CENTERS AND CHARACTERS OF JACOBI GROUP-INARIANT DIFFERENTIAL OPERATOR ALGEBRAS

CHARLES H. CONLEY AND RABIN DAHAL

Abstract. We study the algebras of differential operators invariant with respect to the scalar slash actions of real Jacobi groups of arbitrary rank. These algebras are non-commutative and are generated by their elements of orders 2 and 3. We prove that their centers are polynomial in one variable and are generated by the Casimir operator. For slash actions with invertible indices we also compute the characters of the IDO algebras: in rank exceeding 1 there are two, and in rank 1 there are in general five. In rank 1 we compute in addition all irreducible admissible representations of the IDO algebras.

1. Introduction

The real Jacobi group G_{J}^{1} of degree 1 and rank N is the semidirect product of $\text{SL}_{2}(\mathbb{R})$ acting on a certain Heisenberg central extension of N copies of the standard representation. The theory of Jacobi forms on G_{J}^{1} was developed in [EZ85] and has since been widely used. The generalization to Jacobi forms of higher degree and rank, and in particular to Jacobi forms on G_{J}^{N}, was initiated in [Zi89].

Jacobi forms are holomorphic by definition. In the definition of automorphic forms on general semisimple Lie groups, holomorphicity is replaced by the condition that the form be an eigenfunction of all elements of the center of the universal enveloping algebra of the group [HC59], or at least that it generate a finite dimensional representation of the center [Bo66]. Berndt and Schmidt [BS98] proposed a similar approach for the Jacobi group, which of course is not semisimple: they defined automorphic forms on G_{J}^{1} using the cubic invariant operator C defined in [BB90] in place of the center. This definition was used in the study of non-holomorphic Maass-Jacobi forms in [Pi09] and [BR10]. At this time it was realized that the center of the universal enveloping algebra of G_{J}^{1} in fact acts by $\mathbb{C}[C]$ [BCR12]. Thus the definition from [BS98] coincides with the classical one.

In order to describe the representation-theoretic framework of automorphic forms, let G be a connected real Lie group, K a Lie subgroup, and V a complex representation of K. In this setting we have the G-vector bundle $G \times_{K} V$ over the homogeneous space G/K, and the space $C_{\text{sec}}^{\infty}(G \times_{K} V)$ of smooth sections of $G \times_{K} V$. The group G acts on $C_{\text{sec}}^{\infty}(G \times_{K} V)$ by translations, its complexified Lie algebra \mathfrak{g} acts by vector fields, and its universal enveloping algebra $\mathfrak{U}(\mathfrak{g})$ acts by differential operators. In the event that the vector bundle is topologically trivial, its sections may be identified with the V-valued functions. In this case the associated right action of G on the functions is called a slash action.

Key words and phrases. Jacobi group, invariant differential operators.

The first author was partially supported by Simons Foundation Collaboration Grant 207736.
Observe that the center \(\mathfrak{z}(\mathfrak{g}) \) of \(\mathcal{U}(\mathfrak{g}) \) acts on \(C^\infty_{sec}(G \times_K V) \) by differential operators which commute with the action of \(G \). In general, such differential operators are said to be invariant. The invariant differential operator algebra of \(G \times_K V \) (its “IDO algebra”) is the associative algebra of all invariant differential operators on \(C^\infty_{sec}(G \times_K V) \). We will denote it by

\[
\mathcal{D}(G \times_K V).
\]

This algebra is not necessarily commutative, and we write \(Z(\mathcal{D}(G \times_K V)) \) for its center. It is a crucial point that the \(\mathfrak{z}(\mathfrak{g}) \)-action manifestly commutes with \(\mathcal{D}(G \times_K V) \) as well as with the \(G \)-action, so there is a natural homomorphism

\[
\mathfrak{z}(\mathfrak{g}) \to Z(\mathcal{D}(G \times_K V)).
\]

In general, this homomorphism is neither injective nor surjective.

IDO algebras have been the subject of many deep investigations; see for example the survey articles [He77] and [He79] and the references therein. One focus is on eigenspace representations: if \(\chi : \mathcal{D}(G \times_K V) \to \mathbb{C} \) is a character, i.e., a homomorphism onto the scalars, the associated eigenspace representation of \(G \) is

\[
C^\infty_{sec}(G \times_K V)_\chi := \{ s \in C^\infty_{sec}(G \times_K V) : Ds = \chi(D)s \ \forall D \in \mathcal{D}(G \times_K V) \}.
\]

In the case of primary importance, \(G \) is a connected non-compact semisimple group with finite center, \(K \) is a maximal compact subgroup, and \(V \) is the trivial representation \(\mathbb{C} \). Here it is known that \(\mathcal{D}(G \times_K \mathbb{C}) \) is commutative (see [He79] for the origin of this result, as well as an extension to more general symmetric spaces). Moreover, in all but four cases \(\mathcal{D}(G \times_K \mathbb{C}) \) is in fact the image of \(\mathfrak{z}(\mathfrak{g}) \), and even in those four cases all elements of \(\mathcal{D}(G \times_K \mathbb{C}) \) can be expressed as ratios of images of elements of \(\mathfrak{z}(\mathfrak{g}) \) [He92]. In the event that \(K \) has an abelian factor and hence non-trivial 1-dimensional representations, \(\mathcal{D}(G \times_K V) \) is still commutative for \(V \) 1-dimensional, because the homomorphism from \(\mathfrak{z}(\mathfrak{g}) \) to \(\mathcal{D}(G \times_K V) \) preserves degree and the graded commutative symbol algebras of \(\mathcal{D}(G \times_K \mathbb{C}) \) and \(\mathcal{D}(G \times_K V) \) are the same. However, \(\mathcal{D}(G \times_K V) \) is in general not commutative when \(V \) is multidimensional. In the sense of [HC59] and [Bo66], an automorphic form on \(G \) is a section of \(G \times_K V \) that is invariant under a discrete subgroup of \(G \), is an eigenfunction of all elements of \(\mathfrak{z}(\mathfrak{g}) \), and satisfies a growth condition.

For general \(G \), speaking heuristically, if \(\mathcal{D}(G \times_K V) \) contains “enough” of the commutant of the action of \(G \), one might expect that \(C^\infty_{sec}(G \times_K V) \) decomposes into a multiplicity-free direct sum (possibly partially continuous) of irreducible representations under the joint action of \(G \) and \(\mathcal{D}(G \times_K V) \), i.e., under \(\mathcal{U}(\mathfrak{g}) \otimes \mathcal{D}(G \times_K V) \). In particular, one may expect the eigenspace representations of \(G \) to be irreducible. As described in [He77], in many settings this is true for most but not all characters of \(\mathcal{D}(G \times_K V) \).

Jacobi forms of degree 1 and rank \(N \) live on the homogeneous space \(G^j_N / K_N^j \), where \(K_N^j \) is the product of \(\text{SO}_2 \) with the center \(Z(G_N^j) \). In this article we investigate the algebraic structure of \(\mathcal{D}(G_N^j / K_N^j V) \). Since \(K_N^j \) is abelian, we will assume that \(V \) is 1-dimensional. Moreover, we will only treat those \(V \) with invertible indices (see Section 3), the situation of interest in number theory.

In contrast with the semisimple case, \(\mathcal{D}(G_N^j \times_K V) \) is not commutative (this goes back to Berndt; see [BB90]). Our first result is that for all \(N \), the center \(Z(\mathcal{D}(G_N^j \times_K V)) \) is precisely the image of \(\mathfrak{z}(\mathfrak{g}_N^j) \). This was previously known for \(N = 1 \) [BCR12] and \(N = 2 \) [Da13]. The structure of \(\mathfrak{z}(\mathfrak{g}_N^j) \) was deduced for \(N = 1 \)
in [BCR12] and for $N > 1$ in [CR]: it is generated by the center $\mathfrak{z}(g^J_N)$ of g^J_N itself and in addition a single “Casimir element” of degree $N + 2$, which acts by an IDO of degree 3 for $N = 1$ and of degree 4 for $N > 1$.

Our second result is the description of the characters of $\mathbb{D}(G^J_N \times K^J_N V)$: for $N > 1$ there are two, and for $N = 1$ there are five for most slash actions, but only four for certain special slash actions. For $N = 1$ we also classify the irreducible admissible representations of $\mathbb{D}(G^J_1 \times K^J_1 V)$ (see Section 6), which include its irreducible finite dimensional representations. This is accomplished by identifying $\mathbb{D}(G^J_1 \times K^J_1 V)$ with a subalgebra of $\mathfrak{u}(\mathfrak{sl}_2)$. It could be interesting to determine which of these characters and higher dimensional representations occur as constituents of the action of $\mathbb{D}(G^J_N \times K^J_N V)$ on $C^{\infty}_c(G^J_N \times K^J_N V)$.

We begin in Section 2 by recalling the structure of the Jacobi Lie group. In Section 3 we define the relevant homogeneous space, its scalar slash actions, and their IDO algebras. Most of these first two sections is a recapitulation of material in [BCR12] and [CR]. Our results are given in Sections 4, 5, and 6. We conclude in Section 7 with some remarks on directions for further research.

2. The Jacobi Lie Group G^J_N

Throughout this article all vector spaces are complex unless stated otherwise. We will write \mathbb{N} for the non-negative integers and \mathbb{Z}^+ for the positive integers.

Let $M_{m,n}(R)$ be the set of $m \times n$ matrices over a ring R, abbreviate $M_{n,n}(R)$ by $M_n(R)$, and write $M^T_n(R)$ for the subset of symmetric matrices. Given a matrix A, write A^T for its transpose, and if it is square, $\text{tr}(A)$ and $\text{det}(A)$ for its trace and determinant. Let I_n be the identity matrix in $M_n(R)$, and set $J := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

The real Jacobi group G^J_N of rank N is defined by

$G^J_N := \{ (M,X,\kappa) : M \in \text{SL}_2(\mathbb{R}), \ X \in M_{N,2}(\mathbb{R}), \ \kappa + \frac{1}{2} X J X^T \in M^T_N(\mathbb{R}) \}$,

$\{ (M_1,X_1,\kappa_1)(M_2,X_2,\kappa_2) := (M_1M_2, X_1M_2 + X_2, \kappa_1 + \kappa_2 - X_1M_2 J X_2^T) \}$.

2.1. The Jacobi Lie algebra g^J_N. The complexified Lie algebra of G^J_N is

$g^J_N = \{ (M,X,\kappa) : M \in \mathfrak{sl}_2(\mathbb{C}), \ X \in M_{N,2}(\mathbb{C}), \ \kappa \in M^T_N(\mathbb{C}) \}$,

$\{ (M_1,X_1,\kappa_1)(M_2,X_2,\kappa_2) = ([M_1,M_2], X_1M_2 - X_2M_1, X_1J X_2^T - X_2J X_1^T) \}$.

In Section 5 of [CR] one may find the formula for the exponential map of G^J_N, as well as an embedding of G^J_N in a minimal parabolic subgroup of $\text{Sp}_{2N+2}(\mathbb{R})$. (We remark that in that paper, the Jacobi group is called \tilde{G}^J_N, and the symbol G^J_N is used for its centerless quotient.) The centers of G^J_N and g^J_N are

$Z(\mathbb{D}(G^J_N)) = \{ I_2 \} \times \{ 0 \} \times M^T_N(\mathbb{R})$, \quad $\mathfrak{z}(\mathfrak{g}^J_N) = \{ 0 \} \times \{ 0 \} \times M^T_N(\mathbb{C})$.

We now fix a basis for g^J_N. Let e_r be the r^{th} standard basis vector of R^m, and let e_{rs} be the elementary matrix of $M_{m,n}(R)$ with (r,s) entry 1 and other entries 0. Set $E := e_{12}$, $F := e_{21}$, and $H := e_{11} - e_{22}$, the standard basis of \mathfrak{sl}_2. For a basis of $M_{N,2}$, take $e_r := e_{r,2}$ and $f_r := e_{r,1}$, and for a basis of M^T_N, take $Z_{rs} := \frac{1}{2}(e_{rs} + e_{sr})$. Then g^J_N has basis

$\{ E, F, H; \ e_r, f_r, 1 \leq r \leq N; \ Z_{rs}, 1 \leq r \leq s \leq N \}$.

The brackets of this basis are as follows: those on \(\mathfrak{sl}_2 \) are standard, \([e_r, f_s] = -2Z_{rs}\), and as noted, \(M_N^T \) is central. Under \(\text{ad}(H) \), the \(e_r \) are of weight 1 and the \(f_r \) are of weight \(-1\). The \(\text{ad}(E) \) and \(\text{ad}(F) \) actions are given by

\[
\text{ad}(E) : e_r \mapsto 0, \quad f_r \mapsto -e_r; \quad \text{ad}(F) : e_r \mapsto -f_r, \quad f_r \mapsto 0.
\]

There is an automorphism \(\theta \) of \(g_N^T \) of order 4, defined by

\[
\theta : H \mapsto -H, \quad E \mapsto -F \mapsto E, \quad e_r \mapsto f_r \mapsto e_r, \quad Z_{rs} \mapsto Z_{rs}.
\]

2.2. The center \(Z(g_N^T) \) of \(U(g_N^T) \). It will be useful to write \(e \) and \(f \) for the column vectors with entries \(e_r \) and \(f_r \), respectively, and \(Z \) for the symmetric matrix with entries \(Z_{rs} \). Thus for example \(f^T Ze \) and \(\det(Z) \) are elements of the universal enveloping algebra \(U(g_N^T) \).

Consider the localization \(U(g_N^T)[\det(Z)^{-1}] \) of \(U(g_N^T) \) at \(\det(Z) \). Observe that it contains the entries of \(Z^{-1} \), and define a map \(\nu : \mathfrak{sl}_2 \to U(g_N^T)[\det(Z)^{-1}] \) by

\[
\nu(H) := H - \frac{1}{4}(f^T Z^{-1}e + e^T Z^{-1} f) = H - \frac{1}{4}(f^T Z^{-1}e - N),
\]

\[
\nu(E) := E - \frac{1}{4}e^T Z^{-1}e, \quad \nu(F) := F + \frac{1}{4}f^T Z^{-1}f.
\]

The following factorization of \(U(g_N^T)[\det(Z)^{-1}] \) is given in Section 5 of [CR]. Note that the radical of \(g_N^T \) is the Heisenberg Lie algebra

\[
r^f_N := \text{Span}\{e_r, f_r, 1 \leq r \leq N; Z_{rs}, 1 \leq r \leq s \leq N\}.
\]

Theorem 2.1.

(i) \(\nu \) is a Lie algebra homomorphism. It extends to an associative algebra homomorphism \(\nu : U(\mathfrak{sl}_2) \to U(g_N^T)[\det(Z)^{-1}] \).

(ii) The image \(U(\mathfrak{sl}_2) \nu(\mathfrak{sl}_2) \) commutes with \(U(r^f_N) \).

(iii) The natural multiplication map defines an associative algebra isomorphism

\[
\nu(U(\mathfrak{sl}_2)) \otimes U(r^f_N)[\det(Z)^{-1}] \cong U(g_N^T)[\det(Z)^{-1}].
\]

This factorization is used in [CR] to compute the center \(Z(g_N^T) \) of \(U(g_N^T) \); we give the result in the next proposition. Recall that the Casimir element of \(U(\mathfrak{sl}_2) \) is

\[
\Omega_{\mathfrak{sl}_2} := H^2 + 2H + 4FE = H^2 - 2H + 4EF.
\]

Since \(\nu(\Omega_{\mathfrak{sl}_2}) \) is quadratic in \(Z^{-1} \), multiplying by \(\det(Z)^2 \) clears its denominator: \(\det(Z)^2 \nu(\Omega_{\mathfrak{sl}_2}) \) is in \(U(g_N^T) \). In fact, as explained in [CR], its denominator is \(\det(Z) \), i.e., \(\det(Z) \nu(\Omega_{\mathfrak{sl}_2}) \) is in \(U(g_N^T) \). In order to maintain the normalization of [CR], we define the Casimir element of \(U(g_N^T) \) to be

\[
\Omega_N := \det(Z)\nu(\Omega_{\mathfrak{sl}_2}) - \frac{1}{4}N(N + 4).
\]

Proposition 2.2.

(i) \(Z(g_N^T) = U(\mathfrak{sl}_2)[[\Omega_N]] = C[\Omega_N, Z_{rs} : 1 \leq r \leq s \leq N] \).

(ii) \(\Omega_N \) is in the augmentation ideal of \(U(g_N^T) \).

2.3. The structure of \(U(r^f_N) \). Suppose now that \(U(g_N^T)[Z^{-1/2}] \) is a further extension of \(U(g_N^T) \) in which \(Z \) has both a reciprocal and a symmetric square root. Let us observe that the symplectic Lie algebra \(sp_{2N} \) embeds in \(U(r^f_N)[Z^{-1/2}] \). To explain, recall that

\[
sp_{2N} := \left\{ \begin{pmatrix} A & B \\ C & -A^T \end{pmatrix} : A \in M_N(C); B, C \in M_N^T(C) \right\}.
\]

For a basis of \(sp_{2N} \), take

\[
A_{rs} := \begin{pmatrix} \epsilon_{rs} & 0 \\ 0 & -\epsilon_{sr} \end{pmatrix}, \quad B_{rs} := \begin{pmatrix} 0 & \frac{1}{2} (\epsilon_{rs} + \epsilon_{sr}) \\ 0 & 0 \end{pmatrix}, \quad C_{rs} := B^T_{rs}.
\]
Note that $fe^T - (ef^T)^T = 2Z$. The embedding $\mathfrak{sp}_{2N} \hookrightarrow \mathfrak{U}(r^N_\kappa)[Z^{-1/2}]$ is
$$\begin{align*}
A_{rs} &\mapsto -\frac{1}{4}((Z^{-1/2}fe^T Z^{-1/2})_{rs} + (Z^{-1/2}ef^T Z^{-1/2})_{sr}) = \frac{1}{2}(I_N - Z^{-1/2}f e^T Z^{-1/2})_{rs}, \\
B_{rs} &\mapsto -\frac{1}{4}(Z^{-1/2}f f^T Z^{-1/2})_{rs}, \\
C_{rs} &\mapsto \frac{1}{4}(Z^{-1/2}e e^T Z^{-1/2})_{rs}.
\end{align*}$$

3. **The homogeneous space G^I_N/K^I_N and its slash actions**

The homogeneous space of G^I_N of interest in this article is $\mathbb{H} \times \mathbb{C}^N$, where \mathbb{H} is the Poincaré upper half plane. The explicit action may be found in [CR]; in this paper we will only need the associated stabilizer subgroup of G^I_N, which is

$$K^I_N := \{(M, 0, \kappa) : M \in SO_2, \kappa \in M^I_{\kappa}(\mathbb{R})\}.$$

(Like G^I_N, K^I_N is called \tilde{K}^I_N in [CR], the symbol K^I_N being used for the quotient of the stabilizer subgroup by the center of the Jacobi group.)

The complexified Lie algebra of K^I_N is

$$\tilde{\mathfrak{k}}^I_N = \{(M, 0, \kappa) : M \in \mathfrak{so}_2(\mathbb{C}), \kappa \in M^I_{\kappa}(\mathbb{C})\}.$$

The basis (1) is not compatible with $\tilde{\mathfrak{t}}^I_N$, so we recall from [CR] the tilde basis of \mathfrak{g}^I_N:

$$\begin{align*}
\tilde{H} &:= i(F - E), \\
\tilde{E} &:= \frac{1}{2}(H + i(F + E)), \\
\tilde{F} &:= \frac{1}{2}(H - i(F + E)), \\
\tilde{Z}_{rs} &:= \frac{1}{2}iZ_{rs}, \\
\tilde{e}_r &:= \frac{1}{2}(f_r + ie_r), \\
\tilde{f}_r &:= \frac{1}{2}(f_r - ie_r).
\end{align*}$$

Observe that $\tilde{\mathfrak{t}}^I_N = \text{Span}\{\tilde{H}, \tilde{Z}_{rs} : 1 \leq r \leq s \leq N\}$, and set

$$\begin{align*}
\tilde{m}^I_N := \text{Span}\{\tilde{E}, \tilde{F}, \tilde{e}_r, \tilde{f}_r : 1 \leq r \leq N\}.
\end{align*}$$

Define $\tau : \tilde{\mathfrak{g}}^I_N \rightarrow \mathfrak{g}^I_N$ by $\tau(X) := \tilde{X}$. We collect some of its properties:

Lemma 3.1.

(i) τ is an automorphism of \mathfrak{g}^I_N which preserves \mathfrak{sl}_2 and \mathfrak{r}^I_N.

(ii) $\mathfrak{g}^I_N = \tilde{\mathfrak{t}}^I_N \oplus \tilde{m}^I_N$, and \tilde{m}^I_N is the unique $\tilde{\mathfrak{t}}^I_N$-invariant complement of $\tilde{\mathfrak{t}}^I_N$.

(iii) The \tilde{H}-weights of \tilde{E}, \tilde{F}, \tilde{e}_r, and \tilde{f}_r are 2, -2, 1, and -1, respectively.

(iv) The automorphism $\tilde{\theta} := \tau \circ \theta \circ \tau^{-1}$ of $\tilde{\mathfrak{g}}^I_N$ acts by

$$\begin{align*}
\tilde{\theta} : \tilde{H} &\mapsto -\tilde{H}, \\
\tilde{E} &\mapsto -\tilde{F}, \\
\tilde{F} &\mapsto -\tilde{E}, \\
\tilde{e}_r &\mapsto -\tilde{f}_r, \\
\tilde{f}_r &\mapsto -\tilde{e}_r, \\
\tilde{Z}_{rs} &\mapsto \tilde{Z}_{rs}.
\end{align*}$$

(v) The homomorphism ν commutes with τ, θ, and $\tilde{\theta}$. In particular,

$$\begin{align*}
\nu(\tilde{H}) &:= \tilde{H} - \frac{i}{4}(f^T \tilde{Z}^{-1} \tilde{e} + \tilde{e}^T \tilde{Z}^{-1} \tilde{f}) = \tilde{H} - \frac{i}{4}(f^T \tilde{Z}^{-1} \tilde{e} - N), \\
\nu(\tilde{E}) &:= \tilde{E} - \frac{i}{4}\tilde{e}^T \tilde{Z}^{-1} \tilde{e}, \\
\nu(\tilde{F}) &:= \tilde{F} + \frac{i}{4}\tilde{f}^T \tilde{Z}^{-1} \tilde{f}.
\end{align*}$$

(vi) $\theta(\Omega_N) = \Omega_N$, $\theta(\mathfrak{sl}_2) = \mathfrak{sl}_2$, $\tau(\mathfrak{sl}_2) = \mathfrak{sl}_2$, and $\tau(\Omega_N) = \left(\frac{i}{4}\right)^N \Omega_N$.

Proof. Check (v) directly for τ and θ on E and F; the rest then follows from $[E, F] = H$ and the definition of $\tilde{\theta}$. (If one proved an appropriate uniqueness property of ν, (v) would follow more elegantly.) For (vi), check that both θ and τ fix $\Omega_{\mathfrak{sl}_2}$ and then apply (v). We leave the rest to the reader. □
3.1. The slash actions $|_{k,L}$. As described in the introduction, our results concern the invariant differential operator algebras of the G^J_N-vector bundles over the homogeneous space $G^L_N/K^L_N = \mathbb{H} \times \mathbb{C}^N$. These vector bundles are in canonical bijection with representations of K^L_N, and since the homogeneous space is simply connected, they are also in bijection with slash actions of G^J_N. We shall consider only irreducible G^J_N-vector bundles. Since K^L_N is abelian, this means that we shall consider only line bundles, or in other words, scalar slash actions.

We will use the algebraic description of the IDO algebras developed by Helgason; see for example [He77, He79, BCR12]. This description depends only on the representation of K^L_N defining the vector bundle, so we will not need the explicit descriptions of the slash actions given in [CR]. In fact, since K^L_N is connected, we need only consider representations of its Lie algebra \mathfrak{k}_L. Helgason’s algebraic machinery works for arbitrary representations of \mathfrak{k}_L, regardless of whether or not they exponentiate to K^L_N; we will in fact treat all those with invertible indices (see below). To put it differently, we will describe the IDO algebras of the scalar slash actions with invertible indices of all covers of G^J_N on our homogeneous space; in particular, the metaplectic double cover.

The slash actions $|_{k,L}$ in [CR] are defined for all $k \in \mathbb{Z}$ and $L \in M^J_N(\mathbb{C})$. In that paper the matrix L is known as the index of the slash action, and in the number-theoretic applications it is taken to be positive definite symmetric with entries in $\frac{1}{2} \mathbb{Z}$ and diagonal entries in \mathbb{Z}; see Definition 2.9. As discussed there in Section 5.4, the representation $\pi_{k,L}$ of \mathfrak{k}_L associated to $|_{k,L}$ is 1-dimensional and acts by

$$\pi_{k,L}(\hat{H}) := -k, \quad \pi_{k,L}(\hat{Z}_{rs}) := \pi(L_{rs}).$$

We will write $\mathbb{C}_{k,L}$ for the space of $\pi_{k,L}$. The set of all irreducible representations of \mathfrak{k}_L is obtained by taking arbitrary $k \in \mathbb{C}$ and $L \in M^J_N(\mathbb{C})$. In the main results of this article we assume that L is invertible.

3.2. The IDO algebras. Let us write $\mathbb{D}_{k,L}$ for the algebra $\mathbb{D}(G^J_N \times_{K^L_N} \mathbb{C}_{k,L})$ of differential operators invariant with respect to the slash action $|_{k,L}$. We now apply results stated in [He77] to give an algebraic description of this algebra. We will use the notation of Section 4 of [BCR12]: by Theorem 4.1 of that paper, $\mathbb{D}_{k,L}$ is isomorphic to a certain algebra $\mathbb{D}_{\pi_{k,L}}$, which is defined by means of an auxiliary algebra $\mathfrak{E}_{\pi_{k,L}}$. For clarity we will suppress the π in the subscript $\pi_{k,L}$.

Here $\pi_{k,L}$ is 1-dimensional, so $\mathfrak{E}_{k,L}$ is simply $\mathfrak{u}(\mathfrak{g}^J_N)$. The left ideal $\mathcal{I}_{k,L}$ of $[BCR12]$ (34) is

$$\mathcal{I}_{k,L} := \mathfrak{u}(\mathfrak{g}^J_N) \{ Y + \pi_{k,L}(Y) : Y \in \mathfrak{k}_L \},$$

the kernel of the canonical projection $\mathfrak{u}(\mathfrak{g}^J_N) \to \mathfrak{u}(\mathfrak{g}^J_N) \otimes \mathfrak{k}_L^L \mathbb{C}_{-k,-L}$. It may be written in the more concrete form

$$\mathcal{I}_{k,L} := \mathfrak{u}(\mathfrak{g}^J_N) \{ \hat{H} - k, \hat{Z}_{rs} + \pi(L_{rs}) : 1 \leq r \leq s \leq N \}.$$ \hspace{1cm} (2)

The situation simplifies because K^L_N is connected and reductive, i.e., \mathfrak{m}^J_N is \mathfrak{k}_L^L-invariant: [BCR12] Proposition 4.4 gives

$$\mathcal{D}_{k,L} = \left(\mathfrak{u}(\mathfrak{g}^J_N) \otimes_{\mathfrak{k}_L^L} \mathbb{C}_{-k,-L} \right) \mathfrak{t}_{\mathfrak{g}^J_N}^L = \mathfrak{u}(\mathfrak{g}^J_N)^{\mathfrak{t}_{\mathfrak{g}^J_N}^L} / (\mathcal{I}_{k,L}) \mathfrak{t}_{\mathfrak{g}^J_N}^L$$

(the superscript $\mathfrak{t}_{\mathfrak{g}^J_N}^L$ indicates the $\mathfrak{t}_{\mathfrak{g}^J_N}^L$-invariants). Note that the algebra structure of $\mathcal{D}_{k,L}$ is unclear in the middle expression but clear in the right expression, because, as is easily checked, $(\mathcal{I}_{k,L}) \mathfrak{t}_{\mathfrak{g}^J_N}^L$ is a two-sided ideal in $\mathfrak{u}(\mathfrak{g}^J_N)^{\mathfrak{t}_{\mathfrak{g}^J_N}^L}$.

Henceforth we shall identify $\mathbb{D}_{k,L}$ and $\mathbb{D}_{k,L}$. Again by [BCR12] Proposition 4.4, the graded commutative algebra of $\mathbb{D}_{k,L}$ is $\mathcal{S}(\mathfrak{m}_N^I)^{\bar{\tau}}$, the $\bar{\tau}$-invariants of the symmetric algebra of \mathfrak{m}_N^I. In light of Lemma 3.1, this algebra has basis

$$\{\bar{\mathcal{F}}^{i_F} \bar{\mathcal{E}}^{i_E} \bar{f}^{i_I} \bar{e}^{l_e} : i_F, i_E \in \mathbb{N}; I_f, I_e \in \mathbb{N}^N; 2i_F + |I_f| = 2i_E + |I_e|\}.$$

(4)

Here \bar{f}^{i_I} and \bar{e}^{l_e} are given in multinomial notation:

$$I_f = (I_{f,1}, \ldots, I_{f,N}), \quad \bar{f}^{i_I} := \bar{f}_1^{i_{1,1}} \cdots \bar{f}_N^{i_{N,N}}, \quad |I_f| := I_{f,1} + \cdots + I_{f,N}.$$

We will freely regard the monomials $\bar{\mathcal{F}}^{i_F} \bar{\mathcal{E}}^{i_E} \bar{f}^{i_I} \bar{e}^{l_e}$ as elements of $\mathcal{S}(\mathfrak{m}_N^I)$, $\mathcal{U}(\mathfrak{g}_N^I)$, or $\mathbb{D}_{k,L}$, depending on the context. The next proposition describes multiplication in $\mathbb{D}_{k,L}$; it follows from (2) and (3). The subsequent results give conditions under which two IDO algebras are isomorphic.

Proposition 3.2. The IDO algebra $\mathbb{D}_{k,L}$ has basis (4). In order to write the $\mathbb{D}_{k,L}$-product of two basis monomials as a linear combination of basis monomials, use the commutation relations in $\mathcal{U}(\mathfrak{g}_N^I)$ with the following modifications:

- Replace each occurrence of \bar{Z}_{rs} by the scalar $-\pi L_{rs}$.
- Move each occurrence of \tilde{H} to the far right or far left according to the weight commutation rules in Lemma 3.1 (iii), and then replace it by k.

Lemma 3.3. Suppose that μ is an automorphism of \mathfrak{g}_N^I such that $\mu(\mathfrak{t}_N^I) = \mathfrak{t}_N^I$ and $\pi_{k,L} = \pi_{k,L}$. Then $\mu(\mathfrak{m}_N^I) = \mathfrak{m}_N^I$, and $\mathbb{D}_{k,L}$ is isomorphic to $\mathbb{D}_{k,L}$.

Proof. Since μ preserves \mathfrak{t}_N^I, it preserves $\mathcal{U}(\mathfrak{g}_N^I)^{\mathfrak{t}_N^I}$. Clearly it maps $\mathbb{I}_{k,L}$ to $\mathbb{I}_{k,L}$, so by (3) it defines the desired isomorphism. It preserves \mathfrak{m}_N^I by Lemma 3.1 (ii).

Corollary 3.4.

(i) $\mathbb{D}_{k,L} \cong \mathbb{D}_{-k,-L}$ for all k and L.

(ii) $\mathbb{D}_{k,L} \cong \mathbb{D}_{k,M,LMT}$ for all k, L, and invertible M in $M_N(\mathbb{C})$.

(iii) $\mathbb{D}_{k,L} \cong \mathbb{D}_{k,L'}$ for all k and all invertible L and L'.

Proof. For (i), note that $\pi_{k,L} = \pi_{-k,-L} \circ \bar{\theta}$. For (ii), define $\mu_M : \mathfrak{g}_N^I \rightarrow \mathfrak{g}_N^I$ by

$$\mu_M(\mathfrak{a}_L) := 1, \quad \mu_M(\mathfrak{e}_L) := (M \mathfrak{e})_L, \quad \mu_M(\mathfrak{f}_L) := (M \mathfrak{f})_L, \quad \mu_M(\bar{Z}_{rs}) := (M \bar{Z} M^T)_{rs}.$$

Check that μ_M is an automorphism of \mathfrak{g}_N^I preserving \mathfrak{t}_N^I such that $\pi_{k,LMT} = \pi_{k,L} \circ \mu_M$, so μ_M defines an isomorphism $\mathbb{D}_{k,M,LMT} \rightarrow \mathbb{D}_{k,L}$. For (c), apply (b) and Takagi's factorization of complex symmetric matrices: since L is invertible and symmetric, there exists M such that $MLMT = I_N$. □

We conclude this section with an obvious but useful lemma which follows from the fact that since $Z_{rs} \mapsto 2\pi i L_{rs}$ in $\mathbb{D}_{k,L}$, $\det(Z) \mapsto (2\pi i)^N \det(L)$.

Lemma 3.5. For L invertible, $\det(Z)^{-1} \mapsto (\frac{1}{2\pi i})^N \det(L)^{-1}$ extends the projection $\mathcal{U}(\mathfrak{g}_N^I)^{\mathfrak{t}_N^I} \rightarrow \mathbb{D}_{k,L}$ to $\mathcal{U}(\mathfrak{g}_N^I)^{\mathfrak{t}_N^I}[(\mathbb{I}_{k,L})^{\mathfrak{t}_N^I}]$.

4. The centers $Z(\mathbb{D}_{k,L})$ of the IDO Algebras

We now state our first main result: for all scalar slash actions with invertible indices, the center of the IDO algebra is polynomial in one variable and is generated by the Casimir operator, the image of the Casimir element Ω_N. As stated in the introduction, it was proven for $N = 1$ in [BCR12] and for $N = 2$ in [Da13].

Theorem 4.1. For L invertible, the center $Z(\mathbb{D}_{k,L})$ of $\mathbb{D}_{k,L}$ is the image of the center $Z(\mathfrak{g}_N^I)$ of $\mathcal{U}(\mathfrak{g}_N^I)$: the 1-variable polynomial algebra $\mathbb{C}[\Omega_N + (\mathbb{I}_{k,L})^{\mathfrak{t}_N^I}]$.

The proof of this theorem occupies the remainder of this section. By Corollary 3.4, it suffices to prove it for any one invertible \(L \). The most convenient choice is \(L = \frac{1}{2\pi} I_N \), so we define
\[
\mathbb{D}_k := \mathbb{D}_{k,IN/2\pi}, \quad \mathcal{I}_k := \mathcal{I}_{k,IN/2\pi}.
\]

We remark that the Casimir operator of \(\mathbb{D}_{k,L} \) is denoted by \(C^{k,L} \) in (2.4) of [CR]. Here it will be more convenient to use the equivalent operator
\[
C_{N,k} := \nu(\Omega_{st2}) + (\mathcal{I}_k)^{iT} = (-i)^N C^{k,IN/2\pi} + \frac{1}{4} N(N + 4).
\]

We know that the image of \(\mathfrak{z}(\mathfrak{g}_N^J) \) in \(\mathbb{D}_k \) is contained in \(Z(\mathbb{D}_k) \). The image of the center \(\mathfrak{z}(\mathfrak{g}_N^J) \) of \(\mathfrak{g}_N^J \) is the scalars, so by Proposition 2.2 the image of \(\mathfrak{z}(\mathfrak{g}_N^J) \) is \(\mathbb{C}[C_{N,k}] \). Thus we come down to proving that \(Z(\mathbb{D}_k) \) is no bigger than \(\mathbb{C}[C_{N,k}] \).

We begin by using Theorem 2.1 together with Lemma 3.1 to replace (4) by two more useful bases of \(\mathfrak{D}_N \).

In order to write the \(\mathfrak{D}_N \)-product of two basis monomials as a linear combination of basis monomials, use the following rules. First, \(X_{\nu} \) commutes with \(f \) and \(\tilde{e} \) for all \(X \in \mathfrak{sl}_2 \). Second, \([E_{\nu}, F_{\nu}] = \tilde{H}_{\nu} \), and any occurrence of \(\tilde{H}_{\nu} \) may be moved to the far right according to its weight commutation rules and replaced by \(k + \tilde{f}T \tilde{e} + 1/2 N \). Third, \([\tilde{e}_r, \tilde{f}_s] \equiv \delta_{rs} \).

Proposition 4.3. The IDO algebra \(\mathbb{D}_k \) has basis
\[
\{ \tilde{F}_{\nu}^{ij} \tilde{E}_{\nu}^{kl} f_i^{\prime} \tilde{e}_l^{\prime} C_{N,k}^{ij} : i_F, i_E, i_C \in \mathbb{N}; i_F + |I_f| = 2 i_E + |I_e| \}.
\]
In order to write the \(\mathbb{D}_N \)-product of two basis monomials as a linear combination of basis monomials, use the rules in Proposition 4.2 together with the facts that \(C_{N,k} \) is central and \(\tilde{F}_\nu \tilde{E}_\nu = \frac{1}{4}(C_{N,k} - \tilde{H}_\nu^2 - 2 \tilde{H}_\nu) \).

As usual, write \((\mathbb{D}_k)_{\text{Lie}} \) for \(\mathbb{D}_k \) regarded as a Lie algebra via the commutator bracket. The proof of Theorem 4.1 hinges on a certain Lie subalgebra of \((\mathbb{D}_k)_{\text{Lie}} \). The next lemma is proven by direct calculation. Working in \(\mathbb{D}_k \), set
\[
\mathcal{E}_{rs} := \frac{1}{2} (\tilde{f}_r \tilde{e}_s + \tilde{e}_s \tilde{f}_r), \quad \mathcal{E} := \sum_{r=1}^N \mathcal{E}_{rr}, \quad \mathfrak{a}_N := \text{Span}\{ \mathcal{E}_{rs} : 1 \leq r, s \leq N \}.
\]

Lemma 4.4. (i) \(\mathfrak{a}_N \) is a Lie subalgebra of \((\mathbb{D}_k)_{\text{Lie}} \).

(ii) \(\mathcal{E}_{rs} \mapsto \mathcal{E}_{rs} \) is a Lie isomorphism from \(\mathfrak{g}_N \) to \(\mathfrak{a}_N \).
(iii) \mathcal{E} spans the center of \mathfrak{a}_N.

(iv) The adjoint action $\text{ad}(\mathcal{E}_rs)$ of \mathcal{E}_rs on \mathbb{D}_k is the derivation determined by

$$
\tilde{F}_\nu \mapsto 0, \quad \tilde{E}_\nu \mapsto 0, \quad \tilde{f}_i \mapsto \delta_{si}\tilde{f}_r, \quad \tilde{e}_i \mapsto -\delta_{ri}\tilde{e}_s, \quad C_{N,k} \mapsto 0.
$$

(v) $\tilde{F}_\nu^p \tilde{E}_\nu^p \tilde{f}_l \tilde{e}_l C_{N,k}^c$ is an eigenvector of $\text{ad}(\mathcal{E})$ of eigenvalue $|I_f| - |I_e|$.

Proof of Theorem 4.1. First, the centralizer in \mathbb{D}_k of \mathcal{E} is

$$
(\mathbb{D}_k)^{\mathcal{E}} = \text{Span}\{ \tilde{f}^i \tilde{e}^j C_{N,k}^c : I_f, I_e \in \mathbb{N}^N; |I_f| = |I_e|; i_C \in \mathbb{N} \}.
$$

This is because by Lemma 4.4 (v), the only elements of the basis of Proposition 4.3 commuting with \mathcal{E} have $|I_f| = |I_e|$, which forces $i_F = i_E = 0$.

Second, the centralizer in \mathbb{D}_k of \mathfrak{a}_N is $(\mathbb{D}_k)^{\mathfrak{a}_N} = \mathbb{C}[C_{N,k}, \mathcal{E}]$. To prove this, use Lemma 4.4 (ii) and (iv) to check that the isomorphism from \mathfrak{a}_N to \mathfrak{gl}_N carries the \mathfrak{a}_N-module $\text{Span}\{ \tilde{f}^i \tilde{e}^j : |I_f| = |I_e| = m \}$ to the \mathfrak{gl}_N module $S^m(\mathbb{C}^N) \otimes S^m(\mathbb{C}^N)^*$, where $S^m(\mathbb{C}^N)$ is the mth symmetric power of the standard module of \mathfrak{gl}_N. This is the tensor product of an irreducible module with its dual, so by Schur’s lemma it contains a unique trivial submodule. Equating dimensions gives

$$
(\text{Span}\{ \tilde{f}^i \tilde{e}^j : |I_f| = |I_e| \leq m \})^{\mathfrak{a}_N} = \text{Span}\{ \mathcal{E}^j : j \leq m \}.
$$

Finally, since $C_{N,k}$ and \mathcal{E} are clearly algebraically independent and \mathbb{D}_k contains elements of non-zero \mathcal{E}-weight, we find that the center of \mathbb{D}_k is contained in, and therefore equal to, $\mathbb{C}[C_{N,k}]$. □

5. The characters of the IDO algebras in rank $N > 1$

Our second main result is the classification of the characters of $\mathbb{D}_{k,L}$ for L invertible. By Corollary 3.4 it suffices to treat \mathbb{D}_k, just as in Section 4. In this section we give the result for $N > 1$. We begin by defining two characters which exist for all N. Let \mathcal{L}_k^f be the subspace of \mathbb{D}_k spanned by elements “with \tilde{F}’s and \tilde{f}’s on the left”, and let \mathcal{L}_k^c be the subspace “with \tilde{E}’s and \tilde{e}’s on the left”:

$$
\mathcal{L}_k^f := \text{Span}\{ \tilde{F}_\nu^p \tilde{f}_l \tilde{e}_l \mathcal{E}_N^c : 2i_F + |I_f| = 2i_E + |I_e| > 0 \},
$$

$$
\mathcal{L}_k^c := \text{Span}\{ \tilde{F}_\nu^p \tilde{f}_l \tilde{e}_l \mathcal{E}_N^c : 2i_F + |I_f| = 2i_E + |I_e| > 0 \}.
$$

Lemma 5.1.

(i) \mathcal{L}_k^f and \mathcal{L}_k^c are two-sided ideals in \mathbb{D}_k of codimension 1.

(ii) $\tilde{\theta}$ drops to an isomorphism $\tilde{\theta}_k : \mathbb{D}_k \rightarrow \mathbb{D}_{-k}$ such that $\tilde{\theta}_{-k} \circ \tilde{\theta}_k = 1$.

$$
\tilde{\theta}_k(\tilde{F}_\nu^p \tilde{f}_l \tilde{e}_l \mathcal{E}_N^c) = (-1)^{i_F + |I_f| + i_E} \tilde{E}_\nu^p \tilde{f}_l \tilde{e}_l \mathcal{E}_N^c, \quad \tilde{\theta}_k(\mathcal{L}_k^f) = \mathcal{L}_k^c.
$$

Proof. Note that \mathcal{L}_f is the span of the elements of the basis (6) other than 1, because \tilde{f}_r and \tilde{E}_ν commute. Therefore it is of codimension 1. By the multiplication rules given in Proposition 4.2, the product of two non-identity elements of (6) is a linear combination of non-identity basis elements. Hence \mathcal{L}_k^f is a two-sided ideal.

The existence of the isomorphism $\tilde{\theta}_k$ follows from Corollary 3.4 (i) and its proof. The formula for its action on the elements of (6) follows from (5) and Lemma 3.1 (iv). The fact that $|I_f| + |I_e|$ is even for all elements of (6) gives $\tilde{\theta}_{-k} \circ \tilde{\theta}_k = 1$. It is now clear that $\tilde{\theta}_k(\mathcal{L}_k^f) = \mathcal{L}_k^c$. Part (i) for \mathcal{L}_k^c follows. □

The next lemma gives generators for \mathbb{D}_k. It follows easily from Proposition 4.3 and the fact that \mathbb{D}_k is commutative up to symbol.

Lemma 5.2. \mathbb{D}_k is generated by $\{ \tilde{F}_f \tilde{e}_r \tilde{e}_s, \tilde{E}_\nu \tilde{f}_r \tilde{f}_s, \mathcal{E}_rs, C_{N,k} : 1 \leq r, s \leq N \}$.

The two characters of \(\mathbb{D}_k \) existing for all \(N \) are the projections to \(C \cdot 1 \) along \(\mathcal{L}_k \) and \(\mathcal{L}_k^f \). We now give their actions on the generators in Lemma 5.2, and prove that for \(N > 1 \), they are the only characters of \(\mathbb{D}_k \).

Proposition 5.3. The homomorphism \(\chi_k^f : \mathbb{D}_k \rightarrow \mathbb{C} \) with kernel \(\mathcal{L}_k^f \) maps

\[
\tilde{F}_\nu \tilde{e}_r \tilde{e}_s \mapsto 0, \quad \tilde{E}_\nu \tilde{f}_r \tilde{f}_s \mapsto 0, \quad \mathcal{E}_{rs} \mapsto \frac{1}{2} \delta_{rs}, \quad \mathcal{C}_{N,k} \mapsto (k + \frac{1}{2} N)(k + \frac{1}{2} N + 2).
\]

The homomorphism \(\chi_k^r : \mathbb{D}_k \rightarrow \mathbb{C} \) with kernel \(\mathcal{L}_k^r \) is \(\chi_k^f \circ \tilde{\theta}_k \). It maps

\[
\tilde{F}_\nu \tilde{e}_r \tilde{e}_s \mapsto 0, \quad \tilde{E}_\nu \tilde{f}_r \tilde{f}_s \mapsto 0, \quad \mathcal{E}_{rs} \mapsto -\frac{1}{2} \delta_{rs}, \quad \mathcal{C}_{N,k} \mapsto (k - \frac{1}{2} N)(k - \frac{1}{2} N - 2).
\]

Proof. Since \(\tilde{F}_\nu \) and \(\tilde{E}_\nu \) commute with \(\tilde{f}_r \) and \(\tilde{e}_r \), both characters map \(\tilde{F}_\nu \tilde{e}_r \tilde{e}_s \) and \(\tilde{E}_\nu \tilde{f}_r \tilde{f}_s \) to zero. The images of \(\mathcal{E}_{rs} \) follow from

\[
\mathcal{E}_{rs} \equiv \tilde{f}_r \tilde{e}_s + \frac{1}{2} \delta_{rs} \equiv \tilde{e}_s \tilde{f}_r - \frac{1}{2} \delta_{rs}.
\]

For the images of \(\mathcal{C}_{N,k} \), use \(\tilde{H} \equiv k \) when on the far right, \(\tilde{H}_\nu \equiv \tilde{H} + \mathcal{E} \), and

\[
\mathcal{C}_{N,k} \equiv \tilde{H}_\nu(\tilde{H}_\nu + 2) + 4 \tilde{F}_\nu \tilde{E}_\nu = \tilde{H}_\nu(\tilde{H}_\nu - 2) + 4 \tilde{E}_\nu \tilde{F}_\nu. \quad \Box
\]

Theorem 5.4. For \(N > 1 \), \(\chi_k^f \) and \(\chi_k^r \) are the only characters of \(\mathbb{D}_k \).

Proof. Let \(\chi : \mathbb{D}_k \rightarrow \mathbb{C} \) be a character. The kernel of \(\chi \) must contain all commutators, and in particular all elements of non-zero \(\mathcal{E} \)-weight and all elements of the copy of \(\mathfrak{s}\mathfrak{f}_2 \) inside \(\mathfrak{a}_N \). Therefore \(\chi \) annihilates the generators \(\tilde{F}_\nu \tilde{e}_r \tilde{e}_s \), \(\tilde{E}_\nu \tilde{f}_r \tilde{f}_s \), and those \(\mathcal{E}_{rs} \) with \(r \neq s \), and maps all \(\mathcal{E}_{rr} \) to the same value, say \(x \). Note that

\[
\mathcal{E}_{12} \mathcal{E}_{21} \equiv \tilde{f}_1 \tilde{e}_2 \tilde{f}_2 \tilde{e}_1 \equiv \tilde{f}_1 \tilde{e}_1 \tilde{e}_2 \tilde{f}_2 \equiv (\mathcal{E}_{11} - \frac{1}{2})(\mathcal{E}_{22} + \frac{1}{2}).
\]

Since \(\chi \) maps the left side to 0 and the right side to \((x - \frac{1}{2})(x + \frac{1}{2}) \), we have \(x = \pm \frac{1}{2} \).

Suppose that \(x = \frac{1}{2} \). Note that

\[
(\tilde{F}_\nu \tilde{e}_1 \tilde{e}_1)(\tilde{E}_\nu \tilde{f}_1 \tilde{f}_1) \equiv (\tilde{F}_\nu \tilde{E}_\nu)(\tilde{e}_1^2 \tilde{f}_1^2) \equiv (\tilde{F}_\nu \tilde{E}_\nu)(\tilde{e}_1 \tilde{f}_1 + 1)
\]

Since \(\tilde{e}_1 \tilde{f}_1 \equiv \mathcal{E}_{11} + \frac{1}{2} \), \(\chi \) maps the right side to \(2 \tilde{F}_\nu \tilde{E}_\nu \). It maps the left side to 0, so it annihilates \(\tilde{F}_\nu \tilde{E}_\nu \). Proceed as in the proof of Proposition 5.3 to prove that \(\chi \) matches \(\chi_k^f \) on the generators in Lemma 5.2, so they are equal.

If \(x = -\frac{1}{2} \), verify \(\chi \circ \tilde{\theta}_{-k} = \chi_k^r \) and deduce \(\chi = \chi_k^r \), completing the proof. \(\Box \)

6. The representations of the IDO algebras in rank \(N = 1 \)

In this section we study the case \(N = 1 \): we classify the finite dimensional representations of \(\mathbb{D}_k \). In particular, we classify its characters: there are usually five, sometimes four. We also prove that \(\mathbb{D}_k \cong \mathbb{D}_k' \) if and only if \(k' = \pm k \). Our strategy is to embed \(\mathbb{D}_k \) in the universal enveloping algebra \(\mathcal{U}(\mathfrak{s}\mathfrak{f}_2) \) and apply the techniques used to analyze representations of \(\mathfrak{s}\mathfrak{f}_2 \).

Write \(\tilde{f} \) for \(\tilde{f}_1 \), \(\tilde{e} \) for \(\tilde{e}_1 \), and \(\mathcal{C}_k \) for \(\mathcal{C}_{1,k} \). Recall that \(\mathcal{E} \equiv \tilde{f} \tilde{e} + \frac{1}{2} \), and, when on the far right, \(\tilde{H} \equiv k \). Let us restate Proposition 4.3 and Lemma 5.2 in this context:

Proposition 6.1. For \(N = 1 \), \(\mathbb{D}_k \) has generators \{ \(\tilde{F}_\nu \tilde{e}^2, \tilde{E}_\nu \tilde{f}^2, \mathcal{E}, \mathcal{C}_k \) \}, and basis

\[
\{ \tilde{F}_\nu \tilde{E}_\nu \tilde{f}^2 \tilde{e}^2 \mathcal{C}_k^i : i_F, i_E, I_f, I_e, i\mathcal{C} \in \mathbb{N}; i_F i_E = 0; 2i_F + |I_f| = 2i_E + |I_e| \}.
\]

Here \(\mathcal{C}_k \) is central, \(\tilde{f} \) and \(\tilde{e} \) commute with \(\tilde{F}_\nu \) and \(\tilde{E}_\nu \), \([\tilde{e}, \tilde{f}] \equiv 1 \), and

\[
[\tilde{E}_\nu, \tilde{F}_\nu] \equiv \tilde{H}_\nu \equiv \tilde{H} + \mathcal{E}, \quad \tilde{F}_\nu \tilde{E}_\nu \equiv \frac{1}{4}(\mathcal{C}_{N,k} - \tilde{H}_\nu^2 - 2\tilde{H}_\nu).
\]
Keeping in mind the fact that \mathbb{D}_k is commutative up to symbol, we obtain:

Corollary 6.2.

(i) The following is a complete set of relations for the generators $\tilde{F}_\nu \tilde{e}^2$, $\tilde{E}_\nu \tilde{f}^2$, \mathcal{E}, and C_k of \mathbb{D}_k: C_k is central,

\begin{equation}
\text{ad}(\mathcal{E}) : \begin{array}{c}
\tilde{F}_\nu \tilde{e}^2 \mapsto -2 \tilde{F}_\nu \tilde{e}^2, \\
\tilde{E}_\nu \tilde{f}^2 \mapsto 2 \tilde{E}_\nu \tilde{f}^2,
\end{array}
\end{equation}

\begin{equation}
(\tilde{F}_\nu \tilde{e}^2)(\tilde{E}_\nu \tilde{f}^2) = \frac{1}{4}(\mathcal{E} + \frac{1}{2})(\mathcal{E} + \frac{3}{2})(C_k - (\mathcal{E} + k)(\mathcal{E} + k + 2)),
\end{equation}

\begin{equation}
(\tilde{E}_\nu \tilde{f}^2)(\tilde{F}_\nu \tilde{e}^2) = \frac{1}{4}(\mathcal{E} - \frac{1}{2})(\mathcal{E} - \frac{3}{2})(C_k - (\mathcal{E} + k)(\mathcal{E} + k - 2)).
\end{equation}

(ii) \mathbb{D}_k has basis $\{(\tilde{F}_\nu \tilde{e}^2)^i_F (\tilde{E}_\nu \tilde{f}^2)^j_E \mathcal{E}^k_C : i_F, j_E, j_C \in \mathbb{N}; i_F i_E = 0\}$.

(iii) $\tilde{\theta}_k$ exchanges $\tilde{F}_\nu \tilde{e}^2$ and $-\tilde{E}_\nu \tilde{f}^2$ and maps \mathcal{E} to $-\mathcal{E}$ and C_k to C_{-k}.

We remark that applying $\tilde{\theta}_{-k}$ to (8) in \mathbb{D}_{-k} gives (9) in \mathbb{D}_k.

At this point it is convenient to define an abstract copy of \mathfrak{sl}_2:

$\mathfrak{sl}_2 := \text{Span}\{x, y, h\}; \quad [x, y] = h, \quad [h, x] = 2x, \quad [h, y] = -2y.$

Let ω be its Casimir element and, as in Section 2.1, let θ be its Cartan involution:

$\omega = h^2 + 2h + 4yx; \quad \theta : h \mapsto -h, \quad x \mapsto -y \mapsto x.$

By Corollary 6.2 (ii), we may define a linear map $\iota_k : \mathbb{D}_k \to \mathfrak{u}(\mathfrak{sl}_2)$ by

$\iota_k (\tilde{F}_\nu \tilde{e}^2)^i_F (\tilde{E}_\nu \tilde{f}^2)^j_E \mathcal{E}^k_C := (y(h - k - \frac{1}{2}))^i_F (x(h - k + \frac{1}{2}))^j_E (h - k)^k_C \omega^k_C.$

Proposition 6.3. ι_k is an embedding of \mathbb{D}_k in $\mathfrak{u}(\mathfrak{sl}_2)$, and $\theta \circ \iota_k = \iota_{-k} \circ \tilde{\theta}_k$.

Proof. ι_k is injective by the PBW theorem for $\mathfrak{u}(\mathfrak{sl}_2)$, so it suffices to check that it preserves the relations given in Corollary 6.2 (i). Clearly ω is central and $y(h - k - \frac{1}{2})$ and $x(h - k + \frac{1}{2})$ are of $\text{ad}(h - k)$-weights -2 and 2, respectively. The image of (8) holds because

$\iota_k [\tilde{F}_\nu \tilde{e}^2](\tilde{E}_\nu \tilde{f}^2) = y(h - k - \frac{1}{2})x(h - k + \frac{1}{2})$

$= \frac{1}{4}(h - k + \frac{1}{2})(h - k + \frac{3}{2})(\omega - h(h + 2))$

$= \iota_k [\frac{1}{4}(\mathcal{E} + \frac{1}{2})(\mathcal{E} + \frac{3}{2})(C_k - (\mathcal{E} + k)(\mathcal{E} + k + 2))].$

The reader may check $\theta \circ \iota_k = \iota_{-k} \circ \tilde{\theta}_k$. Applying it to (8) gives (9). \square

Via the embedding ι_k, any representation of \mathfrak{sl}_2 may be regarded as a representation of \mathbb{D}_k. For reference we give the images of the generators of \mathbb{D}_k:

$\iota_k : \tilde{F}_\nu \tilde{e}^2 \mapsto y(h - k - \frac{1}{2}), \quad \tilde{E}_\nu \tilde{f}^2 \mapsto x(h - k + \frac{1}{2}), \quad \mathcal{E} \mapsto h - k, \quad C_k \mapsto \omega.$

In keeping with the representation theory of \mathfrak{sl}_2, we make the following definition:

Definition. A representation of \mathbb{D}_k is **admissible** if the action of \mathcal{E} is semisimple with finite dimensional eigenspaces.
6.1. Admissible representations. We now proceed to classify the irreducible admissible representations of D_k, and to prove that they include its irreducible finite dimensional representations. First we establish some notation.

Let V be any representation of D_k. We say that it has central character c if C_k acts on it by the scalar c. Because $\iota_k(\mathcal{E} + k) = h$, we define the λ-weight space V_λ of V to be the λ-eigenspace of $\mathcal{E} + k$. We say that λ is a weight of V if V_λ is non-zero, and we say that V has consecutive weights if its weights are the intersection of a convex subset of C with an additive coset of $2Z$. On each such coset $\lambda + 2Z$ we put the obvious left-to-right order transferred from $2Z$: for any μ and μ' in $\lambda + 2Z$, we say $\mu > \mu'$ if $\mu - \lambda > \mu' - \lambda$. For c, λ in C, define

$$M_k^-(c, \lambda) := \{-\infty\} \cup \{k + \frac{1}{2}, k + \frac{3}{2}, 1 \pm \sqrt{c + 1}\} \cap (\lambda - 2N),$$

$$M_k^+(c, \lambda) := \{\infty\} \cup \{k - \frac{1}{2}, k - \frac{3}{2}, -1 \pm \sqrt{c + 1}\} \cap (\lambda + 2N),$$

$$m_k^-(c, \lambda) := \max M_k^-(c, \lambda), \quad m_k^+(c, \lambda) := \min M_k^+(c, \lambda),$$

$$\Delta_k(c, \lambda) := \{\mu \in \lambda + 2Z : m_k^-(c, \lambda) \leq \mu \leq m_k^+(c, \lambda)\}.$$

Lemma 6.4. Suppose that V is a representation of D_k, λ is a weight of V, and v_λ is an eigenvector of C_k in V_λ of eigenvalue c. For $r \in \mathbb{N}$, define

$$v_{\lambda - 2r} := (F_\nu \c^2)^r v_\lambda, \quad v_{\lambda + 2r} := (\tilde{F}_\nu \tilde{c}^2)^r v_\lambda.$$

(i) The submodule $D_k v_\lambda$ has central character c and is Span$\{v_{\lambda + 2s} : s \in \mathbb{Z}\}$.

(ii) $D_k v_\lambda$ has consecutive weights: there is an element $m^-(v_\lambda)$ of $M_k^-(c, \lambda)$ and an element $m^+(v_\lambda)$ of $M_k^+(c, \lambda)$ such that $v_\mu \neq 0$ if and only if $m^-(v_\lambda) \leq \mu \leq m^+(v_\lambda), \quad \mu \in \lambda + 2Z$.

(iii) $D_k v_\lambda$ has unique irreducible quotient, whose equivalence class is determined by λ and c. A basis of this quotient is given by the images of those v_μ such that $\mu \in \Delta_k(c, \lambda)$.

Proof. For (i), use Corollary 6.2 (ii) and the facts that C_k is central and v_λ is a joint eigenvector of C and C_k. For (ii), use (7).

For (iii) and (iv), note that $v_{\lambda \pm 2r_0} = 0$ implies $v_{\lambda \pm 2r} = 0$ for $r \geq r_0$. Hence there exist $m^-(v_\lambda)$ in $(\lambda - 2N)$ and $m^+(v_\lambda)$ in $(\lambda + 2N)$ such that

$$\{v_\mu : \mu \in \lambda + 2Z, m^-(v_\lambda) \leq \mu \leq m^+(v_\lambda)\}$$

is a basis of $D_k v_\lambda$. Apply (8) and (9) to obtain

$$\tilde{F}_\nu \tilde{c}^2 (\tilde{F}_\nu \tilde{c}^2)^r v_\lambda = \frac{1}{2}(\mu - k + \frac{1}{2})(\mu - k + \frac{3}{2})(c - \mu^2 - 2\mu)v_\mu,$$

$$\tilde{F}_\nu \c^2 (\tilde{F}_\nu \tilde{c}^2)^r v_\lambda = \frac{1}{2}(\mu - k - \frac{1}{2})(\mu - k - \frac{3}{2})(c - \mu^2 + 2\mu)v_\mu.$$
that $C_k v_\mu = cv_\mu$ and $E v_\mu = (\mu - k)v_\mu$. By definition, $(\tilde{F}_\nu c^2)v_\mu = v_{\mu - 2}$ for $\mu \leq \lambda$ and $(E v_\mu 2) = v_{\mu + 2}$ for $\mu \geq \lambda$. The action of $F_c c^2$ on those v_μ with $\mu > \lambda$ follows from (11), and the action of $E v_\mu 2$ on those v_μ with $\mu < \lambda$ follows from (12).

For (vi), check that if $\mu \in \lambda + 2\mathbb{N}$, then $\text{Span}\{v_\nu : \nu \in \mu + \mathbb{Z}^+\}$ is \mathbb{D}_k-invariant if and only if (11) is zero, and that $m^\pm_k(c, \lambda)$ is the least such μ. Similarly, if $\mu \in \lambda - 2\mathbb{N}$, then $\text{Span}\{v_\nu : \nu \in \mu - \mathbb{Z}^+\}$ is \mathbb{D}_k-invariant if and only if (12) is zero, and $m^\pm_k(c, \lambda)$ is the greatest such μ. The result follows. □

Proposition 6.5.

(i) Every irreducible admissible representation of \mathbb{D}_k has a central character, consecutive weights, and 1-dimensional weight spaces.

(ii) Irreducible finite dimensional representations of \mathbb{D}_k are admissible.

Proof. If V is a non-zero admissible representation, let V_λ be a non-zero weight space. Then V_λ is finite dimensional and preserved by C_k, so it contains an eigenvector v_λ. If V is irreducible it must be equal to $\mathbb{D}_k v_\lambda$. Part (i) now follows from Lemma 6.4. If V is finite dimensional it contains eigenspaces of E, so the same argument works. □

Theorem 6.6. The central character and weights are complete invariants of the irreducible admissible representations of \mathbb{D}_k. More precisely:

(i) For all scalars c and λ, there is an irreducible admissible representation $V_k(c, \lambda)$ with central character c and weights $\Delta_k(c, \lambda)$.

(ii) $V_k(c, \lambda)$ and $V_k(c', \lambda')$ are equivalent if and only if $c = c$ and $\lambda' \in \Delta_k(c, \lambda)$.

(iii) Every irreducible admissible representation is equivalent to some $V_k(c, \lambda)$.

Proof. For (i), let $V_k(c, \lambda)$ be a vector space with basis $\{v_\mu : \mu \in \Delta_k(c, \lambda)\}$. Define an action of \mathbb{D}_k on $V_k(c, \lambda)$ as follows. First, $C_k v_\mu = cv_\mu$ and $E v_\mu = (\mu - k)v_\mu$. Second, $(E v_\mu 2)v_\mu = v_{\mu + 2}$ for $\lambda \leq \mu < m^+_k(c, \lambda)$, and 0 for $\mu = m^+_k(c, \lambda)$, and similarly, $(F_c c^2)v_\mu = v_{\mu - 2}$ for $\lambda \geq \mu > m^-_k(c, \lambda)$, and 0 for $\mu = m^-_k(c, \lambda)$. Third, use (12) to define $(E v_\mu 2)v_\mu$ for $\mu < \lambda$, and (11) to define $(F_c c^2)v_\mu$ for $\mu > \lambda$.

It is easy to check that this action satisfies the relations given in Corollary 6.2, so $V_k(c, \lambda)$ is indeed a representation of \mathbb{D}_k. Its irreducibility together with Parts (ii) and (iii) of the theorem are immediate from Lemma 6.4 (v) and (vi). □

As a corollary we obtain the characters of \mathbb{D}_k. For the proof, note that $V_k(c, \lambda)$ is 1-dimensional if and only if $m^+_k(c, \lambda) = \lambda = m^-_k(c, \lambda)$.

Corollary 6.7. $V_k(c, \lambda)$ is 1-dimensional if and only if it is one of

$$V_k(0,0), \quad V_k(\{k \pm \frac{3}{2}\}^2 - 1, k \pm \frac{1}{2}), \quad V_k(\{k \pm \frac{2}{2}\}^2 - 1, k \pm \frac{1}{2}).$$

These five characters are distinct unless $k \in \{\pm \frac{1}{2}, \pm \frac{3}{2}\}$, when two of them coincide.

We remark that these four special values of k, being half-integral, correspond to genuine slash actions of the metaplectic group. Also, for $N = 1$ the characters from Section 5 are

$$\chi^k = V_k(\{k \pm \frac{3}{2}\}^2 - 1, k \pm \frac{1}{2}), \quad \chi^e = V_k(\{k - \frac{3}{2}\}^2 - 1, k - \frac{1}{2}).$$

6.2. Representations of \mathfrak{sl}_2. Another way to prove the existence of $V_k(c, \lambda)$ is to realize it as a subquotient of the restriction to \mathfrak{sl}_2 of an irreducible admissible representation of \mathfrak{sl}_2. Let us briefly recapitulate \mathfrak{sl}_2-theory. A representation V of \mathfrak{sl}_2 is said to be admissible if h acts semisimply with finite dimensional eigenspaces.
The eigenvalues of h are weights, and the λ-weight space is denoted by V_λ. If ω acts by a scalar c, V is said to have central (or infinitesimal) character c.

It is well-known that the irreducible admissible representations of sl_2 have central characters, consecutive weights, and 1-dimensional weight spaces. Moreover, they are classified by their central character and weights, and given any scalars c and λ, there is up to equivalence a unique irreducible admissible representation with central character c having λ as a weight. Here is the classification:

- $L(\lambda)$ for $\lambda \in \mathbb{N}$, the irreducible finite dimensional representation with weights $\{\lambda, \lambda - 2, \ldots, -\lambda\}$. Its central character is $\lambda^2 + 2\lambda$.
- $M^-(\lambda)$ for $\lambda \notin \mathbb{N}$, the irreducible Verma module with weights $\lambda - 2\mathbb{N}$. Its central character is $\lambda^2 + 2\lambda$.
- $M^+(\lambda)$ for $\lambda \notin -\mathbb{N}$, the irreducible Verma module with weights $\lambda + 2\mathbb{N}$. Its central character is $\lambda^2 - 2\lambda$.
- $P(c, \lambda)$ for $c + 1 \neq (\mu + 1)^2$ for any $\mu \in \lambda + 2\mathbb{Z}$, the irreducible principal series module with weights $\lambda + 2\mathbb{Z}$ and central character c.

The following proposition gives the reductions of the restrictions to $\iota_k(\mathbb{D}_k)$ of the irreducible admissible representations of sl_2. Its proof is an elementary application of the formula for ι_k and is omitted.

Proposition 6.8. Let V be an irreducible admissible representation of sl_2 with central character c, weights $\Delta(V)$, and basis $\{v_\mu : \mu \in \Delta(V)\}$. Regarded as an admissible representation of \mathbb{D}_k via ι_k, it remains irreducible unless $\Delta(V)$ contains either $\{k + \frac{1}{2}, k - \frac{1}{2}\}$ or $\{k - \frac{1}{2}, k + \frac{1}{2}\}$.

(i) If $\{k + \frac{1}{2}, k - \frac{1}{2}\} \subseteq \Delta(V)$, then $\{v_\mu : \mu \in \Delta(V), \mu \geq k + \frac{1}{2}\}$ is a \mathbb{D}_k-subrepresentation of V equivalent to $V_k(c, k + \frac{1}{2})$. The quotient of V by this subrepresentation is \mathbb{D}_k-equivalent to $V_k(c, k - \frac{1}{2})$.

(ii) If $\{k - \frac{1}{2}, k + \frac{1}{2}\} \subseteq \Delta(V)$, then $\{v_\mu : \mu \in \Delta(V), \mu \leq k - \frac{1}{2}\}$ is a \mathbb{D}_k-subrepresentation of V equivalent to $V_k(c, k - \frac{1}{2})$. The quotient of V by this subrepresentation is \mathbb{D}_k-equivalent to $V_k(c, k + \frac{1}{2})$.

6.3. Isomorphism classes.

Suppose that $\mu : \mathbb{D}_k \to \mathbb{D}_{k'}$ is an algebra isomorphism. Since isomorphisms preserve centers, it must restrict to an isomorphism from $\mathbb{C}[\mathcal{C}_k]$ to $\mathbb{C}[\mathcal{C}_{k'}]$. Therefore for some scalars $a \neq 0$ and b,

$$\mu(\mathcal{C}_k) = a\mathcal{C}_{k'} + b.$$

Isomorphisms also preserve adjoint-semisimplicity: if $\delta \in \mathbb{D}_k$ and $\text{ad}(\delta)$ acts semisimply on \mathbb{D}_k, then $\text{ad}(\mu(\delta))$ acts semisimply on $\mathbb{D}_{k'}$ with the same eigenvalues. We claim that the space of ad-semisimple elements of \mathbb{D}_k is $\mathbb{C}[\mathcal{C}_k] \oplus \mathbb{C}\mathcal{E}$. To prove this, check first that ad-semisimple elements must lie in the weight zero subalgebra $\mathbb{C}[\mathcal{C}_k, \mathcal{E}]$. Then consider the ad-action of elements in this subalgebra on the subspaces of \mathbb{D}_k of non-zero weight: for elements not in $\mathbb{C}[\mathcal{C}_k] \oplus \mathbb{C}\mathcal{E}$, it increases the total $(\mathcal{C}_k, \mathcal{E})$-degree. The claim follows.

Thus μ maps $\mathbb{C}[\mathcal{C}_k] \oplus \mathbb{C}\mathcal{E}$ to $\mathbb{C}[\mathcal{C}_{k'}] \oplus \mathbb{C}\mathcal{E}$. Conclude that

$$\mu(\mathcal{E}) = d_0\mathcal{E} + p(\mathcal{C}_{k'})$$

for some scalar $d_0 \neq 0$ and some polynomial $p(\mathcal{C}_{k'})$. The set of eigenvalues of $\text{ad}(\mathcal{E})$ is $2\mathbb{Z}$, so the same must be true of $\text{ad}(d_0\mathcal{E} + p(\mathcal{C}_{k'}))$. It follows that $d_0 = \pm 1$. Observe that for $s \in \mathbb{Z}$, μ sends the weight space $(\mathbb{D}_k)_{2s}$ to $(\mathbb{D}_{k'})_{2d_0s}$.
Recall from Lemma 5.1 (ii) and Corollary 6.2 (iii) that there is an isomorphism \(\tilde{\theta}_k : \mathbb{D}_k \to \mathbb{D}_{-k} \) sending \(\mathcal{E} \) to \(-\mathcal{E} \). If \(d_0 = -1 \), then \(\tilde{\theta}_k \circ \mu \) is an isomorphism from \(\mathbb{D}_k \) to \(\mathbb{D}_{-k} \). “whose \(d_0 \) is 1”. Therefore, replacing \(\mu \) by \(\tilde{\theta}_k \circ \mu \) and \(k' \) by \(-k' \) if need be, we may assume that \(d_0 = 1 \).

Under this assumption \(\mu \) sends the weight 2 space \((\mathbb{D}_k)_2 = (\tilde{E}_\nu \tilde{f}^2)\mathbb{C}[\mathcal{C}_k, \mathcal{E}] \) to \((\mathbb{D}_{k'})_2 \), so there are polynomials \(q(\mathcal{C}_{k'}, \mathcal{E}) \) and \(r(\mathcal{C}_k, \mathcal{E}) \) such that

\[
\mu(\tilde{E}_\nu \tilde{f}^2) = (\tilde{E}_\nu \tilde{f}^2) q(\mathcal{C}_{k'}, \mathcal{E}), \quad \mu^{-1}(\tilde{E}_\nu \tilde{f}^2) = (\tilde{E}_\nu \tilde{f}^2) r(\mathcal{C}_k, \mathcal{E}).
\]

Applying \(\mu \) to the second equation and distributing, we obtain

\[
\tilde{E}_\nu \tilde{f}^2 = (\tilde{E}_\nu \tilde{f}^2) q(\mathcal{C}_{k'}, \mathcal{E}) r(a\mathcal{C}_{k'} + b, \mathcal{E} + p(\mathcal{C}_{k'})).
\]

It follows that \(q \) is a scalar \(d_+ \). Similarly, \(\mu(\tilde{F}_\nu \tilde{e}^2) = d_- \tilde{F}_\nu \tilde{e}^2 \) for some scalar \(d_- \).

Now apply \(\mu \) to (8) to obtain the following equation in \(\mathbb{D}_{k'} \):

\[
d_- d_+(\tilde{F}_\nu \tilde{e}^2)(\tilde{E}_\nu \tilde{f}^2) = \frac{1}{4}(\mathcal{E} + p + \frac{1}{2})(\mathcal{E} + p + \frac{3}{2})((a\mathcal{C}_{k'} + b) - (\mathcal{E} + p + k)(\mathcal{E} + p + k + 2)).
\]

Compute the product on the left using (8) in \(\mathbb{D}_{k'} \) to arrive at

\[
d_- d_+(\mathcal{E} + \frac{1}{2})(\mathcal{E} + \frac{3}{2})(\mathcal{C}_{k'} - (\mathcal{E} + k')(\mathcal{E} + k' + 2))
\]

\[= (\mathcal{E} + p + \frac{1}{2})(\mathcal{E} + p + \frac{3}{2})((a\mathcal{C}_{k'} + b) - (\mathcal{E} + p + k)(\mathcal{E} + p + k + 2)).
\]

Comparing \(\mathcal{C}_{k'} \)-degrees gives \(p(\mathcal{C}_{k'}) \) scalar. Comparing coefficients of \(\mathcal{E}^2 \mathcal{C}_{k'} \) gives \(d_- d_+ = a \), and then comparing coefficients of \(\mathcal{E}\mathcal{C}_{k'} \) gives \(p = 0 \). Simplifying gives

\[a(\mathcal{E} + k')(\mathcal{E} + k' + 2) = (\mathcal{E} + k)(\mathcal{E} + k + 2) - b.
\]

Equating all coefficients gives \(a = 1, b = 0, \) and \(k = k' \).

Recall that for all \(\nu \neq 0 \), there is an automorphism \(\mu_d \) of \(\mathfrak{sl}_2 \) defined by \(x \mapsto dx, \ y \mapsto d^{-1}y, \) and \(h \mapsto h \). Clearly \(\mu_d \) preserves \(i_k(\mathbb{D}_k) \), so it may be viewed as an automorphism of \(\mathbb{D}_k \). Let \(\text{Aut}(\mathbb{D}_k) \) be the group of automorphisms of \(\mathbb{D}_k \). We have proven the following result.

Proposition 6.9.

(i) \(\mathbb{D}_k \cong \mathbb{D}_{k'} \) if and only if \(k = \pm k' \).

(ii) For \(k \neq 0 \), \(\text{Aut}(\mathbb{D}_k) = \{ \mu_d : d \in \mathbb{C}^\times \} \), and \(\mu_d \circ \mu_{d'} = \mu_{d+d'} \).

(iii) \(\text{Aut}(\mathbb{D}_0) = \{ \mu_d, \tilde{\theta}_0 \circ \mu_d : d \in \mathbb{C}^\times \} \), and \(\tilde{\theta}_0 \circ \mu_d = \mu_{1/d} \circ \tilde{\theta}_0 \).

7. Remarks

We conclude with some directions for further investigation. One possibility is the representation theory of \(\mathbb{D}_k \) for \(N > 1 \). Comparing Sections 2.3 and 6, it would be natural to try to realize \(\mathbb{D}_k \) as a subquotient of \(\mathbb{U}(\mathfrak{sp}_{2N}) \), and thus obtain its irreducible representations as a subset of those of \(\mathfrak{sp}_{2N} \). Note that \(\mathbb{D}_k \) cannot be realized as subalgebra of \(\mathbb{U}(\mathfrak{sp}_{2N}) \), because it has no trivial representation.

Concerning the case of non-invertible indices, we have computed the characters of \(\mathbb{D}_{k,0} \) for \(N = 1 \). Probably this can be done for arbitrary \(N \), but such indices are not of interest in number theory so we know of no reason to do so.

Let \(G^1_3(\mathbb{C}) \) be the complex Jacobi group of degree 1 and rank 1: the semidirect product of \(\text{SL}_2(\mathbb{C}) \) acting on the 3-dimensional complex Heisenberg group. The relevant stabilizer subgroup is \(K^1_3(\mathbb{C}) = \text{SU}_2 \times \mathbb{C} \), so up to equivalence the scalar slash actions are in bijection with the real characters of \(\mathbb{C} \). In [BCR12] it is proven that the center of the IOD algebra of each of these slash actions is the image of the center of \(\mathbb{U}(\mathfrak{g}^1_3(\mathbb{C})) \), and is generated by a pair of conjugate cubic Casimir operators. It might be worthwhile to compute the irreducible representations of these IOD...
algebras. A deeper project would be to consider the irreducible vector-valued slash actions corresponding to the higher dimensional irreducible representations of SU_2.

Perhaps the most interesting of the projects we mention here is the decomposition of the space of smooth sections $\mathcal{C}^\infty(\mathcal{G}_N \times K_N^J, \mathbb{C}_{k,L})$ under the joint action of the commuting algebras $\mathcal{D}_{k,L}$ and $\mathbb{D}_{k,L}$. For L invertible, both algebras commute with the Casimir operator $C_{k,L}$, so they preserve its eigenspaces. Consider the case $N = 1$: using Corollary 3.4 (iii) to move the results of Section 6 from \mathbb{D}_k to $\mathbb{D}_{k,L}$, we see that generically, any joint eigenfunction of $C_{k,L}$ and $E = \frac{1}{2}(\tilde{f}\tilde{e} + \tilde{e}\tilde{f})$ generates an irreducible representation of $\mathbb{D}_{k,L}$. Such a representation might generate an irreducible representation of $\mathcal{U}(g_N^J) \otimes \mathbb{D}_{k,L}$ under the action of $\mathcal{U}(g_N^J)$.

Formulas for the IDOs $C_{k,L}$ and E are given in [BS98]: up to additive and multiplicative scalars, $C_{k,L}$ is their Casimir operator (see pages 38 and 82), and E is their $\lambda(P_1)$ (see pages 59 and 61). The operators D_\pm and Δ_1 they use to define the Casimir operator are essentially our \tilde{E}_ν, \tilde{F}_ν, and \tilde{H}_ν. Alternate formulas for $C_{k,L}$ appear in [Pi09] (9), [BR10] (12), and [CR] (2.4) and (2.6).

References

[BB90] R. Berndt and S. Böcherer, Jacobi forms and discrete series representations of the Jacobi group, Math. Z. 163, (1990), 13–44.

[BS98] R. Berndt and R. Schmidt, “Elements of the Representation Theory of the Jacobi Group”, Progr. Math. 163, Birkhäuser Verlag, Basel, 1998.

[Bo66] A. Borel, Introduction to automorphic forms, in “Algebraic Groups and Discontinuous Subgroups” (Proc. Sympos. Pure Math., Boulder, Colorado, 1965), Amer. Math. Soc., 1966, 199–210.

[BCR12] K. Bringmann, C. H. Conley, O. K. Richter, Jacobi forms over complex quadratic fields via the cubic Casimir operators, Comment. Math. Helv. 87 (2012), 825–859.

[BR10] K. Bringmann, O. K. Richter, Zagier-type dualities and lifting maps for harmonic Maass-Jacobi forms, Adv. Math. 225 (2010), no. 4, 2298–2315.

[CR] C. H. Conley, M. Raum, Harmonic Maaß-Jacobi forms of degree 1 with higher rank indices, arXiv:1012.2897.

[Da13] R. Dahal, Centers of invariant differential operator algebras for Jacobi groups of higher rank, Ph.D. thesis, University of North Texas, 2013.

[EZ85] M. Eichler, D. Zagier, “The Theory of Jacobi Forms”, Progress in Mathematics 55, Birkhäuser Boston, 1985.

[HC59] Harish-Chandra, Automorphic forms on a semisimple Lie group, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 570–573.

[He77] S. Helgason, Invariant differential equations on homogeneous manifolds, Bull. Amer. Math. Soc. 84 (1977), no. 5, 751–774.

[He79] S. Helgason, Invariant differential operators and eigenspace representations, in “Representation Theory of Lie Groups”, London Math. Soc. Lecture Note Series 84, Cambridge University Press, 1979, 236–286.

[He92] S. Helgason, Some results on invariant differential operators on symmetric spaces, Amer. J. Math. 114 (1992), 789–811.

[Pi09] A. Pitale, Jacobi Maass forms, Abh. Math. Sem. Univ. Hamburg 79 (2009), 87–111.

[Zi89] C. Ziegler, Jacobi forms of higher degree, Abh. Math. Sem. Univ. Hamburg 59 (1989), 191–224.