Supporting Information

for Adv. Sci., DOI 10.1002/advs.202200450

Constructing Effective Hole Transport Channels in Cross-Linked Hole Transport Layer by Stacking Discotic Molecules for High Performance Deep Blue QLEDs

Xinyu Zhang, Dewang Li, Zhenhu Zhang, Hongli Liu* and Shirong Wang*
Supporting Information

Constructing Effective Hole Transport Channels in Cross-linked Hole Transport Layer
by Stacking Discotic Molecules for High Performance Deep Blue QLEDs

Xinyu Zhang#, Dewang Li#, Zhenhu Zhang, Hongli Liu*, Shirong Wang*
As shown in Figure S2a, the maximum absorption peak of CBP-V is at 336 nm. The optical band gap (E_g) of the CBP-V film is determined to be 3.3 eV by the band edge of the UV-vis spectrum. For CBP-V, E_{cutoff} and E_{onset} were observed at 17.12 and 1.72 eV respectively. The energy of UV excitation light is 21.2 eV, and the HOMO energy level of CBP-V were calculated according to $\text{HOMO} = 21.2 - E_{\text{cutoff}} + E_{\text{onset}}$, which was -5.8 eV for CBP-V. Lowest unoccupied molecular orbital (LUMO) energy levels of CBP-V is calculated to be -2.5 eV.
Figure S3. FT-IR spectra of (a) CBP-V and (b) composite HTL films before and after cross-linking.
Figure. S4. Different HTL images observed under the polarizing microscope: (a) T5DP-2,7; (b) CBP-V; (c) CBP-V : T5DP-2,7 (10wt%); (d) CBP-V : T5DP-2,7 (20wt%); (e) CBP-V : T5DP-2,7 (30wt%); (f) CBP-V : T5DP-2,7 (40wt%); (g) CBP-V : T5DP-2,7 (50wt%).
Figure S5. UV-vis absorption spectra of CBP-V(a), CBP-V:T5DP-2,7 (10wt%) (b), CBP-V:T5DP-2,7 (20wt%) (c), CBP-V:T5DP-2,7 (30wt%) (d), and CBP-V:T5DP-2,7 (40wt%) (e) before and after toluene rinsing.
Figure. S6. TEM images of CBP-V:T5DP-2,7 (10wt%) (a); CBP-V:T5DP-2,7 (20wt%) (b); CBP-V:T5DP-2,7 (30wt%); (c) and CBP-V:T5DP-2,7 (40wt%) (d).

Figure. S7. AFM images of CBP-V:T5DP-2,7 (10wt%) (a); CBP-V:T5DP-2,7 (20wt%)(b); CBP-V:T5DP-2,7 (30wt%) (c); and CBP-V:T5DP-2,7 (40wt%) (d).
Figure S8. AFM image of QDs based on different HTL: (a) CBP-V; (b) CBP-V:T5DP-2,7(10wt%); (c) CBP-V:T5DP-2,7(20wt%); (d) CBP-V:T5DP-2,7(30wt%); (e) CBP-V:T5DP-2,7(40wt%).

Figure S9. J-V characteristics of (a) ITO/PEDOT:PSS/HTL/MoO3/Al and (b) ITO/ZnO:PVP/Al.
Figure S10. (a) hole-only device. (b) electron-only device.

Figure S11. EL spectrum of QLEDs with different HTLs.
Figure S12. Histogram of peak EQEs measured from 72 devices (P < 0.05).

Figure S13. Synthesis routes of T5DP-2,7.
Fig S14. 1H NMR spectra of 3,6,10,11-tetrakis(pentyloxy)triphenylene-2,7-diyl bis(2,2-dimethylpropanoate).
Fig S15. Mass spectrum of 3,6,10,11-tetrakis(pentyloxy)triphenylene-2,7-diyl bis(2,2-dimethylpropanoate).
Table S1. Hole mobility of the different HTM

HTM	Hole mobility (cm2V$^{-1}$s$^{-1}$)	Ref
TFB	3.0×10$^{-3}$	[1]
PVK	2.5×10$^{-6}$	[2]
TCTA	1.0×10$^{-5}$	[3]
Poly:TPD	1.0×10$^{-4}$	[4]
CBP	1.0×10$^{-3}$	[5]
NPB	8.8×10$^{-4}$	[6]
T5DP-2,7	2.6×10$^{-2}$	This work

Table S2. QDs Fitting results for TRPL decays progress of QDs films

Structure	A$_1$	τ_1(ns)	A$_2$	τ_2(ns)	τave (ns)	k_{CT} (106·s$^{-1}$)	η_{CT} (%)
QD	0.76	5.83	0.24	29.27	20.20		
V-CBP/QD	0.77	5.67	0.23	29.14	19.88	0.79	1.58
V-CBP:T5DP-2,7 (10wt%)/QD	0.77	5.65	0.23	28.22	19.16	2.69	5.15
V-CBP:T5DP-2,7 (20wt%)/QD	0.78	5.40	0.22	27.15	18.15	5.59	10.14
V-CBP:T5DP-2,7 (30wt%)/QD	0.78	5.25	0.22	26.25	17.53	7.54	13.21
V-CBP:T5DP-2,7 (40wt%)/QD	0.79	5.10	0.21	25.44	16.69	10.41	17.37
Table S3. Device performance comparison of blue QLEDs with HTL modification

HTL	V_{cd}(V)	λ_{max} (nm)	L_{max}(cd/m²)	EQE (%)	CIE	Ref
poly-TPD/DNA	3.3	462	16655	5.65	(0.14,0.05)	Adv. Optical Mater. 2018, 1800578
PVK/TFB	4.1	454	4140	5.99	-	ACS Nano 2018, 12, 1564–1570
TPD/PVK=1:1	3.1	457	10824	8.62	(0.15,0.04)	ACS Appl. Mater. Interfaces 2018, 10, 3865–3873
TFB/Li-PVK	4.0	452	5829	5.37	(0.15,0.03)	Superlattices and Microstructures 2020, 140, 10646
TFB/ PVK	2.46	468	13944	13.7	-	Organic Electronics 2021, 94, 106169
DV-FLCZ	2.8	475	-9800	8.5	(0.11,0.13)	Materials Chemistry Frontiers 2020, 4, (11), 3368-3377.
PFCz	3.2	460	48000	12.61	-	Organic Electronics 2021, 92, 106138
TFB	5.8	445	4500	15.6	-	Nanoscale, 2017, 9, 13583–13591
C-TFB	2.2	476	-8000	8.8	(0.11,0.12)	ACS Appl. Mater. Interfaces 2020, 12, 58369–58377
This work	3.42	461	44080	18.59	(0.14,0.04)	This work

Table S4. Fitting parameters of the Nyquist plots for QLEDs based on different HTL

HTL	R_s (kΩ)	R_{tr} (kΩ)	CPE_1(S·Sec^n)	n_1	R_{rec}(kΩ)	CPE_2(S·Sec^n)	n_2
CBP-V	0.26	15.22	5.49E-6	1.07	61.89	6.36E-6	1.03
CBP-V:T5DP-2,7	0.25	2.66	4.95E-6	1.12	29.35	4.66E-6	1.07
Reference

[1] D. D. C. B. Michael Redecker, Mike Inbasekaran, Weishi W. Wu, and Ed P. Woo, *Advanced Materials* **1999**, 1999, 11(3): 241-246.

[2] D.-H. Lee, Y.-P. Liu, K.-H. Lee, H. Chae, S. M. Cho, *Organic Electronics* **2010**, 11, 427.

[3] K. M. I. U. Scherf, *Organic Light Emitting Devices Synthesis, Properties and Applications*, Wiley-VCH **2006**.

[4] M. W. Thesen, B. Höfer, M. Debeaux, S. Janietz, A. Wedel, A. Köhler, H.-H. Johannes, H. Krueger, *Journal of Polymer Science Part A: Polymer Chemistry* **2010**, 48, 3417.

[5] Y. Tao, C. Yang, J. Qin, *Chem Soc Rev* **2011**, 40, 2943.

[6] M. D. Ho, D. Kim, N. Kim, S. M. Cho, H. Chae, *ACS Appl Mater Interfaces* **2013**, 5, 12369.