Recent Developments in the Speciation and Determination of Mercury Using Various Analytical Techniques

Lakshmi Narayana Suvarapu and Sung-Ok Baek

Department of Environmental Engineering, Yeungnam University, Gyeongsan-si 712 749, Republic of Korea

Correspondence should be addressed to Lakshmi Narayana Suvarapu; suvarapu@gmail.com

Received 8 May 2015; Accepted 15 June 2015

Academic Editor: Antony C. Calokerinos

Copyright © 2015 L. N. Suvarapu and S.-O. Baek. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper reviews the speciation and determination of mercury by various analytical techniques such as atomic absorption spectrometry, voltammetry, inductively coupled plasma techniques, spectrophotometry, spectrofluorometry, high performance liquid chromatography, and gas chromatography. Approximately 126 research papers on the speciation and determination of mercury by various analytical techniques published in international journals since 2013 are reviewed.

1. Introduction

Mercury, which is also known as quick silver, is only the metal (Figure 1) in the modern periodic table that exists in liquid form at room temperature. The sources of mercury in the environment include the natural processes, such as breakdown of minerals in rocks and volcanic activities. The anthropogenic sources are not limited to mining and the burning of fossil fuels. Regarding the toxicity of mercury and its different species, methylmercury poisoning affects the nervous system of humans and damages the brain and kidneys [1]. Most of the mercury emitted into the environment is converted to methylmercury, which spreads to the food chain due to the bioaccumulation nature of methylmercury [2]. Owing to the toxicity nature and bioaccumulation nature of mercury, most studies in this area have focused on the determination of mercury and its species in various environmental and biological samples.

Marumoto and Imai [3] reported the determination of dissolved gaseous mercury in the seawater of Minamata Bay of Japan. This study also estimated the exchange of mercury across the air-sea interface. Panichev and Panicheva [4] reported the determination of the total mercury content in fish and sea products by thermal decomposition atomic absorption spectrometry. Fernández-Martínez et al. [5] evaluated different digestion systems for the determination of mercury with CV-AFS (cold-vapor atomic fluorescence spectrometer) in seaweeds. Pinedo-Hernández et al. [6] examined the speciation and bioavailability of mercury in sediments that had been impacted by gold mining in Colombia.

This paper presented the recent developments in this topic after a previous review published in 2013 [2]. The present study reviews the recent developments in the speciation and determination studies of mercury reported and published since 2013. For this purpose, approximately 136 research papers published were reviewed. All the analytical parameters such as limit of detection, linearity range, and interference study reported by the reviewed papers are presented in Tables 1–4 [7–133]. This extensive collection of literature and the analytical parameters of the reviewed papers established the recent developments in the determination and speciation studies of mercury using a range of analytical techniques.

2. Discussion

The toxicity and bioaccumulation nature of mercury has prompted extensive studies to determine the concentrations of mercury species in different environmental and biological samples. This paper reviewed a large number of studies on the determination and speciation of toxic metals including
mercury. The reviews regarding the determination of mercury published since 2013 are discussed hereunder.

Suvarapu et al. [2] reviewed research papers published between 2010 and 2011 regarding the speciation and determination of mercury using a variety of analytical techniques. They concluded that most researchers prefer cold-vapor atomic absorption spectrometry (CV-AAS) and atomic absorption spectrophotometry (CV-AFS) for the speciation and determination studies of mercury in various environmental samples. Suvarapu et al. [134] also reviewed research papers published in 2012 regarding the determination of mercury in various environmental samples. El-Shahawi and Al-Saidi [135] reviewed the dispersive liquid–liquid microextraction (DLLME) method for the speciation and determination of metal ions including mercury. This review concluded that the method of DLLME has the advantages of simplicity, speed, and low cost for the determination of metal ions using various analytical techniques. Ferreira et al. [136] reviewed the use of reflux systems for the sample preparation in the determination of elements, such as arsenic, antimony, cadmium, lead, and mercury. This study concluded that the use of the reflux systems is very rare in the determination of elements, such as Hg. Gao et al. [137] reviewed the application of chemical vapor generation method for the determination of metal ions, such as mercury and cadmium with ICP-MS. Sánchez et al. [138] reviewed the determination of trace elements including mercury present in petroleum products using ICP techniques. This study concluded that the electrothermal vaporization and laser ablation methods were promising for the analysis of petroleum for trace elements. Martin-Yerga et al. [139] reviewed the determination of mercury using electrochemical methods. This study discussed the advantages and disadvantages of the use of different electrodes in the determination of mercury. Chang et al. [140] reviewed the detection of heavy metals, such as cadmium, lead, and mercury in water samples using graphene based sensors. This study concluded that it is a very challenging task to detect heavy metals in water in real time due to the interference of large chemical and biological species in water. Yu and Wang [141] reviewed the determination of metal ions including mercury by atomic spectrometry by applying flow-based sample pretreatment methods. They concluded that the ICP-AES, AAS, AFS, and ICP-MS are the major detection techniques for trace metal analysis. Yin et al. [142] reviewed the speciation analysis of mercury, arsenic, and selenium using a range of analytical techniques. Gao and Huang [143] reviewed the determination of mercury(II) ions by voltammetry and concluded that stripping voltammetry is still an active field of research regarding the determination of mercury. Duarte et al. [144] reviewed disposable sensors and electrochemical sensors for the environmental monitoring of Pb, Cd, and Hg. They recommended the recycling of materials used in sensors for future studies. Recently, Ferreira et al. [145] reviewed the analytical strategies of sample preparation for the determination of mercury in food matrices.

In recent days, few research papers were published about the determination and analysis of mercury species in various environmental and biological samples and some of them are discussed hereunder. Lima et al. [146] reported an efficient method for the determination of mercury in inorganic fertilizers by using CV-AAS combined with microwave-induced plasma spectrometry. Pelcová et al. [147] reported the simultaneous determination of mercury species by LC-AFS with a low detection limit of 13–38 ng L\(^{-1}\). Chen et al. [148] reported a colorimetric method for the determination of mercury ions based on gold nanoparticles and thiocyanate acid. Fernández et al. [149] reported gold nanostructured screen-printed carbon electrodes for the determination of mercury using dispersive liquid-liquid microextraction. Fernández-Martínez et al. [5] evaluated the different digestion systems for determination of mercury in seaweeds using CV-AFS. Silva et al. [150] determined the trace amounts of mercury in alcohol vinegar samples collected from Salvador, Bahia of Brazil. Jarujamrus et al. [151] reported a colorimetric method using unmodified silver nanoparticles for the determination of mercury in water samples. A highly selective method for the determination of mercury using a glassy carbon electrode modified with nano-TiO\(_2\) and multiwalled carbon nanotubes in river and industrial wastewater was reported by Mao et al. [152].

As mentioned in our previous review [2], spectrometric techniques are used widely by many researchers for the determination of mercury over the world. Regarding the determination of mercury with various analytical instruments in the papers reviewed, more than 55% of the researchers used spectrometric instruments, such as atomic absorption spectrometry (AAS), inductively coupled plasma techniques (ICP-OES, AES, and MS), and atomic fluorescence spectrometer (AFS) (Table 1). ICP-MS technique has an advantage of low detection limits and wide range of linearity in the determination of mercury [153]. Around 20% of the researchers chose the spectrophotometer and spectrofluorometer (Table 2) for the determination and speciation of mercury. Approximately 10% of researchers in the papers reviewed used electrochemical instruments for the determination and speciation studies of mercury (Table 3). Only a few authors chose the HPLC, GC, and other techniques (Table 4) but they coupled these instruments with AAS or other instruments. Regarding the analysis of the environmental biological samples for mercury and its species, most researchers analyzed various water samples (drinking, seawater, wastewater, river, and lake waters) followed by food samples (mostly fish), human hair, and ambient air. Only a few authors determined the concentration of mercury in ambient air and atmospheric particulate matter
S. number	Analyte	Analytical instrument used for the detection	Method	Limit of detection (LOD)	Linearity range	Analyzed samples	Interference study	Supporting media	Reference
1	Total Hg	CV-AAS and ICP-AES	Microwave acid digestion	4.83×10^{-8} M	—	Fish samples	Cadmium and lead also analyzed along with mercury	—	[7]
2	Hg(II)	CV-AAS	Preconcentration	1.79×10^{-8} M	—	Water and human hair	Recovery of Hg$^{2+}$ is in the range of 95.6–104.9% in presence of Cu$^{2+}$, Co$^{2+}$, Ni$^{2+}$, Cd$^{2+}$, Mn$^{2+}$, Br$^{2-}$, Pb$^{2+}$, Fe$^{3+}$, Cr$^{3+}$, Al$^{3+}$, Ag$^{+}$, K$^{+}$, Na$^{+}$, NH$_4^+$, Mg$^{2+}$, and Ca$^{2+}$ ions, from 750 to 2500-fold	Dithizone	[8]
3	Total Hg	CV-AAS	Ultrasound extraction	6.98×10^{-8} M	—	Alcohol vinegar	—	—	[9]
4	Total Hg	CV-AAS	SPE1	4.98×10^{-10} M	Rice, canned fish, and tea leaves	The tolerance limit for Na$^+$, K$^+$, Mg$^{2+}$, and Ca$^{2+}$ is 4000-fold, for Ba$^{2+}$ and Zn$^{2+}$ is 40-fold, for Fe$^{3+}$, Cr$^{3+}$, Co$^{2+}$, and Ni$^{2+}$ is 10-fold, and for Al$^{3+}$ is 200-fold compared to Hg$^{2+}$	Fe$_3$O$_4$ nanoparticles	[10]	
5	Hg(II)	CV-AAS	SPE	9.97×10^{-12} M	Up to 500 μg L$^{-1}$	Water samples	As, Al, Fe, Mo, and Sb are depressed the Hg signal	Carbon nanotubes	[11]
6	Total Hg	CV-AAS	Acid digestion	3.6×10^{-9} M	—	Marine fish	—	—	[12]
7	Total Hg	CV-AAS	Wet digestion	3.0×10^{-9} M	—	Green tiger shrimp	Arsenic also determined along with mercury	—	[13]
8	Total Hg	CV-AAS	Alkaline fusion digestion	0.06 ng g$^{-1}$	$0.006–4000$ ng g$^{-1}$	Phosphate rock	—	—	[14]
9	THg	AAS	Acid digestion	4.98×10^{-12} M	—	Fish muscle tissues	Cadmium and lead also detected along with mercury	—	[15]
10	Hg(II)	CV-AAS	SPE	1.19×10^{-11} M	$0.01–2.30$ μg L$^{-1}$	Water samples	Fe$^{2+}$, Ca$^{2+}$, Zn$^{2+}$, Cd$^{2+}$, Co$^{2+}$, and Mn$^{2+}$ are not interfered up to 5 mg L$^{-1}$ and NH$_4^+$ and Ti$^{3+}$ are not interfered up to 1 mg L$^{-1}$	Polymer supported ionic liquid	[16]
11	Hg(II)	CV-AAS	SPE	9.97×10^{-13} M	$0.07–2.00$ μg L$^{-1}$	Water samples	Tolerable amount of major metals is limited up to 50 μg L$^{-1}$	Polytetrafluoroethylene	[17]
12	Total Hg	CV-AAS	Digestion	3.98×10^{-10} M	2.5–10.0 μg L$^{-1}$	Biological samples	—	Cold finger	[18]
13	Total Hg	CV-AAS	Combustion	2.99×10^{-13} M	—	Water and fish	Arsenic and selenium also determined along with mercury	—	[19]
14	Total Hg	AAS	Amalgamation	0.2 ng/g for hair and 0.02 ng/g for blood	—	Hair and blood samples	Arsenic and selenium also determined along with mercury	—	[20]
15	Total Hg	CV-AAS (total Hg) and GC-ICPMS (MeHg)	Cold-vapor reduction with NaBH$_4$	5.98×10^{-18} (total Hg) and 2.3×10^{-8} (MeHg)	—	Blood of birds	Selenium also determined along with mercury and methylmercury	—	[21]
S. number	Analyte	Analytical instrument used for the detection	Method	Limit of detection (LOD) *	Linearity range	Analyzed samples	Interference study	Supporting media	Reference
-----------	---------	---	--------	-------------------------------	-----------------	-----------------	---------------------	-----------------	----------
16	Total Hg and MeHg	CV-AAS (total Hg) and CV-AFS (MeHg)	Digestion	0.03–0.1 ng/g	—	Fish, vegetables, and mushrooms	Selenium and cadmium also determined with mercury species	—	[22]
17	Hg speciation	CV-AAS (total Hg) and CV-AFS (MeHg)	Acid digestion	—	Water samples	—	—	[23]	
18	Hg speciation	CV-AAS	LLME2	1.49×10^{-10} M (Hg$^{2+}$) and 1.8×10^{-8} M (MeHg)	0.5–100 ng mL$^{-1}$	Water samples and CRMs	The recovery of Hg$^{2+}$ in presence of foreign ions is 95–105 and for MeHg is 96–106%	—	[24]
19	Total Hg	GF-AAS	Acid mineralization	6.97×10^{-15} M	—	Fish muscle samples	—	Copper nitrate	[25]
20	GEM	AAS	Acid digestion	—	Water samples	—	—	[26]	
21	Total Hg	CV-AAS	Acid digestion	0.0006 μg g$^{-2}$	—	Freshwater fish samples	—	Stannous chloride	[27]
22	Total Hg	AAS (THg) and ICP-MS-HPLC-MeHg	Combustion	0.01 ng	—	Soil samples	Interference of various heavy metals was overcome by using sample pretreatment	—	[28]
23	Hg speciation	AAS (THg) and ICP-MS-HPLC-MeHg	Hydride generation	5.33×10^{-16} M	20 μg L$^{-1}$	Fish samples	Cd, Pb, As, and Sn also measured along with Hg	—	[29]
24	THg	HG-AAS	Hydride generation	98.4% (accuracy)	—	Irrigation water wells	Along with mercury Pb, Cd, and Al Cr also measured	—	[30]
25	THg	CV-AAS and AAS	Thermal decomposition and amalgamation	1.34×10^{-9} M (TD-amalgamation AAS) and 3.14×10^{-10} M (CV-AAS)	—	Soil samples	—	—	[31]
26	Total Hg	HV-AAS and HPLC-CV-AFS	Extraction	—	—	Aqueous solutions and fish tissue	—	Multiwalled carbon nanotubes	[32]
27	Total Hg	CV-AAS (DMA)	Microwave oven digestion	—	—	Canned fish	Selenium and tin also measured along with mercury	—	[33]
28	THg	AMA (AAS)	AAS principles and without digestion process	—	—	Fish red muscle and white muscle	—	—	[34]
29	THg	AES	LIBS and SIBS	2×10^{-5} M (LIBS) and 9.97×10^{-5} M (SIBS)	—	Soil samples	At 534.074 nm has less spectral interference	—	[35]
30	Hg speciation	CV-AFS	Extraction	0.001×10^{-12} M (Hg$^{2+}$) and 0.002×10^{-12} M (DMHg)	—	Sea water and sediments	—	—	[36]
31	Hg speciation	CV-AFS	Extraction	3.98×10^{-13} M	—	Sea waters	—	—	[37]
32	Total Hg	CV-AFS	Microwave assisted digestion	—	—	Nuts	Interference of fat in nuts is removed by treatment with chloroform and methanol	—	[38]
S. number	Analyte	Analytical instrument used for the detection	Method	Limit of detection (LOD)a	Linearity range	Analyzed samples	Interference study	Supporting media	Reference
-----------	---------	---	--------	-----------------------------	----------------	-----------------	------------------	-----------------	----------
33	Hg(II)	AFS	Fluorescence optical sensor	9.57 \times 10$^{-12}$ M	2.27 \times 10$^{-11}$ – 1.13 \times 10$^{-11}$ M	Human hair, urine, and well water samples	Most of the alkali, alkaline, and transition metal ions did not interfere in the determination of Hg$^{2+}$	N-(2-Hydroxy phenyl)-N-(2-mercapto phenyl)-o-phthalaldehyde	[39]
34	GEM	CV-AFS	Gold amalgamation	0.0002 ng	—	Total suspended particulates	—	QFF (quartz fiber filters)	[40]
35	MeHg	AAS and CV-AFS	Acid digestion	0.005 μg/g	—	Water, soil, sediments, and foodstuffs	—	—	[41]
36	Total Hg	CV-AFS	Microwave-assisted digestion	0.5 ng g$^{-1}$	—	Sediments	—	Sequential injection system	[42]
37	Total Hg	CV-AFS	Acid digestion	0.48 ng g$^{-1}$	—	Rice	Interference of other metal ions is eliminated by acid wash and kept storage of samples for 24 h	Multisyringe-flow injection analysis	[43]
38	Hg speciation	HPLC-AFS	UV-induced atomization	1.9 \times 10$^{-7}$ (Hg$^{2+}$), 1.9 \times 10$^{-8}$ (MeHg), and 2.0 \times 10$^{-11}$ (EtHg) M	1–5000 ng L$^{-1}$	CRMs	—	—	[44]
39	Hg(II)	UV-AFS	SPE	1.49 \times 10$^{-3}$ – 3.98 \times 10$^{-10}$ M	1–5000 ng L$^{-1}$	Natural waters	10 mg L$^{-1}$ of Fe$^{2+}$, Fe$^{3+}$, Cu$^{2+}$, Pb$^{2+}$, and As$^{3+}$ and 10 g L$^{-1}$ of Na$^+$, K$^+$, and Ca$^{2+}$ did not interfere in the determination of 100 ng L$^{-1}$ of Hg$^{2+}$	Sodium diethyldithiocarbamate	[45]
40	Hg(II)	AFS	Micro-SPE	5.98 \times 10$^{-10}$ M	Up to 5 μg L$^{-1}$	Water samples	—	Mesosyringe platform	[46]
41	Hg speciation	EX-AFS	—	0.5 ng g$^{-1}$ (total Hg)	—	Waste calcines	—	—	[47]
42	Hg speciation	CV-AFS	Extraction	~0.5 pg	—	Atmospheric air	—	PTFE filter papers	[48]
43	MeHg	GC-AFS	SPE	12 ng g$^{-1}$	Up to 1.5 ng mL$^{-1}$	Biological samples	—	—	[49]
44	Hg speciation	HPLC-AFS	Liquid-liquid microextraction	1.54 \times 10$^{-10}$ (Hg$^{2+}$), 7.42 \times 10$^{-10}$ (MeHg), 1.065 \times 10$^{-10}$ (EtHg), and 3.31 \times 10$^{-10}$ (PhHg) M	0.0–20 μg L$^{-1}$	Environmental waters	No interference from other metal ions	1-Octyl-3-methyl-1-imidazolium hexafluorophosphate	[50]
45	MeHg	CV-AFS	Extraction	0.315 ng g$^{-1}$	—	Petroleum	—	—	[51]
46	GEM	CV-AFS	—	—	—	Ambient air	—	—	[52]
47	Hg(II)	AFS	Fluorescence	0.07 \times 10$^{-6}$ M	0.1–4.5 μM	Aqueous solutions	Longer excitation and emission wavelength could shield the interference	Fe$_2$O$_4$ magnetic nanoparticles	[53]
48	Hg speciation	CV-AFS	Thermal decomposition	—	—	Fish liver	Method validity is tested with CRM	—	[54]
49	THg	AFS	—	<4.98 \times 10$^{-11}$ M	—	Snow	—	K$_2$Cr$_2$O$_7$/SnCl$_2$	[55]
50	Atmospheric Hg	CV-AFS	Extraction	—	—	Particulate matter	—	—	[56]
Table 1: Continued.

S. number	Analyte	Analytical instrument used for the detection	Method	Limit of detection (LOD)	Linearity range	Analyzed samples	Interference study	Supporting media	Reference
51	THg	CV-AFS	Flow injection mercury system	—	—	Herbal products	—	—	[57]
52	Hg speciation	LC-UV-CV-AFS	Microwave digestion	4.98×10^{-12} (total Hg), 1.39×10^{-12} (MeHg), and 1.99×10^{-12} (Hg$^{2+}$) M	—	Sea food	Simultaneously determined both Hg(II) and MeHg	—	[58]
53	MeHg and total Hg	CV-AAS	Digestion	0.088 (MeHg) and 0.005 (total Hg) $\mu g \cdot g^{-1}$	—	Hair and milk of mothers	—	—	[59]
54	Hg(II)	ICP-MS	Microfluidic	3.49×10^{-10} M	$0.2–4.0 \mu g L^{-1}$	Aqueous samples	—	Gold nanoparticles	[60]
55	Total Hg	ICP-MS	Acid digestion	$0.053–0.01 \mu g g^{-1}$	—	Pharmaceutical ingredients	Low residual carbon content in digests is desirable to minimize some interference	—	[61]
56	Hg(II)	ICP-MS	Adsorption	—	—	Wastewaters	—	Multiwalled carbon nanotubes	[62]
57	Hg(II)	ICP-OES	Extraction	1.49×10^{-10} M	—	Fish samples	Selective in presence of Na$^+$, K$^+$, Ca$^{2+}$, Cd$^{2+}$, Cr$^{3+}$, Fe$^{2+}$, Cu$^{2+}$, Co$^{2+}$, Ni$^{2+}$, Mn$^{2+}$, Cd$^{2+}$, and Pb$^{2+}$ into $1 \text{ mg} L^{-1}$ solutions of Hg(II) in pH 8	Ion imprinted polymer	[63]
58	Total Hg	CV-ICP-MS	Microwave digestion	$3 \text{ ng} g^{-1}$	—	Plants and soil	—	—	[64]
59	Total Hg	ICP-MS	Microwave assisted digestion	—	—	Rice	—	—	[65]
60	GEM	CV-ICP-MS	Thermal analysis	20×10^{-15} g	—	Atmospheric particulates	—	—	[66]
61	Hg(II) and MeHg	HPLC-ICPMS	HF-LPMEd	5.48×10^{-19} (Hg$^{2+}$) and 1×10^{-17} (MeHg) M	Up to $50 \mu g L^{-1}$	Tap, river, and estuarine waters	Simultaneously selenium also determined along with mercury	—	[67]
62	Hg speciation	ICP-MS	Ion exchange chromatography	9.47×10^{-15} (Hg$^{2+}$), 1.25×10^{-10} (MeHg), 1.35×10^{-10} (Hg$^{2+}$), and 7.92×10^{-10} (PHg) M	$0.1–100 \mu g L^{-1}$ (all Hg species)	Sea water and marine fish	—	L-Cysteine or thiourea	[68]
63	Hg speciation	GC-ICP-MS	Preconcentration	27 (Hg$^{2+}$) and $12 \text{ ng} g^{-1}$ (MeHg)	—	Human hair	—	—	[69]
64	Total Hg	MC-ICPMS	Isotope ratio analysis	$0.1–0.2$ disintegrations per minute	—	Sediment core	Mercury and mercury isotope compositions are determined	—	[70]
S. number	Analyte	Analytical instrument used for the detection	Method	Limit of detection (LOD)**	Linearity range	Analyzed samples	Interference study	Supporting media	Reference
----------	-----------------	---	---	-----------------------------	-----------------	-------------------	-------------------	------------------	-----------
65	Hg(II) and MeHg	CVG-ICP-MS	Extraction	1.7 (Hg(II)) and 2.3 ng g$^{-1}$ (MeHg)	—	Fish samples	—	—	[71]
66	MeHg, Hg(II),	HPLC-CV-ICPMS	Extraction and separation	5.98×10^{-15} (Hg(II)), 2.17×10^{-12} (EtHg), and 1.8×10^{-8} (MeHg) M	—	Plasma/serum samples	—	—	[72]
67	Total Hg	ICP-MS	Microwave assisted digestion	—	—	Freshwater fish samples	—	—	[73]
68	Total Hg	ICP-MS	Isotope dilution and UV-photochemical vapor generation	0.5 pg g$^{-3}$	—	Biological tissues	Polyatomic interference is not detectable	Formic acid	[74]
69	Total Hg	ICP-MS	Calculation-isotope dilution	2×10^{-15} M	—	Diploria specimens	No isobaric interference was found	—	[75]
70	Hg speciation	ICP-MS	Anion exchange chromatographic separation	3.98×10^{-12} (Hg$^{2+}$), 1.11×10^{-13} (MeHg), 1.26×10^{-10} (EtHg), and 1.22×10^{-10} (PhHg) M	—	Fish samples	—	3-Mercapto-1-propanesulfonate	[76]
71	Total Hg	ICP-MS	Ultrasonic slurry sampling electrothermal vaporization	0.2 ng g$^{-3}$	—	Herbal samples	A.s., Cd, and Pb also determined along with Hg	8-Hydroxyquinoline	[77]
72	Total Hg	ICP-MS	Electrothermal vaporization	5.98×10^{-15} M	—	Water associated with crude oil production	By preconcentration of analyte interference is avoided	—	[78]
73	THg	ICP-MS	Isotope dilution equation	4.98×10^{-18} M for THg $0.0005–1.321$ mg/kg for MeHg	Arctic cod	—	—	—	[79]

*For the conversion of limit of detection values into moles per liter (M) the atomic weight of Hg is taken as 200.59 g, MeHg as 215.59 g, EtHg as 229.59 g, and PhHg as 277.59 g.

**Solid-phase extraction; **LME: liquid-liquid microextraction; **TMAH: tetramethylammonium hydroxide; **HF-LPME: hollow fiber liquid phase microextraction.

Analytical instruments: CV-AAS: cloud vapor atomic absorption spectrometer; HG-AAS: hydride generation AAS; GF-AAS: graphite furnace AAS; ICP-OES: inductively coupled plasma optical emission spectrometer; ICP-MS: ICP-mass spectrometer; ICP-AES: ICP-atomic emission spectrometer; HPLC: high performance liquid chromatography; AFS: atomic fluorescence spectrometer; AMA: automatic mercury analyzer; DMA: direct mercury analyzer.
Number	Analyte	Analytical Instrument	Analytical Method	LOD	Linearity Range	Analyzed Samples	Interference Study	Supporting Media	Reference
1	Hg(II)	Fluorescence spectrophotometer	Fluorescence	4.0 x 10^{-9} M	6.0 - 450 nM	Water samples	10-fold of Pb^{2+}, Cu^{2+}, and Ag^{+} shows <7% influence on the determination of Hg^{2+} compared to reported ones	CdTe quantum dots	[80]
2	Hg(II)	Spectrophotometer	Colorimetric	23 x 10^{-9} M	0.00 - 0.31 μM	Water samples	Selective in presence of Ag^{+}, Cd^{2+}, Cu^{2+}, Co^{2+}, Ni^{2+}, and Pb^{2+}	Carbon nanodots	[81]
3	Hg(II)	Spectrophotometer	Colorimetric	2.6 x 10^{-9} M	0.001 - 1 μM	Water samples	Selective in presence of 20 μM Al^{3+}, Ca^{2+}, Co^{2+}, Cu^{2+}, Cd^{2+}, Fe^{3+}, Mn^{2+}, Ni^{2+}, Pb^{2+}, and Zn^{2+}	Gold nanoparticles	[82]
4	Hg(II)	Spectrophotometer	Colorimetric	—	0.83 - 8.6 μg/mL	Water samples	The tolerance limit of Cu^{2+}, V^{5+}, Ag^{+}, Pd^{2+}, Pt^{4+}, Au^{3+}, Fe^{2+}, Ni^{2+}, Cd^{2+}, Pb^{2+}, and Cr^{6+} is in the range of 0.11 - 0.41 μg/mL in the determination of 1.91 μg/mL of Hg^{2+}	5-Methylthiophene-2-carboxaldehydeethylenediamine	[83]
5	Hg(II)	Spectrofluorometer	Fluorescence	1.73 x 10^{-9} M	2.0 nM - 60 μM	—	Interference of major cations studied ONPCRs 1	5-Methylthiophene-2-carboxaldehydeethylenediamine	[84]
6	Hg(II)	Spectrophotometer	Colorimetric	50 x 10^{-9} M	20 - 1000 nM	Water samples	Selective in presence of Ni^{2+}, Co^{2+}, Ca^{2+}, Cu^{2+}, Na^{+}, K^{+}, As^{3+}, Mg^{2+}, Cd^{2+}, and Fe^{2+}	Silver nanoparticles	[85]
7	Hg(II)	UV-Vis spectrophotometer	Colorimetric	1.35 x 10^{-6} M	—	Drinking water	Cd^{2+}, Pb^{2+}, Fe^{3+}, and Ba^{2+} do not interfere in the determination of Hg^{2+} but Mg^{2+}, Ca^{2+}, and Mn^{2+} interfere slightly	Gold nanoparticles	[86]
8	Hg(II)	Spectrofluorometer and UV-spectrometer	Colorimetric and fluorescent sensor	2.7 x 10^{-8} M	0 - 1.0 x 10^{-6} M	Water samples and living cells	The fluorescent signal for Hg(II) is not influenced by the major metal ions including Fe(III), Cu(II), and Al(III)	2,4-Dichloroquinazoline	[87]
9	Hg(II)	Spectrophotometer	Colorimetric	5.3 x 10^{-13} M	1.0 x 10^{-12} - 8.6 x 10^{-4} M	Water samples and SRM	Selective in presence of Mn^{2+}, Fe^{2+}, Fe^{3+}, Ni^{2+}, Co^{2+}, Cd^{2+}, and Pb^{2+}	Chromoionophore V	[88]
10	Hg(II)	Spectrofluorometer	Fluorescent and colorimetric	1.0 x 10^{-9} M	—	Spiked water samples	Na^{+}, Mg^{2+}, K^{+}, Cr^{3+}, Mn^{2+}, Co^{2+}, Ni^{2+}, Fe^{3+}, Cu^{2+}, Zn^{2+}, Ag^{+}, Cd^{2+}, and Pb^{2+} did not interfere	Rhodamine B	[89]
11	Hg(II)	Spectrofluorometer	Fluorescence	14.2 x 10^{-9} M	0 - 5 x 10^{-7} M	Aqueous solutions	Cd^{2+}, Cu^{2+}, and Ag^{+} do not interfere	Thioether-appended dipetide	[90]
12	Hg(II)	Spectrofluorometer	Fluorescence	0.5 x 10^{-9} M	0.0005 - 0.01 μM	Lakewater samples	Zn^{2+}, Pb^{2+}, Ni^{2+}, Ca^{2+}, Mg^{2+}, Cu^{2+}, Co^{2+}, Cd^{2+}, Fe^{3+}, and Mn^{2+} did not interfere	Carbonnanotubes	[91]
13	Hg(II)	Spectrofluorometer	Fluorescent	1.74 - 3.83 x 10^{-6} M	—	Living cells	Minor interference from Ag^{+}, Ca^{2+}, Cd^{2+}, Co^{2+}, Cu^{2+}, Fe^{2+}, Fe^{3+}, K^{+}, Mg^{2+}, Mn^{2+}, Na^{+}, Ni^{2+}, Pb^{2+}, and Rb^{+} and Zn^{2+}	Pyrene	[92]
14	Hg(II)	Spectrophotometer	Colorimetric	0.4 x 10^{-6} M	0.1 - 4.2 μg/mL	Water, biological, plant leaves, and soilsamples	Tolerance limit of the Cd^{2+}, Zn^{2+}, Ce^{3+}, Ce^{4+}, In^{3+}, Cr^{3+}, La^{3+}, Yb^{3+}, and Eu^{3+} is 300 μg/mL and the tolerance limit of the Co^{2+}, Cu^{2+}, Fe^{3+}, Ti^{4+}, Pb^{2+}, Ni^{2+}, and Ag^{+} is 100 μg/mL and at Hg(II) is 2.0 μg/mL	2,4,7-Triamino-6-phenylpteridine	[93]
S. number	Analyte	Analytical instrument used for the detection	Method	Limit of detection (LOD)2	Linearity range	Analyzed samples	Interference study	Supporting media	Reference
-----------	---------	---	--------	-------------------------------	-----------------	------------------	------------------	------------------	----------
15	Hg(II)	Spectrofluorophotometer	Fluorescent	1.0×10^{-7} M	2.0×10^{-7}–3.0×10^{-7} M	Water samples	Selective in presence of Na$^+$, K$^+$, NH$_4^+$, Ba$^{2+}$, Zn$^{2+}$, Cd$^{2+}$, Mg$^{2+}$, Ca$^{2+}$, and Ni$^{2+}$	Conjugated polymer multilayer films	[94]
16	Hg(II)	Spectrophotometer	TGFRET3	0.49–0.87×10^{-9} M	1.0×10^{-9}–1.0×10^{-8} M	Water samples	Selective in presence of Mn$^{2+}$, Ba$^{2+}$, Ni$^{2+}$, Cu$^{2+}$, Ca$^{2+}$, Cd$^{2+}$, Mg$^{2+}$, Zn$^{2+}$, Al$^{3+}$, Fe$^{3+}$, and Pb$^{2+}$	Gold nanoparticles	[95]
17	Hg(II)	Spectrofluorometer	Fluorescent	1×10^{-9} M	0.01–0.12μM	Water samples	Selective in presence of Zn$^{2+}$, Pb$^{2+}$, Ni$^{2+}$, Co$^{2+}$, Ca$^{2+}$, Cu$^{2+}$, Mg$^{2+}$, Ni$^{2+}$, Ca$^{2+}$, Al$^{3+}$, and Fe$^{3+}$	Carbon nanodots	[96]
18	Hg(II)	Spectrofluorometer	Fluorescent	0.012×10^{-6} M	0.1μM	Tap and river water samples	Selective in presence of Ag$^+$, Pb$^{2+}$, Na$^+$, K$^+$, Cr$^{3+}$, Cd$^{2+}$, Ba$^{2+}$, Zn$^{2+}$, Mg$^{2+}$, Cu$^{2+}$, Ni$^{2+}$, Ca$^{2+}$, Al$^{3+}$, and Fe$^{3+}$	Rhodamine	[97]
19	Hg(II)	Spectrofluorometer	Fluorescence	2.24×10^{-9} M	5.0–100 nM	Drinking water	20-fold of Ca$^{2+}$, Mg$^{2+}$, Zn$^{2+}$, Cr$^{3+}$, Pb$^{2+}$, Cd$^{2+}$, Mn$^{2+}$, Cd$^{2+}$, Fe$^{3+}$, Al$^{3+}$, and Ni$^{2+}$, 10-fold of Fe$^{3+}$, and Cu$^{2+}$, 5-fold of Cu$^{2+}$, and the same concentration of Ag$^+$ caused almost no interference	Gold nanoparticles	[98]
20	Hg(II)	Spectrophotometer	Optical chemical sensor	0.18×10^{-12} M	7.2×10^{-13}–4.7×10^{-4} M	Tap water, river water, and canned tuna fish	Interference of Cu(II) eliminated with the addition of L-histidine as a masking agent	Synthesized ionophore	[99]
21	Hg(II)	UV-Vis spectrophotometer	Colorimetric sensor	5.0×10^{-6} M (visual), 1.0×10^{-7} M (UV-Vis)	—	Aqueous solutions	Mg$^{2+}$, Ca$^{2+}$, Zn$^{2+}$, Cd$^{2+}$, Cr$^{3+}$, Fe$^{3+}$, Pb$^{2+}$, Ni$^{2+}$, Co$^{2+}$, and Ag$^+$ did not interfere	Dimethyl sulfoxide	[100]
22	Hg(II)	Fluorescence spectrophotometer	Fluorescence probe	16×10^{-9} M	0.02–1.0μM	Aqueous solutions	Selective in the determination of Hg$^{2+}$, over other metal ions such as Fe$^{3+}$, Ca$^{2+}$, Mg$^{2+}$, Mn$^{2+}$, Cr$^{3+}$, Ni$^{2+}$, Cu$^{2+}$, Co$^{2+}$, and Pb$^{2+}$	Gold nanoparticles	[101]
23	Hg(II)	—	Colorimetric	1.2×10^{-9} M	2–30 nM	Water samples	Na$^+$ (2 mM), K$^+$ (2 mM), Fe$^{3+}$, Zn$^{2+}$ and Mg$^{2+}$ (0.1 mM), Ni$^{2+}$, Co$^{2+}$, Cd$^{2+}$, Pb$^{2+}$ and Cu$^{2+}$ (50 μM), and Ag$^+$ (3.5 μM) did not interfere with the detection of Hg$^{2+}$ (25 nM) in the mentioned amounts	Rhodamine B thiolactone	[102]

2For the conversion of limit of detection values into moles per liter (M) the atomic weight of Hg is taken as 200.59 g, MeHg as 215.59 g, EtHg as 229.9 g, and PhHg as 277.59 g.

3ONPCRs: oxygen-doped nitrogen-rich photoluminescent polymer carbon nanoribbons; 2Limit of quantification; 3TGFRET: time-gated fluorescence resonance energy transfer.
S. number	Analyte	Analytical instrument used for the detection	Method	Limit of detection (LOD)	Linearity range	Analyzed samples	Interference study	Supporting media	Reference
1	Hg(II)	DP-ASV	Electrochemical	4.99 × 10^{-8} M	—	Ambient water, tap, and wastewaters	Palladium–natural phosphate–carbon paste electrode enhances the selectivity for Hg^{2+}	Natural phosphate electrodes	[103]
2	Hg(II)	SW-ASV	Electrochemical	0.04 × 10^{-6} M	0.2–10.0 μM	Foodsuffs	Simultaneously both Cd^{2+} and Hg^{2+} are determined and 1000-fold for K^{+}, Na^{+}, Li^{+}, NH4^{+}, Ca^{2+}, Mg^{2+}, Pb^{2+}, Zn^{2+}, Cr^{2+}, Fe^{2+}, Co^{2+}, and Al^{3+} did not interfere	Carbon paste electrode	[104]
3	Hg(II)	Differential pulse voltammetry	Electrochemical	4.48 × 10^{-9} M	0.2–10 μg L^{-1}	Spiked fish and plant samples	Cu(II), Mg(II), As(III), and Cr(II) were possible interferers	Carbon paste electrode	[104]
4	Hg(II)	Cyclic voltammetry	Electrochemical	0.8 × 10^{-14} M	10^{-14}–10^{-7} M	—	Cu^{2+}, Pb^{2+}, Ni^{2+}, Zn^{2+}, Cr^{3+}, Cr^{6+}, Fe^{2+}, Fe^{3+}, Co^{2+}, and As^{3+} did not interfere	Gold atomic cluster-chitosan	[106]
5	Hg(II)	Voltammetric (cyclic and differential pulse)	Biosensor	3.93 × 10^{-12} M	0.005–0.034 mM	Water samples	The working potential controlled to minimize the interference of other metal ions in test medium	PANI and PANI-co-PDTDA polymer films	[107]
6	Hg(II)	ASV	Electrochemical	4.98 × 10^{-9} M	4–160 ppb	Aquatic solutions	400-fold mass ratio of Cu^{2+}, Mn^{2+}, Zn^{2+}, Cr^{2+}, Cr^{3+}, Fe^{2+}, Fe^{3+}, Ni^{2+}, and Co^{2+} did not interfere in the simultaneous determination of Cd^{2+}, Pb^{2+}, and Hg^{2+}	Triphenylphosphate	[109]
7	Hg(II)	SW-ASV	Electrochemical	9.2 × 10^{-5} M	0.1–150.0 nM	Soil, gasoline, fish, tap, and wastewaters	Ag^{+} has small interference in the determination of Hg^{2+}	L3-Alternate thiacalix[4]crown	[110]
8	Hg(II)	Potentiometer	Electrochemical	1.0 × 10^{-9} M	5.0 × 10^{-8}–1.0 × 10^{-2} M	—	The selectivity coefficient of the other ions is ranging from 2.9 to 4.9	PVC membrane	[111]
9	Hg(II)	Potentiometer	Electrochemical	3.05 × 10^{-12} M	1–500 nM	Water samples	Pb^{2+}, Th^{4+}, Cd^{2+}, Ni^{2+}, and Al^{3+} did not interfere	Gold nanoparticles	[112]
10	Hg(II)	DPSV	Electrochemical	1.9 × 10^{-9} M	40–170 μg L^{-1}	Wastewaters	—	Biotinyl Somatostatin-14 peptide	[113]
11	Hg(II)	SW-ASV	Electrochemical	1.9 × 10^{-9} M	40–170 μg L^{-1}	Wastewaters	—	Biotinyl Somatostatin-14 peptide	[114]
12	Hg(II)	Cyclic voltammetry	Electrochemical	3 × 10^{-6} M	5 × 10^{-6}–1.0 × 10^{-2} M	Contaminated water	Na^{+}, K^{+}, Mg^{2+}, Ca^{2+}, Zn^{2+}, Cu^{2+}, Cr^{2+}, Fe^{3+}, and Pb^{2+} did not interfere in the determination of Hg^{2+}	Dithizone and di-n-butyl phthalate	[115]
13	Hg(II)	DP-ASV	Electrochemical	0.483 × 10^{-10} M	300–700 ng mL^{-1}	—	No interference of Cd, Ni, Zn, and Cu in 50–250, 100–1000, and 5-fold in excess, respectively	Nanocellulosic fibers	[116]
14	Hg(II)	—	Electrochemical	0.5 × 10^{-9} M	1.0 nM–1.0 μM	—	Zn^{2+}, Mg^{2+}, Ca^{2+}, Pb^{2+}, Cd^{2+}, Mn^{2+}, Cu^{2+}, Ni^{2+}, and Fe^{3+} did not interfere	G-quadruplex-hemin (G4-hemin)	[117]

*For the conversion of limit of detection values into moles per liter (M) the atomic weight of Hg is taken as 200.59 g, MeHg as 215.59 g, EtHg as 229.59 g, and PhHg as 277.59 g.

1PME: polymeric membrane electrode and CGE: coated graphite electrode.

Analytical instruments: DP-ASV: differential pulse anodic stripping voltammetry; SW-ASV: square wave anodic stripping voltammetry.
S. number	Analyte	Analytical instrument used for the detection	Method	Limit of detection (LOD)	Linearity range	Analyzed samples	Interference study	Supporting media	Reference
1	Speciation	Continuous mercury analyzer	Thermal desorption	—	—	Solid samples (fly ash)	—	—	[118]
2	GEM	Portable mercury analyzer	—	—	—	Atmosphere	—	—	[119]
3	Hg(II)	SERS	—	2.24×10^{-12} M	0.001–0.5 ng mL$^{-1}$	Drinking water samples	Selective in presence of Zn$^{2+}$, Mg$^{2+}$, Fe$^{3+}$, Cu$^{2+}$, Pb$^{2+}$, and Mn$^{2+}$	Gold nanoparticles	[120]
4	Hg(II)	HPLC	SPE	1.99×10^{-10}–4.48×10^{-9} M	2.7–3.0 μg L$^{-1}$	Water samples	Simultaneously Ni$^{2+}$, Co$^{2+}$, and Hg$^{2+}$ are determined	Carbon nanotubes	[121]
5	Hg(II)	SERS	—	0.1×10^{-9} M	0.1–1000 nM	Groundwater	Ag$^+$ was also determined along with Hg$^{2+}$ and K$^+$, Cu$^{2+}$, Ag$^+$, Fe$^{3+}$, Fe$^{2+}$, NH$_4^+$, Ca$^{2+}$, Co$^{2+}$, Cd$^{2+}$, and Zn$^{2+}$ did not interfere	Oligonucleotide-functionalized magnetic silica sphere	[122]
6	Total Hg	AMA	Acid digestion	—	—	Eggs and blood of Eretmochelys imbricata	Along with mercury Cd, Cu, Zn, and Pb are also determined	—	[123]
7	Hg(II)	Luminescence spectrometer	Fluorescence	3.0–9.0×10^{-9} M	0.05–1.0 μM	Water samples	Fairly selective in presence of Ag$^+$, Fe$^{3+}$, Zn$^{2+}$, Ca$^{2+}$, Mn$^{2+}$, Mg$^{2+}$, Co$^{2+}$, Pb$^{2+}$, Ni$^{2+}$, Cd$^{2+}$, and Cu$^{2+}$	Silver nanoclusters	[124]
8	Hg(II)	X-ray fluorescence spectrometer	Preconcentration	4.98×10^{-12} M	Upto 20 mg L$^{-1}$	Drinking water	—	Activated carbon	[125]
9	Total Hg	DMA	Acid digestion	0.14 ng	—	Particulate matter	Back extraction and another chemical process make the method selective for MeHg and EtHg	GF/C filters	[126]
10	MeHg and EtHg	HPLC	Chemiluminescence	0.16 ng g$^{-1}$	0.5–20 ng Hg	Soil and sediment samples	Back extraction and another chemical process make the method selective for MeHg and EtHg	Emetine dithiocarbamate	[127]
11	Total Hg	CV-CCPM-OES	Microwave digestion	2.39×10^{-10} M	0.27–55 ng kg$^{-1}$	Soil samples	—	—	[128]
12	Hg(II)	Chemososimeter	Fluorescence	1.71×10^{-9} M	1.0×10^{-1}–1.0×10^{-6} M	Blood serum of mice	—	Rhodamine	[129]
13	Hg(II)	XRF	Acid digestion	9.97×10^{-9} M	—	Soils from industrial complex	—	—	[130]
14	Total Hg	DMA	Combustion	0.12 ng	0.5–5 ng	Soil and leaf samples	—	—	[131]
15	MeHg and Hg(II)	GC-MS	Matrix solid-phase dispersion	0.06 (MeHg) and 0.12 (Hg(II)) μg/g	—	Tuna fish, angel shark, and guitarfish	—	—	[132]
16	GEM	Concentration-weighted trajectory model	—	—	Particulate matter	QFF	—	—	[133]

*For the conversion of limit of detection values into moles per liter (M) the atomic weight of Hg is taken as 200.59 g, MeHg as 215.59 g, EtHg as 229.99 g, and PhHg as 277.99 g.

1SERS: surface enhanced Raman scattering; 2CV-CCPM-OES: cold-vapor capacitively coupled plasma microtorch fluorescence spectrometry.

Analytical instruments: HPLC: high performance liquid chromatography; AMA: automatic mercury analyzer; DMA: direct mercury analyzer; XRF: X-ray fluorescence.
Various measurement techniques that can be available for the determination of mercury species in ambient air were reviewed by Pandey et al. [154]. This study also concluded that most of the researchers preferred CV-AAS and CV-AFS technique for the measurement of different mercury species in ambient air. In comparison of methods, acid digestion and thermal method, for the analysis of mercury in ambient air acid digestion, is better than thermal method. By the thermal methods the values can be obtained 30% lower than the acid digestion method [155].

In the analysis of mercury species in various environmental samples, selectivity and range of linearity of the method also play a major role due to the presence of multielements in the real samples. Based on the present study, most of the spectrophotometric, spectrofluorometric, and electroanalytical methods were discussed regarding the interfering ion studies and linearity range of the method. These studies will give a clear picture about the determination of mercury species in presence of other ions which validates the methods.

Regarding the merits of the different methods for speciation and analysis of mercury, the usage of nonchromatographic methods has an advantage in terms of speed of analysis, inexpensiveness, and convenience to find the mercury in various environmental samples. But for the complete speciation studies of mercury in biological and environmental samples chromatographic methods are useful [156]. The validity of analytical methods can be enhanced with the analysis of the certified reference materials along with the real samples. In recent years, the researchers mostly preferred GC coupled with AFS or ICP-MS for the determination and speciation of mercury in natural waters [157]. In electroanalytical methods, the validity of the methods depends on various factors such as type of electrode, preconcentration, and supporting materials [139] and these methods are cost-effective, selective, and sensitive [143].

3. Conclusions

The present study revealed the recent developments in the determination and speciation studies of mercury by a range of analytical techniques. Our previous study [2] also described the challenges in the methodology for mercury determination. This review showed that most researchers focused on the determination of Hg(II) rather than speciation studies. On the other hand, the speciation studies [23, 24, 29, 36, 37, 44, 47, 50, 54, 58, 68, 69, 76, 118] accurately revealed the toxicity of mercury rather than the total mercury or single species determinations. In the papers reviewed, most researchers were aware of the interfering ions in the determination of mercury and its different forms. In the analytical method, a study of interfering ions is very important because it can predict the selectivity of the method. In future studies, it will be important to focus on speciation studies of mercury rather than a determination of the total mercury.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] ATSDR (Agency for Toxic Substances and Disease Registry), Toxicological Profile for Mercury, US Department of Health and Human Services, Public Health Service, 1999, http://www.atsdr.cdc.gov/toxprofiles/tp46.pdf.
[2] L. N. Suvarapu, Y.-K. Seo, and S.-O. Baek, “Speciation and determination of mercury by various analytical techniques,” Reviews in Analytical Chemistry, vol. 32, no. 3, pp. 225–245, 2013.
[3] K. Marumoto and S. Imai, “Determination of dissolved gaseous mercury in seawater of Minamata Bay and estimation for mercury exchange across air-sea interface,” Marine Chemistry, vol. 168, pp. 9–17, 2015.
[4] N. A. Panichev and S. E. Panicheva, “Determination of total mercury in fish and sea products by direct thermal decomposition atomic absorption spectrometry,” Food Chemistry, vol. 166, pp. 432–441, 2015.
[5] R. Fernández-Martínez, I. Rucandio, I. Gómez-Pinilla, F. Borlaf, F. García, and M. T. Larrea, “Evaluation of different digestion systems for determination of trace mercury in seaweeds by cold vapour atomic fluorescence spectrometry,” Journal of Food Composition and Analysis, vol. 38, pp. 7–12, 2015.
[6] J. Pinedo-Hernández, J. Marrugo-Negrete, and S. Diez, “Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia,” Chemosphere, vol. 119, pp. 1289–1295, 2015.
[7] Z. H. Fernandez, L. A. V. Rojas, A. M. Alvarez et al., “Application of cold vapor-atomic absorption (CVAAS) spectrometry and inductively coupled plasma-atomic emission spectrometry methods for cadmium, mercury and lead analyses of fish samples. Validation of the method of CVAAS,” Food Control, vol. 48, pp. 37–42, 2015.
[8] H. R. Rajabi, M. Shamsipur, M. Z. Zahedi, and M. Roushani, “On-line flow injection solid phase extraction using imprinted polymeric nanobeads for the preconcentration and determination of mercury ions,” Chemical Engineering Journal, vol. 259, pp. 330–337, 2015.
[9] M. M. Silva Jr., L. O. Bastos Silva, D. J. Leao, W. N. Lopes dos Santos, B. Welz, and S. L. Costa Ferreira, “Determination of mercury in alcohol vinegar samples from Salvador, Bahia, Brazil,” Food Control, vol. 47, pp. 623–627, 2015.
[10] M. H. Mashhadizadeh, M. Amoli-Diva, M. R. Shapouri, and H. Afruzi, “Solid phase extraction of trace amounts of silver, cadmium, copper, mercury, and lead in various food samples based on ethylene glycol bis-mercaptoacetate modified 3-(trimethoxysilyl)-1-propanethiol coated Fe3O4 nanoparticles,” Food Chemistry, vol. 151, pp. 300–305, 2014.
[11] B. Parodi, A. Londonio, G. Polla, M. Savio, and P. Smichowski, “On-line flow injection solid phase extraction using oxidised carbon nanotubes as the substrate for cold vapour-atomic absorption determination of Hg(ii) in different kinds of water,” Journal of Analytical Atomic Spectrometry, vol. 29, no. 5, pp. 880–885, 2014.
[12] N. I. Ahmad, M. F. M. Noh, W. R. W. Mahiyuddin et al., “Mercury levels of marine fish commonly consumed in Peninsular Malaysia,” Environmental Science and Pollution Research, vol. 22, no. 5, pp. 3672–3686, 2015.
[13] M. Raissy, E. Rahimi, V. Nadeali, M. Ansari, and A. Shakerian, “Mercury and arsenic in green tiger shrimp from the Persian Gulf,” Toxicology and Industrial Health, vol. 30, no. 3, pp. 206–210, 2014.
A Miklavčič, A Casetta, J Snoj Tratnik et al., “Mercury, arsenic and selenium in fish from the Idrija mercury mine,” *Environmental Research*, vol. 117, pp. 488–494, 2014.

L. Chudaifah, B Irawan, and A Soegianto, “Concentration of lead, cadmium and mercury in common Pony fish (Leiognathus equulus) form ease Java coast, Indonesia and its impact on human health,” *Asian Journal of Water, Environment and Pollution*, vol. 11, no. 3, pp. 17–22, 2014.

L. B. Escudero, R A Olsina, and R G Wuilloud, “Polymer-supported ionic liquid phase extraction for trace inorganic and organic mercury determination in water samples by flow injection-cold vapor atomic absorption spectrometry,” *Talanta*, vol. 116, pp. 133–140, 2013.

L O dos Santos and V A Lemos, “Development of an online preconcentration system for determination of mercury in environmental samples,” *Water, Air, & Soil Pollution*, vol. 225, no. 9, pp. 2086–2094, 2014.

E Q Oreste, A de Jesus, R M de Oliveira, M M da Silva, M A Vieira, and A S Ribeiro, “New design of cold finger for sample preparation in open system: determination of Hg in biological samples by CV-AAS,” *Microchemical Journal*, vol. 109, pp. 5–9, 2013.

O Ouédraogo and M Amyot, “Mercury, arsenic and selenium concentrations in water and fish from sub-Saharan semi-arid freshwater reservoirs (Burkina Faso),” *Science of the Total Environment*, vol. 444, pp. 234–254, 2013.

A Miklavčič, A Casetta, J Snoj Tratnik et al., “Mercury, arsenic and selenium exposure levels in relation to fish consumption in the Mediterranean area,” *Environmental Research*, vol. 120, pp. 7–17, 2013.

C R Alvarez, M J Moreno, L L Alonso et al., “Mercury, methylmercury, and selenium in blood of bird species from Doñana National Park (Southwestern Spain) after a mining accident,” *Environmental Science and Pollution Research*, vol. 20, no. 8, pp. 5361–5372, 2013.

A Miklavčič, D Mazej, R Jačimović, T Dizdarović, and M Horvat, “Mercury in food items from the Idrija mercury mine area,” *Environmental Research*, vol. 125, pp. 61–68, 2013.

A Bratkić, N Ogrinc, J Kotnik et al., “Mercury speciation driven by seasonal changes in a contaminated estuarine environment,” *Environmental Research*, vol. 125, pp. 171–178, 2013.

E Stanisz, J Werner, and H Matusiewicz, “Mercury species determination by task specific ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction combined with cold vapour generation atomic absorption spectrometry,” *Microchemical Journal*, vol. 110, pp. 28–35, 2013.

P M Moraes, F A Santos, B Cavacci et al., “GFAAS determination of mercury in muscle samples of fish from Amazon, Brazil,” *Food Chemistry*, vol. 141, no. 3, pp. 2614–2617, 2013.

O Vaselli, P Higuera, B nisi et al., “Determination of gaseous Hg in the Mercury mining district of Mt. Amiata (Central Italy): a geochanical survey prior the reclamation project,” *Environmental Research*, vol. 125, pp. 179–187, 2013.

M Raisy, “Determination of mercury in some freshwater fish species from Chahrmahal va Bakhtiary Province, Iran and potential limits for human consumption,” *Bulletin of Environmental Contamination and Toxicology*, vol. 91, no. 6, pp. 667–672, 2013.

J Sysalová, J Kučera, M Fikrle, and B Dritinová, “Determination of the total mercury in contaminated soils by direct solid sampling atomic absorption spectrometry using an AMA-254 device and radiochemical neutron activation analysis,” *Microchemical Journal*, vol. 110, pp. 691–694, 2013.

P Olmedo, A Pla, A F Hernández, F Barbier, L Ayouni, and F Gil, “Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers,” *Environment International*, vol. 59, pp. 63–72, 2013.

S R Mousavi, M Balali-Mood, B Riahi-Zanjani, H Yousefzadeh, and M Sadeghi, “Concentrations of mercury, lead, chromium, cadmium, arsenic and aluminium in irrigation water wells and wastewaters used for agriculture in mashhad, northeastern Iran,” *The International Journal of Occupational and Environmental Medicine*, vol. 4, no. 2, pp. 80–86, 2013.

M A Leiva, S Morales, and R Segura, “Comparative measurements and their compliance with standards of total mercury analysis in soil by cold vapour and thermal decomposition, amalgamation and atomic absorption spectrometry,” *Water, Air, and Soil Pollution*, vol. 224, no. 2, article L390, 2013.

A Ohki, K Hayashi, J Ohsako, T Nakajima, and H Takanashi, “Analysis of mercury and selenium during subcritical water treatment of fish tissue by various atomic spectrometric methods,” *Microchemical Journal*, vol. 106, pp. 357–362, 2013.

S V Hosseini, F Aflaki, S Sobhanardakani, L Tayebi, A B Lashkan, and J M Regenstein, “Analysis of mercury, selenium, and tin concentrations in canned fish marketed in Iran,” *Environmental Monitoring and Assessment*, vol. 185, no. 8, pp. 6407–6412, 2013.

M Khoshnamvand, S Kaboodvandpour, and F Ghiasi, “A comparative study of accumulated total mercury among white muscle, red muscle and liver tissues of common carp and silver carp from the Sanandaj Ghesghel Reservoir in Iran,” *Chemosphere*, vol. 90, no. 3, pp. 1236–1241, 2013.

P K Sringaram, K K Ayyalasomayajula, F Yu-Yueh, and J P Singh, “Comparison of laser induced breakdown spectroscopy and spark induced breakdown spectroscopy for determination of mercury in soils,” *Spectrochimica Acta Part B: Atomic Spectroscopy*, vol. 87, pp. 108–113, 2013.

A L Fox, E A Hughes, R P Trocie et al., “Mercury in the northeastern Chukchi Sea: distribution patterns in seawater and sediments and biomagnification in the benthic food web,” *Deep Sea Research Part II: Topical Studies in Oceanography*, vol. 102, pp. 56–67, 2014.

K L Bowman, C R Hammerschmidt, C H Lamborg, and G Swarr, “Mercury in the North Atlantic Ocean: the U.S. GEO-TRACES zonal and meridional sections,” *Deep Sea Research Part II: Topical Studies in Oceanography*, vol. 116, pp. 251–261, 2015.

M J da Silva, A P S Paim, M F Pimentel, M L Cervera, and M D Ia Guardia, “Determination of total mercury in nuts at ultratrace level,” *Analytica Chimica Acta*, vol. 838, pp. 13–19, 2014.

A A Abdel Aziz and S H Seda, “Detection of trace amounts of Hg**+** in different real samples based on immobilization of novel unsymmetrical tetradentate Schiff base within PVC membrane,” *Sensors and Actuators B: Chemical*, vol. 197, pp. 155–163, 2014.

G C Fang, Y H Lin, C Y Chang, and Y C Zheng, “Concentrations of particulates in ambient air, gaseous elementary mercury (GEM), and particulate-bound mercury (Hg(p)) at a traffic sampling site: a study of dry deposition in daytime and
nighttime," Environmental Geochemistry and Health, vol. 36, no. 4, pp. 605–612, 2014.

[41] S. Guédron, D. Tisserand, S. Garambois et al., “Baseline investigation of (methyl)mercury in waters, soils, sediments and key foodstuffs in the lower mekong basin: the rapidly developing city of Vientiane (Lao PDR),” Journal of Geochemical Exploration, vol. 143, pp. 96–102, 2014.

[42] G. Leng, L. Feng, S.-B. Li, S. Qian, and D.-Z. Dan, “Determination of mercury (Hg) in sediment by a sequential injection (SI) system with cold vapor generation atomic fluorescence spectrometry (CVAFS) detection after a rapid and mild microwave assisted digestion,” Environmental Forensics, vol. 14, no. 1, pp. 9–15, 2013.

[43] D. G. Da Silva, L. A. Portugal, A. M. Serra, S. L. C. Ferreira, and V. Cerdà, "Determination of mercury in rice by MSFIA and cold vapour atomic fluorescence spectrometry," Food Chemistry, vol. 137, no. 1–4, pp. 159–163, 2013.

[44] K. Huang, K. Xu, X. Hou, Y. Jia, C. Zheng, and L. Yang, "UV-induced atomization of gaseous mercury hydrides for atomic fluorescence spectrometric detection of inorganic and organic mercury after high performance liquid chromatographic separation," Journal of Analytical Atomic Spectrometry, vol. 28, no. 4, pp. 510–515, 2013.

[45] D. Qin, F. Gao, Z. Zhang et al., “Ultraviolet vapor generation atomic fluorescence spectrometric determination of mercury in natural water with enrichment by on-line solid phase extraction,” Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 88, pp. 10–14, 2013.

[46] L. A. Portugal, L. M. Laglera, A. N. Anthemidis, S. L. C. Ferreira, and M. Miró, "Pressure-driven mesosfluidic platform integrating automated on-chip renewable micro-solid-phase extraction for ultra-sensitive determination of waterborne inorganic mercury," Talanta, vol. 110, pp. 58–65, 2013.

[47] R. Yin, X. Feng, J. Wang et al., “Mercury speciation and mercury isotope fractionation during ore roasting process and their implication to source identification of downstream sediment in the Wanshan mercury mining area, SW China,” Chemical Geology, vol. 336, pp. 72–79, 2013.

[48] A. Weigelt, C. Temme, E. Bieber et al., “Measurements of atmospheric mercury species at a German rural background site from 2009 to 2011—methods and results,” Environmental Chemistry, vol. 10, no. 2, pp. 102–110, 2013.

[49] J. Gorecki, S. Diez, M. Macherzynski, E. Kalisinska, and J. Golas, “Improvements and application of a modified gas chromatography atomic fluorescence spectroscopy method for routine determination of methylmercury in biota samples,” Talanta, vol. 115, pp. 675–680, 2013.

[50] X. Song, M. Ye, X. Tang, and C. Wang, “Ionic liquids dispersive liquid–liquid microextraction and HPLC-atomic fluorescence spectrometric determination of mercury species in environmental waters,” Journal of Separation Science, vol. 36, no. 2, pp. 414–420, 2013.

[51] Z. Yun, B. He, Z. Wang, T. Wang, and G. Jiang, “Evaluation of different extraction procedures for determination of organic Mercury species in petroleum by high performance liquid chromatography coupled with cold vapor atomic fluorescence spectrometry,” Talanta, vol. 106, pp. 60–65, 2013.

[52] G.-R. Sheu, N.-H. Lin, C.-T. Lee et al., “Distribution of atmospheric mercury in northern Southeast Asia and South China sea during Dongsha experiment,” Atmospheric Environment, vol. 78, pp. 174–183, 2013.

[53] B. Zhu, J. Zhao, H. Yu, L. Yan, Q. Wei, and B. Du, "Development of novel naphthalimide-functionalized magnetic fluorescent nanoparticle for simultaneous determination and removal of Hg²⁺," Optical Materials, vol. 35, no. 12, pp. 2220–2225, 2013.

[54] B. D. Barst, C. R. Hammerschmidt, M. M. Chumchal et al., “Determination of mercury speciation in fish tissue with a direct mercury analyzer,” Environmental Toxicology and Chemistry, vol. 32, no. 6, pp. 1237–1241, 2013.

[55] Y. Zhang, G. Xiu, X. Wu et al., “Characterization of mercury concentrations in snow and potential sources, Shanghai, China,” Science of the Total Environment, vol. 449, pp. 434–442, 2013.

[56] A. Kolker, M. A. Engle, B. Peucker-Ehrenbrink et al., “Atmospheric mercury and fine particulate matter in coastal New England: implications for mercury and trace element sources in the northeastern United States,” Atmospheric Environment, vol. 79, pp. 760–768, 2013.

[57] S. M. A. Wabha, B. Gunasekaran, N. A. Shaharuddin et al., “A novel method for the determination of mercury in herbal preparation using an inhibitive assay based on the protease papain,” Journal of Environmental Microbiology and Toxicology, vol. 1, no. 1, pp. 1–4, 2013.

[58] A. V. Zmoozinski, S. Carneado, C. Ibáñez-Palomino, Á. Sahuquillo, J. F. López-Sánchez, and M. M. da Silva, “Method development for the simultaneous determination of methylmercury and inorganic mercury in seafood,” Food Control, vol. 46, pp. 351–359, 2014.

[59] S. M. Vieira, R. de Almeida, I. B. B. Holanda et al., “Total and methyl-mercury in hair and milk of mothers living in the city of Porto Velho and in villages along the Rio Madeira, Amazon, Brazil,” International Journal of Hygiene and Environmental Health, vol. 216, no. 6, pp. 682–689, 2013.

[60] K. Hsu, C. Lee, W. Tseng, Y. Chao, and Y. Huang, “Selective and eco-friendly method for determination of mercury(II) ions in aqueous samples using an on-line AuNPs-PDMS composite microfluidic device/ICP-MS system,” Talanta, vol. 128, pp. 408–413, 2014.

[61] J. S. Barin, B. Tischer, R. S. Picoloto et al., “Determination of toxic elements in tricyclic active pharmaceutical ingredients by ICP-MS: a critical study of digestion methods,” Journal of Analytical Atomic Spectrometry, vol. 29, no. 2, pp. 352–358, 2014.

[62] M. Hadavifar, N. Bahramifar, H. Younesi, and Q. Li, “Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolate groups,” Chemical Engineering Journal, vol. 237, pp. 217–228, 2014.

[63] E. Najafi, F. Aboufazeli, H. R. L. Z. Zhad, O. Sadeghi, and V. Amani, “A novel magnetic ion imprinted nano-polymer for selective separation and determination of low levels of mercury(II) ions in fish samples,” Food Chemistry, vol. 141, no. 4, pp. 4040–4045, 2013.

[64] J. Hellings, S. B. Adelouju, and T. V. Verheyen, “Rapid determination of ultra-trace concentrations of mercury in plants and soils by cold vapour inductively coupled plasma-optical emission spectrometry,” Microchemical Journal, vol. 111, pp. 62–66, 2013.

[65] L. R. Drennan-Harris, S. Wongwilawan, and J. F. Tyson, “Trace determination of total mercury in rice by conventional inductively coupled plasma mass spectrometry,” Journal of Analytical Atomic Spectrometry, vol. 28, no. 2, pp. 259–265, 2013.

[66] M. M. Lynam, B. Klaus, G. J. Keeler, and J. D. Blum, “Using thermal analysis coupled to isotope dilution cold vapor ICP-MS in the quantification of atmospheric particulate phase mercury;”
Journal of Analytical Methods in Chemistry

[67] F. Moreno, T. García-Barrera, and J. L. Gómez-Arizá, "Simultaneous speciation and preconcentration of ultra trace concentrations of mercury and selenium species in environmental and biological samples by hollow fiber liquid phase microextraction prior to high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry," Journal of Chromatography A, vol. 1300, pp. 43–50, 2013.

[68] X. Chen, C. Han, H. Cheng et al., "Rapid speciation analysis of mercury in seawater and marine fish by cation exchange chromatography hyphenated with inductively coupled plasma mass spectrometry," Journal of Chromatography A, vol. 1314, pp. 86–93, 2013.

[69] L. Laffont, L. Maurice, D. Amouroux et al., "Mercury speciation analysis in human hair by species-specific isotope-dilution using GC-ICP-MS," Analytical and Bioanalytical Chemistry, vol. 405, no. 9, pp. 3001–3010, 2013.

[70] J. Ma, H. Hintelmann, J. L. Kirk, and D. C. G. Muir, “Mercury concentrations and mercury isotope composition in lake sediment cores from the vicinity of a metal smelting facility in Flin Flon, Manitoba,” Chemical Geology, vol. 336, pp. 96–102, 2013.

[71] L. Schmidt, C. A. Bizzi, F. A. Duarte, V. L. Dressler, and E. M. M. Flores, "Evaluation of drying conditions of fish tissues for inorganic mercury and methylmercury speciation analysis," Microchemical Journal, vol. 108, pp. 53–59, 2013.

[72] S. S. de Souza, A. D. Campiglia, and F. Barbosa Jr., "A simple method for methylmercury, inorganic mercury and ethylmercury determination in plasma samples by high performance liquid chromatography-cold-vapor-inductively coupled plasma mass spectrometry," Analytica Chimica Acta, vol. 761, pp. 11–17, 2013.

[73] L. Noël, R. Chekri, S. Millour, M. Merlo, J.-C. Leblanc, and T. Guérin, "Distribution and relationships of As, Cd, Pb and Hg in freshwater fish from five French fishing areas," Chemosphere, vol. 90, no. 6, pp. 1900–1910, 2013.

[74] R. Liu, M. Xu, Z. Shi, J. Zhang, Y. Gao, and L. Yang, "Determination of total mercury in biological tissue by isotope dilution ICPMS after UV photochemical vapor generation," Talanta, vol. 117, pp. 371–375, 2013.

[75] C. H. Lamborg, G. Swarr, K. Hughen et al., "Determination of low-level mercury in coralline aragonite by calcination-isotope dilution-inductively coupled plasma-mass spectrometry and its application to Diploria species specimens from Castle Harbour, Bermuda," Geochimica et Cosmochimica Acta, vol. 109, pp. 27–37, 2013.

[76] X. Chen, C. Han, H. Cheng, J. Liu, Z. Xu, and X. Yin, "Determination of mercurial species in fish by inductively coupled plasma mass spectrometry with anion exchange chromatographic separation," Analytica Chimica Acta, vol. 796, pp. 7–13, 2013.

[77] M.-L. Lin and S.-J. Jiang, "Determination of As, Cd, Hg and Pb in herbs using slurry sampling electrothermal vapourisation inductively coupled plasma mass spectrometry," Food Chemistry, vol. 141, no. 3, pp. 2158–2162, 2013.

[78] T. D. S. Pierre, R. C. C. Rocha, and C. B. Duyck, "Determination of Hg in water associate to crude oil production by electrothermal vaporization inductively coupled plasma mass spectrometry," Microchemical Journal, vol. 109, pp. 41–45, 2013.

[79] K. Julshamm, A. Duncker, B. M. Nilsen et al., "A baseline study of levels of mercury, arsenic, cadmium and lead in Northeast Arctic cod (Gadus morhua) from different parts of the Barents Sea," Marine Pollution Bulletin, vol. 67, no. 1-2, pp. 187–195, 2013.

[80] X. Ding, L. Qu, R. Yang, Y. Zhou, and J. Li, "A highly selective and simple fluorescent sensor for mercury (II) ion detection based on cysteamine-capped CdTe quantum dots synthesized by the reflux method," Luminescence, vol. 30, no. 4, pp. 465–471, 2015.

[81] Z. Mohammadpour, A. Safavi, and M. Shamsipur, "A new label free colorimetric chemosensor for detection of mercury ion with tunable dynamic range using carbon nanodots as enzyme mimics," Chemical Engineering Journal, vol. 255, pp. 1–7, 2014.

[82] R. M. Tripathi, R. K. Gupta, P. Singh et al., "Ultra-sensitive detection of mercury(II) ions in water sample using gold nanoparticles synthesized by Trichoderma harzianum and their mechanistic approach," Sensors and Actuators B: Chemical, vol. 204, pp. 637–646, 2014.

[83] K. Deepa, Y. P. Raj, and Y. Lingappa, "Spectrophotometric determination of mercury in environmental samples using 5-methylthiophene-2-carboxaldehyde ethylenediamine (MTCED)," Der Pharma Chemica, vol. 6, no. 3, pp. 48–55, 2014.

[84] Z. X. Wang and S. N. Ding, "One-pot green synthesis of high quantum yield oxygen-doped, nitrogen-rich, photoluminescent polymer carbon nanoribbons as an effective fluorescent sensing platform for selective and sensitive detection of silver(I) and mercury(II) ions," Analytical Chemistry, vol. 86, no. 15, pp. 7436–7445, 2014.

[85] L. Rastogi, R. B. Sashidhar, D. Karunasagar, and J. Arunachalam, "Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg(II) in aqueous system," Talanta, vol. 118, pp. 111–117, 2014.

[86] Z. Chen, C. Zhang, Y. Tan et al., "Chitosan-functionalized gold nanoparticles for colorimetric detection of mercury ions based on chelation-induced aggregation," Microchimica Acta, vol. 182, no. 3-4, pp. 611–616, 2014.

[87] M. Wang, F.-Y. Yan, Y. Zou, N. Yang, L. Chen, and L.-G. Chen, "A rhodamine derivative as selective fluorescent and colorimetric chemosensor for mercury (II) in buffer solution, test strips and living cells," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 123, pp. 216–223, 2014.

[88] A. R. Firouz, A. A. Ensafi, and Z. Hajyani, "A highly sensitive and selective bulk optode based on dithiacycloclooctadecane derivative incorporating chromoionophore V for determination of ultratrace amounts of Hg(II)," Sensors and Actuators B: Chemical, vol. 177, pp. 710–716, 2013.

[89] S. Mandal, A. Banerjee, S. Lohar et al., "Selective sensing of Hg(II) using rhodamine-thiophene conjugate: red light emission and visual detection of intracellular Hg(II) at nanomolar level," Journal of Hazardous Materials, vol. 261, pp. 198–205, 2013.

[90] L. N. Neupane and K.-H. Lee, "Selective and sensitive turn on detection of Hg(II) in aqueous solution using a thioether-appended dipeptide," Tetrahedron Letters, vol. 54, no. 37, pp. 5007–5010, 2013.

[91] X. Qin, W. Lu, A. M. Asiri, A. O. Al-Youbi, and X. Sun, "Microwave-assisted rapid green synthesis of photoluminescent carbon nanodots from flour and their applications for sensitive and selective detection of mercury(II) ions," Sensors and Actuators, B: Chemical, vol. 184, pp. 156–162, 2013.

[92] H.-F. Wang and S.-P. Wu, "Highly selective fluorescent sensors for mercury(II) ions and their applications in living cell imaging," Tetrahedron, vol. 69, no. 8, pp. 1965–1969, 2013.

[93] A. S. Al-Kady and F. I. Abdelmonem, "Highly sensitive and selective spectrophotometric detection of trace amounts of..."
Hg$^{2+}$ in environmental and biological samples based on 2,4,7-triamino-6-phenylteridine,” *Sensors and Actuators B: Chemical*, vol. 182, pp. 87–94, 2013.

[94] Y. Li, H. Huang, Y. Li, and X. Su, “Highly sensitive fluorescent sensor for mercury (II) ion based on layer-by-layer self-assembled films fabricated with water-soluble fluorescent conjugated polymer,” *Sensors and Actuators B: Chemical*, vol. 188, pp. 772–777, 2013.

[95] D. Huang, C. Niu, M. Ruan, X. Wang, G. Zeng, and C. Deng, “Highly sensitive strategy for Hg$^{2+}$ detection in environmental water samples using long lifetime fluorescence quantum dots and gold nanoparticles,” *Environmental Science & Technology*, vol. 47, no. 9, pp. 4392–4398, 2013.

[96] W. Lu, X. Qin, A. M. Asiri, A. O. Al-Youbi, and X. Sun, “Green synthesis of carbon nanodots as an effective fluorescent probe for sensitive and selective detection of mercury(II) ions,” *Journal of Nanoparticle Research*, vol. 15, pp. 1344–1350, 2013.

[97] J. Zhang, Y. Zhou, W. Hu, L. Zhang, Q. Huang, and T. Ma, “Highly selective fluorescence enhancement chemosensor for Hg$^{2+}$ based on rhodamine and its application in living cells and aqueous media,” *Sensors and Actuators, B: Chemical*, vol. 183, pp. 290–296, 2013.

[98] L. Yan, Z. Chen, Z. Zhang, C. Qu, L. Chen, and D. Shen, “Fluorescent sensing of mercury(II) based on formation of catalytic gold nanoparticles,” *Analyt.,* vol. 138, no. 15, pp. 4280–4283, 2013.

[99] A. R. Firooz, A. A. Ensafi, K. Karimi, and H. Sharghi, “Development of a specific and highly sensitive optical chemical sensor for determination of Hg(II) based on a new synthesized ionophore,” *Materials Science and Engineering C*, vol. 33, no. 7, pp. 4167–4172, 2013.

[100] Q. Lin, Y.-P. Fu, P. Chen, T.-B. Wei, and Y.-M. Zhang, “Colorimetric chemosensors designed to provide high sensitivity for Hg$^{2+}$ in aqueous solutions,” *Dyes and Pigments*, vol. 96, no. 1, pp. 1–6, 2013.

[101] D. Tan, Y. He, X. Xing, Y. Zhao, H. Tang, and D. Pang, “Aptamer functionalized gold nanoparticles based fluorescent probe for the detection of mercury (II) ion in aqueous solution,” *Talanta*, vol. 113, pp. 26–30, 2013.

[102] J. Liu, D. Wu, X. Yan, and Y. Guan, “Naked-eye sensor for rapid determination of mercury ion,” *Talanta*, vol. 116, pp. 563–568, 2013.

[103] F. El Aroui, S. Lahrich, A. Farahi et al., “Palladium particles-impregnated natural phosphate electrodes for electrochemical determination of mercury in ambient water samples,” *Electroanalysis*, vol. 26, pp. 1751–1760, 2014.

[104] A. Afkhami, S. Sayari, F. Soltani-Felehgari, and T. Madrakian, “$\text{Ni}_4\text{Zn}_2\text{Fe}_4\text{O}_9$ nanocomposite modified carbon paste electrode for highly sensitive and selective simultaneous electrochemical determination of trace amounts of mercury (II) and cadmium (II),” *Journal of the Iranian Chemical Society*, vol. 12, no. 2, pp. 257–265, 2014.

[105] A. Chira, B. Bucur, M. P. Bucur, and G. L. Radu, “Electrode-modified with nanoparticles composed of 4,4’-bipyridine-silver coordination polymer for sensitive determination of Hg(II), Cu(II) and Pb(II),” *New Journal of Chemistry*, vol. 38, no. 11, pp. 5641–5646, 2014.

[106] P. K. Aneesh, S. R. Nambiar, T. P. Rao, and A. Ajayaghosh, “Electrochemical synthesis of a gold atomic cluster-chitosan nanocomposite film modified gold electrode for ultra-trace determination of mercury,” *Physical Chemistry Chemical Physics*, vol. 16, no. 18, pp. 8529–8535, 2014.

[107] B. Siwana, C. van der Horst, E. Iwuoha, and V. Somerset, “Amperometric determination of cadmium, lead, and mercury metal ions using a novel polymer immobilised horseradish peroxidase biosensor system,” *Journal of Environmental Science and Health Part A*, vol. 49, no. 13, pp. 1501–1511, 2014.

[108] T. Shahar, N. Tal, and D. Mandler, “The synthesis and characterization of thiol-based aryl diazonium modified glassy carbon electrode for the voltammetric determination of low levels of Hg(II),” *Journal of Solid State Electrochemistry*, vol. 17, no. 6, pp. 1543–1552, 2013.

[109] H. Bagheri, A. Afkhami, K. Mohssenfar, M. Rezaei, and A. Shrirad, “Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode,” *Sensors and Actuators, B: Chemical*, vol. 186, pp. 451–460, 2013.

[110] R. K. Mahajan, A. Kamal, N. Kumar, V. Bhalla, and M. Kumar, “Selective sensing of mercury(II) using PVC-based membranes incorporating recently synthesized 1,3-alternate thiacalix[4]crown ionophore,” *Environmental Science and Pollution Research*, vol. 20, no. 5, pp. 3086–3097, 2013.

[111] V. K. Gupta, B. Sethi, R. A. Sharma, S. Agarwal, and A. Bharti, “Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor,” *Journal of Molecular Liquids*, vol. 177, pp. 114–118, 2013.

[112] M. Behzad, M. Asgari, M. Shamspur, and M. G. Maragheha, “Impedimetric and stripping voltammetric detection of sub-nanomolar amounts of mercury at a gold nanoparticle modified glassy carbon electrode,” *Journal of the Electrochemical Society*, vol. 160, no. 3, pp. B31–B36, 2013.

[113] E. Bernalte, C. M. Sanchez, and E. P. Gil, “High-throughput mercury monitoring in indoor dust microsamples by bath ultrasonic extraction and anodic stripping voltammetry on gold nanoparticles-modified screen-printed electrodes,” *Electroanalysis*, vol. 25, no. 1, pp. 289–294, 2013.

[114] N. Daud, N. A. Yusof, and S. M. M. Nor, “Electrochemical characteristic of biotinyl somatostatin-14/Nafion modified gold electrode in development of sensor for determination of Hg(II),” *International Journal of Electrochemical Science*, vol. 8, no. 7, pp. 10086–10099, 2013.

[115] A. K. Hassan, “Chemical sensor for determination of mercury in contaminated water,” *Modern Chemistry & Applications*, vol. 1, no. 4, pp. 1–4, 2013.

[116] D. S. Rajawat, A. Kardam, S. Srivastava, and S. P. Satinagas, “Adsorptive stripping voltammetric technique for monitoring of mercury ions in aqueous solution using nano cellulose fibers modified carbon paste electrode,” *National Academy Science Letters*, vol. 36, no. 2, pp. 181–189, 2013.

[117] Z. Zhang, J. Yin, Z. Wu, and R. Yu, “Electrocatalytic assay of mercury(II) ions using a bifunctional oligonucleotide signal probe,” *Analytica Chimica Acta*, vol. 762, pp. 47–53, 2013.

[118] M. Rumayor, M. Diaz-Somoano, M. A. Lopez-Anton, and M. R. Martinez-Tarazona, “Application of thermal desorption for the identification of mercury species in solids derived from coal utilization,” *Chemosphere*, vol. 119, pp. 459–465, 2015.

[119] P. Higuera, R. Oyarzun, J. Kotnik et al., “A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: separating fads from facts,” *Environmental Geochemistry and Health*, vol. 36, pp. 713–734, 2013.

[120] L. Xu, H. Yin, W. Ma, H. Kuang, L. Wang, and C. Xu, “Ultrasonic SERS detection of mercury based on the assembled gold...
nanochains,” *Biosensors and Bioelectronics*, vol. 67, pp. 472–476, 2015.

[121] Q. Zhou, A. Xing, and K. Zhao, “Simultaneous determination of nickel, cobalt and mercury ions in water samples by solid phase extraction using multiwalled carbon nanotubes as adsorbent after chelating with sodium diethyldithiocarbamate prior to high performance liquid chromatography,” *Journal of Chromatography A*, vol. 1360, pp. 76–81, 2014.

[122] M. Liu, Z. Wang, S. Zong et al., “SERS detection and removal of mercury(II)/silver(I) using oligonucleotide-functionalized core-shell magnetic silica sphere@Au nanoparticles,” *ACS Applied Materials & Interfaces*, vol. 6, no. 10, pp. 7371–7379, 2014.

[123] M. Ehsanpour, M. Afkhami, R. Khoshnood, and K. J. Reich, “Determination and maternal transfer of heavy metals (Cd, Cu, Zn, Pb and Hg) in the Hawsbill sea turtle (Eretmochelys imbricata) from a nesting colony of Qeshm Island, Iran,” *Bulletin of Environmental Contamination and Toxicology*, vol. 92, no. 6, pp. 667–673, 2014.

[124] R.-Z. Wang, D.-L. Zhou, H. Huang, M. Zhang, J.-J. Feng, and A.-J. Wang, “Water-soluble homo-oligonucleotide stabilized fluorescent silver nanoclusters as fluorescent probes for mercury ion,” *Microchimica Acta*, vol. 180, no. 13-14, pp. 1287–1293, 2013.

[125] P. R. Aranda, L. Colombo, E. Perino, I. E. De Vito, and J. Raba, “Solid-phase preconcentration and determination of mercury(II) using activated carbon in drinking water by X-ray fluorescence spectrometry,” *X-Ray Spectrometry*, vol. 42, no. 2, pp. 100–104, 2013.

[126] H. Jin and G. Liebezeit, “Tidal cycles of total particulate mercury in the jade bay, lower saxonian wadden sea, southern north sea,” *Bulletin of Environmental Contamination and Toxicology*, vol. 90, no. 1, pp. 97–102, 2013.

[127] H. Kodamatani and T. Tomiyasu, “Selective determination method for measurement of methylmercury and ethylmercury in soil/sediment samples using high-performance liquid chromatography-chemiluminescence detection coupled with simple extraction technique,” *Journal of Chromatography A*, vol. 1288, pp. 155–159, 2013.

[128] T. Frentiu, A. I. Mihaltan, M. Senila et al., “New method for mercury determination in microwave digested soil samples based on cold vapor capacitively coupled plasma microtorch optical emission spectrometry: comparison with atomic fluorescence spectrometry,” *Microchemical Journal*, vol. 110, pp. 545–552, 2013.

[129] W.-Y. Liu, S.-L. Shen, H.-Y. Li, J.-Y. Miao, and B.-X. Zhao, “Fluorescence turn-on chemodosimeter for rapid detection of mercury(II) ions in aqueous solution and blood from mice with toxicosis,” *Analytica Chimica Acta*, vol. 791, pp. 65–71, 2013.

[130] C. L. Miller, D. B. Watson, B. P. Lester, K. A. Lowe, E. M. Pierce, and L. Liang, “Characterization of soils from an industrial complex contaminated with elemental mercury,” *Environmental Research*, vol. 125, pp. 20–29, 2013.

[131] J. J. Melendez-Perez and A. H. Fostier, “Assessment of direct mercury analyzer to quantify mercury in soils and leaf samples,” *Journal of the Brazilian Chemical Society*, vol. 24, no. 11, pp. 1880–1886, 2013.

[132] K. Duarte, C. I. L. Justino, A. C. Freitas, A. M. P. Gomes, A. C. Duarte, and T. A. P. Rocha-Santos, “Disposable sensors for environmental monitoring of lead, cadmium and mercury,” *TrAC Trends in Analytical Chemistry*, vol. 64, pp. 183–190, 2015.

[133] L. Cheng, L. Zhang, P. Blanchard, J. Dalziel, and R. Tordon, “Concentration-weighted trajectory approach to identifying potential sources of specified atmospheric mercury at an urban coastal site in Nova Scotia, Canada,” *Atmospheric Chemistry and Physics*, vol. 13, no. 12, pp. 6031–6048, 2013.

[134] L. N. Suvarapu, Y. K. Seo, and S. O. Baek, “Determination of mercury in various environmental samples,” *Asian Journal of Chemistry*, vol. 25, no. 10, pp. 5599–5601, 2013.

[135] M. S. El-Shahawi and H. M. Al-Saidi, “Dispersive liquid-liquid microextraction for chemical speciation and determination of ultra-trace concentrations of metal ions,” *Trends in Analytical Chemistry*, vol. 44, pp. 12–24, 2013.

[136] S. L. C. Ferreira, L. O. B. Silva, F. A. de Santana, M. M. S. Junior, G. D. Matos, and W. N. L. dos Santos, “A review of reflux systems using cold finger for sample preparation in the determination of volatile elements,” *Microchemical Journal*, vol. 106, pp. 307–310, 2013.

[137] Y. Gao, R. Liu, and L. Yang, “Application of chemical vapor generation in ICP-MS: a review,” *Chinese Science Bulletin*, vol. 58, no. 17, pp. 1980–1991, 2013.

[138] R. Sánchez, J. L. Todoli, C.-P. Lienemann, and J.-M. Mermet, “Determination of trace elements in petroleum products by inductively coupled plasma techniques: a critical review,” *Spectrochimica Acta Part B: Atomic Spectroscopy*, vol. 88, pp. 104–126, 2013.

[139] D. Martín-Yerga, M. B. González-García, and A. Costa-García, “Electrochemical determination of mercury: a review,” *Talanta*, vol. 116, pp. 1091–1104, 2013.

[140] J. Chang, G. Zhou, E. R. Christensen, R. Heideman, and J. Chen, “Graphene-based sensors for detection of heavy metals in water: a review,” *Analytical and Bioanalytical Chemistry*, vol. 406, pp. 3957–3975, 2014.

[141] Y. L. Yu and J. H. Wang, “Recent advances in flow-based sample pretreatment for the determination of metal species by atomic spectrometry,” *Chinese Science Bulletin*, vol. 58, no. 17, pp. 1992–2002, 2013.

[142] Y. Yin, J. Liu, and G. Jiang, “Recent advances in speciation analysis of mercury, arsenic and selenium,” *Chinese Science Bulletin*, vol. 58, no. 2, pp. 150–161, 2013.

[143] C. Gao and X.-J. Huang, “Voltammetric determination of mercury(II),” *Trends in Analytical Chemistry*, vol. 51, pp. 1–12, 2013.

[144] F. A. Duarte, B. M. Soares, A. A. Vieira et al., “Assessment of modified matrix solid-phase dispersion as sample preparation for the determination of CH₃Hg⁺ and Hg⁰⁺ in fish,” *Analytical Chemistry*, vol. 85, no. 10, pp. 5015–5022, 2013.

[145] S. L. C. Ferreira, V. A. Lemos, L. O. B. Silva et al., “Analytical strategies of sample preparation for the determination of mercury in food matrices—a review,” *Microchemical Journal*, vol. 121, pp. 227–236, 2015.

[146] A. F. Lima, M. C. Da Costa, D. C. Ferreira, E. M. Richter, and R. A. A. Munoz, “Fast ultrasound-assisted treatment of inorganic fertilizers for mercury determination by atomic absorption spectrometry and microwave-induced plasma spectrometry with the aid of the cold-vapor technique,” *Microchemical Journal*, vol. 118, pp. 40–44, 2015.

[147] P. Pelcová, H. Dočekalová, and A. Kleckerová, “Determination of mercury species by the diffusive gradient in thin film technique and liquid chromatography—atomic fluorescence spectrometry after microwave extraction,” *Analytica Chimica Acta*, vol. 866, pp. 21–26, 2015.

[148] Z. Chen, C. Zhang, H. Ma et al., “A non-aggregation spectrometric determination for mercury ions based on gold nanoparticles and thiocyanuric acid,” *Talanta*, vol. 134, pp. 603–606, 2015.
[149] E. Fernández, L. Vidal, D. Martín-Yerga, M. D. C. Blanco, A. Canals, and A. Costa-García, "Screen-printed electrode based electrochemical detector coupled with ionic liquid dispersive liquid–liquid microextraction and microvolume back-extraction for determination of mercury in water samples," *Talanta*, vol. 135, pp. 34–40, 2015.

[150] M. M. Silva, L. O. Bastos Silva, D. J. Leao, W. N. Lopes dos Santos, B. Welz, and S. L. Costa Ferreira, “Determination of mercury in alcohol vinegar samples from Salvador, Bahia, Brazil,” *Food Control*, vol. 47, pp. 623–627, 2015.

[151] P. Jarujamrus, M. Amatatongchai, A. Thima, T. Khongrangdee, and C. Mongkontong, "Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury," *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, vol. 142, pp. 86–93, 2015.

[152] A. Mao, H. Li, Z. Cai, and X. Hu, “Determination of mercury using a glassy carbon electrode modified with nano TiO$_2$ and multi-walled carbon nanotubes composites dispersed in a novel cationic surfactant,” *Journal of Electroanalytical Chemistry*, vol. 751, pp. 23–29, 2015.

[153] M. Popp, S. Hann, and G. Koellensperger, “Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to inductively coupled plasma mass spectrometry—a review,” *Analytica Chimica Acta*, vol. 668, no. 2, pp. 114–129, 2010.

[154] S. K. Pandey, K.-H. Kim, and R. J. C. Brown, “Measurement techniques for mercury species in ambient air,” *TrAC—Trends in Analytical Chemistry*, vol. 30, no. 6, pp. 899–917, 2011.

[155] M. M. Lynam and G. J. Keeler, “Comparison of methods for particulate phase mercury analysis: sampling and analysis,” *Analytical and Bioanalytical Chemistry*, vol. 374, no. 6, pp. 1009–1014, 2002.

[156] Y. Gao, Z. Shi, Z. Long, P. Wu, C. Zheng, and X. Hou, “Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry,” *Microchemical Journal*, vol. 103, pp. 1–14, 2012.

[157] K. Leopold, M. Foulkes, and P. Worsfold, "Methods for the determination and speciation of mercury in natural waters—a review," *Analytica Chimica Acta*, vol. 663, no. 2, pp. 127–138, 2010.