Identification and characterization of CCAAT/Enhancer Binding protein\(\delta\) (C/EBP\(\delta\)) target genes in \(G_0\) growth arrested mammary epithelial cells

Yingjie Zhang\(^1\), Tong Liu\(^1\), Pearlly Yan\(^2\), Tim Huang\(^2,3\) and Jim DeWille*\(^1,3\)

Address: \(^1\)Department of Veterinary Biosciences, Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA; \(^2\)Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, 1645 Neil Avenue, Columbus, OH 43210, USA and \(^3\)Molecular Biology and Cancer Genetics Program, Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA

Email: Yingjie Zhang - zhang.321@osu.edu; Tong Liu - liu.756@osu.edu; Pearlly Yan - Yan.342@osu.edu; Tim Huang - huang.434@osu.edu; Jim DeWille* - dewille.1@osu.edu

* Corresponding author

Abstract

Background: CCAAT/Enhancer Binding Protein\(\delta\) (C/EBP\(\delta\)) is a member of the highly conserved C/EBP family of leucine zipper (bZIP) proteins. C/EBP\(\delta\) is highly expressed in \(G_0\) growth arrested mammary epithelial cells (MECs) and "loss of function" alterations in C/EBP\(\delta\) have been associated with impaired contact inhibition, increased genomic instability and increased cell migration. Reduced C/EBP\(\delta\) expression has also been reported in breast cancer and acute myeloid leukemia (AML). C/EBP\(\delta\) functions as a transcriptional activator, however, only a limited number of C/EBP\(\delta\) target genes have been reported. As a result, the role of C/EBP\(\delta\) in growth control and the potential mechanisms by which "loss of function" alterations in C/EBP\(\delta\) contribute to tumorigenesis are poorly understood. The goals of the present study were to identify C/EBP\(\delta\) target genes using Chromatin Immunoprecipitation coupled with a CpG Island (HCG12K) Array gene chip ("ChIP-chip") assay and to assess the expression and potential functional roles of C/EBP\(\delta\) target genes in growth control.

Results: ChIP-chip assays identified \(~100\) C/EBP\(\delta\) target gene loci which were classified by gene ontology (GO) into cell adhesion, cell cycle regulation, apoptosis, signal transduction, intermediary metabolism, gene transcription, DNA repair and solute transport categories. Conventional ChIP assays validated the ChIP-chip results and demonstrated that 14/14 C/EBP\(\delta\) target loci were bound by C/EBP\(\delta\) in \(G_0\) growth arrested MCF-12A MECs. Gene-specific RT-PCR analysis also demonstrated C/EBP\(\delta\)-inducible expression of 14/14 C/EBP\(\delta\) target genes in \(G_0\) growth arrested MCF-12A MECs. Finally, expression of endogenous C/EBP\(\delta\) and selected C/EBP\(\delta\) target genes was also demonstrated in contact-inhibited \(G_0\) growth arrested nontransformed human MCF-10A MECs and in mouse HC11 MECs. The results demonstrate consistent activation and downstream function of C/EBP\(\delta\) target genes in growth control.

Conclusion: C/EBP\(\delta\) target genes were identified by a global gene array approach and classified into functional categories that are consistent with biological contexts in which C/EBP\(\delta\) is induced, such as contact-mediated \(G_0\) growth arrest, apoptosis, metabolism and inflammation. The identification and validation of C/EBP\(\delta\) target genes provides new insights into the mechanistic role of C/EBP\(\delta\) in mammary epithelial cell biology and sheds new light on the potential impact of "loss of function" alterations in C/EBP\(\delta\) in tumorigenesis.
Background

CCAAT/Enhancer Binding Protein δ (C/EBPδ) is a member of the highly conserved C/EBP family of leucine zipper DNA binding proteins [1-3]. Evidence accumulated since their discovery in the late 1980’s indicates C/EBP function in the transcriptional control of genes that function in cell growth, survival, differentiation, inflammation and apoptosis [1-3]. C/EBPδ gene expression is increased in human and mouse mammary epithelial cells in response to growth arrest induction by serum and growth factor withdrawal, contact inhibition and IL-6 family cytokine treatment [4-11]. Ectopic C/EBPδ expression induces growth arrest of mouse mammary epithelial and human chronic myelogenous leukemia cell lines [5,12]. Conversely, reducing C/EBPδ gene expression is associated with delayed growth arrest, genomic instability, impaired contact inhibition, increased cell migration and reduced serum dependence [5,13]. Consistent with a role as a candidate tumor suppressor gene, "loss of function" alterations in C/EBPδ gene expression have been reported in primary human breast cancer and acute myeloid leukemia (AML) [11,14-18]. In vivo experimental studies indicate that C/EBPδ plays a complex role in mammary epithelial cell fate determining programs as C/EBPδ is transiently induced in the mammary gland during the early "reversible" phase of mammary gland involution and C/EBPδ knockout female mice exhibit mammary gland ductal hyperplasia [19-22].

Studies focusing on the regulation of C/EBPδ have reported that C/EBPδ is regulated at the transcriptional, post-transcriptional and post-translational levels [6,23-25]. These findings demonstrate that the content and function of C/EBPδ is tightly controlled at multiple levels. The goal of the present study was to gain new insights into the functional role of C/EBPδ in mammary epithelial cell growth arrest by identifying C/EBPδ downstream target genes using a global gene array approach. The results identified candidate C/EBPδ target genes that were classified by gene ontology (GO) and functional annotation clustering into DNA binding, transcriptional regulation, cell adhesion, cell cycle regulation, apoptosis, signal transduction, intermediary metabolism, DNA repair and transport. These findings provide new insights into the broad range of functions impacted by C/EBPδ in mammary epithelial cell biology and suggest new mechanisms by which alterations in C/EBPδ could contribute to defects in growth control, differentiation and tumorigenesis.

Results

C/EBPδ is induced in growth arrested human mammary epithelial cells

To identify C/EBPδ target genes we used the ChIP-chip assay, a technique that couples chromatin immunoprecipitation (ChIP) with (CpG) Island (CGI) microarray chip hybridization [26,27]. In the initial experiment, we validated the increase in C/EBPδ protein levels in MCF-12A human mammary epithelial cells growth arrested by contact inhibition for 24, 48 and 72 hours (Fig. 1a). We next transfected MCF-12A human mammary epithelial cells with a C/EBPδ-v5 fusion construct and demonstrated that the C/EBPδ-v5 protein was present at 24, 48 and 72 hours in contact inhibited MCF-12A cells, paralleling the results from experiments with endogenous C/EBPδ protein levels (Fig. 1b and Fig. 1a). Because available commercial and laboratory produced anti-C/EBPδ antibodies were not suitable for chromatin immunoprecipitation reactions the ChIP-chip assays were performed in contact-inhibited MCF-12A cells transfected with the C/EBPδ-v5 construct and the antibody interaction step was performed with a high affinity anti-v5 antibody. A schematic overview of the ChIP-chip protocol and representative microarray data images are presented (Fig. 1cd).

Identification of and functional categories of C/EBPδ target genes

ChIP-chip results identified 289 candidate genomic regions from the UNH HCG12K array using a 2 fold enrichment threshold (C/EBPδ-v5 vs IgG control). Of these 289 genomic regions, 99 were identified in defined gene promoter regions (Table 1). C/EBPδ target genes are located on all human chromosomes, suggesting a broad and relatively unbiased distribution across the human genome (Fig. 2a). C/EBPδ target genes were identified and assigned to functional categories (Functional Annotation Clustering) using the Database for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Resource. C/EBPδ target gene functional categories include: signal transduction, metabolism, transcriptional regulation, cell adhesion, DNA binding, cell cycle control, apoptosis, and solute/metabolite transport (Fig 2b).

Chromatin immunoprecipitation (ChIP) and RT-analysis of C/EBPδ target genes

We next used conventional chromatin immunoprecipitation (ChIP) assays to confirm the interaction between C/EBPδ and selected candidate gene promoters in MCF-12A mammary epithelial cells. MCF-12A cells were transfected with the C/EBPδ-v5 construct, growth arrested by contact inhibition and conventional ChIP assays performed on 14 C/EBPδ candidate genes from diverse functional categories with proximal promoters containing at least one consensus C/EBP binding site (Fig. 3a). ChIP assay results were positive for 14/14 C/EBPδ candidate target gene promoters tested, although the degree of positive detection varied across the 14 target genes (Fig. 3b).

ChIP-chip and direct ChIP assays address in situ protein/DNA binding but do not determine if DNA binding results in increased expression of the downstream target
gene. To investigate the relationship between C/EBPδ promoter binding and C/EBPδ target gene expression MCF-12A cells were transfected with the C/EBPδ-v5 construct, growth arrested by contact inhibition and total RNA isolated for RT-PCR analysis. The RT-PCR results demonstrated that mRNA levels of 14/14 of the selected C/EBPδ target genes are significantly induced in MCF-12A cells transiently transfected with the C/EBPδ-v5 construct under contact inhibition, growth arrest conditions (Fig. 3c). The degree of C/EBPδ target gene expression as assessed by mRNA content was variable, possibly reflecting the complex nature of individual target gene transcriptional activation as well as individual target gene mRNA stability. Taken together, the conventional ChIP and RT-PCR results verified that the ChIP-chip assays identified authentic C/EBPδ target genes.

C/EBPδ and C/EBPδ target genes are induced in confluent (contact inhibited) human and mouse mammary epithelial cell lines

In previous work we reported that C/EBPδ expression is highly induced in growth arrested and IL-6 cytokine treated primary human mammary epithelial cells, MCF-12A and MCF-10A mammary epithelial cell lines [9]. To extend these findings in the current study we assessed the expression of C/EBPδ and selected C/EBPδ target genes in 48 hour confluent, G0 growth arrested MCF-10A mammary epithelial cells. The results demonstrated that G0 growth arrest was associated with an approximately 10-fold induction of C/EBPδ mRNA compared to exponentially growing MCF-10A cells (Fig. 4). Consistent with the growth arrest induction of C/EBPδ, the mRNA levels of selected C/EBPδ target genes were also induced, with fold induction of C/EBPδ target genes varying from ~0.5–12 fold induction (Fig. 4).

To extend the current results to mouse MECs we compared C/EBPδ and selected C/EBPδ target gene mRNA levels in growing and contact-inhibited, G0 growth arrested HC11 cells, a nontransformed mouse mammary epithelial cell line. The results confirmed the growth arrest induction of C/EBPδ and demonstrated parallel induction of selected C/EBPδ target gene mRNAs (Fig. 5a). The growth arrest inducible induction of C/EBPδ was dramatic (~90 fold), the growth arrest induction of selected C/EBPδ target genes varied from ~3–50 fold (Fig. 5). These results extend the association between C/EBPδ and the expression of C/EBPδ target genes to include both human and mouse derived nontransformed mammary epithelial cell lines.

Discussion

This study identified C/EBPδ target genes using a "ChIP-chip" global gene array approach. The functional catego-
Table 1: C/EBPδ Target gene functional categories

Signal transduction

Gene Name	Gene Description	Gene ID
ADM	Adrenomedullin	133
BAI3	brain-specific angiogenesis inhibitor 3	577
DTNA	dystrobrevin, alpha	1837
DVL3	dishevelled, dsh homolog 3 (Drosophila)	1857
EDG1	endothelial differentiation, sphingolipid G-protein-coupled receptor, 1	1901
GNG10	guanine nucleotide binding protein (G protein), gamma 10	2790
IRAK2	interleukin-1 receptor-associated kinase 2	3656
LOX	lysyl oxidase	4015
NPAS1	neuronal PAS domain protein 1	4861
CCL25	chemokine (C-C motif) ligand 25	6370
CDC42BPA	CDC42 binding protein kinase alpha (DMPK-like)	8476
INTS6	integrator complex subunit 6	26512
GTPBP2	GTP binding protein 2	54676
EPS15L2	epidermal growth factor receptor pathway substrate 15-like 2	55380
VAC14	Vac14 homolog (S. cerevisiae)	55697
ERBB2IP	erbb2 interacting protein	55914
ROBO3	roundabout, axon guidance receptor, homolog 3 (Drosophila)	64221
C9orf89	chromosome 9 open reading frame 89	84270
SPSB3	splA/ryanodine receptor domain and SOCS box containing 3	90864
HSP90AA1	heat shock protein 90 kDa alpha (cytosolic), class A member 1	3320
FGF9	fibroblast growth factor 9 (glia-activating factor)	2254
SCAP2	src family associated phosphoprotein 2	8935
GPR160	G protein-coupled receptor 160	26996
VDR	vitamin D (1,25- dihydroxyvitamin D3) receptor	7421

Metabolism

Gene Name	Gene Description	Gene ID	
OXA1L	oxidase (cytochrome c) assembly 1-like	5018	
Gene Symbol	Gene Name	Description	GenBank Accession
-------------	-----------	-------------	------------------
RPP30	ribonuclease P/MRP 30 kDa subunit		10556
THBS4	thrombospondin 4		7060
CKAP1	cytoskeleton associated protein 1		1155
DLD	dihydrolipoamide dehydrogenase		1738
ESD	esterase D/formylglutathione hydrolase		2098
LRP1	low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)		4035
PSMB1	proteasome (prosome, macropain) subunit, beta type, 1		5689
RPL29	ribosomal protein L29		6159
MTMR6	myotubularin related protein 6		9107
ADAMTS5	ADAM metallopeptidase with thrombospondin type 1 motif, 5		11096
GCAT	lycine C-acetyltransferase (2-amino-3-ketobutyrate coenzyme A ligase)		23464
ADAT1	adenosine deaminase, tRNA-specific 1		23536
FLRT2	fibronectin leucine rich transmembrane protein 2		23768
MRPL35	mitochondrial ribosomal protein L35		51318
OTUB1	OTU domain, ubiquitin aldehyde binding 1		55611
USP48	ubiquitin specific peptidase 48		84196
ACBD5	acyl-Coenzyme A binding domain containing 5		91452
C9orf103	chromosome 9 open reading frame 103		414328
GANC	glucosidase, alpha; neutral C		2595
BCAT2	branched chain aminotransferase 2, mitochondrial		587
CRLF3	cytokine receptor-like factor 3		51379
ADPRH	ADP-ribosylarginine hydrolase		141

Transcriptional regulation

Gene Symbol	Gene Name	Description	GenBank Accession
KLF6	Kruppel-like factor 6		1316
DBP	D site of albumin promoter (albumin D-box) binding protein		1628
FLI1	Friend leukemia virus integration 1		2313
MEF2B	MADS box transcription enhancer factor 2, polypeptide B		4207
Table 1: C/EBPδ Target gene functional categories (Continued)

Gene Symbol	Description	Gene ID
POLR2F	polymerase (RNA) II (DNA directed) polypeptide F	5435
POU2F1	POU domain, class 2, transcription factor 1	5451
SOX4	SRY (sex determining region Y)-box 4	6659
TBP	TATA box binding protein	6908
ZNF20	zinc finger protein 20	7568
CSDA	cold shock domain protein A	8531
RFXANK	regulatory factor X-associated ankyrin-containing protein	8625
TAF1A	TATA box binding protein (TBP)-associated factor, RNA polymerase I, A	9015
SSBP2	single-stranded DNA binding protein 2	23635
MKL2	MKL/myocardin-like 2	57496
TGIF2	TGFB-induced factor 2 (TALE family homeobox)	60436
IRX6	iroquois homeobox protein 6	79190
ESX1	extraembryonic, spermatogenesis, homeobox 1 homolog (mouse)	80712
ZNF573	zinc finger protein 573	126231
ALX4	aristaless-like homeobox 4	60529

Transporters

Gene Symbol	Description	Gene ID
KCND2	potassium voltage-gated channel, Shal-related subfamily, member 2	3751
PCM1	pericentriolar material I	5108
TUSC3	tumor suppressor candidate 3	7991
SLC25A14	solute carrier family 25 (mitochondrial carrier, brain), member 14	9016
HGS	hepatocyte growth factor-regulated tyrosine kinase substrate	9146
HCN4	hyperpolarization activated cyclic nucleotide-gated potassium channel 4	10021
SLC40A1	solute carrier family 40 (iron-regulated transporter), member 1	30061
MCART1	mitochondrial carrier triple repeat 1	92014
CCB1E1	collagen and calcium binding EGF domains 1	147372

Cell cycle regulation

Gene Symbol	Description	Gene ID
SEPT7	septin 7	989
Table 1: C/EBPδ Target gene functional categories (Continued)

Gene Symbol	Description	Gene ID
RCC1	regulator of chromosome condensation I	1104
PAPD5	PAP associated domain containing 5	64282
DIRAS3	DIRAS family, GTP-binding RAS-like 3	9077

DNA binding

Gene Symbol	Description	Gene ID
TOP2B	topoisomerase (DNA) II beta 180 kDa	7155
HIST1H4F	histone 1, H4f	8361
KCMF1	potassium channel modulatory factor 1	56888
XPC	xeroderma pigmentosum, complementation group C	7508
MSH5	mutS homolog 5 (E. coli)	4439

Cell Adhesion

Gene Symbol	Description	Gene ID
GP5	glycoprotein V (platelet)	2814
ITGB8	integrin, beta 8	3696
PCDH9	Protocadherin 9	5101
RSHL1	radial spokehead-like 1	81492
THBS4	thrombospondin 4	7060

Apoptosis

Gene Symbol	Description	Gene ID
TIA1	cytotoxic granule-associated RNA binding protein	7072
BCL2LI	BCL2-like 1	598
RNF34	ring finger protein 34	80196

Miscellaneous

Gene Symbol	Description	Gene ID
HSPCA	heat shock protein 90 kDa alpha (cytosolic), class A member 1	3320
OTOF	otoferlin	9381
LOH12CR1	loss of heterozygosity, 12, chromosomal region I	118426
MYEOV2	myeloma overexpressed 2	150678
TMEM87A	transmembrane protein 87A	25963
MTPN	myotrophin	136319
DISCI	disrupted in schizophrenia 1	27185
ries of a significant number of the C/EBPδ target genes are consistent with known biological responses associated with C/EBPδ expression and function. A significant number of studies have demonstrated that C/EBPδ gene expression is induced in contact-inhibited cells and the "ChIP-chip" analyses performed in this study identified C/EBPδ target genes that function in cell adhesion, a key aspect contact inhibition mediated growth arrest including, IGTB8, LOX, PCDH9, THBS4, and RSHL1 (Table 1) [28]. C/EBPδ induction of IGTB8 (Integrin B8) may be particularly relevant in breast cancer as IGTB8 inhibits epithelial cell growth by activating TGF-β [29,30]. In addition, LOX (lysyl oxidase), a cell-associated enzyme that functions in extracellular matrix biology has been identified as a tumor suppressor gene in gastric cancer [31]. However, the role of LOX in cancer biology is complex as LOX has also been shown to enhance breast cancer cell migration [32].

Additional C/EBPδ target genes function in the regulation of growth factor signaling, tumor suppression and transcription including: ERBB2IP, IRAK2, EDG1, INTS6, SCAP2, VDR, KLF6, MKL2, FLJ1, TUSC3 and SOX4 (Table 1). ERBB2IP (Erbin) inhibits growth factor signaling by disrupting Sur-8/Ras/Raf complex formation interaction [33]. INTS6 (DICE1), a DEAD box protein that exhibits tumor suppressor activity, is hypermethylated and down-regulated in prostate cancer [34]. VDR (vitamin D receptor), a member of the steroid hormone nuclear receptor superfamily, functions in calcium and noncalcium related cellular responses to vitamin D [35]. It is of interest that the VDR is required for vitamin D-induced growth arrest of breast and prostate derived cell lines and C/EBPδ is required for vitamin D-induced growth arrest of human breast (MCF-7) and prostate (LnCAP) cells [36,37]. These results indicate that C/EBPδ target genes play key roles in growth inhibitor signaling, cell-cell and cell matrix interactions and transcriptional regulation.

The C/EBPδ ChIP-chip results also identified three genes (BCL2L1, TIA-1, RNF34) that function in apoptosis. Reports from our lab and others demonstrate that C/EBPδ is expressed at the onset of mouse mammary gland involution [20,21,38]. It is of interest that BCL2L1 (bcl-x), a gene associated with pro- and anti-apoptotic functions was identified as a C/EBPδ target gene by the ChIP-chip assay. The primary BCL2L1 transcript can be alternatively spliced into two variants that encode proteins with opposing functions: Bcl-xL (anti-apoptotic) and Bcl-xS (pro-apoptotic) [39,40]. Bcl-xL is the most abundant Bcl-2 family member expressed in mammary epithelial cells and conditional deletion of the bcl-x gene from the mouse mammary epithelium enhances apoptosis during the initial phase of mammary gland involution [41]. Interestingly, Bcl-xS levels increase during mammary gland involution, resulting in a decrease in the Bcl-xL/Bcl-xS ratio in the involuting mammary gland [42]. A second apoptosis-related C/EBPδ target gene identified was TIA-1, an RNA binding protein that exhibits both pro- and anti-apoptotic activity [43,44]. These results suggest that C/EBPδ may function in the transcriptional control of BCL2L1 and TIA-1 but the pro- or anti-apoptotic functions are determined by posttranscriptional events. The third apoptosis-related C/EBPδ target gene identified in study is RNF34, an anti-apoptotic protein that is associated with activation of nuclear factor-xB (NF-xB) and increased levels of Bcl-xl [45]. In addition to the identifi-
Conventional ChIP and RT-PCR analysis of selected C/EBPδ ChIP-chip target genes

Figure 3

Conventional ChIP and RT-PCR analysis of selected C/EBPδ ChIP-chip target genes. a. C/EBPδ ChIP-chip target gene promoters. C/EBPδ target gene promoters are shown with gene-specific primers (→) and computer predicted C/EBPδ consensus sites (▶). Gene-specific human primer pairs are presented in Table 2. b. Conventional ChIP assays. Whole cell lysates were isolated from MCF-12A cells transfected with pCDNA3.1-hC/EBPδ-v5 and growth arrested by contact inhibition. Conventional ChIP assays performed with anti-v5 and IgG (negative control) antibodies. Input lane is derived from direct PCR amplification of genomic DNA. c. C/EBPδ target gene expression: RT-PCR analysis. Total RNA was isolated from MCF-12A cells transfected with pCDNA3.1-hC/EBPδ-v5 and cultured under exponentially growing (GR) or contact inhibition conditions. Total RNA was reverse transcribed and PCR amplified using gene-specific primers. No RT = PCR amplification of RNA samples without RT. GAPDH was used as a non-C/EBPδ inducible RNA expression control.
cation of growth control/tumor suppressor genes, the C/EBPδ ChIP-chip analysis identified eight inflammation related genes, including ADM, IRAK2, CCL25, OTUB1, KLF6, DBP, RFXANK and GP5 (Table 1). These findings are consistent with a well-established functional role of C/EBPδ in the acute phase response, inflammation and wound healing [23,46,47].

The ChIP-chip analysis also identified C/EBPδ target genes that encode proteins that function in general energy metabolism, including lipid metabolism, metabolite transport and mitochondrial energy-related functions (Table 1). These results are consistent with early reports documenting the key role of C/EBPδ in the 3T3-L1 fibroblast → adipocyte differentiation program [48,49].

The ChIP-chip analysis also identified a significant number of C/EBPδ target genes that function as transcriptional regulatory proteins. These results suggest that C/EBPδ initiates a biological response that is amplified by C/EBPδ target genes that also function as transcriptional regulatory proteins. Five C/EBPδ target genes are classified as homeobox genes (POU2F1, TGIF2, IRX6, ESX1L and ALX4) (Table 1). The potential role of C/EBPδ in the

Table 2: Forward (F-) and reverse (R-) primers for ChIP and RT-PCR assays (human)

Gene name	Primers for ChIP	Primers for RT-PCR
DIRAS3	F- ctcacagcagcaaggggaag; R- tacagctggcaggggaactg	F- cggagagcagcaggggaac; R- aggagctggcaggggaactg
ASAHL	F- gcagagcagcaacacacagag; R- gcagctggcaggggaag	F- gcagctggcagcaggggaac; R- gcagctggcaggggaactg
BCAT2	F- aagagcctcgctggagcta; R- cctgccttgcaaggctttag	F- cttgcctggcagcaggggaac; R- cttgccttgcaaggctttag
BCL2L1	F- agagctcctctgcctgagagtca; R- gcagctggcaggggaag	F- gcagctggcagcaggggaac; R- gcagctggcaggggaactg
CCRN4L	F- ccctgaccagctctgtgcttc; R- gcagctggcaggggaag	F- ccctgaccagctctgtgcttc; R- gcagctggcaggggaag
SEPT7	F- gcagctgcgctctgctggagagtca; R- gcagctggcaggggaag	F- gcagctgcgctctgctggagagtca; R- gcagctggcaggggaag
FGF9	F- ccctgaccagctctgtgcttc; R- gcagctggcaggggaag	F- ccctgaccagctctgtgcttc; R- gcagctggcaggggaag
GPR160	F- aaaggtgctgtctgctttgta; R- gcagctggcaggggaag	F- aaaggtgctgtctgctttgta; R- gcagctggcaggggaag
ITGB8	F- ccctgaccagctctgtgcttc; R- gcagctggcaggggaag	F- ccctgaccagctctgtgcttc; R- gcagctggcaggggaag
MKL2	F- ccctgaccagctctgtgcttc; R- gcagctggcaggggaag	F- ccctgaccagctctgtgcttc; R- gcagctggcaggggaag
MSH5	F- aaggtgctgtctgctttgta; R- ccagctggcaggggaag	F- aaggtgctgtctgctttgta; R- ccagctggcaggggaag
OXA1L	F- ccctgaccagctctgtgcttc; R- gcagctggcaggggaag	F- ccctgaccagctctgtgcttc; R- gcagctggcaggggaag
SCAP2	F- ccctgaccagctctgtgcttc; R- gcagctggcaggggaag	F- ccctgaccagctctgtgcttc; R- gcagctggcaggggaag
VDR	F- ccctgaccagctctgtgcttc; R- gcagctggcaggggaag	F- ccctgaccagctctgtgcttc; R- gcagctggcaggggaag
expression of homeobox genes suggests that C/EBPδ may influence cell fate or cell lineage determination. It has recently been shown that C/EBPδ inhibits growth and promotes self renewal of human limbic stem cells, suggesting a potential role for C/EBPδ in the maintenance of stem cell pluripotency [50]. These results suggest that C/EBPδ may play a previously unrecognized regulatory role in cell lineage determination in the mammary gland or possibly in mammary gland stem cell populations.

The ChIP-chip results identified C/EBPδ target genes that function specifically in neuronal differentiation and development (FGF9, MTPN, ROBO3, NPAS1, and DVL3) (Table 1). Early studies in our laboratory found that mouse brain expresses relatively high levels of C/EBPδ mRNA compared to other C/EBP family members [51]. In addition, the initial report that described the phenotype of C/EBPδ -/- mice reported selectively enhanced contextual fear conditioning, suggesting a role for C/EBPδ in learning or memory [52]. It is of interest that DTNA, a gene that functions in neuromuscular synaptic transmission was also identified as a C/EBPδ target gene and that C/EBPδ target genes were identified that function in differentiation and development of muscle cells and pattern
Gene	Sequence (5'-3')	Length (bp)	Accession No.
C/EBPδ	FW: CGACTTCAGCGCCTACATTGA	171 bp	NM007679
	RV: CTAGCGACAGACCCACAC		
ASAHL	FW: GTCCTCCTGACTTCTCGG	225 bp	NM025972
	RV: CCTGCCACTAAGCCCTCAC		
BCAT2	FW: ATGAAGGCAAGCAACTCC	227 bp	NM009737
	RV: TGGACAGACCTTTCCCTATT		
GP5	FW: CGCCAGCCTGCTGTTCT	185 bp	NM008148
	RV: GCCCTGATATTGGGACTTTCAC		
ITGB8	FW: TTCTCCTGCTCCTATCCTCA	302 bp	NM177290
	RV: TGAGACAGAT TGTGAGGGTG		
MKL2	FW: CTGTTGCTGTCAGCAAGA	398 bp	NM153588
	RV: TGTTTTGTTGCGGAGTTT		
MSH5	FW: CGACTCTGAGCCACATC	295 bp	NM013600
	RV: TGGCATCTATGTCAGGGTC		
OXAL1	FW: CGGTTCTATTGGGTTTG	225 bp	NM026936
	RV: CACCCACCTCTCTTTTCCTTT		
PCDH9	FW: ACAGCCACACCGTCTCTTA	219 bp	NM001081377
	RV: CCCCTGGTTTCGGCGGTC		
SCAP2	FW: AGTGAAGATGGGACAGGAA	199 bp	NM018773
	RV: TCCTACCAACCGGACAA		
TIA1	FW: GAGAAGGGCTATTGCCTTTG	208 bp	NM009383
	RV: GTCCATAACTTTTGGGAT		
VDR	FW: CAACGCTATGACCTGTGAA	299 bp	NM009504
	RV: GCAGGATGGCCGATAATGT		
XPC	FW: TCCTGGAGATACCTTCG	337 bp	NM009531
	RV: AAAGAGCAGAC CGGAGATA		
GAPDH	FW: CTCACTGCGCATGGCCCTTCCG	293 bp	XM001473623
	RV: ACCACCCCTTGGCTTGAGCC		

Note. FW: forward primer; RV: reverse primer.

aAmplicon length in base pairs.
bGenbank accession number of corresponding gene, available at http://www.ncbi.nlm.nih.gov
formation of limb buds including MKL2, MEF2B and ALX4 [53]. These results suggest that epithelial cells may express a subset of genes that retain residual neural related or neuromuscular-related functions.

Conclusion

This is the first report to utilize the ChIP-chip assay to identify C/EBPδ target genes. The new C/EBPδ target genes identified by the ChIP-chip analysis are associated with biological responses previously associated with C/EBPδ expression, such as growth arrest, cell adhesion, inflammation, energy metabolism and apoptosis. Gene expression analyses performed in human and mouse mammary epithelial cell lines confirm the link between the expression of C/EBPδ, C/EBPβ target genes and the G₀ growth arrest state. These results provide new insights into the functional role of C/EBPδ and C/EBPδ target genes in mammary tumorigenesis.

Methods

Cell culture and transient transfections

The immortalized, nontransformed MCF-12A and MCF-10A human mammary epithelial cell lines were obtained from American Type Culture Collection. MCF12A and MCF-10A cell lines were cultured in DMEM/F-12 phenol red free media (Invitrogen) supplemented with 5% horse serum, 20 ng/ml human recombinant EGF, 100 ng/ml cholera toxin, 10 μg/ml bovine insulin, 500 ng/ml hydrocortisone, 100 U/ml penicillin and 100 μg/ml streptomycin (Complete Growth media, CGM). Growth arrest was induced by culturing confluent MCF-12A or MCF-10A cells in CGM or switching near confluent cultures to media containing 0.5% horse serum plus antibiotics (Growth arrest media, GAM). MCF-12A cells were transiently transfected with 5 μg of a v5 tagged C/EBPδ expression construct (pCDNA3.1-h/C/EBPδ-v5) using the Lipofectamine Plus transfection system (Invitrogen). Three hours later transfected cells were washed with 1× PBS, returned to CGM for 48 hours. All transfection experiments were performed in triplicate and repeated 2–3 times. HC11 cells (mouse immortalized mammary epithelial cell line) were grown in complete growth media (CGM) containing RPMI 1640 medium (Invitrogen) containing 10% FBS and supplemented with 10 ng/ml epidermal growth factor, 10 μg/ml insulin, 50 units/ml penicillin, 50 μg/ml streptomycin and 500 ng/ml fungizone in a humidified incubator at 37°C and 5% CO₂. Exponentially growing HC11 cells were cultured at 30–50% confluence in CGM, confluent HC11 cells were grown to confluence and retained in CGM for 48 hours.

Chromatin immunoprecipitation CpG island microarray (“ChIP-Chip”) and ChIP assays

Isolation of C/EBPδ-associated genomic DNA was performed using the Chromatin Immunoprecipitation Assay Kit (Upstate) and following Upstate ChIP protocols. Anti-v5 epitope antibody (Invitrogen) (non-cross reactive with endogenous MCF-12A proteins) was used in the primary immunoprecipitation reaction. Mouse nonspecific IgG (Upstate) was used as a non-specific antibody control for the ChIP assays. Briefly, 5 × 10⁶ MCF-12A cells were cross-linked with 1% formaldehyde (10 minutes, 37°C), washed 2× with PBS (4°C), pelleted by centrifugation and resuspended in 200 μl SDS lysis buffer supplemented with protease inhibitors. Cell lysates were sonicated to shear DNA to 0.5–2.0 kb in length (verified by agarose gel analysis). Sonicated lysates were centrifuged to remove debris, diluted 1:10 in dilution buffer and used for IP with 2 μg anti-v5 antibody or nonspecific mouse IgG control. After immunoprecipitation, pellets were washed with 1 ml Low Salt Immune Complex Wash Buffer, High Salt Immune Complex Wash Buffer and LiCl Immune Complex Wash Buffer and TE buffer. Bead precipitates were eluted twice with fresh elution buffer (1% SDS, 0.1 M NaHCO₃) and eluates were pooled and heated at 65°C for 4 hours to reverse protein-DNA crosslinks. DNA was purified by phenol extraction and ethanol precipitation. To confirm C/EBPδ/target promoter binding, optimized, nested PCR was performed with 2.5 μl of the 50 μl DNA preparation plus promoter specific primers. Specific PCR products

Figure 5

C/EBPδ and C/EBPδ target gene mRNA levels are increased in confluent, G₀ growth arrested mouse mammary epithelial cells. Growing HC11 cells were maintained at ~50% confluence in CGM; confluent HC11 cells were grown to confluence and maintained in CGM for 48 hours. Real Time PCR analysis was performed using the LightCycler 480 Real Time PCR System. The gene specific primers are presented in Table 3. Real Time PCR data is normalized to the GAPDH control.
were assessed by agarose gel electrophoresis. An optimized two-step PCR amplification was then performed on the ChIP recovered DNA. The first amplification step involved a 3 cycle random primer amplification including: 8 μl ChIP DNA, 2 μl 5× Sequenase Buffer, 1 μl of 40 μM primer A (5′-GTT TCC CAG TCA CGA TCN NNN NNN NN), 1.5 μl 10 mM dNTP's, and 1 μl Sequenase (US Biochemical, Sequenase Kit Ver. 2.0) was incubated at 94°C for 2 min, 10°C for 5 min followed by 37°C for 8 min. The random primer incorporation reactions were then increased to a final volume of 60 μl by the addition of 40 l of RNAse/DNAse-free water (Invitrogen). The second amplification step included 15 μl of the DNA product from step one, 8 μl MgCl₂, 10 μl 10× PCR Buffer, 2 μl of 50× aa-dUTP/dNTP's, 1 μl Primer B (5′-GTT TCC CAG TCA CGA TC 100 pm/μl), 1 μl Taq polymerase (QIA-GEN) plus 63 μl of RNAse/DNAse-free water. The following amplification/nucleotide incorporation program was used: 92°C for 30 s, 40°C for 30 s, 50°C for 30 s, 72°C for 1 min × 34 cycles. A confirmatory agarose gel was run with 5 μl of PCR product to visualize the DNA and confirm the size range of ~300–1000 bp in length.

PCR amplified anti-v5 and IgG ChIP isolated DNA was purified using the CyScribe GFX Purification Kit (Amersham, catalogue # 27-9602-02). DNA was resuspended and vortexed in vials containing Alexa 647 (green fluorescent) or Alexa 555 (red fluorescent) dye (Molecular Probes) in 2 μl 100% DMSO (Sigma). Following complete dissolution of the dye 8 μl aa-dUTP was added and the sample was vortexed and incubated for 1 hour at room temperature in the dark. Following dye-coupling, samples were purified separately using the CyScribe GFX Purification Kit (Amersham) and the eluent volume reduced to 5 μl for hybridization by SpeedVac (45 min, medium heat setting). Hybridization of the labeled DNA sample to the UHN 12 k Human CpG Arrays was performed by the Ohio State University Comprehensive Cancer Microarray Core Laboratory. Briefly, CPG array slides were prehybridized in a solution containing 100 μl of DIG Easy Hybrid solution (Roche), 5 μl of 10 mg/ml calf thymus DNA (Invitrogen) and 5 μl of 10 mg/ml 1 yeast tRNA (Invitrogen) at 65°C for 2 min and then cooled to room temperature. The hybridization solution (85 μl total volume) containing the pooled Alexa 647 and Alexa 555 labeled DNA was mixed and incubated at 65°C for 2 min, cooled to room temperature and the pipetted onto the CPG array slides. A 24 × 60 mm glass coverslip (Corning) was placed over the hybridization droplet and the arrays was place into a hybridization chamber containing a small amount of DIG Easy Hyb solution in the bottom to maintain a humid environment. The arrays were incubated in a 37°C incubator for 18 hours. After hybridization, the slides were sequentially washed with 1× SSC and 0.1% SDS for 15 min in 50°C water bath, 1× SSC, and 0.1× SSC at room temperature. Slides were spun dry at 640 rpm for 15 min and the fluorescent signal scanned using a GenePix 4000B scanner. For each independent experiment the v5-antibody-ChIP DNA and the mouse IgG-ChIP control DNA fluro dye labeling was swapped to reduce the effect of dye bias on the microarray data. A 2 fold hybridization signal intensity (anti-v5 ChIP vs the IgG ChIP) was used to identify C/EBPδ-v5 binding targets. Only those spots satisfying the 2 fold cut-off value in both of the two dye swapping microarray experiments were used for downstream bioinformatics analysis. Array spots with a size (diameter) less than 70% of the normal size or having a signal-to-noise ratio of less than 2.5 fold were eliminated from the analysis. We also determined that no reliable signal was produced from control spots containing Arabidopsis DNA. The conventional ChIP assays were performed by isolation of C/EBPδ-associated (C/EBPδ-v5) genomic DNA using the Chromatin Immunoprecipitation Assay Kit (Upstate) and following Upstate ChIP protocols.

Bioinformatic and statistical analysis
CGI microarray gene information was obtained from the UHN Microarray Center’s CpG Island Database http://data.microarrays.ca/cpg/. Genome sequences and annotations were obtained from the UCSC Genome Bioinformatics Site http://genome.ucsc.edu. All CGI hits were mapped to promoter, exonic, intronic, and intergenic regions according to the locations of RefSeq genes. Promoters were defined as 5 kb upstream to the annotated translation start sites. Statistical analysis was performed using Excel based software. Functional gene categories were identified and Functional Annotation Clustering performed using resources available at the Database for Annotation, Visualization and Integrated Discovery (DAVID) http://david.abcc.ncifcrf.gov/. Hypothetical genes and genes without GO assignments are not shown. The Alibaba2 program located at the BIOBASE gene regulation website http://www.gene-regulation.com was used to identify potential C/EBP binding sites within the target promoters. Information about C/EBP family transcription factors was obtained from TRANSFAC 7.0-Public database in the BIOBASE website. Three independent experiments were performed.

Reverse transcription -PCR (RT-PCR)
Total RNA was isolated using RNABee (TelTest, Inc.). One 10 μg RNA samples were treated with amplification grade DNase I and reverse transcribed with an oligo(dT) primer in 20 μl using the SuperScript First-Strand Synthesis System for RT-PCR from Invitrogen. One μl cDNA aliquots were amplified by gene specific primers. PCR amplification products were analyzed by agarose gel electrophoresis, and photographed using an Alpha Innotech Imagine System.
mRNA isolation and Real Time PCR

Total mRNA was isolated using RNazol B (Tel-Test, Inc., Friendswood, TX) according to the manufacturer’s protocols. Total mRNA (1 μg) was reverse transcribed using the reverse transcriptase kit (Invitrogen, Carlsbad, CA). The reverse transcription products were amplified by Real-time PCR using the LightCycler® 480 Real-Time PCR System (Roche, Indianapolis, IN). Amplification was performed in a total volume of 20 μl containing 10 μl of a 2×SYBR Green PCR master mix, 0.2 μl of forward and reverse primers and 1 μl cDNA in each reaction. PCR specificity was verified by assessing the melting curves of each amplification product. Real-time PCR data were normalized to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA control. The primers used are presented in Table 2. The fold change in specific mRNA levels was calculated using the comparative CT (ΔΔCT) method. Results presented as mean ± SEM of the fold changes derived from three experiments with triplicate analyses performed for each treatment.

Abbreviations

(C/EBPδ): CCAAT/Enhancer Binding Proteinδ; (ChIP-chip): chromatin immunoprecipitation-microarray chip; (MECs): mammary epithelial cells; UHN: University Health Network; HCG12K: Human CpG Island 12 K.

Authors’ contributions

YZ and JDW developed the experimental design. YZ performed cell culture, transfection, ChIP-chip, and RT-PCR luciferase assays. TL performed cell culture and Real-Time PCR assays. THMH pioneered the development of the ChIP-chip technology, provided CpG island arrays and PCR assays. TLM induces growth arrest of mammary epithelium via a CCAAT/enhancer-binding protein delta-dependent pathway. Mol Cancer Ther 2002, 1(8):601-610.

Results presented as mean ± SEM of the fold changes derived from three experiments with triplicate analyses performed for each treatment.

Acknowledgements

This work was funded in part by the National Institutes of Health (CA57607-14) (to JD), OSU CCCP 30 CA16058 (TH and JD) and the Ohio State College of Veterinary Medicine C. Glen Barber Fund (YZ).

References

1. Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 2002, 365(Pt 3):561-575.
2. Vinson C, Myakshiev M, Acharya A, Mir AA, Moll JR, Bonovich M. Classification of human B-ZIP proteins based on dimerization properties. Mol Cell Biol 2002, 22(18):6321-6335.
3. Johnson PF. Molecular stop signs: regulation of cell-cycle arrest by C/EBP transcription factors. J Cell Sci 2005, 118(Pt 12):2545-2555.
4. O’Rourke J, Yuan R, DeWille J. CCAAT/enhancer-binding protein-delta (C/EBP-delta) is induced in growth-arrested mouse mammary epithelial cells. J Biol Chem 1997, 272(10):6291-6296.
5. O’Rourke JP, Newbound GC, Hutt JA, DeWille J. CCAAT/enhancer-binding protein delta regulates mammary epithelial cell G0 growth arrest and apoptosis. J Biol Chem 1999, 274(23):16582-16589.
6. O’Rourke JP, Hutt JA, DeWille J. Transcriptional regulation of C/EBPdelta in G(0) growth-arrested mouse mammary epithelial cells. Biochem Biophys Res Commun 1999, 262(3):696-701.
7. Hutt JA, O’Rourke JP, DeWille J. Signal transducer and activator of transcription 3 activates CCAAT enhancer-binding protein delta gene transcription in G0 growth-arrested mouse mammary epithelial cells and in involuting mouse mammary gland. J Biol Chem 2000, 275(37):29123-29131.
8. Hutt JA, DeWille JW. Oncostatin M induces growth arrest of mammary epithelium via a CCAAT/enhancer-binding protein delta-dependent pathway. Mol Cancer Ther 2002, 1(8):601-610.
9. Svko GS, DeWille JW: CCAAT Enhancer binding protein delta (C/EBPdelta) regulation and expression in human mammary epithelial cells: I. “Loss of function” alterations in the C/EBPdelta growth inhibitory pathway in breast cancer cell lines. J Cell Biochem 2004, 93(4):830-843.
10. Svko GS, Sanford DC, Dearth LD, Tang D, DeWille JW: CCAAT Enhancer binding protein delta (C/EBPdelta) regulation and expression in human mammary epithelial cells: II. Analysis of activating signal transduction pathways, transcriptional, post-transcriptional, and post-translational control. J Cell Biochem 2004, 93(4):844-856.
11. Tang D, Svko GS, Dewille JW: C/EBPdelta (CEBPdelta) gene expression in the SUM-152PE human breast cancer cell line and in primary breast tumors. Breast Cancer Res Treat 2005;1-10.
12. Gery S, Tanosaki S, Hofmann WK, Koppel A, Koefler HP: C/EBPdelta expression in a BCR-ABL-positive cell line induces growth arrest and myeloid differentiation. Oncogene 2005, 24(9):1589-1597.
13. Huang AM, Montagna C, Sharan S, Ni Y, Ried T, Sterneck E. Loss of CCAAT/enhancer binding protein delta promotes chromosomal instability. Oncogene 2004, 23(18):5543-5557.
14. Vegenas V, Takeuchi S, Hofmann WK, Ikeshos T, Tavor S, Krug U, Fermin AC, Heaney A, Miller CW, Koefler HP: C/EBPbeta, C/EBPdelta, PU.1, AML1 genes: mutational analysis in 381 samples of hematopoietic and solid malignancies. Leuk Res 2002, 26(5):451-457.
15. Tang D, DeWille J: Detection of base sequence changes in the CEBPD gene in human breast cancer cell lines and primary breast cancer isolates. Mol Cell Probes 2005, 17(1):1-14.
16. Porter D, Laiti-Domenici J, Keshaviah A, Bae YK, Argani P, Marks J, Richardson A, Cooper A, Strausberg R, Riggins GJ, et al. Molecular markers in ductal carcinoma in situ of the breast. Mol Cancer Res 2003, 1(5):362-375.
17. Porter DA, Krop IE, Nasser S, Sgroi D, Kaelin CM, Marks JR, Riggins G, Polyak K. A SAGE (serial analysis of gene expression) view of breast tumor progression. Cancer Res 2001, 61(15):5697-5702.
18. Agrawal S, Hofmann WK, Tidow N, Ehrich M, Boom D, van den Bos KM, Watson CJ. Molecular stop signs: regulation of cell-cycle arrest by C/EBP transcription factors. J Cell Physiol 2007, 208(4):908-916.
19. Gigliotti AP, DeWille JW. Local signals induce CCAAT/enhancer binding protein-delta (C/EBPdelta) and C/EBP-beta mRNA expression in the involuting mouse mammary gland. Breast Cancer Res Treat 1999, 59(1):57-62.
20. Gigliotti AP, DeWille JW. Induction status influences expression of CCAAT/enhancer binding protein isofrom mRNA in the mouse mammary gland. J Cell Physiol 1998, 174(2):232-239.
21. Gigliotti AP, Johnson PF, Sterneck E, DeWille JW. Nulliparous CCAAT/enhancer binding protein-delta (C/EBPdelta) knockout mice exhibit mammary gland ductal hyperplasia. Exp Biol Med (Maywood) 2003, 228(3):278-285.
22. Carlson RW, Boland MP, Kritikou EA, Lee JM, Freeman TC, Tiffen PG, Watson CJ. The genes induced by signal transducer and activators of transcription (STAT)2 and STAT3 in mammary epithelial cells define the roles of these STATs in mammary development. Mol Endocrinol 2006, 20(3):675-685.
23. Cantwell CA, Sterneck E, Johnson PF. Interleukin-6-specific activation of the C/EBPdelta gene in hepatocytes is mediated by Stat3 and Sp1. Mol Cell Biol 1998, 18(4):2108-2117.
24. Li B, Slj, J, Dewille JW: Ultraviolet radiation (UVR) activates p38 MAP kinase and induces post-transcriptional stabilization of the C/EBPβ mRNA in G0 growth arrested mammary epithelial cells. J Cell Biochem 2007.

25. Zhou S, Dewille JW: Proteasome-mediated CCAAT/enhancer-binding protein delta (C/EBPdelta) degradation is ubiquitin-independent. Biochem J 2007, 405(2):341-349.

26. Kiemz, A, Farnham Pj: Genomic approaches that aid in the identification of transcription factor target genes. Exp Biol Med (Maywood) 2004, 229(8):705-721.

27. Wu J, Smith LT, Plass C, Huang TH: ChIP-chip Comes of Age for Genome-wide Functional Analysis. Cancer Res 2006, 66(14):6999-6902.

28. Balda MS, Mattern K: Epithelial cell adhesion and the regulation of gene expression. Trends Cell Biol 2003, 13(6):310-318.

29. Cambier S, Mu DZ, O’Connell D, Boyle K, Travis W, Liu WH, Broadus VC, Nishimura SL: A role for the integrin alphavbeta3 in the negative regulation of epithelial cell growth. Cancer Res 2004, 64(20):7048-7053.

30. Fjellbirkeland L, Cambier S, Broadus VC, Hill A, Brunetta P, Dolganoval G, Jablons D, Nishimura SL: Integrin alphavbeta8-mediated activation of transforming growth factor-beta inhibits human airway epithelial proliferation in bronchial tissue. Am J Pathol 2003, 163(3):533-542.

31. Kaneda A, Wakazono K, Tsukamoto T, Watanabe N, Yagi Y, Tatematsu M, Kaminishi M, Sugimura T, Ushijima T: Lysyl oxidase is a tumor suppressor gene inactivated by methylation and loss of heterozygosity in human gastric cancers. Cancer Res 2004, 64(18):6410-6415.

32. Payne SL, Fogelgren B, Hess AR, Seftor EA, Wiley EL, Fong SF, Cissizar K, Hendrix MJ, Kirschmann DA: Lysyl oxidase regulates breast cancer cell migration and adhesion through a hydrogen peroxide-mediated mechanism. Cancer Res 2005, 65(24):11429-11436.

33. Dai P, Xiong WC, Mei L: Erbin inhibits RAF activation by disrupting the sur-8-Ras-Raf complex. J Biol Chem 2006, 281(2):927-932.

34. Ropke A, Butz P, Bohm M, Seger J, Wieland I, Allhoff EP, Wiesacker PF: Promoter CpG hypermethylation and downregulation of DICE1 expression in prostate cancer. Oncogene 2005, 24(44):6667-6675.

35. Nogal S, Na S, Rathnamalam R: Nonalcellmatic actions of vitamin D receptor ligands. Endocr Rev 2005, 26(5):662-687.

36. Wietzke JA, Ward EC, Schneider J, Welsh J: Regulation of the human vitamin D3 receptor promoter in breast cancer cells is mediated through Sp1 sites. Mol Cell Endocrinol 2005, 230(1-2):59-68.

37. Ikezoe T, Gery S, Yin D, O’Kelly J, Binderup L, Lemp N, Taguchi H, Koefler HP: CCAAT/enhancer-binding protein delta: a molecular target of 1,25-dihydroxyvitamin D3 in androgen-responsive prostate cancer LNCaP cells. Cancer Res 2005, 65(11):4762-4768.

38. Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy MA, Heath VJ, Bell AK, Ferrier RK, Sandilands GP, Gusterson BA: Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res 2006, 8(2):R55-91.

39. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB: bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993, 74(4):597-608.

40. Apolloni C, Moulding DA, Edwards SW: Alternative splicing of Bcl-2-related genes: functional consequences and potential therapeutic applications. Cell Mol Life Sci 2004, 61(17):2189-2199.

41. Walton KD, Wagner KU, Rucker EB 3rd, Shillingford JM, Miyoshi K, Hennighausen L: Conditional deletion of the bcl-x gene from mouse mammary epithelium results in accelerated apoptosis during involution but does not compromise cell function during lactation. Mech Dev 2001, 109(2):281-293.

42. Heermeier K, Benedict M, Li M, Furth P, Nunez G, Hennighausen L: Bax and Bcl-x are induced at the onset of apoptosis in invovulating mammary epithelial cells. Mech Dev 1996, 56(1-2):197-207.

43. Zhang T, Delestienne N, Huez G, Kruys V, Gueydan C: Identification of the sequence determinants mediating the nucleo-cytoplasmic shuttling of TIA1 and TIA-1 RNA-binding proteins. J Cell Sci 2005, 118(Pt 23):5453-5463.

44. Le Guiner C, Gesnel MC, Breathnach R: TIA-1 or TIAAR is required for DT40 cell viability. J Biol Chem 2003, 278(12):10465-10476.

45. Konishi T, Sasaki S, Watanabe T, Kitayama J, Nagawa H: Overexpression of hRFl inhibits 5-fluorouracil-induced apoptosis in colorectal cancer cells via activation of NF-kappaB and upregulation of BCL-2 and BCL-XL. Oncogene 2004, 25(23):3160-3169.

46. Ray A, Ray BK: Serum amyloid A gene expression under acute-phase conditions involves participation of inducible C/EBP-beta and C/EBP-delta and their activation by phosphorylation. Biochem Biophys Res Commun 1999, 266(3):677-683.

47. Poli V: The role of C/EBP isoforms in the control of inflammatory and native immunity functions. J Biol Chem 1998,273(45):29279-29282.

48. Cao Z, Umek RM, McRyght SL: Regulated expression of three C/EBP isoforms during adipocyte conversion of 3T3-L1 cells. Genes Dev 1991, 5(9):1538-1552.

49. Lane MD, Tang QQ, Jiang MS: Role of the CCAAT enhancer binding proteins (C/EBPs) in adipocyte differentiation. Biochem Biophys Res Commun 1999, 266(3):677-683.

50. Barbaro V, Testa A, Di Iorio E, Mavilo F, Pellegrini G, De Luca M: C/EBPdelta regulates cell cycle and self-renewal of human limbal stem cells. J Cell Biol 2007, 177(6):1037-1049.

51. DeWille Jv, Farmer Sj: Linoleic acid controls neonatal tissuespecific stearoyl-CoA desaturase mRNA levels. Biochim Biophys Acta 1993, 1170(3):291-295.

52. Sternerck E, Paylor R, Jackson-Lewis V, Libby M, Przedborski S, Tesarollo L, Crawley JN, Johnson PF: Selectively enhanced contextual fear conditioning in mice lacking the transcriptional regulator CCAAT/enhancer binding protein delta. Proc Natl Acad Sci USA 1998, 95(18):10908-10913.

53. Hudson R, Taniguchi-Sidle A, Boras K, Wiggan O, Hamel PA: Alox-4, a transcriptional activator whose expression is restricted to sites of epithelial-mesenchymal interactions. Dev Dyn 1998, 213(2):159-169.