ACE2 Expression Is Upregulated in Inflammatory Corneal Epithelial Cells and Attenuated by Resveratrol

Zhixin Jiang,1–3 Huan Zhang,2 Juan Gao,1–3 Hao Yu,4 Ruifang Han,1–3 Lin Zhu,2 Xi Chen,1–3,5 Qian Fan,1–3 Peng Hao,1–3 Liming Wang,1–3 and Xuan Li1–3

1 Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
2 Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
3 Nankai University Affiliated Eye Hospital, Tianjin, China
4 Ningcheng Center Hospital of Chifeng City, Chifeng, China
5 State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China

Correspondence: Xuan Li, Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, No. 4 Gansui Road, Tianjin 300020, P.R. China; xuanli08@yahoo.com.
Received: December 12, 2020
Accepted: May 28, 2021
Published: June 23, 2021

METHODS. The expression of the SARS-CoV-2 receptors ACE2 and TMPRSS2 in human corneal epithelial cells (HCECs) was examined by qPCR and Western blotting. The altered expression of ACE2 in inflammatory corneal epithelium was evaluated in TNFα- and IL-1β-stimulated HCECs and inflamed mouse corneal epithelium, and the effect of resveratrol on ACE2 expression in HCECs was detected by immunofluorescence and Western blot analysis.

RESULTS. ACE2 and TMPRSS2 are expressed on the human corneal epithelial cells. ACE2 expression is upregulated in HCECs by stimulation with TNFα and IL-1β and inflamed mouse corneas, including dry eye and alkali-burned corneas. In addition, resveratrol attenuates the increased expression of ACE2 induced by TNFα in HCECs.

CONCLUSIONS. This study demonstrates that ACE2 is highly expressed in HCECs and can be upregulated by stimulation with inflammatory cytokines and inflamed mouse corneal epithelium. Resveratrol may be able to reduce the increased expression of ACE2 on the inflammatory ocular surface. Our work suggests that patients with an inflammatory ocular surface may display higher ACE2 expression, which increases the risk of SARS-CoV-2 infection.

Keywords: ACE2, SARS-CoV-2, human corneal epithelial cells, inflammatory corneas, resveratrol

Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has become a global public health emergency. According to the World Health Organization,4 more than 47 million confirmed cases of COVID-19 have been reported worldwide, and the death toll from COVID-19 has exceeded 1.2 million people as of November 3, 2020. Current studies have demonstrated that older people and those with hypertension, diabetes mellitus, respiratory disease, and cancer are more susceptible to SARS-CoV-2 infection, leading to significantly increased mortality and severity of COVID-19.4–6 Thus it is urgent to identify potential risk factors and seek effective prevention to control the spread of the disease.

Coronaviruses bind to their host receptor ACE2 with high affinity via S1 unit of its spike (S) protein, which facilitates viral attachment to the surface of target cells. Subsequently the host serine protease TMPRSS2 primes the S protein for cell entry and allows fusion of viral and cellular membranes.7,8 ACE2 is a key receptor of SARS-CoV-2 and is highly expressed in multiple organs, such as the lung, small intestine, and kidney, and the cardiovascular system in humans. Recent studies have reported that ACE2 is expressed in the epithelium of the human cornea and conjunctiva.9 SARS-CoV-2 can directly infect ocular surface tissue, leading to keratoconjunctivitis,10–12 and viral keratoconjunctivitis has been found to be the initial clinical presentation of COVID-19.13 In addition, in a previous study, positive SARS-CoV-2 RNA was detected in conjunctival swab samples collected from COVID-19 patients with conjunctivitis, whereas patients without conjunctivitis were negative for SARS-CoV-2 RNA.14 These results suggest that the ocular surface tissue is an important route of SARS-CoV-2 transmission and that the eye may be one of the most infected organs in COVID-19 patients.

Previous studies have indicated that ACE2 protein level is associated with the occurrence and severity of COVID19.
Expression of SARS-CoV-2 Receptor ACE2 in Corneas

Smith et al.\(^3\) reported that cigarette smoking exposure increases ACE2 expression and smokers are particularly susceptible to severe SARS-CoV-2 infections. Pinto et al.\(^5\) showed patients with comorbidities with higher ACE2 expression have more chances of developing severe COVID-19. These studies suggest the critical role of ACE2 for SARS-CoV-2 infection and elevated ACE2 expression may be a high risk for COVID19 transmission. The ocular surface exposes to the air and contact to the virus directly. However, the regulation of ACE2 expression on the ocular surface is still unknown. Chen et al.\(^6\) recently performed a cross-sectional study of 534 patients with COVID-19 in Wuhan and reported that in the 534 patients with COVID-19, dry eye (112, 20.97%), blurred vision (68, 12.73%) and foreign body sensation (63, 11.80%) ranked as the three most common COVID-19–related ocular symptoms, which prompted us to investigate whether the expression of ACE2 on the ocular surface is affected under inflammatory conditions.

Here, we demonstrate that ACE2 is highly expressed in human corneal epithelial cells and can be upregulated by stimulation with TNFα and IL-1β. ACE2 expression is also significantly increased in inflamed mouse corneal epithelium, including dry eye and alkali-burned corneas. In addition, resveratrol attenuates the increased ACE2 expression in inflammatory HCECs, which indicates that resveratrol may be able to help to reduce the transmission of SARS-CoV-2. To the best of our knowledge, this work for the first time demonstrates that the expression of the SARS-CoV-2 receptor ACE2 is upregulated under inflammatory conditions in human corneas, and resveratrol may be able to reduce the increased expression of ACE2 on the inflammatory ocular surface.

METHODS

Patients and Specimens

Human corneal epithelial tissue was collected from four healthy adult myopic patients undergoing laser-assisted subepithelial keratomileusis (EK) for the treatment of mild to moderate myopia. Topical proparacaine and 20% alcohol were applied to the ocular surface to loosen the corneal epithelium. Approximately 9 mm of the central epithelium was removed with sterile cellulose sponges and immediately stored at −80°C. Primary pterygium tissue was collected from pterygium excisions of four patients. The mRNA was extracted from the corneal epithelium and pterygium tissue according to the manufacturer's instructions. This study was approved by the Research Ethics Committee of Tianjin Eye Hospital and was conducted according to the Declaration of Helsinki.

Cell Culture and Determination of Cell Viability

Immortalized HCECs obtained from ATCC were maintained in RPMI 1640 medium supplemented with 10% fetal bovine serum. Human corneal keratocytes were obtained from ScienCell Research Laboratories (San Diego, CA, USA) and cultured in a defined proprietary culture medium (FM, Cat. no. 2301). For the TNFα treatment, HCECs were grown in six-well plates and treated with 5 ng/mL or 10 ng/mL recombinant human TNFα in RPMI 1640 medium for 12 or 24 hours after starvation in RPMI 1640 medium. For the IL-1β stimulation, HCECs were treated with 20 ng/mL recombinant human IL-1β in RPMI 1640 medium for 24 hours after starvation in RPMI 1640 medium.

Cell viability was evaluated by the MTT assay. In brief, HCECs were seeded in 96-well plates and grown to 90% confluence. Cells were then maintained in serum-free 1640 medium for 24 hours and were subsequently incubated with different concentrations of resveratrol (0, 2.5, 5, 10, 20, 50, and 100 μM) in serum-free 1640 medium for 24 hours at 37°C. Then, 20 μL of MTT solution was added to each well, and cells were incubated for an additional four hours. Next, the medium was discarded, and the obtained formazan crystals were solubilized by adding 150 μL of dimethyl sulfoxide. Absorbance measurements were read at 570 nm using a microplate reader (BioTek, Winooski, VT, USA).

Animal Model of Corneal Injury and Treatment

Six- to eight-week-old male C57BL/6 mice and 10-week-old male BALB/c mice were used in this study. This study was approved by the Institutional Animal Care and Use Committee of Tianjin Medical University. Mice were anesthetized with an intraperitoneal injection of 40 mg/kg pentobarbital and received a topical drop of tetracaine. The corneal alkali-burn model was induced by placing a filter paper disc (2 mm in diameter) soaked with 1 N NaOH on the center of the corneal surface of C57BL/6 mice for 10 seconds. After the removal of the disc, the ocular surface was rinsed with 10 mL saline solution immediately.\(^{17}\) The dry eye model was induced by benzalkonium chloride (BAC) as previously described\(^18\) in BALB/c mice. Briefly, a 5 μL droplet of 0.2% BAC was administered to the right eye via a micropipette twice daily over two weeks. The ocular conditions were observed under a slit-lamp microscope.

Quantitative PCR

Total RNA was extracted from cells and the human corneal epithelium using a Qiagen RNeasy Mini Kit according to the manufacturer's instructions and was reverse transcribed into cDNA using M-MLV reverse transcriptase (Promega). Real-time PCR was performed using a Bio-Rad iCycler with SYBR Premix Ex Taq (Takara) as described previously.\(^{19}\) The primer sequences were as follows: ACE2 (forward, 5′-CGAGTGGCTAATTGAAACCAAGAA-3′; reverse, 5′-ATTGATAACGCTCGGGGACA-3′); TMPRSS2 (forward, 5′-ACTCTGGAAGTTCATGGGCAG-3′; reverse, 5′-TGAAGTGTGCTGATGAGGC-3′); GAPDH (Glyceraldehyde-3-Phosphate Dehydrogenase) (forward, 5′-TGCCCTCAAGACGACCTTTG-3′; reverse, 5′-CTGGTTGTCAGGGGTCTTA-3′). Gene expression was normalized to the GAPDH mRNA level.

Western Blot Analysis

Corneal epithelial cells were lysed with RIPA buffer (Beyotime Institute of Biotechnology, Shanghai, China) containing a protease inhibitor cocktail. The protein lysate was mixed with loading buffer, electrophoresed via SDS-PAGE and transferred onto polyvinylidene difluoride membranes. The membranes were blocked and then incubated with primary antibodies (anti-ACE2 [15348; Abcam, Cambridge, MA, USA], anti-TMPRSS2 [Abcam, 9223] and an anti-GAPDH antibody [CB1001; Merck Millipore, Burlington, MA, USA]). GAPDH was used as an internal control. The
Expression of SARS-CoV-2 Receptor ACE2 in Corneas

RESULTS

ACE2 and TMPRSS2 are Expressed on the Human Ocular Surface

A recent study exploring a single-cell RNA sequencing (scRNA-Seq) dataset showed coexpression of ACE2 and TMPRSS2 in the corneal and conjunctival epithelium, implicating these tissues as target entry tissues for SARS-CoV-2 on the ocular surface. We first verified the expression levels of ACE2 and TMPRSS2 in the human corneal epithelium obtained from four patients during EK and found much higher ACE2 mRNA levels, with a ΔCt of 8.513 ± 0.25, in the human corneal epithelium than those of TMPRSS2 (ΔCt of 17.57 ± 0.10) (Fig. 1A). Consistently, immortalized human corneal epithelial cells (HCECs) exhibited similar expression patterns of ACE2 (ΔCt: 10.78 ± 0.38) and TMPRSS2 (ΔCt: 19.84 ± 0.97) (Fig. 1B) as those found in the corneal epithelium from patients. In addition, because of the high abundance of ACE2 expression, we used HCECs to investigate changes in the intensity of the immunoreactive bands was analyzed using ImageJ.

Histological and Immunofluorescence Staining

HCECs and mouse eyes were fixed with 4% formaldehyde at 4°C. The mouse samples were dehydrated and embedded with O.C.T. (Optimal Cutting Temperature compound), and cryosections were generated at 10 μm. The tissue sections were stained with hematoxylin and eosin (H&E) for histomorphologic analysis. The cell slides and mouse eye sections were immunostained using a primary antibody against ACE2 (15348; Abcam) or NFκB p65 (ab231481) at 4°C overnight. Subsequently, the cell slides and mouse eye sections were incubated with the secondary Alexa Fluor 488-conjugated goat anti-rabbit antibody (Thermo Fisher Scientific, Waltham, MA, USA) for one hour at room temperature. The sections were mounted with antifade mounting medium after incubation with DAPI for three minutes. Confocal images were acquired under a Leica DMi8 microscope (Leica, Wetzlar, Germany).

Statistical Analysis

All data are presented as the mean ± SEM. Two-tailed unpaired Student’s t test conducted with GraphPad Prism 6.0 (GraphPad, San Diego, CA, USA) was used to perform statistical analyses. Statistical significance was defined as P < 0.05.
Expression of SARS-CoV-2 Receptor ACE2 in Corneas

ACE2 Expression is Stimulated by Proinflammatory Cytokines in Human Corneal Epithelial Cells

To determine the altered expression of ACE2 in corneal epithelial cells under inflammatory conditions, we treated HCECs with TNFα, a proinflammatory cytokine, to trigger inflammation. We first performed immunofluorescence staining to test the response of HCECs to TNFα treatment by analyzing the activation of NFκB signaling. As shown in Figure 2A, a significant increase in the nuclear translocation of p65, a subunit of NFκB, was observed in TNFα–treated HCECs, suggesting that TNFα promotes an inflammatory response in HCECs. We subsequently examined the expression of ACE2 in HCECs stimulated with TNFα at both the mRNA and protein levels. TNFα treatment did not alter the mRNA level of ACE2 after 12 hours in HCECs (Fig. 2B). However, after 24 hours of treatment with 5 ng/mL and 10 ng/mL TNFα, ACE2 mRNA in HCECs was increased by almost twofold (P = 0.0018 and P = 0.03, respectively) (Fig. 2B). Consistent with the RT-qPCR analysis results, compared with that of the control group, the protein level of ACE2 was also remarkably elevated after 24 hours of stimulation with TNFα in HCECs (P = 0.0016 at 5 ng/mL TNFα and P = 0.045 at 10 ng/mL TNFα) (Figs. 2C, 2D). However, no significant change in TMPRSS2 expression was observed at either the mRNA or protein level after 24 hours of stimulation with TNFα in HCECs (Figs. 2E, 2F).

To verify the change in ACE2 expression in response to inflammatory cytokines in HCECs, IL-1β was used to stimulate HCECs, and we observed that both the mRNA and protein levels of ACE2 in HCECs were increased significantly by 20 ng/mL IL-1β (Figs. 3A–3C). These results indicate that the expression of ACE2 in human corneal epithelial cells is upregulated by inflammatory cytokine stimulation.

ACE2 Expression is Elevated in Inflammatory Mouse Corneal Epithelium

To investigate ACE2 expression in inflammatory corneal epithelium, we used the corneal alkali-burn and BAC-induced dry eye mouse models, which are widely used to study corneal inflammation. Histological analysis showed that cornes that received 0.2% BAC twice daily developed severe epithelial damage, with many inflammatory cells infiltrating under the epithelium (Fig. 4A, arrows). After three weeks of alkali-burn injury, the re-epithelialized cornes displayed fewer irregular epithelial cell layers (2–3 layers) and mild inflammation with a small number of

Scale bars: 50 μm.

Downloaded from iovs.arvojournals.org on 06/29/2021
FIGURE 3. Expression changes of ACE2 in human corneal epithelial cells stimulated by IL-1β. (A) RT-qPCR was performed to determine the Ace2 expression level in HCECs treated with or without IL-1β at the indicated concentration for 24 hours. The level of gene expression in control samples is designated as 1. (B) Western blotting was performed to determine the ACE2 protein levels in HCECs exposed to 20 ng/mL IL-1β for 24 hours, and the quantified data are shown in C. *P < 0.05, **P < 0.01.

FIGURE 4. Elevated expression of ACE2 in the epithelium of injured mouse corneas. (A) Representative images of H&E staining (A) and immunofluorescence staining of ACE2 (green) with sections of corneas from normal BALB/c (B) and BALB/c mice after 14 consecutive days of twice daily exposure to BAC (C). Representative images of H&E staining (D) and immunofluorescence staining of ACE2 in sections of corneas from normal C57BL/6 (E) and alkali-burned C57BL/6 mice after three weeks (F). Low magnification of the entire cornea is displayed on the left panel and higher magnifications from the boxed areas on the left panel are shown on the right in B, C, E, and F. The black arrows indicate inflammatory cells. Note that higher ACE2 expression is shown in basal cells compared with that in wing and superficial cells in normal mouse corneas (white arrows), whereas strong expression of ACE2 is observed in the whole epithelial layers and stroma in injured corneas (white arrowheads). Scale bars: 50 μm.

inflammatory cells in the stroma (Fig. 4D, arrows), whereas the normal corneal epithelium had four or five cell layers. A previous study reported strong ACE2 expression in mouse corneas comparable to that in lung tissue by RT-PCR analysis. Consistently, we observed that in corneas from both normal C57BL/6 and BALB/c mice, ACE2 was expressed in epithelial cells, especially in basal epithelial cells in both the central cornea and limbus (Figs. 4B, 4C, 4E, 4F; arrows), and in corneal endothelial cells, but a weak signal was detected in the stroma by immunofluorescence (Figs. 4B, 4C, 4E, 4F). Compared with normal BALB/c mouse corneas, corneas treated with BAC for 14 consecutive days displayed a stronger signal of ACE2 expression in the whole epithelial layer, including basal, wing and superficial cells, and in the corneal stroma (Figs. 4B and 4C, arrowheads). Similarly, alkali-burned corneas with mild inflammation
Expression of SARS-CoV-2 Receptor ACE2 in Corneas

FIGURE 5. Resveratrol attenuates the elevated expression of ACE2 induced by TNFα in HCECs. (A) Cell viability (determined by the MTT assay) of HCECs treated with different concentrations of resveratrol for 24 hours. The results were normalized to the vehicle group. (B) Immunofluorescence staining of ACE2 (green) in HCECs in the presence or absence of TNFα or resveratrol for 24 hours. (C) Western blot analysis of ACE2 expression in HCECs in the presence or absence of TNFα or resveratrol for 24 hours, and the quantified data are shown in (D). RT-qPCR of the expression levels of IL-6 (E) and IL-1 (F) relative to that of GAPDH in HCECs in the presence or absence of TNFα or resveratrol for 24 hours. Res, resveratrol. *P < 0.05, **P < 0.01. Scale bars: 50 μm.

Resveratrol Attenuates the Elevated Expression of ACE2 Induced by TNFα in Corneal Epithelial Cells

To explore potential agents to protect the ocular surface from SARS-CoV-2 infection, we investigated the effects of resveratrol on the regulation of ACE2 expression in inflammatory HCECs. We first tested the cytotoxicity of HCECs exposed to multiple concentrations of resveratrol for 24 hours, and only 100 μM resveratrol provoked a significant reduction in HCEC viability (P = 0.023) (Fig. 5A). Therefore, we used a relatively low concentration (5 μM or 10 μM) of resveratrol to pretreat HCECs for two hours, then administered 5 ng/mL TNFα and, finally, incubated them for 24 hours. Immunofluorescence staining showed that TNFα treatment stimulated ACE2 expression significantly compared with that of the normal control. ACE2 expression was much lower in the resveratrol with TNFα treatment group than in the TNFα treatment group (Fig. 5B). Consistently, Western blot analysis showed that TNFα significantly upregulated ACE2 expression (P = 0.005), and resveratrol treatment significantly attenuated the increase of ACE2 in HCECs (P = 0.048) (Figs. 5C, 5D). Furthermore, we found that resveratrol exhibited potent anti-inflammatory activity in HCECs. As shown in Figures 5E and 5F, resveratrol significantly reduced the production of IL-1 and IL-6 stimulated by TNFα in HCECs, which may contribute to attenuating the increase in ACE2 triggered by TNFα in HCECs.

DISCUSSION

Our data demonstrated that the corneal epithelium exhibited higher expression of ACE2, a functional receptor of SARS-CoV-2, than pterygium tissue and corneal keratocytes in humans. ACE2 expression was stimulated by inflammatory cytokines in human corneal epithelial cells and in inflamed mouse corneas induced by BAC administration and alkali burn. In addition, we also found that resveratrol reduced the increased expression of ACE2 triggered by TNFα in HCECs, suggesting that it might be able to decrease susceptibility to SARS-CoV-2 at the ocular surface. Although detailed clinical studies with human populations are needed before making a conclusive claim, our study indicates that patients with inflammatory corneal epithelium may display higher ACE2 expression, which may increase the risk of SARS-CoV-2 infection and requires extra caution during the COVID-19 pandemic.

Several studies have recently reported high expression of Ace2 and Tmprss2 on the ocular surface, and Collin et al. found coexpression of ACE2 with TMPRSS2 throughout the limbal and peripheral corneal epithelium and superficial conjunctiva in normal humans using a sc RNA seq dataset, suggesting that the ocular surface may be a site of SARS-CoV-2 entry. We first validated the expression of Ace2 and Tmprss2 in the human corneal epithelium and immortalized HCECs, and both of these genes were expressed in the human corneal epithelium and HCECs. Due to ethical concerns, obtaining adult healthy human conjunctival tissues is difficult; thus, we compared Ace2 expression in the corneal epithelium, conjunctiva from pterygium tissue and corneal keratocytes. The human corneal epithelium showed much higher ACE2 expression than...
that in pterygium tissue and keratoocytes. These results suggest that corneal epithelial cells can be used as a model to study changes in ACE2 expression because of the high abundance of ACE2 expression on the ocular surface.

Inflammation is ubiquitous in ocular surface diseases, such as dry eye, infection, and chemical damage, as well as in a high percentage of COVID-19 patients with dry eye and conjunctivitis, which prompted us to investigate the altered expression of ACE2 in the corneal epithelium under inflammatory conditions. Inflammatory cytokines disrupt the barrier function of human corneal epithelial cells and mediate ocular inflammation by activating the NF-κB pathway and prompting the secretion of inflammatory factors. We therefore tested the inflammatory response of HCECs by evaluating activation of NFκB signaling induced by TNFα. Subsequently, we observed that both the mRNA and protein levels of ACE2 were upregulated in HCECs treated with TNFα and IL-1β, suggesting that ACE2 expression can be upregulated by inflammatory stimuli in HCECs, whereas no significant change in TMPRSS2 expression was observed. Consistent with this result, elevated ACE2 expression triggered by various viruses and inflammatory cytokines has also been reported in HEK293 cells and lung tissue.

The corneal alkali-burn and dry eye models are representative models used to study corneal inflammation. Multiple inflammatory factors, such as TNFα, IL-1, and IL-6, have been found to be increased in both animal models and patients with dry eye or chemical burns. Thus we used these two corneal injury models to investigate the altered expression of ACE2. BAC is frequently used to induce dry eye in BALB/c mice, leading to elevated levels of IL-1 and TNF and disruption of epithelial organization. Consistent with the results of a previous study, corneas that received 0.2% BAC twice daily developed epithelial defects with a high percentage of COVID-19 patients with dry eye and keratoconjunctivitis, which prompted us to investigate the altered expression of ACE2 in the corneal epithelium under inflammatory conditions. Inflammatory cytokines disrupt the barrier function of human corneal epithelial cells and mediate ocular inflammation by activating the NFκB pathway and prompting the secretion of inflammatory factors. We therefore tested the inflammatory response of HCECs by evaluating activation of NFκB signaling induced by TNFα. Subsequently, we observed that both the mRNA and protein levels of ACE2 were upregulated in HCECs treated with TNFα and IL-1β, suggesting that ACE2 expression can be upregulated by inflammatory stimuli in HCECs, whereas no significant change in TMPRSS2 expression was observed. Consistent with this result, elevated ACE2 expression triggered by various viruses and inflammatory cytokines has also been reported in HEK293 cells and lung tissue.

The corneal alkali-burn and dry eye models are representative models used to study corneal inflammation. Multiple inflammatory factors, such as TNFα, IL-1, and IL-6, have been found to be increased in both animal models and patients with dry eye or chemical burns. Thus we used these two corneal injury models to investigate the altered expression of ACE2. BAC is frequently used to induce dry eye in BALB/c mice, leading to elevated levels of IL-1 and TNFα and disruption of epithelial organization. Consistent with the results of a previous study, corneas that received 0.2% BAC twice daily developed epithelial defects with a high percentage of COVID-19 patients with dry eye and keratoconjunctivitis, which prompted us to investigate the altered expression of ACE2 in the corneal epithelium under inflammatory conditions. Inflammatory cytokines disrupt the barrier function of human corneal epithelial cells and mediate ocular inflammation by activating the NFκB pathway and prompting the secretion of inflammatory factors. We therefore tested the inflammatory response of HCECs by evaluating activation of NFκB signaling induced by TNFα. Subsequently, we observed that both the mRNA and protein levels of ACE2 were upregulated in HCECs treated with TNFα and IL-1β, suggesting that ACE2 expression can be upregulated by inflammatory stimuli in HCECs, whereas no significant change in TMPRSS2 expression was observed. Consistent with this result, elevated ACE2 expression triggered by various viruses and inflammatory cytokines has also been reported in HEK293 cells and lung tissue.

The authors thank Yan Wang in Tianjin Eye Hospital for kindly providing human samples in this study.

References
1. Organization WHO. Coronavirus disease (COVID-19) outbreak situation. Geneva: WHO; 2019.
2. Pal R, Bhansali A. COVID-19, diabetes mellitus and ACE2: the conundrum. Diabetes Res Clin Pract. 2020;162:108132.
3. Smith JC, Sausville EL, Girish V, et al. Cigarette smoke exposure and inflammatory signaling increase the expression of the SARS-CoV-2 receptor ACE2 in the respiratory tract. Dev Cell. 2020;53(5):514–529.e5.
4. Rao S, Lau A, So H-C. Exploring diseases/trails and blood proteins causally related to expression of ACE2, the putative receptor of SARS-CoV-2: A Mendelian Randomization analysis highlights tentative relevance of diabetes-related traits. Diabetes Care. 2020;43:1416–1420.
5. Zhang L, Han X, Shi Y. Comparative analysis of SARS-CoV-2 receptor ACE2 expression in multiple solid tumors and matched non-diseased tissues. *Infect Genet Evol*. 2020;85:104–128.

6. Kong Q, Xiang Z, Wu Y, Gu Y, Guo J, Geng F. Analysis of the susceptibility of lung cancer patients to SARS-CoV-2 infection. *Mol Cancer*. 2020;19:1–5.

7. Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. *Cell*. 2020;181(4):894–904.e9.

8. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. *Cell*. 2020;181:271–280.e8.

9. Zhou L, Xu Z, Castiglione GM, Soiberman US, Eberhart CG, Duh EJ. ACE2 and TMPRSS2 are expressed on the human ocular surface, suggesting susceptibility to SARS-CoV-2 infection. *Ocul Surf*. 2020;18:537–544.

10. Seah IY, Anderson DE, Kang AE, et al. Analysis of SARS-CoV-2 receptor—angiotensin-converting enzyme 2 (ACE2) expression in the lungs of patients with comorbidities associated with severe COVID-19. *J Infect Dis*. 2020;222:556–563.

11. Chen L, Deng C, Chen X, et al. Ocular manifestations and clinical characteristics of 534 cases of COVID-19 in China: A cross-sectional study. *Acta Ophthalmol*. 2020;98(8):e951–e959.

12. Anderson C, Zhou Q, Wang S. An alkali-burn injury model of corneal neurovascularization in the mouse. *J Vis Exp*. 2014:e51159.

13. Zhang R, Park M, Richardson A, et al. Dose-dependent benzalkonium chloride toxicity imparts ocular surface epithelial changes with features of dry eye disease. *Ocul Surf*. 2020;18:158–169.

14. Jiang Z, Liu G, Meng F, Wang W, Hao P, Xiang Y, et al. Paracrine effects of mesenchymal stem cells on the activation of keratocytes. *Br J Ophthalmol*. 2017;101:1583–1590.

15. Xue X, Mi Z, Wang Z, Pang Z, Liu H, Zhang F. High expression of ACE2 on the keratinocytes reveals skin as a potential target for SARS-CoV-2. *J Invest Dermatol*. 2021;141(1):206–209.e1.

16. Barragan M, Guillén J, Martin-Palomino N, Rodriguez A, Vassena R. Undetectable viral RNA in oocytes from SARS-CoV-2 positive women. *Hum Reprod*. 2021;36:390–394.

17. Ma D, Chen C-B, Jhanji V, Xu C, Yuan X-L, Liang J-J, et al. Expression of SARS-CoV-2 receptor ACE2 and TMPRSS2 in human primary conjunctival and pterygium cell lines and in mouse cornea. *Eye*. 2020;34:1212–1219.

18. Collin J, Queen R, Zerti D, et al. Co-expression of SARS-CoV-2 entry genes in the superficial adult human conjunctival, limbal and corneal epithelium suggests an additional route of entry via the ocular surface. *Ocul Surf*. 2021;19:190–200.

19. Hasson M. New insights advance diagnosis, treatment of inflammatory dry eye. Retrieved November 14, 2015. 2012.

20. Kimura K, Morita Y, Orita T, Haruta J, Takeji Y, Sonoda K-H. Protection of human corneal epithelial cells from TNF-α-induced disruption of barrier function by rhemipide. *Invest Ophthalmol Vis Sci*. 2013;54:2752–2760.

21. Keadle TL, Usui N, Laycock KA, Miller JK, Pepose JS, Stuart PM. IL-1 and TNF-α are important factors in the pathogenesis of murine recurrent herpetic stromal keratitis. *Invest Ophthalmol Vis Sci*. 2000;41:96–102.

22. Chen X, Lei F, Zhou C, et al. Glaucoma after ocular surgery or trauma: the role of infiltrating monocytes and their response to cytokine inhibitors. *Am J Pathol*. 2020;190:2056–2066.

23. Lam H, Bleiden L, De Paiva CS, Farley W, Stern ME, Pluhaga G. Tear cytokine profiles in dysfunctional tear syndrome. *Am J Ophthalmol*. 2009;147:198–205.e1.

24. Zhuang MW, Cheng Y, Zhang J, et al. Increasing host cellular receptor—angiotensin-converting enzyme 2 (ACE2) expression by Coronavirus may facilitate 2019-nCoV (or SARS-CoV-2) infection. *J Med Virol*. 2020;92:2693–2701.

25. Zhu L, Shen J, Zhang C, et al. Inflammatory cytokine expression on the ocular surface in the Botulimum toxin B induced murine dry eye model. *Mil Vis*. 2009;15:250.

26. Epstein SP, Chen D, Ashell PA. Evaluation of biomarkers of inflammation in response to benzalkonium chloride on corneal and conjunctival epithelial cells. *J Ocul Pharmacol Ther*. 2009;25:415–424.

27. Yang JW, Lee SM, Oh KH, Park SG, Choi IW, Seo SK. Effects of topical chondrocyte–derived extracellular matrix treatment on corneal wound healing, following an alkali burn injury. *Mol Med Rep*. 2015;11:461–467.

28. Zhang Z, Ma J-x, Gao G, et al. Plasminogen kringle 5 inhibits alkali-burn-induced corneal neovascularization. *Invest Ophthalmol Vis Sci*. 2005;46:4062–4071.

29. Ueno M, Lyons BL, Burzonski LM, et al. Accelerated wound healing of alkali-burned corneas in MRL mice is associated with a reduced inflammatory signature. *Invest Ophthalmol Vis Sci*. 2005;46:4070–4076.

30. Li S, Li D, Fang J, et al. SARS-CoV-2 receptor ACE2 is expressed in human conjunctival tissue, especially in diseased conjunctival tissue. *Ocul Surf*. 2021;19:249–251.

31. Zhang S, Yao H, Cai N, Huang J-W, Aranachalam G, Rahmann I. Regulation of human corneal epithelial functions: role of polyphenols. *Arch Biochem Biophys*. 2010;501:79–90.

32. Berman AJ, Motechin RA, Wiesenfeld MY, Holz MK. The therapeutic potential of resveratrol: a review of clinical trials. *NPJ Precis Oncol*. 2017;1:1–9.

33. Enriquez-De-Salamanca A, Abengózar-Vela A, García-Vázquez C, et al. An in vitro study of anti-inflammatory effect of Quercetin and Resveratrol polyphenols in the murine dry eye model. *Mol Vis*. 2017;23:398–404.

34. Evans ER, Izzard SS, Waring GP. Analysis of the inflammatory infiltrate in human dry eye disease. *Invest Ophthalmol Vis Sci*. 2010;51:5497–5502.

35. Li L, Li H, Liu W, et al. Expression of SARS-CoV-2 receptor ACE2 in human conjunctival epithelium. *Invest Ophthalmol Vis Sci*. 2020;61:100021.

36. Gao GP, Liang D, Li M, et al. Angiotensin-converting enzyme 2, a SARS-CoV-2 receptor, is upregulated by interleukin 6 through STAT3 signaling in synovial tissues. *Arthritis Rheumatol*. 2018;70:1831–1841.

37. Bräkenhielm E, Cao R, Cao Y. Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. *FASEB J*. 2001;15:1798–1800.

38. Okuda S, Tomonaga H, Nishimura T, Sugiyama E. Angiotensin-converting enzyme 2, a SARS-CoV-2 receptor, is regulated by interleukin 6 through STAT3 signaling in synovial tissues. *Arthritis Rheumatol*. 2020;72:1755–1765.

39. Clarke NE, Belyaev ND, Lambert DW, Turner AJ. Epigenetic regulation of angiotensin-converting enzyme 2 (ACE2) by SIRT1 under conditions of cell energy stress. *Clin Sci*. 2014;126:507–516.