Xiaotan Tongfu granules contribute to the prevention of stress ulcers

Bing Yan, Jun Shi, Li-Juan Xiu, Xuan Liu, Yu-Qi Zhou, Shou-Han Feng, Can Lv, Xiu-Xia Yuan, Yin-Cheng Zhang, Yong-Jin Li, Pin-Kang Wei, Zhi-Feng Qin

Bing Yan, Jun Shi, Li-Juan Xiu, Xuan Liu, Yu-Qi Zhou, Shou-Han Feng, Can Lv, Xiu-Xia Yuan, Yin-Cheng Zhang, Yong-Jin Li, Pin-Kang Wei, Zhi-Feng Qin, Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China

Author contributions: Yan B performed the majority of experiments and wrote the manuscript; Shi J, Xiu LJ, Liu X, Zhou YQ, Feng SH, Lv C, Yuan XX, Zhang YC and Li YJ provided vital reagents; Wei PK provided financial support for this work; Qin ZF designed the study.

Supported by Grants from the Natural Science Foundation of China, No. 2010Z131; and the Excellent Master Training Fund of the Second Military Medical University

Correspondence to: Dr. Zhi-Feng Qin, Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China. yanbing3741@gmail.com Telephone: +86-21-81885471 Fax: +86-21-63520020

Received: May 5, 2013 Revised: June 28, 2013 Accepted: July 17, 2013 Published online: September 7, 2013

Abstract

AIM: To investigate the efficacy and potential mechanism of Xiaotan Tongfu granules (XTTF) in stress ulcers.

METHODS: One hundred sixty rats were randomly divided into 4 groups (n = 10) as follows: the model group (MP group), the control group (CP group), the ranitidine group (RP group) and the XTTF granule group (XP group). Rats in the MP group received no drugs, rats in the CP group received 0.2 mL of a 0.9% sodium chloride solution via oral gavage, and rats in the RP and XP groups received the same volume of ranitidine (50 mg/kg) or XTTF granule (4.9 g/kg). The cold-restraint stress model was applied to induce stress ulcers after 7 consecutive days of drug administration. Afterwards, rats were sacrificed at 0, 3, 6 and 24 h. Gastric pH was measured by a precise pH meter; gastric emptying rate (GER) was measured by using a methylcellulose test meal; myeloperoxidase activity (MPO), macrophage migration inhibitory factor (MIF), proliferating cell nuclear antigen (PCNA), and heat shock protein 70 (HSP70) were measured by immunohistochemical staining; and mucosal cell apoptosis was measured by transferase dUTP nick end labeling.

RESULTS: In the cold-restraint stress model, the development of stress ulcers peaked at 3 h and basically regressed after 24 h. Gastric lesions were significantly different in the RP and XP groups at each time point. Interestingly, although this index was much lower in the RP group than in the XP group immediately following stress induction (7.00 ± 1.10 vs 10.00 ± 1.79, P < 0.05). Concerning gastric pH, between the RP and XP groups, we detected a statistically significant difference immediately after stress induction (0 h: 4.56 ± 0.47 vs 3.34 ± 0.28, P < 0.05) but not at any of the subsequent time points. For GER, compared to the RP group, GER was remarkably elevated in the XP group because a statistically significant difference was detected (3 h: 46.84 ± 2.70 vs 61.16 ± 5.12, P < 0.05; 6 h: 60.96 ± 6.71 vs 73.41 ± 6.16, P < 0.05; 24 h: 77.47 ± 3.17 vs 91.31 ± 4.34, P < 0.05). With respect to MPO and MIF, comparisons between the RP and XP groups revealed statistically significant differences at 3 h (MPO: 18.94 ± 1.20 vs 13.51 ± 0.89, P < 0.05; MIF: 150.67 ± 9.85 vs 122.17 ± 5.67, P < 0.05) and 6 h (MPO: 13.22 ± 1.54 vs 8.83 ± 0.65, P < 0.05; MIF: 135.50 ± 9.46 vs 109.83 ± 6.40, P < 0.05). With regard to HSP70, HSP70 expression was significantly increased in the RP and XP groups at 3 and 6 h compared to the MP and CP groups. In addition, comparing the RP and XP groups also showed statistically significant differences at 3 and 6 h. The expression of PCNA was higher in the RP and XP groups 3 h after stress induction. Between these two groups, small but statistically significant differences were observed at all of the time points (3 h: 69.50 ± 21.52 vs 79.33 ± 15.68, P < 0.05; 6 h: 73.20 ± 30.52 vs 83.33 ± 25.67, P < 0.05; 24 h: 77.47 ± 3.17 vs 91.31 ± 4.34, P < 0.05).
Yan B et al. Xiaotan Tongfu granules prevent stress ulcers

6 h: 107.83 ± 4.40 vs 121.33 ± 5.71, P < 0.05; 24 h: 125.33 ± 5.65 vs 128.50 ± 14.49, P < 0.05) except 0 h. With regard to apoptosis, the apoptotic activity in the RP and XP groups was significantly different from that in the MP and CP groups. The XP group exhibited a higher inhibition of cell apoptosis than the RP group at 3 h (232.58 ± 24.51 vs 174.46 ± 10.35, P < 0.05) and 6 h (164.74 ± 18.31 vs 117.71 ± 12.08, P < 0.05).

CONCLUSION: The Xiaotan Tongfu granule was demonstrated to be similar to ranitidine in preventing stress ulcers. It exhibited multiple underlying mechanisms and deserves further study.

© 2013 Baishideng. All rights reserved.

Key words: Stress ulcer; Xiaotan Tongfu granule; Inflammation; Heat shock protein 70; Proliferation and apoptosis; Gastric emptying rate

Core tip: Although the underlying mechanism of stress ulcers is commonly believed to depend on the balance between known aggressive factors and mucosal defense mechanisms, most clinical strategies still aim to inhibit gastric acid. In this study, we demonstrated that the Xiaotan Tongfu granule was similar to ranitidine treatment in reducing gastric lesions in a cold-restraint stress model. The underlying mechanisms may include acceleration of the gastric emptying rate, inhibition of local inflammation, promotion of cell proliferation and suppression of apoptosis. Our study indicated that multiple manipulations of the factors involved in inducing stress ulcers could be as effective as simple acid inhibition.

INTRODUCTION
Stress ulceration (SU) has been conventionally regarded as an inevitable complication of the gastrointestinal tract in people experiencing abnormally high physiological stress (e.g., trauma, surgery, organ failure, sepsis, or burn)[1]. Gastrointestinal bleeding is a life-threatening complication of SU and was observed in 64% of patients with SU, compared to only 9% of patients without SU, in a previous study[2]. It is believed that clinically significant gastrointestinal bleeding in critically ill patients is associated with increased mortality rates, lengthened intensive care unit stays and additional costs[3,4].

The development of stress ulcers is largely determined by the balance between known aggressive factors and defense mechanisms. The former usually include gastric acid[5], abnormal motility[6], and Helicobacter pylori infection[7], and the latter include heat shock protein[8] cellular regeneration[9], etc. SU prophylaxis (SUP) was thought to play a pivotal role in the care of critically ill patients, and it was reported that appropriate SUP could decrease mortality. At present, although multiple protocols are available for SUP, there are no universally accepted regimens[10]. Nevertheless, the evidence that the appropriate application of some pharmacologic agents, such as proton pump inhibitors, histamine-2 receptor antagonists, and sucralfate[11], could decrease the risk of bleeding has been long established.

Traditional Chinese medicine (TCM) has been demonstrated to be effective in the management of stress-related gastrointestinal disorders, including irritable bowel syndrome[12-14], and a number of studies have also indicated that TCM could exert measurable therapeutic effects on gastric ulcers in rats[15-17]. Based on these studies on TCM, the Xiaotan Tongfu (XTTF) granule (Table 1), which is primarily composed of a Xiao-cheng-qi decoction[18] and a Xiao-ban-xia decoction[19] (two ancient herbal formulas originating from the Treaty of Febrile and Miscellaneous written by Zhongqing Zhang in the years of 25-220 AD during the Eastern Han Dynasty), was used to treat gastrointestinal disorders in critically ill patients at our hospital. The rationale behind this treatment was that previous studies have indicated that the granule could improve the Acute Physical and Chronic Health Evaluation scores in patients experiencing gastrointestinal dysfunction (unpublished data). Considering this background, we speculated that the XTTF granule could be applied to the management of SU. In the present study, we investigated the efficacy of the XTTF granule in SU and the potential mechanisms involved.

MATERIALS AND METHODS

Animals
One hundred sixty male Sprague-Dawley rats weighing 200-220 g were purchased from Xipuer-Bikai Experimental Animal Co. LTD (Shanghai). The animals were housed in cages with wide mesh wire bottoms to prevent coprophagy, fed a standard laboratory diet and given free access to tap water. The cages were kept in a room with controlled temperature (22°C ± 1°C), relative humidity (65%-70%) and day/night cycle (12:12 light/dark). All of the rats were handled according to the recommendations of the National Institute of Health Guidelines for the Care and Use of Laboratory Animals. The protocol was approved by the Shanghai Medical Experimental Animal Care Commission.

Drug administration
The XTTF granule was manufactured by Tian Jiang Pharmacy Co. Ltd (Jiangyin, China) and supervised by the Changzheng Hospital of the Second Military Medical University with the assigned batch number 1011370. We established the granule under the guidance of TCM
related to stress ulcers\(^\text{[21]}\), and some of the components were previously shown to be effective in the management of stress-related symptoms. For example, the Xiao-ban-xia decoction could elevate gastric emptying\(^\text{[22]}\), which was delayed under stress conditions. In addition, the major component of the Xiao-cheng-qi decoction, *Rhei Radix Et Rhizoma*, was demonstrated to be effective in the prevention of stress ulcers via multiple mechanisms\(^\text{[23,24]}\). The rats were randomly divided into 4 groups (\(n = 10\)) as follows: the model group (MP group), the control group (CP group), the ranitidine group (RP group) and the XTTF granule group (XP group). Rats in the MP group received no drugs; rats in the CP group received 0.2 mL of a 0.9% sodium chloride solution (oral gavage); and rats in the RP and XP groups received the same volume of ranitidine (50 mg/kg)\(^\text{[25-27]}\) or XTTF granule (4.9 g/kg, corresponding to twice that of an adult human dose), respectively. The administration frequency was twice daily and sustained for 7 d. On the 8th day, rats were starved for 24 h (free of water) and prepared for the stress experiment.

Induction of stress ulceration

The cold-restraint stress model used in the present study was originally devised by Senay \textit{et al}\(^\text{[28]}\) and modified by Wong \textit{et al}\(^\text{[29]}\). Briefly, rats were restrained inside individual close-fitting tubular wire mesh cages and exposed to an ambient temperature of 4 °C for 3 h. Rats were anesthetized and sacrificed at 0, 3, 6 and 24 h after stress induction, and the stomachs were opened along the greater curvature. After measuring the mucosal lesions, sections of the tissues were processed for histological examination. Paraffin-embedded tissue sections were deparaffinized and rehydrated through an ascending series of ethanol solutions. Sections were then mounted on glass slides and stained for proliferating cell nuclear antigen (PCNA), heat shock protein 70 (HSP70), and myeloperoxidase activity. The stained sections were then covered with TdT buffer containing TdT and avidin-biotin-peroxidase complex according to the manufacturer’s instructions (Invitrogen, United States). Immunohistochemical staining for PCNA, HSP70 and myeloperoxidase activity was determined by the method described by Bradley \textit{et al}\(^\text{[30]}\).

Measurement of gastric ulcer index, pH and emptying rate

The severity of the mucosal lesions was determined using a magnifier (× 10) and rated for gross pathology according to the scale of ulcer scores as described by Dekanski \textit{et al}\(^\text{[31]}\) with a modification introduced by Martín \textit{et al}\(^\text{[32]}\). For every group, 4 rats were used in the precise measurement of gastric pH, and the test was performed by 3 independent investigators to determine the mean pH. Gastric emptying (\(n = 6, 2\) rats were used as a control in each group) was measured using a methylcellulose test meal, as previously described\(^\text{[32,33]}\).

Measurement of myeloperoxidase activity in the gastric mucosa

Myeloperoxidase (MPO) activity was determined by the method described by Bradley \textit{et al}\(^\text{[34]}\) with some modifications\(^\text{[35]}\). The gastric mucosa was homogenized in a potassium phosphate buffer containing 0.5% hexadecyl trimethyl ammonium bromide, and the supernatant was assayed for MPO activity. The sample was mixed with hydrogen peroxide and O-Dianisidine prepared in a potassium phosphate buffer solution. The end point absorbance of the mixture was measured at 460 nm using a spectrophotometer with horseradish peroxidase as a standard. The protein assay was conducted using the method described by Lowry \textit{et al}\(^\text{[36]}\).

Immunohistochemical staining for PCNA, HSP70 and MIF

Tissues were fixed in 10% formalin, embedded in paraffin, and processed by standard histological methods. From each paraffin block, 5-μm serial sections were sliced. IHC studies were performed with kits utilizing the avidin-biotin-peroxidase complex according to the manufacturer’s instructions (Invitrogen, United States). Primary antibodies [anti-PCNA (rabbit polyclonal, dilution 1:50, BD Biosciences), anti-HSP70 (rabbit polyclonal, dilution 1:50, BD Biosciences, United States), and anti-MIF (rabbit polyclonal, dilution 1:100, BD Biosciences, United States)] were incubated at room temperature overnight in a humidified chamber. The positive results were stained brown and counted by the Image Pro Express system (Olympus, Japan) at × 400 magnification (BX51, Olympus, Japan); the method of calculation was introduced by Soslow \textit{et al}\(^\text{[37]}\).

Measurement of apoptotic cells in the gastric mucosa

Apoptosis measurement was detected by TUNEL staining according to the method of Gavrieli \textit{et al}\(^\text{[38]}\). After digestion with proteinase K, the tissues were treated with H2O2 solution and washed with distilled water. The sections were then covered with TdT buffer containing TdT and biotinylated dUTP. The reaction was halted by washing the sections with a 3% H2O2 methanol solution at room temperature. After blocking the non-specific binding with normal diluted serum, sections were incubated with peroxidase-labeled streptavidin and stained with...
Gastric pH

At 0 h, ranitidine was demonstrated to be the most powerful agent in increasing the gastric pH, and the increase in the gastric pH was significantly different between the ranitidine group (RP group) and the Xiaotan Tongfu granule group (XP group) (P < 0.05). In addition, there were no significant differences regarding the increase in the gastric pH among the XP, the model group (MP group), the control group (CP group) (P > 0.05). At 3 h and 6 h after stress induction, there were no differences in the gastric pH between the RP and XP groups. "P < 0.05 vs the MP group; "P < 0.05 vs the CP group.

XTTF granule shows similar capabilities as ranitidine in reducing gastric lesions

As shown in Figure 1, gastric lesions developed in a time-dependent manner and peaked at 3 h after stress induction; at 24 h after stress induction, these lesions had regressed. In the MP and CP groups, no statistically significant differences in this index were detected either overall or at each of the individual time points (P > 0.05). In the RP and XP groups, gastric lesions were significantly lower in the RP group than in the XP group immediately after stress induction. There were no significant differences observed between these two groups, and no significant differences were observed among all of the groups (P > 0.05).

Gastric pH in the XP and RP groups is significantly lower than in the MP and CP groups

As shown in Figure 2, the fluctuation of gastric pH was restricted to a limited range, except for 24 h after stress induction. There were no significant differences observed between the MP and CP groups (P > 0.05). In the RP and XP groups, we detected a statistically significant difference immediately after stress induction (4.56 ± 0.47 vs 3.34 ± 0.28, respectively; P < 0.05) but not at any of the subsequent time points (P > 0.05). The gastric pH also recovered to normal levels 24 h after stress induction in these two groups, and no significant differences were observed among all of the groups (P > 0.05).

XTTF granule and ranitidine treatment accelerated the gastric emptying rate

It has been established that stress could produce a marked delay of gastric emptying in both humans and animals. As shown in Figure 3, the gastric emptying rate (GER) was remarkably suppressed very shortly after stress induction and was gradually restored over time. This effect was obvious in the MP and CP groups, and our study echoed this conclusion. In addition, we were intrigued by the greater improvement in GER for the XP group because a statistically significant difference was detected immediately after stress induction (46.84 ± 2.70 vs 61.16 ± 5.12, respectively; P < 0.05), at 3 h (60.96 ± 6.71 vs 73.41 ± 6.16, respectively; P < 0.05) and at 6 h (77.47 ± 3.17 vs 91.31 ± 4.34, respectively; P < 0.05) compared to the RP group. This difference was sustained...
As shown in Figure 6, cell proliferation varied in a time-dependent manner and increased gradually after stress induction. No significant differences were observed between the MP and CP groups ($P > 0.05$). In contrast with these groups, the expression of PCNA was higher in the RP and XP groups 3 h after stress induction ($P < 0.05$), with small but significant differences observed at all of the time points except 0 h (37.50 ± 10.91 vs 40.83 ± 1.56, respectively; $P > 0.05$) between these two groups. Peak apoptotic activity was observed at 3 h and returned to normal levels over time, as shown in Figure 6. There were no significant differences regarding apoptotic cells between the MP and CP groups, but the apoptotic activity in the RP and XP groups was significantly different from that in the MP and CP groups ($P < 0.05$). Treatment in the XP group led to a higher inhibition of cell apoptosis than in the RP group at 3 h (232.58 ± 24.51 vs 174.46 ± 10.35, respectively; $P < 0.05$) and 6 h (164.74 ± 18.31 vs 117.71 ± 12.08, respectively; $P < 0.05$), but 24 h after stress induction, no significant differences could be detected between either of the groups.

DISCUSSION

In the present study, the antiulcer effect of the Xiaotan Tongfu granule was established, and its efficacy was demonstrated to be similar to that of ranitidine. The cold-restraint stress model induced a series of pathological alterations and lesions in the stomach, which, when examined together with previous studies, suggested that SU is a process that results from multiple sources. We concluded that although the XTTF granule was inferior to ranitidine in reducing gastric acid secretion immediately after stress induction, this did not impair its efficacy because the XTTF granule was superior in promoting a series of parameters, including inhibited local inflammation, increased GER, enhanced HSP70 expression, decreased cell apoptosis and elevated cell proliferation over time. The majority of these parameters have been demonstrated to contribute to ulcer prevention and healing, which was confirmed by our observations of gastric lesions measured at the designated time points. Based on these results, we speculate that any agents that can interfere with the above parameters either individually or collectively would be useful to ameliorate any complications due to stomach ulcers.

The underlying mechanism of SU was previously not thoroughly understood and was commonly believed to depend on the balance between known aggressive factors and mucosal defense mechanisms. As shown in Figure 5, there was a measurable expression of HSP70 3 h after stress induction, and this expression peaked at 6 h. No significant differences regarding HSP70 expression were observed between the MP and CP groups at any of the time points, but HSP70 expression was significantly higher in the RP and XP groups at 3 and 6 h compared to the MP and CP groups ($P < 0.05$). In addition, comparison of the RP and XP groups also yielded statistically significant differences at 3 h (133.33 ± 35.53 vs 176.17 ± 9.37, respectively; $P < 0.05$) and 6 h (182.83 ± 38.78 vs 226.50 ± 18.84, respectively; $P < 0.05$) after stress induction. As shown in Figure 6, cell proliferation varied in a time-dependent manner and increased gradually after stress induction. No significant differences were observed between the MP and CP groups ($P > 0.05$). In contrast with these groups, the expression of PCNA was higher in the RP and XP groups 3 h after stress induction ($P < 0.05$), with small but significant differences observed at all of the time points except 0 h (37.50 ± 10.91 vs 40.83 ± 1.56, respectively; $P > 0.05$) between these two groups. Peak apoptotic activity was observed at 3 h and returned to normal levels over time, as shown in Figure 6. There were no significant differences regarding apoptotic cells between the MP and CP groups, but the apoptotic activity in the RP and XP groups was significantly different from that in the MP and CP groups ($P < 0.05$). Treatment in the XP group led to a higher inhibition of cell apoptosis than in the RP group at 3 h (232.58 ± 24.51 vs 174.46 ± 10.35, respectively; $P < 0.05$) and 6 h (164.74 ± 18.31 vs 117.71 ± 12.08, respectively; $P < 0.05$), but 24 h after stress induction, no significant differences could be detected between either of the groups.

DISCUSSION

In the present study, the antiulcer effect of the Xiaotan Tongfu granule was established, and its efficacy was demonstrated to be similar to that of ranitidine. The cold-restraint stress model induced a series of pathological alterations and lesions in the stomach, which, when examined together with previous studies, suggested that SU is a process that results from multiple sources. We concluded that although the XTTF granule was inferior to ranitidine in reducing gastric acid secretion immediately after stress induction, this did not impair its efficacy because the XTTF granule was superior in promoting a series of parameters, including inhibited local inflammation, increased GER, enhanced HSP70 expression, decreased cell apoptosis and elevated cell proliferation over time. The majority of these parameters have been demonstrated to contribute to ulcer prevention and healing, which was confirmed by our observations of gastric lesions measured at the designated time points. Based on these results, we speculate that any agents that can interfere with the above parameters either individually or collectively would be useful to ameliorate any complications due to stomach ulcers.

The underlying mechanism of SU was previously not thoroughly understood and was commonly believed to depend on the balance between known aggressive factors and mucosal defense mechanisms. As shown in Figure 5, there was a measurable expression of HSP70 3 h after stress induction, and this expression peaked at 6 h. No significant differences regarding HSP70 expression were observed between the MP and CP groups at any of the time points, but HSP70 expression was significantly higher in the RP and XP groups at 3 and 6 h compared to the MP and CP groups ($P < 0.05$). In addition, comparison of the RP and XP groups also yielded statistically significant differences at 3 h (133.33 ± 35.53 vs 176.17 ± 9.37, respectively; $P < 0.05$) and 6 h (182.83 ± 38.78 vs 226.50 ± 18.84, respectively; $P < 0.05$) after stress induction. As shown in Figure 6, cell proliferation varied in a time-dependent manner and increased gradually after stress induction. No significant differences were observed between the MP and CP groups ($P > 0.05$). In contrast with these groups, the expression of PCNA was higher in the RP and XP groups 3 h after stress induction ($P < 0.05$), with small but significant differences observed at all of the time points except 0 h (37.50 ± 10.91 vs 40.83 ± 1.56, respectively; $P > 0.05$) between these two groups. Peak apoptotic activity was observed at 3 h and returned to normal levels over time, as shown in Figure 6. There were no significant differences regarding apoptotic cells between the MP and CP groups, but the apoptotic activity in the RP and XP groups was significantly different from that in the MP and CP groups ($P < 0.05$). Treatment in the XP group led to a higher inhibition of cell apoptosis than in the RP group at 3 h (232.58 ± 24.51 vs 174.46 ± 10.35, respectively; $P < 0.05$) and 6 h (164.74 ± 18.31 vs 117.71 ± 12.08, respectively; $P < 0.05$), but 24 h after stress induction, no significant differences could be detected between either of the groups.

DISCUSSION

In the present study, the antiulcer effect of the Xiaotan Tongfu granule was established, and its efficacy was demonstrated to be similar to that of ranitidine. The cold-restraint stress model induced a series of pathological alterations and lesions in the stomach, which, when examined together with previous studies, suggested that SU is a process that results from multiple sources. We concluded that although the XTTF granule was inferior to ranitidine in reducing gastric acid secretion immediately after stress induction, this did not impair its efficacy because the XTTF granule was superior in promoting a series of parameters, including inhibited local inflammation, increased GER, enhanced HSP70 expression, decreased cell apoptosis and elevated cell proliferation over time. The majority of these parameters have been demonstrated to contribute to ulcer prevention and healing, which was confirmed by our observations of gastric lesions measured at the designated time points. Based on these results, we speculate that any agents that can interfere with the above parameters either individually or collectively would be useful to ameliorate any complications due to stomach ulcers.

The underlying mechanism of SU was previously not thoroughly understood and was commonly believed to depend on the balance between known aggressive factors and mucosal defense mechanisms. As shown in Figure 5, there was a measurable expression of HSP70 3 h after stress induction, and this expression peaked at 6 h. No significant differences regarding HSP70 expression were observed between the MP and CP groups at any of the time points, but HSP70 expression was significantly higher in the RP and XP groups at 3 and 6 h compared to the MP and CP groups ($P < 0.05$). In addition, comparison of the RP and XP groups also yielded statistically significant differences at 3 h (133.33 ± 35.53 vs 176.17 ± 9.37, respectively; $P < 0.05$) and 6 h (182.83 ± 38.78 vs 226.50 ± 18.84, respectively; $P < 0.05$) after stress induction. As shown in Figure 6, cell proliferation varied in a time-dependent manner and increased gradually after stress induction. No significant differences were observed between the MP and CP groups ($P > 0.05$). In contrast with these groups, the expression of PCNA was higher in the RP and XP groups 3 h after stress induction ($P < 0.05$), with small but significant differences observed at all of the time points except 0 h (37.50 ± 10.91 vs 40.83 ± 1.56, respectively; $P > 0.05$) between these two groups. Peak apoptotic activity was observed at 3 h and returned to normal levels over time, as shown in Figure 6. There were no significant differences regarding apoptotic cells between the MP and CP groups, but the apoptotic activity in the RP and XP groups was significantly different from that in the MP and CP groups ($P < 0.05$). Treatment in the XP group led to a higher inhibition of cell apoptosis than in the RP group at 3 h (232.58 ± 24.51 vs 174.46 ± 10.35, respectively; $P < 0.05$) and 6 h (164.74 ± 18.31 vs 117.71 ± 12.08, respectively; $P < 0.05$), but 24 h after stress induction, no significant differences could be detected between either of the groups.
nitidine. These results could be regarded as a footnote in that gastric acid is one of the most important factors in the formation of SU\(^{50}\). However, it should also be noted that not all clinically observed gastrointestinal bleeding can be prevented by manipulating the gastric pH\(^{51}\). The XTTF granule was shown to significantly promote GER, echoing the results in our previous study (unpublished observations) that concluded that the XTTF granule could enhance plasma motilin levels, which is important in gastric movement\(^{52,53}\) in critically ill patients. Additionally, the Xiao-ban-xia decoction, which is an important component of the XTTF granule, has been demonstrated to be a regulative mediator of gastric motility\(^{20}\). An enhanced gastric emptying rate could remove acidic material and other irritants in the stomach\(^{54}\), which is beneficial for ulcer prevention. Additionally, it was notable that

Figure 4 Measurement of myeloperoxidase activity and macrophage migration inhibitory factor (n = 6 for each group). A, B: The variation of myeloperoxidase activity (MPO) activity and migration inhibitory factor (MIF) was similar. At 0 h, no significant difference was detected between the ranitidine group (RP group) and the Xiaotan Tongfu granule group (XP group) (P > 0.05). However, 3 and 6 h after stress induction, these two indexes were inhibited in the XP group, which was a statistically significant difference compared to the RP group (P < 0.05). \(^{a}\)P < 0.05 vs the model group (MP group); \(^{c}\)P < 0.05 vs the control group (CP group); C: The immunohistochemical staining results of MIF show that it was expressed in the cytoplasm of gastric epithelial cells and lamina propria cells. Original magnification × 400.

	Model group	Control group	Ranitidine group	Xiaotan Tongfu group
0 h	30	25	20	15
3 h	25	20	15	10
6 h	15	10	5	0
24 h	5	0	5	0

Yan B et al. Xiaotan Tongfu granules prevent stress ulcers
some traditional Chinese herbal medicines were effective in preventing inflammation by various mechanisms, such as the inhibition of nuclear factor kappa B (NF-\(\kappa\)B), tumor necrosis factor-\(\alpha\) (TNF-\(\alpha\)), and interleukin-1\(\beta\)[55,56]. Interestingly, in our study, the XTTF granule was able to alleviate local inflammation by decreasing MPO activity and restraining MIF expression. It is well known that neutrophil adherence within the gastric microcirculation and migration into the gastric tissue are major causes of gastric ulcers[54]. MIF has been suggested to play a pivotal role in this process, and anti-MIF treatment could have therapeutic value in SU[57]. Although the data indicating that the XTTF granule could inhibit MIF are limited, \(Rhei\) Radix Et Rhizoma (a main herb in the Xiao-cheng-qi decoction[19]) was previously shown to inhibit gastrointestinal inflammation by acting on TNF-\(\alpha\)[24], a strong inducer of MIF secretion[58]. Furthermore, XTTF granule can also improve local microcirculation[22], thereby reducing neutrophil concentrations[59]. Other components, such as \(Coptidis\) Rhizoma, could ameliorate acute inflammation by
Yan B et al. Xiaotan Tongfu granules prevent stress ulcers

![Graph A: PCNA positive area over time](image)

- Model group
- Control group
- Ranitidine group
- Xiaotan Tongfu group

![Graph B: Apoptotic area accounted per 25 glands](image)

- Model group
- Control group
- Ranitidine group
- Xiaotan Tongfu group

![Graph C: Western blot analysis](image)
inhibiting NF-κB-mediated nitric oxide and pro-inflammatory cytokine production[60]. Except these effects, the XTTF granule has also been shown to play a role in the manipulation of HSP70 expression, and although the data are still limited, the previous study did indicate that some herbal medicine constituents, such as Glycyrrhizae Radix Et Rhizoma (an herbal component in the Xiao-cheng-qi decoction[19]), could promote HSP expression[61]. Interestingly, Glycyrrhizae Radix Et Rhizoma was also demonstrated to be effective in protecting gastric mucosa via gastric mucin[62]. Finally, the XTTF granule also inhibited cell apoptosis and promoted cell proliferation, which is related to the mucosal protection of some components such as Magnoliae Officinalis Cortex[63] and Aurantii Fructus Immaturus[63]. We speculate that all of these actions may contribute to tissue regeneration and reconstruction in the stomach[64].

It should be noted that the parameters manipulated by the XTTF granule in SU might not work individually, and these parameters could be connected in a complex relationship. For example, previous studies have shown that the aforementioned MIF inhibition effect of the XTTF granule could result in the elevation of nitric oxide levels[57], which are involved in HSP70 expression[60] and cell proliferation[66] during ulcer healing in the stomach. HSP70 could also exert its cytoprotective effect by interfering with the stress-induced apoptotic pathway[67,68]. Except that studies have indicated that ranitidine can inhibit gastric acid secretion[12], accelerate GER[33,42], and reduce apoptosis levels[69], our study showed that the effect of ranitidine on parameters such as promoting cell proliferation may also be attributed to the comprehensive network of SU. The XTTF granule was shown to prevent ulcers and promote healing by attenuating aggressive factors and enhancing defensive factors. Future studies, such as randomized controlled trials, are necessary to further confirm its efficacy.

This study has several limitations. First, although we demonstrated that the XTTF granule exerts measurable preventative effects on SU, whether the XTTF granule acts in a dose-dependent manner remains unknown. Second, pretreatment with the XTTF granule in rats scheduled to undergo stress may not correspond to clinical practice because the majority of patients are administered

Figure 6 Measurement of cell proliferation and mucosal cell apoptosis (n = 6 for each group). A: The cell proliferation was significantly different between the ranitidine (RP) and Xiaotan Tongfu granule (XP) groups (P < 0.05) at 3 and 6 h; B: Proliferating cell nuclear antigen (PCNA) immunoreactivity was observed in the gastric surface epithelium, and this staining was focused in the nucleus; C, D: Strongly apoptotic cells were observed in the nucleus of the gastric surface epithelium. Similar to the cell proliferation, the cell apoptosis was significantly different between the RP and XP groups at 3 and 6 h (P < 0.05). Original magnification × 400. "P < 0.05 vs the model group (MP group); "P < 0.05 vs the control group (CP group).
pharmacological agents for SUP after stress. Additional studies are necessary to measure the efficacy of the XTTF granule in this scenario.

COMMENTS

Background
Stress ulcer prophylaxis plays a pivotal role in the care of critically ill patients. Recent studies indicated that traditional Chinese medicine (TCM) could exert measurable therapeutic effects on gastric ulcers. The Xiaotan Tongfu (XTTF) granule has been used for a long time to treat gastrointestinal disorders in critically ill patients. However, whether it could be applied to stress ulcers remained unknown.

Research frontiers
Emerging evidence suggests that TCM was effective in the management of stress-related gastrointestinal disorders, such as irritable bowel syndrome. In addition, a number of studies have also indicated that TCM could exert measurable therapeutic effects on gastric ulcers in rats. Stress ulceration was an inevitable complication of the gastrointestinal tract in animals experiencing abnormally high physiological stress. In this study, the authors demonstrated that a traditional Chinese herbal decoction could play an important role in the prevention of stress ulcers.

Innovations and breakthroughs
Although the underlying mechanism of stress ulcers was commonly believed to depend on the balance between known aggressive factors and mucosal defense mechanisms, most of the clinical strategies are still aimed at inhibiting gastric acid. This study focused on demonstrating the efficacy of a traditional Chinese herbal medicine used to treat stress ulcers. The study indicated that traditional Chinese herbal medicine was effective in preventing stress ulcers and that inhibiting gastric acid would not be the only strategy.

Applications
By confirming its efficacy and potential mechanisms in an animal study, the findings suggest that the XTTF granule could be regarded as a potential option for stress ulcer prophylaxis in the future.

Terminology
Stress ulceration refers to an inevitable complication of the gastrointestinal tract in people experiencing abnormally high physiological stress, which usually occurs in severely injured patients. In this study, the authors demonstrated that stress ulcer prophylaxis plays a pivotal role in the care of critically ill patients. Whether it could be applied to stress ulcers remained unknown.

Stress ulcer prophylaxis plays a pivotal role in the care of critically ill patients. Recent studies indicated that traditional Chinese medicine (TCM) could exert measurable therapeutic effects on gastric ulcers. The Xiaotan Tongfu (XTTF) granule has been used for a long time to treat gastrointestinal disorders in critically ill patients. However, whether it could be applied to stress ulcers remained unknown.

Stress ulceration was an inevitable complication of the gastrointestinal tract in animals experiencing abnormally high physiological stress. In this study, the authors demonstrated that a traditional Chinese herbal decoction could play an important role in the prevention of stress ulcers.

Innovations and breakthroughs
Although the underlying mechanism of stress ulcers was commonly believed to depend on the balance between known aggressive factors and mucosal defense mechanisms, most of the clinical strategies are still aimed at inhibiting gastric acid. This study focused on demonstrating the efficacy of a traditional Chinese herbal medicine used to treat stress ulcers. The study indicated that traditional Chinese herbal medicine was effective in preventing stress ulcers and that inhibiting gastric acid would not be the only strategy.

Applications
By confirming its efficacy and potential mechanisms in an animal study, the findings suggest that the XTTF granule could be regarded as a potential option for stress ulcer prophylaxis in the future.

Terminology
Stress ulceration refers to an inevitable complication of the gastrointestinal tract in people experiencing abnormally high physiological stress, which usually occurs in severely injured patients. Stress ulceration was an inevitable complication of the gastrointestinal tract in animals experiencing abnormally high physiological stress. In this study, the authors demonstrated that a traditional Chinese herbal decoction could play an important role in the prevention of stress ulcers.
September 7, 2013 | Volume 19 | Issue 33 | 5483

Chen DC, Jiang XL, Li HJ, Jing BW. Effects of rhubarb on gastrointestinal perfusion in critical illness. Zhonghua fizheng Yiye ZaZhi 1999; 19: 581-584.

Guo SW, Cai K, Che HM, Li SM, Jiang HT. Prophylactic effect of rhubarb on severe brain injury induced stress ulcer in rat. Zhonghua Shenqi Yiye ZaZhi 2011; 10: 50-54.

Chen DC, Jing BW, Li HJ, Yang XY. Clinical study of rhubarb against systemic inflammatory response in critical illness. Zhongguo Wei Zhong Bing Jiu Yi Xue 2000; 12: 584-587.

Garrick T, Goto Y, Buuck S, Guth P. Cimetidine and ranitidine protect against cold restraint-induced ulceration in rat by suppressing gastric acid secretion. Dig Dis Sci 1987; 32: 1261-1267 [PMID: 3665081].

Suttle AB, Brouwer KL. Gastrointestinal transit and distribution of ranitidine in the rat. Pharm Res 1995; 12: 1316-1322 [PMID: 8570528].

Suttle AB, Brouwer KL. Regional gastrointestinal absorption of ranitidine in the rat. Pharm Res 1995; 12: 1311-1315 [PMID: 8570527].

Senay EC, Levine RJ. Synergism between cold and restraint for rapid production of stress ulcers in rats. Proc Soc Exp Biol Med 1967; 124: 1221-1223 [PMID: 6024838].

Wong D, Koo MW, Shin YV, Liu ES, Cho CH. Pathogenesis of nicotine treatment and its withdrawal on stress-induced gastric ulceration in rats. Eur J Pharmacol 2002; 434: 81-86 [PMID: 11751698].

Dekanski JB, Macdonald Sacra AP. Effects of fasting, stress and drugs on gastric glycoprotein synthesis in the rat. Brit J Pharmacol 1975; 55: 387-392 [DOI: 10.1111/j.1476-5381.1975.tb06942.x].

Martin MJ, Marhuenda E, Perez-Guerrero C, Franco JM. Antulcer effect of naringin on gastric lesions induced by ethanol in rats. Pharmacology 1994; 49: 144-150 [PMID: 7972328].

Taché Y, Maeda-Hagiwara M, Turkelson CM. Central nervous system action of corticotropin-releasing factor to inhibit gastric emptying in rats. Am J Physiol 1987; 253: G241-G245 [PMID: 3497885].

Bertaccini G, Scarpgnato C. Histamine H2-antagonists modify gastric emptying in the rat. Brit J Pharmacol 1982; 77: 443-448 [DOI: 10.1111/j.1476-5381.1982.tb09316.x].

Bradley PP, Priebat DA, Christensen RD, Rothstein G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 1986; 87: 206-209 [PMID: 3676474].

Chow JY, Xie L, Zhu M, Cho CH. The potentiation actions of cigarette smoking on ethanol-induced gastric mucosal damage in rats. Gastroenterology 1997; 113: 1188-1197 [PMID: 9322514].

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265-275 [PMID: 1400771].

Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Khan KN, Masferrer J, Koki AT. COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 2000; 89: 2637-2645 [PMID: 11135226].

Gavioli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992; 119: 493-501 [PMID: 1400587].

Thompson DG, Richelson E, Malagelada JR. Perturbation of gastric emptying and duodenal motility through the central nervous system. Gastroenterology 1982; 83: 1200-1206 [PMID: 7192028].

Thompson DG, Richelson E, Malagelada JR. Perturbation of upper gastrointestinal function by cold stress. Gut 1983; 24: 277-283 [PMID: 6832623].

Bertaccini G, Scarpgnato C. Different effects of the H2-antagonists on gastric emptying in the rat. Experientia 1982; 38: 385-386 [PMID: 6122592].

Bertaccini G, Scarpgnato C. Different effects of the H2-antagonists on gastric emptying in the rat. Drug Res 1987; 11: 37-43 [DOI: 10.1002/ddr.430110105].

Beyer AJ, Smalley DM, Shyr YM, Wood JC, Cheung LY. PAF and CD18 mediate neutrophil infiltration in upper gastrointestinal tract during intra-abdominal sepsis. Am J Physiol 1998; 38: 467-472 [PMID: 9724257].

He XX, Yang J, Ding YW, Liu W, Shen QY, Xia HH. Increased epithelial and serum expression of macrophage migration inhibitory factor (MIF) in gastric cancer: potential role of MIF in gastric carcinogenesis. Gut 2006; 55: 797-802 [PMID: 16488898].

Shichijo I, Ibara M, Matsuu M, Ito M, Okumura Y, Sekine I. Overexpression of heat shock protein 70 in stomach of stress-induced gastric ulcer-resistant rats. Dig Dis Sci 2003; 48: 340-348 [PMID: 12643613].

Khalefa AA, Abd-Alaeeem DI, Attiaa KI. The protective effects of ghrelin and leptin against stress-induced gastric ulcer in rats. Arab J Gastroenterol 2010; 11: 74-78 [DOI: 10.1016/j.ajg.2010.04.005].

Hirakawa T, Kokutan K, Nikawa T, Kishi K. Geranylgeranylacetone induces heat shock proteins in cultured guinea pig gastric mucosal cells and rat gastric mucosa. Gastroenterology 1996; 111: 345-357 [PMID: 8690199].

Ikarashi Y, Yuzuruha M, Maruyama Y. Inhibition of gastric acid secretion by saiboku-to, an oriental herbal medicine, in rats. Dig Dis Sci 2001; 46: 997-1003 [PMID: 11341671].

Lin WC, Tan ZW, Wu MJ. Inhibitory effect of the traditional Chinese medicine “Zuo-Jin-Wan” on Gastric Acid Secretion in Rats. Zhonghua Yi Xue ZaZhi 1993; 4: 223-233.

Ritchie Jr WP, Breen J, Grigg DI, Wangenstein OH. Effect of decreased levels of endogenous gastric tissue histamine on acid secretion and stress ulcer formation in the rat. Gut 1967; 8: 32-35 [DOI: 10.1136/gut.8.1.322].

Noble DW. Proton pump inhibitors and stress ulcer prophylaxis: pause for thought? Crit Care Med 2002; 30: 1175-1176 [PMID: 12006831].

Degas HT, Yamagishi T, Dryburgh JR. Motilin enhances gastric emptying of liquids in dogs. Gastroenterology 1977; 73: 777-780 [PMID: 892828].

Labó G, Borotolotti M, Vezzadini P, Bonora G, Bersani G. Interdigestive gastrointestinal motility and serum motilin levels in patients with idiopathic delay in gastric emptying. Gastroenterology 1986; 90: 20-26 [PMID: 3940246].

Quenot JP, Thierry N, Barbar S. When should stress ulcer prophylaxis be used in the ICU? Crit Care Crit Care 2009; 15: 139-143 [PMID: 19579324].

Nanjundaiah SM, Astry B, Moudgil KD. Mediators of inflammation-induced bone damage in arthritis and their control by herbal products. Evid Based Complement Alternat Med 2013; 2013: 518094 [PMID: 23476694].

Yang YH, Rajah R, Lee DY, Ma Z, Yu H, Fong HH, Lao L, Berman BM, Moudgil KD. Suppression of ongoing experimental arthritis by a Chinese herbal formula (huo-luo-xiao-ling dan) involves changes in antigen-induced immunological and biochemical mediators of inflammation. Evid Based Complement Alternat Med 2011; 2011: 642027 [DOI: 10.1155/2011/642027].

Huang XR, Chun Hui CW, Chen YX, Wong BC, Fung PC, Metz C, Cho CH, Hui WM, Bucala R, Lam SK, Lan HY. Macrophage migration inhibitory factor is an important mediator in the pathogenesis of gastric inflammation in rats. Gastroenterology 2001; 121: 619-630 [PMID: 11522746].

Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 2003; 3: 791-800 [PMID: 14502271].

Konturek SJ, Brzozowski T, Stachura J, Dembinski A, Majka J. Role of gastric blood flow, neutrophil infiltration, and mucosal cell proliferation in gastric adaptation to aspirin in the rat. Gut 1994; 35: 1189-1196 [PMID: 7525421].
Yan B et al. Xiaotan Tongfu granules prevent stress ulcers

60 Sohn KH, Jo MJ, Cho WJ, Lee JR, Cho IJ, Kim SC, Kim YW, Jee SY. Bojesodok-eum, a herbal prescription, ameliorates acute inflammation in association with the inhibition of NF-κB-Mediated nitric oxide and proinflammatory cytokine production. *Evid Based Complement Alternat Med* 2012; 2012: 457370 [PMID: 23093981 DOI: 10.1155/2012/457370]

61 Wieten L, Broere F, van der Zee R, Koerkamp EK, Wage-naar J, van Eden W. Cell stress induced HSP are targets of regulatory T cells: a role for HSP inducing compounds as anti-inflammatory immuno-modulators? *FEBS Lett* 2007; 581: 3716-3722 [PMID: 17507013]

62 Yano S. Effect of kampo medicine on stress-induced ulceration. *Prog Med* 1997; 17: 887-893

63 Takase H, Yamamoto K, Hirano H, Saito Y, Yamashita A. Pharmacological profile of gastric mucosal protection by marmin and nobiletin from a traditional herbal medicine, Aurantii fructus immaturus. *Jpn J Pharmacol* 1994; 66: 139-147 [PMID: 7861659]

64 Ma L, Wang HY, Chow JY, Cho CH. Cigarette smoke increases apoptosis in the gastric mucosa: role of epidermal growth factor. *Digestion* 1999; 60: 461-468 [PMID: 10475971]

65 Konturek PC, Brzozowski T, Ptak A, Kania J, Kwiecién S, Hahn EG, Konturek SJ. Nitric oxide releasing aspirin protects the gastric mucosa against stress and promotes healing of stress-induced gastric mucosal damage: role of heat shock protein 70. *Digestion* 2002; 66: 160-172 [PMID: 12481162]

66 Li Y, Wang WP, Wang HY, Cho CH. Intragastric administration of heparin enhances gastric ulcer healing through a nitric oxide-dependent mechanism in rats. *Eur J Pharmacol* 2000; 399: 205-214 [DOI: 10.1016/S0014-2999(00)00278-8]

67 Rokutan K. Role of heat shock proteins in gastric mucosal protection. *J Gastroenterol Hepatol* 2000; 15: 12-19 [PMID: 10759215 DOI: 10.1046/j.1440-1746.2000.02144.x]

68 Suemasu S, Tanaka K, Namba T, Ishihara T, Katsu T, Fujimoto M, Adachi H, Sobue G, Takeuchi K, Nakai A, Mizushima T. A role for HSP70 in protecting against indomethacin-induced gastric lesions. *J Biol Chem* 2009; 284: 19705-19715 [PMID: 19439408]

69 Park HJ, Kim HJ, Park HK, Chung JH. Protective effect of histamine H2 receptor antagonist ranitidine against rotenone-induced apoptosis. *Neurotoxicology* 2009; 30: 1114-1119 [PMID: 19723537]

P- Reviewers Strain GM, Sugimoto M, Sugimoto M
S- Editor Wen LL L- Editor A E- Editor Li JY
