ALMOST EVERYWHERE GENERALIZED PHASE RETRIEVAL

MENG HUANG, YI RONG, YANG WANG, AND ZHIQIANG XU

Abstract. The aim of generalized phase retrieval is to recover \(x \in \mathbb{F}^d \) from the quadratic measurements \(x^* A_1 x, \ldots, x^* A_N x \), where \(A_j \in \mathbb{H}_d(\mathbb{F}) \) and \(\mathbb{F} = \mathbb{R} \) or \(\mathbb{C} \). In this paper, we study the matrix set \(\mathcal{A} = (A_j)_{j=1}^N \) which has the almost everywhere phase retrieval property. For the case \(\mathbb{F} = \mathbb{R} \), we show that \(N \geq d + 1 \) generic matrices with prescribed ranks have almost everywhere phase retrieval property. We also extend this result to the case where \(A_1, \ldots, A_N \) are orthogonal matrices and hence establish the almost everywhere phase retrieval property for the fusion frame phase retrieval. For the case where \(\mathbb{F} = \mathbb{C} \), we obtain similar results under the assumption of \(N \geq 2d \). We lower the measurement number \(d + 1 \) (resp. \(2d \)) with showing that there exist \(N = d \) (resp. \(2d - 1 \)) matrices \(A_1, \ldots, A_N \in H_d(\mathbb{R}) \) (resp. \(H_d(\mathbb{C}) \)) which have the almost everywhere phase retrieval property. Our results are an extension of almost everywhere phase retrieval from the standard phase retrieval to the general setting and the proofs are often based on some new ideas about determinant variety.

1. Introduction

1.1. Problem Setup. The classic phase retrieval problem, which concerns the reconstruction of a function from the magnitude of its Fourier transform, has many applications in various areas such as X-ray crystallography, super-resolution cryo-EM imaging, optics, signal processing and many more. It is well known that the map \(f \mapsto \hat{f} \), where \(\hat{f} \) denotes the Fourier transform of \(f \), is an isometry in \(L^2(\mathbb{R}^d) \) and hence \(f \) can be uniquely reconstructed from \(\hat{f} \). However, when only the magnitude \(|\hat{f}(\xi)| \) is known, the reconstruction becomes rather nontrivial. In many cases, the reconstruction is impossible because the solution is not unique, even after taking some obvious factors into consideration, such as translation and modulation.

2010 Mathematics Subject Classification. Primary 42C15.

Key words and phrases. Frames, Phase retrieval.

Yang Wang was supported in part by the Hong Kong Research Grant Council grant 16306415. Zhiqiang Xu was supported by NSFC grant (91630203, 11688101), Beijing Natural Science Foundation (Z180002).
More recently the phase retrieval problem has been naturally extended to finite dimensional Hilbert spaces, and research in this area have accounted for the bulk of the advances lately (see e.g. [2, 4, 7, 8, 10, 15] and the references therein). We mainly focus on the finite dimensional Hilbert space \(\mathbb{F}^d \) where \(\mathbb{F} = \mathbb{R} \) or \(\mathbb{F} = \mathbb{C} \) and consider a set of Hermitian matrices (symmetric matrices if \(\mathbb{F} = \mathbb{R} \)) \(A = (A_j)_{j=1}^N \) in \(\mathbb{F}^{d \times d} \). We say \(A \) has the (generalized) phase retrieval property, or is phase retrievable, if \((x^* A_j x)_{j=1}^N \) uniquely determines \(x \in \mathbb{F}^d \) up to a unimodular constant. In other words, \(x^* A_j x = y^* A_j y, j = 1, \ldots, N \) if and only if \(y = cx \) for some \(c \in \mathbb{F} \) and \(|c| = 1 \). Generalized phase retrieval was studied in [21] by Wang and Xu, and it includes the standard phase retrieval and various spinoffs as special cases. If all \(A_j \) have the form \(A_j = f_j f_j^* \) where \(f_j \in \mathbb{F}^d \), then it is the standard phase retrieval. If all \(A_j \) are orthogonal projections, namely \(A_j^2 = A_j \), then it becomes the fusion frame (projection) phase retrieval. Moreover, if all \(A_j \) are positive semi-definite matrices satisfying \(\sum_{j=1}^N A_j = I \) where \(I \) is the identity matrix, then it recasts as the POVM which is an active research topic in quantum tomography (see e.g. [15]).

We shall use \(H_d(\mathbb{F}) \) to denote the set of Hermitian matrices in \(\mathbb{F}^{d \times d} \). Just like the standard phase retrieval problem we consider the equivalence relation \(\sim \) on \(\mathbb{F}^d \): \(x_1 \sim x_2 \) if there is a constant \(c \in \mathbb{F} \) with \(|c| = 1 \) such that \(x_1 = cx_2 \). Let \(\overline{\mathbb{F}} := \mathbb{F}^d/\sim \). We shall use \(\overline{x} \) to denote the equivalent class containing \(x \). For any given \(A = (A_j)_{j=1}^N \in H_d^N(\mathbb{F}) \), define the map \(M_A : \overline{\mathbb{F}} \rightarrow \mathbb{R}^N \) by

\[
M_A(x) = (x^* A_1 x, \ldots, x^* A_N x)^T.
\]

Thus, the generalized phase retrieval problem asks whether a \(\overline{x} \in \overline{\mathbb{F}} \) is uniquely determined by \(M_A(\overline{x}) \), i.e. whether \(M_A \) is injective on \(\overline{\mathbb{F}} \). We should observe that \(M_A \) can also be viewed as a map from \(\mathbb{F}^d \) to \(\mathbb{R}^N \), and we shall often do this when there is no confusion.

For practical applications it is always enough to design algorithms which can recover almost all the signals [10, 17]. This gives rise to the question of almost everywhere phase retrieval. We next introduce the definition of almost everywhere phase retrieval property.

Definition 1.1. Let \(A = (A_j)_{j=1}^N \in H_d^N(\mathbb{F}) \). We say \(A \) has the almost everywhere phase retrieval property or is phase retrievable almost everywhere (PR-ae) if for almost
every \(x \in \mathbb{F}^d \) we have \(M_A^{-1}(M_A(x)) = \{x\} \) where \(M_A^{-1}(M_A(x)) := \{y \in \mathbb{F}^d : M_A(y) = M_A(x)\} \).

This paper studies the following question:

- **What is the minimal \(N \) for which there exists an \(A = (A_j)_{j=1}^N \in \mathbb{F}_d^N(\mathbb{F}) \) having the almost everywhere phase retrieval property?** Moreover, under what conditions does \(A = (A_j)_{j=1}^N \) have the almost everywhere phase retrieval property?

The aim of this paper is to present a series of results addressing these questions.

1.2. Related Work. In the standard phase retrieval setting where \(A_j = f_j f_j^* \), some answers have been provided in several studies [10, 2, 12, 18]. For the case \(\mathbb{F} = \mathbb{R} \) and \(A_j = f_j f_j^*, j = 1, \ldots, N \), it was shown that \(N \geq d + 1 \) is necessary and sufficient for there existing \(A = (A_j)_{j=1}^N \) which is almost everywhere phase retrievable (see [2, 10]). Similarly, for the case \(\mathbb{F} = \mathbb{C} \) and \(A_j = f_j f_j^*, j = 1, \ldots, N \), it is known that \(2d \) generic measurements are sufficient for almost phase retrieval [2]. In the context of quantum tomography, one is interested in the pure-state information complete (PSI-complete) POVM which requires POVM to determine almost all the pure state (up to a global phase) (see [12, 13]). In fact, PSI-complete POVM is a special case of PR-ae in which all \(\{A_j\}_{j=1}^N \) are positive semi-definite matrices satisfying \(\sum_{j=1}^N A_j = I \) where \(I \) is the identity matrix. The results in [12] show that there exist \(N = 2d \) positive semi-definite matrices \(\{A_j\}_{j=1}^{2d} \subset H_d(\mathbb{C}) \) satisfying \(\sum_{j=1}^{2d} A_j = I \) which have almost everywhere phase retrieval property. In [13] the same result is proved with the additional requirement of \(\text{rank}(A_j) = 1 \) for all \(j \).

In the generalized phase retrieval setting, these questions becomes significantly harder. For example, even in the case of fusion frames (projection) phase retrieval, the answers to these questions are far from being known [11].

We would like to mention that the almost everywhere matrix recovery is studied in [23]. One main result of [23] is that \(N > (p + q)r - r^2 \) generic linear measurements have the almost everywhere rank-\(r \) matrix recovery property in \(\mathbb{R}^{p \times q} \) or \(\mathbb{C}^{p \times q} \).
1.3. **Our Contribution.** In this paper we establish a general framework for the almost everywhere phase retrieval. We prove the results for generic and random measurements under very general settings.

For generalized phase retrieval in the real case, we have the following theorem:

Theorem 1.1. Assume that $N \geq d + 1$. Then a random $\mathcal{A} = (A_j)_{j=1}^N$ in $H_d^N(\mathbb{R})$ chosen under any absolutely continuous distribution have the almost everywhere phase retrieval property in \mathbb{R}^d with probability one. More generally, let $1 \leq r_1, \ldots, r_N \leq d$ and $V_j \subset H_d(\mathbb{R})$ be either the set of all rank r_j symmetric matrices or the set of all rank r_j orthogonal projection matrices. Then a generic $\mathcal{A} = (A_j)_{j=1}^N \in V_1 \times \cdots \times V_N$ has the almost everywhere phase retrieval property in \mathbb{R}^d.

For generalized phase retrieval in the complex case, we have a similar theorem:

Theorem 1.2. Assume that $N \geq 2d$. Then a random $\mathcal{A} = (A_j)_{j=1}^N$ in $H_d^N(\mathbb{C})$ chosen under any absolutely continuous distribution has the almost everywhere phase retrieval property in \mathbb{C}^d with probability one. More generally, let $1 \leq r_1, \ldots, r_N \leq d$ and $V_j \subset H_d(\mathbb{C})$ be either the set of all rank r_j Hermitian matrices or the set of all rank r_j orthogonal projection matrices. Then a generic $\mathcal{A} = (A_j)_{j=1}^N \in V_1 \times \cdots \times V_N$ has the almost everywhere phase retrieval property in \mathbb{C}^d.

Again we should point out that the above results holds for far broader classes of V_j and we provide techniques for establishing PR-ae property in more general cases later in this paper.

One interesting question is whether those bounds are sharp. For almost everywhere generalized phase retrieval, there is a lower bound $N \geq d$ for \mathbb{R}^d and $N \geq 2d - 1$ for \mathbb{C}^d (see Corollary 2.2 in Section 2). One naturally asks whether PR-ae property can be attained for $N = d$ and $N = 2d - 1$ in the real and complex cases, respectively. In the real case, under the standard phase retrieval assumption where all measurement matrices have rank one, this is impossible with $N \geq d + 1$ being sharp. However, it is possible if the rank one property is removed. Particularly, we have the following results:
Theorem 1.3. There exist d matrices $A_1, \ldots, A_d \in H_d(\mathbb{R})$ such that $A = (A_j)_{j=1}^d$ has the almost everywhere phase retrieval property in \mathbb{R}^d.

Theorem 1.4. There exist $2d - 1$ matrices $A_1, \ldots, A_{2d-1} \in H_d(\mathbb{C})$ such that $A = (A_j)_{j=1}^{2d-1}$ has the almost everywhere phase retrieval property in \mathbb{C}^d.

We would like to mention that it is possible to prove Theorem 1.1 and Theorem 1.2 using the results from [23]. In this paper, we present a novel method for proving them. We believe that the method developed in this paper is independent interesting and it is useful and powerful for the phase retrieval. For example, motivated by the methods developed in the proof of Theorem 1.1 and Theorem 1.2, we can obtain that Theorem 1.3 and Theorem 1.4. To our knowledge, Theorem 1.3 and Theorem 1.4 are not easy to be derived from the results in [23].

The paper is organized as follows. In Section 2, after introducing some notations, some of which have been used in previous studies, we also present some preliminary results on generalized almost everywhere phase retrieval, including the necessary lower bounds $N \geq d$ and $N \geq 2d - 1$ for PR-ae property in \mathbb{R}^d and \mathbb{C}^d, respectively.

In Section 3 we explore the links between phase retrieval and the classic algebraic geometry. We recall some of the background results on the dimension of intersections of varieties, from which we tie the almost everywhere matrix recovery and phase retrieval properties to the dimension of certain varieties. These results are then used in Section 4 to prove the results listed above. In Section 5, we return to the standard phase retrieval with presenting some additional results under this setting, which may be independent interesting. Particularly, we present the sufficient and necessary condition for $\{f_1, \ldots, f_N\} \subset \mathbb{R}^d$ having PR-ae property in \mathbb{R}^d.

2. Preliminary Results on Almost Everywhere Phase Retrieval

In this section, we establish some preliminary results on almost everywhere phase retrieval. These results will play an important role for the further study of this topic. We begin from introducing a few results and notations.
2.1. Previous results and notations. For any $c \in \mathbb{C}$ let $\Re(c)$ and $\Im(c)$ denote the real and imaginary part of c, respectively. A useful formula is that for a Hermitian $A \in H_d(F)$ and any $x, y \in F^d$ we must have

\[(2.1) \quad x^*Ax - y^*Ay = 4\Re(v^*Au)\]

where $v = \frac{1}{2}(x + y)$ and $u = \frac{1}{2}(x - y)$. This is straightforward to check. In the real case $F = \mathbb{R}$ it means that $x^*Ax - y^*Ay = 4v^*Au$. In [21] a series of equivalent formulations for the generalized phase retrieval have been stated. For the real case $F = \mathbb{R}$ and $A = (A_j)_{j=1}^N \in H_d^N(F)$, the following conclusions are equivalent (see [21]):

1. A has the phase retrieval property.
2. There exist no nonzero $v, u \in \mathbb{R}^d$ such that $v^*A_ju = 0$ for all $1 \leq j \leq N$.
3. For any nonzero $u \in \mathbb{R}^d$ we have $\text{span}\{A_ju\}_{j=1}^N = \mathbb{R}^d$.
4. The Jacobian matrix of M_A has rank d everywhere on $\mathbb{R}^d \setminus \{0\}$.

For the complex case $F = \mathbb{C}$ and $A = (A_j)_{j=1}^N \in H_d^N(F)$, the following are equivalent (see [21]):

1. A has the phase retrieval property.
2. There exist no $v, u \neq 0$ in \mathbb{C}^d with $u \neq icv$ for any $c \in \mathbb{R}$ such that $\Re(v^*A_ju) = 0$ for all $1 \leq j \leq N$.
3. The (real) Jacobian matrix of M_A has (real) rank $2d - 1$ everywhere on $\mathbb{C}^d \setminus \{0\}$.

It is also shown in [21] that the set of phase retrievable A in $H_d^N(F)$ is an open set, so it is stable under small perturbations.

Next, we introduce some notations which examine the set of points in \mathbb{R}^d at which M_A is injective. We shall treat \mathbb{R}^d as a real manifold, which has dimension d if $F = \mathbb{R}$ and dimension $2d - 1$ if $F = \mathbb{C}$. When $F = \mathbb{R}$ the Jacobian of M_A at x is exactly

\[J_A(x) = 2[A_1x, A_2x, \ldots , A_Nx].\]

For the case where $F = \mathbb{C}$, write $A_j = B_j + iC_j$ where B_j, C_j are real. Then $B_j^T = B_j$ and $C_j^T = -C_j$. Let

\[(2.2) \quad F_j = \begin{bmatrix} B_j & -C_j \\ C_j & B_j \end{bmatrix}.\]
For any $x = \mathbb{R}(x) + i\mathbb{I}(x) \in \mathbb{C}^d$ we set $u^\top := [\mathbb{R}(x)^\top, \mathbb{I}(x)^\top]$. Thus, the real Jacobian of $M_A(x)$ is precisely

$$J_A(x) = 2[F_1u, F_2u, \ldots, F_Nu].$$

A point $\mathbf{x} \in \mathbb{F}^d$ is called a regular point if the real Jacobian of M_A at \mathbf{x} has full rank, i.e. it has rank d if $\mathbb{F} = \mathbb{R}$ and rank $2d - 1$ if $\mathbb{F} = \mathbb{C}$. Otherwise \mathbf{x} is called a degenerate point. It is well known that the set of all degenerate points for M_A is a closed set in \mathbb{F}^d.

2.2. Preliminary Results.

Theorem 2.1. For $A = (A_j)_{j=1}^N \in \mathbb{H}_d^N(\mathbb{F})$, let Ω_A be the set of points in \mathbb{F}^d at which M_A is not injective. Let Z_A be the set of degenerative points for M_A in \mathbb{F}^d. Then the following hold:

(A) Z_A is either \mathbb{F}^d or a null set. Furthermore if $Z_A = \mathbb{F}^d$ then $\mathbb{F}^d \setminus \Omega_A$ is a null set and hence A is not PR-ae.

(B) Let $\overline{\Omega_A}$ be the closure of Ω_A. We have $\Omega_A \cup Z_A \subseteq \overline{\Omega_A}$. If all A_j are positive semidefinite then $\Omega_A \cup Z_A = \overline{\Omega_A}$

Proof. (A) We shall prove the results for the case $\mathbb{F} = \mathbb{C}$. The real case is virtually identical. Firstly, using the standard technique we identify the set of element $\mathbf{x} \in \mathbb{F}^d$ with $x_1 \neq 0$ as $V_1 := \mathbb{R}^+ \times \mathbb{R}^{2d-2}$. Now V_1 is almost all \mathbb{F}^d and its closure is \mathbb{F}^d. Restricted to V_1 the Jacobian matrix of M_A consists of entries that are linear functions (see (2.3)). A point is degenerate if and only if all $(2d - 1) \times (2d - 1)$ submatrices of the Jacobian matrix at that point have determinants 0. Note that each determinant is a polynomial. Thus, the set of degenerate points in V_1 is the intersection of real algebraic varieties in \mathbb{R}^{2d-1} restricted to $V_1 = \mathbb{R}^+ \times \mathbb{R}^{2d-2}$. It follows that the set is either all V_1, or a null set with local dimension less than $2d - 1$. Hence, Z_A is either $V_1 = \mathbb{F}^d$ or a null set.

Assume that $Z_A = \mathbb{F}^d$. Then the Jacobian of M_A has maximal rank strictly less than $2d - 1$ at any point. Let Γ be the set of points in \mathbb{F}^d at which the Jacobian of M_A has the maximal rank, say r. Then Γ is an open set. Furthermore, the complement set of Γ are precisely the points at which all $(r - 1) \times (r - 1)$ submatrices have zero
are not injective. Thus, Γ^c is a null set by the same argument as before. The Rank Theorem now implies that the map M_A is not injective at a neighborhood of any point in Γ. Thus, $\mathbb{F}^d \setminus \Omega_A$ is a null set, i.e. almost all points in \mathbb{F}^d are not injective for M_A. Thus, A is not PR-ae.

(B) Again we only need to consider the case $F = \mathbb{C}$. The real case is virtually identical. We first prove that $Z_A \subseteq \overline{\Omega}_A$. For any $x \in Z_A$ the rank of the (real) Jacobian J_A of M_A is at most $2d - 2$ at $x \in \mathbb{F}^d$. Thus, there exists a $v \in \mathbb{F}^d$ such that $v \neq icx$ and $\Re(v^*J_A(x)) = \Re(v^*A_jx) = 0$ where $c \in \mathbb{R}$. Let $t_k = 1/k$ and set $x_k = x + t_kv$, $y_k = x - t_kv$. Then $x_k \neq y_k$ in \mathbb{F}^d. Combining $\Re(v^*A_jx) = 0$ and (2.1) we obtain $M_A(x_k) = M_A(y_k)$, which implies that $x_k, y_k \in \Omega_A$. Clearly $\lim_k x_k = x$, and thus, $x \in \overline{\Omega}_A$.

Now assume that all A_j are positive semi-definite matrices. We first prove $\overline{\Omega}_A \subseteq \Omega_A \cup Z_A$. For each $\delta > 0$ define E_δ to be the set of all $x \in \mathbb{F}^d$ such that there exists a $y \in \mathbb{F}^d$ with $M_A(y) = M_A(x)$ and

$$
D(x, y) := \min_{\alpha \in \mathbb{F}, |\alpha| = 1} ||x - \alpha y|| \geq \delta.
$$

The definition of E_δ implies that it is a closed set in \mathbb{F}^d. Choose a positive sequence $\delta_k \downarrow 0$. Then $\Omega_A = \bigcup_k E_{\delta_k}$.

Let x_k be a sequence in Ω_A with $x_k \rightarrow x$. We need to show $x \in \Omega_A \cup Z_A$. If $x = 0$ we arrive at the conclusion since $0 \in Z_A$. The conclusion also holds if $x \in \Omega_A$. It remains to consider the case where $x \notin \{0\} \cup \Omega_A$. Because each E_{δ_k} is closed, without loss of generality, we assume that $x_k \in E_{\delta_k}$. Let $y_k \in M_A^{-1}(M_A(x_k))$ such that $D(x_k, y_k) \geq \delta_k$. We first consider the case where $\{y_k\}_{k \in \mathbb{Z}}$ is a bounded sequence. Then there exist an accumulation point y and a subsequence where we still denote it by $\{y_k\}_{k \in \mathbb{Z}}$ such that $y_k \rightarrow y$. Clearly $y \in M_A^{-1}(M_A(x))$. Recall the assumption $x \notin \{0\} \cup \Omega_A$, which implies that $y = x$. Thus, any small neighborhood of x contains x_k and y_k for sufficiently large k, which means M_A is not one to one locally at x. However, a smooth map must be locally one to one at a regular point. It means that x is not a regular point of M_A, i.e. $x \in Z_A$.

We still need to consider the case where $\{y_k\}_{k \in \mathbb{Z}}$ is unbounded. Set

$$
N := \{\eta \in \mathbb{F}^d : \eta^*A_j \eta = 0, j = 1, \ldots, N\}.
$$
Since A_1, \ldots, A_N are positive semi-definite, $\mathcal{N} \subset \mathbb{F}^d$ is a linear space. We take $y_k = y'_k \oplus \eta_k$ where $\eta_k \in \mathcal{N}$. Then $\{y'_k\}_{k \in \mathbb{Z}}$ must be a bounded sequence (otherwise, $M_A(y'_k) = M_A(y_k)$ is an unbounded sequence). Note that $M_A(y'_k) = M_A(y_k)$. Then we can replace y_k by y'_k in the argument above and obtain that $x \in Z_A$. \[\square\]

Corollary 2.2. Assume that $\mathcal{A} = (A_j)_{j=1}^N \in H_d^N(\mathbb{F})$ is PR-ae on \mathbb{F}^d. Then $N \geq d$ for $\mathbb{F} = \mathbb{R}$ and $N \geq 2d - 1$ for $\mathbb{F} = \mathbb{C}$.

Proof. According to the definition of degenerative points, $Z_A = \mathbb{F}^d$ if $N < d$ for $\mathbb{F} = \mathbb{R}$ and $N < 2d - 1$ for $\mathbb{F} = \mathbb{C}$. According to the (A) of Theorem 2.1, $\mathcal{A} = (A_j)_{j=1}^N$ is not PR-ae on \mathbb{F}^d. We arrive at the conclusion. \[\square\]

We introduce the following lemma which plays an important role in this paper.

Lemma 2.3. Let $\mathcal{A} = (A_j)_{j=1}^N \in H_d^N(\mathbb{F})$ where $\mathbb{F} = \mathbb{R}$ or \mathbb{C}. The following are equivalent:

(i) \mathcal{A} is not PR-ae.

(ii) Let \mathcal{U} be the set of $(u, v) \in \mathbb{F}^d \times \mathbb{F}^d$ with $u \neq icv$ for any $c \in \mathbb{R}$ such that

$$\Re(v^*A_ju) = 0 \quad \text{for all } 1 \leq j \leq N.$$

The set $E = \{u + v : (u, v) \in \mathcal{U}, u \neq 0, v \neq 0\}$ has positive Lebesgue outer measure in \mathbb{F}^d.

Proof. To see (ii) \Rightarrow (i), for any $x = u + v \in E$ with $(u, v) \in \mathcal{U}$, set $y = u - v$. Then according to (2.1), one has $M_A(x) = M_A(y)$. Since $(u, v) \in \mathcal{U}$, it implies that $x \neq \alpha y$ for any $|\alpha| = 1$. Note that E has positive measure, which gives that M_A is not injective in a set with positive Lebesgue outer measure and hence \mathcal{A} is not PR-ae. The converse (i) \Rightarrow (ii) follows from the similar argument. \[\square\]

Remark 2.4. For the case where $\mathbb{F} = \mathbb{R}$, the (ii) in Lemma 2.3 is reduced to the following statement: Suppose that \mathcal{U} is the set of $(u, v) \in \mathbb{F}^d \times \mathbb{F}^d$ with $u \neq 0, v \neq 0$ such that

$$v^*A_ju = 0 \quad \text{for all } 1 \leq j \leq N.$$

The set $E = \{u + v : (u, v) \in \mathcal{U}\}$ has positive Lebesgue measure in \mathbb{R}^d.
3. Almost Everywhere Phase Retrieval and The Dimension of Algebraic Variety

The phase retrieval problem has a well known formulation in terms of low rank matrices [6, 7, 22]. Particularly, for any \(A \in \mathbb{F}^{d \times d} \) and \(x, y \in \mathbb{F}^d \), it holds that
\[
y^T A x = \text{tr}(AQ)
\]
where \(Q = xy^T \). This relationship transforms phase retrieval into a recovering of a rank-one matrix. In this section, we extend this relationship further (see Theorem 3.3 and Theorem 3.6). Before proceeding to these results, we first introduce some basic notations related to projective spaces and varieties.

3.1. Background from algebraic geometry. For any complex vector space \(X \) we shall use \(\mathbb{P}(X) \) to denote the induced projective space, i.e. the set of all one dimensional subspaces in \(X \). As usual for each \(x \in X \) we use \([x]\) to denote the induced elements in \(\mathbb{P}(X) \). Similarly, for any subset \(S \subset X \) we use \([S]\) or \(\mathbb{P}(S) \) to denotes its projectivization in \(\mathbb{P}(X) \). Throughout this paper, we say \(V \subset \mathbb{C}^d \) is a projective variety if \(V \) is the locus of a collection of homogeneous polynomials in \(\mathbb{C}[x] \). Strictly speaking a projective variety lies in \(\mathbb{P}(\mathbb{C}^d) \) and is the projectivization of the zero locus of a collection of homogeneous polynomials. But like in [21], when there is no confusion the phrase projective variety in \(\mathbb{C}^d \) means an algebraic variety in \(\mathbb{C}^d \) defined by homogeneous polynomials. We shall use projective variety in \(\mathbb{P}(\mathbb{C}^d) \) to describe a true projective variety. Note that sometimes it is useful to consider the more general quasi-projective varieties. A set \(U \subset \mathbb{C}^d \) is a quasi-projective variety if there exist two projective varieties \(V \) and \(Y \) with \(Y \subset V \) such that \(U = V \setminus Y \).

We shall use \(V \cap \mathbb{R}^d \) to denote the real points of \(V \). A key fact is that for a variety \(V \) we have \(\dim_{\mathbb{R}}(V \cap \mathbb{R}^d) \leq \dim(V) \) (see Section 2.1.3 in [9] and [21]). This also holds for a quasi-projective variety since the proof uses only local properties of \(V \) (see [21]). The definitions of \(\dim(V) \) and \(\dim_{\mathbb{R}}(V \cap \mathbb{R}^d) \) are introduced in [14] and [3], respectively (see also [9]).

In this paper we shall often focus on studying the set

\[
\mathcal{M}_{d,r}(\mathbb{F}) := \left\{ Q \in \mathbb{F}^{d \times d} : \text{rank}(Q) \leq r \right\}, \quad \mathbb{F} = \mathbb{C} \text{ or } \mathbb{R}
\]

Note that \(\text{rank}(Q) \leq r \) is equivalent to the vanishing of all \((r+1) \times (r+1)\) minors of \(Q \). Hence, \(\mathcal{M}_{d,r}(\mathbb{F}) \) is a well-defined projective variety in \(\mathbb{F}^{d \times d} \) with \(\dim_{\mathbb{R}}(\mathcal{M}_{d,r}(\mathbb{F})) = \)
2dr - r^2 \text{[14 Prop. 12.2]. More generally, for the matrix recovery problem we will consider non-square } p \text{ by } q \text{ matrices of rank } r:\n
(3.2) \quad \mathcal{M}_{p \times q,r}(\mathbb{F}) := \left\{ Q \in \mathbb{F}^{p \times q} : \text{rank}(Q) \leq r \right\}, \quad \mathbb{F} = \mathbb{C} \text{ or } \mathbb{R}.

Again, \(\mathcal{M}_{p \times q,r}(\mathbb{F}) \) is a projective variety and it is well known that \(\dim_{\mathbb{F}} \mathcal{M}_{p \times q,r}(\mathbb{F}) = r(p + q) - r^2 \).

In [21], the notion of an admissible algebraic variety with respect to a family of linear functions was introduced. This concept is equally useful in this paper.

Definition 3.1 ([21]). Let \(V \) be the zero locus of a finite collection of homogeneous polynomials in \(\mathbb{C}^M \) with \(\dim V > 0 \) and let \(\{ \ell_\alpha(x) : \alpha \in I \} \) be a family of (homogeneous) linear functions. We say \(V \) is admissible with respect to \(\{ \ell_\alpha(x) \} \) if \(\dim(V \cap \{ \ell_\alpha(x) = 0 \}) < \dim V \) for all \(\alpha \in I \).

It is well known in algebraic geometry that if \(V \) is irreducible in \(\mathbb{C}^M \) then \(\dim(V \cap Y) = \dim(V) - 1 \) for any hyperplane \(Y \) that does not contain \(V \). Thus, the above admissible condition is equivalent to the property that no irreducible component of \(V \) of dimension \(\dim(V) \) is contained in any hyperplane \(\ell_\alpha(x) = 0 \). In general without the irreducibility condition, admissibility is equivalent to that for a generic point \(x \in V \), any small neighborhood \(U \) of \(x \) has the property that \(U \cap V \) is not completely contained in any hyperplane \(\ell_\alpha(x) = 0 \).

Many projective varieties have the required admissibility property. We just list a few of them below:

Proposition 3.1. ([23 Proposition 4.1]) Let \(V \) be one of the following projective varieties in \(\mathbb{C}^{q \times p} \). Then \(V \) is admissible with respect to the maps \(\{ \phi_Q(\cdot) = \text{tr}(\cdot Q) : Q \in \mathcal{M}_{p \times q,r}(\mathbb{C}) \} \), where \(1 \leq r \leq \frac{1}{2} \min(p, q) \):

(A) \quad V = \mathcal{M}_{q \times p,s}(\mathbb{C}), \text{ where } 1 \leq s \leq \min(p, q).

(B) \quad q \geq p \text{ and } V \text{ is the set of all scalar multiples of matrices } P \text{ whose rows are complex orthonormal in the sense that any two rows } x, y \text{ of } P \text{ have } xy^\top = \delta(x - y).
(C) \(q \leq p \) and \(V \) is the set of all scalar multiples of matrices whose columns are complex orthonormal in the sense that any two columns \(x, y \) of \(P \) have \(x^\top y = \delta(x - y) \).

(D) \(q = p = d \) and \(V \) is the set of all scalar multiples of \(d \times d \) rank \(s \) complex orthogonal projection matrices in the sense that \(P = P^* \) and \(P^2 = P \).

The following proposition is from [23]:

Theorem 3.2. (\cite[Theorem 2.1]{23}) For \(j = 1, \ldots, N \) let \(L_j : \mathbb{C}^n \times \mathbb{C}^m \to \mathbb{C} \) be bilinear functions and \(V_j \) be projective varieties in \(\mathbb{C}^n \). Set \(V := V_1 \times \cdots \times V_N \subseteq (\mathbb{C}^n)^N \).

Let \(W, Y \subset \mathbb{C}^m \) be a projective variety in \(\mathbb{C}^m \), \(W \setminus Y \) be a quasi-projective variety. For each fixed \(j \), assume that \(V_j \) is admissible with respect to the linear functions \(\{ f_w(\cdot) = L_j(\cdot, w) : w \in W \setminus Y \} \).

1. Assume that \(N \geq \dim W \). There exists an algebraic subvariety \(Z \subseteq V \) with \(\dim(Z) < \dim(V) \) such that for any \(x = (v_j)_{j=1}^N \in V \setminus Z \), the subvariety \(X_x \) given by

\[
X_x := \left\{ w \in W \setminus Y : L_j(v_j, w) = 0 \text{ for all } 1 \leq j \leq N \right\}
\]

is the empty set.

2. Assume that \(N < \dim W \). There exists an algebraic subvariety \(Z \subset V \) with \(\dim Z < \dim V \) such that for any \(x = (v_j)_{j=1}^N \in V \setminus Z \), the subvariety \(X_x \) given by

\[
X_x := \left\{ w \in W \setminus Y : L_j(v_j, w) = 0 \text{ for all } 1 \leq j \leq N \right\}
\]

has \(\dim X_x = \dim W - N \).

3.2. Almost Everywhere Phase Retrieval: Real Case.

In this subsection, we consider the almost everywhere phase retrieval for the case where \(\mathbb{F} = \mathbb{R} \).

Theorem 3.3. Assume that \(\mathcal{A} = (A_j)_{j=1}^N \in \mathbb{H}_d^N(\mathbb{R}) \). Let \(X_\mathcal{A} \subset \mathbb{C}^{d \times d} \) be given by

\[
X_\mathcal{A} := \left\{ Q \in \mathbb{C}^{d \times d} : \text{rank}(Q) \leq 1 \text{ and } \text{tr}(A_j Q) = 0 \text{ for all } 1 \leq j \leq N \right\}.
\]

If the (complex) variety \(X_\mathcal{A} \) has dimension \(\dim(X_\mathcal{A}) \leq d - 2 \), then \(\mathcal{A} \) has the PR-ae property in \(\mathbb{R}^d \).
Proof. Because X_A is the zero locus of some homogeneous polynomials, we can view it naturally as a projective variety with $\dim(\mathbb{P}(X_A)) = \dim(X_A) - 1 \leq d - 3$. Consider the map $\Phi : \mathbb{P}(\mathbb{C}^d) \times \mathbb{P}(\mathbb{C}^d) \to \mathbb{P}(\mathbb{C}^{d \times d})$ given by

$$\Phi([x], [y]) = [xy^T].$$

It is easy to see that Φ is injective, and furthermore it is a one-to-one mapping of $\mathbb{P}(\mathbb{C}^d) \times \mathbb{P}(\mathbb{C}^d)$ onto the set of rank one matrices in $\mathbb{P}(\mathbb{C}^{d \times d})$. Note that the projective variety $[X_A] = \mathbb{P}(X_A) \subset \mathbb{P}(\mathbb{C}^{d \times d})$ has dimension $\dim([X_A]) = \dim(X_A) - 1 \leq d - 3$. Hence, the dimension of the projective variety $\Phi^{-1}([X_A])$ has dimension at most $d - 3$.

Let $Y_A := \{(x, y) \in \mathbb{C}^d \times \mathbb{C}^d : \Phi([x], [y]) \in [X_A]\}$. It follows that $\dim(Y_A) = \dim([X_A]) + 2 \leq d - 1$.

Noting $x^TA_jy = \text{tr}(A_jyx^T)$, we have $x^TA_jy = 0$ provided $(x, y) \in Y_A \cap \mathbb{R}^d \times \mathbb{R}^d$. According to Lemma 2.3, to this end, it is enough to show that $\{x + y : x, y \in Y_A \cap \mathbb{R}^d \times \mathbb{R}^d\}$ has zero Lebesgue measure. Note that the real slice of a complex algebraic variety is a real algebraic variety whose real dimension is no more than the dimension of the complex variety (see [21, Lemma 3.1]). Thus, the real slice of Y_A has real dimension $\dim_{\mathbb{R}}(Y_A \cap \mathbb{R}^d \times \mathbb{R}^d) \leq \dim Y_A \leq d - 1$. Let $\tau : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ be given by $\tau(x, y) = x + y$. Then $\dim_{\mathbb{R}}(\tau(Y_A \cap \mathbb{R}^d \times \mathbb{R}^d)) \leq d - 1$ and thus,

$$\tau(Y_A \cap \mathbb{R}^d \times \mathbb{R}^d) = \{x + y : x, y \in Y_A \cap \mathbb{R}^d \times \mathbb{R}^d\}$$

has zero Lebesgue measure. By Lemma 2.3, A must have the PR-a.e property. ■

3.3. Almost Everywhere Phase Retrieval: Complex Case. We now turn our attention to the complex setting $\mathbb{F} = \mathbb{C}$. First we establish a couple of auxiliary results.

Lemma 3.4. Assume that $x, y \in \mathbb{C}^d$ are linearly independent. Then xx^*, yy^*, xy^*, yx^* are linearly independent in $\mathbb{C}^{d \times d}$.

Proof. Since x, y are linearly independent, there exists a $v \in \mathbb{C}^d$ such that $x^*v = 1$ and $y^*v = 0$. Assume that

$$c_1xx^* + c_2yy^* + c_3xy^* + c_4yx^* = 0 \quad (3.4)$$

Since x and y are linearly independent, the matrices xx^* and yy^* are invertible.

$$c_1 xx^* + c_2 yy^* + c_3 xy^* + c_4 yx^* = 0$$

By Lemma 2.3, A must have the PR-a.e property. ■
where \(c_1, \ldots, c_4 \in \mathbb{C}\). Then multiplying \(v\) on the both sides of (3.4) we obtain

\[
c_1xx^*v + c_2yy^*v + c_3xy^*v + c_4yx^*v = c_1x + c_4y = 0.
\]

Hence, \(c_1 = c_4 = 0\). Similarly, there exists a \(u \in \mathbb{C}^d\) such that \(y^*u = 1\) and \(x^*u = 0\). Multiplying \(u\) on the both sides yields

\[
c_1xx^*u + c_2yy^*u + c_3xy^*u + c_4yx^*u = c_2y + c_3x = 0.
\]

Thus, \(c_2 = c_3 = 0\). The lemma is proved.

Lemma 3.5. Let \(x, y \in \mathbb{C}^d\) be linearly independent. Assume that \(zz^*-ww^* = \lambda xx^* - \mu yy^*\) where \(z, w \in \mathbb{C}^d\) and \(\lambda, \mu \geq 0\) are not all 0. Then \(z, w \in \text{span}\{x, y\}\). Furthermore, set

\[
z = ax + by, \quad w = sx + ty, \quad \text{where} \quad a, b, s, t \in \mathbb{C}.
\]

Then \(zz^*-ww^* = \lambda xx^* - \mu yy^*\) if and only if there exist \(\omega_1, \omega_2, \omega_3 \in \mathbb{C}\) with \(|\omega_j| = 1\) and \(0 \leq \beta < 1\) such that

\[
(3.5) \quad z = \frac{\omega_1 \lambda}{\sqrt{1-\beta^2}}x + \frac{\omega_2 \beta \mu}{\sqrt{1-\beta^2}}y, \quad w = \frac{\omega_3 \beta \lambda}{\sqrt{1-\beta^2}}x + \frac{\bar{\omega}_1 \omega_2 \omega_3 \mu}{\sqrt{1-\beta^2}}y.
\]

Proof. We first consider the case where \(z, w\) are linearly dependent. Then \(zz^*-ww^*\) has rank at most 1. Note that if \(\lambda \neq 0, \mu \neq 0\) then \(\lambda xx^* - \mu yy^*\) has rank 2. This is a contradiction. Thus, in this case we must have \(\lambda = 0\) or \(\mu = 0\), say \(\lambda \neq 0\) but \(\mu = 0\). It follows that \(z, w\) must be colinear with \(x\). Hence, \(z, w \in \text{span}\{x, y\}\).

Now assume that \(z, w\) are linearly independent. Set

\[
H_{x,y} := \{v \in \mathbb{C}^d : x^*v = 0, y^*v = 0\}.
\]

A simple observation is that \(H_{x,y}\) is a linear space with \(\text{dim}(H_{x,y}) = d - 2\). The definition of \(H_{x,y}\) implies that

\[
H_{x,y}^\perp = \text{span}\{x, y\}.
\]

For any \(v \in H_{x,y}\) we clearly have

\[
zz^*v - ww^*v = \lambda xx^*v - \mu yy^*v = 0.
\]

Since \(z, w\) are linearly independent, we must have \(z^*v = w^*v = 0\). Hence, \(v\) must be orthogonal to both \(z, w\). It implies that \(z, w \in H_{x,y}^\perp = \text{span}\{x, y\}\).
Finally, for \(z = ax + by \) and \(w = sx + ty \) we have
\[
zz^* - ww^* = (|a|^2 - |s|^2)xx^* - (|t|^2 - |b|^2)yy^* + (a\bar{b} - st)xy^* + (\bar{b}a - t\bar{s})yx^*.
\]
It follows from Lemma 3.4 that \(\lambda^2 xx^* - \mu^2 yy^* = zz^* - ww^* \) if and only if \(|a|^2 - |s|^2 = \lambda^2, |t|^2 - |b|^2 = \mu^2 \) and \(a\bar{b} - st = 0 \). Since one of \(\lambda \) or \(\mu \) is nonzero, say \(\lambda > 0 \). Set \(\beta = |s|/|a|, \) then \(\beta \in [0, 1) \). Moreover, since \(\bar{b}/\bar{t} = s/a \), it implies that \(|b| = \beta|t| \). Hence, \(\lambda^2 = (1 - \beta^2)|a|^2 \) and \(\mu^2 = (1 - \beta^2)|t|^2 \) which gives that \(|a| = \frac{\lambda}{\sqrt{1 - \beta^2}}, |t| = \frac{\mu}{\sqrt{1 - \beta^2}} \). Noting that \(|b| = \beta|t|, s = a\bar{b}/\bar{t} \) we obtain
\[
a = \frac{\omega_1 \lambda}{\sqrt{1 - \beta^2}}, b = \frac{\omega_2 \beta \mu}{\sqrt{1 - \beta^2}}, s = \frac{\omega_3 \beta \lambda}{\sqrt{1 - \beta^2}}, t = \frac{\omega_4 \mu}{\sqrt{1 - \beta^2}}
\]
for some \(\omega_j \in \mathbb{C} \) with \(|\omega_j| = 1, 1 \leq j \leq 4 \). The \(a\bar{b} - st = 0 \) implies that \(\omega_4 = \bar{\omega}_1 \omega_2 \omega_3 \).

The lemma is proved.

Theorem 3.6. Assume that \(\mathcal{A} = (A_j)_{j=1}^N \in H_{\mathbb{C}}(\mathcal{C}) \). Let \(X_\mathcal{A} \in \mathbb{C}^{d \times d} \) be given by
\[
(3.6) \quad X_\mathcal{A} := \left\{ Q \in \mathcal{M}_{d,2} : \text{tr}(A_j Q) = 0 \text{ for all } 1 \leq j \leq N \right\}.
\]
If the (complex) variety has dimension \(\dim(X_\mathcal{A}) \leq 2d - 4 \), then \(\mathcal{A} \) has the PR-ae property in \(\mathbb{C}^d \).

Proof. Let
\[
F = \{(x, y) \in \mathbb{C}^d \times \mathbb{C}^d : x \neq y, x^* A_j x = y^* A_j y \text{ for all } 1 \leq j \leq N \}.
\]
Then \(\mathcal{A} \) has the PR-ae property if and only if \(\pi_1(F) \) has zero Lebesgue outer measure, where \(\pi_1((x, y)) = x \). Let
\[
Y_\mathcal{A} = \left\{ x^* x - y^* y : (x, y) \in F \right\}.
\]
Then we have \(Y_\mathcal{A} \subset X_\mathcal{A} \cap H_{\mathbb{C}}(\mathcal{C}) \) since \(x^* A_j x - y^* A_j y = \text{tr}(A_j(xx^* - yy^*)) \).

We identify \(\mathbb{C}^M \) with \(\mathbb{R}^M \times \mathbb{R}^M \) and \(\mathbb{C}^{d \times d} \) with \(\mathbb{R}^{d \times d} \times \mathbb{R}^{d \times d} \). By doing so we next show that \(X_\mathcal{A} \cap H_{\mathbb{C}}(\mathcal{C}) \) has real dimension at most \(2d - 4 \) provided \(\dim(X_\mathcal{A}) \leq 2d - 4 \). Consider the linear map \(\varphi \) on \(\mathbb{C}^{d \times d} \) given by
\[
\varphi(A) = \frac{1}{2}(A + AT) + \frac{i}{2}(A - AT).
\]
It is easy to check that \(\varphi \) is an isomorphism on \(\mathbb{C}^{d \times d} \) with inverse map \(\varphi^{-1}(B) = \frac{1}{2}(B + BT) - \frac{i}{2}(B - BT) \). Hence, \(\varphi^{-1}(X_\mathcal{A}) \) is a variety with the same dimension as
with the property that the first nonzero entry of \(\hat{v} \in B \)

Every \(B \) and \(\lambda \)

Define the map \(\Psi \) on \(\Lambda \) by

We shall identify each element \(x \in y \) such that \(\Psi \) is injective. To see this we first observe that \(x \sim \hat{x} \rightarrow \lambda \)

Note that the eigenvectors of \(B \) are denoted by \(\phi \)

Recall the definition of the equivalence relation \(\sim \) on \(\mathbb{C}^d \) where \(x \sim y \) if and only if \(x = cy \) for some \(c \in \mathbb{C} \) and \(|c| = 1 \). For each \(x \in \mathbb{C}^d \), the equivalent class containing \(x \) is denoted by \(\hat{x} \). Consider the subset \(\Lambda \) of \(\mathbb{C}^d \times \mathbb{C}^d \times \mathbb{R}^2 \) given by

\[
\Lambda = \left\{ (x, y, \lambda, \mu) : \|x\| = \|y\| = 1, x^*y = 0, \lambda \geq 0, \mu \geq 0 \right\}.
\]

Define the map \(\Psi \) on \(\Lambda \) by

\[
\Psi(x, y, \lambda, \mu) = \lambda^2 x^*x - \mu^2 y^*y.
\]

We claim that \(\Psi \) is injective. To see this we first observe that \(xx^* = x_1x_1^* \) if and only if \(x \sim x_1 \). Assume that \(\Psi(x, y, \lambda, \mu) = \Psi(z, w, \lambda, \mu) \).

Note that the eigenvectors of \(\lambda^2 x^*x - \mu^2 y^*y \) are \(x, y \) with corresponding to eigenvalues \(\lambda^2, -\mu^2 \), respectively. We must have \(z = c_1x, w = c_2y \) with \(|c_1| = |c_2| = 1 \) and \(\lambda^2 = \hat{\lambda}^2, \mu^2 = \hat{\mu}^2 \). Hence, \(\lambda = \hat{\lambda}, \mu = \hat{\mu} \) and \(x = z, y = w \).

Next we claim that the range of \(\Psi \) contains \(Y_A \), i.e., \(Y_A \subset \Psi(\Lambda) \). Indeed, for every \(B \in Y_A \), it can be decomposed into \(B = \sum_{j=1}^r \lambda_j v_j v_j^* \) where \(r \) is the rank of \(B \) and \(\{v_j\}_{j=1}^r \) are orthonormal. Since the rank of \(B \) is at most 2 and the top two eigenvalues of \(B \) cannot be both positive or negative, we can write \(B \) in the form of

\[
B = \lambda_1 v_1 v_1^* + \lambda_2 v_2 v_2^* \quad \text{with} \quad \lambda_1 \geq 0 \quad \text{and} \quad \lambda_2 \leq 0.
\]

So \(B = \Psi(v_1, v_2, \lambda_1, -\lambda_2) \) which implies that \(Y_A \subset \Psi(\Lambda) \).

Now define \(\Gamma = \{(\omega_1, \omega_2, \beta) \in \mathbb{C}^2 \times \mathbb{R} : |\omega_1| = |\omega_2| = 1\} \). Then \(\dim_{\mathbb{R}} \Gamma = 3 \). Hence,

\[
\dim_{\mathbb{R}}(\Psi^{-1}(Y_A) \times \Gamma) \leq 2d - 4 + 3 = 2d - 1.
\]

We shall identify each element \(x \in \mathbb{C}^d \) with the unique element \(\hat{x} \) in the equivalent class \(\hat{x} \) with the property that the first nonzero entry of \(\hat{x} \) is real and positive. Define

\[
\dim_{\mathbb{R}}(X_A \cap H_d(\mathbb{C})) \leq 2d - 4.
\]
the map \(\pi : \Psi^{-1}(Y_A) \times \Gamma \rightarrow \mathbb{C}^d \) by

\[
\pi \left(\left(x, y, \lambda, \mu, (\omega_1, \omega_2, \beta) \right) \right) = \frac{\lambda \omega_1}{\sqrt{1 - \beta^2}} \hat{x} + \frac{\omega_2 \beta \mu}{\sqrt{1 - \beta^2}} \hat{y}.
\]

By Lemma 3.3 the set \(\pi(\Psi^{-1}(Y_A) \times \Gamma) = \pi_1(F) \). However, the real dimension of \(\pi(\Psi^{-1}(Y_A) \times \Gamma) \) is bounded from above by the real dimension of \(\Psi^{-1}(Y_A) \times \Gamma \), which is at most \(2d - 1 \). Hence, \(\pi_1(F) \) cannot have positive Lebesgue measure in \(\mathbb{C}^d \). This means \(\mathcal{A} \) has the PR-ae property.

4. Proofs of Main Results

In this section we apply the results from the previous sections to obtain more concrete results for phase retrieval. Particularly, we present the proofs of Theorems which stated in Section 1.

We first consider the almost everywhere phase retrieval in the real case. Theorem 1.1 shows that \(N \geq d + 1 \) generic matrices have almost everywhere phase retrieval property in \(\mathbb{R}^d \). We now present the proof of it.

Proof of Theorem 1.1 First we consider the case of rank \(r_j \) symmetric matrices.

We slightly abuse the notation by extending \(V_j \) to be the set of symmetric matrices in \(\mathbb{C}^{d \times d} \) with rank no more than \(r_j \). For any \(A, Q \in \mathbb{C}^{d \times d} \) define \(L(A, Q) := \text{tr}(AQ) \).

Note that \(\dim_{\mathbb{R}}(V_j)_{\mathbb{R}} = \dim(V_j) \). Thus, according to Theorem 4.1 in [21], \(V_j \) is admissible with respect to the linear functions \(\{ f(Q) = L(A, Q) : Q \in \mathcal{M}_{d,1}(\mathbb{C}) \} \).

This implies, through Theorem 3.2, that a generic real \(\mathcal{A} \in V_1 \times \cdots \times V_N \) has dimension \(\dim(X_{\mathcal{A}}) = 2d - 1 - N \leq d - 2 \), where

\[
X_{\mathcal{A}} := \left\{ Q \in \mathcal{M}_{d,1}(\mathbb{C}) : L(A_j, Q) = 0 \text{ for all } 1 \leq j \leq N \right\}.
\]

Thus, a generic real \(\mathcal{A} \) has the almost everywhere PR property by Theorem 3.3

For the case of orthogonal projection matrices, let \(U_j \) be the set of all scalar multiples of complex orthogonal projection matrices in the sense \(\text{rank}(P) = r_j \), \(P = P^\top \) and \(P^2 = P \). Applying the exact same arguments as before, we can prove the theorem for real orthogonal projections.

Finally, the random case is a direct corollary of the first case with all \(r_j = d \).
To guarantee $A = (A_j)_{j=1}^N$ having PR-ae property, Theorem 1.1 requires that $N \geq d + 1$. An interesting question is whether it is possible to lower N to d. Theorem 1.3 shows it is possible. We next prove that theorem.

Proof of Theorem 1.3: Suppose that the (j, k) elements of $A_t \in \mathbf{H}_d(\mathbb{R})$ are 1 if $j + k = t + 1$ and other elements are 0, i.e.,

$$A_1 = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}, \ldots, A_d = \begin{bmatrix} 0 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \end{bmatrix}.$$

Suppose that $v = (v_1, \ldots, v_d), u = (u_1, \ldots, u_d) \in \mathbb{R}^d$. Then

$$(4.1) \quad v^T A_t u = \sum_{j+k=t+1} v_j u_k = 0, \quad t = 1, \ldots, d$$

implies that $v_1 = u_1 = 0$.

Hence, according to the result above, the set

$$\{v + u \in \mathbb{R}^d : (v, u) \text{ satisfies (4.1), } v \neq 0, u \neq 0\}$$

has zero Lebesgue outer measure in \mathbb{R}^d. Then Lemma 2.3 implies the $A = (A_t)_{t=1}^d$ has almost everywhere phase retrieval property.

We next turn our attention to complex phase retrieval.

Proof of Theorem 1.2: As before the random case is a corollary of the results on generic measurements, so we only need to prove the theorem for the cases of generic measurements.

First we consider the case where V_j is the set of rank r_j Hermitian matrices. Define the linear map $\varphi : \mathbb{C}^{d \times d} \rightarrow \mathbb{C}^{d \times d}$ by

$$(4.2) \quad \varphi(A) = \frac{1}{2}(A + A^T) + \frac{i}{2}(A - A^T).$$

Then φ is an isomorphism on $\mathbb{C}^{d \times d}$ with $\varphi^{-1}(B) = \frac{1}{2}(B + B^T) - \frac{i}{2}(B - B^T)$, and furthermore φ restricted on $\mathbb{R}^{d \times d}$ is an isomorphism from $\mathbb{R}^{d \times d}$ to $\mathbf{H}_d(\mathbb{C})$. For any $A, Q \in \mathbb{C}^{d \times d}$ define $L(A, Q) := \text{tr}(\varphi(A)Q)$.
For any $s \geq 1$, let V_s denote the set of matrices $A \in \mathbb{C}^{d \times d}$ such that $\text{rank}(\varphi(A)) \leq s$. The V_s is clearly a projective variety. It was shown in [21] that V_s is admissible with respect to

$$\{f^Q(A) := \text{tr}(\varphi(A)Q) : 0 \neq Q \in \mathcal{M}_{d,2}(\mathbb{C})\}$$

for any $1 \leq s \leq d$. Let $V := V_{r_1} \times \cdots \times V_{r_N}$. Thus, by Theorem 3.2 there exists a proper subvariety Z of V such that for any $A = (A_j)_{j=1}^N \in V \setminus Z$ the projective variety

$$X_A := \left\{Q \in \mathcal{M}_{d,2}(\mathbb{C}) : \text{tr}(\varphi(A_j)Q) = 0 \text{ for all } 1 \leq j \leq N \right\}$$

has dimension $\dim(X_A) = 4d - 4 - N \leq 2d - 4$. Set $\varphi(A) := (\varphi(A_j))_{j=1}^N$. In particular, if A is real and hence $\varphi(A) \in \mathcal{H}_d^N(\mathbb{C})$, by Theorem 3.6 $\varphi(A)$ has the almost everywhere PR property in \mathbb{C}^d.

Since φ is an isomorphism on $\mathbb{C}^{d \times d}$, we have $\dim V_s = 2ds - s^2$. Moreover, $\dim_{\mathbb{R}}(V_s \cap \mathbb{R}^{d \times d})$ is exactly the (real) dimension of the set of Hermitian matrices with rank no more than s, which is also $2ds - s^2$ (see also [16, Lemma II.1]). Thus,

$$\dim_{\mathbb{R}}(Z \cap (\mathbb{R}^{d \times d})^N) \leq \dim(Z) < \dim(V) = \dim_{\mathbb{R}}(V \cap (\mathbb{R}^{d \times d})^N).$$

For any $A = (A_j)_{j=1}^N \in (V \setminus Z) \cap (\mathbb{R}^{d \times d})^N$ we have $\dim(X_A) = 4d - 4 - N \leq 2d - 4$. It follows from Theorem 3.6 that a generic $\varphi(A) = (\varphi(A_j))_{j=1}^N \in \mathcal{H}_d^N(\mathbb{C})$ has the almost everywhere phase retrieval property. This proves the almost everywhere PR property in \mathbb{C}^d.

We now prove the case for orthogonal projections with prescribed ranks. Here the proof is virtually identical to the previous case, so we shall be rather brief. Similar to before, let $\varphi : \mathbb{C}^{d \times d} \rightarrow \mathbb{C}^{d \times d}$ be defined by (4.2), and for any $A, Q \in \mathbb{C}^{d \times d}$ define $L(A, Q) := \text{tr}(\varphi(A)Q)$.

From now on the proof is almost verbatim from the proof of the previous case. For any $s \geq 1$, we slightly abuse the notation and let V_s denote the set of matrices A in $\mathbb{C}^{d \times d}$ such that $\varphi^2(A) = \varphi(A)$ and $\text{rank}(\varphi(A)) \leq s$. It was shown in [21] that $\dim(V_s) = 2s(d - s) + 1$ and V_s is admissible with respect to $\{f^Q(A) := \text{tr}(\varphi(A)Q) : 0 \neq Q \in \mathcal{M}_{d,2}(\mathbb{C})\}$ for any $1 \leq s \leq d$. By Theorem 3.2 there exists a subvariety Z of $V = V_{r_1} \times \cdots \times V_{r_N}$ with $\dim Z < \dim V$ such that for any
\[\mathcal{A} = (A_j)_{j=1}^N \in V \setminus Z, \] the subvariety of \(\mathcal{M}_{d,2}(\mathbb{C}) \)

\[X_{\mathcal{A}} := \left\{ Q \in \mathcal{M}_{d,2}(\mathbb{C}) : \text{tr}(\varphi(A_j)Q) = 0 \text{ for all } 1 \leq j \leq N \right\} \]

has dimension \(\dim(X_{\mathcal{A}}) = 4d - 4 - N \leq 2d - 4. \)

As before, note that \(\varphi(V_s \cap \mathbb{R}^{d \times d}) \) is precisely the set of (complex) orthogonal projection matrices of rank \(s \), which also has real dimension \(2s(d - s) + 1. \) Thus, \(\dim_{\mathbb{R}}(Z \cap (\mathbb{R}^{d \times d})^N) \leq \dim(Z) < \dim(V) \leq \dim_{\mathbb{R}}(V \cap (\mathbb{R}^{d \times d})^N). \)

For any \(\mathcal{A} = (A_j)_{j=1}^N \in (V \setminus Z) \cap (\mathbb{R}^{d \times d})^N \) we have \(\dim(X_{\mathcal{A}}) = 4d - 4 - N \leq 2d - 4, \) and hence \(\dim(\varphi(X_{\mathcal{A}})) \leq 2d - 4. \) It follows from Theorem 3.6 that \(\varphi(\mathcal{A}) = (\varphi(A_j))_{j=1}^N \) has the almost everywhere phase retrieval property. We arrive at the conclusion.

Theorem 1.2 shows that \(N \geq 2d \) generic Hermitian matrices or orthogonal projection matrices have almost everywhere phase retrieval property in \(\mathbb{C}^d. \) Note that Corollary 2.2 states that \(2d - 1 \) matrices are necessary to guarantee PR-ae property in \(\mathbb{C}^d. \) Then one may be interested in whether there exist \(2d - 1 \) matrices which have PR-ae property in \(\mathbb{C}^d? \) Theorem 1.4 shows it is possible, which implies that the bound \(2d - 1 \) is sharp.

Proof of Theorem 1.4: To state conveniently, we use \(e_j, j = 1, \ldots, d, \) to denote the \(d \)-dimensional vector with the \(j \)-th entry being 1 and other entries being 0. We construct \(2d - 1 \) measurement matrices \(A_j \) as follows:

\[A_1 = e_1e_1^T, \ A_j = e_1e_j^T + e_j e_1^T, \ A_{d-1+j} = i e_1e_j^T - i e_j e_1^T, \ j = 2, \ldots, d. \]

A simple observation is that \(A_1, \ldots, A_{2d-1} \in \mathbb{H}_d(\mathbb{C}). \) For any \(v = (v_1, \ldots, v_d), u = (u_1, \ldots, u_d) \in \mathbb{C}^d \) and \(v \neq 0, u \neq 0, \) the equations

\[\Re(v^* A_j u) = 0, \ j = 1, \ldots, 2d - 1, \]

gives that

\[\Re(\bar{v}_1 u_1) = 0, \]

\[\Re(\bar{v}_1 u_k + \bar{v}_k u_1) = 0, \ k = 2, \ldots, d. \]

\[\Re(i\bar{v}_1 u_k - i\bar{v}_k u_1) = 0, \]

We claim that if \(u_1 \neq 0 \) and \(v_1 \neq 0, \) then the solution to (4.4) satisfies \(u = icv \) where \(c \in \mathbb{R}. \) Based on Lemma 2.3 we just need to consider the case where either \(u_1 = 0 \)
or $v_1 = 0$. First, for the equation $\Re(\bar{v}_1 u_1) = 0$, if $u_1 = 0$, then the rest of equations gives $\bar{v}_1 u_k = 0$ for all $k = 2, \ldots, d$, which implies $v_1 = 0$ since $u \neq 0$. Similarly, if $v_1 = 0$, we can obtain $u_1 = 0$. According to Lemma 2.3 if $v_1 = u_1 = 0$ then A has the almost phase retrieval property. We arrive at the conclusion.

We still need to prove $u = icv$ if $u_1 \neq 0$ and $v_1 \neq 0$. Assume that $u_1 \neq 0$ and $v_1 \neq 0$. Then the equation $\Re(\bar{v}_1 u_1) = 0$ is equivalent to $u_1 = icv_1$ for some real number $c \neq 0$, which implies that $u_{1R} = -cv_{1I}$ and $u_{1I} = cv_{1R}$. Here, we denote $u_{1R} = \Re(u_1), u_{1I} = \Im(u_1)$ and define v_{1R}, v_{1I} similarly.

Next, for $k = 2, \ldots, d$, we consider the following two equations

$$\Re(\bar{v}_1 u_k + \bar{v}_k u_1) = 0$$

and

$$\Re(i\bar{v}_1 u_k - i\bar{v}_k u_1) = 0.$$

Putting $u_{1R} = -cv_{1I}$ and $u_{1I} = cv_{1R}$ into the above equations, we can obtain

$$\begin{bmatrix} v_{1R} & v_{1I} \\ v_{1I} & -v_{1R} \end{bmatrix} \begin{bmatrix} u_{kR} \\ u_{kI} \end{bmatrix} = \begin{bmatrix} cv_{kR}v_{1I} - cv_{kI}v_{1R} \\ -cv_{kR}v_{1R} - cv_{kI}v_{1I} \end{bmatrix}.$$

Since $v_1 \neq 0$, the above equations have a unique solution $u_{kR} = -cv_{kI}, u_{kI} = cv_{kR}$. It implies that $u_k = icv_k$ for all $k = 2, \ldots, d$. Thus, it gives that $u = icv$ if $u_1 \neq 0$ and $v_1 \neq 0$.

5. Additional Results for Almost Everywhere Standard Phase Retrieval

Finally we go back to the standard phase retrieval setting to tie up some loose ends for almost everywhere phase retrieval. Recall that in the standard setting each A_j is a rank one matrix of the form $A_j = f_j f_j^*$, where $f_j \in \mathbb{F}_d$. We say a group of vectors f_1, f_2, \ldots, f_N in \mathbb{F}_d have the almost everywhere phase retrieval property (PR-ae) if and only if $A = (A_j)_{j=1}^N$ has the property. Note that we often identify f_1, f_2, \ldots, f_N with the $d \times N$ matrix $F = (f_1, f_2, \cdots, f_N)$. Thus, we shall say F has the almost everywhere phase retrieval property if f_1, f_2, \ldots, f_N have the property. In the real case, the PR-ae property has a simple characterization.
Theorem 5.1. Let f_1, f_2, \ldots, f_N be vectors in \mathbb{R}^d. For any $J \subset \{1, 2, \ldots, N\}$ let V_J denote the subspace $\text{span}\{f_j : j \in J\}$. Then f_1, f_2, \ldots, f_N have the PR-ae property if and only if for any $I, J \subset \{1, 2, \ldots, N\}$ with $I \cup J = \{1, 2, \ldots, N\}$,

$$V_I^\perp + V_J^\perp \neq \mathbb{R}^d.$$

In particular, $f_1, f_2, \ldots, f_{d+1} \in \mathbb{R}^d$ have the PR-ae property if and only if they are full spark, i.e. any d vectors among them are linearly independent.

Proof. (\Rightarrow) Let f_1, f_2, \ldots, f_N have the PR-ae property. Assume that

$$V_I^\perp + V_J^\perp = \mathbb{R}^d.$$

for some I, J with $I \cup J = \{1, 2, \ldots, N\}$. We derive a contradiction. For any $u \in \mathbb{R}^d$ we have $u = x + y$ where $x \in V_I^\perp$ and $y \in V_J^\perp$. Set $v = x - y$. Then $\langle f_i, u \rangle = \pm \langle f_i, v \rangle$, depending on $i \in J$ or $i \in I$. Thus, $|\langle f_i, u \rangle| = |\langle f_i, v \rangle|$ for all i. This contradicts the PR-ae property of $\{f_i\}$.

(\Leftarrow) Conversely, assume that $V_I^\perp + V_J^\perp \neq \mathbb{R}^d$ for all I, J with $I \cup J = \{1, 2, \ldots, N\}$. We show that $\{f_i\}$ has the PR-ae property. Assume not, there exists a set $\Omega \subseteq \mathbb{R}^d$ with positive Lebesgue measure such that for each $u \in \Omega$ there exists a $v_u \neq u$ such that $\langle f_i, u \rangle = \pm \langle f_i, v_u \rangle$ for all i. Let

$$I_u := \left\{i : \langle f_i, u \rangle = -\langle f_i, v_u \rangle\right\}, \quad J_u := \left\{i : \langle f_i, u \rangle = \langle f_i, v_u \rangle\right\}.$$

Clearly $I_u \cup J_u = \{1, \ldots, N\}$. Since there are only finitely many distinct I_u and J_u there exist I, J with $I \cup J = \{1, 2, \ldots, N\}$ and an $\bar{\Omega} \subseteq \Omega$ of positive Lebesgue measure such that $I_u = I$ and $J_u = J$ for all $u \in \bar{\Omega}$. Now for each $u \in \bar{\Omega}$ we have $u + v_u \in V_I^\perp$ and $u - v_u \in V_J^\perp$. It follows that

$$u = \frac{1}{2}(u + v_u) + \frac{1}{2}(u - v_u) \in V_I^\perp + V_J^\perp.$$

However, $V_I^\perp + V_J^\perp$ is a subspace of \mathbb{R}^d which contains a positive measure subset $\bar{\Omega}$. Thus, it must be the whole space, namely $V_I^\perp + V_J^\perp = \mathbb{R}^d$. This is a contradiction.

Finally, we show if $f_1, f_2, \ldots, f_{d+1} \in \mathbb{R}^d$ are full spark then for any $I, J \subset \{1, 2, \ldots, d+1\}$ with $I \cup J = \{1, 2, \ldots, d+1\}$,

$$V_I^\perp + V_J^\perp \neq \mathbb{R}^d.$$
ALMOST EVERYWHERE GENERALIZED PHASE RETRIEVAL

First it is obvious that the conclusion holds provided \(I = \{1, 2, \ldots, d + 1\} \) or \(J = \{1, 2, \ldots, d + 1\} \). We next consider the case where \(I, J \subset \{1, 2, \ldots, d\} \). Denote \(n_1 := \dim(V_I) \) and \(n_2 := \dim(V_J) \). Since \(I \cup J = \{1, 2, \ldots, d + 1\} \) and \(f_1, f_2, \ldots, f_{d+1} \) are full spark, it implies that \(n_1 + n_2 \geq d + 1 \). Thus,

\[
\dim(V_I^\perp + V_J^\perp) = (d - n_1) + (d - n_2) \leq d - 1,
\]

which means that \(V_I^\perp + V_J^\perp \neq \mathbb{R}^d \). We arrive at the conclusion.

We now turn our attention to the complex case. Theorem 1.2 shows that for \(N \) generic \(f_1, f_2, \ldots, f_N \) where \(N \geq 2d \), \(A = (f_j f_j^*)_{j=1}^N \) has the PR-ae property. But is \(N = 2d \) minimal, namely, whether it is true that for \(N \leq 2d - 1 \) we can never get the PR-ae property in the standard phase retrieval setting? This question was addressed in [12]. However, there was a general feeling on the mathematics perspective that the proof was not rigorous, and no one seemed to be able to verify its correctness, see Mixon [18]. Thus, this problem is still viewed, at least on the mathematics side perspective, as an open problem. In this section we prove that a generic set \(\{f_1, f_2, \ldots, f_{2d-1}\} \) in \(\mathbb{C}^d \) does not have the PR-ae property.

Note that, by Lemma 2.3, \(\{f_1, f_2, \ldots, f_{2d-1}\} \) in \(\mathbb{C}^d \) has the PR-ae property if and only if the following holds: Let \(\mathcal{U} \) be the set of \((u, v) \in \mathbb{C}^d \times \mathbb{C}^d \) such that \(u \neq icv \) for \(c \in \mathbb{R} \) and

\[
\Re(\langle v, f_j \rangle \langle u, f_j \rangle) = 0 \quad \text{for all } 1 \leq j \leq 2d - 1.
\]

Then the set \(E = \{u + v : (u, v) \in \mathcal{U}, u \neq 0, v \neq 0\} \) has positive measure in \(\mathbb{C}^d \).

To prove that a generic frame \(\{f_1, f_2, \ldots, f_{2d-1}\} \) in \(\mathbb{C}^d \) does not have the almost everywhere phase retrieval property, we first consider the special case where \(f_j = e_j \) for \(1 \leq j \leq d \). Thus, the associate frame matrix has the form

\[
(5.1) \quad F = [I_d, G], \quad G \in \mathbb{C}^{d \times (d-1)}
\]

where \(I_d \) is \(d \times d \) identity matrix. We shall prove that for a generic \(G \) the frame is not PR-ae.

Lemma 5.2. Assume that \(F = [I_d, G] \) is a PR-ae in \(\mathbb{C}^d \) where \(G \in \mathbb{C}^{d \times (d-1)} \). Then \(F_1 = [I_{d-1}, G_1] \) is not a PR-ae in \(\mathbb{C}^{d-1} \), where \(G_1 \) is obtained by removing the first row of \(G \) (i.e., \(F_1 \) is \(F \) with the first row being removed).
Proof. For any \(u \in \mathbb{C}^d \), let \(V_u \) denote the set of all \(v \in \mathbb{C}^d \) such that
\[
\Re(\langle u, f_j \rangle \langle v, f_j \rangle) = 0, \quad j = 1, 2, \ldots, 2d - 1
\]
where \(f_j \) are the columns of \(F \). We shall only consider those \(u \) with \(u_1 = 0 \), i.e. \(u \in \{0\} \times \mathbb{C}^{d-1} \). Thus, for each such \(u \) there exists a nonzero \(v \) satisfying (5.2). To see that, we only need to observe \(v \) has \(2^d \) (real) unknowns while there are only \(2d - 2 \) linear equations in (5.2) (we get \(j = 1 \) for free because \(u_1 = 0 \)). Hence, \(\dim_{\mathbb{R}} V_u \geq 2 \).

Let \(Y = \{ u : V_u \subset \{0\} \times \mathbb{C}^{d-1} \} \).

We next divide the rest of the proof into two cases.

Case I. \(Y \) is not a null set in \(\{0\} \times \mathbb{C}^{d-1} \).

Note that if \(v \in V_u \) is colinear with \(u \) then we must have \(v = icu \) for some \(c \in \mathbb{R} \).

Since \(\dim_{\mathbb{R}} (V_u) \geq 2 \) there must exist at least a \(v \in V_u \) that is not colinear with \(u \).

Now for any \(u \in Y \), since both \(u, v \) have first entry 0, we have
\[
\Re(\langle u', f_j' \rangle \langle v', f_j' \rangle) = 0 \quad \text{for all } j \geq 2
\]
where \(u', v' \) are obtained by removing the first entry of \(u, v \) and \(f_j' \) are the columns of \(F_1 \). However, the set \(\{u'\} \) satisfying (5.3) has positive Lebesgue measure in \(\mathbb{C}^{d-1} \), thus, \(\{f_j'\} \) cannot have the PR-ae property. To see this more clearly, set \(x' = u' + v' \) and \(y' = u' - v' \). Then \(|\langle x', f_j' \rangle| = |\langle y', f_j' \rangle| \). Note that at least one of the sets \(\{x'\} \) and \(\{y'\} \) has positive Lebesgue measure. We arrive at the conclusion in this case.

Case II. \(Y \) is a null set in \(\{0\} \times \mathbb{C}^{d-1} \).

We shall show that this case is impossible. Without loss of generality we may simply assume that \(Y = \emptyset \). Thus, for any \(u \in \{0\} \times \mathbb{C}^{d-1} \) there exists some \(v \in V_u \) with \(v_1 \neq 0 \). Clearly such a \(v \) cannot be colinear with \(u \) in \(\mathbb{C}^d \). Pick one such vector and denote it by \(v_u \). Observe that \(iu \in V_u \). Hence, \(V_u \) contains \(tv_u + isu \) for all \(t, s \in \mathbb{R} \).

We prove that \(E := \{ u + v : u \in \{0\} \times \mathbb{C}^{d-1}, v \in V_u \} \) has positive Lebesgue measure in \(\mathbb{C}^d \), which implies that \(F \) is not PR-ae in \(\mathbb{C}^d \) (see Lemma 2.3). So, we have a contradiction. Note that for any nonzero \(c \in \mathbb{C} \) we have \(V_{cu} = cV_u \). Hence, \(V_{cu} \) contains \(ctv_u + icsu \) for all \(t, s \in \mathbb{R} \). Therefore, for each \(u \in \{0\} \times \mathbb{C}^{d-1} \) the set
E contains
\[cu + c(tv_u + icsu) = c(1 + is)u + ctv_u \]
for all $c \in \mathbb{C}$ and $t, s \in \mathbb{R}$. Set $c = (1 + is)^{-1}$. It follows that $u + t(1 + is)^{-1}v_u \in E$ for all $t, s \in \mathbb{R}$. But $z = t(1 + is)^{-1}$ can take on any non-imaginary complex number. Hence, $u + zv_u \in E$ for any z with $\Re(z) \neq 0$. In other words,
\[E \supseteq \{ u + zv_u : u \in \{0\} \times \mathbb{C}^{d-1}, z \in \mathbb{C}, \Re(z) \neq 0 \}. \]
Since each v_u has nonzero first entry, it is clear that E must have positive Lebesgue measure in \mathbb{C}^d. This is a contradiction.

\[\square \]

Theorem 5.3. A generic $F \in \mathbb{C}^{d \times (2d-1)}$ is not PR-ae.

Proof. It is well known ([2]) that the PR-ae property is preserved under nonsingular affine transformations. In other words, for any nonsingular $B \in \mathbb{C}^{d \times d}$, the frame $\{f_j\}_{j=1}^N$ has the PR-ae property if and only if $\{Bf_j\}_{j=1}^N$ does. Now for any nonsingular B and a generic $G \in \mathbb{C}^{d \times (d-1)}$ the frame $F = B[I_d, G] = [B, BG]$ is not PR-ae (otherwise, Lemma 5.2 implies that a generic $F_1 \in \mathbb{C}^{(d-1) \times (2(d-1))}$ is not PR-ae which contradicts with Theorem 1.2). Thus, a generic $F \in \mathbb{C}^{d \times (2d-1)}$ is not PR-ae.

\[\square \]

References

[1] Saeid Bahmanpour, Jameson Cahill, Peter G Casazza, John Jasper, and Lindsey M Woodland. Phase retrieval and norm retrieval. arXiv preprint arXiv:1409.8266, 2014.
[2] Radu Balan, Pete Casazza, and Dan Edidin. On signal reconstruction without phase. Applied and Computational Harmonic Analysis, 20(3):345–356, 2006.
[3] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real algebraic geometry, volume 36. Springer Science and Business Media, 2013.
[4] Bernhard G Bodmann and Nathaniel Hammen. Stable phase retrieval with low-redundancy frames. Advances in computational mathematics, 41(2):317–331, 2015.
[5] Jameson Cahill, Peter G Casazza, Jesse Peterson, and Lindsey Woodland. Phase retrieval by projections. arXiv preprint arXiv:1305.6220, 2013.
[6] E.J. Candes, Y. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix completion. SIAM Journal on Imaging Sciences, 6(1):199–225, 2013.
[7] E.J. Candes, T. Strohmer, and V. Voroninski. Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming. Communications on Pure and Applied Mathematics, 66(8):1241–1274, 2013.
[8] Aldo Conca, Dan Edidin, Milena Hering, and Cynthia Vinzant. An algebraic characterization of injectivity in phase retrieval. Applied and Computational Harmonic Analysis, 38(2):346–356, 2015.
[9] Dan Edidin. Projections and phase retrieval. *Applied and Computational Harmonic Analysis*, 2015.

[10] Matthew Fickus, Dustin G Mixon, Aaron A Nelson, and Yang Wang. Phase retrieval from very few measurements. *Linear Algebra and its Applications*, 449:475–499, 2014.

[11] Matthew Fickus and Dustin G. Mixon. Projection Retrieval: Theory and Algorithms. *Sampling Theory and Applications (SampTA), 2015 International Conference on*. IEEE, 2015: 183-186.

[12] S. T. Flammia, A. Silberfarb, C. M. Caves, Minimal informationally complete measurements for pure states. *Foundations of Physics*, 35 (2005) 1985-2006.

[13] J. Finkelstein, Pure-state informationally complete and ‘really’ complete measurements. *Physical Review A* 70.5 (2004).

[14] Joe Harris. *Algebraic geometry: a first course*, volume 133. Springer Science & Business Media, 2013.

[15] Teiko Heinosaari, Luca Mazzarella, and Michael M Wolf. Quantum tomography under prior information. *Communications in Mathematical Physics*, 318(2):355–374, 2013.

[16] Michael Kech and Michael Wolf. Quantum tomography of semi-algebraic sets with constrained measurements. *arXiv preprint arXiv:1507.00903*, 2015.

[17] Dani Kogan, Yonina C. Eldar and Dan Oron. On The 2D Phase Retrieval Problem. *IEEE Transactions on Signal Processing*, 65(4):1058-1067, 2016.

[18] Dustin Mixon. Phase transitions in phase retrieval. *Excursions in Harmonic Analysis*, Volume 4. Springer International Publishing, 123-147, 2015.

[19] Cynthia Vinzant. A small frame and a certificate of its injectivity. *2015 International Conference on Sampling Theory and Applications*, IEEE, 197–200, 2015.

[20] V. Voroninski, Zhiqiang Xu, A strong restricted isometry property, with an application to phaseless compressed sensing, *Applied and Computational Harmonic Analysis*, 40(2):386-395, 2016.

[21] Yang Wang and Zhiqiang Xu. Generalized phase retrieval : measurement number, matrix recovery and beyond. *Applied and Computational Harmonic Analysis*, 47 (2):423-446, 2019.

[22] Zhiqiang Xu, The minimal measurement number for low-rank matrix recovery, *Appl. Comput. Harmon. Anal.*., 2017, http://dx.doi.org/10.1016/j.acha.2017.01.005

[23] Yi Rong, Yang Wang, Zhiqiang Xu, Almost everywhere injectivity conditions for the matrix recovery problem, to appear in *Applied Computational Harmonic Analysis*.
LSEC, Inst. Comp. Math., Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing, 100190, China

E-mail address: hm@lsec.cc.ac.cn

Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

E-mail address: yrong@ust.hk

Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

E-mail address: yangwang@ust.hk

LSEC, Inst. Comp. Math., Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing, 100190, China

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

E-mail address: xuzq@lsec.cc.ac.cn