Highly birefringent polymer films from the photo-crosslinking polymerisation of bistolane-based methacrylate monomers

Yuki Arakawa,a,b Hiroki Kuwaharaa, Koichi Sakajiria, Sungmin Kanga, Masatoshi Tokitaa*** and Gen-ichi Konishia,⁎

a Department of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan; b Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, Japan

(Received 13 April 2015; accepted 18 May 2015)

The photo-polymerisation of mixtures of mono- and di-methacrylates, containing a bistolane moiety with a central fluorine-substituted benzene ring, resulted in the formation of highly birefringent polymer films (Δn = 0.40), which were obtained in a nematic liquid crystal (NLC) phase. While the dimethacrylate forms enantiotropic NLCs at T = 110–138°C, smectic phases at T = 50–138°C and crystallises at T = 50°C, whereas the monomethacrylate forms NLCs at a wider temperature range (T = 98–185°C) and crystallises at a lower temperature (T = 98°C). These methacrylates were infinitely miscible and a 20/80 (w/w) mixture of the dimethacrylate/monoacrylate was able to form an NLC phase over a broad temperature range (T = 73–179°C). The mixed NLC phase exhibited a Δn value of 0.36, even though the Δn values of the mono- and di-methacrylates were determined as 0.35 and 0.25, respectively, suggesting that the Δn of the mixture follows an additivity rule. Furthermore, the Δn of the NLC phase could be increased to 0.40 by photo-polymerisation.

Keywords: nematic phase; rod-like molecules; high birefringence film; photo-cross linking; order parameter

Introduction

Owing to their use in various optical applications such as cholesteric,[1–8] compensating,[9,10] and holographic films,[11–15] as well as polymer-stabilised blue phases,[16] liquid crystalline polymer (LCP) films have attracted considerable attention. For such applications, the employed materials are required to exhibit high birefringence (Δn) at ambient temperature. Columnic LCs, consisting of extended π-conjugated mesogens, for example, exhibit such high birefringence,[17–49] but unfortunately they tend to form thermotropic phases at high temperature, and crystallise at room temperature under the formation of domains that cause light scattering. The polymerisation of LC monomers can prevent such crystallisation, by generating an LC state at high temperature and a vitrification at room temperature. Previously, we reported that the side-chain LCPs with a dinaphthyl-acetylene mesogen exhibit higher Δn values than the corresponding monomeric LCs. The anisotropic alignment of the LCs increased upon polymerisation, ultimately resulting in higher Δn values for the LCP film relative to the monomer LC, and a maximum Δn value of 0.36 was observed for these LCP films at 550 nm.[50]

However, the photo-induced crosslinking of LC monomers is not only an effective method to prepare heat-resistant and highly birefringent films, but it is also able to freeze the assembly states (or alignments) of desirable LC phases. For example, Lub et al. reported highly birefringent polymer films containing bifunctional mesogenic monomers with an olefin and a thiol group.[51] While crosslinking can, similar to polymerisation, increase Δn, it is able to increase the glass transition temperature more efficiently than the polymerisation. Although many photo-crosslinked LC materials, including rod-like and discotic mesogens have been reported,[52–54] photo-crosslinked LCP films with high Δn values (i.e. Δn > 0.4) remain, to the best of our knowledge, undescribed. This scarcity may possibly be attributed to a disarrangement of such highly birefringent LCs due to phase separation or crystallisation during the photo-polymerisation. Moreover, highly birefringent nematic liquid crystals (NLCs) are usually viscous, tend to crystallise, and the polymeric NLCs are less miscible with the monomers.

In this article, we designed and synthesised novel mono- and bi-functionalist bistolane-based monomers with methacrylate groups, and used these as potentially crosslinkable highly birefringent monomers (Scheme 1). These molecules contain a fluorine-substituted central benzene ring, which is expected to broaden the nematic phase and increase the

*Corresponding authors. Email: mtokita@polymer.titech.ac.jp (Masatoshi Tokita); konishi.g.aa@m.titech.ac.jp (Gen-ichi Konishi)
miscibility.\cite{55} In addition, mixtures of the two monomers were examined with respect to their birefringence and miscibility.

Results and discussion

The di- and mono-methacrylated bistolane-based monomers 1 and 2 were generated via Sonogashira cross-coupling reactions \cite{56,57} as outlined in Scheme 1, and characterised by 1H nuclear magnetic resonance (NMR) and high-resolution mass spectroscopy (HRMS) as shown in the ‘Experimental’ section. Representative 1H NMR spectra for monomers 1 and 2 are shown in Figures S1 and S2 (Supplemental data).

Monomers 1 and 2 exhibited enantiotropic mesophases. Phase transition temperatures were determined by differential scanning calorimetry (DSC) and the LC phase types were identified by polarised optical microscopy (POM). The results of these measurements are shown in Figures 1 and 2 and summarised in Table 1. The heating DSC thermogram of dimethacrylate monomer 1 (Figure 1(a)) showed one large endothermic peak at $T = 50^\circ C$, corresponding to the melting temperature (T_m), as well as two small endothermic peaks at $T = 110$ and $138^\circ C$, which were assigned to the smectic A–nematic (SmA–N) and nematic–isotropic (N–Iso, i.e. isotropisation temperature T_i) phase transitions, respectively. Even though the SmC–SmA phase transition could not be detected
by DSC, it was observed by POM. The N phase displayed a Schlieren texture at $T = 120^\circ$C (Figure 2(a)) and a homeotropic dark texture at $T = 95^\circ$C. The SmA phase exhibited a dark texture and the SmA–SmC transition could be detected by the appearance of Schlieren texture as shown in Figure 2(b) and (c). In addition, these phases showed fan-shaped or broken fan-shaped textures in a planar-aligned cell (see Figure S3; Supplemental data). Interestingly, heating monomethacrylated 2 from $T = 98^\circ$C to $T = 185^\circ$C resulted in the exclusive formation of an N phase (Figure 1(b)), which displayed a characteristic marble texture (Figure 2(d)). For both methacrylated monomers, the transition temperatures T_m and T_i were found to be dramatically decreased relative to their respective precursors 4a and 4b. DSC curves and POM images of precursors 4a and 4b are shown in Figures S4–S6 (Supplemental data).

Monomers 1 and 2 are infinitely miscible, and Figure 3 shows the POM-based phase diagram for the monomer mixtures upon heating at 5°C min$^{-1}$ (see the ‘Experimental’ section). The phase diagram upon cooling is shown in Figure S7 (Supplemental data). Therein, the Sm phase represents both SmA and SmC phases in order of decreasing temperature. T_m values below 50°C could not be determined by POM, and are therefore not shown in the phase diagram. The observed phase transition temperatures were consistent with a well-defined additivity rule. Increasing the fraction of monomer 2 resulted in a decreased Sm–N transition temperature and an increased T_i, thus widening the N temperature range. An 20/80 w/w mixture of 1 and 2 formed an N phase over a temperature range of more than 100°C ($T = 73$–179°C).

Subsequently, the uniaxially aligned 20/80 w/w mixture of 1 and 2 was subjected to UV-induced ($\lambda_{\text{max}} = 365$ nm; 57.2 kJ m$^{-2}$) photo-polymerisation at $T_m + 10^\circ$C. A small quantity of hydroquinone (5 wt%) was added to the mixture in order to prevent any heat- and light-induced polymerisation of the methacrylates. Polarised optical micrographs of the UV-irradiated mixture obtained by rotating the crossed nicoles are shown in Figure 4. The high
contrast between the diagonal and extinction positions indicated that the alignments were fixed tenaciously. Similar results were also observed for a 30/70 w/w monomer mixture of 1 and 2, as well as for monomer 1. Even though UV-irradiated films of a 10/90 w/w monomer mixture of 1 and 2 as well as of monomer 2 exhibited lower contrast relative to other mixtures, these were still sufficiently aligned in order to enable a measurement of their birefringence. As the reactivity of monomethacrylated 2 is lower than that of dimethacrylated 1, its LC alignment could not be locked readily.

Figure 2. (colour online) Polarised optical micrographs of (a) Schlieren texture of the N phase of 1 at \(T = 120^\circ\text{C} \); (b) extinction of the homeotropic-aligned SmA phase of 1 at \(T = 95^\circ\text{C} \); (c) Schlieren texture of the SmC phase of 1 at \(T = 80^\circ\text{C} \); (d) marble texture of the N phase of 2 at \(T = 180^\circ\text{C} \).

Table 1. Phase transition temperatures (in °C) for 1, 2, 4a and 4b obtained from heating DSC thermograms (10°C min\(^{-1}\)).

Sample	Cr	SmC	SmA	N	I
4a	173	231 *			
1	50	95a	110	138	
4b	134	235			
2	98	185			

Note: *Determined by POM.

Figure 3. POM-derived phase diagram for monomer mixtures of 1 and 2. Circles, triangles and squares represent the N-Iso, Sm-N and Cr-Iso transition, respectively.
Finally, \(\Delta n \) values were measured according to the previously reported procedures.\cite{58, 59} The measurements were unified at \(T_m + 10^\circ C \) for all the mixtures prior to polymerisation, and at room temperature for the polymer films. The \(\Delta n \) values observed for 1 or 2, as well as for 30/70, 20/80 and 10/90 w/w mixtures of 1 and 2 are summarised in Table 2. The concomitant increase of \(\Delta n \) with a proportional increase of 2, the \(\Delta n \) value of which is higher than that of 1, suggested an additive rule for the \(\Delta n \) values of the binary mixtures that had not been photo-irradiated. However, the 20/80 w/w mixture exhibited a \(\Delta n \) value of 0.36, which is higher than that of 2 (\(\Delta n = 0.35 \)). Moreover, the monomer mixture exhibited a wider temperature range for the N phase and formed an SmA phase at lower temperature (\(T = 73^\circ C \)), which should result in a higher N order of the mixture relative to monomer 2. Photo-crosslinking polymerisations of the mixture increased its \(\Delta n \) value to 0.40. Representative wavelength dispersion values of \(\Delta n \) for the mixture prior and posterior to photo-polymerisations are shown in Figure S8 (Supplemental data).

1:2 w/w	\(\Delta n \) (prior)\(^a\)	\(\Delta n \) (posterior)\(^b\)
100:0	0.25	0.27
30:70	0.32	0.36
20:80	0.36	0.40
10:90	0.37	0.37
0:100	0.35	0.36

Figure 4. (colour online) POM images from a uniaxially aligned cell of the 20/80 w/w monomer mixture of 1 and 2, which the rubbing directions are (a) 45° and (b) parallel to the polarisation directions, respectively.

Table 2. \(\Delta n \) values for 1, 2 and mixtures thereof, prior and posterior to photo-polymerisation.

Conclusion

Bistolane-based mono- and di-methacrylate monomers 1 and 2, containing a fluorine-substituted central benzene ring, were synthesised and used for the preparation of highly birefringent LC films via photo-crosslinking polymerisations. Both monomers exhibited enantiotropic N phases at relatively low temperatures (\(T < 200^\circ C \)). Dimethacrylate monomer 1 exhibited a N phase in a narrower temperature range (\(T = 110–138^\circ C \)) than monomethacrylate monomer 2 (\(T = 98–185^\circ C \)), and both monomers were infinitely miscible. A 20/80 w/w mixture of 1 and 2 exhibited an NLC phase in a temperature range of more than 100°C (\(T = 73–179^\circ C \)). Even though moderate birefringence was observed for dimethacrylate 1 (\(\Delta n = 0.25 \)), that of monomer mixtures between 1 and 2 increased with an increasing proportion of monomethacrylate 2 (\(\Delta n = 0.35 \)), suggesting an additivity rule to be operative. The uniaxial alignment of the monomer mixture was successfully fixed by photo-polymerisation, which increased the birefringence even further (\(\Delta n = 0.40 \)). This study thus provides a synthetic avenue to highly birefringent polymeric LC films for various optical applications.

Experimental

Methods, materials and instruments

Chemical reagents were obtained from TCI or Wako (Japan) and used as received. \(^1\)H NMR and \(^13\)C NMR spectra were recorded in CDCl\(_3\) or DMSO-\(d_6\) on a Brucker DPX300S spectrometer at room temperature, and tetramethylsilane was used as an internal standard. The optical textures of LCs were examined by POM on a Leica DM2500P microscope with a Mettler FP90 hot stage. Transition temperatures and enthalpy changes were measured by DSC on a Perkin Elmer DSC7 employing a heating/cooling gradient of 10°C min\(^{-1}\). Photo-polymerisations were carried out using a USHIO SP9-250UB (\(\lambda = 365 \text{ nm} \); \(t = 10 \text{ min} \)). Measurements of \(\Delta n \) were performed within a uniaxially aligned nematic cell, which
4-(6-Hydroxyhexyloxy)-1-(2-trimethylsilylethynyl)benzene (1a)

A mixture of 4-bromophenol (5.20 g, 30.0 mmol), K2CO3 (12.4 g, 90.0 mmol) and MeCN (70 mL) was heated to reflux for 24 h. The reaction mixture was extracted with ethyl acetate, washed with water, brine, and dried over MgSO4. After filtration and evaporation of the solvent, the residue was purified by column chromatography on silica gel (ethyl acetate/hexane = 1/2) to afford 1a as a colourless solid. Compound 1a was obtained as a pale brown liquid. Yield: 98%; 1H NMR (300 MHz, CDCl3) δ 7.36 (d, J = 9.0 Hz), 6.77 (d, 2H, J = 9.0 Hz), 3.95 (t, 2H, J = 9.0 Hz), 3.66 (t, 2H, J = 6.6 Hz), 1.79 (tt, 2H, J = 6.5 and 6.7 Hz) ppm.

4-(6-Hydroxyhexyloxy)-1-(2-trimethylsilyl ethenyl)benzene (2a)

A mixture of trimethylsilylacetylene (8.10 mL, 58.6 mmol), triethylamine (35 mL) and THF (35 mL) was degassed with argon bubbling, before being washed consecutively with aqueous HCl (2 M) and brine, and being dried over MgSO4. The reaction mixture was filtered and the filtrate was extracted with ethyl acetate, before being washed with ether, being dried over MgSO4. After evaporation of the solvents, the residue was purified by column chromatography on silica gel (ethyl acetate/hexane = 1/2) to afford 2a as a pale brown liquid. Yield: 81%; 1H NMR (300 MHz, CDCl3) δ 7.39 (d, 2H, J = 9.0 Hz), 6.80 (d, 2H, J = 9.0 Hz), 3.95 (t, 2H, J = 6.6 Hz), 3.66 (t, 2H, J = 6.5 Hz), 1.79 (tt, 2H, J = 6.6, 6.9 Hz), 1.67–1.36 (m, 6H), 1.26 (s, 1H) ppm.

2-Fluoro-1,4-bis(2-[4-(6-methacryloylhexyloxy)phenyl]ethynyl)benzene (4a)

Compound 4a was generated by applying generic Sonogashira-coupling conditions, using 3a (2.00 g, 9.16 mmol), 4-bromo-2-fluoriodobenzene (1.38 g, 4.58 mmol), TEA (20 mL), THF (20 mL), Pd(PPh3)4 (0.318 g, 0.275 mmol) and Cu (52.4 mg, 0.275 mmol). Yield: 25%. Colourless solid. 1H NMR (300 MHz, CDCl3) δ 7.51–7.38 (m, Ar-H, 5H), 7.24–7.12 (m, Ar-H, 2H), 6.87 (d, J = 9.0 Hz, Ar-H, 2H), 3.98 (t, J = 6.5 Hz, Ar-OH2, 4H), 3.67 (t, J = 6.5 Hz, CH2-OH, 4H), 1.81 (tt, J = 6.5 and 6.7 Hz, 4H), 1.67–1.35 (m, 12H), 1.24 (s, 2H) ppm. HRMS-FAB+ (m/z): [M]+ calcd for C34H37FO4, 528.2676; found, 528.2686.
1H), 5.55 (s, C = CH2, 1H), 4.16 (t, J = 6.6 Hz, CH2-O-C = O, 4H), 3.67 (t, J = 6.5 Hz, Ar-OH2, 4H), 1.94 (brs, CH3 = C(CH)2COO, 3H), 1.81 (tt, J = 6.6 and 6.9 Hz, 4H), 1.72 (tt, J = 6.5 and 7.3 Hz, 4H), 1.55–1.41 (m, 8H) ppm. HRMS-FAB+ (m/z): [M] calcd for C45H43FO4, 664.3200; found, 664.3199.

4-(2-Trimethylsilyl)ethynyl-1-methoxybenzene (1b)

Compound 1b was synthesised by applying generic Sonogashira-coupling conditions, using 4-bromoanisole (5.0 g, 26.7 mmol), trimethylsilylacetylene (5.6 mL, 40.1 mmol), TEA (20 mL), THF (20 mL), Pd(PPh3)4 (0.62 g, 0.53 mmol) and CuI (0.10 g, 0.53 mmol). Yield: 85%. Pale yellow liquid. 1H NMR (300 MHz, CDCl3) δ 7.40 (m, Ar-H, 2H), 6.82 (d, J = 9.0 Hz, Ar-H, 2H), 3.80 (s, O-CH3, 3H), 0.24 (s, Si-CH3, 9H) ppm.

1-Ethynyl-4-methoxybenzene (2b)

Compound 2b was synthesised following the general procedure for the deprotection of trimethylsilyl groups as described for 3a, using 1b (4.6 g, 22.5 mmol), K2CO3 (9.3 g, 67.5 mmol), MeOH (20 mL) and THF (20 mL). Yield: 97%. Pale yellow liquid. 1H NMR (300 MHz, CDCl3) δ 7.53–7.40 (m, Ar-H, 5H), 7.27–7.19 (m, Ar-H, 2H), 6.89 (d, J = 9.0 Hz, Ar-H, 2H), 6.87 (d, J = 9.0 Hz, Ar-H, 2H), 6.10 (s, C = CH2, 1H), 5.55 (s, C = CH2, 1H), 4.16 (t, J = 6.8 Hz, CH2-O-C = O, 2H), 3.98 (t, J = 6.2 Hz, Ar-O-CH2, 2H), 3.84 (s, O-CH3, 3H), 1.94 (brs, CH2 = C(CH3)2COO, 3H), 1.81 (tt, J = 6.4 and 6.8 Hz, Ar-O-CH2-CH2, 2H), 1.72 (tt, J = 6.2 and 6.7 Hz, -CH2-CH2-CH2-O-C = O, 2H), 1.56–1.41 (m, O-CH2-CH2-CH2, 4H) ppm. HRMS-FAB+ (m/z): [M] calcd for C33H31FO4, 510.2206; found, 510.2220.

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplemental data

Supplemental data for this article can be accessed here.

References

[1] Hikmet RAM, Kemperman H. Electrically switchable mirrors and optical components made from liquid-crystal gels. Nature. 1998;392:476–479. doi:10.1038/31110.
[2] Matranga A, Baig S, Boland J, et al. Biomimetic reflectors fabricated using self-organising, self-aligning liquid crystal polymers. Adv Mater. 2013;25:520–523. doi:10.1002/adma.201203182.
[3] Broer DJ, Lub J, Mol GN. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature. 1995;378:467–469. doi:10.1038/378467a0.
[4] Lub J, Omenat A, Ruiz-Melo A, et al. Synthesis and photopolymerization of cholesteric liquid crystalline...
viny ether. Mol Cryst Liq Cryst. 1997;307:111–123. doi:10.1080/1058725970804709.

[5] Zhang L, Li K, Hu W, et al. Broadband reflection mechanism of polymer stabilised cholesteric liquid crystal (PSChLC) with pitch gradient. Liq Cryst. 2011;38:673–677. doi:10.1080/02678292.2011.568637.

[6] Fukuda K, Edo S, Muto M, et al. High chiral induction in cholesteric liquid crystal of aromatic polyesters with chiral naphthyl ethylamine groups at their polymer ends. Jpn J Appl Phys. 2008;47:8479–8482. doi:10.1143/JJAP.47.8479.

[7] Finkelmann H, Kim ST, Muñoz A, et al. Tunable mirrorless lasers in cholesteric liquid crystal elastomers. Adv Mater. 2001;13:1069–1072. doi:10.1002/adma.200100146.

[8] Uchimura M, Watanabe Y, Arafoka F, et al. Development of laser dyes to realize low threshold in dye-doped cholesteric liquid crystal lasers. Adv Mater. 2010;22:4473–4478. doi:10.1002/adma.201001046.

[9] Chen S, Zhang LY, Guan XL, et al. Special positive birefringence properties of mesogen-jacketed liquid crystalline polymer films for optical compensators. Polym Chem. 2010;1:430–433. doi:10.1039/B9PY00368A.

[10] Kawata K. Orientation control and fixation of discotic liquid crystal. The Chemical Record. 2002;2:59–80. doi:10.1021/cr.10015.

[11] Yu H, Ikeda T. Photocontrollable liquid-crystalline actuators. Adv Mater. 2011;23:2149–2180. doi:10.1002/adma.201100131.

[12] Okano K, Shishido A, Ikeda T. An azotolane liquid-crystalline polymer exhibiting extremely large birefringence and its photoresponsive behavior. Adv Mater. 2006;18:523–527. doi:10.1002/adma.200501783.

[13] Shishido A. Rewritable holograms based on azobenzene-containing liquid-crystalline polymers. Polym J. 2010;42:525–533. doi:10.1038/pj.2010.45.

[14] Kawatsuki N, Yamashita A, Kondo M, et al. Photoinduced reorientation and polarization holography in photo-cross-linkable liquid crystalline polymer films with large birefringence. Polymer. 2010;51:2849–2856. doi:10.1016/j.polymer.2010.04.043.

[15] Kawatsuki N. Photoalignment and photoinduced molecular reorientation of photosensitive materials. Chem Lett. 2011;40:548–554. doi:10.1246/chemlett.2011.548.

[16] Choi H, Higuchi H, Ogawa Y, et al. Polymerstabilized supercooled blue phase. Appl Phys Lett. 2012;101:131904–131905. doi:10.1063/1.4752461.

[17] Wu ST, Hsu CS, Chiang YY. Room temperature bistable liquid crystals. Jpn J Appl Phys. 1999;38:L286–L288. doi:10.1143/JJAP.38.L286.

[18] Wu ST, Meng HB, Dalton LR. Diphenyl-diacyete luid crystals for electro-optic application. J Appl Phys. 1991;70:3013–3017. doi:10.1063/1.349331.

[19] Hsu CS, Shyu KF, Chiang YY, et al. Synthesis of laterally substituted bistable liquid crystals. Liq Cryst. 2000;27:283–287. doi:10.1080/0267829002301300.

[20] Xianyu H, Liang X, Sun J, et al. High performance dual frequency liquid crystal compounds and mixture for operation at elevated temperature. Liq Cryst. 2010;37:1493–1499. doi:10.1080/02678292.2010.528803.

[21] Song Q, Gauza S, Xiangyu H, et al. High birefringence lateral difluoro phenyl tolane liquid crystals. Liq Cryst. 2010;37:139–147. doi:10.1080/02678290903419079.

[22] Gauza S, Wen CH, Wu ST, et al. Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals. Jpn J Appl Phys. 2004;43:7634–7638. doi:10.1143/JJAP.43.7634.

[23] Cross AJ, Seed AJ, Toyni KJ, et al. Synthesis. transition temperatures, and optical properties of compounds with simple phenyl units linked by double bond, triple bond, ester or propionate linkages. J Mater Chem. 2000;10:1555–1563. doi:10.1039/B001164I.

[24] Hird M, Toyni KJ, Goodby JW, et al. Synthesis, mesomorphic behaviour and optical anisotropy of some novel materials for nematic mixtures of high birefringence. J Mater Chem. 2004;14:1731–1743. doi:10.1039/B400630E.

[25] Seed AJ, Toyni KJ, Hird M, et al. Synthesis and mesomorphic behaviour of high polarisability materials for non-linear optical applications. Liq Cryst. 2012;39:403–414. doi:10.1080/02678292.2012.658090.

[26] Dąbrowski R, Kula P, Herman J. High birefringence liquid crystals. Crystals. 2013;3:443–482. doi:10.3390/cryst3030443.

[27] Herman J, Dzieduszek J, Dąbrowski R, et al. Novel high birefringent isothiocyanates based on quaterphenyl and phenylethynyltolane molecular cores. Liq Cryst. 2013;40:1174–1182. doi:10.1080/02678292.2013.808768.

[28] Herman J, Chojnowska O, Harmata P, et al. Synthesis and properties of new non-symmetric 2,5-bis(4-alkyl-phenylethynyl)thiophenes. Liq Cryst. 2014;41:1647–1652. doi:10.1080/02678292.2014.947344.

[29] Kula P, Herman J, Pluczyk S, et al. Synthesis and mesomorphic properties of laterally substituted 4,4′-‘dialkyl-p-quaterphenyls. Liq Cryst. 2014;41:503–513. doi:10.1080/02678292.2013.859755.

[30] Sasnouski G, Lapanik V, Dąbrowski R, et al. Synthesis of new LC compounds with high optical anisotropy: pentaphenyl derivatives laterally substituted. Phase Transit. 2012;85:309–313. doi:10.1080/01411594.2011.646267.

[31] Sasnouski G, Lapanik V, Bezborodov V, et al. Synthesis of fluoro substituted quaterphenyl liquid crystals. Phase Transit. 2014;87:783–789. doi:10.1080/01411594.2014.893341.

[32] Sinha D, Mandal PK, Dąbrowski R. Structural, optical and dynamical properties of a high birefringence laterally fluorinated terphenyl isothiocyanate. Phase Transit. 2015;88:153–168. doi:10.1080/01411594.2014.961155.

[33] Hudson CM, Shenoy RA, Neubert ME, et al. Synthesis and mesomorphic properties of some asymmetrical pyridinylphenyldiacetylenes. Liq Cryst. 1999;26:241–250. doi:10.1080/0267829992053380.

[34] Goto Y, Inukai T, Fujita A, et al. New nematics with high birefringence. Mol Cryst Liq Cryst. 1995;260:19–28. doi:10.1080/00267899508503681.

[35] Neubert ME, Keast SS, Kim JM, et al. The effect of replacing a benzene ring with a saturated six-membered ring on the mesomorphic properties of 4,4′-disubstituted diphenyldiacetylenes. Liq Cryst. 2004;31:175–184. doi:10.1080/0267829032000159114.
[36] Sekine C, Konya N, Minai M, et al. Synthesis and properties of high birefringence liquid crystals: thiophenylethynyl and benzothiazolylethynyl diacetylene derivatives. Liq. Cryst. 2001;28:1361–1367. doi:10.1080/02678290110061386.

[37] Sekine C, Ishitobi M, Iwakura K, et al. Novel high birefringence dibenzothiophenylethynyl nematic liquid crystals. Liq. Cryst. 2002;29:355–367. doi:10.1080/026782901102434.

[38] Arakawa Y, Nakajima S, Kang S, et al. Synthesis and evaluation of dinaphthylacetylene nematic liquid crystals for high-birefringence materials. Liq. Cryst. 2012;39:1063–1069. doi:10.1080/02678292.2012.696730.

[39] Arakawa Y, Kang S, Watanabe J, et al. Assembly of thioether-containing rod-like liquid crystalline materials assisted by hydrogen-bonding terminal carboxyl groups. RSC Adv. 2015;5:8056–8062. doi:10.1039/c4ra15300f.

[40] Arakawa Y, Kang S, Nakajima S, et al. Synthesis of new wide nematic diaryl-diacetylenes containing thiophene-based heteromonocyclic and heterobicyclic structures, and their birefringence properties. Liq. Cryst. 2014;41:642–651. doi:10.1080/02678292.2013.873492.

[41] Arakawa Y, Kang S, Watanabe J, et al. Synthesis, phase-transition behaviors, and birefringence properties of fluorinated diphenyl diacetylene derivatives. Chem Lett. 2014;43:1858–1860. doi:10.1246/cl.140779.

[42] Arakawa Y, Kang S, Nakajima S, et al. Diphenyltriacetylenes: novel nematic liquid crystal materials and analysis of their nematic phase-transition and birefringence behaviours. J Mater Chem C. 2013;1:8094–8102. doi:10.1039/c3tc31658k.

[43] Miao ZC, Wang D, Zhang YM, et al. Asymmetrical phenyldiacylenes liquid crystalline compounds with high birefringence and characteristics of selective reflection. Liq. Cryst. 2012;39:1291–1296. doi:10.1080/02678292.2012.714801.

[44] Zhang Z, Zhang L, Guan X, et al. Synthesis and properties of highly birefringent liquid crystalline materials: 2,5-bis(5-alkyl-2-butadinylophenyl-yl) styrene monomers. Liq. Cryst. 2009;37:69–76. doi:10.1080/02678290903370272.

[45] Hu M, An Z, Li J, et al. Toluene liquid crystals bearing fluorinated terminal group and their mid-wave infrared properties. Liq. Cryst. 2014;41:1696–1702. doi:10.1080/02678292.2014.949318.

[46] Kang S, Nakajima S, Arakawa Y, et al. Extraordinary refractive index in highly birefringent nematic liquid crystals of dinaphthyl-diacylene-based materials. J Mater Chem C. 2013;1:4222–4226. doi:10.1039/c3tc03640b.

[47] Arakawa Y, Nakajima S, Kang S, et al. Design of an extremely high birefringence nematic liquid crystal based on dinaphthyl-diacylene mesogen. J Mater Chem. 2012;22:13908–13910. doi:10.1039/C2JM32488B.

[48] Jia D, Yang CL, Peng ZH, et al. Wide-angle switchable negative refraction in high birefringence nematic liquid crystals. Liq. Cryst. 2013;40:599–604. doi:10.1080/02678292.2013.774065.

[49] Sai DV, Sathyarayanan P, Sastry VSS, et al. Birefringence, permittivity, elasticity and rotational viscosity of ambient temperature, high birefringent nematic liquid crystal mixtures. Liq. Cryst. 2014;41:591–596. doi:10.1080/02678292.2013.686052.

[50] Kang S, Nakajima S, Arakawa Y, et al. Highly birefringent side-chain LC polymethacrylate with a dinaphthyl-acetylene mesogenic unit. Polym Chem. 2014;5:2253–2258. doi:10.1039/c3py01528a.

[51] Lub J, Broer DJ, Antonio MEM, et al. The formation of a liquid crystalline main chain polymer by means of photopolymerization. Liq. Cryst. 1998;24:375–379. doi:10.1080/0267829982107181.

[52] Braun CD, Lub J. Discotic liquid crystalline crosslinkers and anisotropic networks. Liq. Cryst. 1999;26:1501–1509. doi:10.1080/02678299920833832.

[53] Lub J, Ferrer A, Larossa C, et al. Synthesis and properties of chiral stilbene diacylates. Liq. Cryst. 2003;30:1207–1218. doi:10.1080/02678290310001599260.

[54] Sekine C, Iwakura K, Minai M, et al. High birefringence photopolymerizable phenylacetylene liquid crystals. Liq. Cryst. 2001;28:1505–1512. doi:10.1080/02678290110068947.

[55] Hird M. Fluorinated liquid crystal–properties and applications. Chem Soc Rev. 2007;36:2070–2095. doi:10.1039/B610738A.

[56] Sonogashira K, Tohda Y, Hagihara N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkanes, iodoarenes and bromopyridines. Tetrahedron Lett. 1975;16:4467–4470. doi:10.1016/S0040-4039(00)91094-3.

[57] Shigeta M, Watanabe J, Konishi G. Phenoxide-mediated Sonogashira coupling of trimethylsilylalkynes and aryl iodides: practical synthesis of phenolic hydroxy-substituted diarylethenes and 1,4-diarylbutadiynes. Tetrahedron Lett. 2013;54:1761–1764. doi:10.1016/j.tetlet.2013.01.091.

[58] Arakawa Y, Nakajima S, Ishige R, et al. Synthesis of diphenyl-diacylene-based nematic liquid crystals and their high birefringence properties. J Mater Chem. 2012;22:8394–8398. doi:10.1039/c2jm16002a.

[59] Arakawa Y, Nakajima S, Kang S, et al. Synthesis and evaluation of high-birefringence polymethacrylate having a diphenyl-diacylene LC moiety in the side chain. J Mater Chem. 2012;22:14346–14348. doi:10.1039/c2jm32489j.