A highly stable lithium metal anode enabled by Ag nanoparticle–embedded nitrogen-doped carbon macroporous fibers

Yongjin Fang¹, Song Lin Zhang¹, Zhi-Peng Wu¹,², Deyan Luan¹, Xiong Wen (David) Lou¹*

Lithium metal has been considered as an ideal anode candidate for future high energy density lithium batteries. Herein, we develop a three-dimensional (3D) hybrid host consisting of Ag nanoparticle–embedded nitrogen-doped carbon macroporous fibers (denoted as Ag@CMFs) with selective nucleation and targeted deposition of Li. The 3D macroporous framework can inhibit the formation of dendritic Li by capturing metallic Li in the matrix as well as reducing local current density, the lithiophilic nitrogen-doped carbons act as homogeneous nucleation sites owing to the small nucleation barrier, and the Ag nanoparticles improve the Li nucleation and growth behavior with the reversible solid solution–based alloying reaction. As a result, the Ag@CMF composite enables a dendrite-free Li plating/stripping behavior with high Coulombic efficiency for more than 500 cycles. When this anode is coupled with a commercial LiFePO₄ cathode, the assembled full cell manifests high rate capability and stable cycling life.

INTRODUCTION

Owing to the ultrahigh theoretical specific capacity (3861 mAh g⁻¹) and low redox potential (−3.04 V versus standard hydrogen electrode), metallic lithium has been regarded as one of the most promising anode materials for high–energy density rechargeable batteries (1–6). However, the uncontrollable growth of Li dendrites and collapse of the solid electrolyte interphase (SEI) layer lead to low Coulombic efficiency (CE) and deteriorated cycling performance, which largely restrict the practical application of the Li metal anode (LMA) (7–13). Considerable efforts have been made to regulate the Li plating/stripping behaviors for stable Li metal batteries, including developing functional electrolytes (14–18), constructing well-designed three-dimensional (3D) host structures (19–24), and using artificial protection layers (25–30). Despite much progress (31, 32), it remains a challenge to explore LMA with stable cycling life over 500 cycles at practical current densities greater than 1 mA cm⁻².

From the classical diffusion model of Sand’s equation (eq. S1) (33, 34), the formation of Li dendrites is controlled by the main factors of the local current density, initial Li⁺ ion concentration, and transport nature of Li⁺ ions. A high current density induces the rapid consumption of Li⁺ ions, which, in turn, results in serious concentration polarization due to the advection- and diffusion-limited ion migration in the bulk electrolyte (35, 36). This issue further induces the growth of Li dendrites because of the enlarged ionic flux around the rapidly growing dendrite tips (37–39). In this regard, constructing 3D electronically conductive porous hosts for Li deposition is highly desired due to the largely decreased local current density (40–42). For example, 3D porous carbon nanofibers are reported as fascinating Li hosts with high areal capacity and long life span (43, 44). However, the conventional 3D frameworks can hardly regulate the Li⁺ ion concentration near the electrode/electrolyte interface due to the inferior absorbing ability for Li⁺ ions. It is worth noting that some lithiophilic species with high Li⁺ ion absorbing ability, such as polar functional groups, are capable of reducing the Li nucleation overpotential and facilitating uniform Li plating (45–49). For example, the heteroatom-doped carbons have shown good lithiophilicity to guide homogenous Li nucleation (50). Besides, it is proved that the formation of Li-based surface alloy films can offer a robust interface for lithium deposition due to the enhanced Li diffusion coefficients in the alloy composite, leading to ultralow nucleation overpotential (51, 52). For example, from the Ag–Li binary phase diagram (Fig. 1A), a series of solid solutions can be formed at a wide range of Li atom%.

With this property of high solubility in Li, Ag nanoparticles can react with Li to form solid-solution interfaces, which has shown reduced Li nucleation energy, thus assisting the inward-growth plating of Li while avoiding surface deposition (53–56). In contrast, the Cu–Li binary diagram has only one solid-solution zone at low Li atom% (fig. S1). During the lithiation-delithiation process, Li dendrites will grow on planar Cu (Fig. 1B), resulting in degradation of the CE. Although the above tactics have been proposed and proven effective in suppressing dendritic Li growth, a hybrid structure design with integrated multiple advantages (such as 3D macroporous structures, lithiophilic sites, and solid-solution interface) is rarely reported. In addition, the exact working principle and mechanism of the lithium nucleation sites and deposition behaviors on the hybrid host are far from clear.

To achieve viable and stable LMAs operated under high current densities, herein, we develop a facile strategy to construct a 3D macroporous framework consisting of Ag nanoparticle–embedded nitrogen-doped carbon macroporous fibers (denoted as Ag@CMFs) as a host for stable LMAs. The Li deposition properties can be effectively regulated with the Ag@CMF host because of the following multilevel advantages: (i) a 3D macroporous conductive structure with a large surface area to efficiently decrease the local current density, (ii) a stretchable and stable skeleton to buffer the compressive stress during long-term cycling, (iii) the macroporous structure to accommodate the rapid volume change during high current operation, (iv) lithiophilic nitrogen-doped carbon sites to homogenize Li deposition and guide the crystal nucleus distribution, and (v) reversible Ag-Li solid solution–based alloying reactions to effectively eliminate nucleation barriers. These structural and compositional merits endow a uniform and smooth Li plating on Ag@CMFs even at a high areal capacity.

¹School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore. ²Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China.
*Corresponding author. Email: xwlou@ntu.edu.sg
deposition (Fig. 1C). As expected, the Ag@CMF composite enables a dendrite-free Li plating/stripping behavior with high CE for more than 500 cycles at different current densities. In addition, Ag@CMFs-Li symmetrical cells manifest superior rate capability and stable cycling performance at ultrahigh current densities over 10 mA cm⁻². Besides, when this anode is coupled with a LiFePO₄ (LFP) cathode, the Ag@CMFs-Li//LFP full cells also show high rate performance and long-term cycling life.

RESULTS
Fabrication and characterization of the Ag@CMF host
The Ag@CMFs are synthesized through an elaborate multistep templating strategy (Fig. 2A). SiO₂ nanospheres are adopted as the starting templates, and then Ag nanoparticles are deposited on the surface of the SiO₂ nanospheres through a redox reaction. Afterward, the SiO₂@Ag nanospheres are electrospun with polyacrylonitrile (PAN) to form the SiO₂@Ag@PAN nanofibers. After the following carbonization and etching treatments, the Ag@CMFs are obtained. As expected, the Ag@CMF host will significantly improve the comprehensive electrochemical properties of LMAs.

SiO₂ nanospheres with an average diameter of ~200 nm are synthesized through the Stöber method (Fig. 2, B and F, and fig. S2). Before Ag deposition, the Sn²⁺-sensitized SiO₂ nanospheres are prepared (fig. S3). After deposition of Ag nanoparticles, the spherical structure is well maintained (Fig. 2C), and transmission electron microscopy (TEM) images further reveal the well-dispersed Ag nanoparticles on the surface of SiO₂ nanospheres with a size of 7 to 10 nm (Fig. 2G and fig. S4, A to C). Energy-dispersive x-ray (EDX) spectroscopy result (fig. S4D) confirms the presence of Ag element in the obtained product. Through the electrospinning process, the SiO₂@Ag nanospheres are compactly assembled with PAN, forming SiO₂@Ag@PAN fibers with a uniform diameter (Fig. 2D and fig. S5). TEM images indicate that the SiO₂@Ag nanospheres are well dispersed within the whole fiber (Fig. 2H). After the carbonization treatment in N₂, the resultant SiO₂@Ag@carbon composite retains the nanofiber morphology without apparent changes in appearance (Fig. 2, E and I, and fig. S6).

Then, the SiO₂ nanospheres in the SiO₂@Ag@carbon composite are completely etched by immersing the SiO₂@Ag@carbon in potassium hydroxide solution to generate the Ag@CMFs. The nanofiber structures are well preserved after the etching treatment (Fig. 3, A and B), and the enlarged observation reveals the rough surface of the nanofibers (Fig. 3C). TEM images show the hierarchical hollow structures with the spherical void spaces packed in a space-efficient arrangement (Fig. 3, D and E). The Ag nanoparticles are uniformly dispersed on the wall of the carbon sheath (Fig. 3, F and G, and fig. S7, A and B). Elemental mappings of a single Ag@CMF indicate the even distribution of Ag, C, and N elements in the hierarchical nanostructure (Fig. 3H and fig. S7C). The thermogravimetric analysis result discloses that the weight ratio of Ag nanoparticles in Ag@CMFs is determined to be about 30 weight % (wt %) (fig. S7D). In addition, the superior flexibility and decent mechanical properties of the obtained Ag@CMF paper can be visually verified through various mechanical deformations like bending, rolling, twisting, and even multiple folds (fig. S8). To show the essential function of the Ag nanoparticles for enhancing the Li deposition properties, a carbon macroporous fiber (denoted as CMF) host with a similar hierarchical hollow structure is prepared via a similar process but without the introduction of Ag nanoparticles (Fig. 3, I to L, and figs. S9 and S10).
The x-ray diffraction (XRD) pattern of the Ag@CMFs can be identified as metallic Ag phase (JCPDS card no. 89-3722), which is different from the amorphous character of the CMFs (Fig. 3M). The Ag@CMFs and CMFs show similar Raman spectra with typical D and G bands of carbon (Fig. 3N). Nitrogen adsorption/desorption isotherms reveal that the Ag@CMF composite has a mesoporous structure with a lower Brunauer-Emmett-Teller (BET) surface area (67.0 m² g⁻¹) compared to the CMFs (81.2 m² g⁻¹) (Fig. 3O). The surface chemical composition and element state of the Ag@CMFs are examined by x-ray photoelectron spectroscopy (XPS) analyses (fig. S11). Two strong peaks located at 368.1 and 374.1 eV are attributed to Ag 3d⁵/₂ and Ag 3d⁷/₂, respectively (Fig. 3P) (54). The three peaks in the high-resolution spectrum of C 1s are assigned to graphite-like sp² C, N-sp² C, and N-sp³ C bonds (Fig. 3Q) (57). The four deconvoluted peaks located at 398.1, 399.7, 400.8, and 402.9 eV in the high-resolution N 1s spectrum show the presence of pyridinic N, pyrrolic N, quaternary N, and oxidized N species, respectively (Fig. 3R) (58).

Li metal deposition behavior

The Li plating/stripping behavior on Ag@CMFs is investigated by a two-electrode cell configuration with 2032-coin cells, using Ag@CMFs as the working electrode and lithium foil as the counter/reference electrode. The typical discharge/charge voltage profiles of the Ag@CMF electrode at a current density of 1 mA cm⁻² are displayed in Fig. 4A. The nucleated Li starts to grow on Ag@CMFs when the voltage drops below 0 V. No Li dendrites are observed when the Li deposition capacity is as large as 2 mAh cm⁻² (Fig. 4B). TEM results reveal that the hollow structure becomes inconspicuous (fig. S12A), and nanoparticles are observed in the hollow spheres (fig. S12B), indicating that the Li is deposited mainly in the hollow interspace of porous carbon spheres (43, 51). Besides, the XRD pattern and high-resolution TEM results confirm the formation of Li-Ag alloys (fig. S12, C and D). With further plating, obvious Li lumps instead of dendritic morphology are observed in the matrix when the areal capacity is higher than 5 mAh cm⁻² (Fig. 4C). When the deposition capacity of Li increases to a high value of 8 mAh cm⁻², pancake-like Li slices with a relatively smooth surface are observed without any visible dendritic Li (Fig. 4D), which is different from that observed on the planar Cu current collector with a large amount of Li filaments (fig. S13). Impressively, during the subsequent charging procedure, Li is stripped reversibly from the electrode accompanied by the gradual disappearance of the Li particles and the resurgence of the nanofiber structures (Fig. 4, E and F). After being charged to 1.5 V, Li is almost completely stripped from the electrode without any “dead Li” residue, and the 3D structure of the Ag@CMFs is well preserved (Fig. 4G), while the Ag nanoparticles...
show some agglomeration (fig. S14). Besides, the CMFs exhibit a similar Li plating/stripping behavior compared to the Ag@CMFs (fig. S15). The outstanding regulation ability for Li plating/stripping of these Ag@CMFs could be attributed to the unique macroporous nanostructures and the synergistic effect of the lithiophilic nitrogen-doped carbon and Ag nanoparticles embedded. More specifically, the 3D macroporous framework with a high surface area endows significantly reduced local current density, leading to uniform metallic Li deposition without the formation of dendritic Li particles. The functional lithiophilic nitrogen-doped carbon sites can promote the Li nucleation and guide the crystal nucleus distribution. The distributed Ag nanoparticles facilitate ultralow nucleation barriers for guiding uniform nucleation and growth of Li in the macroporous 3D matrix. Besides, the appreciable flexibility and hollow structures can effectively accommodate the huge volume variation, thus enabling the release of compressive stress during repeated Li plating/stripping.

Electrochemical performance

To evaluate the sustainability and reversibility of the Ag@CMF host for LMAs, the CE during galvanostatic plating/stripping processes is evaluated. The CE of typical coin cells cycled at different current densities is shown in Fig. 5A. The Ag@CMF electrode demonstrates...
more stable cycling performance and longer cycling life compared to the CMFs and bare Cu foil (denoted as b-Cu). Specifically, the Ag@CMF electrode manifests high CE (>98%) for 800 cycles under a current density of 1 mA cm\(^{-2}\). Even when a high current density of 5 mA cm\(^{-2}\) is implemented, remarkable cycle life of 200 cycles can still be achieved. By contrast, the b-Cu electrode shows a much poorer cycle life of less than 120 cycles at different current densities. It should be noted that the CMF electrode exhibits much better cycling performance than the b-Cu, indicating the regulated Li plating/stripping behavior of the 3D macroporous nitrogen-doped carbon fibers. Besides, the Ag@CMF electrode demonstrates ultralow nucleation overpotentials and small polarization between discharge and charge curves at different current densities (fig. S16 and table S1). These results suggest that the decoration of Ag nanoparticles on 3D nitrogen-doped CMFs can effectively restrict the dead Li formation even at high current densities.

Symmetrical cells are then assembled to further evaluate the Li\(^+\) ion transport capability of the Ag@CMFs. Before symmetrical cell assembly, 6 mA h cm\(^{-2}\) of Li was plated onto the Ag@CMFs, CMFs, and planar Cu at a current density of 1 mA cm\(^{-2}\) to form the Ag@CMFs-Li, CMFs-Li, and b-Cu-Li. The thickness of the Ag@CMFs-Li electrode is around 69 \(\mu\)m (fig. S17). The rate performance test of the Ag@CMFs-Li anode is conducted by cycling the symmetric cell at various current densities ranging from 0.5 to 30 mA cm\(^{-2}\) with a fixed Li deposition capacity of 2 mA h cm\(^{-2}\) (Fig. 5B). The Ag@CMFs-Li anode exhibits a small voltage polarization (<20 mV) when the current density reaches 5 mA cm\(^{-2}\). Even at a high current density of 30 mA cm\(^{-2}\), relatively small voltage hysteresis can still be achieved. Impressively, at a current density of 1 mA cm\(^{-2}\) and deposition capacity of 1 mA h cm\(^{-2}\), the Ag@CMFs-Li symmetric cell exhibits the lowest overpotential with remarkable cycling stability for 1000 hours (Fig. 5C). Even when further increasing the current density to ultrahigh values, the Ag@CMFs-Li anodes could still maintain stable cycling for 300 hours at 10 mA cm\(^{-2}\) (Fig. 5D) and 250 cycles at 20 mA cm\(^{-2}\) (fig. S18). The enlarged examinations (insets in Fig. 5, C and D) further confirm the stable and small electrochemical polarization during the long-term cycling. These results confirm that the Ag@CMF host can effectively improve the reversibility of Li plating/stripping.

To evaluate the potential application of the Ag@CMF electrode, full cells based on the Ag@CMFs-Li anode and a LFP cathode are assembled. The Ag@CMFs-Li/LFP full cell exhibits small polarization potential in both charge and discharge processes (fig. S19A). Notably, a decent capacity of 105 mA h g\(^{-1}\) can be preserved even at a high current rate of 5 C (Fig. 5E and fig. S19B). Moreover, the Ag@CMFs-Li/LFP full cell also has remarkable cycling stability. Specifically, a capacity retention of 96% after 250 charge-discharge cycles at 1 C is achieved (Fig. 5F). The CE of the electrode maintains steadily around 100% during cycling. Comparatively, the capacity of the b-Cu-Li/LFP full cell fades markedly. Compared with the reported LFP-based full cells, the Ag@CMFs-Li/LFP cell manifests superior electrochemical performance in terms of both high rate capability and stable cycle life, indicating the feasibility of using the Ag@CMFs-Li anode for practical Li batteries.

DISCUSSION

In general, the electrostatic interaction between the electronegative sites on the anode matrix and Li\(^+\) ions in electrolyte plays a vital role in driving the Li\(^+\) ion to the lithiophilic site for nucleation, and the nucleation behavior is greatly affected by the surface chemistry of the anode matrices (50, 52). The lithiophilicity of the anode matrix can be quantitatively determined by evaluating the BE between lithium and matrix. A larger BE leads to a smaller Li nucleation barrier, thus resulting in a lower nucleation overpotential and smooth Li deposition (23, 50, 54).

To understand the Li nucleation behavior and reveal the lithiophilicity properties, density functional theory (DFT) calculation is used to determine the interaction between Li and the Ag@CMF matrix (Fig. 6A). The BEs between Li atom and different species are summarized in Fig. 6B. The adsorption of a Li atom is more sensitive to many nitrogen-doped carbons, which exhibit much stronger interactions compared to the Li atom on Cu (111) and Ag (111). This result suggests that the Li nucleation tends to take place on the nitrogen-doped carbon sites, which is consistent with reported results that lithiophilic heteroatom-doped carbon can effectively decrease the Li nucleation barrier and endow a homogenous Li deposition (50). To unveil the different lithiation properties of Cu and Ag, further simulation on the different lithiated Ag\(_x\)Li\(_y\) and Cu\(_x\)Li\(_y\) species with different configurations is conducted (Fig. 6C and fig. S20). The Ag\(_x\)Li\(_y\) alloys tend to form the homogeneous atom dispersion with the highest BE, while the Cu\(_x\)Li\(_y\) species are inclined to show the segregated atom dispersion with Li atoms occupying the surface sites. This observation is consistent with reported works that the Ag nanoparticles will dissolve into Li via the solid-solution reaction before the formation of the pure Li phase, thus providing a high Li atom diffusion...
coefficient and enabling stable cycling performance with high CE (51, 52, 55).

On the basis of the simulation results, we speculate the possible Li deposition process on the Ag@CMFs (Fig. 6D). The Li\(^+\) ions in the electrolyte are driven to the lithiophilic nitrogen-doped carbon sites of the Ag@CMFs by the electric force. Once adsorbed on the nitrogen-doped carbon sites, the Li\(^+\) ions are reduced to metallic Li because of charge transfer. When the lithiophilic sites are covered by few layers of Li atoms (fig. S21), the Li atoms tend to diffuse to the Ag nanoparticles and trigger the Li–Ag alloying reaction to form a solid-solution surface layer driven by the electrical energy and Li–Ag mixed reaction. The solid solution–based alloy phases grant the freshly generated Li atoms at the surface to easily diffuse into the formed alloy during further Li deposition hence eliminating the formation of Li dendrites.

In summary, we have designed Ag@CMFs as a 3D lithiophilic host for a robust and dendrite-free LMA. The 3D macroporous framework can mitigate the huge volume variation during Li plating/stripping processes and reduce the local current density. The lithiophilic nitrogen-doped carbon sites and functional Ag nanoparticles endow ultralow nucleation overpotential and small polarization. As a result, the nucleation and growth behavior of Li on the Ag@CMFs are effectively regulated. The Ag@CMFs-Li anodes exhibit high CE (>98%) for more than 500 cycles at different current densities. In addition, the Ag@CMFs-Li symmetric cells show remarkable rate capability and stable cycling performance at ultrahigh current densities over 10 mA cm\(^{-2}\). Encouragingly, the full cells made of the Ag@CMFs-Li anode and a LFP cathode exhibit superior rate capability and stable cycle life. These remarkable electrochemical properties endow the Ag@CMFs to be a highly promising host for LMAs. Furthermore, DFT simulations have been carried out to understand the regulated Li deposition behavior of the Ag@CMFs. The work may give a spark of inspiration for the design and construction of advanced functional 3D macroporous frameworks for LMAs in practical rechargeable batteries.
MATERIALS AND METHODS

Preparation of SiO$_2$ nanospheres

SiO$_2$ nanospheres were synthesized via the Stöber method (59). In a typical synthesis, 10 ml of deionized water, 70 ml of ethanol, and 5 ml of ammonia were mixed under stirring. Then, 3.5 ml of tetra-propyl orthosilicate was added to this solution and stirred at room temperature for 4 hours. The product was collected by centrifugation at 8000 rpm for 5 min and washed with ethanol several times.

Preparation of SiO$_2$@Ag nanospheres

The SiO$_2$@Ag nanospheres were synthesized according to the previous work with minor modifications (60). First, 0.6 g of SnCl$_2$·2H$_2$O was dissolved into 50 ml of 0.1 M HCl, and then 0.5 g of the as-prepared SiO$_2$ nanospheres was added into the solution with sonication for 45 min. The Sn$^{2+}$-sensitized SiO$_2$ nanospheres were obtained by centrifugation at 8000 rpm for 5 min and washed with deionized water and ethanol several times. The as-prepared Sn$^{2+}$-sensitized SiO$_2$ nanospheres were dispersed into 10 ml of deionized water. Ammonical silver nitrate solution was prepared as follows: 0.5 g of silver nitrate was added into 40 ml of deionized water, followed by the addition of 0.2 ml of 0.1 M of NaOH under stirring, and then 2.5 ml of aqueous ammonia (6.6 wt %) was dropwise-added to the mixture to form the ammonical silver nitrate solution. The as-prepared Sn$^{2+}$-sensitized SiO$_2$ dispersion was dispersed into 10 ml of deionized water and ethanol several times. The precipitate was collected by centrifugation at 8000 rpm for 5 min and washed with deionized water and ethanol several times.

Preparation of Ag@CMFs

First, 320 mg of as-prepared SiO$_2$@Ag nanospheres was ultrasonically dispersed in 2.5 ml of dimethylformamide (DMF) and mixed with 0.2 g of PAN under stirring at 60°C overnight. Then, the SiO$_2$@Ag@PAN nanofibers were electrosprun on aluminum foil from the precursor solution. The solution was continuously fed at a rate of 1 ml h$^{-1}$, the distance between the collector and the stainless-steel needle was fixed at 12 cm, and a voltage of 17 kV was applied. The SiO$_2$@Ag@PAN nanofibers were first stabilized at 80°C for 2 hours in an oven and then annealed at 700°C for 3 hours in N$_2$. SiO$_2$ core was etched by immersing the nanofibers into 50 ml of 5.0 M KOH in a mixture solution of H$_2$O and isopropanol alcohol (volume ratio of H$_2$O/isopropanol alcohol = 9:1) at 70°C for 48 hours in an oven. The Ag@CMFs were rinsed with deionized water several times and dried in a vacuum oven at 80°C for 24 hours before use.

Preparation of CMFs

The CMFs were synthesized through a similar process using the SiO$_2$ nanospheres as template without the introduction of Ag nanoparticles. The experimental processes are the same as the synthesis of the Ag@CMFs.

Materials characterization

The morphology and structure of the samples were examined by FESEM (JEOL-6700) and TEM (JEOL, JEM-2010). The crystal phases of the samples were analyzed by XRD on a Bruker D2 Phaser X-ray Diffractometer with Ni filtered Cu K$_\alpha$ radiation ($\lambda = 1.5406$ Å) at a voltage of 30 kV and a current of 10 mA. The compositions of
the samples were analyzed by EDX spectroscope attached to the FESEM instrument. Elemental mapping images were recorded using an EDX spectroscope attached to TEM (JEOL, JEM-2100F). The chemical composition of the samples was analyzed by the XPS (PHI Quantum 2000) with the reference of C1s peak (284.6 eV). Thermogravimetric analysis was performed using a Shimadzu DTG-60 thermal analyzer under air flow (100 ml min⁻¹). N₂ adsorption-desorption isotherms were determined by Autosorb 6B at 77 K. Raman spectra were collected on a Renishaw Invia Reflex Raman microscope equipped with a 514-nm excitation laser.

Electrochemical measurements
Electrochemical characterization was carried out using 2032-type coin cells. To evaluate the electrochemical deposition behavior and CE, the Ag@CMFs, CMFs, and planar Cu were used as the working electrodes. The areal mass loading of the Ag@CMF electrode is around 0.5 mg cm⁻². As LMs based on ether-based electrolytes could frequently offer a higher CE compared to that of ester-based electrolytes because of the inhibition of the growth of lithium dendrites, 1 M lithium bis(trifluoromethanesulfonyl)imide in a mixture solution of 1,3-dioxolane and dimethoxyethane (1:1 v/v) with 2 wt % lithium nitrate was used as the electrolyte. Li foil was used as the counter/reference electrode. To form a stable SEI on the Ag@CMFs-Li, CMFs-Li, and b-Cu-Li electrodes to measure the cycling performance and CMFs, the batteries were first cycled between 0.01 and 1.5 V to sample the Brillouin zone of the periodic graphene and inner adsorbate, and

\[\Delta E_{ad} = E_{adsorbate/surface} - E_{adsorbate} - E_{surface} \]

were calculated by ∆Eads = (E_NmN_m – mE_M + nE_N)/(m + n), where EMn, E_M, and E_N denote the total energies of M_Nm cluster, M atom, and N atom, respectively, and m and n are the numbers of atoms.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/7/21/eabg3626/DC1

REFERENCES AND NOTES
1. M. Armand, J. M. Tarascon, Building better batteries. Nature 451, 652–657 (2008).
2. Y. Fu, B. X. Peng, Electrochemical energy storage: From Li-ion batteries to solid-state batteries. Adv. Energy Mater. 7, 1900531 (2017).
3. S. Xiao, C. Zeng, Y. Fu, J. Li, J. X. Zhang, P. Zhang, Y. Wang, S. Xiao, M. Wu, Y. Wang, X. Zhang, H. Yang, Y. Cao, J. Li, Stable Li metal anode with “ion-solvent-coordinated” nonflammable electrolyte for safe Li metal batteries. ACS Energy Lett. 4, 483–488 (2019).
4. Y. Fu, Z. Ling, S. Xiao, J. Zhang, Y. Fu, J. Li, J. X. Zhang, P. Zhang, Y. Wang, S. Xiao, M. Wu, Y. Wang, X. Zhang, H. Yang, Y. Cao, J. Li, Stable Li metal anode with “ion-solvent-coordinated” nonflammable electrolyte for safe Li metal batteries. ACS Energy Lett. 4, 483–488 (2019).
5. X. Han, Y. Gong, K. F. Xu, H. G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsmann, L. Hu, Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017).
6. X. Ren, X. Gao, L. Zou, S. Wang, J. Zhao, X. Zhang, H. Ji, M. E. Bennett, H. Wu, L. Lee, C. Liu, C. Wang, B. W. Arey, J. Xiao, L. Jia, G. Zhang, W. Xu, Role of inner solvation sheath within salt-solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proc. Natl. Acad. Sci. U.S.A. 117, 28603–28613 (2020).
7. X. Xie, J. Y. HD, J. Lee, J. Lee, J. Hwang, L. Kim, J. Kim, J. Kim, Y. K. Sun, Toward the sustainable lithium metal batteries with a new electrolyte solvation chemistry. Adv. Energy Mater. 10, 2000567 (2020).
8. X. Wang, W. Zeng, L. Hong, W. Xu, H. Yang, W. Wang, H. Duan, M. Tang, H. Jiang, Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3, 227–235 (2018).
9. H. Wang, D. Lin, Y. Liu, Y. Li, Y. Cui, Ultraslim-current density anodes with interconnected Li metal reservoir through overfiltration of mesoporous AlN, framework. Sci. Adv. 3, e1701301 (2017).
10. S. Pan, J. Yang, H. Y. Yu, Advanced 3D current collectors for lithium-based batteries. Adv. Mater. 30, 1802014 (2018).
Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Submitted 30 December 2020
Accepted 1 April 2021
Published 21 May 2021
10.1126/sciadv.abg3626

Citation: Y. Fang, S. L. Zhang, Z.-P. Wu, D. Luan, X. W. Lou, A highly stable lithium metal anode enabled by Ag nanoparticle–embedded nitrogen-doped carbon macroporous fibers. Sci. Adv. 7, eabg3626 (2021).
A highly stable lithium metal anode enabled by Ag nanoparticle–embedded nitrogen-doped carbon macroporous fibers
Yongjin Fang, Song Lin Zhang, Zhi-Peng Wu, Deyan Luan and Xiong Wen (David) Lou

Sci Adv 7 (21), eabg3626,
DOI: 10.1126/sciadv.abg3626

ARTICLE TOOLS

http://advances.sciencemag.org/content/7/21/eabg3626

SUPPLEMENTARY MATERIALS

http://advances.sciencemag.org/content/suppl/2021/05/17/7.21.eabg3626.DC1

REFERENCES

This article cites 62 articles, 12 of which you can access for free
http://advances.sciencemag.org/content/7/21/eabg3626#BIBL

PERMISSIONS

http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science Advances (ISSN 2375-2548) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.

Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).