Contrast medium Pd/Pa ratio in comparison to fractional flow reserve, quantitative flow ratio and instantaneous wave-free ratio for evaluation of intermediate coronary lesions

Paweł Kleczyński1, Artur Dziewierz2, Łukasz Rzeszutko2, Dariusz Dudek2, Jacek Legutko1

1Department of Interventional Cardiology, John Paul II Hospital, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
22nd Department of Cardiology, University Hospital, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland

Adv Interv Cardiol 2020; 16, 4 (62): 384–390
DOI: https://doi.org/10.5114/aic.2020.101762

Abstract

Introduction: Contrast medium Pd/Pa ratio (cFFR) was introduced as an alternative to fractional flow reserve (FFR).

Aim: To assess the accuracy of cFFR in predicting of FFR, quantitative flow ratio (QFR) and instantaneous wave-free ratio (iFR).

Material and methods: Resting Pd/Pa, cFFR, FFR, QFR, and iFR were measured in 110 intermediate coronary lesions. cFFR was obtained after intracoronary injection of contrast medium. FFR was measured after the intravenous administration of adenosine. QFR was derived from fixed empiric hyperemic flow velocity based on coronary angiography. iFR was calculated by measuring the resting pressure gradient across a coronary lesion during diastole.

Results: Forty-four patients with 110 intermediate coronary lesions were enrolled. Mean baseline Pd/Pa was 0.93 ±0.05. Mean cFFR value was similar to FFR value (0.83 ±0.09 vs. 0.81 ±0.09; p = 0.13) and QFR (0.81 ±0.1; p = 0.69) and iFR (0.90 ±0.07; p = 0.1). A total of 46 vessels (41.8%) had FFR ≤0.80, 50 (45.5%) vessels had cFFR ≤0.83, 44 (40.0%) vessels had QFR ≤0.80, and 38 (34.5%) vessels had iFR ≤0.89. An excellent agreement between cFFR and resting Pd/Pa, FFR, QFR, and iFR was confirmed (intraclass correlation coefficients of 0.83, 0.99, 0.98, and 0.88, respectively). The optimal cutoff value of cFFR was 0.83 for prediction of FFR ≤0.80 with sensitivity, specificity, and accuracy of 96.9%, 97.8%, and 97.3%, respectively. 100% sensitivity was observed for a cutoff value of 0.82 and 100% specificity for a cutoff value of 0.84; AUC = 0.998 (0.995–1.00); p < 0.001.

Conclusions: Contrast medium Pd/Pa ratio seems to be accurate in predicting the functional significance of borderline coronary lesions assessed with FFR, iFR, and QFR.

Key words: coronary artery disease, fractional flow reserve, quantitative flow ratio, instantaneous wave free ratio, Pd/Pa.

Summary

Resting Pd/Pa, contrast medium Pd/Pa ratio (cFFR), fractional flow reserve (FFR), quantitative flow ratio (QFR), and instantaneous wave-free ratio (iFR) were measured in 110 intermediate coronary lesions. Mean baseline Pd/Pa was 0.93 ±0.05. Mean cFFR value was similar to FFR value (0.83 ±0.09 vs. 0.81 ±0.09; p = 0.13) and QFR (0.81 ±0.1; p = 0.69) and iFR (0.90 ±0.07; p = 0.1). A total of 46 vessels (41.8%) had FFR ≤0.80, 50 (45.5%) vessels had cFFR ≤0.83, 44 (40.0%) vessels had QFR ≤0.80, and 38 (34.5%) vessels had iFR ≤0.89. An excellent agreement between cFFR and resting Pd/Pa, FFR, QFR, and iFR was confirmed (intraclass correlation coefficients of 0.83, 0.99, 0.98, and 0.88, respectively). The optimal cutoff value of cFFR was 0.83 for prediction of FFR ≤0.80 with sensitivity, specificity, and accuracy of 96.9%, 97.8%, and 97.3%, respectively. 100% sensitivity was observed for a cutoff value of 0.82 and 100% specificity for a cutoff value of 0.84; AUC = 0.998 (0.995–1.00); p < 0.001.

Introduction

Fractional flow reserve (FFR) obtained after the achievement of pharmacologically induced maximal hyperemia has been demonstrated not only as a gold standard for the assessment for intermediate coronary stenosis severity in the cathlab but also as a parameter improving prognosis in terms of revascularization with
a fixed cut-off value of 0.8 [1–6]. Recent data confirmed the non-inferiority of instantaneous wave-free ratio (iFR) to FFR in terms of lesion severity assessment along with long-term clinical outcomes [7, 8]. Quantitative flow ratio (QFR) assessment, on the other hand, involves an advanced algorithm that enables fast computation of pressure decreases in intermediate coronary artery disease (CAD) without any invasive physiologic measurements or pharmacologic hyperemia induction, and its diagnostic performance has already been confirmed [9, 10]. Radiographic contrast medium, routinely used during coronary angiography, has been demonstrated to induce hyperemia, e.g. during the check of pressure wire placement [11]. Pd/Pa ratio registered by pressure wire during submaximal reactive hyperemia induced by intracoronary injection of contrast medium may be sufficient for the assessment of the physiological severity of stenosis in a large number of cases, avoiding the need of adenosine administration. The CONTRAST study, comparing the ability of contrast medium Pd/Pa ratio (cFFR) to predict FFR versus resting indices, showed that cFFR was superior to resting Pd/Pa and iFR for predicting FFR while resting Pd/Pa and iFR provided equivalent diagnostic accuracy [12]. Several studies showed a good correlation of cFFR with FFR [13, 14].

Aim

In our study, we sought to investigate the performance strength of cFFR against FFR, iFR, and a novel tool, QFR, as a comprehensive assessment of intermediate CAD.

Material and methods

Patients with stable CAD with angiographically ambiguous lesions (40–90% diameter stenosis by visual assessment) in a major epicardial coronary artery, who were scheduled for FFR, were prospectively and consecutively enrolled. Baseline clinical data were collected. Ethics approval was granted by the institutional ethics review board. Baseline clinical data were collected. Ethics approval was granted from the institutional ethics review board. All statistical analyses were performed using Statistica 13.3 (TIBCO Software Inc., Palo Alto, CA, USA).

Statistical analysis

Categorical variables were expressed as numbers of patients (percentages). Continuous variables were expressed as mean ± standard deviation (SD). Non-normally distributed data were reported as median (interquartile range (IQR)). The agreement among tested methods was assessed by the Bland-Altman plot method and ICC. Data are presented as the unadjusted area under the ROC curve (AUC) with 95% CI. All tests were 2-tailed, and a p-value < 0.05 was considered statistically significant. All statistical analyses were performed using Statistica 13.3 (TIBCO Software Inc., Palo Alto, CA, USA).

Results

Forty-four patients with 110 intermediate coronary stenoses were enrolled. Patient characteristics are presented in Table I. Lesion characteristics are shown in Table II. Mean baseline Pd/Pa was 0.93 ±0.05. Mean cFFR value was similar to FFR value (0.83 ±0.09 vs. 0.81 ±0.09; p = 0.13) and QFR (0.81 ±0.1; p = 0.69) and iFR.
Contrast Pd/Pa for evaluation of intermediate lesions

A total of 46 (41.8%) vessels had FFR ≤ 0.80, 50 (45.5%) vessels had cFFR ≤ 0.83, 44 (40.0%) vessels had QFR ≤ 0.80, and 38 (34.5%) vessels had iFR ≤ 0.89. Resting Pd/Pa, FFR, QFR, and iFR were strongly correlated with cFFR (Figure 2). An excellent agreement between cFFR and resting Pd/Pa (ICC 0.83, 95% CI: 0.76–0.88), FFR (ICC = 0.99, 95% CI: 0.98–0.99), QFR (ICC: 0.98, 95% CI: 0.97–0.98), and iFR (ICC = 0.88, 95% CI: 0.82–0.92) was confirmed. However, cFFR showed stronger agreement between cFFR and FFR than between cFFR and iFR in Bland-Altman analysis (Figures 3 A and B). The optimal cutoff value of cFFR was 0.83 for prediction of FFR ≤ 0.80 with sensitivity, specificity, and accuracy of 96.9%, 97.8%, and 97.3% respectively. 100% sensitivity was observed for a cutoff value of 0.82 and 100% specificity for a cutoff value of 0.84; AUC = 0.998 (0.995–1.00); p < 0.001, Figure 4 A). The optimal cutoff value of cFFR was 0.84 for prediction of iFR ≤ 0.89 with sensitivity, specificity, and accuracy of 79.2%, 92.1%, and 83.6% respectively. 100% sensitivity was observed for a cutoff value of 0.73 and 100% specificity for a cutoff value of 0.91; AUC = 0.89 (0.83–0.95); p < 0.001 (Figure 4 B). The optimal cutoff value of baseline Pd/Pa was 0.93 for prediction of FFR ≤ 0.80 with sensitivity, specificity,

Table I. Study population and procedural data

Patients	Value
Age [years]	66.0 ±9.8
Male sex	32 (72.7)
Height [cm]	169.8 ±8.0
Weight [kg]	79.6 ±13.5
Body mass index [kg/m²]	27.5 ±3.8
Arterial hypertension	44 (100.0)
Diabetes mellitus	22 (50.0)
Previous myocardial infarction	23 (52.3)
Previous PCI	20 (45.5)
Previous CABG	0 (0.0)
Peripheral arterial disease	1 (2.3)
Chronic obstructive pulmonary disease	0 (0.0)
Previous stroke/TIA	0 (0.0)
Hyperlipidemia	50 (100.0)
Smoking	16 (36.4)
Atrial fibrillation	1 (2.3)
Serum creatinine [μmol/l]	88.8 ±16.4
LVEF %	52.6 ±8.5
LVEF ≤ 40%	1 (2.3)
Heart rate [beats/min]	71.9 ±9.5
Angina symptoms – CCS class:	
I	6 (13.6)
II	34 (77.3)
III	4 (9.1)
Heart failure symptoms – NYHA class:	
I	38 (86.4)
II	4 (9.1)
III	1 (2.3)
IV	1 (2.3)
Access:	
Radial	30 (68.2)
Femoral	14 (31.8)
Number of assessed vessels	3.0 (2.0–4.0)

Values presented as number (percentage), mean ± standard deviation or median (interquartile range). CABG – coronary artery bypass grafting, CCS – Canadian Cardiovascular Society, LVEF – left ventricle ejection fraction, NYHA – New York Heart Association, PCI – percutaneous coronary intervention, TIA – transient ischemic attack.

Table II. Lesion characteristics (n = 110)

Lesions	Value
Vessel:	
LAD	43 (39.1)
Dg	9 (8.2)
Cx	28 (25.5)
Mg	9 (8.2)
RCA	21 (19.1)
Quantitative coronary angiography results:	
Lesion length [mm]	22.2 ±14.2
RVD [mm]	2.6 ±0.6
MLD [mm]	1.4 ±0.4
DS, %	44.6 ±12.0
Eccentric lesion	60 (54.5)
Moderate/severe tortuosity	44 (40.0)
Irregular contours	9 (8.2)
Moderate/severe calcifications	45 (40.9)
Ostial lesion	10 (9.1)

Values presented as number (percentage) or mean ± standard deviation. Cx – circumflex artery, Dg – diagonal branch, DS – diameter stenosis, LAD – left anterior descending artery, Mg – marginal branch, MLD – minimal lumen diameter, RCA – right coronary artery, RVD – reference vessel diameter.

Figure 1. Mean values of resting Pd/Pa, contrast fractional flow reserve (cFFR) and fractional flow reserve (FFR), quantitative flow ratio (QFR) and instantaneous wave-free ratio (iFR)
and accuracy of 92.2%, 80.4%, and 87.3% respectively. 100% sensitivity was observed for a cutoff value of 0.85 and 100% specificity for a cutoff value of 0.98; AUC = 0.92 (0.87–0.97); \(p < 0.001 \). The optimal cutoff value of baseline \(\text{Pd/Pa} \) was 0.93 for prediction of \(iFR \leq 0.89 \) with sensitivity, specificity, and accuracy of 91.7%, 94.7%, and 92.7% respectively. 100% sensitivity was observed for a cutoff value of 0.91 and 100% specificity for a cutoff value of 0.97; AUC = 0.98 (0.95–1.00); \(p < 0.001 \).

Discussion

The results of our study showed that \(cFFR \), calculated as \(\text{Pd/Pa} \) after the induction of submaximal hyperemia using the intracoronary bolus of standard radiographic contrast dye, may be accurate in predicting \(FFR \) values of borderline coronary lesions. Moreover, \(cFFR \) is able to predict the \(iFR \) values in assessing intermediate coronary stenosis. Most interestingly, we found a significant correlation of \(cFFR \) with a novel index – \(QFR \) – which is calculated based on 3D-QCA and corrected TIMI frame count algorithms. Our results suggest that the use of the cut-off value of 0.82 for \(cFFR \) could be a reasonable option in patients who have contraindications to the administration of adenosine, or the assessment of \(iFR \) is not possible in the cathlab.

Despite its demonstrated value in guiding coronary revascularization, the rate of adoption of \(FFR \) in real-world clinical practice remains rather low [3]. \(FFR \) assessment requires maximal hyperemia induced by a vasoactive agent such as adenosine, which may cause some adverse effects during infusion or intracoronary injection (e.g. complete atrioventricular block, chest pain, dyspnea).
Also, adenosine is still quite expensive. Furthermore, to overcome financial difficulties or side effects associated with the use of adenosine, a new adenosine free index based on measurement of the resting gradient called iFR was introduced. Importantly, iFR has been shown as non-inferior to FFR in terms of lesion severity assessment along with long-term clinical outcomes [7, 8]. Pd/Pa ratio registered by pressure wire during submaximal reactive hyperemia after an intracoronary bolus of contrast medium may be sufficient for evaluation of the physiological significance of stenosis, avoiding the need of adenosine administration. In the RINASCI study, a strong correlation between cFFR and FFR values was observed ($r = 0.94$) with a close agreement at Bland-Altman analysis (95% CI of disagreement: –0.029 to 0.072). ROC curve analysis showed excellent accuracy of the cFFR cut-off of ≤ 0.83 in predicting an FFR value ≤ 0.80 (AUC 0.97 (95% CI: 0.91–0.99, specificity 96.1%, sensitivity 85.7%)) [20]. In our study, two lesions had a cFFR value of 0.82 and another two lesions had a value of 0.83, but when assessed with...
FFR, the lesions were classified as non-significant (FFR value 0.83 and 0.84, respectively). On the other hand, in our study cFFR ≥ 0.88 also predicted negative FFR values (> 0.8). In the MEMENTO–FFR study, resting Pd/Pa and cFFR were significantly higher than FFR (0.93 ±0.05 vs. 0.87 ±0.08 vs. 0.84 ±0.08, respectively; p < 0.001) [21]. A strong correlation and a good agreement in Bland–Altman analysis between cFFR and FFR were observed (r = 0.90; and 95% Cl of disagreement: from −0.042 to 0.11) [20]. ROC curve analysis showed excellent accuracy (89%) of the cFFR cut-off of ≤ 0.85 in predicting an FFR value ≤ 0.80 (AUC 0.95 (95% Cl: 0.94–0.96)), significantly better than that observed using resting Pd/Pa (AUC = 0.90, 95% Cl: 0.88–0.91; p < 0.001) [21]. In a study by Topcu et al., cFFR correlated well with FFR (r = 0.89) and showed good agreement in Bland–Altman analysis (mean bias was 0.027, 95% limits for agreement from −0.038 to 0.092) [22]. The CONTRAST study [12] compared the ability of cFFR vs. resting Pd/Pa and iFR to predict FFR. The results showed that cFFR was superior to resting Pd/Pa and iFR in predicting FFR while iFR and resting Pd/Pa provided equivalent diagnostic accuracy. In our study, the results clearly confirm that cFFR correlated strongly with FFR and QFR values. cFFR’s correlation with iFR was weaker, but still significant. In practice, it means that without the use of adenosine or any other hyperemic agent but using cFFR, a physician has a simple and always available tool to evaluate the functional significance of coronary stenosis, much better than that which we can obtain using resting Pd/Pa. Moreover, iFR assessment is not available in every cathlab worldwide. QFR showed a strong prediction ability of FFR and iFR in previous studies [9, 10, 18, 23–26]. However, QFR is assessed offline in the majority of cases and requires some time for evaluation. In a study by Sejr-Hansen et al., the authors compared online and offline QFR in patients presenting with acute coronary syndromes, yielding similar results and good diagnostic performance with staged FFR as a reference, and a moderate diagnostic performance with staged iFR [27]. In our study, surprisingly, cFFR correlated well with QFR, even more strongly than with iFR, even though QFR and iFR are both non-hyperemic methods. However, this aspect requires further investigation, as no more data so far are available.

Our study has several limitations. First, the most important limitation was the small sample size. Second, while assessing cFFR, 3 ml of contrast medium was administered manually instead of automatically. However, manual administration is more common in daily practice.

Conclusions

Contrast medium Pd/Pa ratio seems to be accurate in predicting the functional significance of coronary stenosis assessed with FFR, iFR, and QFR. The optimal cutoff value of cFFR was 0.83 for prediction of FFR ≤ 0.80 and 0.84 – for iFR ≤ 0.89.

Acknowledgments

The study was supported by a grant from the Jagiellonian University Medical College (K/ZDS/005469).

Conflict of interest

The authors declare no conflict of interest.

References

1. Bech GI, De Bruyne B, Pijls NH, et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation 2001; 103: 2928-34.
2. Pijls NH, van Schaardenburgh P, Manoharan G, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol 2007; 49: 2105-11.
3. Tonino PA, De Bruyne B, Pijls NH, et al.; FAME Study Investigators. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009; 360: 213-24.
4. De Bruyne B, Pijls NH, Kalesan B, et al.; FAME 2 Trial Investigators. Fractional flow reserve guided PCI versus medical therapy in stable coronary disease. N Engl J Med 2012; 367: 991-1001.
5. Kleiman NS. Bringing it all together: integration of physiology with anatomy during cardiac catheterization. J Am Coll Cardiol 2011; 58: 1219-21.
6. Neumann FI, Sousa-Uva M, Ahlsson A, et al.; ESC Scientific Document Group. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 2019; 40: 87-165.
7. Davies JE, Sen S, Dehbi H, et al. Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N Engl J Med 2017; 376: 1824-34.
8. Göttberg M, Christiansen EH, Gudmundsdottir IJ, et al.; iFR-SWEDEHEART Investigators. Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N Engl J Med 2017; 376: 1813-23.
9. Tu S, Westra J, Yang J, et al. Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the International Multicenter FAVOR Pilot Study. JACC Cardiovasc Interv 2016; 9: 2024-35.
10. Kleczyński P, Dziewierz A, Rzeszutko L, et al. Is quantitative flow ratio enough to accurately assess intermediate coronary stenosis? A comparison study with fractional flow reserve. Cardiol J 2019; 26: 793-5.
11. Baile EM, Paré PD, D’yachkova Y, Careere RG. Effect of contrast media on coronary vascular resistance: contrast-induced coronary vasodilatation. Chest 1999; 116: 1039-45.
12. Johnson NP, Jeremias A, Zimmermann FM, et al. Continuum of vasodilator stress from rest to contrast medium to adenosine hyperemia for fractional flow reserve assessment. JACC Cardiovasc Interv 2016; 9: 757-67.
13. Topcu S, Tanboğa IH, Aksakal E, et al. Efficacy of coronary fractional flow reserve using contrast medium compared to adenosine. Adv Interv Cardiol 2016; 12: 212-6.
14. Shiode N, Okimoto T, Tamekiyo H, et al. Contrast-induced hyperemia as an alternative to drug-induced hyperemia in the eval-
et al. Contrast Pd/Pa for evaluation of intermediate lesions. Intern Med 2017; 56: 253-7.

15. Sen S, Escaned J, Malik IS, et al. Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) Study. J Am Coll Cardiol 2012; 59: 1392-402.

16. Legutko J, Kleczyński P, Dziewierz A, et al. Comparison of hyperemic efficacy between femoral and antecubital fossa vein adenosine infusion for fractional flow reserve assessment. Adv Interv Cardiol 2019; 15: 52-8.

17. Legutko J, Kleczyński P, Dziewierz A, et al. Adenosine intracoronary bolus dose escalation versus intravenous infusion to induce maximum coronary hyperemia for fractional flow reserve assessment. Kardiol Pol 2019; 77: 610-7.

18. Kleczyński P, Dziewierz A, Rzeszutko Ł, et al. Borderline coronary lesion assessment with quantitative flow ratio and its relation to the instantaneous wave-free ratio. Adv Med Sci 2020; 66: 1-5.

19. Tu S, Barbato E, Koszegi Z, et al. Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: a fast computer model to quantify the functional significance of moderately obstructed coronary arteries. JACC Cardiovasc Interv 2014; 7: 768-77.

20. Leone AM, Scalone G, De Maria GL, et al. Efficacy of contrast medium induced Pd/Pa ratio in predicting functional significance of intermediate coronary artery stenosis assessed by fractional flow reserve: insights from the RINASCI study. EuroIntervention 2015; 11: 421-7.

21. Leone AM, Martin-Reyes R, Baptista SB, et al. The Multi-center Evaluation of the Accuracy of the Contrast MEdium INduced Pd/Pa RaTiO in Predicting FFR (MEMENTO-FFR) Study. EuroIntervention 2016; 12: 708-15.

22. Topçu S, Tanboğa IH, Aksakal E, et al. Efficacy of coronary fractional flow reserve using contrast medium compared to adenosine. Adv Interv Cardiol 2016; 12: 212-6.

23. Emori H, Kubo T, Kameyama T, et al. Quantitative flow ratio and instantaneous wave-free ratio for the assessment of the functional severity of intermediate coronary artery stenosis. Coron Artery Dis 2018; 29: 611-7.

24. Hwang D, Choi KH, Lee JM, et al. Diagnostic agreement of quantitative flow ratio with fractional flow reserve and instantaneous wave-free ratio. J Am Heart Assoc 2019; 8: e011605.

25. Zuo W, Yang M, Chen Y, et al. Meta-analysis of diagnostic performance of instantaneous wave-free ratio versus quantitative flow ratio for detecting the functional significance of coronary stenosis. Biomed Res Int 2019; 2019: 5828931.

26. Watarai M, Otsuka M, Yazaki K, et al. Applicability of quantitative flow ratio for rapid evaluation of intermediate coronary stenosis: comparison with instantaneous wave-free ratio in clinical practice. Int J Cardiovasc Imaging 2019; 35: 1963-9.

27. Sejr-Hansen M, Westra J, Thin T, et al. Quantitative flow ratio for immediate assessment of nonculprit lesions in patients with ST-segment elevation myocardial infarction – an iSTEMI substudy. Catheter Cardiovasc Interv 2019; 94: 686-92.