Эмфизема средостения — специфическое осложнение COVID-19 (клиническое наблюдение)

Е. П. Павликова1, М. А. Агапов1, П. С. Малахов1, Э. А. Галлямов1,2, Ю. С. Есаков1,3, Д. Р. Маркарьян1, В. В. Какоткин1, В. А. Кубышкин1

1 Московский государственный университет им. М. В. Ломоносова, факультет фундаментальной медицины, Россия, 119991, г. Москва, ул. Ленинские Горы, д. 1

2 Первый Московский государственный медицинский университет им. И. М. Сеченова, Россия, 119146, г. Москва, Большая Пироговская ул., д. 19, стр. 1

3 Городская клиническая онкологическая больница №1, ДЗМ, Россия, 117152, г. Москва, Загородное шоссе, д. 18А

Mediastinal Emphysema as a Specific Complication of COVID-19 (Case Report)

Elena P. Pavlikova1, Mihail A. Agapov1, Pavel S. Malakhov1, Eduard A. Galliamov1,2, Yury S. Esakov1,3, Daniil R. Markaryan1, Viktor V. Kakotkin1*, Valery A. Kubyshkin1

1 Lomonosov Moscow State University, Faculty of Fundamental Medicine, 1 Leninskie Gory Str., 119991 Moscow, Russia

2 I. M. Sechenov First Moscow State Medical University, 19 Bolshaya Pirogovskaya Str., Bldg. 1, 119146 Moscow, Russia

3 City Clinical Oncology Hospital №1, 18А Zagorodnoye Shosse, 117152 Moscow, Russia

Для цитирования: Е. П. Павликова, М. А. Агапов, П. С. Малахов, Э. А. Галлямов, Ю. С. Есаков, Д. Р. Маркарьян, В. В. Какоткин, В. А. Кубышкин.

Mediastinal Emphysema as a Specific Complication of COVID-19 (Case Report). Obshchaya Reanimatologiya. 2021; 17 (2): 4–15. https://doi.org/10.15360/1813-9779-2021-2-4-15 [На русск. и англ.]

Резюме

В ходе оказания помощи пациентам с новой коронавирусной инфекцией в Медицинском научно-образовательном центре МГУ им. М. В. Ломоносова в период с 21 апреля по 13 июня 2020 г. наблюдали такое проявление (а вероятно, и осложнение) COVID-19 как спонтанная эмфизема средостения (спонтанный пневмомедиастинум).

Цель клинического наблюдения. Представить данные клинического состояния и подходов к ведению пациентов со спонтанной пневмомедиастинумом при COVID-19 ассоциированной пневмонии, поскольку они не описаны в утвержденных в настоящий момент клинических рекомендациях, а потому заслуживают отдельного внимания.

Из 224 пациента с лабораторно подтвержденным диагнозом «новая коронавирусная инфекция (COVID-19)» выявили 5 случаев пневмомедиастинума без пневмоторакса. Из них в 2-х случаях развитие пневмомедиастинума отметили на фоне проведения неинвазивной вентиляции легких (нИВЛ) (1 наблюдение) и инвазивной ИВЛ (1 наблюдение). В 3-х случаях развитие спонтанной эмфиземы средостения нельзя ассоциировать с использованием ИВЛ. К моменту подготовки публикации 1 наблюдение пневмомедиастинума являлось законченным, четверо пациентов продолжали стационарное лечение. Все пять пациентов мужского пола, возраст — от 52 до 84 лет.

Из них в 2-х случаях развитие пневмомедиастинума отметили на фоне проведения неинвазивной вентиляции легких (нИВЛ) (1 наблюдение) и инвазивной ИВЛ (1 наблюдение). В 3-х случаях развитие спонтанной эмфиземы средостения нельзя ассоциировать с использованием ИВЛ. К моменту подготовки публикации 1 наблюдение пневмомедиастинума являлось законченным, четверо пациентов продолжали стационарное лечение. Все пять пациентов мужского пола, возраст — от 52 до 84 лет.

В данной публикации подробно рассмотрели 2 наблюдения эмфиземы средостения и подкожной эмфиземы у пациентов с COVID-2019.

Ключевые слова: новая коронавирусная инфекция; COVID-19; осложнения; ОРДГ; ТОРС; эмфизема средостения

Summary

During the care of patients with novel coronavirus infection at the Lomonosov MSU Medical Research and Education Center from April 21 to June 13, 2020, we observed cases of spontaneous mediastinal emphysema (spontaneous pneumomediastinum) as a manifestation or a probable complication of COVID-19.

Summary

During the care of patients with novel coronavirus infection at the Lomonosov MSU Medical Research and Education Center from April 21 to June 13, 2020, we observed cases of spontaneous mediastinal emphysema (spontaneous pneumomediastinum) as a manifestation or a probable complication of COVID-19.
Keywords: novel coronavirus infection; COVID-19; complications; ARDS; SARS; mediastinal emphysema; spontaneous pneumomediastinum

Conflict of interest. Authors declare no competing interests.

DOI:10.15360/1813-9779-2021-2-4-15

Introduction

More than a year has passed since the first human cases of SARS-CoV-2 occurred and the new coronavirus infection (COVID19) pandemic was announced by the World Health Organization on March 11, 2020 [1]. As of July 2020, there were more than 15.7 million cases of infection and more than 640,000 deaths from COVID-19 worldwide [2].

Spontaneous pneumomediastinum (SP), or spontaneous mediastinal emphysema (SME), is an uncommon condition characterized by air infiltration into mediastinal spaces and soft tissues of the anterior chest wall [3, 4]. Lack of clear evidence of mediastinal organ damage and pneumothorax is characteristic for SME resulting in difficulties in differential diagnosis and treatment choice. According to several studies, SME is more typical for young men [4, 5].

This paper presents clinical observations of SP in patients with COVID-19 associated pneumonia treated at the Lomonosov MSU Medical Research and Education Center.

Between April 21 and June 13, 2020, 224 patients with laboratory-confirmed diagnosis of novel coronavirus infection COVID-19 were treated at the hospital. SP without pneumothorax was diagnosed in 5 patients. In 3 cases SP developed in spontaneously breathing patients, in 2 patients SP was diagnosed during noninvasive (n = 1) and invasive lung ventilation (n = 1). All patients were male, aged 52 to 84 years.

The aim of the paper — to provide clinical case descriptions and approaches to the management of patients with spontaneous pneumomediastinum in COVID-19 associated pneumonia, as they are not addressed in the current clinical guidelines[6,7], and therefore are worthy of special attention.

Clinical case 1

A 52-year-old man was hospitalized 3 days after the onset of the disease complaining of fatigue, chest pain, dry cough, dyspnea at rest, and elevated body temperature over 38.5°C.

The spiral chest computed tomography (CT) on admission showed multiple bilateral peripheral "ground-
рованной пневмонии, поскольку они не описываются в утвержденных в настоящий момент клинических рекомендациях [6, 7], а потому заслуживают отдельного внимания.

Клиническое наблюдение 1

Мужчина 52 лет, госпитализирован через 3 дня от начала заболевания с жалобами на общую слабость, болезненность в грудной клетке, сухой кашель, одышку в покое, повышение температуры тела выше 38,5°C. По данным мультиплексной компьютерной томографии органов грудной клетки (МСКТ ОГК) при поступлении: во всех долях обоих легких определяются многочисленные периферические округлые уплотнения легочной ткани по типу «матового стекла». Вовлечено до 15% ткани правого и левого легких (КТ-1). Рибоконцентрированные кисты (РНК) вируса SARS CoV 2 обнаружили в отделении из носоглотки и ротоглотки пациента методом полимеразной цепной реакции.

В инфекционном отделении проводили лечение (табл. 1).

На 4-е сутки у пациента отметили прогрессирование дыхательной недостаточности и кашля с соответствующим увеличением зон вовлечения ткани легкого — по данным МСКТ (появление многочисленных двусторонних зон уплотнения легочной ткани по типу матового стекла) и их трансформация в зоны консолидации и «бульяжной мостовой» с симптомом воздушной бронхограммы) до 30–35% (рис 1, а). Пациенту начали пульс-терапию метилпреднизолоном по схеме 1000 мг в сутки. На 8-е сутки от начала заболевания, в связи с нарастанием явлений дыхательной недостаточности, снижением индекса оксигенации (ИО) до 121, пациента перевели в реанимационное отделение (ОРИТ), где начали нонинвазивную вентиляцию легких (нИВЛ) через лицевую маску в режиме CPAP с параметрами Pinсп +16 mBar, PEEP 5 mBar. Продолжительность нИВЛ составила 8 суток. При МСКТ ОГК (рис. 1, б), через сутки после завершения нИВЛ ранее определявшиеся зоны уплотнения по типу консолидации с симптомом воздушной бронхографии перестали определяться. Площадь поражений каждого легкого возросла с 30–35 до 85–90% за счет появления диффузных зон уплотнения в обоих легких по типу матового стекла с ретикулярными изменениями.

На 20-е сутки заболевания по данным МСКТ ОГК отметили появление пневмомедиастинума без признаков свободного воздуха в плевральных полостях (рис. 1, с). Учитывая отсутствие жалоб пациента, общую положительную динамику на фоне лечения приняли решение продолжить консервативное лечение в прежнем объеме. При исследовании в динамике на 28-е сутки отметили значительное увеличение объема пневмомедиастинума (распространение на нижнее средостение); появление выраженной эмфиземы мягких тканей шеи, умеренной эмфиземы мягких тканей грудной стенки справа (передний, боковой и задний отделы) и уменьшение площади поражения легких до 75%.

Коррекцию терапии не проводили, пациент не отмечал субъективных проявлений пневмомедиастинума. Уменьшение площади поражения легких до 75%.

Клинический случай 2

A 76-year-old man was admitted to hospital with complaints of elevated body temperature up to 39.0°C, fatigue, dry cough, difficulty in breathing. During the week prior to hospitalization, he received antiviral and antibacterial therapy. He was hospitalized due to ineffective treatment and CT signs of viral pneumonia progression with increase in involved lung area from 25% to 60% over 10 days.

The diagnosis was confirmed by PCR of nasopharyngeal and oropharyngeal secretions.

The treatment administered in the infectious disease unit is shown in Table 1.

Due to respiratory failure progression (TOI 111 mm Hg) the patient was transferred to ICU and put on NVL through face mask in CPAP mode with the following parameters: PS (pressure support) 10 mbar, PEEP (positive end-expiratory pressure) 5 mbar. Corticosteroid therapy was initiated.

The patient’s condition stabilized with treatment, but on day 20 crepitation in the left axillary region was observed. Progress chest CT showed advanced lung involvement (up to 90%) combined with pneumomediastinum.
Лечение пациентов 1 и 2 в инфекционном отделении.

| Назначение                               | Пациенты |
|------------------------------------------|----------|
| Антибактериальная терапия                | 1        |
| Амоксициллина клавуланат 1200 мг × 3 раза в сутки + амтримоксина 500 мг × 1 раз в сутки | 2        |
| Моксифлоксацин 400 мг × 2 раза в сутки + цефопрепоза с сульбактам 2 г × 2 раза в сутки в/в |
| Противовирусная терапия                 |          |
| Гидроксихлорохин 400 мг в первые сутки и по 200 мг в последние сутки | —        |
| Противовоспалительная терапия            |          |
| Колхицин 3 мг в первые сутки и по 2 мг в последующие сутки |
| Антипиретическая терапия                 |          |
| Фраксипарин 0,6 мг × 1 раз в сутки        | —        |
| Антиинфильтральная терапия               |          |
| Лечение пациентов 1 и 2 в инфекционном отделении.

Таблица

| Treatment                              | 1                                      | 2                                      |
|----------------------------------------|----------------------------------------|----------------------------------------|
| Antibacterial                          | Amoxicillin clavulanate 1,200 mg tid + azithromycin 500 mg qd | Moxifloxacin 400 mg bid + cefoperazone/sulbactam 2 g bid i. v. |
| Antiviral                              | Hydroxychloroquine 400 mg for the first day followed by 200 mg/day | —                                      |
| Antineutrophilatory                    | —                                      | Colchicine 3 mg for the first day followed by 2 mg/day |
| Antipyretic                            | Paracetamol up to 3,000 mg/day         | Paracetamol up to 3,000 mg/da          |
| Prevention of thromboembolism          | Nadroparin calcium 0,6 mg qd           | Nadroparin calcium 0,6 mg qd           |
| Prevention of stress-induced intestinal ulceration | Omeprazole 40 mg qd | Omeprazole 40 mg qd |
| Symptomatic and fluid therapy          | +                                      | +                                      |
| Oxygen through nasal cannulae (crystalloid infusions) | O2 flow rate up to 6–7 l/min | O2 flow rate up to 5–6 l/min |

Note. Tid — 3 times per day; qd — per day; bid — 2 times per day; i. v. — intravenously.

Клиническое наблюдение 2

Мужчина, 76 лет, поступил в стационар с жалобами на повышенную температуру тела до 39,0°C, общую слабость, сухой кашель, затруднение при дыхании. В течение недели получал противовирусную и антибактериальную терапию. Госпитализирован в стационар с подозрением на COVID-19. При проведении клинического исследования выявлены признаки интенсивного обструктивного заболевания легких с 25% до 60%.

В связи с прогрессированием дыхательной недостаточности (индекс оксигенации — 111 мм рт. ст.) и ухудшением пульсоксиметрического показателя до 84%, проводилась трансплантация в режиме СВГ при следующих параметрах: SpO2 +10 mBar, РЕЕР + 5 mBar, начали терапию кортикоэстероидами, астинумом и слабым эмфиземой грудной клетки.

В течение недели проведена трансплантация в режиме СВГ при следующих параметрах: SpO2 +10 mBar, РЕЕР + 5 mBar, начали терапию кортикоэстероидами, астинумом и слабым эмфиземой грудной клетки.

Диагноз подтверждён при проведении ПЦР от деляемого из носо- и ротоглотки. В инфекционном отделении проведены мероприятия (табл.).

В связи с прогрессированием дыхательной недостаточности (индекс оксигенации — 111 мм рт. ст.) лечение пациента продолжили в ОРИТ с применением ИВЛ через лицевую маску в режиме СВГ с параметрами Psup +10 mBar, РЕЕР + 5 mBar, начали терапию кортикоэстероидами, астинумом и слабым эмфиземой грудной клетки.

Диагноз подтверждён при проведении ПЦР от деляемого из носо- и ротоглотки. В инфекционном отделении проведены мероприятия (табл.).

В связи с прогрессированием дыхательной недостаточности (индекс оксигенации — 111 мм рт. ст.) лечение пациента продолжили в ОРИТ с применением ИВЛ через лицевую маску в режиме СВГ с параметрами Psup +10 mBar, РЕЕР + 5 mBar, начали терапию кортикоэстероидами, астинумом и слабым эмфиземой грудной клетки.
На фоне проводимого лечения состояние пациента стабилизировалось, однако на 20-е сутки заболевания отметили появление крепитации в подмышечной области слева. При МСКТ в динамике - признаки прогрессирования площади поражения ткани легких до 90% в сочетании с пневмомедиастинумом и незначительной эмфиземой мягких тканей.

При операции не было видимых воздушных потоков. С последующим активным дrainажем появился незначительный воздушный поток, который прекратился на 2-й день после манипуляции.

На рисунке 1 показаны серия КТ-снимков (клиническое наблюдение 1, описание в тексте).

Fig. 1. Serial CT scans (clinical case 1, discussed in details in the text).
гурудной стенки. На фоне прогрессирования дыхательной недостаточности со снижением индекса оксигенации до 96 мм рт. ст., пациента перевели на интравенозную ИВЛ (IPPP: Vt=500 мл; MV=7,8–8,5 L/min, FiO2=100%, f=12*min-1, PEEP=10 mBar, EtCO2 30–34 mm Hg, Ppeak 22 mBar). На следующие сутки выполняли дренирование средостения, скорректировали параметры ИВЛ: PCV, Pinsp 25 mBar; MV=7,8–8,5 L/min, FiO2=70%, f=16*min-1, PEEP=5 mBar, EtCO2 42 mm Hg, Vt 400–450ml. \( \text{SpO}_2 \) составляло 94%.

Однако, несмотря на коррекцию параметров ИВЛ, отметили прогрессирование подкожной эмфиземы, начальных и подмышечных областей. При ларинго-трахеобронхоскопии, эзофагоскопии исключили повреждения со стороны трахеи, бронхов и пищевода. Манифестация пневмомедиастинума до перевода пациента на ИВЛ и до трахеостомии исключала механизм повреждения мембранозной стенки трахеи при трахеостомии.

В связи с прогрессивным ростом подкожной эмфиземы, значительным напряжённым пневмомедиастинумом, отсутствием значимого эффекта от проводимого лечения с целью декомпрессии средостения консультантом приняли решение о дренировании средостения. В связи с наличием трахеостомы с целью уменьшения риска хирургических осложнений и оптимизации доступа рентабилизовали пациента оротрахеальной трубкой с выполнением дальнейшего дренирования и ревизии средостения через ранее выполненный разрез на шее. Во время операции обращалось внимание отсутствие явного поступления воздуха. На фоне последующего активного дренирования средостения отметили незначительное поступление воздуха, не связанное с актом дыхания, прекратившееся на 2-е сутки после операции. Несмотря на выполненное дренирование, в течение 8-и суток состояние пациента оставалось крайне тяжёлым. Отмечали распространение подкожной эмфиземы до мышц, передней поверхности бедра (рис. 2, d, 27-е сутки от начала заболевания), однако при столь выраженным повреждениям легочной ткани от дальнейших хирургических манипуляций решено было отказаться. Дренаж из средостения удалили на 3-и сутки после операции, выполнили ретрахеостомию.

В течение последующего наблюдения, на фоне прогрессирования объема поражения ткани легкого (рис. 2, e, 32-е сутки) отмечали постепенное самопроизвольное разрешение подкожной эмфиземы и пневмомедиастинума (рис. 2, f, 37-е сутки).

Несмотря на явную положительную динамику эмфиземы средостения по данным МСКТ органов грудной клетки, состояние пациента оставалось крайне тяжёлым; также не отметили обратного развития патологического процесса в легочной ткани.

На 51-е сутки пациент скончался от прогрессирующей полиорганной недостаточности на фоне тяжелого сепсиса.

Результаты и обсуждение

В диагностике спонтанного пневмомедиастинума (или эмфиземы средостения) ведущее место занимает исключение наиболее частых причин дислокации воздуха в мягкие ткани

Despite the drainage, the patient remained critically ill for 8 days. Subcutaneous emphysesa spread to the scro- tum and anterior surface of the thigh (Fig. 2, d, 27 days after the disease onset), and owing to severe lung involve- ment further surgical intervention was deferred. Medi- astinal drainage tube was removed on the 3rd day after intervention, repeated tracheostomy was performed.

Later, along with the progression of the lung tissue involvement (Fig. 2, e, day 32), there was a gradual sponta- neous resolution of subcutaneous emphysesa and pneumomediastinum (Fig. 2, f, day 37).

Despite the obvious improvement of mediastinal emphysesa according to chest CT, the patient remained critically ill; no signs of lung lesion resolution were noted either. On day 51, the patient died because of progressive multiple organ failure due to sepsis.

Results and Discussion

When diagnosing SP (or mediastinal emphysesa, SME), it is essential to rule out the most frequent causes of air displacement into the mediasti- nal soft tissues, which are esophageal and tracheal injuries. In routine clinical practice, SME can be commonly caused by spontaneous ruptures of paramediastinal bullae and lung areas, which often occur without pneumothorax and may cause differential diagnosis challenging. Widespread oc- currence of viral pneumonias and, as a conse- quence, severe interstitial lung abnormalities, have led to a significant increase in the number of pa- tients with SME.

In early 2000s, the global community first en- countered the SP issue in SARS caused by the SARS CoV coronavirus [8]. Later, the course of disease in SARS CoV2 did not allow to objectively assess its prevalence during the pandemic peak, but published series of separate clinical observations in the first half of 2020 confirmed the relevance of dis- cussing the treatment strategy in SP associated with viral pneumonia [9–13]. Thus, C. Zhou et al. [9] in March 2020 reported a case of a moderate novel coronavirus infection with SME development. This condition prompted the discontinuation of gluco- corticoids in the patient. W. Wang et al. also re- ported a case of SME associated with the novel coronavirus infection COVID-19, which, unlike the previous clinical observation, did not involve treat- ment adjustment and resolved spontaneously [10]. In April 2020, J. Wang et al. reported fatal outcome in a patient who developed mediastinal emphysesa while suffering from COVID-19 and pointed out a possible unfavorable prognostic value of this condition [11]. Soon another case of SME was pre- sented by V. Mohan who emphasized that the pneumomediastinum required additional investiga- tions, namely esophagography, to rule out a spontaneous esophageal rupture [12]. In May 2020, S. Kolani et al. described another case of SME [13]. This report has provided detailed discussion of SME pathogenesis and suggested predisposing fac-
Clinical and Experimental Studies

These include severe coughing spells, prolonged smoking, inhalation of medications and other aerosols, and strenuous physical activity.

In the second half of 2020, publications had become available describing several clinical cases of pneumomediastinum associated with SARS
стику. Широкое распространение вирусных пневмоний и как следствие — пациентов с выраженными интерстициальными нарушениями легких, привело к значительному увеличению числа пациентов с СЭС.

С проблемой спонтанного медиастинума при ТОРС, вызванном коронавирусом SARS CoV, мировое сообщество впервые столкнулось в начале нынешнего тысячелетия [8]. Характер течения заболевания при SARS CoV2 не позволяло на пике пандемии объективно оценить распространенность обсуждаемого заболевания, однако появление отдельных серий клинических наблюдений уже в первой половине 2020 года подтверждает актуальность обсуждения тактики лечения пациентов со спонтанным пневмомедиастинумом на фоне вирусной пневмонии [9–13]. Так, C. Zhou и соавт. [9] в марте 2020 года сообщают о случае среднетяжелого течения новой коронавирусной инфекции с развитием СЭС. Обнаруженное состояние послужило причиной для прекращения введения глюкокортикоидов у данного пациента. W. Wang и соавт. также сообщают о случае развития СЭС на фоне новой коронавирусной инфекции COVID-19, которая, в отличие от предыдущего клинического наблюдения, не сопровождалась коррекцией проводимого лечения и разрешилась самостоятельно [10]. J. Wang и соавт. [11] в апреле 2020 сообщили о случае летального исхода у пациента с развитием эмфиземы средостения на фоне COVID-19 и указали на возможное неблагоприятное прогностическое значение данного клинического состояния. В скором времени был представлен еще один случай СЭС, автор публикации V. Mohan отмечает, что развитие пневмомедиастинума у пациента послужило причиной для выполнения дополнительных диагностических мероприятий — а именно эзофагографии для исключения спонтанного разрыва пищевода [12]. В мае 2020 года S. Kolani и соавт. описали еще один случай СЭС [13], данное сообщение отличается от предыдущих развернутым обсуждением патогенеза данпого состояния, а также указанием на возможные предрасполагающие факторы последнего. К таковым можно отнести выраженные кашевые приступы, длительное курение, ингаляцию лекарственных средств и других аэрозоль, напряженную физическую активность.

Во второй половине 2020 года уже можно было встретить публикации, в которых описывались несколько клинических случаев пневмомедиастинума на фоне пневмонии, вызванной SARS CoV2. S. Volpi и соавт. представили 3 случая пациентов с СЭС [14]. Все эти пациенты были мужского пола, имели возраст старше 50 лет, сопутствующие заболевания, им проводилась неинвазивная вентиляция легких. Данные пациенты были выписаны в связи с улучшением на фоне консервативной терапии без допол-
Тактика лечения пациентов со спонтанным пневмомедиастинумом преимущественно консервативная и включает постельный режим, обезболивание и оксигенотерапию [8]. Назначение антибактериальной терапии в отсутствие клинического подтверждения медиастинита не показано. Показанием к

According to C. M. Chu et al. [17], the incidence of SME in SARS from March to April 2003 was 11.6% among 112 cases with confirmed SARS CoV, while the overall incidence of pneumomediastinum was about 2%. In the group of patients with SME, medication regimens did not differ from the main population. Blood lactate dehydrogenase (LDH) level was the only laboratory indicator, whose elevation was associated with SME development. SP was a predictor of more frequent tracheal intubation and increased mortality. Four patients underwent mediastinal drainage. Small size of the study group doesn’t allow to draw any definite conclusions concerning possible prevention and the most rational management of the condition. Several studies have discussed the advantages of the «safe ventilation» in the management of patients with severe pneumonia, including nosocomial [18, 19], but best treatment approaches to such complications as mediastinal emphysema still remain unexplored.

To date, the management of patients with SME associated with the novel coronavirus infection COVID-19 is still not covered by international clinical guidelines; however, there are studies attempting to analyze global experience in order to develop some unified approach to managing patients with such COVID-19 complications as pneumothorax, mediastinal emphysema, and pneumatocele [20]. As preventive measures of the SP, A. Sihoe [20] suggests adherence to «safe ventilation» principles in COVID-19 [7], i.e. maintaining safe volumetric values (4–8 ml/kg) and plateau pressure (less than 30 cm H₂O). The authors do not describe the surgical options for correction of spontaneous pneumomediastinum but suggest considering pleural cavity drainage in any pneumothorax regardless of its etiology.

A. Sihoe et al. acknowledge [20] that it is currently difficult to accurately assess the incidence of SME in a novel coronavirus infection but estimate it at 2% based on earlier work by X. Yang et al. who reported the first cases of SARS-COV-2 in Wuhan [21]. Notably, Yang reported rather a 2% incidence of pneumothorax (1 of 52 patients with SARS-COV-2) rather than the actual incidence of SME.

Inadequate statistical data on the prevalence of SME could be due to the controversial issue of case reporting in pneumomediastinum during mechanical ventilation. Thus, C. M. Chu, Y. Y. Leung et al. recorded SME only in patients not on ventilator [17]. The pathogenesis of pneumomediastinum development is the same regardless of ventilator use, but mediastinal emphysema during mechanical ventilation is usually considered to be a barotrauma manifestation requiring urgent interventions such as mediastinal decompression [22–24].

In our case series, SP was detected in 3 patients on spontaneous breathing, and in 2 ventilated patients.
хирургическому лечению может стать развитие напряженного пневмомедиастинума с прогрессированием дыхательной недостаточности, а также инфильтрация мягких тканей средостения с развитием медиастинита. При возникновении показаний к хирургическому лечению методом выбора считают верхнюю медиастинотомию по Tiegel с туннелизацией претрахеальной клетчатки до уровня бифуркации трахеи и активным дренированием средостения [3].

Согласно данным С. М. Chu и соавт. [17] частота СЭС при ТОРС с марта по апрель 2003 года составила 11,6% среди 112 случаев с подтвержденным SARS CoV, общая же частота ПМ составляла около 2%. В группе пациентов с СЭС схемы медикаментозного лечения не отличались от основной популяции. Концентрация лактатдегидрогеназы (ЛДГ) в крови пациентов являлась единственным лабораторным показателем, повышение которого было ассоциировано с возникновением СЭС. Развитие СП являлось предиктором более частой интубации трахеи и увеличения летальности. Четверым пациентам выполнено дренирование средостения. Малый размер исследуемой группы пациентов не позволяет сделать однозначные выводы по возможной профилактике, наиболее рациональному ведению данного состояния. В научных работах отечественных и зарубежных авторов неоднократно поднимался вопрос преимуществ «безопасной ИВЛ» при ведении пациентов с тяжелыми, в том числе нозокомиальными пневмиями [18, 19], однако проблема развития таких осложнений, как эмфизема средостения, и подходы к ее лечению остаются все еще неясными.

На сегодняшний день, проблема ведения пациентов с СЭС на фоне новой коронавирусной инфекции COVID-19 все еще не отражена в международных клинических рекомендациях, однако уже появляются работы, в которых предпринимаются попытки анализа мирового опыта с целью разработки единого подхода к ведению пациентов с такими осложнениями COVID-19 как пневмоторакс, эмфизема средостения и пневматоцеле [20]. В качестве мер профилактики спонтанного пневмомедиастинума А. Sihoe [20] указывает следование принципам безопасной ИВЛ при COVID-19 [7], то есть придерживаться безопасных объемных показателей и давления плато менее 30 см вод. ст. Хирургический вариант коррекции спонтанного пневмомедиастинума авторами не описывается, однако предлагается рассмотреть вариант дренирования плевральных полостей при развитии пневмоторакса вне зависимости от его этиологии.

A. Sihoe и соавт. признают [20], что в настоящий момент точная оценка частоты встречаемости СЭС при новой коронавирусной инфекции не возможна. В прошлом году в группе пациентов, госпитализированных в госпитализационном отделении городской больницы умерли 3 пациентов, у 2 из них развился пневмомедиастинум. Основным прогнозирующим фактором оказался возраст пациента на момент введения в стационар: у 2-х пациентов он составлял 90 и 95 лет.

To describe the mechanism of spontaneous resolution of pneumomediastinum in case 2 patient, we formulated the following hypothesis. The pressure gradient equalization between alveoli and interstitium occur due to worsened ventilation of the lung area, where lung tissue rupture has primarily occurred (the negative changes in lung tissue lesions during the observation period is noteworthy). Such a rapid reversal of pneumomediastinum and subcutaneous emphysema after cessation of gas inflow into the tissue can be explained by a high fraction of oxygen in the inhaled gas mixture (80–90%). Surgical treatment was performed in one patient, but the apparent lack of effect of surgical decompression of the mediastinum and spontaneous resolution of pneumomediastinum occurring later seem remarkable. This fact casts doubt on the validity of surgical treatment of patients with spontaneous pneumomediastinum.

Conclusion

SME is an uncommon specific complication of pneumonia caused by the novel coronavirus infection COVID-19, which, regardless of its direct cause, may represent a poor prognostic factor and predictor of a severe disease.

The main measures to prevent SME include adherence to the principles of safe ventilation such as limitation of volume (4–6 ml/kg) and plateau pressure index less than 30 cm H2O, as well as a rigorous risk-benefit assessment of the ventilation mode used.

Accidental detection of SME when there is a visible clinical effect from the treatment should not prompt the doctors to modify the treatment regimen, and especially to discontinue the steroids.

If SME is detected in a clinically stable patient, it is very likely to resolve spontaneously without specific treatment. Surgical treatment may be indicated if tension pneumomediastinum or signs and symptoms of mediastinitis, as well as clinically significant concomitant pneumothorax develop.

The questionable evidence of the risk of an additional mechanism of SARS-CoV-2 propagation when performing pleural drainage [25] should not be a reason for withholding pleural drainage if indicated.

When SME develops in a patient on the ventilator, it becomes a limiting factor that does not allow intensivist to set stricter modes of ventilation, if necessary.
Спонтанная эмфизема средостения — нечастое специфическое осложнение пневмонии, вызванной новой коронавирусной инфекцией COVID-19, которое вне зависимости от прямой причины его возникновения может являться фактором неблагоприятного прогноза и предиктором тяжелого течения заболевания у пациента.

Основные мероприятия по профилактике развития СЭС заключаются в следовании принципам безопасной ИВЛ — ограничение объемных (4–6 мл/кг) показателей и показателя давления во всем диапазоне и при необходимости устанавливать более жесткие объемные (4–6 мл/кг) режимы вентиляции.

При появлении СЭС у клинически стабильного пациента высока вероятность его самопроизвольного разрешения без специфического лечения. Показанием к хирургическому лечению могут стать развитие напряженного пневмомедиастинума и манифестация медиастинита, а также наличие клинически значимого сопутствующего пневмоторакса.

Сомнительные данные о наличии риска появления дополнительного механизма распространения SARS CoV2 при выполнении плеврального дренирования [25] не должны быть поводом для отказа от проведения дренирования плевральной полости в тех случаях, где оно показано.

СПМ, развивающийся у пациента на ИВЛ, приобретает роль ограничивающего фактора, который не позволяет реаниматологу в случае необходимости устанавливать более жесткие режимы вентиляции.

Имеющихся на данном этапе борьбы с пандемией COVID-19 данных недостаточно для формирования универсальных алгоритмов по предотвращению, своевременному диагностике и устранению СЭС и ее последствий.

Литература
1. Zhu X., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China. 2019. N Engl J Med. 2020; 382: 727–733. PMID: 31978945 DOI: 10.1056/NEJMoa2001017

References
1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China. 2019. N Engl J Med. 2020; 382: 727–733. PMID: 31978945 DOI: 10.1056/NEJMoa2001017
