The complete chloroplast genome sequence of Chrysophyllum cainito, a semidomesticated species

Cheng Zheng, Zi-Yan Liu and Jin Liu

Yunnan Institute of Tropical Crops, Xishuangbanna, China

ABSTRACT

Chrysophyllum cainito is a semi-domesticated species widely cultivated in tropical regions, such as the Americas and Southeast Asia. In Yunnan, Guangdong, and Fujian Provinces, China, *C. cainito* is planted as an edible tropical fruit that was introduced from Southeast Asia. In this study, the chloroplast genome sequence of *C. cainito* was assembled and characterized using Illumina sequencing. The whole chloroplast genome of *C. cainito* is 158,841 bp long and consists of four regions: a large single-copy region (LSC, 88,256 bp), two inverted repeat regions (IRs, 25,958 bp), and a small single copy (SSC, 18,669 bp) region. The composition of the four bases in the circular chloroplast genome is 31.20% A, 32.00% T, 18.02% G, and 18.78% C, and the GC content of the entire *C. cainito* chloroplast genome is 36.8%. A total of 129 genes were annotated in the *C. cainito* chloroplast genome, of which 84 were protein-coding genes, 37 were transfer RNA (tRNA) genes, and eight were ribosomal RNA (rRNA) genes. The phylogenetic analysis indicated that *C. cainito* was most closely related to *Pouteria campechiana*. This study provides a foundation for further investigation of chloroplast genome evolution and genetic variation within semi-domesticated species.
plant species. MAFFT (Katoh and Standley 2013) was used for multiple sequence alignment and MEGA7.0 (Kumar et al. 2016) was used for maximum-likelihood (ML) analysis (Figure 1). Of the included chloroplast genomes, the results indicated that C. cainito was most closely related to Pouteria campechiana. This study provides a foundation for further investigation of chloroplast genome evolution and genetic variation within semi-domesticated species.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by The Technology Innovation Talents Project of Yunnan Province [2018HB086]; Sci-tech Innovation System Construction for Tropical Crops Grant of Yunnan Province [No. RF2020].

Data availability statement

The data that support the findings of this study are openly available in GenBank at https://www.ncbi.nlm.nih.gov/, reference number MT435527.

References

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33(7):1870–1874.

Liu J, Niu Y-F, Ni S-B, He X-Y, Zheng C, Liu Z-Y, Cai H-H, Shi C. 2018. The whole chloroplast genome sequence of Macadamia tetraphylla (Proteaceae). Mitochondrial DNA B Resour. 3(2):1276–1277.

Lohse M, Drechsel O, Kahlau S, Bock R. 2013. Organellar GenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 41:575–581.

Morton J. 1987. Fruits of warm climates. Miami (FL): Julia F. Morton.

Parker IM, López I, Petersen JJ, Anaya N, Cubilla-Rios L, Potter D. 2010. Domestication syndrome in cainito (Chrysophyllum cainito L.): fruit and seed characteristics. Econ Bot. 64(2):161–175.

Petersen JJ, Parker IM, Daniel P. 2014. Ten polymorphic microsatellite primers in the tropical tree cainito, Chrysophyllum cainito (Sapotaceae). Appl Plant Sci. 2(2):1300079.

Petersen JJ, Parker IM, Potter D. 2012. Origins and close relatives of a semi-domesticated neotropical fruit tree: Chrysophyllum cainito (Sapotaceae). Am J Bot. 99(3):585–604.

Wyman SK, Jansen RK, Boore JL. 2004. Automatic annotation of organelar genomes with DOGMA. Bioinformatics. 20(17):3252–3255.

Figure 1. Maximum-likelihood phylogenetic tree of C. cainito and 15 other species (five species of the Ebenaceae family, five species of the Primulaceae family, two species of the Sapotaceae family, two species of the Actinidiaceae family, and Platycodon grandiflorus, which belongs to the Campanulaceae family and was used as the outgroup). The bootstrap value was set to 1000. The species and chloroplast genome accession numbers for tree construction are: C. cainito (MT435527), Diospyros glaucifolia (NC_030784), Diospyros lotus (NC_030786), Diospyros oleifera (NC_030787), Diospyros kaki (NC_030789), Diospyros virginiana (NC_039555), Primula poissonii (NC_024543), Primula chrysochlora (NC_034678), Primula handeliana (NC_039348), Primula woodwardii (NC_039349), Primula knuthiana (NC_039350), Pouteria campechiana (NC_033501), Sideroxylon wightianum (NC_041130), Actinidia kolomikta (NC_034915), Actinidia callosa var. henryi (NC_043861), and P. grandiflorus (NC_035624).