Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades

Citation for published version (APA):
Rezaeih, A., Montazeri, H., & Blocken, B. (2018). Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades. *Energy, 165*(B), 1129-1148. https://doi.org/10.1016/j.energy.2018.09.192

Document license:
CC BY

DOI:
10.1016/j.energy.2018.09.192

Document status and date:
Published: 15/12/2018

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl

providing details and we will investigate your claim.
Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades

Abdolrahim Rezaeiha a, *, Hamid Montazeri a, b, Bert Blocken a, b

a Department of the Built Environment, Eindhoven University of Technology, Eindhoven, the Netherlands
b Department of Civil Engineering, KU Leuven, Leuven, Belgium

1. Introduction

Vertical axis wind turbines (VAWTs) have recently received renewed interest for wind energy harvesting in two new potential locations, i.e., far offshore and in urban and rural environments [1–6]. In far offshore, VAWTs are promising for deep-water floating offshore windfarms [7–10]. In the urban and rural environments, VAWTs can be mounted on the building roof, between the buildings, integrated into the urban and rural settings, inside the wind catchers and ventilation ducts [11–18]. VAWTs have several advantages compared to horizontal axis wind turbines (HAWTs): omni-directionality, low noise, simple design, low manufacturing, installation and maintenance costs, scalability, compactness, small shadow flickering, less visual aesthetic disturbance and higher bird and bat safety [19–24]. However, their aerodynamic performance is currently lower than HAWTs due to the comparatively small amount of research that they have received and due to their more complex unsteady aerodynamics [25–31]. Therefore, to benefit from their many advantages, their aerodynamic performance needs to be further improved.

The complex aerodynamic performance of VAWTs is influenced by flow phenomena such as unsteady separation and dynamic stall [32–40], blade-wake interactions [41], flow curvature effects [42,43] and rotational and Coriolis effects on boundary layer and shed vortices [44]. Such complex flow phenomena are driven by the geometrical and operational characteristics of the turbine, which therefore necessitate a sound understanding of the individual and combined impacts of these characteristics on the aerodynamic performance of the turbine. The impact of the operational characteristics, namely tip speed ratio λ, Reynolds number Re, and turbulence intensity TI for VAWTs have been extensively studied by Bachant and Wisnik [45], Millet et al. [46] and Rezaeiha et al. [20]. The geometrical characteristics include solidity [47,48], number of blades, airfoil shape [49,50], blade surface roughness, location of blade-spoke connection, pitch angle [51], blade aspect ratio [7], shaft diameter and surface roughness [52].

* Corresponding author.
E-mail address: a.rezaeiha@tue.nl (A. Rezaeiha).
The existing literature has the following limitations:

(i) The conclusions have been derived using a limited number of test cases and are dependent on the operational conditions;

(ii) The impact of solidity and number of blades at fixed \(\text{Re}_c \) has not yet been investigated. It should be noted that as changing solidity naturally modifies \(\text{Re}_c \), therefore, the findings in previous studies could have been influenced by the Reynolds number effects;

(iii) The dependency of the optimal tip speed ratio on the solidity has not been yet elucidated;

(iv) The focus has been mainly on the average turbine performance, i.e., \(\text{C}_{\text{p}} \). Detailed analyses of the blade dynamic loads and the turbine wake, however, has been investigated either incompletely or not at all.

Therefore, in this paper:

(i) The impact of solidity is studied within a wide range from a low value of 0.09 to a relatively high value of 0.36 for three turbines with different number of blades, i.e., 2-, 3- and 4-bladed turbines;

(ii) A wide range of operational conditions is considered. Tip speed ratio varies from a low value of 1.5, where the flow is dominated by the dynamic stall and the blade-wake interactions, to a high value of 5.5, where although the flow is mostly attached, the rotational effects are significant. Turbulence intensities vary from 0%, representative of high-quality low-turbulence wind tunnels, to 25%, representative of relatively high turbulence level environments. The chord Reynolds number varies from 0.51 \(\times 10^5 \) to 6.41 \(\times 10^5 \), which covers the relevant range for small-to-medium-scale VAWTs. Reduced frequency (\(K \)) varies from 0.02 to 0.18, which covers weakly-to-highly-unsteady flows;

(iii) The dependency of the optimal solidity on tip speed ratio is comprehensively investigated;

(iv) A new parameter is introduced to which the turbine optimal tip speed ratio \(\lambda_{\text{opt}} \) is invariant, regardless of the turbine geometrical and operational characteristics;

(v) A new correlation is derived to estimate \(\lambda_{\text{opt}} \) only as a function of \(\sigma \), which can be helpful during the initial design phase of VAWTs;

(vi) Detailed analyses are performed at constant \(\text{Re}_c \) to better clarify the impact of solidity and number of blades, unaffected by any potential Reynolds number effects;

(vii) In addition to the turbine averaged performance, the turbine wake and dynamic loads on the blades are also investigated for various solidities and number of blades;

(viii) Reduced frequency is shown to be an influential parameter on the aerodynamic performance of VAWTs.

The evaluation is based on high-fidelity CFD simulations, extensively validated with experiments. In total 296 simulations are performed. The findings of this study are intended to provide an in-depth understanding of the impact of solidity and number of
blades on the aerodynamic performance of VAWTs and to support the optimal design of VAWTs by elucidating the influence of various operational parameters.

The outline of the paper is as follows: the computational settings and parameters are described in Section 2. Section 3 briefly reviews the validation studies. The test cases are described in Section 4. The results and discussion of the impact of solidity and number of blades are presented in Sections 5 and 6, respectively. Conclusions are provided in Section 7.

2. Computational settings and parameters

The reference turbine is a Darrieus H-type VAWT with the same geometrical and operational characteristics as in the wind tunnel experiment by Tescione et al. [62]. (Table 1 and Fig. 1a). The blade cross-section is the symmetric NACA0018 airfoil. The location of the blade-spoke connection is half-chord, where a single connection is used. The shaft rotates at the same rotational velocity and direction as the turbine, i.e., counter-clockwise.

As the focus of the study is on the midplane of a turbine with high blade aspect ratio, h/c > 10 [7,62], where the 3D blade tip effects are avoided, 3D simulations are not considered. An extensive comparison of 2D and 2.5D results revealed that the 3D boundary layer effects result in a systematic difference of less than 6% and 2% in the calculated turbine CP and CT, respectively, where the difference is weakly sensitive to the operational conditions [20]. Therefore, with respect to the large number of simulations performed in the present work for the extensive parametric study, i.e., 296 URANS simulations, 2D simulations are selected in view of limiting the computational costs.

The 2D computational domain is 35d × 20d and consists of a rotating core and a fixed domain surrounding the core as shown in Fig. 1b. The 2D blockage ratio (d/W) is 5%. The size of the computational domain is based on the guidelines for CFD simulations of VAWTs [63,64].

The computational grid, shown in Fig. 1c–e, consists of approximately 400,000 quadrilateral cells with a maximum and an average grid size of 3.8 and 1.4 on the blade surfaces, respectively. The grid is based on a grid sensitivity analysis using three uniformly refined grids with a linear refinement factor of √2. The Grid Convergence Index (GCI) [65], calculated using CP values with a safety factor (Fs) of 1.25, is 3.5 × 10⁻³, which is 0.85% of the respective CP value. Further detailed information about the grid sensitivity analysis is presented in Ref. [64].

The boundary conditions at the inlet and outlet of the domain are a uniform velocity inlet and zero gauge static pressure outlet. Symmetry condition is used for the side faces. No-slip condition holds on the airfoil and shaft walls. Sliding grid interface is employed for the interface between the rotating and fixed grids.

In the CFD simulations, the approach-flow (i.e. inlet) total turbulence intensity is 5% with a turbulence length scale equal to the turbine diameter, i.e., 1 m. The incident-flow total turbulence intensity is 4.42% representing the real value experienced by the turbine. The incident-flow value corresponds to the total turbulence intensity at the turbine incidence calculated using an empty domain and is lower than the approach-flow value due to the turbulence decay in the computational domain [64,66,67].

The four-equation transition SST model [68], also known as γ-Re0 model, is employed to model the turbulence. This model is developed based on the two-equation SST k-ω turbulence model [69,70] which has been further improved to predict the laminar-to-turbulent transition for wall-bounded flows. The improvement is obtained by solving two other transport equations, one for the intermittency γ and one for the momentum-thickness Reynolds number Re0. The model includes empirical correlations developed by Langtry and Menter [68] to trigger the transition model so that the model can recognize the flows where the laminar-to-turbulent transition might not be present in the flow, e.g. low freestream turbulence flows or high turbulence standard bypass transition flows. Further details of the model can be found in Refs. [68,71].

The intermittency-based transition models have been shown to improve the flow prediction in transitional regimes of wall-bounded flows, such as flow on airfoils, cylinders, etc., [71–76]. Previous studies have shown the good performance of such turbulence models for different applications, e.g. Suzen et al. [73,74], Walters and Leylek [77], Cutrone et al. [78].

Incompressible unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations are performed using the commercial CFD software ANSYS Fluent 16.1 [79] with the SIMPLE scheme [80] for pressure-velocity coupling and the second-order temporal and spatial discretization. The azimuthal increment, dq, is 0.1 °, which is based on CFD guidelines for VAWTs [63,64]. The number of iterations per time step is 20. A number of 20 turbine revolutions are performed, and the results are sampled at the 21st turbine revolution. This value is based on a comprehensive convergence analysis and allows the results to reach a statistically steady-state condition [63,64].

Parameter	Value
Number of blades, n	2
Diameter, d [m]	1
Height, h [m]	1
Swept area, A [m²]	1
Solidity, σ	0.12
Blade aspect ratio, h/c	16.67
Airfoil chord, c [m]	0.06
Shaft diameter, d [m]	0.04
Freestream velocity, U∞ [m/s]	9.3
Rotational velocity, ω [rad/s]	27.9–102.3
Tip speed ratio, λ	1.5–5.5
Chord Reynolds number, Re0	0.69 × 10⁵–2.14 × 10⁵
3. Validation study

Two sets of validations have been performed to ensure the accuracy of the CFD simulations, where the CFD results are compared with the experimental data by Tescione et al. [62] and Castelli et al. [81]. The two turbines employed in the two validations have different number of blades, solidity, airfoil shape, tip speed ratio, and Reynolds number. A detailed comparison of the CFD results with the experimental data and a comprehensive explanation of the possible reasons for the deviations between the numerical and experimental data is discussed in Refs. [20, 51, 52, 64], which for brevity are only briefly repeated here:

1) Wake velocity of the 2-bladed reference turbine: the time-averaged (over one turbine revolution) streamwise and lateral normalized velocities at different downstream positions, $x/R = 2.0–3.0$, along the lateral direction, $-0.75 \leq y/R \leq 0.75$, in the wake of a 2-bladed turbine (reference turbine) were compared with the experimental data by Tescione et al. [62]. The deviations are 8.6%–11.8% for the streamwise velocity component and 2.3%–2.5% for the lateral velocity component corresponding to the least and the most downstream positions.

2) Power coefficient of a 3-bladed turbine: the power coefficient of a 3-bladed turbine with a diameter of 1.03 m, solidity of 0.25 and blade cross-section of NACA0021 airfoil was compared with the experimental data by Castelli et al. [81] at different tip speed ratios from 3.04 to 3.08 (see Table 2). A good agreement between the numerical results and the experimental data was achieved where the minimum deviation of 3.42% is present at $\lambda = 2.04$. The maximum deviation of 23.2% is observed at the highest λ of 3.08.

4. Test cases

The present work is a characterization study aimed at revealing the previously-unknown aspects of the impact of solidity and number of blades on the aerodynamic performance of VAWTs. Therefore, the two parameters are systematically studied within a wide and meaningful range. Such a systematic analysis is needed to provide a comprehensive picture of the influence of the two aforementioned parameters under various operational conditions.

The impact of the turbine solidity on the aerodynamic performance of VAWTs is studied for a wide range of solidities from a low value of 0.09 to a relatively-high value of 0.36 (see Table 3). Note that, in the present study, the solidity is changed via the blade chord length, which at a given turbine operational condition, inevitably modifies Re_c. Note that in the present study for turbines with different solidities but identical number of blades and tip speed ratio, Re_c is kept constant by scaling the blade chord length, freestream and rotational velocities, see Section 5.3.

The study is performed for turbines with different number of blades, i.e. 2, 3 and 4, and at different tip speed ratios ranging from a low value of 1.5, where dynamic stall occurs, to a high value of 5.5, where the flow is mostly attached but rotational effects are considerable, in order to analyze the corresponding impact for each regime. The Re_c varies from 0.51×10^5 to 6.41×10^5, which covers the range for the small-to medium-scale VAWTs. Different values of approach-flow (i.e. inlet) turbulence intensities from 0%, representative of low-turbulence wind tunnel tests, to 25%, representative of relatively-high turbulence operating environments, are investigated. The incident-flow total turbulence intensities are presented in Table 4. The K varies from 0.02 to 0.18 covering a wide range of unsteadiness in the flow.

A detailed analysis of the effect of solidity on the turbine wake and the dynamic loads on the blades at constant Re_c is performed for a 2-bladed turbine, see Section 5.3.

Table 2

Comparison between the measured C_p [81] and simulated C_p (present CFD study).

λ	2.04	2.33	2.51	2.64	3.08		
C_p (by Castelli et al. [81])	0.137	0.295	0.300	0.312	0.284		
C_p (present CFD)	0.142	0.231	0.299	0.333	0.350		
$	\Delta C_p	[%]$	3.42%	10.7%	0.5%	6.8%	23.2%

Table 3

Parameters to study the impact of solidity and number of blades.

n	σ	c [cm]	K	$\lambda = 1.5–5.5$	$Re_c \times 10^5$	U_∞ [m/s]	Ω [rad/s]	TI [%]
2-bladed	0.09	0.45	0.045	0.51–1.60	9.3	27.9–102.3	0, 5, 15, 25	
	0.12	6	0.06	0.69–2.14				
	0.18	9	0.09	1.03–3.20				
	0.24	12	0.12	1.38–4.27				
	0.30	15	0.15	1.72–5.34				
	0.36	18	0.18	2.07–6.41				
3-bladed	0.09	3	0.03	0.51–1.60	13.95	41.8–153.5	5	
	0.12	4	0.04	0.69–2.14				
	0.18	6	0.06	1.03–3.20				
	0.24	8	0.08	1.38–4.27				
	0.30	10	0.10	1.72–5.34				
	0.36	12	0.12	2.07–6.41				
4-bladed	0.09	2.25	0.0225	0.51–1.60	18.6	55.8–204.6	5	
	0.12	3	0.03	0.69–2.14				
	0.18	4.5	0.045	1.03–3.20				
	0.24	6	0.06	1.38–4.27				
	0.30	7.5	0.075	1.72–5.34				
	0.36	9	0.09	2.07–6.41				
The impact of the number of blades on the aerodynamic performance of VAWTs is studied by comparing 2-, 3-, and 4-bladed turbines at different tip speed ratios and solidities (see Table 3). Note that for turbines with different number of blades but identical solidity and tip speed ratio, Reₜ is kept constant, by scaling the freestream and rotational velocities, to avoid the Reynolds number effects [20].

5. Impact of solidity

5.1. Turbine performance

Fig. 2a shows the power coefficient versus tip speed ratio for 2-bladed VAWTs with different solidities from 0.09 to 0.36. It can be seen that a low-solidity turbine obtains its highest C_P (C_Pmax) at moderately-high λ while a high-solidity turbine works optimally at relatively-low λ. For instance, a turbine with σ = 0.09 works optimally at λ = 4.5, while the optimal λ (λopt) of a turbine with σ = 0.36 shifts to λ = 2.0. This implies that the geometrical design of a constant-speed VAWTs, which inevitably has variable λ due to the changes of the incoming flow, is only optimal for one particular λ and the turbine will be working sub-optimally in the majority of the operating conditions. Fig. 2a also indicates that with the increase of σ from 0.09 to 0.36, C_Pmax increases by 22.5%.

For constant-speed urban VAWTs, which during their design condition most frequently operate at moderately-high λ regime due to the low mean wind speed in the urban environment, a low solidity is shown to be optimal, e.g. for a turbine dominantly operating at 4.0 ≤ λ ≤ 5.5, a solidity range of 0.1 ≤ σ ≤ 0.15 is preferred. This is while a higher solidity will result in a dramatically unfavorable C_P. Note that the design condition, which is the focus of this study, refers to when the wind speed has already exceeded the
turbine cut-in velocity and the start-up phase, during which the turbine starts to rotate and reaches the designed rotational speed, has passed. Also note that for constant-speed urban VAWTs, moderate to high λ is unavoidable because, given their small size and blade chord length, in order to avoid the undesirable low Reynolds number effects, they need to rotate relatively fast to keep a sufficiently high Re ($\geq 10^5$).

Fig. 2b shows the power coefficient versus solidity for 2-bladed VAWTs at constant λ, which is the case for variable-speed VAWTs. It can be seen that for variable-speed (constant λ) VAWTs, the optimal σ, where C_p_{max} is delivered, decreases with the increase of λ. For instance, the optimal σ for a turbine constantly operating at $\lambda = 3.0$ is $\sigma = 0.24$. The optimal σ reduces to 0.18 when the turbine is operated at a higher λ of 3.5. Moreover, the value of $C_{p_{\text{max}}}$ slightly increases for turbines with higher optimal σ (operating at lower λ). The increment in $C_{p_{\text{max}}}$ for higher σ is due to the Reynolds number effects, i.e., higher Re, and $C_{p_{\text{max}}}$.

The optimal design of a VAWT can be more clearly inferred from the contours of C_p illustrated in $\lambda - \sigma$ space shown in Fig. 3a. Fig. 3b and c show similar C_p contours for 3- and 4-bladed turbines where a similar trend is observed. The contours explicitly highlight the optimal operation of the turbine with respect to the solidity and tip speed ratio while also elucidating the regions of the poor turbine performance which need to be avoided, i.e., a high-solidity turbine at moderate to high λ or a low-solidity turbine at low λ. These figures can serve as a design guide for designers and manufacturers of VAWTs for different operating conditions.

The turbine thrust coefficient C_T in $\lambda - \sigma$ space for 2-, 3- and 4-bladed VAWTs are exhibited in Fig. 3d–f. It can be seen that the C_T values grow by increasing both σ and λ, where the minimum and the maximum C_T values correspond to the lowest and the highest σ and λ combinations.

The impact of solidity on the turbine performance as a function of TI is further investigated at TI = 0%, 15%, and 25%. Fig. 4 shows the contour of power coefficient in $\lambda - \sigma$ space for 2-bladed VAWTs with turbulence intensity from 0% to 25%. Fig. 4 reveals that the trend of C_p in $\lambda - \sigma$ space is independent of TI. This is of significant importance for the design of variable-speed (constant λ) VAWTs as the optimal aerodynamic design, irrespective of the turbulence level, will remain a relatively high-solidity turbine operating at a moderately-low tip speed ratio regime.

As presented in Figs. 3 and 4, the optimal performance of the turbine is obtained either at a combination of low solidity and high tip speed ratio or vice versa. This means that, at a given wind speed, when the turbine is rotating faster (higher λ), the optimal performance is achieved with a smaller blade area (lower σ) while if the turbine is rotating slower (lower λ) the optimal performance is obtained for a larger blade area (higher σ). The shift could be correlated with a balance in the output power of the turbine as follows. One can consider λ and σ as dimensionless measures of blade velocity and surface area, respectively. As the power is proportional to area times the cubic velocity, $P = f(A\lambda^3)$, the dimensionless power, i.e. C_p, can be considered as $C_p = f(\sigma\lambda^3)$. Therefore, the newly-defined parameter $\sigma\lambda^3$ can be employed to better investigate the invariance of the turbine C_p values. Fig. 5 illustrates C_p versus $\sigma\lambda^3$ for 2-, 3- and 4-bladed turbines. The figure shows that the $\sigma\lambda^3$ value corresponding to optimal performance, i.e. maximum C_p, is almost independent of the number of blades and solidity. This is an important finding, which highlights the invariance of the optimal operation to the newly-defined parameter $\sigma\lambda^3$.

Fig. 5. Power coefficient versus $\sigma\lambda^3$ for turbines with different number of blades (TI = 5%).

Fig. 6. Contours of power coefficient for turbine with different number of blades and different approach-flow turbulence intensities. Each contour plot is based on 48 simulations.
Fig. 6 presents contours of C_P in $\sigma - \alpha^3$ space illustrating the approximate invariance of $C_{P,max}$ for turbines with different geometrical and operational characteristics.

5.2. Optimal tip speed ratio

Optimal tip speed ratio λ_{opt} is an important design parameter for both constant-speed (variable λ) and variable-speed (constant λ) VAWTs. For constant-speed VAWTs, the turbine can be designed to have the λ_{opt} in the vicinity of the dominant λ to maximize the power output. For variable-speed VAWTs, the turbine can be designed to maintain the λ_{opt} during the majority of possible operating conditions. Previous experimental and numerical results have shown the Re-independency of λ_{opt} [20,45,46]. However, λ_{opt} could be dependent on the other parameters, such as solidity. Therefore, it is of prime importance to analyze such dependencies.

Table 5 presents the optimal performance versus solidity for 2-, 3- and 4-bladed VAWTs (TI = 5%).

![Table 5](image)

Table 6 presents the optimal tip speed ratio versus solidity for 2-bladed VAWTs with different approach-flow turbulence intensities.

![Table 6](image)

Table 7 Details of the data sets employed for the curve fitting.

![Table 7](image)

Fig. 7. Optimal tip speed ratio vs. solidity with a curve fit using Eq. (1) based on data sets in Table 7.
turbulence. At a given solidity, λ_{opt} is only weakly dependent on TI.

Given the paramount importance of λ_{opt} for design purposes, a quick first approximation of λ_{opt} based on the turbine geometrical parameters is very much desired by the designers and manufacturers of wind turbines. Therefore, in this study, a new correlation between λ_{opt} and σ is derived, see Eq. (1). A two-term power function (with 95% confidence levels) is used to fit the CFD results (presented in Tables 5 and 6) and four other experimental data sets. The data sets and the fitted curve are shown in Table 7 and Fig. 7.

$$\lambda_{\text{opt}} = 2.693\sigma^{-0.329} - 1.605$$

(1)

The correlation can be employed in the following two ways:

1) To estimate the λ_{opt} for a turbine with a known geometrical design: for instance when the geometrical design of the turbine, i.e., σ, is already constrained by the other design drivers, such as the structural requirements. In that case, the turbine optimal rotational velocity can be estimated using the provided correlation for a given wind condition of any potential installation location.

n	σ	c [cm]	K	$\lambda = 1.5-3.5$	$\text{Re}_t \times 10^5$	U_∞ [m/s]	Ω [rad/s]	TI [%]	TI [%]
2	0.12	6	0.06	6.9 – 2.14	9.3	27.90 – 102.30	5	4.42	
	0.24	12	0.12	4.65		13.95 – 51.15			
	0.30	15	0.15	3.72		11.16 – 40.92			

Table 8

Description of cases for detailed analysis of the impact of solidity at constant Re_t.

Fig. 8. (a–c) Contours of instantaneous moment coefficient versus λ (note the different range of colormaps); (d–f) instantaneous moment coefficient line plot for different λ; (g) instantaneous power coefficient (λC_m) during the last turbine revolution for different σ at their λ_{opt}; and (h–i) resulting power and thrust coefficients. Note that Re_t is constant at identical λ.

2) To identify the optimal \(\sigma \) for a turbine with a desired \(\lambda_{\text{opt}} \): for instance when the turbine rotational velocity is already constrained by the other design drivers, e.g., the drivetrain rotational speed, and thus the dominant \(\lambda \) is known for a given wind condition. In that case, the optimal turbine \(\sigma \) can be estimated using the provided correlation by solving the equation for \(\sigma \).

Given the Re-independency of \(\lambda_{\text{opt}} \) (see Refs. [20,45,46]), its weak dependency to TI, and the large diversity of the geometrical and operational characteristics of the data sets employed for the curve fitting (Table 7), the proposed correlation can be used for the Darrieus H-type VAWTs with different geometrical characteristics, namely number of blades, airfoil shapes, solidities, and operational conditions, namely \(\lambda \), TI, K and Re.

5.3. Analysis at constant \(\text{Re}_c \)

In order to further elucidate how the solidity influences the turbine performance and wake, a more detailed analysis is performed for 2-bladed turbines with different solidities of 0.12, 0.24 and 0.30 at constant \(\text{Re}_c \) for identical \(\lambda \). Note that, for a given \(\lambda \), \(\text{Re}_c \) is kept constant by adjusting both \(U_{\infty} \) and \(\Omega \) in the same manner. For instance at \(\lambda = 1.5 \), for a turbine with \(\sigma = 0.12 \) and chord length of 0.06 m, \(U_{\infty} \) and \(\Omega \) are 9.3 m/s and 27.9 rad/s, respectively. This yields \(\text{Re}_c = 0.69 \times 10^5 \). For a turbine with \(\sigma = 0.24 \) and chord length of 0.12 m, the modified \(U_{\infty} \) and \(\Omega \) are 4.65 m/s and 13.95 rad/s, which similarly yields \(\text{Re}_c = 0.69 \times 10^5 \). Table 8 presents the description of the cases.

Fig. 8a–c show contours of the instantaneous moment coefficient during the last turbine revolution versus \(\lambda \) for the different solidities. To further clarify the contours, three additional typical \(C_m \) vs. \(\theta \) plots are also presented in Fig. 8d–e, corresponding to the \(\lambda_{\text{opt}} \) of the different solidities. The following observations are made:

- Increasing the solidity is found to substantially delay the early drop in \(C_m \) and avoid the subsequent fluctuations at low \(\lambda \), which occur due to the dynamic stall on the blades (see Fig. 8a and d). For \(\sigma = 0.12 \), the load fluctuations due to the dynamic stall are observable for \(1.5 \leq \lambda \leq 2.5 \) while they are already absent at \(\lambda = 2.0 \) for \(\sigma = 0.30 \). This is thought to be due to the higher reduced frequency, \(K \), for the higher solidity turbine. For instance, increasing \(\sigma \) from 0.12 to 0.30 scales up \(K \) from 0.06 to 0.15, resulting in much higher unsteady aerodynamics over the blade. This consequently delays the flow separation and dynamic stall on blades. The observed trend for the reduced frequency is also in line with the studies on pitching airfoils [84,85]. Further analysis to highlight such impact follows in this section where the boundary layer events are discussed to confirm the reduced frequency effect.

- Increasing the solidity substantially reduces the contribution of the turbine aft half \(180^\circ \leq \theta < 360^\circ \) in the total power production. This is explained as a higher solidity turbine extracts more energy from the flow in the turbine fore half \(0^\circ \leq \theta < 180^\circ \), which therefore leaves less energy in the flow to be exploited downstream. In addition, higher solidity results in higher blockage to the incoming flow, which eventually increases the induction by the turbine and further slows down the incoming flow. The lesser contribution by the turbine aft half for \(\sigma = 0.30 \) is more pronounced for \(\lambda \geq 3.0 \) where the turbine aft half yields zero to negative \(C_m \) values (see Fig. 8e and f).

Fig. 8g and i show power and thrust coefficients versus \(\lambda \) for the different solidities. Note that \(\text{Re}_c \) is constant at identical \(\lambda \). As already discussed in Section 5.2, increasing the solidity shifts \(\lambda_{\text{opt}} \) to lower values while interestingly, at constant \(\text{Re}_c \), \(C_{p,\text{max}} \) remains almost independent of \(\sigma \). On the other hand, increasing solidity is found to substantially increase the \(C_t \) due to the higher total blade surface area.

Fig. 8g shows the instantaneous power coefficient \((\lambda C_m) \) for the respective solidities at their optimal operating condition, i.e., \(\lambda_{\text{opt}} \). As already shown, the turbines have almost the same \(C_{p,\text{max}} \) at \(\lambda_{\text{opt}} \), implying that the integrals of the three curves shown in Fig. 8g are approximately the same.

Fig. 9 shows the normalized cumulative sum of the instantaneous moment coefficient and the contribution of each turbine quartile for the different solidities at their \(\lambda_{\text{opt}} \). It can be seen that a high solidity turbine at the optimal condition produces more power in the upwind quartile, benefitting from the larger blade area, while leaving less energy to be extracted in the downwind quadrant. On the other hand, a low solidity turbine can yield less power in the upwind quadrant allowing more energy extraction further downstream in the downwind quadrant. This somehow shows that due to the inherent unsteady nature of VAWTs, the maximum achievable efficiency using a static design (blades with no active mechanism to modify the local flow over the blade and to modify the angle of attack during the revolution) is basically limited, and regardless of the turbine geometrical design, the optimal efficiency will stay...
Fig. 10. Variations of experienced angle of attack, normalized relative velocity, lift and drag coefficients during the last turbine revolution for different σ at constant Re, for identical λ.

Fig. 11. Spatiotemporal contours of friction coefficient along the blade suction side (denoted with '-' sign) over the half-revolution for different σ with constant Re, at identical λ.
almost constant. This urges the need for active mechanisms for further improvement of the aerodynamic performance of VAWTs. Fig. 10 shows the variations of the experienced angle of attack (\(\alpha \)), normalized relative velocity (\(V_{rel} \)), lift and drag coefficients (\(C_l \) and \(C_d \)) during the last turbine revolution for different solidities at various \(\lambda \). The comparison shows that:

- For different \(\lambda \), increasing \(\sigma \) decreases the variations of \(\alpha \). This is due to the comparatively high blockage of a turbine with higher \(\sigma \), which further decelerates the incoming flow. The comparatively high induced velocity by the turbine is also apparent from the lower (higher) values of relative velocity \(V_{rel} \) at \(0^\circ \leq \theta \leq 180^\circ \) and \(270^\circ < \theta \leq 360^\circ \) (\(180^\circ < \theta \leq 270^\circ \)). Note that for \(180^\circ < \theta \leq 270^\circ \), as the incoming flow is opposing the blade rotational speed, an incoming flow with lower velocity (due to the higher induced velocity) will lead to a comparatively high \(V_{rel} \).
- The reduction in the absolute value of \(\alpha \) by increasing \(\sigma \) is observed at both turbine fore and aft halves, where the reduction for the latter is more pronounced. Higher (absolute) differences in \(V_{rel} \) for different \(\lambda \) are also apparent in the turbine aft half.
- Increasing \(\sigma \), at a given \(Re \), is found to influence the \(C_l \) and \(C_d \) in two ways: first due to a reduction in the absolute value of \(\alpha \) and second due to the higher \(K \). The former is more pronounced in the turbine aft half, where \(C_l \) is significantly lower for higher \(\sigma \). The latter is found to decrease the slope of the \(C_l - \alpha \) curve during the upstroke, delay the flow separation and stall and diminish the load fluctuations. The load fluctuations occur due to the blade stall and the blade-wake interactions (BWI). Such fluctuations are observed for \(\lambda = 2.5 \) and 3.0, where separation is noticeable. In addition, the higher \(K \) substantially increases the \(C_{\text{max}} \) and significantly reduces the \(C_d \) and the \(C_{d,\text{max}} \), which occurs due to stall and BWI, for all cases except \(\lambda = 4.0 \) where the flow is mostly attached, and stall is avoided.

In order to further elucidate how changing the solidity, at a given \(Re \), affects the dynamic loads on the blades, i.e. \(C_l \) and \(C_d \), it is essential to analyze the boundary layer events. Such analysis can also confirm the role of the reduced frequency in comparison to the studies on pitching airfoils. Fig. 11 shows the spatiotemporal contours of friction coefficient \(C_f \) along the blade over the last turbine revolution for different solidities at various \(\lambda \). Figs. 12 and 13 show the contours of dimensionless \(z \)-vorticity with superimposed streamlines during the last turbine revolution at various azimuthal positions. The figures explicitly show that increasing \(\alpha \): (i) significantly delays the formation of the laminar separation bubble (LSB) to later \(\theta \) as well as further towards the trailing edge along the blade; (ii) substantially postpones the bursting of the LSB and the

![Fig. 12. Contours of dimensionless z-vorticity with superimposed streamlines for different solidities during the last turbine revolution at various azimuthal positions (\(\lambda = 2.5 \)).](image-url)
follow-up deep stall, which occurs at $\lambda = 2.5$; (iii) diminishes the trailing-edge roll-up vortices; and (iv) delays the trailing-edge separation. These observations highlight the mechanisms in the boundary layer through which changing the solidity influences the turbine aerodynamic performance. Such mechanisms are thought to occur due to the reduced frequency effect and are in line with the experimental studies on pitching airfoils [84,85]. The clarification of the impact of the K due to changing the solidity is an important aspect of the solidity effect on the turbine aerodynamic performance, which to the best of the authors’ knowledge, has not yet been identified in the literature and needs to be considered as a favorable characteristics of the higher solidity turbines.

Fig. 14 illustrates the time-averaged (over the last turbine revolution) normalized streamwise velocity at different downstream locations ($x/d = 1.0, 1.5, 2.0, 2.5, 3.0$ and 4.0) in the turbine wake along several lateral lines ($-0.75 \leq y/d \leq 0.75$) for different solidities at various λ. Fig. 15 illustrates the contours of the instantaneous normalized velocity magnitude. The comparison exhibits that increasing σ:

- significantly expands the wake, which is thought to be due to larger blade chord length and, therefore, larger influenced region in the most windward and leeward sides.
- diminishes the oscillations observed in the near wake for $x/d \leq 1.5$ at $\lambda = 2.5$, which appear due to the presence of the vortices shed from the stalled blades.
- reduces the impact of the shaft on the mean x-velocity profile in the wake, which is thought to be due to the comparatively high relative ratio of the blade chord length to the shaft diameter for higher σ.
- reduces the turbine wake length (see Fig. 15). It should be noted that in this study the turbine wake length is defined as the position in which $V/U_\infty = 0.95$. The reduction could be due to the lower freestream velocity, and consequently lower Re_D, employed for the turbines with higher solidities to keep Re_C constant, and probably not a direct impact of the turbine solidity. It is found that the turbines with different σ have almost the same wake length at their λ_{opt}. L_w/d at λ_{opt} remains approximately 8–12 for various σ.
- enlarges the turbine upstream induction field.
6. Impact of number of blades

6.1. Turbine performance

Fig. 16 shows the power coefficient versus tip speed ratio and solidity for 2-, 3-, and 4-bladed VAWTs with constant Re_c at identical solidities and tip speed ratios. It can be seen that except for $\lambda < 2.5$, the turbine C_P is weakly sensitive to the number of blades. In the optimal operating range of turbines with different solidities, i.e. in the vicinity of λ_{opt}, C_P is almost n-independent. This is an important finding which implies that for variable-speed VAWTs maintaining their λ_{opt} at a given constant Re_c, the number of blades could be selected based on the other design parameters such as uniformity of the output power, structural loads and vibrations, and the cost. The same applies to constant-speed low-solidity urban VAWTs, at a given constant Re_c, frequently operating at moderate to high λ where the C_P is almost insensitive to the number of blades. Note that, as explained in Section 5.1, the urban VAWTs need to have a low solidity due to their dominant moderate to high λ.

However, in practice for small- to medium-scale turbines due to the low mean wind speed, e.g., in the urban environment, Re_c is typically in the low to moderate regime, $\leq 2 \times 10^5$, where Re number effects are significantly influencing the turbine C_P [20]. Therefore, to avoid the low Reynolds number effects, the blade chord length needs to be sufficiently large. Hence, from an aerodynamic point of view and for a given solidity, the smaller number of blades will yield a higher C_P due to the Reynolds number effect. Therefore, the choice of the optimal number of blades with respect to the turbine C_P needs to consider the Re_c. Note that, as already mentioned, to select the number of blades there exists other important considerations, i.e., uniformity of structural loads, turbine vibrations, power uniformity, and the cost.

In addition, at a given solidity, the turbine with less number of blades will operate at a higher K due to the larger blade chord length. As discussed in Section 5.3, the higher K will improve the turbine aerodynamic performance at low λ by delaying/avoiding the flow separation and dynamic stall and the consequent load fluctuations. The higher C_P for the turbine with less number of blades at $\lambda < 2.5$, therefore, could be a result of the higher K. For instance, this is more pronounced for the 2-bladed turbine compared to the 3- and 4-bladed turbines at $\lambda = 1.5$ and 2.0, see Fig. 16b. Further discussions are provided in Section 6.2.

6.2. Analysis at constant Re_c

In order to further elucidate the impact of the number of blades, a more detailed analysis is performed for a set of cases described in...
Table 9. The analysis is performed at two different solidities: \(\sigma = 0.12 \) and \(\sigma = 0.24 \). In addition, two \(\lambda \) values of 2.5 and 4.0 are considered, where the former represents the operation in dynamic stall, and the latter denotes the optimal operational range. Note that for turbines with a different number of blades, \(\text{Re}_c \) is kept constant at identical \(\sigma \) and \(\lambda \).

Fig. 17 shows the instantaneous moment coefficient for a single blade and its normalized cumulative sum during the last turbine revolution and also the instantaneous moment coefficient for the sum of all blades. It can be seen that, at a given \(\sigma \) and \(\lambda \), the length scale of the load fluctuations, which occurs due to the dynamic stall on blade and the blade-wake interactions, is larger for the turbine with smaller number of blades, i.e., \(n = 2 \), due to the larger blade chord length, this is while the frequency of the fluctuations, consequently, is comparatively lower (Fig. 17a–b).

The \(C_m \) plots for all the blades (Fig. 16b and d) shows that a higher number of blades results in higher uniformity in the instantaneous output power.

The normalized cumulative sum of \(C_m \) values of a single blade over the last turbine revolution reveals that increasing the number of blades reduces the contribution of the upwind quartile in the total power production, which instead grows the contribution of the downwind quartile. This shift, which is found to occur for different \(\sigma \) and \(\lambda \), implies the more gradual energy extraction from the flow using more blades, which consequently results in more uniform output power.

Fig. 18 shows the variations of the experienced angle of attack, normalized relative velocity, lift and drag coefficients during the last turbine revolution for turbines with different number of blades. The comparison shows that:

- The experienced angle of attack \(\alpha \) and relative velocity \(V_{rel} \) experienced by the blade are almost not influenced by the number of blades. Small differences are observed in \(\alpha < \theta < 260^\circ \), which are due to the differences in the length scale and frequency of the shed vortices further upstream from the blades for turbines with different number of blades. This results in differences in the blade-wake interactions which are more pronounced for \(\lambda = 2.5 \) due to the larger variations of \(\alpha \) and the consequent dynamic stall.

- In the turbine fore half, \(0^\circ \leq \theta < 180^\circ \), higher \(C_l \) values and delayed drop in \(C_l \) is observed for the turbine with less number of blades at both \(\sigma = 0.12 \) and 0.24. This is due to the higher \(K \) of the turbine with less number of blades. Studies on pitching airfoils and flat plates have revealed that higher \(K \) improves the \(C_{l,max} \) and delays the stall angle [84,85].

- For \(\lambda = 2.5 \) in dynamic stall, due to the smaller blade chord length for the turbine with a higher number of blades, the post-stall load fluctuations are of smaller length scale and higher frequency. This is more pronounced for \(\sigma = 0.12 \) at \(\theta > 90^\circ \) and for \(\sigma = 0.24 \) at \(\theta > 105^\circ \).

In order to further elucidate how changing the number of blades, at a given \(\text{Re}_c \), affects the dynamic loads on the blades, i.e. \(C_l \) and \(C_d \), the boundary layer events need to be analyzed. Fig. 19 shows the spatiotemporal contours of the friction coefficient \(C_f \) along the blade over the last turbine revolution for turbines with different number of blades at \(\lambda = 2.5 \). It can be seen that by reducing the number of blades: (i) the laminar separation bubble (LSB) forms at a later azimuthal position; (ii) for \(\sigma = 0.12 \), the LSB bursting is also postponed (for example, the LSB bursting for \(n = 3 \) in Fig. 19b occurs at \(\theta = 74^\circ \) while it delays to \(\theta = 84^\circ \) for \(n = 2 \) in Fig. 19a); (iii) for \(\sigma = 0.24 \), the extent of the trailing-edge separation is diminished; and (iv) for \(\sigma = 0.24 \), the dynamic stall vortex (DSV) is shed later and travels slower towards the trailing edge. These
observations reveal that changing the number of blades, even at a given Re_c, substantially influences the separation onset and the chordwise extent of the separated region on the blades. This is an important finding as it highlights that the chordwise position of any active flow control device aimed to control the flow separation on the VAWT blades is dependent on the number of blades even if σ and Re_c are kept constant. The delay in separation for the turbine with less number of blades occurs because of the higher K (see Table 9). Higher K is known to result in higher resistance to separation in the boundary layer [84,85].

In addition, increasing the number of blades is found to increase the number of the trailing-edge roll-up vortices and their shedding frequency while reducing their size. This is more pronounced at $\sigma = 0.12$.

Fig. 20 illustrates the time-averaged (over the last turbine revolution) normalized streamwise velocity at different downstream locations ($x/d = 1.0, 1.5, 2.0, 2.5, 3.0$ and 4.0) in the turbine wake along several lateral lines ($-0.75 \leq y/d \leq 0.75$) for turbines with a different number of blades. The comparison reveals that:

- At the windward side ($0 > y$), increasing the number of blades also increases the velocity deficit in the wake, while in the leeward side ($0 < y$) the reverse applies and a larger velocity deficit is observed for the less number of blades.
- The wake profile is more sensitive to the number of blades in the leeward side ($0 < y$), compared to the windward.
- The sensitivity of the wake profile to the number of blades is higher for lower λ and higher σ. The impact of λ is more pronounced.
- The impact of the number of blades on the wake profile persists as the wake travels downstream to $x/d = 4.0$.
- The turbine wake length is found to be almost insensitive to the number of blades (not shown in this paper).

7. Summary and conclusions

Solidity (σ) and number of blades (n) are the two important geometrical parameters, which significantly drive the turbine performance. While an optimal solidity can be identified based on an aerodynamic analysis, the selection of the number of blades for a turbine is a function of several important parameters, namely uniformity of output power, turbine loads and vibrations, cost as well as the turbine aerodynamic performance. The focus of the present study is, therefore, confined to investigating the impact of σ and n on the aerodynamic performance of the turbine to provide a profound understanding and to help the designers and the manufacturers with this aspect of the design.

In the present study, high-fidelity CFD simulations, extensively validated with experimental data, are employed to study the impact of the aforementioned two parameters. σ varies by changing the blade chord length within $0.09 \leq \sigma \leq 0.36$ for turbines with 2, 3 and 4 blades. The study covers a wide range of tip speed ratios, $1.5 \leq \lambda \leq 5.5$, freestream chord-based Reynolds numbers, $0.51 \times 10^5 \leq Re_c \leq 6.41 \times 10^5$, approach-flow (i.e. inlet) total turbulence intensities, $0\% \leq TI \leq 25\%$, and reduced frequencies, $0.02 \leq K \leq 0.18$.

The main findings of the study can be summarized as follows:

1. Solidity:
 - Increasing σ from 0.09 to 0.36, (i) shifts the optimal tip speed ratio λ_{opt} from 4.5 to 2.0; and (ii) increases the $C_{p_{max}}$ by 22.5%. The increment in $C_{p_{max}}$ is due to the Reynolds number effects. This is confirmed as the results show that such an increment is not present when σ increases at constant Re_c.

Table 9

n	σ	c [cm]	K	$\lambda = 2.5, 4.0$	$Re_c (\times 10^5)$	U_{inf} [m/s]	Ω [rad/s]	TI [%]	TIi [%]
2	0.12	6	0.06	1.03, 1.58	9.3	46.5, 74.4	5	4.42	
	0.24	12	0.12	2.06, 3.15					
3	0.12	4	0.04	1.03, 1.58	13.95	69.8, 111.6	5	4.42	
	0.24	8	0.08	2.06, 3.15					
4	0.12	3	0.03	1.03, 1.58	18.6	93.0, 148.8	5	4.42	
	0.24	6	0.06	2.06, 3.15					

Fig. 17. Instantaneous moment coefficient and its normalized cumulative sum during the last turbine revolution for turbines with a different number of blades at constant Re_c for identical σ and λ.

Fig. 20 illustrates the time-averaged (over the last turbine revolution) normalized streamwise velocity at different downstream locations ($x/d = 1.0, 1.5, 2.0, 2.5, 3.0$ and 4.0) in the turbine wake along several lateral lines ($-0.75 \leq y/d \leq 0.75$) for turbines with a different number of blades. The comparison reveals that:

- At the windward side ($0 > y$), increasing the number of blades also increases the velocity deficit in the wake, while in the leeward side ($0 < y$) the reverse applies and a larger velocity deficit is observed for the less number of blades.
- The wake profile is more sensitive to the number of blades in the leeward side ($0 < y$), compared to the windward.
- The sensitivity of the wake profile to the number of blades is higher for lower λ and higher σ. The impact of λ is more pronounced.
- The impact of the number of blades on the wake profile persists as the wake travels downstream to $x/d = 4.0$.
- The turbine wake length is found to be almost insensitive to the number of blades (not shown in this paper).
The trend of reduction in α_{net} with the increase of σ is similarly observed for turbines with 2, 3 and 4 number of blades. A similar trend is also observed for different turbulence intensities.

C_T grows asymptotically with the increase of σ.

At a given Re_c, increasing σ is found to: (i) noticeably reduce the absolute α and increase the induced velocity by the blade. For instance, when σ increases from 0.12 to 0.24, α reduces up to 2.5°, and 6° in the turbine fore and aft halves, respectively; (ii) increase the $C_{l_{\text{max}}}$ while reducing the $C_{d_{\text{max}}}$, especially for the lower λ values due to the higher K; (iii) increase the turbine upstream induction field, the velocity deficit in the wake, the wake expansion and diminish the oscillations in the wake velocity profile, which occur due to shed vortices from the blades and the shaft wake, and decrease the turbine wake length.

Fig. 18. Variations of experienced angle of attack, normalized relative velocity, lift and drag coefficients during the last turbine revolution for turbines with a different number of blades at constant Re, for identical solidities and tip speed ratios.
(2) Number of blades:
- At a given Re_c, the turbine C_p is independent of n within the optimal operational range, i.e., in the vicinity of λ_{opt}.
- For a given σ and at low λ where dynamic stall is present, C_p values are dependent on the number of blades due to the impact of K. This means that at a given solidity, the smaller number of blades (higher chord length) delivers a higher K and thus a higher C_p.
- At a given Re_c, α and V_{rel} are almost independent of number of blades.
- Decreasing n is found to increase the $C_{l,max}$ and reduce the C_d due to the higher K.

The important conclusions are as below:

- It is shown that the λ_{opt} is invariant to the newly-defined parameter $'s\lambda^3'$, regardless of the turbine geometrical and operational conditions.
- A new correlation is derived based on a large set of numerical and experimental data sets to estimate the λ_{opt} solely based on the turbine solidity: $\lambda_{opt} = 2.693\sigma^{-0.329} - 1.605$. The correlation can be very helpful for the turbine designers and manufacturers either to estimate the λ_{opt} for a given σ or vice versa to choose the optimal σ for a desired λ_{opt}.
- The optimal geometrical design, namely the optimal solidity, is highly dependent on the target operating conditions of the turbine to be designed. For constant-speed small-to medium-scale (urban) VAWTs, which frequently operate at moderate to high λ due to the low mean wind speeds at the potential sites, a
design for VAWTs can barely further enhance the turbine efficiency and unsteady active mechanisms have to be devised.

- From an aerodynamic point of view, at a given σ, the less number of blades is favorable due to the higher Re_c and K. However, as discussed above, the choice of the number of blades is also driven by several other important design parameters, such as uniformity of the output power and structural loads and the cost. A larger number of blades yields more uniform instantaneous loads and power during the revolution while the length scale of the load fluctuations is also comparatively smaller due to the smaller blade chord length at the given σ.

In the present study, the turbine design condition is considered, which refers to the condition where the wind speed has already exceeded the turbine cut-in velocity and the start-up phase, during which the turbine starts to rotate and reaches the designed rotational speed, has passed. A dedicated analysis of the impact of solidity and number of blades at off-design conditions, e.g., start-up, is recommended.

In addition, a fixed airfoil shape has been considered in the present analysis. Further investigation should be performed to study the dependency of the derived conclusions for different airfoil shapes.

The findings of this study help to better understand the impact of the geometrical characteristics on the aerodynamic performance of VAWTs and support to design optimum VAWTs and more widespread wind energy harvesting.

Acknowledgement

The authors would like to acknowledge support from the European Commission’s Framework Program Horizon 2020, through the Marie Curie Innovative Training Network (ITN) AEOLUS4FUTURE - Efficient harvesting of the wind energy (H2020-MSCA-ITN-2014: Grant agreement no. 643167) and the TU1304 COST ACTION “WINERCOST”. The authors gratefully acknowledge the partnership with ANSYS CFD. This work was sponsored by NWO Exacte Wetenschappen (Physical Sciences) for the use of supercomputer facilities, with financial support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organization for Scientific Research, NWO). The 2nd author is currently a post-doctoral fellow of the Research Foundation – Flanders (FWO) and is grateful for its financial support (project FWO 12M5316N).

References

[1] Pereira TR, Batista NC, Fonseca ARA, Cardeira C, Oliveira P, Melicio R. Darrieus wind turbine prototype: dynamic modeling parameter identification and control analysis. Energy 2018;159:961–76.
[2] Patil R, Daroczy L, Janiga G, Thévenin D. Large eddy simulation of an H-Darrieus rotor. Energy 2018;169:388–98.
[3] Meana-Fernández A, Solís-Gallego L, Fernández Oro JM, Argüelles Díaz KM, Velarde-Suárez S. Parametrical evaluation of the aerodynamic performance of vertical axis wind turbines for the proposal of optimized designs. Energy 2018;147:504–17.
[4] Tian W, Mao Z, An X, Zhang B, Wen H. Numerical study of energy recovery from the wakes of moving vehicles on highways by using a vertical axis wind turbine. Energy 2017;141:715–28.
[5] Sobhani E, Ghaffari M, Maghrebi MJ. Numerical investigation of dimple effects on darrieus vertical axis wind turbine. Energy 2017;133:211–21.
[6] Najafi N, Paulsen U. Operational modal analysis on a VAWT in a large wind tunnel using stereo vision technique. Energy 2017;125:405–16.
[7] Hand B, Cashman A. Conceptual design of a large-scale floating offshore vertical axis wind turbine. Energy Procedia 2017;142:83–8.
[8] Borg M, Shires A, Colliu M. Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part I: aerodynamics. Renew Sustain Energy Rev 2014;39:1214–25.
[9] Lei H, Zhou D, Bao Y, Chen C, Ma N, Han Z. Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion. Energy 2017;127:1–17.
[10] Lei H, Zhou D, Lu J, Chen C, Han Z, Bao Y. The impact of pitch motion of a
platform on the aerodynamic performance of a floating vertical axis wind turbine. Energy 2017;119:369–83. https://doi.org/10.1016/j.energy.2017.05.058.

[11] Pitteloud JD, Gsanger S. Small wind world report summary. World Wind Energy Association (WWWEA); 2017.
[12] Tummala A, Velamati R, Sinha DK, Indraja V, Krishna VH. A review on small scale wind turbines: Renew Sustain Energy Rev 2016;56:1315–71.
[13] Montazeri H. Experimental and numerical study on natural ventilation performance of various multi-opening wind catchers. Build Environ 2014;62(6):370–80.
[14] van Hooff T, Blocken B, Aanen L, Bronsema B. A venturi-shaped roof for wind-enhanced ventilation. Energy 2018;158:200–8.
[15] Montazeri H, Montazeri F, Mostafavi S. Two-sided wind catcher: impact of outlet openings. Renew Energy 2020;188:502–20.
[16] Montazeri H, Azizian R, Experimental study on natural ventilation performance of one-sided wind catcher. Build Environ 2008;43(12):2193–202.
[17] Montazeri H, Azizian R, Experimental study on natural ventilation performance of a two-sided wind catcher. IMechE Part A J Power Energy 2009;223(4):387–400.
[18] Montazeri H, Montazeri F, Azizian R, Mostafavi S. Two-sided wind catcher: experimental evaluation using experimental, numerical and analytical modeling. Renew Energy 2010;35(7):1424–35.
[19] Liu H, Gao BE, Daih JO, Public receptiveness of vertical axis wind turbines. Energy Pol 2011;39(9):4055–71.
[20] Rezaeiha A, Montazeri H, Blocken B. Characterization of aerodynamic performance of vertical axis wind turbines: impact of operational parameters. Energy Convers Manag 2018;169(9):45–77.
[21] Hashem I, Mohamed MH. Aerodynamic performance enhancements of H-Rotor Darrieus wind turbine. Energy 2018;142:531–45. https://doi.org/10.1016/j.energy.2017.10.036.
[22] Lam HF, Peng HY. Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines. Energy 2017;131:13–26.
[23] Zanforlin S, Deluca S. Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Axial-Bladed Wind Turbine. Energy 2018;148:179–95.
[24] The J, Yu H. A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods. Energy 2017;138:257–89.
[25] Rezaeiha A, Pereira R, Kotsonis M. Fluctuations of angle of attack and lift coefficient and the effect of wake modification in Amanian, A. J. Fluid Mech. 2018;854:90–111.
[26] Araya DB, JO Dabiri. A comparison of wake measurements in motor-driven and flow-driven turbine experiments. Exp Fluid 2015;56(7).
[27] Kinzel M, Araya DB, JO Dabiri. Turbulence in vertical axis wind turbine canopies. Phys Fluids 2015;27(11):115102.
[28] Ryan KJ, Coletti F, Elkins CJ, Dabiri JO, Eaton JK. Three-dimensional flow field around and downstream of a subscale model rotating vertical axis wind turbine. Exp Fluid 2016;57(3).
[29] Abkar M, Dabiri JO. Self-similarity and flow characteristics of vertical-axis wind turbine wakes: an LES study. J Turbul 2017;18(4):373–89.
[30] Araya DB, Colonius T, Dabiri JO. Transition to bluff-body dynamics in the wake of a vertical-axis wind turbine. Exp Fluid 2015;57(9):091108.
[31] Vishal MR, Kamaljit D. Analysis of dynamic stall on a pitching airfoil using high-fidelity large-eddy simulations. AIAA 2018;55(1):46–53.
[32] Müller-Vahl HF, Pechlivanoglou G, Nayeri CN, Paschereit CO, Greenblatt D. Impacts of solidity and hybrid system in small wind turbines. Energy 2016;57(3):495–504.
[33] Muhammadian A, Fakhim S, Shoshinand H, Giri A, Vasudevan M, Moghaddas M, Velmant RK. Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model. Energy 2017;113:179–90.
[34] Li Q, Maeda T, Kamada Y, Murata J, Shimizu K, Ogasawara T, Nakai A, Kasuya T. Effect of pitch angle on performance of a two-sided wind turbine in three-dimensional analysis by the panel method. Energy 2017;121:1–9.
[35] Xisto CM, Pascoa J, Trancossi M. Geometrical parameters influencing the aerodynamic efficiency of a small-scale self-pitch high-solidity VAWT. J Sol Energy Eng 2016;138(3):031006.
[36] Hassan SMR, Ali M, Islam MQ, The effect of solidity on the performance of H-Rotor Darrieus Turbine 2017;154:400012.
[37] Delafin PL, Nishino T, Wang L, Koilos A. Effect of the number of blades and solidity on the performance of a vertical axis wind turbine. J Phys Conf 2016;753:202033.
[38] Mohamed MH. Impacts of solidity and hybrid system in small wind turbines performance. Energy 2013;57:495–504.
[39] Muhammadian A, Fakhim S, Shoshin H, Giri A, Vasudevan M, Moghaddas M, Velmant RK. Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model. Energy 2017;113:179–90.
[40] Roache PJ. Quantification of uncertainty in computational fluid dynamic analysis. Annu Rev Fluid Mech 1997;29:123–60.
[41] Blocken B, Stathopoulos T, Carmentel J. CFD simulation of the atmospheric boundary layer: wall function problems. Atmosn Environ 2007;41(2):238–52.
[42] Blocken B, Carmentel J. Stathopoulos T. CFD evaluation of wind speed conditions in passages between parallel buildings—effect of wall-function roughness normalizations for the atmospheric boundary layer flow. J Wind Eng Ind Aerod 2007;95(9–11):941–62.
[43] Menter FR, Langtry L, SB. Prediction of separated and reattached flow on a variable-pitch vertical axis wind turbine. Exp Fluid 2015;57(1):1–15.
[44] Menter FR, Kuntz M, Langtry R. Ten years of industrial experience with the SST turbulence model. Turbulence, heat and mass transfer, vol. 4; 2003.
[45] Langtry RB, Menter FR, Liki K, Suzen YB, Huang PC, Völker S. A correlation-based transition model incorporating the LES 2016:128(3):423–34.
[46] Menter FR, Langtry R, Völker S. Transition modelling for general purpose CFD codes. Flow, Turbul Combust 2006;77(1–4):277–303.
[47] Suzen YB, Huang PC, Hulgren LE, Asghari BE. Prediction of separated and transitional boundary layers under low-pressure turbine airfoil conditions using an intermittency transport equation. J Turbomach 2003;125(3):455.
[48] Suzen YB, Huang PC. Modeling of flow transition using an intermittency transport equation. 1999. NASA/CR-1999-209313.
[75] Blocken B, van Druenen T, Toparlar Y, Malizia F, Mannion P, Andrianne T, Marchal T, Maas GJ, Diepens J. Aerodynamic drag in cycling pelotons: new insights by CFD simulation and wind tunnel testing. J Wind Eng Ind Aerod 2018;179:319–37.

[76] Rezaeiha A, Montazeri H, Blocken B. On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. 2018. Submitted.

[77] Walters DK, Leylek JH. A new model for boundary layer transition using a single-point RANS approach. J Turbomach 2004;126(1):193.

[78] Cutrone L, De Palma P, Pascazio G, Napolitano M. Predicting transition in two- and three-dimensional separated flows. Int J Heat Fluid Flow 2008;29(2):504–26.

[79] ANSYS. ANSYS® Fluent theory guide, release 16.1. ANSYS, Inc.; 2015.

[80] Patankar SV, Spalding DB. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Tran 1972;15:1787–806.

[81] Castelli MR, Englaro A, Benini E. The Darrieus wind turbine: proposal for a new performance prediction model based on CFD. Energy 2013;36(8):4919–34.

[82] McLaren K, Tullis S, Ziada S. Computational fluid dynamics simulation of the aerodynamics of a high solidity, small-scale vertical axis wind turbine. Wind Energy 2012;15(3):349–61.

[83] Kjellin J, Bilow F, Eriksson S, Deglaire P, Leijon M, Bernhoff H. Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine. Renew Energy 2011;36(11):3050–3.

[84] Lee T, Gerontakos P. Investigation of flow over an oscillating airfoil. J Fluid Mech 2004;512:313–41.

[85] McCroskey WJ, Cart LW, McAlister KW. Dynamic stall experiments on oscillating airfoils. AIAA J 1978;14(1):57–63.