Pressure-induced superconductivity in EuFe$_2$As$_2$ without a quantum critical point: magnetotransport and upper critical field measurements under high pressure

Nobuyuki Kurita1,2,*, Motoi Kimata3, Kota Kodama1,4, Atsushi Harada1, Megumi Tomita1, Hiroyuki S. Suzuki1, Takehiko Matsumoto2, Keizo Murata5, Shinya Uji1,2,4, and Taichi Terashima1,2

1National Institute for Materials Science, Tsukuba, Ibaraki 305-0003, Japan
2JST, Transformative Research-Project on Iron Pnictides (TRIP), Chiyoda, Tokyo 102-0075, Japan
3Institute for Solid State Physics, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
4Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-0003, Japan
5Department of Physics, Graduate School of Science, Osaka City University, Osaka 558-8583, Japan

(Dated: December 13, 2013)

Resistivity and Hall effect measurements of EuFe$_2$As$_2$ up to 3.2 GPa indicate no divergence of quasiparticle effective mass at the pressure P_c where the magnetic and structural transition disappears. This is corroborated by analysis of the temperature (T) dependence of the upper critical field. T-linear resistivity is observed at pressures slightly above P_c. The scattering rates for both electrons and holes are shown to be approximately T-linear. When a field is applied, a T^2 dependence is recovered, indicating that the origin of the T-linear dependence is spin fluctuations.

PACS numbers: 74.25.Op,74.25.Dw,74.25.F.-,74.62.Fj

I. INTRODUCTION

Since the discovery of superconductivity in LaFeAs(O,F) at $T_c = 26$ K,1 considerable attention has been paid to iron-based superconductors (SCs) with a variety of crystal structures containing stacked iron-pnictide (or -chalcogenide) layers.2 The maximum values of T_c thus far achieved are 54-56 K3,4 and 39 K5 in the “1111” (RFeAsO; $R =$ rare earth) and “122” (AFE$_2$As$_2$; A = alkaline earth or Eu) groups, respectively. Despite intensive research, the detailed mechanism of the superconductivity, for example, the symmetry of the SC order parameter, remains highly controversial.$^7-12$ It has been revealed that iron-based SCs have a unique Fermi surface (FS) structure, typically consisting of two- or three-hole and two-electron sheets.13,14 The 1111 and 122 parent compounds undergo FS reconstruction associated with an antiferromagnetic (AF) order of Fe moments at T_0. With the suppression of T_0 via dopings15,16 or the application of pressure (P)17,18 the superconducting (SC) ground state can be triggered. Hence, magnetic instability may play an important role in iron-based SCs.

One of the intriguing issues of iron-based SCs is the origin of non-Fermi-liquid (NFL) behavior in their transport properties, such as T-linear resistivity16,17 which emerges as T_0 is suppressed. The existence of a quantum critical point (QCP), where the second-order transition temperature becomes zero, in iron-based SCs has theoretically been proposed18 and has been demonstrated by the observation of a peak in the penetration depth, which is proportional to $(n/n^*)^{-1/2}$, at the optimal doping in the BaFe$_2$(As,P)$_2$ system19 for example (n and m^* are the carrier number and quasiparticle effective mass, respectively).

However, the existence of a QCP does not appear to be universal in iron-based SCs nor is its relevance to the superconductivity clear, as suggested by phase diagrams of La-based 1111 systems20,21 or the composition dependence of the penetration depth and Drude weight of optical conductivity, both of which are related to n/m^*, in the Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ system22,23 for example. In addition, it has been argued that the interpretation of the NFL-like behavior may not be straightforward owing to the multiband character of iron-based systems24,25.

Pressure tuning of the electronic structures in stoichiometric compounds is a better means of studying a QCP than tuning by chemical substitution, which might obscure a QCP by the inevitably introduced randomness. We therefore study EuFe$_2$As$_2$ under applied pressure (Fig. 1). The transition temperature T_0 is about 190 K at ambient pressure, and the critical pressure P_c, where indications of the transition at T_0 disappear and bulk superconductivity appears, is 2.5-2.7 GPa26,30 This sudden disappearance of T_0 is incompatible with a QCP. Although the Eu$^{2+}$ moments exhibit an AF order at $T_N \sim 20$ K, the ferromagnetic (FM) alignment can be achieved at only a few Tesla21,22 and the spin disorder scattering can be minimized21 Because of the large exchange field from the Eu$^{2+}$ moments to the conduction electron spins, the upper critical field B_{c2} for the P-induced superconductivity is much smaller than for other iron-based SCs with similar T_c. These unique characteristics of EuFe$_2$As$_2$, thus, provide a significant opportunity to experimentally investigate the iron-based superconductivity with high T_c of 30 K. Our measurements of transport properties and upper critical fields up to 3.2 GPa reported below show no evidence of diverging quasiparticle effective mass at P_c, indicating that the emergence of P-induced superconductivity in this clean system does not involve a QCP. However, it does not curtail the importance of spin fluctuations: we

*Present address: Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
observe T-linear resistivity at pressures near P_c and find that the Fermi liquid T^2 dependence can be recovered by the application of a magnetic field.

II. EXPERIMENTAL DETAILS

Single crystals of EuFe$_2$As$_2$ were grown by the Bridgman method from a stoichiometric mixture of the constituent elements. Resistivity and Hall effect were measured simultaneously by a conventional six-contact device. The applied pressure was determined at 4.2 K from the change in resistance of a calibrated Manganin wire. As in our previous works,

![Graph showing the phase diagram of EuFe$_2$As$_2$](image)

FIG. 1: (Color online) $P-T$ phase diagram in EuFe$_2$As$_2$ with $RRR=13$ (circles, bottom axis) and 7.29 (triangles, top axis), deduced from the resistivity measurements up to 3.2 GPa under zero field. The pressure is scaled with the critical value P_c. PM, AFM, and SC indicate the paramagnetic, antiferromagnetic, and superconducting states, respectively. For the SC phase, open and solid symbols indicate T_c (onset) and T_c(zero resistivity), respectively. T_c^{on} determined at $B=15$ T is also shown. Dashed curves are a guide to the eyes.

![Graph showing the low-temperature data of resistivity and magnetoresistance](image)

FIG. 2: (Color online) Low-temperature data of $\rho(B)$ and $\rho_1(B)$ in EuFe$_2$As$_2$ ($RRR=13$) at $P =$ (a) 0 GPa, (b) 1.6 GPa, (c) 2.6 GPa, and (d) 3.2 GPa. Solid curves are fits to a multicarrier model.

III. RESULTS AND DISCUSSIONS

First, we discuss how electron and hole carriers evolve as a function of P via multicarrier analysis. Figure 2(a) shows the low-T data of transverse magnetoresistivity $\rho(B)$ and Hall resistivity $\rho_1(B)$ in EuFe$_2$As$_2$ ($RRR=13$) at ambient pressure. The $\rho(B)$ curves show a minimum (e.g., ~ 2 T at 2 K), which is attributable to the B-induced FM alignment of the Eu$^{2+}$ moments. At high fields, $\rho(B)$ shows positive magnetoresistance (MR), as expected from the cyclotron motion of electrons. $\rho_1(B)$ exhibits pronounced nonlinear behavior at low temperatures. The field-induced transition of the
Eu$^{2+}$ moments is not detectable in the $\rho_H(B)$ curves, indicating negligible effect of the Eu$^{2+}$ moments on the number of carriers. At pressures sufficiently below P_c, the $\rho_H(B)$ and $\rho(B)$ curves are qualitatively similar to those at ambient pressure except that the curvature in $\rho_H(B)$ and the magnitude of MR in $\rho_H(B)$ decreases with increasing P [Fig. 2(b)]. In the vicinity of P_c, SC transitions due to the partial [Fig. 2(c)] or bulk superconductivity appears. In the high field normal state, $\rho(B)$ and $\rho_H(B)$ still slightly exhibit a positive MR and nonlinear behavior, respectively. As P is increased to above P_c, ρ_H exhibits nearly B-linear dependence [Fig. 2(d)], whereas ρ indicates negative MR due to the suppression of spin fluctuations of the Fe ions except in the low-T and high-B regions where the cyclotron motion dominates.

Figure 3 shows the T dependence of the Hall coefficient R_H, as defined by $d\rho_H/dB$ at $B = 0$, under several pressures. The enhancement of $|R_H(T)|$ below T_0 for $P < P_c$ indicates the destruction of substantial parts of the FS. For $P > P_c$ (inset), $|R_H(T)|$ still increases below ~ 80 K. Similar enhancement of $|R_H(T)|$ has been observed in the paramagnetic phase of BaFe$_2$(As,P)$_2$, and it has been argued that the behavior cannot be explained by a multiband picture for a Fermi liquid. However, in the present case, $|R_H|$ at 2.8 GPa is 2×10^{-9} m2/C (T $\sim T_c$), which corresponds to ~ 0.16 electron/Fe (e/Fe) in a single-carrier model. This value is comparable to the band-calculation value for BaFe$_2$As$_2$ (0.15 e/Fe), and hence can be accounted for within a simple two-carrier picture.

EuFe$_2$As$_2$ is a compensated metal with an equal number of electrons and holes, for which a simple two-carrier model predicts a linear ρ_H. The nonlinearity in $\rho_H(B)$ below P_c thus indicates that more than two carriers contribute to the electronic transport. In the case of the sister compound BaFe$_2$As$_2$, a Shubnikov-de Haas oscillation study has shown that the Fermi surface in the AF phase consists of one hole and two electron pockets. In keeping with this, a three-carrier model can account for the nonlinear behavior of $\rho_H(B)$ as well as the $\rho(B)$ data for BaFe$_2$As$_2$. We therefore apply essentially the same three-carrier analysis to the obtained $\rho_H(B)$ and $\rho(B)$ data for EuFe$_2$As$_2$ at $P \leq P_c$, assuming one hole (H) and two electrons (E1 and E2) with density n_i, mobility μ_i, and conductivity σ_i, deduced from multiscalar analysis. Solid and open symbols correspond to the results obtained at ≤ 10 K and 20 K, respectively. One hole (H) and two types of electrons (E1 and E2) are considered for $P \leq P_c$ (~ 5.2 GPa), whereas a simple two-band model with $n_H = n_{E1} = 7.5 \times 10^{-2}$ electrons/Fe (e/Fe) is assumed for $P > P_c$. The nonlinear behavior of $\rho_H(B)$ is thus understood in terms of the Fermi-liquid properties of the Fe carriers in the AF phase.
curves in Fig. 5(a) indicate the fits, which capture the overall features of the experimental results. The fitting gives \((n_H, n_{E1}, n_{E2}; \mu_H, \mu_{E1}, \mu_{E2}) = (6.6, 5.6, 0.92 \times 10^{-2} \text{ e/Fe}; 0.57, 0.57, 1.5 [10^3 \text{ cm}^2/\text{Vs}])\) for \(T = 2\,\text{K}\). The fitting errors are approximately 3\% for H and E1, and 20\% for E2. The parameter sets obtained at 20 and 30 K are comparable to those at 2 K. One can find the tendency that \(n_H \approx n_{E1} \approx n_{E2}\) and \(\mu_H \approx \mu_{E1} \ll \mu_{E2}\), similar to the case of BaFe\(_2\)As\(_2\). The magnitudes of the parameter sets, particularly \(\mu_i\), for EuFe\(_2\)As\(_2\) (\(RRR = 13\)) are comparable to those for as-grown samples of BaFe\(_2\)As\(_2\). For other pressures, a similar quality of fitting can be obtained.

At \(P > P_c\), we assume one electron carrier (E) and one hole carrier (H) with \(n_H = n_E\). In the analysis, the slope of \(\rho_H(B)\) and the \(\rho\) value at \(B = 0\) are used. To determine the parameter sets \((n_H, n_E; \mu_H, \mu_E)\) uniquely, we fix \(n_H = n_E = 7.5 \times 10^{-2} \text{ e/Fe}\). A band-structure calculation suggests that the carrier density for BaFe\(_2\)As\(_2\) is 0.15 e/Fe. However, the shrinking of the FS has been observed in BaFe\(_2\)(As, P)\(_2\) and has been theoretically attributed to strong interband scattering. The volume of the FS is approximately halved as the optimal doping is approached in BaFe\(_2\)(As, P)\(_2\). We therefore use the halved value.

Figure 6 displays the \(P\) evolutions of \(n_i\), \(|\mu_i|\), and conductivity \(\sigma\). As the pressure approaches \(P_c\), \(n_i\) increases, while \(|\mu_i|\) decreases. It appears that \(n_i\) and \(|\mu_i|\) develop reasonably continuously to their values at \(P > P_c\). Neither of the \(P\) dependences of \(\mu_i (= e\tau_i/m^*_i)\) or \(\sigma (= e^2\tau_i n_i/m^*_i)\) suggests the divergence of \(m^*\) or \((n/m^*)^{-1}\) at \(P_c\).

We further substantiate the absence of a QCP by deriving the \(P\) dependence of the effective masses from \(B_{c2}\)–\(T_c\) phase diagrams under applied pressures. Figures 5(a) and (b) show \(\rho\) vs \(T\) at 2.6 and 3.0 GPa, respectively, in the \(RRR = 7\) sample under several \(B\) for \(B \parallel ab\). \(T_c\)
under each magnetic field is determined by the midpoint temperature of the SC transitions. Figure 5(c) shows the thus determined upper critical field B_{c2} as a function of temperature for several pressures. It appears that $B_{c2}(0)$ is highest at $P \sim P_c$ and decreases with increasing P. In EuFe$_2$As$_2$, orbital and Pauli paramagnetic effects and magnetic Eu$^{2+}$ moments all play an important role in determining B_{c2}, which complicates the understanding of the obtained B_{c2} vs T_c. In a previous paper, we analyzed $B_{c2}(T)$ data obtained at 2.5 GPa (also shown in Fig. 5(c)) using a multiple pair-breaking model that includes the antiferromagnetic exchange field B_J due to magnetic Eu$^{2+}$ moments. We obtained the spin-orbit scattering parameter $\lambda_{so} = 2.4$, and the maximum of $|B_J|$ as $B_J^{m} = 75$ T, where the Maki parameter $\alpha = 3$ is fixed. It is known that m^* is related to α through $m^* \propto \sqrt{\alpha/T_c}$ or α/τ_0 (τ_0: residual resistivity) in the clean or dirty limit, respectively. Thus, we estimate α as a function of P using the same model. As α is highly sensitive to other fitting parameters, we use the values of $\lambda_{so} = 2.4$ and $B_J^{m} = 75$ T for all the pressures. Dashed curves are fitting results using α and T_c as free parameters. The inset of Fig. 5(c) shows the P dependences of α/T_c and α/τ_0. The former exhibits only a modest increase, whereas the latter exhibits a decrease as P_c is approached. This indicates that, either in the clean or dirty limit, there is no divergence of m^* as the pressure approaches P_c.

We now address the issue of the NFL behavior. Figure 6(a) shows the T dependence of ρ under zero field in EuFe$_2$As$_2$ ($RRR = 13$) at several pressures. Solid curves are fits to $\rho = \rho_0 + C T^x$ (C: constant). To avoid the effect of Eu$^{2+}$ moments or superconductivity, we use data in a fitting range from 35 K (fixed) to several temperatures between 50 K and T_0. Figure 6(b) indicates the P evolution of the exponent x. At $P \ll P_c$, Fermi liquid (FL) like behavior ($x \sim 2$) is observed. As the pressure approaches P_c, x decreases rapidly and reaches approximately unity.

It has previously been proposed that the T-linear resistivity in iron-based SCs arises from the T-dependent carrier concentration and that the carrier scattering rate τ^{-1} obeys a standard FL T^2 law. We therefore show the T dependence of $(m^*/m_0)/\tau = (e/m_0)\mu_i^{-1}$ at 2.9, 3.1, and 3.2 GPa ($P > P_c$) obtained from the above two-carrier analyses. The x dependence of ρ is fixed. As shown in Fig. 8, ρ increases from 0.05 and 0.1 e/Fe gives a similar approximately T-linear dependence of ρ.

Figure 8 shows $\rho(T)$ at 2.9 GPa ($\sim P_c$) under several fields of up to 15 T. The FL T^2 behavior is gradually restored with increasing B. To estimate the T variation of the exponent x under applied fields, we fit the data to $\rho = \rho_0 + C T^x$ in several temperature ranges. The inset of Fig. 8 shows the T variation of x under 0, 8, and 15 T. Under zero field, the x value is close to one. Under applied fields of 8 and 15 T, with decreasing T, the x value increases from ~ 1 and approaches ~ 2. This clearly indicates that the origin of the T-linear resistivity is spin fluctuations. As is well known, spin fluctuation theories predict T-linear resistivity for two-dimensional nearly AF metals. To our knowledge, there has been no observation of a B-induced change in the resistivity exponent from 1 to 2 in iron-based SCs. The present observation is most likely to result from the fact that the conduction carrier spins are influenced by the large exchange field from the Eu$^{2+}$ moments, in addition to the externally applied field. That is, as soon as the Eu$^{2+}$ moments are fully aligned by the applied field, the conduction electrons feel a large exchange field of $-B_J^{m} = -75$ T, which effectively suppresses the spin fluctuations.
IV. CONCLUSIONS

To conclude, our analyses of magnetotransport and upper critical fields in EuFe$_2$As$_2$ under high pressure indicate that there is no QCP at P_c in this pure compound, which is in sharp contrast to the observation in BaFe$_2$(As,P)$_2$13,15. On the other hand, we have shown that the scattering rates for both electrons and holes are approximately T-linear for $P > P_c$. The recovery of the FL T^2 dependence of ρ at high fields clearly indicates that spin fluctuations are the origin of the anomalous scattering. It appears that systematic analyses of spin (and/or orbital) fluctuations based on the electronic structures of individual materials, beyond a generic scenario based on a QCP, are necessary to elucidate the mechanism of iron-based superconductivity.

Acknowledgment

We would like to thank H. Eisaki, S. Ishida, and H. Harima for fruitful discussions. This work was partially supported by a Grant-in-Aid for Young Scientists (No. 23740279) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Appendix

The procedure for the three carrier analysis used in simultaneously fitting the obtained ρ and ρ_B data of EuFe$_2$As$_2$ is shown below. This procedure is essentially the same as that used in the recent work on the sister compound BaFe$_2$As$_2$41.

Tensor components of the electrical conductivity, σ_{xx} (=σ_{yy}) and σ_{xy} (= $-\sigma_{yx}$), for three carriers can be expressed in the following forms using those of the electrical resistivity, ρ_{xx} (= ρ_{yy}=ρ) and ρ_{xy} (= $-\rho_{yx}$=ρ_B):

$$\sigma_{xx} = \frac{\rho_{xx}}{\rho_{xx}^2 + \rho_{xy}^2} = \frac{1}{\left(1 + (\mu_i B)^2\right)^2}$$

$$\sigma_{xy} = \frac{\rho_{xy}}{\rho_{xx}^2 + \rho_{xy}^2} = \frac{3}{\left(1 + (\mu_i B)^2\right)^2}$$

where q_i, n_i, and μ_i are the charge, density, and mobility of the ith carrier, respectively, and the tensors of the electrical conductivity σ and resistivity ρ have the forms:

$$\sigma = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ -\sigma_{xy} & \sigma_{xx} \end{pmatrix}, \quad \rho = \begin{pmatrix} \rho_{xx} & \rho_{xy} \\ -\rho_{xy} & \rho_{xx} \end{pmatrix}$$

From Eq. (1), ρ_{xx} and ρ_{xy} can be written as follows:

$$\rho_{xx} = \frac{\sum_{i=1}^{3} q_i n_i \mu_i^2}{1 + (\mu_i B)^2}$$

$$\rho_{xy} = \frac{\sum_{i=1}^{3} q_i n_i \mu_i^2}{1 + (\mu_i B)^2}$$

1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
2. For recent reviews, see D. C. Johnston, Adv. Phys. 59, 803 (2010) and G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).
3. H. Kito, H. Eisaki, and A. Iyo, J. Phys. Soc. Jpn. 77, 063707 (2008).
4. Z. -A. Ren, W. Lu, J. Yang, W. Yi, X. -L. Shen, Z. -C. Li, G. -C. Che, X. -L. Dong, L. -L. Sun, F. Zhou, Z. -X. Zhou, Chin. Phys. Lett. 25, 2215 (2008).
5. C. Wang, L. Li, S. Chi, Z. Zhu, Z. Ren, Y. Li, Y. Wang, X. Lin, Y. Luo, S. Jiang, X. Xu, G. Cao, and Z. Xu, Europhys. Lett. 83, 67006 (2008).
6. M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).
7. I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101, 057003 (2008).
8. K. Kuroki, H. Usui, S. Onari, R. Arita, and H. Aoki, Phys. Rev. B 79, 224511 (2009).
9. Y. Nakai, K. Ishida, Y. Kamihara, M. Hirano, and H. Hosono, J. Phys. Soc. Jpn. 77, 073701 (2008).
10. K. Hashimoto, M. Yamashita, S. Kasahara, Y. Senshu, N. Nakata, S. Tonegawa, K. Ikada, A. Serafin, A. Carrington, T. Terashima, H. Ikeda, T. Shibata, and Y. Matsuda, Phys. Rev. B 81, 220501(R) (2010).
11. H. Kontani and S. Onari, Phys. Rev. Lett. 104, 157001 (2010).
12. M. Sato, Y. Kobayashi, S. C. Lee, H. Takahashi, E. Satomi, and Y. Miura, J. Phys. Soc. Jpn. 79, 014710 (2010).
13. D. J. Singh and M.-H. Du, Phys. Rev. Lett. 100, 237003 (2008).
14. H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y. Sekiba, A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G. F. Chen, J. L. Luo, and N. L. Wang, Eur. Phys. Lett. 83, 47001 (2008).
15. P. L. Alireza, J. Gillett, Y. T. Chris Ko, S. E. Sebastian, and G. G. Lonzarich, J. Phys.: Condens. Matter 21, 012208 (2009).
16. R. H. Liu, G. Wu, T. Wu, D. F. Fang, H. Chen, S. Y. Li, K. Liu, Y. L. Xie, X. F. Wang, R. L. Yang, L. Ding, C. He, D. L. Feng, and X. H. Chen Phys. Rev. Lett. 101, 087001 (2008).
17. M. Gooch, B. Lv, B. Lorenz, A. M. Guloy, and C.-W. Chu, Phys. Rev. B 79, 104504 (2009).
18. J. Dai, Q. Shi, J. -X. Zhu, and E. Abrahams, Proc. Natl. Acad. Sci. U.S.A., 106, 4118 (2009).
