Development of vanadium-based polyanion positive electrode active materials for high-voltage sodium-based batteries

Semyon D. Shraer1,2, Nikita D. Luchinin1, Ivan A. Trussov1, Dmitry A. Aksyonov1, Anatoly V. Morozov1, Sergey V. Ryazantsev1,2, Anna R. Iarchuk1, Polina A. Morozova1, Victoria A. Nikitina1,2, Keith J. Stevenson1, Evgeny V. Antipov1,2, Artem M. Abakumov1 & Stanislav S. Fedotov1

Polyanion compounds offer a playground for designing prospective electrode active materials for sodium-ion storage due to their structural diversity and chemical variety. Here, by combining a NaVPO4F composition and KTiOPO4-type framework via a low-temperature (e.g., 190 °C) ion-exchange synthesis approach, we develop a high-capacity and high-voltage positive electrode active material. When tested in a coin cell configuration in combination with a Na metal negative electrode and a NaPF6-based non-aqueous electrolyte solution, this cathode active material enables a discharge capacity of 136 mAh g⁻¹ at 14.3 mA g⁻¹ with an average cell discharge voltage of about 4.0 V. Furthermore, a specific discharge capacity of 123 mAh g⁻¹ at 5.7 A g⁻¹ is also reported for the same cell configuration. Through ex situ and operando structural characterizations, we also demonstrate that the reversible Na-ion storage at the positive electrode occurs mostly via a solid-solution de-insertion mechanism.
n 1991, lithium-ion batteries (LIBs) have historically graced the electronic industry setting off a new paradigm for developers, designers, and manufacturers of portable devices. Thirty years later, the impact of the LIB technology was eventually hallmarked with a long-awaited Nobel prize\(^1\), though its overall contribution to our everyday life will hardly be reasonably estimated over many years to come\(^2,3\). Nowadays LIBs fiercely rushed into larger-scale sectors of electromotive vehicles and stationary storage systems sparking provocative and rigorous debates over the abundance of Li resources to meet the demand of emerging applications. Indeed, lithium is a scattered metal, with key mines being few and geographically isolated such that the attention of the scientific community was brought to the next alkali metal, sodium, which is hugely available with plentiful and evenly distributed resources worldwide\(^4-8\).

Technology-wise, the transfer to sodium-ion batteries (SIBs) does not seem capital-intensive from a first glance, because those were supposed to preserve the conventional metal-ion battery architecture\(^8-10\). Similar to the Li-counterparts, prospective candidates for the positive electrode (cathode) materials are Na-based transition metal oxides\(^11,12\) with layered structures, and polyonion-based materials maintaining rigid polyhedral frameworks that ensure higher safety and better cyclability. Among the latter, a particular courtesy was paid to vanadate-based phosphates. The NASICON family with Na\(_3\)V\(_2\)(PO\(_4\))\(_3\) as the most prominent representative was thoroughly examined as high-power medium-voltage cathode materials (3.4 V vs. Na\(^+/\)Na\(^–\)). Afterward, Na\(_3\)V\(_2\)(PO\(_4\))\(_2\)F\(_x\) fluoride phosphates adopting the a-Na\(_3\)Al\(_2\)(PO\(_4\))\(_2\)F\(_x\)\(^+\)structure were proposed as high-energy materials operating at a nearly 4 V average potential. Numerous studies on both classes of materials announced delivering specific capacities close to the theoretical values with a steady performance at high charge/discharge rates with additional encouragement coming from the possibility to extract the third Na equivalent per formula unit possibly giving a further boost to the specific energy\(^15-19\). However, a lot of efforts were spent to deinsert all Na equivalents from Na\(_3\)V\(_2\)(PO\(_4\))\(_3\) and related materials, but no tangible results were achieved\(^15,19-21\). Contrarily, in case of Na\(_3\)V\(_2\)(PO\(_4\))\(_2\)F\(_x\)(V\(_x\)) the reversible extraction of third Na can seemingly be realized by expanding the working potentials window to 1.0–4.8 V vs. Na\(^+/\)Na\(^–\) at the cost of structural and cycling stability\(^18\). Therefore, the third sodium atom mostly serves as “dead weight” in these materials essentially diminishing their specific capacity. From this point of view, a more attractive formula would be NaVPO\(_4\)F with one Na equivalent per one d-metal cation resulting in a theoretical specific capacity of 143 mA h g\(^–1\) being more than 10% higher than that for Na\(_3\)V\(_2\)(PO\(_4\))\(_2\)F\(_x\)(V\(_x\)).

Although two polymorphs with the tetragonal (S.G. I\(_4\)/mmm) and monoclinic (S.G. C\(_2\)/c) structures were reported for the “NaVPO\(_4\)F” compounds\(^22-24\), a closer look at their X-ray diffraction patterns and electrochemical data discloses their actual belonging to either Na\(_3\)Al\(_2\)(PO\(_4\))\(_2\)F\(_x\)\(^+\) or Na\(_3\)V\(_2\)(PO\(_4\))\(_2\)F\(_x\) (NASICON) structural type. It was shown in detail that a direct solid-state synthesis of NaVPO\(_4\)F from a 1:1 mixture of VPO\(_4\) and NaF results in either Na\(_3\)Al\(_2\)(PO\(_4\))\(_2\)F\(_x\)\(^+\) or Na\(_3\)V\(_2\)(PO\(_4\))\(_2\)F\(_x\) due to the hydrolysis with the HF formation and/or VF\(_3\) volatilization at elevated temperatures\(^31,32\). However, the truly single-phase monoclinic NaVPO\(_4\)F with theavorite-type structure (further referred to as t-NaVPO\(_4\)F) can be prepared via a hydrothermal route\(^33\). In contrast to its Li-containing counterpart t-LiVPO\(_4\)F typically showing good electrochemical performance\(^34\), t-NaVPO\(_4\)F revealed poor electrochemical activity attributed to high-energy barriers for Na\(^+\) diffusion in the vaterite-type framework\(^35,36\). A similar picture was observed for the sulfate-based analog, t-NaFeSO\(_4\)F\(_3\), thus questioning the

适用性。
Crystallographic parameters, atomic positions, and selected interatomic distances obtained with the Rietveld refinement from SXRD data (Fig. 1a, b, R_p = 5.07%, R_p = 7.73%, R_wP = 9.78%, GOF = 1.45) are presented in Supplementary Tables 1, 2 and Supplementary Fig. 5. NaVPO_4F adopts a KTiOPO_4-(KTP)-type structure built upon helical chains of corner-shared VO_4F_2 octahedra linked by PO_4 tetrahedra through vertexes to form a robust framework (Fig. 1e) that encloses a 3D system of intertacting cavities accommodating Na^+ ions. The unit cell volume is 2.00(1) Å for the V1 site and 1.97(1) Å for the V2 site lengths are 2.00(1) Å for the V1 site and 1.97(1) Å for the V2 site, respectively (Fig. 1e). Average V–X (X = O, F) bond lengths are 2.00(1) Å for the V1 site and 1.97(1) Å for the V2 site being both characteristic of the V^3+ coordination environment (calculated bond valence sums are 2.93(6) and 3.15(6) for the V1 and V2 sites, respectively).

NaVPO_4F demonstrates a significant disorder of Na ions with the smallest distance of around 1 Å between the split sites. The Na ions are distributed over a series of partially occupied positions forming a 3D network in the tunnels of the “VPO_4F_2” framework (Fig. 1f). Such distribution might indicate high mobility of Na^+ ions via a simple hopping mechanism. The [010] high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image (Fig. 1f) and [001] and [110] HRTEM images (Supplementary Fig. 6) also validate the refined structure. The HAADF-STEM image, the bright dots correspond to the projections of V, P, and mixed V–P columns. The Na columns are virtually invisible due to the above-mentioned strong positional disorder violating the electron channeling. The specific lattice fringes on the HRTEM images are indicated.

The NaVPO_4F framework encloses three types of channels, which might be suitable for Na^+ migration. The topology and dimensionality of the migration system and migration activation energies were estimated using the Bond valence energy landscapes (BVEL) approach. It demonstrates the presence of continuous pathways penetrating through the entire structure in all three dimensions (Fig. 1g). This 3D Na^+ migration pattern is different from that of the K^+ ions in the potassium-based KTP-type KMPO_4F (M = Ti, V) materials where helical 1D channels weave around the crystallographic c direction. To study the diffusion channels in more detail we calculated migration barriers...
with the nudged elastic band method within the density functional theory framework (DFT-NEB) for six independent paths (P1–P6, Fig. 1b). The energy profiles for migration paths (Supplementary Fig. 7) demonstrate that a percolating diffusion is allowed along the a and b directions with only 0.3 and 0.1 eV migration barriers, respectively. After creating one Na⁺ vacancy per unit cell in NaVPO₄F the energy minima are not located at or close to the initial Na crystallographic sites but become more evenly distributed along the migration paths, which agrees with the experimentally observed pronounced disorder of Na positions. The migration along the b axis becomes slightly hindered in course of Na extraction, while the hopping along the a and c directions gets easier. This emphasizes that NaVPO₄F should demonstrate good ion mobility in the whole range of Na concentrations, which is confirmed further by diffusion coefficient measurements and rate capability tests. Additional information and details on diffusion barriers are provided in Supporting information (Supplementary Note 1 and Supplementary Figs. 7 and 8).

The electrochemical energy storage performance of the carbon-coated NaVPO₄F was evaluated in three- and two-electrode coin- type cells with metallic Na as a counter electrode. In both cases, it shows sloped galvanostatic curves with an average electrode potential around 4.0 V at 14.3 mA g⁻¹ (1C is equal to 143 mA g⁻¹ for the active material) that implies a solid-solution de/insertion mechanism preferable for the high-rate electrode materials, as it excludes the kinetically hindered nucleation of a new phase inside the pristine particles⁴⁹ and slow phase boundary propagation due to buildup of stress and deformations⁵⁰,⁵¹ (Fig. 2a). However, a short plateau-like region near 3.5 V with a ~30 mV hysteresis indicates a possible phase transition at the very beginning of charge involving deinsertion of ~0.15 Na⁺ per formula unit. The cyclic voltamogram (CV) (Fig. 2b) and differential capacity (dQ/dE) (Fig. 2a, inset) curves for the NaVPO₄F electrodes also witness this reversible process at 3.5 V as characterized by a pair of sharp peaks with a peak-to-peak separation of 65 mV, followed by three pairs of broad symmetric peaks at ~3.7, 3.95, and 4.3 V with very low peak-to-peak separations (Fig. 2b).

The discharge capacity at 14.3 mA g⁻¹ (C/10) in the 2.0–4.5 V potential range amounts to 136 mA h g⁻¹ giving 95% of the theoretical specific capacity (143 mA h g⁻¹). In this potential range NaVPO₄F exhibits attractive capacity retention at increasing specific currents from 14.3 mA g⁻¹ to 5.7 A g⁻¹ (40 C) in the constant-current – constant-voltage (CC-CV) mode delivering around 130 mA h g⁻¹ at 0.7 A g⁻¹ (Fig. 2c) and more than 120 mA h g⁻¹ at 5.7 A g⁻¹ rate at the active material loading of ~2 mg cm⁻². Noteworthy, increasing the active material loading to 8 mg cm⁻² does not result in a significant deterioration of the rate performance up to 1.43 A g⁻¹ (10 C), though at the 2.86 A g⁻¹ (20 C) and 5.7 A g⁻¹ (40 C) specific currents, the specific capacities drop-down at higher loadings (Supplementary Fig. 9). These tests anticipate that the loading can be further enlarged without sacrificing the attainable capacities. The extended cycling at a 5 C discharge rate for over 800 cycles reveals only 18% capacity fading (Fig. 2d, top). At a lower specific current of 71.5 mA g⁻¹ (C/2) the capacity fading is expectedly more noticeable reaching 25% within 250 cycles (Fig. 2d, bottom). The faster capacity decay at the lower specific current of 71.5 mA g⁻¹ might be explained by a consequently longer exposure of the Na||NaVPO₄F cell to high potentials where the electrolyte instability is generally more pronounced leading to a polarization buildup and consequent performance degradation⁵².

Diffusion coefficients of Na⁺ in NaVPO₄F (as determined from electrochemical impedance spectroscopy (EIS) and potentiostatic intermittent titration technique (PITT)) exhibit values in the range of 10⁻¹¹–10⁻¹⁰ cm² s⁻¹ (Fig. 2e) exceeding those in structurally related α-VPO₄⁵³ and AVPO₄F₃⁸. Notably, a pronounced minimum in the diffusion coefficient appears at around 3.5 V with a sharp rise in the differential capacitance Cd implying a possible two-phase transition and associated phase separation. In addition, the diffusion coefficients at the initial extraction of ~0.15 Na⁺ are lower than the values after the anticipated phase transformation. The EIS spectra of the NaVPO₄F electrodes show a high-frequency semicircle with a diameter of ~30 Ω mg⁻¹ (per mass of active material in a composite electrode) (Supplementary Fig. 10a), indicating the resistance of surface layers⁵⁴,⁵⁵. The low resistance of the surface layers to Na⁺ transport implies low reactivity of the material surface with the electrolyte. The medium frequency semicircle exhibits a pronounced variation with the potential suggesting it to be the charge transfer resistance⁵⁴,⁵⁶.

The latter converges to a value of ~20 Ω mg active material at the potential 3.6 V (Supplementary Fig. 10b) indicating fast iron transfer kinetics and ensuring low kinetic polarization during the cathode operation.

Further, the HC||NaVPO₄F cells with the NaVPO₄F cathode and pre-sodiated hard carbon (HC) anode were assembled to demonstrate the electrochemical performance of the 4 V Na-based electrochemical system. The electrochemical performance of HC in combination with a Na metal electrode is presented in Supplementary Fig. 11. Figure 2f illustrates the galvanostatic charge/discharge curves of the HC||NaVPO₄F cell having a capacity ratio of positive to negative electrodes of 1:1 at 60 mA g⁻¹ and 30 mA g⁻¹ charge/discharge rates. The cell operates at the average voltage of 3.7 V delivering more than 130 mA h g⁻¹ specific capacity (recalculated to the active mass of NaVPO₄F) at 30 mA g⁻¹ (at 23 °C). Noteworthy, the cell performance is dependent also on the performance of the corresponding anode material that mainly contributes to capacity fading at extended cycling. At 90 mA g⁻¹ rate, the HC||NaVPO₄F retains 75% of the initial capacity after 150 cycles (Fig. 2f, inset), while the Na||NaVPO₄F cell is capable of sustaining hundreds of cycles preserving more than 80% of the specific capacity (Fig. 2d, inset). Unlocking the full potential of the NaVPO₄F cathode material requires the development of stable high-power anode material.

The phase transformations and related changes in the unit cell parameters in NaVPO₄F during Na de/insertion were examined with operando SXRD (Fig. 3a–d).

The SXRD patterns reveal that Na⁺ deinsertion from NaVPO₄F is reversible with the reflections almost fully returning to their initial positions and recovering intensities. Negligibly small volume change of 0.5% between the initial and cycled phases can be attributed to an insufficient discharge depth achieved at the cut-off potential of 2.5 V vs. Na⁺/Na. The charge and discharge processes can be considered reversible since no significant difference between the patterns on charge and discharge can be observed. The corresponding reversible contraction of the cell volume on charge amounts to ~4.5%. Peculiar changes at 3.5–3.6 V corresponding to the specific feature on the CV curves and PITT data described above, hint at a two-phase transformation presumably associated with Na⁺ ion (re)ordering (Fig. 3b). A similar peculiarity with the 212 reflection disappearing was observed for KVPO₄X (X=O, F)⁵⁹ and in KTiPO₄F (related to a monoclinic distortion of Pnma to Cm)⁶⁰.

In case of NaVPO₄F, at these potentials with extraction of ~0.15 Na⁺ the orthorhombic symmetry preserves and a reversible Pnma→Pnna→Pnnb transition occurs as deduced from the analysis of the ED patterns for the recovered electrodes (Fig. 3e and Supplementary Fig. 12). However, from the structural viewpoint, this transformation is supposed to be minor since the polyhedral framework does not undergo pronounced distortions and the difference in the unit cell volumes between the two phases is less than 0.8% (Fig. 3d). For x > 0.15 the Pnnb Na₃₋xVPO₄F operates
via a single solid-solution regime, as also confirmed with a convex hull calculation using DFT+U and cluster expansion methods (Supplementary Fig. 13).

To investigate the charge compensation mechanism in NaVPO$_4$F the vanadium oxidation state evolution during the extraction/insertion of Na$^+$ was studied via ex situ EELS measurements carried out on harvested electrodes charged to 4.5 V and discharged to 2.0 V after full charge to 4.5 V vs. Na$^+$/Na (Fig. 3f). A pronounced shift towards higher energy loss is observed in the V-$L_{2,3}$ edge for the electrode charged to 4.5 V vs. Na$^+$/Na, which is related to the increasing vanadium oxidation state from 3+ to 4+. At 2.0 V, both intensities and positions of the L_2 and L_3 peaks recover their initial values that are characteristic of V$^{3+}$ thus validating a reversible V$^{3+}$↔V$^{4+}$ transition in NaVPO$_4$F.

In conclusion, we have developed and synthesized the k-NaVPO$_4$F positive electrode material for sodium-ion batteries. In contrast to previously known electrochemically inactive t-NaVPO$_4$F,
P32,33,37, k-NaVPO$_4$F with the KTiPO$_4$-type structure demonstrates attractive specific capacity of 136 mAh g$^{-1}$ at 14.3 mA g$^{-1}$ specific current, high C-rate performance stemming from low energy barriers and high diffusion coefficients, and extended cycling stability. Worth noting that this material delivers practical specific capacity of 136 mAh g$^{-1}$ at 14.3 mA g$^{-1}$ that is higher than the theoretical capacity of the commercialized Na$_3$V$_2$(PO$_4$)$_3$F$_2$ (128 mAh g$^{-1}$)18,58,59 as well as other known vanadium-based positive electrodes for one-electron V$^{3+}$↔V$^{4+}$ transition (Fig. 4), such as NASICON-type Na$_3$V$_2$(PO$_4$)$_3$15,20,21, Na$_3$V$_2$(PO$_4$)$_3$F$_3$ (or its closest relative, Na$_3$V$_2$(PO$_4$)$_3$O$_x$F, β-NaVP$_2$O$_5$,60, etc. The V$^{3+}$/V$^{4+}$ redox potential in this material achieves 4.3 V vs. Na$^+$/Na which is among the highest values for vanadium-based positive electrodes. This increase in potential in comparison to other closely related phosphates and fluoride phosphates might stem from the KTP-type structure peculiarities as also shown for Ti-containing materials adopting the same KTP structure and displaying high electrode potentials. Moreover, among the vanadium-based positive electrodes with close specific capacity values, k-NaVPO$_4$F is the only one that operates mostly via solid-solution Na-storage mechanism, while others experience single or multiple two-phase transformations which are also reflected by their plateau-like discharge voltage profiles (Fig. 4).

The full potential of the k-NaVPO$_4$F cathode material is yet to be delivered which would further boost the achievable specific energy of next-generation sodium-ion batteries. Overall, this study validates that following the solid-state chemistry guidelines and principles when choosing a proper combination of chemical
composition, crystal structure, and synthesis method, enables producing inorganic materials with appealing electrochemical properties.

Methods

Synthesis. NaVPO₄F was synthesized by means of a solid-state ion-exchange approach in two steps. First, a NH₄VPO₄F precursor was obtained using a hydrothermal route according to the reaction (1). For this, sodium carboxymethylcellulose (0.200 g) was dissolved in distilled H₂O (22 ml) under heating with vigorous stirring. The resulting solution was cooled down to room temperature. Then VOSO₄ × 3H₂O (1.0857 g, 98%, Reakhim), NH₄H₂PO₄ (0.8627 g, 99% Sigma-Aldrich), (NH₄)₂HPO₄ (0.9905 g, 99%, Sigma-Aldrich), N₂H₆SO₄ (0.2440 g, 98%, Reakhim) and NH₄HF₂ (0.8580 g, 99%, Reakhim) were added to the solution one after another under constant stirring until a light-blue suspension is formed. Both NH₄H₂PO₄ and (NH₄)₂HPO₄ are required to maintain a neutral buffer solution with pH ~7. The resulting dark-blue suspension was transferred in a 30 ml Teflon-lined stainless-steel autoclave (Parr instruments). The autoclave was sealed and heated at 200 °C for 4 h. The precipitate was collected, washed several times with deonized water and once with acetone, then dried.

\[
4\text{VOSO}_4 + 2\text{NH}_4\text{H}_2\text{PO}_4 + 2\text{NH}_4\text{H}_2\text{PO}_4 + 2\text{NH}_2\text{H}_2\text{F}_2 + \text{N}_2\text{H}_4\text{SO}_4 \xrightarrow{200 \degree C} 4\text{NH}_4\text{VPO}_4\text{F} + 4\text{NH}_4\text{HSO}_4 + \text{N}_2 + \text{H}_2\text{O} \quad (1)
\]

The product was mixed with sodium glutamate (99%, Prime Chemicals Group) in a molar ratio of 1:5 and annealed at 190 °C for 10 h. The principal reaction follows:

\[
\text{NH}_4\text{VPO}_4\text{F} + \text{GluNa} \xrightarrow{190 \degree C} \text{NaVPO}_4\text{F} + \text{H}_2\text{O} \uparrow + \text{Na}^+ + \text{GluH}^+ \quad (2)
\]

The "GluH" here designates the remaining partly or fully decomposed organic products and other carbon residues. Importantly, the described procedure enables obtaining pristine Na-based compounds with no residual NH₄⁺ ions. The final product was washed with hot deonized water several times. For carbon coating, NaVPO₄F was mixed with polyacrylonitrile, PAN (M₉ = 150,000, Sigma-Aldrich) in a weight ratio of 93:7. Then dimethylformamide (DMF) was added dropwise to
dissolve PAN. The resulting viscous mixture was poured into ethanol to coagulate. Then the formed sticky slurry was dried at 60 °C under vacuum and further calcined at 525 °C for 2 h under argon flow purified from traces of oxygen using metallic iron powder.

Material characterization. X-ray powder diffraction (XRD) patterns were collected with a Guinier camera Huber G670 powder diffractometer (Co-K$_\alpha$ radiation, 4–100° 2θ range). The synchrotron XRD experiment for NaVPO$_4$F was performed at the MCX beamline (Elettra Sincrotrone Trieste) at a wavelength of λ = 1.0325 Å in a transmission geometry using a point fast scintillator detector16,17. The Na:V:P molar ratio was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES) using a Perkin Elmer Optima 3300 apparatus. The F content in NaVPO$_4$F was determined via direct potentiometry using an ELIS-131 fluoride-ion selective electrode. Total Ionic Strength Adjustment Buffer (TISAB) was prepared by mixing 500 mL H$_2$O, 57 mL glacial acetic acid (1 g/mL, Analar, Fluka) with NaCl (Sigma-Aldrich, 99% purity, p.a.) and a saturated solution of citrate (Sigma-Aldrich, >99%). The solution volume was adjusted to 1 L. The solution was titrated to pH 5 with 5 M NaOH (Sigma-Aldrich, 50 wt% solution in water). Fluoride standards were prepared from high-purity NaF (99.99 Suprapur).

In a typical procedure, 12 mL of TISAB were added to 12 mL of fluoride standard or test solution and the volume of the flask was adjusted to 25 mL with deionized water (MiliQ, 18 MOhm). The solution was stirred, and the potential of the ion-selective electrode was determined after five minutes. The calibration curve is shown in Supplementary Fig. 14. A weighted amount of NaVPO$_4$F, material was heated in 30% H$_2$O$_2$ with magnetic stirring until a transparent solution was obtained. The residue was heated in 30% H$_2$O$_2$ with magnetic stirring until a transparent solution was obtained. The solution was cooled to room temperature, and the pH was adjusted to 7 using 5 M NaOH solution. The solution was then filtered using a 0.22 μm filter membrane to remove any undissolved material. The filtered solution was collected and transferred to a 100 mL ultrasonic bath for 1 h to dissolve any remaining solid material. The solution was then placed on ice and stirred continuously for 1 h to ensure complete dissolution. The solution was then left to cool at room temperature for 24 h.

The attenuation total reflection electron (ATR-FTIR) measurements were performed with a stand-alone FTIR microscope (LUMOS, Carl Zeiss) equipped with a Mercury–Cadmium–Telluride (MCT) detector and a 4× microscope objective (Supplementary Fig. 15c). The electronic paramagnetic resonance (EPR) measurements were performed using an X-band spectrometer with a high-frequency (100 kHz) magnetic field modulation (Spin, Russia). Spectra were recorded with 2 mW input microwave power and modulation amplitude of 0.2 mT.

Structure analysis. The Rietveld refinement of the NaVPO$_4$F structure from synchrotron X-ray powder diffraction data was performed in GSAS-II program package with the KVPO$_4$F structure (S.G. Pna2$_1$, $\#33$) as an initial model with potassium replaced by sodium. Total Na sites occupancies were constrained to 2 (sum of two sites per asymmetric unit). Isotropic atomic displacement parameters were fixed at 0.01 Å2. The crystal structures were drawn using VESTA software18.

Electrochemical measurements. For electrochemical testing, the NaVPO$_4$F electrodes were prepared by mixing 80 wt. % of the NaVPO$_4$F active material, 10 wt. % of acetylene black (Super-C), 10 wt. % of polyvinylidene fluoride (PVDF), n-methyl pyrrolidone (NMP, Sigma-Aldrich, anhydrous, 99.5%) was added to dissolve PVDF. The resulting slurry was cast on the aluminum foil (40 μm, graphitized, Tob New Energy, China) by a Doctor Blade technique at different thicknesses (100–300 μm). The electrodes were dried under vacuum at 110 °C for 12 h to remove residual NMP and cut into disks (16 mm in diameter). The active material loading after drying varied from ~2 to ~8 mg cm$^{-2}$, the electrode thickness 15–50 μm depending on the loading and type of the further analysis. The electrochemical properties of NaVPO$_4$F were evaluated using coin-type two-electrode cells with Al and Cu (15 μm, Sigma-Aldrich, Cu foil, 99.9%) as the negative and positive electrodes, respectively. 1 M NaPF$_6$ electrolyte solution (NaPF$_6$, dried at 110 °C for 2 h at 25 °C, Alfa-Aesar, 99.5%) in EC:PC:FEC (47:5:47.5 vol., Sigma-Aldrich, anhydrous) in the amount of 70–80 μL (water content less than 20 ppm, measured by Karl Fischer titration, Mettler-Toledo, C20), glass-fiber separators (Whatman, thickness 260 μm, 1.6 μm pore size) and Na metal (Sigma-Aldrich, chunks, rolled-pressed into ~100 μm foil and cut as 16 mm disks) used as both counter and reference electrodes. The galvanostatic measurements were carried out at 22 ± 1 °C using a Biologic VMP3 potentiostat. No climatic/environmental chamber was used for cycling tests, the testing room was air-conditioned at 22 ± 1 °C. For the electrolyte refreshment, the cell was disassembled in the Ar-filled glovebox, the working electrode was washed with PC and put into a new cell with a fresh Na counter electrode and a fresh portion of the electrolyte. This procedure was done to ensure that the performance decay is influenced by the electrolyte decomposition or material structure degradation. The specific capacity and current were calculated based on the mass of NaVPO$_4$F.

Cyclic voltammetry, potentiostatic and galvanostatic intermittent titration and impedance measurements were done in three-electrode cells to ensure precise control of the working electrode potential. Three-electrode cells were stainless-steel coin-type cells with sodium disk as a counter electrode on a Cu current collector and a NaVPO$_4$F/C working electrode on an Al current collector. Reference electrodes were fabricated by mixing the NaVPO$_4$F/C material with a commercial carbon Super-C (DVS, Germany) with a 1:1 weight ratio. The potential of the reference electrode was measured relative to the Na$^+/Na$ half cell and was controlled by an Ag/AgCl electrode. Before cycling, the counter and working electrodes were exposed to the electrolyte for 2 h to stabilize the EIS electrodes. The calculated electrode surface areas were 0.01 and 0.02 cm2, respectively. Two electrode cells were then assembled to perform cycling tests. The electrodes were cycled between 0 and 4.4 V vs. Na$^+/Na$.

Diffusion coefficients measurements. Diffusion coefficients for Na$^+$ ions in NaVPO$_4$F lattice were estimated from EIS and PITT data following the approaches detailed elsewhere24,25. For the analysis of both the PITT and EIS data, the spherical diffusion geometry was adapted with the diffusion length 0.5 μm as estimated from SEM data. PITT measurements were performed in 10 mV steps with the step duration of 1.5 h in the potential range 3.4–4.4 V vs. Na$^+/Na$. EIS measurements were performed in the same potential interval in the frequency range 0.01–100 mHz with a 5 mV amplitude; 7 points per decade were registered. Prior to the EIS measurements, the electrode was polarized potentiostatically until the current reached the background value of 0.1–0.2 μA cm$^{-2}$. Parameters of EIS fitting are given in Supplementary Table 3. The equivalent circuit for the experimental spectra fitting comprised R$_{ct}$/C$_{dl}$ (resistance and capacitance of the double layer), R$_{ac}$ (charge transfer resistance and Warburg impedance), C$_{eq}$ (equivalent circuit), Q (local double layer capacitance), a (Warburg impedance), c (capacitance), and R$_{eq}$ (series resistance) (Supplementary Fig. 10b). MEISP software was used to approximate the experimental spectra to the equivalent circuit. GITT measurements were also conducted to calculate the diffusion coefficients (Supplementary Fig. 17 and Supplementary Note 3).

Hard carbon preparation and electrode fabrication. Hard carbon (HC) anode material was synthesized by the hydrothermal method26. The amorphous organic precursor was obtained from a 2 M glucose solution in distilled H$_2$O by treatment in a Teflon-lined autoclave (304 stainless steel) at 180 °C for 16 h. The resulting brown powder was collected and washed three times with water, and annealed at Ar flow (100 mL min$^{-1}$) at 1200 °C within 5 h. Electrodes were fabricated by mixing the active material, carbon black (Super-C), polyvinylidene fluoride (PVDF) in the weight ratio of 80:10:10 in N-methyl-2-pyrrolidone (NMP, Sigma-Aldrich, anhydrous). The slurry was spread onto the aluminum foil (40 μm width, graphitized, MTI) with a typical HC loading after drying being 2–3 mg cm$^{-2}$.

The electrochemical energy storage properties of HC anodes were studied by galvanostatic charge/discharge profiling in 1 M NaPF$_6$ electrolyte solution (NaPF$_6$, dried at 25 °C at 25 °C, Alfa-Aesar, 99.5%) in EC:PC:FEC (47:5:47.5 vol., Sigma-Aldrich, anhydrous), glass-fiber separators and sodium metal (Sigma-Aldrich) negative electrode. The experiments were done at various specific currents (Supplementary Fig. 11), and the extended cycling was carried out at 90 mA g$^{-1}$ in the 0.01–2.5 V range vs. Na$^+/Na$ potential range at 22 ± 1 °C using a Biologic VMP3 potentiostat. The specific capacity was calculated based on the mass of active material (HC).
Na-ion cell assembly and testing. The HCl|NaVPO₄F coin-type (CR2032) cells were assembled with the 1:1 cathode/anode ratio capacity with pre-cycled NaVPO₄F cathode and activated HCl anode electrodes to form CEI/SEI and tested in galvanostatic regime at 30 mA g⁻¹ and 90 mA g⁻¹ charge/discharge currents with the 1 M NaPF₆ (Sigma-Aldrich, 99.9%) in EC:PC: FEC (47:5:47.5 by vol., Sigma-Aldrich, anhydrous) electrolyte and glass-fiber separator (Whatman) in the 2.0–4.4 V potential range at 22 ± 1 °C using a Biologic VMP3 potentiostat. The specific capacity (Fig. 2d) is calculated based on the mass of the active positive electrode (NaVPO₄F).

Preparation and ex situ measurements of the electrode sample. NaVPO₄F electrodes for ex situ ED and EELS measurements were prepared by galvanostatic charge/discharge in Na[NaVPO₄F] stainless-steel coin-type cells to the specific cutoff potential (Fig. 3d-f and Supplementary Fig. 12). The cells were disassembled, and the active electrode materials were washed and washed with PC to remove the electrolyte residues in an Ar-filled glove box, then deposited in a powder form onto a carbon film supported by a copper grid and transferred to the Titan Themis Z transmission electron microscope using a special vacuum-transfer holder for further ED and EELS measurements.

Operando X-ray diffraction. Composite NaVPO₄F/C electrodes for the operando synchrotron X-ray diffraction (SXRD) analysis were prepared in accordance with the above-mentioned scheme (see electrochemical measurements section, the material loading of 2–3 mg cm⁻²). The experiments were performed at M2 beamlane (Elettra Sincrotrone, Trieste) at a wavelength of λ = 0.7293 Å in a transmission geometry using the marCCD-SX-165 2D detector. Modified CR-2032 coin-type Na[NaVPO₄F] cells with Kapton-glued windows were fabricated and assembled with the NaVPO₄F cathode material, 1 M NaPF₆, electrolyte solution (NaPF₆ at vacuum for 24 h at 25 °C, Alfa-Aesar, 99.5%) in EC:PC: FEC (47:5:47.5 vol., Sigma-Aldrich, anhydrous), glass-fiber separator (Whatman) and metallic Na anode (Sigma-Aldrich, chunks, rolled-pressed into ~100-μm foil and cut as 16 mm disks). Before the operando experiment, the cells ran for one charge/discharge cycle at 20 mA g⁻¹. The operando SXRD data were collected under a galvanostatic cycling with potential limitation (GCPL) experiment at 20 mA g⁻¹ charge, and 10 mA g⁻¹ discharge rates in the potential range of 2.5–4.6 V vs. Na/Na⁺ using a Biologic SP-150 potentiostat at 22 ± 2 °C. 2D and integrated 1D powder diffraction patterns were processed with GSAS-II software. The unit cell fit on operando data was done in TOPAS software. The phases were fitted using a parametric approach. The Pnma phase was allowed to vary cell parameters freely, while for the Pna₂₁ phase the cell parameters were fitted parametrically using constant unit cell volume for the Pnma phase and assuming this structure does not expand/contract during charge/discharge process. Weight fraction was varied freely.

Bond valence energy landscape (BVEL) method. The Bond Valence Energy Landscapes (BVEL) analysis of the Na⁺ migration pathways was performed using the 3DBVSMAPPER2.0 software in the VPO₄F framework. The details and theory behind the method as well as its applications can be found elsewhere.

DFT calculations. The DFT calculations are performed using the projected augmented plane wave method, with the Vienna ab initio simulation package (VASP) and the high-throughput python-based package SIMAN. We adopted generalized gradient approximation (GGA) to exchange-correlation functional and standard PAW PBE potentials with a minimum number of valence electrons. To take into account the strongly correlated character of the d-electrons of vanadium, a Hubbard-like correction is added within the Dudarev scheme and U value of 3.1 eV, which was used in our previous studies for KVOPO₄ and RBiVOPO₄. Gaussian smearing with a smearing width of 0.1 eV was used for Brillouin-zone integrations. All calculations were performed with spin polarization with the ferromagnetic ground state. The energy cutoff was fixed at 400 eV, the Gamma-centered k-point mesh was used for supercells containing 84 atoms.

References

1. Katayama, T. J. L. Lithium-ion batteries and beyond: celebrating the 2019 Nobel prize in chemistry—a virtual issue. ACS Energy Lett. 4, 2757–2759 (2019).

2. Yoshino, A. The birth of the lithium-ion battery. Angew. Chem. Int. Ed. 51, 5798–5800 (2012).

3. Zubi, G., Dufo-López, R., Carvalho, M. & Pasaoglu, G. The lithium-ion battery: state of the art and future perspectives. Renewable Sustainable Energy Rev. 89, 292–308 (2018).

4. Yabuuchi, N., Kubota, K., Dabhi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11662 (2014).

5. Hwang, J. Y., Myung, S. T. & Sun, Y. K. Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017).

6. Palomares, V. et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884–5901 (2012).

7. Vaalma, C., Buchholz, D., Weil, M. & Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018).

8. Delmas, C. Sodium and sodium-ion batteries: 50 years of research. Adv. Energy Mater. 8, 1–9 (2018).

9. Abakumov, A. M., Fedotov, S. S., Antipov, E. V. & Tarascon, J. M. Solid state chemistry for developing better metal-ion batteries. Nat. Commun. 11, 1–14 (2020).

10. Chen, L. et al. Readiness level of sodium-ion battery technology: a materials perspective. Adv. Mater. 2020, 180153 (2018).

11. Han, M. H., Gonzalo, E., Singh, G. & Rojo, T. A comprehensive review of sodium layered oxides: potential cathodes for Na-ion batteries. Energy Environ. Sci. 8, 81–102 (2015).

12. Boev, A. O. et al. The role of antisite defect pairs in surface reconstruction of layered AMO₂ oxides: a DFT+U study. Appl. Surf. Sci. 537, 147750 (2020).

13. Le Menn, J.-M., Cronier-Lopez, M.-P., Hemon-Ribaud, A. & Courbon, G. Phase transitions in the Na₃M₂(PO₄)₃F family (M = Al³⁺, V³⁺, Ce³⁺, Fe³⁺, Ga³⁺): synthesis, thermal, structural, and magnetic studies. J. Solid State Chem. 148, 260–277 (1999).

14. Chihara, K., Katajou, A., Gocher, J. D., Okada, S. & Yamaki, J. I. Cathode properties of Na₃M₂(PO₄)₃F₃ [M = Ti, Fe, V] for sodium-ion batteries. J. Power Sources 227, 80–85 (2013).

15. Chen, G. et al. Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries—a review. Adv. Funct. Mater. 30, 2001289 (2020).

16. Zeng, X., Peng, J., Guo, Y., Zhu, H. & Huang, X. Research progress on Na₃V₂(PO₄)₃F₃ cathode material of sodium ion battery. Front. Chem. 8, 635 (2020).

17. Zhu, L., Wang, H., Sun, D., Tang, Y. & Wang, H. A comprehensive review on the fabrication, modification and applications of Na₃V₂(PO₄)₃F₃ cathodes. J. Mater. Chem. A 8, 21387–21407 (2020).

18. Hite, G. et al. Higher energy and safer sodium ion batteries via an electrochemically made disordered Na₃V₂(PO₄)₃F₃ material. Nat. Commun. 10, 585 (2019).

19. Zakharkin, M. V. et al. Enhancing Na⁺ extraction limit through high voltage activation of the NASICON-type Na₄MnV(PO₄)₃ cathode. ACS Appl. Energy Mater. 1, 5842–5846 (2018).

20. Zhang, X. et al. Na₃V₂(PO₄)₃F₃: an advanced cathode for sodium-ion batteries. Nanoenergy 11, 2556–2567 (2016).

21. Jian, Z. et al. Atomic structure and kinetics of NASICON Na₃V₂(PO₄)₃F₃ cathode for sodium-ion batteries. Adv. Funct. Mater. 24, 4265–4272 (2014).
22. Ling, M. et al. The mystery from tetragonal NaVPO₄F to monoclinic NaV₂PO₄F: crystal presentation, phase conversion, and Na-storage kinetics. https://doi.org/10.1021/acsami.1c00627 (2021).

23. Zhao, Cde et al. Robust three-dimensional carbon conductive network in a NaVPO₄F cathode used for superior high-rate and ultralong-lifespan sodium ion full batteries. J. Mater. Chem. A 8, 17454–17462 (2020).

24. Ling, M. et al. Revisiting of tetragonal NaV₂PO₄F: a high energy density cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 12, 30519 (2020).

25. Barker, J., Saidi, M. Y. & Swoyer, J. L. A sodium ion cell based on the fluorophosphate compound NaVPO₄F. Electrochem. Solid-State Lett. 6, A1 (2003).

26. Ruan, Y.-L., Wang, K., Song, S.-D., Han, X. & Cheng, B.-W. Graphene modified solid vanadium fluorophosphate as a high voltage cathode material for sodium ion batteries. Electrochim. Acta 160, 330–336 (2015).

27. Zhao, J. et al. A novel sol–gel synthesis route to NaVPO₄F as cathode material for hybrid lithium ion batteries. J. Power Sour. 195, 6854–6859 (2015).

28. Law, M. & Balaya, P. NaVPO₄F with high cycling stability as a promising cathode for sodium-ion battery. Energy Storage Mater. 10, 102–113 (2018).

29. Xu, M. et al. A 3D porous interconnected NaVPO₄F/NC: vehicle design for superior Na-ion battery performance and performance for Na-ion batteries. RSC Adv. 5, 40065–40069 (2015).

30. Ling, M. et al. Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO₄F nanoplates for Na-ion batteries. J. Mater. Chem. A 6, 24201–24209 (2018).

31. Ilyin, N. V. & Semykina, D. O. Mechanochemically assisted solid-state synthesis of sodium vanadium fluorophosphates. Solid. State Ion. 343, 115119 (2019).

32. Li, L. et al. Fluorophosphates from solid-state synthesis and electrochemical ion exchange: NaVPO₄F + Na2V₂(PO4)2F3 + 3NaF. Adv. Energy Mater. 8, 1800164 (2018).

33. Boivin, E. et al. Vanadyl-type defects in Tavorite-like NaVPO₄F: from the temperature ionothermal synthesis. J. Mater. Chem. A 6, 28 (2018).

34. Itoh, S. & Skorov, D. A. Understanding migration barriers for monovalent ion insertion in transition metal oxide and phosphate based cathode materials: A DFT study. Comput. Mater. Sci. 154, 449–458 (2018).

35. Barpanda, P. et al. Crystal structure and electrochemical study of A(Fe1-xMx)4+VOPO4 (M = Ti, Zr, Hf, Sn): a new cathode material for Na-ion batteries. J. Electrochem. Soc. 164, A6373–A6380 (2017).

36. Chihara, K., Katogi, A., Kubota, K. & Komaba, S. KVPO₄F and KVOPO₄: A new high specific capacity Na ion battery material. J. Electrochem. Soc. 150, 1450–1452 (2003).

37. Aksyonov, D. A., Fedotov, S. S., Stevenson, K. J. & Zhugayevych, A. Understanding of the factors influencing Li-based battery materials via electrochemical impedance spectroscopy. Nat. Commun. 12, 1–4 (2021).

38. Fedotov, S. S. et al. Crystalchemotechnical tools in the search for cathode materials of rechargeable Na-ion batteries and analysis of their transport properties. Solid. State Ion. 314, 120–140 (2018).

39. Xu, M. et al. A 3D porous interconnected NaVPO₄F/NC: vehicle design for superior Na-ion battery performance and performance for Na-ion batteries. RSC Adv. 5, 40065–40069 (2015).

40. Ling, M. et al. Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO₄F nanoplates for Na-ion batteries. J. Mater. Chem. A 6, 24201–24209 (2018).

41. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011).

42. Adams, S. & Rao, R. P. Understanding ionic conduction and energy storage in Na-based materials by operando high resolution synchrotron X-ray diffraction. Chem. Mater. 27, 3009–3020 (2015).

43. Drozhzhin, O. A. et al. β-NaVPO₄F as a superior electrode material for Na-ion batteries. Chem. Mater. 31, 7463–7469 (2019).

44. Ishado, Y., Inoishi, A. & Okada, S. Exploring factors limiting three Na+ extraction from Na2V2(PO4)3. Electrochim. Acta 88, 457–462 (2012).

45. Rebuffat, L., Plaisier, J. R., Abbeldatif, M., Laun, A. & Scardi, A. P. M: a synchrotron radiation beamline for X-ray diffraction line profile analysis. Z. Anorg. Allg. Chem. 640, 3100–3106 (2014).

46. Bohy, B. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 46, 544–549 (2013).

47. Montella, C. Discussion of the potential step method for the determination of the diffusion coefficients of guest species in host materials: Part I. Influence of charge transfer kinetics and ionic potential drop. J. Electroanal. Chem. 518, 61–83 (2002).

48. Levin, E. E., Vassiliev, S. Y. & Nikitina, V. A. Solvent effect on the kinetics of lithium ion intercalation into LiCoO2. Electrochim. Acta 228, 114–124 (2017).

49. Katorova, N. S., Luchkin, S. Y., Rupasov, D. P., Abakumov, A. M. & Stevenson, K. J. Origins of irreversible capacity loss in hard carbon negative electrodes for sodium-ion batteries. J. Chem. Phys. 152, 194704 (2020).

50. Cord, P. A. TOPAS and TOPAS-academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Cryst. 51, 210–218 (2018).

51. Sinton, G. W. & Evans, J. S. O. Parametric Rietveld refinement. J. Appl. Crystallogr. 40, 87–95 (2007).

52. Sale, M. & Avdeev, M. 3DBVSMAPPER: a program for automatically generating bond-valence sum landscapes. J. Appl. Crystallogr. 45, 1054–1056 (2012).

53. Adams, S. From bond valence maps to energy landscapes for mobile ions in ion-conducting solids. Solid. State Ion. 177, 1625–1630 (2006).

54. Adams, S. & Rao, R. P. Understanding ionic conduction and energy storage materials with bond-valence-based methods. In Structure and Bonding. (eds Brown, I.D. & Poppemaier, K.R.) Vol. 158, 129–150 (1998).

55. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

56. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

57. Dudarev, S. & Botton, G. Electron-energy-loss spectra and the structural optimization of ab-initio total energy calculations for LiYF₄. Phys. Rev. B - Condens. Matter Mater. Phys. 57, 1505–1509 (1998).

58. Perdew, J. P., Burke, K. & Ernzerhof, M. The alloy theoretic automated toolkit: a user guide. Calphad Comput. Phase Diagr. Thermodynamic. 26, 539–553 (2002).
Acknowledgements
This work is supported by Russian Science Foundation (grant # 20-73-10248, PI: S.S.F.). The authors warmly thank Dr. Mattia Gaboardi and Dr. Jasper R. Plaisier for assistance with experiments at the MCX beamline (Elettra Sincrotrone, Trieste) and acknowledge the CERIC-ERIC Consortium for the access to experimental facilities (proposal #20192074). The authors are also grateful to Dr. Vladislav Gorshkov for the NC electrodes preparation, to Dr. Ivan Mikheev for the help with ICP-AES measurements, and to Mr. Daniil Panaenko for carrying out the potentiometric measurements. The AICF of Skoltech is acknowledged for granting access to the TEM facilities.

Author contributions
S.D.S. performed the synthesis and electrochemical characterization, N.D.L. devised and optimized the synthesis procedure, I.A.T. carried out the crystallographic analysis and processed the SXRD operando data, D.A.A. carried out DFT calculations, A.V.M. and A.M.A. performed HAADF-STEM, ED, energy-dispersive X-ray, and EELS measurements, S.V.R. collected and interpreted FTIR and EPR spectra, A.R.I. and P.A.M. prepared anode materials, assembled full cells and performed measurements, V.A.N. carried out electrochemical diffusion coefficient measurements. S.S.F. designed the study and composed the manuscript, acquired funding. K.J.S., A.M.A., E.V.A., and S.S.F. supervised the study, planned the experiments, and analyzed the data. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Competing interests
S.D.S., N.D.L., and S.S.F. report a patent application has been filed based on these results (RF patent 2748159). The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-31768-5.
Correspondence and requests for materials should be addressed to Stanislav S. Fedotov.
Peer review information Nature Communications thanks Xing-Long Wu and the other anonymous reviewer(s) for their contribution to the peer review of this work.
Reprints and permission information is available at http://www.nature.com/reprints
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
© The Author(s) 2022