Drosophila TFIIA-S is up-regulated and required during Ras-mediated photoreceptor determination

Martin P. Zeidler,1 Kyoko Yokomori,2 Robert Tjian,2 and Marek Mlodzik1,3

1Differentiation Programme, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; 2Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202 USA

Photoreceptor induction in the developing *Drosophila* eye is triggered by the activation of the Ras pathway. Subsequently, the Ras-mediated activation of site-specific transcription factors leads to the expression of putative "effector" genes. The coactivator function of the basal transcription factor TFIIA has been shown previously to enhance the trans-activation potential of site-specific transcription factors in vitro. Here, we show that the expression of the small subunit of TFIIA (dTFIIA-S) is specifically up-regulated in a transient manner during Ras-mediated photoreceptor induction. Furthermore, although null mutations in dTFIIA-S are cell lethal, a hypomorphic dTFIIA-S allele demonstrates an increased requirement for this factor during photoreceptor development. In addition, the cone cell to R7 photoreceptor transformation caused by ectopic activation of the Ras pathway during eye development is suppressed by the removal of one functional copy of the dTFIIA-S locus revealing the sensitivity of this process to reductions in dTFIIA-S activity. These results are the first in vivo evidence for the coactivator function in transcriptional enhancement proposed for TFIIA.

[Key Words: Basal transcription machinery; eye development; Drosophila; Ras pathway; coactivators]

Received July 18, 1995; revised version accepted November 2, 1995.
presence of additional factors (Chen et al. 1994). Thus, higher levels of transcription are dependent on the interaction of transcriptional activators with specific components of the basal machinery, subsequently termed co-activators (Pugh and Tjian 1990; Goodrich and Tjian 1994). Although a number of TAFs have been identified as fulfilling a coactivator function (including dTAF110 and dTAF40; Pugh and Tjian 1990; Gill et al. 1994; Goodrich and Tjian 1994), it has been reported that the basal factor TFIIA can also enhance levels of transcription in an activator-dependent manner (Goodrich et al. 1993; Hori and Carey 1994; Ozer et al. 1994; Sun et al. 1994; Yokomori et al. 1994). The identification and cloning of the components of the TFIIA complex have shown that the recombinant proteins not only increase the affinity of TBP for the TATA box and its stability once bound, but also significantly enhance the trans-activation potential of NTF and VP16 in vitro (Sun et al. 1994; Yokomori et al. 1994).

Here, we demonstrate that the small subunit of the TFIIA complex (dTIIA-S) is expressed in a dynamic pattern during the development of the Drosophila eye. It is up-regulated in the photoreceptor precursors preceding and independent of Ras pathway activation during the time when their determination is induced by Ras activation. Although null alleles of dTFIIA-S are cell lethal, partial loss-of-function alleles show photoreceptor-specific disruptions in eye development. In addition, we show that the rough-eye phenotype and supernumerary R7 development caused by ectopic activation of the Ras pathway are suppressed by a reduction in the gene dose of dTFIIA-S. Taken together, we provide genetic evidence that indicates that full levels of effecter gene expression stimulated by the Ras pathway in photoreceptor precursors in vivo depend on TFIIA.

Results
Cloning of dTFIIA-S
The Drosophila TFIIA-S (dTIIA-S) transcription unit was identified by virtue of its proximity to an eye-specific enhancer detector P element and its sequence homology to yeast TFIIA-b. Genomic DNA was recovered by plasmid rescue of the F125 P element located at 55C7-8 (Mlodzik and Hiromi 1992) with its insertion site 1.6 kb 3' of the subsequently identified TFIIA-S coding region [Fig. 1]. Overlapping genomic and cDNA clones were isolated from imaginal disc and embryonic libraries. The sequence of both cDNA and genomic clones was determined (EMBL library accession no. X83271) and found to encode a protein with homology to yeast TFIIA-b (Ranish et al. 1992). Subsequent biochemical analysis confirmed that the gene product is indeed the small subunit of Drosophila TFIIA (Yokomori et al. 1994).

dTFIIA-S is dynamically expressed during development
Although the 700-nucleotide-long dTFIIA-S transcript is present at high levels throughout Drosophila development (as detected by Northern and in situ hybridization analysis; not shown), a detailed analysis of the dTFIIA-S expression as shown using a specific polyclonal rabbit antiserum (Yokomori et al. 1994) reveals a dynamic expression pattern. Maternally supplied dTFIIA-S protein is initially distributed uniformly in fertilized eggs (not shown) and becomes localized to all nuclei during the syncitial cleavage stages. All nuclei show fairly uniform protein expression just prior to the cellular blastoderm stage (Fig. 2A). Although dTFIIA-S distribution during later embryonic development remains largely uniform, some cell groups, including delaminating neuroblasts and cells of the mesodermal layers in stage 7 embryos, express higher levels with the onset of differentiation (Fig. 2B).

During imaginal disc development in third-instar larvae, dTFIIA-S is also detected at low levels in all nuclei. However, increased expression is apparent in specific regions within imaginal discs. In particular, third-instar eye imaginal discs show a striking pattern of high level dTFIIA-S expression posterior to the morphogenetic furrow (MF; Fig. 2E). The temporal sequence of cellular recruitment during ommatidial assembly is visible as distinct columns of developing ommatidial clusters posterior to the MF in a single eye imaginal disc (Tomlinson and Ready 1987), therefore allowing the dynamic temporal expression pattern of dTFIIA-S to be followed. Clusters of cells expressing dTFIIA-S are first identified in the MF in column 1 corresponding to the R8 and R2/R5 precursors [Fig. 2F]. Slightly more posterior in column 3, increased expression is detected in precursors corresponding to R8, R2/R5, and R3/R4 [Fig. 2G]. Subsequently, in columns 4/5, expression fades in R8 and R2/R5 and becomes stronger in R3/R4 [Fig. 2H]. By col-
Figure 2. Embryos and eye imaginal discs stained with an anti-dTFIIA-S antiserum. A polyclonal rabbit antiserum raised against bacterially expressed dTFIIA-S protein is used in all panels. Anterior is to the left, and dorsal is up. [A–D] Embryonic stages; [E–L] eye imaginal discs. [A] Syncitial blastoderm embryo. dTFIIA-S is localized to the nuclei during syncitial nuclear divisions and is largely provided maternally at this stage. [B] Embryo at germ-band extension (approximately stage 8). Delaminating neuroblasts (white arrowhead) contain higher levels of dTFIIA-S than the overlying ectodermal cell layer. The mesoderm also exhibits higher levels of dTFIIA-S at this stage [white arrow]. [C,D] Stage 15 embryos. In wild type (C), dTFIIA-S is detected in all nuclei. The developing central nervous system appears to be stained more strongly. However, it is possible that the increased dTFIIA-S staining evident in the CNS at this stage may be a consequence of the higher cell density in this tissue. [D] Homozygous mutant dTFIIA-S~32 embryo. No dTFIIA-S protein is detectable at this stage, and development does not proceed beyond this point. [E] dTFIIA-S expression in the third-instar eye imaginal disc. Although low-level expression is maintained in all cells, patterned increased expression is detected posterior to the MF (indicated by black arrowhead). [F–K] High-magnification photomicrographs of progressive changes in dTFIIA-S expression pattern posterior to the MF. [F] Clusters of photoreceptor cells expressing dTFIIA-S are first identified in the MF in column 1 corresponding to R8 and R2/R5. [G] In column 3, the R3/R4 cells join the R8, R2/R5 cluster. [H] In column 4/5, expression fades in R8 and R2/R5 and gets stronger in R3/R4. [I] In column 6, expression is strong in R3/R4 and R1/R6. [J] In column 7, expression has faded in R3/R4 and R1/R6, and R7 expression begins. [K] Expression in cone cells [c] is first initiated in column 7/8 and is maintained to the posterior of the disc. It is detected in all four cells (column 11 is shown). [L] Expression in the R7 precursor in the sev~2 mutant background. Expression in the cell occupying the R7 precursor position (7') is still up-regulated, despite associated loss of Sevenless/Ras signaling in this cell.

In addition to this dynamic pattern in photoreceptor precursors, elevated expression of dTFIIA-S is also detected in two bands ahead of and immediately behind the MF. Nuclei in these stripes are rounded, apically positioned, and unusually large and may represent cells dividing during the first and second mitotic waves (Tomlinson and Ready 1987).

dTFIIA-S levels peak as the Ras pathway determines cell fates

To ascertain the developmental stage at which the peak of dTFIIA-S expression in each photoreceptor precursor occurs [shown in Fig. 2F–K], double-labeling experiments using antibodies specific for dTFIIA-S and the neuronal marker Elav were carried out. The nuclear antigen Elav (Robinow and White 1991) is one of the first neuronal markers to be expressed in developing and differentiating photoreceptor cells. The beginning of high level dTFIIA-S expression precedes that of Elav by 2–3 hr [one to two columns; Fig. 3]. For instance, R8 and R2/R5 express high levels of dTFIIA-S [shown in red in Fig. 3] in column 1, behind the MF [Fig. 3B], ~2 hr before coexpression with Elav [shown in green] is detected [Fig. 3C]. Similarly, dTFIIA-S is also apparent in other precursors prior to Elav expression [Fig 3D–F]. Shortly after a particular precursor begins to differentiate, dTFIIA-S expression returns to the basal level [Figs. 2E and 3A; data not shown]. Thus, in each photoreceptor precursor cell, high dTFIIA-S levels are only detected for 6–10 hr, representing three to five columns. Significantly, the increase in dTFIIA-S expression in R7 [Fig. 3F] coincides precisely with the period during which Sev/Ras signaling is required to induce this cell fate (Basler and Hafen 1989);
been up-regulated in R3/R4 (and just beginning in the R1/R6 hr later). R2/R5, and shortly afterwards R8 as well, express both Elav (green). Cells in which both proteins are expressed are thus imaginal disc stained for dTFIIA-S (red) and the neuronal marker Figure 3. Double immunofluorescence of a wild-type eye expressing predominantly dTFIIA-S (red). R8 and R2/R5 are no dTFIIA-S and Elav. (D) Columns 4/5: dTFIIA-S expression has longer in this focal plain. (F) Column 7/8: The future R7 ex-pairs), whereas it has been down-regulated in R8 and R2/R5. Elav expression is maintained in R8 and R2/R5 (green). (E) Column 6: R3/R4 express both dTFIIA-S and Elav, whereas R1/R6 still express predominantly dTFIIA-S (red). R8 and R2/R5 are no longer in this focal plain. (F) Column 7/8: The future R7 expresses just dTFIIA-S (red), whereas R3/R4 and R1/R6 coexpress dTFIIA-S and Elav (yellow).

Mullins and Rubin 1991]. Moreover, the temporal regulation of high levels of dTFIIA-S in the other R-cell precursors also correlates with the time window during which they are thought to be determined and require the Ras pathway (for review, see Dickson and Hafen 1994; Zipursky and Rubin 1994). Thus, the highest levels of dTFIIA-S are observed in photoreceptor precursors during their Ras-mediated induction and determination. To examine the possible relationship between neuronal induction and up-regulation of dTFIIA-S, sev- mutant eye imaginal discs were examined. Although the R7 photoreceptor precursor fails to assume a neuronal identity in this genetic background, dTFIIA-S expression is still up-regulated in the mutant R7 precursor cell as in the wild-type situation (Fig. 2, cf. J and L). Thus, the up-regulation of dTFIIA-S expression occurs via a mechanism independent of the Ras pathway.

In contrast to the small subunit, the levels of expression of the large subunit of TFIIA [dTFIIA-L] do not appear to be modulated during photoreceptor development (not shown).

Mutations in dTFIIA-S

To investigate potential developmental requirements of dTFIIA-S, both null alleles and a hypomorphic allele (dTFIIA-S[E]73) were generated by remobilization of the adjacent P element [Mlodzik and Hiromi 1992] thereby introducing small deletions in the locus through imprecise excision events [Fig. 1, Daniels et al. 1985]. In the null alleles dTFIIA-S[E32] and dTFIIA-S[E31], all genomic DNA between the P element and ~1 kb upstream of dTFIIA-S is removed. The hypomorphic allele dTFIIA-S[E]73 lacks genomic DNA lying between the original insertion site and the 3' end of the transcript [Fig. 1]. Three smaller deletion alleles were also recovered that remove just the dTFIIA-S coding region (dTFIIA-S[E99], dTFIIA-S[E32], and dTFIIA-S[E62]). These may have resulted from a local reinsertion of F125 into the 5' region of dTFIIA-S followed by a subsequent imprecise excision.

Embryos homozygous for the null allele dTFIIA-S[E32] die at stage 15-16 of embryogenesis and contain no detectable dTFIIA-S protein at this stage [Fig. 2, cf. C and D]. Mutant embryos appear to develop normally until this stage, and no significant differences in dTFIIA-S levels in mutant and wild-type embryos are detected until shortly before death. It is therefore likely that maternally supplied dTFIIA-S is sufficient to allow embryonic development up to this stage. No clones of mutant cells homozygous for null alleles of dTFIIA-S are ever recovered in third-instar eye discs, adult eyes, or cuticle, although twin spot regions are produced at high frequencies and thus recombination events have been induced [not shown]. This indicates that dTFIIA-S is required for cellular survival. Animals homozygous for the hypomorphic allele dTFIIA-S[E]73 survive to pharate adult stages, and clones homozygous for this allele are recovered at normal frequency in adult tissues (see below).

To prove that the lesions in the dTFIIA-S locus are the sole source of lethality on the respective chromosomes, the phenotypes were rescued by dTFIIA-S transgenes. The 4-kb EcoRI genomic fragment including the dTFIIA-S coding region and P-element insertion site [Fig. 1] or a dTFIIA-S cDNA expressed from the hsp70 promoter were sufficient to rescue the dTFIIA-S[E32] and dTFI-
IIA-S[E]73 alleles to adulthood. These chromosomes therefore contain only disruptions at this locus, and thus, the observed phenotypes are attributable solely to a lack of dTFIIA-S function [Fig. 5; data not shown].

dTFIIA-S is required for eye development

The dynamic expression pattern of dTFIIA-S in the developing eye imaginal disc prompted us to test for the potential role of dTFIIA-S during eye development. Because null alleles are cell lethal (see above), we analyzed the eye phenotype of the hypomorphic dTFIIA-S[E]73 allele. Larval eye imaginal discs homozygous for dTFIIA-S[E]73 are similar in size to wild type, and neuronal anti-
Zeidler et al.

gens are expressed. However, disruptions in photoreceptor number, identity, and position within developing clusters are apparent. Third-instar eye imaginal discs homozygous for dtFIIA-SE73 were stained for expression of the BarH1 protein, an R1/R6 marker [Higashijima et al. 1992]. In contrast to the regular repeated pattern of R1/R6 cells in wild-type discs [Fig. 4B], mutant eye discs show a severely disrupted pattern in which clusters are often lacking either one [black arrows] or both [white arrows] R1/R6 type cells [Fig. 4A]. Similarly, the normal pattern of R7 cells, as visualized by the enhancer–detector insertion H214 that marks developing R7 cells. The phenotype of the dtFIIA-SE73 allele in homozygous mutant eye imaginal discs. (A,B) Eye imaginal discs stained with an anti-BarH1 antiserum serving as an R1/R6 cell type marker. (A) dtFIIA-SE73 mutant disc, (B) wild-type control disc. Note in A that the pairs of R1/R6 cells are irregularly arranged and examples of ommatidia lacking one [black arrows] or both [white arrows] are present, compare with the regular arrangement of R1/R6 pairs within the developing wild-type preclusters [B]. The pattern of R7 cells, as visualized by the enhancer–detector insertion H214 that marks developing R7 cells.

Figure 4. The phenotype of the dtFIIA-SE73 allele in homozygous mutant eye imaginal discs. (A,B) Eye imaginal discs stained with an anti-BarH1 antiserum serving as an R1/R6 cell type marker. (A) dtFIIA-SE73 mutant disc, (B) wild-type control disc. Note in A that the pairs of R1/R6 cells are irregularly arranged and examples of ommatidia lacking one (black arrows) or both (white arrows) are present, compare with the regular arrangement of R1/R6 pairs within the developing wild-type preclusters (B). (C–D) Eye imaginal discs stained with an anti-β-galactosidase antibody heterozygous for the enhancer–detector insertion H214 that marks developing R7 cells. (C) dtFIIA-SE73 mutant disc; (D) wild-type control disc. Note that in the mutant discs (C), ommatidal preclusters with multiple staining cells [black arrows] and also some lacking an R7 [white arrow] are found.

Constitutively active forms of Sev, Ras1, or Raf expressed in cone cell precursors or the Sevenmaker (Sem) gain-of-function allele of rolled/MAPK transform the normally nonneuronal cone cell precursors to functional R7 neurons [Basler et al. 1991; Dickson et al. 1992b; Fortini et al. 1992; Brunner et al. 1994b]. The resulting cell fate transformation causes an externally visible dominant rough-eye phenotype [Fig. 6A,E], the severity of which can be modulated by altering the levels of interacting factors, an approach successfully used in genetic screens for downstream effector genes [Biggs et al. 1994; Chang et al. 1995; Dickson et al. 1995].

To further examine the requirement for dtFIIA-S in photoreceptor induction, dtFIIA-S alleles were tested for dosage-sensitive interactions with rough-eye phenotypes caused by ectopic activation of Ras pathway components. Strikingly, removal of one functional copy of dtFIIA-S partially suppresses the formation of the ectopic R7 cells. This is illustrated both by the greater regularity of external eye morphology and the reduced number of R7 photoreceptors present in sections of such eyes [Fig. 6; Table 1]. The degree of suppression produced by dtFIIA-SE32, dtFIIA-SE73, and the independent dtFIIA-SE96662 [Karpen and Spradling 1992] alleles are similar in all genetic backgrounds tested [Table 1]. Furthermore, this effect is specific for activated components of the Ras pathway and cone cell to R7 transformation.

Figure 5. Adult eye phenotype of the dtFIIA-SE73 allele. (A) Homozygous mutant clone. Mutant cells are marked by the absence of pigment granules. Photoreceptor arrangement is disrupted in mutant ommatidia. Note ommatidia with missing photoreceptors or extra R7 cells [black arrowheads], possibly resulting from an R1–R6 to R7 transformation as some outer photoreceptors are missing from such clusters [see also Fig. 4]. (B) Section through the adult eye of an individual homozygous mutant for the hypomorphic allele dtFIIA-SE73 rescued by expression of the dtFIIA-S cDNA from the hsp70 promoter. The internal morphology of the eye is essentially wild type.

The disruption of outer R1–R6 cells, further suggesting that a transformation of R1–R6 to R7 type photoreceptors has occurred [Fig. 5A, arrowheads; see also Fig. 4]. Flies homozygous for the dtFIIA-SE73 allele rescued to adulthood by a single copy of the dtFIIA-S cDNA under the control of the hsp70 promoter [see above] have wild-type eye morphology [Fig. 5B]. Thus, the disruption observed in dtFIIA-SE73 eye clones is a direct consequence of a reduction in dtFIIA-S levels. The dtFIIA-S mutant phenotypes illustrate the absolute requirement of dtFIIA-S for cellular survival and that photoreceptor determination and development are especially sensitive to a reduction in dtFIIA-S activity.

Cone cell transformation mediated by activated Ras pathway components is sensitive to dtFIIA-S gene dosage

Constitutively active forms of Sev, Ras1, or Raf expressed in cone cell precursors or the Sevenmaker (Sem) gain-of-function allele of rolled/MAPK transform the normally nonneuronal cone cell precursors to functional R7 neurons [Basler et al. 1991; Dickson et al. 1992b; Fortini et al. 1992; Brunner et al. 1994b]. The resulting cell fate transformation causes an externally visible dominant rough-eye phenotype [Fig. 6A,E], the severity of which can be modulated by altering the levels of interacting factors, an approach successfully used in genetic screens for downstream effector genes [Biggs et al. 1994; Chang et al. 1995; Dickson et al. 1995].

To further examine the requirement for dtFIIA-S in photoreceptor induction, dtFIIA-S alleles were tested for dosage-sensitive interactions with rough-eye phenotypes caused by ectopic activation of Ras pathway components. Strikingly, removal of one functional copy of dtFIIA-S partially suppresses the formation of the ectopic R7 cells. This is illustrated both by the greater regularity of external eye morphology and the reduced number of R7 photoreceptors present in sections of such eyes [Fig. 6; Table 1]. The degree of suppression produced by dtFIIA-SE32, dtFIIA-SE73, and the independent dtFIIA-SE96662 [Karpen and Spradling 1992] alleles are similar in all genetic backgrounds tested [Table 1]. Furthermore, this effect is specific for activated components of the Ras pathway and cone cell to R7 transformation.
Figure 6. Genetic interaction of dTFIIA-S alleles and activated Ras pathway components. Suppression of sevS11 (Basler et al. 1991; A–D), sev–rasV12 (Fortini et al. 1992; E,F), and rolledSem (Brunner et al. 1994b, I,J) phenotypes by gene dosage reduction in dTFIIA-S is shown. (Top) Control eyes; (bottom) dTFIIA-S E73/+ siblings. Both the null allele dTFIIA-S E32 and the hypomorphic allele dTFIIA-S E73 show a similar suppression, whereas the original F125 chromosome is neutral. A,B,E,F] Scanning electron micrographs (SEMs); (C,D,G–J) apical retinal sections at the R7 level. R8 is below this plane of section. Note the considerable reduction in external roughening and the more regular array of ommatidial clusters, with fewer ectopic R7 cells, in dTFIIA-S heterozygotes (bottom). Ommatidia with a wild-type photoreceptor complement are often recovered in such genotypes (D,H,I), whereas they are only very rarely found in control siblings (C,G,I). All eyes shown are from males. (A,C) sevS11; +/ + (containing 4.06 ± 0.20 R7 cells per ommatidium, n = 254); (B,D) sevS11; dTFIIA-S+/ + (containing 2.62 ± 0.14 R7 per ommatidium, n = 836); (E,G) sev-rasV12, CyO/+; +/+ (containing 2.46 ± 0.38 R7 per ommatidium, n = 626); (F,H) sev-rasV12, CyO/+; dTFIIA-S+/ + (containing 1.94 ± 0.05 R7 per ommatidium, n = 1057); (I) rolledSem+/ +; +/+ (containing 3.13 ± 0.55 R7 per ommatidium, n = 618); (J) rolledSem+/ +; dTFIIA-S+/ + (containing 2.52 ± 0.25 R7 per ommatidium, n = 833).

The rough-eye phenotype of the genotypes indicated was scored, and a subjective rating of observed suppression with relation to siblings and parental strains was generated. No suppression [-]; the number of + symbols indicates progressively better suppression; (N.D.) not done. The slight variation in suppression observed between the dTFIIA-S E32 and dTFIIA-S E73 alleles tested is probably attributable to inherent variation of the rough-eye phenotypes tested. The independent dTFIIA-S E32 allele (Karpen and Spradling 1992) was also tested for genetic interactions, as were point mutations in the RNA polymerase II 140-kD subunit [l(3)RplII140z3; Parkhurst and Ish-Horowicz 1991] and the deficiency Df(2L)PuD 17 that removes the region encoding the TBP subunit of TFIID (Hoey et al. 1990). Note that only phenotypes generated by activation of components of the Sev/Ras pathway are sensitive to dTFIIA-S dosage, the sev-poxn and sev-rough genotypes are not affected. The genotypes tested were sev-poxn, Poxneuro homeo domain protein expressed by the sev enhancer and hsp70 promoter (K. Basler, E. Hafen, and M. Noll, unpub); sev-rough, Rough homeo domain protein expressed by the sev enhancer and promoter (Basler et al. 1990); sevenlessS11 (sevS11), a constitutively activated Sevenless receptor (Basler et al. 1991); sev–rafTur109, constitutively active Raf expressed by the sev enhancer (Dickson et al. 1992b); sev–rasV12, a constitutively activated allele of Ras1 expressed from the sev enhancer/promoter (inserted into the CyO balancer chromosome) [Fortini et al. 1992]; rolledSem; a gain-of-function allele of the Drosophila MAP kinase rolled gene (Brunner et al. 1994b); and 2x sev–svp2:seven-up type II (two copies) expressed by the sev enhancer/promoter (Hiromi et al. 1993).
No genetic interaction is observed with other dosage-sensitive rough-eye genotypes including others that depend on sev enhancer-driven expression in the cone cells [e.g., sev–rough and sevE–poxy] [Basler et al. 1990; Kimmel et al. 1990], see Table 1. In addition, constructs carrying either the sev enhancer/hsp70 promoter [e.g., sev511 and sev–rap1p95] or using both the sev enhancer and promoter [sev–rasv12 and sev–svp2] are affected by mutations in dTFIIA-S, as can the tolledsem mutation expressed from its endogenous enhancer/promoter. These results indicate that the suppression is specific to the activation of the Ras pathway in cone cell precursors and not to any given expression system. The rough-eye phenotype caused by the ectopic expression of the transcription factor seven-up [svp] in cone cells, sev–svp2 [Hiromi et al. 1993], is also suppressed by mutations in dTFIIA-S [Table 1]. As the sev–svp2 induced eye phenotype is sensitive to Ras pathway signaling levels [Beermann et al. 1995], this result is consistent with an effect on components implicated as part of the Ras pathway [or Ras effectors].

Interestingly, other components of the basal transcription machinery tested do not visibly affect the rough-eye phenotype caused by activated Ras pathway components. Deficiencies that remove the 15- and 140-kD polymerase II [PolII] subunits [Parkhurst and Ish-Horowicz 1991; Hamilton et al. 1993] or TBP [Hoey et al. 1990] and point mutants in PolII[140] [Parkhurst and Ish-Horowicz 1991] do not affect the sev511 or sev–rasv12 phenotypes [Table 1; data not shown]. This illustrates that reduced levels of other components of the basal transcription machinery, caused by a halving of gene dosage, do not visibly influence the phenotypes of the activated Ras pathway genotypes.

Taken together, these results indicate a specific genetic interaction between Ras pathway and dTFIIA-S [and so by implication the holo-TFIIA complex]. Furthermore, they suggest that a specific function of TFIIA distinct from its role as a component of the basal transcription complex is responsible for the suppression obtained.

Discussion

Here, we report the dynamic pattern of dTFIIA-S expression during Drosophila eye development and show that the highest levels of expression coincide with the time window during which Ras pathway activation induces photoreceptor precursor cells. This up-regulation of expression does not depend on the Ras pathway. Although null alleles are cell lethal, hypomorphic dTFIIA-S mutations specifically affect the process of photoreceptor development. In addition, full penetrance of the phenotype caused by ectopic activation of the Ras pathway components in cone cells requires both endogenous copies of the dTFIIA-S locus. These results indicate that developing photoreceptors are especially sensitive to alterations in the level of dTFIIA-S activity and suggest that the in vivo function of dTFIIA might be analogous to the activity of dTFIIA as an enhancer of transcriptional activation previously observed in vitro [Yokomori et al. 1994].

Developing photoreceptors express high levels of dTFIIA-S

In wild-type eyes, the requirement for high levels of TFIIA during photoreceptor determination is met by greatly increased dTFIIA-S expression in photoreceptor precursors [Figs. 2E and 3A]. Interestingly, the dTFIIA-S expression pattern observed in developing photoreceptors precedes the expression of neuronal antigens and is similar in its dynamic regulation to that displayed by the site-specific transcription factors Jun and Pointed [Bohmann et al. 1994; Brunner et al. 1994a; O'Neill et al. 1994]. Strikingly, dTFIIA-S expression in postgastrulation embryos is also patterned [e.g., increased expression in neuroblasts; Fig. 1B], suggesting that a similar requirement for dTFIIA-S during differentiation may also exist in other cell types.

The holo-TFIIA complex has been shown in vitro as being able to both increase the affinity of TBP for the promoter and enhance the potency of proximal transcription factor trans-activation domains [Sun et al. 1994; Yokomori et al. 1994]. The similarity in expression pattern of Jun, Pointed, and dTFIIA-S during photoreceptor induction is striking. Moreover, all three proteins are up-regulated in all photoreceptor precursors and in all cells of the R7 equivalence group that can be transformed to R7 neurons [Dickson et al. 1992a]. Thus, it appears possible that the increase in expression of dTFIIA-S [one of the components of holo-TFIIA] is required during cellular determination to allow the expression of sufficient levels of effector genes in response to Ras pathway activation. Interestingly, the expression pattern of the large subunit of TFIIA does not appear to be modulated during photoreceptor development. Because biochemical data suggest that dTFIIA-S and dTFIIA-L are biologically inactive in isolation [Yokomori et al. 1994], dTFIIA-L may be present in excess and therefore not be limiting during development. However, further analysis of the dTFIIA-L locus is required to confirm this.

Photoreceptor development is sensitive to dTFIIA-S levels

In addition to the increased dTFIIA-S expression levels present in photoreceptor precursors, phenotypic analysis of mutations in the locus provides further evidence for a role for dTFIIA-S in Ras pathway signaling. Because null alleles of dTFIIA-S are recessive [not shown], a single copy of the dTFIIA-S gene is sufficient for normal eye development. However, a further reduction in dTFIIA-S activity in flies homozygous for the hypomorphic allele dTFIIA-S573 quite specifically affects photoreceptor development as shown by the disruption in the pattern of R1/R6 and R7 cells in mutant eye imaginal discs [Fig. 4]. This phenotype can be rescued by exogenous dTFIIA-S expression [Fig. 5B]. In addition to the general disruption in ommatidial recruitment, one of the phenotypes observed in both eye imaginal discs and adult clones homozygous for dTFIIA-S573 is the presence of extra R7
The dTFIIA-S locus was cloned by virtue of its proximity to an inner photoreceptor cell fate (Figs. 4 and 5A). Similar phenotypes are observed in mutations in several genes required for photoreceptor determination, for example, rough, svp, and tramtrack (Tomlinson et al. 1988; Mlodzik et al. 1990; Heberlein et al. 1991; Xiong and Montell 1993). This observation indicates an increased requirement for dTFIIA-S during photoreceptor determination.

Like jun and pointed, dTFIIA-S is also expressed at increased levels in other cells of the R7 equivalence group such as the cone cells. These cells are transformed into functional R7 cells by ectopic Ras pathway activation, and the efficiency of this transformation is lowered by reduction of the amount of functional Pointed and Jun proteins (Bohmann et al. 1994; O'Neill et al. 1994). Similarly, when only one copy of dTFIIA-S is present, a comparable suppression of cone cell transformation is also observed. This indicates that the level of holo-TFIIA (assumed to be affected by a reduction in dTFIIA-S gene dosage) can be a limiting factor during Ras pathway-induced cell fate induction. Thus, a reduction of TFIIA function in cone cell precursors appears to be critical during the Ras-mediated induction.

Concluding remarks

The in vivo results presented here are complementary to and extend in vitro data showing that holo-TFIIA can act as an enhancer of the trans-activation potential of certain site-specific transcription factors (Hori and Carey 1994; Ozer et al. 1994; Sun et al. 1994; Yokomori et al. 1994). A similar function has been attributed to the TAFs (Pugh and Tjian 1990, for review, see Maldonado and Reinberg 1995). This hypothesis is supported further by the recent finding that mutations in some TAFs are also capable of suppressing Ras-mediated, dosage-sensitive phenotypes (D. Wasserman and G. Rubin, pers. comm.). The observed suppression is unlikely to be attributable simply to a reduction in the rate of overall transcription caused by haploinsufficiency of the basal transcription machinery because other components do not show an interaction (Table 1). Thus, the effect is probably caused by a molecular function shared by both TAFs and TFIIA, their coactivator role during activated transcription. In summary, the results presented here suggest that dTFIIA-S [and probably holo-TFIIA] is specifically required, in parallel with TAFs, to mediate the interactions of site-specific transcription factors with the basal transcription machinery during activated transcription in development. This may represent an assay with which the specificity of transcriptional activator/basal machinery interactions can be tested in an in vivo environment.

Materials and methods

Molecular analysis and generation of dTFIIA-S mutations

The dTFIIA-S locus was cloned by virtue of its proximity to the P-element insertion F125. Plasmid rescue DNA was obtained (Mlodzik and Hiromi 1992), and the adjacent transcript was identified and sequenced by standard methods (Sanger et al. 1977; Yokomori et al. 1994).

Mutations in the dTFIIA-S locus were generated by the mobilization of the F125 P element after crossing in a chromosome carrying the constitutive Δ2-3 P-element transposase source (Daniels et al. 1985; Robertson et al. 1988). Resulting stocks were scored for loss of F125 and tested for homozygous lethality. The extent of the resulting genomic deletions was determined by Southern blot analysis. The lethality caused by dTFIIA-SΔ75 and the null allele dTFIIA-SΔ32 is rescued in transgenic flies carrying constructs, which express dTFIIA-S. Rescue constructs contained either the dTFIIA-S cDNA expressed from the heat-inducible hsp70 promoter (pCaSpeR-121) or the 4-kb genomic EcoRI fragment containing the transcription unit and P-element insertion site (Fig. 1).

Antibody staining

Antibody stainings were essentially performed as described previously (Tomlinson and Ready 1987). Antibodies against Bar [Higashijima et al. 1992] and β-galactosidase (Promega) were used at 1:300 dilution with 0.3% Triton X-100 and 0.3% Deoxycholate as detergents. The rabbit anti-dTFIIA-S serum was preabsorbed against 0- to 12-hr embryos prior to final incubations at 1:2000 dilution, with 0.7% saponin as detergent. Whole-mount staining was carried out using HRP-conjugated secondary antibodies (Bio-Rad). A rat monoclonal antibody against Elav (a kind gift of G. Rubin, University of California, Berkeley) was used for confocal microscopy and Texas Red-conjugated antirabbit IgG and FITC-conjugated antirat IgG (dilution 1:200) secondary antibodies were from Jackson Immuno-research. Scanning confocal images were captured using the EMPL Compact Confocal Microscope.

Generation of mutant clones

Homozygous mutant clones were generated by mitotic recombination events induced either by the FLP/FRT system (Xu and Rubin 1993) or X-ray irradiation [1000 rads] in first-instar larvae. Clones were marked with the myc epitope marker present in pM constructs (Xu and Rubin 1993) for analysis in third-instar eye imaginal discs, with the cuticle marker Stubble or the eye color marker w + for analysis in adult animals.

Histological analysis of adult retinae

Sections of adult retinae were made according to Tomlinson and Ready (1987). The average number of R7 cells per ommatidium was scored in apical sections of 5–6 eyes for each genotype shown, and the mean number of R7 photoreceptors per ommatidium was calculated. Experimental and control values of R7/ommatidium were scored in sibling flies. For scanning electron microscopy analysis, heads were dehydrated through an ethanol series, critical point dried, and coated with 20 nm of gold.

Acknowledgments

We thank Ernst Hafen, Susan Parkhurst, Todd Laverty, Gerald Rubin, and the Drosophila Genome Center at the University of California, Berkeley (supported by grants from the National Institutes of Health and the Howard Hughes Medical Institute), for fly stocks, David Wasserman and Gerald Rubin for sharing results prior to publication, Nick Salmon and Ernst Stelzer for advice with confocal microscopy, and Klaus Hartung for valu-
able assistance with scanning electron microscopy. Gerrit Begemann, Dirk Bohmann, Ernst Hafen, David Jackson, Susan Smith, David Strutt, Henk Stunnenberg, and Volker Wiersdorff provided valuable comments on the manuscript. The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 USC section 1734 solely to indicate this fact.

References

Baker, N. and G.M. Rubin. 1992. Ellipse mutations in the Drosophila homologue of the EGF receptor affect pattern formation. Cell division and cell death in eye imaginal discs. Dev. Biol. 150: 381–396.

Basler, K. and E. Hafen. 1989. Dynamics of Drosophila eye development and temporal requirements of sevenless expression. Development 107: 723–731.

Basler, K., B. Christen, and E. Hafen. 1991. Ligand-independent activation of the sevenless receptor tyrosine kinase changes the fate of cells in the developing Drosophila eye. Cell 64: 1069–1081.

Basler, K., D. Yen, A. Tomlinson, and E. Hafen. 1990. Programming cell fate in the developing Drosophila retina: Transformation of R7 cells by ectopic expression of rough. Genes & Dev. 4: 728–739.

Begemann, G., A.-M. Michon, L. van der Voorn, R. Weft, and M. Mlodzik. 1995. The Drosophila orphan nuclear receptor Seven-up requires the Ras pathway for its function in photoreceptor determination. Development 121: 225–235.

Biggs, W.H., K.H. Zavitz, B. Dickson, A.v.-d. Straten, D. Brunner, E. Hafen, and S.L. Zipursky. 1994. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway. EMBO J. 13: 1628–1635.

Bohmann, D., M.C. Ellis, L.M. Staszewski, and M. Mlodzik. 1994. Drosophila Jun mediates Ras-dependent photoreceptor determination. Cell 78: 973–986.

Brunner, D., K. Ducker, N. Oellers, E. Hafen, H. Scholz, and C. Klämbt. 1994a. The ETS domain protein Pointed-P2 is a target of MAP kinase in the Sevenless signal transduction pathway. Nature 370: 386–389.

Brunner, D., N. Oellers, J. Szabad, W.H. Biggs, S.L. Zipursky, and E. Hafen. 1994b. A gain-of-function mutation in Drosophila MAP kinase activates multiple receptor tyrosine kinase signaling pathways. Cell 76: 875–888.

Chang, H.C., N.M. Solomon, D.A. Wasserman, F.D. Karim, M. Therrien, G.M. Rubin, and T. Wolff. 1995. phyllopod functions in the fate determination of a subset of photoreceptors in Drosophila. Cell 80: 463–472.

Chen, J.L., L.D. Attardi, C.P. Verrijzer, K. Yokomori, and R. Tjian. 1994. Assembly of recombinant TFIIID reveals differential coactivator requirements for distinct transcriptional activators. Cell 79: 93–105.

Daniels, S.B., M. McCarron, C. Love, and A. Chovnick. 1985. Dysgenesis-induced instability of rosy locus transformation in Drosophila melanogaster. Analysis of excision events and the selective recovery of control element deletions. Genetics 109: 95–117.

Dickson, B. and E. Hafen. 1994. Genetics of signal transduction in invertebrates. Curr. Opin. Genet. Dev. 4: 64–70.

Dickson, B., F. Sprenger, and E. Hafen. 1992a. Prepattern in the developing Drosophila eye revealed by an activated torso-sevenless chimeric receptor. Genes & Dev. 6: 2327–2339.

Dickson, B., F. Sprenger, D. Morrison, and E. Hafen. 1992b. Raf functions downstream of Ras1 in the sevenless signal transduction pathway. Nature 360: 600–603.

Dickson, B.J., M. Dominguez, A.v.-d. Straten, and E. Hafen. 1995. Control of Drosophila photoreceptor cell fates by phyllopod, a novel nuclear protein acting downstream of the raf kinase. Cell 80: 453–462.

Fortini, M.E., M.A. Simon, and G.M. Rubin. 1992. Signalling by the sevenless protein tyrosine kinase is mimicked by Ras1 activation. Nature 355: 559–561.

Freeman, M. 1994. The spitz gene is required for photoreceptor determination in the Drosophila eye where it interacts with the EGF receptor. Mech. Dev. 48: 25–35.

Gill, C., E. Pascal, Z.H. Tseng, and R. Tjian. 1994. A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIIID complex and mediates transcriptional activation. Proc. Natl. Acad. Sci. 91: 192–196.

Goodrich, J.A. and R. Tjian. 1994. TBP-TAF complexes: Selectivity factors for eukaryotic transcription. Curr. Opin. Cell Biol. 6: 403–409.

Goodrich, J.A., T. Hoey, C.J. Thut, A. Admon, and R. Tjian. 1993. Drosophila TAFII40 interacts with both a VP16 activation domain and the basal transcription factor TFIIB. Cell 75: 519–530.

Hamilton, B.J., M.A. Mortin, and A.L. Greenleaf. 1993. Reverse genetics of Drosophila RNA polymerase II: Identification and characterisation of RpII140, the genomic locus for the second-largest subunit. Genetics 134: 517–529.

Heberlein, U., M. Mlodzik, and G.M. Rubin. 1991. Cell fate determination in the developing Drosophila eye: Role of the rough gene. Development 112: 703–712.

Higashijima, S., T. Kojima, T. Michiue, S. Ishimaru, Y. Emorei, and K. Saigo. 1992. Dual Bar homeo box genes of Drosophila required in two photoreceptor cells, R1 and R6, and primary pigment cells for normal eye development. Genes & Dev. 4: 1835–1847.

Hiromi, Y., M. Mlodzik, S.R. West, G.M. Rubin, and C.S. Goodman. 1993. Ectopic expression of seven-up causes cell fate changes during ommatidial assembly. Development 118: 1123–1135.

Hoey, T., B.D. Dynlacht, M.G. Peterson, B.F. Pugh, and R. Tjian. 1990. Isolation and characterisation of the Drosophila gene encoding the TATA box binding protein, TFIIID. Cell 61: 1179–1186.

Hori, R. and M. Carey. 1994. The role of activators in assembly of RNA polymerase II transcription complexes. Curr. Opin. Genet. Dev. 4: 236–244.

Karpen, G.H. and A.C. Spradling. 1992. Analysis of subtelomeric heterochromatin in the Drosophila minichromosome DP1187 by single P-element insertional mutagenesis. Genetics 132: 737–753.

Kimmel, B.E., U. Heberlein, and G.M. Rubin. 1990. The homeo domain protein rough is expressed in a subset of cells in the developing Drosophila eye where it can specify photoreceptor cell subtype. Genes & Dev. 4: 712–727.

Krämer, H., R.L. Cagan, and S.L. Zipursky. 1991. Interaction of bride of sevenless membrane-bound ligand and the sevenless tyrosine-kinase receptor. Nature 352: 207–212.

Maldonado, E. and D. Reinberg. 1995. News on initiation and elongation of transcription by RNA polymerase II. Curr. Opin. Cell Biol. 7: 352–361.

Mlodzik, M. and Y. Hiromi. 1992. Enhancer trap in Drosophila: Its application to neurobiology. Methods Neurosci. 9: 397–414.

Mlodzik, M., Y. Hiromi, U. Weber, C.S. Goodman, and G.M. Rubin. 1990. The Drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor
cell fates. Cell 60: 211–224.
Mlodzik, M., Y. Hiromi, C.S. Goodman, and G.M. Rubin. 1992. The presumptive R7 cell of the developing Drosophila eye receives positional information independent of sevenless, boss, and sina. Mech. Dev. 37: 37–42.
Mullins, M.C. and G.M. Rubin. 1991. Isolation of temperature-sensitive mutations of the tyrosine kinase receptor sevenless (sev) in Drosophila and their use in determining its time of action. Proc. Natl. Acad. Sci. 88: 9387–9391.
O’Neill, E.M., I. Rebay, R. Tjian, and G.M. Rubin. 1994. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78: 137–147.
Ozer, J., P.A. Moore, A.H. Bolden, A. Lee, C.A. Rosen, and P.M. Lieberman. 1994. Molecular cloning of the small γ subunit of human TFIIA reveals functions critical for activated transcription. Genes & Dev. 8: 2324–2335.
Parkhurst, S.M. and D. Ish-Horowicz. 1991. wimp, a dominant maternal-effect mutation, reduces transcription of a specific subset of segmentation genes in Drosophila. Genes & Dev. 5: 341–357.
Pugh, B.F. and R. Tjian. 1990. Mechanism of transcriptional activation by Sp1: Evidence for coactivators. Cell 61: 1187–1197.
Ranish, J.A., W.S. Lane, and S. Hahn. 1992. Isolation of two genes that encode subunits of the yeast transcription factor II A. Science 255: 1127–1129.
Rebay, I. and G.M. Rubin. 1995. Yan functions as a general inhibitor of differentiation and is negatively regulated by activation of the Ras1/MAPK pathway. Cell 81: 857–866.
Robertson, H.M., C.R. Preston, R.W. Phillis, D.M. Johann-Schitz, W.K. Denz, and W.R. Engels. 1988. A stable genomic source of P-element transposase in Drosophila melanogaster. Genetics 118: 461–470.
Robinson, S. and K. White. 1991. Characterisation and spatial distribution of the ELAV protein during Drosophila melanogaster development. J. Neurobiol. 22: 443–461.
Rutledge, B.J., K. Zhang, E. Bier, Y.N. Jan, and N. Perrimon. 1992. The Drosophila spitz gene encodes a putative EGF-like growth factor involved in dorsal–ventral axis formation and neurogenesis. Genes & Dev. 6: 1503–1517.
Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. 74 5463–5467.
Sun, X., D. Ma, M. Sheldon, K. Yeung, and D. Reinberg. 1994. Reconstitution of human TFIIA activity from recombinant polypeptides: A role in TFIIID-mediated transcription. Genes & Dev. 8: 2336–2348.
Tio, M., C. Ma, and K. Moses. 1994. spitz, a Drosophila homologue of transforming growth factor-α, is required in the founding photoreceptor cells of the compound eye facets. Mech. Dev. 48: 13–23.
Tomlinson, A. and D.F. Ready. 1987. Neuronal differentiation in the Drosophila ommatidium. Dev. Biol. 120: 366–376.
Tomlinson, A., D.D.L. Bowtell, E. Hafen and G.M. Rubin. 1987. Localization of the sevenless protein, a putative receptor for positional information, in the eye imaginal disc of Drosophila. Cell 51: 143–150.
Tomlinson, A., B.E. Kimmel, and G.M. Rubin. 1988. rough, a Drosophila homeobox gene required in photoreceptors R2 and R5 for inductive interactions in the developing eye. Cell 55: 771–784.
Xiong, W.C. and C. Montell. 1993. tramtrack is a transcriptional repressor required for cell fate determination in the Drosophila eye. Genes & Dev. 7: 1085–1096.
Xu, T. and G.M. Rubin. 1993. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117: 1223–1237.
Yokomori, K., M.P. Zeidler, J.L. Chen, C.P. Verrijzer, M. Mlodzik, and R. Tjian. 1994. Drosophila TFIIA directs cooperative DNA binding with TBP and mediates transcriptional activation. Genes & Dev. 8: 2313–2323.
Zipursky, S.L. and G.M. Rubin. 1994. Determination of neuronal cell fate: Lessons from the R7 neuron of Drosophila. Annu. Rev. Neurosci. 17: 375–397.
Drosophila TFIIA-S is up-regulated and required during Ras-mediated photoreceptor determination.

M P Zeidler, K Yokomori, R Tjian, et al.

Genes Dev. 1996, 10:
Access the most recent version at doi:10.1101/gad.10.1.50