Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Special Techniques in Diagnostic Electron Microscopy

DAVID N. HOWELL, MD, PHD, CLAIRE M. PAYNE, PHD, SARA E. MILLER, PHD, AND JOHN D. SHELBURNE, MD, PHD

The power of electron microscopy as a diagnostic tool can be amplified considerably by the application of ancillary preparative and analytic methods. Subcellular chemistry and structure can be examined by various forms of microprobe analysis and by special staining methods, including cytochemical, immunocytochemical, and negative staining. Qualitative ultrastructural examination can be augmented by morphometric analysis. Correlative microscopic survey methods can be used as a means of targeting ultrastructural investigations. This article provides an overview of the use of these special techniques in the diagnosis and classification of tumors and other selected pathologic processes. HUM PATHOL 29:1339-1346. Copyright © 1998 by W.B. Saunders Company

Key words: diagnostic medicine, electron microscopy, microprobe analysis, immunoelectron microscopy, morphometry

Abbreviations: EM, electron microscopy; H&E, hematoxylin and eosin; LAMMA, laser microprobe mass analysis; SIMS, secondary ion mass spectrometry; NS, neurosecretory; IEM, immunoelectron microscopy; NK, natural killer; MF, mycosis fungoides.

Electron microscopy (EM) plays a vital role in the diagnosis of tumors, particularly in the assessment of tumor cell lineage. Conventional EM techniques can often be augmented and rendered even more powerful by application of ancillary diagnostic methods. In many cases, the results of conventional EM examination can be extended by correlation with findings from other forms of microscopy performed in parallel (“correlative microscopy”) or by novel methods of data analysis. In other instances, special EM preparative methods and/or imaging devices are employed.

Although conventional ultrastructural analysis often allows detection of lineage-specific features (eg, premelanosomes, Weibel-Palade bodies), it provides only indirect information about the biochemical makeup of the tissue under study. Valuable biochemical information can often be obtained by correlating the results of conventional EM with those of routine histochemistry, immunohistochemistry, and in situ hybridization. These staining techniques can also be adapted for direct ultrastructural observation. Molecular and elemental studies at the ultrastructural level can also be performed using methods such as laser microprobe mass analysis and electron probe x-ray microanalysis. The term “microporphychemistry,” derived from the Greek word topos, meaning site or location, and chemistry, is often applied to these new techniques, which provide important insights regarding the anatomic distribution, biochemistry, and physiology of a wide range of analytes, including ions and elements, genes and their products, molecular fragments, whole molecules, and macromolecular complexes such as ribosomes and viruses.

Routine examination of electron micrographs often overlooks quantitative information with diagnostic and prognostic significance. Such information can frequently be obtained by the electron microscopist armed with as little as a ruler and a calibration grid. Sophisticated computer morphometric techniques, however, have been used in several instances to provide important objective information about neoplasms.

Finally, constraints on the size of EM tissue specimens are an impediment to the analysis of tumors with focal features of interest (eg, small areas of differentiated or viable tumor admixed with larger expanses of undifferentiated or necrotic tissue). This problem has traditionally been addressed by light microscopic examination of survey sections produced from random EM embedding blocks. Although the value of this approach is unquestioned, new survey techniques using instruments such as the confocal laser scanning microscope hold promise for increasing the yield and accuracy of diagnostic EM.

In this article on special techniques, we review recent advances in electron microscopy, immunocytochemistry, microprobe analysis, and other ancillary methods as they are being used and are beginning to be used in diagnostic ultrastructural pathology. Whereas in the past these approaches were confined to research, they now are increasingly of value in diagnostic work. Much of the work in these areas has been developed in studies of nonneoplastic conditions. Accordingly, we will show these approaches with both neoplastic and nonneoplastic processes.

MICROTOPOCHEMISTRY

Microprobe Analysis

Electron Probe Analysis. Medical microprobe analysis is usually accomplished on an electron microscope equipped with an energy dispersive x-ray spectrometer. This type of analysis is commonly referred to as electron probe x-ray microanalysis. All elements with an atomic
number equal to or greater than beryllium can be detected and usually quantitated.²

Although microprobe analysis was initially used primarily as a research tool, this is no longer the case. Microprobe findings now have diagnostic, therapeutic, and/or legal significance.³ For example, the identification and characterization of intrapulmonary deposits is important not only in determining a patient’s diagnosis, but also in some instances as a source of evidence for medicolegal situations. Accurate identification of the material involved may allow recognition of sources of exposure and lead to measures to reduce exposure and prevent the possibility of harm to others. Thus microprobe analysis can be an important tool in occupational medicine and public health. Currently the most commonly studied clinical conditions include the pneumoconioses, especially asbestosis and related conditions such as mesotheliomas (Fig 1), “hard metal” pulmonary fibrosis, and other mineral-induced pneumoconioses.⁴, ⁵

Microprobe analysis can be used for the analysis of stones, particularly renal stones; in some situations, it can be more sensitive than x-ray diffraction or chemical techniques, particularly for the identification of small components of complex stones. Other applications include the identification of unexplained pigments or deposits and the study of unexplained granulomas. It also is particularly well suited for failure analysis of prosthetic devices such as metal joints⁶ and ceramic implants⁷ and has been used to detect silicone particles released systemically by failed hemodialysis tubing.⁸

One particular virtue of the energy dispersive x-ray spectrometer is that it can identify substances that were not suspected in advance. That is, it can answer unasked questions. For example, McDonald et al recently documented cerium and lanthanum in a lung biopsy. This finding had not been anticipated clinically or at the time of surgical pathology review of conventional hematoxylin and eosin (H&E) sections.² Edwardson et al have shown not only aluminum but also silicon in Alzheimer’s disease.¹⁰

Future trends include the use of flash freezing to capture electrolytes in situ for subsequent analysis. This technique is the only way to define the subcellular anatomy of electrolyte concentrations, and should provide new understandings of pathophysiology; chemical microanatomy will augment structural microanatomy.

Laser and Ion Probe Microanalysis. Two other developing microprobe techniques should be mentioned: laser microprobe mass analysis (LAMMA) and secondary ion mass spectrometry (SIMS). These techniques have greater sensitivity than electron probe x-ray microanalysis. Whereas the sensitivity of electron probe x-ray microanalysis is generally on the order of 10 to 100 parts per million, the sensitivity of LAMMA and SIMS can be one or two orders of magnitude better (ie, parts per billion). Perhaps even more importantly, these techniques have capabilities for isotopic separation and the ability to detect and localize molecules and molecular fragments.

The LAMMA instrument provides a conventional
light microscopic image of a tissue section. Selected areas such as a nucleus or a cluster of lysosomes are vaporized with a laser beam coupled to a high precision time-of-flight mass spectrometer. Lateral resolutions less than one-half micron have been achieved. LAMMA has been used to detect and localize a variety of elements in histological sections, including aluminum in human dialysis-associated encephalopathy, iron in iron-overload states, gold in skin biopsies of patients with rheumatoid arthritis undergoing chrysotherapy, and arsenic in a nerve biopsy from a patient with arsenic poisoning.

SIMS is a microanalytic technique based on the energetic ion beam bombardment of solid samples, resulting in the desorption of ionized surface species. These so-called “secondary ions” are mass analyzed and detected with high sensitivity to provide elemental and molecular information on surface composition. Current imaging SIMS instruments have been developed by combining high performance time-of-flight mass analyzers with pulsed focused primary ion beams. Lateral resolutions less than one-twentieth micron have been achieved.

Special Staining Techniques

Cytochemistry. An example of the application of ultrastructural cytochemistry to tumor diagnosis is provided by the use of the uranaffin reaction in the examination of neuroendocrine neoplasms. Neuroendocrine cells are present throughout many of the epithelial layers and surfaces of the body and can form aggregates as well as distinct glands. All of these diverse types have been termed “paraneurons” because they share many biological properties with neurons. Some of these properties include a recepctosecretory function and the presence of neurosecretory (NS) granules.

The ultrastructural diagnosis of neuroendocrine neoplasms is, therefore, dependent on finding these characteristic NS granules, which have a distinct core surrounded by a clear halo. Unfortunately, misdiagnoses can be made because NS-like granules can be seen in breast carcinomas, normal lactating breast, hepatocellular carcinomas, normal hepatocytes, thyroid carcinomas, normal human thyroid, and even lymphomas. Argyrophilic stains, although widely used to identify neuroendocrine cells and their neoplasms, have been shown to be nonspecific and will stain the lactalbumin content of a significant number of breast carcinomas. The uranaffin reaction, which was originally developed as a cytochemical technique for the localization of adenine nucleotides in organelles storing biogenic amines, is able to identify true NS granules (Fig 2). The specificity of the stain is such that lysosomes and exocrine granules from many different types of cells are not detected using uranyl salts at an acid pH. The uranaffin reaction was even used to classify the fibrolamellar variant of hepatoma as a neuroendocrine neoplasm.

Ultrastructural cytochemical techniques are also valuable in the diagnosis of nonneoplastic disorders such as platelet storage pool disease. The normal human platelet is ultrastructurally complex and contains several organelles, including alpha granules, dense bodies and mitochondria. The dense bodies store calcium, nonmetabolic nucleotides and biogenic amines, and are very similar to NS granules in their contents. Abnormalities in platelet aggregation are frequently a result of primary platelet defects, including abnormalities in the contents of dense bodies (storage pool disease) or in the reaction that mediates their release. Because ultrastructural cytochemistry can be used to identify each of the major components of the dense body, a diagnosis of storage pool disease can be definitely rendered. Examination of three separate platelet preparations by the uranaffin reaction (stains the nucleotides [ADP/ATP]), the chromaffin reaction (stains the amines [serotonin or 5-hydroxytryptamine]) and Weiss’ fixation procedure (contains calcium chloride) allows a comprehensive assessment of dense bodies. In a routine clinical setting, one can choose to use the uranaffin reaction or Weiss’ fixation procedure to assess the number of dense bodies. Techniques for proper sample collection and methodological details are provided in the references cited earlier.

Immunocytochemistry. Immunocytochemistry and in situ hybridization have in many ways revolutionized diagnostic surgical pathology, particularly in the area of tumor diagnosis. In some instances, light microscopic immunocytochemical techniques have supplanted diagnostic EM in the field of tumor identification. The two techniques are best viewed as complementary rather than competitive, however. In many cases, conventional transmission EM can provide a definitive diagnosis when reactivity of immunostains is weak or inconsistent. Conversely, subtle or inconclusive ultrastructural findings (eg, rare, poorly formed desmo-
some less fastidious and cannot be grown routinely in tissue culture. EM remains the single most effective laboratory technique available to detect these pathogens.

Rotavirus is the most commonly diagnosed viral agent of acute gastroenteritis in childhood, accounting annually for an estimated 140 million infections, 1 million deaths in young children, and most hospital admissions for diarrhea in children under the age of two. The classic rotavirus is 65 nm to 70 nm in diameter and has a characteristic double-shelled capsid with a wheel-like appearance with "spokes" and surface "holes" created by a circular arrangement of capsomeres (Fig 3). IEM has been used to aggregate viruses to increase the sensitivity of detection, and to identify aberrant 30-nm to 54-nm single-shelled particles as rotaviruses.

Another very frequent sample is urine from individuals who have received bone marrow transplants after cancer treatment. The agents most frequently seen here are polyomaviruses and occasionally adenoviruses or cytomegalovirus (a herpes virus). Negative staining and EM can also be used to examine skin lesions for the presence of pox or herpes viruses. Both agents are seen in individuals with AIDS, and herpes viruses (varicella zoster, herpes simplex) are frequent pathogens in cancer patients.

The morphological identification of viruses by EM...
has been described in detail.49,52 Particular characteristics to note in differentiating viruses from each other and from cell components are whether the virion is naked or enveloped, its size, and the shape of its nucleocapsid. Three excellent atlases of viral morphology are available.53-55 An extensive discussion of the role of EM in the diagnosis of specific viruses, parasites of the subkingdom protozoa, and bacterial infections, including ultrastructural cytochemistry for the identification of bacterial capsules, is provided in a recent book chapter.56

MORPHOMETRIC TECHNIQUES IN ULTRASTRUCTURAL PATHOLOGY

Tumor Diagnosis

Morphometry has proven valuable in the analysis of several paraneoplastic and neoplastic conditions.

Measurement of fibril diameter in fibrillary glomerulopathies, for example, is useful in distinguishing fibril types often associated with plasma cell neoplasms (eg, amyloid), from other, larger forms of fibril without clear neoplastic associations.51 A wide variety of tumors, including alveolar soft part sarcomas, neuroendocrine neoplasms, and others, contain crystalloids whose precise periodicity often provides an important diagnostic clue.58

A variety of morphometric techniques have also been applied to the diagnosis of mycosis fungoides (MF) and the Sézary syndrome. MF is conventionally diagnosed by light microscopy when a biopsy specimen is obtained from a late plaque or tumor stage of the disease process.59 The diagnostic criteria include a prominent infiltrate of atypical mononuclear cells that invade the papillary dermis and epidermis with the formation of characteristic Pautrier microabscesses. Diagnostic difficulties are encountered at the premalignant erythema stage and early plaque stage when little epidermal invasion occurs and the cellular infiltrate is indistinguishable at the light microscopic level from that of chronic dermatitis.

Electron microscopic examination of skin infiltrates in patients with MF revealed the consistent presence of atypical lymphocytes having highly convoluted cerebriform nuclei (Fig 4A). Because Sézary-like cells with a highly irregular nuclear contour (although not approaching that seen in Fig 4A) can be seen in benign disorders of skin,60,61 the normal peripheral circulation,62 and after antigen stimulation,63 a subjective evaluation of lymphocytic populations as to their benign versus neoplastic nature can lead to misdiagnoses.

Ultrastructural morphometric methods, however, using computerized planimetry,60-66 simple analytical shape factor analysis,66 or the development of histograms (Fig 4B) that measure sharply-angled nuclear invaginations,60,62 have been successfully used to distinguish benign from neoplastic lymphoid cell populations (Fig 4B).67 Image analysis is easy to perform and can be used to evaluate randomly obtained low power electron micrographs of lymphocyte populations whose nuclei contain abundant heterochromatin.60

Quantification of Ciliary Substructure and the Orientation of Cilia in the Diagnosis of Primary Ciliary Dyskinesia

EM is of proven diagnostic value in identifying ciliary disorders such as Kartagener’s syndrome (situs inversus viscerum, chronic sinusitis, and bronchiectasis) and the immotile cilia syndrome (immotile spermatozoa and chronic airway infections).58 Specifically, high resolution TEM often reveals the partial or complete absence of dynein with these conditions. Presumably, the absence of dynein arms, which contain an adenosine triphosphatase, causes the cilia to function poorly, resulting in decreased fertility as well as respiratory infections.

In addition to defects in the dynein arms (including the stubby arm variant), an absence of radial spokes,
nexin links, central microtubules, and sheath, and transposition of ciliary microtubules have been reported as causes of impaired ciliary motility. Because the genes that govern ciliary and flagellar structure are numerous, molecular biological techniques have not been used for their diagnosis in the routine clinical laboratory. EM is, therefore, a most cost-effective technique to evaluate whether the ciliary/flagellar substructure is abnormal.

Another cause of abnormal ciliary motility is random ciliary orientation. If the cilia are not coordinated so that their effective strokes are oriented in the same general direction, microbes and other airborne contaminants will not be removed from the airways, even if all of the ciliary components are present. To diagnose this defect, low power electron micrographs are obtained and a line is drawn through the central microtubules and across the ciliary cross section. Cilia will beat in a direction that is perpendicular to that line. A simple analysis of 10 low-power fields will reveal if abnormal ciliary orientation appears to be primary or secondary in nature.

In all cases, parallel evaluation of control samples from patients with upper respiratory disease but normal ciliary motility as assessed by light microscopy should be included, because chronic inflammatory conditions can lead to subtle abnormalities in ciliogenesis manifested as focal abnormalities in ciliary morphology or orientation. A patient with a true genetic defect in one of the parts of the cilium or flagellum should show a complete absence of that part, not merely a deficiency. To make a diagnosis of a genetic disorder, the defect should be shown in different anatomical locations and at several different points in time.

SURVEY TECHNIQUES IN ULTRASTRUCTURAL PATHOLOGY

Conventional EM preparative techniques impose severe limitations on specimen size. As a result, ultrastructural studies generally provide high resolution at the expense of context. Accordingly, our laboratories have always emphasized the importance of correlative microscopy. In the case of electron microprobe analysis, we have published different regimens that allow the precise correlation of the chemical data obtained with an x-ray spectrometer with structural data seen by transmitted light microscopy.

A special problem is posed by focal pathological processes, for which conventional (random) EM sampling methods may miss the areas of interest completely. Several survey methods for selecting areas of focal pathology for subsequent ultrastructural analysis have been devised. We have recently described a technique in which confocal laser scanning microscopy is used to survey large slices of tissue produced with a vibrating microtome before embedment. Focal areas of interest are excised, embedded, and examined by EM (Fig 5). Our initial application was in the area of viral diagnosis, where features such as tissue necrosis, multinucleate cells, and nuclear inclusion bodies can be
used to select areas of putative infection. The method can also be applied to tumor diagnosis; we have recently used it to select viable areas of a largely necrotic pulmonary adenocarcinoma for EM, and to study focal areas of rosette-like differentiation in a malignant glial neoplasm (DN Howell, SE Miller, and JD Shelburne, unpublished observations).

Acknowledgment. The authors gratefully acknowledge the skilled technical assistance of Walter Fennell, Jr. and Eve Whalin, and the skilled typing of Wanda Matthews.

REFERENCES

1. LeFurgey A, Davilla S, Kopf DA, et al: Real-time quantitative elemental analysis and mapping: Microchemical imaging in cell physiology. J Microsc 165:191-223, 1992
2. Ingram P, Shelburne JD, Roggli VL (eds): Microprobe Analysis in Medicine. New York, Hemisphere Publishing Corporation, 1989
3. Shelburne JD, Roggli VL, Ingram P, et al: Electron microscopy in environmental pathology. Microsc Soc Am Bull 23:242-252, 1993
4. Roggli VL, Shelburne JD: Pneumoconioses, mineral and vegetable, in Dail DH, Hammar SP (eds): Pulmonary Pathology. New York, Springer-Verlag, 1994, pp 867-900
5. McDonald JW, Roggli VL, Shelburne JD: Microprobe analysis: Diagnostic applications in pulmonary medicine. Microbeam Anal 4:261-276, 1995
6. Shahgaldi BF, Heatley FW, Deward A, et al: In vivo corrosion of cobalt-chromium and titanium wear particles. J Bone Joint Surg Br 77:962-966, 1995
7. Shahgaldi BF, Passuti N, Marinu S, et al: Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res 24:379-396, 1990
8. Caiazza S, Giangrande A, Cantu P, et al: Particle migration from hemodialysis circuit: electron microscopy and microprobe analysis. Biomater Artif Cells Artif Organs 16:721-729, 1988
9. McDonald JW, Ghio AJ, Sheehan CE, et al: Rare earth (cerium oxide) pneumoconiosis: analytical scanning electron microscopy and literature review. Mod Pathol 8:859-865, 1995
10. Edwardson JA, Klimkowski J, Oakley AE, et al: Aluminosilicates and the ageing brain: implications for the pathogenesis of Alzheimer’s disease. Ciba Found Symp 121:160-179, 1986
11. Reusche E, Lindner B, Arnholdt H: Widespread aluminum deposition in extracerebral organ systems of patients with dialysis-associated encephalopathy. Virchows Arch 424:105-112, 1994
12. Inanc TC, Peri DF, Sternlieb I, et al: The application of laser microprobe mass analysis to the study of biological material. Biometals 9:557-565, 1996
13. Millard PR, Chaplin AJ, Venning VA, et al: Chrysisia: Transmission electron microscopy, laser microprobe mass spectrometry and epipolarized light as adjuncts to diagnosis. Histopathology 13:281-288, 1988
14. Goebel HH, Schmidt PF, Bohl J, et al: Polynuropathy due to acute arsenic intoxication: Biopsy studies. J Neuropathol Exp Neurol 49:137-149, 1990
15. Fujita T, Kobayashi S: Current views on the paranuclear concept. Trends Neurosci 2:273-279, 1979
16. Mackay B, Osborne BM: The contribution of electron microscopy to the diagnosis of tumors. Pathobiol Annu 8:359-405, 1978
17. Payne CM, Nagle RB, Borduin V: An ultrastructural cytochemical stain specific for neuroendocrine neoplasms. Lab Invest 51:530-536, 1984
18. Herrera GA, Crofts JL, Roberts CR: Ultrastructural granule-like structures in lymphomas. Hum Pathol 11:449-457, 1980
19. Clayton F, Sibley RK, Ordonez NG, et al: Argyrophilic breast carcinomas: evidence of lactational differentiation. Am J Surg Pathol 6:323-333, 1982
20. Richards JG, DelPouso M: Uramaffin reaction: A new cytochemical technique for the localization of adenine nucleotides in organelles storing biogenic amines. J Histochem Cytochem 25:1322-1336, 1977
21. Payne CM, Nagle RB, Borduin VF, et al: An ultrastructural evaluation of the cell organelle specificity of the uranaffin reaction in two human endocrine neoplasms. J Submicrosc Cytol 15:833-841, 1983
22. Payne CM, Nagle RB, Papalan SH, et al: Fibrolamellar carcinoma of liver: A primary malignant oncocytic carcinoma? Ultrastruct Pathol 10:539-552, 1986
23. Payne CM: A quantitative ultrastructural evaluation of the cell organelle specificity of the uranaffin reaction in normal human platelets. Am J Clin Pathol 81:62-70, 1984
24. Payne CM: Phylogenetic considerations of neurosecretory granule contents: Role of nucleotides and basic hormone/transmitter packaging mechanisms. Arch Histol Cytol 52:277-292, 1989 (Suppl)
25. Tranzner J-P, Richards JG: Ultrastructural cytochemistry of biogenic amines in nervous tissue: methodologic improvements. J Histochem Cytochem 24:1178-1193, 1976
26. Weiss HJ, Witte LD, Kaplan KL, et al: Heterogeneity in storage pool deficiency: Studies on granule-bound substances in 18 patients including variants deficient in a-granules, platelet factor 4, 5-thromboglobulin, and platelet-derived growth factor. Blood 54:1299-1319, 1979
27. Tarantino MD, Corrigan JJ, Jr, Glasser L, et al: A variant form of thrombasthenia. Am J Dis Child 145:1035-1057, 1991
28. Calles F, Sergi C, Medina D, et al: From immunohistochemistry to in situ hybridization. Liver 12:990-995, 1992
29. Taylor CR: An exaltation of experts: concerted efforts in the standardization of immunohistochemistry. Hum Pathol 25:2-11, 1994
30. Erlandson RA, Rosai J: A realistic approach to the use of electron microscopy and other ancillary diagnostic techniques in surgical pathology. Am J Surg Pathol 19:247-250, 1995
31. Herrera GA: Ultrastructural immunolabeling: A general overview of techniques and applications. Ultrastruct Pathol 16:37-45, 1992

FIGURE 5. Confocal laser scanning micrograph of unembed- ded renal pelvic tissue from an Immunocompromised child. The tissue slice was produced with a vibrating microtome and stained with propidium iodide. A urothelial cell containing a large intranuclear inclusion is present (arrowhead) (magnification x550). The portion of the tissue containing the affected cell was excised, embedded, and examined by transmission EM, revealing clusters of 45-nm polyomavirus particles (arrowheads) within the nucleus (n), the nuclear membrane (m) is visible at one corner of the micrograph (inset, magnification x45,400).
52. Dardick I, Rippstein P, Perkins G: Reliability of criteria for ultrastructural identification of neuroendocrine granules. Ultrastruct Pathol 17:37-47, 1993
53. Herrera GA, Turbat-Herrera EA, Lockard VG: Ultrastructural immunolabeling in the evaluation, diagnosis, and characterization of neuroendocrine neoplasms. Ultrastruct Pathol 17:93-113, 1993
54. Mount SL, Taatjes DJ, Trainer TD: Ultrastructural study of a pituitary adenoma (prolactinoma) within the clivus bone using immunoelectron microscopy. Ultrastruct Pathol 17:637-642, 1993
55. Collins BT, Cramer HM, Tabatowski K, et al: Fine needle aspiration of medullary carcinoma of the thyroid—Cytomorphology, immunocytochemistry and electron microscopy. Acta Cyto1 39:929-930, 1995
56. Takai Y, Mori M, Dardick I: Monofilament localization and immunoelectron microscopic detection of muscle-specific actin in neoplastic myoepithelial cells in pleomorphic adenomas and myoepitheliomas. Ultrastruct Pathol 18:575-591, 1994
57. Lombardi L, Pilotti S: Ultrastructural characterization of poorly differentiated rhabdomyosarcomas. Ultrastruct Pathol 17:669-680, 1993
58. de Harven E, Soligo D, Christensen H: Immunogold labeling for the diagnosis of leukemia by transmission and scanning electron microscopy. Scanning Microsc 9:1191-1201, 1995
59. Furahata S, Kono T, Otani M, et al: Prolactin present in all pituitary tumors of acromegalic patients. Hum Pathol 24:10-15, 1993
60. Mori N, Yatabe Y, Oka K, et al: Expression of perforin in nasal lymphoma. Additional evidence of its natural killer cell derivation. Am J Pathol 149:699-705, 1996
61. Lombardi L, Frigerio S, Collini P, et al: Immunocytochemical and immunoelectron microscopic analysis of B-CL-2 expression in thyroid oxyphilic tumors. Ultrastruct Pathol 21:33-39, 1997
62. Valente AM, Taatjes DJ, Mount SL: Comparison of the pattern of expression of Leu-M1 antigen in adenocarcinomas, neutrophils and Hodgkin's disease by immunoelectron microscopy. Histochem Cell Biol 103:181-186, 1995
63. Kirschig G, Wnorowska F: Autoimmune blistering diseases: An up-date of diagnostic methods and investigations. Clin Exp Dermatol 19:97-112, 1994
64. Herrera GA, Sanders PW, Reddy BV, et al: Ultrastructural immunolabeling: A unique diagnostic tool in monoclonal light chain-related renal diseases. Ultrastruct Pathol 18:401-416, 1994
65. Hayat MA, Miller SE: Negative Staining: Applications and Methods. New York: McGraw-Hill, 1990
66. Payne CM, Ray CG, Borduin V, et al: An eight-year study of the viral agents of acute gastroenteritis in humans: Ultrastructural observations and seasonal distribution with a major emphasis on coronaviruses-like particles. Diagn Microbiol Infect Dis 5:39-54, 1986
67. Elliott EJ: Viral diarrhoeas in childhood. Electron microscopy. Scanning Electron Microscopy, Inc, 1985, pp 659-680
68. Payne CM: Electron microscopy in the diagnosis of infectious diseases, in Connor DH, Chandler FW, Schwartz DA, et al (eds): Pathology of Infectious Diseases, Vol. 1, Stamford, CT, Appleton & Lange, 1997, pp 9-34
69. Devaney K, Sabnis SG, Antonovsky TT: Nonanvloid fibrillary glomerulopathy, immunotactoid glomerulopathy, and the differential diagnosis of filamentous glomerulopathies. Mod Pathol 4:360-45, 1991
70. Henderson DW, Papadimitriou JM, Coleman M: Ultrastructural appearances of Tumors. Edinburgh: Churchill Livingstone, 1986
71. Creavat J, Kapetis E: Problems in histological diagnosis of mycosis fungoides. Bull Cancer 64:187-190, 1977
72. Payne CM, Nagle RS, Lynch PJ: Quantitative electron microscopy in the diagnosis of mycosis fungoides. A simple analysis of lymphocytic nuclear convolutions. Arch Dermatol 120:53-75, 1984
73. Payne CM, Spier CM, Grogan TM, et al: Nuclear contour irregularity correlates with Leu-9- Leu-8- cells in benign lymphoid infiltrates of skin. An ultrastructural morphometric and quantitative immunophenotypic analysis suggesting the normal T cell counterpart to the malignant mycosis fungoides/Sezary cell. Am J Dermatopathol 10:377-389, 1988
74. Payne CM, Glasser L: Ultrastructural morphometry in the diagnosis of Sézary syndrome. Arch Pathol Lab Med 114:661-671, 1990
75. Payne CM, Hicks MJ, Kim A: Ultrastructural morphometric analysis of normal human lymphocytes stimulated in vitro with mitogens and antigens. Am J Pathol 129:265-275, 1985
76. Payne CM, Hicks MJ, Bjore CG, Jr, et al: Ultrastructural morphometric analysis of nuclear contour irregularity in normal cord and adult blood: Correlation with distinct subpopulations. Diagn Clin Immunol 3:41-53, 1987
77. Payne CM, Grogan TM, Lynch PJ: An ultrastructural morphometric and immunohistochemical analysis of cutaneous lymphomas and benign lymphocytic infiltrates of skin. Useful criteria for diagnosis. Arch Dermatol 122:1139-1145, 1986
78. Payne CM, Bjore CG, Jr, CromeY DW, et al: A comparative mathematical evaluation of contour irregularity using form factor and PERBAS, a new analytical shape factor. Anal Quant Cytol Histol 11:341-352, 1989
79. Payne CM: Ultrastructural morphometry in the diagnosis of mycosis fungoides and Sézary's syndrome. Clin Dermatol 9:187-203, 1991
80. Mierau GS, Gostini R, Beals TF, et al: The role of electron microscopy in evaluating ciliary dysfunction: Report of a workshop. Ultrastruct Pathol 16:245-254, 1992
81. Rutland J, de Jongh RU: Random ciliary orientation. A cause of respiratory tract disease. N Engl J Med 323:1681-1684, 1990
82. Payne CM, Taatjes DJ, Trainer TD: Ultrastructural study of a dermatomyositis myopathy with necrotizing, paramyloid and benign lymphocytic infiltrates of skin. Ultrastruct Pathol 10:393-404, 1993
83. Miller SE, Howell DN: Concerted use of immunologic and electron microscopy alone as a cause of primary ciliary dyskinesia syndrome. Am J Respir Crit Care Med 153:1129-1129, 1996
84. Baker D, Kupke KG, Ingram P, et al: Microprobe analysis in human pathology, in Becker RP, Roomans GM (eds): Scanning Electron Microscopy/1985/II. Elk Grove Village, IL, Scanning Electron Microscopy, Inc, 1985, pp 659-680
85. Reid N, Bisesly JE: Semithin and thick sections, in Glauert AM (ed): Practical Methods in Electron Microscopy, Vol. 13, Sectioning and Cryosectioning for Electron Microscopy. Amsterdam, Elsevier, 1991, pp 105-131
86. Miller SE, Levenson RM, Aldridge C, et al: Identification of focal viral infections by confocal microscopy for subsequent ultrastructural analysis. Ultrastruct Pathol 21:183-193, 1997
87. Miller SE, Howell DN: Concerted use of immunologic and ultrastructural analyses in diagnostic medicine: Immunoelectron microscopy and correlative microscopy. Immunol Invest 26:29-38, 1997