About boundary conditions for kinetic equations in metal

F Karimov¹, T N Lam¹ and A A Yushkanov¹
¹ Moscow Region State University
10A, Radio str., Moscow, 105005, Russian Federation
faha_rtsu_2003@mail.ru, nhunglam279@gmail.com, yushkanov@inbox.ru

Abstract. Boundary conditions for kinetic equations describing the dynamics of electrons in the metal were analyzed. The boundary condition of the Fuchs and the boundary condition of Soffer were considered. The Andreev conditions for almost tangential moving electrons were taken into account. It is shown that the Soffer boundary condition does not satisfy this condition. The boundary condition was proposed that satisfies the Andreev condition. It is shown that this boundary condition passes in the limiting case into the mirror–diffuse Fuchs boundary condition.

1. Introduction
To describe the dynamics of electrons in the metal along with the kinetic equation one requires boundary conditions. These boundary conditions determine the nature of the interaction of electrons with the metal surface. Most often the mirror–diffuse Fuchs boundary condition are used. This condition implies that q–part of the electrons is reflected from the surface in the mirror manner. The remaining electrons are diffuse reflected. Then the electron distribution function f on the surface changes as follows [1]— [3]

$$ f(v) = qf(v') + (1 - q)f_0(v), v' = v - 2n(nv). \quad (1) $$

Here v – the electron velocity before the collision with surface, v_0 – the electron velocity after collision with the surface, n – a unit normal to the surface. The function $f_0(v)$ – the equilibrium distribution function. For the degenerate electron gas in the metal it has the following form

$$ f_0(v) = \Theta(E_F - E), E = \frac{mv^2}{2}. $$

Here E – electron energy, E_F– the Fermi energy, $\Theta(x)$ – the Heaviside step function. It is equal to zero when $x < 0$. In other cases, it is equal to unit.

2. Kinetic equation
In the Fuchs boundary conditions (1), the value of q is considered constant. However, the coefficient of reflectivity q should depend on the angle of incidence of electrons on the metal surface.

In the work [4], it is shown that the reflectivity coefficient $q = q(\theta)$ (θ – the angle of incidence of the electron on the border) tends to one when the angle of incidence θ tends to $\pi/2$. From this it follows that the reflectivity coefficient $q = q(\theta)$ at $\theta \to \pi/2$ can be represented as the following decomposition
Here a_n — some coefficients depending on the properties of metal surface.

It was proposed the model describing the dependence of the reflectivity coefficient on the angle of incidence of electrons on metal surface [5]

$$q(\theta) = \exp\left[-\left(-4\pi G \cos \theta\right)^2\right], \quad G = \frac{h_s}{\lambda_F}. \tag{3}$$

In equation (3) value h_s — the mean-squared height of the surface relief, λ_F — the wavelength of an electron on the Fermi surface.

This dependence of the reflectivity coefficient on the incidence angle of electrons on the metal surface (3) has been used in several papers [6]– [8].

Let us consider the behavior of the reflectivity coefficient q with almost tangential incidence of the electron onto the metal surface in the model of Soffer (3). Then $\theta \to \pi/2$ and $\cos \theta \to 0$. Therefore

$$q(\theta) \approx 1 - A (\cos \theta)^2. \tag{4}$$

Hence $q(\theta) \sim 1 - A (\cos \theta)^2$ in this limit.

This contradicts to the Andreev condition (2). In the Soffer model the reflectivity coefficient q tends to unit too fast at $\theta \to \pi/2$.

Let us consider the model boundary conditions. These boundary conditions have to meet the Andreev condition (2). In addition they have under certain parameter values to go into Fuchs boundary conditions. And at certain angles of incidence of electrons on the metal surface with the appropriate parameters boundary conditions must reproduce the Soffer boundary conditions (3).

The following expression satisfies these conditions

$$q(\theta) = q_0 + (1 - q_0)\exp(-b_1 \cos \theta - b_2 \cos^2 \theta). \tag{5}$$

In this expression there are 3 parameters: q_0, b_1, b_2. These parameters are non-negative. Then, when $\theta \to \pi/2 (\cos \theta) \to 0$ the value $q(\theta) \to 1$.

In the linear approximation for $\cos \theta$ we have

$$q(\theta) = 1 - (1 - q_0)b_1 \cos \theta.$$

Therefore, there is the following relation with the expression (2)

$$a_1 = (1 - q_0)b_1.$$

The parameter b_2 is necessary to account for the Soffer boundary conditions [5], which can be implemented at intermediate values of the angle θ.

If the parameters b_1, b_2 are large, then when the angle θ not too close to $\pi/2$, the value $q(\theta)$ is almost constant and close to q_0. Then the case of an ordinary mirror–diffuse boundary conditions [1] is implemented.

In the case $b_1 = 0$ and the angles θ close to $\pi/2$ we get

$$q(\theta) \approx 1 - b_2 (\cos \theta)^2.$$

This relation coincides with the Soffer result (4) if $b_2 = \left(4\pi G\right)^2$.

For metal

$$\cos \theta = \frac{|v_n|}{v_F}.$$

Here v_n — component of electron velocity perpendicular to the surface, v_F — the Fermi velocity. Then the expression (2) can be rewritten in the form
\[q(\theta) = q_0 + (1 - q_0)\exp(-\beta_1 |v_z| - \beta_2 |v_z|^2). \]

(6)

\[\beta_1 = \frac{b_1}{v_F}, \beta_2 = \frac{b_2}{v_F}. \]

Fig. 1. The dependence of the reflectivity coefficient on the angle \(\theta \). Value \(q_0 = 0.5 \), and value \(b_1 = 1 \).

Fig. 2. The dependence of the reflectivity coefficient on the angle \(\theta \). Value \(q_0 = 0.5 \), and \(b_1 = 3 \). Curve 1 corresponds to the value of \(b_2 = 10 \). Curve 2 corresponds to the value of \(b_2 = 5 \). Curve 3 corresponds to the value of \(b_2 = 2 \). Curve 4 corresponds to the value of \(b_2 = 0 \).

From Fig. 1 and Fig. 2, we see that for large values of \(b_1 \) and \(b_2 \), the reflectivity coefficient \(q_0 \) for most angles of incidence remains constant. In this case the condition \(q = q_0 \) is satisfied. With the decrease of the coefficients \(b_1 \) and \(b_2 \) are deviations from the Fuchs boundary conditions (1) with constant reflectivity coefficient becomes evident. These deviations are particularly significant when the angle \(\theta \) close to \(\pi/2 \).

3. Conclusion
The paper considers a boundary condition to the kinetic equation for the electrons in the metal. This boundary condition is a generalization of the Fuchs and Soffer boundary conditions. In the limit cases it goes into these boundary conditions. In addition it satisfies the Andreev condition. The Fuchs and Soffer boundary conditions this condition not satisfy. The considered boundary condition can be used to describe the electron kinetics in thin films and wires. It is possible to use this boundary condition for describing the kinetics of electrons in small metal particles.

References
[1] Fuchs K. 1938 Math. Proceedings of the Cambridge Philosophical Society 34 100–108.
[2] Abrikosov A A 1998 Fundamentals of the Theory of Metals (North–Holland, Amsterdam) p 380.
[3] Sondheimer E H 2001 Advances in Physics 50 499-537.
[4] Andreev A F 1971 Physics-Uspekhi 105 114–123.
[5] Soffer S B 1967 Journal of Applied Physics 38(4) 1710–1715.
[6] Dimmich and Warkusz F 1986 Electrical conduct. of thin wires Active and Pass. Elec. 103-109.
[7] Yushkanov A A, Savenko O V and Kuznetsova I A 2016 Journal of Surface Investigation 10 (3) 663671.
[8] Kuznetsova I A, Lebedev M E and Yushkanov A A 2014 Condensed Matter Physics 17(1) 19.