Interactive Effects of Copper Sources and a High Level of Phytase in Phosphorus-Deficient Diets on Growth Performance, Nutrient Digestibility, Tissue Mineral Concentrations, and Plasma Parameters in Nursery Pigs

Ping Ren 1 · Juxing Chen 1 · Deana Hancock 1 · Mercedes Vazquez-Añón 1

Received: 1 December 2020 / Accepted: 5 January 2021 / Published online: 11 January 2021 © The Author(s) 2021

Abstract

The present study investigated the interactive effects of copper sources and a high level of phytase on growth performance, nutrient digestibility, tissue mineral concentrations, and plasma parameters in nursery pigs. Weaning piglets (N = 192; 6.06 ± 0.99 kg), blocked by body weight, were randomly allotted to 1 of 4 dietary treatments, with 12 pens per treatment and 4 pigs per pen. A basal diet for each phase was formulated to meet nutrient requirements for nursery pigs with the exception that standardized total tract digestibility (STTD) P was reduced by 0.12% and Ca was adjusted to achieve Ca/STTD P = 2.15. The 4 dietary treatments were arranged in a 2 × 2 factorial design, with 2 Cu sources (125 mg/kg Cu from copper methionine hydroxy analogue chelate (Cu-MHAC) or copper sulfate (CuSO4)) and 2 phytase levels (0 or 1500 phytase units (FTU)/kg). Results showed that there was an interaction (P < 0.05) between Cu sources and phytase on ADG during days 0–41. When phytase was not present in the diets (P deficient), there was no difference between the two Cu sources in terms of ADG during days 0–41, whereas with phytase in the diets, Cu-MHAC tended to improve (P < 0.10) ADG during days 0–38 compared with CuSO4. Pigs fed Cu-MHAC had greater apparent total tract digestibility (ATTD) of neutral and acid detergent fiber and STTD of P than those fed CuSO4. Phytase increased (P < 0.05) growth performance, ATTD of Ca and P, and plasma inositol and growth hormone concentrations. In conclusion, Cu-MHAC may be more effective in improving growth rate than CuSO4 when phytase was supplemented at 1500 FTU/kg. Cu-MHAC enhanced fiber and P digestibility regardless of phytase, compared with CuSO4. Phytase addition in P-deficient diets was effective in improving growth performance, Ca and P digestibility, and plasma inositol and growth hormone concentrations.

Keywords Copper · Fiber digestibility · Growth performance · Phosphorus digestibility · Pigs · Phytase

Introduction

High levels of copper sulfate (CuSO4, 150 to 250 mg/kg Cu) are widely used in nursery pigs to promote growth and improve feed efficiency [1]. It has been demonstrated that chelated Cu is more bioavailable in both chickens and pigs than CuSO4 [2, 3]. Supplementation of Cu as Cu-citrate (125 mg/kg Cu) or Cu-proteinate (100 mg/kg Cu) has been shown to achieve similar growth performance in nursery pigs as CuSO4 supplementation at 250 mg/kg Cu [4, 5]. Similarly, supplementation of copper methionine hydroxy analogue chelate achieved greater average daily gain and feed efficiency in nursery or grow-finish pigs compared with pigs fed CuSO4 or tribasic copper chloride at equivalent Cu levels [6–9].

Copper sulfate is easily dissociated in the acidic pH in the stomach, allowing Cu to interact with phytate and resulting in the formation of Cu-phytate complexes [10, 11]. These complexes could impair phytase efficacy, resulting in lower P release from the phytate molecule [11, 12]. An in vitro model has demonstrated that Cu lysine is less inhibitive to phytase compared with CuSO4 [11]. Our recent data also suggests that Cu-MHAC may enhance phytase efficacy on bone mineralization in nursery pigs when 500 FTU/kg phytase is used, compared with CuSO4 [9]. However, there is no data on the interaction of copper source and phytase supplementation at high levels on growth performance and mineral digestibility in pigs. It is hypothesized that Cu-MHAC could enhance the efficacy of phytase at 1500 FTU/kg on growth performance.
and mineral digestibility in nursery pigs, compared with CuSO₄. Therefore, the objective of this study is to investigate the interactive effects of copper sources and phytase supplementation at 1500 FTU/kg on growth performance, nutrient digestibility, tissue mineral concentrations, and plasma parameters.

Materials and Methods

Animals and Management

The present experiment was conducted at Green Acres Animal Research and Testing Facility (Novus International, Inc., Montgomery City, MO). A total of 192 TR4 × C22 weaning barrows (BW 6.06 ± 0.99 kg; PIC, Hendersonville, TN, USA) were used in this study. Pigs were housed in plastic-coated floor pens. Each piglet was tagged for individual identification. Pigs had free access to the feed and water during the entire nursery period. A three-phase feeding program (days 0–14, 15–28, 29–42) was used in the present study.

Experimental Design and Dietary Treatments

At weaning (day 0), piglets were weighed individually and allotted to 1 of 4 dietary treatments according to a randomized complete block design, which was blocked by initial BW. There were 12 pens per treatment and 4 pigs per pen. A basal diet for each phase was formulated to meet the energy and nutrient requirements for different stages of pigs according to NRC [13], with the exception that standardized total tract digestibility (STTD) P was reduced by 0.12% and Ca level was adjusted to meet the fixed ratio of Ca to STTD P of 2.15. The 4 dietary treatments were arranged in a 2 × 2 factorial design (Table 1), with 2 Cu sources (125 ppm Cu from copper methionine hydroxy analogue chelate (Cu-MHAC, MINTREX® Cu, Novus International, Inc., St. Charles, MO, USA) or CuSO₄ (Old Bridge Chemicals, Inc., Old Bridge, NJ, USA), respectively) and 2 phytase levels (0 or 1500 FTU/kg phytase (PHYTAVERSE®, Novus International, Inc., St. Charles, MO, USA)). The basal diet composition for the 3 phases is presented in Table 2.

Measurements and Sample Collection

Piglet body weights (BW) were measured at the initiation of the study (day 0) and at the end of each phase (days 14, 28, and 41). Feed addition to each feeder was recorded each time when the feed was added to the feeder. At the end of each phase, the remaining feed in the feeder was weighed. Average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F) were calculated for each phase and the entire nursery period.

Fresh fecal samples were collected via grab sampling from each pig in each pen twice a day from days 36 to 41. The fecal samples were stored at −20 °C immediately after collection. At the end of sample collection, fecal samples within each pen were thawed, homogenized, and immediately placed in a heated oven (NHP-PD-ECO, Win-Holt, Woodbury, NY, USA) at 65 °C for 48 h. All dried fecal samples were ground using a rotor mill (PULVERISETTE 14, Fritsch GmbH, Idar-Oberstein, Germany) fitted with a 1-mm screen. Ground feces were thoroughly homogenized, and a subsample was collected for chemical analysis.

At the end of the study (day 42), one pig from each pen with the BW closest to the average BW of the pen was selected, and approximately 7 ml of blood samples was collected via jugular puncture, followed by euthanasia using captive bolt. The blood samples were centrifuged at 1500 × g at 4 °C for 15 min to obtain plasma samples. The third metacarpal samples were collected from selected pigs. Liver (approximately 50 g of the right lobe) and kidney (approximately 50 g of the right kidney) samples were collected in the selected pigs. The metacarpal, liver, and kidney samples were stored at −20 °C until chemical analysis.

Chemical and Biological Analyses

Diets and feces samples were analyzed for dry matter (DM, method 934.01), Ca (method 985.01), P (method 985.01), Zn (method 985.01), and Cu (method 985.01) according to AOAC [14]. Phytase activity in the diets was analyzed according to ISO [15]. Gross energy was analyzed in diets and feces using an isoperibol bomb calorimeter (Model 6300, Parr Instruments, Moline, IL). Acid detergent fiber (ADF) and neutral detergent fiber (NDF) in diets and feces were analyzed using ANKOM Technology method 12 and 13, respectively (ANKOM 2000 Fiber Analyzer, ANKOM Technology, Macedon, NY). Titanium concentration in phase 3 diets and

Table 1 Description of dietary treatments in terms of copper sources and levels and phytase inclusion levels

Treatment	Cu sources	Cu levels, mg/kg	Phytaseb levels
1	Cu-MHACa	125	0
2	CuSO₄a	125	0
3	Cu-MHAC	125	1500
4	CuSO₄	125	1500

a-Cu-MHAC represents Cu methionine hydroxy analogue chelate (MINTREX® Cu), which is manufactured by Novus International, Inc., St. Charles, MO, USA. CuSO₄ is manufactured by Old Bridge Chemicals, Inc., Old Bridge, NJ, USA

b-Phytase used in this study is a commercial feed-grade phytase (PHYTAVERSE®, Novus International, Inc., St. Charles, MO, USA)
fecal samples was analyzed according to the procedures described by Myers et al. [16].

Plasma samples were used for malondialdehyde (MDA) analysis, which was quantified using thiobarbituric acid reactive substances assay kit 10009055 (Cayman Chemical Company, Ann Arbor, MI). Plasma inositol was measured using myo-inositol assay kit from Megazyme (Wicklow, Ireland). Growth hormone and insulin-like growth factor-1 (IGF-1) concentrations were measured using porcine growth hormone enzyme-linked immunosorbent assay (ELISA) kit from MyBioSource (San Diego, CA) and porcine IGF-1 ELISA kit, respectively.

Metacarpal, liver, and kidney samples were ashed in a muffle furnace at 600 °C overnight in porcelain crucibles. The concentrations of ash, Ca, P, Zn, and Cu in metacarpal, liver, and kidney samples were determined using the procedure

Ingredients, %	Phase 1 (day 0–14)	Phase 2 (day 15–28)	Phase 3 (day 29–42)
Corn, yellow dent	49.10	54.13	61.45
Soybean meal, 47.5% CP	15.00	20.00	25.00
HP300	4.00	5.00	0.00
Canola meal	4.00	6.00	10.00
Plasma spray-dried	3.00	0.80	0.00
Whey powder	20.00	10.00	0.00
Choice white grease	2.00	2.00	1.50
Dicalcium phosphate 18.5%	0.00	0.00	0.15
Limestone	1.10	0.82	0.63
Salt	0.30	0.30	0.30
Vitamin premix^a	0.11	0.11	0.11
Mineral premix^b	0.29	0.29	0.29
Titanium dioxide	0.00	0.00	0.40
ZnO, 72% Zn	0.28	0.00	0.00
L-lysine HCl	0.49	0.36	0.17
MHA^c	0.19	0.12	0.00
L-Thr	0.13	0.07	0.00
L-Trp	0.01	0.00	0.00
Total	100.00	100.00	100.00

Calculated nutrient composition

ME, kcal/kg	3455	3437	3367
CP, %	20.24	21.24	20.97
SID^d Lys	1.39	1.27	1.06
SID Thr	0.82	0.75	0.64
SID Met	0.43	0.39	0.30
SID Met+Cys	0.76	0.70	0.61
SID Trp	0.24	0.23	0.85
Ca, %	0.62	0.49	0.43
Total P, %	0.49	0.47	0.48
STTD^d P, %	0.29	0.23	0.20
Phytate P, %	0.20	0.24	0.31

^a Supplied the following nutrients per kilogram of diets: vitamin A, 11,000 IU; vitamin D, 1760 IU; vitamin E, 83.6 IU; vitamin K, 5.5 mg; thiamine, 3.52 mg; riboflavin, 13.2 mg; niacin, 70.4 mg; pantothenic acid, 39.6 mg; pyridoxine, 7.04 mg; folic acid, 1045 μg; biotin, 275 μg; vitamin B12, 55 μg

^b The trace mineral premix supplied the following nutrients per kilogram of diets: Zn, 100 mg as zinc sulfate; Cu, 125 mg as either Cu-MHAC or CuSO₄ according to Table 1; Mn, 34 mg as manganese sulfate; Fe, 100 mg as ferrous sulfate; I, 0.2 mg as ethylenediamine dihydriodide; Se, 0.3 mg as sodium selenite

^c MHA® is a dry calcium salt of D, L-2-hydroxy-4-(methylthio)butanoic acid (84% Met activity, MHA®, Novus International, Inc., St. Charles, MO, USA)

^d SID standardized ileal digestible, STTD standardized total tract digestible
described by method 985.01 of AOAC [14]. Ash, Ca, and P percentages in metacarpal samples were expressed as grams of ash, Ca, and P per 100 g of dry, fat-free metacarpal weight, respectively.

Calculations

The apparent total tract digestibility (ATTD) coefficient for Ca and P in each treatment was calculated according to equations proposed by NRC [13]. Standardized total tract digestibility of Ca and P were calculated by accounting for endogenous losses of Ca (330 mg/kg dry matter intake) [17] and P (190 mg/kg dry matter intake) [13], respectively.

Statistical Analysis

SAS® 9.4 (SAS Inst. Inc., Gary, NC) was used for all data analysis. Pen served as the experimental unit. The LSMEANS statement was used to calculate the least square means. The Tukey-Kramer adjustment was used for multiple comparisons of the least square means. Pooled SEM was calculated for each measurement. A probability of $P \leq 0.05$ was considered as significant and $0.05 < P \leq 0.10$ was declared as a trend.

The GLIMMIX procedure was used to analyze all the data. Copper source, phytase level, and their interaction were considered as the fixed effects, whereas block was considered as the random effect. All the data were analyzed using default normal regression model.

Results

Effect of Cu Sources and Phytase on Growth Performance

Pigs fed diets containing Cu-MHAC tended ($P < 0.10$) to have greater G:F during days 0–14, compared with those fed diets containing CuSO$_4$ (Table 3). Pigs fed diets containing 1500 FTU/kg phytase had greater ($P < 0.05$) ADG, ADFI, and G:F during all phases, except for G:F during days 28–41, compared with those fed diets without phytase.

There was an interaction ($P < 0.05$) between Cu sources and phytase in terms of BW on day 41. When phytase was not present in the diets (P deficient), there was no difference between the two Cu sources in terms of BW on day 41. In contrast, when phytase was included in the diets, Cu-MHAC tended to increase ($P < 0.10$) ADG during days 0–41 compared with CuSO$_4$.

Effect of Cu Sources and Phytase on Nutrient Digestibility

The ATTD of NDF and ADF was greater ($P < 0.05$) in pigs fed diets containing Cu-MHAC compared with pigs fed diets containing CuSO$_4$ (Table 4). Pigs fed diets containing Cu-MHAC had greater ($P < 0.05$) ATTD and STTD of P than those fed diets containing CuSO$_4$. Phytase supplementation at 1500 FTU/kg increased ($P < 0.01$) ATTD of ash, Ca, and P, and STTD of Ca and P, compared with no phytase supplementation. However, phytase supplementation at 1500 FTU/kg resulted in lower ($P < 0.05$) ATTD of NDF, ADF, and gross energy, compared with no phytase supplementation.

Effect of Cu Source and Phytase on Bone Mineralization

Cu sources did not affect fat-free bone weight, bone ash, Ca, P, Zn, and Cu concentrations from pigs on day 42 (Table 5). Phytase supplementation at 1500 FTU/kg increased ($P < 0.05$) fat-free bone weight and bone P concentrations compared with no phytase supplementation. Similarly, phytase supplementation at 1500 FTU/kg tended to increase ($P < 0.10$) bone ash and Ca concentrations compared with no phytase supplementation. However, phytase supplementation at 1500 FTU/kg reduced ($P < 0.01$) bone Cu concentration compared with no phytase supplementation.

Effect of Cu Source and Phytase on Liver and Kidney Mineral Concentrations

There were no differences ($P > 0.10$) among the two Cu sources in terms of liver and kidney Cu and Zn concentrations (Table 6). Phytase supplementation at 1500 FTU/kg reduced ($P < 0.01$) liver Cu concentration compared with no phytase supplementation. In contrast, phytase supplementation at 1500 FTU/kg resulted in greater ($P < 0.05$) kidney Cu and Zn concentration compared with no phytase supplementation.

Effect of Cu Source and Phytase on Plasma Parameters

There were no differences ($P > 0.10$) between the two Cu sources in terms of plasma inositol, TBARS, growth hormone, and IGF-1 concentrations (Table 7). Phytase supplementation at 1500 FTU/kg increased ($P < 0.05$) plasma inositol and growth hormone concentrations compared with no phytase supplementation.
Discussion

Cu Sources and Its Interaction with Phytase on Growth Performance, Nutrient Digestibility, Tissue Mineral Concentrations, and Plasma Parameters

High levels of CuSO₄ (150 to 250 mg/kg Cu) are traditionally used in weaning pig diets to promote growth and improve feed efficiency [1, 7, 18]. Technology advancement has led to the development of numerous forms of organic Cu, which have been shown to be more bioavailable than CuSO₄ [3]. Studies have demonstrated that Cu-proteinate [5] and Cu-MHAC [6, 7, 9] achieved greater growth performance in nursery pigs than CuSO₄ at the same Cu inclusion levels, which was further supported by the current study that Cu-MHAC achieved greater average daily gain than CuSO₄ in the presence of phytase supplementation at 1500 FTU/kg. The fact that average daily gain in nursery pigs was not different between Cu-MHAC and CuSO₄ without phytase in the present study indicated that the impact of P deficiency might overshadow the beneficial effect of Cu-MHAC or P deficiency may impair the function and utilization of Cu in the body. Additionally, Cu-citrate yielded similar growth performance as CuSO₄ in nursery pigs at the same inclusion level of Cu [4]. It was also shown that Cu-MHAC led to greater growth performance in nursery pigs than tribasic copper chloride at the same Cu inclusion levels [8]. These studies suggest that Cu sources play a critical role in its function and utilization in the body, thereby affecting growth performance of pigs.

Several modes of action could be responsible for the growth performance benefits by Cu-MHAC supplementation. Firstly, Cu could exert antibacterial effect directly or indirectly via bile salts and therefore modulate gut microbiota [19–21].

Table 3 Effect of copper sources and phytase supplementation at 1500 FTU/kg on growth performance in nursery pigs c

Items	No d	Yes d	SEM	P value	Cu sources	SEM	P value	Phytase	SEM	P value				
BW, kg					CuSO₄			Cu-MHAC						
Day 0	6.1	6.1	0.3	0.87	6.1	0.3	0.41	6.1	0.3	0.53				
Day 14	9.3	9.4	0.5	0.71	9.7	0.5	0.31	9.3	0.5	<0.01				
Day 28	14.7	14.4	0.7	0.10	15.7	0.7	0.59	14.6	0.7	<0.01				
Day 41	21.9b	21.4b	1.2	0.03	24.0	1.2	0.27	21.6b	1.2	<0.01				
ADG, g/d														
Days 0 to 14	229	238	284	303	18	0.69	257	270	16	<0.01				
Days 14 to 28	387	360	469	496	19	0.12	428	428	15	<0.01				
Days 28 to 41	546b	534b	704y	790x	46	0.04	625	662	43	<0.01				
Days 0 to 28	309	299	378	399	15	0.09	343	349	13	<0.01				
Days 0 to 41	386b	373b	486y	526ax	23	0.03	436	450	21	<0.01				
ADFI, g/d														
Days 0 to 14	382	369	418	398	23	0.83	400	383	21	0.04				
Days 14 to 28	629	645	665	720	33	0.38	647	683	29	<0.01				
Days 28 to 41	805	778	996	1065	48	0.16	901	921	42	<0.01				
Days 0 to 28	505	507	541	559	27	0.62	523	533	24	0.01				
Days 0 to 41	597	592	683	718	32	0.32	640	655	28	<0.01				
G:F, g/g														
Days 0 to 14	0.613	0.650	0.683	0.763	0.037	0.48	0.648	0.707	0.030	0.06	0.631b	0.723x	0.030	<0.01
Days 14 to 28	0.618	0.573	0.696	0.692	0.026	0.45	0.657	0.632	0.019	0.35	0.595b	0.694x	0.019	<0.01
Days 28 to 41	0.675	0.677	0.696	0.738	0.032	0.38	0.685	0.707	0.028	0.34	0.679b	0.717x	0.028	0.08
Days 0 to 28	0.613	0.599	0.690	0.716	0.019	0.29	0.652	0.657	0.014	0.76	0.606b	0.703x	0.014	<0.01
Days 0 to 41	0.646	0.632	0.695	0.730	0.019	0.13	0.671	0.681	0.015	0.52	0.639b	0.713x	0.015	<0.01

a–b Within a row, means without a common superscript differ (P ≤ 0.05). x–y Within a row, means without a common superscript differ (0.05 < P ≤ 0.10)

c Least square means for each treatment are calculated based on 12 replicates per treatment and 4 pigs per replicate

d No and yes represent 0 and 1500 FTU/kg phytase (PHYTAVERSE®, Novus International, Inc., St. Charles, MO, USA) in the diets, respectively

e Cu-MHAC represents Cu methionine hydroxy analogue chelate (MINTREX® Cu), which is manufactured by Novus International, Inc., St. Charles, MO, USA. CuSO₄ is manufactured by Old Bridge Chemicals, Inc., Old Bridge, NJ, USA.
methionine or Cu-proteinate increased the proportion of *Lactobacillus* while they reduced the proportion of *Escherichia coli* in the ileal digesta of broilers [22]. Supplementation of 30 mg/kg Cu from Cu-MHAC in broilers decreased the proportion of *Enterobacteriaceae* and *Firmicutes* in the cecum digesta [23] compared with

Items	No^d	Yes^d	SEM	P value	Cu sources	SEM	P value	Phytase	SEM	P value				
CuSO₄	Cu-MHAC	CuSO₄	Cu-MHAC	CuSO₄	Cu-MHAC	CuSO₄	Cu-MHAC	CuSO₄	Cu-MHAC	CuSO₄	Cu-MHAC			
Fat-free bone weight, g	2.45	2.69	3.61	3.43	0.43	0.59	3.03	3.06	0.32	0.94	2.57^b	3.52^a	0.32	0.02
Bone ash, %	35.55	33.97	41.68	42.36	3.83	0.76	38.62	38.16	2.76	0.90	34.76^c	42.02^a	2.76	0.06
Ca, %	13.04	12.53	15.11	15.38	1.41	0.78	14.07	13.96	1.03	0.93	12.79^y	15.25^x	1.03	0.08
P, %	6.57	6.28	7.99	8.14	0.73	0.76	7.28	7.21	0.53	0.93	6.42^b	8.06^e	0.53	0.03
Cu, mg/kg	2.87	2.52	1.85	1.88	0.25	0.45	2.36	2.20	0.17	0.53	2.69^a	1.86^b	0.17	<0.01
Zn, mg/kg	122.24	129.64	138.49	142.22	13.65	0.89	130.37	135.93	9.94	0.68	125.94	140.35	9.94	0.28

^a-^b Within a row, means without a common superscript differ (<i>P</i> ≤ 0.05). ^c-^y Within a row, means without a common superscript differ (0.05 < <i>P</i> ≤ 0.10)

^dNo and yes represent 0 and 1500 FTU/kg phytase (PHYTAVERSE®, Novus International, Inc., St. Charles, MO, USA) in the diets, respectively

^eCu-MHAC represents Cu methionine hydroxy analogue chelate (MINTREX® Cu), which is manufactured by Novus International, Inc., St. Charles, MO, USA. CuSO₄ is manufactured by Old Bridge Chemicals, Inc., Old Bridge, NJ, USA
supplementation of 125 mg/kg Cu from CuSO₄, which indicated that Cu-MHAC could modulate gut microbiota by shifting cecal microbiota to more beneficial microflora. The improved growth rate by Cu-MHAC in the diets containing 1500 FTU/kg phytase in the current study may be derived from the balanced gut microbiota compared with CuSO₄.

Secondly, Cu supplementation could exert its function via systemic routes. It has been demonstrated that increasing Cu supplementation in weaning pigs could increase serum mitogenic activity, liver superoxide dismutase activity, and pituitary growth hormone mRNA concentrations [20, 24]. It can also elevate serum growth hormone and IGF-1, enhance both ghrelin mRNA expression in the fundic region of the stomach and growth hormone-releasing hormone, and suppress somatostatin mRNA expression levels in the hypothalamus [25–27]. A recent study conducted by Gonzalez-Esquerra et al. [28] demonstrated that nursery pigs fed Cu-MHAC at 50 mg/kg Cu had increased serum growth hormone concentration than those fed CuSO₄ at 160 mg/kg Cu. However, plasma growth hormone and IGF-1 were not

Table 6
Effect of copper sources and phytase supplementation at 1500 FTU/kg on liver and kidney copper and zinc concentrations in nursery pigs

Items	No^d	Yes^d	SEM	Cu sources	SEM	Phytase	SEM	P value	Cu sources	SEM	Phytase	SEM	P value
Liver													
DM, %	66.07	67.66		1.90	0.28	68.55	0.93	66.83	70.09	1.55	0.05		
Cu, mg/kg	20.76	23.48		1.89	0.35	19.28	0.61	22.12	17.40	1.37	0.02		
Zn, mg/kg	147.30	138.09	13.16	0.26		137.59	0.67	142.69	138.17	9.39	0.73		
Kidney													
DM, %	19.27	18.72	19.65	1.95	0.57	19.46	0.34	19.00	19.58	0.28	0.11		
Cu, mg/kg	26.93	28.47	61.62	2.15	0.09	44.27	0.91	27.70	61.57	4.93	<0.01		
Zn, mg/kg	134.15	134.70	168.85	0.34	4.97	151.50	0.37	134.43	159.75	6.95	0.01		

^a Within a row, means without a common superscript differ (P ≤ 0.05)
^b Liver and kidney samples were collected from nursery pigs on day 42 post-weaning. Least square means for each treatment are calculated based on 12 replicates per treatment and 1 pig per replicate
^c Cu-MHAC represents Cu methionine hydroxy analogue chelate (MINTREX® Cu), which is manufactured by Novus International, Inc., St. Charles, MO, USA. CuSO₄ is manufactured by Old Bridge Chemicals, Inc., Old Bridge, NJ, USA

Table 7
Effect of copper sources and phytase supplementation at 1500 FTU/kg on plasma parameters in nursery pigs

Items	No^d	Yes^d	SEM	Cu sources	SEM	Phytase	SEM	P value	Cu sources	SEM	Phytase	SEM	P value
Inositol, μg/ml	37.34	40.52		5.62	0.45	41.82	0.19	38.93	51.93	4.17	0.02		
MDA^f, μM	7.79	7.63		0.47	0.58	8.27	0.36	7.11	8.43	0.36	0.11		
GH^f, ng/ml	0.12	0.10		0.08	0.64	0.23	0.06	0.11	0.30	0.06	0.03		
IGF-1^f, ng/ml	205,323	158,680		23,136	0.09	193,925	20,931	182,002	183,832	20,931	0.90		

^a Within a row, means without a common superscript differ (P ≤ 0.05)
^c Blood samples were collected on day 42 post-weaning in the nursery pigs. Least square means for each treatment are calculated based on 12 replicates per treatment and 1 pig per replicate
^d No and yes represent 0 and 1500 FTU/kg phytase (PHYTAVERSE®, Novus International, Inc., St. Charles, MO, USA) in the diets, respectively
^e Cu-MHAC represents Cu methionine hydroxy analogue chelate (MINTREX® Cu), which is manufactured by Novus International, Inc., St. Charles, MO, USA. CuSO₄ is manufactured by Old Bridge Chemicals, Inc., Old Bridge, NJ, USA
^f MDA represents malondialdehyde concentration; GH represents growth hormone concentration; IGF-1 represents insulin-like growth factor-1 concentration
affected by the two Cu sources in the current study. The discrepancy among studies may be attributed to animal source and variation, sampling time, diurnal change of these hormones, and the analysis accuracy of these hormones.

Thirdly, Cu-MHAC, which is composed of one mole of Cu chelated with two moles of DL-2-hydroxy-4-(methylthio)butanoic acid in coordinate covalent bonds, is stable in the upper gastrointestinal tract, which may minimize the formation of Cu-phytate complex and allow more Cu to be absorbed by the epithelial cells in the jejunum and ileum [2, 3, 29]. The reduction of Cu-phytate complexes by Cu-MHAC could also improve P digestibility without phytase supplementation compared with CuSO₄ [29]. In contrast, approximately 40 to 50% of Cu in CuSO₄ was formed as insoluble Cu-phytate in the pH range 5.5 to 6.5, which resulted in reduced phytase efficacy to break down the phytate molecule to release P [11]. Indeed, increasing Cu levels as CuSO₄ in the diets containing 600 FTU/kg resulted in a linear reduction of average daily gain, feed efficiency, and apparent P retention rate in broilers [12], which reinforced that CuSO₄ at high inclusion levels could impair phytase efficacy. However, the in vitro model demonstrated that the magnitude of inhibition on phytate hydrolysis by phytase was much less when Cu-lysine was used as Cu source compared with CuSO₄ [11], most likely indicating that a lower level of Cu-phytate complex was formed when using chelated Cu source. To the best of our knowledge, the current study was the first study to report increased P digestibility by chelated Cu compared with CuSO₄ in pigs in the presence of phytase. It was not known why the improved P digestibility by Cu-MHAC did not lead to increased bone P compared with CuSO₄, which warrants further investigation. The improved ADF and NDF digestibility by Cu-MHAC supplementation compared with CuSO₄ could also partially explain the improved growth rate in nursery pigs in this study. It has been reported that Cu supplementation at 10–20 mg/kg could increase NDF digestibility in cashmere goats probably due to enhanced rumen fermentation [30]. It was probable that Cu-MHAC supplementation could increase the number of fiber-degrading gut microbes in pigs, thereby improving fiber digestibility, compared with CuSO₄.

Phytase on Growth Performance, Nutrient Digestibility, Tissue Mineral Concentrations, and Plasma Parameters

The observation that phytase increased growth performance and bone mineralization in pigs was also observed in previous experiments [31–33]. The improved growth performance and bone mineralization by phytase supplementation were mainly a result of increased P digestibility [33–35], which was consistent with the findings of the current study.

Phytate is negatively charged in aqueous solutions, especially under acidic conditions, which makes the phytate molecule bind other nutrients, including starch, protein, and minerals [36]. Additionally, phytate may bind to endogenous digestive enzymes and thereby reduce their capacity to digest nutrients [37]. As a result, increasing phytate levels in the diets may reduce pepsin activity in weanling pigs [38] and intestinal α-amylase, sucrase, and maltase activities in chickens [39]. Phytase supplementation may result in a step-wise hydrolysis of the phytate molecule, thereby releasing phytate bound P and other nutrients, which may improve the digestibility of these nutrients.

Results of experiments to study phytase supplementation on the ATTD of nutrients and energy have been inconsistent. Increasing the dosage of phytase from 0 to 4000 FTU/kg did not affect the ATTD of dry matter and gross energy in growing pigs fed corn-soybean meal–based diets [40], but a linear increase in the ATTD of dry matter and gross energy was observed if the dosage of phytase was increased in corn-soybean meal diets fed to nursery pigs [41]. Increasing levels of phytase from 0 to 4000 FTU/kg did not affect the ATTD of NDF, but linearly increased the ATTD of ADF by nursery pigs fed corn-soybean meal diets [40]. However, a linear reduction in the ATTD of NDF was observed when phytase supplementation was increased from 0 to 20,000 FTU/kg in nursery pigs fed a corn-soybean meal diet [42], which was consistent with the findings of the current study. Phytase in the current study could reduce Ca and P flow to the hindgut, thereby impairing the microbial fermentation and reducing fiber digestibility [43]. The reduced fiber digestibility may partially explain the reduced energy digestibility by phytase in the present study.

It is well documented that phytase supplementation could increase Zn digestibility and bioavailability in pigs [9, 44–46]. However, phytase effect on Cu bioavailability in pigs was inconsistent. Some studies reported phytase supplementation improved Cu digestibility and bioavailability [34, 46], whereas other studies showed no response or even negative effect on Cu digestibility and bioavailability in pigs [45–48]. The amount of Zn release from the phytate complex by phytase supplementation and relative Zn and Cu concentrations in the diets might explain the various responses from different studies. Hill et al. [49] reported the antagonistic effect of excess dietary Zn on Cu availability in pigs. The antagonism between Zn and Cu is primarily mediated through the absorption process, where Zn induces high concentrations of metallothionein in the intestinal mucosa and the binding affinity of metallothionein for Cu is greater than Zn [50, 51]. The Cu bound to metallothionein is not absorbed and sloughed with mucosal cells, therefore reducing Cu bioavailability [52]. To our best knowledge, it is the first study to report the increased kidney Cu concentrations caused by phytase supplementation, along with the reduced bone and liver Cu concentrations. It seems that the improved Zn bioavailability caused by phytase supplementation at 1500 FTU/kg not only impacts Cu absorption in the intestinal level but also shifts Cu metabolism and distribution among various tissues, including bone, liver, and kidney. Further studies are warranted to explore this intriguing question.
Numerous studies have reported that phytase supplementation above 1000 FTU/kg could lead to increased plasma inositol concentration in pigs and broilers [53–55]. It has been suggested that inositol could stimulate insulin signaling pathway and protein synthesis [56], which may explain the improved growth performance of phytase supplementation above 1000 FTU/kg in pigs and broilers [54, 57]. Plasma growth hormone concentration was reduced under phosphorus deficiency in broilers [58, 59]. It could be speculated that increased P bioavailability by phytase supplementation at 1500 FTU/kg in the current study may contribute to enhanced pituitary activity and thereby higher growth hormone secretion. The increased plasma inositol and growth hormone may partially explain the improved growth performance by phytase in the present study.

In conclusion, Cu-MHAC led to greater growth rate in nursery pigs than CuSO4 in the presence of phytase supplementation at 1500 FTU/kg. Cu-MHAC enhanced fiber and P digestibility regardless of phytase in comparison with CuSO4. Phytase addition to P-deficient diets was effective in improving growth performance, Ca and P digestibility, and plasma inositol and growth hormone concentrations.

Funding The study was funded by Novus International, Inc.

Data Availability The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Compliance with Ethical Standards

Conflict of Interest All authors are employees of Novus International, Inc.

Ethics Approval The animal protocols used in the current study were approved by Novus International, Inc. Animal Ethics Committee.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Cromwell GL, Stahly TS, Monegue HJ (1989) Effects of source and level of copper on performance and liver copper stores in wean-ling pigs. J Anim Sci 67:2996–3002

2. Yi GF, Atwell CA, Hume JA, Dibner JJ, Knight CD, Richards JD (2007) Determining the methionine activity of Mintrex organic trace minerals in broiler chicks by using radiolabel tracing or growth assay. Poult Sci 86:877–887. https://doi.org/10.1093/ps/86.5.877

3. Richards JD, Zhao JM, Harrell RJ, Atwell CA, Dibner JJ (2010) Trace mineral nutrition in poultry and swine. Asian-Australasian J Anim Sci 23:1527–1534. https://doi.org/10.5713/ajas.2010.r.07

4. Armstrong TA, Cook DR, Ward MM, Williams CM, Spears JW (2004) Effect of dietary copper source (cupric citrate and cupric sulfate) and concentration on growth performance and fecal copper excretion in weanling pigs. J Anim Sci 82:1234–1240. https://doi.org/10.2527/2004.8241234x

5. Veum TL, Carlson MS, Wu CW, Bollinger DW, Ellersieck MR (2004) Copper proteinate in weanling pig diets for enhancing growth performance and reducing fecal copper excretion compared with copper sulfate. J Anim Sci 82:1062–1070. https://doi.org/10.2527/2004.8241062x

6. Zhao J, Allee G, Gerlemann G, Ma L, Gracia MI, Parker D, Vazquez-Anon M, Harrell RJ (2014) Effects of a chelated copper as growth promoter on performance and carcass traits in pigs. Asian-Australasian J Anim Sci 27:965–973. https://doi.org/10.5713/ajas.2013.13416

7. Ma YL, Zanton GL, Zhao J, Wedekind K, Escobar J, Vazquez-Ahn M (2015) Multitrial analysis of the effects of copper level and source on performance in nursery pigs. J Anim Sci 93:606–614. https://doi.org/10.2527/jas.2014-7796

8. Carpenter CB, Woodworth JC, DeRouchey JM, Tokach MD, Goodband RD, Dritz SS, Wu FZ, Usry JL (2019) Effects of increasing copper from tri-basic copper chloride or a copper-methionine chelate on growth performance of nursery pigs. Transl Anim Sci 3:369–376. https://doi.org/10.1093/tas/txy091

9. Ren P, Chen J, Wedekind K, Hancock D, Vazquez-Anon M (2020) Interactive effects of zinc, copper sources and phytase on growth performance, mineral digestibility, bone mineral concentrations, oxidative stress, and gut morphology in nursery pigs. Transl Anim Sci 4:1–16. https://doi.org/10.1093/tas/txa083

10. Dintzis FR, Laszlo JA, Nelsen TC, Baker FL, Calvert CC (1995) Free and total ion concentrations in pig digesta. J Anim Sci 73:1138–1146. https://doi.org/10.2527/1995.7341138x

11. Pang YF, Applegate TJ (2006) Effects of copper on the efficacy of phytase, growth, and phosphorus retention in weanling pigs. J Anim Sci 93:1138–1146. https://doi.org/10.1093/tas/txy091

12. Banks KM, Thompson KL, Jaynes P, Applegate TJ (2004) The effects of copper on the efficacy of phytase, growth, and phosphorus retention in broiler chicks. Poult Sci 83:1335–1341. https://doi.org/10.1093/ps/83.8.1335

13. NRCS (2012) Nutrition requirements of swine, 11th edn. National Academy Press, Washington, DC

14. AOAC (2006) Official methods of analysis, 18th edn. Association of Official Analytical Chemists, Gaithersburg

15. ISO (2009) Standard 30024. Animal feeding stuffs—Determination of phosphorus in feed. International Organization for Standardization, Geneva, Switzerland

16. Myers WD, Ludden PA, Nayigihugu V, Hess BW (2004) Technical note: a procedure for the preparation and quantitative analysis of samples for titanium dioxide. J Anim Sci 82:179–183. https://doi.org/10.2527/2004.821179x

17. Merriman LA, Stein HH (2016) Particle size of calcium carbonate does not affect apparent and standardized total tract digestibility of calcium, retention of calcium, or growth performance of growing pigs. J Anim Sci 94:3844–3850. https://doi.org/10.2527/jas.2015-0252

18. Jongbloed AW, Bikker P, Thissen JTNM (2011) Dose-response relationships between dietary copper level and growth performance
in pigs and growing-finishing pigs and effect of withdrawal of a high copper level on subsequent growth performance. Report 483, Lelystad (The Netherlands): Wageningen UR Livestock Research. http://www.livestockresearch.wur.nl

19. Shurson GC, Ku PK, Waxler GL, Yokoyama MT, Miller ER (1990) Physiological relationships between microbiological status and dietary copper levels in the pig. J Anim Sci 68:1061–1071. https://doi.org/10.2527/1990.6841061x

20. Zhou W, Kornegay ET, Lindemann JW, Swinkels MK, Wong EA (1994) Stimulation of growth by intravenous injection of copper in weanling pigs. J Anim Sci 72:2395–2403. https://doi.org/10.2527/1994.72292395x

21. Arnold MA (2011) Interaction of copper source, bile composition on microbial growth, and Cu protein homeostasis. Master thesis. Colorado State University, Fort Collins, CO

22. Kim GB, Seo YM, Shin KS, Rhee AR, Han J, Paik IK (2011) Effects of supplemental copper-methionine chelate and copper proteinate on the performance, blood parameters, liver mineral content, and intestinal microflora of broiler chickens. J Appl Poult Res 20:21–32. https://doi.org/10.3382/japr.2010-00177

23. Chen J, Wedeckin KJ, Wineman TD, Vazquez-Añón M, Escobar J (2016) Effect of chelated copper on gut health in broilers. Poult Sci 95(E-Suppl. 1):105

24. Zhou W, Kornegay ET, van Laar H, Swinkels JW, Kong MK, Wong EA (1994) The role of feed consumption and feed efficiency in copper-stimulated growth. J Anim Sci 72:2385–2394. https://doi.org/10.2527/1994.72292385x

25. Yang WY, Wang JG, Liu L, Zhu XY, Wang XX, Liu ZX, Wang Z, Yang LY, Liu GW (2011) Effect of high dietary copper on somatostatin and growth hormone-releasing hormone levels in the hypothalam of growing pigs. Biol Trace Elem Res 143:893–900. https://doi.org/10.1007/s12011-010-8904-x

26. Yang WY, Wang JG, Zhu XY, Gao YH, Liu ZX, Zhang L, Chen H, Shi XX, Yang LY, Liu GW (2012) High level copper promote ghrelin gene expression in the fundic gland of growing pigs. Biol Trace Elem Res 150:154–157. https://doi.org/10.1007/s12011-012-9477-7

27. Wang JG, Zhu XY, Guo YZ, Wang Z, Zhao BY, Yin YH, Liu GW (2016) Influence of dietary copper on serum growth-related hormone levels and growth performance of weanling pigs. Biol Trace Elem Res 172:134–139. https://doi.org/10.1007/s12011-015-0574-2

28. Gonzalez-Esquerra R, Araujo RB, Haese D, Kili JL, Cunha AF, Monzani PS, Lima CG (2019) Effect of dietary copper sources on performance, gastric ghrelin-RNA expression, and growth hormone concentrations in serum in piglets. J Anim Sci 97:4242–4247. https://doi.org/10.1002/jas.2282

29. Liu Y, Ma YL, Zhao JM, Vazquez-Anon M, Stein HH (2014) Digestibility and retention of zinc, copper, manganese, iron, calcium, and phosphorus in pigs fed diets containing inorganic or organic minerals. J Anim Sci 92:3407–3415. https://doi.org/10.2527/jas.2013-05740

30. Zhang W, Wang R, Zhu X, Kleemann DO, Yue C, Jia Z (2007) Effects of dietary copper on ruminal fermentation, nutrient digestibility and fiber characteristics in cashmere goats. Asian-Aust J Anim Sci 20:1843–1848. https://doi.org/10.5713/ajas.2007.1843

31. Kuhn I, Manner K (2012) Performance and apparent total tract phosphorus and calcium digestibility in grower-finisher pigs fed diets with and without phytase. J Anim Sci 90:143–145. https://doi.org/10.2527/jas.2011.53829

32. Santos TT, Walk CL, Wilcock P, Cordero G, Chewing J (2014) Performance and bone characteristics of growing pigs fed diets marginally deficient in available phosphorus and a novel microbial phytase. Can J Anim Sci 94:493–497. https://doi.org/10.4141/cjas2013-190

33. Ren P, Blavi L, Gonzalez-Vega C, Liu YH, Hancock D, Vazquez-Anon M, Almeida FN, Stein HH (2020) Effects of a novel E. coli phytase expressed in Pseudomonas fluorescens on growth, bone mineralization and nutrient digestibility in pigs fed corn-soybean meal diets. Transl Anim Sci. https://doi.org/10.1093/tas/txaa201

34. Kies AK, Kemme PA, Sebek LBJ, van Diepen JTM, Jongbloed AW (2006) Effect of graded doses and a high dose of microbial phytase on the digestibility of various minerals in weaner pigs. J Anim Sci 84:1169–1175. https://doi.org/10.2527/2006.8451169x

35. Adedokun SA, Owasu-Aisiedu A, Ragland D, Phamstead P, Adeola O (2015) The efficacy of a new 6-phytase obtained from Buttaiaella spp. expressed in Trichoderma reesei on digestibility of amino acids, energy, and nutrients in pigs fed a diet based on corn, soybean meal, wheat middlings, and corn distillers’ dried grains with solubles. J Anim Sci 93:168–175. https://doi.org/10.2527/jas.2014-7912

36. Nourreddini H, Dang J (2009) Degradation of phytates in distillers grains and corn gluten feed by Aspergillus niger phytase. Appl Biochem Biotechnol 159:11–23. https://doi.org/10.1007/s10068-008-8365-2

37. Selle PH, Ravindran V, Bryden WL, Scott T (2006) Influence of dietary phytate and exogenous phytase on amino acid digestibility in poultry: a review. Jpn Poult Sci 43:89–103. https://doi.org/10.2141/jpsa.43.89

38. Woyengo TA, Adeola O, Udenigwe CC, Nyachoti CM (2010) Gastro-intestinal digesta pH, pepsin activity and soluble mineral concentration responses to dietary phytic acid and phytase in piglets. Livest Sci 134:91–93. https://doi.org/10.1016/j.livsci.2010.06.107

39. Liu N, Ru YJ, Li FD, Cowieson AJ (2008) Effect of diet containing phytate and phytase on the activity and messenger ribonucleic acid expression of carbohydrate and transporter in chickens. J Anim Sci 86:3432–3439. https://doi.org/10.2527/jas.2008-1234

40. She Y, Sparks JC, Stein HH (2018) Effects of increasing concentrations of an Escherichia coli phytase on the apparent ileal digestibility of amino acids and the apparent total tract digestibility of energy and nutrients in corn-soybean meal diets fed to growing pigs. J Anim Sci 96:2804–2816. https://doi.org/10.1093/jas/sky152

41. Arredondo MA, Casas GA, Stein HH (2019) Increasing levels of microbial phytase increases the digestibility of energy and minerals in diets fed to pigs. Anim Feed Sci Technol 248:27–36. https://doi.org/10.1016/j.anifeedsci.2019.01.001

42. Zeng ZK, Li QY, Zhao PF, Xu X, Tian QY, Wang HL, Pan L, Yu S, Piao XS (2016) A new phytase continuously hydrolyzes phytate and improves amino acid digestibility and mineral balance in growing pigs fed phosphorous-deficient diet. J Anim Sci 94:629–638. https://doi.org/10.2527/jas.2015-9143

43. Metzler BU, Mosenthin R, Baumgärtel T, Rodehutscord M (2008) The effect of dietary phosphorus and copper level, phytase supplementation, and ileal infusion of pectin on the chemical composition and carbohydrate activity of fecal bacteria and the level of microbial metabolites in the gastrointestinal tract of pigs. J Anim Sci 86:1544–1555. https://doi.org/10.2527/jas.2007-0267

44. Lei X, Ku PK, Miller ER, Ullrey DE, Yokoyama MT (1993) Supplement microbial phytase improves bioavailability of dietary zinc to weanling pigs. J Nutr 123:1117–1123. https://doi.org/10.1093/jn/123.6.1117

45. Bikker P, Jongbloed AW, Thissen JTNM (2012) Meta-analysis of effects of microbial phytase on digestibility and bioavailability of copper and zinc in growing pigs. J Anim Sci 90:134–136. https://doi.org/10.2527/jas.2011.53798

46. Bikker P, van Diepen JTM, Binnendijk GP, Jongbloed AW (2012) Phytase inclusion in pig diets improves zinc status but its effect on copper availability is inconsistent. J Anim Sci 90:197–199. https://doi.org/10.2527/jas.2013-053907

Interactive Effects of Copper Sources and a High Level of Phytase in Phosphorus-Deficient Diets on Growth...

Springer
47. Adeola O (1995) Digestive utilization of minerals by weanling pigs fed copper- and phytase-supplemented diets. Can J Anim Sci 75: 603–610. https://doi.org/10.4141/cjas95-089
48. Zacharias B, Ott H, Drochner W (2003) The influence of dietary microbial phytase and copper on copper status in growing pigs. Anim Feed Sci Technol 106:139–148. https://doi.org/10.1016/S0377-8401(03)00007-5
49. Hill GM, Ku PK, Miller ER, Ullrey DE, Losty TA, O’Dell BL (1983) A copper deficiency in neonatal pigs induced by a high zinc maternal diet. J Nutr 113:867–872. https://doi.org/10.1093/jn/113.4.867
50. Cousins RJ (1985) Absorption, transport and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev 65:238–309. https://doi.org/10.1152/physrev.1985.65.2.238
51. Oestreicher P, Cousins RJ (1985) Copper and zinc absorption in the rat: mechanism of mutual antagonism. J Nutr 115:159–166. https://doi.org/10.1093/jn/115.2.159
52. Fischer PWF, Giroux A, L’Abbe MR (1983) Effects of zinc on mucosal copper binding and on the kinetics of copper absorption. J Nutr 113:462–469. https://doi.org/10.1093/jn/113.2.462
53. Cowieson AJ, Aureli R, Guggenbuhl P (2015) Possible involvement of myo-inositol in the physiological response of broilers to high doses of microbial phytase. Anim Prod Sci 55:710–719. https://doi.org/10.1071/AN14044
54. Moran K, Wilcock P, Elsbernd A, Zier-Rush C, Boyd RD, van Heugten E (2019) Effects of super-dosing phytase and inositol on growth performance and blood metabolites of weaned pigs housed under commercial conditions. J Anim Sci 97:3007–3015. https://doi.org/10.1093/jas/skz156
55. Sommerfeld V, Künzel S, Schollenberger M, Kühn I, Rodehutscord M (2018) Influence of phytase or myo-inositol supplements on performance and phytate degradation products in the crop, ileum, and blood of broiler chickens. Poult Sci 97:920–929. https://doi.org/10.3382/ps/pex390
56. Croze ML, Soulage CO (2013) Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie 95:1811–1827. https://doi.org/10.1016/j.biochi.2013.05.011
57. Walk CL, Bedford MR, Santos TS, Paiva D, Bradley JR, Wladecki H, Honaker C, McElroy AP (2013) Extra-phosphoric effects of superdoses of a novel microbial phytase. Poult Sci 92:719–725. https://doi.org/10.3382/ps.2012-02727
58. Carew LB, Gestone TA, Alster FA (1985) Effect of a phosphorus deficiency on thyroid function and growth hormone in the white leghorn male. Poult Sci 64:2010–2012. https://doi.org/10.3382/ps.0642010
59. Parmer TG, Carew LB, Alster FA (1987) Thyroid function, growth hormone, and organ growth in broilers deficient in phosphorus. Poult Sci 66:1995–2004. https://doi.org/10.3382/ps.0661995

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.