On the topology of the space of bi-orderings of a free group on two generators

Serhii Dovhyi and Kyrylo Muliarchyk

Abstract

Let G be a group. We can topologize the spaces of left-orderings $LO(G)$ and bi-orderings $O(G)$ of G with the product topology. These spaces may or may not have isolated points. It is known that $LO(F_n)$ has no isolated points, where F_n is a free group on $n \geq 2$ generators. In this paper, we show that $O(F_n)$ has no isolated points as well, thereby resolving the second part of [1, Conjecture 2.2].

1 Introduction

Given a group G, a linear order $<$ is a left order if it is invariant under left multiplication, i.e., $x < y$ implies $zx < zy$ for all $x, y, z \in G$. A group that admits a left order is called left-orderable.

Elements that are bigger or smaller than the identity element of a group are called positive and negative respectively.

Another way to define left-orderability is as follows:

Proposition 1. A group G is left-orderable if and only if there exists a subset $P \subset G$ such that

1. $P \cdot P \subseteq P$;

2. for every $g \in G$, exactly one of $g = 1$, $g \in P$ or $g^{-1} \in P$ holds.

Such a subset P is called a positive cone.

For a given order $<$ on a group G, the positive cone $P_<$ associated with this order is defined by $P_< := \{g \in G \mid g > 1\}$. For a given positive cone $P \subset G$ the associated order $<_P$ is defined by $x <_P y$ if $x^{-1}y \in P$.

A group that admits a linear ordering which is invariant under both left and right multiplication is called bi-orderable or just orderable.
Proposition 2. A group G is orderable if and only if it admits a subset P satisfying the conditions 1 and 2 in Proposition \square and in addition, the condition

3. $gPg^{-1} \subset P$ for all $g \in G$.

Proposition 3. The family of orderable groups is closed under the following: taking subgroups, direct products, free products (first proved in [2]), quotients by normal convex subgroups.

Moreover, orders on $G_1 \times G_2$ and $G_1 * G_2$ can be taken as the extensions of orders on G_1 and G_2. The order on G/N could be defined as follows: gN is positive in G/N if g is positive in G and $g \notin N$.

In particular, free groups are orderable as free products of copies of the (orderable) group \mathbb{Z}.

Let X be any set, and $P(X)$ be its power set.

The spaces $LO(G) \subset P(G)$ ($O(G) \subset P(G)$) of all left-invariant (bi-invariant) positive cones in G was defined in \square. As there is a one-to-one correspondence between left-orderings (bi-orderings) of G and left-invariant (bi-invariant) positive cones in G, it is natural to describe $LO(G)$ ($O(G)$) as the space of all left-orderings of G (the space of all bi-orderings of G).

We follow \square in our exposition below.

The power set may be identified with the set of all functions $X \to \{0, 1\}$, via the characteristic function $\chi_A : X \to \{0, 1\}$ associated to a subset $A \subset X$. Give $\{0, 1\}$ the discrete topology, and then one may consider $P(X)$ as a product of copies of $\{0, 1\}$ indexed by the set X. The product topology is defined as the smallest topology on the power set $P(X)$ such that for each $x \in X$ the sets $U_x = \{A \subset X \mid x \in A\}$ and $U^c_x = \{A \subset X \mid x \notin A\}$ are open. A basis for the product topology can be obtained by taking finite intersections of various U_x and U^c_x.

It is then natural to ask:

Question 1. How does the topological space $LO(G)$ ($O(G)$) look like for a given group G?

The following theorem was proved in \square:

Theorem 1. Let G be a countable orderable group. Then the space $LO(G)$ is a compact totally disconnected Hausdorff metric space. The space $O(G)$ is a closed subset of $LO(G)$.
Let $<$ be a left-ordering of a group G, and let a finite chain of inequalities $g_0 < g_1 < \cdots < g_n$ be given. Then the set of all left-orderings in which all these inequalities hold forms an open neighborhood of $<$ in $LO(G)$. The set of all such neighborhoods for all finite chains of inequalities is a local base for the topology of $LO(G)$ at the point $<$.

Remark 1. Instead of a chain of inequalities $g_0 < g_1 < \cdots < g_n$ equivalently we may consider the sequence $x_1 = g_0^{-1}g_1 > 1, \ldots, x_n = g_{n-1}^{-1}g_n > 1$, so \{\{x_1, \ldots, x_n\} \subset P_<$, for the positive cone $P_<$ associated with the order $<$.

A left-ordering of G is isolated in $LO(G)$ if it is the only left-ordering satisfying some finite chain of inequalities. Some groups G have isolated points in $LO(G)$, while others do not.

Thus, by Theorem 1 for a left-orderable (bi-orderable) countable group G, the space $LO(G)$ ($O(G)$) is homeomorphic to the Cantor set if and only if it has no isolated points. We would, therefore, like to address the existence of isolated points in the space $LO(G)$ ($O(G)$) as the first step towards understanding the structure of $LO(G)$ ($O(G)$).

It was established in [1] that a free abelian group $\mathbb{Z}^d, d \geq 2$ has no isolated orderings, and, therefore, the space $LO(\mathbb{Z}^d) = O(\mathbb{Z}^d)$ is isomorphic to the Cantor space.

The fundamental group of Klein bottle $K \cong \langle x, y \mid xyx^{-1} = y^{-1} \rangle$ has isolated orders [3]. In fact, K admits only finitely many (four) left-orders, all of them are isolated.

The Thompson’s group F has eight isolated bi-orders while $O(F)$ is uncountable [10].

Another important object is the free group on two generators F_2. The following theorem was firstly proved in [5].

Theorem 2. The space $LO(F_2)$ has no isolated points.

Later, Theorem 2 has been proved in many different ways. We are mostly interested in the idea presented in [6]. A slightly modified strategy of this proof (see [3]) is as follows:

Sketch. Let $<$ be a left order on a free group F_2.

Step 1. Embed a free group F_2 into a countable dense left-ordered group G.

Step 2. Construct an order-preserving bijection $t : G \to \mathbb{Q}$.

Note: The content of the image is copyrighted. The text is used for educational purposes only.
Step 3. F_2 acts on G by left multiplication. Using t transform it to the action on Q. Namely, for $g \in F_2$ let $\rho(g)(t(h)) = t(gh)$ where h runs over G and so $t(h)$ runs over Q. Extend $\rho(g)$ to an action $\mathbb{R} \rightarrow \mathbb{R}$.

Step 4. Let a and b be the generators of a free group F_2. Then $\rho(a)$ and $\rho(b)$ generates its copy in the group $\text{Homeo}_+ (\mathbb{R})$ of orientation-preserving homeomorphisms of \mathbb{R}. Let $\alpha, \beta \in \text{Homeo}_+ (\mathbb{R})$ be "small" perturbations of $\rho(a), \rho(b)$ respectively. Consider a subgroup $H = \langle \alpha, \beta \rangle$ of $\text{Homeo}_+ (\mathbb{R})$ with the induced left order.

Step 5. It remains to check that for an appropriate choice of α, β, H is a free group, and the new left order \prec on it is "close" but different from the initial left order $<$ on F_2.

The critical part of the above proof is the construction in steps 1-3. More generally, each countable left-ordered group order-preserving embeds into $\text{Homeo}_+ (\mathbb{R})$ in a similar way. This embedding is called the dynamical realization of a left-ordered group.

In this paper, we study the space $O(F_2)$ of orderings of a free group F_2 on two generators.

The main result of this paper is the following theorem:

Theorem 3. The space $O(F_2)$ of orderings of a free group on two generators has no isolated points.

Remark 2. Although in this paper, we prove Theorem 3 only for $O(F_2)$, all arguments can be appropriately adapted for all $O(F_n)$, $n > 2$.

We will follow the strategy from the above proof of Theorem 3 in our proof.

Similarly to step 1 from the above proof, we need to embed F_2 into a group with some density property. Our construction requires a stronger condition than a simple density. We will call this strong density. It is discussed in Section 3. Also, we prove that every countable bi-ordered group embeds into a countable strongly dense group.

Following steps 2-3 in Section 4, we construct two dynamical realizations of bi-ordered groups, one with action on $\mathbb{Q} \times \mathbb{Q}$ equipped with lexicographic order, and another with action on \mathbb{R}. Equivalently, we construct embeddings of a countable ordered group G into the group $\text{Homeo}_+ (\mathbb{Q} \times \mathbb{Q})$ of the
order-preserving homeomorphisms of $\mathbb{Q} \times \mathbb{Q}$ and Homeo$_+$(\mathbb{R}). An important difference between bi-ordered and left-ordered cases is that Homeo$_+$(\mathbb{Q} \times \mathbb{Q}) and Homeo$_+$(\mathbb{R}) are left-ordered but not bi-ordered groups. Therefore not every faithful action on $\mathbb{Q} \times \mathbb{Q}$ or \mathbb{R} generates an order.

Finally, in Section 5 we show how to perturb a given order on F_2. We begin with a dynamical realization of F_2 (as an action on $\mathbb{Q} \times \mathbb{Q}$). Then, we define a family of admissible changes of this action. Every member of this family will generate an order on F_2. To finish the proof of Theorem 3 we will choose a new order that sufficiently approximate the original order on F_2.

Acknowledgements:
Authors are grateful to Dr. Adam Clay for telling them about this conjecture, some known previously made attempts to solve it, reading drafts of this paper, and pointing out that the construction in Section 3 is an unrestricted wreath product.

2 Further notation

Let $(G, <)$ be an ordered group, and $g, h \in G$. We will use the following notations:

1. We denote the conjugation by $g^h := hgh^{-1}$.

2. A subset $A \subseteq G$ is said to be convex if for any $f, h \in X, f < h$, every element $g \in G$ satisfying $f < g < h$ belong to A.

3. We denote by $\Gamma_g = \Gamma_g(G, <)$ the largest convex subgroup of G that doesn’t contain $g \in G \setminus \{1\}$. We denote the set of all such subgroups by $\Gamma = \Gamma(G, <)$.

Similarly, we denote by $\bar{\Gamma}_g$ the smallest convex subgroup of G containing $g \in G \setminus \{1\}$, and by $\bar{\Gamma}$ the set of all such subgroups.

The group G acts on Γ by conjugation. This action satisfies $(\Gamma_g)^h = \Gamma_{g^h}$.

The set $\bar{\Gamma}$ is naturally ordered by inclusion. The action of G by conjugation preserves this order.

4. We will write $g \ll h$ when $\Gamma_g \subseteq \Gamma_h$, or, equivalently, $g \in \Gamma_h$.

5
5. We say the elements of G are equivalent if they define the same convex subgroup. Namely, $g \sim h$ if $\Gamma_g = \Gamma_h$.

3 Strongly dense groups

Definition 1. An ordered group $(G, <)$ is called strongly dense (with respect to the order $<$) if the following conditions are satisfied:

1. $\forall g_1, g_2 \in G, g_1 \ll g_2, \exists g_3 \in G$ such that $g_1 \ll g_3 \ll g_2$;

2. $\forall g_1 \in G \exists g_2, g_3 \in G$ such that $g_2 \ll g_1 \ll g_3$.

In other words, the group G is strongly dense if the correspondent set of convex subgroups Γ, ordered by inclusion, is dense and doesn’t contain the smallest and largest elements.

Replacement of the relation \ll with the relation $<$ in Definition 1 above leads to the definition of a dense group. In the definition of a dense group, the second condition is omitted because the analogous condition is automatically satisfied.

Another approach to defining strongly dense groups is given below.

Definition 2. Let $(H, <)$ be an ordered group.

1. A pair (h', h''), $h', h'' \in H$, $h' \ll h''$, is called a gap if there is no $h \in H$ such that $h' \ll h \ll h''$.

 Equivalently, (h', h'') is a gap if $\Gamma_{h''} = \bar{\Gamma}_{h'}$.

2. An element $h \in H$ is called a peak if there is no $h_1 \in H$ such that $h \ll h_1$.

 Equivalently, h is a peak if $\bar{\Gamma}_h = H$.

3. An element $h \in H$ is called a bottom if there is no $h_1 \in H \setminus \{1\}$ such that $h \gg h_1$.

 Equivalently, h is a bottom if $\Gamma_h = \{1\}$.

It is easy to see that an ordered group is strongly dense if and only if it contains no gaps, peaks, and bottoms.

The following theorem is the key result of this section.
Theorem 4. Any countable ordered group F embeds in some countable strongly dense ordered group G.

Our plan for proving this theorem is to eliminate peaks, gaps, and bottoms consecutively. By eliminating a peak, gap, or bottom of a countable group H, we understand the embedding H in a countable ordered group H_1 without this peak, gap, or bottom. For example, if we want to eliminate a gap (h', h'') in H, then we construct H_1 so there is $h_1 \in H_1$ such that $h' \ll h_1 \ll h''$.

The next lemma states that we can always eliminate gaps, peaks, and bottoms.

Lemma 5. For any countable ordered group H and any peak, gap, or bottom in H, there is its countable extension H_1 without this peak, gap, or bottom.

Firstly we prove that Lemma 5 implies Theorem 4.

Proof of Theorem 4. Assume that we can eliminate gaps, peaks, and bottoms in any countable ordered group.

Since F is a countable group, it contains at most countably many gaps, peaks, and bottoms. So we can enumerate all of them. Consider the chain $F = G_0 = G_0^{(0)} < G_0^{(1)} < G_0^{(2)} < \ldots$ of groups, constructed in the following way: if the group $G_0^{(i)}$ contains the gap, peak, or bottom with number i then we eliminate it, otherwise we set $G_0^{(i+1)} = G_0^{(i)}$. The group $G_0^{(i)}$ is countable ordered and does not contain the ith gap, peak, or bottom of the group $F = G_0$.

Let $G_1 = \bigcup_i G_0^{(i)}$. The group G_1 is a countable ordered group without any gap, peak, and bottom of $F = G_0$, but possibly with new gaps, peaks, and bottoms.

Similarly, construct a new chain $G_1 = G_1^{(0)} < G_1^{(1)} < \ldots$. Get a countable ordered $G_2 = \bigcup_i G_1^{(i)}$ without any gaps, peaks, and bottoms of G_1. Then construct the chain $F = G_0 < G_1 < \ldots$ of countable ordered groups, where G_{i+1} does not contain any gap, peak, and bottom of G_i. Let $G = \bigcup_i G_i$.

Then G is a countable ordered group.

Assume that G is not strongly dense. Then it contains some gap, peak, or bottom. Let it be the gap (g_1, g_2), where $g_1 \in G_i, g_2 \in G_j$. Then (g_1, g_2) is a gap in $G_{\max\{i,j\}}$, so it has been eliminated during construction of $G_{\max\{i,j\}+1}$.
This means \(G > G_{\max(i,j)+1} \) does not contain the gap \((g_1, g_2)\). Contradiction. Similarly, the cases where \(G \) contains a peak or a bottom are also impossible.

So \(G \) is a countable strongly dense group. \(\square \)

It remains to prove Lemma 5.

Proof of Lemma 5

How to eliminate a peak \(h \in H \)?

The group \(\mathbb{Z} \times H \), where \(\mathbb{Z} = \langle z \rangle \) is an infinite cyclic group ordered lexicographically, does not have the peak \(h \in H \), since \(z \gg h, \forall h \in H \).

How to eliminate a bottom \(h \in H \)?

The group \(H \times \mathbb{Z} \) ordered lexicographically does not have the bottom \(h \in H \), since \(z \ll h, \forall h \in H \setminus \{1\} \).

How to eliminate a gap \((h', h'')\)?

To remove the gap \((h', h'')\), we want to construct a new ordered group \(H_1 > H \), with order \(<\) on \(H_1 \) as an extension of the order \(<\) on \(H \), and there is an element \(z \in H \) such that \(h' \ll z \ll h'' \) in \(H_1 \). We will search for \(H_1 \) as a restricted wreath product \(\mathbb{Z} \text{wr}_\Omega H \), where \(\mathbb{Z} = \langle z \rangle \) is the infinite cyclic group. In fact, we add a new generator \(z \) to \(H \) and put it between \(h' \) and \(h'' \) to remove the gap.

Remark 3. The orderability of a restricted wreath product has been proved in [4]. However, the order used in [4] does not eliminate gaps.

We think of \(H_1 \) as a free product \(H * \mathbb{Z} \) quotient by some relations.

When may an element \(h \in H \) commute with \(z \)?

Elements \(z \) and \(h \) commute if and only if \(z^h = z \). Since the group \(H_1 \) supposed to be ordered, \(h' \ll z \ll h'' \) implies \((h')^h \ll z^h = z \ll (h'')^h \). This is possible only if conjugation by \(h \) preserves the classes \(C_{h'} \) and \(C_{h''} \).

Let \(M \) be a set of all those \(h \), i.e., \(M := \{ h \in H \mid (h')^h \sim h' \} \). Note that \(M \) is a subgroup of \(G \).

Conjugation by any \(h \in H \) preserves the order \(<\) and the class \(C_{h'} \). Since \((h', h'')\) is a gap, \(C_{h''} \) is the smallest class larger then \(C_{h'} \). Therefore, conjugation by \(h \) also preserves the class \(C_{h''} \).

This gives \(M = \{ h \in H \mid (h')^h \sim h'' \} \).

Each element \(h \in H * \mathbb{Z} \) could be written in the form \(h = h_0 (z^{\varepsilon_1})^{h_1} \ldots (z^{\varepsilon_n})^{h_n} \), where \(n \geq 0, h_0, h_1, \ldots, h_n \in H, \varepsilon_i \in \{\pm 1\}, i = 1, \ldots, n \).

Remark 4. Now we are ready to define \(H_1 \) as a restricted wreath product. Let \(\Omega \) be the set of left cosets of \(M \) in \(H \).

The action of \(H \) on \(\Omega \) is multiplication on the left. Then \(H_1 := \mathbb{Z} \text{wr}_\Omega H \).
Recall that by definition \(H_1 = K \times H \), where \(K := \bigoplus_{w \in \Omega} \mathbb{Z}_3 \) is the direct sum of copies of \(\mathbb{Z}_3 := \mathbb{Z} \) indexed by the set \(\Omega \).

Note that each \(\omega \in \Omega \) has a form \(\omega = hM \) for some \(h \in H \). We will use notation \((z^k)^hM \), \(k \in \mathbb{Z} \), for elements of \(\mathbb{Z}_\omega \).

Then \(z^{h_1M} \) and \(z^{h_2M} \) commute for all \(h_1, h_2 \in H \). In addition, \(z^M \) and \(m \) commute for all \(m \in M \).

Taking into account the above notation, we can rewrite \(H_1 \) as
\[
H_1 = \{ h_0(z^{h_1})^{h_1M} \ldots (z^{h_n})^{h_nM} \mid n \geq 0, h_0, \ldots, h_n \in H, k_i \in \mathbb{Z}, i = 1, \ldots, n \}.
\]

The multiplication \(\bullet \) in \(H_1 \) comes from it being a restricted wreath product:
\[
(h_0(1)(z^{k_1^{(1)})^{h_1^{(1)}}M} \ldots (z^{k_n^{(1)})^{h_n^{(1)}}M}) \bullet (h_0(2)(z^{k_1^{(2)})^{h_1^{(2)}}M} \ldots (z^{k_n^{(2)})^{h_n^{(2)}}M})
\]
\[
= h_0(1)h_0(2)(z^{k_1^{(1)})^{h_0(1)}h_1^{(1)})M \ldots (z^{k_n^{(1)})^{h_0(1)}h_n^{(1)}}M(z^{k_1^{(2)})^{h_0(2)}h_1^{(2)})M \ldots (z^{k_n^{(2)})^{h_0(2)}h_n^{(2)}}M).
\]

Then the inverse is defined as follows:
\[
(h_0(z^{k_1}h_1M) \ldots (z^{k_n})^{h_nM})^{-1} = h_0^{-1}(z^{-k_1})h_0^{-1}h_1M \ldots (z^{-k_n})h_0^{-1}h_nM.
\]

Let us define the order on \(H_1 \).

Firstly, we extend the relation \(\ll \) from \(H \) to \(H_1 \) by the following rules:
1) \(z^{h_1M} \ll z^{h_2M} \) if \((h')^{h_1} \ll (h')^{h_2} \) (or equivalently \((h'')^{h_1} \ll (h'')^{h_2} \)) and \(h_2^{-1}h_1 \notin M \);
2) \(h \ll z^{h_1M} \text{ if } h \ll (h''^{h_1}), \text{ and } h \gg z^{h_1M} \text{ if } h \gg (h')^{h_1} \).

Remark 5. From the definition of \(M \) one can see that for every \(h_1, h_2 \in H \) exactly one of \(z^{h_1M} \ll z^{h_2M}, z^{h_2M} \ll z^{h_1M} \) or \(h_1M = h_2M \) holds. Therefore, all \(z^{h_1M}, h_1 \in H \), are comparable with each other with respect to the relation \(\ll \). Also every \(z^{h_1M}, h_1 \in H \), is comparable with every \(h \in H \).

Keeping Remark 5 in mind, we can define the positive cone \(P_1 \) of \(H_1 \) now as follows:

For \(h = h_0(z^{h_1})^{h_1M} \ldots (z^{h_n})^{h_nM} \in H \) let \(z^{h_1M} \) be the largest (with respect to the relation \(\ll \)) of \(z^{jM}, j = 1, \ldots, n \). Now we say that \(h \in P_1 \) if either \(h_0 \gg z^{h_1M} \) and \(h_0 \in \mathbb{P} \) (where \(\mathbb{P} \) is the positive cone of \(H \)), or \(h_0 \ll z^{h_1M} \) and \(k_i > 0 \).

Checking the properties of Proposition 2 for \(P_1 \) is straightforward.

Finally, note that \(h' \ll z^M \ll h'' \), so the group \(H_1 \) does not contain the gap \((h', h'') \).
Let F be an ordered group and G be its ordered extension. We say a positive element $g \in G$ is small with respect to F if $g < f$ for any positive $f \in F$.

Lemma 6. Let F be an ordered group with no bottoms, and let $G > F$ be its strongly dense extension constructed as in Theorem 4. Then the group G does not contain small with respect to F elements.

Proof. Assume there is a small with respect to F element in G. Recall that $G = \bigcup G_i$, with $F = G_0 < G_1 < G_2 < \ldots$. Let G_i be the first group in the chain that contains a small with respect to F element. Let $G_i = \bigcup G_{i-1}^{(j)}$ with $G_{i-1} = G_{i-1}^{(0)} < G_{i-1}^{(1)} < G_{i-1}^{(2)} < \ldots$, and let $G_{i-1}^{(j)}$ be the first group in the chain that contains a small with respect to F element g. The group $G_{i-1}^{(j)}$ is constructed from the group $G_{i-1}^{(j-1)}$ by eliminating one of its gaps, peaks or bottoms as in Lemma 5.

Since every bottom of $G_{i-1}^{(j-1)}$ is small with respect to F, the group $G_{i-1}^{(j-1)}$ has no bottoms.

Peak elimination clearly does not add small elements.

Let $G_{i-1}^{(j)}$ eliminated the gap (g_1, g_2) of $G_{i-1}^{(j-1)}$. Then, as was shown in Lemma 6, $g \in G_{i-1}^{(j)}$ can be written as

$$g = h_0 (z_1^{k_1})^{h_1 M} \ldots (z_n^{k_n})^{h_n M},$$

where $h_0, h_1, \ldots, h_n \in G_{i-1}^{(j-1)}$.

Let h_0 be the largest in $h_0, (z_1^{k_1})^{h_1 M}, \ldots, (z_n^{k_n})^{h_n M}$. This means $h_0 \gg (h_2)^{h_i}, i = 1, \ldots, n$. And $h_0 > 1$ as $g > 1$. Then

$$g^2 = \left(h_0 (z_1^{k_1})^{h_1 M} \ldots (z_n^{k_n})^{h_n M} \right)^2 = h_0^2 \left((z_1^{k_1})^{h_0 h_1 M} \ldots (z_n^{k_n})^{h_0 h_n M} \right) \left((z_1^{k_1})^{h_1 M} \ldots (z_n^{k_n})^{h_n M} \right) = h_0 \left(h_0 (z_1^{k_1})^{h_0 h_1 M} \ldots (z_n^{k_n})^{h_0 h_n M} (z_1^{k_1})^{h_1 M} \ldots (z_n^{k_n})^{h_n M} \right).$$

Note that $h_0 \gg (h_2)^{h_i}$ since $h_0 \gg (h_2)^{h_i}$, so

$$h_0 (z_1^{k_1})^{h_0 h_1 M} \ldots (z_n^{k_n})^{h_0 h_n M} (z_1^{k_1})^{h_1 M} \ldots (z_n^{k_n})^{h_n M} > 0$$
and \(g^2 > h_0 \).

Similarly, if \((z^{k_i})^{h_i}_M\) is the largest in \(h_0, (z^{k_1})^{h_1}_M, \ldots, (z^{k_n})^{h_n}_M\) then
\[g^2 > (z)^{h_i}_M > g^{k_i}_1. \]

In both cases \(g \) is greater than some positive element \(g' \in G^{(j-1)}_{i-1} \). Since \(G^{(j-1)}_{i-1} \) has no small with respect to \(F \) elements, \(g' > f' > 1 \) for some \(f' \in F \). Since \(F \) has no bottoms, \(f' \gg f > 1 \) for some \(f \in F \). So
\[g^2 > g' > f' > f^2 \]
and \(g > f \). Thus \(g \) is not small with respect to \(F \).

\[\Box \]

Corollary 7. Let \(F_2 \) be an ordered free group, and let \(G > F_2 \) be its strongly dense extension as in Theorem 4. Then \(G \) has no small with respect to \(F_2 \) elements.

Proof. This is true since \(F_2 \) with any order has no bottoms. Indeed, let \(f \in F_2 \) be a bottom. Let \(g \in F_2 \) be any element that does not commute with \(f \). We may assume \(f > f^g > 1 \). Otherwise, we replace \(g \) to \(g^{-1} \). Then \(f g \in \overline{\Gamma}_f \). It follows from \([8, \text{Theorem 2.3.1}]\) that the group \(\Gamma_f \) is normal in \(\overline{\Gamma}_f \) and the quotient \(\overline{\Gamma}_f/\Gamma_f \) is abelian. Since \(f \) is a bottom, \(\Gamma_f = \{1\} \) and \(\overline{\Gamma}_f/\Gamma_f \cong \Gamma_f \). But \(\Gamma_f \) is not abelian since it contains non-commutative elements \(f \) and \(f^g \). So \(F_2 \) has no bottoms. \[\Box \]

4 Dynamical realization of bi-ordered groups

The dynamical realization of a left-ordered group \(G \) rises from the action of \(G \) on itself by left multiplication. If \(G \) is a bi-ordered group, then it acts order-preserving on \(\Gamma \). This action corresponds to the action on \(Q \) as in the standard dynamical realization construction for left-ordered groups. However, this action is insufficient to construct a sort of dynamical realization. For instance, if \(G \) is abelian, then the conjugation action always is trivial, so it provides no information about the order of \(G \). Therefore we need a more complicated action. In this section, we will construct an action of \(G \) on \(Q \times Q \) to prove the following theorem.

Theorem 8. A countable group \(G \) is bi-ordered if and only if it acts on \(Q \times Q \) in the following way:
I the action order-preserving permutes layers \(q \times Q, q \in Q \);

II for any layer \(q \times Q \) the action by any element \(g \in G \) on the second component of \(q \times Q \) is either trivial, increasing, or decreasing;

III for each \(g \in G \setminus \{1\} \) there is a layer \(q_g \times Q \) such that the fixed points under the action by \(g \) are exactly the pairs \((q, p) \in Q \times Q\) with \(q > q_g \);

Proof. We prove the "if" part by showing that any group of all such actions on \(Q \times Q \) is ordered.

Let \(F \) be the set of all such actions on \(Q \times Q \), and let \(H \subset F \) be a group.

We say \(g \in H \) is positive (negative) if it increases (decreases) the second component in the layer \(q_g \times Q \). Clearly, every nontrivial action is either positive or negative.

Consider two positive elements \(g, h \in H \). Then \(q_{gh} = \max\{q_g, q_h\} \) and the action of \(gh \) increases the second component in the layer \(q_{gh} \times Q \). So, \(gh \) is a positive element.

Consider a positive \(g \in H \) and any \(h \in H \). Then \(q_{gh} \times Q = h(q_g \times Q) \), and the action of \(g^h \) on \(q_{gh} \times Q \) is the conjugated action of \(g \) on \(q_g \times Q \). So, it increases the second component. Then, \(g^h \) is positive.

Thus, \(H \) is an ordered group.

It remains to prove the "only if" part of the theorem.

Using Theorem 4 we may assume that the group \(G \) is strongly dense. Then, by Cantor's back and forth argument [9], the set of convex subgroups \(\Gamma = \Gamma(G) \) is order-preserving isomorphic \(Q \). We associate \(\Gamma \) with the first components in \(Q \times Q \). We plan to construct an ordered dense group \(S \) and associate it with the second components in \(Q \times Q \). Thus, constructing the action on \(Q \times Q \) is equivalent to constructing the action on \(\Gamma \times S \).

We are looking for the action \(\alpha \) of \(G \) on \(\Gamma \times S \) of the following form. Let \(\alpha_0 \) be an order-preserving action of \(G \) on \(\Gamma \), and let \(\{\alpha_{\Gamma}\}_{\Gamma \in \Gamma} \) be a collection of order-preserving actions of \(G \) on \(S \). Then the action \(\alpha \) is given by

\[
\alpha(g, (\Gamma, s)) = (\alpha_0(g, \Gamma), \alpha_{\Gamma}(g, s)), \quad g \in G, \Gamma \in \Gamma, s \in S.
\]

We require the actions \(\alpha_0, \alpha_{\Gamma} \) to satisfy the following conditions

1. for every \(g \in G \setminus \{1\} \) there exists a convex subgroup \(\Gamma(g) \in \Gamma \) such that \(\alpha_0(g, \Gamma) = \Gamma \) for all \(\Gamma \geq \Gamma(g) \);

2. each action \(\alpha_{\Gamma}(g, \cdot) \) is either trivial, increasing, or decreasing;
3. the action $\alpha_{\Gamma}(g, \cdot)$ is trivial if and only if $\Gamma > \Gamma(g)$ or $g = 1$;
4. the action $\alpha_{\Gamma(g)}(g, \cdot)$ is increasing for $g > 1$ and decreasing for $g < 1$;
5. $\alpha_{h,\Gamma}(g, \alpha_{\Gamma}(h, s)) = \alpha_{\Gamma}(gh, s)$, for all $g, h \in G$, $s \in S$, $\Gamma \in \Gamma$.

Condition 5 implies that α defined by (1) is a group action. Indeed,

$$g \cdot (h \cdot (\Gamma, s)) = g \cdot ((h \cdot \Gamma, \alpha_{\Gamma}(h, s))) = ((gh) \cdot \Gamma, \alpha_{\Gamma}(gh, s)) = (gh) \cdot (\Gamma, s).$$

Conditions 1-3 mean that the action α satisfy the conditions I-III of the theorem. We have

I the action α order-preservingly permutes layers $\Gamma \times S$ according to the action α_0;

II for a fixed layer $\Gamma \times S$ the action $\alpha_{\Gamma}(g, \cdot)$ is either trivial, increasing, or decreasing by condition 2;

III for each $g \in G \setminus \{1\}$ there is a layer $\Gamma(g) \times S$ such that the fixed points under the action $\alpha(g, \cdot)$ are exactly the pairs $(\Gamma, s) \in \Gamma \times S$ with $\Gamma > \Gamma(g)$;

Condition 4 gives a characterization of the order

IV $g > 1$ (respectfully, $g < 1$) if the action $\alpha_{\Gamma(g)}(g, \cdot)$ is increasing (respectfully, decreasing).

Next, we are going to build the group S and such actions.

For α_0 we take the conjugation action $\alpha_0(g, \Gamma) = (\Gamma)^g$. We will take each action $\alpha_{\Gamma}(g, \cdot)$ to be a left multiplication by some $s_{g,\Gamma} \in S$. Then, with $\Gamma(g) = \Gamma_g$, the conditions I and II are automatically satisfied. The conditions 3-5 are transformed into

3’. $s_{g,\Gamma} = 1$ if and only if $g \in \Gamma$;

4’. $s_{g,\Gamma_g} > 1$ for all $g > 1$ and $s_{g,\Gamma_g} < 1$ for all $g < 1$;

5’. $s_{g,\Gamma} \cdot s_{h,\Gamma} = s_{gh,\Gamma}$, for all $g, h \in G$, $\Gamma \in \Gamma$.

13
The action \(\alpha_0 \) splits \(\mathbb{G} \) into orbits. Orbits are equivalence classes and they partition \(\mathbb{G} = \mathcal{O}_1 \cup \mathcal{O}_2 \cup \ldots \). For each orbit \(\mathcal{O}_i \) we choose a representative \(\Gamma_i \in \mathcal{O}_i \). Let also \(G_i = N_G(\Gamma_i) \) be the normalizer of \(\Gamma_i \) in \(G \). Clearly, \(G_i < G \), and the order or \(G \) induces the order on \(G_i \). Then \(\Gamma_i \) is a normal convex subgroup of \(G_i \). Therefore the quotient group \(H_i = G_i / \Gamma_i \) is ordered with the order given by \(h \Gamma_i \in H_i \) is positive if \(h \) is positive in \(G_i \) and \(h \notin \Gamma_i \).

For each \(\Gamma \in \mathcal{O}_i \) we choose \(h_\Gamma \in G \) such that \((\Gamma)^{h_\Gamma} = \Gamma \). For a pair \((g, \Gamma) \in G \times \mathcal{O}_i \) consider the element \(h_{g, \Gamma} = h_{(\Gamma)^g} g h_{\Gamma}^{-1} \). We have \((\Gamma)^{h_{g, \Gamma}^{-1}} = \Gamma \), \((\Gamma)^{g h_{g, \Gamma}} = (\Gamma)^{g} \), and \((\Gamma)^{h_{g, \Gamma}} = ((\Gamma)^g)^{h_{g, \Gamma} g} = \Gamma \). So \(h_{g, \Gamma} \in G_i \).

Let \(S = (\ast_1 H_i) \ast F_\infty \), where \(F_\infty = (f_\Gamma | \Gamma \in \mathbb{G}) \) is an infinitely generated free group. The group \(S \) is ordered as a free product of ordered groups; the order on \(S \) extends the orders on each \(H_i \) and is necessarily dense since the center of \(S \) is trivial. Indeed, if the order on \(S \) is not dense then there is the smallest positive element \(g \in S \). But then for any \(h \in S \), not commuting with \(g \), either \(1 < g^h < g \) or \(1 < g^{h^{-1}} < g \) holds.

Remark 6. The action \(\alpha : G \times (\mathbb{G} \times S) \to \mathbb{G} \times S \) obviously extends to the action \(\alpha' : G \times (\mathbb{G} \times S') \to \mathbb{G} \times S' \), for any \(S' > S \). The action \(\alpha' \) is given by

\[
\alpha'(g, (\Gamma, s)) = (\alpha_0(g, \Gamma), \alpha_f(g, s)), \quad g \in G, \Gamma \in \mathbb{G}, s \in S. \tag{2}
\]

Thus, in this construction, we can replace \(S \) with any countable ordered dense group \(S' > S \).

We set

\[
s_{g, \Gamma} = f_{(\Gamma)^g} (h_{g, \Gamma} \Gamma_i) f_{\Gamma}^{-1}, \quad (g, \Gamma) \in G \times \mathcal{O}_i. \tag{3}
\]

It remains to verify that the elements \(s_{g, \Gamma} \) satisfy the conditions [3][5].

3'. \(s_{g, \Gamma} = 1 \) if and only if \(g \in \Gamma \).

If \((\Gamma)^g \neq \Gamma \) then \(s_{g, \Gamma} \neq 1 \) since \(f_{(\Gamma)^g} \neq f_{\Gamma} \). In this case \(g \notin \Gamma \). Assume that \((\Gamma)^g = \Gamma \). Then \(s_{g, \Gamma} = 1 \) is equivalent to \(h_{g, \Gamma} = g^{h_{\Gamma}} \in \Gamma_i \) or \(g \in (\Gamma_i)^{h_{\Gamma}^{-1}} = \Gamma \). So \(s_{g, \Gamma} = 1 \) if and only if \(g \in \Gamma \).

4'. \(s_{g, \Gamma} > 1 \) for \(g > 1 \).

Since \((\Gamma_g)^g = \Gamma_g \) we have \(s_{g, \Gamma_g} = (h_{g, \Gamma_g} \Gamma_i) f_{\Gamma} > 1 \) when \(h_{g, \Gamma_g} \Gamma_i > 1 \) in \(H_i \).

Note that \(g \notin \Gamma_g \). So by [3][5] \(s_{g, \Gamma_g} \neq 1 \) and \(h_{g, \Gamma_g} \Gamma_i \neq 1 \).

Then \(h_{g, \Gamma_g} \Gamma_i > 1 \) in \(H_i \) if \(h_{g, \Gamma_g} > 1 \) in \(G \). But \(h_{g, \Gamma_g} = g^{h_{\Gamma_g}} > 1 \) as \(g > 1 \).

14
5'. \((s_{g_1, \Gamma} g_2 \cdot s_{g_2, \Gamma} = s_{g_1 g_2, \Gamma})\).

We have

\[
\begin{align*}
\nonumber
s_{g_1, \Gamma} g_2 \cdot s_{g_2, \Gamma} &= \left(f((\Gamma) g_2) \bar{g}_1 \left(h_{g_1, \Gamma} g_2 \Gamma_i \right) f_{\Gamma}^{-1} \right) \cdot \left(f(\Gamma) g_2 \left(h_{g_2, \Gamma} \Gamma_i \right) f_{\Gamma}^{-1} \right) \\
&= f((\Gamma) g_2) \bar{g}_1 \left(h_{g_1, \Gamma} g_2 \Gamma_i \right) \left(h_{g_2, \Gamma} \Gamma_i \right) f_{\Gamma}^{-1} \\
&= f(\Gamma) g_2 \left(h_{g_1, \Gamma} g_2 \cdot h_{g_2, \Gamma} \Gamma_i \right) f_{\Gamma}^{-1} \\
&= f(\Gamma) g_2 \left(h_{(\Gamma) g_2} g_1 \Gamma_i \cdot h_{(\Gamma) g_2} g_2 \Gamma_i \right) f_{\Gamma}^{-1} \\
&= f(\Gamma) g_2 \left(h_{(\Gamma) g_2} g_1 \Gamma_i \right) f_{\Gamma}^{-1} \\
&= s_{g_1 g_2, \Gamma}.
\end{align*}
\]

\[\square\]

Although the dynamical realization constructed in Theorem 8 is sufficient for the purposes of this paper, it may be inconvenient for others. For example, the actions on \(Q \times Q\) are not continuous (if \(Q \times Q\) is granted with the standard topology). Therefore we construct an alternative dynamical realization, with an action on \(\mathbb{R}\), similarly to the standard dynamical realization of left-ordered groups. We will show that every countable ordered group embeds into \(\text{Homeo}_+^c(\mathbb{R})\) granted with an order defined below.

Let a set \(P \subset \text{Homeo}_+^c(\mathbb{R})\) be given by

\[
P := \{ f \in \text{Homeo}_+^c(\mathbb{R}) \mid \sup \{ x : f(x) > x \} > \sup \{ x : f(x) < x \} \}. \tag{4}
\]

Here we consider the supremum of the empty set to be \(-\infty\).

It is easy to see that \(P\) satisfies the following properties:

1. \(P \cdot P \subset P\);
2. \(fPf^{-1} \subset P\), for every \(f \in \text{Homeo}_+^c(\mathbb{R})\);
3. \(P \cap P^{-1} = \emptyset\).

So, \(P\) defines a partial order on \(\text{Homeo}_+^c(\mathbb{R})\) given by \(f < g\) when \(f^{-1}g \in P\).

Theorem 9. Every countable ordered group \(G\) embeds into \(\text{Homeo}_+^c(\mathbb{R})\) taken with the partial order define by the positive cone \(P\) given by (4).
Proof. By Theorem 8 there is a special action \(\alpha \) of \(G \) on \(\mathbb{Q} \times \mathbb{Q} \).

Consider \(\mathbb{Q} \times \mathbb{Q} \) with lexicographic order. Then it is an unbounded dense countable set, therefore, by Cantor’s back and forth argument [9], it is order equivalent to \(\mathbb{Q} \). Let \(t : \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q} \) be an order preserving bijection. For each \(g \in G \) we define the map \(\rho(g) : \mathbb{R} \to \mathbb{R} \) firstly on \(\mathbb{Q} \times \mathbb{Q} \) by the rule

\[
\rho(g)(t(q, r)) = t(\alpha(g, (q, r))),
\]

then we extend it continuously to the action on \(\mathbb{R} \).

Then \(g \mapsto \rho(g) \) is the embedding of \(G \) into Homeo_+ (\(\mathbb{R} \)). \(\square \)

Remark 7. The order on \(G \) may be considered to be a left order. Then the standard dynamical left-ordered realization \(\rho_l : G \to \text{Homeo}_+(\mathbb{R}) \) of the bi-ordered group \(G \) proves Theorem 9. In fact, for every \(g > 1 \) in \(G \), the graph of \(\rho_l(g) \) is above the line \(y = x \). Therefore, we have \(\sup \{ x : \rho_l(g)(x) > x \} = +\infty \) and \(\sup \{ x : \rho_l(g)(x) < x \} = -\infty \).

However, the properties of \(\rho \) and \(\rho_l \) are quite different.

Consider a layer \(q \times \mathbb{Q} \). It corresponds to rational points on the interval \(I_q := (\inf \{t(q, r) : r \in \mathbb{Q}\}, \sup \{t(q, r) : r \in \mathbb{Q}\}) \). Let \(\mathcal{I} := \{ I_q : q \in \mathbb{Q} \} \) be the set of all such intervals. Then it is easy to see that

(a) for any \(g \in G \) and \(I \in \mathcal{I} \) we have \(\rho(g)(I) \in \mathcal{I} \);

(b) for any \(g \in G \) and \(I \in \mathcal{I} \), \(\rho(g)(x) \geq x \) or \(\rho(g)(x) \leq x \) holds simultaneously for \(x \in I \);

(c) for any \(g \neq 1 \) there is an interval \(I_g = I_{q_g} = (p, q) \in \mathcal{I} \), such that \(\rho(g)(x) = x \) for \(x > q \);

(d) for any \(g \neq 1 \) and any \(I \leq I_g \) there is \(x \in I \) such that \(\rho(g)(x) \neq x \);

(e) for any \(g > 1 \) and any \(x \in I_g \), \(g(x) \geq x \).

5 Changing the order

In this section we prove our main result Theorem 3. That is, any given order \(< \) on \(F_2 = \langle a, b \rangle \) is not isolated in \(O(F_2) \). For any collection of positive elements \(g_1, \ldots, g_n > 1 \) we need to construct a new order \(\triangleleft \neq \triangleleft \), such that \(g_1, \ldots, g_n > 1 \).
Let F_2 embeds into a strongly dense countable group G, and the order $< \Gamma$ on G extends the order $< \Gamma$ on F_2. Everywhere in this section, we let $\Gamma_g = \Gamma_g(G, <)$ and $\Gamma = \Gamma(G, <)$ are considered with respect to the group G and order $< \Gamma$ on it. We consider the dynamical realization of G.

Recall that the dynamical realization was constructed in Section 4 using the action α of $G > F_2$ on $\Gamma \times S$. By Remark 6 we may replace the group S with any countable ordered dense subgroup $S' > S$ in this construction. We consider $S' = S*F_\infty(a)*F_\infty(b)$, where $F_\infty(a) = \langle f_{a, \Gamma} | \Gamma \in \Gamma \rangle$, $F_\infty(b) = \langle f_{b, \Gamma} | \Gamma \in \Gamma \rangle$ are infinitely generated free groups. The group S' is ordered since it is a free product of ordered groups, and we choose an order on S' to extend the order on S. Moreover, this order is dense since the center of S' is trivial. We will construct a family of alternative actions of F_2 on $\Gamma \times S'$, where S' is a countable ordered extension of S.

The action of α' was constructed through the (conjugation) action α_0 of G on Γ and a collection of (left multiplications by $s_{g,\Gamma}$) actions $\{\alpha'_g\}_{\Gamma \in \Gamma}$ on S'. Namely,

$$g \cdot (\Gamma, s) = ((\Gamma)^g, s_{g,\Gamma} s), \quad g \in F_2, \Gamma \in \Gamma, s \in S'. $$

For simplicity, we will write α instead of α'.

Similarly to the construction in Theorem 8 we build alternative actions F_2 on $\Gamma \times S'$. Similarly to α, the new action β is defined by an action β_0 of G on Γ, and a collection of actions $\{\beta_g\}_{\Gamma \in \Gamma}$ on S'. Each action $\beta_g(\cdot, \cdot)$ is the left multiplication by $s_{g,\Gamma} s \in S'$.

To construct the action β of the group $F_2 = \langle a, b \rangle$ we need to define the actions of its generators a, b. We begin with defining the action β_0 on the set of convex subgroups Γ.

Fix some convex subgroup $\Gamma_0 \in \Gamma$. We define

$$\beta_0(c, \Gamma) = c \cdot \Gamma = (\Gamma)^c, \quad \Gamma \geq \Gamma_0 \cup (\Gamma_0)^{c^{-1}}, c \in \{a, a^{-1}, b, b^{-1}\}. $$

In other words, $c \cdot \Gamma = (\Gamma)^c$ for $\Gamma_0 \leq (\Gamma)^c \cap \Gamma$. We extend the action β_0 so that $\beta_0(a, \cdot)$ and $\beta_0(b, \cdot)$ are order preserving bijections $\Gamma \to \Gamma$. We can always extend these actions using back and forth argument. Moreover, for any $\Gamma < \Gamma_0 \cup (\Gamma_0)^{c^{-1}}$ we can choose $c \cdot \Gamma$ to be any convex subgroup $\Gamma_0 \cup (\Gamma_0)^{c^{-1}}$. Moreover, for any $\Gamma < \Gamma_0 \cup (\Gamma_0)^{c^{-1}}$ we can choose $c \cdot \Gamma$ to be any convex subgroup $\Gamma_0 \cup (\Gamma_0)^{c^{-1}}$.

Everywhere below $g \cdot \Gamma$ means $\beta_0(g, \Gamma)$ and $g \cdot (\Gamma, s)$ means $\beta(g, (\Gamma, s))$.

17
Let us now define the actions \(\beta_\Gamma \). Recall that the action \(\beta_\Gamma \) is a multiplication by \(s'_{g,\Gamma} \in S' \). For \(c \in \{a, b\} \) we define

\[
s'_{c,\Gamma} = \begin{cases} \ s_{c,\Gamma}, & \Gamma > \Gamma_0 \cup (\Gamma_0)_c; \\ \ f_{c,\Gamma}, & \Gamma \leq \Gamma_0 \cup (\Gamma_0)_c. \end{cases}
\]

and

\[
s'_{c^{-1},\Gamma} = (s'_{c,c^{-1},\Gamma})^{-1} = \begin{cases} \ s_{c^{-1},c-1,\Gamma}^{-1}, & \Gamma > \Gamma_0 \cup (\Gamma_0)_c; \\ \ f_{c^{-1},c-1,\Gamma}, & \Gamma \leq \Gamma_0 \cup (\Gamma_0)_c. \end{cases}
\]

We also denote \(f_{c^{-1},\Gamma} := f_{c,c^{-1},\Gamma} \). Then for \(c \in \{a, a^{-1}, b, b^{-1}\} \)

\[
s'_{c,\Gamma} = \begin{cases} \ s_{c,\Gamma}, & \Gamma > \Gamma_0 \cup (\Gamma_0)_c; \\ \ f_{c,\Gamma}, & \Gamma \leq \Gamma_0 \cup (\Gamma_0)_c. \end{cases}
\]

(5)

In other words, the new actions \(\beta_\Gamma(c, \cdot) \) are equal to the old actions \(\alpha_\Gamma(c, \cdot) \) for sufficiently large \(\Gamma \)'s, and are multiplications by \(f_{c,\Gamma} \in F_{\infty}^{(a)} * F_{\infty}^{(b)} < S' \) for sufficiently small \(\Gamma \)'s.

For \(g = c_n \ldots c_1, c_i \in \{a, a^{-1}, b, b^{-1}\}, i = 1, \ldots, n \), we have

\[
g \cdot (\Gamma, s) = c_n \cdot \ldots \cdot c_2 \cdot c_1 \cdot (\Gamma, s) = c_n \cdot \ldots \cdot c_2 \cdot (c_1 \cdot \Gamma, s'_{c_1}s) = \ldots = (c_n \cdot \ldots \cdot c_1 \cdot \Gamma, s'_{c_n} \ldots s'_{c_1}s).
\]

We denote

\[
s'_{g,\Gamma} = s'_{c_n,\Gamma_n} \ldots s'_{c_1,\Gamma_1}.
\]

(6)

Then we have

\[
g \cdot (\Gamma, s) = (g \cdot \Gamma, s'_{g,\Gamma}s), \quad g \in F_2, \Gamma \in \Gamma, s \in S.
\]

(7)

Remark 8. The constructed action \(\beta \) depends on the choice of the order on \(S' \), the convex subgroup \(\Gamma_0 \), and the actions of \(a \) and \(b \) on the small convex subgroups.

Since \(\Gamma \) and \(S' \) are countable dense sets, we can see \(\beta \) as an action on \(\mathbb{Q} \times \mathbb{Q} \) instead of \(\Gamma \times S' \).

Theorem 10. For any choice of the order on \(S' \), \(\Gamma_0 \), and any actions of \(a \), \(b \) on \(\Gamma \), the constructed as above action \(\beta \) satisfies the conditions from Theorem \(\S \) and, therefore, \(\beta \) defines some order \(\prec \) on \(F_2 \).
Proof. Recall that by (7), for any $\Gamma \in \mathcal{G}$, we have $g \cdot (\Gamma, s) = (g \cdot \Gamma, s_g \cdot s)$. Similarly to the proof of Theorem 8 we will show that for any $g \in F_2 \setminus \{1\}$ there is a convex subgroup Γ'_g such that $s'_{g, \Gamma} \neq 1$ if and only if $\Gamma \nleq \Gamma'_g$, and $g \cdot \Gamma = \Gamma$ for $\Gamma > \Gamma'_g$. Then the action β defines the order \prec on F_2, given by $g > 1$ when $s'_{g, \Gamma} > 1$ in S'.

Recall that the initial order $<$ is given by $g > 1$ when $s_{g, \Gamma} > 1$ in S'.

Consider $g = c_n \ldots c_1 \neq 1$, $c_i \in \{a, a^{-1}, b, b^{-1}\}$. Recall that then by (6)

$s'_{g, \Gamma} = s'_{c_n, \Gamma_n} \ldots s'_{c_1, \Gamma_1}$.

In this product each s'_{c_i, Γ_i} is either s_{c_i, Γ_i} or f_{c_i, Γ_i}. Let

$g_i = c_{i-1} \ldots c_1$

be the word containing the last $i - 1$ letters of the word g. In particular, $g_1 = 1$ is the trivial word. Note that $\Gamma_i = g_i \cdot \Gamma$. Recall that by (5)

$s'_{c_i, \Gamma_i} = s_{c_i, \Gamma_i} \iff \Gamma_i > \Gamma_0 \cup (\Gamma_0)^{c_i^{-1}} \iff \Gamma > g_i^{-1} \cdot (\Gamma_0 \cup (\Gamma_0)^{c_i^{-1}})$.

Let

$\Gamma^{(i)}_g = g_i^{-1} \cdot (\Gamma_0 \cup (\Gamma_0)^{c_i^{-1}})$.

Then $\Gamma = \Gamma^{(i)}_g$ is the largest convex subgroup such that the ith from the right letter s'_{c_i, Γ_i} in the word $s'_{g, \Gamma}$ is an f-letter (i.e. equal to f_{c_i, Γ_i}).

Also, for a set of indexes

$I = \{i_1, i_2, \ldots, i_k \mid 1 \leq i_1 < i_2 < \cdots < i_k \leq n\}$

we denote

$g_I := c_{i_k} \ldots c_{i_1}$

and

$\Gamma^{(I)}_g := g_i^{-1} \cdot \Gamma_g$.

We claim that for $g \in F_2$ either $g = 1$ or the convex subgroup Γ'_g is one of the $\Gamma^{(i)}_g$'s or $\Gamma^{(I)}_g$'s. Namely, the largest of them such that $s'_{g, \Gamma} \neq 1$. We prove this statement by induction on the length of g. The base case $g = 1$ holds trivially.

Let $g \neq 1$ be a reduced word and assume that for any shorter word $h \neq 1$ there exists a convex subgroup $\Gamma'_h \in \{\Gamma^{(i)}_h, \Gamma^{(I)}_h\}$ such that $s'_{h, \Gamma} \neq 1$ if and only if $\Gamma \leq \Gamma'_h$, and $h \cdot \Gamma = \Gamma$ for $\Gamma > \Gamma'_h$.
Let $\Gamma_{g,1}' < \Gamma_{g,2}' < \cdots < \Gamma_{g,N}'$ be the convex subgroups $\Gamma_g^{(i)}$'s and $\Gamma_g^{(f)}$'s ordered by inclusion.

Consider the case $\Gamma \leq \Gamma_{g,1}'$.

Then $\Gamma \leq \Gamma_g^{(i)}$, $1 \leq i \leq n$, and therefore

$$s_{g,\Gamma}' = s_{c_n,\Gamma_n}' \cdots s_{c_1,\Gamma_1}' = f_{c_n,\Gamma_n} \cdots f_{c_1,\Gamma_1}$$

is an f-word, i.e. every letter of it is an f-letter (an element of $F_\infty^{(a)} * F_\infty^{(b)}$). So $s_{g,\Gamma}' \neq 1$ as a nontrivial reduced word in the free group $F_\infty^{(a)} * F_\infty^{(b)}$. In particular, $s_{g,\Gamma_s,1}' \neq 1$.

Consider the case $\Gamma > \Gamma_{g,N}'$. Then $\Gamma > \Gamma_g^{(i)}$, $1 \leq i \leq n$, and therefore

$$s_{g,\Gamma}' = s_{c_n,\Gamma_n}' \cdots s_{c_1,\Gamma_1}' = s_{c_n,\Gamma_n} \cdots s_{c_1,\Gamma_1} = s_{g,\Gamma}.$$

Also $\Gamma > \Gamma_g^{(I)}$ with $I = \{1, 2, \ldots, n\}$. So $s_{g,\Gamma}' = s_{g,\Gamma} = 1$.

It remains to consider $\Gamma \in (\Gamma_{g,1}' \Gamma_{g,N}')$. If $s_{g,\Gamma}' \neq 1$ for all $\Gamma \in (\Gamma_{g,1}' \Gamma_{g,N}')$ then theorem is proven with $\Gamma_g' = \Gamma_{g,N}'$. Let $\Gamma \in (\Gamma_{g,k}' \Gamma_{g,k+1}')$ and $s_{g,\Gamma_1}' = 1$. We choose the smallest k for which such Γ exists. So $s_{g,\Gamma}' \neq 1$ for all $\Gamma \in (\Gamma_{g,1}' \Gamma_{g,k}')$. We will show $\Gamma_g' = \Gamma_{g,k}'$.

In the word $s_{g,\Gamma}'$ we combine consecutive s-letters and f-letters. Write $s_{g,\Gamma}' = s_1 f_1 s_2 f_2 \cdots s_t f_t s_{t+1}'$, where $s_i \in S$ and $f_j \in F_\infty^{(a)} * F_\infty^{(b)}$. All of s_i's and f_j's are nonempty words accept possibly s_1 and s_{t+1}. Note that all f_j's are nontrivial as elements of the free group $F_\infty^{(a)} * F_\infty^{(b)}$. So $s_{g,\Gamma}' = 1$ is possible only if some $s_i = 1$. Let

$$s_i = s_{c_r,\Gamma_r}' \cdots s_{c_1,\Gamma_1}' = s_{c_r,\Gamma_r} \cdots s_{c_1,\Gamma_1} = 1.$$

Here s_i is an s-subword so all its letter are s-letters. This means $\Gamma > \Gamma_g^{(j)}$, $j = r, \ldots, t$. Also $s_{c_r,\Gamma_r} \cdots s_{c_t,\Gamma_t} = 1$ if and only if $\Gamma > \Gamma_g^{(I)}$ with $I = \{r, \ldots, t\}$.

Since $\Gamma \in (\Gamma_{g,k}' \Gamma_{g,k+1}')$ we have $\Gamma_{g,k}' \geq \min\{\Gamma_g^{(I)}, \Gamma_g^{(r)}, \ldots, \Gamma_g^{(t)}\}$.

We write

$$g = uvw,$$

where

$$u = c_n \cdots c_{r+1}, \quad v = c_r \cdots c_t, \quad \text{and} \quad w = c_{t-1} \cdots c_1.$$

Then we have

$$s_i = s_{v,\Gamma_t}' = s_{u,w,\Gamma} = s_{v,w,\Gamma} = 1. \quad (8)$$

20
Consider a convex subgroup $\tilde{\Gamma} > \Gamma'_{g,k}$ and let $\tilde{s}_i = s'_{c_1,\tilde{\Gamma}} \ldots s'_{c_i,\tilde{\Gamma}}$ be the subword of $s'_{g,\tilde{\Gamma}}$ whose letters are located at the same positions in $s'_{g,\tilde{\Gamma}}$ as the letters of s_i in $s'_{g,\Gamma}$. Here $\tilde{\Gamma}_i = \tilde{\Gamma}$, $\tilde{\Gamma}_{i+1} = c_i \cdot \tilde{\Gamma}_i$. Then, since $\tilde{\Gamma} > \min\{\Gamma_g^{(r)}, \ldots, \Gamma_g^{(l)}\}$, \tilde{s}_i is an s-word, and, since $\tilde{\Gamma} > \Gamma'_{g}$, $\tilde{s}_i = 1$. Similarly to (8) we have
\[
\tilde{s}_i = s'_{v,\tilde{\Gamma}} = s'_{v,w,\tilde{\Gamma}} = s_{v,w,\tilde{\Gamma}} = 1.
\]
Note that we also have
\[
v \cdot (w \cdot \tilde{\Gamma}) = (w \cdot \tilde{\Gamma})^v = w \cdot \tilde{\Gamma}.
\]
Therefore
\[
v \cdot (w \cdot \tilde{\Gamma}, s) = (w \cdot \tilde{\Gamma}, \tilde{s}_i s) = (w \cdot \tilde{\Gamma}, s)
\] (9)
whenever $\tilde{\Gamma} > \Gamma'_{g,k}$.

Let h be obtained from g by removing the subword v. We have
\[
h = (c_n \ldots c_{r+1})(c_{l-1} \ldots c_1) = uw.
\]
Note that the word h is shorter than g. We claim that for $\tilde{\Gamma} > \Gamma'_{g,k}$ we have
\[
h \cdot (\tilde{\Gamma}, s) = g \cdot (\tilde{\Gamma}, s).
\]
Consider $h^{-1} g = (uw)^{-1}uvw = w^{-1}vw$. We have
\[
h^{-1} g \cdot (\tilde{\Gamma}, s) = w^{-1}vw \cdot (\tilde{\Gamma}, s) = w^{-1}v \cdot (w \cdot \tilde{\Gamma}, s_{w,\tilde{\Gamma}}).
\]
Using (9) we get
\[
h^{-1} g \cdot (\tilde{\Gamma}, s) = w^{-1} \cdot (w \cdot \tilde{\Gamma}, s_{w,\tilde{\Gamma}}) = (\tilde{\Gamma}, s).
\]
Thus,
\[
g \cdot (\tilde{\Gamma}, s) = h \cdot (h^{-1} g \cdot (\tilde{\Gamma}, s)) = h \cdot (\tilde{\Gamma}, s).
\]
If $h = 1$ we immediately have $s'_{g,\tilde{\Gamma}} = s'_{1,\tilde{\Gamma}} = 1$ and $g \cdot \tilde{\Gamma} = 1 \cdot \tilde{\Gamma} = \tilde{\Gamma}$ for all $\tilde{\Gamma} > \Gamma'_{g,k}$. Recall that $s'_{g,\tilde{\Gamma}} \neq 1$ for $\Gamma \leq \Gamma'_{g,k}$. Therefore $\Gamma'_{g} = \Gamma'_{g,k}$.

Let $h \neq 1$. Then, after applying the inductive assumption, we obtain $s'_{g,\tilde{\Gamma}} = s'_{h,\tilde{\Gamma}} = 1$ and $g \cdot \tilde{\Gamma} = h \cdot \tilde{\Gamma} = \tilde{\Gamma}$ for all $\tilde{\Gamma} > \Gamma'_{g,k} \cup \Gamma'_h$. Here $\Gamma'_h = \Gamma'_{h,m}$.
for some m. Note that every $\Gamma'_{h,i}$ is one of the $\Gamma'_{g,j}$'s. And $s'_{h,\Gamma} = 1$ implies $\Gamma'_{h} < \Gamma'_{g,k+1}$. So $\Gamma'_{h} \leq \Gamma'_{g,k}$. Then $\Gamma'_{g,k} \cup \Gamma'_{h} = \Gamma'_{g,k}$. Again, $s'_{g,\Gamma} = 1$ and $g \cdot \tilde{\Gamma} = \tilde{\Gamma}$ for all $\tilde{\Gamma} > \Gamma'_{g,k}$, so $\Gamma_{g} = \Gamma'_{g,k}$.

Now we can prove the main result of this paper.

Proof of Theorem 3. We need to show that a given order $<$ on F_2 is not isolated. That is for any sequence of positive elements g_1, \ldots, g_k there is another order $\prec \neq <$ satisfying $g_1, \ldots, g_k > 1$.

We consider the order \prec to be associated with the action β as in Theorem 10. We need to choose a convex subgroup $\Gamma_0 \in \Gamma$, an order on S', and an action β_0 of F_2 on Γ. By choosing sufficiently small Γ_0, we guarantee $g_1, \ldots, g_k > 1$, and by choosing appropriate order on S' and action β, we make the new order \prec different from the old order $<$. For $g_i = c_{n_i}^{(i)} \ldots c_1^{(i)}$, $i = 1, \ldots, k$, by (10) we have

$$s'_{g_i,\Gamma_{g_i}} = s'_{c_{n_i}^{(i)},\Gamma_{n_i}^{(i)}} \ldots s'_{c_1^{(i)},\Gamma_1^{(i)}}.$$

$\Gamma_1^{(i)} = \Gamma_{g_i}$, $\Gamma_{j+1}^{(i)} = c_j^{(i)} \cdot \Gamma_j^{(i)}$, $j = 1, \ldots, n_i - 1$. Then, if $\Gamma_0 < \bigcap_{j=1}^{n_i} \Gamma_j^{(i)}$, we have

$\Gamma_{j+1}^{(i)} = c_j^{(i)} \cdot \Gamma_j^{(i)} = \left(\Gamma_j^{(i)} \right)^{c_j^{(i)}}, \text{ and } s'_{c_j^{(i)}} = s_{c_j^{(i)}}$. So

$$s'_{g_i,\Gamma_{g_i}} = s'_{c_{n_i}^{(i)},\Gamma_{n_i}^{(i)}} \ldots s'_{c_1^{(i)},\Gamma_1^{(i)}} = s'_{c_{n_i}^{(i)},\Gamma_{n_i}^{(i)}}, s'_{c_1^{(i)},\Gamma_1^{(i)}} = s_{g_i,\Gamma_{g_i}} \geq 1.$$

Similarly, for $\Gamma > \Gamma_{g_i}$, we have $s'_{g_i,\Gamma} = s_{g_i,\Gamma} = 1$. In this case $\Gamma_{g_i} = \Gamma_{g_i}$ and $g_i > 1$.

By choosing $\Gamma_0 < \bigcap_{i=1}^{k} \bigcap_{j=1}^{n_i} \Gamma_j^{(i)}$ we get $g_1, \ldots, g_k > 1$ for any order on S' and any action β_0.

By Corollary 7 there is a non-trivial element $h \in F_2 \cap \bigcap_{i=1}^{k} \bigcap_{j=1}^{n_i} \Gamma_j^{(i)}$. With out loss of generality we may assume $h > 1$. Let $h = c_m \ldots c_1$. Consider two cases:

Case 1: $\Gamma_h = (\Gamma_h)^a = (\Gamma_h)^b$.

In this case Γ_h is a normal convex subgroup of F_2. We obtain the new order \prec by reversing the signs of elements of Γ_h. In other words, the new
order \prec is generated by the positive cone

$$P_\prec = (P_\prec \setminus \Gamma_h) \cup (P_\prec^{-1} \cap \Gamma_h),$$

where P_\prec is the positive cone of the order \prec.

Clearly, this doesn’t affect the signs of g_1, \ldots, g_k. Also, the new order \prec is different from the old order $<$ since Γ_h is nontrivial by Lemma 6.

Case 2: $\Gamma_h \neq (\Gamma_h)^a$ or $\Gamma_h \neq (\Gamma_h)^b$.

Consider a total left preorder \leq_h given by $x \leq_h y$ when $(\Gamma_h)^x \leq (\Gamma_h)^y$. Recall that a preorder is a reflexive and transitive relation for which \leq and only if $\alpha_0(x, \Gamma_h) = (\Gamma_h)^x \leq (\Gamma_h)^y = \alpha_0(y, \Gamma_h)$. The similarly defined left preorder \preceq_h for an order \prec described in Theorem 10 depends only on the action β_0 and the convex subgroup Γ_x.

In order to change the order $<$, we change the induced left preorder \leq_h. First, we choose sufficiently small Γ_0 so that $\Gamma_h = \Gamma_x$. By the above discussion it is sufficient to take $\Gamma_0 < \bigcap_{j=1}^n \Gamma_h^{(j)}$. Then, we change the left preorder \leq_h by changing the action α_0. We will use the method similar to the argument for showing that free products don’t admit isolated left-orders [7]. For its adopted version for the free group F_2 see [3] Theorem 10.15.

We construct sequences d_1, d_2, \ldots and x_1, x_2, \ldots as following:

Let $x_1 = d_1 \in \{a, a^{-1}, b, b^{-1}\}$ be the minimal letter with respect to \leq_h. We choose $d_i \in \{a, a^{-1}, b, b^{-1}\}$ to minimize $x_i := d_ix_{i-1}$, $i = 2, 3, \ldots$ with respect to \leq_h. Note that x_i is a minimal (but not necessarily the smallest) word of length i in \leq_h. Equivalently, x_i minimizes $\alpha_0(x_i, \Gamma_h)$. Note that because Γ_h is not normal in F_2 we have $1 >_h x_1 >_h x_2 >_h \ldots$

Let $\Gamma_0 = (\Gamma_h)^{x_m}$. Then, $\Gamma_0 < (\Gamma_h)^x$, for any word x of length less than m. In particular, $\Gamma_0 < \Gamma_h^{(j)}$, $j = 1, \ldots, m$. Thus, for an order \prec as in Theorem 10 we have $\Gamma_h^{(j)} = \Gamma_h$. Also, since $\Gamma_0 < \Gamma_h < \bigcap_{i=1}^k \bigcap_{j=1}^n \Gamma_h^{(j)}$, $g_1, \ldots, g_k \geq 1$ holds.

Let $d = d_{m+1}$ and $d' \in \{a, a^{-1}, b, b^{-1}\} \setminus \{d, d^{-1}\}$ be such that $x_{m+1} = dx_m \leq_h d'x_m \leq_h x_m$. Then, since $x_{m+1} <_h x_m$ we have

$$x_{m+1} <_h \max\{c^{-1}x_m, x_m\}, \ c = d, d'.$$

In terms of the conjugation action, for $\Gamma = (\Gamma_h)^{x_{m+1}}$ this means

$$\Gamma < \Gamma_0 \cup (\Gamma_0)^c, \ c = d, d'.$$
Therefore, for the new action β_0, we may choose $\beta(d, \Gamma)$ and $\beta(d', \Gamma)$ to be any sufficiently small (for instance, $<\Gamma$) convex subgroups.

We build β_0 so that $\beta_0(d_1, \Gamma_h) = \alpha_0(d_1, \Gamma_h) = (\Gamma_h)^{x_1}$, $\beta_0(d_2, (\Gamma_h)^{x_1}) = \alpha_0(d_2, (\Gamma_h)^{x_1}) = (\Gamma_h)^{x_2}$, $\beta_0(d_3, (\Gamma_h)^{x_2}) = \alpha_0(d_3, (\Gamma_h)^{x_2}) = (\Gamma_h)^{x_3}$, ..., $\beta_0(d_m, (\Gamma_h)^{x_{m-1}}) = \alpha_0(d_m, (\Gamma_h)^{x_{m-1}}) = (\Gamma_h)^{x_m}$, and $\beta_0(d, (\Gamma_h)^{x_m}) > \beta_0(d', (\Gamma_h)^{x_m})$. In terms of the left preorder \leq_h the last means $dx_m \succ_h d'x_m$ while in the left preorder \leq_h we have $dx_m \leq_h d'x_m$. Clearly, then the left preorders \leq_h and \leq_h are different, and, therefore the orders $<$ and \prec are different.

Remark 9. In terms of the order $<$ for a positive h the condition $dx_m \leq_h d'x_m$ means

$$h^{dx_m} < \left(h^{d'x_m}\right)^n$$

for sufficiently large $n \in \mathbb{N}$. In the order $<$ the inequality (10) is reversed.

So we can take the order $<$ different from the order $<$, but still satisfying $g_1, \ldots, g_k > 1$. The order $<$ is not isolated in $O(F_2)$.

Corollary 11. The space $O(F_2)$ is homeomorphic to the Cantor set.

References

[1] Adam S. Sikora, *Topology on the spaces of orderings of groups*, Bull. London Math. Soc. 36 (2004), no. 4, 519–526, DOI 10.1112/S0024609303003060. MR2069015

[2] A. A. Vinogradov, *On the free product of ordered groups*, Mat. Sbornik N.S. 25(67) (1949), 163–168 (Russian). MR0031482

[3] Adam Clay and Dale Rolfsen, *Ordered groups and topology*, Graduate Studies in Mathematics, vol. 176, American Mathematical Society, Providence, RI, 2016. MR3560661

[4] B. H. Neumann, *On ordered groups*, Amer. J. Math. 71 (1949), 1–18, DOI 10.2307/2372087. MR28312

[5] Stephen H. McCleary, *Free lattice-ordered groups represented as o-2 transitive l-permutation groups*, Trans. Amer. Math. Soc. 290 (1985), no. 1, 69–79, DOI 10.2307/1999784. MR787955

[6] Andrés Navas, *On the dynamics of (left) orderable groups*, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 5, 1685–1740 (English, with English and French summaries). MR2766228

[7] Cristóbal Rivas, *Left-orderings on free products of groups*, J. Algebra 350 (2012), 318–329, DOI 10.1016/j.jalgebra.2011.10.036. MR2859890
[8] Valerii M. Kopytov and Nikolaï Ya. Medvedev, *Right-ordered groups*, Siberian School of Algebra and Logic, Consultants Bureau, New York, 1996. MR1393199

[9] Edward V. Huntington, *The continuum and other types of serial order. With an introduction to Cantor’s transfinite numbers*, Dover Publications, Inc., New York, 1955. 2d ed. MR0067953

[10] Andrés Navas and Cristóbal Rivas, *Describing all bi-orderings on Thompson’s group F*, Groups Geom. Dyn. 4 (2010), no. 1, 163–177, DOI 10.4171/GGD/78. MR2566304