We investigate the influence of some natural types of subgroups on the structure of groups. A subgroup H of the group G is called core-free if $	ext{Core}_G(H) = \langle 1 \rangle$. We study the groups, in which every subgroup is either normal or core-free. More precisely, we obtain the structures of monolithic and non-monolithic groups with this property.

Keywords: normal subgroup, core-free subgroup, Dedekind group.

Let G be a group. The following two normal subgroups are associated with any subgroup H of the group G: H^G, the normal closure of H in G, the least normal subgroup of G including H, and $\text{Core}_G(H)$, the (normal) core of H in G, the greatest normal subgroup of G, which is contained in H. We have

$$H^G = \langle H^x \mid x \in G \rangle$$

and

$$\text{Core}_G(H) = \bigcap_{x \in G} H^x.$$

A subgroup H is normal if and only if $H = H^G = \text{Core}_G(H)$. In this sense, the subgroups H, for which $\text{Core}_G(H) = \langle 1 \rangle$, are the complete opposite of the normal subgroups. A subgroup H of the group G is called core-free in G if $\text{Core}_G(H) = \langle 1 \rangle$.

There is a whole series of papers devoted to the study of groups with only two types of subgroups: subgroups with some property ρ and subgroups with a property that is antagonistic to ρ (see, for example, [1—6]). In particular, from the results of paper [3], it is possible to obtain a description of groups that have only two possibilities for each subgroup H: $H^G = H$ or $H^G = G$. In this connection, a dual question naturally arises on the structure of groups, in which, for each subgroup H, there are only two other possibilities: $\text{Core}_G(H) = H$ or $\text{Core}_G(H) = \langle 1 \rangle$. The finite groups having this property had been studied in [7]. Note at once that the groups, whose all subgroups are normal, possess this property.

© L.A. Kurdachenko, A.A. Pypka, I.Ya. Subbotin, 2019

ISSN 1025-6415. Допов. Нац. акад. наук України. 2019. № 4
Recall that a group G is called Dedekind, if every its subgroup is normal. The Dedekind group G has the following structure: it is either Abelian or $G = Q_8 \times D \times P$, where Q_8 is a quaternion group of order 8, D is an elementary Abelian 2-group, and P is an Abelian $2'$-group [8].

Another extreme case that occurs here is the simple groups. In them, every proper subgroup is core-free. This fact immediately shows that the study of groups, in which $\text{Core}_G(H) = H$ or $\text{Core}_G(H) = \langle 1 \rangle$ for each subgroup H, makes sense for generalized soluble groups. The two key cases here are as follows: G is a non-monolithic group or G is a monolithic group. Let G be a group. The intersection of all non-trivial normal subgroups $\text{Mon}(G)$ of G is called the monolith of the group G. If $\text{Mon}(G) \neq \langle 1 \rangle$, then the group G is called monolithic, and, in this case, $\text{Mon}(G)$ is the least non-trivial normal subgroup of G.

Our first main result is related to the non-monolithic case.

Theorem A. Let G be an infinite group, whose non-normal subgroups are core-free. If G is non-monolithic, then G is a Dedekind group.

The following our main theorem considers the monolithic case. Here, we get a much more diverse situation. Separate considerations are required for non-periodic and periodic groups.

Theorem B. Let G be a locally soluble non-periodic group, whose non-normal subgroups are core-free. Suppose that G is not a Dedekind group. Then G is monolithic, the factor-group $G/\text{Mon}(G)$ is non-periodic, $G = \text{Mon}(G) \times A$, and the following conditions hold:

(i) $\text{Mon}(G)$ is either torsion-free Abelian subgroup or elementary Abelian p-subgroup for some prime p;

(ii) $[G, G] = \text{Mon}(G) = C_G(\text{Mon}(G))$;

(iii) a subgroup A is Abelian, and $\text{Tor}(A)$ is locally cyclic;

(iv) if $\text{Mon}(G)$ is an elementary Abelian p-subgroup, then $\text{Tor}(A)$ is a p'-subgroup;

(v) if A has finite 0-rank, then $\text{Mon}(G)$ is an elementary Abelian p-subgroup;

(vi) if B is another complement to $\text{Mon}(G)$ in G, then the subgroups A and B are conjugate.

In turn, the case where G is periodic also splits into two cases depending on whether the center includes a monolith or not. Recall that a p-group G is called extraspecial, if $[G, G] = \zeta(G)$ is a subgroup of order p and $G/\zeta(G)$ is an elementary Abelian p-group.

From this definition, we can see that the center of an extraspecial p-group G is the least normal subgroup, so that if H is a subgroup of G, and H includes a non-trivial G-invariant subgroup, then H includes $\zeta(G)$. The equality $[G, G] = \zeta(G)$ implies that H is normal in G. In other words, every subgroup of G is either normal or core-free.

Theorem C. Let G be a periodic monolithic group, whose non-normal subgroups are core-free. Suppose that G is not a Dedekind group. If the center of G includes a monolith, then $G = KE$, where K is a cyclic or quasicyclic p-subgroup, E is an extraspecial p-subgroup, $K = \zeta(G)$, and $K \cap E = [G, G]$ is a subgroup of order p, p is a prime.

Theorem D. Let G be an infinite periodic locally soluble monolithic group, whose non-normal subgroups are core-free. Suppose that G is not a Dedekind group and the monolith of G is not central. Then $G = \text{Mon}(G) \times A$, and the following conditions hold:

(i) $\text{Mon}(G)$ is an infinite elementary Abelian p-subgroup for some prime p, and A is an infinite periodic p'-group;

(ii) $[G, G] = \text{Mon}(G) = C_G(\text{Mon}(G))$;
(iii) whether the subgroup A is locally cyclic, or $A = Q \times B$, where Q is a quaternion group of order 8, and B is a locally cyclic $2'$-subgroup;

(iv) if C is another complement to $\text{Mon}(G)$ in G, then the subgroups A and C are conjugate.

Note that if $G/\text{Mon}(G)$ is finite or $\text{Mon}(G)$ is finite and non-central, then G is finite (this follows from Theorem D). The last our result gives a description of the finite soluble group, whose non-normal subgroups are core-free. As was noted above, a finite group, whose non-normal subgroups are core-free, was studied in [7]. Our description is more detailed than the description given in Theorem 1 of that paper. We also note that the proof of Lemma 5 in [7] contains a gap (only the case where the both factor-groups G/N_1 and G/N_2 are non-Abelian was considered). In addition, there is a mistake there: the fact that H is a subgroup of $T \times A$ does not implies that $H = H_1 \times H_2$, where $H_1 \leq T$ and $H_2 \leq A$. Therefore, we do not use the results of work [7]. We proved of the following result.

Theorem E. Let G be a finite soluble group, whose non-normal subgroups are core-free. Suppose that G is not a Dedekind group. Then G is monolithic.

If the center of G includes a monolith, then $G = KE$ where K is a cyclic p-subgroup, E is an extraspecial p-subgroup, $K = \zeta(G)$, and $K \cap E = [G, G]$ is a subgroup of order p, p is a prime.

If the monolith of G is not central, then $G = \text{Mon}(G) \times A$, and the following conditions hold:

(i) $\text{Mon}(G)$ is elementary Abelian p-subgroup for some prime p, and A is a p'-group;

(ii) $[G, G] = \text{Mon}(G) = C_2(\text{Mon}(G))$;

(iii) whether a subgroup A is cyclic or $A = Q \times B$, where Q is a quaternion group of order 8, and B is a cyclic $2'$-subgroup;

(iv) if C is another complement to $\text{Mon}(G)$ in G, then the subgroups A and C are conjugate.

REFERENCES

1. Fattahi, A. (1974). Groups with only normal and abnormal subgroups. J. Algebra, 28, No. 1, pp. 15-19.
2. Ebert, G. & Bauman, S. (1975). A note of subnormal and abnormal chains. J. Algebra, 36, No. 2, pp. 287-293.
3. De Falco, M., Kurdachenko, L.A. & Subbotin, I.Ya. (1998). Groups with only abnormal and subnormal subgroups. Atti Sem. Mat. Fis. Univ. Modena, 46, pp. 435-442.
4. Kurdachenko, L.A. & Smith, H. (2005). Groups with all subgroups either subnormal or self-normalizing. J. Pure Appl. Algebra, 196, No. 2-3, pp. 271-278.
5. Kurdachenko, L.A., Otal, J., Russo, A. & Vincenzi, G. (2011). Groups whose all subgroups are ascendant or self-normalizing. Cent. Eur. J. Math., 9, No. 2, pp. 420-432.
6. Kurdachenko, L.A., Pypka, A.A. & Semko, N.N. (2016). The groups whose cyclic subgroups are either ascendant or almost self-normalizing. Algebra Discrete Math., 21, No. 1, pp. 111-127.
7. Zhao, L., Li, Y. & Gong, L. (2018). Finite groups in which the cores of every non-normal subgroups are trivial. Publ. Math. Debrecen, 93, No. 3-4, pp. 511-516.
8. Baer, R. (1933). Situation der Untergruppen und Struktur der Gruppe. S.-B. Heidelberg Acad. Math.-Nat. Klasse, 2, pp. 12-17.

Received 02.01.2019
Л.А. Курдаченко 1, О.О. Пипка 1, І.Я. Субботін 2
1 Дніпровський національний університет ім. Олеся Гончара
2 Національний університет, Лос-Анджелес, США
E-mail: lkurdachenko@i.ua, pypka@ua.fm, isubboti@nu.edu

ПРО СТРУКТУРУ ГРУП, ПІДГРУПІ ЯКИХ
АБО НОРМАЛЬНІ, АБО ВІЛЬНІ ВІД ЯДРА

Досліджується вплив деяких природних типів підгруп на структуру груп. Підгрупу H групи G називаємо вільною від ядра, якщо $\text{Core}_G(H) = \{1\}$. Вивчено групи, в яких кожна підгрупа або нормальна, або вільна від ядра. Точніше, одержано будову монолітичних та немонолітичних груп з цією властивістю.

Ключові слова: нормальна підгрупа, вільна від ядра підгрупа, дедекіндова група.

Л.А. Курдаченко 1, А.А. Пыпка 1, И.Я. Субботин 2
1 Днепровский национальный университет им. Олеся Гончара
2 Национальный университет, Лос-Анджелес, США
E-mail: lkurdachenko@i.ua, pypka@ua.fm, isubboti@nu.edu

О СТРУКТУРЕ ГРУПП, ПОДГРУППЫ КОТОРЫХ
ЛИБО НОРМАЛЬНЫ, ЛИБО СВОБОДНЫ ОТ ЯДРА

Исследуется влияние некоторых естественных типов подгрупп на структуру групп. Подгруппу H группы G называем свободной от ядра, если $\text{Core}_G(H) = \{1\}$. Изучены группы, в которых каждая подгруппа либо нормальна, либо свободна от ядра. Точнее, получена структура монолитических и немонолитических групп с этим свойством.

Ключевые слова: нормальная подгруппа, свободная от ядра подгруппа, дедекиндова группа.