Keratitis caused by the recently described new species Aspergillus brasiliensis: two case reports

Palanisamy Manikandan1,5, János Varga2,3, Sándor Kocsubé3, Rajaraman Revathi1, Raghavan Anita1, Ilona Dóczi4, Tibor Mihály Németh3, Venkatapathy Narendran1, Csaba Vágvölgyi3, Madhavan Bhaskar6, Chockaiya Manoharan5, Robert A Samson2, László Kredics3*

Abstract

Introduction: Human infections caused by Aspergillus brasiliensis have not yet been reported. We describe the first two known cases of fungal keratitis caused by Aspergillus brasiliensis.

Case presentations: A 49-year-old Indian Tamil woman agricultural worker came with pain and defective vision in the right eye for one month. Meanwhile, a 35-year-old Indian Tamil woman presented with a history of a corneal ulcer involving the left eye for 15 days. The fungal strains isolated from these two cases were originally suspected to belong to Aspergillus section Nigri based on macro- and micromorphological characteristics. Molecular identification revealed that both isolates represent A. brasiliensis.

Conclusion: The two A. brasiliensis strains examined in this study were part of six keratitis isolates from Aspergillus section Nigri, suggesting that this recently described species may be responsible for a significant proportion of corneal infections caused by black Aspergilli. The presented cases also indicate that significant differences may occur between the severities of keratitis caused by individual isolates of A. brasiliensis.

Introduction

Certain Aspergillus species, mainly A. flavus, A. terreus, A. fumigatus and A. niger have long been regarded as important pathogens in eye infections, especially keratitis [1]. Other members of the genus less frequently occurring in keratitis include A. glaucus, A. ochraceus and A. tamarii [1,2]. The identification at the species level of Aspergillus strains causing keratomycosis would be of great importance since the pathogenic potential and antifungal susceptibilities may substantially vary between different species of the genus. Herein we report the first two known cases of fungal keratitis caused by the recently described species A. brasiliensis.

Case presentations

A 49-year-old, Indian Tamil woman agricultural worker came with pain and defective vision in the right eye for one month. The symptoms started after she was exposed to paddy husk. At the time of presentation she was using 5% topical natamycin and gatifloxacin eye drops prescribed by her ophthalmologist. She had no significant past ophthalmic history or medical history. On examination, the visual acuity in her right eye was 5/60. Slit lamp evaluation of the right eye revealed a full thickness corneal abscess involving the nasal 1/3rd of the cornea and the adjacent limbus with a localized thick exudation extending from the endothelial side on to the iris, partly covering the pupillary area. Routine microbiological workup did not reveal any organism in smear studies, but a black Aspergillus was identified from culture after four days (designated as strain 832/06). Based on clinical impression, topical itraconazole and 200 mg oral ketoconazole twice a day were added to natamycin, but the ulcer perforated by the fourth day. Topical natamycin was replaced by 0.15% amphotericin B and a therapeutic corneal transplantation was performed. Part of the iris, which was covered by the exudation, was found to be necrotic and was excised. The anterior chamber was washed with 80 μg/ml amphotericin B. Topical amphotericin B, clotrimazole and oral ketoconazole were continued post-operatively with topical ketorolac and 2% cyclosporine A drops.

*Correspondence: kredics@bio.u-szeged.hu
1Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
The graft remained clear initially but with severe fibri-
nous reaction in aqueous. On 12 days, the infection
seemed to be eradicated but extensive peripheral ante-
rior synechiae and post synechiae formed and a mature
cataract developed. Ultrasonic B scan showed a clear
vitreous. Cataract aspiration and synechiolysis were
done after 14 days. Topical prednisolone acetate sus-
pension was also started post-operatively.

By the 40th postoperative day, however, peripheral
synechiae reappeared at the inferior 2/3rd circumference
and the intraocular pressure (IOP) started to rise (the
IOP spike was 46 mmHg). The glaucoma was controlled
medically with 0.5% timolol and 2% Pilocarpine drops.
Six months later, a penetrating optical graft was per-
formed with synechiolysis. Though the graft remained
clear for three months, the IOP started to rise with topi-
cal steroids, which needed enhanced medical therapy
with Alphagan. However, the recalcitrant glaucoma
necessitated a cyclodestructive procedure with Diode
laser. Though the intraocular pressure was controlled,
the graft failed to recover.

A 35-year-old Indian Tamil woman presented with a
history of corneal ulcer involving the left eye for the
past 15 days. She had been treated with 5% natamycin
by her local ophthalmologist. She also gave a history of
enucleation of the right eye following trauma sustained
a year earlier. On examination, the vision in the left eye
was 2/60. Slit lamp evaluation revealed a mild, central
corneal ulcer, 2.2 × 3 mm in size involving the anterior
1/3rd of the stroma. Scarring was noted at the peripheral
edges of the ulcer. Smears prepared from scrapings
obtained from the base and the leading edges of the
ulcer were negative but cultures revealed a black Asper-
gillus (designated as strain 138/07). She was advised to
continue natamycin eye drops with itraconazole eye
ointment. The ulcer healed in two weeks time with
complete resolution of the infiltration. During follow-up
after 10 months, our patient had a macular grade cor-
neal scar with a best-corrected visual acuity of 6/18.

Both isolates were originally suspected to belong to
Aspergillus section Nigri based on macro- and micro-
morphological characteristics (Figure 1). Colonies were
first white then dark brown to black. Exudates were
absent, and the reverse of the colony was cream-
coloured to light brown. Conidial heads were globose at
first and later radiate (Figure 1A), occasionally develop-
ing into several conidial columns. Stipes were 700-1700
× 8-13 mm, walls were thick, smooth and pale brown.
The vesicles were 30-45 mm wide, nearly globose, biseri ate. Metulae were covering virtually the entire sur-
face of the vesicle, measuring 22-30 × 3-6 mm; phialides
were flask-shaped, 7-9 × 3-4 mm, conidia subglobose,
3.5-4.8 mm in diameter, echinulate [3]. Interestingly,
conidia of the keratitis isolates were not ornamented
with tubercules and warts but were smooth walled
(Figure 1B), in contrast to the type strain CBS 101740
(Figure 1C). DNA isolation, amplification of a segment
of the β-tubulin gene and sequence analysis were carried
out as described previously [2]. The partial β-tubulin
sequences of strains 832/06 and 138/07 were submitted
to the GenBank database under the accession numbers
EU600387 and EU600386, respectively. The sequences
of the case isolates proved to be completely identical to
each other as well as to the corresponding sequence of
CBS 101740, the type strain of A. brasiliensis [3].

The E-test method (AB BIODISK, Solna, Sweden) for
moulds was used to determine the minimal inhibitory
concentration (MIC) values of the isolates to amphoteri-
cin B, fluconazole, ketoconazole, itraconazole and vori-
conazole according to the instructions of the manufac-
turer (Etest technical guide 10). The MIC of
natamycin (5% suspension, Sun Pharmaceutical Ind.
Ltd., Halol, India), econazole (2% suspension, Aurolab,
Madurai, India) and clotrimazole (1% suspension, Aurolab,
Madurai, India) were determined by the broth
microdilution technique NCCLS M38-A [4].

Table 1 shows the antifungal susceptibility data of the
two case isolates. Both of them were resistant to fluco-
nazole (MIC > 256 μg/ml), and clotrimazole MIC-values
were also higher than 32 μg/ml. Natamycin MICs were
similar (1 μg/ml) against these isolates. MICs of other
antifungal agents (itraconazole, ketoconazole, vorica-
zone, econazole, amphotericin B) were 1 μg/ml or lower,
but these values were 1 or 2 two-fold dilution-step
higher in the case of the isolate 832/06.

Living cultures from case 1 and case 2 were deposited in
the Centraalbureau for Schimmelcultures (strain
numbers: CBS 122724 and CBS 122723, respectively).

Discussion

From Aspergillus section Nigri, only A. niger has been
reported to date as a possible causative agent of fungal
keratitis [1]. In a study from North India, A. niger was
found to be the most common among the Aspergillus
species causing keratitis, in 64 out of 78 cases [5]. How-
ever, the isolates in this previous study were identified
on the basis of their macroscopic and microscopic mor-
phology only, and the identifications were not confirmed
by molecular techniques. Black Aspergilli are one of the
most difficult groups in classification and identification
[6]. Molecular approaches revealed that there is a high
biodiversity among them, but that taxa are difficult to
be recognized solely on their phenotypic characters [6].
In both cases described in this report, partial sequence
analysis of the β-tubulin gene revealed that the isolates
belong to the A. brasiliensis species. These two A. brasi-
liensis strains were part of six keratitis isolates from
Aspergillus section Nigri, suggesting that this recently
described species may be responsible for a significant proportion of corneal infections caused by black Aspergilli.

A. brasiliensis is a biseriate species closely related to *A. niger* and *A. tubingensis*. This new species is known from soil from Brazil, Australia, USA and the Netherlands, and from grape berries from Portugal, indicating a cosmopolitan distribution [3]. *A. brasiliensis* can be distinguished from other black *Aspergilli* based on intergenic transcribed spacer region, β-tubulin and calmodulin gene sequences, by amplified fragment length polymorphism analysis, by extrolite profiles [3,6] as well as by detecting sequence variations contained in an about 180-bp region of the calmodulin gene with the aid of fluorescence-based SSCP analysis by capillary electrophoresis [7]. Isolates of this species were found to produce naphtho-γ-pyrones, tensidol A and B and pyrophen in common with *A. niger* and *A. tubingensis*, but also several unique compounds, justifying their treatment as representing a separate species [3]. The type strain of the species, *A. brasiliensis* CBS 101740 was also shown to produce xylanase and thermostable beta-xyllosidase activities [8].

Although natamycin inhibited the growth of the isolates *in vivo* at low concentration (1 μg/ml), use of this antifungal agent in monotherapy was not successful. This could possibly be due to poor ocular penetration [9]. However, it has been reported that natamycin

Table 1 MIC values (μg/ml) of antifungal drugs towards the two *A. brasiliensis* isolates

Antifungal Drug	*A. brasiliensis* 832/06	*A. brasiliensis* 138/07
Itraconazole*	1	0.25
Ketoconazole*	0.5	0.125
Voriconazole*	0.064	0.032
Amphotericin B*	0.125	0.064
Econazoleb	0.032	0.016
Clotrimazoleb	>32	>32
Fluconazoleb	>256	>256
Natamycina	1	1

a determined by the Etest method
b determined by the NCCLS broth microdilution method
monotherapy is associated with a poor outcome in Aspergillus keratitis [10]. In combination with itraconazole, the treatment was effective in case 2, where the strain was more sensitive for this triazole with a lower MIC value. Other clinical studies mentioned its efficacy in the treatment of corneal ulcers caused by Aspergillus spp [9,11]. Case 1 was more complicated: the combined therapy (natamycin plus topical itraconazole and oral ketoconazole) did not resolve the problem. Therapeutic corneal transplantation and administration of intracameral amphotericin B were needed to eradicate the infection.

Conclusion
The presented cases indicate that significant differences may occur between the severities of keratitis caused by individual isolates of A. brasiliensis. To the best of our knowledge, these cases of fungal keratitis are the first reports on the involvement of A. brasiliensis in human infections.

Consent
Written informed consent was obtained from our patients for publication of this case report and accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Acknowledgements
This study was supported by the Indian National Science Academy and the Hungarian Academy of Sciences within the frames of the Indo-Hungarian bilateral exchange programme No. IN/NGA-HAS Project/2007 as well as by DST and TET with the bilateral grant OMFBR-00285/2008. LK is a grantee of the János Bolyai Research Scholarship (Hungarian Academy of Sciences).

Author details
1Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Avinashi road, Coimbatore 641 014, Tamil Nadu, India. 2CBS Fungal Biodiversity Centre, Uppsalaanla 8, 3584 CT Utrecht, The Netherlands. 3Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fátor 52, H-6726 Szeged, Hungary. 4Department of Clinical Microbiology and Diagnostics, Faculty of Medicine, University of Szeged, Somogyi Béla tér 1, H-6725 Szeged, Hungary. 5Department of Botany & Microbiology, AVVM Sri Pushpam College, Poondi 613503, Tanjavur, India. 6Department of Microbiology, Coimbatore Medical College, Coimbatore 641 014, Tamil Nadu, India.

Authors’ contributions
RR, RA, PM, CV, MB, CM, RAS, and LK were involved in the conception and design of the study, while PM, ID, SK, JV, TMN, VN, and LK did the analysis and interpretation. PM, SK, TMN, LK, JV, ID, and RAS wrote the article, while RR, RA, CV, VN, MB, and CM did the critical revision of the article. PM, JV, SK, RR, RA, ID, TMN, CV, MB, VN, RAS, CM, and LK had final approval of the article, while PM, RR, RA, ID, SK, JV, TMN, RAS, and LK took charge of the data collection. RR, RA, VN, CV, and RAS provided the materials, patients, and resources. PM and LK obtained the funding, while PM, LK, and JV did the literature search. VN, CV, CM, RAS, and MB provided administrative, technical, or logistic support.

All authors have read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 21 October 2009
Accepted: 24 February 2010
Published: 24 February 2010

References
1. Manikandan P, Dóczki I, Kocsúbé S, Varga J, Németh TM, Antal Z, Vágulyógy C, Bhaskar M, Kredics L: Aspergillus species in human keratomycosis. Aspergillus in the genomic era Wageningen: Wageningen Academic PublishersVarga J, Samson R 2008, 293-328.
2. Kredics L, Varga J, Kocsúbé S, Dóczki I, Samson RA, Rajaraman R, Narendran V, Bhaskar M, Vágulyógy C, Manikandan P: Case of keratitis caused by Aspergillus tamarii. J Clin Microbiol 2007, 45:3464-3467.
3. Varga J, Kocsúbé S, Tóth B, Frisvad JC, Perrone G, Susca A, Meijer M, Samson RA: Aspergillus brasiliensis sp. nov., a biseriate black Aspergillus species with world-wide distribution. Int J Syst Evol Microbiol 2007, 57:1925-1932.
4. National Committee for Clinical Laboratory Standards: Reference method for broth dilution antifungal susceptibility testing of filamentous fungi: approved standard NCCLS document M38-A. Wayne, PA: National Committee for Clinical Laboratory Standards 2002.
5. Chowdhary A, Singh K: Spectrum of fungal keratitis in North India. Cornea 2003, 22:115-118.
6. Samson RA, Noormin P, Meijer M, Houbenrenk J, Frisvad JC, Varga J: Diagnostic tools to identify black Aspergilli. Stud Mycol 2007, 59:129-145.
7. Susca A, Stea G, Perrone G: Rapid polymerase chain reaction (PCR)-single-stranded conformational polymorphism (SSCP) screening method for the identification of Aspergillus section Nigri species by the detection of calmodulin nucleotide variations. Food Addit Contam 2007, 24:1148-1153.
8. Pedersen M, Lauritzen HK, Frisvad JC, Meyer AS: Identification of thermostable beta-xylodiasis activities produced by Aspergillus brasiliensis and Aspergillus niger. Biotechnol Lett 2007, 29:743-748.
9. Agarwal PK, Roy P, Das A, Banerjee A, Maiti PK, Banerjee AR: Efficacy of topical and systemic itraconazole as a broad-spectrum antifungal agent in mycotic corneal ulcer. A preliminary study. Indian J Ophthalmol 2001, 49:173-176.
10. Lalitha P, Prabha NV, Kabra A, Mahadevan K, Srivivasan M: Risk factors for treatment outcome in fungal keratitis. Ophthalmology 2006, 113:526-530.
11. Kalavathy CM, Parmar P, Kalamurthy J, Philip VR, Ramalingam MD, Jesudasan CA, Thomas PA: Comparison of topical itraconazole 1% with topical natamycin 5% for the treatment of filamentous fungal keratitis. Cornea 2005, 24:449-452.

doi:10.1186/1752-1947-4-68
Cite this article as: Manikandan et al.: Keratitis caused by the recently described new species Aspergillus brasiliensis: two case reports. Journal of Medical Case Reports 2010 4:68.