Studying the oxidation of water to molecular oxygen in photosynthetic and artificial systems by time-resolved membrane-inlet mass spectrometry

Dmitriy Shevela* and Johannes Messinger*

Department of Chemistry, Chemistry Biology Centre, Umeå University, Umeå, Sweden

Edited by:
Suleyman I. Allakhverdiev, Russian Academy of Sciences, Russia

Reviewed by:
Mohammad M. Najafpour, Institute for Advanced Studies in Basic Sciences, Iran
Harvey J. M. Hou, Alabama State University, USA

*Correspondence:
Dmitriy Shevela and Johannes Messinger, Department of Chemistry, Chemistry Biology Centre, Umeå University, Linnaeus Väg 6, S-90187 Umeå, Sweden
e-mail: dmitriy.shevela@chem.umu.se; johannes.messinger@chem.umu.se

INTRODUCTION

In nature, the splitting of water to molecular oxygen (O₂) is catalyzed by the membrane-bound pigment-protein photosystem II (PSII) of plants, algae, and cyanobacteria (Vinyard et al., 2013). The catalytic site of the water-splitting reaction is an inorganic tetra-manganese mono-calcium penta-oxygen (M₄CaO₅) cluster (Figure 1) that forms, together with its protein ligands, the water-oxidizing complex (WOC) of PSII (Yano et al., 2006; Umema et al., 2011). Water-splitting by the M₄CaO₅ cluster is energetically driven by the strongest biological oxidant, P₆8₀⁺ (with a midpoint potential of ~1.25 V), generated by the light-induced charge separation within the Chl-containing reaction center (RC) of PSII (Diner and Rappaport, 2002; Ishikita et al., 2005). A redox-active tyrosine residue (Y₂) is the essential electron transfer intermediate between the photoactive RC and the Mn₄CaO₅ cluster of PSII. Following light absorption, the Mn₄CaO₅ cluster is oxidized step-wise (one electron at a time) and thereby cycles through five redox states, known as Sᵢ states (where i reflects the number of oxidizing equivalents stored by the cluster) (Figure 1). The four-electron four-proton oxidation chemistry of two water molecules is completed when the four oxidizing equivalents are accumulated within the WOC, and the highly reactive S₄ state relaxes into the most reduced S₀ state with the concomitant O–O bond formation and release of O₂ (Messinger et al., 2012; Cox and Messinger, 2013). This reaction cycle of water oxidation is also known as the Kok cycle (Kok et al., 1970).

Monitoring isotopic compositions of gaseous products (e.g., H₂, O₂, and CO₂) by time-resolved isotope-ratio membrane-inlet mass spectrometry (TR-IR-MIMS) is widely used for kinetic and functional analyses in photosynthesis research. In particular, in combination with isotopic labeling, TR-MIMS became an essential and powerful research tool for the study of the mechanism of photosynthetic water-oxidation to molecular oxygen catalyzed by the water-oxidizing complex of photosystem II. Moreover, recently, the TR-MIMS and ¹⁸O-labeling approach was successfully applied for testing newly developed catalysts for artificial water-splitting and provided important insight about the mechanism and pathways of O₂ formation. In this mini-review we summarize these results and provide a brief introduction into key aspects of the TR-MIMS technique and its perspectives for future studies of the enigmatic water-splitting chemistry.

KEY CONCEPTS OF TR-MIMS

The concept of TR-MIMS was first applied in 1963, when Georg Hoch and Bessel Kok began to use mass spectrometer with a semipermeable membrane as inlet system (Hoch and Kok, 1963). This allowed to separate the liquid sample from the high vacuum space of the mass spectrometer, while at the same time it was permeable to the gaseous analytes. This excellent solution allowed continuous on-line measurements of dissolved gaseous analytes (either dissolved in solution or directly from the gas phase) with a temporal resolution of a few seconds. Therefore,
FIGURE 1 | Cyanobacterial PSII structure and Kok cycle of photosynthetic water oxidation by the Mn$_4$CaO$_5$ cluster. The arrows within PSII indicate the direction of electron transfer which comprises the following redox-active cofactors: inorganic Mn$_4$CaO$_5$ cluster, redox-active tyrosine Z (Y$_Z$), the primary electron donor P680 that includes a pair of Chls a (P$_{D1}$ and P$_{D2}$) and two accessory Chls (ChlD$_1$ and ChlD$_2$), the primary pheophytin (Pheo$_{D1}$) acceptor, the primary (QA) and the secondary (QB) quinone acceptors. The phytyl tails of the Chls and Pheo's, and the isoprenyl chains of the quinones have been cut for clarity. The light-induced S state transitions of the Mn$_4$CaO$_5$ cluster are indicated by arrows with “$h\nu$” labels. The PSII structure and the zoomed structural model of the Mn$_4$CaO$_5$ cluster in the center of the Kok cycle are based on the recent PSII crystal structure at a resolution of 1.9 Å (PDB entry 3ARC; Umena et al., 2011).

the TR-MIMS technique is ideally suited for investigations of photosynthetic and artificial water-oxidation/O$_2$ evolution (for instance, see Konermann et al., 2008; Beckmann et al., 2009). For an outline of other TR-MIMS applications in biological and in industrial systems, see reviews by Lauritsen and Kotiaho (1996) and Johnson et al. (2000). Recent technological advances in MIMS instrumentation are summarized in Davey et al. (2011).

A schematic view of a TR-MIMS set-up employing an isotope ratio mass spectrometer is shown in Figure 2. This type of mass spectrometers is normally equipped with an electron-impact ion source, magnetic sector field analyzer, and individual detectors (Faraday cups) that provide simultaneous detection of several masses (ions) with high sensitivity and signal stability. For its ability to monitor and to selectively analyze all isotopologues (molecules that differ only in their isotopic composition) of gaseous products with one instrument, the TR-MIMS approach in combination with isotope enrichments became indispensable tool for kinetic and functional analyses of photosynthetic enzymes (Konermann et al., 2008; Beckmann et al., 2009). The key part of the TR-MIMS instrument is a gas inlet system that is integrated within a MIMS cell. The design of MIMS cells may vary depending on the measuring purposes (Konermann et al., 2008; Beckmann et al., 2009), but all of them contain a gas-permeable membrane functioning as analyte inlet system into the vacuum of the mass spectrometer. The coupling of such a cell to various light sources (e.g., Xenon lamps or lasers) allows carrying out the measurements of light-induced O$_2$ evolution in photosynthetic samples or light-driven O$_2$-evolving artificial catalysts. Before entering the ion source of the mass spectrometer the analytes pass through a cryogenic trap (Figure 2), which freezes out water vapor that inadvertently pervaporate through the membrane in trace amounts.

Enrichment of aqueous sample suspension with oxygen’s heavy isotope (18O) for isotope ratio measurements of O$_2$ (and/or CO$_2$) isotopologues is a powerful and commonly used tool in studies of water-splitting chemistry and/or related reactions. Therefore, most of the experiments are carried out in H$_2^{18}$O-labeled sample suspensions/solutions.

IS WATER THE IMMEDIATE SUBSTRATE OF PHOTOSYNTHETIC O$_2$ EVOLUTION?

It is widely accepted that water is the immediate substrate for photosynthetic O$_2$ production. However, Metzner (1978) suggested that instead hydrogen carbonate (bicarbonate; HCO$_3^-$) is the immediate substrate for O$_2$ formation that is subsequently replenished by the reaction of CO$_2$ with H$_2$O. This hypothesis was discounted for long because the isotopic equilibration between 18O-water and HCO$_3^-$ is too slow to account for early isotope labeling studies (Ruben et al., 1941; Stemler and Radmer, 1975; Stevens et al., 1975; Radmer and Ollinger, 1980). Due to the discovery that a carbonic anhydrase (CA) activity is associated with PSII (Lu and Stemler, 2002; Villarejo et al., 2002; Moskvin et al., 2004) the “bicarbonate-as-substrate hypothesis” needed to be re-investigated with refined expriments. Indeed, due to rapid...
exchange of HCO₃⁻ and CO₂ species by CA, the ¹⁸O-label could “escape” from HCO₃⁻ to water (which has a several orders higher concentration than the added ¹⁸O-labeled HCO₃⁻), and, thus, lead to the lack of O₂ yield from HCO₃⁻ (Stemler and Radmer, 1975; Radmer and Ollinger, 1980).

Two different TR-MIMS approaches were taken recently and both exclude that HCO₃⁻ is a physiologically significant substrate (Clausen et al., 2005a; Hillier et al., 2006). Clausen et al. (2005a) reported that under H²¹⁸O-labeled and CO₂/HCO₃⁻-depleted conditions the typical oscillation pattern of ¹⁸O-enriched O₂ evolution is obtained in response to single light flashes, but didn’t find any evidence for CO₂ release. The latter would be expected in case the Metzner’s hypothesis would be correct. Hillier et al. (2006), in their TR-MIMS study, employed ¹⁸O/¹³C-labeled HCO₃⁻ to probe the capability of PSII (from higher plants and cyanobacteria) to oxidize HCO₃⁻. The authors were able to detect an extremely small (and, thus, non-physiological) flux of ¹⁸O from HCO₃⁻ into O₂ similar to that observed in an early TR-MIMS study of Radmer and Ollinger (1980). Moreover, no relationship between O₂ evolution and PSII-associated CA activity was found by McConnell et al. (2007) in their TR-MIMS examination of PSII preparations from higher plants.

IS HYDROGEN CARBONATE A LIGAND TO THE WOC?

Hydrogen carbonate had been proposed to bind as integral cofactor to the Mn₄CaO₅ cluster after accumulation of many experimental results indicating: (i) the requirement of HCO₃⁻ ions for optimal stability and functionality of the WOC (Van Rensen and Klimov, 2005), and (ii) it’s important role for the photoassembly reaction of the Mn₄CaO₅ cluster (Dasgupta et al., 2008). Moreover, in the PSII crystal structure from *Thermosynechococcus elongatus* at 3.5 Å resolution, HCO₃⁻ was modeled as a non-protein ligand bridging Mn and Ca ions within the WOC (Ferreira et al., 2004).

Earlier, interesting TR-MIMS experiments were performed by Stemler (1989) and Govindjee et al. (1991), in which formate...
was tested to induce the release of HCO$_3^-$ (that can be detected by TR-MIMS as CO$_2$) from PSII. Although Govindjee et al. (1991) provided clear evidence for the formate-induced release of CO$_2$/HCO$_3^-$, the HCO$_3^-$ binding site was not specified in this study. Based on numerous previous data indicating that HCO$_3^-$ is a ligand to the non-heme iron (NHI) at the electron acceptor side of PSII, the released CO$_2$ was suggested to derive from this binding site. However, later formate was shown to bind both at the acceptor and the donor (water-splitting) side of PSII (Feyziev et al., 2000), and therefore, the released CO$_2$/HCO$_3^-$ could also originate from the water-splitting side.

In order to specifically probe the possible binding of HCO$_3^-$ to the Mn$_4$CaO$_5$ cluster at the donor side of PSII, Shevela et al. (2008a,b) re-examined and extended the earlier TR-MIMS investigations. Thus, a comparison of the formate-induced C16O18O yields (Figure 3A), under H$_2^{18}$O-enriched conditions, in intact PSII and Mn-depleted PSII was performed. This was complemented by experiments in which the gaseous products produced by a quick reductive destruction of the of the Mn$_4$CaO$_5$ cluster by 15N-labeled NH$_2$OH (Figure 3B) were studied. Both approaches clearly demonstrated that the detected CO$_2$/HCO$_3^-$ does not originate from the inorganic core of the water-splitting site of PSII (Shevela et al., 2008a,b). Independent evidence for absence of HCO$_3^-$ bound to the WOC was provided by FTIR and GS-MS experiments (Aoyama et al., 2008; Ulas et al., 2008). Moreover, in recent x-ray crystallography studies at resolutions of 1.9-3.0 Å no HCO$_3^-$ was found in the vicinity of the Mn$_4$CaO$_5$ cluster, while they all clearly show HCO$_3^-$ bound to the NHI on the acceptor side of PSII (Guskov et al., 2010; Umena et al., 2011) (also, see Figure 1). Thus, it can be excluded that HCO$_3^-$ is a tightly bound ligand of the Mn$_4$CaO$_5$ cluster.

However, none of the mentioned studies negates the option that a mobile, weakly bound, and rapidly exchanging HCO$_3^-$ affects the activity of the WOC. Thus, in case of the TR-MIMS measurements, weakly bound HCO$_3^-$ may have been removed during the required degassing of the MIMS cell prior to formate or NH$_3$OH additions to PSII samples. Therefore, the possible loss of weakly bound HCO$_3^-$ and the amount of HCO$_3^-$ associated with PSII under air-saturated condition remain to be established in future TR-MIMS experiments.

WHEN AND HOW DOES SUBSTRATE WATER BIND TO THE WOC?

Indisputably, the most significant and unique contribution of the TR-MIMS instrumentation in understanding of water-oxidation mechanism in photosynthesis was its application for studying substrate binding in the different S_i states of the WOC. In these experiments the binding of water to the WOC is probed by the rapid injection of H$_2^{18}$O into the PSII samples which were pre-set into the desired S_i state by pre-illumination with 0, 1, 2, or 3 flashes. Then, after desired incubation times, O$_2$ evolution is induced by a sequence of additional flashes. The exchange rates of the two substrate molecules are then calculated from the change of the 16O18O and 18O18O yields as a function of incubation time (see Figure 4A for protocol of the TR-MIMS measurements of substrate water exchange in the S_1 state). The mixing time of H$_2^{18}$O with the PSII samples after injection and a very low level of dissolved O$_2$ in H$_2^{18}$O are highly important for these experiments since they determine the time resolution of the TR-MIMS measurements. In the first H$_2^{18}$O/H$_2^{16}$O-exchange TR-MIMS experiments the water exchange kinetics could not be resolved (Radmer and Ollinger, 1986; Bader et al., 1993). The development of the MIMS cell by Messinger et al. (1995), which allowed for fast mixing of H$_2^{18}$O with the sample and also implemented O$_2$ removal from the labeled water by the glucose—glucose oxidase—catalase method, greatly improved the time resolution down to the milliseconds scale and allowed measurements of substrate water
exchange in all semistable Sj states (Messinger et al., 1995; Hillier et al., 1998; Hillier and Wydrzynski, 2000).

Figure 4B illustrates characteristic water exchange kinetics in the S3 state as measured in spinach thylakoids with the time resolution of 8 ms. In this figure, the yields of the singly-labeled (16O18O) and doubly-labeled (18O18O) isotopologues of molecular oxygen are plotted as a function of H218O incubation time in the S3 state. While the former plot reflects the result when only one of the two possible 18O-water substrates is exchanged, the latter one is for the case when both 18O-waters are exchanged. The biphasic behavior of the 16O18O rise (detected at m/z 34) (see Figure 4B) is known to represent the exchange rates of two independent slowly and fast exchanging substrate water molecules bound at separate sites within the WOC. In contrast, the 18O18O product (monitored at m/z 36) exhibits a mono-exponential rise with a rate equal to that of the slow phase kinetic of the 16O18O data, thus-reflecting the exchange of the same “slowly” exchanging substrate water as observed at m/z 34. This finding clearly confirms that the two phases of the 16O18O data are an intrinsic feature of the WOC and do not originate from PSII heterogeneity (Messinger et al., 1995; Hillier et al., 1998).

Further TR-MIMS experiments also revealed that the “slowly” exchanging water is bound to the WOC in all semi-stable Sj states, while the “fast” exchanging water was detected only in the S2 and S3 states (Hillier et al., 1998; Hillier and Wydrzynski, 2000, 2004; Hendry and Wydrzynski, 2002). Thus, the TR-MIMS technique provides not only the most direct evidence for independent substrate water binding within the WOC, but also allows to monitor the change in their binding affinities throughout the reaction cycle. For a complete overview of the TR-MIMS findings in this field, we refer the readers to reviews by Hillier and Messinger (2005), Hillier and Wydrzynski (2008), Beckmann et al. (2009), Messinger et al. (2012), and Cox and Messinger (2013).

THE 16O/18O ISOTOPE EFFECT AND PHOTOSYNTHETIC WATER-SPLITTING

Up to now there is no final agreement on whether isotopic discrimination during O2 production by photosynthetic water-splitting in PSII contributes to the so-called Dole effect, which describes the finding that the percentage of the 18O isotope in atmosphere is higher (by 23%) than in oceanic waters (Dole, 1936; Tcherkez and Farquhar, 2007). While many gas isotope ratio studies clearly showed that oxygen produced by O2-evolving organisms is isotopically identical to the water they are suspended in (Dole and Jenks, 1944; Stevens et al., 1975; Guy et al., 1993; Helman et al., 2005), recent 18O-enriched TR-MIMS experiments indicated that the 18O isotope is favored by the WOC for O2 production, thus-suggesting a significant 16O/18O isotope effect in the photosynthetic water-splitting (Burda et al., 2001, 2003). This finding was challenged by recent theoretical estimations that suggest a very small isotope effect (Tcherkez and Farquhar, 2007). Undoubtedly, a resolution of these conflicting results can be provided by revisiting TR-MIMS studies. These future studies should be designed to account for: (i) technical limitations/shortcomings of the previous TR-MIMS experiments (for instance, the absence of fast H218O mixing upon its addition to sample suspension inside the MIMS cuvette Bader et al., 1987; Burda et al., 2003), (ii) possible contribution of isotopic fractionation due to transfer of O2 isotopologues through the membrane inlet toward the high vacuum of mass spectrometer recently reported by Hillier et al. (2006), and (iii) current knowledge of the S-state dependent substrate water binding and exchange rates as derived from TR-MIMS measurements (for reviews, see Hillier and Wydrzynski, 2008; Cox and Messinger, 2013). However, we note here, that without specific investigations of the 18O isotope effect in photosynthetic water-oxidation, our TR-MIMS studies do not reveal any oxygen isotope discrimination in photosynthetically produced O2 (for instance, see Figure 6C and text below for explanations), indicating that any such effect must be small at best.

IN SEARCH FOR INTERMEDIATES OF WATER SPLITTING BY TR-MIMS APPROACH

While most states of the Kok cycle (S0, S1, S2, S3) are semistable, the S3Y2 and S4 state are known to be a highly reactive intermediates that until very recently were not characterized. Clausen and Junge (2004) attempted to stabilize and identify putative intermediate(s) of the S4 state by applying a high partial O2 pressure in order to shift the equilibrium of the terminal S4

![Figure 5](image-url)
→ S₀ + O₂ + nH⁺ reaction backwards. Based on their UV-absorption transients the authors observed half suppression of Mn oxidation under only 10-fold increase of ambient O₂ pressure (2.3 bar). These results were considered to be the first indication for an intermediate in the S₁ → S₄ → S₀ transition and as a possible route for stabilizing it (Clausen and Junge, 2004). Although a further delayed Chl fluorescence study corroborated these results (Clausen et al., 2005b), experiments by time-resolved X-ray absorption spectroscopy (TR-XAS) (Haumann et al., 2008) and by visible fluorescence study (Kolling et al., 2009) shed doubt on the existence of accessible S₃ intermediate(s) that can be populated by inhibition of the terminal step of O₂ release from the WOC by elevated O₂ concentrations. These controversial studies prompted application of the TR-MIMS technique, which allowed investigation of the effect of elevated O₂ pressure on photosynthetic O₂ release by direct O₂ detection (Shevela et al., 2011a). In these experiments direct monitoring of ^{18}O₂ evolution from ^{18}O-labeled water against a high level of ^{16}O₂ in a suspension of PSII complexes became possible due to a specially designed high pressure MIMS cell (for details, see Figure 5A). This study demonstrated that neither an inhibition nor altered flash-induced pattern of O₂ evolution take place under up to 50-fold increased concentration of dissolved O₂ around PSII (Figure 5B). These findings show that the terminal water-splitting reaction/O₂ release in PSII is highly exothermic, and are in line with the results obtained by TR-XAS (Haumann et al., 2008) and variable fluorescence (Kolling et al., 2009) studies.

APPLICATIONS IN ARTIFICIAL PHOTOSYNTHESIS

One of the central goals of artificial photosynthesis is the development of bio-inspired, efficient and robust catalysts that are able to split water employing the energy of sunlight in a fashion similar to the water-oxidizing Mn₃CaO₅ cluster in PSII (Concepcion et al., 2012; Nocera, 2012; Wiechen et al., 2012). Therefore, data concerning catalytic rates and turnover numbers (stability) of newly synthesized O₂-evolving catalysts are highly important for their further development. In this regard, in addition to traditionally used amperometric methods for O₂ detection (Renger and Hanssum, 2009), TR-MIMS can be applied as a highly sensitive method for studying the O₂-evolving capability of these complexes. However, a major advantage and uniqueness of the TR-MIMS technique in this field is that, in combination with ^{18}O-labeling experiments, it can be employed for studying the pathways of O₂ formation in reactions catalyzed by the ‘potential’ solar water-oxidation catalysts (Poulsen et al., 2005; Beckmann et al., 2008; Sala et al., 2010; Shevela et al., 2011b; Najafpour et al., 2012; Vigara et al., 2012). Thus, TR-MIMS detection of the isotopologues of O₂ (^{18}O₂, ^{16}O^{18}O, ^{18}O₂) during catalytic O₂-formation in the ^{18}O-enriched aqueous solutions allows to analyze the ^{18}O-fraction (^{18}α) of the evolved O₂ with good time resolution and very high accuracy. A correlation of the ^{18}O-fraction in the substrate water (^{18}α_{theor}; reflects the H^{18}O-enrichment of the solvent water) and in the product O₂ (^{18}α_{exp}) gives important information about the origin of the O atoms in the produced molecular oxygen. For instance, the incorporation of exactly half of the possible ^{18}O-fraction into the evolved O₂ may indicate that only one of the two O atoms of the O₂ product originates from the bulk water as it has been monitored by TR-MIMS in the reactions of O₂-evolving catalysts with oxygen-transferring oxidizing agent, oxone (HSO₅⁻) (Poulsen et al., 2005; Beckmann et al., 2008; Shevela et al., 2011b) (see Figure 6A).
the case of “true” water-splitting, 18O-fractions in bulk water and in evolved O_2 are expected to be same (i.e., 18O$_{\text{ther}} = ^{18}$O$_{\text{exp}}$) as depicted in Figure 6B for the reaction of a synthetic catalyst (CaMn$_2$O$_4$·H$_2$O oxide) with photogenerated oxidizing agent [Ru$_{\text{III}}$(bipy)$_3$$^{3+}$ (Ru$_{\text{III}}$)$_{\text{photo}}$], and in Figure 6C for natural light-induced water-splitting reaction performed by PSII. It’s worth mentioning here, that the initial phase of the presented traces until stable 18O values (Figure 6) is a technical artefact, merely caused by the response time of the membrane-inlet system of the mass spectrometer which seems to be related to the overall O_2 concentration. However, the difference in time needed to reach final 18O value in two water-splitting reactions shown in Figure 6 also reflects a much slower reaction rate for the reaction of the oxide with Ru$_{\text{III}}$$_{\text{photo}}$. Thus, O_2 evolution for this reaction was detected only after 1 min of illumination since this time is required to build up a sufficient concentration of photosensitizer Ru$_{\text{III}}$ that is necessary to perform the reaction. On-line mass spectrometry: membrane inlet sampling. Photosynth. Res. 102, 511–522. doi: 10.1007/s11120-009-9474-7

Beckmann, K., Ochelken, H., Berggren, G., Anderlind, M. E., Thapper, A., Messinger, J., et al. (2008). Formation of stoichiometrically 18O-labelled oxygen from the oxidation of 16O-enriched water mediated by a dinuclear manganese complex—a mass spectrometry and EPR study. Energy Environ. Sci. 1, 668–676. doi: 10.1039/b811806e

Burd, K., Bader, K. P., and Schmid, G. H. (2001). An estimation of the size of the water cluster present at the cleavage site of the water splitting enzyme. FEBS Lett. 491, 81–84. doi: 10.1016/S0014-5793(01)02175-5

Burd, K., Bader, K. P., and Schmid, G. H. (2003). 18O isotope effect in the photosynthetic water splitting process. Biochim. Biophys. Acta 1557, 77–82. doi: 10.1016/S0005-2728(02)00395-X

Claussen, J., Beckmann, K., Junge, W., and Messinger, J. (2005a). Evidence that bicarbonate is not the substrate in photosynthetic oxygen evolution. Plant Physiol. 139, 1444–1450. doi: 10.1104/pp.105.068437

Claussen, J., Junge, W., Dau, H., and Haumann, M. (2005b). Photosynthetic water oxidation at high O_2 backpressure monitored by delayed chlorophyll fluorescence. Biochemistry 44, 12775–12779. doi: 10.1021/bi051183a

Claussen, J., and Junge, W. (2004). Detection of an intermediate of photosynthetic water oxidation. Nature 430, 480–483. doi: 10.1038/nature02676

Conception, J. J., House, R. L., Papanikolas, J. M., and Meyer, T. J. (2012). Chemical approaches to artificial photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 109, 15360–15364. doi: 10.1073/pnas.1212254109

Cox, N., and Messinger, J. (2013). Reflections on substrate water and dioxyn formation. Biochim. Biophys. Acta 1827, 1020–1030. doi: 10.1016/j.bbabio.2013.01.013

Dasgupta, J., Ananyev, G. M., and Dismukes, G. C. (2008). Photosalami for the water-oxidizing complex in photosystem II. Coord. Chem. Rev. 252, 347–360. doi: 10.1016/j.ccr.2007.08.022

Davey, N. G., Krogh, E. T., and Gill, C. G. (2011). Membrane-introduction mass spectrometry (MIMS). Trends Anal. Chem. 30, 1477–1485. doi: 10.1016/j.trac.2011.05.003

Diner, B. A., and Rappaport, F. (2002). Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu. Rev. Plant Biol. 53, 551–580. doi: 10.1146/annurev.plant.53.100301.135238

Dole, M. (1936). The relative atomic weight of oxygen in water and in air. J. Chem. Phys. 4, 268–275. doi: 10.1063/1.1749834

Dole, M., and Jenks, G. (1944). Isotopic composition of photosynthetic oxygen. Science 3, 409. doi: 10.1126/science.100.2601.409

Ferreira, K. N., Iverson, T. M., Maglhaes, K., Barber, J., and Iwata, S. (2004). Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838. doi: 10.1126/science.1093087

Feyziyev, Y. M., Yoneda, D., Yoshii, T., Katsuta, N., Kawamori, A., and Watanabe, Y. (2000). Formate-induced inhibition of the water-oxidizing complex of photo-system II studied by EPR. Biochemistry 39, 3848–3855. doi: 10.1021/bi992479h

Govindjee, Weger, H. G., Turpin, D. H., Van Rensen, J. J. S., Devos, O. J., and Snel, J. F. H. (1991). Formate releases carbon dioxide/bicarbonate from thylakoid membranes - measurements by mass spectroscopy and infrared gas analyzer. Naturwissenschaften 78, 168–170. doi: 10.1007/BF01136204

Guskov, A., Gabdulkhakov, A., Broser, M., Glöckner, C., Hellmich, J., Kern, J., et al. (2010). Recent progress in the crystallographic studies of photosystem II. ChemPhysChem 11, 1160–1171. doi: 10.1002/cphc.200900901

Guy, R. D., Fogel, M. L., and Berry, J. A. (1993). Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiol. 101, 37–47.

Haumann, M., Grundmeier, A., Zaharieva, I., and Dau, H. (2008). Photosynthetic water oxidation at elevated dioxygen partial pressure monitored by time-resolved X-ray absorption measurements. Proc. Natl. Acad. Sci. U.S.A. 105, 17384–17389. doi: 10.1073/pnas.0802596105

Helmán, Y., Barkan, E., Eisenstadt, D., Luz, B., and Kaplan, A. (2005). Fractionation of the three stable oxygen isotopes by oxygen-producing and oxygen-consuming reactions in photosynthetic organisms. Plant Physiol. 138, 2292–2298. doi: 10.1104/pp.105.063768

Hendry, G., and Wydrzynski, T. (2002). The two substrate water molecules are already bound to the oxygen evolving complex in the S2 state of photosystem II. Biochemistry 41, 13328–13334. doi: 10.1021/bi026246t

Hiller, W., McConnell, I., Badger, M. R., Boussac, A., Klivom, V. V., Dismukes, G. C., et al. (2006). Quantitative assessment of intrinsic carbonic anhydrase activity...
and the capacity for bicarbonate oxidation in photosystem II. *Biochemistry* 45, 2094–2102. doi: 10.1021/bi051892o

Hillier, W., Messinger, J., and Wydрыnski, T. (1998). Kinetic determination of the fast exchanging substrate water molecule in the S1 state of photosystem II. *Biochemistry* 37, 16908–16914. doi: 10.1021/bi980756a

Hillier, W., and Messinger, J. (2005). "Mechanism of photosynthetic oxygen production," in *Photosystem II: The Light-Driven Water:Plastoquinone Oxidoreductase*, eds T. Wydzynski and K. Satoh (Dordrecht: Springer), 567–608.

Hillier, W., and Wydрыnski, T. (2000). The affinities for the two substrate water binding sites in the O2 evolving complex of photosystem II vary independently during S-state turnover. *Biochemistry* 39, 4399–4405. doi: 10.1021/bi992318d

Hillier, W., and Wydрыnski, T. (2004). Substrate water interactions within the photosystem II oxygen evolving complex. *Phys. Chem. Chem. Phys.* 6, 4882–4889. doi: 10.1039/b407269c

Hillier, W., and Wydрыnski, T. (2008). *18-O*-Water exchange in photosystem II: Substrate binding and intermediates of the water splitting cycle. *Coord. Chem. Rev.* 252, 306–317. doi: 10.1016/j.ccr.2007.09.004

Hoch, G., and Kok, B. (1963). A mass spectrometer inlet system for sampling gases dissolved in liquid phases. *Arch. Biochem. Biophys.* 101, 160–170. doi: 10.1016/0003-9861(63)90546-0

Ishikita, H., Loll, B., Biesiadka, J., Saenger, W., and Knapp, E.-W. (2005). Redox potentials of chlorophylls in the photosystem II reaction center. *Biochemistry* 44, 4118–4124. doi: 10.1021/bi051772q

Johnson, R. C., Cooks, R. G., Allen, T. M., Cisper, M. E., and Hemberger, P. H. (2000). Membrane introduction mass spectrometry: Trends and applications. *Mass Spectrom. Rev.* 19, 1–37. doi: 10.1002/(SICI)1098-2787(2000)19:1<1::AID-MAS1>3.0.CO;2-Y

Kok, B., Forbush, B., and McGloin, M. (1970). Cooperation of charges in photosynthetic O2 evolution. *Photochem. Photobiol.* 11, 457–476. doi: 10.1111/j.1751-1097.1970.tb06017.x

Kolling, D. R. J., Brown, T. S., Anayev, G., and Dismukes, G. C. (2009). Photosynthetic oxygen evolution is not reversed at high oxygen pressures: mechanistic consequences for the water-oxidizing complex. *Biochemistry* 48, 1381–1389. doi: 10.1021/bi901774f

Konermann, L., Messinger, I., and Hillier, W. (2008). "Mass spectrometry based methods for studying kinetics and dynamics in biological systems," in *Biophysical Techniques in Photosynthesis*, eds I. Amesz and A. J. Hoff (Dordrecht: Springer), 167–190. doi: 10.1007/978-1-4020-8250-4_9

Lauritsen, F. R., and Kioti, T. (1996). Advances in membrane inlet mass spectrometry (MIMS). *Rev. Anal. Chem.* 15, 237–264. doi: 10.1515/REVAC.1996.15.4.237

Lu, Y. K., and Stemler, A. (1989). Absence of a formate-induced release of bicarbonate from photosystem II. *Biochim. Biophys. Acta* 1767, 639–647. doi: 10.1016/j.bbabi.2007.01.019

Messinger, J., Alia, A., and Govindjee, (2009a). Special educational issue on “Basics and application of biophysical techniques in photosynthesis and related processes.” *Photosynth. Res.* 101, 89–92. doi: 10.1007/s11120-009-9471-x

Messinger, J., Alia, A., and Govindjee, (2009b). Special educational issue on “Basics and application of biophysical techniques in photosynthesis and related processes” — Part B. *Photosynth. Res.* 102, 103–106. doi: 10.1007/s11120-009-9494-3

Messinger, J., Badger, M. R., and Wydрыnski, T. (1995). Detection of one slowly fast exchanging substrate water molecule in the S3 state of photosystem II oxygen evolving complex. *Biochim. Biophys. Acta* 1219, 170–174. doi: 10.1016/0005-2728(94)00104-2

Messinger, J., Noguchi, T., and Yano, J. (2012). "Photosynthetic O2 evolution," in *Biophysical Techniques in Photosynthesis*, eds J. F. Allen, E. Gantt, J. H. Golbeck, and B. Osmond (Glasgow: Springer), 329–346.

McConnell, I. L., Badger, M. R., Wydрыnski, T., and Hillier, W. (2007). A quantitative assessment of the carboxylate anion activity in photosystem II. *Biochim. Biophys. Acta* 1767, 639–647. doi: 10.1016/j.bbabi.2007.01.019

McConnell, I. L., Badger, M. R., Wydрыnski, T., and Hillier, W. (2007). A quantitative assessment of the carbonic anhydrase activity in photosystem II. *Biochim. Biophys. Acta* 1777, 532–539. doi: 10.1016/j.bbabi.2008.03.031

Stemler, A. (1989). Absence of a formate-induced release of bicarbonate from photosystem II. *Plant Physiol.* 91, 287–290. doi: 10.1094/pp.1991.91.2.187

Stemler, A., and Radmer, R. (1975). Source of photosynthetic oxygen in biocarbonate-stimulated Hill reaction. *Science* 190, 457–458. doi: 10.1126/science.190.4213.457

 Stevens, C. L. R., Schultz, D., Van Baalen, C., and Parker, P. L. (1975). Oxygen isotope fractionation during photosynthesis in a blue-green and a green alga. *Plant Physiol.* 56, 126–129. doi: 10.1104/pp.56.1.126

Tcherkerz, G., and Farquhar, D. G. (2007). On the 18O/16O isotope effect associated with photosynthetic O2 production. *Func. Plant Biol.* 34, 1049–1052. doi: 10.1071/FP071618

Ulas, G., Olack, G., and Brudvig, G. W. (2008). Evidence against bicarbonate bound in the O2-evolving complex of photosystem II. *Biochemistry* 47, 3073–3075. doi: 10.1016/bih004024

Umena, Y., Yakawaki, K., Shen, J.-R., and Kamiya, N. (2011). Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. *Nature 473, 35–60. doi: 10.1038/nature09913

Van Rensen, J. J. S., and Klimov, V. V. (2005). "Bicarbonate interactions," in *Photosystem II: The Light-Driven Water:Plastoquinone Oxidoreductase*, eds T. Wydzynski and K. Satoh (Dordrecht: Springer), 329–346.

Villarejo, A., Shuto, T., Moskvina, O., Forsossen, M., Klimov, V. V., and Samuelsson, G. (2002). A photosystem II-associated carbonic anhydrase regulates the efficiency of photosynthetic oxygen evolution. *EMBO J.* 1, 1930–1938. doi: 10.1093/emboj/21.8.1930

Vinyard, D. J., Ananyev, G. M., and Dismukes, G. C. (2013). Photosystem II: the reaction center of oxygenic photosynthesis*. *Annu. Rev. Biochem.* 82, 577–606. doi: 10.1146/annurev-biochem-070511-100425

Wiechen, M., Berends, H.-M., and Kurz, P. (2012). Water oxidation catalysed by manganese compounds: from complexes to ‘bimimetic rocks’. *Dalton Trans.* 41, 21–31. doi: 10.1039/c1dt11537e
Wydrzynski, T., Hillier, W., and Messinger, J. (1996). On the functional significance of substrate accessibility in the photosynthetic water oxidation mechanism. *Physiol. Plant.* 96, 342–350. doi: 10.1111/j.1399-3054.1996.tb00224.x

Yano, J., Kern, J., Sauer, K., Latimer, M. J., Pushkar, Y., Biesiadka, J., et al. (2006). Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. *Science* 314, 821–825. doi: 10.1126/science.1128186

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.