Point cloud data processing find numerous applications such as computer-aided design (CAD) and AR/VR. It is however well known that the irregular and unordered distribution of points in the 3D space makes point cloud classification, segmentation and recognition very challenging. Although being successfully applied to 2D images [12, 3, 4], deep learning techniques face several challenges in the context of 3D point cloud processing. To tackle with them, it is often to convert point clouds to other forms such as voxel grids, meshes and multi-view images. Afterwards, they can be processed by Convolutional Neural Network (CNN) methods [5, 6, 7, 8, 9]. As compared with methods using raw point clouds as the input, conversion-based methods do have information loss. Besides, they demand additional memory and computation. Recently, we have seen a new trend that builds end-to-end deep networks to process point clouds directly [10, 11, 12, 13] with the PointNet [10] as an example.

Being inspired by recent work on feedforward-designed CNNs [14], the PointHop method was proposed in [15] for point clouds classification. Its design was built upon the successive subspace learning (SSL) principle [16]. PointHop consists of several PointHop units in cascade, and each of them comprises of neighborhood points search, quadrant-space-based feature representation, and dimension reduction. Attributes of a point are determined by the distribution of its neighboring points. The Saab transform [14] is used to control the rapid increase in the attribute size. The local-to-global attributes of 3D point clouds can be obtained through an iterative process of one-hop information exchange. They are fed into a classifier to yield the final classification result. PointHop achieves classification accuracy similar to that of PointNet [10] yet demanding much less training and inference time.

Here, we improve PointHop furthermore in two aspects: 1) reducing its model complexity in terms of the model parameters number; and 2) automatic selection of discriminant features based on the cross-entropy criterion. The resulting method is called PointHop++. The first improvement is essential for wearable and mobile computing [17, 18, 19] while the second improvement bridges statistics-based and optimization-based machine learning methodologies. With experiments conducted on the ModelNet40 benchmark dataset, we show that the PointHop++ method performs on par with deep neural network (DNN) solutions and surpasses other unsupervised feature extraction methods.

The rest of this paper is organized as follows. Background review is given in Sec. 2. The PointHop++ method is detailed in Sec. 3. Experimental results are shown in Sec. 4. Finally, concluding remarks are given in Sec. 5.
has a dimension of \(n_1 \times n_2 \). Then, if we want to find \(d \) principal components, the complexity is \(O(dn_1^2 + d^3) \). Since \(n_1 > d \), the first term dominates. To make the learning model smaller, it is desired to lower the input tensor dimension so as to reduce the filter size. Second, the loss function minimization plays an important role in deep-learning-based methods. However, it was not incorporated in PointHop. To get a lightweight model and leverage the loss function for better performance, we present new ideas to improve PointHop.

The current work has two major contributions. First, we show that the correlation between different spectral channels is very weak in Sec. 3.2. Thus, we can decouple one joint spatial/spectral tensor of dimension \((n_a \times n_s)\) into \(n_c \) spectral tensors of dimension \(n_a \). Each of them is associated with a single spectral component. It is called the channel-wise (c/w) subspace decomposition. This idea helps reduce the model complexity of PointHop in its model parameters number and computational memory requirement. Second, through multiple decomposition stages, we obtain a one-dimensional (1D) feature at each leaf node of a feature tree. We use the cross-entropy loss function to rank features so that we can select a subset of discriminant features to train classifiers. This bridges statistics-based and optimization-based machine learning methodologies.

3. Proposed PointHop++ Method

An overview of the proposed PointHop++ method is illustrated in Fig. 1. A point cloud set, \(P \), which consists of \(N \) points denoted by \(p_n = (x_n, y_n, z_n) \), \(1 \leq n \leq N \), is taken as input to the feature learning system to obtain a powerful feature representation. After that, the linear least squares regression (LLSR) is conducted on the obtained features to output the 40D probability vector where the corresponding class labels come from.

This section is organized as follows. The initial feature space construction is discussed in Sec. 3.1. The channel-wise subspace decomposition is presented in Sec. 3.2. Feature priority ordering is examined in Sec. 3.3. Finally, the PointHop++ method is detailed in Sec. 3.4.
3.4. Summary of PointHop++ Method

The tree-structured feature construction process at each hop can be summarized as follows.

- Use the knn algorithm to retrieve neighbor points;
- Use the decoupled attribute to perform the Saab transform;
- If the energy of a node is greater than a pre-set threshold, perform the c/w subspace decomposition and obtain decoupled attributes as the input to the next hop.

The above process is repeated until the last hop is reached. Once the feature tree construction is completed, each leaf node contains a scalar feature. These features are ranked according to their energy and cross entropy. Finally, the LLSR is adopted as the classifier.
4. EXPERIMENTS

Experiments are conducted on the ModelNet40 dataset [26], which contains 40 object classes. 1024 points are sampled randomly from the original point cloud set as the input to PointHop++. The depth of the feature tree is set to four hops. The farthest point sampling [27] is used to downsample points from one hop to the next to increase the receptive field and speed up the computation.

Method	Accuracy (%)	
	class-avg	overall
Supervised		
PointNet	86.2	89.2
PointNet++		90.7
PointCNN	88.1	**92.2**
DGCNN	**90.2**	**92.2**
Unsupervised		
LFD-GAN	-	85.7
FoldingNet	-	88.4
PointHop	84.4	89.1
PointHop++ (baseline)	85.6	90.3
PointHop++ (FS)	86.5	90.8
PointHop++ (FS+ES)	87	**91.1**

Table 1. Comparison of classification results on ModelNet40, where the class-Avg accuracy is the mean of the per-class accuracy, and FS and ES mean “feature selection” and “ensemble”, respectively.

Method	Time (ms)	Parameter No. (MB)			
	Training	Inference	Filter	Classifier	Total
PointNet	7	10	-	-	3.48
PointNet++	7	14	-	-	1.48
DGCNN	21	154	-	-	1.84
PointHop	0.33	108	0.037	-	-
PointHop++	0.42	97	0.009	0.15	0.159

Table 2. Comparison of time and model complexity, where the training and inference time units are in hour and ms, respectively.

Classification accuracy of different methods are compared in Table 1. PointHop++ (baseline), which has an energy threshold 0.0001 without feature selection or ensembles, gives 90.3% overall accuracy and 85.6% class-avg accuracy. By incorporating the feature selection tool as discussed in Sec. 3.3, PointHop++ (FS) improves the overall and class-avg accuracy results by 0.5% and 0.9%, respectively. Furthermore, we rotate point clouds by 45 degrees and conduct LLSR to get a 40D feature for eight times. Then, these features are concatenated and fed into another LLSR. The ensemble method has an overall accuracy of 91.1% and a class-avg accuracy of 87%. PointHop++ method achieves the best performance among unsupervised feature extraction methods. It outperforms PointHop [15] by 2% in overall accuracy. As compared with deep networks, PointHop++ outperforms PointNet [10] and PointNet++ [11]. It has a gap of 1.1% against PointCNN [12] and DGCNN [13].

Comparison of time complexity and model sizes of different methods is given in Table 2. Four deep networks were trained on a single GeForce GTX TITAN X GPU. It took at least 7 hours to train a 1,024 point cloud model while PointHop++ only took 25 minutes on a Intel(R)Xeon(R) CPU. As to inference time of every sample, both PointHop and PointHop++ took about 100 ms while DGCNN took 163 ms. The number of model parameters are also computed to show space complexity. The Saab filter size of PointHop++ is 4X less than that of PointHop. The total model parameters of PointHop++ is 20X less than that PointNet [10] and 10X less than DGCNN [13] [12].

We compare the robustness of different models against sampling density variation in Fig. 3. All models are trained on 1,024 point cloud model. The test model are randomly sampled with 768, 512, and 256 points, respectively. We see that PointHop++ are more robust than PointHop [15], PointNet++ (SSG) [11] and DGCNN [13] under mismatched sampling densities.

Finally, we show the correlation matrix of AC components at the first hop in Fig. 4. It verifies the claim that different AC components are uncorrelated. Furthermore, we visualize the feature distribution with the T-SNE plot, where the dimension is reduced to 2D. We visualize the features of the 10 object classes from ModelNet10 [26], which is a subset of ModelNet40 [26]. We see that most features of the same category are clustered together, which demonstrates the discriminant power of features selected by PointHop++.

5. CONCLUSION

A tree-structured unsupervised feature learning system was proposed in this work, where one scalar feature is associated with each leaf node and features are ordered based on their discriminant power. The resulting PointHop++ method achieves state-of-the-art classification performance while demanding a significantly small learning model which is ideal for mobile computing.
6. REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.

[2] Karen Simonyan and Andrew Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[3] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

[5] Daniel Maturana and Sebastian Scherer, “Voxnet: A 3d convolutional neural network for real-time object recognition,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015, pp. 922–928.

[6] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller, “Multi-view convolutional neural networks for 3d shape recognition,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 945–953.

[7] Yin Zhou and Oncel Tuzel, “Voxelnets: End-to-end learning for point cloud based 3d object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4490–4499.

[8] Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, and Yue Gao, “Meshnet: Mesh neural network for 3d shape representation,” arXiv preprint arXiv:1811.11424, 2018.

[9] Yifan Feng, Zixhao Zhang, Xibin Zhao, Rongrong Ji, and Yue Gao, “Gvcnn: Group-view convolutional neural networks for 3d shape recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 264–272.

[10] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas, “Pointnet: Deep learning on point sets for 3d classification and segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 652–660.

[11] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas, “Pointnet++: Deep hierarchical feature learning on point sets in a metric space,” in Advances in Neural Information Processing Systems, 2017, pp. 5099–5108.

[12] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoqian Chen, “Pointconv: Convolution on x-transformed points,” in Advances in Neural Information Processing Systems, 2018, pp. 820–830.

[13] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon, “Dynamic graph cnn for learning on point clouds,” arXiv preprint arXiv:1801.07829, 2018.

[14] C-C Jay Kuo, Min Zhang, Siyang Li, Jiali Duan, and Yueru Chen, “Interpretable convolutional neural networks via feed-forward design,” Journal of Visual Communication and Image Representation, vol. 60, pp. 346–359, 2019.

[15] Min Zhang, Haoxuan You, Pranav Kadam, Shan Liu, and C-C Jay Kuo, “Pointhop: An explainable machine learning method for point cloud classification,” arXiv preprint arXiv:1907.12766, 2019.

[16] Yueru Chen and C-C Jay Kuo, “Pixelhop: A successive subspace learning (ssl) method for object recognition,” Journal of Visual Communication and Image Representation, p. 102749, 2020.

[17] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 mb model size,” arXiv preprint arXiv:1602.07360, 2016.

[18] Forrest N Iandola, Matthew W Moskewicz, Khalid Ashraf, and Kurt Keutzer, “Firecaffe: near-linear acceleration of deep neural network training on computer clusters,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2592–2600.

[19] Jiatao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song, et al., “Going deeper with embedded fpga platform for convolutional neural network,” in Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2016, pp. 26–35.

[20] C-C Jay Kuo, “Understanding convolutional neural networks with a mathematical model,” Journal of Visual Communication and Image Representation, vol. 41, pp. 406–413, 2016.

[21] C-C Jay Kuo, “The cnn as a guided multilayer recos transform [lecture notes],” IEEE signal processing magazine, vol. 34, no. 3, pp. 81–89, 2017.

[22] C-C Jay Kuo and Yueru Chen, “On data-driven saak transform,” Journal of Visual Communication and Image Representation, vol. 50, pp. 237–246, 2018.

[23] Yueru Chen, Zhuwei Xu, Shanshan Cai, Yujian Lang, and C-C Jay Kuo, “A saak transform approach to efficient, scalable and robust handwritten digits recognition,” in 2018 Picture Coding Symposium (PCS). IEEE, 2018, pp. 174–178.

[24] Svante Wold, Kim Esbensen, and Paul Geladi, “Principal component analysis,” Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987.

[25] Kiri Wagstaff, Claire Cardie, Seth Rogers, Stefan Schrödl, et al., “Constrained k-means clustering with background knowledge,” in Icml, 2001, vol. 1, pp. 577–584.

[26] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lingguang Zhang, Xiaoou Tang, and Jianxiong Xiao, “3d shapenets: A deep representation for volumetric shapes,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1912–1920.

[27] Yuval Eldar, Michael Lindenbaum, Moshe Porat, and Yehoshua Y Zeevi, “The farthest point strategy for progressive image sampling,” IEEE Transactions on Image Processing, vol. 6, no. 9, pp. 1305–1315, 1997.

[28] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas, “Representation learning and adversarial generation of 3d point clouds,” arXiv preprint arXiv:1707.02392, vol. 2, no. 3, pp. 4, 2017.

[29] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian, “Foldn- ingnet: Point cloud auto-encoder via deep grid deformation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 206–215.