Highly efficient platinum-based emitters for warm white light emitting diodes†

Violeta Sicilia,ida,b Sara Fuertes,ida,b Andrés J. Chueca,ida,b Lorenzo Arnal,ida,b Antonio Martin,ida,b Mariano Perálvarez,ida Chiara Botta,c and Umberto Giovannela,d

New cycloplatinated N-heterocyclic carbene (NHC) compounds with chelate diphosphines (P^P) as ancillary ligands, [Pt(R-^C^C*)(P^P)]PF6 (R-^C = Naph, P^P = dppm 1A, dppe 2A, dpbbz 3A, R = CO2Et, P^P = dppm 1B, dppe 2B, dpbbz 3B), have been prepared. Their photophysical properties have been extensively studied and supported by the time-dependent-density functional theory (TD-DFT). These compounds show a great thermal stability and a very efficient blue (CO2Et-C^C*) or cyan (Naph^C*) emission in PMMA films (5 wt%), with photoluminescence quantum yield (PLQY) ranging from 53% to 95%. In the solid state, the emission of the Naph^C* derivatives becomes orange (1A, 2A) or white (3A, dual blue and yellow emission) due to the operating π–π intermolecular interactions. We have investigated the potential use of these materials for solid-state lighting (SSL) applications. OLEDs with different architectures containing mixtures of 1B and 3A in different ratios as dopants were fabricated. In addition, two-component white light remote phosphors were obtained by stacking different combinations of 1B or 3B as the blue emitter with [Pt(bzq)(CN)CN(xyl)]1(R) (bzq = benzoquinolinate, Xyl = 2,6-dimethylphenyl) as the red emitter using a 365 nm LED as pumping source. By changing the blue:red ratio, warm white light with optimal CRI and Duv values and a great range of nominal CCT (4000–2000 K) was obtained.

Introduction

With the irradiation of LED technology in the lighting arena, different kinds of LED architectures capable of creating white light in an efficient and reliable manner have been developed.1 Currently, two types of phosphor-converted white LEDs (pcWLEDs) are commercially available depending on their excitation wavelength. On one hand, there are those based on a blue LED (InGaN) chip coated with a yellow phosphor (e.g. Y2Al3O12:Ce3+ = YAG:Ce). On the other hand are those based on near ultraviolet (NUV) LED pumping coated with a mixture of different phosphors. In both cases white emission is achieved through excitation and subsequent re-emission, but the complexity is bigger in the latter since the blue contribution is also covered by a phosphor. In order to get photo-biologically healthier white light, the key issue in this technology is to minimize the fraction of blue light (around 460 nm) which potentially leads to warmer CCTs.1–3

There is growing evidence that inadequate light during the day and mainly during the evenings or at night contributes to sleep problems and circadian clock misalignment.4–6 Because the melatonin contained in the retinal ganglion cells (ipRGCs) is photoactivated by 460 nm blue light, the artificial light striking the retina between dusk and dawn inhibits sleep-promoting neurons in the hypothalamus, and suppresses the nightly release of the soporific hormone melatonin.7,8 These factors reduce sleepiness, increase alertness and lead to the development of health problems like obesity, heart disease, depression and neurodegenerative diseases such as Alzheimer’s and Parkinson’s.9,10

So, low CCTs, high luminous efficiency (LE) and high color rendering index (CRI) are important characteristics to be considered when fabricating pcWLEDs as environmentally friendly light sources. Also, concerning the chemical composition, the use of rare-earth-based phosphors leads us to foresee a long-term price rise and some logistical problems on the horizon.11 In this sense, phosphorescent organometallic transition metal
complexes (TMCs) have become crucial in the development of electroluminescent devices such as phosphorescent organic light-emitting diodes (PhOLEDs) and white-light-emitting electrochemical cells (LEEPs), mostly those of Ir(III)12–14 and Pt(II).15–18

Newly developed strategies to achieve efficient white emitting devices have been focused on single-doped WOLEDs using square planar platinum(II) complexes. In these systems, the white light is obtained by combination of blue emission from isolated molecules and orange-red emission from excimers. Controlling the dopant concentration to obtain efficient systems has been successfully accomplished; however, their CRI values are still below 8019–24.

The work presented here represents the research of technological alternatives that could improve solid state lighting (SSL) technology in terms of light quality and cost; light quality because we report on systems capable of generating white light with high CRI and low CCT values, and cost because all the compounds reported in this work are 100\% rare-earth-free emitting phosphors. Therefore, keeping with our mastered organometallic approach of using cyclometalated N-heterocyclic carbenes (NHC) as phosphors. Therefore, keeping with our mastered organometallic approach of using cyclometalated N-heterocyclic carbenes (NHC) as highly efficient emitters to prepare lighting devices,25–27 herein we report the synthesis and complete structural and photophysical studies of cyclopallated NHC compounds with diposphines (P-P) as auxiliary ligands, [Pt(R-C^C*)(P^P)]PF\textsubscript{6} (R-C = Naph, P-P = dppe 1A, dppe 2A, dppbz 3A; R = CO\textsubscript{2}Et, P-P = dppe 1B, dppe 2B, dppbz 3B). Taking into account their emitting features, we used a selection of them as blue (1B, 3B), and orange (1A) emitters for SSL applications; WOLEDs and remote pWLEDs. The red emitter ([Pt(bzq)(CN)(CN)]2-Cl)\textsubscript{2}(R-C^C*)\textsubscript{2} 25,26 was used to obtain warm and healthy white light illumination.

Results and discussion

2.1. Emissive compounds: synthesis and characterization

Compounds [Pt(R-C^C*)(P-P)]PF\textsubscript{6} (1A–3A, 1B–3B, see Scheme 1) were prepared in high yields, 86\% 2A \textminus 66\% 2B, from the corresponding starting compound ([Pt(μ-Cl)(R-C^C*)]\textsubscript{2})25,26. The most relevant structural information came from multinuclear NMR spectra (see Table 1, Experimental section and ESI† part 2) and the X-ray diffraction study of single crystals of 1A, 3A, and 1B–3B (see Fig. 1 and ESI† part 3 for figures, data and discussion).

![Scheme 1 Scheme of new complexes and numeration for NMR characterization.](image)

Table 1

Compound	\(\delta\) (ppm)	J (Hz)	
1A	4384.0	2398.6	1526.1
	-36.9\textsubscript{A}	-37.5\textsubscript{B}	39.8
2A	4991.0	2715.1	1925.9
	50.6	43.6	6.0
3A	4906.0	2671.6	1915.4
	47.6	39.3	4.1
1B	4411.8	2378.4	1556.7
	-37.9\textsubscript{A}	-38.3\textsubscript{B}	40.3
2B	5013.7	2706.5	1958.5
	50.6	43.6	6.2
3B	4955.8	2670.4	1950.8
	47.7	40.5	4.7

\(\text{a} \quad 162\text{ MHz}, \text{CD}2\text{Cl}2, \text{b} \quad 86\text{ MHz}, \text{CD}2\text{Cl}2.\)

The two inequivalent P atoms of the dppm derivatives (1A/1B) (Table 1 and Fig. S1 for 1B, ESI†) appear upfield shifted with respect to that of free dppm (\(\delta = -23.8\text{ ppm}\))28 as an AB system (\(J\textsubscript{P,P} \sim 40\text{ Hz}\)). However, those for the dppe in 2A/2B and dppbz in 3A/3B (Fig. S2 for 2A, ESI†) appear downfield shifted with respect to that of the corresponding free diposphine (dppe = -12.5 ppm, dppbz = -13.8 ppm)28 as AX systems with \(J\textsubscript{P,P} \) values of about 5 Hz.29 Every \(^{31}\text{P}\) signal appears flanked by two sets of \(^{195}\text{Pt}\) satellites. The larger \(J\textsubscript{P,L}\) value corresponds to the P atom located trans to the N-heterocyclic carbene (C1), whose trans influence is smaller than that of the aromatic C atom (C6).30 The \(^{195}\text{Pt}\) NMR spectrum of each compound shows a doublet of doublets due to the coupling of the Pt center to two inequivalent P atoms (see Fig. S3, ESI† and Table 1). It is worth noting the downfield shift of the \(^{195}\text{Pt}\) resonances of the dppe complexes (1A/1B) when compared to those of the dppe (2A/2B) and dppbz (3A/3B) counterparts, which can be attributed to the great strain in the 4-membered ring.28,29

Thermo-gravimetric analyses (TGA) of all compounds indicate that they are stable under an argon atmosphere at 1 atm over 350 °C (368.21 °C 1A, 383.40 °C 2A, 399.83 °C 3A, 350.72 °C 1B, 350.31 °C 2B and 381.13 °C 3B).

2.2. Photophysical properties and theoretical calculations

Absorption properties and TD-DFT calculations. The lowest energy absorption of 1A–3A in CH\textsubscript{2}Cl\textsubscript{2} (5 \times 10-5 M) appears at \(\lambda \geq 350\text{ nm}\), at lower energies than those of 1B–3B (ca. 320 nm, Fig. 2 and ESI† part 4), as previously stated.26,27 On the other hand, the low energy bands of the dppm derivatives (1A and 1B) appear red shifted with respect to the corresponding dppe and dppbz ones (2A, 2B and 3A, 3B), indicating that both R-C^C* and P-P ligands are involved in the lowest energy spin-allowed transition.
These absorptions obey Beer’s law in the range 10^{-3}–10^{-6} M in CH$_2$Cl$_2$, in agreement with the absence of significant aggregation in this concentration range.31 The absorption spectra of powdered samples of 1A–3A and 1B–3B (ESI† part 4) appear quite similar to those observed in solutions of CH$_2$Cl$_2$. Therefore, the same origin of the lowest energy absorptions can be assumed.

Theoretical calculations (DFT and TD-DFT) were carried out on the cations of 1A, 3A, 1B, and 3B (see ESI† part 5 for tables, figures and discussion). Considering that in each case, the calculated spin-allowed transition (S$_1$) fits well with the lowest energy absorption and that the main contribution to it is the HOMO to LUMO transition, the origin of this absorption can be ascribed to the excited states.32 Similarly to those observed in the related complexes [(Naph$^+$)Pt(CN'R)$]PF$_6$ (R' = t-Bu, Xyl).26 Upon excitation at λ_{ex} ≤ 380 nm, they show a high energy (HE) emission band identical to the one observed in diluted solution. At longer excitation wavelengths (λ_{ex} ~ 400 nm), the intensity of the HE band decreases and a low energy (LE) emission band with a maximum at 565 nm becomes dominant (Fig. S13 for 1A–3A).

In light of the observed quantum efficiency and thermal stability of these compounds, their great potential to be incorporated as dopants in PMMA films. [Pt(C^C*)(acac)] (Φ = 0.86,32 0.90,33) and [Pt(C^C*C^C*)Cl] (Φ = 0.3214) and [Pt(C*C=O)Cl] (Φ = 0.58; L’ = carbazoyl pyridine, Φ = 0.89; C’X = phenyl methyl imidazole; L’ = carbazoyl pyridine, Φ = 0.8535).

2.3. Device performance and characteristics
In light of the observed quantum efficiency and thermal stability of these compounds, their great potential to be incorporated as...
emitting centers within a SSL-based architecture for white light generation becomes clear, in our case for OLEDs and remote phosphor-based devices.

2.3.1. OLEDs. Complexes [Pt(CO\textsubscript{2}Et−C−C−)*]dppm\textsubscript{6} (1B) and [Pt(Naph−C−C−)*]dppbz\textsubscript{6}PF\textsubscript{6} (3A) were chosen as blue and yellowish-orange emitters respectively for the fabrication of solution processed OLEDs. First of all, we built OLEDs containing 1B or 3A as emitters, to optimize the operating conditions for each of them (see ESI, part 7, Fig. S14 and S15 for devices OL1–OL3 and L1–L19).

With a view to achieving white electroluminescence, by exploiting blue emission from 1A and green-orange emissions from 3A, devices with emissive layer (EML) containing the two dopants with different formulations were manufactured with basic and advanced architectures (see Table 2 and Fig. 5 left).

Devices L10–L12 were built with the ITO/MoO\textsubscript{3}/EML/TPBi/Ba/Al configuration. The EL spectrum of 1A exploiting blue emission from basic and advanced architectures (see Table 2 and Fig. 5 left). The EL spectrum (see Fig. 5 right) reveals that the blue emission arising from 1B becomes more relevant thanks to the slightly different energy levels of OXD-7 with respect to PBD. However, there is still a big contribution of the LE band of 3A, increasing as the ratio 3A:1B increases from 2:1 (L14) to 3:1 (L15). As a result, a warmer white light and CRI in the range of 74.8–76.8 were observed.

White OLEDs switch on at about 5–7 V (Fig. S17 in the ESI†) probably due to the aforementioned high potential barriers for charge injection, mainly for holes, that should be further reduced by interfacial engineering. At high current density the maximum luminescence recorded is in the range of 50–250 cd m−2 depending on EML formulations and device architectures. The combined highest EQE (0.2%) and better CIE (0.34; 0.41) and CRI (75.7) were achieved for device L13. As has already been reported for this type of devices,36,37 a moderate efficiency roll-off (Fig. S18 in the ESI†) due to triplet–triplet annihilation, typical of long-lived excited triplet states, cannot be avoided.

2.3.2. Remote phosphor devices. To achieve the high quality CCT and CRI values required in devices for indoor solid-state lighting applications, as stated in the ANSI C87.8-2008/2015 for commercial light sources, combination of the luminescence from different phosphors was required; complexes 1B and 3B were selected as blue, 1A as orange- and [Pt(bzq)(CN)(CNXyl)] (R)38 as red-emitting materials. Several remote phosphor devices with two-component architectures (D1–D10) were prepared by sequential deposition of individual suspensions of the active materials on common glass disks by screen-printing. The relative amount (number of layers) of each phosphor was varied to control the final photometric and colorimetric parameters of these devices (see Table 3 and ESI† part 7). Once a phosphor disk was prepared, it was studied under 365 nm UV LED light illumination. To do that, the disk was introduced in the holder structure shown in Fig. 7 with the coating facing the pump source. On the other hand, it is worth noting that phosphor stacks were constructed by placing the phosphor with the higher radiative transition close to the glass, so the re-absorption of photons with lower energies from previous layers within the stacks is minimized. In this configuration, we ensured that the outcoming visible light is efficiently transmitted to the analysis stage. Photometric and colorimetric parameters corresponding to D1–D10 can be seen in Table 3 and Fig. 8.

Devices D1 and D2, both containing compound 1A as the warm component, present rather low CRI and non-convenient

Table 2 EML composition, EQE and lighting parametersa of L10–L15

3A:1B (%)	HTL (%)	ETL (%)	EQE\textsubscript{max} (%)	CRI	CCT	CIE (x, y)	Duv	
L10	10/10	57	23	0.32	65.8	2592	0.47, 0.41	0.0004
L11	10/15	52.5	22.5	0.1	72.0	2745	0.47, 0.44	0.0090
L12	10/20	49	21	0.05	72.0	2723	0.48, 0.44	0.0098
L13	10/10	57	23	0.2	75.7	5281	0.34, 0.41	0.0298
L14	10/5	59.5	25.5	0.125	76.8	4055	0.39, 0.44	0.0306
L15	15/5	56	24	0.15	74.8	3326	0.44, 0.45	0.0230

a Obtained at 12 V (L10–L12) and 10 V (L13–L15).

Fig. 5 (left) Device architectures of white OLEDs: L10–L12, L13–L15. (right) EL spectra at 10 V of L10, L13–L15.
To solve these problems, 1A was substituted by the red-emitter [Pt(bzq)(CN)(CNXyl)] (R), with a less pronounced overlay of the emission band with those of 1B and 3B. Comparison of devices D3 and D4, which just differ in the nature of the blue phosphor (1B in D3, 3B in D4), seems to indicate that both 1B and 3B, combined with the R component in a 2:1 ratio, lead to devices with very similar photometric and colorimetric parameters. In both cases, these have excellent CRI values (94.3, 92.5) and CIE coordinates along the Planckian locus (|Duv| < 0.006).

The spectral shape of devices D3 and D4 resembles that obtained from incandescent lamps (CRI 100) (Fig. 9 top). An increase of the blue: red ratio to 3:1 or 4:1 leads to a much colder light. The 3B-containing devices (CCT = 3706 K D5, 3938 K D6) show colder light and lower CRI values (ca. 83) but for all of them, the CIE coordinates are along the Planckian locus (|Duv| < 0.006).

Table 3 Performance of remote phosphor devices D1–D10

Devices (components)	CRIa	CCTb	Duv	LF (mlm)	LERc (lm W⁻¹)	LEc (lm W⁻¹)	WPEd (%)	CIE 1931 (x, y)e
D1 (1B/1A)	57.7	3292	0.019	237.2	379.5	0.86	0.41	0.4431, 0.4576
D2 (3B/1A)	62.4	3586	0.015	242.9	360.4	0.88	0.45	0.4158, 0.4313
D3 (1B/R)	94.3	2532	0.0031	173.1	239.8	0.63	0.56	0.4801, 0.4231
D4 (3B/R)	92.5	2570	0.0037	197.2	226.7	0.72	0.52	0.4641, 0.4014
D5 (3B/R)	83.6	3706	0.0057	179.6	227.9	0.65	1.53	0.3894, 0.3700
D6 (3B/R)	81.7	3938	0.0024	214.1	228.7	0.78	1.18	0.3815, 0.3722
D7 (3B/R)	85.7	1918	0.00097	140.6	209.9	0.51	0.46	0.5380, 0.4146
D8 (3B/R)	92.3	2176	0.0039	157.7	217.2	0.57	0.59	0.4998, 0.4032
D9 (1B/R)	93.7	3078	0.0065	183.1	249.1	0.67	0.99	0.4409, 0.4222
D10 (1B/R)	90.2	3335	0.0064	168.1	247.9	0.61	1.44	0.4214, 0.4138

a Color rendering index. b Correlated color temperature. c Luminous flux. d Luminous efficacy of the radiation. e Luminous efficacy. f Wall-plug efficiency. g CIE coordinates.

Fig. 7 (a) Exploded view of the sample holder used to pump the phosphors and coupling of the resulting emission into the integrating sphere. (b) Schematic drawing of the phosphor stacks (I-V = ink vehicle; B = blue phosphor; R = red phosphor).

Fig. 8 Distribution of the different devices in the CIE 1931 color space according to their respective color coordinates D1–D10.

Fig. 9 Normalized emission spectra of devices D3, D4, D9 and D10 and a typical incandescent lamp in the visible region of the spectrum (top) and devices D4–D8 (bottom).
If we compare those devices (D4–D8) containing the same active components, 3B as blue and R as red, it seems clear that modifications in the relative number of layers of each phosphor (3B: R ratio: 0.5:1) D7, 0.66:1 D8, 2:1 D4, 3:1 D5, 4:1 D6) lead to a fine control of the CCT values (Fig. 9 bottom) with no dramatic change in the rest of the parameters. In light of the above sequence, it becomes clear that the amount of R contributes to making the emission warmer; it is possible to achieve devices with high CRI (81.7–92.5), CCT values ranging from 1918 K (D7) to 3938 K (D6) and CIE coordinates along the Planckian locus ([D_{aw} ≈ 0.00097–0.0057].

Therefore, this approach allows the fabrication of devices with a great range of nominal CCT values: 4000 K (D6), 3500 K (D5 and D10), 3000 K (D9) and almost 2600 K (D3 and D4), and opens the gate to even very- or ultrawarm devices (D7 and D8) operating in the “firelight” range of CCTs (1918 K to even very- or ultrawarm devices (2176 K and almost 2600 K), which has been attributed to charge carrier injection and balance issues, and the development of new matrices with HOMOs and LUMOs more adequate for these compounds or more efficient interface engineering would be necessary.

White light with satisfactory photometric and colorimetric parameters was obtained by combination of 1B or 3B as blue with [Pt(bzq)(CN)(CNXyli)] as red emitters in two-component remote phosphor devices. Using 1B or 3B and changing the blue:red ratio under a 365 nm LED pumping source, warm white light with optimal CRI and D_{aw} values, and a great range of nominal CCT values (4000 K, 3500 K, 3000 K, 2500 K and 2000 K) could be obtained. The emission spectra of these systems mimic that of the incandescent light, with a much reduced impact of the blue component. These findings show a great promise of these systems for photo-biologically healthier solid-state lighting.

Conclusions

New cyclometallated N-heterocyclic carbene (NHC) compounds with chelate diphosphines (P^P-P) as ancillary ligands, [Pt(R-C^C*)(P^P)]PF_{6} (R-C = Naph, CO_{2Et}; P^P = dppe, dppbz) were prepared from their corresponding starting materials, [{Pt(R-C^C*)(μ-Cl)}_{2}]. The presence of two chelate ligands (C^C* and P^*P) in these complexes confers them great robustness and thermal stability. Compounds [Pt(CO_{2Et-C^C*})(P^P)]PF_{6} (P^P = dppm, dppe) and [Pt(Naph-C^C*)(dppbz)]PF_{6} (3A) were selected for fabrication of white light-emitting devices because of their emitting features and high PLQY in PMMA films (74% and 95%).

White light with optimal CRI and D_{aw} values, and a great range of nominal CCT values (4000 K, 3500 K, 3000 K, 2500 K and 2000 K) could be obtained. The emission spectra of these systems mimic that of the incandescent light, with a much reduced impact of the blue component. These findings show a great promise of these systems for photo-biologically healthier solid-state lighting.

Experimental

General information is included in the ESL.

Synthesis and characterization of [Pt(Naph-C^C*)(dppm)]PF_{6} (1A). dpmp (87.0 mg, 0.22 mmol) and KPF_{6} (41.2 mg, 0.22 mmol) were added to a suspension of A (96.1 mg, 0.11 mmol) in acetonitrile (30 mL) at room temperature. After 1 h of reaction, the solvent was removed under reduced pressure and the residue was treated with dichloromethane (40 mL). The solution was filtered through Celite and the solvent was removed under reduced pressure. The residue was treated with diethyl ether, filtered, and washed with diethyl ether to give 1A as a yellow solid. Yield: 147.5 mg, 72%. Anal. calc for C_{40}H_{35}F_{6}N_{2}P_{3}Pt: C 50.80, H 3.73, N 2.96; found: C 50.75, H 3.82.

Synthesis and characterization of [Pt(Naph-C^C*)(dppbz)]PF_{6} (2A). It was prepared following the method described for 1A with dpbz (127.0 mg, 0.32 mmol), KPF_{6} (59.9 mg, 0.32 mmol) and A (139.6 mg, 0.16 mmol) (2 h). 2A was obtained as a pale yellow solid (yield: 254.5 mg, 86%). Anal. calc for C_{44}H_{35}F_{6}N_{2}P_{3}Pt: C 50.80, H 3.73, N 2.96; found: C 50.75, H 3.82.

Synthesis and characterization of [Pt(Naph-C^C*)(dppe)]PF_{6} (3A). It was prepared following the method described for 1A with dppe (127.0 mg, 0.32 mmol), KPF_{6} (59.9 mg, 0.32 mmol) and A (139.6 mg, 0.16 mmol) (2 h). 3A was obtained as a pale yellow solid (yield: 254.5 mg, 86%). Anal. calc for C_{40}H_{35}F_{6}N_{2}P_{3}Pt: C 50.80, H 3.73, N 2.96; found: C 50.75, H 3.82.
Synthesis and characterization of $[\text{Pt}(\text{EtO}_2\text{C}-\text{C}^\text{C}*)(\text{dppm})]\text{PF}_6$ (3B). It was prepared following the method described for 1A with dpbbz (120 mg, 0.26 mmol), KPF$_6$ (50.0 mg, 0.27 mmol) and B (120.4 mg, 0.13 mmol) (2 h). 3B was obtained as a pale yellow solid (yield: 205.2 mg, 77%). Anal. calc. for C$_{39}$H$_{37}$F$_6$N$_2$O$_2$P$_3$Pt: C 74.0, H 5.3, N 2.5, P 5.6, Cl 1.4, F 8.1, Pt 7.2. MS (MALDI+): m/z (100) 882.8 [M$^+$]. A$_M$ (5 x 10$^{-4}$ M acetonitrile solution): 67.8 cm$^{-1}$ mol$^{-1}$.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the Spanish Ministerio de Economía y Competitividad (MINECO)/FEDER (Project CTQ2015-67461-P led by Dr Babi Jené) and by the Gobierno de Aragon and Fondo Social Europeo (Grupo E17_17R: Química Inorgánica y de los Compuestos Organometálicos led by Dr José M. Casas). The authors thank the Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) and Centro de Supercomputación de Galicia (CESGA) for generous allocation of computational resources. U. G. and C. B. acknowledge the support of Project I-Zeb, III Accordo Quadro CNR-Regione Lombardia. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).

References

1 Y. C. Lin, M. Karlsson and M. Bettinelli, Top. Curr. Chem., 2016, 374, 21.
