REMARK ON CALDERÓN’S PROBLEM FOR THE SYSTEM OF ELLIPTIC EQUATIONS

O. YU. IMANUVILOV AND M. YAMAMOTO

Abstract. We consider the Calderón problem in the case of partial Dirichlet-to-Neumann map for the system of elliptic equations in a bounded two dimensional domain. The main result of the manuscript is as follows: If two systems of elliptic operators generate the same partial Dirichlet-to-Neumann map the coefficients can be uniquely determined up to the gauge equivalence.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^2 with smooth boundary, let $\tilde{\Gamma}$ be an open set on $\partial\Omega$ and $\Gamma_0 = Int(\partial\Omega \setminus \tilde{\Gamma})$. Consider the following boundary value problem:

$$L(x, D)u = \Delta u + 2A\partial_\nu u + 2B\partial_\mu u + Qu = 0 \text{ in } \Omega, \quad u|_{\Gamma_0} = 0, \quad u|_{\tilde{\Gamma}} = f.$$

Here $u = (u_1, \ldots, u_N)$ is a unknown vector function and A, B, Q be smooth $N \times N$ matrices. Consider the following partial Dirichlet-to-Neumann map:

$$\Lambda_{A,B,Q}f = \partial_\nu u,$$

where $L(x, D)u = 0$ in Ω, $u|_{\Gamma_0} = 0$, $u|_{\tilde{\Gamma}} = f$, where ν is the outward unit normal to $\partial\Omega$. This inverse problem is the generalization of so called Calderón’s problem (see [1]), which itself is the mathematical realization of Electrical Impedance Tomography (EIT). The goal of this paper is to extend the result obtained in [2] for the above problem in three-dimensional convex domain, which states that the coefficients of two systems of elliptic equations which principal part is the Laplace operator and which produce the same Dirichlet-to-Neumann map can be determined up to the gauge equivalence.

We have

Theorem 1.1. Let $A_j, B_j \in C^{5+\alpha}(\bar{\Omega}), Q_j \in C^{4+\alpha}(\bar{\Omega})$ for $j = 1, 2$ and some $\alpha \in (0, 1)$ and for the operators $L_j(x, D)$ of the form (1.1) with coefficients A_j, B_j, Q_j and adjoint of these operators zero is not an eigenvalue. Suppose that $\Lambda_{A_1,B_1,Q_1} = \Lambda_{A_2,B_2,Q_2}$. Then

$$A_1 = A_2 \quad \text{and} \quad B_1 = B_2 \quad \text{on } \tilde{\Gamma},$$

and there exists an invertible matrix $Q \in C^{5+\alpha}(\bar{\Omega})$ such that

$$Q|_{\tilde{\Gamma}} = I, \quad \partial_\nu Q|_{\tilde{\Gamma}} = 0,$$

$$A_2 = 2Q^{-1}\partial_\nu Q + Q^{-1}A_1Q \quad \text{in } \Omega,$$
\begin{equation}
B_2 = 2Q^{-1}\partial_z Q + Q^{-1}B_1 Q \quad \text{in } \Omega,
\end{equation}

\begin{equation}
Q_2 = Q^{-1}Q_1 Q + Q^{-1}\Delta Q + 2Q^{-1}A_1 \partial_z Q + 2Q^{-1}B_1 \partial_z Q \quad \text{in } \Omega.
\end{equation}

The paper organized as follows. In section 3 we construct the complex geometric optics solutions for the boundary value problem (1.1). In section 4 we prove some asymptotic for coefficients of two operators $L_j(x,D)$ of the form (1.2) which generate the same Dirichlet-to-Neumann map. In section 5, from the asymptotic relations obtained in the section 4, it is proved that there exists a gauge transformation Q which preserves the Dirichlet-to-Neumann map and such that it transforms the coefficient $A_1 \rightarrow A_2$. Then for the coefficients operators $Q^{-1}L_1(x,D)Q$ and $L_2(x,D)$ we obtain some system of integral-differential equations. Finally in the section 6 we study this integral-differential equation and show that the operators $Q^{-1}L_1(x,D)Q$ and $L_2(x,D)$ are the same.

\textbf{Notations.} Let $i = \sqrt{-1}$ and $\overline{\nu}$ be the complex conjugate of $z \in \mathbb{C}$. We set $\partial_z = \frac{1}{2}(\partial_{x_1} - i\partial_{x_2})$, $\partial_{\overline{\nu}} = \frac{1}{2}(\partial_{x_1} + i\partial_{x_2})$ and

\[\partial_{\overline{\nu}}^{-1}g = -\frac{1}{\pi} \int_{\Omega} \frac{g(\xi_1,\xi_2)}{\zeta - z} d\xi_1 d\xi_2, \quad \partial_z^{-1}g = -\frac{1}{\pi} \int_{\Omega} \frac{g(\xi_1,\xi_2)}{\zeta - \overline{\zeta}} d\xi_1 d\xi_2. \]

For any holomorphic function Φ we set $\Phi' = \partial_z \Phi$ and $\overline{\Phi}' = \partial_{\overline{\nu}} \Phi$, $\Phi'' = \partial_z^2 \Phi, \Phi'' = \partial_{\overline{\nu}}^2 \Phi$. Let $\overline{\nu} = (\nu_2, -\nu_1)$ be tangential vector to $\partial \Omega$. Let $W_{2,1}(\Omega)$ be the Sobolev space $W_{2}^1(\Omega)$ with the norm $\|u\|_{W_{2,1}(\Omega)} = \|\nabla u\|_{L^2(\Omega)} + \| \tau \| u\|_{L^2(\Omega)}$. Moreover by $\lim_{\eta \to \infty} \frac{\|f(\eta)\|_X}{\eta} = 0$ and $\|f(\eta)\|_X \leq C\eta$ as $\eta \to \infty$ with some $C > 0$, we define $f(\eta) = o_X(\eta)$ and $f(\eta) = O_X(\eta)$ as $\eta \to \infty$ for a normed space X with norm $\| \cdot \|_X$, respectively. $\beta = (\beta_1, \beta_2)$, $\beta_i \in \mathbb{N}_+$, $|\beta| = \beta_1 + \beta_2$, I is the identity matrix.

\textbf{2. Construction of the operators P_B and T_B.}

Let A, B be an $N \times N$ matrix with elements from $C^{5+\alpha}(\overline{\Omega})$ with $\alpha \in (0, 1)$. Consider the boundary value problem:

\begin{equation}
K(x,D)(U_0, \tilde{U}_0) = (2\partial_x U_0 + AU_0, 2\partial_{\overline{\nu}} \tilde{U}_0 + B\tilde{U}_0) = 0 \quad \text{in } \Omega, \quad U_0 + \tilde{U}_0 = 0 \quad \text{on } \Gamma_0.
\end{equation}

Without loss of generality we assume that Γ is an ark with endpoints x_{\pm}.

We have

\textbf{Proposition 2.1.} (see [7]) Let e be a positive number, $A, B \in C^{5+\alpha}(\Omega)$ for some $\alpha \in (0, 1)$, $\Psi \in C^\infty(\partial \Omega)$, $\overline{r}_{i,k}, \ldots, \overline{r}_{2,k} \in \mathbb{C}^3$ be arbitrary vectors and x_1, \ldots, x_k be mutually distinct arbitrary points from the domain Ω. There exists a solution $(U_0, \tilde{U}_0) \in C^{6+\alpha}(\overline{\Omega})$ to problem (2.1) such that

\begin{equation}
\partial^j \partial_{x_{\ell}} U_0(x_{\ell}) = \overline{r}_{j,\ell} \quad \forall j \in \{0, \ldots, 5\}, \quad \text{and } \forall \ell \in \{1, \ldots, k\},
\end{equation}

\begin{equation}
\lim_{x \to x_{\pm}} \frac{|U_0(x)|}{|x - x_{\pm}|^{98}} = \lim_{x \to x_{\pm}} \frac{|\tilde{U}_0(x)|}{|x - x_{\pm}|^{98}} = 0
\end{equation}

and

\begin{equation}
\|U_0 - \Psi\|_{C^{5+\alpha}(\overline{\Omega})} \leq e.
\end{equation}
We construct the matrix \mathcal{C} and the matrix \mathcal{P} as follows
\begin{equation}
\mathcal{C} = (\tilde{U}_0(1), \ldots, \tilde{U}_0(N)), \quad \mathcal{P} = (U_0(1), \ldots, U_0(N)) \in C^{6+\alpha}(\Omega)
\end{equation}
and for any $j \in \{1, \ldots, N\}$
\begin{equation}
\mathcal{K}(x, D)(U_0(j), \tilde{U}_0(j)) = 0 \quad \text{in } \Omega, \quad U_0(j) + \tilde{U}_0(j) = 0 \quad \text{on } \Gamma_0.
\end{equation}
By Proposition 2.1 for the equation (2.6) we can construct solutions $(U_0(j), \tilde{U}_0(j))$ such that
\[U_0(j)(\hat{x}) = \tilde{e}_j, \quad \forall j \in \{1, \ldots, N\},\]
where \tilde{e}_j is the standard basis in \mathbb{R}^N.

By \mathcal{Z} we denote the set of zeros of the function q on $\overline{\Omega}$: $\mathcal{Z} = \{z \in \Omega; q(z) = 0\}$. Obviously $\text{card } \mathcal{Z} < \infty$. By κ we denote the highest order of zeros of the function q on $\overline{\Omega}$.

Using Proposition 9 of [?] we construct solutions $U_0^{(j)}$ to problem (3.9) such that
\[U_0^{(j)}(x) = \tilde{e}_j \quad \forall j \in \{1, \ldots, N\} \quad \text{and} \quad \forall x \in \mathcal{Z}.
\]
Set $\tilde{\mathcal{P}}(x) = (U_0^{(1)}(x), \ldots, U_0^{(N)}(x)), \tilde{\mathcal{C}}(x) = (\tilde{U}_0^{(1)}(x), \ldots, \tilde{U}_0^{(N)}(x))$. Then there exists a holomorphic function \tilde{q} such that $\det \tilde{\mathcal{P}} = \tilde{q}(z)e^{-\frac{1}{2}\kappa^1 \text{tr} \tilde{\mathcal{P}}}$ in Ω. Let $\tilde{\mathcal{Z}} = \{z \in \Omega; \tilde{q}(z) = 0\}$ and $\tilde{\kappa}$ the highest order of zeros of the function \tilde{q}.

By $\tilde{U}_0^{(j)}(x) = \tilde{e}_j$ for $x \in \mathcal{Z}$, we see that $\tilde{\mathcal{Z}} \cap \mathcal{Z} = \emptyset$. Therefore there exists a holomorphic function $r(z)$ such that $r|_{\mathcal{Z}} = 0$ and $(1 - r)|_{\tilde{\mathcal{Z}}} = 0$ and the orders of zeros of the function r on \mathcal{Z} and the function $1 - r$ on $\tilde{\mathcal{Z}}$ are greater than or equal to the max{$\kappa, \tilde{\kappa}$}.

We set
\begin{equation}
P_A f = \frac{1}{2} \mathcal{P} \partial_{\tilde{z}}^{-1}(\mathcal{P}^{-1} r f) + \frac{1}{2} \tilde{\mathcal{P}} \partial_{\tilde{z}}^{-1}(\tilde{\mathcal{P}}^{-1}(1 - r) f).
\end{equation}
Then
\[P_A^* f = -\frac{1}{2} r(\mathcal{P}^{-1})^* \partial_{\tilde{z}}^{-1}(\mathcal{P}^* f) - \frac{1}{2} (1 - r)(\tilde{\mathcal{P}}^{-1})^* \partial_{\tilde{z}}^{-1}(\tilde{\mathcal{P}}^* f).
\]
For any matrix $A \in C^{5+\alpha}(\overline{\Omega}), \alpha \in (0, 1)$, the linear operators $P_A, P_A^* \in \mathcal{L}(L^2(\Omega), W_2^1(\Omega))$ solve the differential equations
\[(-2\partial_{\tilde{z}} + A^*) P_A^* g = g \quad \text{in } \Omega \quad (2\partial_{\tilde{z}} + A) P_A g = g \quad \text{in } \Omega.
\]

In a similar way, using matrices $\mathcal{C}, \tilde{\mathcal{C}}$ we construct the operators
\[T_B f = \frac{1}{2} \mathcal{C} \partial_{\tilde{z}}^{-1}(\mathcal{C}^{-1} \tilde{r} f) + \frac{1}{2} \tilde{\mathcal{C}} \partial_{\tilde{z}}^{-1}(\tilde{\mathcal{C}}^{-1}(1 - \tilde{r}) f)
\]
and
\begin{equation}
T_B^* f = \frac{1}{2} r(\mathcal{C}^{-1})^* \partial_{\tilde{z}}^{-1}(\mathcal{C}^* f) - \frac{1}{2} (1 - r(\mathcal{C}^{-1})) \tilde{\mathcal{C}}^{-1} \partial_{\tilde{z}}^{-1}(\tilde{\mathcal{C}}^* f).
\end{equation}

For any matrix $B \in C^{5+\alpha}(\overline{\Omega}), \alpha \in (0, 1)$, the linear operators T_B and T_B^* solve the differential equation
\[(-2\partial_{\tilde{z}} + B^*) T_B g = g \quad \text{in } \Omega \quad \text{and} \quad (2\partial_{\tilde{z}} + B) T_B^* g = g \quad \text{in } \Omega.
\]

Finally we introduce two operators
\[\mathcal{R}_{r,B} g = e^{r(\mathcal{C} - \Phi)} T_B(e^{r(\Phi - \mathcal{C})} g) \quad \text{and} \quad \mathcal{R}_{r,B} g = e^{r(\Phi - \mathcal{C})} T_B(e^{r(\mathcal{C} - \Phi)} g).
\]
3. Step 1: Construction of complex geometric optics solutions.

Let $L_1(x, D)$ and $L_2(x, D)$ be the operators of the form (1.1) with the coefficients A_j, B_j, Q_j. In this step, we will construct two complex geometric optics solutions u_1 and v respectively for operators $L_1(x, D)$ and $L_2(x, D)$.

As the phase function for such a solution we consider a holomorphic function $\Phi(z)$ such that $\Phi(z) = \varphi(x_1, x_2) + i\psi(x_1, x_2)$ with real-valued functions φ and ψ. For some $\alpha \in (0, 1)$ the function Φ belongs to $C^{6+\alpha}(\overline{\Omega})$. Moreover
\begin{equation}
\partial_x \Phi = 0 \quad \text{in } \Omega, \quad \text{Im } \Phi|_{\Gamma_0} = 0.
\end{equation}

Denote by \mathcal{H} the set of all the critical points of the function Φ: $\mathcal{H} = \{z \in \overline{\Omega}; \Phi'(z) = 0\}$. Assume that Φ has no critical points on $\overline{\Gamma}$, and that all critical points are nondegenerate:
\begin{equation}
\mathcal{H} \cap \partial \Omega = 0, \quad \Phi'(z) \neq 0, \quad \forall z \in \mathcal{H}, \quad \text{card } \mathcal{H} < \infty.
\end{equation}

Let $\partial \Omega = \bigcup_{j=1}^N \gamma_j$. The following proposition was proved in [5].

Proposition 3.1. Let \bar{x} be an arbitrary point in domain Ω. There exists a sequence of functions $\{\Phi_\epsilon\}_{\epsilon \in (0, 1)} \in C^6(\overline{\Omega})$ satisfying (3.1), (3.2) and there exists a sequence $\{\bar{x}_\epsilon\}_{\epsilon \in (0, 1)}$ such that $\bar{x}_\epsilon \in \mathcal{H}_\epsilon = \{z \in \overline{\Omega}; \Phi'_\epsilon(z) = 0\}$, $\bar{x}_\epsilon \to \bar{x}$ as $\epsilon \to +0$, and
\begin{equation}
\text{Im } \Phi_\epsilon(\bar{x}_\epsilon) \notin \{\text{Im } \Phi_\epsilon(x); x \in \mathcal{H}_\epsilon \setminus \{\bar{x}_\epsilon\}\} \quad \text{and } \text{Im } \Phi_\epsilon(\bar{x}_\epsilon) \neq 0.
\end{equation}

Let the function Φ satisfy (3.1), (3.2) and \bar{x} be some point from \mathcal{H}. Without loss of generality, we may assume that Γ is an arc with the endpoints x_\pm.

Denote $Q_1(1) = -2\partial_x A_1 - B_1 A_1 + Q_1$, $Q_2(1) = -2\partial_x B_1 - A_1 B_1 + Q_1$.

Let $(U_0, \tilde{U}_0) \in C^{6+\alpha}(\overline{\Omega})$ be a solution to the boundary value problem:
\begin{equation}
\mathcal{K}(x, D)(U_0, \tilde{U}_0) = (2\partial_x U_0 + A_1 U_0, 2\partial_x \tilde{U}_0 + B_1 \tilde{U}_0) = 0 \quad \text{in } \Omega, \quad U_0 + \tilde{U}_0 = 0 \quad \text{on } \Gamma_0.
\end{equation}

The complex geometric optics solutions are constructed in [7], [8]. We remind the main steps. Let the pair (U_0, \tilde{U}_0) be defined in the following way
\begin{equation}
U_0 = P_1 a, \quad \tilde{U}_0 = C_1 \bar{a},
\end{equation}
where $a(z) = (a_1(z), \ldots, a_N(z)) \in C^{5+\alpha}(\overline{\Omega})$ is the holomorphic vector function such that $\text{Im } a|_{\Gamma_0} = 0$, or
\begin{equation}
U_0 = P_1 a, \quad \tilde{U}_0 = -C_1 \bar{a},
\end{equation}
where $a(z) = (a_1(z), \ldots, a_N(z)) \in C^{5+\alpha}(\overline{\Omega})$ is the holomorphic vector function such that $\text{Re } a|_{\Gamma_0} = 0$.
\begin{equation}
C_1 = (\tilde{U}_0(1), \ldots, \tilde{U}_0(N)), \quad P_1 = (U_0(1), \ldots, U_0(N)) \in C^{6+\alpha}(\overline{\Omega})
\end{equation}

and for any $k \in \{1, \ldots, N\}$
\begin{equation}
\mathcal{K}(x, D)(U_0(k), \tilde{U}_0(k)) = 0 \quad \text{in } \Omega, \quad U_0(k) + \tilde{U}_0(k) = 0 \quad \text{on } \Gamma_0.
\end{equation}
In order to make a choice of C_1, P_1 let us fix a small positive number ϵ. By Proposition [2.1] there exist solutions $(U_0(k), \widetilde{U}_0(k))$ to problem (3.3) for $k \in \{1, \ldots, N\}$ such that

$$(3.10) \quad \|U_0(k) - \bar{e}_k\|_{C^{5+\alpha}(\Gamma_0)} \leq \epsilon \quad \forall k \in \{1, \ldots, N\}.$$

This inequality and the boundary conditions in (3.3) on Γ_0 imply

$$(3.11) \quad \|\widetilde{U}_0(k) - \bar{e}_k\|_{C^{5+\alpha}(\Gamma_0)} \leq \epsilon \quad \forall k \in \{1, \ldots, N\}.$$

Let e_1, e_2 be smooth functions such that

$$(3.12) \quad e_1 + e_2 = 1 \quad \text{on } \Omega,$$

and e_1 vanishes in a neighborhood of $\partial \Omega$ and e_2 vanishes in a neighborhood of the set \mathcal{H}.

For any positive ϵ denote $G_\epsilon = \{x \in \Omega; \text{dist} (\text{supp } e_1, x) > \epsilon\}$. The following proposition proved in [?]:

Proposition 3.2. Let $B, q \in C^{5+\alpha}(\overline{\Omega})$ for some positive $\alpha \in (0, 1)$, the function Φ satisfy (3.1), (3.2) and $\bar{q} \in W^1_p(\overline{\Omega})$ for some $p > 2$. Suppose that $q|_\mathcal{H} = \bar{q}|_\mathcal{H} = 0$. Then the asymptotic formulae hold true:

$$(3.13) \quad \tilde{R}_{\tau,B}(e_1(q + \bar{q}/\tau))|_{\overline{\mathcal{G}_\epsilon}} = e^{\tau(\Phi - \Phi)} \left(\frac{m_{+,\bar{x}}e^{2i\tau\psi(\bar{x})}}{\tau^2} + o_{C^2(\overline{\mathcal{G}_\epsilon})}(\frac{1}{\tau^2})\right) \quad \text{as } |\tau| \to +\infty,$$

$$(3.14) \quad R_{\tau,B}(e_1(q + \bar{q}/\tau))|_{\overline{\mathcal{G}_\epsilon}} = e^{\tau(\Phi - \Phi)} \left(\frac{m_{-\bar{x}}e^{-2i\tau\psi(\bar{x})}}{\tau^2} + o_{C^2(\overline{\mathcal{G}_\epsilon})}(\frac{1}{\tau^2})\right) \quad \text{as } |\tau| \to +\infty.$$

Denote $q_1 = P_{A_1}(Q_1(1)U_0) - M_1$, $q_2 = T_{B_1}(Q_2(1)\widetilde{U}_0) - M_2 \in C^{5+\alpha}(\overline{\Omega})$, where the functions $M_1 \in \text{Ker}(2\partial_x + A_1)$ and $M_2 \in \text{Ker}(2\partial_x + B_1)$ are taken such that

$$(3.15) \quad q_1(\bar{x}) = q_2(\bar{x}) = \partial^3_x q_1(x) = \partial^3_x q_2(x) = 0, \quad \forall x \in \mathcal{H} \setminus \{\bar{x}\} \quad \text{and } \forall |\beta| \leq 5.$$

Moreover by (2.3) we can assume that

$$(3.16) \quad \lim_{x \to x_\pm} \frac{|q_1(x)|}{|x - x_\pm|^{98}} = \lim_{x \to x_\pm} \frac{|q_2(x)|}{|x - x_\pm|^{98}} = 0.$$

Next we introduce the functions $(U_{-1}, \widetilde{U}_{-1}) \in C^{5+\alpha}(\overline{\Omega}) \times C^{5+\alpha}(\overline{\Omega})$ as a solutions to the following boundary value problem:

$$(3.17) \quad K(x, D)(U_{-1}, \widetilde{U}_{-1}) = 0 \quad \text{in } \Omega, \quad (U_{-1} + \widetilde{U}_{-1})|_{\Gamma_0} = \frac{q_1}{2\Phi'} + \frac{q_2}{2\Phi'}.$$

We set $p_1 = -Q_1(1)(\frac{e^{q_1}}{\Phi} - U_{-1})+ L_1(x, D)(\frac{e^{q_1}}{2\Phi})$, $p_2 = -Q_1(1)(\frac{e^{q_2}}{\Phi} - \widetilde{U}_{-1})+ L_1(x, D)(\frac{e^{q_2}}{2\Phi'})$, $q_2 = T_{B_2}p_2 - M_2$, $\tilde{q}_1 = P_{A_1}p_1 - \tilde{M}_1 \in C^{5+\alpha}(\Omega)$, where $M_1 \in \text{Ker}(2\partial_x + A_1)$ and $M_2 \in \text{Ker}(2\partial_x + B_1)$ are taken such that

$$(3.18) \quad \partial^3_x \tilde{q}_1(x) = \partial^3_x \tilde{q}_2(x) = 0, \quad \forall x \in \mathcal{H} \quad \text{and } \forall |\beta| \leq 5.$$

By Proposition [3.2] there exist functions $m_{+,\bar{x}} \in C^{2+\alpha}(\overline{\mathcal{G}_\epsilon})$ such that

$$(3.19) \quad \tilde{R}_{\tau,B_1}(e_1(q_1 + \bar{q}_1/\tau))|_{\overline{\mathcal{G}_\epsilon}} = e^{\tau(\Phi - \Phi)} \left(\frac{m_{+,\bar{x}}e^{2i\tau\psi(\bar{x})}}{\tau^2} + o_{C^2(\overline{\mathcal{G}_\epsilon})}(\frac{1}{\tau^2})\right) \quad \text{as } |\tau| \to +\infty.$$
and
\begin{equation}
\mathcal{R}_{\tau, A_1}(q_2 + \frac{\bar{q}_2}{\tau})|_{\Gamma_{\alpha}} = e^{\tau(\Phi - \overline{\Phi})}\left(\frac{m_{-\xi}e^{-2i\tau\psi(\bar{\xi})}}{\tau^2} + o_{C^2(\Gamma_{\alpha})}\left(\frac{1}{\tau^2}\right)\right) \text{ as } |\tau| \to +\infty.
\end{equation}

For any \(\bar{x} \in \mathcal{H} \) we introduce the functions \(a_{\pm, \bar{x}}, b_{\pm, \bar{x}} \in C^{2+\alpha}(\Omega) \) as solutions to the boundary value problem
\begin{equation}
\mathcal{K}(x, D)(a_{\pm, \bar{x}}, b_{\pm, \bar{x}}) = 0 \quad \text{in } \Omega, \quad (a_{\pm, \bar{x}} + b_{\pm, \bar{x}})|_{\Gamma_0} = m_{\pm, \bar{x}}.
\end{equation}
We choose the functions \(a_{\pm, \bar{x}}, b_{\pm, \bar{x}} \) in the form
\begin{equation}
(a_{\pm, \bar{x}}, b_{\pm, \bar{x}}) = (p_1(x), p_2(x), \zeta_{\pm, \bar{x}}(\xi)),
\end{equation}
where \(p_1, p_2 \) is some holomorphic function and \(\zeta_{\pm, \bar{x}}(\xi) \) is some antiholomorphic function. Let \((\tilde{U}_2, \tilde{U}_{-2}) \in C^{5+\alpha}(\Omega) \times C^{5+\alpha}(\Omega)\) be solution to the boundary value problem
\begin{equation}
\mathcal{K}(x, D)(U_{-2}, \tilde{U}_{-2}) = 0 \quad \text{in } \Omega, \quad (U_{-2} + \tilde{U}_{-2})|_{\Gamma_0} = \frac{\bar{q}_1}{2\Phi'} + \frac{\bar{q}_2}{2\Phi'}.
\end{equation}

We introduce the functions \(U_{0, \tau}, \tilde{U}_{0, \tau} \in C^{2+\alpha}(\Omega) \) by
\begin{equation}
U_{0, \tau} = U_0 + \frac{U_{-1} - e_2 q_1/2\Phi'}{\tau} + \frac{1}{\tau^2}((e^{2i\tau\psi(\bar{x})}a_{+\bar{x}} + e^{-2i\tau\psi(\bar{x})}a_{-\bar{x}}) + U_{-2} - \frac{\bar{q}_1 e_2}{2\Phi'})
\end{equation}
and
\begin{equation}
\tilde{U}_{0, \tau} = \tilde{U}_0 + \frac{\tilde{U}_{-1} - e_2 q_2/2\Phi'}{\tau} + \frac{1}{\tau^2}((e^{2i\tau\psi(\bar{x})}b_{+\bar{x}} + e^{-2i\tau\psi(\bar{x})}b_{-\bar{x}}) + \tilde{U}_{-2} - \frac{\bar{q}_2 e_2}{2\Phi'}).
\end{equation}
We set \(\mathcal{O}_\varepsilon = \{ x \in \Omega; \text{dist}(x, \partial \Omega) \leq \varepsilon \}. \)
In [?] it is shown that there exists a function \(u_{-1} \) in complex geometric optics solution satisfies the estimate
\begin{equation}
\sqrt{\tau}|u_{-1}|_{L^2(\Omega)} + \frac{1}{\sqrt{|\tau|}}\|\nabla u_{-1}\|_{L^2(\Omega)} + \|u_{-1}\|_{W_{-\alpha}(\mathcal{O}_\varepsilon)} = o\left(\frac{1}{\tau}\right) \quad \text{as } \tau \to +\infty
\end{equation}
and such that the function
\begin{equation}
u_1(x) = U_{0, \tau}e^{r\Phi} + \tilde{U}_{0, \tau}e^{r\overline{\Phi}} - e^{r\Phi}\mathcal{R}_{\tau, B_1}(q_1 + \bar{q}_1/\tau) - e^{r\overline{\Phi}}\mathcal{R}_{\tau, A_1}(q_2 + \bar{q}_2/\tau) + e^{r\Phi}u_{-1}
\end{equation}
solves the boundary value problem
\begin{equation}
L_1(x, D)u_1 = 0 \quad \text{in } \Omega, \quad u_1|_{\Gamma_0} = 0.
\end{equation}
Similarly, we construct the complex geometric optics solutions to the operator \(L_2(x, D)^* \). Let \((V_0, \tilde{V}_0) \in C^{6+\alpha}(\Omega) \times C^{6+\alpha}(\Omega)\) be solutions to the following boundary value problem:
\begin{equation}
\mathcal{M}(x, D)(V_0, \tilde{V}_0) = ((2\partial_{\bar{x}} - B_{-2}^*)V_0, (2\partial_{\bar{x}} - A_{-2}^*)\tilde{V}_0) = 0 \quad \text{in } \Omega, \quad (V_0 + \tilde{V}_0)|_{\Gamma_0} = 0,
\end{equation}
such that
\begin{equation}
\lim_{x \to x_{\pm}} \frac{|V_0(x)|}{|x - x_{\pm}|^{\frac{95}{8}}} = \lim_{x \to x_{\pm}} \frac{|\tilde{V}_0(x)|}{|x - x_{\pm}|^{\frac{95}{8}}} = 0.
\end{equation}
Such a pair \((V_0, \tilde{V}_0)\) exists due to Proposition [2.1]. More specifically let
\begin{equation}
V_0 = C_2 \bar{b}, \quad \tilde{V}_0 = p_2 b,
\end{equation}
where \(b(z) = (b_1(z), \ldots, b_N(z)) \in C^{5+\alpha}(\Omega) \) is the holomorphic vector function such that \(\text{Im} \, b|_{\Gamma_0} = 0 \), or

\[
V_0 = C_2 \overline{b}, \quad \tilde{V}_0 = -\mathcal{P}_2 b,
\]

where \(\mathcal{P}_2 \) is the projection onto the space of holomorphic vector functions. Moreover, by Proposition 2.1 there exist solutions \((V_0(k), \tilde{V}_0(k))\) to problem (3.28) for \(k \in \{1, \ldots, N\} \) such that

\[
\| \tilde{V}_0(k) - \bar{c}_k \|_{C^{5+\alpha}({\Gamma_0})} \leq \epsilon \quad \forall k \in \{1, \ldots, N\}.
\]

This inequality and the boundary conditions in (3.28) on \(\Gamma_0 \) imply

\[
\| V_0(k) - \bar{c}_k \|_{C^{5+\alpha}(\Gamma_0)} \leq \epsilon \quad \forall k \in \{1, \ldots, N\}.
\]

In order to fix the choice of the operators \(P_{-B_2^*}, T_{-A_2^*} \) we take \(\mathcal{C} = C_2, \mathcal{P} = \mathcal{P}_2 \) and \(\tilde{\mathcal{C}} = \tilde{C}_2, \tilde{\mathcal{P}} = \tilde{P}_2 \). We set \(q_3 = P_{-A_2^*}(Q_1(2) \tilde{V}_0) - M_3, \ q_4 = T_{-B_2^*}(Q_2(2)V_0) - M_4 \in C^{5+\alpha}(\Omega) \), where \(Q_1(2) = Q_2 - 2\bar{\partial}_z B_2 - B_2^* A_2^*, \ Q_2(2) = Q_2^* - 2\bar{\partial}_z A_2^* - A_2^* B_2^* \) and \(M_3, M_4 \in Ker(2\bar{\partial}_z - A_2^*) \) are chosen such that

\[
q_3(x) = q_4(x) = \partial_x^\beta q_3(x) = \partial_x^\beta q_4(x) = 0, \quad \forall x \in \mathcal{H} \setminus \{\tilde{x}\} \quad \text{and} \quad \forall |\beta| \leq 5;
\]

\[
\lim_{x \to x_{\pm}} \frac{|q_j(x)|}{|x - x_{\pm}|^{98}} = 0 \quad \forall j \in \{3, 4\}.
\]

By (3.2) the functions \(\frac{q_3}{2\Phi}, \frac{q_4}{2\Phi} \) belong to the space \(C^{5+\alpha}(\Gamma_0) \). Therefore we can introduce the functions \(\bar{V}_1, \tilde{V}_1 \in C^{5+\alpha}(\Omega) \) as solutions to the following boundary value problem:

\[
\mathcal{M}(x, D)(\bar{V}_1, \tilde{V}_1) = 0 \quad \text{in} \ \Omega, \quad (V_1 + \bar{V}_1)|_{\Gamma_0} = -(\frac{q_3}{2\Phi} + \frac{q_4}{2\Phi}).
\]

Let \(p_3 = Q_1(2)(\frac{\epsilon_3 q_3}{2\Phi} + \bar{V}_1) + L_2(x, D)(\frac{q_3 q_4}{2\Phi}) \), \(p_4 = Q_2(2)(\frac{q_4 q_3}{2\Phi} + V_1) + L_2(x, D)(\frac{q_4 q_3}{2\Phi}) \) and \(\bar{q}_3 = (T_{-B_2^*} p_3 - \bar{M}_3), \ \bar{q}_4 = (P_{-A_2^*} p_3 - \bar{M}_4) \in C^{5+\alpha}(\Omega) \), where \(\bar{M}_3, \bar{M}_4 \in Ker(2\bar{\partial}_z - A_2^*) \), \(\bar{q}_3, \bar{q}_4 \) are chosen such that

\[
\partial_x^\beta \bar{q}_3(x) = \partial_x^\beta \bar{q}_4(x) = 0, \quad \forall x \in \mathcal{H} \quad \text{and} \quad \forall |\beta| \leq 5.
\]

By Proposition 3.2 there exist smooth functions \(\bar{m}_{\pm, \tilde{x}} \in C^{2+\alpha}(G_e), \tilde{x} \in \mathcal{H} \), independent of \(\tau \) such that

\[
\bar{R}_{\tau, -B_2^*}(e_1(q_3 + \tilde{q}_3/\tau))|_{\mathcal{G}_e} = \frac{\bar{m}_{\pm, \tilde{x}} e^{2i\tau(\psi - \psi(\tilde{x}))}}{\tau^2} + e^{2i\tau} O_{C^2(G_e)}(\frac{1}{\tau^2}) \quad \text{as} \quad |\tau| \to +\infty
\]

and

\[
R_{\tau, -A_2^*}(e_1(q_4 + \tilde{q}_4/\tau))|_{\mathcal{G}_e} = \frac{\bar{m}_{\pm, \tilde{x}} e^{-2i\tau(\psi - \psi(\tilde{x}))}}{\tau^2} + e^{-2i\tau} O_{C^2(G_e)}(\frac{1}{\tau^2}) \quad \text{as} \quad |\tau| \to +\infty.
\]
Using the functions \(\tilde{m}_{\pm,\bar{z}} \) we introduce functions \(\tilde{a}_{\pm,\bar{z}}, \tilde{b}_{\pm,\bar{z}} \in C^{2+\alpha}(\bar{\Omega}) \) which solve the boundary value problem

\[
\mathcal{M}(x, D)(\tilde{a}_{\pm,\bar{z}}, \tilde{b}_{\pm,\bar{z}}) = 0 \quad \text{in } \Omega, \quad (\tilde{a}_{\pm,\bar{z}} + \tilde{b}_{\pm,\bar{z}})|_{\Gamma_0} = \tilde{m}_{\pm,\bar{z}}.
\]

We choose \(\tilde{a}_{\pm,\bar{z}}, \tilde{b}_{\pm,\bar{z}} \) in the form

\[
(\tilde{a}_{\pm,\bar{z}}, \tilde{b}_{\pm,\bar{z}}) = (C_2(x)\tilde{a}_{\pm,\bar{z}}(\bar{z}), P_2(x)\tilde{b}_{\pm,\bar{z}}(\bar{z})),
\]

where \(\tilde{a}_{\pm,\bar{z}}(\bar{z}) \) is some antiholomorphic function and \(\tilde{b}_{\pm,\bar{z}}(\bar{z}) \) is some holomorphic function. By (3.2) the functions \(\frac{\tilde{a}_{1}}{2\Phi}, \frac{\tilde{a}_{4}}{2\Phi} \) belong to the space \(C^{5+\alpha}(\bar{\Omega}) \). Therefore there exists a pair \((V_{-2}, \bar{V}_{-2}) \in C^{5+\alpha}(\bar{\Omega}) \times C^{5+\alpha}(\bar{\Omega}) \) which solves the boundary value problem

\[
\mathcal{M}(x, D)(V_{-2}, \bar{V}_{-2}) = 0 \quad \text{in } \Omega, \quad (V_{-2} + \bar{V}_{-2})|_{\Gamma_0} = -\left(\frac{q_3}{2\Phi} + \frac{\bar{q}_4}{2\Phi}\right).
\]

We introduce functions \(V_{0,\tau}, \bar{V}_{0,\tau} \in C^{2+\alpha}(\bar{\Omega}) \) by formulas

\[
\bar{V}_{0,\tau} = \bar{V}_0 + \frac{V_{-1} + \frac{e_2q_3/2\Phi}{\tau}}{\bar{\tau}} + \frac{1}{\bar{\tau}^2}\left(e^{2i\tau\psi(\bar{z})}\bar{b}_{+,\bar{z}} + e^{-2i\tau\psi(\bar{z})}\bar{b}_{-,\bar{z}} + \bar{V}_{-2} + \frac{e_2\bar{q}_3}{2\Phi}\right)
\]

and

\[
V_{0,\tau} = V_0 + \frac{V_{-1} + \frac{e_2q_4/2\Phi}{\tau}}{\tau} + \frac{1}{\tau^2}\left(e^{2i\tau\psi(\bar{z})}\tilde{a}_{+,\bar{z}} + e^{-2i\tau\psi(\bar{z})}\tilde{a}_{-,\bar{z}} + V_{-2} + \frac{e_2q_4}{2\Phi}\right).
\]

The last term \(v_{-1} \) in complex geometric optics solution satisfies the estimate

\[
\sqrt{|\tau|}||v_{-1}||_{L^2(\Omega)} + \frac{1}{\sqrt{|\tau|}}||\nabla v_{-1}||_{L^2(\Omega)} + ||v_{-1}||_{W^{1,7}(\partial_\Omega)} = o\left(\frac{1}{\tau}\right) \quad \text{as } \tau \to +\infty
\]

and such that the function

\[
v = V_{0,\tau}e^{-\tau\Phi} + \bar{V}_{0,\tau}e^{-\bar{\tau}\Phi} - e^{-\tau\Phi}\bar{R}_{-\tau,-B_2}\left(\tau_1(q_3 + \frac{\bar{q}_3}{\tau})\right) - e^{\bar{\tau}\Phi}R_{-\tau,-A_2}\left(\tau_1(q_4 + \frac{\bar{q}_4}{\tau})\right) + v_{-1}e^{-\tau\phi}
\]

solves the boundary value problem

\[
L_2(x, D)^*v = 0 \quad \text{in } \Omega, \quad v|_{\Gamma_0} = 0.
\]

We close this section with one technical proposition similar to one proved in [6]:

Proposition 3.3. Suppose that the functions \(C_i, P_i \in C^{6+\alpha}(\bar{\Omega}) \) for all \(i, j \in \{1, 2\} \) some \(\alpha \in (0, 1) \) given by (3.3)-(3.10), (3.32)-(3.34) satisfy

\[
\int_{\partial_\Omega} \{(\nu_1 + i\nu_2)\bar{\Phi}'(P_1a, P_2b) + (\nu_1 - i\nu_2)\Phi'(C_1a, C_2b)\}d\sigma = 0,
\]

for all holomorphic vector functions \(a, b \) such that \(\text{Im}a|_{\Gamma_0} = \text{Im}b|_{\Gamma_0} = 0 \). Then there exist a holomorphic function \(\Theta \in W^{1,7}_2(\Omega) \) and an antiholomorphic function \(\tilde{\Theta} \in W^{1,7}_2(\Omega) \) such that

\[
\tilde{\Theta}|_{\Gamma} = C_2^*C_1, \quad \Theta|_{\Gamma} = P_2^*P_1
\]

and

\[
\Theta = \tilde{\Theta} \quad \text{on } \Gamma_0.
\]
Proof.} First we show that for all holomorphic vector functions \(a, b \) such that \(\text{Im} a |_{\Gamma_0} = \text{Im} b |_{\Gamma_0} = 0 \) there exists a holomorphic function \(\tilde{\Psi} \) and antiholomorphic function \(\Psi \) such that
\[
\tilde{\Phi}'(C_1a, C_2b) - \Psi = \tilde{\Phi}'(P_1a, P_2b) - \tilde{\Psi} = 0 \quad \text{on} \quad \tilde{\Gamma} \quad \text{and} \quad ((\nu_1 - i\nu_2)\Psi + (\nu_1 + i\nu_2)\tilde{\Psi})|_{\Gamma_0} = 0.
\]
Also we observe that the equality (3.49) implies
\[
\mathcal{I} = \int_{\partial \Omega} \{(\nu_1 + i\nu_2)\Phi'(P_1a, P_2b) + (\nu_1 - i\nu_2)\tilde{\Phi}'(\tilde{C}_1(-\bar{a}), \tilde{C}_2\bar{b})\}d\sigma = 0,
\]
for all holomorphic vector functions \(a, b \) such that \(\text{Re} a |_{\Gamma_0} = \text{Im} b |_{\Gamma_0} = 0 \). Indeed,
\[
\mathcal{I} = \frac{1}{i} \int_{\partial \Omega} \{(\nu_1 + i\nu_2)\Phi'(P_1a, P_2b) + (\nu_1 - i\nu_2)\tilde{\Phi}'(\tilde{C}_1(-\bar{a}), \tilde{C}_2\bar{b})\}d\sigma = \frac{1}{i} \int_{\partial \Omega} \{(\nu_1 + i\nu_2)\Phi'(P_1a, P_2b) + (\nu_1 - i\nu_2)\tilde{\Phi}'(\tilde{C}_1(\bar{a}), \tilde{C}_2\bar{b})\}d\sigma = 0.
\]
Here, in order to get the last equality we used (3.49). Consider the extremal problem:
\[
J(\Psi, \tilde{\Psi}) = \|\tilde{\Phi}'(C_1a, C_2b) - \Psi\|^2_{L^2(\tilde{\Gamma})} + \|\Phi'(P_1a, P_2b) - \tilde{\Psi}\|^2_{L^2(\tilde{\Gamma})} \to \inf,
\]
\[
\frac{\partial \Psi}{\partial z} = 0 \quad \text{in} \quad \Omega, \quad \frac{\partial \tilde{\Psi}}{\partial z} = 0 \quad \text{in} \quad \Omega, \quad ((\nu_1 - i\nu_2)\Psi + (\nu_1 + i\nu_2)\tilde{\Psi})|_{\Gamma_0} = 0.
\]
Denote the unique solution to this extremal problem (3.53), (3.54) by \((\tilde{\Psi}, \tilde{\Psi})\). Applying the Fermat theorem, we obtain
\[
\text{Re}(\Phi'(P_1a, P_2b) - \tilde{\Psi}, \delta)_{L^2(\tilde{\Gamma})} + \text{Re}(\tilde{\Phi}'(\tilde{C}_1a, \tilde{C}_2b) - \tilde{\Psi}, \tilde{\delta})_{L^2(\tilde{\Gamma})} = 0
\]
for any \(\delta, \tilde{\delta} \) from \(\mathcal{W}^{\frac{1}{2}}(\Omega) \) such that
\[
\frac{\partial \delta}{\partial z} = 0 \quad \text{in} \quad \Omega, \quad \frac{\partial \tilde{\delta}}{\partial z} = 0 \quad \text{in} \quad \Omega, \quad (\nu_1 + i\nu_2)\delta|_{\Gamma_0} = -(\nu_1 - i\nu_2)\tilde{\delta}|_{\Gamma_0}
\]
and there exist two functions \(P, \tilde{P} \in \mathcal{W}^{\frac{1}{2}}(\Omega) \) such that
\[
\frac{\partial P}{\partial z} = 0 \quad \text{in} \quad \Omega, \quad \frac{\partial \tilde{P}}{\partial z} = 0 \quad \text{in} \quad \Omega,
\]
\[
(\nu_1 + i\nu_2)P = \Phi'(P_1a, P_2b) - \tilde{\Psi} \quad \text{on} \quad \tilde{\Gamma}, \quad (\nu_1 - i\nu_2)\tilde{P} = \tilde{\Phi}'(\tilde{C}_1a, \tilde{C}_2b) - \tilde{\Psi} \quad \text{on} \quad \tilde{\Gamma}
\]
and
\[
(P - \tilde{P})|_{\Gamma_0} = 0.
\]
Denote \(\Psi_0(z) = \frac{1}{2i}(P(z) - \overline{\tilde{P}(\overline{z})}) \) and \(\Phi_0(z) = \frac{1}{2}(P(z) + \overline{\tilde{P}(\overline{z})}) \). Equality (3.59) yields
\[
\text{Im} \Psi_0|_{\Gamma_0} = \text{Im} \Phi_0|_{\Gamma_0} = 0.
\]
Hence
\[
P = (\Phi_0 + i\Psi_0), \quad \overline{\tilde{P}} = (\Phi_0 - i\Psi_0).
\]
From (3.55), taking $\delta = \hat{\Psi}$ and $\tilde{\delta} = \tilde{\Psi}$, we have

$$
(3.62) \quad \text{Re} \int_{\tilde{\Gamma}} (\Phi'(C_1a, C_2b) - \hat{\Psi}, \bar{\Phi'}) + (\Phi'(P_1a, P_2b) - \tilde{\Psi}, \bar{\Phi'}) d\sigma = 0.
$$

By (3.57), (3.58) and (3.61), we have

$$
(3.63) \quad \text{Re} \int_{\tilde{\Gamma}} ((\nu_1 + i\nu_2)P, \Phi'(P_1a, P_2b)) + ((\nu_1 - i\nu_2)\bar{P}, \Phi'(C_1a, C_2b)) d\sigma = \text{Re} \int_{\tilde{\Gamma}} 2((\nu_1 + i\nu_2)(\Phi_0 + i\Psi_0)\Phi'(P_1a, P_2b)) + 2((\nu_1 - i\nu_2)(\Phi_0 - i\Psi_0)\Phi'(C_1a, C_2b)) d\sigma.
$$

By (3.49) and (3.60) we have

$$
(3.64) \quad \int_{\tilde{\Gamma}} 2\text{Re}((\nu_1 - i\nu_2)\Phi_0\Phi'(P_1a, P_2b)) + 2\text{Re}((\nu_1 + i\nu_2)\bar{\Phi}_0\bar{\Phi}'(C_1a, C_2b)) d\sigma = 0.
$$

By (3.52) and (3.60) we obtain

$$
(3.65) \quad (P_1a, P_2b)(x) = (\hat{\Psi}/\Phi')(z) = \tilde{\Xi}(z), \quad (C_1a, C_2b)(x) = (\Psi/\Phi')(\bar{z}) = \Xi(\bar{z}) \quad \text{on } \Gamma.
$$

In general the function Φ may have a finite number of zeros in Ω. At these zeros $\Xi, \tilde{\Xi}$ may have poles. On the other hand observe that $\Xi, \tilde{\Xi}$ are independent of a particular choice of the function Φ. Making small perturbations of these functions, we can shift the position of the zeros of the function Φ'. Hence there are no poles for $\Xi, \tilde{\Xi}$. By (3.54) $((\nu_1 - i\nu_2)\Psi + (\nu_1 + i\nu_2)\bar{\Phi})|_{\Gamma_0} = 0$. Moreover, by the direct computations, $((\nu_1 + i\nu_2)\Phi' + (\nu_1 - i\nu_2)\bar{\Phi}')|_{\Gamma_0} = 0$. Therefore

$$
(3.66) \quad \tilde{\Xi}(z) = \Xi(\bar{z}) \quad \text{on } \Gamma_0.
$$

Consider N holomorphic vector functions $b_j = (b_{1,j}, \ldots, b_{1,N})$ such that $Im b_j|_{\Gamma_0} = 0$ and determinant of the square matrix constructed from these vector functions not equal to zero at least at one point of domain Ω. Then equality (3.65) can be written as

$$
(P_2^*P_1a, b_j) = \tilde{\Xi}_j(z) \quad \text{and} \quad (C_2^*C_1a, \tilde{b}_j) = \Xi_j(\bar{z}) \quad \text{on } \tilde{\Gamma}.
$$

Then

$$
P_2^*P_1a = B^{-1}\tilde{\Xi} \quad \text{and} \quad C_2^*C_1a = \bar{B}^{-1}\Xi \quad \text{on } \tilde{\Gamma}.
$$

Here B is the matrix such that the row number j equal b_j^T and $\Xi(z) = (\Xi_1(z), \ldots, \Xi_N(z)), \tilde{\Xi} = (\Xi_1(\bar{z}), \ldots, \Xi_N(\bar{z}))$. Consider N holomorphic vector functions a_i such that $Im a_i|_{\Gamma_0} = 0$. Then

$$
P_2^*P_1a_i = B^{-1}z_i^T \quad \text{and} \quad C_2^*C_1a_i = \bar{B}^{-1}\Xi_i \quad \text{on } \tilde{\Gamma}.
From this equality we have
\[\mathcal{P}_2^* \mathcal{P}_1 = B^{-1} \Pi A^{-1} \quad \text{and} \quad C_2^* C_1 = B^{-1} \tilde{\Pi} A^{-1} \quad \text{on } \Gamma. \]

Here \(A, \Pi, \tilde{\Pi} \) are matrix such that the row number \(i \) equal \(a_i, \tilde{z}_i \) and \(\tilde{z}_i \). We set
\[\Theta = B^{-1} \Pi A^{-1} \quad \text{and} \quad \tilde{\Theta} = B^{-1} \tilde{\Pi} A^{-1}. \]

These formulae defines the functions \(\Theta, \tilde{\Theta} \) correctly except the point where determinants of matrix \(A \) and \(B \) are equal to zero. On the other hand it is obvious that functions \(\Theta, \tilde{\Theta} \) are independent of the choice of matrices \(A, B \). So if we assume that there exist a point of singularity of, say, the function \(\Theta \) by Proposition 2.1 we can make a choice matrices \(A, B \) such that determinants of these matrices do not equal to zero at this point and arrive to the contradiction. The equality (3.51) follows from (3.66) and the fact that \(\text{Im } B|_{\Gamma_0} = \text{Im } A|_{\Gamma_0} = 0 \). Indeed on \(\Gamma_0 \)
\[\mathcal{P}_2^* \mathcal{P}_1 = B^{-1} \Pi A^{-1} = B^{-1} \tilde{\Pi} A^{-1} = C_2^* C_1. \]

Proof of the proposition is complete. \(\blacksquare \)

Let \(u_1 \) be the complex geometric optics solution given by (3.26) constructed for the operator \(L_1(x, D) \). Since the Dirichlet-to-Neumann maps for the operators \(L_1(x, D) \) and \(L_2(x, D) \) are equal there exists a function \(u_2 \) be a solution to the following boundary value problem:
\[L_2(x, D)u_2 = 0 \quad \text{in } \Omega, \quad (u_1 - u_2)|_{\partial \Omega} = 0, \quad \partial \nu(u_1 - u_2) = 0 \quad \text{on } \Gamma. \]

Setting \(u = u_1 - u_2 \) we have
\[L_2(x, D)u + 2A \partial_z u_1 + 2B \partial_{\tau} u_1 + Qu_1 = 0 \quad \text{in } \Omega, \]
where \(A = A_1 - A_2, B = B_1 - B_2 \) and \(Q = Q_1 - Q_2 \) and
\[u|_{\partial \Omega} = 0, \quad \partial \nu u|_{\Gamma} = 0. \]

Let \(v \) be a function given by (3.47). Taking the scalar product of (3.67) with \(v \) in \(L^2(\Omega) \) and using (3.48) and (3.68), we obtain
\[0 = \int_{\Omega} (2A \partial_z u_1 + 2B \partial_{\tau} u_1 + Qu_1, v) dx. \]

Denote
\[V = V_{0, \tau} e^{-\tau \Phi} + \tilde{V}_{0, \tau} e^{-\tau \Phi} - e^{-\tau \Phi} \tilde{\mathcal{R}}_{\tau, -B_z}(e_1(q_3 + \frac{q_3}{\tau})) - e^{-\tau \Phi} \mathcal{R}_{\tau, -A_z}(e_1(q_3 + \frac{q_3}{\tau})) \]
and
\[U = U_{0, \tau} e^{\tau \Phi} + \tilde{U}_{0, \tau} e^{\tau \Phi} - e^{\tau \Phi} \tilde{\mathcal{R}}_{\tau, B_1}(e_1(q_1 + \frac{q_1}{\tau})) - e^{\tau \Phi} \mathcal{R}_{\tau, A_1}(e_1(q_2 + \frac{q_2}{\tau})). \]

We have

Proposition 3.4. Let \(u_1 \) is given by (3.26) and \(v \) is given by (3.47). Then the following asymptotic holds true
\[\int_{\Omega} (2A \partial_z u_1 + 2B \partial_{\tau} u_1 + Qu_1, v) dx = \int_{\Omega} (2A \partial_z U + 2B \partial_{\tau} U + QU, V) dx + o\left(\frac{1}{\tau}\right) \quad \text{as } \tau \to +\infty, \]
where functions U, V are determined by (3.71) and (3.70).

Proof of Proposition 3.4 is exactly the same as the proof of Proposition 5.1 from [7].

4. Step 2: Asymptotic

We introduce the following functionals
\[
\tilde{J}_{\tau} u = \frac{\pi}{2|\det \psi''(\bar{x})|^{1/2}} \left(\frac{u(\bar{x})}{\tau} - \frac{\partial^2 u(\bar{x})}{2\Phi''(\bar{x})\tau^2} + \frac{\partial^2 u(\bar{x})}{2\Phi''(\bar{x})}\frac{\partial u(\bar{x})}{\Phi''(\bar{x})\tau^2} + \frac{\partial u(\bar{x})\Phi''(\bar{x})}{2(\Phi''(\bar{x}))^2}\frac{\partial u(\bar{x})}{\Phi''(\bar{x})\tau^2} \right)
\]
and
\[
J_{\tau} u = \int_{\partial \Omega} u(\nu_1 - i\nu_2) e^{\tau(\Phi - \overline{\Phi})} d\sigma - \int_{\partial \Omega} \frac{(\nu_1 - i\nu_2)}{\Phi'} \partial_z \left(\frac{u}{2\tau^2\Phi'} \right) e^{\tau(\Phi - \overline{\Phi})} d\sigma.
\]

Using these notations and the fact that Φ is the harmonic function we rewrite the classical result of theorem 7.7.5 of [4] as

Proposition 4.1. Let $\Phi(z)$ satisfies (3.71), (3.72) and $u \in C^{5+\alpha}(\Omega), \alpha \in (0,1)$ be some function. Then the following asymptotic formula is true:

\[
(4.1) \quad \int_{\Omega} u e^{\tau(\Phi - \overline{\Phi})} dx = \sum_{\tilde{y} \in \mathcal{H}} e^{2\tau \psi(\tilde{y})} \tilde{J}_{\tau, \tilde{y}} u + J_{\tau} u + o\left(\frac{1}{\tau} \right) \quad \text{as } \tau \to +\infty.
\]

Denote
\[
H(x, \partial_z, \partial_{\bar{x}}) = 2A\partial_z + 2B\partial_{\bar{x}} + Q \quad \text{and} \quad J_{\tau} = \int_{\Omega} (H(x, \partial_z, \partial_{\bar{x}}) U, V) dx.
\]
where U and V are given by (3.71) and (3.70) respectively. We have

Proposition 4.2. The following asymptotic holds true

\[
\begin{align*}
0 &= \sum_{k=-1}^{1} \tau^{k} J_k + \frac{1}{\tau} ((J_+ + I_+ \Phi + K_+) (\bar{x}) e^{2\tau \psi(\bar{x})}) + (J_- + I_- \Phi + K_-) (\bar{x}) e^{-2\tau \psi(\bar{x})}) \\
&\quad + \int_{\Gamma} ((\nu_1 - i\nu_2) (\mathcal{A}U_0 e^{\tau \Phi}, V_0 e^{-\tau \Phi}) + (\nu_1 + i\nu_2) (\mathcal{B}U_0 e^{\tau \Phi}, V_0 e^{-\tau \Phi})) d\sigma \\
&\quad + o\left(\frac{1}{\tau} \right) \quad \text{as } \tau \to +\infty,
\end{align*}
\]

where
\[
J_1 = \int_{\partial \Omega} ((\nu_1 - i\nu_2) \Phi' (\tilde{U}_0, V_0) + (\nu_1 + i\nu_2) \Phi' (U_0, \tilde{V}_0)) d\sigma,
\]

\[
J_+ (\bar{x}) = \frac{\pi}{2|\det \psi''(\bar{x})|^{1/2}} ((-2\partial_z \mathcal{A}U_0, V_0) - (\mathcal{A}U_0, A_2^0 V_0) - (\mathcal{B}A_1 U_0, V_0) + (\mathcal{Q}U_0, V_0))(\bar{x}),
\]

\[
J_- (\bar{x}) = \frac{\pi}{2|\det \psi''(\bar{x})|^{1/2}} ((-\mathcal{A}B_1 \tilde{U}_0, \tilde{V}_0) - (2\partial \mathcal{B}U_0, V_0) - (\mathcal{B}U_0, B_2^0 \tilde{V}_0) + (\mathcal{Q}U_0, \tilde{V}_0))(\bar{x}),
\]
\[I_{\pm, \Phi}(\bar{x}) = -\int_{\Omega} \left\{ (\nu_1 - i\nu_2)((2b_{\pm, \bar{x}}\Phi', V_0) + (2\Phi U_0, \bar{a}_{\pm, \bar{x}})) \right. \\
\left. + (\nu_1 + i\nu_2)((2a_{\pm, \bar{x}}\Phi', \bar{V}_0) + (2\Phi' U_0, \bar{b}_{\pm, \bar{x}})) \right\} d\sigma, \]

(4.6)

\[K_+ = \tau \bar{\mathcal{S}}_{\tau, \bar{x}}(q_1, T_{B_1}^*(B_1^* A^* V_0) - A^* V_0) + 2T_{B_1}^*(\partial_2 B^* V_0) + T_{B_1}^*(B^*(A_2^* V_0 - 2\tau \Phi' V_0))) \]

(4.7)

\[K_- = \tau \bar{\mathcal{S}}_{-\tau, \bar{x}}(q_3, P_{A_1}^*(2\partial_2 (A^* \bar{V}_0) - \tau \Phi' 2A^* \bar{V}_0) - B^* \bar{V}_0 + P_{A_1}^*(A_1^* B^* \bar{V}_0)) \]

(4.8)

Proof. By Proposition 3.3

\[J_\tau = \int_{\Omega} (H(x, \partial_2, \partial_2) U, V) dx = o\left(\frac{1}{\tau}\right) \quad \text{as } \tau \to +\infty \]

Denote

\[U_1 = -\bar{\mathcal{R}}_{\tau, B_1}(e_1(q_1 + q_1/\tau)), \quad \bar{U}_1 = -\mathcal{R}_{\tau, A_1}(e_1(q_2 + q_2/\tau)), \]

(4.9)

\[\bar{V}_1 = -\bar{\mathcal{R}}_{-\tau, -B_2^*}(e_1(q_3 + q_3/\tau)), \quad V_1 = -\mathcal{R}_{-\tau, -A_2^*}(e_1(q_4 + q_4/\tau)). \]

(4.10)

Integrating by parts and using Proposition 4.1 we obtain

\[\mathcal{M}_1 = \int_{\Omega} (2A \partial_2 U_{0, \tau} e^{\tau \Phi}) + 2B \partial_2 U_{0, \tau} e^{-\tau \Phi}) d\sigma = \]

\[\int_{\Omega} ((-2\partial_2 AU_{0, \tau} e^{\tau \Phi}, V_{0, \tau} e^{-\tau \Phi}) - (2AU_{0, \tau} e^{\tau \Phi}, \partial_2 V_{0, \tau} e^{-\tau \Phi}) + (2B \partial_2 U_{0, \tau} e^{\tau \Phi}, V_{0, \tau} e^{-\tau \Phi})) d\sigma = \]

\[+ \int_{\Omega} (\nu_1 - i\nu_2)(A U_{0, \tau} e^{\tau \Phi}, V_{0, \tau} e^{-\tau \Phi}) d\sigma = e^{2i\tau\psi(\bar{x})} \bar{\mathcal{S}}_{\tau, \bar{x}}(-2\partial_2 AU_{0, \tau}, V_{0, \tau} - (2AU_{0, \tau}, \partial_2 V_{0, \tau}) + (2B \partial_2 U_{0, \tau}, V_{0, \tau})) \]

\[+ J_\tau(-2\partial_2 AU_{0, \tau}, V_{0, \tau}) - (2AU_{0, \tau}, \partial_2 V_{0, \tau}) + (2B \partial_2 U_{0, \tau}, V_{0, \tau})) \]

(4.11)

where \(\kappa_{0,j} \) are some constants independent of \(\tau \).

Integrating by parts we obtain that there exist constants \(\kappa_{1,j} \) independent of \(\tau \) such that

\[\int_{\Omega} (2A \partial_2 (U_{0, \tau} e^{\tau \Phi}) + 2B \partial_2 (U_{0, \tau} e^{\tau \Phi}), V_{0, \tau} e^{-\tau \Phi}) d\sigma = \]

\[(2A \partial_2 U_{0, \tau}, V_{0, \tau}) L^2(\Omega) + (2B \partial_2 U_{0, \tau} + \tau \Phi' U_{0, \tau}), V_{0, \tau}) L^2(\Omega) = \]

\[\tau_{\kappa_{1,1}} + \kappa_{1,0} + \frac{\kappa_{1,1}}{\tau} + \frac{1}{\tau} e^{2i\tau\psi(\bar{x})}(2BB_{\tau, \bar{x}} \Phi', V_{0, \tau}) L^2(\Omega) + e^{-2i\tau\psi(\bar{x})}(2BB_{\tau, \bar{x}} \Phi', V_{0, \tau}) L^2(\Omega) \]

\[+ \frac{1}{\tau} e^{2i\tau\psi(\bar{x})}(2B \Phi' U_{0, \bar{a}_{+}}, V_{0, \tau}) L^2(\Omega) + e^{-2i\tau\psi(\bar{x})}(2B \Phi' U_{0, \bar{a}_{-}}, V_{0, \tau}) L^2(\Omega) + o\left(\frac{1}{\tau}\right). \]

(4.12)

Since by (3.5), (3.21), (3.28), (3.41) for the functions \(\bar{a}_{\pm, \bar{x}}, b_{\pm, \bar{x}} \) we have

\((2B \Phi' U_{0, \bar{a}_{\pm}}, b_{\pm, \bar{x}}) = -4\partial_2 (\Phi' U_{0, \bar{a}_{\pm}}) \), and \((2B b_{\pm, \bar{x}} \Phi', V_{0}) = -4\partial_2 (b_{\pm, \bar{x}} \Phi', V_{0}) \) in \(\Omega \)
from (4.12) we have

\[
\mathcal{M}_2 = \int_{\Omega} (2A\partial_2(\tilde{U}_0,\tau e^{\tau\Phi}) + 2B\partial_2(\tilde{U}_0,\tau e^{\tau\Phi}), V_0 e^{-\tau\Phi}) dx = \\
\tau \kappa_{1,1} + \kappa_{1,0} + \frac{\kappa_{1,-1}}{\tau} + \int_{\partial\Omega} \frac{(\nu_1 - i\nu_2)}{\tau}(e^{2i\tau\psi(\bar{\xi})}(2Bb_{+}\bar{\Phi}', V_0) + e^{-2i\tau\psi(\bar{\xi})}(2Bb_{-}\bar{\Phi}', V_0)) d\sigma \\
+ \int (\nu_1 - i\nu_2)(e^{2i\tau\psi(\bar{\xi})}(2\bar{\Phi}'\tilde{U}_0, a_{+}, \bar{\xi}) + e^{-2i\tau\psi(\bar{\xi})}(2\bar{\Phi}'\tilde{U}_0, a_{-}, \bar{\xi})) d\sigma = o(\frac{1}{\tau}).
\]

Integrating by parts we obtain that there exist constants \(\kappa_{2,j}\) independent of \(\tau\) such that

\[
\int_{\Omega} (2A\partial_2(U_{0,\tau} e^{\tau\Phi}), \tilde{V}_0, e^{-\tau\Phi}) dx = \tau \kappa_{2,1} + \kappa_{2,0} + \frac{\kappa_{2,-1}}{\tau} + \int_{\partial\Omega} \frac{(\nu_1 + i\nu_2)}{\tau}(e^{2i\tau\psi(\bar{\xi})}(2Aa_{+}\bar{\Phi}', \tilde{V}_0) + e^{-2i\tau\psi(\bar{\xi})}(2Aa_{-}\bar{\Phi}', \tilde{V}_0)) d\sigma \\
+ \int (\nu_1 + i\nu_2)(e^{2i\tau\psi(\bar{\xi})}(2\bar{\Phi}'\tilde{U}_0, \tilde{b}^{+}, \bar{\xi}) + e^{-2i\tau\psi(\bar{\xi})}(2\bar{\Phi}'\tilde{U}_0, \tilde{b}^{-}, \bar{\xi})) d\sigma = o(\frac{1}{\tau}).
\]

Since by (3.5), (3.21), (3.28), (3.41) for the functions \(a_{+}, \tilde{b}_{+}, \tilde{a}_{+}\) we have

\[
(2Aa_{+}\bar{\Phi}', \tilde{V}_0) = -4\partial\xi(a_{+}\bar{\Phi}', \tilde{V}_0) \quad \text{and} \quad (2A\bar{\Phi}'\tilde{U}_0, \tilde{b}^{+}) = -4\partial\xi(\bar{\Phi}'\tilde{U}_0, \tilde{b}^{+}) \quad \text{in} \quad \Omega
\]

we obtain from (4.14)

\[
\mathcal{M}_3 = \int_{\Omega} (2A\partial_2(U_{0,\tau} e^{\tau\Phi}) + 2B\partial_2(U_{0,\tau} e^{\tau\Phi}), \tilde{V}_0, e^{-\tau\Phi}) dx = \\
\tau \kappa_{2,1} + \kappa_{2,0} + \frac{\kappa_{2,-1}}{\tau} + \int_{\partial\Omega} \frac{(\nu_1 + i\nu_2)}{\tau}(e^{2i\tau\psi(\bar{\xi})}(2a_{+}\bar{\Phi}', \tilde{V}_0) + e^{-2i\tau\psi(\bar{\xi})}(2a_{-}\bar{\Phi}', \tilde{V}_0)) d\sigma \\
+ \int (\nu_1 + i\nu_2)(e^{2i\tau\psi(\bar{\xi})}(2\bar{\Phi}'\tilde{U}_0, \tilde{b}^{+}, \bar{\xi}) + e^{-2i\tau\psi(\bar{\xi})}(2\bar{\Phi}'\tilde{U}_0, \tilde{b}^{-}, \bar{\xi})) d\sigma = o(\frac{1}{\tau}).
\]

Integrating by parts, using (3.5) and Proposition 4.1 we obtain that there exists some constants \(\kappa_{3,j}\) independent of \(\tau\) such that

\[
\mathcal{M}_4 = \int_{\Omega} (2A\partial_2(\tilde{U}_0,\tau e^{\tau\Phi}) + 2B\partial_2(\tilde{U}_0,\tau e^{\tau\Phi}), \tilde{V}_0, e^{-\tau\Phi}) dx = \\
\int_{\Omega} ((2A\partial_2\tilde{U}_0,\tau e^{\tau\Phi}, \tilde{V}_0, e^{-\tau\Phi}) - (2\partial_2\bar{B}\tilde{U}_0,\tau e^{\tau\Phi}, \tilde{V}_0, e^{-\tau\Phi}) - (2B\bar{U}_0,\tau e^{\tau\Phi}, \partial_2\tilde{V}_0, e^{-\tau\Phi})) dx \\
+ \int_{\partial\Omega} (\nu_1 + i\nu_2)(e^{2i\tau\psi(\bar{\xi})}\tilde{\Phi}'\tilde{U}_0, \tilde{V}_0, e^{-\tau\Phi}) d\sigma = \\
e^{-2i\tau\psi(\bar{\xi})}\tilde{\Phi}'\tilde{U}_0(\tilde{V}_0, e^{-\tau\Phi}) - (2A\partial_2\tilde{U}_0, \tilde{V}_0, e^{-\tau\Phi}) - (2B\bar{U}_0, \partial_2\tilde{V}_0, e^{-\tau\Phi}) \\
+ \kappa_{3,1} + \frac{\kappa_{3,-1}}{\tau} + o(\frac{1}{\tau}).
\]

Integrating by parts and using Proposition 4.1 we obtain
Using (4.9), (3.19), (3.20) and Proposition 8 of \(M(4.18) \)
Integrating by parts and using Proposition 4.1 we have
\[
\int_{\partial \Omega} (\nu_1 + i\nu_2)(BU_1, V_{0,\tau}) e^{\tau(\Phi - \bar{\Phi})} d\sigma = (2BU_1, \partial_{\bar{z}}(V_{0,\tau} e^{\tau(\Phi - \bar{\Phi})}))_{L^2(\Omega)} + o\left(\frac{1}{\tau}\right) = \\
(\mathcal{B}T_{B_1}(e^{\tau(\Phi - \bar{\Phi})}e_1 q_1), \partial_{\bar{z}}V_{0,\tau} - 2\tau \bar{\Phi}'V_{0,\tau})_{L^2(\Omega)} + \int_{\partial \Omega} (\nu_1 + i\nu_2)(BU_1, V_{0,\tau}) e^{\tau(\Phi - \bar{\Phi})} d\sigma + o\left(\frac{1}{\tau}\right) = \\
e^{2i\tau\psi(x)} \mathfrak{F}_{\tau,\bar{x}}(q_1, T^{*}_{B_1}(B_1^* A^* V_0) - A^* V_0 + 2T^*_{B_1}(\partial_{\bar{z}} B^* V_0) + T^*_{B_1}(B^*(A_2^* V_0 - 2\bar{\Phi}'V_0))) \\
+ \int_{\partial \Omega} (\nu_1 + i\nu_2)(BU_1, V_{0,\tau}) e^{\tau(\Phi - \bar{\Phi})} d\sigma + o\left(\frac{1}{\tau}\right) \quad \text{as} \quad \tau \to +\infty.
\]

After integration by parts we have
\[
\mathcal{M}_6 = \int_{\Omega} (2A\partial_{\bar{z}}(U_1 e^{\tau\Phi}) + 2B\partial_{\bar{z}}(U_1 e^{\tau\Phi}), V_{0,\tau} e^{-\tau\bar{\Phi}}) dx = \\
\int_{\Omega} (A(-B_1 U_1 - e_1 q_1) - e_1 q_1) e^{\tau\Phi} - 2\partial_{\bar{z}} B_1(U_1 e^{\tau\Phi}), V_{0,\tau} e^{-\tau\bar{\Phi}} dx + \\
(2BU_1, \partial_{\bar{z}}V_{0,\tau})_{L^2(\Omega)} + \int_{\partial \Omega} (\nu_1 + i\nu_2)(BU_1, V_{0,\tau}) e^{\tau(\Phi - \bar{\Phi})} d\sigma + o\left(\frac{1}{\tau}\right) + \\
(2BU_1, \partial_{\bar{z}}V_{0,\tau})_{L^2(\Omega)} + \int_{\partial \Omega} (\nu_1 + i\nu_2)(BU_1, V_{0,\tau}) d\sigma.
\]

Using (4.9), (3.19), (3.20) and Proposition 8 of [?] we obtain that
\[
\mathcal{M}_6 = -\int_{\Omega} (AQ_1, V_{0,\tau}) dx + o\left(\frac{1}{\tau}\right) \quad \text{as} \quad \tau \to +\infty.
\]

Integrating by parts and using Proposition [4.11] we have
\[
\mathcal{M}_7 = \int_{\Omega} (2A\partial_{\bar{z}}(U_{0,\tau} e^{\tau\Phi}) + 2B\partial_{\bar{z}}(U_{0,\tau} e^{\tau\Phi}), V_{1,\tau} e^{-\tau\bar{\Phi}}) dx = \\
2 \int_{\Omega} (A(\partial_{\bar{z}} U_{0,\tau} + \tau \bar{\Phi}' U_{0,\tau}) e^{\tau\Phi} + B\partial_{\bar{z}} U_{0,\tau} e^{\tau\Phi}, V_{1,\tau} e^{-\tau\bar{\Phi}}) dx = \\
-2 \int_{\Omega} (P_{-A_2^*}(A(\partial_{\bar{z}} U_0 + \tau \bar{\Phi}' U_0) + B\partial_{\bar{z}} U_0), e_1 q_1 e^{\tau(\Phi - \bar{\Phi})} dx + o\left(\frac{1}{\tau}\right) = \\
-2 e^{2i\tau\psi(x)} \mathfrak{F}_{\tau,\bar{x}}(P_{-A_2^*}(A(\partial_{\bar{z}} U_0 + \tau \bar{\Phi}' U_0) + B\partial_{\bar{z}} U_0), q_1) + o\left(\frac{1}{\tau}\right)
\]
\[
+ o\left(\frac{1}{\tau}\right) \quad \text{as} \quad \tau \to +\infty.
\]
Integrating by parts and using Proposition 8 of [?] we have

\[\mathcal{M}_8 = \int_{\Omega} (2A\partial_z(U_0,\tau e^{\mp\Phi}) + 2B\partial_z(U_0,\tau e^{\mp\Phi}), \tilde{V}_1 e^{-\tau\Phi}) dx = \]

\[\int_{\Omega} \left((-2\partial_z A U_0 + B\partial_z U_0, \tilde{V}_1) - (A U_{0,\tau}, -B_2^* \tilde{V}_1 - e_1 q_3) \right) dx + o\left(\frac{1}{\tau} \right) \]

(4.20) \[+ \int_{\partial\Omega} (\nu_1 - i\nu_2) (A U_0, \tilde{V}_1) d\sigma = -\int_{\Omega} (A U_{0,\tau}, q_3) dx + o\left(\frac{1}{\tau} \right) \quad \text{as} \quad \tau \to +\infty \]

and

\[\mathcal{M}_9 = \int_{\Omega} (2A\partial_z(\tilde{U}_1 e^{\mp\Phi}) + 2B\partial_z(\tilde{U}_1 e^{\mp\Phi}), V_{0,\tau} e^{-\tau\Phi}) dx = \]

\[\int_{\Omega} \left((-\partial_z(2A^* V_{0,\tau}) + (B(-A_1 \tilde{U}_1 - e_1 q_2), V_{0,\tau}) \right) dx + o\left(\frac{1}{\tau} \right) \]

(4.21) \[+ \int_{\partial\Omega} (\nu_1 - i\nu_2) (A \tilde{U}_1, V_0) d\sigma = -\int_{\Omega} (B q_2, V_{0,\tau}) dx + o\left(\frac{1}{\tau} \right) \quad \text{as} \quad \tau \to +\infty. \]

Integrating by parts and using Proposition 4.1 we obtain

(4.22)

\[\mathcal{M}_{10} = \int_{\Omega} (2A\partial_z(\tilde{U}_1 e^{\mp\Phi}) + 2B\partial_z(\tilde{U}_1 e^{\mp\Phi}), \tilde{V}_{0,\tau} e^{-\tau\Phi}) dx = \]

\[\int_{\Omega} \left((\tilde{U}_1, -\partial_z(2A^* \tilde{V}_{0,\tau}) + \tau \Phi' 2A^* \tilde{V}_{0,\tau}) + (B(-A_1 \tilde{U}_1 - e_1 q_2), \tilde{V}_{0,\tau}) \right) e^{\tau(\Phi - \Phi')} dx + \]

\[+ \int_{\partial\Omega} (\nu_1 - i\nu_2) (A \tilde{U}_1, \tilde{V}_0) e^{\tau(\Phi - \Phi')} d\sigma + o\left(\frac{1}{\tau} \right) = \]

\[\int_{\Omega} (e_1 q_2, P_{A_1}(2\partial_z(\mathcal{A}^* \tilde{V}_{0,\tau}) - 2\tau \Phi' \mathcal{A}^* \tilde{V}_{0,\tau}) - \mathcal{B}^* \tilde{V}_0 + P_{A_1}(A_1^* \mathcal{B}^* \tilde{V}_0)) e^{\tau(\Phi - \Phi')} dx \]

\[+ \int_{\partial\Omega} (\nu_1 - i\nu_2) (A \tilde{U}_1, \tilde{V}_0) e^{\tau(\Phi - \Phi')} d\sigma + o\left(\frac{1}{\tau} \right) = \]

\[e^{-2i\tau\psi(\bar{x})} + o\left(\frac{1}{\tau} \right) \quad \text{as} \quad \tau \to +\infty. \]

By (3.15) and Proposition 4.1 we obtain

(4.23)

\[\mathcal{M}_{11} = \int_{\Omega} (2A\partial_z(\tilde{U}_0,\tau e^{\mp\Phi}) + 2B\partial_z(\tilde{U}_0,\tau e^{\mp\Phi}), \tilde{V}_1 e^{-\tau\Phi}) dx = \]

\[\int_{\Omega} (2A\partial_z \tilde{U}_{0,\tau} + 2B(\partial_z \tilde{U}_{0,\tau} + \tau \Phi' \tilde{U}_{0,\tau}), \tilde{V}_1) e^{\tau(\Phi - \Phi')} dx = \]

\[- \int_{\Omega} (e_1 q_3, T_{-B_2}^*(2A\partial_z \tilde{U}_{0,\tau} + 2B(\partial_z \tilde{U}_{0,\tau} + \tau \Phi' \tilde{U}_{0,\tau}) \right) e^{\tau(\Phi - \Phi')} dx + o\left(\frac{1}{\tau} \right) = \]

\[-e^{-2i\tau\psi(\bar{x})} s_{-\tau,\bar{x}}(q_3, T_{-B_2}^*(2A\partial_z \tilde{U}_0 + 2B(\partial_z \tilde{U}_0 + \tau \Phi' \tilde{U}_0))) \]

\[+ o\left(\frac{1}{\tau} \right) \quad \text{as} \quad \tau \to +\infty. \]

By Proposition 4.1 there exist constants \(\kappa_{4,j} \) independent of \(\tau \) such that
exists a holomorphic matrix Θ

\begin{equation}
(4.26)
\end{equation}

\begin{equation}
(4.28)
\end{equation}

\begin{equation}
(4.27)
\end{equation}

Proposition 4.3. Let all conditions of the proposition 4.1 holds true and

\begin{equation}
\sum_{k=1}^{12} M_k
\end{equation}

We have

Proposition 4.3. Let all conditions of the proposition 4.1 holds true and

\begin{equation}
\sum_{k=1}^{12} M_k
\end{equation}

We have

Proof. From Proposition 4.2 for any function Φ which satisfies (3.1), (3.2) we have

\begin{equation}
(4.28)
\end{equation}

Then if $a(z) = (a_1(z), \ldots, a_N(z)), b(z) = (b_1(z), \ldots, b_N(z))$ are the holomorphic functions such that $\text{Im} \ a|_{\Gamma_0} = \text{Im} \ b|_{\Gamma_0} = 0$ the pairs $(P_1 a, C_1 \bar{\pi})$ and $(P_2 b, C_2 \bar{\pi})$ solve the problems (3.5) and (3.28) respectively. Therefore we can rewrite (4.28) as

\begin{equation}
(4.29)
\end{equation}

Thanks to (4.29) all assumptions of the Proposition 3.3 holds true. By Proposition 3.3 there exist holomorphic matrix $\Theta(z)$ and antiholomorphic matrix $\bar{\Theta}(z)$ with domain $\bar{\Omega}$ such that

\begin{equation}
(4.30)
\end{equation}

and

\begin{equation}
(4.31)
\end{equation}

From (3.10) and (3.35) and the classical regularity theory of systems of elliptic equations (see e.g [3]) we obtain that $\Theta, \bar{\Theta} \in C^{6+\alpha} (\bar{\Omega})$. Without loss of generality we may assume that

\begin{equation}
(4.32)
\end{equation}

Moreover by (3.10), (3.31)

\begin{equation}
(4.33)
\end{equation}

Observe that by (4.30)

\begin{equation}
(4.34)
\end{equation}

We have

Proposition 4.3. Let all conditions of the proposition 4.1 holds true and

\begin{equation}
\sum_{k=1}^{12} M_k
\end{equation}

We have

Proof. From Proposition 4.2 for any function Φ which satisfies (3.1), (3.2) we have

\begin{equation}
(4.28)
\end{equation}

Then if $a(z) = (a_1(z), \ldots, a_N(z)), b(z) = (b_1(z), \ldots, b_N(z))$ are the holomorphic functions such that $\text{Im} \ a|_{\Gamma_0} = \text{Im} \ b|_{\Gamma_0} = 0$ the pairs $(P_1 a, C_1 \bar{\pi})$ and $(P_2 b, C_2 \bar{\pi})$ solve the problems (3.5) and (3.28) respectively. Therefore we can rewrite (4.28) as

\begin{equation}
(4.29)
\end{equation}

Thanks to (4.29) all assumptions of the Proposition 3.3 holds true. By Proposition 3.3 there exist holomorphic matrix $\Theta(z)$ and antiholomorphic matrix $\bar{\Theta}(z)$ with domain $\bar{\Omega}$ such that

\begin{equation}
(4.30)
\end{equation}

and

\begin{equation}
(4.31)
\end{equation}

From (3.10) and (3.35) and the classical regularity theory of systems of elliptic equations (see e.g [3]) we obtain that $\Theta, \bar{\Theta} \in C^{6+\alpha} (\bar{\Omega})$. Without loss of generality we may assume that

\begin{equation}
(4.32)
\end{equation}

Moreover by (3.10), (3.31)

\begin{equation}
(4.33)
\end{equation}

Observe that by (4.30)
Since by the construction of the matrices \mathcal{P}_j
\[2\partial_z \mathcal{P}_1 + A_1 \mathcal{P}_1 = 0 \quad \text{in } \Omega \quad \text{and} \quad 2\partial_z \mathcal{P}_2^* - \mathcal{P}_2^* A_2 = 0 \quad \text{in } \Omega \]
and matrix Θ is holomorphic we have
\[2\partial_z (\mathcal{P}_1 \Theta^{-1}) + A_1 (\mathcal{P}_1 \Theta^{-1}) = 0 \quad \text{in } \Omega \setminus \mathcal{X}. \]
We compute
\[(4.34) \quad 2\partial_z (\mathcal{P}_1 \Theta^{-1} \mathcal{P}_2^*) + A_1 (\mathcal{P}_1 \Theta^{-1} \mathcal{P}_2^*) - (\mathcal{P}_1 \Theta^{-1} \mathcal{P}_2^*) A_2 = 0 \quad \text{in } \Omega \setminus \mathcal{X}. \]
Thus the first equation in (4.26) holds true. By (4.33) the second equation in (4.26).

By (4.25), (4.33) on $\tilde{\Gamma}$ we have
\[(4.35) \quad -2\partial_z Q = A_1 \mathcal{P}_1 \Theta^{-1} \mathcal{P}_2^* - \mathcal{P}_1 \Theta^{-1} \mathcal{P}_2^* A_2 = A_1 I - I A_2 = A_1 - A_2 = 0. \]

In order to prove the third equation in (4.26) we observe that there exists a matrix $T(x)$ with real-valued entries, det $T(x) \neq 0$, such that $\nabla = T(x)(\partial_\nu, \partial_\tau)$. Therefore $\partial_z = \frac{1}{2}((T_{11} + iT_{21})\partial_\nu + (T_{12} + iT_{22})\partial_\tau)$. By (4.35) on $\tilde{\Gamma}$ the following equation holds
\[\partial_z Q = \frac{1}{2}((T_{11} + iT_{21})\partial_\nu Q + (T_{12} + iT_{22})\partial_\tau Q) = \frac{1}{2}((T_{11} + iT_{21})\partial_\nu Q + (T_{12} + iT_{22})\partial_\tau I) = \frac{1}{2}(T_{11} + iT_{21})\partial_\nu Q = 0. \]

The fact that determinant of the matrix T is not equal zero implies that $(T_{11} + iT_{21}) \neq 0$. So from the above equation we have $\partial_z Q = 0$.

If det $Q(x_0) = 0$ then det $\mathcal{P}_1(x_0)\det \mathcal{P}_2(x_0) = 0$. Let matrices $\tilde{\mathcal{P}}_j$ be constructed as \mathcal{P}_j but with the different choice of the pairs $(U_0(k), U_0(k))$, $(V_0(k), \tilde{V}_0(k))$ which are solutions to problem (3.5) and problem (3.28) respectively and satisfy (3.10), (3.35). In such a way we obtain another matrices \mathcal{P}_j, Θ, Q which satisfies to (4.26) with possibly different set \mathcal{X}. We denote such a matrix \mathcal{P}_j, Θ, Q as $\tilde{\mathcal{P}}_j, \tilde{\Theta}, \tilde{Q}$. By uniqueness of the Cauchy problem for the ∂_z operator
\[Q = \tilde{Q} \quad \text{on } \Omega \setminus \mathcal{X} \cup \tilde{\mathcal{X}} \quad \text{where} \quad \tilde{\mathcal{X}} = \{ x \in \bar{\Omega} | \det \tilde{\Theta} = 0 \}. \]

So, $\tilde{Q}(x_0) = 0$. On the other hand one can choose the matrices $\tilde{\mathcal{P}}_j$ such that det $\tilde{\mathcal{P}}_j(x_0) \neq 0$. Therefore we arrived to the contradiction. Proof of the proposition is complete. \blacksquare

Our next goal is to show that the matrix Q is regular on $\bar{\Omega}$.

Now we prove that if operators $L_j(x, D)$ generate the same Dirichlet-to-Neumann map then the operators $L_j(x, D)^*$ generate the same Dirichlet-to-Neumann map.

Proposition 4.4. Let $A_j, B_j, Q_j \subset C^{5+\alpha}(\bar{\Omega})$ for $j = 1, 2$. If $\Lambda_{A_1, B_1, Q_1} = \Lambda_{A_2, B_2, Q_2}$ then $\Lambda_{A_1, B_1, R_1} = \Lambda_{A_2, B_2, R_2}$, where $R_j = -\partial_z A_j^* - \partial_\nu B_j^* + Q_j^*$ for $j \in \{1, 2\}$.

Proof. Let function v_j solves the boundary value problem
\[L_j(x, D)^* v_j = 0 \quad \text{in } \Omega, \quad v_j|_{\Gamma_0} = 0, \quad v_j|_{\bar{\Gamma}} = g \]
and \tilde{u}_j be solution to the problem
\[L_j(x, D) \tilde{u}_j = 0 \quad \text{in } \Omega, \quad \tilde{u}_j|_{\Gamma_0} = 0, \quad \tilde{u}_j|_{\bar{\Gamma}} = f. \]
By our assumption and Fredholm’s theorem solution for both problems exists for any \(f, g \in C^\infty_0(\tilde{\Gamma}) \). By the Green’s formula
\[
(L_j(x,D)\nu_j, \tilde{u}_j)_{L^2(\Omega)} - (\nu_j, L_j(x,D)\tilde{u}_j)_{L^2(\Omega)} = (\partial_\nu \nu_j, \tilde{u}_j)_{L^2(\Gamma)} + (\partial_\nu \tilde{u}_j)_{L^2(\Gamma)} + (A_j(\nu_1 - i\nu_2)g,f)_{L^2(\Gamma)} + (B_j(\nu_1 + i\nu_2)g,f)_{L^2(\Gamma)}.
\]
Subtracting the above formulae for different \(j \), using (4.25) and taking into account that \(\Lambda_{A_1,B_1,Q_1} = \Lambda_{A_2,B_2,Q_2} \) we have
\[
(\partial_\nu \nu_1 - \partial_\nu \nu_2, f)_{L^2(\Gamma)} = 0.
\]
Since the function \(f \) can be chosen an arbitrary from \(C^\infty_0(\tilde{\Gamma}) \) the proof of the proposition is complete. \[\square \]

By Proposition 2.3 there exists a holomorphic matrix \(\tilde{\Gamma} \) such that in \(\Omega \)
\[
(2\partial_x U_0(k) - A_1^* U_0(k), 2\partial_x \tilde{U}_0(k) - B_1^* \tilde{U}_0(k)) = 0 \quad \text{in} \quad \Omega, \quad U_0(k) + \tilde{U}_0(k) = 0 \quad \text{on} \quad \Gamma_0
\]
and solutions \((V_0(k), \tilde{V}_0(k)) \)
\[
(2\partial_x V_0(k) + A_2 V_0(k), 2\partial_x \tilde{V}_0(k) + B_2 \tilde{V}_0(k)) = 0 \quad \text{in} \quad \Omega, \quad V_0(k) + \tilde{V}_0(k) = 0 \quad \text{on} \quad \Gamma_0
\]
for \(k \in \{1, \ldots, N\} \) such that
\[
\|U_0(k) - \tilde{\epsilon}_k\|_{C^{\nu_0}(\Gamma_0)} + \|\tilde{V}_0(k) - \tilde{\epsilon}_k\|_{C^{\nu_0}(\Gamma_0)} \leq \epsilon \quad \text{for} \quad k \in \{1, \ldots, N\}. \tag{4.38}
\]
This inequality and the boundary conditions in (4.36) and in (4.37) imply
\[
\|\tilde{U}_0(k) - \tilde{\epsilon}_k\|_{C^{\nu_0}(\Gamma_0)} + \|V_0(k) - \tilde{\epsilon}_k\|_{C^{\nu_0}(\Gamma_0)} \leq \epsilon \quad \text{for} \quad k \in \{1, \ldots, N\}. \tag{4.39}
\]
We define matrices \(\mathcal{M}_1, \mathcal{M}_2, \mathcal{R}_1, \mathcal{R}_2 \) as
\[
\mathcal{M}_1 = (\tilde{U}_0(1), \ldots, \tilde{U}_0(N)), \quad \mathcal{R}_1 = (U_0(1), \ldots, U_0(N)), \quad \mathcal{M}_2 = (V_0(1), \ldots, V_0(N)), \quad \mathcal{R}_2 = (\tilde{V}_0(1), \ldots, \tilde{V}_0(N)). \tag{4.40}
\]

By Proposition 2.3 there exists a holomorphic matrix \(\mathcal{Y} \) such that the matrix function \(G = \mathcal{M}_1 \mathcal{Y}^{-1} \mathcal{M}_2^* \) solves the partial differential equation
\[
2\partial_x G + GA_2^* - A_1^* G = 0 \quad \text{in} \quad \Omega \setminus \{x \in \tilde{\Omega}|\text{det} \mathcal{Y} = 0\}, \quad G|_{\tilde{\Gamma}} = I, \quad \partial_\nu G|_{\tilde{\Gamma}} = 0. \tag{4.41}
\]
Observe that the matrix \(Q^{*-1} \) solves the following partial differential equation
\[
2\partial_x Q^{*-1} + Q^{*-1} A_2^* - A_1^* Q^{*-1} = 0 \quad \text{in} \quad \Omega \setminus \{x \in \tilde{\Omega}|\text{det} \mathcal{P}_1(x)\text{det} \mathcal{P}_2(x) = 0\}, \tag{4.42}
\]
\[
Q^{*-1}|_{\tilde{\Gamma}} = I, \quad \partial_\nu Q^{*-1}|_{\tilde{\Gamma}} = 0. \tag{4.43}
\]
Let matrices \(\tilde{\mathcal{P}}_j \) be constructed as \(\mathcal{P}_j \) but with the different choice of the pairs \((U_0(k), \tilde{U}_0(k)), (V_0(k), \tilde{V}_0(k)) \) which are solutions to problem (3.5) and problem (3.28) respectively and satisfy (3.10), (3.35). In such a way we obtain another matrix \(\tilde{Q} \) which satisfies to (1.26) with possibly different set \(\mathcal{X} \). We denote such a matrix \(Q \) as \(\hat{Q} \). By uniqueness of the Cauchy problem for the \(\partial_x \) operator
\[
Q = \hat{Q} \quad \text{on} \quad \Omega \setminus \{x \in \tilde{\Omega}|\text{det} (\mathcal{P}_1 \mathcal{P}_2 \mathcal{P}_1 \mathcal{P}_2)(x) = 0\}. \tag{4.44}
\]
Let \(x_* \in \tilde{\Omega} \) be a point such that \(\text{det} (\mathcal{P}_1 \mathcal{P}_2)(x_*) = 0 \). We choose the matrices \(\tilde{\mathcal{P}}_j \) such that the determinants of these matrices are not equal to zero in some neighborhood of the point
Then by (4.44) the matrix \(G^{-1} \) can be defined on \(\Omega \) as the function from \(C^{5+\alpha}(\bar{\Omega}) \). Therefore the matrix \(G \) belongs to the space \(C^{5+\alpha}(\bar{\Omega}) \) and solves the equation (4.16) on \(\Omega \). The operator \(\tilde{L}_1(x,D) = Q^{-1}L_1(x,D)Q \) has the form
\[
\tilde{L}_1(x,D) = \Delta + 2A_2\partial_z + 2B_1\partial_z + \tilde{Q}_1,
\]
where
\[
\tilde{B}_1 = Q^{-1}(B_1Q + 2\partial_z Q), \quad \tilde{Q}_1 = Q^{-1}(Q_1Q + \Delta Q + 2A_1\partial_z Q + 2B_1\partial_z Q).
\]

The Dirichlet-to-Neumann maps of the operators \(L_1(x,D) \) and \(\tilde{L}_1(x,D) \) are the same. Let \(\tilde{u}_1 \) be the complex geometric optics solution for the differential operator \(\tilde{L}_1(x,D) \) constructed in the same way as solution for the operator \(L_1(x,D) \). (In fact we can set \(\tilde{u}_1 = Qu_1 \) where \(u_1 \) be the complex geometric optics solution given by (3.47) constructed for the operator \(L_1(x,D) \).) For elements of the complex geometric solution \(\tilde{u}_1 \) such as \(U_0, \tilde{U}_0, U_\tau, \tilde{U}_\tau \) we use the same notations as in construction of the function \(u_1 \). Since the Dirichlet-to-Neumann maps for the operators \(\tilde{L}_1(x,D) \) and \(L_2(x,D) \) are equal there exists a function \(u_2 \) be a solution to the following boundary value problem:
\[
L_2(x,D)u_2 = 0 \quad \text{in} \; \Omega, \quad (\tilde{u}_1 - u_2)|_{\partial\Omega} = 0, \quad \partial_\nu(\tilde{u}_1 - u_2) = 0 \quad \text{on} \; \Gamma.
\]

Setting \(\tilde{u} = \tilde{u}_1 - u_2, \tilde{B} = \tilde{B}_1 - B_2, \tilde{Q} = \tilde{Q}_1 - Q_2 \) we have
\[
L_2(x,D)\tilde{u} + 2\tilde{B}\partial_{\bar{\tau}}\tilde{u}_1 + \tilde{Q}\tilde{u}_1 = 0 \quad \text{in} \; \Omega
\]
and
\[
\tilde{u}|_{\partial\Omega} = 0, \quad \partial_\nu\tilde{u}|_{\Gamma} = 0.
\]

Let \(v \) be a function given by (3.47). Taking the scalar product of (4.46) with \(v \) in \(L^2(\Omega) \) and using (3.48) and (4.47), we obtain
\[
\int_{\Omega} (2\tilde{B}\partial_{\bar{\tau}}\tilde{u}_1 + \tilde{Q}\tilde{u}_1, v)dx = \int_{\Omega} (2\tilde{B}\partial_{\bar{\tau}}U + \tilde{Q}U, V)dx + o\left(\frac{1}{\tau}\right) = 0,
\]
where the function \(V \) given by (3.70) and
\[
U = U_{0,\tau}e^{\tau\Phi} + \tilde{U}_{0,\tau}e^{\tau\Phi} - e^{\tau\Phi}\tilde{R}_{\tau,B_1}(e_1(q_1 + \bar{q}_1/\tau)) - e^{\tau\Phi}\tilde{R}_{\tau,A_2}(e_1(q_2 + \bar{q}_2/\tau)).
\]

We have
Proposition 4.5. The following equalities are true
\begin{equation}
T_B^* (\Phi^* V_0) = T_B^* (\Phi' \overline{\Phi}^* V_0) = \Phi' T_B^* (\Phi^* \overline{V}_0) = T_B^* (\Phi' \overline{\Phi}^* \overline{V}_0) = 0 \quad \text{on } \tilde{\Gamma}
\end{equation}
and
\begin{equation}
I_{\pm, \Phi}(\bar{x}) = 0.
\end{equation}

Proof. Since the matrix \(\mathcal{P}_1 \) satisfies \(2\partial_z \mathcal{P}_1 + A_2 \mathcal{P}_1 = 0 \) the matrix \(\mathcal{P}_2^* \mathcal{P}_1 \) is holomorphic in the domain \(\Omega \). Indeed,
\begin{equation}
2\partial_z(\mathcal{P}_2^* \mathcal{P}_1) = 2(\partial_z \mathcal{P}_2^* \mathcal{P}_1 + \mathcal{P}_2^* \partial_z \mathcal{P}_1) = -\mathcal{P}_2^* A_2 \mathcal{P}_1 + \mathcal{P}_2^* A_2 \mathcal{P}_1 = 0.
\end{equation}
This implies
\begin{equation}
\int_{\partial \Omega} (\nu_1 + i\nu_2) \Phi'(\mathcal{P}_1 a, \mathcal{P}_2 b)d\sigma = 0,
\end{equation}
By Proposition 4.2 \(C_2 \mathcal{C}_1 = \tilde{\Theta}(\tilde{\mathcal{C}}) \) on \(\tilde{\Gamma} \) where the function \(\tilde{\Theta} \) is antiholomorphic on \(\Omega \). So
\begin{equation}
\int_{\tilde{\Gamma}} (\nu_1 - i\nu_2) \Phi'(C_2 \mathcal{C}_1, \bar{b})d\sigma = \int_{\tilde{\Gamma}} (\nu_1 - i\nu_2) \Phi'(\tilde{\Theta} a, \bar{b})d\sigma = -\int_{\partial \Omega} (\nu_1 - i\nu_2) \Phi'(\tilde{\Theta} a, \bar{b})d\sigma.
\end{equation}
We write (4.54) as
\begin{equation}
\int_{\partial \Omega} (\nu_1 - i\nu_2) \Phi'((C_2 \mathcal{C}_1 - \tilde{\Theta}) a, \bar{b})d\sigma = 0.
\end{equation}
So, by corollary 7.1 of [6], from (4.55) we obtain
\begin{equation}
C_2 \mathcal{C}_1 = \tilde{\Theta} \quad \text{on } \partial \Omega.
\end{equation}
We observe that for construction of \(U_0 \) instead of the matrix \(\mathcal{C}_1 \) we can use \(\mathcal{C}_2 \). In that case the equality (4.56) has the form:
\begin{equation}
C_2 \tilde{C}_1 = \tilde{\Theta} \quad \text{on } \partial \Omega.
\end{equation}
We define \(T_B^* (\Phi' \overline{\Phi}^* V_0) \) on \(\mathbb{R}^2 \setminus \bar{\Omega} \) by formula (2.8). Now let \(y = (y_1, y_2) \in \tilde{\Gamma} \) be an arbitrary point and \(z = y_1 + iy_2 \). Then, thanks to (4.25), for any sequence \(\{y_j\} \in \mathbb{R}^2 \setminus \bar{\Omega} \) such that \(y_j \to y \) we have
\begin{equation}
T_B^* (\Phi' \overline{\Phi}^* V_0)(y_j) \to T_B^* (\Phi' \overline{\Phi}^* V_0)(y) \quad \text{as } j \to +\infty.
\end{equation}
Denote \(z_j = y_{j,1} + iy_{j,2} \). Indeed, by (2.8) and (4.25) the exist a constant \(C \) such that
\begin{equation}
|T_B^* (\Phi' \overline{\Phi}^* V_0)(y_j) - T_B^* (\Phi' \overline{\Phi}^* V_0)(y)| \leq C \int_{\Omega} \|\overline{\Phi}^*(\xi)\| \left| \frac{1}{z_j - \zeta} - \frac{1}{z - \zeta} \right| d\xi.
\end{equation}
Since by (4.25) $\|\tilde{B}^*(\xi)\|_1 = 0$ the sequence \(\left\{\|\tilde{B}^*(\xi)\|_1 \frac{1}{z_j - \zeta} - \frac{1}{z_k - \zeta} \right\}\) is bounded in $L^\infty(\Omega)$. Moreover for any positive δ the above sequence converges to zero in $L^\infty(\Omega \setminus B(y, \delta))$. Thus, from these facts and (4.59) we have (4.58) immediately.

By (4.56) and (4.57) we have

$$
(4.60)
T_{B_1}^r (\Phi' \tilde{B}^*V_0)(y_j) = \frac{1}{2} (C_1^{-1}r_{0,1})(y_j) \partial_z^{-1}(C_1^* \Phi' \tilde{B}^*V_0)(y_j)
$$

$$
+ \frac{1}{2} \tilde{c}_1^{-1} (1 - r_{0,1})(y_j) \partial_z^{-1}(\tilde{c}_1^* \Phi' \tilde{B}^*V_0)(y_j) = \frac{1}{\pi} r_{0,1}(z_j)(C_1^{-1})^* \int_{\partial \Omega} \frac{\partial_z(\tilde{c}_1^* \tilde{B}^*C_2 \tilde{B})}{z_j - \zeta} d\xi
$$

$$
- (1 - r_{0,1}(z_j))(\tilde{c}_1^{-1})^* \int_{\partial \Omega} \frac{(\nu_1 - i\nu_2) \tilde{B}^* \bar{B}}{z_j - \zeta} d\sigma = 0.
$$

Here, in order to obtain the last equality we used the fact that $z_j \notin \Omega$ and therefore the functions $\frac{1}{z_j - \zeta}$ are antiholomorphic on Ω. From (4.58) and (4.60) $T_{B_1}^r (\Phi' \tilde{B}^*V_0)|_1 = 0$. The proof of remaining equalities in (4.50) is the same. Next we show that $I_{\pm, \Phi}(\bar{x}) = 0$. By (3.22), (3.42) we have

$$
I_{\pm, \Phi}(\bar{x}) = \int_{\partial \Omega} \left\{(\nu_1 - i\nu_2)((2C_2^* C_1 b_{\pm, \bar{x}} \Phi', \bar{b}) + (2\Phi' C_2^* C_1 \bar{a}, \bar{a}_{\pm, \bar{x}})) + (\nu_1 + i\nu_2)((2P_2^* P_1 a_{\pm, \bar{x}} \Phi', \bar{b}) + (2\Phi' P_2^* P_1 a, \bar{a}_{\pm, \bar{x}})) \right\} d\sigma.
$$

Since by (4.56) the restriction of the function $C_2^* C_1$ on $\partial \Omega$ coincides with the restriction of some antiholomorphic in $\bar{\Omega}$ function and by (4.52) the restriction of the function $P_2^* P_1$ on $\partial \Omega$ coincides with the restriction of some holomorphic in $\bar{\Omega}$ the equality (4.61) implies (4.51).

The proof of the proposition is complete. ■

We use the above proposition to prove the following:

Proposition 4.6. The following is true:

$$
(4.62)
\tilde{\Phi}' T_{B_1}^r (\tilde{B}^*V_0) = T_{B_1}^r (\tilde{\Phi}' \tilde{B}^*V_0),
$$

$$
(4.63)
\tilde{\Phi}' T_{-B_2}^r (\tilde{B}U_0) = T_{-B_2}^r (\tilde{\Phi}' \tilde{B}U_0).
$$

Proof. Denote $r = \tilde{\Phi}' T_{B_1}^r (\tilde{B}^*V_0) - T_{B_1}^r (\tilde{\Phi}' \tilde{B}^*V_0)$. Then this function satisfies

$$
2\partial_z r - \tilde{B}_1^* r = 0 \text{ in } \Omega.
$$

By Proposition 4.3

$$
r|_1 = 0.
$$
Proposition 4.7. Under conditions of Proposition 4.2 we have

\[- \langle \mathcal{B} \mathcal{A}_2 U_0, V_0 \rangle - (Q_1(1)U_0, T_{B_1}^*(\mathcal{B}^*V_0)) + (\mathcal{Q} U_0, V_0) = 0 \quad \text{on } \Omega, \]

and

\[(2 \partial_z \mathcal{B} \hat{U}_0, \hat{V}_0) + (\mathcal{B} \hat{U}_0, B_2^* \hat{V}_0) - (\mathcal{Q} \hat{U}_0, \hat{V}_0) - (Q_1(2)\hat{V}_0, T_{B_2}^*(\mathcal{B} \hat{U}_0)) = 0 \quad \text{on } \Omega. \]

Proof. We remind that \(\Phi \) satisfies (3.1), (3.2) and

\[\text{Im } \Phi(\bar{x}) \notin \{ \text{Im } \Phi(x); x \in H \setminus \{ \bar{x} \} \}. \]

By Proposition 4.2 equality (4.2) holds true. Thanks to (4.66), (4.25) and Proposition 4.6 we can write it as

\[(J_\pm + K_\pm)(\bar{x}) + I_{\pm, \Phi}(\bar{x}) = 0. \]

This equality and Proposition 4.5 imply

\[(J_\pm + K_\pm)(\bar{x}) = 0. \]

By Propositions 4.1 and 4.6 we obtain

\[
\tilde{S}_{\tau, \bar{x}}(q_1, T_{B_1}^*(\mathcal{B}^*V_0)) = \mathcal{A}^*V_0 + 2T_{B_1}^*(\partial_z \mathcal{B}^*V_0) + T_{B_1}^*(\mathcal{B}^*(A_2^*V_0 - 2\tau \mathcal{F}'V_0))) = \\
-2\tau \tilde{S}_{\tau, \bar{x}}(q_1, T_{B_1}^*(\mathcal{B}^*\Phi V_0)) + o\left(\frac{1}{\tau}\right) = -2\tau \tilde{S}_{\tau, \bar{x}}(q_1, \mathcal{F}'T_{B_1}^*(\mathcal{B}^*V_0)) + o\left(\frac{1}{\tau}\right) = \\
-\frac{\pi}{2|\det \psi'(\bar{x})|^\frac{1}{2}}(2\partial_z q_1, T_{B_1}^*(\mathcal{B}^*V_0))(\bar{x}) + o\left(\frac{1}{\tau}\right) = \\
-\frac{\pi}{2|\det \psi'(\bar{x})|^\frac{1}{2}}(Q_1(1)U_0, T_{B_1}^*(\mathcal{B}^*V_0))(\bar{x}) + o\left(\frac{1}{\tau}\right),
\]

and

\[
-2\tilde{S}_{\tau, \bar{x}}(P_{A_2}^*(\mathcal{A}(\partial_z U_0 + \tau \Phi'U_0)) + \mathcal{B} \hat{\partial}_z U_{0, \tau}, q_4) = \\
-2\tilde{S}_{\tau}(P_{A_2}^*(\mathcal{A} \tau \Phi'U_0)), q_4) + o\left(\frac{1}{\tau}\right) = o\left(\frac{1}{\tau}\right).
\]

By (4.68) and (4.69)

\[
K_+(\bar{x}) = -\frac{\pi}{2|\det \psi'(\bar{x})|^\frac{1}{2}}(Q_1(1)U_0, T_{B_1}^*(\mathcal{B}^*V_0))(\bar{x}) + o\left(\frac{1}{\tau}\right).
\]

In the similar way we compute \(K_-(\bar{x}) \):

\[
\tilde{S}_{-\tau, \bar{x}}(q_2, P_{A_2}^*(2\partial_z (\mathcal{A}^*V_0 - \tau \Phi'2\mathcal{A}^*V_0) - \mathcal{B}^* \hat{V}_0 + P_{A_2}^*(A_2^* \mathcal{B}^* \hat{V}_0)) = \\
-2\tau \tilde{S}_{-\tau, \bar{x}}(q_2, P_{A_2}^*(\mathcal{F}' \mathcal{A}^*V_0)) + o\left(\frac{1}{\tau}\right) = o\left(\frac{1}{\tau}\right).
\]
and

\((4.72) \)

\[-2\tilde{\mathbf{f}}_{\tau,x}^-(q_3, T_{-B_2}^*(2\tilde{\mathbf{A}}_2 \partial_2 \tilde{U}_0 + 2\tilde{\mathbf{B}}(\partial_2 \tilde{U}_0 + \tau \Phi' \tilde{U}_0))) = \]

\[-2\tilde{\mathbf{f}}_{\tau,x}^-(q_3, T_{-B_2}^*(\tau \tilde{\mathbf{B}} \Phi' \tilde{U}_0)) + o(\frac{1}{\tau}) = \frac{\pi}{2|\det \psi'(\tilde{x})|^{\frac{1}{2}}} (Q_1(2) \tilde{V}_0, T_{-B_2}^*(\tilde{\mathbf{B}} \tilde{U}_0)) + o(\frac{1}{\tau}). \]

By (4.71) and (4.72)

\((4.73) \)

\[K_-(\tilde{x}) = \frac{\pi}{2|\det \psi'(\tilde{x})|^{\frac{1}{2}}} (Q_1(2) \tilde{V}_0, T_{-B_2}^*(\tilde{\mathbf{B}} \tilde{U}_0)) + o(\frac{1}{\tau}). \]

Substituting into (4.67) the right hand side of formulae (4.70) and (4.73) we obtain (4.64) and (4.65) as

By (4.71) and (4.72)

\((4.74) \)

\[-(\tilde{\mathbf{B}}A_1 U_0, V_0) - (\tilde{Q}_1(1) U_0, T_{\tilde{B}_1}^*(\tilde{\mathbf{B}}^* V_0)) + (\tilde{Q} U_0, V_0) = 0 \quad \text{in } \Omega \]

and

\[-(2\partial_2 \tilde{\mathbf{B}} \tilde{U}_0, \tilde{V}_0) - (\tilde{\mathbf{B}} \tilde{U}_0, \tilde{B}_2 \tilde{V}_0) + (\tilde{Q} \tilde{U}_0, \tilde{V}_0) + (Q_1(2) \tilde{V}_0, T_{-B_2}^*(\tilde{\mathbf{B}} \tilde{U}_0)) = 0 \quad \text{in } \Omega. \]

The proof of the proposition is complete. ■

5. Step 3: End of the proof.

Let \(\tilde{\gamma} \) be a curve, without self-intersections which pass through the point \(\tilde{x} \) and couple points \(x_1, x_2 \) from \(\tilde{x} \) in such a way that the set \(\tilde{\gamma} \cap \partial \Omega \setminus \{x_1, x_2\} \) is empty. Denote by \(\Omega_1 \) a domain bounded by \(\tilde{\gamma} \) and part of \(\partial \Omega \) located between points \(x_1 \) and \(x_2 \). Then we set \(\Omega_{1,\xi} = \{x \in \Omega : \text{dist}(\Omega_1, x) < \xi\} \). By Proposition 2.1 for each point \(\tilde{x} \) from \(\Omega_{1,\xi} \) one can construct functions \(\tilde{U}_0^{(k)}, \tilde{V}_0^{(\ell)} \) satisfying (3.5), (3.28) such that

\[\tilde{U}_0^{(k)}(\tilde{x}) = \tilde{e}_k, \quad \tilde{V}_0^{(\ell)}(\tilde{x}) = \tilde{e}_\ell \quad \forall k, \ell \in \{1, \ldots, N\}. \]

Then for each \(\tilde{x} \) there exists positive \(\delta(\tilde{x}) \) such that the matrices \(\{\tilde{U}^{(j)}_{0,i}\} \) and \(\{\tilde{V}^{(j)}_{0,i}\} \) are invertible for any \(x \in \tilde{B}(\tilde{x}, \delta(\tilde{x})) \). From the covering of \(\Omega_{1,\xi} \) by such a balls we take the finite subcovering \(\tilde{\Omega}_{1,\xi} \subset \cup_{k=1}^N \tilde{B}(x_k, \delta(x_k)) \). Then from (4.74) we have the differential inequality

\((5.1) \)

\[|\partial_2 \tilde{\mathbf{B}}_{ij}| \leq C_\xi \left(\sum_{k=1}^N |T_{-B_2}^*(\tilde{\mathbf{B}}^* \tilde{U}_0^{(k)})| + |\tilde{\mathbf{B}}| + |\tilde{\mathbf{Q}}| \right) \quad \text{in } \Omega_{1,\xi}, \quad \forall i, j \in \{1, \ldots, N\}. \]

Let \(\phi_0 \in C^2(\tilde{\Omega}) \) be a function such that

\((5.2) \)

\[\nabla \phi_0(x) \neq 0 \quad \text{in } \Omega_1, \quad \partial_\nu \phi_0|_\gamma \leq \alpha' < 0, \quad \phi_0|_\gamma = 0, \]

where \(\nu \) is the outward normal vector to \(\Omega_{1,\xi} \) and \(\chi_\xi \) be a function such that

\[\chi_\xi \in C^2(\overline{\Omega_{1,\xi}}), \quad \chi_\xi = 1 \quad \text{in } \Omega_1, \]
and $\chi_\epsilon \equiv 0$ in some neighborhood of the curve $\partial \Omega_{1,\epsilon} \setminus \tilde{\Gamma}$. From (5.1), (4.50) we have

\begin{equation}
|\partial_2 (\chi_\epsilon \tilde{B}_i)| \leq C_\epsilon \sum_{k=1}^N |\chi_\epsilon T_{-B_2}^* (\tilde{B}^* \tilde{U}_{0}^{(k)})| + |\chi_\epsilon \tilde{B}|
\end{equation}

\begin{equation}
+ \frac{1}{2} |\chi_\epsilon, \partial_2 [\tilde{B}_i] + |\chi_\epsilon \tilde{Q}| | \ in \ \Omega_{1,\epsilon}, \ \forall i, j \in \{1, \ldots, N\},
\end{equation}

\begin{equation}
\chi_\epsilon \tilde{B}|_{\partial \Omega_{1,\epsilon}} = \partial_2 (\chi_\epsilon \tilde{B})|_{\partial \Omega_{1,\epsilon}} = 0.
\end{equation}

Set $\psi_0 = e^{\lambda_0}$ with positive λ sufficiently large. Applying the Carleman estimate to the above inequality we have

\begin{equation}
\int_{\Omega_{1,\epsilon}} e^{2\tau \psi_0} \left(\frac{1}{\tau} |\nabla \chi_\epsilon \tilde{B}|^2 + \tau |\chi_\epsilon \tilde{B}|^2 \right) dx \leq C \int_{\Omega_{1,\epsilon}} \left(\sum_{k=1}^N |\chi_\epsilon T_{-B_2}^* (\tilde{B}^* \tilde{U}_{0}^{(k)})|^2 \right.
\end{equation}

\begin{equation}
+ \chi_\epsilon^2 (|\tilde{B}|^2 + |\tilde{Q}|^2) + \left. \frac{1}{2} |\chi_\epsilon, \partial_2 [\tilde{B}_i] + |\chi_\epsilon \tilde{Q}| | \in \Omega_{1,\epsilon}, \ \forall \tau \geq \tau_0. \right)
\end{equation}

By the Carleman estimate for the operator ∂_2 and (4.50) there exist C and τ_0 independent of τ such that

\begin{equation}
\int_{\Omega_{1,\epsilon}} |\chi_\epsilon T_{-B_2}^* (\tilde{B}^* \tilde{U}_{0}^{(k)})|^2 e^{2\tau \psi_0} dx \leq C \int_{\Omega_{1,\epsilon}} \left(|\chi_\epsilon, \partial_2 [\tilde{B}^* \tilde{U}_{0}^{(k)}]|^2 + |\chi_\epsilon \tilde{B}^* \tilde{U}_{0}^{(k)}|^2 \right) e^{2\tau \psi_0} dx
\end{equation}

and

\begin{equation}
\int_{\Omega_{1,\epsilon}} |\chi_\epsilon T_{B_1}^* (\tilde{B}^* V_0^{(k)})|^2 e^{2\tau \psi_0} dx \leq C \left(|\chi_\epsilon, \partial_2 [\tilde{B}^* V_0^{(k)}]|^2 + |\chi_\epsilon \tilde{B}^* V_0^{(k)}|^2 \right) e^{2\tau \psi_0} dx
\end{equation}

for all $\tau \geq \tau_0$.

Combining estimates (5.5), (5.6) we obtain that there exist a constant C independent of τ such that

\begin{equation}
\int_{\Omega_{1,\epsilon}} e^{2\tau \psi_0} \left(\frac{1}{\tau} |\nabla \chi_\epsilon \tilde{B}|^2 + \tau |\chi_\epsilon \tilde{B}|^2 \right) dx
\end{equation}

\begin{equation}
\leq C \int_{\Omega_{1,\epsilon}} \chi_\epsilon^2 (|\tilde{B}|^2 + |\tilde{Q}|^2) + \sum_{k=1}^N |\chi_\epsilon, \partial_2 [T_{-B_2}^* (\tilde{B}^* \tilde{U}_{0}^{(k)})]|^2 + |\chi_\epsilon \tilde{B}^* \tilde{U}_{0}^{(k)}|^2 | e^{2\tau \psi_0} dx \ \forall \tau \geq \tau_0.
\end{equation}

For all sufficiently large τ the term $\int_{\Omega_{1,\epsilon}} |\chi_\epsilon \tilde{B}|^2 e^{2\tau \psi_0} dx$ absorbed by the integral on the left hand side. Moreover, thanks to the choice of the function χ_ϵ, we have supports of coefficients for the operator $[\chi_\epsilon, \partial_2]$ are located in the domain $\Omega_{1,\epsilon} \setminus \Omega_{1,\tilde{\epsilon}}$. Hence one can write the estimate (5.8) as

\begin{equation}
\int_{\Omega_{1,\epsilon}} e^{2\tau \psi_0} \left(\frac{1}{\tau} |\nabla \chi_\epsilon \tilde{B}|^2 + \tau |\chi_\epsilon \tilde{B}|^2 \right) dx \leq C \int_{\Omega_{1,\epsilon}} \chi_\epsilon^2 |\tilde{Q}|^2 e^{2\tau \psi_0} dx
\end{equation}

\begin{equation}
+ C \int_{\Omega_{1,\epsilon} \setminus \Omega_{1,\tilde{\epsilon}}} \sum_{k=1}^N \left(|\chi_\epsilon, \partial_2 [T_{-B_2}^* (\tilde{B}^* \tilde{U}_{0}^{(k)})]|^2 + |\chi_\epsilon \tilde{B}^* \tilde{U}_{0}^{(k)}|^2 \right) e^{2\tau \psi_0} dx \ \forall \tau \geq \tau_1.
\end{equation}

By Proposition 2.7 for each point \hat{x} from Ω one can construct such a function $U_0^{(k)}, V_0^{(\ell)}$ satisfying (3.5), (3.28) such that

$U_0^{(k)}(\hat{x}) = \tilde{e}_k, \ V_0^{(\ell)}(\hat{x}) = \tilde{e}_\ell \ \forall k, \ell \in \{1, \ldots, N\}$.
Then for each $\hat{x} \in \Omega_{1,\epsilon}$ there exists positive $\delta(\hat{x})$ such that the matrices $\{U_{0,i}^{(j)}\}$ and $\{V_{0,i}^{(j)}\}$ are invertible for any $x \in B(\hat{x}, \delta(\hat{x}))$. From the covering of $\Omega_{1,\epsilon}$ by such a balls we take the finite subcovering $\Omega \subset \cup_{k=N}^{N+N^*} B(x_k, \delta(x_k))$. Then there exists C_ϵ such that

$$
|Q| \leq C_\epsilon (|\tilde{B}| + \sum_{k=N+1}^{N+N^*} |T_{B_k^*}^* (\tilde{B}^* V_0^{(k)}))| \quad \text{in } \Omega_{1,\epsilon}.
$$

(5.10)

Combining (5.7), (5.9) and (5.10) we obtain that there exists a constant C_5 independent of τ

$$
\int_{\Omega_{1,\epsilon}} e^{2\tau \psi_0 (\frac{1}{\tau} |\nabla (\chi_\epsilon \tilde{B})|^2 + \tau |\chi_\epsilon \tilde{B}|^2) dx \leq C_5 \int_{\Omega_{1,\epsilon} \setminus \Omega_{1,\epsilon}^\epsilon} \left(\sum_{k=1}^{N} \| [\chi_\epsilon, \partial_\epsilon] T_{B_k^*}^* (\tilde{B}^* \tilde{U}_0^{(k)}) \|^2 + \sum_{k=N+1}^{N+N^*} \| [\chi_\epsilon, \partial_\epsilon] T_{B_k^*}^* (\tilde{B}^* V_0^{(k)}) \|^2 \right)
$$

(5.11)

By (5.2) for all sufficiently small positive ϵ there exists a positive constant $\alpha < 1$ such that

$$
\psi_0 (x) < \alpha \quad \text{on } \Omega_{1,\epsilon} \setminus \Omega_{1,\epsilon}^\epsilon.
$$

(5.12)

Since $\hat{x} \in \text{supp } \tilde{B} \cap \tilde{\gamma}$ and thanks to the fact $\partial_\epsilon \phi_0 |_{\tilde{\gamma}} \leq \alpha^\prime < 0$ there exists $\kappa > 0$ such that

$$
\kappa e^{\tau} \leq \int_{\Omega_{1,\epsilon}} e^{2\tau \psi_0 |\chi_\epsilon \tilde{B}|^2 e^{2\tau \psi_0} dx \quad \forall \tau \geq \tau_1.
$$

(5.13)

By (5.12) we can estimate the right hand side of the inequality (5.9) as

$$
C_5 \int_{\Omega_{1,\epsilon} \setminus \Omega_{1,\epsilon}^\epsilon} \left(\sum_{k=1}^{N} \| [\chi_\epsilon, \partial_\epsilon] T_{B_k^*}^* (\tilde{B}^* \tilde{U}_0^{(k)}) \|^2 + \sum_{k=N+1}^{N+N^*} \| [\chi_\epsilon, \partial_\epsilon] T_{B_k^*}^* (\tilde{B}^* V_0^{(k)}) \|^2 \right) + \| [\chi_\epsilon, \partial_\epsilon] \tilde{B} \|^2 e^{2\tau \psi_0} dx \leq C_6 e^{\alpha \tau} \quad \forall \tau \geq \tau_1,
$$

(5.14)

where C_5, C_6 are positive constants independent of τ. Using (5.13) and (5.14) in (5.9) we obtain

$$
\kappa e^{\tau} \leq C_7 e^{\alpha \tau} \quad \forall \tau \geq \tau_1.
$$

Since $\alpha < 1$ we arrived to the contradiction. Hence

$$
\tilde{B} = \tilde{Q} = 0 \quad \text{on } \Omega \setminus \mathcal{X}_0.
$$

The proof of theorem is complete. ■

References

[1] A. P. Calderón, *On an inverse boundary value problem*, in *Seminar on Numerical Analysis and its Applications to Continuum Physics*, 65–73, Soc. Brasil. Mat., Rio de Janeiro, 1980.

[2] G. Eskin, *Global uniqueness in the inverse scattering problem for the Schrödinger equation with magnetic potential with fixed energy*, Commun. Math. Phys., 173, 199-224.

[3] G. Eskin and J. Ralston, *Inverse boundary value problems for systems of partial differential equations*, in *Recent Development in theories and Numerics*, Editors Y-C Hon, M. Yamamoto, J. Cheng, J-Y. Lee, World Scientific Publishing Co. 105-113.

[4] L. Hörmander, *The analysis of linear partial differential operators I*, Springer-Verlag, Berlin, 1980.
[5] O. Imanuvilov, G. Uhlmann and M. Yamamoto, The Calderón problem with partial data in two dimensions, J. Amer. Math. Soc., 23 (2010), 655-691.

[6] O. Imanuvilov, G. Uhlmann and M. Yamamoto, Partial Cauchy data for general second order elliptic operators in two dimensions, Publ. Research Institute Math. Sci., 48, (2012), 971-1055.

[7] O. Imanuvilov and M. Yamamoto, Uniqueness for inverse boundary value problems by Dirichlet-to-Neumann map on subboundaries, Milan J. Math., 81 (2013), 187-258.

[8] I. Vekua, Generalized Analytic Functions, Pergamon Press, Oxford, 1962.

[9] W. Wendland, Elliptic Systems in the Plane, Pittman, London, 1979.