CHANGES IN THE DISTRIBUTION OF AMPHIPODS IN THE DAUGAVA RIVER, LATVIA

Jana Paidere*, Aija Brakovskaa, Linda Bankovskaa and Dāvis Grubertsb

*Institute of Life Sciences and Technologies, Daugavpils University, Daugavpils, Latvia; bDepartment of Chemistry and Geography, Daugavpils University, Daugavpils, Latvia

*Corresponding author. Email: jana.paidere@du.lv

Abstract. Scientific information on amphipods and other peracaridan crustaceans in Latvian inland waters is insufficient. Therefore investigations of these animals are indispensable, especially because of the ongoing biological invasions of Ponto-Caspian amphipods causing changes in macroinvertebrate assemblages. Our recent investigation revealed that the alien amphipod Gammarus varsoviensis dominates amphipods in the upper courses of the Daugava River, whereas the other alien amphipod Pontogammarus robustoides prevails in the lower reaches of the river. Both these Ponto-Caspian amphipods were found co-occurring with the indigenous Gammarus pulex in the middle course of the Daugava River upstream from the Pļaviņas Reservoir. We predict that in the future the indigenous G. pulex will be fully exterminated by alien amphipods in the Latvian part of the Daugava River.

Freshwater amphipods, both alien and indigenous, have not been sufficiently studied in Latvian waters. This information is important because due to possible invasions of alien peracaridan crustaceans including amphipods, dramatic alterations in macroinvertebrate assemblages and even extinctions of indigenous amphipods can occur. Recently, the Ponto-Caspian amphipod Dikerogammarus villosus has been detected in the Riga port (Minchin at al. 2019), and the presence of Obesogammarus crassus in the Riga port area has been confirmed (at Voleri, in 2016, pers. unpublished results).

Currently, the Ponto-Caspian Pontogammarus robustoides is the dominant alien amphipod in Latvian inland waters, mostly occurring in the Lower Daugava River (Grudule, Parele, and Arbačiauskas 2007; Paidere, Brakovska, and Škute 2016). The species was initially introduced into Latvian waters as valuable fish fodder in the 1960s. It was released into both, Lake Lielais Baltzers, which is nearest to Riga Lake, and the Ķegums Reservoir located on the Lower Daugava River (Kachalova and Laggzdin 1968; Bodniece 1976). The other alien amphipod Gammarus varsoviensis was first recorded in the Daugava River in 2006 (Arbačiauskas 2008). This species was first described and separated from the morphologically similar Gammarus lacustris in 1975 (Jaźdżewski 1975). It was used to be considered a native species in Central Europe (Germany, Poland, Lithuania and Belarus), however, the detection of G. varsoviensis in the Dnieper River catchment in the Ukraine suggests that the species is not native to Central Europe, but is rather an immigrant species from the Ponto-Caspian region (Grabowski et al. 2012a, b). According to the findings of the haplotype-based genetic analysis, G. varsoviensis is grouped into two clades, one of which is distributed in the Lower Dnieper River and the other in the Upper Dnieper River and the Baltic Sea basin (Grabowski et al. 2012b). Consequently, the purpose of this study was to reveal the distribution of G. varsoviensis and P. robustoides in the Daugava River, and to ascertain whether native amphipod species occur there.

The Daugava River (the Western Dvina) is one of the largest rivers in Eastern Europe. Starting in the Valday Highlands in Russia, the river flows through the East-European Plain and crosses Belarus and Latvia before draining into the Gulf of Riga. The catchment area of the Daugava River is around 87 900 km² and its total length is around 1005 km, 342 km of which are within the territory of Latvia. The cascade of three large hydroelectric power plants at Pļaviņas, Ķegums and Riga on the Lower Daugava forms the largest artificial river reservoirs in Latvia (Volchak and Lyakmund 2006).
Figure 1. Sampling sites of amphipods along the Daugava River. 1 – Pļaviņas Reservoir (2016, 2017, 2018), 2 – Zelki (2016), 3 – Veczelki (2016, 2017), 4 – Jēkabpils (2017, 2018), 5 – Daugavpils (2017, 2018). © Paidere, map created with QGIS Essen 2.14 based on the free online database GIS Latvija 10.2 (http://www.envirotech.lv/)

Figure 2. Some morphological characteristics of the specimens Gammarus varsoviensis and Gammarus pulex from the Daugava River (site “Jēkabpils”); a) G. varsoviensis, b) G. pulex.
The investigations conducted in 2016, 2017 and 2018 revealed the current distribution of alien amphipods *G. varsoviensis* and *P. robustoides* in the lower/middle course of the Daugava River. *Pontogammarus robustoides*, which was found in the Plavinas Reservoir, was the dominant amphipod species during all study years (Figure 3), which is in agreement with the findings of our previous studies (Paidere, Brakovska, and Škute 2016). The amphipod species that were found occurring upstream from the Plavinas Reservoir in 2016 differed from those detected in 2017. At sites “Zeķi” and “Vецелки,” *P. robustoides* was gradually replaced by *G. varsoviensis*. Although small in numbers, the indigenous amphipod *Gammarus pulex* was also detected there. In 2017 and 2018, the indigenous *G. pulex* and alien *G. varsoviensis* co-occurred at the site “Jēkabpils”. In these years, *G. varsoviensis* actually was the only amphipod species found at the site “Daugavpils”. Single specimens of *G. pulex* were observed at this site only in May of both years (Figure 3).

According to Grabowski et al. (2012b), *G. varsoviensis*, which has colonised the lowland rivers of the Baltic Sea basin, has immigrated from the Dnieper basin. In Belarus, *G. varsoviensis* is one of the most widespread species in inland waters, occurring not only in the Pripyat River catchment and other tributaries of the Upper Dnieper River, but also in the Upper Daugava River (the Western Dvina) (Makarenko and Vezhnovets 2014). In Lithuania, *G. varsoviensis* inhabits the upper course and some tributaries of the lower course of the Neman River. The species invaded Lithuanian waters at the end of the 18th century via the man-made Oginsky Canal that connected the basins of the Neman and Dnieper rivers, and this happened before the introduction of other Ponto-Caspian peracaridan species in the middle of the 20th century (Arbačiauskas et al. 2017). To affirm it, investigations of *G. varsoviensis* should be continued in tributaries of the Lower Daugava River.

The comparison of *P. robustoides* distribution data for 1995–2005, for 2015 (Grudule, Parele, and Arbačiauskas 2007; Paidere, Brakovska, and Škute 2016), and those obtained from the recent study shows that now the alien *P. robustoides* is the dominant amphipod species in reservoirs of the Daugava River. It is obvious that expansion of *P. robustoides* is ongoing and, in the future, the species is going to spread further along the Upper Daugava River.

The indigenous *G. pulex* still occurs in low numbers in some Daugava places. The species also inhabits the middle course of the Lielupe River (at Stalgene, Emburga, observed in 2017, pers. unpublished results), which is not yet invaded by *P. robustoides*. However, in the future, the indigenous *G. pulex* is likely to be fully exterminated by the alien species *G. varsoviensis* and *P. robustoides* in the upper and middle courses of the Daugava River. Apparently, *P. robustoides* has contributed to the elimination of this indigenous amphipod from the Lower Daugava River and its reservoirs, because in the 1960s *G. pulex* was still present in the Lower Daugava River (Kumsare et al. 1967).

FUNDING

This research was supported by the DU Research Project No. 14–95/3 “Research into the factors contributing to biological invasions of alien amphipods (*Pontogammarus robustoides, Gammarus varsoviensis*)”.

Figure 3. Frequencies of amphipod species in qualitative samples collected from the Plavinas Reservoir and the Daugava River in 2016, 2017 and 2018.
ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers for their insight, helpful and constructive comments that greatly contributed to the improvement of the final version of the paper.

REFERENCES

Arbačiauskas, K. 2008. ‘Amphipods of the Nemunas River and the Curonian Lagoon, the Baltic Sea basin: where and which native freshwater amphipods persist?’ Acta Zoologica Lituanica 18 (1): 10–16.

Arbačiauskas, K., E. Šidagytė, V. Šniaukštaitė, and J. Lesutienė. 2017. ‘Range expansion of Ponto-Caspian peracaridan Crustaceans in the Baltic Sea basin and its aftermath: Lessons from Lithuania.’ Aquatic Ecosystem Health & Management 20 (4): 393–401.

Bodniece, V. 1976. ‘Changes in perch food composition related to acclimatization of new food items in the Kegums Water Reservoir.’ Ecological and Biological Studies of Aquatic Animals, edited by Shkute, R., V. Gorsky, and N. Sloka, 25–34. Riga, Zvaigzne (In Russian).

Eggers, T. O., and A. Martens. 2001. ‘A Key to the Freshwater Amphipoda (Crustacea) of Germany.’ Lauterbornia 42: 1–68.

Eggers, T. O., and A. Martens. 2004. ‘Additions and Corrections to ‘A Key to the Freshwater Amphipoda (Crustacea) of Germany.’ Lauterbornia 50: 1–13.

Grabowski, M., T. Mamos, T. Rewicz, K. Bacela-Spychalska, and M. Ovcharenko. 2012a. ‘Gammarus varsoviensis Jadziewski, 1975 (Amphipoda, Gammaridae) – a long overlooked species in Ukrainian rivers.’ North-Western Journal of Zoology 8 (1): 198–201.

Grabowski, M., T. Rewicz, K. Bacela-Spychalska, A. Konopacka, T. Mamos, and K. Jadziewski. 2012b. ‘Cryptic invasion of Baltic lowlands by freshwater amphipod of Pontic origin.’ Aquatic Invasions 7 (3): 337–346.

Grudule, N., E. Parele, and K. Arbačiauskas. 2007. ‘Distribution of Ponto-Caspian amphipod Pontogammarus robustoides in Latvian waters.’ Acta Zoologica Lituanica 17 (1): 28–32.

Guide for Identification of the Fauna of the Black and Azov Seas. 1969. Vol. 2. Free-living Invertebrates. In Crustaceans, 440–524. Kiev: Naukova Dumka (In Russian).

Jazdzewski, K. 1975. ‘Remarks on Gammarus lacustris G. O. Sars, 1863, with description of Gammarus varsoviensis n. sp. (Crustacea, Amphipoda).’ Bijdragen tot de Dierkunde 45: 71–86.

Kachalova, O. A., and S. G. Lagzdin. 1968. ‘Acclimatization of Mysis in Water Bodies of Latvian SSR.’ Limnology. Proceedings of XIV Scientific Conference on Studies of the Inland Waters of Baltic States 3 (1): 79–82 (In Russian).

Karaman, G. S., and S. Pinkster. 1977. ‘Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea—Amphipoda) Part I. Gammarus pulex-group and related species.’ Bijdragen tot de Dierkunde 47: 1–97.

Karataev, A. Y., E. S. Mastitsky, E. L. Burlakova, and S. Olenin. 2008. ‘Past, current, and future of the central European corridor for aquatic invasions in Belarus.’ Biological Invasions 10 (2): 215–232.

Kumsare, J. A., L. O. Kachalova, J. R. Laganovskaja, and G. A. Melberga. 1967. ‘Hydrobiological and sanitary characteristics of the estuary area of the Daugava.’ Proceedings of the Latvian SSR Academy of Sciences 5 (238): 96–104 (In Russian).

Makarenko, A. I., and V. V. Vezhnovets. 2014. ‘The alien and indigenous species’ up-to-date distribution of the Amphipoda Latreille, 1816 order on the territory of Belarus.’ Proceedings of the National Academy of Sciences of Belarus biological series 4: 95–99 (In Russian).

Minchin, D., K. Arbačiauskas, D. Daunys, E. Ezhova, N. Grudule, J. Kotta, N. Molchanova, S. Olenin, G. Višinskienė and S. Strake. 2019. ‘Rapid expansion and facilitating factors of the Ponto-Caspian invader Dikerogammarus villosus within the eastern Baltic Sea.’ Aquatic Invasions 14 (in press).

Paidere, J., A. Brakovska, and A. Škute. 2016. ‘Ponto-Caspian gammarid Pontogammarus robustoides G. O. Sars, 1894 in the Daugava River reservoirs (Latvia).’ Zoology and Ecology 26 (3): 227–235.

Pinkster, S. 1970. ‘Redescription of Gammarus pulex (Linnaeus, 1758) Based on Neotype Material (Amphipoda).’ Crustaceaena 18 (2): 177–186.

Pinkster, S. 1972. ‘On members of the Gammarus pulex-group (Crustacea, Amphipoda) from western Europe.’ Bijdragen tot de Dierkunde 42 (2): 164–191.

Volchak, A. A., and L. L. Lyakmund, eds. 2006. Western Dvina – Daugava: River and time. The National Academy of Sciences of Belarus, The Latvian Academy of Sciences. Minsk: Belorussskay Nauka (In Russian).