The use of stem cells in ischemic heart disease treatment

Radoslaw Litwinowicz, Boguslaw Kapelak, Jerzy Sadowski, Anna Kędziora, Krzysztof Bartus

Department of Cardiovascular Surgery and Transplantology, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland

Kardiochirurgia i Torakochirurgia Polska 2018; 15 (3): 196-199

Abstract

Ischemic heart disease is a major cause of death and disabilities worldwide. Unfortunately, not all patients are suitable for direct revascularization. Cell-based therapies may be alternative options because of their potential to promote neovascularisation and endothelial repair, improving myocardial perfusion. The success of cell-based therapies depends on the type of implanted stem cells, delivery method and underlying disease. Several different cell populations including bone marrow-derived mononuclear cells (MNCs), mesenchymal stromal cells (MSCs), CD34+, CD133+, endothelial progenitor cells, adipose-derived mesenchymal stromal cells (ASCs) and stem cells from placenta and umbilical cord have been investigated. Presently, no consensus exists about the best cell type for clinical regenerative therapy. Because the system of coronary arteries in the ischemic area is poor and most of the coronary artery is significantly narrowed or closed, direct implantation of stem cells in the ischemic area of the heart muscle appears an attractive method.

Key words: ischemic heart disease, stem cells, regenerative medicine.

Introduction

In the U.S. alone 28.1 million people are living with cardiovascular disease, and this number increases every year [1]. Coronary artery disease (CAD) is a major cause of death and disability in developed countries, including in the young adult population [2]. The gold standard for treatment patients with ischemic heart disease is percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG) [3–5]. Nevertheless, an increasing number of patients with advanced coronary artery disease become suboptimal candidates for further revascularization, and continue to have symptoms despite the best medical management [6].

Regenerative therapies using stem cells for the repair of heart tissue have been widely used in preclinical and clinical studies during the past 16 years [7]. Induction of angiogenesis to create de novo collateral vessels within an area of compromised blood flow has been in development since the mid-1980s, soon after the first in vivo reports on the angiogenic effect of recombinant fibroblast growth factor (FGF) [8].

There are several factors that significantly affect the effectiveness of stem cell therapy. Optimal delivery technique is crucial for the precise delivery of stem cells to a specific area of the myocardium, settlement and differentiation. Among the different approaches, direct implantation of cells into heart tissue still attracts the most clinical attention. In this review, we will focus on the intramyocardial delivery of stem cells in treatment of ischemic heart disease.
Delivery methods

The first documented attempt at internal local drug delivery was made by Folkman et al. in 1964 [9]. These investigators attempted to treat surgically induced heart block in dogs through intramyocardial (IMC) release of digitoxin, isoproterenol, tyrosine, thyroid I125, and ethylenediaminetetraacetic acid embedded in a silicone rubber cylindrical capsule (5 mm × 15 mm) surgically implanted in the myocardial wall near the apex.

A range of technologies have been used to deploy the intramyocardial delivery route, from direct syringe injection to the left ventricle under visual control to minimally invasive delivery using guided percutaneous transcatheter injection to the ischemic area of the left ventricle guided by the NOGA system.

It was found that direct injection into the myocardium immediately after the LAD occlusion provided the largest stem cell retention in the injured myocardium (14 ±4% of the total injected cells) [10]. Direct surgical myocardial injection can be performed in hypokinetic myocardial areas not suitable for coronary artery bypass grafting (CABG) [11].

Many investigators have explored intracoronary (IC) delivery of therapeutic agents. While this approach preferentially targets myocardial tissue, it usually does not provide significant drug retention in heart muscle.

Penicka et al. [12] demonstrated that approximately 5% and 1% of the stem cells remain in the human myocardium 2 h and 18 h post-intracoronary application, respectively, while the vast majority of the cells can be found in the spleen, liver, lung, lymph nodes and BM already a couple of hours after transplantation.

Intramyocardial cellular delivery therapy provided a benefit in increasing 6-min walk distance (95% CI: 2.14–15.78%, p = 0.01) and improved decreased systolic wall thickening by –3.7 (95% CI: –7.07 to –0.42, p = 0.03) were found in both cell type groups [26]. Patients from all study groups received the injections at the end of the cardiopulmonary bypass and cold blood cardioplegic arrest, and just prior to removal of the aortic cross clamp.

In patients with left ventricle dysfunction, intramyocardial injection of autologous bone marrow mononuclear cells improve regional wall thickening (6.6 ±6.3% vs. 3.0 ±0.9 at 3 months, p = 0.02), with a trend toward an improved fluorine-18 fluorodeoxyglucose score (2.9 ±0.9 vs. 2.6 ±1.0 at 3 months, p = 0.06) [27].

Types of stem cells

Many types of stem cells are used in scientific research, since the first-in-man application in 2001 and several promising clinical pilot trials [22]. Cell-based therapy promotes tissue regeneration through direct tissue transdifferentiation, paracrine signaling and promotion of neangiogenesis. Mechanisms responsible for neangiogenesis involve release of paracrine factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), angiopeptin-1 and many others.

Bone marrow-derived mononuclear cells (BM-MNCs) represent a heterogeneous population: hematopoietic stem cells, mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs). It is generally accepted that MSCs can express CD44, CD29, CD73, CD90 and CD105, as well as markers CD45, CD34, CD14, CD79a, CD11b and HLA-DR [23].

Many murine, rat, and swine studies have demonstrated that IMC injections of bone mesenchymal stem cells (BMSCs) into the ischemic and infarcted myocardium induce angiogenesis and myocardial blood perfusion, and improve cardiac function [24, 25].

In the COMPARE CPM-RMI trial, wherein bone marrow-derived mononuclear cells (MNCs) and CD133+ stem cells were implanted, increased left ventricular ejection fraction by 9% (95% confidence intervals (CI): 2.14–15.78%, p = 0.01) and improved decreased systolic wall thickening by –3.7 (95% CI: –7.07 to –0.42, p = 0.03) were found in both cell type groups [26]. Patients from all study groups received the injections at the end of the cardiopulmonary bypass and cold blood cardioplegic arrest, and just prior to removal of the aortic cross clamp.

In patients with left ventricle dysfunction, intramyocardial injection of autologous bone marrow mononuclear cells improve regional wall thickening (6.6 ±6.3% vs. 11.7 ±7.0% at 3 months, p < 0.01) and perfusion score (3.5 ±0.7 vs. 3.0 ±0.9 at 3 months, p = 0.02), with a trend toward an improved fluorine-18 fluorodeoxyglucose score (2.9 ±0.9 vs. 2.6 ±1.0 at 3 months, p = 0.06) [27].
Also in the long-term follow-up period, clinical status improvement, no new regional wall motion abnormalities and increase of global ejection fraction were observed [28, 29].

In conclusion, many clinical trials have demonstrated safety and efficiency of intramyocardial stem cell injections into patients with acute and chronic myocardial infarction, as well as improvement in myocardial perfusion and function [28, 30, 31].

Adipose tissue is one of the most highly vascularized tissues in the body. Adipose tissue-derived stem cells (ADSCs) are a cell population with characteristics that are very similar, but not identical, to those of BMSCs [32, 33].

In animal studies, intramyocardially injected adipose-derived stromal cells have demonstrated increased LVEF, wall thickness, and reduction of infarct size in rats [34].

Results from a randomized placebo-controlled study (MyStromalCell Trial) revealed that bicycle exercise tolerance increased significantly by the time of 22 s (95% CI: –164 to 208 s, \(p = 0.034 \)), 4 watts (95% CI: –33 to 41, \(p = 0.048 \)), and 0.2 METs (95% CI: –1.4 to 1.8, \(p = 0.048 \)) in the adipose-derived stromal cell group while there was a non-significant increase in the placebo group by time of 9 s (95% CI: –203 to 221 s, \(p = 0.053 \)), 7 watts (95% CI: –40 to 54, \(p = 0.41 \)), and 0.1 METs (95% CI: –1.7 to 1.9, \(p = 0.757 \)) at 6 months follow-up [35].

The Athena trials used an intramyocardial injection of adipose-derived stromal vascular fraction (SVF) cells in patients with ischemic heart failure and showed that maximum oxygen consumption on exercise treadmill testing was increased in the therapy group but not significantly different from the placebo group [21]. Used SVF cell populations are however heterogeneous, compromising approximately 2% ASCs [36].

Schenke-Layland et al. reported that compared with the control group, the ADSCs-treated group showed less dilated left ventricular end-diastolic dimension, and significantly improved ejection fraction and cardiac output after MI [37].

Currently, several studies using adipose derived stem cells are in progress. A multicentre, double-blind, placebo-controlled phase II study is designed to demonstrate safety and the regenerative efficacy of direct intramyocardial injections of allogeneic adipose-derived stromal cells in patients with chronic ischemic heart failure [38].

Konstanty-Kalandyk et al. reported the safety and feasibility of delivery of fresh ADSCs intramyocardially, using a medical laser, to patients with chronic ischemic heart disease who did not qualify for standard methods of treatment (percutaneous coronary intervention, coronary artery bypass grafting) [16].

Conclusions

Intramyocardial delivery of stem cells is more complicated than intracoronary administration, but it is safe and may provide better therapeutic outcomes. Further studies should be designed to define the optimal cell type to treat ischemic heart disease, including combination cell therapy. Many authors emphasize the importance of proper selection of patients for clinical study using stem cells. Probably some of the patients treated with stem cells respond poorly or not at all to the given stem cells. It may be related to the patient’s age, accompanying diseases, medications or individual predispositions of the patients.

Disclosure

The authors report no conflict of interest.

References

1. Fihn SD, Blankenship JC, Alexander KP, Blitt JA, Byrne JG, Domanski MJ, Faxon DP, Fick GR, Fleischmann KE, Fleetschinger E, Fonarow GC, Gage JN, Geraci JL, Gibbons RJ, Halperin JL, Handberg EE, Hauskins RC, Herrmann-Lingen C, et al. 2016 ACC/AHA/SCAI guidelines for the diagnosis and management of stable ischemic heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2016; 133: e159–e437.

2. Piątek J, Konstanty-Kalandyk J, Kędziora A, Fremling K, Kucewicz K, Piotrowicz M, Rudzinski P, wrobel K, Bartus K, Sadowski J. The use of stem cells in ischemic heart disease treatment. Kardiochirurgia i Torakochirurgia Polska 2018; 15 (3): 198.
16. Konstanty-Kalandyk J, Piątek J, Chrapusta A, Song BH, Urbanyczk-Zawadzka M, Ślosarczyk B, Majka M, Kędziora A, Bartuś K, Podolec P. Use of adi- pose-derived stromal cells in the treatment of chronic ischaemic heart dis- ease: safety and feasibility study. Kardiol Pol (Pol Heart J) 2018; 76: 911-913.

17. Wrobel K, Song BH, Darocha T, Wrózek M, Kapelak B. Minimally invasive coronary artery bypass as a safe method of surgical revascularization. The step towards hybrid procedures. Adv Interv Cardiol 2017; 13: 320-325.

18. Litwinowicz R, Bartus K, Dwrla R, Kapelak B, Konstanty-Kalandyk J, Sob- czynski R, Wierzbicki K, Bartus M, Chrapusta A, Timek T. In-hospital morta- lity in cardiac surgery patients after readmission to the intensive care unit: a single-center experience with 10,992 patients. J Cardiothorac Vasc Anesth 2015; 29: 570-575.

19. Litwinowicz R, Bryndza M, Chrapusta A, Kęsełowska E, Kapelak B, Grudzięń Z. Hyperbaric oxygen therapy as additional treatment in deep sternal wound infec- tions – a single center's experience. Kardiochir Torakochirur Pol 2016; 13: 196-202.

20. Zlabinger K, Pánek J, Chrapusta A, Song BH, Bolli R. Impact of cell therapy on myocardial perfusion and cardiovascular outcomes in patients with angina refractory to medical therapy: a system- atic review and meta-analysis. Circ Res 2016; 118: 984-993.

21. Konstanty-Kalandyk J, Piątek J, Kędziora A, Miszalski-Jamka T, Kapelak B, Bartuś K, Darocha T, Dwrla R, Sadowski J. Long-term follow-up after hol- mium: YAG laser revascularization with autologous bone marrow derived stem cells implantation. Przegl Lek 2017; 74: 91-95.

22. Stamm C, westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, Schümi- ner SC, Roelofs H, Al Younis I, Dibbets-Schneider P, Fibbe WE. Intramyocardial injection of autologous bone marrow-derived ex vivo expanded mesenchym- al stem cells in acute myocardial infarction patients is feasible and safe up to 5 years of follow-up. J Cardiovasc Transl Res 2013; 6: 816-825.

23. Yu H, Lu K, Zhu J, w ang JA. Stem cell therapy for ischemic heart diseases. Cell J 2018; 20: 267-277.

24. Beeres SL, Bax JJ, Dibbets-Schneider P, Stokkel MP, Fibbe WE, van der Walt EE, Schalij MJ, Attsma DE. Intramyocardial injection of autologous bone marrow mononuclear cells in patients with chronic myocardial infarction and severe left ventricular dysfunction. Am J Cardiol 2007; 100: 1094-1098.

25. Konstanty-Kalandyk J, Piątek J, Kędziora A, Miszalski-Jamka T, Kapelak B, Bartuś K, Darocha T, Dwrla R, Sadowski J. Long-term follow-up after hol- mium: YAG laser revascularization with autologous bone marrow derived stem cells implantation. Przegl Lek 2017; 74: 91-95.

26. Khan AR, Farid TA, Pathan A, Tripathi A, Ghafghazi S, Wysockiwnski M, Bolli R. Impact of cell therapy on myocardial perfusion and cardiovascular outcomes in patients with angina refractory to medical therapy: a system-atic review and meta-analysis. Circ Res 2016; 118: 984-993.

27. Konstanty-Kalandyk J, Piatak J, Kędziora A, Miszalski-Jamka T, Rudiński P, Walter Z, Bartus K, Urbanyczk-Zawadzka M, Sadowski J. The combined use of trans- myocardial laser revascularisation and intramyocardial injection of bone marrow-derived stem cells in patients with end-stage coronary artery dis- ease: one year follow-up. Kardiol Pol 2013; 71: 485-492.