Parameter-controlled inserting constructions of constant dimension subspace codes

Huimin Lao, Hao Chen, Jian Weng and Xiaoqing Tan *

August 25, 2020

Abstract

A basic problem in constant dimension subspace coding is to determine the maximal possible size $A_q(n,d,k)$ of a set of k-dimensional subspaces in F_q^n such that the subspace distance satisfies $\text{dis}(U,V) = 2k - 2 \dim(U \cap V) \geq d$ for any two different k-dimensional subspaces U and V in this set. In this paper we propose new parameter-controlled inserting constructions of constant dimension subspace codes. These inserting constructions are flexible because they are controlled by parameters. Several new better lower bounds which are better than all previously constructive lower bounds can be derived from our flexible inserting constructions. 141 new constant dimension subspace codes of distances 4, 6, 8 better than previously best known codes are constructed.

1 Introduction and preliminaries

Subspace coding including constant dimension codes and mixed dimension codes has been studied extensively since the paper [17] of R. Kötter and F.

*Huimin Lao, Hao Chen, Jian Weng and Xiaoqing Tan are with the College of Information Science and Technology/Cyber Security, Jinan University, Guangzhou, Guangdong Province, 510632, China, Corresponding Author: Hao Chen, haochen@jnu.edu.cn. The research of Hao Chen was supported by NSFC Grant 11531002. The research of Jian Weng was supported by NSFC Grants 61825203 and Grant U1726203. The research of Xiaoqing Tan was supported by NSFC Grant 61672014, National Cryptography Development Fund of China Grant MMJJ20180109, Natural Science Foundation of Guangdong Province of China Grant 2019A1515011069. This research was supported by the Major Program of Guangdong Basic and Applied Research under Grant 2019B03032008.
The set $\text{Grass}(k,n)_q$ of all k-dimensional subspaces in \mathbb{F}_q^n has $\binom{n}{k}_q = \prod_{i=0}^{k-1} \frac{q^{n-i} - 1}{q^{k-i} - 1}$ elements. This is the q-ary Gauss coefficient. The subspace distance on $\text{Grass}(k,n)_q$ can be defined by

$$\text{dis}(U,V) = 2k - 2\dim(U \cap V).$$

A set \mathbf{C} of M subspaces in $\text{Grass}(k,n)_q$, is called a $(n,M,d,k)_q$ (constant dimension k) subspace code if $\text{dis}(U,V) \geq d$ is satisfied for any two different subspaces U and V in \mathbf{C}. Sometimes we use $(n,*,d,k)_q$ to denote an CDC without counting the cardinality.

One main problem for the constant dimension subspace coding is to determine the maximal possible size $A_q(n,d,k)$ of such a code for given parameters n,d,k,q. We refer to papers [9, 7, 8, 22, 11, 15, 24, 14, 20, 19, 8, 18] and the nice webpage [12] for latest constructions and references. The presently known best constant dimension subspace codes for $n \leq 19, q \leq 9$ are listed in the table in the webpage [12]. Many presently best records of constant dimension subspace codes are from the Cossidente-Kurz-Marino-Pavese combining construction in [3]. Though there are various good constructions [24, 14, 20, 19, 8, 18] since 2018, it seems that for many small parameter cases there are still big gaps between the presently known best upper bounds and lower bounds. This observation leads us to believe that there are some places in the present constructions which are needed to be filled with some new k-dimensional subspaces while the subspace distance can be preserved. In this paper it is showed that this idea works for the very effective Cossidente-Kurz-Marino-Pavese combining subspace code construction in [3]. An inserting technique had been developed in Lemma 4.4 and Corollary 4.5 in [3] by which new k-dimensional subspaces can be added to the subspace codes while subspace distances can be preserved. In this paper we propose two parameter-controlled inserting constructions of constant dimension subspace codes. These two inserting constructions are the direct inserting and the multilevel type inserting, which are controlled by parameters. They are flexible by choosing different parameters to insert different positioned new k-dimensional subspaces in previous best known subspace codes.
1.1 Rank metric codes and the Delsarte Theorem

The rank metric on the space \(M_{a \times b}(F_q) \) of size \(a \times b \) matrices over \(F_q \) is defined by the rank of matrices. The distance \(d_r(A, B) \) is \(\text{rank}(A - B) \). The minimum rank-distance of a code \(M \subset M_{a \times b}(F_q) \) is defined as

\[
d_r(M) = \min_{A \neq B} \{d_r(A, B), A \in M, B \in M\}.
\]

A rank metric code is linear if it is a linear subspace in the matrix space.

For a code \(M \) in \(M_{a \times b}(F_q) \) with the minimum rank distance \(d_r(M) \geq d \), it is well-known that the number of codewords in \(M \) is upper bounded by \(q^{\max\{a,b\}(\min\{a,b\} - d + 1)} \); we refer to [6, 10, 5]. A rank metric code attaining this bound is called a maximum rank-distance (MRD) code. The MRD code \(Q_{q,n,t} \) consists of \(F_q \)-linear mappings on \(F_q^n \cong F_{q^n} \) defined by \(q \)-polynomials

\[
a_0 x + a_1 x^q + \cdots + a_t x^{q^t},
\]

where \(a_t, \ldots, a_0 \in F_{q^n} \) are arbitrary elements in \(F_{q^n} \). The distance of \(Q_{q,n,t} \) is \(n - t \) since there are at most \(q^t \) roots in \(F_{q^n} \) for each such \(q \)-polynomial. There are \(q^{n(t+1)} \) such \(q \)-polynomials in \(Q_{q,n,t} \). This kind of MRD codes has been used widely in previous constructions of constant dimension subspace codes. We refer to [10, 7, 8, 21].

Let \(a \) and \(b \) be two positive integers. The rank distribution of a rank-metric code \(M \) in \(M_{a \times b}(F_q) \) is defined by \(r(q,a,b,d,u)(M) = |\{M \in M, \text{rank}(M) = u\}| \) for \(u \in \mathbb{Z}^+ \). The rank distribution \(r(q,a,b,d,u) \) of an MRD code can be determined from its parameters. We refer the following result to Theorem 5.6 in [6] or Corollary 26 in [5]. The Delsarte Theorem is used to count the number of codewords in a subspace code.

Theorem 1.1 (Delsarte 1978). Assume that \(M \subset M_{a \times b}(F_q) \) is an MRD code with rank distance \(d \) for \(d \leq u \leq \min(a,b) \), then its rank distribution is given by

\[
r(q,a,b,d,u)(M) = \binom{\min\{a,b\}}{u} q^{u-d} s^u \sum_{s=0}^{\min\{a,b\}-d+1} \left(\frac{s}{2} \right)_q \left(\frac{u}{s} \right)_q q^{\max\{a,b\}(u-s-d+1)-1}.
\]

1.2 Lifting rank metric codes

For any given rank metric code \(M \) in \(M_{k \times n}(F_q) \) with the rank distance \(d \) and cardinality \(m(q,k,n,d) \), we have an \((n + k, m(q,k,n,d), 2d, k)_q \) CDC consisting of \(m(q,k,n,d) \) subspaces of dimension \(k \) in \(F_q^{n+k} \) spanned by the
rows of \((I_k, A)\), where \(A\) is an element in \(M\). Here \(I_k\) is the \(k \times k\) identity matrix. It is clear that for \(A\) and \(B\), the subspaces \(U_A\) and \(U_B\) spanned by rows of \((I_k, A)\) and \((I_k, B)\) respectively are the same if and only if \(A = B\). The intersection \(U_A \cap U_B\) is the set \(\{(\alpha, \alpha A) = (\beta, \beta B) : \alpha(A - B) = 0, \alpha \in F_q^k\}\). Thus \(\dim(U_A \cap U_B) \leq k - d\). The distance of this CDC is \(2d\). An CDC constructed as above is called a lifted code. When \(M\) is an MRD code, this is the lifted MRD code. The Delsarte theorem can help to count the cardinality of an CDC when lifting rank-restricted rank metric codes are used to construct this CDC.

1.3 Constructions based on Ferrers diagram

Let \(U\) be a \(k\)-dimensional subspace in \(F_q^n\) with a \(k \times n\) generator matrix \(U\). By applying Gaussian elimination on this generator matrix there exists exactly one matrix in reduced row echelon form \(\xi(U)\). The identifying vector \(i(U) \in F_2^n\) has only non-zero positions at pivots of \(\xi(U)\). The Ferrers tableaux form \(F(U)\) is obtained from \(\xi(U)\) by following steps.

- Removing each rows of \(\xi(U)\) from zeros to the left of the pivot of \(\xi(U)\).
- Remove the pivot columns of \(\xi(U)\).
- Shifting all the remaining entries to the right.

The Ferrers diagram of \(U\), denoted by \(F_U\), is defined by replacing all the entries in \(F(U)\) by dots.

Example. For \(U\) is a 3-dimensional subspace in \(F_7^7\),

\[
\xi(U) = \begin{pmatrix}
1 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{pmatrix}.
\]

Then \(i(U) = (1, 0, 1, 1, 0, 0, 0)\) and

\[
F(U) = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{pmatrix}, \quad F_U = \begin{pmatrix}
\text{•} & \text{•} & \text{•} & \text{•} \\
\text{•} & \text{•} & \text{•} \\
\text{•} & \text{•} & \text{•}
\end{pmatrix}
\]
Given a Ferrers diagram F with m dots in the rightmost column and l dots in the top row, a rank metric code in $F_{q}^{m \times l}$ is a Ferrers diagram rank-metric code (FDRM) $[F, \gamma, d_f]$ if all the entries of its codewords not in F are zero, the minimal distance is d_f and the dimension of the code is γ. The number of codewords in this code is upper bounded by $q^{\min\{w_i\}}$, where w_i is the number of dots in F which is not contained in the first i rows and the rightmost d_f-1-i columns for $0 \leq i \leq d_f-1$. The FDRM code achieved the upper bound is called Ferrers diagram maximal rank-metric code (FDMRD).

For another k-dimensional subspace W in F_{q}^{n}, if $i(U) = i(W)$, then we have $F_U = F_W$. Given an identifying vector v of length n and weight k, the corresponding k-dimensional subspace U in F_{q}^{n} can be constructed by lifting the FDRM code with Ferrers diagram F_U. The following result is the multilevel construction based on FDRM codes in [7].

Theorem 1.2. To construct an $(n, \psi, 2d_f, k)_q$ CDC by multilevel construction, we follow these steps:

1. Choose a binary code B in F_{2}^{n} satisfying each codeword with constant weight k, and the Hamming distance of B is $2d_f$. The cardinality of B is denoted by s.

2. Construct the FDRM code $[F_j, \gamma, d_f]$ for $1 \leq j \leq s$, where F_j corresponds to each codeword in B.

3. Construct $(n, \psi_j, 2d_f, k)_q$ CDC by lifting the FDRM code $[F_j, \gamma, d_f]$, for $1 \leq j \leq s$.

The union of CDC codes in (3) is the desired $(n, \psi, 2d_f, k)_q$ CDC from the following Lemma 1.3. It is useful to calculate the subspace distance between two k-dimensional subspaces in F_{q}^{n}.

Lemma 1.3. Let U and U' be two k-dimensional subspaces of F_{q}^{n}. Then $\text{dis}(U, U') \geq d_h(i(U), i(U'))$. Here d_h is the Hamming distance.

It was proved in [22] by graph matching on Ferrers diagrams that when $q^2 + q + 1 \geq n - \frac{k^2 + k - 6}{2}$ and in some other cases (see [22])

\[
A_q(n, 2(k - 1), k) \geq q^{2(n-k)} + \sum_{j=3}^{k-1} q^{2(n-\sum_{i=j}^{k} i)} + \left(\frac{n - \frac{k^2 + k - 6}{2}}{2} \right)_q
\]
For other lower bounds from multilevel construction based on Ferrers diagrams, we refer to \([7, 8, 22]\).

1.4 Examples of new parameter-controlled inserting constructions

The linkage construction \([11]\) is an useful construction. It was generalized in \([13]\) and used to give many good lower bounds for constant dimension subspace codes with small parameters. Then this construction has been extended in several ways in \([1, 19, 14, 3]\). The latest new lower bounds in \([3]\) have been the best lower bounds for many small parameter cases in \([12]\). When \(n = 15, d = 4, k = 5\), the known best lower bound before our parameter-controlled inserting constructions is \(A_2(15, 4, 5) \geq 1252448586816\) from Corollary 4.5 in \([3]\). By inserting a \((15, 1363968, 4, 5)_2\) subspace codes into the code with 1252447538240 codewords constructed in Lemma 4.1 in \([3]\), we get a better new lower bound \(A_2(15, 4, 5) \geq 1252447538240 + 1363968 = 1252448902208\).

However in some small parameter cases the lower bound in \([3]\) is worse than some previous constructions. For example in the case \(n = 12, d = 4, k = 6\) the presently known best lower bound \(A_2(12, 4, 6) \geq 1212491081\) is from Theorem 3.8 in \([2]\). The lower bound from Corollary 4.5 in \([3]\) is 1212451264. Our construction is an inserting of a \((12, 2154496, 4, 6)_2\) constant subspace code, which is constructed in Theorem 2.6 below, into the code with 1212418496 codewords constructed in Lemma 4.1 in \([3]\). Then new lower bound is \(A_2(12, 4, 6) \geq 1212418496 + 2154496 = 1214572992\).

1.5 Notation

Symbol	Representation
\(\xi(U)\)	The reduced row echelon form of a generator matrix of subspace U.
\(A_q(n, d, k)\)	The best lower bound of constant \(k\)-dimensional subspace code in \(F_q^n\) and the minimal distance of the code is \(d\).
\(O_{m \times n}\)	The zero matrix of size \(m \times n\).
\(I_k\)	The identity matrix of size \(k \times k\).
Symbol	Representation
--------	----------------
\(m(q,a,b,d) \)	The cardinality of maximal rank distance code with parameter \((q,a,b,d)\).
\(r(q,a,b,d,u) \)	The cardinality of rank metric code with parameter \((q,a,b,d)\), the rank of elements in the code are \(u\).
\(m(q,a,b,d,u) \)	The cardinality of rank metric code with parameter \((q,a,b,d)\), the rank of elements in the code are at most \(u\).
\[
m(q,a,b,d,u) = 1 + \sum_{i=d}^{u} r(q,a,b,d,i). \]	
\(R(M) \)	The \(k\)-dimensional subspace in \(\mathbb{F}_q^n\) spanned by the rows of the matrix \(M \in \mathbb{F}^{k \times n}_q\).
\(d_h(v_1,v_2) \)	The Hamming distance of identifying vector \(v_1\) and \(v_2\).
\(\text{dis}(U,V) \)	The distance between the subspaces \(U\) and \(V\).
\(d_S(D_1,D_2) \)	The minimal distance between two constant dimension subspace codes \(D_1\) and \(D_2\).
\(d_R(\mathcal{M}) \)	The minimal distance of rank metric code \(\mathcal{M}\).
\(i(U) \)	The identifying vector of the reduced row echelon form of a generator matrix of subspace \(U\).
\#\(D\)	The cardinality of \(D\).

2 Direct inserting construction

2.1 CKMP combining construction of two blocks

The following result of linkage using rank metric code with restricted rank in \(\mathbb{F}_q^n\) is a generalization of the parallel linkage in Theorem 4 in \([1]\). We refer to \([14]\) for the so-called generalized linkage construction.

Theorem 2.1 (\(\mathbb{F}_q^n\) Lemma 4.1). Let \(n,n_1,n_2,k\) be four positive integers satisfying \(n_1 \geq k\), \(n_2 \geq k\) and \(n_1 + n_2 = n\). Let \(C_i\) be an \((n_i,*,d,k)_q\) CDC, and \(\mathcal{M}_i\) be an \((k,n_i,\frac{k}{2})_q\) rank metric code for \(1 \leq i \leq 2\). Then \(C = C^1 \cup C^2\)
is an \((n,*,d,k)_q\) CDC, where

\[
C^1 = \{ R(\xi(U_1)|M_2) : U_1 \in C_1, M_2 \in \mathcal{M}_2 \},
\]

\[
C^2 = \{ R(M_1|\xi(U_2)) : U_2 \in C_2, M_1 \in \mathcal{M}_1, \text{rank} (M_1) \leq k - \frac{d}{2} \}.
\]

In particular,

\[
A_q(n,d,k) \geq A_q(n_1,d,k) \cdot m \left(q, k, n_2, \frac{d}{2} \right) \\
+ (1 + \sum_{u=\frac{d}{2}}^{k-\frac{d}{2}} r(q,k,n_1,\frac{d}{2},u)) \cdot A_q(n_2,d,k)
\]

More codewords with \(k\)-dimensional can be added to the subspace codes in the above linkage type construction. These codes have the following property. There exists a special \(n_2\)-dimensional subspace \(S_1\) and another special \(n_1\)-dimensional subspace \(S_2\) in \(F_q^n\), where \(S_1\) and \(S_2\) intersect trivially at the zero vector of \(F_q^n\). Moreover \(S_1\) intersects with subspaces in \(C^1\) trivially at the zero vector, and \(S_2\) intersects with subspaces in \(C^2\) trivially at the zero vector. The point is as follows. Suppose a \(k\)-dimensional subspace intersects \(S_1\) and \(S_2\) with subspaces of dimensions bigger than or equal to \(d\), then the distances from this new subspace to codewords in \(C\) are bigger than or equal to \(d\), since their intersections have dimensions smaller than or equal to \(k - \frac{d}{2}\). As Lemma 4.3 in Cossidente, Kurz, Marino and Pavese [3], we have the following Lemma.

Lemma 2.2. For \(C\) constructed as in Theorem 2.1, there are an \(n_2\) dimensional subspace \(S_1\) that intersect trivially with codewords of \(C^1\) in \(F_q^n\), and an \(n_1\) dimensional subspace \(S_2\) that intersect trivially with codewords of \(C^2\) in \(F_q^n\).

Proof. Set \(S_1 = R(\mathbf{O}_{n_2 \times n_1} \mathbf{I}_{n_2})\) and \(S_2 = R(\mathbf{I}_{n_1} \mathbf{O}_{n_1 \times n_2})\). For \(W_i \in C^i, i = 1, 2\), we have

\[
\dim (W_1 + S_1) = \text{rank} \left(\begin{bmatrix} \xi(U_1) & M_2 \end{bmatrix} \mathbf{O}_{n_2 \times n_1} \mathbf{I}_{n_2} \right) = \text{rank} \left(\begin{bmatrix} \xi(U_1) & \mathbf{O}_{k \times n_2} \end{bmatrix} \mathbf{O}_{n_2 \times n_1} \mathbf{I}_{n_2} \right) = k + n_2,
\]

where \(U_1 \in C_1, M_2 \in \mathcal{M}_2,\) and

\[
\dim (W_2 + S_2) = \text{rank} \left(\begin{bmatrix} M_1 & \xi(U_2) \end{bmatrix} \mathbf{I}_{n_1} \mathbf{O}_{n_1 \times n_2} \right) = \text{rank} \left(\begin{bmatrix} \mathbf{O}_{k \times n_1} & \xi(U_2) \end{bmatrix} \mathbf{I}_{n_1} \mathbf{O}_{n_1 \times n_2} \right) = k + n_1.
\]
where $U_2 \in C_2$, $M_1 \in M_1$. Therefore,

$$\dim(W_1 \cap S_1) = \dim(W_1) + \dim(S_1) - \dim(W_1 + S_1) = 0,$$
$$\dim(W_2 \cap S_2) = \dim(W_2) + \dim(S_2) - \dim(W_2 + S_2) = 0.$$

Based on Lemma 2.2 we give a sufficient condition for a k-dimensional subspace in F^n_q can be inserted into the CKMP combining construction.

Lemma 2.3. With the same notation used in Lemma 2.2, suppose U is a k-dimensional subspace in F^n_q. If $\dim(U \cap S_1) \geq d_2$ and $\dim(U \cap S_2) \geq d_2$, then U can be added into the CDC code in Theorem 2.1.

Proof. The Lemma 2.2 gives that $\dim(W_1 \cap S_1) = 0$ for $i = 1, 2$. It implies that $\dim(W_i \cap U) \leq k - d_2$ for $i = 1, 2$, then $\text{dis}(U, W_1) \geq d$ and $\text{dis}(U, W_2) \geq d$.

In Lemma 4.4 of [3] Cossidente, Kurz, Marino and Pavese gave a CDC that can be added to the code in Theorem 2.1 based on the Lemma 2.2. The following result is their Lemma 4.4 for the case $l = 2$.

Theorem 2.4. Let n_1, n_2, a_1, a_2, g_1 and g_2 be six positive integers satisfying $n_1 + n_2 = n, a_1 + a_2 = k, g_1 + g_2 = k - \frac{d_2}{2}$ and $g_i < a_i \leq n_i, k \leq n_i, a_i \geq \frac{d_2}{2}$, for $i = 1, 2$. Let s be another positive integer. Suppose that D^i_j is an $(n_i, d, a_i)_q$ CDC, for all $i = 1, 2, 1 \leq j \leq s$. We assume $\text{dis}(D^i_j, D^j_i) \geq 2a_i - 2g_i$ for $1 \leq j < j' \leq s$.

Then $D = \bigcup_{j=1}^s D^s_j$ is an $(n, *, d, k)_q$ CDC, where $D^i_j = \{U_1 \times U_2 : U_i \in D^i_j, i = 1, 2\}, D^i_j$ is an embedding of D^i_j in F^n_q such that the vectors contained in the codewords of D^i_j have non-zero entries only in the coordinates between $n_i-1 + 1$ and n_i, $n_0 = 0$. $D \cup C$ is also an $(n, *, d, k)_q$ CDC.

The cardinality of D satisfies $\#D \geq \Delta \cdot \prod_{i=1}^2 m(q, a_i, n_i - a_i, \frac{d_2}{2})$, where $\Delta = \min \{\gamma_i : 1 \leq i \leq 2\}$ and $\gamma_i = \frac{m(q, a_i, n_i - a_i, \frac{d_2}{2})}{m(q, a_i, n_i - a_i, \frac{d_2}{2})}$.

In [3] to construct such different CDC code D^i_j, D^j_i satisfying

$$d_S\left(D^i_j, D^j_i\right) \geq 2(a_i - g_i),$$
Cossidente, Kurz, Marino and Pavese used lifted rank metric codes in Corollary 4.5. We re-present their method in the following Lemma.

Lemma 2.5 (Subcode Construction). Let \(R_m \) be a \((q, a, b, d_m)\) linear rank-metric code, \(M \) be the \((q, a, b, d_s)\) sub code of \(R_m \), where \(d_s > d_m \).

Then \(s = \frac{m(q, a, b, d_m)}{m(q, a, b, d_s)} \) rank metric codes satisfying the following conditions can be constructed.

- \(M_j \) is a \((q, a, b, d_s)\) rank metric code for all \(1 \leq j \leq s \).
- For \(M \in M_j \), \(M' \in M_{j'} \), \(M \neq M' \) and \(\text{rank} (M - M') \geq d_m \), for all \(1 \leq j < j' \leq s \).

Proof. We take two different \(M, M' \in M \). For each \(M_j \in R_m \), \(M_j \) is a \((q, a, b, d_s)\) rank metric code defined by \(\{ M_j + M : M \in M \} \), since for two different elements \(M_1 = M_j + M, M_2 = M_j + M' \), \(\text{rank} (M_1 - M_2) = \text{rank} (M - M') \geq d_s \).

If \(M_j - M_{j'} \notin M \), then \(M_j \cap M_{j'} = \emptyset \), since \(M_j + M = M_j + M' \) implies \(M_j - M_{j'} \in M \). In other words, \(M_j \) is a coset of \(M \) in \(R_m \), and there are \(s = \frac{m(q, a, b, d_m)}{m(q, a, b, d_s)} \) distinct rank metric codes.

We set \(a = a_i, b = n_i - a_i, d_m = a_i - g_i, d_s = \frac{d}{2} \), where \(a_i, n_i, g_i \) are the same as in Theorem 2.4. By lifting these rank metric codes with \(I_{a_i} \), the desired \((n_i, *, d, a_i)_q\) CDCs can be obtained. This Lemma is essential in our constructions.

2.2 New inserted subspace codes

In Theorem 2.4 \(k \)-dimensional subspaces in the code \(D \) is spanned by the rows of matrices of the form \(\begin{pmatrix} I_{a_i} & M_1 & O & O \\ O & O & I_{a_2} & M_2 \end{pmatrix} \), where \(a_1 + a_2 = k \) and \(M_1, M_2 \) are from MRD codes. However there are some gaps in the generator matrices that can be filled with more matrices from MRD codes to enlarge the subspace codes. The problem is how to fit these matrices into the generator matrices so that the distances of subspaces spanned by the rows of the patched matrices are preserved.

In the following result we first consider an \((n, d, k)_q\) CDC code consisting of subspaces in \(\mathbb{F}_q^n \) spanned by \(k \) rows of matrices which are concatenated by
six small matrices $A_1, A_2, B_1, B_2, B_3, B_4$ in well-arranged positions, where A_1, A_2 are identity matrices and B_i for $1 \leq i \leq 4$ are from suitable different rank metric codes. Then we combine several CDCs by restricting rank distances of matrices in different rank metric codes. To construct the desired rank metric codes, we need the subcode construction in Lemma 2.5. We call this blocks construction since it is constructed by multiple rank metric codes.

Proposition 2.1. Let n_1, n_2, a_1, a_2, b_1 and b_2 be six positive integers satisfying $n_1 + n_2 = n$, $a_1 + a_2 = k$, $b_1 + b_2 \geq \frac{n}{2}$ and $n_i \geq k$, $a_i \geq \frac{d}{2}$ and $1 \leq b_i \leq \frac{d}{2}$ for $i = 1, 2$. $\mathcal{M}_{1,2}(q, a_1, n_2 - a_2, \frac{d}{2})$, $\mathcal{M}_{2,1}(q, a_2, n_1 - a_1, \frac{d}{2})$ are rank metric codes. For another integer s, $\mathcal{M}_{1,1}^r(q, a_1, n_1 - a_1, \frac{d}{2})$, $\mathcal{M}_{2,2}^r(q, a_2, n_2 - a_2, \frac{d}{2})$ are rank metric codes for all $1 \leq r \leq s$. We assume $M \in \mathcal{M}_{i,i}^r$, $M' \in \mathcal{M}_{i,i}'$ for all $1 \leq i \leq 2$, $1 \leq r < r' \leq s$ satisfying $M \neq M'$ and $\text{rank}(M - M') \geq b_1$.

Then $\mathcal{N} = \bigcup_{r=1}^{s} \mathcal{N}_r$ is an $(n, *, d, k)_q$ CDC, where \mathcal{N}_r is consisting of the subspaces

$$\left\{ R \begin{pmatrix} I_{a_1} & M_{1,1} & O_1 & M_{1,2} \\ O_2 & M_{2,1} & I_{a_2} & M_{2,2} \end{pmatrix} \right\} ,$$

where $M_{1,2} \in \mathcal{M}_{1,2}$, $M_{2,1} \in \mathcal{M}_{2,1}$, $M_{i,i} \in \mathcal{M}_{i,i}^r$ for $i = 1, 2$, and $O_1 = O_{a_1 \times a_2}$, $O_2 = O_{a_2 \times a_1}$.

Proof. Since $\text{rank}(\xi(W)) = k$ for all subspaces $W \in \mathcal{N}_r$ for $1 \leq r \leq s$, the elements of \mathcal{N} are k-dimensional subspaces in \mathbb{F}_q^n.

For the distance analyse, let $W_1 \in \mathcal{N}_r$, $W_2 \in \mathcal{N}_{r'}$ be two k-dimensional subspaces in \mathbb{F}_q^n for $1 \leq r \leq r' \leq s$, W_i is spanned by the rows of matrix G_i for $i = 1, 2$,

$$G_1 = \begin{pmatrix} I_{a_1} & M_{1,1} & O_1 & M_{1,2} \\ O_2 & M_{2,1} & I_{a_2} & M_{2,2} \end{pmatrix} , \quad W_1 = R(G_1) ,$$

$$G_2 = \begin{pmatrix} I_{a_1} & M'_{1,1} & O_1 & M'_{1,2} \\ O_2 & M'_{2,1} & I_{a_2} & M'_{2,2} \end{pmatrix} , \quad W_2 = R(G_2) ,$$

where $M_{i,i} \in \mathcal{M}_{i,i}^r$, $M'_{i,i} \in \mathcal{M}_{i,i}'$ for $i = 1, 2$, $M_{1,2}, M'_{1,2} \in \mathcal{M}_{1,2}$, $M_{2,1}, M'_{2,1} \in \mathcal{M}_{2,1}$. Since the intersection of W_1 and W_2 in \mathbb{F}_q^n is

$$W_1 \cap W_2 = \{ (\alpha_1, \alpha_2)G_1 = (\beta_1, \beta_2)G_2 : \alpha_i, \beta_i \in \mathbb{F}_q^{a_i}, i = 1, 2 \} ,$$
we have
\[
\dim (W_1 \cap W_2) = \dim (\{ (\alpha_1, \alpha_2) : \begin{pmatrix}
(\alpha_1, \alpha_2) & M_{1,1} - M'_{1,1} \\
M_{2,1} - M'_{2,1}
\end{pmatrix} = 0, \
(\alpha_1, \alpha_2) & M_{1,2} - M'_{1,2} \\
M_{2,2} - M'_{2,2}
\end{pmatrix} = 0, \alpha_i \in F_q^a, i = 1, 2 \}).
\]

We analyse the following cases. If \(M_{1,2} \neq M'_{1,2}\), then
\[
\dim (W_1 \cap W_2) \leq \dim (\{ (\alpha_1, \alpha_2) : (\alpha_1, \alpha_2) (M_{1,2} - M'_{1,2}) = 0, \alpha_i \in F_q^a, i = 1, 2 \})
= \dim (\text{kernel } (M_{1,2} - M'_{1,2}))
\leq k - \text{rank} (M_{1,2} - M'_{1,2}) \leq k - \frac{d}{2}.
\]

Similarly if \(M_{2,1} \neq M'_{2,1}\), \(\dim (W_1 \cap W_2) \leq k - \text{rank} (M_{2,1} - M'_{2,1}) \leq k - \frac{d}{2}\).

When \(M_{1,2} = M'_{1,2}\) and \(M_{2,1} = M'_{2,1}\), if \(r = r'\), then \(M_{1,1}, M'_{1,1} \in M'_{1,1}, M_{2,2}, M'_{2,2} \in M'_{2,2}\). If \(M_{1,1} \neq M'_{1,1}\), then \(\dim (W_1 \cap W_2) \leq k - \text{rank} (M_{1,1} - M'_{1,1}) \leq k - \frac{d}{2}\). If \(M_{1,1} = M'_{1,1}\), we have \(M_{2,2} \neq M'_{2,2}\), then \(\dim (W_1 \cap W_2) \leq k - \text{rank} (M_{2,2} - M'_{2,2}) \leq k - \frac{d}{2}\). If \(r \neq r'\), then \(M_{i,i} \in M'_{i,i}, M'_{i,i} \in M'_{i,i}\) for \(i = 1, 2\). Since \(M_{1,1} \neq M'_{1,1}, M_{2,2} \neq M'_{2,2}\) and \(M_{1,2} = M'_{1,2}, M_{2,1} = M'_{2,1}\), it implies that
\[
\dim (W_1 \cap W_2) \leq \dim (\{ \alpha_1 : \alpha_1 (M_{1,1} - M'_{1,1}) = 0, \alpha_1 \in F_q^a \}) + \dim (\{ \alpha_2 : \alpha_2 (M_{2,2} - M'_{2,2}) = 0, \alpha_2 \in F_q^a \})
= \dim (\text{kernel } (M_{1,1} - M'_{1,1})) + \dim (\text{kernel } (M_{2,2} - M'_{2,2}))
\leq a_1 - b_1 + a_2 - b_2 \leq k - \frac{d}{2}.
\]

It follows that \(\text{dis } (W_1, W_2) \geq d\).

In the following result we improve the blocks construction by not restricting to generator matrices of the form \(\begin{pmatrix}
I_{a_1} & \cdots & \cdots & \cdots \\
\cdots & I_{a_2} & \cdots & \cdots
\end{pmatrix}\), but rather using the matrices consisting of the generator matrices of \(a_i\)-dimensional CDCs in \(F_q^{a_i}\) for \(i = 1, 2\). In addition, the construction is inserted into the CKMP combining construction by restricting ranks of elements in some rank metric codes.
Theorem 2.6. Let n_1, n_2, a_1, a_2, b_1 and b_2 be six positive integers satisfying $n_1 + n_2 = n, a_1 + a_2 = k, b_1 + b_2 = \frac{d}{2}$ and $a_i \leq t_i \leq n_i - \frac{d}{2}, n_i \geq k, a_i \geq \frac{d}{2}, 1 \leq b_i \leq \frac{d}{2}$ for $i = 1, 2$. Q_i is an $(t_i, d, a_i)_q$ CDC for $i = 1, 2$ and $M_{1,2} (q, a_1, n_2 - t_2, \frac{d}{2}), M_{2,1} (q, a_2, n_1 - t_1, \frac{d}{2})$ are rank-metric codes. For another integer s, $M'_{i,1} (q, a_1, n_1 - t_1, \frac{d}{2})$, $M'_{2,2} (q, a_2, n_2 - t_2, \frac{d}{2})$ are rank-metric codes for all $1 \leq r \leq s$. We assume that $M \neq M'$ and $\text{rank} (M - M') \geq b_i$ for $M \in M'_{i,i}, M' \in M'_{i,i}$ for all $1 \leq i \leq 2, 1 \leq r < r' \leq s$.

Then $B = \bigcup_{r=1}^s B_r$ an $(n, *, d, k)_q$ CDC, where B_r is consisting of subspaces

$$
\left\{ R \left(\begin{array}{cccc}
\xi(U_1) & M_{1,1} & O_1 & M_{1,2} \\
O_2 & M_{2,1} & \xi(U_2) & M_{2,2}
\end{array} \right) \right\},
$$

where $M_{i,i} \in M'_{i,i}$ for $i = 1, 2$, $U_i \in Q_i$ for $i = 1, 2$, $M_{1,2} \in M_{1,2}, \text{rank} (M_{1,2}) \leq a_1 - \frac{d}{2}, M_{2,1} \in M_{2,1}, \text{rank} (M_{2,1}) \leq a_2 - \frac{d}{2}$ and $O_1 = O_{a_1 \times t_2}, O_2 = O_{a_2 \times t_1}$.

Moreover, $B \cup C$ is an $(n, *, d, k)_q$ CDC.

Proof. Since for all subspaces $W \in B_r$ for $1 \leq r \leq s$, we have $\text{rank}(\xi(U_i)) = a_i$ for $U_i \in Q_i, i = 1, 2$, then $\text{rank}(\xi(W)) = k$. The elements of B are k-dimensional subspaces in F_q^n.

Let $W_1 \in B_r, W_2 \in B_{r'}$ be two k-dimensional subspaces in F_q^n for $1 \leq r \leq r' \leq s$. By the construction, there exists $U_i \in Q_i, M_{i,i} \in M'_{i,i}$ for $i = 1, 2$ and $M_{i,j} \in M_{i,j}$ for $1 \leq i, j \leq 2, i \neq j$ such that

$$
G_1 = \left(\begin{array}{cccc}
\xi(U_1) & M_{1,1} & O_1 & M_{1,2} \\
O_2 & M_{2,1} & \xi(U_2) & M_{2,2}
\end{array} \right), \ W_1 = R(G_1),
$$

where $\text{rank}(M_{1,2}) \leq a_1 - \frac{d}{2}, \text{rank}(M_{2,1}) \leq a_2 - \frac{d}{2}$, there exists $U_i' \in Q_i, M'_{i,i} \in M'_{i,i}$ for $i = 1, 2$ and $M'_{i,j} \in M_{i,j}$ for $1 \leq i, j \leq 2, i \neq j$ such that

$$
G_2 = \left(\begin{array}{cccc}
\xi(U'_1) & M'_{1,1} & O_1 & M'_{1,2} \\
O_2 & M'_{2,1} & \xi(U'_2) & M'_{2,2}
\end{array} \right), \ W_2 = R(G_2),
$$

13
where $\text{rank}(M_{1,2}') \leq a_1 - \frac{d}{2}$, $\text{rank}(M_{2,1}') \leq a_2 - \frac{d}{2}$. The intersection of W_1 and W_2 in F_q^n is

$$W_1 \cap W_2 = \{(\alpha_1, \alpha_2)G_1 = (\beta_1, \beta_2)G_2 : \alpha_i, \beta_i \in F_q^{a_i}, i = 1, 2\}.$$

We analyse the following cases.

1. If $U_1 \neq U_1'$, then $\dim(W_1 \cap W_2) \leq \dim(U_1 \cap U_1') + a_2 \leq a_1 - \frac{d}{2} + a_2 \leq k - \frac{d}{2}$.

2. If $U_1 = U_1'$ and $U_2 \neq U_2'$, then $\dim(W_1 \cap W_2) \leq a_1 + \dim(U_2 \cap U_2') \leq a_1 + a_2 - \frac{d}{2} \leq k - \frac{d}{2}$.

3. If $U_1 = U_1', U_2 = U_2'$, then $\alpha_1 = \beta_1$ and $\alpha_2 = \beta_2$ since $\xi(U_i), \xi(U_i')$ is the full rank matrix for $i = 1, 2$. Therefore we have

$$\dim(W_1 \cap W_2) = \dim(\{(\alpha_1, \alpha_2) : (\alpha_1, \alpha_2) \begin{pmatrix} M_{1,1} - M_{1,1}' \\ M_{2,1} - M_{2,1}' \end{pmatrix} = 0 \}
b),$$

where $\alpha_i \in F_q^{a_i}, i = 1, 2$. From a similar proof as Proposition 2.1 we get the conclusion.

We need to prove that $B \cup C$ is an $(n, s, d, k)_q$ CDC. Let W_1 be an element in B and S_1 and S_2 be the subspaces in Lemma 2.2. Then

$$\dim(W_1 + S_1) = \text{rank} \begin{pmatrix} \xi(U_1) & M_{1,1} & O_1 & M_{1,2} \\ O_2 & M_{2,1} & \xi(U_2) & M_{2,2} \\ O_3 & O_4 & I_{t_2} & O_5 \\ O_6 & O_7 & O_8 & I_{(n_2-t_2)} \end{pmatrix}$$

$$= \text{rank} \begin{pmatrix} \xi(U_1) & O_9 & O_{10} & O_{11} \\ O_2 & M_{2,1} & O_{12} & O_{13} \\ O_3 & O_4 & I_{t_2} & O_5 \\ O_6 & O_7 & O_8 & I_{(n_2-t_2)} \end{pmatrix}$$

$$= a_1 + n_2 + \text{rank}(M_{2,1}).$$

Here $M_{1,1} \in \mathcal{M}_{1,1}', M_{2,2} \in \mathcal{M}_{2,2}'$, for $1 \leq r \leq s$, $M_{1,2} \in \mathcal{M}_{1,2}$, $\text{rank}(M_{1,2}) \leq a_1 - \frac{d}{2}$, $M_{2,1} \in \mathcal{M}_{2,1}$, $\text{rank}(M_{2,1}) \leq a_2 - \frac{d}{2}$, O_i for $1 \leq i \leq 13$ are zero matrices.
of compatible sizes. Similarly we have \(\dim(W_1 + S_2) = a_2 + n_1 + \text{rank} \left(M_{1,2} \right) \). Then we can calculate the dimensions of intersections

\[
dim(W_1 \cap S_1) = k + n_2 - (a_1 + n_2 + \text{rank} \left(M_{2,1} \right)) = a_2 - \text{rank} \left(M_{2,1} \right) \geq \frac{d}{2},
\]

\[
dim(W_1 \cap S_2) = k + n_1 - (a_2 + n_1 + \text{rank} \left(M_{1,2} \right)) = a_1 - \text{rank} \left(M_{1,2} \right) \geq \frac{d}{2},
\]

since \(\text{rank} \left(M_{2,1} \right) \leq a_2 - \frac{d}{2} \) and \(\text{rank} \left(M_{1,2} \right) \leq a_1 - \frac{d}{2} \). From Lemma 2.3 we get the conclusion \(d_S(B, C) \geq d \).

We consider the case \(n = 12, d = 4, k = 6, n_1 = n_2 = 6, a_1 = 4, a_2 = 2, b_1 = b_2 = 1, t_1 = 4, t_2 = 2 \) as an example of Theorem 2.6. Based on subcode construction in Lemma 2.5 we take matrix \(M_{1,1} \) from \(M_{1,1}'(q, 4, 2, 2) \) subcode of \((q, 4, 2, 1) \) MRD code for all \(1 \leq r \leq s \), matrix \(M_{2,2} \) from \(M_{2,2}'(q, 2, 4, 2) \) subcode of \((q, 2, 4, 1) \) MRD code for all \(1 \leq r \leq s \), where \(s = \min \left(\frac{m(q, 4, 2, 1)}{m(q, 4, 2, 2)}, \frac{m(q, 2, 4, 1)}{m(q, 2, 4, 2)} \right) = q^4 \). For matrix \(M_{1,2} \), we take it from \(M_{1,2}(q, 4, 4, 2) \) MRD code with restricted rank \(a_1 - \frac{d}{2} = 2 \). Since \(M_{2,1}(q, 2, 2, 2) \) with restricted rank \(a_2 - \frac{d}{2} = 0 \) is zero matrix, we take \(M_{2,1} = O_{2 \times 2} \). Then the lower bound of \(q = 2 \) from Theorem 2.6 is

\[
A_2(12, 4, 6) \geq \#C + \#B = 1212418496 + 2154496 = 1214572992.
\]

This is better than 1212451264 from Corollary 4.5 in \cite{3} and the previously best known lower bound 1212491081 from \cite{4}. The new lower bounds from Theorem 2.6 for \(A_q(15, 4, 5), A_q(18, 4, 6), A_q(18, 6, 6), q = 2, 3, 4, 5, 7, 8, 9 \) are given in Corollary 4.5.

From Theorem 2.6 we totally obtain 92 better lower bounds of subspace codes than the lower bounds recorded in \cite{12}. These lower bounds are for \(A_q(12, 4, 6), A_q(14, 4, 7), A_q(15, 4, 5), A_2(16, 4, 4), A_q(16, 4, 5), A_q(16, 4, 8), A_q(17, 4, 5), A_q(18, 4, 5), A_q(18, 4, 6) \), which are listed in Table 1 and for \(A_q(18, 6, 6) \) which are listed in Table 2 for \(q = 2, 3, 4, 5, 7, 8, 9 \).

If \(n_1 \geq 2a_1 \) and \(n_2 \geq 2a_2 \), we can insert more subspaces into the CDCs in Theorem 2.6. These subspaces are spanned by the rows of matrix consisting of four matrices, which are from two small CDCs and rank metric codes. But these generator matrices of small CDCs are placed in different positions with Theorem 2.6 such that the distances of subspaces are preserved. The result is given by the following Theorem 2.7.
Theorem 2.7. With the same notation as Theorem 2.6, we assume that \(n_i - t_i \geq a_i, b_i \leq c_i \leq a_i \) for \(i = 1, 2 \), and \(c_1 + c_2 \leq k - d_i \). \(\mathcal{M}_i(q, a_i, t_i, b_i, c_i) \) is a rank metric code with restricted rank \(c_i \) and \(D_i \) is an \((n_i - t_i, d_i, a_i)_q \) CDC code for \(i = 1, 2 \). The subset \(\mathcal{E} \) of \(k \)-dimensional subspaces in \(F_q^n \) is constructed as follows.

- If \(b_1 < \frac{d}{2} \) or \(b_2 < \frac{d}{2} \), we set \(H_1 = \{ M_1^1, M_1^2, \ldots, M_1^r \} \), where \(M_1^r \) is distinct arbitrary numbering element of \(\mathcal{M}_1 \) with restricted rank \(c_1 \) and \(H_2 = \{ M_2^1, M_2^2, \ldots, M_2^s \} \), where \(M_2^r \) is distinct arbitrary numbering element of \(\mathcal{M}_2 \) with restricted rank \(c_2 \), for \(1 \leq r \leq s, s = \min(\#\mathcal{M}_1, \#\mathcal{M}_2) \). Then
 \[\mathcal{E} = \left\{ R \begin{pmatrix} M_1^r & \xi(U_1) & O_1 & O_2 \\ O_3 & O_4 & M_2^r & \xi(U_2) \end{pmatrix} \right\}, \]
 where \(M_1^r \in H_1, M_2^r \in H_2 \) for \(1 \leq r \leq s, U_i \in D_i \) for \(i = 1, 2 \), and \(O_i \) for \(i = 1, 2, 3, 4 \) are zero matrices of compatible size.

- If \(b_1 = \frac{d}{2} \) and \(b_2 = \frac{d}{2} \), then
 \[\mathcal{E} = \left\{ R \begin{pmatrix} M_1 & \xi(U_1) & O_1 & O_2 \\ O_3 & O_4 & M_2 & \xi(U_2) \end{pmatrix} \right\}, \]
 where \(M_1 \in \mathcal{M}_1, M_2 \in \mathcal{M}_2, U_i \in D_i \) for \(i = 1, 2 \), and \(O_i \) for \(i = 1, 2, 3, 4 \) are zero matrices of compatible sizes.

Then \(\mathcal{E} \) is an \((n, d, k)_q \) CDC code, the cardinality of \(\mathcal{E} \) is

\[
\#\mathcal{E} = \begin{cases}
\#\mathcal{M}_1 \cdot \#\mathcal{M}_2 \cdot \#D_1 \cdot \#D_2, & \text{if } b_1 = \frac{d}{2} \text{ and } b_2 = \frac{d}{2}, \\
\Delta \cdot \#D_1 \cdot \#D_2, & \text{else,}
\end{cases}
\]

where \(\Delta = \min(\#\mathcal{M}_1, \#\mathcal{M}_2) \).

Moreover, \(B \cup C \cup \mathcal{E} \) is also an \((n, d, k)_q \) CDC code.

Proof. Since for all subspaces \(E \in \mathcal{E} \), we have \(\text{rank}(\xi(U_i)) = a_i \) for \(U_i \in D_i \) and \(i = 1, 2 \), then \(\text{rank}(\xi(E)) = k \). The elements in \(\mathcal{E} \) are \(k \)-dimensional subspaces in \(F_q^n \).

We analyse the following cases.
(1) If $b_1 < \frac{d}{2}$ or $b_2 < \frac{d}{2}$, let $W_1, W_2 \in \mathcal{E}$ be two k-dimensional subspaces in \mathbb{F}_q^n, by construction, we have

$$W_1 = R(G_1), \quad G_1 = \begin{pmatrix} M'_1 & \xi(U_1) & O_1 & O_2 \\ O_3 & O_4 & M'_2 & \xi(U_2) \end{pmatrix},$$

$$W_2 = R(G_2), \quad G_2 = \begin{pmatrix} M''_1 & \xi(U'_1) & O_1 & O_2 \\ O_3 & O_4 & M''_2 & \xi(U'_2) \end{pmatrix},$$

where $M'_i, M''_i \in H_i$, rank(M'_i) $\leq c_i$, rank(M''_i) $\leq c_i$ for $i = 1, 2$, $1 \leq r \leq r'$, Δ and $U_i, U'_i \in D_i$ for $i = 1, 2$. The intersection of W_1 and W_2 is

$$W_1 \cap W_2 = \{ (\alpha_1, \alpha_2) G_1 = (\beta_1, \beta_2) G_2 : \alpha_i, \beta_i \in \mathbb{F}_q, i = 1, 2 \}.$$

If $U_1 \neq U'_1$, then $\dim(W_1 \cap W_2) \leq \dim(U_1 \cap U'_1) + a_2 = a_1 - \frac{d}{2} + a_2 = k - \frac{d}{2}$.

Similarly, if $U_2 \neq U'_2$, then $\dim(W_1 \cap W_2) \leq a_1 + \dim(U_2 \cap U'_2) = k - \frac{d}{2}$. It remains to analyse the case for $U_1 = U'_1$, $U_2 = U'_2$ and $r \neq r'$. In this case, for such α_i, β_i for $i = 1, 2$, we have that $\alpha_1 = \beta_1$ and $\alpha_2 = \beta_2$ since $\xi(U_1)$ and $\xi(U_2)$ are full rank matrices. It implies that

$$\dim(W_1 \cap W_2) \leq \dim(\{ \alpha_1 : \alpha_1(M'_1 - M''_1) = 0, \alpha_1 \in \mathbb{F}_q^{a_1} \})$$

$$+ \dim(\{ \alpha_2 : \alpha_2(M'_2 - M''_2) = 0, \alpha_2 \in \mathbb{F}_q^{a_2} \})$$

$$= \dim(\ker(M'_1 - M''_1)) + \dim(\ker(M'_2 - M''_2))$$

$$\leq a_1 - b_1 + a_2 - b_2 \leq k - \frac{d}{2}.$$

Thus for this case, $\dim(W_1, W_2) \geq d$.

(2) If $b_1 = b_2 = \frac{d}{2}$, let $W_1, W_2 \in \mathcal{E}$ be two k-dimensional subspaces in \mathbb{F}_q^n, by construction, we have

$$W_1 = R(G_1), \quad G_1 = \begin{pmatrix} M_1 & \xi(U_1) & O_1 & O_2 \\ O_3 & O_4 & M_2 & \xi(U_2) \end{pmatrix},$$

$$W_2 = R(G_2), \quad G_2 = \begin{pmatrix} M'_1 & \xi(U'_1) & O_1 & O_2 \\ O_3 & O_4 & M'_2 & \xi(U'_2) \end{pmatrix},$$

where $M_i, M'_i \in M_i$, rank(M_i) $\leq c_i$, rank(M'_i) $\leq c_i$, for $i = 1, 2$, $U_i, U'_i \in D_i$ for $i = 1, 2$. Similar to the proof for the case $b_1 < \frac{d}{2}$ or $b_2 < \frac{d}{2}$, if $U_1 \neq U'_1$ or $U_2 \neq U'_2$, we have $\dim(W_1 \cap W_2) \leq k - \frac{d}{2}$. If $U_1 = U'_1$ and $U_2 = U'_2$, then
\(M_1 \neq M'_1 \) or \(M_2 \neq M'_2 \). For this case, if \(M_1 \neq M'_1 \), we have
\[
\dim(W_1 \cap W_2) \leq \dim \left(\{ \alpha_1 : \alpha_1 (M_1 - M'_1) = 0, \alpha_1 \in F_q^{a_1} \} \right) + a_2
\]
\[
= \dim (\text{kernel} (M_1 - M'_1)) + a_2
\]
\[
\leq a_1 - b_1 + a_2 = k - \frac{d}{2}
\]
If \(M_1 = M'_1 \), then \(M_2 \neq M'_2 \), we have \(\dim(W_1 \cap W_2) \leq a_1 + (a_2 - b_2) = k - \frac{d}{2} \).

Then in this case \(\text{dis}(W_1, W_2) \geq d \). We can calculate the cardinality of \(\mathcal{E} \) directly from the proof of the above two cases.

From Theorem 2.6, \(d_S(B, C) \geq d \). We analyse the distances of the codewords in \(\mathcal{B} \) and \(\mathcal{E} \). If \(B \in \mathcal{B} \) and \(E \in \mathcal{E} \) we have
\[
G_1 = \begin{pmatrix} \xi(B_1) & M_{1,1} & O_1 & M_{1,1} \\ O_2 & M_{2,1} & \xi(B_2) & M_{2,2} \end{pmatrix}, \quad B = R(G_1),
\]
where \(M_{1,2} \in M_{1,2}, \text{rank}(M_{1,2}) \leq a_1 - \frac{d}{2} \), \(M_{2,1} \in M_{2,1}, \text{rank}(M_{2,1}) \leq a_2 - \frac{d}{2} \), \(B_i \in Q_i \) for \(i = 1, 2 \), \(M_{i,i} \in M_{i,i}' \) for \(i = 1, 2 \) and \(1 \leq r \leq s \),
\[
G_2 = \begin{pmatrix} M_1 & \xi(E_1) & O_1 & O_3 \\ O_2 & O_4 & M_2 & \xi(E_2) \end{pmatrix}, \quad E = R(G_2),
\]
where \(M_i \in M_i, \text{rank}(M_i) \leq c_i \) for \(i = 1, 2 \) and \(E_i \in D_i \) for \(i = 1, 2 \). The intersection of \(B \) and \(E \) in \(F_q^n \) is
\[
B \cap E = \{(\alpha_1, \alpha_2)G_1 = (\beta_1, \beta_2)G_2 : \alpha_i, \beta_i \in F_q^{a_i}, i = 1, 2 \}.
\]
Since \(\text{rank}(M_i) \leq c_i \) for \(i = 1, 2 \), and \(\xi(B_i) \) is full rank matrix for \(i = 1, 2 \),
\[
\dim(B \cap E) \leq \dim(\{\alpha_1 : \exists \beta_1, \alpha_1 \xi(B_1) = \beta_1 M_1, \alpha_1, \beta_1 \in F_q^{a_1}\})
\]
\[
+ \dim(\{\alpha_2 : \exists \beta_2, \alpha_2 \xi(B_2) = \beta_2 M_2, \alpha_2, \beta_2 \in F_q^{a_2}\})
\]
\[
\leq c_1 + c_2 \leq k - \frac{d}{2}.
\]
Then \(\text{dis}(B, E) \geq 2k - 2(k - \frac{d}{2}) \geq d \).

It remains to analyse the distances of the codewords in \(\mathcal{E} \) and \(C \). Similar to the proof of Lemma 2.2, we can prove
\[
\dim(E \cap S_1) = k + n_2 - \dim(E + S_1) = a_2 \geq \frac{d}{2},
\]
\[
\dim(E \cap S_2) = k + n_1 - \dim(E + S_2) = a_1 \geq \frac{d}{2}.
\]
For example we consider the case $n = 16, k = 8, d = 6$ with $n_1 = n_2 = 8, a_1 = a_2 = 4, b_1 = 2, b_2 = 1, c_1 = 3, c_2 = 2, t_1 = t_2 = 4$. Since $b_1 < \frac{d}{2} = 3, b_2 < \frac{d}{2} = 3$, we take M_1^r from all the arbitrary numbering distinct elements $\{M_1^1, M_1^2, \cdots, M_1^s\}$ of $\mathcal{M}_1(q, 4, 4, 2, 3)$ MRD code with rank restricted to 3, M_2^r from all the arbitrary numbering distinct elements $\{M_2^1, M_2^2, \cdots, M_2^s\}$ of $\mathcal{M}_2(q, 4, 4, 1, 2)$ MRD code with rank restricted to 2, for all $1 \leq r \leq s = \min(#M_1, #M_2)$. Then we have $E = \min(#M_1, #M_2) \cdot A_q(4, 6, 4) \cdot A_q(4, 6, 4) = \min(m(q, 4, 4, 2, 3), m(q, 4, 4, 1, 2))$. Then from Theorem 2.6

$$A_2(16, 6, 8) \geq #C + #B$$

$$= 282927683836352 + 1048576 = 282927684884928,$$

which is the same as the previously best lower bound 282927684884928 from Corollary 4.5 in [3]. From Theorem 2.7 we insert E with

$$#E = \min\{m(2, 4, 4, 2, 3), m(2, 4, 4, 1, 2)\} = \min\{2776, 7576\} = 2776$$

codewords to enlarge the code. This gives a better lower bound $A_2(16, 6, 8) \geq #C + #B + #E \geq 282927684887704$. The new lower bounds from Theorem 2.7 for $A_q(16, 6, 8), q = 2, 3, 4, 5, 7, 8, 9$ are given in Corollary 4.5.

This inserting construction for $t_1 = a_1, t_2 = a_2$ gives 28 new lower bounds for $A_q(12, 6, 6), A_q(16, 6, 8), A_q(16, 8, 8), A_q(19, 6, 6)$ for $q = 2, 3, 4, 5, 7, 8, 9$, which is listed in Table 3 and Table 4.

3 Multilevel type inserting

The multilevel construction and the linkage type construction are both productive constructions for constant dimension subspace codes. In some papers these two constructions were combined to obtain better lower bounds. In [19] a multilevel linkage construction was given. A parallel multilevel linkage type construction in [20] was proposed as an inserting construction to the parallel linkage construction in [11]. These constructions are the special case of the CKMP combining construction in Lemma 4.1 in [3]. However

\footnote{For simplicity, we only consider the special case $t_1 = a_1, t_2 = a_2$ for avoiding too many parameters to calculate.}
the subspace codes lifted by FDRM codes in multilevel construction can not
be directly inserted into the CKMP combining construction.

In Lemma 3.1 and Lemma 3.2 we give a construction for an union of
FDRM codes with special shaped Ferrers diagrams. Based on this construction,
a multilevel type parameter-controlled flexible inserting construction
for identifying vectors with special form can be inserted into the CKMP
combining construction. The multilevel type inserting construction is given
in Proposition 3.1.

Because a specification for optimal binary constant-weight code to yield
best cardinality CDC in the multilevel construction is an unsolved problem
[7], we give two simple cases for the multilevel type construction in Proposi-
tion 3.1 below. Our multilevel type inserting construction with two identify-
ing vectors totally leads to 49 better lower bounds for
$A_q(12, 4, 6)$, $A_q(14, 4, 7)$, $A_q(16, 4, 8)$, $A_q(18, 4, 6)$, $A_q(18, 4, 9)$, $A_q(18, 6, 9)$ and $A_q(19, 4, 6)$. For example, the present best lower bound $A_2(18, 6, 9) \geq 92715451-56585415680$ is
from Corollary 4.5 in [3]. From Proposition 3.1 below we have $A_2(18, 6, 9) \geq 9271545179590910976$, which is better than previously known bounds. For
$A_q(12, 4, 6)$, $A_q(14, 4, 7)$ and $A_q(18, 6, 9)$, this construction improves all
lower bounds from Theorem 2.6 All new lower bounds are listed in Table 5 and Table 6. Our multilevel type inserting construction with multiple identifying vectors in the second case contributes 134 better lower
bounds compared with [12]. For $A_2(16, 4, 4)$, $A_q(18, 6, 6)$, $A_q(19, 6, 6)$ and
$q = 2, 3, 4, 5, 7, 8, 9$, this construction improves all lower bounds from The-
orem 2.6 and Theorem 2.7. It also leads new lower bounds for $A_q(10, 4, 5)$,
$A_q(14, 6, 7)$ and $A_q(18, 8, 9)$. These 36 lower bounds are listed in Table 7,
Table 8 and Table 9.

Notice that for a k-dimensional subspace codes in F^n_q with identifying
vector v, if the subspaces lifted by FDRM codes with Ferrers diagram F
corresponding to v satisfy the condition in Lemma 2.3 then the multilevel
construction for such an identifying vector can be inserted into the CKMP
combining construction. There are k-dimensional subspaces with identify-
ing vectors of special form in F^n_q can be adapted to satisfy the condition in
Lemma 2.3.

Definition 3.1. Let $n, k, d_f, \delta_1, \delta_2, u_1, u_2, \Delta$ be eight non-negative integers
satisfying $\delta_1 + \delta_2 = n, u_1 + u_2 = k, u_1 \geq d_f, u_2 \geq d_f, \delta_1 \geq \Delta + u_1, \delta_2 \geq u_2 + d_f$. 20
The special form of identifying vectors v is defined as
\[
\begin{pmatrix}
\Delta \\
0 \cdots 0 \begin{array}{c}
1 \cdots 1 \\
\delta_1 \\
0 \cdots 0 \\
\delta_2
\end{array}
\begin{array}{c}
0 \\
u_1 \\
0 \\
u_2
\end{array}
\begin{array}{c}
0 \\
1 \cdots 0 \\
\delta_1 \\
1 \cdots 1 \\
0 \cdots 0 \\
\delta_2
\end{array}
\end{pmatrix},
\]
that is, the continuous u_1 ones are in the first δ_1 coordinates, and the first u_2 coordinates in the last δ_2 coordinates are all ones.

For a k-dimensional subspace U in \mathbb{F}_q^n with special form $i(U) = v$, the Ferrers diagram F_U of $F(U)$ is
\[
F_U = \begin{pmatrix}
\delta_1-(u_1+\Delta) \\
\cdots \\
\delta_2-u_2 \\
\cdots \\
\delta_2-u_2 \\
\cdots \\
\delta_1-(u_1+\Delta) \\
\cdots \\
\delta_2-u_2 \\
\cdots \\
\delta_2-u_2 \\
\cdots \\
\delta_1-(u_1+\Delta)
\end{pmatrix}
\begin{array}{c}
u_1 \\
u_2
\end{array}
.
\]

By lifting the element of the rank metric code M with Ferrers diagram F_U, the $\xi(U)$ has form of
\[
\begin{pmatrix}
\mathbf{O}_1 & \mathbf{I}_{u_1} & \mathbf{M}_1 & \mathbf{O}_2 & \mathbf{M}_2 \\
\mathbf{O}_3 & \mathbf{O}_4 & \mathbf{O}_5 & \mathbf{I}_{u_2} & \mathbf{M}_3
\end{pmatrix},
\]
where $\begin{pmatrix} \mathbf{M}_1 & \mathbf{M}_2 \\ \mathbf{O}_5 & \mathbf{M}_3 \end{pmatrix} \in \mathcal{M}$, $\mathbf{O}_1 = \mathbf{O}_{u_1 \times \Delta}$, \mathbf{O}_i for $i = 2, 3, 4, 5$ are zero matrices of compatible size. If the rank of matrix \mathbf{M}_2 in $\xi(U)$ is restricted, the subspaces satisfy the condition in Lemma 2.3. Thus the problem is how to construct such rank-restricted rank metric code with the Ferrers diagram F_U.

In Lemma 3.1 we give a construction for FDRM code with the Ferrers diagram in the shape of F_U. For simplicity we denote the Ferrers diagram in such special shape by \mathcal{F}. To construct the FDRM code, the intuition is that we partition the \mathcal{F} into small pieces and use small rank metric codes. Then we recombine elements of these small rank metric codes to form the required rank metric code. Based on this construction, it is flexible to restrict the ranks of the small matrices in the generator matrices of the subspace.

Definition 3.2. We will use the Ferrers diagram \mathcal{F} of the following form.
\[
\mathcal{F} = \mathcal{F}_1 \quad \mathcal{F}_3 \\
\mathcal{F}_2
\]
construct a subset \(M \) satisfying with Ferrers diagram \(F \).

Lemma 3.1. Let \(\delta_1, \delta_2, u_1, u_2, b_1, b_2, n, k, d_f, \Delta \) be ten non-negative integers satisfying \(\delta_1 + \delta_2 = n, u_1 + u_2 = k, u_1 \geq d_f, u_2 \geq d_f, \delta_1 \geq \Delta + u_1, \delta_2 \geq u_2 + d_f, \) and \(b_1 + b_2 \geq d_f, 1 \leq b_1 \leq d_f, 1 \leq b_2 \leq d_f \), \(M_1(q, u_1, \delta_1 - \Delta - u_1, b_1), M_2(q, u_2, \delta_2 - u_2, b_2), M_3(q, u_1, \delta_2 - u_2, d_f) \) are linear rank metric codes. We construct a subset \(\mathcal{M} \) of \(F_{q^{k \times (n-k-\Delta)}} \).

- If \(0 \leq \delta_1 - \Delta - u_1 < b_1 \), we set \(b_2 = d_f \) and

\[
\mathcal{M} = \left\{ \begin{pmatrix} O_1 & M_1^i \\ O_2 & M_2^i \end{pmatrix} : M_i \in \mathcal{M}_i, \ i = 2, 3 \right\},
\]

where \(O_1 = O_{u_1 \times (\delta_1 - \Delta - u_1)} \) and \(O_2 = O_{u_2 \times (\delta_1 - \Delta - u_1)} \).

- If \(b_1 \leq \delta_1 - \Delta - u_1 < d_f \), we set \(H_1 = \{ M_1^1, M_1^2, \ldots, M_1^s \} \), where \(M_1^r \) is the arbitrary numbering distinct element of \(\mathcal{M}_1 \), and \(H_2 = \{ M_2^1, M_2^2, \ldots, M_2^s \} \) of \(\mathcal{M}_2 \), where \(M_2^r \) is the arbitrary numbering distinct element of \(\mathcal{M}_2 \), for \(1 \leq r \leq s = \min\{\#M_1, \#M_2\} \). Then

\[
\mathcal{M} = \left\{ \begin{pmatrix} M_1^r & M_3^i \\ O_1 & M_2^i \end{pmatrix} : M_i^r \in H_i \text{ for } i = 1, 2, 1 \leq r \leq s, M_3^i \in \mathcal{M}_3 \right\},
\]

where \(O_1 = O_{u_2 \times (\delta_1 - \Delta - u_1)} \).

- If \(d_f \leq \delta_1 - \Delta - u_1 \), we set \(b_1 = b_2 = d_f \) and

\[
\mathcal{M} = \left\{ \begin{pmatrix} M_1 \ M_3^i \\ O_1 \ M_2^i \end{pmatrix} : M_i \in \mathcal{M}_i, \ i = 1, 2, 3 \right\},
\]

where \(O_1 = O_{u_2 \times (\delta_1 - u_1 - \Delta)} \).
Then \mathcal{M} is a FDRM code $[\mathcal{F}, *, d_f]$ in $\mathbb{F}_q^{k \times (n-k-\Delta)}$, with cardinality

$$
\#\mathcal{M} = \begin{cases}
\Lambda_2 \cdot \Lambda_3 & 0 \leq \delta_1 - \Delta - u_1 < b_1, \\
\min(\#\mathcal{M}_1, \#\mathcal{M}_2) \cdot \Lambda_3 & b_1 \leq \delta_1 - \Delta - u_1 < d_f, \\
\Lambda_1 \cdot \Lambda_2 \cdot \Lambda_3 & \delta_1 - \Delta - u_1 \geq d_f,
\end{cases}
$$

where $\Lambda_1 = m(q, u_1, \delta_1 - \Delta - u_1, d_f)$, $\Lambda_2 = m(q, u_2, \delta_2 - u_2, d_f)$, $\Lambda_3 = m(q, u_1, \delta_2 - u_2, d_f)$.

Proof. Let W_1, W_2 be different elements in \mathcal{M}.

(1) If $0 \leq \delta_1 - \Delta - u_1 < b_1$, we have

$$
W_1 = \left(\begin{array}{cc}
o_2 & m_3 \\
o_1 & m_2
\end{array}\right), \quad W_2 = \left(\begin{array}{cc}
o_2 & m'_3 \\
o_1 & m'_2
\end{array}\right),
$$

where $M_i, M'_i \in \mathcal{M}_i$ for $i = 2, 3$. If $M_3 \neq M'_3$, $d_t(W_1, W_2) \geq \text{rank}(M_3 - M'_3) \geq d_f$. If $M_3 = M'_3$, we have $M_2 \neq M'_2$, then $d_t(W_1, W_2) \geq d_f$. Clearly the cardinality of \mathcal{M} is given by $\#\mathcal{M}_2(q, u_2, \delta_2 - u_2, d_f) \times \#\mathcal{M}_3$.

(2) If $b_1 \leq \delta_1 - \Delta - u_1 < d_f$, we have

$$
W_1 = \left(\begin{array}{cc}
m'_1 & m_3 \\
o_1 & m'_2
\end{array}\right), \quad W_2 = \left(\begin{array}{cc}
m'_1 & m'_3 \\
o_1 & m'_2
\end{array}\right),
$$

where $1 \leq r \leq r' \leq s$, $M'_1, M'_2 \in H_i$ for $i = 1, 2$, and $M_3, M'_3 \in \mathcal{M}_3$. If $M_3 \neq M'_3$, the proof is the same as case (1). If $M_3 = M'_3$, we have $M'_1 \neq M'_1$ and $M'_2 \neq M'_2$, then $d_t(W_1, W_2) \geq \text{rank}(M'_1 - M'_1) + \text{rank}(M'_2 - M'_2) \geq b_1 + b_2 \geq d_f$. Clearly the cardinality of \mathcal{M} is given by $\min(\#\mathcal{M}_1, \#\mathcal{M}_2) \cdot \#\mathcal{M}_3$.

(3) If $d_f \leq \delta_1 - \Delta - u_1$, we have

$$
W_1 = \left(\begin{array}{cc}
m_1 & m_3 \\
o_1 & m_2
\end{array}\right), \quad W_2 = \left(\begin{array}{cc}
m'_1 & m'_3 \\
o_1 & m'_2
\end{array}\right),
$$

where $M_i, M'_i \in \mathcal{M}_i$ for $i = 1, 2, 3$. If $M_3 \neq M'_3$, the proof is the same as case (1). If $M_3 = M'_3$, we have $M_2 \neq M'_2$ or $M_1 \neq M'_1$, it implies that $d_t(W_1, W_2) \geq d_f$. Clearly the cardinality of \mathcal{M} is given by $\#\mathcal{M}_1(q, u_1, \delta_1 - \Delta - u_1, d_f) \cdot \#\mathcal{M}_2(q, u_2, \delta_2 - u_2, d_f) \cdot \#\mathcal{M}_3$. The conclusion is proved. \qed

23
If $\delta_1 - \Delta - u_1 \geq d_f$, the cardinality of \mathcal{M} can be further improved by subcode construction.

Lemma 3.2. Let $\delta_1, \delta_2, u_1, u_2, c_1, c_2, n, k, d_f, \Delta$ be ten non-negative integers satisfying $\delta_1 + \delta_2 = n$, $u_1 + u_2 = k$, $u_1 \geq d_f, u_2 \geq d_f$, $\delta_1 \geq \Delta + u_1 + d_f$, $\delta_2 \geq u_2 + d_f$, and $c_1 + c_2 \geq d_f$, $1 \leq c_1 \leq d_f$, $1 \leq c_2 \leq d_f$. For integer s and all $1 \leq j \leq s$, $\mathcal{M}_{1,j}(q, u_1, \delta_1 - \Delta - u_1, d_f)$, $\mathcal{M}_{2,j}(q, u_2, \delta_2 - u_2, d_f)$ are rank metric codes. $\mathcal{M}_3(q, u_1, \delta_2 - u_2, d_f)$ is another rank metric code. We assume $\mathcal{M} \in \mathcal{M}_{i,j}, \mathcal{M}' \in \mathcal{M}_{i,j'}$ for all $1 \leq j < j' \leq s$ and $i = 1, 2$ satisfying $\mathcal{M} \neq \mathcal{M}'$ and $\text{rank}(\mathcal{M} - \mathcal{M}') \geq c_i$.

Then $\mathcal{M} = \bigcup_{j=1}^s \mathcal{M}_j$ is an $(q, k, n - k - \Delta, d_f)$ rank metric code, where

$$
\mathcal{M}_j = \left\{ \begin{pmatrix} M_1 & M_3 \\ O_1 & M_2 \end{pmatrix} : M_i \in \mathcal{M}_{i,j} \text{ for } i = 1, 2, M_3 \in \mathcal{M}_3 \right\}.
$$

The cardinality of \mathcal{M} satisfies

$$
\#\mathcal{M} = s \cdot m(q, u_1, \delta_1 - \Delta - u_1, d_f) \cdot m(q, u_2, \delta_2 - u_2, d_f)
\cdot m(q, u_1, \delta_2 - u_2, d_f),
$$

where $s = \min \left(\frac{m(q, u_1, \delta_1 - \Delta - u_1, \delta_1)}{m(q, u_1, \delta_1 - \Delta - u_1, d_f)}, \frac{m(q, u_2, \delta_2 - u_2, \delta_2)}{m(q, u_2, \delta_2 - u_2, d_f)} \right)$.

Proof. Let $W_1 \in \mathcal{M}_j, W_2 \in \mathcal{M}_{j'}$, by construction, we have

$$
W_1 = \begin{pmatrix} M_1 & M_3 \\ O_1 & M_2 \end{pmatrix}, \quad W_2 = \begin{pmatrix} M'_1 & M'_3 \\ O_1 & M'_2 \end{pmatrix}
$$

for $M_i \in \mathcal{M}_{i,j}, M'_i \in \mathcal{M}_{i,j'}$ for $i = 1, 2, 1 \leq j \leq j' \leq s$. If $M_3 \neq M'_3$, then $d_f(W_1, W_2) \geq \text{rank}(M_3 - M'_3) \geq d_f$. If $M_3 = M'_3$ and $j = j'$, the proof is the same as case (3) in Lemma 3.1. If $M_3 = M'_3$ and $j \neq j'$, we have $M_1 \neq M'_1$ and $M_2 \neq M'_2$, then $d_f(W_1, W_2) \geq \text{rank}(M_1 - M'_1) + \text{rank}(M_2 - M'_2) \geq c_1 + c_2 \geq d_f$. The cardinality of \mathcal{M} can be calculated directly from the proof.

Based on the construction in Lemma 3.1 and Lemma 3.2, we obtain the new construction by inserting the multilevel type construction into the combining construction in [3].
Lemma 3.3. For a given identifying vector \(\mathbf{v} \) with special form in Definition 3.1, let \(\mathcal{M} \) be an \((q, k, n-k-\Delta, d_f)\) rank metric code with Ferrers diagram \(\mathcal{F} \) corresponding to \(\mathbf{v} \) constructed by Lemma 3.1 or Lemma 3.2. We require that for \(\mathcal{M} \in \mathcal{M}_3 \) rank metric code in construction satisfying \(\text{rank}(\mathcal{M}) \leq u_1 - d_f \).

By lifting the \(\mathcal{M} \) matrices of compatible size.

Moreover, let \(\mathcal{M} \) be constructed by Lemma 3.1 or Lemma 3.2. We require that \(\text{rank} \mathcal{M} \) constructed by Lemma 3.1 or Lemma 3.2.

We have \(\mathcal{M} \) is also an \((n, d, k)_q\) CDC code with Ferrers diagram.

Proof. By construction, we have

\[
\# \mathcal{F}_c = \begin{cases}
\Lambda_2 \cdot \Lambda_3 & 0 \leq \delta_1 - \Delta - u_1 < b_1, \\
\min(\# \mathcal{M}_1, \# \mathcal{M}_2) \cdot \Lambda_3 & b_1 \leq \delta_1 - \Delta - u_1 < d_f, \\
s \cdot \Lambda_1 \cdot \Lambda_2 \cdot \Lambda_3 & \delta_1 - \Delta - u_1 \geq d_f,
\end{cases}
\]

where \(\Lambda_1 = m(q, u_1, \delta_1 - \Delta - u_1, d_f), \quad \Lambda_2 = m(q, u_2, \delta_2 - u_2, d_f), \quad \Lambda_3 = m(q, u_1, \delta_2 - u_2, d_f, u_1 - d_f), \quad s = \min \left(\frac{m(q, u_1, \delta_1 - \Delta - u_1, d_f)}{m(q, u_1, \delta_1 - \Delta - u_1, d_f)} \right) \).
Proof. It is clearly that the elements of L are k-dimensional subspaces in \mathbb{F}_q^n from Lemma 3.3 and Theorem 2.1.

Let W_1, W_2 be two elements in L. We analyse the following cases.

(1) When $W_1 \in L_j$ and $W_2 \in L_{j'}$ for $1 \leq j \leq j' \leq \#H$, if $j = j'$, $\text{dis}(W_1, W_2) \geq d$ from Lemma 3.3 if $j \neq j'$, $\text{dis}(W_1, W_2) \geq d_h(i(W_1), i(W_2)) \geq d$ from Lemma 1.3.

(2) If $W_1 \in L_j$ for $1 \leq j \leq \#H$ and $W_2 \in C$, we have

$$W_1 = R \begin{pmatrix} O_1 & I_{u_1} & M_1 & O_2 & M_2 \\ O_3 & O_4 & O_5 & I_{u_2} & M_3 \end{pmatrix}$$

where $\begin{pmatrix} M_1 & M_3 \\ O_5 & M_2 \end{pmatrix} \in \mathcal{M}_j$, $\text{rank}(M_3) \leq u_1 - \frac{d}{2}$, $O_1 = O_{u_1 \times \Delta}$ and O_i for $i = 2, 3, 4, 5$ are zero matrices of compatible sizes. With the same notations used in Lemma 2.2, we have

$$\dim(S_2 + W_1) = n_1 + u_2 + \text{rank}(M_3) \leq n_1 + u_2 + u_1 - \frac{d}{2},$$

$$\dim(S_1 + W_1) = u_1 + n_2,$$

then $\dim(S_2 \cap W_1) \geq \frac{d}{2}$ and $\dim(S_1 \cap W_1) = u_2 \geq \frac{d}{2}$. The Lemma 2.3 gives that $\text{dis}(W_1, W_2) \geq d$.

We consider H with identifying vectors in the following two cases.

I. $H = \{v_1, v_2\}$. Set $\Delta = 0$, $u_1 \geq d$, $u_2 \geq \frac{d}{2}$, $n_1 - u_1 \geq \frac{d}{2}$, $n_2 - u_2 \geq \frac{d}{2}$, where

$$v_1 = \begin{pmatrix} u_1 & u_2 \\ \overbrace{1 \cdots 0 \cdots 0}^{n_1} & \overbrace{1 \cdots 0 \cdots 0}^{n_2} \end{pmatrix},$$

$$v_2 = \begin{pmatrix} u_1 + \frac{d}{2} & u_2 + \frac{d}{2} \\ \overbrace{1 \cdots 0 \cdots 0}^{n_1} & \overbrace{1 \cdots 0 \cdots 0}^{n_2} \end{pmatrix}$$

By construction in Proposition 3.1 we obtain the new $(n, d, k)_q$ CDC code with the lower bounds given in Corollary 4.3.
For example \(n = 12, d = 4, k = 6, n_1 = n_2 = 6 \), the identifying vectors with parameters \(u_1 = 4, u_2 = 2 \) and \(u_1' = 2, u_2' = 4 \) are given by \(v_1 = (111100, 110000), v_2 = (110000, 111100) \). Since \(n_i - u_i \geq \frac{d}{2}, n_i - u_i' \geq \frac{d}{2} \) for \(i = 1, 2 \), we consider CDCs which are lifted by rank metric code \(M \) constructed in Lemma 3.2. When \(q = 2 \), the CDC \(L_1 \) with the identifying vectors \(v_1 \) has cardinality of \(\#L_1 = 2154496 \), the CDC \(L_2 \) with the identifying vectors \(v_2 \) has cardinality of \(\#L_2 = 4096 \). Thus we have

\[
A_2(12, 4, 6) \geq \#C + \#L_1 + \#L_2
\geq 1212418496 + 2154496 + 4096 = 1214577088.
\]

The new lower bounds for \(A_q(12, 4, 6) \) and \(A_q(18, 6, 9) \) for \(q = 2, 3, 4, 5, 7, 8, 9 \) are given in Corollary 4.3. These new lower bounds improve the lower bounds in Theorem 2.6 and are better than the lower bounds in [12].

When \(\Delta = 0, \delta_1 - u_1 \geq \frac{d}{2}, \delta_2 - u_2 \geq \frac{d}{2} \), the CDC lifted by the rank metric code \(M \) constructed in Lemma 3.2 is a special case of block construction in Proposition 3.1.

II. \(H = \{v_1, v_2, \ldots, v_\lambda\} \) for \(1 \leq \lambda \leq \lfloor \frac{n}{k}\rfloor \). Set \(u_1 \geq \frac{d}{2}, u_2 \geq \frac{d}{2} \), where

\[
v_1 = \left(\begin{array}{c}
\underbrace{1 \cdots 1}_{u_1} 0 \cdots 0 1 \cdots 1 0 \cdots 0
\end{array} \right),
\]

\[
v_2 = \left(\begin{array}{c}
\underbrace{0 \cdots 0}_{u_1} 1 \cdots 1 0 \cdots 1 0 \cdots 0
\end{array} \right),
\]

\[
v_\lambda = \left(\begin{array}{c}
\underbrace{0 \cdots 0}_{u_1} 1 \cdots 1 0 \cdots 0 1 \cdots 1 0 \cdots 0
\end{array} \right).
\]

It is easy to check that for \(1 \leq j < j' \leq \#H \) and \(v_j, v_{j'} \in H \), \(\text{dis}(v_j, v_{j'}) \geq 2u_1 \geq d \). By construction in Proposition 3.1 we obtain the new \((n, d, k)_q\) CDC code with the lower bounds given in Corollary 4.3.

For example \(n = 14, d = 6, k = 7, n_1 = n_2 = 7, u_1 = 3, u_2 = 4, c_1 = 2, c_2 = 1 \), the identifying vectors are given by \(v_1 = (1110000, 111100), v_2 = (0001110, 1111000) \) for \(\lambda = \lfloor \frac{n}{k}\rfloor = 2 \). We consider CDCs which are lifted by rank metric code \(M \) constructed in Lemma 3.1 and Lemma 3.2. When \(q = 2 \), the CDC \(L_1 \) with identifying vector \(v_1 \) has cardinality of \(\#L_1 = s \cdot m(q, 3, 4, 3) \cdot m(q, 4, 3, 3) \cdot m(q, 3, 3, 0) = 4096 \), where \(s = \)
The CDC L_2 with identifying vector v_2 has cardinality of $\#L_2 = m(q, 4, 3, 3) \cdot m(q, 3, 3, 3, 0) = 16$. Thus we have

$$A_2(14, 6, 7) \geq \#C + \#L_1 + \#L_2 \geq 34532238024 + 4096 + 16 = 34532242136.$$

The new lower bounds for $A_q(14, 6, 7)$ are given in Corollary 4.5.

4 New lower bounds

For the rank metric codes needed in Proposition 2.1, Theorem 2.6 and Lemma 3.2, we follow the subcode construction in Lemma 2.5 (or see Corollary 4.5 in [3]). From the lower bounds in Theorem 1.1 and Theorem 2.1, we have the following result in Theorem 2.6.

Corollary 4.1. Let $n_1 + n_2 = n, a_1 + a_2 = k, b_1 + b_2 \geq \frac{d}{2}$ and $a_i \leq t_i \leq n_i - \frac{d}{2}, n_i \geq k, a_i \geq \frac{d}{2}, 1 \leq b_i \leq \frac{d}{2}$, for $i = 1,2$.

$$A_q(n, d, k) \geq A_q(n_1, d, k) \cdot m(q, k, n_2, \frac{d}{2}) + \Theta \cdot A_q(n_2, d, k)$$

$$+ s \cdot \left(A_q(t_1, d, a_1) \cdot m(q, a_1, n_1 - t_1, \frac{d}{2}) \cdot \Delta_1 \right) \cdot A_q(t_2, d, a_2) \cdot m(q, a_2, n_2 - t_2, \frac{d}{2}) \cdot \Delta_2,$$

where $\Theta = 1 + \sum_{u=0}^{k-\frac{d}{2}} r(q, k, n_1, \frac{d}{2}, u)$, $s = \min \left(\frac{m(q,a_1,n_1-t_1,b_1)}{m(q,a_1,n_1-t_1,\frac{d}{2})}, \frac{m(q,a_2,n_2-t_2,b_2)}{m(q,a_2,n_2-t_2,\frac{d}{2})} \right)$.

$$\Delta_1 = m(q, a_1, n_2 - t_2, \frac{d}{2}, a_1 - \frac{d}{2}), \quad \Delta_2 = m(q, a_2, n_1 - t_1, \frac{d}{2}, a_2 - \frac{d}{2}).$$

If $n_1 - t_1 \geq a_1$ and $n_2 - t_2 \geq a_1$, the improved lower bound is given by Theorem 2.7.

Corollary 4.2. Let $n_1 + n_2 = n, a_1 + a_2 = k, b_1 + b_2 \geq \frac{d}{2}, c_1 + c_2 \leq k - \frac{d}{2}$ and $a_i \leq t_i \leq n_i - a_i, n_i \geq k, a_i \geq \frac{d}{2}, 1 \leq b_i \leq \frac{d}{2}, b_i \leq c_i \leq a_i$, for $i = 1,2$.

Then
\[A_q(n, d, k) \geq A_q(n_1, d, k) \cdot m(q, k, n_2, \frac{d}{2}) + \Theta \cdot A_q(n_2, d, k) \]
\[+ s \cdot \left(A_q(t_1, d, a_1) \cdot m(q, a_1, n_1 - t_1, \frac{d}{2}) \cdot \Delta_1 \right) \]
\[\cdot A_q(t_2, d, a_2) \cdot m(q, a_2, n_2 - t_2, \frac{d}{2}) \cdot \Delta_2 \]
\[+ \min(\Delta_3, \Delta_4) \cdot A_q(n_1 - t_1, d, a_1) \cdot A_q(n_2 - t_2, d, a_2), \]

where \(\Theta = 1 + \sum_{u=\frac{d}{2}}^{k-d} r(q, k, n_1, \frac{d}{2}, u), s = \min \left(\frac{m(q, a_1, n_1 - t_1, b_1)}{m(q, a_1, n_1 - t_1, 0)}, \frac{m(q, a_2, n_2 - t_2, b_2)}{m(q, a_2, n_2 - t_2, 0)} \right), \]
\(\Delta_1 = m(q, a_1, n_2 - t_2, \frac{d}{2}, a_1 - \frac{d}{2}), \Delta_2 = m(q, a_2, n_1 - t_1, \frac{d}{2}, a_2 - \frac{d}{2}), \)
\(\Delta_3 = m(q, a_1, t_1, b_1, c_1), \Delta_4 = m(q, a_2, t_2, b_2, c_2). \)

From Proposition 3.1 we have the following result which inserts the multilevel type construction CDC into linkage construction CDC for the case of two identifying vectors.

Corollary 4.3. let \(n_1 + n_2 = n, n_1 \geq k, n_2 \geq k, u_1 + u_2 = k, u_1 \geq d, u_2 \geq \frac{d}{2} \)
and \(c_1 + c_2 \geq \frac{d}{2}, 1 \leq c_i \leq \frac{d}{2}, i = 1, 2, \)

\[A_q(n, d, k) \geq A_q(n_1, d, k) \cdot m(q, k, n_2, \frac{d}{2}) + \Theta \cdot A_q(n_2, d, k) \]
\[+ s_1 \cdot m(q, u_1, n_1 - u_1, \frac{d}{2}) \cdot \Delta_1 \cdot m(q, u_2, n_2 - u_2, \frac{d}{2}) \]
\[+ s_2 \cdot m(q, u_1', n_1 - u_1', \frac{d}{2}) \cdot \Delta_2 \cdot m(q, u_2', n_2 - u_2', \frac{d}{2}) , \]

where \(\Theta = 1 + \sum_{u=\frac{d}{2}}^{k-d} r(q, k, n_1, \frac{d}{2}, u), u_1' = u_1 - \frac{d}{2}, u_2' = u_2 + \frac{d}{2}, \)
\(\Delta_1 = m(q, u_1, n_2 - u_2, \frac{d}{2}, u_1 - \frac{d}{2}), \Delta_2 = m(q, u_1', n_2 - u_2', \frac{d}{2}, u_1' - \frac{d}{2}) , \)

29
\[s_1 = \min(\alpha_i : i = 1, 2), \alpha_i = \frac{m(q,u_i,n_i-u_i,c_i)}{m(q,u_i,n_i-u_i,\frac{d}{2})}, \]

\[s_2 = \min(\beta_i : i = 1, 2), \beta_i = \frac{m(q,u'_i,n_i-u'_i,c_i)}{m(q,u'_i,n_i-u'_i,\frac{d}{2})}. \]

From Proposition 3.1 we have the following result which inserts the multilevel type construction CDC into linkage construction CDC for the case of \(\lambda = \lfloor \frac{n_1}{u_1} \rfloor \) identifying vectors.

Corollary 4.4. let \(n_1 + n_2 = n, n_1 \geq k, n_2 \geq k, u_1 + u_2 = k, u_1 \geq \frac{d}{2}, u_2 \geq \frac{d}{2} \)
and \(b_1 + b_2 \geq \frac{d}{2}, 1 \leq b_i \leq \frac{d}{2}, i = 1, 2, \)

\[A_q(n,d,k) \geq A_q(n_1,d,k) \cdot m\left(q,k,\frac{d}{2}\right) \]
\[+ \left(1 + \sum_{u=\frac{d}{2}}^{k-\frac{d}{2}} r\left(q,k,\frac{d}{2},u\right) \right) \cdot A_q(n_2,d,k) + \sum_{i=1}^{\lambda} \mathcal{L}_i, \]

where \(\mathcal{L}_i = \begin{cases} \Lambda_1 \cdot \Lambda_2 & 0 \leq n_1 - i \cdot u_1 < b_1 \\ \min(\Lambda_3, \Lambda_4) \cdot \Lambda_2 & b_1 \leq n_1 - i \cdot u_1 < \frac{d}{2} \\ s \cdot \Lambda_5 \cdot \Lambda_1 \cdot \Lambda_2 & n_1 - i \cdot u_1 \geq \frac{d}{2} \end{cases} \)

\(\Lambda_1 = m(q,u_2,n_2-u_2,\frac{d}{2}), \Lambda_2 = m(q,u_1,n_2-u_2,\frac{d}{2},u_1-\frac{d}{2}), \)
\(\Lambda_3 = m(q,u_1,n_1-i \cdot u_1,b_1), \Lambda_4 = m(q,u_2,n_2-u_2,b_2), \)
\(\Lambda_5 = m(q,u_1,n_1-i \cdot u_1,\frac{d}{2}) \) and \(s = \min \left(\frac{m(q,u_1,n_1-i \cdot u_1,b_1)}{m(q,u_1,n_1-i \cdot u_1,\frac{d}{2})}, \frac{m(q,u_2,n_2-u_2,b_2)}{m(q,u_2,n_2-u_2,\frac{d}{2})} \right). \)

Corollary 4.5. We have the following lower bounds for constant dimension subspace codes with \(d \leq k. \)

\[A_q(12,4,6) \geq q^{30} + q^{26} + q^{25} + 2q^{24} + q^{23} + q^{22} - q^{21} - 2q^{20} - 3q^{19} - q^{18} - q^{17} + 3q^{15} + 3q^{14} + 4q^{13} + 4q^{12} + q^{11} \]

30
\[-q^{10} - 3q^9 - 3q^8 - 2q^7 - q^6. \]

\[\mathbf{A}_q(14, 6, 7) \geq q^{35} + q^{26} + 2q^{24} + 3q^{23} + 3q^{22} + 2q^{21} + q^{20} - 2q^{19} \\
- 5q^{18} - 8q^{17} - 11q^{16} - 11q^{15} - 10q^{14} - 7q^{13} - 3q^{12} \\
+ 2q^{11} + 5q^{10} + 8q^9 + 8q^8 + 9q^7 + 6q^6 + 5q^5 + 3q^4 + q^3. \]

\[\mathbf{A}_q(15, 4, 5) \geq q^{40} + \mathbf{A}_q(10, 4, 5)(q^{16} + q^{15} + 2q^{14} + q^{13} - 2q^{11} - 3q^{10} \\
- 4q^9 - 2q^8 + q^6 + 3q^5 + 2q^4 + q^3) + \mathbf{A}_q(7, 4, 3)q^{12}. \]

\[\mathbf{A}_q(16, 6, 8) \geq q^{48} + q^{39} + q^{38} + 2q^{37} + 3q^{36} + 3q^{35} + 3q^{34} + 2q^{33} - 4q^{31} \\
- 6q^{30} - 10q^{29} - 10q^{28} - 11q^{27} - 7q^{26} - 3q^{25} + 6q^{24} \\
+ 12q^{23} + 19q^{22} + 23q^{21} + 25q^{20} + 22q^{19} + 16q^{18} + 9q^{17} \\
- 7q^{15} - 13q^{14} - 15q^{13} - 17q^{12} - 13q^{11} - 11q^{10} - 8q^9 \\
- 5q^8 - 4q^7 - 2q^6 + q^4 + q^3. \]

\[\mathbf{A}_q(18, 4, 6) \geq q^{60} + \mathbf{A}_q(12, 4, 6)(q^{26} + q^{25} + 2q^{24} + q^{23} + q^{22} - q^{21} \\
- 3q^{20} - 4q^{19} - 3q^{18} - 2q^{17} + 4q^{15} + 5q^{14} + 5q^{13} + 3q^{12} \\
+ q^{11} - q^{10} - 3q^9 - 3q^8 - 2q^7 - q^6) + \mathbf{A}_q(8, 4, 4)(q^{28} \\
+ q^{27} + 2q^{26} + q^{25} - q^{24} - 2q^{22} - q^{21}). \]

\[\mathbf{A}_q(18, 6, 6) \geq \mathbf{A}_q(12, 6, 6)q^{24} + \mathbf{A}_q(6, 6, 3)q^{15} + (q^{21} + q^{20} + 2q^{19} \\
+ 3q^{18} + 3q^{17} + 3q^{16} + 3q^{15} + 2q^{14} + q^{13} + q^{12} - q^9 \\
- q^8 - 2q^7 - 3q^6 - 3q^5 - 3q^4 - 3q^3 - 2q^2 - q). \]
\[A_q(18, 6, 9) \geq q^{63} + q^{54} + q^{53} + 2q^{52} + 3q^{51} + 3q^{50} + 3q^{49} + 3q^{48} + q^{47} - 2q^{46} - 5q^{45} - 9q^{44} - 11q^{43} - 13q^{42} - 12q^{41} - 10q^{40} - 3q^{39} + 3q^{38} + 12q^{37} + 18q^{36} + 24q^{35} + 24q^{34} + 23q^{33} + 15q^{32} + 6q^{31} - 7q^{30} - 19q^{29} - 29q^{28} - 37q^{27} - 39q^{26} - 39q^{25} - 31q^{24} - 22q^{23} - 8q^{22} + 2q^{21} + 14q^{20} + 20q^{19} + 27q^{18} + 24q^{17} + 23q^{16} + 17q^{15} + 14q^{14} + 8q^{13} + 5q^{12} + 2q^{11} + q^{10}. \]

5 Conclusion

After pioneering works in [7, 9, 8, 22, 11, 15] about the construction of constant dimension subspace codes, new lower bounds from various constructions have been developed extensively in [24, 1, 19, 3, 14, 20, 18] since 2018. On the other hand there are still big gaps between presently best upper bounds and lower bounds for small parameters \(n \leq 19 \) and \(q \leq 9 \) in [12]. It seems that new constant dimension subspaces can be inserted into some most effective constructions. In this paper we present two parameter-controlled inserting constructions from this idea. Our constructions give highly non-trivial better lower bounds better than previous lower bounds. 141 new constant dimension subspace codes with distance 4, 6, 8 for small parameters \(n \leq 19 \) and \(q \leq 9 \) are given in Table 1-9.

References

[1] H. Chen, X. He, J. Weng and L. Xu, New constructions of subspace codes using subsets of MRD codes in several blocks, arXiv:1908.03804, IEEE Transactions on Information Theory, online version, 2020.

[2] A. Cossidente and F. Pavese, Subspace codes in \(PG(2N-1, Q) \), Combinatorica, vol.37, pp. 1073-1095, 2017.

[3] A. Cossidente, S. Kurz, G. Marino and F. Pavese, Combining subspace codes, arXiv1911.03387, 2019.

[4] A. Cossidente, G. Marino and F. Pavese, Subspace code constructions, arXiv preprint arXiv:1905.11021, 2019.
[5] J. de la Cruz, E. Gorla, H. H. López and A. Ravagnani, Weight distribution of rank-metric codes, Design, Codes and Cryptography, vol. 86, pp. 1-16, 2018.

[6] Ph. Delsarte, Bilinear forms over a finite field, with applications to coding theory, Journal of Combinatorial Theory, Series A, vol. 25, pp. 226-241, 1978.

[7] T. Etzion and N. Silberstein, Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagram, IEEE Transactions on Information Theory, vol. 59, pp. 2909-2919, 2009.

[8] T. Etzion and N. Silberstein, Codes and designs related to lifted MRD codes, IEEE Transactions on Information Theory, vol. 59, pp. 1004-1017, 2013.

[9] T. Etzion and A. Vardy, Error-correcting codes in projective spaces, IEEE Transactions on Information Theory, vol. 57, pp. 1165-1172, 2011.

[10] E. M. Gabidulin, Theory of codes with maximal rank distances, Problems of Information Transmission, vol. 21, pp. 1-21, 1985.

[11] H. Gluesing-Luerssen and C. Troha, Construction of subspace codes through linkage, Advances in Mathematics of Communications, vol. 10, no. 3, pp. 525-540, 2016.

[12] D. Heinlein, M. Kiermaier, S. Kurz and A. Wassermann, Tables of subspace codes, arXiv:1601.02864, 2016, 2020 data of the online table http://subspacecodes.uni-bayreuth.de

[13] D. Heinlein and S. Kurz, Asymptotic bounds for the sizes of constant dimension codes and improved lower bounds, arXiv:1705.03835v1, Proceeding of the International Castle Meeting on Coding Theory and Applications, Switzerland, pp. 163-191, 2017.

[14] D. Heinlein, Generalized linkage constructions for constant-dimension codes, arXiv:1910.11195, 2019.

[15] D. Heinlein and S. Kurz, Coset construction for subspace codes, IEEE Transactions on Information Theory, vol. 63, pp. 7651-7660, 2017.

[16] A. Khaleghi, D. Silva and F. R. Kschischang, Subspace codes, IMA International Conference on Cryptography and Coding, Lecture Notes in Computer Sciences, vol. 5921, pp. 1-21, 2009.
[17] R. Kötter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Transactions on Information Theory, vol. 54, pp. 3579-3591, 2008.

[18] S. Kurz, Lifted codes and multilevel constructions for constant dimension codes, arXiv.2004.14241, 2020.

[19] F. Li, Constructions of constant dimension subspace codes by modifying linkage constructions, IEEE Transactions on Information Theory, vol. 66, pp. 2760-2764, 2020.

[20] S. Liu, Y. Chang and T. Feng, Parallel multilevel constructions for constant dimension codes, arXiv.1911.01878, 2019, IEEE Transactions on Information Theory, online version, 2020.

[21] J. Rosenthal, N. Silberstein and A.-L. Trautmann, On the geometry of balls in the Grassmannian and list decoding of lifted Gabidulin codes, Design, Codes and Cryptography, vol. 73, pp. 394-416, 2014.

[22] N. Silberstein and A.-L. Trautmann, Subspace codes based on graph matching, Ferrers diagram and pending blocks, IEEE Transactions on Information Theory, vol. 61, pp. 3937-3953, 2015.

[23] D. Silva, F. R. Kschischang and R. Kötter, A rank-metric approach to error control in random network coding, IEEE Transactions on Information Theory, vol. 54, pp. 3951-3967, 2008.

[24] L. Xu and H. Chen, New constant-dimension subspace codes from maximum rank-distance codes, IEEE Transactions on Information Theory, vol. 64, no. 9, pp. 6315-6319, 2018.
$A_d(n,d,k)$	New	Old
$A_2(12,4,6)$	1214 5729 92	1212 4910 81
$A_3(12,4,6)$	2099 4929 7978 267	2099 4378 4809 333
$A_4(12,4,6)$	1159 1944 1176 9294 848	1159 1928 8551 2400 896
$A_5(12,4,6)$	9332 4349 9108 4302 9687 5	9332 4337 6349 6412 3437 5
$A_7(12,4,6)$	2255 0482 5265 0930	2255 0482 4318 3963
$A_8(12,4,6)$	2099 4929 7978 267	2099 4378 4809 333
$A_9(12,4,6)$	1159 1944 1176 9294 848	1159 1928 8551 2400 896
$A_5(14,4,6)$	9332 4349 9108 4302 9687 5	9332 4337 6349 6412 3437 5
$A_7(14,4,6)$	2255 0482 5265 0930	2255 0482 4318 3963
$A_8(14,4,6)$	2099 4929 7978 267	2099 4378 4809 333
$A_9(14,4,6)$	1159 1944 1176 9294 848	1159 1928 8551 2400 896
$A_5(15,4,5)$	9332 4349 9108 4302 9687 5	9332 4337 6349 6412 3437 5
$A_7(15,4,5)$	2255 0482 5265 0930	2255 0482 4318 3963
$A_8(15,4,5)$	2099 4929 7978 267	2099 4378 4809 333
$A_9(15,4,5)$	1159 1944 1176 9294 848	1159 1928 8551 2400 896
$A_q(n, d, k)$	New	Old
---------------	-----	-----
$A_0(15, 4, 5)$	1478 3445 1659 2420 9511 5973 3248 7356 6503 455	1478 3445 1659 2420 9511 5954 7743 3675 1358 413
$A_2(16, 4, 4)$	8059 6325 662	8059 6320 222
$A_2(16, 4, 5)$	2002 1892 886936	2002 1891 625368
$A_3(16, 4, 5)$	1004 3083 9766 0450 578410	1004 3083 9765 8456 080337
$A_4(16, 4, 5)$	3111 7130 9429 0298 0873 3618 688	3111 7130 9429 0298 6191 5009 536
$A_5(16, 4, 5)$	5696 0714 9291 8139 1221 4040 9840 8231	5696 0714 9291 8139 0991 3015 5934 625
$A_7(16, 4, 5)$	1529 4258 1299 7087 2784 6439 2254 8588 487731	1529 4258 1299 7087 2784 6308 6675 4436 144481
$A_8(16, 4, 5)$	5446 0577 1721 3633 0719 7615 9840 875	5446 0577 1721 3633 0719 7599 7316 1459 1773 4912
$A_9(16, 4, 5)$	5699 4183 7024 2962 7092 2772 6469 2544 3118 0634 7351 0742 1875	5699 4183 7024 2962 7092 2772 6469 2544 1091 618321
$A_1(16, 4, 8)$	8168 0045 6478 22848 8160 5776 6327 40149	8168 0045 6478 22848 8160 5776 6327 40149
$A_2(16, 4, 8)$	5336 9600 6404 7301 6301 5741 843	5336 9353 1575 0209 5137 0793 043
$A_3(16, 4, 8)$	5220 5715 4021 0932 7828 4022 5766 309888	5220 5709 4302 9781 8840 3820 4796 960768
$A_4(16, 4, 8)$	1390 6420 2069 8714 8586 1618 0634 7351 0742 1875	1390 6420 1127 5456 2178 5003 6835 9069 8242 1875
$A_5(16, 4, 8)$	2116 9221 7279 9490 0559 0051 3249 1560 2872 8216 9823 9203	2116 9221 7258 4282 5319 3267 9190 6528 3985 7934 6055 9203
$A_7(16, 4, 8)$	3742 5023 5695 3339 0948 5184 1673 2113 8071 8757 7771 1833088	3742 5023 5688 0309 3259 7524 6537 6356 2060 4406 9619 3548288
$A_8(16, 4, 8)$	2739 4022 3246 1542 0667 5302 9314 3680 4036 6083 7004 6051 871523	2739 4022 3244 9001 7516 2201 2431 4566 4311 8182 5520 1568 894883
$A_9(16, 4, 8)$	3203 6595 7408552	3203 6594 9667112
$A_2(17, 4, 5)$	8134 8354 0402 8193 8373 636	8134 8354 0402 1799 6409 822
$A_3(17, 4, 5)$	9511 5973 3248 7356 6503 455	9511 5954 7743 3675 1358 413
$A_q(n,d,k)$	New	Old
-----------	----------------------	----------------------
$A_4(17,4,5)$	7965 9830 8515 8475	7965 9830 8515 8472
	5714 3479 63840	6337 2395 58720
$A_5(17,4,5)$	3560 0445 9366 3614	3560 0445 9366 3614
	2164 1799 4533 338500	2128 0741 2000 712875
$A_7(17,4,5)$	3672 1513 7485 3733	3672 1513 7485 3733
	9070 3590 3605 3137	9070 3537 7403 5429
	2645 46455	7833 36374
$A_8(17,4,5)$	2230 7052 4067 5218	2230 7052 4067 5218
	2674 9141 5501 7163	2674 9140 5936 7518
	4469 3581 9264	6961 8703 1040
$A_9(17,4,5)$	6363 7883 9248 8962	6363 7883 9248 8962
	4285 1438 5840 6278	4285 1438 4600 8757
	7421 4317 118244	1564 9107 710443
$A_2(18,4,5)$	5125 9206 2259 6904	5125 9205 9163 1144
$A_3(18,4,5)$	6589 1997 5982 6179 3869 53990	6588 8606 4307 3901 6378 89182
$A_4(18,4,5)$	2039 2915 1385 7915	2039 2822 3978 3579
	5716 6182 2704 5888	7265 2526 6919 3216
$A_5(18,4,5)$	2225 0278 5986 2960	2225 0264 9575 8734
	9839 3994 3854 0551 29500	6352 6612 2408 3590 25000
$A_7(18,4,5)$	8816 8354 5028 5580	8816 8351 9743 4932
	4527 8570 8971 4171	7793 7100 0707 9716
	0541 1823 9611	4432 5109 9490
$A_8(18,4,5)$	9136 9686 6565 4404	9136 9685 8810 1376
	7861 6176 8715 7466	1933 1999 5940 0530
	7878 8938 8430848	0227 3383 7074432
$A_9(18,4,5)$	4175 2815 6429 5427	4175 2815 5218 0051
	4523 1912 0967 5971	4325 7793 3240 9757
	7973 6550 1634 012230	9235 7748 3683 264556
$A_2(18,4,6)$	1321 0683 8054 5845184	1321 0657 3684 4576704
$A_3(18,4,6)$	4324 1984 5318 8854	4324 1984 5121 9278
	8932 5355 54684	9981 1406 81783
$A_4(18,4,6)$	1336 4977 3466 9987	1336 4977 3466 8298
	4494 2103 7830 6137 62048	4303 3566 4941 2839 34208
$A_5(18,4,6)$	8691 5431 3455 6232	8691 5431 3455 6114
	1645 6979 0404 3228	8125 0767 1449 6643
	6621 093750	5791 015625
$A_q(n, d, k)$	New	Old
--------------	------	-----
$A_7(18, 4, 6)$	5082 7312 1397 7132 1237 0271 5485 2231 8776 4110 1133 5753136	5082 7312 1397 7132 0481 2175 3530 1491 9436 5403 9631 9478635
$A_8(18, 4, 6)$	1532 9290 7353 3720 1342 0131 7476 1821 4131 0078 6371 2572 1391104	1532 9290 7353 3720 1326 0131 7476 1821 0056 0131 7476 1821 0675 9748
$A_9(18, 4, 6)$	1797 3218 5298 8389 5320 8891 5801 6612 7145 1862 6711 1609 3928 898138	1797 3218 5298 8389 5319 2080 5010 3864 0056 2272 4684 1493 0785 473613
$A_2(18, 4, 9)$	5353 1244 5248 1263 206400	5350 7797 0493 6727 838720
$A_3(18, 4, 9)$	2297 3952 1671 4333 7216 5373 5752 8684349	2297 3916 8156 5204 1702 9355 6329 2591869
$A_4(18, 4, 9)$	2242 2188 6155 0678 0283 4073 8745 2105 7495 0996 3776	2242 2187 9749 4966 5202 5921 0903 2573 1520 7125 4016
$A_5(18, 4, 9)$	2121 9513 6554 7144 5242 7277 8843 8380 9190 2732 8491 2109375	2121 9513 6267 2348 6969 6158 8067 3111 6395 4734 8022 4609375
$A_7(18, 4, 9)$	7035 1527 6242 6758 0416 2560 5506 1526 5952 2984 6057 3579 8134 8390 86745	7035 1527 6232 4593 1444 0919 3941 7657 2694 5128 6160 5228 1449 8418 7966 849024
$A_8(18, 4, 9)$	1053 4207 6388 2646 4848 8236 8607 3137 9760 8414 6989 8696 2431 7692 4558 393344	1053 4207 6388 0077 0579 2562 6795 4570 4178 5576 6160 5228
$A_9(18, 4, 9)$	5076 1676 4229 5809 7114 5598 7655 7785 3905 5475 7494 2459 6609 0855 5802 1960 31451	5076 1676 4229 3227 8160 2958 9753 8502 2100 0195 2897 8613 0451 1752 6000 3851 92731
$A_2(19, 4, 5)$	8201 4791 1159 59488	8201 4790 9849 28448
$A_3(19, 4, 5)$	5336 9771 2296 4435 3688 0971 278	5336 9771 2296 4420 8282 2788 731
$A_4(19, 4, 5)$	5220 5625 3384 9331 8374 9756 9957 708800	5220 5625 3384 9331 8360 7699 4945 156096
$A_q(n,d,k)$	New	Old
------------	-----	-----
$A_5(19,4,5)$	1390 6415 5984 9215 8116 1871 0095 6619 6694 0625	1390 6415 5984 9215 8116 1835 0560 2479 0444 0625
$A_7(19,4,5)$	2116 9221 3090 4127 3671 1759 7474 1768 4343 1973 3915 7355	2116 9221 3090 4127 3671 1759 7458 8168 3177 5206 3961 5255
$A_8(19,4,5)$	2739 4022 2638 5331 7449 5366 8303 7639 3896 7183 5642 4596 42365	2739 4022 2638 5331 7449 5366 8303 7559 5356 9335 6715 8197 694861
$A_9(19,4,5)$	2739 4022 2638 5331 7449 5366 8303 7639 3896 7183 5642 4596 42365	2739 4022 2638 5331 7449 5366 8303 7559 5356 9335 6715 8197 694861
$A_2(19,4,6)$	4224 2622 2853 8904 2880	4224 2601 1357 7889 5040
$A_3(19,4,6)$	1050 7720 6904 7370 9000 6492 9154 5617	1050 7720 6899 4192 3508 9616 2997 7290
$A_4(19,4,6)$	1368 5732 6052 4843 9975 3210 8659 5253 6240 1280	1368 5732 6052 4735 9003 1064 4794 6082 5341 9520
$A_5(19,4,6)$	2716 1071 6124 6622 4559 3611 2536 3003 2935 1659 828125	2716 1071 6124 6620 9890 3533 6049 3670 9799 7900 062500
$A_7(19,4,6)$	8542 5463 4632 2734 0885 0727 8319 1374 6697 4647 3297 9651 933604	8542 5463 4632 2734 0859 1485 1324 0784 2886 3871 7088 4593 7182221
$A_8(19,4,6)$	5023 1019 8748 9776 9868 7148 8089 4365 5262 3277 5608 9163 8292 3358208	5023 1019 8748 9776 9868 9264 4861 2659 3677 6922 5651 2318 8118 2314496
$A_9(19,4,6)$	1061 3005 8093 3177 5107 6560 0915 0855 9074 2028 9616 4433 9549 4258 9146667	1061 3005 8093 3177 5107 6437 5387 4171 9735 5772 2490 6664 8070 1103 2667942
Table 2: Theorem 2.6 $d=6$

$A_y(n, d, k)$	New	Old
$A_2(18, 6, 6)$	2829 5832 3493518	2829 5832 3460750
$A_3(18, 6, 6)$	7977 3414 6743 2777 8613776	7977 3414 6743 2776 4264869
$A_4(18, 6, 6)$	7922 8596 9086 1399 5335 4256 05660	7922 8596 9086 1399 5334 3518 63836
$A_5(18, 6, 6)$	3552 7160 6160 5390 6089 3919 2136 113320	3552 7160 6160 5390 6089 3916 1618 535195
$A_7(18, 6, 6)$	3670 3369 3031 7493 1772 0054 8142 8975 2151 02688	3670 3369 3031 7493 1772 0054 8142 4227 6535 92745
$A_8(18, 6, 6)$	2230 0745 3917 5803 6632 4706 9642 8537 0816 5403 6856	2230 0745 3917 5803 6632 4706 9642 8501 8972 8194 8024
$A_9(18, 6, 6)$	6362 6854 5986 5481 8930 7460 2002 4319 4539 0102 248520	6362 6854 5986 5481 8930 7460 2002 4317 3949 8970 153871
Table 3: Theorem 2.7 $d=6$

$\mathbf{A}_d(n, d, k)$	New	Old
$A_2(12, 6, 6)$	1686 5664	1686 5630
$A_3(12, 6, 6)$	2824 5422 1144	2824 5422 0859
$A_4(12, 6, 6)$	2814 7651 9990 600	2814 7651 9989 404
$A_5(12, 6, 6)$	5960 4684 7522 26540	5960 4684 7522 22945
$A_7(12, 6, 6)$	1915 8123 7048 5580 13104	1915 8123 7048 5579 94295
$A_8(12, 6, 6)$	4722 3665 2378 7141 634864	4722 3665 2378 7141 598584
$A_9(12, 6, 6)$	7976 6443 3116 7725 7540 500	7976 6443 3116 7725 7475 709
$A_2(16, 6, 8)$	2829 2768 4887 704	2829 2768 4884 928
$A_3(16, 6, 8)$	7977 3403 8582 1485 4319 604	7977 3403 8582 1485 4088 403
$A_4(16, 6, 8)$	7922 8596 7952 0959 8385 5275 78944	7922 8596 7952 0959 8385 5223 72608
$A_5(16, 6, 8)$	3552 7160 6144 6350 4786 5950 4366 844500	3552 7160 6144 6350 4786 5950 4308 421875
$A_7(16, 6, 8)$	2330 0745 3917 5728 7672 3615 6375 2919 8474 2632 6528	2330 0745 3917 5728 7672 3615 6375 2919 8474 2632 6528
$A_8(16, 6, 8)$	6362 6854 5986 5446 2048 6152 6050 7124 2490 8815 104484	6362 6854 5986 5446 2048 6152 6050 7124 2487 3957 350563
$A_9(16, 6, 8)$	7977 3403 8582 1485 4088 403	7977 3403 8582 1485 4088 403
$A_2(19, 6, 6)$	4527 3330 8759 0608	4527 3330 8759 0608
$A_3(19, 6, 6)$	6461 6465 8861 9087 5700 28526	6461 6465 8861 9087 5697 71903
$A_4(19, 6, 6)$	2028 2520 8086 0518 1180 3566 2610 8488	2028 2520 8086 0518 1180 3566 2059 9324
$A_5(19, 6, 6)$	2220 4475 3850 3369 1301 9528 8648 9837 85290	2220 4475 3850 3369 1301 9528 8648 9232 22695
$A_7(19, 6, 6)$	8812 4789 6969 2301 1184 5835 5714 5587 3536 6074 7838	8812 4789 6969 2301 1184 5835 5714 5587 3513 6047 4303
$A_8(19, 6, 6)$	9134 3853 1246 4091 8046 5999 2858 2455 7658 7389 6868656	9134 3853 1246 4091 8046 5999 2858 2455 7658 6409 8711928
$A_9(19, 6, 6)$	4174 5579 3021 7742 6700 4624 6291 8490 3548 8843 5323 855978	4174 5579 3021 7742 6700 4624 6291 8490 3548 8840 0068 059399
Table 4: Theorem 2.7 $d=8$

$A_y(n, d, k)$	New	Old
$A_2(16, 8, 8)$	1099 5628 94524	1099 5628 93998
$A_3(16, 8, 8)$	1215 7665 9570 9072 2244	1215 7665 9570 9071 1843
$A_4(16, 8, 8)$	1208 9258 2002 2366 9131 73944	1208 9258 2002 2366 9130 82908
$A_5(16, 8, 8)$	9094 9470 1780 7612 5205 9084 3140	9094 9470 1780 7612 5205 9034 0195
$A_7(16, 8, 8)$	6366 8057 6090 9256 9002 8088 9458 243204	6366 8057 6090 9256 9002 8088 9451 403203
$A_8(16, 8, 8)$	1329 2279 9578 4921 3674 3970 1812 8694 41264	1329 2279 9578 4921 3674 3970 1812 8500 10488
$A_9(16, 8, 8)$	1478 0882 9414 3460 1431 1989 3459 8896 6906 884	1478 0882 9414 3460 1431 1989 3459 8891 7956 163
Table 5: Multilevel type inserting construction I for d=4

\(A_q(n, d, k) \)	New	Old
\(A_2(12, 4, 6)\)	1214 577088	1212 491081
\(A_3(12, 4, 6)\)	2099 4929 8509 708	2099 4378 4809 333
\(A_4(12, 4, 6)\)	1159 1944 1178 6072 064	1159 1928 855 1240 0896
\(A_5(12, 4, 6)\)	9332 4349 9108 6744 37500	9332 4337 6349 6412 34375
\(A_7(12, 4, 6)\)	2255 0482 5263 0931 5086 948148	2255 0482 4318 3963 0511 043689
\(A_8(12, 4, 6)\)	1238 2901 4650 6193 7017 8530 5088	1238 2901 4517 0956 0896
\(A_9(12, 4, 6)\)	4239 8506 4977 3534 8229	4239 8506 4839 1042 34375
\(A_2(14, 4, 7)\)	4980 1102 22336	4975 8590 33088
\(A_3(14, 4, 7)\)	1115 8069 9489 6844 12022	1115 7972 4707 5781 87435
\(A_4(14, 4, 7)\)	1944 8126 1068 5635 2442 744832	1944 8119 7073 7370 4380 940288
\(A_5(14, 4, 7)\)	2278 4276 5460 4719 1286 74609 375000	2278 4275 9466 8902 8978 7216 796875
\(A_7(14, 4, 7)\)	3121 2771 2852 6308 1730 9342 7913 4362 4106	3121 2771 2665 4399 1534 2239 2501 1209 3363
\(A_8(14, 4, 7)\)	8509 4651 5464 2025 8528 9699 9940 1260 941312	8509 4651 5349 5070 8209 2409 6484 8376 872960
\(A_9(14, 4, 7)\)	1197 4590 5684 5506 9588	1197 4590 5680 2122 9813 0213 9115 1254 3824 67123
\(A_2(16, 4, 8)\)	8164 2270 4541 53216	8164 2270 4541 53216
\(A_3(16, 4, 8)\)	5336 9510 1888 0770 0238 8592396	5336 9353 1575 0209 5137 0793043
\(A_4(16, 4, 8)\)	5220 5713 7400 2282 1019 4237 1362 013184	5220 5709 4302 9781 8840 3820 4796 960768
\(A_5(16, 4, 8)\)	1390 6420 1860 2751 9606 7703 5069 7021 4843 7500	1390 6420 1127 5456 2178 5003 6835 9069 8242 1875
\(A_7(16, 4, 8)\)	2116 9221 7276 5722 7048 6063 6213 0694 8430 1055 3072 2356	2116 9221 7258 4282 5319 3267 9190 6528 3985 7934 6055 9203
\(A_8(16, 4, 8)\)	3742 5023 5693 3378 7991 6013 9367 6437 1325 8017 7902 6722816	3742 5023 5688 0309 3259 7524 6537 6356 2060 4406 9619 3548288
\(A_9(16, 4, 8)\)	2739 4022 3246 0031 0189 1833 9047 3260 4437 6692 4595 0047 702164	2739 4022 3244 9001 7516 2201 2431 4566 4311 8182 5520 1568 894883
$A_q(n, d, k)$	New	Old
----------------	----------------------	----------------------
$A_2(18, 4, 6)$	1321 0657 4623 0904768	1321 0657 3684 4576074
$A_3(18, 4, 6)$	4321 1984 5121 9576 3914	4324 1984 5121 9278 9981
$A_4(18, 4, 6)$	8691 5431 3455 6114 8125	8691 5431 3455 6114 8125
$A_5(18, 4, 6)$	5083 3218 5298 8389 5319	5083 3218 5298 8389 5319
$A_6(18, 4, 6)$	1532 9290 7353 3720 3260	1532 9290 7353 3720 3260
$A_7(18, 4, 6)$	2297 3916 8156 5204 1702	2297 3916 8156 5204 1702
$A_8(18, 4, 6)$	2242 2188 4380 9999 7816	2242 2188 4380 9999 7816
$A_9(18, 4, 6)$	2121 9513 6490 9121 3408	2121 9513 6490 9121 3408
$A_2(19, 4, 6)$	5076 1676 6388 2296 1833	5076 1676 6388 2296 1833
$A_3(19, 4, 6)$	7238 4546 8292 9652 0878	7238 4546 8292 9652 0878
$A_4(19, 4, 6)$	2773 0494 1709 3688 1188	2773 0494 1709 3688 1188
$A_5(19, 4, 6)$	1050 7720 6899 4195 0274	1050 7720 6899 4195 0274
Table 6: Multilevel type inserting construction I for d=6

\(A_q(n, d, k) \)	New	Old
\(A_1(19, 4, 6) \)	1368 5732 6052 4735 9007	1368 5732 6052 4735 9003
	2223 7673 8963 6291 7888	1064 4794 6082 5341 9520
\(A_2(19, 4, 6) \)	2716 1071 6124 6620 9890	2716 1071 6124 6620 9890
	3008 6695 3468 8391 7089 515625	3533 6049 3670 9799 7900 062500
\(A_3(19, 4, 6) \)	8542 5463 4632 2734 0859	8542 5463 4632 2734 0859
	1485 1388 3155 4655 9869	1485 1384 0784 2886 3871
	1920 1321 9357446	7088 4593 7182221
\(A_4(19, 4, 6) \)	8507 1058 1461 8280 3382	8507 1058 1461 8280 3276
	5386 3601 4314 848256	5044 7701 9755 511808
\(A_5(19, 4, 6) \)	1084 2028 9965 7109 7790	1084 2028 9965 7109 7790
	6843 3370 7850 6016 9531 25000	6690 8453 1512 0244 2480 46875
\(A_6(18, 6, 9) \)	1742 5150 3388 9755 5131	1742 5150 3388 9755 5131
	8884 9318 2913 8314 8363	8884 9225 9937 0807 8414
	1082 9271 617326	3865 7444 402835
\(A_7(18, 6, 9) \)	7846 3772 3721 9197 9113	7846 3772 3721 9197 9113
	8381 6353 7233 7401 8480	8381 6346 3523 5771 6094
	6166 8202 2848 43008	0063 4183 4301 76768
\(A_8(18, 6, 9) \)	1310 0205 1249 3866 3392	1310 0205 1249 3866 3392
	0687 0302 3644 3158 8157	0687 0302 3291 8871 4066
	2950 2470 8175 3276 64556	2694 0512 3241 1297 98163
Table 7: Multilevel type inserting construction II for d=4

A_q(n,d,k)	New	Old
A_2(10,4,5)	1178 828	1178 824
A_3(10,4,5)	3554 73834	3554 738325
A_4(10,4,5)	1105 4718 72592	1105 4718 72576
A_5(10,4,5)	9556 3831 276400	9556 3831 276375
A_7(10,4,5)	7983 1695 1903 51258	7983 1695 1903 51209
A_8(10,4,5)	1153 2474 8896 7549 504	1153 2474 8896 7549 440
A_9(10,4,5)	1215 9772 5913 5850 8732	1215 9772 5913 5850 8651
A_2(16,4,4)	8059 6325666	8059 6320222

Table 8: Multilevel type inserting construction II for d=6

A_q(n,d,k)	New	Old
A_2(14,6,7)	3453 2242 136	3453 2242 120
A_3(14,6,7)	5003 5894 1069 18724	5003 5894 1069 18643
A_4(14,6,7)	1180 5980 8585 2258 285376	1180 5980 8585 2258 285120
A_5(14,6,7)	2910 3849 9692 0980 8789 39500	2910 3849 9692 0980 8789 38875
A_7(14,6,7)	3788 1870 3472 3755 6473 1907 00636	3788 1870 3472 3755 6473 1907 004235
A_8(14,6,7)	4056 4819 5587 6990 8757 7660 1388 3904	4056 4819 5587 6990 8757 7660 1387 9808
A_9(14,6,7)	2503 1555 1236 1524 8758 0765 8765 79556	2503 1555 1236 1524 8758 0765 8765 790995
A_2(18,6,6)	2829 5832 3490438	2829 5832 3460750
A_3(18,6,6)	7977 3414 6743 2777 8633486	7977 3414 6743 2776 4264869
A_4(18,6,6)	7922 8596 9086 1399 5335 4258 67868	7922 8596 9086 1399 5334 3518 63836
A_5(18,6,6)	3552 7160 6160 5390 6089 3919 2138 066570	3552 7160 6160 5390 6089 3916 1618 535195
A_7(18,6,6)	3670 3369 3031 7493 1772 0054 8142 8975 2554 56638	3670 3369 3031 7493 1772 0054 8142 4227 6535 92745
A_8(18,6,6)	2230 0745 3917 5803 6632 4706 9642 8537 0817 8825 5096	2230 0745 3917 5803 6632 4706 9642 8501 8972 8194 8024
$A_q(n, d, k)$	New	Old
----------------	-----	-----
$A_0(18, 6, 6)$	6362 6854 5986 5481 8930 7460 2002 4319 4539 0489 669738	6362 6854 5986 5481 8930 7460 2002 4317 3949 8970 153871
$A_2(19, 6, 6)$	4527 3330 8765 3534	4527 3330 8758 6958
$A_3(19, 6, 6)$	6461 6465 8861 9087 6128 77754	6461 6465 8861 9087 5697 71903
$A_4(19, 6, 6)$	2028 2520 8086 0518 1180 3609 1661 5452	2028 2520 8086 0518 1180 3566 2059 9324
$A_5(19, 6, 6)$	2220 4475 3850 3369 1301 9528 8801 5208 79570	2220 4475 3850 3369 1301 9528 8648 9232 22695
$A_7(19, 6, 6)$	8812 4789 6969 2301 1184 5835 5714 5620 5845 7352 1554	8812 4789 6969 2301 1184 5835 5714 5587 3513 6047 4303
$A_8(19, 6, 6)$	9134 3853 1246 4091 8046 5999 2858 2456 0473 4014 9168504	9134 3853 1246 4091 8046 5999 2858 2455 7658 6409 8711928
$A_9(19, 6, 6)$	4174 5579 3021 7742 6700 4624 6291 8490 3567 4142 3743 702202	4174 5579 3021 7742 6700 4624 6291 8490 3548 8840 0068 059399
Table 9: Multilevel type inserting construction II for d=8

$\textbf{A}_q(n, d, k)$	New	Old
$\textbf{A}_2(18, 8, 9)$	1801 5215 3991 16904	1801 5215 3991 16872
$\textbf{A}_3(18, 8, 9)$	5814 9739 3804 1767 0685 308590	5814 9739 3804 1767 0685 308347
$\textbf{A}_4(18, 8, 9)$	3245 1855 3767 8429 8642 4312 3978 79872	3245 1855 3767 8429 8642 4312 3978 78848
$\textbf{A}_5(18, 8, 9)$	5551 1151 2317 3587 8357 9602 1219 6595 692000	5551 1151 2317 3587 8357 9602 1219 6595 688875
$\textbf{A}_7(18, 8, 9)$	4318 1145 6739 6591 8176 2301 6095 3650 9153 0833 954554	4318 1145 6739 6591 8176 2301 6095 3650 9153 0833 937747
$\textbf{A}_8(18, 8, 9)$	5846 0065 4932 3635 8379 3403 4302 9250 8651 1686 9853 92640	5846 0065 4932 3635 8379 3403 4302 9250 8651 1686 9853 59872
$\textbf{A}_9(18, 8, 9)$	3381 3919 1352 2728 4246 2028 0247 0185 2687 1078 7157 1285 4492	3381 3919 1352 2728 4246 2028 0247 0185 2687 1078 7157 1279 5443