Analysis of Merged Whole Blood Transcriptomic Datasets to Identify Circulating Molecular Biomarkers of Feed Efficiency in Growing Pigs

Farouk Messad
INRAE Bretagne-Normandie: Institut National de Recherche pour l'Agriculture l'Alimentation et l'Environnement Centre Bretagne-Normandie

Isabelle Louveau
INRAE Bretagne-Normandie: Institut National de Recherche pour l'Agriculture l'Alimentation et l'Environnement Centre Bretagne-Normandie

David Renaudeau
INRAE Bretagne-Normandie: Institut National de Recherche pour l'Agriculture l'Alimentation et l'Environnement Centre Bretagne-Normandie

Hélène Gilbert
INRAE Bretagne-Normandie: Institut National de Recherche pour l'Agriculture l'Alimentation et l'Environnement Centre Bretagne-Normandie

Florence Gondret (Florence.Gondret@inrae.fr)
INRA Centre de Rennes https://orcid.org/0000-0001-7997-1560

Research article

Keywords: Biomarkers, Blood, Feed efficiency, Gradient TreeNet Boosting, Microarray, Random Forest, Residual feed intake

DOI: https://doi.org/10.21203/rs.3.rs-133584/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Improving feed efficiency (FE) is an important breeding goal due to its economic and environmental significance for farm animal production. The phenotypic value is obtained by measuring individual feed consumption and average daily gain during a test period, which is costly and time-consuming. The identification of reliable predictors of FE may be a relevant strategy to reduce phenotyping efforts.

Results: Gene expression data in the whole blood from three originally separated experiments were combined and analyzed by machine learning algorithms to propose predictive molecular biomarkers of FE traits in growing pigs. The original datasets included pure Large White pigs (females and barrows) of two lines divergently selected for residual feed intake (RFI), a measure of net FE, and in which individual feed conversion ratio (FCR) and blood microarray data were available. Merging the three datasets allowed considering FCR values (Mean = 2.85; Min = 1.92; Max = 5.00) for a total of n = 148 pigs with a large range of body weight (15 kg to 115 kg) and different test period duration (2 weeks to 9 weeks). Random forest (RF) and gradient tree boosting (GTB) were applied on the whole blood transcripts (26,322 annotated molecular probes) to identify the most important variables for binary classification on RFI groups and for a quantitative prediction of FCR, respectively. Samples have been partitioned between learning (n = 74) and validation sets (n = 74). Iterative steps in variable selection led to identify about three hundreds (328 to 391) molecular probes as important predictors for RFI or FCR and participating to various biological pathways. With the GTB algorithm, simpler models combining 34 expressed unique genes to classify pigs on RFI (100% of success), and 25 expressed unique genes to predict FCR values ($R^2 = 0.80$, RMSE = 8%) were proposed. Accuracy performance of RF models were slightly lower in classification and markedly lower in regression.

Conclusion: From small subsets of genes expressed in the whole blood, it is possible to predict feed efficiency traits in growing pigs. This offers good perspectives for microchip design in selection or precision farming applications.

Background

Peripheral blood is widely used in human medicine and veterinary fields as a relevant and easy sampling source of biological information, since it transports a large variety of molecules including genes, transcripts, proteins, metabolites and non-coding regulatory RNA from all over the body. Their dynamics reflects homeostatic regulation [1–3], physiological changes [4, 5] and variations in immune capacity [6, 7]. Circulating molecules also provide valuable insights into complex phenotypes such as obesity and diabetes [8, 9], health status [10], sensitivity to heat stress [11] and nutrient efficiency for productive outputs [3, 7, 12]. Therefore, they hold much promise in the identification of biomarkers for the prediction of particular phenotypes [13]. Hypothesis-based and discovery-based procedures are the two basic procedures for the search of biomarkers. For a discovery-based procedure, high-throughput expression studies analyzed by linear model statistics and functional annotation bioinformatics are often used to
enlighten how expressed genes and related biological pathways are discriminant between treatments. However, a plethora of machine learning (ML) approaches applied on data gathered in a learning base from characterized samples have the potential to surpass these traditional approaches in predicting class membership and individual values of unknown samples gathered in a test base [14]. In conditions where small variations in the data may cause significant changes in the prediction, these methods generally overcome complex, noisy and hidden relationships when ranking the most important genes for prediction and avoid the pitfalls of overfitting.

Feed efficiency (FE) has become a research priority among other phenotypes in growing pigs to support a competitive and sustainable meat production. Improving FE implies the reduction of the amount of feed needed to produce meat and also contributes to reduce environmental wastes and emissions. Feed efficiency is measured on farm as feed conversion ratio (FCR), calculated as the ratio of an amount of feed intake to body weight (BW) gain. Residual feed intake (RFI) has been also proposed as a refined measure of net FE in selection experiments [15]. It is defined as the difference between the observed feed intake and the feed intake predicted from growth and maintenance requirements. For both traits, feed intake, BW gain and indicators of the chemical composition of the gain such as backfat thickness, must be recorded during a test period for each animal. This is time-consuming and costly, especially when animals are group-reared. Moreover, FE is underlined by variations in the transcripts of several genes participating in many functional pathways in different tissues [16], which adds to its complexity. Therefore, there are huge expectations to find predictive molecular biomarkers for incorporating FE in breeding programs or nutritional decision tools. So far, various studies have revealed differences in the whole blood transcriptome between low RFI (most feed efficient) and high RFI pigs (less feed efficient) at post-weaning [12] and during the growing period [3, 7]. Moreover, the concentration of IGF-1 in blood plasma of juvenile post-weaned pigs was correlated with RFI measured during the growing period [17], which suggests that circulating molecules may even serve as early indicators for FE. However, among genes identified as differentially expressed between steers with low or high BW gain and feed intake, only few of them were similarly found across different cohorts [18]. This highlights the importance of incorporating different datasets to cover various experimental conditions and overpass the limits of each design (number of samples/number of treatments) for biomarker discovery.

This study aimed to identify reliable sets of expressed genes in the whole blood to predict RFI group or individual FCR value. For that, ML algorithms were applied on a merged transcriptomic dataset from three originally-separated experiments where meta-data for RFI and FCR were also available in growing pigs.

Results

Animals and FE traits

Three originally independent experiments [19–21] were considered and merged to reanalyze gene expression levels in the whole blood for a total of 148 females and barrows. These experiments all included purebred French Large White pigs of two lines divergently selected for RFI during 7th to 9th
generations, but that were fed different diets under different test periods. The distribution of FCR values for the 148 pigs considered in the merged dataset was illustrated in Fig. 1, according to the RFI group and their experiment of origin. The FCR averaged 2.85 kg feed/kg BW, and covered a large range of values (Min = 1.92; Max = 5.00). It was generally lower for pigs of the low RFI line than for pigs of the high RFI line, but there was an interpenetration between the two lines within each experiment and between experiments.

Model Performance In RFI Classification

Merging the transcriptomic data of the three independent experiments resulted in a new dataset of 26,322 annotated expressed probes across the 148 blood samples. The random forest (RF) and gradient tree boosting (GTB) procedures were applied on this merged dataset to find the most important transcripts for classification of pigs (low RFI/high RFI). These algorithms were considered to produce an excellent fit of predicted to observed values even when the specific nature of the relationships between the predictor variables and the dependent variable was very complex [22]. In the two procedures, a randomly selected bootstrap sample set was used as a learning dataset (n = 74 pigs), whereas the remaining samples (n = 74 pigs) were used in a test dataset for validation. Learning and validation datasets including transcriptomic data and meta-data (RFI group, FCR) are freely available at https://doi:10.15454/J4XOPD.

From RF procedure, a total of 778 probes (out of the 26,322 annotated probes) were first selected to provide an accurate classification of pigs between low and high RFI groups during the training step. In the validation step (Suppl. Table 1), the RF model further selected 328 probes (out of the 778 probes) as very important variables (VIP) for RFI classification. The accuracy of the model was estimated by the proportion (%) of good classification, and the optimal model was selected according to the receiver operating characteristic curve (ROC) as a diagnostic ability of the binary classifier system. Iterative steps allowed to obtain the best model (96% of success on average) with a subset of 50 molecular probes (out of the 328 VIP). It provided a good prediction for 94.74% of the high RFI pigs and 97.22% of the low RFI pigs, respectively (Table 1), so that the prediction accuracy was similar for the two RFI lines (chi2 = 0.59). The 50 VIP corresponded to 25 unique identified expressed genes, since 17 probes had no consolidated annotation and some genes were represented by two up to four probes (GPX3, CD1A, and SERPINF1). The list of these 50 probes, the encoded genes, and the score attributed to each probe in the predictive RF model is given in Suppl. Table 2.
Table 1
Classification of pigs between RFI groups based on 50 molecular probes expressed in blood

Actual class	Nb pigs	Percent correct	Predicted classes	
			High RFI	Low RFI
Random Forest procedure				
High RFI	38	94.7%	36	2
Low RFI	36	97.2%	1	35
Total	74			
Overall %Correct			96.0%	
Gradient Tree Boosting procedure				
High RFI	38	100%	38	0
Low RFI	36	100%	0	36
Total	74			
Overall %Correct			100%	

Random forest (RF) and gradient treenet boosting (GTB) algorithms were applied on transcriptomic dataset (26,322 molecular probes) from whole blood sampled from 148 pigs of lines divergently selected for residual feed intake (RFI). Pigs were randomly split into training (n = 74) and validation test (n = 74) datasets to evaluate model performance in classifying pigs into low or high RFI groups. Expression levels of 50 molecular probes were considered in the validation set. The model made no error (100% of success) when built by GTB procedure.

From GTB procedure, a total of 728 probes (out of the 26,322 annotated probes) were similarly retained as providing an accurate classification on low/high RFI during the training step. In the validation step, the GTB model further identified 391 probes (out of 728 probes) as best VIP to classify pigs on low or high RFI (Suppl. Table 1). Iterative steps led to select a subset of 50 molecular probes (out of the 391 VIP) allowing 100% of good classification (Table 1). These 50 probes corresponded to 34 unique annotated expressed genes (Table 2); these genes were all represented by a single probe in the model but 16 probes had no consolidated annotation.
Table 2

List of blood genes retained as very important to classify pigs for RFI

Probe name	Gene symbol	Full name	Score
A_72_P304024	PSEN1	presenilin 1	100
A_72_P008221	SERPINF1	serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment epithelium der	87.7
A_72_P047696	TMEM63B	transmembrane protein 63B	60.8
A_72_P035801	EPAS1	endothelial PAS domain protein 1	59.9
A_72_P010326	MX1	myxovirus (influenza virus) resistance 1, interferon-inducible protein p78 (mous	59.2
A_72_P359418	WDHD1	WD repeat and HMG-box DNA binding protein 1	57.4
A_72_P418319	HTRA1	HtrA serine peptidase 1	56.2
A_72_P201717	NPR3	natriuretic peptide receptor C/guanylate cyclase C (atriosucrepine peptide rec	56.1
A_72_P061216	ADAM9	ADAM metallopeptidase domain 9	54.5
A_72_P548816	HMG20A	high mobility group 20A	51.9
A_72_P035056	BCO2	beta-carotene oxygenase 2	50.7
A_72_P183616	TEX2	testis expressed 2	50.1
A_72_P039066	EIF1B	eukaryotic translation initiation factor 1B	48.4
A_72_P036051	GPX3	glutathione peroxidase 3 (plasma)	47.0
A_72_P131741	SLC46A3	solute carrier family 46, member 3	46.2
O12841	PARVG	parvin, gamma	42.8
A_72_P001891	SPTLC2	serine palmitoyltransferase, long chain base subunit 2	42.5
A_72_P250342	RPS18	ribosomal protein S18	40.8
O8712	ENO3	enolase 3 (beta, muscle)	39.7
A_72_P094676	UGCG	UDP-glucose ceramide glucosyltransferase	39.2
A_72_P051041	MKI67	antigen identified by monoclonal antibody Ki-67	38.6

A gradient tree boosting (GTB) algorithm was applied on transcriptomic dataset (26,687 molecular probes) from the whole blood of 148 growing pigs. Data were split into training (n = 74) and validation test (n = 74) subsets to evaluate model performance in classifying pigs into low or high residual feed intake (RFI) groups. The unique genes corresponding to the most relevant annotated probes able to attribute RFI class for each pig were listed. The score attributed to each probe gave hierarchy of importance in the predictive model.
Model Performance In Fcr Prediction

When addressing continuous variables such as FCR, regression trees rather than classification trees must be built. The transcriptomic dataset was similarly split into training (n = 74) and validation (n = 74) datasets. About 1,393 probes (out of the 26,322 annotated probes) were selected during the training procedure. The performance of the models were then evaluated by using the validation set, and models with the best R² and the lowest Root Mean Squared Error (RMSE) were retained (Table 3). The accuracy of prediction by the GTB algorithm (R² ~ 0.80; RMSE ~ 0.23) exceeded that obtained by RF procedure (R² ~ 0.65 and RMSE ~ 0.29). Due to this large difference in model performance between the two algorithms
in regression, also mentioned by others [23], only the results of the GTB model for FCR prediction were described in this study. The GTB procedure first identified 428 probes as top VIP to predict FCR values. Iterative steps led to a good compromise between lower number of VIP and increased accuracy of the prediction, which was obtained with 50 molecular expressed probes. These 50 probes corresponded to 27 unique annotated genes (Table 4). Finally, the predicted (X) values were compared with the observed (Y) values for the pigs included in the validation set (n = 74). The quality of the relationships was evaluated on the basis of the RMSE of prediction (RMSEP) obtained by a leave-one-out cross-validation from the value of the predicted residual sum of squares. Observed and predicted values for FCR were very close (R² = 0.80, RMSEP = 0.15; Fig. 2). Mean of predicted FCR values was 2.83 and mean for observed FCR values was 2.85, respectively, and the error made by the model was evaluated at 7% on average. The samples (n = 5) having the highest residual (> 0.15) all corresponded to pigs of the high RFI line but from different experiments (1 pig from experiment 1, 1 pig from experiment 2, and 3 pigs from experiment 3), suggesting no particular bias due to the originally separated datasets. Without these few samples (5 out of 74), the prediction accuracy was obviously improved (R² = 0.94).
Table 3
Iterative steps for model reduction to predict FCR values

Number of probes	Number of genes	R^2	RMSE	
Random Forest procedure				
FCR	604	411	0.42	0.366
100	58	0.62	0.301	
50	30	0.65	0.293	
25	17	0.67	0.281	
10	8	0.68	0.278	
Gradient Tree Boosting				
FCR	728	477	0.78	0.241
100	56	0.79	0.235	
50	27	0.80	0.234	
25	12	0.81	0.229	
10	5	0.80	0.223	

Random forest (RF) or gradient treenet boosting (GTB) algorithms were applied on a transcriptomic dataset containing 26,687 molecular probes measured in whole blood sampled from 148 pigs. Dataset was split into training (n = 74) and validation test (n = 74) subsets to evaluate model performance in predicting food conversion ratio (FCR). The first rounds led to model stabilization with 604 molecular probes as very important variables (VIP) for FCR prediction using RF and 728 probes for FCR prediction with GTB, respectively, out of the 26,322 expressed annotated probes. The second entry was an iterative step of the former procedure, but considering the VIP identified in the first step as the new inputs. This increased the accuracy of the prediction evaluated by the root mean square error (RMSE) and the coefficient of determination (R^2). Iterative steps were further performed. The numbers of annotated probes and their corresponding unique genes identified as VIP were indicated at each step. Iterative models were almost equivalent in performance, so that the ones including 27–30 unique genes were further selected. Models obtained with GTB algorithms performed better than those obtained by using RF procedures.
Table 4
List of blood genes identified as very important in FCR prediction

Probe name	Gene symbol	Full name	Score
A_72_P004376	SLC36A4	solute carrier family 36 (proton/amino acid symporter), member 4	100.00
A_72_P052096	SEPTIN6	septin 6	88.24
A_72_P035551	PSMB9	proteasome (prosome, macropain) subunit beta type, 9	77.53
A_72_P006596	GNG12	guanine nucleotide binding protein (G protein), gamma 12	75.40
A_72_P441179	KLF1	Kruppel-like factor 1 (erythroid)	74.39
A_72_P027206	CCDC70	coiled-coil domain containing 70	73.21
A_72_P000681	IRF2BP2	IRF2 binding protein 2	70.00
A_72_P155326	INS-IGF2	INS-IGF2 readthrough	69.17
A_72_P000006	ZNF644	zinc finger protein 644	68.67
A_72_P001306	AAGAB	alpha- and gamma-adaptin binding protein	68.31
A_72_P008086	SLC39A9	solute carrier family 39 (zinc transporter), member 9	67.00
A_72_P000171	SHPRH	SNF2 histone linker PHD RING helicase, E3 ubiquitin protein ligase	65.24
A_72_P005536	DIAPH3	diaphanous homolog 3 (Drosophila)	64.94
A_72_P001051	FCRLA	Fc receptor-like A	63.55
A_72_P000371	SDR39U1	short chain dehydrogenase/reductase family 39U member 1	63.36
A_72_P001061	CD84	CD84 molecule	61.94
A_72_P001366	MORC2	MORC family CW-type zinc finger 2	61.81
A_72_P010816	MMAA	methylmalonic aciduria (cobalamin deficiency) cblA type	61.38
A_72_P000376	TRIM38	tripartite motif containing 38	61.12
A_72_P001201	FEM1C	fem-1 homolog c (C. elegans)	59.74
A_72_P023626	NUAK1	NUAK family, SNF1-like kinase, 1	56.91

1A gradient treenet boosting (GTB) algorithm was applied on transcriptomic dataset (26,687 molecular probes) from the whole blood of 148 growing pigs. Data were split into training (n = 74) and validation test (n = 74) subsets to evaluate model performance in classifying pigs into low or high residual feed intake (RFI) groups. The unique genes corresponding to the most relevant annotated probes able to predict feed conversion ratio (FCR) for each pig were listed. The score attributed to each probe gave hierarchy of importance in the predictive model.
Probe name	Gene symbol	Full name	Score
A_72_P000856	TRIM46	tripartite motif containing 46	53.82
A_72_P002226	GEMIN5	gem (nuclear organelle) associated protein 5	51.67
A_72_P043191	PIKFYVE	phosphoinositide kinase, FYVE finger containing	51.53
A_72_P000356	MACF1	microtubule-actin crosslinking factor 1	51.07
A_72_P614951	SEPP1	selenoprotein P, plasma, 1	47.05
A_72_P021346	RBM25	RNA binding motif protein 25	43.75

1 A gradient treenet boosting (GTB) algorithm was applied on transcriptomic dataset (26,687 molecular probes) from the whole blood of 148 growing pigs. Data were split into training (n = 74) and validation test (n = 74) subsets to evaluate model performance in classifying pigs into low or high residual feed intake (RFI) groups. The unique genes corresponding to the most relevant annotated probes able to predict feed conversion ratio (FCR) for each pig were listed. The score attributed to each probe gave hierarchy of importance in the predictive model.

In depth investigation of biological pathways involved in RFI and FCR

To progress in the knowledge of the most important biological pathways for the variation of FE among pigs, the expressed genes selected by the GTB models as top VIP allowing binary diagnostic for RFI (low/high) or predicting FCR (individual values) were submitted to a functional analysis using annotation bioinformatics. The 391 molecular probes initially selected to split pigs into low and high RFI groups, corresponded to 253 annotated unique genes that were clustered into 14 biological pathways (Table 5). The lipid metabolic process and transport, response to oxidative stress, phosphorylation, and positive regulation of defense response were among the top functional pathways identified across these genes. The 728 molecular probes selected to predict FCR values corresponded to 477 unique annotated genes that were clustered in 10 biological pathways (Table 5). Significant pathways were related to immune and defense response (regulation of leukocyte activation, regulation of cytokine production, regulation of acute inflammatory response and positive regulation of immune response), glycoprotein metabolic process, regulations of protein transport and of peptidase activity, and protein amino acid auto-phosphorylation. Importantly, the subset of the 50 best VIP predicting FCR values participated in a variety of these pathways, such as the regulation of immune system response (CD84, INS-IGF2, PSMB9, TRIM38), protein metabolism (SHPRH, PSMB9, FEM1C, TRIM38), response to peptides and organic substances (GNG12, KLF1, INS-IGF2, PSMB9, TRIM38), lipid metabolic process (MORC2, MMAA, PIKFYVE), oxido-reduction (SDR39U1) or intracellular transport (GEMIN5, GEMIN5, PIKFYVE, AAGAB, SLC36A4). This suggests equal importance of many biological routes rather than a main single pathway in the variation of FCR.
Table 5
Main overrepresented biological processes shared by genes selected as predictors of feed efficiency traits

GO Terms	Nb genes	E	PValue	Clustered genes
Clustered pathways among 391 probes corresponding to 253 unique genes first selected to classify pigs on low/high RFI				
GO:0006643 ~ membrane lipid metabolic process	6	1.93	0.004	TEX2, SPTLC2, PSAP, COL4A3BP, UGCG, SMPD3
GO:0006979 ~ response to oxidative stress	8	1.66	0.006	PLA2G4A, PSEN1, EPAS1, CLU, GPX3, JAK2, ADAM9, DHCR24
GO:0006869 ~ lipid transport	8	1.59	0.003	OSBPL3, PSAP, COL4A3BP, CLU, PCTP, ABCA1, APOM, CROT
GO:0016310 ~ phosphorylation	20	1.55	0.010	IRAK2, FCER1A, ND2, TGFBR1, BMPR2, EIF2A, ULK4, GALK2, NDUVF3, VRK1, PSEN1, GCK, COL4A3BP, TGFBR3, JAK2, ATP50, CIT, THBS1, MYLK, ADAM9
GO:0031349 ~ positive regulation of defense response	6	1.34	0.003	FCER1A, IRAK2, PLA2G4A, CADM1, IL6ST, JAK2
GO:0000267 ~ cell fraction	23	1.33	0.036	JPH4, CADM1, CYP51A1, SLC22A7, UGCG, HPS1, CCDC47, ATP1A1, NMB, ABCA1, NPR3, IL15, KARS, DCT, JUP, PLA2G4A, PSEN1, GCK, GPX3, SRR, ENO3, JAK2, ACSL3
GO:0009725 ~ response to hormone stimulus	10	1.27	0.055	PLA2G4A, ENPP1, SOCS3, TGFBR1, TGFBR3, JAK2, PIK3R3, THBS1, BRCA1, ADAM9
GO:0008361 ~ regulation of cell size	5	1.25	0.295	ENPP1, TGFBR1, SMAD4, TGFBR3, NTN1
GO:0030278 ~ regulation of ossification	4	1.16	0.085	PLA2G4A, ENPP1, IL6ST, BMPR2
GO:0017015 ~ regulation of transforming growth factor beta receptor signaling pathway	4	1.09	0.015	HTRA1, CHST11, SMAD4, THBS1
GO:0051091 ~ positive regulation of transcription factor activity	4	1.05	0.045	IRAK2, UBE2V1, TGFBR3, JAK2
GO:0042470 ~ melanosome	5	1.03	0.033	DCT, STOM, SERPINF1, RAB35, ATP1A1

Very important genes for prediction of feed efficiency traits (RFI: residual feed intake; FCR: feed conversion ratio) were clustered into functional groups using DAVID tool. The enrichment score (E > 1) for each cluster and P-value of the enrichment for the corresponding Gene Ontology (GO) terms are provided. Iterative steps for model reduction have been further applied on these transcripts of genes to obtain smaller sets of predictors.
GO Terms

GO Terms	Nb genes	E	PValue	Clustered genes
GO:0007498 ~ mesoderm development	4	1.02	0.075	MACF1, BMPR2, EOMES, JAK2
Clustered pathways among 728 probes corresponding to 477 unique genes first selected to predict FCR				
GO:0002694 ~ regulation of leukocyte activation	13	1.89	0.002	CD83, CD86, CD80, STAT5A, IL27, IL4R, IL1B, CD4, IL15, CD40, PAG1, THY1, SYK
GO:0009100 ~ glycoprotein metabolic process	14	1.79	0.003	ATP7A, B3GNT9, MGAT4A, GALNT1, TRAK2, HPSE, CHST11, ACAN, CD4, FUT1, OGT, UGGT2, ST6GALNAC2, DHCR24
GO:0001817 ~ regulation of cytokine production	15	1.65	0.000	CADM1, PANX1, INS-IGF2, STAT5A, IL27, CD40, NLRP3, DDX58, CD83, CD86, CD80, IL1B, CD4, CLEC7A, SYK
GO:0051223 ~ regulation of protein transport	8	1.65	0.034	CADM1, PANX1, INS-IGF2, ANG, IL1B, CD40, NLRP3, DNAJC1
GO:0002673 ~ regulation of acute inflammatory response	5	1.51	0.002	PLA2G4A, C3, INS-IGF2, SERPING1, CCL5
GO:0052547 ~ regulation of peptidase activity	7	1.39	0.028	SLC11A2, CYCS, BCL2L13, HBXIP, NLRP3, EIF2AK3, DHCR24
GO:0046777 ~ protein amino acid autophosphorylation	6	1.32	0.079	FYN, CLK4, KIT, LRRK2, EIF2AK3, SYK
GO:0050778 ~ positive regulation of immune response	10	1.15	0.017	CADM1, C3, FYN, STAT5A, IL1B, SERPING1, IL15, CLEC7A, THY1, SYK
GO:0031349 ~ positive regulation of defense response	6	1.01	0.047	PLA2G4A, CADM1, C3, STAT5A, CLEC7A, CCL5
GO:0032881 ~ regulation of polysaccharide metabolic process	3	1.01	0.060	PPP1R3C, ENPP1, INS-IGF2

Very important genes for prediction of feed efficiency traits (RFI: residual feed intake; FCR: feed conversion ratio) were clustered into functional groups using DAVID tool. The enrichment score (E > 1) for each cluster and P-value of the enrichment for the corresponding Gene Ontology (GO) terms are provided. Iterative steps for model reduction have been further applied on these transcripts of genes to obtain smaller sets of predictors.

Overall, 63 unique genes (i.e., 8% of all VIP) expressed in the whole blood were identified as common VIP for the two FE traits (Table 6). Among them, **BCO2, CREBRF, GPX3, HMG20A, JPH4, PAG1 and SPTLC2** were notably included in the list of top 50 VIP for RFI, while **INS-GF2, IRF2BP2, MACF1, MORC2, SDR39U1, TRIM46 and ZNF644** were included in the list of top 50 VIP for FCR.
Table 6
List of the 63 blood genes identified as common predictors for two feed efficiency traits

Traits	Common VIP1
RFI/FCR	ADAP2; APCDD1; ARHGEF10L; ARRDC3; BCO2; CADM1; C6orf89; CHST11; BP1; CREBF; CROT; CYHR1; CYP51A1; DHCR24; EIF2A; ENPP1; ESCO1; GIMAP8; GPX3; HMG20A; HOXD3; IL15; INS-IGF2; IRF2BP2; JPH4; KCNH2; MACF1; MORC2; NT5DC3; P2RY1; PAG1; PHKB; PLA2G4A; PLXNC1; PPCDC; PSAP; RBM38; RPS17; SCUBE3; SDR39U1; SECISBP2; SLC25A44; SLC2B1; SPTLC2; SRRD; TAF4B; TNFRSF21; TMEM163; TRIM46; TRPT1; WLS; UROS; ZNF644

1BCO2, CREBF, GPX3, HMG20A; JPH4; PAG1; SPTLC2 were also listed among the top 50 very important predictors (VIP) for residual feed intake (RFI), and INS-IGF2, IRF2BP2, MACF1, MORC2, SDR39U1, TRIM46 and ZNF644 were listed among the top 50 VIP of feed conversion ratio (FCR).

Discussion

Due to the integrative nature of FE and the difficulties to record it accurately for each pig, there is a strong need for the identification of relevant biomarkers for FE related traits. Because transcriptomic differences in the muscle and liver segregated pigs based on RFI better than their genotype and farm of origin [24], we hypothesized that the landscape of gene expression levels in the whole blood, a compartment that summarizes the variations in tissues metabolism, may be further used to predict FE in growing pigs. The data presented herein confirmed that gene expression profiling in the whole blood represented a relevant source to identify small sets of candidate biomarkers for two FE traits. Previous studies have identified about 1,000 genes [1] and even more [2] that were differentially expressed in the whole blood between low and high RFI pig lines. But none have tried to identify molecular predictors for low/high RFI and for quantitative values of FCR. In this study, it was possible to discriminate pigs on RFI (low/high) by using a subset of few blood transcripts (< 50) with 96–100% of success when using RF and GTB procedures, respectively. Even, it was possible to predict FCR values by using another subset of 50 transcripts corresponding to 25 unique annotated genes with a good (~ 0.65; RF model) and very good (~ 0.80; GTB model) accuracy. Similarly, recent studies using ML algorithms [25, 26] showed that it was possible to predict RFI class in pigs by using the expression of 200 genes in liver (accuracy: 0.78), 100 genes in duodenum (accuracy: 0.69) and 50 genes in skeletal muscle (accuracy: 0.61–0.70). The fact that the GTB procedures had better performance than the RF algorithms confirms that, despite a significant amount of overlap between the two methods and although RF performs well for class object detection, the gradient boosting methods can result in better performance on other assessments like regression [22, 27]. This is due to the fact that GTB combines the gradient descent error minimization approach with boosting, and encapsulates an ensemble of weak prediction models added sequentially to improve the robustness of predictors [14]. A large number of ML methods have been previously used to identify candidate genes for growth prediction in cattle by using supervised learning datasets including genomic markers, and the authors also concluded on the better performance of the gradient boosting machine algorithm followed by RF [28].
Merging three different experiments encompassing various sampling times and test periods for BW gain and feed intake into a single dataset should maximize the chances for genericity in pathways and biomarkers identified for FE in the current study. Indeed, it is important to consider various experiments for finding subsets of differentially-expressed genes having the same direction of expression over all the cohorts [18]. In the current study, the subsets of genes combined in the predictive models for FE were involved in numerous functional pathways that might be thus at an equivalent importance in the definition of RFI and FCR. Finding genes of the immune/inflammatory system (including JPH4 and PAG1 genes) as top predictors confirms that low RFI pigs had specificities in their immune tissue profile and response capacity to infectious or inflammatory challenges as compared to high RFI pigs [29, 30]. The importance of the ubiquitin-regulated protein catabolism (with IRF2BP2 as top VIP) in FE may be overestimated because the current study considered the whole blood where this process is specifically enriched [31]. However, a higher protein turnover has been also suggested in the liver of more efficient pigs compared to less efficient pigs [29] and the catabolism of amino acids has been identified as an important pathway underlying low vs. high feed efficient groups of Landrace pigs [32]. Different genes related to antioxidant response and oxido-reduction activity were included in the prediction models, such as GPX3 (glutathione peroxidase-3) and BCO2 (beta-carotene oxygenase-2) transcripts in the top-ranked predictors for RFI. In agreement, a different susceptibility to oxidative stress has been evidenced between low and high feed efficient pigs [33, 34]. Finally, lipid transport and catabolism including SPTLC2 and MORC2 as top predictors was identified herein as a biological pathway underlying RFI. Molecular alterations of lipid metabolism have been also suggested in the liver between low or high RFI pigs, with consequences on triglycerides, phospholipids or cholesterol concentrations in the circulating blood for pigs of the same or different RFI lines [3, 35]. It is unlikely that differences in the diet composition fed to pigs under the different experiments may have biased the importance of this latter pathway, since we did not observe any marked changes in the prediction accuracy of models for FCR when calculated from muscle transcriptomes and reasoning on (net) energy intake rather than on raw feed intake [25].

Finally, this study allows reducing the complexity of FE into small subsets of molecular indicators (about 25 to 34 unique genes) in whole blood for accurate predictions of RFI groups and FCR values. Among these candidate biomarkers, some have been already proposed as top molecular contributors to differences between low and high RFI lines by studies on peripheral tissues. Namely, PSNE1 coding for the catalytic component of the gamma-secretase protein complex involved in protein addressing and degradation for cell regulatory process, has been identified as differentially-expressed in muscle, liver and adipose tissues between low and high RFI pigs [16]. Expression level of PSNE1 in muscle was also included in a predictive model for RFI breeding value in Large White pigs [25]. Expression level of SLC46A3 in the liver, a gene involved in macromolecule degradation process [37], has also been identified as important to categorize pigs on RFI in the Hermitage Maxgro genotype [26]. Among candidates identified for FCR, the read-through transcript INS-IGF2, composed of exons from the two genes proinsulin precursor (INS) and insulin-like growth factor 2 (IGF2) and participating to protein metabolic process and cell development, has been identified as a reliable predictor for RFI breeding values when its expression level was measured in muscle of pigs around market weight [25]. Increasing muscle growth through the
IGF-1/2 signaling pathway has been also proposed as a potential strategy for the improvement of FE in Yorkshire pigs from 30 to 90 kg BW [38]. Finding similar candidates in the whole blood and in peripheric tissues is not surprising since only < 10% of protein coding genes are tissue specific [39]. This reinforces the interest of using readily accessible samples in living animals such as blood to predict complex phenotypes. However, only few expressed genes (8% of all VIP) were identified as top predictors for both RFI and FCR in the current study. This may be due to the fact that objectives were different, with binary classification of breeding values for RFI and prediction of actual values for FCR, respectively. In addition, these two traits are not equivalent with only a moderate (0.39) genetic correlation between RFI and FCR [15] and higher correlations between FCR and production traits than between FCR and RFI [40]. It likely that the common predictors identified here corresponded to the RFI part of FCR variability.

Conclusion

This study identified small sets of transcripts in the whole blood as candidate biomarkers for FE traits, namely RFI group (low/high) and FCR values measured on growing pigs. This offers encouraging perspectives for microchip design in farm applications. Further studies are required to confirm the generality of the predictions in other pig breeds or in crossbreds, before candidates could be used to maximize the rates of genetic progress for FE and facilitate the choice of animals for precision farming strategies.

Methods

General design

This study reused phenotypic data obtained in pigs from the three originally separated experiments that were previously published [19–21], to avoid the needs of new sampling in living animals while obtaining a high number of animals allowing robust predictions. The application of ML procedures on the merged dataset (n = 148 pigs) avoided the overfitting often observed when simple classification or regression procedures are used for a limited number of animals and high number of dependent variables, and the leave-one-out method was an additional way to resampling the datasets. Thus, this study fits with the 3R (Replacement, Reduction and Refinement) principles.

Pigs And Blood Samples

The three originally independent datasets referred to purebred French Large White pigs produced in the course of a divergent selection experiment for RFI. The selection program was described in full details elsewhere [41], including the equation to calculate RFI from a regression between observed feed intake and that expected based on requirements for maintenance (based on the metabolic BW) and performance (average daily gain, backfat thickness). From birth to weaning, all pigs were reared in the selection farm of INRAE (UE Genesi, Le Magneraud & Rouillé, France;
All pigs were weaned at 28 days (d), and were first fed ad libitum with standard starter and weaner diets. During subsequent test periods in dedicated buildings, pigs have underwent different feeding conditions depending on the experiments as described below. As indicated in the referenced publications [19–21], the three experiments were conducted in accordance with the French legislation on animal experimentation, and the protocols were approved by regional ethical committees evaluating the research question, design, plan analysis, animal care and monitoring, and ways to minimize pain and consider limit points (especially regarding jugular blood sampling). At the end of each experiment, pigs were slaughtered using approved procedures, including electronarcosis followed by jugular exsanguination.

The first dataset [19] included 21 castrated males from the 7th generation of selection (n = 10 low RFI pigs and n = 11 high RFI pigs) housed at thermo-neutrality (24 °C) and reared at the INRAE experimental pig facility at Saint-Gilles, France (UE3P, https://doi.org/10.15454/1.5573932732039927E12). At 80 d of age, pigs were transferred in individual cages, and were fed a standard diet that met nutritional requirements for growth. At 87 d of age (59.2 kg BW on average), blood was collected from the jugular vein and prepared for RNA extraction. The feed conversion ratio (FCR) was calculated from individually measured daily feed intake and average daily gain for the 14 d of the trial (i.e., from 87 d to 100 d of age).

The second dataset [20] included 48 castrated males from the 8th generation of selection (n = 24 low RFI pigs and n = 24 high RFI pigs). Pigs were reared at the INRAE experimental pig facility at Saint-Gilles, France (UE3P, https://doi.org/10.15454/1.5573932732039927E12). At 74 d of age, pigs were transferred in individual cages and after 2 d of transition, the first half was fed a standard diet and the second half was fed a high-fiber high-fat diet during the growing and finishing phases. At 132 d of age (average BW of 75.6 kg), blood was sampled from the jugular vein and prepared for RNA extraction. The FCR was then calculated from 76 d to 132 d of age.

The third dataset [21] included 79 castrated males and females from the 9th generation of selection (n = 37 low RFI pigs and n = 42 high RFI pigs). Pigs were reared at the experimental INRAE pig facility at Le Magneraud, France (UE Genesi; https://doi.org/10.15454/1.5572415481185847E12). Blood was sampled at 40 d of age from the jugular vein. At 70 d of age, pigs were transferred in group-housing facilities equipped with single-place electronic feeders. The first half of the pigs was fed standard diets, whereas the second half was fed a high-fiber diet during the growing-finishing phases [21]. The FCR was then calculated from 90 d to 161 d of age.

In the three datasets, the reference to low or high RFI line was indicated for each pig, and FCR value was individually attributed. Other factors (sex, season, generation, diet) were not taken into account.

Microarrays Data

Microarray data considered in the current study were obtained from the referenced publications in the first [19] and second [3] experiments, and were newly acquired from RNA extracted from the stored blood
samples in the third experiment. All experiments followed the same procedures for RNA extraction and expression data generation. The porcine commercial Agilent-026440 microarray (V2, 44K, GPL15007, Agilent Technologies, Massy, France) has been used in the first experiment. The custom porcine microarray (8 × 60K, GPL16524 Agilent Technologies) that contained the same probes as the Agilent-026444 and an additional set of probes enriched with immune system, muscle and adipose tissue genes, has been used in the second and third experiments. In the three transcriptomic datasets, raw spot intensities have been submitted to quality filtration based on four criteria: background intensity value, diameter, saturation and uniformity of the spot, and intensities of filtered spots were log2 transformed and median-centered to correct for microarray effect.

For the current study, the three microarray datasets were then merged into a single new dataset. There was no exclusion of any animals in this merged dataset. To obtain consolidated expression values across the three originally separated datasets, the molecular data have been normalized by mean centering, i.e. subtracting the mean value across all probes from all raw values for each pig sample in the merged dataset. The merged dataset also included meta-data such as the experiment of origin (1, 2, and 3), RFI group (n = 71 pigs of low RFI line, n = 77 pigs of high RFI line) and FCR value (n = 148 pigs). All data were deposited in a publicly available repository at https://doi.org/10.15454/J4XOPD.

Supervised methods to identify important variables for prediction of FE traits

The merged dataset was used to search the most important molecular predictors for RFI group and FCR value, by using ML methods. The experimental unit was the pig. Among the panel of ML methods for dimensionality reduction, classification and regression used in livestock breeding [14], the RF and GTB procedures were chosen in the current study and were compared for performance in classification (RFI group) and regression (FCR value) procedures. These two ML methods use decision trees, but RF uses a large number of trees combined by averaging or "majority rules" at the end of the process [42], whereas GTB starts the combining process of decision trees at the beginning [27, 43, 44]. Other differences include how trees are built: RF builds each tree independently, while GTB builds one tree at a time but in an additive model proceeding in a forward stage-wise sequential error–correcting process to combine results along the way and converge to an accurate model [27]. Sequential steps for learning, validation, and finally, selection of the best models were performed according to standards described by Fernandez-Lozano and colleagues [45]. Models were generated from RF and GTB algorithms with Salford Predictive Modeler 8.0 (SPM 8.0®).

The RF models were generated with about 1,500 trees for classification of RFI and regression for FCR. For that, a randomly selected bootstrap sample set was created by using 50% of the original dataset for learning (n = 74 pigs). Consequently, each bootstrap sample called “out-of-bag” data (OOB) excluded 50% of the data that were further used for validation (n = 74 pigs), and the leave-one-out method assessed the performance by resampling the training set. The test dataset allowed a cross-validation ensuring that the training of the model was not biased. To split branches of a tree, a random sample of m variables was chosen from the full set of p variables. Partition of probes between learning and validation datasets was
shown in Supplementary Fig. 1. We checked that the three experiments of origin were included in both training and validation datasets.

The GTB prediction models were also generated using 1,500 small decision trees for classification or regression, and using a randomly selected bootstrap sample set for learning (n = 74 pigs) and the remaining data (n = 74 pigs) for validation. As recommended, each tree typically contained about six terminal nodes. The model was similar to Fourier or Taylor series, which is a sum of factors that becomes progressively more accurate as the expansion continues. After each step of boosting, the algorithm scaled the newly added weights, which balanced the influence of each tree. The accuracy of the algorithm was improved by introducing randomization through training the base learner on different randomly selected samples at each iteration.

In both procedures, significant variables were selected using the Gini index to evaluate the discriminant ability of the potential selected feature, defined as:

\[G_i = 1 - \sum_j p^2(j \mid t) \]

Where \(p^2(j \mid t) \) is the estimated class probability for feature \(t \) or node \(t \) in a decision tree and \(j \) is an output data or class. Only the variables that improved Gini index and minimized the OOB error rate were retained as very important variables in prediction (VIP).

Multiple runs for each ML methods were performed (ten times) to take into account variations in the observations used for the training step (using permutations and leave-one-out procedures) and the stability of the techniques. The iteration steps were also applied to reduce the number of VIP in the selected models. At each run, the accuracy of classification models was estimated with the proportion (%) of good classification and the optimal models were selected according to ROC curve. In regression, RMSE was calculated as the square root of the difference between the realized and the predicted observation within the OOB data after permuting each predictor variable in the training dataset divided by the number of trees for regression procedure. The adjusted coefficient of determination \((R^2) \) was also computed. The predicted (X) values for FCR obtained by the best GTB model and the observed (Y) values measured on the pigs were compared (X-Y) using the GLM procedure. The model was considered unbiased when the intercept obtained by the GLM model was not different from 0 and the slope was not significantly different from 1. The quality of the relationships was evaluated on the basis of RMSE of prediction (RMSEP) obtained by a leave-one-out cross-validation from the value of the predicted residual sum of squares.

Pathway Enrichment Analysis

Gene-annotation enrichment analyses among the VIP identified for binary classification of pigs on RFI and for prediction of FCR were performed on encoded genes by using DAVID bioinformatics tool on default settings [46].
Abbreviations

BW: Body weight; **DAVID**: Database for annotation, visualization and integrated discovery; **FCR**: Feed conversion ratio; **GTB**: Gradient TreeNet Boosting; **OOB**: out-of-bag; **RFI**: Residual feed intake; **RMSE (P)**: root mean square error (of prediction); **VIP**: very important variable in prediction.

Declarations

Ethics declarations

Ethics approval and consent to participate

This study was based on previous published studies. The original publications have included a statement on ethics approval to use animals into genetics and feeding experiments.

Consent for publication

Not applicable

Availability of data

The datasets generated and analyzed in the current study are deposited in a publicly available repository at https://doi.org/10.15454/J4XOPD

Competing interests

The authors declare that they have no competing interests.

Funding

The Feed-a-Gene project has received funding from the European Union’s H2020 Programme under grant agreement no 633531. Farouk MESSAD was supported by a Regional grant (SAD, Brittany region) from France. Funders approved the aim of the study but had no roles in its design, data analysis, data interpretation, or in the writing of the manuscript.

Author’s contributions

FG: conceived the study; FM: implemented the analysis, performed the machine learning analyses and functional analysis, and wrote the initial draft; FG, IL, DR, HG: provided datasets; FG, FM: drafted the manuscript; FG, IL, DR, HG: discussed the data; All authors read and approved the manuscript.

Acknowledgements
The authors are grateful to Annie Vincent (PEGASE, INRAE) and to Yannick Lippi and Claire Naylies (GetTRiX facility, Genotoul, Toulouse, France) who performed RNA extraction from blood and/or produced the original transcriptomic datasets. Thanks are also due to staff of UE3P (https://doi.org/10.15454/1.557393273203927E12) and Genesi (https://doi.org/10.15454/1.5572415481185847E12) Experimental Units (France) for animal care and line selection procedure.

Authors information

Farouk Messad, Isabelle Louveau, David Renaudeau, Florence Gondret: Pegase, INRAE, Institut Agro, 35590, Saint-Gilles, France; Hélène Gilbert: GenPhySE, INRAE, INP-ENVT, 31326, Castanet Tolosan, France.

Correspondence to Florence Gondret (Florence.gondret@inrae.fr)

References

1. Konieczna J, Sanchez J, van Schothorst EM, Torrens JM, Bunschoten A, Palou M, et al. Identification of early transcriptome-based biomarkers related to lipid metabolism in peripheral blood mononuclear cells of rats nutritionally programmed for improved metabolic health. Genes Nutr. 2014;9:1–15.

2. Díaz-Rúa R, Keijer J, Caimari A, van Schothorst EM, Palou A, Oliver P. Peripheral blood mononuclear cells as a source to detect markers of homeostatic alterations caused by the intake of diets with an unbalanced macronutrient composition. J Nutr Biochem. 2015;26:398–407.

3. Jégou M, Gondret F, Vincent A, Tréfeu C, Gilbert H, Louveau I. Whole Blood Transcriptomics is relevant to Identify Molecular Changes in Response to Genetic Selection for Feed Efficiency and Nutritional Status in the Pig. Plos One. 2016;11:e0146550.

4. Shen J, Zhou C, Zhu S, Shi W, Hu M, Fu X, et al. Comparative Transcriptome Analysis Reveals Early Pregnancy-Specific Genes Expressed in Peripheral Blood of Pregnant Sows. Plos One. 2014;9:e114036.

5. Wojciechowicz B, Kołakowska J, Zglejc-Waszak K, Martyniak M, Kotwica G, Franczak A. The whole blood transcriptome at the time of maternal recognition of pregnancy in pigs reflects certain alterations in gene expression within the endometrium and the myometrium. Theriogenology. 2018;126:159–65.

6. Mach N, Gao Y, Lemonnier G, Lecardonnel J, Oswald I, Estellé J, et al. The peripheral blood transcriptome reflects variations in immunity traits in swine: Towards the identification of biomarkers. BMC Genom. 2013;14:894.

7. Liu H, Feye K, Nguyen Y, Rakhshandeh A, Loving C, Dekkers J, et al. Acute systemic inflammatory response to lipopolysaccharide stimulation in pigs divergently selected for residual feed intake. BMC Genom. 2019;20:728.

8. Ghosh S, Dent R, Harper ME, Gorman S, Stuart J, McPherson R. Gene expression profiling in whole blood identifies distinct biological pathways associated with obesity. BMC Med Genomics.
9. Te Pas M, Koopmans S, Kruijt L, Calus M, Smits M. Plasma Proteome Profiles Associated with Diet-Induced Metabolic Syndrome and the Early Onset of Metabolic Syndrome in a Pig Model. Plos One. 2013;8:e73087.

10. Ye MH, Bao H, Meng Y, Guan L, Stothard P, Plastow G. Comparative Transcriptomic Analysis of Porcine Peripheral Blood Reveals Differentially Expressed Genes from the Cytokine-cytokine Receptor Interaction Pathway Related to Health Status. Genome. 2017;60.

11. Dou S, Villa-Vialaneix N, Liaubet L, Billon Y, Giorgi M, Gilbert H, et al. 1HNMR-Based metabolomic profiling method to develop plasma biomarkers for sensitivity to chronic heat stress in growing pigs. Plos One. 2017;12:e0188469.

12. Liu H, Nguyen Y, Nettleton D, Dekkers J, Tuggle C. Post-weaning blood transcriptomic differences between Yorkshire pigs divergently selected for residual feed intake. BMC Genomics. 2016;17.

13. Liew CC, Ma J, Tang HC, Zheng R, Dempsey A. The peripheral blood transcriptome dynamically reflects system wide biology: A potential diagnostic tool. J Lab Clin Med. 2006;147:126–32.

14. Nayeri S, Sargolzaei M, Tulpan D. A review of traditional and machine learning methods applied to animal breeding. Animal Health Res Rev. 2019;20:31–46.

15. Gilbert H, Billon Y, Brossard L, Justine F, Gatellier P, Gondret F, et al. Review. Divergent selection for residual feed intake in the growing pig. Animal. 2017;11:1–13.

16. Gondret F, Vincent A, Houée-Bigot M, Siegel A, Lagarrigue S, Causeur D, et al. A transcriptome multi-tissue analysis identifies biological pathways and genes associated with variations in feed efficiency of growing pigs. BMC Genom. 2017;18:244.

17. Bunter K, Lewis C, Hermesch S, Smits R, Luxford B. Maternal Capacity, Feed Intake and Body Development in Sows. In: Proc. 9th World Cong. Genet. Appl. Livest. Prod. Leipzig: Germany; 2010.

18. Lindholm-Perry AK, Freetly HC, Oliver WT, Rempel LA, Keel BN. Genes associated with body weight gain and feed intake identified by meta-analysis of the mesenteric fat from crossbred beef steers. Plos One. 2020;15:e022.

19. Campos P, Noblet J, Jaguelin-Peyraud Y, Gilbert H, Mormède P, Donzele RF, et al. Thermoregulatory responses during thermal acclimation in pigs divergently selected for residual feed intake. Int J Biomet. 2014;58:1545–57.

20. Gondret F, Louveau I, Mouro J, Duclos M, Lagarrigue S, Gilbert H, et al. Dietary energy sources affect the partition of body lipids and the hierarchy of energy metabolic pathways in growing pigs differing in feed efficiency. J Anim Sci. 2014;92:4865–77.

21. Gilbert H, Terenina E, Ruesche J, Gress L, Billon Y, Mormede P, et al. Responses of pigs divergently selected for cortisol level or feed efficiency to a challenge diet during growth. In. Proc. World Congress on Genetics Applied to Livestock Production 2018;11–219.

22. Lee HC, Yoon SB, Yang SM, Kim WH, Ryu HG, Jung CW, et al. Prediction of Acute Kidney Injury after Liver Transplantation: Machine Learning Approaches vs. Logistic Regression Model J Clin Med. 2018;7:428.
23. Truong VH, Vu QV, Thai HT, Ha MH. A robust method for safety evaluation of steel trusses using Gradient Tree Boosting algorithm. Adv Engin Software. 2020;147:102825.

24. Vigors S, O'Doherty J, Bryan K, Sweeney T. A comparative analysis of the transcriptome profiles of liver and muscle tissue in pigs divergent for feed efficiency. BMC Genom. 2019;20:461.

25. Messad F, Louveau I, Koffi B, Gilbert H, Gondret F. Investigation of muscle transcriptomes using gradient boosting machine learning identifies molecular predictors of feed efficiency in growing pigs. BMC Genom. 2019;20:659.

26. Piles M, Fernandez-Lozano C, Velasco-Galilea M, González-Rodríguez O, Sanchez JP, Torrallardona D, et al. Machine learning applied to transcriptomic data to identify genes associated with feed efficiency in pigs. Gen Sel Evol. 2019;51:10.

27. Friedman JH. Greedy Function Approximation: A Gradient Boosting Machine. Annals Stat. 2001;29:1189–232.

28. Li B, Zhang N, Wang Y-G, George AW, Reverter A, Li Y. Genomic prediction of breeding values using a subset of SNPs identified by three machine learning methods. Front Genet. 2018;9:237.

29. Horodyska J, Hamill R, Reyer H, Trakooljul N, Lawlor P, McCormack U, et al. RNA-Seq of liver from pigs divergent in feed efficiency highlights shifts in macronutrient metabolism, hepatic growth and immune response. Front Genet. 2019;10:117.

30. Vigors S, O'Doherty J, Ryan MT, Sweeney T. An analysis of the basal colonic innate immune response of pigs divergent in feed efficiency and following an ex-vivo lipopolysaccharide challenge. Physiol Genomics. 2019;51:443–8.

31. Désert C, Merlot E, Zerjal T, Bed’Hom B, Härtle S, Cam A, et al. Transcriptomes of whole blood and PBMC in chickens. Comp Biochem Physiol Part D: Genomics Proteomics. 2016;20:1–9.

32. Banerjee P, Carmelo VAO, Kadarmideen HN. Genome-Wide Epistatic Interaction Networks Affecting Feed Efficiency in Duroc and Landrace Pigs. Front Genet. 2020;11:121.

33. Patterson B, Outhouse A, Helm E, Dekkers J, Schwartz K, Gabler N, et al. Novel observations of peroxiredoxin-2 profile and protein oxidation in skeletal muscle from pigs that differ in residual feed intake and health status. Meat Muscle Biol. 2018;2:171.

34. Sierżant K, Perruchot MH, Merlot E, Le Floc’h N, Gondret F. Tissue-specific responses of antioxidant pathways to poor hygiene conditions in growing pigs divergently selected for feed efficiency. BMC Vet Res. 2019;15:341.

35. Jégou M, Gondret F, Lalande J, Tea I, Baeza E, Louveau I. NMR-based metabolomics highlights differences in plasma metabolites in pigs exhibiting diet-induced differences in adiposity. Eur J Nutr. 2015;55:1189–99.

36. Reyer H, Oster M, Magowan E, Dannenberger D, Ponsuksili S, Wimmers K. Strategies towards Improved Feed Efficiency in Pigs Comprise Molecular Shifts in Hepatic Lipid and Carbohydrate Metabolism. Int J Mol Sci. 2017;18:1674.

37. Bissa B, Beedle AM, Govindarajan R. Lysosomal solute carrier transporters gain momentum in research. Clin Pharmacol Ther. 2016;100:431–6.
38. Jing L, Hou Y, Wu H, Yuanxin M, Li X, Cao J, Brameld J, Parr T, Zhao S. Transcriptome analysis of mRNA and miRNA in skeletal muscle indicates an important network for differential Residual Feed Intake in pigs. Scientific reports. 2015;5:11953.

39. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489:101–8.

40. Wen C, Yan W, Zheng J, Ji C, Zhang D, Sun C, et al. Feed efficiency measures and their relationships with production and meat quality traits in slower growing broilers. Poultry Sci. 2018;97:2356–64.

41. Gilbert H, Bidanel JP, Gruand J, Caritez JC, Bilion Y, Guillouet P, et al. Genetic parameters for residual feed intake in growing pigs, with emphasis on genetic relationships with carcass and meat quality traits. Journal of animal science. 2007;85:3182–8.

42. Breiman L. Machine Learning Springer Link. 2001;45:5–32.

43. Friedman JH. Stochastic gradient boosting. Comput Stat Data Analysis. 2002;38:367–78.

44. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning data mining, inference, and prediction. 2nd ed. New York: Springer; 2009. pp. 337–84.

45. Fernandez-Lozano C, Gestal M, Munteanu C, Dorado J, Pazos A. A methodology for the design of experiments in computational intelligence with multiple regression models. Peer J. 2016;4:e2721.

46. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35.