A search for the decay $B^+ \rightarrow K^+ \nu \bar{\nu}$

The BABAR Collaboration

March 24, 2019

Abstract

We present a search for the rare flavor-changing neutral-current decay $B^+ \rightarrow K^+ \nu \bar{\nu}$ based on data sample of 82 fb$^{-1}$ collected with the BABAR detector at the PEP-II B-factory. Signal events are selected by examining the properties of the system recoiling against either a reconstructed hadronic or semileptonic charged B decay. Using these two independent samples, a combined limit of $\mathcal{B}(B^+ \rightarrow K^+ \nu \bar{\nu}) < 5.2 \times 10^{-5}$ is obtained at the 90% confidence level. In addition, by modifying the particle identification criteria, a limit of $\mathcal{B}(B^+ \rightarrow \pi^+ \nu \bar{\nu}) < 1.0 \times 10^{-4}$ obtained using the hadronic B reconstruction. All results are preliminary.

Submitted to the 32nd International Conference on High-Energy Physics, ICHEP 04, 16 August—22 August 2004, Beijing, China

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Work supported in part by Department of Energy contract DE-AC03-76SF00515.
The \textit{BABAR} Collaboration,

B. Aubert, R. Barate, D. Boutigny, F. Couderc, J.-M. Gaillard, A. Hicheur, Y. Karyotakis, J. P. Lees, V. Tisserand, A. Zghiche

\textit{Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France}

A. Palano, A. Pompili

\textit{Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy}

J. C. Chen, N. D. Qi, G. Rong, P. Wang, Y. S. Zhu

\textit{Institute of High Energy Physics, Beijing 100039, China}

G. Eigen, I. Ofte, B. Stugu

\textit{University of Bergen, Inst. of Physics, N-5007 Bergen, Norway}

G. S. Abrams, A. W. Borgland, A. B. Breon, D. N. Brown, J. Button-Shafer, R. N. Cahn, E. Charles, C. T. Day, M. S. Gill, A. V. Gritsan, Y. Groysman, R. G. Jacobsen, R. W. Kadel, J. Kadyk, L. T. Kerth, Yu. G. Kolomensky, G. Kukartsev, G. Lynch, L. M. Mir, P. J. Oddone, T. J. Orimoto, M. Pripstein, N. A. Roe, M. T. Ronan, V. G. Shelkov, W. A. Wenzel

\textit{Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA}

M. Barrett, K. E. Ford, T. J. Harrison, A. J. Hart, C. M. Hawkes, S. E. Morgan, A. T. Watson

\textit{University of Birmingham, Birmingham, B15 2TT, United Kingdom}

M. Fritsch, K. Goetzen, T. Held, H. Koch, B. Lewandowski, M. Pelizzaes, M. Steinke

\textit{Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany}

J. T. Boyd, N. Chevalier, W. N. Cottingham, M. P. Kelly, T. E. Latham, F. F. Wilson

\textit{University of Bristol, Bristol BS8 1TL, United Kingdom}

T. Cuhadar-Donszelmann, C. Hearty, N. S. Knecht, T. S. Mattison, J. A. McKenna, D. Thiessen

\textit{University of British Columbia, Vancouver, BC, Canada V6T 1Z1}

A. Khan, P. Kyberd, L. Teodorescu

\textit{Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom}

A. E. Blinov, V. E. Blinov, V. P. Druzhinin, V. B. Golubev, V. N. Ivanchenkov, E. A. Kravchenko, A. P. Onuchin, S. I. Serednyakov, Yu. I. Skovpen, E. P. Solodov, A. N. Yushkov

\textit{Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia}

D. Best, M. Bruinsma, M. Chao, I. Eschrich, D. Kirkby, A. J. Lankford, M. Mandelkern, R. K. Mommsen, W. Roethel, D. P. Stoker

\textit{University of California at Irvine, Irvine, CA 92697, USA}

C. Buchanan, B. L. Hartfiel

\textit{University of California at Los Angeles, Los Angeles, CA 90024, USA}

S. D. Foulkes, J. W. Gary, B. C. Shen, K. Wang

\textit{University of California at Riverside, Riverside, CA 92521, USA}
R. Cowan, G. Sciolla, S. J. Sekula, F. Taylor, R. K. Yamamoto
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA 02139, USA

D. J. J. Mangeol, P. M. Patel, S. H. Robertson
McGill University, Montréal, QC, Canada H3A 2T8

A. Lazzaro, V. Lombardo, F. Palombo
Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy

J. M. Bauer, L. Cremaldi, V. Eschenburg, R. Godang, R. Kroeger, J. Reidy, D. A. Sanders, D. J. Summers, H. W. Zhao
University of Mississippi, University, MS 38677, USA

S. Brunet, D. Coté, P. Taras
Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, QC, Canada H3C 3J7

H. Nicholson
Mount Holyoke College, South Hadley, MA 01075, USA

N. Cavallo, F. Fabozzi, C. Gatto, L. Lista, D. Monorchio, P. Paolucci, D. Piccolo, C. Siacca
Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy

M. Baak, H. Bulten, G. Raven, H. L. Snoek, L. Wilden
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands

C. P. Jessop, J. M. LoSecco
University of Notre Dame, Notre Dame, IN 46556, USA

T. Allmendinger, K. K. Gan, K. Honscheid, D. Hufnagel, H. Kagan, R. Kass, T. Pulliam, A. M. Rahimi, R. Ter-Antonyan, Q. K. Wong
Ohio State University, Columbus, OH 43210, USA

J. Brau, R. Frey, O. Igonkina, C. T. Potter, N. B. Sinev, D. Strom, E. Torrence
University of Oregon, Eugene, OR 97403, USA

F. Colecchia, A. Dorigo, F. Galeazzi, M. Margoni, M. Morandin, M. Posocco, M. Rotondo, F. Simonetto, R. Stroili, G. Tiozzo, C. Voci
Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy

M. Benayoun, H. Briand, J. Chauveau, P. David, Ch. de la Vaissière, L. Del Buono, O. Hamon, M. J. J. John, Ph. Leruste, J. Malcles, J. Ocariz, M. Pivk, L. Roos, S. T’Jampens, G. Therin
Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France

P. F. Manfredi, V. Re
Università di Pavia, Dipartimento di Elettronica and INFN, I-27100 Pavia, Italy

\(^2\)Also with Università della Basilicata, Potenza, Italy
P. K. Behera, L. Gladney, Q. H. Guo, J. Panetta

University of Pennsylvania, Philadelphia, PA 19104, USA

C. Angelini, G. Batignani, S. Bettarini, M. Bondioli, F. Bucci, G. Calderini, M. Carpinelli, F. Forti, M. A. Giorgi, A. Lusiani, G. Marchiori, F. Martinez-Vidal, M. Morganti, N. Neri, E. Paoloni, M. Rama, G. Rizzo, F. Sandrelli, J. Walsh

Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy

M. Haire, D. Judd, K. Paick, D. E. Wagoner

Prairie View A&M University, Prairie View, TX 77446, USA

N. Danielson, P. Elmer, Y. P. Lau, C. Lu, V. Miftakov, J. Olsen, A. J. S. Smith, A. V. Telnov

Princeton University, Princeton, NJ 08544, USA

F. Bellini, G. Cavoto, R. Faccini, F. Ferrarotto, F. Ferroni, M. Gaspero, L. Li Gioi, M. A. Mazzoni, S. Morganti, M. Pierini, G. Piredda, F. Safai Tehrani, C. Voena

Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy

S. Christ, G. Wagner, R. Waldi

Universität Rostock, D-18051 Rostock, Germany

T. Adye, N. De Groot, B. Franek, N. I. Geddes, G. P. Gopal, E. O. Olaiya

Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom

R. Aleksan, S. Emery, A. Gaidot, S. F. Ganzhur, P.-F. Giraud, G. Hamel de Monchenault, W. Kozanecki, M. Legendre, G. W. London, B. Mayer, G. Schott, G. Vasseur, Ch. Yèche, M. Zito

DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France

M. V. Purohit, A. W. Weidemann, J. R. Wilson, F. X. Yumiceva

University of South Carolina, Columbia, SC 29208, USA

D. Aston, R. Bartoldus, N. Berger, A. M. Boyarski, O. L. Buchmueller, R. Claus, M. R. Convery, M. Cristinziani, G. De Nardo, D. Dong, J. Dorfan, D. Đuđmic, W. Dunwoodie, E. E. Emsen, S. Fan, R. C. Field, T. Glanzman, S. J. Gowdy, T. Hadig, V. Halvo, C. Hast, T. Hryn’ova, W. R. Innes, M. H. Kelsey, P. Kim, M. L. Kocian, D. W. G. S. Leith, J. Libby, S. Luitt, V. Luth, H. L. Lynch, H. Marsiske, R. Messner, D. R. Muller, C. P. O’Grady, V. E. Ozcan, A. Perazzo, M. Perl, S. Petrak, B. N. Ratcliff, A. Roodman, A. A. Salnikov, R. H. Schindler, J. Schwiening, G. Simi, A. Snyder, A. Soha, J. Stelzer, D. Su, M. K. Sullivan, J. Va’vra, S. R. Wagner, M. Weaver, A. J. R. Weinstein, W. J. Wisniewski, M. Wittgen, D. H. Wright, A. K. Yarritu, C. C. Young

Stanford Linear Accelerator Center, Stanford, CA 94309, USA

P. R. Burchat, A. J. Edwards, T. I. Meyer, B. A. Petersen, C. Roat

Stanford University, Stanford, CA 94305-4060, USA

S. Ahmed, M. S. Alam, J. A. Ernst, M. A. Saeed, M. Saleem, F. R. Wappler

State University of New York, Albany, NY 12222, USA

3 Also with IFIC, Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain

4 Also with Princeton University, Princeton, USA
W. Bugg, M. Krishnamurthy, S. M. Spanier

University of Tennessee, Knoxville, TN 37996, USA

R. Eckmann, H. Kim, J. L. Ritchie, A. Satpathy, R. F. Schwitters

University of Texas at Austin, Austin, TX 78712, USA

J. M. Izen, I. Kitayama, X. C. Lou, S. Ye

University of Texas at Dallas, Richardson, TX 75083, USA

F. Bianchi, M. Bona, F. Gallo, D. Gamba

Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy

L. Bosisio, C. Cartaro, F. Cossutti, G. Della Ricca, S. Dittongo, S. Grancagnolo, L. Lanceri, P. Poropat,\(^5\)

L. Vitale, G. Vuagnin

Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy

R. S. Panvini

Vanderbilt University, Nashville, TN 37235, USA

Sw. Banerjee, C. M. Brown, D. Fortin, P. D. Jackson, R. Kowalewski, J. M. Roney, R. J. Sobie

University of Victoria, Victoria, BC, Canada V8W 3P6

H. R. Band, B. Cheng, S. Dasu, M. Datta, A. M. Eichenbaum, M. Graham, J. J. Hollar, J. R. Johnson, P. E. Kutter, H. Li, R. Liu, A. Mihalyi, A. K. Mohapatra, Y. Pan, R. Prepost, P. Tan, J. H. von Wimmersperg-Toeller, J. Wu, S. L. Wu, Z. Yu

University of Wisconsin, Madison, WI 53706, USA

M. G. Greene, H. Neal

Yale University, New Haven, CT 06511, USA

\(^5\)Deceased
Flavor-changing neutral-current transitions such as $b \to s \nu \bar{\nu}$ and $b \to d \nu \bar{\nu}$ occur in the Standard Model (SM) via one-loop box or electroweak penguin diagrams with virtual heavy particles in the loops. Therefore they are expected to be highly suppressed. Because heavy non-SM particles could contribute additional loop diagrams, various new physics scenarios can potentially lead to significant enhancements in the observed rates [1]. Theoretical uncertainties on $b \to s \nu \bar{\nu}$ are much smaller than the corresponding $b \to s \ell^+\ell^-$ modes due to the absence of a photonic penguin contribution and hadronic long distance effects [2]. The SM $B^+ \to K^+\nu\bar{\nu}$ branching fraction has been estimated to be $(3.8^{+1.2}_{-0.6}) \times 10^{-6}$ [2, 4], while the most stringent published experimental limit is $B(B^+ \to K^+\nu\bar{\nu}) < 2.4 \times 10^{-4}$ at the 90% confidence level (C.L.) [3]. $b \to d\nu\bar{\nu}$ processes are additionally suppressed relative to $b \to s\nu\bar{\nu}$ by the ratio of the Cabibbo-Kobayashi-Maskawa matrix elements $|V_{td}|^2/|V_{ts}|^2$ [5].

In this work we report the results of a search for the exclusive decay mode $B^+ \to K^+\nu\bar{\nu}$. By modifying the particle identification (PID) criteria used in the search, we additionally obtain a limit on the related decay $B^+ \to \pi^+\nu\bar{\nu}$.

The data used in this analysis were collected with the BABAR detector [6] at the PEP-II asymmetric-energy e^+e^- storage ring. The results are based on a data sample of 88.9 million $B\bar{B}$ events, corresponding to an integrated luminosity of 82 fb$^{-1}$ collected at the $\Upsilon(4S)$ resonance. An additional sample of 9.6 fb$^{-1}$ was collected at a center-of-mass (CM) energy approximately 40 MeV below $B\bar{B}$ threshold which is used to study continuum events, $e^+e^- \to q\bar{q}$ ($q = u, d, s$ and c). Charged particle tracking and dE/dx measurement for particle identification (PID) are provided by a five-layer double-sided silicon vertex tracker and a 40-layer drift chamber contained within the magnetic field of a 1.5–T superconducting solenoid. Charged K^-–π PID separation of greater than 3σ, over the momentum range of interest for this analysis, is provided by a ring-imaging Cherenkov detector (DIRC). The energies of neutral particles are measured by an electromagnetic calorimeter (EMC) consisting of 6580 CsI(Tl) crystals. The magnetic flux return of the solenoid is instrumented with resistive plate chambers in order to provide muon identification. A full BABAR detector Monte Carlo (MC) simulation based on GEANT4 [7] is used to evaluate signal efficiencies and to identify and study background sources. Charge conjugate modes are implied throughout this paper and all kinematic quantities are expressed in the CM frame (i.e. the $\Upsilon(4S)$ rest frame) unless otherwise specified.

The presence of two neutrinos in the final state precludes the direct reconstruction of the $B^+ \to K^+\nu\bar{\nu}$ signal mode. Instead, the B^- meson from an $\Upsilon(4S) \to B^+B^-$ event is reconstructed in one of many semileptonic or hadronic decay modes, then all remaining charged and neutral particles in that event are examined under the assumption that they are attributable to the decay of the accompanying B.

The B^- reconstruction proceeds by combining a D^0 candidate with either a single identified charged lepton or a combination, X_{had}^-, of charged and neutral hadrons. The resulting semileptonic and hadronic charged B samples are referred to as B^+_{sl} and B^+_{had} throughout this paper. D^0 candidates are reconstructed by selecting combinations of identified pions and kaons which yield an invariant mass within approximately 3σ of the expected D^0 mass in the modes $K^-\pi^+$, $K^-\pi^+\pi^0$ and $K^-\pi^+\pi^-\pi^-$. For B^+_{had} reconstruction, $D^0 \to K^0_s\pi^+\pi^-$ is also used.

Photon candidates are obtained from EMC clusters with laboratory-frame energy greater than 30 MeV and no associated charged track. Photon pairs which combine to yield $\gamma\gamma$ invariant mass between 115 MeV/c^2 and 150 MeV/c^2 and total energy greater than 200 MeV are considered to be π^0 candidates.

B^+_{sl} candidates are reconstructed by combining a D^0 candidate having a momentum p_{D^0} >
0.5 GeV/c with a lepton candidate of momentum \(p_\ell > 1.35 \) GeV/c that satisfies either electron or muon identification criteria. The invariant mass, \(m_{D\ell} \), of the \(D^0\ell \) candidate is required to be greater than 3.0 GeV/c². \(B_{s\ell}^- \) candidates are selected using the quantity \(\cos \theta_{B,D\ell} \), which represents the cosine of the angle between the inferred direction of the reconstructed \(B_{s\ell}^- \) and that of the lepton–\(D^0 \) combination, described by the four vector, \((E_{D\ell}, p_{D\ell}) \). Under the assumption that the neutrino is the only missing particle, \(\cos \theta_{B,D\ell} \equiv \frac{2E_{\text{beam}} \cdot E_{D\ell} - m_B^2 - m_{D\ell}^2}{2 |p_{D\ell}| \sqrt{E_{\text{beam}}^2 - m_B^2}} \) (1)

where \(m_B \) is the nominal \(B \) meson mass and \(E_{\text{beam}} \) and \(\sqrt{E_{\text{beam}}^2 - m_B^2} \) are the expected \(B \) meson energy and momentum, respectively. Combinatorial backgrounds can produce values, \(|\cos \theta_{B,D\ell}| > 1. \) In order to maintain efficiency for \(B^- \to D^{*0}\ell^-\bar{\nu} \) decays in which a \(\pi^0 \) or photon has not been reconstructed as part of the \(D\ell \) combination, we retain events in the interval \(-2.5 < \cos \theta_{B,D\ell} < 1.1 \). However events are vetoed if a charged \(\pi \) consistent with a \(D^{*+} \) transition is identified. If more than one \(D\ell \) candidate is reconstructed in a given event, the candidate with the smallest \(|\cos \theta_{B,D\ell}| \) is retained.

Reconstructed \(B_{s\ell}^- \) decays are obtained by combining a reconstructed \(D^0 \) candidate with a hadronic system \(X_{\text{had}}^- \) composed of up to five mesons (\(\pi^\pm, K^\pm \) and \(\pi^0 \)), including up to two \(\pi^0 \) candidates. We define the kinematic variables \(m_{ES} \equiv \sqrt{E_{\text{beam}}^2 - p_B^2} \) and \(\Delta E \equiv E_B - E_{\text{beam}} \), where \(p_B \) and \(E_B \) are the momentum and the energy of the \(B_{s\ell}^- \) had candidate. The \(X_{\text{had}}^- \) system is selected by requiring that the resulting \(B_{\text{had}}^- \) candidate lies within \(-1.8 < \Delta E < 0.6 \) GeV. If multiple \(B_{\text{had}}^- \) candidates are identified in an event, only the one with \(\Delta E \) closest to zero is retained. The \(m_{ES} \) distribution of reconstructed \(B_{\text{had}}^- \) candidates is shown in Fig. 1. \(B_{\text{had}}^- \) candidates in the signal region, \(5.272 < m_{ES} < 5.288 \) GeV/c², are used for the \(B^+ \to K^+\nu\bar{\nu} \) signal selection. Candidates in the sideband region, \(5.225 < m_{ES} < 5.265 \) GeV/c², are retained for background studies.

Figure 1: (a) The \(D^0 \) mass distribution for \(D^0 \to K^-\pi^+ \) decays used for \(B_{s\ell}^- \) reconstruction. Data are shown as points and the total background MC is shown as a solid histogram. (b) The \(m_{ES} \) distribution of \(B_{\text{had}}^- \) events for data (points) and \(B\bar{B} \) MC (solid histogram). Continuum background has been subtracted from the on-resonance data using off-resonance data and the hatched histogram represents the estimated combinatorial background from \(B\bar{B} \) decays.
peak at $|\cos \theta_T| = 1$, while the distribution is approximately flat for $B\bar{B}$ events. Backgrounds from QED processes are strongly suppressed by the B^- reconstruction procedures and are negligible in this analysis.

The B^- reconstruction efficiency for $B^+ \rightarrow K^+ \nu \bar{\nu}$ signal events is determined from signal MC simulation after validating the yield from $B^+ B^-$ MC simulation against data. This procedure compensates for differences in the B^had^- reconstruction efficiency in the low-multiplicity environment of $B^+ \rightarrow K^+ \nu \bar{\nu}$ events compared with the generic $B^+ B^-$ environment. The B^- reconstruction efficiency in MC is additionally validated by comparing the yield of events in which a $B^+ \rightarrow D^0 \ell^+ \nu$ has been reconstructed in addition to the $B^-\text{had}$ or $B^-\text{sl}$.

The $B^-\text{sl}$ and $B^-\text{had}$ reconstruction procedures result in raw yields of approximately 5800 $B^-\text{sl}/fb^{-1}$ and 2200 $B^-\text{had}/fb^{-1}$. Relative systematic uncertainties of 4.5% (7%) are estimated for the overall $B^-\text{sl}$ ($B^-\text{had}$) yields.

Events that contain a reconstructed B^- are examined for evidence of a $B^+ \rightarrow K^+ \nu \bar{\nu}$ decay. Tracks and EMC clusters not already utilized for the B^- reconstruction are assumed to be the daughters of the signal candidate B decay. Signal candidate events are required to possess exactly one additional charged track with charge opposite that of the reconstructed B^-. The track is additionally required to have momentum $p_K > 1.25 \text{ GeV/c}$ and to satisfy K PID criteria.

In addition to this track, $B^+ \rightarrow K^+ \nu \bar{\nu}$ events contain an average of $\sim 200 \text{ MeV}$ of EMC energy from hadronic shower fragments, photons from unreconstructed $D^* \rightarrow D^0 \gamma/\pi^0$ transitions in the B^- candidate, and beam-related background photons. The total calorimeter energy attributed to the signal decay, E_{extra}, is computed by summing all EMC clusters that are not associated with the B^- or with the signal track. Signal events are required to have $E_{\text{extra}} < 250 \text{ MeV}$. The E_{extra} distributions are shown in Fig. 2 for $B^-\text{sl}$ and $B^-\text{had}$ events with one additional track which has been identified as a kaon. The $B^-\text{had}$ analysis additionally requires that there are six or fewer clusters contributing to E_{extra}, and that no pair of these clusters can be combined to form a π^0 candidate.

The total $B^+ \rightarrow K^+ \nu \bar{\nu}$ signal selection efficiencies, including the B^- reconstruction, are estimated to be $\varepsilon_K = (0.115 \pm 0.009)\%$ for $B^-\text{sl}$ and $\varepsilon_K = (0.055 \pm 0.005)\%$ for $B^-\text{had}$ events. The quoted errors are the quadratic sum of statistical and systematic uncertainties. Theoretical uncertainties in the K^+ energy spectrum result in a 1.3% uncertainty on the signal efficiency. This uncertainty is evaluated by comparing the p_K spectrum of $B^+ \rightarrow K^+ \nu \bar{\nu}$ MC events generated with a phase-space model with the models given in [3, 2]. Additional systematic uncertainties associated with the $B^+ \rightarrow K^+ \nu \bar{\nu}$ signal candidate efficiencies include the single track efficiency (1.3%), PID (2%) and EMC energy modeling (3.8% for $B^-\text{sl}$ and 2.3% for $B^-\text{had}$). The EMC energy modeling systematic is determined by evaluating the effect of varying the MC E_{extra} distribution within a range representing the observed level of agreement with data in events with a reconstructed $B^+ \rightarrow D^0 \ell^+ \nu$ (for the $B^-\text{sl}$ sample) and in samples containing two or three additional tracks (for the $B^-\text{had}$ sample).

Background events can arise either from $B^0\bar{B}^0$ or continuum events in which the B^- candidate is constructed from a random combination of particles, or peaking background events in which the accompanying B^- (or in the case of $B^-\text{sl}$, at least the D^0) has been correctly reconstructed. In the $B^-\text{sl}$ analysis, purely combinatorial backgrounds are estimated by examining sideband regions of the reconstructed D^0 invariant mass distribution, $m^\text{reco}_{D^0}$, defined by $3\sigma < |m^\text{reco}_{D^0} - m_{D^0}| < 10\sigma$ as shown in Fig. 1d, for the $D^0 \rightarrow K^-\pi^+$ mode. The sideband yields are scaled to the signal region under the assumption that the combinatorial component is flat throughout the D^0 mass distribution. This assumption has been validated using samples of events in which two or three charged tracks not associated with the B^- reconstruction are present. The total combinatorial
background in the B_{sl}^- analysis is estimated to be $N_{K}^{bg} \geq 3.4 \pm 1.2$. Although the peaking background prediction in the B_{sl}^- analysis have been studied in MC and are shown in Figs. 2 and 3, the peaking background in the final selection is not subtracted.

![Figure 2](image)

Figure 2: The E_{extra} distribution for $B^+ \to K^+\nu\bar{\nu}$ (left) B^-_{had} (right) B^-_{sl} events. Events are required to have a reconstructed B^- and exactly one additional track which has been identified as a kaon. No other signal selection cuts have been applied. The data and background MC samples are represented by the points with error bars and solid histograms, respectively. The dotted line indicates the $B^+ \to K^+\nu\bar{\nu}$ MC prediction with arbitrary normalization.

In the B^-_{had} analysis, the combinatorial background can be reliably estimated by extrapolating the observed yields in the m_{ES} sideband region into the m_{ES} signal region, indicated in Fig. 1b, yielding 2.0 ± 0.7 events. The quoted uncertainty is dominated by the sideband data statistics, but includes also the uncertainty in the combinatorial background shape which is estimated by varying the shape over a range of possible models. The peaking background in the B^-_{had} analysis consists only of B^+B^- events in which the B^-_{had} has been correctly reconstructed, and is estimated directly from B^+B^- MC simulation. MC yields are validated by direct comparison with data in samples of events in which the full signal selection is applied, except that either $E_{\text{extra}} > 0.5$ GeV, or more than one charged track remains after the B^- reconstruction. Uncertainties in the peaking background are dominated by the MC statistical uncertainty (42%). Other systematic errors include the overall B^- yield (7%), the remaining charged track multiplicity (5%), the particle mis-identification rates for the K^\pm selection (6.3%), and the EMC energy modeling (8%). The total peaking background in the B^-_{had} analysis is estimated to be 1.9 ± 0.9. The total (combinatorial+peaking) background in the B^-_{had} analysis is estimated to be $N_{K}^{bg} = 3.9 \pm 1.1$ events.

The $B^+ \to K^+\nu\bar{\nu}$ branching fraction is calculated from

$$B(B^+ \to K^+\nu\bar{\nu}) = \frac{N_{K}^{obs} - N_{K}^{bg}}{N_{B^\pm} \cdot \varepsilon_{K}}$$

(2)

where N_{K}^{obs} is the total number of observed events in the signal region, $N_{B^\pm} = (88.9 \pm 1.0) \times 10^6$ is the estimated number of B^\pm mesons in the data sample and ε_{K} is the total efficiency. A total of $N_{K}^{obs} = 6$ (3) $B^+ \to K^+\nu\bar{\nu}$ candidate events are found in data in the B_{sl}^- (B_{had}^-) analysis. The p_K distributions for $B^+ \to K^+\nu\bar{\nu}$ signal events in the B_{sl}^- and B_{had}^- analysis are shown in Fig. 3.

Branching fraction upper limits are computed using a modified frequentist approach, based on [8], which models systematic uncertainties using Gaussian distributions. For both the B_{sl}^- and B_{had}^- searches, $B^+ \to K^+\nu\bar{\nu}$ limits are set at the branching fraction value at which it is estimated that 90% of experiments would produce a yield which is greater than the number of signal events observed. Limits of $B(B^+ \to K^+\nu\bar{\nu})_{sl} < 7.0 \times 10^{-5}$ and $B(B^+ \to K^+\nu\bar{\nu})_{\text{had}} < 6.7 \times 10^{-5}$ are
obtained for the B_{sl}^- and B_{had}^- searches respectively. Since the two tag B samples are statistically independent, we can combine the results of the two analyses to derive a limit of $\mathcal{B}(B^+ \to K^+\nu\bar{\nu}) < 5.2 \times 10^{-5}$ at the 90% C.L.

We also report a limit on exclusive $B^+ \to \pi^+\nu\bar{\nu}$ branching fraction using only the B_{had}^- sample. The same methodology as for the $B^+ \to K^+\nu\bar{\nu}$ search is applied to the $B^+ \to \pi^+\nu\bar{\nu}$ search except that the single additional track is required not to satisfy either kaon or electron PID criteria. The E_{extra} and p_π distributions for $B^+ \to \pi^+\nu\bar{\nu}$ are shown in Fig. 4. The overall $B^+ \to \pi^+\nu\bar{\nu}$ selection efficiency is estimated to be $\varepsilon_\pi = (0.065 \pm 0.006)\%$, where the quoted uncertainties include an estimated 2% PID uncertainty, and other contributions to the systematic uncertainty are similar to $B^+ \to K^+\nu\bar{\nu}$. The peaking and non-peaking backgrounds are estimated to be 15.1 ± 3.1 events and 9.0 ± 1.8 events respectively, with similar systematic uncertainties to the $B^+ \to K^+\nu\bar{\nu}$ analysis. The search selects $N_{\pi}^{\text{obs}} = 21$ candidates in data with an estimated total background of $N_{\pi}^{\text{bg}} = 24.1 \pm 3.6$, resulting an upper limit of $\mathcal{B}(B^+ \to \pi^+\nu\bar{\nu})_{\text{had}} < 1.0 \times 10^{-4}$ at the 90% C.L..
the most stringent experimental limit reported to date.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support \textit{BABAR}. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

References

[1] Y. Grossman, Z. Ligeti and E. Nardi, Nucl. Phys. \textbf{B465}, 369 (1996); \textit{ibid}. \textbf{B480}, 753 (1996) (E).

[2] A. Faessler, Th. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij, Eur. Phys. J. direct \textbf{C4}, 18 (2002).

[3] G. Buchalla, G. Hiller and G. Isidori, Phys. Rev. D \textbf{63}, 014015 (2001).

[4] The CLEO Collaboration, T. E. Browder \textit{et al}. Phys. Rev. Lett. \textbf{86}, 2950 (2001).

[5] T. M. Aliev, C. S. Kim, Phys. Rev. D \textbf{58}, 013003 (1998).

[6] The \textit{BABAR} Collaboration, B. Aubert \textit{et al}. Nucl. Inst. Meth. \textbf{A479}, 1 (2002).

[7] S. Agostinelli et. al., [GEANT4 Collaboration], Nucl. Inst. Meth. \textbf{A506}, 250 (2003).

[8] R. D. Cousins and V. L. Highland, Nucl. Inst. Meth. \textbf{A320}, 331 (1992).