LETTER

Long-term exposures to ambient PM$_1$ and NO$_2$ pollution in relation to mild cognitive impairment of male veterans in China

Gongbo Chen1,3, Jiping Tan2,3, Lailai Yan1,4, Nan Li4, Luning Wang2,5, Na Li6, Lei Mai6, Yiming Zhao4, Shanshan Li7 and Yuming Guo2,9

1. Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
2. Geriatric Neurology Department of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, People's Republic of China
3. Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China
4. Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, People's Republic of China
5. Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
6. Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, Guangdong, People's Republic of China
7. Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
8. These authors contributed equally to this paper.
9. Authors to whom any correspondence should be addressed.

E-mail: lnw_301@163.com and yuming.guo@monash.edu

Keywords: air pollution, mild cognitive impairment, veterans, China

Supplementary material for this article is available online

Abstract

Mild cognitive impairment (MCI) is an intermediate stage of cognitive decline between normal ageing and dementia or Alzheimer's disease in the elderly. However, evidence is very limited in China for the association between air pollution and MCI. This study aims to examine the associations of long-term exposure to air pollution and MCI, using data from the Chinese Veteran Clinical Research Platform. A national investigation on mental health of veterans was conducted in 277 veteran communities in 18 cities across China. In total, 1,861 MCI cases and 3,188 controls were randomly selected using a stratified cluster sampling strategy from December 2009 to December 2011. Participants' cognitive function was first assessed using the Mini Mental State Examination and the Montreal Cognitive Assessment in the Chinese version, and then further confirmed by clinical examination. Participants' mean exposures to PM$_1$ (particulate matter with aerodynamic diameter $\leq 1 \mu m$) and NO$_2$ (nitrogen dioxide) during the 3 years before the investigation were estimated using satellite remote sensing data, meteorological variables and land use information. The association between historical exposure to air pollution and MCI was examined using Logistic regression. After controlling for individual-level and regional-level confounders, we found historical exposures to PM$_1$ and NO$_2$ significantly increased the risk of MCI. The odds ratios (ORs associated with per 10 $\mu g m^{-3}$ increase in air pollution) and 95% confidence intervals for PM$_1$ and NO$_2$ were 1.08 (1.04, 1.13) and 1.07 (1.02, 1.13), respectively. In the multi-pollutant models, higher OR for PM$_1$ while lower OR for NO$_2$ were observed compared to single-pollutant models. High levels of PM$_1$ and NO$_2$ pollution significantly increased the risk of cognitive decline among male veterans in China. Given the causal air pollution-MCI relationship, good air quality may help to reduce the burden of mental disorders among elderly veterans in China.
1. Introduction

Mild cognitive impairment (MCI) is an intermediate stage of cognitive decline between normal ageing and dementia or Alzheimer’s disease in the elderly [1]. The prevalence of MCI is 10%–20% among elderly adults (aged 65 years and older) [2], and over 50% of MCI cases develop into dementia within 5 years [3]. A wide range of factors have been recognized to increase the risk of MCI, including demographic characteristics (e.g. gender and age), vascular factors (e.g. hypertension) and psychiatric factors (e.g. depression) [4, 5]. Apart from these risk factors, recent studies have revealed the association between exposure to ambient air pollution and cognitive function in elderly people [6]. For example, a study conducted in the U.S. reported long-term exposures to particulate matter (PM) pollution was significantly in relation to cognitive decline in elderly women [7–9]. Another study in Germany also stated long-term exposure to traffic-related air pollution was associated with the impaired cognitive function in elderly women [10].

As a country with the largest population in the world, China bears huge burdens of ageing-related diseases [11, 12]. The prevalence of MCI in China was estimated to be 14.7% among elderly population (aged 60 years and older) [13]. The burden of MCI in China is expected to increase substantially in the following decades, due to the increasing trend of elderly population [14]. Although numerous studies have examined the health effects of air pollution [15, 16], few studies have been done in China focused on the association between exposure to air pollution and MCI [17, 18]. Characteristics of PM are related to its health effects, including chemical composition, total mass and size fraction [19]. In contrast to the extensively studied pollutants including PM2.5 and PM10 (particulate matter with aerodynamic diameter \(\leq 2.5 \, \mu m \) and \(\leq 10 \, \mu m \), respectively), the health effects of smaller particles (e.g. PM1 (particulate matter with aerodynamic diameter \(\leq 1 \, \mu m \))) are not clear. Due to its smaller particle size, it can be inferred that PM1 is more harmful than PM2.5 and more strongly associated with some health outcomes, which might be due to its higher efficiency of pulmonary deposition, easier penetration into the vascular system, higher surface to volume ratio and more toxic components adhered [20].

The Chinese veterans are a stable population that live in veteran communities. As they have optimal health management systems and long-term and detailed medical records, it facilitates studies on the associations between environmental factors and mental health [21]. In this study, 5,049 veterans from 277 veteran communities across China were investigated during 2009–2011. Participants’ historical exposures to PM1 and NO2 (nitrogen dioxide) were estimated using random forests models, satellite remote sensing data, and meteorological and land use information. The associations between long-term exposures to PM1 and NO2 and MCI were examined using Logistic regression.

2. Methods

2.1. Study population

Data on mental health status of veterans across China were obtained from the Chinese Veteran Clinical Research (CVCR) Platform [22]. This platform was developed by Chinese People’s Liberation Army Hospital and veterans’ hospitals that aimed to study on health status of veterans in China. Details of CVCR Platform were previously reported [21, 23]. In brief, we selected 18 cities across China as the members included in the CVCR Platform, according to the city size and economic status. They were four first-tier cities, five second-tier cities and one third-tier city in Eastern China, and eight second-tier cities in Central and Western China. For cities with more veteran communities, the sample size was 500–1000, while for cities with fewer veteran communities, the sample size was 100–300. For each selected city, veteran communities were selected according the sample size and demographic characteristics of the participants (e.g. age and educational attainment) to improve the representativeness of the sampling. In each selected veteran community, all eligible veterans were investigated. As a result of it, participants from 277 veteran communities in 18 cities were investigated, accounting for 24.36% of all veteran communities across China (figure 1). Eligible participants were veterans who met the inclusion criteria as follows: (a) aged \(\geq 60 \) years; (b) worked in the army before retirement; (c) have lived in the veteran communities for more than one month; (d) were under the management of the veteran communities and agreed to participate in CVCR Platform. Those were not included in this study who failed to meet any of the inclusion criteria. This study only included male veterans, as female veterans were very few in China and their sample size is not comparable to male veterans in this study.

2.2. Data collection and diagnosis of MCI

A two-phase investigation was performed in each veteran community for data collection and diagnosis of MCI from December 2009 to December 2011. In the first phase, participants were interviewed by trained investigators (medical staff). A standard questionnaire was used to collect information on demographic characteristics, behavioural factors and self-reported health status. If the participants were unable to respond, their caregiver or relatives were alternatively interviewed with informed consent. Disease history was extracted from medical records by research staff. Participants’ cognitive function were assessed using the Mini Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) in
Figure 1. Locations of all veteran communities across China in this study.

the Chinese version [24, 25]. For illiterate participants and those with 1–6 years and ≥7 years of educational attainment, the cut-off scores of MMSE were 20, 23 and 27, respectively. The cut-off score of MoCA was 26. Details of the cut-off scores of MMSE and MoCA were previously reported [26]. In the second phase, all participants with positive results (MMSE and MoCA scores lower than the cut-off values) in the first phase screening were further confirmed by a comprehensive neuropsychological evaluation and clinical examination including physical examination and neuroimaging scan. Based on the information collected in this two-phase investigation, the MCI cases were finally diagnosed according to recommendations from the National Institute on Ageing-Alzheimer’s Association workgroups [27].

Data on covariates were also collected, including age, educational years (<5, 5–10 or ≥10), regular physical activity (yes or not), smoking (current smoker, ex-smoker or non-smoker) and drinking (>2 times/week, ≤2 times/week, quit or never). Disease history was extracted from medical records by research staff, including hypertension, diabetes, stroke, coronary heart disease and depression.

2.3. Exposure assessment

Based on our previous works [28, 29], participants’ historical exposures to PM$_1$ and NO$_2$ were estimated using a satellite-based random forests approach and a wide range of spatial and temporal predictors, including satellite remote sensing data, meteorological conditions, land use information and day of the year. Daily ground measurements of PM$_1$ and NO$_2$ were obtained from China Atmosphere Watch Network and China National Environmental Monitoring Center, respectively. Satellite-derived moderate resolution imaging spectroradiometer (MODIS) AOD (aerosol optical depths) data (collection 6) and OMI (Ozone Monitoring Instrument) data (daily level-3 nitrogen dioxide product) were downloaded to estimate daily concentrations of PM$_1$ and NO$_2$ across China, respectively. First, based on ground measurements of PM$_1$ and NO$_2$, random forests models were developed as follows:

$$\text{Surface PM}_1 = F(AOD, \text{TEMP}, \text{WS}, \text{PRS}, \text{PREC}, \text{RHU}, \text{SRA}, \text{NDVI}, \text{Elev}, \text{Urban, DOY})$$

$$\text{Surface NO}_2 = F(\text{OMI, TEMP, WS, PRS, PREC, RHU, SRA, NDVI, Elev, Urban, DOY})$$

where surface PM$_1$ and surface NO$_2$ are daily mean levels of ground measurements at each site; AOD and OMI are satellite-derived daily AOD and OMI values; TEMP, RH, BP and WS are daily mean temperature, relative humidity, barometric pressure and wind speed, respectively; normalized difference vegetation index (NDVI) is the monthly average NDVI value; Elev is the elevation of each site. Urban is the percentage of urban cover with a buffer radius of 10 km; DOY is day of the year.

Then, predictive abilities of random forest models were examined using a 10-fold cross-validation
Table 1. Demographic characteristics of MCI cases and controls.

Factors	MCI cases	Controls		
	n	%	n	%
Age (mean ± SD)	82.7	3.8	81	4.8
Educational years				
<5 years	459	25%	551	17%
5–10 years	836	45%	1449	45%
⩾10 years	566	30%	1188	37%
Regular physical activity				
Yes	1620	87%	2934	92%
No	241	13%	254	8%
Regular social activity				
Yes	760	41%	1302	41%
No	1101	59%	1886	59%
Smoking status				
Current smoker	139	7%	275	9%
Ex-smoker	706	38%	1011	32%
Non-smoker	1016	55%	1902	60%
Drinking				
>2 times/week	143	8%	235	7%
≤2 times/week	454	24%	849	27%
Quit	344	18%	443	14%
Never	920	49%	1661	52%
Hypertension				
Yes	1282	69%	2111	66%
No	579	31%	1077	34%
Diabetes				
Yes	529	28%	791	25%
No	1332	72%	2397	75%
Stroke				
Yes	407	22%	455	14%
No	1454	78%	2733	86%
Coronary heart disease				
Yes	1367	73%	2150	67%
No	494	27%	1038	33%
Historical electromagnetic field exposure				
Yes	132	7%	232	7%
No	1729	93%	2956	93%
Depression				
Yes	60	3%	45	1%
No	1801	97%	3143	99%
Region				
Eastern China	1452	78%	2312	73%
Central China	139	7%	337	11%
Western China	270	15%	539	17%
Total	1861	100%	3188	100%

approach, which showed that annual averages of estimated PM$_1$ and NO$_2$ explained 75% and 72% of variabilities of ground measurement, respectively. Finally, the validated models were used to predict daily concentrations of PM$_1$ and NO$_2$ in a grid covering the entire China at a spatial resolution of 0.1 degree (≈10 km) during 2006–2011. More details of data processing, model development and validation are shown in the supplementary material (available online at stacks.iop.org/ERL/16/025013/mmedia).

Individual’s exposures to PM$_1$ and NO$_2$ during the 3 years before diagnosis of MCI were extracted from the estimated grid data according to the location of each community (longitude and latitude) and the date of diagnosis [30].

2.4. Statistical analyses
Logistic regression was used to examine the association between exposure to air pollution and MCI. Firstly, a crude model was developed with only mean exposure to PM$_1$ or NO$_2$ as the independent variable. Then, an adjusted model was developed based on the crude model by controlling for potential confounders. According to previous studies on air pollution and MCI [6, 7], a range of potential confounders were considered including age, educational years, physical and social activities, smoking and drinking. History of hypertension, diabetes, stroke, coronary heart disease and depression were also controlled in the adjusted model, as they are risk factors of MCI and associated with long-term exposure to air.
Table 2. Participants’ mean exposures to air pollutants ($\mu g m^{-3}$) during the 3 years prior to the investigation.

Pollutants	Quartiles					
	Mean	Min	25%	50%	75%	Max
MCI cases						
PM$_1$	54.1	30.0	43.3	52.6	64.4	76.9
NO$_2$	43.6	19.1	33.6	47.0	50.1	61.0
Controls						
PM$_1$	52.2	23.7	40.0	49.1	64.2	76.9
NO$_2$	42.5	19.1	34.9	42.2	49.6	61.0
All participants						
PM$_1$	52.9	23.7	40.7	50.5	64.4	76.9
NO$_2$	42.9	19.1	34.7	45.3	49.8	61.0

Figure 2. Odds ratios of MCI (95% CIs) associated with per ten units increase in air pollutant in different models.

All statistical analyses were performed with R software (version 3.3.3, R Development Core Team 2015).

3. Results

In total, 1,861 male MCI cases and 3,188 controls with no any mental disorder were identified in this study. Demographic characteristics of cases and controls are shown in table 1. Most of participants (>70%) were from Eastern China. Male veteran cases of MCI who had less educational years and did less physical activities were more likely to develop MCI than veteran controls. In addition, veterans with stroke, coronary heart disease or depression were more probable to had MCI. Other factors were distributed evenly among cases and controls.

Participants’ mean exposures to PM$_1$ and NO$_2$ during the 3 years before diagnosis of MCI are summarized in table 2. MCI cases showed higher levels of exposures to air pollutants than the controls. Cases’ mean exposures to PM$_1$ and NO$_2$ were 54.1 $\mu g m^{-3}$ and 43.6 $\mu g m^{-3}$, respectively, while
Table 3. ORs and 95% CIs of MCI associated with PM$_1$ and NO$_2$ in stratified analyses.

Factors	PM$_1$	NO$_2$
Age		
<85	1.08 (1.02, 1.13)	1.07 (1.01, 1.14)
≥85	1.09 (1.01, 1.19)	1.08 (0.97, 1.20)
Educational years		
<10	1.10 (1.05, 1.16)	1.11 (1.04, 1.18)
≥10	1.04 (0.96, 1.13)	1.00 (0.91, 1.11)
Smoking		
Smoker	1.08 (1.01, 1.15)	1.06 (0.98, 1.14)
Non-smoker	1.08 (1.02, 1.15)	1.08 (1.01, 1.16)
Drinking		
Drink every week	1.05 (0.97, 1.13)	1.03 (0.94, 1.13)
Quit or Never drink	1.10 (1.05, 1.16)	1.09 (1.02, 1.16)
Regular physical activity		
Yes	1.08 (1.03, 1.13)	1.07 (1.01, 1.13)
No	1.08 (0.95, 1.23)	1.09 (0.93, 1.28)
Regular social activity		
Yes	0.95 (0.88, 1.02)	0.94 (0.87, 1.02)
No	1.17 (1.11, 1.24)	1.16 (1.09, 1.25)

Figure 3. The results of adjusted models using different exposure periods.

The results for controls were 52.2 μg m$^{-3}$ and 42.5 μg m$^{-3}$, respectively. Participants’ mean exposures to PM$_1$ and NO$_2$ during the 1 year or 2 years before the investigation are shown in tables S2–S3 in the supplementary material. The mean levels of exposures to PM$_1$ and NO$_2$ were highly correlated ($r = 0.87$, $p < 0.01$).

The results of crude, adjusted and multi-pollutant models are present in figure 2. Illustrated by the crude models, exposures to ambient PM$_1$ and NO$_2$ pollution significantly increased the risk of MCI and the ORs (95% CI) were 1.10 (1.06, 1.15) and 1.09 (1.04, 1.15), respectively. After controlling for potential confounders (all variables shown in table 1), the ORs (95% CI) for PM$_1$ and NO$_2$ were 1.08 (1.04, 1.13) and 1.07 (1.02, 1.13), respectively. In the multi-pollutant models, higher OR for PM$_1$ while lower OR for NO$_2$ were observed compared to single-pollutant models.

The results of stratified analyses are shown in table 3. Higher ORs of PM$_1$ and NO$_2$ were observed among veterans who had less educational years and less alcohol consumption, and those who did fewer social activities. The results of sensitivity analyses are shown in figure 3. The significant associations between MCI and air pollution were also observed during other exposure periods prior to the investigation including single year and two year average exposures. It showed our results were robust to different exposure periods.
4. Discussion

In this study, mental health status of male veterans was investigated in 18 cities in China and their past exposures to PM$_{1}$ and NO$_{2}$ pollution were estimated using satellite remote sensing data and a random forests approach. The relationships between ambient air pollution and cognitive function of male veterans were examined. According to our study, historical exposures to PM$_{1}$ and NO$_{2}$ pollutant significantly increased the risk of MCI. To the best of our knowledge, this is the first study on ambient pollution and cognitive function in elderly population in China. Our study population are male elderly veterans in China. The health information of veterans is well managed and recorded, which facilitates studies on patterns of chronic disease and their associations with environmental factors. The veterans in this study have no mobility, and their socioeconomic factors are more comparable than the general population, which may reduce the confounding effects of these factors on the results. The findings of this study can provide valuable information for multidisciplinary studies based on the CVCR platform in the future.

Currently most of the studies in China on health effects of air pollution are focused on cardiovascular and respiratory diseases and birth outcomes [34–36], but very few studies have ever examined mental health outcomes. On the other hand, compared to the short-term effects, the long-term health effects of air pollution in China is less known due to unavailability of long-term ground monitoring data and health data [37]. Some cohort studies in Europe and North American have examine the long-term health effects of air pollution on health outcomes (mortality, cardiovascular disease and cancer) [38–40], however, those findings may not directly apply to China, considering the differences in characteristics of air pollutants, population and environment.

Weuve et al [7] found in the U.S. that long-term exposures to high levels of PM$_{2.5}$ and PM$_{2.5-10}$ (particulate matter with aerodynamic diameter 2.5–10 μm) were significantly associated with 0.18 and 0.2 global scores of cognitive decline, respectively. Tzivian et al [6] also reported exposure to PM$_{2.5}$ significantly increased the risk of MCI with the IQR (interquartile range increase) OR and 95% CI of 1.16 (1.05, 1.27). Different from those studies, our study is focused on cognitive function among male veterans, which is a susceptible population to mental disorders. Veterans may experience high stress during their military service and they are vulnerable to some mental health problems [41, 42]. Veterans may also occupationally expose to electromagnetic field due to working with military facilities, which is a known risk factor of mental disorders [43]. In addition, our study examined the association between PM$_{1}$ pollution and MCI. Numerous studies revealed the adverse health effects of PM$_{2.5}$, however little is known its specific size fractions [20, 44]. Thus, our study provides valuable information on health effects of air pollution on mental health in developing countries and indicates a research perspective on smaller particles.

Although some studies indicated components of air pollutants can reach human brain and have impacts on central nervous system disease, the mechanism and pathway have not been thoroughly studied [45]. There are several potential biological mechanisms for the air pollution-MCI association. First, the PM induced systemic inflammation have impacts on blood-brain barrier, which results in chronic oxidative stress involving neural-immune interaction [10]. Secondly, study indicated inhalation of air pollutants caused changes of olfactory bulb pathologically and these changes were linked with progress of Alzheimer’s disease [46]. Finally, long-term exposure to air pollution is associated with a wide range of health outcomes and some of them are established risk factors of MCI, including hypertension, stroke and diabetes [47–49]. Smoking and drinking are known risk factors of cognitive decline in the elderly [50, 51]. In our stratified analysis, higher ORs were observed among non-drinkers than drinkers. This may due to competing risks of drinking and air pollution and selection bias [52].

MCI represents the early stage of dementia and Alzheimer disease [53]. Mental disorder among elderly population, e.g. dementia, has been recognized as a major problem of public health since decades ago [54], especially in China with the huge and increasing ageing population. Currently, China is experiencing almost the worst air pollution in the world, as a downside of rapid economic development and urbanization [37]. PM$_{1}$ originates from either direct emissions during combustion process or from formation of particles in the air from gaseous precursors [55, 56]. NO$_{2}$ is mainly emitted from combustion related sources including traffic and industry emissions [57]. Results of Source appointment studies showed that coal and combustion, secondary aerosol and crustal sources were main contributors to PM$_{1}$ [58], and NO$_{2}$ were mainly attributed to transportation fuels, fossil fuel burning in power plants, and industrial facilities [39]. Considering that both ambient PM$_{1}$ and NO$_{2}$ pollution are mainly from combustion related sources, more effective policies should be made to govern transportation industry development in urban China. Given the causal air pollution-MCI association, improving air quality may help with better cognitive function among elderly population and further reduce the burden of mental disorders in China. Moreover, evidence for adverse health effects of PM$_{1}$ is limited. No guidelines of PM$_{1}$ have been made in China or elsewhere in the world. In future, more studies should explore the short-term and long-term association between PM$_{1}$ and various health outcomes. These studies will provide valuable
information to make guidelines and standards for curbing PM$_1$ pollution.

Several limitations of our study should be notified. Previous study reported body mass index (BMI) in midlife was in relation to cognitive decline in late life [60]. However, accurate information on participants’ BMI in midlife was not available, as they were over 60 years old when investigated. Additionally, there are two types of MCI, amnestic and nonamnestic [1]. As we have no access to the clinical information regarding subtypes of MCI in this study, it is not clear whether air pollution showed different effects on these two types of MCI and more studies are needed focusing this issue in future. Finally, the exact disease onset date of each MCI case was not available in our study. This information will help improve the accuracy of exposure assessment.

5. Conclusion

In our study, we found higher levels of PM$_1$ and NO$_2$ pollution were associated with increased risk of cognitive decline among male veterans in China. Currently, evidence for the association between air pollution and mental health is very limited in China. More studies should explore the long-term health effects of air pollution, especially for smaller particles. If causal relationship between air pollution and cognitive decline exists, tough action and effective policy curbing air pollution will reduce the burden of mental disorders among elderly Chinese.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

This study was supported by National Natural Science Foundation of China (No. 81903279); JT was supported by the Special Research Project on Health Care, Health Sector of the General Logistics Department of People’s Liberation Army (Nos. 07BJZ04, 10BJZ19, 11BJZ09, 12BJZ46) and The National Science and Technology Support Program (No: 2013BAI09B14). NL and YZ were supported by the National Natural Science Foundation of China (No. 81701067). The authors have declared that no competing interests exist.

References

[1] Petersen R C 2011 Mild cognitive impairment N. Engl. J. Med. 364 2227–34
[2] Langa K M and Levine D A 2014 The diagnosis and management of mild cognitive impairment: a clinical review JAMA 312 2551–61
[3] Gauthier S et al 2006 Mild cognitive impairment Lancet 367 1262–70
[4] Joo S H, Yun S H, Kang D W, Hahn C T, Lim H K and Lee C U 2018 Body mass index in mild cognitive impairment according to age, sex, cognitive intervention, and hypertension and risk of progression to Alzheimer’s disease Frontiers Psychiatry 9 142
[5] Tan E Y, Köhler S, Hamel R E, Muñoz-Sánchez J L, Verhey F R and Ramakers I H 2019 Depressive symptoms in mild cognitive impairment and the risk of dementia: a systematic review and comparative meta-analysis of clinical and community-based studies J Alzheimers’s Dis. 67 1319–29
[6] Tzivian L et al 2016 Long-term air pollution and traffic noise exposures and mild cognitive impairment in older adults: a cross-sectional analysis of the Heinz Nixdorf recall study Environ. Health Perspect. 124 1361
[7] Weuve J, Puett R C, Schwartz J, Yanosky J D, Laden F and Grodstein F 2012 Exposure to particulate air pollution and cognitive decline in older women Arch. Intern. Med. 172 219–27
[8] Schikowski T and Altug H 2020 The role of air pollution in cognitive impairment and decline Neurochem. Int. 136 3136/04708
[9] Altug H et al 2020 Air pollution is associated with depressive symptoms in elderly women with cognitive impairment Environ. Int. 136 105448
[10] Ranft U, Schikowski T, Sugiri D, Krummholz J and Krämer U 2009 Long-term exposure to traffic-related particulate matter impairs cognitive function in the elderly Environ. Res. 109 1004–11
[11] Chatterji S, Kowal P, Mathers C, Naidoo N, Verdes E, Ranft U, Schikowski T, Sugiri D, Krutmann J and Krämer U 2013 The prevalence of Parkinson’s disease in an older population Arch. Gerontol. Geriatr. 57 62–70
[12] Gauthier S, Chertkow H, Laarete P, et al 2014 The diagnosis and management of mild cognitive impairment: a clinical review CMAJ 186 E689–97
[13] Gauthier S, Chetkow H, Laarete P, et al 2015 The diagnosis and management of mild cognitive impairment: a clinical review CMAJ 187 E554–65
[14] Gauthier S, Chetkow H, Laarete P, et al 2016 The diagnosis and management of mild cognitive impairment CMAJ 188 E251–62

[24] Hong Z et al 2000 The Mini-Mental State Examination in population aged 55 years and over in urban and rural areas of Shanghai Chin. J. Nerv. Ment. Dis. 26 155–7
[25] Wen H, Zhang Z, Niu F and Li L 2008 The application of Montreal cognitive assessment in urban Chinese residents of Beijing Zhonghua Nei Ke Za Zhi 47 36–39
[26] Tan J-P et al 2015 Optimal cutoff scores for dementia and mild cognitive impairment of the Montreal Cognitive Assessment among elderly and oldest-old Chinese population J. Alzheimer's Dis. 43 1403–12
[27] Albert M S et al 2011 The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease Alzheimer's Dementia 7 270–9
[28] Chen G et al 2017 Estimating spatiotemporal distribution of PM1 concentrations in China with satellite remote sensing, meteorology, and land use information Environ. Pollut. 30 1e9
[29] Chen G, Li S, Knibbs L D, Hamm N, Cao W, Li T, Guo J, Ren H, Abramson M J and Guo Y 2018 A machine learning method to estimate PM 2.5 concentrations across China with remote sensing, meteorological and land use information Sci. Total Environ. 636 52–60
[30] Chen G, Xiang H, Mao Z, Huo W, Guo Y, Wang C and Li S 2019 Is long-term exposure to air pollution associated with poor sleep quality in rural China? Environ. Int. 133 105205
[31] Uc E Y, McDermott M P, Marder K S, Anderson S W, Chen G, Liu W, Xu Z and Yang T 2018 Health effects of air pollution Seal K H, Bertenthal D, Miner C R, Sen S and Marmar C 2015 Air pollution in China: a review. Environ. Res. Lett. 10 025013
[32] Alzheimer's Disease Alzheimer's Dementia 7 270–9
[33] Kaplan S, Deniz O G, Önger M E, Türkmen A P, Yurt K K, Aydin I, Altunkaynak B Z and Davis D 2016 Electromagnetic field and brain development J. Chem. Neuroanat. 75 52–61
[34] Chen G et al 2017 Effects of ambient PM 1 air pollution on daily emergency hospital visits in China: an epidemiological study Lancet Planet. Health 1 221–29
[35] Block M L and Calderón-Garcidueñas L 2009 Air pollution: mechanisms of neuroinflammation and CNS disease Trends Neurosci. 32 506–16
[36] Doty R L 2008 The olfactory vector hypothesis of neurodegenerative disease: is it viable? Ann. Neurol. 63 7–15
[37] Lopez O et al 2003 Risk factors for mild cognitive impairment in the Cardiovascular Health Study Cognition Study part 2 Arch. Neurol. 60 1394–9
[38] Cheng G, Huang C, Deng H and Wang H 2012 Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies Intern. Med. J. 42 484–91
[39] Li J, Wang Y, Zhang M, Xu Z, Gao C, Fang C, Yan J C and Zhou H D 2011 Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease Neurolog. 76 1485–91
[40] Kalmijn S, Van Boxtel M P, Verschuren M W, Jolles J and Tan J-P 2015 Incidence of and risk factors for cognitive impairment JAMA Neurol. 73 379–86
[41] Sullivan J H, Anderson G L and Kaufman J D 2007 Increased body mass index and cognitive decline in the Cardiovascular Health Study Cognition field and brain development Chin. J. Nerv. Ment. Dis. 36 39–43
[42] Sayers S L, Farrow V A, Ross J and Oslin D W 2009 Family problems among recently returned military veterans referred for a mental health evaluation J. Clin. Psychiatry 70 163
[43] Kaplan S, Deniz O G, Önger M E, Türkmen A P, Yurt K K, Aydin I, Altunkaynak B Z and Davis D 2016 Electromagnetic field and brain development J. Chem. Neuroanat. 75 52–61
[44] Chen G et al 2017 Effects of ambient PM 1 air pollution on daily emergency hospital visits in China: an epidemiological study Lancet Planet. Health 1 221–29
[45] Block M L and Calderón-Garcidueñas L 2009 Air pollution: mechanisms of neuroinflammation and CNS disease Trends Neurosci. 32 506–16
[46] Doty R L 2008 The olfactory vector hypothesis of neurodegenerative disease: is it viable? Ann. Neurol. 63 7–15
[47] Lopez O et al 2003 Risk factors for mild cognitive impairment in the Cardiovascular Health Study Cognition Study part 2 Arch. Neurol. 60 1394–9
[48] Cheng G, Huang C, Deng H and Wang H 2012 Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies Intern. Med. J. 42 484–91
[49] Li J, Wang Y, Zhang M, Xu Z, Gao C, Fang C, Yan J C and Zhou H D 2011 Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease Neurolog. 76 1485–91
[50] Kalmijn S, Van Boxtel M P, Verschuren M W, Jolles J and Launer L J 2002 Cigarette smoking and alcohol consumption in relation to cognitive performance in middle age Am. J. Epidemiol. 156 936–44
[51] Cervilla J, Prince M and Mann A 2000 Smoking, drinking, and incident cognitive impairment: a cohort community based study included in the Gospel Oak project J. Neurol. Neurosurg. Psychiatry 68 622–6
[52] Pope C A, Burnett R T, Krewski D, Jerrett M, Shi Y, Calle E E and Thun M J 2009 Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke: shape of the exposure-response relationship Circulation 120 941–8
[53] Morris J C, Storandt M, Miller J P, McKeel D W, Price J L, Rubin E H and Berg L 2001 Mild cognitive impairment represents early-stage Alzheimer disease Arch. Neurol. 58 397–405
[54] Albert M S and Blacker D 2006 Mild cognitive impairment and dementia Annu. Rev. Clin. Psychol. 2 379–88
[55] Rajput P, Mandaria A, Kakachaw I, Singh D K, Singh K A and Gupta T 2016 Chemical characterisation and source apportionment of PM1 during massive loading at an urban location in Indo-Gangetic Plain: impact of local sources and long-range transport Tellus B 68 30659
[56] Singhai A, Habib G, Raman S R and Gupta T 2016 Chemical characterisation of PM1.0 aerosol in Delhi and source apportionment using positive matrix factorization Environ. Sci. Pollut. Res. 24 1–18
[57] Richter A, Burrows J P, Nüfß H, Granier C and Niemeier U 2005 Increase in tropospheric nitrogen dioxide over China observed from space Nature 437 129–32
[58] Ye Z et al 2014 Aerosol characteristics in Changzhou, China: composition, source, and comparison with co-collected PM2.5 Chemosphere 183 176–85
[59] Rohde R A and Muller R A 2015 Air pollution in China: mapping of concentrations and sources PLoS One 10 e0135749
[60] Cronk B B, Johnson D K and Burns J M Alzheimer’s Disease Neuroimaging Initiative 2010 Body mass index and cognitive decline in mild cognitive impairment Alzheimer Dis. Assoc. Disord. 24 126