Effect of different fibers on compressive strength of self-compacting concrete at elevated temperature

Mohammad Zuhaira, S. K. Deshmukhb,
aP. R. PotePatil College of Engineering & Management Amravati,
bCollege of Engineering & Technology, Akola, Maharashtra, India,
Corresponding Email: zuhairgcoe@gmail.com and principalcoeta@gmail.com

ABSTRACT

Self-compacting concrete (SCC) is a highly flow able type of concrete that spreads into the form without the need of mechanical vibration and placed by means of its own weight. It is necessary to know the change in the properties of concrete due to extreme temperature exposure. This experimental study investigates the effect of various fibers used in Self Compacting Concrete (SSC) on compressive strength when exposed to elevated temperature from 400°C, 600°C and 800°C for the duration of 2 hrs. and 4 hrs. The Self Compacting Concrete (M30 grade) with 1% and 0.5% of different fibers (Steel, Glass, and Polypropylene) were used. The results indicate the increase in temperature and heating duration decreases compressive strength of concrete. Elevated temperature upto 800°C declines the performance of concrete comparing the same with lower temperature of 400°C. The use of 1% Steel fiber and 0.5% Polypropylene fiber shows significant performance in the development of higher compressive strength and improved toughness at elevated temperatures and addition of fibers reduces the spalling in concrete.

Keywords—Compressive strength, Elevated temperature, Steel fiber, SSC, Polypropylene fiber.

1. INTRODUCTION:

1.1 General:

Self-compacting concrete, a concrete with high flow ability that can be placed and compacted under its own weight without any external vibration, allows complete filling of formworks along with the complete covering of the reinforcing bars in compact matrix structure. SCC has many advantages that include faster construction, better surface finishes, easier placing, reduction in noise levels and improved durability but it affects when exposed to fire and loses its strength.
The rapidly advancing technology of structural design and fire safety created a need for more precise information on the behavior of structures during fires. The maximum temperature reached during a fire is normally estimated indirectly from the melting of ingredients of concrete. A temperature of 1000°C to 1100°C observed during fire in residential buildings for duration mostly found to be in between 1 to 2 hours. For public buildings, temperature rises up to 1100°C to 1200°C and the fire duration may exceed 2 to 3 hours in some cases. Still higher temperatures have been observed during fires in industrial buildings and ware houses in which considerable quantities of solid and liquid lubricants are stored. The fire in industrial buildings may last for more than two hours and the temperature may go beyond 1300°C. Among these temperature of 1000 to 1100°C during fires which lasted for a duration of 1 to 2 hours has been observed more frequently. Thus, temperature and its duration affects exposed concrete, it chips and flakes known as “spalling”-resulting from the vaporization of water trapped within due to the high temperature. In concrete structure, chips split away from Ceilings, walls and supporting pillars, reducing their load bearing capacity and increasing the risk of collapse. Performed experimental study on Carbonate, siliceous, and lightweight aggregate concrete and were heated for short duration to temperatures of 200 to 1600° F (93 to 871°C).The lightweight concrete had strength characteristics at high temperatures similar to those of carbonate concrete. At temperatures above 800°F (427°C), the siliceous aggregate concrete had lower strength than the other concretes [1]. HSC lost its mechanical strength in a manner similar to that of NSC. The range between 400 and 800°C was found to be critical to the strength loss [2].

The relationship between occurrence of explosive spalling and residual mechanical properties of fiber such as Steel fiber, polypropylene fiber, and hybrid fiber, toughened high performance concrete exposed to high temperatures. After exposure to high temperatures ranged from 200 to 800 °C, the residual strength was decreased by exposure to high temperatures over 400 °C, residual fracture energy was significantly higher than that before heating. Incorporating hybrid fiber seems to be a promising way to enhance the resistance of concrete to explosive spalling [3]. This study of using various fibers concluded that the use of fibre cocktail reinforced SCHPC material can be very effective in reducing thermal stress and in improving composite effect of hybrid fibres on the post crack behaviour during heating process at high temperature [4].
1.2 Scope of Study:

The efficiency of SCC can be increased by introducing fibers like polypropylene fibers, steel fibers, and glass fibers, further enhancing their toughness, tensile strength, resistance to crack propagation thereby improving the durability properties. The effects of fibers were qualified based on the fiber volume, length, and its aspect ratio, other properties of fibers such as shape and surface roughness are also found to be important. This work contributes for experimental evaluation of compressive strength of SCC with fibers exposed to elevated temperature up to 800°C for 2 hrs. and 4 hrs. of heating duration. Steel fibers, Glass fibers and Polypropylene fibers are used for this demonstration in two different percentages as 0.5% and 1% as steel fibers consist of high elastic modulus and stiffness, glass fibers improve the interface zone properties and consequently the fiber-matrix bond leading to enhanced post-cracking toughness and energy absorption capacity and Polypropylene fibers allow the water vapour to escape without increasing the internal pressure, so the concrete structure remains intact.

2. EXPERIMENTAL WORK

Concrete exposed to temperature higher than 300°C may experience loss in strength. High strength concrete is more susceptible to explosive spalling when exposed to temperatures above 300°C. This research was designed to study the behavior of self-compacting concrete subjected to elevated temperatures by experimental investigation on compressive strength with glass fibers, Polypropylene fibers and steel fibers.

2.1 Program Work

![Glass Fibers](image)

Figure 2.1: Glass Fibers

To modify the concrete to such a scale that it would provide higher strength even at tremendous temperature and concrete should be self-compacting for the ease of placement at
congested reinforcement. To reinforce our idea we have used three different fibers (steel, glass and polypropylene) at three different temperature (400, 600 and 800 degree Celsius) for two different time intervals (2 and 4 hours) in muffled furnace.

2.2 Material Properties:

Figure 2.2: Polypropylene fibers

![Polypropylene PP Fiber](image)

Figure 2.3: Steel Fibers

Characteristic compressive strength (fck) = 30Mpa
Packing factor = 1.04
Specific gravity of cement (Gc) = 3.12
Specific gravity of fine aggregate (Gfa) = 2.61
Specific gravity of coarse aggregate (Gca) = 2.68
Specific gravity of water (Gw) = 1.0
Bulk density of FA (Wfa) = 1594 Kg/m3
Bulk density of CA (Wca) = 1264 Kg/m3
The volume ratio of fine aggregate = 0.54
Super plasticizer (sp. dosage) = 0.8 %
Air content = 1.5%
Monofilament type Polypropylene fiber of length 30mm to 50mm.
AR-glass of length 25mm

2.3 Mix Proportion:
Following mix proportion were adopted during the execution, obtained by trial and error method.

Material	Cement	Sand (fa)	Aggregate (ca)	Water
Kg/m³	430	700.9	524.60	180.6
Ratio	1	1.63	1.22	0.42

2.4 Execution of work:

The fibrous concrete has been classified into three categories depending upon the three types of fiber viz. steel, glass, and polypropylene. All the three fiber have been used in two proportions viz. 1% and 0.5%. 2 cubes of each proportion is casted for three different temperatures as 400°C, 600°C and 800°C for two different time as 2hrs and 4 hrs. Water cooling adopted after heating in muffle furnace. For each temperature there were two cubes, average of both were taken to avoid any defect in analysis. For the better performance we have used superplasticizer in concrete to enhance its flow ability.

2.5 Performance Analysis:

It was reported that compressive strength of SCC decreased with increase in temperature. It was found that grade of concrete had an effect on the strength loss of concrete, especially in the temperature range below 400°C. Addition of fibers into concrete improves the overall ductility
of the concrete imparting toughness, greater tensile strength, and resistance to fatigue, impact, blast loading and abrasion. The performance of each modified concrete were analyzed based on compressive strength of concrete.

Figure 2.5: Removal of Cube from Muffle Furnace

3. RESULTS AND DISCUSSION:

Following are the results represented in terms of compressive strength and its percentage reduction as temperature increases from 400°C to 800°C

3.1 Compressive Strength:
a) 1% Fibers for elevated temperature upto 2 hrs:

Table No. 3.1 Compressive Strength of 1% fibers for 2 hrs of elevated tempretaure

Sr. No.	Temperature	Steel Fiber	Glass fiber	Polypropene Fiber
1	400	32.01	27.81	28.13
2	600	32.91	29.36	24.34
3	800	22.92	13.93	13.15
Table No. 3.1 and Figure No. 3.1 shows tabular and graphical representation of average compressive strength of M30 grade concrete with 1% steel fiber, glass fiber and polypropylene fiber respectively at 400°C, 600°C and 800°C for 2 hours, after 7 days curing.

Graph No. 3.1 Compressive Strength of 1% fibers for 2 hrs of elevated temperature

![Graph showing compressive strength of 1% fibers for 2 hrs of elevated temperature]

Above observations were noted after 7 days of curing for 1% fibers and exposed to elevated temperature for 2 hrs. It shows, for steel fiber, compressive strength of concrete cubes exposed for 400°C temperature as 32.01 N/mm² but if temperature increased up to 800°C for the same the value of strength reduced to 22.92 N/mm². Similarly, for glass fiber strength decreased from 27.81 N/mm² to 13.93 N/mm² and for Polypropylene fiber its value dropped from 28.13 N/mm² to 13.15 N/mm².

b) 1% Fibers for elevated temperature upto 4 hrs

Table No. 3.2 and Figure No. 3.2 shows tabular and graphical representation of average compressive strength of M30 grade concrete with 1% steel fiber, glass fiber and polypropylene fiber respectively at 400°C, 600°C and 800°C for 4 hours, after 7 days curing.

Table No. 3.2 Compressive Strength of 1% fibers for 4 hrs of elevated temperature

Sr. No.	Temperature	Steel Fiber	Glass Fiber	Polypropylene Fiber
1	400	35.4	23.91	19.79
2	600	27.91	24.81	19.79
3	800	12.36	17.75	6.33
Graph No. 3.2 Compressive Strength of 1% fibers for 4 hrs of elevated temperature

![Graph](image)

Above results shows the readings noted for SCC with 1% fibers and exposed to elevated temperature for 4 hrs after 7 days of curing. During this experiment it was observed that, concrete with steel fiber exposed for 400°C temperature achieved compressive strength as 35.4 N/mm² but further increase in temperature to 800°C the strength reduced to 12.36 N/mm². Similarly, for glass fiber strength decreased from 23.91 N/mm² to 17.75 N/mm² and for Polypropylene fiber its value dropped from 19.79 N/mm² to 6.33 N/mm².

c) Comparison of Compressive Strength with 1% Fibers (Steel, Glass and Polypropylene) for elevated temperature 2 hrs and 4 hrs:

Table No. 3.3 Comparison of Compressive Strength with 1% Fibers elevated temperature

Temperature	Steel Fiber	Glass fiber	Polypropylene Fiber
400	32.01	27.81	28.13
600	32.91	29.36	24.34
800	22.92	13.93	13.15

Table above represents the comparative study of compressive strength obtained after using 1% fibers in SCC of grade M30 exposed for two different time duration as 2 hrs and 4 hrs. It shows reduction in compressive strength as duration of exposure temperature increases.
d) 0.5% Fibers for elevated temperature upto 2 hrs

Table No. 3.4 and Figure No. 3.3 shows tabular and graphical representation of average compressive strength of M30 grade concrete with 0.5% steel fiber, glass fiber and polypropylene fiber respectively at 400°C, 600°C and 800°C for 2 hours, after 7 days curing.

Table No. 3.4 Compressive Strength of 0.5% fibers for 2 hrs of elevated temperature

Sr. No	Temperature	Steel Fiber	Glass Fiber	Polypropylene Fiber
1	400	29.2	30.69	32.705
2	600	32.44	26.22	25.79
3	800	17.33	17.26	12.46

Graph No. 3.3 Compressive Strength of 0.5% fibers for 2 hrs of elevated temperature

Table and graph above shows the observation obtained for 0.5% fibers and exposure for 2 hrs of elevated temperature for M30 grade SCC. In this case, strength for 400°C temperature were noted as 29.2 N/mm², if further increase in temperature upto 800°C strength dropped to 17.33 N/mm² for steel fibers. For glass fibers same variation has been found, decrease in the value from 30.69 N/mm² to 17.26 N/mm². Use of 0.5% Polypropylene fiber in M30 SCC, the noted value of compressive strength was 32.705 N/mm² under 400°C and decreased to 12.46 N/mm² for temperature 800°C.
e) 0.5% Fibers for elevated temperature upto 4 hrs

Table No. 3.5 and Figure No. 3.4 shows tabular and graphical representation of average compressive strength of M30 grade concrete with 0.5% steel fiber, glass fiber and polypropylene fiber respectively at 400°C, 600°C and 800°C for 2 hours, after 7 days curing.

Table No. 3.5 Compressive Strength of 0.5% fibers for 4 hrs of elevated temperature

SrNo	Temperature	Steel Fiber	Glass Fiber	Polypropylene Fiber
1	400	27.97	36.92	29.26
2	600	26.39	21.27	20.74
3	800	13.35	12.52	7.79

Graph No. 3.4 Compressive Strength of 0.5% fibers for 4 hrs of elevated temperature

Above table and figure are the tabular and graphical representations of result obtained after using 0.5% of fibers in SCC of M30 grade under elevated temperature of 400°C, 600°C and 800°C for 4 hrs. It shows falling in strength of concrete as the temperature increases, it is observed for steel fibers strength falls from 27.97 N/mm² to 13.35 N/mm², for glass fibers from 36.92 N/mm² to 12.52 N/mm² and for polypropylene fibers it decreases from 29.26 N/mm² to 7.79 N/mm².
f) Comparison of Compressive Strength with 0.5% Fibers (Steel, Glass and Polypropylene) for elevated temperature 2 hrs and 4 hrs:

Table No. 3.6 Comparison of Compressive Strength with 0.5% Fibers elevated temperature 2 hrs and 4 hrs

Sr No	Temperature	Steel Fiber	Glass fiber	Polypropylene Fiber			
		2 Hrs	4 Hrs	2 Hrs	4 Hrs	2 Hrs	4 Hrs
1	400	29.2	27.97	30.69	36.92	32.7	29.26
2	600	32.44	26.39	26.22	21.27	25.79	20.74
3	800	17.33	13.35	17.26	12.52	12.46	7.79

Table above shows the change in compressive strength as duration of exposure of elevated temperature increases. This change in values shows falling in strength as duration increases for SCC of grade M30 with 0.5% fibers.

4. CONCLUSION

Following conclusions can be drawn from the study work performed experimentally on cubical specimen of M30 grade SCC exposed to elevated temperature from 400°C to 800°C in presence of steel fibers, glass fibers and polypropylene fibers in two different ratios.

1. For 2 hrs of heating to specimen with 1% fibers shows the reduction in compressive strength in case of glass fiber and polypropylene fiber and it is also observed that strength of specimen with steel fibers heating upto 800°C for duration of 2 hrs reduced by 28.46% compare to specimen in 400°C temperature. The same mix with 1% glass fibers shows 50% falling in compressive strength at 800°C. The concrete mix with steel and glass fibers gives more strength i.e. 53.25% greater as compared with polypropylene fibers.

2. Increasing in duration from 2 hrs to 4 hrs also suffers compressive strength of same grade of concrete with same percentage of fibers. Exposure to elevated temperature upto 800°C for 4 hrs decrease the performance of concrete by 64.80%, 25.76% and 68.01% for steel, glass and polypropylene fibers compare to the strength of specimen under 400°C temperature for same duration of 4 hrs.
3. Comparing the effect of type of fibers in concrete, 1% steel fiber gives the better performance compare to other fibers used in same percent.
4. By reducing percentage of fibers from 1% to 0.5% for 2 hrs of heating for 400°C, 600°C and 800°C shows compressive strength dropped by 40.65%, 43.76% and 62.38% as temperature increases from 400°C to 800°C in presence of steel fibers, glass fibers and polypropylene fibers respectively.
5. 0.5 % Polypropylene fibers in concrete exposed to 400°C temperature for 2 hrs shows better performance compare to glass and steel fibers.
6. The specimen with 0.5% of fiber when heated for 4 hours shows varying result in all three fibers with highest resistance to compressive force in steel fiber and least in polypropylene fiber while glass fiber remains at average with least fluctuation.
7. Addition of fibers to self-compacting concrete improves compressive strength of the mix.
8. The tested SCFRC mixtures with its different constitutions did not show a pronounced negative effect on the maturity of concrete, and leads to a higher strength gain as well.
9. After observing all parameters we can say that steel fiber works better at all three temperatures but its fluctuation in compressive strength is quite higher than glass fiber.

5. References:
[1] Qiang Du, Jing Wei. “Effects of High Temperature on Mechanical Properties of Polyvinyl Alcohol Engineered Cementitious Composites” Springer, International journal of civil engineering 2017.
[2] M. S. Al-Lami “Effect Of Elevated Temperature On Compressive Strength Of Self Compacting Concrete Using Viscocrete And Silica Fume. International Journal of Civil Engineering and Technology (2017) pp. 405–413
[3] Guanglin Yuan, Qingatao Li. "The Use of surface coating in enhancing the mechanical properties and durability of concrete exposed to elevated temperature” Construction and Building Materials 95, (2015): 375-383.
[4] Kulkarni, Yaragal and Narayan , “An Overview Of High Performance Concrete At Elevated Temperatures”, International Journal of Applied Engineering and Technology. (2011): 48-60.
[5] Anand.N, Prince Arulraj.G, “The effect of elevated temperature on concrete materials - A literature review” International Journal Of Civil And Structural Engineering 1, no 4, (2011) 928-938
[6] Srinivasa Rao K, Potha Raju M. and Raju P.S.N “Effect of Elevated temperature on compressive strength on HSC made with OPC & PPC”, The Indian Concrete Journal, (2006) : 43-48
[7] Xin Luaa, Wei Suna and Sammy Yin Nin Chamb, “Effect of heating and cooling regimes on residual strength and microstructure of normal strength and high-performance concrete”, Cement and Concrete Research 30 (2000): 379-383.
[8] N.Anand, G. Prince ArulrajInternational Journal of advances in science Engineering and Technology ISSN: 2321-9009 volume 2, Issue-4, oct-2014. “Experimental Investigation on Mechanical properties of self-compacting concrete under elevated temperature”.
[9] W. Brostow and G. Martinez-Barrera Mechanical properties of self-compacting concrete reinforced with polypropylene fibers O. Gencel, C. Ozel.

[10] Okamura H, Ouchi M, Self-Compacting Concrete Development, Present and Future, In: Å. Skarendahl, Ö. Petersson (eds.), Proceeding of 1st International Rilem Symposium on Self Compacting Concrete; Stockholm, Sweden, 1999, p. 804. e-ISBN: 2912143721.

[11] Saeed Ahmed Imran A Bukhari, Javed Iqbal Siddiqui Shahzad Ali Qureshi A Study On Properties Of Polypropylene Fibre Reinforced Concrete’, University Of Engineering & Technology Taxila, Pakistan.