Table 1 Demographic data of patients included in the amitriptyline sample.

	Combined Sample	Wuerzburg Sample	Munich Sample
Included patients	109	62	47
Age [years]	47.51 ± 12.60 (18-78)	46.21 ± 12.96 (18-67)	49.23 ± 12.04 (27-78)
Male/female	53/56	30/32	23/24
Non-smoker/Smoker	64/37	38/23	26/14
Daily number of cigarettes	17.89 ± 10.06 (1-55)	17.91 ± 10.60 (1-55)	17.86 ± 9.55 (5-40)
HAMD Baseline	25.56 ± 6.61 (14-46)	25.29 ± 7.22 (14-46)	25.95 ± 5.67 (16-39)
HAMD Out	12.88 ± 7.08 (1-38)	12.28 ± 6.79 (2-38)	13.66 ± 7.44 (1-35)
Length of disorder [years]	14.40 ± 12.43 (0-49)	12.79 ± 11.71 (0-46)	16.58 ± 13.16 (0-49)
Dose (Out)	142.8 ± 72.8 (25-340)	115.7 ± 41.4 (25-225)	178.6 ± 88.7 (25-340)
Resp/Non-resp (Out)	53/53	36/25	17/28
Rem/Non-rem (Out)	25/83	18/43	7/40
Adverse Drug Effects			
NA-None/Mild/Medium/Severe			
Change of antidepressant due to adverse drug effects			
Yes/No/Missing			
Type	Drowsiness/Sedation	Modified Salivation	Drowsiness/Sedation
	Modified Accommodation	Inner Restlessness	
	Weight gain		

N, number of patients; SD, standard deviation; m, male; f, female; HAMD, Hamilton Depression Rating Scale-21; Out, outcome time point; Resp, Response; Rem, Remission
Table 2 Demographic data of patients included in the venlafaxine sample.

	Combined Sample	Wuerzburg Sample	Munich Sample
N			
Included patients	258	130	128
Age [years]	258 44.52 ± 14.08 (18-75)	130 42.67 ± 13.93 (18-75)	128 46.41 ± 14.03 (19-75)
Male/female	127/131	57/73	70/58
Non-smoker/Smoker	156/91	80/49	76/42
Daily number of cigarettes	91 16.90 ± 9.48 (1-50)	49 15.96 ± 8.73 (1-40)	42 17.96 ± 10.25 (1-20)
HAMD Baseline	245 25.74 ± 7.04 (14-46)	123 25.85 ± 7.61 (14-46)	122 25.63 ± 6.44 (14-44)
HAMD Out	254 12.45 ± 6.81 (0-30)	128 9.97 ± 6.26 (0-27)	126 14.97 ± 6.43 (0-30)
Length of disorder [years]	251 12.65 ± 11.19 (0-51)	130 12.47 ± 10.96 (0-25-49)	121 12.84 ± 11.48 (0-51)
Dose (Out)	258 279.8 ± 101.4 (25-525)	130 266.8 ± 99.2 (37.5-450)	128 292.9 ± 102.3 (25-525)
Resp/Non-resp (Out)	123/128	88/40	35/88
Rem/Non-rem (Out)	75/179	55/73	20/106
Adverse Drug Effects			
NA-None/Mild/Medium/Severe	118/6/6/0		
Change of antidepressant due to adverse drug effects			
Yes/No/Missing			
Type		Drowsiness/Sedation	
		Modified Salivation	
		Inner Restlessness	
		Modified Accommodation	
		Weight gain	
		Cardiovascular Effects	
		Extrapyramidal Effects	

N, number of patients; SD, standard deviation; m, male; f, female; HAMD, Hamilton Depression Rating Scale-21; Out, outcome time point; Resp, Response; Rem, Remission
Table 3 Demographic data of patients included in the mirtazapine sample.

	Combined Sample	Wuerzburg Sample	Munich Sample	
	N	Mean ± SD (range)	N	Mean ± SD (range)
Included patients	171	49.86 ± 14.22 (18-80)	64	48.58 ± 15.13 (18-80)
Age [years]	171	49.86 ± 14.22 (18-80)	64	48.58 ± 15.13 (18-80)
Male/female	86/85		32/32	54/53
Non-smoker/Smoker	102/52		39/25	63/27
Daily number of cigarettes	52	15.71 ± 7.98 (2-40)	25	14.36 ± 7.15 (2-30)
			27	16.96 ± 8.62 (4-40)
HAMD Baseline	153	26.26 ± 6.39 (14-39)	56	27.55 ± 6.84 (14-39)
HAMD Out	168	12.49 ± 7.67 (0-37)	62	8.87 ± 6.26 (0-24)
			106	14.60 ± 7.65 (1-37)
Length of disorder [years]	164	12.15 ± 12.16 (0-48)	64	11.40 ± 10.42 (0-36)
			100	12.63 ± 13.19 (0-48)
Dose (Out)	171	45.2 ± 22.9 (7.5-120)	64	35.7 ± 13.0 (7.5-75)
			107	50.9 ± 25.5 (7.5-120)
Resp/Non-resp (Out)	79/83		48/14	31/69
Rem/Non-rem (Out)	52/116		32/30	20/86
Adverse Drug Effects		62/1/1/0		0/38/69
NA-None/Mild/Medium/Severe				
Change of antidepressant due to adverse drug effects	Yes/No/Missing Type	Drowsiness/Sedation		

N, number of patients; SD, standard deviation; m, male; f, female; HAMD, Hamilton Depression Rating Scale-21; Out, outcome time point; Resp, Response; Rem, Remission.
Table 4 Demographic data of patients included in the quetiapine sample.

	Combined Sample	Wuerzburg Sample	Munich Sample			
	N	Mean ± SD (range)	N	Mean ± SD (range)	N	Mean ± SD (range)
Included patients	193		105		88	
Age [years]	193	46.44 ± 14.09 (18-80)	105	44.97 ± 14.81 (18-80)	88	48.19 ± 13.03 (20-75)
Male/female	98/95		51/54		47/41	
Non-smoker/Smoker	121/69		66/39		55/30	
Daily number of cigarettes	69	16.69 ± 9.45 (1-55)	39	15.97 ± 10.90 (1-55)	30	17.6 ± 7.29 (3-36)
HAMD Baseline	175	26.35 ± 6.74 (14-46)	96	26.41 ± 6.84 (14-46)	79	26.28 ± 6.66 (14-44)
HAMD Out	187	13.26 ± 7.08 (0-33)	103	10.98 ± 6.54 (0-28)	84	16.06 ± 6.73 (2-33)
Length of disorder [years]	186	13.23 ± 11.98 (0-50)	104	16.86 ± 12.10 (0-49)	82	13.70 ± 11.89 (0-50)
Dose (Out)	193	211.9 ± 136.6 (12.5-800)	105	216.9 ± 125.7 (25-625)	88	206.0 ± 149.0 (12.5-800)
Resp/Non-resp (Out)	85/100		70/33		15/67	
Rem/Non-rem (Out)	46/141		36/67		10/74	

N, number of patients; SD, standard deviation; m, male; f, female; HAMD, Hamilton Depression Rating Scale-21; Out, outcome time point; Resp, Response; Rem, Remission

Adverse Drug Effects

NA-None/Mild/Medium/Severe Change of antidepressant due to adverse drug effects Yes/No/Missing Type	Combined Sample	Wuerzburg Sample	Munich Sample
	99/5/1/0		3/61/24

Drowsiness/Sedation Cardiovascular Effects Extrapyramidal Effects Drowsiness Other
Table presenting the combination of the SNPs according to the haplotypes.

HAPLOTYPE	UGT2B7	ABCB1	CYP2C19	CYP2C9	ABC2	CYP2D6																			
	rs7662029	rs7668258	rs1045642	rs1128503	rs2032582	rs12248560	rs4244285	rs17878459	rs3758580	rs1057910	rs1799853	rs2273697	rs3740066	rs717620	rs2069514	rs762551	rs1065852	rs28371725	rs35742686	rs3892097	rs5030655	rs5030656	rs28371720	rs16947	rs1135840
	G	C	G	G	A	C	C	A	C	T	C	C	T	T	T	A	A	A	A	A	A	G	C		
	A	T	G	A	G	G	G	A	A	G	G	A	T	C	C	C	C	C	C	C	C				
	G	G	A	A	G	A	R	G	G	R	G	G	R	G	R	G	R	G	R	R					
	G	C	A	C	C	A	C	A	A	T	T	C	C	C	C	C	C	C	C						
	A	T	C	C	A	T	C	T	C	T	T	C	T	T	T	T	T	T							
	G	C	G	A	A	A	A	G	G	C	C	A	A	C	G	C	C	C	C						

Scherf-Clavel M et al. Effects of Pharmacokinetic Gene Variation on Therapeutic Drug Levels and Antidepressant Treatment Response. Pharmacopsychiatry 2022; 55 | © 2022. The Author(s).
2; 21;	G	C	T	C	A	A	A	A	G
28; e.g.	G	C	D	C	A	A	A	G	C
3	G	C	D	C	A	A	A	G	C
4	A	C	T	T	A	A	A	G	G
5	Complete Gene Deletion								
9	G	C	T	C	A	D	D	G	C
10; 17;	A	C	T	C	A	A	A	G	G
37; e.g.	G	T	T	C	A	A	A	A	G
32; 41	G	T	T	C	A	A	A	A	G
6	G	C	T	C	D	A	A	G	C
Supplement 3

to

Effects of Pharmacokinetic Gene Variation on Therapeutic Drug Levels and Antidepressant Treatment Response

Number (N) of prescribed psychiatric medication and serum concentration determinations (N(TDM)) at the outcome time point (discharge from the study (Wuerzburg sample) and week 6 (Munich sample)) in the samples.

Psychiatric Drug	N	N(TDM)	Psychiatric Drug	N	N(TDM)
Antidepressants			**Antipsychotics**		
Venlafaxine	353	258	Quetiapine	279	193
Mirtazapine	295	171	Olanzapine	118	66
Trimipramine	158	88	Risperidone	50	24
Amitriptyline	133	109	Aripiprazole	46	23
Citalopram	98	53	Pipamperone	16	1
Escitalopram	80	46	Melperone	11	3
Duloxetine	76	33	Ziprasidone	6	1
Sertraline	52	36	Perazine	6	1
Trazodone	49	31	Amisulpride	5	2
Bupropion	49	21	Haloperidol	4	
Paroxetine	46	24	Clozapine	4	3
Reboxetine	31	8	Paliperidone		1
Clomipramine	30	18			
Doxepin	27	19	Lamotrigine	144	75
Nortriptyline	16	14	Pregabalin	45	15
Fluoxetine	7	2	Valproic Acid	27	16
Imipramine	3	1	Gabapentine	24	3
Maprotiline	3	1	Carbamazepine	12	5
Milnacirpan	2	1	Topiramate	5	

Scherf-Clavel M et al. Effects of Pharmacokinetic Gene Variation on Therapeutic Drug Levels and Antidepressant Treatment Response. Pharmacopsychiatry 2022; 55 | © 2022. The Author(s).
Supplement 4

to

Effects of Pharmacokinetic Gene Variation on Therapeutic Drug Levels and Antidepressant Treatment Response

Table 1: Diploptotype/phenotype analyses in regard to serum concentrations were performed by Kruskal-Wallis tests. To adjust for alpha-error accumulation, nominal p-values were Bonferroni-corrected for the total number of genes (7x) and the number of analysed drug concentrations or MPR (6x), respectively, in each analysis. The significance threshold was set to $p \leq 0.001$. Significant results are shown in red and nominal significant results are shown in bold.

Diploptotypes/Phenotypes	CD AMI (N=109)	CD VEN (N=256)	CD QUET (N=191)	CD MIR (N=169)	MPR NOR/AMI (N=61)	MPR ODM/VEN (N=129)
UGT2B7						
*1/*1, *1/*2, *2/*2	0.609 (1)	0.850 (1)	0.746 (1)	0.893 (1)	0.487 (1)	0.853 (1)
ABCB1						
*1/*1, *1/*10, *1/*18, *1/*6, *2/*2, *2/*6, *2/*8, *2/*9, *2/*10, *2/*18, *6/*6, *6/*8	0.955 (1)	0.547 (1)	0.132 (1)	0.187 (1)	0.729 (1)	0.485 (1)
CYP2C19						
NM, IM, PM, RM, UM	0.994 (1)	5.67*10^-5 (0.002)	0.759 (1)	0.560 (1)	0.009 (0.378)	0.107 (1)
NM vs. IM	0.171					
NM vs. PM	0.471					
NM vs. RM	0.143					
NM vs. UM	1.0					
IM vs. PM	0.470					
IM vs. RM	3.0*10^-4					
IM vs. UM	0.035					
PM vs. RM	0.202					
PM vs. UM	0.131					
RM vs. UM	1.0					
CYP2C9						
NM, IM, PM	0.40 (1)	0.890 (1)	0.517 (1)	0.706 (1)	0.901 (1)	0.060 (1)
ABCC2						
*1/*1, *1/*2, *1/*UNK3, *2/*2, *2/*UNK3, *UNK2/*UNK3, *UNK3/*UNK3	0.149 (1)	0.996 (1)	0.678 (1)	0.770 (1)	0.329 (1)	0.224 (1)
CYP1A2						
*1A/*1A, *1A/*1F, *1A/*1L, *1F/*1F, *1F/*1L	0.386 (1)	0.372 (1)	0.333 (1)	0.646 (1)	0.596 (1)	**0.011 (0.462)**
CYP2D6	7.90×10^{-4} (0.033)	0.003 (0.126)	0.198 (1)	0.848 (1)	0.144 (1)	1.22×10^{-11} (5.12×10^{-11})
--------	---------------------	---------------	-----------	-----------	-----------	-----------------------------
NM vs. IM	0.103					3.3×10^{-4}
NM vs. PM	0.010					2.7×10^{-4}
NM vs. UM	0.500					0.442
PM vs. IM	0.333					6.0×10^{-4}
UM vs. IM	0.115					0.028
UM vs. PM	0.079					0.096

CD, dose-corrected serum concentrations; MPR, metabolite-to-parent ratio; Ami, amitriptyline; Ven, venlafaxine; Quet, quetiapine; Mir, mirtazapine; Nor, nortriptyline; ODM, O-desmethylvenlafaxine; NM, normal metabolizer, IM intermediate metabolizer; PM, poor metabolizer; RM, rapid metabolizer; UM, ultrarapid metabolizer.
Table 2: Diplotype/Phenotype analyses in regard to clinical improvement (percentual reduction in HAMD-21 score) were performed by Kruskal-Wallis tests. To adjust for alpha-error accumulation, nominal p-values were Bonferroni-corrected for the total number of genes (7x) and the number of analysed drug concentrations (4x) respectively, in each analysis. The significance threshold was set to $p=0.002$. Significant results are shown in red, nominal significant results are shown in bold.

Diplotypes/Phenotypes	CI AMI (N=109)	CI VEN (N=256)	CI QUET (N=191)	CI MIR (N=169)
UGT2B7				
*1/*1, *1/*2, *2/*2	0.388 (1)	0.859 (1)	0.856 (1)	0.052 (1)
ABCB1				
*1/*1, *1/*10, *1/*18, *1/*2, *1/*6, *2/*2, *2/*6, *2/*8, *2/*9, *2/*10, *2/*18, *6/*6, *6/*8	0.662 (1)	0.627 (1)	0.631 (1)	0.680 (1)
CYP2C19				
NM, IM, PM, RM, UM	0.369 (1)	0.996 (1)	0.960 (1)	0.059 (1)
CYP2C9				
NM, IM, PM	0.249 (1)	0.011 (0.462)	0.084 (1)	0.855 (1)
ABCC2				
*1/*1, *1/*2, *1/*UNK3, *2/*2, *2/*UNK3, *UNK2/*UNK3, *UNK3/*UNK3	0.020 (0.840)	0.168 (1)	0.262 (1)	0.417 (1)
CYP1A2				
*1A/*1A, *1A/*1F, *1A/*1L, *1F/*1F, *1F/*1L	0.353 (1)	0.415 (1)	0.265 (1)	0.194 (1)
CYP2D6				
NM, IM, PM, UM	0.554 (1)	0.554 (1)	0.726 (1)	0.037 (1)

CI, clinical improvement; Ami, amitriptyline; Ven, venlafaxine; Quet, quetiapine; Nor, nortriptyline; ODM, O-desmethylvenlafaxine; NM, normal metabolizer; IM intermediate metabolizer; PM, poor metabolizer; RM, rapid metabolizer; UM, ultrarapid metabolizer
Table 3: Diplotype/Phenotype analyses in regard to remission were performed by chi-squared tests or Fisher’s exact tests. To adjust for alpha-error accumulation, nominal p-values were Bonferroni-corrected for the total number of genes (7x) and the number of analysed drug concentrations (4x) respectively, in each analysis. The significance threshold was set to p=0.002. Significant results are shown in red, nominal significant results are shown in bold.

Gene	Diplotypes/Phenotypes	P (Bonferroni) CI AMI (N=109)	P (Bonferroni) CI VEN (N=256)	P (Bonferroni) CI QUET (N=191)	P (Bonferroni) CI MIR (N=169)
UGT2B7	*1/*1, *1/*2, *2/*2	0.509 (1)	0.876 (1)	0.907 (1)	0.164 (1)
ABCB1	*1/*1, *1/*10, *1/*18, *1/*2, *1/*6, *2/*2, *2/*6, *2/*8, *2/*9, *2/*10, *2/*18, *6/*6, *6/*8	0.444 (1)	0.673 (1)	0.190 (1)	0.565 (1)
CYP2C19	NM, IM, PM, RM, UM	0.471 (1)	0.831 (1)	0.140(1)	0.249 (1)
CYP2C9	NM, IM, PM	1 (1)	0.473 (1)	0.731 (1)	0.897 (1)
ABCC2	*1/*1, *1/*2, *1/*UNK3, *2/*2, *2/*UNK3, *UNK2/*UNK3, *UNK3/*UNK3	3.4*10^-4 (0.009)	0.166 (1)	0.171 (1)	0.057 (1)
CYP1A2	*1A/*1A, *1A/*1F, *1A/*1L, *1F/*1F, *1F/*1L	0.742 (1)	0.945 (1)	0.657 (1)	0.654 (1)
CYP2D6	NM, IM, PM, UM	0.840 (1)	0.965 (1)	0.045 (1)	0.678 (1)

CI, clinical improvement; Ami, amitriptyline; Ven, venlafaxine; Quet, quetiapine; Mir, mirtazapine; Nor, nortriptyline; ODM, O-desmethylvenlafaxine; NM, normal metabolizer; IM intermediate metabolizer; PM, poor metabolizer; RM, rapid metabolizer; UM, ultrarapid metabolizer
Methods
Statistical analyses were conducted with PLINK v1.9 [1] and R v3.1.3 [2]. Single- and multi-marker associations were performed by logistic and linear regression models adjusted for sex and age. Pk analyses were conducted in PLINK with serum concentration as the outcome parameter. Interaction analyses were conducted in R with response data as outcome depending on the interaction of geno-/haplotypes and serum concentrations. Multi-marker interaction analyses were based on haplotypes showing the highest post probability for each individual after haplotype-phasing. To adjust for alpha-error accumulation, nominal p-values were Bonferroni-corrected for the total number of examined SNPs (32x) or haplotypes (33x) and the number of analysed drug concentrations or MPR (6x), respectively. The significance threshold for single marker analyses was set to $p \leq 2.6 \times 10^{-4}$, and for haplotype analyses was set to $p \leq 2.5 \times 10^{-4}$.

Computation of the statistical power was done with G*Power v3.1.9.2 [3]. In the two-tailed Wilcoxon signed-rank test, the sample reached a power of 86% for amitriptyline, 100% for venlafaxine, 97% for mirtazapine, and 98% for quetiapine treated patients to detect SNP and haplotype associations with an effect size of 0.3.

Results
Single marker analyses
Serum Concentrations
Out of 32 analyzed variants, only four markers located within the genes $CYP2C19$ and $CYP2D6$, were significantly correlated with serum concentrations (Table 1).
To adjust for alpha-error accumulation, nominal p-values were Bonferroni-corrected for the total number of examined SNPs (32x) or haplotypes (33x) and the number of analysed drug concentrations or MPR (6x), respectively, in each analysis. The significance threshold was set for SNPs to $p \leq 2.6 \times 10^{-4}$ and for haplotypes to $p \leq 2.5 \times 10^{-4}$.

Dose-corrected serum concentration of the active moiety (CD$_{AM}$) of amitriptyline was correlated with CYP2D6 SNPs, such that in rs1135840 the minor (C) allele went along with significantly decreased CD$_{AM}$ ($p=0.035$, $\beta=-0.37$, $R^2_{\text{Adjusted}}=0.173$), and in rs3892097 and rs1065852, both minor (T and A) alleles went along with significantly increased CD$_{AM}$ ($p=0.003$, $\beta=0.49$, $R^2_{\text{Adjusted}}=0.197$; $p=7.2 \times 10^{-4}$, $\beta=0.50$, $R^2_{\text{Adjusted}}=0.220$). Nominally significant associations of rs3892097 ($p=0.019$, $\beta=0.27$, $R^2_{\text{Adjusted}}=0.054$) and rs1065852 ($p=0.037$, $\beta=0.23$, $R^2_{\text{Adjusted}}=0.033$) with the MPR nortriptyline/amitriptyline did not withstand Bonferroni-correction.

The minor T-allele of the CYP2C19 variant rs12248560 ($p=4.0 \times 10^{-3}$, $\beta=-0.34$; $R^2_{\text{Adjusted}}=0.183$) showed lower CD$_{AM}$ of venlafaxine than the major C-allele. In contrast the MPR O-desmethylenvenlafaxine/venlafaxine was strongly associated with the two CYP2D6 variants rs3892097 and rs1065852, both with the minor T- and A-alleles, respectively, conveying lower ratios ($p=3.5 \times 10^{-5}$, $\beta=-2.14$, $R^2_{\text{Adjusted}}=0.214$; $p=4.5 \times 10^{-5}$, $\beta=-2.08$, $R^2_{\text{Adjusted}}=0.211$).

For CD of mirtazapine and quetiapine, no association with any of the investigated SNPs could be detected.
Treatment Response
For amitriptyline, venlafaxine, mirtazapine, and quetiapine, neither an SNP nor the interaction between SNP and serum concentration was significantly associated with the response to drug therapy.

Haplotype analyses

Serum Concentrations
In line with single marker results, allele-specific differences with regards to CD_{AM} of amitriptyline and venlafaxine were found for haplotypes of $CYP2D6$ and $CYP2C19$ (Figure 1) additionally, one haplotype of $ABCB1$ was associated with a CD of mirtazapine (Table 1).

![Figure 1](image.png)

Figure 1 Dose-corrected serum concentrations normalised to the age of (A) amitriptyline were associated with $CYP2D6^*4$ and of (B) venlafaxine were associated with $CYP2C19^*17$ (linear regression analyses). Linear regression analyses were corrected for sex and age; therefore dose-corrected serum concentrations were normalised to the mean age of each sample (48 and 45 years, respectively), and separate box-plot diagrams were prepared for male and female patients. Linear regression lines and the corresponding confidence intervals were...
integrated into each diagram.

The **CYP2D6** haplotype *4, reflecting minor A- and T-allele associations of the included variants rs1065852 and rs3892097, was found to significantly impact CD$_{AM}$ of amitriptyline. Carriers of this haplotype showed higher CD$_{AM}$ ($p=0.005$, $\beta=0.48$, $R^2_{\text{Adjusted}}=0.191$) in contrast to carriers of other haplotypes (figure 1).

In accordance with results for the **CYP2C19** SNP rs12248560, the minor T-allele-containing haplotype *17 was significantly associated with lower CD$_{AM}$ of venlafaxine ($p=0.003$, $\beta=-0.35$, $R^2_{\text{Adjusted}}=0.185$, figure 1). The **CYP2D6** haplotype *4 was associated with lower MPR ($p=3.6\times10^{-5}$, $\beta=-2.14$, $R^2_{\text{Adjusted}}=0.214$). An additional **CYP2D6** haplotype GCTCAAAAG, comprising the minor A-allele of the nominally significant variant rs16947 ($p=0.004$, $\beta=1.13$, $R^2_{\text{Adjusted}}=0.082$), reached Bonferroni significance for association with increased O-desmethylvenlafaxine/venlafaxine ratio ($p=0.013$, $\beta=1.56$, $R^2_{\text{Adjusted}}=0.137$).

Higher CD of mirtazapine was significantly influenced by the **ABCB1** haplotype GAC ($p=0.011$, $\beta=2.09$, $R^2_{\text{Adjusted}}=0.193$).

CD of quetiapine again was not associated with the examined haplotypes.

Treatment Response

For amitriptyline, venlafaxine, quetiapine, and mirtazapine, none of the haplotypes nor the interactions between haplotypes and serum concentration showed a significant association with the response to drug therapy.

Discussion

In this section, only results that are not targeted in the main manuscript are discussed (Table 1).

We report, for the first time, that **CYP2D6** SNP rs1135840 was associated with amitriptyline serum concentration. This is a missense variant [4,5], which previously was associated with acute liver failure [5]. In our analysis, carriers of the minor C-allele showed lower serum concentrations compared to the wild type (G-allele). This is in accordance with previous studies, reporting an association of the minor allele with a higher rate of hydroxychloroquine metabolism [6] and an increased risk of adverse drug events in antituberculosis drug treatment in carriers of the GG-genotype [4]. As rs1135840 appears in different **CYP2D6** variants [7,8], it is not used to determine any particular variant.

Mirtazapine is mainly metabolized by CYP3A4, CYP1A2, and CYP2D6 [9]. The drug is not known as a substrate of p-glycoprotein [9,10]; however, in haplotype analyses, higher CD of mirtazapine was found in carriers of the **ABCB1** haplotype *8/*16 (GAC). P-glycoprotein
plays a role in limiting the bioavailability of drugs in the intestine, resulting in lower serum concentrations, but also in limiting the drug’s absorption into the brain [11,12]. Therefore, possibly this haplotype increased mirtazapine resorption due to a decrease in its efflux capacity. Single-marker analyses did not show an association of one of the included SNPs (rs1045642, rs1128503, rs2032582) with the CD of mirtazapine. The SNPs rs1128503 and rs1045642 are synonymous variants, and the triallelic SNP rs2032582 is a missense mutation, accounting for an altered amino acid function [11,13]. Literature on genetic associations of these SNPs with p-glycoprotein expression and function has largely been inconsistent; however, rs1045642 is most likely associated with altered protein expression and drug metabolism [11,13]. In line with single-marker analyses, haplotype analyses conducted previously were also inconsistent [12]. A prior analysis within the MARS sample investigating 95 SNPs within ABCB1 showed that ABCB1 affected antidepressant response in patients treated with p-glycoprotein substrates [14]. However, results addressing rs1045642, rs1128503, and rs2032582 were in accordance with our analyses, as these SNPs do not affect treatment response either [14]. Thus, the role of ABCB1 in drug disposition and treatment response is still unclear [11].
References

1. Purcell S, Neale B, Todd-Brown K et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559-575
2. RCoreTeam. R: A language and environment for statistical computing., R Core Team. https://www.R-project.org/: R Foundation for Statistical Computing, Vienna, Austria; 2014.
3. Faul F, Erdfelder E, Buchner A et al. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods 2009; 41: 1149-1160
4. Hu X, Zhang M, Bai H et al. Antituberculosis drug-induced adverse events in the liver, kidneys, and blood: Clinical profiles and pharmacogenetic predictors. Clin Pharmacol Ther 2018; 104: 326-334
5. Rakela J, Rule J, Ganger D et al. Whole exome sequencing among 26 patients with indeterminate acute liver failure: A pilot study. Clin Transl Gastroenterol 2019; 10: e00087
6. Lee JY, Vinayagamoorthy N, Han K et al. Association of polymorphisms of cytochrome P450 2D6 with blood hydroxychloroquine levels in patients with systemic lupus erythematosus. Arthritis Rheumatol 2016; 68: 184-190
7. Gaedigk A, Ingelman-Sundberg M, Miller NA et al. The Pharmacogene Variation (PharmVar) Consortium: Incorporation of the Human Cytochrome P450 (CYP) Allele Nomenclature Database. Clin Pharmacol Ther 2018; 103: 399-401
8. Gaedigk A, Sangkuhl K, Whirl-Carrillo M et al. The evolution of PharmVar. Clin Pharmacol Ther 2019; 105: 29-32
9. Hiemke C, Bergemann N, Clement HW et al. Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: update 2017. Pharmacopsychiatry 2018; 51: 9-62
10. O’Brien FE, Clarke G, Dinan TG et al. Human P-glycoprotein differentially affects antidepressant drug transport: relevance to blood-brain barrier permeability. Int J Neuropsychopharmacol 2013; 16: 2259-2272
11. Hodges LM, Markova SM, Chinn LW et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics 2011; 21: 152-161
12. Leschziner GD, Andrew T, Pirmohamed M et al. ABCB1 genotype and PGP expression, function and therapeutic drug response: A critical review and recommendations for future research. Pharmacogenomics J 2007; 7: 154-179
13. Jiang ZP, Xu P, Liu RR et al. Correlation between MDR1 methylation status in the promoter region and MDR1 genetic polymorphism in 194 healthy Chinese Han subjects. Pharmacogenomics 2008; 9: 1801-1808
14. Uhr M, Tontsch A, Namendorf C et al. Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 2008; 57: 203-209
Supplement 6

to

Effects of Pharmacokinetic Gene Variation on Therapeutic Drug Levels and Antidepressant Treatment Response

Table 1 Diplotype/phenotype analyses in regard to serum concentrations were performed by Kruskal-Wallis tests. Patients receiving interacting drugs for CYP2D6 were excluded from the analysis. To adjust for alpha-error accumulation, nominal p-values were Bonferroni-corrected for the total number of genes (7x) and the number of analysed drug concentrations or MPR (6x), respectively, in each analysis. The significance threshold was set to p≤0.001. Significant results are shown in red and nominal significant results are shown in bold.

Diplotypes/Phenotypes	CD AMI (N=109)	CD VEN (N=256)	CD QUET (N=191)	CD MIR (N=169)	MPR NOR/AMI (N=61)	MPR ODM/VEN (N=129)
	P (Bonferroni)	Pairwise	P (Bonferroni)	Pairwise	P (Bonferroni)	P (Bonferroni)
NM, IM, PM; UM	0.001 (0.042)	0.009 (0.378)	0.198 (1)	0.553 (1)	0.151 (1)	1.04*10⁻¹¹ (4.37*10⁻¹⁰)
NM vs. IM		0.212				
NM vs. PM		0.009				
NM vs. UM		0.661				
PM vs. IM		0.166				
UM vs. IM		0.189				
UM vs. PM		0.079				

CD, dose-corrected serum concentrations; MPR, metabolite-to-parent ratio; Ami, amitriptyline; Ven, venlafaxine; Quet, quetiapine; Mir, mirtazapine; Nor, nortriptyline; ODM, O-desmethylvenlafaxine; NM, normal metabolizer, IM intermediate metabolizer; PM, poor metabolizer; RM, rapid metabolizer; UM, ultrarapid metabolizer.
Table 2: Diplotype/phenotype analyses in regard to clinical improvement (percentual reduction in HAMD-21 score) were performed by Kruskal-Wallis tests. Patients receiving interacting drugs for CYP2D6 were excluded from the analysis. To adjust for alpha-error accumulation, nominal p-values were Bonferroni-corrected for the total number of genes (7x) and the number of analysed drug concentrations or MPR (6x), respectively, in each analysis. The significance threshold was set to \(p\leq0.001\). Significant results are shown in red and nominal significant results are shown in bold.

CYP2D6	CI AMI (N=109)	CI VEN (N=256)	CI QUET (N=191)	CI MIR (N=169)
NM, IM, PM; UM	0.600 (1)	0.932 (1)	0.557 (1)	0.033 (1)

CI, clinical improvement; Ami, amitriptyline; Ven, venlafaxine; Quet, quetiapine; Mir, mirtazapine; Nor, nortriptyline; ODM, O-desmethylvenlafaxine; NM, normal metabolizer; IM, intermediate metabolizer; PM, poor metabolizer; RM, rapid metabolizer; UM, ultrarapid metabolizer.