Estimation of \(n \) non-identical unitary channels

Caleb O’Loan

School of Mathematics and Statistics, University of St Andrews, KY16 9SS

(Dated: February 11, 2008)

We investigate the simultaneous estimation of \(n \) not necessarily identical unitary channels using multi-partite entanglement. We examine whether it is possible for the rate at which the mean square error decreases to be greater than that using the channels individually. For a reasonably general situation, in which there is no functional dependence between the channels, we show that this is not possible. We look at a case in which the channels are not necessarily identical but depend on a common variable. In this case, the mean square error decreases more rapidly using multi-partite entanglement.

PACS numbers: 03.65.Ta, 03.67.-a

Introduction. Estimation of quantum states and channels is of fundamental importance to quantum information theory. Estimation of unitary channels, when \(n \) copies are available, has received a lot of attention; for an accessible overview see [1]. Many schemes have been devised for which the error decreases at a much faster rate, compared to a straightforward approach of using each channel separately [2, 3, 4, 5, 6]. This is analogous to the problem of transmitting a reference frame [1, 2, 3, 4, 5]. This increase in the rate of estimation is possible both with [2, 3, 4, 5, 6] and without [7, 8] the use of entanglement.

As far as we are aware, no work has been done on the situation in which there are \(n \) non-identical channels. In this paper we investigate whether an increase in the rate of estimation is possible in this case. We look at the following two cases: (i) there are \(n \) unitary channels belonging to \(SU(d) \) specified by the parameters \(\theta^1, \ldots, \theta^n \), (ii) there are \(n \) not necessarily identical one-parameter unitary channels which depend on a common variable. In the former scheme an increase in the rate of estimation is not possible; in the latter scheme it is.

To quantify the performances of estimation schemes we use the asymptotic limit of the mean square error \(E[(\hat{\theta}^{(t)} - \theta^{(t)})^2] \). Using the maximum likelihood estimator, as the number of measurements \(N \to \infty \), the mean square error is approximately \((1/N)F^{-1}_M(\theta) \) [3], where \(F_M(\theta) \) is the Fisher information matrix obtained from a single measurement \(M \). The Fisher information for the parameter \(\theta = (\theta^1, \ldots, \theta^n) \) is the \(p \times p \) matrix with entries

\[
F_{ij}(\theta) = \int p(\xi) \frac{\partial}{\partial \theta^j} \ln p(\xi; \theta) \frac{\partial}{\partial \theta^k} \ln p(\xi; \theta) d\xi.
\]

The Cramér–Rao inequality states that the mean square error of an unbiased estimator \(\hat{\theta}(x) \) is less than or equal to the inverse of the Fisher information,

\[
\text{m.s.e.}[\hat{\theta}(x)] \geq F_M(\theta)^{-1}.
\]

It has been shown [10] that the SLD quantum information \(H(\theta) \) is an upper bound on the Fisher information, i.e. \(F_M(\theta) \leq H(\theta) \). The SLD quantum information for the parameter \(\theta = (\theta^1, \ldots, \theta^n) \) is defined as the matrix with entries

\[
H_{jk} = \Re \text{tr} \{ \lambda^j \rho \lambda^k \},
\]

where \(\lambda^j \) is any self-adjoint solution to the matrix equation

\[
\frac{d\rho}{dt} = \frac{1}{2} (\rho \lambda^j + \lambda^j \rho).
\]

Given a state \(\rho_\theta \) depending on some unknown parameter \(\theta \), and a POVM \(\{M_m\} \) we get a measurement outcome \(x \). The quantum Cramér–Rao inequality states that the mean square error of an unbiased estimator \(\hat{\theta}(x) \) of \(\theta \) is less than or equal to the inverse of the SLD quantum information, i.e.

\[
\text{m.s.e.}[\hat{\theta}(x)] \geq H^{-1}(\theta).
\]

When \(p \geq 2 \), there exist families of states \(\rho_\theta \) and \(\sigma_\theta \) for which neither \(H(\rho_\theta) \geq H(\sigma_\theta) \) or \(H(\rho_\theta) \leq H(\sigma_\theta) \) is true. To deal with this, we compare the traces \(\text{tr}\{H(\theta)\} \) of the SLD quantum information.

Previous work has looked at how the error scales with the number of times \(U \) is used. We look at how the error scales with the number of input states used, as this is more convenient for us.

I. ‘INDEPENDENT’ CHANNELS

First we look at estimating \(n \) unitary channels from \(SU(d) \). The \(j \)th channel is specified by the parameter \(\theta^j = (\theta^j_1, \ldots, \theta^j_{d-1}) \). These channels are supposed ‘independent’ in that there is no functional relationship between \(\theta^1, \theta^2, \ldots, \theta^{n-1} \) and \(\theta^n \). Estimation of the channels is a parametric problem.

We look at the mapping

\[
\rho_\theta \mapsto \otimes_{j=1}^n (U_{\theta^j} \otimes \mathbb{I}_R) \rho_\theta (U_{\theta^j}^\dagger \otimes \mathbb{I}_R).
\]
We show in Appendix A that using a tensor product of maximally entangled input states $\rho_0 = \otimes_{j=1}^{n} \rho_{mes}^{j}$ is sufficient to maximize the trace of the SLD quantum information of the output states of (4). This is not a necessary condition, as the $2n$-partite entangled state $1/\sqrt{2} \sum_{i} |e_i \rangle \otimes \cdots \otimes |e_i \rangle$ also attains the maximum SLD quantum information. However, since these states are significantly harder to produce, we are better off using maximally entangled states. The SLD quantum information using a tensor product of maximally entangled states is attainable (1), so asymptotically the mean square error is $(1/N)H^{-1}(\theta)$.

For the mapping (1), an optimal estimation procedure for n ‘independent’ unitary channels, in terms of $\text{tr}\{H\}$, is to estimate each one individually using a maximally entangled input state. The optimality of this procedure, in terms of $\text{tr}\{H(\theta)\}$ has been shown by Ballester (1).

II. ‘DEPENDENT’ CHANNELS

We look at the case where we have n not necessarily identical channels which depend on a common parameter θ. These channels are of the form

$$U_{\theta}^1 = \begin{pmatrix} 1 & 0 \\ 0 & e^{i f_1(\theta)} \end{pmatrix}, \ldots, \ U_{\theta}^n = \begin{pmatrix} 1 & 0 \\ 0 & e^{i f_n(\theta)} \end{pmatrix},$$

(5)

where $0 \leq \theta \leq t$ and $\mathcal{H} = \mathbb{C}^2$. We can use each channel N times. We impose the following conditions on the functions f_j: (a) $f_j(\theta) : \mathbb{R} \to \mathbb{R}$, (b) $df_j(\theta)/d\theta \geq 0$, and (c) $0 \leq \sum_j f_j(\theta) \leq \pi$, for all j and θ. We look at the mapping

$$\rho_0 \mapsto \otimes_{j=1}^{n} (U_{\theta}^j \otimes \mathbb{I}_R) \rho_0 (U_{\theta}^j \dagger \otimes \mathbb{I}_R),$$

(6)

where $\rho_0 \in \mathcal{S}(\mathbb{C}^2 \otimes \mathcal{H}_R)$; we denote by $\mathcal{S}(\mathcal{H})$ the set of states on \mathcal{H}. We compare the SLD quantum information (ii) using a tensor product of maximally entangled states, (ii) using a $2n$-partite entangled state, in this case using $2n$-partite entanglement gives considerably larger SLD quantum information.

Using the input state $\rho_0 = \rho_{mes}^1 \otimes \cdots \otimes \rho_{mes}^n$, where $\rho_{mes}^j = |\psi_u^j \rangle \langle \psi_u^j|$, $|\psi_u^j \rangle = 1/\sqrt{2}(|00 \rangle + |11 \rangle)$, gives an SLD quantum information of $\sum_{j=1}^{n} (df_j/d\theta)^2$, which is attainable using a tensor product of the POVM $\{M_0^j = |\psi_1^j \rangle \langle \psi_1^j|, M_1^j = \mathbb{I} - |\psi_u^j \rangle \langle \psi_u^j|\}$. We use the input state $\rho_0 = |\psi_0 \rangle \langle \psi_0|$, where $|\psi_0 \rangle = 1/\sqrt{2}(|00 \rangle + |11 \rangle)$. We get an SLD quantum information of $\sum_{j=1}^{n} (df_j/d\theta)^2$. As $df_j/d\theta \geq 0$ for all j, this is considerably larger than the SLD quantum information using a tensor product of maximally entangled states.

The phase ϕ of the output state is in one-to-one correspondence with θ, because of conditions (b) and (c); in fact $\phi = \sum_{j=1}^{n} f_j(\theta)$. Using the POVM $\{M_0 = |\psi_0 \rangle \langle \psi_0|, M_1 = \mathbb{I} - |\psi_0 \rangle \langle \psi_0|\}$ we get $p(0; \phi) = \cos^2(\phi/2)$. We perform N times and each time use this POVM. From the measurement outcomes we get an estimate $\hat{\phi}$ of ϕ by $\cos^2(\phi/2) = n_0/N$, where n_0 is the number of times we get the outcome $x = 0$. Because of condition (c) on the functions $f_j(\theta)$, $\cos^2(\phi/2)$ is in one-to-one correspondence with $\hat{\phi}$ and hence $\hat{\theta}$. This POVM gives a Fisher information equal to the SLD quantum information. Hence as $N \to \infty$ we get a mean square error of $1/(N(\sum_{j=1}^{n} (df_j/d\theta)^2))$ to $1/(N(\sum_{j=1}^{n} (df_j/d\theta)^2))$ using a tensor product of maximally entangled states.

It is known that when we have n identical simple unitary channels, we can obtain an increase in the rate of estimation without using entanglement (1). A simple way is to use each of the n channels in sequence on a single input state. Consider the unitary channel $U_\theta = \text{Diag}(1, e^{i\theta})$, i.e.

$$\rho_0 \mapsto \rho_0^0 U_\theta^n, \ U_\theta^n = U_\theta U_\theta \cdots U_\theta.$$

(7)

We repeat N times using the input state $\rho_0 = |\psi_x \rangle \langle \psi_x|$, where $|\psi_x \rangle = 1/\sqrt{2}(|0 \rangle + |1 \rangle)$, and the POVM $\{\{0\} = |\psi_x \rangle \langle \psi_x|, \{1\} = |\psi_x \rangle \langle \psi_x|\}$. We call this the sequential scheme. As $N \to \infty$, we obtain a mean square error that scales as $1/(Nn^2)$. We can use this sequential scheme with n non-identical channels, i.e.

$$\rho_0 \mapsto (U_\theta^3 \cdots U_\theta^0) \rho_0 (U_\theta^0 \cdots U_\theta^3)^\dagger,$$

(8)

where $\rho_0 \in \mathcal{S}(\mathcal{H})$. Using the input state $\rho_0 = |\psi_x \rangle \langle \psi_x|$, where $|\psi_x \rangle = 1/\sqrt{2}(|0 \rangle + |1 \rangle)$, and the POVM $\{\{0\} = |\psi_x \rangle \langle \psi_x|, \{1\} = |\psi_x \rangle \langle \psi_x|\}$ we get $p(0; \phi) = \cos^2(\phi/2)$. Performing N times we get an estimate $\hat{\phi}$ and hence $\hat{\theta}$. We get the same Fisher information as (6) using a 2n-partite entangled state, and hence the same mean square error.

Since multi-partite entanglement is difficult to create, we are better off using the sequential scheme (8).

Conditions (b) and (c) for the functions $f_j(\theta)$ are very strict. We can still get a considerable increase in the rate of estimation without these conditions. If condition (c) does not hold, the phase ϕ of the output state is not in one-to-one correspondence with $p(0; \phi) = \cos^2(\phi/2)$. If we modify condition (c) to $0 \leq \sum_j f_j(\theta) \leq 2\pi$, we can still find ϕ but we shall need to perform an extra measurement $\{\psi_y \rangle \langle \psi_y|, \mathbb{I} - |\psi_y \rangle \langle \psi_y|\}$, where $|\psi_y \rangle = 1/\sqrt{2}(|0 \rangle + i|1 \rangle)$, a small number of times to determine the sign of $\cos(\phi/2)$. Then we can estimate ϕ and hence θ. If $0 \leq \sum_j f_j(\theta) \leq 2\pi$ does not hold, the phase ϕ of the output state is not in one-to-one correspondence with θ.

We can get around this using a method similar to that of Zhengfeng et al (4), based on Rudolph and Grover (3).

Zhengfeng et al (1) looked at the case where $f_j(\theta) = 2\pi \theta$ for all j. Their scheme involves first using a single channel n times to get an interval in which θ almost certainly lives. Then they use two or three channels in sequence to ‘amplify’ θ. This is repeated n times until they get a narrower interval for θ. This is continued until all channels are being used simultaneously. The mean square error scales as $(\log N'/N'')^2$, where N' is the total number of times U_θ is used.
In our case, the situation is more complex, as the functions $f_j(\theta)$ are more general and not necessarily identical. The finer details of how we go about this and how the mean square error would behave, depend on the functions $f_j(\theta)$. We give a very brief overview of a possible procedure. We start by using a single unitary U_1 n times to get an interval for $f_1(\theta)$ and hence θ. Then we use U_2U_1 to get an estimate of $f_2(\theta)$ and hence a more accurate estimate of θ. We continue this process till we are using all the channels simultaneously and we have a very narrow interval for θ. We expect that asymptotically, the mean square error is approximately $1/(N(\sum_j df_j/d\theta)^2)$, where N is the number of input states used. We leave a more in-depth analysis for further work.

If neither (b) nor (c) are satisfied we propose the following scheme: (i) Use each of the channels individually n times to get an estimate $\hat{\theta}$, (ii) Divide the channels into two groups: $A = \{U_\theta^j, df_j/d\theta \geq 0 \text{ at } \hat{\theta}\}, B = \{U_\theta^j, df_j/d\theta < 0 \text{ at } \hat{\theta}\}$, (iii) Use an iterative procedure for the two groups separately, but sharing information about θ to make the confidence intervals shorter.

Appendix A: Proof

We are looking at unitary channels of the form $U_\theta = \exp(i \sum_j \theta_j t_j)$ where $t_j = t_j^+$, $\text{tr}(t_j) = 0$ and $\text{tr}(t_j^t) = \delta_{jk}$. We denote by $H_{\theta}(\rho_0)$, the SLD quantum information for the jth channel

$$
\rho_0 \mapsto (U_\theta \otimes 1)\rho_0(U_\theta^\dagger \otimes 1).
$$

The SLD quantum information of (4) using a tensor product of maximally mixed states is $H_{\theta}(\otimes_j^m \rho_{\text{mes}}) = \text{Diag}(H_{\theta_1}(\rho_{\text{mes}}), \ldots, H_{\theta_n}(\rho_{\text{mes}}))$.

Lemma 1 For all unitary channels of the form

$$
\rho_0 \mapsto (U_\theta \otimes 1)\rho_0(U_\theta^\dagger \otimes 1), \tag{A1}
$$

the trace of the SLD quantum information is maximized by a maximally mixed state, i.e.

$$
\text{tr}\{H_{\theta}(\rho_0)\} \leq \text{tr}\{H_{\theta}(\rho_{\text{mes}})\}. \tag{A2}
$$

Equality holds in (A2) if and only if ρ_0 is a maximally mixed state.

Proof. From the appendix of Ballester [12] we know that for the channel (A1)

$$
\text{tr}\{(H_{\theta}(\rho_{\text{mes}}))^{-1}H_{\theta}(\rho_0)\} \leq d^2 - 1. \tag{A3}
$$

It is simple to show that for unitary channels of the form $U_\theta = \exp(i \sum_j \theta_j t_j)$ we have $H_{\theta}(\rho_{\text{mes}}) = (4/d)I_{d^2-1}$. Substituting into (A3) we get

$$
\text{tr}\{H_{\theta}(\rho_0)\} \leq \frac{4(d^2 - 1)}{d} = \text{tr}\{H_{\theta}(\rho_{\text{mes}})\}. \tag{A4}
$$

Since equality holds in (A3) if and only if ρ_0 is a maximally entangled state [12], equality holds in (A4) if and only if ρ_0 is a maximally mixed state.

Lemma 2 The trace of the SLD quantum information for (4) is maximized by a tensor product of maximally mixed states, i.e.

$$
\text{tr}\{H_{\theta}(\rho_0)\} \leq \text{tr}\{H_{\theta}(\otimes_j^n \rho_{\text{mes}})\}, \tag{A5}
$$

$\rho_0 \in S(\otimes_i^m (\mathcal{H} \otimes \mathcal{R}))$, $\rho_{\text{mes}} \in S(\mathcal{H} \otimes \mathcal{R})$.

For pure states a solution of (2) is $\lambda^2 = 2d\rho_0/d\theta$. It is not difficult to show that for the set of states $U_\theta \rho_0 U_\theta^\dagger$ the SLD quantum information is the matrix with entries

$$
H_{\theta_{jk}}(\rho_0) = 4\text{Re}(U_{\theta_{jk}}^\dagger \rho_0 U_{\theta_{jk}}^\dagger) + 4\left(\text{tr}(U_{\theta_{jk}}^\dagger \rho_0 U_{\theta_{jk}})\right)^2,
$$

where $U_{\theta_{jk}} = \partial_{\theta_{jk}} U_\theta$. In (A3)

$$
H_{\theta_{mm}}(\rho_0) = 4\text{tr}(U_{\theta_{jk}}^\dagger \rho_0 U_{\theta_{jk}}^\dagger) + 4\left(\text{tr}(U_{\theta_{jk}}^\dagger \rho_0 U_{\theta_{jk}})\right)^2,
$$

Consider an arbitrary diagonal element of the SLD quantum information, i.e. $H_{\theta_{mm}}$, where $m(j,k) = (j - 1)p + k$, corresponding to the parameter θ_{jk}. From (A6),

$$
H_{\theta_{mm}}(\rho_0) = 4\text{tr}(U_{\theta_{jk}}^\dagger \rho_0 U_{\theta_{jk}}^\dagger) + 4\left(\text{tr}(U_{\theta_{jk}}^\dagger \rho_0 U_{\theta_{jk}})\right)^2,
$$

by (A5),

$$
H_{\theta_{mm}}(\rho_0) = \sum_{i=1}^d p_i H_{\theta_i}(\rho_i)_{kk}.
$$

Summing over k we get

$$
\sum_k H_{\theta_{m(j,k)=m(j,k)}}(\rho_0) = \sum_{k=1}^d \sum_{i=1}^d p_i H_{\theta_i}(\rho_i)_{kk} \leq \text{tr}\{H_{\theta}(\rho_{\text{mes}})\}.
$$
Summing over j we get \([A_{ij}]\).

[1] J. Zhengfeng, G. Wang, R. Duan, Y. Feng, and M. Ying, quant-ph/0610060 (2006).
[2] M. Hayashi, Phys. Rev. Lett. 354, 183 (2006).
[3] J. Kahn, Phys. Rev. A 75, 022326 (2007).
[4] E. Bagan, M. Baig, and R. Munoz-Tapia, Phys. Rev. A 69, 050303 (2004).
[5] E. Bagan, M. Baig, and R. Munoz-Tapia, Phys. Rev. A 70, 030301 (2004).
[6] G. Chiribella, G. M. D’Ariano, P. Perinotti, and M. Sacchi, Phys. Rev. Lett. 93, 180503 (2004).
[7] T. Rudolph and L. Grover, Phys. Rev. Lett 91, 217905 (2003).
[8] M. de Burgh and S. Bartlett, Phys. Rev. A 72, 042301 (2005).
[9] M. Hayashi, Quantum Information: an introduction (Springer, 2006).
[10] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994).
[11] M. Ballester, Phys. Rev. A 69, 022303 (2004).
[12] M. Ballester, Phys. Rev. A 70, 032310 (2004).