The effect of L-DOPA on Cryptococcus neoformans growth and gene expression

Helene C. Eisenman,1 Siu-Kei Chow,2 Kenneth K. Tsé,1 Erin E. McCllland1 and Arturo Casadevall2,*

1Department of Natural Sciences; Baruch College; New York, NY USA; 2Department of Microbiology and Immunology; Albert Einstein College of Medicine; Bronx, NY USA; 3The Commonwealth Medical College; Scranton, PA USA

Key words: Cryptococcus neoformans, melanin, L-DOPA, gene expression, laccase

Cryptococcus neoformans is unusual among melanotic fungi in that it requires an exogenous supply of precursor to synthesize melanin. C. neoformans melanizes during mammalian infection in a process that presumably uses host-supplied compounds such as catecholamines. L-3,4-dihydroxyphenylalanine (L-DOPA) is a natural catecholamine that is frequently used to induce melanization in C. neoformans and L-DOPA-melanized cryptococci manifest resistance to radiation, phagocytosis, detergents and heavy metals. Given that C. neoformans needs exogenous substrate for melanization one question in the field is the extent to which melanin-associated phenotypes reflect the presence of melanin or metabolic changes in response to substrates. In this study we analyze the response of C. neoformans to L-DOPA with respect to melanization, gene expression and metabolic incorporation. Increasing the concentration of L-DOPA promotes melanin formation up to concentrations >1 mM, after which toxicity is apparent as manifested by reduced growth. The timing of C. neoformans cells to melanization is affected by growth phase and cell density. Remarkably, growth of C. neoformans in the presence of L-DOPA results in the induction of relatively few genes, most of which could be related to stress metabolism. We interpret these results to suggest that the biological effects associated with melanization after growth in L-DOPA are largely due to the presence of the pigment. This in turn provides strong support for the view that melanin contributes to virulence directly through its presence in the cell wall.

Introduction

Many pathogenic fungi produce melanin in the cell wall. Melanin enhances the virulence of fungi in various ways. In the rice blast fungus, Magnaporthe grisea, melanin strengthens the cell wall, allowing for the buildup of high turgor pressure that aids in invasion of plant tissues.1 In Paracoccidioides brasiliensis, melanin interferes with normal macrophage function.2,3 In Exophiala dermatitidis, melanin contributes to fungal resistance to oxidative killing by neutrophils.4 In addition melanin increases the resistance of fungi to environmental damage, as in the melanized fungi isolated from the radioactively contaminated Chernobyl reactors.5 Melanin is one of the major virulence factors in Cryptococcus neoformans, a fungus that is a relatively frequent cause of life-threatening meningoencephalitis in immunocompromised individuals.6 Cryptococcosis is one of the more common secondary infections in AIDS patients. There are estimated to be nearly 1 million cases of the disease each year, the majority of which are in sub-Saharan Africa.7

In contrast to most other melanotic fungi that are able to make melanin from endogenous precursors, the synthesis of melanin by C. neoformans requires the addition of exogenous substrate in the medium, such as L-DOPA.8 The initial chemical step in the synthesis of melanin is the oxidation of L-DOPA to dopaquinone and is catalyzed by laccase.9 Subsequent steps are believed to occur spontaneously, producing dihydroxyindole or dihydroxyindole-2-carboxylic acid intermediates that finally polymerize into melanin.10,11 Melanins are amorphous polymers composed of crosslinked phenolic and/or indolic subunits.12 Since the exact composition of subunits in the polymer has not been determined, the definition of a compound as a melanin is based on physical characteristics, including dark color, insolubility in most solvents, resistance to acid, oxidation by hydrogen peroxide and degradation by alkalii.13 In C. neoformans, melanin has a complex architecture with multiple layers and a granular surface.14

Despite its importance to pathogenesis, many details of the cell biology of C. neoformans melanization remain unknown. In fact, the inability of C. neoformans to produce its own melanin without exogenous substrate makes this organism an ideal system to study melanization since it is possible to vary conditions to better understand this process. In this study we have explored the conditions that lead to optimum pigment expression and the response of the organism to the presence of substrate. The results provide new insights into the process of cryptococcal melanization that are relevant to understanding the role of melanin in pathogenesis.

Results

Dose-dependent responses of melanization and growth to L-DOPA. A dose-response assay was carried out with L-DOPA...
tested. At a concentration of 10 mM, growth of *C. neoformans* was completely inhibited.

Timing of melanization. When cells were cultured in liquid medium, we noted that it often took several days for the cells to turn black, depending on the strain. We reasoned that this delay in melanization could have several explanations. For example, the melanization lag could have indicated that L-DOPA was incorporated very slowly into melanin. Alternatively, it could have indicated that the melanization process took several days to commence, but occurred rapidly once begun. To distinguish between these possibilities, cells were grown for seven days in minimal medium without L-DOPA, and then L-DOPA was added to a concentration of 1 mM. After one or two days, the “old” cultures melanized (Fig. 2). In contrast, when cells were cultured for two days in “new” media containing L-DOPA, they did not melanize. This result suggested that the rate of melanization in culture was limited by the initiation of melanization, not the production of melanin.

Density of cells influenced melanization. The results with old cultures suggested that cell density and/or age impacted the rate of melanization, since older, denser cultures melanized rapidly and new cultures did not. Cell density effects were tested by concentrating an overnight culture 10- and 100-fold. L-DOPA was added and the cultures were incubated overnight. Only the densest culture turned black; no color change was observed for the less dense cultures (Fig. 3A).

Similar to growth in liquid, the timing at which melanization of *C. neoformans* cells grown in agar became visually apparent was variable. To test if the timing of melanization in agar was related to density, L-DOPA agar was inoculated with variable amounts
of *C. neoformans*. When grown in agar, melanization occurred faster when more CFUs were plated per culture dish (Fig. 3B).

Genes induced by L-DOPA. Gene expression in melanizing cells was analyzed. L-DOPA was added to a culture of *C. neoformans* grown to a cell density of 4 x 10^7 CFU/ml. After four hours of incubation with L-DOPA, RNA was extracted from the cells and purified. Microarray analysis was carried out comparing cells grown in the presence of L-DOPA to those without L-DOPA. Of the approximately 6,500 genes in *C. neoformans*, eight were identified with increased expression in the presence of L-DOPA (Table 2). Real-time PCR was used to confirm the induction of the genes. Induction of five of the eight genes was confirmed by real-time PCR analysis (CNB04110, CNK02300, CND03820, CNG04630 and CNB04240). To determine the putative functions of the induced genes, homology searches were carried out by entering the predicted protein sequence into the NCBI BLAST search webpage (www.ncbi.nlm.nih.gov/BLAST). Among these genes, several were putative enzymes with redox functions (Table 2).

To test the relationship of these genes to melanization, we determined their expression in the presence of L-DOPA under non-melanizing conditions. To do so, gene induction was measured by real-time PCR in a *C. neoformans* strain without laccase (*LAC1* deletion strain 2E-TU and the complemented strain, 2E-TUC, of a related genetic background). The same five genes with confirmed increase in gene expression had little or no induction in the laccase deletion strain. The complemented strain had variable expression, perhaps due to differences in laccase expression between this strain and the wild-type (Table 2).

Next, cultures were incubated with L-DOPA for several days and changes in gene expression were evaluated over time (Fig. 4). The maximum levels of induction were considerably higher at these longer times in comparison to the previous experiments in which cultures were incubated with L-DOPA for 4 h (Table 2).

For example, gene CNB04110 had a maximum induction of 350-fold after three days of incubation with L-DOPA. A similar pattern of induction was observed for most of the genes, with low expression on day 1, a peak of gene expression on day 3, and gradual decrease over time. This peak of gene expression coincided with the cultures reaching a density at which melanization occurs. Gene induction was generally not observed in the laccase mutant strain.

Uptake of L-DOPA by *C. neoformans* cells. The gene expression studies using the *LAC1* deletion strain suggested that
melanization was required for induction of the genes in the presence of L-DOPA. To further address the issue of whether the gene expression changes were related to melanization, the ability of cells to incorporate L-DOPA was tested. Cells were incubated with ¹⁴C-labeled L-DOPA and the level of incorporation into the cells was determined by liquid scintillation counting. Initial experiments showed a low level of incorporation for all cells (data not shown). To increase the level of L-DOPA incorporation, cells were incubated in starvation media prior to adding ¹⁴C-L-DOPA, a condition known to induce melanization. Incorporation was measured at 5 min, 1 h, 4 h and 23 h of incubation. After overnight incubation, the wild-type and laccase complemented strains accumulated much of the ¹⁴C-L-DOPA (77% and 70%, respectively), while the laccase deletion strain and heat-killed
Indeed, these results add to considerable work that has been done in our lab16,17 suggesting that \textit{C. neoformans} melanization is controlled by quorum sensing. In this regard, a quorum sensing-like phenomenon has been described for \textit{C. neoformans} mediated by a peptide.18 Although this peptide has not been studied for its effect on the rate of melanization, it has protean changes in \textit{C. neoformans} metabolism that include effects on melanization 19 and it is conceivable that a related mechanism is responsible for our results reported in this manuscript.

Both melanization and growth are inhibited in the presence of a high concentration of L-DOPA or norepinephrine (10 mM). The inhibition of melanization may be due to autopolymerization of the substrate in the medium making it unavailable for use in melanin formation. Examination of the plates shows that the agar surrounding the colonies is dark at this concentration. The inhibition of growth suggests that L-DOPA, or a metabolic product of L-DOPA, presents some toxicity to \textit{C. neoformans}. This hypothesis is supported by the gene expression data, as discussed below.

These data elucidate the optimal conditions for in vitro melanization of \textit{C. neoformans}. The relationship between in vitro and in vivo melanization is an important topic about which very little is known. Melanized cryptococcal cells have been observed in the brains of patients as well as in experimental animals.20,21 The in vivo substrate has yet to be identified, but it is hypothesized to be one or a combination of catecholamines such as dopamine, norepinephrine, homovanillic acid and L-DOPA. Several of these compounds are normally present at concentrations of μg/g in
which growth of media containing substrate. The levels of these catecholamines in cryptococcosis patients are not known. Likewise, cell density effects on in vivo melanization are hard to determine. In vivo, cryptococcal cells may not be evenly distributed as in a liquid culture, but may be inside host macrophages or a cryptococcoma. The effects of immune attack and hypoxia on further complicate the scenario.

One of the unanswered questions in the field is the extent to which growth of C. neoformans in media containing substrate affects fungal metabolism independently of the capacity of substrate to induce melanization. Published studies in melanization have identified genes required for C. neoformans to produce pigment, resulting in a white phenotype when mutated. These include genes in cell wall synthesis, metal ion transport and virulence regulators. In contrast, our study identifies novel genes that are upregulated in the presence of melanization substrate. Gene induction is only observed in cells capable of melanization, suggesting the genes either have a role in this process or are induced as a consequence of melanization. In addition, the density at which maximal gene expression occurs is similar to the density at which melanization becomes visible in liquid culture. Furthermore, analysis of L-DOPA incorporation by C. neoformans cells shows that only wild-type cells capable of melanization incorporate the substrate. This suggests that L-DOPA does not accumulate inside cells and is unlikely to have an effect on gene expression that is unrelated to melanization. Together, these data support the hypothesis that the identified genes play a role in melanization.

We hypothesize that the genes identified function in regulating melanization and/or protecting cells from toxic by-products produced during melanization. In general, melanin and its synthetic intermediates are highly reactive molecules. For example, the intermediate dopaquinone can react with amine and thiol groups, such as in proteins, resulting in crosslinking of melanin and other molecules. Thus, it seems logical that melanization is regulated in some way. The toxicity hypothesis is supported by published data showing that two of the genes, CNB04110 and CNB04240, are also induced by nitric oxide stress. Furthermore, homology searches also provided information consistent with the toxicity hypothesis. CNG04630 has homology to glutathione transferases, proteins involved in removal of toxic substances from the cell, whereas CNK02300 has homology to glutathione transferases, proteins involved in metabolizing toxins inside cells.

Perhaps the most surprising aspect of the gene expression analysis is the paucity of genes that are differentially regulated in the melanized state. Given that melanization is associated with diverse new attributes for melanized cells such as resistance to radiation, heavy metals, oxidants, enzymatic degradation, antifungal drugs and defenses, one might have expected melanin synthesis to be associated with more global changes in gene expression. In fact, the relative paucity of gene expression changes implies that melanization in C. neoformans is a relatively simple system from a genetic point of view and this, in turn, supports the association of new cellular properties in melanized cells with the formation of pigment rather than substrate-induced metabolic changes. The paucity of gene responses is also consistent with our recent proposal that melanin is synthesized in vesicles that are subsequently exported to the cell wall since this model involves pigment synthesis from highly reactive and toxic intermediates of L-DOPA oxidation in a confined membrane enclosed compartment that shields cellular processes. A similar strategy for avoiding melanin precursor toxicity is used by mammalian cells, which make melamins within melanosomes. In this regard, defective melanosomes have been associated with necrosis in melanoma cells. Nevertheless, the observation that most differentially regulated genes are associated with redox functions suggests that C. neoformans growth in the presence of L-DOPA is a stressful condition for this microbe. In summary, our results show that melanization in C. neoformans is a cell density dependent process that is associated with the induction of very few genes relative to the protean effects conferred by pigmentation that reduce fungal cell susceptibility to numerous insults. This in turn provides strong evidence for the view that the pigment itself is responsible for many protective effects associated with melanization and further strengthens the connection between melanin synthesis and virulence.

Materials and Methods

Fungal strains. JEC21, is a serotype D, MATα strain that was produced by crossing an environmental isolate with a clinical isolate. The serotype A, MATα strain H99 is a clinical isolate. The serotype D LAC1 deletion strain (2E-TU) contains a partial deletion of LAC1 near the 5’ end of the gene, and the complemented strain (2E-TUC) contains an integrated copy of LAC1. The laccase deletion and complemented strains are related to JEC21.

Growth and melanization assays. C. neoformans cells were grown in chemically defined minimal medium (15 mM dextrose, 10 mM MgSO4, 29.4 mM KH2PO4, 13 mM glycine and 3 μM thiamine, pH 5.5) with or without 1 mM L-DOPA (Sigma-Aldrich) and incubated at 30°C, 150 rotations per minute (RPM) in the dark. Cultures were examined daily to monitor growth and pigment production.

Cell density assays. Cell densities were determined by hemocytometer count and/or plating on agar. For the plate assay, the indicated numbers of CFUs were plated on chemically defined minimal medium agar containing 1 mM L-DOPA. For the liquid assay, an overnight culture grown in chemically defined minimal medium at a density of 3 x 10^5 CFU/ml was concentrated 10- and 100-fold. L-DOPA (1 mM) was added to the concentrated cultures and they were incubated for 18 h before photographing. All incubations were done at 30°C, 150 RPM in the dark.

Microarray analysis of genes induced by L-DOPA. C. neoformans cells were grown in minimal medium without substrate at 30°C, 150 RPM to a density of 4 x 10^7 CFU/ml. L-DOPA was then added at a concentration of 1 mM and the cells were allowed to grow for an additional four hours.
After the incubation, cells grown in the presence of L-DOPA were slightly grayish in color, indicating that melanization was occurring in the cells. Two independent biological replicates were performed. Total RNA was isolated from the cultures using the RNeasy kit (Qiagen) and incubated with DNase (GenHunter) to remove contaminating DNA. The purified RNA was sent to the Washington University Genome Sequencing Center for microarray analysis with the JEC21 genomic microarray as follows. Comparisons were done with both RNA pools and a Cy3-Cy5 dye swap was done between the sample with and without L-DOPA. Immediately after hybridization, the microarray slides were scanned on a ScanArray Express HT Scanner (Perkin Elmer) to detect fluorescence. Gridding and analysis of images were performed with ScanArray Software Express V2.0 (Perkin Elmer). Gene expression data were averaged across the two RNA pools and analyzed using the GeneSpring 7.2 software (Agilent) to identify genes in which the mean of the replicates had >2-fold change and p < 0.05. The Benjamini & Hochberg false discovery rate was performed with ScanArray Software Express V2.0 (Perkin Elmer) to detect fluorescence. Gridding and analysis of images were performed with ScanArray Software Express V2.0 (Perkin Elmer).

Table 1. Primers used for real-time PCR amplification

Locus	5’ primer	3’ Primer
CNB04110	GTC GTC ATT TCG GCC ATT	GAC CAG GGA TGC TGA TTT CT
CNK02300	AAC ACT GGA TTG ATC CGA CA	CTT GAT GTG GTG GAA ATT GG
CND02380	GCT GAC CGA GTC GCC GTC	GAC GAG AGT CAC CGG TAG TG
CND03820	TGC GTG TGT TAC TGA AAC CC	GCA TCC TCC TCT TCT TCT TG
CNG04630	GAG CGC TAC ATT CCT GAT GA	GAA GCG ATT GCT AGT GAG TAG G
CNB04240	GTT GGC AAG TTT GTT TCC CT	ACC AAC AGA GGG CTC AGA GT

Table 2. Fold changes in gene expression upon addition of L-DOPA to cultures

Locus	Putative function	Microarray	Real-Time PCR		
		Wild-type	LAC deletion	Complemented	
CNB04110	Isoflavone reductase	12.9	16.6	0.85	4.2
CNK02300	Glutathione transferase	3.9	4.2	2.2	40
CND02380	NADH flavin oxidoreductase	2.7	1.6	1.5	4
CND03820	Myosin I binding protein	2.1	2.5	0.77	1
CNG04630	Permease	2.1	4.8	0.86	1.4
CNB04240	Benzoquinone oxidoreductase	2.0	2.1	0.87	1.6
CND00360	Unknown	6.7	Undetectable		
CNM01700	Unknown	2.0	Not determined		

Real-time PCR analysis of identified genes. L-DOPA was added to C. neoformans cells of strain JEC21, 2E-TU or 2E-TUC at densities of between 2 and 5 x 10⁷ CFU/ml and RNA was isolated after four hours as described above. cDNA was made by reverse transcription of two independent pools of RNA using the Quantitect Reverse Transcription kit (Qiagen). For the time course analysis, L-DOPA was added to cells at a density of 1 x 10⁶ CFU/ml (day 0) and RNA was isolated days 1, 3, 5 and 8. Primers were designed based on the JEC21 genome sequences to amplify approximately 100 base pairs (Table 1). PCR products were amplified with SYBR® Green PCR Master Mix (Applied Biosystems) in an ABL PRISM 7900HT Sequence Detection System (Applied Biosystems). Fold change in gene expression was determined relative to untreated cells of the same strain according to the method of Pfaffl.47 The gene encoding glyceraldehyde-3-phosphate dehydrogenase was used as the reference.

[14C]L-DOPA incorporation analysis. Cells of C. neoformans strains JEC21, 2E-TU and 2E-TUC were cultured for two days in chemically defined minimal medium at 30°C, 150 RPM. Cells were collected by centrifugation, washed and suspended in starvation medium (0.2 g/l, K₂HPO₄, 0.1 g/l KH₂PO₄). The cells were then incubated overnight at 30°C and 150 RPM. Before incubation with the labeled substrate, cells were collected by centrifugation again and suspended in starvation medium to a final density of 1–2 x 10⁸ CFU/ml. Heat-killed cells were incubated at 65°C for 1 h. Cell suspensions were incubated with L-3,4-dihydroxyphenyl[3-¹⁴C]alanine ([μCi of a 54 mM solution (GE Healthcare)] such that the concentration of L-DOPA was approximately 0.005 mM. At indicated time points, aliquots were removed and briefly centrifuged to pellet cells. The pellets were washed twice with PBS to remove unincorporated label. Liquid scintillation counting was used to determine the total counts per minute (CPM) in the supernatants and pellets (LKB Wallac 1217 Rackbeta, PerkinElmer). Percent incorporation was calculated using the formula: CPM pellet ÷ (CPM pellet + CPM supernatant) x 100. A multivariate analysis of variance (MANOVA) was used to test for incorporation differences between C. neoformans strain and time. Simple contrasts were then done to determine significant differences among strains at a particular time.

Acknowledgments

This work was supported (in part) by a grant from The City University of New York PSC-CUNY Research Award Program to H. Eisenman. A. Casadevall is supported by NIH grants HL059842, AI033774, AI033142 and AI052733. In addition, we thank the Washington University Genome Sequencing Center for performing the microarray analysis.

References

1. Howard RJ, Valen B. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol 1996; 50:491-512.
2. Bocca AL, Brito PP, Figueiredo F, Tosta CE. Inhibition of nitric oxide production by macrophages in chromoblastomycosis: a role for Fusarium pedrosoi melanin. Mycopathologia 2006; 161:195-203.
3. da Silva MB, Marques AF, Nosanchuk JD, Casadevall A, Travassos LR, Taborda CP. Melanin in the dimorphic fungal pathogen Pancreocidobacter brasilienis: effects on phagocytosis, intracellular resistance and drug susceptibility. Microbes Infect 2006; 8:197-205.
4. Schirrer N, Petrische-Lisaiahuanga H, Böster N, Zandorff J, Lutzeck R, Haase G. Effect of melanin and carotenoids of Eurotium (Wangiella dermatitidis) on phagocytosis, oxidative burst and killing by human neutrophils. Infect Immun 1999; 67:94-101.
5. Zhdanova NN, Zakharchenko VA, Vember VA, Nakonechnaya ET. Fungi from Chernobyl: mycobiont of the inner regions of the containment structures of the damaged nuclear reactor. Mycol Res 2000; 104:1421-6.
6. Casadevall A, Stemberger JN, Nosanchuk JD. “Ready made” virulence and “dual use” virulence factors in pathogenic environmental fungi—the Cryptococcus neoformans paradigm. Curr Opin Microbiol 2003; 6:632-7.
7. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappu PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 2009; 23:525-30.
8. Kwon-Chung KJ, Tom WK, Costa JL. Utilization of indole compounds by Cryptococcus neoformans to produce a melanin-like pigment. J Clin Microbiol 1983; 18:1419-21.
9. Williamson PR. Biochemical and molecular characteristics of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. J Bacteriol 1994; 176:655-64.
10. Land EJ, Riley PA. Spontaneous redox reactions of dopamine and the balance between the eumelanic and phaeomelanic pathways. Pigment Cell Res 2000; 13:273-7.
11. Williamson PR. Laccase and melanin in the pathogenesis of Cryptococcus neoformans. Front Biosci 1997; 2:99-107.
12. Wakamatsu K, Ito S. Advanced chemical methods in melanin determination. Pigment Cell Res 2002; 15:174-83.
13. Nosanchuk JD, Casadevall A. The contribution of melanin to microbial pathogenesis. Cell Microbiol 2003; 5:203-23.
14. Eisenman HC, Nosanchuk JD, Wehrer JB, Emerson RJ, Camusso TA, Casadevall A. Microstructure of cell-wall-associated melanin in the human pathogenic fungus Cryptococcus neoformans. Biochemistry 2005; 44:5683-93.
15. Chakos S, Edberg SC, Singer JM. A DL-DOPA drop test for the identification of Cryptococcus neoformans. Mycopathologia 1981; 74:143-8.
16. Albuquerque P. Ph.D. Thesis. Bronx, NY: Albert Einstein College of Medicine 2011.
17. Albuquerque P, Nicola A, Williamson PR, Casadevall A. Quorum sensing regulates growth and virulence in Cryptococcus neoformans. 8th International Conference on Cryptococcus and Cryptococcosis. Charleston, South Carolina 2011.
18. Lee H, Chang YC, Nardone G, Kwon-Chung KJ. ‘TUP1 disruption of Cryptococcus neoformans uncovers a peptide-mediated density-dependent growth phenomenon that mimics quorum sensing. Mol Microbiol 2007; 64:591-601.
19. Lee H, Chang YC, Varma A, Kwon-Chung KJ. Regulatory diversity of TUP1 in Cryptococcus neoformans. Eukaryot Cell 2009; 8:1901-8.
20. Nosanchuk JD, Rosal AS, Lee SC, Casadevall A. Melanisation of Cryptococcus neoformans in human brain tissue. Lancet 2000; 355:2049-50.
21. Rosal AS, Nosanchuk JD, Feldmesser M, Cox GM, McDade HC, Casadevall A. Synthesis of polymethylated melanin by Cryptococcus neoformans in infected rodents. Infect Immun 2000; 68:2845-53.
22. Carlsson A. The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol Rev 1959; 11:490-3.
23. Glowiński J, Iverson LL. Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopac in various regions of the brain. J Neurochem 1966; 13:655-69.
24. Tohgi H, Abe T, Saheki M, Yamasaki K, Murata T. Concentration of catecholamines and indoleamines in the cerebrospinal fluid of patients with vascular parkinsonism compared to Parkinson’s disease patients. J Neurol Sci 1979; 44:109-14.
25. Klock C, Cerski M, Goldani LZ. Histopathological aspects of neurocryptococcosis in HIV-infected patients: autopsy report of 45 patients. Int J Surg Pathol 2009; 17:444-8.
26. Feldmesser M, Tucker S, Casadevall A. Intracellular parasitism of macrophages by Cryptococcus neoformans. Trends Microbiol 2001; 9:275-8.
27. Li Q, You C, Liu Q, Liu Y. Central nervous system cryptococcosis in immunocompetent patients: a short review illustrated by a new case. Acta Neurochir (Wien) 152:129-36.
28. Walton FJ, Idrisur A, Heitman J. Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans. Mol Microbiol 2005; 57:1381-96.
29. Zhu X, Williamson PR. A CLC-type chloride channel gene is required for laccase activity and virulence in Cryptococcus neoformans. Mol Microbiol 2003; 50:1271-81.
30. Land EJ, Ramesan CA, Riley PA. Quinone chemistry and melanogenesis. Methods Enzymol 2004; 378:88-109.
31. Missall TA, Puatier ME, Donlin MJ, Chambers KT, Corbett JA, Lodge JK. Posttranslational, translational and transcriptional responses to nitric oxide stress in Cryptococcus neoformans: implications for virulence. Eukaryot Cell 2006; 5:518-29.
32. Wang Y, Casadevall A. Decreased susceptibility of melanized Cryptococcus neoformans to UV light. Appl Environ Microbiol 1994; 60:3864-6.
33. Garcia-Rivera J, Casadevall A. Melanization of Cryptococcus neoformans reduces its susceptibility to the antimicrobial effects of silver nitrate. Med Mycol 2001; 39:353-7.
34. Jacobson ES, Tinell SB. Antioxidant function of fungal melanin. J Bacteriol 1993; 175:1702-4.
35. Wang Y, Casadevall A. Susceptibility of melanized and nonmelanized Cryptococcus neoformans to nitrogen- and oxygen-derived oxidants. Infect Immun 1994; 62:3004-7.
36. Rosal AS, Casadevall A. Melanization decreases the susceptibility of Cryptococcus neoformans to enzymatic degradation. Mycopathologia 2001; 151:53-6.
37. Beka R, Suška T, Jablonský ES, Shinoda T. Effects of melanin upon susceptibility of Cryptococcus to anti-fungals. Microbiol Immunol 2003; 47:271-7.
38. van Duijn D, Casadevall A, Nosanchuk JD. Melanization of Cryptococcus neoformans and Histoplasma capsulatum reduces their susceptibilities to amphotericin B and itraconofungin. Antimicrob Agents Chemother 2002; 46:3394-400.
39. Doering TL, Nosanchuk JD, Roberts WK, Casadevall A. Melanin as a potential cryptococcal defence against microbialid proteins. Med Mycol 1999; 37:175-81.
40. Eisenman HC, Frases S, Nicola AM, Rodrigues ML, Casadevall A. Vesicle-associated melanization in Cryptococcus neoformans. Microbiology 2009; 155:3860-7.
41. Bosnjakovic J, Mijićoprovk J, Riley PA. Possible relationship between abnormal melanosome structure and cytotoxic phenomena in malignant melanoma. Neoplasma 1991; 38:393-400.
42. Heitman J, Allen B, Alspaugh JA, Kwon-Chung KJ. On the origins of congeneric MATα/α and MATα/α strains of the pathogenic yeast Cryptococcus neoformans. Fungal Genet Biol 1999; 28:1-5.
43. Perfett JR, Katakichi N, Cox GM, Ingram CW, Beiser CL. Karyotyping of Cryptococcus neoformans as an epidemiological tool. J Clin Microbiol 1993; 31:3305-9.
44. Salas SD, Bennett JE, Kwon-Chung KJ, Perfett JR, Williamson PR. Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans. J Exp Med 1996; 184:377-86.
45. Benjamin Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc B 1995; 57:289-300.
46. Pfaff MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29:45.

336 Virulence Volume 2 Issue 4