The potential impact data of Tylosin and Enrofloxacine veterinary antibiotics on germination and accumulation in barley seed as a forage crop and good dietary sources using LC/MS-MS

Ahmed Abou Elezza, Ahmed Easa, Fathy Atia, Talaat Ahmed

Environmental Science Center (ESC), Qatar University, P.O. Box 2713, Doha, Qatar

Central Laboratory Unit, Qatar University, P.O. Box 2713, Doha, Qatar

A R T I C L E I N F O

Article history:
Received 12 July 2019
Received in revised form 21 July 2019
Accepted 22 July 2019
Available online 27 July 2019

Keywords:
Phytotoxic effect
Veterinary antibiotics
Seed germination
Barley
Spectrometry

A B S T R A C T

In this study, the phytotoxic effects caused by the exposure to five different concentrations of two veterinary antibiotics (Tylosin, and Enrofloxacine) that are commonly used for the treatment of farm animals as antibacterial agents were considered. The impact of antibiotic residues was evaluated on the germination percentage, accumulation, and seedling elongation of the barley seeds using Petri dishes under controlled environmental conditions. The treatments were distributed randomly using Completely Randomized Design (CRD). The germination percentage was significantly inhibited with the increasing Enrofloxacine dose concentrations, while, it was to some extent on the contrary in the case of Tylosin, where seed germination was enhanced as a result of increasing Tylosin concentrations.

Liquid chromatography-tandem mass spectrometry LC/MS-MS was used to detect and quantify the uptake dosage after drying and extracting the antibiotic compounds from the seedling.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Development of roots was started on day two of the seed germination without any shoots. After three days, the primary shoots (plumules) were started. Maximum elongation was found on day six of germination. The significant observation during the experiment was increasing the inhibition rate gradually with increasing the concentration of Enrofloxacin antibiotic from the control sample (0 ppm) to 1000 mg/L (Table 1), while Tylosin was somewhat on the contrary (Figs. 1–3).

Barley seedlings elongation under the influence of different concentration levels was outlined in the bar chart (Fig. 3). Roots and shoots were gradually inhabited with increasing the Enrofloxacin concentration, especially under 500, 1000 mg/L, while it was clear that Tylosin had no significant effect.

The percent over control of roots and shoots were calculated to reaffirm the potential impact of Enrofloxacin antibiotic on the germination of barley (Table 1).

In Fig. 4, the variation of root and shoots germination was illustrated between the control sample and two treatment concentrations (0.1, 1000 mg/L) of Tylosin and Enrofloxacin veterinary antibiotics; then seedlings were dried and tested to quantify the accumulation of the antibiotic by LC/MS-MS.

The Completely Randomized Design (CRD) of this study experiment was explained graphically using five treatments of Tylosin and Enrofloxacin with four replicates for each treatment (Fig. 5). The mean uptake concentrations of four replicates (n = 4) of Tylosin and Enrofloxacin with different treatments were represented in the roots, and shoots of the barley seedlings (Table 2). The antibiotic concentrations were separated from the sample matrix using High Performance Liquid Chromatography (HPLC) system.
Table 1
Number of seeds germinated (out of 10 seeds), max elongation(mm), Roots and shoots over control %, fresh weight, dry weight of barley seed(g) and germination percentage.

Treatment	Conc mg L⁻¹	Percent of germinated seeds (out of ten)	Maximum elongation on day six	Roots over control %	Shoots over control %	Fresh weight (g)	Dry weight (g)	Root germination %	Shoot germination %	Mean Roots Elongation (mm)	Mean Shoots Elongation (mm)	
Control	0	60%	65.0	97.4	100	100	0.22	0.04	58%	58%		
Antibiotic-1 (Tylosin)	0.1	70%	66.8	106.8	103	110	0.22	0.06	65%	65%		
	10	70%	67.5	97.8	104	100	0.15	0.04	80%	68%		
	100	80%	59.9	91.0	78	93	0.19	0.05	85%	78%		
	500	60%	42.4	96.1	65	99	0.15	0.05	65%	48%		
	1000	60%	39.5	97.5	61	100	0.24	0.05	58%	58%		
Antibiotic-2 (Enrofloxac)	0.1	70%	33.9	96.9	52	99	0.15	0.06	73%	60%		
	10	90%	24.8	87.6	38	90	0.16	0.09	93%	83%		
	100	70%	21.3	58.8	33	60	0.13	0.09	80%	65%		
	500	70%	6.60	36.0	10	37	0.08	0.06	83%	55%		
	1000	50%	2.60	25.0	4	26	0.08	0.06	63%	45%		

Fig. 1. Germination percent of the shoots and roots under the effect of Tylosin (A), Enrofloxac (B) antibiotics concentrations.

Fig. 2. The seedling fresh and dry weight with different Tylosin (A) and Enrofloxac (B) antibiotic concentrations.
Table 4 demonstrates the characteristics of a Multi reaction monitor (MRM) method used to quantify and detect residual antibiotics (mg. L\(^{-1}\)).

The data were analyzed using the analysis of variance (one-way ANOVA) under completely randomized design, and the treatment means were compared by Tukey test using IBM-SPSS statistics software (version 25).

The multiple Comparisons (Tukey HSD) test for the roots germinated % represents a significant variation \((P < 0.05\) at 95% confidence interval) only between control (0 mg/L) and Enrofloxacine treatments, while, the shoots germination % had no significant variation between treatment groups at the same conditions \((P > 0.05\) at 95% confidence interval).

A significant variation was found in the uptake concentrations between treatment groups \((P < 0.05\) at 95% confidence interval) in Tylosin and Enrofloxacine antibiotics (Table 3).

2. Experimental design, materials, and methods

- Experimental Design

The experiment was conducted using a common forage crop plant (Barley) and included two antibiotics (Tylosin, Enrofloxacine) with five different concentrations (0.1, 10, 100, 500, 1000 mg. L\(^{-1}\)) in addition to the control, and each treatment was replicated four times. It was carried out on Petri dishes under a controlled environment (Temperature and light duration). The treatments were distributed randomly using Completely Randomized Design (CRD).
Local barley seeds were used in this study. Seeds were germinated using distilled water mixed with the antibiotics. Antibiotics were used with different concentrations ranging from 0.1 to 1000 mg L\(^{-1}\).

Each dish accurately contains ten selected seeds by adding approximately fifteen ml of different treatments. The germination percentage (%), root length, shoot length, the fresh and dry weight of seedlings were measured. Seeds were considered germination with the emergence of radical. The germination percentage was determined by counting the number of seeds germinated during the experiment period (six days) over the total number of seeds according to Equation (1), [1].

\[
\text{Germination\%} = \frac{\text{Number of germinated seeds}}{\text{Total number of seeds}} \times 100
\]

Equation 1
Fig. 5. Outline of the experiment using Complete Randomized Design (CRD) with five treatments and a control sample with four replicates (R).

Table 2
The antibiotics uptake concentrations (n = 4) in (mg. L\(^{-1}\)) of seedling under the effect of Tylosin, Enrofloxacin with different concentrations analyzed by LC/MS-MS.

Initial antibiotics concentrations (mg. L\(^{-1}\))	Tylosin (mg. L\(^{-1}\))	Enrofloxacin (mg. L\(^{-1}\))		
	Root	Shoot	Root	Shoot
0	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
0.1	0.00 ± 0.00	0.00 ± 0.00	0.01 ± 0.01	0.00 ± 0.00
10	0.00 ± 0.01	0.01 ± 0.01	0.01 ± 0.02	0.01 ± 0.01
100	0.67 ± 0.50	0.84 ± 0.81	2.23 ± 0.78	1.26 ± 0.65
500	3.65 ± 2.11	2.87 ± 1.83	10.66 ± 6.39	2.40 ± 1.64
1000	4.69 ± 1.61	3.20 ± 1.52	15.70 ± 7.56	1.84 ± 0.82

Table 3
One way ANOVA test of the antibiotics uptake concentrations between treatments.

ANOVA	df	Mean Square	F	Sig(P)
uptake concentration of Tylosin				
Between Groups (Treatments)	4	48.300	31.140	.000
Within Groups	12	1.551		
Total	16	188.447	7.910	.004
uptake concentration of Enrofloxacin				
Between Groups (Treatments)	4	23.825		
Within Groups	10	23.825		
Total	14			

Table 4
The MRM method used to quantify the residues of veterinary antibiotics in water matrices.

Compound name	Precursor ion	Fragmentor (V)	Product-Ion	Collision energy (eV)
Tylosin	916.3	220	174	40
			101	52
Enrofloxacin	360.2	115	342.2	16
			316.2	16
Fig. 5 outlines the experimental design for a forage crop seed germination under five antibiotic concentrations. Two types of antibiotics were used in this study. Each treatment was replicated four times in four Petri dishes. In total, 48 Petri dishes were used and arranged completely random under controlled condition.

The uptake and accumulation of antibiotics in the barley seedling samples were measured -after drying the samples using a freeze dryer-on the seedlings using ultrasound extraction (USE) and LC/MS-MS (6460 Triple Quad LC/MS, Agilent Technologies).

Acknowledgments

The authors want to thank Prof. Hamad Al-Kuwari, Director of the ESC, for his provision of all facilities during this project. All appreciations also go to Ms. Hajer Alnaimi (Technical Manager) for her assistance of these experiments. Especial thanks to Dr. Mohammed H. Al Safran, Head of the Central Laboratories Unit, Qatar University.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] P. Arya, R. Gothwal, Seed dormancy testing and germination frequency determination of Psoralea corylifolia L., an endangered medicinal plant, Trop. Plant Res. 4 (2017) 49–54, https://doi.org/10.22271/tpr.2017.v4.11.007.

[2] F.-Y. Hu, L.-M. He, J.-W. Yang, K. Bian, Z.-N. Wang, H.-C. Yang, Y.-H. Liu, Determination of 26 veterinary antibiotics residues in water matrices by lyophilization in combination with LC–MS/MS, J. Chromatogr. B 949–950 (2014) 79–86, https://doi.org/10.1016/j.jchromb.2014.01.008.