Risk and severity of COVID-19 and ABO blood group in transcatheter aortic valve patients

Marion Kibler MD1, Adrien Carmona, MD1, Benjamin Marchandot MD1, Kensuke Matsushita MD1,2, Antonin Trimaille MD1, Mohamad Kanso MD1, Laurent Dietrich MD1, Cécile How-Choong MD1, Albane Odier MD1, Gabrielle Gennesseaux MD1, Ophélie Schramm MD1, Antje Reydel MD1, Michel Kindo, MD, PhD4, Minh Hoang, MD4, Sébastien Hess MD1, Chisato Sato MD, PhD1, Sophie Caillard, MD, PhD3, Laurence Jesel MD, PhD1,2, Olivier Morel MD, PhD1,2 and Patrick Ohlmann MD, PhD1

1 Division of Cardiovascular Medicine, Strasbourg University Hospital, Strasbourg, France.
2 INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France.
3 Division of Nephrology and Transplantation, Strasbourg University Hospital, Strasbourg, France
4 Division of Cardiac Surgery, Strasbourg University Hospital, Strasbourg, France

Short title: COVID-19, TAVR, and ABO blood group

Correspondence:
Patrick Ohlmann, MD, PhD
Pôle d’Activité Médico-Chirurgicale Cardiovasculaire, Nouvel Hôpital Civil, BP 426 - 67091 Strasbourg, France
Fax: +33 369551736 ; phone: +33 369550953
E-mail: patrick.ohlmann@chru-strasbourg.fr

Manuscript word count: 2474
ABSTRACT

Background: Although cardiovascular disease has been associated with an increased risk of coronavirus disease 2019 (COVID-19), no studies have reported its clinical course in patients with aortic stenosis who had undergone transcatheter aortic valve replacement (TAVR). Several observational studies have found an association between the A blood group and an increased susceptibility to SARS-CoV-2 infection, whereas the O blood group appears to be protective.

Objective: To investigate the frequency and clinical course of COVID-19 in a large sample of patients who had undergone TAVR and to determine the associations of the ABO blood group with disease occurrence and outcomes.

Methods: Patients who had undergone TAVR between 2010 and 2019 were included in this study and followed-up through the recent COVID-19 outbreak. The main outcomes were the occurrence and severity (hospitalization and/or death) of COVID-19 and their association with the ABO blood group.

Results: Of the 1125 patients who had undergone TAVR, 403 (36%) died before January 1, 2020, and 20 (1.8%) were lost to follow-up. The study sample therefore consisted of 702 patients. Among them, we identified 22 cases (3.1%) with COVID-19. Fourteen patients (63.6%) were hospitalized or died of disease. Multivariate analysis identified the A blood group (versus others) as the only independent predictor of COVID-19 in patients who had undergone TAVR (odds ratio [OR] = 6.32; 95% confidence interval [CI] = 2.11–18.92; p=0.001). The A blood group (versus others; OR = 8.27; 95% CI = 1.83–37.43, p=0.006) and a history of cancer (OR = 4.99; 95% CI = 1.64–15.27, p = 0.005) were significantly and independently associated with disease severity (hospitalization and/or death).
Conclusions: Patients who had undergone TAVR are vulnerable to COVID-19. The subgroup with the A blood group was especially prone to develop the disease and showed unfavorable outcomes.

Condensed abstract

Among 702 patients who had undergone TAVR between 2010 and 2019 and who were alive on January 1, 2020, 22 patients developed COVID-19. Fourteen patients (63.6%) were hospitalized or died of disease. The A blood group (versus others) was the only independent predictor of COVID-19. The A blood group and a history of cancer were significantly and independently associated with disease severity (hospitalization and/or death). Altogether these findings suggest that patients who had undergone TAVR are vulnerable to COVID-19. The subgroup with the A blood group was especially prone to develop the disease and showed unfavorable outcomes.

Key words

ABO blood group, Coronavirus Disease 2019, Transcatheter Aortic Valve Replacement

Abbreviations

ACE-2: Angiotensin converting enzyme 2
COVID-19: coronavirus disease 2019
CT: Computed tomography
CV: Cardiovascular
Rh: Rhesus
RT-PCR: Reverse transcriptase Polymerase Chain reaction

SARS-CoV-2: Severe Acute Respiratory Coronavirus-2

TAVR: Transcatheter aortic valve replacement

WHO: World Health Organization
INTRODUCTION

At the end of 2019, a new zoonotic coronavirus (SARS-CoV-2) responsible of coronavirus disease 2019 (COVID-19), arose from Wuhan, Hubei Province, China. The World Health Organization (WHO) on March 11, 2020, has declared COVID-19 outbreak a global pandemic. In fact, SARS-CoV-2 spread rapidly in 166 other countries around the world, resulting in a global burden of 4 170 424 laboratory-confirmed cases and a death toll of 287 399 as of May 14, 2020. The Alsace region in eastern France has been significantly impacted, resulting in fast reshaping of in-hospital facilities. Several cardiology divisions have been converted into dedicated COVID-19 units – with cardiac care units being repurposed as intensive care units (ICUs).

A history of cardiovascular (CV) disease is currently recognized as a risk factor for the occurrence and severity of COVID-19, especially in the elderly. Accordingly, previous studies have indicated that up to 40% of patients who require ICU admission for COVID-19 had preexisting congestive heart failure; further, the mortality rate from COVID-19 for patients with preexisting CV disease may be as high as 36%. While there is ample literature to suggest a direct role for a history of heart disease in the susceptibility and severity of COVID-19, its clinical course in patients with valvular disease remains poorly investigated.

With a growing number of patients with aortic stenosis being treated with transcatheter aortic valve replacement (TAVR), there is a strong need to investigate this interaction further.

Much of the recent focus in COVID-19 research has revolved around biological markers of disease susceptibility and/or severity. The ABO blood group has been shown to affect individual vulnerability to SARS-CoV, hepatitis B virus, Norwalk virus, and Helicobacter pylori infection. Notably, observational studies have found an association...
between the A blood group and an increased susceptibility to SARS-CoV-2 infection while the O blood group appears to be protective (11–13).

The present study was undertaken to evaluate the clinical course of COVID-19 in patients with aortic stenosis who had undergone TAVR. We also examined whether the ABO blood group is associated with susceptibility to and severity of COVID-19 in this clinical population, and whether this association is independent of potential confounders.

METHODS

Study setting and patient enrollment

This study consists of a retrospective, observational investigation aimed at examining the occurrence and severity of COVID-19 in a large population of patients who undergone TAVR for severe aortic stenosis between 2010 and 2019. The study was conducted in the Strasbourg University Hospital (Strasbourg, Alsace, eastern France). The general characteristics of the study patients – including demographics, medical history, echocardiography findings, and ABO blood group – were determined from their medical records and entered into an electronic file along with follow-up data. During the COVID-19 outbreak, all patients were contacted by phone to ascertain their health status, cardiovascular and COVID-19 symptoms, medication use, and outcomes. Patient-reported data collected through a standardized questionnaire were thoroughly cross-checked with official clinical records. The study was reviewed and approved by the Institutional Review Board at the Strasbourg University Hospital (CE-2020-69). Owing to the retrospective nature of the study, the need for informed consent was waived.

Definitions
In accordance with WHO technical guidance (14), patients were considered as confirmed cases of COVID-19 in presence of positive reverse transcriptase-polymerase chain reaction (RT-PCR) testing of a nasopharyngeal swab specimen. Because RT-PCR can yield false-negative results, patients with typical symptoms and characteristic imaging findings on chest computed tomography (CT) were classified as confirmed cases (15). Patients who were hospitalized for or died of COVID-19 were considered to have severe disease.

Statistical analysis

Descriptive statistics are expressed as means ± standard deviations for continuous data or as counts (percentages) for categorical variables. Survival curves according to the ABO blood group were plotted by the Kaplan-Meier method (log-rank test) with right censoring at the time of last follow-up (May 8, 2020). The time-to-event was calculated as the time elapsed from January 1, 2020, to the date of the index event (disease onset, hospitalization, or death).

Logistic regression models were constructed to evaluate the unadjusted and covariate-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for the occurrence of COVID-19, COVID-19-related death, and severe COVID-19. Variables adjusted for in the multivariate models were those showing univariate associations at a p value <0.20. Statistical analyses were performed using SPSS, version 17.0 (IBM, Armonk, NY, USA). All tests were two-sided, and statistical significance was set as a p value of <0.05.

RESULTS

General characteristics

Between 2010 and 2019, a total of 1125 patients with aortic stenosis underwent TAVR in our hospital. We excluded 423 patients from the analysis due to death before January 1, 2020 (n =
403) or loss to follow-up (n = 20). Figure 1 depicts the flow of participants through the study. The general patient characteristics (n = 720; mean age: 82 ± 6.9 years; 44% men) are provided in Table 1. Common coexisting CV comorbidities included coronary artery disease (45.3%), atrial fibrillation (40.3%), congestive heart failure (35.9%), and peripheral arterial disease (27.2%). A positive history of cancer was present in 26.9% of cases, whereas chronic obstructive pulmonary disease and chronic kidney disease were identified in 11.7% and 16.5% of the study patients, respectively. At the time of interview, CV medications included angiotensin converting enzyme (ACE) inhibitors/angiotensin II receptor blockers (48.9%), statins (50.2%), anticoagulants (45.4%), and aspirin (53.3%).

Occurrence and presentation of COVID-19

Eighty-two patients (11.4%) had suspected COVID-19. Of them, 61 underwent RT-PCR testing and 21 chest CT. Diagnosis was confirmed in 22 cases (3.1%; 21 by RT-PCR and one on chest CT). Of them, 14 (63.6%) were hospitalized or died of COVID-19. Common clinical symptoms at presentation included dyspnea (77.3%), fever (77.3%), and cough (72.7%). Myalgia, gastrointestinal manifestations, and anosmia/ageusia occurred in 40.9%, 27.3%, and 18.2% of participants, respectively.

COVID-19, hospitalizations, and mortality

As of January 1, 2020, the all-cause and cardiovascular mortality rates in the study patients were 6.8% and 2.8%, respectively. Compared with patients without COVID-19, those with the disease had significantly higher all-cause mortality (5.6% versus 45.5%, respectively; p <0.001) and hospitalization (1.8% versus 59.1%, respectively; p <0.0001) rates (Table 2).

COVID-19 and ABO blood group
Patients with COVID-19 more frequently had the A blood group than those without (81.8\% versus 41.3\%, respectively). Conversely, the O (18.2\% versus 46.5\%, respectively), B (0\% versus 9.3\%, respectively), and AB (0\% versus 2.9\%, respectively) groups were underrepresented in patients with COVID-19. Subgroup analyses were subsequently performed according to the Rhesus (Rh) group. Interestingly, the A Rh+ blood type (68.2\% versus 29\%, respectively) – but not the A Rh- type (13.6\% versus 12.4\%, respectively) – was overrepresented in patients with COVID-19. The O Rh+ (9.1\% versus 22.4\%, respectively), O Rh- (4.5\% versus 10.7\%, respectively), B Rh+ (0\% versus 7.2\%, respectively), B Rh- (0\% versus 2.1\%, respectively), AB Rh+ (0\% versus 2.5\%, respectively), and AB Rh- (0\% versus 1.1\%, respectively) types were all underrepresented in patients with COVID-19 (Table 1).

Additional analyses were also performed according to blood group A. Patients with the A blood group were more likely to develop COVID-19 compared to those with other blood types (6\% versus 1\%, respectively; p < 0.0001). In addition, with respect to others blood groups, patients with the A blood group presented more frequently COVID-19-related death (3.4\% versus 0\%, respectively; p < 0.0001) as well as the combined endpoint of COVID-19-related death or hospitalization (4\% versus 0.5\%, respectively; p < 0.001; Supplemental Table 1).

Predictors of COVID-19

A history of cancer and the blood type A were significant predictors of COVID-19 in univariate analysis. Multivariate analysis identified the A blood group (versus others) as the only independent predictor of COVID-19 in patients who had undergone TAVR (OR = 6.32; 95\% CI = 2.11–18.92; p=0.001; Table 3). Kaplan-Meier plots of COVID-19-free survival according to the blood group (A versus others) are shown in Figure 2, panel A.
Predictors of severe COVID-19

Multivariate analysis (Table 4) revealed that the blood group A (versus others; OR = 8.27; 95% CI = 1.83−37.43, p=0.006) and a history of cancer (OR = 4.99; 95% CI = 1.64−15.27, p = 0.005) were significantly and independently associated with COVID-19 severity (hospitalization and/or death). Kaplan-Meier plots of COVID-19-related mortality and severe-COVID-19-free survival are shown in Figure 2 (panels B and C, respectively).

DISCUSSION

To our knowledge, this study is the first to specifically investigate the impact of COVID-19 in patients who have undergone TAVR. There are two principal findings from our research. First, patients who had undergone TAVR were at high risk to contract COVID-19. Second, the A blood group was identified as a significant risk factor for both the occurrence and severity of COVID-19.

Prevalence of COVID-19

The prevalence of COVID-19 in our patients who had undergone TAVR was 3.13%, which is higher than that observed in the general French population (24/10 000 on May 14, 2020) (16). Whether the increased COVID-19 rate was due to local characteristics of the outbreak in Alsace or to a higher susceptibility conferred by prior CV disease (17) needs further epidemiological study. Moreover, the mortality rate from COVID-19 was 45% in the current investigation. Age, frailty, and a significant burden of comorbidities are possible explanations for the high death toll (18). Moreover, 63.6% of our patients had severe disease (hospitalization and/or death). Despite these findings, the mechanisms by which CV disease confers susceptibility to COVID-19 remain unclear. Evidence is emerging on the association between aggressive disease and loss of ACE-2 function as a result of its proteolytic cleavage (19).
Under physiological conditions, ACE-2 counteracts the detrimental effects of angiotensin II \(^{20}\), which might be overexpressed in patients with CV disease \(^{21}\). At sites of endothelial injury, an imbalance between ACE-2 and ACE-1 activity may result in angiotensin II accumulation – which further exacerbates tissue injury and promotes both inflammation and thrombosis \(^{22}\). Although our study does not address the role of ACE-2 in the susceptibility to COVID-19 among patients who had undergone TAVR, its involvement is certainly plausible.

ABO blood group and COVID-19

In the current study, patients who had undergone TAVR and had the A blood group were more prone to develop COVID-19 and were more likely to experience unfavorable outcomes. In a research conducted in 2173 Chinese patients, Zhao et al. \(^{23}\) showed for the first time that the A blood group was associated with an increased disease susceptibility to COVID-19 while the O group seemed less vulnerable. They also found higher death rates in patients with the A group. A more recent report from the Central Hospital of Wuhan confirmed the increased risk conferred by the A group and the reduced disease susceptibility associated with the O group \(^{12}\). Another study connecting the A blood group with an increased risk of contracting COVID-19 is a research on 1599 individuals who underwent SARS-CoV-2 testing in the United States \(^{24}\). However, no relation with in-hospital mortality was found. The authors carried these observations a step further with Rh antigen testing and found that its expression could modulate the association of the ABO blood group with disease susceptibility. Similar findings were noticed in our study, albeit limited to the A group. If a subject had the A group and was also Rh+, the patient would have a substantially higher risk of COVID-19, whereas this was not the case for Rh- individuals.

Growing evidence indicates that the A blood group is associated with an increased susceptibility to and severity of COVID-19. The mechanisms beyond this association are
unknown but several hypotheses might be raised. It is possible that anti-A antibodies could
lead to a decreased interaction of SARS-CoV-2 with its cellular receptor ACE-2 (25). Interestingly, the A blood group has also been related with an increased risk of CV disease
(26). Numerous biological pathways have been proposed to account for the association
between the A blood group and atherothrombosis – including an increased production of
soluble intercellular adhesion molecules (27) and/or Von Willebrand factor (vWF) (28). Other
authors have emphasized the significance of vWF cleavage in subjects with the O blood group
(29) – an event which may reduce thrombotic risk in SARS-CoV-2-infected individuals (13).

Limitations

Several caveats of our investigation need to be considered. First, our study employed a
retrospective design and the number of observed events (deaths and/or hospitalizations) was
limited. As such, the presence of residual confounding may pose limitations in our ability to
generalize our conclusions. Second, our research has an exploratory nature and we cannot rule
out the presence of chance findings resulting from multiple comparisons. Another caveat is
that the sex distribution of participants varied across the ABO blood groups. Specifically, men
were underrepresented in the A blood group, potentially posing limitations in our ability to
fully explore the impact of this variable on COVID-19 severity.

Conclusion

Patients who had undergone TAVR are vulnerable to COVID-19. The subgroup with the A
blood group was especially prone to develop the disease and showed unfavorable outcomes.
Our results add to the growing literature indicating that the ABO blood group may be a useful
laboratory parameter that should be taken into account for risk stratification during clinical
work-up of patients with COVID-19.
Clinical perspectives

Competency in patient care and procedural skills: patients who had undergone TAVR are vulnerable to COVID-19. The subgroup with the A blood group was especially prone to develop the disease and showed unfavorable outcomes.

Translational outlook: particular attention should be payed to patients who have undergone TAVR, to prevent COVID-19 and anticipate the severity of the disease. ABO group may be an additional tool for risk stratification in these patients.

Patients who have undergone TAVR are vulnerable to Covid-19
Acknowledgements

This work was made possible by the front-line healthcare personnel of the Department of Cardiology, Strasbourg University Hospital. Their dedication during this unprecedented health crisis has been invaluable.

Disclosure of potential conflicts of interest

The authors have no conflicts of interest in relation to the findings reported in this article.

Sources of funding and support: This study was financially supported by GERCA (Groupe pour 237 l’Enseignement, la prévention et la Recherche Cardiologique en Alsace).
References

1. Coronavirus disease (COVID-19) Situation Report, World Health Organization. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200514-covid-19-sitrep-115.pdf?sfvrsn=3fce8d3c_6

2. TABLEAU DE BORD DES DONNÉES RÉGIONALES, Ministry of Health France. Published online May 2020. https://www.grand-est.ars.sante.fr/system/files/2020-05/2020-05-15_Données%20du%20jour.pdf

3. COVID-19: Point épidémiologique hebdomadaire du 14 mai 2020. Ministry of Health France. Published online May 2020. https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-respiratoires/infection-a-coronavirus/documents/bulletin-national/covid-19-point-epidemiologique-du-14-mai-2020

4. Inciardi RM, Adamo M, Lupi L, et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. *Eur Heart J*. 2020;41(19):1821-1829. doi:10.1093/eurheartj/ehaa388

5. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *The Lancet*. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5

6. Arentz M, Yim E, Klaff L, et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. *JAMA*. 2020;323(16):1612. doi:10.1001/jama.2020.4326

7. Cheng Y, Cheng G, Chui CH, et al. ABO Blood Group and Susceptibility to Severe Acute Respiratory Syndrome. *JAMA*. 2005;293(12):1447-1451. doi:10.1001/jama.293.12.1450-c

8. Wang D-S, Chen D-L, Ren C, et al. ABO blood group, hepatitis B viral infection and
9. Lindesmith L, Moe C, Marionneau S, et al. Human susceptibility and resistance to Norwalk virus infection. *Nat Med*. 2003;9(5):548-553. doi:10.1038/nm860

10. Boren T, Falk P, Roth K, Larson G, Normark S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. *Science*. 1993;262(5141):1892-1895. doi:10.1126/science.8018146

11. Dai X. ABO blood group predisposes to COVID-19 severity and cardiovascular diseases. *Eur J Prev Cardiol*. Published online April 28, 2020:204748732092237. doi:10.1177/2047487320922370

12. Li J, Wang X, Chen J, Cai Y, Deng A, Yang M. Association between ABO blood groups and risk of SARS-CoV-2 pneumonia. *Br J Haematol*. Published online May 7, 2020:bjh.16797. doi:10.1111/bjh.16797

13. O'Sullivan JM, Ward S, Fogarty H, O'Donnell JS. More on “Association between ABO blood groups and risk of SARS-CoV-2 Pneumonia.” *Br J Haematol*. Published online May 18, 2020:bjh.16845. doi:10.1111/bjh.16845

14. World Health Organization. World Health Organization. (2020). Global surveillance for COVID-19 caused by human infection with COVID-19 virus: interim guidance. Published online March 20, 2020. https://apps.who.int/iris/handle/10665/331506

15. Ai T, Yang Z, Hou H, et al. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. *Radiology*. Published online February 26, 2020:200642. doi:10.1148/radiol.2020200642

16. info coronavirus covid 19 - carte et donnees covid 19 en france. Gouvernement.fr. Accessed May 26, 2020. https://www.gouvernement.fr/info-coronavirus/carte-et-donnees

17. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? *Lancet Respir Med*. 2020;8(4):e21.
18. Onder G, Rezza G, Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA. 2020;323(18):1775-1776. doi:10.1001/jama.2020.4683

19. Wang K, Gheblawi M, Oudit GY. Angiotensin Converting Enzyme 2: A Double-Edged Sword. Circulation. Published online March 26, 2020:CIRCULATIONAHA.120.047049. doi:10.1161/CIRCULATIONAHA.120.047049

20. Sriram K, Insel PA. Dangers of ACE Inhibitor and ARB Usage in COVID-19: Evaluating the Evidence. Pharmacology and Therapeutics; 2020. doi:10.1101/2020.03.25.20043927

21. Kuster GM, Pfister O, Burkard T, et al. SARS-CoV2: should inhibitors of the renin–angiotensin system be withdrawn in patients with COVID-19? Eur Heart J. Published online March 20, 2020. doi:10.1093/eurheartj/ehaa235

22. Sriram K, Insel PA. A hypothesis for pathobiology and treatment of COVID-19: The centrality of ACE1/ACE2 imbalance. Br J Pharmacol. n/a(n/a). doi:10.1111/bph.15082

23. Zhao J, Yang Y, Huang H, et al. Relationship between the ABO Blood Group and the COVID-19 Susceptibility. Epidemiology; 2020. doi:10.1101/2020.03.11.20031096

24. Zietz M, Tatonetti NP. Testing the Association between Blood Type and COVID-19 Infection, Intubation, and Death. Infectious Diseases (except HIV/AIDS); 2020. doi:10.1101/2020.04.08.20058073

25. Guillon P, Clément M, Sébille V, et al. Inhibition of the interaction between the SARS-CoV Spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology. 2008;18(12):1085-1093. doi:10.1093/glycob/cwn093

26. Wu O, Bayoumi N, Vickers MA, Clark P. ABO(H) blood groups and vascular disease: a systematic review and meta-analysis: ABO groups and thrombosis. J Thromb Haemost.
27. Paré G, Chasman DI, Kellogg M, et al. Novel Association of ABO Histo-Blood Group Antigen with Soluble ICAM-1: Results of a Genome-Wide Association Study of 6,578 Women. Gibson G, ed. *PLoS Genet*. 2008;4(7):e1000118. doi:10.1371/journal.pgen.1000118

28. Dunne E, Qi QM, Shaqfeh ES, et al. Blood group alters platelet binding kinetics to von Willebrand factor and consequently platelet function. *Blood*. 2019;133(12):1371-1377. doi:10.1182/blood-2018-06-855528

29. Bowen DJ. An influence of ABO blood group on the rate of proteolysis of von Willebrand factor by ADAMTS13. *J Thromb Haemost*. 2003;1(1):33-40. doi:10.1046/j.1538-7836.2003.00007.x
Figure legends

Figure 1. Flow of patients through the study

Abbreviations: CT: Computed tomography, Covid-19: Coronavirus Disease 2019; ICU: Intensive Care Unit; RT-PCR: Reverse-Transcriptase-Polymerase-Chain-Reaction; TAVR: Transcatheter Aortic Valve Replacement.
Figure 2. Kaplan–Meier plots of COVID-19-free survival (panel A), COVID-19-related mortality (panel B), and severe-COVID-19-free survival (panel C) according to the ABO blood group (group A versus other groups).
Table 1. General characteristics of patients who had undergone transcatheter aortic valve replacement according to the presence or absence of COVID-19

Clinical Characteristics	Entire cohort (n= 702)	COVID-19 (n= 22)	No COVID-19 (n= 680)	p value
Age, years	82 ± 6.9	82 ± 8.4	82 ± 6.9	0.961
Male sex – n (%)	313 (44)	7 (31.8)	306 (45)	0.220
STS score – %	5.9 ± 4.9	5.5 ± 2.4	5.9 ± 5.0	0.757
Cardiovascular risk factors – n (%)				
Current smoking	26 (3.7)	1 (4.5)	25 (3.7)	0.832
Hypertension	587 (83.6)	18 (81.8)	569 (83.7)	0.817
Obesity (Body mass index > 30 kg/m²)	183 (26.1)	6 (27.3)	177 (26.1)	0.899
Dyslipidemia	428 (61)	12 (54.5)	416 (61.2)	0.530
Diabetes	213 (30.3)	6 (27.3)	207 (30.4)	0.750
Comorbidities – n (%)				
Coronary artery disease	318 (45.3)	12 (54.5)	306 (45.0)	0.376
Congestive heart failure	252 (35.9)	6 (27.3)	246 (36.5)	0.392
Stroke	98 (14)	3 (13.6)	95 (14.0)	0.964
Atrial fibrillation	283 (40.3)	6 (27.3)	277 (40.7)	0.205
Peripheral arterial disease	191 (27.2)	5 (22.7)	186 (27.4)	0.631
COPD	82 (11.7)	3 (13.6)	79 (11.6)	0.740
Prior cancer	189 (26.9)	10 (45.5)	179 (26.3)	0.053
CKD (Creatinine levels >130 µmol/l)	115 (16.5)	4 (18.2)	111 (16.4)	0.824
LVEF after TAVR – %	56 ± 11	56 ± 12	56 ± 11	0.902
Treatment at time of follow up – n (%)				
Aspirin	365 (53.3)	13 (59.1)	352 (53.1)	0.579
P2Y12 inhibitors				
VKA	144 (21.0)	4 (18.2)	140 (21.1)	0.740
DOAC	175 (25.5)	6 (27.3)	169 (25.5)	0.850
ACE-i/ARB	335 (48.9)	12 (54.5)	323 (48.7)	0.591
Statins	344 (50.2)	9 (40.9)	335 (50.5)	0.375
Amiodarone	101 (14.7)	2 (9.1)	99 (14.9)	0.447
ABO blood type – n (%)				
A	299 (42.6)	18 (81.8)	281 (41.3)	0.002
B	63 (9)	0 (0)	63 (9.3)	
AB	20 (2.9)	0 (0)	20 (2.9)	
O	320 (45.6)	4 (18.2)	316 (46.5)	
Rhesus positive (Rh+) – n (%)				0.402
Blood type – no. (%)				
A Rh-	87 (12.4)	3 (13.6)	84 (12.4)	
A Rh+	212 (30.2)	15 (68.2)	197 (29.0)	
AB Rh-	8 (1.1)	0 (0)	8 (1.2)	
AB Rh+	17 (2.4)	0 (0)	17 (2.5)	
B Rh-	14 (2.0)	0 (0)	14 (2.1)	
B Rh+	49 (7.0)	0 (0)	49 (7.2)	
O Rh-	74 (10.5)	1 (4.5)	73 (10.7)	
O Rh+	154 (21.9)	2 (9.1)	152 (22.4)	
Missing	87 (12.4)	1 (4.5)	86 (12.6)	

Data are given as means ± standard deviations or counts (percentages). Abbreviations: ACE-i: Angiotensin Converting Enzyme inhibitor; ARB: Angiotensin Receptor blocker; CKD: Chronic Kidney Disease (creatinine >
130 μmol/l); COPD: Chronic Obstructive Pulmonary Disease; COVID-19: Coronavirus Disease 2019; DOAC: direct oral anticoagulant; LVEF: Left Ventricular Ejection Fraction; STS score: Society of Thoracic Surgeons score; TAVR: Transcatheter Aortic Valve Replacement; VKA: vitamin K antagonist.
Table 2. Clinical outcomes of patients who had undergone transcatheter aortic valve replacement according to the presence or absence of COVID-19

	Entire cohort (n = 702)	COVID-19 (n = 22)	No COVID-19 (n = 680)	p value
Hospitalization – n (%)				
	25 (3.6)	13 (59.1)	12 (1.8)	<0.0001
Conventional unit	22 (3.2)	10 (45.5)	12 (1.8)	<0.0001
Intensive care unit	3 (0.44)	3 (13.6)	0 (0)	<0.0001
Mortality from January 1, 2020 – n (%)				
All-cause mortality	48 (6.8)	10 (45.5)	38 (5.6)	<0.0001
Cardiovascular mortality	20 (2.8)	0 (0)	20 (2.8)	0.414
COVID-19 mortality	10 (1.5)	10 (45.5)	0 (0)	<0.0001
COVID-19 severity – n (%)				
COVID-19 related hospitalization or death	14 (2.0)	14 (63.6)	0 (0)	<0.0001

Abbreviations: COVID-19: Coronavirus Disease 2019.
Table 3. Factors associated with the occurrence of COVID-19 in patients who had undergone transcatheter aortic valve replacement

	Univariate analysis			Multivariate analysis		
	OR	95% CI	p value	OR	95% CI	p value
Age	0.99	0.94-1.06	0.610			
Male sex	0.57	0.23-1.42	0.226			
Diabetes	0.86	0.33-2.22	0.751			
Obesity	0.89	0.41-2.76	0.899			
Hypertension	0.89	0.29-2.64	0.817			
Dyslipidemia	0.76	0.32-1.79	0.531			
Current smoking	0.83	0.16-9.65	0.832			
Atrial fibrillation	0.55	0.21-1.41	0.212			
Peripheral artery disease	0.78	0.28-2.15	0.632			
CKD (Creatinine levels >130 μmol/l)	1.13	0.38-3.41	0.703			
Prior cancer	2.33	0.99-5.49	0.053	2.28	0.96-5.43	0.062
ACE-i/ARBs	1.26	0.54-2.96	0.591			
P2Y12 inhibitors	0.70	0.09-5.37	0.736			
Aspirin	1.28	0.54-3.03	0.580			
Statins	0.68	0.29-1.61	0.377			
A blood group	6.29	2.14-19.08	0.001	6.32	2.11-18.92	0.001

Abbreviations: ACEi, angiotensin converting enzyme inhibitors; ARB, angiotensin receptor blockers; CI, confidence interval; CKD, chronic kidney disease; COVID-19, coronavirus disease 2019; LVEF, left ventricular ejection fraction; OR, odds ratio; TAVR, transcatheter aortic valve replacement.
Table 4. Factors associated with severe COVID-19 in patients who had undergone transcatheter aortic valve replacement

Univariate analysis	Multivariate analysis					
OR	95% CI	p value	OR	95% CI	p value	
Age	0.98	0.92-1.05	0.649			
Sex (male)	0.68	0.23-2.07	0.502			
Diabetes	1.74	0.59-5.09	0.309			
Obesity	0.77	0.21-2.78	0.688			
Hypertension	0.71	0.19-2.59	0.608			
Dyslipidemia	0.85	0.29-2.48	0.767			
Atrial fibrillation	0.57	0.18-1.69	0.371			
Peripheral artery disease	1.07	0.33-3.47	0.908			
CKD (Cr >130 μmol/l)	2.07	0.64-6.71	0.226			
Coronary artery disease	1.63	0.56-4.74	0.373			
Heart failure	0.71	0.22-2.29	0.566			
COPD	1.26	0.28-5.75	0.761			
Stroke	1.03	0.23-4.66	0.972			
Prior cancer	5.08	1.68-15.34	0.004	4.99	1.64-15.27	0.005
A blood group	8.38	1.86-37.74	0.006	8.27	1.83-37.43	0.006
O blood group	0.19	0.04-0.87	0.033			
Aspirin	0.87	0.30-2.52	0.804			
ACE-i/ARB	1.05	0.36-3.01	0.934			
Statins	0.74	0.25-2.15	0.579			

Abbreviations: ACEi, angiotensin converting enzyme inhibitors; ARB, angiotensin receptor blockers; CI, confidence interval; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; COVID-19, coronavirus disease 2019; DOAC, direct oral anticoagulants; LVEF, left ventricular ejection fraction; OR, odds ratio; STS, Society of Thoracic Surgeons; TAVR, transcatheter aortic valve replacement; VKA, vitamin K antagonists.
Supplemental Table 1. Clinical outcomes of patients who had undergone transcatheter aortic valve replacement according to A blood group

Variable	Entire cohort (n = 702)	A blood group (n = 299)	Others blood groups (n = 403)	p value
Confirmed COVID-19	22 (3.1)	18 (6)	4 (1)	<0.0001
Mortality				
COVID-19 mortality	10 (1.5)	10 (3.4)	0 (0)	<0.0001
COVID-19 severity – n (%)				
COVID-19 related hospitalization or death	14 (2.0)	12 (4.0)	2 (0.5)	0.001

Abbreviations: Covid-19: Coronavirus Disease 2019.
Supplemental Table 2. General characteristics of patients who had undergone transcatheter aortic valve replacement according to the presence or A blood group versus other groups.

Variable	Entire cohort (n = 702)	A blood group (n = 299)	Other blood groups (n = 403)	p value
Age, years	82.6 ± 6.9	82.4 ± 7.1	82.8 ± 6.9	0.513
Male sex – n (%)	313 (44.6)	116 (38.8)	197 (48.9)	0.008
STS score – %	5.9 ± 5.0	6.0 ± 5.1	5.8 ± 4.9	0.645
Cardiovascular risk factors – n (%)				
Current smoking	26 (3.7)	8 (2.7)	18 (4.5)	0.214
Hypertension	587 (83.6)	253 (84.6)	334 (82.9)	0.539
BMI (kg/m²)	27.3 ± 5.8	27.3 ± 5.8	27.2 ± 5.6	0.892
Dyslipidemia	428 (61.0)	186 (62.2)	242 (56.5)	0.562
Diabetes	213 (30.3)	97 (32.4)	116 (28.8)	0.297
Comorbidities – n (%)				
Coronary artery disease	318 (45.3)	146 (48.8)	172 (42.7)	0.106
Congestive heart failure	252 (35.9)	107 (35.8)	145 (36.0)	0.958
Stroke	98 (14.0)	40 (13.4)	58 (14.4)	0.701
Atrial fibrillation	283 (40.3)	121 (40.5)	162 (40.2)	0.943
COPD	82 (11.7)	36 (12.1)	46 (11.4)	0.786
Prior cancer	187 (26.6)	82 (27.4)	105 (26.1)	0.685
CKD (Creatinine levels >130 µmol/l)	102 (14.6)	50 (16.8)	52 (12.9)	0.150
Peripheral arterial disease	191 (27.2)	84 (28.1)	107 (26.6)	0.650
Blood Type – n (%)				
A	299 (42.6)	299 (100)	0 (0)	< 0.0001
B	63 (9.0)	0 (0)	63 (15.6)	
AB	20 (2.8)	0 (0)	20 (5.0)	
O	320 (45.6)	0 (0)	320 (79.4)	
Treatment at the time of follow up – n (%)				
Aspirin	365 (53.3)	163 (54.9)	202 (52.1)	0.463
P2Y12 inhibitors	44 (6.3)	19 (6.4)	25 (6.2)	0.935
VKA	144 (21.0)	58 (19.5)	86 (22.2)	0.401
DOAC	175 (25.5)	78 (26.3)	97 (25.0)	0.707
ACE-i/ARB	335 (48.9)	152 (51.2)	183 (47.2)	0.298
Statins	344 (50.2)	156 (52.5)	188 (48.5)	0.291

Data are given as means ± standard deviations or counts (percentages). Abbreviations: ACEi, angiotensin converting enzyme inhibitors; ARB, angiotensin receptor blockers; BMI: Body mass index; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; COVID-19, coronavirus disease 2019; DOAC, direct oral anticoagulants; LVEF, left ventricular ejection fraction; STS, Society of Thoracic Surgeons; TAVR, transcatheter aortic valve replacement; VKA, vitamin K antagonists.

All rights reserved. No reuse allowed without permission.
1125 patients treated with TAVR at Strasbourg University Hospital between 2010 and 2019

403 deaths occurring between TAVR and January 1, 2020

20 patients lost to follow up

702 patients included in the study

21 cases positive for SARS-CoV-2 on RT-PCR testing; one patient with negative RT-PCR findings but typical chest CT results

22 patients with COVID-19

13 related Covid-19 hospitalizations (three in ICU)

4 survived

9 died in-hospital

1 died out of hospital

14 patients with severe COVID-19