Connectome-based biophysics models of Alzheimer’s disease diagnosis and prognosis

Justin Toroka,*, Chaitali Anandb, Parul Vermaa, Ashish Rajab,c,*
aDepartment of Radiology, University of California, San Francisco, San Francisco, California
bDepartment of Bioengineering, University of California, Berkeley and University of California, San Francisco, Berkeley, California
cDepartment of Radiology, Weill Cornell Medicine, New York, New York

Abstract

With the increasing prevalence of Alzheimer’s disease (AD) among aging populations and the limited therapeutic options available to slow or reverse its progression, the need has never been greater for improved diagnostic tools for identifying patients in the preclinical and prodromal phases of AD. Biophysics models of the connectome-based spread of amyloid-beta (Aβ) and microtubule-associated protein tau (τ) have enjoyed recent success as tools for predicting the time course of AD-related pathological changes. However, given the complex etiology of AD, which involves not only connectome-based spread of protein pathology but also the interactions of many molecular and cellular players over multiple spatiotemporal scales, more robust, complete biophysics models are needed to better understand AD pathophysiology and ultimately provide accurate patient-specific diagnoses and prognosis. Here we discuss several areas of active research in AD whose insights can be used to enhance the mathematical modeling of AD pathology as well as recent attempts at developing improved connectome-based biophysics models. These efforts toward a comprehensive yet parsimonious mathematical description of AD hold great promise for improving both the diagnosis of patients at risk for AD and our mechanistic understanding of how AD progresses.

Overview

Alzheimer’s disease (AD) is an increasingly prevalent neurodegenerative disorder whose pathological hallmarks are abnormal deposits of amyloid-beta (Aβ) and microtubule-associated protein tau (τ). The buildup of aggregates of these proteins is progressive, irreversible, and associated with deficiencies in cognitive function and dementia. Both Aβ and τ exhibit characteristic spatiotemporal deposition patterns. The first Aβ plaques typically appear in temporobasal and frontomedial areas before spreading throughout the remaining neocortical areas and eventually the striatum.1,2 By contrast, τ tangles appear first in the locus coeruleus and then spread to the entorhinal cortex, hippocampus, temporal areas,
and finally throughout the cortex. Both in vitro and in vivo evidence demonstrate that in particular predominantly migrates trans-synaptically, where white matter tracts between regions serve as the conduits for the transmission of \(\tau \) from affected regions to unaffected regions.\(^4\) The staging of A\(\beta \) pathology also suggests that it spreads trans-synaptically,\(^8\)\(^-\)\(^10\) but passive diffusion in the extracellular space of the brain may also contribute.\(^11\),\(^12\) Understanding how the disease process unfolds over time is critical for ultimately finding effective treatments for AD, which has remained largely recalcitrant to pharmacological interventions despite decades of clinical trials.\(^13\)

Biophysical modeling of AD can provide a platform for integrating clinical and experimental data into a cohesive theoretical framework that also tests hypotheses for which direct evidence is difficult to acquire. The key insight for modeling trans-synaptic spread of a protein species is that it can be approximated by a graph diffusion model, where discrete gray-matter regions are the vertices of a graph and the structural connectivity values for all region pairs are its edge weights. More specifically, the Network Diffusion Model (NDM)\(^14\) and subsequent connectome-based spread models\(^15\)-\(^19\) posit that, given an initial distribution of pathology in the brain, the regional pathology at future time points is a function of the concentration differences and connectivity values between all region pairs. Remarkably, despite the complexity of AD at a molecular and cellular level, these simple, macroscopic models recapitulate the canonical Braak staging of AD\(^18\),\(^19\) as well as pathology progression in human subjects.\(^17\),\(^20\) Not only that, but other disorders featuring the trans-synaptic spread of pathological protein species, such as Parkinson’s disease (PD)\(^21\),\(^22\) and amyotrophic lateral sclerosis (ALS),\(^23\) have also been modeled as a graph diffusion process with similarly strong results. Fig 1 summarizes key results from several connectome spread models.\(^24\) In addition to providing a tool for accurate, subject-specific predictions of where pathology will next appear, these models reinforce the validity of trans-synaptic spread as a fundamental feature of neurodegenerative disease, which has been controversial because it cannot be directly observed in patients.

While connectome-based spread models appear to capture an essential feature of the AD disease process, a more complete mathematical description of AD biology is necessary to gain further insights and improve the models’ predictive power. From a mathematical perspective, current models do not have sufficient complexity to explain how different protein species may spread to different sets of regions despite sharing the same point of initiation. In the case of \(\tau \), there is in vivo evidence that conformers with distinct microscopic properties exhibit diverse macroscopic deposition patterns when injected into the mouse hippocampus.\(^25\) Such a conformer-specific view of tauopathy has important implications for understanding not only what makes AD distinct from diseases such as frontotemporal lobar dementia (FTLD),\(^26\)-\(^28\) but also the significant subject-to-subject heterogeneity among AD patients.\(^29\)-\(^31\)

Further, macroscopic connectome models of A\(\beta \) and \(\tau \) spread have historically limited themselves to modeling the net effect of these proteins, regardless of their oligomeric diversity. In fact, it is well known that oligomers of varying sizes of both A\(\beta \) and \(\tau \) remain in kinetic equilibrium, and these aggregation and fragmentation processes strongly contribute to their ability to spread throughout the brain.\(^32\),\(^33\) The modeling of the kinetics
of protein aggregation are rather well established.34-38 Recently, a combined model of both aggregation and network transmission was proposed, which correctly recapitulated \r deposition patterns in AD patients.39 However, because it is currently not possible to characterize oligomeric diversity in vivo, it remains an open question how well these Smoluchowski-type models capture the complex interactions between oligomeric species in human disease. Given that it is smaller, soluble oligomers of $\text{A}\beta$ and τ that are neurotoxic, not the larger, insoluble aggregates of these species,40-45 the understanding the equilibria between oligomers and aggregates is of keen interest.

Additionally, a necessary mathematical assumption endemic to connectome spread models is that all gray-matter regions have the same intrinsic properties, differing only in how they are connected to other regions. However, befitting their discrete biological functions, brain regions have distinct cytoarchitectures and neuronal compositions, some of which may be particularly susceptible to pathology.46 In addition to this selective neuronal vulnerability, support cells such as astrocytes47,48 and oligodendrocytes49 are known to participate in the AD disease process, and the microglia responsible for the neuroinflammatory response at sites of $\text{A}\beta$ and τ deposition also strongly modulate the ability of these species to migrate to neighboring regions.50-52 Incorporating more features of AD biology at the level of the mathematical model while minimizing the risk of overfitting, particularly when regions are not treated identically, poses a significant challenge for enhancing current connectome-based spread approaches.

Here, we will expand upon several important facets of AD pathogenesis requiring further exploration from a mathematical modeling perspective:

1. Interactions between $\text{A}\beta$ and τ
2. Asymmetric flows on the brain connectome
3. Neuroinflammation
4. Selective cell-type vulnerability
5. The relationship between neuronal activity and pathology

For each, we will provide biological context that justifies the need for model augmentation, related recent advances in mathematical modeling, and suggestions for next steps for modeling at the whole-brain level. Our aim is to synthesize the wealth of knowledge gained in disparate subfields of research towards a unified mathematical framework of AD that deepens our insight of the disease process and provides accurate, subject-specific predictions that can be used clinically for diagnosis, prognosis, and the tailoring of treatment.

The clinical utility of mathematical models

A wide variety of tools have been applied to the problem of AD diagnosis. The primary method of diagnosing AD is through a battery of cognitive tests when the patient starts showing signs of dementia, such as the Mini Mental State Exam (MMSE)53 or the Clinical Dementia Rating (CDR).54 Although these exams are widely used and easy to administer, misdiagnosis of patients showing mild cognitive impairment (MCI) is still common, because
their symptoms may not indicate that they will convert to AD. Accordingly, recent decades have seen significant developments in in vivo imaging techniques for detecting brain pathology directly. Aβ-sensitive positron emission tomography (PET) is currently in clinical use for the differential diagnosis of AD. Disruptions in glucose metabolism, as measured by 2-[18F]fluoro-2-Deoxy-D-glucose PET (FDG-PET), can also facilitate the early detection of AD. Although currently used only for research purposes, several PET radioligands for τ have also been developed, albeit with several off-target issues that remain to be solved. Structural magnetic resonance imaging (sMRI) is a less-expensive and minimally invasive alternative for detecting pathological changes in the brain, using techniques such as voxel-based morphometry (VBM) to determine regional gray-matter loss. Although the nonspecificity of brain atrophy as a biomarker has kept MRI-based atrophy detection from being the diagnostic tool of choice, several groups have been successful in using it to identify AD-related changes in structural brain features.

To detect network-level changes in AD, diffusion tensor imaging (DTI), a special MRI sequence sensitive to the highly anisotropic diffusion of water within white-matter tracts, can map the structural connectome of the brain and identify disease-induced loss of white-matter integrity. Functional MRI (fMRI) is a complementary technique that can be used to detect AD-related changes in brain activity by the measuring the associated changes in blood oxygenation. Alternative technologies for investigating functional network dysfunction in AD include electroencephelography (EEG) and more recently magnetoencephelography (MEG), which detect brain activity with very high temporal resolution but lack the spatial resolution of fMRI. While these technologies are not in standard clinical use for AD diagnosis, they have been used to demonstrate abnormal oscillatory patterns in AD.

Biophysical models can facilitate our understanding of these rich data in several key ways. Firstly, they can validate specific hypotheses about disease mechanisms that are difficult to observe directly in the clinic, often by linking disparate sources of data that are alone insufficient for explaining the disease process and cannot be combined in a purely statistical model. For instance, connectome spread models make concrete the mechanistic relationship between the brain connectome, determined by DTI, and brain-wide maps of imaging biomarkers measured by PET or sMRI. They can also provide subject-specific predictions of future pathology not yet observed, which can guide diagnosis and prognosis. As mentioned above, one of the most important challenges in AD diagnosis is to find a test that discriminates between patients with MCI who will later go on to develop AD and those who will not. Given that AD-specific treatments are unlikely to be effective in MCI patients who are not on the AD disease trajectory, a biophysical model with sufficient predictive power may be able to identify those patients who will benefit from therapies currently in clinical trials, leading to higher success rates. The identification of MCI-to-AD converters before the disease advances to the AD stage is also essential because the AD-associated loss of gray matter is effectively irreversible, so intervening prior to the loss of massive numbers of neurons is more likely to provide lasting, meaningful clinical benefits.

The success of mathematical models of connectome-based spread allows exploration of another clinically relevant application: the possibility of “going back” in time to infer sites
of pathology initiation that would best explain measured patterns of atrophy and pathology in a patient. For example, Torok et al. were able to “reverse” the NDM to infer the regional origins of pathology, called “seeds,” in individual patients on the AD spectrum. These patient-specific seeds, inferred by imposing a sparsity condition to constrain pathology to only a few regions, successfully reproduced known trends in AD and outperformed the best single-locus seed vector placed in the hippocampus. Subsequently, Maia et al. implemented a similar approach to infer seeds in PD, finding that PD patients could be grouped into two distinct clusters based on their seed patterns that exhibited markedly different ages of onset. These approaches enforced a single seeding event; however, a related method allowing several seeding events up to the observation window also produced plausible prior states of pathology. Therefore, biophysical models can give a glimpse into preclinical disease states that may be particularly useful for diagnosis.

Lastly, the analysis of sufficiently rich biophysical models can reveal which processes control disease dynamics, thereby indicating key mechanisms that future treatments should be designed to disrupt. While further work with experimental models of AD and the continued development of methodological tools for studying AD in the clinic are also needed to fully realize all of these goals, we can still advance the state of AD mathematical modeling by incorporating more biological detail, as we expand upon in the following sections.

Interactions between Aβ and τ define AD pathogenesis

The prevailing view guiding the study of AD pathogenesis is the *amyloid cascade hypothesis*: From a complex interaction of genetic predispositions and environmental triggers, aberrant cleavage products of amyloid precursor protein (APP) aggregate to form Aβ plaques. At a later time, abnormal deposits of τ known as neurofibrillary tangles (NFTs) form, a process which is facilitated in part by Aβ. Once the ability of the brain to clear these pathological accumulations is exhausted, misfolded assemblies of τ spread throughout the brain along white-matter tracts, eventually leading to neuronal death and irreversible, progressive cognitive decline. However, several pieces of evidence complicate the picture above. Perhaps most importantly, cognitively normal individuals who are amyloid-positive (Aβ+) exhibit at most modest deficits compared to age-matched amyloid-negative (Aβ−) individuals. Conversely, a percentage of patients clinically diagnosed with AD exhibit τ but not Aβ pathology; moreover, τ misfolding and propagation causes a wide array of neurodegenerative disorders, albeit with distinct deposition patterns and clinical features from AD. Additionally, Aβ plaques and τ tangles poorly colocalize in the brains of AD patients at early stages of disease, making it challenging to understand how and when they interact to give rise to what is thought to be a canonical staging of neuropathology. There is evidence suggesting that Aβ and τ may interact at neuronal synapses and contribute to synaptic dysfunction. Further, Aβ may promote τ misfolding and aggregation through a cross-seeding mechanism. The interactions between Aβ and τ also need not be direct. For instance, the presence of amyloid particles in the extracellular space may trigger a cellular response that induces or facilitates the misfolding and aggregation of τ. Nevertheless, studying either Aβ or τ in isolation gives an incomplete picture of AD.
pathogenesis, and a necessary extension going forward is to jointly model these two types of pathological aggregates.

The foundational work in the biophysical modeling of AD pathology at the macroscopic level has focused on single-species models: for instance, τ in the case of the ND and Fisher-Kolmogorov (FK) models, $\Lambda\beta$ in the case of the Epidemic Spread Model (ESM). However, more recent work has turned towards combined $\Lambda\beta - \tau$ models at various spatial scales. Kuznetsov and Kuznetsov, following up on prior work solely modeling τ, modeled the effect of $\Lambda\beta$ concentrations on the production and migration of τ in the axons of diseased neurons, where $\Lambda\beta$ increased the autocatalysis of τ aggregation. Their microscopic kinetic model was capable of fitting the distribution of axonal τ in an in vitro cell culture system. Another valuable advance came from Bertsch et al., who simulated a multi-species model of $\Lambda\beta$ and τ under conditions of purely isotropic diffusion. In this system, they found that $\Lambda\beta$ agglomeration rate controlled much of the dynamics of the system. Interestingly, only sufficiently small agglomeration rates were able to result in widespread brain malfunction, because the irreversible formation of nontoxic $\Lambda\beta$ plaques in their model needed to be slow enough for the toxic oligomeric species to diffuse. Further, the addition of τ to the model resulted in more severe, widespread disease relative to its $\Lambda\beta$-only counterpart, reinforcing the notion that the true dynamics of brain malfunctioning only emerge when jointly modeling both $\Lambda\beta$ and τ. These microscopic and mesoscopic models motivate the development of network-level interaction models that can be fit to clinical data.

At the macroscopic level, too, there have been advances towards an integrated $\Lambda\beta - \tau$ mathematical model. Raj and Anand sought to model both protein species together by adding an $\Lambda\beta - \tau$ interaction term that induces τ expansion in brain regions where they co-localize, in addition to the connectome-based spread of both species. This minimalist approach reproduced the key features of the spread of both $\Lambda\beta$ and τ in the brain as determined by PET imaging of MCI and AD patients. On the maximalist side, Bertsch et al., following up on their previous work discussed above, proposed a more general framework for exploring $\Lambda\beta$ and τ dynamics at multiple spatiotemporal scales that includes mathematical treatments of: oligomer size dependence, the role of the lymphatic system, the secretion and reuptake of toxic species, neuronal dysfunction, and microglial activation in response to pathology (see Section Modeling interactions between pathology and the immune response below). We refer the reader to their work for the mathematical details of their highly detailed proposal.

The approaches above illustrate the central tension in terms of biophysically modeling not only $\Lambda\beta - \tau$ interactions but all extensions to the network model: defining the simplest model that sufficiently captures the relevant features AD biology and does not compromise on its predictive capacity. On the one hand, the Raj and Anand model reduced the dynamics of $\Lambda\beta$ and τ to a single term. While they demonstrated the predictive value of adding this term, questions remain about whether a more complex model incorporating more of the direct and indirect interactions of these two species could provide significantly more accurate predictions, which will be necessary for diagnosis and prognosis in the clinic. On the other, the model of Bertsch et al. requires significant exploration from a parameter.
sensitivity perspective to be useful as a predictive model. More specifically, to reduce
the risk of overfitting, detailed analysis will be necessary to exclude features that are
mathematically redundant or add little to the richness of the dynamics of the system.
Nevertheless, these approaches represent an initial step towards a robust and clinically useful
description of $\alpha\beta$ and τ interactions.

Directionality of specific conformers parsimoniously explains diverging τ
deposition patterns

In addition to posing a challenge diagnostically for cases with mixed clinical presentations,
how the misfolding of τ can give rise to such disorders as AD, FTLD, Pick’s disease,
and corticobasal degeneration, among others, is an unresolved question. A parsimonious
explanation is that each of these tauopathies has characteristic conformers of τ, and it is
the differences in microscopic properties between these conformers that largely controls
the rate of progression and the spatiotemporal patterns of τ deposition.78 The evidence
for this conformation-specific hypothesis of tauopathy comes from varied sources. Direct
examination of the structure of τ aggregates using electron microscopy has revealed
that τ aggregates from different sources adopt distinct conformations.91,92 Synthetic τ
fibrils coaxed to misfold and aggregate under various in vitro conditions exhibit different
molecular properties,93 and the injection of different fibrils into the brains of mice results
in different patterns of τ deposition.25,94 Clinically, the recent discovery of AD-specific
phosphopeptides of τ in the CSF and bloodstream that discriminate between patients with
AD and patients with primary tauopathies with very high accuracy lends further credibility
to the notion that τ-aggregate structure is a key factor in human disease.26-28 Microscopic
properties of τ isolates from the brains of AD patients could also be tied to differences in
their clinical presentations.29 However, how distinct conformers of τ give rise to different
clinical phenotypes is poorly understood.

One of the mechanistic underpinnings of τ-conformer-specific deposition patterns may
be that each species exhibits a different directional spread bias. In other words, τ may
not migrate in a purely diffusive manner along concentration gradients, as is commonly
assumed in connectome-based spread models, but instead spreads preferentially in the
anterograde (ie, with axon polarity) or retrograde (ie, against axon polarity) directions.
Biophysically, both healthy and pathological τ variants may freely diffuse or be transported
by molecular motors attached to microtubules, giving rise to asymmetric τ distributions in
the neuron.95 The hyperphosphorylation of pathological τ disrupts its direct interactions
with microtubules96,97 and the motor proteins themselves98-100, together, these effects lead
to aberrant axonal transport and the mis-sorting of τ into the neuronal somatodendritic
compartment.101,102 While axonal transport and diffusion occur on a much faster timescale
than the detectable pathological changes during AD,95,103 the establishment of persistent
directional biases vastly influences how τ ultimately propagates along the brain connectome.

To explore the phenomenon of τ axonal transport in the disease state at a microscopic level,
Torok et al. developed a two-species, multicompartment model to explore the interactions
between the pathological axonal transport of τ and the formation and breakdown of
Leveraging insights from in vitro work demonstrating that the primary anterograde-directed motor protein, kinesin-1, has increased activity in the presence of monomeric hyperphosphorylated \(\tau \) aggregates \(^{104} \) and is knocked down by \(\tau \) aggregates \(^{105} \), the mathematical model poses a simple \(\tau \)-concentration-dependent feedback mechanism on the anterograde velocity of \(\tau \) transport. The authors interrogated the complex dynamics that emerge between the interplay of \(\tau \) aggregation and axonal transport feedback, finding that higher aggregation rates generally led to stronger retrograde biases in \(\tau \) deposition at steady-state. Although further experiments and more detailed modeling work are warranted, this work represents one of the first attempts to connect the microscopic properties of \(\tau \) conformers to pathological changes that can be observed at macroscopic timescales.

Directionally biased spread has also been explored at the whole-brain level. Mezias et al. explored the role of directionality using \(\tau \) quantification in fifteen mouse models of tauopathy \(^{106} \), utilizing the Allen Mouse Brain Connectivity Atlas (AMBCA) from the Allen Institute for Brain Science (AIBS), which not only provides connection strengths between region-pairs but also the directionality of those connections \(^{107} \). By introducing a bias parameter, they were able to demonstrate that \(\tau \) fibrils formed in the presence of \(A\beta \) exhibit a more pronounced retrograde bias than \(A\beta \)-naive \(\tau \), an effect which may be attributed to higher \(\tau \) aggregation rates in the Torok et al. framework discussed above \(^{104} \). Further, the temporal progression of directional bias as modeled by the axonal transport model could be parameterized to fit the network directional bias for a variety of mouse models (Fig 2). Given that significant in vitro evidence exists that \(A\beta \) indeed induces \(\tau \) aggregation and the formation of unique \(\tau \) conformations, the transport feedback mechanism parsimoniously explains divergence in \(\tau \) deposition patterns in the context of connectome-based spread.

Directional NDM models have also demonstrated that \(\alpha \)-synuclein preferentially migrates in the retrograde direction in mouse models of PD \(^{108},^{109} \), suggesting that transport-mediated directional biases may be a common feature of prion-like neurodegenerative diseases.

Several challenges remain before we can fully integrate directional spread bias into connectome-based models of human disease. For one, rather than posing the network directional bias parameter phenomenologically, as has been done previously, it should be made a function of the axonal transport parameters and aggregation rate. In this way, the linkage between microscopic \(\tau \) properties and macroscopic directional bias is made explicit. Axonal transport dysregulation may also be mediated by other interactions that have not yet been considered. For instance, a joint \(A\beta \)– \(\tau \) model may be required to fully capture these dynamics, since there is evidence that \(A\beta \) impacts axonal transport in a \(\tau \)-independent manner \(^{110} \), dovetailing into the other considerations discussed in Section Interactions between \(A\beta \) and \(\tau \) define AD pathogenesis.

Another issue is that any mathematical description of directionally biased spread requires that the brain connectome be a directed, asymmetric graph that distinguishes afferents from efferents. However, DTI, the only technique capable of quantifying inter-regional connectivity in vivo, cannot resolve brain connectivity at this level and is definitionally undirected. One way to circumvent this issue is to infer the proportion of afferents to efferents in the human connectome by examining homologous brain structures in the AMBCA \(^{107} \) and the macaque connectivity atlas (CoCoMac) \(^{111} \), which were obtained using viral tracing. While the assumption of homology will not hold across all connections, limiting the degree to which connection

Transl Res. Author manuscript; available in PMC 2024 April 16.
polarity can be completely determined, such a cross-species connectome should be sufficient for a preliminary exploration into fitting connectome-based spread models with directionality to clinical data. As a first demonstration, retrograde modes of transmission along a cross-species connectome were shown to produce the best-fitting connectome-based spread model for brain pathology in progressive supranuclear palsy (PSP) patients.112 The development of effective imaging techniques for reconstructing single-cell-level resolution projections in postmortem human brain tissue, such as FAST113 and SHANEL,114 indicates that significant progress is underway in producing a fully directed, high-resolution human connectome, which will advance biophysical modeling in humans tremendously. Overall, the relaxation of the “diffusive spread” assumption in connectome-based models may represent an avenue to greatly increasing their accuracy without dramatically increasing their complexity.

Modeling interactions between pathology and the immune response

Discussion in the previous sections has been concerned with the mathematical modeling of Aβ and τ without any consideration of region-intrinsic properties. However, the presence of these pathological species effects a strong local response from the neuroimmune system, which is primarily mediated by microglia, the resident immune cells of the brain. Whether this response is protective or harmful appears to be context-dependent. Early in the disease process, microglia effectively clear Aβ pathology in mouse models,115,116 but over time, their capacity to remove plaques is attenuated.117 Additionally, the neuroinflammatory response mounted by microglia in response to Aβ induces neurodegeneration; suppression of microglia in 5xFAD mice prevented hippocampal neuronal loss.118 With regards to τ, too, the neuroimmune response is complex and multifaceted. Gliosis, the expansion of microglial populations as part of the immune response, was found to correlate with AD disease severity, both in terms of clinical symptoms and τ burden.119 Activated microglia have also been shown to internalize τ aggregates, and were discovered in a postmortem examination of the brains of AD patients.120 While microglia have shown some capacity to clear τ pathology,121,122 their depletion in mouse models resulted in reduced τ propagation123 and neurodegeneration.124 Although the above picture is incomplete, the microglial response is tightly coupled to both the emergence and progression of AD pathology.

Of particular importance is the role of disease-associated microglia (DAM), a unique subtype of microglia identified from human AD brain samples and 5xFAD mouse models. These glia are characterized by a unique gene expression profile with elevated expression of certain AD-related genes and lower expression of homeostasis microglial genes.125 The DAM response is mediated by the microglial TREM2 receptor, which induces a neuroprotective, phagocytic response to Aβ26; indeed, rare loss-of-function variants of the TREM2 allele confer an increased risk for AD and other dementias.127-129 How neuroprotective DAM are in ameliorating Aβ pathology also may be disease-stage-dependent: in a mouse amyloid model, TREM2 deficiency was associated with decreased plaque number and area early in disease but increased plaque size and area late in disease.130 Interestingly, a mouse tauopathy model expressing human TREM2R47H, a variant associated with increase AD risk, exhibited reduced τ pathology and neurodegeneration, suggesting that the DAM response is harmful with respect to τ.131 τ pathology itself is also capable
inducing an inflammatory microglial response that was associated with synaptic loss.132 Recently, a PET imaging study in cognitively normal, MCI, and AD subjects revealed that microglial activation, which was associated with TREM2 expression, followed Braak staging alongside τ pathology, and that microglial activation networks were more strongly associated with longitudinal τ progression.133 Pascoal et al. also found that Aβ enhances microglia-activation-associated τ spreading, suggesting a role for activated microglia as mediators of the deleterious effects of Aβ on τ pathology.133

Given the complex roles of the neuroimmune response in both remediating and potentiating AD-related pathological changes, the development of a mathematical model that can account for these different effects would yield greater insights into the disease process. Bertsch et al. recently proposed to model activated microglial populations as a function of Aβ and τ concentrations, with the latter depending in part upon activated-microglia-dependent clearance.90 Further, Anand et al. augmented the original NDM approach14 by incorporating gene-expression-dependent accumulation and transmissibility parameters.134 The resulting modeling platform, called Nexopathy in silico (NexIS) following the paradigm proposed by Warren et al.,135 was able to demonstrate that a connectome-based model including of baseline TREM2 expression was significantly more predictive of τ pathology progression in mouse tauopathy models25 than models including no gene expression information (Fig 3). Further, the values of the TREM2-associated accumulation and transmissibility parameters suggested that activated microglia are associated with a local reduction in τ accumulation rate, in agreement with observations of their ability to internalize and degrade τ,$121,122$ but also with increased transmissibility, supporting a role for activated microglia in potentiating τ spreading.123 These results indicate that connectome-based spread models can be used to validate experimental observations at a whole-brain level.

Future efforts should strive to directly model the populations of activated microglia in AD patients in addition to Aβ and τ pathology. One limitation of the NexIS approach is that it relied solely on baseline TREM2 expression data because the changes whole-brain distribution of TREM2 expression levels over time in mouse tauopathy models are poorly characterized. However, a dynamic model of microglia activation could be constructed following the suggestion of Bertsch et al.,90 with an initial configuration given by baseline TREM2 expression. Particularly intriguing is the suggestion that there is a temporal staging of pathological events in AD with activated microglia as mediators of Aβ-induced τ pathology133; here, connectome-based biophysical models of all three populations could uncover how they interact at a mechanistic level. Following the NexIS model comparison approach, models of varying complexity could be tested against each other to determine the key biophysical interactions that are necessary for achieving strong fits to imaging data. In this way, connectome-based biophysical models can be used to probe biological hypotheses about the roles of microglia in AD pathophysiology, which are still only partly understood.

Reconciling cell-type vulnerability and connectome-based spread

Another factor thought to contribute to the regional specificity of neurodegeneration in AD is *selective neuronal vulnerability*: the neuronal composition of strongly affected regions, such as the hippocampus and entorhinal cortex, confers to them a higher innate susceptibility
to AD pathology. With the advent of technologies such as single-cell RNA sequencing (scRNAseq) and single-nucleus RNA sequencing (snRNAseq), it has been established that the transcriptomic programming of the brain is altered in AD in a cell-type-specific manner. Recent work identifying subtypes of excitatory neurons that appear to be particularly impacted by \(\tau \) pathology, both in AD and FTLD, indicates that selective vulnerability may indeed play an important role in the disease process. We note here that selective vulnerability is not in opposition to trans-neuronal spread as a disease mechanism and may not be entirely separable from it, because many of the vulnerable neuronal subtypes have long-range projections. Insofar as they are separable, however, it is likely that both cell-autonomous and trans-neuronal mechanisms contribute to the complex pathophysiology of AD.

The isolation and transcriptomic characterization of neuronal subtypes that are particularly susceptible to AD pathology has been limited to brain subregions that are canonically affected early in the disease process, such as layer II of the entorhinal cortex. A broader investigation of the influence of regional cell-type composition on vulnerability to pathology, however, requires the mapping of a comprehensive set of cell types across the whole brain. Kim et al. recently quantified the distributions of \(Pvalb^-\), \(Sst^-\), and \(Vip^-\)-expressing \(\gamma \)-aminobutyric acidergic (GABAergic) interneurons in the mouse brain, and Li et al. similarly mapped the mouse cholinergic system. Developments in in situ transcriptomics have facilitated the complete cellular characterization of specific regions of the mouse brain, but these technologies have not yet been scaled up to the entire cortex. More recently, a computational technique called Matrix Inversion and Subset Selection (MISS) produced highly accurate maps of cell types by using their transcriptomic signatures, as determined by single-cell RNA sequencing (scRNA-seq), to deconvolve the voxelwise gene expression data contained in the Allen Gene Expression Atlas (AGEA). The breadth of mapped neuronal and non-neuronal cell types coupled with their whole-brain spatial coverage makes the MISS-inferred distributions in particular highly useful for an investigation into selective vulnerability.

From a biological perspective, there are several ways in which cell types may play a role in mediating the pathological spread of \(A\beta \) and \(\tau \), which directly inform how traditional models of connectome-based spread should be modified. A high density of neuronal cell types that are especially susceptible to proteinopathy in a given region may effectively increase the local accumulation rates of \(A\beta \) and \(\tau \); conversely, neuroprotective cell types, particularly certain support cells, may decrease these accumulation rates by enhancing clearance at a regional level. Another possibility is that the presence of certain cell types may modulate regional transmission rates. For instance \(A\beta \) is known to be cytotoxic to oligodendrocytes, the primary support cells responsible for the maintenance of the myelin sheath around long-range axons. Oligodendrocytes have also been observed to internalize \(\tau \) as well as facilitate its seeding and propagation. Astrocytes, which regulate blood flow and support healthy neuronal function, can synthesize and secrete \(A\beta \), thereby contributing to overall plaque burden. They can also internalize and degrade \(\tau \), although when their clearance mechanisms fail, they serve as reservoirs of toxic oligomers that can be re-released and propagate to neighboring neurons. Therefore, we posit that the NexIS framework described above (see Section Modeling interactions
between pathology and the immune response), when incorporating MISS-inferred cell-type densities instead of the regional expression of immune response genes, provides a low-complexity modeling platform that jointly describes selective cell-type vulnerability and network spread. It is worth emphasizing that without pre-established cell-type distributions, a joint model would require multiple independent parameters per region in addition to the global parameters normally considered in network spread models, which quickly runs into issues of overfitting. In addition to providing quantitatively better models of AD, this approach enables hypothesis-based model comparison between the original network spread model and the joint model including cell types of interest, which can be used to uncover new interactions between cell types and pathology spread.

While the NexIS approach has only been applied on regional \(\tau \) pathology in mouse models, there are no mathematical limitations to applying it to tau-PET imaging data from AD patients in combination with the Allen Human Brain Atlas (AHBA)\(^{159} \) as discussed above (see Section Modeling interactions between pathology and the immune response). However, currently there is a data-based limitation to NexIS with selective cell-type vulnerability: the MISS pipeline has thus far only inferred cell-type maps in the mouse brain and no equivalent maps exist for human brain. While it the lacks the spatial resolution of the AGEA, MISS can still leverage the AHBA and publicly available human brain scRNAseq data (ie, from the AIBS\(^{160} \)) to infer regional distributions of human neuronal and non-neuronal cell types, which can then be used within the NexIS framework. Another consideration is the impact of neurodegeneration itself; that is, the dynamicity of regional cell-type densities over the course of disease. Other models have considered a one-way interaction where the presence of \(\Lambda \beta \) or \(\tau \) pathology induces atrophy,\(^ {18,90} \) but since NexIS posits that local cell-type densities influence how pathology accumulates and spreads, neurodegeneration over time should also feed back into the evolution of \(\Lambda \beta \) and \(\tau \) deposition. This suggests that NexIS be augmented to also describe atrophy, which should be straightforward from both mathematical-modeling and data-collection perspectives, since the T1-weighted MRI images used to assess regional volume loss (see Section The clinical utility of mathematical models) are often collected in tandem with PET imaging in large clinical datasets, such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI).\(^ {161} \) Overall, until recently it has not been possible to reconcile the impact of selective neuronal vulnerability in the context of connectome-based spread at a whole-brain level, and the MISS and NexIS platforms provide a promising avenue for exploring these two hypotheses together.

Functional deficits in AD facilitate the disease process

Evidence indicates that connectome-based spread of \(\Lambda \beta \) and \(\tau \) pathology can be facilitated by abnormalities in structural or functional connectomes, but the contribution of each is the subject of ongoing research.\(^ {14,162-166} \) Raj, 2021\(^ {24} \) argues that while it is possible that pathology spread follows functional network dysfunction\(^ {163} \) it is also possible that pathology is indeed driven by the structural connectome, and the association between pathology spread and functional network is a consequence of the strong coupling of functional and structural connectomes.\(^ {167,168} \) Even though the role of functional network deficits in pathology spread is unclear, cellular-level alterations in excitatory-inhibitory balance are also associated with \(\Lambda \beta \) and \(\tau \).\(^ {169-173} \) Particularly, basic science studies indicate that
Aβ and τ are associated with neuronal hyper- and hypoactivity, respectively.170 There is also evidence suggesting that neuronal action potentials stimulate the production of Aβ174 and the release of endogenous τ,175 implicating a direct role for functional activity and the progression of protein-based pathologies. Together, the interactions between structural connectivity, functional connectivity, Aβ, and τ have significant roles in the evolution of AD-related brain dysfunction.

Recently, these interactions were partly elucidated by a study combining MEG, PET, and biophysical modeling.176 In this work, the authors reported altered excitatory and inhibitory regional model parameters in AD. In particular, an excitatory model parameter was uniquely associated with τ deposition, partially mediating the altered oscillatory activity in the α frequency band. By contrast, the inhibitory model parameter was uniquely associated with Aβ deposition, partially mediating altered oscillatory activity in the δ-θ frequency band. This study opens up new directions of identifying cellular-level mechanisms in AD using biophysical modeling and multimodel imaging. More specifically, modeling the connectome-based spread of Aβ and τ and their interactions at a network level (see Section Interactions between Aβ and τ define AD pathogenesis), coupled with a mathematical description of how these species interact with the functional network in AD, could uncover novel mechanisms of clinical importance. Further, such a model could be augmented by incorporating region-intrinsic properties, such as densities of specific subpopulations of excitatory and inhibitory neurons (See Section Reconciling cell-type vulnerability and connectome-based spread). While previous modeling approaches have included a treatment of neuronal death as a function of Aβ and τ deposition,18,90 this coupling of protein pathology and functional abnormalities in AD is relatively unexplored and therefore presents a unique opportunity to interrogate their relationship at a whole-brain level.

Concluding thoughts

The directions for connectome-based biophysics models discussed above are by no means an exhaustive list, and as further insights are made into AD pathophysiology, mathematical models should be augmented to accommodate them. Pursuing each avenue of investigation on its own will likely yield at least incremental improvements in the network models’ predictive capacity, as has already been demonstrated in several cases.89,106,134 Further, the insights gained from more inclusive and robust models have the potential to identify key mechanistic interactions with translational impact. Moving forward, the field should move towards more complete biophysical descriptions of AD pathophysiology while maintaining parsimony where possible, given the risk of overfitting to pathology data that may be lacking in temporal resolution, spatial resolution, or both. We anticipate that as mathematical models continue to improve, the area of intersection between the diagnosis and prognosis AD in patients and biophysics-based modeling of the underlying pathology will only continue to grow.

Acknowledgments

We would like to thank Benjamin Sipes for his assistance in copy editing this manuscript and Christopher Mezias, PhD for his intellectual contributions regarding directed connectomes. The authors declare no conflicts of interest. This work is supported by the following grants: Alzheimer’s Association Grant #AARDFD-22-923931,
References

1. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica 1991;82:239–59. [PubMed: 1759558]

2. Grothe MJ, Barthel H, Sepulcre J, Dyrba M, Sabri O, Teipel SJ. In vivo staging of regional amyloid deposition. Neurology 2017;89:2031–8. [PubMed: 29046362]

3. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathologica 2006;112:389–404. [PubMed: 16906426]

4. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M. Transmission and spreading of tauopathy in transgenic mouse brain. Nature Cell Biology 2009;11:909–13. [PubMed: 19503072]

5. Katsikoudi A, Ficulle E, Cavallini A, Sharman G, Guyot A, Zagnoni M, Eastwood BJ, Hutton M, Bose S. Quantitative propagation of assembled human Tau from Alzheimer’s disease brain in microfluidic neuronal cultures. J Biol Chem 2020;295:13079–93. [PubMed: 32699110]

6. Liu L, Drouet V, Wu JW, Witter MP, Small SA, Clelland C, Duff K. Trans-Synaptic Spread of Tau Pathology In Vivo. PLoS ONE 2012;7:e31302. [PubMed: 22312444]

7. Wang Y, Balaji V, Kaniyappan S, Krüger L, Irsen S, Tepper K, Chandupatla R, Maetzler W, Schneider A, Mandelkow E, Mandelkow E-M. The release and trans-synaptic transmission of Tau via exosomes. Mol Neurodegener 2017;12:5. [PubMed: 28086931]

8. Meyer-Luehmann M, Stalder M, Herzig MC, Kaeser SA, Kohler E, Pfeifer M, Boncristiano S, Mathews PM, Mercenier A, Abramowski D, Staufenbiel M, Jucker M. Extracellular amyloid formation and associated pathology in neural grafts. Nat Neurosci 2006;9:370–7. [PubMed: 12598899]

9. Pignataro A, Middei S. Trans-Synaptic Spread of Amyloid-β in Alzheimer’s Disease: Paths to β-Amyloidosis. Neural Plast 2017;2017:1–6.

10. Ye L, Hamaguchi T, Fritschi SK, Eisele YS, Obermüller U, Jucker M, Walker LC. Progression of Seed-Induced Aβ Deposition within the Limbic Connectome. Brain Pathol 2015;25:743–52. [PubMed: 25677332]

11. Espuny-Camacho I, Arranz AM, Fiers M, Snellinx A, Ando K, Munck S, Bonnefont J, Lambot L, Corthout N, Omodho L, Vanden Eynden E, Radaelli E, Tesser I, Wray S, Ebneth A, Hardy J, Leroy K, Brion J-F, Vanderhaeghen P, De Strooper B. Hallmarks of Alzheimer’s disease in stem-cell-derived human neurons transplanted into mouse brain. Neuron 2017;93:1066–1081.e8. [PubMed: 28238547]

12. Mezias C, Raj A. Analysis of Amyloid-β Pathology Spread in Mouse Models Suggests Spread Is Driven by Spatial Proximity, Not Connectivity. Front Neurol 2017;8.

13. Oxford AE, Stewart ES, Rohn TT. Clinical Trials in Alzheimer’s Disease: A Hurdle in the Path of Remedy. Int J Alzheimer’s Dis 2020;2020:1–13.

14. Raj A, Kuceyeski A, Weiner M. A Network Diffusion Model of Disease Progression in Dementia. Neuron 2012;73:1204–15. [PubMed: 22445347]

15. Fornari S, Schäfer A, Jucker M, Goriely A, Kuhl E. Prion-like spreading of Alzheimer’s disease within the brain’s connectome. J R Soc Interface 2019;16:20190356. [PubMed: 31613329]

16. Iturria-Medina Y, Sotero RC, Toussaint PJ, Evans AC. Epidemic Spreading Model to Characterize Misfolded Proteins Propagation in Aging and Associated Neurodegenerative Disorders. PLoS Comput Biol 2014;10:e1003956. [PubMed: 25412207]

17. Schäfer A, Mormino EC, Kuhl E. Network Diffusion Modeling Explains Longitudinal Tau PET Data. Front Neurosci 2020;14.

18. Weickenmeier J, Kuhl E, Goriely A. Multiphysics of Prionlike Diseases: Progression and Atrophy. Phys Rev Lett 2018;121:158101. [PubMed: 30362787]
19. Weickenmeier J, Jucker M, Goriely A, Kuhl E. A physics-based model explains the prion-like features of neurodegeneration in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. J Mech Phys Solids 2019;124:264–81.

20. Raj A, LoCastro E, Kuceyeski A, Tosun D, Relkin N, Weiner M. Network Diffusion Model of Progression Predicts Longitudinal Patterns of Atrophy and Metabolism in Alzheimer’s Disease. Cell Rep 2015;10:359–69. [PubMed: 25600871]

21. Pandya S, Zeighami Y, Freeze B, Dadar M, Collins D, Dagher A, Raj A. Predictive model of spread of Parkinson’s pathology using network diffusion. NeuroImage 2019;192:178–94. [PubMed: 30851444]

22. Yau Y, Zeighami Y, Baker TE, Larcher K, Vainik U, Dadar M, Fonov VS, Hagmann P, Griffa A, Mišič B, Collins DL, Dagher A. Network connectivity determines cortical thinning in early Parkinson’s disease progression. Nat Commun 2018;9:12. [PubMed: 29295991]

23. Pandya S, Maia PD, Freeze B, Menke RAL, Talbot K, Turner MR, Raj A. Modelling seeding and neuroanatomic spread of pathology in amyotrophic lateral sclerosis. NeuroImage 2022: 118968. [PubMed: 35143975]

24. Raj A. Graph Models of Pathology Spread in Alzheimer’s Disease: An Alternative to Conventional Graph Theoretic Analysis. Brain Connectivity 2021;11:799–814. [PubMed: 33858198]

25. Kaufman SK, Thomas TL, Del Tredici K, Braak H, Diamond MI. Characterization of tau prion seeding activity and strains from formaldehyde-fixed tissue. Acta Neuropathologica Commun 2017;5:41.

26. Janelidze S, Mattsson N, Palmqvist S, Smith R, Beach TG, Serrano GE, Chai X, Proctor NK, Eichenlaub R, Zetterberg H, Blennow K, Reiman EM, Stomrud E, Dagle JL, Hansson O. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nature Medicine 2020;26:379–86.

27. Palmqvist S, Janelidze S, Quiroz YT, Zetterberg H, Lopera F, Stomrud E, Su Y, Chen Y, Serrano GE, Leuzy A, Mattsson-Carlsten N, Strandberg O, Smith R, Villegas A, Sepulveda-Falla D, Chai X, Proctor NK, Beach TG, Blennow K, Dagle JL, Reiman EM, Hansson O. Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA 2020;324:772–81. [PubMed: 32722745]

28. Thijssen EH, La Joie R, Wolf A, Strom P, Iaccarino L, Bouarakova V, Cobigo Y, Heuer H, Spina S, VandeVrede L, Chai X, Proctor NK, Beach TG, Blennow K, Dagle JL, Reiman EM, Hansson O. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat Med 2020;26:387–97. [PubMed: 32123386]

29. Dujardin S, Commins C, Lathuiliere A, Beerepoot P, Fernandes AR, Kamath TV, De Los Santos MB, Klickstein N, Corjuc DL, Zetterberg H, Doolan P, Viode A, Oakley D, Moore BD, Mullin K, Jean-Gilles D, Clark R, Atchison K, Moore R, Chibnik LB, Tanzi RE, Frosch MP, Serrano-Pozo A, Elwood F, Steen JA, Kennedy ME, Hyman BT. Tau molecular diversity contributes to clinical heterogeneity in Alzheimer’s disease. Nat Med 2020;26:1256–63. [PubMed: 32572268]

30. Torok J, Maia PD, Powell F, Pandya S, Raj A. A method for inferring regional origins of neurodegeneration. Brain 2018;141:863–76. [PubMed: 29409009]

31. Whitwell JL, Dickson DW, Murray ME, Weigand SD, Tosakulwong N, Senjem ML, Knopman DS, Boeve BF, Parisi JE, Petersen RC, Jack CR, Josephs KA. Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: a case-control study. Lancet Neurol 2011;10:686–77. [PubMed: 22951070]

32. Kundel F, Hong L, Falcon B, McEwan WA, Michaels TCT, Meisl G, Estouard N, Abramov AY, Knowles TJP, Goedert M, Kleinerman D. Measurement of Tau Filament Fragmentation Provides Insights into Prion-like Spreading. ACS Chem Neurosci 2018;9:1276–82. [PubMed: 29590529]

33. Xue W-F, Hellewell AL, Gosal WS, Homans SW, Hewitt EW, Radford SE. Fibril Fragmentation Enhances Amyloid Cytotoxicity. J Biol Chem 2009;284:34272–82. [PubMed: 19808677]

34. Bertsch M, Franchi B, Marcellino N, Tesi MC, Tosin A. Alzheimer’s disease: a mathematical model for onset and progression. Math Med Biol 2016;34:193–214.
35. Franchi B, Tesi M. A qualitative model for aggregation-fragmentation and diffusion of \(\beta \)-amyloid in Alzheimer’s disease. Rendiconti del Seminario Matematico. Università e Politecnico di Torino 2012;1.

36. Franchi B, Lorenzani S. From a microscopic to a macroscopic model for Alzheimer Disease: two-scale homogenization of the Smoluchowski equation in perforated domains. J Nonlinear Sci 2016;26:717–53.

37. Franchi B, Lorenzani S. Smoluchowski Equation with Variable Coefficients in Perforated Domains: Homogenization and Applications to Mathematical Models in Medicine. Harmonic Analysis, Partial Differential Equations and Applications. Birkhäuser/Springer, Cham; 2017. p. 49–67 http://link.springer.com/10.1007/978-3-319-52742-0_4.

38. Smoluchowski M Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Zeitschrift für Physikalische Chemie 1918;92U:129–68.

39. Raj A, Tora V, Gao X, Cho H, Choi JY, Ryu YH, Lyoo CH, Franchi B. Combined Model of Aggregation and Network Diffusion Recapitulates Alzheimer’s Regional Tau-Positron Emission Tomography. Brain Connectivity 2021;11:624–38. [PubMed: 33947253]

40. Erten-Lyons D, Woltjer RL, Dodge H, Nixon R, Vorobik R, Calvert JF, Leahy M, Montine T, Kaye J. Factors associated with resistance to dementia despite high Alzheimer disease pathology. Neurology 2009;72:354–60. [PubMed: 19171833]

41. Gandy S, Simon AJ, Steele JW, Lublin AL, Lah JJ, Walker LC, Levey AI, Kraft GA, Levy E, Checcher F, Glabe C, Bilker WB, Abel T, Schneider J, Ehrlich ME. Days to criterion as an indicator of toxicity associated with human Alzheimer amyloid-\(\beta \) oligomers. Ann Neurol 2010;68:220–30. [PubMed: 20641005]

42. Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Clos AL, Jackson GR, Kayed R. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol Neurodegener 2011;6:39. [PubMed: 21645391]

43. Maeda S, Sahara N, Saito Y, Murayama S, Ikai A, Takashima A. Increased levels of granular tau oligomers: An early sign of brain aging and Alzheimer’s disease. Neurosci Res 2006;54:197–201. [PubMed: 16406150]

44. Petersen RC, Aisen P, Boeve BF, Geda YE, Ivnik RJ, Knopman DS, Mielke M, Pankratz VS, Roberts R, Rocca WA, Weigand S, Weiner M, Wiste H, Jack CR. Mild cognitive impairment due to Alzheimer disease in the community. Ann Neurol 2013;74:199–208. [PubMed: 23686697]

45. Wu JW, Herman M, Liu L, Simoes S, Acker CM, Figueroa H, Steinberg JI, Margittai M, Kayed R, Zurzolo C, Di Paolo G, Duff KE. Small Misfolded Tau Species Are Internalized via Bulk Endocytosis and Anterogradely and Retrogradely Transported in Neurons. J Biol Chem 2013;288:1856–70. [PubMed: 23188818]

46. Fu H, Hardy J, Duff KE. Selective vulnerability in neurodegenerative diseases. Nat Neurosci 2018;21:1350–8. [PubMed: 30250262]

47. Ferrer I, Aguiló García M, Carmona M, Andrés-Benito P, Torrejón-Escribano B, García-Esparcia P, del Rio JA. Involvement of oligodendrocytes in tau seeding and spreading in tauopathies. Front Aging Neurosci 2019;11.

48. Monterey MD, Wei H, Wu X, Wu JQ. The Many Faces of Astrocytes in Alzheimer’s Disease. Front Neurosci 2021;12.

49. Cai Z, Xiao M. Oligodendrocytes and Alzheimer’s disease. Int J Neurosci 2016;126:97–104. [PubMed: 26000818]

50. Doens D, Fernández PL. Microglia receptors and their implications in the response to amyloid \(\beta \) for Alzheimer’s disease pathogenesis. J Neuroinflamm 2014;11:48.

51. Lee CYD, Landreth GE. The role of microglia in amyloid clearance from the AD brain. J Neural Transmission 2010;117:949–60.

52. Fornia JP, Bolós M, Avila J. Microglia in Alzheimer’s Disease in the Context of Tau Pathology. Biomolecules 2020;10:1439. [PubMed: 33066368]

53. Folstein MF, Folstein SE, McHugh PR. ‘Mini-mental state’: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189–98. [PubMed: 1202204]

54. Morris JC. The Clinical Dementia Rating (CDR). Neurology 1993;43:2412–4.
55. Arevalo-Rodriguez I, Smailagic N, Roqué i Figuls M, Ciapponi A, Sanchez-Perez E, Giannakou A, Pedraza OL, Bonfill Cosp X, Cullum S. Mini-Mental State Examination (MMSE) for the detection of Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Systemat Rev 2015: CD010783.

56. Pontecorvo MJ, Mintun MA. PET amyloid imaging as a tool for early diagnosis and identifying patients at risk for progression to Alzheimer’s disease. Alzheimer’s Res Ther 2011;3:11. [PubMed: 21457498]

57. Rice L, Bisdas S. The diagnostic value of FDG and amyloid PET in Alzheimer’s disease-A systematic review. Eur J Radiol 2017;94:16–24. [PubMed: 28941755]

58. Mosconi L, Berti V, Glodzik L, Pupi A, De Santis S, de Leon MJ. Pre-Clinical Diagnosis of Alzheimer’s Disease Using FDG-PET, with or without Amyloid Imaging. J Alzheimer’s Dis 2010;20:843–54. [PubMed: 20182025]

59. Leuzy A, Chiotis K, Lemoine L, Gillberg P-G, Almkvist O, Rodriguez-Vieitez E, Nordberg A. Tau PET imaging in neurodegenerative tauopathies-still a challenge. Mol Psychiatry 2019;24:1112–34. [PubMed: 30635637]

60. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. NeuroImage 2000;11:805–21. [PubMed: 10860804]

61. Dukart J, Mueller K, Horstmann A, Barthel H, Möller HE, Villringer A, Sabri O, Schroeter ML. Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia. PLoS ONE 2011;6:e18111. [PubMed: 21448435]

62. Dukart J, Kherif F, Mueller K, Adaszewski S, Schroeter ML, Frackowiak RSJ, Draganski B. Generative FDG-PET and MRI Model of Aging and Disease Progression in Alzheimer’s Disease. PLoS Comput Biol 2013;9:e1002987. [PubMed: 23592957]

63. Rose SE, Janke PhD AL, Chalk JB. Gray and white matter changes in Alzheimer’s disease: A diffusion tensor imaging study. J Magnetic Resonance Imaging 2008;27:20–6.

64. Amini M, Pedram MM, Moradi A, Ouchani M. Diagnosis of Alzheimer’s disease severity with fMRI images using robust multitask feature extraction method and convolutional neural network (CNN). Comput Math Methods Med 2021;2021:1–15.

65. Nakamura A, Cuesta P, Fernández A, Arahata Y, Iwata K, Kuratsubo I, Bundo M, Hattori H, Sakurai T, Fukuda K, Washimi Y, Endo H, Takeda A, Diers K, Bajo R, Maestá F, Ito K, Kato T. Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer’s disease. Brain 2018;141:1470–85. [PubMed: 29522156]

66. Pusil S, López ME, Cuesta P, Bruha R, Pereda E, Maestá F. Hypersynchronization in mild cognitive impairment: the ‘X’ model. Brain 2019;142:3936–50. [PubMed: 31633176]

67. Ranasinghe KG, Cha J, Iacarino L, Hinkley LB, Beagle AJ, Pham J, Jagust WJ, Miller BL, Rankin KP, Rabinovici GD, Vossel KA, Nagarajan SS. Neurophysiological signatures in Alzheimer’s disease are distinctly associated with TAU, amyloid-β accumulation, and cognitive decline. Sci Transl Med 2020;12.

68. Ranasinghe KG, Petersen C, Kudo K, Mizuiuri D, Rankin KP, Rabinovici GD, Gorno-Tempini ML, Seeley WW, Spina S, Miller BL, Vossel K, Grinberg LT, Nagarajan SS. Reduced synchrony in alpha oscillations during life predicts post mortem neurofibrillary tangle density in early-onset and atypical Alzheimer’s disease. Alzheimer’s Dementia 2021;17:2009–19.

69. Smailovic U, Koenig T, Káreholt I, Andersson T, Kramberger MG, Winblad B, Jelic V. Quantitative EEG power and synchronization correlate with Alzheimer’s disease CSF biomarkers. Neurobiol Aging 2018;63:88–95. [PubMed: 29245058]

70. Yiannopoulou KG, Anastasiou AI, Zachariou V, Pelidou S-H. Reasons for failed trials of disease-modifying treatments for Alzheimer disease and their contribution in recent research. Biomedicines 2019;7:97. [PubMed: 31835422]

71. Guest FL, Rahmoune H, Guest PC. Early Diagnosis and Targeted Treatment Strategy for Improved Therapeutic Outcomes in Alzheimer’s Disease. Reviews on New Drug Targets in Age-Related Disorders. Springer, Cham; 2020. p. 175–91 http://link.springer.com/10.1007/978-3-030-42667-5_8.

72. Maia PD, Pandya S, Freeze B, Torok J, Gupta A, Zeighami Y, Raj A. Origins of atrophy in Parkinson linked to early onset and local transcription patterns. Brain Commun 2020;2.
73. Hu C, Hua X, Ying J, Thompson PM, Fakhri GE, Li Q. Localizing Sources of Brain Disease Progression with Network Diffusion Model. IEEE J Sel Top Signal Process 2016;10:1214–25. [PubMed: 28503250]
74. Bloom GS. Amyloid-β and Tau. JAMA Neurol 2014;71:505–8. [PubMed: 24493463]
75. Ittner LM, Götz J. Amyloid-β and tau - a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 2011;12:67–72.
76. Baker JE, Lim YY, Pietrzak RH, Hassenstab J, Snyder PJ, Masters CL, Maruff P. Cognitive impairment and decline in cognitively normal older adults with high amyloid-β: A meta-analysis. Alzheimer’s Dementia 2017;6:108–21.
77. Landau SM, Horng A, Fero A, Jagust WJ. Amyloid negativity in patients with clinically diagnosed Alzheimer disease and MCI. Neurology 2016;86:1377–85. [PubMed: 26968515]
78. Chung D-eC, Roemer S, Petrucelli L, Dickson DW. Cellular and pathological heterogeneity of primary tauopathies. Mol Neurodegener 2021;16:57. [PubMed: 34425874]
79. Fein JA, Sokolow S, Miller CA, Vinters HV, Yang F, Cole GM, Gyllys KH. Co-Localization of Amyloid Beta and Tau pathology in Alzheimer’s Disease synaptosomes. Am J Pathol 2008;172:1683–92. [PubMed: 18467692]
80. Spires-Jones TL, Hyman BT. The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer’s Disease. Neuron 2014;82:756–71. [PubMed: 24853936]
81. Kolgomorov A, Petrovskii I, Piscunov N. A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Moscow Univ Bull Math 1937;1:1–25.
82. Vidal R, Crowther RA, Ghetti B, Scheres SHW, Goedert M. Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature 2018;561:137–40. [PubMed: 30158706]
83. Scheres SHW, Goedert M. Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature 2018;561:137–40. [PubMed: 30158706]
84. Karikari TK, Nagel DA, Grainger A, Clarke-Bland C, Crowe J, Hill EJ, Moffat KG. Distinct Conformations, Aggregation and Cellular Internalization of Different Tau Strains. Front Cellular Neurosci 2019;13.
85. Frost B, Ollesch J, Wille H, Diamond MI. Conformational Diversity of Wild-type Tau Fibrils Specified by Templated Conformation Change. J Biol Chem 2009;284:3546–51. [PubMed: 19010781]
94. Sanders DW, Kaufman SK, De Vos SL, Sharma AM, Mirbaha H, Li A, Barker SJ, Foley AC, Thorpe JR, Serpell LC, Miller TM, Grinberg LT, Seeley WW, Diamond MI. Distinct Tau Prion Strains Propagate in Cells and Mice and Define Different Tauopathies. Neuron 2014;82:1271–88. [PubMed: 24857020]

95. Scholz T, Mandelkow E. Transport and diffusion of Tau protein in neurons. Cellular Mol Life Sci 2014;71:3139–50. [PubMed: 24687422]

96. Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci 1994;91(12):5562–6. [PubMed: 8202528]

97. Alonso AdC, Grundke-Iqbal I, Barra HS, Iqbal K. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: Sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci 1997;94:298–303. [PubMed: 8992023]

98. Cuchillo-Ibanez I, Seereeram A, Byers HL, Leung K, Ward MA, Anderton BH, Hanger DP. Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin. FASEB J 2008;22:3186–95. [PubMed: 18511549]

99. Rodríguez-Martín T, Cuchillo-Ibáñez I, Noble W, Nyenya F, Anderton BH, Hanger DP. Tau phosphorylation affects its axonal transport and degradation. Neurobiol Aging 2013;34:2146–57. [PubMed: 23601672]

100. Stern JL, Lessard DV, Hoeprich GJ, Morfini GA, Berger CL. Phosphoregulation of Tau modulates inhibition of kinesin-1 motility. Mol Biol Cell 2017;28:1079–87. [PubMed: 28251926]

101. Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neuosci 2007;8:663–72. [PubMed: 17684513]

102. Zempel H, Dennissen FJ, Kumar Y, Luedtke J, Biernat J, Mandelkow E-M, Mandelkow E. Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture. J Biol Chem 2017;292:12192–207. [PubMed: 28536263]

103. Guedes-Dias P, Holzbaur ELF. Axonal transport: Driving synaptic function. Science 2019;366:eaaw9997. [PubMed: 31601744]

104. Torok J, Maia PD, Verma P, Mezias C, Raj A. Emergence of directional bias in tau deposition from axonal transport dynamics. PLOS Comput Biol 2021;17:e1009258. [PubMed: 34314441]

105. Sherman MA, LaCroix M, Amar F, Larson ME, Forster C, Aguzzi A, Bennett DA, Ramsden M, Lesne SE. Soluble Conformers of A and Tau Alter Selective Proteins Governing Axonal Transport. J Neurosci 2016;36:9647–58. [PubMed: 27629715]

106. Mezias C, Raj A. The role of directionality in determining spatiotemporal tau pathology differs between AD-like and non-AD-like mouse models. bioRxiv 2020.

107. Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Morn Ciudat LD, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wake Man W, Li Y, Fung D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Woh ouhouta P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H. A mesoscale connectome of the mouse brain. Nature 2014;508:207–14. [PubMed: 24695228]

108. Henderson MX, Cornblath EJ, Darwich A, Zhang B, Brown H, Gathagan RJ, Sandler RM, Bassett DS, Trojanowski JQ, Lee VMY. Spread of alpha-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. Nat Neurosci 2019;22:1248–57. [PubMed: 31346295]

109. Mezias C, Rey N, Brundin P, Raj A. Neural connectivity predicts spreading of alpha-synuclein pathology in fibril-injected mouse models: Involvement of retrograde and anterograde axonal propagation. Neurobiol Dis 2020;134:104623. [PubMed: 31628991]

110. Ramser EM, Gan KJ, Decker H, Fan EY, Suzuki MM, Ferreira ST, Silverman MA. Amyloid-β oligomers induce tau-independent disruption of BDNF axonal transport via calcineurin activation in cultured hippocampal neurons. Mol Biol Cell 2013;24:2494–505. [PubMed: 23783030]

111. Stephan KE. The history of CoCoMac. Neuroimage 2013;80:46–52. [PubMed: 23523808]

112. Pandya S, Mezias C, Raj A. Predictive Model of Spread of Progressive Supranuclear Palsy Using Directional Network Diffusion. Front Neurol 2017;8.
113. Seiriki K, Kasai A, Hashimoto T, Schulze W, Niu M, Yamaguchi S, Nakazawa T, Inoue K-i, Uezono S, Takada M, Naka Y, Igarashi H, Tanuma M, Waschek JA, Aga Y, Tanaka KF, Hayata-Takanaka A, Nagayasu K, Shintani N, Hashimoto R, Kuniy H, Hino M, Matsumoto J, Yabe H, Nagai T, Fujita K, Matsuda T, Takuma K, Baba A, Hashimoto H. High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates. Neuron 2017;94:1085–1100.e6. [PubMed: 28641108]

114. Zhao S, Todorov MI, Cai R, Maskari RA, Steinke H, Kemter E, Mai H, Rong Z, Warmer M, Stanic K, Schoppe O, Paetzold JC, Gesierich B, Wong MN, Huber TB, Duering M, Bruns OT, Menze B, Lipfert J, Puelles VG, Wolf E, Bechmann I, Ertürk A. Cellular and molecular probing of intact human organs. Cell 2020;180:796–812.e19. [PubMed: 32059778]

115. El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 2007;13:432–8. [PubMed: 17351623]

116. Simard AR, Soulet D, Gowing G, Julien J-P, Rivest S. Bone Marrow-Derived Microglia Play a Critical Role in Restricting Senile Plaque Formation in Alzheimer’s Disease. Neuron 2006;49:489–502. [PubMed: 16476660]

117. Daria A, Colombo A, Llorea G, Hampel H, Willem M, Liesa A, Haass C, Tahiric S. Young microglia restore amyloid plaque clearance of aged microglia. EMBO J 2017;36:583–603. [PubMed: 28007893]

118. Spangenberg EE, Lee RJ, Najafi AR, Rice RA, Elmore MRP, Blurton-Jones M, West BL, Green KN. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-β pathology. Brain 2016;139:1265–81. [PubMed: 26921617]

119. Ingelsson M, Fukumoto H, Newell KL, Growdon JH, Hedley-Whyte ET, Frosch MP, Albert MS, Hyman BT, Irizarry MC. Early A accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 2004;62:925–31. [PubMed: 15037694]

120. Bolós M, Llorens-Martín M, Jurado-Arjona J, Hernández F, Rabano A, Avila J. Direct Evidence of Internalization of Tau by Microglia In Vitro and In Vivo. J Alzheimer’s Dis 2015;50:77–87.

121. Hopp SC, Lin Y, Oakley D, Roe AD, DeVos SL, Hanlon D, Hyman BT. The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease. J Neuroinflamm 2018;15:269.

122. Luo W, Liu W, Hu X, Hanna M, Caravaca A, Paul SM. Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody. Sci Rep 2015;5:11161.

123. Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, Wolozin B, Butovsky O, Köglter S, Ikezu T. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nature Neurosci 2015;18:1584–93. [PubMed: 26436904]

124. Mancuso R, Fryatt G, Cleal M, Obst J, Pipi E, Monzón-Sandoval J, Ribe E, Winchester L, Webber C, Nevada A, Jacobs T, Austin N, Theunis C, Grauwen K, Daniela Ruiz E, Mudher A, Vicente-Rodriguez M, Parker CA, Simmons C, Cash D, Richardson J, Bullmore ET, Bhatti J, Chamberlain SJ, Correia MM, Crofts AL, Dickinson A, Foster AC, Kitzbichler MG, Knight C, Lynall M-E, Maurice C, O’Donnell C, Pointon LJ, Hyslop PS, Turner L, Vertes P, Widmer B, Williams GB, Morgan BP, Leckey CA, Morgan AR, O’Hagan C, Touchard S, Cavanagh J, Deit C, Farmer S, McClean J, McColl A, McPherson A, Scouller P, Sutherland M, Boddeke HWGME, Richardson JC, Khan S, Murphy P, Parker CA, Patel J, Jones D, de Boer P, Kemp J, Drevets WC, Nye JS, Wittenberg G, Isaac J, Bhattacharya A, Carruthers N, Kolb H, Pariente CM, Turkheimer F, Barker GJ, Byrom H, Cash D, Cattaneo A, Caw A, Haddings C, Mariani N, McLaughlin A, Mondelli V, Nettes M, Nikkheslat N, Randall K, Sheridan H, Simmons C, Singh N, Loo VV, Vicente-Rodriguez M, Wood TC, Worrell C, Zajkowska Z, Plath N, Egebjerg J, Eriksson H, Gastambide F, Adams KH, Jeggo R, Thomsen C, Pederson JT, Campbell B, Möller T, Nelson B, Zorn S, O’Connor J, Attenburrow MJ, Baird A, Benjamin J, Clare S, Cowen P, Huang I-S, Hurley S, Jones H, Lovestone S, Mada F, Nevada-Holgado A, Oladejo A, Ribe E, Smith K, Vyas A, Hughes Z, Balice-Gordon R, Duerr J, Piro JR, Sporn J, Hugh Perry (PI V, Cleal M, Fryatt G, Gomez-Nicola D, Mancuso R, Reynolds R, Harrison NA, Cercignani M, Clarke CL, Hoskins E, Kohn C, Murray R, Wilcock L, Wlazly D, Mount H, Jones D, Lovestone S, Gomez-Nicola D, Perry VH. CSF1R inhibitor JNJ-40346527

Transl Res. Author manuscript; available in PMC 2024 April 16.
attenuates microglial proliferation and neurodegeneration in P301S mice. Brain 2019;142:3243–64. [PubMed: 31504240]

125. Španić E, Langer Horvat L, Hof PR, Šimić G. Role of Microglial Cells in Alzheimer’s Disease Tau Propagation. Front Aging Neurosci 2019;11.

126. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S, Colonna M, Schwartz M, Amit I. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell 2017;169:1276–1290.e17. [PubMed: 28602351]

127. Colonna M, Wang Y. TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci 2016;17:201–7. [PubMed: 26911435]

128. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert J-C, Hardy J. TREM2 Variants in Alzheimer’s Disease. N Engl J Med 2013;368:117–27. [PubMed: 23150934]

129. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttunen J, Levey AI, Lah JJ, Rujescu D, Hampel H, Itzkovitz I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Iqram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K. Variant of TREM2 Associated with the Risk of Alzheimer’s Disease. N Engl J Med 2013;368:107–16. [PubMed: 23150908]

130. Jay TR, Hirsch AM, Brohiier ML, Miller CM, Neillson LE, Ranshoft RM, Lamb BT, Landreth GE. Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer’s Disease. J Neurosci 2017;37:637–47. [PubMed: 28100745]

131. Gratuze M, Leyns CE, Sauerbeck AD, Si-Pierre M-K, Xiong M, Kim N, Serrano JR, Tremblay M-E, Kummer TT, Colonna M, Ulrich JD, Holtzman DM. Impact of TREM2R47H variant on tau pathology-induced gliosis and neurodegeneration. J Clin Investigat 2020;130:4954–68.

132. van Olst L, Verhaege D, Franssen M, Kamermans A, Roucoubt B, Carsmans S, Ytebrouck E, van der Pol SM, Weyer D, Popovic M, Vandenbroucke RE, Sobrino T, Schouten M, de Vries HE. Microglial activation arises after aggregation of phosphorylated-tau in a neuron-specific P301S tauopathy mouse model. Neurobiol Aging 2020;89:89–98. [PubMed: 32008854]

133. Pascoal TA, Benedet AL, Ashton NJ, Kang MS, Therriault J, Chamoun M, Savard M, Lussier FZ, Tissot C, Karikari TK, Ottoy J, Mathotaarachchi S, Stevenson J, Massarweh G, Schöll M, de Leon MJ, Soucy J-P, Edison P, Blennow K, Zetterberg H, Gauthier S, Rosa-Neto P. Microglial activation and tau propagate jointly across Braak stages. Nat Med 2021;27:1592–9. [PubMed: 34446931]

134. Anand C, Maia P, Torok J, Mezias C, Raj A. The effects of microglia on tauopathy progression can be quantified using nexopathy in Silico (Nexis) models. Preprint 2021.

135. Warren JD, Rohrer JD, Schott JM, Fox NC, Hardy J, Rossor MN. Molecular nexopathies: a new paradigm of neurodegenerative disease. Trends Neurosci 2013;36:561–9. [PubMed: 23876425]

136. Grubman A, Chew G, Ouyang JF, Sun G, Choo XY, McLean C, Simmons RK, Buckberrry S, Vargas-Landin DB, Poppe D, Pflueger J, Lister R, Rackham OJL, Petretto E, Polo JM. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat Neurosci 2019;22:2087–97. [PubMed: 31768052]

137. Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, Menon M, He L, Abdurrob F, Jiang X, Martorell AJ, Ransohoff RM, Hafler BP, Bennett DA, Kellis M, Tsai L-H. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 2019;570:332–7. [PubMed: 31042697]

138. Fu H, Possenti A, Freer R, Nakano Y, Hernandez Villegas NC, Tang M, Cauhy PVM, Lassus BA, Chen S, Fowler SL, Figueroa HY, Huey ED, Johnson GVW, Vendruscolo M, Duff KE. A tau homeostasis signature is linked with the cellular and regional vulnerability of excitatory neurons to tau pathology. Nat Neurosci 2019;22:47–56. [PubMed: 30559469]

139. Leng K, Li E, Eser R, Piergies A, Sit R, Tan M, Neff N, Li SH, Rodriguez RD, Suemoto CK, Leite REP, Ehrenberg AJ, Pasqualuccia CA, Seeley WW, Spina S, Heinsen H, Grinberg LT, Kampmann M. Molecular characterization of selectively vulnerable neurons in Alzheimer’s disease. Nat Neurosci 2021;24:276–87. [PubMed: 33432193]
140. Seeley WW. Selective functional, regional, and neuronal vulnerability in frontotemporal dementia. Curr Opin Neurol 2008;21:701–7. [PubMed: 18989116]

141. Lin L-C, Nana AL, Hepker M, Hwang J-HL, Gaus SE, Spina S, Cosme CG, Gan L, Grinberg LT, Geschwind DH, Coppola G, Rosen HJ, Miller BL, Seeley WW. Preferential tau aggregation in von Economo neurons and fork cells in frontotemporal lobar degeneration with specific MAPT variants. Acta Neuropathologica Commun 2019;7:159.

142. Kim Y, Yang GR, Pradhan K, Venkataraju KU, Bota M, García del Molino LC, Fitzgerald G, Ram K, He M, Levine JM, Mitra P, Huang ZJ, Wang X-J, Osten P. Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical Architecture and Subcortical Sexual Dimorphism. Cell 2017;171:456–469.e22. [PubMed: 28985566]

143. Li X, Xing Y, Schwarz ST, Auer DP. Limbic grey matter changes in early Parkinson’s disease. Hum Brain Mapp 2017;38:3566–78. [PubMed: 28464508]

144. Codeluppi S, Borm LE, Zeisel A, La Manno G, van Lunteren JA, Svensson CI, Linmarsson S. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat Methods 2018;15:932–5. [PubMed: 30777364]

145. Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, Vesuna S, Evans K, Liu C, Ramakrishnan C, Liu J, Nolan GP, Bava F-A, Deisseroth K. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 2018;362:eaau5324. [PubMed: 30385464]

146. Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K, Perez JD, Rubinstein ND, Hao J, Regev A, Dulan C, Zhuang X. A pipeline for mapping of diverse cell types across the murine brain. Proc Natl Acad Sci 2022;119.e2111786119 [PubMed: 35365357]

147. Mezias C, Torok J, Maia PD, Markley E, Raj A. Matrix Inversion and Subset Selection (MISS): Shared and distinct transcriptomic cell types across neocortical areas. Nature 2018;563:72–8. [PubMed: 30381988]

148. AIBS, Allen Cell Types Database - Technical White Paper: Transcriptomics, 2018, http://help.brain-map.org/display/celltypes/Documentation.

149. Tasic B, Yao Z, Grayduck LT, Smith KA, Nguyen TN, Bertagnolli D, Goldy J, Garren E, Economo MN, Viswanathan S, Penn O, Bakken T, Menon V, Miller J, Fong O, Hirokawa KE, Lathia K, Rimorin C, Tieu M, Larsen R, Casper T, Barkan E, Kroll M, Parry S, Shapovalova NV, Hirschstein D, Pendergraft J, Sullivan HA, Kim TK, Szafer A, Dee N, Groblewski P, Wickersham I, Cetin A, Harris JA, Levi BP, Sunkin SM, Madisen L, Dagle TL, Looger L, Bernard A, Phillips J, Lein E, Hawrylycz M, Svoboda K, Jones AR, Koch C, Zeng H. Shared and distinct transcriptomic cell types across neocortical areas. Nature 2018;563:72–8. [PubMed: 30381988]

150. Zeisel A, Hochgener H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, Häring M, Braun E, Borm LE, La Manno G, Codeluppi S, Furlan A, Lee K, Skene N, Harris KD, Hjerling-Leffler J, Arenas E, Ernfors P, Marklund U, Linmarsson S. Molecular architecture of the mouse nervous system. Cell 2018;174:999–1014.e22. [PubMed: 30093142]

151. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Mensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen T-M, Chi Chin M, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong H-W, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Li AY, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall J, Ruiz MJ, Sarmo NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf K-R, Sunkin SM, Sutram M, Tam A, Teener CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock WM, Wohountka PE, Wolkey CK, Wong VY, Wood M, Yayaoglou MB, Young RC, Youngstrom BL, Feng Yuan X, Zhang B, Zwingman TA, Jones AR. Genome-wide atlas of gene expression in the adult mouse brain. Nature 2007;445:168–76. [PubMed: 17151600]

152. Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathologica 2010;119:37–53. [PubMed: 19847447]
153. Roth AD, Ramirez G, Alarcon R, Von Bernhardi R. Oligodendrocytes damage in Alzheimer’s disease: Beta amyloid toxicity and inflammation. Biol Res 2005;38.

154. Amiri M, Hosseinmardi N, Bahrami F, Janahmadi M. Astrocyte-neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments. J Comput Neurosci 2013;34:489–504. [PubMed: 23661228]

155. Kim Y, Park J, Choi YK. The Role of Astrocytes in the Central Nervous System Focused on BK Channel and Heme Oxygenase Metabolites: A Review. Antioxidants 2019;8:121. [PubMed: 31060341]

156. Grolla AA, Fakhfouri G, Balzaretti G, Marcello E, Gardoni F, Canonico PL, DiLuca M, Genazzani AA, Lim D. AbF leads to Ca2+ signaling alterations and transcriptional changes in glial cells. Neurobiol Aging 2013;34:511–22. [PubMed: 22673114]

157. Veeraraghavalu K, Zhang C, Zhang X, Tanzi RE, Sisodia SS. Age-Dependent, Non-Cell-Autonomous Deposition of Amyloid from Synthesis of -Amyloid by Cells Other Than Excitatory Neurons. J Neurosci 2014;34:3668–73. [PubMed: 24599465]

158. Fleeman RM, Proctor EA. Astrocytic Propagation of Tau in the Context of Alzheimer’s Disease. Front Cellular Neurosci 2021;15.

159. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, van de Lagemaat LN, Smith KA, Ebbert A, Riley ZL, Abajian C, Beckmann CF, Bernard A, Bertagnolli D, Boe AF, Cartagena PM, Chakravarty MM, Chapin M, Chong J, Dalley RA, Daly BD, Dang C, Datta S, Dee N, Dolbeare TA, Faber V, Feng D, Fowler DR, Goldy J, Gregor BW, Haradon Z, Haynor DR, Hohmann JG, Horvath S, Howard RE, Jeromin A, Jochim JM, Kinnunen M, Lau C, Lazar ET, Lee C, Lemon TA, Li L, Li Y, Morris JA, Overly CC, Parker PD, Parry SE, Reding M, Royall JJ, Schulkin J, Sequeira PA, Slaughterbeck CR, Smith SC, Sodt AJ, Sunkin SM, Swanson BE, Vawter MP, Williams D, Wohoumoka P, Zielek HR, Geschwind DH, Hof PR, Smith SM, Koch C, Grant SGN, Jones AR. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 2012;489:391–9. [PubMed: 22996553]

160. Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, Close JI, Long B, Johansen N, Penn O, Yao Z, Eggermont J, Hölti T, Levi BP, Shehata SI, Aevermann B, Beller A, Bertagnolli D, Brouner K, Casper T, Cobbs C, Dalley R, Dee N, Ding S-L, Ellenbogen RG, Feng O, Garren E, Goldy J, Gwinn RP, Hirschstein D, Keene CD, Keshk M, Ko AL, Lathia K, Mahfouz A, Maltzer Z, Mcgraw M, Nguyen TN, Nyhus J, Ojemann GJ, Oldre A, Parry S, Reynolds S, Rimorin C, Shapovalova NV, Somasundaram S, Szafer A, Thomsen ER, Tieu M, Quon G, Scheuermann RH, Yuste R, Sunkin SM, Lelieveldt B, Bovier MP, Ziegler BW, Zeng H, Jones AR, Koch C, Lein ES. Conserved cell types with divergent features in human versus mouse cortex. Nature 2019;573:61–8. [PubMed: 31435019]

161. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Liu E, Morris JC, Petersen RC, Saykin AJ, Schmidt ME, Shaw L, Siuciak JA, Soares H, Toga AW, Trojanowski JQ. The Alzheimer’s Disease Neuroimaging Initiative: A review of papers published since its inception. Alzheimer’s Dementia 2012;8:S1–68. [PubMed: 22996553]

162. Brettschneider J, Tredici KD, Lee VM-Y, Trojanowski JQ. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 2015;16:109–20. [PubMed: 25588378]

163. Jones DT, Knopman DS, Gunter JL, Graff-Radford N, Vemuri P, Boeve BF, Petersen RC, Weiner MW, Jack CR. Cascading network failure across the Alzheimer’s disease spectrum. Brain 2016;139:547–62. [PubMed: 26586695]

164. Schmidt R, de Reus MA, Scholtens LH, van den Berg LH, van den Heuvel MP. Simulating disease propagation across white matter connectome reveals anatomical substrate for neuropathology staging in amyotrophic lateral sclerosis. Neuroimage 2016;124:762–9. [PubMed: 25869856]

165. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative Diseases Target Large-Scale Human Brain Networks. Neuron 2009;62:42–52. [PubMed: 19376066]

166. Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 2012;73:1216–27. [PubMed: 22445348]
167. Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-State Functional Connectivity Reflects Structural Connectivity in the Default Mode Network. Cerebral Cortex 2009;19:72–8. [PubMed: 18403396]

168. Honey CJ, Thivierge J-P, Sporns O. Can structure predict function in the human brain? Neuroimage 2010;52:766–76. [PubMed: 20116438]

169. Chang C-W, Evans MD, Yu X, Yu G-Q, Mucke L. Tau reduction affects excitatory and inhibitory neurons differently, reduces excitation/inhibition ratios, and counteracts network hypersynchrony. Cell Rep 2021;37:109855. [PubMed: 34686344]

170. Harris SS, Wolf F, De Strooper B, Busche MA. Tipping the Scales: Peptide-Dependent Dysregulation of Neural Circuit Dynamics in Alzheimer’s Disease. Neuron 2020;107:417–35. [PubMed: 32579881]

171. Maestú F, de Haan W, Busche MA, DeFelipe J. Neuronal excitation/inhibition imbalance: core element of a translational perspective on Alzheimer pathophysiology. Ageing Res Rev 2021;69:101372. [PubMed: 34029743]

172. Palop JJ, Mucke L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci 2016;17:777–92. [PubMed: 27829687]

173. Pooler AM, Polydoro M, Wegmann SK, Pitstick R, Kay KR, Sanchez L, Carlson GA, Gomez-Isla T, Albers MW, Spires-Jones TL, Hyman BT. Tau-amyloid interactions in the rTgTauEC model of early Alzheimer’s disease suggest amyloid-induced disruption of axonal projections and exacerbated axonal pathology. J Compar Neurol 2013;521:4236–48.

174. Parihar MS, Brewer GJ. Amyloid-β as a Modulator of Synaptic Plasticity. J Alzheimer’s Dis 2010;22:741–63. [PubMed: 20847424]

175. Pooler AM, Phillips EC, Lau DHW, Noble W, Hanger DP. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 2013;14:389–94. [PubMed: 23412472]

176. Ranasinghe KG, Verma P, Cai C, Xie X, Kudo K, Gao X, Lerner H, Mizuiri D, Strom A, Iaccarino L, La Joie R, Miller BL, Gorno-Tempini ML, Rankin KP, Jagust WJ, Vossel K, Rabinovici GD, Raj A, Nagarajan SS. Altered excitatory and inhibitory neuronal subpopulation parameters are distinctly associated with tau and amyloid in Alzheimer’s disease. eLife 2022;11.

177. Boluda S, Iba M, Zhang B, Raible KM, Lee VM, Trojanowski JQ. Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer’s disease or corticobasal degeneration brains. Acta Neuropathologica 2015;129:221–37. [PubMed: 25534024]

178. Hurtado DE, Molina-Porcel L, Iba M, Aboagye AK, Paul SM, Trojanowski JQ, Lee VM. Aβ Accelerates the Spatiotemporal Progression of Tau Pathology and Augments Tau Amyloidosis in an Alzheimer Mouse Model. Am J Pathol 2010;177:1977–88. [PubMed: 20802182]
Fig 1.
Survey of connectome-based spread models in AD. A: The NDM successfully recapitulated the spatiotemporal evolution of atrophy in AD in a patient cohort from ADNI.20 Starting from the entorhinal cortex, the model evolves with increasing atrophy following a network spread process, reaching a peak correlation at t_{max} with the ADNI pattern (inset). B, \textit{Top}: PET-based mean regional A\textsubscript{\textbeta} deposition probabilities as modeled by the ESM in HC, EMCI, LMCI, and AD groups.16 Nodes correspond to 78 regions covering all the brain’s gray matter, with node sizes proportional to the associated A\textsubscript{\textbeta} burden. Modeled A\textsubscript{\textbeta} deposition progressively ramifies through brain circuits, starting mainly from the DMN regions to the rest of the brain. B, \textit{Bottom}: Correspondence between the model and empirical PET regional A\textsubscript{\textbeta} deposition for the different groups. C: Classic Braak staging of AD tauopathy (\textit{Top}) resembles both the continuum-space heterodimer model of tauopathy (\textit{Middle}) and the Laplacian-based, network-spreading heterodimer model (\textit{Bottom}) seeded at the transentorhinal and entorhinal regions.15 Abbreviations: A\textsubscript{\textbeta}, amyloid beta; ADNI, Alzheimer’s Disease Neuroimaging Initiative; EMCI, early mild cognitive impairment; HC, healthy controls; LMCI, late mild cognitive impairment; PET, positron emission tomography. (Reproduced from24).
Fig 2.
Transport vs. network directional bias in mouse models of tauopathy. The network directional biases for a collection of tauopathy models, separated by whether the τ strains involved misfolded in the presence of Aβ or not, were fit with using an axonal transport model including τ-kinesin interactions. The agreement between these two assessments of bias indicates that the interplay of axonal transport regulation and τ aggregation and fragmentation processes on a microscopic level can explain macroscopic directional biases. The mouse tauopathy data come from the following studies: “BoludaCBD”, “BoludaDSAD”\(^{177}\), “Hurtado”\(^{178}\), “Clavaguera”\(^{4}\), “KaufDS4”, “KaufDS6”, “KaufDS6110”, “KaufDS7”, “KaufDS9”, “KaufDS9110.”\(^{25}\) (Reproduced from\(^{104}\)).
Fig 3. Connectome-based model incorporating Trem2 provides a superior fit of mouse tauopathy. A: Glass-brain rendering of the \(\tau \) pathology in DS9-injected mice predominantly affects the entorhinal cortices (EC) and hippocampus (HIP) at early time points, then spreads throughout the neocortex, pallidal (PAL), and striatal (STR) areas. B: Glass-brain rendering of the \(\tau \) pathology modeled using the Network Diffusion Model (NDM).\(^\text{14}\) C: Glass-brain rendering of the \(\tau \) pathology modeled using the Nexopathy in silico model, which augments the NDM model with a term modeling the accumulation of \(\tau \) pathology intra-regionally without incorporating effects from inflammation marker genes (NexIS:global). D: Glass-brain rendering of the \(\tau \) pathology modeled using the NexIS model with Trem2-dependent modulation of \(\tau \) accumulation and transmissibility (NexIS:Trem2). E: The per-time-point fits of the NDM are moderately strong, with \(R^2 = 0.25 \) over all time points. F: The per-time-point fits of NexIS:global are similar to that of the NDM (E). However, because the addition of an accumulation term allows the model to account for the amplification of DS9 \(\tau \) pathology over time (A) – note the difference in the scale of the y-axes between (E) & (F) – the overall fit across all time points is much stronger (\(R^2 = 0.44 \)). G: NexIS:Trem2 provides the best overall model for DS9 pathology, both in terms of per-time-point and overall fits (\(R^2 = 0.52 \)). (Reproduced from\(^\text{134}\)).