HIGHER-ORDER ANALOGUES OF THE SLICE GENUS OF A KNOT

PETER D. HORN

Abstract. For certain classes of knots we define geometric invariants called higher-order genera. Each of these invariants is a refinement of the slice genus of a knot. We find lower bounds for the higher-order genera in terms of certain von Neumann \(\rho \)-invariants, which we call higher-order signatures. The higher-order genera offer a refinement of the Grope filtration of the knot concordance group.

1. Introduction

A knot is an embedding of the circle into the three-sphere. All embeddings are required to be topologically flat or smooth. Two knots \(K_0, K_1 \) are concordant if there is an annulus \(A \) embedded in \(S^3 \times [0,1] \) in such a way that \(A \cap (S^3 \times \{i\}) = K_i \) for \(i = 0, 1 \). If a knot \(K \) is concordant to the unknot, we call \(K \) a slice knot. Given two knots, one can “add” them via the connected sum operation \(\# \), defined in [Rol76]. Equipped with the connected sum operation, the set of knots modulo (topological or smooth) concordance forms the (topological or smooth) knot concordance group \(\mathcal{C} \). The class of slice knots serves as the identity element of this group.

Cochran, Orr and Teichner have introduced two filtrations of the topological knot concordance group \(\mathcal{C} \) [COT03]. The \((n)\)-solvable filtration

\[\cdots \subset F_{n,5} \subset F_n \subset \cdots \subset F_{1,5} \subset F_1 \subset F_{0,5} \subset F_0 \subset \mathcal{C} \]

is defined in terms of algebraic properties on the second homology of certain 4-manifolds, each of whose boundary is 0-surgery on a knot. The Grope filtration

\[\cdots \subset G_{n+2,5} \subset G_{n+2} \subset \cdots \subset G_3 \subset G_{2,5} \subset G_2 \subset \mathcal{C} \]

is defined much more geometrically. Rigorous definitions of these filtrations will be provided below. These filtrations are related to one another in the sense that \(G_{n+2} \subset F_n \) for all \(n \in \frac{1}{2} \mathbb{N} \) [COT03, Theorem 8.11]. Recently, Cochran, Harvey and Leidy proved that \(F_n/F_{n,5} \) has infinite rank for all \(n \) [CHL07]. Subsequently, the author proved the analogous result for the Grope filtration [Hor]. These results were proven using signatures of certain 4-manifolds. While algebraic techniques are appropriate when working with the \((n)\)-solvable filtration, they do not reflect the geometric nature of the Grope filtration. The main focus of this paper is to define a geometric invariant that will distinguish knots in \(G_{n+2} \).

Given a knot \(K \), the slice genus of \(K \) is the minimal genus of surfaces embedded in \(D^4 \) with boundary equal to \(K \subset S^3 = \partial D^4 \). The slice genus is a concordance invariant of \(K \). In the spirit of the Cochran-Orr-Teichner filtrations of \(\mathcal{C} \), we introduce a series of refinements of the slice genus. For knots in \(G_{n+2} \), we will define a concordance invariant called the \(n \)-th-order genus. Our main result is that the \(n \)-th-order genus distinguishes knots in \(G_{n+2} \) that are not distinguished by the slice genus. That is, each of our higher-order genera is a refinement of the notion of slice genus.

Theorem 4.5. For any \(n \geq 1 \), there is a fixed \(g \) and a knot in \(G_{n+2} \) with slice genus bounded above by \(g \) and arbitrarily high \(n \)-th-order genus. Furthermore, this knot has infinite order in \(G_{n+2}/F_{n,5} \).

Corollary 4.6. For any \(n \geq 1 \), there are infinitely many knots that lie in \(G_{n+2} \) whose slice genera are equal but whose \(n \)-th-order genera are distinct.

The published version of this paper may be accessed at http://imrn.oxfordjournals.org/cgi/content/abstract/rnq115?keytype=ref.
Murasugi proved [Mur65] Theorem 9.1 that the ordinary signature of a knot is a lower bound for the slice genus of that knot (henceforth “Murasugi’s inequality”). Gilmer later proved [Gil82] Theorem 1 that the sum of certain Casson-Gordon invariants and the ordinary signature bounds the slice genus from below (henceforth “Gilmer’s inequality”). Cochran, Orr and Teichner first used L^2-signatures to study knots. First, we define higher-order analogues of slice genus, and to any (n)-solvable knot we assign a set of real numbers, called the n^{th}-order signatures. This begs the question of whether there is a higher-order analogue of Murasugi’s inequality. Our primary tool is the desired higher-order analogue.

Theorem 4.2 If $K \in \mathcal{G}_{n+2}$, there is an n^{th}-order signature of K that gives a lower bound for the n^{th}-order genus of K.

We are not the first to utilize L^2-signatures in the study of genus-like invariants. Cha used metabelian L^2-signatures to obtain new lower bounds on the minimal genus of embedded surfaces representing a given 2-dimensional homology class in certain 4-manifolds [Cha88]. An application of Cha’s methods was to find bounds for the slice genus of knots [Cha88 Proposition 5.1]. Our Theorem 4.2 uses the L^2-signatures to obtain lower bounds for the higher-order genera. While Cha obtained obstructions to slice genus, we obtain higher-order obstructions to the higher-order genera. It seems that the only (classical) sliceness obstruction our higher-order genera give is that if one of the higher-order genera of a knot is positive, then that knot cannot be slice. However, a knot having large higher-order genera does not in general obstruct the knot from having a small (but positive) slice genus.

We should note that our higher-order signatures give a lower bound on the topological higher-order genera and often fail to be accurate in the smooth category. Consequently, we choose to work in the topological category, except for Section 3 which contains examples in the smooth category.

2. Definitions

We start with the geometric definitions.

Definition 2.1. [FT95] A grope is a special pair (2-complex, base circle). A grope has a **height** $n \in \frac{1}{2} \mathbb{N}$. A grope of height 1 is precisely a compact, oriented surface Σ with a single boundary component (the base circle). For $n \in \mathbb{N}$, a grope of height $n+1$ is defined recursively as follows: let $\{\alpha_i, \beta_i : i = 1, \ldots, g\}$ be a symplectic basis of curves for Σ, the first stage of the grope. Then a grope of height $n+1$ is formed by attaching gropes of height n to each α_i and β_i along the base circles.

A grope of height 1.5 is formed by attaching gropes of height 1 (i.e. surfaces) to a Lagrangian of a symplectic basis of curves for Σ. That is, a grope of height 1.5 is a surface with surfaces glued to “half” of the basis curves. In general, a grope of height $n + 1.5$ is obtained by attaching gropes of height n to the α_i and gropes of height $n + 1$ to the β_i.

Given a 4-manifold W with boundary M and a framed circle $\gamma \subset M$, we say that γ bounds a **grope** in W if γ extends to an embedding of a grope with its untwisted framing. That is, a Grope has a trivial normal bundle, so parallel push-offs can be taken. Knots in S^3 are always equipped with the zero framing.

The set of all concordance classes of knots that bound Gropes of height n in D^4 is denoted \mathcal{G}_n, which is a subgroup of C. We may choose to forget the top stages of a Grope. Thus, if K bounds a Grope of height $n+1$ in D^4, K also bounds a Grope of height n in D^4. We see that $\mathcal{G}_{n+1} \subset \mathcal{G}_n$ as subgroups of C, and this series of subgroups is the **grope filtration of the knot concordance group**. By ‘$K \in \mathcal{G}_n$,’ we mean a knot K whose concordance class lies in \mathcal{G}_n, or equivalently, a knot that bounds a Grope of height n in D^4.

Definition 2.2. For $K \in \mathcal{G}_{n+2}$, define the **n^{th}-order genus** of K to be the minimum of the genera of the first stage surfaces of Gropes of height $n+2$ in D^4 bounded by K. Denote the n^{th}-order genus of K by $g_n(K)$. With this numbering scheme, the slice genus of K is the -1^{st}-order genus of K.

It is immediately clear that for $K \in \mathcal{G}_{n+2}$, $0 \leq g_{-1}(K) \leq g_0(K) \leq \cdots \leq g_n(K)$, and that $g_n(K) = g_n(J)$ if K and J are concordant. Also, K is slice if and only if $g_n(K) = 0$ for some $n \geq -1$.

Now we turn to the algebraic definitions. If G is a group, the \textit{derived series} of G is defined recursively by $G^{(0)} = G$ and $G^{(i+1)} = [G^{(i)}, G^{(i)}]$. The \textit{rational derived series} of G is defined recursively by setting $G_r^{(0)} = G$ and $G_r^{(i+1)} = \left\{ g \in G : g^k \in [G_r^{(i)}, G_r^{(i)}], \text{ for some } k > 0 \right\}$.

\textbf{Definition 2.3.} \cite{COT03} Let M be closed, orientable 3-manifold. A spin 4-manifold W with $\partial W = M$ is an \textit{(n)-solution} for M if the inclusion-induced map $i_* : H_1(M) \to H_1(W)$ is an isomorphism and if there are embedded surfaces L_i and D_i (with product neighborhoods) for $i = 1, \ldots, m$ that satisfy the following conditions:

1. the homology classes $\{[L_1], [D_1], \ldots, [L_m], [D_m]\}$ form an ordered basis for $H_2(W)$,
2. the intersection form $(H_2(W), \cdot)$ with respect to this ordered basis is a direct sum of hyperbolics,
3. $L_i \cap D_j$ is empty if $i \neq j$,
4. for each i, L_i and D_i intersect transversely at a point, and
5. each L_i and D_i are \textit{(n)-surfaces}, i.e. $\pi_1(L_i) \subset \pi_1(W)^{(n)}$ and $\pi_1(D_i) \subset \pi_1(W)^{(n)}$.

If, in addition, $\pi_1(L_i) \subset \pi_1(W)^{(n+1)}$ for each i, we say W is an \textit{(n,5)-solution} for M. Since $H_1(W)$ has no 2-torsion and the intersection form of W is even, W is necessarily spin.

If a closed, orientable 3-manifold has an \textit{(n)-solution}, we say M is \textit{(n)-solvable}. A knot K in S^3 is an \textit{(n)-solvable knot} if the zero surgery on K is \textit{(n)-solvable}.

As in \cite{COT03}, the set of all \textit{(n)-solvable knots} is denoted \mathcal{F}_n, and Cochran-Orr-Teichner showed that the \mathcal{F}_n form a nested series of subgroups of \mathcal{C}. This series of subgroups is the \textit{(n)-solvable filtration} of the knot concordance group.

Given a closed 3-manifold and a homomorphism $\phi : \pi_1(M) \to \Gamma$ where Γ is any group, one can define the \textit{von Neumann} ρ-invariant $\rho(M, \phi) \in \mathbb{R}$ \cite[Section 4]{CG85}. See \cite{COT07} for an analytical interpretation of these von Neumann ρ-invariants.

\textbf{Definition 2.4.} For $K \in \mathcal{F}_n$, we define the \textit{nth-order signatures} of K to be the elements of the set $\mathcal{S}^n(K) = \left\{ \rho(M_K, \phi) \in \mathbb{R} \mid \phi : \pi_1(M_K) \xrightarrow{i_*} \pi_1(W) \right\}$ where $\pi_1(W)$, W is an \textit{(n)-solution} for M_K, $i : M_K \to W$ is the inclusion map, and $\rho(M_K, \phi)$ is the associated von Neumann ρ-invariant. While this set of signatures is an isotopy invariant of K, it is not a concordance invariant \cite[Example 3.2]{Hor09}.

Recall the Cheeger-Gromov estimate for the von Neumann ρ-invariants of a given closed, orientable 3-manifold \cite{CG85}. That is, given a closed, orientable 3-manifold M, there is a constant C_M such that

$$|\rho(M, \phi)| \leq C_M$$

for all homomorphisms $\phi : \pi_1(M) \to \Gamma$ for any group Γ. Thus for a fixed knot K and a fixed n, the set $\mathcal{S}^n(K)$ is a bounded set of real numbers.

3. \textbf{Concrete examples in the smooth category}

In this section we work in the smooth category. The purpose of this section is to construct non-slice knots that bound gropes of a fixed height. We compute the higher-order genera in these examples and conclude that for any positive integers n and m, there is a knot whose smooth nth-order genus is equal to m. The computations do not make use of our nth-order signatures.

Let K denote any knot with non-negative maximal Thurston-Bennequin number. For example, if K is the right-handed trefoil, then $TB(K) = 1$. Let $D(K)$ denote the positively-clasped, untwisted Whitehead double of K as depicted in Figure 1. For $i \geq 1$, let $D^i(K) = D(D^{i-1}(K))$ denote the ith iterated Whitehead double of K. By Livingston \cite{Liv94}, we know that $TB(K) \geq 0$ implies that the Ozsváth-Szabó τ-invariant of $D^i(K)$ is nontrivial, i.e. $\tau(D^i(K)) = 1$. It follows from \cite[Corollary 1.3]{OS03} that $D^i(K)$ is not smoothly slice for all $i \geq 1$. It should be noted that earlier work of Lee Rudolph implies that $D^i(K)$ is not slice for all $i \geq 1$ if K is the right-handed trefoil \cite{Rud93}.
We describe a Grope of height 2 in $S^3 \times I$ bounded by $D(K)$. The standard Seifert surface for $D(K)$ has a symplectic basis of curves, each of which inherits the zero framing from this surface. This basis is pictured in Figure 2. Let α denote the basis curve that “goes over the bridge” of this Seifert surface, and let β denote the other curve. Pull α slightly out of the page so that the intersection point with β is removed. Observe that the link $\alpha^+ \cup \beta$ is two parallel copies of K. Now push these two curves down in the I direction and glue parallel Seifert surfaces for K. The Seifert surface for $D(K)$ together with the pushing annuli and Seifert surfaces for K comprise a height 2 Grope for $D(K)$ in $S^3 \times I$. The genus of the first stage of this Grope is 1. By [OS03, Corollary 1.3] $1 = \tau(D(K)) \leq g-1(D(K)) \leq g_0(D(K)) \leq g_0(\#mD^n(K)) \leq \tau(\#_mD^n(K)) = m \cdot \tau(D^n(K)) = m$ and $g_0(D(K)) \leq 1$ by construction, we have $g_0(D(K)) = 1$.

We can iterate this procedure to build a Grope of height $n+1$ in $S^3 \times I$ bounded by $D^n(K)$, and the first stage of this Grope has genus 1. As before, we have $1 \leq \tau(D^n(K)) \leq g-1(D^n(K)) \leq g_0(D^n(K)) \leq \cdots \leq g_{n-1}(D^n(K)) \leq 1$, whence $g_{n-1}(D^n(K)) = 1$.

Since $\tau : C \to \mathbb{Z}$ is a homomorphism [OS03 Theorem 1.2], we conclude that $g_{n-1}(\#_mD^n(K)) \geq \tau(\#_mD^n(K)) = m \cdot \tau(D^n(K)) = m$ and $g_{n-1}(\#_mD^n(K)) \leq m$ by construction. To summarize, we have the following theorem.

Theorem 3.1. For any $n \geq 0$ and $m \geq 1$, there is a knot $K \in \mathcal{G}^\text{smooth}_{n+2}$ of infinite order, and $g_n(K) = m$.

Remark. Since the Alexander polynomial of $D(K)$ is trivial, it can be shown that $D(K)$ is smoothly (n)-solvable for all n. However, whether $D(K) \in \mathcal{G}^\text{smooth}_{n+2}$ for all n is still an open question.
4. Lower bounds on higher-order genera

We now turn to our higher-order signatures as tools for estimating the higher-order genera. While the higher-order signatures are not explicitly computable, we demonstrate how to ensure that all higher-order signatures are large enough to guarantee that the higher-order genera are large.

Lemma 4.1. Let \(K \in \mathcal{F}_n \) and \(W \) be an \((n)-solution \) for \(M_K \). Then the \(n \)-th signature of \(K \) associated to \(W \) satisfies \(|\rho(M_K, \phi)| \leq \beta_2(W)\).

Proof. Let \(\phi : \pi_1(M_K) \to \pi_1(W) \) be a homomorphism that factors through \(\pi_1(W) \). By the definition of an \((n)-solution \), the ordinary intersection form of \(W \) is a direct sum of hyperbolics, implying that the ordinary signature of \(W \) is zero. Since \(\phi \) factors through \(\pi_1(W) \), we have that \[\rho(M_K, \phi) = \sigma^{(2)}(W, \pi_1(W)/\pi_1(W)^{(n+1)}) - \sigma(W) = \sigma^{(2)}(W, \pi_1(W)/\pi_1(W)^{(n+1)}) \]

Here \(\sigma^{(2)}(W, \pi_1(W)/\pi_1(W)^{(n+1)}) \) refers to the \(L^2 \)-signature of \(W \) associated to the quotient \(\pi_1(W)/\pi_1(W)^{(n+1)} \). We refer the reader to Section 5 of [COT03] for a thorough explanation of \(L^2 \)-signatures. Cha has shown that \[\left| \sigma^{(2)}(W, \pi_1(W)/\pi_1(W)^{(n+1)}) \right| \leq \beta_2(W) \] [Cha08] Lemma 2.7].

That the homomorphism \(\phi : \pi_1(M_K) \to \pi_1(W)/\pi_1(W)^{(n+1)} \) factors through \(\pi_1(W) \) of bounding 4-manifold \(W \) is crucial. Our philosophy differs from Cha’s [Cha08] in that we assume our homomorphisms factor through bounding 4-manifolds (cf. Definition 2.4), whereas Cha takes a homomorphism \(\pi_1(M_K) \to \Gamma \) and tries to extend it to a bounding 4-manifold. In particular, Cha finds a homomorphism \(\phi_\sigma \) : \(\pi_1(M_K) \to \mathbb{Z} \) that factors through a certain bounding 4-manifold, and the von Neumann \(\rho \)-invariant associated to this homomorphism satisfies \(|\rho(M_K, \phi_\sigma)| \leq 4 g_{-1}(K)\), where \(g_{-1}(K) \) is the slice genus of \(K \) [Cha08] Theorem 1.1 and Proposition 1.2]. We, however, consider many homomorphisms that we assume extend to bounding 4-manifolds, and we show that (at least) one of the associated \(\rho \)-invariants satisfies \(|\rho| \leq 4 g_n(K)\), where \(g_n(K) \) is the \(n \)-th order genus of \(K \).

Theorem 4.2. If \(K \in \mathcal{G}_{n+2} \), one of the \(n \)-th order signatures \(\rho \in \mathfrak{S}^n(K) \) satisfies \(|\rho| \leq 4 g_n(K)\).

Proof. Let \(\Sigma \) be the first stage of a Grope of height \(n+2 \) that realizes \(g_n(K) \), i.e. \(g(\Sigma) = g_n(K) \). Cochran-Orr-Teichner construct an \((n)-solution \) \(W \) by surgering \(\Sigma \), and \(\beta_2(W) = 4 g(\Sigma) = 4 g_n(K) \) [COT03] Theorem 8.11]. The conclusion follows from Lemma 4.1.

Remark. Theorem 4.2 may be thought of as a higher-order analogue of Murasugi’s inequality [Mur65] Theorem 9.1]. Unlike the subsequent inequalities of Gilmour [Gil82] Theorem 1] and Cha [Cha08] Proposition 5.1], our result gives higher-order obstructions to the higher-order genera.

Corollary 4.3. If \(K \) is a slice knot, then for any \(n \), one of the \(n \)-th order signatures of \(K \) vanishes.

Proposition 4.4. Suppose \(K \) is \((n)-solvable \). If \(K \) is \((n.5)-solvable \), then one of the \(n \)-th order signatures of \(K \) vanishes.

Proof. Let \(W \) be an \((n.5)-solution \) for \(K \). It follows from [COT03] Theorem 4.2] that the \(n \)-th order signature of \(K \) associated to \(W \) vanishes.

Remark. The conclusion holds even if \(K \) is assumed to be merely rationally \((n.5)-solvable \) [COT03] Definition 4.1].

If the Alexander polynomial of a knot is trivial, then the knot is topologically slice [FQ90]. In particular, Alexander polynomial one knots are \((n)-solvable \) for all \(n \). Consequently, the \(n \)-th order signatures of an Alexander polynomial one knot are all equal to the classical signature, namely zero. As the \(n \)-th order signatures are topological invariants, they will not give accurate bounds for the smooth higher-order genera. For example, the knots constructed in Section 3 had trivial Alexander polynomial but large smooth \(n \)-th order genera.
Theorem 4.5. For any \(n \geq 1 \), there is a fixed \(g \) and a knot in \(G_{n+2} \) with slice genus bounded above \(g \) and arbitrarily high \(n \)-th order genus. Furthermore, this knot has infinite order in \(G_{n+2}/F_{n,5} \).

Remark. The statement of Theorem 4.5 seems to be false for \(n = 0 \). For example, if \(K \in G_2 \), one can construct a Grope of height 2 bounded by \(K \) whose first stage has genus equal to the Seifert genus of \(K \). See [COT03, Remark 8.14] for a discussion.

Proof. We construct knots according to Cochran-Orr-Teichner [COT03] and Cochran-Teichner [CT07]. We borrow the knot \(J \) from [CT07, Figure 3.6]. Let \(J_m = \#_m J \); then \(J_m \) bounds a Grope of height 2 (and is (0)-solvable), and \(\rho_0(J_m) = \frac{4m^3}{3} \) [CT07, Lemma 4.5]. Let \(R \) denote the knot pictured in Figure 3 (ignore the curve \(\eta \) for now). \(R \) is a fibered, genus 2, ribbon knot [COT03, p. 447].

![Figure 3. The ribbon knot R and a curve \(\eta \in \pi_1(S^3 - R)^{(2)} \).]

By [CT07, Theorem 4.3], there is a collection of unknotted curves \(\eta_i, 1 \leq i \leq j \), in \(S^3 - R \) with \([\eta_i] \in \pi_1(M_R)^{(n)} \) and for any \((n)\)-solution \(V \) of \(M_R \), some \(i_*(\eta_i) \notin \pi_1(V)^{(n+1)} \). For example, Figure 3 shows an unknotted curve \(\eta \) whose homotopy class lies in \(\pi_1(S^3 - R)^{(2)} \) \(\cong \pi_1(M_R)^{(2)} \), and this curve never maps into \(\pi_1(V)^{(3)} \) for any (2)-solution \(V \) for \(M_R \) [COT03, Theorem 4.2]. Let \(K = K_m \) denote the knot obtained by infecting \(R \) by \(J_m \) along \(\eta_i \) (for each \(i \)).

Infecting \(R \) by \(J_m \) along \(\eta_i \) means to grab the strands of \(R \) passing through the unknotted curve \(\eta_i \) and tie them collectively into the knot \(J_m \). Below is a schematic diagram of the infection operation.

![Figure 4. Infecting R by J_m along \(\eta_i \).]

We claim that by choosing \(m \) sufficiently large, we can guarantee all \(\rho \in \mathfrak{S}^n(K) \) are arbitrarily large. It will follow from Theorem 4.2 that \(K \) will have arbitrarily large \(n \)-th order genus, modulo verifying \(K \) bounds a Grope of height \(n + 2 \), which Cochran and Teichner proved in [CT07, Theorem 3.8].
Since the η_i have linking number zero with R, we can take a Seifert surface for R and tube around the η_i so that the tubes are disjoint. We are left with a Seifert surface for R which the η_i do not intersect. The knot K will have genus bounded above by the genus of our tubed surface for R. We now explain how to increase the n^{th}-order genus of K without increasing the genus.

Since our J_m are (0)-solvable, let W_m denote a (0)-solution for J_m. We form a 4-manifold E from

$$M_R \times [0, 1] \bigcup_{i=1}^{j} -M_{J_m} \times [0, 1]$$

by identifying, for each i, the copy of $\eta_i \times D^2$ in $M_R \times \{1\}$ with the tubular neighborhood of J_m in $M_{J_m} \times \{0\}$ as in Figure 5. The dashed arcs represent the solid tori $\eta_i \times D^2$. As indicated in Figure 3, $\partial E = M_R \sqcup -M_K \sqcup M_{J_m} \sqcup \cdots \sqcup M_{J_m}$. We form another 4-manifold C from E by gluing a copy of W_m to each $M_{J_m} \subset \partial E$.

Now let W be any (n)-solution for M_K. Let $V = C \cup -M_K -W$ so that $\partial V = M_R$. Then V is an (n)-solution for M_R [CT07, Proof of Theorem 4.2]. From our previous discussion, there is a η_k with $i_\ast ([\eta_k]) \notin \pi_1(V)^{(n+1)}$. Since η_k lives in M_K, we may include η_k into W. Since $W \subset V$, $i_\ast ([\eta_k]) \notin \pi_1(W)^{(n+1)}$.

![Figure 5. The 4-manifold E.](image)

Consider the homomorphism $\phi : \pi_1(M_K) \xrightarrow{i_\ast} \pi_1(W) \xrightarrow{\pi_1} \pi_1(W)/\pi_1(W)^{(n+1)}$. Let $\Gamma = \pi_1(W)/\pi_1(W)^{(n+1)}$. Now $M_R - (\sqcup \eta_i) \subset M_K$, so ϕ induces a homomorphism $\phi' : \pi_1(M_R - (\sqcup \eta_i)) \to \Gamma$. Since M_R is obtained by $M_R - (\sqcup \eta_i)$ by adding j 2-cells along the meridians of the η_i and then by adding j 3-cells, this ϕ' will extend to a homomorphism $\phi_R : \pi_1(M_R) \to \Gamma$ if the meridians of the η_i die under ϕ. Now $\eta_i \in \pi_1(M_R)^{(n)}$ and $\Gamma^{(n+1)} = 1$, so [CT07, Theorem 8.1] implies that $\eta_i \in \pi_1(M_K)^{(n)}$. Since the meridian μ_i of each J_m is identified with the longitude of η_i, $\mu_i \in \pi_1(M_K)^{(n)}$. Thus $\phi(\mu_i) \in \Gamma^{(n)}$. Since μ_i generates $\pi_1(S^3 - J_m)/\pi_1(S^3 - J_m)^{(1)}$, we see $\phi(\pi_1(S^3 - J_m)^{(1)}) \subset \Gamma^{(n+1)} = 1$. In particular the meridian of each η_i dies under ϕ, and hence ϕ' extends to a map $\phi_R : \pi_1(M_R) \to \Gamma$.

By [CT07, Proposition 4.4], the ρ-invariants of M_K and M_R are related by

$$\rho(M_K, \phi) - \rho(M_R, \phi_R) = \sum_{i=1}^{j} \epsilon_i \rho_0(J_m)$$

where $\epsilon_i = 0$ or 1 according to whether $\phi_R([\eta_i]) = 1$ or not. We argued that previously that $i_\ast ([\eta_k]) \notin \pi_1(W)^{(n+1)}$, so $\phi_R([\eta_k]) \neq 1$. Recall that the set of ρ-invariants of M_R are bounded above by the Cheeger-Gromov constant C_{M_R} (cf. equation 1). Thus, by choosing n sufficiently large, we will obtain a knot K with $|\rho(M_K, \phi)| > B$ for some large constant B. Since W was an arbitrary (n)-solution for
K, we have proved that every n^{th}-order signature for K is larger than B. Appealing to Theorem 4.2 we see that $g_{n}(K)$ is arbitrarily large. We should note here that since $0 \notin \mathcal{S}^{n}(K)$, $K \notin \mathcal{F}_{n,5}$ (by Proposition 4.4). [CT07, Theorem 4.2] establishes that K has infinite order in $\mathcal{G}_{n+2}/\mathcal{F}_{n,5}$. □

Corollary 4.6. Given any $n \geq 1$, there exist infinitely many knots in \mathcal{G}_{n+2} whose slice genus agree but whose n^{th}-order genera are distinct.

Proof. By Theorem 4.5 there is a positive integer g and a sequence $\{K_{i}\}_{i=1}^{\infty}$ of knots in \mathcal{G}_{n+2} with $g_{-1}(K_{i}) \leq g$ and $g_{n}(K_{i}) < g_{n}(K_{i+1})$ for all $i \geq 1$. Since the set $\{g_{-1}(K_{i})\}$ is a finite set, we can pass to a subsequence of knots with the same slice genera but different n^{th}-order genera. □

Remark. We can improve the statement of Corollary 4.6 to say that for each $n \geq 2$, there are infinitely many knots in \mathcal{G}_{n+2} with identical n^{th}-order genera for $i \leq n - 1$ and distinct n^{th}-order genera. However, the proof is too lengthy to include in this paper. We refer the reader to the author’s thesis for a proof [Hor09, Theorem 5.4]. This result implies that the lower-order genera of knots are inadequate measures of the complexity of \mathcal{G}_{n+2} and that the higher-order genera capture some of the missed information. Examples of this phenomenon can be constructed by infection on the 9$_{46}$ knot as in [Hor].

Example 4.7. We provide a concrete family of examples of knots $\{L_{m}\}_{m=1}^{\infty}$ in \mathcal{G}_{3} with slice genus bounded above by 3 and for any $C \in \mathbb{N}$ there is a positive integer N such that for all $n \geq N$, $g_{1}(L_{n}) > C$. Our family is inspired by Cochran-Harvey-Leidy’s family J_{n} (cf. [CHL07]).

Cochran-Harvey-Leidy defined their knots by infecting along the curves α and β in Figure 6. We cannot use these curves for the purpose of constructing knots bounding Gropes because the two punctured tori bounded by α and β intersect. As per [CHL07, Lemma 3.9], we find curves α' and β' that are homotopic to α and β, respectively, and that bound disjoint height 1 Gropes in $S^{3} - R$. Since these curves are homotopic, the n^{th}-order signatures will not distinguish our examples from the examples of [CHL07]. However, our examples are probably not concordant to theirs.

![Figure 6. The infection curves α and β, and homotopic infection curves α' and β'.](image)

Now, let J be the knot from [CT07] and let $J_{m} = \#_{m}J$. J_{m} no longer refers to the knots from [CHL07]. Let L_{m} be infection on $R = 9_{46}$ along α' and β' by J_{m}. We chose α' and β' so that they bound disjointly embedded punctured tori in the complement of R, so by [CT07] Proof of Theorem 3.7 the knots L_{m} will bound Gropes of height 3 in D^{4}. Since α' and β' lie off of a genus 3 Seifert surface for R, L_{m} will have slice genus less than or equal to three.

Let V be a (1)-solution for $M = M_{L_{m}}$. Let $\pi = \pi_{1}(V)$. Since $H_{1}(V) \cong \mathbb{Z}$ is torsion-free, we conclude $H_{1}(V) \cong \pi/\pi^{1} \cong \pi/\pi^{1}_1 \cong \mathbb{Z}$. Let $\phi : \pi_{1}(M) \xrightarrow{i} \pi \twoheadrightarrow \pi/\pi^{1}_1$. Since $i_{*} : H_{1}(M) \xrightarrow{\cong} H_{1}(V) \cong \pi/\pi^{1}_1$, we see that $\phi : \pi_{1}(M) \rightarrow H_{1}(M) \xrightarrow{i_{*}} H_{1}(V)$. For emphasis, let $H_{1}(M; \mathbb{Q}[s, s^{-1}])$ denote the first homology
of the infinite cyclic cover of M as a $\mathbb{Q}[s,s^{-1}]$-module, where $H_1(M) = \langle s \rangle$, and let $H_1(M;\mathbb{Q}[t,t^{-1}])$ denote the first homology induced by the coefficient system $\phi : \pi_1(M) \to \pi_1$. The curves α and β generate $H_1(M;\mathbb{Q}[s,s^{-1}])$, and since α' and β' are homotopic to these generators, α' and β' also generate $H_1(M;\mathbb{Q}[s,s^{-1}])$. Since the coefficient system ϕ is $\pi_1(M) \to H_1(M)$ followed by an isomorphism, α' and β' generate $H_1(M;\mathbb{Q}[t,t^{-1}])$.

Cochran-Orr-Teichner proved that the coefficient system ϕ induces a hyperbolic bilinear form $Bl(\cdot,\cdot)$ defined on $H_1(M;\mathbb{Q}[t,t^{-1}])$ [COT03, Theorem 2.13] and that
\[\mathfrak{t} := \ker \{ i_* : H_1(M;\mathbb{Q}[t,t^{-1}]) \to H_1(V;\mathbb{Q}[t,t^{-1}]) \} \]
satisfies $\mathfrak{t} = \mathfrak{t}^\perp$ with respect to this form [COT03 Theorem 4.4]. Since this form is hyperbolic and α' and β' generate $H_1(M;\mathbb{Q}[t,t^{-1}])$, $Bl(\alpha',\beta')$ is nonzero, and hence one of α' and β' is not in \mathfrak{t}. By the bilinearity of Bl, all integer multiples of α' or β' are not in \mathfrak{t}. Recall that $H_1(V;\mathbb{Q}[t,t^{-1}])$ is the first homology of the infinite-cyclic cover \tilde{V} of V, viewed as a $\mathbb{Q}[t,t^{-1}]$-module, and $\pi_1(\tilde{V}) = \pi_1(V)$. If α' were to map to zero in $H_1(V;\mathbb{Q}[t,t^{-1}])$, then α' would map into $\pi_1(V)^{(2)}$. Since no multiple of α' (or of β') lie in \mathfrak{t}, we conclude that α' or β' does not map into $\pi_1(V)^{(2)}$. As in Theorem 4.5, we have the following relationship between the ρ-invariants:
\[\rho(M,\phi) - \rho(M_R,\phi_R) = \epsilon_{\alpha'}\rho_0(J_m) + \epsilon_{\beta'}\rho_0(J_m) \]

Since one of α' and β' does not map into $\pi_1(V)^{(2)}$, one of $\epsilon_{\alpha'}$ or $\epsilon_{\beta'}$ is one, as discussed in the proof of Theorem 4.5. By choosing m sufficiently large, the number $|\rho(M,\phi)|$ can be made arbitrarily large. Since V was an arbitrary (1)-solution, we have that $g_1(L_m)$ is arbitrarily large by Theorem 4.2.

5. Applications to a Geometric Structure on the Grope Filtration

Let B'_n denote the subset of all K in \mathcal{G}_{n+2} such that $g_n(K) \leq r$. Since $g_{n-1} \leq g_0 \leq \cdots \leq g_n$, we see that $B'_{n-1} \supseteq B'_0 \supseteq \cdots \supseteq B'_n$. Our main result (Theorem 4.5) is that the higher-order genera are finer measures than the slice genus. Furthermore, by the remark after Corollary 4.6 the nth-order genus is a finer measure than the lower-order genera, up to order at least $n-2$. That is, some (depending on n and r) of these subset containments are proper. Consequently, these higher-order genera provide a further refinement of the Grope filtration of the knot concordance group. That is, after determining how deep a knot lies in the Grope filtration (say in \mathcal{G}_{n+2}), one might try to determine the knot’s nth-order genus.

We attempt to complement these comments with the diagram in Figure 7. The ambient three-dimensional space represents \mathcal{G}_{n+2}, the plane represents \mathcal{G}_{n+3}, the line represents \mathcal{G}_{n+4}, and the origin represents $\bigcap_{n \geq 0} \mathcal{G}_n$. The corresponding balls have been drawn. The diagram suggests the existence of knots in $B'_n - B'_{n+1}$, which was proven in Theorem 4.5 and Corollary 4.6 for certain n and r.
Figure 7. The refinement of the Grope filtration by the higher-order genera.

REFERENCES

[CG85] Jeff Cheeger and Mikhael Gromov, Bounds on the von Neumann dimension of L^2-cohomology and the Gauss-Bonnet theorem for open manifolds, Journal of Differential Geometry 21 (1985), 1–34.

[Cha08] Jae Choon Cha, Topological minimal genus and L^2-signatures, Algebraic & Geometric Topology 8 (2008), 885–909.

[CHL07] Tim Cochran, Shelly Harvey, and Constance Leidy, Knot concordance and higher-order Blanchfield duality, Available at http://arxiv.org/abs/0710.3082 2007.

[Coc04] Tim Cochran, Noncommutative knot theory, Algebraic & Geometric Topology 4 (2004), 347–398.

[COT03] Tim Cochran, Kent Orr, and Peter Teichner, Knot concordance, Whitney towers and L^2-signatures, Annals of Mathematics 157 (2003), 433–519.

[CT07] Tim Cochran and Peter Teichner, Knot concordance and von Neumann ρ-invariants, Duke Mathematical Journal 137 (2007), no. 2, 337–379.

[FQ90] Michael Freedman and Frank Quinn, Topology of 4-manifolds, Princeton Mathematical Series, no. 39, Princeton University Press, Princeton, NJ, 1990.

[FT95] Michael Freedman and Peter Teichner, 4-manifold topology I: Subexponential groups, Inventiones Mathematicae 122 (1995), 509–529.

[Gil82] Patrick Gilmer, On the slice genus of knots, Inventiones Mathematicae 66 (1982), 191–197.

[Hor] Peter Horn, The non-triviality of the Grope filtrations of the knot and link concordance groups, Available at http://arxiv.org/abs/0804.2661.

[Hor09] Higher-order analogues of genus and slice genus of classical knots, Ph.D. thesis, Rice University, 2009.

[Liv04] Charles Livingston, Computations of the Ozsváth-Szabó knot concordance invariant, Geometry and Topology 8 (2004), 735–742.

[Mur65] Kunio Murasugi, On a certain numerical invariant of link types, Transactions of the American Mathematical Society 117 (1965), 387–422.

[OS03] Peter Ozsváth and Zoltán Szabó, Knot Floer homology and the four-ball genus, Geometry & Topology 7 (2003), 615–639.

[Rol76] Dale Rolfsen, Knots and links, Publish or Perish, Berkeley, CA, 1976.

[Rud93] Lee Rudolph, Quasipositivity as an obstruction to sliceness, Bulletin of the American Mathematical Society 29 (1993), no. 1, 51–59.