Effect of salinity, single and binary ionic compounds’ low salinity water on wettability alteration in carbonate rocks

C Ho1 and M A Ayoub1,2

1 Petroleum Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Malaysia.

Email: hoching1258@gmail.com, abdalla.ayoub@utp.edu.my

Abstract. Low salinity water flooding is one of the emerging enhanced oil recovery technologies as it has been proven economical and environmentally friendly. However, the recovery mechanism of low salinity water (LSW) is still under debatable due to the complex effect of low salinity water and its ionic compositions. Therefore, this study aims to discover the optimum seawater dilution salinity and influence of single and binary ionic compounds low salinity water on wettability alteration of carbonate core slices at optimum salinity. To achieve that, a modified Design of Experiments (DOE) has been implemented. Contact angle measurement was carried out to characterize the wettability of core slices at 0 hour, after 24 hours and after 48 hours. The results revealed that dilution of seawater reduced the contact angle of carbonate core slices towards more water wet until the optimum salinity of 1750ppm. Further dilution to 700ppm only shown a slight impact in shifting the wettability of the carbonate slices towards more water wet. In single ionic compound LSW, MgCl₂ showed the greatest ability in altering wettability. In binary ionic compounds LSW, it was found out that MgCl₂ mixed with ionic compounds containing monovalent ion is more effective in altering contact angle than MgCl₂ mixed with ionic compounds containing divalent ion which serve as a new finding in current low salinity water study on carbonate rocks.

1. Introduction
Most of the oil and gas reserves are held in carbonate reservoirs. Its complex nature of characters such as oil wet to intermediate wet, heterogeneous characteristic and highly fractures resulted in large amount of hydrocarbon left untapped in the reservoir [1]. Until last decade, one green popular enhanced oil recovery (EOR) method known as low salinity water flooding (LSWF) is being explored extensively on carbonate reservoirs. Low salinity water flooding is not only eco-friendly and inexpensive; the simplicity of injection into oil bearing formation and capability of sweeping light to medium gravity crude oil leading it more attractive over the other EOR methods [2], [3]. There are different conclusions that have been drawn on the performance of low salinity water flooding in carbonate rocks. In the studies of [3-5], lowering the salinity of water could have lowered the contact angle towards more water wet and thus increasing oil recovery. However, Fathi et al. [6] claimed that low salinity water has negative impact on oil recovery of carbonate rock. Sharifi and Shaikh [7] concluded that there is no direct relationship between contact angle and salinity and Su et al. [8] has revealed that there is an optimum salinity to achieve maximum wettability alteration. On the other hand, many laboratory investigations showed favourable oil recovery by tuning the ionic compositions like types and concentration of ions in low salinity water. Hognesen et al. [9] reported that the increase in SO₄²⁻ concentration in seawater could increase the oil recovery through their spontaneous
imbibition experiment. In the work of Zhang and Austad [10], the authors mentioned that both SO$_4^{2-}$ and Ca$^{2+}$ are the potential determining ions. Zhang et al. [11] were then proved that SO$_4^{2-}$ is required to interact with either Ca$^{2+}$ or Mg$^{2+}$ to improve oil recovery. Contradicting result was found by Al-Attar et al. [5] work who claimed that the increase in Ca$^{2+}$ concentration of water injection has an adverse impact on oil recovery. Interestingly, contact angle measurement on an Iranian carbonate rock carried out by Lashkarbolooki et al. [12] reported that the monovalent ions (K$^+$ and Na$^+$) are able to improve water wettess of carbonate rock compared to divalent ions (Ca$^{2+}$ and Mg$^{2+}$) when tested individually. Conversely, Sodium chloride is known to be a non-active ion by [6], [13]. Therefore, to improve understanding on the effect of low salinity water on carbonate rock, this study aims to investigate further into the optimum salinity and the effect of ions in single ionic compound and the relative effect of ions in binary ionic compounds low salinity water on wettability alteration of Indiana limestone.

2. Experiment Materials and methodology

2.1. Core
Indiana limestone outcrop core was provided by Kocurek Industries Inc. The petrophysical properties of Indiana limestone were measured by Poroperm using Helium gas and are tabulated in table 1.

Air permeability (mD)	Porosity (%)	Pore volume (cc)	Grain volume (cc)	Bulk Volume (cc)	Grain density (g/cc)	Bulk density (g/cc)
66.03	11.571	9.418	71.976	81.394	2.540	2.246

2.2. Oil
Real crude oil has been used in this study. Oil was filtered by using 11miron pore size Whatman filter paper before conducting experiment to eliminate the presence of coarse particles in the oil. The properties of crude oil are as shown in table 2.

Density at 80°C (g/cm3)	API @ 60°F	Viscosity at 80°C (cP)
0.7937	36.87	1.6065

2.3. Brines
Synthetic seawater, low salinity waters and formation water were prepared by dissolving Merck reagent grade salts with purity of more than 99.0% into distilled water such as Sodium Chloride, Calcium Chloride, Magnesium Chloride, Potassium Chloride, Sodium Sulphate and Sodium Bicarbonate. Seawater was synthesized closed to the compositions of typical seawater [14]. Formation water was synthesized based on the formation water of a reservoir limestone at which the air permeability is roughly the same as the air permeability of the core used in this study [15]. Through employing the modified design of experiment (DOE), the brine formulations in this study have been made possible as in table 3. Seawater (SW) was diluted to 5, 10, 20 and 50 times and are represented as SW/5, SW/10, SW/20 and SW/50 respectively. Binary ionic compounds are made up of 50%
MgCl₂ and 50% other ionic compounds (KCl, NaCl, CaCl₂ and Na₂SO₄) at a fixed salinity of 3500ppm. Therefore, there are a total of 14 samples that were used to investigate the low salinity water effect on wettability alteration of Indiana limestone. Density of brines were measured at both 25°C and 80°C by using Mettler Toledo density meter (DM40).

Table 3. Formulation of brines.

Composition	Na⁺ (mg/L)	Ca²⁺ (mg/L)	Mg²⁺ (mg/L)	K⁺ (mg/L)	SO₄²⁻ (mg/L)	HCO₃⁻ (mg/L)	Cl⁻ (mg/L)	TDS (mg/L)	Ionic Strength (mol/L)	Density at 25°C (g/cm³)	Density at 80°C (g/cm³)
SW/5	2634	3480	255	193	2358	1794	3500	3500	0.00693	1.00945	0.9727
SW/10	2236	3050	222	173	2307	1783	3500	3500	0.00515	1.00875	0.9738
SW/20	2134	2849	213	164	2234	1764	3500	3500	0.00475	1.00825	0.9727
KCl	0	0	0	78	0	0	3500	3500	0.00273	1.0005	0.9926
NaCl	0	0	0	69	0	0	3500	3500	0.00195	1.0000	0.9999
MgCl₂	0	0	0	58	0	0	3500	3500	0.00147	0.9999	0.9755
CaCl₂	0	0	0	48	0	0	3500	3500	0.00105	0.9999	0.9755
Na₂SO₄	0	0	0	38	0	0	3500	3500	0.00082	0.9999	0.9755
MgCl₂ + KCl	0	0	0	28	0	0	3500	3500	0.00060	0.9999	0.9755
MgCl₂ + NaCl	0	0	0	18	0	0	3500	3500	0.00032	0.9999	0.9755
CaCl₂ + KCl	0	0	0	9	0	0	3500	3500	0.00012	0.9999	0.9755

2.4 Experimental Procedures

Core sample was cut into 14 core slices (length of 2cm, width of 2cm and thickness of 3mm-5mm) by using Geological cutting machine. To produce a smooth surface of core slices for contact angle measurement, core slices were polished by using Forcipol 300-1V Grinder and Polisher before they were cleaned with methanol by using Soxhlet Extraction Apparatus. Core slices were then dried in oven for 24 hours at 90°C. To establish the initial water condition of core, core slices were saturated with formation water using Vacuum pump connected to Desiccator until no gas bubbles were released from the core slices. The core slices immersed in formation water were then placed into oven for 3 days at 80°C before it was aged in crude oil for 5 days at 80°C to create initial oil wet condition of core slices. The initial contact angle on aged core was then determined by dropping a water droplet on the cleaned and polished rock surface and the contact angle between the solid surface and tangent of wetting fluid from the surface of solid was then recorded at atmospheric condition. Finally, each aged core slice was immersed in each low salinity waters at 80°C before subsequent contact angle measurements were conducted after core slices being immersed for 24 hours and 48 hours. Contact angle measurement was performed by using Vinci Technologies IFT 700. The method of contact angle measurement is similar to what has been described in literature [16], [17].

3. Results and Discussions

3.1. Seawater and its dilution low salinity water (LSW)

Based on figure 1, the contact angles decrease with time, which indicating that wettability is shifted towards more water wet; hence improving oil recovery. This result is in line with literature as
illustrated by [3], [4], [5]. Seawater however could not alter the wettability of core slice. Interestingly, it is found out that diluting seawater to 1750ppm is the minimum concentration of low salinity water to have the greatest change in contact angle for Indiana limestone as depicted in figure 2. Further dilution to 700ppm only shows a slight impact in shifting the wettability, which also means additional cost is needed to desalinate seawater with minimum impact on recovery. The reason is deemed to be lack of potential determining ions concentration [6]. Therefore, there is a certain dilution extent for maximum wettability alteration to occur. A similar trend of the result was also obtained by Su et al. [8]. Due to significant change in contact angle has been observed when 7000ppm low salinity water is diluted to 3500ppm and only marginal changes when 3500ppm is diluted to 1750ppm, therefore 3500ppm is marked as the model concentration of low salinity water for subsequent contact angle measurements.

![Figure 1](image1.png) ![Figure 2](image2.png)

Figure 1. Contact angle measurement for seawater and its dilution with time.

Figure 2. Total cumulative reduction of contact angle for seawater and its dilution after 24 hours and 48 hours.

3.2. Single ionic compound low salinity water (LSW)

Figure 3 presented the contact angle reducing with time for single ionic compound low salinity waters at a salinity of 3500ppm. Relatively appreciable change in contact angle is notable for MgCl₂ composition as illustrated in figure 4. The contact angle has changed from 84.9° to 78.2° with total of 6.7° change in contact angle. Comparable results can be seen for Na₂SO₄ and CaCl₂ composition which has the total change in angles of 4.7° and 3.5° respectively. The results are analogous with the low salinity water contact angle measurements conducted by other researchers [18], [19] who found out that Magnesium ions can shift the wettability towards more water wet than Sulphate ions. Ionic compounds like NaCl and KCl showed the least impact on contact angle changes in carbonate rock. Contradiction was found in the work of Lashkarbolooki et al [12] who mentioned NaCl and KCl have higher capability in wettability alteration than MgCl₂ and CaCl₂. The effect and mechanism of low salinity water are not well understood yet.
3.3 Binary ionic compounds low salinity water (LSW)

Like figure 3, figure 5 shows the contact angle of binary ionic compounds LSW fixed at 3500ppm is observed to be reducing with time. From figure 6, it is apparent that the effect of the combination of 50% MgCl₂ + 50% KCl on wettability is tremendous amongst others. The results revealed that binary ionic compounds of 50% MgCl₂ + 50% KCl or 50% NaCl which has monovalent ion resulted in greater contact angle modification compared to binary ionic compounds of 50% MgCl₂ + 50% Na₂SO₄ or 50% CaCl₂ which has divalent ion. In other words, replacing 50% of single ionic compound such as KCl and NaCl with MgCl₂ increases the reduction of contact angle while replacing 50% of single ionic compound such as Na₂SO₄ and CaCl₂ with MgCl₂ decreases the reduction of contact angle.

4. Conclusions

In this study, it has been demonstrated that the dilution of seawater as well as tuning ionic composition low salinity water could affect the wettability of carbonate rocks. The more the salinity is reduced, the greater the alteration of contact angle and thus improving the wettability of carbonate rock towards water wet. However, there is an ideal salinity below which diluting the water reduces the change in contact angle. Overly dilution leads to a total change in contact angle reduces. In single ionic compound LSW, MgCl₂ has the greatest ability in shifting wettability towards more water wet followed by ionic compounds containing divalent ion (Na₂SO₄ and CaCl₂) which are more capable to alter contact angle compared to ionic compounds containing monovalent ion (NaCl and KCl).
However, in binary ionic compounds LSW, the final wettability for 50% MgCl₂ + 50% ionic compounds containing monovalent ion (NaCl or KCl) tends to be more water-wet than 50% MgCl₂ + 50% ionic compounds containing divalent ion (NaSO₄ or CaCl₂). Overall, from these 14 samples, reducing seawater salinity to 1750ppm has the greatest change in contact angle (from 86.9° to 72.5°), therefore for future work further tuning of types and concentration of low salinity water ions is vital to obtain higher wettability alteration to improve this eco-friendly enhanced oil recovery method.

5. References

[1] Sheng J J 2013 Review of surfactant enhanced oil recovery in carbonate reservoirs Advances in Petroleum Exploration and Development 6 1-10
[2] Al-Shalabi E W and Sephhrnoori K 2016 A comprehensive review of low salinity/engineered water injections and their applications in sandstone and carbonate rocks J. Pet. Sci. Eng. 139 137-161
[3] Yousef A A, Al-Saleh S H, Al-Kaabi A and Al-Jawfi M S 2011 Laboratory investigation of the impact of injection-water salinity and ionic content on oil recovery from carbonate reservoirs SPE Reserv. Eval. Eng. 14 578-593
[4] Alameri W, Teklu T W, Graves R M, Kazemi H and AlSumaiti A M 2014 Wettability alteration during low salinity-waterflooding in carbonate reservoir cores SPE Asia Pacific Oil & Gas Conference and Exhibition (Adelaide, Australia: Society of Petroleum Engineers)
[5] Al-Attar H H, Mahmoud M Y, Zekri A Y, Almehaideb R and Ghanam M 2013 Low-salinity flooding in a selected carbonate reservoir: experimental approach J. Petrol. Explor. Prod. Technol. 3 139-149
[6] Fathi S J, Austad T and Strand S 2010 “Smart water” as a wettability modifier in chalk: the effect of salinity and ionic composition Energy & Fuels 24 2514-2519
[7] Sharifi M and Shaikh M 2013 Investigation of optimum salinity of injected water in carbonate reservoirs using wettability measurement and core flooding SPE Reservoir Characterisation Simulation Conf. and Exhibition (Abu Dhabi, UAE: Society of Petroleum Engineers)
[8] Su W, Liu Y, Pi J, Chai R, Li C and Wang Y 2018 Effect of water salinity and rock components on wettability alteration during low-salinity water flooding in carbonate rocks Arab J Geosci 11 260
[9] Hognesen E J, Strand S and Austad T 2005 Waterflooding of preferential oil-wet carbonates: oil recovery related to reservoir temperature and brine composition SPE Europec/EAGE Annual Conf. (Madrid, Spain: Society of Petroleum Engineers)
[10] Zhang P and Austad T 2006 Wettability and oil recovery from carbonates: Effects of temperature and potential determining ions Colloids Surf. A Physicochem. Eng. Asp. 279 179-187
[11] Zhang P, Tweheyo M T and Austad T 2007 Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca³⁺, Mg²⁺, and SO₄²⁻ Colloids Surf. A Physicochem. Eng. Asp. 301 199-208
[12] Lashkarbolooki M, Ayatollahi S and Riazi M 2017 Mechanistical study of effect of ions in smart water injection into carbonate oil reservoir Process Saf. Environ. 105 361-372
[13] Rashid S, Mousapour M S, Ayatollahi S, Vossoughi M and Beigy A H 2015 Wettability alteration in carbonates during “Smart Waterflooding”: Underlying mechanisms and the effect of individual ions Colloids Surf. A Physicochem. Eng. Asp 487 142-153
[14] Castro P and Huber M E 2008 Marine Biology ed Reidy P E and Henricks D A (New York: McGraw-Hill) p 44
[15] Chandrashekar S and Mohanty K K 2013 Wettability alteration with brine composition in high temperature carbonate reservoirs SPE Annual Technical Conf. and Exhibition (Louisiana, USA: Society of Petroleum Engineers)
[16] Zhang P and Austad T 2005 Waterflooding in chalk: Relationship between oil recovery, new wettability index, brine composition and cationic wettability modifier SPE Europec Annual Conf. (Madrid, Spain: Society of Petroleum Engineers)

[17] Shabib-Asl A, Ayoub M A and Elraies K A 2015 Laboratory investigation into wettability alteration by different low salinity water compositions in sandstone rock SPE/IATMI Asia Pacific Oil & Gas Conf. and Exhibition (Bali, Indonesia: Society of Petroleum Engineers)

[18] Gomari K A R, Karoussi O and Hamouda A A 2006 Mechanistic study of interaction between water and carbonate rocks for enhancing oil recovery. SPE Europec/EAGE Annual Conf. and Exhibition (Vienna, Australia: Society of Petroleum Engineers)

[19] Karimi M, Al-Maamari R S, Ayatollahi S and Mehranbod N 2016 Wettability alteration and oil recovery by spontaneous imbibition of low salinity brine into carbonates: impact of Mg²⁺, SO₄²⁻ and cationic surfactant J. Pet Sci. Eng. 147 560-569

Acknowledgments
The authors wish to acknowledge Centre of Research in Enhanced Oil Recovery (COREOR), Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS for providing an opportunity to conduct this study. This study is supported via YUTP grant under the cost centre 0153AA-E65.