Abstract
Foveal hypoplasia (FH) is commonly associated with other ocular anomalies as well as rarely as isolated. In this study, we reported the clinical features and imaging findings of an isolated FH without nystagmus. A 24-year-old female referred to the outpatient clinic complaining of non-progressive, mild visual impairment since early childhood without nystagmus. Spectral domain-optical coherence tomography (SD-OCT) revealed the absence of foveal depression in both eyes with continuity of all inner retinal layers. No capillary-free zone was observed in fluorescein angiography. In suspected cases, SD-OCT is a quick and non-invasive method for diagnosis but other imaging modalities may also be helpful.

Keywords
Isolated Foveal Hypoplasia; Nystagmus; Optical Coherence Tomography; Fluorescein Angiography

DOI: 10.4328/ACAM.6034 Received: 30.09.2018 Accepted: 06.11.2018 Published Online: 08.11.2018 Printed: 01.09.2019 Ann Clin Anal Med 2019;10(5): 634-6

Corresponding Author: Mehmet Barış Üçer, Department of Ophthalmology, Minister of Health Hitit University Erol Olçok Education and Research Hospital, Çorum, Turkey. T.: +90 3642193000 F.: +90 3642193030 E-Mail: dr.mbu@hotmail.com

ORCID ID: https://orcid.org/0000-0002-6807-4909
Introduction
Foveal hypoplasia (FH) is defined as the lack of foveal depression with continuity of all neurosensory retinal layers in the presumed foveal area [1]. Foveal hypoplasia has been described in association with several anatomical eye disorders, such as albinism, aniridia, achromatopsia, microphthalmia, retinopathy of prematurity and incontinentia pigmenti [1,2]. There is decreased visual acuity (VA) and an association with nystagmus in most cases of FH. However, only a few cases as an isolated anatomical finding without nystagmus have been reported [2,5]. Isolated FH is usually bilateral. However, unilateral cases have been reported in the literature [5,6]. In this study, we report a case of an isolated form of bilateral FH without nystagmus in which various imaging modalities were used to confirm the diagnosis.

Case Report
A 24-year-old female referred to the outpatient clinic complaining of non-progressive mild visual impairment in both eyes since early childhood. Her familial and medical history were unremarkable. Her best-corrected VA for the right eye was 6/10 and the left eye was 7/10. She was able to read all the plates in the Ishihara’s color vision test with each eye. Her extraocular movements were full, and she was orthophoric at distance and near. The intraocular pressures were 13 mmHg bilaterally and Humphrey visual field testing was normal. The pupils were round, equal, reactive and anterior chamber angle was normal with gonioscopy without evidence of aniridia (Figure 1). There was no nystagmus and no iris transillumination defects suggestive of ocular albinism and the iris was brown. The fundus examination revealed absent foveal reflexes in both eyes (Figure 2). The vitreous, papilla and retinal periphery were normal. No capillary-free zone was observed in the fluorescein angiography (FA), with the perifoveal capillaries running abnormally close to the presumed fovea and some of them crossing the horizontal meridian (Figure 3). Spectral Domain-Optical Coherence Tomography (SD-OCT) showed the absence of a foveal depression in both eyes with continuity of all inner retinal layers (Figure 4). Central foveal thickness was 266 μm for the right eye and 264 μm for the left eye.

Discussion
The fovea is the most important retinal area for high VA and color vision. Morphologically, there are three important events in fovea maturation. At the first event, foveal depression starts to develop at 24–26 weeks of gestation with peripheral centrifugal migration of inner retinal layers. The foveal depression continues to deepen and is completed at 15 months after the birth. The other important events are centripetal migrations of cones and cone specialization. The outer nuclear layer widening occurs when centripetal migration of cone photoreceptors toward the location of the incipient fovea. Cone specialization begins at the same time in a concomitant process with cone migration: outer segment (OS) lengthening and thinning. Cone centripetal migration and OS lengthening lead to an increase in foveolar cone packing density [7,8]. Patients with FH can have a wide range of vision, from normal to severely impaired [9]. Our patient has mild visual impairment in both eyes. Charbel Issa et al. [10] suggested that VA in FH may be worse at low macular pigment density, therefore anatomical and functional integrity of macula correlates with pigment density. Marmor et al. [9] reported that foveal avascular zone (FAZ) and foveal depression were not critical to the postnatal cone lengthening and packing, that cone specialization could be maintained both anatomically and functionally. Thus, they have explained why some patients, such as the patient presented herein, may have a relatively good VA despite the absence of a normal foveal depression. Optical coherence tomog-
Isolated foveal hypoplasia

Conflicts of interest
None of the authors received any type of financial support that could be considered potential conflict of interest regarding the manuscript or its submission.

References
1. Recchia FM, Carvalho-Reccia CA, Trese MT. Optical coherence tomography in the diagnosis of foveal hypoplasia. Arch Ophthalmol. 2002; 120(11):1587-8.
2. Querques G, Prascina F, Iaculli C, Delle Noci C. Isolated foveal hypoplasia. Int Ophthalmol. 2009; 29(4):271-4.
3. Karaca EE, Çubuk MO, Eksici F, Akçam HT, Waisbourd M, Hasanreisoglu M. Isolated foveal hypoplasia: clinical presentation and imaging findings. Optom Vis Sci. 2014; 91: 61-5.
4. Batıoğlu F, Demirel S, Üçer MB, Bozkurt E. Isolated foveal hypoplasia without nystagmus: Imaging findings. Ann Clin Anal Med 2019;10(5): 634-6.
5. Pakzad-Vaezi K, Keane PA, Cardoso JN, Egan C, Tufail A. Optical coherence tomography angiography of foveal hypoplasia. Ophthalmic Surg Lasers Imaging Retina. 2016; 47(12):1127-31.
6. Iqbal MM, Makar J. Unilateral isolated foveal hypoplasia. Can J Ophthalmol. 2018; 53(3):107-9.
7. Yuodelis C, Hendrickson A. A qualitative and quantitative analysis of the human fovea during development. Vision Res. 1986; 26(6):847-55.
8. Thomas MG, Kumar A, Mohammad S, Proudxlick FA, Engle EC, Andrews C, et al. Structural grading of foveal hypoplasia using spectral-domain optical coherence tomography: a predictor of visual acuity? Ophthalmology. 2011; 118(8):1653-60.
9. Marmor MF, Choi SS, Zawadzki RJ, Werner JS. Visual insignificance of the foveal pit: reassessment of foveal hypoplasia as fovea plana. Arch Ophthalmol. 2008; 126(7):907-13.
10. Charbel Issa P, Foerl M, Helb HM, Scholl HP, Holz FG. Multimodal fundus imaging in foveal hypoplasia: combined scanning laser opthalmoscopy imaging and spectral-domain optical coherence tomography. Arch Ophthalmol. 2008; 126(10):1463-5.
11. Pakzad-Vaezi K, Keane PA, Cardoso JN, Egan C, Tufail A. Optical coherence tomography angiography of foveal hypoplasia. Br J Ophthalmol. 2017; 101(7):985-8.
12. Oliver MD, Dotan SA, Chemke J, Abraham FA. Isolated foveal hypoplasia. Br J Ophthalmol. 1987; 71(12):926-30.
13. Holmstrom G, Eriksson U, Heiligen K, Larsson E. Optical coherence tomography in the diagnosis of foveal hypoplasia. Acta Ophthalmol. 2010; 88(4):459-46.

How to cite this article:
Üçer MB, Bozkurt E. Isolated foveal hypoplasia without nystagmus: Imaging findings. Ann Clin Anal Med 2019;10(5): 634-6.

Scientific Responsibility Statement
The authors declare that they are responsible for the article’s scientific content including study design, data collection, analysis and interpretation, writing, some of the main line, or all of the preparation and scientific review of the contents and approval of the final version of the article.

Animal and human rights statement
All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. No animal or human studies were carried out by the authors for this article.