Is a Rise in Intracellular Concentration of Free Calcium Necessary or Sufficient for Stimulated Cytoskeletal-associated Actin?

R. I. Sha’afi,* J. Shefcyk,* R. Yassin,* T. F. P. Molski,* M. Volpi,* P. H. Naccache,‡ J. R. White,* M. B. Feinstein,* and E. L. Becker*

Departments of *Physiology, ‡Pathology, and †Pharmacology, University of Connecticut Health Center, Farmington, Connecticut 06032

Abstract. The addition of the calcium ionophore A23187 to rabbit neutrophils increases the amount of actin associated with the cytoskeleton regardless of the presence or absence of calcium in the incubation medium. In the presence of extracellular calcium, the effect of A23187 is biphasic with respect to concentration. The action of the ionophore is rapid, transient, and is inhibited by pertussis toxin, hyperosmolarity, and quinacrine. On the other hand, the addition of pertussis toxin or hyperosmolarity has small, if any, effect on the rise in intracellular calcium produced by A23187. While quinacrine does not affect the fMet-Leu-Phe-induced increase in cytoskeletal actin and the polyphosphoinositide turnover, its addition inhibits completely the stimulated increase in Ca-influx produced by the same stimulus. The results presented here suggest that a rise in the intracellular concentration of free calcium is neither necessary nor sufficient for the stimulated increase in cytoskeletal-associated actin. A possible relationship between the lipid remodeling stimulated by chemotactic factors and the increased cytoskeletal actin is discussed.

Some of the neutrophil responses that are activated by the chemotactic factor formylMethionyl-Leucyl-Phenylalanine (fMet-Leu-Phe)† such as cell motility, shape change, and the projection of pseudopodia or ruffles depend on the mechanical displacement of part of the cell, or of the whole cell. The cellular contractile apparatus, of which actin and myosin are the major components, is closely involved in these responses, and an understanding of neutrophil activation requires a detailed knowledge of the organization of these proteins before and after stimulation. Actin filaments in neutrophils are considerably more labile than their counterpart in muscle, and large pools of depolymerized actin are usually found in resting cells (Korn, 1982; Pollard, 1975; Southwick and Stossel, 1983).

Recently, it has been shown that the addition of fMet-Leu-Phe to neutrophils causes a rapid polymerization of actin (Varani and Roa, 1982; White et al., 1983; Fehlheimer and Zigmond, 1983; Yassin et al., 1985). The signals that initiate actin polymerization are not known, but are important to determine because of the central role of actin in neutrophil functions (Southwick and Stossel, 1983; Yassin et al., 1985; Fox et al., 1984). Under conditions similar to those under which actin gets polymerized, chemotactic factors also increase the hydrolysis of phosphatidylinositol 4,5-bis-phosphate and causes a rise in the level of intracellular concentration of free calcium (White et al., 1983; Varani and Roa, 1982; Volpi et al., 1983; White et al., 1983).

The present studies were undertaken to examine the question of whether a rise in the intracellular concentration of free calcium is necessary or sufficient for the stimulated increase in cytoskeletal-associated actin.

Materials and Methods

Rabbit peritoneal neutrophils (4–12-h exudates) were collected and washed as previously described (Yassin et al., 1985; Showell et al., 1979) and the cells were resuspended in protein and magnesium free modified Hanks' balanced salt solution. The composition of this modified Hanks' solution is (mM): NaCl, 124; KCl, 5; NaH2PO4, 0.64; KH2PO4, 0.66; CaCl2, 0.5 (unless stated otherwise); NaHCO3, 15.2; Hepes, 10.0; and glucose 5.56; pH 7.2. A 10-min incubation period at 37°C preceded all experimental manipulations. When pertussis toxin was used, the cell suspensions were divided into two flasks, one containing pertussis toxin (500 ng/ml) and the second left as control. The cells were incubated with the toxin for 1 h at 37°C.

Isolation of Cytoskeletal Proteins

Cytoskeletal structures were isolated as proteins insoluble in 1% Triton X-100 as described by Phillips et al. (1980) except that the concentration of EGTA was increased from 5 to 10 mM. The experimental details are the same as previously described (Yassin et al., 1985). Briefly, aliquots (500 μl) from a cell suspension containing 107 cells/ml were distributed into various sets of Eppendorf microcentrifuge tubes (1.5 ml capacity). At a preset time after the addition of the stimulus, the reaction was stopped by the addition of 500 μl of cold Triton stock solution which contained 2% Triton X-100, 160 mM KCl, 40.
mM imidazole HCl, 20 mM EGTA, and 8 mM sodium azide, pH 7.0. The tubes were placed on ice for 10 min, and then were centrifuged for 6 min (8,000 g). After centrifugation, the supernatant was decanted and the pellet dissolved in 50-100 μl of a solution containing 9% SDS, 13 mM mercaptoethanol, 15% glycerol, and 86 mM Tris-HCl (pH 6.7) by incubating in a boiling water bath with vigorous vortexing until dissolved. Actin was identified by molecular weight and two-dimensional electrophoresis (Yassin et al., 1985). The cytoskeletal proteins were electrophoresed through a 5-15% gradient or 10% straight polyacrylamide slab gel (with 5% polyacrylamide in the stacking gel) according to the method of Laemmli (1970). Proteins were stained with Coomassie Brilliant Blue R250, and the absorption of gel bands was measured at 590 nm using a Tramadyste 2955 scanning densitometer.

Measurement of Quin-2 Fluorescence

Quin-2 loading and fluorescence were carried out as previously described (White et al., 1983b). Quin-2 fluorescence was recorded using an SLM 8000 photon-counting spectrofluorometer with a temperature-controlled (37°C) and a magnetically stirred cuvette holder. Stimuli were added by a microsyringe directly into the cuvette without interrupting recording. Fluorescence excitation and emission wavelengths were 339 and 492 nm, respectively.

Labeling, Isolation, and Separation of Lipids

Phospholipid labeling with 32P and subsequent isolation were carried out as described previously (Volpi et al., 1983). The reaction was initiated by adding a known volume of the fMet-Leu-Phe to cell suspension (10 6 cells/ml), and it was terminated by adding 5 ml of n-hexane/isopropanol and concentrated HCl (final concentration, 0.1 M) (300:200:4). The various components of lipids were separated on silica gel pre-coated thin layer chromatography plates without fluorescent indicator (Brinkmann Instruments Co., Westbury, NY).

Radioactive Calcium Influx

Radioactive calcium fluxes were measured using the rapid sampling silicone oil method previously described in detail (Naccache et al., 1977). Radiolabeled calcium and the stimulus were added together, and the amount of radioactivity associated with the cells was measured.

Chemicals

EGTA, Heps, fMet-Leu-Phe, and actin were purchased from Sigma Chemical Co. (St. Louis, MO). Electrophoresis chemicals were supplied by Bio-Rad Laboratories (Richmond, CA). Platelet-activating factor (PAF), A23187, and quin-2/AM were purchased from Calbiochem-Behring Corp. (San Diego, CA). Phorbol 12-myristate, 13-acetate was obtained from CMC, Cancer Chemical (Brewster, NY). Pertussis toxin was a gift from Dr. J. Munoz (National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT), and 46Ca was purchased from New England Nuclear (Boston, MA).

Results

Effect of the Calcium Ionophore A23187 on Cytoskeletal Actin

The addition of 500 nM of the ionophore A23187 to rabbit neutrophils causes an increase in the amount of actin associated with the cytoskeleton (Fig. 1). The effect of A23187 is rapid (reached maximum value within the first 40 s), transient, and it does not require the presence of calcium in the suspending medium. Under the same conditions, the addition of 500 nM A23187 causes a rapid and transient increase in the intracellular concentration of free calcium as measured by quin-2 fluorescence (data not shown). In the presence of 1 mM EGTA and no added calcium, the rise in the intracellular calcium concentration caused by the addition of A23187 is smaller but still significant. The effect of varying the concentration of calcium in the suspending medium on the basal and the A23187-stimulated cytoskeletal actin was also investigated and the results are summarized in Fig. 2. The ionophore-induced increase in cytoskeletal actin is dose dependent and requires concentrations in excess of 10-8 M (Fig. 3). Note that, at high concentrations of A23187, the presence of calcium in the suspending medium reverses the stimulation of the incorporation of actin in the cytoskeleton.

Is a Rise in the Intracellular Concentration of Free Calcium Sufficient to Cause an Increase in Cytoskeletal-associated Actin?

To examine this question, we have carried out three sets of experiments. In the first set, we have tested the effects of pertussis toxin on the increase in cytoskeletal actin and the rise in intracellular concentration of free calcium produced by A23187, PAF, and fMet-Leu-Phe. The results summarized in Table I clearly show that while the addition of pertussis toxin to neutrophils has no effect on the rise in calcium produced by A23187 or PAF as measured by quin-2 fluorescence, it abolishes the increases in cytoskeletal actin produced by these two stimuli.

In the second set, the effect of increasing the medium osmolarity on both the rise in calcium and the increase in cytoskeletal actin produced by A23187 and fMet-Leu-Phe...
The effects of various concentrations of the ionophore A23187 on the amount of actin associated with the cytoskeleton in rabbit neutrophils. Each value represents the mean ± SEM of at least three different experiments. The cells were reacted with the ionophore for 40 s before the reaction was stopped. EGTA was added 20 s before the ionophore.

Table I. Effect of Pertussis Toxin on the Stimulated Increases in the Intracellular Concentration of Free Calcium and Cytoskeletal Actin

Condition	Control cells	+ Pertussis toxin*
No addition	1.0 ± 0.2	0 ± 0
fMet-Leu-Phe (1 nM)	38 ± 7	390 ± 150
A23187 (500 nM)	20 ± 5	700 ± 200
PAF (10 nM)	30 ± 6	365 ± 70

* The cells were preincubated with pertussis toxin (500 ng/ml) for 1 h. The cells were incubated for 1 min with Hanks’ buffered solution in which the concentration of NaCl was increased to 250 mM.

The rises in the intracellular concentration of free calcium produced by fMet-Leu-Phe and arachidonic acid are known to release arachidonic acid (Takenawa et al., 1983; Volpi et al., 1985). It is possible that the observed increases of cytoskeletal actin caused by the ionophore result indirectly from the generation of one or more lipid mediators. To test this hypothesis, the effect of quinacrine, a compound with antiphospholipase activity (Hirata et al., 1979), on the stimulated amount of actin associated with the cytoskeleton was investigated (Table III). The data presented in Table III demonstrates that quinacrine inhibits the stimulation of the cytoskeletal-associated actin that is induced by A23187 while leaving unaffected the responses of fMet-Leu-Phe and arachidonic acid. The effect of quinacrine (it is a strongly fluorescent compound) on calcium influx as a measure of the rise in intracellular concentration of free calcium produced by A23187 and fMet-Leu-Phe was also investigated. The results summarized in Fig. 4 clearly show that unlike increased actin association with the cytoskeleton, the A23187-induced rise in intracellular calcium (as measured by Ca-influx) is only partially inhibited by quinacrine. These results further support the conclusion that a rise in calcium is not sufficient for actin polymerization. Note that while quinacrine had no effect on the fMet-Leu-Phe-stimulated increase in cytoskeletal actin, it inhibited the rise in the intracellular concentration of free calcium (as measured by Ca-influx) produced by the same stimulus.

Is a Rise in the Intracellular Concentration of Free Calcium Necessary for Stimulated Cytoskeletal-associated Actin?

To examine the question of whether or not a rise in the intracellular concentration of free calcium is necessary for
generally accepted that the rise in intracellular concentration of inositol 1,4,5-trisphosphate (IP3) from the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) through the action of phospholipase C (Berridge, 1984). Because of this, the effect of quinacrine on the hydrolysis of PIP2 produced by fMet-Leu-Phe was investigated (Table V). The results clearly show that the addition of quinacrine does not inhibit the breakdown of PIP2, PIP, and the generation of phosphatidate.

Discussion

The results reported here demonstrate that the addition of A23187 to rabbit neutrophils increases the amount of actin associated with the cytoskeleton. In the presence of extracellular calcium, the effect of A23187 is biphasic with respect to the concentration of the ionophore. The progressive decrease in cytoskeletal actin produced by high concentrations of A23187, in the presence of Ca2+, is probably due to the direct effect of high intracellular calcium ion concentration on actin polymerization. It is known that increasing the concentration of Ca2+ reduces the amount of actin associated with the cytoskeleton even after the extraction step with the triton X-100 solution (White et al., 1983a).

The action of A23187 on the cytoskeletal actin is probably indirect and mediated by the generation of lipid mediator(s). This conclusion is based on several lines of evidence. First, the effect of A23187 is transient, inhibited by pertussis toxin, hyperosmolarity, and the phospholipase A2 inhibitor, quinacrine. Second, cells pre-treated with A23187 desensitized to the subsequent addition of A23187 (data not shown) with respect to the cytoskeletal response.

The addition of quinacrine to rabbit neutrophils inhibits the increase in calcium influx produced by fMet-Leu-Phe. This effect is not due to an inhibition of PIP2 hydrolysis.

Based on the data presented here it is reasonable to conclude that a rise in the intracellular concentration of free calcium alone is not sufficient to initiate the stimulated cytoskeletal-associated actin. This conclusion is based on several experimental findings which demonstrate that it is possible to have rises in calcium level in the absence of an increase in cytoskeletal actin. First, incubation of the rabbit neutrophils with pertussis toxin inhibits the increase in cytoskeletal actin but not the rise in intracellular calcium produced by the calcium ionophore A23187 and the PAF. Second, increasing the osmolality of the Hanks’ buffer by increasing the NaCl concentration to 250 mM inhibits drastically the increase in cytoskeletal actin but decreases only slightly the rise in calcium produced by A23187 and fMet-Leu-Phe. Third, incubation
of the cells with the quinacrine inhibits totally the increase in the amount of actin associated with the cytoskeleton and only partially the rise in calcium produced by A23187.

Conversely, since it is possible to find conditions under which it is possible to elicit an increase in the cytoskeletal actin without a measurable rise in the intracellular concentration of free calcium, it is reasonable to suggest that the latter event is not absolutely required for actin polymerization. This conclusion is supported by two sets of experimental findings. First, PMA increases cytoskeletal actin without elevating intracellular calcium. Second, the increase in calcium influx but not in the amount of actin associated with the cytoskeleton produced by fMet-Leu-Phe is inhibited by quinacrine. It must be clearly pointed out that one cannot completely rule out the possibility that a small, undetected shift in the distribution of intracellular calcium is necessary for stimulated cytoskeletal-associated actin.

As stated in the introduction, the chemotactic factor fMet-Leu-Phe, under conditions similar to those under which it stimulates the amount of actin associated with the cytoskeleton, causes an increase in phosphoinositide turnover in addition to calcium rise. The elevation of intracellular concentration of free calcium is most likely due to the action of IP3. Since the calcium rise alone does not seem to be necessary or sufficient for stimulated cytoskeletal actin, we would like to propose that stimulated phosphoinositide turnover may be a crucial step in actin polymerization. The finding that quinacrine has no effect on stimulated cytoskeletal actin or phosphoinositide turnover produced by fMet-Leu-Phe supports this hypothesis. Also, consistent with this idea is the observation that the addition of phospholipase C to intact neutrophils or of GTPyS to permeabilized cells increases the cytoskeletal actin (unpublished data). This idea is the subject of further studies.

This work is supported in part by grants AI-13734, GM 17536 and AM 31000 from the National Institutes of Health.

Received for publication 9 August 1985, and in revised form 8 November 1985.

References

Berridge, M. 1984. Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J. 220:345–360.

Fechheimer, M., and S. H. Zigmond. 1983. Changes in cytoskeletal proteins of polymorphonuclear leukocytes induced by chemotactic peptides. Cell Motil. 3:349–362.

Fox, J. E. B., J. K. Boyles, C. C. Reynolds, and D. C. Phillips. 1984. Actin filament content and organization in unstimulated platelets. J. Cell Biol. 98:1983–1991.

Hirai, F., B. A. Corcoran, V. Krishnamoorthy, E. Schiffman, and J. Axelrod. 1979. Chemoattractants stimulate degradation of methylated phospholipids and release of arachidonic acid in rabbit leukocytes. Proc. Natl. Acad. Sci. USA. 76:2640–2643.

Korn, E. D. 1982. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol. Rev. 61:672–737.

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature (Lond.). 227:680–685.

Naccache, P. H., H. J. Showell, E. L. Becker, and R. I. Sha'afi. 1977. Sodium potassium, and calcium transport across rabbit polymorphonuclear leukocyte membranes: effect of chemotactic factor. J. Cell Biol. 73:428–444.

Phillips, D. R., L. K. Jennings, and H. H. Edwards. 1980. Identification of membrane proteins mediating the interaction of human platelets. J. Cell Biol. 86:77–86.

Pollard, T. D. 1975. Functional implications of the biochemical and structural properties of cytoplasmic contractile proteins. In Molecules and Cell Movement. S. Inoue, and R. E. Stephens, editors. Raven Press, New York. 259–286.

Rink, T. J., A. Sanchez, and T. F. J. Hallam. 1983. Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets, Nature (Lond.). 305:117–119.

Roa, K. M. K., and J. Varani. 1982. Actin polymerization induced by chemotactic peptide and Concanavalin A in rat neutrophils. J. Immunol. 129:1695–1697.

Sha'afi, R. I., J. R. White, T. F. P. Molski, J. Shefcyk, M. Volpi, P. H. Naccache, and M. B. Feinstein. 1983. Phorbol 12-myristate, 13-acetate activates rabbit neutrophils without an apparent rise in the level of intracellular free calcium. Biochem. Biophys. Res. Commun. 114:638–645.

Showell, H. J., D. Williams, E. L. Becker, P. H. Naccache, and R. I. Sha'afi. 1979. Desensitization and deactivation of rabbit neutrophils secretory unresponsiveness induced by incubation with formylmethyl-y-leucyl-phenylalana-nine prior to the addition of cytochalasin B. J. Reticuloendothel. Soc. 25:1139–1150.

Southwick, F. S., and T. P. Stossel. 1983. Contractile proteins in leukocyte function. Semin. Hematol. 20:305–321.

Takenawa, T., Y. Homma, and Y. Nagai. 1983. Role of Ca2+ in phosphatidylinositol response and arachidonic acid release in formylated tripeptide on Ca2+ ionophore A23187-stimulated guinea pig neutrophils. J. Immunol. 139:2849–2855.

Volpi, M., R. Yassin, P. H. Naccache, and R. I. Sha'afi. 1983. Chemotactic factor causes rapid decreases in phosphatidylinositol 4,5 bis-phosphate and phosphatidylinositol 4-monophosphate in rabbit neutrophils. Biochem. Biophys. Res. Commun. 112:957–964.

Volpi, M., T. F. P. Molski, P. H. Naccache, M. B. Feinstein, and R. I. Sha'afi. 1985. Phorbol 12-myristate, 13-acetate potentiates the action of the calcium ionophore in stimulating arachidonic acid release and production of phosphatidic acid in rabbit neutrophils. Biochem. Biophys. Res. Commun. 128:594–600.

White, J. R., P. H. Naccache, and R. I. Sha'afi. 1983a. Stimulation by chemotactic factor of actin association with the cytoskeleton in rabbit neutrophils. Effects of calcium and cytochalasin B. J. Biol. Chem. 258:14041–14047.

White, J. R., P. H. Naccache, T. F. P. Molski, P. Borget, and R. I. Sha'afi. 1983b. Direct demonstration of increased intracellular concentration of free calcium in rabbit and human neutrophils following stimulation by chemotactic factors. Biochem. Biophys. Res. Commun. 113:44–50.

Yassin, R., J. Shefcyk, J. R. White, W. Tao, M. Volpi, T. F. P. Molski, P. H. Naccache, M. B. Feinstein, and R. I. Sha'afi. 1983. Effects of chemotactic factors and other agents on the amounts of actin and a 65,000 molecular weight protein associated with the cytoskeleton of rabbit and human neutrophils. J. Cell Biol. 101:182–188.