Factors affecting infant gut microbiota and possible consequences for health

Merete Eggesbo1*, Siddhartha Mandal1 and Tore Midtvedt2

1Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway; 2Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden

*Correspondence to: Merete Eggesbo, Department of Genes and Environment, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 OSLO, Norway, Email: merete.eggesbo@fhi.no

From once being employed as an extreme measure, to save a fetus on the death of the mother, cesarean section is used more commonly now as a mode of delivery for entirely non-medical reasons (1). A sharp increase in cesarean delivery has been noted in most Western countries during the past decades; in the United States, one-third of all babies is now being delivered by cesarean section (2); in Norway, there has been a sevenfold increase in cesarean rates between the 1970s and 2001 (from 2 to 15%) and the incidence is still increasing (3). Focus so far has mainly been on the short-term health consequences of cesarean delivery, but the long-term effects may be even more important since cesarean delivery may disrupt gut microbiota during early infancy (4). Even if the gut microbiota is normalized with time, the early disruptions may have long-term effects due to the presence of developmental windows that rely on microbial stimulus from the gut, involving development of diverse functions, such as food tolerance, behavior, stress responses, and metabolism (5–8). Given the importance of early gut microbiota composition, it is important to gain knowledge on natural composition and factors altering it (9). However, a major limitation of previous studies is that they are based on infants who have been subject to factors which can have a profound disruptive effect on the natural colonization process (10–12).

In this review we are reporting on previous findings from a Norwegian cohort study, NoMIC is a prospective birth cohort established for the purpose of studying the colonization of infant gut microbiota and subsequent health (13, 14). Participating mothers were recruited at the maternity ward of a county hospital (Sykehuset Østfold) between 2002 and 2005. For every preterm-birth mother enrolled, two mothers of consecutively born term infants were recruited. The children are now aged between 9 and 12 years and have been invited for a clinical examination this year.

Gut microbiota composition was determined using 23 probes targeting 16S rRNA specifically developed for this study (13) as well as using 16S rRNA Illumina amplicon sequencing of feces, at Day 4 and 10, Month 1 and 4, and Year 1 and 2 (15). Extensive information on the use of antibiotics, mode of delivery, maternal diet, birth outcomes, and so on, is available through linkage to pregnancy records, medical birth registry, and repeat questionnaires to the mothers.

We examined the progression of gut microbiota from birth until 2 years. We identified children not subjected to medical interventions (vaginally delivered; term infants; not exposed to antibiotics directly nor through breast milk; breastfed for at least 4 months, exclusively in the first month; no antibiotics to the mother during the last trimester) to describe the gut microbiota composition in children as ‘naturally as possible’.

Then, we calculated the change in weight from birth until 6 months of age to study whether early life gut composition was associated with early growth (14). A child’s growth is expected to follow the percentile according to its birth weight. Mothers extracted information on weight from their ‘baby health visit’ cards, we used the weight closest to 6 months and the World Health Organization’s weight-for-age growth curves.

The results we observed, and which are noted below, have already been published for most parts. A marked progressive change in microbial phyla composition with age was observed. The most marked change was observed in the phylum of Proteobacteria (15). Mode of delivery and antibiotics were among the determinants of decreasing diversity over time (15). Among term infants, only 85 out of 362 (23%) had not been subjected to measures that may alter gut microbiota (13). Even in newborns not subjected to cesarean delivery or antibiotics, Staphylococcus was the most prevalent microbial group detected at 4 days but no longer at 4 months. Escherichia coli was present in 70% of infants at 4 days and was increasing toward 4 months.
At 4 months, different Bifidobacterial groups dominated in these breastfed infants (13). Absence of the probe coding for E. coli during the first month of life was associated with rapid growth during early life while the presence of Bacteroides spp at one month was associated with reduced growth, in males (14).

Discussion

Factors that may alter gut microbiota are surprisingly commonly applied (according to the findings in the NoMIC study) as only 23% of term babies had not been subjected to any such measure. Compared to the past century, E. coli is no longer a ubiquitous microbe in newborns. Previously, it was reported as being present in all newborn infants within 4 h after delivery, whereas studies in Sweden have shown that it is steadily less prevalent, especially among cesarean-delivered infants (16–18). We confirm these findings even in newborns not subjected to interventions. Moreover, our study shows that the absence of E. coli may be tied to adverse child health outcomes, since its absence was tied to rapid growth which is an early marker of the risk of obesity in later life. We hypothesize that E. coli may play an important role in very early life, maybe due to cascading events set in motion by the very early colonizers.

References

1. Ecker JL, Frigoletto FD Jr. Cesarean delivery and the risk–benefit calculus. N Engl J Med 2007; 356: 885–8.
2. Menacker F, Martin JA. BirthStats: rates of cesarean delivery, and unassisted and assisted vaginal delivery, United States, 1996, 2000, and 2006. Birth 2009; 36: 167. doi: 10.1111/j.1523-536X.2009.00317.x.
3. Hager R, Oian P, Nilsen ST, Holm HA, Berg AB. The breakthrough series on Cesarean section]. Tidsskr Nor Laegeforen 2006; 126: 173–5.
4. Steer PJ, Modi N. Elective caesarean sections – risks to the infant. Lancet 2009; 374: 675–6.
5. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, et al. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol 2004; 558: 263–75.
6. Sudo N, Sawamura S, Tanaka K, Aiba Y, Kubo C, Koga Y. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 1997; 159: 1739–45.
7. Diaz HR, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 2011; 108: 3047–52.
8. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014; 158: 705–21.
9. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JL. Host-bacterial mutualism in the human intestine. Science 2005; 307: 1915–20.
10. Wang M, Ahren S, Antonsson ME, Molin G. T-RFLP combined with principal component analysis and 16S rRNA gene sequencing: an effective strategy for comparison of fecal microbiota in infants of different ages. J Microbiol Methods 2004; 59: 53–69.
11. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol 2007; 5: e177.
12. Favier CF, Vaughan EE, De Vos WM, Akkermans AD. Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 2002; 68: 219–26.
13. Eggesbø M, Moen B, Peddada S, Baird D, Rugtveit J, Midtvedt T, et al. Development of gut microbiota in infants not exposed to medical interventions. APIMIS 2011; 119: 17–35.
14. White RA, Bjornholt JV, Baird DD, Midtvedt T, Harris JR, Pagano M, et al. Novel developmental analyses identify longitudinal patterns of early gut microbiota that affect infant growth. PLoS Comput Biol 2013; 9: e1003042.
15. Eggesbø M, Mandal S, White RA, Clemente JC, Peddada SD, Baird D, et al. Developmental delay, ADHD and overweight share features of a disrupted gut microbiota in early life. Submitted March 2015.
16. Nowrouzian F, Hesselmar BF, Saalman RF, Strannegard IL, Aberg N, Wold AE, et al. Escherichia coli in infants’ intestinal microflora: colonization rate, strain turnover, and virulence gene carriage. Pediatr Res 2003; 54: 8–14.
17. Gareau FE, Mackel DC, Boring JR III, Payne FJ, Hammett FL. The acquisition of fecal flora by infants from their mothers during birth. J Pediatr 1959; 54: 313–8.
18. Adlerberth I, Jalil FF, Carlsson BF, Mellander LF, Hanson LA, Larsson PF, et al. High turnover rate of Escherichia coli strains in the intestinal flora of infants in Pakistan. Epidemiol Infect 1998; 121: 587–98.