Identification of hub genes and small-molecule compounds in medulloblastoma by integrated bioinformatic analyses

Zhendong Liu, Ruotian Zhang, Zhenying Sun, Jiawei Yao, Penglei Yao, Xin Chen, Xinzhuang Wang, Ming Gao, Jinzhao Wan, Yiming Du, and Shiguang Zhao

1 Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People’s Republic of China
2 Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, People’s Republic of China

Corresponding Author: Shiguang Zhao
Email address: guangsz@hotmail.com

Background. Medulloblastoma (MB) is the most common intracranial malignant tumor in children. The genes and pathways involved in the pathogenesis of MB are relatively unknown. We aimed to identify potential biomarkers and small-molecule drugs for MB.

Methods. Gene expression profile data sets were obtained from the Gene Expression Omnibus (GEO) database and the differentially expressed genes (DEGs) were identified using the Limma package in R. Functional annotation, and cell signaling pathway analysis of DEGs was carried out using DAVID and Kobas. A protein-protein interaction network was generated using STRING. Potential small-molecule drugs were identified using CMap.

Result. We identified 104 DEGs (29 upregulated; 75 downregulated). Gene ontology analysis showed enrichment in the mitotic cell cycle, cell cycle, spindle, and DNA binding. Cell signaling pathway analysis identified cell cycle, HIF-1 signaling pathway, and phospholipase D signaling pathway as key pathways. SYN1, CNTN2, FAIM2, MT3, and SH3GL2 were the prominent hub genes and their expression level were verified by RT-qPCR. Vorinostat, resveratrol, trichostatin A, pyrvinium, and prochlorperazine were identified as potential drugs for MB. The five hub genes may be targets for diagnosis and treatment of MB, and the small-molecule compounds are promising drugs for effective treatment of MB.

Conclusion. In this study we obtained five hub genes of MB, SYN1, CNTN2, FAIM2, MT3, and SH3GL2 were confirmed as hub genes. Meanwhile, Vorinostat, resveratrol, trichostatin A, pyrvinium, and prochlorperazine were identified as potential drugs for MB.
Identification of hub genes and small-molecule compounds in medulloblastoma by integrated bioinformatic analyses

Zhendong Liu¹,²*, Ruotian Zhang¹,²*, Zhenying Sun¹,², Jiawei Yao¹,², Penglei Yao¹,², Xin Chen¹,², Xinzhuang Wang¹,², Ming Gao¹,², Jinzhao Wan¹,², Yiming Du¹,², Shiguang Zhao¹,²

¹Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzhe ng Street, Nangang District, 150001 Harbin, Heilongjiang Province, People’s Republic of China
²Institute of Brain Science, Harbin Medical University, No. 23 Youzheng Street, Nangang District, 15000

1 Harbin, Heilongjiang Province, People’s Republic of China

Corresponding Author:
Shiguang Zhao
Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, 150001 Harbin, Heilongjiang Province, People’s Republic of China.

Email address: guangsz@hotmail.com

*These authors contributed equally: Zhendong Liu and Ruotian Zhang

Abstract

Background. Medulloblastoma (MB) is the most common intracranial malignant tumor in children. The genes and pathways involved in the pathogenesis of MB are relatively unknown. We aimed to identify potential biomarkers and small-molecule drugs for MB.

Methods. Gene expression profile data sets were obtained from the Gene Expression Omnibus (GEO) database and the differentially expressed genes (DEGs) were identified using the Limma package in R. Functional annotation, and cell signaling pathway analysis of DEGs was carried out using DAVID and Kobas. A protein-protein interaction
network was generated using STRING. Potential small-molecule drugs were identified
using CMap.

Result. We identified 104 DEGs (29 upregulated; 75 downregulated). Gene ontology
analysis showed enrichment in the mitotic cell cycle, cell cycle, spindle, and DNA
binding. Cell signaling pathway analysis identified cell cycle, HIF-1 signaling pathway,
and phospholipase D signaling pathway as key pathways. SYN1, CNTN2, FAIM2, MT3,
and SH3GL2 were the prominent hub genes and their expression levels were verified by RT-qPCR. Vorinostat, resveratrol, trichostatin A,
pyrvinium, and prochlorperazine were identified as potential drugs for MB. The five hub
genes may be targets for diagnosis and treatment of MB, and the small-molecule
compounds are promising drugs for effective treatment of MB.

Conclusion. In this study we obtained five hub genes of MB, SYN1, CNTN2, FAIM2,
MT3, and SH3GL2 were confirmed as hub genes. Meanwhile, Vorinostat, resveratrol,
trichostatin A, pyrvinium, and prochlorperazine were identified as potential drugs for
MB.

Introduction
Medulloblastoma (MB) is one of the most common intracranial malignant tumors in
children. Standardized treatment options including maximal surgical resection, radiation
therapy, and chemotherapy can improve overall five-year survival rates; however, the
prognosis of patients with advanced disease is still unsatisfactory (Kim et al. 2010) (1).
Despite extensive studies on the pathogenesis and progression of MB, the
pathophysiology of disease development is still unclear. The pathogenesis of MB is
closely related to many factors such as mutations in genes, abnormalities in cellular
immunity, and changes in environmental factors (Wang et al. 2018) (2). A deep understanding of the changes in protein expression involved in the pathogenesis of MB is critical for the development of better treatment strategies.

Gene chip is a genetic testing technology that has been in use for more than a decade. The gene chip technology can rapidly detect changes in gene expression in the sample and is suitable for screening differentially expressed genes (DEGs) (Vogelstein et al. 2013) (3). In recent years, gene chip technology has been widely used, and data from numerous microarray studies have been stored in free public databases. These databases provide valuable data for further research. So far, several gene chip data have been analyzed, and hundreds of different genes involved in the development of several central nervous system cancers such as gliomas have been identified (Xi et al. 2017; Zeng et al. 2018) (4,5). However, most gene chip data is a mixture of both MB and glioma and does not accurately represent changes in MB, and therefore does not generate satisfactory results.

There have been reports of microarray data to find DEGs in medulloblastoma (Shaabanpour Aghamaleki et al. 2019) However, the reliability of the analysis results was controversial due to the heterogeneity of the sample from a single cohort study. Therefore, most single-chip analyses are not sufficient to identify effective biomarkers in MB. To overcome this, we used data derived from four gene chips to identify effective biomarkers for MB. This method is more accurate and does not have the disadvantages associated with the single-chip analysis.
In this study, we downloaded four MB microarray datasets – GSE42656, GSE74195, GSE109401, and GSE50161 from free public Gene Expression Omnibus database (GEO). A total of 77 MB samples and 39 normal brain samples were included in this study. We identified the DEGs using the Limma package in R software (version 3.5.0) from the four gene expression profiles and subsequently, used the Venny online tool for further integrated analyses. We then employed the DAVID databases and Kobas online tool to identify the functions of the identified DEGs and the key cell signaling pathways involved. The network of protein-protein interaction (PPI) was generated using the STRING database. Finally, we used the CMap database to explore potential small-molecule compounds that can be used for treating MB.

Materials & Methods

Microarray data information

We downloaded the gene expression profile data for GSE42656, GSE74195, GSE109401, and GSE50161 from the GEO database (http://www.ncbi.nlm.nih.gov/geo). The GSE42656 data set was based on the GPL6947 Platforms (Illumina HumanHT-12 V3.0 expression beadchip) and contained nine MB samples and 16 normal brain samples (Henriquez et al. 2013) (6). The GSE74195 data set was based on the GPL570 Platform (Affymetrix Human Genome U133 Plus 2.0 Array) and contained 27 MB and five normal brain tissue samples (de Groot et al. 2011) (7). The GSE50161 data set was based on the GPL570 Platform (Affymetrix Human Genome U133 Plus 2.0 Array) and included 22 MB samples and 13 normal brain tissues (Griesinger et al. 2013) (8). The GSE109401 data set was based on GPL16686 Platforms Affymetrix Human Gene 2.0 ST Array [transcript (gene) version]) and included 19 medulloblastoma samples and five normal brain samples (Rivero-Hinojosa et al. 2018) (9).
profiles for further integrated analyses to avoid racial differences and errors in individual experiments.

Identification of DEGs in Medulloblastoma

The DEGs were identified based on the series matrix file using Limma package in R software (version 3.5.0) according to the cut-off standard (p < 0.05 and logFC > 1) (Fang et al. 2017) (10). The four sets of differential expression data were respectively divided into upregulated DEmRNAs and downregulated DEmRNAs and were uploaded to Venny (http://bioinfogp.cnb.csic.es/tools/venny/) for integrated analyses. A heat map was generated using the heatmap package in R. The GSE74195 dataset was used as the reference to generate the heat map. The heatmap showed 29 upregulated DEGs, and 75 downregulated DEGs.

GO and KEGG enrichment analysis of DEGs

The DAVID online database and Kobas online tool were used for functional and pathway enrichment analyses (Huang da et al. 2009) (11). We uploaded the DEGs to DAVID for GO functional annotation analysis and Kobas for KEGG pathway enrichment analysis. P < 0.05 was used as the cut-off value.

Building a PPI network

The STRING public database, which provides PPI network analysis, can evaluate direct and indirect links between DEGs (http://string-db.org) (Franceschini et al. 2013) (12). The DEGs were uploaded to STRING to obtain the PPI network using an Interaction score of 0.2. Cytoscape was used for visualizing the PPI network and for identifying the hub genes based on the degree of connectivity between DEGs.

Identification of small-molecule compounds for the treatment of MB
CMap, an online tool, can be based on the gene expression profile of a disease to mine potential therapeutic drugs (Lamb et al. 2006) (13). We divided the DEGs of MB into upregulated DEGs and downregulated DEGs, and uploaded them to CMap to explore the drugs. $P<0.001$ and Enrichment <-0.8 was used as the cut-off criteria. The 3D structures of the small-molecule compounds are available from PubChem (https://pubchem.ncbi.nlm.nih.gov/).

RNA isolation and reverse transcription

quantitative polymerase chain reaction (RT-qPCR) analysis

Total

RNA is extracted from in normal human brain tissue and medulloblastoma cell lines (Dao y and D283) using Tri-Reagent (Sigma, USA) according to the manufacturer’s instructions. NanoDrop One spectrophotometer (Thermo Fisher Scientific, USA) was used to evaluate the quality and quantity of the RNA. The Transcriptor First Stand cDNA Synthesis Kit (Roche, USA) was used to reverse transcribe total RNA into cDNA. The FastStart Universal SYBR Green Master (ROX) (Roche, Germany) and the QuantStudio software (Thermo Fisher Scientific, USA) were reserved for RT-qPCR based on the manufacturer’s instructions. The GAPDH gene was used as an endogenous reference.

The primer sequences were as follows: 5’-GGACACGTCGCTCAGAGATT-3′ (sense) and 5’-TCTACGATGAGCTGTTTGTCTTC-3’ (antisense) for SYN1, 5’-GGGGTGATGTTGCCCTGTAA-3′ (sense) and 5’-AGGTCTGAGGCATTGGTTCG-3′ (antisense) for CNTN2, 5’-CTGATTCTCCTGACCGTCTTTAC-3′ (sense) and 5’-
GAACCTGGTCTGGAAGCTGAA-3′ (antisense) for FAIM2, 5’-
CAAGTGCGAGGGATGCAAAT-3′ (sense) and 5’-TGGCACACTTCTCACACTCC-
3′ (antisense) for MT3, 5’-CTCAGCCTAGAAGGGAATATCAAC-3′ (sense) and 5’-
CAGCAGGGCTGATCCATTT-3′ (antisense) for SH3GL2, and 5’-
CACCCACTCCTCCACCTTTGA-3′ (sense) and 5’-ACCACCCTGTTGCTGTAGCCA-
3′ (antisense) for GAPDH. The results were analyzed using the -
ΔCT method with an unpaired t-test, and a P-
value <0.05 was considered a meaningful result.

Results

Screening of DEGs in MB

We downloaded the gene expression datasets – GSE42656, GSE109401, GSE50161, and GSE74195 from GEO. From the GSE42656 dataset, we identified 869 DEGs, of which 222 were upregulated, and 647 were downregulated. A total of 764 DEGs were identified from the GSE109401 data set – 274 upregulated and 490 downregulated; 5494 DEGs from GSE50161 – 2798 upregulated and 2696 downregulated, and 1000 DEGs were identified from GSE74195 – 422 upregulated and 578 downregulated. Integrated analyses revealed that 104 DEGs were consistently expressed in the four data sets (Figure. 1A and 1B); these included 29 upregulated DEGs, and 75 downregulated DEGs in MB tissue compared to the normal brain tissue (Table 1). A heat map of the DEG distribution was generated using the GSE74195 dataset as a reference (Figure S1).

Gene Ontology Analysis of DEGs

The identified DEGs were analyzed using DAVID using p <0.05 as the cut-off standard to identify the functions associated with the DEGs. The GO function annotation
is divided into three functional groups – cell component (CC), molecular function (MF), and biological process (BP). As shown in Figure 2 and Table 2, within the BPs the upregulated DEGs were closely related to mitotic cell cycle, cell cycle phase-M phase, cell cycle process, cell cycle, spindle organization, and microtubule-based process and the downregulated DEGs were closely related to vesicle-mediated transport. Within CC the upregulated DEGs were closely related to the spindle-microtubule, and cytoskeleton, whereas the downregulated DEGs were closely related to the synapse, synapse part, clathrin-coated vesicle, synaptic vesicle, cytoplasmic vesicle, coated vesicle, cytoplasmic membrane-bounded vesicle, vesicle, and membrane-bounded vesicle. Within MF, the upregulated DEGs showed a close relationship with DNA binding and the downregulated DEGs did not show any association.

KEGG pathway analysis

The 104 DEGs were grouped as upregulated and downregulated DEGs and the cellular signaling pathways represented were analyzed by KEGG (Figure 3 and Table 3). The upregulated genes are mainly involved in the cell cycle, ubiquitin-mediated proteolysis, viral carcinogenesis, one-carbon pool by folate, and microRNAs in cancer. The downregulated genes are mainly involved in the synaptic vesicle cycle, bacterial invasion of epithelial cells, insulin secretion, HIF-1 signaling pathway, phospholipase D signaling pathway, and cell adhesion molecules (CAMs).

PPI network generation and identification of the hub gene

The interrelationships between the 104 DEGs were analyzed using STRING. We found that 100 of the 104 DEGs were related to each other and were visualized using Cytoscape.
191 – 100 nodes and 776 edges are included in the network of PPI and the hub gene based on the degree of connectivity between genes were identified (Figure 4A).

192 Among the hub genes, the most significant hub genes were SYNI, CNTN2, FAIM2, MT3, and SH3GL2 (Figure 4B).

195 **Potential therapeutic drugs for MB**

196 Of the 104 DEGs, only 85 were eventually converted to IDs from 22,214 probes in the Affymetrix platform. After that, we used CMap and identified six potential therapeutic drugs based on set criteria (Table 4). A PubMed literature search revealed that two drugs – vorinostat and resveratrol – have been reported to have a therapeutic effect in MB. The other three drugs, trichostatin A, pyrvinium, and prochlorperazine, have been reported to have therapeutic effects in other cancers. The 3D structures of these potential therapeutic drugs are available from PubChem (Figure 5).

203 **Experiments verify the five hub DEmRNAs in MB**

204 To verify the expression levels of the five hub genes in the PPI network, RT-qPCR was used to detect their expression levels in normal human brain tissue and medulloblastoma cell lines (Daoy and D283). The five hub genes in the PPI network, including SYN1, CNTN2, FAIM2, MT3, and SH3GL2, were all down-regulated DEGs in MB, and this result was confirmed by RT-qPCR (Figure 6). This shows that our analysis results were completely credible.

210 **Discussion**

211 Although several studies have been carried out to understand the pathogenesis of MB, there is no effective strategy to reduce the incidence or mortality of MB. This may be because most studies till date have focused on a single genetic event contributing to MB
pathogenesis. Therefore, in order to identify effective molecular markers, we used data derived from four cohorts profile datasets obtained from the GEO database (GSE42656, GSE74195, GSE109401, GSE50161). Integrated analyses of the four data sets revealed 104 DEGs including 29 upregulated, and 75 downregulated DEGs. Enrichment of these genes identified certain cellular signaling pathways which may provide novel insights to the understanding of the pathogenesis of MB. We also used CMap, a drug development tool, and identified six potential drugs that can be used for the treatment of MB. To our knowledge, this is the first study to use integrated bioinformatical analysis for studying the pathogenesis of MB.

GO enrichment analysis showed that the upregulated DEGs were mainly involved in the spindle, cell cycle phase, M phase, cell cycle, spindle organization, microtubule cytoskeleton and the downregulated DEGs were mainly closely related to clathrin-coated vesicle, synaptic vesicle, and cytoplasmic vesicle. These results are consistent with previous literature reports that spindle defects play a vital role in the pathological process of MB (Abdelfattah et al. 2018) (14). LCL161 an inhibitor of apoptosis proteins (IAP) combined with chemotherapy can slow MB cell proliferation by inducing G2/M phase arrest (Chen et al. 2018) (15). Patupilone, a microtubule stabilizer, can reduce clonogenic survival and enhance the therapeutic efficacy of radiotherapy effect in MB (Oehler et al. 2011) (16). α-synuclein binds to cytoplasmic vesicles to change the surface morphology of in U251 glioblastoma cells (Duan et al. 2017) (17). Synaptic vesicle protein 2A is a predictor of the efficacy of levetiracetam in glioma patients (de Groot et al. 2011)(18). The internalization of clathrin-coated vesicles can reduce the sensitivity of metabotropic receptors in C6 cells (Luis Albasanz et al. 2002) (19).
KEGG pathway analysis demonstrated that the upregulated genes have significant enrichment in pathways including one-carbon pool by folate, microRNAs in cancer, DNA replication, and basal transcription factors. Previous studies have shown that these signaling pathways are mainly involved in the development of cancer. For example, the basal transcription factors such as oncogene Orthodenticle Homeobox 2, play an important role in cell migration and proliferation in MB (Wortham et al. 2014) (20). Folate receptor (Folr1) participates in the pathway network of the one-carbon pool by folate, which is related to clinical, pathological, neuroimaging features, and prognosis of MB patients (Liu et al. 2017) (21). MicroRNA-31 inhibits DNA replication by targeting minichromosome maintenance complex component 2 (MCM2), which has a strong inhibitory effect on MB growth (Jin et al. 2014) (22). The downregulated genes were mainly involved in HIF-1 signaling pathway, phospholipase D signaling pathway, and phosphatidylinositol signaling system. These signaling pathways are involved in the pathological process of cancer. For example, phosphatidylinositol signaling system, such as the phosphatidylinositol 3-kinase (PI3K) pathway is associated with reduced survival in patients and is one of the most common signaling pathway-related abnormality in gliomas (Tuncel & Kalkan 2018) (23). Phospholipase D signaling pathway specifically inhibits autophagic flux and decreases GBM cell viability (Bruntz et al. 2014) (24). The hypoxia-inducible factor-1 signaling pathway is vital for the invasion and metastasis of glioma cells (Yaghi et al. 2016) (25). Together, our results show that the cellular pathways of DEGs identified in this study are closely related to the development of cancer.
The PPI network of DEGs represents an overview of their functional relations. Most of the hub genes selected in this network have been reported to be closely related to the pathological process of cancers. For example, \textit{SYN1}, one of the neuronal genes, is related to the formation and maintenance of synaptic contacts and the expression of REST. RCOR1 may cause deregulated expression of \textit{SYN1}, which contributes to the maintenance of glioblastoma stem-like cells (GSC) (Yucebas et al. 2016) (26). \textit{CNTN2}, a cell adhesion protein, is a downstream protein of RACK1, which affects the growth and differentiation of glioma cells through the RTK/Ras/MAPK signaling pathway (Yan & Jiang 2016) (27). \textit{FAIM2} is an anti-apoptotic molecule that promotes tumor cell growth through Fas-mediated mechanisms. Knock-down of \textit{FAIM2} can significantly affect tumor cell proliferation in small-cell lung cancer (Kang et al. 2016) (28). \textit{MT3} is a tumor suppressor gene, and its expression is significantly reduced in AML samples. The overexpression of \textit{MT3} can inhibit cell proliferation and promote tumor cell apoptosis in pediatric acute myeloid leukemia (Tao et al. 2014) (29). \textit{SH3GL2}, as a suppressor for tumors, and has reduced expression in glioma tissues promoting migration and infiltration of glioma cells by enhancing STAT3/MMP2 signaling (Zhu et al. 2017) (30). These five hub genes have important regulatory effects in the pathophysiology of cancers, but their role has not been reported in MB. These hub genes are potential targets for the treatment of MB.

CMap is an online tool that can be used to identify potential therapeutic drugs based on DEGs in various disease (Lamb et al. 2006) (13). In the current study, we identified six drugs using CMap analysis. Two of these drugs have been previously reported to have a therapeutic effect on MB. The combination of vorinostat and MLN8237 can significantly
inhibit the proliferation of MB cells (Muscal et al. 2013) (31). Resveratrol inhibits the growth of cancer cells by regulating the Notch signaling pathway to promote apoptosis and differentiation of MB cells (Wang et al. 2008) (32). Three drugs – trichostatin A, pyrvinium, and prochlorperazine – have not been reported for the treatment of MB; however, several studies have reported their treatment efficacies in other cancers. Prochlorperazine and trichostatin A were used for treating glioblastoma and pyrvinium for the treatment of ovarian cancer (Horing et al. 2013; Otreba & Buszman 2018; Zhang et al. 2017) (33-35). Although the six small-molecule compounds obtained have not been adequately studied in MB. CMap is an online tool that provides researchers with an index based on disease DEGs to search for potential therapeutic drugs. Recently, some traditional drugs have been found to have new therapeutic effects. The development of new uses of old drugs can more quickly understand the pharmacological properties of drugs, which will help their early application in clinical treatment. For example, atorvastatin is a well-known traditional lipid-lowering drug, but in recent years, it has been found to have obvious therapeutic effects on chronic subdural hematoma (Jiang et al. 2018). Metformin is a traditional anti-diabetic drug. In recent years, new therapeutic effects have been discovered in human diseases such as anti-tumor effects, neuroprotective effects, etc (Podhorecka et al. 2017; Saewanee et al. 2019). So we have reason to speculate that the small-molecule drugs identified by CMap analysis may be potential drugs for the treatment of MB.

Conclusions
In summary, most single data set analyses are limited by the small sample size, high experimental error, and lack of ethnic differences, and therefore cannot reliably identify
the important genes and pathways involved in the pathogenesis of diseases. In this study, the above problems were well avoided by using multiple data sets and integrated analysis to improve the reliability and accuracy of the results. We identified 104 DEGs from four groups of gene expression profiling data of MB and analyzed them comprehensively. The hub genes identified by PPI network analysis include SYN1, CNTN2, FAIM2, MT3, and SH3GL2, which are involved in the pathogenesis of different cancers. We also identified several small-molecule compounds that may have potential therapeutic effects on MB. These findings provide new insights into the pathogenesis of MB and provide a basis for treatment. however, further experimental verification is needed.

Acknowledgements
Not applicable.

References
Abdelfattah N, Rajamanickam S, Panneerdoss S, Timilsina S, Yadav P, Onyeagucha BC, Garcia M, Vadlamudi R, Chen Y, Brenner A, Houghton P, and Rao MK. 2018. MiR-584-5p potentiates vincristine and radiation response by inducing spindle defects and DNA damage in medulloblastoma. Nat Commun 9:4541. 10.1038/s41467-018-06808-8
Bruntz RC, Taylor HE, Lindsley CW, and Brown HA. 2014. Phospholipase D2 mediates survival signaling through direct regulation of Akt in glioblastoma cells. J Biol Chem 289:600-616. 10.1074/jbc.M113.532978
Chen SM, Lin TK, Tseng YY, Tu CH, Lui TN, Huang SF, Hsieh LL, and Li YY. 2018. Targeting inhibitors of apoptosis proteins suppresses medulloblastoma cell proliferation via G2/M phase arrest and attenuated neddylation of p21. Cancer Med 7:3988-4003. 10.1002/cam4.1658
de Groot M, Aronica E, Heimans JJ, and Reijneveld JC. 2011. Synaptic vesicle protein 2A predicts response to levetiracetam in patients with glioma. Neurology 77:532-539. 10.1212/WNL.0b013e318228c110
Duan J, Ying Z, Su Y, Lin F, and Deng Y. 2017. alpha-Synuclein binds to cytoplasmic vesicles in U251 glioblastoma cells. Neurosci Lett 642:148-152. 10.1016/j.neulet.2017.01.067
Fang C, Huang Y, Pei Y, Zhang HH, Chen X, Guo H, Li S, Ji X, and Hu J. 2017. Genome-wide gene expression profiling reveals that CD274 is up-regulated new-onset type 1 diabetes mellitus. Acta Diabetol 54:757-767. 10.1007/s00592-017-1005-y
Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Mingeaz P, Bork P, von Mering C, and Jensen LJ. 2013. STRING v.9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808-815. 10.1093/nar/gks1094
Griesinger AM, Birks DK, Donson AM, Amani V, Hoffman LM, Waziri A, Wang M, Handler MH, and Foreman NK. 2013. Characterization of distinct immunophenotypes across pediatric brain tumor types. J Immunol 191:4880-4888. 10.4049/jimmunol.1301966
Henriquez NV, Forshew T, Tatevossian R, Ellis M, Richard-Loendt A, Rogers H, Jacques TS, Reitboeck PG, Pearce K, Sheer D, Grundy RG, and Brandner S. 2013. Comparative expression analysis reveals lineage relationships between human and murine gliomas and a dominance of glial signatures during tumor propagation in vitro. *Cancer Res* 73:5834-5844. 10.1158/0008-5472.CAN-13-1299

Horing E, Podlech O, Silkenstedt B, Rota IA, Adamopoulou E, and Naumann U. 2013. The histone deacetylase inhibitor trichostatin a promotes apoptosis and antitumor immunity in glioblastoma cells. *Anticancer Res* 33:1351-1360.

Huang da W, Sherman BT, and Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nat Protoc* 4:44-57. 10.1038/nprot.2008.211

Jiang R, Zhao S, Wang R, Feng H, Zhang J, Li X, Mao Y, Yuan X, Fei Z, Zhao Y, Yu X, Poon WS, Zhu X, Liu N, Kang D, Sun T, Jiao B, Liu X, Yu R, Zhang J, Gao G, Hao J, Su N, Yin G, Zhu X, Lu Y, Wei J, Hu J, Hu R, Li J, Wang D, Wei H, Tian Y, Lei P, Dong JF, and Zhang J. 2018. Safety and Efficacy of Atorvastatin for Chronic Subdural Hematoma in Chinese Patients: A Randomized ClinicalTrial. *JAMA Neurol* 75:1338-1346. 10.1001/jamaneurol.2018.2030

Jin Y, Xiong A, Zhang Z, Li S, Huang H, Yu TT, Cao X, and Cheng SY. 2014. MicroRNA-31 suppresses medulloblastoma cell growth by inhibiting DNA replication through minichromosome maintenance 2. *Oncotarget* 5:4821-4833. 10.18632/oncotarget.2043

Kang HC, Kim JI, Chang HK, Woodard G, Choi YS, Ku JL, Jablons DM, and Kim JI. 2016. FAIM2, as a novel diagnostic maker and a potential therapeutic target for small-cell lung cancer and atypical carcinoid. *Sci Rep* 6:34022. 10.1038/srep34022

Kim SY, Sung KW, Hah JO, Yoo KH, Koo HH, Kang HJ, Park KD, Shin HY, Ahn HS, Im HJ, Seo JJ, Lim YJ, Lee YH, Shin HJ, Lim DH, Cho BK, Ra YS, and Choi JU. 2010. Reduced-dose craniospinal radiotherapy followed by high-dose chemotherapy and autologous stem cell rescue for children with newly diagnosed high-risk medulloblastoma or supratentorial primitive neuroectodermal tumor. *Korean J Hematol* 45:120-126. 10.5045/kjh.2010.45.2.120

Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, and Golub TR. 2006. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. *Science* 313:1929-1935. 10.1126/science.1132939

Liu H, Sun Q, Zhang M, Zhang Z, Fan X, Yuan H, Li C, Guo Y, Ning W, Sun Y, Song Y, and Yu C. 2017. Differential expression of folate receptor 1 in medulloblastoma and the correlation with clinicopathological characters and target therapeutic potential. *Oncotarget* 8:23048-23060. 10.18632/oncotarget.15480

Luis Albasanz J, Fernandez M, and Martin M. 2002. Internalization of metabotropic glutamate receptor in C6 cells through clathrin-coated vesicles. *Brain Res Mol Brain Res* 99:54-66. 10.1016/s0169-328x(02)00103-1

Muscal JA, Scorsone KA, Zhang L, Ecsedy JA, and Berg SL. 2013. Additive effects of vorinostat and MLN8237 in pediatric leukemia, medulloblastoma, and neuroblastoma cell lines. *Invest New Drugs* 31:39-45. 10.1007/s10637-012-9831-9

Oehler C, von Bueren AO, Furmanova P, Broggini-Tenzer A, Orlowksi K, Rutkowski S, Frei K, Grotzer MA, and Pruschy M. 2011. The microtubule stabilizer patupilone (epothilone B) is a potent radiosensitizer in medulloblastoma cells. *Neuro Oncol* 13:1000-1010. 10.1093/neuonc/nor069

Otreba M, and Buszman E. 2018. Perphenazine and prochlorperazine induce concentration-dependent loss in human glioblastoma cells viability. *Pharmazie* 73:19-21. 10.1691/ph.2018.7806
Podhorecka M, Ibanez B, and Dmoszynska A. 2017. Metformin - its potential anti-cancer and anti-aging effects. *Postepy Hig Med Dosw (Online)* 71:170-175.

Rivero-Hinojosa S, Lau LS, Stampar M, Staal J, Zhang H, Gordish-Dressman H, Northcott PA, Pfister SM, Taylor MD, Brown KJ, and Rood BR. 2018. Proteomic analysis of Medulloblastoma reveals functional biology with translational potential. *Acta Neuropathol Commun* 6:48. 10.1186/s40478-018-0548-7

Saewanee N, Praputpittaya T, Malaiwong N, Chalorak P, and Meemon K. 2019. Neuroprotective effect of metformin on dopaminergic neurodegeneration and alpha-synuclein aggregation in C. elegans model of Parkinson's disease. *Neurosci Res*. 10.1016/j.neures.2019.12.017

Shaabanpour Aghamaleki F, Mollashahi B, Aghamohammadi N, Rostami N, Mazloumi Z, Mirzaei H, Moradi A, Sheikhpour M, and Movafagh A. 2019. Bioinformatics Analysis of Key Genes and Pathways for Medulloblastoma as a Therapeutic Target. *Asian Pac J Cancer Prev* 20:221-227. 10.31557/APJCP.2019.20.1.221

Tao YF, Xu LX, Lu J, Cao L, Li ZH, Hu SY, Wang NN, Du XJ, Sun LC, Zhao WL, Xiao PF, Fang F, Li YH, Li G, Zhao H, Li YP, Xu YY, Ni J, Wang J, Feng X, and Pan J. 2014. Metallothionein III (MT3) is a putative tumor suppressor gene that is frequently inactivated in pediatric acute myeloid leukemia by promoter hypermethylation. *J Transl Med* 12:182. 10.1186/1479-5876-12-182

Wang J, Garancher A, Ramaswamy V, and Wechsler-Reya RJ. 2018. Medulloblastoma: From Molecular Subgroups to Molecular Targeted Therapies. *Annu Rev Neurosci* 41:207-232. 10.1146/annurev-neuro-070815-013838

Wang Q, Li H, Liu N, Chen XY, Wu ML, Zhang KL, Kong QY, and Liu J. 2008. Correlative analyses of notch signaling with resveratrol-induced differentiation and apoptosis of human medulloblastoma cells. *Neurosci Lett* 438:168-173. 10.1016/j.neulet.2008.04.012

Wortham M, Guo C, Zhang M, Song L, Lee BK, Iyer VR, Furey TS, Crawford GE, Yan H, and He Y. 2014. Chromatin accessibility mapping identifies mediators of basal transcription and retinoid-induced repression of OTX2 in medulloblastoma. *PLoS One* 9:e107156. 10.1371/journal.pone.0107156

Xi Y, Tang W, Yang S, Li M, He Y, and Fu X. 2017. Mining the glioma susceptibility genes in children from gene expression profiles and a methylation database. *Oncof Lett* 14:3473-3479. 10.3892/ol.2017.6579

Yaghi L, Poras I, Simoes RT, Donadi EA, Tost J, Daunay A, de Almeida BS, Carosella ED, and Moreau P. 2016. Hypoxia inducible factor-1 mediates the expression of the immune checkpoint HLA-G in glioma cells through hypoxia response element located in exon 2. *Oncotarget* 7:63690-63707. 10.18632/oncotarget.11628

Yan Y, and Jiang Y. 2016. RACK1 affects glioma cell growth and differentiation through the CNTN2-mediated RTK/Ras/MAPK pathway. *Int J Mol Med* 37:251-257. 10.3892/ijmm.2015.2421

Yucebas M, Yilmaz Susluer S, Onur Caglar H, Balci T, Dogan Sigva ZO, Akalin T, Oktar N, Dalbasti T, Biray Avci C, and Gunduz C. 2016. Expression profiling of RE1-silencing transcription factor (REST), REST corepressor 1 (RCOR1), and Synapsin 1 (SYN1) genes in human gliomas. *J BUON* 21:964-972.

Zeng WJ, Yang YL, Liu ZZ, Wen ZP, Chen YH, Hu XL, Cheng Q, Xiao J, Zhao J, and Chen XP. 2018. Integrative Analysis of DNA Methylation and Gene Expression Identify a Three-
Gene Signature for Predicting Prognosis in Lower-Grade Gliomas. *Cell Physiol Biochem* 47:428-439. 10.1159/000489954

Zhang C, Zhang Z, Zhang S, Wang W, and Hu P. 2017. Targeting of Wnt/beta-Catenin by Anthelmintic Drug Pyrvinium Enhances Sensitivity of Ovarian Cancer Cells to Chemotherapy. *Med Sci Monit* 23:266-275. 10.12659/msm.901667

Zhu Y, Zhang X, Wang L, Ji Z, Xie M, Zhou X, Liu Z, Shi H, and Yu R. 2017. Loss of SH3GL2 promotes the migration and invasion behaviours of glioblastoma cells through activating the STAT3/MMP2 signalling. *J Cell Mol Med* 21:2685-2694. 10.1111/jcmm.13184
Figure 1

Using the Venny map to obtain common DEGs in MB, and the cross areas represented the commonly DEGs of the four datasets (GSE42656, GSE109401, GSE50161, and GSE74195).

A) Commonly up-regulated genes (29 DEGs); B) Commonly down-regulated genes (75 DEGs).
Figure 2

Gene Ontology (GO) functional annotation analysis and significant terms of DEGs in MB and GO analysis divided into three parts.

cyan for cell component, pink for molecular function, and blue for biological process
Figure 3

Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway analysis of DEGs in MB.

Red represent the common up-regulated genes and green represent the common down-regulated genes.
Figure 4

The PPI network of DEGs.

(A) 100 DEGs were incorporated into the network consisted of 29 upregulated (red) and 71 downregulated (green) genes; (B) Hub genes determined by the degree of connectivity between DEGs.
Figure 5

The 3D structures of five small-molecule compounds identified as potential drugs for MB treatment.

(A) Vorinostat; (B) Resveratrol; (C) Trichostatin A; (D) Pyrvinium, and (E) Prochlorperazine.
Figure 6

The expression levels of the five hub genes in the PPI network were detected by RT-qPCR. These included SYN1, CNTN2, FAIM2, MT3, and SH3GL2 (P < 0.05).
The 104 differentially expressed genes (DEGs), including 29 upregulated genes and 75 downregulated genes were identified in the medulloblastoma tissues from four profile datasets using normal brain tissues as a reference.

Abbreviation: DEGs, differentially expressed genes.
Table 1. The 104 differentially expressed genes (DEGs), including 29 upregulated genes and 75 downregulated genes were identified in the medulloblastoma tissues from four profile datasets using normal brain tissues as a reference.

DEGs	Gene Name
Up-regulated 29	ACTL6A,UBE2C,TMEM97,GTF2IRD1,INSM2,CDC20,PRC1,ZNF423,HMGB2,ODC1,MCM7,KL
	HDC8A,SOX11,RAD51AP1,KIF15,CDK6,EBF3,EYA2,TYMS,TTK,CD24,DACH1,SOX4,NUSAP
	1,RPGRIp1,KIF11,NEUROG1,OTX2,TOP2A
Down-regulated 75	CADPS2,TMEM163,UNC13C,DNER,CNTNAP1,DNM3,TMOD1,FEZ1,RAPGEF4,RIT2,NDRG4,
	TPPP,TMEM55A,MT3,FAIM2,ABLIM1,RCAN2,MAP1A,DHCR24,NRNX2,PTGDS,CD51,RASG
	RP1,PCP4,NRIP3,HPCAL4,PITCH1,D1,GAS7,KIAA0513,PMP2,PHACTR3,TF,CADM2,CNTN2,VS
	NL1,BCAS1,DKK3,SCRN1,FBX1,16,ELOVL4,OPCLM,DNM1,EEF1A2,TTC9B,CA11,CEND1,M
	OBP,SH3GL2,SCG5,EPDR1,LRRCSB,COX7A1,NAP1L3,TSPAN7,CAMK2B,OPTN,STMN4,CLS
	TN3,PEA15,SYN1,RNF175,REEP2,CSR1,SYT11,TCEAL2,GPM6B,TPRG1L,ASTN1,MAP7D2,S
	IRPA,OLIG1,SYNGR3,ELMO1,HK1,VAMP2

Abbreviation: DEGs, differentially expressed genes.
Table 2 (on next page)

DEGs divided into upregulated genes and downregulated genes and their first ten meaningful GO enrichment analyses.

Abbreviation: GO, Gene Ontology; DEGs, differentially expressed genes.
Table II. DEGs divided into upregulated genes and downregulated genes and their first ten meaningful GO enrichment analyses.

Term	Description	Count	P-Value
Up-regulated			
GO:0005819	Spindle	6	1.92E-06
GO:0000278	Mitotic cell cycle	8	5.99E-06
GO:0003677	DNA binding	15	1.12E-05
GO:0022403	Cell cycle phase	8	1.25E-05
GO:0000279	M phase	7	3.80E-05
GO:0022402	Cell cycle process	8	9.14E-05
GO:0007049	Cell cycle	9	9.45E-05
GO:0007051	Spindle organization	4	9.51E-05
GO:0015630	Microtubule cytoskeleton	7	1.03E-04
GO:0007017	Microtubule-based process	6	1.27E-04
Down-regulated			
GO:0045202	Synapse	11	5.27E-06
GO:0016192	Vesicle-mediated transport	11	5.69E-05
GO:0044456	Synapse part	8	1.45E-04
GO:0030136	Clathrin-coated vesicle	6	3.77E-04
GO:0008021	Synaptic vesicle	5	4.37E-04
GO:0031410	Cytoplasmic vesicle	11	7.37E-04
GO:0030135	Coated vesicle	6	8.80E-04
GO:0016023	Cytoplasmic membrane-bounded vesicle	10	9.86E-04
GO:0031982	Vesicle	11	0.001022664
GO:0031988	Membrane-bounded vesicle	10	0.001235649

Abbreviation: GO, Gene Ontology; DEGs, differentially expressed genes.
Table 3 (on next page)

KEGG pathway analysis of upregulated and downregulated genes in MB

Abbreviation: KEGG, Kyoto Encyclopedia of Genes and Genomes; ID, identification.
Table III. KEGG pathway analysis of upregulated and downregulated genes in MB

Database	ID	Term	Gene Count	P-Value	Gene Names
KEGG PATHWAY	hsa04110	Cell cycle	4	2.28E-06	TTK, CDC20, MCM7, CDK6
KEGG PATHWAY	hsa04120	Ubiquitin mediated proteolysis	2	0.004624353	CDC20, UBE2C
KEGG PATHWAY	hsa05203	Viral carcinogenesis	2	0.009970546	CDC20, CDK6
KEGG PATHWAY	hsa00670	One carbon pool by folate	1	0.015198488	TYMS
KEGG PATHWAY	hsa05206	MicroRNAs in cancer	2	0.020243092	CDK6, SOX4
KEGG PATHWAY	hsa03030	DNA replication	1	0.026628344	MCM7
KEGG PATHWAY	hsa03022	Basal transcription factors	1	0.033001239	GTF2IRD1
KEGG PATHWAY	hsa00330	Arginine and proline metabolism	1	0.03652431	ODC1
KEGG PATHWAY	hsa00480	Glutathione metabolism	1	0.037930065	ODC1
KEGG PATHWAY	hsa05223	Non-small cell lung cancer	1	0.040735637	CDK6
KEGG PATHWAY	hsa04721	Synaptic vesicle cycle	4	8.12E-06	DNM3, UNC13C, DNM1, VAMP2
KEGG PATHWAY	hsa05100	Bacterial invasion of epithelial cells	3	0.000492126	DNM3, DNM1, ELM01
KEGG PATHWAY	hsa04911	Insulin secretion	3	0.000627009	RAPGEF4, CAMK2B, VAMP2
KEGG PATHWAY	hsa04066	HIF-1 signaling pathway	3	0.001075892	HK1, TF, CAMK2B
KEGG PATHWAY	hsa04072	Phospholipase D signaling pathway	3	0.002737401	DNM3, RAPGEF4, DNM1
KEGG PATHWAY	hsa04514	Cell adhesion molecules (CAMs)	3	0.002843803	NRXN2, CNTN2, CNTNAP1
KEGG PATHWAY	hsa04961	Endocrine and other Factor-regulated calcium reabsorption	2	0.003884233	DNM3, DNM1
KEGG PATHWAY	hsa00524	Butirosin and neomycin biosynthesis	1	0.011244262	HK1
KEGG PATHWAY	hsa04144	Endocytosis	3	0.01354801	DNM3, DNM1, SH3GL2
KEGG PATHWAY	hsa04070	Phosphatidylinositol signaling system	2	0.0153706	CDS1, TMEM55A

Abbreviation: KEGG, Kyoto Encyclopedia of Genes and Genomes; ID, identification.
Table 4 (on next page)

Six small-molecule compounds identified as potential drugs for MB treatment by CMap analysis

Abbreviation: CMap, connectivity map.
Table IV. Six small-molecule compounds identified as potential drugs for MB treatment by CMap analysis.

Term	Enrichment	P-Value
Vorinostat	-0.842	0
Resveratrol	-0.827	0
Trichostatin A	-0.568	0
Pyrvinium	-0.727	0.00077
Prochlorperazine	-0.475	0.00082
0175029-0000	-0.718	0.00099

Abbreviation: CMap, connectivity map.