On the cycles of components of disconnected Julia sets *

Guizhen Cui†
Wenjuan Peng‡

April 10, 2019

Abstract
For any integers $d \geq 3$ and $n \geq 1$, we construct a hyperbolic rational map of
degree d such that it has n cycles of the connected components of its Julia set except
single points and Jordan curves.

1 Introduction

Let $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational map of the Riemann sphere with $\deg f \geq 2$. Denote by \mathcal{J}_f
and \mathcal{F}_f the Julia set and the Fatou set of f respectively. Refer to [8] for their definitions
and basic properties. It is classical that \mathcal{J}_f is a non-empty compact set.

Assume that \mathcal{J}_f is disconnected. Let K be a Julia component of f, i.e., a connected
component of \mathcal{J}_f. Then each component of $f^{-1}(K)$ is also a Julia component. Thus K is either periodic if $f^p(K) = K$ for some integer $p \geq 1$, or eventually periodic if $f^k(K)$ is periodic for
some integer $k \geq 0$, or wandering if $f^n(K)$ is disjoint from $f^m(K)$ for any integers $n > m \geq 0$.

If K is periodic with period $p \geq 1$, then either $\deg(f^p|_K) = 1$ and K is a single point,
or $\deg(f^p|_K) > 1$ and there exists a rational map g with $\deg g = \deg(f^p|_K)$ such that
(f^p, K) is quasi-conformally conjugate to (g, \mathcal{J}_g) in a neighborhood of K (see [9]). If K
is wandering and f is a polynomial, then K is a single point (refer to [1, 7, 13]).

The situation for general rational maps is more complicated. There are examples of
rational maps whose wandering components of their Julia sets are Jordan curves [9]. In
fact, a wandering Julia component of a geometrically finite rational map is either a single
point or a Jordan curve [11].

A periodic Julia component K is called simple if either K is a single point or each
component of $f^{-n}(K)$ is a Jordan curve for any $n \geq 0$. It is called complex otherwise. Denote

$N(f) = \# \{\text{cycles of complex periodic Julia components of } f\}$.

Refer to [11] for the next theorem.

*2010 Mathematics Subject Classification: 37F10, 37F20
†The first author is supported by the NSFC Grant No. 11688101 and Key Research Program of Frontier Sciences, CAS, Grant No. QYZDJ-SSW-SYS005.
‡The second author was supported by the NSFC Grant No. 11471317.
Theorem A. Let f be a geometrically finite rational map with disconnected Julia set. Then $N(f) < \infty$ and each wandering Julia component of f is either a single point or a Jordan curve.

A natural problem is whether Theorem A holds for general rational maps. It is easy to see that $N(f) \leq \deg f - 2$ when f is a polynomial. A related problem is whether $N(f)$ is bounded by a constant depending only upon $\deg f$ for rational maps. In this work, we will construct examples to show that this is not true.

Theorem 1.1. Given any integers $d \geq 3$ and $n \geq 1$. There exists a hyperbolic rational map g such that $\deg g = d$ and $N(g) = n$.

The main tool in the proof of Theorem 1.1 is canonical decompositions. The idea firstly appeared in [3]. However, there are no precise statements in [3] to fit our situation. So we develop the idea in this paper (refer to §3).

To enumerate the cycles of complex Julia components, we will introduce a tree map which characterizes the dynamics on the configuration of Julia components, see §5. In our knowledge, such kind of tree maps firstly appeared in [14] by Shishikura.

For the purpose to construct rational maps with given number of cycles of complex Julia components, we develop a procedure on a tree map to create a new tree map, such that the corresponding new rational map has a new cycle of complex Julia components. Refer to §7 for the procedure.

2 Sub-hyperbolic version of Thurston Theorem

We will recall the sub-hyperbolic version of Thurston Theorem in this section. Let F be a branched covering of \mathbb{C} with $\deg F \geq 2$. Denote by Ω_F the set of branched points of F and by

$$\mathcal{P}_F = \bigcup_{n>0} F^n(\Omega_F)$$

the postcritical set of F. The map F is geometrically finite if the accumulation point set \mathcal{P}_F' of \mathcal{P}_F is finite.

A geometrically finite branched covering F is a (sub-hyperbolic) semi-rational map if F is holomorphic in a neighborhood of \mathcal{P}_F' and each cycle in \mathcal{P}_F' is either attracting or super-attracting.

Two semi-rational maps F and G are c-equivalent if there exist a pair of orientation preserving homeomorphisms (ϕ, ψ) of \mathbb{C} and an open set $U \supset \mathcal{P}_F'$ such that $G \circ \psi = \phi \circ F$, ϕ is holomorphic in U, $\psi = \phi$ in U and ψ is isotopic to ϕ rel $\mathcal{P}_F \cup U$.

Let F be a semi-rational map. A Jordan curve γ in $\mathbb{C}\setminus \mathcal{P}_F$ is trivial if one component of $\mathbb{C}\setminus \gamma$ is disjoint from \mathcal{P}_F; or is peripheral if one component of $\mathbb{C}\setminus \gamma$ contains exactly one point of \mathcal{P}_F; or is essential otherwise, i.e. if each component of $\mathbb{C}\setminus \gamma$ contains at least two points of \mathcal{P}_F.

Convention. For the simplicity of the writing, we say that two essential curves are isotopic if they are isotopic rel the post-critical set.

A multicurve Γ is a non-empty and finite collection of disjoint Jordan curves in $\mathbb{C}\setminus \mathcal{P}_F$, each essential and no two isotopic. It is stable if each essential curve in $F^{-1}(\gamma)$ for $\gamma \in \Gamma$ is isotopic to a curve in Γ; or pre-stable if each curve $\gamma \in \Gamma$ is isotopic to a
curve in $F^{-1}(\beta)$ for some $\beta \in \Gamma$. A multicurve is **completely stable** if it is stable and pre-stable.

The transition matrix $M(\Gamma) = (a_{\beta\gamma})$ of a multicurve Γ is defined by the formula

$$a_{\beta\gamma} = \sum_{\delta} \frac{1}{\deg(F: \delta \rightarrow \gamma)}$$

where the sum is taken over all components δ of $F^{-1}(\gamma)$ which are isotopic to β. Let $\lambda(\Gamma) = \lambda(M(\Gamma))$ denote the spectral radius of $M(\Gamma)$. A stable multicurve Γ is called a **Thurston obstruction** of F if $\lambda(\Gamma) \geq 1$. Refer to [3, Theorem 1.1] or [6] for the next Theorem.

Theorem B. Let F be a semi-rational map with $\mathcal{P}_F \neq \emptyset$. Then F is c-equivalent to a rational map f if and only if it has no Thurston obstruction. Moreover, the rational map f is unique up to holomorphic conjugation.

The following lemmas will be used in this paper.

A multicurve Γ is called **irreducible** if for each pair $(\gamma, \beta) \in \Gamma \times \Gamma$, there exists a sequence $\{\gamma = \delta_0, \ldots, \delta_n = \beta\}$ of curves in Γ such that $F^{-1}(\delta_k)$ has a component isotopic to δ_{k-1} for $1 \leq k \leq n$. Refer to [10, Theorem B.6] for the next lemma.

Lemma 2.1. Let F be a semi-rational map. For any multicurve Γ with $\lambda(\Gamma) > 0$, there is an irreducible multicurve $\Gamma_0 \subset \Gamma$ such that $\lambda(\Gamma_0) = \lambda(\Gamma)$.

Refer to [3, Corollary A.2] for the next lemma.

Lemma 2.2. For any non-negative square matrix M, its leading eigenvalue satisfies

$$\lambda(M) = \inf \{\lambda : \exists v > 0 \text{ such that } Mv < \lambda v\}.$$

Lemma 2.3. Let $\Gamma_1 \subset \Gamma$ be multicurves. Then $\lambda(\Gamma_1) \leq \lambda(\Gamma)$.

Proof. The transition matrices of Γ and Γ_1 satisfy the following inequality:

$$M(\Gamma) = \begin{pmatrix} M(\Gamma_1) & * \\ * & * \end{pmatrix} \geq M = \begin{pmatrix} M(\Gamma_1) & O_1 \\ O_2 & O_3 \end{pmatrix},$$

where O_i are zero matrices. Thus $\lambda(\Gamma) \geq \lambda(M)$ by [3, Corollary A.3].

By Lemma 2.2, for any $\lambda > \lambda(M)$, there exists a vector $v = (v_1, v_2) > 0$ such that $Mv < \lambda v$. Thus

$$Mv = \begin{pmatrix} M(\Gamma_1) & O_1 \\ O_2 & O_3 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} M(\Gamma_1)v_1 \\ O \end{pmatrix} < \begin{pmatrix} \lambda v_1 \\ \lambda v_2 \end{pmatrix},$$

where O is a zero matrix. So $M(\Gamma_1)v_1 < \lambda v_1$. Therefore $\lambda(\Gamma_1) < \lambda$ by Lemma 2.2. Since λ is an arbitrary number with $\lambda > \lambda(M)$, we have $\lambda(\Gamma_1) \leq \lambda(M)$. Now the lemma follows.

Lemma 2.4. Let $\Gamma = \Gamma_1 \sqcup \Gamma_2$ be a multicurve of a semi-rational map F such that for each curve $\gamma \in \Gamma_2$, $F^{-1}(\gamma)$ has no component isotopic to a curve in Γ_1. Then

$$\lambda(\Gamma) = \max\{\lambda(\Gamma_1), \lambda(\Gamma_2)\}.$$
Proof. The transition matrix of Γ has the following block decomposition

$$M(\Gamma) = \begin{pmatrix} M(\Gamma_1) & O \\ B & M(\Gamma_2) \end{pmatrix},$$

where O is a zero matrix.

For any $\lambda > \max\{\lambda(\Gamma_1), \lambda(\Gamma_2)\}$, by Lemma 2.2, there exist vectors $v_1, v_2 > 0$ such that $M(\Gamma_1)v_1 < \lambda v_1$ and $M(\Gamma_2)v_2 < \lambda v_2$. Thus there exists $\varepsilon > 0$ such that $M(\Gamma_2)v_2 + \varepsilon Bv_1 < \lambda v_2$. Now we have

$$M(\Gamma) \begin{pmatrix} \varepsilon v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} \varepsilon M(\Gamma_1)v_1 \\ M(\Gamma_2)v_2 + \varepsilon Bv_1 \end{pmatrix} < \begin{pmatrix} \varepsilon \lambda v_1 \\ \lambda v_2 \end{pmatrix}.$$

Thus $\lambda(\Gamma) < \lambda$ by Lemma 2.2. So $\lambda(\Gamma) \leq \max\{\lambda(\Gamma_1), \lambda(\Gamma_2)\}$ since λ is arbitrary.

By Lemma 2.3, we have $\lambda(\Gamma_1) \leq \lambda(\Gamma)$ and $\lambda(\Gamma_2) \leq \lambda(\Gamma)$. Combining these inequalities, we obtain $\lambda(\Gamma) = \max\{\lambda(\Gamma_1), \lambda(\Gamma_2)\}$. \qed

3 Canonical decompositions

By quasi-conformal surgery, for any sub-hyperbolic rational map g, there exist another sub-hyperbolic rational map f and a quasi-conformal map ϕ of \mathbb{C} such that $f \circ \phi = \phi \circ g$ holds in a neighborhood of J_g, and each super-attracting cycle of f is contained in P'_f.

The main object of this work is Julia sets. So we may assume that sub-hyperbolic rational maps f in our consideration satisfy the condition that each super-attracting cycle of f is contained in P'_f. This technical assumption will simplify the statements and proofs in this work.

Let F be semi-rational map. It is called generic if $P'_F \neq \emptyset$ and each super-attracting cycle of F is contained in P'_F.

A set $E \subset \mathbb{C}$ is D-type if there exists a simply-connected domain $D \subset \mathbb{C}$ such that $E \subset D$ and D contains at most one point of P_F; or is A-type if it is not disk type and there exists an annulus $A \subset \mathbb{C}$ such that $E \subset A$ and A is disjoint from P_F; or is Q-type otherwise.

From the condition $F(P_F) \subset P_F$, we know that $F(E)$ is Q-type if E is Q-type, and $F(E)$ is A-type or Q-type if E is A-type.

A generic semi-rational map F is called degenerate if for any open set $U \supset P'_F$, there exists $N > 0$ such that for $n > N$, each component of $\mathbb{C} \setminus F^{-n}(U)$ is D-type.

Proposition 3.1. A degenerate and generic semi-rational map is always c-equivalent to a rational map.

Proof. Let F be a degenerate and generic semi-rational map. Let Γ be a multicurve with $\lambda(\Gamma) > 0$. Then there is an irreducible multicurve $\Gamma_0 \subset \Gamma$ such that $\lambda(\Gamma_0) = \lambda(\Gamma)$ by Lemma 2.1. Pick an open set $U \supset P'_F$ such that it is disjoint from all the curves in Γ_0. Then there exists $N > 0$ such that for $n > N$, each component of $\mathbb{C} \setminus F^{-n}(U)$ is D-type. It follows that for each $\gamma \in \Gamma_0$, any curve in $F^{-n}(\gamma)$ is contained in a D-type set and hence is non-essential. This contradicts the condition that Γ_0 is irreducible. Thus F has no Thurston obstruction and hence it is c-equivalent to a rational map by Theorem B. \qed
By a tame set $U \subset \overline{\mathbb{C}}$, we mean that U is open and has only finitely many components whose closures are disjoint pairwise, and each component is bounded by finitely many Jordan curves.

Theorem 3.2. Let F be a non-degenerate and generic semi-rational map. There exist a completely stable multicurve Γ and a tame set $U_0 \subset \overline{\mathbb{C}}$ with $P_F' \subset U_0$ and $\partial U_0 \cap P_F = \emptyset$, such that the following conditions hold for $n \geq 0$. Denote $U_n = F^{-n}(U_0)$ and $L_n = \overline{\mathbb{C}} \setminus U_n$.

(a) U_0 is compactly contained in U_1 (denote $U_0 \subseteq U_1$).

(b) $\{F^k(U_0)\}$ converges to P_F' as $k \to \infty$.

(c) Each essential curve on ∂U_n is isotopic to a curve in Γ, and vice versa.

(d) Each Q-type component D_{n+1} of U_{n+1} contains exactly one Q-type component D_n of U_n, and each component of $D_{n+1} \setminus D_n$ is not Q-type.

(e) Each Q-type component of L_n contains exactly one Q-type component of L_{n+1}.

Proof. Pick Koenigs or Böttcher disks at every cycles in P_F' such that their boundaries are disjoint from P_F. Denote their union by V_0. Then $V_0 \subset F^{-1}(V_0)$ and $\{F^k(V_0)\}$ converges to P_F' as $k \to \infty$. Denote $V_n = F^{-n}(V_0)$ for $n \geq 1$. Then $V_{n-1} \subseteq V_n$.

Note that ∂V_n is disjoint pairwise for all $n \geq 0$. There exists a multicurve Λ_n such that each curve in Λ_n is contained in $\bigcup_{i=0}^{n} \partial V_i$ and each essential curve on $\bigcup_{i=0}^{n} \partial V_i$ is isotopic to a curve in Λ_n. It follows that each curve in Λ_n is isotopic to a curve in Λ_{n+1}. In particular, $\# \Lambda_n$ is increasing.

Denote by m the number of components of $V_0 \cup P_F$. Then $\# \Lambda_n \leq m - 3$ for all $n \geq 0$ since each curve in Λ_n is disjoint from $V_0 \cup P_F$. So there exists $N \geq 0$ such that $\# \Lambda_n$ is a constant for $n \geq N$. Thus there is a multicurve Λ such that for any $n \geq 0$, each essential curve on ∂V_n is isotopic to a curve in Λ.

Define a sub-multicurve $\Gamma \subset \Lambda$ by $\gamma \in \Gamma$ if for any $N > 0$, there exists a curve $\beta \subset \partial V_n$ with $n > N$ such that β is isotopic to γ. It is well-defined since Γ is non-empty by the condition that F is non-degenerate. By the definition of Γ, there exists $n_1 \geq 0$ such that each essential curve on ∂V_n with $n \geq n_1$ is isotopic to a curve in Γ.

![Figure 1. A Q-type component of V_n](image-url)
Let $\gamma \subset \partial V_n$ be an essential curve with $n \geq n_1$. It is isotopic to a curve in Γ. By the definition of Γ, it is also isotopic to a curve $\alpha \subset \partial V_N$ for some integer $N > n + 1$. Let D_{n+1} be the component of V_{n+1} that contains γ. Since D_{n+1} is disjoint from α, there exists a unique curve $\beta \subset \partial D_{n+1}$ such that β separates γ from α. Thus β is isotopic to γ since γ is isotopic to α. Refer to Figure 1.

For $n \geq n_1$, let $\Gamma_n \subset \Gamma$ be the multicurve defined by $\gamma \in \Gamma_n$ if γ is isotopic to a curve on ∂V_n. The above discussion shows that $\Gamma_n \subset \Gamma_{n+1}$. Thus there exists $n_2 \geq n_1$ such that $\Gamma_n = \Gamma_{n_2}$ for $n \geq n_2$. By the definition of Γ, we have $\Gamma_n = \Gamma$ for $n \geq n_2$.

Let D_n be a Q-type component of V_n with $n \geq n_2$. Let D_{n+1} be the component of V_{n+1} that contains D_n. Then D_{n+1} is also Q-type. Let B be a component of $D_{n+1} \setminus D_n$. Then $\gamma = \partial B \cap \partial D_n$ is a curve. If γ is non-essential, then B is D-type since D_n is Q-type. If γ is essential, then it is isotopic to a curve $\alpha \subset \partial D_{n+1}$ by the above discussion. Since D_n is Q-type, B is contained in the closed annulus bounded by γ and α. Thus B is not Q-type. It implies that D_{n+1} contains exactly one Q-type component of V_n. See Figure 1.

Let $s(n)$ be the number of Q-type components of V_n and $r(n)$ be the number of Q-type components of $\overline{V} \setminus V_n$. Then $s(n) + r(n) = \# \Gamma + 1$ and $s(n)$ is increasing for $n \geq n_2$. So there exists $n_3 \geq n_2$ such that $s(n)$ is a constant for $n \geq n_3$. This shows that each Q-type component of V_{n+1} contains exactly one Q-type component of V_n, and each Q-type component of $\overline{V} \setminus V_{n+1}$ contains exactly one Q-type component of $\overline{V} \setminus V_{n+1}$.

Set $U_0 = V_n$ for some $n \geq n_3$. It satisfies the conditions of the theorem. □

We will call Γ a canonical multicurve of F and (U_0, L_0) a canonical decomposition of F, if they satisfy the conditions of Theorem 3.2.

It is easy to check that for $n \geq 1$, $(F^{-n}(U_0), F^{-n}(L_0))$ is also a canonical decomposition of F, and (U_0, L_0) is a canonical decomposition of F^n. Let U'_0 be the union of A-type or Q-type components of U_0, then $(U'_0, \overline{V} \setminus U'_0)$ is also a canonical decomposition of F. Moreover, each A-type component of $\overline{V} \setminus U'_0$ is a closed annulus.

Canonical decompositions and canonical multicurves are uniquely determined by semirational maps in the sense of homotopy by the next proposition.

Proposition 3.3. Let (U_0, L_0) be a canonical decomposition of F. Let $V_0 \in \overline{V}$ be a tame set such that $P'_F \subset V_0$ and ∂V_0 is disjoint from P_F. Suppose that $V_0 \subset F^{-1}(V_0)$ and $\{F^k(V_0)\}$ converges to P'_F as $k \to \infty$. Set $V_n = F^{-n}(V_0)$ and $U_n = F^{-n}(U_0)$ for $n \geq 0$. Then there exists $N \geq 0$ such that $(V_n, \overline{V} \setminus V_n)$ is a canonical decomposition of F for $n \geq N$. Moreover, the following conditions hold for $n \geq N$.

(a) Each essential curve on ∂V_n is isotopic to an essential curve on ∂U_0, and vice versa.

(b) There exist integers $0 < i < j$ such that $U_i \subset V_n \subset U_j$. Each Q-type component of U_i contains exactly one Q-type component of V_n and each Q-type component of V_n contains exactly one Q-type component of U_i.

Proof. Both $\{F^k(V_0)\}$ and $\{F^k(U_0)\}$ converge to P'_F as $k \to \infty$. So there exist integers $p, q > 0$ such that $U_0 \subset V_p \subset U_{p+q}$. Thus for $n \geq p$,

$$U_{n-p} \subset V_n \subset U_{n+q}.$$

(a) Let D be an A-type or a Q-type component of V_n for some $n \geq p$. Then D is contained in a component U of U_{n+q}, which is either an A-type or a Q-type. If U is
A-type, then each essential curve on ∂D is isotopic to a curve on ∂U. Thus it is also isotopic to a curve on ∂U_0 since U_0 is a canonical decomposition.

Suppose that U is Q-type. Then there is a unique Q-type component U' of U_{n-p} such that $U' \subset U$. Moreover, each component of $U \setminus U'$ is not Q-type. If $D \subset U \setminus U'$, then each essential curve on ∂D is isotopic to a curve on ∂U. Thus it is also isotopic to a curve on ∂U_0.

If $D \cap U' \neq \emptyset$, then $U' \subset D$. For each essential curve γ on ∂D, there is a unique curve β on $\partial U'$ such that it separates U' from γ. On the other hand, β is isotopic to a curve α on ∂U_{n+q}. Since U' is Q-type, β' must separate U' from α. This implies that both γ and α are contained in the same complementary component of β. Thus γ is isotopic to β and hence is isotopic to a curve on ∂U_0.

Conversely, for each essential curve γ on ∂U_0, it is isotopic to a curve $\beta \subset \partial U_{n-p}$ and a curve $\beta' \subset \partial U_{n+q}$. Let D be the component of V_n that contains β. Since β' is disjoint from D, there is a unique curve α on ∂D such that α separates β from β'. Thus α is isotopic to β and hence is isotopic to γ.

(b) Let B be a Q-type component of U_{n+q}. Then there is a unique Q-type component B' of U_{n-p} such that $B' \subset B$. Let D be the component of V_n that contains B', then D is Q-type and $D \subset B$. Obviously, D contains exactly one Q-type component of U_{n-p}. Since each component of $B \setminus \overline{B}$ is not Q-type, D is the unique Q-type component of V_n contained in B. This proves (b).

Let D_{n+1} be a Q-type component of V_{n+1}. Then D_{n+1} contains exactly one Q-type component of U_{n-p}. Thus D_{n+1} contains exactly one Q-type component of V_n since each Q-type component of V_n also contains exactly one Q-type component of U_{n-p}. Let B be a component of $D_{n+1} \setminus \overline{D_n}$. Then B is contained in a component of $U_{n+q+1} \setminus \overline{U_{n-p}}$. By Theorem 3.2 (d), each component of $U_{k+1} \setminus \overline{U_k}$ is not Q-type for $k > 1$. It deduces that each component of $U_{k+1} \setminus \overline{U_k}$ is not Q-type for any integer $l \geq 1$. Therefore B is not Q-type. It concludes that $(V_n, \overline{\mathbb{C}} \setminus V_n)$ is a canonical decomposition of F. Now the proof is complete.

Let $(\mathcal{U}, \mathcal{L})$ be a canonical decomposition of F. From Theorem 3.2, we may define a map χ_F on the collection of Q-type components of \mathcal{L} by $\chi_F(L_i) = L_j$ if the unique Q-type component of $F^{-1}(\mathcal{L})$ in L_i maps to L_j by F. Since this collection is finite, each Q-type component of \mathcal{L} is eventually periodic under χ_F. We will call a Q-type component L of \mathcal{L} is periodic if L is periodic under χ_F.

Obviously, for each periodic Q-type component L of \mathcal{L}, $F^{-1}(L)$ has exactly one Q-type component contained in periodic Q-type components of \mathcal{L}.

Denote by $m \geq 1$ the total number of Q-type components of \mathcal{L}. Then for each non-periodic Q-type component L of \mathcal{L}, each component of $F^{-m}(L)$ is not Q-type. Otherwise, assume that L^m is a Q-type component of $F^{-m}(L)$, then $F^k(L^m)$ is also Q-type for $0 \leq k \leq m$. Thus at least two of them, denoted by L^i and L^j with $i < j$, are contained in the same component of \mathcal{L}. So $L^i \subset L^j$. This implies that L is periodic and hence is a contradiction. Now we have proved the next lemma.

Lemma 3.4. (1) Each Q-type component L of \mathcal{L} is eventually periodic under χ_F.

(2) For each periodic Q-type component L of \mathcal{L}, $F^{-1}(L)$ has exactly one Q-type component contained in periodic Q-type components of \mathcal{L}.

(3) There exists $N \geq 1$ such that for each non-periodic Q-type component L of \mathcal{L} and any $n \geq N$, each component of $F^{-n}(L)$ is not Q-type.
Let L be a Q-type component of \mathcal{L}. We say that a multicurve Γ of F is \textbf{essentially} contained in L if for each curve $\gamma \in \Gamma$, $\gamma \subset L$ and γ is not isotopic to a curve on ∂L.

For a multicurve Γ of F and an integer $p \geq 1$, we denote by $\lambda(\Gamma, F^p)$ the leading eigenvalue of the transition matrix of Γ under F^p.

Theorem 3.5. Let F be a non-degenerate and generic semi-rational map. Let $(\mathcal{U}, \mathcal{L})$ be a canonical decomposition of F and Γ_F be a canonical multicurve of F. Then F is c-equivalent to a rational map if and only if $\lambda(\Gamma_F) < 1$ and for each periodic Q-type component L of \mathcal{L} with period $p \geq 1$ and any multicurve Γ contained essentially in L, we have $\lambda(\Gamma, F^p) < 1$.

Proof. The necessity follows directly from Theorem B. In the following, we prove the sufficiency.

Let Γ_1 be a multicurve of F with $\lambda(\Gamma_1) > 0$. Then there is an irreducible multicurve $\Gamma_0 \subset \Gamma_1$ such that $\lambda(\Gamma_0) = \lambda(\Gamma_1)$ by Lemma 2.4.

There exists $n_0 \geq 0$ such that $F^{n_0}(\mathcal{U})$ is disjoint from Γ_0. Thus for each $\gamma \in \Gamma_0$, $F^{-n_0}(\gamma)$ is contained in \mathcal{L}. Since Γ_0 is irreducible, we may choose a multicurve Γ' in \mathcal{L} such that each curve in Γ' is isotopic to a curve in Γ_0, and vice versa. Thus $\lambda(\Gamma') = \lambda(\Gamma_0) = \lambda(\Gamma_1)$.

Since Γ_F is stable and Γ' is irreducible, either each curve in Γ' is isotopic to a curve in Γ_F, or every curve in Γ' is not isotopic to a curve in Γ_F. In the former case, Γ' is contained in Γ_F in the sense of isotopy and hence $\lambda(\Gamma') < \lambda(\Gamma_F) < 1$ by Lemma 2.3.

Now we suppose that every curve in Γ' is not isotopic to a curve in Γ_F. Then each curve in Γ' is contained in Q-type components of \mathcal{L}.

If a curve $\gamma \in \Gamma'$ is contained in a non-periodic Q-type component L of \mathcal{L}, then as n is large enough, each component of $F^{-n}(\gamma)$ is contained in a D-type or an A-type component of $F^{-n}(\mathcal{L})$ by Lemma 3.2 (3). This contradicts the condition that Γ' is irreducible. Thus each curve $\gamma \in \Gamma'$ is contained in a periodic Q-type component of \mathcal{L}.

Let L_0 be a periodic Q-type component of \mathcal{L} with period $p \geq 1$ such that it contains curves of Γ'. Denote $L_i = \chi_F(L_0)$ for $1 \leq i \leq p$. Then $L_p = L_0$. Let $\Lambda_i \subset \Gamma'$ be the sub-multicurve contained in L_i. Since Γ' is irreducible, we know that for $0 \leq i < p$, each curve $\beta \in \Lambda_i$ is isotopic to a curve in $F^{-1}(\gamma)$ for some $\gamma \in \Lambda_{i+1}$ by Lemma 3.3 (2). Conversely, if $\gamma \in \Gamma' \setminus \Lambda_{i+1}$, then $F^{-1}(\gamma)$ has no component isotopic to a curve in Λ_i. This implies that $\Gamma' = \bigcup_{i=0}^{p-1} \Lambda_i$ and

$$
M(\Gamma')^p = \begin{pmatrix} M_0 & \cdots & O \\
\vdots & \ddots & \vdots \\
O & \cdots & M_{p-1} \end{pmatrix},
$$

where $M_i = M(\Lambda_i, F^p)$. By the condition of the theorem, $\lambda(M_i) < 1$ for $0 \leq i < p$. Thus by Lemma 2.4 we have

$$
\lambda(\Gamma')^p = \max\{\lambda(M_0), \cdots, \lambda(M_{p-1})\} < 1.
$$

Therefore F is c-equivalent to a rational map by Theorem B. \qed
4 Complex components of Julia sets

Let f be a generic sub-hyperbolic rational map. Recall that a periodic Julia component K of f is simple if either K is a single point or a Jordan curve disjoint from \mathcal{P}_f. It is a complex Julia component otherwise.

Lemma 4.1. Let K be a Julia component which is not a single point.

1. If K is wandering, then $f^n(K)$ is A-type as n is large enough.
2. If K is a periodic Jordan curve disjoint from \mathcal{P}_f, then K is A-type.
3. If K is a complex periodic Julia component, then K is Q-type.

Proof. Denote $K_n = f^n(K)$ for $n \geq 0$. Let V be the union of all the periodic Fatou domains of f. Since f is generic, V is non-empty and each component of V contains points of \mathcal{P}_f.

1. If K is wandering, then $f^n(K)$ is a Jordan curve for all $n \geq 0$ by Theorem A. Assume by contradiction that K_n is D-type for all $n \geq 0$. Then there is exactly one complementary component U_n of K_n such that $V \subset U_n$. Denote $\tilde{K}_n = \mathbb{C} \setminus U_n$. Then $K_n \subset \tilde{K}_n$ and \tilde{K}_n contains at most one point of \mathcal{P}_f. So $f(\tilde{K}_n) = \tilde{K}_{n+1}$. This shows that the forward orbit of \tilde{K} is always disjoint from V. Thus the interior of \tilde{K} is contained in the Fatou set. This contradicts the fact that the forward orbit of \tilde{K} is disjoint from V.

2. Suppose that K is a periodic Jordan curve disjoint from \mathcal{P}_f. Then K is either A-type or D-type. Assume by contradiction that K is D-type. Then K_n is also D-type for all $n \geq 0$. Using the same argument as above, we could deduce again a contradiction. Thus K is A-type.

3. Suppose that K is a complex periodic Julia component with period $p \geq 1$. If K is D-type, then there is a Jordan domain $D \supset K$ such that D contains at most one point of \mathcal{P}_f. Denote by A the unique annulus component of $D \setminus K$. We may require that A is disjoint from \mathcal{P}_f. Denote by $\tilde{K} = D \setminus A$. Then $K \subset \tilde{K}$ and $\partial K \subset K$.

Let D_1 be the component of $f^{-p}(D)$ that contains K. Then D_1 is also a Jordan domain. Since f is sub-hyperbolic, it is expanding in a neighborhood of \mathcal{J}_f under a degenerate metric. Thus we may choose D such that $D_1 \subset D$. Let D_n be the component of $f^{-pn}(D)$ that contains K for $n \geq 1$. Then $\tilde{K} = \cap_{n=1}^{\infty} D_n$ and hence $f^p(\tilde{K}) = \tilde{K}$.

If $\text{deg}(f^p|_{D_n}) = 1$, then \tilde{K} is a single point by Schwarz Lemma. This is a contradiction.

If $\text{deg}(f^p|_{D_n}) > 1$, then f has a unique critical value $a \in D$ since D contains at most one point of \mathcal{P}_f. Moreover $a \in \tilde{K}$ since A is disjoint from \mathcal{P}_f. Thus $f^p(a) = a$ and hence the point a is also the unique critical point of f in D. So a is a super-attracting point. This contradicts the assumption that f is generic.

If K is A-type, then K is disjoint from \mathcal{P}_f and there are exactly two components of $\mathbb{C} \setminus K$ containing points of \mathcal{P}_f. Thus there is an annulus $A \subset \mathbb{C}$ such that $K \subset A$ and A is disjoint from \mathcal{P}_f. As above, we may choose A such that $A_1 \subset A$, where A_1 is the component of $f^{-p}(A)$ that contains K. Thus K is also a Jordan curve by a folklore argument. So K is a simple Julia component. This is a contradiction. In conclusion, K is Q-type.

Corollary 4.2. The Julia set of a degenerate and generic sub-hyperbolic rational map is a Cantor set.
Proof. Let f be a degenerate and generic sub-hyperbolic rational map. By definition, every Julia component of f is D-type. So each Julia component of f is a single point by the above lemma.

Q-type Julia components or Fatou domains are closely related to canonical decompositions. Let f be a non-degenerate and generic sub-hyperbolic rational map. Let $(\mathcal{U}, \mathcal{L})$ be a canonical decomposition of f and let Γ_f be a canonical multicurve of f consisting of curves on $\partial \mathcal{U}$.

Lemma 4.3. (1) Each Q-type Fatou domain contains exactly one Q-type component of \mathcal{U}.

(2) Each component of $\overline{\mathcal{U}\setminus \Gamma_f}$ contains exactly one Q-type Julia component or one Q-type component of \mathcal{U}.

Proof. (1) Let D be a Q-type Fatou domain. Let $k \geq 0$ be an integer such that $f^k(D)$ is periodic. Note that $f^k(D)$ has only finitely many complementary components containing points of \mathcal{P}_f. Denote their union by E. Then there exists a domain $V \subset f^k(D)$ bounded by finitely many pairwise disjoint Jordan curves, such that $V \cap \mathcal{P}_f = f^k(D) \cap \mathcal{P}_f$ and each complementary component of V contains at most one component of E. In other words, each component Ω of $f^k(D) \setminus V$ has at most one complementary component E_1 containing points of \mathcal{P}_f except the complementary component E_0 that contains V. Consequently, V is Q-type.

Now $B := \overline{\mathcal{U}\setminus (E_0 \cup E_1)} \supset \Omega$ is an annulus disjoint from \mathcal{P}_f. Thus each component of $f^{-n}(B)$ for $n \geq 1$ is also an annulus disjoint from \mathcal{P}_f. As a consequence, for each component Ω' of $f^{-k}(\Omega)$, Ω' has at most two complementary components containing points of \mathcal{P}_f and $\partial \Omega'$ has exactly one component intersecting with $f^{-k}(V)$. Thus $f^{-k}(V)$ has a unique component $V' \subset D$ and for any domain $K \subset D \setminus \overline{V'}$, K is either D-type or A-type. Since D is Q-type, V' is also Q-type.

There exists an integer $n > 0$ such that $V' \subset f^{-n}(\mathcal{U})$. Let U_n denote the component of $f^{-n}(\mathcal{U})$ that contains V'. Then U_n is Q-type, $U_n \subset D$ and for any domain $K \subset D \setminus \overline{U_n}$, K is either D-type or A-type.

Let U_0 be the unique Q-type component of \mathcal{U} with $U_0 \subset U_n$. Then $U_0 \subset D$ and $D \setminus U_0$ contains no other Q-type components of \mathcal{U}. Thus D contains a unique Q-type component of \mathcal{U}.

(2) Let E be a component of $\overline{\mathcal{U}\setminus \Gamma_f}$. Then E is Q-type since each curve in Γ_f is essential. We claim that it contains at most one Q-type Julia component or one component of \mathcal{U}.

Obviously, E contains at most one Q-type component of \mathcal{U}. Assume by contradiction that E contains two Q-type Julia components K_1 and K_2, then there exists an A-type or a Q-type Fatou domain $B \subset E$ separating K_1 from K_2.

Let B_n be the union of components of $f^{-n}(\mathcal{U})$ contained in B. Then $B_n \subset B_{n+1}$ and $\bigcup_{n \geq 1} B_n = B$ since $\bigcup_{n \geq 1} f^{-n}(\mathcal{U}) = \mathcal{F}_f$. Thus there is an integer $n > 0$ such that B_n separates K_1 from K_2. Therefore there exists a curve $\beta \subset \partial f^{-n}(\mathcal{U})$ which separates K_1 from K_2. The curve β is not isotopic to any curve in Γ_f since both K_1 and K_2 are Q-type. This is a contradiction.

If E contains a Q-type component U of \mathcal{U} and a Q-type Julia component K, then there exists a curve $\beta \subset \partial U$ such that β is isotopic to a curve in Γ_f and separates U from K. This is also a contradiction. Now the claim is proved.
Assume now that E contains no Q-type components of \mathcal{U}, then its closure must contain a Q-type component L of \mathcal{L}. By Theorem 3.2 (e), $f^{-1}(\mathcal{L})$ has exactly one Q-type component L_1 such that $L_1 \subset L$. Inductively, $f^{-n}(\mathcal{L})$ has exactly one Q-type component L_n such that $L_n \subset L_{n-1}$ for $n \geq 2$. Set $K = \cap_{n=0}^{\infty} L_n$. Then K is a Q-type continuum which is disjoint from $\bigcup_{n \geq 1} f^{-n}(\mathcal{U}) = \mathcal{F}_f$. Therefore $K \subset E$ is a Q-type Julia component.

5 The Shishikura tree map

By a tree map we mean a finite tree T with the vertex set $X \subset T$ and a continuous map $\tau : T \to T$ such that $\tau^{-1}(X) \supset X$ is a finite set and τ is linear on $T \setminus \tau^{-1}(X)$ under some linear metric on T.

Let F be a non-degenerate and generic semi-rational map. Let Γ be a canonical multicurve of F. We want to construct a tree map associated with Γ such that it characterizes the configuration and the dynamics of the components of Γ.

The Shishikura tree (T_F, X_0) of F is the dual tree of Γ defined as the following. There exists a bijection v from the collection of components of $\overline{\mathbb{C}} \setminus \Gamma$ to the vertex set X_0. For two distinct components E_1, E_2 of $\overline{\mathbb{C}} \setminus \Gamma$, the vertices $v(E_1)$ and $v(E_2)$ are connected by an edge of (T_F, X_0) if E_1 and E_2 have a common boundary component, which is a curve in Γ. Thus there is a bijection e from Γ to the collection of edges of T_F.

By the definition, the bijection v is order-preserving, i.e., for distinct components E_0, E_1 and E_2 of $\overline{\mathbb{C}} \setminus \Gamma$, E_0 separates E_1 from E_2 if and only if $v(E_0)$ separates $v(E_1)$ from $v(E_2)$ in T_F.

Let Γ_1 be the collection of essential curves in $F^{-1}(\Gamma)$. Each component E_1 of $\overline{\mathbb{C}} \setminus \Gamma_1$ is either A-type or Q-type. In the latter case, E_1 is isotopic to a component E of $\overline{\mathbb{C}} \setminus \Gamma$, i.e. there exists a homeomorphism $\theta : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ isotopic to the identity rel \mathcal{P}_F such that $\theta(E_1) = E$.

There exists a bijection v_1 from the collection of components of $\overline{\mathbb{C}} \setminus \Gamma_1$ into T_F such that $v_1(E_1) = v(E)$ if E_1 is Q-type, where E is the component of $\overline{\mathbb{C}} \setminus \Gamma$ isotopic to E_1.

(1) $v_1(E_1) = v(E)$ if E_1 is Q-type, where E is the component of $\overline{\mathbb{C}} \setminus \Gamma$ isotopic to E_1.

(2) $v_1(E_1) \in e(\gamma)$ if E_1 is A-type, where $\gamma \in \Gamma$ is isotopic to a curve on ∂E_1.

(3) v_1 is order-preserving, i.e. for distinct components E_0, E_1 and E_2 of $\overline{\mathbb{C}} \setminus \Gamma_1$, E_0 separates E_1 from E_2 if and only if $v_1(E_0)$ separates $v_1(E_1)$ from $v_1(E_2)$ in T_F.

Denote by X_1 the image of $\overline{\mathbb{C}} \setminus \Gamma_1$ under v_1. Then $X_1 \supset X_0$ and there exists a bijection e_1 from Γ_1 to the collection of edges of (T_F, X_1) such that $e_1(\beta) \subset e(\gamma)$ if $\beta \in \Gamma_1$ is isotopic to $\gamma \in \Gamma$.

Each component E_1 of $\overline{\mathbb{C}} \setminus \Gamma_1$ is cut by $F^{-1}(\Gamma)$ into finitely many domains, there is exactly one of them, denoted by \bar{E}_1, is not D-type. Define a map $\tau_F : X_1 \to X_0$ by $\tau_F(v_1(E_1)) = v(F(\bar{E}_1))$.

If two points $v_1(E_1)$ and $v_1(E_2)$ in X_1 are connected by an edge in (T_F, X_1), then E_1 and E_2 have a common boundary curve $\beta \in \Gamma_1$. So do \bar{E}_1 and \bar{E}_2. Thus $F(\bar{E}_1)$ and $F(\bar{E}_2)$ have a common boundary curve $F(\beta) \in \Gamma$. So $\tau_F(v_1(E_1))$ and $\tau_F(v_1(E_2))$ are connected by an edge in (T_F, X_0). Therefore, we can extend the map τ_F to a continuous map $\tau_F : T_F \to T_F$ such that $\tau_F : e_1(\beta) \to e(F(\beta))$. Moreover, we may equip a linear metric on T_F such that τ_F is linear on each edge of (T_F, X_1). The tree map $\tau_F : (T_F, X_1) \to (T_F, X_0)$.
will be called the **Shishikura tree map** of F.

The transition matrix of the multicurve Γ can be expressed by the Shishikura tree map together with the degrees of F on curves in Γ_1.

By a **weight** of a tree we mean a positive function defined on the collection of edges of the tree.

Let T be a finite tree with vertex set $X \subset T$. Let $\tau : T \to T$ be a tree map and w be a weight on $(T, \tau^{-1}(X))$. Denote by $\{I_1, \cdots, I_n\}$ the edges of (T, X). The transition matrix $M(\tau, w) = (b_{ij})$ of τ with respect to the weight w is defined by

$$b_{ij} = \sum_j \frac{1}{w(J)},$$

where the sum is taken over all the edges J of $(T, \tau^{-1}(X))$ such that $J \subset I_i$ and $\tau(J) = I_j$. From Lemma 2.2 we have

Lemma 5.1. The leading eigenvalue satisfies $\lambda(M(\tau, w)) < 1$ if and only if τ is contracting with respect to the weight w, i.e., there exists a linear metric ρ on T such that for each edge I of (T, X),

$$\sum_j |\tau(J)| < |I|,$$

where the sum is taken over all the edges J of $(T, \tau^{-1}(X))$ with $J \subset I$ and $|\cdot|$ denotes the length of edges under the metric ρ.

Let $\tau_F : (T_F, X_1) \to (T_F, X_0)$ be the Shishikura tree map of F. Define the weight for edges $J = e_1(\delta)$ of (T, X_1) by $w_F(J) = \deg(F|_J)$. Then the transition matrix $M(\tau_F, w_F)$ is just the transition matrix of the canonical multicurve Γ.

Now we consider the dynamics of a tree map $\tau : T \to T$. Let $X_0 \subset T$ be the vertex set. Denote $X = \bigcup_{n \geq 0} \tau^{-n}(X_0)$.

Lemma 5.2. Suppose that $T \setminus X \neq \emptyset$. Then for every component J of $T \setminus X$, there exists an integer $N \geq 0$ such that $\tau^n(J)$ is an edge of (T, X_0) for all $n \geq N$.

Proof. Let \mathcal{I} denote the collection of edges of (T, X_0) which contain points of X. Then there exists an integer $m > 0$ such that each edge in \mathcal{I} contains points of $\tau^{-m}(X_0)$. So there is a constant $0 < \lambda < 1$ such that for each edge $I \in \mathcal{I}$, the length of every interval of $I \setminus \tau^{-m}(X_0)$ is less than $\lambda|I|$.

Let J be a component of $T \setminus X$. Assume by contradiction that $\tau^n(J)$ is not an edge of (T, X_0) for all $n \geq 0$. Then J is contained in an edge $I^0 \in \mathcal{I}$. Let I^1 be the component of $I^0 \setminus \tau^{-m}(X_0)$ that contains J. Then $|I^1| < \lambda|I^0|$.

Now $\tau^m(I^1)$ is an edge of (T, X_0), which is also contained in \mathcal{I} by the assumption. So I^1 contains points of $\tau^{-2m}(X_0)$. Let I^2 be the component of $I^1 \setminus \tau^{-2m}(X_0)$ that contains J. Then $|I^2| < \lambda|I^1|$.

Inductively, we obtain an infinite sequence of intervals $\{I^k\}$ with $I^k \supset I^{k+1} \supset J$ and $|I^k| < \lambda|I^{k-1}|$ for $k \geq 1$. Thus $|J| < \lambda^k|I^0| \to 0$ as $k \to \infty$. This is a contradiction. \qed

Corollary 5.3. Each point $x \in \overline{X} \setminus X$ is a double-sides accumulation point, i.e., let I be the edge of (T, X_0) that contains the point x, then both of the two components of $I \setminus \{x\}$ contain a sequence of points in X which converges to the point x.

Let \(x \in T \setminus X_0 \) be a periodic point with period \(p \geq 1 \). Then either \(x \in T \setminus \overline{X} \) or \(x \in \overline{X} \setminus X \). In the former case, let \(I \) be the edge of \(T \) that contains the point \(x \), then \(\tau^p(I) = I \) by the above lemma. So \(|(\tau^p)'(x)| = 1 \) on \(I \) since \(\tau \) is a linear map. In the latter case, \(|(\tau^p)'(x)| > 1 \) and hence \(x \) is a repelling periodic point.

6 Jordan curves as components of Julia sets

Let \(f \) be a non-degenerate and generic sub-hyperbolic rational map. A Julia component of \(f \) is called **buried** if it is disjoint from the closure of any Fatou domain of \(f \). Obviously, a Julia component \(K \) is buried if and only if \(f(K) \) is also buried. Denote

\[
\mathcal{A} = \{ \text{A-type buried Julia components of } f \text{ which are Jordan curves} \},
\]

\[
\mathcal{C}_0 = \{ \text{Q-type components of } J_f \text{ or } F_f \},
\]

\[
\mathcal{C}_n = \{ \text{A-type or Q-type components } K \text{ of } J_f \text{ or } F_f \text{ such that } f^n(K) \text{ is Q-type} \},
\]

\[
\mathcal{C} = \bigcup_{n \geq 0} \mathcal{C}_n.
\]

Then \(\mathcal{A} \) is disjoint from \(\mathcal{C} \) and \(f(K) \in \mathcal{A} \) for \(K \in \mathcal{A} \), \(\mathcal{C}_n \supset \mathcal{C}_{n-1} \) and \(f(K) \in \mathcal{C}_{n-1} \) for \(K \in \mathcal{C}_n \) and \(n \geq 1 \).

Let \(\tau: (T, X_1) \to (T, X_0) \) be the Shishikura tree map of \(f \). Denote \(X = \bigcup_{n \geq 0} \tau^{-n}(X_0) \).

Theorem 6.1. There exists an order-preserving injection \(\pi: \mathcal{C} \cup \mathcal{A} \to T \) such that \(\pi(\mathcal{C}) = X \), \(\pi(\mathcal{A}) = \overline{X} \setminus X \) and the following diagram commutes.

\[
\begin{array}{ccc}
\mathcal{A} \cup \mathcal{C} & \xrightarrow{f} & \mathcal{A} \cup \mathcal{C} \\
\pi \downarrow & & \pi \downarrow \\
X & \xrightarrow{\tau} & X
\end{array}
\]

Proof. By Lemma 4.3 for each \(K \in \mathcal{C}_0 \), there exists a unique component \(E \) of \(\overline{C} \setminus \Gamma \) such that \(K \subset E \) if \(K \) is a Julia component, or both \(E \) and \(K \) contain a common Q-type component \(U \) of \(\mathcal{U} \) if \(K \) is a Fatou domain. Thus we have an injection

\[
\pi: \mathcal{C}_0 \to T, \quad \pi(K) = v(E)
\]

such that \(\pi(\mathcal{C}_0) = X_0 \). It is order-preserving since \(v \) is order-preserving.

For each \(K \in \mathcal{C}_1 \), there exists a unique component \(E_1 \) of \(\overline{C} \setminus \Gamma_1 \) such that \(K \subset E_1 \) when \(K \) is a component of \(J_f \), or both \(E_1 \) and \(K \) contain a common Q-type or A-type component \(U \) of \(\mathcal{U} \). Thus \(\pi \) can be extended to

\[
\pi: \mathcal{C}_1 \to T, \quad \pi(K) = v_1(E_1)
\]

such that \(\pi(\mathcal{C}_1) = X_1 \) and \(\tau(\pi(K)) = \pi(f(K)) \) for \(K \in \mathcal{C}_1 \). The injection \(\pi \) is still order-preserving since \(v_1 \) is order-preserving.

Since \(\tau \) is injective on each edge of \((T, X_1)\), for any \(n \geq 2 \), \(\pi \) can be extended to an order-preserving injection \(\pi: \mathcal{C}_n \to T \) such that \(\pi(\mathcal{C}_n) = \tau^{-n}(X_0) \) and the following diagram commutes.

\[
\begin{array}{ccccccccccc}
\mathcal{C}_n & \xrightarrow{f} & \mathcal{C}_{n-1} & \cdots & \xrightarrow{f} & \mathcal{C}_1 & \xrightarrow{f} & \mathcal{C}_0 \\
\pi \downarrow & & \pi \downarrow & & \pi \downarrow & & \pi \downarrow \\
\tau^{-n}(X_0) & \xrightarrow{\tau} & \tau^{-n+1}(X_0) & \cdots & \tau^{-1}(X_0) & \xrightarrow{\tau} & X_0
\end{array}
\]
In conclusion, we obtain an order-preserving injection $\pi : \mathcal{C} \to T$ such that $\pi(\mathcal{C}) = X$ and the following diagram commutes.

\[
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{f} & \mathcal{C} \\
\pi \downarrow & & \downarrow \pi \\
X & \xrightarrow{\tau} & X
\end{array}
\]

For each $K \in \mathcal{A}$, K is Jordan curve as a buried Julia component. So there exists an infinite sequence of pairs of annular Fatou domains (U_n, V_n) such that $K \subset A_{n+1} \subset A_n$ and A_n is disjoint from all the elements in \mathcal{C}_n, where A_n is the unique annular component of $\overline{C}(U_n \cup V_n)$. It concludes that both $\pi(U_n)$ and $\pi(V_n)$ converge to the same point $x \in X \setminus X$. Define $\pi(K) = x$. Then we extend π from \mathcal{C} to $\mathcal{C} \cup \mathcal{A}$, which is still an order-preserving injection.

For each point $x \in X \setminus X$. Let I_0 be the edge of (T, X_0) that contains the point x. By Corollary 5.3, x is a double-sides accumulation point. Thus there exists an infinite sequence of intervals $\{I_n = [a_n, b_n]\}$ with $x \in I_n \Subset I_{n-1}$, such that both a_n and b_n are contained in X and $|I_n| \to 0$ as $n \to \infty$.

Let $A_n = \pi^{-1}(a_n)$ and $B_n = \pi^{-1}(b_n)$ be the corresponding components of J_f or F_f. Let C_n be the unique annular component of $\overline{C}(A_n \cup B_n)$. Then $C_{n+2} \Subset C_n$ and C_{n+2} separates the two complementary components of C_n for all $n \geq 0$. Thus $K = \bigcap_{n \geq 0} C_n$ is a continuum which has exactly two complementary components. Thus ∂K has at most two components. On the other hand, $\partial K \subset J_f$ and is disjoint from the grand orbit of all the complex periodic Julia components. Thus each component of ∂K is contained in a wandering Julia component or an eventually simple periodic Julia component. In both cases each component of ∂K must be a Jordan curve.

If ∂K has two components, then there exists an A-type Fatou domain U which separates one of them from another. Thus $\pi(U) \Subset I_n$ for all $n \geq 0$. This is a contradiction since $|I_n| \to 0$. Thus ∂K is a Jordan curve and so is K.

Note that K is disjoint from the closure of periodic Fatou domains. Applying the above argument for $\tau^n(x)$, we obtain another Jordan curve K_n as a Julia component and K_n is also disjoint from the closure of periodic Fatou domains. From $\pi \circ f = \tau \circ \pi$ on X, we obtain $K_n = f^n(K)$. This shows that K is disjoint from the closure of any Fatou domain. Thus K is a buried Julia component. This shows that $\pi(\mathcal{A} \cup \mathcal{C}) = \overline{X}$. Now the proof is complete.

For our purpose, we want to know whether \mathcal{A} is an infinite collection, or equivalently, whether $\overline{X} \setminus X$ is an infinite set by Theorem 6.1. The next lemma provide a necessary and sufficient combinatorial condition. Refer to [14] for the next definition.

Let Γ be a multicurve. Denote by Γ_1 the collection of curves in $F^{-1}(\Gamma)$ isotopic to a curve in Γ, and denote by Γ_n the collection of curves in $F^{-1}(\Gamma_{n-1})$ isotopic to a curve in Γ for $n \geq 2$. For each $\gamma \in \Gamma$, denote

$$\kappa_n(\gamma) = \#\{\beta \in \Gamma_n : \beta \text{ is isotopic to } \gamma\}.$$

The multicurve Γ is a **Cantor multicurve** if $\kappa_n(\gamma) \to \infty$ as $n \to \infty$ for all $\gamma \in \Gamma$.
Lemma 6.2. Let f be a non-degenerate and generic sub-hyperbolic rational map. Let Γ be a canonical multicurve of f and $\tau : (T, X_1) \to (T, X_0)$ be the Shishikura tree map of f. The following conditions are equivalent.

(a) Γ contains a Cantor multicurve.

(b) τ has infinitely many repelling periodic cycles.

(c) τ has wandering points.

Proof. (a) \Rightarrow (b) and (c). Let $\Gamma_0 \subset \Gamma$ be a Cantor multicurve. Denote by I_k ($1 \leq k \leq n$) the edges of (T, X_0) corresponding to Γ_0. Set $T_0 = \bigcup_{k=1}^n I_k$ and $T_1 = T_0 \cap \tau^{-1}(T_0)$. Then $T_1 \subset T_0$ and $\tau(T_1) \subset T_0$. Moreover, τ maps each component of T_1 onto one edge.

Denote $\tau_0 = \tau|_{T_1}$. The multicurve Γ_0 is a Cantor multicurve implies that for any integer $M > 0$, there is an integer $N > 0$ such that $\tau_0^{-N}(T_0) \cap I_k$ contains at least M components for each $1 \leq k \leq n$.

Take $M = n + 1$. Then for some $N > 0$, $\tau_0^{-N}(T_0) \cap I_k$ contains at least $n + 1$ components for each $1 \leq k \leq n$. Thus at least two of them map to the same edge under τ_0^N. Define a map σ on the index set $\{1, \cdots, n\}$ by $\sigma(i) = j$ if $\tau_0^{-N}(T_0) \cap I_i$ has two components mapping to I_j. Here we need to point out that the definition of σ is not uniquely determined. As the index set is finite, each index is eventually periodic. In particular, there is a periodic index. By relabelling the edges, we may assume that the index 1 is a periodic index with period $p \geq 1$. This implies that $\tau_0^{-pN}(T_0) \cap I_1$ has at least 2^p components mapping to I_1 by τ_0^{pN}.

Let J_0 and J_1 be two distinct components of $\tau_0^{-pN}(T_0) \cap I_1$ which maps onto I_1 by τ_0^{pN}. Write $\omega = \tau_0^{pN}|_{J_0 \cup J_1}$ for simplicity. It is classical that the linear map $\omega : J_0 \cup J_1 \to I_1$ contains infinitely many repelling periodic cycles and wandering points. So does τ.

(b) \Rightarrow (a). Suppose that τ has infinitely many repelling periodic cycles. Then there is an edge I of T such that it contains two repelling periodic points x_1 and x_2 with periods $p_1, p_2 \geq 1$ respectively. For $i = 1, 2$, let J_i be the component of $\tau^{-p_i}(I)$ that contains the point x_i. Denote

$$J_i^n = (\tau^{-p_i}|_{J_i})^{-n}(I)$$

Then $J_i^n \to x_i$ as $n \to \infty$. Thus there is an integer $k > 0$ such that J_1^k is disjoint from J_2^k. Thus $\tau^{-kp_1p_2}(I)$ has at least two components contained in I, one is contained in J_1^k, another is contained in J_2^k.

Let J_0 be the curve corresponding to the edge I. Then $f^{-kp_1p_2}(\gamma)$ has at least two curves isotopic to γ. Let $\Gamma_0 \subset \Gamma$ be a sub-multicurve defined by $\beta \in \Gamma_0$ if $f^{-n}(\gamma)$ has a component isotopic to β for some $n > 0$. It is well-defined since Γ is completely stable. It is easy to check that Γ_0 is a Cantor multicurve.

(c) \Rightarrow (a). Suppose that $x \in T$ is a wandering point of τ. Then there exists an edge I of T such that it contains infinitely many points of the forward orbit of x. Denote by

$$0 < n_1 < n_2 < \cdots < n_k < \cdots$$

a sequence of integers such that $\tau^{n_k}(x) \in I$. Let J_1^k be the component of $\tau^{-n_1-n_k}(I)$ that contains $\tau^{n_1}(x)$. Then J_1^k is disjoint from $\tau^{-n_1-n_k}(X_0)$. Thus $|J_1^k| \to 0$ as $k \to \infty$ since $\tau^i(x) \in X \setminus X$ is a double-sides accumulation point by Corollary 5.3.

Let J_2^k be the component of $\tau^{-n_2-n_k}(I)$ that contains $\tau^{n_2}(x)$. Then $|J_2^k| \to 0$ as $k \to \infty$. Thus there is an integer $k > 2$ such that J_1^k is disjoint from J_2^k. This shows that $\tau^{-(n_1-n_k)(n_2-n_k)}(I)$ has at least two components contained in I, one is contained in J_1^k, another is contained in J_2^k. The same argument as above shows that Γ contains a Cantor multicurve.

\qed
7 Self-grafting

Let $\tau : (T, X_1) \to (T, X_0)$ be a tree map. Suppose that O is a repelling periodic cycle in $T \setminus X_0$ with period $p \geq 1$. Then there is a point $x_0 \in O$ and a component B of $T \setminus \{x_0\}$ such that $B \cap O = \emptyset$.

Define a new tree $T' \supset T$ by the following: there are exactly p components B_i of $T' \setminus T$, $0 \leq i \leq p - 1$, each of them is homeomorphic to B by a linear map $\theta_i : B \to B_i$, and B_i is connected to T at the point $x_i = \tau^i(x_0)$. The vertices X'_0 on T' is assigned to be the original vertices on T together with $O \cup \bigcup_{i=0}^{p-1} \theta_i(B \cap X_0)$.

Define a tree map $\tilde{\tau} : T' \to T'$ by $\tilde{\tau} = \tau_0 \circ \kappa$, where

$$\tau_0 = \begin{cases}
\tau : T \to T, \\
\theta_{i+1} \circ \theta_i^{-1} : B_i \to B_{i+1} & \text{for } 0 \leq i < p - 1, \\
\theta_0 \circ \theta_{p-1}^{-1} : B_{p-1} \to B_0,
\end{cases}$$

and

$$\kappa = \begin{cases}
id : T' \setminus (B \cup B_0) \to T' \setminus (B \cup B_0), \\
\theta_0 : B \to B_0, \\
\theta_0^{-1} : B_0 \to B.
\end{cases}$$

Set $X'_1 = \tilde{\tau}^{-1}(X'_0)$. We call the new tree map $\tilde{\tau} : (T', X'_1) \to (T', X'_0)$ a self-grafting of the tree map τ (see Figure 2).

![Figure 2. A self-grafting](image)

By the definition, $\tilde{\tau}^i = \theta_i : B \to B_i$ for $0 < i < p$ and $\tilde{\tau}^p = \theta_0 : B \to B_0$. Thus $\tilde{\tau}^{p+1} = \tau$ on B. So the original tree map τ can be expressed by $\tilde{\tau}$ as

$$\tau = \begin{cases}
\tilde{\tau} & \text{on } T \setminus B, \\
\tilde{\tau}^{p+1} & \text{on } B.
\end{cases}$$

In conclusion, any periodic point of τ with period $q \geq 1$ is also a periodic point of $\tilde{\tau}$ with period $q + kp$, where $k \geq 0$ is the number of times at which the cycle passes through B. Conversely, any cycle of $\tilde{\tau}$ must pass through B since $\tilde{\tau}^{-i}(B_i) = B$ for $0 < i < p$ and $\tilde{\tau}^{-p}(B_0) = B$.
For any weight w on the tree (T, X_1), the **induced weight** \tilde{w} on the tree (T', X'_1) is defined as the following: for each edge J' of (T', X'_1),

$$
\tilde{w}(J') = \begin{cases}
1, & \text{if } J' \subset B \cup \bigcup_{i=1}^{p-1} B_i; \\
w(\kappa(J')), & \text{if } J' \subset B_0; \\
w(J'), & \text{if } J' \subset T \setminus B.
\end{cases}
$$

(1)

Here we need to point out that if $J' \subset B_0$, then $\kappa(J')$ need not to be an edge of (T, X_1). However, it must be contained in an edge of (T, X_1) since $\tau(\kappa(J')) = \tilde{\tau}(J')$ is disjoint from X_0. If $J' \subset T \setminus B$, then J' is also contained in an edge J of (T, X_1) since $\tilde{\tau}(J') = \tau(J')$.

We define $w(J') = w(J)$ in both cases.

Lemma 7.1. Let w be a weight on the tree (T, X_1) and let \tilde{w} be the induced weight on (T', X'_1). Then $\lambda(M(\tilde{\tau}, \tilde{w})) < 1$ if $\lambda(M(\tau, w)) < 1$.

Proof. At first, we consider the tree map $\tau'' = \tau : (T, X_1'' \rightarrow (T, X_1'')$, where $X_1'' = X_0 \cup O$ and $X_1'' = \tau^{-1}(X_0)$.

Denote by $\{I_1, \ldots, I_n\}$ the edges of (T, X_0). Denote by $\{I_1'', \ldots, I_n''\}$ the edges of (T, X_1''). Let $\Theta = \{1, \ldots, m\}$ be the index set. It is divided into $\Theta = \Theta_1 \sqcup \cdots \sqcup \Theta_n$ such that $I_i'' \subset I_k$ if $i \in \Theta_k$.

The weight w on (T, X_1) induces a weight on (T, X_1''), denoted also by w, such that $w(J'') = w(J)$ is $J'' \subset J$. Let $M(\tau, w) = (a_{kl})$ and $M(\tau'', w) = (b_{ij})$ be the transition matrices. Then for each pair (k, l) and any $j \in \Theta_k$,

$$
\sum_{i \in \Theta_k} b_{ij} = a_{kl}
$$

(2)

since for all $j \in \Theta_k$, $\tau^{-1}(I''_j)$ have the same number of components in I_k.

Let λ be the leading eigenvalue of $M(\tau'', w)$. Then there is a non-zero vector $v = (v_i) \geq 0$ such that $M(\tau'', w)v = \lambda v$. Let $u = (u_k)$ be a vector defined by $u_k = \sum_{i \in \Theta_k} v_i$. Then u is also a non-zero vector with $u \geq 0$. Now the equation (2) implies that $M(\tau, w)u = \lambda u$.

This shows that λ is also an eigenvalue of $M(\tau, w)$. Thus $\lambda \leq \lambda(M(\tau, w)) < 1$.

Now let us compare the tree maps $\tilde{\tau}$ with τ''. Each edge of (T, X_0'') is also an edge of (T', X_0''). By Lemma 5.1 there exist a linear metric ρ on (T, X_0'') and a constant $0 < \lambda_1 < 1$ such that for each edge I of (T, X_0''),

$$
\sum_{J} |\tau(J)|/w(J) < \lambda_1 |I|,
$$

(3)

where the sum is taken over all the edges J of (T, X_0'') in I and $| \cdot |$ denotes the length with respect to the metric ρ.

Define a linear metric ρ_1 on T' such that for each edge I of (T', X_0''), $|I|_1 = |I|$ if I is contained in an edge of (T, X_0''), and $|I|_1 = \lambda_1 |\theta_1^{-1}(I)|$ if $I \subset B_i$ for $0 < i < p$, and $|I|_1 = \lambda_1 |\theta_1^{-1}(I)|$ if $I \subset B_0$, where $| \cdot |$ denotes the length under the metric ρ_1.

For each edge I of (T', X_0'') in $T \setminus B$, $\tilde{\tau}(I) = \tau(I)$ is contained in an edge of (T, X_0''). From (1) and (3), we have

$$
\sum_{J} |\tau(J)|_1/w(J) < |I|_1,
$$

(4)
Then there exists a non-degenerate and generic sub-hyperbolic rational map $\tilde{\tau}(J) = \theta_1(J)$ is contained in B_1. Thus
\[
\frac{|\tilde{\tau}(J)|_1}{w(J)} = \lambda_1|\theta_1^{-1}(\tilde{\tau}(J))| = \lambda_1|J| = \lambda_1|I|_1 < |I|_1.
\]
For each edge I_i of (T', X'_0) in B_i with $1 \leq i < p$, $J_i = I_i$ is also an edge of (T', X'_1) with $w(J_i) = 1$ and $\tilde{\tau}(J_i) = \theta_{i+1} \circ \theta_i^{-1}(J_i)$ is contained in B_{i+1} (set $B_p = B_0$ and $\theta_p = \theta_0$). Thus
\[
\frac{|\tilde{\tau}(J_i)|_1}{w(J_i)} = \lambda_1|\theta_{i+1}^{-1} \circ \tilde{\tau}(J_i)| = \lambda_1|\theta_i^{-1}(J_i)| = \lambda_1|I_i|_1 < |I_i|_1.
\]
So the inequality (4) holds for edges in B or B_o for $1 \leq i < p$.

Let I_0 be an edge of (T', X'_0) in B_0. Let I be the edge of B with $\theta_0(I) = I_0$. Then $\tau(J) = \tilde{\tau}(\theta_0(J))$ for each edge J of (T, X''_n) in I. From (3), we have
\[
|I_0|_1 = \lambda_1^0|I| > \sum_j \frac{|\tau(J)|_1}{w(J)} = \sum_j \frac{|\tilde{\tau}(\theta_0(J))|_1}{w(\theta_0(J))},
\]
where the sum is taken over all the edges J of (T', X'_1) in I.

The key step in the proof of Theorem L.1 is the next theorem.

Theorem 7.2. Let f be a non-degenerate and generic sub-hyperbolic rational map. Suppose that f has a periodic Jordan curve disjoint from \mathcal{P}_f as a buried Julia component. Then there exists a non-degenerate and generic sub-hyperbolic rational map g with $\deg g = \deg f$ such that the Shishikura tree map τ_g of g is the self-grafting of τ_f. Consequently,

(a) $N(g) = N(f) + 1$, and

(b) if τ_f has infinitely many repelling periodic cycles, so does τ_g.

Moreover, g can be chosen to be hyperbolic when f is hyperbolic.

Proof. Let C_0 be a periodic Jordan curve disjoint from \mathcal{P}_f as a buried Julia component of f with period $p \geq 1$. Denote $C_i = f^i(C_0)$ for $0 < i < p$. At least one component of $\overline{\mathbb{C}} \setminus \bigcup_{i=0}^{p-1} C_i$ is a Jordan domain, by relabelling the index, we assume that this Jordan domain is bounded by C_0. Then C_1, \ldots, C_{p-1} are contained in the same complementary component of C_0.

Let \mathcal{U} be a canonical decomposition of f. Since $\bigcup_{n>0} f^{-n}(\mathcal{U}) = \mathcal{F}_f$, as n is large enough, each C_i is contained in an A-type component L_i of $\overline{\mathbb{C}} \setminus f^{-n}(\mathcal{U})$ for $0 \leq i < p$. We may assume $n = 0$ for the simplicity. Drop all the D-type components of \mathcal{U}, the remaining is still a canonical decomposition of f. Thus we may assume that each component of \mathcal{U} is not D-type. Denote $\mathcal{L} = \overline{\mathbb{C}} \setminus \mathcal{U}$. Let L_i be the component of \mathcal{L} that contains C_i. Then L_i is a closed annulus disjoint from \mathcal{P}_f.

Pick a Jordan domain $\Delta_0 \subset L_0$ such that $\overline{\Delta_0}$ is disjoint from ∂L_0. Then there is a component Δ' of $f^{-p}(\Delta_0)$ such that $\Delta' \subset L_0$ and $\Delta_i = f^i(\Delta') \subset L_i$ for $1 \leq i < p$.

There exists a homeomorphism ϕ_0 of $\overline{\mathbb{C}}$ such that $\phi_0 = \text{id}$ in $\overline{\mathbb{C}} \setminus L_0$ and $\phi_0 = (f^p|_{\Delta'})^{-1} : \Delta_0 \to \Delta'$. Set $F = f \circ \phi_0$. Then $F^p = \text{id}$ in Δ_0 and $F = f$ in $\overline{\mathbb{C}} \setminus L_0$.

Theorem 7.2. Let f be a non-degenerate and generic sub-hyperbolic rational map. Suppose that f has a periodic Jordan curve disjoint from \mathcal{P}_f as a buried Julia component. Then there exists a non-degenerate and generic sub-hyperbolic rational map g with $\deg g = \deg f$ such that the Shishikura tree map τ_g of g is the self-grafting of τ_f. Consequently,

(a) $N(g) = N(f) + 1$, and

(b) if τ_f has infinitely many repelling periodic cycles, so does τ_g.

Moreover, g can be chosen to be hyperbolic when f is hyperbolic.
Denote by Ω and Δ the two components of $\mathbb{C} \setminus L_0$ such that $\Delta_i \subset \Omega$ for $1 \leq i < p$. Define a homeomorphism ϕ_1 of \mathbb{C} such that

$$
\begin{cases}
\phi_1 = \text{id} : \Omega \to \Omega, \\
\phi_1 : \Delta \to \Delta_0 \text{ is conformal}, \\
\phi_1 = (\phi_1|_{\Delta})^{-1} : \Delta_0 \to \Delta.
\end{cases}
$$

Set $G = F \circ \phi_1$. Then $G = f$ in Ω. Since $F^p = \text{id}$ in Δ_0, we obtain $G^p = \phi_1$ in Δ. Thus $G^{p+1} = f$ in Δ (see the next diagram).

Conversely, f can be expressed by G as the following:

$$
f = \begin{cases}
G & \text{on } \Omega, \\
G^{p+1} & \text{on } \Delta.
\end{cases} \quad (5)
$$

By the definition, G and f have the same critical values. From $\mathcal{P}_f \subset \Omega \cup \Delta$, we obtain

$$
\mathcal{P}_G = \mathcal{P}_f \cup \bigcup_{i=1}^{p} P_i \subset \Omega \cup \Delta \cup \Delta_0,
$$

where $P = \Delta \cap \mathcal{P}_f$ and $P_i = G^i(P) \subset \Delta_i$ for $0 < i \leq p$ (set $\Delta_p = \Delta_0$). Moreover,

$$
G^{-1}(P_i) \cap \mathcal{P}_G = P. \quad (6)
$$

Note that G is holomorphic in $\Omega \cup \Delta \cup \Delta_0$. From (5), each periodic point of f in \mathcal{P}_f' with period $p' \geq 1$ is also a periodic point of G with period $q = p' + kp$, where $k \geq 0$ is the number of times at which the cycle passes through Δ. From (6), any cycle of G in \mathcal{P}_G'
must pass through Δ. Therefore, each cycle of G in \mathcal{P}_G is attracting or super-attracting. So G is a semi-rational map.

Recall that $(\mathcal{U}, \mathcal{L})$ is a canonical decomposition of f. Since $\mathcal{U} \in f^{-1}(\mathcal{U})$, for each component D of \mathcal{U}, there exists a tame domain $D' \in D$ such that

(i) $\partial D'$ is disjoint from \mathcal{P}_f,
(ii) each component of $D \setminus \overline{D'}$ is an annulus disjoint from \mathcal{P}_f, and
(iii) $\mathcal{U} \in f^{-1}(\mathcal{U}')$, where $\mathcal{U}' = \bigcup_{D \in \mathcal{U}} D'$.

Set $\mathcal{L}' = \overline{\mathcal{U}} \setminus \mathcal{U}'$. Then $(\mathcal{U}', \mathcal{L}')$ is also a canonical decomposition of f. For each component D of \mathcal{U} in Δ, choose

$$D' \in D^1 \in \cdots \in D^{p-1} \in D^p \in D.$$ Denote $D_i = G^i(D^i)$ for $1 \leq i \leq p$. Then $D_i \in \Delta_i$. Set

$$\mathcal{U}_G = \mathcal{U}' \cup \bigcup_{D \subset \Delta \atop i=1} D_i.$$ Then $\mathcal{U}_G \in G^{-1}(\mathcal{U}_G)$. Denote $\mathcal{L}_G = \overline{\mathcal{U}} \setminus \mathcal{U}_G$. Then each Q-type component L of \mathcal{L}' is also a Q-type component of \mathcal{L}_G. Moreover, if $L \subset \Delta$, then $G^i(L)$ is a Q-type component of \mathcal{L}_G for $1 \leq i \leq p$. There is an extra cycle of Q-type components of \mathcal{L}_G consisting of $\{L_0', \ldots, L_{p-1}'\}$ with $L_i' \supset L_i \setminus \Delta_i$.

It is easy to check that $(\mathcal{U}_G, \mathcal{L}_G)$ is a canonical decomposition of G. Denote by

$$\tau : (T, X_1) \to (T, X_0) \text{ and } \tilde{\tau} : (T', X_1') \to (T', X_0')$$

the Shishikura tree maps of f and G, respectively. Denote

- $x_i \in T$: the point corresponding to the Julia component C_i for $0 \leq i < p$,
- $y_i \in T'$: the point corresponding to the Q-type component L_i' of \mathcal{L}_G,
- B: the component of $T \setminus \{x_0\}$ such that vertices in B correspond to the Q-type components of $(\mathcal{U}, \mathcal{L})$ contained in Δ.

The above relations between Q-type components of $(\mathcal{U}', \mathcal{L}')$ and Q-type components of $(\mathcal{U}_G, \mathcal{L}_G)$ induce a linear injection $\iota : (T, X_0) \to (T', X_0')$ such that $\iota(x_i) = y_i$ and a linear bijection from B to some component of $T' \setminus \{y_i\}$ for $0 \leq i < p$. Identify the tree T with its image under the injection ι. Then $T \subset T'$. It is easy to check that $\tilde{\tau}$ is a self-grafting of τ.

The weight for the Shishikura tree map of f exactly equals to the induced weight for the Shishikura tree map of f. Let Γ_G be a canonical multicurve of G. By Lemma 7.1, $\lambda(\Gamma_G) < 1$.

The cycle of Q-type components of \mathcal{L}_G consisting of $\{L_0', \ldots, L_{p-1}'\}$ contains essentially no multicurve of G since each L_i' is disjoint from \mathcal{P}_G and has only three complementary components.

Let Γ be a multicurve contained essentially in a periodic Q-type component L of \mathcal{L}_G, where $L \neq L_i$ for all $0 \leq i \leq p - 1$. Let $q \geq 1$ be its period. The orbit of L either is disjoint from Δ or passes k times through Δ. In the former case, L is also a cycle of \mathcal{L} with the same period. Thus $\lambda(\Gamma, G^q) = \lambda(\Gamma, f^q) < 1$.

In the latter case, it contains a cycle of Q-type components of \mathcal{L} with period $q_1 \geq 1$ and $q = q_1 + kp$. Thus when L is a component of \mathcal{L}, $\lambda(\Gamma, G^q) = \lambda(\Gamma, f^q) < 1$. When L is contained in Δ_i for $1 \leq i \leq p$, $\Gamma' = \{G^{-i}(\gamma), \gamma \in \Gamma\}$ is a multicurve essentially contained
in Δ and $\lambda(\Gamma, G^q) = \lambda(\Gamma', f^q) < 1$. From Theorem 3.5, G has no Thurston obstruction. Thus G is c-equivalent to a rational map g.

It is obvious that (a) $N(g) = N(f) + 1$ and (b) if τ_f has infinitely many repelling periodic cycles, so does τ_g. Moreover, g is hyperbolic when f is hyperbolic. \qed

8 Proof of Theorem 1.1

At first, we want to construct a hyperbolic rational map f with $\deg f = 3$ such that $N(f) = 1$ and it has infinitely many periodic Jordan curves as components of \mathcal{J}_f. Refer to Figure 4 for the construction.

We begin with the quadratic rational map

$$h(z) = \frac{1}{(z - 1)^2}.$$

It has two critical points $z_1 = 1$ and $z_2 = \infty$. Both of them are contained in the cycle

$$z_1 \mapsto z_2 \mapsto 0 \mapsto z_1.$$

So $\mathcal{P}_h = \{0, 1, \infty\}$ and \mathcal{J}_h is connected.

Pick a Böttcher disk $z_0 \in V_0 \subset \mathcal{F}_h$. Then there are Böttcher disks $V_1 \ni z_1$ and $V_2 \ni z_2$ such that $V \ni h^{-1}(V)$, where $V = \bigcup_{i=0}^{2} V_i$.

Denote $z_3 = 2$. Then $h(z_3) = z_1$. The set $h^{-1}(V)$ has 4 components, denote them by D_i such that $z_i \in D_i$.

Pick a Jordan curve $\alpha \subset D_0$ such that it separates the point z_0 from ∂D_0. Then $D_0 \setminus \alpha$ has two components: an annulus A and a Jordan domain D.

Define a branched covering F by the following:

(1) $F = h$ on $\overline{\mathbb{C} \setminus D_0}$,
(2) $F : A \to V_1$ is a branched covering with degree 2, and
(3) $F : D \to \overline{\mathbb{C} \setminus V_1}$ is a homeomorphism such that $F(z_0) = z_3$ and F is holomorphic in a neighborhood of z_0.
Now \(\{z_0, z_1, z_2, z_3\} \) is a super-attracting cycle of \(F \). We may require that the two critical values of \(F : A \rightarrow V_1 \) are contained in a Böttcher disk \(U_1 \) at \(z_1 \). Then \(F \) is a semi-rational map with \(\mathcal{P}_F' = \{z_0, z_1, z_2, z_3\} \).

There exist Böttcher disks \(U_i \ni z_i \) (i = 0, 2, 3) such that \(\mathcal{U} \subseteq h^{-1}(\mathcal{U}) \), where \(\mathcal{U} = \bigcup_{i=0}^3 U_i \). Since the two critical values of \(F : A \rightarrow V_1 \) are contained in \(U_1 \), we have \(\mathcal{P}_F \subseteq \mathcal{U} \).

Set \(\mathcal{L} = \overline{\mathcal{C}} \setminus \mathcal{U} \). It is easy to check that \((\mathcal{U}, \mathcal{L})\) is a canonical decomposition of \(F \). The set \(F^{-1}(\mathcal{L}) \) has two components, one is Q-type and the other is A-type.

Denote \(\gamma_i = \partial U_i \) (i = 0, 1, 2, 3). Then \(\Gamma_F = \{\gamma_i\}_{i=0}^3 \) is a canonical multicurve. Its transition matrix is:

\[
M = \begin{pmatrix}
0 & 2 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}.
\]

By a direct computation, we have

\[
M^3 v = \begin{pmatrix}
\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{4} \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{4} & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
v_1 \\
v_2 \\
v_3 \\
v_4
\end{pmatrix} = \begin{pmatrix}
\frac{1}{2} v_1 + \frac{1}{2} v_3 \\
\frac{1}{2} v_2 + \frac{1}{4} v_4 \\
\frac{1}{4} v_3 + \frac{1}{2} v_2 \\
\frac{1}{4} v_1
\end{pmatrix}.
\]

Choose the positive vector \(v \) such that \(v_4/2 < v_2 < v_3 < v_1 < 4v_4 \). Then \(Mv < v \). So \(\lambda(\Gamma_F) = \lambda(M) < 1 \).

Let \(\Gamma \) be a multicurve of \(F \) contained essentially in \(\mathcal{L} \). Then \(\Gamma \) contains exactly one curve \(\gamma \). If \(\gamma \) separates \(z_0 \) from \(z_2 \), then \(F^{-1}(\gamma) \) has only one component \(\delta \) in the Q-type component of \(F^{-1}(\mathcal{L}) \) and \(\deg(F|_\delta) = 2 \). So \(\lambda(\Gamma) < 1 \). If \(\gamma \) does not separate \(z_0 \) from \(z_2 \), then each component of \(F^{-1}(\gamma) \) in the Q-type component of \(F^{-1}(\mathcal{L}) \) does not separate \(z_1 \) from \(z_2 \). On the other hand, \(\gamma \) separates \(z_1 \) from \(z_2 \). Thus \(\lambda(\Gamma) = 0 \). Therefore \(F \) is \(c \)-equivalent to a rational map \(f \) by Theorem 8.3.

One may also apply [2, Theorem 2.1] to show \(\lambda(\Gamma) < 1 \).

The Shishikura tree map \(\tau : (T, X_1) \rightarrow (T, X_0) \) of \(f \) is shown in Figure 5, where

\[
X_0 = \{a_0, a_1, a_2, a_3, b\}, \quad X_1 = \{a_0, a_1, a_2, a_3, b, b_{-1}, a_0'\},
\]

and the tree map is uniquely determined by its definition on vertices:

\[
\tau : a_0 \mapsto a_3 \mapsto a_1 \mapsto a_2 \mapsto a_0, a_0' \mapsto a_1, b_{-1} \mapsto b, b \mapsto b.
\]

One may refer to [5] for a formula of the rational map \(f \).

Proof of Theorem 7.1

Applying Theorem 7.2 successively, we obtain a sequence of rational maps \(\{f_n\} \) such that \(\deg f_n = 3 \) and \(N(f_n) = n \).

Fix \(n \geq 1 \), for any integer \(d > 3 \), applying the disc-annulus surgery in [12], we could obtain a rational map \(g_n \) such that \(\deg g_n = d \) and \(N(g_n) = n \). The following is a detailed construction of \(g_n \).

Let \((\mathcal{U}, \mathcal{L})\) be a canonical decomposition of \(f_n \). Let \(U \) be a Q-type periodic component of \(\mathcal{U} \) and \(U_1 \) be a non-periodic component of \(f_n^{-1}(\mathcal{U}) \). Take a quasi-disk \(\Omega \subseteq U_1 \setminus \mathcal{P}_f_n \) such
that \(f_n \) is injective on \(\overline{\Omega} \). Pick another quasi-disk \(\Delta \in \Omega \). Then there is a quasi-regular branched covering \(G \) of \(\overline{\mathbb{C}} \) with \(\text{deg} \ G = d \) such that

1. \(G = f_n \) on \(\overline{\mathbb{C}} \setminus \overline{\Omega} \),
2. \(G : \Delta \to \overline{\mathbb{C}} \setminus f_n(\Omega) \) is a holomorphic proper map with degree \(d - 3 \), and
3. \(G : \Omega \setminus \Delta \to f_n(\Omega) \) is a quasi-regular branched covering with degree \(d - 2 \).

Refer to Figure 6 for the construction of \(G \). It is clear that the forward orbit of any point under \(G \) passes through \(\overline{\Omega} \setminus \Delta \) at most once. Thus by Lemma 1 in [14], \(G \) is quasi-conformally conjugated to a rational map \(g_n \).

\[\begin{array}{c}
U \\
\times
\end{array} \]

\[f_n(\Omega) \]

\[\begin{array}{c}
U_1 \\
\Delta \\
\bigcirc
\end{array} \]

\[\Omega \]

Figure 6. The construction of \(G \).

Obviously, \((\mathcal{U}, \mathcal{L})\) is still a canonical decomposition of \(G \) and the Shishikura tree map of \(G \) is the same as \(\tau_{f_n} \). Thus \(N(g_n) = N(f_n) = n \). \qed

References

[1] B. Branner and J. Hubbard, The iteration of cubic polynomials, I, The global topology of parameter space, Acta Math., 160 (1988), 143-206.

[2] X. Buff, G. Cui and L. Tan, Teichmüller spaces and holomorphic dynamics, Handbook of Teichmüller theory, Vol. IV, ed. Athanase Papadopoulos, Societ Mathmatique Europenne (2014), 717-756.
[3] G. Cui and L. Tan, A characterization of hyperbolic rational maps, Invent. Math., 183 (2011), 451-516.

[4] G. Cui, W. Peng and L. Tan, Renormalization and wandering Jordan curves of rational maps, Comm. Math. Phy., 344 (2016), 67-115.

[5] S. Godillon, A family of rational maps with buried Julia components, Ergodic Theory Dynam. Systems, 35 (2015), 1846-1879.

[6] Y. Jiang and G. Zhang, Combinatorial characterization of sub-hyperbolic rational maps, Adv. Math., 221 (2009), 1990-2018.

[7] O. Kozlovski and S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. London Math. Soc., 99 (2009), 275-296.

[8] J. Milnor, Dynamics in One Complex Variable, 3rd edition, Princeton University Press, 2006.

[9] C. T. McMullen, Automorphisms of rational maps, In Holomorphic functions and moduli I, 31-60. Springer-Verlag, 1988.

[10] C. T. McMullen, Complex Dynamics and Renormalizations, Ann. of Math. Stud., No. 135, Princeton University Press, 1994.

[11] K. Pilgrim and L. Tan, Rational maps with disconnected Julia set, Astérisque 261 (2000), volume spécial en l’honneur d’A. Douady, 349-384.

[12] K. Pilgrim and L. Tan, Disc-annulus surgery on rational maps, a section in: B. Branner and N. Fagella, Quasiconformal surgery in holomorphic dynamics, Cambridge Stud. Adv. Math. 141, Cambridge University Press, Cambridge 2014, 267-282.

[13] W. Qiu and Y. Yin, Proof of the Branner-Hubbard conjecture on Cantor Julia sets, Sci. China Ser. A, 52 (2009), 45-65.

[14] M. Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. Éc. Norm. Sup., 20 (1987), 1-29.

Guizhen Cui
HCMS and NCMIS, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, P. R. China.
and
University of Chinese Academy of Sciences,
Beijing 100049, P. R. China.
gzcui@math.ac.cn

Wenjuan Peng
Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, P. R. China.
wenjpeng@amss.ac.cn