Supporting Information

Complexation and bonding studies on [Ru(NO)(H$_2$O)$_5$]$_3^+$ with nitrate ions by using density functional theory calculation

Akane Kato,* Masashi Kanekob,* and Satoru Nakashimaa,c,*

aGraduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; bNuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Ibaraki 319-1195, Japan; cNatural Science Center for Basic Research and Development, Hiroshima University, 1-4-2, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan

*Corresponding authors: snaka@hiroshima-u.ac.jp; kaneko.masashi@jaea.go.jp

Contents:

Supporting Tables p. S2-S6
Supporting Figures p. S7-8
Supplementary Methods p. S9-S12

Gibbs energy calculation
Density of states analysis
Fitting methods of Ru fraction
Transition states searching by relaxed surface scan
References
Table S1 Calculated bond lengths (Å) and bond angles (deg.) of [Ru(NO)(NO₃)x(H₂O)₅−x]^{3−x/+−}

Complexes	x = 0	x = 1	x = 2	x = 3	x = 4	x = 5
	a	f	ab	ac	af	abc
Ru-NO	1.768	1.762	1.785	1.765	1.761	1.772
Ru-Oₐ	2.061	2.012	2.090	2.055	2.081	2.025
Ru-Oₐ	2.082	2.056	2.093	2.010	2.101	2.087
Ru-Oₖ	2.056	2.128	2.094	2.123	2.046	2.131
Ru-Oₖ	2.080	2.083	2.091	2.119	2.083	2.093
Ru-Oₖ	2.046	2.079	2.006	2.078	2.083	2.032
N-Ru-Oₐ	97.73	96.36	95.44	91.93	92.02	96.26
N-Ru-Oₐ	93.9	97.03	92.26	96.86	95.19	95.47
N-Ru-Oₐ	96.59	93.49	92.10	92.88	98.37	92.62
N-Ru-Oₐ	93.21	92.72	95.34	97.21	93.07	93.37
Oₐ-Ru-Oₐ	92.49	95.09	87.95	100.20	95.87	95.53
Oₐ-Ru-Oₐ	92.95	82.81	94.85	83.54	84.47	85.60
Oₐ-Ru-Oₐ	82.51	87.54	88.31	88.91	85.17	87.70
Oₐ-Ru-Oₐ	86.02	86.18	89.32	84.01	82.75	87.43
Oₐ-Ru-Oₐ	88.29	82.54	84.00	82.85	85.12	81.71
Oₐ-Ru-Oₐ	86.87	94.23	87.86	91.07	95.42	90.05
Oₐ-Ru-Oₐ	83.19	82.61	83.94	86.29	84.45	83.61
Oₐ-Ru-Oₐ	85.09	87.79	88.18	83.02	86.67	89.33
N-Ru-Oₐ	178.29	176.10	174.61	179.15	177.18	175.37
Oₐ-Ru-Oₐ	165.66	169.83	171.71	173.18	169.61	170.32
Oₐ-Ru-Oₐ	170.81	170.20	171.61	165.31	171.72	170.91
Ru-N-O	179.54	179.56	179.82	178.21	177.72	177.55

S2
Table S2 Calculated IR frequencies and intensities of the complexes with x = 3

Vibration	abc Freq. / cm\(^{-1}\)	bc Intensity	abf Freq. / cm\(^{-1}\)	af Intensity	acf Freq. / cm\(^{-1}\)	cf Intensity
\(\delta_{\text{sym}(\text{NO}_3)}\), Ru-H\(_2\)O rocking	737	61	737	38	712	60
	743	158	741	36	733	89
	746	152			734	169
\(\nu_{\text{sym}(\text{NO}_3)}\)	756	30	756	38	749	10
	767	49	762	13	752	21
	772	32	767	116	769	18
	779	46	772	133	770	18
					776	87
					773	16
\(\delta_{\text{sym}(\text{NO}_3)}\)	883	800	889	387	892	710
	904	193	900	587	905	154
	927	546	957	486	950	396
	949	229			971	436
	977	217				
\(\delta_{\text{sym}(\text{NO}_3)}, \nu_{\text{sym}(\text{NO}_3)}\)	1236	1078	1249	902	1243	811
	1262	416	1283	278	1251	806
	1286	356	1296	730	1284	251
\(\nu_{\text{sym}(\text{H}_2\text{O})}\)	1522	209	1552	154	1498	403
	1524	501	1557	138	1556	634
\(\nu_{\text{asym}(\text{H}_2\text{O})}\)	1608	640	1601	649	1603	647
	1618	376	1609	879	1610	321
	1625	297	1633	219	1636	279
\(\nu(\text{NO})\)	1968	1280	1954	1514	1962	1333
\(\nu(\text{H}_2\text{O})\)	2948	1169	2984	1269	2826	1389
	3218	846			3114	997
Table S3 Thermodynamic data of compounds (hartree)

Compounds	E_{tot}	H_{corr}	TS	G_{corr}
x = 0	−5041.4060	0.1518	0.0525	0.0993
x = 1				
a	−5245.5921	0.1432	0.0582	0.0850
f	−5245.5869	0.1448	0.0573	0.0875
x = 2				
ab	−5449.7678	0.1345	0.0644	0.0701
ac	−5449.7685	0.1341	0.0618	0.0724
af	−5449.7686	0.1353	0.0617	0.0737
x = 3				
abc	−5653.9417	0.1260	0.0688	0.0571
abf	−5653.9388	0.1265	0.0696	0.0569
acf	−5653.9410	0.1262	0.0685	0.0577
x = 4				
abcd	−5858.1035	0.1187	0.0750	0.0436
abcf	−5858.1051	0.1186	0.0743	0.0444
x = 5	−6062.2608	0.1115	0.0816	0.0300
H$_2$O	−76.4900	0.0236	0.0215	0.0021
NO$_3^-$	−280.6445	0.0170	0.0286	−0.0116

Table S4 Calculated values of G_{form}, ΔG_{form}

Reaction	G_{form}(A···B) / kJ mol$^{-1}$	ΔG_{form}(A···B) / kJ mol$^{-1}$				
	Initial	Final				
x = 1 (x = 0 → a)	−48.1	7.0	55.1			
x = 2 (a → ab)	−23.6	21.6	45.2			
x = 3 (ab → abc)	3.8	46.5	42.7			
x = 4 (abc → abcd)	21.5	53.9	32.4			
x = 5 (abcd → x = 5)	13.7	43.8	30.2			
MO number	PDOS of Ru(d) (%)	BODOS (%)	Ru(d)-All	Ru(d)-N\textsubscript{nitrosyl}		
-----------	-------------------	-----------	-----------	-----------------		
	a	f	a	f	a	f
36	7.92	8.16	3.85	4.07	3.77	3.86
37	3.18	3.31	1.58	1.54	0.02	−0.36
38	8.66	5.30	2.69	1.64	2.10	1.18
39	3.52	4.88	1.47	1.81	0.00	1.11
40	4.38	4.35	1.79	1.77	0.56	0.67
41	4.45	2.05	1.71	0.82	0.93	0.20
42	1.09	0.88	0.43	0.31	0.13	0.35
43	2.35	1.52	0.78	0.53	0.94	0.70
44	0.80	0.30	0.25	0.09	0.35	0.16
45	0.48	0.30	0.19	0.14	−0.07	−0.11
46	0.65	0.07	0.24	0.02	0.01	0.00
47	0.50	0.20	0.17	0.06	0.00	−0.02
48	17.20	9.43	5.49	2.91	0.01	−0.15
49	3.70	25.03	1.12	8.37	−1.16	−0.02
50	10.93	6.20	3.09	1.84	−0.70	−0.02
51	3.53	1.45	0.90	0.38	0.02	0.01
52	21.03	17.46	4.00	3.32	−0.10	0.27
53	18.91	9.76	3.37	1.97	−0.20	0.06
54	12.12	16.83	1.69	2.01	0.18	−1.22
55	1.64	3.82	0.17	0.22	−0.03	−0.64
56	5.98	5.47	0.62	0.52	0.11	0.02
57	19.30	18.97	1.05	1.31	0.51	0.73
58	9.34	10.45	0.51	0.50	0.14	0.14
59	6.36	0.40	−0.30	−0.02	0.46	0.03
60	45.43	50.05	−1.75	−0.85	3.01	3.08
61	36.95	32.88	−2.34	−1.77	2.00	2.69
62	17.68	2.88	−0.46	−0.59	−0.03	−0.82
63(HOMO)	51.75	79.26	−5.10	−6.87	0.37	0.02
Sum	319.81	321.66	27.21	26.05	13.34	11.94
Table S6 Stepwise complexation formation constants \((K_x)\) for fitting models 1 and 2

\(\log_{10} K_x\)	Model 1	Model 2
\(x = 1\)	2.31	2.20
\(x = 2\)	1.64	1.64
\(x = 3\)	1.15	1.21
\(x = 4\)	0.94	1.00

Table S7 Thermodynamic data of transition state models (hartree)

Compounds	\(E_{\text{tot}}\)	\(H_{\text{corr}}\)	\(TS\)	\(G_{\text{corr}}\)
\(S_N1\)				
\(a\rightarrow ab\)	\(-5169.0452\)	0.1147	0.0549	0.0598
\(a\rightarrow ac\)	\(-5169.0543\)	0.1143	0.0549	0.0593
Intermediate				
\(a\rightarrow ab\)	\(-5526.2157\)	0.1618	0.0694	0.0924
\(a\rightarrow ac\)	\(-5526.2199\)	0.1616	0.0692	0.0924
Intermediate				
\(a\rightarrow ab\)	\(-5526.2106\)	0.1629	0.0687	0.0942
\(a\rightarrow ac\)	\(-5526.2218\)	0.1621	0.0691	0.0930

Intermediate up-side entry

Intermediate down-side entry
Figure S1 Dependences of $a_{\text{NO}_3^-}$ and $a_{\text{H}_2\text{O}}$ on $C_{\text{HNO}_3^{\text{tot}}}$.

Figure S2 Fitting of speciation of Ru species on total HNO$_3$ concentration, in which the plot was obtained by Ref. 6.
Figure S3 Transition states search in intermediate model between S_{N1} and S_{N2} mechanisms by relaxed surface scanning.
Supplementary Methods

Gibbs energy calculation

Standard Gibbs energy, G, can be described as sum of total energy, E_{tot}, and thermal correction to the Gibbs energy term, $G_{\text{corr}}(T)$ (eq. S1). The $G_{\text{corr}}(T)$ can be divided into thermal correction to enthalpy term, $H_{\text{corr}}(T)$, and entropy term, $S(T)$ (eq. S2). The $H_{\text{corr}}(T)$ can be divided into zero-point energy, E_{ZPE}, the contributions of vibration, $E_{\text{vibration}}(T)$, rotation, $E_{\text{rotation}}(T)$, translation, $E_{\text{translation}}(T)$, and Boltzmann thermal distribution, $k_B T$ (k_B denotes Boltzmann constant), as shown in eq. S3. The $S(T)$ can be divided into the contributions of electron, S_{electron}, vibration, $S_{\text{vibration}}(T)$, $S_{\text{rotation}}(T)$, translation, $S_{\text{translation}}(T)$ (eq. S4). The contributions of vibration and rotation to enthalpy and entropy are formulated based on harmonic oscillator and rigid rotator approximations, respectively. Quasi-harmonic approximation, which was the well-known breakdown of the harmonic oscillator model for Gibbs energies of low-frequency vibrational modes, was introduced in analyzing the vibrational enthalpy and entropy terms by raising the vibrational frequencies, which are less than 60 cm$^{-1}$ [1,2]. The derivation of formulas was referred to “Thermochemistry in Gaussian” by Ochterski [3].

\[
G = E_{\text{tot}} + G_{\text{corr}}(T) \quad (S1)
\]

\[
G_{\text{corr}}(T) = H_{\text{corr}}(T) - TS(T) \quad (S2)
\]

\[
H_{\text{corr}}(T) = E_{\text{ZPE}} + E_{\text{vibration}}(T) + E_{\text{rotation}}(T) + E_{\text{translation}}(T) + k_B T \quad (S3)
\]

\[
S(T) = S_{\text{electron}} + S_{\text{vibration}}(T) + S_{\text{rotation}}(T) + S_{\text{translation}}(T) \quad (S4)
\]

The E_{ZPE}, $E_{\text{vibration}}(T)$, and $S_{\text{vibration}}(T)$ in eqs. S3 and S4 are described in eqs. S5–S7, where $\Theta_v(i) = h\nu_i/k_B$ (h and ν_i denote Planck constant and frequency of ith normal vibrational mode) denotes characteristic vibrational temperature of ith normal vibrational frequency. The $E_{\text{rotation}}(T)$ of nonlinear molecules and $E_{\text{translation}}(T)$ equal to (3/2)$k_B T$. The S_{electron} is considered to correspond to spin entropy of electrons generated from spin multiplet, $2s + 1$ (s denotes spin quantum number), and equals to $k_B \{\ln(2s + 1)\}$. The $S_{\text{rotation}}(T)$ is described in eq. S8, where $\Theta_r(t)$ and σ_t denote characteristic rotational temperature of $t = x, y, z$ rotational axes and rotational symmetry number, respectively. The $S_{\text{translation}}(T)$ is described in eq. S9, where m and P denote molecular weight and pressure, respectively.

\[
E_{\text{ZPE}} = k_B \Sigma_i (\Theta_v(i)/2) \quad (S5)
\]

\[
E_{\text{vibration}}(T) = k_B \Sigma_i \{\exp(\Theta_v(i)/T) - 1\}^{-1} \quad (S6)
\]

\[
S_{\text{vibration}}(T) = k_B \Sigma_i \{\Theta_v(i)/T\} \{\exp(\Theta_v(i)/T) - 1\}^{-1} - \ln\{1 - \exp(-\Theta_v(i)/T)\} \quad (S7)
\]

\[
S_{\text{rotation}}(T) = k_B \ln(\pi^{1/2}\sigma_t)^{3/2}\{(\Theta_r(x)\Theta_r(y)\Theta_r(z))^{-1/2}\} + 3/2 \quad (S8)
\]

\[
S_{\text{translation}}(T) = k_B \{\ln(2\pi mk_B T/h^2)^{3/2}(k_B T/P) + 5/2\} \quad (S9)
\]
Density of states analysis
We show the analytical method of density of states (DOS) for partial DOS (PDOS) of Ru d-orbital and bond overlap DOS (BODOS) between Ru d-orbital and atomic orbitals of the donor atoms of ligands for \([\text{Ru(NO)(NO}_3\text{)(H}_2\text{O)}_4]^{2+}\) whose values were employed in Figure 3. This method is based on Mulliken population analysis [4]. The DOS values of the \(i^{th}\) MO, \(N(i)\), is calculated by eq. S19, where \(P_{\mu \nu}\) and \(S_{\mu \nu}\) denote the density matrix and the overlap matrix between basis functions \(\psi_\mu\) and \(\psi_\nu\), respectively.

\[
N(i) = \sum_\mu \sum_\nu P_{\mu \nu}(i) S_{\mu \nu} \quad (S19)
\]

PDOS of Ru d-orbital corresponds to values when the both \(\psi_\mu\) and \(\psi_\nu\) functions belong to Ru d-orbitals. BODOS corresponds to values when the \(\psi_\mu\) and \(\psi_\nu\) functions belong to Ru d-orbitals and atomic orbitals of the donor atoms of the ligands, respectively. The values of PDOS and BODOS are summarized in Table S5.

Fitting methods of Ru fraction
We show two fitting models to simulate the dependency of the Ru fraction on total HNO\(_3\) concentration by using the calculated \(\Delta G^x_{\text{stepwise}}\) and \(\Delta G^x_{\text{stepwise}^+}\) values for eqs. 10 and 11 in manuscript. Fitting model 1 is using the activities of H\(_2\)O and NO\(_3^-\), denoted as \(a_{\text{H}_2\text{O}}\) and \(a_{\text{NO}_3^-}\), respectively, based on the experimentally reported data [5]. We estimated the \(a_{\text{H}_2\text{O}}\) values by multiplying 55.39 mol L\(^{-1}\) (concentration of pure H\(_2\)O) with values of “Rational H\(_2\)O activity” in Table 4 of Ref. 5 for 0–12 mol L\(^{-1}\) of total HNO\(_3\) concentration \((C_{\text{HNO}_3\text{tot}})\). The \(a_{\text{HNO}_3}\) values were estimated by using the values of “Degree of dissociation” (\(\alpha\)) and “Hypothetical activity coefficient” (\(y_h\)), which means activity coefficients of fully ionized nitric acid, in Table 4 of Ref. 5 for 0–12 mol L\(^{-2}\) of \(C_{\text{HNO}_3\text{tot}}\) to give eq. S10.

\[
a_{\text{NO}_3^-}^{m1} = y_h C_{\text{NO}_3^-} = \alpha y_h C_{\text{HNO}_3\text{tot}} \quad (S10)
\]

For simplicity fitting model 2 is using the activities assuming the activity coefficients of H\(_2\)O and NO\(_3^-\) as 1. We limit to the solution condition that total Ru concentration is smaller than \(C_{\text{HNO}_3\text{tot}}\) and \(C_{\text{H}_2\text{O}\text{tot}}\) enough to be ignored (such as the experimental condition of Ref. 6 as well as HLLW solution) to give eqs. S11–S13. By combining eqs. S11–S13, acid dissociation constant of HNO\(_3\) \((K_a)\), and percentage by mass of HNO\(_3\) in \(C_{\text{HNO}_3\text{tot}}\) \((W_{\text{HNO}_3})\), we obtained the activities of NO\(_3^-\) and H\(_2\)O as eqs. S17 and S18, respectively. Figure S1 shows the dependences of the activities of NO\(_3^-\) and H\(_2\)O on \(C_{\text{HNO}_3\text{tot}}\) for the two fitting models.
\[C_{\text{HNO}}^{\text{tot}} \approx C_{\text{HNO}} + C_{\text{NO}}^- \quad (\text{S11}) \]
\[C_{\text{H}_2\text{O}}^{\text{tot}} \approx C_{\text{H}_2\text{O}} + C_{\text{H}_3\text{O}^+} \quad (\text{S12}) \]
\[C_{\text{NO}}^- \approx C_{\text{H}_3\text{O}^+} \quad (\text{S13}) \]
\[a_{\text{NO}}^{\text{m2}} \approx C_{\text{NO}}^- = (1/2)\left\{(K_a^2 + 4K_aC_{\text{HNO}}^{\text{tot}})^{1/2} - K_a\right\} \quad (\text{S17}) \]
\[a_{\text{H}_2\text{O}}^{\text{m2}} \approx C_{\text{H}_2\text{O}} = (9.97/18)(100 - W_{\text{HNO}}) - C_{\text{NO}}^- \quad (\text{S18}) \]

Based on the fraction of \([\text{Ru(NO)}(\text{NO}_3)_x(\text{H}_2\text{O})_{5-x}]\) (x = 1–4) for six experimental concentrations of \(C_{\text{HNO}}\) [6], we obtained the \(K_x\) values that minimize the root mean square deviations of fraction of Ru species (%) between calculation and experiment. Table S6 and Figure S2 show the \(K_x\) values and the simulation based on the \(K_x\) values for fitting models 1 and 2. For the both fitting models, the calculated fractions of all the Ru species reproduced within ~2 % of RMSD values.

Transition states searching by relaxed surface scan

We modeled the transition state structures by using constrained geometrical optimization. Octahedral wedge geometries in which the distances between Ru atom and the leaving \(\text{H}_2\text{O}\)/entering \(\text{NO}_3^-\) were fixed to 2.5 Å were created by using the equilibrium structures of the complex a. We considered the start geometries with up-side and down-side entries of \(\text{NO}_3^-\) ligand. Based on the octahedral wedge structures obtained by the constrained optimization, we scanned the potential surface of the distance between the Ru atom and the leaving \(\text{H}_2\text{O}\) from 2.0 Å to 3.0 Å by intervals of 0.1 Å with structural relaxation in which the sum of the distances between Ru atom and the leaving \(\text{H}_2\text{O}\) and between Ru atom and the entering \(\text{NO}_3^-\) were fixed to 5.0 Å. The structural relaxations were performed by the same method to the geometry optimization method in this study. The relaxed surface scanning based on the total energies by the single-point energy calculations are shown in Figure S3. The local maxima were obtained at 2.5 Å for the up-side entry and 2.6 Å for the down-side entry.

References

[1] R.F. Ribeiro, A. V. Marenich, C.J. Cramer, D.G. Truhlar, Use of Solution-Phase Vibrational Frequencies in Continuum Models for the Free Energy of Solvation, *J. Phys. Chem. B*, 115, 14556–14562 (2011).

[2] B.W. McCann, N. De Silva, T.L. Windus, M.S. Gordon, B.A. Moyer, V.S. Bryantsev, B.P. Hay, Computer-Aided Molecular Design of Bis-phosphine Oxide Lanthanide Extractants, *Inorg. Chem.*, 55, 5787–5803 (2016).

[3] J.W. Ochterski, Thermochemistry in Gaussian, Gaussian Inc Pittsburgh PA. 264 (2000) 1–19.
[4] R.S. Mulliken, Electronic population analysis on LCAO-MO molecular wave functions. III. Effects of hybridization on overlap and gross AO populations, *J. Chem. Phys.*, **23**, 2338–2342 (1955).

[5] W. Davis Jr., H.J. de Bruin, New activity coefficients of 0–100 per cent aqueous nitric acid. *J. Inorg. Nucl. Chem.*, **26**, 1069–1083 (1964).

[6] Scargill, D.; Lyon, C. E.; Large, N. R.; Flether, J. M. Nitratoaquo complexes of nitrosylruthenium III. *J. Inorg. Nucl. Chem.*, **27**, 161-171 (1965).