more of the three “active” neutrinos ν_e, ν_μ, ν_τ. Several tentative indications exist that the three active neutrinos aren’t enough to fit all oscillation data; sterile neutrinos are one possibility. Present data prefer at least one sterile neutrino, but there are tensions even with two. In the grand unified group E_6 three sterile neutrinos are natural; this talk explores some distinguishing features of such a description.

We first review the shortcomings of a description with only three active neutrinos (Sec. 2); this topic has been covered in greater detail by C. Giunti. We then discuss mass matrices in E_6 and its subgroups (Sec. 3), and their relevance for short-baseline neutrino oscillation experiments (Sec. 4). One of the three sterile neutrinos could play the role of a 7 keV dark matter candidate (Sec. 5). We conclude in Sec. 6.

2. Evidence for sterile neutrinos

An early conflict with the picture of three active neutrinos was seen by the LSND experiment at Los Alamos. The MiniBooNE experiment at Fermilab confirmed this result (after a reanalysis of their data). The signal is mainly at low energy, falling below an initial energy cut of 475 MeV. It is not clear whether the signal is e^\pm or photons. A possible photon source would arise from a $Z - \omega - \gamma$ Wess-Zumino-Witten (WZW) coupling giving rise to neutral-current coherent photon production [Fig. 1(a)] off a nuclear target.
A virtual Z^* transforms as a $J^{PC} = 1^{++}$ a_1 meson. The decays $a_1^0(1260) \to \omega \gamma$ and the related decay $a_1^+(1260) \to \rho^0 \gamma$ are hard to look for. Possible evidence for a related WZW coupling comes from the decay $f_1(1285) \to \rho^0 \gamma$ [Fig. 1(b)]; the Mark III Collaboration at SPEAR observed this process at a rate 12 times the non-WZW prediction. A related term generates an $\omega K \bar{K}$ coupling giving rise to K_S regeneration off a nuclear target [Fig. 1(c)]. One estimate of the contribution of the process (a) gives a rate about 1/4 that needed to explain the MiniBooNE result.

A claimed 6% deficit with respect to expectations in the flux of reactor neutrinos could be due to very-short-baseline neutrino oscillations. A cautionary note identifies an additional uncertainty associated with 30% of the flux coming from forbidden decays, whose intensity and energy spectra are hard to evaluate.

More evidence in favor of an anomaly comes from the use of 51Cr and 37Ar radioactive sources to calibrate the SAGE and Gallex solar neutrino detector, finding an observed/predicted ratio of 0.84 ± 0.05. Both the reactor and the gallium anomalies could be due to short-baseline neutrino oscillations with $\Delta m^2 = O(\text{eV}^2)$. Such a large splitting cannot be accommodated with three active neutrinos, whose masses satisfy $\Delta m^2_{31} \simeq 7.6 \times 10^{-5} \text{eV}^2$; $|\Delta m^2_{32}| \simeq 2.4 \times 10^{-3} \text{eV}^2$. A full set of constraints, including ones from the BNL E-776, CDHSW, Daya Bay, ICARUS, KARMEN, MiniBooNE, MINOS, NOMAD, OPERA, SciBooNE, and T2K experiments, is discussed in Ref. and by C. Giunti in this Conference. The absence of oscillations to one flavor ($N = 1$) of sterile neutrino is disfavored at the 6.3\sigma level.

Even with more than one sterile neutrino a basic tension remains between disappearance and appearance experiments. In one fit these are compatible only at the level of 0.008%, mainly owing to a poor fit to the low-energy MiniBooNE “e^\pm” signal. For another fit, see Ref. An initial incompatibility between neutrino and antineutrino fits, favoring $N > 1$, has been resolved with subsequent data, so there is no longer preference for more than one flavor of sterile neutrino. Nevertheless, should such a need arise in the future, the E_6 scheme provides a natural home for three sterile flavors ($N = 3$).

3. Mass matrices in E_6 and subgroups

The group $SU(5)$ is the unique one of rank 4 containing the standard model (SM) group $SU(3)_{\text{color}} \times SU(2)_L \times U(1)$. The quarks and leptons belong to $5^* + 10$.
representations; there is no need for a right-handed neutrino. The group SO(10) contains SU(5); its 16-plet spinor contains the SU(5) representations $5^* + 10 + 1$, where the SU(5) singlet is a right-handed neutrino N. If this state is given a large Majorana mass, the corresponding left-handed neutrino Majorana mass can be made very small (the seesaw mechanism). The rank-5 nature of SO(10) implies the existence of an extra U(1) and the possible observability of a Z' at the TeV scale or above.

The exceptional group E_6 contains SO(10). Each fundamental 27-plet of E_6 contains $16 + 10 + 1$ of SO(10). The 10 of SO(10) contains $5 + 5^*$ of SU(5), where the 5 contains a color-triplet weak isosinglet quark and a color-singlet weak isodoublet lepton. The singlet of SO(10) ("n") is a sterile neutrino candidate. Since one needs three 27’s to account for three families of ordinary quarks and leptons, there are three sterile neutrinos in E_6. The rank-6 nature of E_6 implies the possibility of two extra U(1)'s or at least one linear combination surviving symmetry breaking down to LHC energies. The U(1) charges are defined as

$$E_6 \rightarrow SO(10) \times U(1)_\psi \left(Q_\psi\right) ; \quad SO(10) \rightarrow SU(5) \times U(1)_X \left(Q_\chi\right).$$

A Z_θ can couple to $Q_\psi \cos \theta + Q_\chi \sin \theta$. The combination $Q_N \equiv -(1/4)Q_\chi + (\sqrt{15}/4)Q_\psi$ vanishes for the right-handed neutrino N. A large Majorana N mass is then permitted by Q_N conservation, enabling a seesaw mechanism with fermion masses generated by a 27-plet Higgs representation. The U(1) charges for various members of a 27-plet are shown in Table 1.

27 member (SO(10),SU(5))	$2\sqrt{6} Q_\psi$	$2\sqrt{10} Q_\chi$	$2\sqrt{10} Q_N$
$\nu_\psi(16,5^*)$	-1	3	-2
(16,10)	-1	-1	-1
$N_c^\psi(16,1)$	-1	-5	0
$\nu_E(10,5^*)$	2	-2	3
$N_E^\psi(10,5)$	2	2	2
$n(1,1)$	-4	0	-5

The Z_N, coupling to Q_N, has characteristic branching fractions. Within a single family, 25% of its decays are to ordinary fermions (above the middle line in Table 2) while 75% are to exotic fermions (below the middle line). These consist of a vector-like charged lepton E, its neutrino ν_E, an isosinglet quark h, and the sterile neutrino n. If the Z_N is found at the LHC, it is a potential source of exotic quarks and leptons. The differences between left-handed (L) and right-handed (R) couplings give rise to characteristic production and decay asymmetries.

While $27 \times 27 = 27^* + 351 + 351'$, we wish to see what follows from assuming 27^*
Table 2. Branching fractions of Z_N within a family.

Decay product	Helicity	Percent of total	
ee	4/120	5/120	4.17
$\nu E\bar{\nu}E$	4/120	4/120	3.33
uu	3/120	6/120	5.00
dd	3/120	15/120	12.50
EE	9/120	13/120	10.83
$\nu E\bar{\nu}E$	9/120	4/120	3.33
hh	27/120	39/120	32.50
nn	25/120	25/120	20.83

dominates, which was a popular assumption in the early days of string theory.32, 36 Some mass matrix elements will be absent as their (Q_ψ, Q_χ) values aren’t in 27^*. The U(1) charges for the product 27×27 are shown in Table 3, where we have listed values of $(2\sqrt{6} Q_\psi, 2\sqrt{10} Q_\chi, 2\sqrt{10} Q_N)$. Blank entries denote charges not found in a 27^*-plet, implying a zero entry in the mass matrix. The exception (in the box) is a Majorana mass for the right-handed neutrino N^c_e, which must be generated by a higher-dimension operator conserving Q_N.

Table 3. U(1) charges (see text) in the product of two 27’s of E_6.

νE	N^c_e	νE	N^c_e	n
$(-1,3,2)$	$(-1,-5,0)$	$(2,-2,3)$	$(2,2,2)$	$(-4,0,-5)$
$(-2,2,-2)$	$(-,0)$	$(1,5,0)$	$(-1,-3,2)$	$(-2,2,-2)$
$(-2,2,2)$	$(1,5,0)$	$(1,-3,2)$	$(4,0,5)$	$(-2,-2,-3)$
$(-4,0,-5)$	$(-)$	$(-2,-2,-2)$	$(-2,-2,-3)$	$(-)$

For simplicity we make two further assumptions. First, we let νE pair up with N^c_e to obtain a large Dirac mass M_{34}. Second, we assume an approximate Z_2 symmetry to suppress vacuum expectation values stemming from SO(10) 16-plets in comparison with those from SO(10) 10’s or singlets. The mass matrix in the basis $(\nu_e, N^c_e, \nu_E, N^c_E, n)$, where we have used small letters to denote entries with weak isospin $\Delta I = 1/2$ and large letters to denote entries with $\Delta I = 0$, is

$$
\mathcal{M} = \begin{bmatrix}
0 & m_{12} & 0 & M_{14} & 0 \\
0 & M_{12} & M_{22} & 0 & m_{24} \\
0 & 0 & 0 & M_{34} & m_{35} \\
M_{14} & m_{24} & M_{34} & 0 & m_{45} \\
0 & 0 & m_{35} & m_{45} & 0
\end{bmatrix}.
$$

It is convenient to diagonalize this matrix with respect to the large entry M_{44}.
leading to

\[
\begin{pmatrix}
0 & m_{12} & M_{14}/\sqrt{2} & M_{14}/\sqrt{2} & 0 \\
12 & M_{22} & m_{24}/\sqrt{2} & m_{24}/\sqrt{2} & 0 \\
M_{14}/\sqrt{2} & m_{24}/\sqrt{2} & M_{34} & 0 & (m_{35}+m_{45})/\sqrt{2} \\
0 & m_{24}/\sqrt{2} & 0 & -M_{34} & (m_{45}-m_{35})/\sqrt{2} \\
0 & 0 & (m_{35}+m_{45})/\sqrt{2} & (m_{45}-m_{35})/\sqrt{2} & 0
\end{pmatrix}.
\]

Now we can perturb about the three eigenvectors \(0, 1, 0, 0\)\(^T\), \(0, 0, 1, 0\)\(^T\), and \(0, 0, 0, 1\)\(^T\) corresponding to the large eigenvalues \(M_{22}, M_{34}, -M_{34}\). For the small masses, the resulting \(2 \times 2\) mass matrix in the \((\nu_e, n)\) basis is

\[
S_2 = \begin{pmatrix}
-m_{12}^2/M_{22} & -M_{14}m_{35}/M_{34} \\
-M_{14}m_{35}/M_{34} & -2m_{35}m_{45}/M_{34}
\end{pmatrix}.
\]

We look for solutions with small mixing and \(m_n > m_\nu\):

\[
\nu = \begin{pmatrix}
\cos \theta \\
\sin \theta
\end{pmatrix}, \quad n = \begin{pmatrix}
-\sin \theta \\
\cos \theta
\end{pmatrix}, \quad t \equiv \tan \theta,
\]

so we seek a small-\(t\) solution of a quadratic equation in \(t\), which in its linearized form is

\[
t \approx \left(\frac{m_{12}^2M_{34}}{M_{14}m_{35}M_{22}} - \frac{2m_{45}}{M_{14}} \right)^{-1}.
\]

Barring accidental cancellations, after several steps we get \(m_n > m_\nu\) with small mixing if \(M_{14} \ll m_{45}\) and

\[
\left| \frac{m_{35}m_{45}M_{22}}{M_{34}m_{12}^2} \right| > 1, \quad \frac{m_{45}}{M_{14}} \gg 1,
\]

The smallness of \(M_{14}\) is curious but achievable via the approximate \(Z_2\) symmetry mentioned earlier.

The neutrino mass matrix can be related to those for charged fermions at a unification scale. Thus, \(m_{12}\) and \(m_{35}\) are related to masses of quarks of charge 2/3, while \(m_{24}, m_{45}, M_{14}\), and \(M_{34}\) are related to charge –1/3 quark and charged lepton masses. Specifically, for up-type quarks, the U(1) charges of masses are \((-2, -2, -2)\), corresponding to \(m_{21}\) and \(m_{35}\). The relation of \(m_{12}\) to \(m_u\) is familiar from SO(10) unification. For down-type quarks and charged leptons, the correspondences are \((-2, -3)\sim m_{45}, (1, 5, 0)\sim M_{14}, (1, -3, 2)\sim m_{24}, \) and \((4, 0, 5)\sim M_{34}\). In the absence of mixing, \(m_{45}\) is related to Dirac masses of \(d\) and \(e\), while \(M_{34}\) is related to Dirac masses of quarks and charged leptons in the 10 of SO(10). Weak universality suggests \(|m_{24}| \ll |m_{45}|\) (because isosinglet impurities in left-handed charged leptons and down-type quarks should be small), while there is less of a constraint on \(M_{14}\) as it has \(\Delta I = 0\).
4. Relevance for short-baseline neutrino oscillation experiments

The present model has mixing only within single families. In order to explain the LSND and MiniBooNE electron appearance signals one needs both muon and electron neutrinos to mix with the same sterile neutrino. The freedom of setting a sterile neutrino mass and mixing for one family (the matrix S_2 in the previous Section) is encouraging for the case of three families (which must be represented by a 6×6 matrix). Furthermore, if data improve to the extent that three sterile neutrinos are needed to explain oscillations, E_6 is available.

5. One neutrino as a possible dark matter candidate

Another possible use of a third sterile ν is as a warm dark matter candidate at the keV scale, as suggested some time ago. For more recent reviews see Refs. In contrast to many schemes, the present one distinguishes between right-hand neutrinos (usually taken very heavy, at the seesaw scale) and the n's (one of which can easily have keV-scale mass).

There have been two claims for observation of an X-ray line near 3.5 keV. These signals could arise from a 7 keV “neutrino” decaying to a photon and a much lighter “neutrino.” A corresponding signal is not seen, however, in the Milky Way.

There are some special features of E_6 concerning a 7 keV dark matter candidate. The Higgs vacuum expectation values considered here correspond to the five neutral complex scalar bosons in the 27^* representation of E_6. The masses of these bosons are free parameters; two of the five are those of the minimal supersymmetric standard model or SO(10). Exchanges of these bosons can produce the states n; for example, in the processes

$$d_L + h_L^+ \rightarrow n_L + N_{EL}^c \ ; \ e^- + E_L^+ \rightarrow n_L + N_{EL}^c.$$

A TeV-scale Z_N produced in the early universe would have appreciable branching ratio into nn^c pairs, so n are candidates for early overproduction unless their abundance is diluted by subsequent entropy production.

6. Summary

None of the various hints of sterile neutrinos rises to the level of a conclusive observation so it is crucial to strengthen or refute them. Some effects may be due to interesting non-ν physics: for example, if the MiniBooNE low-energy signal is photons and not electrons.

The grand unified group E_6 [the next step up from SO(10)] naturally incorporates three candidates for neutrinos with neither left-handed nor right-handed weak isospin. E_6 breaking to the standard model times a particular $U(1)_N$ allows a large Majorana mass for the right-handed neutrino N and hence the standard seesaw mechanism can proceed without constraints. Masses and mixings of three sterile neutrinos are at one’s disposal to fit oscillation data, assuming present anomalies are really due to sterile ν and not something else.
If at most two sterile neutrinos are needed to fit anomalies successfully, a third is left over as a dark matter candidate. The E_6 scheme appears to have enough free parameters to allow such a scenario to successfully navigate a number of constraints.

Acknowledgments

I am grateful to H. Fritzsch for the invitation to this conference, and to Louis Meng and K. K. Phua for generous hospitality. I thank Janet Conrad, P. S. Bhupal Dev, Mariana Frank, and Rabi Mohapatra for pointing me to some helpful literature, and Kevork Abazajian, Joshua Frieman, Richard Hill, Lauren Hsu, Hitoshi Murayama, and Robert Shrock for useful discussions. This work was supported in part by the U. S. Department of energy under Grant No. DE-FG02-13ER41598 and in part by funds from the Physics Department of the University of Chicago.

References

1. J. L. Rosner, Three sterile neutrinos in E_6, Phys. Rev. D 90, 035005 (2014).
2. C. Giunti, this Conference; updated version of C. Giunti, M. Laveder, Y. F. Li and H. W. Long, Pragmatic View of Short-Baseline Neutrino Oscillations, Phys. Rev. D 88, 073008 (2013).
3. A. Aguilar-Arevalo et al. (LSND Collaboration), Evidence for neutrino oscillations from the observation of anti-neutrino (electron) appearance in a anti-neutrino (muon) beam, Phys. Rev. D 64, 112007 (2001), and earlier references therein.
4. A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), A Search for electron neutrino appearance at the $\Delta m^2 \sim 1 \text{eV}^2$ scale, Phys. Rev. Lett. 98, 231801 (2007).
5. A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Unexplained Excess of Electron-Like Events From a 1-GeV Neutrino Beam, Phys. Rev. Lett. 102, 101802 (2009).
6. A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Event Excess in the MiniBooNE Search for $\tilde{\nu}_\mu \to \tilde{\nu}_e$ Oscillations, Phys. Rev. Lett. 105, 181801 (2010).
7. A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Improved Search for $\tilde{\nu}_\mu \to \tilde{\nu}_e$ Oscillations in the MiniBooNE Experiment, Phys. Rev. Lett. 110, 161801 (2013).
8. J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37, 95 (1971).
9. E. Witten, Global Aspects of Current Algebra, Nucl. Phys. B 223, 422 (1983).
10. J. A. Harvey, C. T. Hill and R. J. Hill, Anomaly mediated neutrino-photon interactions at finite baryon density, Phys. Rev. Lett. 99, 261601 (2007).
11. J. A. Harvey, C. T. Hill and R. J. Hill, Standard Model Gauging of the Wess-Zumino-Witten Term: Anomalies, Global Currents and pseudo-Chern-Simons Interactions, Phys. Rev. D 77, 085017 (2008).
12. D. Coffman et al. (MARK-III Collaboration), Study of the Doubly Radiative Decay $J/\psi \rightarrow \gamma\gamma\rho^0$, Phys. Rev. D 41, 1410 (1990).
13. J. Babcock and J. L. Rosner, Radiative Transitions of Low Lying Positive-Parity Mesons, Phys. Rev. D 14, 1286 (1976).
14. J. L. Rosner, Decays of $L = 1$ Mesons to $\gamma\pi$, $\gamma\rho$, and $\gamma\gamma$, Phys. Rev. D 23, 1127 (1981).
15. J. L. Rosner, Low-energy photon production in neutrino neutral-current interactions, arXiv:1502.01704 [hep-ph].
16. T. A. Mueller, et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83, 054615 (2011).
17. G. Mention, et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83, 073006 (2011).
18. P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84, 024617 (2011) [Erratum-ibid. C 85, 029901 (2012)].
19. A. C. Hayes, J. L. Friar, G. T. Garvey, G. Jungman, and G. Jonkmans, Systematic Uncertainties in the Analysis of the Reactor Neutrino Anomaly, Phys. Rev. Lett. 112, 202501 (2014).
20. J. N. Abdurashitov et al. (SAGE Collaboration), Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002–2007 data-taking period, Phys. Rev. C 80, 015807 (2009), and earlier references therein.
21. F. Kuefner, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685, 47 (2010), and earlier references therein.
22. C. Giunti, M. Laveder, Y. F. Li, Q. Y. Liu and H. W. Long, Update of Short-Baseline Electron Neutrino and Antineutrino Disappearance, Phys. Rev. D 86, 113014 (2012).
23. K. N. Abazajian et al., Light Sterile Neutrinos: A White Paper, arXiv:1204.5379 [hep-ph].
24. J. M. Conrad, C. M. Ignarra, G. Karagiorgi, M. H. Shaevitz and J. Spitz, Sterile Neutrino Fits to Short Baseline Neutrino Oscillation Measurements, Adv. High Energy Phys. 2013, 163897 (2013).
25. J. Kopp, P. A. N. Machado, M. Maltoni and T. Schwetz, Sterile Neutrino Oscillations: The Global Picture, JHEP 1305, 050 (2013).
26. H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).
27. H. Fritzsch and P. Minkowski, Unified Interactions of Leptons and Hadrons, Annals Phys. (N.Y.) 93, 193 (1975). For historical context see P. Minkowski, this Conference.
28. P. Minkowski, Phys. Lett. 67B, 421 (1977); M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity, edited by D. Freedman and P. Van Nieuwhuizen, North-Holland, Amsterdam, 1979, pp. 315–321; T. Yanagida, Prog. Theor. Phys. 64, 1104 (1980); R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).
29. F. Gursey, P. Ramond and P. Sikivie, A Universal Gauge Theory Model Based on E_6, Phys. Lett. B 60, 177 (1976).
30. E. Ma, Neutrino masses in an extended gauge model with E_6 particle content, Phys. Lett. B 380, 286 (1996).
31. P. Langacker, R. W. Robinett and J. L. Rosner, New Heavy Gauge Bosons in pp and $p\bar{p}$ Collisions, Phys. Rev. D 30, 1470 (1984).
32. M. Dine, V. Kaplunovsky, M. L. Mangano, C. Nappi and N. Seiberg, Superstring Model Building, Nucl. Phys. B 259, 549 (1985).
33. J. D. Breit, B. A. Ovrut and G. C. Segre, E_6 Symmetry Breaking in the Superstring Theory, Phys. Lett. B 158, 33 (1985).
34. S. Cecotti, J. P. Derendinger, S. Ferrara, L. Girardello, and M. Roncadelli, Properties of E_6 Breaking and Superstring Theory, Phys. Lett. B 156, 318 (1985).
35. J. L. Rosner, E_6 and Exotic Fermions, Comments Nucl. Part. Phys. 15, 195 (1986).
36. S. Nandi and U. Sarkar, A Solution to the Neutrino Mass Problem in Superstring E_6 Theory, Phys. Rev. Lett. 56, 564 (1986).
37. S. Dodelson and L. M. Widrow, Sterile neutrinos as dark matter, Phys. Rev. Lett. 72, 17 (1994).
38. X. D. Shi and G. M. Fuller, A New dark matter candidate: Nonthermal sterile neutrinos, Phys. Rev. Lett. 82, 2832 (1999).
39. A. Kusenko, Sterile neutrinos: The Dark side of the light fermions, Phys. Rept. 481, 1 (2009).
40. E. Bulbul, M. Markevitch, A. Foster, R. K. Smith, M. Loewenstein and S. W. Randall, Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters, Astrophys. J. 789, 13 (2014).
41. A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi and J. Franse, Unidentified Line in X-Ray Spectra of the Andromeda Galaxy and Perseus Galaxy Cluster, Phys. Rev. Lett. 113, 251301 (2014).
42. S. Riemer-Sorensen, Questioning a 3.5 keV dark matter emission line, arXiv:1405.7943 [astro-ph.CO].
43. R. J. Scherrer and M. S. Turner, On the Relic, Cosmic Abundance of Stable Weakly Interacting Massive Particles, Phys. Rev. D 33, 1585 (1986) [Erratum-ibid. D 34, 3263 (1986)].
44. J. C. Callaghan, S. F. King and G. K. Leontaris, Gauge coupling unification in E_6 F-theory GUTs with matter and bulk exotics from flux breaking, JHEP 1312, 037 (2013) and references therein.