XMM–Newton and INTEGRAL observations of the very faint X-ray transient IGR J17285–2922/XTE J1728–295 during the 2010 outburst

L. Sidoli,† A. Paizis,1 S. Mereghetti,1 D. Götz2 and M. Del Santo3

1INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via E. Bassini 15, I-20133 Milano, Italy
2AIM (UMR 7188 CEA/DSM-CNRS-Université Paris Diderot) IRFU/Service d’Astrophysique, Saclay, F-91191 Gif-sur-Yvette Cedex, France
3INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via Fosso del Cavaliere 100, I-00133 Roma, Italy

Accepted 2011 April 5. Received 2011 April 5; in original form 2011 February 25

ABSTRACT

We report the first broad-band (0.5–150 keV) simultaneous X-ray observations of the very faint X-ray transient IGR J17285–2922/XTE J1728–295 performed with the XMM–Newton and INTEGRAL satellites during its last outburst, started on 2010 August 28. XMM–Newton observed the source on 2010 September 9–10 for 22 ks. INTEGRAL observations were part of the publicly available Galactic bulge program, and overlapped with the times covered by XMM–Newton. The broad-band spectroscopy resulted in a best fit with an absorbed power law displaying a photon index Γ of 1.61 ± 0.01, an absorbing column density N_H of (5.10 ± 0.05) × 10^{21} cm$^{-2}$ and a flux of 2.4 × 10^{-10} erg cm$^{-2}$ s$^{-1}$ (1–100 keV), corrected for the absorption. The data did not require either a spectral cut-off ($E_c > 50$ keV) or an additional soft component. The slopes of the power law fitting the XMM–Newton and INTEGRAL separate spectra were compatible, within the uncertainties. The timing analysis does not show evidence either for X-ray pulsations or for type I X-ray bursts. The broad-band X-ray spectrum as well as the power-density spectrum is indicative of a low-hard state in a low-mass X-ray binary, although nothing conclusive can be said about the nature of the compact object (neutron star or black hole). The results we report here allow us to conclude that IGR J17285–2922 is a low-mass X-ray binary, located at a distance greater than 4 kpc.

Key words: X-rays: binaries – X-rays: individual: IGR J17285–2922 – X-rays: individual: XTE J1728–295.

1 INTRODUCTION

Very faint X-ray transients (VFXTs) display outburst peak luminosities in the range 10^{34}–10^{36} erg s$^{-1}$ (2–10 keV), almost two or three orders of magnitude fainter than the emission typically shown by most Galactic X-ray transients (Wijnands et al. 2006). This, together with their apparently small duty cycles, suggests that these black holes or neutron stars in binary systems undergo a very low average accretion rate (King & Wijnands 2006).

To date, about 30 VFXTs are known and they very likely form a non-homogeneous class of objects, because their only common feature is the low luminosity. About one-third exhibit type I X-ray bursts (Del Santo et al. 2007, 2010) and can thus be identified with neutron stars accreting matter from a low-mass companion, but the nature of the remaining sources is unknown (Degenaar & Wijnands 2009).

IGR J17285–2922 is a hard transient discovered in the direction of the Galactic bulge with INTEGRAL in 2004 (Walter et al. 2004). The source underwent an outburst lasting at least two weeks with a peak flux of 1.1×10^{-10} erg cm$^{-2}$ s$^{-1}$ (20–150 keV; Barlow et al. 2005). For an assumed distance of 8 kpc, this corresponds to a luminosity of 8×10^{35} erg s$^{-1}$, which led to classify IGR J17285–2922 as a VFXT.

More recently, Markwardt & Swank (2010) reported on a renewed X-ray activity started on 2010 August 28 from a transient previously named XTE J1728–295. Given the positional coincidence, they suggested that XTE J1728–295 and IGR J17285–2922 are the same source. INTEGRAL observations confirmed the renewed activity of XTE J1728–295 and its association with IGR J17285–2922 (Turler et al. 2010).

Following this outburst, we triggered an XMM–Newton Target of Opportunity (ToO) observation, with the main aim of an in-depth investigation of the nature of this source. The observation was performed on 2010 September 9–10, about 13 d after the onset of the outburst. We also analysed INTEGRAL data of the source field obtained as part of the publicly available Galactic bulge program1 (Kuulkers et al. 2007), overlapping with the XMM–Newton observations.

*E-mail: sidoli@iasf-milano.inaf.it

†http://isdc.unige.ch/Science/BULGE/
2 OBSERVATIONS AND DATA REDUCTION

2.1 XMM–Newton

The XMM–Newton Observatory (Jansen et al. 2001) carries three 1500-cm² X-ray telescopes, each with European Photon Imaging Camera (EPIC) imaging spectrometers at the focus. Two of the EPIC spectrometers use Metal Oxide Semi-conductor (MOS) CCDs (Turner et al. 2001) and one uses a pn CCD (Strüder et al. 2001). Reflection Grating Spectrometer (RGS) arrays (den Herder et al. 2001) are located behind two of the telescopes.

IGR J17285–2922 was observed with XMM–Newton on 2010 September 9–10. EPIC pn was operated in large-window mode, while both MOS cameras were in full-frame mode, with all the CCDs in imaging mode. Both MOS and pn observations used medium-thickness filter.

XMM–Newton data were reprocessed using version 10.0 of the Science Analysis Software (SAS). Known hot, or flickering, pixels and electronic noise were rejected. The background (selected with PATTERN = 0 and above 10 keV) did not show evidence of flaring activity, so no further temporal selection was applied, resulting in net exposure times of 18.5 and 21.6 ks, respectively, for the pn and MOS cameras. Extraction radii of 40 arcsec and 1 arcmin were used for the source spectra, respectively, for the pn and MOS cameras. Background counts were obtained from similar-sized region offset from the source position, resulting in a net count rate of 10.65 ± 0.024 counts s⁻¹ in the pn spectrum. Response and ancillary matrix files were generated using the SAS tasks RMFGEN and ARFGEN. Using the SAS task EPATPLOT, we found that only the MOS spectra were affected by pile-up. Thus, we excluded the inner 6 arcsec (radius) of the point spread function from the MOS1 and MOS2 spectra adopting only PATTERN = 0, while for the EPIC pn spectrum we selected PATTERN from 0 to 4.

To ensure applicability of the χ² statistics, the net spectra were rebinned such that at least 20 counts per bin were present and the energy resolution was not oversampled by more than a factor of 3. All spectral uncertainties and upper limits given below are at the 90 per cent confidence level for one parameter of interest. We performed the data analysis using HEASOFT 6.10 and XSPEC v.12.

The RGS was operated in spectroscopy mode and resulted in a net exposure of 21.6 ks. The RGS source and background events were calibrated by applying the latest calibration parameters.

2.2 INTEGRAL

We analysed the data of the Galactic bulge monitoring program in the time frame close to the source outburst as detected by RXTE on 2010 August 28. We used the imager IBIS/ISGRI (Lebrun et al. 2003; Ubertini et al. 2003) onboard INTEGRAL (Winkler et al. 2003), and analysed a total of 68 pointings, each with an exposure time of about 1800 s (nominal), spanning from 2010 August 26 to October 6.

Version 9.0 of the Off-line Scientific Analysis (OSA) software was used to analyse the data. For each pointing, we extracted images in the 17.8–25, 25–30.2, 30.2–50.3, 50.3–80, 80–150.4 keV energy bands (the boundaries have been chosen in order to cope with the response matrix). The images were used to build one-pointing-based light curves as well as a final mosaic. The source has never been detected at a single-pointing level, or at a one mosaic per revolution level, but it is clearly detected in the total mosaic (see Fig. 1). We extracted an average spectrum from the total mosaic using the MOSAIC_SPEC tool available within the osa 9.0 software package.

3 ANALYSIS AND RESULTS

3.1 Light curves and timing analysis

The light curves of IGR J17285–2922 observed with the EPIC pn in the soft (0.3–2 keV) and hard (2–12 keV) energy ranges are shown in Fig. 2. A similar behaviour is displayed by the source emission observed with both MOS1 and MOS2. The average flux does not vary during the observation, but some rapid variability is present. This is clearly visible in the power spectrum shown in Fig. 3, which has been obtained by averaging the power spectra (0.3–12 keV) of 391 time intervals of 51.2 s each, binned at 0.1 s. The fractional rms variability, integrated over the 0.01–1 Hz range, is about 20 per cent.

The hardness ratio between the soft and hard energy ranges (bottom panel of Fig. 2) is consistent with a constant value. A fit with a constant gives a value of 0.989 ± 0.004 [χ²/ν = 1.27 for
156 degrees of freedom (d.o.f.). Therefore, in the following we perform a spectral analysis integrating over the whole duration of the observation.

The low statistics hampers a meaningful temporal analysis at high energies, since the source is not detected in single pointings, but only in the total mosaic of the summed IBIS/ISGRI observations (see Section 2.2).

3.2 Spectroscopy

Fitting the EPIC spectra (pn+MOS1+MOS2) with an absorbed power law resulted in structured residuals near 2.2 keV and below 1 keV, which can be ascribed to residual uncertainties in the calibration. The largest departure of the data with respect to the model is due to narrow negative residuals near 2.2 keV present in the EPIC pn, likely due to an incorrect instrumental modelling of the gold mirror edges, as already noted, for example, in the XMM–Newton spectrum of GRO J1655–40 (Díaz Trigo et al. 2007). The other discrepancies present around and below 1 keV have often been observed in other X-ray binaries, especially in the case of hard X-ray emission (e.g. Boirin et al. 2005; Sidoli et al. 2005, 2008). Some authors usually exclude the softest part of EPIC data, others include Gaussian lines to account for these residuals (e.g. Díaz Trigo et al. 2007). Here we decided not to exclude particular energy ranges, but instead to include a 2 per cent systematic error in the EPIC data, both when fitting the EPIC spectra alone (pn+MOS1+MOS2) and when fitting them together with the ISGRI higher energy spectrum. Other authors adopted similar or even higher systematic errors (Cadolle Bel et al. 2004) to account for these residual discrepancies. Note however that, if we perform the spectroscopy only considering the higher energy range 2.5–10 keV (EPIC data), the resulting spectral parameters are always consistent with the results we are reporting in the following paragraphs.

The spectroscopy of the EPIC data alone (0.5–10 keV) with an absorbed power law ($\chi^2 = 1.094$ for 640 d.o.f.) resulted in the following parameters: $N_H = (5.10 \pm 0.05) \times 10^{21} \text{ cm}^{-2}$ and photon index $\Gamma = 1.61 \pm 0.01$. Adopting alternative simple models resulted in much worse fits: a multicolour disc blackbody (DISKBB in xspec) or a simple blackbody gave $\chi^2 > 5$. Additional soft components of the power-law model, as well as a high-energy exponential cut-off, were not required by the data. Other complex fits, e.g. a multicolour disc blackbody (DISKBB in xspec) plus a blackbody, although formally acceptable ($\chi^2 = 1.100$ for 638 d.o.f.), underestimated the flux seen at higher energies with INTEGRAL, thus requiring an additional hard power-law component.

The RGS spectra (0.5–2 keV) resulted in net source count rates of 0.150 ± 0.003 and 0.192 ± 0.003 counts s$^{-1}$, respectively, in RGS1 and RGS2. RGS spectra did not show evidence for narrow lines. An absorbed power law was a good fit to the data ($\chi^2 = 0.918$ for 3038 d.o.f.) resulting in a column density in the range $[0.57–0.77] \times 10^{22} \text{ cm}^{-2}$ and a photon index Γ between 1.48 and 2.10 (90 per cent uncertainty). This is consistent with the EPIC results, so we will not discuss the RGS data further.

The INTEGRAL/ISGRI spectrum (17.8–150.4 keV) displayed a slope consistent with the one seen with XMM–Newton below 10 keV: a fit with a power law resulted in a photon index of 1.7 ± 0.3 ($\chi^2 = 0.742$ for 3 d.o.f.).

We next analysed the broad-band 0.5–150 keV emission with a joint fit of XMM–Newton/EPIC (pn+MOS 1+MOS 2) and INTEGRAL/ISGRI. We included constant factors in the spectral fitting to allow for normalization uncertainties between the instruments. An absorbed power-law model resulted in a good fit ($\chi^2/$d.o.f. = 1.091/644), as shown in Fig. 4. The best-fitting spectral parameters are equal to those obtained for the EPIC spectrum alone and the ISGRI/EPIC pn constant factor was 1.17 ± 0.18. The fluxes corrected for the absorption are the following: $F = 6.8 \times 10^{-11}$ and 2.4×10^{-10} erg cm$^{-2}$ s$^{-1}$, respectively, in the 1–10 and 1–100 keV energy ranges (assuming the EPIC pn response matrix extrapolated

![Figure 3. Power spectrum of EPIC pn source events in the energy range 0.3–12 keV.](image)

![Figure 4. 0.5–150 keV broad-band spectrum of IGR J17285–2922 (pn+MOS1+MOS2 together with ISGRI data), fitted with an absorbed power-law model. Upper panel shows the photon spectrum, while the lower panel displays the counts spectrum together with the residuals in units of standard deviations.](image)
to higher energies). Fitting the EPIC and ISGRI data with a power law with a high-energy exponential cut-off (CUTOFFPL model in XSPEC) allows us to put a lower limit to the cut-off energy E_c of ~ 50 keV (Fig. 5, 90 per cent confidence level).

We also tried a double-component model, adding a soft component to the power-law continuum: using a blackbody together with a power law, we obtained a blackbody temperature of $kT = 0.20_+0.07$ keV and a small radius $R_{	ext{bb}} = 0.80^{+0.46}_{-0.38}$ km (at a distance of 8 kpc; χ^2/d.o.f. = 1.028/642). An F-test resulted in a probability of 2.631×10^{-7}. Similar results were obtained assuming a DISKBB model for the additional component (χ^2/d.o.f. = 1.080/642; F-test probability of 1.187 $\times 10^{-2}$), resulting in an inner disc temperature of $1.2^{+2.0}_{-0.3}$ keV and an innermost disc radius, R_{in} ($\cos i$)$^{0.5}$, of 0.20$^{+0.31}_{-0.09}$ km at 8 kpc (i is the disc inclination). Therefore, we conclude that even if we cannot rule out the presence of a weak additional soft component, there is no statistical evidence for its presence in the current data.

We next tried to describe the broad-band spectrum with physical models which involve a Comptonizing plasma, like COMPPT and BMC in XSPEC. A fit with the COMPPT model (Titarchuk 1994) returns a scenario with cold seed photons (0.05–0.09 keV) upscattered by a corona (disc geometry) with optical depth $\tau = 1.5^{+0.5}_{-0.4}$ and electron temperature $kT_e > 20$ keV (χ^2/d.o.f. = 1.080/642).

We also fit the data with the BMC model (Titarchuk, Mastichiadis & Kylafis 1996). This model is the sum of a blackbody (BB) plus its Comptonization, the latter obtained as a consistent convolution of the BB itself with the Green’s function of the Compton corona. The free parameters of the BMC model (apart from the normalization) are the BB colour temperature, kT_{BB}, the spectral energy index, α, and the logarithm of the illuminating factor A, $\log A$. The $\log A$ parameter is an indication of the fraction of the upscattered BB photons with respect to the BB seed photons directly visible. In the extreme cases, the seed photons can be completely embedded in the Comptonizing cloud (none directly visible; $A \gg 1$, e.g. $\log A = 8$) or there is no coverage by the Compton cloud ($A \ll 1$, e.g. $\log A = -8$), and we directly observe the seed photon spectrum (equivalent to a simple BB, with no Comptonization). In our case, we obtain (χ^2/d.o.f. = 1.027/642) a $kT_{\text{BB}} = 0.07^{+0.03}_{-0.01}$ keV, seed photon population upscattered with $\alpha = 0.64 \pm 0.02$ and $\log A = -0.24^{+0.02}_{-0.01}$. We note that the BMC model has no cut-off in it (i.e. we are in the power-law shape case), and the well-constrained α parameter ($\Gamma = \alpha + 1$) indicates the overall Comptonization efficiency. The lower the α value is, the higher is the efficiency, that is, the higher is the energy transfer from the hot electrons to the soft seed photons.

4 DISCUSSION AND CONCLUSIONS

Our XMM–Newton ToO observation of IGR J17285–2922/XTE J1728–295 triggered by its recent outburst, coupled with simultaneous INTEGRAL data, allowed us to derive the first broad-band spectrum (0.5–150 keV) of this VFXRT. During this outburst, the second shown by this source in almost seven years, follow-up observations were carried out with different satellites and ground-based telescopes. The source position was first refined thanks to a Swift/X-ray Telescope (Swift/XRT) pointing (Yang et al. 2010a). This ruled out all the six sources detected with Chandra in the INTEGRAL error circle when IGR J17285–2922 was in quiescence (Tomsick et al. 2008) as possible soft X-ray counterparts. A subarcsecond position was later determined with Chandra (Chakrabarty, Jonker & Markwardt 2010), leading to the identification of a likely optical counterpart (Kong et al. 2010; Russell et al. 2010; Torres et al. 2010). This star, at coordinates RA (J2000) = $17^{h}28^{m}38^{s}86$, Dec. (J2000) = $-29^{\circ}21^{\prime}44^{\prime\prime}0$ (Torres et al. 2010), appeared bluer and more variable than other candidates inside the Chandra error region. It was not detected in archival optical images taken three months before the last outburst, with an upper limit of R magnitude > 21 (Kong et al. 2010).

The faintness of the optical counterpart in quiescence allows us to better constrain the source nature and its distance. In the following, we use a visual extinction $A_V = 2.4$ mag (which implies $A_R = 1.8$ mag), derived from the absorbing column density resulting from the X-ray spectroscopy (Güver & Özel 2009).

A high-mass X-ray binary can be excluded, because, even if placed at the Galactic boundaries, it would have a brighter R magnitude. For example, to have $R > 21$ mag, a B0V star should lie at a distance larger than 450 kpc, and a B0.5 supergiant star at more than 1.6 Mpc. The source is more likely a low-mass X-ray binary (LMXB), being fully compatible with the observed constraint: for example, a K5V companion star (assuming $M_V = +7.3$, $V - R = +0.99$; Johnson 1966), placed at 8 kpc, would show a magnitude $R \sim 22$–23. On the other hand, the measured upper limit $R > 21$ mag would imply an LMXB distance larger than ~ 4 kpc. Thus, we conclude that IGR J17285–2922 is an LMXB located at a distance greater than 4 kpc.

During its first outburst in 2003, IGR J17285–2922 was caught at first in a soft state with the RXTE satellite, consistent with a steep power law with a photon index of 3.6–3.8 (Markwardt & Swank 2010). Then, during INTEGRAL observations performed about one month later, the 20–150 keV spectrum seemed to be harder, with $\Gamma = 2.1 \pm 0.17$ (Barlow et al. 2005).

During the evolution of the second outburst in 2010 (see Table 1 and Fig. 6), the source spectrum was apparently harder when fainter, with a continuum always dominated by a power law with a slope within the canonical range for the low-hard state in LMXBs ($\Gamma \sim 1.5$–1.7 for BH binaries, hereafter BHB; Belloni 2010). This behaviour (low-hard state during the entire outburst) is consistent with a BH nature, although the canonical evolution of the outburst in a BH transient (BHT) starts with a low-hard state and then undergoes a transition to a highsoft state, where the thermal emission from the accretion disc dominates the X-ray spectrum, following a q-shaped behaviour in the hardness–intensity diagram (see the recent review of Belloni 2010, and references therein).
sources. Thus we can recalculate these upper limits from the XMM–Newton data used in this study. Turler et al. (2010) obtained a conservative upper limit to the X-ray luminosity in quiescence of 5.5–6.4 × 10^{32} erg s^{-1} (0.3–10 keV, unabsorbed flux, assuming Γ = 1–2). This translates into an X-ray luminosity in quiescence $L_{\text{quies}} < (1.7–2.0) \times (d_{\text{kpc}}^2) \times 10^{32}$ erg s^{-1}, where d_{kpc} is the source distance in units of kpc. If IGR J17285–2922 is located closer than the Galactic Centre, this conservative upper limit to the quiescence becomes low and possibly indicative of a BHB.

Neither X-ray pulsations nor type I X-ray bursts have been observed. The power-density spectrum (PDS) measured with XMM–Newton resembles the typical shape and normalization of aperiodic variability in low-hard states of LMXBs (McClintock & Remillard 2006; Belloni 2010), but nothing really conclusive can be said about the nature of the compact object.

This observation, although leading to the first broad-band spectroscopy up to 150 keV, demonstrates that it is very difficult to discriminate a black hole from a neutron star in a VFXT. From the spectral point of view, it does not exist, to date, a firm spectral signature which allows us to distinguish a black hole from a neutron star, especially if the X-ray transient remains in a low/hard state along the entire outburst. The same can be said about the PDS in the frequency range of our data: a possible way to distinguish a black hole from a neutron star was proposed by Sunyaev & Revnivtsev (2000), but it involves PDSs at higher frequencies, above 500 Hz. Moreover, in VFXTs ($M < 2 \times 10^{-10} M_{\odot} \text{ yr}^{-1}$) hosting accreting neutron stars, the type I X-ray bursts seem to be rare (Cornelisse et al. 2004; Wijnands 2008), although a proper comparison with the different possible explanations (e.g. Peng, Brown & Truran 2007) needs more observational data, especially on the bursts’ recurrence time at different accretion regimes.

ACKNOWLEDGMENTS

This work is based on data from observations with XMM–Newton and INTEGRAL. XMM–Newton is an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). INTEGRAL is an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland and Spain), Czech Republic and Poland, and with the participation of Russia and the USA. The INTEGRAL data used in this paper are taken from the INTEGRAL Galactic bulge monitoring program (PI: E. Kuulkers) that are publicly available and hence open to the larger scientific community.

The XMM–Newton data were processed using the Science Analysis System (SAS) version 16.0.0 and the X-ray Monitor Model (XMM–Newton) data were processed using the XSELECT package. The observations and the associated analysis are performed mainly as part of the XMM–Newton and INTEGRAL programs (PI: E. Kuulkers) that are publicly available and hence open to the larger scientific community.

The paper is taken from the INTEGRAL Galactic bulge monitoring program (PI: E. Kuulkers) that are publicly available and hence open to the larger scientific community.

This observation, although leading to the first broad-band spectroscopy up to 150 keV, demonstrates that it is very difficult to discriminate a black hole from a neutron star in a VFXT. From the spectral point of view, it does not exist, to date, a firm spectral signature which allows us to distinguish a black hole from a neutron star, especially if the X-ray transient remains in a low/hard state along the entire outburst. The same can be said about the PDS in the frequency range of our data: a possible way to distinguish a black hole from a neutron star was proposed by Sunyaev & Revnivtsev (2000), but it involves PDSs at higher frequencies, above 500 Hz. Moreover, in VFXTs ($M < 2 \times 10^{-10} M_{\odot} \text{ yr}^{-1}$) hosting accreting neutron stars, the type I X-ray bursts seem to be rare (Cornelisse et al. 2004; Wijnands 2008), although a proper comparison with the different possible explanations (e.g. Peng, Brown & Truran 2007) needs more observational data, especially on the bursts’ recurrence time at different accretion regimes.

ACKNOWLEDGMENTS

This work is based on data from observations with XMM–Newton and INTEGRAL. XMM–Newton is an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). INTEGRAL is an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland and Spain), Czech Republic and Poland, and with the participation of Russia and the USA. The INTEGRAL data used in this paper are taken from the INTEGRAL Galactic bulge monitoring program (PI: E. Kuulkers) that are publicly available and hence open to the larger scientific community.

This observation, although leading to the first broad-band spectroscopy up to 150 keV, demonstrates that it is very difficult to discriminate a black hole from a neutron star in a VFXT. From the spectral point of view, it does not exist, to date, a firm spectral signature which allows us to distinguish a black hole from a neutron star, especially if the X-ray transient remains in a low/hard state along the entire outburst. The same can be said about the PDS in the frequency range of our data: a possible way to distinguish a black hole from a neutron star was proposed by Sunyaev & Revnivtsev (2000), but it involves PDSs at higher frequencies, above 500 Hz. Moreover, in VFXTs ($M < 2 \times 10^{-10} M_{\odot} \text{ yr}^{-1}$) hosting accreting neutron stars, the type I X-ray bursts seem to be rare (Cornelisse et al. 2004; Wijnands 2008), although a proper comparison with the different possible explanations (e.g. Peng, Brown & Truran 2007) needs more observational data, especially on the bursts’ recurrence time at different accretion regimes.

ACKNOWLEDGMENTS

This work is based on data from observations with XMM–Newton and INTEGRAL. XMM–Newton is an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). INTEGRAL is an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland and Spain), Czech Republic and Poland, and with the participation of Russia and the USA. The INTEGRAL data used in this paper are taken from the INTEGRAL Galactic bulge monitoring program (PI: E. Kuulkers) that are publicly available and hence open to the larger scientific community.

This observation, although leading to the first broad-band spectroscopy up to 150 keV, demonstrates that it is very difficult to discriminate a black hole from a neutron star in a VFXT. From the spectral point of view, it does not exist, to date, a firm spectral signature which allows us to distinguish a black hole from a neutron star, especially if the X-ray transient remains in a low/hard state along the entire outburst. The same can be said about the PDS in the frequency range of our data: a possible way to distinguish a black hole from a neutron star was proposed by Sunyaev & Revnivtsev (2000), but it involves PDSs at higher frequencies, above 500 Hz. Moreover, in VFXTs ($M < 2 \times 10^{-10} M_{\odot} \text{ yr}^{-1}$) hosting accreting neutron stars, the type I X-ray bursts seem to be rare (Cornelisse et al. 2004; Wijnands 2008), although a proper comparison with the different possible explanations (e.g. Peng, Brown & Truran 2007) needs more observational data, especially on the bursts’ recurrence time at different accretion regimes.

ACKNOWLEDGMENTS

This work is based on data from observations with XMM–Newton and INTEGRAL. XMM–Newton is an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). INTEGRAL is an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland and Spain), Czech Republic and Poland, and with the participation of Russia and the USA. The INTEGRAL data used in this paper are taken from the INTEGRAL Galactic bulge monitoring program (PI: E. Kuulkers) that are publicly available and hence open to the larger scientific community.

This observation, although leading to the first broad-band spectroscopy up to 150 keV, demonstrates that it is very difficult to discriminate a black hole from a neutron star in a VFXT. From the spectral point of view, it does not exist, to date, a firm spectral signature which allows us to distinguish a black hole from a neutron star, especially if the X-ray transient remains in a low/hard state along the entire outburst. The same can be said about the PDS in the frequency range of our data: a possible way to distinguish a black hole from a neutron star was proposed by Sunyaev & Revnivtsev (2000), but it involves PDSs at higher frequencies, above 500 Hz. Moreover, in VFXTs ($M < 2 \times 10^{-10} M_{\odot} \text{ yr}^{-1}$) hosting accreting neutron stars, the type I X-ray bursts seem to be rare (Cornelisse et al. 2004; Wijnands 2008), although a proper comparison with the different possible explanations (e.g. Peng, Brown & Truran 2007) needs more observational data, especially on the bursts’ recurrence time at different accretion regimes.

ACKNOWLEDGMENTS

This work is based on data from observations with XMM–Newton and INTEGRAL. XMM–Newton is an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). INTEGRAL is an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland and Spain), Czech Republic and Poland, and with the participation of Russia and the USA. The INTEGRAL data used in this paper are taken from the INTEGRAL Galactic bulge monitoring program (PI: E. Kuulkers) that are publicly available and hence open to the larger scientific community.
grant from PRIN-INAF 2009, ‘The transient X-ray sky: new classes of X-ray binaries containing neutron stars’ (PI: L. Sidoli).

REFERENCES

Barlow E. J. et al., 2005, A&A, 437, L27
Belloni T. M., 2010, in Belloni T., ed., Lecture Notes in Physics, Vol. 794, States and Transitions in Black Hole Binaries. Springer-Verlag, Berlin, p. 53
Boirin L., Méndez M., Díaz Trigo M., Parmar A. N., Kaastra J. S., 2005, A&A, 436, 195
Bouchet L., del Santo M., Jourdain E., Roques J. P., Bazzano A., De Cesare G., 2009, ApJ, 693, 1871
Brocksopp C., Bandyopadhyay R. M., Fender R. P., 2004, New Astron., 9, 249
Cadolle Bel M. et al., 2004, A&A, 436, 195
Capitanio F., Belloni T., Del Santo M., Ubertini P., 2009, MNRAS, 398, 1194
Chakrabarty D., Jonker P. G., Markwardt C. B., 2010, Astron. Telegram, 2869, 1
Cocchi M., Farinelli R., Paizis A., Titarchuk L., 2010, A&A, 509, 2
Cornelisse R. et al., 2004, Nucl. Phys. B: Proc. Suppl., 132, 518
Del Santo M., Sidoli L., Mereghetti S., Bazzano A., Tarana A., Ubertini P., 2007, A&A, 468, L17
Del Santo M., Sidoli L., Romano P., Bazzano A., Wijnands R., Degenaar N., Mereghetti S., 2010, MNRAS, 403, L89
den Herder J. W. et al., 2001, A&A, 365, L1
Díaz Trigo M., Parmar A. N., Miller J., Kuulkers E., Caballero-García M. D., 2007, A&A, 462, 657
García M. R., McClintock J. E., Narayan R., Callanan P., Barret D., Murray S. S., 2001, ApJ, 553, L47
Güver T., Özel F., 2009, MNRAS, 400, 2050
Jansen F. et al., 2001, A&A, 365, L1
Johnson H. L., 1966, ARA&A, 4, 193
King A. R., Wijnands R., 2006, MNRAS, 366, L31
Kong A. K. H. et al., 2010, Astron. Telegram, 3011, 1
Kuulkers E. et al., 2007, A&A, 466, 595
Lebrun F. et al., 2003, A&A, 411, L141
Markwardt C. B., Swank J. H., 2010, Astron. Telegram, 2823, 1
McClintock J. E., Remillard R. A., 2006, in Lewin W., van der Klis M., eds, Black Hole Binaries. Cambridge Univ. Press, Cambridge, p. 157
Narayan R., McClintock J. E., 2008, New Astron. Rev., 51, 733
Paizis A. et al., 2006, A&A, 459, 187
Peng F., Brown E. F., Truran J. W., 2007, ApJ, 654, 1022
Russell D. M., Yang Y. J., Patruno A., Degenaar N., Altamirano D., Wijnands R., Lewis F., 2010, Astron. Telegram, 2827, 1
Russell D. M. et al., 2010, Astron. Telegram, 2997, 1
Sidoli L., La Palombara N., Oosterbroek T., Parmar A. N., 2005, A&A, 443, 223
Sidoli L., La Palombara N., Oosterbroek T., Parmar A. N., 2008, A&A, 488, 249
Strüder L. et al., 2001, A&A, 365, L18
Sunyaev R., Revnivtsev M., 2000, A&A, 358, 617
Titarchuk L., 1994, ApJ, 434, 570
Titarchuk L., Mastichiadis A., Kylafis N. D., 1996, A&AS, 120, C171
Tomskij J. A., Chaty S., Rodriguez J., Walter R., Kaaret P., 2008, ApJ, 685, 1143
Torres M. A. P., Steeghs D., Jonker P. G., Ross N. R., 2010, Astron. Telegram, 2870, 1
Turler M., Kuulkers C. F. E., Alfonso-Garzon J., Beckmann V., Bird T., Brandt S., Chenevez L., Courvoisier T., 2010, Astron. Telegram, 2825, 1
Turner M. J. L. et al., 2001, A&A, 365, L27
Ubertini P. et al., 2003, A&A, 411, L131
Walter R. et al., 2004, Astron. Telegram, 229, 1
Wijnands R., 2008, in Bandyopadhyay R. M., Wachter S., Gelino D., Gelino C. R., eds, AIP Conf. Ser. Vol. 1010, Enigmatic Sub-luminous Accreting Neutron Stars in Our Galaxy. Am. Inst. Phys., New York, p. 382
Wijnands R. et al., 2006, A&A, 449, 1117
Winkler C. et al., 2003, A&A, 411, L1
Yang Y. J., Patruno A., Degenaar N., Russell D. M., Altamirano D., Wijnands R., 2010a, Astron. Telegram, 2824, 1
Yang Y. J., Degenaar N., Wijnands R., Russell D. M., Patruno A., Kaart R., Armas Padilla M., 2010b, Astron. Telegram, 2991, 1

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.