Inverting Sediment Bedforms for Exploring the Hazard of Volcanic Density Currents Directly in the Field

Pierfrancesco Dellino (pierfrancesco.dellino@uniba.it)
University of Bari Aldo Moro

Fabio Dioguardi
British Geological Survey

Roberto Sulpizio
University of Bari Aldo Moro

Daniela Mele
University of Bari Aldo Moro

Research Article

Keywords: Pyroclastic density, sediment bedforms, hazard of volcanic density, currents, wavelength and grain size

DOI: https://doi.org/10.21203/rs.3.rs-777070/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Inverting sediment bedforms for exploring the hazard of volcanic density currents directly in
the field

Pierfrancesco Dellino¹, Fabio Dioguardi², Roberto Sulpizio¹ & Daniela Mele¹

¹Dipartimento Di Scienze Della Terra E Geoambientali, Università Di Bari, Bari, Italy. ²British Geological Survey, The Lyell Centre, Edinburgh, UK.

Abstract

Pyroclastic density currents are ground hugging gas-particle flows moving at high speed down the volcano slope. They are among the most hazardous events of explosive volcanism, causing devastation and deaths¹,². Because of the hostile nature they cannot be analyzed directly and most of their fluid dynamic behavior is reconstructed by the deposits left in the geological record, which frequently show peculiar structures such as bedforms of the types of ripples and dunes³,⁴. In this paper, we simplify a set of equations that link flow behavior to particle motion and deposition. This allows, for the first time, the build up of a phase diagram by which the hazard of dilute pyroclastic density currents can be explored easily and quickly by inverting bedforms wavelength and grain size.

Main

Geologists and engineers have always been fascinated by sediment bedforms. They are a natural beauty of practical importance and represent a primary resource in the reconstruction of ancient sedimentary environments⁵. They form both in fluvialite currents, turbiditic flows, snow avalanches and volcanic pyroclastic density currents (PDCs). When a current flowing over sediment exceeds the critical shear stress for motion, bedforms develop as a result of the interaction between sediment and fluid⁶. The first bedforms to develop are current ripples, which have wavelengths, \(W\), smaller than 60 cm⁶. Larger bedforms are called dunes⁷. It is widely recognized that the occurrence of ripples or dunes depends on hydrodynamic conditions and sediment characteristics. These are defined in phase diagrams⁸,⁹ where bedform characteristics as \(W\) and sediment median size, \(D\), are
related to flow parameters such as the densiometric Froude number Fr' and the critical Shields number θ_t. For symbols see table 1.

$Fr' = \frac{V}{\sqrt{g'H}}$ is a balance between inertial and gravitational effects, with $g' = g\left(\frac{\rho_{mix} - \rho_f}{\rho_f}\right)$ representing the reduced gravity, g the gravity acceleration, V the current velocity, H the current depth.

$\rho_{mix} = \rho_s C + \rho_f (1 - C)$ (1)

is the density of the fluid-particle mixture with ρ_s particle density, ρ_f fluid density and C particle volumetric concentration.

$\theta_t = \frac{\rho_{mix}u_*^2}{Dg(\rho_s - \rho_{mix})}$ (2)

is the threshold of initiation of motion of particles resting on the substrate and is a form of shear stress ($\tau = \rho_{mix}u_*^2$, where u_* is the shear velocity) normalized to the sediment static load. It is a function of the Reynolds’ number of shear:

$Re_* = \frac{\rho_{mix}u_*D}{\mu}$ (3)

where μ is fluid viscosity.

PDCs form upon explosive eruptions when gases, fragments of magma and lithics, ranging in size from ash to blocks and bombs, are forced throughout the crater to form vertical eruption columns that collapse on the ground or are generated from gravitational failure of domes. They form flows that may spread around the volcano for many kilometers, causing devastation and death. The hazard potential of PDCs depends on impact parameters such as dynamic pressure:

$P_{dyn} = \frac{1}{2}\rho_{mix}V^2$ (4)

that contrasts the resistance of buildings to the flow, and the volumetric concentration of ash particles C, which represents a distinct source of hazard especially far from the volcano where the flow mechanical strength decays, but the current is still rich of ash in suspension. In fact, volcanic
ash in the air is very harmful to breath14, even at temperatures lower than 200°C (that are typical of dilute PDCs), and can cause serious health issues and possibly death to a human being if flow duration, t, which is a proxy for exposure time, is longer than a couple of minutes14,15.

Because of the very hostile nature, the behavior of PDCs is difficult to analyze directly, and our understanding is primarily based on the information preserved in the sediments of past eruptions2,16,17. laboratory to large-scale experiments18,19,20 and numerical modelling21,22. All three methodologies are valid, particularly when they are integrated23. The former, though, has the advantage of being directly linked to the ground truth when direct observations of the PDCs are not available, provided valid sedimentological models linking deposit characteristics to flow properties and their impact exist18.

Bedforms of the types of dunes and ripples have been widely recognized in the deposits of dilute PDCs since the pioneering observations of Richards24, Moore25 and Fisher and Waters26. Further details on other types of bedforms are nowadays emerging from observation of recent eruptions27.

Differently from what has been done for fluviatile and turbiditic currents, only very few attempts have been made to construct phase diagrams defining the stability fields of bedforms as a function of PDCs flow regimes. Only very recently Smith et al.17 have proposed a phase diagram for highly concentrated volcanic granular currents. Dellino et al.28, basing on results of large-scale experiments, have proposed a phase diagram in which volcanic deposits are classified based on their sedimentation rate, S_r and bedload transportation rate, Q_b. This agrees with the approach used in the field of sedimentary currents, for which it is widely recognized that the proportion of bedload to suspended load and the sediment size are the major controlling factors on bedforms formation9.

S_r is defined by Dellino et al.29, as:

$$S_r = \left(\sum_{i=1}^{n} \rho \psi \frac{\phi_i}{\psi_i} \psi_i \frac{C}{\left(\left(10.065 \frac{P_n}{P_{ni}} + 0.1579\right) 0.7 + \left(10.065 \frac{P_n}{P_{ni}} + 0.1579\right) 0.3\right)} - 0.01 \right)$$

with the subscript i referring to the ith particle-size class and n being the number of size classes of the grain-size distribution of the sediment, where $P_n = w_0/k\nu$, is the Rouse number of the ith size fraction of the solid material suspended in the current, with k the Von Karman constant (0.4) and w_0 the
terminal velocity of the i_{th} size fraction. $P_{n^*} = P_{navg}/P_{nsusp}$ is the normalized Rouse number of the current, i.e. the ratio between the average Rouse number of the solid material in the current and the Rouse number at maximum suspension capacity. ϕ_i, ρ_{si} and P_{ni} are the weight fraction, the density and the Rouse number of the i_{th} grain-size fraction, respectively. The sedimentation rate was transformed in the sedimentation rate per unit width, S_{rw} in order to make it comparable with Q_b dimension. Q_b is defined by Dellino et al. (modified from Wilcock and Crowe) as:

$$Q_b = \sum_i^n q_{bi} \quad (6)$$

where

$$q_{bi} = \frac{(\rho_s/\rho_{mix}^{1/3})g q_{bi}}{W_i^* \phi_i u_i^*}$$

and

$$W_i^* = \begin{cases}
0.002\xi^{7.5} & \text{for } \xi < 1.35 \\
14 \left(1 - \frac{0.894}{\xi^{0.5}}\right) & \text{for } \xi \geq 1.35
\end{cases} \quad (7)$$

q_{bi} is the volumetric bedload transport rate of the i_{th} size fraction per unit width of the flow, and $\xi = \tau/\tau_{ri}$ is the normalized shear stress, where τ_{ri} is the minimum shear stress needed to move the i_{th} size fraction at bedload.

The lower right portion of the S_{rw} vs Q_b phase diagram of Dellino et al. represents the field of massive deposits due to highly concentrated flows, also known as pyroclastic flows. The upper portion of the diagram represents the field of stratified deposits with ripple and dune bedforms, which are related to highly expanded, fast-moving, dilute and turbulent PDCs. W_i of bedforms that characterize dilute PDCs, shown in the diagram as the distance between two successive dunes or ripples (in cm), is inversely proportional to the S_{rw}/Q_b ratio, with ripples having a ratio larger than 0.05 and dunes smaller than 0.05.

In this paper, we further populate the diagram in the portion of dilute PDCs by adding 88 points relative to various eruptions of Vesuvius, Campi Flegrei and Vulcano in Italy. With this addition, the new dataset consists of 98 deposits (Fig. 1) and covers a wide span of the S_{rw} vs Q_b space, allowing.
an analysis of bedforms in terms of a large range of flow parameters.

Fig. 1. S_{aw} vs Q_b diagram in which 88 points have been added to those of Dellino et al.²⁸. The W_l of bedforms as a function of the S_{aw}/Q_b ratio is inserted and also the legend of volcanoes from which deposits were analysed.

The bedform W_l ranges from ripples (Fig. 2a), starting at 10 cm, to dunes (Fig. 2b), up to 250 cm.

Fig. 2. PDC deposits showing bedforms. a=ripples of PDC deposits at Vulcano. The curves enclose a ripple with $W_l = 40$ cm. b=a dune bedform of PDC deposits at Vesuvius. The curves enclose a dune with $W_l = 200$ cm.
We never found antidunes, in fact their interpretation has always been questioned in volcanic deposits.11,27

The software PYFLOW 2.0 by Dioguardi and Mele31 has been used to plot data in Fig 1. It was implemented here so to obtain both the impact parameters of the current together with S_{rw} and Q_b.

The software employs sediment data that result from time-consuming laboratory analyses, which involve technologies and calculation resources not available to all scientists (see the Method section).

The aim of this paper is to rearrange and simplify the dataset in order to construct a phase diagram by which to invert W_l and D of PDCs’ deposits bedforms and obtain the impact parameters directly in the field, without the need of the extra terms that require extensive work in the laboratory.

By means of regression analysis we obtained three fitting laws (Fig. 3a, b and c) that correlate just few of the many terms of the formulas of (5), (6) and (7) (u^2C/Q_b, $D^{0.5}u/\sqrt{u^2C}$, $u^{0.4}C^{0.62}/S_{rw}$, respectively), thus reducing the complexity of the original equations, and still guarantee high correlation coefficients, hence, a good approximation of the full PDCs impact and depositional models.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{regression_analysis}
\caption{Fig. 3. Fits resulting from the regression analysis. In the insets both the correlation coefficient, r, and the fitting equation are inset. a=parabolic relationship between u^2C and Q_b, b=linear relationship between $D^{0.5}u$ and $\sqrt{u^2C}$. c=power-law relationship between $u^{0.4}C^{0.62}$ and S_{rw}, d=power-law relationship between S_{rw}/Q_b and W_l.}
\end{figure}
A fourth fitting law between S_{rw}/Q_b vs W_l with a good correlation was obtained by selecting 32 deposits characterized by well exposed bedforms ranging between ripples and dunes (Fig. 3d).

The fitting laws allow interpreting Q_b and S_{rw} in terms of the deposit formation processes, and also to relate them to the current’s flow parameters. In Fig. 3a a relationship between Q_b and Cu_{\ast}^2 is shown. Since C is directly proportional to ρ_{mix} and $\rho_{mix}u_{\ast}^2$ is the turbulent shear stress of the current32, it means that Q_b is proportional to the shear stress, which confirms the finding of sedimentary currents29. The relationship between Du_{\ast} and Cu_{\ast}^2 of Fig. 3b implies that shear stress is proportional to bedforms grain size, confirming what reported for sedimentary deposits28. On Fig. 3c a relationship between the product of $C^{0.62}u_{\ast}^{0.4}$ and S_{rw} is shown. Since the exponents of C and u_{\ast} are both lower than 1, while in the fitting with Q_b of Fig. 3a they are 1 and 2 respectively, it means that with an increase of C and u_{\ast} the difference between S_{r} and Q_b increases, and S_{rw}/Q_b decreases. This justifies that with the decrease of S_{rw}/Q_b, the bedform wavelength increases continuously, as it is shown by Fig. 3d. This outcome deserves an additional comment, because in sedimentary deposits ripples and dunes are not believed to represent a continuum, being them separate by a hydrodynamic discontinuity33. This happens because ripples, being small, do not interfere with the upper current surface, while dunes, being larger, interfere with it. This discontinuity does not appear in the S_{rw}/Q_b vs W_l diagram of Fig. 3d, likely because a true interface between the current and the surrounding atmosphere does not exist in PDCs, which are instead characterized by a very gradual passage between the two10 (see the method section for our model of dilute PDCs).

The four fitting laws make up a system of equations

\begin{align*}
\text{(8)} \quad u_{\ast}^{0.4}C^{0.62} & = 0.2168S_{r}^{0.2938} \\
S_{rw}/Q_b & = 52.92W_l^{-1.518}
\end{align*}

\begin{align*}
u^2C & = 1.5099Q_b^2 + 0.3874Q_b + 0.0011 \\
D^{0.5}u_{\ast} & = 205.02u_{\ast}^2C + 0.163
\end{align*}
that can be solved numerically, once D and W_l are specified, to obtain u_*, C, S_{rw} and Q_b. Important information on the hazard of dilute PDCs can be obtained from the first three parameters. C and u_* serve for the calculation of P_{dyn} (2), since C is used for obtaining ρ_{mix} in (2) by means of (1) and u_* is used for the calculation of V by means of the law of the wall of a turbulent boundary layer\(^{32}\)

$$V(y) = u_*(\frac{1}{k} \ln \frac{y}{k_s} + 8.5) \quad (9)$$

which is the physical model of PDCs that we employ (see the method section), where $V(y)$ is the velocity profile of the stratified flow\(^{32}\), and k_s is the substrate roughness.

When comparing results obtained by (8) with those resulting from PYFLOW 2, the average absolute error of u_* is 28% and that of C is 30%. This means that a good approximation can be achieved for exploring the range of impact parameters by means of the simplified formulas, without the terms that involve extensive laboratory analysis.

The absolute error of S_{rw} is about 45%. While it is larger than that of u_* and C, we discuss also the role of S_{rw} because it allows the calculation of flow duration, t^{15}, which is an important factor of hazard. The total time of aggradation is a proxy of flow duration, t, which is equal to deposit thickness, H_{dep}, divided by A_r, the aggradation rate. Sedimentation occurs by continuous aggradation during the passage of the current, and A_r is equal to S_{rw} divided by one meter, which is the reference width of the sedimentation rate per unit width, (see Dellino et al.\(^{28}\)). Therefore, flow duration, which approximates the time in which harmful concentrations of ash are suspended in the current to which a human being can be exposed, can be calculated by means of S_{rw}. With our model a reasonable approximation can be achieved also on such a relevant parameter of PDCs.

In Fig. 4, which was constructed by means of (8), the main flow variables and impact parameters are shown as a function of D and W_l. The W_l range was set between 10 and 300 cm. Bedforms with larger W_l can be found in the geologic record of volcanic deposits, but this scenario is out of the range of applicability of our model. We are, in fact, considering bedforms that develop on an almost flat surface. Much larger bedforms, instead, typically develop as an interplay between the current’s flow
dynamics and large ground morphology elements27 (e.g. ridges, big obstacles). The range of D of Fig. 4 was set between 4 and -2 phi (0.0064 mm and 4 mm respectively). We do not include coarser values because, in volcanic sediments, larger sizes (coarse lapilli and bombs) do not form dunes, but lenticular beds representing highly concentrated traction-carpets at the base of PDCs,34,35 to which our model does not apply.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig4.png}
\caption{Trends of flow variables and impact parameters of dilute PDCs as a function of bedform wavelengths. The various curves represent the behavior of different grain size D. Grain size is expressed in phi units (phi=-log\textsubscript{2}D, with D in mm).}
\end{figure}

In Fig. 4a the value of velocity V, as averaged in the first 1000 cm of the current, which was obtained by integrating (9) over flow height, with $k_s = 10$ cm, is plotted against W_l. We chose this depth-averaging height because, in dilute PDCs, the portion responsible for the dynamic impact is the
lowermost one (the shear flow) and 1000 cm represent a reasonable estimate of an average building height. \(V \) increases at increasing \(W_l \) but with different trends and rates depending on the particle grain size \(D \). In the diagram it ranges from about 10 m/s to about 130 m/s. The trends are significantly different for the finer grain sizes (1 to 4 phi) at the smallest \(W_l \) (up to 50 cm), which can be interpreted as the smaller it is \(W_l \), the smaller are \(Q_b \) and shear stress, therefore the higher the velocity required to develop bedforms with the finest \(D \). This is because for fine ash, due to the very low \(Re^* \), the initiation of motion at the bedload occurs at a very high \(\theta_t \). With larger \(W_l \), corresponding to larger \(Q_b \) and larger shear stress, higher velocities are needed with coarser particles, because \(\theta_t \) decreases down to the constant value characteristic of high \(Re^* \), which in turn implies that a larger shear stress is needed to move larger grain sizes. The volumetric concentration, \(C \), ranges from less than 0.001 to about 0.017 (Fig. 4b). It decreases as \(W_l \) increases, and it does so for all grain sizes, although at a rate that decreases at decreasing \(D \), because a higher concentration favors a higher \(S_{rw} \) (see (7)) and a larger \(S_{rw}/Q_b \) ratio, hence a smaller \(W_l \). The evident change in trend with decreasing grain size can be explained by the fact that the finer the particles, the lower the concentration required to develop bedforms with small wavelengths; the increase of shear stress and \(Q_b \) results in similar concentrations for all grainsizes. The density of the current (Fig. 4c) follows the trend of concentration, as it is calculated by means of (1) and fixing \(\rho_s = 2000 \text{ kg/m}^3 \) and \(\rho_f = 0.9 \text{ kg/m}^3 \) (which is reasonable if the fluid, made up of volcanic gas plus entrained cold atmosphere, is at about 200 °C) and varies from less than 2 kg/m\(^3\) to about 35 kg/m\(^3\). By using the values of density and velocity in (4) the trend of \(P_{dyn} \) is shown in Fig. 4d. It varies from less than 1 kPa with smaller \(W_l \) and finer \(D \), which is a value that does not cause severe damages to buildings, to almost 30 kPa with larger \(W_l \) and coarser \(D \), which can destroy even the more resistant, modern buildings of reinforced concrete. The sedimentation rate (Fig. 4e) increases as grain size coarsens, meaning that with finer sizes flow duration is longer, as it is expected since finer sizes result in a smaller settling velocity. As far as the wavelength is concerned, for the finest sizes, \(S_{rw} \) increases at increasing \(W_l \), meaning a decrease of...
flow duration with longer bedforms. With the coarsest sizes, instead, the sedimentation rate decreases as \(W_i \) increases, meaning a longer flow duration with longer bedforms.

The ranges of \(W_i \) and \(D \) used in (8) for obtaining the trends of Fig. 4 replicate the ranges in our dataset, and result in parameters that span from currents that do not impact severely on structures, to values of devastating effects. Such a range well represents the situation of large-scale PDCs whose strength decreases along runout\(^{15}\), and change from totally destructive flows around the volcano to residual currents that in the distal outreach do not possess a high strength but can still be rich of ash. Such fine glassy material can be highly dangerous to breath even at concentrations lower than 0.001\(^{38}\) if flow duration \(t \), which can be calculated by means of \(S_{rw} \), lasts more than a couple of minutes. Thus, with our model it is possible to invert bedforms of past eruptions, and follow the different aspects of PDCs hazard as they evolve along flow runout.

In order to help scientists not availing of numerical resources to take advantage of our results, we solved (8) at discrete intervals of \(D \) and \(W_i \) and constructed a phase diagram where the stability fields of \(P_{dyn} \), \(C \) and \(S_{rw} \) are represented inside a grid (Fig. 5). The values are averaged among the four neighboring grid points and the uncertainty is expressed in terms of one standard deviation. \(P_{dyn} \) is calculated by considering the average value obtained by integration over the first 1000 cm of the current, and setting \(k_s =10 \) cm and \(\rho_s = 2000 \) kg/m\(^3\).
Fig. 5. Phase diagram in which the stability fields of the impact parameters P_{dyn}, C and S_{rw}, are expressed as a function of W_l and D of bedforms. The values inside the grid represent the average between the four neighboring grid points and the uncertainty is expressed as the standard deviation. $K_s = 10$ cm, $\rho_s = 2000$ kg/m3.

In the supplementary Information, additional diagrams with $k_s = 10$ cm and $\rho_s = 1000$ kg/m3; $k_s = 30$ cm and $\rho_s = 2000$ kg/m3; and $k_s = 10$ cm and $\rho_s = 1000$ kg/m3 are included (Supp. Fig. 1,2 and 3 respectively), and a table is also provided (Supp. Tab.1) where the values of u^*, C and S_r are set at half phi intervals of D in relation to W_l. By means of these data, and specifying in (4) and (9) the value of k_s, ρ_s, and H at which to integrate V, more precise data of the impact parameters can be obtained.

With our diagrams and tables at hand it is thus possible for every scientist working on hazardous volcanoes to make an exploratory hazard assessment by means simply of the wavelength and grain size of bedforms. It is true that bedforms are not always well exposed in their complete longitudinal profile, because of truncations due to erosion. Sometimes they are also difficult to measure precisely,
because a direct access to the deposit is hard. Anyway, our experience tells that dilute PDCs most always leave well-preserved bedforms as a trace of their passage. Scientists working on active volcanoes are encouraged to look for good outcrops where bedforms can be measured. By means of our phase diagrams, now they have a tool for exploring the behavior of hazardous pyroclastic density currents directly in the field.

Method

The reconstruction of the impact parameters of PDCs is based on a flow mechanical model that starts with the assumption that the turbulent current is velocity and density stratified12,40. In the stratified multiphase gas-particle current, the basal part is a shear flow that moves attached to the ground and has a density higher than atmosphere (Fig. 6). The upper part is buoyant, because particle concentration decreases with height down to a value that, combined with the effect of gas temperature, makes the mixture density lower than the surrounding atmosphere.

In a PDC, particles are mainly transported by turbulent suspension and sedimentation is controlled by a balance between flow shear velocity u_*, which is controlled by fluid turbulence and favors suspension, and particle settling velocity, $w_t = (4gD(\rho_s - \rho_{mix})/3C_d\rho_{mix})^{0.5}$, which favors sedimentation, where C_d is drag coefficient. During sedimentation, it is assumed that particles of different composition, i.e. crystals and glass, settle at the same aerodynamic conditions, e.g., with the same

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig6}
\caption{Sketch of the model of a pyroclastic density current used in this paper}
\end{figure}
terminal velocity15. Therefore, by equating the settling velocity of the glass and crystal components
in the deposit, and assuming that sedimentation starts when $P_n = 2.5$, hence when $w_t = u^*$, flow shear
velocity and density ρ_{sf} of the shear flow can be calculated after D, ρ_s and C_d are measured in the
laboratory36. These are the main input data in the PYFLOW\textsubscript{2.0} code31, which allows reconstructing
the current parameters.

The code is based on a model that assumes PDCs behave as turbulent boundary layer shear flows
moving over a rough surface37, which velocity profile is given by (9). The model has been validated
by experiments18 and already applied to other eruptions40,41. Here it is summarized as adapted from
Dellino et al.15.

The maximum volumetric concentration of particles that can be transported in turbulent suspension,
i.e. the maximum current capacity, is a function of the Rouse number of the particulate mixture taken
in suspension. The profile of volumetric concentration over current height is regulated by the Rouse
model42.

\begin{equation}
C(y) = C_0 \left(\frac{y_0}{H-y_0}\right)^{P_n} \tag{10}
\end{equation}

where C_0 is the particle volumetric concentration at a reference height y_0 and H is the total current
thickness. Assuming steady sedimentation, H is obtained by the ratio H_{dep}/C_{sf} where H_{dep} is deposit
thickness and C_{sf} is the depth-averaged concentration in the basal shear flow, which can be calculated
by $\rho_{sf} = \rho_s C_{sf} + \rho_f (1-C_{sf})$, when ρ_{sf} and ρ_f are known.

The shear-flow height and density are obtained by solving the system of (11) and (12), which is valid
for a turbulent current

\begin{align*}
\tau &= (\rho_{sf} - \rho_f) g \sin \alpha H_{sf} \tag{11} \\
\tau &= \rho_{sf} u_*^2 \tag{12}
\end{align*}

where τ is the shear-driving stress of the flow moving down an inclined slope of angle α.

The density profile, which is a function of concentration, particle density and gas density, is:

\begin{equation}
\rho_{mix}(y) = \rho_f + C_0 \left(\frac{y_0}{H-y_0}\right)^{P_n} (\rho_s - \rho_f) \tag{13}
\end{equation}
The gas density and Rouse number are obtained by solving numerically the following system:

\[\rho_a(y) = \rho_f + C_0 \left(\frac{y_0}{H-y_0} \right)^{\eta_f} \left(\rho_s - \rho_f \right) \] (14)

\[\rho_{sf} = \frac{1}{H_{sf}-y_0} \int_{y_0}^{H_{sf}} \left(\rho_f + C_0 \left(\frac{y_0}{H-y_0} \right)^{\eta_f} \left(\rho_s - \rho_f \right) \right) dy \] (15)

Equation (14) states that atmospheric density, \(\rho_a \), is reached at the top of the shear flow, \(H_{sf} \), and equation (15) states that the average density of the shear flow, \(\rho_{sf} \), refers to the part of the flow that goes from the reference level, \(y_0 \), to the shear flow top height, \(H_{sf} \).

By combining the velocity and density profiles, the dynamic pressure profile is finally obtained. The profiles of the flow parameters are expressed in terms of a probability density function that depends on the variance of particle characteristics.

References

1. Spence, R. J.S., Baxter, P. J. & Zuccaro G. Building vulnerability and human casualty estimation for a pyroclastic flow: A model and its application to Vesuvius. *J. Volcanol. Geotherm. Res.* 133, 321–343 (2004).
2. Sulpizio, R., Dellino, P., Doronzo, D. M. & Sarocchi, D. Pyroclastic density currents: state of the art and perspectives. *J. Volcanol. Geotherm. Res.* 283, 36–65 (2014).
3. Chough, S.K. & Sohn, Y.K. Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea. *Sedimentology* 37(6), 1115-1135 (1990).
4. Douillet, G.A. The supercritical question for pyroclastic dune bedforms: An overview. *Sedimentology* (2021). doi.org/10.1111/sed.12859
5. Middleton, G.V. & Southard, J.B. Mechanics of Sediment Movement, 2nd edn. Society of Economic Paleonologists and Mineralogists, Tulsa, OK, 401 pp (1984).
6. Bartholdy, J., Ernstsen, V.B., Flemming, B.W., Winter, C., Bartholomä, A. & Kroon, A. On the formation of current ripples. *Sci. Rep.* 5, 11390 (2015). doi:10.1038/srep11390
7. Ashley, G.M. Classification of large-scale subaqueous bedforms: a new look at an old problem: bedforms and bedding structures: *J. Sed. Pet.* 60, 160–172 (1990).
8. Perillo, M.M., Best, J.L. & Garcia, M.H. A new phase diagram for combined-flow bedforms. *J. Sed. Res.* 84, 301-313 (2014).
9. Fedele, J.J., Hoyal, D.C., Barnaal, Z., Tulenko, J. & Awalt, S. Bedforms created by gravity flows. In: In: Budd, D., Hajek, E., Purkis, S. (Eds.), Autogenic Dynamics and Self-Organization in Sedimentary Systems 106. SEPM Spec. Pub. 95–121 (2016).
10. Middleton, G.V. (1993). Sediment deposition from turbidity currents. *Annu. Rev. Earth Planet. Sci.* 21, 89-114 (1993).
11. Allen J.R.L. Sedimentary Structures, their Character and Physical Basis. *Developments in Sedimentology*, vol. 30A, Elsevier (1982).
12. Valentine, G.A. Damage to structures by pyroclastic flows and surges, inferred from nuclear weapons effects. *J. Volcanol. Geoth. Res.* 87, 117–140 (1998).
13. Zuccaro, G., Cacace, F., Spence, R.J.S. & Baxter, P.J. Impact of explosive eruption scenarios at Vesuvius. *J. Volcanol. Geotherm. Res.* **178**, 416–453 (2008).

14. Baxter, P.J., Jenkins, S., Rosadi, S., Komorowski, J.-C., Dunn, K., Purser, D., Voight, B. & Shelley, I. Human survival in volcanic eruptions: thermal injuries in pyroclastic surges, their causes, prognosis and emergency management. *Burns* **43**, 1051-1069 (2017).

15. Dellino, P., Dioguardi, F., Isaia R., Sulpizio R., Mele D. The impact of pyroclastic density currents duration on humans: the case of the AD 79 eruption of Vesuvius. *Sci. Rep.* **11**(1), 4959 (2021).

16. Branney, M.J. & Kokelaar, P. Pyroclastic density currents and the sedimentation of ignimbrites. *Geol Soc London Memoir* **27**, 1–143 (2002).

17. Smith, G., Rowley, P., Williams, R., Giordano, G., Trolese, M., Silleni, A., Parsons, D.R. & Capon, S. A bedform phase diagram for dense granular currents. *Nat. Commun.* **11**(1), 1-11 (2020).

18. Dellino, P., Büttner, R., Dioguardi, F., Doronzo, D.M., La Volpe, L., Mele, D., Sonder, I., Sulpizio, R. & Zimanowki, B. Experimental evidence links volcanic particle characteristics to pyroclastic flow hazard. *Earth Planet. Sci. Lett.* **295**, 314-320 (2010). doi: 10.1016/j.epsl.2010.04.022

19. Andrews, B.J. Recognizing unsteadiness in the transport systems of dilute pyroclastic density currents. *Bull. Volcanol.* **81**(2), 5 (2019).

20. Brosch, E. & Lube, G. Spatiotemporal sediment transport and deposition processes in experimental dilute pyroclastic density currents. *J. Volcanol. Geotherm. Res.* **401**, 106946 (2020).

21. Doronzo, D.M., Dellino, P., Sulpizio, R., Lucchi, F. Merging field mapping and numerical simulation to interpret the lithofacies variations from unsteady pyroclastic density currents on uneven terrain: The case of La Fossa di Vulcano (Aeolian Islands, Italy). *J. Volcanol. Geotherm. Res.* **330**, 36-42 (2017).

22. Tadini, A., Bevilacqua, A., Neri, A., Cioni, R., Biagioli, G., de’Michieli Vitturi, M., Esposti Ongaro, T. Reproducing pyroclastic density current deposits of the 79 CE eruption of the Somma-Vesuvius volcano using the box-model approach. *Solid Earth* **12**, 119-139 (2021).

23. Doronzo, D.M., de Tullio, M.D., Pascazio, G., Dellino, P., Liu, G. On the interaction between shear dusty currents and buildings in vertical collapse: Theoretical aspects, experimental observation, and 3D numerical simulation. *J. Volcanol. Geotherm. Res.* **302**, 190-198 (2015).

24. Richards, A.F. Geology of the islas revillagigedo, mexico. *Bull. Volcanol.* **22**(1), 73 (1959).

25. Moore, J.G. Base surge in recent volcanic eruptions. *Bull. Volcanol.* **30**(1), 337 (1967).

26. Fisher, R.V. & Waters, A.C. Bed forms in base-surge deposits: Lunar implications. *Science* **165**(3900), 1349-1352 (1970).

27. Douillet, G.A., Bernard, B., Bouysson, M., Chaffaut, Q., Dingwell, D.B., Gegg, L., Hoelscher, I., Kueppers, U., Mato, C., Ritz, V.A. & Schlunegger, F. Pyroclastic dune bedforms: macroscale structures and lateral variations. Examples from the 2006 pyroclastic currents at Tungurahua (Ecuador). *Sedimentology* **66**(5), 1531-1559 (2019).

28. Dellino, F., Dioguardi, F., Doronzo, D.M. & Mele, D. A discriminatory diagram of massive vs stratified deposits based on the sedimentation and bedload transportation rates. Experimental investigation and application to pyroclastic density currents. *Sedimentology* **67**(4), 2013-2039 (2020). doi:10.1111/sed.12693.

29. Dellino, P., Dioguardi, F., Doronzo, D.M. & Mele, D. The rate of sedimentation from turbulent suspension: an experimental model with application to pyroclastic density currents and discussion on the grain-size dependence of flow mobility. *Sedimentology* **66**(1), 129-145 (2019). doi:10.1117/sed.12485.

30. Wilcock, P.R. & Crowe, J.C. Surface-based transport model for mixed-size sediment. *J. Hydraul. Eng.* **129**, 120–128 (2003).
31. Dioguardi, F. & Mele, D. PYFLOW_2.0: A computer program for calculating flow properties and impact parameters of past dilute pyroclastic density currents based on field data. Bull. Volcanol. 80(3), 28 (2018). doi:10.1007/s00445-017-1191-z.
32. Furbish, D.J. Fluid Physics in Geology. Oxford University Press, New York, Oxford. 476 pp (1997).
33. de Cala, I., Ohata, K., Dorrell, R., Naruse, H., Patacci, M., Amy, L.A., Simmons, S., McLelland, S.J. & McCaffrey, W.D. Relating the Flow Processes and Bedforms of Steady-State and Waning Density Currents. Front. Earth Sci. 8, 535743 (2020). doi:10.3389/feart.2020.535743.
34. Sohn, Y.K. On traction-carpet sedimentation. J. Sed. Res. 67, 502–509 (1997).
35. Dellino, P., Isaia, R., La Volpe, L. & Orsi, G.: Interaction between particles transported by fallout and surge in the deposits of the Agnano-Monte Spina eruption (Campi Flegrei, Southern Italy). J. Volcanol. Geotherm. Res. 133, 193-210 (2004).
36. Dellino, P., Mele, D., Sulpizio, R., La Volpe, L. & Braia, G. A method for the calculation of the impact parameters of dilute pyroclastic density currents based on deposit particle characteristics. J. Geophys. Res. 113, B07206 (2008). doi:10.1029/2007JB005365.
37. Miller, M.C., McCave, I.N. & Komar, P.D. Threshold of sediment motion under unidirectional currents. Sedimentology 24, 507–527 (1977).
38. Jenkins, S., Komorowski, J.C., Baxter, P.J., Spence, R., Picquout, A., Lavigne, F. & Surono. The Merapi 2010 eruption: An interdisciplinary impact assessment methodology for studying pyroclastic density current dynamics. J. Volcanol. Geotherm. Res. 261, 316–329 (2013).
39. Brown, R.J. & Branney, M.J. Internal flow variations and diachronous sedimentation within extensive, sustained, density stratified pyroclastic density currents down gentle slopes, as revealed by the internal architectures of ignimbrites in Tewnerife. Bull. Volcanol. 75, 1–24 (2013).
40. Dellino, P., Mele, D., Bonasia, R., Braia, G., La Volpe, L. & Sulpizio, R. The analysis of the influence of pumice shape on its terminal velocity. Geophys. Res. Lett. 32, L21306 (2005).
41. Mele, D., Dioguardi, F., Dellino, P., Isaia, R., Sulpizio, R. & Braia, G. Hazard of pyroclastic density currents at the Campi Flegrei Caldera (Southern Italy) as deduced from the combined use of facies architecture, physical modeling and statistics of the impact parameters. J. Volcanol. Geotherm. Res. 299, 35–53 (2015).
42. Rouse, H. An analysis of sediment transportation in the light of fluid turbulence. Soil Conservation Services Report No. SCS-TP-25, USDA, Washington, D.C (1939).
| Symbol | Description | Dimension |
|--------|--|-----------|
| A_r | Aggradation rate per unit width | ms$^{-1}$ |
| C | Particle volumetric concentration | - |
| C_0 | Reference known concentration (0.75) | - |
| C_{sf} | Depth-averaged concentration in the basal shear flow | - |
| C_d | Particle drag coefficient | - |
| D | Sediment median size | mm |
| Fr' | Froude number | |
| g | Gravity acceleration (9.81) | ms$^{-2}$ |
| H | Current depth | cm |
| H_{dep} | Deposit thickness | cm |
| k | Von Karman constant (0.4) | - |
| k_s | Substrate roughness | cm |
| P_{dyn} | Dynamic pressure | Pa |
| P_n | Particle Rouse number | - |
| P_n^* | Normalized Rouse number | - |
| P_{navg} | Average Rouse number of solid material | - |
| P_{ni} | Rouse number of the ith particle-size class | - |
| $P_{n_{sup}}$ | Rouse number at maximum suspension capacity | - |
| Q_b | Bedload transportation rate | m2s$^{-1}$ |
| q_{bi} | Volumetric bedload transport rate of the ith particle-size class | m2s$^{-1}$ |
| Re_* | Reynolds’ number | - |
| S_r | Sedimentation rate | kgm$^{-2}$s$^{-1}$ |
| S_{rw} | Sedimentation rate per unit width | m2s$^{-1}$ |
| t | Flow duration | s |
| u_* | Shear velocity | ms$^{-1}$ |
| V | Current velocity | ms$^{-1}$ |
| $W_{i,r}$ | Dimensionless transport rate of the ith particle-size class | - |
| W_{i} | wavelength | cm |
| w_i | Particle terminal velocity | ms$^{-1}$ |
| w_{ti} | Terminal velocity of the ith particle-size class | ms$^{-1}$ |
| y | Flow vertical coordinate | cm |
| y_0 | Specific height of C_0 | - |
| α | Slope angle | $^\circ$ |
| ϕ | Unit of grain-size distribution ($\phi= -\log_2 d; d$ is in mm) | - |
| ϕ_i | Weight fraction of the ith size class | Weight% |
| θ | Shield’s number | - |
| μ | Fluid viscosity | Pas |
| ρ_f | Fluid density | kgm$^{-3}$ |
| ρ_{mix} | Density of the fluid-particle mixture | kgm$^{-3}$ |
| ρ_i | Particle density | kgm$^{-3}$ |
| ρ_{sf} | Density of shear flow | kgm$^{-3}$ |
| ρ_{ni} | Density of the ith particle-size class | kgm$^{-3}$ |
| τ | Shear stress at the base of the current | Pa |
| τ_i | Minimum shear of the ith size fraction | Pa |
| ξ | Normalized shear stress | - |

Table 1. List of Symbols, with description and physical dimension.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supppfig1.pdf
- Supppfig2.pdf
- Supppfig3.pdf
- SupplTab.pdf