Laparoscopic wedge resection of synchronous gastric intraepithelial neoplasia and stromal tumor: A case report

Yi-Ping Mou, Xiao-Wu Xu, Kun Xie, Wei Zhou, Yu-Cheng Zhou, Ke Chen

Yi-Ping Mou, Xiao-Wu Xu, Kun Xie, Wei Zhou, Yu-Cheng Zhou, Ke Chen, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun road, Hangzhou 310016, Zhejiang Province, China

Author contributions: Mou YP, Xu XW and Xie K performed the operation; Zhou YC and Chen K collected the data; Xu XW and Zhou W wrote the paper.

Correspondence to: Xiao-Wu Xu, MD, Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun road, Hangzhou 310016, Zhejiang Province, China. xuxiaowu77@163.com

Telephone: +86-571-86006445 Fax: +86-571-86044817

Received: July 10, 2010 Revised: August 25, 2010 Accepted: September 1, 2010 Published online: October 21, 2010

Abstract
Synchronous occurrence of epithelial neoplasia and gastrointestinal stromal tumor (GIST) in the stomach is uncommon. Only rare cases have been reported in the literature. We present here a case of synchronous occurrence of gastric high-level intraepithelial neoplasia and GIST in the body of stomach, close to the cardia. Epithelial neoplasia and GIST were removed en bloc by laparoscopic wedge resection. To the best of our knowledge, this is the first reported case treated by laparoscopic wedge resection. In addition, we also summarized the features of 22 similar cases with detailed information reported in the English-language literature.

INTRODUCTION
Synchronous occurrence of epithelial neoplasia and gastrointestinal stromal tumor (GIST) in the stomach is uncommon. Only few case reports can be found in the literature[1-16]. We present here a case of synchronous occurrence of gastric high-level intraepithelial neoplasia and GIST in the body of stomach, close to the cardia. Epithelial neoplasia and GIST were removed en bloc by laparoscopic wedge resection. To the best of our knowledge, this is the first reported case treated by laparoscopic wedge resection. In addition, we also summarized the features of 22 similar cases with detailed information reported in the English-language literature.

CASE REPORT
A 60-year-old woman was admitted to our department in June 2009 because of epigastric pain for three months. She had no fever, nausea or vomiting, hematemesis or melena, and weight loss. Physical examination showed no abnormalities. Blood biochemistry was within the normal range. Computed tomography (CT) of the abdomen with intravenous contrast demonstrated a soft tissue mass measuring 5 cm × 5 cm in size with a clear borderline near the lesser curvature of the gastric body, which was consistent with a GIST (Figure 1). Gastroscopy revealed a mucosal ulcer about 1 cm in diameter located in the lesser curvature of the stomach, 3 cm away from the cardia (Figure 2). Histological examination of the specimen from the ulcer showed high-level intraepithelial neoplasia with positive Helicobacter pylori.
During laparoscopic exploration, an extramural pedunculated mass, approximately 5 cm in diameter, was located in the lesser curvature of the gastric body. By intraoperative gastroscopic injection of methylene blue, the mucosal ulcer was localized proximate to the extramural tumor, with 2 cm in between. Laparoscopic wedge resection of the two lesions was performed with triple endoscopic linear staplers (Endocutter 60 staple, green cartridge; Ethicon, Endo-Surgery, Cincinnati, OH, USA) (Figure 3). Intraoperative frozen section of the resected margins was free of tumor. The operation time was 150 min and intraoperative bleeding was 50 mL. The postoperative course was uneventful, and the patient was discharged 4 days later. She was followed up and abdominal CT and upper gastrointestinal imaging 6 mo after operation showed no signs of recurrence.

Histopathological examination of the mucosal ulcer revealed high-grade intraepithelial neoplasia (Figure 4A) without lymph node metastasis (0/8), while the extramural mass was verified as a stromal tumor consisted of spindle to ovoid-shaped mesenchymal cells arranged in interlacing bundles or sheets (Figure 4B). The cells demonstrated eosinophilic cytoplasm and single elongated nuclei with a moderate level of mitotic activity (3 mitoses per 50 HPF, H&E stain). Immunohistochemical staining was positive for CD117 (Figure 5A) and CD34 (Figure 5B) but negative for SMA, S-100 and Desmin.

DISCUSSION

The term of GIST was introduced by Mazur et al. in 1983 in order to indicate a distinct heterogeneous group of mesenchymal neoplasms of spindle or epithelioid cells with varying differentiation. GIST occurs from the lower esophagus to the anus, with its most common site in the stomach. However, simultaneous occurrence of GIST and epithelial tumor in the stomach is uncommon. To the best of our knowledge, 44 cases have been reported in the English-language literature. The largest published study consisted of 22 cases, but without detail information.
Table 1 Summary of previous synchronous gastric epithelial tumors and gastrointestinal stromal tumors in the stomach

No.	Source	Sex/age (yr)	Epithelial tumor Location	Epithelial tumor Size (cm)	Appearance	Histology	GIST Location	GIST Size (cm)	Appearance	Surgical procedure
1	Maiorana et al [1]	F/81	Cardia	4	Exophytic	AC	Fundus	5	Intramural mass	Partial gastrectomy
2	Maiorana et al [1]	F/79	Antrum	2	Erosion	AC	Pylorus	6	Submucosal mass	Partial gastrectomy
3	Maiorana et al [1]	M/75	Antrum	4	Ulcer	AC	Antrum	5	Submucosal mass	Total gastrectomy
4	Maiorana et al [1]	F/79	Pylorus	1.2	Ulcer	AC	Corpus	5	Subserosal nodule	Total gastrectomy
5	Maiorana et al [1]	M/79	Antrum	2	Ulcer	AC	Corpus	0.6	Subserosal nodule	Total gastrectomy
6	Maiorana et al [1]	M/69	Corpus	0.6	Sessile polyp	Carcinoid	Corpus	5	Submucosal nodule	Resection of submucosal nodule
7	Andea et al [2]	F/73	Antrum	0.6	Nodule	Carcinoid	Fundus	1.2	Intramural nodule	Antrectomy + wedge resection
8	Kaffes et al [3]	M/78	Antrum	Unknown	Slightly raised Ulcerative	AC	Cardia + corpus	8	Ulcerative tumor	Total gastrectomy
9	Liu et al [4]	M/70	Cardia + corpus	5.7	Ulcerative	AC	Cardia + corpus	0.5	Subserosal nodule	Total gastrectomy
10	Bircan et al [5]	M/71	Antrum	7.5	Exophytic	AC	Cardia	0.6	Submucosal nodule	Total gastrectomy
11	Bircan et al [5]	M/77	Corpus	5	Ulcer	AC	Fundus	2	Unknown	Unknown
12	Wronski et al [6]	F/64	Antrum	5	Unknown	AC	Corpus	1	Unknown	Unknown
13	Wronski et al [6]	M/66	Antrum	1	Unknown	AC	Corpus	1	Unknown	Unknown
14	Lin et al [7]	F/70	Antrum	1.7	Ulcerative	AC	Fundus	1	Sessile polyp	Subtotal gastrectomy
15	Uchiyama et al [8]	M/74	Antrum	1.5	Elevated	AC	Corpus	0.8	Extramural nodule	LADG + wedge resection
16	Lee et al [9]	M/82	Corpus	1.5	Ulcer	AC	Corpus	9.5	Transmural tumor	Palliative wedge resection
17	Salemis et al [10]	F/78	Antrum	6.5	Ulcerative	AC	3 cm to AC	1	Nodular lesion	Total gastrectomy
18	Villias et al [11]	M/78	Antrum	Unknown	Ulcer	AC	3.5 cm to AC	0.9	Subserosal nodule	Subtotal gastrectomy
19	Kountourakis et al [12]	F/72	Unknown	Unknown	Ulcer	AC	Unknown	1.8	Subtotal gastrectomy	Proximal gastrectomy + distal esophagectomy
20	Hsiao et al [13]	M/75	GIJ	0.8	Polyp-like	AC	Near AC	3.3	Serosal nodule	Total gastrectomy
21	Bi et al [14]	F/73	Fundus	4	Ulcerative	AC	Fundus	4	Ulcerative	Proximal subtotal gastrectomy
22	Ozgun et al [15]	M/78	Antrum	Unknown	Ulcer	AC	Opposite to AC	10	Extramural mass	Total gastrectomy

AC: Adenocarcinoma; LADG: Laparoscopic assisted distal gastrectomy; GIJ: Gastroesophageal junction; GIST: Gastrointestinal stromal tumor.

Figure 5 Over-expression of CD117 (A) and CD34 (B) (200 x). Scale bar = 100 µm.

The remaining 22 cases (12 males and 10 females) at the age of 64-82 years (mean 74.6 years) are listed in Table 1. Of the 22 cases, 20 had adenocarcinoma and 2 had carcinoid.
The simultaneous development of gastric epithelial and stromal tumors, especially two cases of collision tumors composed of gastric adenocarcinoma and stromal tumors, is still difficult to diagnose before operation. In our reviewed cases, simultaneous gastric adenocarcinoma and gastrointestinal stromal tumors were confirmed only in 1 case by histological examination before operation[7]. To increase the preoperative diagnostic rate of synchronous tumors, enhanced abdominal CT scan, gastroscopy and endoscopic ultrasonography have been recommended. Careful exploration of residual stomach intraoperatively is also important to avoid missing GIST when it is too small to be found by image examination.

It has been reported that laparoscopic surgery for early gastric cancer and GIST is safe, valid, and minimally invasive[22-23]. However, rare reports are available on laparoscopic resection of synchronous gastric epithelial tumor and GIST. In our reviewed cases, only 1 case was treated by laparoscopic procedure (laparoscopic-assisted distal gastrectomy + laparoscopic wedge resection)[30]. In our case, complicated lymphadenectomy was not needed for either gastric high-level intrapithelial neoplasia or GIST located in the same region with only 2 cm in distance, that makes laparoscopic wedge resection a optimal choice for the patient. Because of the close location of the lesions to the cardia, care should be taken not to injure the esophageal junction while firing the stapler. Intraoperative gastroscopy is a simple and effective procedure for the complete excision of tumors and intactness of esophagocardial junction.

ACKNOWLEDGMENTS

The authors thank Zhi-Nong Jiang for proofreading the pathological materials.

REFERENCES

1. Maioran A, Fante R, Maria Cesinaro A, Adriana Fanor S. Synchronous occurrence of epithelial and stromal tumors in the stomach: a report of 6 cases. Arch Pathol Lab Med 2000; 124: 682-686

2. Anda AA, Lucas C, Cheng JD, Adsay NV. Synchronous occurrence of epithelial and stromal tumors in the stomach. Arch Pathol Lab Med 2001; 125: 318-319

3. Kaffes A, Hughes L, Hollinshde J, Kateslris P. Synchronous primary adenocarcinoma, mucosa-associated lymphoid tissue lymphoma and a stomach tumor in a Helicobacter pylori-infected stomach. J Gastroenterol Hepatol 2002; 17: 1033-1036

4. Liu SW, Chen GH, Hsieh PF. Collision tumor of the stomach: a case report of mixed gastrointestinal stromal tumor and adenocarcinoma. J Clin Gastroenterol 2002; 35: 332-334

5. Bircan S, Candir O, Aydin S, Baspınar S, Bülüm K, Kapucuğlu N, Karahan N, Çiriş M. Synchronous primary adenocarcinoma and gastrointestinal stromal tumor in the stomach: a report of two cases. Turk J Gastroenterol 2004; 15: 187-191

6. Wronska M, Zierlakiewicz-Wroblewska B, Gornicka B, Cebulski W, Slodkowski M, Wasiułytynski A, Krasnodebski IW. Synchronous occurrence of gastrointestinal stromal tumors and other primary gastrointestinal neoplasms. World J Gastroenterol 2006; 12: 5360-5362

7. Lin YL, Tseng JE, Wei CK, Lin CW. Small gastrointestinal stromal tumor concomitant with early gastric cancer: a case report. World J Gastroenterol 2006; 12: 815-817

8. Uchiyama S, Nagano M, Takahashi N, Hidaka H, Matsuda H, Nagaike K, Maehara N, Hotokezaka M, Chijiwa K. Synchronous adenocarcinoma and gastrointestinal stromal tumors of the stomach treated laparoscopically. Int J Clin Oncol 2007; 12: 478-481

9. Lee FY, Jan YJ, Wang J, Yu CC, Wu CC. Synchronous gastric gastrointestinal stromal tumor and signet-ring cell adenocarcinoma: a case report. Int J Surg Pathol 2007; 15: 397-400

10. Salemis NS, Gourgiotis S, Tsiambas E, Karameris A, Tsaharidhis E. Synchronous occurrence of advanced adenocarcinoma with a stromal tumor in the stomach: a case report. J Gastrointestin Liver Dis 2008; 17: 213-215

11. Villas C, Gourgiotis S, Veloudis G, Sampaziotis D, Moreas H. Synchronous early gastric cancer and gastrointestinal stromal tumor in the stomach of a patient with idiopathic thrombocytopenic purpura. J Dig Dis 2008; 9: 104-107

12. Kountourakis P, Arroggianni N, Stavrinides I, Apostolikas N, Rigatos G. Concomitant gastric adenocarcinoma and stromal tumor in a woman with polymyalgia rheumatica. World J Gastroenterol 2008; 14: 6750-6752

13. Hsiao HH, Yang SF, Liu YC, Yang MJ, Lin SF. Synchronous gastrointestinal stromal tumor and adenocarcinoma at the gastroesophageal junction. Kaohsiung J Med Sci 2009; 25: 338-341

14. Bi R, Sheng W, Wang J. Collision tumor of the stomach: gastric adenocarcinoma intermixed with gastrointestinal stromal tumor. Pathol Int 2009; 59: 880-883

15. Ozgun YM, Ergul E, Sisman IC, Kusdemir A. Gastric adenocarcinoma and GIST (collision tumors) of the stomach presenting with perforation; first report. Bratisl Lek Listy 2009; 110: 504-505

16. Liu YJ, Yang Z, Hao LS, Xia L, Jia QB, Wu XT. Synchronous incidental gastrointestinal stromal and epithelial malignant tumors, World J Gastroenterol 2009; 15: 2027-2031

17. Mazur MT, Clark HB. Gastric stromal tumors. Reappraisal of histogenesis. Am J Surg Pathol 1983; 7: 507-519

18. Sugimura T, Fujimura S, Baba T. Tumor production in the glandular stomach and alimentary tract of the rat by N-methyl-N′-nitro-N-nitrosoguanidine. Cancer Res 1970; 30: 455-465

19. Cohen A, Geller SA, Horowitz I, Toth LS, Werther JL. Experimental models for gastric leiomyosarcoma. The effects of N-methyl-N′-nitro-N-nitrosoguanidine in combination with stress, aspirin, or sodium taurocholate. Cancer 1984; 53: 1088-1092

20. Basu S, Balaji S, Bennett DH, Davies N. Gastrointestinal stromal tumors (GIST) and laparoscopic resection. Surg Endosc 2007; 21: 1685-1689

21. Strong VE, Devand N, Allen PJ, Gonen M, Brennan MF, Coit D. Laparoscopic versus open subtotal gastrectomy for adenocarcinoma: a case-control study. Ann Surg Oncol 2009; 16: 1507-1513

S-Editor Sun H L-Editor Wang XL E-Editor Zheng XM