High-Performance Supercapacitor Electrode Obtained by Directly Bonding 2D Materials: Hierarchal MoS$_2$ on Reduced Graphene Oxide

Mutawara Mahmood Baig1, Erum Pervaiz1,*, Minghui Yang2 and Iftikhar Hussain Gul1

1School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan, 2Solid State Functional Materials Research Lab (SSFMRL), Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Science (CAS), Ningbo, China

Energy storage devices are the ultimate flexible solution to overcome energy deficiency. There is a need to find innovative nanomaterials to overcome the delays in efficiency and sustainability. Herein, we report the synthesis of hierarchical MoS$_2$/rGO nanohybrids as electrode material for supercapacitors. Pure phase and flower-shaped molybdenum disulfide (MoS$_2$) nanosheets have been synthesized using a meek hydrothermal method followed by the preparation of MoS$_2$/rGO nanohybrids. The physicochemical aspects and electrochemical properties have been carefully analyzed using cyclic voltammetry and galvanostatic charge-discharge method in the 1 M KCL electrolyte. The capacitance of MoS$_2$ and MoS$_2$/rGO were found to be 297 F/g (66 mAh/g or 238 C/g) and 850 F/g (153.5 mAh/g or 552.5 C/g) at 1 A/g respectively, with 95.3% retention in capacitance after 10,000 cycles at 2 A/g. The improved electrochemical performance of the MoS$_2$/rGO electrode could be ascribed to rapid diffusion pathways delivered by rGO and improved redox reactions of hierarchical MoS$_2$ nanosheets owing to the high surface area (391 m2/g). This feature enables a decrease in the entire impedance of electrodes which agrees with the findings obtained from electrochemical impedance spectroscopy.

Keywords: rGO, MoS$_2$, 2D materials, supercapacitors, energy storage

HIGHLIGHTS

- The hierarchical MoS$_2$/rGO nanohybrids have been synthesized for supercapacitors.
- Pure phase and flower shaped MoS$_2$ nanosheets have been synthesized using a mild hydrothermal method.
- The electrode showed a high specific capacitance of 850 F/g.
- The electrode exhibited 95.3% retention in capacitance after 10,000 cycles at 2 A/g.
- The electrochemical impedance revealed low resistance (0.325 Ω) as well as a small frequency response (2.778 s).

INTRODUCTION

Pseudo-capacitors being an important class of supercapacitors are widely employed for efficient energy storage. They have attracted great scientific and technical attention owing to the possible
integration of the benefits of lithium-ion batteries (high energy density) and capacitors (high power density). Their capability to undergo rapid and reversible redox reactions made them a strong candidate to accumulate charges as compared to double-layer capacitors (Winter and Brodö, 2004; Tang et al., 2015; Binazadeh et al., 2016; Ghosh et al., 2019; Lv et al., 2019; Miao et al., 2019; He et al., 2020). However, the energy density of most commercially available electrochemical capacitors is much lower than that of lithium-ion batteries, creating a substantial barrier to the practical application of such supercapacitors on a large scale (Jabeen et al., 2017; Liu et al., 2018a; Zhao et al., 2018). The energy density depends on the capacitance and the potential window by relation $E = \frac{1}{2} CV^2$. Therefore, considerable efforts have been made to maximize “E” by enhancing “V” and “C.” Among various types of electrochemical capacitors, 2D materials-based supercapacitors like graphene and MoS$_2$ are gaining significant interest because of their intrinsic features, such as their high conductivity, low cost, flexibility, wide potential, window and fast redox reaction (Firmiano et al., 2014; Hao et al., 2014; Sun et al., 2015; Lv et al., 2016; Mehran and Baig, 2019; Muthu and Gopalan, 2019; Khan et al., 2020; Rani et al., 2020; Rathinamala et al., 2020; Zhao et al., 2021).

Molybdenum disulfide has been widely investigated for various applications such as catalysis (electrocatalysis and photocatalysis) for H$_2$ production, sensors, lubricating agents, and various applications such as catalysis (electrocatalysis and photocatalysis) for H$_2$ production, sensors, lubricating agents, and pseudo-catalysts) for H$_2$ production, sensors, lubricating agents, and pseudo-catalysts) for H$_2$ production, sensors, lubricating agents, and pseudocapacitive material, like RuO$_2$ (Soon and Loh, 2007). However, MoS$_2$ has a stumpy specific capacitance which might be attributed to its low electric conductivity. Recently, Yun Lu et al. demonstrated that this issue could be resolved using FeS$_2@$C as a template for synthesis of MoS$_2$. Based on the same approach, graphene could be employed as a substrate to grow MoS$_2$. Graphene oxide could act as an ideal template for the growth of MoS$_2$ to enhance its electrochemical properties due to excellent electric conductivity, high surface area, and stability, which provides excessive ion diffusion pathways among MoS$_2$ and electrolyte interfaces. Another way to improve the performance of supercapacitors is using the element doping strategy (Ghosh et al., 2020; Wang et al., 2020a). For example, Wang et al. (2020b) employed the strategy of multivalent and isostructural anion substitution chemistry to enhance the electrochemical performance of electrode materials.

Herein, we have fabricated hierarchical MoS$_2$ flowers on GO sheets using a simplistic hydrothermal scheme, and prepared hybrid nanostructures are employed as potential electrode materials for supercapacitor applications. We observed that the MoS$_2$ layers grown on rGO retain highly efficient charge storage properties with excessive capacitance and energy density properties. The remarkable capacitive performance of the MoS$_2/rGO$ hybrid electrode is likely due to the integration of faradic and non-radical processes of active MoS$_2$ layers in connection with highly conductive graphene oxide layers.

EXPERIMENT

Fabrication of Pure MoS$_2$ and MoS$_2$/rGO Nanohybrids

For the preparation of pure MoS$_2$ and its hybrid with reduced graphene oxide, a facile hydrothermal method is adopted with prior ultrasonication treatment. Analytical grade ammonium heptamolybdate (NH$_4$)$_6$Mo$_7$O$_{24}$, thiourea (CH$_4$N$_2$S), polyvinyl pyrrolidone (PVP), K30, Mol. wt. 40,000 (C$_{24}$H$_{40}$NO$_{11}$), graphite flakes, sulfuric acid, sodium nitrate, potassium permanganate and acetic acid (CH$_3$COOH) were used as received. Graphene oxide was synthesized by a modified Hummers method (Xu et al., 2008; Zhu et al., 2011). Prior to the reaction in a Teflon-lined autoclave, 30 mg GO was suspended in 50 ml water using probe sonication for 2 h. 10 mmol CH$_3$N$_2$S was added in GO suspension with continuous stirring for 20 min. A further 5 mmol (NH$_4$)$_6$Mo$_7$O$_{24}$ was dissolved in 25 ml water at ambient conditions, followed by the addition of 150 mg PVP. Both the solutions (GO suspension and AHM solution) were mixed, keeping the temperature to a low value using an ice bath, and subjected to ultrasonication for 30 min. Just before the transfer of the mixture to autoclave, 1.5 ml CH$_3$COOH was added to the mixture. The autoclave was kept in an oven at 180°C for 16 h. Later, black precipitates were filtered, washed using ethanol and water repeatedly, and dried at 80°C for 8 h. For pure MoS$_2$, same procedure is adopted but in the absence
of GO. After that, the Ni foam substrates (1 × 1 cm²) were treated with a 3 M HCl solution followed by washing and drying at 60°C overnight. The powered electrode materials were drop cast on pre-treated Ni foam by making an ink (10 mg of powder in a mixture of 500 µL DI water, 450 µL isopropanol, and 50 µL Na. Nafion, followed by 1 h sonication) until the desired mass loading was achieved. After deposition, Ni foam was dried overnight at 80°C.

Electrodes Physicochemical Measurements
Phase analysis was carried out by powder X-ray diffraction (“STOE-Seifert X’Pert PRO”) using “CuKα” radiation at 2θ values from 10° to 80°. The morphology of electrodes was examined using scanning electron microscopy (“JEOL-instrument JSM-6490 A”) and transmission electron microscopy. The electrochemical testing was executed at an ambient temperature by “VMP3 multi-channel potentiostat/galvanostat.” For the three-electrode system, MoS2, and MoS2/rGO were employed as a working electrode, Ag/AgCl was used in 1 M KCl solution for the reference electrode, and a platinum mesh was used as a counter electrode. Cyclic voltammetry was executed at different scan rates (2–50 mV/s). Galvanostatic charge-discharge was performed at various current densities (1–10 Ag⁻¹). Electrochemical impedance spectroscopy was accomplished at 5 mV in the frequency range from 0.1 Hz to 100 kHz.

RESULTS AND DISCUSSION

Physicochemical Characterization
To elucidate the growth mechanism of hierarchical MoS2 flowers, a schematic diagram is presented in Figure 1. The growing mechanism is consistent with preceding literature (Burda et al., 2005; Zhang et al., 2015) of the “three-stage growth” mechanism, which includes rapid nucleation of amorphous primary particles, oriented aggregation of nanosheets, and self-assembly of hierarchical structures. Hydrolysis of thiourea to H2S leads to the formation of the MoS2 nuclei that consequently grows into nanosheets corresponding to their crystal growth tendency. When many nuclei were synthesized, it could result in the reduction of nutrients in the reaction medium for endowing formation of MoS2 nuclei, and subsequent reduction of nanosheets in dimensions. Afterward, these nanosheets intertwined and rolled longitudinally to create flower-like nanospheres, constrained by the lowering of surface energy. The succeeding chemical reactions (Eqs 1-4) were proposed to have occurred throughout the entire transition progression (Nagaraju et al., 2007; Feng et al., 2009; Ma et al., 2013; Sun et al., 2014; Zhang et al., 2015; Sun et al., 2016).

The crystal structure and phase purity of synthesized nanomaterials were examined using X-ray diffraction. As displayed in Figure 2A, diffraction peaks located at 2θ = 14.2, 33.5, 40.2, 49.3, 58.9, and 69.5 were evident in both patterns of bare MoS2 and MoS2/rGO nanohybrids, which are well indexed to (d100), (d103), (d105), (d110), and (d201) crystal planes of hexagonal phase MoS2 (JCPDS no. 37-1492). The well-broadened peaks could be ascribed to a lesser thickness of MoS2 nanomaterial, confirming poor crystallinity of the MoS2 nanomaterial and more defects with decreased nanometer-scale sizes. Figure 2B presents the nitrogen adsorption desorption isotherms for both pure MoS2 and MoS2/rGO hybrids. Adsorption isotherms depict type-II adsorption behavior, representing a multilayer adsorption taking place on the surface of both samples. A long plateau before saturation represents multilayer adsorption till it reaches maximum near the saturation pressure. The calculated multipoint BET analysis showed that the specific surface area of MoS2/rGO nanohybrids was found to be 391 m²/g, which is a significantly higher value as compared to pure MoS2 (124 m²/g). The resulting pore size-distribution exhibits manifestation of abundant mesopores, as shown in Figure 2C. The porous structure is advantageous for fast electrolyte diffusion and mass transportation. The average pore size of pure MoS2 was 24 Å, while for those of MoS2/rGO (average pore size 58 Å) an increment of 24 Å in pore size was seen, whereas the pore volume for pure MoS2 was 0.08 cm³/g and pore volume for...
FIGURE 2 | (A) XRD patterns of pure MoS$_2$ and MoS$_2$/rGO. (B) BET N$_2$ adsorption-desorption isotherms for pure MoS$_2$ and MoS$_2$/rGO nanocomposites. (C) Pore volume and pore size distribution for pure MoS$_2$ and MoS$_2$/rGO nanocomposites.

FIGURE 3 | (A,B) SEM images of pure MoS$_2$ (C) TEM images of pure MoS$_2$ (D–I) TEM images of MoS$_2$/rGO nanocomposite.
MoS$_2$/rGO was found to be 0.347 cm3/g. The increase in pore size is presumably because of gaps among MoS$_2$/rGO nanosheets as evident from the SEM images. SEM images (Figures 3A,B) display the flower-like morphology of the resulting MoS$_2$ nanosheets containing hundreds of curved MoS$_2$ nanosheets, leading to hierarchical flowers. These hierarchical flowers possess a diameter of 115 nm and a thickness of 3.42 nm without agglomeration. These nanosheets are tangled together, causing many voids between them due to their curved morphology. Such small-sized nanoflowers provide abundant edge sites for MoS$_2$ nanosheets. Based on the growth mechanism, it can be inferred that thiourea is disintegrated to sulfur ions and fastened on the surface of rGO via nucleation, forming the MoS$_2$ nanoflower that entirely overlays all surfaces of rGO. Figure 3C shows the TEM image of MoS$_2$ while Figures 3D-I shows MoS$_2$ wrapped by rGO sheets, forming a 2D-2D network. TEM images revealed that MoS$_2$ nanosheets were completely in-situ anchored on rGO, which provides cross-linking with MoS$_2$, developing a well-interconnected network. Moreover, MoS$_2$ nanosheets were a few layers thick, and the void among layers was 0.63 and 0.036 nm for MoS$_2$/rGO, which corresponds with d-spacing of 0.63 nm (002), estimated by X-ray diffraction. Extended interlayer spaces are extremely advantageous in enhancing the kinetic capability of rapid and reversible intercalation/deintercalation of anions. The fringes twisted from the straight track could be elucidated as lattice defects in MoS$_2$ and rGO. These defects have the capacity for more electrolyte ions which might improve all electrochemical properties by delivering enough electroactive sites and extra electrical conductivity. This 2D-2D architecture is also advantageous to enhance the surface area of the nanocomposite. Moreover, the overlapping or merging of rGO creates an interrelated conducting framework and aids in fast electron transportation during a redox reaction. This 2D-2D nanostructure also improves the stability of MoS$_2$/rGO composites owing to the flexibility and toughness of rGO.

Electrochemical Measurements

CV profiles of MoS$_2$ and MoS$_2$/rGO on Ni foam evaluated in scan rates from 2 mVs$^{-1}$ to 50 mVs$^{-1}$ are presented in Figures 4A,B. Cyclic voltammograms revealed a combination of rectangular (double-layer reaction) and redox peaks indicating the pseudocapacitive behavior with a fast-reversible redox reaction of MoS$_2$. A similar trend can be seen in most of the reported literature (Firmiano et al., 2014; Ji et al., 2015; Liu et al., 2018b; Tian et al., 2019). The CV curves retained their shapes after 50 mV/s, suggesting the good high rate electrochemical properties such as high stability, fast electrolyte ions diffusion...
into the active site, and good reversibility. Moreover, the current density of the MoS\(_2\)/rGO electrode has been improved greatly due to the addition of rGO instead of the pure MoS\(_2\) electrode. The enhanced current density could be ascribed to high conductivity and effective utilization of active sites of MoS\(_2\) after the growth on rGO (Tian et al., 2019). The peaks in the CV profiles of MoS\(_2\)-based electrodes could be ascribed to the redox reaction of layer structure MoS\(_2\) i.e. Mo-IV \(\leftrightarrow\) Mo-V \(\leftrightarrow\) Mo-VI as per the following equations (Eqs 5 and 6) (Soon and Loh, 2007; Tian et al., 2019; Sun et al., 2020).

\[
\begin{align*}
(MoS_2)_{\text{surface}} + K^+ + e^- & \leftrightarrow (MoS_2 - K^+)_{\text{surface}} \\
MoS_2 + xe^- + xK^+ & \leftrightarrow (MoS - SK)
\end{align*}
\]

The non-faradic process is ascribed to the adsorption and desorption of electrolyte ions (K\(^+\) ions) on the surface and intrasheet/intersheet of MoS\(_2\) layers. The faradic reaction, on the other hand, is favored by Mo atoms. To further verify the charge storage mechanism and kinetics of oxidation and reduction scan, sweep voltammetry was performed by manipulating CV curves at different scan rates. Figure 4C displays a plot of anodic and cathodic peaks current as a function of scan rate with the inset as the square root of the scan rate for MoS\(_2\)/rGO. The peak current is determined using “Randles–Sevcik Equation (Eq. 7)” (Sarkar et al., 2018)

\[i_p = 0.4961 nFAC \left(\frac{nFvD}{RT} \right)^{1/2}\]

where “\(n\)” is the number of electrons transferred, “\(i_p\)” is peak current, “\(F\)” is Faraday constant, “\(A\)” electrode area, “\(C\)” is ions concentration, “\(D\)” is diffusion coefficient; and “\(v\)” represents scan rate. For the non-diffusion controlled process, the trend among scan rates and peak currents should be a straight line (Hu et al., 2009). Figure 4C shows a non-linear relation among scan rates and peak currents, indicating a diffusion-controlled process instead of a non-diffusion process (Hu et al., 2009). For comparative study, peak currents were independently sketched in Figure 4D which showed that both cathodic and anodic current was highest for MoS\(_2\)/rGO. However, the anodic current is higher as compared to the cathodic current, which could be due to the kinetic limitations of K\(^+\) ions over electrons (Kulkarni et al., 2014). rGO allows effective intercalation/de-intercalation of K\(^+\) ions by delivering additional conductive paths, ensuring a fast transference of charges through the interface which enhances all electrochemical properties (Gopalakrishnan et al., 2015). The specific capacitance “\(C_s\)” was computed by the equation below (Eq. 8) from CV curves (Kim et al., 2013)

\[C_s = \frac{\int idV}{2mV\Delta V}\]
Where \(\int idV \) is the integral area under the CV curve, \(m \) is the active mass of electrode material, \(V_s \) is the scan rate, and \(\Delta V \) is the potential window. The maximum capacitance of MoS_2 and MoS_2/rGO were found to be 281 F/g (62.5 mAh/g or 225 C/g) and 846 F/g (153 mAh/g or 550 C/g) at 2 mV/s, respectively.

“Trasatti method” was applied for exploring the electrochemical kinetics of active materials and processes through which charges are stored in electrodes (Ardizzone et al., 1990). This analysis relies on computing stored charges precisely on external and internal surfaces of electrodes. The overall amount of charges stored is the sum of both surfaces’ charges stored as per the following equation (Eq. 9)

\[
q_f = q_i + q_o
\]
(9)

Where \(q_f \) is total charges and \(q_o \) and \(q_i \) are charges on external and internal surfaces. The amount of charges on the external surface is an adsorption mechanism and does not depend on the scan rate. Whereas, at the internal surface, the quantity of charges is a “diffusion-controlled” mechanism. Therefore, the overall volumetric charges are dependent on scan rates as per the equation mentioned in our previous report (Baig et al., 2020).

Figure 5 showed the plot between scan rates and the quantity of charges stored on the surface. From **Figures 5A,D** overall charges \(q_f \) could be estimated after the extrapolation of scan rates to zero, whereas \(q_o \) could be estimated after extrapolation of scan rates to infinity as shown in **Figures 5B,E, Figure 5C,F** showed capacitive (surface effects) and adsorption contributions of MoS_2/rGO and pure MoS_2 electrodes at various scan rates. The estimated capacitive contributions are significantly greater than a diffusion-controlled contribution at the same scan rates, demonstrating the highly efficient surface storage. The total charge contribution of the composite electrode was around 322 C/g, which is approximately 1.3 times greater than the pure MoS_2 electrode. Furthermore, the MoS_2/rGO electrode showed the capacitive contribution of 99% slightly increased from the MoS_2 counterpart, which accounts for 98% capacitive contribution. This means that most of the surfaces are fully accessible to electrolyte ions during the charge/discharge processes due to the increased interlayer spacing of MoS_2 layers resulting from the prevention of restacking of MoS_2 layers in the MoS_2/rGO electrode (Yan et al., 2017). The enhanced performance of the composite electrode could be attributed to high conductivity and efficient use of active sites of MoS_2 after the growth on rGO. Moreover, by increasing the scan rates, the diffusion-controlled process decreases due to a remarkable decline in ions’ diffusion time into the lattice, resulting in low overall capacity at high scan rates (Yan et al., 2017; Jiang et al., 2018).

GCD analysis was executed to authenticate the rate capabilities of electrode materials at current densities from 1 A/g to 10 A/g and is presented in **Figure 6. Figures 6A,B** signifies the GCD
profile of MoS$_2$ and MoS$_2$/rGO (vs Ag/AgCl) at 1–10 A/g. The MoS$_2$/rGO/Ni has a remarkably higher discharge time (459 s) compared to its counterpart, which has a discharge time of 266 s at 1 A g$^{-1}$. The GCD analysis shows that, with the increase in current densities, discharge time decreases. This is because electrochemical kinetics could not cope with fast fluctuations in potential because of the sluggish transport of ions and ineffective utilization of active materials (Azad et al., 2020; Zhao et al., 2020). The charging profiles are nearly straight and identical to the discharge counterparts, which again reveals the outstanding reversibility of the MoS$_2$/rGO electrode. The Ohmic drop (“IR drop” or “ESR”) is insignificant even at greater current densities, demonstrating the exceptional electronic conductivity of electrodes. This low “Ohmic drop” could be because of the rapid intercalated/deintercalated phenomena of K$^+$ and fast electrons transfer. In comparison, both capacitance (F/g) and capacity (mAh/g and C/g) were used. The maximum capacitance of MoS$_2$ and MoS$_2$/rGO was found to be 297 F/g (66 mAh/g or 238 C/g) and 850 F/g (153.5 mAh/g or 552.5 C/g) at 1 A/g respectively, and are presented in Figure 6C. The rate capability of MoS$_2$/rGO can be attributed to the increased interlayer spacing caused by the incorporation of rGO nanosheets in between MoS$_2$ layers while maintaining its good conductivity. These characteristics further improve the diffusion and transportation of electrolyte ions and increase the surface area accessible to the electrolyte ions. Table 1

Table 1: Specific capacitance of MoS$_2$-based electrodes reported by different groups.

Sr no	Material	Year	Electrolyte	Capacitance (F/g)	Cyclic stability	Ref
1	MoS$_2$/rGO	2016	2M KOH	218	91.88% retention after 1,000 cycles	Xiao et al., 2016
2	MoS$_2$/Graphene	2013	1M Na$_2$SO$_4$	243	92.3% retention after 1,000 cycles	Huang et al., 2013
3	MoS$_2$/rGO	2014	1M HClO$_4$	265	92% retention after 1,000 cycles	Fimiano et al., 2014
4	MoS$_2$/rGO	2019	1M Na$_2$SO$_4$	331	110.7% retention after 15,000 cycles	Li et al., 2019a
5	MoS$_2$/rGO	2020	1M Na$_2$SO$_4$	410	80.3% retention after 10,000 cycles	Sun et al., 2016
6	MoS$_2$/Graphene	2018	1M KOH	428	88% retention after 5,000 cycles	Fighul et al., 2018
7	MoS$_2$/rGO	2018	1M KOH	440	83% retention after 1,400 cycles	Sha et al., 2016
8	MoS$_2$/PANI/rGO	2016	1M Na$_2$SO$_4$	618	96% retention after 2,000 cycles	Sun et al., 2019
9	MoS$_2$/Graphene	2019	1M KOH	756	88% retention after 10,000 cycles	Vikraman et al., 2019
10	MoS$_2$/rGO	2015	PVA/H$_2$SO$_4$	5.2 F/cm2	99.9% retention after 7,000 cycles	Sun et al., 2015
11	MoS$_2$/rGO	2020	1M KCl	850	95.3% retention after 10,000 cycles	This work
12	1T-MoS$_2$	2019	3M KOH	1,120	96% retention after 2,000 cycles	Wei et al., 2019

FIGURE 7 | Electrochemical performance of as-synthesized electrodes in a three-electrode configuration. (A) Nyquist plot of MoS$_2$/rGO nanocomposite and MoS$_2$ on Ni foam. (B) Bode phase angle plot of MoS$_2$/rGO nanocomposite and MoS$_2$ on Ni foam. (C) Normalized real and imaginary capacitance vs. frequency of MoS$_2$ on Ni foam. (D) Normalized real and imaginary capacitance vs. frequency of MoS$_2$/rGO nanocomposite on Ni foam.
The hierarchical MoS2/rGO nanohybrids have been synthesized using a facile wet chemical approach as a potential electrode material for supercapacitor applications. The results revealed that the hierarchical nanohybrids have a significantly higher capacitance as compared to their single counterparts. The MoS2/rGO electrode exhibit maximum capacitance of 850 F/g at 1 A/g, with capacitive retention of 95.3% after 10,000 cycles at a current density of 2 A/g. Furthermore, the electrochemical impedance revealed low resistance (0.325 Ω) as well as small frequency response (2.778 s) for the MoS2/rGO electrode. rGO enhanced the electrochemical performance by offering conductive routes and excellent mechanical stability. The unusual synergistic effect in such a hybrid electrode is responsible for the efficient electron transfer process. The excellent performance of MoS2/rGO is ascribed to the inherent electrochemical activity of individual rGO and MoS2 by developing efficient boundaries among the two phases. The hierarchical 3D network supported on the NF substrate is also effective for exposure of numerous active sites, and thus, boosting the electrons/mass transference.

DATA AVAILABILITY STATEMENT

All datasets presented in this study are included in the article.

AUTHOR CONTRIBUTIONS

EP: Conceptualization, Supervision, Administration, Resources, Reviewing, and Editing. MB: Methodology, Investigation, Formal analysis, Writing- Original draft preparation, Validation, Data Curation. MY, and IG: Reviewing and Editing.

ACKNOWLEDGMENTS

Author EP would like to acknowledge HEC Pakistan for the financial grant 2017/HEC/NRPU/10482. MY would like to thank the National “Thousand Youth Talents” program of China and Ningbo 3315 program for the support. Author MB would like to acknowledge Indigenous Ph.D. fellowships for 5000 scholars, Higher Education Commission (HEC) Islamabad Pakistan (Phase-II Batch-V) for providing support for this work.

Table 2 | Equivalent circuit parameters of as-synthesized electrodes.

Electrode material	R1 (Ω)	Q2 (F.s/(a°))	a2	R2 (Ω)
MoS2/rGO	0.785	0.088	0.819	0.325
MoS2	1.089	0.159	1.548	0.664

Table 3 | Summary of the electrochemical performance of synthesized electrodes.

Samples	Capacitance (F/g)	Capacity (C/g)	Capacity (mAh/g)	R1 (Ω)	R2 (Ω)	τ0 (s)
MoS2	297	238	66	1.089	0.654	3.108
MoS2/rGO	850	552.5	153.5	0.785	0.325	2.778

Electrochemical impedance spectroscopy was employed to assess charging kinetics in relation to capacitive behavior. Figure 7 A shows the Nyquist plot of synthesized electrodes. The inset in Figure 7 A presents the equivalent circuit elements (Azad et al., 2020), where “R1” is the ohmic resistance of the solution between the working and reference electrode, “R2” is the polarization or the charge transfer resistance at the electrode and solution interface, “Q2” is the constant phase element at this interface, “W2” is Warburg impedance, and “C3” is the faradic capacitance. Usually, a semi-circle (dia of this circle gives Rct) could be observed in the “Nyquist plot” at higher frequencies, because of charge transfer resistances caused by faradic reactions. The Rct values were 0.6542 and 0.3256 Ω for MoS2 and MoS2/rGO respectively (Table 2). The solution resistances for the MoS2 and MoS2/rGO were 1.089 and 0.785 Ω, respectively. The sudden ascen in impedance from the imaginary axis can be observed at the middle frequencies zone. This sudden rise gives “Warburg impedance” which is inclined at 45°, demonstrating a pseudo capacitance nature. The bode plot of MoS2 and MoS2/rGO is presented in Figure 7 B. The impedance features of the supercapacitor fall among ideal resistors (phase angle 0°) and ideal capacitors (phase angle 90°) (Azad et al., 2020; Baig et al., 2020). The phase angle for MoS2/rGO and MoS2 was 79.8° and 65.6°, representing the outstanding pseudocapacitance performance of active materials. The charge storage mechanisms were additionally verified via normalize C (ω) and C” (ω) responses as function of frequencies (Figures 7 C, D) by means of a complex capacitance model (Jiang et al., 2018). The relaxation time for the MoS2 electrode is 3.108 s, whereas for MoS2/rGO the relaxation time is 2.778 s, demonstrating the fast frequency response and ion diffusion of the MoS2/rGO. The electrochemical performance of synthesized electrodes is summarized in Table 3.

CONCLUSION

The hierarchical MoS2/rGO nanohybrids have been synthesized using a facile wet chemical approach as a
outstanding volumetric capacitance. Adv. Funct. Mater. 27 (30), 1701264. doi:10.1002/adfm.201701264
Yang, W., Guo, H., Yue, L., Li, Q., Xu, M., Zhang, L., et al. (2020). Metal-organic frameworks derived MMoSx (M = Ni, Co and Ni/Co) composites as electrode materials for supercapacitor. J. Alloys Compd. 834, 154118. doi:10.1016/j.jallcom.2020.154118
Zhang, X., Huang, X., Xue, M., Ye, X., Lei, W., Tang, H., et al. (2015). Hydrothermal synthesis and characterization of 3D flower-like MoS2 microspheres. Mater. Lett. 148, 67–70. doi:10.1016/j.matlet.2015.02.027
Zhao, G., Cheng, Y., Sun, P., Ma, W., Hao, S., Wang, X., et al. (2020). Biocarbon based template synthesis of uniform lamellar MoS2 nanoflowers with excellent energy storage performance in lithium-ion battery and supercapacitors. Electrochim. Acta. 331, 135262. doi:10.1016/j.electacta.2019.135262
Zhao, J., Li, Z., Yuan, X., Yang, Z., Zhang, M., Meng, A., et al. (2018). A high-energy density asymmetric supercapacitor based on Fe2O3 nanoneedle arrays and NiCo2O4/Ni(OH)2 hybrid nanosheet arrays grown on SiC nanowire networks as free-standing advanced electrodes. Adv. Energy Mater. 8 (12), 1702787. doi:10.1002/aenm.201702787
Zhao, T., Peng, X., Zhao, X., Hu, J., Jiang, T., Lu, X., et al. (2020). Preparation and performance of carbon dot decorated copper sulphide/carbon nanotubes hybrid composite as supercapacitor electrode materials. J. Alloys Compd. 817, 153057. doi:10.1016/j.jallcom.2019.153057
Zhou, K.-G., Mao, N.-N., Wang, H.-X., Peng, Y., and Zhang, H.-L. (2011). A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed. 50 (46), 10839–10842. doi:10.1002/anie.201105364
Zhu, J., Sharma, Y. K., Zeng, Z., Zhang, X., Srinivasan, M., Mhaisalkar, S., et al. (2011). Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes. J. Phys. Chem. C. 115 (16), 8400–8406. doi:10.1021/jp2021113

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Baig, Pervaiz, Yang and Hussain Gul. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.