RIGID SURFACE OPERATOR AND SYMBOL INVARIANT OF PARTITIONS

CHUANZHONG LI AND BAO SHOU

Abstract. The symbol is used to describe the Springer correspondence for the classical groups by Lusztig. We refine the explanation that the S-duality maps of the rigid surface operators are symbol preserving maps. And we find that the maps X_S and Y_S used in the construction of S-duality maps are essentially the same. We clear up cause of the mismatch problem of the total number of the rigid surface operators between the B_n and C_n theories. And we construct all the B_n/C_n rigid surface operators which can not have a dual. A classification of the problematic surface operators is made.

CONTENTS

1. Introduction 1
2. Surface operators in $\mathcal{N} = 4$ Super-Yang-Mills 2
2.1. Preliminary 2
2.2. Invariants of surface operators 3
3. Contributions to symbol of rows of partition 4
3.1. Symbol invariant of partitions 4
3.2. Maps preserving symbol 6
3.3. S-duality maps for rigid surface operators 8
3.4. Discussions 9
4. Mismatch of the rigid semisimple surface operator between dual theories 11
4.1. Changes of the first row of a partition under S duality 11
4.2. Generating B_n rigid semisimple surface operators from the C_n theory 11
4.3. Generating C_n rigid semisimple surface operators from the B_n theory 13
4.4. One to one correspondence of maps preserving symbol 13
4.5. II type problematic surface operators 14
4.6. Generating D_n rigid semisimple surface operator from the D_n theory 17
4.7. Classification of problematic surface operators and discussions 19
Acknowledgments 22
Appendix A. Rigid semisimple surface operators in SO(13) and Sp(12) 23
References 23

1. Introduction

Surface operators are two-dimensional defects supported on a two-dimensional submanifold of spacetime, which are natural generalisations of the ’t Hooft operators. In [2], Gukov and Witten initiated a study of surface operators in $\mathcal{N} = 4$ super Yang-Mills theories in the ramified case of the Geometric Langlands Program. S-duality for certain subclass of surface operators is discussed in [2][3]. The S-duality [3] assert that $S : (G, \tau) \rightarrow (G^L, -1/n_B\tau)$ (where n_B is 2 for F_4, 3 for G_2, and 1 for other semisimple classical groups [2]; $\tau = \theta/2\pi + 4\pi i/g^2$ is usual gauge coupling constant). This transformation exchanges gauge group G with the Langlands dual group. For example, the Langlands dual groups of Spin$(2n+1)$ are Sp$(2n)/\mathbb{Z}_2$. And the langlands dual groups of SO$(2n)$ are themselves.

In [2], Gukov and Witten extended their earlier analysis [2] of surface operators which are based on the invariants of duality. They identified a subclass of surface operators called ’rigid’
surface operators, which are expected to be closed under S-duality. There are two types rigid surface operators: unipotent and semisimple. The rigid semisimple surface operators are labelled by pairs of partitions. And unipotent rigid surface operators arise when one of the partitions is empty. In \mathcal{E}, some proposals for the S-duality maps related to rigid surface operators were made in the $B_{n}(SO(2n+1))$ and $C_{n}(Sp(2n))$ theories. These proposals involved all unipotent rigid surface operators as well as certain subclasses of rigid semisimple operators.

In \mathcal{E}, we analyse and extend the S-duality maps proposed by Wyllard, using consistency checks. We propose the S-duality for a subclasses of rigid surface operators. The symbol invariant is more convenient than other invariants to study the S-duality of surface operators but its calculation is boring. In \mathcal{E}, we prove the symbol invariant proposed in \mathcal{E} in

The S duality maps preserve symbol but not all symbol preserving maps are S duality maps. However more thorough understanding the construction of the S duality of surface operators might lead to progress. A problematic mismatch in the total number of rigid surface operators between the B_{n} and the C_{n} theories was pointed out in \mathcal{E}. The discrepancy is clearly a major problem and hamper the attempt to analysis to more general classes of semisimple surface operators. Fortunately, the construction of symbol \mathcal{E} and the classification of symbol preserving maps are helpful to address this problem in \mathcal{E}.

In this paper, we attempt to extend the analysis in \mathcal{E}, \mathcal{E}, and \mathcal{E}. Since no noncentral rigid conjugacy classes in the A_{n} theory, we do not discuss surface operators in this case. We also omit the discussion of the exceptional groups, which are more complicated. We will focus on theories with gauge groups $SO(2n)$ and the gauge groups $Sp(2n)$ whose Langlands dual group are $SO(2n + 1)$.

In Section 2 we review the construction of rigid surface operators given in \mathcal{E}. We discuss some mathematical results and definitions as preparation. We focus on the symbol invariant of surface operators which are unchanged under the S-duality map. In Section 3 we review the symbol invariant proposed in \mathcal{E}. We refine the computational rules of symbol found in \mathcal{E}. We find the contributions to symbol of a row in the same location of a pairwise rows are the same in the B_{n}, C_{n}, and D_{n} theories. As applications, the S-duality maps proposed in the \mathcal{E}, \mathcal{E} can be illustrated more clearly \mathcal{E}. We find that the maps X_{S} and Y_{S} are essentially the same map.

The second part of the paper involve the mismatch problem of the total number of the rigid surface operators between the B_{n} and C_{n} theories. We clear up cause of this problem. We give the construction and classification of all the B_{n}/C_{n} rigid surface operators which can not have a dual, revealing some subtle things.

In the appendix, we summarize revelent facts about all rigid surface operators and their associated invariants in the $SO(13)$ and $Sp(12)$ theories as examples.

2. Surface operators in $\mathcal{N} = 4$ Super-Yang-Mills

In this section, we introduce the revelent backgrounds of surface operator. We closely follow paper \mathcal{E} to which we refer the reader for more details.

We consider $\mathcal{N} = 4$ super-Yang-Mills theory on \mathbb{R}^{4} with coordinates $x^{0}, x^{1}, x^{2}, x^{3}$. The most important bosonic fields: a gauge field as 1-form, A_{μ} ($\mu = 0, 1, 2, 3$), six real scalars, ϕ_{I} ($I = 1, \ldots, 6$). All fields take values in the adjoint representation of the gauge group G. Surface operators are introduced by prescribing a certain singularity structure of fields near the surface on which the operator is supported. Without loss of generality we can assume the support of the surface operator D to be oriented along the (x^{0}, x^{1}) directions. Since the fields satisfy the BPS condition, the combinations $A = A_{2} dx^{2} + A_{3} dx^{3}$ and $\phi = \phi_{2} dx^{2} + \phi_{3} dx^{3}$ must obey Hitchin’s equations \mathcal{E}

$$F_{A} - \phi \wedge \phi = 0, \quad d_{A} \phi = 0, \quad d_{A} \star A = 0$$ \tag{2.1}$$

A surface operator is defined as a solution to these equations with a prescribed singularity along the surface $\mathbb{R}^{2}(x^{0}, x^{1})$.

CHUANZHONG LI AND BAO SHOU
For the superconformal surface operator, setting \(x_2 + i x_3 = re^{i\theta} \), the most general possible rotation-invariant Ansatz for \(A \) and \(\phi \) is

\[
A = a(r) \, d\theta, \\
\phi = -c(r) \, d\theta + b(r) \frac{dr}{r}.
\]

On substituting this Ansatz into Hitchin’s equations (2.1) and defining \(s = -\ln r \), equations (2.1) reduces to Nahm’s equations

\[
\frac{da}{ds} = [b, c], \\
\frac{db}{ds} = [c, a], \\
\frac{dc}{ds} = [a, b]
\]

which imply the communication for the constants \(a \), \(b \) and \(c \). Surface operators of this type were discussed in [2].

There is another way to obtain conformally invariant surface operator. Nahm’s equations (2.3) are solved with

\[
a = \frac{t_x}{s + 1/f}, \quad b = \frac{t_y}{s + 1/f}, \quad c = \frac{t_z}{s + 1/f},
\]

where \(t_x, t_y \) and \(t_z \) are elements of the lie algebra \(g \), spanning a representation of \(su(2) \). These \(t_i \)'s are in the adjoint representation of the gauge group. The surface operator is actually conformal invariant if the function \(f \) allowed to fluctuate.

Alternatively, the surface operators can be characterised as the conjugacy class of the monodromy

\[
U = P \exp(\oint A),
\]

where \(A = A + i\phi \). The integration is around a circle near \(r = 0 \). Following from (2.1), one finds that \(F = dA + A \wedge A = 0 \), which means that \(U \) is independent of deformations of the integration contour. For the surface operators (2.4), \(U \) becomes

\[
U = P \exp\left(\frac{2\pi}{s + 1/f} t_+\right),
\]

where \(t_+ \equiv t_x + it_y \) is nilpotent, corresponding to unipotent surface operator.

There are two types of conjugacy classes in a Lie group: unipotent and semisimple. Semisimple classes can also lead to surface operators. With a semisimple element \(S \), one can obtain a surface operator with monodromy \(V = SU \). For a general surface operator, it is constructed by requiring all the fields which are solutions to Nahm’s equations satisfy the following constraint near the surface \(D(4) \)

\[
S\Psi(r, \theta)S^{-1} = \Psi(r, \theta + 2\pi).
\]

From all the surface operators constructed from conjugacy classes, a subclass of surface operators called rigid surface operator is closed on the \(S \)-duality. The rigid surface operators are expected to be superconformal and not to depend on any parameters. A unipotent conjugacy classes is called rigid\(^1\) if its dimension is strictly smaller than that of any nearby orbit. All rigid orbits have been classified \([3][4]\). A semisimple conjugacy classes \(S \) is called rigid if the centraliser of such class is larger than that of any nearby class. Summary, surface operators are called rigid if they based on monodromies of the form \(V = SU \), where \(U \) is unipotent and rigid and \(S \) is semisimple and rigid.

2.1. Preliminary

From the above discussions, a classification of unipotent and semisimple conjugacy classes is needed to study surface operators. Here we describe the classification of rigid surface operators in the \(B_n(SO(2n+1)) \), \(C_n(Sp(2n)) \) and \(D_n(SO(2n)) \) theories in detail.

\(^1\) The rigid surface operators here correspond to strongly rigid operators in [1].
The t_+ in Eq. (2.6) can be described in block-diagonal basis as follows

$$t_+ = \begin{pmatrix}
 t_{n_1}^n & \cdots & \cdots & \cdots \\
 \cdots & t_{n_k}^n & \cdots & \cdots \\
 \cdots & \cdots & \cdots & \cdots \\
 \cdots & \cdots & \cdots & t_{n_l}^n
\end{pmatrix},$$

where $(t_{n_k}^n)$ is the ‘raising’ generator of the n_k-dimensional irreducible representation of su(2). For the B_n, C_n, and D_n theories, there are restrictions on the allowed dimensions of the su(2) irreps since t_+ should belong to the relevant gauge group. From the block-decomposition (2.8) we see that unipotent (nilpotent) surface operators are classified by the restricted partitions.

A partition λ of the positive integer n is defined by a decomposition $\sum_{i=1}^{l} \lambda_i = n$ ($\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_l$), where the λ_i are called parts and l is the length. There is a one-to-one correspondence between partition and Young tableaux. For instance the partition 3^22^31 corresponds to

$$\lambda = 3^22^31.$$

The another representation of partition $\lambda_m \lambda_{m-1} \cdots \lambda_1$ with the length $l = \sum \lambda_i$ as shown in Fig. (1). Young diagrams occur in a number of branches of mathematics and physics. They are also useful to construct the eigenstates of Hamiltonian System [23] [24] [25]. The addition of two partitions λ and κ is defined by the additions of each part $\lambda_i + \kappa_i$.

We have the following classification of nilpotent orbits in terms of partitions [1]:

- $\mathbf{(B}_n\mathbf{)}$: partitions of $2n+1$, $\sum \lambda_i = 2n+1$, with a constraint that all even integers appear an even number of times;
- $\mathbf{(D}_n\mathbf{)}$: partitions of $2n$, $\sum \lambda_i = 2n$, with a constraint that all even integers appear an even number of times;
- $\mathbf{(C}_n\mathbf{)}$: partitions of $2n$, $\sum \lambda_i = 2n+1$, with a constraint that all odd integers appear an even number of times;

A partition in the B_n or D_n(C_n) theories is called rigid if it satisfies the following conditions,

1. no gaps (i.e. $\lambda_i - \lambda_{i+1} \leq 1$ for all i),
2. no odd (even) integer appears exactly twice.

Rigid partitions correspond to rigid surface operators. The following facts are important for studying rigid partitions, which are easy to be proved and omitted here [1].

Proposition 2.1. The longest row in a rigid B_n partition always contains an odd number of boxes. And the following two rows of the first row are either both of odd length or both of even length. This pairwise pattern then continues. If the Young tableau has an even number of rows the row of shortest length has to be even.

Proposition 2.2. The longest two rows in a rigid C_n partition both contain either an even or an odd number of boxes. This pairwise pattern then continues. If the Young tableau has an even number of rows the row of shortest length has to be even.

Proposition 2.3. The longest row in a rigid D_n partition always contains an even number of boxes. And the following two rows are either both of even length or both of odd length. This pairwise pattern then continues. If the Young tableau has an even number of rows the row of the shortest length has to be even.
The rigid semisimple conjugacy classes S in formula correspond to diagonal matrices with elements -1 and 1 along the diagonal in the B_n, C_n, and D_n theories. The matrices S break the gauge group to its centraliser at the Lie algebra level as follows
\begin{align*}
\text{so}(2n+1) & \rightarrow \text{so}(2k+1) \oplus \text{so}(2n - 2k), \\
\text{so}(2n) & \rightarrow \text{so}(2k) \oplus \text{so}(2n - 2k), \\
\text{sp}(2n) & \rightarrow \text{sp}(2k) \oplus \text{sp}(2n - 2k),
\end{align*}
which imply that the rigid semisimple surface operators correspond to pairs of partitions (λ', λ'') in the B_n, C_n, and D_n theories. λ' is a rigid B_k partition and λ'' is a rigid D_{n-k} partition in the B_n case, λ' is a rigid D_k partition and λ'' is a rigid D_{n-k} partition in the D_n case. λ' is a rigid C_k partition and λ'' is a rigid C_{n-k} partition in the C_n case. The rigid unipotent surface operator is a limiting case of rigid semisimple surface operator with $\lambda'' = 0$.

There is a close relationship between the pair of partition (λ', λ'') and Weyl group. For Weyl groups in the B_n, C_n, and D_n theories both conjugacy classes and irreducible unitary representations are in one-to-one correspondence with ordered pairs of partitions $[\alpha; \beta]$, where α is a partition of n_α and β is a partition of n_β, with $n_\alpha + n_\beta = n$. Though both the conjugacy classes and unitary representations are parameterised by ordered pair of partitions there is no canonical isomorphism between the two sets.

The Kazhdan-Lusztig map is a map from the unipotent conjugacy classes of a simple group to the set of conjugacy classes of the Weyl group. This map can be extended to the case of rigid semisimple conjugacy classes. The Springer correspondence is a injective map from the unipotent conjugacy classes of a simple group to the set of unitary representations of the Weyl group. For the classical groups the above two maps can be described explicitly by the invariants fingerprint and symbol invariant of partitions, respectively.

Without explanation, we only concern about rigid partition and rigid surface operator in the following sections.

2.2. Invariants of surface operators

Invariants of the surface operators $(\lambda'; \lambda'')$ do not change under the S-duality map. The dimension d is the most basic invariant of a rigid surface operator. It is calculated as follows:
\begin{align*}
B_n : & \quad d = 2n^2 + n - \frac{1}{2} \sum_k (s_k')^2 - \frac{1}{2} \sum_k (s_k'')^2 + \frac{1}{2} \sum_k \text{odd} k r_k' + \frac{1}{2} \sum_k \text{odd} k r_k'', \\
D_n : & \quad d = 2n^2 - n - \frac{1}{2} \sum_k (s_k')^2 - \frac{1}{2} \sum_k (s_k'')^2 + \frac{1}{2} \sum_k \text{odd} k r_k' + \frac{1}{2} \sum_k \text{odd} k r_k'', \\
C_n : & \quad d = 2n^2 + n - \frac{1}{2} \sum_k (s_k')^2 - \frac{1}{2} \sum_k (s_k'')^2 - \frac{1}{2} \sum_k \text{odd} k r_k' - \frac{1}{2} \sum_k \text{odd} k r_k'',
\end{align*}
where s_k' denotes the number of parts of λ' that are larger than or equal to k. And r_k' denotes the number of parts of λ' that are equal to k. Similarly, s_k'' and r_k'' correspond to λ''.

The invariant fingerprint is a pair of partitions $[\alpha; \beta]$ associated with the Weyl group conjugacy class. There is another invariant symbol based on the Springer correspondence, which can be extended to rigid semisimple conjugacy classes. One can construct the symbol of this rigid semisimple surface operator $(\lambda'; \lambda'')$ by calculating the symbols for both λ' and λ'', then add the entries that are “in the same place” of these two partitions. The result symbol is denoted as follows
\begin{equation}
\sigma((\lambda'; \lambda'')) = \sigma(\lambda') + \sigma(\lambda'').
\end{equation}
An example illustrates the addition rule in detail:
\begin{equation}
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{pmatrix} +
\begin{pmatrix}
0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 0 & 1 & 2 & 2 & 2 \\
1 & 2 & 2 & 2 & 2 & 2 & 3
\end{pmatrix}.
\end{equation}

It is checked that the symbol of a rigid surface operator contains the same amount of information as the fingerprint. Compared with the fingerprint invariant, the symbol invariant is much easier to be calculated and more convenient to find the S-duality maps of surface operators.

In [4], it was pointed that two discrete quantum numbers 'center' and 'topology' are interchanged under S duality. A surface operator can detect topology then its dual should detect the centre and vice versa. However, there are some puzzles using these discrete quantum numbers to

\footnote{Without confusion, the rigid semisimple surface operators will be called rigid surface operator or surface operator in this study.}
find duality pair \[3\]. There is another problem that the number of rigid surface operators in the \(B_n\) theory is larger than that in the \(C_n\) theory \[3\], which was first observed in the \(B_4/C_4\) theories \[4\]. In this paper, we ignore the first problem for the moment. We focus on the symbol invariant to study the second problem of rigid surface operators between the dual theories. Hopefully, our works will be helpful in making new insight to the surface operator.

3. Contributions to symbol of rows of partition

In this section, we discuss the contributions to symbols of rows of partitions, refining the construction given in \[17\]. As applications, we analyse the \(S\) duality maps proposed in \[5\], with a preparation for the study of the mismatch problem in the \(S\)-duality map between the number of rigid surface operators in the \(B_n\) and \(C_n\) theories in the next section.

3.1. Symbol invariant of partitions

In \[17\], we proposed equivalent definitions of symbols for the partitions in the \(C_n\) and \(D_n\) theories, which are consistent with that in the \(B_n\) theory as much as possible.

Definition 1. \[17\]

- Symbol of a partition \(\lambda\) in the \(B_n\) theory: firstly add \(l - k\) to the \(k\)th part of the partition \(\lambda\). Then arrange the odd parts and the even parts of the sequence \(l + k + \lambda_k\) in increasing sequences \(2f_i + 1\) and \(2g_i\), respectively. Next calculate the terms

\[
\alpha_i = f_i - i + 1, \quad \beta_i = g_i - i + 1.
\]

Finally write the symbol as

\[
\left(\alpha_1 \alpha_2 \alpha_3 \cdots \beta_1 \beta_2 \cdots\right).
\]

- Symbol of a partition \(\lambda\) in the \(C_n\) theory:

1: If the length of partition is even, we compute the symbol as in the \(B_n\) case. And then append an extra 0 on the left of the top row of the symbol.

2: If the length of the partition is odd, we append an extra 0 as the last part of the partition. And then compute the symbol as in the \(B_n\) case. Finally, we delete a 0 in the first entry of the bottom row of the symbol.

- Symbol of a partition \(\lambda\) in the \(D_n\) theory: we append an extra 0 as the last part of the partition and then compute the symbol as in the \(B_n\) case. We delete two 0’s which occupy the first two entries of the bottom row of the symbol.

Remark 3.1. Note that the terms \(\alpha_*\) in formula \[3.14\] are related to \(f_*\) while the terms \(\beta_*\) are related to \(g_*\).

\[\text{Figure 2. Addition of an even row } b\text{ on the left partition leads to a different partition but in the same theory.}\]
Parity of the length of the ith row & Parity of $i + t + 1$ & Contribution & L

Parity	Contribution
odd	$\frac{1}{2}(\sum_{k=1}^{m} n_k + 1)$
even	$\frac{1}{2}(\sum_{k=1}^{m} n_k)$
even	$\frac{1}{2}(\sum_{k=1}^{m} n_k)$
odd	$\frac{1}{2}(\sum_{k=1}^{m} n_k - 1)$

Table 1. Contribution to symbol of the ith row of the partition $\lambda_n^{m} \lambda_{n-1}^{m-1} \cdots \lambda_1^{m-1}$. It depends on the parity of the length of row, the parameter L, and the parity of $i + t + 1$ with $t = -1$, $t = 0$, and $t = 1$ for the partitions in the B_n, C_n, and D_n theories, respectively.

Example: Symbol of the partition $\lambda = 3^2 2^2 1^1$ in the D_n theory,

\begin{equation}
(3.15)
\end{equation}

According to Table 1, the symbol is

\begin{equation}
(3.16)
\end{equation}

\[a_{(3^2 2^2 1^1)} \equiv \left(\begin{array}{c}
1 \\
0
\end{array} \right) +
\left(\begin{array}{c}
0 \\
1
\end{array} \right) +
\left(\begin{array}{c}
0 \\
0
\end{array} \right),
\]

where the superscript D indicates that it is a partition in the D_n theory.

Using the Table 1, the calculation of symbol invariant of partition become the combination of blocks. We can further refine the construction of symbol. Firstly, we study the contribution to symbol of each row of a pairwise rows of partitions in different theories. And then we study the contribution to symbol of a pairwise rows of a partition.

For the first step, we study the contributions to symbol of a row with the same location in a pairwise rows of partitions in different theories. The row a in Fig. 3 is the top row of a pairwise rows in the B_n, C_n, and D_n theories according to Propositions 2.1, 2.2, and 2.3. The row a has the same contribution to symbol in different theories.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig3.png}
\caption{Row a is the top row of a pairwise rows of partitions in the B_n, D_n, and C_n theories using Propositions 2.1, 2.2 and 2.3. The row a has the same contribution to symbol in different theories.}
\end{figure}

- If the length of the row a is $2n + 1$, according to Table 1, its contributions to symbol is

\[\left(\begin{array}{c}
0 \\
0 \\
\vdots
\end{array} \right) +
\left(\begin{array}{c}
1 \\
0 \\
\vdots
\end{array} \right) +
\left(\begin{array}{c}
0 \\
0 \\
\vdots
\end{array} \right),
\]

which are the same in different theories.

- If the length of the row a is $2n$, according to Table 1, its contributions to symbol is

\[\left(\begin{array}{c}
0 \\
0 \\
\vdots
\end{array} \right) +
\left(\begin{array}{c}
1 \\
0 \\
\vdots
\end{array} \right) +
\left(\begin{array}{c}
0 \\
0 \\
\vdots
\end{array} \right),
\]
which are the same in different theories.

Similarly, if the row \(a \) is at the bottom of a pairwise rows of a partition, its contribution to symbol is the same in different theories.

Summary, the same location of a row in a pairwise rows partition leads to the same contribution to symbol in different theories.

Figure 4. The first row \(a \) of a partition in the \(B_n \) theory can be regarded as the top row of an odd pairwise rows. With the same location of a pairwise rows, the row \(a \) has the same contribution to symbol in the \(B_n, D_n, \) and \(C_n \) theories.

Secondly, we study the contribution to symbol of the first row of partitions in the \(B_n \) and \(D_n \) theories which do not belong to a pairwise rows according to Propositions 2.1 and 2.3. Let the row \(a \) is the first row of a partition in the \(B_n \) theory with length \(2n + 1 \) as shown in Fig. (4). According to Table 1, it has a contribution to symbol as follows

\[
\begin{pmatrix}
0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
0 & \ldots & 1 & \ldots & 1 \\
\end{pmatrix}
\]

which is the same as the contribution to symbol of the top row of an odd pairwise rows in the \(B_n, C_n, \) and \(D_n \) theories with length \(2n + 1 \). Thus we claim that the first row of a partition in the \(B_n \) theory can be regarded as the top row of an odd pairwise rows.

Figure 5. The first row \(a \) in the \(D_n \) theory can be regarded as the top row of an odd pairwise rows. With the same location in a pairwise rows, the row \(a \) have the same contributions to symbols in the \(B_n, D_n, \) and \(C_n \) theories.

Similarly, we find that the first row of a partition in the \(D_n \) theory can be regarded as the top row of an even pairwise rows. As shown in Fig. (5), the row \(a \) with length \(2n \) has a contribution to symbol in the \(D_n \) theory as follows

\[
\begin{pmatrix}
0 & 0 & \ldots & 0 & 1 & \ldots & 1 \\
\ldots & 0 & \ldots & 0 & 0 & \ldots & 0 \\
\end{pmatrix}
\]

which is the same as the contribution to symbol of the top row with the same length of an even pairwise rows in the \(B_n, C_n, \) and \(D_n \) theories according to Table 1.

From the above discussions, we get the following concise proposition.

Proposition 3.1. With the same location in a pairwise rows of a partition, one row has the same contribution to symbol for partitions in the \(B_n, D_n, \) and \(C_n \) theories.

The form of the contribution to symbol of a row of a partition is shown in Table 2.
As the applications of Proposition 3.1, we study the contributions to symbol of a pairwise rows of a partition. As shown in Fig. 6, the rows a and b of an odd pairwise rows have the lengths of $2n + 1$ and $2m + 1$, respectively. According to Table 2, the pairwise rows has the contributions to symbol as follows,

\[
\begin{pmatrix}
0 & 0 & \ldots & 0 & 0 & \\
0 & 0 & \ldots & 0 & 1 & \\
\end{pmatrix},
\]

which are the same in the B_n, D_n, and C_n theories. Similarly, if the length of a is $2n$ and the length of b is $2m$, they have the contributions to symbol as follows,

\[
\begin{pmatrix}
0 & 0 & \ldots & 0 & 0 & \\
0 & 0 & \ldots & 0 & 1 & \\
\end{pmatrix},
\]

which are the same in the B_n, D_n, and C_n theories.

Summary, we get the following lemma.

Lemma 3.1. A pairwise rows of partitions in the B_n, D_n, and C_n theories has the same contributions to symbol.

Now we study the rows of partitions which have the same contribution to symbol with different lengths. According to Table 2, the bottom row of an odd pairwise rows has the same contribution to symbol as that of the top row of an even pairwise rows with one more box. Examples are shown in Fig. 7. Without an explanation, the gray boxes denote the box appended and the black boxes denote the boxes omitted in the following sections. The contribution to symbol of the row b with length $2n + 1$ in the B_n theory is

\[
\begin{pmatrix}
0 & 0 & \ldots & 0 & 0 & \\
0 & 0 & \ldots & 0 & 1 & \\
\end{pmatrix}
\]
Figure 7. Gray boxes are appended at the end of row. The length of b is l and the lengths of b_1, b_2 and b_3 are $l + 1$. The rows b, b_1, b_2, and b_3 have the same contributions to symbol.

Location in a pairwise rows	Length L of row	Contribution
top	$2n + 1$	$\begin{pmatrix} 0 & 0 \cdots & 0 & 0 \cdots & 0 \\ 0 \cdots & 1 & 1 \cdots & 1 \end{pmatrix}$
bottom	$2n$	$\begin{pmatrix} 0 & 0 \cdots & 0 \cdots & 0 \\ 0 \cdots & 1 & 1 \cdots & 1 \end{pmatrix}$

Table 3. Contribution to symbol of the top row of an odd pairwise rows with length $2n + 1$, which is the same as the contribution to symbol of the bottom row of an even pairwise rows with length $2n$.

Location in a pairwise rows	Length L of row	Contribution
bottom	$2n + 1$	$\begin{pmatrix} 0 & 0 \cdots & 1 & 1 \cdots & 1 \\ 0 \cdots & 0 & 0 \cdots & 0 \end{pmatrix}$
top	$2n$	$\begin{pmatrix} 0 & 0 \cdots & 1 & 1 \cdots & 1 \\ 0 \cdots & 0 & 0 \cdots & 0 \end{pmatrix}$

Table 4. Contribution to symbol of the bottom row of an odd pairwise rows with length $2n + 1$, which is the same as the contribution to symbol of the top row of an even pairwise rows with length $2n$.

which is the same as the contributions of the rows b_1, b_2, and b_3 in the B_n, C_n, and D_n theories, respectively.

Figure 8. Black boxes are omitted at the end of row. The length of b is l and the lengths of b_1, b_2, and b_3 are $l - 1$. The rows b, b_1, b_2, and b_3 have the same contributions to symbol.

According to Table 2, the top row of an even pairwise rows has the same contribution to symbol as that of the bottom row of an odd pairwise rows with one less box. Examples are shown in Fig. 8. The contribution to symbol of the row b with length $2n$ in the B_n theory is

$$
\begin{pmatrix}
0 & 0 \cdots & 1 & 1 \cdots & 1 \\
0 \cdots & 0 & 0 \cdots & 0
\end{pmatrix}
$$

which is the same as that of the rows b_1, b_2, and b_3 in the B_n, C_n, and D_n theories, respectively.

Summary, we have the following proposition.
Proposition 3.2. The contribution to symbol of the bottom row of an odd pairwise rows with length \(L\) is the same as that of the top row of an even pairwise rows with length \(L + 1\). And the contribution to symbol of the top row of an odd pairwise rows with length \(L\) is the same as that of the bottom row of an even pairwise rows with length \(L - 1\).

This proposition is equivalent to the contents of Tables 3 and 4. Compared with Table 1, the conclusions of Tables 3 and 4 are not limited to certain theory. As shown in Fig. 9, the rows \(a\) and \(b\) form a pairwise rows of the first partition. The second partition is obtained from the first one by omitting the rows under the row \(a\), so it is a partition in the \(C_n\) theory. The third partition is obtained from the first one by omitting the rows under the row \(b\), so it is a partition in the \(B_n\) or \(D_n\) theories, depending on the parity of the length of row \(a\). So partitions can be obtained from partitions in different theories. This picture explain that the row with the same location in a pairwise rows would have the same contribution to symbol in different theories.

According to Propositions 3.1 and 3.2, the contribution to symbol of a row is an invariant. In other words, given the contribution to symbol of a row, we can list out all possible lengths and locations of the row in a pairwise rows. Furthermore, given the symbol invariant, we can list all rigid semisimple surface operators corresponding to the invariant.

3.2. Maps preserving symbol
There are two classes of symbol preserving maps. The first class of maps takes surface operators to surface operators in the same theory. We have made a classification of the first class of maps in [19], with examples shown in Fig.(10). \((\lambda', \lambda'')\) is a rigid semisimple operator in the \(B_n\) theory. Under the map \(S_{e1221}\), the bottom row of a pairwise rows of \(\lambda'\) switches place with the top row of an pairwise row of \(\lambda''\) switch places, which preserves symbol according to Proposition 3.2. Under the map \(D_{e1221}\), the bottom row of a pairwise rows of \(\lambda'\) switches place with the bottom row of an pairwise row of \(\lambda''\) switch places, which preserves symbol according to Proposition 3.1.

The second class of maps takes surface operators to surfaces operator in different theories, for examples, the \(S\) duality maps. Without confusion, the second class of maps will be called the \(S\) duality maps in the following sections. For the construction of the \(S\) duality maps [5], the maps \(X_S\) and \(Y_S\) play significant roles. \(X_S\) map a partition with only odd rows in the \(B_n\) theory to a partition with only even rows in the \(C_n\) theory

\[
X_S : \quad m^{2n_m+1} (m-1)^{2n_{m-1}} (m-2)^{2n_{m-2}} \cdots 2^{2n_2} 1^{2n_1} \mapsto m^{2n_m} (m-1)^{2n_{m-1}+2} (m-2)^{2n_{m-2}+2} \cdots 2^{2n_2+2} 1^{2n_1-2}.
\]

(3.21)

where \(m\) has to be odd in order for the first object to be a partition in the \(B_n\) theory. As shown in Fig.(11), on the left hand of the map \(X_S\), the two rows in braces form pairwise rows. On the right hand of the map \(X_S\), the black boxes are omitted and the gray boxes are appended. And the two rows in braces belong to different pairwise rows. The bottom row on the left hand side become the top row on the right hand side while the top row on the left hand side become the bottom row on the right hand side.

Using Tables 3 and 4, we can prove the following lemma directly.

Lemma 3.2. The map \(X_S\) preserve symbol invariant.

Proof. On the left hand side of the map \(X_S\), the 2kth and (2k+1)th rows of the partition in the \(B_n\) theory form a pairwise rows excepting the first row. On the other side, the (2k-1)th and 2kth rows of the partition in the \(C_n\) theory form a pairwise rows. The first row can be regarded as the top of a pairwise rows.

According to Table 3 the contribution to symbol of the 2kth row in the \(B_n\) partition is equal to that of the (2k-1)th row in the \(C_n\) partition. According to Table 4 the contribution to symbol of the (2k+1)th row in the \(B_n\) partition is equal to that of the 2kth row in the \(C_n\) partition. So the symbols on the two sides of the map \(X_S\) are equal. □

Using Tables 3 and 4 we can prove the following lemma directly.

Lemma 3.2. The map \(X_S\) preserve symbol invariant.

Proof. On the left hand side of the map \(X_S\), the 2kth and (2k+1)th rows of the partition in the \(B_n\) theory form a pairwise rows excepting the first row. On the other side, the (2k-1)th and 2kth rows of the partition in the \(C_n\) theory form a pairwise rows. The first row can be regarded as the top of a pairwise rows.

According to Table 3 the contribution to symbol of the 2kth row in the \(B_n\) partition is equal to that of the (2k-1)th row in the \(C_n\) partition. According to Table 4 the contribution to symbol of the (2k+1)th row in the \(B_n\) partition is equal to that of the 2kth row in the \(C_n\) partition. So the symbols on the two sides of the map \(X_S\) are equal. □

![Figure 11](image1.png)
Figure 11. On the left hand of the map \(X_S\), the two rows in braces form a pairwise rows. On the right hand of the map \(X_S\), the black boxes are omitted and the gray boxes are appended. And the two rows in braces belong to different pairwise rows.

![Figure 12](image2.png)
Figure 12. On the left hand of the map \(Y_S\), the two rows in braces form a pairwise rows. On the right hand of the map \(Y_S\), the black boxes are omitted and the gray boxes are appended. And the two rows in braces belong to different pairwise rows.
Next, we introduce the map Y_S which take a rigid partition with only odd rows in the C_n theory to a rigid partition with only even rows in the D_n theory as shown in Fig. (12).

\[
Y_S : m^{2m+1} (m-1)^{2m} (m-2)^{2m-2} \cdots 2^{n} 1^{2n}
\rightarrow m^{2m} (m-1)^{2m-1+2} (m-2)^{2m-2} \cdots 2^{n} 1^{2n+1}
\]

(3.22)

where m has to be even in order for the first element to be a C_k partition. The bottom row on the left hand side become the top row on the right hand side while the top row on the left hand side become the bottom row on the right hand side. Similarly, we can prove the following lemma.

Lemma 3.3. The map Y_S preserve symbol invariant.

Summary, under the map X_S, we get a partition λ_{even} with only even rows in the C_n theory from a partition ρ_{odd} with only odd rows in the B_n theory,

\[
X_S : \rho_{\text{odd}} \rightarrow \rho_{\text{even}}.
\]

Under the map Y_S, we get a partition λ_{even} with only even rows in the D_n theory from a partition ρ_{odd} with only odd rows in the C_n theory,

\[
Y_S : \rho_{\text{odd}} \rightarrow \rho_{\text{even}}.
\]

The common characteristics of the maps X_S and Y_S are to append a box at the end of the bottom row of a pairwise rows and to delete a box at the end of the top row for a partition with only odd rows. Compared Fig. (11) with Fig. (12), the relationship between the map X_S and the map Y_S is

\[
X_S(m \rightarrow m-1) = Y_S.
\]

(3.23)

Thus the map Y_S can be regarded as a special case of the map X_S. In fact, the Fig. (11) explain this result.

3.3. S-duality maps for rigid surface operators

Combined the addition rules (2.12) the maps X_S and Y_S can be used to construct the S duality maps of surface operators. The S duality maps have the following form

\[
S : (\lambda, \rho)_{GL} \rightarrow (\lambda', \rho'')_{GL}.
\]

which preserve symbol. In [6], Wyllard made explicit proposals for how the S-duality map should act on unipotent surface operators and certain subclasses of semisimple surface operators, which passe all consistency checks. In [7], we made new proposals for certain subclasses of semisimple surface operators.

These S-duality maps can be explained naturally as the symbol preserving maps using Propositions (3.1) and (3.2) drawing the conclusion directly and avoid complicated derivation.

For rigid unipotent operators (λ, \emptyset) in the B_n theory

The S-duality map is

\[
(3.25) \quad WB : (\lambda, \emptyset)_B \rightarrow (\lambda_{\text{odd}} + \lambda_{\text{even}}, \emptyset) \rightarrow (X_S \lambda_{\text{odd}}, \lambda_{\text{even}})_C.
\]

Start by splitting the Young tableau λ into tableau λ_{even} constructed from even rows only and tableau λ_{odd} constructed from the odd rows only. Next the map X_S turns λ_{odd} to a partition with only even rows while λ_{even} is left unchanged. Finally, the duality operator corresponding to (λ, \emptyset) in the C_n theory is $(X_S \lambda_{\text{odd}}, \lambda_{\text{even}})$. According to Proposition (3.1) and Lemma (3.2) the map WB preserve the symbol. An example illustrates the procedure.

Example: For the B_{16} partition, $\lambda = 5 4^2 3^3 2^4 1^3$, applying the map WB, we find

\[
(3.26) \quad WB : \quad \rightarrow \quad \left(\begin{array}{cccccccccccc}
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\end{array} \right)
\]

which leads to the semisimple C_{16} surface operator $(2^4 1^8, 2^6 1^4)$.

For rigid unipotent operators (λ, \emptyset) in the C_n theory

Similarly, the following S-duality map preserve symbol,

\[
(3.27) \quad WC : (\lambda, \emptyset)_C \rightarrow (\lambda_{\text{odd}} + \lambda_{\text{even}}, \emptyset) \rightarrow (X_S^{-1} \lambda_{\text{even}}, Y_S \lambda_{\text{odd}})_B.
\]

The unipotent conjugacy classes (nilpotent orbits) are related to the partitions by Kazhdan-Lusztig map. It would be interesting to study the inspiration of the relationship on the nilpotent orbits.
For semisimple surface operators \((\rho; \rho)\) in the \(C_n\) theory

The \(S\)-duality map is

\[(3.28) \quad W_{CC} : (\rho; \rho)_{C} \rightarrow (\rho_{\text{even}} + \rho_{\text{odd}}; \rho_{\text{odd}} + \rho_{\text{even}}) \rightarrow (\rho_{\text{even}} + X_{S}^{-1} \rho_{\text{even}}; \rho_{\text{odd}} + Y_{S} \rho_{\text{odd}})_{B}.\]

Firstly, split two equal tableaux into even-row tableaux \(\rho_{\text{even}}\) and odd-row tableaux \(\rho_{\text{odd}}\). Then apply the map \(X_{S}\) to one of the odd-row tableaux and apply the map \(Y_{S}^{-1}\) to the even-row tableau in the other semisimple factor. Next add the altered and unaltered even-row tableaux to form one of the two partitions in a semisimple \(B_n\) operator. Finally, do the same to the odd-row tableaux and lead to a semisimple operator in the \(B_n\) theory.

\((\rho_{\text{even}} + X_{S}^{-1} \rho_{\text{even}}; \rho_{\text{odd}} + Y_{S} \rho_{\text{odd}})_{B}\) is a rigid surface operator. An illustration is made through an example as shown in Fig. 13. A pairwise rows of \(\rho_{\text{even}}\) are placed between the bottom and the top row of a a pairwise rows of \(X_{S}^{-1} \rho_{\text{even}}\), not violating the rigid conditions. A pairwise rows of \(\rho_{\text{odd}}\) are placed between the bottom and the top row of a pairwise rows of \(Y_{S} \rho_{\text{odd}}\), not violating the rigid conditions. According to Proposition 3.1, the partitions \(\rho_{\text{even}}\) and \(\rho_{\text{odd}}\) have the same contributions to symbol on the two sides of the map \(W_{CC}\). According to Proposition 3.2, the partitions \(X_{S}^{-1} \rho_{\text{even}}\) and \(Y_{S} \rho_{\text{odd}}\) have the same contributions to symbol on the two sides of the map.

For semisimple surface operators \((\lambda_{\text{even}}; \rho_{\text{odd}})\) in the \(C_n\) theory

In [6], we propose a \(S\)-duality map in the sense of symbol invariant as follows,

\[(3.29) \quad C_{B_{co}} : (\lambda_{\text{even}}; \rho_{\text{odd}})_{C} \rightarrow (X_{S}^{-1} \lambda_{\text{even}}; Y_{S} \rho_{\text{odd}})_{B},\]

which preserves symbol according to Proposition 3.1. One example of this duality is shown in the eighteenth example in the appendix.

3.4. Discussions

The \(S\) duality maps preserve symbol invariant and other invariants of partitions. Compared to other invariants, the symbol is more easier to be calculated and more convenient to find the \(S\)-duality maps. Through not all symbol preserving maps are \(S\) duality maps, a more thorough understanding them might lead to progress. Propositions 3.1 and 3.2 make the the contribution to symbol of rows visualization. Proposition 3.1 implies the symbol preserving operations that moving a row of a partition to another partition with the same location in a pairwise rows. One example is that leaving \(\lambda_{\text{even}}\) unchanged in the \(S\) duality map \(WB\). Proposition 3.2 implies the symbol preserving operations such as the maps \(X_{S}, Y_{S}\) and their inverse maps. We also find the important maps \(X_{S}\) and \(Y_{S}\) are essentially the same map.
In fact, the contribution to symbol of a row in a partition is also an invariant. It do not change under the first class of maps and second one. Fig. 9 explain this result.

With these principles in mind, we will discuss the constructions of the rigid operators in the B_n theory from the C_n theory and vice versa in next section, where the operations in Propositions 3.1 and 3.2 will be used frequently as well as the maps X_S, Y_S.

4. Mismatch of the rigid semisimple surface operator between dual theories

There is a discrepancy of the number of rigid surface operators between the B_n and C_n theories, which was first observed in the B_4/C_4 theories in [4]. Using the generating function for the total number of rigid surface operators(both unipotent and semisimple), Wyllard found that the difference of number of operators between the B_n and C_n theory is

$$q^9 + 2q^{11} + 4q^{13} + 5q^{15} + 9q^{17} + 12q^{19} + 17q^{21} + 23q^{23} + \cdots$$

where the degree corresponds to the rank n of Lie algebra.

The discrepancy issue is clearly a major problem. Wyllard gave examples and made a preliminary analysis of the problematic surface operators in [4]. As shown in the appendix, it seems that there are two types of mismatches of rigid surface operators between the B_n theory and C_n theory. The first one is that certain surface operators in B_n/C_n theory do not have duals. And the second one is that the number of surface operators with certain invariants in B_n theory is more than that in the C_n theory.

In this section, we analyse the mismatch problem based on constructions of symbol presented in previous sections. We find that the discrepancy issue originates from the rigid conditions of rigid partitions.

4.1. Changes of the first row of a partition under S duality

According to Tables 3 and 4, the contribution to the symbol of each row of a partition will not change under the symbol preserving map, which means the contribution to symbol of a row is an invariant. So the longest row of the two factors of a rigid surface operator will still be the longest row on the other side of the S-duality map. According to Propositions 2.1, 2.2, and 2.3, the first two rows of the C_n partitions form a pairwise rows, while the first row of partitions in the B_n theory do not belongs to a pairwise rows. With these facts in mind, there are two choices for the movements of the longest row in the second class of the symbol preserving maps (S-duality maps).

1. For the first choice, the longest row moves from one factor of the rigid semisimple surface operator to the other factor, which will be studied in Sections 4.2, 4.3.

2. For the second one, the longest row stays in the same factor, which will be studied in Sections 4.4.

These two choices correspond to two strategies to construct the S-duality maps.

The first class of the symbol maps which is the maps between the rigid semisimple surface operator have been classified in [4]. They are one to one correspondence on the two side of the S-duality map, which will be illustrated in Section 4.3.

4.2. Generating B_n rigid semisimple surface operators from the C_n theory

In this subsection, we propose algorithms to generate B_n rigid semisimple surface operators from that of the C_n theory. The two factors of C_n rigid semisimple surface operators are partitions in the C_n theory. The first two rows of a rigid C_n partition form a pairwise rows according to Proposition 2.2. And thus the parities of the length of the first two rows of the factors of the C_n rigid semisimple surface operator have the same parity or different.

Firstly, consider the case that the first two rows of both factors of the C_n rigid semisimple surface operator have the same parities. And there are two cases according to the parity of the length of the first row.

- The first two rows of both factors of a rigid surface operator are even. The algorithm EE is defined in Fig. 13. Without lose of generality, we assume the first row of the partition C_2 is the longest row of the partitions C_1 and C_2. Take the longest row from one factor to another one and append a gray box at the end of it. The partition C_1 become the partition B_1 and the partition C_2 become the partition D_2.
The partitions C_1 and C_2 are in the C_n theory, with first two rows even. And the partitions B_1 and D_2 are in the B_n and D_n theories, respectively.

• The first two rows of both factors of a rigid surface operator are odd. The algorithm OO is defined in Fig. 15. Without lose of generality, we assume the first row of the partition C_2 is the longest row of the partitions C_1 and C_2. Take the longest row from one factor to another one and append a gray box at the end of it. The partition C_1 become the partition D_2 and the partition C_2 become the partition B_1.

According to Tables 3 and 4, we have the following proposition.

Proposition 4.1. The algorithms EE and OO preserve symbol. These algorithms also preserve the rigid conditions.

Proposition 4.2. The algorithms EE and OO preserve rigid conditions of partitions.

Proof. We prove the proposition for the algorithm EE. As shown in Fig. 14, there are no gaps appearing in the B_n rigid semisimple surface operator (B_1, D_2). And the even integers in the partitions C_1, C_2 become the odd integers in the partitions B_1, D_2. Since no even integer appears exactly twice in the symplectic (C_n) partitions C_1, C_2, no odd integer appears exactly twice in the orthogonal D_n partitions D_2 and no odd integer (≥ 3) appears exactly twice in the orthogonal B_n partitions B_1. Since the difference of lengths between the longest row appended a gray box and the second row of the partition B_1 is odd, the part '1' would not appear twice in the partition B_1.

Similarly, we can prove the algorithms OO preserve the rigid conditions of partitions. □

Secondly, consider the case that the first two rows of factors of the C_n rigid semisimple surface operator are of different parities. According to the parity of the length of the longest row, there are two cases.

• The length of the longest row of two factors is even. If the first row of C_2 is the longest and the length even, we propose an algorithm CE to get a B_n rigid semisimple surface operator from the C_n one as shown in Fig. 16. We add the longest row to C_1 and append a gray box, leading to a B_n partition B_1 and a D_n partition D_2. The D_n partition D_2 satisfy the rigid conditions as Proposition 4.2.
The first row of C_2 is the longest of the two partitions on the left hand side of CE. Add it to C_1 and append a gray box as the last part of the longest row.

The first row of C_2 is the longest of the two partitions on the left hand side of CO. Add it to C_1 and append a gray box as the last part of the longest row.

- The length of the longest row of two factors is odd. If the first row of C_2 is the longest and the length is odd, we propose an algorithm CO as shown in Fig. (17). We add the longest row to C_1 and append a gray box, leading to a D_n partition D_2 and a B_n partition B_1.

 The B_n partition B_1 satisfy the rigid conditions as Proposition 4.2.

It is easy to prove the following proposition according to Tables 3 and 4.

Proposition 4.3. The algorithms CE and CO preserve symbol.

However, under the algorithms CE and CO, the partitions B_1 and D_2 do not always preserve the rigid condition.

IC type problematic surface operators: $L(C_1)$ and $L(C_2)$ denote the lengths of the partitions of C_1 and C_2, respectively.

- If $L(C_1) = L(C_2) - 1$, the part ‘1’ appear twice in the B_n partition B_1 under the algorithm CE, violating rigid condition (2) in Section 2.1.
- If $L(C_1) = L(C_2) - 1$, the part ‘1’ appear twice in the D_n partition D_2 under the algorithm CO, violating rigid condition (2) in Section 2.1.

For these problematic operators, we may try to add the shorter row of the first rows of the factors of the C_n rigid semisimple surface operator from one factor to the other one. However, these procedures do not lead to rigid surface operators, violating the rigid condition $\lambda_i - \lambda_{i+1} \leq 1$ as shown in Figs. (15) and (16).

- If $L(C_1) = L(C_2) - 1$, and then $\lambda_{i-1} - \lambda_i = 2$ in the D_n partition D_2 under the algorithm COS, violating rigid condition (1) in Section 2.1.
- If $L(C_1) = L(C_2) - 1$, and then $\lambda_{i-1} - \lambda_i = 2$ in the B_n partition B_1 under the algorithm CES, violating rigid condition (1) in Section 2.1.

To dispel the obstruction of the algorithm CE, we may try to map the C_n operator to another C_n operator with the same symbol as shown in Fig. (20) before taking the algorithm CE. We swap the row a of the partition C_1 with the row b of the partition C_2 by deleting the last box of the row b and appending a box at the end of the row a. However the first two rows of the new factor C_2 would have the same lengths, violating the rigid condition (1). We can get the same conclusion for the operator (C_1, C_2) before taking the algorithm CO.

Summary, the C_n rigid semisimple surface operators (C_1, C_2) with $|L(C_1) - L(C_2)| = 1$ can not have rigid B_n duals. These problematic surface operators are denoted as the IC type.

For one class of the special rigid semisimple surface operator $(\lambda_{\text{even}}, \lambda_{\text{odd}})_C$, there is another strategy to construct the S-duality maps. We will come back this problem in Section 4.7.

4.3. Generating C_n rigid semisimple surface operators from the B_n theory

The construction of rigid semisimple surface operators in the C_n theory from that in the B_n theory is roughly parallel to the discussions in the last subsection. According to Propositions 2.1 and 2.2, the first row of the partitions in B_n theory is odd and the first row of the partitions in D_n theory is even.

There are two cases according to the location of the longest row of the factors of the B_n rigid semisimple surface operators.

- The longest row of the rigid semisimple surface operator is the first row of the B_n partition $B1$. We suggest the algorithm BO as shown in Fig. (21): delete the last box of the longest row and then add it to the D_n partition $D2$. Then the first two rows of the C_n partitions $C2$ are even. And the partition $C1$ satisfies the rigid condition naturally.

- The longest row of the rigid semisimple surface operator is the first row of the D_n partition $D2$. We suggest the algorithm BE as shown in Fig. (22): delete the last box of the longest row and then add it to the B_n partition $B1$. Then the first two rows of the C_n partitions $C1$ are odd. And the partition $C2$ satisfies the rigid condition naturally.
Partitions B_1 and D_2 are in the B_n and D_n theories, respectively. Partitions C_1 and C_2 are in the C_n theory. Algorithm BO maps B_n rigid semisimple surface operators to C_n rigid semisimple surface operators.

Partitions B_1 and D_2 are in the B_n and D_n theories, respectively. Partitions C_1 and C_2 are in the C_n theory. Algorithm BE maps B_n rigid semisimple surface operators to C_n rigid surface operators.

However, the partitions C_2 under the algorithms BO and C_1 under the algorithms BE do not always preserve the rigid conditions.

IB type problematic surface operators: $L(B_1)$ and $L(D_2)$ denote the lengths of the partitions B_1 and D_2, respectively.

- If $L(B_1) = L(D_2) + 1$, then $\lambda_{l-1} - \lambda_l = 2$ in the partition C_2 under the algorithm BO, violating the rigid condition.
- If $L(B_1) = L(D_2) - 1$, then $\lambda_{l-1} - \lambda_l = 2$ in the partition C_1 under the algorithm BE, violating the rigid condition.

To dispel the obstruction of the algorithm BO with $L(B_1) = L(D_2) + 1$, we may try to take the B_n operator to another B_n operator by symbol preserving map as shown in Fig. (23)(a). We swap the row a with row b, deleting the last box of the row b and appending a box at the end of the row a. However this operation will not lead to a rigid surface operator since the integer '1' would appear twice in the B_n partition B_1, violating the rigid condition. We may swap the even row b with even row c as shown in Fig. (23)(b). From the condition $L(B_1) = L(D_2) + 1$, we have $L(b) \geq L(a)$. So this operation will not lead to a rigid surface operator B_1 in the end.

Similarly, the above operations will not improve the algorithm BE to get a rigid semisimple surface operator under the condition $L(B_1) = L(D_2) - 1$.

Summary, the B_n rigid semisimple surface operators (B_1, D_2) with $|L(B_1) - L(D_2)| = 1$ cannot have rigid C_n duals. These problematic surface operators are denoted as the IB type.

For the class of the special rigid surface operators $(\lambda_{\text{odd}}, \lambda_{\text{even}})_B$, there is another strategy to construct the S-duality maps. We will come back to this problem in Section 4.7.

4.4. One to one correspondence of maps preserving symbol

The second class of symbol preserving maps is also called S-duality maps, which take rigid semisimple surface operator to another rigid semisimple surface operator in the dual theory. For examples, the algorithms proposed in the last two subsections. We find the following relationship between the symbol preserving maps on the two side of these algorithms.
Proposition 4.4. For the algorithms EE, OO, CO, CE, BO, and BE preserving symbol and the rigid conditions, there are one to one correspondence of the first class of symbol preserving maps on the two side of these algorithms.

Proof. We prove the proposition for the algorithm EE as shown in Fig. (24). According to the discussions in Section 4.1 for generating rigid semisimple surface operator in the B_n theory from that in the C_n theory, the change of the longest row is fixed. The changes are one to one correspondence between the blue parts on the two sides of algorithm EE.

Similarly, we can prove the proposition for the algorithms OO, CO, CE, BO, and BE. □

Remark 4.1. The algorithms EE, OO, CO, CE, BO, and BE can be regarded as functors between dual theories, since they not only map the operators in one theory to that of the dual theory but also map the changes on one side of the algorithms to that of the other side.

We illustrate this proposition by two examples as shown in Fig. (25) and Fig. (26). The algorithm EE map the C_n surface operators to B_n surface operators. The rows c_{11}, c_{12}, c_{21}, and c_{22} have the same parities.

For the first example as shown in Fig. (25), the operation that the rows c_{11} and c_{21} swap places is denoted by down arrow on the left hand side of the algorithms EE, which leads to a new rigid semisimple surface operator in the C_n theory. According to Proposition 3.3, this operation preserves symbol and corresponds to the operation swapping c_{11} with c_{21} denoted by down arrow on the right hand side of the algorithms EE.
Figure 25. Algorithm EE take the map preserving symbol of the C_n rigid surface operator to that of the B_n rigid surface operator.

For the second example as shown in Fig. (26), the row $c21$ of $C2$ is inserted into $C1$. The row $c21$ and rows above it of the partition $C2$ would change parities as well as the rows above the $c11$ of the partition $C1$. This operation is denoted by down arrow on the left hand side of the algorithms EE, leading to a new semisimple rigid semisimple surface operator in the same theory. According to Proposition 3.2, this operation preserve symbol and corresponds to operation denoted by down arrow on the right hand side of the algorithms EE.

Figure 26. Algorithm EE take the map preserving symbol of the C_n rigid surface operator to that of the B_n rigid surface operator.

As an application, Proposition 4.4 ensure the equality of the number of rigid surface operators on two sides of these algorithms (S duality maps).

4.5. II type problematic surface operators

Besides the IC and IB problematic surface operators, there is another kind of problematic surface operators: the number of surface operators of one theory is more than that of the dual theory
Figure 27. Partition C_1 with only even rows and the partition C_2 with odd rows are in the C_n theory. The partitions B_1 with only odd rows and D_2 with only even rows are in the B_n and D_n theories, respectively. Algorithm OE take the surface operators in the C_n theory to that in the B_n theory.

with the same symbol invariant. The number of surface operators in the B_n theory is one more than that in the C_n theory as shown in the 18th and 19th examples in the appendix.

This kind of problematic surface operators appear in the second strategy for the construction of the S duality maps. $(\lambda_{even}, \rho_{odd})_C$ is a surface operator in the C_n theory, and λ_{even} and ρ_{odd} are partitions with even rows and odd rows only, respectively. We take the following algorithm OE to get the B_n rigid semisimple surface operators from that of the C_n theory as shown in Fig. 27.

$$OE : (\lambda_{even}, \rho_{odd})_C \rightarrow (X_S^{-1}\lambda_{even}, Y_S\rho_{odd})_B \rightarrow (\lambda'_{odd}, \rho'_{even})_B.$$

Figure 28. A pairwise rows r_2 and r_3 of the partition C_1 are inserted into the partition C_2. And A pairwise rows r_2 and r_3 of the partition B_1 are inserted into the partition D_2. These two operations are one to one correspondence under the algorithm OE.

On the other hand, the algorithm OE as a functor map the symbol preserving changes of C_n surface operator $(\lambda_{even}, \rho_{odd})_C$ to that of the B_n one as shown in Fig. 28. However not all the changes on the right hand side of OE could be realized on the left hand side. As shown in Fig. 29, the even row r_1 is the top row of a pairwise rows of the partition C_1, and the odd row r_2 is the bottom row of a pairwise rows of the partition C_2. The length of r_1 is shorter than that of the row r_2. Under the algorithm OE, to preserve the symbol, the row r_1 becomes odd and becomes the bottom row of a pairwise rows of B_1, and the row r_2 becomes even and becomes the top row of a pairwise rows of D_2. Now we take the B_n rigid semisimple surface operator $(\lambda'_{even}, \rho'_{odd})$ to another B_n rigid semisimple surface operator under the down arrow on the right hand side of OE. We put the r_1 and the parts above it above r_2 of D_2. This change of the B_n rigid semisimple surface operator $(X_S^{-1}\lambda_{even}, Y_S\rho_{odd})$ can not be realized in the C_n rigid
semisimple surface operator $(\lambda_{\text{even}}, \rho_{\text{odd}})$. Assume r_1 is putted above r_2 on the left hand side of OE, corresponding to the down arrow on the left hand side of OE as shown in Fig. (29), then they form a pairwise rows with different parities, which is a contradiction.

Figure 29. Algorithm OE take the C_n rigid semisimple surface operator $(\lambda_{\text{even}}, \rho_{\text{odd}})$ to the B_n rigid semisimple surface operator $(X_{S}^{-1}\lambda_{\text{even}}, Y_{S}\rho_{\text{odd}})$. The row r_1 and the rows above r_1 of B_1 are placed upon the row r_2 of D_2 under the algorithm OE. The operation corresponding to the down arrow on the right hand of OE fail to be realized on the left hand side of OE.

The algorithms in Figs. (28) and (29) are particularly revealing. For the C_n operators $(\lambda_{\text{even}}, \rho_{\text{odd}})$, the algorithm OE will work when the algorithm in Sections 4.2 fail to preserve rigid conditions. Since not all the symbol preserving maps of surface operators on the right side of OE can be realized on the left side, the number of rigid B_n surface operators is more than that of the C_n surface operators with the symbol invariant of the rigid semisimple surface operator in Fig.(29). We denote them as the IIC type problematic surface operators.

Similarly, we can propose an algorithm OE to get C_n rigid semisimple surface operators from that of the B_n theory as follows

$$EO : (\lambda^{\prime}_{\text{odd}}, \rho^{\prime}_{\text{even}})B \rightarrow (X_{S}\lambda^{\prime}_{\text{even}}, Y_{S}^{-1}\rho^{\prime}_{\text{odd}})C \rightarrow (\lambda_{\text{even}}, \rho_{\text{odd}})C.$$

And we come to the conclusion that the number of rigid C_n surface operators is more than that of the B_n surface operators for certain symbol invariant. We denote them as the IIB type problematic surface operators.

4.6. Generating D_n rigid semisimple surface operator from the D_n theory

Since the langlands dual groups of $SO(2n)$ are themselves, the D_n theory is self duality. The first class of symbol preserving maps is the same with the second class of symbol preserving map. Thus the S-duality pairs can be realized by the first class of symbol preserving maps, which do not lead to semisimple surface operators violating rigid conditions. For the certain symbol invariant with only one rigid semisimple surface operator, we suggest the following S duality map

$$1 : (\lambda, \rho)_{D} \rightarrow (\lambda, \rho)_{D},$$

which map a rigid surface operator to itself.

4.7. Classification of problematic surface operators and discussions

We find new type of of problematic operators excepting all the ones given in [5]. Even more, the algorithms proposed give all the problematic rigid surface operators. The classification of the problematic surface operators in the previous sections is given by Table 5. The discussions in Section 4.4 and Proposition 4.4 ensure it is a completeness classification.
Table 5. Classification of problematic surface operators. The subscripts odd and even mean partitions with only odd and even rows, respectively.

We find two types of problematic surface operators in this study which are denoted as I and II. For the non-problematic surface operators, we have the commutation relation as shown in Fig. (30). The I type surface operators exists only in one theory which mean the map \(f \) can not work in Fig. (30). For example, the algorithm \(BO \) can not map the operators in \(B_n \) theory to that in \(C_n \) theory with restriction conditions given in Table 5. And the II type one are surface operators which do not have the same number of operators in dual theories with certain symbol. It means that the map \(g \) can be only realized in one theory as shown in Fig. (29). The origin of both types of problematic surface operators are the rigid conditions.

We can learn much from Table 5. When the algorithms \(CE \) and \(CO \) work, they would realize all the \(S \) duality pairs with certain symbol. When the algorithms \(CE \) and \(CO \) fail to realize the \(S \) duality pairs, the algorithm \(OE \) is the only choice to work, which is an evidence of the \(S \) duality map \(CB_{eo} \) (3.29).

From formula (4.30), one gets further insight into the mismatch problem. The coefficient is positive, which imply that the number of rigid surface operators in the \(B_n \) theory is larger than that in the \(C_n \) theory. A naive guess would be that there are more \(B_n \) surface operators than \(C_n \) surface operators with the given symbol. In fact, in Fig. 30, it only point out that the number of the \(B_n \) surface operators is more than the number of the \(C_n \) surface operators. They do not find that there are rigid surface operators in the \(C_n \) theory which do not have candidate duals in the \(B_n \) theory. However, according to Table 5, the IC type \(C_n \) problematic surface operators can not have duals in the \(B_n \) theory under the algorithms \(BE \) and \(BO \). They also did not find the IIC type problematic surface operators in the \(C_n \) theory.

The number of the rigid surface operators which do not have candidate duals in the \(C_n \) theory do increase with the rank \(n \) from the discussion in Section 4.2. Fortunately, the excess number of states divided by the total number appears to approach zero as \(n \to \infty \). So one hopes that only a minor modification is needed to make the numbers match, which is consistent with the fact that most rigid surface operators do seem to have candidate duals.

The physical reason for the discrepancy is still unknown. Throughout this paper we will only consider strongly rigid operators which we refer to as rigid surface operator. From the discussions, we should also take account of the larger class including the weakly rigid surface operators discussed in [3] or the quantum effect to resolve the mismatch in the total number of rigid surface operators. Clearly more work is required.
Furthermore, the construction of symbol invariant can be used to study the S duality of the rigid surface operators in other Langlands dual groups such as exception Lie algebra, and the research problems related to the Springer correspondence.

Acknowledgments

We would like to thank Zhisheng Liu and Qi Li for many helpful discussions. Chuanzhong Li is supported by the National Natural Science Foundation of China under Grant No.12071237.

Appendix A. Rigid semisimple surface operators in $SO(13)$ and $Sp(12)$

The first column is the type of the duality maps listed in [6]. The second and third columns list pairs of partitions corresponding to the surface operators in the B_n and C_n theories. The other columns are the dimension, symbol invariant, and fingerprint invariant of the surface operator, respectively. Even the mismatch in the total number of rigid surface operators in the B_n and C_n theories can be explained. The 18th and 19th pairs of rigid semisimple surface operators belong to the II type mismatch. The 20th, 23th, and 24th pairs of rigid semisimple surface operators belong to the I type mismatch.
Num	$Sp(12)$	$SO(13)$	Dim	Symbol	Fingerprint
1	$(1^{12}; 0)$	$(1^{13}; 0)$	0	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$	$[1^6; 0]$
2	$(2^{10}; 0)$	$(1; 1^{12})$	12	$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$	$[1^5; 1]$
3	$(1^{10}; 1^{2})$	$(2^{2}; 1^{9}; 0)$	20	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 2 \end{pmatrix}$	$[2^{14}; 0]$
4	$(2^{2}; 0)$	$(1; 2^{2}; 1^{8})$	30	$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$	$[1^{3}; 1^{3}]$
5	$(2^{18}; 1^{2})$	$(1^{3}; 1^{10})$	30	$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$	$[1^{3}; 1^{3}]$
6	$(1^{8}; 1^{4})$	$(2^{4}; 1^{5}; 0)$	32	$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 2 & 2 \end{pmatrix}$	$[2^{2}; 1^{2}; 0]$
7	$(2^{4}; 1^{4}; 0)$	$(3^{2}; 1^{6}; 0)$	36	$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$	$[1^{2}; 1^{4}]$
8	$(1^{8}; 2^{1^{2}})$	$(1^{9}; 1^{4})$	36	$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$	$[1^{2}; 1^{4}]$
9	$(1^{6}; 1^{6})$	$(2^{6}; 1; 0)$	36	$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 2 & 2 & 2 \end{pmatrix}$	$[2^{2}; 0]$
10	$(2^{2}; 1^{2}; 0)$	$(1; 2^{4}; 1^{4})$	40	$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$	$[1^{1}; 1^{5}]$
11	$(2^{1^{6}}; 1^{4})$	$(1^{5}; 1^{8})$	40	$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$	$[1^{1}; 1^{5}]$
12	$(1^{6}; 2^{1^{4}})$	$(1^{7}; 1^{6})$	42	$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	$[0; 1^{6}]$
13	$(3^{2}; 2^{1^{4}}; 0)$	$(1^{3}; 2^{2}; 1^{6})$	44	$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$	$[3^{2}; 1^{2}]$
14	$(2^{3}; 1^{4}; 1^{2})$	$(2^{2}; 1; 1^{8})$	44	$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$	$[3^{2}; 1^{2}]$
15	$(2^{1}; 2^{1}; 0)$	$(1; 3^{2}; 2^{1^{5}})$	44	$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$	$[2^{1}; 2^{2}]$
16	$(2^{4}; 1^{2}; 1^{2})$	$(2^{2}; 1^{5}; 1^{4})$	48	$\begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$	$[3^{1}; 2^{2}]$
17	$(2^{1}; 2^{1})$	$(1; 3^{2}; 2^{1})$	48	$\begin{pmatrix} 2 & 2 & 2 \\ 0 & 0 & 0 \end{pmatrix}$	$[2^{2}; 2]$
18	$(2^{3}; 1^{2}; 1^{4})$	$(1^{5}; 2^{2}; 1^{4})$	50	$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 \end{pmatrix}$	$[3; 1^{3}]$
19	$-$	$(2^{2}; 1^{3}; 1^{6})$	50	$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 \end{pmatrix}$	$[3; 1^{3}]$
20	$-$	$(2^{4}; 1^{1}; 4)$	52	$\begin{pmatrix} 0 & 1 & 1 \\ 2 & 2 \end{pmatrix}$	$[3^{2}; 0]$
21	$(2^{3}; 2^{1}; 2^{1})$	$(1^{3}; 3^{2}; 2^{1^{3}})$	54	$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 3 \end{pmatrix}$	$[3^{1}; 2]$
22 *	$(3^{2}; 2^{1}; 1^{2})$	$(2^{2}; 1; 2^{2}; 1^{4})$	54	$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \end{pmatrix}$	$[3; 2^{1}]$
23	$-$	$(1^{5}; 3^{2}; 2^{1})$	56	$\begin{pmatrix} 0 & 2 & 2 \\ 1 & 1 \end{pmatrix}$	$[3; 2^{1}]$
24	$-$	$(2^{2}; 1; 3^{2}; 2^{1})$	60	$\begin{pmatrix} 2 & 2 \\ 2 \end{pmatrix}$	$[0; 2^{3}]$

References

[1] D. H. Collingwood and W. M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold, 1993.
[2] S. Gukov and E. Witten, Gauge theory, ramification, and the geometric Langlands program, [arXiv:hep-th/0612073](http://arxiv.org/abs/hep-th/0612073)
[3] E. Witten, Surface operators in gauge theory, Fortsch. Phys., 55 (2007) 545–550.
[4] S. Gukov and E. Witten, Rigid surface operators, [arXiv:0804.1161](http://arxiv.org/abs/0804.1161)
[5] N. Wyllard, Rigid surface operators and S-duality: some proposals, arXiv: 0901.1833
[6] B. Shou, Symbol, Rigid surface operators and S-duality, preprint, 26pp, arXiv: 1708.07388
[7] G. Lusztig, A class of irreducible representations of a Weyl group, Indag.Math, 41(1979), 323-335.
[8] G. Lusztig, Characters of reductive groups over a finite field, Princeton, 1984.
[9] N. Spaltenstein, Order relations on conjugacy classes and the Kazhdan-Lusztig map, Math. Ann., 292 (1992) 281.
[10] C. Montonen and D. I. Olive, “Magnetic monopoles as gauge particles?,” Phys. Lett. B72 (1977) 117.
[11] P. Goddard, J. Nuysts, and D. I. Olive, Gauge theories and magnetic charge, Nucl. Phys., B125 (1977) 1.
[12] P. C. Argyres, A. Kapustin, and N. Seiberg, On S-duality for non-simply-laced gauge groups, JHEP, 06 (2006) 043, arXiv:hep-th/0603048
[13] J. Gomis and S. Matsuura, Bubbling surface operators and S-duality, JHEP, 06 (2007) 025, arXiv:0704.1657
[14] N. Drukker, J. Gomis, and S. Matsuura, Probing $\mathcal{N} = 4$ SYM with surface operators, JHEP, 10 (2008) 048, arXiv:0805.4199
[15] S. Gukov, Surfaces Operators, arXiv:1412.7145
[16] B. Shou, Solutions of Kapustin-Witten equations for ADE-type groups, preprint, 26pp, arXiv:1604.07172
[17] B. Shou, Symbol Invariant of Partition and Construction, preprint, arXiv:1708.07084
[18] B. Shou, and Q. Wu, Construction of the Symbol Invariant of Partition, preprint, arXiv:1708.07090
[19] B. Shou, Invariants of Partitions, arXiv:1711.10356.
[20] M. Henningson and N. Wyllard, Low-energy spectrum of $\mathcal{N} = 4$ super-Yang-Mills on T^3: flat connections, bound states at threshold, and S-duality, JHEP, 06 (2007), arXiv:hep-th/0703172
[21] M. Henningson and N. Wyllard, Bound states in $\mathcal{N} = 4$ SYM on T^3: Spin(2n) and the exceptional groups, JHEP, 07 (2007) 084, arXiv:0706.2803
[22] M. Henningson and N. Wyllard, Zero-energy states of $\mathcal{N} = 4$ SYM on T^3: S-duality and the mapping class group, JHEP, 04 (2008) 066, arXiv:0802.0660
[23] B. Shou, J.F. Wu and M. Yu, AGT conjecture and AFLT states: a complete construction, arXiv:1107.4784
[24] B. Shou, J.F. Wu and M. Yu, Construction of AFLT States by Reflection Method and Recursion Formula, Communications in Theoretical Physics, 61 (2014) 56–68
[25] Z.S. Liu, B. Shou, J.F. Wu, Y.Y. Xu and M. Yu, Construction of AFLT States for $W_n \otimes \mathcal{H}$, Symmetry, Analytic Continuation and Integrability on AGT Relation, Communications in Theoretical Physics, 63 (2015) 487–498
[26] Bin Chen, Wei He, Jun-Bao Wu, Liang Zhang, M5-branes and Wilson Surfaces, arXiv:0707.3978