Possibility of identifying matter around rotating black hole with black hole shadow

Zhaoyi Xu, Xian Hou and Jiancheng Wang

Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming 650216, P.R. China
Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming 650216, P.R. China
Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing 100012, P.R. China
E-mail: zyxu88@ynao.ac.cn, xianhou.astro@gmail.com, jcwang@ynao.ac.cn

Received June 26, 2018
Revised September 28, 2018
Accepted October 15, 2018
Published October 25, 2018

Abstract. Shadows cast by the rotating black hole in perfect fluid matter are studied using analytical method. We consider three kinds of matter with standard equation of state in Cosmology: $-\frac{1}{3}$ (dark matter), 0 (dust) and $\frac{1}{3}$ (radiation). The apparent shape of the shadow depends on the black hole spin a and the perfect fluid matter intensity k. We find that the shadow is a perfect circle in the non-rotating case ($a = 0$) and a distorted one in the rotating case ($a \neq 0$), similar to what is found for other black holes. Interestingly, different kinds of matter have different influences on the black hole shadow. Dark matter has the strongest effect, dust is the next and radiation is the weakest. By applying our result to the black hole Sgr A* at the center of the Milky Way, we find that the angular resolution required to distinguish among different kinds of matter around the black hole is not much higher than that of current astronomical instruments would be able to achieve in the near future. We propose that observing the black hole shadow provides a possibility of identifying the dominant matter near the black hole.

Keywords: astrophysical black holes, GR black holes

ArXiv ePrint: 1806.09415
1 Introduction

It is a consensus that supermassive black holes exist at the centres of most galaxies. One of the most attractive areas in astrophysics is the direct detection of a black hole through imaging the silhouette (or shadow) of its event horizon and the study of the interaction between the black hole and its environment. Such study can provide us information on fundamental properties of the black hole and eventually test Einstein’s theory of General Relativity (GR). The bright radio source Sgr A* at the center of the Milky Way is one of the most interesting black hole candidates e.g., [1]. Efforts on directly imaging the shadow of Sgr A* are ongoing using the sub-millimetre “Event Horizon Telescope” (EHT)\(^1\) [2] based on the very-long baseline interferometry (VLBI).

Synge [3] was the first to study the shadow of the Schwarzschild black hole. Since then, analytical studies of black hole shadows have been a hot topic in astrophysics, from the rotating regular Kerr black hole to various black holes in different space-time e.g., [3–27, 27–42]. Particular attention has been paid to the black hole shadow of Sgr A* using both analytical method and numerical simulations, trying to, on the one hand, constrain the accretion models by comparing to the EHT observations of Sgr A* e.g., [43–49], and on the other hand, test theories of gravity e.g., [50–55]. Recently, the black hole shadows in quintessence and dark matter halo have also been investigated by [56, 57] and [58], further enriching this research field.

One interesting question is, for galactic nuclei that have no obvious black hole activities, such as the Galactic center of the Milky Way, what kind of substances (such as dark matter, dust, or radiation) near the supermassive black hole is dominant? In principle, substances are characterized by their equations of state. Therefore, once the equation of state of the substance around the black hole is known, the substance category is determined, at least approximately. In addition, we expect that for different substances, their impact on the black hole shadow will be different. Inspired by this idea, we propose to determine the substance category around the black hole using the characteristics of the black hole shadow in the

\(^1\)www.Eventhorizontelescope.org.
presence of a given substance. Under the assumption of perfect fluid matter in Cosmology, the equations of state for different kinds of matter are, $-1/3$ (dark matter), 0 (dust) and $1/3$ (radiation). We can imagine that in reality, matter around the black hole could be a mix of the three kinds of substances. In order to simply the discussion, we note that the equations of state considered in this work represent only the dominant effects of various species near the black hole. That’s to say, $-1/3$, 0 and $1/3$ mean that the dominant species near the black hole is, respectively, dark matter, dust and radiation.

The paper is organized as follows. In section 2, we introduce the space-time metrics for spherically symmetric and rotating black holes in perfect fluid matter. In section 3, we derive the complete null geodesic equations for a test particle in the rotating black hole space-time. In section 4, we study the shadow cast by the rotating black hole in the presence of perfect fluid matter. In section 5, we calculate the energy emission rate of the black hole. We discuss our result by applying to the black hole Sgr A* and summarize in section 6.

2 Black hole space-time in perfect fluid matter

2.1 Spherically symmetric black hole in perfect fluid matter

The spherically symmetric black hole space-time metric in perfect fluid matter is [59]

$$ds^2 = -f(r)dt^2 + \frac{dr^2}{f(r)} + r^2(d\theta^2 + \sin^2\theta d\phi^2),$$

(2.1)

with

$$f(r) = 1 - \frac{2M}{r} - \frac{k}{r^{3\hat{\omega}+1}},$$

(2.2)

where M is the black hole mass, k is the intensity of the perfect fluid matter, and $\hat{\omega} = p/\rho$ is the equation of state with p the presser and ρ the density.

2.2 Rotating black hole in perfect fluid matter

The rotating black hole space-time metric in perfect fluid matter is [60]

$$ds^2 = -\left(1 - \frac{2M r + k r^{1-3\hat{\omega}}}{\Sigma^2}\right)dt^2 + \frac{\Sigma^2}{\Delta} dr^2 - \frac{2a \sin^2\theta (2M r + k r^{1-3\hat{\omega}})}{\Sigma^2} d\phi dt + \Sigma^2 d\theta^2 + \sin^2\theta \left(r^2 + a^2 + a^2 \sin^2\theta \frac{2M r + k r^{1-3\hat{\omega}}}{\Sigma^2}\right) d\phi^2,$$

(2.3)

where

$$\Sigma^2 = r^2 + a^2 \cos^2\theta,$$

(2.4)

$$\Delta = r^2 f(r) + a^2,$$

(2.5)

and $f(r)$ takes the same form as eq. (2.2).

In this work, we consider three different cases of $\hat{\omega}$: $-1/3$ (dark matter dominant, [59–63]), 0 (dust dominant) and $1/3$ (radiation dominant).
3 Null geodesics

Following the general method outlined in the literature, we first study the geodesic structure of a test particle moving around the black hole in perfect fluid matter. We adopt the Hamilton-Jacobi equation and Carter constant separable method [64]. The most general form of the Hamilton-Jacobi equation reads as

$$\frac{\partial S}{\partial \sigma} = -\frac{1}{2} g^{\mu\nu} \frac{\partial S}{\partial x^\mu} \frac{\partial S}{\partial x^\nu},$$

with S the Jacobi action and σ an affine parameter along the geodesics. The separable solution of S is

$$S = \frac{1}{2} m^2 \sigma - E t + L \phi + S_r(r) + S_\theta(\theta),$$

where m, E and L are, respectively, the test particle’s mass, energy and angular momentum, with respect to the rotation axis, while $S_r(r)$ and $S_\theta(\theta)$ are functions of r and θ, respectively. Combining eq. (3.1) and eq. (3.2), we get the full geodesic equations for a test particle around the rotating black hole in perfect fluid matter, which take the following forms

$$\Sigma \frac{dt}{d\sigma} = \frac{r^2 + a^2}{\Delta} [E(r^2 + a^2) - aL] - a(aE \sin^2 \theta - L),$$

$$\Sigma \frac{dr}{d\sigma} = \sqrt{\mathcal{R}},$$

$$\Sigma \frac{d\theta}{d\sigma} = \sqrt{\Theta},$$

$$\Sigma \frac{d\phi}{d\sigma} = \frac{a}{\Delta} [E(r^2 + a^2) - aL] - \left(aE - \frac{L}{\sin^2 \theta}\right),$$

where $\mathcal{R}(r)$ and $\Theta(\theta)$ read as

$$\mathcal{R}(r) = [E(r^2 + a^2) - aL]^2 - \Delta [m^2 r^2 + (aE - L)^2 + K],$$

$$\Theta(\theta) = K - \left(\frac{L^2}{\sin^2 \theta} - a^2 E^2\right) \cos^2 \theta,$$

with K the Carter constant. The dynamics of the test particle around the rotating black hole in perfect fluid matter are then fully described by these equations. Now we study the geometry of photons ($m = 0$) near the black hole. The apparent shape of the black hole shadow is determined by the unstable circular orbit, which satisfies the condition

$$\mathcal{R} = \frac{\partial \mathcal{R}}{\partial r} = 0.$$
Combining eqs. (3.11)–(3.12) results in
\[\begin{align*}
\xi &= \frac{(r^2 + a^2)(rf'(r) + 2f(r)) - 4(r^2f(r) + a^2) - 4(r^2f(r) + a^2)}{a(rf'(r) + 2f(r))}, \\
\eta &= \frac{r^3[8a^2f'(r) - r(rf'(r) - 2f(r))^2]}{a^2(rf'(r) + 2f(r))^2}.
\end{align*} \tag{3.13} \tag{3.14}
\]

Furthermore, we have
\[\begin{align*}
\xi^2 + \eta &= 2r^2 + a^2 + \frac{16(r^2f(r) + a^2)}{(rf'(r) + 2f(r))^2} - \frac{8(r^2f(r) + a^2)}{rf'(r) + 2f(r)} \\
&= 2r^2 + a^2 + \frac{8\Delta[2 - (rf'(r) + 2f(r)]}{(r^2f'(r) + 2f(r))^2}, \tag{3.15} \tag{3.16}
\end{align*} \]

where
\[f'(r) = \frac{2M}{r^2} + \frac{k(3\tilde{\omega} + 1)}{r^{3\tilde{\omega} + 2}}. \tag{3.17} \]

as can be calculated from eq. (2.2).

4 Black hole shadow

Now we study the shadow of the rotating black hole in perfect fluid matter. First, as usually presented in the literature, we introduce the celestial coordinates \(\alpha \) and \(\beta \) as
\[\alpha = \lim_{r_o \to \infty} \left(-r_o^2 \sin \theta_o \frac{d\phi}{dr} \right), \tag{4.1} \]
\[\beta = \lim_{r_o \to \infty} \left(r_o^2 \frac{d\theta}{dr} \right). \tag{4.2} \]

Here we assume the observer is at infinity, \(r_o \) is the distance between the black hole and the observer, and \(\theta_o \) is the inclination angle between the rotation axis of the black hole and the line of sight of the observer. \(\alpha \) and \(\beta \) are the apparent perpendicular distances of the shadow as seen from the axis of symmetry and from its projection on the equatorial plane, respectively.

From the null geodesic equations (3.3)–(3.6), the relation between celestial coordinates and impact parameters can be expressed as
\[\begin{align*}
\alpha &= -\frac{\xi}{\sin \theta}, \tag{4.3} \\
\beta &= \pm \sqrt{\eta + a^2 \cos^2 \theta - \xi^2 \cot^2 \theta}. \tag{4.4}
\end{align*} \]

In the equatorial plane (\(\theta = \pi/2 \)), \(\alpha \) and \(\beta \) reduce to
\[\begin{align*}
\alpha &= -\xi, \tag{4.5} \\
\beta &= \pm \sqrt{\eta}. \tag{4.6}
\end{align*} \]

Different shapes of the shadow are shown in figure 1. For dark matter (\(\tilde{\omega} = -1/3 \), upper panel) and dust (\(\tilde{\omega} = 0 \), middle panel), it is clear that the shadow is a perfect circle and the size increases with the increasing \(k \) in the non-rotating case (\(a = 0 \)). If considering the
rotating case ($a \neq 0$), the shadow gets more and more distorted with the increasing a and the size increases with the increasing k. Furthermore, when $k < 0.1$, its effect on the shadow is minor even for a change of order of magnitude of 100 (from $k = 0.001$ to $k = 0.1$) for both the dark matter and dust cases, while as comparison, when $k > 0.1$, an only 5 times larger value of k leads already to a much more significant increase on the size of the shadow. In addition, the influence of k in the case of dark matter looks much more significant than in the case of dust. For the case of radiation ($\omega = 1/3$, lower panel), on the one hand, the shadow gets more distorted with the increasing a, similar to the cases of dark matter and dust; on the other hand, k has incredible small even invisible effect on the size of the shadow.

So, in general, different kinds of matter have different effects on the black hole shadow as we expected and dark matter has the strongest while radiation has the weakest. To explain this trend, we propose that as the perfect fluid pressure increases from dark matter to dust then to radiation, the mass density of the material will gradually decrease, so that the total mass of the material in the unit space under the same intensity (characterized by k) will decrease, and the gravitational force of the material on the black hole will also weaken. Therefore, it’s natural that the impact on the black hole shadow follows the same pattern.

Figure 1. Silhouette of the shadow cast by the rotating black hole for different values of parameters a and k, for the cases of dark matter ($\omega = -1/3$, upper panel), dust ($\omega = 0$, middle panel) and radiation ($\omega = 1/3$, lower panel).
To discuss in detail the black hole shadow, we adopt the two astronomical observables defined in [6]: the radius of the shadow R_s and the distortion parameter δ_s (cf. figure 3 in [58]). R_s is the radius of a reference circle passing through three points: $A(\alpha_r, 0)$, $B(\alpha_t, \beta_t)$ and $D(\alpha_b, \beta_b)$. R_s approximately describes the size of the shadow and δ_s measures its deformation with respect to the reference circle. From the geometry of the shadow, we have

$$R_s = \frac{(\alpha_t - \alpha_r)^2 + \beta_t^2}{2|\alpha_r - \alpha_t|}, \quad \delta_s = \frac{d_s}{R_s} = \frac{|\alpha_p - \tilde{\alpha}_p|}{R_s},$$

where d_s is the distance from the most left positions of the shadow $C(\alpha_p, 0)$ to the reference circle $F(\tilde{\alpha}_p, 0)$.

It’s clear that the shadow of the non-rotating ($a = 0$) black hole is a perfect circle with radius of R_s. Thus

$$\alpha^2 + \beta^2 = \xi^2 + \eta = R_s^2.$$ \hspace{1cm} (4.8)

Figures 2, 3 and 4 show the variations of the radius R_s and the distortion parameter δ_s with the parameters a and k for the cases of $\bar{\omega} = -1/3$ (dark matter), $\bar{\omega} = 0$ (dust) and $\bar{\omega} = 1/3$ (radiation), respectively. We find that the radius of the shadow increases monotonically with the increasing k, but almost does not vary with a (a constant has been added to visualize the trend of R_s with a). The distortion parameter decreases monotonically with the increasing k for a given a, and increases with a for a given k. This trend could also be inferred from figure 1.

5 Energy emission rate

As usually assumed in the literature, the black hole shadow corresponds to the high energy absorption cross section if the observer is located at an infinite distance. The high energy absorption cross section itself oscillates around a limiting constant value σ_{lim}. For a spherically symmetric black hole, a good approximation is σ_{lim} equals to the geometrical cross section of the photon sphere [65, 66] and can be calculated by [10]

$$\sigma_{\text{lim}} \approx \pi R_s^2,$$

where R_s is the radius of the shadow.
Figure 3. Variation of the radius R_s (left) and the distortion parameter δ_s (right) of the black hole shadow with the parameters a and k for the case of dust ($\bar{\omega} = 0$). The lines of R_s have been moved up vertically to visualize the trend of R_s for different a by adding a constant to R_s (R_s almost does not vary with a).

Figure 4. Variation of the radius R_s (left) and the distortion parameter δ_s (right) of the black hole shadow with the parameters a and k for the case of radiation ($\bar{\omega} = 1/3$). The lines of R_s have been moved up vertically to visualize the trend of R_s for different a by adding a constant to R_s (R_s almost does not vary with a).

where R_s is the radius of the black hole shadow. Given that the shadows discussed in our work approach to a standard circle (figure 1), it’s reasonable to apply this formula to the rotating black hole considered in this work. Thus, the energy emission rate of the black hole is

$$\frac{d^2\mathcal{E}(\omega)}{d\omega dt} = \frac{2\pi^2\sigma_{\text{lim}}}{e^{\omega/T} - 1} \omega^3, \quad (5.2)$$

with ω the frequency of photon and T the Hawking temperature for the outer event horizon (r_+). T can be calculated from its definition

$$T = \lim_{\theta = 0, r \rightarrow r_+} \frac{\partial_r \sqrt{g_{tt}}}{2\pi \sqrt{g_{rr}}}. \quad (5.3)$$

In our case, we have

$$g_{tt} = 1 - \frac{r^2 - f(r)\Sigma^2}{\Sigma^2}, \quad g_{rr} = \frac{\Sigma^2}{\Delta}. \quad (5.4)$$
Thus, the Hawking temperature is

$$T = \frac{r^2_+ f'(r_+)(r^2_+ + a^2) + 2a^2 r_+(f(r_+) - 1)}{4\pi(r^2_+ + a^2)^2}. \quad (5.5)$$

If the perfect fluid matter is absent ($k = 0$), eq. (5.5) reduces to the regular form for the Kerr black hole

$$T_{\text{Kerr}} = \frac{r^2_+ - a^2}{4\pi r_+(r^2_+ + a^2)}, \quad (5.6)$$

with $r_+ = M + \sqrt{M^2 - a^2}$.

Figures 5, 6 and 7 show the energy emission rate against the frequency ω for the cases of dark matter ($\tilde{\omega} = -1/3$), dust ($\tilde{\omega} = 0$) and radiation ($\tilde{\omega} = 1/3$), respectively. We can see that for the cases of dark matter and dust, the peak of the emission decreases with the increasing k and shifts to lower frequency. For the case of radiation, the global shape of the emission rate is similar to the cases of dark matter and dust, but the variation of the emission rate with k is tiny. This is similar to what we find for the evolution of shadow (figure 1).
6 Discussion

In this work, we investigate the shadow of the rotating black hole in three different kinds of perfect fluid matter: dark matter, dust and radiation, represented by their equation of state $\tilde{\omega}$. For an observer located in the equatorial plane of the black hole, we show that the shadow is a perfect circle in the non-rotating case (spin $a = 0$) and a deformed one in the rotating case ($a \neq 0$). In general, the size of the shadow R_s increases with the increasing k which is the perfect fluid matter intensity parameter, and the deformation gets more and more significant (characterized by larger and larger distortion parameter δ_s) with the increasing a. Furthermore, different kinds of matter influence the black hole shadow with different magnitudes. Dark matter has the most significant influence on the size of the shadow and dust has smaller one, while radiation has almost invisible impact even for a change of k with an order of magnitude of 100. In addition, assuming that the black hole shadow equals to the high energy absorption cross section, we calculate the emission rate of the black hole in the three different kinds of perfect fluid matter. We find that for the cases of dark matter and dust, the emission rate decreases with the increasing k and the peak of the emission shifts to lower frequency. For the case of radiation, however, the emission rate almost does not vary with k, which is similar to the evolution of shadow.

From the observational point of view, it is necessary to calculate the angular radius of the shadow which is related to the angular resolution of astronomical instruments. The angular radius can be estimated as $\theta_s = 9.87098 \times 10^{-6} R_s(M/M_{\odot})(1 \text{kpc}/D) \mu\text{as}$ [13] where M is the black hole mass and D is the distance from the black hole to the observer. For the supermassive black hole Sgr A* at the center of the Milky Way, $M = 4.3 \times 10^6 M_{\odot}$ and $D = 8.3 \text{kpc}$. Thus, the observables R_s and δ_s as well as the angular radius θ_s can be calculated if assuming an observer located in the equatorial plane of the black hole. We summarize the result in table 1. We find that: (1) For the three different cases of equation of state $\tilde{\omega}$, the angular radius increases with the increasing k, which implies that the angular resolution required to detect the effect of perfect fluid matter on the black hole shadow decreases with k. (2) For the cases of $\tilde{\omega} = -1/3$ (dark matter) and $\tilde{\omega} = 0$ (dust), the angular resolution needed to distinguish one from the other decreases with the increasing k. As examples, for $k = 0.001$, the resolution would be $0.1 \mu\text{as}$, for $k = 0.1$, the resolution would be $1 \mu\text{as}$ and for $k = 0.5$, the resolution becomes $10 \mu\text{as}$. The last one is not much beyond the future resolution of EHT (15 μas at 345 GHz) and the space-based
JCAP10(2018)046

\[\tilde{\omega} \cdots -1/3 \text{ (dark matter)} \cdots 0 \text{ (dust)} \cdots 1/3 \text{ (radiation)} \]

\(k \)	0.001	0.1	0.5	0.001	0.1	0.5	-0.01	-0.005	-0.0001
\(R_s \)	5.204	6.086	14.697	5.199	5.456	6.495	5.192	5.1907	5.19615
\(\delta_s \) (%)	1.05	0.94	0.52	1.06	0.98	0.68	1.076	1.073	1.067
\(\theta_s \)	26.61	31.12	75.16	26.59	27.90	33.22	26.55	26.5721	26.5725

Table 1. The observables \(R_s, \delta_s \) and the angular radius \(\theta_s \) for the supermassive black hole Sgr A\(^*\) at the center of the Milky Way, for different cases of equation of state \(\tilde{\omega} \), assuming a black hole spin of \(a = 0.3 \).

VLBI RadioAstron (\(\sim 1-10 \mu \text{as}, [67] \)).\(^2\) The less than 1 \(\mu \)as resolution required with smaller \(k \) would be achieved by future instruments with highly improved techniques. (3) For the case of \(\tilde{\omega} = 1/3 \) (radiation), the variations of both the observables and the angular radius with \(k \) are much less significant than in the cases of dark matter and dust. This is consistent with what can be inferred from the evolution of the black hole shadow and the emission rate.

We summarize that different kinds of matter would have very different effects on the shadow of the black hole. This implies that it would be possible to identify the dominant substance around the black hole when first images of the black hole (e.g., Sgr A\(^*\)) are successfully obtained using the current and future astronomical instruments. This would eventually shed light on the nature of black holes and deepen our understanding of the black hole physics in general.

Acknowledgments

We acknowledge the anonymous referee for a constructive report that has significantly improved this paper. We acknowledge the financial support from the National Natural Science Foundation of China under grants No. 11503078, 11573060 and 11661161010.

References

[1] A.E. Broderick and R. Narayan, On the Nature of the Compact Dark Mass at the Galactic Center, Astrophys. J. Lett. 638 (2006) L21 [astro-ph/0512211].

[2] S. Doeleman et al., Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre, Nature 455 (2008) 78 [arXiv:0809.2442] [ESPIRE].

[3] J.L. Synge, The escape of photons from gravitationally intense stars, Mon. Not. Roy. Astron. Soc. 131 (1966) 463.

[4] J.-P. Luminet, Image of a spherical black hole with thin accretion disk, Astron. Astrophys. 75 (1979) 228.

[5] J.M. Bardeen, Timelike and null geodesics in the Kerr metric, in Black Holes (Les Astres Occlus). Summer School of Theoretical Physics of the University of Grenoble, C. Dewitt and B.S. Dewitt eds., Les Houches France (1973), pg. 215.

[6] K. Hioki and K.-i. Maeda, Measurement of the Kerr Spin Parameter by Observation of a Compact Object’s Shadow, Phys. Rev. D 80 (2009) 024042 [arXiv:0904.3578] [ESPIRE].

[7] A. de Vries, The apparent shape of a rotating charged black hole, closed photon orbits and the bifurcation set \(A_4 \), Class. Quant. Grav. 17 (2000) 123.

\(^2\)http://www.asc.rssi.ru/radioastron/index.html.
[8] R. Takahashi, Black hole shadows of charged spinning black holes, *Publ. Astron. Soc. Jap.* 57 (2005) 273 [astro-ph/0505316] [SPIRE].
[9] N. Tsukamoto, Black hole shadow in an asymptotically-flat, stationary and axisymmetric spacetime: The Kerr-Neuman and rotating regular black holes, *Phys. Rev. D* 97 (2018) 064021 [arXiv:1708.07427] [SPIRE].
[10] S.-W. Wei and Y.-X. Liu, Observing the shadow of Einstein-Maxwell-Dilaton-Axion black hole, *JCAP* 11 (2013) 063 [arXiv:1311.4251] [SPIRE].
[11] A. Abdujabbarov, F. Atamurotov, Y. Kucukakca, B. Ahmedov and U. Camci, Shadow of Kerr-Taub-NUT black hole, *Astrophys. Space Sci.* 344 (2013) 429 [arXiv:1212.4949] [SPIRE].
[12] J. Schee and Z. Stuchlík, Optical phenomena in the field of braneworld Kerr black holes, *Int. J. Mod. Phys. D* 18 (2009) 983 [arXiv:0810.4445] [SPIRE].
[13] L. Amarilla and E.F. Eiroa, Shadow of a rotating braneworld black hole, *Phys. Rev. D* 85 (2012) 064019 [arXiv:1112.6349] [SPIRE].
[14] L. Amarilla and E.F. Eiroa, Shadow of a Kalaza-Klein rotating dilaton black hole, *Phys. Rev. D* 87 (2013) 044057 [arXiv:1301.0532] [SPIRE].
[15] C. Bambi, F. Caravelli and L. Modesto, Direct imaging rapidly-rotating non-Kerr black holes, *Phys. Lett. B* 711 (2012) 10 [arXiv:1110.2768] [SPIRE].
[16] F. Atamurotov, A. Abdujabbarov and B. Ahmedov, Shadow of rotating non-Kerr black hole, *Phys. Rev. D* 88 (2013) 064004 [SPIRE].
[17] M. Wang, S. Chen and J. Jing, Shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole, *JCAP* 10 (2017) 051 [arXiv:1707.09451] [SPIRE].
[18] Z. Younsi, A. Zhidenko, L. Rezzolla, R. Konoplya and Y. Mizuno, New method for shadow calculations: Application to parametrized axisymmetric black holes, *Phys. Rev. D* 94 (2016) 084025 [arXiv:1607.05767] [SPIRE].
[19] P.V.P. Cunha, C.A.R. Herdeiro, B. Kleihaus, J. Kunz and E. Radu, Shadows of Einstein-dilaton-Gauss-Bonnet black holes, *Phys. Lett. B* 768 (2017) 373 [arXiv:1701.00079] [SPIRE].
[20] S. Dastan, R. Saffari and S. Sorourshfar, Shadow of a Kerr-Sen dilaton-axion Black Hole, *arXiv:1610.09477* [SPIRE].
[21] A. Abdujabbarov, M. Amir, B. Ahmedov and S.G. Ghosh, Shadow of rotating regular black holes, *Phys. Rev. D* 93 (2016) 104004 [arXiv:1604.03809] [SPIRE].
[22] M. Amir and S.G. Ghosh, Shapes of rotating nonsingular black hole shadows, *Phys. Rev. D* 94 (2016) 024054 [arXiv:1603.06382] [SPIRE].
[23] A. Saha, S.M. Modumudi and S. Gangopadhyay, Shadow of a noncommutative geometry inspired Ayón Beato García black hole, *Gen. Rel. Grav.* 50 (2018) 103 [arXiv:1802.03276] [SPIRE].
[24] A. Grenzebach, V. Perlick and C. Lämmerzahl, Photon Regions and Shadows of Kerr-Neuman-NUT Black Holes with a Cosmological Constant, *Phys. Rev. D* 89 (2014) 124004 [arXiv:1403.5234] [SPIRE].
[25] V. Perlick, O. Yu. Tsypko and G.S. Bisnovatyi-Kogan, Black hole shadow in an expanding universe with a cosmological constant, *Phys. Rev. D* 97 (2018) 104062 [arXiv:1804.04898] [SPIRE].
[26] E.F. Eiroa and C.M. Sendra, Shadow cast by rotating braneworld black holes with a cosmological constant, *Eur. Phys. J. C* 78 (2018) 91 [arXiv:1711.08380] [SPIRE].
[28] L. Amarilla, E.F. Eiroa and G. Giribet, Null geodesics and shadow of a rotating black hole in extended Chern-Simons modified gravity, *Phys. Rev.* D 81 (2010) 124045 [arXiv:1005.0607] [inSPIRE].

[29] R. Kumar, B.P. Singh, M.S. Ali and S.G. Ghosh, Rotating black hole shadow in Rastall theory, arXiv:1712.09793 [inSPIRE].

[30] J.R. Mureika and G.U. Varieschi, Black hole shadows in fourth-order conformal Weyl gravity, *Can. J. Phys.* 95 (2017) 1299 [arXiv:1611.00399] [inSPIRE].

[31] T. Vetsov, G. Gyulchev and S. Yazadjiev, Shadows of Black Holes in Vector-Tensor Galileons Modified Gravity, arXiv:1801.04592 [inSPIRE].

[32] U. Papnoi, F. Atamurotov, S.G. Ghosh and B. Ahmedov, Shadow of five-dimensional rotating Myers-Perry black hole, *Phys. Rev.* D 90 (2014) 024073 [arXiv:1407.0834] [inSPIRE].

[33] A. Abdujabbarov, F. Atamurotov, N. Dadhich, B. Ahmedov and Z. Stuchl´ık, Energetics and optical properties of 6-dimensional rotating black hole in pure Gauss-Bonnet gravity, *Eur. Phys. J.* C 75 (2015) 399 [arXiv:1508.00331] [inSPIRE].

[34] M. Amir, B.P. Singh and S.G. Ghosh, Shadows of rotating five-dimensional charged EMCS black holes, *Eur. Phys. J.* C 78 (2018) 399 [arXiv:1707.09521] [inSPIRE].

[35] B.P. Singh and S.G. Ghosh, Shadow of Schwarzschild-Tangherlini black holes, *Annals Phys.* 395 (2018) 127 [arXiv:1707.09521] [inSPIRE].

[36] P.V.P. Cunha, C.A.R. Herdeiro and M.J. Rodriguez, Shadows of Exact Binary Black Holes, *Phys. Rev.* D 98 (2018) 044053 [arXiv:1805.03798] [inSPIRE].

[37] P.V.P. Cunha and C.A.R. Herdeiro, Shadows and strong gravitational lensing: a brief review, *Gen. Rel. Grav.* 50 (2018) 42 [arXiv:1801.00860] [inSPIRE].

[38] H. Falcke, F. Melia and E. Agol, Viewing the shadow of the black hole at the galactic center, *Astrophys. J.* 528 (2000) L13 [astro-ph/9912263] [inSPIRE].

[39] S.C. Noble, P.K. Leung, C.F. Gammie and L.G. Book, Simulating the Emission and Outflows from Accretion Disks, *Class. Quant. Grav.* 24 (2007) S259 [astro-ph/0701778] [inSPIRE].

[40] J. Dexter, E. Agol, P.C. Fragile and J.C. McKinney, The Submillimeter Bump in Sgr A* from Relativistic MHD Simulations, *Astrophys. J.* 717 (2010) 1092 [arXiv:1005.4062] [inSPIRE].

[41] M. Moscibrodzka, H. Falcke, H. Shiokawa and C.F. Gammie, Observational appearance of inefficient accretion flows and jets in 3D GRMHD simulations: Application to Sagittarius A*, *Astron. Astrophys.* 570 (2014) A7 [arXiv:1408.4743] [inSPIRE].

[42] C.-K. Chan, D. Psaltis, F. Özel, R. Narayan and A. Sadowski, The Power of Imaging: Constraining the Plasma Properties of GRMHD Simulations using EHT Observations of Sgr A*, *Astrophys. J.* 799 (2015) 1 [arXiv:1410.3492] [inSPIRE].
[48] A.E. Broderick et al., *Modeling Seven Years of Event Horizon Telescope Observations with Radiatively Inefficient Accretion Flow Models*, *Astrophys. J.* 820 (2016) 137 [arXiv:1602.07701] [inSPIRE].

[49] R. Gold, J.C. McKinney, M.D. Johnson and S.S. Doeleman, *Probing the Magnetic Field Structure in Sgr A* on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations*, *Astrophys. J.* 837 (2017) 180 [arXiv:1601.05550] [inSPIRE].

[50] A. Broderick and A. Loeb, *Testing General Relativity with High-Resolution Imaging of Sgr A* *, *J. Phys. Conf. Ser.* 54 (2006) 448 [astro-ph/0607279] [inSPIRE].

[51] C. Bambi and K. Freese, *Apparent shape of super-spinning black holes*, *Phys. Rev.* D 79 (2009) 043002 [arXiv:0812.1328] [inSPIRE].

[52] A.E. Broderick, T. Johannsen, A. Loeb and D. Psaltis, *Testing the No-Hair Theorem with Event Horizon Telescope Observations of Sagittarius A* *, *Astrophys. J.* 784 (2014) 7 [arXiv:1311.5564] [inSPIRE].

[53] D. Psaltis, F. Ozel, C.-K. Chan and D.P. Marrone, *A General Relativistic Null Hypothesis Test with Event Horizon Telescope Observations of the black-hole shadow in Sgr A* *, *Astrophys. J.* 814 (2015) 115 [arXiv:1411.1454] [inSPIRE].

[54] T. Johannsen et al., *Testing General Relativity with the Shadow Size of Sgr A* *, *Phys. Rev. Lett.* 116 (2016) 031101 [arXiv:1512.02640] [inSPIRE].

[55] Y. Mizuno et al., *The Current Ability to Test Theories of Gravity with Black Hole Shadows*, *Nat. Astron.* 2 (2018) 585 [arXiv:1804.05812] [inSPIRE].

[56] B.P. Singh, *Rotating charge black holes shadow in quintessence*, arXiv:1711.02898 [inSPIRE].

[57] A. Abdujabbarov, B. Toshmatov, Z. Stuchlík and B. Ahmedov, *Shadow of the rotating black hole with quintessential energy in the presence of plasma*, *Int. J. Mod. Phys.* D 26 (2016) 1750051 [arXiv:1512.05206] [inSPIRE].

[58] X. Hou, Z. Xu, M. Zhou and J. Wang, *Black hole shadow of Sgr A* in dark matter halo, *JCAP* 07 (2018) 015 [arXiv:1804.08110] [inSPIRE].

[59] V.V. Kiselev, *Quintessence and black holes*, *Class. Quant. Grav.* 20 (2003) 1187 [gr-qc/0210040] [inSPIRE].

[60] B. Toshmatov, Z. Stuchlík and B. Ahmedov, *Rotating black hole solutions with quintessential energy*, *Eur. Phys. J.* Plus 132 (2017) 98.

[61] B. Majeed, M. Jamil and P. Pradhan, *Thermodynamic Relations for Kiselev and Dilaton Black Hole*, *Adv. High Energy Phys.* 2015 (2015) 124910 [arXiv:1508.04761] [inSPIRE].

[62] Y. Heydarzade and F. Darabi, *Black Hole Solutions Surrounded by Perfect Fluid in Rastall Theory*, *Phys. Lett. B* 771 (2017) 365 [arXiv:1702.07766] [inSPIRE].

[63] Z. Xu, X. Hou, X. Gong and J. Wang, *Kerr-Newman-AdS black hole surrounded by perfect fluid matter in Rastall gravity*, *Eur. Phys. J. C* 78 (2018) 513 [arXiv:1711.04542] [inSPIRE].

[64] B. Carter, *Global structure of the Kerr family of gravitational fields*, *Phys. Rev.* 174 (1968) 1559 [inSPIRE].

[65] B. Mashhoon, *Scattering of Electromagnetic Radiation from a Black Hole*, *Phys. Rev.* D 7 (1973) 2807 [inSPIRE].

[66] C.W. Misner, K.S. Thorne and J.A. Wheeler, *Gravitation*, W.H. Freeman, New York U.S.A. (1973).

[67] RadioAstron collaboration, N.S. Kardashev et al., *RadioAstron — a Telescope with a Size of 300 000 km: Main Parameters and First Observational Results*, *Astronomy Reports* 57 (2013) 153 [arXiv:1303.5013] [inSPIRE].