Molecular Paleoparasitological Hybridization Approach as Effective Tool for Diagnosing Human Intestinal Parasites from Scarcе Archaeological Remains

Lauren Hubert Jaeger, Alena Mayo Iñiguez*
Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil

Abstract
Paleoparasitology is the science that uses parasitological techniques for diagnosing parasitic diseases in the past. Advances in molecular biology brought new insights into this field allowing the study of archaeological material. However, due to technical limitations a proper diagnosis and confirmation of the presence of parasites is not always possible, especially in scarce and degraded archaeological remains. In this study, we developed a Molecular Paleoparasitological Hybridization (MPH) approach using ancient DNA (aDNA) hybridization to confirm and complement paleoparasitological diagnosis. Eight molecular targets from four helminth parasites were included: *Ascaris* sp., *Trichuris trichiura*, *Enterobius vermicularis*, and *Strongyloides stercoralis*. The MPH analysis using 18th century human remains from Praça XV cemetery (CP XV), Rio de Janeiro, Brazil, revealed for the first time the presence of *E. vermicularis* aDNA (50%) in archaeological sites of Brazil. Besides, the results confirmed *T. trichiura* and *Ascaris* sp. infections. The prevalence of infection by *Ascaris* sp. and *E. vermicularis* increased considerably when MPH was applied. However, a lower aDNA detection of *T. trichiura* (40%) was observed when compared to the diagnosis by paleoparasitological analysis (70%). Therefore, based on these data, we suggest a combination of Paleoparasitological and MPH approaches to verify the real panorama of intestinal parasite infection in human archaeological samples.

Introduction
The first studies demonstrating the presence of parasites in human remains were of Ruffer [1], revealing the presence of *Schistosoma haematobium* in renal tissue of Egyptian mummies dating from 1250 to 1100 BC, and of Szidat [2], showing *Trichuris trichiura* and *Ascaris lumbricoides* eggs in well-preserved bodies from Prussia. The application of the rehydration technique of coprolites with trisodium phosphate [3], and the improvements of common parasitological diagnostic techniques [4] allowed considerable advances in paleoparasitology.

With the development of the PCR technique in the 1980s, the field of molecular paleoparasitology attracted interest from various research groups. Studies adjusting molecular techniques to the peculiarities of the archaeological material were published [5,6]. *Ascaris* sp. [7,9], *Trichuris trichiura* [9], and *Enterobius vermicularis* ancient DNA (aDNA) [10,11] have been demonstrated in human remains by paleoparasitological analysis, as well as, by PCR and DNA sequencing. However, these techniques have some limitations that often do not allow a robust parasitological diagnosis. The low sensitivity of parasitological techniques, and the restrictions of applying PCR technique, due to DNA fragmentation/degradation and the presence of PCR inhibitors, complicates the diagnosis.

New approaches to improving the diagnosis of human parasites is essential to better understand the diseases plaguing in the past. Studies have shown the use of aDNA hybridization technique as an alternative tool to PCR for molecular paleoparasitological diagnosis [6,12]. In this study, we present a new approach for molecular diagnosis of the main intestinal parasites in archaeological material in order to improve the diagnosis and to contribute to the knowledge of a real paleoepidemiology of these infections in the past.

Material and Methods
Ethics Statements
Sediment samples (XV24-XV33) from individuals buried on *Praça XV de Novembro* (November XV Square) used in this study belongs to the Paleogenetic collection of the Laboratório de Biologia de Tripanosomatídeos (LABTRIP/IOC/Fiocruz), under the responsibility of Dra. Alena Mayo Iñiguez, product of institutional collaboration with the Institute of Brazilian Archaeology (Instituto de Arqueologia Brasileira-IAB).
The Archaeological Site Praça XV Cemetery (CPXV)

The city of Rio de Janeiro was founded in the early 16th century. It was an important commercial center for unrestrained Portuguese exploration. The Praça XV de Novembro was a central area of Rio de Janeiro city in colonial times. In this area, there was a port, where gold, diamond, coffee and sugar were commercialized in the Southeast region. The Rio de Janeiro port was also where European and African slaves arrived in order to explore the country and work the plantations, respectively. In 1996, during the construction of a tunnel in the port, human skeletons dating from the 18th and 19th centuries were discovered. It is known that there was a burial ground for African slaves who died in markets located near the port, as well as, the general population in the region. The archaeological campaign excavation was conducted by the IAB. During excavation, due to a high degree of disarticulation of the burials and the anatomic separation of individuals, complete skeletal series were not identified. Instead, a series of types of bones, skulls and mandibles for example, were collected, stored at room temperature, and protected from light. All bones were well preserved and were submitted to the curation process. In this process, bones were cleaned from the original soil, but no chemical treatment was performed.

Precautions to Avoiding Contamination

Several precautions were taken to avoid aDNA degradation and DNA contamination during the collection procedure, and in aDNA analysis at Paleogenetic Laboratory (LABTRIP – IOC/ Fiocruz). Clean protective clothing, gloves, head covering, mask and sterile material (tubes and instruments) were used. Paleoparasitologic experiments were performed under the procedures established for working with aDNA [13]. Sample preparation and aDNA extraction were performed at the Paleogenetic Laboratory. DNA hybridization, PCR positive controls, and electrophoresis were conducted at the main Laboratory (LABTRIP – IOC/ Fiocruz). These two laboratories are physically distant from each other.

Archaeological Samples

Sediment samples (n = 10) were recovered from the interior of the sacral foramina of ten individuals by scraping, as described [14]. Sediment scrapings from the interior of skulls were used as negative controls for paleoparasitological analysis. Samples were transported to laboratory at 4°C until paleoparasitological and paleogenetic analysis.

Ancient DNA Extraction

The sediment samples were rehydrated (1:2 w/v) with 0.5% aqueous trisodium phosphate solution for 48 hours at 4°C. About 200 μL sediment solution was used for aDNA extraction. Samples were treated with 1.2 mL digestion buffer (NaCl 10 mM, Tris-HCl 10 mM, SDS 0.5%, EDTA 50 mM, pH 8.0) with 1 mg/mL of Proteinase K (Invitrogen) and incubated at 56°C for 24 hours. Thereafter, samples were treated with IQ System (Promega) according to manufacturer’s instructions. The aDNA was purified by a GFX PCR DNA and Gel Band Purification kit (GE HealthCare) and the DNA concentrations were estimated on spectrophotometer.

DNA Probes of Parasites

Modern fecal samples were used to set up the positive controls for preparing the hybridization probes. Eight molecular targets from four helminths parasites were included: Ascaris sp., T. trichiura, E. vermicularis, and Strongyloides stercoralis. Human and skull sediment DNA were included as negative controls. The DNA extraction were performed with phenolchloroform method and purified by a GFX PCR DNA and Gel Band Purification kit (GE HealthCare). PCRs were performed as described for each target (Table 1). PCR primers were designed to target specific fragments of the 18S rDNA gene from T. trichiura (DQ118536), and the cox1 gene from E. vermicularis (AB221474), using program PRIMER3 [http://www.bioinformatics.nl/cgi-bin/ primer3plus/primer3plus.cgi/]. PCR conditions for primers designed in this study were: PCR final volume of 50 μl using 5X PCR buffer (20 mM Tris-HCl, 0.5 μM KCl), 2.5 mM MgCl2, 0.4 mM each dNTPs, 100 ng of each primer, 1.0 U of Platinum Taq (Invitrogen) and 50–100 ng DNA. The reactions were subjected to an initial cycle of 5 min at 96°C, followed by 35 cycles of 96°C for 1 min, 50–55°C for 30 sec and 72°C for 60 sec in a programmable thermal controller (Eppendorf Mastercycler personal). Extraction and negative PCR controls were included. PCR products were visualized by 2–3% agarose gel electrophoresis stained with ethidium bromide. PCR products were directly sequenced using Big Dye Terminator v 3.1 Cycle Sequencing Reaction kit (Applied Biosystems) in a 3100 Automated DNA Sequencer as recommended by the suppliers. Pairwise/ Blast/NCBI command, Chromas v 1.45 and BioEdit v7.0.1 software were used for editing and sequence analysis. Sequencing and sequence analysis were performed to confirm the molecular target of each parasite, before conducted the aDNA hybridization. All the experiments with modern DNA and positive controls were carried out at the main Laboratory (LABTRIP – IOC/Fiocruz), physically distant from the Paleogenetic Laboratory.

Ancient DNA Hybridization Analysis

A dot blot procedure was conducted as described elsewhere [15]. DNA probes were prepared by PCR, purified by GFX PCR DNA and Gel Band Purification kit (GE HealthCare) and labeled by chemiluminescence using Gene Images Alkphos Direct Labeling and Detection Systems (Amersham), according to manufacturer’s instructions.

Results

Ten samples of individuals from the archaeological site CPXV were analyzed by MPH. Three helminthes were detected in these samples: T. trichiura, Ascaris sp., and E. vermicularis (Table 2). We observed aDNA of T. trichiura and Ascaris sp. in 50%, while E. vermicularis in 50%, whereas S. stercoralis aDNA was not detected. Positive controls had results of strong intensity of chemiluminescence. Chemiluminescence signals were not detected in negative controls.

Discussion

Deguilloux and colleagues [16] state: “Cemeteries potentially hold a wealth of information about the biological and social aspects of the communities who used them.” The archaeological site CPXV was a mass grave that was used to bury African slaves and inhabitants in general who died as a result of epidemics that plagued the city during the colonial period. It is known that Rio de Janeiro city was the gateway of the country during the colonial period. It was the capital of Brazil (1763 to 1960), and became the main commercial center of the country, that as a consequence underwent massive urbanization [17]. However, urban and population growth was accompanied by adequate public hygiene policy.
A former study in CPXV archaeological site demonstrated the presence of *T. trichiura*, *Ascaris* sp. and *Taenia* sp. eggs by light microscopy [14]. In the present study, we detected aDNA of *T. trichiura* and *Ascaris* sp. using the MPH approach. These helminthes are transmitted through soil contaminated by human feces, via the fecal-oral route, and reflect poor sanitary conditions of populations [18]. *T. trichiura* and *Ascaris* sp. infections occur concomitantly and are the most frequent intestinal parasites found in current and archaeological fecal samples. These helminthes were described in Brazilian archaeological sites dating from pre-Columbian [19,20,8] and historical periods [14,21]. The present study confirms the presence of *T. trichiura* and *Ascaris* sp. infections in individuals from the CPXV archaeological site. Although sediment samples were collected from skeletons that had been submitted to museological curation, it was possible to recover parasitic forms and aDNA. This study confirms the importance of using specimens from museum collection in paleogenetic analysis, even after going through a curation process.

Our results showed for the first time the presence of *E. vermicularis* aDNA in an archaeological site from Brazil. *E. vermicularis* aDNA was detected in 50% of individuals. However, no pinworm eggs were visualized by parasitological techniques. These results are not surprising, since previous studies have shown the presence of aDNA of pinworm in coprolites without eggs visualization [10,11]. This fact suggests that environmental conditions of the city and taphonomic factors affect more helminth visualization [10,11]. This fact suggests that environmental conditions of the city and taphonomic factors affect more helminth visualization [10,11]. This fact suggests that environmental conditions of the city and taphonomic factors affect more helminth visualization [10,11]. This fact suggests that environmental conditions of the city and taphonomic factors affect more helminth visualization [10,11]. This fact suggests that environmental conditions of the city and taphonomic factors affect more helminth visualization [10,11]. This fact suggests that environmental conditions of the city and taphonomic factors affect more helminth visualization [10,11]. This fact suggests that environmental conditions of the city and taphonomic factors affect more helminth visualization [10,11]. This fact suggests that environmental conditions of the city and taphonomic factors affect more helminth visualization [10,11]. This fact suggests that environmental conditions of the city and taphonomic factors affect more helminth visualization [10,11]. This fact suggests that environmental conditions of the city and taphonomic factors affect more helminth visualization [10,11]. This fact suggests that environmental conditions of the city and taphonomic factors affect more helminth visualization [10,11]. This fact suggests that environmental conditions of the city and taphonomic factors affect more helminth visualization [10,11]. This fact suggests that environmental conditions of the city and taphonomic factors affect more helminth visualization [10,11]. This fact suggests that environmental conditions of the city and taphonomic factors affect more helminth visualization [10,11]. This fact suggests that environmental conditions of the city and taphonomic factors affect more helminth visualization [10,11].

Strongyloides stercoralis infection was not detected in this study by MPH approach. Through paleoparasitological techniques, *S. stercoralis* was observed in archaeological sites from Egypt, USA and The Netherlands [18]. But, it was not diagnosed by paleogenetic techniques. Considering the life cycle of this parasite, eggs are normally released inside the host intestine. The larvae in feces require a period in the soil to become infective [22]. Larvae are markedly more fragile structures than eggs, and does not resist very well to the effects of time and/or the taphonomic process.

A Molecular Paleoparasitological approach was developed using aDNA hybridization technique with two specific targets for each parasite. Previous studies have demonstrated the detection of pathogens in archaeological remains using this technique [6,12]. This seems to be the ideal technique in paleogenetic analysis, especially working with poorly preserved samples. Moreover, this assay has advantages over PCR: (i) it is highly sensitive to detect fragments of aDNA; (ii) it is not affected by the action of inhibitors of the enzymatic reaction, that are common in aDNA from archeological samples; (iii) it is not affected by molecules and cross-linking processes, that block Taq DNA polymerase in PCR amplification; (iv) the aDNA membrane could be reused with different targets, allowing the optimization of use of the original samples [15].

We detected aDNA in samples that were negative in previous paleoparasitological analysis [14]. Parasitic forms of helminth eggs and protozoan cysts could not be visualized by light microscopy, possibly because they did not resist the action of taphonomic

Table 1. Molecular targets used in the Molecular Paleoparasitological Hybridization (MPH).

Parasite	Molecular target	Primer sequence (5’-3’)	pPCR size	Reference
Ascaris sp.	cyt b	CCBR Asc1 GTTAGGTTACCGCTTATGTAAGG	142	[7]
		CCBR Asc2 CATCTAAAGGGCCCAAGGACCCC		
	nad l	MH5F TATGAGGCCTATTTATTGAGG	~400	[25]
		As-NDR GATCTAATTAGCCCAACAAATAC		
Trichuris triichiura	18S rDNA	TT0926F TGCCGAAGCATTGTGCAAG	680	Designed in this study
		TT1606R AGCTTTCAGCCATTTTCTG		
Enterobius vermicularis	18S rDNA	TT1315F CGAACAGACCTCTGGCCCTAC	~390	Designed in this study
		TT1709R GTCAAAGGGCCACAGGAGTA		
Ascaris sp.	cox I	EvPRA GGAGTGTTTGGTCATTGTTGG	198	Designed in this study
		EvPBR CGTCCCCCTACAAAGTCAA		
	5S rDNA SR	Entf CACCTGTATACAAACAACAC	420	[6]
		Enr GCCGTACTAAACCAATAGAG		
Strongyloides stercoralis	18S rDNA	Stro18S-1330F GAATTCCAAGTAAAGCTAGTCAAGC	101	[26]
		Stro18S-1630R TGCCCTGATATTGTCCAGTC		
	28S rDNA	StroS TTAGAATGCTGTGTGGCTGGAA	180	[27]
		StroAS GTGCAACGTGGCTGTGAATG		

Abbreviations: bp, base pair; pPCR, PCR product; cyt b, cytochrome b; nad l, NAD dehydrogenase; ITS, Internal transcribed spacer; cox I, cytochrome c oxidase subunit I; rDNA, ribosomal DNA; SR, Spacer region.

doi:10.1371/journal.pone.0105910.t001
Table 2. Results of the Molecular Paleoparasitological Hybridization from archeological site Praça XV cemetery, Rio de Janeiro, Brazil.

Sample	Paleoparasitological Analysis *	Molecular Paleoparasitological Analysis	Prevalence of Infection					
	Ascaris sp.	Trichuris trichiura	Enterobius vermicularis	Ascaris sp.	Trichuris trichiura	Enterobius vermicularis	Ascaris sp.	Trichuris trichiura
XV24	-	+	-	-	-	-	+	+
XV25	-	+	-	-	-	-	+	+
XV26	-	+	-	-	-	-	-	+
XV27	-	-	-	-	-	-	-	-
XV28	-	+	-	-	-	-	-	+
XV29	-	+	-	-	-	-	+	+
XV30	-	-	-	-	-	-	-	-
XV31	+	+	-	-	-	-	+	+
XV32	-	+	-	-	-	-	+	+
XV33	-	-	-	-	+	+	+	+

n = 10 1 (10%) 7 (70%) 0 1 (10%) 4 (40%) 4 (40%) 5 (50%) 5 (50%) 8 (80%)

Note: Strongyloides stercoralis negative results from this study were omitted.

*results from [14].

Abbreviations: +, positive result; -, negative result.

doi:10.1371/journal.pone.0105910.t002
process. Another possibility is that the infection could also be present a low parasite load. However, CPXV individuals have demonstrated 90% of the prevalence of parasites infection [14]. In the present study, Ascaris sp. and E. vermicularis prevalence increased considerably when aDNA hybridization was applied. Interestingly, one individual that was positive only for Taenia sp., it was also positive for Ascaris sp., T. trichiura and E. vermicularis aDNA after the MPH application. These results are coherent with the source of material examined, which was cleaned from human remains. As mentioned, in the first analysis conducted in the CPXV site, the paleoparasitological results represented an underestimation of the prevalence of intestinal infection. We also had stated that higher intensity, and/or diversity of recovered parasites would likely be expected, if it was possible to access all organic material. The MPH approach applied here was a better way to optimize the investigation of original samples in order to access the real status of infection.

On the other hand, negative results for aDNA were observed in samples with positive paleoparasitological results. The post-mortem instability of nucleic acids is the methodological problem inherent in aDNA research [24]. Moreover, is common to find helminth eggs without content inside, as observed in individuals buried in CPXV [14]. We found a large number of T. trichiura eggs (n = 26), but most of them possessed no content or pole plas. This explains the low aDNA detection of T. trichiura (40%) in contrast to paleoparasitological analysis (70%). Most importantly, these results demonstrated once again the relevance of traditional paleoparasitology in diagnosis by the observation of parasites and/or parasitic structures in archeological samples, when aDNA is not preserved.

The results presented here revealed that the application of paleoparasitological and MPH approaches together allowed us to access the real panorama of intestinal infection in archeological samples. When performing these assays independently, differences in the infection prevalence were observed. Therefore, we recommend the use of MPH approach with the aim of confirming and complementing the diagnosis of human intestinal parasites in archeological samples.

Acknowledgments

We could like to thanks to Dr. Ondemar Dias and Jandira Neto, from IAB, IOG/Fiocruz, LAPIH, CNPq and CAPES. We are grateful to PD/TIS/ Fiocruz genomic platform for sequencing for assistance.

Author Contributions

Conceived and designed the experiments: AMI. Performed the experiments: LHJ. Analyzed the data: AMI LHJ. Contributed reagents/materials/analysis tools: AMI. Contributed to the writing of the manuscript: LHJ AMI.

References

1. Ruffer MA (1910) Note on the presence of Bilharzia hamatus in Egyptian mummies of the twentieth dynasty. Br Med J 1:16.
2. Szidat L (1944) On the preservation of helmint eggs in pre and early historical bog corpses. Zeitsch Parasit 13(3):263–274.
3. Callen EO, Cameron TWM (1960) A prehistoric diet revealed in coprolites. New Sci 83:40.
4. Reinhard KJ, Confalonieri UE, Herrmann B, Ferreira LF, Araújo A (1988) Recovery of parasite remains from coprolites and latrines: aspects of paleoparasitological technique. Homo 37:217–239.
5. Paisao S, Higuchi RG, Wilson AC (1989) Ancient DNA and the polymerase chain reaction. The emerging field of molecular archaeology. J Biol Chem 264(17):9079–9172.
6. Iniguez AM, Araújo A, Ferreira LF, Vicente AC (2003) Analysis of ancient DNA from coprolites: an perspective with random amplified polymorphic DNA-polymerase chain reaction approach. Mem Inst Oswaldo Cruz 98 Suppl 1:63–68.
7. Lorelle O, Roumat E, Verneau O, Bouchet F, Hanni C (2003) Ancient DNA from Ascaris: extraction amplification and sequences from eggs collected in coprolites. Int J Parasitol 33(10):1101–1106.
8. Leles D, Araújo A, Ferreira LF, Vicente AC, Iniguez AM (2008) Molecular paleoparasitological diagnosis of Ascaris sp. from coprolites: new scenery of ascariasis in pre-Colombian South America times. Mem Inst Oswaldo Cruz 103(1):106–108.
9. Oh CS, Seo M, Chai YJ, Lee SJ, Kim MJ, et al (2010) Amplification and sequencing of Trichuris trichiura ancient DNA extracted from archaeological sediments. J Archaeol Sci 37:1269–1273.
10. Iniguez AM, Reinhard KJ, Araújo A, Ferreira LF, Vicente AC (2003) Enterobius vermicularis: ancient DNA from North and South American human coprolites. Mem Inst Oswaldo Cruz 98 Suppl 1:67–90.
11. Iniguez AM, Reinhard K, Carvalho Gonçalves ML, Ferreira LF, Araújo A, et al (2006) SL1 RNA gene recovery from Enterobius vermicularis ancient DNA in pre-Columbian human coprolites. Int J Parasitol 36(13):1419–1425.
12. Madden M, Solo WL, Streeter J, Aulderheide AC, Ferociarri G, et al (2001) Hybridization screening of very short PCR products for paleoepidemiological studies of Chagas’ disease. Biotechniques 30(1):102–109.
13. Iniguez AM (2011) Paleoparasitologia Molecular. In: Ferreira LF, Araújo A, Reinhard KJ, editors. Fundamentos da Paleoparasitologia. Rio de Janeiro, Fiocruz. pp 301–316.
14. Jaeger LH, Taglioretti V, Fugassa MH, Dias O, Neto J, et al (2013) Paleoparasitological results from XVIII century human remains from Rio de Janeiro, Brazil Acta Trop 125(3):282–296.
15. Jaeger LH, Leles D, Lima Vdos S, da Silva Lala P, Dias O, et al (2012) Mycobacterium tuberculosis complex detection in human remains: tuberculosis spread since the 17th century in Rio de Janeiro, Brazil. Infect Genet Evol 12(4):642–648.
16. Deguilloux MF, Pemonge MH, Mendisco F, Thiob D, Cartron I, et al (2014) Ancient DNA and kinship analysis of human remains deposited in Merovingian necropolis sarcofagi (Jan Dignac et Leirae, France, 7th 8th century AD). J Archaeol Sci 41:399–405.
17. Fragoso J, Florentino M (2001) O arcaismo como projeto: Mercado atlântico, sociedade agrária e elite mercantil em uma economia colonial tardia. Rio de Janeiro: Civilização Brasileira. 259p.
18. Gonçalves MLC, Araújo A, Ferreira LF (2003) Human Intestinal Parasites in the Past: New Findings and a Review. Mem Inst Oswaldo Cruz 98 Suppl 1:103–118.
19. Ferreira LF, Araújo A, Confalonieri U (1980) The finding of eggs and larvae of parasitic helminths in archaeological material from Unai, Minas Gerais, Brazil. Trans R Soc Trop Med Hyg 74(6):798–800.
20. Ferreira LF, Araújo A, Confalonieri U (1983) The finding of helminth eggs in a Brazilian mummy. Trans R Soc Trop Med Hyg 77(1):65–67.
21. Jaeger LH, Taglioretti V, Dias O, Neto J, Iniguez AM (2013) Paleoparasitological analysis of human remains from a European cemetery of the 17th –18th century in Rio de Janeiro, Brazil. Int J Paleopathol 3/214–217.
22. Rey I (2008) Paleoparasitologia: parasitos e doenças parasitárias do homem nos trópicos ocidentais. Rio de Janeiro: Guanabara Koogan. 883p.
23. Cleveland LM, Reichard MV, Tito Ry, Reinhard RJ, Lewis Jr CM (2013) Clarifying prehistoric parasitism from a complementary morphological and molecular approach. J Archaeol Sci 40:2960–3066.
24. Williams E, Cooper A (2005) Ancient DNA. Proc Biol Sci 272(1558):3–16.
25. Peng W, Yuan K, Hu M, Zhou X, Gasser RB (2005) Mutation scanning-coupled analysis of haplotypic variability in mitochondrial DNA regions reveals low gene flow between human and porcine Ascaris in endemic regions of China. Electrophoresis 26(22):4317–4326.
26. Verweij JJ, Canales M, Polman K, Ziem J, Brienzen EA, et al (2009) Molecular diagnosis of Strongylus stercoralis in fecal samples using real-time PCR. Trans R Soc Trop Med Hyg 103:342–346.
27. Kramme S, Nissen N, Soblik H, Ermann K, Tannich E, et al (2011) Novel real-time PCR for the universal detection of Strongylus species. J Med Microbiol 60:454–458.