SURFACE CURRENT-CARRYING DOMAIN WALLS

Patrick PETER

Département d’Astrophysique Relativiste et de Cosmologie,
Observatoire de Paris-Meudon, UPR 176, CNRS, 92195 Meudon (France),
Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Silver Street, Cambridge CB3 9EW (England),
and
Isaac Newton Institute for Mathematical Sciences,
20 Clarkson Road, Cambridge CB3 0EH (England).
(March 1995)

Abstract

Domain walls, arising from the spontaneous breaking of a discrete symmetry, can be coupled to charge carriers. In much the same way as the Witten model for superconducting cosmic string, an investigation is made here in the case of $U(1) \times Z_2 \rightarrow U(1)$, where a bosonic charge carrier is directly coupled to the wall-forming Higgs field. All internal quantities, such as the energy per unit surface and the surface current, are calculated numerically to provide the first complete analysis of the internal structure of a surface current-carrying domain wall.

PACS numbers: 98.80.Cq, 11.27+d
I. INTRODUCTION

Domain walls [1,2] can arise in various grand unified theories (GUT) whenever a discrete symmetry is broken by means of a Higgs field. Because they have immediately been shown to induce a cosmological catastrophe [1] even if they appear in a very late phase transition, their internal structure has not been studied in much details yet, since it was widely believed that they could not survive until now. Indeed, with an energy per unit surface of the order of the cube of the symmetry breaking energy scale η say, a single wall crossing the universe, even with η as low as $\eta \sim 100$ GeV, would produce an enormous overdensity $\Omega_{\text{Wall}} \sim 10^8$, or, in the case where only small balls were to survive, very large anisotropies in the cosmic microwave background radiation would be induced which are not observed [2]. Hence, if stable walls are to exist in a theory, one must have an inflationary period between the time they were formed and now.

The general belief nowadays concerning domain walls, assuming they were ever produced at all, is examplified by the Peccei-Quinn phase transition [3], whose cosmological relevance notably for the axion problem is still the subject of open discussion [4]. The idea is that even though walls could have been formed, the corresponding phase transition would have been preceded by a string forming transition in such a way that domain walls could only be bounded by strings. In such a framework, all walls would have had a finite size, huge surface tension, and would have evaporated in less than a Hubble time, thereby effectively solving the problem. It could therefore appear that studying their internal structure is indeed pointless.

However, just like in the case of cosmic strings, the situation could be rather different if domain walls were to have the ability to carry some sort of charge. In the case of strings, a current has the immediate effect of breaking the Lorentz symmetry along the worldsheet, so that one can consider rotating loops (called vortons [5] because of their particle-like properties, or rings [6]), The point is that cosmic strings are believed to scale (see Ref. [2] for a recent review) because the network of string is dominated by the loops, who eventually gravitationally radiate all their energy away. When a current is present, these loops might reach equilibrium configurations [5,6] whose classical stability was recently discussed [7,8] with the result that if no quantum instability exists, the scaling is spoiled and they could easily overfill the universe unless they were produced at a very low energy scale (estimated at ~ 10 TeV).

Now if the strings bounding the walls were superconducting, the problem could in fact be rather similar, the presence of a domain wall modifying the equilibrium configuration in an unknown way, while presumably modifying the constraint. This issue, which can, and should be analysed in the framework of Carter’s formalism [9] for describing p-branes, is still a completely open subject. Another difficulty can arise in the case where strings are not current-carrying, but if the wall itself is. Indeed, the point is, as before for the cosmic string scenario, that the breaking of the Lorentz symmetry along the worldsheet, whatever its intrinsic dimension, allows a definition of rotation, and eventually the recognition of the existence of centrifugally supported states. Of course, it is not clear yet whether these objects could be formed and reach stable states at all, and therefore their cosmological relevance has not been established. However, in the purpose of studying these frisbee-like configurations, it is necessary that one knows the relevant internal quantities such as the energy per unit...
area and the surface tensions: they are explicitly calculated in the present article.

It may seem that coupling charged (or hypercharged) particles to a domain wall forming Higgs fields is a bit arbitrary, but in view of the fact that most topological defects are predicted to form in various GUT models where the number of degrees of freedom, including scalar, vector and fermion fields is huge, and where the couplings are almost unrestricted, it seems fairly plausible. The purpose of this article is thus to present a toy model, similar to the Witten bosonic model [10] for superconducting cosmic strings, where the symmetry breaking scheme is simply $U(1) \times Z_2 \rightarrow U(1)$. This model, much like the Witten model, is expected to yield qualitatively relevant results. The work is arranged as follows: after presenting the actual model in a first section, we investigate the microscopic structure of such a wall and end up by dealing with the abovementioned integrated internal quantities, namely the energy per unit area, the surface tensions as well as the surface current. The equation of state, relating these quantities, is then computed numerically from the solution of the field equations and is shown to share most of the superconducting cosmic string equation of state properties [11], and in particular the existence of a phase frequency threshold, which is discussed in some length at the end of the paper. This study of a domain wall model thus shed a new light on the general knowledge on current-carrying topological defects by showing for instance that a generalisation of the string properties in an arbitrary number of dimensions is possible, which in turn give a new understanding of these string features. With this idea in mind, we end this article by a derivation of the divergent behaviour of the timelike component of the current as a function of the topological defect internal dimension.

II. WALL MODEL

Domain walls form whenever a discrete symmetry is spontaneously broken. The simplest way to achieve that is to break a Z_2 symmetry by means of a scalar ϕ whose vacuum expectation value shall be taken as $\langle 0 | \phi | 0 \rangle = \pm \eta$, with η the energy scale of symmetry breaking. This Higgs field may be coupled with hypercharge-carrying fields which we approximate [10] by a single complex scalar field Σ whose vacuum dynamics we require to be invariant under some $U(1)$ phase transformation group. In much the same way as was done for current-carrying cosmic strings [11,12], we neglect any long range interaction and thus assume a global $U(1)$ symmetry [11], thereby emphasizing on the actual dynamics of the wall, assuming charge-coupling corrections to be negligible, as was shown to be the case for superconducting cosmic strings [12]. The Lagrangian we shall start with is therefore

$$\mathcal{L} = -\frac{1}{2} |\partial_\mu \phi|^2 - \frac{1}{2} |\partial_\mu \Sigma|^2 - V(\phi, \Sigma),$$

(1)

with the general interaction potential given by

$$V(\phi, \Sigma) = \frac{\lambda_\phi}{8} (\phi^2 - \eta^2)^2 + f |\Sigma|^2 (\phi^2 - \eta^2) + \frac{m_\sigma^2}{2} |\Sigma|^2 + \frac{\lambda_\sigma}{4} |\Sigma|^4.$$

(2)

The dynamics given by this Lagrangian include existence of domain walls, i.e., solutions of the fields equations that separate domains where $\langle 0 | \phi | 0 \rangle = +\eta$ from regions where $\langle 0 | \phi | 0 \rangle = -\eta$, and on which therefore $\langle 0 | \phi | 0 \rangle = 0$. For now on, we shall simply write ϕ for $\langle 0 | \phi | 0 \rangle$. The wall solution will be a stationnary solution, with the wall locally identified with the
plane, the various field amplitudes depending only on the third z coordinate. Our ansatz is thus

$$\varphi = \varphi(z) \quad \text{and} \quad \Sigma = \sigma(z) \exp[i(kx - \omega t)], \quad (3)$$

where we have chosen the frame where the spacelike component of the current, defined below, is directed along the x direction [this form (3) for Σ can always be attained locally by means of a simple rotation in the wall plane]. The conserved current, derived as the Noether invariant under phase transformations, is

$$J_{\mu} = i \frac{\delta L}{\delta \partial_{\mu} \Sigma} \Sigma^* + \text{c.c.} = i \frac{\delta L}{\delta \Sigma} \partial_{\mu} \Sigma^*, \quad (4)$$

which, with Eq. (3) plugged in yields

$$J_{\mu} = (k\delta_{\mu x} - \omega \delta_{\mu t})\sigma^2(z). \quad (5)$$

The field equations derived from the Lagrangian (1) under the assumptions (3) read

$$\frac{d^2 \varphi}{dz^2} = \left[\frac{\lambda}{2}(\varphi^2 - \eta^2) + 2f\sigma^2 \right] \varphi, \quad (6)$$

$$\frac{d^2 \sigma}{dz^2} = \left[w + 2f(\varphi^2 - \eta^2) + m_\sigma^2 + \lambda_\sigma \sigma^2 \right] \sigma, \quad (7)$$

in which we have defined the state parameter

$$w \equiv k^2 - \omega^2, \quad (8)$$

whose sign reflects the spacelike or timelike character of the current given above by Eq. (5) since

$$J_{\mu}J^{\mu} = w\sigma^4(z), \quad (9)$$

and in the chosen conventions of Eq. (1), the Minkowski metric is $\eta^{\mu\nu} = \text{Diag} \{-1, 1, 1, 1\}$.

The possibility of a current in the wall can be seen in two ways. First, one can notice that the minimum of the potential, in the actual vacuum, is given by

$$\varphi = \pm \eta \quad \text{and} \quad \Sigma = 0, \quad (10)$$

and that this minimum is shifted in the wall where $\varphi = 0$ to

$$\lambda_\sigma |\Sigma|^2 = 2f\eta^2 - m_\sigma^2, \quad (11)$$

so a condensate may exist provided

$$m_\sigma^2 \leq 2f\eta^2. \quad (12)$$

Another way to realize that a condensate will in fact appear [10] in the wall consists in first assuming no condensate ($\Sigma = 0$), and solve the perturbative equation for Σ in the domain wall background. For $\Sigma = 0$, the solution of Eq. (6) is known:
\[\varphi = \eta \tanh \left(\frac{1}{2} \sqrt{\lambda_{\sigma} \eta z} \right), \quad (13) \]

and setting a perturbation in the form \(\Sigma = \sigma(z)e^{i\omega t} \) into Eq. (7) yields the one-dimensional Shrödinger equation for \(\sigma \)

\[- \frac{d^2 \sigma}{dz^2} + V(z)\sigma = \omega^2 \sigma, \quad (14) \]

where the potential

\[V(z) \equiv -2f\eta^2 \left[1 - \tanh \left(\frac{1}{2} \sqrt{\lambda_{\sigma} \eta z} \right) \right] + m_\sigma^2, \quad (15) \]

is negative definite when the condition (12) holds. Hence, under this condition, \(\Sigma \) evolves in an attractive potential well, with negative eigenvalues for \(\omega^2 \). Therefore, there exists unstable modes and a condensate forms.

III. CURRENT QUENCHING AND PHASE FREQUENCY THRESHOLD

In order to analyse the internal structure of such a current-carrying domain wall, it turns out to be convenient to introduce a set of dimensionless functions and variables \(\zeta, X, Y, \tilde{w} \) and \{\(\alpha_{1,2,3} \)\} as

\[\varphi(z) = \eta X(\zeta), \quad (16) \]

\[\sigma(z) = \frac{m_\sigma}{\sqrt{\lambda_{\sigma}}} Y(\zeta), \quad (17) \]

with

\[\zeta = \sqrt{\lambda_{\sigma} \eta z}. \quad (18) \]

The state parameter is similarly rescaled into

\[w = \frac{\lambda_{\phi} \lambda_{\sigma} \eta^4}{m_\sigma^2} \tilde{w}, \quad (19) \]

and provided we redefine the arbitrary underlying parameters as \[\{1, 1, 12\} \]

\[\alpha_1 = \frac{m_\sigma^2}{\lambda_{\sigma} \eta^2}, \quad \alpha_2 = \frac{fm_\sigma^2}{\lambda_{\phi} \lambda_{\sigma} \eta^2} \quad \text{and} \quad \alpha_3 = \frac{m_\sigma^4}{\lambda_{\phi} \lambda_{\sigma} \eta^4}, \quad (20) \]

we get the very simple set of ordinary differential equations

\[X'' = X\left[\frac{1}{2} (X^2 - 1) + 2\alpha_2 Y^2 \right], \quad (21) \]

\[\alpha_1 Y'' = Y\left[\tilde{w} + 2\alpha_2 (X^2 - 1) + \alpha_3 (Y^2 + 1) \right]. \quad (22) \]
where a prime denotes a derivative with respect to ζ.

Two constraints on these parameters arise from the requirement that the theory be physically meaningful and consistent with currents flowing along the wall. The condition (12) for instance, reads in terms of these parameters

$$\alpha_3 \leq 2\alpha_2,$$

(23)

while demanding that the energy of the wall configuration ($\varphi = 0$ and $\Sigma \neq 0$) be greater than the actual surrounding vacuum configuration ($\varphi = \eta$ and $\Sigma = 0$) implies

$$(\alpha_3 - 2\alpha_2)^2 \leq \frac{1}{2}\alpha_3.$$

(24)

The first of these constraints in fact means that there exists a sp acelike saturation current which cannot be exceeded. To see that this is indeed the case, let us perform an expansion of X and Y close to the wall where $\zeta \ll 1$, in the form

$$X \sim x_1\zeta + b\zeta^3 \quad \text{and} \quad Y \sim y_0 - a\zeta^2,$$

(25)

which satisfy the boundary conditions on the wall worldsheet, and in particular regularity of the Σ field [which accounts for $Y'(0) = 0$]. Plugging back into Eqs. (21) and (22) gives

$$b = x_1(2\alpha_2y_0^2 - \frac{1}{2}),$$

(26)

and

$$a = \frac{y_0}{2\alpha_2}[2\alpha_2 - \bar{w} - \alpha_3(y_0^2 + 1)],$$

(27)

so that because the condensate is actually at its maximum at $z = 0$, one has $a \geq 0$, which means

$$\bar{w} \leq 2\alpha_2 - \alpha_3.$$

(28)

Thanks to the requirement (23), we see that the limit applies only in the spacelike current case where $\bar{w} \geq 0$, and it reflects the fact that for $\bar{w} = 2\alpha_2 - \alpha_3$, one has $y_0 = 0$, and therefore no condensate, hence no current. So there exist a value of the state parameter above which the current quenches to zero.

On the other hand, investigating the large ζ behaviour of Eqs. (21) and (22) yields the following asymptotics

$$1 - X \sim \exp(-\zeta),$$

(29)

as expected from the knowledge of the true solution (13) in the decoupled case ($X_{\alpha_2=0} \sim 1 - 2e^{\zeta}$), and

$$Y \sim \exp(-\sqrt{\frac{\bar{w} + \alpha_3}{\alpha_1}}\zeta),$$

(30)

for positive $\bar{w} + \alpha_3$.
\[Y \sim \cos(\sqrt{\frac{\bar{\omega} + \alpha_3}{\alpha_1}}\zeta + \delta), \tag{31} \]

for negative \(\bar{\omega} + \alpha_3 \), with the special \(\bar{\omega} = -\alpha_3 \) case leading to

\[Y \sim \sqrt{\frac{2\alpha_1}{\alpha_3}}\zeta^{-1}. \tag{32} \]

Thus, exactly as in the case of a current carrying cosmic string, there exists a phase frequency threshold given by \(\bar{\omega} = -\alpha_3 \), or \(\omega = m_\sigma \), above which the integral of the current \((5) \) from the sheet to infinity diverges. This is therefore not a mechanism depending on the dimension of the topological defect under consideration, and can be interpreted as charge carriers evaporation from it [11]. This phase frequency threshold is discussed more thoroughly at the end of the following section where integrated quantities are explicitly calculated.

IV. MACROSCOPIC QUANTITIES

For most of the cosmologically relevant calculations with topological defects, it is convenient to consider them as infinitely thin, and for that purpose, it is necessary to know the stress energy tensor and the current as line integrals starting from the wall’s worldsheet to infinity. For instance, the integrated current reads

\[C \equiv 2 \int dz \sqrt{|J_{\mu}J^{\mu}|} = 2\sqrt{|w|} \int dz \sigma^2(z) = 2\eta^2 \sqrt{\alpha_1}|\bar{\nu}| \int d\zeta Y^2(\zeta), \tag{33} \]

where we have defined \(\nu = \text{Sign}(w)\sqrt{|w|} \) and rescaled it according to Eq. (19); the additional factor of 2 is here to account for both sides of the wall. The parameter \(\nu \), being essentially identifiable as \(k \) or \(-\omega \), is readily interpreted and has thus been used as the relevant parameter for the plots presented below.

Another obviously very useful quantity for a macroscopic description of a surface current-carrying domain wall is its stress energy tensor

\[T^{\mu\nu} = -2g^{\mu\alpha}g^{\nu\beta} \frac{\delta L}{\delta g^{\alpha\beta}} + g^{\mu\nu}L, \tag{34} \]

which, in the case under consideration, needs to be diagonalized. It is worth noting at this point that even though the existence of a current in the wall indeed breaks the Lorentz invariance along the worldsheet, thereby raising the stress-energy tensor’s degeneracy, it does so through the introduction of one privileged direction. Hence, just like in the string’s case, there can be only two different eigenvalues, namely the energy per unit area \(U \), and the surface tension \(T \). The resulting stress-energy tensor then reads

\[T_{(<0)} \equiv \begin{pmatrix} U & -T \\ -T & -T \end{pmatrix}, \tag{35} \]

for a timelike current (for which the spatial isotropy is left unbroken), whereas the spacelike current case similarly yields
\[
\mathbf{T}_{(>0)} \equiv \begin{pmatrix}
U & -U \\
-T & 0
\end{pmatrix}.
\]

We shall now calculate explicitly these eigenvalues in the specific case (1) under consideration, and for that purpose, we perform a Lorentz boost in the \(x\)-direction in such a way that the phase of the current carrier \(\Sigma\) reads \(kz\) or \(-\omega t\). In this frame, in which we shall for now on remain except when it comes to the lightlike case, one has the energy per unit surface

\[
U = 2 \int dz T_{tt} = \sqrt{\lambda \phi \eta}^3 \int d\zeta \left[X'^2 + \alpha_1 Y'^2 + |\tilde{w}|Y^2 + \frac{1}{4}(X^2 - 1)^2 + 2\alpha_2 Y^2(X^2 - 1) + \alpha^3 Y^2 \left(\frac{1}{2} Y^2 + 1 \right) \right],
\]

the surface tension parallel to the current

\[
T_\parallel = -2 \int dz T_{xx} = \sqrt{\lambda \phi \eta}^3 \int d\zeta \left[X'^2 + \alpha_1 Y'^2 - |\tilde{w}|Y^2 + \frac{1}{4}(X^2 - 1)^2 + 2\alpha_2 Y^2(X^2 - 1) + \alpha^3 Y^2 \left(\frac{1}{2} Y^2 + 1 \right) \right],
\]

the surface tension orthogonal to the current

\[
T_\perp = -2 \int dz T_{yy} = \sqrt{\lambda \phi \eta}^3 \int d\zeta \left[X'^2 + \alpha_1 Y'^2 + \tilde{w}Y^2 + \frac{1}{4}(X^2 - 1)^2 + 2\alpha_2 Y^2(X^2 - 1) + \alpha^3 Y^2 \left(\frac{1}{2} Y^2 + 1 \right) \right],
\]

while the last integrated component provides a very useful numerical constraint as we shall see shortly because

\[
T_z = -2 \int dz T_{zz} = \sqrt{\lambda \phi \eta}^3 \int d\zeta \left[-X'^2 - \alpha_1 Y'^2 + \tilde{w}Y^2 + \frac{1}{4}(X^2 - 1)^2 + 2\alpha_2 Y^2(X^2 - 1) + \alpha^3 Y^2 \left(\frac{1}{2} Y^2 + 1 \right) \right]
\]

should in fact vanish identically. This can be checked almost immediately when no condensate is present since in that case, one has \(X_0 = \tanh \zeta/2\), so that \(X_0' = -\frac{1}{2}(X^2 - 1)\) which in turn implies

\[
T_z^{(0)} = \sqrt{\lambda \phi \eta}^3 \int d\zeta \left[-X'^2 + \frac{1}{4}(X^2 - 1)^2 \right] = 0,
\]

while the general case gives, with the ansatz

\[
\partial_x T^{xx} = \partial_y T^{yy} = \partial_t T^{tt} = 0
\]

and finally, conservation of the stress energy tensor \(\partial_\mu T^{\mu\nu} = 0\) yields

\[
\partial_z T^{zz} = 0.
\]
But the boundary conditions one must use are such that asymptotically, the fields take their vacuum values, so
\[\lim_{z \to \infty} \sigma(z) = \lim_{z \to \infty} \partial_z \sigma(z) = \lim_{z \to \infty} \partial_z \varphi(z) = \lim_{z \to \infty} (\varphi^2 - \eta^2) = 0, \]
so \(\lim_{z \to \infty} T^{zz} = 0 \) which, with Eq. (42) implies \(T^{zz} = 0 \). Hence, Eq. (40) provides a constraint on the fields, namely
\[X' \rightleftharpoons \alpha Y' = \tilde{\omega} Y^2 + \frac{1}{4} (X^2 - 1)^2 + 2\alpha_2 Y^2 (X^2 - 1) + \alpha_3 Y^2 \left(\frac{1}{2} Y^2 + 1\right), \quad (43) \]
which is used for numerical purposes since it gives the value of the derivative of \(X \) near the origin, i.e. \(x_1 \) with the notation of Eq. (25), as a function of the \(\Sigma \) field’s VEV \(y_0 \), with
\[x_1^2 = \frac{1}{4} + y_0^2 [\alpha_3 (1 + 2y_0^2) - 2\alpha_2 - \tilde{\omega}]. \quad (44) \]
Note first that we recover \(x_1^2 = 1/4 \) in the noncurrent carrying case, again in agreement with the corresponding known analytic solution, and second that Eq. (43) is not a trivial constraint: as numerical integration reveals, the functional \(U[X(\zeta), Y(\zeta)] \) has two extrema depending on the field configuration, one of which corresponds to an unphysical maximum, whereas the second is indeed a minimum satisfying Eq. (43). The numerical program developed for solving Eqs. (21) and (22) used therefore the constraint (43) by fixing the parameters at the origin with Eq. (44). Two criteria for ensuring the convergence to the actual physical solution were thus considered, namely that the solution should be one indeed and therefore should extremise \(U \), and the vanishing of \(T_z \).

A last consideration permits an evaluation of the accuracy of the numerical results thereby obtained, and it is the final point on the \(\nu \) line calculated for a spacelike current. This point corresponds to \(\tilde{\omega} = 2\alpha_2 - \alpha_3 \) which, according to Eq. (27) and the discussion following it, has no current at all. In that case, all the integrals of Eqs. (37,38,39) are equal to \(U_0 \), with
\[U_0 = \sqrt{\lambda_\phi} \eta^3 \int d\zeta \left[X_0'^2 + \frac{1}{4} (X_0^2 - 1) \right] = 2\sqrt{\lambda_\phi} \eta^3 \int d\zeta X_0'^2, \quad (45) \]
when one takes the solution \(X_0 = \tanh \zeta / 2 \), and this is
\[U_0 = 2\sqrt{\lambda_\phi} \eta^3 \int X' dX = -\sqrt{\lambda_\phi} \eta^3 \int_0^1 (X^2 - 1) dX = \frac{2}{3} \sqrt{\lambda_\phi} \eta^3. \quad (46) \]
The condensate therefore must respect
\[\frac{U_\sigma}{\sqrt{\lambda_\phi} \eta^3} \leq \frac{2}{3} \quad (47) \]
in order to be stable against charge carrier evaporation, with the equality obtained in the limit \(\tilde{\omega} \to 2\alpha_2 - \alpha_3 \). This in fact also limits the range of variation of \(\omega \) for a timelike current for it seems doubtful that a state having \(U_\sigma > U_0 \) could survive in practice.

The case of a lightlike current shares with the noncurrent-carrying wall the property that the stress energy tensor’s eigenvalues are strictly equal. It can usually be set, after diagonalization for \(J_\mu J^\mu \neq 0 \), as
\[T^{\mu\nu} = U u^\mu u^\nu - T_{||} x^\mu x^\nu - T_{\perp} y^\mu y^\nu, \]

with \(u^\mu \) the timelike eigenvector \((u_\mu u^\mu = -1)\) and \(x^\mu, y^\mu \) the spacelike eigenvectors \((x_\mu x^\mu = y_\mu y^\mu = 1, \text{ and } x_\mu y^\mu = 0)\), but for a lightlike current, it reads

\[T^{\mu\nu} = U u^\mu u^\nu - T_{||} x^\mu x^\nu - T_{\perp} y^\mu y^\nu - 1/2 (u^\mu x^\nu + u^\nu x^\mu) \omega^2 \int dz \sigma^2(z), \]

where we have set \(\Sigma = \sigma(z) \exp[i\omega(t-x)] \). Upon diagonalization, this reads

\[T^{\mu\nu} = T_{||} (v_+^\mu v_+^\nu - v_-^\mu v_-^\nu - y^\mu y^\nu), \]

with \(v_\pm^\mu = 1/2 (x^\mu \pm u^\mu) \) the lightlike eigenvectors of \(T^{\mu\nu} \), and \(T_{||} \) as given by Eq. (39) with \(\tilde{w} = 0 \).

Let us investigate more thoroughly the spacelike and timelike cases. The timelike case is characterised, as exemplified on Eq. (35), by the isotropy of the purely spatial part of \(T^{\mu\nu} \), i.e. \(T_{||} = T_{\perp} \equiv T \). As in the string case, one has the Legendre-like relation

\[U - T = -\nu C, \quad \nu \leq 0 \]

and the now standard formalism developed by Carter [9] applies straightforwardly. The case of a spacelike current is slightly more involved and perhaps requires more thought for each particular cosmologically interesting configuration studied because the spatial isotropy of the surface is no longer present since the current picks a privileged spatial direction in the worldsheet. However, Eqs. (36), (37) and (39) show that yet another simplification arises from the fact that \(U = T_{\perp}, \) i.e. the purely spatial component of the stress energy tensor in the direction parallel to the current flow is the energy per unit surface. Setting \(T = T_{||} \), a relation similar to Eq. (51) is obtained in the form

\[U - T = \nu C, \quad \nu \geq 0 \]

which can be understood in terms of duality between spacelike and timelike currents [9]. The relevant rescaled integrals are displayed on the figures.

Fig. 1 represents the energy per unit area and the surface tensions as functions of the rescaled state parameter \(\tilde{\nu} \) for a specific set of parameters \(\{\alpha_i\} \) (chosen to yield a generic kind of result as well as giving measurable effects), with Fig. 1.a showing the variations of \(U(\tilde{\nu}) \) and \(T(\tilde{\nu}) \) for a spacelike current-carrying wall having a positive state parameter \(\tilde{\nu} > 0 \), while Fig. 1.b represents \(U(\tilde{\nu}) \) and \(T(\tilde{\nu}) \) for a timelike current-carrying wall with \(\tilde{\nu} > 0 \). Similarly, Figs. 2.a and 2.b show the amplitude of the current (5) in the magnetic and electric regimes respectively. As might have been anticipated, these figure are very much like those obtained for a neutral current-carrying cosmic string [11], at least in the classically stable part of the equation of state, which is definable through the requirement that the soundlike perturbation squared velocity \(c_L^2 = -dT/dU \) be positive. Thus, the approximate analytic equation of state proposed in Ref. [13] should be useful also in this domain wall context. In fact, the only noticeable difference between the wall and the string as far as internal structure goes concerns the unstable region: Figs. 1.a and 2.a shows that almost as soon as the wall becomes unstable with respect to soundlike perturbations along the worldsheet, the wall’s stress energy tensor tends to the ordinary wall one, namely the
isotropic stress tensor with unique eigenvalue $U_0 = \frac{2}{3}\sqrt{\lambda_0 \eta^3}$. Therefore, most of the current-carrying domain wall properties are essentially similar to the string properties.

Finally, let us remark the following important mathematical property of the surface current-carrying domain wall. As is the case for a superconducting cosmic string, it can be seen that there exists a phase frequency threshold \[1\] given by $w = -m_\sigma^2$ at which point the current \[33\] diverges. For the cosmic string case, the first order pole behaviour $C_{\text{String}} \sim (w + m_\sigma^2)^{-1}$ was found \[1\] whereas the wall case yields $C_{\text{Wall}} \sim (w + m_\sigma^2)^{-1/2}$. This is because in both cases, denoting by d the codimension of the topological defect, i.e., 2 for a string and 1 for a wall in a 4 dimensional background, the current carrier field is seen to satisfy Eq. (7) which, far from the topological defect, gives the relation

$$\Delta_d \sigma \sim (w + m_\sigma^2)\sigma,$$ \hspace{1cm} (53)

where Δ_d stands for the Laplacian in d dimensions: this is simply d^2/dz^2 in the wall case under consideration here, and $d^2/dr^2 + \frac{d-1}{r}d/dr$ in the general case with r the “radial” distance to the defect’s core. Setting $\chi = kr$, with $r \equiv z$ in our wall case and $k^2 = w + m_\sigma^2$, one can extract σ as a function of k since for $k \neq 0$, Eq. (7) \[i.e., Eq. (53)\] transforms into

$$\frac{d^2\sigma}{d\chi^2} + \frac{d - 1}{\chi} \frac{d\sigma}{d\chi} = \sigma(\chi),$$ \hspace{1cm} (54)

whose solution cannot depend on k.

The solution to Eq. (54) is well known:

$$\sigma \sim A\chi^{1-d/2}K_0(\chi),$$ \hspace{1cm} (55)

with K_0 the Bessel function of zeroth order whose asymptotic behaviour is given by $K_0(\chi) \sim \exp(-\chi)/\sqrt{\chi}$. Thus, one finds the general phase frequency threshold behaviour, up to a finite part \[corresponding to the fact that one has to integrate up to the point where the approximation (53) becomes valid\]

$$C \propto \int r^{d-1}dr\sigma^2(kr)$$

$$\propto \frac{1}{kd} \int \chi K_0^2(\chi)d\chi$$

$$\propto (w + m_\sigma^2)^{-d/2},$$ \hspace{1cm} (56)

with $d = 1$ for a current-carrying domain wall, $d = 2$ for a superconducting cosmic string, and $d = 3$ for a charged monopole in a four dimensional background spacetime. It is in fact possible to be slightly more precise concerning this divergence: the function κ, defined as \[3,10\]

$$\kappa \equiv 2\frac{dU}{dw} = 2 \int d^d x_\perp \sigma^2(x_\perp),$$ \hspace{1cm} (57)

being proportionnal to C, also diverges, and it may be seen that, under the assumption that $y_0^2 \sim \frac{2m_\sigma}{\lambda_0}$ near the threshold \[see Ref. [1] and Eq. (27)\]
\[\kappa = \kappa_f(w) + A \frac{f \eta^2}{\lambda_\sigma} (w + m_\sigma^2)^{-d/2}, \]

(58)

which is valid for various values of the codimension \(d \), with \(\kappa_f(w) \) the finite part of \(\kappa \) and \(A \) a pure number, calculable in principle by a matching of the asymptotic solution \((55)\) to the origin and depending on \(d \). Note that the dimension of this function \(\kappa \) is given straightforwardly once \(d \) is known.

ACKNOWLEDGMENTS

I wish to thank L. Blanchet, B. Carter, E. Copeland, A.-C. Davis and T. Vachaspati for many stimulating discussions. I would also like to thank the Isaac Newton Institute for Mathematical Sciences in Cambridge (UK) for their hospitality during the time this work was being done.
REFERENCES

[1] T.W.B. Kibble, J. Math. Phys. A 9, 1387 (1976), Phys. Rep. 67, 183 (1980).
[2] E. P. S. Shellard & A. Vilenkin, Cosmic strings and other topological defects, Cambridge University Press (1994).
[3] R. D. Peccei, H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977); Phys. Rev. D 16, 1791 (1977).
[4] R. L. Davis, Phys. Rev. D 32, 3172 (1985); Phys. Lett. B 180, 225 (1986); D. Harari, P. Sikivie, Phys. Lett. B 195, 361 (1987); R. L. Davis, E. P. S. Shellard, Nucl. Phys. B 324, 167 (1989); C. Hagmann, P. Sikivie, Nucl. Phys. B 363, 247 (1991); R. A. Battye, E. P. S. Shellard, Phys. Rev. Lett. 73, 2954 (1994).
[5] R. L. Davis, E. P. S. Shellard, Phys. Rev. D 38, 4722 (1988); Nucl. Phys. B 323, 209 (1989).
[6] B. Carter, Ann. N.Y. Acad. Sci., 647, 758 (1991); B. Carter, in The early Universe and Cosmic Structures, Proceedings of the Xth Moriond Astrophysics Meeting, Les Arcs, France, 1990, Edited by A. Blanchard and J. Tran Thanh Vân (Editions Frontières, Gif-sur-Yvette, 1991).
[7] B. Carter, X. Martin, Ann. Phys. 227, 151 (1993).
[8] X. Martin, P. Peter, Phys. Rev. D (1995) in press, report no DAMTP-R94/19.
[9] B. Carter, in Formation and evolution of cosmic strings, Ed. G. W. Gibbons, S. W. Hawking & T. Vachaspati (Cambridge University Press, Cambridge, UK, 1990); Phys. Lett. B 224, 61 (1989); Phys. Lett. B 228, 466 (1989).
[10] E. Witten, Nucl. Phys. B 249, 557 (1985).
[11] P. Peter, Phys. Rev. D 45, 1091 (1992).
[12] P. Peter, Phys. Rev. D 46, 3335 (1992) and references therein.
[13] B. Carter, P. Peter, Supersonic string models for Witten vortices, Report no DAMTP-R94/56 & hep-ph/9411423.
FIGURES

Energy per unit area U (solid line) and surface tensions $T_{>0} = T_\parallel$ and $T_{<0} = T_\perp$ (dashed lines) as functions of the rescaled state parameter $\tilde{\nu}$ and in units of $\sqrt{\lambda_0 \eta^3}$. Fig. 1.a represents the equation of state in the timelike case $\tilde{\nu} \leq 0$, while Fig. 1.b is for the spacelike range $\tilde{\nu} \geq 0$.

Integrated value of the surface current in units of η^2 for the same variation ranges as on Fig. 1 as a function of $\tilde{\nu}$.
This figure "fig1-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9503408v1
This figure "fig2-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9503408v1
This figure "fig1-2.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9503408v1
This figure "fig1-3.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9503408v1