The automorphism group of the \(s \)-stable Kneser graphs\(^*\)

Pablo Torres \(^{†}\)

Abstract

For \(k, s \geq 2 \), the \(s \)-stable Kneser graphs are the graphs with vertex set the \(k \)-subsets \(S \) of \(\{1, \ldots, n\} \) such that the circular distance between any two elements in \(S \) is at least \(s \) and two vertices are adjacent if and only if the corresponding \(k \)-subset are disjoint. Braun showed that for \(n \geq 2k + 1 \) the automorphism group of the 2-stable Kneser graphs (Schrijver graphs) is isomorphic to the dihedral group of order \(2n \). In this paper we generalize this result by proving that for \(s \geq 2 \) and \(n \geq sk + 1 \) the automorphism group of the \(s \)-stable Kneser graphs also is isomorphic to the dihedral group of order \(2n \).

Keywords: Stable Kneser graph, Automorphism group.

1 Introduction

Given a graph \(G \), \(V(G) \), \(E(G) \) and \(\text{Aut}(G) \) denote its vertex set, edge set and automorphism group, respectively. Let \([n] := \{1, 2, 3, \ldots, n\} \). For positive integers \(n \) and \(k \) such that \(n \geq 2k \), the Kneser graph \(KG(n,k) \) has as vertices the \(k \)-subsets of \([n] \) with edges defined by disjoint \(k \)-subsets. A subset \(S \subseteq [n] \) is \(s \)-stable if any two of its elements are at least "at distance \(s \) apart" on the \(n \)-cycle, i.e. \(s \leq |i - j| \leq n - s \) for distinct \(i, j \in S \). For \(s, k \geq 2 \), we denote \([n]_s^k \) the family of \(s \)-stable \(k \)-subsets of \([n] \). The \(s \)-stable Kneser graph \(KG(n,k)_s^{\text{stab}} \) is the subgraph of \(KG(n,k) \) induced by \([n]_s^k \).

In a celebrated result, Lovász \([5]\) proved that the chromatic number of \(KG(n,k) \), denoted \(\chi(KG(n,k)) \), is equal to \(n - 2k + 2 \), verifying a conjecture due to M. Kneser \([3]\). After this result, Schrijver \([7]\) proved that the chromatic number remains the same for \(KG(n,k)_2^{\text{stab}} \). Moreover, this author showed that \(KG(n,k)_2^{\text{stab}} \) is \(\chi \)-critical. Due to these facts, the 2-stable Kneser graphs have been named Schrijver graphs. These results were the base for several papers devoted to Kneser graphs and stable Kneser graphs (see e.g. \([1,4,6,8,9,10]\)). In addition, it is well known that for \(n \geq 2k + 1 \) the automorphism group of the Kneser graph \(KG(n,k) \) is isomorphic to \(S_n \), the symmetric group of order \(n \) (see \([2]\) for a textbook account).

More recently, in 2010 Braun \([1]\) proved that the automorphism group of the Schrijver graphs \(KG(n,k)_2^{\text{stab}} \) is isomorphic to the dihedral group of order \(2n \), denoted \(D_{2n} \). In this paper we generalize this result by proving that the automorphism group of the \(s \)-stable Kneser graphs is isomorphic to \(D_{2n} \) for \(n \geq sk + 1 \).

Firstly, notice that if \(n = sk \), the \(s \)-stable Kneser graph \(KG(n,k)_s^{\text{stab}} \) is isomorphic to the complete graph on \(s \) vertices and the automorphism group of \(KG(n,k)_s^{\text{stab}} \) is isomorphic to \(S_s \).

\(^∗\)Partially supported by MathAmSud Project 13MATH-07 (Argentina–Brazil–Chile–France), pip-conicet 1122012-100277 and PICT-2012-1324.

\(^†\)Universidad Nacional de Rosario and CONICET, Argentina. e-mail: ptorres@fceia.unr.edu.ar

arXiv:1509.09185v2 [math.CO] 23 Nov 2015
From the definitions we have that D_{2n} injects into $\text{Aut}(\overline{KG}(n,k)_{s-stab})$, as D_{2n} acts on $\overline{KG}(n,k)_{s-stab}$ by acting on $[n]$. Then, we have the following fact.

Remark 1. $D_{2n} \subseteq \text{Aut}(\overline{KG}(n,k)_{s-stab})$.

In the sequel, the arithmetic operations are taken modulo n on the set $[n]$ where n represents the 0. Let us recall an important result due to Talbot.

Theorem 1 (Theorem 3 in [8]). Let n,s,k be positive integers such that $n \geq sk$ and $s \geq 3$. Then, every maximum independent set in $\overline{KG}(n,k)_{s-stab}$ is of the form $I_i = \{I \in [n]^k_s : i \in I\}$ for a fixed $i \in [n]$.

For $n \geq sk + 1$ we observe that $\{i, i+s, i+2s, \ldots, i+(k-1)s\}$ and $\{i, i+s+1, i+2s+1, \ldots, i+(k-1)s+1\}$ belong to $[n]^k_s$ for all $i \in [n]$. Then, we can easily obtain the following fact.

Remark 2. Let $n \geq sk + 1$ and $i,j \in [n]$. If $i \neq j$, then $I_i \neq I_j$.

2 Automorphism group of $\overline{KG}(n,k)_{s-stab}$

This section is devoted to obtain the automorphism group of $\overline{KG}(n,k)_{s-stab}$. To this end, let us introduce the following graph family. Let n,s,k be positive integers such that $n \geq sk + 1$. We define the graph $G(n,k,s)$ with vertex set $[n]$ and two vertices $i,j \in [n]$ are adjacent if and only if it does not exist $S \in [n]^k_s$ such that $\{i,j\} \subseteq S$. See examples in Figure 1.

![Figure 1: Examples of graphs $G(n,k,s)$](image)

Two vertices i, j of $G(n,k,s)$ are consecutive if $i = j + 1$. Let us see a direct result about consecutive vertices and dihedral groups, which we will use in the following theorem.

Remark 3. An injective function $f : [n] \rightarrow [n]$ sends consecutive vertices of $G(n,k,s)$ to consecutive vertices of $G(n,k,s)$ if and only if f belongs to the dihedral group D_{2n}.

Next, we obtain the main result of this section that states the link between the automorphism groups of $\overline{KG}(n,k)_{s-stab}$ and $G(n,k,s)$.

Theorem 2. Let n,s,k be positive integers such that $n \geq sk + 1$ and $s \geq 3$. Then, the automorphism group of $\overline{KG}(n,k)_{s-stab}$ is isomorphic to the automorphism group of $G(n,k,s)$.
Proof. As we have mentioned, given \(i \in [n] \), Theorem 1 guarantees that the sets \(\mathcal{I}_i \) are the maximum independent sets in \(KG(n,k)_{s-\text{stab}} \). Besides, any automorphism of \(KG(n,k)_{s-\text{stab}} \) send maximum independent sets into maximum independent sets, i.e. for each \(\alpha \in \text{Aut}(KG(n,k)_{s-\text{stab}}) \) and \(i \in [n] \), \(\alpha(I_i) = I_j \) for some \(j \in [n] \). From Remark 2, if \(i \neq j \) then \(\alpha(I_i) \neq \alpha(I_j) \) and so \(\alpha \) permutes these independent sets. Hence we define the homomorphism \(\phi \) from \(\text{Aut}(KG(n,k)_{s-\text{stab}}) \) to \(S_n \) such that

\[
\phi(\alpha)(i) = j \iff \alpha(I_i) = I_j.
\]

We will show that \(\phi \) is injective and its image is \(\text{Aut}(G(n,k,s)) \).

Given a non-trivial element \(\alpha \in \text{Aut}(KG(n,k)_{s-\text{stab}}) \), there exists \(S \in [n]^k \) such that \(\alpha(S) \neq S \), i.e. there exists \(j \in S \) such that \(j \notin \alpha(S) \). It follows that \(\alpha(S) \in \mathcal{I}_{\phi(\alpha)(j)} \), but \(\alpha(S) \notin \mathcal{I}_j \), hence \(\phi(\alpha)(j) \neq j \) and \(\phi(\alpha) \) is non-trivial. Then, \(\phi \) is injective.

Now, we first prove that \(\text{Aut}(G(n,k,s)) \subseteq \phi(\text{Aut}(KG(n,k)_{s-\text{stab}})) \). For each \(\beta \in \text{Aut}(G(n,k,s)) \) we define the function \(\gamma : V(KG(n,k)_{s-\text{stab}}) \to V(KG(n,k)_{s-\text{stab}}) \) such that for each \(S = \{s_1,\ldots,s_k\} \in V(KG(n,k)_{s-\text{stab}}) \), \(\gamma(S) = \{\beta(s_1),\ldots,\beta(s_k)\} \).

Since \(S \) is a stable set of \(G(n,k,s) \), \(\gamma(S) \) is also a stable set of \(G(n,k,s) \) and \(\gamma \) is well defined. It is not hard to see that \(\gamma \) is bijective. Furthermore, \(S \) and \(S' \) are adjacent in \(KG(n,k)_{s-\text{stab}} \) if and only if \(\gamma(S) \) and \(\gamma(S') \) are adjacent in \(KG(n,k)_{s-\text{stab}} \). Therefore \(\gamma \in \text{Aut}(KG(n,k)_{s-\text{stab}}) \) and from definition \(\phi(\gamma) = \beta \).

Let us prove that \(\phi(\text{Aut}(KG(n,k)_{s-\text{stab}})) \subseteq \text{Aut}(G(n,k,s)) \), i.e. \(\phi(\alpha) \) is an automorphism of \(G(n,k,s) \) for each \(\alpha \in \text{Aut}(KG(n,k)_{s-\text{stab}}) \). Let \(i, j \in [n] \), \(i' = \phi(\alpha)(i) \) and \(j' = \phi(\alpha)(j) \). If \(ij \in E(G(n,k,s)) \), since \(I_i \cap I_j = \emptyset \) and \(\alpha \) is injective, \(I_{i'} \cap I_{j'} = \emptyset \), i.e. \(\emptyset \neq S \in V(KG(n,k)_{s-\text{stab}}) \) such that \(\{i',j'\} \subseteq S \). Thus \(i'j' \in E(G(n,k,s)) \). Since \(\phi(\alpha) \) is bijective, we conclude that \(\phi(\alpha) \in \text{Aut}(G(n,k,s)) \).

Therefore the image of \(\phi \) is \(\text{Aut}(G(n,k,s)) \) and the proof is complete.

This result allow us to obtain \(\text{Aut}(KG(n,k)_{s-\text{stab}}) \) from \(\text{Aut}(G(n,k,s)) \). Next section is devoted to analyze the structure and the automorphism group of the graphs \(G(n,k,s) \).

2.1 The automorphism group of \(G(n,k,s) \).

Let \(G \) be a simple graph. For a vertex \(v \in V(G) \), the open neighborhood of \(v \) in \(G \) is the set \(N(v) = \{u \in V(G) : uv \in E(G)\} \). Then, the closed neighborhood of \(v \) in \(G \) is \(N[v] = N(v) \cup \{v\} \). The degree of a vertex \(v \in V(G) \) is \(\text{deg}(v) = |N(v)| \). For any positive integer \(d \), we denote by \(G^d \) the \(d \)-th power of \(G \), i.e. the graph with the same vertex set \(V(G) \) and such that two vertices \(u \) and \(v \) are adjacent if and only if \(\text{dist}_G(u,v) \leq d \), where \(\text{dist}_G(u,v) \) is the distance between \(u \) and \(v \) in \(G \), i.e. the length of the shortest path in \(G \) from \(u \) to \(v \). We denote by \(C_n \) the \(n \)-cycle graph with vertex set \([n]\) and edge set \(\{ij : i,j \in [n], j = i+1\} \).

Theorem 3. Let \(n,s,k \) be positive integers such that \(n \geq sk+1 \) and \(s \geq 3 \). Then,

1. if \(s(k+1) - 1 \leq n \), then \(G(n,k,s) \) is isomorphic to \(C_n^{s-1} \), and

2. if \(sk+1 \leq n \leq s(k+1) - 2 \). Then \(G(n,k,s) \) is the graph on \([n]\) and edges defined as follows:

\[
i j \in E(G(n,k,s)) \iff i \neq j, |j-i| \notin \bigcup_{d=1}^{k-1} \{ds,ds+1,\ldots,ds+r\},
\]
where \(r = n - sk \).

Proof. From the symmetry of \(G(n, k, s) \) (see Remark 1), to prove this result it is enough to obtain the open/closed neighborhood of vertex 1 in \(G(n, k, s) \) for each case.

1. **Case** \(s(k+1) - 1 \leq n \): We have to prove that \([n] \setminus N[1] = \{ s + 1, \ldots, n - s + 1 \} \). By definitions, \(i \in N(1) \) for every \(i \in \{ 2, \ldots, n \} \cup \{ n - s + 2, \ldots, n \} \). We only need to prove that for all \(i \in \{ s + 1, \ldots, n - s + 1 \} \) there exists \(S_i \in [n]^k_s \) such that \(\{ 1, i \} \subseteq S_i \). So, let \(i \in \{ s + 1, \ldots, n - s + 1 \} \) and \(t = \left\lfloor \frac{i-1}{s} \right\rfloor \).

 If \(t \geq k - 1 \), let \(S_i = \{ 1, 1 + s, \ldots, 1 + (k-2)s, i \} \). Then \(S_i \in [n]^k_s \), since \(s + 1 \leq i \leq n - s + 1 \) and \(i - 1 = (1 + (t-1)s) \geq i - 1 = (t - 1) \). Hence, if \(t \leq k - 2 \), let \(S_i = \{ 1, 1 + s, \ldots, 1 + (t-1)s, i, i + s, \ldots, i + (k - t - 1)s \} \). To prove that \(S_i \in [n]^k_s \) it is enough to show that \(i - 1 + (t - 1)s \geq s \) and \(n - (i + (k - t - 1)s) \geq s - 1 \). The first inequality trivially holds. To see the second inequality, notice that

\[
i - (1 + (t-1)s) = i - 1 + s - s \left\lfloor \frac{i-1}{s} \right\rfloor < i - 1 + s - s \left(\frac{i-1}{s} - 1 \right) = 2s.
\]

Then, \(i - (1 + (t-1)s) \leq 2s - 1 \). Therefore \(n - (i + (k - t - 1)s) = n - (i - 1 - (t - 1)s + (k - 2)s + 1) = n - (i - 1 + (t - 1)s) - ((k - 2)s + 1) \geq n - (2s - 1) - ((k - 2)s + 1) = n - 2s + 1 - (k - 2)s - 1 = n - sk \geq s - 1 \).

2. **Case** \(sk + 1 \leq n \leq s(k + 1) - 2 \): Let \(F_d = \{ 1 + ds, 1 + ds + 1, \ldots, 1 + ds + r \} \) for \(d \in [k - 1] \) and \(F = \bigcup_{d=1}^{k-1} F_d \). We will prove that \(N[1] = [n] - F \), which implies that \(1 \) and \(j \) are adjacent in \(G(n, k, s) \) if and only if \(j - 1 \not\in \bigcup_{d=1}^{k-1} \{ ds, ds + 1, \ldots, ds + r \} \), as required.

 Firstly, since \(n - (r + 1 + (k - 1)s) = s - 1 \), the set \(S_p = \{ 1, p + s, p + 2s, \ldots, p + (k - 1)s \} \in [n]^k_s \) for all \(p \in [r + 1] \). Furthermore, \(\{ 1 \} \cup F = \bigcup_{p=1}^{r+1} S_p \) and then \(N[1] \subseteq [n] - F \).

To see the converse inclusion, observe first that if \(h \in [s] \cup \{ n - s + 2, \ldots, n \} \) then \(h \in N[1] \) from definition of \(G(n, k, s) \).

Hence, if \(k = 2 \) we have finished.

Now, let \(k \geq 3 \) (see Figure 2). We have that

\[
[n] \setminus (F \cup [s] \cup \{ n - s + 2, \ldots, n \}) = \bigcup_{m=1}^{k-2} \{ ms + 2 + r, \ldots, (m + 1)s \}.
\]

Let \(h \in \bigcup_{m=1}^{k-2} \{ ms + 2 + r, \ldots, (m + 1)s \} \). We will prove that it does not exist \(S \in [n]^k_s \) such that \(\{ 1, h \} \subseteq S \). Let \(W \) be an \(s \)-stable set of \([n] \) such that \(\{ 1, h \} \subseteq W \). Notice that \(|W \cap [h-1]| \leq \left\lfloor \frac{h-1}{s} \right\rfloor \) and \(|W \cap \{ h, \ldots, n \}| \leq \left\lfloor \frac{n - h + 1}{s} \right\rfloor \).

Consider \(m' \in [k - 2] \) such that \(h \in \{ m's + 2 + r, \ldots, (m' + 1)s \} \). Then,

- \(\left\lfloor \frac{h-1}{s} \right\rfloor \leq \left\lfloor \frac{(m'+1)s-1}{s} \right\rfloor = m' \).
• \[\left\lfloor \frac{n-h+1}{s} \right\rfloor \leq \left\lfloor \frac{n-(m's+2+r)+1}{s} \right\rfloor \leq \left\lfloor \frac{n-r-1}{s} \right\rfloor - m' = \left\lfloor \frac{n-n+sk-1}{s} \right\rfloor - m' = k - 1 - m'. \]

Thus, \(|W| \leq \left\lfloor \frac{h-1}{s} \right\rfloor + \left\lfloor \frac{n-h+1}{s} \right\rfloor \leq k - 1. \) Therefore, any \(s \)-stable set of \([n] \) containing the set \(\{1, h\} \) has cardinality at most \(k - 1 \), i.e. it does not exist \(S \in [n]^k_s \) such that \(\{1, h\} \subseteq S \). Hence \(h \in N[1] \) and the result follows.

\[\square \]

Figure 2: Neighborhood of vertex 1 in \(G(n, k, s) \).

In order to obtain \(\text{Aut}(G(n, k, s)) \), let us recall a well known result on automorphism group (see, e.g. [9]).

Remark 4. Let \(m \) and \(q \) be positive integers such that \(m \geq 2q + 3 \). Then, the automorphism group of \(C^q_m \) is the dihedral group \(D_{2m} \).

Let \(x \) be the degree of the vertices in \(G(n, k, s) \) (which is a regular graph). Then, we have the following result.

Theorem 4. Let \(n, s, k \) be positive integers such that \(n \geq sk + 1 \) and \(s \geq 3 \). Then, the automorphism group of \(G(n, k, s) \) is the dihedral group \(D_{2n} \).

Proof. Firstly, observe that if \(s(k+1) - 1 \leq n \) the result immediately follows from Case 1 of Theorem 3 and Remark 4. Let us consider \(sk + 1 \leq n \leq s(k+1) - 2 \). From Remark 3 we only need to prove that any \(\alpha \in \text{Aut}(G(n, k, s)) \) sends consecutive vertices to consecutive vertices. Moreover, by Remark 1 and Theorem 2 it is enough to show that \(\alpha(1) \) and \(\alpha(2) \) are consecutive vertices. Without loss of generality we consider \(\alpha(1) = 1 \).

Let \(r = n - sk \). From Theorem 3

\[N[2] \cap \{1 + ds, \ldots, 1 + ds + r\} = \{1 + ds\} \]
for \(d = 1, \ldots, k - 1, \) and

\[
[n] \setminus N[1] = \bigcup_{d=1}^{k-1} \{1 + ds, 1 + ds + 1, \ldots, 1 + ds + r\}.
\]

So,

\[
|N[1] \cap N[2]| = x + 1 - (k - 1) = x - k + 2.
\]

Analogously, \(|N[1] \cap N[n]| = x - k + 2. \)

Let \(i \in N(1). \) Recall that

\[
N(1) = \{2, \ldots, s\} \cup \{n - s + 2, \ldots, n\} \cup \left(\bigcup_{m=1}^{k-2} \{ms + 2 + r, \ldots, (m + 1)s\} \right).
\]

If \(i \in \{3, \ldots, s\} \) we have that \(\{1 + s, 2 + s\} \subseteq N[i]. \) Besides, if \(k \geq 3 \) observe that \(\{i + 1 + (d - 1)s + r, \ldots, i + ds - 1\} \subseteq N[i] \) for \(d = 2, \ldots, k - 1. \) Hence, since \(3 \leq i \leq s, 1 + ds \leq i + ds - 1 \) and \(i + 1 + (d - 1)s + r \leq 1 + ds + r. \) Therefore, \(\{i + 1 + (d - 1)s + r, \ldots, i + ds - 1\} \cap \{1 + ds, \ldots, 1 + ds + r\} \neq \emptyset \) for \(d = 2, \ldots, k - 1. \) Then, \(|N[i] \cap \{1 + s, \ldots, 1 + s + r\}| \geq 2 \) and \(|N[i] \cap \{1 + ds, \ldots, 1 + ds + r\}| \geq 1 \) for \(d = 2, \ldots, k - 1. \) So, if \(k \geq 2, \) \(|N[1] \cap N[i]| \leq x + 1 - k \leq x - 1 \) and thus \(\alpha(2) \neq i. \) Similarly if \(i \in \{n - s + 2, \ldots, n - 1\}, \) we have \(\alpha(2) \neq i. \) So, if \(k = 2 \) the result follows.

Now, let \(k \geq 3. \) Consider \(i \in \bigcup_{m=1}^{k-2} \{ms + 2 + r, \ldots, (m + 1)s\} \) and let \(m_i \in \{1, \ldots, k - 2\} \) such that \(i \in \{m_is + 2 + r, \ldots, (m_i + 1)s\}. \)

Notice that

\[
\{1 + m_is, \ldots, 1 + m_is + r\} \cup \{1 + (m_i + 1)s, \ldots, 1 + (m_i + 1)s + r\} \subseteq \{i - (s - 1), \ldots, i + s - 1\} \subseteq N[i]. \quad (1)
\]

Therefore,

\[
\{1 + m_is, \ldots, 1 + m_is + r\} \cup \{1 + (m_i + 1)s, \ldots, 1 + (m_i + 1)s + r\} \subseteq N[i] \setminus N[1].
\]

Now, let \(m \in [k - 2]. \) If \(m < m_i \) then \(1 + (m_i - m)s + r \leq i - (1 + ms) \leq (m_i - m)s - 1. \) From Theorem 3, we have that \(1 + ms \in N[i] \) if \(m < m_i. \) By a similar reasoning we have that \(1 + ms + r \in N[i] \) if \(m > m_i + 1. \) Then,

\[
\{1 + ms : m < m_i, \ m \in [k]\} \cup \{1 + ms + r : m > m_i + 1, \ m \in [k]\} \subseteq N[i] \setminus N[1].
\]

These facts together with (1) imply that

\[
|N[1] \cap N[i]| = x + 1 - (N[i] \setminus N[1]) \leq x + 1 - (2(r + 1) + (k - 4)) \leq x - k + 1.
\]

Thus \(\alpha(2) \neq i. \) Therefore \(\alpha(2) \in \{2, n\} \) and the thesis holds.

Finally, we have the main result of this work.

Theorem 5. Let \(n, s, k \) be positive integers such that \(n \geq sk + 1 \) and \(s \geq 2. \) Then, the automorphism group of \(KG(n, k)_{s-stab} \) is isomorphic to the dihedral group \(D_{2n}. \)

Proof. The result for the case \(s = 2 \) follows from (1) and for the remaining cases can be obtained from Theorems 2 and 4. \(\square \)
3 Further results

In this section we will obtain some properties of s-stable Kneser graphs as a consequence of the results in the previous sections. Firstly, as a consequence of Theorem 5, we have the following result.

Theorem 6. Let $n, k, s \geq 2$ with $n \geq sk + 1$. Then, $KG(n, k)_{s-stab}$ is vertex transitive if and only if $n = sk + 1$.

Proof. Without loss of generality, we assume that any vertex $S = \{s_1, s_2, \ldots, s_k\}$ of the s-stable Kneser graph $KG(n, k)_{s-stab}$ verifies that $s_1 < s_2 < \ldots < s_k$. Then, S is described unequivocally by s_1 and the gaps $l_1(S), \ldots, l_k(S)$ such that for $i \in [k - 1]$, $l_i(S) = s_{i+1} - s_i$ and $l_k(S) = s_1 + n - s_k$. Observe that any automorphism of $KG(n, k)_{s-stab}$ “preserves” the gaps l_i, i.e. if $\phi \in \text{Aut}(KG(n, k)_{s-stab})$ there exist $\alpha \in D_{2k}$ such that $l_i(\phi(S)) = l_{\alpha(i)}(S)$ for all $i \in [k]$.

If $n \geq sk + 2$, then $S_1 = \{1, 1 + s, 1 + 2s, \ldots, 1 + (k - 1)s\} \in [n]_s^k$ and $S_2 = \{1, 2 + s, 2 + 2s, \ldots, 2 + (k - 1)s\} \in [n]_s^k$. Therefore, from Theorem 5 we have that no automorphism of $KG(n, k)_{s-stab}$ maps S_1 to S_2, since $l_1(S_2) = s + 1$ but $l_i(S_1) = s$ for $i \in [k - 1]$ and $l_k(S_1) \geq s + 2$.

Besides, in [9] it is proved that if $S \in [sk + 1]_s^k$ then exactly one gap $l_m(S)$ is equal to $s + 1$ and the remaining gaps are equal to s. From this fact we have that $KG(sk + 1, k)_{s-stab}$ is vertex transitive.

Next, we will analyze some aspects related to colourings of s-stable Kneser graphs. Let $\alpha(G)$ and $\chi^*(G)$ the independence number and fractional chromatic number of a graph G, respectively.

Proposition 1. Let $n, k, s \geq 2$ with $n \geq sk + 1$. Then, $\chi^*(KG(n, k)_{s-stab}) = \frac{n}{k}$.

Proof. It is immediate to observe that $\chi^*(KG(n, k)_{s-stab}) \leq \frac{n}{k}$ (see, e.g Theorem 7.4.5 in [2]). To see the converse inequality, we use the fact that for any graph G, $\chi^*(G) \geq \frac{|V(G)|}{\alpha(G)}$.

So, let us compute $|[n]_s^k| = |V(KG(n, k)_{s-stab})|$. From [8], since the sets \mathcal{I}_i are maximum independent sets for $i \in [n]$, $\alpha(KG(n, k)_{s-stab}) = |\mathcal{I}_i| = \left(\begin{array}{c} n -(s-1)k-1 \\ k-1 \end{array} \right)$.

Then, to compute $|[n]_s^k|$, let us observe that $\bigcup_{i=1}^{n} \mathcal{I}_i = [n]_s^k$ and $\sum_{i=1}^{n} |\mathcal{I}_i| = n \left(\begin{array}{c} n -(s-1)k-1 \\ k-1 \end{array} \right)$, where each vertex of $KG(n, k)_{s-stab}$ is computed k times. Then,

$|[n]_s^k| = n \left(\begin{array}{c} n -(s-1)k-1 \\ k-1 \end{array} \right)$

and the result follows.

Hence $|[n]_s^k| = \frac{n}{k} \left(\begin{array}{c} n -(s-1)k-1 \\ k-1 \end{array} \right)$ and the result follows.

As we have mentioned before, Schrijver [7] proved that the graphs $KG(n, k)_{2-stab}$ are χ-critical subgraphs of $KG(n, k)$ but it is an open problem to compute the chromatic number of s-stable Kneser graphs. From the last result and Proposition 2 in [6] we have

$\frac{n}{k} \leq \chi(KG(n, k)_{s-stab}) \leq n - (k-1)s$.

In particular, if $n = ks + 1$ we obtain that $\chi(KG(ks + 1, k)_{s-stab}) = s + 1$, which is an alternative proof to compute the exact value of $\chi(KG(ks + 1, k)_{s-stab})$ already studied in [8] and [9].
References

[1] B. Braun, Symmetries of the stable Kneser graphs, Advances in Applied Mathematics 45 (2010) 12–14.

[2] C. D. Godsil, G. Royle, Algebraic graph theory, Graduate Texts in Mathematics. Springer, 2001.

[3] M. Kneser, Aufgabe 360, Jahresbericht der Deutschen Mathematiker-Vereinigung, 2. Abteilung, vol. 50, 1955, pp. 27.

[4] B. Larose, F. Laviolette, C. Tardif, On normal Cayley graphs and Hom-idempotent graphs, European Journal of Combinatorics 19 (1998) 867–881.

[5] L. Lovász, Kneser’s conjecture, chromatic number and homotopy, Journal of Combinatorial Theory, Series A 25 (1978) 319–324.

[6] F. Meunier, The chromatic number of almost stable Kneser hypergraphs, Journal of Combinatorial Theory, Series A 118 (2011) 1820–1828.

[7] A. Schrijver, Vertex-critical subgraphs of Kneser graphs, Nieuw Arch. Wiskd. (3) 26 (3) (1978) 454–461.

[8] J. Talbot, Intersecting families of separated sets, J. Lond. Math. Soc. (2) 68 (1) (2003) 37–51.

[9] P. Torres, M. Valencia-Pabon, Stable Kneser Graphs are almost all not weakly Hom-Idempotent, submitted 2015. https://lipn.univ-paris13.fr/valenciapabon/papers/hom-idemp-stables-v4.pdf.

[10] G. Ziegler, Generalized Kneser coloring theorems with combinatorial proofs, Invent. Math. 147 (2002) 671–691.