Myocardial Pathological Changes in Overtraining Exercise

M K W Giri1,2, M Doewes2, H M Jatmika3, K I Purnomo1,2, K H Setiawan1,2, I P A Wibowo1,2

1Faculty of Sport and Health, Universitas Pendidikan Ganesha, Jl. Udayana No.11, Singaraja, Indonesia
2Departement of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Jl. Ir. Sutami No.36 A, Surakarta, Indonesia
3Universitas Negeri Yogjakarta, Jl. Colombo No.1, Yogjakarta, Indonesia

Abstract. Excessive training practices without sufficient recovery period (overtraining) may be influential to promote myocardial injury. The aim of this study was to tested the hypothesis that overtraining exercise caused myocardial changes within histopathobiological analysis in rats. In this study, male wistar rats (n= 16) underwent ten weeks of overtraining weeks. Rats were divided into 2 groups: 1) controls (swam 15 minute/day, 5 days/week) and 2) overstrained rats that in 6 week swam twice a day for 1 hour. After sacrificing, the hearts excised for pathological preparation slides. There was significant difference in morphologic histopathological slides between groups. Compared to controlled groups, there was histopathological analysis showed increased chromatin activity fragmentation of myocardial structure in the overstrained group. Hypertrophic of left ventricle also higher in overstrained groups than control. Necrotic bodies spread in left ventricles myocardium of overstrained groups and there were not found in controlled group. The results of study gives an add it ion of evidence about negative effects of overtraining for myocardium. Furthermore, this study shows that avoiding overtraining should be an important rules in order to protect that myocardial injury and needed for an extended investigations.

1. Introduction
The benefits of exercise for health has been proven by numerous studies proving the main exercise has the benefit of which is able to prevent degenerative diseases, cardiovascular diseases, and also has the function of anti-aging [1,2,3]. The physiological changes that are beneficial from the exercise due to physical activity in exercise lead to a positive response from the multiple organs system and other physiological changes [4, 5]. World Health Organizations (WHO) and American Heart Association (AHA), American College of Sports Medicine (ACSM) and the United Kingdom Department of Health are established the recommended exercise to maintain good health state, carried out for 150 minutes per week in the form of aerobic exercise with moderate intensity, or in other words do during as much as 30 minutes per day 5 days a week [6,7].

Especially in sports, the beneficial and also achievement as professional are goals of training programmer for athlete. Athletes are defined as individuals whose activities associated with regular physical exercise and participate in sports competitions by focusing on excellence and achievement [8]. Overloading training is often given to the preparation of athletes facing competition. Overloading
exercise then not accompanied by an adequate recovery period that cause athlete's fall in a state of overtraining.

During the training period of overtraining, Reactive Oxygen Species (ROS) may be discharged exceed the protective capacity of anti-ROS system and cause deregulation of the inflammatory system, oxidative phosphorylation and neuroendocrine [9,10,11]. Increasing the intensity of exercise has been proven through several research can increase free radical production in the cell [2, 11, 12, 13]. Overtraining also cause muscle damage that usually occurs in people who rarely exercise are experiencing exercise overloading [14,15,16,17].

A phenomenon as the other side of the exercise, that has not been well documented is the cases of sudden cardiac death in athletes. Cases of sudden cardiac death in athletes become public attention as it is the case that, paradoxically with the public perception of the athlete's health status [18, 19]. Cases of sudden cardiac death is declared as the main cause of death due to medical conditions in case of death of athlete. Several studies have described the incidence of sudden cardiac death. Within the limitations of the study noted that the incidence of cases of sudden cardiac death in athletes in the world are not well documented due to the age group of the study sample in a very wide range (ages 8-40 years) and underestimated the actual cases because the source of the data obtained is limited to media reports, insurance claims and the report notes from the case of sudden cardiac death are had autopsied. In the United States, the incidence of sudden cardiac death has not led to proper value with accuracy. The best estimate of the incidence of sudden cardiac death in athletes in the United States varies greatly ranging from 1: 23,000 to 1: 300,000 athletes per year [19, 20, 21, 22, 23, and 24]. In other cases, there are some cases of athlete’s death without a formed of autopsy, that leads cause of death in athletes cannot be described exactly. Nowadays, refers to the trend of training, called overtraining, through some animal studies have shown changes in the cardiac myositis. Myocardial damage that occurs in overtraining assumed can deliver sudden cardiac death in exercise. Thus myocardial damage in overtraining investigate in this study by analyzing some histopathology changes of myocardium in rats with overtraining exercise.

2. Method
This research was true experimental with posttest only control group design. Samples are young adult male Wistar rats (n=16; m=180-225 gr) [25]. Rats were housed in room with constant temperature of 22±2 C with a 12/12 h light-dark cycle and fed a standard laboratory rat diet. Rats were classified into two groups, in which the control group is the group with exercise proportional and the group with the treatment of overtraining. Protocols of overtraining experiment are modified from Olah’s study protocols. Author created a new equipment pool and method for rats swam (. The control group was given treatment proportional which swam for 20 minutes per day, five times a week, for six weeks. While overtraining group swam for one and half hour, twice a day, every day, for six weeks [26,27,28]. Last day of treatment, the rats in both groups, were sacrificed and the heart to be examined. Two experts helped for examination of thus slides of myocardium. Experts were worked independently and without discussion between each other. Research parameters measured were hystopathological changes probably appeared. Assessment is based on the average observed in 5 visual fields using 100x magnification. [28, 29]. Histopathology data in form ordinal data were analyzed descriptively.

3. Results
After six weeks in vivo hemodynamic studies, rats of both groups sacrificed. The left ventricle was cut into 3 transverse sections: apex, middle ring, and base. From the middle ring, 5-μm sections were cut and stained with Hematoxicilin Eosin. Left ventricle hypertrophy appeared on slides of both groups. Compare with overtraining group, there was different thickness of the left ventricles wall, whereas larger hypertrophy appeared in overstrained rats. However, in overstrained group, observed that left
ventricular wall thickening greater than in the control group. On the measurement of the thickness of the control group were categorized in moderate LVH while overstrained group in which caused thickening of the left ventricular wall in the severe one.

From experimental rats in overstrained group, then 14 slides, thus all left heart ventricle describe necrosis. The nucleus changes are loss of chromatin and nucleus becomes wrinkled. Nucleus seems more solid, color turned to more darken (psychosis), divided into fragments, and shredded (caryorexis) [30, 31]. Necrosis area presented with following figure 2.

Increased activity of chromatin is obtained from 6 slides were observed from the overstrained group. Experts also conclude that there are increase of chromatin activity area in slides of overstrained rats. Increase of chromatin activity signed that there are some activities of nucleus. Increase of chromatin activity presented with following figure 3.

3.1. Left Ventricle Hypertrophy (LVH)

3.1.1. Differences of LVH measurement between two groups

- Left ventricle myocardium after proportional exercise, differ from standard myocardium of rats.
- Myocardium thickness length: 1488, 19μm. This is a physiological changes called in few studies with athlete’s heart.

![Figure 1.a. Left Ventricle of control group](image1)

- Myocardium looked hypertrophic formed with normal shape of cardiomyocite but its size is larger than controls.
- Myocardium thickness length: 1836, 39 μm. This probably pathological.

![Figure 1.b. Left ventricle of overstrained group](image2)
3.1.2. **Histopathological changes of Myocardium**

- Area without normal cardiomyocyte
- Appearance of nuclei didn’t clearly shown
- Psychosis and caryorecsis shown

![Figure 2. Necrosis Cardiomyocyte of Overstrained Group](image)

Figure 2. Necrosis Cardiomyocyte of Overstrained Group

![Figure 3. Increased chromatin activity of Overstrained Group](image)

Figure 3. Increased chromatin activity of Overstrained Group

Nucleus with the amount chromatin fragment increase. Chromatin in circle surrounding the wall of nucleus.

Refers to all the results of slides examination by experts, author conclude that overstrained rats have pathological sign of myocardial damage.

4. **Discussion**

In exercise activity, systolic ejection and VO2 max become ones of hearts persist myocardial function responsibilities filling which are important in cardiorespiratory performance [32,33]. However, chronic training of exercise influence antioxidant system, which resulted in an imbalance between the formation of free radicals and antioxidant response. This situation causes oxidative stress [9, 11]. Free radicals easily defect membrane lipids, proteins and nucleic acids, organelles of cell and causing cellular damage and disturb normal function and reproduction of cells [9, 11, 12, 13, 33, and 35]. Free radicals such as anion oxygen superoxide, would reacts with lipid membranes, proteins and nucleic acids, causing cumulative and irreversible cell damage of tissues and organs [33, 34, and 35].
Overstrained induced damage in several organs by some experiments in rats, which is overstrained delivered changes for kidney and skeletal muscles [36,37,38]. Previous study established that myocardium of overstrained rats gave an apoptotic cardiomyocytes [39, 40, 41].

From research by Benito, through research using rats that two groups, one sedentary group and the other group is intensive training. Intensive exercise group was given treatment 60 minute treadmill run at a speed of 60 cm / sec for 5 days a week. After 8 weeks of intensive training found a histopathological changes of concentric left ventricular hypertrophy, and at the end of the 16th week of the eccentric left ventricular hypertrophy and diastolic [42,43]. Thus in line with this research that in both groups, appearance of left ventricle hypertrophy as a compensated structural of myocardium. Although in physiological condition of exercise that LVH known as normal compensation, but excessive wall thickness are worst to the myocardial contraction. In overstrained group that was pathological hypertrophy of left ventricle. Function of myocardium could be decrease in contractions because of that thickness and deliver to become rigid structure. In systolic phase and also diastolic phase of heart contraction, there will results some impairment of contractions and all decrease of function follow.

This findings also in line with other study conducted by Flora, which was investigate the effects of anaerobic and aerobic exercise in myocardium of rats. From that study we collected data that histology of cardiac muscles on day 1 did not show any signs of hypertrophy, ischemia, or infarction. On day 3, there were signs of cardiac muscle cell hypertrophy. Further histological examination revealed signs of cardiac muscle cell ischemia on day 7 and of infarction on day 10 in both groups [43].

This findings not corroborate with the conclusion of that study. The examination of blood, had not a significant measurement of oxidative stress in overstrained rats. We differ our research by using method of protocol analyzing and we examined the tissue organ. We limited our research only in histopathological changes only without investigate the pat mechanism of all changes that founded.

In this study result, we also describe a novel pathological sign of overstrained rats. There were necrosis and increased activity of chromatin. Necrosis of cardiomyocytes assumed that death areas of myocardium. Necrosis is an ischemic stage without compensated. Necrosis cardiomyocyte probably found in end stage of Ischemic Cardiac Injury conditions. Massive necrosis of cardiomyocytes which is manifested as worsening clinical condition rapidly and suddenly could cause death. Increased of chromatin activity couldn’t explained certainly. There are several process could describe with that chromatin condensed. Future researches are needed to elaborate the bio molecular and histopathological aspects in order to elucidate path mechanism of overtraining exercise.

5. Conclusion
Exercise’s benefits in preventing cardiovascular morbidity and mortality is well established. However, there is a hypothesis assumed circumstantial evidence has suggested that excessive exercise in overtraining exercise might have harmful effects on cardiac health, sometimes leading to rare but remarkable sudden cardiac events. Overtraining results some pathological changes of excessive left ventricle hypertrophy, necrosis and increased chromatin activity in myocardium.

6. Acknowledgement
The authors acknowledge Bambang Purwanto, Ambar Mudigdo, and Suradi, former professor at Sebela Maret University. Wiranatha, laboran who helped maintains rats in Udayana University. Brian wasita, expert whom examines and give conclusion to slides also measurement with software analysis of those pathological changes. Dono Indarto, whose suggestions contributed to improve the quality of the final version of the manuscript. Reviewer and the UPI ICSSPE’s team for all the links create and make this manuscript accepted with suggestion for revisions.
References

[1] Naci Husyeyin And Loannidis JPA 2013 Comparative Effectiveness Of Exercise And Drug Interventions On Mortality Outcomes: Metaepidemiological Study British Medical Journal 347 55-77

[2] Da Silva A and Sharma S 2014 Exercise, the Athlete’s Heart, and Sudden Cardiac Death The Physician and Sportsmedicine 42

[3] Kwak HB 2013 Aging, exercise, and extracellular matrix in the heart. Journal of Exercise Rehabilitation 9 338-347

[4] Egan B and Zierath JR 2013 Exercise Metabolism and the Molecular Regulation of Skeletal Muscle Adaptation Cell Metabolism 17 162-85.

[5] Gercue A, Land Heidbuchel H 2014 Can Intense Endurance Exercise Cause Myocardial Damage and Fibrosis? Exercise and Cardiac Injury Circulation 130 992-1002

[6] World Health Organization 2010 Global Recommendations for Physical Activity On Health WHO Library Publishing Data Switzerland.

[7] Swift DL, Lavie CJ, Johannsen NM, Arena R, Earnest CP, O’Keefe JH, Milani RV, Blair SN and Church TS 2013 Physical Activity, Cardiorespiratory Fitness, and Exercise Training in Primary and Secondary Coronary Prevention Circulation Journal 77 287-292

[8] Pelliccia A, Faqard R, Bjornstad HH, Anastassakis A, Arbustini E, et al 2005. Recommendations for competitive sports participation in athletes with cardiovascular disease: a consensus document from the Study Group of Sports Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Eur Heart J 26 1422-145

[9] Goto S and Radak Z 2010 Hormetic Effects Of Reactive Oxygen Species By Exercise: A View From Animal Studies For Successful Aging In Human Dose-Response 8 68–72

[10] Hawley JA, Hargreaves M, Joyner MJ and Zierath JR 2014 Integrative Biology of Exercise Cell 159 738-750

[11] Hackney AC and Koltun KJ 2012 The Immune System And Overtraining In Athletes: Clinical Implications Acta Clinical Croatia 51 633-641

[12] Stoiber W, Obermayer S, Steinbacher P and Krautgartner WD 2015 The Role of Reactive Oxygen Species (ROS) in the Formation of Extracellular Traps (ETs) in Humans Biomolecules 5 702-723

[13] Marin DP, Bolin Ap, Campoio Tr, Guerra Ba, And Otton R 2013 Oxidative Stress And Antioxidant Status Response Of Handball Athletes: Implications For Sport Training Monitoring International Immunopharmacology 17 462–470

[14] Kerkscik C and Willoughby D 2005 The Antioxidant Role of Glutathione and N-Acetyl-Cysteine Supplements and Exercise-Induced Oxidative Stress Journal of the International Society of Sports Nutrition 2 38-44

[15] Meesuseen R, Dculos M, Foster FC, Fry A, Gleeson M, Nieman D, Raglin D, Rietjens G, Steinacker J and Urhausen A 2013 Prevention, Diagnosis, and Treatment of the Overtraining Syndrome: Joint Consensus Statement of the European College of Sport Science and the American College of Sports Medicine Medicine & Science In Sports & Exercise 45 186-208.

[16] Kreher JB and Schwartz JB 2012 Overtraining Syndrome: A Practical Guide Sports Health 4 128-138

[17] Pingitore A, Lima GPP, Mastorci F, Quinones A, Iervasi G, and Vassalle C 201. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports Nutrition 31 916–922

[18] Harmon KG, Asif IM and Drezner JA 2011 Incidence of Sudden Cardiac Death in National Collegiate Athletic Association Athlete Circulation 123 1594

[19] Harmon KG, Drezner JA, Wilson MG 2014 Incidence of sudden cardiac death in athletes British Journal Sports Medicine 48 1185–1192
[20] Chandra N, Bastiaenen R, Papadakis M and Sharma S 2013 Sudden Cardiac Death in Young Athletes Practical Challenges and Diagnostic Dilemmas Journal of the American College of Cardiology 61

[21] Chugh SS and Weiss JB 2015 Sudden Cardiac Death in the Older Athlete Journal Of The American College Of Cardiology 65

[22] De Noronha SV, Sharma S, Papadakis M, Desai S, Whyte G, and Sheppard MN, 2009. Aetiology of sudden cardiac death in athletes in the United Kingdom: a pathological study Heart (British Cardiac Society) 95 1409-14

[23] Drezner JA, Harmon KG, and Marek JC 2014 Incidence Of Sudden Cardiac Arrest In Minnesota High School Student Athletes: The Limitations Of Catastrophic Insurance Claims Journal of American College Cardiology 63 1455–6.

[24] Charan J and KatharinaND 2013 How To Calculate Sample Size In Animal Studies? Journal Of Pharmacology And Pharmacotheurapics 4 303-306

[25] Bogdanova OV, Kanekar S, D’Anci KE and Renshaw PF 2013 Factors influencing behavior in the forced swim test Physiology and Behaviour 118 227–239

[26] Can A, Dao DT, Arad M, Terrillion CE, Piantadosi SC and GouldTD 2012 The Mouse Forced Swim Test Journal of Visualized Experiments 59 e3638.

[27] Oláh A, Németh BT, Mátyás C, Horváth EM, Hidi L, Birtalan E, Kellermayer D, Ruppert M, Merkely G, Szabo G, Merkely B and Radovits T 2015 Cardiac effects of acute exhaustive exercise in a rat model International Journal of Cardiology 82 258–266

[28] Hadjipour N 2011 Histopathological Comparison of Gentamycin and Amikacin Nephrotoxicity in Rabbits. Journal of Animal and Veterinary Advances 10 1003-1006.

[29] Abbas AK, Litchman AH, Pillai S 2012 Cellular and Molecular immunology 7th Edition. United States of America:Elsevier Saunders.pp: 75-78, 106, 169.

[30] Kumar V, Abbas K, and Aster JC 2013 Robbin and Cotran Basic Pathology. Ninth Edition. Canada: Elsevier Saunders, pp:13-16, 19, 29-49, 68-69.

[31] Mc Ardle WD, Katch Fl, and Katch Fl, 2010. Functional Capacity Of The Cardiovascular System : Cardiac Output During Exercise. Exercise Physiology 7th Edition; Chapter 17 pp: 343-6.

[32] Mahdiabadi J , Gaeini A A , Kazemi T And Mahdiabadi M A 2013 The Effect Of Aerobic Continuous And Interval Training On Left Ventricular Structure And Function In Male Non-Athletes.Biology Of Sport 30 207-209

[33] Urso ML and Clarkson PM 2003 Oxidative stress, exercise, and antioxidant supplementation Toxicology 189 41-54

[34] Abel EDand Doenst T 2011. Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy. Cardiovascular Research 90 234-42

[35] Jin CH, Paik YI, Kwak YS, Jee YS and Kim YJ 2015 Exhaustive submaximal endurance and resistance exercises induce temporary immunosuppression via physical and oxidative stress Journal of Exercise Rehabilitation 11 198-203

[36] Lin X, Jiang C, Luo Z and Qu S 2013 Protective effect of Erythropoietin on renal injury induced in rats by four weeks of exhaustive exercise BioMed Central (BMC) Nephrology 14 130

[37] Xiaou W, Chen P and Dong J 2012 Effects of Overtraining on Skeletal Muscle Growth and Gene Expression International Journal Sports Medicine 33 846–853

[38] Kadaja L, Eimre M and Paju L 2010 Impaired oxidative phosphorylation in overtrained rat myocardium Exp Clin Cardiol 15

[39] Ferrareoso RLP, De Oliveira RB, Macedo DV, Nunes LAS, Brenzikofer R, DamaS D and Hohl R 2012 Interaction between Overtraining and the Interindividual Variability May (Not) Trigger Muscle Oxidative Stress and Cardiomyocyte Apoptosis in Rats. Oxidative Medicine and Cellular Longevity doi:10.1155/2012/935483

[40] Almeida SAd, Claudio ERG, Mengal VF, Oliveira SGd, and Merlo E 2014 Exercise
Training Reduces Cardiac Dysfunction and Remodeling in Ovariectomized Rats Submitted to Myocardial Infarction PLoS ONE 9 e115970

[41] Benito B, Jordi G G, Mollar AS 2011 Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training Circulation 123 13-22

[42] George K, Whyte GP, Green DJ, Oxborough D, Shave RE, Gaze D and Somauroo J 2012 The endurance athletes heart: acute stress and chronic adaptation British Journal Of Sport 46 i29–i36.

[43] Flora R, Ferdinal F, Hernowo BS, Wanandi SI, Sadikin M, and Freisleben HJ 2013 Myocardial damage after continuous aerobic and anaerobic exercise in rat. Medica Journal Indonesia 7 209-15.