Considering how biological sex impacts immune responses and COVID-19 outcomes

Eileen P. Scully, Jenna Haverfield, Rebecca L. Ursin, Cara Tannenbaum and Sabra L. Klein

Abstract | A male bias in mortality has emerged in the COVID-19 pandemic, which is consistent with the pathogenesis of other viral infections. Biological sex differences may manifest themselves in susceptibility to infection, early pathogenesis, innate viral control, adaptive immune responses or the balance of inflammation and tissue repair in the resolution of infection. We discuss available sex-disaggregated epidemiological data from the COVID-19 pandemic, introduce sex-differential features of immunity and highlight potential sex differences underlying COVID-19 severity. We propose that sex differences in immunopathogenesis will inform mechanisms of COVID-19, identify points for therapeutic intervention and improve vaccine design and increase vaccine efficacy.

The COVID-19 pandemic, caused by the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in millions of infections and hundreds of thousands of deaths worldwide. Human biological sex plays a fundamental role in heterogeneous COVID-19 outcomes. Sex, defined as male, female or intersex on the basis of sex chromosome complement, reproductive tissues (ovaries or testes) and sex steroid hormone (oestrogen, progesterone and testosterone) concentrations, is a multidimensional biological characteristic that shapes infectious disease pathogenesis. We discuss how sex differences in basic molecular and cellular mechanisms can be leveraged to define the immune response to infection with SARS-CoV-2.

Sex differences in COVID-19 severity | The precise drivers of death, regardless of sex, in COVID-19 remain unknown. There appears to be a subset of patients in whom high levels of dysregulated inflammation lead to severe multisystem organ pathology. A postviral inflammatory syndrome has also emerged in children with COVID-19. With the goal of achieving an optimized balance in immune response induction and resolution. Unfortunately, most studies fail to consider the sex of the patients, which may mask therapeutic targets.

Evidence of sex differences in COVID-19 severity emerged in China, where hospital admissions and mortality were higher among males than females. In South Korea, where community testing was widespread, females represented ~60% of those testing positive for SARS-CoV-2, suggesting that females acquire infection, despite having a lower case fatality rate (CFR) in the United States, where testing was prioritized for people with symptomatic disease, the diagnosis rates were similar in males and females, but males had 1.5 times higher mortality.

A male bias in COVID-19 mortality is currently reported in 37 of the 38 countries that have provided sex-disaggregated data. Our analyses show that the average male CFR across 38 countries is 1.7 times higher than the average female CFR (P < 0.0001) (male CFR 7.3 (95% CI 5.4–9.2); female CFR 4.4 (95% CI 3.4–5.5)), which is consistent with other reports. There is an increased risk of death for both sexes with advancing age, but at all ages above 30 years males have a significantly higher risk of death than females (P < 0.05).

Ageing, sex and COVID-19 | Although advancing age is associated with greater risk of death in both sexes, the male bias remains evident. An analysis of COVID-19 data from Italy, Spain, Germany, Switzerland, Belgium and Norway reveals that among all age groups older than 20 years, fatality rates are greater for males than females. By contrast, male–female differences in the rate of confirmed SARS-CoV-2 infections are age dependent in all countries, being greater among females aged between 10 and 50 years and greater among males before the age of 10 years and after the age of 50 years. The age-related male–female differences in confirmed cases of SARS-CoV-2 infections are consistent with reported confirmed cases of seasonal and pandemic influenza A virus infections in Australia and Japan. We interpret these data to suggest that biological sex differences contribute to male-biased death, but gender-associated risk of exposure may affect rates of infection differently for males and females.

With a focus on biology, the impact of age on susceptibility to severe COVID-19 needs to be parsed, with both immunosenescence and dysregulation of innate immune responses as potential...
mechanisms. Biological sex differentially affects ageing of the immune system, in part through changing concentrations of sex steroids. In addition to reduced concentrations of sex steroids, an age-related mosaic loss of chromosome Y in leukocytes can alter transcriptional regulation of immunoregulatory genes. Whether sex differences in the genomic signatures of aged immune cells translate to functional differences in the response to SARS-CoV-2 infection requires attention.

Sex differences in immune responses

Biological sex affects innate and adaptive immune responses to self and foreign antigens, resulting in sex differences in autoimmunity as well as in responses to infections and vaccines. Immune cell subsets have sex-specific patterns of gene expression, with most differentially expressed genes found on autosomes, demonstrating sex-specific regulation of shared genetic material. The sex chromosomes also directly contribute. Males are at higher risk of diseases caused by deleterious X-linked alleles. Incomplete inactivation of immunoregulatory genes on the X chromosome can also occur in females, which results in a gene dosage imbalance between sexes. Incomplete X chromosome inactivation has been implicated in female-biased autoimmune diseases and in vaccine efficacy. The Y chromosome has immunoregulatory function, broadly impacting immune transcriptional profiles linked to autoimmune disease and impacting outcomes of influenza virus and coxsackie virus infection in animals. Sex-specific features of epigenomic organization also dictate differential availability of transcriptional targets. Superimposed on these genomic elements is the direct effect of sex steroid exposure. Oestrogens, progesterone and testosterone have direct effects on immune cell function that are driven by the signalling of these hormones through their respective cellular receptors. The variation in sex steroid concentrations that occurs over the life course contributes to differences in immune profiles and disease susceptibility patterns at different ages. Consistent with this variation, both sex and age contribute to unique transcriptional signatures of immune cells both at the baseline and after exposure to immunostimulants. The summative effect is a sex-specific transcriptional regulatory network of genetic variants, epigenetic modifications, transcription factors and sex steroids that leads to a functional difference.

Fig. 1 Comparative analyses of COVID-19 case fatality rates by country, sex and age. a | COVID-19 case fatality rates (CFRs) for males and females across 38 countries or regions reporting sex-disaggregated data on COVID-19 cases and deaths. CFR was calculated as the total number of deaths divided by the total number of cases for each sex multiplied by 100. The male CFR is higher than the female CFR in 37 of the 38 regions, with an average male CFR 1.7 times greater than the average female CFR (P < 0.0001, Wilcoxon signed rank test). b | Average COVID-19 CFRs for males and females stratified by age. The data represent 12 countries currently reporting sex- and age-disaggregated data on COVID-19 cases and deaths (Australia, Columbia, Denmark, Italy, Mexico, Norway, Pakistan, Philippines, Portugal, Spain, Switzerland and England). The COVID-19 CFR increases for both sexes with advancing age, but males have a significantly higher CFR than females at all ages from 30 years (P < 0.05, Wilcoxon signed rank test). The data were obtained from Global Health 50/50 and official government websites of each respective country on 7 May and 8 May 2020. For more information on the data source for a specific country, please contact the corresponding author.
in the immune response. 25,44 Figure 2 highlights intersections between SARS-CoV-2 infection and sources of sex bias in pathophysiology that warrant further investigation.

Sex bias in SARS-CoV-2 infection

Virus entry receptors. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as an entry receptor, with virus entry enhanced by cellular transmembrane serine protease 2 (TMPRSS2), which primes the spike protein of the virus. 15,16 ACE2 is an X chromosome-encoded gene that is downregulated by oestrogens 57 and exhibits tissue-specific expression patterns. Differences in ACE2 expression may be driven by sex-differential expression of ACE2 variants. 48-50 ACE2 is associated with interferon gene expression, 11,12 which in turn shows sex-specific regulation. The cell-intrinsic regulation of ACE2 expression may change with age, in response to changing levels of sex steroids, or following viral challenge. TMPRSS2 is regulated by androgen receptor signalling in prostate cells. 61 Initial investigations have not demonstrated a significant difference in TMPRSS2 mRNA expression in lung tissue from males and females, but it is unknown whether androgens may impact expression in the setting of infection with SARS-CoV-2 (REFS51,52) or whether the level of expression has an impact on SARS-CoV-2 burden. Further research is needed to determine whether sex-biased expression of ACE2, coupled with the regulation of TMPRSS2 by androgens, increases SARS-CoV-2 susceptibility of males compared with females.

Interferons. Innate sensing of viruses, production of interferons and activation of the inflammasome are the first line of defence against viruses. 65 In the case of SARS-CoV-2, where there is no pre-existing adaptive immune memory, the success of this early antiviral response may be a determinant of disease outcome. Innate sensing of viral RNA by the pattern-recognition receptor Toll-like receptor 7 (TLR7) is sex biased, as TLR7 escapes X chromosome inactivation, resulting in greater expression in female immune cells; this has also been linked to sex differences in autoimmunity 66,67 and vaccine efficacy. 41 There is greater production of interferon-α (IFNα) from plasmacytoid dendritic cells from adult females than from adult males, 68,69 an effect modulated by sex steroids. 68-71 In animal models of SARS-CoV infection, pretreatment with pegylated IFNα was associated with protection of lung tissue 72 but without consideration of biological sex. In SARS-CoV-2, emerging data suggest that there is aberrant activation of interferon responses but preserved chemokine signalling, which has been postulated to contribute to immunopathology. 73 Studies are needed.
to determine whether differences in the magnitude or kinetics of the interferon response may contribute to a sex bias in the early control or severity of SARS-CoV-2 infection and may inform considerations of interferons as therapies for COVID-19 [REF.29]. Early data suggest that male sex may be associated with a longer duration of viral detection, even within families130,131, raising the question of whether females have more efficient clearance of the virus. The rate of virus clearance will need to be assessed in evaluating the efficacy of innate and adaptive immune responses.

Adaptive immunity. Females generally mount greater antibody responses to viral infection and vaccination, albeit with higher levels of autoimmunity72. The mechanisms for sex differences in antibody production include oestrogenic enhancement of somatic hypermutation56, less stringent selection against autoreactive B cells72,73,82 and sex differences in germlinal centre formation83 and in the epigenetic accessibility of B cell loci84. It is still unknown whether sex has an impact on antibody generation in SARS-CoV-2 infection. Early studies suggest that titres of antibodies to some viral epitopes are higher in patients with severe COVID-19 titres84,85. Persistence of antibodies, epitope targeting and non-neutralizing Fc-mediated antibody responses were dysregulated99, but sex differences were not analysed. In the current pandemic, lymphopenia is associated with severe disease90,101, and early evidence suggests that the clinical markers of lymphocyte count may be lower in males and neutrophil–lymphocyte ratios may be higher11. Further work is needed to define the sex-differential role of T cells in acute infection, in acute lung injury phenotypes102 and as potential vaccine targets.

Severe infection and acute respiratory distress syndrome. Severe cases of COVID-19 are typically marked by acute respiratory distress syndrome (ARDS), with respiratory failure requiring oxygen support and mechanical ventilation. The infection is primarily characterized by diffuse alveolar damage without a consistent pattern of cell infiltration103,104. The pathogenesis of ARDS involves the disruption of normal barrier function, inflammation and subsequent tissue repair. Whether there are sex-specific risks for ARDS and death from other causes, such as trauma, remains unknown105,106, although there is a suggestion of a higher risk of lower respiratory tract infections among males107 and that steroid hormones modulate the immune response to viral respiratory pathogens108. In one cohort of patients with COVID-19, severe respiratory failure was associated with a pattern of inflammation, macrophage activation and depletion of lymphocytes that was distinct from bacterial infection109. There was a sex bias for severe COVID-19 not observed in the comparator group with bacterial infections110. Sex-differential production of IL-6 [REF.111], monocyte transcriptional patterns and inflammatory set point107,122 could contribute to an enhanced risk of death in males and highlight the importance of sex-stratified analyses to guide deployment of safe and effective immunomodulatory therapeutics for males and females112.

Conclusions

Emerging data demonstrating more favourable outcomes for community-dwelling adult females across age strata offer an immediate opportunity for comparative biology experiments to define features of COVID-19 pathogenesis and the associated immune response. The research pipeline should integrate sex as a biological variable in all stages, from fundamental research to preclinical drug development, clinical trials and epidemiological analyses113. Considering the role of intersecting factors — including, but not limited to, gender, age, race and other identifying characteristics — is critical to understanding the biological and sociocultural factors contributing to heterogeneous COVID-19 outcomes. Sex is a driver of discovery and innovation114, and taking a sex-informed approach to COVID-19 research114 and medicine115 will uncover novel features of the host immune response to SARS-CoV-2 and ultimately result in more equitable health outcomes.
Wang, J. et al. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proc. Natl Acad. Sci. USA 113, E2029–E2038 (2016).

Janice Oh, H. L., Kien-En Gan, S., Bertolotti, A. & Tan, Y. J. Understanding the T cell immune response in SARS coronavirus infection. Emerg. Microbes Infect. 1, e23 (2012).

Chen, J. et al. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection. J. Virol. 84, 1289–1501 (2010).

Alosaami, B. et al. MERS-CoV infection is associated with downregulation of genes encoding Th1 and Th2 cytokines/chemokines and elevated inflammatory innate immune response in the lower respiratory tract. Cytokine 126, 154895 (2020).

Ruan, Q., Yang, K., Wang, W., Jiang, L. & Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 46, 846–848 (2020).

Yang, X. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med. 8, 475–481 (2020).

Halter, S. et al. T regulatory cells activation and distribution are modified in critically ill patients with acute respiratory distress syndrome: a prospective single-centre observational study. Anaesth. Crit. Care Pain. Med. 39, 55–64 (2020).

Barton, L. M., Duval, E. J., Stroberg, E., Ghosh, S. & Mukhopadhyay, S. COVID-19 autopsies, Oklahoma, USA. Am. J. Clin. Pathol. 153, 725–53 (2020).

Tian, S. et al. Pulmonary pathology of early-phase 2019 novel coronavirus disease (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol. 15, 700–704 (2020).

Tian, S. et al. Pathological study of the 2019 novel coronavirus disease COVID-19 postmortem core biopsies. Mod. Pathol. https://doi.org/10.1038/s41379-020-0536-x (2020).

Heffernan, D. S. et al. Gender and acute respiratory distress syndrome in critically injured adults: a prospective study. J. Trauma 71, 878–883 (2011).

Liu, T. et al. The influence of sex on outcomes in trauma patients: a meta-analysis. Am. J. Surg. 210, 911–921 (2015).

Palagas, M. E., Mourtzoukos, E. G. & Vardakas, K. Z. Sex differences in the incidence and severity of respiratory tract infections. Respir. Med. 101, 1845–1863 (2007).

Robinson, D. P., Hall, O. J., Nilles, T. L., Bream, J. H. & Klein, S. L. T beta-estradiol protects females against influenza by recruiting neutrophils and increasing virus-specific CD8 T cell responses in the lungs. J. Virol. 88, 4711–4720 (2014).

Giamarellos-Bourboulis, E. J. et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe https://doi.org/10.1016/j.chom.2020.04.009 (2020).

Naucler, W. E. et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121–124 (2007).

Bischof, E., Wolfe, J. & Klein, S. L. Clinical trials for COVID-19 should include sex as a variable. J. Clin. Invest. https://doi.org/10.1172/JCI139306 (2020).

Canadian Institutes of Health Research. Why sex and gender need to be considered in COVID-19 research. CIHR https://cihr-irsc.gc.ca/e/51939.html (2020).

Klein, S. L. et al. Opinion: sex inclusion in basic research drives discovery. Proc. Natl Acad. Sci. USA 112, 5257–5258 (2015).

Tannenbaum, C., Ellis, R. P., Eysel, F., Zou, J. & Scheibinger, L. Sex and gender analysis improves science and engineering. Nature 575, 157–46 (2019).

Bartz, D. et al. Clinical advances in sex- and gender-informed medicine to improve the health of all: a review. JAMA Intern. Med. 180, 574–583 (2020).

Author contributions
The authors contributed equally to all aspects of the article.

Competing interests
The authors declare no competing interests.

Peer review information
Nature Reviews Immunology thanks E. Fish, P. McCombe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

RELATED LINKS
Global Health 50/50 http://globalhealth5050.org/covid19/