Dynamics of Bianchi type I elastic spacetimes

Simone Calogero and J Mark Heinzle

1 Departamento de Matemática para a Ciência e Tecnologia, Campus de Azurém da Universidade do Minho, 4800-058 Guimarães, Portugal
2 Gravitational Physics, Faculty of Physics, University of Vienna, A-1090 Vienna, Austria

E-mail: calogero@mct.uminho.pt and Mark.Heinzle@univie.ac.at

Received 26 June 2007, in final form 21 August 2007
Published 2 October 2007
Online at stacks.iop.org/CQG/24/5173

Abstract
We study the global dynamical behavior of spatially homogeneous solutions of the Einstein equations in Bianchi type I symmetry, where we use non-tilted elastic matter as an anisotropic matter model that naturally generalizes perfect fluids. Based on our dynamical systems formulation of the equations we are able to prove that (i) toward the future all solutions isotropize; (ii) toward the initial singularity all solutions display oscillatory behavior; solutions do not converge to Kasner solutions but oscillate between different Kasner states. This behavior is associated with the energy condition violation as the singularity is approached.

PACS numbers: 04.20.Dw, 98.80.Jk, 04.20.−q, 05.45.−a

1. Introduction

Understanding the dynamics of cosmological models is one of the main goals of theoretical cosmology. It is generally conceded that the analysis of generic cosmological models (which are spacetimes without symmetries) is exceedingly difficult; in fact, at present a mathematically rigorous treatment seems to be out of reach. Nevertheless, heuristic and numerical studies that have been performed over the years have resulted in the formulation of a number of conjectures on the asymptotic dynamics of generic cosmologies (see [7] and references therein). In particular, it is conjectured that the generic singularity is intimately connected with (in fact, actually built on) the dynamics of spatially homogeneous cosmologies.

Spatially homogeneous cosmological models have been analyzed intensively over the years, so that both the asymptotics toward the initial singularity and the asymptotics in the regime of infinite expansion (with infinitely diluted matter) are well understood (see [15] for a review). Most of the results concern solutions of the Einstein equations coupled to a perfect fluid which is usually assumed to obey a linear equation of state. However, it is unclear, in general, how robust these results are under a change of the matter model. For example, it was
shown in [6] that the structure of the initial singularity for collisionless matter is considerably different from that of a perfect fluid already for models of Bianchi type I. It is assumed that such different behavior stems from the anisotropic character of the stress–energy tensor [13].

In this paper, we investigate the global dynamics of spatially homogeneous solutions of Bianchi type I with anisotropic elastic matter. Elastic materials are described by the general relativistic theory of elasticity that was formulated by Carter and Quintana in [4] and further elaborated by Kijowski and Mañé [9], Beig and Schmidt [2] and Karlovini and Samuelsson [8] (see also [12, 14, 16]). For a very recent work on the static Einstein-elastic matter equations, see [1]. Our choice of matter model is motivated by the fact that elasticity theory offers a natural way of generalizing perfect fluids to a class of anisotropic phenomenological matter models without the need to resort to ad hoc assumptions on the expression of the anisotropic pressures. We consider elastic matter with a constitutive equation (Lagrangian) that leads to a stress–energy tensor of the form

\[T_{\mu\nu} = T_{\mu\nu}^{\text{fluid}} + b\Pi_{\mu\nu}, \]

where \(T_{\mu\nu}^{\text{fluid}} \) is the stress–energy tensor of a perfect fluid with a linear equation of state and \(b \) is a constant which modulates the contribution of the anisotropic stress tensor \(\Pi_{\mu\nu} \).

The main results of the paper are the following: toward the future we observe isotropization of models. All solutions resemble infinitely diluted perfect fluid solutions in the asymptotic regime, which is in accord with physical intuition. Toward the initial singularity the behavior of Bianchi type I models with elastic matter is significantly different from the behavior of perfect fluid models. We prove that the behavior toward the singularity is oscillatory. In particular, there does not exist any solution that converges to a Kasner solution (vacuum solution). In the LRS case, solutions oscillate between two different Kasner states (the Taub solution and the non-flat LRS solution); in the general case, the solution undergoes a (probably infinite) sequence of Kasner states (vacuum states) as the singularity is approached. This behavior is intimately connected with energy condition violation.

The paper is organized as follows. In section 2, we briefly outline the derivation of the stress–energy tensor for elastic matter and introduce the class of diagonal Bianchi type I solutions of the Einstein equations which will be the subject of our analysis. In section 3, we reformulate the Einstein equations with elastic matter for diagonal Bianchi type I solutions as a reduced dimensionless dynamical system on a compact state space. Section 4 contains the basic qualitative results on the global dynamics of solutions. In section 5, we specialize to the LRS (locally rotationally symmetric) case; the reduced number of degrees of freedom permits a comprehensive analysis of the past attractor. In section 6, we discuss another (non-generic) subclass of solutions (‘anti-LRS solutions’) whose behavior resembles that of LRS solutions. Finally, the most difficult problem is addressed in section 7: we present a detailed analysis of the past attractor of the full system and the associated past asymptotic behavior of generic solutions.

2. Bianchi type I elastic spacetimes

We begin this section with an introduction to the general relativistic theory of elasticity. However, since the only object of the theory used in this paper is the stress–energy tensor \(T_{\mu\nu} \) for elastic matter, we shall restrict ourselves to a discussion of the basic concepts needed for the derivation of \(T_{\mu\nu} \). Comprehensive presentations of relativistic elasticity can be found in the references listed at the end of the paper. Most of the conventions we adopt, in particular those for the definition of the shear scalar and the elastic equation of state, are taken from [8]. (An option for the reader who is not interested in the derivation of \(T_{\mu\nu} \), is to simply take \(T_{\mu\nu} \).)
as a given anisotropic stress–energy tensor and to proceed to the discussion of the Einstein equations in Bianchi type I, see (8) together with (10) and (12).

Let \((M, \bar{g})\) denote the spacetime, i.e., a four-dimensional manifold \(M\) with a Lorentzian metric \(\bar{g}\) that is time-orientable; local coordinates on \(M\) are given by \(x^\mu, \mu = 0, \ldots, 3\). The material space (or body manifold) \((N, \gamma)\) is a three-dimensional Riemannian manifold; local coordinates are \(X^A, A = 1, 2, 3\). Points in the material space identify particles of the material (in the continuum limit), where \(\gamma\) measures the distance between the particles in the natural (unstrained) state of the matter. In applications, \(\gamma\) is usually chosen to be flat.

The configuration function \(\psi\) is defined to be a (smooth) map \(\psi : M \to N, x^\mu \mapsto X^A = \psi^A(x^\mu)\), such that the kernel of the deformation gradient \(T\psi : TM \to TN\) is generated by a (future-directed unit) timelike vector field \(u\), i.e., \(\ker T\psi = \langle u \rangle\) or \(u^\mu \partial_\mu \psi^A = 0\). The vector field \(u\) is the matter 4-velocity; by construction, \(\psi^{-1}(p)\) (i.e., the worldline of the particle \(p \in N\)) is an integral curve.

We define two metrics on the orthogonal complement \(\langle u \rangle^\perp\) of \(u\) in \(TM\) (which coincides with \(T\Sigma_1\) if \(u\) is hypersurface orthogonal and thus generates a family of spacelike hypersurfaces \(\Sigma \subset M\)). The Riemannian metric induced by \(\bar{g}\) we denote by \(g\); we denote by \(g\): \(\tilde{g}_{\mu\nu} + u_\mu u_\nu\).

The pull-back of the material metric by the map \(\psi\), i.e., \(\psi^\ast(\gamma)\), is called the relativistic strain tensor \(h\), \(h_{\mu\nu} = \partial_\mu \psi^A \partial_\nu \psi^B \gamma_{AB}\).

Since \(h_{\mu\nu} u^\mu = 0\), it is metric in \(\langle u \rangle^\perp\); since \(\mathcal{L}_u h_{\mu\nu} = 0\), it is constant along the matter flow. The metric \(h_{\mu\nu}\) on \(\langle u \rangle^\perp\) is Riemannian, hence \(h^\nu_\nu\) has three positive eigenvalues \(h_1, h_2, h_3\).

The material is unstrained at \(x\) iff \(g_{\mu\nu}(x) = h_{\mu\nu}(x)\). The scalar quantity \(n = \sqrt{\det g} = \sqrt{h_1 h_2 h_3}\) is the particle density of the material. This interpretation is justified by virtue of the continuity equation \(\nabla_\mu (nu^\mu) = 0\).

A specific choice of elastic material is made by postulating a constitutive equation, i.e., the functional dependence of the (rest-frame) energy density \(\rho\) of the material on the configuration map, the deformation gradient and the spacetime metric. An important class of materials is that for which this functional dependence enters only through the principal invariants of the strain tensor. In this case, we have \(\rho = \rho(q_1, q_2, q_3)\), (2)

where

\(q_1 = \text{tr} h, \quad q_2 = \text{tr} (h^2), \quad q_3 = \text{tr} (h^3)\);

since \(n^2 = (q_1^3 - 3q_1 q_2 + 2q_3)/6\), one of the invariants \(q_i\) can be replaced by the particle density \(n\). The materials described by (2) generalize the class of isotropic, homogeneous, hyperelastic materials from the classical theory of elasticity, see [10]. In many astrophysical applications (e.g., for the description of the solid crust of neutron stars), the effect of very large strains can be modeled by an elastic material in the quasi-Hookean approximation [4]. This corresponds to a constitutive equation \(\rho\) that (i) depends on \(n\), (ii) depends linearly on a quadratic invariant of the strain, (iii) has an absolute minimum at zero shear. Following [8] we choose the quadratic strain invariant to be the shear scalar, which is given by...
\[s^2 = \frac{1}{36}[n^{-2}(q_1^2 - q_3) - 24]. \]
\[s^2 = \frac{1}{12} \left[\left(\frac{h_1}{h_2} - \frac{h_2}{h_1} \right)^2 + \left(\frac{h_1}{h_3} - \frac{h_3}{h_1} \right)^2 + \left(\frac{h_2}{h_3} - \frac{h_3}{h_2} \right)^2 \right]. \]

Evidently, \(s^2 \) is non-negative and \(s^2 = 0 \) (no shear) iff \(h_{uv} \propto g_{uv} \) (or equivalently, \(h_1 = h_2 = h_3 \)).

In this paper we shall consider a constitutive equation of the form
\[\rho = \tilde{\rho}(n) + \tilde{\mu}(n)s^2, \]
where \(\tilde{\rho}(n) \) is the unsheared energy density and \(\tilde{\mu}(n) \) the modulus of rigidity. The stress–energy tensor associated with these materials is obtained as the variation with respect to the spacetime metric of the matter action \(S_M = -\int \sqrt{|g|} \rho \). The result is given in [8, section 6] and reads
\[\tilde{T}_{\mu\nu} = \rho u_{\mu}u_{\nu} + T_{\mu\nu}, \]
where
\[T_{\mu\nu} = \rho g_{\mu\nu} + \frac{1}{6n^2} \left[\frac{1}{2} (\text{tr} (h^3) - (\text{tr} h)^3)g_{\mu\nu} + (\text{tr} h)^2 h_{\mu\nu} - (h^3)_{\mu\nu} \right]. \]

The principal pressures \(p_i \) (which are the [non-zero] eigenvalues of \(T^{\mu\nu} \)) are thus of the form \(p_i = \rho + \delta p_i \); for an unsheared configuration, \(p_i = p, i = 1, 2, 3 \). For \(\tilde{\mu} = 0 \) (or \(s^2 = 0 \)), the elastic material reduces to a perfect fluid with a linear equation of state \(\tilde{T}_{\mu\nu} = \rho u_{\mu}u_{\nu} + \rho g_{\mu\nu} \), energy density \(\rho = \tilde{\rho} \) and pressure \(p = \tilde{\rho} \).

It remains to specify the functions \(\tilde{\rho} \) and \(\tilde{\mu} \) in the constitutive equation (4). We postulate a linear equation of state between the unsheared pressure \(\tilde{\rho} \) and the unsheared energy density \(\tilde{\rho} \),
\[\tilde{\rho} = a\tilde{\rho} \quad (a \in [-1, 1]), \]
and a linear equation of state between the modulus of rigidity \(\tilde{\mu} \) and the unsheared pressure \(\tilde{\rho} \),
\[\tilde{\mu} = b\tilde{\rho} \quad (ab \geq 0). \]
By (6) this is equivalent to setting
\[\tilde{\rho} = \rho_0 n^{a+1}, \quad \tilde{\mu} = \rho_0 ab n^{a+1} \quad (|a| \leq 1, ab \geq 0) \]
for some constant \(\rho_0 > 0 \). Accordingly,
\[\rho = \rho_0 n^{a+1}(1 + ab s^2), \quad p = a\rho. \]

Since for an unsheared material \(\rho = \tilde{\rho} \) and \(p_i = \rho = \tilde{\rho} \) hold, \(i = 1, 2, 3 \), the bound \(|a| \leq 1 \) ensures that the dominant energy condition \(|p_i| \leq \rho \) is satisfied for an unsheared configuration. Furthermore, \(ab \geq 0 \) guarantees that the energy density is positive for all values of the shear scalar \(s^2 \) and has a minimum at zero shear. When \(b = 0 \), the modulus of rigidity \(\tilde{\mu} \) vanishes and the elastic matter reduces to a perfect fluid with a linear equation of state \(p = a\rho \); the condition \(|a| \leq 1 \) ensures that the dominant energy condition \(|p| \leq \rho \) is satisfied for this
perfect fluid. When \(a = 0 \) (so that \(p = 0 \)), the choice of \(b \) is irrelevant, since \(ab = 0 \); this is clear because shear cannot occur for dust. Henceforth, unless stated otherwise, by elastic matter we will always mean matter with the constitutive equation (7), where \(a \in [−1, 1] \) and \(ab > 0 \).

Consider now a homogeneous spacetime \((M, \bar{g})\) of Bianchi type I, i.e.,

\[
\bar{g}_{\mu\nu} \, dx^\mu \, dx^\nu = -dr^2 + g_{ij}(t) \, dx^i \, dx^j, \tag{8}
\]

where \(g_{ij}(t), i, j = 1, 2, 3 \), is a family of Riemannian metrics that is induced on the spatially homogeneous hypersurfaces \(t = \text{const} \). Let \(\psi^A(t, x^i) : (M, \bar{g}) \rightarrow (N, \delta_{AB}) \) be a material configuration and \(\partial_i \psi^A \) the corresponding deformation gradient. Compatibility with Bianchi type I symmetry forces the deformation gradient \(\partial_i \psi^A \) and thus the matter 4-velocity \(u^a \) to be functions of \(t \) only. We assume non-tilted matter: \(u^a \) is orthogonal to the surfaces \(t = \text{constant} \), i.e., \(u^a = \partial_t \). This implies that \(0 = u^a \partial_i \psi^A = \partial_t \psi^A \) and thus \(\partial_i \partial_t \psi^A = 0 \); hence \(\partial_t \psi^A \) is constant with \(\partial_0 \psi^A = 0 \). For the strain tensor we find

\[
h_{00} = h_{0k} = 0, \quad h_{ij} = \delta_{AB} \partial_i \psi^A \partial_j \psi^B = \text{const} ;
\]

since \(h_{ij}' = g^{ik} h_{jk} \), the matrix \(h_{ij}' \) is time dependent as are its eigenvalues \(h_{1}, h_{2}, h_{3} \). It follows from (5) that

\[
T_{00} = \rho, \quad T_{0k} = j_k = 0, \quad T_{ij} = T_{ij}
\]

where \(T_{ij} \) is given in terms of \(h_{ij} \) via (5b).

The Einstein equations, in units \(c = 1 = 8\pi G \), decompose into the momentum constraint \(j_k = 0 \), which is automatically satisfied by (9), the Hamiltonian constraint

\[
(\text{tr} \, k)^2 - k_{ij} k^{ij} - 2\rho = 0, \tag{10a}
\]

and the evolution equations

\[
\partial_t g_{ij} = -2k_{ij} \quad \partial_t k_{ij} = (\text{tr} \, k)k_{ij} - T_{ij} + \frac{1}{2} \delta_{ij} (T_k - \rho). \tag{10b}
\]

Here, \(k_{ij} \) is the second fundamental form of the surfaces \(t = \text{constant} \); Latin indices are raised and lowered with \(g_{ij} \).

The Cauchy data associated with this initial value problem are given by \(g_{ij}(0), k_{ij}(0) \); in addition we prescribe \(h_{ij} = h_{ij}(0) = \text{const} \). Without loss of generality we can assume that \(g_{ij}(0) \) and \(k_{ij}(0) \) are diagonal (by choosing coordinates adapted to an orthogonal basis of \(k_{ij}(0) \)). Furthermore we impose the condition that \(h_{ij} \) is diagonal; in particular, by rescaling the spatial coordinates, we can assume \(h_{ij} = \delta_{ij} \). This assumption is consistent with the evolution equations: since the off-diagonal elements of the tensor \(T_{ij} \) form a homogeneous polynomial in \(h_{ij}' = g^{ik} h_{jk}, i \neq j \), it follows from the evolution equations (10b) that \((g_{ij}, k_{ij}, h_{ij}) \) remain diagonal for all times. Henceforth, we will restrict our attention to this special class of solutions of equations (10), which are referred to as diagonal models.

From \(h_{ij}' = g^{ik} h_{jk} = \text{diag}(g_{11}, g_{22}, g_{33}) = \text{diag}(h_{1}, h_{2}, h_{3}) \) we conclude that

\[
s^2 = \frac{1}{12} \left[\frac{g_{11}^{11}}{g_{11}^{22}} + \frac{g_{22}^{22}}{g_{22}^{11}} + \frac{g_{33}^{11}}{g_{33}^{22}} + \frac{g_{33}^{22}}{g_{33}^{11}} + \frac{g_{33}^{11}}{g_{33}^{33}} + \frac{g_{33}^{33}}{g_{33}^{11}} + \frac{g_{33}^{33}}{g_{33}^{33}} - 6 \right], \tag{11}
\]

cf (3b), which can be inserted into (7), i.e.,

\[
\rho = \rho_0 (g_{11}^{11} g_{22}^{22} g_{33}^{33})^{(a+1)/2} (1 + ab^2), \quad (|a| \leq 1, ab > 0), \tag{12a}
\]

to yield \(\rho \) as a function of \(g_{11}, g_{22}, g_{33} \). Moreover, from (5b) we find

\[
T_{11}' = p + \frac{1}{6} \left(\frac{g_{11}}{g_{33}} - \frac{g_{33}^{11}}{g_{33}^{22}} + \frac{g_{33}^{22}}{g_{33}^{11}} - \frac{g_{33}^{33}}{g_{33}^{11}} \right), \tag{12b}
\]
\[T^2_2 = p + \frac{1}{6} \kappa \left(\frac{g^{22}_{22} - g^{11}_{22} + g^{22}_{33} - g^{33}_{22}}{g_{22}} \right), \] (12c)

\[T^3_3 = p + \frac{1}{6} \kappa \left(\frac{g^{33}_{22} - g^{22}_{22} + g^{33}_{11} - g^{11}_{33}}{g_{33}} \right), \] (12d)

where \(p = a \rho \) and \(\kappa = \rho_0 ab (g^{11}_{22} g^{22}_{33} (a + 1)/2 \) and are thus functions of \(g^{11}, g^{22}, g^{33} \). In the following we analyze equations (10) with the anisotropic stress–energy tensor (12). In the diagonal case we consider, the unknowns are the six variables \((g^{ii}, k^{ii}) \) (no summation over \(i \)); the Cauchy data are \((g^{ii}(0), k^{ii}(0)) \).

3. Dynamical system formulation

In order to formulate the Einstein equations with elastic matter in Bianchi type I as a regular dynamical system we introduce alternative variables and matter quantities. Let

\[H = -\frac{\text{tr} k}{3}, \] (13a)

\[\Sigma_i = \frac{k^i_j}{H} - 1 \quad (\text{no sum}) \quad (\Rightarrow \Sigma_1 + \Sigma_2 + \Sigma_3 = 0). \] (13b)

The Hubble scalar \(H \) carries dimension, while the shear variables \(\Sigma_1, \Sigma_2, \Sigma_3 \) are dimensionless. Evidently, the transformation between the variables \((k^1_1, k^2_2, k^3_3) \) and \((H, \Sigma_1, \Sigma_2, \Sigma_3) \), where \(\Sigma_1 + \Sigma_2 + \Sigma_3 = 0 \), is one-to-one.

In analogy with the new 'momentum variables' we introduce new 'configuration variables'. Let \((ijk)\) be a cyclic permutation of \((123)\). We define

\[G = \det g^{-1} = g^{11} g^{22} g^{33}, \] (14a)

\[y_i = \frac{g^{ij}}{g^{jj} + \epsilon_{ijk} k^{jk}} \quad (\epsilon_{ijk} = +1) \quad \left(\Rightarrow \frac{y_1}{1 - y_1}, \frac{y_2}{1 - y_2}, \frac{y_3}{1 - y_3} = 1 \right). \] (14b)

The variable \(G \) is dimensional, the variables \(y_1, y_2, y_3 \) are dimensionless; by construction, we have \(0 < y_i < 1 \) for all \(i \). The transformation of variables \((g^{11}, g^{22}, g^{33}) \mapsto (G, y_1, y_2, y_3) \), where \((y_1, y_2, y_3) \) are subject to the constraint \((y_1 y_2 y_3)/(1 - y_1)(1 - y_2)(1 - y_3) = 1 \), is invertible, since

\[(g^{ij})^3 = G \frac{1 - y_j}{y_j} \frac{y_k}{1 - y_k} \quad (\epsilon_{ijk} = +1). \] (15)

As a next step we normalize the matter quantities; we replace \((\rho, T^{11}, T^{22}, T^{33})\) by \((\Omega, w_1, w_2, w_3)\) which we define as

\[w_i = \frac{T^i_j}{\rho} \quad (\text{no sum}), \quad \Omega = \frac{\rho}{3H^2}. \]

It is customary to also introduce \(w \) by

\[w = \frac{1}{3} \sum_{i=1}^{3} w_i = \frac{1}{3} \sum_{i=1}^{3} T^i_j \frac{1}{\rho} = \frac{p}{\rho}. \]

Since \(p = a \rho \) for the elastic materials under consideration, see section 2, we obtain \(w = a \).
Expressed in terms of the new variables the (dimensionless) shear scalar s^2 is given by

$$s^2 = \frac{1}{12} \left[\sum_{j=1}^{3} \left(\frac{1-y_j}{y_j} + \frac{y_j}{1-y_j} \right) - 6 \right],$$

(16)

and the quantities w_i become

$$w_i = a + \frac{ab}{6} \left(\frac{1-y_i}{y_i} - \frac{y_i}{1-y_i} \right) - \frac{1}{1 + ab s^2} (\epsilon_{ijk} = +1),$$

(17)

where we have used the elastic equations of state of section 2.

Finally, we introduce a dimensionless time variable τ defined through

$$\partial_{\tau} = H^{-1} \partial_t,$$

(18)

and we henceforth adopt the convention that a prime denotes differentiation with respect to τ.

Written in the new dynamical variables, the Einstein equations split into the dimensional equations

$$H' = -3H \left[1 - \frac{\Omega}{2} (1 - w) \right], \quad G' = -6G$$

(19)

and a reduced set of dimensionless equations:

$$\Sigma'_i = -3\Omega \left[\frac{1}{3} (1 - w) \Sigma_i - (w_i - w) \right] \quad (i = 1, 2, 3)$$

(20a)

$$y'_i = -2y_i (1 - y_i) (\Sigma_j - \Sigma_k) \quad (\epsilon_{ijk} = +1) \quad (i = 1, 2, 3).$$

(20b)

At the same time, the Hamiltonian constraint (10a) reads

$$1 - \Sigma^2 - \Omega = 0, \quad \text{where} \quad \Sigma^2 := \frac{1}{6} \sum_k \Sigma_k^2.$$

(20c)

We have thus arrived at the desired dynamical systems formulation of our problem: the dynamical system (20) describes the dynamics of Bianchi type I elastic spacetimes, where our choice of equation of state enters through the functions $w_i(y_1, y_2, y_3), i = 1, 2, 3$. Once the system (20) has been solved, the decoupled dimensional equations (19) can be integrated and the standard variables, in particular the spatial metric, can be reconstructed.

In addition to the dynamical system (20), the following auxiliary equation for Ω will prove to be useful:

$$\Omega' = \Omega \left[3(1 - w) \Sigma^2 - \sum_k w_k \Sigma_k \right].$$

(21)

In the remainder of this section we analyze in detail the state space \mathcal{X} of the dynamical system (20). The state space \mathcal{X} is four dimensional; it is defined as the Cartesian product of two two-dimensional sets,

$$\mathcal{X} = \Sigma \times \mathcal{Y},$$

(22)

where

$$\Sigma = \left\{ (\Sigma_1, \Sigma_2, \Sigma_3) \right| \sum_{i=1}^{3} \Sigma_i = 0 \wedge \Sigma^2 < 1 \right\},$$

(23a)

$$\mathcal{Y} = \left\{ (y_1, y_2, y_3) \right| 0 < y_i < 1 \forall i \wedge \prod_{i=1}^{3} \frac{y_i}{1-y_i} = 1 \right\}.$$

(23b)
The conditions on the variables are a direct consequence of definitions (13b) and (14b) and the constraint (20c).

The set Σ is the Kasner disc; it is usually depicted in a projection onto the plane with conormal $(1, 1, 1)$ (see figure 1). The boundary of Σ is the Kasner circle $\mathcal{K} = \partial \Sigma = \Sigma_1$. The Kasner circle contains six special points, which are referred to as LRS points: the three Taub points T_1, T_2, T_3 given by $(\Sigma_1, \Sigma_2, \Sigma_3) = (2, -1, -1)$ and permutations, and the three non-flat LRS points Q_1, Q_2, Q_3 given by $(\Sigma_1, \Sigma_2, \Sigma_3) = (-2, 1, 1)$ and permutations. The six sectors of $\partial \Sigma$ are denoted by permutations of the triple (123); by definition, $\Sigma_i < \Sigma_j < \Sigma_k$ holds in sector (ijk).

The set \mathcal{Y} is given as a two-dimensional surface in the interior of the unit cube $[0, 1]^3$. Its boundary $\partial \mathcal{Y}$ is the union of those six edges of the cube that do not contain the vertices $(0, 0, 0)$ or $(1, 1, 1)$. The projection of $\partial \mathcal{Y}$ onto an affine plane with conormal $(1, 1, 1)$ is a hexagon; the surface \mathcal{Y} itself is its interior. The center of the hexagon represents the point $(y_1, y_2, y_3) = (1/2, 1/2, 1/2)$. In analogy with the Kasner circle, the six edges of the hexagon $\partial \mathcal{Y}$ can be regarded as six sectors, where sector $[ijk]$ is characterized by the inequality $0 = y_i \leq y_j \leq y_k = 1$; the six vertices of $\partial \mathcal{Y}$ separate the sectors from each other: for T_i we have $(y_i, y_j, y_k) = (1, 0, 0)$, for Q_i we have $(y_i, y_j, y_k) = (0, 1, 1)$ (see figure 1).

A priori, by (17), the quantities w_i are given as smooth functions of $(y_1, y_2, y_3) \in \mathcal{Y}$ only. It is a crucial fact, however, that these functions admit a continuous extension to Σ only, when we assume that $ab \neq 0$. In this case, it is straightforward to prove that on sector $[ijk]$ of $\partial \mathcal{Y}$, (w_i, w_j, w_k) is given by

$$w_i = a + 2\epsilon_{ijk}(1 - y_j), \quad w_j = a - 2\epsilon_{ijk}, \quad w_k = a + 2\epsilon_{ijk}y_j. \quad (24)$$

It follows that the rhs of the dynamical system (20) possesses an extension to the boundary of the state space, whereby we obtain a dynamical system on a compact state space $\overline{\mathcal{X}}$. In particular, the analysis of the flow on the boundary $\partial \mathcal{X}$, which is

$$\partial \mathcal{X} = (\partial \Sigma \times \overline{\mathcal{Y}}) \cup (\Sigma \times \partial \mathcal{Y}),$$

will turn out to be essential for an understanding of the global dynamics of the dynamical system.
We conclude this section with some remarks on energy conditions. The dominant energy condition is expressed in the new matter variables as

\[|w_i| \leq 1 \quad \forall i = 1, 2, 3; \]

(25)

the weak energy condition reads

\[-1 \leq w_i \quad \forall i = 1, 2, 3; \]

(26)

the strong energy condition is satisfied if (26) holds and \(a \geq -1/3 \). It is a simple consequence of (17) that the dominant (and thus the weak) energy condition is satisfied for perfect fluids, i.e., for \(b = 0 \). However, for elastic matter, when \(|b| > 0 \), the dominant energy condition is violated for \((y_1, y_2, y_3) \in \mathcal{Y}\) sufficiently close to the boundary \(\partial \mathcal{Y} \). In fact, by (24), on each sector \([ijk]\) of \(\partial \mathcal{Y} \) there is at least one quantity \(w_i (i = 1, 2, 3) \) such that \(|w_i| > 1 \), and by continuity this inequality must hold in a neighborhood of that sector. (Note in this context that (24) is independent of the value of \(b \neq 0 \).) On the other hand, provided that \(|a| < 1 \), the dominant energy condition holds in some region of the interior of the state space, since \(w_i(1/2, 1/2, 1/2) = a \) for all \(i \) and thus by continuity \(|w_i| < 1 \) in a neighborhood of this point.

4. Global dynamics

The dynamical system (20) possesses one single equilibrium point in the state space \(\mathcal{X} \), which we call F. This fixed point is given by

\[F : \quad \Sigma_1 = \Sigma_2 = \Sigma_3 = 0, \quad y_1 = y_2 = y_3 = \frac{1}{2}; \]

(27a)

an alternative characterization is

\[F : \quad \Sigma_1 = \Sigma_2 = \Sigma_3 = 0, \quad w_1 = w_2 = w_3 = w = a, \]

(27b)

which is a direct consequence of (17) by taking into account the positivity of the variables \(y_i \). Since the principal pressures coincide, \(p_1 = p_2 = p_3 = p \), the fixed point \(F \) represents the flat isotropic FRW perfect fluid solution associated with the equation of state \(p = a \rho \).

We now consider the function

\[M = (1 - \Sigma_2^2)^{-1}(1 + ab s^2), \]

(28)

where \(s^2 \) is given by (16) and thus is a function of \((y_1, y_2, y_3)\). Recall that we suppose \(ab > 0 \). Accordingly, the function \(M \) is positive on the state space \(\mathcal{X} \); in fact, \(\min_{\mathcal{X}} M = 1 \) and the minimum \(M = 1 \) is attained at the fixed point \(F \) only.

A lengthy but straightforward computation, where we use the dynamical system (20) and the functions \(w_i(y_1, y_2, y_3) \), see (17), leads to

\[M' = -3(1 - a)\Sigma_2^2 M. \]

(29a)

The computation of higher derivatives reveals that

\[M'' \bigg|_{\Sigma_2^2 = 0} = -9(1 - a)M \sum_k (w_k - w)^2 \]

(29b)

on the subset \(\Sigma_2^2 = 0 \) of the state space.

Equation (29a) suggests that \(a = 1 \) is a special case for our considerations, since then the rhs vanishes. We thus distinguish two cases: \(a < 1 \) and \(a = 1 \).
The case \(a < 1 \)

When we consider an elastic equation of state with \(a < 1 \) (and \(ab > 0 \)), equation (29) implies that \(M' < 0 \) when \(\Sigma^2 \neq 0 \), and \(M''|_{\Sigma^2=0} < 0 \) except at the point \(F \); therefore, \(M \) is a strictly monotonically decreasing function on \(\mathcal{X}\backslash F \). The existence of a monotone function allows us to prove two central theorems.

Theorem 1 (Future asymptotics). *All orbits in the state space \(\mathcal{X} \) converge to the fixed point \(F \) when \(\tau \to +\infty \).*

Interpretation of the theorem. The fixed point \(F \) corresponds to a FRW perfect fluid solution associated with the equation of state \(p = a\rho \); the theorem thus states that each Bianchi type I model with elastic matter obeying an equation of state with \(a \in [-1, 1) \) and \(ab > 0 \) isotropizes toward the future and behaves like an (infinitely diluted) isotropic perfect fluid solution in the asymptotic regime.

Proof. The function \(M \) is strictly monotonically decreasing along every orbit in the invariant set \(\mathcal{X}\backslash F \). The monotonicity principle [5, 15] implies that the \(\omega \)-limit of every orbit must be contained on the boundary, which is \(\partial \mathcal{X} \cup F \). Since \(M = +\infty \) on \(\partial \mathcal{X} \), the boundary \(\partial \mathcal{X} \) is excluded, which leaves the fixed point \(F \) as the only possible \(\omega \)-limit. \(\square \)

Theorem 2 (Past asymptotics). *The \(\alpha \)-limit of every orbit in \(\mathcal{X}\backslash F \) is a subset of the boundary \(\partial \mathcal{X} \) of the state space.*

Proof. The monotonicity principle implies that the \(\alpha \)-limit must be contained on \(\partial \mathcal{X} \cup F \). The point \(F \) is excluded, however, since \(M = \min_{\mathcal{X}} M = 1 \) at \(F \). \(\square \)

Theorem 2 describes the behavior of Bianchi type I models toward the initial singularity (which we choose to be \(t = 0 \)). To see this we simply note that the inequalities \(-3H \leq H' \leq -3/2(1 + a)H \) follow from (19), so that (18) can be integrated to yield a positive function \(t(\tau) \) that satisfies \(t \to 0 \) as \(\tau \to -\infty \). (In this context it is necessary to assume \(a > -1 \); the case \(a = -1 \) requires a different argument that involves more detailed information on the \(\alpha \)-limits of orbits in \(\mathcal{X} \), see section 7.)

Since the boundary \(\partial \mathcal{X} \) contains the Kasner circle(s), see section 7, the theorem suggests that the Kasner solutions will play an essential role in the past asymptotic dynamics of Bianchi type I solutions with elastic matter. However, in section 7, we will prove that there does not exist any solution that converges to a Kasner solution as \(t \to 0 \); instead we observe oscillatory behavior toward the singularity. In order to derive these results concerning the past asymptotic dynamics of solutions we must analyze the flow of the dynamical system on the boundary \(\partial \mathcal{X} \), which will be done in section 7.

The case \(a = 1 \)

When \(a = 1 \), the function \(M \) is constant along the orbits of the dynamical system, i.e., for every \(\mathbb{R} \ni m > 1 \), the hypersurface

\[\mathcal{M}_m = \{(\Sigma_1, \Sigma_2, \Sigma_3, y_1, y_2, y_3) \in \mathcal{X}|M = m \} \]

is an invariant subset in \(\mathcal{X} \). In other words, \(M \) acts as a conserved ‘energy’; solutions with the ‘energy’ \(M = m \) are contained on \(\mathcal{M}_m \). When \(m = 1 \), we have \(\mathcal{M}_1 = \{F\} \).

It is not difficult to show from (16) that each surface \(s^2 = \text{const} \) is a (topological) sphere in the unit cube \((0, 1)^3\), which is centered at \((y_1, y_2, y_3) = (1/2, 1/2, 1/2)\). Accordingly,
coordinates we obtain LRS geometry, i.e.,
variables \((y_i, y_j, y_k)\)
by
\[M \Sigma^2 + ab s^2 = M - 1 \quad (M = m > 1), \]
we conclude that \(M_m\) represents a topological \(S^3\) hypersphere in \(\mathcal{X}\) whose center is the fixed point \(F\). In particular, \(M_m\) does not intersect \(\partial \mathcal{X}\). We have proved the following result.

Theorem 3. For the \(\omega\)-limit set \(\omega(\gamma)\) of an orbit \(\gamma\) in \(\mathcal{X}\)\(\setminus F\) we have: \(F \notin \omega(\gamma)\) and \(\omega(\gamma) \cap \partial \mathcal{X} = \emptyset\). An identical statement holds for the \(\alpha\)-limit set of \(\gamma\).

Interpretation of the theorem. If the equation of state of the elastic matter is such that \(a = 1\), then the associated Bianchi type I solutions of the Einstein equations do not isotropize toward the future (and neither toward the singularity). Furthermore, the solution cannot be approximated by Kasner solutions at any time and neither asymptotically (since Kasner solutions are represented by points on \(\partial \mathcal{X}\), see section 7).

From (30) it follows that the maximum shear of a solution with ‘energy’ \(M = m\) is given by \(s^2 = (m - 1)/(ab)\), while \(\Sigma^2\) remains bounded by \(\Sigma^2 \leq 1 - 1/m\), so that \(\Omega \geq 1/m\).

5. LRS solutions

In this section, we consider a special case of Bianchi type I models: locally rotationally symmetric (LRS) models. The additional symmetry that is imposed reduces the number of degrees of freedom, which facilitates the analysis of the (past asymptotic) dynamics of solutions in both cases \(a < 1\) and \(a = 1\).

A Bianchi type I solution of the Einstein equations is locally rotationally symmetric (LRS) if \(\Sigma_i = \Sigma_3\) and \(w_j = w_3\) for some pair \(j \neq k\). Let \((ijk)\) be the completion of the pair \((j,k)\) to a permutation of the triple (123). The first condition, i.e., \(\Sigma_j = \Sigma_i\), implies that \(y_i \equiv \text{const}\) via (20b), and thus \(g^{ij}/g^{kk} \equiv \text{const}\) according to (14b); by a possible rescaling of the spatial coordinates we obtain LRS geometry, i.e., \(g^{ij} = g^{kk}\). The second condition, i.e., \(w_j = w_k\), states that the matter content is compatible with LRS symmetry; it guarantees that \(y_i \equiv 1/2\) (so that \(g^{ij} \equiv g^{kk}\) automatically). To see this we use (17) and observe that \(w_j = w_k\) iff

\[
\frac{1 - y_j}{y_j} - \frac{y_j}{1 - y_j} + \frac{1 - y_k}{y_k} - \frac{y_k}{1 - y_k} = 2 \left(\frac{1 - y_j}{y_j} - \frac{y_j}{1 - y_j} \right),
\]

multiplication with \((y_j y_k)/(1 - y_j)(1 - y_k))\), where we use the constraint (14b) on the variables \((y_i, y_j, y_k)\) yields

\[
\frac{y_j}{1 - y_j} + \frac{y_k}{1 - y_k} \left(\frac{1 - y_j}{1 - y_j} - \frac{y_k}{1 - y_k} \right) = -2 \left(\frac{1 - y_j}{1 - y_j} - \frac{y_k}{1 - y_k} \right) \left(1 + \frac{y_j}{1 - y_j} \right)
\]

and hence

\[
w_j = w_k \iff \left(1 - \frac{y_j}{1 - y_j} \right) = 0 \iff y_j = 1 - y_k \iff y_i = \frac{1}{2}.
\]

In the state space \(\mathcal{X}\), the conditions \(\Sigma_j = \Sigma_3\) and \(y_i = \frac{1}{2}\) \((\iff w_j = w_k)\) define three invariant subsets which we denote by LRS\(_i\), \(i = 1, 2, 3\) (see figure 2). In the dynamical systems representation of Bianchi type I elastic cosmologies, LRS configurations are given by orbits on one of these invariant subsets. In the following, we thus analyze the dynamics of LRS solutions by studying the flow of the dynamical system on the LRS subsets LRS\(_i\).

Let again \((ijk)\) be a cyclic permutation of (123). Consider the subset LRS\(_j\) \(\subset \mathcal{X}\) which is given by the conditions

\[
y_i = \frac{1}{2} \quad (\iff w_j = w_k \iff y_j = 1 - y_k) \quad \text{and} \quad \Sigma_j = \Sigma_k \quad (\iff \Sigma_i = -2\Sigma_j = -2\Sigma_k).
\]
On LRS$_i$, the shear scalar s^2 reads
\[s^2 = \frac{1}{6} \frac{(1 - 2y_j)^2}{y_j(1 - y_j)} = \frac{1}{6} \frac{(1 - 2y_k)^2}{y_k(1 - y_k)} \]
and the matter quantities become
\[w_j = a - \frac{ab}{6} \frac{1 - 2y_j}{y_j(1 - y_j)} + \frac{ab}{6}(1 - 2y_j)^2 = w_k, \quad w_i = 3a - 2w_j. \quad (31) \]

The dynamical system (20) reduces to
\[y'_j = -6y_j(1 - y_j)\Sigma_j, \]
\[\Sigma'_j = -3(1 - \Sigma_j)(\frac{1}{2}(1 - a)\Sigma_j - (w_j - a)), \quad (32a) \]
where we have used that $\Omega = 1 - \Sigma_j^2$ under the present assumptions.

The state space LRS$_i$ can be represented as (the interior of) the rectangle $(-1, 1) \times (0, 1)$ with (Σ_j, y_j). Since w_j extends smoothly to $y_j = 0$ and $y_j = 1$, the dynamical system (32) extends smoothly to the compact space $[-1, 1] \times [0, 1]$. The four sides of the rectangle are invariant subspaces; when we exclude the vertices from our considerations, we find
\[\Sigma_j = \pm 1 \quad \Rightarrow \quad y'_j = \mp 6y_j(1 - y_j) \leq 0 \]
\[y_j = 0 \quad \Rightarrow \quad \Sigma'_j = -\frac{3}{2}\Omega[(1 - a)\Sigma_j + 2] < 0 \]
\[y_j = 1 \quad \Rightarrow \quad \Sigma'_j = -\frac{3}{2}\Omega[(1 - a)\Sigma_j - 2] > 0. \]

The four vertices of the rectangle are fixed points. (The notation is chosen to agree with the conventions of section 7.)

Fixed point	$(\Sigma_i, \Sigma_j, \Sigma_k)$	(y_i, y_j, y_k)	Fixed point represents
Q$_{ijk}$	$Q_i = (-2, +1, +1)$	$(1/2, 0, 1)$	Non-flat LRS Kasner solution
Q$_{ikj}$	$Q_i = (-2, +1, +1)$	$(1/2, 1, 0)$	Non-flat LRS Kasner solution
T$_{ijk}$	$T_i = (+2, -1, -1)$	$(1/2, 0, 1)$	Taub solution (flat LRS Kasner)
T$_{ikj}$	$T_i = (+2, -1, -1)$	$(1/2, 1, 0)$	Taub solution (flat LRS Kasner)
From this analysis it follows that the boundary of the state space LRS\textsubscript{i} forms a heteroclinic cycle:

$$T(k_{ij}) \rightarrow Q(k_{ij}) \uparrow \downarrow T(j_{ik}) \leftarrow Q(j_{ik}).$$

(33)

In the interior of the state space LRS\textsubscript{i} there exists one single fixed point: the FRW perfect fluid fixed point F; recall that $\Sigma_i = \Sigma_j = \Sigma_k = 0$ and $y_i = y_j = y_k = 1/2$ at F.

To analyze the global dynamics on LRS\textsubscript{i} we distinguish the cases $a = 1$ and $a \neq 1$ as in section 4. First let $a = 1$. The considerations of section 4 imply that there exists a family of invariant subsets $\{ M_m \mid m > 1 \}$. For each m, the surface M_m is a three-dimensional hypersphere and its intersection with the two-dimensional surface LRS\textsubscript{i} yields a closed curve with center F. By construction, this closed curve is an orbit of the dynamical system on LRS\textsubscript{i}.

More explicitly, we see that

$$M = (1 - \Sigma_2)^{-1}(1 + ab s^2) = (1 - \Sigma_j)^{-1} \left(1 + \frac{ab}{6} \frac{(1 - 2y_j)^2}{y_j(1 - y_j)} \right) = m > 1$$

(34)

defines a family of periodic orbits in LRS\textsubscript{i} which are centered at the fixed point F. The phase portrait of the dynamical system in the case $a = 1$ is represented in figure 3. (Note that in the limiting fluid case, i.e., $a = 1$ with $b = 0$, the orbits are no longer periodic but straight lines $\Sigma_j = \text{const}$).

Second we consider elastic matter with the property $a \neq 1$. The global dynamics on LRS\textsubscript{i} follows from theorems 1 and 2 in conjunction with the analysis of the boundary of LRS\textsubscript{i}:

Corollary 4. *The ω-limit of every orbit on LRS\textsubscript{i} is the fixed point F, the α-limit is the heteroclinic cycle (33).*

Interpretation of the corollary. Each LRS Bianchi type I model with elastic matter obeying an equation of state with $a \in [-1, 1)$ and $ab > 0$ isotropizes toward the future and behaves like an (infinitely diluted) isotropic perfect fluid solution in the asymptotic regime. Toward the singularity we observe oscillatory behavior between the non-flat LRS Kasner solution and the Taub solution. This is in stark contrast to the behavior of perfect fluid solutions, which converge to either the non-flat LRS Kasner solution or the Taub solution as $t \to 0$.

Figure 3. Phase portraits of LRS solutions for $a = 1$ (left) and $a \in [-1, 1)$ (right). The dominant energy condition is violated in the shadowed region (for $a = -1$, this is everywhere except at $y_j = 1/2$). It is assumed that $ab \leq 3$ and, for $a \in [-1, 1)$, that $ab > \frac{32}{3}(1 - a)^2$ (oscillatory approach toward F).
The past asymptotic dynamics of solutions as described by the corollary is intimately connected with the violation of energy conditions. As a matter of course, the general statement of section 3 also applies in the LRS case: while the dominant energy condition (and thus the weak energy condition) is satisfied in a neighborhood of the fixed point \(F \) (where it is assumed that \(|a| < 1\)), we observe energy condition violation in a neighborhood of the boundaries \(y_j = 0 \) and \(y_j = 1 \).

The discussion of the issue of energy condition violation is facilitated when we assume the upper bound \(ab \leq 3 \). Under this condition it is straightforward to show that \((w_j - a) \) is a monotonically increasing function of \(y_j \in [0, 1] \) with range \([−1, 1]\); accordingly, \((wi - a) \) is decreasing with range \([−2, 2]\).

A particularly simple case, which displays all the relevant features of the general case \(ab \leq 3 \), is \(ab = 3/2 \), since \((wi, w_j, wk) \) become linear in \(y_j \), i.e.,

\[
w_j = a + 2y_j - 1 = wk, \quad w_i = a + 2 - 4y_j.
\]

(35)

A straightforward calculation yields the following results for this special case:

- The weak energy condition is satisfied iff
 \[
y_j \in \left[-\frac{a}{2} - \frac{a + 3}{4} \right].
\]
 This interval collapses to the point \(y_j = 1/2 \) when \(a = -1 \).

- The dominant energy condition is satisfied iff
 \[
y_j \in \left[-\frac{a}{2} - \frac{1 - a}{2} \right] \cap \left[\frac{a + 1}{4}, \frac{a + 3}{4} \right]
\]
 (see figure 3). This domain reduces to the point \(y_j = 1/2 \) when \(a = \pm 1 \).

A general property that is worth observing is the presence of regions where the dominant energy condition is violated, while the weak condition is satisfied.

For a given \(a \in (-1, 1) \), the regions of energy condition violation become smaller when we let \(|b| \rightarrow 0 \). However, the general statement of section 3 applies for all \(b \), no matter how small: there exists a neighborhood of the boundaries \(y_j = 0 \) and \(y_j = 1 \), where the energy conditions are violated. To first order in \(b \), the region where the energy conditions hold is characterized by

\[
\max \left\{ \frac{(1 + a)ab}{6(1 - a)}, \frac{a^2b}{6(1 + a)} \right\} \leq y_j \leq \min \left\{ 1 - \frac{(1 - a)ab}{6(1 + a)}, 1 - \frac{a^2b}{6(1 - a)} \right\};
\]

only when \(b = 0 \), i.e., in the fluid case, we obtain \(0 \leq y_j \leq 1 \).

To conclude this section we study in detail the future asymptotics of solutions, which in the state space description of the dynamics corresponds to investigating the flow in the neighborhood of the fixed point \(F \).

Since the rhs of the dynamical system is smooth in a neighborhood of \(F \) we can perform a local dynamical systems analysis. The linearization of the dynamical system at \(F \) possesses the eigenvalues

\[
\lambda_1 = \frac{3}{4} \left(-1 - a - \sqrt{(1 - a)^2 - \frac{32}{3}ab} \right), \quad \lambda_2 = \frac{3}{4} \left(-1 - a + \sqrt{(1 - a)^2 - \frac{32}{3}ab} \right).
\]

The eigenvectors associated with \(\lambda_{1,2} \) are

\[
v_{1,2} = \left(ab, \frac{1}{16} \left[(1 - a) \mp \sqrt{(1 - a)^2 - \frac{32}{3}ab} \right] \right)^T.
\]

(36)

It is immediate that

- the eigenvalue(s) are real (and negative), if \(ab \leq \frac{1}{32} (1 - a)^2 \); in this case \(F \) is a stable node;

- if \(ab > \frac{1}{32} (1 - a)^2 \), then \(F \) is unstable.
the eigenvalues are complex (with negative real part), if \(ab > \frac{3}{32}(1 - a)^2\); in this case the fixed point \(F\) is a stable focus and the solutions’ approach to \(F\) as \(\tau \to \infty\) is oscillatory (see figure 3).

The late time behavior of Bianchi type I models with elastic matter is thus characterized by

- monotonic isotropization if \(ab \leq (3/32)(1 - a)^2\);
- oscillatory isotropization if \(ab > (3/32)(1 - a)^2\); both the amplitude of the oscillations and the frequency are decreasing as \(t \to \infty\).

6. Anti-LRS solutions

The LRS subsets of the Kasner disc \(\Sigma\) are defined by requiring that \(\Sigma_j = \Sigma_k\) for some pair \((j, k)\). Analogously, we define the three anti-LRS subsets by setting \(\Sigma_j = -\Sigma_k\) for some pair \((j, k)\); consequently, \(\Sigma_i = 0\), where \((ijk)\) denotes the completion of the pair \((j, k)\) to a permutation of the triple \((123)\). Let \(\epsilon_{ijk} = 1\); the six anti-LRS points on the Kasner circle \(\partial\Sigma\) are given by the three points \((\Sigma_i, \Sigma_j, \Sigma_k) = (-\sqrt{3}, 0, \sqrt{3}) \in (ijk)\), which we denote by \(P_{ij}, j = 1, 2, 3\), and by the three points \((\Sigma_i, \Sigma_j, \Sigma_k) = (\sqrt{3}, 0, -\sqrt{3}) \in (kji)\), which we denote by \(S_{ij}, j = 1, 2, 3\). (The notation is chosen to complement the standard notation \(Q_{ij}, T_{ij}\) for the LRS points.) Since the angular distance on the Kasner circle is a na"ıve measure for the difference between Kasner states, anti-LRS states are those which are maximally different from LRS states; hence the name.

Let again \((ijk)\) be a cyclic permutation of \((123)\). We define the anti-LRS subset \(a_{\text{LRS}}\) in the state space \(X\) by

\[a_{\text{LRS}}: \Sigma_j = -\Sigma_k \land y_j = y_k.\]

(37a)

A equivalent definition is

\[a_{\text{LRS}}: \Sigma_i = 0 \land w_i = w = a;\]

(37b)

here, \(i = 1, 2, 3\), so that there exist three anti-LRS subsets: \(a_{\text{LRS}}, i = 1, 2, 3\). Since \(\Sigma_j = 0\) and \((y_j - y_k) = 0\) on \(a_{\text{LRS}}, c.f. (20)\), these subsets are invariant subsets in \(X\). The orbits on \(a_{\text{LRS}}\) generate anti-LRS solutions of Bianchi type I; the metric of these models is characterized by the condition that \(g_{ii}\) be the geometric mean of \(g_{jj}\) and \(g_{kk}\), i.e.,

\[g_{ii} = \sqrt{g_{jj} g_{kk}}.\]

(38)

Evidently, a solution is both LRS and anti-LRS iff it is isotropic.

On the anti-LRS subset \(a_{\text{LRS}}\), the dynamical system (20) reduces to

\[y_j' = 2y_j(1 - y_j)\Sigma_j,\]

\[\Sigma_j' = -3(1 - \Sigma_j^2/3)[(1 - a)\Sigma_j - (w_j - a)],\]

(39a)

(39b)

where we have used that \(\Omega = 1 - \Sigma_j^2/3\). It is not difficult to show that \(w_j\) reads

\[w_j = a + \frac{2ab(1 - 2y_j)(1 - y_j)(1 - y_j)}{12y_j^2(1 - y_j)^2 + ab(1 - 2y_j)^2[1 - 2y_j(1 - y_j)]}.\]

(40)

The (closure of the) state space \(a_{\text{LRS}}\) can be represented as the rectangle \([-\sqrt{3}, \sqrt{3}] \times [0, 1] \ni (\Sigma_j, y_j)\). The four vertices are fixed points.
The boundary of an LRS, forms a heteroclinic cycle,

$$\begin{align*}
\text{S}_Q & \leftarrow \text{P}_Q, \\
\text{S}_T & \rightarrow \text{P}_T,
\end{align*}$$

and in the interior of the space there is the fixed point F, cf (33).

The global dynamics of anti-LRS solutions is therefore reminiscent of the dynamics of LRS solutions. We merely state the results; the proofs are analogous to the proofs of section 5: each anti-LRS solution isotropizes toward the future. The eigenvalues of the linearization of the dynamical system at the point F are the same as in the LRS case; therefore we distinguish two kinds of isotropization: monotonic isotropization and oscillatory isotropization. Toward the singularity we observe oscillatory behavior between the two anti-LRS Kasner states; this regime is connected with energy condition violation.

7. Past asymptotic states

This section is devoted to investigating the dynamics of general diagonal Bianchi type I solutions toward the initial singularity. Theorem 2 states that (i) if the elastic matter satisfies $a \in [-1, 1)$ (which we will assume from now on) and (ii) if we exclude the isotropic FRW solution represented by F from our considerations, then the α-limit set of every orbit in the state space \mathcal{X} is located on $\partial \mathcal{X}$. Hence, in order to understand the structure of the α-limit set, it is necessary to study in detail the flow on the boundary. As a preparatory step, we discuss the network of fixed points (which includes the Kasner circles) that is present on $\partial \mathcal{X}$. In subsection 7.1, we analyze in a step-by-step manner the flow on the invariant subsets of $\partial \mathcal{X}$; in subsection 7.2 these results are combined to identify certain special structures on $\partial \mathcal{X}$, namely heteroclinic cycles and heteroclinic sequences. Finally, in subsection 7.3 we condense the collected results into statements (such as theorem 5) and conjectures on the possible α-limit sets on $\partial \mathcal{X}$.

Since $\mathcal{X} = \Sigma \times \mathcal{Y}$, the boundary $\partial \mathcal{X}$ consists of two components,

$$\partial \mathcal{X} = (\partial \Sigma \times \mathcal{Y}) \cup (\Sigma \times \partial \mathcal{Y}),$$

the intersection of which is the set $\partial \Sigma \times \partial \mathcal{Y}$.

By construction, the boundary sets $\partial \Sigma \times \mathcal{Y}$ and $\Sigma \times \partial \mathcal{Y}$ are invariant under the flow of the (induced) dynamical system (20). There exist a number of equilibrium points of the dynamical system; these fixed points are located not in the interior of the boundary components (i.e., neither on $\partial \Sigma \times \mathcal{Y}$ nor on $\Sigma \times \partial \mathcal{Y}$), but on the shared boundary $\partial \Sigma \times \partial \mathcal{Y}$. In fact, on $\partial \Sigma \times \partial \mathcal{Y}$ there exists a connected network of one-parameter families of equilibrium points; note in particular that there do not exist isolated fixed points.
Figure 4. A schematic depiction of the fixed points on the boundary \(\partial X \).

- **Kasner circles**: there exist six families of fixed points that can be interpreted as Kasner circles (and are thus associated with the Kasner solutions). They arise at the six vertices \(\{ T_1, T_2, T_3, Q_1, Q_2, Q_3 \} \) of \(\partial Y \), i.e., we have
 \[
 KC_{T_k} := \partial \Sigma \times \{ T_k \} \quad (k = 1, 2, 3),
 KC_{Q_i} := \partial \Sigma \times \{ Q_i \} \quad (i = 1, 2, 3).
 \]
 (43)

- **Taub lines and non-flat LRS lines**: there exist two lines of fixed points associated with each edge (= sector) of \(\partial Y \). Consider the sector \([ijk] = \{(y_1,y_2,y_3) \mid y_i = 0, 0 \leq y_j \leq 1, y_k = 1\} \); then the Taub line and the non-flat LRS line associated with \([ijk]\) are given by
 \[
 TL_{[ijk]} := \{ T_j \} \times [ijk],
 QL_{[ijk]} := \{ Q_j \} \times [ijk],
 \]
 (44)

respectively. (For later purposes, we also introduce the associated open sets \(TL_{(ijk)} \) and \(QL_{(ijk)} \)). While \(TL_{[ijk]} = \{ T_j \} \times [ijk] \), where \([ijk] = \{0 = y_i \leq y_j \leq y_k = 1\}\), \(TL_{(ijk)} \) is given by \(TL_{(ijk)} = \{ T_j \} \times (ijk) \), where \((ijk) = \{0 = y_i < y_j < y_k = 1\}\), and analogously for \(QL_{(ijk)} \).

- Since \([ijk]\) connects \(Q_i \) with \(T_k \), the intersection of these families of fixed points \((43)\) and \((44)\) consists of 24 special points, which are \(\{ T_j \} \times \{ T_i \}, \{ Q_j \} \times \{ T_i \}, \{ T_j \} \times \{ Q_i \}, \{ Q_j \} \times \{ T_i \}, \{ Q_j \} \times \{ Q_i \}, \) where \(i \neq j \neq k \).

This fixed-point structure on the boundary of the state space \(\partial X \) is depicted in figure 4.

For the subsequent analysis of the flow on the components of \(\partial X \) we make the assumption \(a > -1 \). The case \(a = -1 \) is degenerate in the sense that the linearized dynamical system at certain fixed points vanishes (i.e., all eigenvalues are zero). Since this leads to some technical difficulties that we do not want to discuss here, we henceforth assume \(a \in (-1, 1) \) (and \(ab > 0 \)). However, we note without proof that the key statements we derive in the following apply to the case \(a = -1 \) as well.
7.1. Invariant subsets

The boundary component \(\partial \Sigma \times \Omega \). The set \(\partial \Sigma \times \Omega \) is the subset of \(\Omega \) characterized by \(\Omega = 0 \) (or, equivalently, \(\Sigma^2 = 1 \)). The induced dynamical system on \(\partial \Sigma \times \Omega \) reads

\[
\Sigma_i' = 0, \quad y_i' = -2 \epsilon_{ijk} y_j (1 - y_i) (\Sigma_j - \Sigma_k) \quad (\text{no summation}), \quad (i = 1, 2, 3);
\]

in particular, \(\Sigma_i = \text{const} \) for all \(i \). Since \(\Omega = 0 \) and \(\Sigma_i = \text{const} \), orbits on \(\partial \Sigma \times \Omega \) represent vacuum solutions (Kasner solutions); accordingly, the set \(\partial \Sigma \times \Omega \) can be called the vacuum subset.

The space \(\partial \Sigma \times \Omega \) can be depicted as (the set of points contained within or lying on) a torus whose cross section is the hexagon \(\Omega \). Since \(\Sigma_i = \text{const} \) for all \(i \), each cross section \(\{(\Sigma_1, \Sigma_2, \Sigma_3)\} \times \Omega \) is an invariant subspace. Let \((\Sigma_1, \Sigma_2, \Sigma_3) \) be a element of sector \((ijk)\) of \(\partial \Sigma \), i.e., \(\Sigma_i < \Sigma_j < \Sigma_k \). Then \(y_i' \propto \epsilon_{ijk}, y_j' \propto (-\epsilon_{ijk}), y_k' \propto \epsilon_{ijk} \), hence the variables \(y_i \) are increasing or decreasing for all \(l \). If \(\epsilon_{ijk} = 1 \), the \(\alpha \)-limit of each orbit (in the interior of the space, i.e., in \(\{(\Sigma_1, \Sigma_2, \Sigma_3)\} \times \Omega \)) is the point \(\{(\Sigma_1, \Sigma_2, \Sigma_3)\} \times \{T_i\} \) and the \(\omega \)-limit is the point \(\{(\Sigma_1, \Sigma_2, \Sigma_3)\} \times \{Q_j\} \); if \(\epsilon_{ijk} = -1 \), the roles of the points are interchanged.

When \((\Sigma_1, \Sigma_2, \Sigma_3) \) is one the Taub points \(T_i \), then orbits in the interior space \(\{(T_k) \times \Omega \} \) emanate from a fixed point on the Taub line \(TL_{ijk} = \{(T_k) \times (kji)\} \), where \(\epsilon_{ijk} = 1 \), and end at a fixed point on the Taub line \(TL_{ijk} = \{(T_i) \times (ijk)\} \). The result is converse, when \((\Sigma_1, \Sigma_2, \Sigma_3) \) is one of the non-flat LRS points \(Q_j \). In that case, orbits in the interior space \(\{(Q_j) \times \Omega \} \) connect a fixed point on the non-flat LRS line \(QL_{ijk} = \{(Q_j) \times (ijk)\} \), where \(\epsilon_{ijk} = 1 \), with a fixed point on the Taub line \(QL_{ijk} = \{(Q_j) \times (kji)\} \).

The flow on the set \(\partial \Sigma \times \Omega \) is depicted in figure 5.

The boundary component \(\Sigma \times \partial \Omega \). Since \(\partial \Omega \) consists of the six sectors \([ijk]\), see figure 1, the set \(\Sigma \times \partial \Omega \) can be viewed as the union

\[
\Sigma \times \partial \Omega = \bigcup_{ijk} (\Sigma \times [ijk]) = \bigcup_{ijk} \text{Cyli}_{ijk};
\]

When written out explicitly, we see that the set

\[
\text{Cyli}_{ijk} = \Sigma \times ([y_1, y_2, y_3])y_i = 0, 0 \leq y_j \leq 1, y_k = 1 = \Sigma \times [ijk]
\]

represents a cylinder, see figure 6. The six cylinders \(\text{Cyli}_{ijk} \) are aligned along the hexagon \(\partial \Omega \), where each vertex corresponds to the top/base of a cylinder: \(\Sigma \times Q_i \) \((i = 1, 2, 3)\) and \(\Sigma \times T_k \) \((k = 1, 2, 3)\), respectively.

The flow on the space \(\text{Cyli}_{ijk} \) is given by the induced dynamical system:

\[
\begin{align*}
\Sigma_i' &= -3 \Omega 2 \frac{1}{2} (1 - a) \Sigma_i - 2 \epsilon_{ijk}(1 - y_j) \quad y_i \equiv 0 \\
\Sigma_j' &= -3 \Omega 2 \frac{1}{2} (1 - a) \Sigma_j + 2 \epsilon_{ijk} \quad y_j' = -2 \epsilon_{ijk} y_j (1 - y_j)(\Sigma_k - \Sigma_i) \\
\Sigma_k' &= -3 \Omega 2 \frac{1}{2} (1 - a) \Sigma_k - 2 \epsilon_{ijk} y_j \quad y_k \equiv 1.
\end{align*}
\]

Since \((1 - a)\Sigma_i \leq 4 \in \text{interior of } \text{Cyli}_{ijk}\) and in the interior of the top and the base of the cylinder (i.e., on \(\Sigma \times [ijk]\)), the derivative of \(\Sigma_j \) has a sign, so that \(\Sigma_j \) is a monotone function. The monotonicity principle thus implies that the \(\alpha \)- and \(\omega \)-limits of orbits must be located on the lateral surface of \(\text{Cyli}_{ijk} \) (which includes the Kasner circles at the base/top).

The flow on the lateral surface of \(\text{Cyli}_{ijk} \) is simple. Since \((\Sigma_i, \Sigma_j, \Sigma_k) = \text{const} \), the equation \(y_j' = -2 \epsilon_{ijk} y_j (1 - y_j)(\Sigma_k - \Sigma_i) \) contains the entire dynamical information. Suppose that \(\epsilon_{ijk} = 1 \). Then, for \(\text{Cyli}_{ijk} \) (and identically for \(\text{Cyli}_{kji} \)) we find \(y_j' \geq 0 \) when
Figure 5. Flow on the boundary component $\partial \Sigma \times \bar{\mathcal{Y}}$. The cross sections of the ‘torus’ $\partial \Sigma \times \bar{\mathcal{Y}}$ are invariant subspaces, since $(\Sigma_1, \Sigma_2, \Sigma_3) = \text{const}$. The flow on the section $\{(\Sigma_1, \Sigma_2, \Sigma_3) \times \bar{\mathcal{Y}}\}$ depends on the position (sector) of $(\Sigma_1, \Sigma_2, \Sigma_3)$ on $\partial \Sigma$. Note that all fixed points on $\partial \Sigma \times \bar{\mathcal{Y}}$ are hyperbolic or transversally hyperbolic.

Figure 6. The boundary component $\Sigma \times \partial \mathcal{Y}$ consists of six cylinders Cyl_{ijkl}. The top of $\text{Cyl}_{ijkl} = \Sigma \times \{ijkl\}$ is the Kasner disc $\Sigma \times \mathcal{Q}_i$, the base of Cyl_{ijkl} is the Kasner disc $\Sigma \times \mathcal{T}_k$. In this figure, Cyl_{ijkl} (with $\epsilon_{ijkl} = 1$) is depicted together with the flow of the dynamical system on the lateral boundary.
\(\Sigma_i \geq \Sigma_k\). Furthermore, \(y_j' = 0\) when \(\Sigma_i = \Sigma_k\), which is the case at the lines of fixed points TL\(_{ij,k}\) and QL\(_{ij,k}\). Therefore, the lateral surface consists of two domains where \(y_j\) is increasing/decreasing and which are separated by the Taub line and the non-flat LRS line (see figure 6).

This analysis leaves the equilibrium points, i.e., the sets TL\(_{ij,k}\), QL\(_{ij,k}\), KC\(_Q\), KC\(_T\), as the only possible \(\alpha\)- and \(\omega\)-limit sets of orbits in Cy\(_L_{ij,k}\). It thus merely remains to identify those equilibrium points that act as sources/sinks for interior orbits.

To conclude our study of the flow on the set Cyl \([\Sigma_i, \Sigma_k]\), we make use of the auxiliary equations (21); we find that

\[
\Omega^{-1}\Omega' = 3(1 - a) + 2\epsilon_{ijk}[(1 - y_j)(\Sigma_j - \Sigma_i) + y_j(\Sigma_j - \Sigma_k)]
\]

(49)

when evaluated at a fixed point on the lateral surface. Consequently, for the equilibrium points we obtain

\[
\text{TL}_{ij,k}: \quad \Omega^{-1}\Omega' = \frac{1}{2}[(1 + \epsilon_{ijk})(3 - a) - (1 - \epsilon_{ijk})(1 + a)],
\]

(50a)

\[
\text{QL}_{ij,k}: \quad \Omega^{-1}\Omega' = \frac{1}{2}[(1 - \epsilon_{ijk})(3 - a) - (1 + \epsilon_{ijk})(1 + a)],
\]

(50b)

\[
\text{KC}_Q: \quad \Omega^{-1}\Omega' = 2\left[\frac{1}{3}(1 - a) + \epsilon_{ijk}(\Sigma_j - \Sigma_k)\right],
\]

(50c)

\[
\text{KC}_T: \quad \Omega^{-1}\Omega' = 2\left[\frac{1}{3}(1 - a) + \epsilon_{ijk}(\Sigma_j - \Sigma_i)\right].
\]

(50d)

Suppose that \(\epsilon_{ijk} = 1\) [\(\epsilon_{ijk} = -1\)]. Then each fixed point on TL\(_{ij,k}\) acts as a source [sink] for one interior orbit. (Since the points on TL\(_{ij,k}\) and QL\(_{ij,k}\) are not transversally hyperbolic, this terminology is to be understood in a broad sense. The precise statement reads: each fixed point on TL\(_{ij,k}\) acts as the \(\alpha\)-limit [\(\omega\)-limit] for one interior orbit, while there do not exist any other orbits that converge to this point as \(\tau \to \pm \infty\).) Analogously, the points on QL\(_{ij,k}\) act as sinks [sources].

The relations (50c) and (50d), in conjunction with the properties of the flow on the lateral boundary, lead to the following classification of the fixed points on the Kasner circles: A fixed point on KC\(_Q\) is a (transversally hyperbolic)

\[
\text{source/sink} \quad \Leftrightarrow \quad \epsilon_{ijk}(\Sigma_j - \Sigma_k) \geq -\frac{1}{2}(1 - a) \quad \text{and} \quad \epsilon_{ijk}(\Sigma_i - \Sigma_k) \leq 0.
\]

(51a)

A fixed point on KC\(_T\) is a (transversally hyperbolic)

\[
\text{source/sink} \quad \Leftrightarrow \quad \epsilon_{ijk}(\Sigma_i - \Sigma_j) \leq \frac{1}{2}(1 - a) \quad \text{and} \quad \epsilon_{ijk}(\Sigma_i - \Sigma_k) \geq 0.
\]

(51b)

The remaining equilibrium points on the Kasner circles do not attract interior orbits as \(\tau \to \pm \infty\). (Except for four special points, these fixed points are transversally hyperbolic saddles.)

The results of our analysis of the flow on the set Cy\(_L_{ij,k}\) are summarized in figure 7. Each interior orbit (i.e., each orbit in the interior of Cy\(_L_{ij,k}\)) is a heteroclinic orbit; it has a source as its \(\alpha\)-limit and a sink as its \(\omega\)-limit.

We conclude our study of the flow on the set Cy\(_L_{ij,k}\) by noting that certain orbits can be given explicitly. First, there is the solution given by \(\Sigma_i = \Sigma_k\) and \(y_j = 1/2\), which is LRS\(_j\); this solution is a straight line that connects the fixed point \(T_{ij,k} = T_j \times \{0, 1/2, 1\}\) on TL\(_{ij,k}\) with the point Q\(_{ij,k}\) = Q\(_j\) \(\times \{0, 1/2, 1\}\) on QL\(_{ij,k}\), see also (33). Second, the orbits on the base/top of Cy\(_L_{ij,k}\), i.e., \(\Sigma \times \{Q_i\}\) and \(\Sigma \times \{T_i\}\), are of a simple geometric form.

To see this, consider the top of Cy\(_L_{ij,k}\), i.e., \(\Sigma \times \{Q_i\}\). From the equations

\[
\Sigma_i' = -3\Omega\left[\frac{1}{3}(1 - a)\Sigma_i\right], \quad \Sigma_{jj,k}' = -3\Omega\left[\frac{1}{3}(1 - a)\Sigma_{jj,k} \pm 2\epsilon_{ijk}\right]
\]

(52)
it is immediate that $\Sigma_j = 0$ is a solution of the system; clearly, this orbit is the intersection of Cyl_{ijk} with the anti-LRS set $^a\text{LRS}_j$. Furthermore, we find that

$$\frac{1}{2}(1 - a)\Sigma_j + 2\epsilon_{ijk} = \text{constant}$$

under the flow of the system, whereby we obtain an explicit representation of all orbits: each orbit is a straight line. (Setting $\text{const} = -1$ reproduces the anti-LRS orbit $\Sigma_j = 0$.) The one-parameter family of straight lines described by equation (53) possesses a common focal point, i.e., all lines intersect at the point $(\Sigma_i, \Sigma_j, \Sigma_k) = \frac{4}{1 - a}\epsilon_{ijk}(0, -1, 1)$. Two members of this family of straight lines are tangential to the Kasner circle KC_{Q_i}. The two associated points of contact lie on the straight line $\epsilon_{ijk}(\Sigma_j - \Sigma_k) = -\frac{1}{2}(1 - a)$; these fixed points are not transversally hyperbolic (see (51a)). For a depiction of the flow on $\Sigma \times \{Q_i\}$ and the analogous flow on $\Sigma \times \{T_k\}$, see figure 8.

The three special orbits that exist on Cyl_{ijk} are particularly relevant for further purposes. Let us thus recapitulate: there exists an anti-LRS orbit $^a\text{LRS}_j$ given by $\Sigma_j = 0$ on the top of
the cylinder, an LRS$_j$ orbit $\Sigma_i = \Sigma_k$ in the middle of $\text{Cyl}_{[ij \perp]}$, and an anti-LRS orbit $^a\text{LRS}_k$ given by $\Sigma_k = 0$ on the bottom.

7.2. Structures on the boundary

A crucial property of the equilibrium points on $\partial \mathcal{X}$ is that all these points are saddles. This is straightforward to prove: consider first a fixed point on $\text{TL}_{[ij \perp]} = [T_i] \times [ij]$. As shown previously, such a point acts as a source [sink] within the subset $\text{Cyl}_{[ij \perp]} = \overline{\Sigma} \times [ij]$ when $\epsilon_{ijk} = 1 \ [\epsilon_{ijk} = -1]$. However, within the (linearly independent) invariant subset $[T_i] \times \overline{\mathcal{Y}}$ it is a (transversally hyperbolic) sink [source]. Consequently, the point acts as a saddle. In particular, orbits in \mathcal{X} cannot converge to $\text{TL}_{[ij \perp]}$ as $\tau \to \pm \infty$. The case $\text{QL}_{[ij \perp]}$ is analogous.

Consider now the Kasner circle $\text{KC}_{\overline{\mathcal{Q}}_0}$. This circle is part of the boundary of two independent invariant subsets: $\text{Cyl}_{[ij \perp]} = \overline{\Sigma} \times [ij]$ and $\text{Cyl}_{[ij \perp]} = \overline{\Sigma} \times [ik]$; without loss of generality we assume $\epsilon_{ijk} = 1$. From (51) we conclude that a point on

\[
\text{KC}_{\overline{\mathcal{Q}}_0} \subseteq \text{Cyl}_{[ij \perp]} \quad \text{is a source/sink} \quad \Leftrightarrow \quad (\Sigma_j - \Sigma_k) \gtrless -\frac{1}{2}(1 - a), \quad (\Sigma_j - \Sigma_k) \leq 0.
\]

\[
\text{KC}_{\overline{\mathcal{Q}}_0} \subseteq \text{Cyl}_{[ik \perp]} \quad \text{is a source/sink} \quad \Leftrightarrow \quad (\Sigma_j - \Sigma_k) \gtrless -\frac{3}{2}(1 - a), \quad (\Sigma_j - \Sigma_k) \leq 0.
\]

Since these conditions are mutually exclusive, every equilibrium point on $\text{KC}_{\overline{\mathcal{Q}}_0}$ acts as a saddle. Analogous considerations apply to the case $\text{KC}_{\overline{\mathcal{Q}}_1}$.

Heteroclinic cycles

From the analysis of the flow on the invariant subsets of $\partial \mathcal{X}$ we infer the existence of a multitude of heteroclinic cycles. On the one hand there are the three LRS cycles (33), which arise as the intersection of $\partial \mathcal{X}$ with LRS$_i$, $i = 1, 2, 3$ (see section 5). On the other hand, there exist the three anti-LRS cycles (41), which are the intersection of $\partial \mathcal{X}$ with $^a\text{LRS}_i, i = 1, 2, 3$, so that $\Sigma_i = 0$ (see section 6). There are, however, infinitely many heteroclinic cycles associated with the condition $\Sigma_i = 0$ (this will be discussed next).

On the boundary component $\partial \Sigma \times \overline{\mathcal{Y}}$ consider, without loss of generality, the subset $\Sigma_1 = 0$. It consists of the two disconnected sets $[P_1] \times \overline{\mathcal{Y}}$ and $[S_1] \times \overline{\mathcal{Y}}$, where the point $P_1 = (0, \sqrt{3}, -\sqrt{3})$ is the anti-LRS point of sector $\{312\}$ and $S_1 = (0, -\sqrt{3}, \sqrt{3})$ the anti-LRS point of sector $\{213\}$ of $\partial \Sigma$. The α-limit of each orbit in $[P_1] \times \overline{\mathcal{Y}}$ is the fixed point $[P_1] \times \{T_i\}$, the ω-limit is $[P_1] \times \{Q_i\}$, see figure 5. Note that these fixed points are not only connected with each other through orbits in $[P_1] \times \overline{\mathcal{Y}}$, but also via the sequences of boundary orbits

\[
[P_1] \times \{T_i\} \rightarrow [P_1] \times \{Q_2\} \rightarrow [P_1] \times \{T_3\} \rightarrow [P_1] \times \{Q_1\}
\]

and

\[
[P_1] \times \{T_i\} \rightarrow [P_1] \times \{Q_3\} \rightarrow [P_1] \times \{T_2\} \rightarrow [P_1] \times \{Q_1\}.
\]

For the subset $[S_1] \times \overline{\mathcal{Y}}$ the roles of the two fixed points are reversed: $[S_1] \times \{Q_i\}$ acts as α-limit, $[S_1] \times \{T_i\}$ as ω-limit.

The fixed point $[P_1] \times \{Q_i\}$ is a saddle. While it acts as the ω-limit for the one-parameter family of orbits on $[P_1] \times \overline{\mathcal{Y}}$, there exists exactly one orbit emanating from it: the $^a\text{LRS}_1$ orbit $\Sigma_i = 0$ on $\Sigma \times \{Q_i\}$ connects $[P_1] \times \{Q_i\}$ with $[S_1] \times \{Q_i\}$. Analogously, the $^a\text{LRS}_1$ orbit $\Sigma_i = 0$ on $\Sigma \times \{T_i\}$ is the unique orbit connecting $[S_1] \times \{T_i\}$ with $[P_1] \times \{T_i\}$.

Therefore, we have found a two-parameter family of heteroclinic cycles involving the fixed points $[S_1/P_1] \times \{T_i/Q_i\}$, which can be written down schematically as follows:
Figure 9. A depiction of the heteroclinic cycles (57); the dashed lines form a heteroclinic cycle of the family (56).

\[
\begin{align*}
\{S_1\} \times \{Q_1\} \quad &\xrightarrow{\text{unique}} \quad \{P_1\} \times \{Q_1\} \\
\text{ininitely many} &\quad \downarrow \quad \text{ininitely many} \\
\{S_1\} \times \{T_1\} \quad &\xrightarrow{\text{unique}} \quad \{P_1\} \times \{T_1\}
\end{align*}
\] (56)

Evidently, this family of heteroclinic cycles represents a generalization of the anti-LRS cycle (41). In fact, as noted in (55), the flow on \(\{S_1/P_1\} \times \Sigma\) permits alternative completions of the heteroclinic cycles: possible ‘detours’ include additional fixed points, see figure 9.

\[
\begin{align*}
\{S_1\} \times \{T_3/T_5\} \xrightarrow{\text{detour}} &\quad \{S_1\} \times \{Q_1\} \quad \xrightarrow{\text{unique}} \quad \{P_1\} \times \{Q_1\} \quad \xrightarrow{\text{detour}} \quad \{P_1\} \times \{T_3/T_5\}
\\
\text{detour} &\quad \downarrow \quad \text{detour} \quad \downarrow \quad \text{detour}
\\
\{S_1\} \times \{Q_2/Q_3\} \xrightarrow{\text{detour}} &\quad \{S_1\} \times \{T_1\} \quad \xrightarrow{\text{unique}} \quad \{P_1\} \times \{T_1\} \quad \xrightarrow{\text{detour}} \quad \{P_1\} \times \{Q_2/Q_3\}
\end{align*}
\] (57)

Sequences of heteroclinic orbits. As we have seen in subsection 7.1, the flow on the subsets \(\Sigma \times \{Q_1\}\) and \(\Sigma \times \{T_1\}\) is represented by a family of straight lines that possess a common focal point (see figure 8). The anti-LRS line \(\Sigma_1 = 0\) is the central line. Orbits that are close to \(\Sigma_1 = 0\) (i.e., orbits where \(\Sigma_1\) is small) connect the same sectors as the central line, namely sector \(\langle 312 \rangle\) with sector \(\langle 213 \rangle\). Let \(P_{(312)}\) denote any point on sector \(\langle 312 \rangle\) of \(\partial \Sigma\) (the anti-LRS point \(P_1\) being an example) and likewise \(P_{(213)}\) any point on sector \(\langle 312 \rangle\) (such as \(S_1\)). Symbolically we then write for any orbit on \(\Sigma \times \{Q_1\}\) that is close to \(\Sigma_1 = 0\)

\[
P_{(312)} \times \{Q_1\} \longrightarrow P_{(213)} \times \{Q_1\}.
\] (58)
and likewise for any orbit on $\Sigma \times \{Q_1\}$. For these orbits it is immediate that $|\Sigma_1|$ is monotonically decreasing in τ. Accordingly, when we invert the direction of time, $|\Sigma_1|$ is monotonically increasing along each orbit, so that all orbits diverge from the central line $\Sigma_1 = 0$.

These orbits on $\Sigma \times \{Q_1\}$ and $\Sigma \times \{T_1\}$ can be used to construct sequences of heteroclinic orbits. Such a sequence of heteroclinic orbits can be written schematically as follows:

$$\{S_{(213)}\} \times \{T_{3/2}\} \xrightarrow{\text{detour}} \{S_{(213)}\} \times \{Q_2\} \xrightarrow{\text{unique}} \{P_{(312)}\} \times \{Q_1\} \xrightarrow{\text{detour}} \{P_{(312)}\} \times \{T_{3/2}\}$$

$$\{S_{(213)}\} \times \{Q_{2/3}\} \xrightarrow{\text{detour}} \{S_{(213)}\} \times \{T_1\} \xrightarrow{\text{unique}} \{P_{(312)}\} \times \{T_1\} \xrightarrow{\text{detour}} \{P_{(312)}\} \times \{Q_{2/3}\}$$

(59)

Naturally, in the course of the sequence, the points $S_{(213)}$ and $P_{(312)}$ change; in particular, $|\Sigma_1|$ increases (with $-\tau$). An example of such behavior is depicted in figure 10.

Since $|\Sigma_1|$ grows, any given sequence of the type (59) will eventually leave the sectors (213) and (312). There exist uncountably many possible continuations; however, while (59) is associated with a unique sequence of Kasner states, the possible continuations of a given sequence are not: they give rise to different sequences of Kasner states. Since this makes the analysis difficult, we refrain from going into details.

7.3. α-limits

It is obvious that the complexity of the structures that are present on the boundary of the state space impedes a rigorous mathematical derivation of the past attractor of orbits in \mathcal{X}. We confine ourselves to presenting some basic results.

Theorem 2 implies that the α-limit of every orbit in \mathcal{X} must be a subset of $\partial \mathcal{X}$. Since all fixed points on $\partial \mathcal{X}$ act as saddles, there do not exist orbits in \mathcal{X} whose α-limit set consists of merely a point. In particular, there do not exist solutions that converge to a Kasner solution as $t \to 0$.

The past asymptotics of LRS solutions and anti-LRS solutions has been analyzed in sections 5 and 6: the asymptotic behavior of solutions is characterized by oscillations between two different Kasner solutions. For solutions that are neither LRS nor anti-LRS we have the following theorem:
Theorem 5. The α-limit set of a (non-LRS, non-4LRS) solution in \mathcal{X} comprises a large (probably infinite) set of Kasner points.

Interpretation of the theorem. The theorem states that, as $\tau \to -\infty$, the solution undergoes an infinite sequence of phases (‘epochs’), in each of which the behavior of the solution is approximately described by a certain Kasner solution. We conjecture that the number of Kasner states the (generic) solution passes through in this way is infinite. This behavior is reminiscent of the mixmaster behavior of (vacuum, perfect fluid, etc) cosmological models, originally discovered in the context of Bianchi type IX cosmologies, see [3, 11]. However, while the sequence of Kasner states characterizing the (generic) mixmaster universe is determined by a relatively simple ‘bounce law’ (Kasner map), the asymptotic behavior of elastic cosmologies must be derived from the complicated network of structures present on the boundary of the state space, such as the flow depicted in figure 8. We merely note here that the resulting sequence of Kasner states is governed by intricate recursive maps that do not reflect mixmaster behavior.

Proof. Consider an orbit γ in \mathcal{X} which is neither LRS nor 4LRS. Suppose that a point $P \in \partial \mathcal{X}$ is an element of $\alpha(\gamma)$. Since $P \in \alpha(\gamma)$, the orbit through P and its α-limit point P_{n_0} and its ω-limit point P_n must also lie in $\alpha(\gamma)$. (As a matter of course, since all orbits on $\partial \mathcal{X}$ are heteroclinic orbits, P_{n_0} are fixed points.) Since $P_{n_0} \in \alpha(\gamma)$, there exists an orbit emanating from P_{n_0}, that is contained in $\alpha(\gamma)$ as well; likewise, there exists an orbit converging to P_{n_0} that lies in $\alpha(\gamma)$. Continuing in this manner we can construct a sequence of fixed points and thus a sequence of associated Kasner states K_n, $n \in \mathbb{Z}$, that is contained in $\alpha(\gamma)$. Taking account of the previous analysis of the flow on $\partial \mathcal{X}$ it is not difficult to convince oneself that the sequence K_n does not exhibit any simple recurrence (and probably no recurrence at all in the generic case); this is, however, provided that $P \notin \text{LRS}_i$ and $P \notin ^4\text{LRS}_i$ ($i = 1, 2, 3$). In that special case, the sequence K_n is the alternating sequence of Kasner states described by (33) or (41), respectively. In order to prove the theorem it thus remains to show that the intersection of $\alpha(\gamma)$ with LRS_i and $^4\text{LRS}_i$ is empty, or, equivalently, that γ cannot converge to any of the heteroclinic cycles (33) or (41) as $\tau \to -\infty$. To see that we merely note that these heteroclinic cycles are not stable. Consider, for instance, the LRS orbit in $\text{Cyl}_{ij,kj}$. A small perturbation of that orbit results in different α- and ω-limits (that are located on the Kasner circles, generically), and thus leads to a quickly increasing deviation from LRS. Analogously, consider the anti-LRS orbit $\Sigma_1 = 0$ on $\Sigma \times \{Q_i\}$ or $\Sigma \times \{T_j\}$. Since $|\Sigma_1|$ grows along the other orbits on $\Sigma \times \{Q_i\}$, perturbations of the anti-LRS orbit increase with increasing ($-\tau$). This establishes the claimed instability of the LRS and 4LRS cycles. \hfill \Box

Having shown in the proof of the theorem that there do not exist orbits that converge to the LRS/4LRS heteroclinic cycles except for the LRS/4LRS solutions themselves, one follow-up question suggests itself: do there exist orbits that converge to a sequence of heteroclinic orbits of the type (59) described in the previous subsection? To analyze this question, consider the heteroclinic sequence (59) and suppose that there exists an orbit in \mathcal{X} that shadows these sequences in the asymptotic regime $\bar{\tau} = (-\tau) \to \infty$. Along the orbit we thus have

$$\frac{d}{d\bar{\tau}} \left[\log \frac{y_2/(1-y_2)}{y_3/(1-y_3)} \right] = -6\Sigma_1$$

(60)

and accordingly

$$\frac{y_2}{1-y_2} \propto \frac{y_3}{1-y_3} \exp \left[-6 \int \Sigma_1 d\bar{\tau} \right].$$

(61)

Since Σ_1 has a sign along the sequence of heteroclinic orbits, $\int \Sigma_1 d\bar{\tau}$ is monotone in $\bar{\tau}$; in fact, since the orbit stays a large amount of time close to the fixed points, the (absolute value
Figure 11. An orbit converging to a heteroclinic sequence of the type (59) is increasingly forced to the boundary of the hexagon by (61). The dashed lines represent the curves $y_2/(1 - y_2) = \text{const} y_3/(1 - y_3)$, where the constant is either small (upper dashed line) or large (lower dashed line).

of the integral is very large. Consequently, (61) implies that y_2 and y_3 cannot remain of the same order as $\bar{\tau}$ increases. Therefore, in the asymptotic regime $\bar{\tau} \to \infty$, the orbit is forced to the boundary of Y, see figure 11. In the terminology of the previous subsection we can say that the orbit is forced on the detour paths of (59).

A detailed analysis (which we omit here) of the fixed points $\{P_{312}\} \times \{Q_{2/3}\}$ and $\{S_{213}\} \times \{T_{3/2}\}$ reveals that additional branchings can occur at these points. If $a \geq 1 - 2/\sqrt{3}$, then $\{P_{312}\} \times \{Q_{2/3}\}$ acts as the ω-limit not only for one orbit ($\{P_{312}\} \times \{T_1\} \to \{P_{312}\} \times \{Q_{2/3}\}$), but for a one-parameter family of orbits. (In fact, $\{P_{312}\} \times \{Q_{2/3}\}$ is a sink in $\text{Cyl}[2_{31}]$ or $\text{Cyl}[3_{21}]$, respectively.) It is unclear whether this branching prohibits orbits to shadow sequences of the type (59).

The case $a < 1 - 2/\sqrt{3}$ is simpler. If $|\Sigma_1|$ is sufficiently small, no branching occurs at the points $\{P_{312}\} \times \{Q_{2/3}\}$ and $\{S_{213}\} \times \{T_{3/2}\}$. We conclude that there exist orbits in \mathcal{X} that shadow the sequence

$$
\begin{align*}
\{S_{213}\} \times \{T_{3/2}\} &\xrightarrow{\text{detour}} \{S_{213}\} \times \{Q_{1}\} \xrightarrow{\text{unique}} \{P_{312}\} \times \{Q_{1}\} \xrightarrow{\text{detour}} \{P_{312}\} \times \{T_{3/2}\} \\
\{S_{213}\} \times \{Q_{2/3}\} &\xrightarrow{\text{detour}} \{S_{213}\} \times \{T_{1}\} \xrightarrow{\text{unique}} \{P_{312}\} \times \{T_{1}\} \xrightarrow{\text{detour}} \{P_{312}\} \times \{Q_{2/3}\}
\end{align*}
$$

(62)

for some time in the asymptotic regime $\tau \to -\infty$. Accordingly, if $|\Sigma_1|$ becomes sufficiently small in the asymptotic evolution of a solution, then the solution enters an ‘anti-LRS phase’ (where its behavior resembles the behavior of anti-LRS solutions). The length of this phase (as measured, e.g., by the number of oscillations in the sequence) is inversely proportional to the initial value of $|\Sigma_1|$ and can thus be arbitrarily long. During an anti-LRS phase, $|\Sigma_1|$ increases until either the orbit branches off at $\{P_{312}\} \times \{Q_{2/3}\}$ or $\{S_{213}\} \times \{T_{3/2}\}$ when $|\Sigma_1|$ has become large enough, or the orbit leaves the sectors (213) or (312).

It remains to ask whether more general considerations than (61) can lead to a further exclusion of parts of $\partial \mathcal{X}$ as possible α-limit sets. For instance, it might turn out to be true that
the α-limit of a generic orbit in \mathcal{X} is a subset of the set
\[
\bigcup_{ijk} \partial \text{Cyl} [i,j,k] = (\partial \Sigma \times \partial \gamma) \cup \bigcup_i (\Sigma \times \{Q_i\}) \cup \bigcup_i (\Sigma \times \{T_i\}).
\]

Acknowledgments

SC is supported by the Fundação para a Ciência e a Tecnologia, Portugal (FCT contract: SFRH/BDP/21001/2004).

References

[1] Andersson L, Beig R and Schmidt B G 2007 Static self-gravitating elastic bodies in Einstein gravity Commun. Pure Appl. Math. at press (Preprint gr-qc/0611108)
[2] Beig R and Schmidt B G 2003 Relativistic elasticity Class. Quantum Grav. 20 889–904
[3] Belinski V A, Khalatnikov I M and Lifshitz E M 1970 Oscillatory approach to a singular point in the relativistic cosmology Adv. Phys. 19 525–73
[4] Carter B and Quintana H 1972 Foundations of general relativistic high-pressure elasticity theory Proc. R. Soc. Lond. A 331 57–83
[5] Fjällborg M, Heinzle J M and Uggla C 2007 Self-gravitating stationary spherically symmetric systems in relativistic galactic dynamics. Math. Proc. Camb. Phil. Soc. at press (Preprint gr-qc/0609074)
[6] Heinzle J M and Uggla C 2006 Dynamics of the spatially homogeneous Bianchi type I Einstein–Vlasov equations Class. Quantum Grav. 23 3463–89
[7] Heinzle J M, Uggla C and Röhr N 2007 The cosmological billiard attractor Preprint gr-qc/0702141
[8] Karlovini M and Samuelsson L 2003 Elastic stars in general relativity: I. Foundations and equilibrium models Class. Quantum Grav. 20 3613–48
[9] Kijowski J and Magli G 1992 Relativistic elastomechanics as a Lagrangian field theory J. Geom. Phys. 9 207–23
[10] Marsden J E and Hughes T J R 1994 Mathematical Foundations of Elasticity (New York: Dover)
[11] Misner C W 1969 Mixmaster universe Phys. Rev. Lett. 22 1071–4
[12] Park J 2000 Solutions of the Einstein equations for spherically symmetric elastic bodies Gen. Rel. Grav. 32 235–52
[13] Rendall A D 1996 The initial singularity in solutions of the Einstein–Vlasov system of Bianchi type I J. Math. Phys. 37 438–51
[14] Tahvildar-Zadeh A S 1998 Relativistic and non-relativistic elastodynamics with small shear strains Ann. Inst. H Poincaré, Phys. Theor. 69 275–307
[15] Wainwright J and Ellis G F R 1997 Dynamical Systems in Cosmology (Cambridge: Cambridge University Press)
[16] Wernig-Pichler M M 2006 Relativistic elastodynamics PhD Thesis University of Vienna (Preprint gr-qc/0605025)