Feasibility of using marginal liver grafts in living donor liver transplantation

Xiang Lan, Hua Zhang, Hong-Yu Li, Ke-Fei Chen, Fei Liu, Yong-Gang Wei, Bo Li

Abstract

Liver transplantation (LT) is one of the most effective treatments for end-stage liver disease caused by related risk factors when liver resection is contraindicated. Additionally, despite the decrease in the prevalence of hepatitis B virus (HBV) over the past two decades, the absolute number of HBsAg-positive people has increased, leading to an increase in HBV-related liver cirrhosis and hepatocellular carcinoma. Consequently, a large demand exists for LT. While the wait time for patients on the donor list is, to some degree, shorter due to the development of living donor liver transplantation (LDLT), there is still a shortage of liver grafts. Furthermore, recipients often suffer from emergent conditions, such as liver dysfunction or even hepatic encephalopathy, which can lead to a limited choice in grafts. To expand the pool of available liver grafts, one option is the use of organs that were previously considered “unusable” by many, which are often labeled “marginal” organs. Many previous studies have reported on the possibilities of using marginal grafts in orthotopic LT; however, there is still a lack of discussion on this topic, especially regarding the feasibility of using marginal grafts in LDLT. Therefore, the present review aimed to summarize the feasibility of using marginal liver grafts for LDLT and discuss the possibility of expanding the application of these grafts.

Key words: Marginal liver grafts; Living donor liver transplantation; Liver transplant waiting lists; Small-for-size grafts; Older donors; ABO-incompatible; Steatosis; Chronic hepatitis

© The Author(s) 2018. Published by Baishideng Publishing
There are few reviews concerning the June 21, 2018, liver failure, e.g., the present review aimed to summarize and discuss feasibility of using marginal grafts in LDLT. Therefore, of discussion on this topic, especially regarding the liver transplantation (OLT), but there is still a lack to address the deficiencies of these grafts, recipients can receive a favorable prognosis, similar to that of patients who receive standard liver grafts, under these treatments.

Lan X, Zhang H, Li HY, Chen KF, Liu F, Wei YG, Li B. Feasibility of using marginal liver grafts in living donor liver transplantation. World J Gastroenterol 2018; 24(23): 2441-2456 Available from: URL: http://www.wjgnet.com/1007-9327/full/v24/i23/2441.htm DOI: http://dx.doi.org/10.3748/wjg.v24.i23.2441

INTRODUCTION

The high mortality of patients on waiting lists due to the shortage of cadaveric donors is a major challenge in liver transplantation (LT) [1]. This challenge has led to the emergence of living donor liver transplantation (LDLT) after the first successful procedure in 1989 [2,3]. However, following a sharp increase in recipients who suffer from emergency situations, the wide gap between the demands of patients and suitable living donors is gradually increasing [4,5]. Therefore, the transplantation community has focused on the search for strategies to increase the pool of available liver grafts, including the use of organs that were previously considered “unsuitable” by many and often labeled “marginal” organs [6].

An accepted definition of marginal donors remains unclear in LDLT. These expanded-criteria grafts have the potential to increase the risk of poor graft function or primary nonfunction and are referred to as “marginal” organs [7]. In this review, we define “marginal” liver grafts for LDLT as small-for-size grafts, older donors, moderate or severe steatosis of liver grafts, chronic hepatitis, and grafts with tumors. The survival of recipients with marginal organs can be the same as that of patients with high-quality liver grafts under proper treatment [8].

Many previous studies have reported on the possibilities of using marginal grafts in orthotopic liver transplantation (OLT), but there is still a lack of discussion on this topic, especially regarding the feasibility of using marginal grafts in LDLT. Therefore, the present review aimed to summarize and discuss the possibility of expanding the application of marginal grafts in LDLT.

SMALL-FOR-SIZE GRAFTS IN LDLT

Choosing to use a liver graft can be a remarkably complex decision. There is an increasing trend of patients dying while on waiting lists due to the everyday risk of death or serious complications while waiting; this risk must be balanced against the use of a marginal graft, which may not be feasible. Size mismatching between the graft and the recipient is a critical predictor of the so-called “marginal liver grafts” in LDLT recipients. A small-for-size graft has become the main reason for unsuitability for liver donation in some transplantation centers [9]. The most common index with which to evaluate graft size matching is the graft-to-recipient weight ratio (GRWR) or graft volume (GV)/standard liver volume (SLV). The GRWR was first reported to require a safety range of above 1%; otherwise, the rate of graft survival could decrease [10]. With the increased demand for LDLT and the improvement of surgical techniques, however, many expanded-criteria grafts are used. Accordingly, the accepted arbitrary requirement for GRWR was reduced to 0.8%, and the GV/SLV value was 40% [11,12]. As many transplantation centers accumulated experience on small-for-size grafts for LDLT, grafts with a GRWR < 0.8% were used and reported to be as safe as those with a GRWR ≥ 0.8% [13-17]. After challenging the boundary of GRWR = 0.8%, the acceptable minimum GRWR has been continuously lowered. Lee SD et al [18] reported that a GRWR as low as 0.7% is safe and that there is no need to modulate portal pressure in adult-to-adult LDLT using the right-lobe in favorable conditions, such as a low Model for End-Stage Liver Disease (MELD) score. Furthermore, Alim A et al [19] even suggested that a GRWR as low as 0.6% may be safe if the MELD score is < 20, donor age is < 45, and there is no evidence of liver steatosis in the donor graft during portal inflow modulation performed according to the portal flow. To date, the reported lowest GRWR of grafts that have been successfully used is between 0.40% and 0.46% (Table 1) [20].

Small-for-size syndrome (SFSS), including small-for-size dysfunction (SFSD) and small-for-size nonfunction (SFSNF), is a concerning and life-threatening complication in patients receiving grafts with a GRWR < 0.8% [21,22]. The incidence of SFSS varies from 4.7% to 27.5% in different LT centers [23-30]. Specifically, the syndrome rate can be as high as 50%-75% in left-lobe LDLT or small-for-size grafts group and as low as 8.4% in right-lobe LDLT [31,32]. Graft size is the only independent predictor of SFSS [31]. However, other studies have described that SFSS can occur even in the presence of a normal GRWR [16]. Regardless of the definition used for SFSS, it seems clear that other key factors should be considered in addition to a mismatched graft size. The
incidence of SFSS is listed in Table 2.

Middle hepatic vein (MHV) or outflow reconstruction of the liver graft is associated with size mismatch. A small-for-size graft without MHV reconstruction can lead to various degrees of congestion of the anterior segment and a greater loss of hepatocellular function[33]. In our early observational studies with small sample sizes, we recommended a GRWR > 1.0%[34] or even 1.2%[33] as a security threshold for patients without MHV reconstruction. Asakuma M et al.[36] established an algorithm known as the estimated congestion ratio (ECR, ECR = regional volume of v5 + v8 / right-lobe volume) to estimate whether MHV should be reconstructed for low-GRWR grafts. A liver with an ECR > 0.4 is an MHV-dominant liver, and higher GRWR grafts should be used. However, it is still unknown how far we can lower the GRWR following the improvement of postoperative management and surgical technique if there is no reconstruction of outflow. In addition to outflow reconstruction, the inflow of grafts, including portal hypertension following reperfusion and the hyperdynamic splanchnic state, is reported as a major factor that can trigger SFSS[37-39]. However, these views are controversial[40]. Enhanced cholestasis, hepatocyte ballooning, disruption of the sinusoidal line, and transformation of activated Ito cells into fibroblasts are observed under the conditions of portal hypertension, or overperfusion[41,42]. Recipients with a final portal vein pressure (PVP) ≤ 15 mmHg or a pressure gradient of PVP-central vein pressure (CVP) ≤ 5 mmHg have a better prognosis[43]. In another study, liver-graft-to-spleen-volume ratio was used to predict early graft function in children and young adults undergoing LDLT, in which < 0.88 predicted portal hyperperfusion[44]. Moreover, a MELD score > 20[45], a decline in the platelet (PLT) count at post operation day (POD) 3 > 56%[46], and donor age > 45 years are also risk factors for a poor prognosis in recipients of small-for-size grafts[19].

To increase the safety of the expanded use of small-for-size grafts, some treatments are recommended. Graft inflow or PVP modulation is at the forefront of these treatments. Portosystemic shunting techniques

Table 1 Recommended minimum graft-to-recipient weight ratio in different studies

Ref.	Recommended minimum GRWR	n (small vs large)	One-year survival (small vs large)	Five-year survival (small vs large)	Study type
Kiuchi et al[29] (1999)	1%	276 (49 vs 215)	61.2% vs 92.6%	NS	RS
Lee et al[30] (2003)	0.8%	141 (10 vs 131)	Univariate and multiple analysis	NS	RS
Moon et al[31] (2010)	Less than 0.8%	427 (35 vs 392)	87.8% vs 90.7%	74.1% vs 79.4%	RS
Lan et al[32] (2009)	Less than 0.8%	89 (15 vs 74)	73.3% vs 71.6%	NS	RS
Selzner et al[33] (2009)	Less than 0.8%	271 (22 vs 249)	91.0% vs 89.0%	83.0% vs 87%	RS
Chen et al[34] (2014)	Less than 0.8%	196 (45 vs 151)	82.2% vs 81.4%	71.1% vs 75.5%	RS
She et al[35] (2017)	Left lobe graft vs right lobe graft	218 (19 vs 199)	89.5% vs 95.9%	89.5% vs 86.8%	RS
Lee et al[36] (2014)	Less than 0.7%	317 (23 vs 294)	100% vs 93.2%	NS	RS
Alim et al[37] (2016)	0.6%	649	Seven patients had GRWR of 0.6%.	0% if MELD score was below 20, donor age below 45, and no signs for any hepatosteatosis, GRWR of 0.6% was safe	RS
Lee et al[38] (2015)	0.40%	NS	Lowest GRWR of 0.40% had been successfully used	NS	RS

PS: Prospective study; RS: Retrospective study; Ref.: Reference; GRWR: Graft-to-recipient weight ratio.

Table 2 Incidence of small-for-size syndrome when using small-for-size grafts (n)

Ref.	n	SFSS (Incidence)	Factors to SFSS	Study type
Goldaracena et al[39] (2017)	NS	NS	A graft GRWR < 0.8% predisposes the graft to SFSS	RE
Graham et al[40] (2014)	NS	NS	GRWR of 0.8 to 1.0 was established as a lower limit to prevent SFSS	RE
Botha et al[41] (2010)	21	1 (4.7)	Hemi-portocaval shunt can decrease SFSS incidence	RS
Gorackzyk et al[42] (2011)	22	5 (22.7)	Posterior cavaopulmonary can decrease SFSS incidence	RS
Soejima et al[43] (2003)	36	8 (22.2)	Cirrhosis predisposes the graft to SFSS	RS
Ben-Haim et al[44] (2001)	40	5 (8)	Child’s class B or C with received grafts of GRWR < 0.85% predisposes the graft to SFSS	RS
Sudhindran et al[45] (2012)	NS	10%-20%	Left lobe grafts predisposes the graft to SFSS	RE
Yi et al[46] (2008)	29	8 (27.5)	Left lobe grafts predisposes the graft to SFSS	RS
Soejima et al[47] (2012)	312	43 (15.3)	Left lobe grafts predisposes the graft to SFSS	RS
Gruttadauria et al[48] (2015)	83	13 (15.7)	Non-surgical modulation of the portal inflow can decrease SFSS incidence	RS
Shoreem et al[49] (2017)	174	20 (11.5)	Left lobe grafts predisposes the graft to SFSS	RS
Lauro et al[50] (2007)	8	4 (50)	Surgical modulation of the portal inflow can decrease SFSS incidence	RS

RE: Review; RS: Retrospective study; SFSS: Small-for-size syndrome; GRWR: Graft-to-recipient weight ratio.
or preservation of collateral veins\cite{19,47-50}, as well as splenectomy or splenic artery ligation/embolization\cite{51-53}, are effective ways to address post-transplantation portal hyperperfusion. In cases where the GRWR of grafts is very low, dual grafts can be considered\cite{54}. Moreover, autologous stem cell implantation\cite{55} and auxiliary partial LDLT (a second transplant) are also reported to treat SSFS\cite{56}. Remedies when using small-for-size grafts are listed in Table 3.

Generally, a GRWR < 0.8% is no longer a critical predictor for recipients and can even be lowered to 0.5%-0.6% if there are accompanying factors of PVP ≤ 15 mmHg, MHV reconstruction, or young donor age.

Older Donors in LDLT

Because LDLT allows more choices in the use of a suitable liver graft compared with OLT, elderly donors were rarely considered in the early years of transplantation. However, following the increasing demands for LDLT and the urgent need to save the lives of patients suffering from hepatic encephalopathy, the use of elderly liver grafts has been reported more frequently in recent years as a means to increase the donor pool and address high waiting list mortality\cite{57}. In Japan, the percentages of donors older than 50 and 60 years were 18.1% and 4%, respectively\cite{58}. It is expected that the number of older donors will increase in the future because of the continuing donor shortage\cite{59}.

The definition of older donors is quite different in different transplantation centers. In the present review, we define older donors as donors older than 50 years. Controversy exists regarding the use of livers from older donors. The liver regeneration rate is impaired in older donors (donor age ≥ 50 years) compared with young donors (donor age < 30 years), according to computed tomography (CT) volumetric data after LDLT at POD 7\cite{60}, and donor age (≥50 years) was independently correlated with impaired remnant liver regeneration at 3\cite{61} and 6 mo in right-lobe LDLT\cite{62}. Kawano Y et al\cite{62} analyzed telomeres in the hepatocytes of 12 paired donor-recipients and found that donor age was a crucial factor affecting the sustainability of telomere length in hepatocytes after pediatric LDLT. Based on the conclusion that older donors were significantly associated with impaired liver regeneration, some researchers found that the recipients of grafts from donors older than 45-50 years old, along with a GW/SLV ratio < 35%-40%, had worse outcomes\cite{63,64}. Yoshizumi T et al\cite{65} established the following formula, called a predictive score, to evaluate the impact of donor age, graft size, and MELD score on prognosis: predictive score = 0.011 × graft weight (%) - 0.016 × donor age - 0.008 × MELD score - 0.15 × shunt (if present) - 1.757. Patients with a predictive score ≥ 1.3 had a lower incidence of postoperative complications and a better prognosis.

Additionally, more studies have shown that LDLT using older donors could induce more serious postoperative complications and higher mortality rates than transplants using younger donors\cite{66-70}; similarly, having a donor older than the recipient by > 20 years is problematic\cite{68}. Moreover, it has been reported that fibrosis progression in patients with recurrent hepatitis C tended to be faster after LDLT with grafts from older donors\cite{71}. Donor age is an independent, strong prognostic factor in LDLT. However, other researchers found that grafts from older donors can be used safely, even though the regenerative capacity of older grafts is impaired when the donor age is ≥ 50 years\cite{72-75} or even ≥ 55 years\cite{76}. The impact of older donors on the 1- and 5-year survival of recipients is shown in Table 4.

While donor age is a controversial topic, the impaired regenerative capacity of older grafts has been confirmed in some studies. According to these previous studies, older liver grafts can be prudent candidates but cannot be used in the presence of other marginal conditions (e.g., small-for-size grafts or moderate and severe steatosis). More high-quality and prospective studies are needed on this topic.
Table 4 Older donors for living donor liver transplantation

Ref.	Definition of older donors	n (older vs young)	One-year survival (older vs young)	Five-year survival (older vs young)	Study type
Tanemura et al(2012)	50 yr old	101 (24 vs 77)	Older donor livers might have impaired regenerative ability	RS	RS
Ono et al(2011)	50 yr old	15 (6 vs 9)	Liver regeneration is impaired with age after donor hepatectomy	RS	RS
Akamatsu et al(2007)	50 yr old	299 (62 vs 237)	85.0% vs 93.0%	72.0% vs 87.0%	RS
Kawanou et al(2014)	NS	12	Donor age is a crucial factor affecting telomere length sustainability in hepatocytes after pediatric LDLT	PS	PS
Imamura et al(2017)	NS	198	A worse outcome might be associated with aging of the donor	NS	NS
Dayanag et al(2011)	50 yr old	150 (28 vs 122)	78.6% vs 83.4%	NS	NS
Yoshizumi et al(2008)	NS	28	Graft size, donor age, and patient status are the indicators of early graft function	RS	RS
Han et al(2014)	55 yr old	604 (26 vs 578)	Median OS (M): 31.2 ± 31.5 vs 50.6 ± 40.6	RS	RS
Kamo et al(2015)	60 yr old	1979 (69 vs 1528)	69.5% vs 81.2%	62.0% vs 79.3%	RS
Shin et al(2013)	Donor-recipient age gradient > 20	821	Worse graft survival was observed if the donor is older than the recipient by > 20	RS	RS
Kubota et al(2017)	50 yr old	315 (126 vs 189)	73.0% vs 80.9%	39.7% vs 47.1%	RS
Katsuragawa et al(2015)	NS	24	G/SLV and donor age were independent factors that affected graft survival rates	RS	RS
Wang et al(2015)	50 yr old	159 (10 vs 149)	100% vs 93.0%	90.0% vs 87.0%	RS
Ikekami et al(2008)	50 yr old	232 (32 vs 200)	86.0% vs 81.7%	73.8% vs 76.7%	RS
Li et al(2012)	50 yr old	129 (21 vs 108)	90.0% vs 86.0%	66.0% vs 75.0%	RS
Goldaracena et al(2016)	50 yr old	469 (91 vs 378)	92.0% vs 96.0%	83.0% vs 79.0%	RS
Kim et al(2017)	55 yr old	540 (42 vs 498)	95.2% vs 94.6%		

LDLT: Living donor liver transplantation; CR: Case report; RS: Retrospective study.

ABO-INCOMPATIBLE LDLT

Although more high-quality liver grafts are available for patients in LDLT than in OLT, donors are restricted to family members or domestic relationships in many transplantation centers because of ethical norms. ABO-incompatible LTs are performed only in emergencies, when ABO-compatible grafts are unavailable. Therefore, breaking ABO blood group barriers becomes inevitable. ABO-incompatible LT was first performed and reported by Starzl et al[77], and no acute rejections were observed after transplantation. Subsequently, ABO-incompatible LT gradually began to be performed in some LT centers, and hyperacute rejection was commonly reported[78,79]. In addition to antibody-mediated rejection, ABO-incompatible LT can involve other complications. Thrombotic microangiopathy (TMA) is a rare complication following LT, but it is reported to have a slightly higher incidence in ABO-incompatible LDLT[80-82]. ABO incompatibility, cyclophosphamide and recipient blood group (type O) are closely correlated with the occurrence of TMA[80,82]. The incidence of TMA is 37.9% following ABO-incompatible LDLT and 0.0%-2.8% following ABO-compatible LDLT (OR = 44.7)(80). The elevation of fibrinolytic function markers, such as plasminogen activator inhibitor type 1, can be considered a predictor of TMA following LDLT. The incidence of biliary tract complications is more common than that of TMA. Biliary strictures are one of the most important complications associated with ABO incompatibility, with reported incidence rates between 15.8% and 20.7%(83,84). An isoagglutinin attack on the graft vascular endothelium can result in ischemic cholangiopathy, and isoagglutinin can even directly attack the endothelium of the graft bile duct(85,86). CT scans can provide a clear indication of biliary strictures in ABO-incompatible LDLT[87]. Yamada Y et al[88] reported a case of idiopathic hypereosinophilic syndrome following ABO-incompatible LDLT. The patient suffered from portal vein thrombosis on postoperative day 10, and the histopathological findings of the thrombus revealed dense eosinophilic deposition. Studies on the impact of ABO incompatibility on LDLT are listed in Table 5.

Despite serious complications, ABO-incompatible LDLT can be a feasible option for patients if certain essential treatments are included[89,90]. Rituximab, an anti-CD20 immunoglobulin (IgG)1 terminating B-lymphocytes with an affinity for IgG Fc receptor (FcγR) and rituximab, however, is a critical strategy in the regimens for desensitization for ABO-incompatible LDLT and yields outcomes for ABO-incompatible LDLT that are similar to those for ABO-compatible LDLT[91,92]. Rituximab is given for 3 d[91], 3 wk, or even as soon as a suitable donor that is ABO-compatible is selected[93] at a dosage of 375 mg/m². In the early stage of transplantation, rituximab was usually given along with one or more other protocols, such as a splenectomy[95,96], plasma exchanges[97-102], intravenous IgG[100,103], and intrahepatic arterial infusion of prostaglandin E1[92,104,105]. In some recent studies, pre-transplant rituximab and/or basiliximab monotherapy, without additional treatments, also yielded outcomes that are comparable to those of procedures with additional treatments[106]. The affinity between IgG Fcγ Receptor (FcγR) and rituximab, however, is influenced by the single-nucleotide polymorphisms (SNPs) of FcγR. SNPs of FCGRA2 (131H/R) and FCGRA3 (158F/V) are the alleles that encode FcγR. FCGRA2 (131H/ H) had a higher affinity for IgG1 than FCGRA2 (131H/R...
or R/R). Accordingly, patients with FCGR2A (131H/H) have a better reaction to the effects of rituximab on B cells[91]. The treatment results of ABO-compatible LDLT are summarized in Table 6.

These findings reveal that rituximab monotherapy in ABO-compatible LDLT is feasible, but it is better to test the SNPs of FcγR; otherwise, multiple treatments, such as plasma exchanges and intravenous IgG, must be performed in addition to rituximab if there is a lower affinity between IgG FcγR and rituximab. There is still a lack of more persuasive evidence to confirm the feasibility of splenectomy in conjunction with ABO-compatible LDLT treatments.

LIVER GRAFT STEATOSIS

Steatosis is a common feature used to identify marginal liver function, and reports on the utility of steatotic liver grafts in clinical practice have yielded controversial results. The use of steatotic liver grafts has been confirmed to have a significant relationship with increased complications and poorer outcomes[107,108]. Traditionally, steatotic livers with > 60% fat must be discarded. Livers with < 30% fat are feasible and anticipated to have good function. Livers with 30%-60% fat have poor results, with decreased graft survival and decreased patient survival[109]. Moreover, hepatic steatosis is reported to be a leading cause of donor rejection in LDLT[110]. In some transplantation centers, approximately 40% of donor grafts are discarded because of severe liver steatosis[99]. Because of the release of inflammatory cytokines and inhibition of the capacity to differentiate steatosis hepatocytes, the early regenerative capacity of the remnant liver is injured, and, as a result of impaired hepatocyte replication, compensatory expansion of hepatic progenitor cells occurs during steatotic liver regeneration after LDLT[111]. Furthermore, Cho et al[112] confirmed that hepatic steatosis is associated with intrahepatic cholestasis and transient hyperbilirubinemia during regeneration after LDLT. In this study, 67 LDLT recipients examined on POD 10 were scored based on the numbers of portal tracts per area of liver tissue and intrahepatic cholestasis, and the preoperative degree of macrovesicular steatosis was found to be independently associated with cholestasis after LDLT. However, these researchers also found that the long-term capacity of hepatocyte regeneration was not impaired after LDLT with mild macrovesicular steatosis grafts[113]. Based on this finding, some recent studies have found that moderately steatotic liver grafts and donors with a BMI ≥ 30 kg/m² are not contraindications for LDLT, and complications and survival are not significantly different compared with those associated with non-steatosis grafts[114,115]. Moreover, the risk of steatosis was determined by the presence of microsteatosis and macrosteatosis, rather than the total quantitative degree of steatosis. The grafts with high microsteatosis (30%) mixed with macrosteatosis showed no significant difference in postoperative biochemical liver function, 2-wk graft regeneration, postoperative complications, and 5-year survival[116]. The studies on the impact of graft steatosis on LDLT outcomes are listed in Table 7.

To decrease the risk associated with fatty liver grafts, especially with severe steatosis, some treatments are suggested (Table 8). According to Oshita et al[117], donors who are diagnosed with hepatic steatosis pre-transplantation should undergo a diet treatment consisting of an 800-1400 kcal/d diet and a 100-400 kcal/d exercise regimen without drug treatment with a target body mass index of 22 kg/m². After these strategies, the average BMI was reduced from 23.3 ± 0.6 to 21.9 ± 0.4 kg/m². The liver biopsy results of most of these donors showed stage 0/1 fibrosis and minimal/mild steatosis after the diet therapy. In addition, surgical outcomes and overall survival did not significantly differ between the recipients of grafts from non-steatosis and diet-treated donors (with steatosis). In another study, bezafibrate (400 mg/d) was used along with a protein-rich (1000 kcal/d) diet and exercise (600 kcal/d) for 2-8

![Table 5 Impact of ABO-incompatible on living donor liver transplantation](https://example.com/table5)

Ref.	n	Complications	Incidence of related complication (%)	Risk factors	Study type
Miyata et al[89](2007)	57	Thrombotic microangiopathy	7.0	ABO-incompatibility, CPA, and recipient blood group (type O)	RS
Oya et al[90](2008)	1	Thrombotic microangiopathy	NS	ABO-incompatible LDLT (type B to O)	CR
Kishida et al[91](2016)	129	Thrombotic microangiopathy	10.1	ABO-incompatible, tacrolimus	RS
Song et al[92](2014)	1102	Biliary stricture	15.8	ABO-incompatible, acute cellular rejection	RS
Ikegami et al[93](2016)	408	Biliary stricture	20.4	ABO-incompatible	RS
Yamada et al[94](2010)	1	Idiopathic hypereosinophilic	NS	ABO-incompatible	CR

LDLT: Living donor liver transplantation; CR: Case report; RS: Retrospective study.
In conclusion, steatosis in the donor must be thoroughly evaluated before LDLT, either by biopsy or imaging diagnosis. The proportion of macrosteatosis is now considered a crucial predictor of the prognosis of recipients. If there are no further options, donors with severe liver steatosis and another had a low GRWR.

In conclusion, steatosis in the donor must be thoroughly evaluated before LDLT, either by biopsy or imaging diagnosis. The proportion of macrosteatosis is now considered a crucial predictor of the prognosis of recipients. If there are no further options, donors with severe liver steatosis and another had a low GRWR.

CHRONIC HEPATITIS OF GRAFTS

The use of liver grafts that test positive for chronic hepatitis or other blood disseminated diseases found in epidemic areas is usually inevitable in cases of organ shortages associated with OLT. However, because LDLT recipients, to some degree, have more choices regarding his/her donors, there are a few studies reporting on HBsAg or HbcAb(+) liver grafts, while no studies refer to HCV-positive living liver grafts.

Ref.	n	Immunosuppression strategy	Remedies	Conclusion	Study type
Kawagishi et al. (2009)	105	TAC + MP + AZ	Rituximab	ABO-incompatible LDLT can be feasible if humoral rejection are overcome	RS
Yoon et al. (2018)	918	TAC + MP + steroids	Rituximab and PE	ABO-incompatible LDLT is a feasible option under remedies	RS
Sakai et al. (2017)	20	TAC + MP	Rituximab and PE	FCGR SNPs influence the effect	PS
Egawa et al. (2017)	33	TAC	Rituximab, PE, local infusion, splenectomy and immunoglobulins	Only rituximab dose is a significantly favorable factor for AMR	RS
Ikegami et al. (2007)	1	TAC + MP + steroids	Rituximab and PE	Rituximab and plasma exchanges seemed ineffective	CR
Ikegami et al. (2009)	7	TAC + MP + steroids	Rituximab, IVIG, and PE	Rituximab, IVIG, and PE seems to be a safe treatment	RS
Usui et al. (2007)	73	TAC + MP + steroids	Rituximab, PE and splenectomy	Bone suppression is a big challenge when using rituximab	RS
Chen et al. (2017)	2	TAC + MP + steroids	Basiliximab combine with splenectomy	ABO-i LDLT with splenectomy is undoubtedly life-saving	CR
Uchiyama et al. (2011)	15	TAC + MP + steroids	Rituximab and PE	Isogglutinin mediated-rejection should be more concerned	RS
Soin et al. (2014)	3	TAC + MP + steroids	Rituximab and PE	ABO-incompatible LDLT is a feasible option under remedies	CR
Rummler et al. (2017)	10	TAC + MP + steroids	PE	Immunosuppression only combining with PE is feasible	RS
Kim et al. (2016)	182	TAC + MP + steroids	Rituximab, IVIG, and PE	ABO-incompatible LDLT can be safely performed under remedies	RS
Kim et al. (2013)	22	TAC + MP + steroids	Rituximab and PE	ABO-incompatible LDLT can be safely performed under remedies	RS
Kawagishi et al. (2005)	3	TAC + MP + steroids	Rituximab and PE	ABO-incompatible LDLT can be safely performed under remedies	CR
Kim et al. (2017)	43	TAC + MP + steroids	Rituximab and IVIG	A simplified protocol using rituximab and IVIG for ABO-I LDLT	RS
Yoshizawa et al. (2005)	8	TAC + MP + cyclophosphamide infusion	Rituximab and PGE1 infusion	LDLT is safe	RS
Egawa et al. (2008)	118	TAC + steroids	Methylprednisolone and PGE1 infusion	Recipients with preexisting high effector CD8 T-cells are unfavorable candidates for ABO-I LDLT	RS
Yamamoto et al. (2018)	40	TAC + MP + steroids	Rituximab monotherapy	Rituximab monotherapy is feasible	RS

LDLT: Living donor liver transplantation; CR: Case report; RS: Retrospective study; SNPs: Single-nucleotide polymorphisms.

Even severely steatotic livers could be used for LDLT grafting subsequent to this short-term treatment regimen. Furthermore, a 1200 kcal/d diet and a minimum of 60 min/d of moderate cardio training are also recommended to rapidly reverse liver steatosis in donors.

In conclusion, steatosis in the donor must be thoroughly evaluated before LDLT, either by biopsy or imaging diagnosis. The proportion of macrosteatosis is now considered a crucial predictor of the prognosis of recipients. If there are no further options, donors with hepatic steatosis can reach donation criteria through lifestyle and dietary changes in a short time.
Treatments

Typically steatotic livers with > 60% fat are not transplanted; with < 30% fat are usable and anticipated to have good function; with 30%-60% fat give poor results

Study type

Bezafibrate (400 mg/d) was used along with a protein-rich (1000 kcal/d) diet and

Approximately 40% of donor grafts are discarded because of severe liver steatosis

The risk of steatosis may be determined by the relative composition of MiS and MaS, rather than the total quantitative degree

Hepatocyte replication is impaired during steatotic liver regeneration after LDLT

Mildly steatotic graft did not increase the risk of graft dysfunction or morbidity in LDLT

Hepatic steatosis is a leading cause of donor rejection in LDLT

Hepatic steatosis is associated with intrahepatic cholestasis and transient hyperbilirubinemia during regeneration

Comments

Diet treatment consisting of an 800 to 1400 kcal/d diet and a 100 to 400 kcal/d exercise regimen without drug treatment, targeting body mass index of 22 kg/m²

Bezafibrate (400 mg/d) was used along with a protein-rich (1000 kcal/d) diet and exercise (600 kcal/d) for 2-8 wk

1200 kcal/d and a minimum of 60 min/d of moderate cardio training are also recommended to rapidly reverse liver steatosis in donors

The risk of steatosis may be determined by the relative composition of MiS and MaS, rather than the total quantitative degree

LDLT: Living donor liver transplantation; RS: Retrospective study; PS: Prospective study.

Table 7 Impact of graft steatosis on living donor liver transplantation

Ref.	n	Conclusion	Study type
Dirican et al (2015)	161	Typically steatotic livers with > 60% fat are not transplanted; with < 30% fat are usable and anticipated to have good function; with 30%-60% fat give poor results	RS
Perkins et al (2006)	NS	Hepatic steatosis is a leading cause of donor rejection in LDLT	Comments
Kotecha et al (2013)	340	Hepatocyte replication is impaired during steatotic liver regeneration after LDLT	PS
Cho et al (2010)	54	Hepatic steatosis is associated with intrahepatic cholestasis and transient hyperbilirubinemia during regeneration	PS
Cho et al (2005)	55	Mildly steatotic graft did not increase the risk of graft dysfunction or morbidity in LDLT	PS
Gao et al (2009)	24	Moderately steatotic (30%-60%) liver grafts provide adequate function in the first phase after transplantation and can be used for transplantation	RS
Knaak et al (2017)	105	Donors with BMI > 30, in the absence of graft steatosis, are not contraindicated for LDLT	RS
Han et al (2015)	211	The risk of steatosis may be determined by the relative composition of MiS and MaS, rather than the total quantitative degree	RS

Table 8 Treatments for fat donors

Ref.	n	Treatments	Study type
Oshita et al (2012)	128	Diet treatment consisting of an 800 to 1400 kcal/d diet and a 100 to 400 kcal/d exercise regimen without drug treatment, targeting body mass index of 22 kg/m²	RS
Nakamuta et al (2013)	11	Bezafibrate (400 mg/d) was used along with a protein-rich (1000 kcal/d) diet and exercise (600 kcal/d) for 2-8 wk	RS
Choudhary et al (2015)	16	1200 kcal/d and a minimum of 60 min/d of moderate cardio training are also recommended to rapidly reverse liver steatosis in donors	PS
Moon et al (2006)	2	Dual-graft living donor liver transplantation for severe graft steatosis	CR

RS: Retrospective study; PS: Prospective study; CR: Case report.

Infection after transplantation (Table 9). However, these grafts are still considered to be safe and feasible with antiviral prophylaxis in both adult and pediatric LDLT[121-126]. Patients were given HBV vaccinations to achieve anti-HBs > 1000 IU/L pre-transplantation and > 100 IU/L post-transplantation, with a standard post-transplantation treatment regimen of high-dose hepatitis B IgG, lamivudine and/or adefovir (in cases of lamivudine resistance)[126]. Specifically, some studies have proposed a new strategy; specifically, patients with a pre-transplantation anti-HB titer > 1000 IU/L do not need post-transplantation prophylaxis; patients with a low pre-transplantation titer, < 1000 IU/L, should be given lamivudine post-transplantation (at a dose of 100 mg/d or 3 mg/kg/d for at least 2 years after transplantation) or adefovir prophylaxis (with lamivudine at a dose of 10 mg/d if a mutant strain for lamivudine is identified) and, hopefully, will respond appropriately to post-transplantation vaccinations by maintaining anti-HB titers > 100 IU/L; and low titer non-responders (anti-HB titer < 100 IU/L despite vaccination) should be given continuous lamivudine or adefovir indefinitely[121]. In some transplantation centers, nucleotide analogs (lamivudine) are routinely used first if HBsAg(-) LDLT patients receive HBsAg or HBcAb(+) grafts, regardless of the anti-HB titer, for at least 2 years. Moreover, patients who had a YMDD mutation were given adefovir combined with lamivudine.[123] Hara Y et al[118] reported one patient who experienced spontaneous eradication of de novo HBV after LDLT with an HBcAb(+) graft without any treatment. This 8-year-old female patient (HBsAg-negative) underwent LDLT, received an HBcAb(+) left-lobe graft, and was subsequently infected with HBV. Sixteen years after LDLT, her serological HBV status was as follows: HBsAg(-), HBsAb(+), HBeAb(-), HBeAb(+), HbcAb(+), and HBV DNA(-). In another study, recipients with HCV genotype 2 infections who had received an HbcAb(+) graft were given sofosbuvir and ribavirin, along with hepatitis B IgG to prevent recurrence of HCV and HBV[128].

In HBsAg(+) LDLT patients who receive HBsAg or HbcAb(+) grafts, the antiviral protocol must be performed as for HBsAg(-) LDLT patients to maintain the HBV DNA at a low or negative level, despite the persistence of the HBV marker (HBsAg). High-dose HBV IgG, lamivudine, famciclovir, and interferon were recommended (Table 10)[129-131].

Populations with HBsAg-negative/HBcAb-positive and undetectable serum HBV DNA have been gradually increasing over the past several decades. Most patients are now considered to have a covert HBV infection and have a high risk of HBV reactivation when treated with
a robust immunosuppressive agent[132]. Therefore, the use of HBsAg-negative/HBcAb-positive liver grafts has a high risk of de novo HBV for HBsAg(-) recipients. However, with active immunization and an antiviral protocol, the HBsAg-negative/HBcAb-positive liver grafts can be transplanted safely.

GRAFTS WITH A BENIGN HEPATIC TUMOR

Usually, there are rare recipients of LDLT or doctors who are willing to make an active choice to use a graft with an undetermined tumor. This is not only an ethical issue but also indicates a high risk for recipients to face rapid dysfunction of their liver grafts. However, if recipients are in an emergency situation and have no other proper donors, grafts with benign tumors may be a last choice. Li G et al[133] recently reported on 15 consecutive recipients using an otherwise discarded, partial liver resection graft with a benign hepatic tumor. These benign tumors are as follows: Cavernous hemangioma, perivascular epithelioid cell tumor, inflammatory pseudotumor, and focal nodular hyperplasia. One patient died from a pulmonary embolism, and the other 14 patients had a good prognosis. Additionally, a vanishing tumor in a liver graft from an HBV(+) donor was observed. Contrast-enhanced magnetic resonance imaging (MRI) showed hypervascularity in the arterial phase and in the hepatobiliary phase, the tumor showed a low intensity, findings similar to those in HCC. Regardless, the graft with suspected HCC was accepted by the recipient, and the tumor disappeared completely within several months after LDLT[134].

For LDLT patients using grafts with a benign hepatic tumor, only two observational studies with a small sample size are present in the literature (Table 11). It seems that grafts with benign tumors are feasible in some conditions, but more studies with long-term follow-ups are needed to evaluate the safety of these grafts.

Ref.	n	Type of tumors in grafts	Prognosis	Study type
Li et al[133] (2017)	15	Cavernous hemangioma, perivascular epithelioid cell tumor, inflammatory pseudotumor, and focal nodular hyperplasia	One patient died from pulmonary embolism	OS
Fuchino et al[134] (2017)	1	HBsAg(+) and inflammatory pseudotumor	Tumor vanished after 3 yr	CR

OS: Observational study; CR: Case report.
marginal grafts.

CONCLUSION
To our knowledge, this is the first review on marginal donors specifically for LDLT. This review, which includes cohort studies, case-control studies, and case reports on marginal liver grafts in LDLT, demonstrated that marginal grafts are a feasible way to expand the options for patients on LT waiting lists in emergency situations (e.g., liver failure or hepatic encephalopathy); however, these grafts place the recipients at a greater risk of liver dysfunction. Some indispensable treatments are needed to address the deficiencies of these grafts.

There are some new findings in this review: (1) It is permissible for the GRWR to be as low as 0.5%-0.6% (not 0.8%, as currently specified) if PVP is controlled under 15 mmHg; otherwise, outflow reconstruction is needed. (2) There is controversy surrounding older liver grafts. These grafts can be used prudently, but other marginal conditions must be absent (e.g., small-for-size grafts or moderate and severe steatosis). (3) Splenectomy is no longer necessary when an ABO-incompatible LDLT is performed. Rituximab monotherapy is even confirmed
to be an effective treatment if there is a high affinity between IgG FcR and rituximab. (4) Total steatosis of liver grafts is not a proper predictor of prognosis. Instead, the presence of microsteatosis and macrosteatosis is a crucial factor. Donors with steatosis of the liver can meet the donation criteria through lifestyle and dietary changes before surgery. (5) HbsAg or HbcAb(+) grafts increase the risk of de novo HBV infection after transplantation in HbsAg(-) LDLT patients but can also be used safely with active immunotherapy. And (6) Grafts with benign tumors that have been discarded from other patients are feasible, but the long-term prognosis cannot be determined.

According to the new findings of this review listed above, we summarized a selection of strategies for different types of marginal liver grafts in LDLT and their related treatments (Figure 1). With this review, based on more than 100 references, we expect that the transplantation pool can be effectively and safely expanded in the situation of organ shortage.

ACKNOWLEDGMENTS

We thank Dr. Lunan Yan (Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University) for the assistance with data collection.

REFERENCES

1. Fisher RA. Living donor liver transplantation: eliminating the wait for death in end-stage liver disease? Nat Rev Gastroenterol Hepatol 2017; 14: 373-382 [PMID: 28196987 DOI: 10.1038/nrgastro.2017.2]

2. Makuchii M, Kawasaki S, Noguchi T, Hashikura Y, Matsunami H, Hayashi K, Harada H, Kakazu T, Takayama T, Kawarasaki H. Donor hepatopcytology for living related partial liver transplantation. Surgery 1993; 113: 395-402 [PMID: 8456395]

3. Makuchii M, Kawasaki H, Iwanaka T, Kamada N, Takayama T, Kamon M. Living related liver transplantation. Surg Today 1992; 22: 297-300 [PMID: 1302338]

4. Routh D, Sharma S, Naidu CS, Rao PP, Sharma AK, Ranjan P. Comparison of outcomes in ideal donor and extended criteria donor in deceased donor liver transplant: a prospective study. Int J Surg 2014; 12: 774-777 [PMID: 24947949 DOI: 10.1016/j.ijsu.2014.06.003]

5. Nure E, Lirosi MC, Frongillo F, Bianco G, Silvestrini N, Firollo C, Sanga G, Agnes S. Overextendend Criteria Donors: Experience of an Italian Transplantation Center. Transplant Proc 2015; 47: 2102-2105 [PMID: 26561653 DOI: 10.1016/j.transproceed.2014.1.077]

6. Laing RW, Mergental H, Yap C, Kirkham A, Whiliku M, Barton D, Curbishley S, Boteon YL, Dea NH, Ahlbusch SG, Perera MTPR, Mueisan P, Isaacs J, Roberts KJ, Cilliers H, Aford SC, Mirza DF. Viability testing and transplantation of marginal livers (VITTAL) using normothermic machine perfusion: study protocol for an open-label, non-randomised, prospective, single-arm trial. BMJ Open 2017; 7: e017733 [PMID: 29183928 DOI: 10.1136/bmjopen-2017-017733]

7. Nemes B, Gelley F, Zádori G, Piros L, Pernečzyk J, Kóbori L, Fehérövári I, Görög D. Outcome of liver transplantation based on donor graft quality and recipient status. Transplant Proc 2010; 42: 2327-2330 [PMID: 20692473 DOI: 10.1016/j.transproceed.2010.05.018]

8. Giretti G, Barbier L, Bucur P, Marques F, Perarnau JM, Ferrandiere M, Teltier AC, Kerouedan V, Altieri M, Causse X, Debette-Graetien M, Silvain C, Salamé E. Recipient Selection for Optimal Utilization of Discarded Grafts in Liver Transplantation. Transplantation 2018; 102: 775-782 [PMID: 29298235 DOI: 10.1097/TP.0000000000002069]

9. Dirican A, Baskiran A, Dogan M, Ates M, Soyer V, Sarici B, Ozdemir F, Polat Y, Yilmaz S. Evaluation of Potential Donors in Living Donor Liver Transplantation. Transplant Proc 2015; 47: 1315-1318 [PMID: 26903708 DOI: 10.1016/j.transproceed.2015.04.045]

10. Kluchi T, Kasahara M, Uryuhara K, Inomata Y, Uemoto S, Asoumna K, Egawa H, Fujita S, Hayashi M, Tanaka K. Impact of graft size mismatching on graft prognosis in liver transplantation from living donors. Transplantation 1999; 67: 321-327 [PMID: 10075602]

11. Lee DS, Gil WH, Lee HH, Lee KW, Lee SK, Kim SJ, Choi SH, Heo HS, Hyon WS, Kim GS, Paik SW, Koh KC, Joh JW. Factors affecting graft survival after living donor liver transplantation. Transplant Proc 2004; 36: 2255-2256 [PMID: 15561210 DOI: 10.1016/j.transproceed.2004.08.073]

12. Fan ST, Lo CM, Liu CL, Yong BH, Wong J. Determinants of hospital mortality of adult recipients of right lobe liver donor liver transplantation. Ann Surg 2003; 238: 864-869; discussion 869-870 [PMID: 14631223 DOI: 10.1097/01.Prs.0000089618.11382.77]

13. Moon JJ, Kwon CH, Joh JW, Jung GO, Choi GS, Park JB, Kim JM, Shin M, Kim SJ, Lee SK. Safety of small-for-size grafts in adult-to-adult living donor liver transplantation using the right lobe. Liver Transpl 2010; 16: 864-869 [PMID: 20583075 DOI: 10.1002/lt.22094]

14. Lan X, Li B, Wang XF, Peng CJ, Wei YG, Yan LN. [Feasibility of small size graft following living donor liver transplantation]. Zhonghua Wai Ke Za Zhi 2009; 47: 1218-1220 [PMID: 19781165]

15. Selzner M, Kashti A, Catral MS, Selzner N, Greig PD, Lilly L, McGilvery ID, Therapondos G, Adcock LE, Chanakar A, Levy GA, Renner EL, Grant DR. A graft to body weight ratio less than 0.8 does not exclude adult-to-adult right-lobe living donor liver transplantation. Liver Transpl 2009; 15: 1776-1782 [PMID: 19938139 DOI: 10.1002/lt.21955]

16. Chen PX, Yan LN, Wang WT. Outcome of patients undergoing right lobe living donor liver transplantation with small-for-size grafts. World J Gastroenterol 2014; 20: 282-289 [PMID: 24415883 DOI: 10.3748/wjg.v20.i1.282]

17. She WH, Chok KS, Fung JY, Chan AC, Lo CM. Outcomes of right-lobe and left-lobe living-donor liver transplantations using small-for-size grafts. World J Gastroenterol 2017; 23: 4270-4277 [PMID: 28694667 DOI: 10.3748/wjg.v23.i23.4270]

18. Lee SD, Kim SH, Kim YK, Lee SA, Park SJ. Graft-to-recipient body weight ratio lower to 0.7% is safe without portal pressure modulation in right-lobe living donor liver transplantation. Liver Transpl 2009; 15: 1776-1782 [PMID: 19938139 DOI: 10.1002/lt.21955]

19. Chang HY, Yen YH, Yeh KJ, Chen CW, Lin SH. Small-for-size grafts in liver transplantation: a review of surgical technique and current challenges to expand indication of patients. Hepatobiliary Pancreat Dis Int 2014; 13: 18-24 [PMID: 24463075]

20. Alim A, Erdogan Y, Yucer Y, Tokat Y, Oezcelik A. Graft-to-recipient weight ratio threshold adjusted to the model for end-stage liver disease score for living donor liver transplantation. Liver Transpl 2016; 22: 1643-1648 [PMID: 27590534 DOI: 10.1002/lt.24523]

21. Lee SG. A complete technique of adult living donor liver transplantation: a review of surgical technique and current challenges to expand indication of patients. Am J Transplant 2015; 15: 17-38 [PMID: 25358749 DOI: 10.1111/ajt.12907]

22. Goldaracena N, Echeverri J, Selzner M. Small-for-size syndrome in liver donor liver transplantation: Pathways of injury and therapeutic strategies. Clin Transplant 2017; 31 [PMID: 27935645 DOI: 10.1111/ctn.12885]

23. Graham JA, Samstein B, Emond JC. Early Graft Dysfunction in Living Donor Liver Transplantation and the Small for Size Syndrome. Curr Transplant Rep 2014; 1: 43-52 [PMID: 27280080 DOI: 10.1007/s40472-013-0006-1]
23 Botha JF, Langnas AN, Campos BD, Grant WJ, Freise CE, Ascher NL, Mercer DF, Robert J. Left lobe adult-to-adult living donor liver transplantation: small grafts and hemiportocaval shunts in the prevention of small-for-size syndrome. Liver Transplant 2010; 16: 649-657 [PMID: 20440774 DOI: 10.1002/lt.22043]

24 Goralczyk AD, Obad A, Beham A, Tsui TY, Lorenz T. Posterior cavaoplasty: a new approach to avoid venous outflow obstruction and symptoms for small-for-size in right lobe living donor liver transplantation. Langenbecks Arch Surg 2011; 396: 389-395 [PMID: 21207055 DOI: 10.1007/s00423-010-0736-9]

25 Soejima Y, Shimada M, Suehiro T, Hiroshige S, Ninomiya M, Shiota S, Harada N, Hideshi I, Yonenura Y, Maehara Y. Outcome analysis in adult-to-adult living donor liver transplantation using the left lobe. Liver Transplant 2003; 9: 581-586 [PMID: 12738939 DOI: 10.1097/01.TIL.0000131041.51344.2F]

26 Ben-Haim M, Enre S, Fishbein TM, Sheiner PA, Bodian CA, Kim-Schluger L, Schwartz ME, Miller CM. Critical graft size in adult-to-adult living donor liver transplantation: impact of the recipient’s disease. Liver Transplant 2001; 7: 948-953 [PMID: 11699036 DOI: 10.1097/01.TIL.0000105472.47127.e2]

27 Sudhindran S, Menon RN, Balakrishnan D. Challenges and Outcome of Left-lobe Liver Transplants in Adult Living Donor Liver Transplanters. J Clin Exp Hepatol 2012; 2: 181-187 [PMID: 25755426 DOI: 10.1016/S0973-683X(12)60106-6]

28 Yi NJ, Suh KS, Cho YB, Lee HW, Cho EH, Cho JY, Shin WY, Kim J, Lee KU. The right small-for-size graft results in better outcomes than the left small-for-size graft in adult-to-adult living donor liver transplantation. World J Surg 2008; 32: 1722-1730 [PMID: 18553047 DOI: 10.1007/s00268-008-9641-y]

29 Soejima Y, Shirabe K, Taketomi A, Yoshizumi T, Uchiyama H, Ikegami T, Ninomiya M, Harada N, Iijici H, Maehara Y. Left lobe living donor liver transplantation in adults. Am J Transplant 2012; 12: 1877-1885 [PMID: 22424947 DOI: 10.1111/j.1660-6413.2012.04022.x]

30 Gruttadaria S, Pagano D, Liotta R, Tropea A, Tuzzolino F, Marrone G, Mammone G, Marsh JW, Miraglia R, Luca A, Vizzini G, Gridelli BG. Liver Volume Restoration and Hepatic Microarchitecture in Small-for-Size Syndrome. Ann Transplant 2015; 20: 381-389 [PMID: 26148966 DOI: 10.12659/AOT.940820]

31 Shorenbein H, Gad EH, Soliman H, Hegazy O, Saleh S, Zakaria H, Fuster J, Rimola A, García-Valdecasas JC. Decompression of the portal bed and twice-baseline portal inflow are necessary far can we lower graft-to-recipient weight ratio for living donor liver transplantation under modulation of portal venous pressure? J Clin Exp Hepatol 2017; 7: 235-246 [PMID: 28970711 DOI: 10.1016/j.jche.2017.01.114]

32 Ikegami T, Shirabe K, Yoshizumi T, Aishima S, Taketomi YA, Soejima Y, Uchiyama H, Kayashima H, Yoshima T, Maehara Y. Primary graft dysfunction after living donor liver transplantation is characterized by delayed functional hyperbilirubinemia. Am J Transplant 2012; 12: 1886-1897 [PMID: 22494784 DOI: 10.1111/j.1660-6413.2012.04052.x]

33 Demetriss AJ, Kelly DM, Eghtesad B, Fontes P, Wallis Marsh J, Tom K, Tan HP, Shaw-Stiffel T, Boig L, Novelli P, Planinsic R, Fung JJ, Marcos A. Pathophysiological observations and histopathological recognition of the portal hyperperfusion or small-for-size syndrome. Am J Surg Pathol 2006; 30: 986-993 [PMID: 16861970]

34 Uemura T, Wada S, Kaido T, Mori A, Ogura Y, Yagi S, Fujimoto Y, Ogawa K, Kato H, Yoshizawa A, Okajima H, Uemoto S. How far can we lower graft-to-recipient weight ratio for living donor liver transplantation under modulation of portal venous pressure? Surgery 2016; 159: 1623-1630 [PMID: 26936527 DOI: 10.1016/j.surg.2016.01.009]

35 Takahashi Y, Matsurua T, Yoshimura K, Yanagi Y, Hayashida M, Taguchi T. Liver graft-to-spleen volume ratio as a useful predictive factor of the early graft function in children and young adults transplanted for biliary atresia: a retrospective study. Transplant Int 2018; 31: 620-628 [PMID: 29424478 DOI: 10.1111/tri.13131]

36 Karademir S, Astarcigolu H, Ozbilgin M, Ozkardesler S, Yilmaz T, Akarsu M, Akan M, Ozzyebok D, Obuz F, Astarcigolu I. Efficacy of right anterior sector drainage reconstruction in right-lobe live-donor transplantation. Transplant Proc 2006; 38: 3582-3584 [PMID: 17175337 DOI: 10.1016/j.transproceed.2006.10.043]

37 Mori S, Park MS, Kim H, Choi Y, Hong G, Yi NJ, Lee Kw, Suh KS. Dysfunction in Patients With Small-for-Size Grafts After Living Donor Liver Transplantation. Int Surg 2015; 100: 524-530 [PMID: 25753839 DOI: 10.9738/INTSURG-D-14-00016.1]

38 Kim SH, Lee EC, Park SJ. Impact of preserved collateral veins on small-for-size grafts in living donor liver transplantation. Hepat Res 2018; 48: 295-302 [PMID: 29125895 DOI: 10.1111/hepr.13002]

39 Hessheimer AJ, Fondevilla C, Taura P, Muñoz J, Sánchez O, Fuster J, Rimola A, García-Valdecasas JC. Decompression of the portal bed and twice-baseline portal inflow are necessary for the functional recovery of a “small-for-size” graft. Ann Surg 2011; 253: 1201-1210 [PMID: 21587116 DOI: 10.1097/SLA.0b013e3181fbd2d7]

40 Xiao L, Li F, Wei B, Li B, Tang CW. Small-for-size syndrome after living donor liver transplantation: successful treatment with a transjugular intrahepatic portosystemic shunt. Liver Transpl 2012; 18: 1118-1120 [PMID: 22511462 DOI: 10.1002/lt.23457]

41 Sakato Y, Oya H, Yama moto S, Kobayashi T, Hara Y, Kokia H, Hatakeyama K. Method for spontaneous constriction and closure of portocaval shunt using a ligamentum teres heptatis in small-for-size...
The use of old donor in living transplantation. Best Prac Res Clin Gastroenterol 2017; 31: 211-217 [PMID: 28624109 DOI: 10.1016/j.bpcg.2017.03.002].

Taneumura A, Mizuno S, Wada H, Yamada T, Nobori T, Isaji S. Donor age affects liver regeneration during early period in the graft liver and late period in the remnant liver after living donor liver transplantation. World J Surg 2012; 36: 1102-1111 [PMID: 22374540 DOI: 10.1002/wj.12-1496-1-6.

Abdulfattah MR, Elsissy E. Reappraisal of upper age limit for adult living-donor liver transplantation using right lobe grafts: an outcome analysis. Eur J Gastroenterol Hepatol 2015; 27: 593-599 [PMID: 25822867 DOI: 10.1097/MEG.0000000000000322].

Ono Y, Kawaichi S, Hayashi T, Waku K, Manabe T, Itano O, Obara H, Shinoda M, Hibi T, Oshima G, Tani N, Mihara K, Hitachi K, Botayama Y. The influence of donor age on liver regeneration and hepatic progenitor cell populations. Surgery 2011; 150: 154-161 [PMID: 2179061 DOI: 10.1016/j.surg.2011.05.004].

Akamatsu N, Sugawara Y, Tamura S, Kaneko M, Tatsuki M, Takasugi M. Impact of liver donor age on liver transplantation. Transplant Proc 2007; 39: 3189-3193 [PMID: 18093550 DOI: 10.1016/j.transproceed.2007.03.116].

Kawano Y, Ishikawa N, Aida J, Sanada Y, Iizumiya-Shimomura N, Nakamura K, Poon SS, Matsumoto K, Mizuta K, Uchida E, Tajiri T, Kawasakami H, Takubo K. Q-FISH measurement of hepatocyte telomere lengths in donor liver and graft after pediatric living-donor liver transplantation: donor age affects telomere length sustainability. PLoS One 2014; 9: e93749 [PMID: 24773742 DOI: 10.1371/journal.pone.0093749].

Imamura H, Hirada M, Soyama A, Kitasato A, Adachi T, Ono S, Natsuda K, Hara T, Kuwamura T, Imaizumi K, Osada K, Fujita F, Kanetaka T, Katsuki M, Ueguchi T, Eguchi S. A Donor Age-Based and Graft Volume-Based Analysis for Living Donor Liver Transplantation in Elderly Recipients. Transplant Direct 2017; 3: e168 [PMID: 2870697 DOI: 10.1097/TXD.0000000000000688].

Dayangac M, Taner CB, Yaylak O, Demirbas T, Balci D, Duran C, Yuzer Y, Tokat Y. Utilization of elderly donors in living donor liver transplantation: when more is less? Liver Transplant 2011; 17: 548-555 [PMID: 21506243 DOI: 10.1016/j.lit.22276].

Yoshizumi T, Takekuma T, Uchiyama H, Harada N, Kayashima H, Yamasita Y, Soeijima Y, Shimada M, Maehara Y. Graft size, donor age, and patient status are the indicators of early graft function after living donor liver transplantation. Liver Transpl 2008; 14: 1007-1013 [PMID: 18581462 DOI: 10.1002/lt.21462].

Han JH, You YK, Na GH, Kim EY, Lee SH, Hong TH, Kim DG. Outcomes of living donor liver transplantation using elderly donors. Ann Surg Treat Res 2014; 86: 184-191 [PMID: 24783177 DOI: 10.4147/asttr.2014.86.4.184].

Kano N, Kaito T, Hammad A, Ogawa K, Fujimoto Y, Uemura T, Mori A, Hatanaka O, Okajima H, Uemoto S. Impact of elderly donors for liver transplantation: A single-center experience. Liver Transpl 2015; 21: 591-598 [PMID: 25641778 DOI: 10.1002/lt.24086].

Shin H, Moon HJ, Kim JM, Park JB, Kwon CH, Kim SJ, Oh JW. Importance of donor-recipient age gradient to the prediction of graft outcome after living donor liver transplantation. Transplant Proc 2013; 45: 3005-3012 [PMID: 24157024 DOI: 10.1016/j.transproceed.2013.08.018].

Kubota T, Hata K, Sazou T, Ueda Y, Hiroa H, Okamura Y, Tamaki I, Yoshikawa K, Kusakabe J, Tanaka H, Kageyama S, Anazawa T, Yoshizawa A, Yagi S, Yamashiki N, Okajima H, Kaito T, Uemoto S. Impact of Donor Age on Recipient Survival in Adult-to-Adult Living-donor Liver Transplantation. Ann Surg 2018; 267: 1126-1133 [PMID: 28288061 DOI: 10.1097/SLA.000000000000194].

Katsuragawa H, Yamamoto M, Katagiri S, Yoshitsahi K, Arizumi S, Kotera Y, Takahashi Y, Takasaki K. Graft size and donor age are independent factors for graft loss in adult-to-adult living-donor liver transplantation using the left liver. J Hepatobiliary Pancreat Surg 2009; 16: 178-183 [PMID: 19165414 DOI: 10.1002/jhps.000034-008.00026-x].

Selznor N, Girgah N, Lilly L, Guidini M, Selznor M, Therapondos G, Adeyi O, McGilvray I, Cattrell M, Greig PD, Grant D, Levy G, Renner EL. The difference in the fibrosis progression of recurrent hepatitis C after live donor liver transplantation versus deceased doonor liver transplantation is attributable to the difference in donor age. Liver Transpl 2008; 14: 1778-1786 [PMID: 19025914 DOI: 10.1016/j.lrt.21598].

Wang K, Jiang WT, Deng YL, Pan C, Shen ZY. Effect of donor age on graft function and long-term survival of recipients undergoing living donor liver transplantation. Hepatobiliary Pancreat Dis Int 2015; 14: 50-55 [PMID: 25655290].

Ikegami T, Takekuma A, Ohta R, Soejima Y, Yoshizumi T, Shimada M, Maehara Y. Donor age in living donor liver transplantation. Transplant Proc 2008; 40: 1471-1475 [PMID: 18559131 DOI: 10.1016/j.transproceed.2008.02.084].

Li C, Wen TF, Yan LN, Li B, Yang YJ, Xu MQ, Wang WT, Wei YG. Safety of living donor liver transplantation using older donors. J Surg Res 2012; 178: 982-987 [PMID: 22835951 DOI: 10.1016/j.jss.2012.06.065].

Goldaracaena N, Sapioschin G, Spetzler V, Echeverri J, Kath M, Cattrell M, Greig PD, Lilly L, McGilvray ID, Levy GA, Ghanebar A, Renner EL, Grant DR, Selznor M, Selznor N. Live Donor Liver Transplantation With Older (≥50 Years) Versus Younger Donors: Does Age Matter? Ann Surg 2016; 263: 979-985 [PMID: 26106842 DOI: 10.1097/SLA.0000000000001337].

Kim SH, Lee EC, Shin JR, Park SJ. Right lobe living donors ages 55 years and older in liver transplantation. Liver Transpl 2017; 23: 1305-1311 [PMID: 28734330 DOI: 10.1002/1083-2428].

Starzl TE, Koep LJ, Halgrimson CG, Hood J, Schrafftor GP, Porter KA, Weil R 3rd. Fifteen years of clinical liver transplantation. Gastroenterology 1979; 77: 375-388 [PMID: 376395].

Sanchez-Urdazapal L, Steriolf S, Janes C, Schwerman L, Rosen C, Krom RA. Increased bile duct complications in ABO incompatible liver transplant recipients. Transplant Proc 1991; 23: 1440-1441 [PMID: 1989259].

Gugenheim J, Samuel D, Fabiani B, Saliba F, Casteaing D, Reynolds M, Bismuth H. Rejection of ABO incompatible liver allografts in man. Transplant Proc 1989; 21: 2223-2224 [PMID: 2652718].

Miyata R, Shimazu M, Tanabe M, Kawachi S, Hoshino K, Best strategy for choosing marginal donors. Lan X et al. 2018. Issue 23.
Monotherapy by Rituximab Without Additional Desensitization in ABO-incompatible Living-Donor Liver Transplantation. Transplantation 2018; 102: 97-104 [PMID: 28938311 DOI: 10.1097/TP.0000000000001995]

Jiménez-Castro MB, Negreto-Sánchez E, Casillas-Ramírez A, Gullú J, Álvarez-Mercado AI, Corred鸡蛋-Petronio ME, Gracia-Sancho J, Rodes J, Peralta C. The effect of cortisol in rat steatotic and non-steatotic liver transplants from brain-dead donors. Clin Sci (Lond) 2017; 131: 733-746 [PMID: 28246131 DOI: 10.1042/CS20160076]

Xue M, Lv C, Chen X, Liang J, Zhao C, Zhang Y, Huang X, Sun Q, Wang T, Gao J, Zhou J, Yu M, Fan J, Gao X. Donor liver steatosis: A risk factor for early new-onset diabetes after liver transplantation. J Diabetes Investig 2017; 8: 181-187 [PMID: 27511316 DOI: 10.1111/jdi.12560]

Perkins JD. Saying "Yes" to obese living donors: short-term intensive treatment for donors with hepatic steatosis in living-donor liver transplantation. Liver Transpl 2006; 12: 1012-1013 [PMID: 16721781 DOI: 10.1002/lt.20807]

Kotecha HL, Saraf N, Saigal S, Choudhary NS, Yadav A, Mohranka R, Rastogi A, Menon PB, Goza S, Soin AS. NAFLD is the leading cause of donor rejection in living donor liver transplantation. J Clin Exp Hepatol 2013; 3: S16 [DOI: 10.1016/j.jceh.2013.03.201]

Cho JY, Suh KS, Shin WY, Lee HW, Yi NJ, Kim MA, Jang JJ, Lee KU. Expansion of hepatic progenitor cell in fatty liver graft after living donor liver transplantation. Transpl Int 2010; 23: 530-537 [PMID: 20003044 DOI: 10.10111/j.1432-2277.2009.01020.x]

Cho JY, Suh KS, Lee HW, Cho EH, Yang SH, Cho YB, Yi NJ, Kim MA, Jang JJ, Lee KU. Hepatic steatosis is associated with intrahepatic cholesterol and transient hyperbilirubinemia during regeneration after living donor liver transplantation. Transpl Int 2006; 19: 807-813 [PMID: 16961772 DOI: 10.1111/j.1432-2277.2006.00355.x]

Cho JY, Suh KS, Kwon CH, Yi NJ, Cho SY, Jang JJ, Kim SH, Lee KU. The hepatic regeneration power of mild steatotic grafts is not impaired in living-donor liver transplantation. Liver Transplant 2005; 11: 210-217 [PMID: 15666394 DOI: 10.1002/lt.20340]

Gao F, Xu X, Ling Q, Wu J, Zhou L, Xie HY, Wang HP, Zheng SS. Efficacy and safety of moderately steatotic donor liver in transplantation. Hepatobiliary Pancreat Dis Int 2009; 8: 29-33 [PMID: 19208511]

Knaak M, Goldaracena N, Doyle A, Carltus MS, Greig PD, Liley L, McGilvray ID, Levy GA, Ghanekar A, Renner EL, Grant DR, Selzner M, Selzner N. Donor BMI; 30 Is Not a Contraindication for Liver Transplantation. Liver Transpl 2014; 20: 530-537 [PMID: 1600-6143.2006.01618.x]

Hara Y, Tokodai K, Nakashimi C, Miyagi S, Kawagishi N. Reversal of Liver Steatosis With Life Style Modification in Highly Motivated Liver Donors. J Clin Exp Hepatol 2015; 5: 123-126 [PMID: 26155039 DOI: 10.1016/j.jceh.2015.04.002]

Moon D, Lee S, Hwang S, Kim K, Ahn C, Park K, Ha T, Song G. Resolution of severe graft steatosis following dual-graft living donor liver transplantation. Liver Transpl 2006; 12: 1156-1160 [PMID: 16799097 DOI: 10.1002/lt.20340]

Wang SH, Loh PY, Lin TL, Lin LM, Li WF, Lin YH, Lin CC, Chen CL. Active immunization for prevention of De novo hepatitis B virus infection after adult living donor liver transplantation with a hepatitis B core antigen-positive graft. Liver Transpl 2017; 23: 1266-1272 [PMID: 28691231 DOI: 10.1002/lt.24814]

Xi ZF, Xia Q, Zhang JJ, Chen XS, Han LZ, Zhu JJ, Wang SY, Qiu DK. De novo hepatitis B virus infection from anti-HBC-positive donors in pediatric living donor liver transplantation. J Dig Dis 2013; 14: 439-445 [PMID: 23638710 DOI: 10.1111/j.1751-2980.2012.02066]

Dong C, Gao W, Ma N, Sun C, Zheng WP, Wang K, Shen ZY. Risks and treatment strategies for de novo hepatitis B virus infection from anti-HBc-positive donors in pediatric living donor liver transplantation. Pediatr Transplant 2017; 21 [PMID: 29393357 DOI: 10.1111/pet.12854]

Loggi E, Conti F, Cucchieta A, Erroliani G, Pinna AD, Andreone P. Liver grafts from hepatitis B surface antigen-positive donors: A review of the literature. World J Gastroenterol 2016; 22: 8010-8016 [PMID: 27672295 DOI: 10.3748/wjg.v22.i35.8010]

Lei J, Yan L, Wang W. A comprehensive study of the safety of using anti-hepatitis B core (Hbc) positive subjects in living donor liver transplants. Hepatogastroenterology 2013; 60: 1426-1432 [PMID: 23933935 DOI: 10.5754/hge13062]

Lin CC, Chen CL, Concejero A, Wang CC, Wang SH, Liu YW, Yang CH, Yong CC, Lin TS, Jawn B, Cheng YF, Eng HL. Active immunization to prevent de novo hepatitis B virus infection in pediatric liver donor liver recipients. Am J Transplant 2007; 7: 195-200 [PMID: 17272568 DOI: 10.1111/j.1600-6143.2006.01618.x]

Hara Y, Yokoda K, Nakashini C, Miyagi S, Kawagishi N. Spontaneous resolution of de novo hepatitis B after living donor liver transplantation with hepatitis B core antibody positive graft: a case report. Surg Case Rep 2016; 2: 118 [PMID: 27779067 DOI: 10.4079/s40792-016-0246-2]

Sasaki R, Kanda T, Ohhtsuka M, Yasisi S, Haga Y, Nakamura M, Yokoyama M, Wu S, Nakamoto S, Arai M, Maruyama H, Miyazaki M, Yokosuka O. Successful Management of Graft Rejection of HCV Genotype 2 in Living Donor Liver Transplantation from a Hepatitis B Core Antibody-Positive Donor with Sofosbuvir and Ribavirin. Case Rep Gastroenterol 2016; 10: 366-372 [PMID: 27271270 DOI: 10.1159/000447423]

Hwang S, Lee SG, Park KM, Kim KH, Ahn CS, Oh HB, Moon DB, Ha TY, Lim YS, Jung DH. Five-year follow-up of a hepatitis B virus-positive recipient of hepatitis B surface antigen-positive living donor liver graft. Liver Transpl 2006; 12: 993-997 [PMID: 16721765 DOI: 10.1002/lt.20799]

Soejima Y, Shimada M, Taketomi A, Yoshizumi T, Uchiyama H, Ikegami T, Nakamura M, Maehara Y. Successful living donor liver transplantation using a graft from a hepatitis B surface antigen-positive donor. Liver Int 2007; 27: 1282-1286 [PMID: 17919241 DOI: 10.1111/j.1478-3231.2007.01528.x]

Jeng LB, Thorat A, Yang HR, Yeh CC, Chen TH, Hsu CH, Hsu SC, Poon KS, Li PC, Lai HC, Su WP, Peng CY. Successful use of hepatitis B surface antigen-positive liver grafts - an effective source for donor organs in endemic areas: a single-center experience. Transplantation 2015; 20: 103-111 [PMID: 25703063 DOI: 10.1097/ATX.0000000000000332]

Tang Z, Li X, Wu S, Liu Y, Qiao Y, Xu D, Li J. Risk of hepatitis B reactivation in HBsAg-negative/HBeAb-positive patients with undetectable serum HBV DNA after treatment with rituximab for lymphoma: a meta-analysis. Hepatol Int 2017; 11: 429-433 [PMID: 28856548 DOI: 10.1111/hil.12702-017-9817-7]

Li G, Mu X, Huang X, Qian X, Qin J, Tan Z, Zhang W, Xu X, Tan S, Liu Z, Li W, Wang X, Wang X, Sun B. Liver transplantation using the otherwise-discarded partial liver resection graft with hepatic benign tumor: Analysis of a preliminary experience on 15
Lan X et al. Best strategy for choosing marginal donors

consecutive cases. *Medicine* (Baltimore) 2017; 96: e7295 [PMID: 28723742 DOI: 10.1097/MD.0000000000007295]

Fuchino M, Tajiri K, Minemura M, Sugiyama T. Vanishing Tumor in a Liver Graft from a Hepatitis B Virus Surface Antigen-Positive Donor. *Case Rep Gastroenterol* 2017; 11: 610-615 [PMID: 29118691 DOI: 10.1159/000481164]

P- Reviewer: Chiu KW, Kanda T, Qi XS
S- Editor: Wang XJ
L- Editor: Filipodia
E- Editor: Huang Y
