Anthraquinone derivatives from a coral associated fungus

Stemphylium lycopersici

Jiao Lia,b,1, Yu-Bing Zhengb,c,1, Tibor Kurtánd, Ming-Xiang Liub, Hua Tangb, Chun-Lin Zhuangb and Wen Zhangb,c,*

aSchool of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, P. R. China; bSchool of Pharmacy, Second Military Medical University, Shanghai, P. R. China; cSchool of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China; dDepartment of Organic Chemistry, University of Debrecen, Debrecen, Hungary

ABSTRACT: Two new anthraquinone derivatives, alterporriol Y (1) and macrosporin 2-O-α-D-glucopyranoside (2), together with five known analogues (3-7) were isolated from the fungus *Stemphylium lycopersici* associated with the gorgonian coral *Dichotella gemmacea* collected from the South China Sea. Their structures were determined on the basis of detailed spectroscopic analysis and comparison with reported data. The absolute configurations were determined by the ECD method. In an *in vitro* cytotoxic assay, compound 3 and 4 showed potent effects against HCT-116 and MCF-7 cell lines. Compound 4 also exhibited cytotoxicity toward Huh7 stem cell-like cells.

Keywords: anthraquinone; *Stemphylium lycopersici*; cytotoxicity

CONTACT: Wen Zhang wenzhang1968@163.com
Table of contents

Table S1. 1H and 13C NMR Data for Compounds 1 and 2 (in DMSO-d_6) S3

Figure S1. Key 1H-1H COSY and HMBC correlations of compounds 1 and 2 S4

Figure S2. Key NOE correlations of compound 1 .. S4

Figure S3. ECD spectrum of 1 ... S4

Figure S4. HRESI-MS spectrum of 1 ... S5

Figure S5. UV spectrum of 1 .. S5

Figure S6. FTIR spectrum of 1 ... S6

Figure S7. 1H NMR (600 MHz, DMSO-d_6) spectrum of compound 1 S6

Figure S8. 13C-NMR and DEPT (150 MHz, DMSO-d_6) spectrum of compound 1 .. S7

Figure S9. HMQC spectrum of 1 in DMSO-d_6 .. S7

Figure S10. 1H-1H COSY spectrum of 1 in DMSO-d_6 S8

Figure S11. HMBC spectrum of 1 in DMSO-d_6 .. S8

Figure S12. NOESY spectrum of 1 in DMSO-d_6 .. S9

Figure S13. 1H-NMR (600 MHz, pyridine-d_5) spectrum of 1 S9

Figure S14. 13C-NMR (150 MHz, pyridine-d_5) spectrum of 1 S10

Figure S15. HMQC spectrum of 1 in pyridine-d_5 .. S10

Figure S16. 1H-1H COSY spectrum of 1 in pyridine-d_5 S11

Figure S17. HMBC spectrum of 1 in pyridine-d_5 ... S11

Figure S18. NOESY spectrum of 1 in pyridine-d_5 ... S12

Figure S19. HRESI-MS spectrum of 2 ... S12

Figure S20. UV spectrum of 2 ... S13

Figure S21. FTIR spectrum of 2 ... S13

Figure S22. 1H NMR (600 MHz, DMSO-d_6) spectrum of compound 2 S14

Figure S23. 13C-NMR and DEPT (100 MHz, DMSO-d_6) spectrum of compound 2 S14

Figure S24. HMQC spectrum of 2 in DMSO-d_6 .. S15

Figure S25. 1H-1H COSY spectrum of 2 in DMSO-d_6 S15

Figure S26. HMBC spectrum of 2 in DMSO-d_6 .. S16
Table S1. 1H and 13C NMR Data for Compounds 1 and 2 (in DMSO-d_6).

Position	1H (J in Hz)	13C	Type
1 α	36.1, CH$_2$	2.37, d (19.2)	
1 β	2.21, d (19.2)		
1a	143.4, C		
2	69.2, C		
3	70.2, CH	3.53, ovd	
4 α	29.3, CH$_2$	2.49, ovd	
4 β	2.71, dd (19.2, 5.0)		
4a	141.7, C		
5	163.9, C		
6	103.9, C	6.87, s	
7	164.1, C		
8	122.6, C		
9	183.6, C		
9a	129.2, C		
10	187.9, C		
10a	108.8, C		
11	25.3, CH$_3$	1.07, s	
12	56.9, CH$_3$	3.66, s	
OH-2	4.42, s		
OH-3	4.80, d (5.2)		
OH-5	13.1, s		

Position	1H (J in Hz)	13C	Type
1	110.2, CH	8.00, s	
1a	133.1, C		
2	160.0, C		
3	134.9, C		
4	129.6, CH	7.87, s	
4a	126.8, C		
5	107.3, CH	7.19, s	
6	166.0, C		
7	105.9, CH	6.86, s	
8	164.2, C		
9	186.2, C		
9a	110.2, C		
10	180.8, C		
10a	134.9, C		
Me-3	16.3, CH$_3$	2.38, s	
OMe-6	56.4, CH$_3$	3.93, s	
OH-2	97.7, CH	5.73, d (3.3)	
OH-3	71.3, CH	3.49, dd (9.5, 3.3)	
OH-5	72.9, CH	3.70, t (9.5)	
4’	69.4, CH	3.28, t (9.7)	
5’	74.5, CH	3.38, ddd (9.7, 4.6, 2.2)	
6’	60.2, CH$_2$	3.52, dd (12.5, 2.2)	
OH-8	12.77, s		

a150 MHz. b600 MHz. c100 MHz. dov = overlapped signal.
Figure S1. Key 1H-1H COSY and HMBC correlations of compounds 1 and 2

Figure S2. Key NOE correlations of compound 1.

Figure S3. ECD spectrum of 1
Figure S4. HRESI-MS spectrum of 1

Figure S5. UV spectrum of 1
Figure S6. FTIR spectrum of 1

Figure S7. 1H NMR (600 MHz, DMSO-d_6) spectrum of compound 1
Figure S8. 13C-NMR and DEPT (150 MHz, DMSO-d_6) spectrum of compound 1

Figure S9. HSQC spectrum of 1 in DMSO-d_6
Figure S10. 1H-1H COSY spectrum of 1 in DMSO-d_6

Figure S11. HMBC spectrum of 1 in DMSO-d_6
Figure S12. NOESY spectrum of 1 in DMSO-d_6

Figure S13. 1H-NMR (600 MHz, pyridine-d_5) spectrum of 1
Figure S14. 13C-NMR (150 MHz, pyridine-d_5) spectrum of 1

Figure S15. HSQC spectrum of 1 in pyridine-d_5
Figure S16. 1H-1H COSY spectrum of 1 in pyridine-d_5

Figure S17. HMBC spectrum of 1 in pyridine-d_5
Figure S18. NOESY spectrum of 1 in pyridine-d_5

Figure S19. HRESI-MS spectrum of 2
Figure S20. UV spectrum of 2

![UV spectrum of 2]

Table 1: UV data of 2

No.	W/V	谱长 (nm)	Abs.	描述
1	1	372.00	0.477	
2	1	278.82	2.812	
3	1	224.80	1.949	
4	1	201.00	2.768	
5	1	348.20	0.450	
6	1	241.20	1.034	
7	1	218.80	1.872	

Figure S21. FTIR spectrum of 2

![FTIR spectrum of 2]
Figure S22. 1H NMR (600 MHz, DMSO-d_6) spectrum of compound 2

Figure S23. 13C-NMR and DEPT (100 MHz, DMSO-d_6) spectrum of compound 2
Figure S24. HSQC spectrum of 2 in DMSO-d_6

Figure S25. 1H-1H COSY spectrum of 2 in DMSO-d_6
Figure S26. HMBC spectrum of 2 in DMSO-d_6