Research article

Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions

Miguel Vivas-Cortez\(^1\), Muhammad Aamir Ali\(^2\),* Artion Kashuri\(^3\) and Hüseyin Budak\(^4\)

\(^1\) Pontificia Universidad Católica del Ecuador, Facultad de Ciencias Naturales y Exactas, Escuela de Ciencias Físicas y Matemáticas, Sede Quito, Ecuador
\(^2\) Jiangsu Key Laboratory of NSLSCS, School of Mathematical Sciences, Nanjing Normal University, 210023, China
\(^3\) Department of Mathematics, Faculty of Technical Science, University “Ismail Qemali”, 9400 Vlora, Albania
\(^4\) Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey

* Correspondence: Email: MJVIVAS@puce.edu.ec, mahr.muhammad.aamir@gmail.com.

Abstract: In this work, we establish inequalities of Hermite-Hadamard-Mercer (HHM) type for convex functions by using generalized fractional integrals. The results of our paper are the extensions and refinements of Hermite-Hadamard (HH) and Hermite-Hadamard-Mercer (HHM) type inequalities. We discuss special cases of our main results and give new inequalities of HH and HHM type for different fractional integrals like, Riemann-Liouville (RL) fractional integrals, \(k\)-Riemann-Liouville (\(k\)-RL) fractional integrals, conformable fractional integrals and fractional integrals of exponential kernel.

Keywords: Hermite-Hadamard inequality; Hermite-Hadamard-Mercer inequality; Hölder inequality; Jensen-Mercer inequality; convex functions; fractional integrals

Mathematics Subject Classification: 26A33, 26A51, 26D07, 26D10, 26D15

1. Introduction and Preliminaries

For a convex function \(f : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) on \(I \) with \(c, d \in I \) and \(c < d \), the Hermite–Hadamard inequality states that [1]:

\[
f \left(\frac{c + d}{2} \right) \leq \frac{1}{d - c} \int_c^d f(t) \, dt \leq \frac{f(c) + f(d)}{2}. \tag{1.1}
\]

The Hermite-Hadamard integral inequality (1.1) is one of the most famous and commonly used inequalities. The recently published papers [2–17] are focused on extending and generalizing the
convexity, Hermite-Hadamard inequality, and other inequalities for convex functions.

The situation of the fractional calculus (integrals and derivatives) has won vast popularity and significance throughout the previous five decades or so, due generally to its demonstrated applications in numerous seemingly numerous and great fields of science and engineering [18–20].

Now, we recall the definitions of Riemann-Liouville (RL) and generalized Riemann–Liouville (GRL) fractional integrals given by Sarikaya and Ertuğral.

Definition 1.1 ([18–20]). Let \(f \in L_1[c, d] \). The Riemann–Liouville (RL) fractional integrals \(RL I^\nu_{c+} f \) and \(RL I^\nu_{d-} f \) of order \(\nu > 0 \) with \(c \geq 0 \) are respectively defined by

\[
RL I^\nu_{c+} f(x) = \frac{1}{\Gamma(\nu)} \int_c^x (x-t)^{\nu-1} f(t) \, dt, \quad c < x,
\]

and

\[
RL I^\nu_{d-} f(x) = \frac{1}{\Gamma(\nu)} \int_x^d (t-x)^{\nu-1} f(t) \, dt, \quad x < d,
\]

with \(RL I^0_{c+} f(x) = RL I^0_{d-} f(x) = f(x) \).

Definition 1.2 ([21]). Assume that the function \(h : [0, +\infty) \to [0, +\infty) \) satisfies the following condition:

\[
\int_0^1 \frac{h(t)}{t} \, dt < +\infty.
\]

Then, the left sided and right sided generalized Riemann–Liouville (GRL) fractional integrals, denoted by \(GRL_I h_{c+} \) and \(GRL_I h_{d-} \), are defined as follows:

\[
GRL_I h_{c+} f(x) = \int_c^x \frac{h(x-t)}{x-t} f(t) \, dt, \quad c < x,
\]

and

\[
GRL_I h_{d-} f(x) = \int_x^d \frac{h(t-x)}{t-x} f(t) \, dt, \quad x < d.
\]

Remark 1.1. From the Definition 1.1 one can obtain some known definitions of fractional calculus as special cases. That is,

- If \(h(t) = \frac{t^\nu}{\Gamma(\nu)} \), then Definition 1.2 reduces to Definition 1.1.
- If \(h(t) = \frac{t^\nu}{\Gamma(\nu)} \), then the GRL fractional integrals reduce to k–RL fractional integrals [22].
- If \(h(t) = \frac{t^{\frac{1}{\nu}}}{\Gamma(\nu)} \), then the GRL fractional integrals reduce to the fractional integrals with exponential kernel [23].
- If \(h(t) = t(y-t)^{\nu-1} \), then the GRL fractional integrals reduce to the conformable fractional integrals [24].

With a huge application of RL fractional integration and Hermite–Hadamard inequality, many researchers in the field of fractional calculus extended their research to the Hermite–Hadamard inequality, including RL fractional integration rather than ordinary integration; for example see [25–32].

On the one hand, it is well known that RL and GRL fractional integrals have the same importance in theory of integral inequalities, and the GRL fractional integrals are more convenient for calculation.
Therefore it is necessary to study the Hermite-Hadamard integral inequalities by using the GRL fractional integrals while by using the RL fractional integrals. Fortunately, studying the Hermite-Hadamard integral inequalities via the GRL fractional integrations can unify the research of ordinary and fractional integrations. So it is necessary and meaningful to study Hermite-Hadamard integral inequalities via the GRL fractional integrations (see for details [21, 33–36]).

In this paper, we consider the integral inequality of HHM type that depends on the Hermite-Hadamard and Jensen–Mercer inequalities. For this reason, we recall the Jensen–Mercer inequality: Let \(0 < x_1 \leq x_2 \leq \cdots \leq x_n \) and \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \) nonnegative weights such that \(\sum_{i=1}^{n} \alpha_i = 1 \). Then, the Jensen inequality [37, 38] is as follows, for a convex function \(f \) on the interval \([c, d]\), we have

\[
f\left(\sum_{i=1}^{n} \alpha_i x_i \right) \leq \sum_{i=1}^{n} \alpha_i f(x_i),
\]

for all \(x_i \in [c, d] \) and \(\alpha_i \in [0, 1], i = 1, 2, \ldots, n \).

Theorem 1.1 ([11, 38]). If \(f \) is convex function on \([c, d]\), then

\[
f\left(c + d - \sum_{i=1}^{n} \alpha_i x_i \right) \leq f(c) + f(d) - \sum_{i=1}^{n} \alpha_i f(x_i),
\]

for each \(x_i \in [c, d] \) and \(\alpha_i \in [0, 1], i = 1, 2, \ldots, n \) with \(\sum_{i=1}^{n} \alpha_i = 1 \).

For some results related to Jensen-Mercer inequality, see [39–41].

Based on the above observations and discussion, the primary purpose of this article is to establish several inequalities of HHM type for convex functions by using the GRL fractional integrals.

2. Main Results

Throughout this attempt, we consider the following notations:

\[\Lambda(t) := \int_{0}^{t} \frac{h((y-x)u)}{u} du < +\infty \quad \text{and} \quad \Delta(t) := \int_{0}^{t} \frac{h\left(\frac{y-x}{2} u\right)}{u} du < +\infty. \]

Theorem 2.1. For a convex function \(f : [c, d] \to \mathbb{R} \), we have the following inequalities for GRL:

\[
f\left(c + d - \frac{x+y}{2} \right) \leq f(c) + f(d) - \frac{1}{2\Lambda(1)} \left[\text{GRL}_{\frac{h}{x+y}} I_{x+y} f(x) + \text{GRL}_{\frac{h}{x+y}} I_{x+y} f(y) \right]
\]

\[
\leq f(c) + f(d) - f\left(\frac{x+y}{2} \right),
\]

and

\[
f\left(c + d - \frac{x+y}{2} \right) \leq \frac{1}{2\Lambda(1)} \left[\text{GRL}_{\frac{h}{c+d-x}} I_{c+d-x} f(c + d - x) + \text{GRL}_{\frac{h}{c+d-y}} I_{c+d-y} f(c + d - y) \right]
\]

\[
\leq \frac{f(c + d - x) + f(c + d - y)}{2} \leq f(c) + f(d) - \frac{f(x) + f(y)}{2}.
\]
Proof. From Jensen-Mercer inequality, we have for \(u, v \in [c, d] \):

\[
f \left(c + d - \frac{u + v}{2} \right) \leq f(c) + f(d) - \frac{f(u) + f(v)}{2}.
\]

Then, for \(u = tx + (1 - t)y \) and \(v = ty + (1 - t)x \), it follows that

\[
f \left(c + d - \frac{x + y}{2} \right) \leq f(c) + f(d) - \frac{f(tx + (1 - t)y) + f(ty + (1 - t)x)}{2},
\]

for each \(x, y \in [c, d] \) and \(t \in [0, 1] \). By multiplying both sides of (2.4) by \(\frac{h(y-x)}{t} \) and integrating the result with respect to \(t \) over \([0, 1]\), we can obtain

\[
\begin{align*}
&f \left(c + d - \frac{x + y}{2} \right) \Lambda(1) \leq [f(c) + f(d)] \Lambda(1) \\
&\quad - \frac{1}{2} \left[\int_0^1 \frac{h((y-x)t)}{t} \left[f(tx + (1 - t)y) + f(ty + (1 - t)x) \right] dt \right] \\
&\quad = [f(c) + f(d)] \Lambda(1) - \frac{1}{2} \left[\int_0^1 \frac{h((y-x)t)}{t} f(tx + (1 - t)y) dt \\
&\quad + \int_0^1 \frac{h((y-x)t)}{t} f(ty + (1 - t)x) dt \right] \\
&\quad = [f(c) + f(d)] \Lambda(1) - \frac{1}{2} \left[\int_x^y \frac{h(y-w)}{y-w} f(w) dw + \int_x^y \frac{h(w-x)}{w-x} f(w) dw \right] \\
&\quad = [f(c) + f(d)] \Lambda(1) - \frac{1}{2} \left[\text{GRL}_h I_{x+} f(w) + \text{GRL}_h I_{y-} f(w) \right].
\end{align*}
\]

This gives the first inequality in (2.1). To prove the second inequality in (2.1), first we have by the convexity of \(f \):

\[
f \left(\frac{u + v}{2} \right) \leq f \left(\frac{u + v}{2} \right).
\]

By changing the variables \(u = tx + (1 - t)y \) and \(v = ty + (1 - t)x \) in (2.5), we have

\[
f \left(\frac{x + y}{2} \right) \leq \frac{f(tx + (1 - t)y) + f(ty + (1 - t)x)}{2}, \quad t \in [0, 1].
\]

Multiplying both sides of (2.6) by \(\frac{h(y-x)}{t} \) and integrating the result with respect to \(t \) over \([0, 1]\), we get

\[
\begin{align*}
f \left(\frac{x + y}{2} \right) \Lambda(1) &\leq \frac{1}{2} \left[\int_0^1 \frac{h((y-x)t)}{t} f(tx + (1 - t)y) dt + \int_0^1 \frac{h((y-x)t)}{t} f(ty + (1 - t)x) dt \right] \\
&\quad = \frac{1}{2} \left[\int_x^y \frac{h(y-w)}{y-w} f(w) + \int_x^y \frac{h(w-x)}{w-x} f(w) dw \right] \\
&\quad = \frac{1}{2} \left[\text{GRL}_h I_{x+} f(y) + \text{GRL}_h I_{y-} f(x) \right],
\end{align*}
\]

which implies that

\[
- f \left(\frac{x + y}{2} \right) \geq - \frac{1}{2\Lambda(1)} \left[\text{GRL}_h I_{x+} f(y) + \text{GRL}_h I_{y-} f(x) \right] - \frac{1}{2\Lambda(1)}.\]

\(AIMS \) Mathematics Volume 6, Issue 9, 9397–9421.
By adding \(f(c) + f(d) \) on both sides of (2.7), we can obtain the second inequality in (2.1).

Now we give the proof of inequalities (2.2). Since \(f \) is convex function, then for all \(u, v \in [c, d] \), we have

\[
f\left(c + d - \frac{u + v}{2}\right) = f\left(\frac{c + d - u + c + d - v}{2}\right) \leq \frac{1}{2} \left[f(c + d - u) + f(c + d - v) \right].
\] (2.8)

Then, for \(c + d - u = t(c + d - x) + (1 - t)(c + d - y) \) and \(c + d - v = t(c + d - y) + (1 - t)(c + d - x) \), it follows that

\[
f\left(c + d - \frac{u + v}{2}\right) \leq \frac{1}{2} \left[f(t(c + d - x) + (1 - t)(c + d - y)) + f(t(c + d - y) + (1 - t)(c + d - x)) \right].
\] (2.9)

for each \(x, y \in [c, d] \) and \(t \in [0, 1] \). Now, by multiplying both sides of (2.9) by \(\frac{h((y-x)t)}{t} \) and integrating the obtaining inequality with respect to \(t \) over \([0, 1]\), we obtain

\[
f\left(c + d - \frac{u + v}{2}\right) \Lambda (1) \leq \frac{1}{2} \left[\int_0^1 \frac{h((y-x)t)}{t} f(t(c + d - x) + (1 - t)(c + d - y)) dt \right.
+ \int_0^1 \frac{h((y-x)t)}{t} f(t(c + d - y) + (1 - t)(c + d - x)) dt \right]
= \frac{1}{2} \left[\int_{c+d-y}^{c+d-x} \frac{h(w - (c + d - y))}{w - (c + d - y)} f(w) dw + \int_{c+d-y}^{c+d-x} \frac{h((c + d - x) - w)}{(c + d - x) - w} f(w) dw \right]
= \frac{1}{2} \left[\text{GRL}_{hI_{(c+d-y)}} f(c + d - x) + \text{GRL}_{hI_{(c+d-x)}} f(c + d - y) \right],
\]

and this completes the proof of the first inequality in (2.2). To prove the second inequality in (2.2), first we use the convexity of \(f \) to get

\[
f(t(c + d - x) + (1 - t)(c + d - y)) \leq tf(c + d - x) + (1 - t)f(c + d - y),
\] (2.10)
\[
f(t(c + d - y) + (1 - t)(c + d - x)) \leq (1 - t)f(c + d - x) + tf(c + d - y).
\] (2.11)

Adding (2.10) and (2.11), we get

\[
f(t(c + d - x) + (1 - t)(c + d - y)) + f(t(c + d - y) + (1 - t)(c + d - x))
\leq f(c + d - x) + f(c + d - y) \leq 2 \left[f(c) + f(d) \right] - [f(x) + f(y)].
\] (2.12)

Multiplying both sides of (2.12) by \(\frac{h((y-x)t)}{t} \) and integrating the result with respect to \(t \) over \([0, 1]\), we obtain

\[
\int_0^1 \frac{h((y-x)t)}{t} f(t(c + d - x) + (1 - t)(c + d - y)) dt
+ \int_0^1 \frac{h((y-x)t)}{t} f(t(c + d - y) + (1 - t)(c + d - x)) dt
\leq \Lambda (1) f(c + d - x) + \Lambda (1) f(c + d - y).
\]
Corollary 2.1. For a convex function \(f : [c, d] \to \mathbb{R} \), we have the following inequalities of HHM type for conformable fractional integrals:

\[
\int_{c}^{d} \frac{x^{c+d-x}}{y-x} f(t)dt \leq f(c) + f(d) - \frac{2}{(y-x)} \left(f(x) + f(y) \right).
\]

By using the change of variables of integration and then by multiplying the result by \(\frac{1}{2\Lambda(1)} \), we can obtain the second and third inequalities in (2.2). This completes the proof of Theorem 2.1.

Remark 2.1. Let the assumptions of Theorem 2.1 be satisfied. Then,

- If \(h(t) = t \), then Theorem 2.1 reduces to [42, Theorem 2.1].
- If \(h(t) = \frac{t^r}{\Gamma(r)} \), then Theorem 2.1 reduces to [43, Theorem 2].
- If we set \(h(t) = t, x = c \) and \(y = d \) in (2.2), then (2.2) becomes (1.1).
- If we set \(h(t) = \frac{t^r}{\Gamma(r)} \) in Theorem 2.1 (Eq. (2.2)), we get

\[
f\left(c + d - \frac{x + y}{2} \right) \leq \frac{\Gamma_k(v + k)}{2(y-x)^2} \left[RL_{\nu} I_{c+d-x}^{\nu, x} f(c + d - x) + RL_{\nu} I_{c+d-y}^{\nu, y} f(c + d - y) \right] \leq \frac{f(c) + f(d) - f(x) + f(y)}{2},
\]

- If we set \(h(t) = \frac{t^r}{\Gamma(r)} \), \(x = c \) and \(y = d \) in (2.2), then we have

\[
f\left(\frac{c + d}{2} \right) \leq \frac{\Gamma_k(v + k)}{2(b-a)^2} \left[RL_{\nu} I_{c+d-x}^{\nu, x} f(c + d - x) + RL_{\nu} I_{c+d-y}^{\nu, y} f(c + d - y) \right] \leq \frac{f(c) + f(d)}{2},
\]

which is derived in [25].
- If we set \(h(t) = \frac{t^r}{\Gamma(r)} \), \(x = c \) and \(y = d \) in (2.2), then we have

\[
f\left(\frac{c + d}{2} \right) \leq \frac{\Gamma_k(v + k)}{2(d-c)^2} \left[RL_{\nu} I_{c+d-x}^{\nu, x} f(c + d - x) + RL_{\nu} I_{c+d-y}^{\nu, y} f(c + d - y) \right] \leq \frac{f(c) + f(d)}{2},
\]

which is derived in [44].
- If \(x = c \) and \(y = d \), then inequalities (2.1) reduces to the following inequalities:

\[
f\left(\frac{c + d}{2} \right) \leq f(c) + f(d) - \frac{1}{2\Lambda(1)} \left[RL_{\nu} I_{c+d-x}^{\nu, x} f(c + d - x) + RL_{\nu} I_{c+d-y}^{\nu, y} f(c + d - y) \right] \leq f(c) + f(d) - f\left(\frac{c + d}{2} \right).
\]
- If \(x = c \) and \(y = d \), then inequalities (2.2) reduces to [21, Theorem 5].
Proof. By setting $h(t) = t(y-t)^{\nu-1}$ in Theorem 2.1, we can directly obtain the proof.

Remark 2.2. If we set $x = c$ and $y = d$ in (2.14), then we have the well-known conformable fractional HH integral inequality:

$$f\left(\frac{c+d}{2}\right) \leq \frac{\nu}{d^\nu} \int_c^d f(t) \, dt \leq \frac{f(c) + f(d)}{2},$$

which is derived by Adil Khan et al. in [45].

Corollary 2.2. For a convex function $f : [c, d] \to \mathbb{R}$, we have the following inequalities of HHM type for fractional integrals with exponential kernel:

$$f\left(\frac{c+d-\frac{x+y}{2}}{2}\right) \leq f(c) + f(d) - \frac{(\nu-1)}{2\exp\left(-\frac{1}{\nu}y(x-y)\right)-1} \left[\exp^{\frac{\nu}{\nu}}f(y) + \exp^{\frac{\nu}{\nu}}f(x)\right]$$

$$\leq f(c) + f(d) - f\left(\frac{x+y}{2}\right), \quad (2.15)$$

and

$$f\left(\frac{c+d-\frac{x+y}{2}}{2}\right) \leq \frac{(\nu-1)}{2\exp\left(-\frac{1}{\nu}y(x-y)\right)-1} \left[\exp^{\frac{\nu}{\nu}}f(c+d-x) + \exp^{\frac{\nu}{\nu}}f(c+d-y)\right]$$

$$\leq f(c) + f(d) - \frac{f(x+y)}{2} \leq f(c) + f(d) - \frac{f(x) + f(y)}{2}. \quad (2.16)$$

Proof. By setting $h(t) = \frac{t}{\nu} \exp\left(-\frac{1}{\nu}t\right)$ in Theorem 2.1, we can easily obtain the proof of Corollary 2.2.

Remark 2.3. If we set $x = c$ and $y = d$ in (2.16), then we have the HH inequalities for fractional integrals with exponential kernel:

$$f\left(\frac{c+d}{2}\right) \leq \frac{(\nu-1)}{2\exp\left(-\frac{1}{\nu}d(c-d)\right)-1} \left[\exp^{\frac{\nu}{\nu}}f(d) + \exp^{\frac{\nu}{\nu}}f(c)\right] \leq \frac{f(c) + f(d)}{2},$$

which is derived by Ahmad et al. in [46].

Theorem 2.2. For a convex function $f : [c, d] \to \mathbb{R}$, we have the following inequalities for GRL:

$$f\left(\frac{c+d-\frac{x+y}{2}}{2}\right) \leq \frac{1}{2\Delta(1)} \left[\frac{GRL_h f(c+d-y)}{GRL_h f(c+d-y)} + \frac{GRL_h f(c+d-x)}{GRL_h f(c+d-x)}\right]$$

$$\leq f(c) + f(d) - \frac{f(x+y)}{2}. \quad (2.17)$$

Proof. From the convexity of f, we have

$$f\left(\frac{c+d-\frac{u+v}{2}}{2}\right) = f\left(\frac{c+d-u+c+d-v}{2}\right) \leq \frac{1}{2} f(c+d-u) + f(c+d-v). \quad (2.18)$$
By setting \(u = \frac{1}{2}x + \frac{2-t}{2}y, \) \(v = \frac{2-t}{2}x + \frac{1}{2}y, \) it follows that
\[
f(c + d - \frac{x + y}{2}) \leq \frac{1}{2} \left[f\left(c + d - \left(\frac{t}{2}x + \frac{2-t}{2}y \right) \right) + f\left(c + d - \left(\frac{2-t}{2}x + \frac{t}{2}y \right) \right) \right],
\] (2.19)
for all \(x, y \in [c, d] \) and \(t \in [0, 1]. \) Multiplying both sides of (2.19) by \(\frac{h((\frac{t}{2})y)}{t} \) and integrating its result with respect to \(t \) over \([0, 1],\) we get
\[
f\left(c + d - \left(\frac{t}{2}x + \frac{2-t}{2}y \right) \right) \Delta (1) \leq \frac{1}{2} \left[\int_0^1 \frac{h((\frac{t}{2})y)}{t} f\left(c + d - \left(\frac{t}{2}x + \frac{2-t}{2}y \right) \right) dt \right]
+ \int_0^1 \frac{h((\frac{t}{2})y)}{t} f\left(c + d - \left(\frac{2-t}{2}x + \frac{t}{2}y \right) \right) dt = \frac{1}{2} \left[\int_{c+d-y}^{c+d-x} \frac{h(w - (c + d - y))}{w - (c + d - y)} f(w) dw + \int_{c+d-x}^{c+d-y} \frac{h((c + d - x) - w)}{(c + d - x) - w} f(w) dw \right]
= \frac{1}{2} \left[GRL f_{(c+d-x)} - f(c + d - y) + GRL f_{(c+d-y)} \right].
\]
Thus, the first inequality in (2.17) is proved. To prove the second inequality in (2.17), by using the Jensen–Mercer inequality, we can deduce:
\[
f\left(c + d - \left(\frac{t}{2}x + \frac{2-t}{2}y \right) \right) \leq f(c) + f(d) - \left[\frac{t}{2} f(x) + \frac{2-t}{2} f(y) \right]
\] (2.20)
\[
f\left(c + d - \left(\frac{2-t}{2}x + \frac{t}{2}y \right) \right) \leq f(c) + f(d) - \left[\frac{2-t}{2} f(x) + \frac{t}{2} f(y) \right].
\] (2.21)
By adding (2.20) and (2.21), we obtain
\[
f\left(c + d - \left(\frac{t}{2}x + \frac{2-t}{2}y \right) \right) + f\left(c + d - \left(\frac{2-t}{2}x + \frac{t}{2}y \right) \right) \leq 2 \left[f(c) + f(d) \right] - f(x) + f(y).
\] (2.22)
Multiplying both sides of inequality (2.22) by \(\frac{h((\frac{t}{2})y)}{t} \) and integrating the result with respect to \(t \) over \([0, 1],\) we get
\[
\int_0^1 \frac{h((\frac{t}{2})y)}{t} f\left(c + d - \left(\frac{t}{2}x + \frac{2-t}{2}y \right) \right) dt + \int_0^1 \frac{h((\frac{t}{2})y)}{t} f\left(c + d - \left(\frac{2-t}{2}x + \frac{t}{2}y \right) \right) dt
\leq 2 \Delta (1) \left[f(c) + f(d) \right] - \Delta (1) \left[f(x) + f(y) \right].
\]
By using change of variables of integration and multiplying the result by \(\frac{1}{2\Delta(1)} \), we can easily obtain second inequality in (2.17).

\(\square \)

Remark 2.4. Assume that the assumptions of Theorem 2.2 are satisfied.

- If \(h(t) = t, \) then inequalities (2.17) becomes inequalities [42, Theorem 2.1].
- If we put \(h(t) = t, x = c \) and \(y = d \) in Theorem 2.2, then inequalities (2.17) becomes inequalities (1.1).
- If \(h(t) = \frac{r^v}{\Gamma(v)} \), then Theorem 2.2 reduces to [43, Theorem 3].
- If we put \(h(t) = \frac{r^v}{\Gamma(v)} \), \(x = c \) and \(y = d \) in Theorem 2.2, then Theorem 2.2 reduces to [26, Theorem 4].
- If \(h(t) = \frac{r^v}{\Gamma(v)} \) in Theorem 2.2, we get

\[
f\left(c + d - \frac{x + y}{2}\right) \\
\leq \frac{2^{\frac{1}{v}} - 1}{\Gamma(v)} \bigg[RL_h \Gamma(c, d - \frac{x}{2}) f(c + d - y) + RL_h \Gamma(c, d + \frac{x}{2}) f(c + d - x) \bigg] \\
\leq f(c) + f(d) - \frac{f(x) + f(y)}{2}.
\]

- If we put \(h(t) = \frac{r^v}{\Gamma(v)} \), \(x = c \) and \(y = d \) in Theorem 2.2, then Theorem 2.2 reduces to [44, Theorem 1.1].
- If \(x = c \) and \(y = d \), then Theorem 2.2 becomes

\[
f\left(c + d - \frac{x + y}{2}\right) \leq \frac{2^{\frac{1}{v}} - 1}{\Gamma(v)} \bigg[GRL_h \Gamma(c, d - \frac{x}{2}) f(c) + GRL_h \Gamma(c, d + \frac{x}{2}) f(d) \bigg] \leq \frac{f(c) + f(d)}{2}.
\]

Corollary 2.3. For a convex function \(f : [c, d] \to \mathbb{R} \), we have the following inequalities of HHM type for conformable fractional integrals:

\[
f\left(c + d - \frac{x + y}{2}\right) \leq \frac{\nu}{\left(d^\nu - \frac{(\nu + 1)^\nu}{\nu}\right)} \int_{c + d - y}^{c + d - x} f(t) dt \leq f(c) + f(d) - \frac{f(x) + f(y)}{2}. \tag{2.23}
\]

Proof. By setting \(h(t) = t(y - t)^{-1} \) in Theorem 2.2, then we have proof of Corollary 2.3. \(\square \)

Remark 2.5. If we set \(x = c \) and \(y = d \) in (2.23), then we get

\[
f\left(c + d - \frac{x + y}{2}\right) \leq \frac{\nu}{d^\nu - \left(\frac{(\nu + 1)^\nu}{\nu}\right)} \int_{c}^{d} f(t) dt \leq \frac{f(c) + f(d)}{2}.
\]

Corollary 2.4. For a convex function \(f : [c, d] \to \mathbb{R} \), we have the following inequalities of HHM type for fractional integrals with exponential kernel:

\[
f\left(c + d - \frac{x + y}{2}\right) \leq \frac{(\nu - 1)}{2} \exp\left(-\frac{1}{\nu} \frac{(y - x)^\nu}{\nu}\right) \bigg[\exp \left(\frac{(c + d - y)}{\nu} \right) f(c + d - y) \bigg] \\
+ \exp \left(\frac{(c + d - x)}{\nu} \right) f(c + d - x) \bigg] \leq f(c) + f(d) - \frac{f(x) + f(y)}{2}. \tag{2.24}
\]

Proof. By setting \(h(t) = \frac{\nu}{\nu} \exp\left(-\frac{1}{\nu} \frac{(y - t)^\nu}{\nu}\right) \) in Theorem 2.2, we get proof of Corollary 2.4. \(\square \)

Remark 2.6. If we set \(x = c \) and \(y = d \) in (2.24), then we get

\[
f\left(c + d - \frac{x + y}{2}\right) \leq \frac{(\nu - 1)}{2} \exp\left(-\frac{1}{\nu} \frac{(d - c)^\nu}{\nu}\right) \bigg[\exp \left(\frac{(c + d - y)}{\nu} \right) f(c + d - y) \bigg] \\
+ \exp \left(\frac{(c + d - x)}{\nu} \right) f(c + d - x) \bigg] \leq \frac{f(c) + f(d)}{2}.
\]
3. Related equalities and inequalities

In view of the inequalities (2.1) and (2.17), we can generate some related results in this section.

\textbf{Lemma 3.1.} Let \(f : [c, d] \to \mathbb{R} \) be a differentiable function on \((c, d)\) such that \(f' \in L [c, d] \). Then, the following equality holds for GRL:

\[
\frac{f(c + d - y) + f(c + d - x)}{2} - \frac{1}{2\Lambda(1)} \left[GRL_h I_{(c+d-x)} f(c + d - y) + GRL_h I_{(c+d-\infty)} f(c + d - y) \right] = \frac{(y - x)}{2\Lambda(1)} \int_0^1 \left[\Lambda(t) - \Lambda(1 - t) \right] f'(c + d - (tx + (1 - t)y)) \, dt \\
= \frac{(y - x)}{2\Lambda(1)} \int_0^1 \Lambda(t) \left[f'(c + d - (tx + (1 - t)y)) - f'(c + d - (ty + (1 - t)x)) \right] \, dt. \tag{3.1}
\]

\textbf{Proof.} By the help of the right hand side of (3.1), we have

\[
\frac{(y - x)}{2\Lambda(1)} \int_0^1 \Lambda(t) \left[f'(c + d - (tx + (1 - t)y)) - f'(c + d - (ty + (1 - t)x)) \right] \, dt \\
= \frac{(y - x)}{2\Lambda(1)} \left[\int_0^1 \Lambda(t) f'(c + d - (tx + (1 - t)y)) \, dt - \int_0^1 \Lambda(t) f'(c + d - (ty + (1 - t)x)) \, dt \right] \\
= \frac{(y - x)}{2\Lambda(1)} [S_1 - S_2]. \tag{3.2}
\]

By applying integration by parts, one can obtain

\[
S_2 = \int_0^1 \Lambda(t) f'(c + d - (ty + (1 - t)x)) \, dt \\
= -\Lambda(1) \frac{f(c + d - y)}{y - x} + \frac{1}{y - x} \int_0^1 \frac{h((y-x)t)}{t} f(c + d - (ty + (1 - t)x)) \, dt \\
= -\Lambda(1) \frac{f(c + d - y)}{y - x} + \frac{1}{y - x} \left[GRL_h I_{(c+d-\infty)} f(c + d - x) \right].
\]

Similarly, one can obtain

\[
S_1 = \int_0^1 \Lambda(t) f(c + d - (tx + (1 - t)y)) \, dt \\
= \Lambda(1) \frac{f(c + d - x)}{y - x} - \frac{1}{y - x} \left[GRL_h I_{(c+d-\infty)} f(c + d - y) \right].
\]

By making use of \(S_1 \) and \(S_2 \) in (3.2), we get the identity (3.1). \(\square\)

\textbf{Remark 3.1.} Let the assumptions of Lemma 3.1 be satisfied.

- If \(h(t) = t \), then Lemma 3.1 reduces to [43, Corollary 1].
Remark 3.2. By setting x and y conformable fractional integrals:

Corollary 3.1. Let the assumptions of Lemma 3.1 be satisfied, then the following equality holds for the fractional integrals with exponential kernel:

$$f (c + d - x) + f (c + d - y)$$

$$= \frac{1}{2} \left[R_k I_{(c+d-y)+,k} f (c + d - x) + R_k I_{(c+d-x)-,k} f (c + d - y) \right]$$

$$= \frac{y - x}{2} \int_0^1 \left[t^z - (1 - t)^z \right] f' (c + d - (tx + (1 - t)y)) dt. \quad (3.3)$$

- If $x = c$ and $y = d$, then Lemma 3.1 reduces to [47, Lemma 2.1].

Corollary 3.1. Let the assumptions of Lemma 3.1 be satisfied, then the following equality holds for the conformable fractional integrals:

$$f (c + d - y) + f (c + d - x)$$

$$= \frac{1}{2} \left[\Lambda_1 (t) - \Lambda_1 (1 - t) \right] f' (c + d - (tx + (1 - t)y)) dt$$

$$= \frac{y - x}{2 \Lambda_1 (1)} \int_0^1 \Lambda_1 (t) \left[f' (c + d - (tx + (1 - t)y)) - f' (c + d - (ty + (1 - t)x)) \right] dt, \quad (3.4)$$

where

$$\Lambda_1 (t) = \frac{y^y - (tx + (1 - t)y)^y}{\nu}.$$

Proof. By setting $h (t) = t (y - t)^{\nu-1}$ in Lemma 3.1, then we have proof of Corollary 3.1. \quad \Box

Remark 3.2. By setting $x = c$ and $y = d$ in (3.4), we get

$$f (c) + f (d)$$

$$= \frac{1}{2} \left[\Lambda_2 (t) - \Lambda_2 (1 - t) \right] f' (td + (1 - t)c) dt$$

$$= \frac{d - c}{2 \Lambda_2 (1)} \int_0^1 \Lambda_2 (t) \left[f' (td + (1 - t)c) - f' (tc + (1 - t)d) \right] dt,$$

where

$$\Lambda_2 (t) = \frac{y^y - (tc + (1 - t)d)^y}{\nu}.$$

Corollary 3.2. Let the assumptions of Lemma 3.1 be satisfied, then the following equality holds for the fractional integrals with exponential kernel:

$$f (c + d - y) + f (c + d - x)$$

$$= \frac{1}{2} \left[\exp \left(\frac{y - x}{\nu} (y - x) \right) - 1 \right]$$

$$\times \left[\exp R_k I_{(c+d-y)+} f (c + d - x) + \exp R_k I_{(c+d-x)-} f (c + d - y) \right]$$

$$= \frac{y - x}{2 \Lambda_3 (1)} \int_0^1 \left[\Lambda_3 (t) - \Lambda_3 (1 - t) \right] f' (c + d - (tx + (1 - t)y)) dt$$
Let the assumptions of Lemma 3.2 be satisfied. The proof of Lemma 3.2 is similar to Lemma 3.1, so we omit it.

Proof. By setting \(h(t) = \frac{c}{y} \exp\left(\frac{-t}{y}\right) \) in Lemma 3.1, we get proof of Corollary 3.2. \(\square \)

Remark 3.3. If we set \(x = c \) and \(y = d \) in (3.5), we get

\[
\frac{f(c) + f(d)}{2} = \frac{1}{2} \int_0^1 \left[\Lambda(t) - \Lambda_4(t) \right] f'(td + (1 - t)c) dt
\]

where \(\Lambda(t) = \exp\left(\frac{-t}{y}\right) \) and \(\Lambda_4(t) = \exp\left(\frac{-t}{y}\right) \).

Lemma 3.2. Let \(f: [c, d) \to \mathbb{R} \) be a differentiable function on \((c, d) \) such that \(f' \in L[c, d] \). Then, the following equality holds for GRL:

\[
\frac{1}{2\Delta(1)} \left[\frac{GRL_{c+d-y, y}}{t} + \frac{GRL_{c+d-y, y}}{t} \right] - f(c + d - \frac{x+y}{2}) = \frac{1}{4\Delta(1)} \int_0^1 \Delta(t) \left[f\left(c + d - \left(\frac{2t}{2} - x + \frac{t}{2} y\right)\right) - f\left(c + d - \left(\frac{t}{2} x + \frac{2-t}{2} y\right)\right) \right] dt. \tag{3.6}
\]

Proof. The proof of Lemma 3.2 is similar to Lemma 3.1, so we omit it. \(\square \)

Remark 3.4. Let the assumptions of Lemma 3.2 be satisfied.

- **If** \(h(t) = \frac{c}{y} \) **then Lemma 3.2 reduces to [43, Lemma 2].**
- **If** \(h(t) = \frac{c}{h(t)} \) **in Lemma 3.2, we get**

\[
\frac{2^{t-1} \Gamma_k(x+k)}{(y-x)^t} \left[\frac{RL_{c+d-y, y}}{t} - f(c + d - y) + \frac{RL_{c+d-y, y}}{t} - f(c + d - x) \right] = \frac{y-x}{4} \int_0^1 t^2 \left[f\left(c + d - \left(\frac{2t}{2} - x + \frac{t}{2} y\right)\right) - f\left(c + d - \left(\frac{t}{2} x + \frac{2-t}{2} y\right)\right) \right] dt. \tag{3.7}
\]

- **If** \(x = c \) and \(y = d \), **then Lemma 3.2 becomes**
Remark 3.5. If we set $x = c$ and $y = d$ in (3.8), we get

\[
\frac{1}{2\Delta(1)} \left[\frac{GRL_h(t, \nu)}{GRL_h(t, \nu)}, f(c) + \frac{GRL_h(t, \nu)}{GRL_h(t, \nu)}, f(d) \right] - f\left(\frac{c + d}{2} \right) = \frac{d-c}{4\Delta(1)} \int_0^1 \Delta(t) \left[f' \left(\frac{t}{2} c + \frac{2-t}{2} d \right) - f' \left(\frac{2-t}{2} c + \frac{t}{2} d \right) \right] dt.
\]

Corollary 3.3. Let the assumptions of Lemma 3.2 be satisfied, then the following equality holds for the conformable fractional integrals:

\[
\frac{\nu}{\left[\nu - \left(\frac{d-x}{2} \right)^\nu \right]} \int_0^{\nu - \left(\frac{d-x}{2} \right)^\nu} f(t) dt = \frac{(y-x)}{4\Delta_1(1)} \int_0^1 \Delta_1(t) \left[f' \left(c + d - \left(\frac{2-t}{2} x + \frac{t}{2} y \right) \right) - f' \left(c + d - \left(\frac{t}{2} x + \frac{2-t}{2} y \right) \right) \right] dt, \quad (3.8)
\]

where

\[
\Delta_1(t) = \frac{y - \left(\frac{y-x}{2} \right) t}{\nu}.
\]

Proof. By setting $h(t) = t(y-t)^{\nu-1}$ in Lemma 3.2, we have proof of Corollary 3.3.

\[\square \]

Remark 3.5. If we set $x = c$ and $y = d$ in (3.8), we get

\[
\frac{\nu}{\left[d^\nu - \left(\frac{d-x}{2} \right)^\nu \right]} \int_c^d f(t) dt = \frac{(d-c)}{4\Delta_2(1)} \int_0^1 \Delta_2(t) \left[f' \left(\frac{2-t}{2} d + \frac{t}{2} c \right) - f' \left(\frac{t}{2} d + \frac{2-t}{2} c \right) \right] dt,
\]

where

\[
\Delta_2(t) = \frac{d^\nu - \left(\frac{d-x}{2} \right)^\nu}{\nu}.
\]

Corollary 3.4. Let the assumptions of Lemma 3.2 be satisfied, then the following equality holds for the fractional integrals with exponential kernel:

\[
\frac{(\nu-1)}{2\exp\left(-\frac{1-\nu}{\nu} \left(\frac{y-x}{2} \right)^\nu \right) - 1} \left[\exp \frac{\nu}{\left(c + d - \left(\frac{2-t}{2} x + \frac{t}{2} y \right) \right) - f \left(c + d - \left(\frac{t}{2} x + \frac{2-t}{2} y \right) \right) \right] = \frac{(y-x)}{4\Delta_3(1)} \int_0^1 \Delta_3(t) \left[f' \left(c + d - \left(\frac{2-t}{2} x + \frac{t}{2} y \right) \right) - f' \left(c + d - \left(\frac{t}{2} x + \frac{2-t}{2} y \right) \right) \right] dt, \quad (3.9)
\]

where

\[
\Delta_3(t) = \frac{\exp\left(-\frac{1-\nu}{\nu} \left(\frac{y-x}{2} \right)^\nu \right) - 1}{\nu - 1}.
\]

Proof. By setting $h(t) = t^\nu \exp\left(-\frac{1-\nu}{\nu} t \right)$ in Lemma 3.2, we get proof of Corollary 3.4.

\[\square \]
Remark 3.6. If we put \(x = c \) and \(y = d \) in (3.9), we get

\[
\frac{1}{2} \exp\left(-\frac{1}{\nu} \frac{d-c}{2} \right) - 1 \left[\exp\left(\frac{\nu}{\nu} \right) f(d) + \exp\left(\frac{\nu}{\nu} \right) f(c) \right] - f\left(\frac{c+d}{2} \right)
\]

\[
= \frac{d-c}{4\Delta_4(1)} \int_0^1 \Delta_4(t) \left[f\left(\frac{2-t}{2} d + \frac{t}{2} c \right) - f\left(\frac{t}{2} d + \frac{2-t}{2} c \right) \right] dt,
\]

where

\[
\Delta_4(t) = \frac{\exp\left(-\frac{1}{\nu} \frac{d-c}{2} t \right) - 1}{\nu-1}.
\]

Theorem 3.1. Let \(f : [c, d] \to \mathbb{R} \) be a differentiable function on \((c, d) \) such that \(|f'| \) is convex on \([c, d]\). Then, the following inequality holds for GRL:

\[
\left| G_{\tilde{h}} \mathcal{F}(c, d; x, y) \right| \leq \frac{y-x}{2\Lambda(1)} \left[[f'(c) + f'(d)] \int_0^1 |\Lambda(t) - \Lambda(1-t)| dt - [f'(x) + f'(y)] \int_0^1 t|\Lambda(t) - \Lambda(1-t)| dt \right], \quad (3.10)
\]

where

\[
\left| G_{\tilde{h}} \mathcal{F}(c, d; x, y) \right| = \frac{f(c + d - y) + f(c + d - x)}{2} - \frac{1}{2\Lambda(1)} \left[G_{\tilde{h}} I_{(c+d-y)+} f(c + d - x) + G_{\tilde{h}} I_{(c+d-x)-} f(c + d - y) \right].
\]

Proof. In view of Lemma 3.1, we have

\[
\left| G_{\tilde{h}} \mathcal{F}(c, d; x, y) \right| \leq \frac{y-x}{2\Lambda(1)} \int_0^1 |\Lambda(t) - \Lambda(1-t)| |f'(c + d - (tx + (1-t)y))| dt.
\]

Then, by using the Jensen–Mercer inequality, we obtain

\[
\left| G_{\tilde{h}} \mathcal{F}(c, d; x, y) \right| \leq \frac{y-x}{2\Lambda(1)} \int_0^1 |\Lambda(t) - \Lambda(1-t)| [f'(c) + f'(d)] - t f'(x) - (1-t) f'(y)] dt
\]

\[
= \frac{y-x}{2\Lambda(1)} \left[\int_0^1 |\Lambda(t) - \Lambda(1-t)| [f'(c) + f'(d)] dt - |f'(x)| \int_0^1 t|\Lambda(t) - \Lambda(1-t)| dt - |f'(y)| \int_0^1 (1-t)|\Lambda(t) - \Lambda(1-t)| dt \right]
\]

\[
= \frac{y-x}{2\Lambda(1)} \left[[f'(c) + f'(d)] \int_0^1 |\Lambda(t) - \Lambda(1-t)| dt - [f'(x) + f'(y)] \int_0^1 t|\Lambda(t) - \Lambda(1-t)| dt \right],
\]

which completes the proof of Theorem 3.1. \(\square\)
Remark 3.7. Let the assumptions of Theorem 3.1 be satisfied. Then,

- If \(h(t) = \frac{e^t}{\Gamma(v)} \), then Theorem 3.1 reduces to [43, Theorem 4].
- If \(h(t) = \frac{t^r}{\Gamma(v)} \) in Theorem 3.1, we get

\[
\left| \frac{f(c+d-x) + f(c+d-y)}{2} - \frac{\Gamma(k)(v+k)}{2(y-x)^k} \int_{c+d-x}^{c+d-y} f(c+d-x) \, dt \right| \leq \frac{y-x}{v+k} \left(k - \frac{k}{2} \right) \left(|f'(c)| + |f'(d)| - \frac{|f'(x)| + |f'(y)|}{2} \right). \tag{3.11}
\]

- If \(x = c \) and \(y = d \), then Theorem 3.1 reduces to [21, Theorem 6].

Corollary 3.5. Let the assumptions of Theorem 3.1 be satisfied. Then, we have

\[
\left| \frac{f(c+d-y) + f(c+d-x)}{2} - \frac{1}{y-x} \int_{c+d-y}^{c+d-x} f(x) \, dx \right| \leq \frac{1}{4} \left(|f'(c)| + |f'(d)| - \frac{|f'(x)| + |f'(y)|}{2} \right). \tag{3.12}
\]

Proof. If we set \(h(t) = t \) in Theorem 3.1, then we have proof of Corollary 3.5. \(\square \)

Remark 3.8. If we use \(x = c \) and \(y = d \) in Corollary 3.5, then Corollary 3.5 reduces to [47, Theorem 2.2].

Corollary 3.6. Let the assumptions of Theorem 3.1 be satisfied. Then, we have the following inequality holds for conformable fractional integrals:

\[
\left| \frac{f(c+d-y) + f(c+d-x)}{2} - \frac{\nu}{y^\nu - x^\nu} \int_{c+d-y}^{c+d-x} f(t) \, dt \right| \leq \frac{\nu(y-x)}{2(y^\nu - x^\nu)} \times \left([f'(c)] + [f'(d)] \right) \int_{0}^{\infty} |\Lambda_1(t) - \Lambda_1(1-t)| \, dt - [f'(x)] + [f'(y)] \int_{0}^{\infty} t |\Lambda_1(t) - \Lambda_1(1-t)| \, dt. \tag{3.13}
\]

Proof. By setting \(h(t) = t(y-t)^{\nu-1} \) in Theorem 3.1, we have proof of Corollary 3.6. \(\square \)

Remark 3.9. If we set \(x = c \) and \(y = d \), then we have

\[
\left| \frac{f(c) + f(d)}{2} - \frac{\nu}{d^\nu - c^\nu} \int_{c}^{d} f(t) \, dt \right| \leq \frac{\nu(d-c)}{2(d^\nu - c^\nu)} \left([f'(c)] + [f'(d)] \right) \int_{0}^{1} t |\Lambda_2(t) - \Lambda_2(1-t)| \, dt.
\]

Corollary 3.7. Let the assumptions of Theorem 3.1 be satisfied. Then, we have the following inequality for fractional integrals with exponential kernel:

\[
\left| \frac{f(c+d-y) + f(c+d-x)}{2} - \frac{(v-1)}{2 \left(\exp \left(-\frac{1}{v}(y-x) \right) - 1 \right)} \times \left(\exp I_{(c+d-y)}^{(c+d-x)} f(c+d-x) + \exp I_{(c+d-x)}^{(c+d-y)} f(c+d-y) \right) \right|
\]
Corollary 3.8. Let the assumptions of Theorem 3.2 be satisfied, then we have

which completes the proof of Theorem 3.2. \square

Proof. By setting $h(t) = \frac{\nu}{p} \exp\left(-\frac{1-\nu}{p} t\right)$ in Theorem 3.1, we get proof of Corollary 3.7. \square

Remark 3.10. If we set $x = c$ and $y = d$ in (3.14), then we have

\[
\left| f(c) + f(d) \right| \leq \frac{(v-1)(d-c)}{2 \exp\left(-\frac{1-\nu}{p} (d-c)\right) - 1} \left[|f'(c)| + |f'(d)| \right] \int_0^1 t |\Lambda_4(t) - \Lambda_4(1-t)| dt.
\]

Theorem 3.2. Let $f : [c, d] \to \mathbb{R}$ be a differentiable function on (c, d) such that $|f'|^q$ is convex on $[c, d]$ for some $q > 1$. Then, the following inequality holds for GRL:

\[
\left| GRL \mathcal{F}(c, d; x, y) \right| \leq \frac{(d-c)}{2 \Lambda(1)} \left(\int_0^1 |\Lambda(t) - \Lambda(1-t)|^p dt \right)^{\frac{1}{p}} \times \left(|f'(c)|^q + |f'(d)|^q - \frac{1}{2} \right),
\]

where $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. In view of (3.14) and the well–known Hölder’s inequality, one can obtain

\[
\left| GRL \mathcal{F}(c, d; x, y) \right| \leq \frac{(d-c)}{2 \Lambda(1)} \left(\int_0^1 |\Lambda(t) - \Lambda(1-t)|^p dt \right)^{\frac{1}{p}} \left(\int_0^1 |f'(c + d - (t x + (1-t) y))|^q dt \right)^{\frac{1}{q}}.
\]

We can apply the Jensen–Mercer inequality due to the convexity of $|f'|^q$, to get

\[
\left| GRL \mathcal{F}(c, d; x, y) \right| \leq \frac{(d-c)}{2 \Lambda(1)} \left(\int_0^1 |\Lambda(t) - \Lambda(1-t)|^p dt \right)^{\frac{1}{p}} \times \left(\int_0^1 \left[|f'(c)|^q + |f'(d)|^q - (t |f'(x)|^q + (1-t) |f'(y)|^q) \right] dt \right)^{\frac{1}{q}} \leq \frac{(d-c)}{2 \Lambda(1)} \left(\int_0^1 |\Lambda(t) - \Lambda(1-t)|^p dt \right)^{\frac{1}{p}} \left(|f'(c)|^q + |f'(d)|^q - \frac{1}{2} \right),
\]

which completes the proof of Theorem 3.2. \square

Corollary 3.8. Let the assumptions of Theorem 3.2 be satisfied, then we have
Remark 3.11. If we use $x = c$ and $y = d$ in Corollary 3.8, then Corollary 3.8 reduces to [47, Theorem 2.3].

Proof. By using $h(t) = t$ in inequality (3.15), we can obtain inequality (3.16).

Corollary 3.9. Let the assumptions of Theorem 3.2 be satisfied, then we have the following inequality holds for RL:

$$
\left| \frac{f(c + d - y) + f(c + d - x)}{2} - \frac{1}{y - x} \int_{c + d - y}^{c + d - x} f(x) \, dx \right| \leq \frac{(y - x)}{2(1 + p)^\frac{1}{p}} \times \left(|f'(c)|^q + |f'(d)|^q - \frac{|f'(x)|^q + |f'(y)|^q}{2} \right)^{\frac{1}{q}}. \quad (3.16)
$$

Proof. By setting $h(t) = \frac{t^\gamma}{\Gamma(t)}$ in inequality (3.15), we obtain inequality (3.17).

Remark 3.12. If we set $x = c$ and $y = d$ in Corollary 3.9, then we have

$$
\left| \frac{f(c) + f(d)}{2} - \frac{\Gamma(v + 1)}{2(d - c)} \right| \left[RL_{c+}^\nu f(c) + RL_{d-}^\nu f(c) \right] \leq \frac{(d - c)}{2(v + 1)^\frac{1}{p}} \times \left(|f'(c)|^q + |f'(d)|^q - \frac{|f'(x)|^q + |f'(y)|^q}{2} \right)^{\frac{1}{q}}. \quad (3.17)
$$

Proof. By setting $h(t) = \frac{t^\frac{\nu}{\nu + 1}}{\Gamma(t)}$ in inequality (3.15), we can obtain inequality (3.17).

Corollary 3.10. Let the assumptions of Theorem 3.2 be satisfied, then we have for k–RL:

$$
\left| \frac{f(c + d - y) + f(c + d - x)}{2} - \frac{\Gamma_k(v + k)}{2(y - x)^\frac{1}{p}} \right| \left[RL_{c+}^\nu f(c) + RL_{d-}^\nu f(c) \right] \leq \frac{(d - c)}{2(\nu^2 + 1)^\frac{1}{p}} \times \left(|f'(c)|^q + |f'(d)|^q - \frac{|f'(x)|^q + |f'(y)|^q}{2} \right)^{\frac{1}{q}}. \quad (3.18)
$$

Proof. By setting $h(t) = \frac{t^\frac{\nu}{\nu + 1}}{\Gamma(t)}$ in inequality (3.15), we can obtain inequality (3.18).

Remark 3.13. If we set $x = c$ and $y = d$ in Corollary 3.10, then we obtain

$$
\left| \frac{f(c) + f(d)}{2} - \frac{\Gamma_k(v + k)}{2(d - c)^\frac{1}{p}} \right| \left[RL_{c+}^\nu f(c) + RL_{d-}^\nu f(c) \right] \leq \frac{(d - c)}{2(\nu^2 + 1)^\frac{1}{p}} \times \left(|f'(c)|^q + |f'(d)|^q - \frac{|f'(x)|^q + |f'(y)|^q}{2} \right)^{\frac{1}{q}}. \quad (3.19)
$$

Corollary 3.11. Let the assumptions of Theorem 3.2 be satisfied, then we have the following inequality for the conformable fractional integrals:

$$
\left| \frac{f(c + d - y) + f(c + d - x)}{2} - \frac{v}{y^\nu - x^\nu} \int_{c + d - y}^{c + d - x} f(t)d_t \right| \leq \frac{\nu(y - x)}{2(y^\nu - x^\nu)} \times \left(\int_0^1 |\Lambda_1(t) - \Lambda_1(1 - t)|^p \, dt \right)^{\frac{1}{p}} \left(|f'(c)|^q + |f'(d)|^q - \frac{|f'(x)|^q + |f'(y)|^q}{2} \right)^{\frac{1}{q}}. \quad (3.19)
$$
Remark 3.14. If we set \(x = c \) and \(y = d \) in (3.19), then we have

\[
\left| \frac{f(c) + f(d)}{2} - \frac{v}{d^v - c^v} \int_c^d f(t) dt \right| \leq \frac{v(d-c)}{2(d^v-c^v)} \left(\int_0^1 \left| \Lambda_2(t) - \Lambda_2(1-t) \right|^p dt \right)^{\frac{1}{p}} \times \left(\frac{|f'(c)|^q + |f'(d)|^q}{2} \right)^{\frac{1}{q}}.
\]

Proof. By setting \(h(t) = t(y - t)^{v-1} \) in Theorem 3.2, we get proof of Corollary 3.11. \(\square \)

Remark 3.15. If we set \(x = c \) and \(y = d \) in (3.19), then we have

\[
\left| \frac{f(c) + f(d)}{2} - \frac{v}{d^v - c^v} \int_c^d f(t) dt \right| \leq \frac{v(d-c)}{2(d^v-c^v)} \left(\int_0^1 \left| \Lambda_2(t) - \Lambda_2(1-t) \right|^p dt \right)^{\frac{1}{p}} \times \left(\frac{|f'(c)|^q + |f'(d)|^q}{2} \right)^{\frac{1}{q}}.
\]

Corollary 3.12. Let the assumptions of Theorem 3.2 be satisfied, then we have the following inequality for the fractional integrals with exponential kernel:

\[
\left| \frac{f(c + d - y) + f(c + d - x)}{2} - \frac{(v-1)}{2} \exp \left(\frac{-\nu}{v} (y - x) \right) \right| \times \left| \exp I_{c+d-y}^v f(c + d - x) + \exp I_{c+d-x}^v f(c + d - y) \right| \\
\leq \frac{(v-1)(y-x)}{2 \exp \left(\frac{-\nu}{v} (y - x) \right) - 1} \left(\int_0^1 \left| \Lambda_3(t) - \Lambda_3(1-t) \right|^p dt \right)^{\frac{1}{p}} \times \left(\frac{|f'(c)|^q + |f'(d)|^q - |f'(x)|^q + |f'(y)|^q}{2} \right)^{\frac{1}{q}}.
\] (3.20)

Proof. By setting \(h(t) = \frac{t^v}{v^v} \) in Theorem 3.2, we have proof of Corollary 3.12. \(\square \)

Remark 3.15. If we set \(x = c \) and \(y = d \) in (3.20), then we have

\[
\left| \frac{f(c) + f(d)}{2} - \frac{(v-1)}{2} \exp \left(\frac{-\nu}{v} (d - c) \right) \right| \times \left| \exp I_{c+d-y}^v f(c + d - x) + \exp I_{c+d-x}^v f(c + d - y) \right| \\
\leq \frac{(v-1)(d-c)}{2 \exp \left(\frac{-\nu}{v} (d - c) \right) - 1} \left(\int_0^1 \left| \Lambda_4(t) - \Lambda_4(1-t) \right|^p dt \right)^{\frac{1}{p}} \times \left(\frac{|f'(c)|^q + |f'(d)|^q - |f'(x)|^q + |f'(y)|^q}{2} \right)^{\frac{1}{q}}.
\]

Theorem 3.3. Let \(f : [c, d] \to \mathbb{R} \) be a differentiable function on \((c, d) \) such that \(f \) is convex on \([c, d] \). Then, the following inequality holds for GRL:

\[
\left| G^{\text{GRL}}_h G(c, d; x, y) \right| \leq \frac{(y-x)}{2\Delta(1)} \left[|f'(c)| + |f'(d)| - \frac{|f'(x)| + |f'(y)|}{2} \right] \int_0^1 |\Delta(t)| dt,
\] (3.21)

where

\[
G^{\text{GRL}}_h G(c, d; x, y) := \frac{1}{2\Delta(1)} \left[G^{\text{GRL}}_h I_{c+d-x}^v f(c + d - x) + G^{\text{GRL}}_h I_{c+d-y}^v f(c + d - y) \right] - f\left(c + d - \frac{x+y}{2} \right).
\]
Proof. From Lemma 3.2, we have
\[\left| \mathcal{GR}_{L}^r \mathcal{G}(c, d; x, y) \right| \leq \frac{\left(y - x \right)^2}{4 \Delta (1)} \left[\int_{0}^{1} \Delta (t) \left| f' \left(c + d - \left(\frac{2 - t}{2} x + \frac{t}{2} y \right) \right) \right| dt \right. \\
\left. + \int_{0}^{1} |\Delta (t)| \left| f' \left(c + d - \left(\frac{t}{2} x + \frac{2 - t}{2} y \right) \right) \right| dt \right] \]

Then, by using the Jensen–Mercer inequality, we get
\[\left| \mathcal{GR}_{L}^r \mathcal{G}(c, d; x, y) \right| \leq \frac{\left(y - x \right)}{4 \Delta (1)} \left[\int_{0}^{1} \Delta (t) \left(\left| f'(c) \right| + \left| f'(d) \right| - \left(\frac{2 - t}{2} \left| f'(x) \right| + \frac{t}{2} \left| f'(y) \right| \right) \right) dt \right. \\
\left. + \int_{0}^{1} |\Delta (t)| \left(\left| f'(c) \right| + \left| f'(d) \right| - \left(\frac{t}{2} \left| f'(x) \right| + \frac{2 - t}{2} \left| f'(y) \right| \right) \right) dt \right] \\
= \frac{\left(y - x \right)}{2 \Delta (1)} \left[\left| f'(c) \right| + \left| f'(d) \right| - \frac{\left| f'(x) \right| + \left| f'(y) \right|}{2} \right] \int_{0}^{1} \Delta (t) dt, \]
which completes the proof of Theorem 3.3. \(\square \)

Remark 3.16. Let the assumptions of Theorem 3.3 be satisfied. Then, the following special cases can be considered.

- If \(h(t) = t \), then Theorem 3.3 reduces to [43, Corollary 2].
- If \(h(t) = t, x = c \) and \(y = d \), then Theorem 3.3 reduces to [48, Theorem 2.2].
- If \(h(t) = \frac{t}{\Gamma(t)}, \) then Theorem 3.3 reduces to [43, Theorem 5].
- If \(h(t) = \frac{t}{\Gamma(t)}, x = c \) and \(y = d \), then Theorem 3.3 reduces to [26, Theorem 5] with \(q = 1 \).
- If \(h(t) = \frac{t}{\Gamma(t)} \) in Theorem 3.3, we get
 \[\left| 2^{\frac{1}{2}} \Gamma_{k} \left(v + k \right) \frac{2^{\frac{1}{2}} \Gamma_{k} \left(v + k \right)}{\left(y - x \right)^{2}} \int_{0}^{1} \left[\mathcal{RL}_{h}^{r} \mathcal{I}_{c+d-y}^{\frac{\nu}{2}+\frac{\nu}{2}} \mathcal{J}_{c+d-y}^{\frac{\nu}{2}} \right] \left. \mathcal{K} f(c + d - y) + \mathcal{K} f(c + d - x) \right] \right. \\
 \left. - f\left(c + d - \frac{x + y}{2} \right) \right| \leq \frac{k(y-x)}{2(v+k)} \left[\left| f'(c) \right| + \left| f'(d) \right| - \frac{\left| f'(x) \right| + \left| f'(y) \right|}{2} \right] . \quad (3.22) \]

- If we set \(h(t) = \frac{t}{\Gamma(t)}, x = c \) and \(y = d \) in Theorem 3.3, then we have
 \[\left| 2^{\frac{1}{2}} \Gamma_{k} \left(v + k \right) \frac{2^{\frac{1}{2}} \Gamma_{k} \left(v + k \right)}{\left(d - c \right)^{2}} \int_{0}^{1} \left[\mathcal{RL}_{h}^{r} \mathcal{I}_{c+d-y}^{\frac{\nu}{2}+\frac{\nu}{2}} \mathcal{J}_{c+d-y}^{\frac{\nu}{2}} \right] \left. f(c + d - y) + \mathcal{K} f(c) - f\left(c + d - \frac{x + y}{2} \right) \right| \leq \frac{k(y-x)}{2(v+k)} \left[\left| f'(c) \right| + \left| f'(d) \right| \right] . \]

Corollary 3.13. Let the assumptions of Theorem 3.3 be satisfied. Then, the following inequality holds for the conformable fractional integrals:
\[\left| \int_{c+d-y}^{c+d-x} f(t) dt \int_{c+d-y}^{c+d-x} f(t) dt \right| \leq \frac{\nu(y-x)}{2 \left[y^{\nu} - \left(\frac{1+y}{2} \right)^{\nu} \right]} \\
\times \left[\left| f'(c) \right| + \left| f'(d) \right| - \frac{\left| f'(x) \right| + \left| f'(y) \right|}{2} \right] \int_{0}^{1} \Delta (t) dt. \quad (3.23) \]
Proof. By setting \(h(t) = t(y-t)^{v-1} \) in Theorem 3.3, we can get proof of Corollary 3.13. \(\Box \)

** Remark 3.17.** If we set \(x = c \) and \(y = d \) in (3.23), then we have

\[
\lim_{\epsilon \to 0} \frac{\nu}{[d^v - (\frac{\epsilon + d}{2})^v]} \int_c^d f(t) dt \leq \frac{\nu(d-c)}{2\left[d^v - (\frac{\epsilon + d}{2})^v\right]} \left[\frac{|f'(c)| + |f'(d)|}{2} \right] \int_0^1 |\Delta_2(t)| dt.
\]

** Corollary 3.14.** Let the assumptions of Theorem 3.3 be satisfied. Then, the following inequality holds for the fractional integrals with exponential kernel:

\[
\frac{\nu - 1}{2} \left[\exp\left(-\frac{t}{\nu}\right) - 1 \right] \left[\exp_t^{c+d-\frac{x+y}{2}} f(c+d-x) + \exp_t^{c+d-\frac{x+y}{2}} f(c+d-y) \right] - f(c + d - \frac{x+y}{2}) \leq \frac{(\nu - 1)(y - x)}{2\left[\exp\left(-\frac{t}{\nu}\right) - 1 \right]} \left[\frac{|f'(c)| + |f'(d)|}{2} \right] \int_0^1 |\Delta_1(t)| dt. \tag{3.24}
\]

** Proof.** By setting \(h(t) = \frac{t}{\nu} \exp\left(-\frac{t}{\nu}\right) \) in Theorem 3.3, we can obtain proof of Corollary 3.14. \(\Box \)

** Remark 3.18.** If we set \(x = c \) and \(y = d \) in (3.24), then we have

\[
\frac{\nu - 1}{2} \left[\exp\left(-\frac{t}{\nu}\right) - 1 \right] \left[\exp_t^{c+d} f(d) + \exp_t^{c+d} f(c) \right] - f\left(\frac{c + d}{2} \right) \leq \frac{(\nu - 1)(d-c)}{2\left[\exp\left(-\frac{t}{\nu}\right) - 1 \right]} \left[\frac{|f'(c)| + |f'(d)|}{2} \right] \int_0^1 |\Delta_4(t)| dt.
\]

** Theorem 3.4.** Let \(f : [c, d] \to \mathbb{R} \) be a differentiable function on \((c, d)\) such that \(|f'|^q \) is convex on \([c, d]\) for some \(q > 1 \). Then, the following inequality holds for GRL:

\[
\left| GRL_h G(c, d; x, y) \right| \leq \frac{\nu - x}{4\Delta(1)} \left(\int_0^1 |\Delta(t)|^p dt \right)^{\frac{1}{p}} \left[\left(|f'(x)|^q + |f'(y)|^q \right) \frac{\nu - x}{4\Delta(1)} + \left(|f'(c)|^q + |f'(d)|^q \right) \right]^{\frac{1}{q}}, \tag{3.25}
\]

where \(\frac{1}{p} + \frac{1}{q} = 1 \).

** Proof.** From Lemma 3.2 and well-known Hölder’s inequality, we obtain

\[
\left| GRL_h G(c, d; x, y) \right| \leq \frac{\nu - x}{4\Delta(1)} \left(\int_0^1 |\Delta(t)|^p dt \right)^{\frac{1}{p}} \left[\left(\int_0^1 \left| f'\left(c + d - \left(\frac{2-t}{2} x + \frac{t}{2} y \right) \right) \right|^q dt \right)^{\frac{1}{q}} + \left(\int_0^1 \left| f'\left(c + d - \left(\frac{2-t}{2} x + \frac{t}{2} y \right) \right) \right|^q dt \right)^{\frac{1}{q}} \right].
\]
By applying the Jensen–Mercer inequality due to convexity of $|f'|^q$, we can obtain
\[
\left| G_{R/L}(c, d; x, y) \right| \leq \frac{(y-x)}{4A(1)} \left(\int_0^1 |\Delta(t)|^p \, dt \right)^{\frac{1}{p}} \left[\left(\int_0^1 \left[|f'(c)|^q + |f'(d)|^q - \left(\frac{2-t}{2} |f'(x)|^q + \frac{t}{2} |f'(y)|^q \right) \right] \, dt \right]^{\frac{1}{q}} \\
+ \left(\int_0^1 \left[|f'(c)|^q + |f'(d)|^q - \left(\frac{2-t}{2} |f'(x)|^q + \frac{t}{2} |f'(y)|^q \right) \right] \, dt \right]^{\frac{1}{q}} \\
= \frac{(y-x)}{4A(1)} \left(\int_0^1 |\Delta(t)|^p \, dt \right)^{\frac{1}{p}} \left[\left(\int_0^1 \left[|f'(c)|^q + |f'(d)|^q - \frac{3}{4} \left(f'(x) \right)^q + \frac{f'(y)^q}{4} \right] \, dt \right]^{\frac{1}{q}} \\
+ \left(\int_0^1 \left[|f'(c)|^q + |f'(d)|^q - \frac{3}{4} \left(f'(x) \right)^q + \frac{f'(y)^q}{4} \right] \, dt \right]^{\frac{1}{q}},
\]
and this completes proof of the Theorem 3.4. \qed

Remark 3.19. Let the assumptions of Theorem 3.4 be satisfied. Then, the following special cases can be considered.

- If $h(t) = t$, then Theorem 3.4 reduces to [43, Corollary 3].
- If $h(t) = t$, $x = c$ and $y = d$, then Theorem 3.4 reduces to [48, Theorem 2.3].
- If $h(t) = \frac{t}{1+(\nu)}$, then Theorem 3.4 reduces to [43, Theorem 6].
- If $h(t) = \frac{t}{1+q}$, $x = c$ and $y = d$, then Theorem 3.4 reduces to [26, Theorem 6].
- If $h(t) = \frac{t}{1+(\nu)}$ in Theorem 3.4, we get

\[
\left| 2^{\frac{1}{q}} \Gamma_h(\nu + k) (y-x)^{k} \right| \left[\frac{R_{L}L(c+d-x)}{c+d-y} f(c + d - y) + \frac{R_{L}L(c+d-x)}{c+d-y} f(c + d - x) \right] \\
- f \left(c + d - \frac{x+y}{2} \right) \leq \frac{y-x}{2} \left[\left(\int_0^1 \left[|f'(c)|^q + |f'(d)|^q - \frac{3}{4} \left(f'(x) \right)^q + \frac{f'(y)^q}{4} \right] \, dt \right]^{\frac{1}{q}} \\
+ \left(\int_0^1 \left[|f'(c)|^q + |f'(d)|^q - \frac{3}{4} \left(f'(x) \right)^q + \frac{f'(y)^q}{4} \right] \, dt \right]^{\frac{1}{q}}.
\]

- If $h(t) = \frac{t}{1+(\nu)}$, $x = c$ and $y = d$, then we have

\[
\left| 2^{\frac{1}{q}} \Gamma_h(\nu + k) (d-c)^{k} \right| \left[\frac{R_{L}L(c+d-x)}{c+d-y} f(d) + \frac{R_{L}L(c+d-x)}{c+d-y} f(c) \right] - f \left(c + d \right) \\
\leq \frac{d-c}{2} \left(\frac{k}{(y-p+k)} \right)^{\frac{1}{q}} \left[\left(\int_0^1 \left[|f'(c)|^q + |f'(d)|^q - \frac{3}{4} \left(f'(x) \right)^q + \frac{f'(y)^q}{4} \right] \, dt \right]^{\frac{1}{q}} \\
+ \left(\int_0^1 \left[|f'(c)|^q + |f'(d)|^q - \frac{3}{4} \left(f'(x) \right)^q + \frac{f'(y)^q}{4} \right] \, dt \right]^{\frac{1}{q}}.
\]

Corollary 3.15. Let the assumptions of Theorem 3.4 be satisfied. Then, the following inequality holds for the conformable fractional integrals:

\[
\left| \frac{v}{y^n-(\frac{x+y}{2})^n} \int_{c+d-y}^{\infty} f(t) dt \right| \leq \frac{v(y-x)}{4(y^n-(\frac{x+y}{2})^n)} \left(\int_0^1 |\Delta(t)|^q \, dt \right)^{\frac{1}{q}}
\]

\[\text{AICA Mathematics}\]

Volume 6, Issue 9, 9397–9421.
Remark 3.20. If we set $x = c$ and $y = d$ in (3.27), then we have

$$\left| \frac{v}{d^\nu - (\frac{c+d}{2})^\nu} \int_c^d f(t) dt \right| \leq \frac{v(d-c)}{4(d^\nu - (\frac{c+d}{2})^\nu)} \left(\int_0^1 |\Delta_2(t)|^p \, dt \right)^{\frac{1}{p}} \left[\left(|f''(c)|^p + |f''(d)|^p \right) \left(\frac{3|f'(x)|^q + |f'(y)|^q}{4} \right)^{\frac{1}{p}} \right].$$

(3.27)

Proof. By setting $h(t) = t(y-t)^\nu$ in Theorem 3.4, we can obtain proof of Corollary 3.15.

Remark 3.21. If we set $x = c$ and $y = d$ in (3.27), then we have

$$\left| \frac{v}{d^\nu - (\frac{c+d}{2})^\nu} \int_c^d f(t) dt \right| \leq \frac{v(d-c)}{4(d^\nu - (\frac{c+d}{2})^\nu)} \left(\int_0^1 |\Delta_3(t)|^p \, dt \right)^{\frac{1}{p}} \left[\left(|f''(c)|^p + |f''(d)|^p \right) \left(\frac{3|f'(x)|^q + |f'(y)|^q}{4} \right)^{\frac{1}{p}} \right].$$

(3.28)

Proof. By setting $h(t) = \frac{t}{\nu} \exp\left(-\frac{t}{\nu} \right)$ in Theorem 3.4, we can obtain proof of Corollary 3.16.
4. Conclusions

In this work inequalities of Hermite-Hadamard-Mercer type via generalized fractional integrals are obtained. It is also proved that the results in this paper are generalization of the several existing comparable results in literature. As future direction, one may finds some new interesting inequalities through different types of convexities. Our results may stimulate further research in different areas of pure and applied sciences.

Acknowledgments

We want to give thanks to the Dirección de investigación from Pontificia Universidad Católica del Ecuador for technical support to our research project entitled: “Algunas desigualdades integrales para funciones convexas generalizadas y aplicaciones”. This work is partially supported by National Natural Sciences Foundation of China (Grant No. 11971241).

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann, *J. Math. Pures Appl.*, 58 (1893), 171–215.
2. M. A. Ali, H. Budak, Z. Zhang, H. Yildirim, Some new Simpson’s type inequalities for co-ordinated convex functions in quantum calculus, *Math. Meth. Appl. Sci.*, 44 (2021), 4515–4540.
3. M. A. Ali, H. Budak, M. Abbas, Y. M. Chu, Quantum Hermite-Hadamard-type inequalities for functions with convex absolute values of second q^h-derivatives, *Adv. Differ. Equ.*, 2021 (2021), 7.
4. M. A. Ali, M. Abbas, H. Budak, P. Agarwal, G. Murtaza, Y. M. Chu, New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions, *Adv. Differ. Equ.*, 2021 (2021), 64.
5. M. A. Ali, Y. M. Chu, H. Budak, A. Akkurt, H. Yildrim, Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, *Adv. Differ. Equ.*, 2021 (2021), 25.
6. M. A. Ali, N. Alp, H. Budak, Y. M. Chu, Z. Zhang, On some new quantum midpoint type inequalities for twice quantum differentiable convex functions, *Open Math.*, 19 (2021), 427–439.
7. M. A. Ali, H. Budak, A. Akkurt, Y. M. Chu, Quantum Ostrowski type inequalities for twice quantum differentiable functions in quantum calculus, *Open Math.*, 19 (2021), 440–449.
8. M. A. Ali, M. Abbas, M. Sehar, G. Murtaza, Simpson’s and Newton’s type quantum integral inequalities for preinvex functions, *Korean J. Math.*, 29 (2021), 193–203.
9. H. Budak, M. A. Ali, M. Tarhanaci, Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions, *J. Optim. Theory Appl.*, 186 (2020), 899–910.
10. H. Budak, S. Erden, M. A. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, *Math. Meth. Appl. Sci.*, 44 (2020), 378–390.
11. S. S. Dragomir, C. E. M. Pearce, *Selected topics on Hermite-Hadamard inequalities and applications*, RGMIA Monographs, Victoria University, 2000.

12. A. Guessab, G. Schmeisser, Sharp integral inequalities of Hermite-Hadamard type, *J. Approx. Theory*, 115 (2002), 260–288.

13. A. Guessab, G. Schmeisser, Convexity results and sharp error estimates in approximate multivariate integration, *Math. Comput.*, 73 (2004), 1365–1384.

14. A. Guessab, G. Schmeisser, Sharp error estimates for interpolatory approximation on convex polytope, *SIAM J. Numer. Anal.*, 43 (2005), 909–923.

15. A. Guessab, Direct and converse results for generalized multivariate Jensen-type inequalities, *J. Nonlinear Convex Anal.*, 13 (2012), 777–797.

16. M. Z. Sarikaya, M. E. Kiris, Some new inequalities of Hermite-Hadamard type for s-convex functions, *Miskolc Math. Notes*, 16 (2015), 491–501.

17. P. O. Mohammed, Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates, *J. King Saud Univ. Sci.*, 30 (2018), 258–262.

18. K. S. Miller, B. Ross, *An Introduction to the Fractional Calculus and Fractional Differential Equations*, Wiley, New York, 1993.

19. K. B. Oldham, J. Spanier, *The Fractional Calculus*, Academic Press, San Diego, 1974.

20. S. G. Samko, A. A. Kilbas, O. I. Marichev, *Fractional Integrals and Derivatives: Theory and Applications*, Taylor Francis, London, 2002 [orig. ed. in Russian; Nauka i Tekhnika, Minsk, 1987].

21. M. Z. Sarikaya, F. Ertugral, On the generalized Hermite-Hadamard inequalities, *An. Univ. Craiova Ser. Mat. Inform.*, 47 (2020), 193–213.

22. M. Z. Sarikaya, A. Karaca, On the k-Riemann-Liouville fractional integral and applications, *IJSM*, 1 (2014), 033–043.

23. T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, *Adv. Differ. Equ.*, 2017 (2017), 313.

24. T. Abdeljawad, On conformable fractional calculus, *J. Comput. Appl.*, 279 (2015), 57–66.

25. M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, *Math. Comput. Model.*, 57 (2013), 2403–2407.

26. M. Z. Sarikaya, H. Yıldırım, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, *Miskolc Math. Notes*, 17 (2017), 1049–1059.

27. P. O. Mohammed, I. Brevik, A New Version of the Hermite-Hadamard Inequality for Riemann-Liouville Fractional Integrals, *Symmetry*, 12 (2020), 610. doi:10.3390/sym12040610.

28. A. Fernandez, P. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, *Math. Meth. Appl. Sci.*, 2020, 1–18. Available from: https://doi.org/10.1002/mma.6188.

29. P. O. Mohammed, T. Abdeljawad, Modification of certain fractional integral inequalities for convex functions, *Adv. Differ. Equ.*, 2020 (2020), 69.

30. P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, *Math. Meth. Appl. Sci.*, (2019), 1–11. Available from: https://doi.org/10.1002/mma.5784.

31. P. O. Mohammed, M. Z. Sarikaya, Hermite-Hadamard type inequalities for F-convex function involving fractional integrals, *J. Inequal. Appl.*, 2018 (2018), 359.
32. P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the Generalized Hermite-Hadamard Inequalities via the Tempered Fractional Integrals, *Symmetry*, **12** (2020), 595. Available from: http://doi.org/10.3390/sym12040595.

33. F. Qi, P. O. Mohammed, J. C. Yao, Y. H. Yao, Generalized fractional integral inequalities of Hermite-Hadamard type for \((\alpha, m)\)-convex functions, *J. Inequal. Appl.*, **2019** (2019), 135.

34. P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, *J. Comput. Appl. Math.*, **372** (2020), 112740.

35. J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, *Open Math.*, **18** (2020), 794–806.

36. D. Baleanu, P. O. Mohammed, S. Zeng, Inequalities of trapezoidal type involving generalized fractional integrals, *Alex. Eng. J.*, **59** (2020), 2975–2984.

37. P. M. Vasić, J. E. Pečarić, On the Jensen inequality, *Univ. Beograd. Publ. Elektrotehn Fak. Ser. Mat. Fis.*, **634–677** (1979), 50–54.

38. A. Matković, J. Pečarić, I. Perić, A variant of Jensens inequality of Mercers type for operators with application, *Linear Al. Appl.*, **418** (2006), 551–564.

39. M. Kian, M. S. Moslehian, Refinements of the operator Jensen-Mercer inequality, *Electron J. Linear Al.*, **26** (2013), 50.

40. A. McD Mercer, A variant of Jensens inequality, *J. Ineq. Pure Appl. Math.*, **4** (2003), 73.

41. A. M. Fink, M. Jodeit Jr, Jensen inequalities for functions with higher monotonicities, *Aequations Math.*, **40** (1990), 26–43.

42. M. Kian, M. S. Moslehian, Refinements of the operator Jensen-Mercer inequality, *Electron J. Linear Al.*, **26** (2013), 50.

43. H. Öğülmüs, M. Z. Sarikaya, Hermite-Hadamard-Mercer type inequalities for fractional integrals, Available from: DOI: 10.13140/RG.2.2.30669.79844.

44. G. Farid, A. U. Rehman, M. Zahra, On Hadamard inequalities for \(k\)-fractional integrals, *Nonlinear Funct. Anal. Appl.*, **21** (2016), 463–478.

45. M. A. Khan, T. Ali, S. S. Dragomir, M. Z. Sarikaya, Hermite-Hadamard type inequalities for conformable fractional integrals, *RACSAM Rev. R. Acad. A*, **112** (2018), 1033–1048.

46. B. Ahmad, A. Alsaeedi, M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals, *J. Comput. Appl. Math.*, **353** (2019), 120–129.

47. S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, *Appl. Math. Let.*, **11** (1998), 91–95.

48. U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, *Appl. Math. Comput.*, **147** (2004), 137–146.