Neuronal α₂δ proteins and brain disorders

Cornelia Ablinger¹ · Stefanie M. Geisler² · Ruslan I. Stanika³ · Christian T. Klein⁴ · Gerald J. Obermair¹,³

Received: 24 April 2020 / Revised: 8 June 2020 / Accepted: 12 June 2020 / Published online: 30 June 2020

Abstract

α₂δ proteins are membrane-anchored extracellular glycoproteins which are abundantly expressed in the brain and the peripheral nervous system. They serve as regulatory subunits of voltage-gated calcium channels and, particularly in nerve cells, regulate presynaptic and postsynaptic functions independently from their role as channel subunits. α₂δ proteins are the targets of the widely prescribed anti-epileptic and anti-allodynic drugs gabapentin and pregabalin, particularly for the treatment of neuropathic pain conditions. Recently, the human genes (CACNA2D1–4) encoding for the four known α₂δ proteins (isoforms α₂δ-1 to α₂δ-4) have been linked to a large variety of neurological and neuropsychiatric disorders including epilepsy, autism spectrum disorders, bipolar disorders, schizophrenia, and depressive disorders. Here, we provide an overview of the hitherto identified disease associations of all known α₂δ genes, hypothesize on the pathophysiological mechanisms considering their known physiological roles, and discuss the most imminent future research questions. Elucidating their specific physiological and pathophysiological mechanisms may open the way for developing entirely novel therapeutic paradigms for treating brain disorders.

Keywords

Neurological disease · Autism · Schizophrenia · Epilepsy · Synapses · CACNA2D1–4

Introduction

α₂δ proteins are membrane-anchored extracellular glycoproteins which have initially been identified as subunits of voltage-gated calcium channels (VGCCs). An increasing number of studies, however, suggest functions independent of the calcium channel complex. α₂δ proteins are the targets of the widely prescribed anti-epileptic and anti-allodynic drugs gabapentin and pregabalin and have been linked to a large variety of diseases. In this review, we provide an overview of the known and putative associations of α₂δ genes and proteins with human neurological disorders. Furthermore, we discuss channel-dependent and channel-independent mechanisms of potential relevance for the respective pathophysiological mechanisms.

α₂δ genes and proteins

In the human genome, four genes (CACNA2D1–4) code for four α₂δ proteins (α₂δ-1 to α₂δ-4), which give rise to multiple transcripts as the result of alternative splicing [31, 60]. The genes contain 38 or 39 exons, and the distribution of exons over the gene is similar between α₂δ-1 and α₂δ-2 (Fig. 1) but considerably different in α₂δ-3 and α₂δ-4 (Fig. 2). Mature α₂δ proteins lack the co-translationally cleaved N-terminal signal peptide and are highly glycosylated extracellular proteins of 140 to 170 kDa. They are posttranslationally cleaved into α and δ moieties, which are covalently bound through disulfide bonds [13, 27, 126]. α₂δ proteins are most likely attached to the plasma membrane via glycosylphosphatidylinositol (GPI) anchors [26]; alternatively, however, the δ polypeptide chain may form a transmembrane α-helix [91]. Even though all α₂δ subunits contain well-known protein domains including a von Willebrand factor A (VWA) domain, the detailed structure is still under debate. As of today, the most precise estimation of α₂δ protein structure is based on a cryogenic electron microscopy (cryo-EM) study of...
the α2δ-1 isoform complexed with the skeletal muscle calcium channel [126]. α2δ proteins undergo multiple posttranslational modifications, which make them rather unique, considering that proteolytic processing is a rare feature in VWA-containing proteins. Generally, VWA domains by means of their metal ion–dependent adhesion site (MIDAS) are involved in protein-protein interactions such as extracellular matrix-cell adhesion proteins [124]. While all α2δ subunits contain a MIDAS motif,
only $\alpha_2\delta$-1 and $\alpha_2\delta$-2 incorporate the “perfect” MIDAS motif in which the presence of all five coordinating amino acids is predicted [14, 124]. This implies that structural rearrangement of the protein complex may occur upon divalent cation–dependent complex formation with a protein ligand [31]. Moreover, the MIDAS site is involved in protein-protein interactions that are required to promote the anterograde transport of calcium channels [14, 48]. A perfectly conserved MIDAS motif is not required for metal ion binding [112]; however, it is not yet known whether differences in the MIDAS motif between $\alpha_2\delta$ subunits including an inactive cache domain have been linked to ASD (violet bars) and BPD (green bars). $\alpha_2\delta$-4 protein mutations are so far only known to cause night blindness (NB) and gliomas (not indicated). ASD (violet), autism spectrum disorders; BPD (green), bipolar disorder; CA (blue), cerebellar atrophy; EE (blue), epileptic encephalopathy; MDD (red), major depressive disorder; NB (gray), night blindness; ND (nude), nicotine dependence; P (bordeaux), pain; SCZ (magenta), schizophrenia.
might account for functional heterogeneity. A role of α2δ in extracellular protein interactions is further supported by the presence of cache domains, putative protein interaction sites with homology to the extracellular domains of bacterial chemosensing proteins [2, 31].

α2δ proteins as subunits of voltage-gated calcium channels

VGCCs are critical components of all types of excitable cells. They translate membrane depolarization into cellular functions like skeletal and cardiac muscle contraction, nerve cell signaling, hormone secretion, as well as the regulation of gene transcription. In the central nervous system, calcium channels are particularly involved in presynaptic neurotransmitter release and postsynaptic signaling. VGCCs are classified into three low-voltage-gated (CaV3.1–3.3) and seven high-voltage-gated (CaV1.1–1.4, CaV2.1–2.3) channels. High-VGCCs constitute protein complexes classically consisting of a main pore-forming α1 subunit and auxiliary intracellular β (β1-4) and extracellular membrane-attached α2δ (α2δ-1 to α2δ-4) subunits. While the biophysical channel properties are defined by α1 subunits, β subunits regulate membrane expression and other modulatory functions (reviewed in [11]). A wealth of heterologous co-expression studies has illustrated the roles of α2δ proteins as calcium channel subunits. Depending on the co-expressed α1 subunit, α2δ subunits enhance current densities, modulate activation and inactivation kinetics, and can account for a hyperpolarizing shift in the voltage dependence of activation and inactivation (reviewed in [31, 56, 75]). The main proposed mechanism underlying the α2δ-induced increase in maximum current is an enhanced plasma membrane expression of channel complexes coupled with a decrease in their turnover [31]. Although it is still elusive how α2δ subunits implement their effects, the MIDAS motif seems to be essential, since a MIDAS mutant of α2δ-2 causes intracellular retention of α1 subunits [14]. Due to their extracellular localization, α2δ subunits may also link extracellular signaling entities directly to the calcium channel complex.

Calcium channel–independent roles of α2δ proteins

An increasing number of recent studies suggests that individual α2δ isoforms exert specific neuronal functions beyond their classical role as calcium channel subunits. Hence, the affinity and strength of the interaction between α1 and α2δ are under debate (see discussion in [75]). For example, a comprehensive quantitative study of the neuronal CaV2 channel proteome revealed molar ratios of 0.1–1% of α2δ compared to α1 and β subunits [71], suggesting a relatively weak and possibly dynamic association. These findings are further corroborated by single-molecule tracking displaying that α1 and α2δ are only transiently confined together at the cell surface of hippocampal neurons [10, 96, 119], and that α2δ-2 accumulation in lipid rafts may be partly independent from its interaction with presynaptic calcium channels [24]. Recent studies particularly implicate α2δ proteins as important regulators of synaptic functions and synapse formation, and these functions may be partly or entirely independent of the calcium channel complex (e.g. [18, 35, 40, 59, 97]).

α2δ proteins and neurological disorders

Dysfunctions of voltage-gated calcium channels have been linked to a variety of neurological disorders including Parkinson’s disease, epilepsy, migraine, ataxia, neuropathic pain, and psychiatric disorders [3, 8, 17, 43, 80, 89, 105, 107, 132]. Hence, it is not surprising that likewise α2δ proteins have been associated with many of these diseases. The link to neurological disorders is further strengthened by the existence of a variety of knockout and mutant mouse models, which partly represent pathological features of identified human diseases (reviewed in [39]). In the last years, various genome-wide association studies (GWAS) as well as exome sequencing studies have contributed to identifying risk genes for neurological disorders and disease mutations. A further effort in detecting potential disease related genes has been made by single nucleotide variant (SNV) analysis and single nucleotide polymorphism (SNP) genotyping. Along these lines, copy number variation (CNV) analysis contributed largely to the understanding of disease predisposition. SNPs are point mutations of both coding and noncoding DNA regions that occur at a frequency of 0.5–1% in the population. CNV refers to a variation of a single nucleotide mostly arising in somatic cells. Both SNPs and CNVs can affect gene transcription or may generate splice sites. CNV is a form of variation, which affects the number of copies of a gene, resulting in increased or reduced protein expression. In the following sections, we give an overview of known and proposed α2δ disease associations. To this end, we distinguish between disease mutations in the proteins, which have been at least partially verified or discovered in specific patients and identified genetic disease associations for the human genes CACNA2D1–4, which partially lack experimental confirmation.

Disease mutations in α2δ proteins

Here, we briefly summarize human α2δ protein mutations, which were identified in PubMed, ClinVar, and SFARI Gene databases and which can be traced back to at least one patient. However, until today, the functional consequences of these mutations were either not or only partially characterized.
\(\alpha_2\delta-1 \)

Missense or protein-disrupting mutations in \(\alpha_2\delta-1 \) have mainly been found in epileptic disorders (Fig. 1, \(\alpha_2\delta-1 \)). Two large genomic deletions affecting the genetic region of \(\alpha_2\delta-1 \), a de novo mutation (8.2 Mb deletion) and an inherited mutation (3.9 Mb deletion), were identified in patients with epileptic encephalopathy [68]. The same study identified additional inherited disease mutations (p.Ser709Asn and p.Asp1045Ala) occurring in two families: family 1 with an unaffected mother and dizygotic twin having the same mutation and family 2 with an unaffected father and affected monozygotic twin having the same mutation. Another de novo mutation (p.Val875fs) was discovered in a West syndrome patient [44]. A whole exome sequencing (WES) study revealed a de novo mutation p.Arg351Thr in a family of the Simons Simplex Collection (SSC) of patients with autism spectrum disorders (ASDs) [51].

\(\alpha_2\delta-2 \)

Disease mutations in \(\alpha_2\delta-2 \) have been identified in epileptic encephalopathy and cerebellar ataxia patients (Fig. 1, \(\alpha_2\delta-2 \)). Edvardson et al. [34] described the p.Leu1040Pro mutation located in exon 36, close to the missense mutation p.Asp991Asn in exon 34 [115]. Another missense mutation (p.Pro261Leu) was identified in exon 7 [12]. Punetha et al. [84] found two families with epileptic encephalopathy: one displayed a missense variant mutation in exon 20 (p.Arg593Pro) while the other family exhibited a nonsense mutation in exon 5, predicting a severely truncated protein (p.Tyr162Ter). Furthermore, a CACNA2D2 variant (A900T) was found in schizophrenia (SCZ) patients within a Spanish population [92]. Finally, a frameshift mutation in exon 13 (p.Asn432fs) is likely causal in a family with epileptic encephalopathy [81].

\(\alpha_2\delta-3 \)

Potential disease-causing mutations in \(\alpha_2\delta-3 \) were identified in patients with ASDs (Fig. 2, \(\alpha_2\delta-3 \)). Exome sequencing identified several synaptic, transcriptional, and chromatin genes disrupted in ASD including the \(\alpha_2\delta-3 \) mutations p.Arg578Gln, p.Arg665Cys, p.Ala698Thr, p.Arg731Gly, p.Asp756Asn, p.Arg205Gly, and p.Glu508Ter [28]. \(\alpha_2\delta-3 \) de novo gene mutations were also found in a Chinese ASD cohort (p.Ala773Val and p.Ala275Thr) [121] and in probands from the autism clinical and genetic resources in China (p.Ala917Thr and p.Ala698Val) [42].

\(\alpha_2\delta-4 \)

\(\alpha_2\delta-4 \) mutations are strongly involved in retinal disease and gliomas, which go beyond the scope of the current review. However, we would like to highlight two prominent mutations (Fig. 2, \(\alpha_2\delta-4 \)), which affect \(\alpha_2\delta-4 \) expression or structure and may, in theory, also affect the previously suggested expression of \(\alpha_2\delta-4 \) in the brain [95, 117]. A mutation found in night blindness (p.Tyr802Ter) results in a premature stop at amino acid 802. However, it is expected that the mutated messenger RNA (mRNA) is recognized by the nonsense-mediated decay machinery [127]. Another mutation that deserves mentioning is p.Arg707His found to be involved in cone-rod dystrophy [4]. In addition, large genomic deletions affect \(\alpha_2\delta-4 \) protein expression and thereby cause retinal degeneration and night blindness. So far, no brain-related phenotypes were reported, although the gene has been identified as a risk gene for psychiatric disorders. One deletion of 35,740 bp comprising amino acids 574–850 was found in patients with bipolar disorder (BPD) [116].

\textbf{Genetic disease associations}

In this chapter, we briefly summarize human CACNA2D disease associations, which were identified in PubMed, ClinVar, and dbSNP databases. Mutations and SNPs that were not validated in separate publications were not included.

\textbf{CACNA2D1}

Over the past years, various genetic studies implied CACNA2D1, the gene encoding the \(\alpha_2\delta-1 \) isoform, in various forms of epilepsy and psychiatric disorders including major depressive disorders (MDDs), BPD, and SCZ (Fig. 1, CADNA2D1). In GWAS, CACNA2D1 was identified as a potential drug target in MDD [49] and SNP rs17156280 was associated with an interaction between depressive states and stressful events [50]. Furthermore, two SNPs (rs2586668 and rs258677) were linked to depressive traits such as subjective well-being and neuroticism [76]. GWAS analysis of data from the Bipolar Disorder Genome Study Consortium [125] identified SNP rs2367911 as a risk for BPD with comorbid binge eating. In a haplotype analysis on Han Chinese population, two SNPs (rs37076rs37093 G-C and rs10265730rs258665 G-A) were associated with SCZ [134]. Within a Swedish population, a disruptive (frameshift) variant in CACNA2D1 has been identified in an exome sequence of schizophrenia patients [85]. A large deletion of CACNA2D1 was found in one SCZ patient in a Japanese population [66]. By comparing epileptic patients with control subjects, 23 SNPs were identified, of which 6 occurred exclusively in affected individuals [55]. From these 6 SNPs, one was located in the coding sequence (exon 11), one in the 3' UTR, while the other 4 SNPs
were located in introns including SNP (rs2302384), which was already known from the dbSNP database. Importantly, chromosomal deletions affecting CACNA2D1 were identified in three patients with epilepsy and intellectual disability [118].

CACNA2D2

Three de novo variations in CACNA2D2 (Fig. 1, CACNA2D2) were found in patients with SCZ [85]. Two out of three CACNA2D2 variations introduced premature stop codons while the third variant was predicted to disrupt a splice donor site (Purcell A/C). Another CACNA2D2 SNP (rs11917269) has been associated with BPD [103].

CACNA2D3

Initially, the gene encoding for \(\alpha_2 \delta-3 \) was characterized as a target for pain treatment, since the SNP rs6777055 was associated with reduced thermal pain response [72]. Nevertheless, more recently, CACNA2D3 has been linked to neurodevelopmental disorders such as SCZ, BPD, MDD, nicotine dependence (ND), and especially to ASD [52] (Fig. 2, CACNA2D3). For example, the genetic region of CACNA2D3 (3p14) was associated with SCZ and an endophenotype related to the function of the temporal lobe, the anti-saccade reflex [63]. In another study, pathway analysis of SCZ risk SNPs suggested an association of CACNA2D3 with the response to lurasidone, an antipsychotic drug used to treat SCZ [62]. Furthermore, regional enrichment analysis associated the genomic region 3p21.1, which also contains CACNA2D3, with SCZ and BPD [63], a link which also is supported by other studies [63, 67, 70, 101, 134]. While the abovementioned SNPs are all located in exons, one intronic SNP (rs75407252) has been linked to MDD [33]. Associations with ASD were identified in whole genome sequencing studies as inherited variations resulting in splicing disruption [131] or as CNVs [41]. Moreover, SNP rs7773540 was among the top 15 SNPs contributing to ASD diagnosis [100] and a splice site mutation at the beginning of exon 24 was identified in an ASD patient [52]. In their exome sequencing study, De Rubeis et al. [28] further identified several inherited variations in CACNA2D3 with so far unknown effect. Finally, 30 CACNA2D3 SNPs were identified in a study on epilepsy, of which 6 occurred in epileptic patients [55].

CACNA2D4

\(\alpha_2 \delta-4 \) is almost exclusively expressed in the retina, pituitary gland, and adrenal gland [29, 88]. However, very low levels are also detected in the hippocampus and are upregulated during development and status epilepticus [95, 117]. A possible role in the brain, which is further outlined below, is suggested by several SNPs linked to numerous neurological disorders. For instance, a SNP located between the CACNA2D4 and CACNA1C genes (rs1024582) was significantly associated with cross-disorders that included attention deficit hyperactivity disorder (ADHD), BPD, ASD, SCZ, and MDD [22]. A de novo frameshift mutation likely disrupting CACNA2D4 was found in patients with SCZ [85] (Fig. 2, CACNA2D4).

Another endophenotype of SCZ is default mode network, which was found to associate with the SNP rs4765847 [67]. SNPs rs2041140 and rs2041141 were linked to BPD [83], and partial deletions of 35.7 kb, eliminating exons 17–26, were found in two unrelated patients with late-onset BPD, one deletion was found in control individuals [116]. A WES study, comparing brain samples from MDD patients that died from suicide with MDD patients dying from unrelated causes, found a splice donor variant (C/A) [111]. Furthermore, a rare homozygous deletion affecting CACNA1C and CACNA2D4 (12p13.33) was found in a male ASD patient [102]. Thirty-nine SNPs were associated with epilepsy, of which 13 were exclusively found in the patients and not in controls [55] (Fig. 2, CACNA2D4).

Potential disease mechanisms

The overall picture of identified disease mutations suggests the involvement of \(\alpha_2 \delta \) proteins in epilepsy (particularly \(\alpha_2 \delta-2 \) but also \(\alpha_2 \delta-1 \) and ASD (mainly \(\alpha_2 \delta-3 \) but also \(\alpha_2 \delta-1 \)). The majority of identified mutations represent missense mutations resulting in single amino acid substitutions and, to a lesser extent, protein truncations resulting in the complete or partial loss of \(\alpha_2 \delta \) proteins (e.g. p.Tyr162Ter in \(\alpha_2 \delta-2 \) or p.Glu508Ter in \(\alpha_2 \delta-3 \)). When considering genetic disease associations, the picture becomes more diverse and links \(\alpha_2 \delta \) genes additionally to MDD (\(\alpha_2 \delta-1, \alpha_2 \delta-2, \) and \(\alpha_2 \delta-3 \)), SCZ (\(\alpha_2 \delta-1, \alpha_2 \delta-2, \alpha_2 \delta-3, \) and \(\alpha_2 \delta-4 \)), BPD (\(\alpha_2 \delta-1, \alpha_2 \delta-2, \) and \(\alpha_2 \delta-4 \)), and ND (\(\alpha_2 \delta-3 \)) [129]. While some of the described SNPs are in exons and most likely result in missense mutations, many are found in intronic DNA stretches or are affecting splice sites. As \(\alpha_2 \delta \) proteins, on the one hand, are important modulators of calcium channels and, on the other hand, are independent regulators of synaptic functions, disease mutations can affect these functions either independently or concomitantly. In order to understand which cellular functions may be compromised by \(\alpha_2 \delta \) mutations, we will here recapitulate evidence for the involvement of \(\alpha_2 \delta \) proteins in calcium channel–dependent and calcium channel–independent functions.

Calcium channel–dependent mechanisms

In heterologous co-expression studies, all \(\alpha_2 \delta \) proteins show similar effects on channel surface expression (reviewed in [25, 39, 57]) (Fig. 3, point 1). In contrast, evidence in differentiated
native cellular systems suggests at least a partial isoform specificity. In rat superior cervical ganglion neurons, for example, recombinant expression of $\alpha_2\delta-1$ and $\alpha_2\delta-2$ differently affected Ca V2.2 expression when compared with $\alpha_2\delta-3$ [98]. In mice, genetic ablation of $\alpha_2\delta-1$ abolishes Ca V2.2 cell surface expression in dorsal root ganglion (DRG) neurons and dramatically reduces dorsal horn expression [73]. Deletion of $\alpha_2\delta-3$ differentially affects calcium currents; it reduces P/Q- and R-type currents, while N- and L-type remain unaltered [104]. Loss of $\alpha_2\delta-3$ blocks homeostatic modulation of neurotransmitter release due to a failure to potentiate presynaptic calcium influx [122].

Kinetic and voltage-dependent properties of the channels are also modulated by $\alpha_2\delta$ proteins: depending on the channel type and the native channel environment, activation and inactivation kinetics can be slowed or accelerated [74, 75, 114, 120]. The voltage dependence of steady-state inactivation is generally hyperpolarized by $\alpha_2\delta$ [36], while a shift to more positive potential is observed in individual cases [87]. In this context, it is noteworthy that the presence of $\alpha_2\delta-1$ facilitates channel activation by increasing the voltage sensitivity of the channel’s voltage-sensing domains [93]. Another important structural property of $\alpha_2\delta$ which affects calcium currents includes the VWA domain, as a MIDAS mutant of $\alpha_2\delta-2$ subunit failed to enhance CaV1.2, Ca V2.1, and Ca V2.2 currents [14].

In neurons of the brain and the sensory nervous system, calcium channel function can also be influenced by altered or aberrant interaction of $\alpha_2\delta$ proteins with other identified interaction partners. For example, thrombospondin (TSP)-4 can increase calcium currents after low-voltage depolarization and contributes to aberrant excitatory synaptogenesis associated with neuropathic pain development; both of these effects can be blocked by gabapentin [77, 130]. The synaptic cell-adhesion molecules α-neurexins together with $\alpha_2\delta-1$ regulate presynaptic calcium influx through CaV2.1 channels [10].

Fig. 3 Model summarizing proposed synaptic functions of $\alpha_2\delta$ proteins.

$\alpha_2\delta$ proteins as calcium channel subunits enhance plasma membrane expression and modulate current properties of both presynaptic and postsynaptic α_1 subunits (1). At the presynaptic terminal, $\alpha_2\delta$ proteins mediate the accumulation of synaptic vesicles (SV, 2). They regulate active zone architecture (AZ) and bouton morphogenesis (3) either directly by interacting with proteins of the AZ and cytoskeleton (3) or indirectly via the VGCC complex (4). By aligning the presynaptic AZ with the postsynaptic membrane and postsynaptic AMPAR and GABAα_3R (receptors in blue; 5 and 6, respectively), they act as trans-synaptic organizers either partly (5) or entirely (6) independent of the VGCC complex. This may be mediated by a direct interaction with postsynaptic receptors (6), by interacting with prototypical cell adhesion molecules such as presynaptic neurexins and postsynaptic neuroligins (7), or by interacting with proteins of the extracellular matrix or secreted proteins (e.g. BDNF, TSP; yellow ellipses) (8). A transmembrane form of $\alpha_2\delta-1$ bound to TSP is suggested to initiate the recruitment and stabilization of NMDAR (receptors in auburn) on the presynaptic (9) and postsynaptic (10) surface, a mechanism which contributes to enhanced synaptic transmission (9) and regulates intracellular signaling pathways as well as dendritic spine maturation via a small Rho GTPase (10). By regulating calcium currents of VGCC, $\alpha_2\delta$ proteins are further predicted to modulate neuronal excitability (11) and gene expression (12).
(Fig. 3, points 1, 4, and 7). The inhibitory effect of prion protein [99] may be modulated by competing with α2δ for GPI-anchoring pathways [1]. Moreover, low-density lipoprotein receptor–related protein 1 (LRP1) reduces α2δ-1 trafficking and hence influences trafficking of CaV2.2 to the cell surface [53]. Another protein suggested to influence VGCC function by interacting with α2δ-1 is the α subunit (Slo1) of the large conductance calcium-activated potassium (BK) channel [133]. Following spinal nerve injury, Slo1 regulates excitability by preventing the association of α2δ-1 and α1 subunits, resulting in reduced functional membrane expression of CaV2.2 and analgesia. Similar mechanisms to counteract neuronal hyper-excitability might also be relevant in pathologic conditions, for example in epilepsy.

It is worth mentioning that an α2δ-like protein, CACHD1, has recently been characterized [20]. CACHD1 causes a functional increase of low voltage–activated T-type (CaV3) currents, which are not modulated by classical α2δ proteins. However, despite having a disrupted MIDAS motif, rat Cachd1 also can increase CaV2.2 currents and surface expression upon heterologous co-expression [23].

Taken together, it is well established that α2δ proteins have significant effects on the biophysical properties of calcium channels, particularly on calcium current density, activation and inactivation kinetics, and voltage dependence of activation and inactivation. Thus, potential mutations affecting α2δ expression levels, glycosylation, or attachment of the GPI anchor may generally affect calcium channel surface expression and hence calcium currents. The p.Leu1040Pro mutation associated with epilepsy [34] resulted in reduced current densities and slowed inactivation when co-expressed with neuronal calcium channels. Similarly, a point mutation in the VWA domain, identified in a patient with autism (p.Arg351Thr) [51], prevents stable plasma membrane expression of α2δ-1 in a heterologous expression system [90]. Both mutations suggest that these effects can be mediated via altered expression of presynaptic and postsynaptic calcium channels or defective calcium currents which may, ultimately, result in an aberrant excitatory-inhibitory balance and underlie the pathophysiology of the associated diseases (Fig. 3). Interestingly, structure-homology modeling revealed two critical interactions of Arg351 (data not shown); hence, a significant effect of the exchange to Thr on the protein structure is possible. However, it is important to note that for the majority of identified human α2δ mutations, the structure-function consequences have not yet been studied.

Channel-independent synaptic functions of potential relevance for neurological disorders

In this chapter, we summarize novel synaptic roles of α2δ proteins, which, alone or in combination with channel-dependent functions, may be casually involved in neurological disorders: synapse formation, synaptic connectivity and postsynaptic receptor abundance, presynaptic architecture, and synaptic transmission (Fig. 3). The link between synaptic α2δ proteins and brain disorders is particularly relevant, as a common feature of neurological disorders is their linkage to synaptic dysfunctions, referred to as synaptopathies (reviewed in [113]). This particularly accounts for neurodevelopmental disorders such as ASD, intellectual disability (ID), Fragile X syndrome (FXS), Down syndrome, ADHD, epilepsy, neuropsychiatric disorders (e.g. BPD, SCZ), MDD, and neurodegenerative diseases such as Alzheimer’s, Huntington’s, and Parkinson’s diseases. Correct assembly of glutamatergic and GABAergic synapses comprises a series of intricate steps, including the contact of presynaptic axons with specific cellular postsynaptic compartments of target cells, as well as the recruitment of presynaptic and postsynaptic proteins to form a functional synapse (reviewed in [21, 38, 61, 110]). Hence, aberrant expression of individual synaptic proteins as well as mutations affecting their function might cause perturbations in synapse physiology and morphology. This, in turn, could lead to synaptic dysfunction, an imbalance of synaptic excitation and inhibition (E/I imbalance), abnormalities in wiring of neuronal circuits, and finally, the development of a neurological disease.

α2δ-1 mediates excitatory synaptogenesis

The interaction of postsynaptic α2δ-1 and its astrocyte-secreted ligand TSP mediates excitatory synapse formation in retinal ganglion cells, and the study suggests that α2δ-1/TSP-induced synaptogenesis does require neither presence nor function of α1 subunits [35]. A follow-up study [90] demonstrated that loss of α2δ-1 in a conditional knockout mouse strain [78] impairs excitatory synaptogenesis and spine morphology in the cortex (Fig. 3, point 10). Interestingly, a point mutation in the VWA domain of α2δ-1, which has been linked to autism in humans [51], prevented both membrane trafficking of α2δ-1 (see above) and the rescue of the synaptogenic defects. These findings suggest that the previously identified α2δ-1 disease mutation might underlie impaired excitatory synapse formation and synaptic transmission. The study by Risher et al. [90] also proposes that TSP binding to a transmembrane form of α2δ-1 initiates the recruitment and stabilization of NMDA receptors (NMDARs) on the postsynaptic surface, a mechanism which may consequently contribute to dendritic spine maturation (Fig. 3, point 10). The idea that α2δ-1 may be also associated with presynaptic function is further suggested by studies addressing its involvement in neuropathic pain [18], hyperalgesia [30], and cultured hippocampal neurons [7]. Increased α2δ-1 expression levels via lentiviral injection [18] or induced by opioid application [30] potentiated presynaptic NMDAR trafficking in spinal cord synapses (Fig. 3, point 9). Excitatory synaptic transmission
was enhanced, ultimately provoking pain hypersensitivity, which could be normalized with either gabapentin or an α2δ-1 interfering peptide. The causative interaction of α2δ-1 with a set of distinct NMDAR subtypes (GluN1, GluN2A, and GluN2B) is presumably specific, as neither α2δ-2 nor α2δ-3 co-immuno-precipitated with NMDARs in the spinal cord and HEK cells [18]. To unravel the NMDAR interaction site within the α2δ-1 sequence, a chimeric approach was used, substituting the C-terminus, α2, or a dimeric peptide of α2δ-1 with that of α2δ-2 or α2δ-3. Surprisingly, the interaction domain was identified to be located after the C-terminal GPI anchor cleavage site. As earlier studies revealed that α2δ subunits have hardly any or no cytoplasmic domain [26], these data might corroborate the abovementioned findings that NMDARs bind to a transmembrane form of α2δ-1 (for further detail and discussion, see [32, 46]) (Fig. 3, points 9 and 10). Both the hypothalamus [64, 65] and striatum [136] express presynaptic and postsynaptic α2δ-1/NMDAR complexes, augmenting NMDAR-mediated synaptic glutamate release in disease (hypertension) [64, 65] and under physiological conditions (corticostriatal long-term potentiation in learning and memory) [136]. However, since a proteomic study of native rat brain [79] could not identify α2δ subunits in NMDAR-rich postsynaptic densities, it is conceivable that NMDAR/α2δ-1 association might represent a rather dynamic form of neuronal signaling primarily relevant in neuropathological conditions.

It has been recently suggested that brain-derived neurotrophic factor (BDNF) might be an upstream regulator of neuronal α2δ-1 expression levels [9, 19, 86]. Lack of BDNF in mice causes reduced α2δ-1 cell surface expression in the ventromedial hypothalamus, likely affecting excitatory synapse formation without obviously altering calcium currents [19]. Moreover, BDNF mutant mice recovering from stroke display increased abundance of α2δ-1 and TSP2 together with a concomitant enhancement of glutamatergic synapses within the cortico-striatal pathway [86]. Importantly, as the study further identified a reduction of GABAergic innervation in distinct cortical layers, these data might suggest that synaptic α2δ-1 expression levels regulate the balance of excitation to inhibition.

α2δ-2 splice variants regulate synaptic connectivity and postsynaptic receptor abundance

Recent evidence suggests that presynaptic α2δ-2 potently regulates synaptic connectivity and postsynaptic receptor abundance at specific central synapses. For instance, we previously found that solely α2δ splice variants lacking exon 23 regulate both the wiring of presynaptic axons to GABAergic postsynaptic sites, as well as postsynaptic GABA$_A$ receptor (GABA$_A$R) abundance [40] (Fig. 3, points 5 and 6). As heterologous co-expression of distinct α2δ-2 splice variants with various α1 subunits caused similar effects on calcium current densities and activation/inactivation kinetics [45], these data suggest that the trans-synaptic function of α2δ-2 variants lacking exon 23 is independent of their role as a calcium channel subunit. Interestingly, α2δ-2 is also necessary for the proper spatial alignment of presynaptic L-type calcium channels and postsynaptic AMPA receptors in hair cell synapses of the inner ear [37], as well as for the structure and function of cerebellar climbing fiber synapses [5]. While the distinct signaling pathways remain to be determined, it is thus tempting to speculate that glutamatergic and GABAergic synapses may express a specific set of presynaptic α2δ isoforms and even splice variants in order to regulate synaptic connectivity and postsynaptic receptor abundance during development (Fig. 3, points 5 and 6). Along these lines, previous studies have proposed developmental functions of an α2δ-2 variant lacking exon 23 in establishing neuronal circuits [106, 108, 109]. As murine axonal projections of DRG neurons mature during embryonic development, they undergo a switch from a growth-competent (electrically dormant) to a transmitting (electrically active) phase, which also correlates with increased α2δ-2 expression levels [108]. Whether α2δ-2 regulates axon growth of sensory neurons by altering α1 subunit-mediated neurotransmission needs to be clarified. However, recent findings in mouse cortical neurons show that α2δ-2, which is specifically expressed at the soma, axons, and growth cones of corticospinal layer V neurons, displays distinct postnatal expression patterns [106]. Therefore, increased α2δ-2 expression levels during development accompany increased spontaneous firing at a time point when cortico-spinal axon growth is nearly completed, and synaptogenesis begins.

Altogether, several lines of evidence suggest the existence of distinct spatiotemporal expression patterns of α2δ-2 regulating synapse connectivity and specificity, which may even depend on exon usage [40]. Since the amount of α2δ-2 protein is also increased in pathological conditions such as spinal cord injury [106, 108], abnormal expression levels likely contribute to maladaptive synaptogenesis or plasticity, ultimately leading to aberrant neuronal networks.

α2δ-3 regulates size, morphology, and architecture of presynaptic boutons

Most of today’s knowledge on the role of α2δ-3 in synaptic transmission and synapse formation is based on studies conducted in invertebrate model systems. Caylor et al. [16] showed, for instance, that in Caenorhabditis elegans, homologs of Ca$_V$2 (UNC-2), α2δ (UNC-36), and CaMKII (UNC-43) regulate the size and morphology of GABAergic motoneuron terminals in neuromuscular junctions (NMJs) (Fig. 3, point 3). In Drosophila melanogaster null mutants of the α2δ-3 homolog straightjacket (stj), motoneuron terminals of NMJs fail to develop presynaptic boutons showing a severely
disrupted cytoskeleton [59]. Nevertheless, growth cones successfully navigate and halt at their target muscles, indicating that initial contact formation of synapses is normal but followed by an arrest of morphogenesis during larval development. Although the synapse-stabilizing protein ankyrin-2 is absent, functional presynaptic specializations are present and properly opposed to postsynaptic clusters of glutamate receptors. The CaV2 homolog cacophony, however, is missing in active terminals. This prevents rods from establishing contacts with their postsynaptic targets, the ON rod bipolar cells, which disrupt postsynaptic metabotropic glutamate receptor 6 (mGLUR6) clustering. Even though only little structural effects have been reported for cone photoreceptor synapses in this study, synaptic transmission appears to be severely impaired also in cones. A second report using a different α2δ-4 knockout mouse [54] could further extend these findings in revealing that abnormal wiring of cone synapses is associated with impaired cone transmission through ON and OFF bipolar pathways. Nevertheless, abnormalities of ribbon synapses are more severe and CaV1.4 channels are lost faster in terminals of rods than in cones. Because Elfn1 is not expressed in cone synapses [15], the findings described in both reports [54, 123] indicate that loss of CaV1.4 may be the primary cause for synaptic abnormalities in rods and cones. Alternatively, it is conceivable that α2δ-4 regulates rod and cone synapse structure by two distinct mechanisms (one dependent on Elfn1 and one independent from Elfn1).

A recent study conducted in zebrafish underpinned a functional divergence and different developmental expression patterns of two α2δ-4 variants in cone photoreceptors [94]. Interestingly, solely the loss of one variant, Cacna2d4b, specifically leads to the occurrence of mislocalized synapses during larval development. Thus, it is tempting to speculate that spatiotemporal expression patterns of distinct α2δ-4 variants might regulate synapse connectivity and specificity of rod photoreceptors.

Until recently, protein and mRNA expression levels of human and murine α2δ-4 seemed negligible in all previously examined CNS regions [40, 88, 95]. A recent study, however, reported increased levels of α2δ-4 mRNA in human hippocampal biopsies obtained from epileptic patients, an interesting finding in spite of the lack of information on absolute mRNA levels [117]. Considering that standard curve-based qRT-PCR studies from our group identified very low amounts of α2δ-4 mRNA in the mouse brain [40, 95], the recent findings suggest the existence of a subpopulation of hippocampal neurons expressing α2δ-4. Interestingly, several studies provide a potential link between CACNA2D4 and psychiatric disorders ([116], see discussion therein and above). Yet, it remains to be addressed whether late-onset bipolar disorder might be a secondary effect caused by visual impairments in these patients, or if α2δ-4 might play a more prominent role in central neurons of the brain.

α2δ-4 is required for synaptic transmission and wiring of photoreceptors

α2δ-4 transcript levels by far exceed those of other α2δ isoforms in retinal photoreceptor cells [58]. Accordingly, mutations in the human, mouse, and zebrafish genes [54, 94, 123, 127, 128] and the associated pathological phenotypes underline a general importance of α2δ-4 in maintaining proper rod and cone synaptogenesis and physiology. Because α2δ-4 regulates both functional membrane expression of CaV1.4 channels and synaptic transmission of rods [123] and cones [54, 94], converging lines of evidence suggest that abnormal CaV1.4 expression may be the main cause for synaptic abnormalities of retinal photoreceptor cells. Nevertheless, these studies also implicate the presence of distinct α2δ-4 signaling pathways in rod and cone photoreceptors. For instance, Wang et al. [123] showed that in α2δ-4 knockout mice, the key synaptogenic molecule for rod synaptogenesis (Elfn1) is not recruited to rod synaptic terminals. This prevents rods from establishing contacts with their postsynaptic targets, the ON rod bipolar cells, which disrupt postsynaptic metabotropic glutamate receptor 6 (mGLUR6) clustering. Even though only little structural effects have been reported for cone photoreceptor synapses in this study, synaptic transmission appears to be severely impaired also in cones. A second report using a different α2δ-4 knockout mouse [54] could further extend these findings in revealing that abnormal wiring of cone synapses is associated with impaired cone transmission through ON and OFF bipolar pathways. Nevertheless, abnormalities of ribbon synapses are more severe and CaV1.4 channels are lost faster in terminals of rods than in cones. Because Elfn1 is not expressed in cone synapses [15], the findings described in both reports [54, 123] indicate that loss of CaV1.4 may be the primary cause for synaptic abnormalities in rods and cones. Alternatively, it is conceivable that α2δ-4 regulates rod and cone synapse structure by two distinct mechanisms (one dependent on Elfn1 and one independent from Elfn1). A recent study conducted in zebrafish underpinned a functional divergence and different developmental expression patterns of two α2δ-4 variants in cone photoreceptors [94]. Interestingly, solely the loss of one variant, Cacna2d4b, specifically leads to the occurrence of mislocalized synapses during larval development. Thus, it is tempting to speculate that spatiotemporal expression patterns of distinct α2δ-4 variants might regulate synapse connectivity and specificity of rod photoreceptors.
How do mutations affect α₂δ protein function?

Considering the manifold roles involving α₂δ proteins, it is obvious that α₂δ malfunction can affect channel-dependent and channel-independent functions. Particularly, mutations affecting expression levels of α₂δ proteins (e.g. intronic SNPs, protein truncations, CNV) may simultaneously affect both functions. Hence, the extent of the disease involvement will mainly depend on the regional and temporal expression of individual α₂δ subunits. For example, this is the case in epileptic encephalopathies and cerebellar ataxias associated with α₂δ-2 (predominant expression of α₂δ-2 in the cerebellum) or retinal dysfunctions associated with α₂δ-4 (predominant expression of α₂δ-4 in the retina). Similarly, mutations affecting splicing may primarily affect regions endogenously expressing specific splice isoforms. Although until today regional and temporal expression patterns of α₂δ splice variants are still incompletely understood, splices are indeed relevant for the functional diversity [40, 60]. However, in contrast to mutations affecting α₂δ protein expression levels, splicing
mutations may affect channel-dependent and channel-independent functions simultaneously or separately. Homology modeling based on an $\alpha_2\delta$-1 cryo-EM structure [126, 135] revealed that inclusion of single spliced exon 23 in $\alpha_2\delta$-2 resulted in the formation of an extra loop disrupting an α-helix [40] (Fig. 4a). Hence, inclusion of this exon prevents the trans-synaptic recruitment of postsynaptic GABA_A receptors. Since, based on the predicted structure, the region of the relevant exon is facing away from the channel into the synaptic cleft, it is conceivable that such structural alterations affect specific protein-protein interactions without modulating the calcium channel. Channel-independent structural interactions are supported by a very recent observation in our laboratory. While the integrity of the MIDAS motif in $\alpha_2\delta$ subunits was shown to be required for functional membrane expression of the channel complex [14, 48, 97], expression of MIDAS mutants could not rescue the accumulation of synaptic proteins in $\alpha_2\delta$ subunit triple knockout neurons [97].

The consequences of missense point mutations on channel-dependent and channel-independent functions are not that easily predictable without detailed experimental evidence. In theory, missense mutations may alter the entire structure of $\alpha_2\delta$ proteins. Moreover, single missense mutations may also affect the interaction of $\alpha_2\delta$ subunits with the channel itself or with extracellular or trans-synaptic interaction partners. Here, we used structure-homology modeling (see Fig. 4) to predict the consequences of previously identified potentially autism-causing mutations in $\alpha_2\delta$-1 and $\alpha_2\delta$-3. While the p.Arg351Thr mutation may severely alter protein structure (see above), modeling of a specific mutation in $\alpha_2\delta$-3 (p.Ala917Thr) [42] provides an indication that even subtle changes may alter specific interactions. The location of p.Ala917Thr in the predicted structure of $\alpha_2\delta$-3 is a potential site for protein-protein interaction, partly facing towards the channel α_1 subunit and partly facing to the extracellular side (Fig. 4b). Homology modeling does not suggest strong effects of this amino acid substitution on the overall structure. However, slight alterations in the surface electrostatic potential and hence surface hydrophobicity may suffice to influence the stability with specific inter-channel-complex interactions or components of the extracellular matrix. Considering ASD, one may speculate that an altered surface structure may influence the weak and dynamic interaction with synaptic cell adhesion molecules, for example neurexins [10], thereby affecting both channel and synaptic functions. We also modeled the potential consequences of an $\alpha_2\delta$-1 frameshift mutation likely causing epilepsy (p.Val875fs) [44]. While it is possible that altered mRNA may already trigger nonsense-mediated mRNA decay, an actually translated $\alpha_2\delta$-1_p.Val875fs protein may be functionally affected in two ways: first, the lack of the δ peptide and membrane anchoring will affect the stability of its membrane localization and hence channel interaction, and second, the frameshift not only deletes a large portion of the C-terminal end of the protein including the entire δ peptide.

Fig. 5 Model summarizing channel-dependent and channel-independent roles of $\alpha_2\delta$ proteins. Mutations of $\alpha_2\delta$ genes can affect expression levels, protein structure, and splicing. These alterations have consequences on calcium channel-dependent functions (membrane expression, current modulation, channel subtype-specific functions), and channel-independent functions (extracellular and/or trans-synaptic interactions and signaling pathways). The two mechanisms should not be considered entirely independent as they are likely influencing each other. For example, alterations in synapse differentiation will also affect VGCC expression with further consequences on neuronal excitability and synaptic transmission.
but also introduces a sequence stretch of 36 amino acids which will likely interfere with potential remaining protein-protein interactions (Fig. 4c). Hence and considering that the p.Val875fs mutation was found in epileptic patients, it seems consistent with the hypothesis that its pathophysiology may be mediated partly by channel-dependent functions influencing neuronal excitability and/or synaptic transmission.

Future perspectives

Over the last couple of years, the number of disease associations of α2δ genes and proteins has been steadily increasing. The multitude of distinct neurological and neuropsychiatric disorders likely involving α2δ proteins supports their important roles in neuronal functions (Fig. 5). Hence, on top of the existing drugs gabapentin and pregabalin, α2δ proteins may provide highly specific targets for future and novel paradigms in treating neurological disorders. This seems particularly promising when calcium channel–dependent as well as calcium channel–independent functions could be separately targeted. However, until then, several basic immanent research questions need to be further elucidated: first, although recent studies identified α2δ isoform–specific signaling pathways, the role of functional redundancy between the different isoforms is not yet understood.

For example, while specific α2δ isoforms are clearly associated with distinct synaptic functions (see above), synapse deficiency in a presynaptic triple knockout phenotype can be rescued by the expression of each individual α2δ protein [97]. Second, the role of individual α2δ isoforms in neuron-type- and synapse-type-specific signaling mechanisms needs to be resolved. In the brain, α2δ proteins show an isoform-specific distribution pattern; however, this pattern shows considerable overlap and at least three isoforms can be simultaneously expressed in a single neuron. Hence, understanding neuron- and synapse-type specificity in α2δ protein functions will become increasingly important. For example, the extremely low abundance of α2δ-4 in the brain may suggest the specific expression of this isoform in a lowly abundant neuronal cell type. Third, the definitive distinction between calcium channel–dependent and calcium channel–independent functions is until today an experimental challenge. Several recent studies identified α2δ-specific signaling pathways and protein-protein interactions (e.g. BK channel and NMDAR). Yet, in neurons, multiple calcium channel types are ubiquitously expressed and critically involved in basic signaling functions. Consequently, malfunctioning α2δ proteins are likely to also affect calcium channel functions. Fourth, α2δ proteins are emerging as novel and critical trans-synaptic organizing molecules, which may provide a missing link in understanding synapse formation and differentiation. It will be critical to identify their specific trans-synaptic mode of action including potential extracellular or presynaptic and postsynaptic interaction partners. Finally, cryo-EM analysis provided first insights into the structural organization of α2δ subunits, but until today, our understanding of neuronal α2δ proteins depends on structure-homology modeling based on the skeletal muscle calcium channel complex. In neurons, the actual structural organization of α2δ proteins may depend on their specific calcium channel associations and their potential extracellular and trans-synaptic interactions.

Taking together, α2δ proteins are critical neuronal signaling proteins involved in a variety of cellular and synaptic mechanisms and altered function may cause or mediate neurological disorders. Future research efforts in studying their specific neuronal roles will help in understanding the pathophysiology of associated disorders and may open the way for the development of novel therapeutic paradigms.

Acknowledgments

Open access funding provided by Austrian Science Fund (FWF). This work is part of the PhD thesis of C.A.

Funding information

This work was supported by the Austrian Science Fund (FWF) grants F44150 and DOC30-B30 (G.J.O.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in accordance with statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alvarez-Laviada I, Kadturin I, Senatore A, Chiesa R, Dolphin AC (2014) The inhibition of functional expression of calcium channels by prion protein demonstrates competition with alpha2delta for GPI-anchoring pathways. Biochim J 458:365–374. https://doi.org/10.1042/BJ20131405
2. Anantharaman V, Aravind L (2000) Cache - a signaling domain common to animal Ca(2+)-channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem Sci 25:535–537. https://doi.org/10.1016/s0968-0004(00)01672-8
3. Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepeil N, Londrigan L (2019) Genetic associations between voltage-gated calcium channels and psychiatric disorders. Int J Mol Sci:20. https://doi.org/10.3390/ijms20143537
4. Ba-Abbad R, Arno G, Carss K, Stirrups K, Penkett CJ, Moore AT, Michaelides M, Raymond FL, Webster AR, Holder GE (2016) Mutations in CACNA2D4 cause distinctive retinal dysfunction
814

5. Beeson KA, Beeson R, Westbrook GL, Schnell E (2020) Alpha2delta-2 protein controls structure and function at the cerebellar climbing fiber synapse. J Neurosci 40:2403–2415. https://doi.org/10.1523/JNEUROSCI.1514-19.2020

6. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhan TN, Weissig H, Shindyakov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

7. Bikbaev A, Ciuraszkiewicz A, Heck J, Klatz O, Freund R, Mitloehner J, Lacalle SE, Sun M, Repetto D, Frischknecht R, Rohlmann A, Missler M, Obermair GJ, Di Biase V, Heine M (2020) Auxiliary alpha2delta1 and alpha2delta3 subunits of calcium channels drive excitatory and inhibitory neuronal network development. J Neurosci. https://doi.org/10.1523/JNEUROSCI.1707-19.2020

8. Bourinet E, Francois A, Lafray S (2016) T-type calcium channels in neuronal path in pain. Pain 157:S15–S22. https://doi.org/10.1097/j.pain.0000000000004649

9. Bowling H, Bhattacharya A, Zhang G, Lebowitz JZ, Alam D, Smith PT, Kirshenbaum K, Neubert TA, Vogel C, Chao MV, Klann E (2016) BONLAC: a combinatorial proteomic technique to measure stimulus-induced translational profiles in brain slices. Neuropharmacology 100:76–89. https://doi.org/10.1016/j.neuropharm.2015.07.017

10. Brockhaus J, Schreitmuller M, Repetto D, KIatt O, Reissner C, Elmslie K, Heine M, Missler M (2018) Alpha-neurexins together with alpha2delta-1 auxiliary subunits regulate Ca(2+) influx through Cav2.1 channels. J Neurosci 38:8277–8294. https://doi.org/10.1523/JNEUROSCI.0511-18.2018

11. Bureei Z, Yang J (2010) The B subunit of voltage-gated Ca2+ channels. Physiol Rev 90:1461–1506. https://doi.org/10.1152/physrev.00057.2009

12. Butler KM, Holt PJ, Milla SS, da Silva C, Alexander JJ, Escayg A, Buraei Z, Yang J (2010) The β subunit of voltage-gated Ca2+ channel subunits UNC-2 and UNC-36 and the calcium-dependent kinase UNC-43/CaMKII regulate neuronal function and its role in vision. Neuron 87:1248–1258. https://doi.org/10.1016/j.neuron.2010.09.002

13. Calderon-Rivera A, Andrade A, Hernandez-Hernandez O, Caylor RC, Jin Y, Ackley BD (2013) The Caenorhabditis elegans voltage-gated calcium channel subunits UNC-2 and UNC-36 and the calcium-dependent kinase UNC-43/CaMKII regulate neuro-muscular junction morphology. Neural Dev 8:10. https://doi.org/10.1186/1749-8104-8-10

14. Canti C, Nieto-Rostro M, Foucault I, Heblich F, Wratten J, Richards MW, Hendrich J, Douglas L, Page KM, Davies A, Dolphin AC (2005) The metal-ion-dependent adhesion site in the Von Willebrand factor-a domain of alpha2delta subunits is a key to trafficking voltage-gated Ca2+ channels. Proc Natl Acad Sci U S A 102:11230–11235. https://doi.org/10.1073/pnas.0504183102

15. Cao Y, Sarria I, Fehlhaber KE, Kamasawa N, Orlandi C, James KN, Hazen JL, Gardner MR, Farzan M, Lee A, Baker S, Baldwin K, Sampaik AP, Martemyanov KA (2015) Mechanism for selective synaptic wiring of rod photoreceptors into the retinal circuitry and its role in vision. Neuron 87:1248–1260. https://doi.org/10.1016/j.neuron.2015.09.002

16. Caylor RC, Jin Y, Ackley BD (2013) The Caenorhabditis elegans voltage-gated calcium channel subunits UNC-2 and UNC-36 and the calcium-dependent kinase UNC-43/CaMKII regulate neuromuscular junction morphology. Neural Dev 8:10. https://doi.org/10.1186/1749-8104-8-10

17. Celli R, Santolini I, Guiducci M, van Luijtelaar G, Parisi P, Striano P, Gradini R, Battaglia G, Ngomba RT, Nicoletti F (2017) The alpha2delta subunit and absence epilepsy: beyond calcium channels? Curr Neuropharmacol 15:918–925. https://doi.org/10.2174/1570159X15666170309105451

18. Chen J, Li L, Chen SR, Chen H, Xie JD, Siririech DM, Zhang Y, Zhou MH, Jayaraman V, Pan HL (2018) The alpha2delta1-NMDA receptor complex is critically involved in neuropathic pain development and gabapentin therapeutic actions. Cell Rep 22:2307–2321. https://doi.org/10.1016/j.celrep.2018.02.021

19. Cordeira JW, Felsted JA, Teillon S, Daffy S, Panansiti M, Wirth J, Serna-Esteses M, Rios M (2014) Hypothalamic dysfunction of the thrombospondin receptor alpha2delta1 underlies the overeating and obesity triggered by brain-derived neurotrophic factor deficiency. J Neurosci 34:554–565. https://doi.org/10.1523/JNEUROSCI.1572-13.2014

20. Cottrell GS, Soubrane CH, Hounshell JA, Lin H, Ovenson V, Rigby M, Cox PJ, Barker OS, Ottoliniti I, Ince S, Bauer CC, Perez-Reyes E, Patel MK, Stevens EJ, Stephens GJ (2018) CACHD1 is an alpha2delta-like protein that modulates CaV3 voltage-gated channel calcium channel activity. J Neurosci 38:9186–9201. https://doi.org/10.1523/JNEUROSCI.3572-15.2018

21. Craig AM, Graf ER, Linhoff MW (2006) How to build a central synapse: clues from cell culture. Trends Neurosci 29:8–20. https://doi.org/10.1016/j.tins.2005.11.002

22. Cross-Disorder Group of the Psychiatric Genomics Consortium (2013) Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381:1371–1379. https://doi.org/10.1016/S0140-6736(12)62129-1

23. Dahimene S, Page KM, Kadurin I, Ferron L, Ho DY, Powell GT, Pratt WS, Wilson SW, Dolphin AC (2018) The alpha2delta-like protein Cav2(Cach1 increases N-type calcium currents and cell surface expression and competes with alpha2delta-1. Cell Rep 25:1610–1621.e1615. https://doi.org/10.1016/j.celrep.2018.10.033

24. Davies A, Douglas L, Hendrich J, Wratten J, Tran Van Minh A, Foucault I, Koch D, Pratt WS, Saibäl HR, Dolphin AC (2006) The calcium channel alpha2delta-2 subunit partitions with CaV2.1 into lipid rafts in cerebellum: implications for localization and function. J Neurosci 26:8748–8757. https://doi.org/10.1523/JNEUROSCI.2764-06.2006

25. Davies A, Hendrich J, Van Minh AT, Wratten J, Douglas L, Dolphin AC (2007) Functional biology of the alpha2delta subunits of voltage-gated calcium channels. Trends Pharmacol Sci 28:220–228. https://doi.org/10.1016/j.tips.2007.03.005

26. Davies A, Kadurin I, Alvarez-Laviada A, Douglas L, Nieto-Rostro M, Bauer CS, Pratt WS, Dolphin AC (2010) The alpha2delta subunits in voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function. Proc Natl Acad Sci U S A 107:1654–1659. https://doi.org/10.1073/pnas.0908735107

27. De Jongh KS, Warner C, Catterall WA (1990) Subunits of purified calcium channels. Alpha 2 and delta are encoded by the same gene. J Biol Chem 265:14738–14741

28. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocho K, Cicak AE, Kou Y, Liu L, Fromer M, Walker S, Singh T, Klei L, Kosmicki J, Shih-Chen F, Aleksee B, Biscaldi M, Bolton PT, Brownfield JM, Cai J, Campbell NG, Carracedo A, Chahour MH, Chiocchetti AG, Coon H, Crawford EL, Curran SR, Dawson G, Duketis E, Fernandez BA, Gallagher L, Geller E, Guter SJ, Hill RS, Itona-Laza J, Jimenez Gonzalez P, Kilipen H, Klauke SM, Kolevzon A, Lee I, Lei I, Lei J, Lehtimaki T, Lin CF, Ma'ayan A, Marshall CR, Melmes AL, Neale B, Owen MJ, Ozaki N, Parellada M, Parr JR, Purcell S, Puura K, Rajagopalan D, Rehnstrom K, Reichenberg A, Sabo A, Sashce M, Sanders SJ, Schafer C, Schulte-Ruther M, Skuse D, Stevens C, Szamari P, Tamminimies K, Valladaras O, Voran A, Li-San W, Weiss LA, Willsey AJ, Yu TW, Yuen RK, Study DDD, Homzygosity Matching Collaborative for A, Consortium UK, Springer
Hakker I, Rosenbaum J, Ma B, Rodgers L, Troge J, Narzisi G, Yoon S, Schatz MC, Ye K, McCombie WR, Shendure J, Eichler EE, State MW, Wigler M (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515:216–221. https://doi.org/10.1038/nature13908

52. Isselov I, Ronenmus M, Levy D, Wang Z, Hakker I, Rosenbaum J, Yamrom B, Lee YH, Narzisi G, Leotta A, Kendall J, Grabowska E, Ma B, Marks S, Rodgers L, Stepansky A, Troge J, Andrews P, Bektris M, Pradhan K, Ghiaban E, Kramer M, Parla J, Denetere R, Fulton LT, Fulton RS, Magrini VJ, Ye K, Damell JC, Damell RB, Mardis ER, Wilson HK, Schatz MC, McCombie WR, Wigler M (2012) De novo genome disruptions in children on the autistic spectrum. Neuron 74:285–299. https://doi.org/10.1016/j.neuron.2012.04.009

53. Kadurin I, Rothwell SW, Lana B, Nieto-Rostro M, Dolphin AC (2017) LRPI influences trafficking of N-type calcium channels via interaction with the auxiliary alpha2delta-1 subunit. Sci Rep 7:43802. https://doi.org/10.1038/srep43802

54. Kerov V, Laird JG, Joiner ML, Knecht S, Soh D, Hagen J, Gardner SH, Gutierrez W, Yoshimatsu T, Bhattarai S, Puthussery T, Atemnov YY, Drake AV, Wong RO, Baker SA, Lee A (2018) Alpha2delta-4 is required for the molecular and structural organization of rod and cone photoreceptor synapses. J Neurosci 38:6145–6160. https://doi.org/10.1523/JNEUROSCI.3818-16.2018

55. Klasson T, Davis C, Goldman A, Burgess D, Chen T, Wheeler D, McPherson J, Bourquin T, Lewis L, Villasana D, Morgan M, Muzny D, Gibbs R, Noebels J (2011) Exome sequencing of ion channel genes reveals complex profiles confounding personal risk assessment. Cell 145:1036–1048. https://doi.org/10.1016/j.cell.2011.05.025

56. Klugbauer N, Lacinova L, Marais E, Hobom M, Hofmann F (1999) Molecular diversity of the calcium channel alpha2delta subunit. J Neurosci 19:684–691

57. Klugbauer N, Marais E, Hofmann F (2003) Calcium channel alpha2delta subunits: differential expression, function, and drug binding. J Bioenerg Biomembr 35:639–647. https://doi.org/10.1023/a:1016596041056.58

58. Knoflach D, Kerov V, Sartori SB, Obermair GJ, Tuluc P, Flucher BE (2008) Auxiliary Ca(2+) channels: evolutionarily conserved pain gene. Cell 143:628–639. https://doi.org/10.1016/j.cell.2010.09.047

59. Muller CS, Haupt A, Bild W, Schindler J, Knaus HG, Meissner M, Ramanner B, Striessnig J, Flockner V, Fakler B, Schulte U (2010) Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc Natl Acad Sci U S A 107:14950–14957. https://doi.org/10.1073/pnas.1005940107

60. Moons T, De Hert M, Gellens E, Gielen L, Sweers K, Jacqmaert J, van Winkel R, Vandekerckhove P, Claes S (2016) Genetic evaluation of schizophrenia using the Illumina HumanExome Chip. PLoS One 11:e0150464. https://doi.org/10.1371/journal.pone.0150464

61. Muller CR, Haupt A, Bild W, Schindler J, Knaus HG, Meissner M, Ramanner B, Striessnig J, Flockner V, Fakler B, Schulte U (2010) Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc Natl Acad Sci U S A 107:14950–14957. https://doi.org/10.1073/pnas.1005940107

62. Neely GG, Hess A, Costigan M, Keene AC, Goulas S, Langeslag M, Griffin RS, Belfer I, Dai F, Smith SB, Diatchenko L, Gupta V, Xia C P, Amann S, Kretz S, Heidmann E, Wozn S, Sy LV, Arora S, Sarangi R, Dan D, Novatchkova M, Rosenzweig M, Gibson QG, Truong D, Schramek D, Zoranovic T, Cronin SJ, Angeli B, Brune K, Dietz G, Maxnart W, Meixner A, Thomas W, Pospusil J, Alemius M, Kress M, Subramaniam S, Garrey PA, Bellen HJ, Woolf CJ, Penninger JM (2010) A genome-wide Drosophila screen for heat nociception identifies alpha2delta3 as an evolutionarily conserved pain gene. Cell 143:628–638. https://doi.org/10.1016/j.cell.2010.09.047

63. Nieto-Rostro M, Ramgoolum K, Pratt WS, Kulik A, Dolphin AC (2018) Ablation of alpha2delta-1 inhibits cell-surface trafficking of endogenous N-type calcium channels in the pain pathway in vivo. Proc Natl Acad Sci U S A 115:E12043–E12052. https://doi.org/10.1073/pnas.1801212115

64. Obermair GJ, Kugler G, Baumgartner S, Tuhle P, Grabner M, Fischer BE (2005) The Ca2+ channel alpha2delta-1 subunit determines Ca2+ current kinetics in skeletal muscle but not targeting of alpha1S or excitation-contraction coupling. J Biol Chem 280:2229–2237. https://doi.org/10.1074/jbc.M411501200

65. Obermair GJ, Tuhle P, Fischer BE (2008) Auxiliary Ca(2+)-channel subunits: lessons learned from muscle. Curr Opin Pharmacol 8:311–318. https://doi.org/10.1016/j.coph.2008.01.008

66. Okbay A, Baselmans BM, De Neve JE, Turley P, Nivard MG, Fontana MA, Meddens SF, Linner RK, Rietveld CA, Derringer J, Gratten J, Lee JJ, Liu JZ, de Vlaming A, Ahsulalas T, Buschwald J, Cavadino A, Frazier-Wood AC, Furlotte NA, Garfield V, Geisel
77. Pan B, Guo Y, Wu HE, Park J, Trinh VN, Luo ZD, Hogan QH (2016) Thrombospondin-4 divergently regulates voltage-gated Ca2+ channel subtypes in sensory neurons after nerve injury. Pain 157:2068–2080. https://doi.org/10.1097/j.pain.0000000000000612

78. Park J, Yu YP, Zhou CY, Li KW, Wang D, Zhang Y, Kim DS, Voigt A, Heine M (2015) Mobility of calcium channels in the neuronal plasma membrane. J Biol Chem 290:22351–22363. https://doi.org/10.1074/jbc.M114.595238

79. Peng J, Kim MJ, Cheng D, Duong DM, Gygi SP, Sheng M (2004) Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J Biol Chem 279:21003–21011. https://doi.org/10.1074/jbc.M400103200

80. Petrobon D (2013) Calcium channels and migraine. Biochim Biophys Acta 1828:13335–13348. https://doi.org/10.1016/j.bjba.2013.09.003

81. Pippucci T, Parmeggiani A, Palombo F, Maresca A, Angius A, Pan B, Guo Y, Wu HE, Park J, Trinh VN, Luo ZD, Hogan QH (2016) Thrombospondin-4 divergently regulates voltage-gated Ca2+ channel subtypes in sensory neurons after nerve injury. J Biol Chem 290:22351–22363. https://doi.org/10.1074/jbc.M114.595238

82. Pinone A, Kurt S, Zuccotti A, Rutterig L, Pilz P, Brown DH, Franz C, Schweizer M, Rust MB, Rubsamben R, Friau E, Knipper M, Engel J (2014) Alpha2delta3 is essential for normal structure and function of auditory nerve synapses and is a novel candidate for auditory processing disorders. J Neurosci 34:434–445. https://doi.org/10.1523/JNEUROSCI.3085-13.2014

83. PrabhU S, P'eer I (2012) Ultrafast genome-wide scan for SNP-SNP interactions in common complex disease. Genome Res 22:2230–2240. https://doi.org/10.1101/gr.137885.112

84. Punetha J, Karaca E, Gezdirici A, Lamont RE, Pehlivan D, Marani D, Appendino JP, Hunter JV, Akdeniz ZC, Fatih JM, Jhangiani SN, Gibbs RA, Innes AM, Posey JE, Lupsri JK (2019) Biallelic CACNA2D2 variants in epileptic encephalopathy and cerebellar atrophy. Ann Clin Transl Neurol 6:1395–1406. https://doi.org/10.1002/actn.50824

85. Purcell SM, Moran JL, Fromer M, Rudfer D, Solvieff N, Roussos P, O'Dushline C, Chamberlain K, Bergen SE, Kahler A, Duncan L, Stahl E, Genovese G, Fernandez E, Collins MO, Komiyama NY, Choudhary JS, Magnusson PK, Banks E, Shakk K, Giramella K, Fennett T, DePristo M, Grant SG, Hagarty SJ, Gabriel S, Scamlic EM, Landers ES, Hultman CM, Sullivan PF, McCaroll SA, Sklar P (2014) A polygenetic burden of rare disruptive mutations in schizophrenia. Nature 506:185–190. https://doi.org/10.1038/nature12975

86. Qin L, Actor-Engel HS, Woo MS, Shahi F, Chen YW, Cho S, Aoki C (2019) An increase of excitatory-to-inhibitory synaptic balance in the contralateral cortico-striatal pathway underlies improved stroke recovery in BDNF Val66Met SNP mice. Neurorehabil Neural Repair 33:989–1002. https://doi.org/10.1177/1549171618792997

87. Qin N, Olesce R, Stefani E, Birnbaumer L (1998) Modulation of human neuronal alpha 1E-type calcium channel by alpha 2 delta subunit. Am J Physiol 274:C1324–C1331. https://doi.org/10.1152/ajpcell.1998.274.5.C1324

88. Qin N, Yagel S, Mampolais ML, Codd EE, D'Andrea MR (2002) Molecular cloning and characterization of the human voltage-gated calcium channel alpha2delta-4 subunit. Mol Pharmacol 62:485–496. https://doi.org/10.1124/mol.62.3.485

89. Rajakulendran S, Hamma MG (2016) The role of calcium channels in epilepsy. Cold Spring Harb Perspect Med 6:a022723. https://doi.org/10.1101/cshperspect.a022723

90. Risher WC, Kim N, Koh S, Choi JE, Mitev P, Spence EF, Filaz LJ, Wang D, Feng G, Silver DL, Soderling SH, Yin HH, Eroglu C (2018) Thrombospondin receptor alpha2delta-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1. J Cell Biol 217:3747–3765. https://doi.org/10.1083/jcb.201802057

91. Robinson P, Etheridge S, Song L, Shah R, Fitzgerald EM, Jones OT (2011) Targetting of voltage-gated calcium channel alpha2delta-1 subunit to lipid rafts is independent from a GPI-anchoring motif. PLoS One 6:e19802. https://doi.org/10.1371/journal.pone.0019802

92. Rodriguez-Lopez J, Sobrino B, Amigo J, Carrera N, Brenlla J, Rodriguez-Lopez J, Sobrino B, Amigo J, Carrera N, Brenlla J, Savalli N, Pantazis A, Sigg D, Weiss JN, Neely A, Olcese R (2016) Central mechanisms mediating thrombospondin-4-induced pain states. J Biol Chem 291:13335–13348. https://doi.org/10.1074/jbc.M115.723478

93. Savalli N, Pantazis A, Sigg D, Weiss JN, Neely A, Olcese R (2016) The alpha2delta-1 subunit remodels CaV1.2 voltage sensors and allows Ca2+ influx at physiological membrane potentials. J Gen Physiol 148:147–159. https://doi.org/10.1085/jgp.201611586

94. Schlegel DK, Glasser SMK, Mateos JM, Barmettler G, Ziegler U, Neuhaus SCF (2019) A new zebrafish model for CACNA2D4-dysfunction. Invest Ophthalmol Vis Sci 60:5124–5135. https://doi.org/10.1167/iovs.19-26759

95. Schlick B, Flucher BE, Obermair GJ (2010) Voltage-activated calcium channel expression profiles in mouse brain and cultured hippocampal neurons. Neuroscience 167:786–797. https://doi.org/10.1016/j.neuroscience.2010.02.037

96. Schneider R, Hesy O, Kohl J, Kheva J, Choquet D, Thomas U, Voigt A, Heine M (2015) Mobility of calcium channels in the
