Genetic evolution of structural region of hepatitis C virus in primary infection

Song Chen, Yu-Ming Wang

AIM: To investigate the dynamics of hepatitis C virus (HCV) variability through putative envelope genes during primary infection and the mechanism of viral genetic evolution in infected hosts.

METHODS: Serial serum samples prospectively collected for 12 to 34 months from a cohort of acutely HCV-infected individuals were obtained, and a 1-kb fragment spanning E1 and the 5′ half of E2, including Thirty-three cloned cDNAs representing each specimen were assessed by a method that combined a single-stranded conformational polymorphism (SSCP) and heteroduplex analysis (HDA) method to determine the number of clonotypes hypervariable region, was amplified by reverse transcriptase PCR and cloned. Nonsynonymous mutations per nonsynonymous site (dn), synonymous mutations per synonymous site (ds), dn/ds ratio and genetic distances within each sample were evaluated for intrahost evolutionary analysis.

RESULTS: Quasispecies complexity and sequence diversity were lower in early samples and a further increase after seroconversion, although ds value in the envelope genes was higher than dn value during primary infection. The trend, pronounced in most of samples, toward lower ds values in the E1 than in the 5′ portion of E2. Quasispecies complexity was higher and E2 dn/ds ratio was a trend toward higher value in later samples during persistent viremia. We also found individual features of HCV genetic evolution in different subjects who were infected with different HCV genotypes.

CONCLUSION: Mutations of actively replicating virus arise stochastically with certain functional constraints. A complexity quasispecies exerted by a combination of either neutral evolution or selective forces shows clear differences in individuals, and associated with HCV persistence.

Chen S, Wang YM. Genetic evolution of structural region of hepatitis C virus in primary infection. World J Gastroenterol 2002; 8(4):686-693
cohort of injection drug abusers (IDUs) in Chongqing. These samples were tested for antibodies to HCV by using the second-generation HCV enzyme immunoassay. Individuals were identified as seroconverters when a sample tested positive following at least one negative result. For all HCV seroconverters, the presence of HCV RNA was evaluated in sera collected 6 months before seroconversion, at seroconversion, and during subsequent semiannual visits (median of 7). HCV RNA were detected by a quantitative reverse transcriptase PCR (RT-PCR) assay (AMPLICOR HCV MONITOR; Roche Diagnostic Systems, Branchburg, N. J.), the liner range of which was determined to be 500 to 500 000 copies per ml of serum by our and other laboratories. Liver tests, including Alanine aminotransferase (ALT) levels in serum, performed at the first clinical examination and repeated during follow-up. Hepatitis B surface antigen, anti-HBc, anti-HBe and anti-HIV Ig M were negative in all subjects. The genotype subtype was determined as described previously. Clinical and virological backgrounds of the subjects studied are summarized in Table 1.

Table 1. Molecular, biochemical, and serological characterization of the nine HCV primary infections

Subject	Sample	Age (y)	Duration of infection (month)	Log$_{10}$(HCV RNA)	ALT level (IU/ml)	Result of ELISA
A	28/F	0	116	7.12	116	Neg
A1		0	0	6.90	69	Neg
A2		12	6.58	92	Pos	
B	30/M	0	110	7.27	110	Neg
B1		6	6.50	35	Pos	
B2		29	5.70	37	Pos	
C	33/M	0	41	6.41	41	Pos
C1		24	5.25	23	Pos	
C2		34	5.14	10	Pos	

* Number of HCV RNA molecules per ml plasma. Time zero is the time where the first sample was available; other time are times after time zero. Normal value, <40 IU/ml; ELISA: neg, negative; pos, positive.

METHODS

Envelope region amplification HCV RNA characterization was based on examination of 33 cloned cDNAs spanning the 1 025-nucleotide (nt) region thought to encode envelope protein E1 and a segment of E2, including HVR1. Total RNA was extracted from 100 µl serum by using 500 µl Trizol LS Reagent (Life Technologies, Gaithersburg, Md.) at room temperature, followed by chloroform extraction and isopropanol precipitation in the presence of 20 µg glycogen (Boechringer Mannheim, Indianapolis, Ind.). The RNA pellet was washed with 75 % (vol/vol) ethanol and then air dried briefly and redissolved in 50 µl diethyl pyrocarbonate-treated water with 75 % (vol/vol) ethanol and then air dried briefly and redissolved in 50 µl diethyl pyrocarbonate-treated water with 10 mM dithiothreitol (Promega, Madison, wis.) and 5 U of RNasin ribonuclease inhibitor (Promega). After incubation at 65°C for 5 min, 5 µl purified RNA was used to generate cDNA in a 20-µl reaction mixture at 37°C for 1 h with 20 U of Moloney murine leukemia virus RT (Promega) and first-round PCR reverse primer. The entire 20-µl cDNA synthesis reaction mixture was used for the first-round PCR in a 25-µl reaction mixture containing 0.75 U Expand HF polymerase mixture (Boechringer Mannheim, Indianapolis, Ind.), 1.5 mM MgCl$_2$, 0.2 mM concentration of deoxynucleoside triphosphates, and 500 µM concentrations of primers. The primers were outer forward (837 to 862; 5’ - GCAACAGGGAAAYTDDCCTGGTGTCC-3’), outer reverse (2020 to 1998; 5’ - TTCTACGSGTACVCCRAAAC-3’), inner forward (846 to 874; 5’ - AAYYTRCCCGGTGTCYCTY TYTCTA-3’), and inner reverse (1882 to 1857; 5’ - GTGAAARTACACAYGRCCRCANAC-3’). Degenerate bases are indicated with standard codes of the international union of Pure and applied Chemistry. Nucleotide positions are numbered according to the HCV-J6 sequence. One microfilter of the first-round reaction mixture was added to the second-round PCR, which had the same reagents as in the first round except for primers. Thermal-cycling conditions for the inner and outer reactions were denaturation for 120 s at 94°C, followed by 35 cycles of 45 s at 94°C, 45 s at 60°C, and 120 s at 72°C (during the last 25 cycles, the elongation time was increased by 20 s per cycle).

Cloning of cDNA and complexity analysis of 33 cloned cDNAs by gel shift The 1-kb HCV cDNA product was ligated into vector pT-adv and used to transform Escherichia coli Top 10F competent cells (TA Cloning kit; CLONTECH Laboratories, Inc.). Transformants were detected per manufacturer’s protocol, and cloning efficiency was >90 %. Polyacrylamide gel electrophoresis (8 %) was carried out with the addition of 15 % (W/V) urea to increase the resolution. For each subject, the gel shift patterns of 33 cloned cDNAs were examined by amplifying a 573-bp region spanning HVR1 and by using a nonradioactive method that detects distinct variants within a sample by using a combination of heteroduplex analysis (HDA) and single-stranded conformational polymorphism (SSCP) on a single gel (HDA+SSCP) [15]. Sequences obtained from the serial passage were analyzed by using a divergent variant from the acute-phase sample from each subject. A clonotype is defined as two or more cloned cDNAs that have indistinguishable patterns of electrophoretic migration by HAD+SSCP. The complexity of the quasispecies was characterized by the clonotype ratio, calculated as the number of clonotypes divided by 33, the number of cloned cDNAs examined. The clonotype ratio therefore varies from 0.03 (homogenous) to 1 (highly complex).

Nucleotide sequencing To examine each subject’s quasispecies for signature sequences (motifs uniquely shared by a group of sequences) and for evolutions in the sensitivity of the HDA+SSCP method, a subset of cloned cDNAs was identified. For each subject, at least two cloned cDNAs were selected for sequencing based on gel shift patterns: one from the majority clonotype, another from each clonotype consisting of more than 10 % of the 33 cloned cDNAs examined, and the cloned cDNA with the largest heteroduplex gel shift. Sequences were positively determined from the M13 reverse primer and negatively from T7 promoter binding sites of plasmid clones by using a PRISM 377 DNA Sequencer (version 3.3; Applied Biosystems, Inc., Foster City, Calif.). Sequences were assembled by using the ESEE3s program, and primer sequences were removed.

Phylogenetic analysis DNA distance matrices were calculated by using the DNADIST program, maximum-likelihood, with a transition-to-transversion ratio of 4.25 [19], and phylogenetic trees were generated by the Neighbor-joining program with
RESULTS

Clonotypes detected by HDA+SSCP method

For each subject, use of a common cDNA clone to drive the HDA+SSCP gels permitted comparison of clonotypes among specimens. Among 99 cloned cDNAs from acute-CpHase specimens, 16 distinct patterns (clonotypes) were identified, in which five clonotypes were observed in two subjects each, and six clonotypes detected in subject C. However, acute and chronic samples from three individuals each shared no clonotype.

The quasispecies complexity was examined by assessing 33 cDNA clones from each specimen using the clonotype ratio, E2/HVR1 clonotype ratio values obtained for the samples from three individuals at each time point, ranging from 0.15 to 0.63, was plotted in Table 2. No trends were observed as clonotype ratio values changed with the changes in circulating viral load, serum ALT level (Figure 1).

Sample Genotype	Clonotype distribution	No. of clones	Clonotype ratio
A1	3b 27,3,1,1,1	5	0.15
A2	15,7,5,2,1,1,1,1	8	0.24
A3	12,8,4,2,1,1,1,1,1	11	0.33
B1	3b 21,7,2,1,1	5	0.15
B2	19,7,2,2,1,1,1	7	0.21
B3	30,4,2,1,1,1,1,1,1	17	0.52
C1	1b 17,11,2,1,1	6	0.18
C2	8,4,2,2,1,1,1,1,1	10	0.30
C3	7,4,2,2,1,1,1,1,1,1,1,1	21	0.63

*Clonotype, a group of electrophoretically indistinguishable cloned cDNAs; clonotype ratio, the number of clonotypes divided by 33; the number of clones examined; *Each number represents a clonotype; the value indicates the number of cloned cDNAs assigned to that clonotype by the SSCP/ HDA method identified as being distinct by HDA+SSCP analysis had identical sequences. Therefore, the HDA+SSCP method is both highly sensitive and specific in detecting differences among cDNA clones, as previously reported.

Phylogenetic analysis revealed that two subjects’ sequence (A and B) clustered with 3b, while those of another (C) clustered with subtype 1b (Figure 3).

Quasispecies complexity and the outcome of acute infection

In each pair of samples from the same individual, the complexity of the quasispecies assessed using the clonotype ratio increased with time from seroconversion, both during the acute phase and also during the chronic phase (Figure 1). Quasispecies complexity correlated with estimated duration of HCV infection ($r = 0.931, P < 0.01$).

Figure 1 Changes in HCV viral load, ALT level, and HCV E2 sequence clonotype ratio at serial samples from six individuals with HCV infection.

Figure 2 Unrooted tree showing the diversity of 372-nt E2/HVR1 sequences cloned from IDUs with HCV subtype 3b (A, B) and 1b (C). Identifiers correspond to those in Table 1, followed by the timing of the specimen (as defined in Materials and Methods). Representative sequences obtained from the GenBank database are shown in bold type. The number and line at the bottom denote the proportion of nucleotides substituted for a given horizontal branch length. The dendrogram was produced using Neighbor-joining program in the PHYLIP suite of programs.
Figure 3 Alignment of inferred amino acid sequences for the majority clonotype and each clonotype from each subjects A, B, F at different time points. In the last column, an alphabetical label is given for each subject. Period indicate identity to the amino acid at that position in the first sequence. Position of the E1 and E2 region are indicated above the alignment, whereas that of HVR1 is indicated below the alignment at the N terminus of E2. Potential N-linked glycosylation site are boxed. For each subject, numbers indicate the different clones obtained.

Figure 3 shows the amino acid alignment of the sequences derived from the cloned E2/HVR1 and the flanking E1 subfragment obtained from the three individuals and highlights the nonsynonymous changes. A phylogenetic study of these sequences (Figure 2) revealed that sequences from two individuals (A and B) tended to cluster tightly, segregated away from clusters of sequences from the individual C. For individuals A and B, the sequences from samples A1 to A3 or B1 to B3 maintained a low mean intrasample genetic distance: 0.0009 (A1), 0.0131 (A2), 0.0089 (A3), and 0.0014 (B1), 0.0054 (B2), 0.0046 (B3), respectively. The sequences found in the samples from individual C displayed a greater intrasample distance with late sample (C3 [collected 34 months after C1]) documenting a sharp increase (0.0214). An additional intrasample parameter evaluated in this study was the proportion of nonsynonymous substitutions per potential nonsynonymous site (dn) and synonymous substitutions per potential synonymous site (ds); it is showed in Figure 4 that ds values in the E1 region are lower than ones in E2/HVR1 at the samples from all individuals. There is the trend, observed during serial passages in three individuals, toward higher intersample dn/ds ratios in the E2/HVR1 than in E1, although

Detailed analysis of sequences from serial passages

Figure 4 ds and dn, and dn/ds for acute-phase samples and persistent-phase samples from three individuals with HCV infection. In each panel, the individuals are presented in the order A, B.
intersample dn/ds ratio were less than 1.0 with except for individual C (Figure 4). These data principally document that (i) early sequences have a low genetic divergence (oligoclonal profile), (ii) the dynamics and extent of the host selective pressure may differ among different individuals with different HCV genotypes, (iii) there are segmental effects of selective pressure on the envelope region of HCV genome.

DISCUSSION

Sequence analysis of cDNA clones derived from PCR products from individual patients has provided important information on the genetic variability of HCV HVR1 [22-29]. However, taking into account the quasispecies nature of HCV infection and the marked heterogeneity of patients with chronic HCV infection, sequence analysis of a large number of clones would be necessary for accurate assessment of viral evolution in individuals, but because of the effort and expense, published studies obtain sequence information from a small number of colonies per subject. To overcome this potentially serious limitation, HDA and SSCP assays have been developed and proposed as means of reducing sequence analyses [30-32]. Electrophoretic analysis of SSCP has been more expedient, but its sensitivity (ability to identify distinct clones) is limited and it does not provide an estimate of genetic distance [33,34]. Heteroduplex analysis (HDA) is also convenient and provides information on both genetic complexity and distance [35-43]. However, HDA alone may not be sufficiently sensitive. Because the HVR1 PCR product is less than 200 base, the distance between heteroduplexes and homoduplex does not accurately reflect the degree of heterogeneity [38]. Our approach is a method for measuring HCV quasispecies complexity that combines HDA and SSCP in a single gel visualized with UV light. Furthermore, we repeated studies using a larger region in the exposed portion of the envelope 2 gene. Similar substitutions from majority variant, accounting for the tight clustering of sequences seen in a dendrogram. These data are consistent with quasispecies evolution from a single HCV founder strain and again point to the rarity of multiple HCV carriage in IDUs [45]. Meanwhile, we note that there were differences in quasispecies complexity and diversity in the circulation before and early after the appearance of antibody. In individual A with subtype-3b infection, there was only a single change in the E2/HVR1 region in the first sample (before seroconversion), and the variants that subsequently emerged possessed more changes suggesting that these and the dominant variant belong to one monophyletic group. By contrast, there was multiple substitution in the E2/HVR1 region in the first sample (early after seroconversion) from individual C with subtype-1b infection. Such a disparity in genetic complexity of HCV in samples at the acute stage of infection has been noted in a previous study of three patients with acute hepatitis C [23]. Data from our study suggest that difference in viral quasispecies complexity and diversity in early samples could be due to a variety of factors, including whether effective humoral responses or cellular responses have been triggered, or possibly the subtype. However, it is possible that mixed infections are in fact common but that one subtype prevails and the other becomes undetectable. It would be feasible to apple the HAD+SSCP procedure to larger numbers of serum samples to confirm the absence or paucity of multiple infection in IDUs or patient subgroup. This confirmation would imply that vaccination programs employing live, attenuated HCV vaccines might be more effective in preventing primary HCV infections than inactivated, subunit, or epitope vaccines would be.

From a mechanistic perspective, variation with the HCV genome is assumed to be caused by random mutation and selection of variants which are most fit to propagate in a given host [46,47]. Generally, synonymous changes are often thought to represent a molecular clock, independent of external pressure and expected to occur at a rate proportional to the organism’s reproductive rate, Whereas nonsynonymous changes are selected by immune pressure [47]. The results shown in Figure 4 are the trend, pronounced in most of samples, toward lower ds values in the E1 than in the 5’ portion of E2. Lower ds values in the 5’ half of E1 than in a 3’ segment of E2 have been detailed in recent studies [24,31,33]. Lower ds values may indicate that E1 region has some constraints on synonymous variation, such as RNA secondary structure or binding sites for factors that regulate replication or translation. However, replication of HCV in protein-coding regions, multiple forces affect the balance between fixation of silent (synonymous) mutations versus those that alter amino acid sequence (nonsynonymous). In the present study, HVR1 variation during 6-8 months of infection did not reveal a common pattern of increasing diversity within each subject, though later sequences did diverge from earlier ones, indicating the action of selective forces. In addition, there is the trend, also pronounced in a longitudinal study of three subjects each, toward higher dn/ds ratios (as a surrogate indicator for immune pressure) in the E2/HVR1 than in E1. These results suggest that selective pressure acts differently on different genomic regions. Since the high mutation rate within the hypervariable regions of HCV E2 or the V loops Of HIV gp120 could be explained by the fact that these regions are free of structural constraints, a role for the HVR1 of HCV (and other viruses) as decoy antigen has recently been proposed, stimulating a strong immune response so that a early response to a highly immunogenic region might suppress or delay the response to other less-dominant epitopes, resulting in a diversion of the immune response away from more-conserved regions [48-50], but in some cases, is ineffective for viral clearance [51].
In conclusion, HDA+SSCP assay facilitates rapid and reliable assessment of HCV quasispecies diversity. Combined with nucleotide-sequencing procedure, it provides evidence that differences in the quasispecies of hepatitis C virus evolution are associated with viral features and its fitness for individual environments. Mutations of actively replicating virus arise stochastically with certain functional constraints. In a longitudinal study of three subjects, HVR1 variation during the first 8 months of infection did not reveal a common pattern of increasing diversity within each subject, though later sequences did diverge from earlier one. We were unable to identify an envelope sequence motif that predicts the outcome of primary infection.

REFERENCES

1 Meier V, Mihm S, Braun PW, Ramadori G. HCV-RNA positivity in peripheral blood mononuclear cells of patients with chronic HCV infection: does it really mean viral replication. World J Gastroenterol 2001; 7: 228-234

2 Braun PW, Meier V, Braun F, Ramadori G. Combination of “low-dose” ribavirin and interferon alpha-2a therapy followed by interferon alpha-2a monotherapy in chronic HCV infected non-responders and relapsers after interferon alpha-2a monotherapy. World J Gastroenterol 2001; 7: 222-227

3 Tong MJ, El-Fara NS, Reikes AR, Co RL. Clinical outcomes after transfusion-associated hepatitis C. N Engl J Med 1995; 332: 1463-1466

4 Villano SA, Vaheov D, Nelson KE, Cohn S, Thomas DL. Persistence of viremia and the importance of long-term follow-up after acute hepatitis C infection. Hepatology 1999; 29: 908-914

5 Hoofnagle JH. Hepatitis C: the clinical spectrum of disease. Hepatology 1997; 26: 15e-20s

6 Chung RT, He W, Sagulb A, Contreras AM, Xavier RJ, Chawla A, Wang TC, Schmidt EV. Hepatitis C virus replication is directly inhibited by IFN-alpha in a full-length binary expression system. Proc Natl Acad Sci USA 2001; 98: 9487-9492

7 Chen S, Wang YM, Li CM, Fang YF. Molecular epidemiology of HCV infection in intravenous drug abusers. Shijie Huanren Xiuohua Zazhi 2001; 9: 526-528

8 Kato N, Ootsuyama Y, Tanaka T, Nakagawa M, Nakazawa T, Muraiso O, Okhoshi S, Hijiakata M, Shimotohno K. Marked sequence diversity in the putative envelope proteins of hepatitis C viruses. Virus Res 1992; 22: 107-123

9 Martell M, Esteban J, Quer J, Genesea J, Weiner A, Esteban R, Guardia J, Gomez J. Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution. J Virol 1992; 66: 3225-3229

10 Alilain JP, Dong Y, Vandamme AM, Moulton V, Salemi M. Evolutionary rate and genetic drift of hepatitis C virus are not correlated with the host immune response: studies of infected donor-recipient clusters. J Virol 2000; 74: 2541-2549

11 Forns X, Purcell H, Bukh J. Quasispecies in viral persistence and pathogenesis of hepatitis C virus. Trends Microbiol 1999; 7: 402-409

12 Bukh J, Miller RH, Purcell HR. Genetic heterogeneity of hepatitis C viruses: quasispecies and genotypes. Semin Liver Dis 1996; 15: 41-63

13 Weiner AJ, Brauer MJ, Rosenblatt J, Richman KH, Tung J, Crawford K, Bonino F. Variable and hypervariable domains are found in the regions of HCV corresponding to the flavivirus envelope and NS1 proteins and the pestivirus envelope glycoproteins. Virology 1991; 180: 842-849

14 Weiner AJ, Geysen HM, Christopherson C, Hall J, Macon TJ, Saracco G, Bonino F. Evidence for immune selection of hepatitis C virus (HCV) putative envelope glycoprotein variants: potential role in chronic HCV infections. Proc Natl Acad Sci USA 1992; 89: 3468-3472

15 Wang YM, Ray SC, Laiyendecker O, Ticehurst JR, Thomas D. Assessment of hepatitis C virus sequence complexity by electrophoretic mobilities of both single- and double-stranded DNAs. J Clin Microbiol 1998; 36: 2982-2989

16 Wang PZ, Nie QH, Zhang ZW, Bai XG. Quantitative study of HCV RNA in different population of hepatitis C virus infection. Shijie Huaren Xiuohua Zazhi 2000; 8: 1247-1250

17 Park Y, Lee KO, Oh MJ, Chai YG. Distribution of genotypes in the 5’ untranslatable region of hepatitis C virus in Korea. J Med Microbiol 1998; 47: 643-647

18 Smith DB, Simmonds P. Characteristics of nucleotide substitution in the hepatitis C virus genome: constraints on sequence change in coding regions at both ends of the genome. J Mol Evol 1997; 45: 238-246

19 Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 1986; 3: 418-426

20 Smith DB, McAllister J, Casino C and Simmonds P. Virus ‘quasispecies’: making a mountain out of a molehill? Gen Virol 1997; 78: 1511-1519

21 Honda M, Kaneko S, Sakai A, Unoura M, Murakami S, Kobayashi K. Degree of diversity of hepatitis C virus quasispecies and progression of liver disease. Hepatology 1994; 20: 1144-1151

22 Manzin A, Solforosi L, Petrelli E, Macarri G, Tosone G, Piazza M, Clementi M. Evolution of hypervariable region 1 of hepatitis C virus in primary infection. J Virol 1995; 70: 6271-6276

23 McAllister J, Casino C, Davidson F, Power J, Lawlor E, Yap PL, Simmonds P, Smith DB. Long-term evolution of the hypervariable region of hepatitis C virus in a common-source-infected cohort. J Virol 1998; 72: 4893-4905

24 Ni YH, Chang MH, Chen J, Li HH, Huu SY. Evolution of hepatitis C virus quasispecies in mothers and infants transmitted through mother-to-infant transmission. J Hepatol 1997; 26: 967-974

25 Faci P, Shimonda A, Wang D, Cabezou T, De-Gioannidis N, Strazzere A, Shimizu Y, Shapiro M, Alter HJ, Purcell RH. Prevention of hepatitis C virus infection in chimpanzees by hyperimmune serum against the hypervariable region 1 of the envelope 2 protein. Proc Natl Acad Sci USA 1996; 93: 15394-15399

26 Okamoto H, Kojima M, Okada SI, Yoshizawa H, Iizuka H, Tanaka T, Muchmore EE, Ito Y, Mishira S. Genetic drift of hepatitis C virus during an 8.2 year infection in a chimpanzee: variability and stability. Virology 1998; 190: 894-899

27 Sakamoto N, Enomoto N, Kuroasaki M, Marumo F, Sato C. Sequential change of the hypervariable region of hepatitis C virus genome in acute infection. J Med Virol 1994; 42: 103-108

28 Weiner AJ, Thaler MM, Crawford K, Ching K, Kansopon J, Chien DY, Hall JE, Hu F, Houghton M. A unique predominate hepatitis C virus variant found in an infant born to a mother with multiple variants. J Virol 1993; 67: 4365-4368

29 Lee JH, Stripp TR, Roth WK, Zeuzem S. Non-isotopic detection of hepatitis C virus quasispecies by single-strand conformation polymorphism. J Med Virol 1997; 53: 245-251

30 Morib T, Hayashi N, Kanazawa Y, Mita E, Fusamoto H, Negi M, Kaneshige T, Igimi H, Kamada T, Uchida K. Hepatitis C viral complexity detected by single-strand conformation polymorphism and response to interferon therapy. Gastroenterology 1995; 108: 789-795

31 Sullivan DG, Wilson JJ, Carithers RLJ, Perkins JD, Gretch DR. Multigene tracking of hepatitis C virus quasispecies after liver transplantation: correlation of genetic diversification in the envelope region with asymptomatic or mild disease patterns. J Virol 1998; 72: 10036-10043

32 Cotton RG. Current methods of mutation detection. M ut Res 1993; 285: 124-144

33 Carrington M, Millter T, White M, Gerrard B, Stewart C, Dean M, Mann D. Typing of HLA-DQA1 and DQB1 using
DNA single-stranded conformational polymorphism. Hum Immun 1992; 33: 208-212

34 Calvo PL, Kansopon J, Sra K, Quan S, Dinello R, Guaschino R, Calabrese G, Daniere F, Brunatto MR, Bonino F, Massaro L, Polito A, Houghton M, Wein AJ. Hepatitis C virus heteroduplex tracking assay for genotype determination reveals diverging genotype 2 isolates in Italian hemodialysis patients. J Clin Microbiol 1998; 36: 227-233

35 Delwart EL, Shpaer EG, Louwagie J, McCutchan FE, Graz M, Rubsam WH, Mullins JI. Genetic relationships determined by a DNA heteroduplex mobility assay: analysis of HIV-1 env genes. Science 1993; 262: 1257-1261

36 Chen S, Wang YM, Fang YF, Wu ZJ. Genetic complexity of the envelope region 2 (E2) of hepatitis C virus in HCV-infected individuals. Zhonghua Weishengwuxue He Mianyixue Zaishi 2001; 21: 397-399

37 Gavriel B, Martinez-Gonzalez MA, Riezu-Boj JJ, Lasarte JJ, Garcia N, Civeira MP, Prieto J. Viremia after one month of interferon therapy predicts treatment outcome in patients with chronic hepatitis C. Gastroenterology 1997; 113: 1647-1653

38 Gretch DR, Polyak SJ, Wilson JJ, Carithers RL Jr., Perkins JD, Corey L. Tracking hepatitis C virus quasispecies major and minor variants in symptomatic and asymptomatic liver transplant recipients. J Virol 1996; 70: 7622-7631

39 Kreiss S, Whistler T. Rapid identification of measles virus strains by the heteroduplex mobility assay. Virus Res 1997; 47: 197-203

40 Nelson JAE, Fiscus SA, Swanstrom R. Evolutionary variants of the human immunodeficiency virus type 1 V3 region characterized by using a heteroduplex tracking assay. J Virol 1997; 71: 8750-8758

41 Polyak SJ, Faulkner G, Carithers RL, Corey L, Gretch DR. Assessment of hepatitis C virus quasispecies heterogeneity by gel shift analysis: correlation with response to interferon therapy. J Infect Dis 1997; 175: 1101-1107

42 Wilson JJ, Polyak SJ, Day TD, Gretch DR. Characterization of simple and complex hepatitis C virus quasispecies by heteroduplex gel shift analysis: correlation with nucleotide sequencing. J Gen Virol 1995; 76: 1763-1771

43 Forns X, Bukh J, Purcell RH, Emeret SU. How Escherichia coli can bias the results of molecular cloning: preferential selection of defective genomes of hepatitis C virus during the cloning procedure. Proc Natl Acad Sci U S A 1997; 94: 13909-13914

44 Harris KA, Teo CG. Diversity of hepatitis C virus quasispecies evaluated by denaturing gradient gel electrophoresis. Clin Diagn Lab Immunol 2001; 8: 62-73

45 Kato N, Ootsuyama Y, Tanaka T, Nakazawa M, Nakazawa T, Muraiso K, Ohkoshi S, Hikijkata M, Shimotohno K. Humoral immune response to hypervariable region 1 of the putative envelope glycoprotein (gp70) ofhepatitis C virus. J Virol 1993; 67: 3923-3930

46 Gojobori T, Morijama EN, Kimura, M. Molecular clock of viral evolution, and the neutral theory. Proc Natl Acad Sci U S A 1990; 87: 10015-10018

47 Zhang L, Diaz RS, Ho DD, Mosley JP, Mayer A. Host-specific driving force in human immunodeficiency virus type 1 evolution in vivo. J Virol 1997; 71: 2555-2561

48 Wyatt R, Sullivan N, Thali M, Repke H, Ho D, Robinson J, Posner M, Sodroski J. Functional and immunologic characterization of human immunodeficiency virus type 1 envelope glycoproteins containing deletions of the major variable regions. J Virol 1993; 67: 4557-4565

49 Garrity RR, Rimmelzwaan G, Minassian A, Tsai WP, Lin G, de Jong JJ, Goudsmit J, Nara PL. Refocusing neutralizing antibody response by targeted dampening of an immunodominant epitope. J Immunol 1997; 159: 279-289

50 Ray SC, Wang YM, Laeyendecker O, Ticehurst JR, Villano SA, Thomas DL. A cute hepatitis C virus structural gene sequences as predictors of persistent viremia: hypervariable region 1 as a decoy. J Virol 1999; 73: 2938-2946

51 Smith DB, Simmonds P. Characteristics of nucleotide substitution in the hepatitis C virus genome: constraints on sequence change in coding regions at both ends of the genome. J Mol Evol 1997; 45: 234-246

Edited by Ma JY