M-TYPE VEGA-LIKE STARS

INSEOK SONG1, A. WEINBERGER2, E. E. BECKLIN, B. ZUCKERMAN, C. CHEN

Dept. of Physics and Astronomy – University of California, Los Angeles
8371 Math Science Bldg. – Box 951562
Los Angeles, CA 90095–1562, USA
song@astro.ucla.edu, weinberger@dtm.ciw.edu, ben@astro.ucla.edu, becklin@astro.ucla.edu, cchen@astro.ucla.edu

Draft version October 26, 2018

ABSTRACT

We carried out a search for M-type Vega-like stars by correlating the IRAS Faint Source Catalog with Hipparcos selected M-type stars. Three stars with apparent IRAS 25 μm excess emission are shown instead to be non-IR-excess stars from ground-based 11.7 and 17.9 μm photometry. Two stars previously suggested to have Vega-like mid-IR excess are also shown to be non-excess stars. These results imply that other suggested mid-IR excess stars in the literature may also be false excess stars. Detection threshold bias is apparently responsible for these bogus IR excesses. Sixty micron excess emission from a previously known M-type Vega-like star (GJ 803) is identified again.

Subject headings: (stars:) planetary systems: proroplanetary disks — (stars:) circumstellar matter — stars: late-type — stars: individual (GJ 803)

1. INTRODUCTION

During the past fifteen years, about two dozen papers have been published that describe searches for stars with excess infrared (IR) emission (for recent reviews on these “Vega-like” stars, see Lagrange et al. 2000 and Zuckerman 2001). These searches employed different techniques for cross correlating IR and stellar sources with no consistent definition of what defines an IR excess (see Song 2000 for a summary). To date, about 400 Vega-like stars have been identified. The Vega phenomenon overlaps with some very important solar system formation epochs; gas giant planet formation at \(\lesssim 10 \) Myr and terrestrial planet formation at \(\sim 100 \) Myr. Thus, knowing stellar ages of Vega-like stars is essential to studying extra solar planetary system formation in detail. Consequently, there have been many efforts to estimate the ages of Vega-like stars (see Song 2000; Spangler et al. 2001, and references therein). Stellar ages can be fairly accurately and relatively easily determined for late-type stars (e.g., Song et al. 2000), however, ages of early-type stars are less reliable (Song et al. 2001). Most of the currently known Vega-like stars are early-type because more luminous stars produce larger IR fluxes for stars with the same quantity of dust and the surveys conducted by IRAS were flux limited. Thus, it is desirable to increase the known number of late-type Vega-like stars for more precise age estimates of such stars. Additional identification of late-type Vega-like stars is very useful to statistically strengthen studies such as planetary formation in different environments and dust lifetime as a function of stellar mass and luminosity (see Song’s (2000) suggestion of dichotomy of Vega-like stars for example). Also, late-type Vega-like stars are excellent laboratories for studying the early evolution of our solar system.

Despite the great number of M-type stars compared to earlier types, only two with IR excesses, GJ 803 (Tsikoudi 1988) and Hen 3-600 (de La Reza et al. 1989; Jaywardhana et al. 1999) have been identified to date. Almost all previous studies (exceptions include Aumann & Probst 1991 and Odenwald 1986) searched only for far-infrared (60 μm) excess and were limited by the IRAS \(\sim 90\% \) completeness sensitivity of 280 mJy in that band. IRAS sensitivity at 25 μm was 210 mJy, and an M0 star located 10 pc away with 200 K dust grains absorbing and emitting like black-bodies such that \(L_{IR}/L_{star}=1.5 \times 10^{-3} \), would have been detected by IRAS at 25 μm (\(F_{star+disk} \approx 250 \) mJy) but not at 60 μm (\(F_{star+disk} \approx 100 \) mJy).

A more complete survey for dust must be able to detect the stellar photosphere at high precision in order to evaluate excess emission above that level. One can do a fairly thorough disk excess assessment for stars whose photospheres were detected by IRAS. However, around stars whose photospheres were too faint to be detected, only unusually large disk excesses could be detected. At 60 μm, IRAS could detect the photosphere of an A0 star out to \(\sim 20 \) pc, but an M0 only out to \(\sim 2 \) pc. The situation is somewhat better at 25 μm, where IRAS could detect the photosphere of an A0 star out to \(\sim 50 \) pc and an M0 photosphere out to \(\sim 5 \) pc. By searching the catalog only at 60 μm, previous surveys have not probed large regions of phase space where excess may exist around late-type stars.

In this study, we concentrated mainly on M-type stars and attempted to perform the most thorough search for M-type Vega-like stars to date, especially at 25 μm, based on the IRAS FSC (Moshir et al. 1992) and Hipparcos catalog (Perryman et al. 1997). As a check on recently reported infrared excess stars, however, we also report on the F-type star HD 2981.

2. SEARCH

Based on the Hipparcos catalog, we selected \(\sim 530 \) nearby \((< 25 \text{ pc})\) stars with \((B-V) + \sigma_{B-V} > 1.40 \), where \(\sigma_{B-V} \) is uncertainty of \((B-V) \). The Hipparcos
cos catalog contains almost all early M–type (M0–2) stars within 10 pc. Many IR sources in the FSC with optical stellar identifications are giant stars (Zuckerman et al. 1995; Odenwald 1986). Therefore, one needs luminosity class information to identify Vega–like stars. Following Silverstone (2000), we used a constraint on the absolute visual magnitude ($M_V > 7.5 \times (B-V) - 5.0$) to ensure that a candidate is not a giant star whose IR–excess mechanism may be different from that of a dwarf. Six stars from our initial sample do not meet the absolute magnitude cut and they are HIP 21421, 50798, 66212, 66906, 75187, and 82099. HIP 21421 and HIP 66212 are K–type giants and the other four stars appear to be main sequence stars with large uncertainties in $(B-V)$. Among the four rejected main sequence stars, HIP 75187 is the only one detected by IRAS (only at 12 μm) and the measurement agrees with the flux density expected from its photosphere alone. Then, our sample stars were cross correlated with FSC sources with a maximum allowed offset of 30$''$ between Hipparcos and IRAS source positions (both at epoch 1983.5 and equinox 1950). Only 152 stars from our initial sample have IR counterparts; among them, 96 stars were detected only at 12 μm and 55 stars were detected at both 12 and 25 μm. GJ 803 (AU Mic) was detected at 12 and 60 μm and was the only dwarf M–type star that has been detected at the IRAS 60 μm band. No objects were detected at 100 μm. A previously known M–type IR excess star, Hen 3–600 (TWA 3), is not identified in our search because it is not bright enough to be included in the Hipparcos catalog.

Positions given in the published IRAS catalog are weighted means of 12, 25, 60, and 100 μm source positions based on their signal-to-noise ratios. Sometimes, 25 and 60 μm sources are background objects far away from the stellar 12 μm sources. Thus, in IR–excess surveys, it is mandatory to check each band’s source position and to confirm that source positions in each band are coincident. We checked the offsets among 12 and 25 μm positions (60 μm position also for GJ 803) by using the “LONG FSC” from The Infrared Processing and Analysis Center (IPAC) at Caltech and found that only one object (GJ 433) shows a substantial (36$''$) offset between the 12 and 25 μm IRAS sources. For comparison, a median positional uncertainty of IRAS FSC sources in the cross scan direction is 20$''$. Offsets between the 12 and 25 μm source positions for the other stars are negligible with respect to the IRAS positional uncertainties.

To identify IR excesses, we performed spectral energy distribution (SED) fitting by using all known photometric data from the literature (queried through SIMBAD) including online 2MASS data. For GJ 413.1 and GJ 433, JHK magnitudes (see Table 1) were measured on 24 November, 2000 (UT) with the NASA IRTF telescope at Mauna Kea Observatory. Since the accuracy of the photospheric flux estimation at 12 μm depends strongly on the availability of near IR photometric data (i.e., JHK magnitudes), we have not carried out a SED fit to stars with only 12 μm detections because most of these stars lack near IR photometry. Stellar SEDs are different from that of a blackbody. Opacity sources absorb light at wavelengths with high opacities and re-radiate it at wavelengths with relatively low opacities. This results in a spectral energy distribution very different from that of a black-body. Therefore we used PHOENIX NextGen synthetic stellar spectra (Hauschildt et al. 1999) instead of a blackbody SED. Among three SED fitting parameters (parallax, stellar radius, and effective temperature), Hipparcos parallax has been treated as constant. Stellar radius and effective temperature were estimated from the Hipparcos $(B-V)$ value by using the spectral type versus colors/T_{eff}/radius relation of de Jager & Nieuwenhuijzen (1987).

To quantify the strength of IR excesses, we defined r, the specific IR excess, (“specific excess” hereafter) as

$$r = \frac{F_{\text{IRAS}} - F_{\text{est}}}{F_{\text{IRAS}}}$$

where F_{IRAS} and F_{est} are IRAS FSC 25 μm flux and estimated photospheric contribution at 25 μm, respectively. For GJ 803, we used $F_{60 \mu m}$ and $F_{60 \mu m}$ to calculate its 60 μm specific excess ($r_{60 \mu m}$).

As shown in Figure 1, we found three stars (GJ 154, 413.1, and 433) with $r > 2.0$ based on 25 μm fluxes and a different star (GJ 803) with $r = 7.60$ based on 60 μm flux. Contrary to an expected median specific excess value of zero for non–IR–excess stars, Figure 1 shows a median value of ~0.1 which may be due to the 25 μm flux overestimation as explained in the IRAS Explanatory Supplement Version 2, III–131. All IRAS flux density values in Table 1 and Figures 2–3 are color corrected using Table VI.C.6 of the IRAS Explanatory Supplement Version 2. For 12 and 25 μm fluxes, stellar effective temperatures were used to estimate color correction factors. However, for 60 μm fluxes, if any IR excess exist (e.g., GJ 803), then dust temperatures were used instead of stellar effective temperatures.

3. Ground–Based Mid–IR Photometry

Mid–infrared imaging was performed with the facility instrument, the Long Wavelength Spectrograph (LWS) (Jones & Puetter 1993, on the 10 m Keck I telescope on UT 11 December 2000 and 4–5 February 2001. During all three nights, the weather was photometric with low water vapor optical depth. LWS uses a 128 x 128 pixel Boeing Si:As detector, and has a plate scale of 0.08 arcsec/pixel, resulting in a focal–plane field of view of 10$''$ x 10$''$. Each object was measured in filters centered at 11.7 μm (FWHM=1.0 μm) and 17.9 μm (FWHM=2.0 μm). Images were obtained at four positions by chopping the secondary at 2.5–5 Hz with a throw of 10$''$ and nodding the telescope 10$''$ after ~20 s. In basic data reduction, the images were double differenced to remove the sky and telescope background, and bad pixels were corrected by interpolation. Throughout the nights, including just before and after each of the M–star measurements, bright infrared standard stars were observed for photometric calibration. Standard star measurements over the whole of each night were averaged and the standard deviation in their photometry was used as an estimate of calibration uncertainty. On 11 December, the uncertainty in the calibration was 5% and 6% at 11.7 and 17.9 μm, respectively. On 4 and 5 February, the uncertainties were 15% at both wavelengths.

Photometry was performed in a 16 pixel (1.3") diameter synthetic aperture on each image and the results are reported in Table 1. For an M–star of luminosity 0.1L$_\odot$, ...
blackbody-like grains at a thermal equilibrium temperature of 200 K will sit 0.6 AU from the star. Therefore, at a distance of 10 pc, any 12 or 18 μm excess should appear < 0.1 in size, or spatially unresolved. It is clear from Figure 2 that the apparent 25 μm IRAS excesses of GJ 154, 413.1, and 433 are not real. We interpret this discord as follows.

For the faint stars under consideration whose real fluxes are near detection threshold, a downward noise fluctuation could place the 25 μm fluxes below the IRAS detection threshold; thus none displays a significant 25 μm flux deficit (negative r). Occasional large upward noise fluctuations could boost 25 μm fluxes so that they would be classified as IR excess stars (positive r, “Detection threshold bias” or “Malmquist bias”). The final configuration thus resembles our Figure 1, with some excess stars but with no significant deficit star. In fact, the IRAS 25 μm S/N ratios of all of our three false IR excess stars are ~ 4 which is the IRAS threshold value.

4. STATISTICAL SIGNIFICANCE OF IR EXCESS

Recently, Fajardo–Acosta et al. (1999, 2000) suggested that certain stars possess excess emission as measured by IRAS or ISO. We checked IR excesses at GJ 816 and HD 2381 with 11.7 and 17.9 μm (18.7 μm for GJ 816) Keck photometry. Apparent excesses for both stars turned out to be false positives (Figure 3). GJ 816 is not an IRAS FSC source and Fajardo–Acosta et al. (1999) used Infrared Space Observatory (ISO) data. An incorrect ISO flux calibration (for GJ 816) and Malmquist bias (for HD 2381) similar to our three false IR–excess stars may be responsible for these apparent excesses.

An occasional large upward noise fluctuation (e.g., 2σ ≈ 2% probability) does not significantly influence stars with high signal-to-noise ratios; however, it can significantly affect stars with low signal-to-noise data. For our initial 152 IRAS sources, we expect ~ 3 to have flux overestimates > 2σ, in apparent agreement with what we have found. Based on this fact, some suggested Vega–like stars — generally identified through huge surveys often encompassing thousands of input stars — could also be non–IR–excess stars. Thus, we suggest the following criteria for bona–fide Vega–like stars; (1) high S/N not subject to a Malmquist bias, (2) low S/N detections at 2 or more wavelengths, or (3) ground/space–based confirmation (e.g., Silverstone 2000 and this study) with higher sensitivity and better spatial resolution than IRAS.

5. SUMMARY AND DISCUSSION

We have performed a search for IR excess emission among M–type stars by correlating the IRAS Faint Source Catalog with Hipparcos selected late–type stars. Besides the previously known Vega–like star (GJ 803), three tentative excess stars were identified, but these excesses turned out to be false based on our ground–based mid–IR photometry. Detection threshold bias (Malmquist bias) is thought to be responsible for these bogus IRAS IR excesses. Two other stars (GJ 816 and HD 2381), suggested to be Vega–like in the literature, are also shown to be non–IR–excess stars. In future studies, one should be aware that some Vega–like stars reported in the literature with low S/N ratios may be non–IR–excess stars as well. This is likely to be the case for most stars listed by Fajardo–Acosta et al. (2000).

GJ 803 and Hen 3–600 show strong 60 μm excesses; they are the only unambiguously identified M–type dwarf stars with IR excesses. This could be due to the extreme youth of GJ 803 (12 Myr, Zuckerman et al. 2001) and Hen 3–600 (8–10 Myr, Webb et al. 1999). Song et al. (2001) have found two very young (~ 12 Myr) late–type stars (HIP 23309, M0 and HIP 29964, K6) co–moving with β Pictoris. Even if one assumed that these two Hipparcos stars have the same fractional IR luminosity as β Pictoris (l_{IR}/L_{star} ~ 10^{-3}) (their corresponding 60 μm fluxes (< 80 mJy and < 40 mJy, respectively) are below the IRAS detection threshold. This is true for late–type stars with β Pic–like excess in nearby young stellar groups, i.e., TWA. These stars would be excellent targets for future IR excess surveys by SOFIA or SIRTF.

We are grateful to Mr. Michael Schwartz for assistance obtaining JHK data for GJ 413.1 and GJ 433 and Dr. M. Jura for helpful discussion and assistance with a Keck observation. We also thank an anonymous referee for suggestions that clarified the paper. This research was supported by the UCLA Center for Astrobiology and by NASA. We have used the SIMBAD/Vizier database.

REFERENCES

Alonso, A., Arribas, S., & Martinez-Roger, C. 1994, A&A, 283, 1165
Aumann, H. H. & Probst, R. G. 1991, ApJ, 368, 264
Barrado y Navascués, D., Stauffer, J. R., Song, I., & Caillault, J. J. 1999, ApJ, 520, L123
de Jager, C. & Nieuwenhuijzen, H. 1987, A&A, 177, 217
de la Reza, R., Torres, C. A. O., Quast, G., Castilho, B. V., & Vieira, G. L. 1989, ApJ, 343, L61
Fajardo–Acosta, S. B., Beichman, C. A., & Cutri, R. M. 2000, ApJ, 538, L55
Fajardo–Acosta, S. B., Stencil, R. E., Backman, D. E., & Thakur, N. 1999, ApJ, 520, 215
Haushofer, P. H., Allard, F., Ferguson, J., Baron, E., & Alexander, D. R. 1999, ApJ, 525, 871
Jayawardhana, R., Hartmann, L., Fazio, G., Fisher, R. S., Telesco, C. M., & Pina, R. K. 1999, ApJ, 520, 41
Jones, B. & Puettner, R. C. 1993, Proc. SPIE, 1946, 610
Lagrange, A., Backman, D. E., & Artymowicz, P. 2000, in Protostars and Planets IV (Book - Tucson: University of Arizona Press; eds Mannings, V., Boss, A.P., Russell, S. S.), 639
Moshir, M., Copan, G., Conrow, T., McCallon, H., Hacking, P., & Gregorch, D. 1992, Explanatory Supplement to the IRAS Faint Source Surveys, Version 2, (JPL D-10015 8/92; Pasadena: JPL, (FSC))
Odenwald, S. F. 1986, ApJ, 307, 711
Perryman, M. A. C., et al. 1997, A&A, 323, L49, (Hipparcos catalog)
Silverstone, M. D. 2000, Ph.D. thesis, University of California Los Angeles
Song, I. 2000, Ph.D. thesis, University of Georgia
Song, I., Caillault, J. P., Barrado y Navascués, D., & Stauffer, J. R. 2001, ApJ, 546, 352
Song, I., Caillault, J. P., Barrado y Navascués, D., Stauffer, J. R., & Sofia, R. 2000, ApJ, 532, L41
Song, I., Zuckerman, B., Bessell, M., & Webb, R. 2001, BAAS, 33, 878
Song, I. 2001, ASP Conf. Ser. “Young Stars Near Earth: Progress and Prospects”, eds. R. Jayawardhana & T. Greene, v244, 221
Spangler, C., Sargent, A. I., Silverstone, M. D., Becklin, E. E., & Zuckerman, B. 2001, ApJ, 555, 932
Tkเทคนิค, V. 1988, AJ, 95, 1797
Webb, R. A., Zuckerman, B., Platais, I., Patience, J., White, R. J.,
Schwartz, M. J., & McCarthy, C. 1999, ApJ, 512, L63
Zuckerman, B. 2001, ARAA, 39, 549
Zuckerman, B., Kim, S. S., & Liu, T. 1995, ApJ, 446, L79
Zuckerman, B., Song, I., Bessell, M. S., & Webb, R. A. 2001, ApJ,
562, L87
Table 1

M–TYPE IR–EXCESS CANDIDATES

GJ	Sp. Type	dist (pc)	near IR data (mag)	IRAS flux (mJy)	r value	Keck flux (mJy)	Prediction (mJy)	excess?					
154	M0	14.6	6.69(5)	6.93(5)	5.85(5)	150±24	112±53	< 199					
						2.18	159±13	4±2	68	NO			
413.1	M2	10.7	7.23(2)	6.53(2)	6.23(2)	141±21	80±20	< 130					
						3.38	177±27	43±20	147	64	NO		
433	M1.5	9.0	6.46(2)	5.95(2)	5.67(2)	205±25	108±27	< 101					
						2.28	213±11	101±20	214	93	NO		
803	M0	9.9	—	—	—	537±32	< 215	273±46					
						7.60†	—	—	574	257	YES		
816	M3	13.8	7.55(1)	6.96(2)	6.69(2)	—	—	—	93±13	55†	101	45	NO
HD 2381	F2V	74.2	6.99(1)	6.86(4)	6.74(1)	127±33	< 73	< 170					
						2.30†	55±5	28±14	55	24	NO		

* near IR data for GJ 154 from Alonso et al. (1994), for GJ 413.1 and GJ 433 from our IRTF measurements, and for GJ 816 and HD 2381 from 2MASS database.

** expected photospheric flux.

† 60 µm spec. excess. 25 µm value is upper limit.

‡ 12 µm spec. excess. 25 µm value is upper limit.

♭ this is 18.7 µm flux upper limit not 17.9 µm.
Fig. 1.— Histogram of specific IR excess ($r_{25\mu m}$) for the 55 stars discussed in the text. The r-value of GJ 803 ($r_{60\mu m} = 7.6$) is outside of the displayed range.
Fig. 2.— Spectral energy distribution fits of M-type stars with tentative IR excesses identified from this study by using the IRAS FSC. Solid circles are JHK and IRAS data, and diamonds indicate our ground–based 11.7 and 17.9 μm fluxes. Thin solid lines are synthetic stellar spectra fit to visual and near IR (λ < 2 μm) photometry ([M/H] = 0.0 and log g = 5.0) and a dotted line (only for GJ 803) indicates a dust component with T = 80 K and L_{IR}/L_{*} = 6.7 × 10^{-4}. Wavelength and flux density scales are logarithmic. Horizontal bars across JHK and IRAS data points indicate passband widths.
Fig. 3.— Spectral energy distribution fits of Vega–like stars from the literature. Symbols have the same meaning as in Figure 2. For GJ 816, open squares show ISO fluxes (there is no IRAS data) and open diamonds are LWS measurements with the Keck I telescope.