Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The novel coronavirus disease (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), also known as the 2019 novel coronavirus (2019-nCoV), has emerged in Wuhan (China) in early December 2019 and it has rapidly spread worldwide causing a major pandemic [1].

Frail individuals with underlying diseases and chronic conditions are the most vulnerable to COVID-19 infections. In particular, the elderly are highly affected by COVID-19 compared to young and middle-aged people, both in terms of prevalence of the disease and mortality [2–4]. In China, where the elderly represent a small proportion of the total population, patients >60 years or older affected by COVID-19 were reported to be between 15% and 26%, with a mortality rate which was significantly higher compared to younger patients (5.3%, vs 1.4%) [5,6]. In Italy, one of the countries most severely affected by COVID-19, a mortality rate of 13.1% was reported, based on data up to April 23, 2020 [7]. Mortality increases with age, with a rate of 10.6% for 60-69 year-old patients, 25.7% for 70–79-year-old patients and 31.7% 80-89-year-old patients. Furthermore, 8.1% of cases were reported in older patients (>90 years) with a mortality rate of 28.5%. Mean age of Italian patients died for SARS-CoV-2 infection was 79 years (median 81, range 0–100, IQR 73–87), 60.3% of them had three or more comorbidities and 12.6% experienced co-infections [8].

The impact of COVID-19 is particularly dramatic in LTCFs. In a recent report — including data from 19 countries worldwide - the rate of mortality associated with COVID-19 pandemic in these settings was reported ranging from 24% to 82% [9]. The European Centre for Disease Prevention and Control (ECDC) indicated that in Europe deaths occurred in LTCFs represent from 37% to 66% of all fatal cases linked to COVID-19 [10]. In the month of May, 49.5% (1061/2143) of the COVID-19 cases registered in Italy occurred in LTCFs [11]. The total rate of mortality in a survey on 3276 Italian LTCFs was reported of 8.2% (6773 deaths/80131 residents), with 40.2% (2724/6773) of deaths resulted positive to COVID-19 [12].

Although a low number of studies have been published so far, the rates of bacterial infection in COVID-19 patients are considerable and probably underestimated due to the complexity of bacterial infection diagnosis during the health emergency of the moment [13,14]. It has been estimated that about 72% of COVID-19 patients were treated with broad-spectrum antibiotics, mostly respiratory quinolones, to prevent bacterial co-infections and super-infections [15–19]. About 75% of LTCF residents receive at least one course of antibiotics during 6 or more months of...
However, it is equally true that the increase of infection control hospitals and LTCFs increases during a pandemic, and it might both COVID-19 and CDI should be considered in diarrheic patients. A novel SARS-CoV-2 infection might facilitate occurrence of CDI, particularly in patients already colonized by *C. difficile*. Therefore, COVID-19 convalescents, particularly those that had gastrointestinal manifestations and had received antibiotic treatments, might have a microbiota with reduced colonization resistance against *C. difficile* and consequently they could be more prone to CDI. All these features highlight the importance of a renewed attention to CDI during the current pandemic, especially in the perspective of additional waves of COVID-19 that might have an even more devastating impact on elderly population, until a vaccine and/or a specific therapy for this infection will be developed.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

Thank you to Fabrizio Barbanti for his precious support and assistance.

References

[1] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, et al., A novel coronavirus from patients with pneumonia in China, 2019, N. Engl. J. Med. 382 (2020) 727–733.

[2] C. Leung, Clinical features of deaths in the novel coronavirus epidemic in China, Rev. Med. Virol. 2020 (2020), e2103, https://doi.org/10.1002/rmv.2103.

[3] J. Zhang, X. Dong, Y.Y. Cao, Y.D. Yuan, Y.B. Yang, Y.Q. Yan, et al., Clinical characteristics of 144 patients infected by SARS-CoV-2 in Wuhan, China, Allergy (2020), https://doi.org/10.1111/all.14218.

[4] Older people are at highest risk from COVID-19, but all must act to prevent community spread 2 April 2020, Copenhagen, Denmark, Dr Hans Henri P. Kluge, WHO Regional Director for Europe. http://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/statements/statement-older-people-are-at-highest-risk-from-covid-19-but-all-must-act-to-prevent-community-spread.

[5] K. Liu, Y. Chen, R. Liu, K. Han, Clinical feature of COVID-19 in elderly patients: a comparison with young and middle-aged patients, J. Infect. 80 (2020) e14–e18.

[6] F. Yang, Q.B. Lu, M.J. Liu, Y. Wang, A. Zhang, N. Jalali, et al., Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China, Med Rxiv (2020), https://doi.org/10.1016/j.cej.2020.123011.

[7] Task force COVID-19 del Dipartimento Malattie Infettive e Servizio di Informatica, Istituto Superiore di Sanità. Epidemiologia COVID-19, Aggiornamento nazionale: 23 aprile 2020, https://www.epicentro.iss.it/coronavirus.

[8] SARS-CoV-2 Surveillance Group, Istituto Superiore di Sanità. Characteristics of SARS-CoV-2 patients dying in Italy Report based on available data on April 29th. https://www.epicentro.iss.it/coronavirus, 2020.

[9] A. Comas-Herrera, J. Zalakaín, C. Litwin, A.T. Hsu, N. Lane, J.-L. Fernández, Mortality Associated with COVID-19 Outbreaks in Care Homes: Early International Evidence, Article in LTCovid.org, International Long-Term Care Policy Network, CPEC-ILSE, 2020, 21 May 2020.

[10] European Centre for Disease Prevention and Control, Surveillance of COVID-19 in Long-Term Care Facilities in the EU/EEA, 19 May 2020, ECDC, Stockholm, 2020.

[11] Epidemia COVID-19, Aggiornamento nazionale. 20 maggio 2020, https://
Collateral damage: coronavirus poses major challenge for scientific community by the Financial Express. https://www.financialexpress.com/opinion/collateral-damage-coronavirus-poses-major-challenge-for-scientific-community/1932092/.

Survey nazionale sul contagio COVID-19 nelle strutture residenziali e socio-sanitarie Istituto Superiore di Sanità. Epidemia COVID-19, Aggiornamento nazionale: 14 aprile 2020, https://www.epicentro.iss.it/coronavirus.

Covid-19 may worsen the antibiotic resistance crisis-WIRED. https://www.wired.com/story/covid-19-may-worsen-the-antibiotic-resistance-crisis/.

Collateral damage: coronavirus poses major challenge for scientific community by the Financial Express. https://www.financialexpress.com/opinion/collateral-damage-coronavirus-poses-major-challenge-for-scientific-community/1932092/.

R.L.P. Jump, C.J. Donskey, Clostridium difficile in the long-term care facility: prevention and management, Curr Geriatr Rep 4 (2015) 60–69.

E. Riccuzzi, K. Latour, T. Karki, R. Buttazzi, B. Jans, L. Moro Maria, et al., Antimicrobial use in European long-term care facilities: results from the third point prevalence survey of healthcare-associated infections and antimicrobial use, 2016 to 2017, Euro Surveill. 3 (46) (2018), https://doi.org/10.2807/1560-7917.ps.1800394.

S.C. Ng, H. Tlg, COVID-19 and the gastrointestinal tract: more than meets the eye, Gut 69 (2020) 973–974.

M.M. Lamers, J. Beumer, van der Vaart, K. Knoops, J. Puschhof, T.I. Breugem, et al., Asymptomatic Clostridium difficile colonization: epidemiology and clinical implications, BMC Infect. Dis. 15 (2015) 516.

W. Cao, T. Li, COVID-19: towards understanding of pathogenesis, Cell Res 30 (2020) 367–369.

S. Horvat, M. Rupnik, Interactions between Clostridiodes difficile and fecal microbiota in in vitro batch model: growth, sporulation, and microbiota changes, Front. Microbiol. 9 (2018) 1633, https://doi.org/10.3389/fmicb.2018.01633.

S. Horvat, M. Rupnik, Interactions between Clostridiodes difficile and fecal microbiota in in vitro batch model: growth, sporulation, and microbiota changes, Front. Microbiol. 9 (2018) 1633, https://doi.org/10.3389/fmicb.2018.01633.

A.E. Pèrez-Cobas, A. Moya, M.J. Gosálbez, A. Latorre, Colonization resistance of the gut microbiota against Clostridium difficile, Antibiotics 4 (2015) 337–357.