Clinical efficacy of adjuvant treatments for patients with resected biliary tract cancer: a systematic review and network meta-analysis

Ye Chen,1 Baoxia Zhang,2 Chang Liu,2 Ye Cao,3 Cheng Lyu,2 Meng Qiu1

ABSTRACT

Objective This study aimed to determine the benefits of adjuvant therapy in patients with resected biliary tract cancer (BTC) and identify the optimal adjuvant treatment scheme.

Design Systematic review and network meta-analysis.

Data sources Studies comparing different adjuvant therapies in patients with BTC were searched in PubMed, Embase, CINAHL, Cochrane Central Register of Controlled Trials and ClinicalTrials.gov databases from inception to December 2021. Additionally, the references were manually searched for the related literature.

Materials and methods Eligible studies were identified, and data were extracted independently by two authors. A random-effects network meta-analysis was performed using R software. The pooled outcomes of overall survival (OS) and disease-free survival (DFS) were measured using the combined HRs with 95% CIs.

Results Nineteen eligible studies reporting three types of adjuvant therapies were included in our network meta-analysis. Adjuvant radiotherapy (ART; HR 0.62; 95% CI 0.42 to 0.93), adjuvant chemoradiotherapy (ACRT; HR 0.71; 95% CI 0.54 to 0.83) and adjuvant chemotherapy (ACT; HR 0.84; 95% CI 0.68 to 0.98) were more effective in prolonging OS than that of observation, with no significant difference between the three adjuvant therapies. Moreover, the improvement in DFS was also found in ACRT and ACT compared with that of observation (HR 0.60; 95% CI 0.45 to 0.75; HR 0.82; 95% CI 0.68 to 0.97, respectively). Furthermore, ACRT obtained a slightly better DFS benefit compared with that of ACT (HR 0.73; 95% CI 0.53 to 0.95).

Conclusions Our primary results demonstrated that, compared with that of observation, ACRT and ACT after radical resection could provide better OS and DFS benefits in patients with BTC. However, ART only showed improvement in OS, but not in DFS. Due to the lack of head-to-head studies of ACT, ACRT and ART, the above results need to be further verified by prospective randomised controlled trials.

INTRODUCTION

Biliary tract cancer (BTC) is classified into gallbladder cancer (GBC), intrahepatic cholangiocarcinoma (iCCA) and extrahepatic cholangiocarcinoma (eCCA), and eCCA is further subdivided into perihilar cholangiocarcinoma (pCCA) or Klatskin tumour) and distal cholangiocarcinoma (dCCA).1 BTC accounts for approximately 3% of digestive system cancers and 10%−15% of primary liver cancers.2 The incidence of BTC is higher in Asian countries and lower in European countries, the USA and Australia; however, its incidence is increasing globally.2,3 The vast majority (>90%) of BTC cases were adenocarcinoma. Moreover, most cases are usually in the advanced or metastatic stage at the initial diagnosis. Only approximately 20% of BTC cases are considered resectable.4 Surgical resection remains the primary curative treatment in patients with resected
Biliary tract cancer. However, the high recurrence rates (including locoregional or distant recurrence) and low survival rates (5-year survival rates of patients ranging from 5% to 15%) are prominent problems, even with complete (R0) resection.\(^4\)\(^-\)\(^8\) Previously published studies have shown that histologic margin status, lymph node (LN) involvement and intrahepatic metastasis are the main prognostic factors.\(^9\)\(^-\)\(^11\) Adjuvant chemotherapy (ACT), adjuvant radiotherapy (ART) and adjuvant chemoradiotherapy (ACRT) are the main options following resection for adjuvant therapy.

A variety of guidelines have suggested that postoperative adjuvant therapy could be considered an option for BTC patients.\(^12\)\(^-\)\(^15\) The use of ACT and ACRT for patients with GBC and eCCA was supported by the National Comprehensive Cancer Network (NCCN) guidelines. Adjuvant capecitabine is recommended by the American Society of Clinical Oncology (ASCO) guidelines for patients with resected BTC for 6 months, based on the results of the BILCAP study, which showed a protocol-specified adjusted overall survival (OS) HR of 0.71 (95% 0.55 to 0.92).\(^16\) However, some experts still hold reservations regarding the BILCAP study due to the underpowered statistical design and concerns over data maturity.\(^17\) The discrepancy between the BILCAP study and the PRODIGE-12/ACCORD-18 studies also results in more discussions on the optimal scheme of adjuvant therapy.\(^18\) Despite the tremendous effort, universal agreement on the optimal scheme of adjuvant therapy has not been established due to the lack of high-quality evidence.\(^19\)

Moreover, conflicting results were also observed in the meta-analyses on this topic. A previous study by Rangarajan et al showed a significant improvement in OS with adjuvant therapy after resection compared with that of resection only.\(^20\) In contrast, Horgan et al reported a non-significant improvement in OS with adjuvant therapy compared with that of observation in the overall population. However, a more significant benefit from adjuvant therapy was found in patients with positive LN involvement and R1 resection.\(^21\) Three network meta-analyses of adjuvant therapies in patients with resected BTC have been published previously. One made comparisons among ACT, ACRT and resection only and did not consider ART.\(^22\) One only summarised three randomised clinical trials (RCTs) covering three different ACT regimens, and the robustness of their results was limited due to the very small sample sizes.\(^23\) A recent study indicated that ACRT could provide a survival benefit in patients with positive margins or nodal involvement, but the inclusion of patients with R2 margins is still debatable.\(^24\)

Therefore, it is essential to perform a new network meta-analysis to elucidate the efficacy of adjuvant therapy and identify the optimal scheme of adjuvant therapy for patients with resected BTC.

METHODS

The study design was built in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis extension statement for network meta-analysis for healthcare (online supplemental table 1).\(^25\)

Search strategy

PubMed, Embase, CINAHL, Cochrane Central Register of Controlled Trials (CENTRAL) and ClinicalTrials.gov databases were searched from inception to December 2021 to find relevant literature using the main keywords “biliary tract cancer” and “adjuvant therapy.” In addition, references in the relevant literature were manually checked for potentially relevant papers. The detailed search strategy is presented in online supplemental table 2.

Selection criteria

Studies that met the following criteria were included: (1) those including patients with histologically or cytologically confirmed resected BTC and treated with adjuvant therapy or observation after curative-intent resection (defined as negative resection margins (RM, R0) or microscopic positive resection margins (R1), but not macroscopic involvement resections (R2)); (2) studies reporting at least one of the following clinical outcomes, OS or disease-free survival (DFS) and (3) studies with treatment and control arms.

Studies that involved the following were excluded: (1) studies including patients with ampullary carcinomas or other primary cancers or neoadjuvant therapy, palliative therapy or therapy after postoperative recurrence; (2) studies comparing the same type of adjuvant therapies; (3) those with unbalanced baseline profiles in age, sex, disease severity (American Joint Committee on Cancer staging) or residual tumour status; (4) reviews, conference abstracts, posters or case reports and (5) studies not written in English or without a full text, or with a small sample size (<10 in any group).

All study titles and abstracts were screened, and then the full texts of potentially eligible articles were sequentially assessed for final inclusion.

Data extraction and quality assessment

The following details were extracted from each study: author, study period, country, study type, sample size, tumour site (BTC type), disease severity, age, female sex (%), RM status, LN status, OS and DFS. OS was defined as the period from the date of surgery (or randomisation in RCTs) to the date of death (or last follow-up). DFS was defined as the time from the surgery date (or randomisation in RCTs) to recurrence of tumours (locoregional or distant). Moreover, the authors were contacted when there was confusion or missing data in any article. Data were excluded or not considered if no response was received.

The quality of the studies was assessed using the Newcastle-Ottawa Scale for observational studies, based
on the following domains: selection, comparability and outcome. The detailed information can be found in online supplemental table 3. A study that scored 8–9 points, of which 2 points for comparability, is considered high quality; a score of 4–7 points indicates moderate quality and 0–3 means low quality. The Cochrane Risk of Bias Tool was used to grade the RCT quality.

Two investigators (YCh and BZ) independently conducted the study selection and data extraction, and four authors (YCh, BZ, CLi and YCa) assessed the risk of bias of each eligible study. Discrepancies were resolved by consensus and arbitration by other investigators (CLu and MQ).

Data synthesis and statistical analysis

The primary outcomes were OS and DFS and measured using the HR with a 95% CI. When HRs and 95% CIs for OS and DFS were not reported in the original article, they were extracted from survival curves using Engauge Digitizer V.10.9 (2014 Mark Mitchell) and estimated by the method suggested by Tierney.

A Bayesian network meta-analysis was performed using the R software (V.4.1.2, https://www.r-project.org/). Network plots were generated for different outcomes to clarify which treatments were compared directly or indirectly. A random-effects model (including subgroup analyses based on the RM status, tumour sites, regions and patients without distal metastasis) was used to compare all direct and indirect evidence using ‘Rjags’ and ‘gemtc’ packages in the R software. To fit the non-informative uniform and normal prior distributions, the parameters were set with four chains, 50 000 sample iterations (n. inter), and 20 000 burn-ins (n. adapt) with a thinning interval of 1. The convergence of the chains was assessed using the Gelman–Rubin statistics and inspection of the trace plots (online supplemental figure 1). The deviance information criterion (DIC) was used to test the goodness of fit of consistent and inconsistent models.

The transitivity assumption was evaluated by comparing the distribution of clinical variables (age, percentage of females, sample size, publication year, RM status, LN status), which could be effect modifiers. The local inconsistency of the model was evaluated using the node-splitting approach. The global and local heterogeneity was assessed via between-study variance τ^2 and I^2 inconsistency statistic. Heterogeneity was considered low, moderate, and high for estimated τ^2 or I^2 values <25%, between 25% and 50%, and larger than 50%, respectively. Within the Bayesian framework, the network meta-analysis provided a ranking probability of each treatment and estimated the overall rankings by calculating the surface under the cumulative ranking (SUCRA).

To assess the reliability of results, sensitivity analyses for OS and DFS were performed by excluding RCT studies, only including high-quality studies, and only including the studies for which HRs were reported in the original articles. The ‘netmeta’ package in the R software was used to generate the comparison-adjusted funnel plots to visualise publication bias. Egger’s test was used to assess funnel plot asymmetry. Values of $p<0.05$ were considered statistically significant. All statistical tests were two sided.

RESULTS

Characteristics of the included studies

A total of 2146 records were identified, including 49 records that were manually searched by reviewing the references of relevant publications. After reviewing the abstracts, 264 full-text articles were retrieved and reviewed after excluding 688 duplicates and 1194 ineligible records (figure 1). Nineteen studies comprising a total of 5595 patients who received one of the following four different treatments after radical resection—ACT, ART, ACRT and surgical resection alone (observation group)—were included in our analysis. It is worth noting that 34 studies were excluded because of unbalanced or unclear baselines. Of the included patients, 2774 patients received adjuvant treatments following curative-intent resection, and 2821 patients underwent curative-intent resection without adjuvant treatments.

The main characteristics of the studies included in the network meta-analysis are presented in table 1. These 19 studies consisted of 3 RCTs and 16 retrospective studies. The patients of 6 studies were Westerners (Americans, French and British) and 13 studies were Asian (Japanese, Korean, Indian and Chinese). Four studies assessed patients...
Table 1 Characteristics of included studies

Studies	Country	Study period	BTC type	Disease severity	Therapy	Regimen of CT/ type of RT	Sample size	Margin status (R0/R1)	Nodal status (negative/ positive)	Female no (%)	Age, mean (SD/range), years	5-year OS (%); MOST (months)	5-year DFS (%); MDFST (months)
ACT vs observation													
Kobayashi 2012	Japan	1989–2010	CCA	I–IV	ACT	GEM/S–1	51	39/12	N0:26; N+: 25	28 (55)	–*	46.0; –	–
Observation							54	37/17	N0:31; N+: 23	14 (26)	–*	23.0; –	–
Morine 2017	Japan	1995–2012	CCA/GBC	II–IV (T1–T4)	ACT	GEM +5-FU +Cis	28	18/10	9/19	16 (57)	70.9 (±6.8)	44.2; –	–
Observation							34	27/7	9/25	11 (32)	66.9 (±9.0)	5.9; –	–
Akahoshi 2018	Japan	2004–2015	CCA	0–IVa (T1–T4)	ACT	GEM	26	15/11	15/11	9 (35)	–*	–	25.6;–
							36	23/13	23/13	16 (7)	6.7	–	34.0;–
Bergeat 2018	France	2000–2015	dCCA	Ia–III	ACT	GEM	49	12/37	7/42	18 (37)	62.0 (36–77)†	44.2; 26.3	15.5
							49	6/43	14/35	20 (41)	65.0 (35–82)†	43.3; 14.7	26.8;–
Miyata 2021	Japan	2007–2018	GBC/pCCA/dCCA	I–IV	ACT	S–1	38	29/9	N0: 21; N1: 17	13 (34)	72 (52–82)†	71.0; –	51.6; 61.2
							38	28/10	N0: 22; N1: 16	16 (42)	74 (42–85)†	42.9; 28.2	35.9; 13.1
ART vs observation													
Todorokia 2000	Japan	1976–1999	pCCA (HDC)	Ia	ART	EBRT	17	All R1	N0:11; N1:2; N2:4	7 (41)	59.4 (34–76)	33.9; 32.0	–
							19	5/26	60.6 (19–82)	13.5;†	10.0	–	
Jiang 2010	China	1998–2008	iCCA	–	ART	EBRT	24	–	N1: 8; Nc 16	7 (29)	–*	11.8; 19.1	–
							66	–	N1: 23; Nc 43	31 (47)	–*	9.5; 1.5	
Zheng 2018	China	2007–2016	iCCA	I–Na	ART	IMRT	26	14/12	22/4	10 (38)	57.2 (45–76)	55.0; 19.1†	44.0; 10.0†
							23	9/14	17/6	8 (35)	55.6 (36–72)	20.0; 9.5†	10.0; 5.3†
ACRT vs observation													
Kim 2011	Korea	2001–2009	eCCA	Iib, Ila, Iib	ACRT	5–FU/Leu/ Cap+ EBRT	75	58/17	N0: 39; N+: 36	17 (23)	60.6 (37–74)	41.1; 37.4	–
							34	28/6	N0: 26; N+: 8	30 (9)	65.0 (44–85)	35.3; 29.8	–
Dover 2016	USA	2000–2013	CCA	I–IV	ACRT	GEM/5–FU+ EBRT	23	11/12	N0: 13; N+: 10	10 (43)	62.0 (38–80)	30.2; –	21.6
							72	56/16	N0: 51; N+: 21	28 (39)	65.0 (39–86)	26.3; –	17.3

Continued
Table 1 Continued

Studies	Country	Study period	BTC type	Disease severity	Therapy	Regimen of CT/ type of RT	Sample size	Margin status (R0/R1)	Nodal status (negative/positive)	Female no (%)	Age, mean (SD/range), years	5-year OS (%)‡; MOST (months)	5-year DFS (%)‡; MDFST (months)
ACRT vs ACT													
Gu 2017†	China	2003–2013	GBC	II–IVa	ACRT	Cap/S-1/Ox +5-FU/Cap/GEM + EBRT	39	All R0	29 (74)	61 (35–77)	42.4; 27	48.7; 23	
					Observation	–	39	–	26 (67)	63 (45–85)	17.9; 13	13.5; 7	
Hester 2018‡	USA	2004–2013	dCCA	I–IV	ACRT	–	348	258/76	N0:126; N+:211	135 (39)	64.3 (±10.0)	31.3 ‡; 32.1	–
					ACRT	348	256/78		N0:118; N+:206	136 (39)	64.4 (±10.8)	29.4 ‡; 29.5	–
Choudhary 2019‡	Indian	2008–2017	GBC	II–III	ACRT	GEM+Cis + EBRT/3DCRT/ IMRT	23	17/2 (Rx:4)	20 (87)	55 (24–73)†	–	–	–
					ACT	GEM+Cis	20	16/2 (Rx:2)	17 (85)	–	–	–	–
Multiple comparison													
Kim 2016†	Korea	2000–2015	GBC	I–IV	ACT	GEM/Cis/OTHs	61	54/7	N0:21; N1/ Nx:36/4	42 (69)	64.5 (56–73)	Total: 33.0 ‡; Total: –; 19.8‡	
					ACRT	–	44	36/8	N0:15; N1/ Nx:24/5	28 (64)	63.9 (55–70)	25.0 ‡; 25.6	
					Observation	–	186	159/25	N0:105; N1/ Nx:50/31	122 (66)	67.7 (56–74)	–	
Im 2021†	Korea	2001–2017	pCCA	II–IVa	ACT	5–FU/GEM based + EBRT/IMRT	45	31/14	22 (33)	65 (32–82)†	–	38.9; –; 24.6; –	
					ART	EBRT/IMRT	16	2/14	10 (63)	–	8.2; –	5.6; –	
					ACRT	16	5/11		4 (19)	–	49.4; –	40.4; –	
					Observation	–	37	25/12	35 (38.9)	–	27.0; –	24.5; –	
Wan 2021†	USA (SEER database)	1973–2015	GBC	II–IV	ACT	–	444	–	N0: 162; Nx: 282	311 (70)	–	–	38.9/15.0; –
					ACRT	542	–	–	N0: 156; Nx: 386	374 (69)	41.5/21.1; –	–	
					Observation	1703	–	–	N0: 961; Nx: 742	1192 (70)	32.8/11.3; –	–	
Characteristics of included RCT studies													
Ebata 2018‡	Japan	2007–2011	pCCA/ dCCA	I–III (T1–T4)	ACT	GEM	117	106/11	N0: 75; N1: 42	40 (34)	–	51.7; 62.3	45.0; 36.0
					Observation	–	108	94/14	N0: 72; N1: 36	26 (24)	51.6; 63.8	44.0; 39.9	
Edeline 2019‡	France	2009–2014	CCA/GBC	I–IV (T1–T4)	ACT	GEMOX	95	82/13	N0:49; N+:35; Nx:11	38 (40)	63.0 (33–83)†	60.0 ‡; 75.8; –	30.4
					Observation	–	99	87/12	N0:48; N+:36; Nx:15	49 (50)	63.0 (40–80)†	65.0 ‡; 50.8; –	18.5
Table 1 Continued

Studies	Country	Study period	BTC type	Disease severity	Therapy	Regimen of CT/ type of RT	Sample size	Margin status (R0/R1)	Nodal status (negative/positive)	Female no (%)	Age, mean (SD/range), years	5-year OS (%) / MOST (months)	5-year DFS (%) / MDFST (months)
Primrose 2019¹⁶	UK	2006–2014	BTC	I–IV	ACT	Cap	223	N0: 121; N1: 102	N0: 121; N1: 102	62.0 (55–68)	25.1[¶]; 51.1[‡]; 24.4	20.5[¶]; 36.4[‡]; 17.5	
						Observation	224	N0: 115; N1:108	N0: 115; N1:108	64.0 (55–69)	20.5[¶]; 36.4[‡]; 17.5	20.5[¶]; 36.4[‡]; 17.5	

¹-indicates that the data was not given originally.
²-indicates that studies were presented as younger or older than a specific age.
³-indicates that median age was given instead of mean age.
⁴-indicates overall survival rates but not survival probability.

ACRT, adjuvant chemoradiotherapy; ACT, adjuvant chemotherapy; ART, adjuvant radiotherapy; BTC, biliary tract cancer; Cap, capecitabine; CCA, cholangiocarcinoma; Cis, cisplatin; CT, chemotherapy; dCCA, distal cholangiocarcinoma; 3D CRT, three-dimensional conformal radiotherapy; ERBT, external beam radiotherapy; eCCA, extrahepatic cholangiocarcinoma; 5-FU, 5-fluorouracil; GBC, gallbladder cancer; GEM, Gemcitabine; GEMOX, gemcitabine and oxaliplatin; IMRT, intensity-modulated radiotherapy; Leu, Leucovorin; MDFST, median DFS time; MOST, median OS time; N+, positive lymph node; Nx, unclear; OTHs, others; Ox, oxaliplatin; pCCA, Perihilar cholangiocarcinoma (or hepatic duct carcinoma=HDC); R0, negative resection margin; R1, microscopic positive resection margin; RCT, randomised clinical trial; RT, radiotherapy; Rx, unknown; S-1, tegafur gimeracil oteracil potassium; Total, means the value of all patients in the study; 5-year DFS (%), 5-year disease-free survival probability; 5-year OS (%), 5-year overall survival probability.
were 46.17 for OS and 29.93 for DFS, which were similar to the DICs of the inconsistency model (46.05 and 31.15, respectively), suggesting no evidence of inconsistency in the network. The more parsimonious model, the consistency model, was used for our analyses (online supplemental table 8).

Network meta-analysis of treatments in BTC
A network meta-analysis was conducted to assess the efficacy (OS and DFS) of the following treatments in a Bayesian framework: observation alone after surgery, surgery with ACT, surgery with ART, and surgery with ACRT.

A network plot is shown in figure 2. OS data were available from 18 studies that included 5497 patients, of whom 2785 (50.7%) were in the observation group, 1519 (27.6%) received ACT, 83 (1.5%) received ART and 1110 (20.2%) received ACRT. The pooled OS data indicated that ART (HR 0.62; 95% CI 0.42 to 0.93), ACRT (HR 0.71; 95% CI 0.54 to 0.83) and ACT (HR 0.84; 95% CI 0.68 to 0.98) were more beneficial in patients with BTC compared with that of observation (figure 3A–B). No significant benefits in OS were observed in the comparisons between the different adjuvant therapies (figure 3A).

In terms of DFS, 14 studies with 1979 patients were included in the network meta-analysis (figure 2). The pooled DFS data demonstrated a significant improvement for ACRT and ACT compared with that of observation (HR 0.60; 95% CI 0.45 to 0.75, and HR 0.82; 95% CI 0.68 to 0.97, respectively). Furthermore, a slightly better efficacy for ACRT was obtained compared with that of ACT (HR 0.73; 95% CI 0.53 to 0.95). Significant differences in DFS were not observed between the other pairwise comparisons (figure 3A,C).

The ranking analysis was performed using SUZCRA. Based on the pooled OS and DFS data, the ranking order of OS and DFS was inconsistent. The best therapy for OS was ranked as follows: ART, ACRT, ACT and observation (figure 3D). The best SUZCRA value of ART was 87.0%, which was close to that of ACRT with a SUZCRA value of 75.3% (online supplemental table 9). As for DFS, the best therapy was ranked as ACRT, ACT, ART, and observation (figure 3D). The SUZCRA value of ACRT was approximately 97.1%, which was far higher than that of the others (online supplemental table 9).

Subgroup analyses for OS in patients with different residual tumour status, tumour sites, regions and absence of distant metastasis were performed. Seven studies...
reported the outcomes of patients after R0 resection, and seven studies reported the outcomes of patients after R1 resection (online supplemental figure 3A). In the R0 group, only ACRT had a survival advantage compared with that of surgery alone. In the R1 group, no survival advantage was observed in patients who underwent adjuvant therapies than in those with surgery alone (figure 4A, online supplemental figure 4A). In the subgroup analysis by primary tumour sites, 6 studies enrolled patients with GBC, and 11 studies recruited patients with CCA (online supplemental figure 3B). The OS benefit of ACRT was clear compared with that of observation in the CCA group (HR 0.62; 95% CI 0.36 to 0.85). The benefit of ART is unclear due to the lack of eligible ART studies. Among the comparable treatments in the GBC group, no significant differences in OS were found between ACT, ACRT and observation (figure 4B, online supplemental figure 4B). When studies were grouped according to region, 12 studies included patients in Asian countries and 7 from Western countries (online supplemental figure 3C). In both the Asian and Western groups, the pooled OS results favoured ACRT (HR 0.42; 95% CI 0.29 to 0.68 in Asia; HR 0.76; 95% CI 0.63 to 0.91 in Western countries) (figure 4C, online supplemental figure 4C). Subgroup analysis was also conducted for 15 studies investigating OS in patients with non-distant metastasis (online supplemental figure 3D). The pooled results showed superior efficacy of ACRT compared with that of observation (HR 0.74; 95% CI 0.60 to 0.85). Moreover, ACRT tended to be more effective compared with that of ACT (HR 0.82; 95% CI 0.67 to 0.96) (figure 4D, online supplemental figure 4D).

Subgroup analyses were also performed for DFS in patients with different tumour sites and regions and the absence of distant metastasis (online supplemental figure 5). Due to the small number of studies, subgroup analyses for DFS by different residual tumour statuses cannot be conducted. In patients without distant metastasis, the results from this subgroup were similar to that of the primary analysis; ACRT demonstrated statistically significant improvement with an HR of 0.61 (figure 4E, online supplemental figure 4E). When studies were split by primary tumour sites, only ACRT showed an apparent advantage in patients with CCA (figure 4F, online supplemental figure 4F). Furthermore, the stratified meta-analysis by region indicated that the favourable treatment was ACRT in Asia (HR 0.47; 95% CI 0.28 to 0.68) (figure 4G, online supplemental figure 4G).

To assess the robustness of the primary results, sensitivity analyses were performed for OS and DFS by excluding RCT studies, removing moderate-quality observational studies, and only including the studies for which HRs were reported in the original articles. The first sensitivity analysis included 12 retrospective studies of OS and 10 retrospective studies of DFS. The pooled results (online supplemental figure 6) and the ranking profiles of comparable treatments from retrospective studies confirmed the reliability of the primary OS results (figure 5A, online supplemental table 10). In terms of DFS, ACRT was still ranked as the best treatment option (figure 5B). Furthermore, the second and third sensitivity analyses were performed by removing moderate-quality observational studies (11 studies for OS and 8 studies for DFS) and by combining HRs reported in the original articles (11 studies for OS and 8 studies for DFS). The results did not suggest a material change in the efficacy estimation for ACRT, but ART no longer showed advantages over observation in both OS and DFS; the improvement
The use of adjuvant therapy is based on a very limited number of studies, and the benefit of adjuvant therapy remains unclear in many pivotal BTC trials. Therefore, it is necessary to compile up-to-date studies to validate the efficacy of adjuvant therapy in BTC patients.

In this network meta-analysis, 19 studies were included to evaluate the comparative benefits (including 5,497 patients for OS and 1,979 patients for DFS) between adjuvant therapy (ACT, ART and ACRT) following surgical resection and curative-intent resection (observation group). Our primary results demonstrated that adjuvant therapy was more effective than that of observation in OS. However, no statistically significant difference was detected between ACT, ACRT and ART. Moreover, the pooled DFS results suggested a statistically significant benefit for ACRT and ACT over observation. Although ART was ranked first in OS, its DFS result was inconsistent with OS, and caution should be exercised regarding the bias that arises from the small sample size effect of ART evidence (only 83 patients). In addition, a previously published meta-analysis of adjuvant therapy in the treatment of BTC suggested that ART did not provide a significant advantage over observation. We hold reservations on the conclusion of the efficacy of ART, and further evidence is needed to elucidate this matter.

Combining the results of OS with DFS, ACRT, and ACT after radical resection could provide a survival benefit in patients with BTC. This was in line with another meta-analysis that showed that both ACT (HR 0.61; 95% CI 0.47 to 0.79) and ACRT (HR 0.35; 95% CI 0.14 to 0.83) could significantly improve the clinical survival of patients with resected BTC compared with that of surgery alone. As known, the BILCAP study is a unique positive randomised trial of ACT in patients with BTC. Despite the concerns regarding the findings of the BILCAP trial, this study established adjuvant capecitabine as the new standard of care for resected BTC. However, no randomised trials of ACRT vs ACT are available. Although in our study, the ACRT ranked high in terms of OS and DFS (second place for OS, first place for DFS), whether it is genuinely superior to ACT needs further confirmation in prospective RCTs.

The types of patients who are more likely to benefit from adjuvant therapy are also the focus. A previous phase II study indicated that the risk factors were GBC, eCCA, pathological stage T2–4, positive LN or positive RM. In our study, we were only able to conduct subgroup analyses on the effects of the RM, primary tumour site, regions and absence of distant metastasis, but not LN and tumour size, on adjuvant therapy due to the availability of data. We observed that ACRT showed a modest improvement in DFS than that of ACT in CCA and Asian patients and ranked first in each subgroup (online supplemental table 11). We noticed that approximately 95% (for OS analysis) and 80% (for DFS analysis) of CCA patients treated with ACRT had eCCA. The benefit of ACRT observed in CCA patients may be mainly derived from eCCA patients. Inconsistent with most studies, ACRT has an OS benefit in the R0 group, but not in the R1 group. This was possibly due to the more stringent selection of studies and the effects of small sample sizes. Subgroup analyses for DFS by R0 or R1 were not conducted because of limited data. Therefore, the subgroups of patients who could benefit more from postoperative adjuvant therapy need to be further elucidated. We look forward to seeing more randomised controlled studies in this field, especially head-to-head trials and trials designed for more specific subgroups. Using the primary tumour site, tumour size, disease severity, LN metastases and RM as stratification factors in future studies would reduce selection bias due to the heterogeneity of the population.

Figure 5 Bayesian ranking plots of comparable treatments on efficacy in patients with biliary tract cancer in the sensitivity analyses. Ranking curves indicate the probability of each comparable treatment being ranked from first to last on overall survival (OS) (solid lines) and disease-free survival (DFS) (dotted lines). Data of the curves are presented in online supplemental table 10. ACT, adjuvant chemotherapy; ACRT, adjuvant chemoradiation therapy; ART, adjuvant radiotherapy.
CONCLUSIONS

Our primary results demonstrated that, compared with that of observation, ACRT and ACT after radical resection could provide better OS and DFS benefits in patients with BTC. However, ART only showed improvement in OS. ACRT had a modest DFS advantage compared with that of ACT. Due to the absence of direct evidence from head-to-head prospective studies, thorough and high-quality RCTs are warranted to consolidate our results further. Optimal regimens and dosing schedules still need to be explored.

Acknowledgements We thank the study authors Zhaochong Zeng (Jiang, 2010), Tae Hyun Kim (Kim, 2013), Wei-Hu Wang (Zheng, 2018) and Xiaojian, Ni (Wan, 2021) responded to our request for additional data and questions. We thank Lei Wang for the help in the manuscript proofreading.

Contributors As the guarantor, MO designed, coordinated and supervised this study. YCh, BZ and CLI screened the articles, YCh and BZ extracted the data and assessed the quality. YCa and CLI contacted study authors for additional information. YCh, BZ and YCa analysed and prepared the material. YCh, BZ, CLI and CLu interpreted the data and wrote the draft of the report. All authors had reviewed and approved the final submitted version of the report. MO was responsible for the integrity and accuracy of the data.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as online supplemental information. All data relevant to the study are included in the article or uploaded as supplemental information. All the data extracted, and analysed, as reported in this paper were from published literature.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD

Baoxia Zhang http://orcid.org/0000-0003-2445-3031

REFERENCES

1 Nakae K, Pitt HA, Sohn TA, et al. Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann Surg 1996;224:463–73. discussion 73–5.
2 Benavides M, Anton A, Gallego J, et al. Biliary tract cancers: SEOM clinical guidelines. Clin Transl Oncol 2015;17:982–7.
3 Patel T. Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology 2001;33:1353–7.
4 Valle JW, Lamarca A, Goyal L, et al. New horizons for precision medicine in biliary tract cancers. Cancer Discov 2017;7:943–62.
5 Anderson CD, Pinson OW, Berlin J, et al. Diagnosis and treatment of cholangiocarcinoma. Oncologist 2004;9:43–57.
6 DeOliveira ML, Cunningham SC, Cameron JL, et al. Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Ann Surg 2007;245:755–62.
7 Bridgewater JA, Goodman KA, Kalyan A, et al. Biliary tract cancer: epidemiology, radiotherapy, and molecular profiling. Am Soc Clin Oncol Educ Book 2016;35:e194–203.
8 Doherty MK, Knox JJ. Adjuvant therapy for resected biliary tract cancer: a review. Clin Clin Oncol 2016;5:64.
9 Mavros MN, Economopoulos KP, Alexiou VG, et al. Treatment and prognosis for patients with intrahepatic cholangiocarcinoma: systematic review and meta-analysis. JAMA Surg 2014;149:565–74.
10 Murakami Y, Uemura K, Sudo T, et al. Prognostic factors after surgical resection for intrahepatic, hilar, and distal cholangiocarcinoma. Ann Surg Oncol 2011;18:651–8.
11 Wirasom K, Ngamprasertchai T, Khuntikeo N, et al. Adjuvant chemotherapy in resectable cholangiocarcinoma patients. J Gastroenterol Hepatol 2013;28:1885–91.
12 National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology, hepatobiliary cancers, version 5, 2021. Available: https://www.nccn.orgprofessionals/physician_gls/pdf/hepatobiliary.pdf [Accessed 20 Jan 2022].
13 Valle JW, Borbath I, Khan SA, et al. Biliary cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016;27:v28–37.

Chen Y, et al. BMJ Open 2022;12:e051421. doi:10.1136/bmjopen-2021-051421
14 HJ L, SK Q, SF. Biliary tract cancer: CSCC consensus for diagnosis and treatment. Chin Clin Oncol 2019;24:828–38.
15 Shroff RT, Kennedy EB, Bachini M, et al. Adjuvant therapy for resected biliary tract cancer: ASCO clinical practice guideline. J Clin Oncol 2019;37:5–17.
16 Primrose JN, Fox RP, Palmer DH, et al. Capcetabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol 2019;20:663–73.
17 Rizzo A, Brandi G. BILCAP trial and adjuvant capecitabine in resectable biliary tract cancer: reflections on a standard of care. Expert Rev Gastroenterol Hepatol 2021;15:483–5.
18 Rizzo A, Brandi G. Pitfalls, challenges, and updates in adjuvant systemic treatment for resected biliary tract cancer. Expert Rev Gastroenterol Hepatol 2021;15:547–54.
19 Lamarca A, Edeline J, McNamara MG, et al. Current standards and future perspectives in adjuvant treatment for biliary tract cancers. Cancer Treat Rev 2020;84:101936.
20 Rangarajan K, Simmons G, Manas D, et al. Systemic adjuvant chemotherapy for cholangiocarcinoma surgery: a systematic review and meta-analysis. Eur J Surg Oncol 2020;46:684–93.
21 Horgan AM, Amir E, Walter T, et al. Adjuvant therapy in the treatment of biliary tract cancer: a systematic review and meta-analysis. J Clin Oncol 2012;30:1934–40.
22 Zhu G-Q, Shi K-Q, You J, et al. Systematic review with network meta-analysis: adjuvant therapy for resected biliary tract cancer. J Gastrointest Oncol 2014;5:759–70.
23 Kish M, Chan K, Perry K, et al. A systematic review and network meta-analysis of adjuvant therapy for curatively resected biliary tract cancers. Curr Oncol 2020;27:e20–6.
24 Chen X, Meng F, Xiong H, et al. Adjuvant therapy for resectable biliary tract cancer: a Bayesian network analysis. Front Oncol 2021;11:600027.
25 Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 2015;162:777–84.
26 Ottawa Hospital Research Institute. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2014. Available: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp [Accessed 29 Jun. 2020].
27 Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Handbook of systematic reviews of interventions. assessing risk of bias in included studies. In: Higgins J, Green S, eds. Cochrane Handbook of systematic reviews of interventions. assessing risk of bias in included studies. 5.1.0 ed. England: The Cochrane Collaboration, Wiley, 2011.: 187–235p.,
28 Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007;8:16.
29 Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci 1992;7:457–511.
30 Lynch SM. Introduction to applied Bayesian statistics and estimation for social scientists. 1st edition. New York, NY: Springer-Verlag, 2007.
31 Higgins JPT, Jackson D, Barrett JK, et al. Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods 2012;3:98–110.
32 Dias S, Welton NJ, Caldwell DM, et al. Checking consistency in mixed treatment comparison meta-analysis. Stat Med 2010;29:932–44.
33 van Valkenhoef G, Dias S, Ades AE, et al. Automated generation of node-splitting models for assessment of inconsistency in network meta-analysis. Res Synth Methods 2016;7:80–93.
34 Higgins JPT, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60.
35 Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21:1539–58.
36 Debray TP, Damen JA, Riley RD, et al. A framework for meta-analysis of prediction model studies with binary and time-to-event outcomes. Stat Methods Med Res 2019;28:2768–86.
37 Salanti G, Ades AE, Ioannidis JPA. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 2011;64:163–71.
38 Veroniki AA, Vlachos P, Judd H, et al. Evaluation of inconsistency in networks of interventions. Int J Epidemiol 2013;42:332–45.
39 Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple graphic. BMJ 1997;315:629–34.
40 Beggs CB, Mazumdar M. Operating characteristics of a RANK correlation test for publication bias. Biometrics 1994;50:1088–101.
Open access

65 Han D, Yang J, Xu F, et al. Prognostic factors in patients with gallbladder adenocarcinoma identified using competing-risks analysis: a study of cases in the seer database. Medicine 2020;99:e21322.

66 Kim H, Heo MH, Kim JY. Comparison of the effects of adjuvant concurrent chemoradiotherapy and chemotherapy for resected biliary tract cancer. BMC Gastroenterol 2020;20:20.

67 Mao W, Deng F, Wang D, et al. Treatment of advanced gallbladder cancer: a SEER-based study. Cancer Med 2020;9:141–50.

68 Zhou W, Qian L, Rong Y, et al. Prognostic factors and patterns of recurrence after curative resection for patients with distal cholangiocarcinoma. Radiol Oncol 2020;147:111–7.

69 Zhu WH, Xie WY, Zhang ZD, et al. Postoperative complications and survival analysis of surgical resection for hilar cholangiocarcinoma: a retrospective study. Chin Med Sci J 2020;35:157–69.

70 Benzing C, Krenzien F, Mieg A, et al. A tailored approach in lymph node-positive hilar cholangiocarcinoma. Langenbecks Arch Surg 2021;406:1499–509.

71 Chang WI, Kim BH, Kang H-C, et al. The role of adjuvant chemoradiotherapy in Non hilar extraperitoneal bile duct cancer: a long-term single-institution analysis. Int J Radiat Oncol Biol Phys 2021;111:395–404.

72 Kosaka H, Kaitori M, Matsu K, et al. Investigation of a tumor location-specific therapeutic strategy for intrahepatic cholangiocarcinoma. Asian Pac J Cancer Prev 2021;22:1485–93.

73 Sumiyoshi T, Uemura K, Kondo N, et al. The prognostic impact of portal vein washing cytology for otherwise resectable extrahepatic cholangiocarcinoma patients. Surg Today 2021;51:1227–31.

74 Ebata T, Hirano S, Konishi M, et al. Randomized clinical trial of adjuvant gemcitabine chemotherapy versus observation in resected bile duct cancer. Br J Surg 2018;105:192–202.

75 Edeline J, Benabdelghani M, Bertaut A, et al. Gemcitabine and oxaliplatin chemotherapy or surveillance in resected biliary tract cancer (Prodige 12-accord 18-Unicancer G1): a randomized phase III study. J Clin Oncol 2019;37:658–67.

76 Todoroki T, Obara K, Kawamoto T, et al. Benefits of adjuvant radiotherapy after radical resection of locally advanced main hepatic duct carcinoma. Int J Radiat Oncol Biol Phys 2000;46:581–7.

77 Kim TH, Han S-S, Park S-J, et al. Role of adjuvant chemoradiotherapy for resected extrahepatic biliary tract cancer. Int J Radiat Oncol Biol Phys 2011;81:e853–8.

78 Kobayashi H, Murakami Y, Uemura K, et al. Human equilibrative nucleoside transporter 1 expression predicts survival of advanced cholangiocarcinoma patients treated with gemcitabine-based adjuvant chemotherapy after surgical resection. Ann Surg 2012;256:286–96.

79 Dover LL, Oster RA, McDonald AM, et al. Impact of adjuvant chemoradiation on survival in patients with resectable cholangiocarcinoma. HPB 2016;18:843–50.

80 Kim Y, Amini N, Wilson A, et al. Impact of chemotherapy and external-beam radiation therapy on outcomes among patients with resected gallbladder cancer: a multi-institutional analysis. Ann Surg Oncol 2016;23:2998–3008.

81 Morine Y, Shimada M, Ikemoto T, et al. Effect of adjuvant gemcitabine combined with low-dose 5-fluorouracil and cisplatin chemotherapy for advanced biliary carcinoma. Anticancer Res 2017;37:555–61.

82 Akahoshi K, Ban D, Kuboki R, et al. Orotate phosphoribosyltransferase as a predictor of benefit from S-1 adjuvant chemotherapy for cholangiocarcinoma patients. J Gastroenterol Hepatol 2019;34:1108–15.

83 Bergeat D, Turini O, Courtin-Tanguy L, et al. Impact of adjuvant chemotherapy after pancreaticoduodenectomy for distal cholangiocarcinoma: a propensity score analysis from a French multicentric cohort. Langenbecks Arch Surg 2018;403:701–9.

84 Hester C, Nassour I, Adams-Huet B, et al. Improved survival in surgically resected distal cholangiocarcinoma treated with adjuvant therapy: a propensity score matched analysis. J Gastrointest Surg 2018;22:2080–7.

85 Zheng X, Chen B, Wu J-C, et al. Benefit of adjuvant radiotherapy following narrow-margin hepatectomy in patients with intrahepatic cholangiocarcinoma that adhere to major vessels. Cancer Manag Res 2018;10:3973–81.

86 Jiang W, Zeng Z-C, Tang Z-Y, et al. Benefit of radiotherapy for 90 patients with resected intrahepatic cholangiocarcinoma and concurrent lymph node metastases. J Cancer Res Clin Oncol 2010;136:1333–31.

87 Gu B, Qian L, Yu H, et al. Concurrent chemoradiotherapy in curatively resected gallbladder carcinoma: a propensity score-matched analysis. Int J Radiat Oncol Biol Phys 2018;100:138–45.

88 Choudhary S, Gupta N, Verma CP, et al. Influence of adjuvant therapy on pattern of failure and survival in curatively resected gallbladder carcinoma. J Cancer Res Ther 2021;17:1064–8.

89 Im JH, Choi GH, Lee WJ, et al. Adjuvant radiotherapy and chemotherapy offer a recurrence and survival benefit in patients with resected perihilar cholangiocarcinoma. J Cancer Res Clin Oncol 2021;147:2435–45.

90 Miyata Y, Kogure R, Nakazawa A, et al. The efficacy of S-1 as adjuvant chemotherapy for resected biliary tract carcinoma: a propensity score-matching analysis. J Clin Med 2021;10:1–10.

91 Han W, Zheng B, Sun W, et al. Adjuvant therapy in resected nonmetastatic stage II-IV gallbladder cancer: a generalized propensity score analysis. Oncol Res Treat 2021;44:390–9.

92 Tanig N-U-A, McNamara MG, Valle JW. Biliary tract cancers: current knowledge, clinical candidates and future challenges. Cancer Manag Res 2019;11:2623–42.

93 Khan SA, Davidson BR, Goldin RD, et al. Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. Gut 2012;61:1657–69.

94 Takada T, Amada H, Yasuda H, et al. Is postoperative adjuvant chemotherapy useful for gallbladder carcinoma? A phase III multicenter prospective randomized controlled trial in patients with resected pancreatobiliary carcinoma. Cancer 2002;95:1685–95.

95 Neoptolemos JP, Moore MJ, Cox TF, et al. Effect of adjuvant chemotherapy with fluorouracil plus folinic acid or gemcitabine vs observation on survival in patients with resected periampullary adenocarcinoma: the ESPAC-3 periampullary cancer randomized trial. JAMA 2012;308:147–56.

96 Song S, Yang W, Tian H, et al. The efficacy and safety of 5-fluorouracil based adjuvant therapy in resected biliary tract cancer: a systematic review and meta-analysis. Clin Res Hepatol Gastroenterol 2022;46:101788.

97 Ben-Josef E, Guthrie KA, El-Khoueiry AB, et al. Swoq S0809: a phase II intergroup trial of adjuvant capcitabine and gemcitabine followed by radiotherapy and concurrent capcitabine in extrahepatic cholangiocarcinoma and gallbladder carcinoma. J Clin Oncol 2015;33:2617–22.

98 Edeline J, Hirano S, Bertaut A, et al. Individual patient data meta-analysis of adjuvant gemcitabine-based chemotherapy for biliary tract cancer: combined analysis of the BCAT and PRODICE-12 studies. Eur J Cancer 2022;164:80–7.