Effect of tocilizumab on ischemia-reperfusion-induced oxido-inflammatory renal damage and dysfunction in rats

Kezban Tuna Ozkaloglu ERDEM1), Zehra BEDIR 2), Ufuk KUYRUKLUYILDIZ3), Hakan Gokalp TAS4), Zeynep SULEYMAN5), Seval BULUT5), Ali Sefa MENDIL6), Cengiz SARIGUL7), Edhem UNVER 8) and Halis SULEYMAN5)

1) Department of Anesthesiology and Reanimation, Antalya Provincial Health Directorate, Antalya Training and Research Hospital, Kazım Karabekir Cd., 07100 Muratpasa/Antalya, Turkey
2) Department of Anesthesiology and Reanimation, Erzurum Provincial Health Directorate, Erzurum Regional Education and Research Hospital, Atatürk District Çat Road Street Number: 36 25240 Yakutiye/Erzurum, Turkey
3) Department of Anesthesiology and Reanimation, Faculty of Medicine, Erzincan Binali Yildirim University, Associate Professor, Başbağlar Mahallesı 1429. Street No:2/1 24100 Erzincan, Turkey
4) Department of Anesthesiology and Reanimation, Siran State Hospital, Karaca Mahallesı Hoca Ahmet Yesevi Street 29100 Şirvan/Gumushane, Turkey
5) Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Başbağlar Mahallesı 1429. Street No:2/1 24100 Erzincan, Turkey
6) Department of Veterinary Medicine, Faculty of Veterinary Medicine, Erciyes University, Yenidönan Mahallesı Torhan Baytop Sokak No:1 38280 Talas/Kayseri, Turkey
7) Department of Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, Başbağlar Mahallesı 1429. Street No:2/1 24100 Erzincan, Turkey
8) Department of Chest Diseases, Faculty of Medicine, Erzincan Binali Yildirim University, Başbağlar Mahallesı 1429. Street No:2/1 24100 Erzincan, Turkey

Abstract: Ischemia-reperfusion-induced (I/R) renal damage is a pathogenic process that starts with ischemia, then progresses through oxidative stress and inflammation. Tocilizumab (TCZ), a recombinant human monoclonal antibody produced against the IL-6 receptor, will be tested against renal I/R injury. TCZ is known to lower the levels of proinflammatory cytokines and oxidant mediators while raising the amounts of antioxidant molecules. Our purpose is to evaluate the biochemical and histological effects of TCZ against I/R-induced oxido-inflammatory kidney damage and dysfunction in rats. Animals were divided into 3 groups as renal I/R (RIR), I/R+ TCZ (IRT), and healthy group (HG). TCZ was administered at a dose of 8 mg/kg to the IRT group (n=6) of the animals, and distilled water as a solvent was administered intraperitoneally (ip) to the RIR (n=6) and HG (n=6) groups. Then, two hours of ischemia and six hours of reperfusion were applied to the left kidneys of IRT and RIR animals. TCZ significantly inhibited the increase in the levels of malondialdehyde (MDA), nuclear kappa B (NF-κB), tumour necrosis factor alpha (TNF-α), interleukin 1-β (IL-1β), IL-6, creatinine (Cr) and blood urea nitrogen (BUN) and decrease in total glutathione (tGSH) with I/R in renal tissue. TCZ also attenuated severe histopathological damage due to I/R in renal tissue. TCZ protected renal tissue from I/R-induced oxidative and inflammatory damage. These results indicate that TCZ may be useful in the treatment of renal I/R injury.

Key words: ischemia/reperfusion, kidney, oxidative stress, tocilizumab
Introduction

Ischemia is a lack of oxygen delivery to cells caused by insufficient tissue oxygen delivery as a result of diminished or full stoppage of blood flow to the tissues for a variety of reasons [1]. When ischemia lasts for a long time, the cell is unable to obtain the oxygen required for aerobic respiration and must resort to anaerobic respiration. The cell’s energy supplies are exhausted in the following step [2], and a cascade of chemical processes lead to cell malfunction and necrosis [1, 3]. As a result, providing reperfusion to ischemic tissue is the first intervention to be performed. Reperfusion, on the other hand, causes further harm to ischemic tissue by triggering cell death and inflammatory responses [4]. It occurs when the ischemic tissue receives a large amount of molecular oxygen (O₂) during reperfusion. By boosting tissue oxygen supply, it increases the metabolism of hypoxanthine stored in the tissue by xanthine oxidase (XO). The production of reactive oxygen species (ROS) is caused by the metabolism of hypoxanthine [2]. These ROSs, also known as reperfusion mediators, oxidize cell membrane lipids (LPO), causing hazardous compounds such as malondialdehyde (MDA) to develop [4]. Polymorphonuclear leukocytes (PMNLs) are also involved in the pathophysiology of reperfusion-induced secondary damage and aggravate oxidative stress [1]. Tumor necrosis factor alpha (TNF-α) synthesis is triggered by oxidants generated after reperfusion, which activate nuclear factor kappa-b (NF-κB), a transcription factor for TNF-α [5]. Interleukin 1β (IL-1β) was also shown to rise following reperfusion [6]. Ischemia/reperfusion (I/R) reactions result in a rise in oxidants, such as TNF-α and interleukin-6 (IL-6), as well as a reduction in antioxidants, not just in kidney tissue but also in distant organs like the heart and lungs [7].

Tocilizumab (TCZ), a recombinant human monoclonal antibody produced against the IL-6 receptor [8], will be tested against renal I/R injury. TCZ is an autoimmune disease treatment that is used to treat rheumatoid arthritis, juvenile idiopathic arthritis, and giant cell arthritis [9]. During the COVID-19 pandemic, TCZ has also assumed its position in the treatment strategy for hospitalized and critical care patients [10, 11]. TCZ lowers proinflammatory cytokine levels [12]. TCZ has been shown to reduce the increase in the oxidative stress-related oxidant MDA levels as well as the reduction in antioxidants [13]. In light of this knowledge, I/R damage is understood to be a pathological process that begins with a shortage of oxygen in the tissue, progresses through the production of ROS, and culminates in the inflammatory response. TCZ has been shown to reduce levels of proinflammatory cytokines and oxidant mediators while increasing levels of antioxidant chemicals. There are no studies in the literature that investigate whether TCZ, whose therapeutic use areas have grown with the COVID-19 pandemic, has a protective effect, particularly against I/R damage in renal tissue. Thus, the goal of this study is to explore the effect of TCZ on I/R-induced oxido-inflammatory kidney damage and dysfunction in rats biochemically and histopathologically.

Materials and Methods

Animals

In the experiment, 18 albino Wistar male rats weighing 275 to 287 grams were employed. All of the animals were received from the Medical Experimental Application and Research Centre of Ataturk University. Prior to the test, the animals were placed and fed in the laboratory under controlled settings at room temperature (22°C) with 12 h of light and 12 h of darkness. The local Animal Experimentation Ethics Committee accepted the protocols and methods (Date 12.04.2021, meeting no 61).

Chemicals

Pfizer Ltd. Şti. (İstanbul, Turkey) provided the ketamine, BIOVETA PLC (Tovstav, Czech) provided the xylazine, Roche Mustahzarları A.S. provided the tocilizumab (80 mg/4 ml concentrated solution for infusion) and Uniq Istanbul provided the tocilizumab (80 mg/4 ml concentrated solution for infusion) (İstanbul, Turkey).

Groups

The test animals were split into three groups: renal I/R (RIR), I/R+ TCZ (IRT), and healthy group (HG).

Anesthesia

Anesthesia was established in the rats by injecting 60 mg/kg of ketamine and 10 mg/kg of xylazine intraperitoneally (i.p.) under sterile settings prior to the surgical operations. Rats were kept for a period of time after being injected with ketamine to allow for surgical treatment. After reflex monitoring, including tail and leg pinching, the moment when the animals are stabilized in the supine posture is considered a favorable time for surgical intervention. [14–16].

Surgical and pharmacological procedures

The IRT group (n=6) of rats received TCZ at a dosage of 8 mg/kg, whereas the RIR (n=6) and HG (n=6) groups received distilled water as a solvent intraperitoneally (i.p.). During the ketamine anesthetic phase, all rats were incised from the dorsal area and their left kidneys were

492 | doi: 10.1538/expanim.22-0034
accepted one hour after TCZ and distilled water administration. As in the study of Gursoy et al., the IRT and RIR groups were next given 1 h of ischemia and 6 h of reperfusion by clamping renal arteries and veins going to the left kidney [17]. The HG group’s left kidney was closed by suturing the region that had been opened without any procedure. All rat groups were killed with high-dose anesthetic (ketamine 120 mg/kg) and their kidneys extracted six hours after reperfusion. The removed kidneys were subjected to biochemical and histopathological investigations. The biochemical and histopathological findings of the HG, RIR, and IRT groups were compared.

Biochemical analyzes

Tissue MDA and GSH determination: The spectrophotometric determination of the absorbance of the pink-colored complex produced by thiobarbituric acid (TBA) and MDA used by Ohkawa et al. is used to calculate MDA [18]. The tGSH was measured using the technique published by Sedlak J and Lindsay RH [19].

TNF-α, IL-1β, NF-κB and IL-6 analysis: After the samples were weighed, all of the tissue was cut. These materials were then quickly frozen with liquid nitrogen and homogenized with a pestle and mortar. After melting, all of the specimens were kept at 2–8°C. After adding 1/10 (w/v) PBS (pH 7.4), vortexing for 10 s, centrifuged at 10,000 × g for 20 min, and carefully collecting the supernatants, the supernatants were centrifuged at 10,000 × g for 20 min. The levels of TNF-α (ng/l), IL-1β (pg/l), and IL-6 (ng/l) were determined using an ELISA kit provided by Eastbiopharm Co., Ltd. (Hangzhou, China). The quantities of tissue-homogenated NF-κB (a proinflammatory cytokine) were determined using a rat-specific sandwich enzyme-linked immunosorbent assay. ELISA immunoassay kits for rat NF-κB (SunRed).

Measurement of creatinine: A Roche brand cobas 8,000 autoanalyzer was used to investigate the quantitative detection of serum creatinine using a spectrophotometric approach. The formula BUN = UREA*0.48 was used to compute it. Urease breaks down urea into ammonium and carbonate.

\[2 \text{H}_2\text{O} + \text{urea} \rightarrow (\text{Urease}) \text{CO}_3^{2-} + 2\text{NH}_4^+. \]

When glutamate and dehydrogenase (GLDH) and the coenzyme nicotinamide adenine dinucleotide + hydrogen (NADH) are present, 2-oxoglutarate interacts with ammonium to create L-glutamate. For every mole of urea hydrolyzed, two moles of NADH are oxidized to NAD+ in this process.

\[\text{NH}_4^+ + 2\text{-oxoglutarate} + \text{NADH} \rightarrow (\text{GLDH}) \text{L-glutamate} + \text{NAD}^+ + \text{H}_2\text{O}. \]

The rate of decline in NADH concentration is directly proportional to the urea content in the sample, and the measurement was performed at 340 nm.

Histopathological analysis

Renal samples were collected from necropsied rats and preserved in a 10% neutral formalin solution. Following fixation, the tissues were put through a standard alcohol xylol series. Interstitial hemorrhage, interstitial nephritis, glomerular atrophy, and tubular degeneration were assessed semiquantitatively as absent (0), mild (1), medium (2), and severe (3) in 4 μm slices produced from the paraffin blocks and colored with hematoxylin-eosin, according to Kocaturk et al. [20, 21].

Statistical analysis

For comparison of groups one way ANOVA was used. After ANOVA, Tukey’s HSD test were used as post hoc. Since the histopathological data were discrete variables, the evaluation was done with the Kruskal Wallis test. The results were presented as mean ± SD and median (minimum-maximum). All statistical procedures were performed in the “IBM SPSS ver 22.0 (IBM Corp., Armonk, NY, USA)” and \(P<0.05\) value was considered significant.

Results

Biochemical results

Biochemical findings and pairwise comparisons according to the groups are shown in Table 1.

MDA and GSH analysis results

The quantity of MDA rose (\(P<0.001\)) and the amount of tGSH decreased (\(P<0.001\)) in the RIR group compared to the HG and IRT groups, as shown in Fig. 1. The differences between the HG and IRT groups were statistically negligible (\(P>0.05\)).
IL-1β and IL-6 analysis results

When compared to the RIR group, the TCZ-administered (IRT) group dramatically reduced IL-1β and IL-6 levels \((P<0.001)\) and almost brought them to the same level as the healthy group (HG) \((P>0.05)\) (Fig. 2).

TNF-α and NFκB analysis results

As seen in Fig. 3, TNF-α and NFκB levels in the RIR group were greater than in the HG and IRT groups \((P<0.001)\). TNF-α and NFκB levels were also found to be statistically insignificantly similar between the HG and IRT groups.

Cr and BUN analysis results

Group RIR had higher amounts of Cr and BUN \((P<0.001)\). Cr and BUN levels, on the other hand, were nearly identical in the HG and IRT groups \((P>0.05)\) (Fig. 4).

Table 1. Biochemical findings in study groups

Biochemical parameters	Groups	HG 1	RIR 2	IRT 3	Pair-wise comparisons	P-values		
MDA (µmol/gr protein)		2.6 ± 0.2	5.2 ± 0.0	2.7 ± 0.3	1 vs 2	<0.001	0.616	<0.001
tGSH (mmol/gr protein)		3.8 ± 0.0	1.6 ± 0.1	3.5 ± 0.2	1 vs 3	<0.001	0.030	<0.001
NF-κB (pg/ml)		4.2 ± 0.2	7.9 ± 0.3	4.7 ± 0.2	2 vs 3	<0.001	0.039	<0.001
TNF-α (pg/ml)		3.7 ± 0.1	6.5 ± 0.2	3.9 ± 0.1		<0.001	0.498	<0.001
IL-1β (pg/l)		2.1 ± 0.0	4.4 ± 0.1	2.4 ± 0.0		<0.001	<0.001	<0.001
IL-6 (ng/l)		2.7 ± 0.0	4.8 ± 0.2	2.8 ± 0.2		<0.001	0.595	<0.001
CT (mg/dl)		1.1 ± 0.0	2.7 ± 0.2	1.2 ± 0.0		<0.001	0.678	<0.001
BUN (mg/dl)		37.3 ± 3.6	86.1 ± 7.5	40.5 ± 3.3		<0.001	0.558	<0.001

*For comparison of groups one way ANOVA was used. After ANOVA, Tukey’s HSD test were used as post hoc. Results were presented as mean ± SD. \(P<0.05\) value was considered significant. HG: Healthy Group, RIR: Renal I/R Group, IRT: Renal I/R+Tocilizumab group.
Histopathological findings

In terms of histopathological results, there were statistically significant differences between the groups (Table 2, P<0.05). Interstitial hemorrhage, interstitial nephritis, glomerular atrophy, and tubular degeneration were assessed semiquantitatively as absent (0), mild (1), medium (2), and severe (3). The kidneys of the HG group rats were histopathologically normal (Fig. 5). Interstitial hemorrhage, interstitial nephritis, and glomerular atrophy were all severe histopathological findings in the RIR group (Fig. 6). A substantial number of PMNLs were seen infiltrating renal tissue. In the IRT group, these findings were reduced (Fig. 7). Another histopathological result was tubular degeneration, which was severe in the RIR group but mild in the IRT group.
Fig. 6. RIR Group. a. Severe interstitial hemorrhage (arrows). b. Interstitial nephritis with severe inflammatory cell infiltrates (*). c. Severe atrophy of the glomeruli (arrowhead). d. Severe degeneration of tubules (□) (H×E).

Fig. 7. IRT Group. a. Mild interstitial hemorrhage (arrow). b. Interstitial nephritis with mild inflammatory cell infiltrates (*). c. Mild atrophy of the glomeruli (arrowhead). d. Moderate degeneration of tubules (□) (H×E).
Discussion

Hypoperfusion of tissues is termed as ischemia. Tissue hypoperfusion can be caused by sepsis, acute coronary syndrome, organ transplantation, and limb damage. The refilling of blood to ischemic tissues is known as reperfusion. However, cytokine storm, which produces additional tissue harm as a result of the activation of oxidative stress and inflammatory-related cytokines in reperfused tissue, may explain the process of ischemia-reperfusion damage. The xanthine oxidase system, the chain of mitochondrial electron transport, unbound nitric oxide synthase (NOS) system, and the NADPH oxidase system are all enzymatic causes of oxidative stress. Purine catabolism is aided by xanthine oxidoreductases. Xanthine dehydrogenase and xanthine oxidase are enzymes that convert hypoxanthine to xanthine and xanthine to uric acid, respectively. When blood supply returns to ischemic tissue, xanthine oxidase interacts with oxygen, causing hypoxanthine to consume oxygen to make xanthine and uric acid, releasing free oxygen radicals in the process. By xanthine oxidoreductase, the generated SOR causes cytokine cascades and pathogenic diseases. The xanthine oxidase system, NADPH oxidase system, and mitochondrial electron transport chain are all linked to oxidative stress in the gut, lung, heart, brain, muscle, liver, pancreas, stomach, and kidney, among other organs [22].

We looked at ischemia-reperfusion damage in kidney tissue in our research. The levels of oxidant mediators like MDA, as well as inflammatory mediators like NF-kB, TNF-α, IL-1β, and IL-6, were higher in the RIR group. Antioxidant enzymes including GSH were discovered to be decreased in the RIR group. Desflurane-related liver damage was also associated with an increase in oxidative and inflammatory mediators, according to Disli et al. [23]. In the ischemia-reperfusion model produced in lung tissue, a rise in oxidants such as MDA and inflammatory markers such as IL-6, TNF-α, IL-10, and IL-1β has been documented in the literature [24].

Dysregulated IL-6 has been linked to a variety of autoimmune and inflammatory disorders, metabolic diseases, and cancers, in addition to having various critical physiological roles. It has long been known that IL-6 has a role in the damage and repair of renal intact cells, as well as a number of immunological, metabolic, ischemic, and toxemic-mediated renal disorders [25]. In glomerulonephritis and other kinds of renal illness, clinical and experimental investigations reveal that IL-6 has a role in renal damage. For most individuals with end-stage renal disease, kidney transplantation is regarded the “gold standard” therapy. Interleukin-6 has long been related with renal allograft rejection as a pro-inflammatory cytokine [26]. There have been studies that reveal the upregulation of IL-6, IL-11, leukemia inhibitory factor (LIF), Macrophage colony-stimulating factor (M-CSF), neutrophil chemotactic and activating mediator macrophage inflammatory protein (MIP)-2, and monocyte chemoattractant protein (MCP)-1 in the ischemia/reperfusion condition, however the upregulation of IL-4, interferon (IFN)-γ, MIP-1α, MIP-1β, RANTES, and eotaxin is less apparent, indicating the need for further research [27]. We employed IL-6 to assess Ischemia/Reperfusion injury and the protective impact of tocilizumab, an IL-6 inhibitor, against I/R injury in our research.

TCZ, an IL-6 antagonist, was previously used to treat autoimmune inflammatory illnesses such as RA, JIA, Castleman’s giant cell arthritis, reactive arthritis, and polymyalgia rheumatism, and we investigated its effect on ischemia-reperfusion damage. The discovery of a position for itself in the advanced treatment steps of COVID-19 pneumonia has made research into the medicine attractive, particularly in light of the onset of the COVID-19 pandemic. IL-6 is a proinflammatory cytokine that stimulates the production of a variety of proteins that cause acute inflammation. Kizaki et al. discovered that TCZ inhibits oxidative stress in their research [28]. TCZ, which is used to treat experimentally produced acute lung damage, was discovered in the literature to drastically limit the production of proinflammatory cytokines and repair the tissue [29].

Although there are some concerns about the use of IL-6 antagonists in COVID-19 pneumonia, recent studies showing a positive effect on patient mortality are common, especially in critically ill patients, thanks to the knowledge that it gradually reduces excessive inflammation during the cytokine storm [30, 31]. In our research, the levels of inflammatory cytokines such as tissue NF-kB, TNF-α, IL-1β, and IL-6 in the IRT group were comparable to those in the HG group, but statistically considerably lower than those in the RIR group.

TCZ’s efficacy in preventing tissue damage has been studied in the literature. TCZ was discovered to have a neuroprotective effect in an animal model of spinal cord ischemia by lowering oxidative and inflammatory activities such as TNF-α, total oxidant level (TOS), IL-6, and IL-10 [32]. TCZ effectively reduced apoptosis after ischemia-reperfusion and facilitated the proliferation of cardiac myocytes in an experimental study done with culture derived from human myocytes [33]. TCZ dramatically decreased fructose-related damage, antioxidant, and anti-inflammatory activity in another experimental trial in which fructose-related hypertension and
hyperinsulinemia were produced [34].

In another research, histological examination of rats with artificially produced diabetic nephropathy revealed localized tubular necrosis with significant vacuolation in the proximal tubular epithelium. While epithelial regeneration and tubular necrosis decreased with the administration of TCZ, no significant change in Cr clearance was seen [13]. TCZ, which inhibits inflammation and oxidative stress, has also been found to prevent diabetic kidney damage by lowering insulin resistance and suppressing inflammation, according to Wu et al. [35]. Tubular degeneration, interstitial hemorrhage, interstitial nephritis, and glomerular atrophy were found in renal cells in the RIR group during histopathological tests. A substantial number of PMNLs were seen infiltrating renal tissue. In the IRT group, however, statistically significant reductions in PMNL infiltration, proximal tubular epithelial cell injury, interstitial hemorrhage, interstitial nephritis, and glomerular atrophy were seen, comparable to the findings of Wu et al. [35]. In contrast to Wu et al.'s study [35], BUN and Cr levels in the TCZ-treated group were found to be comparable to those in the healthy group.

In summary, we noticed an increase in BUN and Cr levels in the I/R group, which indicates renal tissue injury, which is consistent with the literature. At the same time, histopathological examinations at the cellular level indicated interstitial bleeding, interstitial nephritis, and glomerular atrophy. A substantial number of PMNLs were seen infiltrating renal tissue. While the increase in MDA levels and reduction in tGSH levels are regarded as indications of oxidation, we believed that the increase in NF-κB, TNF-α, IL1-β, and IL-6 levels were evidence of increased inflammation, in addition to the histopathological results. In the IRT group given TCZ, on the other hand, tGSH levels increased while MDA levels dropped as compared to the RIR group. These results suggest that TCZ may have antioxidant properties. In line with the literature, the drop in NF-κB, TNF-α, IL1-β and IL-6 levels was attributed to TCZ’s inhibition of the proinflammatory response. Our histopathological examinations revealed a reduction in BUN and Cr levels in the IRT group, as well as a regression in renal tissue damage.

Conclusion

In conclusion, oxidative stress and proinflammatory mechanisms are known to produce subsequent tissue damage as a result of ischemia-reperfusion. The IL-6 antagonist TCZ, which possesses antioxidant and anti-inflammatory actions, was experimentally proven to be beneficial in the prevention of ischemia-reperfusion damage in the renal tissue based on biochemical and histological evidence.

Acknowledgments

The authors thank all physicians and other staff who contributed to the Study.

References

1. Yapce OE, Borecki B, Suleyman H. Ischemia-reperfusion damage. Eurasian J Med. 2013; 45: 126–127. [Medline] [CrossRef]
2. Zimmerman BJ, Granger DN. Reperfusion injury. Surg Clin North Am. 1992; 72: 65–83. [Medline] [CrossRef]
3. Nieuwenhuijs-Moeke GJ, Pischke SE, Berger SP, Sanders JSF, Pol RA, Struys MMRF, et al. Ischemia and Reperfusion Injury in Kidney Transplantation: Relevant Mechanisms in Injury and Repair. J Clin Med. 2020; 9: E253. [Medline] [CrossRef]
4. Zang X, Zhou J, Zhang X, Han Y, Chen X. Ischemia Reperfusion Injury: Opportunities for Nanoparticles. ACS Biomater Sci Eng. 2020; 6: 6528–6539. [Medline] [CrossRef]
5. Donnahoo KK, Shames BD, Harken AH, Meldrum DR. Review article: the role of tumor necrosis factor in renal ischemia-reperfusion injury. J Urol. 1999; 162: 196–203. [Medline] [CrossRef]
6. Mozaffari Godarzi S, Valizade Gorji A, Gholizadeh B, Mard SA, Mansouri E. Antioxidant effect of p-coumaric acid on interleukin 1-β and tumor necrosis factor-α in rats with renal ischemic reperfusion. Nefrol Engl Ed. 2020; 40: 311–319. [Medline]
7. Içoğlu Aksakal F, Koc K, Geyikoglu F, Karakaya S. Ameliorative effect of umbelliferone in remote organ injury induced by renal ischemia-reperfusion in rats. J Food Biochem. 2021; 45: e13628. [Medline] [CrossRef]
8. Biligici A. Tocilizumab. Turk Klini Phys Med Rehabil Spec Top. 2016; 9: 31–43.
9. Tufan A, Avanoğlu Güler A, Matucci-Cerinic M. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turk J Med Sci. 2020; 50(SI-1): 620–632. [Medline] [CrossRef]
10. Aslan AT, Akova M. Current status of therapeutic alternatives for COVID-19: A narrative review. Infez Med. 2021; 29: 312–327. [Medline] [CrossRef]
11. Yin J, Li C, Ye C, Ruan Z, Liang Y, Li Y, et al. Advances in the development of therapeutic strategies against COVID-19 and perspectives in the drug design for emerging SARS-CoV-2 variants. Comput Struct Biotechnol J. 2022; 20: 824–837. [Medline] [CrossRef]
12. Avdeev AS, Novikov AA, Aleksandrova EN, Panasiuk EI, Nasonov EL. [The importance of cytokine profile characteristics for evaluating the therapeutic effectiveness of monoclonal antibodies against IL-6 receptors in patients with rheumatoid arthritis]. Klin Med (Mosk). 2014; 92: 28–34. [Medline]
13. Abdelrahman AM, Al Suleimani Y, Shalaby A, Ashique M, Manoj P, Ali BH. Effect of tocilizumab, an interleukin-6 inhibitor, on early stage streptozotocin-induced diabetic nephropathy in rats. Naunyn Schmiedebergs Arch Pharmacol. 2019; 392: 1005–1013. [Medline] [CrossRef]
14. Ali AN, Altimimi ML, Al-Ardi HM, Hadzi NR. Nephroprotective Potential Effect of Azilsartan in Renal Ischemia Reperfusion Injury/role VEGF Pathway. Sys Rev Pharm. 2019; 10(2).
15. Abbas W, Altemimi M, Qassam H, Hamed AA, Zigam Q, Abbas L, et al. Fimasartan ameliorates renal ischemia reperfusion injury via modulation of oxidative stress, inflammatory and apoptotic cascades in a rat model. J Med Life. 2022; 15:
CAN TOCILIZUMAB EFFECT ON I/R INJURY?

241–251. [Medline]
16. Demirýilmaz I, Turan MI, Kisaoglu A, Gulpagolu M, Yilmaz I, Suleyman H. Protective effect of nimesulide against hepatic ischemia/reperfusion injury in rats: effects on oxidant/antioxidants, DNA mutation and COX-1/COX-2 levels. Pharmacol Rep. 2014; 66: 647–652. [Medline] [CrossRef]
17. Gürsoy H. Does Dextanpentol Protect the Kidney from Ischemia-Reperfusion Injury? Turk J Nephrol. 2011; 20: 146–149.
18. Ötkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95: 351–358. [Medline] [CrossRef]
19. Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968; 25: 192–205. [Medline] [CrossRef]
20. Kocaturk H, Bedir F, Turanegzeli Ö, Arslan R, Coban TA, Altunae D, et al. Effect of adenosine triphosphate, benidipine and their combinations on bevacizumab-induced kidney damage in rats. Adv Clin Exp Med. 2021; 30: 1175–1183. [Medline] [CrossRef]
21. Kandemir FM, Ozkaraca M, Küçükler S, Caglayan C, Hanım B. Preventive effects of hesperidin on diabetic nephropathy induced by streptozotocin via modulating TGF-β1 and oxidative DNA damage. J Toxin Rev. 2018; 37: 287–293. [CrossRef]
22. Wu MY, Yang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, et al. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell Physiol Biochem. 2018; 46: 1650–1667. [Medline] [CrossRef]
23. Zelilha Korkmaz DISLI LAD, Hakan Gokalp TAS, Ufuk KUYURKLUYILDIZ, Olyac Murat DISLI GNY, Abdulkcadir COBAN, Halis SULEYMAN. The Molecular Mechanism of the Effect of Carvacrol on Desflurane Inhalation-Induced Liver Damage in Rats. Lat Am J Pharm. 2021; 41: 130–137.
24. Liang S, Wang Y, Liu Y. Dexamethasone alleviates lung ischemia-reperfusion injury in rats by activating PI3K/Akt pathway. Eur Rev Med Pharmacol Sci. 2019; 23: 370–377. [Medline]
25. Su H, Lei CT, Zhang C. Interleukin-6 Signaling Pathway and Its Role in Kidney Disease: An Update. Front Immunol. 2017; 8: 405. [Medline] [CrossRef]
26. Jones SA, Fraser DJ, Fielding CA, Jones GW. Interleukin-6 in renal disease and therapy. Nephrol Dial Transplant. 2015; 30: 564–574. [Medline] [CrossRef]
27. Lemay S, Rabb H, Postler G, Singh AK. Prominent and sustained up-regulation of gp130-signaling cytokines and the chemokine MIP-2 in murine renal ischemia-reperfusion injury. Transplantation. 2000; 69: 959–963. [Medline] [CrossRef]
28. Kizaki K, Yamashita F, Hayashi T, Funakoshi N. Inflammasin equivalently suppresses oxidative stress compared to tocilizumab among well-controlled patients with rheumatoid arthritis. Int J Rheum Dis. 2018; 21: 1815–1821. [Medline] [CrossRef]
29. Sarioğlu N, Sunay FB, Yay AH, Korkut O, Erel F, Hismiogullari AA, et al. Anti-inflammatory effects of adalimumab, tocilizumab, and steroid on lipopolysaccharide-induced lung injury. Turk J Med Sci. 2021; 51: 2741–2751. [Medline] [CrossRef]
30. Khiali S, Khani E, Entezari-Maleki T. A Comprehensive Review of Tocilizumab in COVID-19 Acute Respiratory Distress Syndrome. J Clin Pharmacol. 2020; 60: 1131–1146. [Medline] [CrossRef]
31. Cortegiani A, Ippolito M, Greco M, Granone V, Protti A, Gregoretti C, et al. Rationale and evidence on the use of tocilizumab in COVID-19: a systematic review. Pulmonology. 2021; 27: 52–66. [Medline] [CrossRef]
32. Karatas Y, Erdi MF, Kaya B, Keskin F, Cüce G, Kılıçe I, et al. Neuroprotective Effects of Tocilizumab on Experimentally-Induced Spinal Cord Ischemia-Reperfusion Injury. World Neurosurg. 2018; S1878-8750(18)32892-4. [Medline]
33. Cheng HF, Feng Y, Jiang DM, Tao KY, Kong MJ. Protective function of tocilizumab in human cardiac myocytes ischemia reperfusion injury. Asian Pac J Trop Med. 2015; 8: 48–52. [Medline] [CrossRef]
34. Abdelrahman AM, Al Suleimani YM, Ashique M, Manoj P, Ali BH. Effect of infliximab and tocilizumab on fructose-induced hyperinsulinemia and hypertension in rats. Biomed Pharmacother. 2018; 105: 182–186. [Medline] [CrossRef]
35. Wu R, Liu X, Yin J, Wu H, Cai X, Wang N, et al. IL-6 receptor blockade ameliorates diabetic nephropathy via inhibiting inflammasome in mice. Metabolism. 2018; 83: 18–24. [Medline] [CrossRef]