Measurement of the difference of time-integrated CP asymmetries in $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decays

LHCb Collaboration; Bernet, R; Müller, K; Steinkampf, O; Straumann, U; Vollhardt, A; et al

Abstract: A search for CP violation in $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decays is performed using pp collision data, corresponding to an integrated luminosity of $3\ f{b}^{-1}$, collected using the LHCb detector at centre-of-mass energies of 7 and 8 TeV. The flavour of the charm meson is inferred from the charge of the pion in $D^{*+} \to D^0\pi^+$ and $D^{*-} \to D^0\pi^-$ decays. The difference between the CP asymmetries in $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decays, $\Delta A_{CP} \equiv A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+)$, is measured to be $(-0.10 \pm 0.08(stat) \pm 0.03(syst))$

DOI: https://doi.org/10.1103/PhysRevLett.116.191601

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-129626
Journal Article
Published Version

Originally published at:
LHCb Collaboration; Bernet, R; Müller, K; Steinkampf, O; Straumann, U; Vollhardt, A; et al (2016). Measurement of the difference of time-integrated CP asymmetries in $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decays. Physical Review Letters, 116(19):191601.
DOI: https://doi.org/10.1103/PhysRevLett.116.191601
Measurement of the Difference of Time-Integrated CP Asymmetries in $D^0 \to K^- K^+$ and $D^0 \to \pi^- \pi^+$ Decays

R. Aaij et al.*
(LHCb Collaboration)
(Received 11 February 2016; published 9 May 2016)

A search for CP violation in $D^0 \to K^- K^+$ and $D^0 \to \pi^- \pi^+$ decays is performed using pp collision data, corresponding to an integrated luminosity of 3 fb$^{-1}$, collected using the LHCb detector at center-of-mass energies of 7 and 8 TeV. The flavor of the charm meson is inferred from the charge of the pion in $D^{*+} \to D^0 \pi^+$ and $D^{*-} \to D^0 \pi^-$ decays. The difference between the CP asymmetries in $D^0 \to K^- K^+$ and $D^0 \to \pi^- \pi^+$ decays, $\Delta A_{CP} \equiv A_{CP}(K^- K^+) - A_{CP}(\pi^- \pi^+)$, is measured to be $[-0.10 \pm 0.08 \text{(stat)} \pm 0.03 \text{(syst)}]\%$. This is the most precise measurement of a time-integrated CP asymmetry in the charm sector from a single experiment.

$$A_{CP}(f; t) \equiv \frac{\Gamma(D^0(t) \to f) - \Gamma(\bar{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\bar{D}^0(t) \to f)},$$

where Γ denotes the decay rate. For $f = K^- K^+$ and $f = \pi^- \pi^+$, $A_{CP}(f; t)$ can be expressed in terms of a direct component associated with CP violation in the decay amplitudes, and an indirect component associated with CP violation in the mixing or in the interference between mixing and decay. In the limit of exact symmetry under a transformation interchanging d and s quarks (U-spin symmetry), the direct component is expected to be equal in magnitude and opposite in sign for $K^- K^+$ and $\pi^- \pi^+$ decays [22]. However, large U-spin breaking effects could be present [13,16,23,24].

The measured time-integrated asymmetry, $A_{CP}(f)$, depends upon the reconstruction efficiency as a function of the decay time. It can be written as [25,26]

$$A_{CP}(f) \approx a_{CP}^{\text{dir}}(f) \left(1 + \frac{\langle t(f) \rangle}{\tau} y_{CP}\right) + \frac{\langle t(f) \rangle}{\tau} a_{CP}^{\text{ind}},$$

where $\langle t(f) \rangle$ denotes the mean decay time of $D^0 \to f$ decays in the reconstructed sample, $a_{CP}^{\text{dir}}(f)$ as the direct CP asymmetry, τ the D^0 lifetime, a_{CP}^{ind} the indirect CP asymmetry, and y_{CP} is the deviation from unity of the ratio of the effective lifetimes of decays to flavor specific and CP-even final states. To a good approximation, a_{CP}^{ind} is independent of the decay mode [22,27].

Neglecting terms of the order $O(10^{-6})$, the difference in CP asymmetries between $D^0 \to K^- K^+$ and $D^0 \to \pi^- \pi^+$ is

$$\Delta A_{CP} \equiv A_{CP}(K^- K^+) - A_{CP}(\pi^- \pi^+) \approx \Delta a_{CP}^{\text{dir}} \left(1 + \frac{\langle t \rangle}{\tau} y_{CP}\right) + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{\text{ind}},$$

where ΔA_{CP} is the difference in CP asymmetries and $\Delta a_{CP}^{\text{dir}}$ is the difference in the direct CP asymmetry.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
where $\langle t \rangle$ is the arithmetic average of $\langle t(K^-K^+) \rangle$ and $\langle t(\pi^-\pi^+) \rangle$.

The most precise measurements of the time-integrated CP asymmetries in $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ decays to date have been performed by the LHCb [21,28], CDF [29], BABAR [30] and Belle [31,32] collaborations. The measurement in Ref. [28] uses D^0 mesons produced in semileptonic b-hadron decays, where the charge of the muon is used to identify the flavor of the D^0 meson at production, while the other measurements use D^0 mesons produced in the decay of the $D^*(2010)^+(-)$ meson, hereafter referred to as D^{*+}.

The raw asymmetry, $A_{raw}(f)$, measured for D^0 decays to a final state f is defined as

$$A_{raw}(f) = \frac{N(D^{+} \to D^{0}(f)\pi^+_s) - N(D^{+} \to \bar{D}^{0}(f)\pi^+_s)}{N(D^{+} \to D^{0}(f)\pi^+_s) + N(D^{+} \to \bar{D}^{0}(f)\pi^+_s)},$$

(4)

where N is the number of reconstructed signal candidates of the given decay and the flavor of the D^0 meson is identified using the charge of the soft pion (π^+_s) in the strong decay $D^{*+} \to D^0\pi^+_s$. The raw asymmetry can be written, up to $O(10^{-6})$, as

$$A_{raw}(f) \approx A_{CP}(f) + A_D(f) + A_D(\pi^+_s) + A_p(D^{*+}),$$

(5)

where $A_D(f)$ and $A_D(\pi^+_s)$ are the asymmetries in the reconstruction efficiencies of the D^{0} final state and of the soft pion, and $A_p(D^{*+})$ is the production asymmetry for D^{*+} mesons, arising from the hadronization of charm quarks in pp collisions. The magnitudes of $A_p(D^{*+})$ [33] and $A_D(\pi^+_s)$ [34] are both about 1%. Equation (5) is only valid when reconstruction efficiencies of the final state f and of the soft pion are independent. Since both K^-K^+ and $\pi^+\pi^-$ final states are self-conjugate, $A_D(K^-K^+)$ and $A_D(\pi^+\pi^-)$ are identically zero. To a good approximation $A_D(\pi^+_s)$ and $A_p(D^{*+})$ are independent of the final state f in any given kinematic region, and thus cancel in the difference, giving

$$\Delta A_{CP} = A_{raw}(K^-K^+) - A_{raw}(\pi^+\pi^-).$$

(6)

However, to take into account an imperfect cancellation of detection and production asymmetries due to the difference in the kinematic properties of the two decay modes, the kinematic distributions of D^{*+} mesons decaying to the K^-K^+ final state are reweighted to match those of D^{*+} mesons decaying to the $\pi^+\pi^-$ final state. The weights are calculated for each event using the ratios of the background-subtracted distributions of the D^{*+} momentum, transverse momentum, and azimuthal angle for both final states after the final selection.

The LHCb detector [35,36] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The two-ring-imaging Cherenkov detectors [37] provide particle identification (PID) to distinguish kaons from pions for momenta ranging from a few GeV/c to about 100 GeV/c. The direction of the field polarity (up or down) of the LHCb dipole magnet is reversed periodically, giving data samples of comparable size for both magnet polarities.

To select D^{*+} candidates, events must satisfy hardware and software trigger requirements and a subsequent offline selection. The trigger consists of a hardware stage, based on high transverse momentum signatures in the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction. When the hardware trigger decision is initiated by calorimeter deposits from D^0 decay products, the event is categorized as “triggered on signal” (TOS). Events that are not TOS, but in which the hardware trigger decision is due to particles in the event other than the D^{*+} decay products, are also accepted; these are referred to as “not triggered on signal” (nTOS). The events associated with these trigger categories present different kinematic properties. To have cancellation of production and detection asymmetries the data are split into TOS and nTOS samples and ΔA_{CP} is measured separately in each sample.

Both the software trigger and subsequent event selection use kinematic variables and decay time to isolate the signal decays from the background. Candidate D^0 mesons must have a decay vertex that is well separated from all primary pp interaction vertices (PVs). They are combined with pion candidates to form D^{*+} candidates. Requirements are placed on the track fit quality, the D^{*+} vertex fit quality, where the vertex formed by D^0 and π^+_s candidates, events must satisfy hardware trigger requirements and a subsequent offline selection.

In the laboratory frame, the momentum of the kaon or the pion in the D^0 rest frame, and the smallest impact parameter chi-squared (χ^2) of both the D^0 candidate and its decay products with respect to all PVs in the event. The IP χ^2 is defined as the difference between the χ^2 of the PV reconstructed with and without the considered particle. Cross-feed backgrounds from D meson decays with a kaon misidentified as a pion, and vice versa, are reduced using PID requirements. After these selection criteria, the dominant background consists of genuine D^0 candidates paired with unrelated pions originating from the interaction vertex.

Fiducial requirements are imposed to exclude kinematic regions having a large asymmetry in the soft pion reconstruction efficiency (see Figs. 1 and 2 in Ref. [39]). These regions occur because low momentum particles of one charge at large (small) angles in the horizontal plane may be deflected out of the detector acceptance (into the noninstrumented beam pipe region) whereas particles with the other charge are more likely to remain within the...
for both magnet polarities. The events with multiple candidates. The fraction of events with multiple candidates in 10\% for TOS events and 2.4\% for nTOS events; these standard deviations correspond to about 1.2\% for TOS events and 2.4\% for nTOS events. The majority of these events contain the same candidates, in a range of 0.2 − 12.0 MeV/c^2 and the invariant mass of the D^0 candidate is within 2 standard deviations from the central value of the mass resolution model. The standard deviation corresponds to about 8 MeV/c^2 and 10 MeV/c^2 for D^0 → K^-K^+ and D^0 → π^-π^+ decays, respectively.

The data sample includes events with multiple D^{*+} candidates. The majority of these events contain the same reconstructed D^0 meson combined with different soft pion candidates. The fraction of events with multiple candidates in a range of δm corresponding to 4.0 − 7.5 MeV/c^2 is about 1.2\% for TOS events and 2.4\% for nTOS events; these fractions are the same for the K^-K^+ and π^-π^+ final states, and for both magnet polarities. The events with multiple candidates are retained and a systematic uncertainty is assessed.

Signal yields and A_{raw}(K^-K^+) and A_{raw}(π^-π^+) are obtained from minimum χ^2 fits to the binned δm distributions of the D^0 → K^-K^+ and D^0 → π^-π^+ samples. The data samples are split into eight mutually exclusive subsamples separated by center-of-mass energy, magnet polarity, and trigger category. The signal shape is studied using simulated data and described by the sum of two Gaussian functions with a common mean, and a Johnson S_U function [40]. The background is described by an empirical function of the form 1 − exp[(δm − δm_0)/α] + β(δm/δm_0 − 1), where δm_0 controls the threshold of the function, and α and β describe its shape. The fits to the eight subsamples and between the K^-K^+ and π^-π^+ final states are independent. Fits to the δm distributions corresponding to the whole data sample are shown in Fig. 1.

The D^{*+} signal yield is 7.7 × 10^6 for D^0 → K^-K^+ decays, and 2.5 × 10^6 for D^0 → π^-π^+ decays. The signal purity is (88.7 ± 0.1)\% for D^0 → K^-K^+ candidates, and (87.9 ± 0.1)\% for D^0 → π^-π^+ candidates, in a range of δm corresponding to 4.0 − 7.5 MeV/c^2. The fits do not distinguish between the signal and the backgrounds that peak in δm. Such backgrounds, which can arise from D^{*+} decays where the correct soft pion is found but the D^0 meson is misreconstructed, are suppressed by the PID requirements to less than 4\% of the number of signal events in the case of D^0 → K^-K^+ decays and to a negligible level in the case of D^0 → π^-π^+ decays. Examples of such backgrounds are D^{*+} → D^0(K^-π^+)π^+_π and D^{*+} → D^0(π^-π^+)π^+π^ decays. The effect on ΔA_{CP} of residual peaking backgrounds is evaluated as a systematic uncertainty.

The value of ΔA_{CP} is determined in each subsample (see Table 1 in Ref. [39]). Testing the eight independent measurements for mutual consistency gives χ^2/ndf = 6.2/7, corresponding to a p-value of 0.52. The weighted average of the values corresponding to all subsamples is calculated as ΔA_{CP} = (−0.10 ± 0.08)\%, where the uncertainty is statistical.
The central value is considerably closer to zero than $\Delta A_{CP} = (-0.82 \pm 0.21)\%$, obtained in our previous analysis where a data sample corresponding to an integrated luminosity of 0.6 fb$^{-1}$ was considered [21]. Several factors contribute to the change, including the increased size of the data sample and changes in the detector calibration and reconstruction software. To estimate the impact of processing data using different reconstruction software, the data used in Ref. [21] are divided into three samples. The first (second) sample contains events that are selected when using the old (new) version of the reconstruction software and are discarded by the new (old) one, while the third sample consists of those events that are selected by both versions. The measured values are $\Delta A_{CP} = (-1.10 \pm 0.46)\%$, $\Delta A_{CP} = (0.13 \pm 0.37)\%$, and $\Delta A_{CP} = (-0.71 \pm 0.26)\%$, respectively. The measurement obtained using the additional data based on an integrated luminosity of 2.4 fb$^{-1}$ corresponds to a value of $\Delta A_{CP} = (-0.06 \pm 0.09)\%$. A comparison of the four independent measurements gives $\chi^2/\text{ndf} = 10.5/3$, equivalent to a p-value of 0.015. Although this value is small, no evidence of incompatibility among the various subsamples has been found. Only statistical uncertainties are considered in this study.

Many sources of systematic uncertainty that may affect the determination of ΔA_{CP} are considered. The possibility of an incorrect description of the signal mass model is investigated by replacing the function in the baseline fit with alternative models that provide equally good descriptions of the data. A value of 0.016% is assigned as systematic uncertainty, corresponding to the largest variation observed using the alternative functions.

To evaluate the systematic uncertainty related to the presence of multiple candidates in an event, ΔA_{CP} is measured in samples where one candidate per event is randomly selected. This procedure is repeated 100 times with a different random selection. The difference of the mean value of these measurements from the nominal result, 0.015%, is taken as systematic uncertainty.

A systematic uncertainty associated with the presence of background peaking in the δm signal distribution and not in the D^0 invariant mass distribution is determined by measuring ΔA_{CP} from fits to the D^0 invariant mass spectra instead of δm. Fits are made for $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ candidates within a δm window 4.0–7.5 MeV/c^2. The background due to genuine D^0 mesons paired with unrelated pions originating from the interaction vertex is subtracted by means of analogous fits to the candidates in the δm window 8.0–12.0 MeV/c^2, where the signal is not present. The difference in the ΔA_{CP} value from the baseline, 0.011%, is assigned as a systematic uncertainty. A systematic uncertainty of 0.004% is assigned for uncertainties associated with the weights calculated for the kinematic reweighting procedure.

A systematic uncertainty is associated with the choice of fiducial requirements on the soft pion applied to exclude regions with large raw asymmetries. To evaluate this uncertainty, the baseline results are compared to results obtained when looser fiducial requirements are applied. The resulting samples include events closer to the regions with large raw asymmetries, at the edges of the detector acceptance and around the beam pipe (see Fig. 1 in Ref. [39]). The difference in the ΔA_{CP} values, 0.017%, is taken as the systematic uncertainty.

Although suppressed by the requirement that the D^0 trajectory points back to the primary vertex, $D^0 \to K^-K^+$ mesons produced in the decays of beauty hadrons (secondary charm decays) are still present in the final sample. As the $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decays may have different amounts of this contamination, the value of ΔA_{CP} may be biased because of an incomplete cancellation of the production asymmetries of beauty and charm hadrons. The fractions of secondary charm decays are estimated by performing a fit to the distribution of IP χ^2 of the D^0 with respect to all PVs in the event, and are found to be $(2.8 \pm 0.1)\%$ and $(3.4 \pm 0.1)\%$ for the $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ samples, respectively. Using the LHCb measurements of production asymmetries [33,41–43], the corresponding systematic uncertainty is estimated to be 0.004%.

To investigate other sources of systematic uncertainty, numerous robustness checks have been made. The value of ΔA_{CP} is studied as a function of data taking periods and no evidence of any dependence is found. A measurement of ΔA_{CP} using more restrictive PID requirements is performed, and all variations of ΔA_{CP} are found to be compatible within statistical uncertainties. To check for possible reconstruction biases, the stability of ΔA_{CP} is also investigated as a function of many reconstructed quantities, including the number of reconstructed PVs, the D^0 invariant mass, the D^0 transverse momentum, the D^0 flight distance, the D^0 azimuthal angle, the smallest IP χ^2 impact parameter of the D^0 and of the soft pion with respect to all the PVs in the events, the quality of D^+ vertex, the transverse momentum of the soft pion, and the quantity $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$, where $\Delta \phi$ and $\Delta \eta$ are the differences between the D^0 and soft pion azimuthal angles and pseudorapidities. No evidence of dependence of ΔA_{CP} on any of these variables is found. An additional cross-check concerns the measured value of ΔA_{bgg}, defined as the difference between the background raw asymmetries $A_{bgg}(K^-K^+)$ and $A_{bgg}(\pi^-\pi^+)$. A value of $\Delta A_{bgg} = (-0.46 \pm 0.13)\%$ is obtained from the fits. In the absence of misidentified or misreconstructed backgrounds, one would expect a value consistent with zero.Decays of $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ have different sources of backgrounds that do not peak in δm. These include three-body decays of charm hadrons with misidentified particles in the final state, as well as four-body decays where one particle is not reconstructed. More restrictive PID requirements have been applied to suppress such
backgrounds, and the region of the fits has been extended up to 16 MeV/c^2 to improve the precision. A value of ΔA_{bg} = (−0.22 ± 0.13)% is found. The corresponding ΔA_{CP} value is (−0.12 ± 0.09)%, consistent with the baseline result when the overlap of the two samples is taken into account. Hence, the measurement of ΔA_{CP} is robust and is not influenced by the background asymmetry. All contributions are summed in quadrature to give a total systematic uncertainty of 0.03%.

To interpret the ΔA_{CP} result in terms of direct and indirect CP violation, the reconstructed decay time averages, for D^0 → K^-K^+ and D^0 → π^-π^+ samples, are measured. The difference and the average of the mean decay times relative to the D^0 lifetime are computed, giving \(\Delta \langle t \rangle / \tau(D^0) = 0.1153 ± 0.0007\text{(stat)} ± 0.0018\text{(syst)} \) and \(\langle t \rangle / \tau(D^0) = 2.0949 ± 0.0004\text{(stat)} ± 0.0159\text{(syst)} \). The systematic uncertainties are due to the uncertainty on the world average of the D^0 lifetime [44], decay-time resolution model, and the presence of secondary D^0 mesons from b-hadron decays. Given the dependence of ΔA_{CP} on the direct and indirect CP asymmetries [Eq. (3)] and the measured value of Δ(\langle t \rangle / \tau), the contribution from indirect CP violation is suppressed and ΔA_{CP} is primarily sensitive to direct CP violation. Assuming that indirect CP violation is independent of the D^0 final state, and combining the measurement reported in this Letter with those reported in Ref. [28] and with the LHCb measurements of indirect CP asymmetries (\(A_{\parallel} = -a_{CP}^{\text{ind}} \)) [45,46] and γ_{CP} [47], the values of the direct and indirect CP asymmetries are found to be \(a_{CP}^{\text{dir}} = (0.058 ± 0.044)\% \) and \(a_{CP}^{\text{ind}} = (−0.061 ± 0.076)\% \). Results are summarized in the \((\Delta a_{CP}^{\text{dir}}, a_{CP}^{\text{ind}}) \) plane shown in Fig. 2. The result is consistent with the hypothesis of CP symmetry with a p-value of 0.32.

In summary, the difference of time-integrated CP asymmetries between D^0 → K^-K^+ and D^0 → π^-π^+ decays is measured using pp collision data corresponding to an integrated luminosity of 3.0 fb^{-1}. The final result is

\[\Delta A_{CP} = [−0.10 ± 0.08\text{(stat)} ± 0.03\text{(syst)}]\%, \]

which supersedes the previous result obtained using the same decay channels based on an integrated luminosity of 0.6 fb^{-1} [21]. This is the most precise measurement of a time-integrated CP asymmetry in the charm sector from a single experiment.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); FOM and NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FANO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union), Conseil Général de Haute-Savoie, Labex ENIGMASS and OCEUV, Région Auvergne (France), RFBR and Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), and The Royal Society, Royal Commission for the Exhibition of 1851 and the Leverhulme Trust (United Kingdom).

[1] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Evidence for the 2π Decay of the K^0_L Meson, Phys. Rev. Lett. 13, 138 (1964).
[2] B. Aubert et al. (BABAR Collaboration), Observation of Direct CP Violation in B^0 → K^+π^- Decays, Phys. Rev. Lett. 93, 131801 (2004).
[3] Y. Chao et al. (Belle Collaboration), Evidence for Direct CP Violation in B^0 → K^+π^- Decays, Phys. Rev. Lett. 93, 191802 (2004).
[4] R. Aaij et al. (LHCb Collaboration), First Observation of CP Violation in the Decays of B^0_s Mesons, Phys. Rev. Lett. 110, 221601 (2013).
[5] R. Aaij et al. (LHCb Collaboration), Observation of CP violation in B^+ → DK^- decays, Phys. Lett. B 712, 203 (2012); 713, 351(E) (2012).
[6] B. Aubert et al. (BABAR Collaboration), Evidence for D^0-\bar{D}^0 Mixing, Phys. Rev. Lett. 98, 211802 (2007).
[7] M. Staric et al. (Belle Collaboration), Measurement of D^0-\bar{D}^0 mixing and search for CP violation in D^0 → K^-K^+, π^-π^+ decays with the full Belle data set, Phys. Lett. B 753, 412 (2016).
[8] T. Aaltonen et al. (CDF Collaboration), Evidence for D^0-\bar{D}^0 Mixing Using the CDF II Detector, Phys. Rev. Lett. 100, 121802 (2008).
[9] R. Aaij et al. (LHCb Collaboration), Observation of D^0-\bar{D}^0 Oscillations, Phys. Rev. Lett. 110, 101802 (2013).
[10] R. Aaij et al. (LHCb Collaboration), Measurement of D^0-\bar{D}^0 Mixing Parameters and Search for CP Violation Using D^0 → K^-π^- Decays, Phys. Rev. Lett. 111, 251801 (2013).
[11] R. Aaij et al. (LHCb Collaboration), First observation of D^0-\bar{D}^0 oscillations in D^0 → K^-π^+π^-π^- decays and a measurement of the associated coherence parameters, arXiv:1602.07224.
[12] Y. Amhis et al. (Heavy Flavor Averaging Group), Averages of b-hadron, c-hadron, and r-lepton properties as of summer 2014, arXiv:1412.7515, updated results and plots available at http://www.slac.stanford.edu/xorg/hfag/.
B. Bhattacharya, M. Gronau, and J. L. Rosner, CP asymmetries in singly Cabibbo-suppressed D decays to two pseudoscalar mesons, Phys. Rev. D 85, 054014 (2012).

D. Pirskhalav and P. Utyayar, CP violation and mixing in B decays, Phys. Rev. B 712, 81 (2012).

J. Brod, Y. Grossman, A. L. Kagan, and J. Zupan, A consistent picture for large penguins in $D^0 \rightarrow \pi^- \pi^+$, $K^- K^+$, J. High Energy Phys. 10 (2012) 161.

H.-Y. Cheng and C.-W. Chiang, SU(3) symmetry breaking and CP violation in $D \rightarrow PP$ decays, Phys. Rev. D 86, 014014 (2012).

S. Müller, U. Nierste, and S. Schacht, Sum Rules of Charm CP Asymmetries beyond the SU(3), Limit, Phys. Rev. Lett. 115, 251802 (2015).

M. Golden and B. Grinstein, Enhanced CP violations in hadronic charm decays, Phys. Lett. B 222, 501 (1989).

H.-n. Li, C.-D. Lu, and F.-S. Yu, Branching ratios and direct CP asymmetries in $D \rightarrow PP$ decays, Phys. Rev. D 86, 036012 (2012).

R. Aaij et al. (LHCb Collaboration), Evidence for CP Violation in Time-Integrated $D^0 \rightarrow h^-h^+$ Decay Rates, Phys. Rev. Lett. 108, 111602 (2012).

Y. Grossman, A. L. Kagan, and Y. Nir, New physics and CP violation in singly Cabibbo suppressed D decays, Phys. Rev. D 75, 036008 (2007).

M. Gronau, SU(3) in D decays: From 30% symmetry breaking to 10−3 precision, Phys. Rev. D 91, 076007 (2015).

Y. Grossman and D. J. Robinson, SU(3) sum rules for charm decay, J. High Energy Phys. 04 (2013) 067.

T. Aaltonen et al. (CDF Collaboration), Measurement of CP-violating asymmetries in $D^0 \rightarrow \pi^- \pi^+$ and $D^0 \rightarrow K^- K^+$ decays at CDF, Phys. Rev. D 85, 012009 (2012).

M. Gersabeck, M. Alexander, S. Borghi, V. V. Gligorov, and C. Parkes, On the interplay of direct and indirect CP violation in the charm sector, J. Phys. G 39, 045005 (2012).

A. L. Kagan and M. D. Sokoloff, Indirect CP violation and implications for $D^0 \overline{D}^0$ and $B^0 \overline{B}^0$ mixing, Phys. Rev. D 80, 076008 (2009).

R. Aaij et al. (LHCb Collaboration), Measurement of CP asymmetry in $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$ decays, J. High Energy Phys. 07 (2014) 041.

T. Aaltonen et al. (CDF Collaboration), Measurement of the Difference in CP-Violating Asymmetries in $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$ Decays at CDF, Phys. Rev. Lett. 109, 111801 (2012).
R. Mountain, F. Muheim, D. Müller, J. Müller, K. Müller, V. Müller, M. Mussini, B. Muster, P. Naik, T. Nakada, R. Nandakumar, A. Nandi, I. Nasteva, M. Neri, S. Neubert, N. Neufeld, A. D. Nguyen, V. Niess, R. Niet, N. Nikodem, A. Oyanguren, M. Palutan, J. Panman, A. Papano, M. Pappagallo, L. L. Pappalardo, A. Pearce, A. Pellegrino, G. Penso, W. Qian, R. Quagliani, B. Rachwal, J. H. Rademacker, M. Rama, M. Ramos Pernas, G. Raven, F. Redi, S. Reichert, A. C. dos Reis, V. Renaudin, S. Ricciardi, M. Rihl, V. Rives Molina, J. J. Saborido Silva, N. Sagidova, B. Saitta, V. Salustino Guimaraes, B. Sanmartin Sedes, R. Santacesaria, R. Santimaria, E. Santovetti, A. Sarti, C. Satriano, D. M. Saunders, D. Savrnick, S. Schael, M. Schiller, M. Schmelling, M. Schubiger, M. Schmeling, T. Schmelzer, B. Schmidt, O. Schneider, M.-H. Schune, R. Schwemmer, A. Sciubba, A. Semennikov, O. Steinkamp, O. Stenyakin, S. Stevenson, S. Stoica, S. Stone, O. Stenyakin, O. Stenyakin, O. Stenyakin, O. Stenyakin, J. J. Velthuis, J. Walsh, G. Wilkinson, M. Wilkinson, R. Willocquet, J. A. de Vries, R. Waldi, C. Wallace, G. Veneziano, M. Zangoli, M. Zavertyaev, L. Zhang, A. Zhelezov, A. Zhokhov, L. Zhong, V. Zhukov, and S. Zucchelli

(LHCb Collaboration)
Yandex School of Data Analysis, Moscow, Russia (associated with Institution Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia)

Instituto de Física Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain (associated with Institution Universitat de Barcelona, Barcelona, Spain)

Van Swinderen Institute, University of Groningen, Groningen, The Netherlands (associated with Institution Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands)

Also at Università di Ferrara, Ferrara, Italy.

Also at Università della Basilicata, Potenza, Italy.

Also at Università di Milano Bicocca, Milano, Italy.

Also at Università di Modena e Reggio Emilia, Modena, Italy.

Also at LIFAEIS, La Salle, Universitat Ramon Llull, Barcelona, Spain.

Also at Università di Bologna, Bologna, Italy.

Also at Università di Roma Tor Vergata, Roma, Italy.

Also at Università di Genova, Genova, Italy.

Also at Scuola Normale Superiore, Pisa, Italy.

Also at Università di Cagliari, Cagliari, Italy.

Also at Università di Padova, Padova, Italy.

Also at Laboratoire Leprince-Ringuet, Palaiseau, France.

Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.

Also at AGH—University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.

Also at Università degli Studi di Milano, Milano, Italy.

Also at Hanoi University of Science, Hanoi, Vietnam.

Also at Università di Bari, Bari, Italy.

Also at Università di Roma La Sapienza, Roma, Italy.

Also at Università di Pisa, Pisa, Italy.

Also at Università di Urbino, Urbino, Italy.

Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.