June 2006

Nurit Gazit

\[\text{When is } \text{ch}(\mathcal{K})^{(m \cdot w)} = m - 1? \]
Abstract

Let n_m be the smallest integer n such that $ch(K_{m,n}) = m - 1$, where $ch(G)$ denotes the choice (list chromatic) number of the graph G. We prove that there is an infinite sequence of integers S, such that if $m \in S$, then $n_m \leq 0.4643(m - 2)^{m-2}$. If $m \to \infty$, then n_m is asymptotically at most $0.474(m - 2)^{m-2}$.
1 Introduction

A list assignment of a graph $G = (V, E)$ from a family of sets (color lists) L is an assignment to each vertex $v \in V(G)$ of a list $L(v)$ of colors. A k-list assignment is a list assignment that satisfies $|L(v)| = k$ for every $v \in V(G)$. An L-coloring is a function $c : V(G) \to \bigcup_{v \in V(G)} L(v)$ that assigns each vertex v a color $c(v) \in L(v)$. A proper L-coloring is an L-coloring such that the neighbors of each vertex v are colored in a different color than that of v. A graph G for which there is a proper L-list coloring is called L-list choosable. The choice number $ch(G)$ is the minimum number k such that for every k-list assignment L of G, there is a proper L-coloring of G. The concept of choosability was introduced by Vizing in 1976 [6] and independently by Erdős, Rubin and Taylor in 1979 [1]. It is also shown in [1] that the choice number of the complete bipartite graph $K_{n,n}$ satisfies $ch(K_{n,n}) = (1 + o(1)) \log_2 n$.

In [2], Gazit and Krivelevich calculate the asymptotic value of the choice number of complete multi-partite graphs where the sizes of the different parts are not too far apart, i.e. of graphs of the form $K_{n_0,...,n_s}$, $n_0 \leq n_1 \leq \ldots \leq n_s$, where n_0 is not too small compared to n_s.

In particular, for the bi-partite case, Gazit and Krivelevich prove:

(*) Let $2 \leq n_0 \leq n_1$ be integers, and let $n_0 = (\log n_1)^{o(1)}$. Denote $k = \frac{\log n_1}{\log n_0}$. Let x_0 be the unique root of the equation $x - 1 - \frac{x}{\log n_0} = 0$ in the interval $[1, \infty)$. Then $\text{ch}(K_{n_0,n_1}) = (1 + o(1)) \frac{\log n_1}{\log x_0}$.

While the above-mentioned result deals with bipartite graphs $K_{m,n}$ in which m is not too small compared to n, in this paper we consider bipartite graphs $K_{m,n}$ in which m is very small compared to n.

It is trivial to see that $\text{ch}(K_{m,n}) = m + 1$ if $n \geq m^m$. To see this, let
(M, N) (|M| = m, |N| = m^m) be a bipartition of K_{m,m^m}. Assign m pairwise-disjoint lists of colors to M, and assign all m^m colorings of these m lists as color lists to the vertices of N. Clearly, K_{m,m^m} is not choosable from these lists. This shows that ch(K_{m,m^m}) > m (and therefore also ch(K_{m,n}) > m for n ≥ m^m). But ch(K_{m,n}) ≤ m + 1 for every n, since for every (m + 1)-list assignment L, every coloring of the vertices on M uses at most m different colors, leaving at least one color d(v) ∈ L(v) in the color list of every v ∈ N which has not been used - assigning d(v) to every v ∈ N, completes a proper L-coloring.

Hoffman and Johnson [3] proved that ch(K_{m,n}) = m if and only if (m − 1)^{m−1} − (m − 2)^{m−1} ≤ n < m^m.

Let n_m be the smallest integer n such that ch(K_{m,n}) = m − 1. In this paper we aim to find an upper bound on n_m. We will show:

Theorem 1 If n_m = p(m − 2)^{m−2}, and m′ − 2 = k(m − 2), with k integer, then n_m′ ≤ p(m′ − 2)^{m′−2}.

Theorem 2 There is an infinite sequence of integers S, such that if m ∈ S, then n_m ≤ 0.4643(m − 2)^{m−2}.

Theorem 3 If m → ∞, then n_m is asymptotically at most 0.474(m − 2)^{m−2}.
2 Definitions and Preliminary Observations

We begin by giving several definitions. Note that in this paper all sets are of finite cardinality.

A hypergraph H is a pair $H = (V, E)$, where V is a set of elements called vertices, and E is a set of subsets of V called hyperedges.

A transversal of a family of sets S is a set S_t such that $s \cap S_t \neq \emptyset$ for all $s \in S$.

The transversal hypergraph of a family of sets S, which will be denoted by $T(S)$ is the hypergraph whose vertices are the union of the sets in S, and whose edges are all the transversals of cardinality $\leq |S|$ of S. The transversal hypergraph of the set of edges of a hypergraph H will be denoted by $T(H)$.

Given an ordered family of sets L of cardinality m, a track is an ordered m-tuple, created by choosing element c_i from set L_i, $1 \leq i \leq m$.

Given a family of sets S and a transversal e of S, a track t belongs to e if the set of distinct elements of t is e. We say that the transversal e represents the track t.

Let $R = (V_R, E_R)$, $H = (V_H, E_H)$ be hypergraphs. An R-cover of H is a sub-hypergraph C of R such that every hyperedge of H contains at least one hyperedge $c \in E_C$.

A k-cover of a hypergraph H is an R-cover of H, R being all the subsets of size k of the vertices of H (though the subsets can also be taken from a larger set).

A minimum R-cover is an R-cover whose edge set has the least cardinality among those of all R-covers. The cardinality of a minimum R-cover of H will be called $\text{cov}_R(H)$. If H allows no R-cover, $\text{cov}_R(H) = \infty$.

A minimal R-cover is an R-cover which does not contain any other R-cover.
Clearly, a minimum R-cover is also a minimal R-cover. It is easy to see that the following lemma holds.

Lemma 2.1 Let R' be a minimal R-cover of a hypergraph H with $E_H \neq \emptyset$. If $e_R \in R'$, then there is at least one edge $e_H \in E_H$ such that e_R is a unique edge of R' which is a subset of e_H.

A **minimal edge** of a hypergraph $H = (V, E)$ is an edge that does not contain any other edge in H.

Since the edges are of finite cardinality, every edge e of H contains a minimal edge (for example, an edge h of H of minimum cardinality contained in e, is obviously a minimal edge).

Removing edges from a hypergraph cannot turn a minimal edge into a non-minimal edge. Removing non-minimal edges from a hypergraph cannot turn a non-minimal edge to a minimal edge, since every non-minimal edge contains a minimal edge.

Therefore removing non-minimal edges from a hypergraph does not change the set of minimal edges of the hypergraph.

A **minimal hypergraph** is a hypergraph in which every edge is minimal (i.e. a graph in which no edge is contained in any other edge).

The **cover hypergraph** of a hypergraph H is the sub-hypergraph of H whose edge set is all the minimal edges of H.

The cover hypergraph is a minimal hypergraph, since removing edges from a hypergraph can not change a minimal edge to a non-minimal one.

Vertices a and b, $a \neq b$ of a hypergraph H are called **min-equal** if:

Definition 1 for every minimal edge $e \in E_H$, if $a \in e$ then there is a minimal edge $e' \in E_H$ such that $a \notin e'$, $b \in e'$, and $v \in e' \Rightarrow v \in e$, and likewise if $b \in e$.

6
Definition 2 for every minimal edge \(e \in E_H \), if \(a \in e \) then \(e' = e \setminus \{a\} \cup \{b\} \) is a minimal edge of \(H \), and likewise if \(b \in e \).

It is easy to see the two definitions are equivalent.

A vertex \(a \) is min-equal to itself.

It is easy to see that min-equality is an equivalence relation.

Lemma 2.2 If \(a \) and \(b \) are min-equal vertices of \(H \), \(a \neq b \), then no minimal edge contains both \(a \) and \(b \).

Proof. If \(e \in H \) is minimal and \(a \in e \), there is a minimal edge \(e' \in E_H \) such that \(a \notin e' \), \(b \in e' \), and \(v \in e' \Rightarrow v \in e \). But then if \(b \in e \), \(e' \subseteq e \) (\(a \in e \) but \(a \notin e' \)) in contradiction to the minimality of \(e \). \(\blacksquare \)

Vertices \(a \) and \(b \) of a hypergraph \(H \) are called \(H \)-equal, if for every edge \(e \in E_H \), if \(a \in e \) and \(b \notin e \), then \(e' = e \setminus \{a\} \cup \{b\} \) is also a hyperedge of \(H \), and likewise if \(b \in e \).

3 Proof of Theorem 1

Theorem 1 Let integers \(m, m' \) satisfy \(m' - 2 = k(m - 2) \) for some integer \(k \). If \(n_m = p(m - 2)^{m-2} \) for some real \(p \), then \(n_{m'} \leq p(m' - 2)^{m'-2} \).

To prove this theorem, we shall first restate the problem of finding \(n_m \) in terms of finding minimum \(R \)-covers of hypergraphs.

Hoffman and Johnson [3] prove the following simple lemma:

Lemma 3.1 If \(L \) is a list assignment to \(K_{m,n} \), with bipartition \((M,N) \) (\(|M| = m, |N| = n \)), then there is no proper \(L \)-coloring of \(K_{m,n} \) if and only if each transversal of the sets \(L(v), v \in M \), contains one of the sets \(L(u), u \in N \).
Corollary 3.2 Let R_m be the hypergraph whose vertices are $S = \{1, 2, \ldots, m(m-2)\}$ and whose edges are all subsets of cardinality $m-2$ of S. Then n_m is equal to the minimum over all sub-hypergraphs R' of R_m with m edges, of $\text{cov}_{R_m}T(R')$.

Proof. Let $\min_\alpha\text{cov}(m)$ be the minimum over all sub-hypergraphs R' of R_m with m edges, of $\text{cov}_{R_m}T(R')$. Let us take a sub-hypergraph with m edges R' and a minimum R_m-cover R'' of its transversal hypergraph $T(R')$, such that $|R''| = \min_\alpha\text{cov}(m)$. Then assigning the edges of R' (a family of m sets of size $m-2$) to the vertices of M, and the edges of R'' (a family of $\min_\alpha\text{cov}(m)$ sets of cardinality $m-2$) to the vertices of N, gives, by Lemma 3.1, an $(m-2)$-list assignment L of $K_{m,\min_\alpha\text{cov}(m)}$ such that there is no proper L-coloring of $K_{m,\min_\alpha\text{cov}(m)}$, implying that $K_{m,\min_\alpha\text{cov}(m)}$ is not $(m-2)$-choosable, and $n_m \leq \min_\alpha\text{cov}(m)$.

By the definition of n_m, there is an $(m-2)$-list assignment L to K_{m,n_m} such that there is no proper L-coloring of K_{m,n_m}. The color lists assigned to M in L are m lists of cardinality $m-2$, so there are at most $m(m-2)$ colors in their union $\bigcup_{v \in M} L(v)$, and we may label them WLOG as $\{1, 2, \ldots, m(m-2)\}$ (therefore they make up a sub-hypergraph R' of R_m with m edges). If any of the lists $L(u), u \in N$ contains a color other than $\{1, 2, \ldots, m(m-2)\}$, then no transversal of the sets $L(v), v \in M$ contains $L(v)$. Therefore if we remove v (and $L(v)$) from N to get N', $|N'| = n_m - 1$, Lemma 3.1 gives us $\text{ch}(K_{m,n_m-1}) > m - 2$, in contradiction to the minimality of n_m.

Therefore the color lists assigned to N are n_m subsets of cardinality $m-2$ of $\{1, 2, \ldots, m(m-2)\}$ - i.e. a sub-hypergraph R'' of R_m of cardinality n_m. By Lemma 5.1 each transversal of the sets $L(v), v \in M$, contains one of the sets $L(u), u \in N$, i.e. R'' is an R_m-cover of $T(R')$, therefore $n_m \geq \text{cov}_{R_m}T(R') \geq \min_\alpha\text{cov}(m)$.
Now we shall show that when looking for a minimum R-cover of a hypergraph, it suffices to look for a minimum R-cover of its cover hypergraph.

It is easy to see that the following lemma holds:

Lemma 3.3 Let H, H' and R be hypergraphs. If every R-cover of H' is an R-cover of H, and if R' is a minimum (minimal) R-cover of H and it is also an R-cover of H', then R' is a minimum (minimal) R-cover of H'.

Corollary 3.4 Let H, H' and R be hypergraphs. If for every sub-hypergraph R' of R, R' is an R-cover of H if and only if R' is an R-cover of H', then R' is a minimum (minimal) R-cover of H if and only if R' is a minimum (minimal) R-cover of H'.

Lemma 3.5 Given a hypergraph H, let H_{cov} be the cover hypergraph of H. Let R be another hypergraph. Then R' is an R-cover of H if and only if R' is an R-cover of H_{cov}. Therefore, by Corollary 3.4, R' is a minimum (minimal) R-cover of H if and only if R' is a minimum (minimal) R-cover of H_{cov}.

Proof. If R' is an R-cover of H it is also an R-cover of H_{cov}, since H_{cov} is a sub-hypergraph of H. Now let R' be an R-cover of H_{cov}. We will show that for every $e \in H$ there is an $r \in R'$ which e contains. If e is a minimal edge then $e \in H_{cov}$, and since R' is an R-cover of H_{cov}, there is an $r \in R'$ which e contains. If e is a non-minimal edge then e contains a minimal edge e'. Since e' is minimal it is in H_{cov}, therefore there is an $r' \in R'$ so that $r' \subseteq e' \subseteq e$.

Proposition 3.6 Let R and H be hypergraphs. Let $\{V_{\alpha}\}, \alpha \in A$, be a partition of H into disjoint sets of min-equal, R-equal vertices. For every $\alpha \in A$ let us choose a representative $v_\alpha \in V_{\alpha}$, and attach a weight $w(v_\alpha) = |V_{\alpha}|$ to it.
Let $H_{\text{cov}}(\{v_\alpha\}_{\alpha \in A})$ be the sub-hypergraph of H whose edges are the minimal edges of H contained in $\{v_\alpha\}_{\alpha \in A}$. Then $\text{cov}_R(H)$ is equal to the minimum over all R-covers R' of $H_{\text{cov}}(\{v_\alpha\}_{\alpha \in A})$ of $\sum_{e \in R'} \prod_{v \in e} w(v)$.

Proof. By Lemma 3.5, R' is a minimum R-cover of H if and only if R' is a minimum R-cover of H_{cov}.

Claim 3.7 Let R' be a minimum R-cover of H_{cov}, and let $\alpha \in A$. Then R' partitions the edges of H_{cov} into the following $|V_\alpha| + 1$ sets:

- W_\emptyset - edges that contain an $e_R \in R'$ such that $V_\alpha \cap e_R = \emptyset$;
- For each $v_\beta \in V_\alpha$, a set W_β such that if $e_H \in W_\beta$, then $v_\beta \in e_H$, and $V_\alpha \cap e_R = \{v_\beta\}$ for every $e_R \in R'$ s.t. $e_R \subseteq e_H$.

In this partition, for every $v_\beta, v_\beta' \in V_\alpha$, $e_H \in W_\beta \Rightarrow e_H \setminus \{v_\beta\} \cup \{v_\beta'\} \in W_{\beta'}$.

Proof. Let e_H be an edge in H_{cov}. Then since e_H is minimal and the vertices in V_α are min-equal, by Lemma 2.2 either $V_\alpha \cap e_H = \emptyset$ or there is a $v_\beta \in V_\alpha$ such that $V_\alpha \cap e_H = \{v_\beta\}$. If $V_\alpha \cap e_H = \emptyset$ then $e_H \in W_\emptyset$ (R' is a cover).

Suppose $V_\alpha \cap e_H = \{v_\beta\}$. If there is an $e_R \in R'$, $e_R \subseteq e_H$ such that $V_\alpha \cap e_R = \emptyset$, then $e_H \in W_\emptyset$. Otherwise, $e_H \in W_\beta$. This gives us the partition. $e_H \in W_\beta \Rightarrow e_H \setminus \{v_\beta\} \cup \{v_\beta'\} \in W_{\beta'}$ because since v_β and v_β' are min-equal, if $e_H \in H_{\text{cov}}$, then $e'_H = e_H \setminus \{v_\beta\} \cup \{v_\beta'\} \in H_{\text{cov}}$. Therefore either $e'_H \in W_\emptyset$ or $e'_H \in W_{\beta'}$.

But if there is an $e_R \in R'$, $e_R \subseteq e'_H$ such that $V_\alpha \cap e_R = \emptyset$, then since $v_\beta' \notin e_R$ and $e_R \subseteq e'_H$, $e_R \subseteq e_H$, in contradiction to the assumption that e_H contains no such e_R. ■

Claim 3.8 Let $v_\beta \in V_\alpha$. Let R_β be the edges of R that contain v_β and do not contain any other $v_\beta' \in V_\alpha$. Then R' induces a minimum $R_\beta \text{-cover } R'_\beta \ast$ on W_β, i.e. the set of $e_R \in R'$ s.t. $e_R \subseteq e_H$ for some $e_H \in W_\beta$ is a minimum $R_\beta \text{-cover of } W_\beta$. 10
Proof. The edges in \(R' \) used to cover \(W_\beta \) (i.e. those contained in edges of \(W_\beta \)) all contain \(v_\beta \) and not any other \(v_{\beta'} \in V_\alpha \), so the induced cover is an \(R_\beta \)-cover. If it is not a minimum \(R_\beta \)-cover, then we can replace the edges used to cover \(W_\beta \) with those of a minimum \(R_\beta \)-cover, and get an \(R \)-cover of smaller cardinality of \(H_{\text{cov}} \) (every edge not in \(W_\beta \) contains an edge in \(R' \) that does not contain \(v_\beta \) - so this is still an \(R \)-cover), in contradiction to the fact that \(R' \) is a minimum \(R \)-cover.

Replacing the \(R_\beta \)-cover on \(W_\beta \) with another minimum \(R_\beta \)-cover without touching the \(r \in R' \) which do not contain \(v_\beta \) still gives a minimum \(R \)-cover (since it is still a cover - we use only edges in \(R \), and it is of the same cardinality as the previous \(R \)-cover).

If \(v_\beta \) and \(v_{\beta'} \) are \(R \)-equal, then the edges in \(R_\beta \) are the edges in \(R'_\beta \) with \(v_\beta \) changed to \(v_{\beta'} \). Therefore, since there is an isomorphism between \(W_\beta \) and \(W_{\beta'} \) and between \(R_\beta \) and \(R_{\beta'} \) in which \(v_\beta \to v_{\beta'} \), and the other elements stay the same, the minimum \(R_\beta \)-covers are also isomorphic, and therefore are of the same cardinality. Thus, if we take the \(R_\beta \)-cover of \(W_\beta \) used in \(R' \), then for every \(v_{\beta'} \in V_\alpha \), replacing \(v_\beta \) in every edge of the \(R_\beta \)-cover by \(v_{\beta'} \) gives a minimum \(R_{\beta'} \)-cover of \(W_{\beta'} \), and thus we get a new minimum \(R \)-cover \(R'' \).

If \(e_H \in W_\emptyset \) and there is an \(e_R \in R'' \) such that \(e_R \subseteq e_H \) and \(e_R \cap V_\alpha = \{ v_\beta \} \), then there is an \(e'_{H} \in W_\beta \) such that \(e_R \subseteq e'_{H} \) (otherwise we can remove \(e_R \) from \(R'' \) and still get a cover). Therefore, for every \(v_\beta \in V_\alpha \), the cardinality of \(R'' \) is equal to \(|\{e_R \in R''| e_R \cap V_\alpha = \emptyset \}| + |V_\alpha|\{e_R \in R''| e_R \cap V_\alpha = \{ v_\beta \} \}|.

This is because according to the previous statement, for every \(v_{\beta'} \in V_\alpha \), if \(e'_{R} \in R'' \), then \(e'_{R} \cap V_\alpha = \{ v_{\beta'} \} \) if and only if there is an \(e_H \in W_{\beta'} \) such that \(e'_{R} \subseteq e_H \), i.e. if and only if \(e'_{R} \) belongs to the \(R_{\beta'} \)-cover of \(W_{\beta'} \) induced by \(R'' \). So \(|\{e_R \in R''| e_R \cap V_\alpha = \{ v_{\beta'} \} \}| is equal to the cardinality of the \(R_{\beta'} \)-cover of \(W_{\beta'} \) induced by \(R'' \), and these are all equal to the cardinality of the \(R_{\beta'} \)-cover.

11
of W_β induced by R'', which is equal to $|\{ e_R \in R'' | e_R \cap V_\alpha = \{ v_\beta \} \}|$.

Let us define R_\emptyset to be the sub-hypergraph of R whose edges satisfy $e_R \cap V_\alpha = \emptyset$. Given a $v_\beta \in V_\alpha$, let us define $H_{\text{cov}}\{ v_\beta \}$ to be the sub-hypergraph of H_{cov} composed of all edges $e_H \in H_{\text{cov}}$ such that $e_H \cap V_\alpha \subseteq \{ v_\beta \}$.

Let $R''\{ v_\beta \}$ be the $\{ R_\emptyset \cup R_\beta \}$-cover that R'' induces on $H_{\text{cov}}\{ v_\beta \}$.

Observe that $\{ e_R \in R'' | e_R \cap V_\alpha = \emptyset \} = \{ e_R \in R'' | e_R \cap V_\alpha = \emptyset \}$. This is because if $e_R \in R''$ and $e_R \cap V_\alpha = \emptyset$, then since R'' is minimal, there is an $e_H \in W_\emptyset$ such that $e_R \subseteq e_H$. If $e_H \in H_{\text{cov}}\{ v_\beta \}$ then $e_R \in R''\{ v_\beta \}$. Otherwise, $e_H \cap V_\alpha = \{ v_\beta' \}$, and since $e_R \cap V_\alpha = \emptyset$, $e_R \subseteq e_H \setminus \{ v_\beta' \} \cup \{ v_\beta \} \in H_{\text{cov}}\{ v_\beta \}$, so $e_R \in R''\{ v_\beta \}$.

Also $\{ e_R \in R''\{ v_\beta \} | e_R \cap V_\alpha = \{ v_\beta \} \} = \{ e_R \in R'' | e_R \cap V_\alpha = \{ v_\beta \} \}$. This is because if $e_R \in R''$ and $e_R \cap V_\alpha = \{ v_\beta \}$ then since R'' is minimal there is an e_H such that $e_R \subseteq e_H$, but then $e_H \in H_{\text{cov}}\{ v_\beta \}$ and $e_R \in R_\beta$, so $e_R \in R''\{ v_\beta \}$.

Therefore, there is an $\{ R_\emptyset \cup R_\beta \}$-cover R^* of $H_{\text{cov}}\{ v_\beta \}$ such that $\text{cov}_R(H) = |\{ r \in R^* | v_\beta \notin r \}| + |V_\alpha| \times |\{ r \in R^* | v_\beta \in r \}|$.

In order to find a minimum R-cover of H_{cov}, it suffices to find an $\{ R_\emptyset \cup R_\beta \}$-cover R^{**} of $H_{\text{cov}}\{ v_\beta \}$, in which $|\{ r \in R^{**} | v_\beta \notin r \}| + |V_\alpha| \times |\{ r \in R^{**} | v_\beta \in r \}|$ is minimal. This is equivalent to putting a weight of $w(v_\beta) = |V_\alpha|$ on v_β and 1 on all other vertices in H, and finding a minimum weighted cover - i.e. each $r \in R$ is given a value of $\prod_{i \in r} w(i)$, and we want to find a cover for which the sum of the values of the edges in the cover is minimal.

To get an R-cover of H_{cov} from R^{**}, we simply take the edges in R^{**} that contain v_β and add edges in which it is replaced by v_β', for every $v_\beta' \in V_\alpha$. This is an R-cover of H_{cov} because if $e_H \in \{ H_{\text{cov}} \setminus H_{\text{cov}}\{ v_\beta \} \}$, then $e_H \cap V_\alpha = \{ v_\beta \}$, so $e'_H = e_H \setminus \{ v_\beta \} \cup \{ v_\beta \} \in H_{\text{cov}}\{ v_\beta \}$. If there is an edge e_R in R^{**}, $e_R \subseteq e_H$ such that $e_R \cap V_\alpha = \emptyset$, then $e_R \subseteq e'_H$. Otherwise there is an edge e_R in R^{**}, $e_R \subseteq e_H$ such that $e_R \cap V_\alpha = v_\beta$, so $e_R \setminus \{ v_\beta \} \cup \{ v_\beta \} \subseteq e'_H$.

12
The cardinality of this R-cover will be $|\{r \in R^* | v_\beta \notin r\}| + |V_\alpha| \times |\{r \in R^* | v_\beta \in r\}| \leq |\{r \in R^* | v_\beta \notin r\}| + |V_\alpha| \times |\{r \in R^* | v_\beta \in r\}| = \text{cov}_R(H)$, and therefore it is a minimum R-cover.

Now given $v_\beta \in V_\alpha$ we have a problem of finding a minimum weighted $\{R_\emptyset \cup R_\beta\}$-cover R' of $H_{\text{cov}}\{v_\beta\}$. Given V_α', we can repeat this process. Given a minimum $\{R_\emptyset \cup R_\beta\}$-cover R', we divide the edges of $H_{\text{cov}}\{v_\beta\}$ into those that contain $r \in R'$ that are disjoint from V_α' - some of which contain only $r \in R'$ that intersect V_α, and those that do not contain any such $r \in R'$, which are divided into $|V_\alpha'|$ isomorphic sets W'_β that contain only one $v_\beta' \in V_\alpha'$ (and the isomorphism changes only the v_β’s). The same proof shows that this problem is identical to that in which for one $v_\beta' \in V_\alpha'$ we look only at edges $e \in H_{\text{cov}}\{v_\beta\}$ such that $e \cap V_\alpha' \subseteq \{v_\beta'\}$, put a weight on v_β' of $|V_\alpha'|$, and look for a minimum weighted cover.

If we continue this process with all the V_α’s, we get that to find a minimum R-cover of H, it is enough to choose one representative v_α for each V_α, and look only at the sub-hypergraph $H' = H_{\text{cov}}(\{v_\alpha\}_{\alpha \in A})$ of H which is composed of all the minimal edges of H contained in $\{v_\alpha\}_{\alpha \in A}$. Each representative v_α is assigned a weight of $w(v_\alpha) = |V_\alpha|$, and we look for an R-cover R' of H' which minimizes the expression $\sum_{r \in R'} \prod_{v \in r} w(v)$.

This ends the proof of Proposition 3.6.

Now we have only two small lemmas left to prove before we reach our theorem.

Lemma 3.9 Let H be the transversal hypergraph $T(L)$ of a family of lists L. Let v_1 be a vertex in H that appears in a subset L' of the family of lists L. Then every minimal transversal in H containing v_1 represents at least one track in which v_1 is chosen out of every $l \in L'$.

13
Proof. If a transversal e contains v_1, then in every track that e represents, v_1 is chosen out of some list $l \in L'$. Let us take such a track t, and create a track t' by changing the element chosen out of every list $l \in L'$ to v_1. The transversal that represents t' is contained in e (we did not add elements to the transversal), so since the transversal e is minimal, t' belongs to e. \qed

Lemma 3.10 Let $H = T(L)$. Let v_1, v_2 be vertices in H. Assume that for every list $l \in L$, $v_1 \in l$ if and only if $v_2 \in l$. Then v_1 and v_2 are min-equal in H.

Proof. Let L' be the subset of L of lists that contain v_1 and v_2. Let $e \in H$ be a minimal edge in H, such that, WLOG, $v_1 \in e$. Then by Lemma 3.9 there is a track t that belongs to e in which v_1 is chosen out of every $l \in L'$. Let us take the track t' in which we choose the same color we chose in t out of every $l \in L \setminus L'$, and choose v_2 out of every $l \in L'$. Then the transversal of the new track is $e' = e \setminus \{v_1\} \cup \{v_2\}$.

Suppose e' is not minimal. If $e'' \subseteq e'$, then $v_2 \in e''$ (otherwise $e'' \subsetneq e$). Take a minimal edge $e'' \subseteq e'$. Since $e'' \neq e'$, there is a $v \in e'$, $v \neq v_2$ (thus $v \in e$), s.t. $v \notin e''$. Since $v_2 \in e''$, by Lemma 3.9 e'' represents at least one track t'' in which v_2 is chosen out of every $l \in L'$. Creating a new track which is the same as t'' except we choose v_1 out of every $l \in L'$, gives a transversal which is contained in e but not equal to it, in contradiction to e being minimal. \qed

We are now ready to prove Theorem 1. First let us re-formulate it.

Theorem 1 Let integers m, m' satisfy $m' - 2 = k(m - 2)$ for some integer k. Then, for every family L_0 of m $(m - 2)$-tuples (i.e. a sub-hypergraph of
cardinality m of R_m) such that the cardinality of a minimum $(m - 2)$-cover of $T(L_0)$ is $s(m - 2)^{m-2}$ (for s real), there is a family L'_0 of m' $(m' - 2)$-tuples such that the cardinality of a minimum $(m' - 2)$-cover of $T(L'_0)$ is at most $s(m' - 2)^{m'-2}$. Therefore, if $n_m = p(m - 2)^{m-2}$ for some real p, then $n_{m'} \leq p(m' - 2)^{m'-2}$.

Proof. Given a family L_0 of m $(m - 2)$-tuples $l_i, 1 \leq i \leq m$, we create a family L'_0 of m' $(m' - 2)$-tuples $l_i, 1 \leq i \leq m$, as follows - we take k families of $(m - 2)$-tuples $L_j (1 \leq j \leq k)$ isomorphic to L_0, each in colors which have not been used by the previous families. Let us denote the m members of L_j by $l_{ji}, 1 \leq i \leq m$. We put the lists L_j side by side as the first m lists (i.e. the new list in the i-th place is $\bigcup_{1 \leq j \leq k} l_{ji}$), and add $m' - m$ lists disjoint from all others.

Let $T = T(L_0)$ (the transversal hypergraph of L_0).

Let $\{V_\alpha\}, \alpha \in A$, be a partition of the colors in L_0 into disjoint sets of colors that appear only together in the lists of L_0 (i.e. if $v_1, v_2 \in V_\alpha$ then for every $l \in L$, $v_1 \in l$ if and only if $v_2 \in l$). Then by Lemma 3.10 the vertices in each V_α are min-equal. When speaking of an R_m-cover, all vertices are R_m-equal (since the sets in R_m are all subsets of size $m - 2$ of a set S).

Let us take a representative v_α from every V_α. Each v_α is given a weight of $w(v_\alpha) = |V_\alpha|$.

According to Proposition 3.6 there is an $(m - 2)$-cover $R^* = T_{cov}(\{v_\alpha\}_{\alpha \in A})$ (the sub-hypergraph whose edges are the minimal edges of T contained in $\{v_\alpha\}_{\alpha \in A}$) such that the cardinality of a minimum $(m - 2)$-cover of T, $s(m - 2)^{m-2}$, equals $\sum_{r \in R^*} \{\prod_{v \in r} w(v)\}$.

Let us use the partition $\{V_\alpha\}, \alpha \in A$, to build a partition $\{V'_\alpha\}, \alpha \in A \cup \{1, \ldots, m' - m\}$, of the colors in L'_0 to sets of colors that appear only together: We partition the colors in the first m lists to sets
\{V'_\alpha\}, \alpha \in A$, where V'_α is composed of the k copies of V_α in the isomorphisms between L_0 and L_1, \ldots, L_k - then the colors in V'_α appear exactly where V_α appeared before (i.e. if $v \in V_\alpha$, $v \in l_i$, then the k copies of v are in l'_i; and if $v \notin l_i$, none of the copies are in l'_i), therefore this is a set of colors that appear only together in the lists of L'_0, now of cardinality $k|V_\alpha|$. Since the original V_α's were disjoint, so are the V'_α's. Our last step is to add the $m' - m$ lists l'_i, $m < i \leq m'$, as $m' - m$ sets in $\{V'_\alpha\}$.

According to Lemma 3.10 the vertices in each $\{V'_\alpha\}$ are min-equal. Let us take a representative v'_α from every $\{V'_\alpha\}$. If we let one of the copies of L_0 be an exact copy (for example, if $l_{i_1} = l_i$ for $1 \leq i \leq m$) then we can simply take v_α to represent $\{V'_\alpha\}$ in the first m lists.

Let H be the transversal hypergraph of L'_0. Let $H' = H_{\text{cov}}(\{v'_\alpha\}_{\alpha' \in A'})$ (the sub-hypergraph of H composed of all minimal edges $e \in H$ such that $e \cap V'_\alpha \subseteq \{v'_\alpha\}$ for every $\alpha \in A'$).

Claim 3.11 $e' \in H'$ if and only if $e' = e \cup \bigcup_{a \in \{1, \ldots, m'-m\}} \{v'_a\}$ for some $e \in T'$ (i.e. the edges of H' are the edges of T' to which are added the representatives of all the lists from $m + 1$ on).

Proof. Every edge in H contains exactly one element of each of the lists l'_i, $i > m$, so an edge whose intersection with V'_α is a subset of $\{v'_\alpha\}$, necessarily contains v'_α. So the set of edges from which we need to choose minimal ones is the set of all edges $e \in H$ such that $e \cap V'_\alpha \subseteq \{v'_\alpha\}$ for every $\alpha \in A$, to which are added the representatives of all the lists from $m + 1$ on. But such an edge is minimal if and only if the induced edge on the first m lists is minimal (the edge sets are isomorphic). ■

Each representative v'_α is given a weight $w(v'_\alpha) = |V'_\alpha|$. If v'_α is contained in the first m lists (i.e. it belongs to a copy of V_α), then $|V'_\alpha| = k|V_\alpha|$. Otherwise
\[|V_a'| = m' - 2 \] \((V_a'\) is then a list of the colors in \(l'_i\) for some \(i > m\)).

According to Proposition 3.6, in order to show that the cardinality of a minimum \((m' - 2)\)-cover of \(T(L'_0)\) is at most \(s(m' - 2)^{m'-2}\) it is enough to find an \((m' - 2)\)-cover \(R'\) of \(H'\) for which \(\sum_{r' \in R'} \{\prod_{v \in r'} w(v)\} = s(m' - 2)^{m'-2}\).

Let us use the \((m - 2)\)-cover \(R^*\) of \(T'\) to build such an \((m' - 2)\)-cover \(R'\) of \(H'\): \(r' \in R'\) if and only if \(r' = r \cup \bigcup_{a \in \{1, \ldots, m'-m\}} \{v'_a\}\) for some \(r \in R^*\) (i.e. we add the representatives of the last \(m' - m\) lists to every \(r \in R^*\)).

This is a cover because if \(e' \in H'\) then by Claim 3.11 there is an \(e \in T'\) such that \(e' = e \cup \bigcup_{a \in \{1, \ldots, m'-m\}} \{v'_a\}\). Since \(e \in T'\) there is an \(r \in R^*\) such that \(r \subseteq e\), and since \(\bigcup_{a \in \{1, \ldots, m'-m\}} \{v'_a\} \subseteq e', \ r' = r \cup \bigcup_{a \in \{1, \ldots, m'-m\}} \{v'_a\} \subseteq e'\).

For every \(r' \in R'\), since \(r' = r \cup \bigcup_{a \in \{1, \ldots, m'-m\}} \{v'_a\} \subseteq e'\) for some \(r \in R^*\), \(\prod_{v \in r'} w(v) = (m' - 2)^{m'-m} \prod_{v \in r} kw(v)\). Therefore, \(\sum_{r' \in R'} \{\prod_{v \in r'} w(v)\} = (m' - 2)^{m'-m} \sum_{r \in R^*} \{\prod_{v \in r} w(v)\} = (m' - 2)^{m'-m} \frac{(m'-2)^{m'-2}}{s(m'-2)^{m'-2}} = s(m' - 2)^{m'-2}\).

This ends the proof of Theorem 1.

Two immediate conclusions from Theorem 1 are:

1. For every even \(m\), \(n_m \leq \frac{1}{2}(m - 2)^{m-2}\). This is because \(n_4 = 2\) (\(ch(K_{4,2}) = 3\) and \(ch(K_{4,1}) = 2\)).

2. For every \(m\) such that \(3 | (m - 2)\), i.e., \(m \mod 3 = 2\), \(n_m \leq \frac{13}{27}(m - 2)^{m-2}\). This is because \(n_5 = 13\), as shown by Füredi, Shende and Tesman in 4 (the configuration \(\{1, 6, 7\}, \{1, 8, 9\}, \{2, 8, 7\}, \{2, 6, 9\}, \{3, 4, 5\}\) with a minimum 3-cover of its transversal graph shows \(n_5 \leq 13\)).
4 Proof of Theorem 2

We have found a list of six 4-tuples with a cover of size 123, which shows

\[n_6 \leq 123. \]

This list \(L_6 \) is: \(\{\{1, 3, 5, 13\}, \{1, 4, 6, 14\}, \{2, 3, 7, 15\}, \{2, 4, 8, 16\}, \{5, 6, 7, 8\}, \{9, 10, 11, 12\}\). Let us generalize this structure of lists and apply it to all values of \(m \), to show:

Theorem 4.1 There is an infinite sequence of integers \(S \), such that if

\[m \in S, \text{ then } n_m \leq 0.4643(m - 2)^{m-2}. \]

Proof. Let \(k_1, k_2, k_3, k_4, \) and \(k_5 \) be integers such that \(\sum_{1 \leq i \leq 5} k_i = m - 2 \), \n
\[4k_4 \leq m - 2, \quad 0 \leq k_i \leq m - 2 \text{ for every } 1 \leq i \leq 5. \]

Let \(L \) be a set of \(m \) \((m - 2)\)-tuples, divided into five lists which will be described next, and \n
\(m - 5 \) lists that are disjoint from all other lists. The first five lists \(l_1, \ldots, l_5 \) are built as follows: the intersection of every threesome of these lists is empty,

\[|l_1 \cap l_2| = |l_3 \cap l_4| = k_1, \quad |l_1 \cap l_3| = |l_2 \cap l_4| = k_2, \quad |l_1 \cap l_4| = |l_2 \cap l_3| = k_3, \quad \text{and} \]

\[|l_1 \cap l_5| = |l_2 \cap l_5| = |l_3 \cap l_5| = |l_4 \cap l_5| = k_4. \]

We can partition the colors of \(L \) into disjoint sets according to the lists in which they appear together as follows:

\[V_1 = \{l_1 \cap l_2\}, \quad V_2 = \{l_3 \cap l_4\}, \]

\[V_3 = \{l_1 \cap l_3\}, \quad V_4 = \{l_2 \cap l_4\}, \quad V_5 = \{l_1 \cap l_4\}, \quad V_6 = \{l_2 \cap l_3\}, \quad V_7 = \{l_1 \cap l_5\}, \]

\[V_8 = \{l_2 \cap l_5\}, \quad V_9 = \{l_3 \cap l_5\}, \quad V_{10} = \{l_4 \cap l_5\}, \]

\[V_{10+i} = l_i \setminus \bigcup_{1 \leq j \leq 5, j \neq i} \{l_i \cap l_j\} \quad (|V_{10+i}| = k_5) \text{ for } 1 \leq i \leq 4, \]

\[V_{15} = l_5 \setminus \bigcup_{1 \leq j \leq 4} \{l_5 \cap l_j\} \quad (|V_{15}| = m - 2 - 4k_4), \quad \text{and} \]

\[V_{15+i} = l_{5+i} \quad (|V_{15+i}| = m - 2) \text{ for } 1 \leq i \leq m - 5. \]

According to Proposition 3.6, the cardinality of the smallest \((m - 2)\)-cover of \(T(L) \) is equal to the the value of a minimum weighted \((m - 2)\)-cover of the
transversal hypergraph of a set of lists in which we take one representative
v_i from each of the V_i's, and give v_i weight $|V_i|$.

Taking one representative from each V_i, gives us a set of m lists L' with
the following structure:

1 3 5 7 11
1 4 6 8 12
2 3 6 9 13
2 4 5 10 14
7 8 9 10 15
16
17
...

with weights $w(1) = w(2) = k_1$, $w(3) = w(4) = k_2$, $w(5) = w(6) = k_3$,
$w(7) = w(8) = w(9) = w(10) = k_4$, $w(11) = w(12) = w(13) = w(14) = k_5$,
$w(15) = m - 2 - 4k_5$, and $w(16) = w(17) = ... = m - 2$ (there are $m - 5$
vertices of this last type).

If we set $\alpha_i = \frac{k_i}{m - 2}$, then the weight of any $(m - 2)$-tuple, divided
by $(m - 2)^{m-2}$, is a function of the α_i's alone - let us from now on omit
$(m - 2)^{m-2}$.

Let us describe a cover for the above hypergraph (it is possible to prove
that this is a minimal cover of this structure, but we shall not prove it in
this paper): Start with the set T of all tracks of L'. At step i take all the
transversals of cardinality $m - 2$ that belong to at least one track in T as
edges in the cover. Remove the tracks that belong to these transversals from
the set T. Now all the tracks in T belong to transversals of cardinality $m - 1$
or more, so we remove the last coordinate from every track in T, and continue
to step $i + 1$. We end the process when T is empty (after two steps all the
tracks left have $m - 2$ vertices).

A straightforward calculation shows that the value (sum of weights) of this $(m-2)$-cover is: $\alpha_1^2 + \alpha_2^2 + \alpha_3^2 + 2(\alpha_4^2 + 2\alpha_4\alpha_5 + (1 - 2\alpha_4)\alpha_5^2)(\alpha_1 + \alpha_2 + \alpha_3) + 4(\alpha_4 + \alpha_5(1 - 3\alpha_4))(\alpha_1\alpha_2 + \alpha_1\alpha_3 + \alpha_2\alpha_3) + 4\alpha_1\alpha_2\alpha_3(1 - 3\alpha_4) + ((\alpha_4 + \alpha_5)^4 - \alpha_5^4) + \alpha_5^4(1 - 4\alpha_4)$.

Putting in $\alpha_1 = \alpha_2 = \alpha_3 = \frac{1}{3}$, $\alpha_4 = \alpha_5 = 0$ gives $\frac{13}{27}$, which we know is the value for $m = 5$.

Putting in $\alpha_1 = \alpha_2 = \alpha_4 = \alpha_5 = \frac{1}{3}$, $\alpha_3 = 0$ gives $\frac{123}{256}$, which is the value we calculated for $m = 6$ (this is better than Eaton’s result of $\frac{125}{256}$, mentioned in Tuza’s survey paper [5]).

Now we wish to see when this is brought to a minimum as a function of $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$. For a given m we can only take α_i’s such that $\alpha_i(m - 2)$ is an integer for $1 \leq i \leq 5$ - the result we get will be applicable only to such m’s.

Minimizing by setting $\alpha_3 = \alpha_1 + \varepsilon$ and equating the derivative of the expression as a function of ε to 0, gives $\alpha_1 = \alpha_2 = \alpha_3$ or $\alpha_1 = \alpha_2$, $\alpha_3 = 0$.

In the case $\alpha_1 = \alpha_2 = \alpha_3$ we get that the minimum cover is of cardinality $\frac{13}{27} - \frac{6}{27}\alpha_4 + \frac{13}{9}\alpha_4^2 - \frac{58}{27}\alpha_4^3 + \frac{13}{9}\alpha_4^4 + \alpha_5(\frac{2}{9} - \frac{22}{9}\alpha_4 + \frac{26}{9}\alpha_4^2 + \frac{4}{3}\alpha_4^3) + \alpha_5^2(\frac{1}{9} - \frac{2}{9}\alpha_4 + \frac{10}{9}\alpha_4^2) + \alpha_5^3(-\frac{22}{27} + \frac{40}{27}\alpha_4) + \alpha_5^4(1 - 4\alpha_4)$.

Numerical optimization gives a value of 0.4642..., for $\alpha_4 = 0.1969...$, $\alpha_5 = 0.2123...$.

\[\blacksquare \]
5 Proof of Theorem 3

Theorem 5.1 If $m \to \infty$, then n_m is asymptotically at most $0.474(m - 2)^{m-2}$.

Proof. Let us take the structure of L in which $|l_1 \cap l_2 \cap l_3| = k \geq 2$, $(|l_1 \cap l_2 \cap l_3 \cap l_i| = 0$ for $4 \leq i \leq m - k + 1)$, and $|l_1 \cap l_i| = 1$ for $4 \leq i \leq m - k + 2$. Also $|(l_2 \cap l_3) \setminus l_1| = l$. All the rest of the colors are different:

1 2 3... 4 5... 6 7...
1 2 3... 8 9... 10 11...
1 2 3... 8 9... 12 13...
4 14...
5 15...
...
6 17...
7 18...
...
19...
...

The cover in this case is: All $(m - 2)$-tuples that represent tracks in which the same color c in $l_1 \cap l_2 \cap l_3$ is chosen from l_1, l_2, l_3 - there are $k(m - 2)^{m-3}$ such $(m - 2)$-tuples; All $(m - 2)$-tuples that represent tracks in which the same color $j \in (l_2 \cap l_3) \setminus l_1$ is chosen out of lists l_2 and l_3, and the color chosen out of l_1 is chosen again out of the other list in l_4, ... which contains it - there are $l((m - 2)^{m-2-k} - (m - 3)^{m-2-k}) (m - 2)^{k-1}$ such tracks; All the tracks that have not been covered yet belong to transversals of cardinality $m - 1$
- so we remove the last coordinate in every track, and take all the minimal transversals that are left - each belongs to exactly one track in which the color chosen out of \(l_1 \) is also chosen by the other list that contains it - there are \((m - 2 - k - l)^2((m - 2)^{m-2-k} - (m - 3)^{m-2-k})(m - 2)^{k-2}\) such tracks.

All in all the cover has cardinality
\[
k(m - 2)^{m-3} + l((m - 2)^{m-2-k} - (m - 3)^{m-2-k})(m - 2)^{k-1} + (m - 2 - k - l)^2((m - 2)^{m-2-k} - (m - 3)^{m-2-k})(m - 2)^{k-2} = k(m - 2)^{m-3} + (m - 2)^{k-2}[(m - 2)^{m-2-k} - (m - 3)^{m-2-k}][(m - k - 2)^2 + l^2 + 2lk - l(m - 2))].
\]
and this expression is minimal as a function of \(l \) when \(l = \frac{m - 3 - 2k}{2} \) (since \(l \) must be an integer, if \(m \) is odd we will take \(l = \frac{m - 3 - 2k}{2} \), and the rest of the proof is similar). Putting this value of \(l \) back into the expression gives
\[
k(m - 2)^{m-3} + (m - 2)^{k-2}[(m - 2)^{m-2-k} - (m - 3)^{m-2-k}][\frac{3}{4}(m - 2)^2 - k(m - 2)].
\]
When \(m \to \infty \), the expression tends to
\[
k(m - 2)^{m-3} + (m - 2)^{k-2}[(m - 2)^{m-2-k}(1 - \frac{1}{e})][\frac{3}{4}(m - 2)^2 - k(m - 2)] = (\frac{k}{e(m-2)} + \frac{3}{4}(1 - \frac{1}{e}))(m - 2)^{m-2}.
\]
This expression is minimal when \(k \) is as small as possible - in this case when \(k = 2 \). If this is the case we get that the cardinality of the cover tends to \((\frac{3}{4}(1 - \frac{1}{e}))(m - 2)^{m-2} = 0.474(m - 2)^{m-2}\).
6 Conclusion and Open Problems

In this paper we used certain structures of the family of lists assigned to M ($|M| = m$) to calculate upper bounds on n_m, the smallest integer n such that $ch(K_{m,n}) = m - 1$. These are not, of course, all the possible structures of a family of lists on M with all transversals of cardinality at least $m - 2$ (the transversal hypergraph of a family of m lists which contain a transversal of cardinality less than $m - 2$ does not allow an $(m - 2)$-cover and therefore does not need to be considered), and the remaining structures still need to be analyzed. The method we have devised for finding a minimum cover of a hypergraph by another hypergraph, of solving an equivalent problem of finding a minimum weighted cover, can also be used to calculate upper bounds on the smallest integer n such that $ch(K_{m,n}) = m - k$ for other small k’s.
References

[1] Erdős P., Rubin A. L. and Taylor H., *Choosability in Graphs*, Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium XXVI, 1979, 125-157.

[2] Gazit N. and Krivelevich M., *On the asymptotic value of the choice number of complete multi-partite graphs*, Journal of Graph Theory 52 (2006), 123-134.

[3] Hoffman D.G. and Johnson P.D. JR., *On the choice number of $K_{m,n}$*, Congressus Numerantium 98 (1993), 105-111.

[4] Shende A.M. and Tesman B., *3-Choosability of $K_{5,q}$*, CoNum 111 (1995), 193-221.

[5] Tuza Zs., *Graph colorings with local restraints - a survey*, Discussiones Mathematicae, Graph Theory 17 (1997), 161-228.

[6] Vizing V. G., *Coloring the vertices of a graph in prescribed colors* (in Russian), Diskret. Analiz. No. 29, Metody Diskret. Anal. v. Teorii Kodov i Shem 101 (1976), 3-10.