An alternative to Witt vectors

Joachim Cuntz and Christopher Deninger

(Communicated by Urs Hartl)

Dedicated to our friend and colleague Peter Schneider

Abstract. The ring of Witt vectors associated to a ring R is a classical tool in algebra. We introduce a ring $C(R)$ which is more easily constructed and which is isomorphic to the Witt ring $W(R)$ for a perfect \mathbb{F}_p-algebra R. It is obtained as the completion of the monoid ring $\mathbb{Z}R$, for the multiplicative monoid R, with respect to the powers of the kernel of the natural map $\mathbb{Z}R \to R$.

1. Introduction

Since the work of Witt on discretely valued fields with given perfect residue field in [9] the “vectors” that carry his name have become important in many branches of mathematics. In [6], [7] Lazard gave a new approach to Witt vectors generalizing the theory to the case of a perfect \mathbb{F}_p-residue algebra. This approach is the one used in Serre [8] for example. Addition and multiplication of Witt vectors are defined by certain universal polynomials. This description is cumbersome. While thinking about periodic cyclic cohomology for \mathbb{F}_p-algebras we found an alternative $C(R)$ to the p-typical Witt ring $W(R)$ of a perfect \mathbb{F}_p-algebra R. The rings $C(R)$ and $W(R)$ are canonically isomorphic but the construction of $C(R)$ as a completion (hence the name) of a monoid algebra $\mathbb{Z}R$ is much simpler. We have therefore made an effort to develop the properties of $C(R)$ independently of the theory of $W(R)$.

Using the approach in [3], [4] we can define periodic cyclic homology for a ring R using completed extensions by free (noncommutative) \mathbb{Z}-algebras. If one applies this procedure to an \mathbb{F}_p-algebra R, the completion $C(R)$ of the free \mathbb{Z}-module $\mathbb{Z}R$ appears as a natural intermediate step.

If the \mathbb{F}_p-algebra R is not perfect, $C(R)$ is still defined and different from $W(R)$. However a somewhat more involved construction in the same spirit does
give $W(R)$ in general. We will address this in a subsequent paper together with applications.

In this note all rings are commutative with 1 and all ring homomorphisms map 1 to 1. The background reference is [8, II §4–§6].

2. Construction and properties of $C(R)$

A p-ring A is a commutative ring with unit which is Hausdorff and complete for the topology defined by a sequence of ideals $a_1 \supset a_2 \supset \ldots$ with the following properties:

1) $a_i a_j \subset a_{i+j}$ for $i, j \geq 1$,
2) $A/a_1 = R$ is a perfect \mathbb{F}_p-algebra, i.e. the Frobenius homomorphism $x \mapsto x^p$ is an isomorphism of R.

For a p-ring we have $p \in a_1$ and hence $a_i \supset p^i A$. A p-ring is called strict if $a_i = p^i A$ and if p is not a zero divisor in A. It is known that for every perfect \mathbb{F}_p-algebra R there is a strict p-ring $A = W(R)$ with $A/pA = R$. The pair $(W(R), W(R) \rightarrow R)$ is unique up to a unique isomorphism.

View R as a monoid under multiplication and let $\mathbb{Z}R$ be the monoid algebra of (R, \cdot). Its elements are formal sums of the form $\sum_{r \in R} n_r [r]$ with almost all $n_r = 0$. Addition and multiplication are the obvious ones. Note that $[1] = 1$ but $[0] \neq 0$. Multiplicative maps $R \rightarrow B$ into commutative rings mapping 1 to 1 correspond to ring homomorphisms $\mathbb{Z}R \rightarrow B$. The identity map $R = R$ induces the surjective ring homomorphism $\pi : \mathbb{Z}R \rightarrow R$ which sends $\sum n_r [r]$ to $\sum n_r r$. Let I be its kernel, so that we have an exact sequence

$$0 \rightarrow I \rightarrow \mathbb{Z}R \xrightarrow{\pi} R \rightarrow 0.$$

It is not difficult to see that as a \mathbb{Z}-module I is generated by elements of the form $[r] + [s] - [r + s]$ for $r, s \in R$. We will not use this fact in the sequel. The multiplicative isomorphism $r \mapsto r^p$ of R induces the surjective ring homomorphism $F : \mathbb{Z}R \rightarrow \mathbb{Z}R$ mapping $\sum n_r [r]$ to $\sum n_r [r^p]$. It satisfies $F(I) = I$.

Let $C(R) = \varprojlim \mathbb{Z}R/I^{\nu}$ be the I-adic completion of $\mathbb{Z}R$. By construction $C(R)$ is Hausdorff and complete for the topology defined by the ideals $a_i = \hat{I}^i$ where

$$\hat{I}^i = \varprojlim \mathbb{Z}R/I^{\nu} \subset C(R).$$

Note that at this stage we do not know that $\hat{I}^i = I^i$ since $\mathbb{Z}R$ is not noetherian in general. Condition 1) above is satisfied and 2) as well since

$$C(R)/\hat{I} = \mathbb{Z}R/I = R.$$

Hence $C(R)$ is a p-ring. The construction of $C(R)$ is functorial in R.

Theorem 1. Let R be a perfect \mathbb{F}_p-algebra. Then $C(R)$ is a strict p-ring with $C(R)/pC(R) = R$.

The result is an immediate consequence of the universal properties shared by $C(R)$ and any strict p-ring with residue algebra R, once one knows that

Münster Journal of Mathematics Vol. 7 (2014), 105–114
such a strict p-ring exists; see remark 6 below. In the following we give a self-contained proof of Theorem 1 which does not use this information.

Consider the “arithmetic derivation” $\delta : \mathbb{Z}R \to \mathbb{Z}R$ defined by the formula

$$\delta(x) = \frac{1}{p}(F(x) - x^p).$$

It is well defined since $F(x) \equiv x^p \mod p\mathbb{Z}R$ and since $\mathbb{Z}R$ being a free \mathbb{Z}-module has no \mathbb{Z}-torsion. The following formulas for $x, y \in \mathbb{Z}R$ are immediate

1. $\delta(x + y) = \delta(x) + \delta(y) - \sum_{\nu=1}^{p-1} \frac{1}{p} \binom{p}{\nu} x^\nu y^{p-\nu}$

and

2. $\delta(xy) = \delta(x)F(y) + x^p \delta(y)$.

Applying (2) inductively gives the relation

3. $\delta(x_1 \cdots x_n) = \sum_{\nu=1}^{n} x_1^\nu \cdots x_{\nu-1}^\nu \delta(x_\nu)F(x_{n}) \cdots F(x_1)$ for $x_i \in \mathbb{Z}R$.

Equation (1) shows that we have

4. $\delta(x + y) \equiv \delta(x) + \delta(y) \mod I^n$ if x or y is in I^n.

Together with (3) it follows that

5. $\delta(I^n) \subset I^{n-1}$ for $n \geq 1$.

Lemma 2. Let R be a perfect \mathbb{F}_p-algebra and $n \geq 1$ an integer.

a) If $pa \in I^n$ for some $a \in \mathbb{Z}R$ then $a \in I^{n-1}$.

b) $I^n = I^n + p^n \mathbb{Z}R$ for any $\nu \geq n$.

Proof. a) According to formula (5) we have $\delta(pa) \in I^{n-1}$. On the other hand, by definition:

$$\delta(pa) = F(a) - p^{n-1}a^p,$$

and therefore since $pa \in I^n$

$$\delta(pa) \equiv F(a) \mod I^n.$$

It follows that $F(a) \in I^{n-1}$ and hence $a \in I^{n-1}$ since F is an automorphism with $F(I) = I$.

b) We prove the inclusion $I^n \subset I^n + p^n \mathbb{Z}R$ for $\nu \geq n$ by induction with respect to $n \geq 1$. The other inclusion is clear. For $y \in \mathbb{Z}R$ and $\nu \geq 1$ we have

$$F^\nu(y) \equiv y^{p^\nu} \mod p\mathbb{Z}R.$$

Applying this to $y = F^{-\nu}(x)$, we get for all $x \in \mathbb{Z}R$

$$x \equiv F^{-\nu}(x)^{p^\nu} \mod p\mathbb{Z}R.$$

For $x \in I$ this shows that $x \in I^n + p\mathbb{Z}R$ settling the case $n = 1$ of the assertion.

Now assume that $I^n \subset I^n + p^n \mathbb{Z}R$ has been shown for a given $n \geq 1$ and all $\nu \geq n$. Fix some $\nu \geq n + 1$ and consider an element $x \in I^{n+1}$. By the induction assumption $x = y + p^n z$ with $y \in I^n$ and $z \in \mathbb{Z}R$. Hence
$p^n z = x - y \in I^{n+1}$. Using assertion a) of the lemma repeatedly shows that $z \in I$. Hence $z \in I^\nu + p\mathbb{Z}R$ by the case $n = 1$. Writing $z = a + pb$ with $a \in I^\nu$ and $b \in \mathbb{Z}R$ we find

$$x = (y + p^n a) + p^{n+1} b \in I^\nu + p^{n+1} \mathbb{Z}R.$$

Thus we have shown the induction step $I^{n+1} \subset I^\nu + p^{n+1} \mathbb{Z}R$. \hfill \square

After these preparations the proof of Theorem 1 follows easily: We have to show that $p^n C(R) = \hat{I}^n$ for all $n \geq 1$ and that p is not a zero divisor in $C(R)$. Let $p^{-n}(I^\nu)$ be the inverse image of I^ν under p^n-multiplication on $\mathbb{Z}R$. Then for any $\nu \geq n \geq 1$ we have an exact sequence where the surjectivity on the right is due to part b) of Lemma 2:

$$0 \rightarrow p^{-n}(I^\nu)/I^\nu \rightarrow \mathbb{Z}R/I^\nu \xrightarrow{p^n} I^n/I^\nu \rightarrow 0.$$

From this we get an exact sequence of projective systems whose transition maps for $\nu \geq n$ are the reduction maps. Set $N_\nu = p^{-n}(I^\nu)/I^\nu$. Then we have an exact sequence

$$0 \rightarrow \lim_{\nu} N_\nu \rightarrow C(R) \xrightarrow{p^n} \hat{I}^n \rightarrow \lim_{\nu} (1) N_\nu.$$

The transition map $N_{\nu+n} \rightarrow N_\nu$ is the zero map since $a \in p^{-n}(I^{\nu+n})$ implies $p^n a \in I^{\nu+n}$ and hence $a \in I^\nu$ by part a) of Lemma 2. In particular (N_ν) is Mittag-Leffler, so that $\lim_{\nu} (1) N_\nu = 0$. It is also clear now that $\lim_{\nu} N_\nu = 0$. It follows that p^n-multiplication on $C(R)$ is injective with image \hat{I}^n. Hence p is not a zero divisor and $\hat{I}^n = p^n C(R)$. \hfill \square

Remarks.

1) If R is a perfect \mathbb{F}_p-algebra there is an isomorphism

$$R \xrightarrow{\sim} I^n/I^{n+1} \text{ given by } r \mapsto p^n [r].$$

This follows because:

$$I^n/I^{n+1} = \hat{I}^n/\hat{I}^{n+1} = p^n C(R)/p^{n+1} C(R) \xrightarrow{\sim} C(R)/pC(R) = R.$$

2) The automorphism F of $\mathbb{Z}R$ satisfies $F(I) = I$. Hence it induces an automorphism \hat{F} of $\hat{C}(R)$ which lifts the Frobenius automorphism of the perfect \mathbb{F}_p-algebra R. The Verschiebung $V : C(R) \rightarrow C(R)$ is the additive homomorphism defined by $V(x) = pF^{-1}(x)$. By definition $\text{Im } V^i = p^i C(R)$ and $V \circ F = F \circ V = p$. The projection $\pi : C(R) \rightarrow R$ has a multiplicative splitting defined as the composition $\omega : R \hookrightarrow \mathbb{Z}R \rightarrow C(R)$. Frobenius F, Verschiebung V and Teichmüller lift ω are well known extra structures on rings of Witt vectors.

Proposition 3. If $R = K$ is a perfect field of characteristic p then $C(K)$ is a discrete valuation ring of mixed characteristic with residue field K.

Münster Journal of Mathematics Vol. 7 (2014), 105–114
Proof. This is true for any strict \(p \)-ring \(W \) with residue field \(K \). The well known argument is as follows. By assumption \(pW \) is a maximal ideal of \(W \). For \(x \in W \setminus pW \) choose \(y \in W \) with \(xy \equiv 1 \mod p \). Then \((xy)^{p^r} \equiv 1 \mod p^r \) by [8, II §4 Lemma 1]. Hence \(x \mod p^r \) is a unit in \(W/p^rW \) and therefore \(x = (x \mod p^r)_{\nu \geq 0} \) is a unit in \(W \). Hence the ring \(W \) is local with unique maximal ideal \(pW \). Since \(W \) is separated i.e. \(\bigcap_{\nu = 1}^{\infty} p^\nu W = 0 \) it follows that for every \(0 \neq a \in W \) there is a unique integer \(v(a) \geq 0 \) with \(a = p^{v(a)}x \) and \(x \in W \setminus pW \) i.e. \(x \in W^* \). Since multiplication with \(p \) is injective on \(W \), it follows that \(W \) is an integral domain. The map \(v : W \setminus \{0\} \to \mathbb{Z} \) satisfies \(v(ab) = v(a) + v(b) \) by definition and \(v(a + b) \geq \min(v(a), v(b)) \) because as seen above, an element of \(W \) is a unit if and only if its reduction mod \(p \) is nonzero. The valuation \(v \) extends uniquely to a discrete valuation on the quotient field \(Q \) of \(W \) with valuation ring \(W \). \(\square \)

Remark. In particular \(C(K) \) is noetherian while in general \(\mathbb{Z}K \) is very far from being noetherian.

As a topological additive group, \(C(R) \) has another description which is sometimes useful. Let \(b \) be a basis of the \(\mathbb{F}_p \)-algebra \(R \) and let \(\mathbb{Z}b \) be the free \(\mathbb{Z} \)-module with basis \(b \). The inclusion \(b \subset R \) induces an additive homomorphism

\[
\mathbb{Z}b \hookrightarrow \mathbb{Z}R \longrightarrow C(R)
\]

and hence a map

\[
\widehat{\mathbb{Z}b} = \varprojlim_n \mathbb{Z}b/p^n\mathbb{Z}b \longrightarrow C(R).
\]

Proposition 4. If \(R \) is a perfect \(\mathbb{F}_p \)-algebra, the map \(\widehat{\mathbb{Z}b} \to C(R) \) is a topological isomorphism of additive groups. In particular any inclusion \(R_1 \hookrightarrow R_2 \) resp. surjection \(R_1 \twoheadrightarrow R_2 \) of perfect \(\mathbb{F}_p \)-algebras induces an inclusion \(C(R_1) \hookrightarrow C(R_2) \) resp. surjection \(C(R_1) \twoheadrightarrow C(R_2) \) with a continuous additive splitting.

Proof. By Theorem 1 we have to show that for each \(n \geq 1 \) the additive map

\[
\alpha_n : \mathbb{Z}b/p^n\mathbb{Z}b \longrightarrow C(R)/p^nC(R)
\]

is an isomorphism. For \(n = 1 \) this is true because \(\mathbb{F}_p b = R \) since \(b \) is an \(\mathbb{F}_p \)-basis for \(R \). Now assume that \(\alpha_n \) is an isomorphism and consider the commutative diagram

\[
\begin{array}{cccccc}
0 & \longrightarrow & \mathbb{Z}b/p\mathbb{Z}b & \longrightarrow & \mathbb{Z}b/p^{n+1}\mathbb{Z}b & \longrightarrow & \mathbb{Z}b/p^n\mathbb{Z}b & \longrightarrow & 0 \\
& & \downarrow \alpha_1 & & \downarrow \alpha_{n+1} & & \downarrow \alpha_n & & \\
0 & \longrightarrow & C(R)/pC(R) & \longrightarrow & C(R)/p^{n+1}C(R) & \longrightarrow & C(R)/p^nC(R) & \longrightarrow & 0
\end{array}
\]

The upper sequence is exact and because of Theorem 1 the lower sequence is exact as well. Hence \(\alpha_{n+1} \) is an isomorphism. The remaining assertions follow immediately. \(\square \)
Remark. If the basis b happens to be closed under multiplication then $\mathbb{Z}b$ is a ring and $\hat{\mathbb{Z}b} \to C(R)$ an isomorphism of rings. This is the case in the following example. The perfect \mathbb{F}_p-algebra $R = \mathbb{F}_p[t_1^{p^{-\infty}}, \ldots, t_d^{p^{-\infty}}]$ has a basis b consisting of monomials. This basis is multiplicatively closed and hence $C(R)$ is the p-adic completion of the monoid algebra $\mathbb{Z}b$ i.e. of the algebra $\mathbb{Z}[t_1^{p^{-\infty}}, \ldots, t_d^{p^{-\infty}}]$.

Proposition 5. Let A be a p-ring with perfect residue algebra R as above. Then there is a unique homomorphism of rings $\hat{\alpha} : C(R) \to A$ such that the following diagram commutes:

\[
\begin{array}{ccc}
C(R) & \xrightarrow{\hat{\alpha}} & A \\
\downarrow{\pi} & & \downarrow{\pi_A} \\
R & & \\
\end{array}
\]

Remark. This is true for any strict p-ring instead of $C(R)$, cp. [8, II §5 Prop. 10]. However in our case the argument is particularly simple and we do not even have to know that $C(R)$ is strict.

Proof. Since A is a p-ring, there is a unique multiplicative section $\alpha_0 : R \to A$ of π_A, cp. [8, II §4 Prop. 8]. Hence there is a unique ring homomorphism $\alpha : \mathbb{Z}R \to A$ such that the diagram

\[
\begin{array}{ccc}
\mathbb{Z}R & \xrightarrow{\alpha} & A \\
\downarrow{\pi} & & \downarrow{\pi_A} \\
R & & \\
\end{array}
\]

commutes. Since $\alpha(I) \subset a_1$ we have $\alpha(I^\nu) \subset a_1^\nu \subset a_\nu$ and therefore α extends to a unique and automatically continuous homomorphism $\hat{\alpha} : C(R) \to A$ such that (6) commutes. \hfill \square

Remark 6. As we saw above it is immediate that $C(R)$ is a p-ring with residue algebra R. Showing directly that $C(R)$ is a strict p-ring required some thought. If one already knows that there is a strict p-ring W with residue algebra R, then it is easy to see that $C(R)$ is isomorphic to W and hence strict. Here is the argument:

The universal property of strict p-rings [8, II §5 Prop. 10] gives us a unique homomorphism $\beta : W \to C(R)$ such that the diagram

\[
\begin{array}{ccc}
W & \xrightarrow{\beta} & C(R) \\
\downarrow{\pi} & & \downarrow{\pi} \\
R & & \\
\end{array}
\]
commutes. On the other hand by Proposition 5 there is a unique homomorphism \(\hat{\alpha} : C(R) \to W \) such that

\[
\begin{array}{ccc}
C(R) & \xrightarrow{\hat{\alpha}} & W \\
\downarrow{\pi} & & \downarrow{\pi} \\
R & & R
\end{array}
\]

commutes. The map \(\alpha \circ \beta \) is the identity on \(W \) because of the universal property for the strict \(p \)-ring \(W \). The map \(\beta \circ \alpha \) is the identity on \(C(R) \) by Proposition 5 because \(C(R) \) is a \(p \)-ring. It follows that \(C(R) \cong W \) is a strict \(p \)-ring. An equally simple proof may be given by using the characterization of the triple \((W(R), R \hookrightarrow W(R), \pi : W(R) \to R)\) in [2, Prop. 3.1] which is based on [5, Thm. 1.2.1].

From the preceding remark we get the following corollary:

Corollary 7. Let \(W_n(R) \) be the truncated \((p\text{-typical})\) Witt ring of the perfect \(\mathbb{F}_p \)-algebra \(R \). There is a unique homomorphism of rings \(\alpha_n : \mathbb{Z}R/I^n \to W_n(R) \) inducing the standard multiplicative embedding \(R \hookrightarrow W_n(R) \) and making the following diagram commute

\[
\begin{array}{ccc}
\mathbb{Z}R/I^n & \xrightarrow{\alpha_n} & W_n(R) \\
\downarrow{\sim} & & \downarrow{\sim} \\
R & & R
\end{array}
\]

Moreover, \(\alpha_n \) is an isomorphism.

Proof. Let \(W(R) \) be the \(p \)-typical Witt ring of \(R \). According to Remark 6 there is a commutative diagram

\[
\begin{array}{ccc}
C(R) & \xrightarrow{\hat{\alpha}} & W(R) \\
\downarrow{\pi} & & \downarrow{\pi} \\
R & & R
\end{array}
\]

Reducing \(\text{mod} \ p^n \) and noting that \(W(R)/p^nW(R) = W_n(R) \) and

\[
C(R)/p^nC(R) = C(R)/\tilde{I}^n = \mathbb{Z}R/I^n
\]

we get an isomorphism \(\alpha_n \) as desired. There is a unique ring homomorphism \(\alpha : \mathbb{Z}R \to W_n(R) \) prolonging the multiplicative embedding \(R \hookrightarrow W_n(R) \). Hence \(\alpha_n \) is uniquely determined. \(\Box \)

As a set \(W_n(R) \) is \(R^n \). Addition and multiplication are given by certain universal polynomials in \(2n \) variables over \(\mathbb{Z} \). We now describe the isomorphism \(\alpha_2 \). Note that (4) and (5) imply that \(\delta \) induces a (nonadditive) map

\[
\overline{\delta} : \mathbb{Z}R/I^2 \longrightarrow \mathbb{Z}R/I = R.
\]
We also have the ring homomorphism of reduction \(\pi : \mathbb{Z}R/I^2 \rightarrow \mathbb{Z}R/I = R \).

Proposition 8. The isomorphism
\[
\alpha_2 : \mathbb{Z}R/I^2 \xrightarrow{\sim} W_2(R) = R^2
\]
is given by the map \((\pi, \delta)\).

Proof. The composition \(R \rightarrow \mathbb{Z}R/I^2 \rightarrow W_2(R) = R^2 \) is the standard multiplicative embedding. One checks that \(\alpha_2 \) is a ring homomorphism using the formulas for addition and multiplication on \(W_2(R) = R^2 \):
\[
(x, y) + (x', y') = \left(x + x', y + y' - \frac{1}{p} \sum_{\nu=1}^{p-1} \binom{p}{\nu} x^\nu x'^{p-\nu}\right)
\]
and
\[
(x, y) \cdot (x', y') = (xx', x'y + y'x + pyy').
\]
Using Corollary 7 the assertion follows. \(\square \)

Remark. With respect to the ordinary \(R \)-module structure on \(R^2 \) the map \(\alpha_2 \) is nonlinear. Hence the simple addition and multiplication on \(\mathbb{Z}R/I^2 \) become something nonobvious on \(R^2 \). We have not tried to describe \(\alpha_n \) for \(n \geq 3 \) by explicit formulas.

It is interesting to compare the \(I \)-adic completion \(C(R) \) of \(\mathbb{Z}R \) with its \(p \)-adic completion i.e. the completion with respect to powers of the ideal \(p\mathbb{Z}R \). Lemma 2b) shows that the projective system \((I^n/p^n\mathbb{Z}R)_n\) satisfies the Mittag-Leffler condition. Therefore we obtain the following exact sequence
\[
0 \rightarrow \lim \left\downarrow \right\downarrow I^n/p^n\mathbb{Z}R \rightarrow \lim \left\downarrow \right\downarrow \mathbb{Z}R/p^n\mathbb{Z}R \rightarrow \lim \left\downarrow \right\downarrow \mathbb{Z}R/I^n \rightarrow 0
\]
which describes the kernel of the natural map from the \(p \)-adic completion to \(C(R) \).

Now, if \(R \) is a finite perfect \(\mathbb{F}_p \)-algebra, then the \(p \)-adic completion of \(\mathbb{Z}R \) is \(\mathbb{Z}_p R \) the monoid algebra of \(R \) over \(\mathbb{Z}_p \) and \(C(R) \) has an instructive description as a complete subring of \(\mathbb{Z}_p R \).

Proposition 9. Assume that \(R \) is a finite perfect \(\mathbb{F}_p \)-algebra. Then there is an idempotent \(e \) in \(\mathbb{Z}_p R \) such that \(e(\mathbb{Z}_p R) \) is the kernel of the natural map \(\mathbb{Z}_p R \rightarrow C(R) \) and such that \((1 - e)\mathbb{Z}_p R \) is topologically isomorphic to \(C(R) \).

Proof. For each \(n \), the quotient \(\mathbb{Z}R/p^n\mathbb{Z}R \) is finite and in particular an Artin ring (descending chains of ideals become stationary). Using Lemma 2b), we see that the image \(A_n \) of \(I^n \) in \(\mathbb{Z}R/p^n\mathbb{Z}R \) is an ideal such that \(A^2_n = A_n \).

According to the structure theorem for Artin rings (see e.g. [1, Thm. 8.7]), \(\mathbb{Z}R/p^n\mathbb{Z}R \) is (uniquely) a finite direct product \(\prod B_i \) of local Artin rings \(B_i \). Any idempotent ideal in a local Artin ring \(B \) is either 0 or equal to \(B \) since the maximal ideal in \(B \) is nilpotent, [1, 8.2 and 8.4]. Therefore the projection of \(A_n \) to any of the components \(B_i \) is either 0 or \(B_i \). If we let \(e_n \) denote the sum of the identity elements of the \(B_i \) in which the component of \(A_n \) is nonzero.

Münster Journal of Mathematics Vol. 7 (2014), 105–114
we get an idempotent e_n in $\mathbb{Z}R/p^n\mathbb{Z}R$ such that $e_n(\mathbb{Z}R/p^n\mathbb{Z}R) = A_n$ (e_n is a unit element for A_n and therefore uniquely determined).

Since, by Lemma 2b), the image of I^{n+1} in $\mathbb{Z}R/p^{n+1}\mathbb{Z}R$ maps surjectively to the image of I^n in $\mathbb{Z}R/p^n\mathbb{Z}R$ under the natural map, the sequence (e_n) defines an element e in $\mathbb{Z}_p R = \varprojlim \mathbb{Z}R/p^n\mathbb{Z}R$. By construction it is an idempotent in $A = \varprojlim A_n = \varprojlim I^n/p^n\mathbb{Z}R$ such that $ex = x$ for each x in A. It follows that $A = e(\mathbb{Z}_p R)$.

The exact sequence (7) then shows that the map $(1 - e)\mathbb{Z}_p R \to C(R)$ is a continuous bijective homomorphism between compact rings and therefore a topological isomorphism. \□

Remark. The proof shows that $A = e(\mathbb{Z}_p R)$ in the preceding proposition is a unital ring which is the projective limit of a system (A_n) of unital rings with unital transition maps. In the case $R = \mathbb{F}_p$ looking at the canonical decomposition of $\mathbb{Z}_p R$ under the action of \mathbb{F}_p^\times we see that e has the following explicit description

$$1 - e = (p - 1)^{-1} \sum_{r \in \mathbb{F}_p^\times} \omega(r)^{-1} [r] \text{ in } \mathbb{Z}_p R.$$

Here ω is the Teichmüller character $\omega : \mathbb{F}_p^\times \to \mathbb{Z}_p^\times$.

References

[1] M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*, Addison-Wesley Publishing Co., Reading, MA, 1969. MR0242802 (39 #4129)

[2] A. Connes and C. Consani, Characteristic 1, entropy and the absolute point, in *Noncommutative geometry, arithmetic, and related topics*, 75–139, Johns Hopkins Univ. Press, Baltimore, MD. MR2907005

[3] J. Cuntz and D. Quillen, Cyclic homology and nonsingularity, J. Amer. Math. Soc. 8 (1995), no. 2, 373–442. MR1303030 (96e:19004)

[4] J. Cuntz and D. Quillen, Excision in bivariant periodic cyclic cohomology, Invent. Math. 127 (1997), no. 1, 67–98. MR1423026 (98g:19003)

[5] J.-M. Fontaine, Le corps des périodes p-adiques, Astérisque No. 223 (1994), 59–111. MR1293971 (95k:11086)

[6] M. Lazard, Détermination des anneaux p-adiques et π-adiques dont les anneaux des restes sont parfait, in *Séminaire Krasner 1953/54*, Exp. 9, 16 pp, Fac. Sci. Paris, Paris. MR0115997 (22 #6794)

[7] M. Lazard, Bemerkungen zur Theorie der bewerteten Körper und Ringe, Math. Nachr. 12 (1954), 67–73. MR0066353 (16,561a)

[8] J.-P. Serre, *Local fields*, translated from the French by Marvin Jay Greenberg, Graduate Texts in Mathematics, 67. Springer-Verlag, New York-Berlin, 1979. MR0554237 (82c:12016)

[9] E. Witt, Zyklsische Körper und Algebren der Charakteristik p vom Grad p^n. Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassenkörper der Charakteristik p, J. Reine Angew. Math. 176 (1936), 126–140.

Münster Journal of Mathematics Vol. 7 (2014), 105–114
