A NOTE ON SEPARATING FUNCTION SETS

RAUSHAN BUZYAKOVA AND OLEG OKUNEV

Abstract. We study separating function sets. We find some necessary and sufficient conditions for $C_p(X)$ or $C^2_p(X)$ to have a point-separating subspace that is a metric space with certain nice properties. One of the corollaries to our discussion is that for a zero-dimensional X, $C_p(X)$ has a discrete point-separating space if and only if $C^2_p(X)$ does.

1. Introduction

To start our discussion, recall, that $F \subset C^n_p(X)$ is point-separating if for any distinct $x, y \in X$ there exists $\langle f_1, ..., f_n \rangle \in F$ such that $f_i(x) \neq f_i(y)$ for some $i \leq n$. In this paper we are concerned with the following general problem.

Problem. Let P be a nice property. Describe "$C_p(X)$ (or $C^m_p(X)$) having a point-separating subspace with P" in terms of the topology of X, X^n, or X^ω.

In this study, P is the property of being a discrete space, a countable union of discrete subspaces, a metric compactum, or a discrete group. We obtain two characterizations of spaces X for which $C^2_p(X)$ has a discrete point-separation subspace (Theorems 2.9 and 2.10, and 2.17). One of the characterizations is consistent and may have a chance for a ZFC proof. We also characterize zero-dimensional Z with point-separating discrete subspaces in $C_p(X)$ (Theorems 2.13 and 2.14, and 2.18). Questions of similar nature are quite popular among topologists interested in C_p-theory and have been considered in many papers.

In notation and terminology we follow [2]. All spaces under consideration are assumed Tychonoff and infinite. By $s(X)$ we denote the supremum of cardinalities of discrete subspaces of X. By $iw(X)$ we denote the smallest weight of a Tychonoff subtopology of X. When we say that D is a discrete subspace of X, D need not be closed in X. By $\sigma_X(x^*)$ we denote the subspace of X^ω that consists of all points that differ from x^* by finitely many coordinates. Since $\sigma_X(x)$ and $\sigma_X(y)$ are obviously homeomorphic we may simply write σ_X and, as usual, refer to it as σ-product of X^ω. A standard neighborhood of f in $C_p(X)$

1991 Mathematics Subject Classification. 54C35, 54E45, 54A25.

Key words and phrases. $C_p(X)$, discrete space, point-separating set, spread, i-weight, σ-product.
is in form \(U(x_1, ..., x_n; B_1, ..., B_n) = \{ g \in C_p(X) : g(x_i) \in B_i \} \), where \(B_i \) is open interval with rational endpoints for each \(i \). Zero-dimensionality is understood in the sense of \(\dim \).

2. DISCRETE POINT-SEPARATING SUBSPACES

Our first goal is to find a characterization of those infinite \(X \) for which \(C_p(X) \) or \(C^2_p(X) \) has a point-separating discrete subspace. We achieve the goal within a wide class of spaces. We start with a few helping lemmas.

The following Lemma is almost identical to Proposition II.5.5 in [1] but due to cofinality restrictions we have to prove it using a similar argument.

Lemma 2.1. (version of [1, II.5.5]) Assume that \(C^2_p(X) \) has a discrete subspace of size \(\tau \). Then the following hold:

1. If \(cf(\tau) > \omega \), then \(s(X^n) \geq \tau \) for some \(n \in \omega \).
2. If \(cf(\tau) = \omega \), then \(s(\sigma_X) \geq \tau \).

Proof. Since part (2) is an obvious consequence of part (1), we will prove part (1) only. Let \(D \subseteq C^2_p(X) \) be a \(\tau \)-sized discrete subspace. For each \(\langle f, g \rangle \in D \) fix standard neighborhoods \(U_f = U_f(x_1^f, ..., x_{n_f}^f, I_1^f, ..., I_{m_f}^f) \) and \(V_g = V_g(y_1^g, ..., y_{m_g}^g, J_1^g, ..., J_{m_g}^g) \) such that \(U_f \times V_g \) contains \(\langle f, g \rangle \) and misses \(D \setminus \{ \langle f, g \rangle \} \). Since \(cf(\tau) > \omega \) we can find \(n^*, m^* \in \omega \), \(\langle I_i : i \leq n^* \rangle \), \(\langle J_i : i \leq m^* \rangle \), and a \(\tau \)-sized \(D' \subseteq D \) such that \(n_f = n^* \), \(m_g = m^* \), \(\langle I_i^f : i \leq n^* \rangle = \langle I_i : i \leq n^* \rangle \), and \(\langle J_i^g : i \leq m^* \rangle = \langle J_i : i \leq m^* \rangle \) for each \(\langle f, g \rangle \in D' \). We can now conclude that for any distinct \(\langle f, g \rangle, \langle f', g' \rangle \in D' \), either \(\langle x_i^f : i \leq n^* \rangle \neq \langle x_i^{f'} : i \leq n^* \rangle \) or \(\langle y_i^g : i \leq m^* \rangle \neq \langle y_i^{g'} : i \leq m^* \rangle \). Therefore, the set \(S = \{ x_1^f, ..., x_{n^*}^f, y_1^g, ..., y_{m^*}^g : \langle f, g \rangle \in D' \} \) is \(\tau \)-sized. To show that \(S \) is a discrete subspace of \(X^{n^*+m^*} \), for each \(\langle f, g \rangle \in D' \), put \(U_f = f^{-1}(I_1) \times ... \times f^{-1}(I_{n^*}) \) and \(V_g = g^{-1}(J_1) \times ... \times g^{-1}(J_{m^*}) \). Clearly \(U_f \times V_g \) is a neighborhood of \(\langle x_1^f, ..., x_{n^*}^f, y_1^g, ..., y_{m^*}^g \rangle \) in \(X^{n^*+m^*} \). Next, fix \(\langle f', g' \rangle \in D' \setminus \{ \langle f, g \rangle \} \). By the choice of our neighborhoods, we may assume that \(f \notin U_f \). Therefore, there exists \(i \leq n^* \) such that \(f(x_i^f) \notin I_i \). Therefore, \(x_i^f \notin f^{-1}(I_i) \), which implies that \(\langle x_i^f, ..., x_{n^*}^f, y_i^g, ..., y_{m^*}^g \rangle \notin U_f \times V_g \). \(\square \)

Note that if \(C_p(X) \) or \(C^2_p(X) \) has a discrete point-separating subspace of an infinite size \(\tau \), then \(\tau \geq i \omega(X) \). If in addition \(cf(\tau) > \omega \), then, by Lemma 2.1, \(s(X^n) \geq \tau \geq i \omega(X) \) for some \(n \). Thus, the following statement holds.
Theorem 2.2. Assume that $C_p(X)$ or $C^2_p(X)$ has a discrete point-separating subspace of size τ with $cf(\tau) > \omega$. Then $s(X^n) \geq \tau \geq iw(X)$ for some natural number n.

We are now ready to formulate and prove two necessary conditions for $C_p(X)$ and $C^2_p(X)$ to have a point-separating discrete subspace.

Theorem 2.3. If $C^2_p(X)$ has a discrete point-separating subspace, then $s(\sigma_X) \geq iw(X)$.

Proof. Put $\tau = iw(X)$. If τ is countable, then X has a countable network. Since X is infinite, it contains an infinite countable subspace. Hence, $s(\sigma_X) \geq iw(X)$.

We now assume that τ is uncountable. By Theorem 2.2 we may assume that $cf(\tau) = \omega$. Fix a strictly increasing sequence of cardinals τ_n of uncountable cofinalities so that $\tau = \sum_n \tau_n$. Since any point-separating subset of $C^2_p(X)$ must have size at least τ, there exists a discrete subset of cardinality τ_n in $C^2_p(X)$ for each n. By Lemma 2.1, there exists a discrete subset D_n in some finite power of X for each n. Therefore, $s(\sigma_X) \geq \tau$. \square

In all future arguments, the cases when a discrete point-separating subspace is finite can be handled as in Theorem 2.3 and will therefore not be considered.

For our next observation we need Zenor’s theorem [7] stating that if $s(X \times Y) \leq \tau \geq \omega$ then either $hl(X) \leq \tau$ or $hd(Y) \leq \tau$.

Theorem 2.4. Assume Generalized Continuum Hypothesis. If $C^2_p(X)$ has a discrete point-separating subspace, then $s(X^n) \geq iw(X)$ for some $n \in \omega$.

Proof. Put $\tau = iw(X)$. By Theorem 2.2 we may assume that τ is an infinite cardinal of countable cofinality. Assume the contrary. Then $s(X^4) = \lambda < \tau$. By Zenor’s theorem, $hl(X^2) \leq \lambda$ or $d(X^2) \leq \lambda$. If the former is the case, then the off-diagonal part of X^2 can be covered by λ-many functionally closed boxes, which implies that $iw(X) < \tau$. If $d(X^2) \leq \lambda$, then by Generalized Continuum Hypothesis, $w(X^2)$ is at most $2^\lambda < \tau$. Since both cases lead to contradictions, the statement is proved. \square

The assumptions in Theorem 2.4 prompts the following questions.

Question 2.5. Does Theorem 2.4 hold in ZFC?
Note that if one can construct a space X such that $s(X^n) = \omega_n$ for all natural numbers n and $iw(X) = \omega_\omega$, then the answer to Question 2.5 is a “no”.

At this point one may wonder if our study is justified. In other words, are we studying a non-empty class? Let X be an non-metrizable compact space such that X^n is hereditary separable for each n. Such a space exists. A consistent example of such a space is Ivanov’s modification [5] of Fedorchuk’s example [3]. Since X^n is hereditarily separable, by Lemma 2.1, no discrete subspace of $C^2_p(X)$ or $C_p(X)$ is uncountable. Since X is not submetrizable, we conclude that no countable subspace of $C^2_p(X)$ or $C_p(X)$ is point-separating. Let us summarize this observation as follows.

Example 2.6. There exists a consistent example of a compactum X such that neither $C_p(X)$ nor $C^2_p(X)$ has a discrete separating subspace.

The authors believe that in some models of ZFC, no such example may exist, meaning that any space may have a discrete in itself point-separating function set.

Question 2.7. Is there a ZFC example of a space X such that no discrete subspace of $C_p(X)$ ($C^n_p(X)$) is point-separating?

We will next reverse the statement of Theorem 2.2, which will bring us to the promised characterizations.

Theorem 2.8. If X^n has a discrete subspace of size $iw(X)$ for some natural number n, then $C^2_p(X)$ has a point-separating discrete subspace.

Proof. Let n be the smallest that satisfies the hypothesis of the lemma and put $\tau = iw(X)$. By the choice of n there exists a τ-sized discrete subspace D of X^n with the following property:

Property: $|\{x(i) : i \leq n\}| = n$ for each $x \in D$.

Let \mathcal{T} be a Tychonoff subtopology of the topology of X of weight τ. Fix a τ-sized network \mathcal{N} for $\langle X, \mathcal{T} \rangle$ that consists of functionally closed subsets. Let \mathcal{P} be the set of all pairs $\langle A, B \rangle$ of disjoint elements of \mathcal{N}. Enumerate \mathcal{P} and D as $\{\langle A_\alpha, B_\alpha \rangle : \alpha < \tau\}$ and $\{d_\alpha : \alpha < \tau\}$. Since D is a discrete subspace, for each $\alpha < \tau$ we can fix a functionally closed set $B_\alpha^i \times \ldots \times B_\alpha^n$ that contains d_α in its interior and misses $D \setminus \{d_\alpha\}$. By Property, we may assume that $B_i^\alpha \cap B_j^\alpha = \emptyset$ for distinct i and j.

We will next construct our desired subspace $\{(f_\alpha, g_\alpha) : \alpha < \tau\}$ of $C_p(X)$.
Definition of \(f_\alpha \), where \(\alpha < \tau \): Let \(S_\alpha \) be a functionally closed subset of \(X \) such that \(X \setminus S_\alpha \) can be written as a union of \(L_\alpha \) and \(R_\alpha \) so that the following hold.

1. \(cl_X(L_\alpha) \cap cl_X(R_\alpha) \subseteq S_\alpha \);
2. \(A_\alpha \subseteq L_\alpha \) and \(B_\alpha \subseteq R_\alpha \);
3. \(d_\alpha(i) \in L_\alpha \) if \(d_\alpha(i) \notin B_\alpha \), and \(d_\alpha(i) \in R_\alpha \) if \(d_\alpha(i) \in B_\alpha \).

Such an \(S_\alpha \) exists since \(A_\alpha \) and \(B_\alpha \) are functionally separable sets and the coordinate set of \(d_\alpha \) is finite. Let \(f_{\alpha,i} : L_\alpha \cup S_\alpha \to [-1,0] \) be any continuous function that has the following properties:

\[
\begin{align*}
L1: & \quad f_{\alpha,i}^{-1}(\{0\}) = S_\alpha; \\
L2: & \quad (\{d_\alpha(i) : i \leq n\} \cap L_\alpha) \subset f_{\alpha,i}^{-1}([-1,-1/3)) \subset \bigcup \{B_\alpha^\alpha : d_\alpha(i) \in L_\alpha\}.
\end{align*}
\]

This can be done since \(B_\alpha^\alpha \)'s form a disjoint finite collection of functionally closed sets.

To show that \(F = \{(f_\alpha,g_\alpha) : \alpha < \tau\} \) is a point-separating discrete subspace. To show that \(F \) is point-separating, fix distinct \(a,b \) in \(X \). Since \(\mathcal{N} \) is a network, there exist disjoint \(A,B \in \mathcal{N} \) that contain \(a \) and \(b \), respectively. Then \(\langle A,B \rangle = \langle A_\alpha,B_\alpha \rangle \in \mathcal{P} \). By the definition of \(f_\alpha \), \(f_\alpha(a) = f_\alpha(i) < 0 \) and \(f_\alpha(b) = f_\alpha(i,b) > 0 \).

It remains to show that \(F \) is discrete in itself, fix \(\alpha \). Put

\[
U_\alpha = \{f : f(d_\alpha(i)) < -1/3 \text{ if } d_\alpha(i) \in L_\alpha, f(d_\alpha(i)) > 1/3 \text{ if } d_\alpha(i) \in R_\alpha\}
\]

\[
V_\alpha = \{g : g(d_\alpha(i)) \in (i-1/3,i+1/3)\}
\]

Clearly, \(U_\alpha \times V_\alpha \) is a neighborhood of \((f_\alpha,g_\alpha) \). To show that this neighborhood misses the rest of \(F \), fix \(\beta \neq \alpha \). There exists \(i \leq n \) such that \(d_\alpha(i) \notin B_\beta^\beta \). We have two possible cases.

Case 1: This case’s assumption is that \(d_\alpha(i) \notin \bigcup_{j \leq n} B_j^\beta \). By L2 and R2 of the definition of \(f_\beta \), we have \(f_\beta(d_\alpha(i)) \in (-1/3,1/3) \). Hence \(f_\beta \notin U_\alpha \).

Therefore, \(\langle f_\beta,g_\beta \rangle \notin U_\alpha \times V_\alpha \).

Case 2: Assume Case 1 does not take place. Then there exists \(j \leq n \) such that \(d_\alpha(i) \in B_j^\beta \). By the choice of \(i \), we have \(i \neq j \). Therefore,
$g_\beta(d_\alpha(i)) \notin (i - 1/3, i + 1/3)$. Hence $g_\beta \notin V_\alpha$. Therefore, $\langle f_\beta, g_\beta \rangle \notin U_\alpha \times V_\alpha$.

Statements 2.2, 2.8, and 2.4 result in the following criteria.

Theorem 2.9. Let a space X have $iw(X)$ of uncountable cofinality. Then $C_p^2(X)$ has a point-separating discrete subspace if and only if $s(X^n) \geq iw(X)$ for some n.

Theorem 2.10. Assume Generalized Continuum Hypothesis. Then $C_p^2(X)$ has a point-separating discrete subspace if and only if $s(X^n) \geq iw(X)$ for some n.

Note that criteria 2.9 and 2.10 would hold for $C_p(X)$ if we could prove Theorem 2.8 for $C_p(X)$.

Question 2.11. Assume that X^n has a discrete subspace of size $iw(X)$ for some natural number n. Is it true that $C_p(X)$ has a discrete point-separating set?

Using an argument somewhat similar to that of Theorem 2.8 we will next show that Question 2.11 has an affirmative answer if we assume that C is zero-dimensional.

Theorem 2.12. Assume that X is zero-dimensional. If X^n has a discrete subspace of size $iw(X)$, then $C_p(X)$ has a point-separating discrete subspace.

Proof. Let n be the smallest that satisfies the hypothesis of the lemma and put $\tau = iw(X)$. By the choice of n there exists a τ-sized discrete subspace D of X^n with the following property:

Property: $|\{x(i) : i \leq n\}| = n$ for each $x \in D$.

Let T be a Tychonoff subtopology of the topology of X of weight τ. Due to zero-dimensionality of X and the factorization theorem of Mardesic [6], we may assume that T is zero-dimensional too. Fix a τ-sized network N for (X,T) that consists of clopen subsets. Let P be the set of all pairs $\langle A, B \rangle$ of disjoint elements of N. Enumerate P and D as $\{\langle A_\alpha, B_\alpha \rangle : \alpha < \tau \}$ and $\{d_\alpha : \alpha < \tau \}$. We will next construct our desired subspace in $C_p(X)$.

Definition of f_α, where $\alpha < \tau$ Since D is a discrete subspace, we can fix a clopen box $U_1^\alpha \times ... \times U_n^\alpha$ that contains d_α and misses $D \setminus \{d_\alpha\}$. By *Property*, we may assume that $U_i^\alpha \cap U_j^\alpha = \emptyset$ if $i \neq j$. Since A_α and B_α are disjoint,
we may assume that each U_i meets at most one of the sets A_α and B_α. Define $f_\alpha : X \to \{0, 1, 2, ..., n + 1\}$ by letting $f_\alpha(U_i) = \{i\}$, $f_\alpha(A_\alpha \setminus \bigcup_{i \leq n} U_i) = \{0\}$, and $f_\alpha(X \setminus (A_\alpha \cup U_1 \cup ... \cup U_n)) = \{n + 1\}$.

It remains to show that $F = \{f_\alpha : \alpha < \tau\}$ is a point-separating discrete subspace. To show that F is point-separating, fix distinct a, b in X. Since \mathcal{N} is a network, there exist disjoint $A, B \in \mathcal{N}$ that contain a and b, respectively. Then $\langle A, B \rangle = \langle A_\alpha, B_\alpha \rangle \in \mathcal{P}$. Since no U_i^a meets both A_α and B_α at the same time, $f_\alpha(A_\alpha)$ misses $f_\alpha(B_\alpha)$.

To show that F is discrete in itself, fix f_α and put $V_\alpha = \{f : f(d_\alpha(i)) \in (i - 1/3, i + 1/3), i \leq n\}$. Next fix any $\beta \neq \alpha$. Then there exists $i \leq n$ such that $d_\alpha(i) \notin U_i^\beta$. Therefore, $f_\beta(d_\alpha(i)) \notin (i - 1/3, i + 1/3)$. Hence, $f_\beta \notin U_\alpha$. □

Note that Theorems 2.9 and 2.10 are now true for $C_p(X)$ provided X is zero-dimensional. Let us state the new versions for reference.

Theorem 2.13. Let a zero-dimensional space X have $iw(X)$ of uncountable cofinality. Then $C_p(X)$ has a point-separating discrete subspace if and only if $s(X^n) \geq iw(X)$ for some natural number n.

Theorem 2.14. Assume Generalized Continuum Hypothesis. Let X be zero-dimensional. Then $C_p(X)$ has a point-separating discrete subspace if and only if $s(X^n) \geq iw(X)$ for some n.

For our final characterization discussion we would like to extract a technical statement from the proof of Theorem 2.8 and prove one helpful proposition.

Lemma 2.15. Assume that a finite power of X has a discrete subspace of size λ. Let $\{\langle A_\alpha, B_\alpha \rangle : \alpha < \lambda\}$ be a family of pairs of functionally closed disjoint subsets of X. Then there exists a discrete subspace F in $C^2_p(X)$ with the following property:

(*) If $a \in A_\alpha$ and $b \in B_\alpha$ for some $\alpha < \lambda$, then $f(a) \neq f(b)$ for some $f \in F$.

Proposition 2.16. Let $C^m_p(X)$ contain a point-separating subspace which is a countable union of discrete subspaces. Then $C^m_p(X)$ has a discrete point-separating subspace.
Proof. We will prove the statement for $m = 2$. Let $D = \cup_n D_n$ be a point-separating set of $C_p^2(X)$, where each D_n is a discrete subspace. For each n, fix a homeomorphism $h_n : \mathbb{R} \to (n, n + 1)$. Put $E_n = \{ (h_n \circ f, h_n \circ g) : (f, g) \in D_n \}$. Clearly, E_n separates x and y if and only if D_n does. Also, E_n is a discrete subspace of $C_p^2(X)$. Since all functions in $(\cup_k E_k) \setminus E_n$ target $\mathbb{R} \setminus (n, n + 1)$, we conclude that the closure of $(\cup_k E_k) \setminus E_n$ misses E_n. Therefore, $\cup_n E_n$ is a point-separating discrete subspace of $C_p^2(X)$. □

Theorem 2.17. $C_p^2(X)$ has a discrete point-separating subspace if and only if $s(\sigma_X) \geq iw(X)$.

Proof. Necessity is done in Theorem 2.3. To prove sufficiency, put $\tau = iw(X)$. Let \mathcal{N} be a τ-sized family of functionally closed subsets of X that is a network for some Tychonoff subtopology of X. Let \mathcal{P} consist of all pairs of disjoint elements of \mathcal{N}. For each n we can find a discrete subset D_n of σ_X that lives in a copy of some finite power of X so that $\tau = \sum_n |D_n|$. Next represent \mathcal{P} as $\bigcup \mathcal{P}_n$, where $|\mathcal{P}_n| = |D_n|$. Applying Lemma 2.15 to \mathcal{P}_n and D_n for each n, we find a point-separating subspace in $C_p^2(X)$ that is a countable union of discrete subspaces. By Proposition 2.16, $C_p(X)$ contains a discrete point-separating subspace. □

An argument identical to that of Theorem 2.17 leads to the following statement for $C_p(X)$.

Theorem 2.18. Assume that X is zero-dimensional. Then $C_p(X)$ has a discrete point-separating subspace if and only if $s(\sigma_X) \geq iw(X)$.

Theorems 2.17 and 2.18 imply the following.

Corollary 2.19. Let X be a zero-dimensional space. Then $C_p(X)$ has a point-separating discrete subspaces if and only if $C_p^2(X)$ does.

Note that the image of a point-separating family under a homeomorphism need not be point-separating. Indeed, $\{id_{[0,1]}\}$ is a point-separating subspace of $C_p([0, 1])$. However, one can construct an automorphism on $C_p([0, 1])$ that carries $\{id_{[0,1]}\}$ to $\{\vec{0}\}$ which is not point-separating. In connection with this observation, it would be interesting to know if having a discrete point-separating subspace is preserved by homeomorphisms among function spaces. The answer is affirmative and to show it we will use the fact [1, 1, 1, 6] that if $C_p(X)$ and $C_p(Y)$ are homeomorphic then $iw(X) = iw(Y)$.

Theorem 2.20. Let X and Y be t-equivalent. If $C^2_p(X)$ has a discrete point-separating subspace, then so does $C^2_p(Y)$.

Proof. Fix a homeomorphism $\phi : C^2_p(X) \to C^2_p(Y)$ and a discrete point-separating subspace D of $C^2_p(X)$.

Assume, first, that $|D|$ is finite. Then $iw(X) = \omega$. Hence $iw(Y) = \omega$. Since Y is infinite, it contains a an infinite countable subspace. By Theorem 2.17, $C^2_p(Y)$ contains a discrete point-separating subspace.

We now assume that $|D|$ is infinite. Then $|D| \geq iw(X)$. Therefore, $|\phi(D)| \geq iw(Y)$. By Lemma 2.1, $s(\sigma_Y) \geq |\phi(D)| \geq iw(Y)$. By Theorem 2.17, $C^2_p(Y)$ contains a discrete point-separating subspace. \hfill \Box

Repeating the argument of Theorem 2.20, we obtain the following.

Theorem 2.21. Let X and Y be zero-dimensional and t-equivalent. If $C_p(X)$ has a discrete point-separating subspace, then so does $C_p(Y)$.

While being a discrete subspace is already a nice property, it would be interesting to know when $C_p(X)$ or its finite power has a discrete point-separating subspace which is in addition a subgroup. Note that any discrete subgroup is closed. In addition, $C_p(X)$ can be covered by countably many shifts of any neighborhood of zero-function. Therefore, any discrete subgroup of $C_p(X)$ is countable. These observations lead to the following question.

Question 2.22. Let X be a separable metric space. Is it true that $C_p(X)$ has a discrete point-separating subgroup?

It is worth noting that separable metric spaces have many pretty point-separating subspaces as backed up by the next two statement.

Theorem 2.23. $C_p(X)$ has a point-separating subset homeomorphic to $[0,1]$ if and only X admits a continuous injection into \mathbb{R}^ω.

Proof. To prove necessity, let $F \subset C_p(X)$ a point-separating family homeomorphic to $[0,1]$. Then any dense subset of F is point-separating too. Therefore, $C_p(X)$ has a countable point-separating family. Therefore, X continuously injects into \mathbb{R}^ω.

To prove sufficiency we need the following claim.

Claim. \mathbb{R}^ω embeds into $C_p([0,1])$.

To prove the claim, note that $C_p(\omega) = \mathbb{R}^\omega$ embeds into $C_p(\mathbb{R})$ since ω is closed in \mathbb{R}. By Gulko-Hmyleva theorem [4] that \mathbb{R} and $[0, 1]$ are t-equivalent, we conclude that, \mathbb{R}^ω embeds into $C_p([0, 1])$. The claim is proved.

By Claim X injects into $C_p([0, 1])$. Let F be the image of such an injection. Due to homogeneity we may assume that the identity function is in F. Therefore, F generates the topology of $[0, 1]$. Consider the evaluation map the evaluation function $\Psi_F : [0, 1] \rightarrow C_p(F)$. Since F generates the topology of $[0, 1]$, we conclude that $\Psi_F([0, 1])$ generates the topology of F. If $h : X \rightarrow F$ is a continuous bijection then the map $H : C_p(F) \rightarrow C_p(X)$ is a continuous injection, where $H(f) = hf$. Clearly, $H(\Psi_F([0, 1])) = [0, 1]$ is point separating. □

Theorem 2.24. Let X be a separable metric space. Then $C_p(X)$ has a topology-generating subspace homeomorphic to $[0, 1]$.

Proof. Embed X into $C_p([0, 1])$ so that the image F contains the identity map. The evaluation function $\Psi_F : [0, 1] \rightarrow C_p(F)$. Since F generates the topology of $[0, 1]$ and therefore $\Psi_F([0, 1])$ generates the topology of F. Since $F = X$, we conclude that $[0, 1] = \Psi_F([0, 1])$ generates the topology of $F = X$. □

Note that Theorem 2.24 cannot be reversed. Indeed, $[0, 1]$ generates the topology of $C_p([0, 1])$ but the latter is not metrizable.

We would like to finish with two problems that are naturally prompted by our study.

Question 2.25. Characterize spaces X for which $C_p(X)$ has a closed discrete point-separating subset.

Question 2.26. Characterize spaces X for which $C_p(X)$ has a (closed) discrete topology-generating subset.

At last, the unattained goal of the paper is left as the following question.

Question 2.27. Assume that $C_p(X)$ has a discrete subspace of size $\text{iw}(X)$. Is it true that $C_p(X)$ has a discrete point-separating set?
REFERENCES

[1] A. Arhangelskii, *Topological Function Spaces*, Math. Appl., vol. 78, Kluwer Academic Publishers, Dordrecht, 1992.
[2] R. Engelking, *General Topology*, PWN, Warszawa, 1977.
[3] V. V. Fedorchuk, *A compact having a cardinality of continuum with no convergent sequences*, Math. Proc. Cambridge Phil. Soc. 81 (1977), 177-181.
[4] S. Gulko and T. Hmyleva, *Compactness is not preserved by t-equivalence*, Mat Zametki, vol 39, 6 (1986), 895-903.
[5] A. V. Ivanov, *On bicomacta with hereditary separable finite powers*, (in Russian) DAN SSSR, 243 (1978), 1109-1112.
[6] S. Mardesic, *On covering dimension and inverse limits of compact spaces*, Ill. J. of Math. 4 (1960), 278-291.
[7] P. Zenor, *Hereditary m-separability and the hereditary m-Lindelöf property in product spaces and function spaces*, Fund. Math. 106 (1980), 175-80.

E-mail address: Raushan_Buzyakova@yahoo.com

E-mail address: oleg@servidor.unam.mx

Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo postal 1152, Puebla, Puebla CP 72000, Mexico