Deriving Good LDPC Convolutional Codes from LDPC Block Codes

Ali E. Pusane, Member, IEEE, Roxana Smarandache, Member, IEEE, Pascal O. Vontobel, Member, IEEE, and Daniel J. Costello, Jr., Life Fellow, IEEE

Abstract—Low-density parity-check (LDPC) convolutional codes are capable of achieving excellent performance with low encoding and decoding complexity. In this paper we discuss several graph-cover-based methods for deriving families of time-invariant and time-varying LDPC convolutional codes from LDPC block codes and show how earlier proposed LDPC convolutional code constructions can be presented within this framework.

Some of the constructed convolutional codes significantly outperform the underlying LDPC block codes. We investigate some possible reasons for this “convolutional gain,” and we also discuss the — mostly moderate — decoder cost increase that is incurred by going from LDPC block to LDPC convolutional codes.

Index Terms—Block codes, convolutional codes, low-density parity-check (LDPC) codes, message-passing iterative decoding, pseudo-codewords, pseudo-weights, quasi-cyclic codes, unwrapping, wrapping.

I. INTRODUCTION

In the last fifteen years, the area of channel coding has been revolutionized by the practical realization of capacity-approaching coding schemes, initiated by the invention of turbo codes and their associated decoding algorithms in 1993 [1]. A few years after the invention of the turbo coding schemes, researchers became aware that Gallager’s low-density parity-check (LDPC) block codes and message-passing iterative decoding, first introduced in [2], were also capable of capacity-approaching performance. The analysis and design of these coding schemes quickly attracted considerable attention in the literature, beginning with the work of Wiberg [3], MacKay and Neal [4], and many others. An irregular version of LDPC codes was first introduced by Luby et al. in [5], [6], and analytical tools were presented in [7], [8] to obtain performance limits for graph-based message-passing iterative decoding algorithms, such as those suggested by Tanner [9].

For many classes of channels, these tools have been successfully employed to design families of irregular LDPC codes that perform very well near capacity [10], [11]. Moreover, for the binary erasure channel these tools have enabled the design of families of irregular LDPC codes that are not only capacity-approaching but in fact capacity-achieving (see [12] and references therein).

The convolutional counterparts of LDPC block codes are LDPC convolutional codes. Analogous to LDPC block codes, LDPC convolutional codes are defined by sparse parity-check matrices, which allow them to be decoded using iterative message-passing algorithms. Recent studies have shown that LDPC convolutional codes are suitable for practical implementation in a number of different communication scenarios, including continuous transmission and block transmission in frames of arbitrary size [13]–[15].

Two major methods have been proposed in the literature for the construction of LDPC convolutional codes, two methods that in fact started the field of LDPC convolutional codes. The first method was proposed by Tanner [16] (see also [17], [18]) and exploits similarities between quasi-cyclic block codes and time-invariant convolutional codes. The second method was presented by Jiménez-Feltström and Zigangirov in [19] and relies on a matrix-based unwrapping procedure to obtain the parity-check matrix of a periodically time-varying convolutional code from the parity-check matrix of a block code.

The aims of this paper are threefold. First, we show that these two LDPC convolutional code construction methods, once suitably generalized, are in fact tightly connected. We establish this connection with the help of so-called graph covers[1]. A second aim is to discuss a variety of LDPC convolutional code constructions. Although the underlying principles are mathematically quite straightforward, it is important to understand how they can be applied to obtain convolutional

1Note that graph covers have been used in two different ways in the LDPC code literature. On the one hand, starting with the work of Tanner [20], they have been used to construct Tanner graphs [9] of LDPC codes, and therefore parity-check matrices of LDPC codes. Codes constructed in this way are nowadays often called proto-graph-based codes, following the influential work of Thorpe [21], who formalized this code construction approach. On the other hand, starting with the work of Koetter and Vontobel [22], [23], finite graph covers have been used to analyze the behavior of LDPC codes under message-passing iterative decoding. In this paper, we will use graph covers in the first way, with the exception of some comments on pseudo-codewords.
codes with good performance and attractive encoder and decoder architectures. A third aim is to make progress towards a better understanding of where the observed “convolutional gain” comes from, and what its costs are in terms of decoder complexity.

The paper is structured as follows. After some notational remarks in Section II-A we discuss the basics of LDPC convolutional codes in Section II. In particular, in that section we give a first exposition of the LDPC convolutional code construction methods due to Tanner and due to Jiménez-Feltström and Zigangirov. In Section III we discuss two types of graph-cover code constructions and show how they can be used to connect the code construction methods due to Tanner and due to Jiménez-Feltström and Zigangirov. Based on these insights, Section IV presents a variety of LDPC convolutional code constructions (along with simulation results), and in Section V we mention some similarities and differences of these constructions compared to other recent code constructions in the literature. Afterwards, in Section VI we analyze some aspects of the constructed LDPC convolutional codes and discuss some possible reasons for the “convolutional gain,” before we conclude the paper in Section VII.

II. LDPC Convolutional Codes

This section defines LDPC convolutional codes and discusses why they are interesting from an implementation perspective. Afterwards, we review two popular methods of obtaining LDPC convolutional codes by unwrapping block codes. Later in this paper, namely in Section III we will use graph covers to show how these two methods are connected, and in Section IV we will see how these two methods can be implemented and combined to obtain LDPC convolutional codes with very good performance.

A. Definition of LDPC Convolutional Codes

A semi-infinite binary parity-check matrix as in (1) at the top of this page defines a convolutional code $\mathcal{C}_{\text{conv}}$, as follows. Namely, it is the set of semi-infinite sequences given by

$$\mathcal{C}_{\text{conv}} = \left\{ \mathbf{v} \in \mathbb{F}_2^\infty \mid \mathbf{H}_{\text{conv}} \cdot \mathbf{v}^T = \mathbf{0}^T \right\},$$

where $(\cdot)^T$ denotes the transpose of a vector or of a matrix. We comment on several important aspects and properties of the code $\mathcal{C}_{\text{conv}}$ and its parity-check matrix \mathbf{H}_{conv}.

- If the submatrices $H_i(t), i = 0, 1, \ldots, m_s, t \in \mathbb{Z}_{\geq 0}$, have size $(c - b) \times c$ with $b < c$, then $\mathcal{C}_{\text{conv}}$ is said to have (design) rate $R = b/c$.
- The parameter m_s that appears in (1) is called the syndrome former memory. It is an important parameter of $\mathcal{C}_{\text{conv}}$ because the maximal number of non-zero submatrices per block row of \mathbf{H}_{conv} is upper bounded by $m_s + 1$.
- The quantity $\nu_s = (m_s + 1) \cdot c$ is called the constraint length of $\mathcal{C}_{\text{conv}}$. It measures the maximal width (in symbols) of the non-zero area of \mathbf{H}_{conv}.
- We do not require that for a given $i = 0, 1, \ldots, m_s$, the submatrices $\left\{ H_i(t) \right\}_{t \in \mathbb{Z}_{\geq 0}}$ are independent of t, and so $\mathcal{C}_{\text{conv}}$ is in general a time-varying convolutional code.
- If there is a positive integer T_s such that $H_i(t) = H_i(t + T_s)$ for all $i = 0, 1, \ldots, m_s$ and all $t \in \mathbb{Z}_{\geq 0}$, then T_s is called the period of \mathbf{H}_{conv}, and $\mathcal{C}_{\text{conv}}$ is periodically time-varying.
- If the period T_s equals 1, then \mathbf{H}_{conv} is called time-invariant, and the parity-check matrix can be simply

2Strictly speaking, the above formula for ν_s gives only an upper bound on the maximal width (in symbols) of the non-zero area of \mathbf{H}_{conv}, but this upper bound will be good enough for our purposes.
written as

$$\mathbf{H}_{\text{conv}} = \begin{bmatrix} H_0 \\ H_1 & H_0 \\ \vdots & \vdots \\ H_{m_s} & H_{m_s-1} & \cdots & H_0 \\ H_{m_s} & H_{m_s-1} & \cdots & H_0 \end{bmatrix}.$$ (2)

• If the number of ones in each row and column of \mathbf{H}_{conv} is small compared to the constraint length ν_s, then \mathbf{H}_{conv} is an LDPC convolutional code.
• An LDPC convolutional code \mathbf{H}_{conv} is called (m_s, J, K)-regular if, starting from the zeroth column, \mathbf{H}_{conv} has J ones in each column, and, starting from the $(m_s + 1) \cdot (c - b)$-th row, \mathbf{H}_{conv} has K ones in each row. If, however, there are no integers m_s, J, and K such that \mathbf{H}_{conv} is (m_s, J, K)-regular, then \mathbf{H}_{conv} is called irregular.

Of course, there is some ambiguity in the above definition. Namely, a periodically time-varying LDPC convolutional code with parameters T_s, b, and c can also be considered to be a periodically time-varying LDPC convolutional code with parameters $T'_s = T_s / \ell$, $b' = \ell \cdot b$, $c' = \ell \cdot c$, and $R' = b' / c' = b / c$ for any integer ℓ that divides T_s. In particular, for $\ell = T_s$ we consider the code to be a time-invariant LDPC convolutional code with parameters $b' = T'_s \cdot b$ and $c' = T'_s \cdot c$.

B. Implementation Aspects of LDPC Convolutional Codes

An advantage of LDPC convolutional codes compared to their block code counterparts is the so-called “fast encoding” property. As a result of the diagonal shape of their parity-check matrices, many LDPC convolutional codes enjoy simple shift register based encoders. Even randomly constructed LDPC convolutional codes can be formed in such a way as to achieve this feature without any loss in performance (see, e.g., [19], [24]). On the other hand, in order to have a simple encoding procedure for LDPC block codes, either the block code must have some sort of structure [25] or the parity-check matrix must be changed to a more easily “encodable” form [26].

The difficulty in constructing and decoding LDPC convolutional codes is dealing with the unbounded size of the parity-check matrix. This is overcome at the code construction step by considering only periodically time-varying or time-invariant codes. The code construction problem is therefore reduced to designing just one period of the parity-check matrix. For decoding, the most obvious approach is to terminate the encoder and to employ message-passing iterative decoding based on the complete Tanner graph representation of the parity-check matrix of the code. Although this would be straightforward to implement using a standard LDPC block code decoder, it would be wasteful of resources, since the resulting (very large) block decoder would not be taking advantage of two important aspects of the convolutional structure: namely, that decoding can be done continuously without waiting for an entire terminated block to be received and that the distance between two variable nodes that are connected to the same check node is limited by the size of the syndrome former memory.

In order to take advantage of the convolutional nature of the parity-check matrix, a continuous sliding window message-passing iterative decoder that operates on a window of size $I \cdot \nu_s$ variable nodes, where I is the number of decoding iterations to be performed, can be implemented, similar to a Viterbi decoder with finite path memory [27]. This window size is chosen since, in a single iteration, messages from variable (or check) nodes can be passed across a span of only one constraint length. Thus, in I iterations, messages can propagate only over a window of size I constraint length. (See also the recent paper by Papaleo et al. [28], which investigates further reducing the window size for codes operating on a binary erasure channel (BEC).) Another simplification is achieved by exploiting the fact that a single decoding iteration of two variable nodes that are at least $m_s + 1$ time units apart can be performed independently, since the corresponding bits cannot participate in the same parity-check equation. This allows the parallelization of the I iterations by employing I independent identical processors working on different regions of the parity-check matrix simultaneously, resulting in the parallel pipeline decoding architecture introduced in [19]. The pipeline decoder outputs a continuous stream of decoded data after an initial decoding delay of $I \cdot \nu_s$ received symbols. The operation of this decoder on the Tanner graph of a simple time-invariant rate-1/3 convolutional code with $m_s = 2$ and $\nu_s = 9$ is illustrated in Figure 11.

Although the pipeline decoder is capable of fully parallelizing the iterations by using I independent identical processors, employing a large number of hardware processors might not be desirable in some applications. In such cases, fewer processors (even one processor) can be scheduled to perform subsets of iterations, resulting in a serial looping architecture [29] with reduced throughput. This ability to balance the processor load and decoding speed dynamically is especially desirable where very large LDPC convolutional codes must be decoded with limited available on-chip memory. Further discussion on the implementation aspects of the pipeline decoder can be found in [30].

C. Unwrapping Techniques due to Tanner and due to Jiménez-Felström and Zigangirov (JFZ)

In this subsection we discuss two approaches for deriving convolutional codes from block codes, in particular for deriving LDPC convolutional codes from LDPC block codes. The first technique will be the unwrapping due to Tanner and the second will be the unwrapping due to Jiménez-Felström and Zigangirov (JFZ). In Section III we will see, with the help of graph covers, how these two – seemingly different – unwrapping techniques are connected with each other.

The term unwrapping, in particular unwrapping a quasi-cyclic block code to obtain a time-invariant convolutional code, was first introduced in a paper by Tanner [17] (see also [16]). That paper describes a link between quasi-cyclic
block codes and time-invariant convolutional codes and shows that the free distance of the unwrapped convolutional code cannot be smaller than the minimum distance of the underlying quasi-cyclic code. This idea was later extended in [31], [32].

Consider the quasi-cyclic block code $C_{QC}^{(r)}$ defined by the polynomial parity-check matrix $H_{QC}^{(r)}(X)$ of size $m \times n$, i.e.,

$$C_{QC}^{(r)} = \left\{ v(X) \in \mathbb{F}_2^{(r)}[X]^n \mid H_{QC}^{(r)}(X) \cdot v(X)^T = 0^T \right\}.$$

Here the polynomial operations are performed modulo $X^r - 1$. The Tanner unwrapping technique is simply based on dropping these modulo computations. More precisely, with a quasi-cyclic block code $C_{QC}^{(r)}$ we associate the convolutional code

$$C_{conv} = \left\{ v(D) \in \mathbb{F}_2[D]^n \mid H_{conv}(D) \cdot v(D)^T = 0^T \right\}$$

with polynomial parity-check matrix

$$H_{conv}(D) = H_{QC}^{(r)}(X) \bigg|_{X=D}. \quad (3)$$

Here the change of indeterminate from X to D indicates the lack of the modulo $D^r - 1$ operations. (Note that in $[3]$ we assume that the exponents appearing in the polynomials in $H_{QC}^{(r)}(X)$ are between 0 and $r - 1$ inclusive.)

It can easily be seen that any codeword $v(D)$ in C_{conv} maps to a codeword $v(X)$ in $C_{QC}^{(r)}$, through

$$v(X) \triangleq v(D) \mod (D^r - 1) \bigg|_{D=X},$$

a process which was described in [17] as the wrapping around of a codeword in the convolutional code into a codeword in the quasi-cyclic code. The inverse process was described as unwrapping.

Having introduced the unwrapping technique due to Tanner, we move on to discuss the unwrapping technique due to JFZ [19], which is another way to unwrap a block code to obtain a convolutional code. The basic idea is best explained with the help of an example.

![Tanner graph of a rate-1/3 convolutional code and an illustration of pipeline decoding. Here, $y_0(t)$, $y_1(t)$, $y_2(t)$ denote the stream of channel output symbols, and $\hat{v}_0(t)$, $\hat{v}_1(t)$, $\hat{v}_2(t)$ denote the stream of decoder code bit decisions.](image)

Example 1 Consider the parity-check matrix

$$
\mathbf{T} = \begin{bmatrix}
0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
\end{bmatrix},
$$

with size $m \times n = 5 \times 10$, of a rate-1/2 block code. As indicated above, we can take a pair of scissors and “cut” the parity-check matrix into two pieces, whereby the cutting pattern is such that we repeatedly move $c = 2$ units to the right and then $c - b = 1$ unit down. Having applied this “diagonal cut,” we repeatedly copy and paste the two parts to obtain the bi-infinite matrix shown in Figure 2.

This new matrix can be seen as the parity-check matrix of (in general) a periodically time-varying convolutional code (here the period is $T_s = 5$). It is worth observing that this new matrix has the same row and
column weights as the matrix that we started with.\footnote{\label{footnote:1}In practice, the codewords start at some time, so the convolutional parity-check matrix effectively the semi-infinite form of \ref{eq:1}, and the row weights of the first $\nu_b - 1$ rows are reduced.}

This example can be formalized easily. Namely, starting with an $m \times n$ parity-check matrix \overline{H} of some block code, let $\eta \triangleq \gcd(m, n)$. Then the “diagonal cut” is performed by alternately moving $c = n/\eta$ units to the right and then $c-b = m/\eta$ units down (i.e., $b = (n-m)/\eta$). The resulting convolutional code has rate $R = b/c$, syndrome former memory $m_s = \eta - 1$, constraint length $\nu_s = (m_s + 1) \cdot c = \eta \cdot c = n$, and period $T_s = m_s + 1 = \eta$.

Analogous to the comment at the end of Section II-A, it is also possible to cut the matrix \overline{H} in larger step sizes, e.g., moving $c' = \ell \cdot c$ units to the right and $c' - b' = \ell \cdot (c-b)$ units down, for any integer ℓ that divides $T_s = \eta$, thereby obtaining a periodically time-varying convolutional code with rate $R' = b'/c' = b/c$, syndrome former memory $m'_s = (\eta/\ell) - 1$, constraint length $\nu'_s = (m'_s + 1) \cdot c' = \eta \cdot c = n$, and period $T'_s = m'_s + 1 = \eta \ell$. (See also the discussion in Section II-B.)

In the rest of this paper, the term “JFZ unwrapping technique” will also stand for the following generalization of the above procedure. Namely, starting with a length-n block code \mathcal{C} defined by some size-$m \times n$ parity-check matrix \overline{H}, i.e.,

$$\mathcal{C} = \{\mathbf{v} \in \mathbb{F}_2^n \mid \overline{H} \cdot \mathbf{v}^T = 0^T\},$$

we write \overline{H} as the sum $\overline{H} = \sum_{\ell \in \mathcal{L}} H_\ell$ (in \mathbb{Z}) of a collection of matrices $\{H_\ell\}_{\ell \in \mathcal{L}}$. The convolutional code $\mathcal{C}_{\text{conv}}$ is then defined to be

$$\mathcal{C}_{\text{conv}} \triangleq \{\mathbf{v} \in \mathbb{F}_2^\infty \mid \overline{H}_{\text{conv}} \cdot \mathbf{v}^T = 0^T\},$$

(4)

where

$$\overline{H}_{\text{conv}} \triangleq \begin{bmatrix} H_0 & H_1 & H_0 \\ H_2 & \cdots & \cdots & \cdots \end{bmatrix}.$$

Referring to the notation introduced in Section II-A, the matrix $\overline{H}_{\text{conv}}$ is the parity-check matrix of a time-invariant convolutional code. However, depending on the decomposition of \overline{H} and the internal structure of the terms in that decomposition, the matrix $\overline{H}_{\text{conv}}$ can also be (and very often is) viewed as the parity-check matrix of a time-varying convolutional code with non-trivial period T_s.

In order to illustrate the generalization of the JFZ unwrapping technique that we have introduced in the last paragraph, observe that decomposing \overline{H} from Example III as $\overline{H} = H_0 + H_1$ (in \mathbb{Z}) with

$$(H_0) \triangleq \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ \cdots & \cdots \end{bmatrix},$$

yields a convolutional code with parity-check matrix $\overline{H}_{\text{conv}}$ whose bi-infinite version equals the matrix shown in Figure II-B.

III. Tanner Graphs from Graph Covers

Having formally introduced LDPC convolutional codes in the previous section, we now turn our attention to the main tool of this paper, namely graph covers.

Definition 2 (see, e.g., \cite{3}) A cover of a graph G with vertex set \mathcal{W} and edge set \mathcal{E} is a graph \tilde{G} with vertex set \mathcal{W} and edge set $\tilde{\mathcal{E}}$, along with a surjection $\pi : \mathcal{W} \to \mathcal{W}$ which is a graph homomorphism (i.e., π takes adjacent vertices of G to adjacent vertices of \tilde{G}) such that for each vertex $w \in \mathcal{W}$ and each $\tilde{w} \in \pi^{-1}(w)$, the neighborhood $\mathcal{N}(\tilde{w})$ of \tilde{w} is mapped bijectively to $\mathcal{N}(w)$. A cover is called an M-cover, where M is a positive integer, if $|\pi^{-1}(w)| = M$ for every vertex w in \mathcal{W}.

\footnote{\label{footnote:2}The number M is also known as the degree of the cover. (Not to be confused with the degree of a vertex.)}

\footnote{\label{footnote:3}For a formal definition of code equivalence, see for example \cite{33}.}

These graph covers will be used for the construction of new Tanner graphs from old Tanner graphs, in particular for the construction of Tanner graphs that represent LDPC convolutional codes.

More specifically, this section starts by discussing two simple methods to specify a graph cover, which will be called graph-cover construction 1 (GCC1) and graph-cover construction 2 (GCC2). Although they yield isomorphic Tanner graphs, and therefore equivalent codes, it is convenient to have both methods at hand.\footnote{\label{footnote:4}Note that we use a generalized notion of Tanner graphs, where parallel edges are allowed and are reflected by corresponding integer entries in the associated matrix.}

As we will see, interesting classes of Tanner graphs can be obtained by repeatedly applying these graph-cover constructions, by mixing them, and by suitably shortening the resulting codes. Moreover, these two graph-cover constructions will allow us to exhibit a connection between the Tanner and the JFZ unwrapping techniques.

A. Graph-Cover Constructions

Let A be an $m_A \times n_A$ matrix over $\mathbb{Z}_{\geq 0}$. With such a matrix we can associate a Tanner graph $T(A)$, where we draw n_A variable nodes, m_A check nodes, and where there are $|A|_{i,j}$ edges from the i-th variable node to the j-th check node.\footnote{\label{footnote:5}Note that we use a generalized notion of Tanner graphs, where parallel edges are allowed and are reflected by corresponding integer entries in the associated matrix.}

Given the role that the matrix A will play subsequently, we follow \cite{21} and call the matrix A a proto-matrix and the corresponding graph $T(A)$ a proto-graph.

\begin{align*}
H_1 & \triangleq \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \cdots & \cdots \end{bmatrix},
\end{align*}
The next definition introduces GCC1 and GCC2, two ways to specify graph covers that will be used throughout the rest of the paper.

Definition 3 For some positive integers \(m_A, n_A\), let \(A \in \mathbb{Z}_{\geq 0}^{m_A \times n_A}\) be a proto-matrix. We also introduce the following objects:

- For some finite set \(\mathbb{L}\), let \(\{A_{\ell}\}_{\ell \in \mathbb{L}}\) be a collection of matrices such that \(A_{\ell} \in \mathbb{Z}_{\geq 0}^{m_A \times n_A}\), \(\ell \in \mathbb{L}\), and such that \(A = \sum_{\ell \in \mathbb{L}} A_{\ell}\) (in \(\mathbb{Z}\)).
- For some positive integer \(r\), let \(\{P_{\ell}\}_{\ell \in \mathbb{L}}\) be a collection of size-\(r\times r\) permutation matrices. I.e., for every \(\ell \in \mathbb{L}\), the matrix \(P_{\ell}\) is such that it contains one “1” per column, one “1” per row, and “0”s otherwise.

Based on the collection of matrices \(\{A_{\ell}\}_{\ell \in \mathbb{L}}\) and the collection of matrices \(\{P_{\ell}\}_{\ell \in \mathbb{L}}\), there are two common ways of defining a graph cover of the Tanner graph \(T(A)\). (In the following expressions, \(I\) is the identity matrix of size \(r \times r\).)

- **Graph-cover construction 1 (GCC1).** Consider the intermediary matrix
 \[
 B' \triangleq A \otimes I = \sum_{\ell \in \mathbb{L}} (A_{\ell} \otimes I),
 \]
 whose Tanner graph \(T(B')\) consists of \(r\) disconnected copies of \(T(A)\). This is an \(r\)-fold cover of \(T(A)\), albeit a rather trivial one. In order to obtain an interesting \(r\)-fold graph cover of \(A\), for each \(\ell \in \mathbb{L}\), we replace \(A_{\ell} \otimes I\) by \(A_{\ell} \otimes P_{\ell}\), i.e., we define
 \[
 B \triangleq \sum_{\ell \in \mathbb{L}} (A_{\ell} \otimes P_{\ell}).
 \]

- **Graph-cover construction 2 (GCC2).** Consider the intermediary matrix
 \[
 \overline{B} \triangleq I \otimes A = \sum_{\ell \in \mathbb{L}} (I \otimes A_{\ell}),
 \]
 whose Tanner graph \(T(\overline{B})\) consists of \(r\) disconnected copies of \(T(A)\). This is an \(r\)-fold cover of \(T(A)\), albeit a rather trivial one. In order to obtain an interesting \(r\)-fold graph cover of \(A\), for each \(\ell \in \mathbb{L}\), we replace \(I \otimes A_{\ell}\) by \(P_{\ell} \otimes A_{\ell}\), i.e., we define
 \[
 \overline{B}' = \sum_{\ell \in \mathbb{L}} (P_{\ell} \otimes A_{\ell}).
 \]

If all the matrices \(\{P_{\ell}\}_{\ell \in \mathbb{L}}\) are circulant matrices, then the graph covers \(T(B)\) and \(T(\overline{B})\) will be called cyclic covers of \(T(A)\).

One can verify that the two graph-cover constructions in Definition 3 are such that the matrix \(B\), after a suitable reordering of the rows and columns, equals the matrix \(\overline{B}'\).\(^8\)

\(^8\)We leave it as an exercise for the reader to show that the graphs constructed in GCC1 and GCC2 are indeed two instances of the graph cover definition in Definition 3.

This implies that \(T(B)\) and \(T(\overline{B})\) are isomorphic graphs; nevertheless, it is helpful to define both types of constructions.

B. Graph-Cover Construction Special Cases

The following examples will help us to better understand how GCC1 and GCC2 can be used to obtain interesting classes of Tanner graphs, and, in particular, how the resulting graph-cover constructions can be visualized graphically. Although these examples are very concrete, they are written such that they can be easily generalized.

Example 4 (Cyclic cover) Consider the proto-matrix

\[
A \triangleq \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}
\]

with \(m_A = 2\) and \(n_A = 3\), and whose Tanner graph \(T(A)\) is shown in Figure 3(a). Let \(\mathbb{L} = \{0, 1\} \times \{0, 1, 2\}\), and let the collection of matrices \(\{A_{j, i}\}_{j, i}\) be given by \(\{A_{j, i}\}_{j, i}\), where for each \(j = 0, \ldots, m_A - 1\) and each \(i = 0, \ldots, n_A - 1\) the matrix \(A_{j, i} \in \mathbb{Z}_{\geq 0}^{m_A \times n_A}\) is defined as follows

\[
[A_{j, i}]_{j', i'} = \begin{cases}
[A_{j', i'}] & \text{if } (j', i') = (j, i) \\
0 & \text{otherwise}
\end{cases}
\]

Moreover, let \(r = 7\), and let the collection of matrices \(\{P_{\ell}\}_{\ell \in \mathbb{L}}\) be given by \(\{P_{\ell}\}_{\ell \in \mathbb{L}}\), where \(P_{0, 0} \triangleq I_1, P_{0, 1} \triangleq I_2, P_{0, 2} \triangleq I_4, P_{1, 0} \triangleq I_6, P_{1, 1} \triangleq I_5, P_{1, 2} \triangleq I_3\), and where \(I_s\) is an \(s\) times left-shifted identity matrix of size \(r \times r\).

- Using GCC1, we obtain the matrices
 \[
 B' = A \otimes I_0 = \begin{bmatrix}
I_0 & I_0 & I_0 \\
I_0 & I_0 & I_0
\end{bmatrix},
 \]
 \[
 B = \begin{bmatrix}
I_1 & I_2 & I_4 \\
I_6 & I_5 & I_3
\end{bmatrix},
 \]
 whose Tanner graphs \(T(B')\) and \(T(B)\), respectively, are shown in Figure 3(b).

- Using GCC2, we obtain the matrices
 \[
 \overline{B}' = I_0 \otimes A = \begin{bmatrix}
A & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & A & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & A & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & A & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & A & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & A & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & A
\end{bmatrix},
 \]
 \[
 \overline{B} = \begin{bmatrix}
0 & A_{1, 0} & A_{1, 1} & A_{0, 2} & A_{1, 2} & A_{0, 1} & A_{0, 0} \\
A_{0, 0} & 0 & A_{1, 1} & A_{0, 2} & A_{1, 2} & A_{0, 1} & A_{0, 0} \\
A_{0, 1} & A_{0, 0} & 0 & A_{1, 1} & A_{1, 2} & A_{0, 1} & A_{0, 2} \\
A_{0, 0} & A_{0, 1} & A_{0, 0} & 0 & A_{1, 1} & A_{1, 2} & A_{0, 1} \\
A_{1, 1} & A_{0, 0} & A_{0, 1} & A_{0, 0} & 0 & A_{1, 0} & A_{1, 1} \\
A_{0, 0} & A_{1, 1} & A_{0, 0} & A_{0, 1} & A_{1, 0} & 0 & 0 \\
A_{0, 0} & A_{0, 0} & A_{1, 1} & A_{0, 0} & A_{0, 1} & A_{1, 0} & 0
\end{bmatrix},
 \]
 whose Tanner graphs \(T(\overline{B}')\) and \(T(\overline{B})\), respectively, are shown in Figure 3(c). Note that all the block rows and all the block columns sum (in \(\mathbb{Z}\)) to \(A\). (This observation holds in general, not just for this example.)
We would like to add two comments with respect to the above example.

First, instead of defining I_s to be an s times left-shifted identity matrix of size $r \times r$, we could have defined I_s to be an s times right-shifted identity matrix of size $r \times r$. Compared to the matrices and graphs described above, such a change in definition would yield (in general) different matrices but isomorphic graphs.

Second, we note that GCC2 was termed the “copy-and-permute” construction by Thorpe and his co-workers. This terminology stems from the visual appearance of the procedure: namely, in going from Figure 3(a) to Figure 3(c)(top) we copy the graph several times, and in going from Figure 3(c)(top) to Figure 3(c)(bottom) we permute the edges of the graph, where the permutations are done within the sets of edges that have the same pre-image in Figure 3(a).

Remark 5 (Quasi-cyclic codes) Consider again the matrices that were constructed in Example 4 in particular the matrix A in (5) and its r-fold cover matrix B in (6). Because all matrices in the matrix collection $\{P_\ell\}_{\ell \in \mathbb{C}}$ are circulant, $T(B)$ represents a cyclic cover of $T(A)$. Clearly, when seen over \mathbb{F}_2, the matrix $H_{QC}^{(r)} \triangleq B$ is the parity-check matrix of a quasi-cyclic binary linear block code

$$C_{QC}^{(r)} = \left\{ v \in \mathbb{F}_2^n A^r \left| H_{QC}^{(r)} \cdot v^T = 0^T \right. \right\}.$$

Using the well-known isomorphism between the addition and multiplication of circulant matrices over \mathbb{F}_2 and the addition and multiplication of elements of the ring $\mathbb{F}_2^{(r)}[X]$, this code can be written equivalently as

$$C_{QC}^{(r)} = \left\{ v(X) \in \mathbb{F}_2^{(r)}[X]^n A \left| H_{QC}^{(r)}(X) \cdot v(X)^T = 0^T \right. \right\}.$$
with

$$H^{(r)}_{QC}(X) \triangleq \begin{bmatrix} X^1 & X^2 & X^4 \\ X^6 & X^5 & X^3 \end{bmatrix}.$$

As noted above, the graphs $\mathbb{T}(B)$ and $\mathbb{T}(\overline{B})$ that are constructed in Definition 3 are isomorphic. Applying this observation to Example 2, the matrix $\overline{H}^{(r)}_{QC} \triangleq \overline{B}$ with \overline{B} from (7) is therefore the parity-check matrix of a binary linear block code

$$\overline{C}_{QC}^{(r)} = \left\{ \overline{v} \in \mathbb{F}_2^{n \times A} \mid \overline{H}^{(r)}_{QC} \cdot \overline{v}^T = 0^T \right\}$$

that is equivalent to $C_{QC}^{(r)}$, i.e., the codewords of $\overline{C}_{QC}^{(r)}$ can be obtained from the codewords of $C_{QC}^{(r)}$ by a suitable reordering of the codeword components. In terms of the matrices $\{A_{j,i}\}_{j,i}$ which also appear in the matrix \overline{B} in (7), one can verify that the polynomial parity-check matrix $H^{(r)}_{QC}(X)$ can be written as

$$H^{(r)}_{QC}(X) = 0X^0 + A_{0,0}X^1 + A_{0,1}X^2 + A_{1,2}X^3 + A_{0,2}X^4 + A_{1,1}X^5 + A_{1,0}X^6.$$ \hfill \square

Besides defining finite graph covers, we can also define infinite graph covers, as illustrated in the following examples. These infinite graph covers will be crucial towards defining Tanner graphs of convolutional codes.

Example 6 (Bi-infinite Toeplitz covers) We continue Example 2. However, besides keeping the proto-matrix A and the collection of matrices $\{A_{j,i}\}_{j,i}$, we consider a different collection of matrices $\{P_{j,i}\}_{j,i}$. Namely, we set $P_{0,0} \triangleq T_1$, $P_{0,1} \triangleq T_2$, $P_{0,2} \triangleq T_3$, $P_{1,1} \triangleq T_6$, $P_{1,2} \triangleq T_5$, $P_{1,2} \triangleq T_3$. Here T_s is a bi-infinite Toeplitz matrix with zeros everywhere except for ones in the s-th diagonal below the main diagonal, i.e., $[T_s]_{j,i} = 1$ if $j = i + s$ and $[T_s]_{j,i} = 0$ otherwise. E.g.,

$$T_1 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix},$$

where for clarity we have underlined the entries of the main diagonal.

- Using GCC1, we obtain the matrices $B' = A \otimes T_0$ and

$$B = \begin{bmatrix} T_1 & T_2 & T_1 \\ T_6 & T_5 & T_3 \end{bmatrix}.$$ \hfill (8)

The Tanner graph $\mathbb{T}(B')$, which is depicted in Figure 2(b)(top), is similar to the corresponding Tanner graph in Figure 3(b)(top), but with bi-infinitely many independent components. Analogously, the Tanner graph $\mathbb{T}(B)$, which is depicted in Figure 4(b)(bottom), is similar to the Tanner graph shown in Figure 4(c)(bottom), but instead of cyclically wrapped edge connections, the edge connections are infinitely continued on both sides.

- Using GCC2, we obtain the matrices $\overline{B} = T_0 \otimes A$ and

$$\overline{B} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ A_{0,0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ A_{0,1}A_{0,0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ A_{1,2}A_{0,1}A_{0,0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ A_{0,2}A_{1,2}A_{0,1}A_{0,0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ A_{1,1}A_{0,2}A_{1,2}A_{0,1}A_{0,0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ A_{1,0}A_{1,1}A_{0,2}A_{1,2}A_{0,1}A_{0,0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & A_{1,0}A_{1,1}A_{0,2}A_{1,2}A_{0,1}A_{0,0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$ \hfill (9)

The Tanner graph $\mathbb{T}(\overline{B})$, which is depicted in Figure 2(c)(top), is similar to the corresponding Tanner graph in Figure 3(c)(top), but with bi-infinitely many independent components. Analogously, the Tanner graph $\mathbb{T}(\overline{B})$, which is depicted in Figure 4(c)(bottom), is similar to the Tanner graph shown in Figure 4(c)(bottom), but instead of cyclically wrapped edge connections, the edge connections are infinitely continued on both sides. \hfill \square

Although it is tempting to replace in Example 6 the bi-infinite Toeplitz matrices T_s (whose row and column index sets equal \mathbb{Z}) by semi-infinite Toeplitz matrices (whose row and column index sets equal $\mathbb{Z}_{\geq 0}$), note that the resulting Tanner graphs $\mathbb{T}(B)$ and $\mathbb{T}(\overline{B})$ would then in general not be graph covers of $\mathbb{T}(A)$. This follows from the fact that semi-infinite Toeplitz matrices are not permutation matrices (except for T_0), and so some vertex degrees of $\mathbb{T}(B)$ and $\mathbb{T}(\overline{B})$ would not equal the corresponding vertex degrees in $\mathbb{T}(A)$.

Remark 7 It turns out that the Tanner graphs in Figure 4 are infinite graph covers of the Tanner graphs in Figure 3. More precisely, the Tanner graphs $\mathbb{T}(B')$, $\mathbb{T}(B)$, $\mathbb{T}(\overline{B})$, $\mathbb{T}(\overline{B})$ in Figure 4 are graph covers of the corresponding Tanner graphs $\mathbb{T}(B')$, $\mathbb{T}(B)$, $\mathbb{T}(\overline{B})$ in Figure 3. For the Tanner graphs $\mathbb{T}(B')$ in Figures 3(b)(top) and 4(b)(top) and the Tanner graphs $\mathbb{T}(\overline{B})$ in Figures 3(c)(top) and 4(c)(top), this statement is easily verified by inspection.

To verify that the Tanner graph $\mathbb{T}(\overline{B})$ in Figure 4(c)(bottom) is a graph cover of $\mathbb{T}(\overline{B})$ in Figure 4(c)(bottom), we apply GCC2 with proto-matrix A, with resulting matrix \overline{B}, with the set \mathcal{L}, with the collection of matrices $\{A_{j,i}\}_{j,i} \in \mathcal{L}$, and with the collection of permutation matrices $\{P_{i,j}\}_{i,j}$ as follows. Namely, we let the proto-matrix A be the matrix from (7).

\footnote{As will be clear from the discussion later on, in this paper we take an approach where in a first step we construct bi-infinite Tanner graphs that are “proper” graph covers and where in a second step we obtain semi-infinite Tanner graphs by applying a “shortening” procedure to these bi-infinite Tanner graphs. Alternatively, one could also choose an approach based on “improper” graph covers. Both approaches have their advantages and disadvantages; we preferred to take the first approach.}
(there denoted by \overline{B}), we let the resulting matrix \overline{B} be the matrix in (9) (there denoted by \overline{B}), we define $\mathcal{L} = \{0, 1\}$, we select

$$A_0 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
A_{0,0} & 0 & 0 & 0 & 0 & 0 & 0 \\
A_{0,1} & A_{0,0} & 0 & 0 & 0 & 0 & 0 \\
A_{0,2} & A_{0,1} & A_{0,0} & 0 & 0 & 0 & 0 \\
A_{1,0} & A_{1,1} & A_{1,2} & A_{2,1} & A_{0,1} & A_{0,0} & 0 \\
\end{bmatrix}, \quad (10)$$

$$A_1 = \begin{bmatrix}
0 & A_{1,0} & A_{1,1} & A_{1,2} & A_{0,1} & A_{0,0} \\
0 & 0 & A_{1,0} & A_{1,1} & A_{1,2} & A_{0,1} \\
0 & 0 & 0 & A_{1,0} & A_{1,1} & A_{0,2} \\
0 & 0 & 0 & 0 & A_{1,0} & A_{1,1} \\
0 & 0 & 0 & 0 & 0 & A_{1,0} \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}, \quad (11)$$

and we select $P_0 = T_0$ and $P_1 = T_1$, where T_r was defined in Example 6. Clearly, $A = A_0 + A_1$ (in \mathbb{Z}_2). With this we have

$$\overline{B} = P_0 \otimes A_0 + P_1 \otimes A_1 = \begin{bmatrix}
A_0 & 0 & 0 & 0 \\
A_1 & A_0 & 0 & 0 \\
0 & A_1 & A_0 & 0 \\
0 & 0 & A_1 & A_0 \\
\end{bmatrix}$$

and one can verify that this matrix equals the matrix in (9) (there denoted by \overline{B}), which means that $T(\overline{B})$ is indeed an infinite cover of $T(A)$. We remark that, interestingly, in this process we have shown how a certain GCC2 graph cover of a proto-matrix can be written as a GCC2 graph cover of a certain GCC2 graph cover of that proto-matrix.

Finally, a similar argument shows that the Tanner graph $T(B)$ in Figure 3(b)(top) is a graph cover of the Tanner graph in Figure 3(b)(top), also denoted by $T(B)$. \[\square\]

There are many other ways of writing a proto-matrix A as a sum of a collection of matrices $\{A_t\}_{t \in \mathcal{L}}$. The next example discusses two such possibilities.

Example 8 Consider the proto-matrix

$$A \triangleq \begin{bmatrix}
0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
\end{bmatrix}$$

that is shown in Figure 6(a), and that also appeared in Example 7. Its Tanner graph $T(A)$ is $(3,6)$-regular, i.e., all variable nodes have degree 3 and all check nodes have degree 6. Let $\mathcal{L} = \{0, 1\}$, and consider the collection of matrices $\{P_t\}_{t \in \mathcal{L}}$ with $P_0 = T_0$ and $P_1 = T_1$, where the matrices T_0 and T_1 are defined as in Example 8. In the following, we look at two different choices of the collection of matrices $\{A_t\}_{t \in \mathcal{L}}$.

- Figure 6(c) shows a typical part of the matrix \overline{B} that is obtained when GCC2 is used to construct a graph cover of A with the collection of matrices $\{A_t\}_{t \in \mathcal{L}}$ defined as shown in Figure 6(a).
- Figure 6(d) shows a typical part of the matrix \overline{B} when GCC2 is used to construct a graph cover of A with the collection of matrices $\{A_t\}_{t \in \mathcal{L}}$ defined as shown in Figure 6(b).

Overall, because of the choice of the collection $\{P_t\}_{t \in \mathcal{L}}$, the support of both matrices \overline{B} possesses a banded diagonal structure. Moreover, the different choices of the collection $\{A_t\}_{t \in \mathcal{L}}$ leads to a somewhat narrower banded diagonal structure in the first case compared to the second case. \[\square\]

The next example makes a crucial observation; namely, it shows that the above graph-cover constructions can be applied repeatedly to obtain additional interesting classes of Tanner graphs.

Example 9 (Iterated Graph-Cover Construction) Starting with the proto-matrix A from Example 8 we consider two iterated graph-cover constructions. In the first case, we apply GCC1 and then GCC2, and in the second case we apply GCC2 twice.

- Consider the matrix B obtained from the matrix A using GCC1, like in Example 4. The resulting matrix B is shown in (7) and will be called $A^{(1)}$ in this example, since it is considered to be a proto-matrix by itself, cf. Figure 6(a). Based on “cutting line” shown in Figure 6(a), we define the matrices $A_0^{(1)}$ and $A_1^{(1)}$ as follows: the non-zero part of $A_0^{(1)}$ equals the non-zero part of the lower triangular part of $A^{(1)}$ and the non-zero part of $A_1^{(1)}$ equals the non-zero part of the upper triangular part of $A^{(1)}$. \(\text{(Clearly, } A^{(1)} = A_0^{(1)} + A_1^{(1)}\). Applying the procedure from Example 8, Figure 6(c) shows a typical part of the matrix $\overline{B}^{(1)}$ that is obtained when GCC2 is used to construct a graph cover of $A^{(1)}$.
- Consider the graph-cover \overline{B} obtained from A using GCC2, like in Example 4. The resulting matrix \overline{B} is shown in (7) and will be called $A^{(2)}$ in this example, since it is considered to be a proto-matrix by itself, cf. Figure 6(b). Based on “cutting line” shown in Figure 6(b), we define the matrices $A_0^{(2)}$ and $A_1^{(2)}$ as follows: the non-zero part of $A_0^{(2)}$ equals the non-zero part of the lower triangular part of $A^{(2)}$ and the non-zero part of $A_1^{(2)}$ equals the non-zero part of the upper triangular part of $A^{(2)}$. \(\text{(Clearly, } A^{(2)} = A_0^{(2)} + A_1^{(2)}\). Applying the procedure from Example 8, Figure 6(d) shows a typical part of the matrix $\overline{B}^{(2)}$ that is obtained when GCC2 is used to construct a graph cover of $A^{(2)}$.

We observe a large difference in the positions of the non-zero entries in $\overline{B}^{(1)}$ and $\overline{B}^{(2)}$.

- In the first case, the two graph-cover constructions are “incompatible” and the positions of the non-zero entries

\[\footnote{Note that a non-zero block diagonal of A would be put in A_0.}\]
Examples, and also if the matrix is written as the sum of more matrices. This process is called "cutting a matrix." Actually, we will also see in Example 18 with the help of simulation results, such Tanner graphs can lead to time-varying LDPC convolutional codes with very good performance.

- In the second case, the two graph-cover constructions are "compatible" in the sense that \(\overline{B}^{(2)} \) can be obtained from the proto-matrix \(A \) by applying GCC2 with suitable matrix collections \(\{A_c\}_{c \in C} \) and \(\{F_{i,c}\}_{i,c \in C} \). As such, the positions of the non-zero entries of \(\overline{B}^{(2)} \) follow a relatively "simple" or "non-random" pattern, which leads to a time-invariant LDPC convolutional code.

The above procedure of obtaining two matrices that add up to a matrix is called "cutting a matrix." Actually, we will also use this term if there is no simple cutting line, as in the above examples, and also if the matrix is written as the sum of more than two matrices (cf. Example 1 and the paragraphs after it).

\[
A = \begin{bmatrix}
0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{bmatrix}
\]

\[
A_0 = \begin{bmatrix}
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{bmatrix}
\]

\[
A_1 = \begin{bmatrix}
0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

(a) First decomposition of the matrix \(A \) into the matrices \(A_0 \) and \(A_1 \).

\[
A = \begin{bmatrix}
0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{bmatrix}
\]

\[
A_0 = \begin{bmatrix}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
A_1 = \begin{bmatrix}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

(b) Second decomposition of the matrix \(A \) into the matrices \(A_0 \) and \(A_1 \).

\[
\overline{B}
\]

(c) Part of the matrix \(\overline{B} \) based on the first decomposition of \(A \).

(d) Part of the matrix \(\overline{B} \) based on the second decomposition of \(A \).

Fig. 5. Matrices appearing in Example 1 (See text for details.)

C. Revisiting the Tanner and the JFZ Unwrapping Techniques

In Section II-C we introduced two techniques, termed the Tanner and the JFZ unwrapping techniques, to derive convolutional codes from block codes. In this subsection we revisit these unwrapping techniques. In particular, we show how they can be cast in terms of graph covers and how the two unwrapping techniques are connected.

Because of the importance of the coding-theoretic notion of shortening [29] for this subsection, we briefly revisit this concept. Let \(H \) be a parity-check matrix that defines some length-\(n \) binary code \(C \). We say that the length-\((n-1)\) code \(C' \) is obtained by shortening \(C \) at position \(i \) if

\[
C' = \left\{ (v_0, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n-1}) \in \mathbb{F}_2^{n-1} \mid v \in C, v_i = 0 \right\}
\]

In terms of parity-check matrices, a possible parity-check matrix \(H' \) of \(C' \) is obtained by deleting the \(i \)-th column of \(H \). In terms of Tanner graphs, this means that the Tanner graph \(T(H') \) is obtained from \(T(H) \) by removing the \(i \)-th variable node, along with its incident edges. In the following,
we will also use the term “shortening” to denote this graph modification procedure.

Now, to explain the Tanner unwrapping technique in terms of graph covers, consider the quasi-cyclic block code \bar{C}_{QC} defined by the polynomial parity-check matrix $H_{QC}^r(X)$ of size $m_A \times n_A$, i.e.,

$$C_{QC}^r = \{ \psi(X) \in \mathbb{F}_2^r[X]^{m_A} \mid H_{QC}^r(X) \cdot \psi(X)^T = 0^T \},$$

where the polynomial operations are performed modulo $X^r - 1$ (see also Remark 5). As already mentioned in Section II-C the Tanner unwrapping technique is simply based on dropping these modulo computations. More precisely, with a quasi-cyclic block code \bar{C}_{QC}, we associate the convolutional code

$$C_{conv} = \{ \psi(D) \in \mathbb{F}_2[D]^{m_A} \mid H_{conv}(D) \cdot \psi(D)^T = 0^T \}$$

with polynomial parity-check matrix

$$H_{conv}(D) = H_{QC}^r(X)_{\mid X=D}.$$

Again, the change of indeterminate from X to D indicates the lack of modulo $D^r - 1$ operations.

In the following we will give, with the help of an example, two interpretations of the Tanner unwrapping technique in terms of graph covers.

Example 10 Unwrapping the quasi-cyclic block code C_{QC} that was considered in Remark 5 we obtain a rate-1/3 time-invariant convolutional code

$$C_{conv} = \{ \psi(D) \in \mathbb{F}_2[D]^{m_A} \mid H_{conv}(D) \cdot \psi(D)^T = 0^T \}$$

with polynomial parity-check matrix

$$H_{conv}(D) = \begin{bmatrix} D_1 & D_2 & D_3 \\ D_0 & D_0 & D_0 \end{bmatrix}.$$

Consider now the infinite graph covers that were constructed in Example 6 using GCC1, in particular $T(\mathcal{B})$. Let $C(T(\mathcal{B}))$ be the set of codewords defined by the Tanner graph $T(\mathcal{B})$. Then the convolutional code C_{conv} is a shortened version of $C(T(\mathcal{B}))$ where all codeword bits corresponding to negative time indices have been shortened. Therefore, the Tanner graph of C_{conv} is given by the Tanner graph in Figure 2(b) (bottom), where all bit nodes with negative time indices, along with their incident edges, are removed. Clearly, this bit-node and edge removal process implies decreasing the degrees of some check nodes. In fact, some check nodes become obsolete, because their degree is decreased to zero.

Therefore, one interpretation of the Tanner unwrapping technique in terms of graph covers is that the Tanner graph of the convolutional code is obtained by taking a suitable graph cover of the same proto-graph that was used to construct the quasi-cyclic LDPC code, along with some suitable shortening.

Example 11 We continue Remark 5 and Example 6. Clearly, in the same way as the block code C_{QC}^r is equivalent to the block code C_{QC}, we can define a code C_{conv} (with parity-check matrix \mathcal{H}_{conv}) that is equivalent to C_{conv}. The observations in Remark 7 and Example 7 can then be used to show that the Tanner graph \mathcal{H}_{conv} equals a graph cover of the Tanner graph \mathcal{H}_{QC}, along with some suitable shortening.

Therefore, the second interpretation of the Tanner unwrapping technique in terms of graph covers is that the Tanner graph of the convolutional code is obtained by taking a suitable graph cover of the Tanner graph of the quasi-cyclic code, along with some suitable shortening.

Now turning our attention to the JFZ unwrapping technique, recall from Section II-C that this method is based on writing a parity-check matrix \mathcal{H} of some block code \mathcal{C} as the sum $\mathcal{H} = \sum_{\ell \in \mathcal{L}} H_{\ell}$ (in \mathbb{Z}) of a collection of matrices $\{H_{\ell}\}_{\ell \in \mathcal{L}}$. The convolutional code is then defined to be

$$\mathcal{C}_{conv} \triangleq \{ \psi \in \mathbb{F}_2^\infty \mid \mathcal{H}_{conv} \cdot \psi^T = 0^T \},$$

where

$$\mathcal{H}_{conv} \triangleq \begin{bmatrix} H_0 & H_0 \\ H_1 & H_0 \\ \vdots & \vdots \\ H_{|\mathcal{L}| - 1} & H_0 \\ H_{|\mathcal{L}| - 2} & \cdots & \cdots & \cdots & \cdots & H_0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \end{bmatrix}.$$

(13)

With the help of an example, we now explain how the JFZ unwrapping technique can be cast in terms of graph-covers.

Example 12 Consider the infinite graph covers that were constructed using GCC2 in Example 6 in particular $T(\mathcal{B})$. Let $C(T(\mathcal{B}))$ be the set of valid assignments to the Tanner
graph $T(B)$. Moreover, let $\overline{H} = H_0 + H_1 + \cdots + H_6 \approx \begin{bmatrix} 0 & A_{0,0} & A_{0,1} & A_{0,2} & A_{0,3} & A_{1,0} & A_{1,1} \end{bmatrix}$, and let \overline{C}_conv be defined as in (12). Then the code \overline{C}_conv is a shortened version of $C(T(B))$, where all codeword bits corresponding to negative time indices have been shortened. Therefore, the Tanner graph of \overline{C}_conv is given by the Tanner graph in Figure 4(c)(bottom), where all the bit nodes with negative time indices are shortened.

In order to connect the unwrapping techniques due to Tanner and due to JFZ, we show now, with the help of an example, that in fact the unwrapping technique due to Tanner can be seen as a special case of the unwrapping technique due to JFZ.

Example 13 Consider the quasi-cyclic block code defined by the parity-check matrix $H^{(r)}_\text{QC} \triangleq T$, where T was defined in (7). Applying the JFZ unwrapping technique with the matrix decomposition $H^{(r)}_\text{QC} = A_0 + A_1$ (in \mathbb{Z}), with A_0 defined in (10) and A_1 defined in (11), H turns out to equal a submatrix of T in (9), namely the submatrix of T where the row and column index set are equal to $\mathbb{Z}_{\geq 0}$. However, the code defined by H_conv is equivalent to the code defined by the Tanner unwrapping technique applied to the quasi-cyclic code defined by $H^{(r)}_\text{QC}$.

Therefore, the unwrapping technique due to JFZ is more general. In fact, whereas the Tanner unwrapping technique leads to time-invariant convolutional codes, the unwrapping technique due to JFZ can, depending on the parity-check matrix decomposition and the internal structure of the terms in the decomposition, lead to time-varying convolutional codes with non-trivial period.

Despite the fact that the unwrapping technique due to Tanner is a special case of the unwrapping technique due to JFZ, it is nevertheless helpful to have both unwrapping techniques at hand, because sometimes one framework can be more convenient than the other. We will use both perspectives in the next section.

We conclude this section with the following remarks.
• Although most of the examples in this section have regular bit node degree 2 and regular check node degree 3, there is nothing special about this choice of bit and check node degrees; any other choice would work equally well.
• Although all polynomial parity-check matrices that appear in this section contain only monomials, this is not required, i.e., the developments in this section work equally well for polynomial parity-check matrices containing the zero polynomial, monomials, binomials, trinomials, and so on.
• It can easily be verified that if the matrix A in Definition 5 contains only zeros and ones, then the graph covers constructed in GCC1 and GCC2 never have parallel edges. In particular, if A is the parity-check matrix of a block code (like in most examples in this paper), then the constructed graph covers never have parallel edges.

However, if A contains entries that are larger than one, then there is the potential for the constructed graph covers to have parallel edges; if parallel edges really appear depends then critically on the choice of the decomposition $A = \sum_{i \in L} A_i$ (in \mathbb{Z}) and the choice of the permutation matrices $\{P_i\}_{i \in L}$. An example of such a case is the Tanner graph construction in Section V.C, where $A \triangleq \begin{bmatrix} 3 & 3 \end{bmatrix}$ and where $\{A_i\}_{i \in \mathbb{Z}}$ and $\{P_i\}_{i \in L}$ are chosen such that parallel edges are avoided in the constructed graph cover. We note that in the case of (iterated) graph-cover constructions it can make sense to have parallel edges in the intermediate graph covers. However, in the last graph-cover construction stage, parallel edges are usually avoided, because parallel edges in Tanner graphs typically lead to a weakening of the code and/or of the message-passing iterative decoder.

IV. GRAPH-COVER BASED CONSTRUCTIONS OF LDPC CONVOLUTIONAL CODES

Although the graph-cover constructions and unwrapping techniques that were discussed in Sections II and III are mathematically quite straightforward, it is important to understand how they can be applied to obtain LDPC convolutional codes with good performance and attractive encoder and decoder architectures. To that end, this section explores a variety of code design options and comments on some practical issues. It also proposes a new “random” unwrapping technique which leads to convolutional codes whose performance compares favorably to other codes with the same parameters. Of course, other variations than the ones presented here are possible, in particular, by suitably combining some of the example constructions.

The simulation results for the codes in this section plot the decoded bit error rate (BER) versus the signal-to-noise ratio (SNR) E_b/N_0 and were obtained by assuming BPSK modulation and an additive white Gaussian noise channel (AWGNC). All decoders were based on the sum-product algorithm [35] and were allowed a maximum of 100 iterations, with the block code decoders employing a syndrome-check based stopping rule. For comparing the performance of unwrapped convolutional codes with their underlying block codes we will use the following metric.

Definition 14 For a convolutional code constructed from an underlying block code, we define its “convolutional gain” to be the difference in SNR required to achieve a particular BER with the convolutional code compared to achieving the same BER with the block code.

The rest of this section is structured as follows. First we discuss the construction of some time-invariant LDPC convolutional codes based on the Tanner unwrapping technique. In this context we make a simple observation about how the syndrome former memory can sometimes be reduced without changing the convolutional code. Secondly, we present a

\footnote{We leave it as an exercise for the reader to show the validity of this connection beyond this specific example.}

\footnote{Of course, if the underlying quasi-cyclic block code is suitably chosen, then also the Tanner unwrapping technique can yield a time-varying convolutional code; however, we do not consider this option here.}
construction of time-varying LDPC convolutional codes based on iterated graph-cover constructions. An important sub-topic here will be an investigation of the influence of the “diagonal cut” (which is used to define a graph cover) on the decoding performance.

A. Construction of Time-Invariant LDPC Convolutional Codes Based on the Tanner Unwrapping Technique

In this section we revisit a class of quasi-cyclic LDPC codes and their associated convolutional codes that was studied in [35]. As we will see, they are instances of the quasi-cyclic code construction in Example 4 and Remark 5 and the corresponding convolutional code construction based on Tanner’s unwrapping technique in Example 10.

Example 15 Consider the regular proto-matrix

\[A \triangleq \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \]

with \(m_A = 3 \) and \(n_A = 5 \). We apply GCCI, as in Example 4 and Remark 5 with an interesting choice of permutation matrices first suggested by Tanner [37] that yields the parity-check matrix

\[H^{(r)}_{QC}(X) \triangleq \begin{bmatrix} I_1 & I_2 & I_4 & I_8 & I_{16} \\ I_5 & I_{10} & I_{20} & I_{9} & I_{18} \\ I_{25} & I_{19} & I_{7} & I_{14} & I_{28} \end{bmatrix}, \]

(15)

where as before \(I_s \) is an \(s \times s \) times left-circularly shifted identity matrix of size \(r \times r \) and \(r > 28 \). The corresponding polynomial parity-check is

\[H^{(r)}_{QC}(X) \triangleq \begin{bmatrix} X^1 & X^2 & X^4 & X^8 & X^{16} \\ X^5 & X^{10} & X^9 & X^{18} & X^{14} \\ X^{25} & X^{19} & X^7 & X^{14} & X^{28} \end{bmatrix}. \]

The resulting quasi-cyclic (3, 5)-regular LDPC block codes have block length \(n = 5 \cdot r \). In particular, for \(r = 31 \), \(r = 48 \), and \(r = 80 \), we obtain codes of length 155, 240, and 400, respectively, whose simulated BER performance results are shown in Figure 7. The choice \(r = 31 \) yields the well-known length-155 quasi-cyclic block code that was first introduced by Tanner [37] (see also the discussion in [18]).

Unwrapping these codes by the Tanner unwrapping technique as in Example 10 we obtain a rate-2/5 time-invariant convolutional code with \(\nu_s = 145 \) defined by the polynomial parity-check matrix

\[H^{(r)}_{conv}(D) \triangleq \begin{bmatrix} D^1 & D^2 & D^4 & D^8 & D^{16} \\ D^5 & D^{10} & D^{20} & D^9 & D^{18} \\ D^{25} & D^{19} & D^7 & D^{14} & D^{28} \end{bmatrix}. \]

Its decoding performance is also shown in Figure 7 under the label “\(R = 2/5 \) time-invariant conv. code with \(\nu_s = 145 \).” We conclude this example with a few remarks.

- Figure 7 shows that the convolutional code exhibits a “convolutional gain” of between 0.5 dB and 0.7 dB compared to the [155, 64] quasi-cyclic LDPC block code at moderate BERs and that the gain remains between 0.15 dB and 0.3 dB at lower BERs.

- Note that the polynomial parity-check matrix \(H^{(r)}_{conv}(D) \) that is obtained by the Tanner unwrapping technique is independent of the parameter \(r \) of the polynomial parity-check matrix \(H^{(r)}_{QC}(X) \), as long as \(r \) is strictly larger than the largest exponent appearing in \(H^{(r)}_{QC}(X) \). Moreover, for \(r \to \infty \), the Tanner graph of \(H^{(r)}_{QC}(X) \) is closely related to the Tanner graph of \(H^{(r)}_{conv}(D) \), and so it is not surprising to see that, for larger \(r \), the decoding performance of quasi-cyclic LDPC block codes based on \(H^{(r)}_{QC}(X) \) tends to the decoding performance of the LDPC convolutional based on \(H^{(r)}_{conv}(D) \), as illustrated by the two curves labeled “[240, 98] QC code” and “[400, 162] QC code” in Figure 7.

- The permutation matrices (more precisely, the circulant matrices) that were used for constructing the quasi-cyclic codes in this example were not chosen to optimize the Hamming distance or the pseudo-weight properties of the code. In particular, a different choice of circulant matrices may result in better high-SNR performance, i.e., in the so-called “error floor” region of the BER curve. For choices of codes with better Hamming distance properties, we refer the reader to [38].

- The remaining curves in Figure 7 will be discussed in Example 18.

We conclude this subsection with some comments on the syndrome former memory \(m_s \) of the convolutional codes obtained by the Tanner unwrapping technique, in particular how this syndrome former memory \(m_s \) can sometimes be reduced without changing the convolutional code.

Assume that we have obtained a polynomial parity-check matrix \(H^{(r)}_{conv}(D) \) from \(H^{(r)}_{QC}(X) \) according to the Tanner method. Clearly, the syndrome former memory \(m_s \) is given by the largest exponent that appears in \(H^{(r)}_{conv}(D) \). In some instances there is a simple way of reducing \(m_s \) without changing the convolutional code. Namely, if \(e \) is the minimal
exponent that appears in the polynomials of a given row of \(H_{\text{conv}}(D) \), then the polynomials in this row of \(H_{\text{conv}}(D) \) can be divided by \(D^s \). We illustrate this syndrome former memory reduction for the small convolutional code that appeared in Example 10.

Example 16 Applying the Tanner unwrapping technique to the polynomial parity-check matrix \(H_{\text{QC}}(r)(X) \) of the quasi-cyclic LDPC code with \(r = 7 \) in Remark 5 we obtain \(H_{\text{conv}}(D) \) of a rate-1/3 time-invariant LDPC convolutional code, as shown in Example 10, with syndrome former memory \(m_s = 6 \). Following the procedure discussed in the paragraph above, the first and second rows of \(H_{\text{conv}}(D) \) can be divided by \(D^1 \) and \(D^3 \), respectively, to yield an equivalent convolutional code with syndrome former memory \(m_s = 3 \) and polynomial parity-check matrix

\[
H_{\text{conv}}(D) = \begin{bmatrix} D^0 & D^1 & D^3 \\ D^3 & D^2 & D^0 \end{bmatrix}.
\]

Figure 8 shows parts of the corresponding scalar parity-check matrices \(H_{\text{conv}} \) for \(m_s = 3 \), together with the original scalar parity-check matrix for \(m_s = 6 \), and illustrates the equivalence of the two matrices in the sense that only the ordering of the rows is different, which does not affect the corresponding convolutional code. In this example, the order of the even-numbered rows stays the same, while the odd-numbered rows are shifted by four positions. The equivalence of the two parity-check matrices can be seen by noting that the parity-check matrix, outside of the diagonal structure, is filled with zeros.

B. Construction of Time-Varying LDPC Convolutional Codes Based on Iterated Graph-Cover Constructions

As was seen in Example 9 interesting graph covers can be obtained by combining GCC1 with GCC2, or vice-versa. Inspired by this example, this subsection considers iterated graph-cover constructions for constructing Tanner graphs of LDPC convolutional codes, in particular of time-varying LDPC convolutional codes.

Definition 17 Based on a combination of GCC1, GCC2, and the code-shortening concept introduced in Section III-C we propose the following construction of LDPC convolutional codes.

1) We start with the same regular proto-matrix \(A \) as in Example 15 for which \(m_A = 3 \) and \(n_A = 5 \).
2) We apply GCC1 to \(A \) with permutation matrices that are circulant matrices of size \(r \times r \) and obtain the parity-check matrix \(A' = H_{\text{QC}}^{(r)} \), shown in (15), which is the analogue of \(A^{(1)} \) in Figure 6(a).
3) We apply GCC2 to \(A' = H_{\text{QC}}^{(r)} \), with permutation matrices that are bi-infinite Toeplitz matrices and obtain a new parity-check matrix \(A'' \). This is analogous to the transition of the matrix \(A^{(1)} \) in Figure 6(a) to the matrix \(B^{(1)} \) in Figure 6(c). The “diagonal cut” is obtained by alternately moving \(n_A = 5 \) units to the right and then \(m_A = 3 \) units down.
4) Finally, we obtain the desired convolutional code by shortening the code bit positions corresponding to negative time indices.

For the choices \(r = 31, 48, 80 \), this construction results in rate-2/5 time-varying convolutional codes with syndrome former memory \(m_s = 30, 47, 79 \), respectively, and with constraint length \(\nu_s = (m_s + 1) \cdot n_A = 155, 240, 400 \), respectively. The label “time-varying” is indeed justified because the convolutional codes constructed here can be expressed in the form of the parity-check matrix in (1) with a suitable choice of syndrome former memory \(m_s \), non-trivial period \(T_s \), and submatrices \(\{ H_i(t) \}_t \).

The decoding performance of these codes is shown in Figure 7 labeled “\(R = 2/5 \) time-varying conv. code with \(\nu_s = \ldots \)”. As originally noted in [39], we observe that these
three LDPC convolutional codes achieve significantly better performance at a BER of 10^{-6} than the other codes shown in this plot, namely with “convolutional gains” of 2.0 dB for the $v_s = 155$ convolutional code, 2.4 dB for the $v_s = 240$ convolutional code, and 2.8 dB for the $v_s = 400$ convolutional code, compared to the three respective underlying LDPC block codes.

In order to compare these codes based on a given decoding processor (hardware) complexity, we consider a block code of length $n = v_s$ (see [40] and [41]). The above time-varying convolutional code for $r = 31$ has constraint length $v_s = (n_s + 1) \cdot c = 155$, and hence approximately the same processor complexity as the quasi-cyclic block code of length $n = 155$ in Figure 7 and the time-invariant convolutional code with $v_s = 145$ in Figure 9, but it achieves large gains compared to both of these codes. We note, in addition, that the performance of the time-varying convolutional code with constraint length $v_s = 400$ is quite remarkable, since, at a BER of 10^{-5}, it performs within 1 dB of the iterative decoding threshold of 0.965 dB, while having the same processor complexity as a block code of length only $n = 400$. In Section VI-C we discuss some possible reasons for these “convolutional gains,” along with their associated implementation costs in terms of decoder memory and decoding delay.

We make the following observations with respect to the above definition and example.

- The LDPC code construction in the above example yields time-varying LDPC convolutional codes with syndrome former memory $m_s \leq r - 1$ and period $T_s = r$. Most importantly, varying r in the above construction leads to different LDPC convolutional codes. This is in contrast to the Tanner unwrapping technique discussed in Section IV-A, where the obtained LDPC convolutional code is independent of the parameter r, as long as r is strictly larger than the largest exponent in $H_{QC}(X)$.

- As mentioned previously in Example 4 the iterated graph-cover construction based on the combination of GCC1 and GCC2 yields Tanner graphs that have a “pseudo-random” structure, a structure that seems to be beneficial as indicated by the above simulation results. (We remark that the improved performance of the time-varying LDPC convolutional codes obtained by unwrapping a randomly constructed LDPC block code was first noted by Lentmaier et al. in [42].)

- Instead of constructing a first parity-check matrix as in Step 1 of Definition 17 one can also start with any other (randomly or non-randomly constructed, regular or irregular) parity-check matrix, and still achieve a “convolutional gain.” The next example is an illustration of this point.

Example 19 As was done in [47], one can replace the parity-check matrix that was constructed in Step 1 of Definition 17 by an irregular LDPC block code with optimized iterative decoding thresholds. In particular, one can start with the parity-check matrix of the rate-1/2 irregular proto-graph-based code from [43] with an iterative decoding threshold of 0.63 dB, and several of its punctured versions. Figure 9 shows simulation results for the obtained block and convolutional codes. Each simulated block code had a block length of about 2500, with code rates ranging from 1/2 to 4/5. We see that “convolutional gains” ranging from 0.6 dB to 0.9 dB at a BER of 10^{-5} were obtained.

Similarly, it was shown in [44] that an LDPC convolutional code derived from a randomly constructed rate-1/2 irregular LDPC block code with block length 2400 outperformed the underlying code by almost 0.8 dB at a BER of 10^{-5}. The degree distribution of the underlying LDPC block code was fully optimized and had an iterative decoding threshold of 0.3104 dB [47].

Of course, there are other ways of applying the “diagonal cut” in Step 2 of Example 18 and so it is natural to investigate the influence of different “diagonal cuts” on the decoding performance. We will do this in the next few paragraphs by extending the discussion that was presented right after Example 1.

We start by assuming that the matrix after Step 1 of Definition 17 has size $m \times n$, and define $\eta = \gcd(m, n)$. Then, for any positive integer ℓ that divides η, we can perform a “diagonal cut” where we alternately move $c' = \ell \cdot (n/\ell)$ units to the right and then $c' - b' = \ell \cdot (m/\eta)$ units down (i.e., $b' = \ell \cdot ((n - m)/\eta)$). With this, the obtained convolutional code is a periodically time-varying LDPC convolutional code with rate $R' = b'/c' = b/c$, syndrome former memory $m_{s'} = (n/c') - 1 - (\eta/\ell) - 1$, period $T_{s'} = m_{s'} + 1 = n/c' = \eta/\ell$, and constraint length $v_{s'} = c' \cdot (m_{s'} + 1) = n$. (Note that the syndrome former memory $m_{s'}$ depends on ℓ, but the constraint length $v_{s'}$ is independent of ℓ.)

Example 20 Here we simulate the performance of some LDPC convolutional codes obtained according to the above generalization of the “diagonal cut.” Namely, we start with a randomly-constructed $(3, 6)$-regular LDPC block code based on a parity-check matrix of size 1024×2048. Therefore $m = 1024$, $n = 2048$, and $\eta = \gcd(m, n) = 1024$. (Note
that $c' = \ell \cdot (n/\eta) = 2\ell$ and $b' = \ell \cdot ((n-m)/\eta) = \ell$ in this case.) Figure 10 shows the performance of the resulting family of LDPC convolutional codes, where ℓ varies in powers of 2 from 1 to 1024, each with constraint length $\nu_\ell' = 2048$. We make the following observations. First, the case $\ell = 1024$ is not interesting because it results in $m_\ell' = 0$, i.e., it is a trivial concatenation of copies of the block code, and so the BER is the same as for the underlying block code. Secondly, for all other choices of ℓ, the constructed codes perform very similarly, each exhibiting a sizable “convolutional gain” compared to the block code, although the syndrome former memory m_ℓ' is different in each case.

A special case of the above code construction deserves mention. When $\eta = 1$, i.e., m and n are relatively prime, the only possible step size is obtained by choosing $\ell = \eta = 1$, which results in the above-mentioned uninteresting case of trivial concatenations of copies of the block code. However, all-zero columns can be inserted in the parity-check matrix such that a value of $\eta > 1$ is obtained, which allows a step size to be chosen that results in a convolutional code with $m_\ell' > 0$. The variable nodes corresponding to the all-zero columns are not transmitted, i.e., they are punctured, so that the rate corresponds to the size of the original parity-check matrix.

For the “diagonal cut” LDPC convolutional code constructions discussed above, the unwrapped convolutional codes have the minimum possible constraint length ν_ℓ', which is equal to the block length of the underlying block code. Although this is a desirable property for practical implementation, we do not need to limit ourselves to diagonal cuts in general.

Inspired by the graph-cover construction of Figures 5(b) and 5(d) in Example 8, instead of a “diagonal cut,” we now consider a “random cut,” which we define as a partition of the parity-check matrix into two matrices that add up (over \mathbb{Z}) to the parity-check matrix. Despite the randomness of this approach, several of the key unwrapping properties of the “diagonal cut” are preserved. For example, the computational complexity per decoded bit does not change, since the degree distributions of the resulting codes are all equal. However, the LDPC convolutional codes based on a “random cut” typically require larger decoding processor sizes as a result of increased code constraint lengths.

Example 21 We continue Example 20; however, instead of performing “diagonal cuts,” we perform “random cuts.” Figure 11 shows the performance of five such LDPC convolutional codes, each with rate $1/2$ and constraint length $\nu_\ell' = 4096$, compared to the underlying block code and the LDPC convolutional code constructed in Example 20 (with parameters $\ell = 1$, $b' = 1$, $c' = 2$, and $\nu_\ell' = 2048$). We note that the increase in constraint length from $\nu_\ell' = 2048$ to $\nu_\ell' = 4096$ due to the “random cut” results in a small additional coding gain in exchange for the larger decoding processor size.

Finally, we note that, for a size $m \times n$ sparse parity-check matrix H with p nonzero entries, there are a total of 2^{mn} possible ways of choosing a random cut. However, due to the sparsity, there are only 2^p distinct random cuts, where $p \ll m \cdot n$.

V. CONNECTIONS TO OTHER LDPC CODES BASED ON GRAPH-COVER CONSTRUCTIONS

In this section we briefly discuss some other graph-cover-based LDPC code constructions proposed in the literature, namely by Ivkovic et al. [44], by Divsalar et al. [43], [45], by Lentmaier et al. [46], [47], and by Kudekar et al. [48].

A. LDPC Code Construction by Ivkovic et al.

The LDPC code construction by Ivkovic et al. in [44] can be seen as an application of the graph-cover construction in Figures 5(b) and 5(d) in Example 8. Namely, in terms of our notation, Ivkovic et al. [44] start with a parity-check matrix H, choose the set $\mathcal{L} \triangleq \{0, 1\}$, a collection of zero-one matrices

\[E_b/N_0 (dB)\]

\[E_b/N_0 (dB)\]
\(\{ H_0, H_1 \} \) such that \(H = H_0 + H_1 \) (in \(\mathbb{Z} \)), and the collection of permutation matrices \(\{ P_0, P_1 \} \) \(\equiv \{ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \} \). Most importantly, the decomposition of \(H \) into \(H_0 \) and \(H_1 \) is done such that trapping sets that were present in the Tanner graph of \(H \) are not present in the Tanner graph of the new parity-check matrix. In addition, Ivkovic et al. give guarantees on the relationship between the minimum Hamming distances of the old and new code.\(^{15}\)

B. LDPC Code Construction by Divsalar et al.

One of the LDPC code constructions by Divsalar et al. in \([43, 45]\) is the so-called rate-1/2 AR4JA LDPC code construction, which was also considered earlier in Example \([19]\).

A particularly attractive, from an implementation perspective, version of this code construction is obtained by an iterated graph-cover construction procedure, where each graph-cover construction is based on a cyclic cover, as in the application of GCCI in Example \([4]\). Although cyclic covers result in simplified encoding and decoding circuitry, codes based on cyclic covers are known to have the disadvantage that the minimum Hamming distance is upper bounded by a number that is a function of the proto-graph structure \([49, 50]\). However, because the cyclic cover of a cyclic cover of the proto-graph is not necessarily a cyclic cover of the proto-graph, such disadvantages are avoided to a certain extent in the AR4JA LDPC code construction. Nevertheless, ultimately the minimum Hamming distance of such codes will also be upper bounded by some number; however, these bounds usually become relevant only beyond the code length of interest.\(^{16}\)

C. LDPC Code Construction by Lentmaier et al. and Kudekar et al.

The LDPC code constructions by Lentmaier et al. \([46, 47]\) and Kudekar et al. \([48]\) can also be seen as iterated graph-cover constructions. We now describe a specific instance of this construction.

- It starts with a proto-matrix \(A \equiv \begin{bmatrix} 3 & 3 \end{bmatrix} \).
- The first graph-cover construction is very similar to the bi-infinite graph-cover construction in Example \([6]\) and Figure \([4]\). Namely, in terms of our notation, we define the set \(L \equiv \{ 0, 1, 2, 3, 4, 5 \} \), the collection of matrices \(\{ A_l \}_{l \in L} \) with \(A_0 = A_1 = A_2 = \begin{bmatrix} 1 & 0 \end{bmatrix} \) and \(A_3 = A_4 = A_5 = \begin{bmatrix} 0 & 1 \end{bmatrix} \), and the collection of permutation matrices \(\{ P_l \}_{l \in L} \) with \(P_0 = T_0, P_1 = T_1, P_2 = T_2, P_3 = T_0, P_4 = T_1, P_5 = T_2 \), where as before \(T_0 \) is a bi-infinite Toeplitz matrix with zeros everywhere except for ones in the s-th diagonal below the main diagonal.
- The second graph-cover construction is a random graph-cover construction of cover-degree \(M \).
- The code is shortened. Namely, for some positive integer \(L \), all codeword indices corresponding to values outside the range \([-LM, LM]\] are shortened.\(^{17}\)

We now point out some differences between this code construction and the LDPC convolutional code construction in Definition \([17]\). Namely, the LDPC code ensemble constructed above has the following properties.

- The first graph-cover construction is based on bi-infinite Toeplitz permutation matrices, and the second graph-cover construction is based on finite-size permutation matrices.
- The analysis focuses on the case where \(M \) and \(L \) go to infinity (in that order), i.e., for a fixed \(L \) the parameter \(M \) tends to infinity. Afterwards, \(L \) tends to infinity.
- The number of check nodes with degree smaller than 6 in the Tanner graph is proportional to \(M \).
- In \([48]\), for the binary erasure channel, when \(M \) and \(L \) go to infinity (in that order), Kudekar et al. prove that the sum-product algorithm decoding threshold for a slight variation of the above-mentioned ensemble of codes equals the maximum a-posteriori decoding threshold for the ensemble of \((3, 6)\)-regular LDPC codes. This is a very remarkable property! (In \([51]\), using density evolution methods, Lentmaier et al. give numerical evidence that this statement might also hold for binary-input output-symmetric channels beyond the binary erasure channel.)

On the other hand, the codes constructed in Definition \([17]\) have the following properties. (We assume that the underlying block code is a \((3, 6)\)-regular LDPC code.)

- The first graph-cover construction is based on finite-size permutation matrices, and the second graph-cover construction is based on bi-infinite Toeplitz permutation matrices.
- In a typical application of this construction, \(r \) is fixed.
- The number of check nodes with degree smaller than 6 in the Tanner graph of the LDPC convolutional code is proportional to \(r \).
- For a binary-input output-symmetric channel, the performance of the unterminated LDPC convolutional code under the continuous sliding window sum-product algorithm decoding discussed in Section \([11, 13]\) improves with increasing \(r \) (see, e.g., Fig. \([7]\), but the ultimate asymptotic threshold of such unterminated decoding is unknown.\(^{18}\)

The differences between these two code families come mainly from the fact that the codes constructed by Lentmaier et al. and Kudekar et al. are essentially block codes, although sophisticated ones, whereas the codes in Definition \([17]\) are convolutional codes, along with their advantages and disadvantages. In particular, the way the limits of the parameters

\(^{15}\)See also the discussion of similar results in \([49]\ Appendix J]\).

\(^{16}\)For this statement we assume that the degree of the first cover is fixed.

\(^{17}\)Although this code construction method could be presented such that the shortening is done between the two graph-cover construction steps, namely by shortening all codeword indices that correspond to values outside the range \([-LM, LM]\), we have opted to present the code construction such that the shortening is done after the two graph-cover construction steps. In this way, the structure of the code construction description matches better the description in Definition \([17]\).

\(^{18}\)Lentmaier et al. have shown in \([46]\) and \([47]\) that property terminated LDPC convolutional codes become equivalent to the LDPC block codes constructed by Kudekar et al. in \([80]\) and inherit their excellent asymptotic threshold properties, but whether this is true for unterminated LDPC convolutional codes is still an open question.
are taken, there is a significant difference in the fraction of check nodes with degree strictly smaller than 6. Namely, in the case of the codes by Lentmaier et al. and Kudekar et al., this fraction is a fixed non-zero function of \(L \) (here we assume fixed \(L \) and \(M \to \infty \)), whereas in the case of the codes considered in this paper, this fraction is zero (here we assume fixed \(r \) and an unterminated convolutional code).

We conclude this section with the following remarks. Namely, although the convolutional codes in Definition 17 may not enjoy the same asymptotic thresholds as the block code constructions by Lentmaier et al. and by Kudekar et al., they lend themselves to a continuous decoding architecture, as described in Section II-B which can be advantageous in certain applications, such as data streaming, without a predetermined frame structure. More importantly, however, it is very encouraging that the simulation results reported in this paper indicate that sizable “convolutional gains” are already visible for very reasonable constraint/code lengths. In the next section we discuss some possible reasons for these gains. Finally, it is worth noting that, as the block lengths and associated constraint lengths of the constructions presented in this section become larger, the observed “convolutional gains” will become smaller since the block code results will approach their respective thresholds.

VI. ANALYSIS OF-derived
LDPC CONVOLUTIONAL CODES

This section collects some analytical results about LDPC convolutional codes. In particular, we compare the existence / non-existence of cycles in LDPC block and LDPC convolutional codes, we present some properties of pseudo-codewords, and we discuss the — mostly moderate — cost increase in decoder complexity that is incurred by going from LDPC block to LDPC convolutional codes.

A. Graph-Cycle Analysis

It is well known that cycles in the Tanner graph representation of a sparse code affect message-passing iterative decoding algorithms, with short cycles generally pushing the performance further away from optimum. (Indeed, attempts to investigate and minimize these effects have been made in [52] and [53], where the authors propose LDPC code construction procedures to maximize the connectivity of short cycles to the rest of the graph, thus also maximizing the independence of the messages flowing through a cycle.) Hence it is common practice to design codes that do not contain short cycles, so as to obtain independent messages in at least the initial iterations of the decoding process.

Avoiding cycles in Tanner graphs also has the benefit of avoiding pseudo-codewords. To see this, let the active part of a pseudo-codeword be defined as the set of bit nodes corresponding to the support of the pseudo-codeword, along with the adjacent edges and check nodes. With this, it holds that the active part of any pseudo-codeword contains at least one cycle and/or at least one bit node of degree one. And so, given that the typical Tanner graph under consideration in this paper does not contain bit nodes of degree one, the active part of a pseudo-codeword must contain at least one cycle. Therefore, avoiding cycles implicitly means avoiding pseudo-codewords.

Let \(\tilde{H} \) and \(H \) be two parity-check matrices such that \(T(\tilde{H}) \) is a graph cover of \(T(H) \). It is a well-known result that any cycle in \(T(\tilde{H}) \) can be mapped into a cycle in \(T(H) \). This has several consequences. In particular, the girth of \(T(\tilde{H}) \) is at least as large as the girth of \(T(H) \), and more generally, \(T(\tilde{H}) \) contains fewer short cycles than \(T(H) \). For the codes constructed in this paper, this means that the unwrapping process (from block code to convolutional code) can “break” some cycles in the Tanner graph of the block code.

We now revisit some codes that were discussed in earlier sections and analyze their graph cycle structure using a brute-force search algorithm. Note that, in order to accurately compare the graph cycle distributions of two codes with different block/constraint lengths, we compute the total number of cycles of a given cycle length per block/constraint length, and divide this number by the block/constraint length.

Example 22 Consider the LDPC block and convolutional codes that were constructed in Examples 17 and 18 and whose BER performance was plotted in Figure 17 and whose performance was plotted in Figure 17, Table 1 shows the average number of cycles of certain lengths for the Tanner graphs of the quasi-cyclic block codes, for the Tanner graph of the corresponding time-invariant convolutional code, and

Code	\(N_0 \)	\(N_{10} \)	\(N_{12} \)
BC (n = 155)	3,000	24,000	146,000
BC (n = 240)	2,600	14,300	93,400
BC (n = 400)	2,200	12,400	70,600
Time-invariant CC (\(v_b = 155 \))	2,200	12,400	70,600
Time-varying CC (\(v_b = 155 \))	0.9110	8.342	44,813
Time-varying CC (\(v_b = 240 \))	0.9170	6.538	90,224
Time-varying CC (\(v_b = 400 \))	0.6144	2.785	24,985

20This observation has been used in many different contexts over the past ten years in the construction of LDPC and turbo codes; in particular, it was used in [22], where the authors dealt with bounding the girth of the resulting LDPC convolutional codes.

21The search technique that we used is based on evaluating the diagonal entries of the powers of the matrix \(M \) defined in Eq. (3.1). Note that this search technique works only for counting cycles of length smaller than twice the girth of the graph. For searching longer cycles, more sophisticated algorithms are needed.

22For LDPC convolutional codes, we have made use of the periodicity of the parity-check matrices in order to complete the search in a finite number of steps.
for the Tanner graph of the time-varying convolutional codes.

Example 23 Table II shows the cycle analysis results for the rate-1/2 proto-graph-based codes that were discussed in Example 19 and whose BER performance was plotted in Figure 9.

From Examples 22 and 23 we see that many of the short cycles in the Tanner graphs of the LDPC block codes are “broken” to yield cycles of larger length in the Tanner graphs of the derived LDPC convolutional codes.

B. Pseudo-Codeword Analysis

This section collects some comments concerning the pseudo-codewords of the parity-check matrices under consideration in this paper.

We start by observing that many of the statements that were made in [36] about pseudo-codewords can be extended to the setup of this paper. In particular, if some parity-check matrices \(\tilde{H} \) and \(H \) are such that \(T(\tilde{H}) \) is a graph cover of \(T(H) \), then a pseudo-codeword of \(H \) can be “wrapped” to obtain a pseudo-codeword of \(\tilde{H} \), as is formalized in the next lemma.

Lemma 24 Let the parity-check matrices \(\tilde{H} \) and \(H \) be such that \(T(\tilde{H}) \) is an \(M \)-fold graph cover of \(T(H) \). More precisely, let \(\tilde{H} = \sum_{\ell \in \mathcal{L}} H_{\ell} \otimes P_{\ell} \) for some set \(\mathcal{L} \), for some collection of parity-check matrices \(\{ H_{\ell} \}_{\ell \in \mathcal{L}} \) such that \(H = \sum_{\ell \in \mathcal{L}} H_{\ell} \) (in \(\mathbb{Z} \)), and for some collection of \(M \times M \) permutation matrices \(\{ P_{\ell} \}_{\ell \in \mathcal{L}} \). Moreover, let \(\tilde{\mathcal{L}} \) be the set of column indices of \(\tilde{H} \) and let \(\mathcal{L} \times M \) with \(\mathcal{M} \triangleq \{ 0, 1, \ldots, M - 1 \} \) be the set of column indices of \(\tilde{H} \). With this, if \(\omega = (\tilde{\omega}_{i,m})_{(i,m) \in \mathcal{L} \times \mathcal{M}} \) is a pseudo-codeword of \(\tilde{H} \), then \(\omega = (\omega_{i})_{i \in \mathcal{L}} \) with

\[
\omega_{i} \triangleq \frac{1}{M} \sum_{m \in \mathcal{M}} \tilde{\omega}_{i,m} \quad (\text{in } \mathbb{R})
\]

(17)

is a pseudo-codeword of \(H \).

Proof: (Sketch.) There are different ways to verify this statement. One approach is to show that, based on the fact that \(\omega \) satisfies the inequalities that define the fundamental polytope of \(\tilde{H} \) \cite{22, 23, 54, 55}. \(\omega \) satisfies the inequalities that define the fundamental polytope of \(H \). (We omit the details.) Another approach is to use the fact that pseudo-codewords with rational entries are given by suitable projections of codewords in graph covers \cite{22, 23}. So, for every pseudo-codeword \(\tilde{\omega} \) of \(\tilde{H} \) with rational entries, there is some graph cover of \(T(\tilde{H}) \) with a codeword in it, which, when projected down to \(T(H) \), gives \(\omega \). However, that graph cover of \(T(\tilde{H}) \) is also a graph cover of \(T(H) \), and so this codeword, when projected down to \(T(H) \), gives \(\omega \) as defined in (17). (We omit the details; see [36] for a similar, but less general, result.)

One can then proceed as in [36] and show that the AWGNC, the BSC, and the BEC pseudo-weights \cite{5, 22, 23, 54, 55, 58} of \(\omega \) will be at least as large as the corresponding pseudo-weights of \(\tilde{\omega} \). As a corollary, the minimum AWGNC, BSC, and BEC pseudo-weights of \(\tilde{H} \) are, respectively, at least as large as the corresponding minimum pseudo-weights of \(H \). Similar results can also be obtained for the minimum Hamming distance.

Because the high-SNR behavior of linear programming decoding is dominated by the minimum pseudo-weight of the relevant parity-check matrix, the high-SNR behavior of linear programming decoding of the code defined by \(\tilde{H} \) is at least as good as the high-SNR behavior of linear programming decoding of the code defined by \(H \). In general, because of the observations made in Section VI-A about the “breaking” of cycles and the fact that the active part of a pseudo-codeword must contain at least one cycle, it follows that the unwrapping process is beneficial for the pseudo-codeword properties of an unwrapped code, in the sense that many pseudo-codewords that exist in the base code do not map to pseudo-codewords in the unwrapped code. It is an intriguing challenge to better understand this process and its influence on the low-to-medium SNR behavior of linear programming and message-passing iterative decoders, in particular, to arrive at a better analytical explanation of the significant gains that are visible in the simulation plots that were shown in Section VI. To this end, the results of \cite{46} and \cite{48} with respect to some related code families (see the discussion in Section V) will be very helpful, since they indicate that some of the features of the fundamental polytope deserve further analysis.

C. Cost of the “Convolutional Gain”

In this subsection, we investigate the cost of the convolutional gain by comparing several aspects of decoders for LDPC block and convolutional codes. In particular, we consider the computational complexity, hardware complexity, decoder memory requirements, and decoding delay. More details on the various comparisons described in this section can be found in \cite{30, 40, 41}.

LDPC block code decoders and LDPC convolutional code decoders have the same computational complexity per decoded bit and per iteration since LDPC convolutional codes derived from LDPC block codes have the same node degrees (row and

\[\text{TABLE II}\]

Code	\(N_4 \)	\(N_6 \)
Rate-1/2 BC (\(n = 2500 \))	0.013	0.120
Rate-2/3 BC (\(n = 2530 \))	0.065	0.839
Rate-3/4 BC (\(n = 2520 \))	0.130	2.710
Rate-4/5 BC (\(n = 2508 \))	0.250	6.544
Rate-1/2 time-varying CC (\(n = 2500 \))	0.010	0.064
Rate-2/3 time-varying CC (\(n = 2520 \))	0.044	0.483
Rate-3/4 time-varying CC (\(n = 2520 \))	0.091	1.465
Rate-4/5 time-varying CC (\(n = 2508 \))	0.173	3.622

\[\text{24}\text{We neglect here the influence of the multiplicity of the minimum pseudo-weight pseudo-codewords.}\]
column weights) in their Tanner graph representations, which determines the number of computations required for message-passing decoding.

We adopt the notion of processor size to characterize the hardware complexity of implementing the decoder. A decoder’s processor size is proportional to the maximum number of variable nodes that can participate in a common check equation. This is the block length \(n \) for a block code, since any two variable nodes in a block can participate in the same check equation. For a convolutional code, this is the constraint length \(\nu_s \), since no two variable nodes that are more than \(\nu_s \) positions apart can participate in the same check equation. The constraint lengths of the LDPC convolutional codes derived from LDPC block codes of length \(n \) satisfy \(\nu_s \leq n \). Therefore, the convolutional codes have a processor size less than or equal to that of the underlying block code.

On the other hand, the fully parallel pipeline decoding architecture penalizes LDPC convolutional codes in terms of decoder memory requirements (and decoding delay/latency) as a result of the \(I \) iterations being multiplexed in space rather than in time. The pipeline decoder architecture of Figure \[1\] consists of \(I \) identical processors of size \(\nu_p \) performing \(I \) decoding iterations simultaneously on independent sections of a decoding window containing \(I \) constraint lengths of received symbols. This requires \(I \) times more decoder memory elements than an LDPC block code decoder that employs a single processor of size \(n = \nu_p \) performing \(I \) decoding iterations successively on the same block of received symbols. Therefore, the decoder memory requirements and the decoding delay of the pipeline decoder are proportional to \(\nu_p \cdot I \), whereas the block decoder’s memory and delay requirements are only proportional to \(n \). Another way of comparing the two types of codes, preferred by some researchers, is to equate the block length of a block code to the memory/delay requirements, rather than the processor size, of a convolutional code, i.e., to set \(n = \nu_p \cdot I \). In this case the block code, now having a block length many times larger than the constraint length of the convolutional code, will typically (depending on \(I \)) outperform the convolutional code, but at a cost of a much larger hardware processor. Finally, as noted in Section \[II\] the parallel pipeline decoding architecture for LDPC convolutional codes can be replaced by a serial looping decoding architecture, resulting in fewer processors but a reduced throughput along with the same memory and delay requirements.

In summary, the convolutional gain achieved by LDPC convolutional codes derived from LDPC block codes comes at the expense of increased decoder memory requirements and decoding delays. Although this does not cause problems for some applications that are not delay-sensitive (e.g., deep-space communication), for other applications that are delay-sensitive (e.g., real-time voice/video transmission), design specifications may be met by deriving LDPC convolutional codes from shorter LDPC block codes, thus sacrificing some coding gain, but reducing memory and delay requirements, or by employing a reduced window size decoder, as suggested in the recent paper by Papaleo et al. \[28\], with a resulting reduction in the “convolutional gain.”

VII. CONCLUSIONS

In this paper we showed that it is possible to connect two known techniques for deriving LDPC convolutional codes from LDPC block codes, namely the techniques due to Tanner and due to Jiménez-Felström and Zigangirov. This connection was explained with the help of graph covers, which were also used as a tool to present a general approach for constructing interesting classes of LDPC convolutional codes. Because it is important to understand how the presented code construction methods can be used — and in particular combined — we then discussed a variety of LDPC convolutional code constructions, along with their simulated performance results.

In the future, it will be worthwhile to extend the presented analytical results, in particular to obtain a better quantitative understanding of the low-to-medium SNR behavior of LDPC convolutional codes. In that respect, the insights in the papers by Lentmaier et al. \[46\], \[47\] and Kudekar et al. \[48\] on the behavior of related code families will be valuable guidelines for further investigation.

ACKNOWLEDGMENTS

The authors would like to thank Chris Jones, Michael Lentmaier, David Mitchell, Michael Tanner, and Kamil Zigangirov for their valuable discussions and comments. We also gratefully acknowledge the constructive comments made by the reviewers.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error correcting coding and decoding: turbo codes,” in Proc. IEEE International Conference on Communications, Geneva, Switzerland, May 1993, pp. 1064–1070.
[2] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.
[3] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation, Linköping University, Sweden, 1996.
[4] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” Electronics Letters, vol. 32, no. 18, pp. 1645–1646, Aug. 1996.
[5] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and V. Stemann, “Practical loss-resilient codes,” in Proc. 29th Annual ACM Symp. on Theory of Computing, 1997, pp. 150–159.
[6] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Improved low-density parity-check codes using irregular graphs,” IEEE Trans. Inf. Theory, vol. 47, pp. 585–598, Feb. 2001.
[7] S. Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 657–670, Feb. 2001.
[8] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001.
[9] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inf. Theory, vol. 27, no. 5, pp. 533–547, Sep. 1981.
[10] S. Y. Chung, G. D. Forney, Jr., T. J. Richardson, and R. L. Urbanke, “On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Communications Letters, vol. 5, no. 2, pp. 58–60, Feb. 2001.
[11] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.
[12] P. Oswald and A. Shokrollahi, “Capacity-achieving sequences for the erasure channel,” IEEE Trans. Inf. Theory, vol. 48, no. 12, pp. 3017–3028, Dec. 2002.
[13] S. Bates, D. Elliot, and R. Swamy, “Termination sequence generation circuits for low-density-parity-check convolutional codes,” IEEE Trans. Circuits and Systems I, vol. 53, no. 9, pp. 1909–1917, Sep. 2006.
