Images of a Bose-Einstein condensate at finite temperature *

Jacek Dziarmaga

Institute of Physics and Centre for Complex Systems, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
(June 28, 2005)

A condensate initially prepared at finite temperature evolves under external time-dependent perturbation into a time-dependent mixed state. In these notes I use number-conserving time-dependent Bogoliubov theory to derive probability distribution for different outcomes of density measurement on the time-dependent excited state.

I. INTRODUCTION

Quantum measurements on Bose-condensed systems can give quite unexpected results. For example, in the classic paper by Javanainen and Yoo [1] a density measurement on a Fock state $|N/2, N/2\rangle$ with N particles equally divided between two counter-propagating plane waves $e^{\pm ix}$ reveals an interference pattern $\rho(x|\varphi) \sim \cos^2(x - \varphi)$ with a phase φ chosen randomly in every realization of the experiment. The Fock state has a uniform single particle density distribution, but its measurement unexpectedly reveals interference between the two counter-propagating condensates. The Fock state is a quantum superposition over N-particle condensates with different relative phases φ in their wave functions [2], $|N/2, N/2\rangle \sim \int d\varphi \ |N : e^{+i(x-\varphi)} + e^{-i(x-\varphi)}\rangle$, but every single realization of the experiment reveals such a density distribution as if the state before the density measurement were one of the condensates $|N : e^{+i(x-\varphi)} + e^{-i(x-\varphi)}\rangle$ with a randomly chosen phase φ. This effect is best explained [2] when the density measurement, which is a destructive measurement of all particle positions at the same time, is replaced by an equivalent sequential measurement of one position after another. With an increasing number n of measured positions a quantum state of the remaining $N-n$ particles gradually “collapses” from the initial uniform superposition over all phases to a state with a more and more localized phase φ. For a large N a measurement of only a small fraction $n/N \ll 1$ of all particles practically collapses the state of remaining $N-n$ particles to a condensate with definite phase φ.

A lesson from this instructive example [1,2] is that quantum measurement on an N-particle state with highly occupied single particle modes “collapses” the state to a definite condensate with a definite condensate wave function $\phi(x)$. The question is: what is the probability distribution for different measurement outcomes $\phi(x)$? As the set of condensates is not an orthonormal basis this is not a trivial question.

In Ref. [6] we derived this probability distribution in the framework of the time-dependent Bogoliubov theory at zero temperature. At zero temperature a condensate initially prepared in its N-particle ground state evolves under external time-dependent perturbation into a time-dependent excited state. The excited state is a time-dependent Bogoliubov vacuum i.e. at any time t there exists a complete set of quasiparticle annihilation operators for which the excited state is a vacuum. In Ref. [6] it was shown that the time-dependent vacuum has a simple diagonal structure which directly leads to a compact gaussian probability distribution for different condensate wave functions $\phi(x)$. As the case of zero temperature is covered in Ref. [6], in these notes I describe the general case of finite temperature when the initial state is a condensate in equilibrium with a thermal cloud of atoms. I derive gaussian probability distribution for $\phi(x)$ at any time t when the external perturbation drives the initial thermal state into an excited mixed state.

II. N-CONSERVING BOGOLIUBOV THEORY

Number conserving Bogoliubov theory [7] is a quadratic approximation to the second quantized Hamiltonian (in trap units)

$$
\hat{H} = \int dx \left[\frac{1}{2} \partial_x \hat{\psi} \partial_x \hat{\psi}^\dagger + \frac{1}{2} x^2 \hat{\psi} \hat{\psi}^\dagger + V(t, x) \hat{\psi} \hat{\psi}^\dagger + \frac{1}{2} g \hat{\psi} \hat{\psi}^\dagger \hat{\psi} \hat{\psi}^\dagger \right].
$$

*Invited talk given at the conference “Quantum Optics VI”, June 13-18 2005, Krynica, Poland

arXiv:cond-mat/0506723v1 [cond-mat.mes-hall] 28 Jun 2005
Here $\hat{\Psi}(x)$ is the bosonic annihilation operator, $V(t,x)$ is the external perturbation potential, and g is strength of contact interaction between atoms. Here and in the following I will use one-dimensional notation but all equations can be generalized by the simple replacement $x \rightarrow \vec{x}$. The annihilation operator is split into condensate and non-condensate part
\[
\hat{\Psi}(x) = \hat{a}_0 \phi_0(x) + \delta\hat{\psi}(x).
\] (2)

It is assumed that most atoms occupy the condensate mode $\phi_0(x)$. Equation (2) is substituted to the Hamiltonian (1) and then the Hamiltonian is expanded in powers of the fluctuation operator $\delta\hat{\psi}$, see Ref. [7].

Many experiments on dilute atomic condensates can be clearly divided in two steps: as a first step a condensate is prepared in its ground state and then in the second step an external potential $V(t,x)$ is applied to manipulate with the condensate wave function. Generic examples are phase imprinting of dark solitons [5], atomic interferometry [3], or generation of shock waves in Bose-Einstein condensates [4]. At finite temperature the initial state before the manipulation is a thermal state including thermal excitations above the N-particle ground state. The initial condensate wave function ϕ_0 solves the stationary Gross-Pitaevskii equation
\[
\mu\phi_0 = -\frac{1}{2}\partial_x^2 \phi_0 + \frac{1}{2}x^2 \phi_0 + g|\phi_0|^2 \phi_0.
\] (3)

In Bogoliubov approximation the ground state is Bogoliubov vacuum $|0_b\rangle$ which can be written as a gaussian superposition over condensates [8]
\[
|0_b\rangle = \int d^2b e^{-\frac{1}{4}\sum_{m=1}^M b_m^* b_m} \left| N : \phi_0(x) + \frac{1}{\sqrt{N}} \sum_{m=1}^M b_m u_m(x) + b_m^* v_m(x) \right|.
\] (4)

Here the state $|N : \phi\rangle$ is a condensate of N atoms in the normalized condensate wave function $\frac{\phi}{\sqrt{|\phi|}}$. The Bogoliubov modes u_m and v_m are eigenmodes of the stationary Bogoliubov-de Gennes equations
\[
\omega_m u_m = -\frac{1}{2}\partial_x^2 u_m + \frac{1}{2}x^2 u_m + 2g|\phi_0|^2 u_m + g\phi_0^2 v_m ,
\]
\[-\omega_m v_m = -\frac{1}{2}\partial_x^2 v_m + \frac{1}{2}x^2 v_m + 2g|\phi_0|^2 v_m + g (\phi_0^*)^2 u_m .
\] (5)

Numerical solution of these equations gives a finite number of modes M. At finite temperature the initial state is a thermal state $\hat{\rho}(0)$ with thermal quasiparticle excitations. The thermal state is also a gaussian state [8]
\[
\hat{\rho}(0) = \int d^2b_L \int d^2b_R e^{-\frac{1}{4}\sum_{m=1}^M b_m^* b_m + b_L^* b_R + b_R^* e^{-\beta\omega} b_R} \left| N : \phi_0(x) + \frac{1}{\sqrt{N}} \sum_{m=1}^M b_{L,m} u_m(x) + b_{L,m}^* v_m(x) \right|.
\] (6)

Here $b_{L,m}^* b_L = \sum_{m=1}^M b_{L,m}^* b_{L,m}$ and $b_{L,m}^* e^{-\beta\omega} b_R = \sum_{m=1}^M b_{L,m}^* e^{-\beta\omega} b_{R,m}$.

In Bogoliubov theory the initial thermal state evolves under external perturbation $V(t,x)$ into an excited state $\hat{\rho}(t)$ which has the same form as the initial $\hat{\rho}(0)$ in Eq.(6) but with time-dependent Bogoliubov modes $u_m(t,x)$ and $v_m(t,x)$ which solve time-dependent Bogoliubov-de Gennes equations
\[
i\partial_t u_m = -\frac{1}{2}\partial_x^2 u_m + \frac{1}{2}x^2 u_m + 2g|\phi_0|^2 u_m + g\phi_0^2 v_m ,
\]
\[-i\partial_t v_m = -\frac{1}{2}\partial_x^2 v_m + \frac{1}{2}x^2 v_m + 2g|\phi_0|^2 v_m + g (\phi_0^*)^2 u_m.
\] (7)

with initial conditions being the eigenmodes of the stationary BdG equations (5). The time-dependent condensate wave function $\phi_0(t,x)$ solves the time-dependent Gross-Pitaevskii equation
\[
i\partial_t \phi_0 = -\frac{1}{2}\partial_x^2 \phi_0 + \frac{1}{2}x^2 \phi_0 + g|\phi_0|^2 \phi_0 .
\] (8)
III. PROBABILITY DISTRIBUTION FOR OUTCOMES

As mentioned before, density measurement is “collapsing” N-particle state to a Bose-Einstein condensate. The aim of the measurement theory is to provide probability distribution for different condensate wave functions ϕ. In the present context of Bogoliubov theory it is convenient to split possible condensate wave functions into the condensate part and the non-condensate part: $\phi = \phi_0 + \sqrt{\lambda} \delta \phi$. The aim is to find gaussian probability distribution for $\delta \phi$ in the gaussian state $\hat{\rho}(t)$. Ideally the gaussian distribution would be fully determined by the following equalities between second order correlators of the gaussian $\delta \phi(x)$ and second order correlators of the field operators:

$$\overline{\delta \phi^*(x) \delta \phi(y)} = \frac{2}{2} \langle \hat{\delta \phi}^*(x) \hat{\delta \phi}(y) \rangle = \sum_{m,n} n_m u^*_m(x) u_m(y) + (1 + n_m) v^*_m(x) v_m(y) , \quad (9)$$

$$\overline{\delta \phi(x) \delta \phi^*(y)} = \frac{2}{2} \langle \hat{\delta \phi}(x) \hat{\delta \phi}^*(y) \rangle = \sum_{m,n} n_m v^*_m(x) v_m(y) + (1 + n_m) u_m(x) u^*_m(y) , \quad (10)$$

$$\overline{\delta \phi(x) \delta \phi(y)} = \frac{2}{2} \langle \hat{\delta \phi}(x) \hat{\delta \phi}(y) \rangle = \sum_{m,n} n_m v^*_m(x) u_m(y) + (1 + n_m) u_m(x) v^*_m(y) , \quad (11)$$

$$\overline{\delta \phi^*(x) \delta \phi^*(y)} = \frac{2}{2} \langle \hat{\delta \phi}^*(x) \hat{\delta \phi}^*(y) \rangle = \sum_{m,n} n_m u^*_m(x) v_m(y) + (1 + n_m) v_m(x) u^*_m(y) . \quad (12)$$

Here the most right hand sides follow from the Bogoliubov theory $[7]$. $n_m = (e^{\beta\omega_m} - 1)^{-1}$ is average number of thermally excited Bogoliubov quasiparticles in the initial state. Unfortunately, because of the non-zero commutator $[\delta \phi(x), \delta \phi^*(y)] = \delta(x - y) - \phi_0^*(x) \phi_0(y)$, the first two conditions cannot be satisfied simultaneously. I replace them with the condition

$$\overline{\delta \phi^*(x) \delta \phi(y)} = \left(\overline{\delta \phi(x) \delta \phi^*(y)}\right)^* = \frac{1}{2} \langle \delta \phi^*(x) \delta \phi(y) + \delta \phi(y) \delta \phi^*(x) \rangle . \quad (13)$$

It is convenient to expand the fluctuation as

$$\delta \phi(x|z) = \sum_{\alpha=1}^{\infty} \phi_{\alpha}(x) \quad (14)$$

in the orthonormal basis of the eigenmodes ϕ_{α} of the reduced single particle density matrix

$$\langle \delta \phi^*(x) \delta \phi(y) \rangle = \sum_{\alpha=1}^{M} \delta N_{\alpha} \phi_{\alpha}^*(x) \phi_{\alpha}(y) . \quad (15)$$

Here the left hand side is given by Eq.(9). The right hand side is obtained after diagonalization of the hermitean operator on the left. The real eigenvalues δN_{α} are average occupation numbers of the corresponding non-condensate modes ϕ_{α}. The correlators (12) after the semiclassical approximation (13) determine the matrix of correlators of the complex gaussian random variables z_{α}:

$$\begin{pmatrix}
\frac{\langle z_{\alpha} z_{\beta} \rangle}{\langle \delta \phi^*(x) \delta \phi(y) \rangle} & \frac{\langle z_{\alpha} \gamma_{\beta} \rangle}{\langle \delta \phi^*(x) \delta \phi(y) \rangle} \\
\frac{\langle \gamma_{\alpha} z_{\beta} \rangle}{\langle \delta \phi^*(x) \delta \phi(y) \rangle} & \frac{\langle \gamma_{\alpha} \gamma_{\beta} \rangle}{\langle \delta \phi^*(x) \delta \phi(y) \rangle}
\end{pmatrix} = \begin{pmatrix}
D_{\alpha\beta} & C_{\alpha\beta} \\
C_{\alpha\beta}^* & D_{\alpha\beta}^*
\end{pmatrix} . \quad (16)$$

Here the $M \times M$ matrices on the right hand side are

$$D_{\alpha\beta} = \frac{1}{2} \left(U_{\alpha m}^* n_m U_{\beta m} + V_{\alpha m}^* (1 + n_m) V_{\beta m} + U_{\alpha m} (1 + n_m) U_{\beta m}^* + V_{\alpha m} n_m V_{\beta m}^* \right) , \quad (17)$$

$$C_{\alpha\beta} = U_{\alpha m}^* n_m V_{\beta m} + V_{\alpha m}^* (1 + n_m) U_{\beta m} , \quad (18)$$

with the matrix elements $U_{\alpha m} = \langle \phi_{\alpha}|u_m\rangle$ and $V_{\alpha m} = \langle \phi_{\alpha}|v_m\rangle$. Replacing z_{α}'s with real coordinates, $z_{\alpha} = x_{\alpha} + iy_{\alpha}$, we get a real symmetric matrix of correlators

$$\begin{pmatrix}
\frac{\langle x_{\alpha} x_{\beta} \rangle}{\langle \delta \phi^*(x) \delta \phi(y) \rangle} & \frac{\langle x_{\alpha} y_{\beta} \rangle}{\langle \delta \phi^*(x) \delta \phi(y) \rangle} \\
\frac{\langle y_{\alpha} x_{\beta} \rangle}{\langle \delta \phi^*(x) \delta \phi(y) \rangle} & \frac{\langle y_{\alpha} y_{\beta} \rangle}{\langle \delta \phi^*(x) \delta \phi(y) \rangle}
\end{pmatrix} = \frac{1}{2} \begin{pmatrix}
\operatorname{Re} D_{\alpha\beta} + \operatorname{Re} C_{\alpha\beta} & \operatorname{Im} C_{\alpha\beta} \\
\operatorname{Im} C_{\alpha\beta} & \operatorname{Re} D_{\alpha\beta} - \operatorname{Re} C_{\alpha\beta}
\end{pmatrix} . \quad (19)$$

and a condition that $\operatorname{Im} D_{\alpha\beta} = 0$ - a good test of the correctness of the calculations. Diagonalization of the correlation matrix (19) gives eigenvalues $\lambda_s \geq 0$ with $s = 1, \ldots, 2M$. Corresponding eigenvectors are columns of an orthogonal matrix O. The eigenvectors define convenient parametrization of the gaussian fluctuation as
\[
\delta \phi(x) = \sum_{\alpha=1}^{M} z_\alpha \phi_\alpha(x) = \sum_{\alpha=1}^{M} \phi_\alpha(x) \sum_{s=1}^{2M} (O_{\alpha,s} + iO_{M+\alpha,s}) q_s \equiv \sum_{s=1}^{2M} \Phi_s(x) q_s
\]

(20)

with independent real gaussian random variables \(q_s\) of zero mean and variances \(\overline{q_s^2} = \lambda_s\). However, this is not the end of the story yet.

As a result of the semiclassical approximation in Eq.(13) averages like e.g. average density of depletion \(\overline{\delta \phi^*(x) \delta \phi(x)}\) are divergent because there is infinite number of unoccupied modes \(\phi_\alpha(x)\), every one of them contributing to this depletion density a term \(\frac{1}{2} \delta \phi^*(x) \delta \phi(x)\). In stochastic averages like \(\overline{\delta \phi^*(x) \delta \phi(x)}\) average occupation numbers of modes \(\phi_\alpha(x)\) seem to be \(\delta N_\alpha + \frac{1}{2}\) instead of the correct \(\delta N_\alpha\). This artifact of the semiclassical approximation can be corrected by introducing to Eq.(20) of regularization factors:

\[
\delta \phi(x)|_{\text{reg}} = \sum_{\alpha=1}^{M} z_\alpha \left(\frac{\delta N_\alpha}{\delta N_\alpha + \frac{1}{2}} \right)^{1/2} \phi_\alpha(x) = \sum_{\alpha=1}^{M} \left(\frac{\delta N_\alpha}{\delta N_\alpha + \frac{1}{2}} \right)^{1/2} \phi_\alpha(x) \sum_{s=1}^{2M} (O_{\alpha,s} + iO_{M+\alpha,s}) q_s \equiv \sum_{s=1}^{2M} \Phi_s(x) q_s
\]

(21)

As expected in semiclassical approximation, the regularizing factors \(\left(\frac{\delta N_\alpha}{\delta N_\alpha + \frac{1}{2}} \right)^{1/2}\) are approximately 1 for the highly occupied modes with \(\delta N_\alpha \gg 1\) which dominate in the density distribution, but at the same time they remove the divergence coming from the infinity of unoccupied modes. The wave functions \(\Phi_s(x)\) are in general neither normalized nor orthogonal, except in the quantum limit of zero temperature, see the proof in Ref. [6].

IV. CONCLUSION

In conclusion, a recipe to simulate density measurement on the time-dependent excited thermal state has the following steps:

• Solve stationary Gross-Pitaevskii and Bogoliubov-de Gennes equations (3,5) to provide initial conditions for \(\phi_0(t,x), u_m(t,x)\) and \(v_m(t,x)\), and the initial quasiparticle frequencies \(\omega_m\).

• Solve time-dependent Gross-Pitaevskii and Bogoliubov-de Gennes equations (8,7) with respect to \(\phi_0(t,x), u_m(t,x)\) and \(v_m(t,x)\).

• Diagonalize the reduced single particle matrix (15) to get its non-condensate eigenmodes \(\phi_\alpha\) with their average occupation numbers \(\delta N_\alpha\).

• Build the matrices \(D_{\alpha \beta}\) and \(C_{\alpha \beta}\) in Eqs.(17,18), and then the real symmetric correlation matrix in Eq.(19).

• Diagonalize the correlation matrix in Eq.(19) to get its real eigenvalues \(\lambda_s\) and corresponding eigenvectors \(O_{\alpha,s}\).

• Build the regularized modes \(\Phi_s\) according to their definition implicit in Eq.(21):

\[
\Phi_s(x) = \sum_{\alpha=1}^{M} \left(\frac{\delta N_\alpha}{\delta N_\alpha + \frac{1}{2}} \right)^{1/2} \phi_\alpha(x) (O_{\alpha,s} + iO_{M+\alpha,s})
\]

(22)

• Choose independent real random variables \(q_s\)'s from their gaussian distributions of zero mean and variance \(\overline{q_s^2} = \lambda_s\), and then combine the chosen \(q\)'s into condensate density

\[
\rho(x|q) = \overline{\sqrt{\sum_{s=1}^{2M} q_s \Phi_s(x)}}^2.
\]

(23)

The \(\rho(x|q)\) defines a family of all possible density measurement outcomes with a gaussian probability distribution for different \(q\)'s.

In the limit of zero temperature this general recipe coincides with the recipe derived by different methods in Ref. [6]. At zero temperature the wave functions become \(\Phi_s(x) \sim \phi_\alpha(x)\) for \(\alpha = 1, \ldots, M\) and zero otherwise (here the \(\sim\) means equality up to a phase factor). Corresponding variances are \(\overline{q_s^2} = \delta N_\alpha\).
ACKNOWLEDGEMENTS

I would like to thank Zbyszek Karkuszewski and Krzysztof Sacha for stimulating discussions. This work was supported in part by Polish government scientific funds (2005-2008) as a research project.

[1] J. Javanainen and S. M. Yoo, Phys. Rev. Lett. 76, 161 (1996).
[2] Y. Castin and J. Dalibard, Phys. Rev. A 55, 4330 (1997); K. Mølmer, Phys. Rev. A 65, 021607 (2002); S. Ashhab and A. J. Leggett, Phys. Rev. A 65, 023604 (2002).
[3] Y. Shin et al., Phys. Rev. Lett. 92, 050405 (2004).
[4] B. Damski, Phys. Rev. A 69, 043610 (2004).
[5] S. Burger et al., Phys. Rev. Lett. 83, 5198 (1999).
[6] J. Dziarmaga and K. Sacha, cond-mat/0503328.
[7] M. D. Girardeau and R. Arnowitt, Phys. Rev. 113, 755 (1959); C. W. Gardiner, Phys. Rev. A 56, 1414 (1997); M. D. Girardeau Phys. Rev. A 58, 775 (1998); Y. Castin and R. Dum, Phys. Rev. A 57, 3008 (1998); J. Dziarmaga and K. Sacha, Phys. Rev. A 67 033608 (2003).
[8] J. Dziarmaga and J. Meisner, cond-mat/0410707.