Facile and efficient synthesis of quinazoline-2,4(1H,3H)-diones through sequential hydrogenation condensation

Peng-Xu Wang, Ya-Nan Wang, Zi-Yun Lin, Gang Li, and Hai-Hong Huang

State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P. R. China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P. R. China

ABSTRACT

The heterocyclizations from various methyl (2-nitrobenzoyl) carbamates to substituted quinazoline-2,4(1H,3H)-diones under hydrogenation conditions were investigated in this study. In the presence of p-toluenesulfonic acid monohydrate in methanol, various quinazoline-2,4(1H,3H)-diones were obtained in good to excellent yields within 12 h. The reaction was proposed to proceed through the cascade reactions of nitro reduction and condensation.

GRAPHICAL ABSTRACT

ARTICLE HISTORY

Received 3 December 2017

KEYWORDS

Cascade reaction; heterocyclization; hydrogenation condensation; quinazoline-2,4(1H,3H)-dione

Introduction

Heterocycles are of special interest and significant importance in the search for new biologically active scaffolds in the pharmaceutical industries. Among different types of the nitrogen containing heterocycles, quinazolinones and quinazolinediones have attracted great attention due to their diverse pharmacological activities, such as anticancer, anticonvulsive, anti-inflammatory, and antihypertensive activities, etc. Owing to the widespread applications of the quinazolinedione skeleton, substantial efforts have been made to the chemical derivatization on the scaffold. Thus, various synthetic methods have been developed to construct substituted quinazolinediones, with the most common method as the heterocyclization of 2-aminobenzoic acid with urea above 150 °C (method A, Scheme 1) or metal-catalyzed condensation (methods B–E, Scheme 1), and several other conditions (methods F–H, Scheme 1). Among these methods, it is obviously that the introduction of 2-position carbonyl group was crucial to the
construction of quinazolinedione with the key precursor reagents such as urea, DMF, CO, and KOCN (Scheme 1).

Although above synthesis methods are very useful, many of them have drawbacks such as involving harsh reaction condition, long reaction time, use of toxic and expensive chemicals and low reaction yields. Herein, we wish to design a facile and efficient protocol for the preparation of quinazoline-2,4(1H,3H)-diones through sequential hydrogenation condensation under mild reaction conditions with a novel and simple method for the introduction of 2-position carbonyl group. To our knowledge, this is the first time that methyl (2-nitrobenzoyl)carbamates are used as the starting materials to construct quinazolinediones under hydrogenation/condensation conditions.

Results and discussion

Initially, ethyl (2-nitrobenzoyl)carbamate (A) as an important substrate was conveniently synthesized from 2-nitrobenzamide by the use of oxalyl chloride and C₂H₅OH, in which the 2-position carbonyl was formed in advance. Then, Pd/C hydrogenation was proceeded to reduce the nitro group. Finally, after 3 h hydrogenation at room temperature, removal of Pd/C and evaporation of the solvent at 30 °C, we found that a mixture of nitro reduction product (B) and trace quinazolinedione (1a) was formed according to the ¹H NMR spectra (Scheme 2). Interestingly, when a drop of DCl was added to the mixture of 1a and B in the NMR tube and laid overnight, the compound B could completely convert to the target
Compound 1a. This result indicated that the acid could promote the cyclization process. It is anticipated that quinazolinedione 1a could be directly prepared with a combination of Pd/C and acid through hydrogenation from substrate A. Herein we report the development of heterocyclization toward quinazolinediones through a cascade of nitro reduction and condensation.

First, we screened the leaving group OR, solvent and acid that might affect the heterocyclization (Table 1). The results displayed that the leaving group (OR) was crucial for the reaction due to the steric hindrance effect. The use of methoxy group resulted in a much higher yield (entry 1) compared to the ethoxy or phenoxy group (entries 2, 3), but tert-butoxy group did not proceed cyclization (entry 4). When PTSA · H2O was used as the catalyst, the reaction yields were increased from 61.8 to 82.4% (OR=OC2H5, entry 2 vs entry 6), and 60.1 to 76.7% (OR=OPh, entry 3 vs entry 7), respectively. The results revealed that PTSA · H2O could be favorable to the cyclization reaction. However, for the bulky tert-butoxy group, the heterocyclization still did not occur even in the presence of PTSA · H2O (entry 8). Second, with optimized leaving group OCH3 and PTSA · H2O in

Table 1. Optimization of reaction conditions.a

Entry	R	Acidb	Solvent	Yield (%)	1a	C
1	CH3	–	CH3OH	87.0	–	–
2	CH2CH3	–	CH3OH	61.8	–	–
3	Ph	–	CH3OH	60.1c	–	90.4
4	CH(CH3)3	–	CH3OH	–	90.4	80.4
5	CH3	PTSA · H2O	CH3OH	88.1	–	–
6	CH2CH3	PTSA · H2O	CH3OH	82.4	–	–
7	Ph	PTSA · H2O	CH3OH	76.7c	–	–
8	CH(CH3)3	PTSA · H2O	CH3OH	–	88.7	–
9	CH3	PTSA · H2O	C2H5OH	83.3	–	–
10	CH3	PTSA · H2O	THF	–	NRd	NR
11	CH3	PTSA · H2O	DME	–	–	–

aReaction was run at room temperature with H2 balloon for 3 h, evaporation of the solvent at 45 °C after removal of Pd/C. The concentrate was washed with water to afford the product.
bUsing 5% of PTSA · H2O.
c1H NMR yield.
dNo reaction.
DME, dimethylether; PTSA, p-toluenesulfonylic acid; THF, tetrahydrofuran.
hand, the solvents were screened. We found that the use of C_2H_5OH resulted in a slight lower yield than CH_3OH (entry 9 vs entry 5), but no reaction in tetrahydrofuran (THF) and dimethylether (DME) (entries 10, 11). The possible reason was that the hydrogenation reaction was prone to occur in alcoholic solvents and CH_3OH was proved to be the best solvent for this tandem reaction.

Encouraged by this promising result, the scope of the method for substituted quinazoline-2,4(1H,3H)-diones was then investigated. To our delight, various substrates could smoothly undergo heterocyclization to afford substituted quinazolinediones in good to excellent yields. It was noticed that the substrates containing electron-donating groups or halogen substituents generally gave higher yields (1a–j in Table 2) under the optimal reaction conditions, while the substrates containing electron-deficient group like trifluoromethyl gave very low yield (1k, entry 11). The disubstituted electron-donating substituents provided a higher yield than the single substituents (1d vs 1e). Interestingly, when the substrate 2i with fluoro group in the ortho position of nitro displayed the lowest yield compared to its isomers with fluoro group attached to the different position on phenyl ring. The possible reason is that the intramolecular hydrogen bond between fluoro and amino reduced the nucleophilicity of amino group. To improve the yield of 1k, the reaction temperature was raised from room temperature to 40 °C. The yield of 1k was increased from 12.4 to 37.4% but the intermediate amine still left (entry 12). With the continuous efforts, the amount of PTSA · H_2O was increased from 5 to 20% and also the reaction time was prolonged from 3 to 12 h, the yield was raised to 67.0% without remaining of the intermediate amine (1k, entry 13).

To clarify the proposed reaction mechanism, we focused on the transformation of the reaction intermediate D inspired by the result of 1k. When substrate 2k was treated with

Table 2. Heterocyclizations from methyl (2-nitrobenzoyl)carbamates 2a–k.

Entry	No.	R_{1,2,3,4}	Time	Yield (%)
1^a	1a	R_{1,2,3,4} = H	3 h	89.9
2^a	1b	R_{1,2,3} = H; R_{4} = CH_3	3 h	90.5
3^a	1c	R_{3,4} = H; R_{2} = CH_3	3 h	86.4
4^a	1d	R_{1,4} = H; R_{3} = OCH_3	3 h	94.2
5^a	1e	R_{1,3,4} = H; R_{2} = OCH_3	3 h	81.5
6^a	1f	R_{2,3,4} = H; R_{1} = F	3 h	75.3
7^a	1g	R_{1,3,4} = H; R_{2} = F	3 h	86.7
8^a	1h	R_{1,2,4} = H; R_{3} = F	3 h	90.3
9^a	1i	R_{1,2,3} = H; R_{4} = F	3 h	67.8
10^a	1j	R_{1,3,4} = H; R_{3} = OOCOCH_3	3 h	95.5
11^a	1k	R_{1,2,4} = H; R_{3} = CF_3	3 h	12.4^d
12^a	1k	R_{1,2,4} = H; R_{3} = CF_3	3 h	37.4^d
13^a	1k	R_{1,2,4} = H; R_{3} = CF_3	12 h	67.0

^aReaction was run at room temperature with H_2 balloon using 5% of PTSA · H_2O.
^bReaction was run at 40 °C with H_2 balloon using 5% of PTSA · H_2O.
^cReaction was run at 40 °C with H_2 balloon using 20% of PTSA · H_2O.
^d^1H NMR yield; a mixture of 1k and intermediate amine D.

PTSA, p-toluenesulfonic acid.
Pd/C hydrogenation without catalyst PTSA · H₂O at room temperature, the intermediate D was formed exclusively (Scheme 3). With the assistance of PTSA · H₂O at 40 °C, the intermediate D smoothly underwent intramolecular cyclization to afford quinazolinedione 1k.

A plausible mechanism based on our experiments is proposed in Scheme 4. First, the ethyl (2-nitrobenzoyl)carbamate A is reduced to the intermediate E by Pd/C hydrogenation. Then intramolecular cyclization of E generates the intermediate F in the presence of PTSA · H₂O. At last, removal of C₂H₅OH and hydrogen ion affords the desired product 1a by ammonolysis of ester process. The nucleophilicity of amino group in the intermediate E plays a key role in the intramolecular ammonolysis reaction. This could be the possible reason why substrates with electron-donating groups generally gave higher yields.

Conclusion

In summary, we have described a novel and efficient method for a PTSA-catalyzed reaction to prepare various quinazoline-2,4(1H,3H)-diones from substituted methyl (2-nitrobenzoyl)carbamates through sequential hydrogenation condensation. The crucial 2-position carbonyl group of quinazoline-2,4(1H,3H)-diones is constructed using oxalyl chloride as the key precursor reagent to avoid harsh reaction condition and expensive chemicals. This approach has several advantages, such as no-column separation, mild reaction conditions and high yields. Further explorations to broaden the scope and synthetic applications of this efficient approach are currently underway in our group. This useful method could potentially be complementary to the existing methods for the synthesis of quinazoline-2,4(1H,3H)-diones.

Experimental

Melting points were determined on Yanaco MP-J3 microscope melting point apparatus. ¹H and ¹³C NMR spectra were recorded on Varian 400 or 500 MHz NMR spectrometer with CDCl₃ or DMSO-d₆ as a solvent. ESI-HRMS data were measured on Thermo Exactive
Orbitrap plus spectrometer. All solvents and reagents were obtained from commercial suppliers and used without further purification.

General procedure for the preparation of methyl (2-nitrobenzoyl)carbamate (2a)

To a magnetically stirred solution of 2-nitrobenzamide (2 g, 12.04 mmol) in 1,2-dichloroethane (15 mL) was added oxalyl chloride (1.8 mL, 20.47 mmol). The reaction mixture was heated to reflux for 3 h under an atmosphere of argon. The solvent was evaporated under reduced pressure. The residue was dissolved in anhydrous acetonitrile (30 mL). The mixture of CH₃OH (10 mL) and anhydrous acetonitrile (10 mL) was slowly added to the reaction mixture keeping the reaction under −10 °C. The reaction mixture was stirred for 2 h keeping the reaction under −10 °C. The solvent was evaporated under reduced pressure. The residue was washed with water, filtrated and dried to give a white solid (2.27 g, 84.0%). mp 119–120 °C. ¹H NMR (400 MHz, CDCl₃) δ: 8.25 (dd, J₁ = 8.4 Hz, J₂ = 1.2 Hz, 1H), 8.11 (brs, 1H), 7.75 (td, J₁ = 7.6 Hz, J₂ = 1.2 Hz, 1H), 7.66-7.62 (m, 1H), 7.45 (dd, J₁ = 7.6 Hz, J₂ = 1.2 Hz, 1H), 3.69 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 167.2, 152.5, 145.1, 134.9, 132.6, 128.5, 124.1, 52.7; ESI-HRMS m/z calcd for C₉H₈N₂O₅Na (M+Na⁺): 247.0325, found: 247.0325.

General procedure for the preparation of quinazoline-2,4(1H,3H)-dione (1a)

To a magnetically stirred solution of 2a (200 mg, 0.892 mmol) in CH₃OH (50 mL) was added 10% Pd/C (10% Pd loaded on Carbon wetted with ca. 55% water, 20 mg) and PTSA · H₂O (8.6 mg, 0.045 mmol). The reaction mixture was stirred under an atmosphere of hydrogen at room temperature for 3 h. After filtration of Pd/C and concentration under reduced pressure at 45 °C, 20 mL H₂O was added to the residue and the mixture was stirred at 0 °C for 1 h. After filtration, the product was dried to give a white solid (130 mg, 89.9%). mp >250 °C; ¹H NMR (500 MHz, DMSO-d₆) δ: 11.26 (brs, 1H), 11.12 (brs, 1H), 7.89–7.87 (m, 1H), 7.64–7.61 (m, 1H), 7.17–7.15 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ 163.0, 150.5, 141.0, 135.1, 127.1, 122.4, 115.5, 114.5; ESI-HRMS m/z calcd for C₉H₇N₂O₂ (M+H⁺): 163.0502, found: 163.0501. [8]

Funding

This work was supported by the National Natural Science Foundation of China under Grant 81703362; CAMS Innovation Fund for Medical Sciences under Grant CAMS-2016-12M-1-010; and Fundamental Scientific Research Fund of Chinese Academy of Medical Sciences under Grant 2016ZX350030.

ORCID

Gang Li http://orcid.org/0000-0003-0924-7950

Hai-Hong Huang http://orcid.org/0000-0003-1641-1309

References

[1] Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Synthetic Approaches, Functionalization and Therapeutic Potential of Quinazoline and Quinazolinone Skeletons: The Advances Continue. *Eur. J. Med. Chem.* 2015, 90, 124–169. DOI: 10.1016/j.ejmech.2014.10.084.
[2] Carrico, D.; Blaskovich, M. A.; Bucher, C. J.; Sebti, S. M.; Hamilton, A. D. Design, Synthesis, and Evaluation of Potent and Selective Benzoyleneurea-Based Inhibitors of Protein Geranylgeranyltransferase-I. *Bioorg. Med. Chem.* 2005, 13, 677–688. DOI: 10.1016/j.bmc.2004.10.053.

[3] Colotta, V.; Lenzi, O.; Catarzi, D.; Varano, F.; Squarcialupi, L.; Costagli, C.; Galli, A.; Ghellardini, C.; Pugliese, A. M.; Maraula, G; 3-Hydroxy-1H-Quinazoline-2,4-Dione Derivatives as New Antagonists at Nontropic Glutamate Receptors: Molecular Modeling and Pharmacological Studies. *Eur. J. Med. Chem.* 2012, 54, 470–482. DOI: 10.1016/j.ejmech.2012.05.036.

[4] Mortier, J.; Maseeel, B.; Remouchamps, C.; Ganeff, C.; Piette, J.; Frederick, R. NF-xB Inducing Kinase (NIK) Inhibitors: Identification of New Scaffolds Using Virtual Screening. *Bioorg. Med. Chem. Lett.* 2010, 20, 4515–4520. DOI: 10.1016/j.bmcl.2010.06.027.

[5] Piotrowska, D. G.; Andrei, G.; Schols, D.; Snoeck, R.; Lysakowska, M. Synthesis, Anti-Varicella-Zoster Virus and Anti-Cytomegalovirus Activity of Quinazoline-2,4-Diones Containing Isoxazolidine and Phosphonate Substructures. *Eur. J. Med. Chem.* 2017, 126, 84–100. DOI: 10.1016/j.ejmech.2016.10.002.

[6] Abdel-Magid, A. F. Potential Treatment for Neuropsychiatry Disorders with TRPC5 Modulators. *ACS Med. Chem. Lett.* 2016, 7, 547–548. DOI: 10.1021/acsmedchemlett.6b00182.

[7] Ismail, M. A. H.; Barker, S.; Abou El Ella, D. A.; Abouzid, K. A. M.; Toubar, R. A.; Todd, M. H. Design and Synthesis of New Tetrazolyl- and Carboxy-Biphenylylmethyl-Quinazolin-4-One Derivatives as Angiotensin II AT1 Receptor Antagonists. *J. Med. Chem.* 2006, 49, 1526–1535. DOI: 10.1021/jm050232e.

[8] Yoo, E.; Salunke, D. B.; Sil, D.; Guo, X.-Q.; Salyer, A. C. D.; Hermanson, A. R.; Kumar, M.; Malladi, S. S.; Balakrishna, R.; Thompson, W. H.; Determinants of Activity at Human Toll-Like Receptors 7 and 8: Quantitative Structure–Activity Relationship (QSAR) of Diverse Heterocyclic Scaffolds. *J. Med. Chem.* 2014, 57, 7955–7970. DOI: 10.1021/jm500744f.

[9] Li, J.-R.; Chen, X.; Shi, D.-X.; Ma, S.-L.; Li, Q.; Zhang, Q.; Tang, J.-H. A New and Facile Synthesis of Quinazoline-2,4(1H,3H)-Diones. *Org. Lett.* 2009, 11, 1193–1196. DOI: 10.1021/ol900093h.

[10] Willis, M. C.; Snell, R. H.; Fletcher, A. J.; Woodward, R. L. Tandem Palladium-Catalyzed Urea Arylation–Intramolecular Ester Amidation: Regioselective Synthesis of 3-Alkylated 2,4-Quinazolinediones. *Org. Lett.* 2006, 8, 5089–5091. DOI: 10.1021/ol060209x.

[11] Wu, X.-W.; Yu, Z.-K. Metal and Phosgene-Free Synthesis of 1H-Quinazoline-2,4-Diones by Selenium-Catalyzed Carbonylation of o-Nitrobenzamides. *Tetrahedron Lett.* 2010, 51, 1500–1503. DOI: 10.1016/j.tetlet.2010.01.040.

[12] Jing, Y.-F.; Liu, R.-T.; Lin, Y.-H.; Zhou, X.-G. Lanthanide-Catalyzed Cyclocarbonylation and Cyclothiocarbonylation: A Facile Synthesis of Benzannulated 1,3-Diheteroatom Five- and Six-Membered Heterocycles. *Sci. China Chem.* 2014, 57, 1117–1125. DOI: 10.1007/s11426-014-5149-0.

[13] Deng, X.-X.; Guo, L.; Xu, L.-L.; Zhen, X.-C.; Yu, K.-Q.; Zhao, W.-L.; Fu, W. Discovery of Novel Potent and Selective Ligands for 5-HT2A Receptor with Quinazoline Scaffold. *Bioorg. Med. Chem. Lett.* 2015, 25, 3970–3974. DOI: 10.1016/j.bmcl.2015.07.030.

[14] Sharafi-Kolkeshwandi, M.; Nikpour, F. A Facile and Convenient Approach for the One-Pot Synthesis of 2,4(1H,3H)-Quinazolinediones. *Chinese Chem. Lett.* 2012, 23, 431–433. DOI: 10.1016/j.cclet.2012.01.027.

[15] Nikpour, F.; Havasi, F.; Arzegar, Z. Condensation Reaction of Ethyl 4-oxo-4H-benzo[d][1,3] oxazine-2-carboxylates with Potassium Cyanate: 2,4(1H,3H)-Quinazolinediones Synthesis. *Heterocycles* 2012, 85, 2745–2748. DOI: 10.3987/COM-12-12551.