Research Article

Advances in Plants & Agriculture Research

Studies on weed diversity and its associated phytosociology under direct dry seeded rice systems in Koria District (C.G.) India

Abstract

Chhattisgarh is commonly known as Bowl of rice where rice is grown as monocarp in the entire state whether soil is bhata, matasi, kanhar or black soil. Present study is based on the study of biodiversity of weeds under Direct Dry Seeded Rice Systems in Koria District (C.G.). Study was conducted to assess the phytosociological studies of weed species in paddy field at Baikunthpur, Koria district, Chhattisgarh. A total of 43 genera and 09 families of Dicotyledoneae and 03 families of monocots & one Pteridophytes was also observed and 43 weed species were identified Ratio of Sedges: (Grasses: Broad-leaved weeds was calculated as 9:12:18 Ratio) under Direct Dry Seeded Rice Systems. The results obtained indicated that Echinochloa colona, Cyperus iria and Cynodon dactylon were the most frequent in 2008. Echinochloa colona and Cyperus iria were the most frequent in 2008 and 2009. The importance value index (IVI) revealed that the most important weeds within the community were Poaceae and cyperaceous. Out of 12 angiospermic families the predominance was shown by monocot families Cyperacea and Poaceae having and weeds species, respectively. The pteridophytic family Marsileaceae was represented by 01 weed species.

Keywords: weed, paddy cropping system, diversity, koria chhattisgarh

Introduction

Agriculture has been a forefront agenda at national and international level for food security and management of natural resources. Cereals are the most important part of our diet throughout the world and thus, play major role in our food security. Crop paddy (Oryza sativa L.) has been an important crop which is extensively grown in tropical and subtropical regions of the world. It is cultivated in area of 44.0million hectares with an annual production of 104.3million tons in India.1 Its production has been found to be distributed as 91.5million tons in kharif and 12.8million tons in rabi season. However, its productivity in India is very low (2.37t ha⁻¹) as compared to other rice growing countries like Japan (6.35t ha⁻¹), Australia (6.22t ha⁻¹), Spain (6.16t ha⁻¹), Egypt (5.0t ha⁻¹) and China (5.2t ha⁻¹). There are several reasons for its low productivity but the losses due to weeds are one of the most important. Paddy (Oryza sativa L.) is one of the most important food crops of the world and is the second emerging crop in India after wheat. India is the second largest producer of rice after China.2 Beside its use for human food, paddy is a source for number of industrial products like rice starch, rice bran oil, flaked rice, puffed rice and rice husk etc. Being staple food it plays an important role in the economy of India hence occupies a central position in agricultural policy making.3 Weed is a plant which is judged by man to be not of use and undesirable at a place where it flourishes.4 The weeds that grow along with paddy crop results in low agricultural output. They are the major barriers to rice production because of their ability to compete for CO₂, space, moisture, sunlight and nutrients. Weedy crop sometimes leads to complete failure.5 Out of total losses due to various biotic factors weeds are known to account for one third.6 It has been observed that grain yield in paddy is drastically reduced if it is not de weeded at early stage of growth. Biogeographically, Chhattisgarh state falls in Deccan bio-region comprising representative fauna of central India. Chhattisgarh used to produce over seventy percent of the total paddy production in the state. Apart from paddy, cereals like maize, Kodo-kutki and other small millets, pulses like Tur and Kulthi and oil seeds like groundnut, soya bean, Niger and sunflower are also grown. Koria exhibits a very high temperature and assumes ecological importance for its low productivity but the losses due to weeds in direct-seeded rice and at management of weeds by crop needs to be studied as thoroughly as possible. Direct-seeded rice suffers more by weed infestation than the transplanted rice. Apart from the various traditional methods of weed control, crop suffers a lot by weeds. The extent of damage depends upon the nature of weeds, their density, dominance, ecological success and the association with the crops and other biotic and edaphic factors. It is, therefore, necessary to make a detailed survey of weeds in crop fields, their distribution, and relative occurrence in specific crops. Therefore, there is a great need of research aiming at prevention of loss of yield due to weeds in direct-seeded rice and at management of weeds by most economic and feasible method. These objectives can be achieved through a better understanding of biology of different weeds infesting direct-seeded rice fields.

Materials and methods

Methodology

The present study deals with major weeds of paddy fields of Shivpur, Tilpandand, Itga, Rakiya, and Jamghana under Baikunthpur block of Koria district (C.G). The study was based on extensive and intensive fields surveys during the peak period of weed growth during three successive cropping seasons from 2007-2009. Frequent field trips were made twice a month in each site for collection of weed species. During this course interviews were conducted from farmers through a better understanding of biology of different weeds infesting direct-seeded rice fields.
and agriculturalists of each site about seasonal weed species and important notes on flowering and fruiting seasons of weeds were reported. The collected weed plants were pressed, dried, preserved and properly identified with the help of available literature and monographs by Sharma et al.,7 Swarni et al.,8 Kaul7 and confirmed from the authentic regional herbaria at Botanical Survey of India.

Quadrate and phytosociological studies

$1m \times 1m$ Quadrats were laid in the agricultural fields to quantify various weed species. The size of the quadrate used in this study was decided based on the species area curve method following Misra (1968). The structure and composition of vegetation in the agricultural fields have been compared in terms of frequency, density, abundance, and basal area of major species. Importance Value Index ($IVI=\text{relative frequency} + \text{relative density} + \text{relative dominance}$) and species diversity index ($H'=-\sum p_i \ln p_i$; where, $p_i=\text{abundance of each species, } N=\text{total abundance of all species}$) were derived from the primary data separately for each layer following Misra (1968) and Shannon & Weaver (1963) respectively. Berger and Parker Index ($D=\frac{N_{\text{max}}}{N}$ Where N_{max} is the number of individuals in the most species and N is the total number of all individuals in all species) were weighted toward the abundance of the commonest species. For any information-statistics index, the maximum diversity of a community is found when all species are equally abundant. Community’s actual diversity is measured by the formula: Evenness ($E=H'/\ln N$). Rank Abundance diagrams visually describe the allocation of individuals to species in communities.

The following formula were used to compute different phytosociological parameters:

\[
\begin{align*}
\% \text{ Relative Frequency} &= \frac{\text{Total no. of quadrats in which the species occurred}}{\text{Total no. of quadrats studied}} \times 100 \\
\text{Density} &= \frac{\text{Total no. of quadrats in which the species occurred}}{\text{Total no. of quadrats studied}} \\
\text{Abundance} &= \frac{\text{Total no. of individuals of a species in all the quadrats}}{\text{Total no. of quadrats studied}} \\
\text{Relative Frequency (RF)} &= \frac{\text{Total no. of occurrences of a species in all the quadrats}}{\text{Total no. of occurrences of all species in all quadrats}} \times 100 \\
\text{Relative Density (RD)} &= \frac{\text{Total number of individuals of a species in all the quadrats}}{\text{Total number of individuals of all species in all quadrats}} \times 100 \\
\text{Relative Dominance (R.Dom.)} &= \frac{\text{Total basal cover of each species in all quadrats}}{\text{Total basal cover of all species in all quadrats}} \times 100 \\
\text{IVI} &= \text{Relative frequency} + \text{Relative density} + \text{Relative dominance}
\end{align*}
\]

Results

Phytosociological study of plant/weed, which provide knowledge of the dynamics and relative importance of a species in a particular phytosocieties or across phytosocieties assume enough relevance in crop-weed ecosystem. It gives an appraisal of species through quantitative characters which allow effective weed management decision. From the results it appears that the total numbers of individual weeds (TNI) vary among the different species. The variable rate of frequency class distribution of weed flora of paddy fields of Baikunthpur block may be explained by a common biological explanation pattern which implies most dominant species appeared to colonize a new area appropriates a fraction of the available resources and by competitive interaction, preempts that fraction. The second species then preempts a similar fraction of the remaining resource and so on with further colonists. Data presented in Figure 1 reveals the overall frequency distribution of the studied weed flora of the paddy fields of Baikunthpur block. The frequency value ranged between 1-74%.

Data presented in Figure 1 represents the frequency of occurrence of different weed species under the prevailing environmental set up. The results reveal that *Echinochloa colona, Cyperus iria* and *Cynodon dactylon* showing 74%, 50% and 39% frequency and *Marsililia minuta* (33%), *Cyperus flavidos* (33%), *Paspalum paspaloides* (33%) and *Saccharum spontanea* (41%) were more frequent in occurrence. The rarest of occurrence were recorded by *Alternanthera sessilis, Acranythes aspera* representing only 1% of frequency values among the various studied weed flora. Figure 2 represents the density value of the observed weed species in Baikunthpur block. The density value ranges between 0.04 to 3.3. Higher density values were recorded by *Echinochloa colona, Cyperus iria, Eclipta prostrata, Cyperus flavidos*. Highest and lowest density values were recorded by *Echinochloa colona* and *Fimbirystis littoralis*. Most of the plant species reflecting lower density values indicating single plant dominated community structure of the weed flora of the paddy field of Baikunthpur block (Figure 1). Therefore *Echinochloa colona, Cyperus iria, Eclipta prostrata, Cyperus flavidos* can be considered as the dominant weed flora among the weed community prevailing over the paddy fields of Baikunthpur block.

Another important biodiversity indicator is the relative (proportional) abundance or degree of dominance of individuals among different species. This usually referred to as evenness or equitability and measures the extent to which species are equally represented in a community. There exists a strong correlation between structural diversity and species data pertaining to (Figure 3) reveals higher relative abundance for *Cyperus haspan* (3.75), 2.60 in *Cyperus iria*, 2.13 in *Echinochloa colona*, 3.18 in *Ageratum conyzoides* and 3.00 in *Ammania baccifera, Digitaria sanguinalis* and *Eclipta prostrata*. Species showing very less abundance were *Andropogon pumilis, Achyranthes aspera, Eragrostis pilosa, Ipomoea aquatica, Justicia simplicex, Parthenium hysterophorus, Paspalum paspaloides, Polygonum plebejum* and *Sida cordifolia*.

Relative frequency

The relative frequency distribution values represented in Table 1 reflects significant level of variation among the different observed weed species. The relative frequency distribution represented in Table 1 reflects lower values. This therefore indicates that relative proportion of occurrence of species to each other is very low.

Relative density

Data presented in Table 1 reflects significant level of variation in the relative density value among the 43 weed species of Baikunthpur block of Korea District. Relative density value was found to be highest for *Cyperus flavidos* which clearly reflects the single plant dominating feature among the weed community of the paddy fields of Baikunthpur block.
Studies on weed diversity and its associated phytosociology under direct dry seeded rice systems in Koria District (C.G.) India

Citation: Sinha MK. Studies on weed diversity and its associated phytosociology under direct dry seeded rice systems in Koria District (C.G.) India. Adv Plants Agric Res. 2017;7(2):246–252. DOI: 10.15406/apar.2017.07.00248
Table 1 Importance value index (IVI) of different weeds plant species of Baikunthpur (Koria district)

S.No.	Plant species	Relative density	Relative frequency	Relative dominance	I.V.I.
1	Echinochloa colona	1.07319	6.1527	38.1674	45.39329
2	Cyperus iria	1.175	8.29619	31.5562	41.02739
3	Cyamondacryon	0.7319	0.9167	1.1041	2.7527
4	Digitaria sanguinalis	0.2927	0.7639	1.6961	2.7527
5	Eclipta prostrata	0.8783	0.3819	0.1293	1.3895
6	Ipomoea aquatica	0.1463	0.3055	0.7903	1.2421
7	Marsilia minuta	1.8296	1.5863	16.0289	19.4448
8	Cyperus flavus	6.2927	1.5278	22.3611	30.1816
9	Paspalum paspaloides	1.4638	0.9167	13.3065	15.687
10	Saccharum spontaneum	0.763	0.113	10.446	11.322
11	Alysicarpus monilifer	0.8051	0.9617	12.6872	14.454
12	Alternanthera sessilis	1.017	0.291	10.0987	11.4067
13	Cyperus haspen	0.768	0.143	20.436	21.347
14	Ageratum conyzoides	1.017	3.069	21.208	25.294
15	Ammannia baccifera	0.763	1.228	18.5	20.491
16	Andropogon pumilis	0.2195	1.2987	13.6351	15.1533
17	Achyranthes aspera	0.04391	0.3055	20.0377	20.3871
18	Eragrostis pilosa	0.2927	1.06951	19.5748	20.93701
19	Justicia simplex	0.763	0.12	17.416	18.299
20	Parthenium hysterocepharus	0.763	0.12	9.416	10.299
21	Paspalum paspaloides	1.272	0.744	11.415	13.431
22	Polygonum plebejum	1.017	0.4	12.175	13.592
23	Sida cordifolia	0.3659	0.4583	14.5029	15.3271
24	Cyperus rotundus	0.1463	0.9167	12.4511	13.5141
25	Panicum repens	0.8783	0.7639	13.1459	14.7881
26	Cassia tora	0.5123	0.9167	17.2561	18.6851
27	Scirpus grossus	1.543	0.71	15.581	17.834
28	Aschynomene indica	1.272	0.597	10.689	12.558
29	Asteracantha longifolia	2.544	2.725	12.249	17.518
30	Crotalaria juncea	1.017	0.415	16.983	18.415
31	Digitaria adscendens	0.391	0.6111	11.0978	12.0999
32	Fimbristylis adscendens	1.272	1.183	9.481	11.936
33	Rungia pectinata	0.3855	0.9167	12.9746	14.2768
34	Setaria glauca	0.8783	0.9931	11.0773	12.9491
35	Cyperus diffusiforms	0.2195	0.6875	14.5807	15.4877
36	Oxalis corniculata	0.4391	1.1459	13.437	15.022
37	Ascarpus monilifer	0.508	0.132	10.658	11.298
38	Commelina benghalensis	0.763	0.355	12.385	13.503

Citation: Sinha MK. Studies on weed diversity and its associated phytosociology under direct dry seeded rice systems in Koria District (C.G.) India. Adv Plants Agric Res. 2017;7(2):246–252. DOI: 10.15406/apar.2017.07.00248
Relative dominance

Relative dominance of weed species reflected higher values which therefore indicate their relative population strength among the diverse weed community.

Importance value index

The highest IVI value of *Echinocloa colona*, *Cyperus iria* and *Cyperus flavidas* was most dominant among the observed weed community. The lowest IVI values represented by *Cyanodon dactylon*, *Digitaria sanguinalis*, *Eclipta prostrata*, *Ipomea aquatica* reflects that they are the rarest species in the weed community. Thus *Echinocloa colona* is the dominant weed species of the concerned study site. The IVI value ranged between 1.2421 to 45.39329. Our findings were similar with the earlier findings of Holm et al. Cluster analysis of weed flora of Baikunthpur block on the basis of density reflected numerous clustering among different species indicating the closer density value, strong association between different weed species and homogenous distribution of species in their natural habitat (Figure 4). Data presented in Table 2 reflects the results of correlation analysis among the Phytosociological attributes of weed flora of Baikunthpur Block of Korea district. From the correlation study it appears that density is significantly (P>0.05) and positively correlated with frequency and relative frequency. IVI value was found to be strongly correlated with frequency and relative dominance at 5% level of significance. Further frequency is positively correlated with relative frequency.

Diversity indices

Diversity is the index of the ratio between the number of species and the important value of an individual. Shannon index values (3-14) were found to be considerably higher for the concerned study site. The *Viola surpense* is the most dominant species of the study area. The Evenness index value is very low for the Baikunthpur block which therefore indicates the species are clumped together within their habitat and therefore not evenly spaced (Table 3).

Table 2 Correlation analysis between phytosociological attributes of weed flora of different study sites of Baikunthpur area of Koria district

	Frequency	Abundance	RD	RF	Rel Dom	
Frequency	0.738*	0.086				
Density	0.39	0.276	0.437			
Ab	0.161	0.086				
RD	0.748*	0.639	0.112	0.171		
RF	0.556	0.482	-0.029	0.229	0.662	
Rel Dom	0.648	0.552	0.048	0.34	0.757*	0.983*
they must be removed before flowering and fruiting to reduce the production of seeds that remain as soil seed bank for the following years.11,12 For proper management of weed one should remember that most of the weeds flower and fruit during June to November. Weeding has to be done before this period to avoid the gradual development of weed bank in the soil under dormant condition which in further time period would germinate and propagate at faster rate to reduce the agricultural output.21–24

Discussion

The habitat is of immense value to mankind because the modern material civilization is entirely based on the exploitation and utilization of the existing resources drawn from the environment and created through human efforts. The controlling mechanisms of biodiversity in different ecosystems are mentioned by the theory of species richness which considers resource availability and disturbance as factors for structuring plant communities. The concept of species diversity relates simply to “richness” of a community or geographical area in species. At the simplest level of examination, species diversity corresponds to the number of species present. Species diversity is considered to be an important attribute of community organization and allowed comparison of the structural characteristics of the communities. It is often related to community dynamics stability, productivity, integration, evolution, structure and competition. The idea of displacement of one species through competition with other is not prime importance. Observations described above clearly indicate that \textit{Echinochloa colona} and \textit{Cyperus iria} have been found to be most frequently distributed weed species in all the study sites sampled. Density-wise also, these two species were found the most populated species. Almost the same picture is seen with abundance also. This shows that data on density, frequency and abundance do not vary much with respect to cropping seasons and study sites. The high number of weeds identified in this study could be attributed to the presence of a large weed seed bank in the soil that must have been deposited from previous years. Weeds have higher seed production that is easily dispersed through different ways with variable dormancy resulting in germination by flushes over a long period.11 The persistent weed species give a severe competition to paddy crop and reduce the agricultural output.

The exhibition of a high level of persistence of the most important species of weeds as fore-runners in all their Phytosociological attributes could not be unconnected to their similarity in their family’s morph orgy and development attributes. Most of the weed species with the highest density, frequency and abundance were of the grass family and sedges. These weeds have high fecundity producing hundreds of thousands of seeds during single growing season reproduce through vegetative propagules and seeds and have vegetative mimicry with crops in addition to long-time seed dormancy.11,12 From the two years observations, it was found that weed growth occurs within forty one days after paddy sowing/planting and they may propagate by seeds and propagules or by both. The perennial weeds create the most serious problem in paddy fields. Major weeds produce a large number of seeds, which may remain in soil and serve as soil seed bank for the next cropping season. It can be emphasized that major weeds should be controlled at proper time to check reduction in paddy yield and

Conclusion

The present study was conducted as a first ever attempt from the study area to explore and identify the weeds of paddy crop. This will help the farmers and agriculturists of the study area to identify the weeds and thus help in planning a suitable strategy for their control as these weeds compete with paddy crop for resources and hence reduce its yield. They also affect the quality of germplasm and cause enormous loss to the farmers.

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

1. GOI. Ministry of Finance, Government of India. Economic Survey 2011–2012; 2012.
2. Savary S, Castilla NP, Elazegui FA, et al. Multiple effects of two drivers of agricultural change, labour shortage and water scarcity on rice pest profiles in tropical Asia. \textit{Field Crops Res.} 2005;91:263–271.
3. Dangwal LR, Singh A, Singh T, et al. Effects of weeds on the yield of Maize crop in tehsil Nowsera. \textit{International journal of Current Research.} 2011;3(7):69–70.
4. Patil PS, Ahirrao YA, Dusing YA, et al. Role of crop weeds in traditional medicines in Buldhana district (Maharashtra). \textit{Life sciences leaflets.} 2010;10:261–272.
5. Singh S, Singh G, Singh VP, et al. Effect of establishment methods and weed management practices on weeds and rice in rice–wheat cropping system. \textit{Indian Journal of Weed Science.} 2005;37(1–2):51–57.
6. Rao AN, Nagamani A. Available technologies and future research challenges for managing weeds in dry seeded rice in India. In: Proceeding of the 21st Asian Pacific Weed Science Society Conference 2 to 6th Octo-
ber, Sri Lanka; 2007.
7. Sharma BM, Kachroo P. Flora of Jammu and plants of neighborhood. \textit{Bishen Singh Mahendra Pal Singh.} India; 1983.
8. Swami A, Gupta BK. \textit{Flora of Udhampur.} Bishen Singh Mahendra pal Singh, India; 1998 pp. 1–455.
9. Kaul MK. Weed flora of Kashmir valley. \textit{Journal of Economic and Taxonomic Botany, additional series.} India: Scientific Publishers; 1986. p. 1–422.
10. Holm GL, Plucknett DL, Pancho JV, et al. \textit{The World’s Worst Weeds: Distribution and Biology.} USA: East west center press Honolulu Hawaii; 1977.. 1–621.
11. Akobundu JO. Weed Science in the Tropics. \textit{Principles and Practices.} USA: John Wiley & Sons Ltd; 1987. p. 1–538.
12. Zimdahl RL. \textit{Fundamentals of Weed Science.} 3rd ed. USA: Academic press; 2007. p. 1–689.

Table 3 Diversity indices value of weed flora in Baikunthpur block of Koria district

Dominance_D	0.06997
Shannon_H	3.14
Simpson_I-D	0.93
Evenness_e^H/S	0.5372
Menhinick	9.348
Margalef	13.76
Equitability_J	0.8348
Berger-Parker	0.156

Citation: Sinha MK. Studies on weed diversity and its associated phytosociology under direct dry seeded rice systems in Koria District (C.G.) India. \textit{Adv Plants Agric Res.} 2017;7(2):246–252. DOI: 10.15406/apar.2017.07.00248
13. Pandeya SC, Shah DP. Phytosociology and seasonal weed succession of paddy field and a comparison there of with adjoining abandoned arable land at Raipur (M.P.). *Proc Natl Acad Sci India*. 1966;36:190–98.

14. Tripathi RS, Misra R. Phytosociological studies of the crop weed association at Varanasi. *Jour Ind Bot Soc*. 1971;50:142–152.

15. Shukla RV, Diwakar MC. Aquatic and amphibious weeds of Bilaspur (M.P.). *Plant Protection Bulletin*. 1973;1&2:15.

16. Gupta OP. Survey of weed flora of Tarai region U.P. *Cab dev J Sci Technol*. 1966;B 4:86–96.

17. Rao AN, Dagar JC, Dubey PS. Phyto-allelopathic potentials of *P. hysterophorus* Linn. *Ind J Weed Sci*. 1977;9(1):24–30.

18. Kondap S, Chandrashekar Rao MJ, Venkatachari A. Phenological studies of certain weeds. *Proc J Sws APAU Weed Sc Cong Hyderabad*. 1977. p. 226–227.

19. Singh SK. Weed flora of paddy crop in Jaunpur (U.P.). *Oryza*. 1979;6:113–114.

20. Sharma BN. A phytosociological study of a weed community in fallow land in the semi-arid zone of India. *Weed Science*. 1981;29(3):287–291.

21. Pathak T. Ecophysiological studies of some weeds with special reference to Commelina benghalensis. India: University of Saugor Sagar; 1981.

22. Verma A. Ecological studies of some weeds of Central India with special reference to *Alysicarpus longifolia* Wight. India: University of Saugor Sagar; 1981.

23. Shivnath, Gupta SK. Phytosociological studies on weeds competing with Barley (*Hordeum vulgare*) crop. *Ind J of Ecol*. 1982;9:59–63.

24. Khare, Archana, Shrivastava SP, et al. Weed flora of paddy crop of Banda district. *Flora and Fauna*. 2004;10(1):15–18.