Triplet superconductivity in a ferromagnetic vortex

Mikhail S. Kalenkov, Andrei D. Zaikin, and Victor T. Petrashov

1I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, 119991 Moscow, Russia
2Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
3Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom

We argue that odd-frequency triplet superconductivity can be conveniently realized in hybrid superconductor-ferromagnet (SF) structures with a ferromagnetic vortex. We demonstrate that due to proximity-induced long-range triplet pairing such SFS junctions can sustain appreciable supercurrent which can be directly measured in experiments.

A normal metal (N) sandwiched between two superconductors (S) can become superconducting as a result of penetration of Cooper pairs from the superconducting electrodes. The range of penetration is set by the so-called thermal length ξ_T which can easily reach several micrometers at sufficiently low temperatures [1,2]. The situation changes drastically if the normal metal is replaced by a ferromagnet (F). The quantum mechanical exchange interaction on the F-side then destroys conventional spin-singlet Cooper pairs within a few nanometers (the so-called paramagnetic effect) [1]. Experiments to determine actual superconducting penetration depths in ferromagnets intensified more than a decade ago, when techniques were developed to fabricate hybrid nanoscale SF structures with well controlled geometries. Several groups [3,4] reported an unexpectedly strong influence of superconductors that stimulated new theoretical efforts in a search for a sustainable superconductivity that is compatible with the exchange interaction. During the last decade several theoretical mechanisms were suggested [5–9], some of which were successfully realized experimentally [17–22]. A recent comprehensive review of the status of the field was given in Ref. [23].

Common to all mechanisms of long range proximity effect in ferromagnets is the generation of triplet superconductivity within highly inhomogeneous ferromagnetic regions adjacent to superconductors. The systems studied up to date include intrinsically inhomogeneous ferromagnets [17], half-metallic ferromagnets with spin-active FS interfaces [18,19], and engineered multilayers consisting of magnetic and non-magnetic materials [20,21].

In this letter we address a different situation of proximity-induced long range triplet pairing in ferromagnets with magnetic vortex structure. Magnetic vortices are stable in systems intermediate between very small, 10 nm scale magnets, which behave as single giant spins, and macroscopic magnets with dimensions exceeding $\sim 1 \mu$m. The magnetic structure in such mesoscopic magnets is the result of a competition between exchange, anisotropy, and dipolar energies and depends strongly on their shape. The latter property allows magnetic nano-engineering using modern nanolithography [24] opening possibility of investigating SFS structures with different magnetic structures. Recently mesoscopic magnetic structures have attracted a lot of attention due to their remarkable transport properties [25–27], as well as the prospect of technological applications for magnetic storage of information of unprecedented density [28]. Below we will demonstrate that mesoscopic ferromagnetic structures can turn superconducting if attached to superconducting electrodes.

The model and quasiclassical formalism. We will consider a ferromagnetic film of thickness d located in the xy plane with magnetization forming a vortex. This film is partially covered by two superconducting electrodes thus forming an SFS contact as it is shown in Fig. 1. Our main goal is to analyze superconducting correlations that penetrate into a ferromagnetic vortex from the electrodes. In order to accomplish this goal we will employ the quasiclassical Usadel equations [2,29] for energy-integrated matrix Matsubara-Green functions \hat{G}. E.g. in the ferromagnet with diffusion constant D these equations read

$$iD\nabla(\hat{G}\nabla\hat{G}) = [\hat{\Omega}, \hat{G}], \quad \hat{G}^2 = 1,$$

where

$$\hat{G} = \begin{pmatrix} \hat{G}_+ & \hat{F} \\ -\hat{F}^+ & \hat{G}_- \end{pmatrix}, \quad \hat{\Omega} = \begin{pmatrix} i\omega_n \hat{1} - \hat{\sigma}h & \Delta \hat{1} \\ -\Delta^* \hat{1} & -i\omega_n \hat{1} + \hat{\sigma}h \end{pmatrix}$$ (2)
are 4×4 matrices in Nambu and spin spaces. Their commutator in Eq. 1 and below is denoted by square brackets. Accordingly, G, \bar{F}, \bar{F}^+ and \bar{G}^+ are 2×2 matrices in the spin space, $\omega_n = \pi T (2n + 1)$ is the Matsubara frequency, \hbar is the exchange field in the ferromagnet and $\hat{\sigma} = (\hat{\sigma}_1, \hat{\sigma}_2, \hat{\sigma}_3)$ represents the Pauli matrices in the spin space. The same equations (1), (2) hold also for superconducting electrodes, one should only replace D by the diffusion constant in the corresponding electrode. The superconducting order parameter Δ equals to zero in the plane unity vectors $m = \hbar / h$ and e_z. Combining Eqs. (5) and (4) we arrive at the following equations for the above components:

$$
\begin{align*}
D\nabla^2 F_0 - 2\omega_n F_0 &= 2i h F_h, \\
DF_h &= D F_1 \nabla^2 \rho + 2D (\nabla \rho F_1, \nabla \rho \theta) + 2i h F_0, \\
DF_1 &= -D F_h \nabla^2 \rho - 2D (\nabla \rho F_h, \nabla \rho \theta),
\end{align*}
$$

where we defined the differential operator

$$
D = D \nabla^2 - D (\nabla \rho \theta)^2 - 2\omega_n,
$$

and distinguished ∇ and $\nabla \rho$ as respectively 3d and 2d (in-plane) gradient operators.

Note that Eqs. (6) and (7) contain the exchange field \hbar thus providing the characteristic length scale both for F_0 and F_h of order $\xi_h \sim \sqrt{D / \hbar}$. At the same time, Eq. (8) does not contain the \hbar-term and, hence, typical variations of F_1 occur on a much longer length scale $\xi_T \sim \sqrt{D / T} \gg \xi_h$. This observation illustrates the difference between the two triplet components F_h and F_1 and constitutes the essence of the long range proximity effect in SFS structures: while the components F_0 and F_h decay already in the vicinity of an SF-interface, the triplet component F_1 survives deep inside the ferromagnet provided the temperature remains sufficiently low.

Before turning to the solution of Eqs. (6)-(8) let us perform some further simplifications. Firstly, we will neglect both magnetic anisotropy and stray field effects. In this case outside the magnetic vortex core the function θ obeys the equation

$$
\nabla^2 \rho \theta = 0,
$$

which allows to drop the first terms in the right-hand side of Eqs. (7) and (8). Secondly, we will assume the ferromagnetic film to be sufficiently thin $d \lesssim \xi_T$, in which case the dependence of the long-range triplet component F_t on the coordinate z can be neglected. Then, integrating Eq. (8) over z we obtain

$$
D \rho F_t = -2D (\nabla \rho \bar{T}_h, \nabla \rho \theta), \quad \bar{T}_h = \frac{1}{d} \int_{-d}^{0} F_h dz,
$$

where \bar{T}_h is the average value of F_h component over the ferromagnetic film thickness and $D \rho$ is defined by Eq. (9) with $\nabla^2 \rightarrow \nabla^2 \rho$.

Eq. (11) accounts for diffusion of the long-range triplet component F_t across the ferromagnet with nonuniform in-plane magnetization. It demonstrates that non-zero
\begin{equation}
F_l(\rho) = \frac{iD^2}{\hbar os} \sum_{k=1,2} \frac{F_{S_k}}{\rho_k} \int_{l_k} P_{\omega_n}^{\rho,\rho'} (\nabla_{\rho}^\theta (\rho), n_{l_k}(\rho')) dl_k,
\end{equation}

which holds inside the ferromagnetic film. Here F_{S_k} is anomalous Green function in the bulk of the k-th superconductor and n_{l_k} is the outer unity vector normal to the superconducting plane S_k (see Fig. 1). Integration contours l_k in Eq. (12) are lines in the xy plane corresponding to the edge of the superconductor S_k and in the ferromagnet kernel $P_{\omega_n}^{\rho,\rho'}$ obeys the equation

\begin{equation}
\mathcal{D}_\rho P_{\omega_n}^{\rho,\rho'} = \delta (\rho - \rho'), \end{equation}

with boundary conditions $\partial P_{\omega_n}^{\rho,\rho'}/\partial n = 0$. We also note that Eq. (12) can easily be generalized to the case of arbitrary ∇_{ρ}^θ not obeying Eq. (10).

Triplet pairing and Josephson effect. As triplet pairing amplitude can survive deep in the ferromagnet, at sufficiently low temperatures our SFS junction can sustain appreciable supercurrent which is converted from singlet to triplet and back in the vicinity of SF-interfaces. In order to evaluate this supercurrent we will employ the standard expression for the current density

\begin{equation}
\mathcal{J} = \frac{\pi a T}{2e} \text{Im} \sum_{\omega_n>0} \text{Sp} [\hat{F} \nabla \hat{F}^+ - \hat{F}^+ \nabla \hat{F}], \end{equation}

where the trace is taken over the spin degree of freedom. Combining Eqs. (5), (12) with (14) we recover the sinusoidal current-phase relation $I(\chi) = I_s \sin \chi$ with

\begin{equation}
I_s = \frac{2\pi T}{\hbar} D \sum_{\omega_n>0} \frac{\Delta_1 \Delta_2}{\sqrt{(\omega_n^2 + \Delta_1^2)(\omega_n^2 + \Delta_2^2)}}
\end{equation}

\times \int P_{\omega_n}^{\rho,\rho'} (\nabla_{\rho}^\theta (\rho_1), n_{l_1}(\rho_1)) (\nabla_{\rho}^\theta (\rho_2), n_{l_2}(\rho_2)) dl_1 dl_2

Note that in the course of our derivation we always assumed the proxinity effect to be sufficiently weak. This assumption is satisfied under the condition

\begin{equation}
\frac{1}{r_{1,2} \sigma \sqrt{D/k}} \ll \begin{cases} 1, & d \gtrsim \xi_h, \\
1/d \sqrt{k/D}, & d \lesssim \xi_h. \end{cases}
\end{equation}

FIG. 2: Typical spatial distribution of the long-range superconducting triplet component F_l induced by one superconducting electrode ($x > R/2$, $z > 0$) with real Δ.

Eq. (14) together with its validity condition (16) represents the central result of our analysis which fully determines the Josephson critical current of an SFS junction with a ferromagnetic vortex. Actually this result applies not only to vortex configurations but also to a broader class of non-uniform magnetization patterns.

Let us now assume that our ferromagnetic film has the form of a disk with radius R and vortex-like magnetization pattern with vortex core located in the disc center. Then the function θ equals to $\varphi + \pi/2$ for clockwise or $\varphi - \pi/2$ for counterclockwise magnetization, where φ is the azimuthal angle (see Fig. 1). Eq. (10) is fulfilled in this case. Remarkably, Eq. (15) yields exactly the same result for quite different magnetization patterns: vortex-like ($\theta = \varphi \pm \pi/2$), antivortex-like ($\theta = - \varphi$ or $\theta = - (\varphi + \pi)$) and hedgehog-like ($\theta = \varphi$ or $\theta = \varphi + \pi$) states. This property holds since the function ∇_{ρ}^θ remains the same (up to a sign) for all these magnetization patterns. Note, however, that for the last two patterns stray magnetic field is not confined to the disc center and may influence superconductivity in the electrodes.

For illustration, typical spatial profile of the long-range superconducting triplet component F_l induced by one superconducting electrode in the ferromagnet with a vortex is schematically depicted in Fig. 2. As it was expected, F_l is most efficiently generated close to the edge of a superconductor where the scalar product $\langle (\nabla_{\rho}^\theta (\rho), n_{l}(\rho)) \rangle$ reaches its maximum values. Provided the proximity effect remains weak, the total value of F_l is given by a superposition of independent contributions from two superconducting electrodes, cf. also Eq. (12).

As one can observe in Fig. 2 the long-range triplet component F_l penetrating into the ferromagnet can take both positive and negative values. Thus, depending on the magnetization pattern inside the ferromagnetic film it is possible to realize both zero- and π-junction states in our structure. The latter regime can be reached, e.g., by implementing certain asymmetry in SF contacts.

We further consider a symmetric situation, set $\Delta_{1,2} = |\Delta|$ and assume that the relevant Thouless energy $\varepsilon_{Th} \sim D/(2R)^2$ remains smaller than the superconducting gap.
contacts which depends on geometry details (obviously where L is an effective distance between the two SF contacts which depends on geometry details (obviously $L = 2R$ for small area contacts). For illustration the Josephson critical current I_c is also plotted in Fig. 3 as a function of temperature for different values of R.

Our result for I_c in SFS systems turns out to be by the factor $\varepsilon_{\text{Th}}^2/h^2$ smaller than that for conventional diffusive SNS junctions with identical geometry, cf., e.g., [10, 24]. The critical current of our SFS structure can further be increased by a proper choice of the system parameters. For a simple estimate of possible maximum values of I_c let us employ Eq. (17) at the border of its applicability range (16). Then for $T \ll \varepsilon_{\text{Th}}$ and $d \gtrsim \xi_h$ we obtain

$$I_c \sim \frac{2D^2}{e\hbar^2r_1r_2} \varepsilon_{\text{Th}}^2/|\Delta|$$

while at intermediate temperatures $\varepsilon_{\text{Th}} \ll T \ll |\Delta|$ the Josephson current follows the standard exponential dependence on temperature

$$I_c \sim \frac{TD^2}{e\hbar^2r_1r_2} \exp \left(-2\sqrt{\frac{\pi T}{D}}\right)$$

where L is an effective distance between the two SF contacts which depends on geometry details (obviously $L = 2R$ for small area contacts). For illustration the Josephson critical current I_c is also plotted in Fig. 3 as a function of temperature for different values of R.

In summary, we demonstrated that long-range triplet superconductivity can coexist with a ferromagnetic vortex and evaluated the supercurrent across SFS junctions containing such vortex. For properly chosen system parameters the effect is well in the measurable range and can be directly tested in future experiments. This work was supported in part by DFG, by RFBR under grant 09-02-00886 and by British EPSRC grant EP/F01689/1.

[1] C.J. Lambert and R. Raimondi, J. Phys.: Condens. Matter 10, 901 (1998).
[2] W. Belzig et al., Superlatt. Microstruct. 25, 1251 (1999).
[3] A.A. Golubov, M.Yu. Kupriyanov, and E. Il’ichev, JETP Mod. Phys. 76, 411 (2004).
[4] A.I. Buzdin, L.N. Bulaevskii, and S.V. Panyukov, JETP Lett. 35, 178 (1982).
[5] V.T. Petrashov et al., JETP Lett. 59, 523 (1994).
[6] M. Giroud et al., Phys. Rev. B 58, R11872 (1998).
[7] V.T. Petrashov et al., Phys. Rev. Lett. 83, 3281 (1999).
[8] J. Aumentado and V. Chandrasekhar, Phys. Rev. B 64, 054505 (2001).
[9] P. Nugent, I.A. Sosnin, and V.T. Petrashov, J. Phys.: Condens. Matter 16, L509 (2004).
[10] F.S. Bergeret, A.F. Volkov, and K.B. Efetov, Phys. Rev. Lett. 86, 4096 (2001); Rev. Mod. Phys. 77, 1321 (2005).
[11] A. Kadigrobov, R.I. Shekhter, and M. Jonson, Europhys. Lett. 54, 394 (2001).
[12] M. Eschrig et al., Phys. Rev. Lett. 90, 137003 (2003); M. Eschrig and T. Löffander, Nat. Phys. 4, 138 (2008).
[13] A.F. Volkov, F.S. Bergeret, and K.B. Efetov, Phys. Rev. Lett. 90, 117006 (2003).
[14] Ya.V. Fominov, A.F. Volkov, and K.B. Efetov, Phys. Rev. B 75, 104509 (2007).
[15] Y. Asano, Y. Tanaka, and A.A. Golubov, Phys. Rev. Lett. 98, 107002 (2007).
[16] A.V. Galaktionov, M.S. Kalenkov, and A.D. Zaikin, Phys. Rev. B 77, 094520 (2008).
[17] I.A. Sosnin et al., Phys. Rev. Lett. 96, 157002 (2006).
[18] R.S. Keizer et al., Nature (London) 439, 825 (2006).
[19] M.S. Anwar et al., Phys. Rev. B 82 100501 (2010).
[20] J.W.A. Robinson, J.D.S. Witt, and M.G. Blamire, Science 329, 59 (2010); J. W. A. Robinson, Gábor B. Halász, A. I. Buzdin, and M. G. Blamire, Phys. Rev. Lett. 104, 207001 (2010).
[21] T.S. Khaire et al., Phys. Rev. Lett. 104, 137002 (2010).
[22] J. Wang et al., Nat. Phys. 6, 389 (2010).
[23] M. Eschrig, Phys. Today 64, 43 (2011).
[24] V.L. Mironov et al., Phys. Rev. B 81, 094436 (2010).
[25] P. Bruno et al., Phys. Rev. Lett. 93, 096806 (2004).
[26] A.A. Fraerman and O.G. Udalov, Phys. Rev. B 77, 094401 (2008).
[27] A. Neubauer et al., Phys. Rev. Lett. 102, 186602 (2009).
[28] R.P. Cowburn et al., Phys. Rev. Lett. 83, 1042 (1999).
[29] K.D. Usadel, Phys. Rev. Lett. 25, 507 (1970).
[30] M.Yu. Kupriyanov and V.F. Lukichev, Sov. Phys. JETP 67, 1163 (1988).
[31] A.D. Zaikin and G.F. Zharkov, Fiz. Nizk. Temp. 7, 375 (1981) [Sov. J. Low Temp. Phys. 7, 184 (1981)]; P. Dubos et al., Phys. Rev. B 63, 064502 (2001).