Search for emission-line galaxies towards nearby voids. Observational data*

Cristina C. Popescu1,4, Ulrich Hopp1,2, Hans Jürgen Hagen3, and Hans Elsässer1

1 Max Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
2 Universitätssternwarte München, Scheiner Str.1, D-81679 München, Germany
3 Hamburger Sternwarte, Gojenbergsweg 112, D-20129 Hamburg, Germany
4 The Astronomical Institute of the Romanian Academy, Str. Căuțiul de Argint 5, 75212, Bucharest, Romania

Received 18.08.1995; accepted 12.09.1995.

Abstract. We present the observational results of our search for emission-line galaxies (ELG) towards nearby voids. In order to find ELG, we started a survey using the IIIa-J objective prism plates from the Hamburg QSO Survey. The plates are digitized and an automatic procedure was applied to select the candidates. Digitized direct plates were used to determine coordinates and to reject overlaps between spectra. The accuracy of the coordinates is ±2". A total area of 1248 deg² was scanned, distributed in four different regions.

All the selected objects were observed with follow-up spectroscopy. We have obtained a final sample of 203 objects, of which 196 are emission-line galaxies, four are galaxies with absorption lines and three are QSOs. Almost half of our objects are newly discovered ones and three quarters of the given redshifts are new. Our sample contains mainly high ionization galaxies and is less sensitive in the detection of low-ionization objects.

The apparent magnitudes, as derived from the objective prism plates, range between 15.0 ≤ B ≤ 19.5. The sample is dominated by nearby galaxies, with a peak in the redshift distribution at cz=4500 km/s.

Key words: large scale structure - galaxies - redshift survey

1. Introduction

Recent redshift surveys of galaxies (e.g. the Center for Astrophysics Survey (CfA)), revealed that bright galaxies are distributed in sheet-like structures which surround large voids. This has been a subject of intense investigation since the proposal of such structures by Zeldovich et al. (1982). Still under debate is the question whether all galaxies follow this non-uniform distribution or if less luminous galaxies are more equally distributed. Given the limitation of the actual surveys, the observed emptiness of the voids may be a result of observational bias. From an observer's point of view, the galaxy maps may reflect special observational selection effects in surface brightness, integral magnitude or diameter. From the theoretical point of view, there has been the prediction (e.g. Kaiser 1986, Bardeen 1986) that luminous galaxies were formed preferentially in high-density regions of the Universe, thus giving us a biased view of the large-scale distribution of matter.

Several studies of the spatial distribution of galaxies, especially of dwarf galaxies, were carried out to overcome some of these biases (e.g. Binggeli et al. 1990, Thuan et al. 1991). Unfortunately the results were contradictory and no definitive conclusions were drawn. Some interesting results came from the study of the spatial distribution of emission-line galaxies (ELG) (Salzer 1989, Weistrop et al. 1992). These objects are intrinsically small, very compact and with low luminosities. In some cases they are so compact that they look almost stellar, with no obvious underlying galaxy. Such galaxies can easily be missed by surveys that select their candidates on morphological criteria or discriminate stars from galaxies by the apparent diameter of the latter, and thus are good candidates to fill up the voids. III galaxies can be recognised because of their typical emission-line spectrum and an efficient way to find them is to use objective prism plates.

We therefore started a project to search for ELG towards nearby voids, using an objective prism survey. This project belongs to a larger one, that has the aim of finding faint galaxies within the voids (Hopp and Kuhn 1995, Hopp et al. 1995). Previous results on this project showed that while the central part of the voids remains free of galaxies, some of the dwarfs populate the outskirts of the voids. Most of these dwarfs are emission-line galaxies.

During the last two decades much effort has been spent to discover large samples of ELG. One method is to use multiple exposures on the same plate through different filters and search for UV excess objects, as was done by the Kiso UV-Excess Galaxy Survey (Takase and Miyachi-Isebe 1988) and the Montreal Blue Galaxy Survey (Coziol et al. 1993, Coziol et al. 1994). A second method is to use low resolution objective prism Schmidt plates and search for galaxies with strong UV-continuum. This method was used by Markarian (1967) for the First Byurakan Spectral Sky Survey. Perhaps the most unambiguous method is to use objective prism surveys and search directly for the presence of emission-lines.
A new era in the survey techniques was opened by the use of grazings and CCD cameras as detectors (e.g. Palomar Transit Grism Survey, Schneider et al. 1994). While this kind of surveys have the advantage of going deeper, their small field of view makes the photographic plate surveys still competitive when covering wide fields.

In this paper we present an objective prism survey that used digitized plates and an automatic procedure to search for ELG candidates. All the objects selected from the plates were observed with follow-up spectroscopy, thus providing a complete sample of emission-line galaxies. The paper describes the selection of the sample and the follow-up observations. The study of the spatial distribution of our sample of emission-line galaxies, as well as their properties, will be given elsewhere.

The paper is organized as follows. In § 2 we describe the method used to select the candidates from the objective plates. In § 3 the follow-up spectroscopy is presented. In § 4 we discuss the results of our survey and § 5 contains the conclusions.

2. Selection of candidates on objective prism plates

We used published cone diagrams to identify nearby ($r_R \leq 75000 km/s$) voids. Four void regions were selected according to the following criteria: diameter larger than 20 Mpc ($H_0 = 75 km/s/Mpc$), completely empty of CfA galaxies, galactic latitude $b \geq 30^\circ$. The location of the four void regions can be found in Table 1, where we give the exact coordinates of all the fields surveyed.

The ELG candidates were selected on the objective prism plates taken in the frame of the Hamburg Quasar Survey (HQS) (Hagen et al. 1995). The plates are taken with the 80-cm Schmidt-telescope at the German-Spanish Observatories, Calar Alto (Spain). The telescope is equipped with a 1.7'' objective prism producing a dispersion of 1390 \AA/mm at H\alpha. The 24-cm \times 24-cm hypersensitized Kodak IIIa-J plates (spectral range: 3400 \AA\text{-}5500 \AA), covering a field of 5.5'' \times 5.5'', were scanned with low resolution (LR), using a PDS 1010G microdensitometer. The LR mode used a 100 \mu m slit running perpendicular to the direction of dispersion. After on-line background reduction and object recognition, LR spectra were stored on optical disks. Automated search software was applied to the LR digitized data to select spectra in a specific parameter space. The two parameters used were the density sum of intensity ("brightness") of the integrated spectra and the slope of the continuum ("colour"), which is again a function of the density sum. Brighter objects are redder because the sensitivity of the photographic plate increases with wavelength. The selected spectra were re-scanned individually with high resolution (HR) (30 \mu m slit) and the final digitized spectra were visually inspected for emission lines.

The range in density sum excludes very bright objects, that are not needed for our study, but also very faint objects, that lie very close to the detection limit of the plate. The limit at the very bright end helps us to decrease the number of uninteresting candidates, while bright galaxies (brighter than our threshold) with emission are still found due to their HI regions. These knots are found as individual objects and their brightnesses are therefore fainter than those of the underlying galaxies. Nevertheless, these bright galaxies are already known and contained in galaxy catalogs like the CfA. The incompleteness due to the faint limit in the low-density region was analyzed as follows. For three plates we extended our search to the very faint end (which is only 20% of the whole range used), and we found twice (or even more) as many candidates as in the normal range. Most of these extra spectra were very noisy and could not be classified. Thus the efficiency of finding interesting objects was rather reduced and the number of objects and the quality of the spectra depended more strongly on plate quality. Our tests showed that we can miss some faint emission-line galaxies, on the order of 2 per plate (0.06 deg$^{-2}$), but one can correct for these numbers. Due to our automated
search software, the incompleteness at the very faint end of the “brightness” parameter can be quantified. The other parameter, the slope of the continuum, is set so that only the bluest objects are selected. To do this we estimate the slope as a function of density sum, and for each bin of density sum, a fraction $f=0.15$ of the bluest objects are considered. The colour selection causes our sample to be dominated by very blue galaxies. In order to test this selection effect, we searched two plates without any restriction in the colour parameter. Our tests showed again that we can miss some emission-line galaxies that are redder than our selection criteria. These galaxies are usually strong emission-line objects and have also strong continua, that is produced by an underlying older population of stars. As we are more interested in dwarf emission line galaxies, we believe that our blue criteria help us to select a sample that is less contaminated by other kinds of emission-line galaxies. We will refer to our selection criteria as the blue criteria, though it includes a selection in a two parameter space.

The number of candidates for high resolution varies between 1500 and 3500 per plate, depending on the plate quality and on the galactic latitude. Those HR spectra which show strong [OIII] lines are selected the final sample of candidates. The [OIII] line appears as a distinctive peak near the green head of the objective prism spectra. Often the [OII] doublet can be identified too. Some typical HR objective prism spectra are given in the left panels of Fig. 4. The aim of the Hamburg Survey is to cover every Schmidt field with two plates, in order to allow the distinction between real emission-line objects and plate defects. Unfortunately the regions we scanned were not always covered by two plates, as the Hamburg sur-
Table 1. The coordinates of the centre of the plates that were scanned in our ELG Survey. The first column gives the void region (from 1 to 4) for which the plates were selected

Region	Coordinates
1	$\delta = 2.5^\circ$: $\alpha = 00^h20^m$; 00^h40^m; 01^h00^m; 01^h20^m;
	$\delta = 7.5^\circ$: $\alpha = 00^h20^m$; 00^h40^m; 01^h00^m; 01^h20^m; 01^h40^m;
	$\delta = 12.5^\circ$: $\alpha = 00^h20^m$; 00^h41^m; 01^h01^m; 01^h21^m; 01^h41^m;
	$\delta = 17.5^\circ$: $\alpha = 00^h21^m$; 00^h42^m; 01^h03^m; 01^h23^m; 01^h44^m;
	$\delta = 22.5^\circ$: $\alpha = 00^h06^m$; 00^h21^m; 00^h43^m; 01^h04^m; 01^h26^m;
2	$\delta = 57.5^\circ$: $\alpha = 08^h12^m$; 08^h17^m; 09^h22^m;
	$\delta = 62.5^\circ$: $\alpha = 08^h00^m$; 08^h40^m;
3	$\delta = 32.5^\circ$: $\alpha = 13^h10^m$; 13^h33^m; 13^h56^m; 14^h19^m; 14^h43^m;
	$\delta = 37.5^\circ$: $\alpha = 12^h37^m$; 13^h25^m; 13^h50^m; 14^h14^m; 14^h30^m; 15^h03^m;
	$\delta = 42.5^\circ$: $\alpha = 14^h04^m$; 14^h50^m; 15^h16^m;
4	$\delta = 47.5^\circ$: $\alpha = 16^h00^m$; 16^h28^m;
	$\delta = 52.5^\circ$: $\alpha = 16^h42^m$; 17^h13^m;
	$\delta = 57.5^\circ$: $\alpha = 16^h59^m$; 17^h34^m;

Typical exposure times were 10-15 minutes, depending primarily on the strength of the emission lines: strong-line objects were not observed as long as weaker line galaxies. The exposure time depends also on the brightness of the galaxy, though not so strongly. For example, for very faint objects with almost no underlying continuum but with strong emission features, an integration of 10 minutes brought enough fluxes in the emission lines to properly reduce the spectrum. By contrast, brighter objects, with strong continuum but very weak lines (or no obvious emission features in the objective spectra) had to be integrated longer.

The frames were biased and flatfield-corrected. For the extraction of the 1-dimensional spectra from the 2-dimensional data, the optimal extraction algorithm of Horne (1986) was used. The spectra were rebinned to a linear wavelength scale using a third or fifth order polynomial fitted to the dispersion curve of the comparison spectra. A flux calibration was applied, and finally the wavelength scale was checked by comparison with the night-sky lines. A more detailed description of the reduction procedure is given by Stickel et al. (1993).

Once fully reduced, the emission lines in each spectrum were measured by fitting a Gaussian. The quoted redshifts were derived as means of the redshifts determined from the individual strong lines, and the errors of the redshifts were calculated as error of the mean. The observed redshifts were further corrected for the motion of the Earth and transformed in heliocentric redshifts. The calculated errors were compared with the deviations obtained from the night-sky line measurements. We estimate that for the spectra taken in the runs 3-4, which consist of 85% of our data, the errors are $\Delta z=0.0001$. This value can increase up to $\Delta z=0.0002$ for some of the galaxies with very noisy spectra. For the rest of our spectra (15%) the errors are bigger, up to $\Delta z=0.005$. During run 7, some planetary nebulae with known redshifts were observed (NGC6543, NGC0040, NGC1501, NGC2022, NGC2392, PN2120), in order to check the quality of our wavelength calibration. The reference values of the planetary nebulae were taken from The Strasbourg-ESO Catalogue of Galactic Planetary Nebulae. (Acker et al. 1992)

In Fig. 2 we plotted the observed velocities versus the reference velocities and applied a linear fit. As one can see, the differences between our velocities and those from literature are in the range of the assumed errors. We obtain a correlation

3. Follow-up spectroscopy

We observed our candidates during several observing runs, most of them being carried out with the 2.2m telescope at the German-Spanish Observatory at Calar Alto (Almeria, Spain).
Table 2. Dates and set-up of the spectroscopic observations: BCCS: Boller & Chivens Cassegrain Spectrograph, CAOS: Calar Alto Faint Object Spectrograph at the 2.2 m telescope, PFFR: Prime focus focal reducer, ESO/Faint Object Spectrograph and Camera 2, CA: Calar Alto, LS: La Silla

No.	Dates	Telescope	Instrument	Spectral Range (Å)	Spectral Resolution (Å)
1	1994 Jan 2-3	2.2 m CA	BCCS	3600-6500	6.5
2	1994 Jan 4-9	2.2 m CA	BCCS	3700-9000	6.5
3	1994 June 8-11	2.2 m CA	CAOS 2.2	3900-8200	18
4	1994 Oct 9-12	2.2 m CA	BCCS	3600-9000	12
5	1994 Oct 13	3.5 m CA	PFFR	3500-7600	20
6	1994 Dec 10	2.2 m LS	EFOSC2	3500-5500	12
7	1995 Jan 31-Feb 3	2.2 m CA	BCCS	3460-8600	12

Table 3. Candidates with available redshifts from literature, observed with the purpose of testing the redshift accuracy.

name	our redshift	reference redshift	difference in redshift
CG 0419	0.0114	0.0114	0.0000
DDO 166	0.0031	0.0032	0.0001
UM 065	0.0210	0.0210	0.0000
DDO 13	0.0021	0.0021	0.0000
UM 306	0.0170	0.0164	0.0006

Fig. 2: The observed velocities of the planetary nebulae used to check the redshift errors, versus their reference velocities. A linear fit is applied to the data points and a correlation coefficient of 0.95 is obtained.

A further test came from the observations of some candidates that had redshifts given in the literature. In Table 3 we give the names of the galaxies observed together with their velocities, both measured and from the literature. In the last column we indicate the difference between our values and the reference ones. These galaxies were measured during the runs for which we estimated an error of 0.0001 in z. Besides UM 306, for which we obtained a big difference, the rest show differences of about 0.0001. In order to see if the estimated error of 0.0001 in z is constant through all the runs where we assumed such an error, we observed a few candidates twice, in different runs. The results of these tests indicate that the errors do not change with the run.

Before starting the observations, we checked our lists of candidates with the present catalogs of galaxies and emission-line objects, in particular with the NASA Extragalactic Data Base (NED). Candidates found by other surveys with available redshifts were normally not reobserved. There were cases in which the candidates were contained also in other catalogs, but with unknown redshifts. We observed these, together with the newly discovered objects. All first priority candidates with unknown redshifts (182 out of 234) were measured and also some of our second priority ones (83). The latter were observed to test their nature and we did not intend to be complete with these objects. From the observed 182 first priority candidates, 126 showed emission lines, the rest being failures (either featureless spectra or stars). If we consider the whole sample of
dependence of the success rate with the apparent magnitude, and of the frequency of objects with available redshifts, the success rate of our selection is 76%. Some of our failures come from the fields covered only by one plate (see § 2). But more important is the dependence of the success rate with the apparent magnitude (see p. 290, Hopp et al. 1995). For brighter objects the success rate is almost 100%, decreasing for the fainter ones.

The observed objects are listed in Table 4, which contains only the objects for which a redshift was assigned (failures not included). Most of our spectra show the emission lines of \([\text{O} \, \text{I}] \lambda \lambda 3727, \, \lambda \lambda 3861, \, \lambda \lambda 4959, \, \lambda \lambda 5007, \, \lambda \lambda 5077, \, \lambda \lambda 5099, \, \lambda \lambda 6563, \) and \([\text{Si} \, \text{II}] \lambda \lambda 6716, \, \lambda \lambda 6730\). Many spectra also show the fainter emission lines of ion species like \([\text{Ne} \, \text{III}],[\text{He} \, \text{I}],[\text{O} \, \text{I}],[\text{O} \, \text{II}],[\text{Al} \, \text{II}],[\text{Fe} \, \text{II}],[\text{O} \, \text{III}],[\text{S} \, \text{II}],[\text{N} \, \text{II}],[\text{C} \, \text{II}],\) as well as some further Balmer lines, from \(H_g\) to \(H_\alpha\). These are mainly high ionization type spectra, which dominate our sample of ELG. We have even cases with very strong \([\text{O} \, \text{III}] \lambda \lambda 4959, 5007\), despite the short exposures that were used to take the spectra. Nevertheless there are also intermediate ionization spectra as well as low ionization ones, the latter coming mainly from the second priority sample. A few cases contain objects in which only \(H_\alpha\) and \([\text{Si} \, \text{II}]\) were detected. The spectra with only one line detection (four cases) are marked with an asterisk in Table 4. The table is organized as follows:

- **Column (1)** gives the name of our objects, which is built with the prefix HS (from Hamburg Survey), followed by the first four digits of the 1950.0 right ascension and declination;

- **Column (2)** gives alternate designations for those galaxies contained in other catalogs. The abbreviations are explained in the List of Abbreviations, given at the end of the table.

- **Column (3)** and (4) give the 1950.0 positions. The coordinates are derived from the Hamburg direct plates and have an accuracy of \(\pm 2\) arcsec. There are few cases in which some HII regions in normal galaxies were found. The coordinates refer then to the position of the HII region rather than to the centre of the galaxy. Special remarks are made for each case.

- **Column (5)** gives the heliocentric redshifts.

- **Column (6)** the B magnitudes as derived from the Hamburg objective prism plates (\(B_P\)) and

- **Column (7)** the magnitudes from literature. \(B_L\) (where available). For details of the magnitude calibration see Engels et al. (1994). The magnitude accuracy is 0.5 mag. Sometimes our magnitudes were fainter than those found in literature, because they refer only to the emission region, and not always to the underlying galaxy.

- **Column (8)** contains a flag S (from selection) that gives the selection criteria used to select the candidates from the objective prism spectra: E for emission candidate (first priority) and B for blue candidate (second priority) (see § 2)

- **Column (9)** contains either the number of the run in which the object was observed (with the prefix o - from observed) or the code of the reference, when the object had available redshift (with the prefix l - from literature). The numbers of the observing runs are the same as listed in Table 2. The codes for references are explained at the end of the table, in the “References to Table 4”.

- **Column (10)** contains special remarks.

Finding charts of all our newly discovered objects can be found in Fig. 4. We also give the finding charts of some of our objects that were previously known as IRAS sources but without any follow-up spectroscopy. The finding charts were prepared by means of the Palomar Sky Survey plates, digitized and distributed on CD-ROM by the Space Telescope Science Institute. Fields are \(10' \times 10'\). North is up, and east is to the left.

Some typical examples of our slit spectra are given in the right panels of Fig. 4, while the corresponding HR objective prism spectra can be found in the left panels. In the last slit spectrum, HS0153+2205, the \([\text{O} \, \text{III}]\) line is under the limit of a clear detection, the only lines being the \(H_\alpha\)-\(\text{NII}\). The corresponding objective prism spectrum was very noisy, and what appeared to be an \([\text{O} \, \text{II}]\) line was in fact spurious. We also give the spectrum of a Sy 1 galaxy, HS0814+6439. The identified emission lines are listed in Table 5 while the lengthy discussion of their strength is left for a separate paper. Those objects which are certainly stars are listed in Table 6.
object name	other names	R.A.	Decl.	redshift	B_H	B_L	S	run or reference	remarks		
HS0000+2252	IRAS F00000+2252	00 00 01.0	+22 52 20	0.0730	16.3	17.33	E	o4	IrS		
HS0000+2422	NPM1G +22.0001	00 00 26.0	+24 22 35	0.0382	17.0		E	o4	IrS		
HS0006+2133	IRAS 00067+2133	00 06 43.7	+21 33 09	0.0774	17.5	16.9	E	I12	IrS		
HS0013+0809		00 13 02.0	+08 09 37	0.0844	19.3		E	o7			
HS0013+1942		00 13 14.4	+19 42 08	0.0258	17.1		E	o4	abs		
HS0013+2241		00 13 15.0	+22 41 45	0.0217	17.7		E	o4			
HS0016+1449		00 16 35.7	+14 49 44	0.0147	17.6		E	o7			
HS0020+0656	UM 029	00 20 18.4	+06 56 53	0.051	18.0		E	I77			
HS0021+1347	UM 241	00 21 50.5	+13 47 33	0.0144	16.5		E	o2			
HS0022+0014	UM 241	00 22 46.1	+00 14 54	0.0139	16.3		E	o4			
HS0023+0145	UM 241	00 23 44.8	+19 45 23	0.0926	18.2		E	o5			
HS0024+2314	UM 241	00 24 15.4	+23 14 37	0.0238	18.0		E	o4			
HS0024+2422	UM 241	00 24 32.2	+10 22 28	0.0671	17.6		E	o2			
HS0026+0332	UM 241	00 26 52.4	+03 32 49	0.0410	17.5		E	o4			
HS0028+1747	UM 241	00 28 42.1	+17 47 58	0.0978	18.1		E	o7			
HS0029+1748	NPM1G +17.0024	00 29 26.5	+17 48 11	0.0073	17.5	18.03	E	o7			
HS0029+1443	UM 258	00 29 42.3	+14 43 38	0.0175	17.2		E	o7			
HS0032+0116	UM 258	00 32 03.3	+01 16 10	0.0147	19.0		E	o7			
HS0033+0421	UGC 00359	00 33 36.0	+04 21 37	0.01637	16.5	15.5	E	I19	IrS		
HS0035+0725		00 35 45.9	+07 25 29	0.8541	18.3		E	o7	QSO		
HS0036+0437		00 36 01.6	+04 37 19	0.6289	17.3		E	o4			
HS0036+0532		00 36 05.7	+05 32 32	0.3884	18.5		E	o5			
HS0037+0111		00 37 45.2	+01 11 18	0.0136	17.0		E	o4			
HS0038+0122	PC 0038+0122	00 38 06.1	+01 22 52	0.066	17.6	18.11	B	i67			
HS0040+0952		00 40 51.5	+09 52 29	0.0156	17.3		E	o4			
HS0041+2333		00 41 41.3	+23 33 36	0.0218	17.7		E	o4			
HS0043+0531		00 43 16.2	+05 31 37	0.0408	17.6		E	o7			
HS0044+0453	UM 065	00 44 52.8	+04 53 27	0.021	17.2		E	I77			
HS0045+0902	UM 279	00 45 55.6	+09 20 50	0.0381	18.9		E	o7			
HS0049+0006	UM 282	00 49 13.4	+00 06 33	0.037	19.1	18	E	I77			
HS0049+0017	UCM 0044-0006	00 49 15.5	+00 17 38	0.0150	17.0	16.76	E	I58			
HS0051+0027		00 51 22.4	+00 27 27	0.0202	18.9		E	o7			
HS0051+0555	UM 077	00 51 44.4	+05 55 35	0.017	18.6		B	I77			
HS0052+2119		00 52 33.0	+21 19 52	0.0434	17.7		E	o4			
HS0055+0104	UM 293	00 55 19.8	+01 04 04	0.0567	16.8	16.4	E	I13	Sy1.5		
HS0056+0044	UM 295	00 56 21.3	+00 44 09	0.0176	17.2		E	o4			
HS0056+0043	UM 296	00 56 30.0	+00 43 55	0.0180	16.5	16.58	E	I58	IrS		
object name	other names	R.A.	Decl.	redshift	B_H	B_L	S	run or reference	remarks		
-------------	-------------	------	-------	----------	-------	-------	---	-----------------	--------		
HS0058+1847	UM 082	00 58 52.6	+18 47 25	0.0376	17.4	E	o7				
HS0058+0638	NPM1G +06.0048	00 58 44.7	+06 38 42	0.051	17.2	17.88	E	I77		Sy 2	
HS0101+0310		01 01 24.9	+03 10 56	0.0564	17.3	E	o4				
HS0183+2441		01 03 42.0	+24 41 12	0.0541	17.1	B	o5				
HS0103+1242	IRAS F01037+1422	01 03 46.4	+12 42 29	0.0447	16.5	E	o4		IrS		
HS0104+0622	UM 085	01 04 09.3	+06 22 00	0.041	17.2	17.29	E	I77		Sy 2	
HS0105+1304		01 06 14.5	+13 04 14	0.0597	16.8	E	o4				
HS0107+1946		01 07 29.7	+19 46 38	0.0423	18.0	E	o4				
HS0107+2458		01 07 58.5	+24 58 26	0.0394	17.3	B	o5				
HS0110+0150	UM 306	01 08 00.4	+01 50 52	0.0176	15.9	E	o4				
HS0108+0103	UM 307	01 08 56.6	+01 03 19	0.0228	17.6	14.31	E	I77	HI1 region in an Sdm	IrS	
HS0110+2149	NPM1G +21.0055	01 10 31.6	+21 49 54	0.0563	18.3	16.69	E	o4			
HS0111+1560	UGC 0074	01 11 12.4	+13 00 25	0.0491	16.8	14.76	E	I13	Sy 1	IrS	Radio S
HS0111+2115	NPM1G +21.0056	01 11 55.6	+21 15 25	0.0318	16.3	16.42	E	o7			
HS0113+1750		01 13 59.5	+17 50 03	0.0626	18.5	E	o7				
HS0115+1156	MRK 0979	01 15 22.6	+11 56 38	0.0190	15.6	15.5	E	I44			
HS0116+2244	NPM1G +22.0058	01 16 53.0	+22 44 33	0.0439	17.2	16.80	B	o7		abs	
HS0117+1017		01 17 13.6	+10 17 33	0.0342	16.5	E	o6				
HS0117+1135		01 17 29.8	+11 35 17	0.0615	16.2	B	o7				
HS0118+1126		01 18 36.4	+12 36 49	0.0198	16.7	E	o6				
HS0119+0331	UM 099	01 19 32.6	+03 31 41	0.0237	16.5	E	o4				
HS0119+0044	IRAS 01197+0044	01 19 43.9	+00 44 42	0.0555	16.9	E	I72		IrS		
HS0122+0473	UGC 00993	01 22 57.1	+04 43 47	0.0075	17.6	15.00	E	I19			
HS0123+1624		01 23 36.3	+16 24 55	0.0290	17.2	E	o7				
HS0124+1126	NPM1G +11.0056	01 24 46.4	+11 26 42	0.0327	16.7	17.36	E	o6			
HS0131+1397	IRAS F01318+1396	01 31 52.3	+13 37 04	0.0359	17.6	E	o7		IrS		
HS0134+1341		01 33 43.0	+13 41 43	0.0239	17.7	E	o7				
HS0137+1539	UGC 01176	01 37 36.4	+15 39 34	0.0021	18.8	14.4	E	o7		HI1 region in an Im	
DDO 013	[BC2] A0137+15										
	LGG 029: [G93] 006										
HS0138+0458	UM 126	01 38 48.8	+04 58 04	0.032	17.4	18.0	E	I80			
HS0141+0719		01 41 23.4	+07 19 46	0.023	16.3	E	I80				
HS0142+1651	MRK 0361	01 42 03.7	+16 51 31	0.0275	15.8	15.6	E	I50			
HS0143+2400	NPM1G +16.0052	01 43 07.5	+24 00 55	0.0346	18.4	E	o7				
object name	other names	R.A.	Decl.	redshift	B_H	B_L	S	run or reference	remarks		
-------------	-------------	------	-------	----------	-----	-----	---	-----------------	---------		
HS0143+0549	UM 138	01 43 51.1	+65 49 57	0.018	16.2	17.7	E	180			
HS0148+2170		01 48 32.0	+17 00 13	0.647	16.8		B	07			
HS0148+2173		01 48 18.4	+21 23 51	0.0165	17.2		E	07			
HS0153+2205		01 53 17.9	+22 05 05	0.0664	18.0		E	07			
HS0733+6248		07 31 42.3	+63 48 27	0.3447	18.6		B	02 Sy1			
HS0732+6503		07 32 09.2	+65 03 38	0.0217	17.2		B	01			
HS0737+6442		07 37 35.2	+64 42 18	0.036	17.7		E	180			
HS0746+6139	KUG 0746+616	07 46 54.6	+61 39 40	0.023	18.7		E	180			
HS0747+6456		07 47 05.1	+64 56 42	0.0247	16.5		E	02			
HS0749+5649		07 49 37.7	+56 49 48	0.0190	17.4		E	07			
HS0750+6019		07 50 54.7	+60 19 27	0.0356	17.8		E	02			
HS0752+5603		07 52 45.1	+56 03 07	0.0275	16.5		B	07			
HS0752+6147		07 52 48.3	+61 47 43	0.0287	16.0		E	01			
HS0757+6441		07 57 19.2	+64 41 52	0.0733	17.7		B	05			
HS0805+5742	IRAS F08054+5742	08 05 25.6	+57 42 30	0.0271	17.4		B	07 IrS			
HS0808+5842	SDS 0808+587	08 08 11.0	+58 42 48	0.0272	17.7	15.5	E	143 Sy 2 IrS			

VII Zw 217
CGCG 287-051
CGCG 0808.1+5843
CGPG 0808.1+5842
IRAS F08082+5842

object name	other names	R.A.	Decl.	redshift	B_H	B_L	S	run or reference	remarks
HS0814+6439		08 14 47.8	+64 39 03	0.0296	17.1		E	02 Sy1	
HS0831+6215		08 31 18.4	+62 15 43	0.0187	17.5		E	07	
HS0838+6253		08 38 45.2	+62 53 07	0.0044	16.0		E	01	
HS0847+6112	MRK 0999	08 47 25.4	+61 12 30	0.0125	16.2	16.6	E	144	
HS0912+5959	MRK 0019	09 12 54.2	+59 59 00	0.0141	16.7	16.0	E	145 G pair. IrS	
HS0915+5540		09 15 35.8	+55 46 35	0.0494	17.2		E	07	
HS0930+5527	MRK 0116	09 30 30.3	+55 27 46	0.0031	16.2	15.6	E	145	
I Zw 18		01 34 56.3	+67 07 02	0.0125	17.2		E	07	

HS1222+3741 | CG 1022 | 12 22 08.2 | +37 41 13 | 0.0469 | 18.1 | | E | 07 | |
HS1223+3938	NPMJG +39.0289	12 23 29.8	+39 38 30	0.0366	16.8	16.92	E	07	
HS1232+3846		12 32 15.5	+38 46 56	0.0528	17.2		E	07	
HS1232+3947		12 32 54.6	+39 47 37	0.0210	17.2		E	07	
HS1232+3612	KUG 1232+362	12 32 59.5	+36 12 52	0.0425	16.2		E	07 G pair	
HS1236+3821	UGC 07816	12 36 31.8	+38 21 51	0.0073	15.4		E	07	
HS1244+3648		12 44 37.0	+36 48 05	0.0472	16.4		E	07	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
object name	other names	R.A.	Decl.	redshift	B_H	B_L	S	run or reference	remarks
HSi254+3323		12 54 46.3	+33 23 27	0.0032	17.7	B	o1	abs	
HSi255+3506		12 55 22.2	+33 06 32	0.0155	17.1	E	o2		
HSi256+3505	CG 1058	12 56 02.9	+35 05 10	0.0342	16.5	E	o2		
HSi256+3512		12 56 51.2	+35 12 19	0.0035	16.8	E	o2		
HSi301+4312		13 01 05.5	+33 12 27	0.0371	17.8	E	o3		
HSi301+4325		13 01 20.0	+33 25 37	0.0246	17.5	B	o2		
HSi301+43209		13 01 59.4	+32 09 02	0.0238	17.8	E	o7		
HSi302+4306		13 02 35.4	+30 46 30	0.0355	16.0	E	o3	*	
HSi304+4329	CG 1085	13 04 03.7	+35 29 43	0.0165	16.6	E	o3		
HSi306+4325	CG 1090	13 06 10.0	+35 25 40	0.0165	16.6	E	o3		
HSi306+4330		13 06 12.8	+33 20 39	0.0270	16.6	E	o3		
HSi306+43527		13 06 29.5	+35 27 25	0.0371	17.0	E	o7		
HSi308+43044	CG 0984	13 08 42.5	+30 44 55	0.0209	16.3	B	o7		
HSi309+4309	CG 1099	13 09 00.0	+34 09 11	0.0785	17.0	B	o7		
HSi309+4341	KUG 1309+345B	13 09 45.4	+34 31 15	0.0168	16.2	E	o3	spiral	
HSi311+43628	UGC 08303	13 11 00.0	+36 28 02	0.0031	18.0	13.48	E	o7	IrS, HII region
DDO 166	CGCG 1311.0+3628	MCG +06-29-061	IRAS F13110+3628	[RC2] A1310+36	[RC1] A1311	LGG 334;[G93] 004			
HSi312+3847		13 12 14.1	+38 47 53	0.0515	17.3	E	o7		
HSi312+3508		13 12 28.3	+35 08 47	0.0035	18.1	E	o3		
HSi318+4346	CG 1131	13 18 36.1	+34 06 45	0.0352	16.6	E	o3		
HSi319+4384	NGC 5107	13 19 08.3	+38 48 05	0.00316	17.4	13.81	E	l68	IrS
MRK 1346	KUG 1319+387	CGCG 217-033	CGCG 1319.1+3848	MCG +07-28-001	IRAS 13191+3847	IRAS F13191+3848	LGC 334;[G93] 011		
HSi323+43211	KUG 1323+321	[SMB88] 0540						*	SBa(s)
HSi323+43319	WAS 69	13 23 31.4	+33 19 28	0.0153	16.7	E	o3		
HSi323+43316	MRK 0453	13 23 40.8	+33 16 16	0.0465	16.4	16.5	E	l44	IrS
object name	other names	R.A.	Decl.	redshift	B_H	B_L	S	run or reference	remarks
-------------	-------------	------	-------	----------	-----	-----	---	--------------------	---------
HS1328+3132	UGC 08602	13 28 21.5	+31 32 35	0.0342	15.3	14.6	E	I14	
	CGCG 1328.3+3132								
	MCG +05-32-035								
	MRK 0455								
	VV 326a								
	[RC2] A1328+31								
	CGCG 161-074								
	[SMB88] 0767								
	CGCG 161-074E								
	KUG 1328+315								
HS1328+3424	KUG 1328+344	13 28 44.5	+34 24 35	0.0227	16.8	B	07	G pair	
HS1329+3703	KUG 1329+3703	13 29 52.7	+37 03 39	0.0557	16.9	E	07		
HS1330+3651	MRK 0459	13 30 54.1	+36 51 54	0.0167	16.7	E	07		
HS1331+3906	KUG 1331+391	13 31 17.7	+39 06 32	0.0643	16.4	B	07		
HS1332+3417	MRK 0459	13 32 54.0	+34 17 23	0.0241	15.7	17.0	E	I14	G pair
	[RC2] A1332+34C								
	CG 1165								
HS1333+3149	CGCG 1336.2+3115	13 33 06.8	+31 49 36	0.0248	15.9	E	03		
HS1333+3058	CGCG 1336.1+307	13 33 17.3	+30 58 25	0.0402	17.3	E	03		
HS1334+3957	CGCG 1336.3+312	13 34 11.5	+39 57 32	0.0083	16.9	E	07		
HS1336+3114	CGCG 1336.2+3115	13 36 12.5	+31 14 26	0.0158	15.7	B	07		
HS1336+3650	CGCG 1338.9+3038	13 36 43.8	+36 50 56	0.0202	17.1	E	07	G pair, IrS	
HS1338+3037	MRK 0268	13 38 54.0	+30 37 51	0.0410	16.2	E	I13	G pair, IrS	
HS1339+3046	MRK 0067	13 39 39.5	+30 46 17	0.0029	15.7	16.5	E	I51	IrS
HS1340+3307	CG 1176	13 40 08.6	+33 07 19	0.0158	16.8	E	03		
HS1340+3207	CG 1176	13 40 28.3	+32 07 59	0.0365	16.8	E	03		
HS1341+3409	CG 1176	13 41 50.9	+34 09 50	0.0171	17.3	E	03		
HS1344+3511	IRAS F1344+3511	13 44 54.0	+35 11 35	0.0539	16.8	16	E	I12	IrS
HS1344+3511	IRAS F1344+3511	13 44 54.0	+35 11 35	0.0539	16.8	16	E	I12	IrS
HS1349+4027	MRK 0562	13 49 17.8	40 27 35	0.0079	17.0	15.38	E	I44	
HS1349+3942	NPM1G +40.0336	13 49 22.9	+39 42 03	0.0054	16.7	15.86	E	07	
object name	other names	R.A.	Decl.	redshift	B_H	B_L	S	run or reference	remarks
------------	-------------	-------	--------	----------	-----	-----	----	----------------	---------
HS1353+3849	MRK 0464	13 53 45.4	+38 49 07	0.0510	16.9	16.5	E	13	Sy 1.5, XrayS
	KUG 1353+388								
	HS 1356+390								
	XRS 13505+390								
HS1354+3634	CG 1200	13 54 27.5	+36 34 28	0.0167	17.2		B	o7	
HS1354+3635	CG 1201	13 54 29.8	+36 35 39	0.0171	16.1	15	B	o7	
HS1400+3927	CG 0330	14 00 29.8	+39 27 37	0.0045	17.2	17	E	178	
HS1402+3657	MRK 1369	14 02 06.6	+36 57 53	0.0120	15.5	17.0	E	144	IrS
	IRAS F14021+3657								
	CG 0340								
	NPMG +36.0325								
HS1402+3650	CG 0368	14 02 39.2	+36 50 45	0.0347	16.3		E	o7	
HS1408+4429	CG 0368	14 08 23.6	+44 29 01	0.0533	16.9	16	B	188	
HS1408+4201	CG 0367	14 08 39.7	+42 01 06	0.0939	17.9		B	o7, abs	
HS1410+4367	CG 0366	14 10 02.1	+36 27 15	0.0338	16.9		E	o7	
HS1410+4346	MRK 0467	14 10 21.5	+34 46 57	0.0316	15.8	16.5	E	144	IrS
	[RC2] A1410+34								
	IRAS F14103+3447								
	KUG 1410+347								
	CG 0374								
HS1413+4402	IRAS F14131+4402	14 13 08.2	+44 02 07	0.0698	17.4		B	o7	IrS
HS1413+3956	IRAS F14131+3955	14 13 10.4	+39 56 08	0.0426	16.1	16.5	E	16	IrS
	KUG 1413+399								
	NPMG +39.0344								
HS1415+4203	KUG 1416+359	14 15 57.1	+42 02 05	0.0683	18.1		B	o7	
HS1416+3554	KUG 1416+359	14 16 03.3	+35 54 27	0.0163	17.0	16	E	o7, spiral	
HS1419+3639	UGC 09218	14 19 16.2	+36 39 19	0.0114	16.2	16.5	E	159	Sb
HS1420+3437	CG 0419	14 20 59.2	+34 37 05	0.0246	18.2		E	o7	
HS1421+4018	CG 0419	14 21 37.9	+40 18 43	0.0982	17.6		B	o7	
HS1422+3325	CG 0419	14 22 18.9	+33 25 58	0.0341	18.5		E	o7	
HS1422+3329	CG 0419	14 22 53.7	+33 39 22	0.0114	17.1		E	o7	
HS1425+3835	CG 0435	14 25 14.6	+38 35 33	0.0223	16.8	16	E	o7	
HS1429+3451	CG 0457	14 29 14.3	+34 51 17	0.0444	17.5	17.3	E	o7	
HS1429+3514	CG 1236	14 29 35.4	+35 43 59	0.0117	16.7	16.9	E	o7	
	NPMG +31.0320								
HS1429+4511	IRAS F14451+4511	14 29 45.9	+45 11 41	0.0321	18.0		E	o7	
HS1435+4523	MRK 0475	14 35 06.7	+45 23 03	0.1267	18.3		B	o7	
HS1437+3701	MRK 0475	14 37 03.6	+37 01 12	0.0018	16.4	14.47	E	144	
	CG 0493								
HS1438+3147	CG 1250	14 38 33.7	+31 47 39	0.0443	18.4	18	E	o7	
HS1440+3805	NPMG +38.0321	14 40 08.8	+38 05 06	0.0322	16.7	17.0	B	o7	
HS1440+4302	CG 0603	14 40 22.3	+43 02 32	0.0085	17.6	17.0	E	o7	
	NPMG +43.0283								
HS1442+4250	CG 0523	14 42 17.9	+42 50 13	0.0025	17.7		E	o7	
HS1442+4322	CG 0523	14 42 26.5	+43 32 19	0.0811	17.5	16	B	o7	
HS1444+3114	IRAS F14440+3114	14 44 01.6	+31 14 23	0.0297	16.1	17	E	o7, IrS	
	CG 1260								
HS1450+3854	CG 0565	14 50 21.9	+38 44 34	0.0140	17.8	16	E	178	
	[SP82] 25								
HS1502+4152	MRK 0475	15 02 31.3	+41 52 35	0.0164	19.1		B	o7	
object name	other names	R.A.	Decl.	redshift	B_H	B_L	S	run or reference	remarks
-------------	-------------	------	-------	----------	-------	-------	---	----------------	---------
HS1504+3922	CG 0624	15 04 15.5	39 22 15	0.0302	18.8	17	E	I78	
HS1505+3944	CG 0632	15 05 53.6	+39 44 19	0.0366	17.6	16	E	o7	
HS1507+4375	CG 0644	15 07 38.1	+37 43 06	0.0322	18.3	18	E	o7	
HS1522+4214	CG 0702	15 22 23.3	+42 14 40	0.0196	17.1	B	o7		
NPMG +42.043									
HS1524+4205		15 24 08.0	+42 05 01	0.0225	18.4	E	o7		
HS1526+4045		15 26 56.7	+40 45 17	0.0288	17.7	B	o7		
HS1543+4525		15 43 23.3	+45 25 45	0.0389	17.4	E	o3		
HS1544+4736		15 44 28.0	+47 36 20	0.0195	18.0	E	o3		
HS1546+4755		15 46 56.3	+47 55 34	0.0377	18.9	E	o3		
HS1548+4745	PC 1548+4745	15 48 04.2	+47 45 09	0.070	18.9	B	167		
HS1549+4630	PC 1549+4630	15 49 35.5	+46 30 37	0.098	18.9	B	167		
HS1609+4827		16 09 44.4	+48 27 44	0.0096	16.4	E	o3		
HS1610+4539		16 10 40.9	+45 39 37	0.0196	17.7	E	o3		
HS1614+4709		16 14 54.2	+47 09 22	0.0026	16.9	E	o3		
HS1626+5153	MRK 1498	16 26 48.4	+51 53 05	0.0547	16.8	17.0	E	H2	Sy 1, IrS
	IRAS F16268+5152								
	IRAS 16268+5152								
	[dKM92] 408								
HS1627+5239		16 27 33.1	+52 39 36	0.0288	18.3	E	o3		
HS1633+4703		16 33 12.7	+47 03 44	0.0086	16.7	E	o3		
HS1634+5218	MRK 1499	16 34 07.7	+52 18 56	0.0087	15.0	16.0	E	I44	G pair, IrS
	UGC A 412								
	CGCG 276-029								
	[RC2] A1634+52								
	IRAS F16340+5219								
	CGPG 1634.0+5220								
	I Zw 159								
HS1640+5136	CGCG 1640.8+5138	16 40 48.2	+51 36 30	0.0308	15.8	15.6	E	o3	IrS
	MRK 1500								
	CGCG 276-037								
	IRAS F16408+5136								
	IRAS 16407+5136								
HS1641+5053	IRAS F16415+5053	16 41 31.6	+50 53 22	0.0292	16.4	E	o3	IrS	
HS1643+5313	IRAS F16415+5053	16 43 10.2	+53 13 16	0.785	19.5	E	o3	QSO	
HS1645+5155	IRAS F16415+5053	16 45 19.8	+51 55 42	0.0286	19.5	E	o3	QSO	
HS1657+5033	CGCG 1657.3+5034	16 57 22.2	+50 33 53	0.0102	16.0	E	o3	IrS	
	CGCG 252-012								
	IRAS F16573+5034								
	MRK 0891								
HS1657+5735	IRAS F16576+5735	16 57 36.2	+57 35 48	0.0505	16.2	E	o3	IrS	
	IRAS 16576+5735								
	CGPG 1657.6+5736								
	Zw 670								
HS1711+5758		17 11 38.2	+57 58 34	2.996	19.0	E	o7	QSO	
HS1723+5631	IRAS F17237+5631	17 23 43.5	+56 31 14	0.0286	17.0	E	o3	IrS	
HS1728+5655	IRAS F17237+5631	17 28 14.4	+56 55 36	0.0160	17.0	E	o3	IrS	
HS1734+5704	IRAS F17341+5704	17 34 10.1	+57 04 58	0.0475	16.3	E	o3	IrS	
HS2353+2005		23 53 39.4	+20 05 13	0.0236	17.5	E	o4		

* - galaxies with only one line detection
** - galaxies with only one line detection but twice observed
List of Abbreviations

abrev.	reference
A	Abell galaxy 1
CG	Case Galaxy 53-57, 62-65, 71
CGCG	Catalogue of Galaxies and of Cluster of Galaxies 1968 93
CGPG	Catalogue of Selected Compact Galaxies and of Post Eruptive Galaxies 1971 92
DDO	David Dunlap Observatory catalog, van den Bergh 1966 3
[dKM92]	de Grijp, Keel, Miley et. al. 1992 12
[G93]	Garcia '93 11
II	Hard X-Ray Sources 42
IRAS	Infrared Astronomical Satellite Catalogs 1988. The Point Source Catalog 15
IRAS F	Infrared Astronomical Satellite Catalogs 1990. The Faint Source Catalog 46
KUG	Kiso Survey for UV Excess Galaxies 73-76
LGG	Lyon Group of Galaxies Catalog 11
MCG	Morphological Catalogue of Galaxies 1962 82-86
MRK	Markarian Galaxy 25-40
NPM	Lick Northern Proper Motion Program 16
OA-OZ	Ohio Source Catalog, 1415 MHz 17, 47, 18, 66, 7, 10, 8, 5, 9, 60
PC	Palomar Transit Grism Survey 67
[RC2]	The Second Reference Catalogue 1976 79
[SMB88]	Slezak, Mars, Bijaoi et. al. 1988 69
SBS	Second Byurakan Spectral Sky Survey 41, 70
[SP82]	Sanduleak and Pesch 1982 61
UCM	Universidad Complutense de Madrid 58, 89, 90
UGC	Uppsala General Catalogue of Galaxies 1973 48
UM	University of Michigan 20-24
VV	Vorontsov-Velyaminov 1959, 1977, Atlas and Catalog of Interacting Galaxies 81
WAS	Wasilewski 1983 87
XRS	Second Catalogue of X-ray Sources 2
Zw	Zwicky Compact Galaxy 91
References to the Table 4. Continued

65. Sanduleak, N., Pesch, P. [PaperXI] 1990, ApJS 72, 291
66. Scheer, D.J., and Kraus, J.D. 1967, A.J. 72, 536
67. Schneider, D.P., Schmidt, M., and Gunn, J.E., 1994, AJ 107, 1245
68. Schneider, S.E., Thuan, T.X., Mangum, J.G. and Miller, J. 1992, ApJS 81, 5
69. Slezak, E., Mars, G., Bijaoui, A., Balkowski, C., and Fontanelli, P. 1988, A&AS 74, 83
70. Stepanian, J.A., Lipovetski, V.A. and Erastova, L.K. 1990, Astrophysics 32, 252; Astrofizika 32, 441
71. Stephenson, C.B., Pesch, P., and MacConnell, D.J. (Paper XIII) 1992, ApJS 82, 471
72. Strauss, M.A., Huchra, J.P., Davis, M., Yahil, A., Fisher, K.B., and Tonry, J. 1992, ApJS 83, 29
73. Takase, B., and Miyauchi-Isobe, N. 1984, Annals of the Tokio Astr. Obs. 19, 595
74. Takase, B., and Miyauchi-Isobe, N. 1986, Annals of the Tokio Astr. Obs. 21, 181
75. Takase, B., and Miyauchi-Isobe, N. 1987, Annals of the Tokio Astr. Obs. 21, 251
76. Takase, B., and Miyauchi-Isobe, N. 1989 Pub. National Astr. Obs. of Japan 1, 11
77. Terlevich, R., Melnick, J., Masegosa, J., Moles, M., and Copetti, M.V.F. 1991, A&AS 91, 285
78. Tifft, W.C., Kirshner, R.P., Gregory, S.A., Moody, J.W. 1986, ApJ 310, 75
79. de Vaucouleurs, G., de Vaucouleurs, A., and Corwin, H.G. 1976, Second Reference Catalogue of Bright Galaxies, University of Texas Press, Austin
80. Vogel, S., Engels, D., Hagen, H.-J., Groote, D., Wisotzki, L., Cordes, L., and Reimers, D. 1993, A&AS 98, 193
81. Vorontsov-Vel’yanov, B.A. 1959, Atlas and Catalog of Interacting Galaxies, Sternberg. Inst., Moscow State University
82. Vorontsov-Vel’yanov, B.A., and Krasnogorskaja, A.A. 1962, Morphological Catalog of Galaxies. Part I Moscow State University
83. Vorontsov-Vel’yanov, B.A., and Arhipova, V.P. 1964, Morphological Catalog of Galaxies, Part II Moscow State University
84. Vorontsov-Vel’yanov, B.A., and Arhipova, V.P. 1963, Morphological Catalog of Galaxies, Part III Moscow State University
85. Vorontsov-Vel’yanov, B.A., and Arhipova, V.P. 1968, Morphological Catalog of Galaxies, Part IV Moscow State University
86. Vorontsov-Vel’yanov, B.A., and Arhipova, V.P. 1974, Morphological Catalog of Galaxies, Part V Moscow State University
87. Wasilewski, A.J. 1983, ApJ 272, 68
88. Weistrop, D., and Downes, R.A. 1988, ApJ 331, 172
89. Zamorano, J., Rego, M., Gonzalez-Riestra, R. 1989, 79, 443
90. Zamorano, J., Rego, M., Gallego, J., Vitores, A.G., Gonzalez-Riestra, R., and Rodrigues-Caderot, G.
91. Zwicky, F. 1961-1968, Seven privately circulated lists.
92. Zwicky, F. 1971, Catalogue of Selected Compact Galaxies and of Post Eruptive Galaxies.
93. Zwicky, F., Herzog, E., Wild, P., Karpowicz, M., and Kowal, C. 1961-1968, Catalog of Galaxies and of Clusters of Galaxies, Pasadena: California Institute of Technology
Complete follow-up spectroscopy of our first-priority candidates was accomplished. With a success rate of detecting true emission-line objects of 76%, this provide the bulk of our sample of ELGs. As mentioned in § 2, we also observed 83 second priority candidates, in order to test their nature. From these, many were stars, but we also found 23 emission line galaxies, one galaxy with emission and absorption, four galaxies with absorption lines and a QSO. The efficiency of finding emission line objects in the second priority sample is then 28%. This result is biased, because we observed mostly candidates that showed extended images on the direct plates. From the 23 emission line galaxies we found, 21 had obvious extended images, and only two looked like point sources. If one takes random candidates from the second priority list, the efficiency is as low as 10%. From the 23 galaxies with emission, only two had intermediate ionization spectra that could be detected in the IIIa-J objective plates. The others showed either low or very low ionization spectra, with faint Hβ and [OIII], or spectra with only Hα, or Hα and [SII]. These objects cannot be seen as emission-line candidates in the IIIa-J objective plate. We conclude then that there is no way to distinguish real emission-line galaxies from the rest of non-emission blue candidates. Taking into account the low efficiency of finding emission-line objects, such a blind search would cost too much telescope time. We believe that such objects can be very easily recognised in an IIIa-F survey (like that of Zamorano et al. 1994). Therefore, we do not intend to complete the follow-up spectroscopy for the second priority objects, and we leave them to the discovery of the IIIa surveys.

We obtained a final sample of 203 objects, of which 196 are emission-line galaxies, four are galaxies with absorption, and three are QSOs. From our sample of 203 objects, 98 (48%) are newly discovered objects, 52 (26%) are objects found already in the literature but with no available redshift (sometimes mentioned only as IRAS sources or only as NPM (Lick Northern Proper Motion Program) galaxies) and 53 (26%) are objects with redshifts given already in the literature. We have observed all the objects with unknown redshift. From the objects with available redshifts, five were reobserved, in order to estimate our redshift errors (see Section 3). The mean surface density of the emission-line galaxies of our survey is 0.16 deg⁻². This number is quite low in comparison with the mean surface density of 0.46, found by Salzer et al. (1989). But one must keep in mind that this is a sample of candidates selected in a special parameter region. We select our candidates in a certain “brightness” range and in a certain “colour” range. We are also losing the low-ionization objects into the second category objects, as discussed above. Thus our sample is dominated by high ionization galaxies, which should not come as a surprise, since the final selection was on the [OIII] line strengths.

The apparent magnitudes (derived from the Hamburg prism plates) of our sample range between $15.0 \leq B \leq 19.5$. We have selected all available magnitudes (56) from the literature for our sample (Table 4) and compare this heterogeneous data set with our own magnitude estimates (Fig. 5). The values agree sufficiently well below 15 mag, if we assume internal errors of about 0.5 mag in each sample. For the literature values, 0.5 mag is an estimated mean error, as these data came from various sources, with different measurement methods and calibrations. The estimated error for the prism plate magnitudes is known to be 0.5 mag. For galaxies with $B \leq 16$, our magnitudes seem to underestimate the total flux of the galaxies systematically. This can easily be explained by the fact that the objective prism spectra show up only with the bright HI region (or the core of the galaxy), while the fainter surrounding, without emission lines, is not detectable on these plates (see remarks in Table 4). A typical example is HSO106+0103, an Sdm galaxy, that we see only as an HI knot. The apparent magnitude of 17.6 describes only the flux that comes from the HI region, as compared with the value of 14.31'' of the whole galaxy. Another example is HSO137+1539, a very compact source near the edge of the low-surface brightness Im galaxy, DDO 013. With $B=18.8$, as compared with the $B=14.4$ apparent magnitude of the DDO, it was not obvious if the candidate was a separate object, or part of the DDO galaxy. A long slit spectra of the object confirmed that it belongs to the DDO galaxy. The same situation happened with HSO147+3628. The galaxy was reobserved in order to see if the emission knot we found is a separate galaxy or an HI region in the DDO 166. As the redshifts agree, the source we found is an HI region (apparent magnitude 18.0 instead of 13.48). Other galaxies where we sub estimate the contribution of the underlying galaxies are: HSO122+0743 ($B=17.6$ instead of $B=15.00$), HSO808+5842 ($B=17.7$ instead of $B=15.5$), HS1332+3417 ($B=15.7$ instead of $B=15.0$), HSO149+4027 ($B=17.0$ instead of 15.38), HS1437+3701 ($B=16.4$ instead of $B=14.47$).

To have a further independent comparison of our magnitudes, we used the on-line facility of the APM catalogue as

![Fig. 5. The comparison between our Hamburg objective prism magnitudes B_H and the magnitudes from literature, B_L. In the bottom panel we plotted B_H versus B_L. The solid line represents $B_H = B_L$. In the top panel we plotted the difference $\Delta B = B_H - B_L$ versus B_L.](image-url)
The emission lines detected in the spectra of the observed objects:

Object Name	Emission Lines
HS0000+2252	[OIII], Hβ, Hα, Hβ, [OIII], [OII], HeI, Hα+[NII], HeI, [SII]
HS0000+2422	[OII], Hβ, [OIII], [OIII], Hα, [SII]
HS0013+0809	[OII], Hα
HS0021+01942	Mgβ, NaI, Hα
HS0021+01942	[OII], Hβ, [OIII], [OII], Hα, [SII]
HS0024+1022	[OII], Hβ, [OII], [OII], Hα, [SII]
HS0024+11499	Hα, [SII]
HS0026+0332	[OII], Hβ, [OII], [OII], HeI?, Hα, [SII]
HS0028+1747	Hβ, Hα
HS0029+1748	[NeIII], Hc, Hα, Hγ, [OIII], Hβ, [OIII], [OII], HeI, Hα+[NII], HeI, [SII], [AIII], [OII]
HS0029+1443	[OII], [NeII], Hc, Hα, Hβ, Hγ, [OIII], Hα, [OII], [OII], HeI, HeI, Hα+[NII], HeI, [SII], [AIII], [OII], [AIII]
HS0035+0725	QSO: MgII
HS0036+0437	[OII], Hβ, [OIII], [OII], Hα, [SII]
HS0037+0352	[OII]
HS0040+0952	[OII], Hα, Hβ, [OII], [OII], [OII], HeI, Hα+[NII], [SII]
HS0041+2333	[OII], [NeII], Hc, [NeIII]+[OII]+H?, Hα, Hγ, Hβ, [OIII], [OII], HeI, Hα, Hα?, [SII]
HS0043+0531	[OII], Hβ, [OII], [OII], Hα+[NII], [SII]
HS0045+0020	Hδ, [OII], [OII], Hα, [SII]
HS0051+0927	Hβ, [OII], [OII], HeI, Hα+[NII], [SII]
HS0052+2119	[OII], Hβ, [OII], [OII], HeI?, Hα, [SII]
HS0056+0044	[OII], Hβ, [OII], [OII], Hα, [SII]
HS0058+1847	[OII], [NeII], Hc, Hα, Hγ, Hδ, [OII], [OII], HeI, [OII], Hα+[NII], [SII], [AIII]
HS0101+0310	[OII], [NeII]?, Hα?, Hβ, [OII], [OII], HeI?, Hα, [SII]
HS0103+2441	[OII], Hβ, [OII], [OII], Hα, [SII]
HS0103+1242	[OII], Hγ?, Hβ, [OII], [OII], HeI?, Hα+[NII], [SII]
HS0106+1304	[OII], [NeII], Hβ, [OII], [OII], [OII], [OII], Hα+[NII], [SII]
HS0107+1946	Hδ, [OII], Hα+[NII], [SII]
HS0107+2458	[OII], Hβ, [OII], [OII], Hα, [SII]
HS0108+0150	Hδ, [OII], [OII], Hα, [SII]
HS0110+2149	Hδ, [OII], [OII], Hα+[NII], [SII]
HS0111+2115	[OII], [NeII], Hc, Hα, Hβ, Hδ, Hα, [OII], [OII], HeI, [OII], Hα, [SII], [AIII]
HS0113+1755	[OII], [NeII], Hc, Hα, Hδ, Hγ, [OII], Hβ, [OII], [OII], HeI, [OII], Hα, HeI, [SII], [AIII]
HS0116+2244	abs: Hδ, Mgβ, NaD
HS0117+1017	[OII], Hγ, [OII], [OII]
HS0117+1135	[NII]+Hα+[NII], [SII]
HS0118+1236	[OII], Hγ, [OII], [OII]
HS0119+0331	[OII], Hβ, [OII], [OII], HeI?, [OII]?, Hα+[NII], [SII]
HS0123+1624	Hγ, Hβ, [OII], [OII], HeI, [OII], Hα, [SII]
HS0124+1126	[OII], [OII], [OII]
HS0131+1937	Hδ, [OII], [OII], Hα+[NII], [SII]
HS0133+1341	Hδ, [OII], [OII], Hα+[NII], [SII]
HS0137+1539	Hδ, [OII], [OII], Hα+[NII], [SII]
HS0143+2400	[OII], [NeII], Hc, Hα, Hβ, [OII], Hβ, [OII], [OII], HeI, Hα, HeI, [SII], [AIII]
HS0148+1700	[OII], Hγ, Hβ, [OII], [OII], [OII], Hα+[NII], [SII]
object name	emission lines
-------------	----------------
HS0148+2123	Hβ, Hγ, Hβ, [OIII], [OIII], Hα, Hα+[NII], [SII], [AIII]
HS0153+2205	[OIII], [NII]+Hα+[NII], [SII]
HS0731+6348	SyI: MgII, Hγ, Hβ, [OIII], [OII], Hα
HS0732+6503	Hα+[NII], [SII]
HS0747+6545	[OII], [NeII], Hβ, [OIII], [OII], [OII], Hα, [SII], [SII]
HS0749+6549	[NeII], Hα, Hγ, Hγ, [OIII], Hβ, [OIII], [OII], HeI, [OIII], Hα+[NII], HeI, [SII], [AIII]
HS0750+6619	[OII], [NeII], Hβ, [OIII], [OIII], Hα, [SII], [SII]
HS0752+6563	Hγ, Hγ, Hβ, [OII], [OII], HeI, [OII], Hα+[NII], [SII], [AIII]
HS0752+6647	[OII], Hγ, Hβ, [OIII], [OII], HeI
HS0757+6644	[OII], Hβ, [OIII], [OII], Hα, [SII]
HS0805+6574	Hγ, Hβ, [OIII], [OII], HeI, [OII], Hα+[NII], [SII]
HS0814+6549	SyI: [OII], Hβ, Hγ, Hβ, [OIII], [OIII], Hα, [SII], [SII]
HS0831+6525	[NeII], Hα, Hγ, [OIII], [OII], Hα+[NII], HeI, [SII], [AIII]
HS0833+6545	[OII], Hγ, Hα, [OIII], [OII], incomplete spectrum
HS0915+6540	[NeII], Hα, Hγ, [OIII], Hβ, [OIII], [OII], HeI, HeI, [OII], [OII], Hα+[NII], [SII], [AIII]
HS1222+3741	[OII], [NeII], Hγ, Hα, [OIII], [OIII], HeI, Hα, [SII]
HS1223+3938	[OII], Hβ, [OIII], [OIII], Hα+[NII], [SII]
HS1232+3846	[OII], Hβ, [OIII], [OIII], Hα+[NII], [SII]
HS1232+3847	[NeII], Hα, Hγ, Hβ, [OIII], [OII], HeI, Hα, [SII]
HS1232+3612	[OII], [NeII], Hγ, Hα, [OIII], [OII], HeI, [OII], Hα+[NII], [SII], [AIII]
HS1236+3821	Hβ, [OIII], [OII], Hα+[NII], [SII]
HS1244+3648	[OII], Hβ, [OIII], [OII], Hα+[NII], [SII]
HS1254+3323	abs: CaK, G-band, NaD, Mgβ?
HS1255+3506	[OII], Hβ, [OIII], [OII], Hα, [SII], [SII]
HS1256+3505	[OII], Hβ, [OIII], [OII], Hα, [SII], [SII]
HS1256+3512	[OII], Hβ, [OIII], [OII], Hα, [SII], [SII]
HS1301+3312	Hβ, [OIII], [OII], Hα, [SII]
HS1301+3325	[OII], Hβ, [OIII], [OII], Hα
HS1301+3209	Hβ, [OIII], [OII], Hα+[NII], [SII]
HS1302+3406	Hα
HS1304+3529	Hγ, Hβ, [OIII], [OII], Hα+[NII], [SII]
HS1306+3525	[OII], Hα
HS1306+3520	Hβ, [OIII], [OII], Hα, [SII]
HS1306+3527	Hα, [SII]
HS1308+3444	Hβ, [OIII], [OII], Hα+[NII], [SII]
HS1309+3409	Hβ, Hα
HS1309+3431	[OII], Hα+[NII], [SII]
HS1311+3628	[NeII], Hα, Hγ, Hα, [OIII], Hα, [OII], [OII], HeI, [OII], Hα, HeI, [SII], [AIII], [OII]
HS1312+3647	[OII], [NeII], Hα, Hγ, Hα, [OIII], [OII], HeI, [OII], Hα+[SII], [SII]
HS1312+3508	Hγ, Hβ, [OIII], [OII], HeI, [OII]+[SII], [OII], Hα
HS1318+3406	Hβ, [OIII], [OII], HeI, [SII]
HS1323+3211	Hα
HS1323+3219	Hγ, Hβ, [OIII], [OII], HeI, [OII], Hα, [SII]
HS1328+3424	Hβ, [OIII], [OII], Hα+[NII], [SII]
HS1329+3703	[OII], Hβ, [OIII], [OII], Hα+[NII], [SII]
HS1330+3651	[NeII], Hα, Hβ, [OIII], [OII], HeI, [OII], Hα+[NII], [SII], [AIII]
HS1331+3906	Hα+[NII], [SII]
HS1333+3149	[OII], Hα+[NII]
object name	emission lines
-------------	----------------
HS1333-36058	H_γ, H_β, [OIII], [OII], HeI, H_α, [SII]
HS1334-36057	[NeII], H_γ, H_δ, [OII], [OIII], [OII], HeI, H_α+[NII], [SII], [AIII]
HS1336-36114	H_β, [OIII], [OII], H_α+[NII], [SII]
HS1336-36150	H_γ, [OIII], [OII], H_α
HS1402-36307	H_γ, [OIII], [OII], H_α, [SII]
HS1402-36207	H_α, [OIII], [OII], H_α, [SII]
HS1411-36409	H_α, [OIII], [OII], H_α, [SII]
HS1419-36442	H_δ, [OIII], [OII], H_α+[NII], [SII]
HS1454-36364	H_γ, H_β, [OIII], [OII], HeI, [OII], H_α+[NII], [SII]
HS1454-36365	H_γ, [OIII], [OII], H_α+[NII], [SII]
HS1402-36550	[OII], H_γ, H_δ, [OII], [OII], HeI, H_α+[NII], [SII]
HS1408-44201	abs: MgI, NaD
HS1410-36227	[OII], H_δ, [OIII], [OII], H_α, [SII]
HS1413-44402	[OII], H_δ, [OIII], [OII], H_α+[NII], [SII]
HS1415-44203	H_α+[NII]
HS1416-36554	[NeII], H_β, [OIII], [OII], HeI, [OII], H_α+[NII], [SII]
HS1420-34347	H_γ, [OIII], [OII], HeI, [OII], H_α, [SII]
HS1421-44018	abs: CaII, G_{CaII}, MgI, NaD
HS1422-43325	H_δ, [OIII], [OII], HeI, [OII], H_α, [SII]
HS1422-43339	H_δ, [OIII], [OII], H_α, [SII]
HS1425-43835	H_δ, [OIII], [OII], H_α+[NII], [SII]
HS1429-43451	H_γ, H_δ, [OIII], [OII], HeI, [OII], H_α, HeI?, [SII]
HS1429-43514	H_γ, H_δ, [OIII], [OII], HeI, H_α, [SII]
HS1429-44511	H_δ, [OIII], [OII], H_α+[NII], [SII]
HS1435-45253	[OII], H_δ, [OIII], [OII], H_α+[NII], [SII]
HS1438-34147	[OII], [NeII], H_γ, [OII], H_δ, [OIII], [OII], HeI, [OII], H_α, [SII]
HS1440-43805	H_δ, [OIII], [OII], HeI, [OII], H_α+[NII], [SII]
HS1440-43802	[NeII], H_α, H_δ, [OII], [OIII], HeI, [OII], H_α+[NII], [SII], [AIII]
HS1442-44250	[NeII], H_γ, H_δ, H_γ, [OIII], H_δ, [OII], [OII], HeI, [OII], H_α, [SII], [AIII]
HS1442-44332	H_α?
HS1444-36114	H_δ, [OIII], [OII], H_α+[NII], [SII]
HS1502-44152	[OII], [OIII], H_α, [SII]
HS1505-36944	H_α, [SII]
HS1507-3743	[OII], [NeII], H_γ, H_δ, H_γ, [OII], H_β, [OII], [OII], HeI, [OII], H_α, [SII], [AIII]
HS1522-44214	H_δ, [OIII], [OII], H_α+[NII], [SII]
HS1524-42405	[OII], [OII], H_α+[NII], [SII]
HS1526-44045	[OII], H_α, [SII]
HS1543-45255	H_δ, [OIII], [OII], HeI, [OII], H_{dph,a}, [SII], [AIII]
HS1544-37436	emi: [OII], [SII]
HS1546-37475	H_γ, H_β, [OIII], [OII], HeI, H_α, [SII], [AIII]
HS1609-44827	H_δ, [OIII], [OII], HeI?, [OII]?, H_α+[NII], [SII]
HS1610-44539	H_γ, H_δ, [OII], [OII], HeI, [OII], H_α, [SII], [AIII]
HS1614-44709	H_γ, H_δ, [OII], [OII], HeI, [OII], H_α, [SII], [AIII]
HS1633-44703	H_γ, [OII], [OII], H_α, [SII]
HS1640-51236	H_α?, HeI?, H_δ, [OII], [OII], HeI, [OII], H_α+[NII], [SII]
HS1641-51503	H_δ, [OII], [OII], HeI, [OII], H_α+[NII], [SII]
HS1643-51513	QSO: MgII, FeII
HS1645-51555	H_δ, [OIII], [OII], H_α, [SII]
HS1657-50633	H_δ, [OIII], [OII], [OII], H_α, [SII]
HS1657-51735	H_δ, [OIII], [OII], [OII], HeI, [OII], H_α, [SII]
HS1672-5239	H_δ, [OIII], [OII], HeI, H_α, [SII]
object name emission lines

HS1645+5155	Hα, [OIII], [OII], Hα+[NII], [SII]	
HS1711+5758	QSO: Lyα, [OII], CIV	
HS1725+5631	Hα, [OIII], [OII], [HeI], Hα, [SII]	
HS1728+5055	Hα, Hα, [OIII], [HeI], [OII], [OII], Hα,	
HS1734+5704	Hα, Hα, [OIII], [OII], [HeI], [OII], Hα, [SII]	
HS2353+2065	Hα, [OII], [OIII], Hα+[NII], [SII]	

The complete sequence of emission lines listed in the table (wavelengths given in Å): Lyα 1216, NV 1240, CIV 1549, MgII 2798, [OII] (blend) 3727.45, [N-III] 3868.76, Hc (blend Hε) 3889.05 (3889.65), Hc (blend [N-III], [OII]) 3970.07 (3967.47, 3967.40), Hε 4101.6, Hα 4340.3, [OIII] 4363.21, [HeI] 4686, Hα 4861.2, [OIII] 4958.92, [OII] 5006.85, Hα 5876.99, [OII] (blend with [SII]) 6300.3-6312.1, [OII] 6363.81, [NII] 6548.2, Hα 6562.9, [NII] 6583.6, Hα 6678.1, [SII] (blend) 6723.6, Hα 7065.3, [AIII] 7135.8, [OII] (blend) 7319.9, 7330.2, [AIII] 7751.02

described by Maddox et al. (1990), Irwin, Maddox & McMahon (1994). All objects with new redshifts have been searched in the APM catalogue facility and 146 have been retrieved by comparison of their position only. It is beyond the scope of this paper to clarify why some sources were missed. We note that there is no significant deviation between the RA and δ values from our measurements and those of the APM:

\[RA_{(\text{this paper})} - RA_{\text{APM}} = -0.04 \pm 0.11 \text{sec} \]
\[δ_{(\text{this paper})} - δ_{\text{APM}} = -0.62 \pm 1.25 \text{arcsec} \]

and, that the error distribution corresponds to our expectations (see above). The comparison of the B magnitudes, however, shows a surprising distribution (Fig. 6). The difference between the APM magnitudes and ours seems to increase monotonically with brightness, with a scatter of about ± 1.4 mag. superimposed. For fainter (B ≥ 16) galaxies one may understand the diagram in the sense of a small offset and a magnitude error in both samples in the order of 0.4 to 0.5 mag. The differences for the brighter objects however cannot be explained as before. According to the APM magnitudes, one would expect that we have NGC and even Shapley-Ames galaxies in our sample, which is not the case. The distribution ranges up to a unrealistic B_{APM}=11 mag. This may mean that there are still some uncertainties in the calibration of the APM magnitudes for the bright objects, where the plates tend to be saturated over a large extent of the galaxy (see also Mutch et al. 1995). We finally conclude that the subsample of our objects with 16 ≤ B ≤ 19.5 have good total luminosity estimates, while for the brighter ones, our values are only lower limits. It is customary to give a magnitude for which a survey is complete, but for our sample the incompleteness are also described in terms of colour, line fluxes and equivalent widths of the emission lines. (A detailed description of the incompleteness will be given in a future paper).

If we exclude the emission-line galaxies that were found as second priority objects, we find that our objects have redshifts between 0 < z < 0.1, which is exactly the range for which the [OIII] line and/or Hβ can be seen in the I11a-J plates, due to the cutoff of the emulsion at 5400 Å. In Fig. 7 we give the redshift distribution of our sample. With dotted line we plot the whole sample, included the blue candidates, while with solid line we plot only the first priority objects. The histograms have a peak at z=0.015, which shows that our sample is dominated by nearby galaxies (as intended for a study of the nearby large scale structure). The histogram drops very fast after 0.06, containing only a few objects with 0.06 < z < 0.10, most of them being blue objects. The few galaxies with z > 0.1 are also from the second category objects.

5. Conclusions

Our survey for emission-line galaxies contains a complete sample based on candidates selected from digitized objective prism plates. We used the I11a-J plates taken in the frame of the Hamburg QSO Survey. Automated search software is applied to the digitized data to select spectra in a certain parameter space. The two selection criteria are the “brightness” and the “colour” of the spectra. The selected candidates are then rescanned with high resolution and the final digitized spectra are visually inspected for emission lines. Some second priority candidates were also selected because of their blue spectra. We observed all the first priority candidates and also some of the second priority ones.

1. The final sample contains 203 objects, of which 196 are ELG, four are galaxies with absorption and three are QSOs. Almost half of our sample contains newly discovered objects, and three quarters of the given redshifts are new.

2. The mean surface density of our sample of emission-line galaxies is 0.16. This value is lower than the value obtained by the Michigan Survey, for example, but our sample is selected with an automated procedure, in a certain interval of parameters.

3. Our galaxies have apparent magnitudes between 15.0 < B < 19.5. A comparison with the magnitudes available in the literature, as well as with the APM ones, shows that our magnitudes are reliable only for the compact faint objects. In the
| Object Name | Coord. | B | Type | Abs. Lines |
|-------------|--------|---|------|-----------|
| HS0007+40520 | 00 07 16.1 +05 20 42 | 19.4 M | | |
| HS0014+40351 | 00 14 34.5 +03 51 43 | 18.0 | | |
| HS0015+41123 | 00 15 18.3 +11 23 00 | 18.4 M | | |
| HS0018+20400 | 00 18 35.1 +20 40 36 | 18.7 G | Hβ, Mgb | |
| HS0019+40006 | 00 19 20.5 +00 06 30 | 17.4 | Hγ, Hβ, Hα | |
| HS0024+24132 | 00 24 55.6 +24 13 43 | 17.3 G | CaK, CaII, Gband, Hβ, Mgb, NaD, Hα | |
| HS0028+41201 | 00 28 31.3 +12 01 18 | 17.9 F or G | Mgb, NaD, Hα | |
| HS0028+42419 | 00 28 41.7 +24 19 56 | 17.8 G | Gband, Mgb, Hα | |
| HS0030+41433 | 00 30 17.2 +14 33 09 | 17.4 F | Gband Hβ, Mgb, Hα | |
| HS0039+21512 | 00 39 53.0 +21 51 37 | 16.8 F | Gband Hα | |
| HS0040+43441 | 00 40 28.8 +13 44 15 | 18.2 F or G | Hβ, NaD, Hα | |
| HS0103+41520 | 01 03 19.3 +15 20 20 | 17.6 late-type star | Mgb, Hα | |
| HS0107+30006 | 01 07 55.7 +00 06 53 | 17.8 G | CaK, CaII, Hβ, Hα | |
| HS0109+41540 | 01 09 30.0 +14 00 07 | 15.8 early-type star | Hβ, Hα | |
| HS0739+40619 | 07 39 07.4 +60 19 32 | 18.0 G | Gband Hβ, Hα, Mgb, Hα | |
| HS0750+43637 | 07 50 44.4 +63 37 29 | 18.1 M | | |
| HS0753+50645 | 07 53 41.8 +56 45 12 | 17.1 G | CaK, CaII, Gband, Hβ, Hα | |
| HS0815+45598 | 08 15 57.3 +56 58 19 | 17.4 late-type star | Mgb, NaD, Hα | |
| HS1131+34350 | 11 31 21.4 +33 51 01 | 17.7 A | CaII Hα, Hγ, Hβ, Hα | |
| HS1313+43127 | 13 13 29.9 +31 27 04 | 18.0 Mgb, Hα | | |
| HS1315+43340 | 13 15 17.3 +33 40 27 | 18.4 | Hβ, NaD | |
| HS1328+43528 | 13 28 28.4 +35 28 39 | F or G | CaK, CaII, Gband, Hβ, Hα | |
| HS1406+43427 | 14 06 42.5 +34 27 55 | 16.5 G | Gband FeI, Hβ, Mgb, NaD, Hα | |
| HS1406+43844 | 14 06 22.2 +38 44 39 | A or F | Hα, Gband Hγ, Hβ, Hα | |
| HS1416+43932 | 14 16 30.3 +39 32 11 | F | CaK, CaII, Gband, Hβ, Hα | |
| HS1419+44116 | 14 19 29.9 +41 16 14 | M | | |
| HS1427+44200 | 14 27 12.9 +42 00 58 | A or F | CaK, CaII, Hβ, Hα | |
| HS1432+44255 | 14 32 35.5 +42 55 30 | M | | |
| HS1445+44412 | 14 45 17.9 +44 12 06 | Hα | | |
| HS1448+43952 | 14 48 32.3 +39 52 39 | F or G | CaK, Gband, Hβ, Hα | |
| HS1452+43009 | 14 52 25.2 +30 09 06 | A | CaK, CaII, Hα, Gband, Hβ, Hα | |
| HS1502+43444 | 15 02 38.7 +34 44 55 | F or G | CaK, CaII, Gband Hβ, Mgb, NaD, Hα | |
| HS1503+43822 | 15 03 21.8 +38 22 41 | A or F | CaK, CaII, Hα, Hγ, Hβ, Hα | |
| HS1508+40425 | 15 08 65.2 +40 25 29 | F | CaK, CaII, Hα, Hγ, Hβ, Hα | |
| HS1510+43551 | 15 10 40.6 +35 51 16 | late-type star | CaK, CaII | |
| HS1516+44414 | 15 16 19.1 +44 41 45 | M | | |
| HS1517+40421 | 15 17 55.0 +40 21 32 | F or G | CaK, CaII, Gband Hβ, Mgb, Hα | |
| HS1523+44240 | 15 23 22.3 +44 20 38 | F | Hα, Hβ, Mgb, Hα | |
| HS1523+44240 | 15 23 22.3 +44 20 38 | F | Hβ, Hα | |
| HS1547+47078 | 15 47 14.2 +47 08 45 | 18.4 | Hβ, Hα | |
| HS1548+44555 | 15 48 07.4 +44 55 20 | 18.5 | Mgb, Hα | |
| HS1611+44825 | 16 11 57.9 +48 25 35 | 18.1 A or F | Hα, Hβ, Hα | |
| HS1612+44505 | 16 12 45.5 +45 05 57 | 17.5 F? | Hβ, Mgb, Hα | |
| HS1626+51326 | 16 26 47.2 +51 32 05 | 18.0 A or F | Hβ, Hα | |
| HS1639+51036 | 16 39 43.1 +51 03 43 | 18.5 A | Hα, Hα | |
| HS1655+5209 | 16 55 56.6 +52 09 42 | 17.3 F or G | Gband Hγ, Hβ, Hα | |
| HS1657+52077 | 16 57 47.0 +52 07 33 | 19.5 F or G | Hβ, Mgb, Hα | |
| HS1721+5518 | 17 21 23.1 +58 19 51 | 16.1 G | Gband Hγ, FeI?, Hβ, Mgb | |
case of extended objects, with $B \leq 16$, our survey is sensitive only for the emission core, the total magnitudes being thus systematically fainter.

4. The redshift distribution ranges between $0 < z < 0.1$, with a peak at $z = 0.015$, which show that we found a sample of relatively nearby galaxies. The few galaxies with $z > 0.1$ were either selected as blue objects, or are Sy 1 galaxies.

Acknowledgements. We would like to thank Dr. A.P. Fairall for the careful review of this manuscript and Dr. Bernd Kuhn for observing some of our objects during his run in La Silla, December, 1994, as well as for his support with the reduction software. We gratefully acknowledge Dr. Dieter Engels for processing the magnitude calibration of the Hamburg prism plates. C. C. Popescu is greatly indebted to the astronomers from Hamburger Sternwarte for their warm hospitality during the work with their Plate Archive. It is a pleasure to thank the Calar Alto staff for their support during observations and Dr. Klaus Meisenheimer for his support during the Cafos22 run. U. Hopp acknowledge the support by Sonderforschungsbereich 375 of the Deutsche Forschungsgemeinschaft during the end of this project.

This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

References

Acker, A., Ochsenbein, F., Stenholm, B., Tylenda, R., Marcout, J., Schohn, C. 1992, The Strasbourg-ESO Catalogue of Galactic Planetary Nebulae, published by the European Southern Observatory

Alonso, O., Zamorano, J., Rego, M. and Gallego, J. 1995, A&AS 113, 1

Bardeen, J.M. 1986, in Inner Space/Outer Space, ed. E.W. Kolb, M.S. Turner, D. Lindley, K. Olive, and D. Seckel (University of Chicago Press, Chicago), p.212

Binggeli, B., Terzian, M., Sandage, A. 1990, A&A 228, 42

Bohuski, T.J., Fairall, A.P., and Weedman, D.W. 1978, ApJ 221, 776

Clowes, R.G., Cooke, J.A., Beard, S.M. 1984, MNRAS 207, 99

Cooke J.A., Beard, S.M., Emerson, D., Kelly B.D., MacGillivray H.T. 1986, MNRAS 219, 241

Coziol, R., Demers, S., Peña, M., Torres-Peimbert, S., Fontaine, G., Wesemael, F., Lamontagne, R. 1993, AJ 105(1), 35 (Paper I)

Coziol, R., Demers, S., Peña, M., Barnéoud, R. 1994, AJ 108, 405 (Paper II)

Engels, D., Cordis, L., Köhler, T. 1994, in IAU Symposium 161, ed. H.T. MacGillivray, Kluwer, Dordrecht, p. 317

Gallego. J. 1995, PhD thesis (Madrid)

Hagen, H.-J., Groote, D., Engels, D., Reimers, D. 1995, A&AS 111, 195

Haro, G. 1956, Bol. Obs. Tonantzintla y Tacubaya 14, 329
