New results on path-decompositions and their down-links

A. Benini, L. Giuzzi and A. Pasotti

Abstract

In [3] the concept of down-link from a \((K_v, \Gamma)\)-design \(B\) to a \((K_n, \Gamma')\)-design \(B'\) has been introduced. In the present paper the spectrum problems for \(\Gamma' = P_4\) are studied. General results on the existence of path-decompositions and embeddings between path-decompositions playing a fundamental role for the construction of down-links are also presented.

Keywords: \((K_v, \Gamma)\)-design; down-link; embedding.

MSC(2010): 05C51, 05B30, 05C38.

1 Introduction

Suppose \(\Gamma \leq K\) to be a subgraph of \(K\). A \((K, \Gamma)\)-design, or \(\Gamma\)-decomposition of \(K\), is a set of graphs isomorphic to \(\Gamma\) whose edges partition the edge set of \(K\). Given a graph \(\Gamma\), the problem of determining the existence of \((K_v, \Gamma)\)-designs, also called \(\Gamma\)-designs of order \(v\), where \(K_v\) is the complete graph on \(v\) vertices, has been extensively studied; see the surveys [4, 5]. In [3] we proposed the following definition.

Definition 1.1. Given a \((K, \Gamma)\)-design \(B\) and a \((K', \Gamma')\)-design \(B'\) with \(\Gamma' \leq \Gamma\), a down-link from \(B\) to \(B'\) is a function \(f: B \to B'\) such that \(f(B) \leq B\), for any \(B \in B\).

When such a function \(f\) exists, we say that it is possible to down-link \(B\) to \(B'\).
As seen in [3], down-links are closely related to metamorphoses [8], their generalizations [9] and embeddings [11]. In close analogy to embeddings, we introduced spectrum problems about down-links:

(I) For each admissible \(v \), determine the set \(\mathcal{L}_1(\Gamma)(v) \) of all integers \(n \) such that there exists some \(\Gamma \)-design of order \(v \) down-linked to a \(\Gamma' \)-design of order \(n \).

(II) For each admissible \(v \), determine the set \(\mathcal{L}_2(\Gamma)(v) \) of all integers \(n \) such that every \(\Gamma \)-design of order \(v \) can be down-linked to a \(\Gamma' \)-design of order \(n \).

In [3, Proposition 3.2], we proved that for any \(v \) such that there exists a \((K_v, \Gamma) \)-design and any \(\Gamma' \leq \Gamma \), the sets \(\mathcal{L}_1(\Gamma)(v) \) and \(\mathcal{L}_2(\Gamma)(v) \) are always non-empty. In the same paper the case \(\Gamma' = \Gamma \) has been investigated in detail.

Here we shall deal with the case \(\Gamma' = P_4 \). In order to get results about down-links to \(P_4 \)-designs, we shall first study path-designs and their embeddings. More precisely, in Section 2 we determine sufficient conditions for the existence of \(P_4 \)-decompositions of any graph \(\Gamma \) and \(P_k \)-decompositions of complete bipartite graphs. In Section 3 applying the results of Section 2 we are able to prove the existence of embeddings and down-links between path-designs. Section 4 is devoted to the cases of cycle systems and path-designs, with general theorems and directed constructions.

Throughout this paper the following standard notations will be used; see also [7]. For any graph \(\Gamma \), write \(V(\Gamma) \) for the set of its vertices and \(E(\Gamma) \) for the set of its edges. If \(\mathcal{B} \) is a collection of graphs, by \(V(\mathcal{B}) \) we will mean the set of the vertices of all its elements. By \(t\Gamma \) we shall denote the disjoint union of \(t \) copies of graphs all isomorphic to \(\Gamma \). As usual, \(P_k = [a_1, \ldots, a_k] \) is the path with \(k-1 \) edges and \(C_k = (a_1, \ldots, a_k) \), \(k \geq 3 \), is the cycle of length \(k \). Also, \(K_{m,n} \) is the complete bipartite graph with parts of size \(m \) and \(n \). When we focus on the actual parts \(X \) and \(Y \), \(K_{X,Y} \) will be written.

2 Existence of some path-designs

In this section we present new results on the existence of path decompositions. Recall that a \((K_n, P_k) \)-design exists if, and only if, \(n(n-1) \equiv 0 \pmod{2(k-1)} \); see [13].

Proposition 2.1. Let \(k \) be an even integer. For \(x = k-2, k \) the complete bipartite graph \(K_{k-1,x} \) admits a \(P_k \)-decomposition.

Proof. Consider the bipartite graph \(K_{A,I} \) where \(A = \{a_1, \ldots, a_{k-1}\} \) and \(I = \{1, \ldots, x\} \) with \(x = k-2, k \).

Let \(U^t = (1, \ldots, 1) \) be an \(\frac{x}{2} \)-tuple. Set \(P_1^t = (1, \ldots, \frac{x}{2}) \) and for \(i = 1, \ldots, \frac{x}{2} \),
Theorem 2.2. Let Γ be a graph with at least two vertices of degree $|V(\Gamma)|-1$. Then Γ admits a P_4-decomposition if, and only if, $|E(\Gamma)| \equiv 0 \pmod{3}$. If $|E(\Gamma)| \equiv 1, 2 \pmod{3}$, then Γ can be partitioned into a P_4-decomposition together with one or two (possibly connected) edges, respectively.

Proof. The condition is obviously necessary. For sufficiency, let α and β be two vertices of degree $|V(\Gamma)|-1$. Delete α and β in Γ, as to obtain a graph G. Let G' be a maximal P_4-decomposable subgraph of G and remove from G the edges of G', determining a new graph G''. In general, G'' is not connected and its connected components are either isolated vertices or stars or cycles of length 3; call \mathcal{I}, \mathcal{S} and \mathcal{C} their (possibly empty) sets. Let Γ' be the graph obtained removing the edges of G' from Γ. Clearly, $|E(\Gamma)| \equiv 0 \pmod{3}$ implies $|E(\Gamma')| \equiv 0 \pmod{3}$; thus it remains to show that $E(\Gamma')$ is P_4-decomposable. Obviously α and β are of degree $|V(\Gamma)|-1$ also in Γ'. Let $A = \{\alpha, \beta\}$ and consider the following decomposition $\Gamma' = K_A \cup K_{A,I} \cup (C \cup K_{A,V(S)}) \cup (S \cup K_{A,V(S)})$. We begin by providing, separately, P_4-decompositions of $K_{A,I}$, $C \cup K_{A,V(S)}$ and $S \cup K_{A,V(S)}$.

i) It is easy to see that for any 3-subset of \mathcal{I}, say H_3, the graph K_{A,H_3} has a P_4-decomposition. Thus, depending on the congruence class modulo 3 of $|\mathcal{I}|$, $K_{A,I}$ can be partitioned into a P_4-decomposition together with the following possible remnants.

| Case | $|\mathcal{I}| \equiv i \pmod{3}$ |
|------|----------------|
| (i_1) $|\mathcal{I}| \equiv 0 \pmod{3}$ | the set \emptyset |
| (i_2) $|\mathcal{I}| \equiv 1 \pmod{3}$ | the path $[\alpha, h, \beta]$ with $h \in \mathcal{I}$ |
| (i_3) $|\mathcal{I}| \equiv 2 \pmod{3}$ | the cycle $(h_1, \alpha, h_2, \beta)$ with $h_1, h_2 \in \mathcal{I}$ |

Table 1: Case i.
ii) For any 3-cycle \(C \in \mathcal{C} \), the graph \(C \cup K_{A,V(C)} \) has a \(P_4 \)-decomposition. Thus, \(\mathcal{C} \cup K_{A,V(C)} \) also admits a \(P_4 \)-decomposition.

iii) It is not difficult to see that, for any star \(S_c \in \mathcal{S} \) of center \(c \), the graph \(S_c \cup K_{A,V(S_c)} \) has a partition into a \(P_4 \)-decomposition together with either the path \([\alpha, c, \beta] \) or the graph \((\alpha, c, \beta, v) \cup [c, v] \), where \(v \) is any external vertex, depending on whether the number of vertices of \(S_c \) is odd or even.

Let \(S_1 \) (respectively \(S_2 \)) be the set of stars with an odd (even) number of vertices. For any three stars of \(S_1 \) (\(S_2 \)) the remnants give \(P_4 \)-decomposable graphs. So \(S_1 \cup K_{A,V(S_1)} \), as well as \(S_2 \cup K_{A,V(S_2)} \), can be partitioned into a \(P_4 \)-decomposition together with the possible remnants outlined in Tables 2 and 3.

(iii_11)	(iii_12)	(iii_13)						
\(S_1	\equiv 0 \pmod{3}\)	\(S_1	\equiv 1 \pmod{3}\)	\(S_1	\equiv 2 \pmod{3}\)
\(\emptyset\)	the path \([\alpha, c, \beta] \) where \(c \) is the center of a star	the cycle \((c_1, \alpha, c_2, \beta) \) where \(c_1, c_2 \) are centers of two stars						

Table 2: Case (iii_1): \(S_1 \cup K_{A,V(S_1)} \).

(iii_21)	(iii_22)	(iii_23)						
\(S_2	\equiv 0 \pmod{3}\)	\(S_2	\equiv 1 \pmod{3}\)	\(S_2	\equiv 2 \pmod{3}\)
\(\emptyset\)	the graph \((\alpha, c, \beta, v) \cup [c, v] \) where \(c \) is the center and \(v \) is an external vertex of a star	the graph \(\bigcup_{i=1}^{2} (\alpha, c_i, \beta, v_i) \cup [c_1, v_i] \) where \(c_1, c_2 \) are centers and \(v_1, v_2 \) are external vertices of two stars						

Table 3: Case (iii_2): \(S_2 \cup K_{A,V(S_2)} \).

The remnants from \(i \), (iii_1) and (iii_2) together with the edge \([\alpha, \beta] \) can be combined in 27 different ways to obtain 27 connected graphs with \(t \) edges. It is a routine to check that we have exactly 9 cases with \(t \equiv i \pmod{3} \), for \(i = 0, 1, 2 \).

In Table 4 we will list in detail the 9 cases with \(t \equiv 0 \pmod{3} \) and, for each of them, in Table 5 we give the corresponding graph.
Table 4: $t \equiv 0 \pmod{3}$.

	i	i_{ii1}	i_{ii2}
a_1	\emptyset	\emptyset	i_{ii22}
a_2	\emptyset	i_{i113}	i_{i213}
a_3	\emptyset	i_{i112}	\emptyset

	i	i_{ii1}	i_{ii2}
a_4	i_{i2}	\emptyset	\emptyset
a_5	i_{i2}	i_{i113}	i_{i222}
a_6	i_{i2}	i_{i112}	i_{i233}
a_7	i_{i3}	\emptyset	i_{i233}
a_8	i_{i3}	i_{i113}	\emptyset
a_9	i_{i3}	i_{i112}	i_{i222}

Figure 1: Case a_1. Figure 2: Case a_8. Figure 3: Cases a_5 and a_9.

Figure 4: Cases a_2, a_6 and a_7. Figure 5: Cases a_3 and a_4.

Table 5: Graphs of the remnants plus edge $[\alpha, \beta]$.

It is easy to determine a P_4-decomposition of the graphs in Figures 1, 2, 3, 4. In cases a_3 and a_4 (Figure 5) a P_4-decomposition is clearly not possible, thus we proceed back tracking one step in the construction. How to deal with case a_3 is explained in Figure 6.

In case a_4 we have to distinguish several subcases depending on the size of \mathcal{I}, \mathcal{C} and \mathcal{S}. When $|\mathcal{I}| > 1$ see Figure 7. For $|\mathcal{I}| = 1$ and $|\mathcal{C}| \neq 0$, see Figure 8.
Figure 7: If $|\mathcal{I}| > 1$, we recover the two P_4’s from 3 vertices of \mathcal{I}.

Figure 8: If $|\mathcal{I}| = 1$ and $|\mathcal{C}| \neq 0$ we recover the three P_4’s from a C_3.

When $|\mathcal{I}| = 1$ and $|\mathcal{C}| = 0$ we have two possibilities. If there is one star of \mathcal{S} with at least two edges, we proceed as explained in Figure 9.

Figure 9: If $|\mathcal{I}| = 1$, $|\mathcal{C}| = 0$, and $\exists S_c \in \mathcal{S}$ with $P_3 \leq S_c$ we recover the two P_4’s from 2 radii of S_c.

Otherwise, G'' consists of an isolated vertex h and a set \mathcal{P} of disjoint P_2’s. Since $|E(\Gamma')| \equiv 0 \pmod{3}$, the size of \mathcal{P} is also divisible by 3, let $|\mathcal{P}| = 3p$. It is easy to see that for any 3-subset of \mathcal{P}, say P^3, the graph K_{A,P^3} has a P_4-decomposition. After $p - 1$ steps, the remnant is the graph in Figure 10, which likewise admits a P_4-decomposition. This concludes the case $t \equiv 0 \pmod{3}$.

Figure 10: If $|\mathcal{I}| = 1$, $|\mathcal{C}| = 0$ and S is a disjoint union of P_2's we recover the 15 edges from the last but one step.

With similar arguments, when $t \equiv 1, 2 \pmod{3}$ it is possible to find a P_4-decomposition of $E(\Gamma)$ leaving as remnants, respectively, one or two edges. \qed
3 Embeddings and down-links to P_4-designs

The results presented in the previous section are used to prove the existence of embeddings and down-links to path designs. In particular, we shall focus our attention on P_4-decompositions.

Theorem 3.1. Any partial (K_v,P_4)-design can be embedded into a (K_n,P_4)-design for any admissible $n \geq v + 2$.

Proof. Let B be a partial (K_v,P_4)-design. Let A be a set of vertices disjoint from $V(K_v)$ with $v + |A| \equiv 0,1 \pmod{3}$ and $|A| \geq 2$. Let Γ be the graph such that $V(\Gamma) = V(K_v) \cup A$ and $E(\Gamma) = E(K_{v+|A|}) \setminus E(B)$. Since $|A| \geq 2$, by Theorem 3.2 there exists a (Γ,P_4)-design B' and, clearly, $B \cup B'$ is a $(K_{v+|A|},P_4)$-design.

Corollary 3.2. For any (K_v,Γ)-design with $P_4 \leq \Gamma$

$$\{n \geq v + 2 \mid n \equiv 0, 1 \pmod{3}\} \subseteq \mathcal{L}_2 \Gamma(v) \subseteq \mathcal{L}_1 \Gamma(v).$$

Proof. Let B be a (K_v,Γ)-design with $P_4 \leq \Gamma$. Choose a P_4 in each block of B and call \mathcal{P} the set of such P_4’s. Obviously, \mathcal{P} is a partial P_4-decomposition of K_v. Hence, by Theorem 3.1, \mathcal{P} can be embedded into a (K_n,P_4)-design B' for any admissible $n \geq v + 2$. The construction also guarantees the existence of a down-link from B to B'.

Theorem 3.3. For any even integer k, a P_k-design of order $n \equiv 0, 1 \pmod{k-1}$ can be embedded into a P_k-design of any order $m > n + 1$ with $m \equiv 0, 1 \pmod{k - 1}$.

Proof. Let B be a (K_n,P_k)-design with $n \equiv 0, 1 \pmod{k-1}$ and let $m = n + s \equiv 0, 1 \pmod{k-1}$. As $K_{n+s} = K_n \cup K_s \cup K_{n,s}$, for the existence of a (K_m,P_k)-design embedding B it is enough to find a P_k-decomposition of $K_s \cup K_{n,s}$. Since $n,n+s \equiv 0, 1 \pmod{k - 1}$, one of the following cases occurs

- $n = \lambda(k-1), s = \mu(k-1) \Rightarrow K_s \cup K_{n,s} = K_s \cup \lambda \mu K_{k-1,k-1}$
- $n = \lambda(k-1), s = 1+\mu(k-1) \Rightarrow K_s \cup K_{n,s} = K_s \cup K_{\lambda(k-1),1+(\mu-1)(k-1)} = K_s \cup \lambda K_{k-1,k} \cup (\mu - 1)K_{k-1,k-1}$
- $n = 1+\lambda(k-1), s = \mu(k-1) \Rightarrow K_s \cup K_{n,s} = K_s \cup K_{1+\lambda(k-1),\mu(k-1)} = K_s \cup \mu K_{k-1,k} \cup (\lambda - 1)K_{k-1,k-1}$
- $n = 1+\lambda(k-1), s = k-2+\mu(k-1) \Rightarrow K_s \cup K_{n,s} = K_s \cup K_{1+\lambda(k-1),s} = K_{s+1} \cup K_{\lambda(k-1),k-2+\mu(k-1)} = K_{s+1} \cup \lambda K_{k-1,k-2} \cup \lambda \mu K_{k-1,k-1}$

So, to find a P_k-decomposition of $K_s \cup K_{n,s}$ it is sufficient to know P_k-decompositions of
• K_s and K_{s+1}, which exist by [13],
• $K_{k-1,k-1}$, whose existence is proved in [10],
• $K_{k-1,k}$ and $K_{k-1,k-2}$, whose existence follows from Proposition 2.1.

The following corollary is a straightforward consequence of Theorem 3.3.

Corollary 3.4. If $n \in \mathcal{L}_i \Gamma(v)$, then

\[
\{ m \geq n + 2 \mid m \equiv 0, 1 \pmod{3} \} \subseteq \mathcal{L}_i \Gamma(v).
\]

Remark 3.5. Set $\eta_i = \inf \mathcal{L}_i \Gamma(v)$. By Corollary 3.4, $\mathcal{L}_i \Gamma(v)$ contains all admissible values $m \geq \eta_i$ apart from (possibly) $\eta_i + 1$. Thus to exactly determine the spectra it is enough to compute η_i and ascertain if $\eta_i + 1 \in \mathcal{L}_i \Gamma(v)$.

4 Cycle systems and path-designs

Here we shall provide some partial results on the existence of down-links from cycle systems and path-designs to P_4-designs.

We recall that a k-cycle system of order v, that is a (K_v, C_k)-design, exists if, and only if, $k \leq v$, v is odd and $v(v - 1) \equiv 0 \pmod{2k}$; see [2], [12].

Theorem 4.1. For any admissible v and any $k \geq 9$

\[
\left\{ n \geq v - \left\lfloor \frac{k - 9}{4} \right\rfloor \mid n \equiv 0, 1 \pmod{3} \right\} \subseteq \mathcal{L}_2 \Gamma(v) \subseteq \mathcal{L}_1 \Gamma(v).
\]

Proof. Let $k \geq 9$ and let \mathcal{B} be a (K_v, C_k)-design. Write $t = \left\lfloor \frac{k - 9}{4} \right\rfloor$. Take $t + 2$ distinct vertices $x_1, x_2, \ldots, x_t, y_1, y_2 \in V(K_v)$. Observe that it is possible to extract from each block $C \in \mathcal{B}$ a P_4 whose vertices are different from $x_1, x_2, \ldots, x_t, y_1, y_2$, as we are forbidding at most $4(t + 1) + 2 = 4t + 6 = k - 3$ edges from any k-cycle. Use these P_4’s for the down-link. Let S be the image of the down-link, considered as a subgraph of $K_{v-t} = K_v \setminus \{x_1, \ldots, x_t\}$ and remove the edges of S from K_{v-t} to obtain a new graph R. It remains to show that R admits a P_4-decomposition. Observe that $|V(R)| = v-t$ and y_1, y_2 are two vertices of R of degree $v-t - 1$. To apply Theorem 2.2 we have to distinguish some cases according to the congruence class modulo 3 of $v-t$.

If $v-t \equiv 0 \pmod{3}$, then $|E(R)| \equiv 0 \pmod{3}$ so the existence of a (R, P_4)-design is guaranteed by Theorem 2.2. Furthermore, if we add a vertex to K_{v-t} we can apply Theorem 2.2 also to $R' = R \cup K_{1,v-t}$ since $|E(R')| \equiv 0 \pmod{3}$. Hence there exist down-links from \mathcal{B} to (K_{v-t}, P_4)-designs and...
to \((K_{v-t+1}, P_4)\)-designs. If \(v-t \equiv 1(\text{mod } 3)\), then \(|E(R)| \equiv 0(\text{mod } 3)\), hence by Theorem 2.2 there exists a \((R, P_4)\)-design. So we determine down-links from \(B\) to \((K_{v-t}, P_4)\)-designs.

Finally, if \(v-t \equiv 2(\text{mod } 3)\), it is sufficient to add either \(u = 1\) or \(u = 2\) vertices to \(K_{v-t}\) and then apply Theorem 2.2 to \(R'' = (K_{v-t} \cup K_u \cup K_{v-t-u}) \setminus S\) in order to down-link \(B\) to \((K_{v-t+1}, P_4)\)-designs or to \((K_{v-t+2}, P_4)\)-designs, respectively. The statement follows from Remark 3.5.

Arguing exactly as in the previous proof it is possible to prove the following result.

Theorem 4.2. For any admissible \(v\) and any \(k \geq 12\)

\[
\left\{ n \geq v - \left\lfloor \frac{k - 12}{4} \right\rfloor \mid n \equiv 0, 1 \pmod{3} \right\} \subseteq \mathcal{L}_2 P_k(v) \subseteq \mathcal{L}_1 P_k(v).
\]

4.1 Small cases

We shall now investigate in detail the spectrum problems for \(\Gamma = C_4\) and \(\Gamma = P_3\). In order to obtain our results, we shall extensively use the method of gluing of down-links, introduced in [2]. We briefly recall the main idea: a down-link from a \((K_v, \Gamma)\)-design to a \((K_n, \Gamma')\)-design can be constructed as union of down-links between partitions of the domain and the codomain. To give designs suitable for the down-link, we will use difference families; here we recall some preliminaries, for a survey see [1]. Let \(\Gamma\) be a graph. A set \(\mathcal{F}\) of graphs isomorphic to \(\Gamma\) with vertices in \(\mathbb{Z}_v\) is called a \((v, \Gamma, 1)\)-difference family (DF, for short) if the list \(\Delta \mathcal{F}\) of differences from \(\mathcal{F}\), namely the list of all possible differences \(x - y\), where \((x, y)\) is an ordered pair of adjacent vertices of an element of \(\mathcal{F}\), covers \(\mathbb{Z}_v \setminus \{0\}\) exactly once. In [6] it is proved that if \(\mathcal{F} = \{B_1, \ldots, B_t\}\) is a \((v, \Gamma, 1)\)-DF, then the collection of graphs \(B = \{B_i + g \mid B_i \in \mathcal{F}, g \in \mathbb{Z}_v\}\) is a cyclic \((K_v, \Gamma)\)-design.

Lemma 4.3. For any \(v \equiv 1, 9 \pmod{24}, v > 1\), there exists a down-link from a \((K_v, C_4)\)-design to a \((K_v, P_4)\)-design. For any \(v \equiv 9, 17 \pmod{24}\) there exists a down-link from a \((K_v, C_4)\)-design to a \((K_{v+1}, P_4)\)-design.

Proof. Take \(v = s + 24t \geq 9\), with \(s = 1, 9, 17\), and \(V(K_v) = \mathbb{Z}_v\). Consider the set of 4-cycles

\[
\mathcal{C} = \left\{ C^a = \left(0, a, \frac{v+1}{2}, \frac{v-1}{8} + a \right) \mid a = 1, 2, \ldots, \frac{v-1}{8} \right\}.
\]

It is straightforward to check that

\[
\Delta C^a = \pm \left\{ a, \frac{v+1}{2} - a, \frac{3v+5}{8} - a, \frac{v-1}{8} + a \right\}.
\]
Hence $\Delta C = \mathbb{Z}_v \setminus \{0\}$, so, by [6], the C^a are the $\frac{v-1}{8}$ base blocks of a cyclic (K_v, C_4)-design. The development of each base block gives v different 4-cycles, from each of which we extract the edge obtained by developing $[0,a]$. The obtained P_4's will be used to define a down-link in a natural way. The removed edges can be connected to complete the P_4-decomposition of K_v as follows: for each triple $\{[0,a+1],[0,a+2],[0,a+3]\}$, for $a \equiv 1 \pmod{3}$ where $a \in \{1,2,\ldots,\frac{v-1}{8}\}$, consider the three developments and connect the edges $\{[i+1,a+1+(i+1)], [i,a+2+i], [i,a+3+i]\}$ obtaining the paths $(i+1,a+i+2,i,a+i+3)$, with $i \in \mathbb{Z}_v$.

If $v \equiv 1 \pmod{24}$, we have the required P_4-decomposition.

If $v \equiv 9 \pmod{24}$, we have the required P_4-decomposition except for the development of $[0,1]$. The v edges of such a development can be easily connected to give the v-cycle $C = (0,1,\ldots,v-1)$, which obviously admits a P_4-decomposition. So, for $v \equiv 1,9 \pmod{24}$, there exists a down-link from a (K_v, C_4)-design to a (K_v, P_4)-design. Under the assumption $v \equiv 9 \pmod{24}$, $n = v + 1$ is also admissible. In this case, add the vertex α to $V(K_v)$ to obtain a K_{v+1} supporting the codomain of the down-link. Actually, the star $S_{[\alpha;V]}$ of center α and external vertices the elements of $V(K_v)$ has been added. Proceed as before till to the last but one step, namely do not decompose the v-cycle C obtained by developing $[0,1]$. So it remains to determine a P_4-decomposition of the wheel $W = C \cup S_{[\alpha;V]}$.

It is easy to see that W can be decomposed into $3 + 8t$ copies of the graph W' in Figure 11 which evidently admits a P_4-decomposition.

![Figure 11: The graph W' as union of two P_4's.](image)

If $v \equiv 17 \pmod{24}$, proceeding as before, we determine the required P_4-decomposition except for the two developments, say d_1 and d_2, of the edges $[0,1]$ and $[0,\frac{v-1}{8}]$. Keeping in mind that we must also add a vertex, say α, to the codomain, we have to arrange the edges of d_1, d_2 and $S_{[\alpha;V]}$. It easy to see that we can obtain the P_4's as $[\alpha,1+i,i,\frac{v-1}{8}+i]$, for $i \in \mathbb{Z}_v$.

So, for $v \equiv 9,17 \pmod{24}$ there exists a down-link from a (K_v, C_4)-design to a (K_{v+1}, P_4)-design. \qed
Theorem 4.4. For any admissible \(v > 1 \),

\[
\mathcal{L}_1 C_4(v) = \{ n \geq v \mid n \equiv 0, 1 \ (\text{mod} \ 3) \}; \quad (1)
\]

\[
\{ n \geq v + 2 \mid n \equiv 0, 1 \ (\text{mod} \ 3) \} \subseteq \mathcal{L}_2 C_4(v) \subseteq \{ n \geq v \mid n \equiv 0, 1 \ (\text{mod} \ 3) \}. \quad (2)
\]

Proof. Let \(B \) and \(B' \) be, respectively, a \((K_v, C_4)\)-design and a \((K_n, P_4)\)-design. Suppose that \(B \) can be down-linked to \(B' \). Clearly, \(n \geq v \). Hence \(\mathcal{L}_2 C_4(v) \subseteq \mathcal{L}_1 C_4(v) \subseteq \{ n \geq v \mid n \equiv 0, 1 \ (\text{mod} \ 3) \} \).

To prove the reverse inclusion in (1) observe that a \((K_v, C_4)\)-design exists if, and only if, \(v \equiv 1 \ (\text{mod} \ 8) \) and a \((K_n, P_4)\)-design exists if, and only if, \(n \equiv 0, 1 \ (\text{mod} \ 3) \). So it makes sense to look for a down-link from a \((K_v, C_4)\)-design to a \((K_v, P_4)\)-design only for \(v \equiv 1, 9 \ (\text{mod} \ 24) \). Likewise, a down-link from a \((K_v, C_4)\)-design to a \((K_v, P_4)\)-design can exist only if \(v \equiv 9, 17 \ (\text{mod} \ 24) \). The existence of such down-links is proved in Lemma 4.3 The statement of (1) follows from Remark 3.5. The other inclusion in (2) immediately follows from Corollary 3.2.

Theorem 4.5. For any admissible \(v > 1 \),

\[
\mathcal{L}_1 P_5(v) = \{ n \geq v - 1 \mid n \equiv 0, 1(\text{mod} \ 3) \}; \quad (3)
\]

\[
\{ n \geq v + 2 \mid n \equiv 0, 1(\text{mod} \ 3) \} \subseteq \mathcal{L}_2 P_5(v) \subseteq \{ n \geq v \mid n \equiv 0, 1(\text{mod} \ 3) \}. \quad (4)
\]

Proof. The first inclusion in (4) follows from Corollary 3.2. In order to prove the second, it is sufficient to show that for any admissible \(v \) there exists a \((K_v, P_5)\)-design \(B \) wherein no vertices can be deleted. In particular, this is the case if each vertex of \(K_v \) has degree 2 in at least one block of \(B \). First of all note that in a \((K_v, P_5)\)-design there is at most one vertex with degree 1 in each block where it appears. Suppose that there actually exists a \((K_v, P_5)\)-design \(\overline{B} \) with a vertex \(x \) as above. It is easy to see that in \(\overline{B} \) there is at least one block \(P^1 = [x, a, b, c, d] \) such that the vertices \(a, b \) and \(c \) have degree two in at least another block. Let \(P^2 = [x, d, e, f, g] \). By reassembling the edges of \(P^1 \cup P^2 \), it is possible to replace in \(\overline{B} \) these two paths with \(P^3 = [d, x, a, b, c] \), \(P^4 = [c, d, e, f, g] \) if \(c \neq f, g \) or \(P^5 = [a, x, d, c, g], P^6 = [a, b, c, e, d] \) if \(c = f \) or \(P^7 = [c, d, x, a, b], P^8 = [b, c, f, e, d] \) if \(c = g \). Thus we have again a \((K_v, P_5)\)-design. By the assumption on \(a, b, c \) all the vertices of this new design have degree two in at least one block.

Now we consider Relation (3). Let \(B \) and \(B' \) be respectively a \((K_v, P_5)\)-design and a \((K_n, P_4)\)-design. Suppose there exists a down-link \(f : B \rightarrow B' \). Clearly, \(n > v - 2 \). Hence, \(\mathcal{L}_1 P_5(v) \subseteq \{ n \geq v - 1 \mid n \equiv 0, 1(\text{mod} \ 3) \} \).

To show the reverse inclusion in (3) we prove the actual existence of designs providing down-links. Since a \((K_v, P_5)\)-design exists if, and only if, \(v \equiv 0, 1(\text{mod} \ 8) \) and a \((K_n, P_4)\)-design exists if, and only if, \(n \equiv 0, 1(\text{mod} \ 3) \), it makes sense to look for a down-link from a \((K_v, P_5)\)-design to a \((K_{v-1}, P_4)\)-design only if \(v \equiv 1, 8, 16, 17(\text{mod} \ 24) \). For the same reason, it makes sense
to construct a down-link from a \((K_v, P_5)\)-design to a \((K_v, P_4)\)-design only for \(v \equiv 0, 1, 9, 16(\text{mod} \, 24)\). In view of Remark 3.5 in order to complete the proof, we have also to provide a down-link from a \((K_v, P_5)\)-design to a \((K_{v+1}, P_4)\)-design for every \(v \equiv 0, 9(\text{mod} \, 24)\).

To determine the necessary down-links, we analyze a few basic cases and then apply the gluing method. To this end, we will use the following obvious relations in an appropriate way: \(K_{a+b} = K_a \cup K_b \cup K_{a+b}\) and \(K_{a+b,c} = K_{a,c} \cup K_{b,c}\). In particular,

\[
K_{\ell+24t} = K_\ell \cup K_{24t} \cup K_{\ell,24t};
\]

\[
K_{24t} = tK_{24} \cup \left(\frac{t}{2}\right)K_{24,24} = tK_{24} \cup 48\left(\frac{t}{2}\right)K_{3,4};
\]

\[
K_{\ell=rs,24t} = rK_{s,24t} = rtK_{s,24} = 6rtK_{s,4} = 8rtK_{s,3}.
\]

Let us now examine the possible cases.

- \((K_v, P_5) \rightarrow (K_{v-1}, P_4)\)-design with \(v = \ell + 24t > 1, \ell = 1, 8, 16, 17\).

\(P_5\)-design of order	basic components	\(\rightarrow\)	basic components	\(P_4\)-design of order
1 + 24t \((K_{25}, P_5), (K_{3,4}, P_5)\)	\((K_{24}, P_4), (K_{3,4}, P_4)\)	\(24t\)		
8 + 24t \((K_{8}, P_5), (K_{24}, P_5)\)	\((K_{7}, P_4), (K_{24}, P_4)\)	\(7 + 24t\)		
\(K_{4,3}, P_5\)	\((K_{4,3}, P_4), (K_{3,3}, P_4)\)			
16 + 24t \((K_{16}, P_5), (K_{24}, P_5)\)	\((K_{15}, P_4), (K_{24}, P_4)\)	\(15 + 24t\)		
\(K_{4,3}, P_5\)	\((K_{4,3}, P_4), (K_{3,3}, P_4)\)			
17 + 24t \((K_{17}, P_5), (K_{24}, P_5)\)	\((K_{16}, P_4), (K_{24}, P_4)\)	\(16 + 24t\)		
\(K_{4,3}, P_5\)	\((K_{4,3}, P_4), (K_{3,3}, P_4)\)			

- \((K_v, P_5) \rightarrow (K_{v}, P_4)\)-design with \(v = \ell + 24t > 1, \ell = 0, 1, 9, 16\).

\(P_5\)-design of order	basic components	\(\rightarrow\)	basic components	\(P_4\)-design of order
24t \((K_{24}, P_5), (K_{3,4}, P_5)\)	\((K_{24}, P_4), (K_{3,4}, P_4)\)	\(24t\)		
1 + 24t \((K_{9}, P_5), (K_{16}, P_5)\)	\((K_{9}, P_4), (K_{16}, P_4)\)	\(1 + 24t\)		
\((K_{24}, P_5), (K_{3,4}, P_5)\)	\((K_{24}, P_4), (K_{3,4}, P_4)\)			
9 + 24t \((K_{9}, P_5), (K_{24}, P_5)\)	\((K_{9}, P_4), (K_{24}, P_4)\)	\(9 + 24t\)		
\(K_{3,4}, P_5\)	\((K_{3,4}, P_4)\)			
16 + 24t \((K_{16}, P_5), (K_{24}, P_5)\)	\((K_{16}, P_4), (K_{24}, P_4)\)	\(16 + 24t\)		
\(K_{3,4}, P_5\)	\((K_{3,4}, P_4)\)			

- \((K_v, P_5) \rightarrow (K_{v+1}, P_4)\)-design with \(v = \ell + 24t > 1, \ell = 0, 9\).

\(P_5\)-design of order	basic components	\(\rightarrow\)	basic components	\(P_4\)-design of order
24t \((K_{24}, P_5), (K_{3,4}, P_5)\)	\((K_{25}, P_4), (K_{3,4}, P_4)\)	\(1 + 24t\)		
9 + 24t \((K_{9}, P_5), (K_{24}, P_5)\)	\((K_{10}, P_4), (K_{24}, P_4)\)	\(10 + 24t\)		
\((K_{3,4}, P_5), (K_{9,24}, P_5)\)	\((K_{3,4}, P_4), (K_{10,24}, P_4)\)			
We obtain the image of any ξ by removing the underlined edge. Now, to complete the codomain, we have to add a further vertex to A, say α, together with all the edges connecting α to the vertices of B. Thus, it remains to decompose the graph formed by the removed edges together with the star of center α and external vertices in B. Such a P_4-decomposition is listed below:

\[
\begin{align*}
[6, a, 12, b, 1] & \quad [1, c, 12, d, 6] & \quad [6, e, 18, f, 1] & \quad [1, g, 12, h, 0] & \quad [12, i, 0, a, 18] \\
[7, a, 13, b, 2] & \quad [2, c, 13, d, 7] & \quad [7, e, 19, f, 2] & \quad [2, g, 13, h, 1] & \quad [13, i, 1, a, 19] \\
[8, a, 14, b, 3] & \quad [3, c, 14, d, 8] & \quad [8, e, 20, f, 3] & \quad [3, g, 14, h, 2] & \quad [14, i, 2, a, 20] \\
[9, a, 15, b, 4] & \quad [4, c, 15, d, 9] & \quad [9, e, 21, f, 4] & \quad [4, g, 15, h, 3] & \quad [15, i, 3, a, 21] \\
[10, a, 16, b, 5] & \quad [5, c, 16, d, 10] & \quad [10, e, 22, f, 5] & \quad [5, g, 16, h, 4] & \quad [16, i, 4, a, 22] \\
[11, a, 17, b, 0] & \quad [0, c, 17, d, 11] & \quad [11, e, 23, f, 0] & \quad [0, g, 17, h, 5] & \quad [17, i, 5, a, 23] \\
[18, b, 6, c, 19] & \quad [19, d, 0, e, 12] & \quad [12, f, 6, g, 19] & \quad [19, h, 6, i, 18] \\
[19, b, 7, c, 20] & \quad [20, d, 1, e, 13] & \quad [13, f, 7, g, 20] & \quad [20, h, 7, i, 19] \\
[20, b, 8, c, 21] & \quad [21, d, 2, e, 14] & \quad [14, f, 8, g, 21] & \quad [21, h, 8, i, 20] \\
[21, b, 9, c, 22] & \quad [22, d, 3, e, 15] & \quad [15, f, 9, g, 22] & \quad [22, h, 9, i, 21] \\
[22, b, 10, c, 23] & \quad [23, d, 4, e, 16] & \quad [16, f, 10, g, 23] & \quad [23, h, 10, i, 22] \\
[23, b, 11, c, 18] & \quad [18, d, 5, e, 17] & \quad [17, f, 11, g, 18] & \quad [18, h, 11, i, 23].
\end{align*}
\]

We obtain the image of any P_5 via ξ by removing the underlined edge. Now, to complete the codomain, we have to add a further vertex to A, say α, together with all the edges connecting α to the vertices of B. Thus, it remains to decompose the graph formed by the removed edges together with the star of center α and external vertices in B. Such a P_4-decomposition is listed below:

\[
\begin{align*}
[6, a, 9, \alpha] & \quad [7, a, 10, \alpha] & \quad [8, a, 11, \alpha] & \quad [1, c, 4, \alpha] & \quad [2, c, 5, \alpha] \\
[3, c, 0, \alpha] & \quad [9, c, 6, \alpha] & \quad [10, e, 7, \alpha] & \quad [11, e, 8, \alpha] & \quad [4, g, 1, \alpha] \\
[5, g, 2, \alpha] & \quad [0, g, 3, \alpha] & \quad [15, i, 12, \alpha] & \quad [16, i, 13, \alpha] & \quad [17, i, 14, \alpha] \\
[22, d, 19, \alpha] & \quad [23, d, 20, \alpha] & \quad [21, d, 18, \alpha] & \quad [12, f, 15, \alpha] & \quad [13, f, 16, \alpha] \\
[14, f, 17, \alpha] & \quad [20, h, 21, \alpha] & \quad [23, h, 22, \alpha] & \quad [20, b, 23, \alpha] & \quad [h, 18, b, 21] & \quad [h, 19, b, 22].
\end{align*}
\]

References

[1] Abel, R.J.R., Buratti, M., Difference families, in: CRC Handbook of Combinatorial Designs (C.J. Colbourn and J.H. Dinitz eds.), CRC Press, Boca Raton, FL (2006), 392–409.

[2] Alspach, B., Gavlas, H., Cycle decompositions of K_n and $K_n - I$, J. Combin. Theory Ser. B 81 (2001), 77–99.

[3] Benini, A., Giuzzi, L., Pasotti, A., Down-linking (K_v, Γ)-designs to P_3-designs, to appear on Util. Math. [arXiv:1004.4127].

[4] Bosák, J., “Decompositions of graphs”, Mathematics and its Applications (1990), Kluwer Academic Publishers Group.
[5] Bryant, D., El-Zanati, S., *Graph Decompositions*, CRC Handbook of Combinatorial Designs, C.J. Colbourn and J.H. Dinitz, CRC Press (2006), 477–486.

[6] Buratti, M., Pasotti, A., *Graph decompositions with the use of difference matrices*, Bull. Inst. Combin. Appl. 47 (2006), 23–32.

[7] Harary, F., “Graph Theory” (1969), Addison-Wesley.

[8] Lindner, C.C., Rosa, A., *The metamorphosis of λ-fold block designs with block size four into λ-fold triple systems*, J. Stat. Plann. Inference 106 (2002), 69–76.

[9] Ling, A.C.H., Milici, S., Quattrocchi, G., *Two generalizations of the metamorphosis definition*, Bull. Inst. Combin. Appl. 43 (2005), 58–66.

[10] Parker, C. A., Complete bipartite graph path decompositions, Ph.D. Thesis, Auburn University (1998).

[11] Quattrocchi, G., *Embedding G_1-designs into G_2-designs, a short survey*, Rend. Sem. Mat. Messina Ser. II 8 (2001), 129–143.

[12] Šajna, M., *Cycle decompositions III: complete graphs and fixed length cycles*, J. Combin. Designs 10 (2002), 27–78.

[13] Tarsi, M., *Decomposition of a complete multigraph into simple paths: nonbalanced handcuffed designs*, J. Combin. Theory Ser. A 34 (1983), 60–70.