Anti-cancer green bionanomaterials: present status and future prospects

Hamed Barabad, Muhammad Ovais, Zabta Khan Shinwari, and Muthupandian Saravanan

ABSTRACT
Cancer is one of the most common health problems responsible for outnumbered deaths worldwide. Nanomedicine plays an important role in developing alternative and more effective treatment strategies for cancer theranostics. However, the toxicity, high cost and nanoparticles (NPs) production complexity are some of the major issues that obstruct the use of existing nanomedicine. Recently, the green synthesis of biogenic NPs from plants and microbial sources has become an emerging field due to their safer, eco-friendly, simple, fast, energy efficient, low-cost and less toxic nature. Interestingly, NPs play a key role in diagnosis of tumor at the initial stage by allowing cellular visualization. Furthermore, prospective applications of green NPs include magnetically responsive drug delivery, anti-cancer activity, photo-thermal therapy and bio-imaging. The present review provides perspective on the use of anti-cancer green bionanomaterials with a focus on their present status and future prospects in the theranostics of cancer.

1. Cancer: a global menace
According to the National Cancer Institute (NCI), United States (U.S), cancer contains over more than 100 types of Institute (1). Besides, it is anticipated that the incidence of cancer by 2030 will reach around 21.7 million and there would be about 13 million deaths owing to aging and population growth. The latest report published in June 2016 by iMSHealth (Institute for Healthcare Informatics) anticipates the global cancer treatment market to reach $150 Billion by 2020 Informatics (2). Nevertheless, the tumor load in the future is likely to be considerably larger due to lifestyle adoption, leading to an increased risk of developing tumor, such as physical inactivity, cigarette smoking and unhealthy diet in the economically developing countries' society (3). Notably, cancer causes one in seven deaths globally, causing more deaths than malaria, tuberculosis and AIDS Society (3, 4). Impressively, the largest proportion of cancer cases is in developing countries, accounting for around 57% of new cases and 65% of cancer-related
deaths. In 2012, cancer caused premature deaths of about 4.3 million people and the number of premature cancer deaths are presumed to increase by 44% between 2012 and 2030 Organization (5). By 2025, it is estimated that in the industrialized world only 20–25% of the people will be aged over 65 years, and of those 50–60% who die of tumor will be aged over 75 years (6). On 1 January 2016, over 15.5 million of the population of the United States had a previous history of cancer disease. By 1 January, 2026, this number is estimated to increase to 20.3 million. Moreover, the high prevalent cancers in 2016 that affects women are uterine corpus (757,190), breast (3,560,570), and colon and rectum cancer (727,350). For men, prostate (3,306,760), melanoma (614,460), and colon and rectum (724,690) cancers are most common (7). Additionally, nearly 189,910 new cancer patients and about 69,410 cancer-related deaths were estimated among black people in 2016 in the United States, involving 95,920 cases among women and 93,990 cases in men. Although black people have higher death rates due to cancer than whites, the discrepancy has lessened for all types of cancer combined and for prostate and lung cancers (in males only).

Radiotherapy, chemotherapy and surgery are some of the cancer treatments which are used to improve a patient’s life. Besides, one of the major problems in the cancer treatment process is the side-effects owing to conventional treatment strategies (8–10). Recent cancer research findings have enhanced understanding about carcinogenesis, the metastatic cascade and genetic factors that influence tumor growth and development. Overall, despite some progress in cancer control, incidence and death rates are increasing for cancer types. Recently, the applications of nanobiotechnology have revealed novel strategies for the treatment and diagnosis of cancer. Thereby, the current review article aims to highlight significant applications of biosynthesized green nanomaterials in cancer theranostics and the hurdles in their way to clinical trials.

2. Green bionanomaterials: an insight

Green bionanomaterials involving metals such as gold, silver, copper, titanium, zinc and iron prepared from different bio-sources, and have been reported for various biomedical applications (11). In addition, metal NPs are used in drug delivery, gene delivery, medicine, cell labeling, sensors, food packaging, wound dressings, etc. However, some applications of metal NPs are still under development such as magnetically responsive drug delivery, photo-thermal therapy and photo-imaging (Figure 1) (12–14). Although fabrication of NPs has attracted great interest for various physical and chemical processes, but there is an urgent need to explore alternative routes owing to some unsatisfying conditions of these methods such as the need for high temperature in the thermo-reductive process or intensive energy in the laser ablation process (15). Moreover, the fabrication of NPs by a chemical process may require toxic substrates, generates harmful wastes or requires large amounts of energy and even has low productivity (16). Hence, natural products and resources may ultimately prove to be more efficient and cost-effective. Remarkably, many plant extracts, algae and an extensive range of microorganisms containing bacteria, actinomycetes, fungi and yeast are reported to be proficient in synthesizing bionanomaterials, Priester et al. (17), Barabadi et al. (18), Honary et al. (19), Rahimi et al. (20), Salunke et al. (11), Ovais et al. (21), Mukherjee et al. (22), Patra et al. (23) and Ovais et al. (24). Interestingly, isolated chloroplasts were reported to be able to catalyze the biosynthesis of bionanomaterials. More interestingly, microalgae were designed for ecofriendly, scalable and permanent photobioreactors for sustainable and continuous fabrication of valuable bionanomaterials (15). Notably, the exact mechanism of biosynthesis of metal NPs is not well understood yet (25). However, it is believed that some enzymes play a role in bio-reducing metal ions to form metal NPs (26, 27). Figure 2 shows the schematic mechanism of microbial-mediated synthesis of metal NPs (11). The negatively charged bacterial cell wall interacts electrostatically with metal ions having positive charge. In addition, the bioreduction process may be catalyzed by enzymes inside the cells or on the cell surface. Salunke et al. (28) suggested the role of Saccharomyces cerevisiae cell wall components, some proteins and alcoholic compounds in the synthesis and stabilization of MnO2 NPs (28). The mechanism of extracellular microbial-mediated biofabrication of metal NPs is basically due to microbial nitrate reductase responsible for reduction of metal ions into metallic NPs (11). All the mentioned mechanisms lead to extracellular or intracellular fabrication of metal NPs. In case of phytosynthesis of metal NPs, it is believed that phytochemicals such as proteins, flavonoids, polyphenols, alkaloids, saponins, phenols, essential oils and polyols which are present in the plants extract play a main role in bio-reducing the metal ions, converting them to metal NPs and also capping of the synthesized NPs for stabilization (13, 29–31). The plant-mediated mechanism of biogenic silver NPs’ (AgNPs’) production is illustrated in Figure 3.
2.1. Anti-cancer activity of green nanomaterials: A mechanistic approach

In vitro anti-cancer activity of metal bionanoparticles has been confirmed against different cancer cell lines, i.e. MDA-MB-231 and MCF-7 (human breast adenocarcinoma) (32, 33), A549 (human lung adenocarcinoma) (34, 35), HCT116 (human colon colorectal carcinoma) (36), HeLa (human cervical cancer) (37, 10, 38), NCI-H460 (non-small cell lung cancer) (39), U87 (glioblastoma multiforme cell) (40), PANC-1 (pancreatic adenocarcinoma) (41), MG-63 (osteosarcoma cell) (42, 43), AGS (human gastric carcinoma) (44, 45), SMMC-7721 (human hepatoma cells) (46), LS174T (human colon adenocarcinoma cell) (46), HT-29 (human colorectal adenocarcinoma) (47), Varsha B (48), Caco-2 (human epithelial colorectal adenocarcinoma) (47, 49), HCT 15 (human colon adenocarcinoma) (50, 51), PC-3 (human prostate carcinoma) (52, 53), U937 (human histiocytic lymphoma cell) (54), COLO205 (human colon adenocarcinoma) (41, 54), B16F10 (mouse melanoma) (54, 55), 4T1 (mouse breast cancer) (56), CRL-1451 (mouse lung adenocarcinoma) (56), EAC (ehrlich ascites carcinoma) (57), CT-26 (mouse colon adenocarcinoma) (56), WEHI-3B (mouse leukemia) (56), CEM-ss (human T acute lymphoblastic leukemia) (58), CaOV-3 (ovarian adenocarcinoma) (41), Jurkat (human T acute lymphoblastic leukemia) (58, 59), HL-60 (human acute myeloid leukemia) (41, 60), K562 (human chronic myelogenous leukemia) (58, 61), A431 (human vulvar squamous cell carcinoma) (62), HNGC-2 (human adult glioma tissue) (55), ECV-304 (human urinary bladder carcinoma) (55), RAW254.7 (mouse leukemia) (49), SiHa (human cervical squamous cell carcinoma) (63), DL (dalton’s lymphoma) (64), HepG2 (hepatic cancer) (65–67), HEp-2 (human larynx carcinoma) (68, 69), ZR-75-1 (human caucasian breast carcinoma) (70), DAUDI (human burkitt’s lymphoma) (70), T47D (human breast cancer) (71), KB (human oral cancer) (72, 73), C26 (murine colon carcinoma) (74), LoVo (human colon adenocarcinoma) (75), LoVo/DX (multidrug resistance human colon adenocarcinoma sub-line) (75). The anticancer activity of various metal bionanoparticles from different bio-sources has been listed in Tables 1 and 2 from studies conducted in recent years by several research groups. Based on the enlisted studies, metal NPs exhibit a dose-dependent cytotoxic activity on various cancer cell lines. Moreover, biocompatibility testing of metal NPs has been done on different normal cell lines such as HaCaT (human keratinocyte) (76, 77), HMEC (human mammary epithelial cell) (33), HDFa (human normal skin dermal fibroblast) (39), HEK 293 (normal human embryonic kidney cell) (40, 78), Vero (african green monkey kidney cell) (79, 80), RWPE-1 (non-malignant human prostate epithelial cell) (81),...
PBMC (human peripheral blood mononuclear cell) (82), HL-7702 (normal human liver cell) (46), 3T3 (normal mouse fibroblast cell) (83, 84), HUVEC (human umbilical vein endothelial cell) (55), Rat L6 (rat skeletal muscle cell) (85), MDCK (canine cocker spaniel kidney cell) (86), CV-1 (monkey African green kidney fibroblast) (87), WI-38 (human caucasian fetal lung) (87), HEK-293 (human embryo kidney) (88), BHK21 (hamster syrian kidney) (89), MRC-5 (normal human lung fibroblast cell) (41, 45), Raw 264.7 (Murine macrophage cell lines) (35), 3T3-L1 (mouse embryo) (90), PLs (human normal peripheral lymphocytes) (34), hFOB (human fetal osteoblast progenitor cell) (91), MCF10A (human breast epithelial cell) (71), H9c2 (rat cardiac myoblast) (92), NIH3T3 (mouse fibroblast) (93) and C2C12 (mouse muscle myoblast) (94).

According to the literature, several studies reported nontoxicity and biocompatibility of some metal NPs in normal cell lines, but high toxicity in cancer cell lines. For instance, Anand et al. (95) reported notable antitumor activity of phyto-synthesized palladium NPs against A549, but no toxicity was found in human normal peripheral lymphocytes cells (95). Besides, Du et al. (96) reported plant-mediated synthesis and anticancer activity of AgNPs against Hela and A549 in the range of 1–5 μg/mL, but no significant cytotoxic effect was observed up to 10 μg/mL in normal HaCaT and also ≤2 μg/mL in Raw 264.7 (96). Similarly, Uma Suganya et al. (33) reported substantial in vitro anticancer activity of biosynthesized AuNPs (2–10 μg/mL) against MDA-MB-231, but no significant toxicity was found in normal HMEC in the range of 5–80 μg/mL, indicating considerable biocompatibility of NPs in normal cells (33). Also, Kummara et al. (97) showed very high cytotoxicity of green synthesized AgNPs against NCI-H460 at 240 ppm, but no cytotoxicity was found in normal HDFa (97). Furthermore, Singh et al. (98) reported not only remarkable cytotoxicity of phyto-fabricated AgNPs against A549 and HeLa above 5 μg/mL, but also no significant toxicity in normal RAW 264.7 (98). Further work showed antitumor effects of bio-fabricated AgNPs (0.02–50 μg/mL) against MCF-7; however, no cytotoxic effect was found in normal human blood mononuclear cells (99). In addition, Namvar et al. (58) reported biocompatibility of biological AuNPs in normal human blood mononuclear cells up to 100 μg/mL, but substantial cytotoxicity against cancer cell lines including CEM-ss, Jurkat, HL-60 and K562 (58). Likewise, Venkatesan et al. (76) showed biocompatibility of biosynthesized AuNPs in

Figure 2. Schematic mechanism of microbial-mediated synthesis of metal nanoparticles (Adapted with permission from Salunke et al. (11)).
normal HaCaT in the range of 10–50 μg/mL (76). Furthermore, Yang et al. (87) reported no cytotoxicity of plant-mediated synthesized AuNPs (10–160 μg/mL) in normal CV-1, WI-38 (87). Although these studies depicted biocompatibility of metal NPs, some studies are not in agreement. Specifically, Majeed et al. (100) reported fungus-mediated synthesis of AgNPs by using *Penicillium decumbens* (MTCC-2494) and assessed significant cytotoxic effects by MTT assay in the range of 20–120 μg/mL against A-549 while 50% survival was demonstrated in the normal Vero cell line (100). In other study reported by Baharara et al. (101), as evidenced by MTT assay, biosynthesized AuNPs inhibit proliferation of HeLa cells (IC50:100 μg/mL) and normal bone marrow mesenchymal stem cells (IC50:300 μg/mL). However, cytotoxicity of AuNPs in bone marrow were lower than cancerous Hela cells (101). Likewise, Xia et al. (46) affirmed stronger cytotoxic effects of biogenic AgNPs (IC50: 27.75 μg/mL) against human cancerous hepatoma SMMC-7721 cells but showed lower cytotoxic against human normal liver (HL-7702) cells (IC50: 81.39 μg/mL) (46). Furthermore, Ma et al. (102) reported that the biosynthesized AgNPs, using a cell-free filtrate of the fungus strain *Penicillium aculeatum* Su1 as a reducing agent, presented higher biocompatibility toward human bronchial epithelial cells and high cytotoxicity in a dose-dependent manner with an IC50 of 48.73 μg/mL toward A549 cells. Additionally, Kasithevar (13) reported a simple and rapid synthesis of AgNPs using aqueous leaf extract of *Alysicarpus monilifer* mostly spherical in shape with a mean size of 15 ± 2 nm. Their study showed no cytotoxicity of AgNPs against Vero cell lines at the concentration of 200 μg/mL after 72 h of incubation. In contrast, Valli Nachiyar et al. (103) reported microbial-mediated synthesis of titanium dioxide (TiO2) NPs. In their study, TiO2 NPs were found to be more toxic against normal HaCaT (IC50: 55 μg/mL) than cancerous HEp2 cell lines (IC50:172 μg/mL) (103). Moreover, Lima et al. (104) reported genotoxic effects of microbial biosynthesized spherical AgNPs (Average size: 40.3 ± 3.5 nm) at concentrations of 5.0 and 10.0 μg/mL (104). In a study, natural anti-cancer flavone Chrysin (ChR), (5, 7-Dihydroxyflavone ChR), was used to synthesize AgNPs and AuNPs in a greener route without toxic additives. ChR strongly reduces Ag+ and Au3+ into their nano-forms with uniform size, shape and surface chemistry. In vitro anti-cancer results revealed that the prepared NPs exhibit enhanced cytotoxicity than ChR against treated two
Table 1. Phyto-sources for synthesis of bionanoparticles and their anticancer activity in various cell lines for the past 5 years.

Plant	Part used	Nanoparticle type	Size (nm)	Morphology	Anticancer activity (in vitro model)*	Dose (µg/well)	Exposure time	Major outcome	Reference
Acalypha indica	Leaf	CuO	26–30 nm	Spherical	MCF-7	6.5–100 µg/mL	48 h	IC50: 56.16 µg/mL	Sivaraj and colleagues (32)
Achillea biebersteinii	Leaf	Ag	10–40 nm	Spherical and pentagonal	MCF-7	15–100 µg/mL	24 h	IC50: 20 µg/mL	Baharara et al. (153)
Adenium obesum	Leaf	Ag	10–30 nm	Spherical	MCF-7	100–600 µg/mL	24 h	IC50: 217 µg/mL	Farah et al. (154)
Alianthus excelsa	Leaf	Ag	22–30 nm	Spherical	MCF-7	50–150 µg/mL	24 h	IC50:265.579 µg/mL	Vinmathi and JACOB (155)
Albizia adianthifolia	Leaf	Ag	4–35 nm	Spherical	A549 and PLs	10 and 50 µg/mL	6 h	Low toxicity at 10µg/mL, but significant toxicity at 50µg/mL in A549	Gengan and colleagues (34)
Aloe vera	Leaf	Ag	70.7–192.02 nm	Spherical	PBMCs	0.0025–0.04 mg/mL	48 h	IC50: ≤0.0025 mg/mL	Tippayawat and colleagues (82)
Alternanthera sessilis	Leaf	Ag	30–50 nm	Spherical	PC3	1.56–25µl/mL	48 h	IC50: 6.85 µg/mL	Firdhouse and Lalitha (156)
Alternanthera tenella	Leaf	Ag	~48 nm	Spherical	MCF-7	25–100 µg/mL	24 h	IC50: 42.5 µg/mL	Sathishkumar et al. (157)
Andean Mora (Rubus glaucus Benth.)	Leaf	Ag	12–50 nm	Quasi-spherical	HepG2	0.01–1.0 µM	2 h	No toxicity observed	Kumar and colleagues (65)
Annona squamosa	Peel	SnO2	Average size: 27.5 nm	Spherical	HepG2	1–500 µg/mL	2 h	IC50: 148 µg/mL	Roopan and colleagues (66)
Antigone letopus Hook. and Arn.	Aerial part	Au	13–28 nm	Spherical with few triangular shapes	MCF-7	31.25–1000 µg/mL	48 h	IC50: 257.8 µg/mL	Balasubraman et al. (158)
Apple (Malus domestica)	Fruit	Ag	10–40 nm	Spherical	MCF-7	10–100 µg/mL	24 and 48 h	No toxicity at ≤ 70 µg/mL after 24 h of incubation Significant toxicity at ≥ 10 µg/mL after 48 h of incubation	Lokina and colleagues (9)
Areca catechu	Nut	Au	22.2 nm	Spherical	HeLa	6.25–100 µg/mL	24 h	IC50: 25.17 µg/mL	Rajan and colleagues (37)
Argemon maxicana	Leaf	Ag	2–6 nm	Spherical	SiHa	25–100 µg/mL	72 h	IC50: >50 µg/mL	Jha and Prasad (63)
Artemisia marschalliana Sprengel	Aerial part	Ag	5–50 nm	Spherical	AGS	3.125–100 µg/mL	24 h	IC50: 21.05 µg/mL in AGS	Salehi and colleagues (44)
Azadirachta indica	Leaf	Au	≤121.7 nm	Spherical, hexagonal and triangular shapes	HeLa and MDCK	0.1–0.25 mM	48 h	No toxicity	Dharmatti and colleagues (86)
Azadirachta indica (neem)	Leaf	Ag	94 nm	Spherical	HDFa and NCI-H460	0–240ppm	24 h	Very high toxicity at 240 ppm in NCI-H460, but no toxicity in normal HDFa	Kummara and colleagues (39)
Bambusa arundinacea (Ba) and Bambusa nutans (Bn)	Leaf	Ag	30–90 nm	Spherical	PC3 and Vero cells	0–100 µg/mL	48 h	IC50: 73.57 µg/mL for BaAgNP in PC3	Kalaarasi et al. (159)
								IC50: 84.88 µg/mL for BnAgNP in PC3	
								IC50: 93.58 µg/mL for BaAgNP in Vero	
Common Name	Part	Material	Size (nm)	Morphology	Cells/Line/Plant	IC50/IC90/EC50 (µg/mL)	Description		
------------------------------	---------------------	----------	-----------	--	---------------------------	------------------------	---		
Borago officinalis	Leaf	Ag	30–80	Spherical, hexagonal, and irregular	RAW 264.7, A549 and HeLa	1–10	24 h No significant toxicity in RAW 264.7. Significant toxicity in A549 at 10 µg/mL and HeLa at 5 µg/mL		
Broccoli	Whole plant	Cu	~4.8	Spherical	PC-3	0.5–1.5µM	2 h No toxicity		
Broccoli florets (Brassica Oleracea L.var. Italica)	Aerial part	Ag	40–50	Spherical	MCF-7	50–150	24 h IC50: 121.56µg/mL		
Bruguiera cylinlica	Leaf	Ag	9–24	Hexagonal	MCF-7	50, 100 µg/mL	12, 24, 36 h IC50: 100 µg/mL after 12 h of incubation 90% toxicity at 100 µg/mL after 36 h of incubation		
Butea monosperma	Leaf	Ag and Au	20–80	Mainly spherical but few rods, irregular and hexagonal	B16F10, MCF-7, HNGC2, A549, HUVEC and ECV-304	0.3–2.5µM	24, 48 h No toxicity		
Cajanus cajan	Seed coat	Au	9–41	Spherical	HepG2 and vero cells	2–10 µg/mL in HepG2 10–320 µg/mL in vero cells	24 h IC50:6 µg/mL in HepG2		
Calotropis procera L.	Latex	Cu	5–30	Spherical	HeLa, A549 and BHK21	20–160 µM	24 h No toxicity		
Cassia fistula	Flower	Ag	21–30	Spherical	MCF-7 and Vero cells	7.8–1000 µg/mL	24 h IC50: 7.19 µg/mL in MCF-7 IC50: 66.34 µg/mL in Vero cell line		
Cassytha filiformis	Whole plant	Ag	16–66	Spherical	HCT116	0.1–10 µg/mL	24 h IC50:0.5 mg/mL		
Cauliflower floret (Brassica Oleracea var. botrytis. l)	Aerial part	Ag	40–50	Spherical	MCF-7	50–150 µg/mL	24 h Moderate (40.24%) toxicity at 150 µg/mL IC50: 190.501 µg/mL ≥4.7 µg/mL significant toxicity after 24 h and 48 h No toxicity at 25 µg/mL but toxic at 50 µg/mL IC50: 40.365 µg/mL		
Chlorella vulgaris (Algae)	Whole cell	Ag	6.5–13.5	Spherical	HepG2	2.35–300 µg/mL	24 and 48 h IC50:64µg in Hep 2 IC50:90g in Vero IC50–40 µg/mL		
Chrysanthemum indicum	Flower	Ag	37.71–71.99	Spherical	3T3	25 and 50 µg/mL	24 h IC50:42.9± 3.1 µg/mL in AgNPs synthesized from C. maxima		
Chrysophyllum oliviforme (Satin leaf)	Leaf	Ag	25	Flower	HeLa	6.25–100 µg/mL	48 h IC50:82.39 ± 3.1 µg/mL in AgNPs synthesized from C. maxima		
Cissus quadrangularis	Stem	Ag	5–30	Spherical	HEP 2 and Vero cells	20–160 µg	4 h IC50:64 µg in Hep 2 IC50:90g in Vero IC50–40 µg/mL		
Clerodendron serratum	Leaf	Ag	5–30	Spherical	EAC	5–60 µg/mL	24 h IC50:83.57 ± 3.9 µg/mL in AgNPs synthesized from M. oleifera		
Cucurbita maxima, Moringa oleifera and Acorus calamus	C. maxima (petal), M. oleifera (leaf) and A. calamus (rhizome)	Ag	30–70	Spherical and cuboidal	A431	10–150 µg/mL	IC50: 78.58 ± 2.7 µg/mL in Vero cell line		

(Continued)
Plant	Part used	Nanoparticle type	Size (nm)	Morphology	Anticancer activity (in vitro model)	Dose (µg/well)	Exposure time	Major outcome	Reference
Cymodocea serrulata	Aerial part	Ag	17–29 nm	Spherical	HeLa and Vero cells	10–100 µg/mL	48 h	IC50: 34.5 µg/mL in Hela cell IC50: 61.24 µg/mL in Vero cell ICS0: 100 µg/mL	Chanthini et al. (167)
	Leaf	Ag	5–25 nm	Spherical	A549	10–250 µg/mL	36 h	IC50: 100 µg/mL in HepG2	Palaniappan et al. (168)
Datura inoxia Leaf	Leaf	Ag	30–60 nm	–	MCF-7	10–80 µg/mL	24 h	IC50: 20 µg/mL	Gajendran et al. (169)
Delonix regia Petal	Petal	ZnO	65–184 nm	Spherical	A549	5–20 µg/mL	1–5 days	Very low toxicity after 1 day IC50: 20 µg/mL after 2 day Low toxicity at <10 µg/mL	Abbasi et al. (170)
Dendropanax morbifera Leaf	Leaf	Ag and Au	Ag 100–150 nm and Au 10–20 nm	Polygon and hexagon	HaCaT and A549	1–100 µg/mL	48 h	No toxicity of AgNPs at 100 µg/mL in HepG2, No toxicity of AgNPs at 10 µg/mL, but significant toxicity at 100 µg/mL in A549	Wang and colleagues (77)
Dimocarpus Longan Lour.	Peel	Ag	9–32 nm	Spherical	PC-3	2–30 µg/mL	72 h	He and colleagues (53)	Ghosh et al. (171)
Dioscorea bulbifera Tuber	Pt, Pd, Pt–Pd	Pt, Pd	PtNPs:2–5 nm PdNPs:10–20 nm Pt–PdNPs:20–25 nm	Spherical and blunt ended cubes	Pt–PdNPs: spherical	10 µg/mL	48 h	Cytoxic effect at 10 µg/mL: PtNPs (12.6%), PdNPs (33.15%), and Pt–PdNPs (74.25%)	Venkatesan and colleagues (76)
Dracocephalum kotschyi Leaf	Leaf	Au	11 nm	Spherical	K562 and HeLa	62.5–500 µg/mL	24, 48 and 72 h	IC50: 196.32 µg/mL in K562 and IC50: 152.16 µg/mL in HeLa	Dorosti and Jamshidi (61)
Ecklonia cava (marine brown alga) Seaweed	Au	20–50 nm	Spherical and triangular	HaCaT	RAW254.7, MCF-7 and Caco-2	0.5–50 µM	48 h	IC50: 5 µM in MCF-7 IC50: 7 µM in RAW254.7	Premasudha and colleagues (49)
Eclipta alba Leaf	Leaf	Ag	310–400 nm	Cubic	RAW254.7, MCF-7 and Caco-2	0.5–50 µM	48 h	IC50: 10 µM in Caco-2	Prema et al. (76)
Erythrina indica lam Root	Root	Ag	20–118 nm	Spherical	MCF-7 and HepG2	0.625–25 µg/mL	24 h	IC50: 5.25 µg/mL in HepG2	Sre et al. (172)
Eucalyptus Leaf	Leaf	Ag	30–70 nm	–	AGS, MRC-S	3–100 µg/mL	24,48,72 h	IC50: 9.01, 6.31, 3.99 µg/mL in AGS after 24, 48 and 72 h of incubation, respectively.	Rashmeezad and colleagues (45)
Ficus benghalensis Bark	Bark	Ag	~40 nm and ~50 nm	Spherical	MG-63	20–200 µg/mL	48 h	IC50: 81.8 ± 2.6 µg/mL for Ag from A. indica IC50: 75.5 ± 2.4 µg/mL for Ag from F. benghalensis	Nayak and colleagues (42)
Ficus religiosa Bark	Bark	Au	20–30 nm	Spherical	HEK 293	10–200 µM	24 h	No toxicity	Wani K (78)
Plant or Animal	Part	Material	Size	Shape	Cell Line/Location	Concentration	Effect	IC50	
----------------	------	----------	------	-------	-------------------	---------------	--------	------	
Genipa americana L.	Fruit	Au	30.4 ± 14.9 nm	Spherical	A-549 and Hela	0.01–20µM	48 h	No toxicity observed	Kumar et al. (173)
Haliclona exigua	Sponge	Ag	0.078–5 µg/mL	Flower like	KB	100 to 120 nm	48 h	IC50: 0.6 µg/mL	Inbakandan and colleagues (72)
Helianthus annuus L.	Sunflower oil	Ag	10–100 µg/mL	Spherical	KB	0–200 µg/mL	24 h	IC50: 70 µg/mL	Bhakya and colleagues (73)
Helicteres isora	Stem bark	Ag	16–95 nm	Spherical	KB	0–200 µg/mL	24 h	IC50: 70 µg/mL	Mishra and colleagues (40)
Hibiscus sabdariffa	Leaf and stem	Au	10–60 nm	Near spherical	U87 and HEK 293	0–2.5 ng/mL	48 h	IC50–1.5 ng/mL and high toxicity at 2 ng/mL in U87 and little toxicity in HEK 293	Nalavothula R (54)
Impatiens balsamina	Flower	Ag	Average size: 15 nm	Spherical	U937, COLO205, B16F10, HepG2, HeLa	25–200 µg/mL	24 h	IC50:84.17 ± 2.13 µg/mL in U-87, IC50:65.40 ± 2.41 µg/mL in COLO205, IC50:196.5 ± 4.19 µg/mL in B16F10, IC50:95.52 ± 4.08 µg/mL in HepG2, IC50:93.27 ± 2.53 µg/mL in HeLa	Thakore et al. (174)
Iresine herbstii	Leaf	Ag	44–64 nm	Cubical	HeLa	25–300 µg/mL	3 h	IC50:51 µg/mL	Dipankar and Murugan (175)
Justicia adhatoda	Leaf	Ag	11–20 nm	Spherical	HeLa, A549, MCF-7, HT-29, and Caco-2	10–80 µg/mL	4 h	IC50:55 µg/mL	Salari and colleagues (47)
Lavandula vera	Leaf	Zn	30–80 nm	Spherical	HeLa, A549, MCF-7, HT-29, and Caco-2	10–160 µg/mL	24 h	IC50:22.3 ± 1.1 µg/mL in A549, IC50:86 ± 3.7 µg/mL in MCF-7, IC50:10.9 ± 0.5 µg/mL in HT-29, IC50:56.2 ± 2.8 µg/mL in Caco-2	Salari and colleagues (47)
Mangifera indica Linn	Peel	Au	6.03 ± 2.77–18.01 ± 3.67 nm	Quasi-spherical	CV-1 and WI-38	10–160 µg/mL	24 h	No toxicity	Yang and colleagues (87)
Mimosa pudica	Leaf	Au	12 nm	Spherical	MDA-MB-231, MCF-7, and HMEC	2–10 µg/mL for MDA-MB-231, MCF-7, and HMEC	24 and 48 h	IC50:4 µg/mL in MDA-MB-231 after 48 h of incubation, IC50:0.6 µg/mL in MCF-7 after 48 h of incubation IC50 did not observed after 24 h no significant toxicity in HMEC	KS and colleagues (33)
Momordica charantia	Leaf	Ag	~91.63 nm	Spherical	MCF-7	12–100 µg/mL	24 h	IC50:20 µg/mL	Gandhiraj V (177)
Momordica cymbalaria	Fruit	Ag	Average size: 15.5 nm	Spherical	Rat L6	20–100 µg/mL	24–48 h	IC50:20 µg/mL	Swamy and colleagues (85)
Morinda citrifolia	Root	Ag	30–55 nm	Spherical	HeLa	0.1–100 µg/mL	24 h	IC50:20 µg/mL	Suman et al. (178)
Moringa oleifera	Flower	Pd	10–50 nm and 2–18 nm	Spherical	A549 and human normal peripheral lymphocytes	10 µg/mL and 50 µg/mL	6 h	Significantly cytotoxic to A549 cells and no toxicity in normal peripheral lymphocytes	Anand and colleagues (95)

(Continued)
Plant	Part used	Nanoparticle type	Size (nm)	Morphology	Anticancer activity (In vitro model)	Dose (µg/well)	Exposure time	Major outcome	Reference
Musa paradisiaca (banana)	Stem of banana	Au	Average size: 30 nm	Spherical	MCF-7 and HEK-293	10–100 nM	24 h	IC50 > 80 nM in MCF-7; No toxicity at 60 nM in HEK-293, but low toxicity above 60 nM	Arunkumar and colleagues (88)
Oak fruit hull (Jaft)	Fruit	Ag	Average size: 40 nm	Spherical	MCF-7 and human blood mononuclear cells	0.02–50 µg/mL	24 h	IC50: 50 µg/mL (AgNPs in purified water) in MCF-7; IC50: 0.04 µg/mL (AgNPs in plant extract) in MCF-7; No toxicity in human blood mononuclear cells	Heydari and Rashidipour (99)
Origanum vulgare (Oregano)	Leaf	Ag	63–85 nm	Spherical	AS49	10–500 µg/mL	36 h	IC50: 51.9 nM in HepG2; IC50: 76.40 nM in AS49; No toxicity in 3T3	Sankar et al. (179)
Padina gymnospora (marine Macroalgae)	Leaf	gold-reduced graphene oxide (Au-rGO) nanocomposite	8–15 nm	Pentagonal, hexagonal and spherical	PC3 and RWPE-1	10–50 µg/mL	–	IC50: 12.02 µg/mL in PC3; IC50: 25.1 µg/mL in RWPE-1	Saikia and colleagues (81)
Plumbago zeylanica, Semecarpus anacardium and Terminalia arjuna	Bark, root bark and nut, for P. zeylanica, S. anacardium and T. arjuna, respectively	Ag	80–98 nm, 60–95 nm and 34–70 nm for P. zeylanica, S. anacardium and T. arjuna, respectively	Spherical for P. zeylanica and T. arjuna; Cubic for S. anacardium	HepG2, PC3 and Vero cells	1–100 µg/mL	48 h	IC50 of HepG2, PC3 and Vero cells: 70.97, 58.61, 96.41 µg/mL, respectively for P. zeylanica; IC50 of HepG2, PC3 and Vero cells: 83.86, 42.77, 10.04 µg/mL, respectively for S. anacardium; IC50 of HepG2, PC3 and Vero cells: 28.42, 41.78, 69.48 µg/mL, respectively for T. arjuna	Prasannaraj and colleagues (79)
Potentilla fulgens	Root	Ag	10–15 nm	Spherical	MCF-7 and U-87	0–12 µg/mL	24 h	IC50: 4.91 µg/mL in MCF-7; IC50: 8.23 µg/mL in U-87; Significant antitumor effect to improve biochemical plasma factors to reach normal levels	Mittal et al. (180)
Premna serratifolia L.	Leaf	Ag	16–32 nm, (Average size: 22.97 nm)	Cubic	Hepatocancerous Swiss albino mice	500 mg/Kg in vivo study in mice	15 days	IC50: 28.5 µg/mL in MCF-7; IC50: 8.23 µg/mL in U-87	Patra and colleagues (55)
Rheum rhabarbarum	Stem	Ag	60–80 nm ≤ 50 nm	Spherical	HeLa	10–500 µg/mL	72 h	IC50: 28.5 µg/mL; 0.05 mg/mL; 0.5 mg/mL	Reddy et al. (181)
Rosa canina	Fruit	ZnO	23.52–60.83 nm	Spherical	HCT 15	5–60 µg/mL	24 h	IC50: 0.25 mg/mL; 30 µg/mL; ~ 30 µg/mL	Jafarirad et al. (182)
Rosa indica	Petal	Ag	23.52–60.83 nm	Spherical	HCT 15	5–60 µg/mL	24 h	IC50: 30 µg/mL; 0.25 mg/mL; 30 µg/mL	Manikandan and colleagues (50)
Rosmarinus officinalis	Leaf	Ag	Average size: 60 nm	Cubical	HL-60	1 mM, 2 mM	6, 12, 24 h	No IC50 after 6 h IC50: < 2 mM after 12 h 80% toxicity at 2 mM after 24 h	Sulaiman and colleagues (60)
Sargassum Muticum (algae)	Whole cell	hyaluronan/zinc oxide (HA/ZnO) nanocomposite	3–8 nm	Polygonal	PANC-1, CaOV-3, COLO205, and HL-60 and MRC-5	0–100 μg/mL	72 h	Namvar and colleagues (41)	
Sargassum Longifolium	Seaweed	Ag	Average size: 30 nm	Cubical	HEP-2	3.9–1000 μg/mL	48 h	No toxicity observed in MRC-5	
Sargassum muticum	Seaweed	ZnO	50–100 nm	Hexagonal	4T1, CRL-1451, CT-26, WEHI-3B and 3T3	0–100 μg/mL	72 h	IC50: 21.7 ± 1.3 μg/mL in 4T1	
Sargassum muticum	Seaweed	Au	5.42 ± 1.18 nm	Spherical	CEM-ss, Jurkat, HL-60, K562 and normal human blood mononuclear cells	0–100 μg/mL	72 h	IC50: 62.5 μg/mL in Jurkat	
Sargassum swartzii	Seaweed	Fe3O4	18 ± 4 nm	Cubic	Jurkat, MCF-7, HeLa and HepG2	–	72 h	Namvar and colleagues (59)	
Sesbania grandiflora	Leaf	Ag	10–45 nm	Spherical and few hexagonal	HeLa	15.63–500 μg/mL	24 h	Dhas et al. (183)	
Solanum muricatum	Leaf	Ag	20–80 nm	Spherical and irregular	HeLa	0–50 μg/mL	24 and 48 h	ICS0: 20 μg/mL in Jurkat	
Solanum trilobatum	Fruit	Ag	12.50–41.90 nm	Spherical and polygonal	MCF-7	5–50 μg/mL	24 h	IC50: 12.5 ± 1.7 μg/mL in Jurkat	
star anise (Illicium verum)	Pod	Au	20–150 nm	Triangular and hexagonal	AS49	10–200 nM	48 h	Sathishkumar et al. (187)	
Styra x benzoin	Benzoin gum	Ag	12–38 nm	Spherical	Raw 264.7, Hela, A549 and HaCaT	1–5 μg/mL in Raw 264.7, Hela and AS49, 1–10 μg/mL in HaCaT	24 h	Rajasekharreddy and Rani (188)	
Syzygium cumini	Fruit	Ag	5–20 nm	Spherical	DL	50–500 μg/mL	48 h	Mittal and colleagues (64)	

(Continued)
Table 1. Continued.

Plant	Part used	Nanoparticle type	Size (nm)	Morphology	Anticancer activity (in vitro model)*	Dose (µg/well)	Exposure time	Major outcome	Reference
Syzygium samarangense	Leaf	Ag	–	Spherical	A549	50–200 µg/mL	24 h	IC50: 87.37 µg/mL	Thampi and Shalini (189)
Tabernaemontana divaricata	Flower	Au	100 nm	Nearly spherical	MCF-7 and Vero cells	25–75 µg/mL	24 h	75 µg/mL moderate toxicity in MCF-7 but little toxicity in Vero cell line	Raj and Khusro (80)
Taxus yunnanensis	Callus	Ag	6.4–27.2 nm	Spherical	SMMC-7721, LS174T, A549, MCF-7 and HL-7702	10–50 µg/mL	24 h	IC50: 27.75 µg/mL in SMMC-7721 IC50: 40.3 µg/mL in A549 IC50: 42.2 µg/mL in MCF-7 IC50: 27.75 µg/mL in LS174T	Xia and colleagues (46)
Torreya nucifera	Leaf	Ag	8–42 nm, 4 35 nm, 4–38 nm	Spherical, pentagonal	3T3-L1	0.1 ng/mL–10 µg/mL	24 h	Low toxicity in AgNPs from *T. nucifera* and *N. indica* but moderate toxicity in AgNPs from *C. japonicum*	Kalpana and colleagues (90)
Cinnamomum japonicum, and *Nerium indicum* (marine algae)	Whole cell	Ag	8–16 nm	Spherical	EAC	42–98 µg/mL	–	99% toxicity at 98 µg/mL	Khalifa et al. (190)
Turbinaria turbinata	Seed	Lanthanum	–	Spherical	Mg-63	12.5–200 µg/mL	48 h	IC50: 200 µg/mL	Chatterjee A (43)
Vigna radiata (green gram)	Seed	Titanium dioxide	–	–	Mg-63	12.5–200 µg/mL	48 h	IC50: 200 µg/mL	Chatterjee et al. (191)
Vitex negundo L.	Leaf	Ag	5–49 nm	Spherical	HCT15	10–100 µg/mL	48 h	IC50: 20 µg/mL	Prabhu and colleagues (51)
Zataria multiflora	Leaf	Au	10–50 nm (Average size: 20.52 nm)	Different shapes; pentagon, triangular, undefined shapes	HeLa and BMSCs	0–400 µg/mL	48 h	Significant toxicity at 400 µg/mL in Hela cell line (IC50:100 µg/mL). IC50: 300 µg/mL in BMSCs:	Baharara and colleagues (101)
Zingiber zerumbet	Rhizome	ZnO–Ag nanocomposite	23 nm	Spherical	Vero cells	0–300 µg/mL	24 h	No toxicity at <100 µg/mL but at higher concentration toxicity gradually increased	Azizi et al. (192)

Cancer and normal Cell Lines: HeLa (human cervical cancer), HepG2 (hepatic cancer), MDA-MB-231 and MCF-7 (human breast adenocarcinoma), PC-3 (human prostate carcinoma), KB (human oral cancer), A549 (human lung adenocarcinoma), HCT116 (human colon colorectal carcinoma), EAC, NCI-H460 (non-small cell lung cancer), U87 (glioblastoma multiforme cell), Panc-1 (pancreatic adenocarcinoma), CaOV-3 (ovarian adenocarcinoma), COL0205 (colonic adenocarcinoma), HL-60 (acute promyelocytic leukemia), MG-63 (osteosarcoma cell), AGS (human gastric carcinoma), SMMC-7721 (human hepatoma cells), LS174T (human colon adenocarcinoma cell), HT-29 (human colorectal adenocarcinoma), Caco-2 (human epithelial colorectal adenocarcinoma), HCT 15 (human colon adenocarcinoma), U937 (human histiocytic lymphoma cell), B16F10 (mouse melanoma), 4T1 (mouse breast cancer), CRL-1451 (mouse lung adenocarcinoma), WEHI-3B (Mouse leukemia), CEM-ss (human T acute lymphoblastic leukemia), Jurkat (human T acute lymphoblastic leukemia), K562 (human chronic myelogenous leukemia), A431 (human vulvar squamous cell carcinoma), HN5-2 (human adult glioma tissue), ECV-304 (human urinary bladder carcinoma), RAW264.7 (mouse leukemia), SiHa (human cervical squamous cell carcinoma), DL, HaCaT (aneuploid immortal keratinocyte cell line), RAW 264.7 (murine Macrophage), PBMC (peripheral blood mononuclear cell).
Microbial species	Microbe type	Nanoparticle type	Size (nm)	Morphology	Anticancer activity (in vitro model)*	Dose (µg/well)	Exposure time	Major outcome	Reference
Aspergillus deflectus and Penicillium pinophilum	Fungus	Ag/CS	15–40 nm	–	MCF 7, PC3 and A549	12.5–100 µg/mL	24 h	IC50:27.9 and 53µg/mL in MCF 7 and PC3 for AgNPs synthesized from A. deflectus under optimized conditions and no toxicity in A549 No toxicity of AgNPs synthesized from P. pinophilum under optimized conditions in MCF 7 and PC3 and low toxicity in A549	Osman et al. (193)
A. flavus	Fungus	Ag	Average size: 33.5 nm	–	HL-60	5 and 10 µg/mL	6, 12 and 24 h	High toxicity at 10 µg/mL after 6 h IC50: ∼5µg/mL after 12 h. Very high toxicity at 10µg/mL after 12h	Sulaikam et al. (194)
A. flavus SP-3	Fungus	Ag	20–60 nm	Spherical	HEP2	0–1000 µg/mL	24 h	IC50: 23µg/ml for T. gamsii SP-4, 100 µg/ml for A. flavus SP-3, 39 µg/ml for T. flavus SP-5, and 36 µg/ml for A. oryzae SP-6	Anand et al. (195)
Aspergillus foetidus	Fungus	Au	30–50 nm	Spherical	A549	10–100µM	24 h	No toxicity IC50: ∼20, ≥20, ≥60 µg/ml in hFOB, HaCat, Vero, and different shapes for both bacteria	Roy et al. (196)
Bacillus cereus	Bacterium	Cu	Average size: 20 nm	Different shapes (irregular, spherical, triangular)	MCF-7	25–200 µM/mL	24 h	No toxicity IC50: ∼100µM for both	Tiwari and colleagues (91)
Bacillus cereus (ATCC 14579) and Escherichia fergusonii (ATCC 35409)	Bacterium	Ag	10–20 nm for both of bacteria	Spherical and hexagonal for both of bacteria	NIH3T3 D4	0.008–0.5 mg/mL	4 h	IC50: ≤0.25 mg/100 µL is nontoxic and 1 mg/100 µL is toxic for AgNPs from B. cereus	Pourali and Yahyaei (198)
Bacillus flexus	Bacterium	Au	Average size: 20 nm	–	MCF-7	25–200 µM/mL	24 h	No toxicity IC50: ∼100µM for both	Murugan et al. (199)
Bacillus sp. MSh-1	Bacterium	Se	80–220 nm	Spherical	MCF-7	0–200 µg/mL	24 h	IC50: 41.5 ± 0.9µg/mL for	Forootanfar et al. (200)

(Continued)
Microbial species	Microbe type	Nanoparticle type	Size (nm)	Morphology	Anticancer activity (in vitro model)	Dose (µg/well)	Exposure time	Major outcome	Reference
Beauveria bassiana	Fungus	Ag	4–50 nm	Spherical	HeLa	3.125–50 µg/mL	24 h	At 50 µL (1 mL) the viability of HEK 293 cells was 83.5 ± 1.66%	Kanakahskii et al. (2019)
Cryptococcus laurentii (BNM 0525)	Yeast	Ag	20.44 – 34.16 nm	Spherical	MCF-7, T47D and MCF10-A	0–5 µg/mL	12 h	Significant toxicity above 2.5 µg/mL in MCF-7 and T47D but slight toxicity in MCF10-A	Prabakaran and colleagues (38)
Endophytic Fungus	Fungus	Au	15–35 nm	Spherical	HEp2 and Vero cells	1.17–75 µg/mL	4 h	IC50: 23 µg/mL in Hep2	Nichiyar et al. (202)
Enterococcus sp.	Bacterium	Au	6–13 nm	Spherical	HepG2 and A549	1–100 µg/mL	24 h	IC50: 100 µg/mL in Hep2	Rajeshkumar (203)
Fusarium oxysporum	Fungus	Au	10–40 nm	Spherical	ZR-75-1, Daudi and PBMC	5–500 µg/mL	24 h	Moderate toxicity in ZR-75-1 and Daudi, but no toxicity in PBMC	Ahmad Siddiqui and colleagues (70)
Fusarium oxysporum	Fungus	Ag	5–13 nm	Spherical	MCF-7 C26 and HaCaT	0–220 µg/cm³	–	IC50:121.23 µg/cm³	Husseiny et al. (206)
Fusarium oxysporum	Fungus	Ag	5–15 nm	Spherical	HeLa and HaCat	10–150 µg/mL	24 h	IC50: 50 µg/mL in HeLa, No toxicity in HaCa	Srivastava et al. (207)
Halococcus salifodinae BK18	Bacterium	Se	Average size: 28 nm	Rod and hexagonal	NIH3T3 and MDA-MB-231	50–1000 µg/mL	24 h	Very low toxicity at 250 µg/mL in both cell line Significant toxicity at 1000 µg/mL in both cell line	Syed and colleagues (93)
Humicola spp.	Fungus	Au	18–24 nm	Spherical	NIH3T3 and MDA-MB-231	50–1000 µg/mL	24 h	No toxicity at 50 µg/mL in both cell line Significant toxicity at ≥250 µg/mL in both cell line	Syed et al. (208)
Klebsiella pneumoniae (KACC 11402)	Bacterium	Au	16–36 and 24–50 nm	Spherical	T3L1, H9c2 and HepG2	0.01–1000 µg/mL	24 and 48 h	No toxicity	Kalpana and colleagues (92)
Moraxella osloensis	Bacterium	Titanium dioxide	60–150 nm	Irregular	HaCaT and Hep2	8–100 µg/mL	–	IC50: 55 µg/mL in HaCaT	Vahili Nachiyar and colleagues (103)
Nocardiopsis sp.	Marine	Ag	11.57 ± 1.24 nm	Spherical	HeLa	50–400 µg/mL	24 h	IC50: 172 µg/mL in Hep2	Manivasagan et al. (209)
Nocardiopsis sp.	Marine	Ag	10–50 nm	Spherical	HepG2 and A549	50–500 µg/mL	24, 48 h	IC50: 350 and 250 µg/mL in 24 and 48 h of incubation	Manivasagan and Oh (210)
Nocardiopsis sp.	Marine	Ag	45 ± 0.15 nm	Spherical	HeLa	50–250 µg/mL	24 h	IC50: 200 µg/mL	Manivasagan et al. (211)
Nocardiopsis	Alkaliphilic	Ag	5–50 nm	Spherical	HeLa	25–100 µg/mL	48 h	IC50: 100 µg/mL	Rathod et al. (212)
Vallisporis OT1 strain	Bacterium								
Penicillium brevicompactum	Fungus	Au	10–120 nm	Spherical	C2C12	200–2000 ng/mL	24, 48, 72 h	IC50: >1000 ng/mL after 24h Significant toxicity after 72 h at any range of concentration	Mishra and colleagues (94)
Fungus	**Ag**	**Size**	**Sphericity**	**Cancer and normal Cell Lines:**					
------------	--------	----------	---------------	---------------------------------					
Penicillium decumbens (MTCC-2494)	Fungus	Ag	30–60 nm	Spherical	A-549 and Vero cells	20–120 μg/mL	24 and 48 h	A-549 IC50:80 and 60 μg/mL after 24 h and 48 h of incubation, respectively. Vero cell IC50: 100μg/ml after 24 h of incubation	Majeed and colleagues (100)
Pleurotus djamor var. roseus	Fungus	Ag	5–50 nm	Spherical	PC3	1–6 μg/mL	24 h	IC50: 10 μg/mL	Raman et al. (213)
Pleurotus ostreatus	Fungus	Ag	4–15 nm	Spherical	MCF-7	10–640 μg/mL	24 h	IC50~160 μg/mL	Yehia and Al-Sheikh (214)
Pseudomonas aeruginosa (JQ989348)	Bacterium	Ag	13–76 nm	Spherical	Human carcinoma cervical cell line	5–100 μg/mL	24 h	100% toxicity at 40μg/mL	Ramalingam et al. (215)
Schizophyllum commune	Fungus	Ag	51–93 nm	Spherical	HEP -2	10–100 μg/mL	24 h	IC50:53 μg/mL	Arun et al. (216)
Stenotrophomonas maltophilia	Bacterium	Ag	Average size: ~93 nm	Cuboidal	HeLa and Splenocyte cells	0–500 μg/mL	48 h	IC50: >31.25 μg/mL in HeLa IC50: >250 μg/mL in Splenocyte cells	Oves et al. (217)
Streptomyces naganishii (MA7)	Actinobacteria	Ag	5–50 nm	Spherical	HeLa	0.1–300 μg/mL	48 h	IC50: 1.53 μg/mL. LD50:24.39 μg/mL	Shanmugasundaram et al. (218)
Streptomyces rochei MHM13	Actinomycetes	Ag	22–85 nm	Spherical	HepG2, HCT-116, MCF-7, PC-3, A-549, CACO, HEP-2 and HeLa	1.56–50 μg/well	24 h	IC50:32.90 μg/Well in HepG2 IC50:9.05 μg/Well in HCT-116 IC50:40.00 μg/Well in MCF-7 IC50: 48.50 μg/Well in PC-3 IC50: 42.10 μg/Well in A-549 IC50: >50 μg/Well in CACO IC50: >50 μg/Well in HEP-2 IC50: >50 μg/Well in HeLa	Abd-Elnaby et al. (219)
Trichoderma koningii	Fungus	Au	10–14 nm	Spherical	LoVo and LoVo/DX	1–1000 μg/mL	24 h	IC50:33.04 ± 4.9 μg/mL in LoVo IC50:28.88 ± 2.9 μg/mL in LoVo/DX	Maliszewska (75)
Trichoderma viride	Fungus	Ag	5–40 nm	–	MCF-7	1–100 μg/mL	24 h	Low toxicity ≤10 μg/mL, but toxicity gradually increased over 10 μg/mL	Kulandaivelu and Gothandam (220)
Xylarious	Fungus	Ag	–	Spherical	HT-29	7.8–1000 μg/mL	48 h	IC50:62.5 μg/mL	Varsha B (48)

Cancer and normal Cell Lines: HeLa (human cervical cancer), A549 (human lung adenocarcinoma), HepG2 (hepatic cancer), MDA-MB-231 and MCF-7 (human breast adenocarcinoma), PC-3 (human prostate carcinoma), MG-63 (osteosarcoma cell), HT-29 (human colorectal adenocarcinoma), Caco-2 (human epithelial colorectal adenocarcinoma), HL-60 (human acute myeloid leukemia), HEP-2 (human larynx carcinoma), ZR-75-1 (human caucassian breast carcinoma), Daudi (human burkitt’s lymphoma), T47D (human breast cancer), LoVo (human colon adenocarcinoma), LoVo/DX (multidrug resistance human colon adenocarcinoma sub-line), HaCat (aneuploid immortal keratinocyte cell line), hFOB (homo sapiens bone), Neuro-2a (mus musculus brain neuroblastoma), HCT 116 (homo sapiens colon colorectal carcinc), RAW 264.7 (murine Macrophage), NIH3T3 (mouse fibroblast), Saos-2 (homo sapiens bone osteosarcoma), PBMC (peripheral blood mononuclear cell).
different breast carcinoma cell lines (MDA-MB-231 and MDA-MB-468) (105). Besides, Rajendran et al. (106) reported the highly stable flavonoid apigenin conjugated to gold nanoparticles (ap-AuNPs) are formed when apigenin reacts with Au^{3+} under appropriate conditions. The ap-AuNPs are also found to exhibit toxicity toward cancerous A431 cell lines, while being nontoxic toward normal epidermoid cells (HaCat). Additionally, Sahu et al. (107) investigated the role of pure aqueous solution of plant secondary metabolites, namely hesperidin, naringin and diosmin, in the biosynthesis of AgNPs. The secondary metabolites have the polyhydroxy group which may be responsible for their role in the reduction of metal ions into NPs. In this study, the cytotoxicity of the synthesized AgNPs was investigated on the cancerous HL-60 cell line. The result represented that AgNPs synthesized using naringin as reducing agent had higher stability and better cytotoxic activity (107). Interestingly, a fish-intestine-associated bacterial strain was a potential source of exopolysaccharide (EPS) production reported with a significant ability to reduce iron-based materials and convert them to iron oxide nanoparticles (FeONPs). EPS was extracted from a spore-forming strain of *Bacillus subtilis* isolated from the gut microbiome of the freshwater fish *Oreochromis mossambicus*. In this study, the *in vitro* cytotoxicity effects of free EPS and EPS-stabilized FeONPs were probed in the human epidermoid carcinoma cell line A431. The IC50 values of EPS and EPS-stabilized FeONPs were found to be 350.18 and 62.946 mg/mL, respectively (108). In a study, AgNPs were biosynthesized by an aqueous leaf extract of *Erythrina suberosa* (Roxb.). Following that, the cytotoxicity of AgNPs was compared with plant extract and AgNO3 against the A-431 osteosarcoma cell line. The IC50 values were determined to be around 106.15, 74.02 and 136.73 μg/mL for leaf extract, AgNPs and AgNO3, respectively, indicating excellent cytotoxicity of AgNPs among all (109). Notably, the exact mechanism of metal NPs’ anti-cancer activity is not fully understood yet. However, it is believed that reactive oxygen species (ROS) generation, Sub-G1 arrest in cell, up-regulation of p53 protein and caspase-3 expression, inhibition of VEGF-induced activities are the major proposed anti-cancer mechanisms (21, 110). Recent advances in the proposed mechanisms for anticancer activity shown by colloidal biogenic AgNPs are shown in Figure 4. Importantly, the ROS leads to activation of caspase-3 which is responsible for cell apoptosis by arresting the cell cycle at the G2/M phase (111). Besides, increased oxidative stress leads to oxidation of glutathione (GSH) to glutathione disulfide (GSSG) through the oxidation process. Notably, GSH is known as an antioxidant that prevents cells from ROS damages, consequently resulting in remarkably much MNPs’ cytotoxicity and loss of GSH (24). Furthermore, AgNPs were shown to downregulate the activity of a recognized enzyme involved in DNA damage repair named DNA-dependent protein kinase (112). Coccini et al. (113) showed that the AgNP-induced oxidative stress genes involved Gpx1, SOD, FMO2 and GAPDH in different organs indicating AgNP-induced toxicity. Jeyaraj et al. (114) evaluated the caspase-mediated apoptotic cell death on treatment of biosynthesized AgNPs in the HeLa cell line. AgNPs exhibited the downregulation of Bcl-2 gene and, conversely, upregulation of the Bax gene. This regulation triggered the cascade and regulates the caspases 3, 8 and 9 which are responsible for apoptotic cell death (114). More interestingly, some studies reported neither cancerous nor normal cells showed metal NPs’ mediated cytotoxicity. Specifically, Patra et al. (55) reported phytosynthesis of AuNPs and AgNPs and assessed their lack of cytotoxic effect in the range of 0.3–2.5 μM on different cancer and normal cell lines. In another study, the *in vitro* cytotoxicity of microbial biosynthesized AuNPs (0.01–1000 μg/mL) on normal 3T3-L1, H9c2 and cancerous HepG2 cell lines showed the nontoxic and biocompatible nature of biosynthesized AuNPs (92).

The cytotoxicity of NPs may depend on parameters such as particle size, surface area and surface reactivity (115). Upon understanding the mechanism of metallic NPs’ synthesis from plants and microbes, strategies can be designed for optimum synthesis of NPs of the desired shape and size. Eventually, based on heterogeneity of bio-sources, various factors such as temperature, synthesis conditions, reaction time, substrate concentrations and pH can have significant impacts on the rate of synthesis reaction.

2.2. Biocompatible nanomaterials for cancer diagnosis

Recent nano-medical developments helped the progress of NPs for diagnostic and therapeutic (theranostics) applications. Notably, NPs can play a vital role in cancer diagnosis at an early stage by allowing visualization of cancer cells. Cancer diagnostic instruments used routinely in preclinical research and clinical practice involve MRI, CT, ultrasound, optical imaging, positron emission tomography, photo-acoustic imaging and single-photon emission CT (SPECT). In this regard, these instruments differ based on their underlying physical principles, sensitivity and specificity to contrast agents, tissue contrast, spatial resolution, quantitative-ness and tissue penetration (116). Remarkably, alpha fetal protein (AFP) is a cancer biomarker in clinical
diagnosis associated with the disease progression and therapeutic responses of liver cancer. Xuan et al. (117) reported a plasmonic ELISA strategy by means of alkaline phosphatase-mediated growth of AgNPs for the colorimetric detection of serum AFP. This plasmonic ELISA provided high sensitivity displaying high performance in cancer diagnosis and therapeutic monitoring. This plasmonic assay is based on the in situ generation of AgNPs, leading to rapid color with various degrees of yellow, which can be easily performed on currently available instruments in clinical laboratories. Surprisingly, cancer detection has been widely investigated by applying metal NPs for marking tumor cells to find tumor-target fluorescence bio-imaging as an excellent fluorescent probe (118). Specifically, Ge et al., (118) reported biosynthesis of fluorescent Au/Ce nanoclusters (NCs) (1.2–2.2 nm) as highly sensitive bio-imaging agents. As demonstrated in Figure 5, the Au/Ce NCs show significant fluorescence in the HeLa cancer cells (Figure 5A–C). Moreover, Figure 5D depicted the variations of fluorescence intensity between cancerous and normal cell types. Besides, the same results were obtained in HepG2 in the same situation. In contrast, the control group including L02 cells showed almost no intracellular fluorescence. Furthermore, according to the acceptable in vitro results, Au/Ce NCs were also investigated for in vivo bio-imaging in a tumor mice model of cervical carcinoma. As shown in Figure 6, fluorescence was observed around the tumor after 24 h of subcutaneous Au/Ce NCs injection (118). This is in agreement with the study of Wang et al., 2013, which demonstrated green synthesis of silver NCs employing glutathione and showed in vivo fluorescent tumor imaging through living animal tumors (119). Furthermore, Mukherjee et al. (120) reported green synthesis of monodispersed AgNPs (20–60 nm) by using Olax scandens leaf extract, with spherical shape and high stability for several days. In this study the fluorescence properties of biogenic AgNPs were observed through two cell lines (A549 & B16F10) employing a fluorescence microscopy. The untreated cells used as control and those treated with chemically fabricated AgNPs did not exhibit fluorescence, while those cancerous cells that were treated with biological synthesized AgNPs exhibited very strong fluorescence indicating the internalization of AgNPs by A549 & B16F10 cells (120). Overall, based on the aforementioned, the use of nanotechnology will be the best strategy for cancer diagnosis due to their self-fluorescence ability. One of the major drawbacks of current cancer treatment strategies is the lack of targeted drug delivery, resulting in systemic toxicity (8,121). Recently, magnetically targeted NPs have overcome this significant disadvantage of non-specificity as carriers for FDA-approved anti-cancer drugs. The basic principle is the loading of a particular anticancer drug on to a magnetic NP carrier like biocompatible super-paramagnetic iron oxide nanoparticles followed by injecting into the blood stream. Thereupon, with the application of external magnetic fields (high-gradient), the particular drug delivery system (DDS) is targeted specifically at cancerous cells via changes in physiological conditions (osmolality, enzymatic activity

![Figure 4. Recent advances in proposed mechanisms for anticancer activity shown by colloidal biogenic silver nanoparticles (AgNPs) (Adapted with permission from Ovais et al. (21)).](image-url)
and temperature). Indeed, by applying this strategy the associated side-effects along with the amount of the drug delivered are reduced, ultimately leading to reduced systemic toxicity \((122,123)\). Seo et al. \((124)\) have reported a novel study of biosynthesizing AuNPs via employing heavy metal binding proteins (HMBPs) of genetically engineered \(Escherichia\ coi\ acting\ as\ reducing,\ stabilizing\ and\ capping\ agent.\ The\ synthesized\ NPs\ were\ spherical\ in\ nature\ having\ a\ size\ of\ 5\textendash20\ nm\ in\ diameter.\ Furthermore,\ the\ group\ loaded\ doxorubicin\ (Dox)\ on\ the\ AuNPs@HMBPs\ DDS\ for\ treating\ the\ cancerous\ HeLa\ cells.\ The\ process\ of\ AuNPs@HMBPs’\ preparation\ along\ with\ Dox-loaded\ AuNPs@HMBPs’\ cytotoxic\ evaluation\ are\ illustrated\ in\ Figure\ 7\ (124).

3. Hurdles for green nanomaterials as future cancer nanomedicine

A wide range of applications of metal nanoparticle therapeutics in the future is doubtless though there are still many challenges to be overcome and eventually routine clinical practice. If we talk about phytosynthesis, many amino acids, polysaccharides, flavonoids, alkaloids, vitamins, etc. exist in the metal NPs’ medium method, which play a role in NPs’ function, even if their surfaces are washed and purified since the residuals would stick to the NPs’ surface. Likewise, in microbial synthesis, there are a number of microorganisms involving saprophytes and even pathogenic microbes such as \(E.\ coli\ introduced\ as\ a\ bio-source\ for\ preparation\ of\ metal\ NPs\ which\ would\ cause\ some\ hazards\ according\ to\ clinical\ studies.\ As\ an\ example,\ Aspergillus\ niger,\ Aspergillus\ flavus,\ Fusarium\ solani,\ etc.\ have\ been\ employed\ to\ biosynthesize\ metal\ NPs\ (26,\ 125\textendash129).\ Importantly,\ another\ limitation\ is\ the\ protein\ corona\ effect,\ which\ occurs\ via\ adsorption\ of\ proteins\ on\ the\ colloidal\ NPs’\ surfaces\ when\ the\ nanoparticle\ enters\ the\ biological\ system\ (130).\ This\ adsorption\ actually\ compromises\ the\ ultimate\ dependability\ of\ NPs\ in\ the\ in\ vivo\ system\ (131).\ Overall,\ nanotechnology-based\ products\ are
highly expensive probably due to difficulties in the manu-
ufacturing and preserving process; thereby its progress
would cost a high amount of money. The key hurdles
faced by researchers for entrance of biosynthesized
NPs into the clinical phase have been graphically illus-
trated in Figure 8 (132–134).

By and large, many challenges and issues came in the
way of scaling up nanoparticles/nanoconjugates’
production to industrial scale. NPs produced using routine top-down or bottom-up approaches in the lab vary greatly from those obtained from commercial producers. These approaches include sonication, emulsification, organic solvents evaporation and use, homogenization, centrifugation, elevated temperature, crosslinking and lyophilization \(^{(35)}\). Practically, a slight change in the optimized conditions of NPs’ synthesis can render the NPs biologically inactive, less stable and highly impure. Hence, a robust production process should be used at the lab-scale for NPs with an extraordinary reproducibility rate to be viable for large-scale commercial production.

3.1. Diffusion and penetration

In general, diffusive resistance of various tissues (intestine, vagina, nose mucosal membranes and lungs) poses a major barrier in nanomedicine delivery. Researchers have scientifically proved that the sedimentation and diffusion velocities of NPs highly affect their penetration and cellular uptake. Specifically, it is also reported that the cellular uptake and penetration are independent of surface coating, size, density, initial dose concentration and morphology of NPs \(^{(136)}\). In addition, Cho et al. \(^{(137)}\) reported that the shape dependency of AuNPs for their penetration through the cells could vary depending on their surface functional group. Wang et al. \(^{(138)}\) studied endocytosis of AuNPs with different sizes (45, 70 and 110 nm) in the human cancerous cell lines (CL1-0 and HeLa). This study revealed that the optimal size for the penetration into cells was around 45 nm. Interestingly, Chithrani et al. \(^{(139)}\) evaluated the effect of spherical and rod-shaped AuNPs on cellular uptake in the HeLa cell line. This study depicted that spherical-shaped AuNPs had a higher cellular uptake in comparison to rod-shaped AuNPs because of variable biophysical properties such as receptor diffusion kinetics. More interestingly, it was suggested that the surface coating of NPs impact on rate of uptake \(^{(140)}\). For instance, Sur et al. \(^{(141)}\) investigated cytotoxicity and cellular penetration of modified AgNPs with glucose, lactose, etc. in normal (L929) and cancerous (A549) cell lines. In this study, no differences were revealed in the cellular penetration of lactose- and glucose-modified AgNPs in L929, though there was a substantial growth in the cellular internalization of lactose-modified AgNPs into the A549, could be explained by the role of the chemical nature of the ligand in cellular uptake.

3.2. Toxicological and immunological aspect

Mukherjee and coworkers experimentally proved the nontoxic nature of these biogenic NPs in C57BL6/J female mice via various biochemical parameters along
with a histopathology study of different organs. Even after successive injections of biogenic AuNPs (1 or 10 mg/kg/day) for seven days in healthy mice, no toxicity was observed (142). Moreover, it is interesting to note that in another study the same group reported that mice treated with chemically synthesized AuNPs showed broken alveolar walls with hyperplasic sinusoids as compared to the untreated or green synthesized AuNPs-treated mice (143). On the other hand, various chronic and acute toxicities of liver and nephrons were reported to be associated with zinc, platinum and cerium oxide NPs (144–146). Hence, it is very crucial to screen the potential nanoparticles/nanomaterials for various toxicity studies including their pharmacokinetics, pharmacodynamics and responses to immune system before moving on to clinical trials (147–149).

3.3. Biodegradability, metabolic kinetics and clearance

Biodegradability is a very vital aspect to be considered before exploiting AuNPs in vivo. Polymeric NPs are naturally biodegradable and are cleared from the body. However, in case of metallic NPs biodegradability is slow and poses serious challenges in terms of toxicity (50, 147, 151). Although detailed knowledge regarding the mechanism of metallic NPs’ biodegradability and clearance is still unclear, few recent studies validate the gradual excretion of metal NPs in feces and urine even up to 14 days (147, 152). Furthermore, the studies shed light on the positively charged AuNPs, which may encounter a negative charge repulsion from the glomerular basement membrane in nephrons and pass out via urine. In another study reported by Rengan and coworkers, liposomal AuNPs were demonstrated for their biodegradability and as a potential DDS for cancer therapy. Moreover, metabolic degradation of the delivery system was noticed in liver and hepatocytes followed by its easy excretion via the renal route (147). All the studies discussed in detail that in vivo biodistribution, metabolic kinetics, clearance and ultimate dependability of NPs are determined by their shape, size and morphology.

4. Conclusions and future prospects

Green nanomaterials are currently in a highly investigative phase for the treatment and diagnosis of cancer but the ultimate dependability is yet to be decided in clinical trials. A number of new possibilities have come into account in relation to the use of green nanomaterials, owing to their biocompatibility and effectiveness. Moreover, many types of cancers that do not have cures today may be cured by these green nanomaterials in the future. Additionally, thorough understanding of key physiological barriers in vivo is the key to effectively deliver NPs into the tumor. Furthermore, the knowledge regarding the safety of nanomaterials is not sufficient and comprehensive acute and chronic toxicity in clinical studies should be observed to identify the hazards associated with the use of NPs. Considering the above discussion, it is expected that green nanomaterials could emerge as future cancer therapeutics and diagnostics agents in the near future.

Acknowledgements

We gratefully acknowledge Dr Sudip Mukherjee (Post.doc Researcher, Department of Bioengineering, Rice University, Houston, TX, USA) for his valuable suggestions and comments over the content of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Mr. Hamed Barabadi graduated as a Doctor of Pharmacy from Mazandaran University of Medical Sciences, Sari, Iran, 2014. He is currently working on his Ph.D. in Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. His main research interests are in nanobiotechnology with an emphasis on nanomedicine, nanobiomaterials and bioprocessing.

Mr. Muhammad Ovais is pursuing a Ph.D. degree in Nanomedicine from CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People’s Republic of China. He has completed his MPhil-Biotechnology degree in 2017 from Quaid-i-Azam University, Pakistan and earned his BS-Biotechnology degree in 2015 with distinction from the University of Peshawar, Pakistan. His research interest lies in the development novel nano-delivery systems for cancer theranostics. He owns to his credit 19 original research and review articles in prestigious journals with a cumulative impact factor of above 50.

Prof. Dr. Zabta khon Shinwari is a Tenured Professor at Department of Biotechnology, Quaid-i-Azam University and Secretary General of Pakistan Academy of Sciences. He did his Post-doc from Japan International Research Center for Agricultural Sciences and Ph.D. from Kyoto University. His research interest lies in Medicinal plants, Molecular Systematics, Cancer Nanomedicine, and dual-use education. He is UNESCO Laureate and Avicenna Gold Medalist for Ethics in Science, 2015. Dr. Zabta owns to his credit 355 scientific publications with cumulative citations of 5842, having h-index of 37 and i10-index of 129. Moreover, he remained Vice Chancellor of many Universities in Pakistan and has won numerous national and international scientific projects. He also has to his credit highest National Civil Awarded, “Tamgha-e-Imtiaz”.

Dr. Muthupandian Saravanan graduated in Microbiology from Madurai Kamaraj University and earned his doctorate with...
specialization in Medical Microbiology and Nanomedicine from Sathyabama University, India. Thereafter, He did his Post Doctoral Research through Israel Government research fellowship (2011–2012) in Institute of Drug research, Faculty of Medicine, Hebrew University of Jerusalem, Israel, focusing his research on Nano-biomaterials & their Biomedical Applications. Prior to post-doc, he worked as an Assistant Professor, Department of Biotechnology, SRM University, Chennai, India. Presently, he is an Associate Professor (under UNDP) at Department of Medical Microbiology and Immunology, Institute of Biomedical Sciences, College of Health Science, Mekelle University, Ethiopia. Dr. Saravanavan owns to his credit 60 publications with cumulative citations of 1045, having h-index of 16 and i10-index of 17. He has participated in more than 40 national and international conferences and also published in more than 30 international peer-reviewed journals. He was a recipient of many fellowships and awards – notably, DST-SERC Young Scientist Award in 2012, International Fellowship “Advanced Course on Diagnostics” Sponsored by LSH&TM & Fondation Mérieux, in France 2013, International Fellowship “Pertussis: biology, epidemiology and prevention” meeting Sponsored by Fondation Mérieux & WHO in France 2014, International Union of Microbiological Societies (IUMS) travel grant in 2015 to Canada, International Fellowship “Advanced Course on Antibiotics” (AdCAb) Sponsored by Institute of Pasteur and Fondation Mérieux France, 2016. His research interest lies in Microbial Drug Resistance, Nano-biotechnology, and Nanomedicine to combat Antimicrobial resistance (AMR) and Cancer.

ORCID

Muthupandian Saravanan http://orcid.org/0000-0002-1480-3555

References

[1] Institute, N.C. “What is cancer?” https://www.cancer.gov/about-cancer/understanding/what-is-cancer (accessed Nov 6)
[2] Informatics, I.I.F.H. http://www.imshealth.com/en/thought-leadership/ims-institute
[3] Society, T.A.C. Global Cancer Facts & Figures. 3rd Edition. http://www.cancer.org/Research/CancerFactsStatistics/global-cancer-facts-figures-3rd-edition (accessed Nov 6)
[4] Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global Cancer Statistics. CA: A Cancer J. Clinicians 2011, 61 (2), 69–90.
[5] Organization, W.H.: “Cancer Control: A Global Snapshot in 2015”. http://www.who.int/cancer/cancer-snapshot-2015/en/ (accessed Nov 6)
[6] Tanneberger, S. Palliative Care in Advanced Cancer. In ESMO Handbook of Advanced Cancer Care; Catane, R., Cherry, N., Klokke, M., Tanneberger, S., Schrijvers, D., Eds.; Taylor & Francis, 2006; pp 5–9.
[7] Miller, K.D.; Siegel, R.L.; Lin, C.C.; Mariotto, A.B.; Kramer, J.L.; Rowland, J.H.; Stein, K.D.; Alteri, R.; Jemal, A. Cancer Treatment and Survivorship Statistics, 2016. CA: A Cancer J. Clinicians 2016, 46 (2), 231–239.
[8] Rao, P.V.; Nallappan, D.; Madhavi, K.; Rahman, S.; Jun Wei, L.; Gan, S.H. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents. Oxid. Med. Cell Longev. 2016, 2016 (33), 12–27.
[9] Lokina, S.; Stephen, A.; Kavijarasan, V.; Arulvasu, C.; Narayanan, V. Cytotoxicity and Antimicrobial Activities of Green Synthesized Silver Nanoparticles. Eur. J. Med. Chem. 2014, 76 (11), 256–263.
[10] Anwar, A.; Ovais, M.; Khan, A.; Raza, A. Docetaxel Loaded Solid Lipid Nanoparticles: A Novel Drug Delivery System. IET Nanobiotechnol. 2017, 11 (6), 1–34.
[11] Salunke, B.K.; Sawant, S.S.; Lee, S.-I.; Kim, B.S. Microorganisms as Efficient Biosystem for the Synthesis of Metal Nanoparticles: Current Scenario and Future Possibilities. World J. Microbiol. Biotechnol. 2016, 32 (5), 1–16.
[12] Singh, P.; Kim, Y.-J.; Zhang, D.; Yang, D.-C. Biological Synthesis of Nanoparticles From Plants and Microorganisms. Trends Biotechnol. 2016, 34 (7), 588–599.
[13] Kasithevar, M.; Saravanavan, M.; Prakash, P.; Kumar, H.; Ovais, M.; Barabadi, H.; Shinwari, Z.K. Green Synthesis of Silver Nanoparticles Using Alsicarpus Monilifer Leaf Extract and its Antibacterial Activity Against MRSA and CoNS Isolates in HIV Patients. J. Interdiscip. Nanomed. 2017, 2 (2), 131–141.
[14] Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Hassan, D.; Maaza, M. Sageretia Thea (Osbeck.) Modulated Biosynthesis of NiO Nanoparticles and Their In Vitro Pharmacognostic, Antioxidant and Cytotoxic Potential. Artif. Cells Nanomed. Biotechnol. 2017. DOI: 10.1080/21691401.2017.1345928
[15] Dahoumane, S.A.; Mechouet, M.; Wijesekera, K.; Filipe, C.D.M.; Sicard, C.; Bazylinski, D.A.; Jeffries, C. Algae-mediated Biosynthesis of Inorganic Nanomaterials as A Promising Route in Nanobiotechnology - A Review. Green Chem. 2017, 19 (3), 552–587.
[16] Barabadi, H.a.S.H. Biofabrication of Gold and Silver Nanoparticles for Pharmaceutical Applications. Pharm. Biomed. Res. 2016, 2 (1), 1–7.
[17] Priester, J.H.; Van De Werfhorst, L.C.; Ge, Y.; Adeleye, A.S.; Tomar, S.; Tom, L.M.; Piceno, Y.M.; Andersen, G.L.; Holden, P.A. Effects of TiO 2 and Ag Nanoparticles on Polyhydroxybutyrate Biosynthesis By Activated Sludge Bacteria. Environ. Sci. Technol. 2014, 48 (24), 14712–14720.
[18] Barabadi, H.; Honary, S.; Mohammadi, M.A.; Ahmadpour, E.; Rahimi, M.T.; Alizadeh, A.; Naghibi, F.; Saravanavan, M. Green Chemical Synthesis of Gold Nanoparticles by Using Penicillium Aculeatum and Their Scolicidal Activity Against Hydatid Cyst Protoscolices. Environ. Sci. Pollut. Res. 2017, 24 (6), 5800–5810.
[19] Honary, S.; Barabadi, H.; Ebrahimip, F.; Naghibi, F.; Alizadeh, A. Development and Optimization of Biometal Nanoparticles by Using Mathematical Methodology: A Microbial Approach. J. Nano Res. 2015, 30 (7), 333–341.
[20] Rahimi, M.T.; Ahmadpour, E.; Esboei, B.R.; Spotin, A.; Koshki, M.H.K.; Alizadeh, A.; Honary, S.; Barabadi, H.; Mohammadi, M.A. Scolicidal Activity of Biosynthesized Silver Nanoparticles Against Echinococcus Granulosus Protoscolices. Int. J. Surg. 2015, 19 (10), 128–133.
[21] Ovais, M.; Khalil, A.T.; Raza, A.; Khan, M.A.; Ahmad, I.; Islam, N.U.; Saravanavan, M.; Ubdaid, M.F.; Ali, M.; Shinwari,
Z.K. Green Synthesis of Silver Nanoparticles via Plant Extracts: Beginning A new era in Cancer Theranostics. *Nanomedicine* 2016, 11 (23), 3157–3177.

[22] Mukherjee, S.; Dasari, M.; Priyamvada, S.; Kotcherlakota, R.; Bollu, V.S.; Patra, C.R. A Green Chemistry Approach for the Synthesis of Gold Nanoconjugates That Induce the Inhibition of Cancer Cell Proliferation Through Induction of Oxidative Stress and Their in Vivo Toxicity Study. *J. Mater. Chem. B.* 2015, 3 (18), 3820–3830.

[23] Patra, C.R.; Mukherjee, S.; Kotcherlakota, R. Biosynthesized Silver Nanoparticles: A Step Forward for Cancer Theranostics? *Nanomedicine* 2014, 9 (10), 1445–1448.

[24] Ovais, M.; Raza, A.; Naz, S.; Islam, N.U.; Khalil, A.T.; Ali, S.; Khan, M.A.; Shinwari, Z.K. Current State and Prospects of the Phyto-synthesized Colloidal Gold Nanoparticles and Their Applications in Cancer Theranostics. *Appl. Microbiol. Biotechnol.* 2017, 101 (9), 1–15.

[25] Honary, S.; Barabadi, H.; Gharaei-Fathabad, E.; Naghibi, F. Green Synthesis of Silver Nanoparticles Induced by the Fungus Penicillium Citrinum. *Trop. J. Pharm. Res.* 2013, 12 (1), 7–11.

[26] Barabadi, H.; Honary, S.; Ebrahimi, P.; Mohammadi, M.A.; Alizadeh, A.; Naghibi, F. Microbial Mediated Preparation, Characterization and Optimization of Gold Nanoparticles. *Braz. J. Microbiol.* 2014, 45 (4), 1493–1501.

[27] Subbaiya, R.; Saravanan, M.; Priya, A.R.; Shankar, K.; Selvam, M.; Ovais, M.; Balajee, R.; Barabadi, H. Biomimetic Synthesis of Silver Nanoparticles From Streptomycetes Avogires and Their Potential Anticancer Activity Against Human Breast Cancer Cells. *IET Nanobiotechnol.* 2017. DOI: 10.1049/iet-bt.2016.0222.

[28] Salunke, B.K.; Sawant, S.S.; Lee, S.-I.; Kim, B.S. Comparative Study of MnO2 Nanoparticle Synthesis by Marine Bacterium Saccharophagus Degradans and Yeast Saccharomyces Cerevisiae. *Appl. Microbiol. Biotechnol.* 2015, 99 (13), 5419–5427.

[29] Rajan, R.; Chandran, K.; Harper, S.L.; Yun, S.-I.; Kalaichelvan, P.T. Plant Extract Synthesized Silver Nanoparticles: An Ongoing Source of Novel Biocompatible Materials. *Ind Crops Prod.* 2015, 70 (6), 356–373.

[30] Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Khan Shinwari, Z.; Maaza, M. Biosynthesis of Iron Oxide (Fe2O3) Nanoparticles via Aqueous Extracts of Sageretia Thea (Osbeck.) and Their Pharmacognostic Properties. *Green Chem. Lett. Rev.* 2017, 10 (4), 186–201.

[31] Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Maaza, M. Physical Properties, Biological Applications and Biocompatibility Studies on Biosynthesized Single Phase Cobalt Oxide (Co 3 O 4) Nanoparticles via Sageretia Thea (Osbeck). *Arab. J. Chem.* 2017. DOI: 10.1016/j.arabjc.2017.07.004.

[32] Sivaraj, R.; Rahman, P.K.; Rajiv, P.; Narendran, S.; Venckatesh, R. Biosynthesis and Characterization of Acalypha Indica Mediated Copper Oxide Nanoparticles and Evaluation of its Antimicrobial and Anticancer Activity. *Spectrochim. Acta, Part A* 2014, 129 (17), 255–258.

[33] KS, U.S.; Govindaraju, K.; Kumar, G.; Prabhu, D.; Arulvasu, C.; Karthick, V.; Changmai, N. Anti-proliferative Effect of Biogenic Gold Nanoparticles Against Breast Cancer Cell Lines (MDA-MB-231 & MCF-7). *Appl. Surf. Sci.* 2016, 371 (12), 415–424.

[34] Gengan, R.; Anand, K.; Phulukdaree, A.; Chuturgoon, A. A549 Lung Cell Line Activity of Biosynthesized Silver Nanoparticles Using *Albizia Adianthifolia* Leaf. *Colloids Surf.* B 2013, 105 (34), 87–91.

[35] Singh, H.; Du, J.; Yi, T.-H. Green and Rapid Synthesis of Silver Nanoparticles Using Borago Officinalis Leaf Extract: Anticancer and Antibacterial Activities. *Artif. Cells Nanomed Biotechnol.* 2016, 45 (7), 1310–1316.

[36] Jena, S.; Singh, R.K.; Panigrahi, B.; Suar, M.; Mandal, D. Photo-bioreduction of Ag+ Ions Towards The Generation of Multifunctional Silver Nanoparticles: Mechanistic Perspective and Therapeutic Potential. *J. Photochem. Photobiol, B* 2016, 164 (43), 306–313.

[37] Rajan, A.; Vilas, V.; Philip, D. Studies on Catalytic, Antioxidant, Antibacterial and Anticancer Activities of Biogenic Gold Nanoparticles. *J Mol Liq* 2015, 212 (31), 331–339.

[38] Prabakaran, K.; Ragavendran, C.; Natarajan, D. Mycosynthesis of Silver Nanoparticles From Beauveria Bassiana and its Larvicidal, Antibacterial, and Cytotoxic Effect on Human Cervical Cancer (HeLa) Cells. *RSC Adv.* 2016, 6 (51), 44972–44986.

[39] Kummara, S.; Patil, M.B.; Uriah, T. Synthesis, Characterization, Biocompatible and Anticancer Activity of Green and Chemically Synthesized Silver Nanoparticles – A Comparative Study. *Biomed. Pharmacother.* 2016, 84 (6), 10–21.

[40] Mishra, P.; Ray, S.; Sinha, S.; Das, B.; Khan, M.J.; Behera, S.K.; Yun, S.-I.; Tripathy, S.K.; Mishra, A. Facile bio-Synthesis of Gold Nanoparticles by Using Extract of Hibiscus Sabdariffa and Evaluation of its Cytotoxicity Against U87 Glioblastoma Cells Under Hyperglycemic Condition. *Biochem. Eng. J.* 2016, 105 (6), 264–272.

[41] Namvar, F.; Azizi, S.; Rahman, H.S.; Mohammad, R.; Rasedee, A.; Soltani, M.; Rahim, R.A. Green Synthesis, Characterization, and Anticancer Activity of Hyaluronal/Zinc Oxide Nanocomposite. *Onco Targets Ther.* 2016, 9 (12), 4549–4559.

[42] Nayak, D.; Ashe, S.; Rauta, P.R.; Kumari, M.; Nayak, B. Bark Extract Mediated Green Synthesis of Silver Nanoparticles: Evaluation of Antimicrobial Activity and Antiproliferative Response Against Osteosarcoma. *Mater. Sci. Eng: C* 2016, 58 (11), 44–52.

[43] Chatterjee, A.; Loganathan, A.; Niroshinee, V.; Abraham, J. Biosynthesis of Lanthanum Nanoparticles Using Green Gram Seeds and Their Effect on Microorganisms. *Res. J. Pharmac, Biol. Chem. Sci.* 2016, 7 (2), 1462–1470.

[44] Salehi, S.; Shandiz, S.A.S.; Ghanbar, F.; Darvish, M.R.; Rashmezad, M.A.; Ali Asgary, E.; Tafvizi, F.; Shandiz, S.; Ardestani, M.S.; Mirzaie, A. Comparative Study on Antioxidant, Anticancer, and Antibacterial Properties. *Antioxid. Med. J. TUMS Publ.* 2015, 72 (12), 799–807.
[46] Xia, Q.H.; Ma, Y.J.; Wang, J.W. Biosynthesis of Silver Nanoparticles Using Taxus Yunnanensis Callus and Their Antibacterial Activity and Cytotoxicity in Human Cancer Cells. *Nanomaterials* **2016**, *6* (9), 160–100.

[47] Salari, Z.; Ameri, A.; Forootanfar, H.; Adeli-Sardou, M.; Jafari, M.; Mehrabani, M.; Shakibaie, M. Microwave-assisted Biosynthesis of Zinc Nanoparticles and Their Cytotoxic and Antioxidant Activity. *J. Trace Elem. Med. Biol.* **2017**, *39* (11), 16–123.

[48] Varsha, B.; Rajasekar, A.; Kathiravan, G. Xyloflorous Biogenic Synthesis of Silver Nanoparticles and Their Cytotoxicity Effects Against HT-29 Cell Line. *Res. J. Pharm. Biol. Chem. Sci.* **2016**, *7* (5), 1578–1583.

[49] Premasudha, P.; Venkataramana, M.; Abirami, M.; Vanathi, P.; Krishna, K.; Rajendran, R. Biological Synthesis and Characterization of Silver Nanoparticles Using Eclipta Alba Leaf Extract and Evaluation of its Cytotoxic and Antimicrobial Potential. *Bull. Mater. Sci.* **2015**, *38* (4), 965–973.

[50] Manikandan, R.; Manikandan, B.; Raman, T.; Arunagirinathan, K.; Prabhu, N.M.; Basu, M.J.; Perumal, M.; Palanisamy, S.; Munusamy, A. Biosynthesis of Silver Nanoparticles Using Ethanolic Petals Extract of Rosa Indica and Characterization of its Antibacterial, Anticancer and Anti-Inflammatory Activities. *Spectrochim. Acta, Part A* **2015**, *138* (7), 120–129.

[51] Prabhu, D.; Arulvasu, C.; Babu, G.; Manikandan, R.; Srinivasan, P. Biologically Synthesized Green Silver Nanoparticles From Leaf Extract of Vitex Negundo L. Induce Growth-Inhibitory Effect on Human Colon Cancer Cell Line HCT15. *Process Biochem.* **2013**, *48* (2), 317–324.

[52] Prasad, P.R.; Kanchi, S.; Naidoo, E. In-vitro Evaluation of Copper Nanoparticles Cytotoxicity on Prostate Cancer Cell Lines and Their Antibiotant, Sensing and Catalytic Activity: One-pot Green Approach. *J. Photochem. Photobiol, B* **2016**, *161* (2), 122–130.

[53] He, Y.; Du, Z.; Ma, S.; Cheng, S.; Jiang, S.; Liu, Y.; Li, D.; Huang, H.; Zhang, K.; Zheng, X. Biosynthesis, Antibacterial Activity and Anticancer Effects Against Prostate Cancer (PC-3) Cells of Silver Nanoparticles Using Dimocarpus Longan Lour. *Nanoscale Res. Lett.* **2016**, *11* (1), 1–10.

[54] Nalavoithula, R.; Alwala, J.; Nagati, V.B.; Manthurpadiguya, P.R. Biosynthesis of Silver Nanoparticles Using Impatiens Balsamina Leaf Extracts and its Characterization and Cytotoxic Studies Using Human Cell Lines. *Int. J. Chem.Tech. Res.* **2015**, *7* (5), 2460–2468.

[55] Patra, S.; Mukherjee, S.; Barui, A.K.; Ganguly, A.; Sreedhar, B.; Patra, C.R. Green Synthesis, Characterization of Gold and Silver Nanoparticles and Their Potential Application for Cancer Therapeutics. *Mater. Sci. Eng.: C* **2015**, *53*, 298–309.

[56] Namvar, F.; Rahman, H.S.; Mohamad, R.; Azizi, S.; Tahir, P.M.; Chartrand, M.S.; Yeap, S.K. Cytotoxic Effects of Biosynthesized Zinc Oxide Nanoparticles on Murine Cell Lines. *Evidence-Based Complementary Altern. Med.* **2015**, *17* (15), 743–751.

[57] Raman, R.P.; Parthiban, S.; Srinithya, B.; Kumar, V.V.; Anthony, S.P.; Sivasubramanian, A.; Muthuraman, M.S. Biogenic Silver Nanoparticles Synthesis Using the Extract of the Medicinal Plant Clerodendron Serratum and its in-Vitro Antiproliferative Activity. *Mater. Lett.* **2015**, *160* (67), 400–403.

[58] Namvar, F.; Rahman, H.S.; Mohamad, R.; Rasedee, A.; Yeap, S.K.; Chartrand, M.S.; Azizi, S.; Tahir, P.M. Apoptosis Induction in Human Leukemia Cell Lines by Gold Nanoparticles Synthesized Using the Green Biosynthetic Approach. *J. Nanomater.* **2015**, *21* (8), 1–10.

[59] Namvar, F.; Rahman, H.S.; Mohamad, R.; Barahara, J.; Mahdavi, M.; Amin, E.; Chartrand, M.S.; Yeap, S.K. Cytotoxic Effect of Magnetic Iron Oxide Nanoparticles Synthesized via Seaweed Aqueous Extract. *Int. J. Nanomed.* **2014**, *9* (1), 2479–2488.

[60] Sulaiman, G.M.; Mohammad, A.A.; Abdul-Wahed, H.E.; Ismail, M.M. Biosynthesis, Antimicrobial and Cytotoxic Effects of Silver Nanoparticles Using Rosmarinus Officinalis Extract. *Digest J. Nanomater. Biostruct.* **2013**, *8* (1), 34–41.

[61] Dorosti, N.; Jamshidi, F. Plant-mediated Gold Nanoparticles by Dracocephalum Kotschyi as Anticholinesterase Agent: Synthesis, Characterization, and Evaluation of Anticancer and Antibacterial Activity. *J. Appl. Biomed.* **2016**, *11* (7), 123–131.

[62] Nayak, D.; Pradhan, S.; Ashe, S.; Rauta, P.R.; Nayak, B. Biologically Synthesised Silver Nanoparticles From Three Diverse Family of Plant Extracts and Their Anticancer Activity Against Epidermoid A431 Carcinoma. *J. Colloid Interface Sci.* **2015**, *457* (13), 329–338.

[63] Jha, A.K.; Prasad, K. Green Synthesis Of Silver Nanoparticles And Its Activity On SiHa Cervical Cancer Cell Line. *Adv. Mater. Lett.* **2014**, *5* (12), 501–505.

[64] Mittal, A.K.; Bhauimik, J.; Kumar, S.; Banerjee, U.C. Biosynthesis of Silver Nanoparticles: Elucidation of Prospective Mechanism and Therapeutic Potential. *J. Colloid Interface Sci.* **2014**, *415* (11), 39–47.

[65] Kumar, B.; Smita, K.; Seqqat, R.; Benalazar, K.; Grijalva, M.; Cumbal, L. In Vitro Evaluation of Silver Nanoparticles Cytotoxicity on Hepatic Cancer (Hep-G2) Cell Line and Their Antioxidant Activity: Green Approach for Fabrication and Application. *J. Photochem. Photobiol. B* **2016**, *159* (11), 8–13.

[66] Roopan, S.M.; Kumar, S.H.S.; Madhumitha, G.; Suthindhiran, K. Biogenic-production of SnO2 Nanoparticles and its Cytotoxic Effect Against Hepatocellular Carcinoma Cell Line (HepG2). *Appl. Biochem. Biotechnol.* **2015**, *175* (3), 1567–1575.

[67] Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Khamlich, S.; Maaza, M. Sageretia Thea (Osbeck.) Mediated Synthesis of Zinc Oxide Nanoparticles and its Biological Applications. *Nanomedicine* **2017**, *12* (15), 1767–1789.

[68] Renugadevi, K.; Inbakandam, D.; Bavanilatha, M.; Poornima, V. Cissus Quadrangularis Assisted Biosynthesis of Silver Nanoparticles with Antimicrobial and Anticancer Potentials. *Adv. Mater. Lett.* **2014**, *5* (7), 123–131.

[69] Ahmad Siddiqui, E.; Ahmad, A.; Julius, A.; Syed, A.; Khan, S.; Kharat, M.; Pai, K.; Kadoo, N.; Gupta, V. Biosynthesis of Anti-proliferative Gold Nanoparticles Using Endophytic
Fusarium Oxysporum Strain Isolated From Neem (A. Indica) Leaves. *Curr. Top. Med. Chem.* **2016**, *16* (18), 2036–2042.

[71] Ortega, F.G.; Fernández-Baldo, M.A.; Fernández, J.G.; Serrano, M.J.; Sanz, M.I.; Díaz-Mochón, J.J.; Lorente, J.A.; Raba, J. Study of Antitumor Activity in Breast Cell Lines Using Silver Nanoparticles Produced by Yeast. *Int. J. Nanomed.* **2015**, *10* (5), 2021–2031.

[72] Inbakandan, D.; Kumar, C.; Bavanalatha, M.; Ravindra, D.N.; Kirubagaran, R.; Khan, S.A. Ultrasonic-assisted Green Synthesis of Flower Like Silver Nanocolloids Using Marine Sponge Extract and its Effect on Oral Biofilm Bacteria and Oral Cancer Cell Lines. *Microb. Pathog.* **2016**, *99* (22), 135–141.

[73] Bhakya, S.; Muthukrishnan, S.; Sukumaran, M.; Grijalva, M.; Cumbal, L.; Benjamin, J.F.; Kumar, T.S.; Rao, M. Antimicrobial, Antioxidant and Anticancer Activity of Biogenic Silver Nanoparticles – an Experimental Report. *RSC Adv.* **2016**, *6* (84), 81436–81446.

[74] Potara, M.; Bawaskar, M.; Simon, T.; Gaikwad, S.; Licarete, E.; Ingle, A.; Banciu, M.; Vulpoi, A.; Astilean, S.; Rai, M. Biosynthesized Silver Nanoparticles Perforning as Biogenic SERS-Nanotags for Investigation of C26 Colon Carcinoma Cells. *Colloids Surf. B* **2015**, *133* (11), 296–303.

[75] Maliszewksa, I. Microbial Mediated Synthesis of Gold Nanoparticles: Preparation, Characterization and Cytotoxicity Studies. *Dig J. Nanomater. Bios* **2013**, *8* (11), 1123–1131.

[76] Venkatesan, J.; Manivasagan, P.; Kim, S.-K.; Kirthi, A.V.; Marimuthu, S.; Rahuman, A.A. Marine Algae-Mediated Synthesis of Gold Nanoparticles Using A Novel Ecklonia Cava. *Bioprocess Biosyst. Eng.* **2014**, *37* (8), 1591–1597.

[77] Wang, C.; Mathiyagon, R.; Kim, Y.J.; Castro-Aceituno, V.; Singh, P.; Ahn, S.; Wang, D.; Yang, D.C. Rapid Green Synthesis of Silver and Gold Nanoparticles Using Dendropanax Morbifera Leaf Extract and Their Anticancer Activities. *Int. J. Nanomed.* **2016**, *11* (6), 3691–3699.

[78] Wani, K.; Choudhari, A.; Chikate, R.; Kaik-Chanekar, R. Synthesis and Characterization of Gold Nanoparticles Using Ficus Religiosa Extract. *Carbon Sci. Technol.* **2013**, *5* (1), 203–210.

[79] Prasannaraj, G.; Saihari, S.V.; Ravikumar, S.; Venkatachalam, P. Enhanced Cytotoxicity of Biomolecules Loaded Metallic Silver Nanoparticles Against Human Liver (HepG2) and Prostate (PC3) Cancer Cell Lines. *J. Nanosci. Nanotechnol.* **2016**, *16* (5), 4948–4959.

[80] Raj, P.; Khusro, A. In-vitro Anticancer and Antioxidant Activity of Gold Nanoparticles Conjugated with Tabernaemontana Divaricata Flower SMs Against MCF-7 Breast Cancer Cells. *Korean Chem. Eng. Res.* **2016**, *54* (1), 75–80.

[81] Saikia, I.; Sonowal, S.; Pal, M.; Boruah, P.K.; Das, M.R.; Tamuly, C. Biosynthesis of Gold Decorated Reduced Graphene Oxide and its Biological Activities. *Mater. Lett.* **2016**, *178* (4), 239–242.

[82] Tippayawat, P.; Phromvivyo, N.; Boueroy, P.; Chompoosor, A. Green Synthesis of Silver Nanoparticles in Aloe Vera Plant Extract Prepared by A Hydrothermal Method and Their Synergistic Antibacterial Activity. *PeerJ Preprints* **2016**, *4* (56), 1912–1920.

[83] Arokiyaraj, S.; Arasu, M.V.; Vincent, S.; Prakash, N.U.; Choi, S.H.; Oh, Y.-K.; Choi, K.C.; Kim, K.H. Rapid Green Synthesis of Silver Nanoparticles From Chrysanthemum Indicum L and its Antibacterial and Cytotoxic Effects: an in Vitro Study. *Int. J. Nanomed.* **2014**, *9* (13), 379–388.

[84] Singh, M.; Saurav, K.; Majouga, A.; Kumar, M.; Kumar, M.; Manikandan, S.; Kumaraguru, A. The Cytotoxicity and Cellular Stress by Temperature-Fabricated Polylshaped Gold Nanoparticles Using Marine Macroalgae, Padina Gymnospora. *Biotechnol. Appl. Biochem.* **2015**, *62* (3), 424–432.

[85] Swamy, M.K.; Akhtar, M.S.; Mohanty, S.K.; Sinniah, U.R. Synthesis and Characterization of Silver Nanoparticles Using Fruit Extract of Momordica Cymbaria and Assessment of Their in Vitro Antimicrobial, Antioxidant and Cytotoxicity Activities. *Spectrochim. Acta, Part A* **2015**, *151* (54), 939–944.

[86] Dharmatti, R.; Phadke, C.; Mewada, A.; Thakur, M.; Pandey, S.; Sharon, M. Biogenic Gold Nano-Triangles: Cargos for Anticancer Drug Delivery. *Mater. Sci. Eng.: C* **2014**, *44* (28), 92–98.

[87] Yang, N.; WeiHong, L.; Hao, L. Biosynthesis of Silver Nanoparticles Using Agricultural Waste Mango Peel Extract and its in Vitro Cytotoxic Effect on two Normal Cells. *Matter. Lett.* **2014**, *134* (6), 67–70.

[88] Arunkumar, P.; Vedagiri, H.; Premkumar, K. Rapid Bioreduction of Trivalent Aurum Using Banana Stem Powder and its Cytotoxicity Against MCF-7 and HEK-293 Cell Lines. *J. Nanopart. Res.* **2013**, *15* (3), 1–8.

[89] Harne, S.; Sharma, A.; Dhyagude, M.; Joglekar, S.; Kodam, K.; Hudlikar, M. Novel Route for Rapid Biosynthesis of Copper Nanoparticles Using Aqueous Extract of Calotropis Procera L. Latex and Their Cytotoxicity on Tumor Cells. *Colloids Surf. B* **2012**, *95* (23), 284–288.

[90] Kalpana, D.; Pichiah, P.T.; Sankarganesh, A.; Park, W.S.; Lee, S.M.; Wahab, R.; Cha, Y.S.; Lee, Y.S. Biogenesis of Gold Nanoparticles Using Plant Powders and Assessment of in Vitro Cytotoxicity in 3T3-L1 Cell Line. *J. Pharm. Innov* **2013**, *8* (4), 265–275.

[91] Tiwari, M.; Jain, P.; Hariharapurap, R.C.; Narayanan, K.; Bhat, U.; Udupa, N.; Rao, J.V. Biosynthesis of Copper Nanoparticles Using Copper-Resistant Bacillus Cereus, A Soil Isolate. *Process. Biochem.* **2016**, *51* (10), 1348–1356.

[92] Kalpana, D.; Srikanth, K.; Pichiah, P.T.; Cha, Y.S.; Lee, Y.S. Synthesis, Characterization and In Vitro Cytotoxicity of Gold Nanoparticles Using Cultural Filtrate of Low Shear Modeled Microgravity and Normal Gravity Cultured K. Pneumoniaea. *Macromol. Res.* **2014**, *22* (5), 487–493.

[93] Syed, A.; Saraswati, S.; Kundu, G.C.; Ahmad, A. Biological Synthesis of Silver Nanoparticles Using the Fungus Humicola sp. and Evaluation of Their Cytotoxicity Using Normal and Cancer Cell Lines. *Spectrochim. Acta, Part A* **2013**, *114* (55), 144–147.

[94] Mishra, A.; Tripathy, S.K.; Wahab, R.; Jeong, S.-H.; Hwang, I.; Yang, Y.-B.; Kim, Y.-S.; Shin, H.-S.; Yun, S.-I. Microbial Synthesis of Gold Nanoparticles Using the Fungus Penicillium Brevicepscompactum and Their Cytotoxic Effects Against Mouse Mayo Blast Cancer C2C12 Cells. *Appl. Microbiol. Biotechnol.* **2011**, *92* (3), 617–630.

[95] Anand, K.; Tiloke, C.; Phulukdaree, A.; Ranjan, B.; Chuturgoon, A.; Singh, S.; Gengan, R. Biosynthesis of Palladium Nanoparticles by Using Moringa Oleifera Flower Extract and Their Catalytic and Biological
Properties. *J. Photochem. Photobiol, B* 2016, 165 (34), 87–95.

[96] Du, J.; Singh, H.; Yi, T.-H. Antibacterial, Anti-Biofilm and Anticancer Potentials of Green Synthesized Silver Nanoparticles Using Benzoin gum (Styrax Benzoin) Extract. *Bioprocess Biosyst. Eng.* 2016, 39 (12), 1923–1931.

[97] Kummara, S.; Patil, M.B.; Uriah, T. Synthesis, Characterization, Biocompatible and Anticancer Activity of Green and Chemically Synthesized Silver Nanoparticles – A Comparative Study. *Biomed. Pharmacotherapy* 2016, 84 (12), 10–21.

[98] Singh, H.; Du, J.; Yi, T.-H. Green and Rapid Synthesis of Silver Nanoparticles Using Borago Officinalis Leaf Extract: Anticancer and Antibacterial Activities. *Artif. Cells Nanomed. Biotechnol.* 2016, 15 (11), 1–7.

[99] Heydari, R.; Rashidipour, M. Green Synthesis of Silver Nanoparticles Using Extract of oak Fruit Hull (Jaft): Synthesis and in Vitro Cytotoxic Effect on MCF-7 Cells. *Int. J. Breast Cancer* 2015, 33 (16), 45–54.

[100] Majeed, S.; bin Abdullah, M.S.; Dash, G.K.; Ansari, M.T.; Nanda, A. Biochemical Synthesis of Silver Nanoparticles Using Filamentous Fungi Penicillium Decumbens (MTCC-2494) and its Efficacy Against A-549 Lung Cancer Cell Line. * Chin. J. Nat. Med.* 2016, 14 (8), 615–620.

[101] Baharara, J.; Ramezani, T.; Dvshalar, A.; Moussavi, A.; Seyedarabi, A. Induction of Apoptosis by Green Synthesized Gold Nanoparticles Through Activation of Caspase-3 and 9 in Human Cervical Cancer Cells. *Avicenna J. Med. Biotechnol.* 2016, 8 (2), 75–83.

[102] Ma, L.; Su, W.; Liu, J.X.; Zeng, X.X.; Huang, Z.; Li, W.; Liu, Z.C.; Tang, J.X. Optimization for Extracellular Biosynthesis of Silver Nanoparticles by Penicillium Aculeatum Su1 and Their Antimicrobial Activity and Cytotoxic Effect Compared with Silver Ions. *Mater. Sci. Eng. C – Mater. Biol. Appl.* 2017, 77, 963–971.

[103] Valli Nachiyar, C.; Vijayalakshmi, R.; Nivedha, K.; Bavanilatha, M.; Swetha, S. Moraxella osloensis Mediated Synthesis of TiO2 Nanoparticles. *Int. J. Pharmacy Pharmac. Sci.* 2016, 8 (5), 397–400.

[104] Lima, R.; Feitas, L.; Ballottin, D.; Marcatto, P.; Tasic, L.; Durán, N. In Cytotoxicity and genotoxicity of biogenic silver nanoparticles, *Journal of Physics: Conference Series*, 2013; IOP Publishing; 2013; p 012002.

[105] Sathishkumar, G.; Bharti, R.; Jha, P.K.; Selvakumar, M.; Dey, G.; Jha, R.; Jeyaraj, M.; Mandal, M.; Sivaramakrishnan, S. Dietary Flavone Chrysin (5,7-Dihydroxyflavone ChR) Functionalized Highly-Stable Metal Nanoformulations for Improved Anticancer Applications. *RSC Adv.* 2015, 5 (109), 89869–89878.

[106] Rajendran, I.; Dhandapani, H.; Anantanarayanan, R.; Rajaram, R. Agipigen Mediated Gold Nanoparticle Synthesis and Their Anti-Cancer Effect on Human Epidermoid Carcinoma (A431) Cells. *RSC Adv.* 2015, 5 (63), 51055–51060.

[107] Sahu, N.; Soni, D.; Chandra, S.; Satpute, D.B.; Saravanadevi, S.; Sarangi, B.K.; Pandey, R.A. Synthesis of Silver Nanoparticles Using Flavonoids: Hesperidin, Naringin and Diosmin, and Their Antibacterial Effects and Cytotoxicity. *Int. Nano Lett.* 2016, 6 (3), 173–181.

[108] Vignesh, V.; Sathiyanarayanan, G.; Sathishkumar, G.; Parthiban, K.; Sathish-Kumar, K.; Thirumurugan, R. Formulation of Iron Oxide Nanoparticles Using Exopolysaccharide: Evaluation of Their Antibacterial and Anticancer Activities. *RSC Adv.* 2015, 5 (35), 27794–27804.

[109] Mohanta, Y.K.; Panda, S.K.; Jayabal, R.; Sharma, N.; Bastia, A.K.; Mohanta, T.K. Antimicrobial, Antioxidant and Cytotoxic Activity of Silver Nanoparticles Synthesized by Leaf Extract of Erythrina Suberosa (Roxb.). *Front. Mol. Biosci.* 2017, 4 (18), 1–14.

[110] Hackenberg, S.; Scherzer, A.; Kessler, M.; Hummel, S.; Technau, A.; Froelich, K.; Ginzkey, C.; Koehler, C.; Hagen, R.; Kleinassner, N. Silver Nanoparticles: Evaluation of DNA Damage, Toxicity and Functional Impairment in Human Mesenchymal Stem Cells. *Toxicol. Lett.* 2011, 201 (1), 27–33.

[111] Rai, M.; Ingle, A.P.; Birla, S.; Yadav, A.; Santos, C.A.D. Green and Rapid Synthesis of Silver Nanoparticles Using Borage Officinalis Leaf Extract: Anticancer and Antibacterial Activities. *Artif. Cells Nanomed. Biotechnol.* 2016, 15 (11), 1–7.

[112] Coulter, J.; Hyland, W.; Nicol, J.; Currell, F. Radiosensitising Nanoparticles as Novel Cancer Therapeutics – Pipe Dream or Realistic Prospect? *Clin Oncol* 2013, 25 (10), 593–603.

[113] Coccini, T.; Gornati, R.; Rossi, F.; Signoretto, E.; Vanetti, I.; Bernardini, G.; Manzo, L. Gene Expression Changes in rat Liver and Testes After Lung Instillation of A low Dose of Silver Nanoparticles. *J. Nanomed Nanotechnol.* 2014, 5 (5), 1–12.

[114] Jeyaraj, M.; Rajesh, M.; Arun, R.; Mubarakalli, D.; Sathishkumar, G.; Sivanandan, G.; Dev, G.K.; Manickavasagam, M.; Premkumar, K.; Thajuddin, N. An Investigation on the Cytotoxicity and Caspase-Mediated Apoptotic Effect of Biologically Synthesized Silver Nanoparticles Using Podophyllum Hexandrum on Human Cervical Carcinoma Cells. *Colloids Surf. B* 2013, 102 (41), 708–717.

[115] Lima, R.; Seabra, A.B.; Durán, N. Silver Nanoparticles: A Brief Review of Cytotoxicity and Genotoxicity of Chemically and Biogenically Synthesized Nanoparticles. *J. Appl. Toxicol.* 2012, 32 (11), 867–879.

[116] Baetke, S.C.; Lammers, T.; Kiessling, F. Applications of Nanoparticles for Diagnosis and Therapy of Cancer. *Br. J. Radiol.* 2015, 88 (1054), 2015–2023.

[117] Yuan, Z.H.; Li, M.M.; Rong, P.F.; Wang, W.; Li, Y.J.; Liu, D.B. Plasmonic ELISA Based on the Controlled Growth of Silver Nanoparticles Using Podophyllum Hexandrum on Human Cervical Carcinoma Cells. *Colloids Surf. B* 2013, 102 (41), 708–717.

[118] Ge, W.; Zhang, Y.; Ye, J.; Chen, D.; Rehman, F.U.; Li, Q.; Chen, Y.; Jiang, H.; Wang, X. Facile Synthesis of Fluorescent Au/Ag Nanoclusters for High-Sensitive Bioimaging. *J Nanobiotechnol.* 2015, 13 (1), 1–8.

[119] Gao, S.; Chen, D.; Li, Q.; Ye, J.; Jiang, H.; Amatore, C.; Wang, X. Near-infrared Fluorescence Imaging of Cancer Cells and Tumors Through Specific Biosynthesis of Silver Nanoclusters. *Sci. Rep.* 2014, 4 (12), 1–6.

[120] Mukherjee, S.; Chowdhury, D.; Kotchelakota, R.; Patra, S.; Vinothkumar, B.; Bhadra, M.P.; Sreedhar, B.; Patra, C.R. Potential Theranostics Application of Bio-Synthesized Silver Nanoparticles (4-in-1 System). *Theranostics* 2014, 4 (3), 316–335.

[121] Krukiewicz, K.; Zak, J.K. Biomaterial-based Regional Chemotherapy: Local Anticancer Drug Delivery to Enhance Chemotherapy and Minimize its Side-Effects. *Mater. Sci. Eng. C* 2016, 62 (12), 927–942.
Gold Nanoparticle Arrays. *Chem. Commun* 2015, 51 (49), 9939–9941.

[151] Park, J.-H.; Gu, L.; Von Maltzahn, G.; Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Biodegradable Luminescent Porous Silicon Nanoparticles for in Vivo Applications. *Nat. Mater.* 2009, 8 (4), 331–336.

[152] Mukherjee, S.; Patra, C.R. Therapeutic Application of Anti-Angiogenic Nanomaterials in Cancers. *Nanoscale*. 2016, 8 (25), 12444–12470.

[153] Baharara, J.; Namvar, F.; Ramezani, T.; Mousavi, M.; Mohamad, R. Silver Nanoparticles Biosynthesized Using *Achillea Biebersteinii* Flower Extract: Apoptosis Induction in MCF-7 Cells via Caspase Activation and Regulation of Bax and Bcl-2 Gene Expression. *Molecules* 2015, 20 (2), 2693–2706.

[154] Farah, M.A.; Ali, M.A.; Chen, S.-M.; Li, Y.; Al-Hemaid, F.M.; Abou-Tarboush, F.M.; Al-Anazi, K.M.; Lee, J. Silver Nanoparticles Synthesized From *Adenium Obesum* Leaf Extract Induced DNA Damage, Apoptosis and Autophagy via Generation of Reactive Oxygen Species. *Colloids Surf. B* 2016, 141 (5), 158–169.

[155] Vinnmathi, V.; JACOB, S.J.P. A Green and Facile Approach for the Synthesis of Silver Nanoparticles Using Aqueous Extract of *Ailanthus Excelsa* Leaves, Evaluation of its Antibacterial and Anticancer Efficacy. *Bull. Mater. Sci.* 2015, 38 (3), 625–628.

[156] Firdhouse, M.J.; Lalitha, P. Biosynthesis of Silver Nanoparticles Using the Extract of *Alternanthera Sessilis* – Antiproliferative Effect Against Prostate Cancer Cells. *Cancer Nanotechnol.* 2013, 4 (6), 137–143.

[157] Sathishkumar, P.; Vennila, K.; Jayakumar, R.; Yusoff, A.R.M.; Hadibarata, T.; Palvanman, T. Phyto-synthesis of Silver Nanoparticles Using *Alternanthera Tenella* Leaf Extract: An Effective Inhibitor for the Migration of Human Breast Adenocarcinoma (MCF-7) Cells. *Bioprocess Biosyst. Eng.* 2016, 39 (4), 651–659.

[158] Balasubramani, G.; Ramkumar, R.; Krishnaveni, N.; Pazhamimuthu, A.; Natarajan, T.; Sowmiya, R.; Perumal, P. Structural of Characterization, Antioxidant and Anticancer Properties of Gold Nanoparticles Synthesized From Leaf Extract (Decoction Antigonon Leptopus Hook. & Arn). *J. Trace Elem. Med. Biol.* 2015, 30 (24), 83–89.

[159] Kalaiaresi, K.; Prasannaraj, G.; Sahi, S.V.; Venkatachalam, P. Phytofabrication of Biomolecule-Coated Metallic Silver Nanoparticles Using Leaf Extracts of in Vitro-Raised Bamboo Species and its Anticancer Activity Against Human PC3 Cell Lines. *Turr. J. Biol.* 2015, 39 (2), 223–232.

[160] Caroling, G.; Tiwari, S.K.; Ranjitham, A.M.; Suja, R. Biosynthesis of Silver Nanoparticles Using Aqueous Broccoli Extract Characterization and Study of Antimicrobial, Cytotoxic Effects. *Asian J. Pharm. Clin. Res.* 2013, 6 (1), 165–172.

[161] Bhuvaneswari, R.; Xavier, R.J.; Arumugam, M. Biofabrication and its in Vitro Toxicity Mechanism of Silver Nanoparticles Using Bruguiera Cylindrica Leaf Extract. *Karbala Int. J. Modern Sci.* 2015, 1 (2), 129–134.

[162] Ashokkumar, T.; Prabhu, D.; Geetha, R.; Govindaraju, K.; Manikandan, R.; Arulvasu, C.; Singaravelu, G. Apoptosis in Liver Cancer (HepG2) Cells Induced by Functionalized Gold Nanoparticles. *Colloids Surf. B* 2014, 123 (31), 549–556.

[163] Remya, R.; Rajasree, S.R.; Aranganathan, L.; Suman, T. An Investigation on Cytotoxic Effect of Bioactive AgNPs Synthesized Using Cassia Fistula Flower Extract on Breast Cancer Cell MCF-7. *Biotechnol. Rep.* 2015, 8 (5), 110–115.

[164] Ranjitham, A.; Suja, R.; Caroling, G.; Tiwari, S. In Vitro Evaluation of Antioxidant, Antimicrobial, Anticancer Activities and Characterisation of Brassica Oleracea. var. Bortrytis. *L Synthesized Silver Nanoparticles. Int. J. Pharm. Pharm. Sci.* 2013, 5 (4), 239–251.

[165] Ebrahiminezhad, A.; Bagheri, M.; Taghizadeh, S.-M.; Berenjian, A.; Ghasemi, Y. Biomimetic Synthesis of Silver Nanoparticles Using Microalgae Secretory Carbohydrates as a Novel Anticancer and Antimicrobial. *Adv. Nat. Sci: Nanosci. Nanotechnol.* 2016, 7 (1), 1–8.

[166] Anju Varghese, R.; Anandhi, P.; Arunadevi, R.; Boovisha, A.; Sounthari, P.; Saranya, J.; Parameswari, K.; Chitra, S. Satin Leaf (Chrysophyllum Oliviforme) Extract Mediated Green Synthesis of Silver Nanoparticles: Antioxidant and Anticancer Activities. *J. Pharm. Sci. Res.* 2015, 7 (6), 266–273.

[167] Chanthini, A.B.; Balasubramani, G.; Ramkumar, R.; Sowmiya, R.; Balakumaran, M.D.; Kalaichelvan, P.T.; Perumal, P. Structural Characterization, Antioxidant and in Vitro Cytotoxic Properties of Seagrass, *Cymodocea Serrulata* (R. Br.) Asch. & Magnus Mediated Silver Nanoparticles. *J. Photochem. Photobiol. B* 2015, 153 (22), 145–152.

[168] Palaniappan, P.; Sathishkumar, G.; Sankar, R. Fabrication of Nano-Silver Particles Using *Cymodocea Serrulata* and its Cytotoxicity Effect Against Human Lung Cancer A549 Cells Line. *Spectrochem. Acta, Part A* 2015, 138 (22), 885–890.

[169] Gajendran, B.; Chinnasamy, A.; Durai, P.; Ramam, J.; Raman, M. Biosynthesis and Characterization of Silver Nanoparticles From *Datura Inoxia* and its Apoptotic Effect on Human Breast Cancer Cell Line MCF7. *Mater. Lett.* 2014, 122 (33), 98–102.

[170] Abbasi, T.; Anuradha, J.; Ganaie, S.U.; Abbasi, S.A. Biomimetic Synthesis of Nanoparticles Using Aqueous Extracts of Plants (Botanical Species). *J. Nano Res.* 2015, 31 (6), 138–202.

[171] Ghosh, S.; Nitnavare, R.; Dewle, A.; Tomar, G.B.; Chippalkatti, R.; More, P.; Kitture, R.; Kale, S.; Bellare, J.; Chopade, B.A. Novel Platinum–Palladium Bimetallic Nanoparticles Synthesized by *Dioscorea Bulbifera*: Anticancer and Antioxidant Activities. *Int. J. Nanomed.* 2015, 10 (34), 7477–7490.

[172] Sre, P.R.; Reka, M.; Poovazhagi, R.; Kumar, M.A.; Murugesan, K. Antibacterial and Cytotoxic Effect of Biologically Synthesized Silver Nanoparticles Using Aqueous Root Extract of *Erythrina Indica* lam. *Spectrochim. Acta, Part A* 2015, 135 (44), 1137–1144.

[173] Kumar, B.; Smita, K.; Cumbal, L.; Camacho, J.; Hernández-Gallegos, E.; de Guadalupe Chávez-López, M.; Grijalva, M.; Andrade, K. One pot Phytosynthesis of Gold Nanoparticles Using *Genipa Americana* Fruit Extract and its Biological Applications. *Mater. Sci. Eng: C* 2016, 62 (7), 725–731.
Synthesis and Cytotoxicity of Monodisperse Hexagonal Silver Nanoparticles. *Mater. Sci. Eng: C* **2014**, *44* (5), 209–215.

[175] Dipankar, C.; Murugan, S. The Green Synthesis, Characterization and Evaluation of the Biological Activities of Silver Nanoparticles Synthesized From Iresine Herbstii Leaf Aqueous Extracts. *Colloids Surf B* **2012**, *98* (11), 112–119.

[176] Kudle, K.R.; Donda, M.R.; Merugu, R.; Prashanthi, Y.; Rudra, M.P. Investigation on the Cytotoxicity of Green Synthesis and Characterization of Silver Nanoparticles Using Justicia Adhatoda Leaves on Human Epitheloid Carcinoma Cells and Evaluation of Their Antibacterial Activity. *Int. J. Drug Dev. Res* **2014**, *6* (1), 0975–9344.

[177] Gandhiraj, V.; Sathish Kumar, K.; Madhusudhanan, J.; Sandhya, J. Antitumor Activity of Biosynthesized Silver Nano Particles From Leaves of Momordica Charantia Against MCF-7 Cell Line. *Int. J. Chem. Tech. Res.* **2015**, *8* (7), 351–362.

[178] Suman, T.; Rajasree, S.R.; Kanchana, A.; Elizabeth, S.B. Biosynthesis, Characterization and Cytotoxic Effect of Plant Mediated Silver Nanoparticles Using *Morinda Citrifolia* Root Extract. *Colloids Surf B: Interfaces*. **2013**, 106 (32), 74–78.

[179] Sankar, R.; Karthik, A.; Prabu, A.; Karthik, S.; Shivashangari, K.S.; Ravikumar, V. Origanum Vulgare Mediated Biosynthesis of Silver Nanoparticles for its Antibacterial and Anticancer Activity. *Colloids Surf B* **2013**, *108* (11), 80–84.

[180] Mittal, A.K.; Tripathy, D.; Choudhary, A.; Aili, P.K.; Chatterjee, A.; Singh, I.P.; Banerjee, U.C. Bio-synthesis of Silver Nanoparticles Using Potentilla Fulgens Wall. ex Hook. and its Therapeutic Evaluation as Anticancer and Antimicrobial Agent. *Mater. Sci. Eng: C* **2015**, *53* (15), 120–127.

[181] Reddy, P.R.; Ganesh, S.D.; Saha, N.; Zandrea, O.; Sáha, P. Ecofriendly Synthesis of Silver Nanoparticles From Garden Rhubarb (Rheum Rhabarbarum). *J. Nanotechnol.* **2016**, *16* (3), 76–84.

[182] Jafarirad, S.; Mehrabi, M.; Divband, B.; Korsari-Nasab, M. Biofabrication of Zinc Oxide Nanoparticles Using Fruit Extract of Rosa Canina and Their Toxic Potential Against Bacteria: A Mechanistic Approach. *Mater. Sci. Eng: C* **2016**, *59* (14), 296–302.

[183] Dhas, T.S.; Kumar, V.G.; Karthick, V.; Govindaraju, K.; Narayana, T.S. Biosynthesis of Gold Nanoparticles Using Sargassum Swartzii and its Cytotoxic Effect on HeLa Cells. *Spectrochim. Acta, Part A* **2014**, *133* (14), 102–106.

[184] Jeyaraj, M.; Sathishkumar, G.; Sivandanhan, G.; MubarakAli, D.; Ramesh, M.; Arun, R.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Premkumar, K. Biogenic Silver Nanoparticles for Cancer Treatment: an Experimental Report. *Colloids Surf B: Interfaces* **2013**, *106* (18), 86–92.

[185] Gorbe, M.; Bhat, R.; Aznar, E.; Sancenón, F.; Marcos, M.D.; Herraiz, F.J.; Prohens, J.; Venkataraman, A.; Martínez-Máñez, R. Rapid Biosynthesis of Silver Nanoparticles Using Pepino (Solanum Muricatum) Leaf Extract and Their Cytotoxicity on HeLa Cells. *Materials (Basel)*. **2016**, *9* (5), 1–15.

[186] Ramar, M.; Manikandan, B.; Mariimuthu, P.N.; Raman, T.; Mahalingam, A.; Subramanian, P.; Karthick, S.; Munusamy, A. Synthesis of Silver Nanoparticles Using Solanum Trilobatum Fruits Extract and its Antibacterial, Cytotoxic Activity Against Human Breast Cancer Cell Line MCF 7. *Spectrochim. Acta, Part A* **2015**, *140* (29), 223–228.

[187] Satishkumar, M.; Pavagadhi, S.; Mahadevan, A.; Balasubramanian, R. Biosynthesis of Gold Nanoparticles and Related Cytotoxicity Evaluation Using A549 Cells. *Ecotoxicol. Environ. Saf.* **2015**, *111* (11), 232–240.

[188] Rajasekharreddy, P.; Rani, P.U. Biofabrication of Ag Nanoparticles Using Sterculia Foetida L. Seed Extract and Their Toxic Potential Against Mosquito Vectors and HeLa Cancer Cells. *Mater. Sci. Eng: C* **2014**, *39* (7), 203–212.

[189] Thampi, N.; Shalini, J.V. Bio-Prosppecting the in-Vitro Antioxidant and Anticancer Activities of Silver Nanoparticles Synthesized From the Leaves of Syzygium Samarangense. *Int. J. Pharmacy Pharm. Sci.* **2015**, *7* (7), 269–274.

[190] Khalifa, K.; Hamouda, R.; Hamza, D.H.A. In Vitro Antitumor Activity of Silver Nanoparticles Biosynthesized by Marine Algae. *Dig. J. Nanomater. Biострукт*. **2016**, *11* (1), 213–221.

[191] Chatterjee, A.; Nishanthini, D.; Sandhiya, N.; Abraham, J. Biosynthesis of Titanium Dioxide Nanoparticles Using Vigna Radiata. *Asian J. Pharm. Clin. Res.* **2016**, *8* (11), 85–88.

[192] Azizi, S.; Mohamad, R.; Rahim, R.A.; Moghaddam, A.B.; Moniri, M.; Ariff, A.; Saad, W.Z.; Namvab, F. ZnO–Ag Core Shell Nanocomposite Formed By Green Method Using Essential Oil of Wild Ginger and Their Bactericidal and Cytotoxic Effects. *Appl. Surf. Sci.* **2016**, *384* (44), 517–524.

[193] Osman, M.; Eid, M.; Khattab, O.; El-Hallouty, S.; Mahmoud, D.; Manawaty, M.E. In Vitro Cytotoxicity of Biosynthesized Ag/CS NP Against MCF7, PC3 and A549 Cancer Cell Lines. *Int. J. Pharm. Tech. Res.* **2015**, *8* (5), 1011–1017.

[194] Sulaiman, G.M.; Hussien, H.T.; Saleem, M.M. Biosynthesis of Silver Nanoparticles Synthesized by Aspergillus Flavus and Their Antioxidant, Antimicrobial and Cytotoxicity Properties. *Bull Mater Sci* **2015**, *38* (3), 639–644.

[195] Anand, B.G.; Thomas, C.N.; Prakash, S.; Kumar, C.S. Biosynthesis of Silver Nano-Particles by Marine Sediment Fungi for A Dose Dependent Cytotoxicity Against HEp2 Cell Lines. *Biotic Agric Biotechnol.* **2015**, *4* (2), 150–157.

[196] Roy, S.; Das, T.K.; Maiti, G.P.; Basu, U. Microbial Biosynthesis of Nontoxic Gold Nanoparticles. *Mater. Sci. Eng: B* **2016**, *203* (33), 41–51.

[197] Sunkar, S.; Nachiyar, C.V.; Serenova, R.; Renugadevi, K. Biogenesis of TiO2 Nanoparticles Using Endophytic Bacillus Cereus. *J. Nanomater. Res.* **2014**, *16* (11), 1–11.

[198] Pouroli, P.; Yahyaei, B. Biological Production of Silver Nanoparticles by Soil Isolated Bacteria and Preliminary Study of Their Cytotoxicity and Cutaneous Wound Healing Efficiency in rat. *J. Trace Elem. Med. Biol.* **2016**, *34* (12), 22–31.

[199] Murugan, M.; Anthony, K.J.P.; Jeyaraj, M.; Rathinam, N.K.; Gurunathan, S. Biofabrication of Gold Nanoparticles and
its Biocompatibility in Human Breast Adenocarcinoma Cells (MCF-7). J. Ind. Eng. Chem. 2014, 20 (4), 1713–1719.

[200] Forootanfar, H.; Adeli-Sardou, M.; Nikkhoo, M.; Mehrabani, M.; Amir-Heidari, B.; Shahverdi, A.R.; Shakibaie, M. Antioxidant and Cytotoxic Effect of Biologically Synthesized Selenium Nanoparticles in Comparison to Selenium Dioxide. J. Trace Elem. Med. Biol. 2014, 28 (1), 75–79.

[201] Kanakalakshmi, A.; Janaki, V.; Shanthi, K.; Kamala-Kannan, S. Biosynthesis of Cr (III) Nanoparticles From Electroplating Wastewater Using Chromium-Resistant Bacillus Subtilis and its Cytotoxicity and Antibacterial Activity. Artif. Cells Nanomed. Biotechnol. 2017, 6 (19), 1–6.

[202] Nachiyar, V.; Sunker, S.; Prakash, P. Biological Synthesis of Gold Nanoparticles Using Endophytic Fungi. Der Pharma Chem. 2015, 7 (55), 31–38.

[203] Rajeshkumar, S. Anticancer Activity of eco-Friendly Gold Nanoparticles Against Lung and Liver Cancer Cells. J. Genet. Eng. Biotechnol. 2016, 14 (1), 195–202.

[204] Rajeshkumar, S.; Malarkodi, C.; Vanaja, M.; Annadurai, G. Anticancer and Enhanced Antimicrobial Activity of Biosynthesized Silver Nanoparticles Against Clinical Pathogens. J. Mol. Struct. 2016, 1116 (55), 165–173.

[205] Iram, S.; Khan, S.; Ansary, A.A.; Arshad, M.; Siddiqui, S.; Ahmad, E.; Khan, R.H.; Khan, M.S. Biogenic Terbium Oxide Nanoparticles as the Vanguard Against Osteosarcoma. Spectrochim Acta, Part A 2016, 168 (6), 123–131.

[206] Hussein, S.M.; Salah, T.A.; Anter, H.A. Biosynthesis of Size Controlled Silver Nanoparticles by Fusarium Oxysporum, Their Antibacterial and Antitumor Activities. Beni-Suef Univ. J. Basic Appl. Sci. 2015, 4 (3), 225–231.

[207] Srivastava, P.; Braganca, J.M.; Kowshik, M. In Vivo Synthesis of Selenium Nanoparticles by Halococcus Salifodinae BK18 and Their Anti-Proliferative Properties Against HeLa Cell Line. Biotechnol. Prog. 2014, 30 (6), 1480–1487.

[208] Syed, A.; Raja, R.; Kundu, G.C.; Gambhir, S.; Ahmad, A. Extracellular Biosynthesis of Monodispersed Gold Nanoparticles, Their Characterization, Cytotoxicity Assay, Biodistribution and Conjugation with the Anticancer Drug Doxorubicin. J. Nanomed. Nanotechnol. 2012, 44 (3), 123–131.

[209] Manivasagan, P.; Alam, M.S.; Kang, K.-H.; Kwak, M.; Kim, S.-K. Extracellular Synthesis of Gold Bionanoparticles by Nocardiopsis sp. and Evaluation of its Antimicrobial, Antioxidant and Cytotoxic Activities. Bioprocess Biosyst. Eng. 2015, 38 (6), 1167–1177.

[210] Manivasagan, P.; Oh, J. Production of A Novel Fucoidanase for the Green Synthesis of Gold Nanoparticles by Streptomyces sp. and its Cytotoxic Effect on HeLa Cells. Mar. Drugs 2015, 13 (11), 6818–6837.

[211] Manivasagan, P.; Venkatesan, J.; Senthilkumar, K.; Sivakumar, K.; Kim, S.-K. Biosynthesis, Antimicrobial and Cytotoxic Effect of Silver Nanoparticles Using A Novel Nocardiopsis sp. MBRC-1. Biomed. Res. Int. 2013, 31 (16), 1–9.

[212] Rathod, D.; Golinska, P.; Wypij, M.; Dahm, H.; Rai, M. A New Report of Nocardiopsis Valliformis Strain OT1 From Alkaline Lunar Crater of India and its use in Synthesis of Silver Nanoparticles with Special Reference to Evaluation of Antibacterial Activity and Cytotoxicity. Med. Microbiol. Immunol. 2016, 205 (5), 435–447.

[213] Ramam, J.; Reddy, G.R.; Lakshmanan, H.; Selvaraj, V.; Gajendran, B.; Nanjian, R.; Chinnasamy, A.; Sabaratnam, V. Mycosynthesis and Characterization of Silver Nanoparticles From Pleurotus Djamor var. Roseus and Their in Vitro Cytotoxicity Effect on PC3 Cells. Process Biochem. 2015, 50 (1), 140–147.

[214] Yehia, R.S.; Al-Shiekh, H. Biosynthesis and Characterization of Silver Nanoparticles Produced by Pleurotus Ostreatus and Their Anticandidal and Anticancer Activities. World J. Microbiol. Biotechnol. 2014, 30 (11), 2797–2803.

[215] Ramalingam, V.; Rajaram, R.; PremKumar, C.; Santhanam, P.; Dhinesh, P.; Vinothkumar, S.; Kaleshkarsh, M. Biosynthesis of Silver Nanoparticles From Deep sea Bacterium Pseudomonas Aeruginosa JQ989348 for Antimicrobial, Antibiofilm, and Cytotoxic Activity. J. Basic Microbiol. 2014, 54 (9), 928–936.

[216] Arun, G.; Eyini, M.; Gunasekaran, P. Green Synthesis of Silver Nanoparticles Using the Mushroom Fungus Schizophyllum Commune and its Biomedical Applications. Biotechnol. Bioprocess Eng. 2014, 19 (6), 1083–1090.

[217] Oves, M.; Khan, M.S.; Zaidi, A.; Ahmed, F.; Ahmad, E.; Sherwani, A.; Owais, M.; Azam, A. Antibacterial and Cytotoxic Efficacy of Extracellular Silver Nanoparticles Biofabricated From Chromium Reducing Novel OS4 Strain of Stenotrophomonas Maltophilia. PloS one 2013, 8 (3), 1–14.

[218] Shanmugasundaram, T.; Radhakrishnan, M.; Gopikrishnan, V.; Pazhanimurugan, R.; Balagurunathan, R. A Study of the Bactericidal, Anti-Biofouling, Cytotoxic and Antioxidant Properties of Actinobacterially Synthesised Silver Nanoparticles. Colloids Surf. B 2013, 111 (21), 680–687.

[219] Abd-Elnaby, H.M.; Abo-Elala, G.M.; Abdel-Raouf, U.M.; Hamed, M.M. Antibacterial and Anticancer Activity of Extracellular Synthesized Silver Nanoparticles From Marine Streptomyces Rochel MMHM13. Egypt. J. Aquatic Res. 2016, 42 (3), 301–312.

[220] Kulandaivelu, B.; Gothandam, K. Cytotoxic Effect on Cancerous Cell Lines by Biologically Synthesized Silver Nanoparticles. Braz. Arch. Biol. Technol. 2016, 59 (33), 111–119.