EMBEDDABILITY OF MULTIPLE CONES

D. REPOVŠ, W. ROSICKI, A. ZASTROW, AND M. ŽELJKO

ABSTRACT. The main result of this paper is that if X is a Peano continuum such that its n-th cone $C^n(X)$ embeds into \mathbb{R}^{n+2} then X embeds into S^2. This solves a problem proposed by W. Rosicki.

1. INTRODUCTION

The classical Lefschetz-Nöbeling-Pontryagin Embedding Theorem [10] asserts that every compact metric space X of dimension n embeds into \mathbb{R}^{2n+1}. We are interested in the relationship between the embeddability of X and embeddability of its Cartesian product $X \times I^n$ with a cube I^n (resp. its cone $C(X)$, iterated cone $C^n(X) = C(\ldots (C(X))\ldots)$, suspension $\Sigma(X)$). Clearly, if X embeds in \mathbb{R}^m, then $X \times I^n$ and $C^n(X)$ embed into \mathbb{R}^{n+m}. However, sometimes they embed into lower-dimensional Euclidean space. Such is the case for the spheres S^n, where S^n, $C(S^n) \cong B^{n+1}$ and $S^n \times I$ all embed into \mathbb{R}^{n+1}.

Let X be a Peano continuum. It was proved in [14] that if the cone $C(X)$ of X embeds into \mathbb{R}^3, then X embeds into S^2. As a consequence, if the suspension $\Sigma(X)$ of X embeds into \mathbb{R}^3, then X is planar. Note that for each $n \geq 3$, there exists a Peano continuum X_n such that X_n is not embeddable in S^n, whereas the cone $C(X_n)$ of X_n is embeddable in \mathbb{R}^{n+1} (see [14]).

The main result of this paper is Theorem 1.1 which solves a problem from [14]. Our proof is based on the methods of [4] and [14].

Theorem 1.1. Let X be a Peano continuum. Suppose that for some $n \in \mathbb{N}$, $C^n(X)$ is embeddable in \mathbb{R}^{n+2}. Then X is embeddable in S^2.

Let X be a Peano continuum. Claytor [7] proved that X is embeddable in S^2 if and only if X does not contain any of the Kuratowski curves K_1, K_2, K_3, K_4 (see Figure 1).

2. PRELIMINARIES

A space X is said to be planar if X is embeddable in \mathbb{R}^2. We say that X is locally planar if for every point $x \in X$ there exists a neighbourhood U_x of x in X such that U_x is embeddable in \mathbb{R}^2. Rosicki [13, Theorem 1.1] proved that if a Peano continuum X is embeddable in \mathbb{R}^3 and X is a nontrivial Cartesian product $X = Y \times Z$ then one of the factors is either an arc or a simple closed curve.

Rosicki [13] also proved that if a Peano continuum X is embeddable in \mathbb{R}^3 and is homeomorphic to the product $Y \times S^1$ then the factor Y must be planar. Alternatively, if $X = Y \times [0, 1]$ is embeddable in \mathbb{R}^3 and $\hat{H}^1(X) = \hat{H}^2(X) = 0$ then Y must be planar. Cauty [4], generalizing Rosicki [13], proved that for every $n > 3$ and every Peano continuum X such that $X \times I^{n-2}$ is embeddable into an n-manifold, it follows that X must be locally planar. This theorem was stated earlier by Stubblefield [15]. However, Burgess [2] found a mistake in his proof.

Borsuk [1] constructed an example of a locally connected, locally planar continuum X which is not embeddable into any surface. This continuum contains a sequence (X_n) of subsets

Date: March 29, 2008.

2000 *Mathematics Subject Classification.* Primary: 57Q35; Secondary: 54C25, 55S15, 57N35.

Key words and phrases. Embeddability, polyhedron, cone, suspension, Peano continuum, planar graph, local planarity.
homeomorphic to Kuratowski curve K_1 which converge to an arc. Cauty \cite{4} proved that $X \times I^{n-2}$ is not embeddable into any n-manifold so the converse to his theorem does not hold.

3. Local separation

We say that a subset $D \subset \mathbb{R}^n$ locally separates \mathbb{R}^n at the point $x_0 \in D$ into $k \in \mathbb{N}$ components if there exists $\varepsilon > 0$ such that for all $0 < \delta < \varepsilon$, the set $B(x_0, \delta) \setminus D$ has exactly k components A_1, \ldots, A_k for which $x_0 \in \overline{A_i}$, for all $i \in \{1, \ldots, k\}$.

It is easy to prove the following lemma using similar methods as in the proof of Lemma 1 in \cite{14}.

Lemma 3.1. A homeomorphic image of any n-disk locally separates \mathbb{R}^{n+1} at any point of its interior into two components.

Note that $C^n(X) = \sigma^{n-1} * X = \{xt + y(1-t); x \in \sigma^{n-1}, y \in X, t \in [0,1]\}$, where σ^{n-1} is an $(n-1)$-simplex. Then $\sigma^{n-1} * \{x\}$ is an n-ball and $\sigma^{n-1} * I$ is an $(n+1)$-ball. We consider σ^{n-1} as a subset of $\sigma^{n-1} * X$.

Lemma 3.2. Let $I_i, i \in \{1, \ldots, k\}$, $k > 1$ be arcs with common endpoints and pairwise disjoint interiors and $C_k = C^n(\bigcup_{i=1}^{k} I_i) = \sigma^{n-1} * (\bigcup_{i=1}^{k} I_i)$. Let $h: C_k \to \mathbb{R}^{n+2}$ be an embedding. Then $h(C_k)$ locally separates \mathbb{R}^{n+2} at any point $h(x_0)$, where x_0 is an interior point of σ^{n-1}, into k components (where σ^{n-1} is considered as a subset of C_k).

Proof. The proof is by induction on k. If $k = 2$, then $C_2 = \sigma^{n-1} * S^0 * S^0$ hence $h(C_2)$ locally separates \mathbb{R}^{n+2} at $h(x_0)$ into two components, by Lemma 3.1.

Assume that Lemma 3.2 holds for $k - 1$. Choose $\varepsilon > 0$ smaller than the distance between $h(x_0)$ and the image of $\partial \sigma^{n-1} * (\bigcup_{i=1}^{k} I_i)$. Let $\delta > 0$ be so small that

$$D_k = h(C_k \cap B(x_0, \delta)) \subset B(h(x_0), \varepsilon).$$

There exists an open connected set $U_k \subset \mathbb{R}^{n+2}$ such that $D_k = U_k \cap h(C_k)$. Consider the exact sequence of the pair $(U_k, U_k \setminus D_k)$:

$$\to H_1(U_k) \to H_1(U_k, U_k \setminus D_k) \to H_0(U_k \setminus D_k) \to H_0(U_k) \to H_0(U_k, U_k \setminus D_k) \to 0.$$

Since U_k is an open $(n+2)$-manifold, $H_1(U_k) \cong \check{H}_c^{n+1}(U_k)$ by the Poincaré duality, where \check{H}_c denotes the Čech cohomology with compact supports. Also $H_1(U_k, U_k \setminus D_k) \cong \check{H}_c^{n+1}(D_k)$ (see \cite{9} VIII, 7.14], where $L = \emptyset$, $K = D_k$ and $X = U_k$.
We can consider the exact sequence
\[\to \hat{H}_{c}^{n+1}(U_k) \to \hat{H}_{c}^{n+1}(D_k) \to H_{0}(U_k \setminus D_k) \to H_{0}(U_k) \to 0. \]
Next we show by induction that the map \(\hat{H}_{c}^{n+1}(U_k) \to \hat{H}_{c}^{n+1}(D_k) \) is trivial. If \(k = 2 \) then \(D_k \) is an open \((n + 1)\)-ball. Then \(H_{0}(U_k \setminus D_k) \cong \mathbb{Z}^2 \), by Lemma 3.1. Since \(\hat{H}_{c}^{n+1}(D_k) \cong \mathbb{Z} \) and \(H_{0}(U_k) \cong \mathbb{Z} \), we obtain the exact sequence
\[\hat{H}_{c}^{n+1}(U_k) \to \mathbb{Z} \to \mathbb{Z}^2 \to \mathbb{Z} \to 0. \]
Hence the map \(\hat{H}_{c}^{n+1}(U_k) \to \hat{H}_{c}^{n+1}(D_k) \) is indeed trivial, as asserted.
Since \(\hat{H}_{c}^{n+1}(D_2) \cong \mathbb{Z} \), we obtain by induction that \(\hat{H}_{c}^{n+1}(D_k) \cong \hat{H}_{c}^{n+1}(D_{k-1}) \oplus \hat{H}_{c}^{n+1}(D'_2) \cong \mathbb{Z}^{k-2} \oplus \mathbb{Z} \), where \(D'_2 = h(C^n(I_1 \cup I_2) \cap B(x_0, \delta)) \).
The map \(\hat{H}_{c}^{n+1}(U_k) \to \hat{H}_{c}^{n+1}(D_k) \cong \hat{H}_{c}^{n+1}(h(D_{k-1})) \oplus \hat{H}_{c}^{n+1}(D'_2) \) is trivial because both of its coordinates are trivial, by inductive hypothesis.
Therefore the sequence
\[0 \to \hat{H}_{c}^{n+1}(D_k) \to H_{0}(U_k \setminus D_k) \to H_{0}(U_k) \to 0 \]
is exact. So the sequence
\[0 \to \mathbb{Z}^{k-1} \to H_{0}(U_k \setminus D_k) \to \mathbb{Z} \to 0 \]
is also exact. Hence \(H_{0}(U_k \setminus D_k) \cong \mathbb{Z}^k \) and \(U_k \setminus D_k \) has \(k \) components.
The point \(h(x_0) \) belongs to the closure of each of them. Indeed, if \(X_k \) is \(D_k \) with a small open neighbourhood of \(h(x_0) \) removed then \(\hat{H}_{c}^{n+1}(X_k) \cong 0 \) and the sequence
\[0 \to H_{0}(U_k \setminus X_k) \to H_{0}(U_k) \to 0 \]
is exact, therefore \(H_{0}(U_k \setminus X_k) \cong \mathbb{Z} \).
\[\square \]

4. Proof of Theorem 1.1

We shall need two more lemmata:

Lemma 4.1. Consider the Kuratowski curve \(K_1 \) and let \(n \in \mathbb{N} \). Then \(C^n(K_1) \) is not embeddable in \(\mathbb{R}^{n+2} \).

Proof. Suppose to the contrary, that there exists an embedding \(h : C^n(K_1) \to \mathbb{R}^{n+2} \). Consider \(K_1 \subset \mathbb{R}^3 \) and denote (see Figure 2)
\[I_1 = [c, a] \cup [a, b], \quad I_2 = [c, p] \cup [p, b], \quad \text{and} \quad I_3 = [c, d] \cup [d, b]. \]

![Figure 2. Kuratowski curve K1](image)

If \(X = \bigcup I_i \), then \(\sigma^{n-1} \ast X = \bigcup (\sigma^{n-1} \ast I_i) \) is a union of \((n + 1)\)-disks. Let \(x_0 \in \text{Int} \sigma^{n-1} \) and choose \(\varepsilon > 0 \) so that (see Figure 3)
\[C_1 = h(\sigma^{n-1} \ast (I_1 \cup I_3)) \text{ locally separates } B(h(x_0), \varepsilon) \text{ into } B_1, A_1 \text{ at } h(x_0), \]
\[C_2 = h(\sigma^{n-1} \ast (I_1 \cup I_2)) \text{ locally separates } B(h(x_0), \varepsilon) \text{ into } B_2, A_2 \text{ at } h(x_0), \]
\[C_3 = h(\sigma^{n-1} \ast (I_2 \cup I_3)) \text{ locally separates } B(h(x_0), \varepsilon) \text{ into } B_3, A_3 \text{ at } h(x_0). \]
By Lemma \[3.2\] we have that \(C = h(C^n(I_1 \cup I_2 \cup I_3)) = h(\sigma^{n-1} \ast \bigcup_{i=1}^{3} I_i) = h(\bigcup_{i=1}^{3} \sigma^{n-1} \ast I_i) \) locally separates \(B(h(x_0), \varepsilon) \) into three components. We will show that we can adopt the notation for these three components to be \(B_1, A_2 \) and \(A_3 \).

We use abstract linear combinations for describing our joins, e.g.,

\[
\sigma^{n-1} \ast K_1 = \{xt + y(1-t); \ x \in \sigma^{n-1}, y \in K_1, t \in [0,1]\}.
\]

For \(\sigma^{n-1} \subset \sigma^{n-1} \ast K_1 \), we have that \(h(\sigma^{n-1}) \) is a subset of \(C_1 \), but that \(h|_{\sigma^{n-1} \ast I_2} \) maps all linear combinations with \(t \neq 1 \), but sufficiently close to 1, to a subset that is connected but disjoint from \(C_1 \). Hence this subset can only be contained either in \(A_1 \) or in \(B_1 \). We may assume that it is in \(A_1 \). Since the entire neighbourhood of \(\sigma^{n-1} \ast I_2 \) is mapped by \(h \) into \(A_1 \), we have \(h(\sigma^{n-1} \ast I_2) \cap B_1 = \emptyset \), provided \(\varepsilon > 0 \) is small enough. Then \(B_1 \) is not divided by \(C \), so it is one of the three components.

Analogously, by considering \(C_2 \) (resp. \(C_3 \)) we can make sure that \(A_2 \) and \(A_3 \) are the other two components and that \(h(\sigma^{n-1} \ast I_3) \cap A_2 = \emptyset \) and \(h(\sigma^{n-1} \ast I_3) \cap A_3 = \emptyset \). Since \(C \cup B_1 \cup A_2 \cup A_3 \) and \(C \cup A_1 \cup B_1 \) are both disjoint decompositions of a neighbourhood of \(h(x_0) \), the set \(h(\sigma^{n-1} \ast I_2) \cup C_1 \) separates the component \(A_1 \) into components \(A_2 \) and \(A_3 \).

Note that

\[
x_0 \ast K_1 = \{x_0t + x(1-t); \ x \in K_1, t \in [0,1]\} \subset C^n(K_1).
\]

Choose \(t_0 \) near 1 so that

\[
h(\{x_0t + x(1-t); \ x \in K_1, t \geq t_0\}) \subset B(h(x_0), \varepsilon).
\]

Let \(p' = h(x_0t_0 + p(1-t_0)) \in A_1 \). The arc \(H = h(\{x_0t_0 + x(1-t_0); \ x \in (p,q)\}) \) is contained in \(B(h(x_0), \varepsilon) \setminus h(C) \). Therefore points \(p' \) and \(q' = h(x_0t_0 + q(1-t_0)) \) are in the same component. Hence \(q' \in A_2 \) or \(q' \in A_3 \). So the arc \(I = h(\{x_0t_0 + x(1-t_0); \ x \in (a, q]\cup[a, d)\}) \) is contained either in \(A_2 \) or in \(A_3 \). But this yields a contradiction since \(a' = h(x_0t_0 + a(1-t_0)) \notin A_3 \) (so \(I \notin A_3 \)) and \(d' = h(x_0t_0 + a(1-t_0)) \notin A_2 \) (so \(I \notin A_2 \)).

The proof of the next lemma can be obtained by changing the proof of [14, Lemma 4] in the same way as we did it for the proof of Lemma 2.3 using the proof of [14, Lemma 3].

Lemma 4.2. Consider the Kuratowski curve \(K_2 \) and let \(n \in \mathbb{N} \). Then \(C^n(K_2) \) is not embeddable in \(\mathbb{R}^{n+2} \).

Proof of Theorem 1.1 By Claytor’s theorem (see [6], [7]), it suffices to show that \(C^n(K_i) \) is not embeddable into \(\mathbb{R}^{n+2} \) for any \(i \in \{1,2,3,4\} \). Now, Cauty [4] proved that \(K_i \times I^n \) is not embeddable into \(\mathbb{R}^{n+2} \) for any \(i \in \{3,4\} \). Therefore also \(C^n(K_i) \) is not embeddable into \(\mathbb{R}^{n+2} \) for any \(i \in \{3,4\} \). Hence we only have to consider the cases \(i = 1 \) and \(i = 2 \). The proof is now completed by application of Lemmata 4.1 and 4.2. \(\square \)
5. Epilogue

Repovš, Skopenkov and Ščepin [12] proved that if \(X \times I \) PL embeds into \(\mathbb{R}^{n+1} \), where \(X \) is either an acyclic polyhedron and \(\dim X \leq \frac{2n}{3} - 1 \) or a homologically \((2 \dim X - n - 1)\)-connected manifold and \(\dim X \leq \frac{2n}{3} - 1 \) or a collapsible polyhedron, then \(X \) PL embeds into \(\mathbb{R}^n \).

Question 5.1. What can one say about embeddability of \(X \) into Euclidean spaces if one considers \(C(X) \) or \(C^n(X) \) or \(\Sigma(X) \) or \(\Sigma^n(X) \) instead of \(X \times I \) for \(X \) in [12]?

It follows by [12] that if \(X \) is a contractible polyhedron such that \(X \times I \) embeds into \(\mathbb{R}^{n+1} \) then \(X \) embeds into \(\mathbb{R}^n \). So if \(X \) is contractible and \(C(X) \subset \mathbb{R}^{n+1} \) then \(X \) embeds into \(\mathbb{R}^n \).

Note that there exists a polyhedron \(P_n \) such that \(P_n \) is not embeddable into \(\mathbb{R}^n \) but \(C^2(P_n) \) is embeddable in \(\mathbb{R}^{n+2} \). Namely, Cannon [3] proved that if \(H^n \) is a homology \(n \)-sphere then its double suspension \(\Sigma^2(H^n) \) is the \((n + 2)\)-sphere (see [8] [11] for a far reaching generalization of this result). So if \(P_n = H^n \setminus B^n \) where \(B^n \) is an \(n \)-ball then the double cone \(C^2(P_n) \) embeds in \(\mathbb{R}^{n+2} \). The polyhedron \(P_n \) is acyclic but not contractible.

Question 5.2. Does there exist a contractible \(n \)-dimensional polyhedron \(X^n \) such that \(C^k(X^n) \) embeds into \(\mathbb{R}^{n+k} \), but \(X^n \) does not embed into \(\mathbb{R}^n \)?

In [14] Theorem 2] contractible continua \(X_n \) were constructed, such that \(X_n \) is not embeddable in \(\mathbb{R}^n \), \(C(X_n) \) is embeddable in \(\mathbb{R}^{n+1} \), and \(X_n \) is not a polyhedron. By [12], if \(X \) is an \(n \)-polyhedron then \(X \times I \) embeds in \(\mathbb{R}^{2n+1} \). If \(X \) is an \(n \)-polyhedron then \(C(X) \) need not embed into \(\mathbb{R}^{2n+1} \). For example, the Kuratowski curves \(K_1 \) and \(K_2 \) are 1-polyhedra but the cones \(C(K_1) \) and \(C(K_2) \) do not embed into \(\mathbb{R}^3 \).

Question 5.3. Suppose that \(X \) is a compact contractible \(n \)-dimensional polyhedron. Does the cone \(C(X) \) embed into \(\mathbb{R}^{2n+1} \)? Does the same hold if \(X \) is only acyclic?

6. Acknowledgements

This research was supported by Polish–Slovenian grant BI-PL 12/2004-2005, Polish grant N20100831/0524, SRA program P1-0292-0101-04, and SRA project J1-9643-0101. The authors acknowledge R. Cauty [5] for the hint communicated to the second author, and the referee for comments and suggestions.

References

[1] K. Borsuk, Über stetige Abbildungen der euklidischen Räume, Fund. Math. 21 (1933), 236–246.
[2] C. E. Burgess, Review of [6], Math. Rev. 26 (1963), #749, p. 144
[3] J. W. Cannon, Shrinking cell-like decompositions of manifolds. Codimension three, Ann. of Math. (2) 110:1 (1979), 83–112.
[4] R. Cauty, Sur le plongement de \(X \times I^{n-2} \) dans une \(n \)-variété, Proc. Amer. Math. Soc. 94 (1985), 516–522.
[5] R. Cauty, Personal communication (1993).
[6] S. Claytor, Topological immersions of Peanian continua in a spherical surface, Ann. of Math. (2) 35 (1934), 809–835.
[7] S. Claytor, Peanian continua not embeddable in a spherical surface, Ann. of Math. (2) 38 (1937), 631–646.
[8] R. J. Daverman, Decompositions of Manifolds, Academic Press, New York, 1986.
[9] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, Berlin, 1995.
[10] R. Engelking, Dimension Theory, North-Holland, Amsterdam, 1978.
[11] R. D. Edwards, Suspensions of homology spheres, preprint arXiv:math.GT/0610573v1 (2006).
[12] D. Repovš, A. B. Skopenkov and E. V. Ščepin, On embeddability of \(X \times I \) into Euclidean space, Houston J. Math. 21 (1995), 199–204.
[13] W. Rosicki, On topological factors of 3-dimensional locally connected continuum embeddable in \(E^3 \), Fund. Math. 99 (1978), 141–154.
[14] W. Rosicki, On embeddability of cones in Euclidean spaces, Colloq. Math. 64 (1993), 141–147.
[15] B. Stubblefield, Some imbedding and non–imbedding theorems for \(N \)-manifolds, Trans. Amer. Math. Soc. 103 (1962), 403–420.
