On Solving the Quadratic Shortest Path Problem

Hao Hu * Renata Sotirov †

Abstract

The quadratic shortest path problem is the problem of finding a path in a directed graph such that the sum of interaction costs over all pairs of arcs on the path is minimized. We derive several semidefinite programming relaxations for the quadratic shortest path problem with a matrix variable of order \(m + 1 \), where \(m \) is the number of arcs in the graph. We use the alternating direction method of multipliers to solve the semidefinite programming relaxations. Numerical results show that our bounds are currently the strongest bounds for the quadratic shortest path problem.

We also present computational results on solving the quadratic shortest path problem using a branch and bound algorithm. Our algorithm computes a semidefinite programming bound in each node of the search tree, and solves instances with up to 1300 arcs in less than an hour (!).

Keywords: quadratic shortest path problem, semidefinite programming, alternating direction method of multipliers, branch and bound

1 Introduction

The quadratic shortest path problem (QSPP) is the problem of finding a path in a directed graph from the source vertex \(s \) to the target vertex \(t \) such that the sum of costs of arcs and the sum of interaction costs over all distinct pairs of arcs on the path is minimized. The QSPP is a NP-hard combinatorial optimization problem, see [12, 20]. Rostami et al. [20] show that the problem remains NP-hard even for the adjacent QSPP. That is a variant of the QSPP where the interaction costs of all non-adjacent arcs are equal to zero. Hu and Sotirov [12] give an alternative proof for the same result using a simple reduction from the arc-disjoint paths problem.

It is also known that the QSPP can be solved efficiently for particular families of graphs and/or for special cost matrices. In particular, Rostami et al. [21] provide a polynomial

*CentER, Department of Econometrics and OR, Tilburg University, The Netherlands, h.hu@uvt.nl
†Department of Econometrics and OR, Tilburg University, The Netherlands, r.sotirov@uvt.nl
time algorithm for the adjacent QSPP considered on directed acyclic graphs. Hu and Sotirov [12] show that the QSPP can be efficiently solved if the cost matrix is a non-negative symmetric product matrix, or if the cost matrix is a sum matrix and every s-t path in the graph has constant length. In [12], it is also shown that the linearizability of the QSPP on grid graphs can be detected in polynomial-time. We say that an instance of the QSPP is linearizable if its optimal solution can be found by solving the corresponding instance of the shortest path problem. The algorithm from [12] verifies whether a QSPP instance on the $p \times q$ grid graph is linearizable in $O(p^3q^2 + p^2q^3)$ time, and if it is linearizable the algorithm returns the linearization vector.

Buchheim and Traversi [2] study separable underestimators that can be used to solve binary programs with a quadratic objective function. In particular, they provide an exact approach for the quadratic shortest path problem, which solves instances on the 15×15 grid graph within one and a half hour. Rostami et al. [20] present several lower bounding approaches for the QSPP, including a Glimore-Lawler (GL) type bound and a bound based on a reformulation scheme that iteratively improves the GL bound. We refer to the latter bound as RBB. The numerical results in [20] show that the branch-and-bound algorithm, which computes the RBB bound in each node of the tree, provides an optimal solution for the QSPP with a dense cost matrix on the 15×15 grid graph within 96 seconds.

The QSPP arises in many different applications such as route-planning problems in which the choice of a route is based on the mean as well as the variance of the path travel-time, see [22]. In [17, 23], the authors study several variants of the shortest path problem that are related to the QSPP, including the reliable shortest path problem and a variance-constrained shortest path problem. The QSPP also plays a role in network protocols. In particular, different restoration schemes of survivable asynchronous transfer mode networks can be formulated as a QSPP, see Murakami and Kim [16]. Gourvès et al. [10] consider the QSPP on undirected edge-colored graphs with non-negative reload costs. The edge-colored graphs are for example used to model cargo transportation and large communication networks, see [7, 26]. The QSPP can be also applied in satellite network designs as discussed in [9].

Main results and outline.

In this paper we derive several semidefinite programming (SDP) relaxations with increasing complexity, for the quadratic shortest path problem. The matrix variables in the SDP relaxations are of order $m + 1$, where m is the number of the arcs in the graph. Our strongest SDP relaxation has a large number of constraints, and is difficult to solve by an interior-point algorithm for instances of moderate size, i.e., for graphs with more than 500 arcs. Therefore, we implement the alternating direction method of multipliers (ADMM) to solve the two strongest semidefinite programming relaxations. We adopt the ADMM version of the algorithm suited for solving SDP relaxations that was recently introduced by Oliveira, Wolkowicz and Xu [18]. The ADMM-based algorithm computes our strongest
SDP bound on a graph with 480 arcs in about one minute, while an interior-point algorithm needs 45 minutes. The ADMM algorithm requires at most 46 minutes to compute the strongest SDP bound for an instance of the QSPP problem with 2646 arcs.

In order to incorporate the ADMM algorithm within a branch-and-bound (B&B) framework, we show how to improve the performance of the ADMM. In particular, we improve its performance by projecting one of the variables onto a more intricate set than in the general settings. This turns out to be the key to efficiently obtain good bounds in each node of the B&B algorithm. Our B&B algorithm finds an optimal solution for the QSPP on a grid graph with 760 arcs in about three minutes. We solve instances of the QSPP with 1300 arcs in less than an hour. On the other hand, Cplex can solve instances with less than 365 arcs.

The paper is structured as follows. In Section 2 we provide an integer programming formulation of the quadratic shortest path problem, and introduce several graphs that are used in our numerical tests. In Section 3 we derive three semidefinite programming relaxations for the QSPP with increasing complexity. Section 4 provides the Slater feasible versions of the SDP relaxations. In the same section we show how to obtain explicit expressions of the projection matrices corresponding to the relevant graphs. In the case that the underlying graph is acyclic and/or every s-t path has the same length, feasible points in the SDP relaxations satisfy certain properties, which we present in Section 5. We outline the main features of the ADMM algorithm for the SDPs from 18 in Section 6. Our tailored version of the ADMM algorithm is given in Section 7. Section 8 provides computational results on various instances.

2 Problem formulation

Let $G = (V, A)$ be a directed graph with vertex set V, $|V| = n$, and arc set A, $|A| = m$. A path is defined as an ordered set of vertices (v_1, \ldots, v_k), $k > 1$ such that $(v_i, v_{i+1}) \in A$ for $i = 1, \ldots, k - 1$, and it does not contain repeated vertices. A s-t path is a path $P = (v_1, v_2, \ldots, v_k)$ such that v_1 is the source vertex $s \in V$ and v_k is the target vertex $t \in V$.

A natural way to model the quadratic shortest path problem using binary variables is to represent a s-t path P by its characteristic vector x. Thus, $x \in \{0, 1\}^m$ and $x_e = 1$ if and only if the arc e is in the path P. Let $Q = (q_{e,f}) \in \mathbb{R}^{m \times m}$ be a nonnegative symmetric matrix whose rows and columns are indexed by the arcs. The sum of the off-diagonal entries $q_{e,f} + q_{f,e}$ equals the interaction cost between arcs e and f, $e \neq f$. The linear cost of an arc e is given by the diagonal element $q_{e,e}$ of the matrix Q. Now, the quadratic cost
of a path P is given as follows:

$$\sum_{e,f \in A, e \neq f} q_{e,f} x_e x_f + \sum_{e \in A} q_{e,e} x_e = x^T Q x.$$

Let us define the path polyhedron. The incidence matrix I of G is a $n \times m$ matrix that has a row for each vertex and column for each arc, such that $I_{v,e} = 1$ if the arc e leaves vertex v, -1 if it enters vertex v, and zero otherwise. The ith row of the incidence matrix is denoted by a_i^T ($i = 1, \ldots, n$). Define the vector $b \in \mathbb{R}^n$ such that $b_i = 1$ if $i = s$, -1 if $i = t$, and zero otherwise. Now, the path polyhedron $P_{st}(G)$ is given as follows:

$$P_{st}(G) := \{ x \in \mathbb{R}^m \mid 0 \leq x \leq 1, \ a_i^T x = b_i, \ \forall i \in V \setminus \{t\} \}. \quad (1)$$

Note that the constraint $a_t^T x = b_t$ is not included in $P_{st}(G)$ as it is redundant. It is a well-known result that the extreme-points of the polyhedron $P_{st}(G)$ correspond to the characteristic vectors of the s-t paths.

The QSPP can be modeled as the following binary quadratic programming problem:

$$\begin{align*}
& \text{minimize} & & x^T Q x \\
& \text{subject to} & & x \in P_{st}(G) \\
& & & x \text{ binary.}
\end{align*} \quad (2)$$

Clearly, problem (2) reduces to the linear shortest path problem if Q is a diagonal matrix. We next provide several graphs that are used in the remainder of the paper.

Example 2.1. The grid graph $G_{p,q} = (V, A)$ is a directed graph whose vertex and edge sets are given as follows:

$$V = \{v_{i,j} \mid 1 \leq i \leq p, \ 1 \leq j \leq q\},$$

$$A = \{(v_{i,j}, v_{i',j'}) \mid |i - i'| + |j - j'| = 1, \ i' \geq i, \ j' \geq j\}.$$

Note that $|V| = pq$ and $|A| = 2pq - p - q$. Unless specified otherwise, we assume that the source vertex is $v_{1,1}$ and the target vertex is $v_{p,q}$. Thus, all vertices except $v_{1,1}$ and $v_{p,q}$ are transshipment vertices. Every s-t path in $G_{p,q}$ has the same length.

Example 2.2. The flow grid graph $G^f_{p,q} = (V, A)$ consists of transshipment vertices forming the $p \times q$ grid as well as two extra vertices; a source vertex s and a target vertex t. Arcs between vertices on the grid are given as in Example 2.1. Additionally, there are p arcs from s to the vertices in the first column of the grid, and p arcs from the last column of the grid to t. Note that there are $pq + 2$ vertices and $2pq + p - q$ arcs in $G^f_{p,q}$.

Example 2.3. The double-directed grid graph $\bar{G}_{p,q} = (V, A)$ has the same vertex set as the grid graph $G_{p,q}$. The arc set of $\bar{G}_{p,q}$ is given as follows $A = \{(v_{i,j}, v_{i',j'}) \mid |i - i'| + |j - j'| = 1\}$. Note that $|V| = pq$ and $|A| = 4pq - 2p - 2q$.

4
Example 2.4. An incomplete K-partite graph $G_K = (V, A)$ is a directed graph whose vertices are partitioned into K disjoint sets V_1, \ldots, V_K, such that no two vertices within the same set are adjacent, and every vertex in V_i is adjacent to every vertex in V_{i+1} ($i = 1, \ldots, K - 1$). In particular, we have that $(u,v) \in A$ for $u \in V_i$ and $v \in V_{i+1}$ where $i = 1, \ldots, K - 1$.

3 SDP relaxations for the QSPP

In this section, we derive three SDP relaxations for the QSPP with increasing complexity. Our strongest relaxation has $m + n$ equalities and $\binom{m}{2}$ non-negativity constraints.

In order to derive an SDP relaxation for the QSPP, we linearize the objective function $\text{trace}(x^T Q x) = \text{trace}(Q xx^T)$ by replacing xx^T by a new variable $X \in S^m$. Here, S^m denotes the set of symmetric matrices of order m. Clearly, for $x \in P_{st}(G) \cap \{0,1\}^m$, we have that $X = \text{diag}(x)$ $\text{diag}(X)^T$. Now, we weaken the constraint $X - \text{diag}(x)$ $\text{diag}(X)^T = 0$ to $X - \text{diag}(x)$ $\text{diag}(X)^T \succeq 0$ which is known to be equivalent to the constraints $\begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \succeq 0$ and $\text{diag}(X) = x$. This yields to our first SDP relaxation SDP_0 as follows.

$$SDP_0 \begin{cases} \text{minimize} & \langle Q, X \rangle \\ \text{subject to} & a_i^T x = b_i, \quad \forall i \in V \setminus \{t\} \\ & \text{diag}(X) = x, \\ & \begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \succeq 0. \end{cases}$$

Here $\langle \cdot, \cdot \rangle$ denotes the trace inner product. We show how to strengthen SDP_0 by introducing the so-called squared linear constraints. As its name suggests, the additional constraints come from the products of the linear constraints. Consider two linear constraints $a_i^T x = b_i$ and $a_j^T x = b_j$ associated with the vertices $i,j \in V \setminus \{t\}$, the product of these two constraints is $b_i b_j = \langle a_i^T x \rangle (x^T a_j) = \langle a_i a_j^T, xx^T \rangle = \langle a_j a_i^T, xx^T \rangle$. Thus $\langle a_i a_j^T, X \rangle = b_i b_j$ is a valid constraint for the program (3).

The following result shows two properties of the squared linear constraints.

Lemma 3.1. Let (X, x) satisfies $\begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \succeq 0$, $\text{diag}(X) = x$, and $\langle a_i a_i^T, X \rangle = b_i^2$ for $i \in V \setminus \{t\}$. Then

(i) the constraint $a_i^T x = b_i$ is redundant for every $i \in V \setminus \{s,t\}$;

(ii) the constraint $\langle a_i a_j^T, X \rangle = b_i b_j$ is redundant for $i, j \in V \setminus \{t\}$ and $i \neq j$.

5
Thus, \(a_i^T a_i \leq 0 \) as \(Z \geq 0 \). However, we also have \(a_i^T x = 0 \) for every \(i \in V \setminus \{s,t\} \).

(ii) Without loss of generality, we assume \(i \neq s \) and thus \(b_i = 0 \). As \(X \geq 0 \) and \(\langle a_i a_i^\top, X \rangle = 0 \) from the assumption, it holds that \(Xa_i = 0 \) and thus \(\langle a_i a_j^\top, X \rangle = 0 \) is satisfied. \(\square \)

The above lemma motivates us to construct the following SDP relaxation for the quadratic shortest path problem.

\[
\begin{align*}
\text{(SDP)} & \quad \begin{aligned}
\text{minimize} & \quad \langle Q, X \rangle \\
\text{subject to} & \quad a_i^T x = b_i, \\
& \quad \text{diag}(X) = x, \\
& \quad \begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \succeq 0, \\
& \quad \langle a_i a_i^\top, X \rangle = b_i^2, \quad \forall i \in V \setminus \{t\}.
\end{aligned}
\end{align*}
\]

We can further strengthen \(\text{SDP}_L \) by adding the non-negativity constraints \(X \geq 0 \). This leads us to the following SDP relaxation:

\[
\begin{align*}
\text{(SDP)} & \quad \begin{aligned}
\text{minimize} & \quad \langle Q, X \rangle \\
\text{subject to} & \quad a_i^T x = b_i, \\
& \quad \text{diag}(X) = x, \\
& \quad \begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \succeq 0, \\
& \quad \langle a_i a_i^\top, X \rangle = b_i^2, \quad \forall i \in V \setminus \{t\}, \\
& \quad X \succeq 0.
\end{aligned}
\end{align*}
\]

Recall that \(a_i^T x = b_i \) is also a valid, redundant constraint for the polytope \(P_{st}(G) \). A natural question is whether the squared linear constraints induced by some redundant constraint, e.g., \(a_i^T x = b_i \) tighten our relaxation? Also, may other constraints of type \(\langle a_i a_i^\top, X \rangle = b_i b_i \) \((i \in V) \) further tighten \(\text{SDP}_{NL} \)? The next result shows that the answer is negative.

Lemma 3.2. Let \(\bar{a}^T x = \bar{b} \) be a redundant constraint for the path polyhedron \(\Pi \) where \(\bar{a} = \sum_{i \neq t} y_i a_i \) and \(\bar{b} = y^T b = y_s \), for some \(y \in \mathbb{R}^{n-1} \). Then, the squared linear constraints

\[
\langle \bar{a} \bar{a}^\top, X \rangle = \bar{b}^2, \quad \text{and} \quad \langle a_i \bar{a}^\top, X \rangle = \bar{b}_i \bar{b} \quad \text{for} \quad i \in V \setminus \{t\}
\]
are redundant in the SDP relaxation (4).

Proof. By direct verification.

It is not difficult to verify that (4) and (5) do not satisfy the Slater constraint qualification. Therefore, we derive in the following section the Slater feasible versions of the relaxations.

4 The Slater feasible versions of the SDP relaxations

In this section, we provide the Slater feasible versions of the SDP relaxations (4) and (5). In Section 4.1, we derive an explicit expression for the projection matrix corresponding to the grid graph (resp. flow grid graph) described in Example 2.1 (resp. Example 2.2).

The following lemma shows that the Slater constraint qualification does not hold for the SDP relaxation (4).

Lemma 4.1. Let \(Y = \begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \) be a feasible solution of the SDP relaxation \(\text{SDP}_L \). Then \(\text{span}\{ (a_i^T, -b_i) \mid i \in V \setminus \{t\} \} \subseteq \text{Null}(Y) \).

Proof. Take \(\begin{pmatrix} a_i \\ -b_i \end{pmatrix} \) for \(i \neq t \), and note that the squared linear constraint \(\langle a_i a_i^T, X \rangle = b_i^2 \) in \(\text{SDP}_L \) can be written as

\[
\left\langle \begin{pmatrix} a_i \\ -b_i \end{pmatrix}, \begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \right\rangle = 0.
\]

As \(Y \succeq 0 \), we have

\[
\begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \begin{pmatrix} a_i \\ -b_i \end{pmatrix} = 0.
\]

This shows \((a_i^T, -b_i) \in \text{Null}(Y) \) for \(i \in V \setminus \{t\} \).

Define the following matrix formed by the vectors \((a_i^T, -b_i)^T \):

\[
T = \begin{pmatrix} a_1 & \cdots & a_{n-1} \\ -b_1 & \cdots & -b_{n-1} \end{pmatrix} \in \mathbb{R}^{m+1, n-1}. \tag{6}
\]

Note that the rank of \(T \) is \(n - 1 \). It follows from [24, 6] that the minimal face that contains the feasible set of the SDP relaxation \(\text{SDP}_L \) is exposed by \(TT^T \). Assume \(W \in \text{Null}(Y) \)
\[\mathbb{R}^{m+1,m-n+2} \text{ is a matrix whose columns form a basis of the orthogonal complement to } T, \]
i.e., \(W^T T = 0 \). Then, we have that \(Y = WUW^T \) for some positive definite \(U \in \mathcal{S}^{m-n+2} \). This implies that substituting \(Y = WUW^T \) into (5) yields a Slater feasible SDP relaxation for the QSPP.

In the sequel, we prove that the following Slater feasible SDP relaxation is equivalent to \(SDP_L \), see (4).

\begin{equation}
(SDP_{LS}) \begin{cases}
\text{minimize} & \langle W^T \hat{Q} W, U \rangle \\
\text{subject to} & \text{diag}(WUW^T) = WUW^T e_{m+1}, \\
& e_{m+1}^T WUW^T e_{m+1} = 1,
& U \succeq 0.
\end{cases}
\end{equation}

Here, \(e_{m+1} \) is the last column of the \((m+1) \times (m+1)\) identity matrix, and \(\hat{Q} = \begin{pmatrix} Q & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{S}^{m+1} \).

Proposition 4.2. The SDP relaxations \(SDP_L \) and \(SDP_{LS} \) are equivalent.

Proof. Let \(U \) be a feasible solution for (7). We show that \(Y = WUW^T \) is feasible for (4). Let \(X := Y_{1:m,1:m} \), i.e., \(X \) is the leading principal submatrix of order \(m \) of \(Y \), and \(x := \text{diag}(X) \). To show that \(a_s^T x = b_s \), we exploit \(WUW^T \begin{pmatrix} a_s \\ -b_s \end{pmatrix} = 0 \), from where it follows the equality.

The last set of constraints in (4) are also satisfied as

\[\langle a_i a_i^T, X \rangle - b_i^2 = \langle \begin{pmatrix} a_i \\ -b_i \end{pmatrix}, \begin{pmatrix} a_i^T \\ -b_i \end{pmatrix} \rangle = \langle W^T \begin{pmatrix} a_i \\ -b_i \end{pmatrix}, \begin{pmatrix} a_i^T \\ -b_i \end{pmatrix} W, U \rangle = 0, \quad i \neq t. \]

The converse direction follows from the fact that for every feasible \(Y \) in (4), there exists a matrix \(U \succeq 0 \) such that \(Y = WUW^T \). It is also easy to see that the two objectives coincide. \(\square \)

If we add constraints \(e_i^T WUW^T e_j \geq 0 \) for every \(i, j \in \{1, \ldots, m\} \) to \(SDP_{LS} \), then we obtain the following SDP relaxation that is equivalent to \(SDP_{NL} \):

\begin{equation}
(SDP_{NLS}) \begin{cases}
\text{minimize} & \langle W^T \hat{Q} W, U \rangle \\
\text{subject to} & \text{diag}(WUW^T) = WUW^T e_{m+1}, \\
& e_{m+1}^T WUW^T e_{m+1} = 1,
& WUW^T \succeq 0,
& U \succeq 0.
\end{cases}
\end{equation}
In the next section, we give explicit descriptions of the projection matrices corresponding to two different types of grid graphs.

4.1 Explicit expressions for the projection matrices

A basis of the orthogonal complement to T from (6), can be obtained numerically. However, it is computationally more efficient to use an explicit and sparse expression for the basis W. In this section, we construct W for the (flow) grid graphs.

If $C = (v_1, \ldots, v_k)$ is an ordered set of vertices such that $v_1 = v_k$ and each pair of vertices $\{v_i, v_{i+1}\}$ for $i = 1, \ldots, k - 1$ are adjacent, then C is called a cycle. It is a well-known result that the null space of the incidence matrix can be identified by the vectors corresponding to the cycles in the graph.

Lemma 4.3. Every cycle in a digraph induces a vector in the null space of the incidence matrix.

Proof. Let $C = (v_1, \ldots, v_k)$ be a cycle in the graph G with m arcs. Since v_i, v_{i+1} are adjacent, then either $(v_i, v_{i+1}) \in A$ or $(v_{i+1}, v_i) \in A$. We choose one of the two possible cycle-orientations, say from v_i to v_{i+1}, $i = 1, \ldots, k - 1$. Define the vector $w \in \mathbb{R}^m$ such that

$$w_e = \begin{cases} 1 & \text{if } e \in C \text{ has the same orientation as } C, \\ -1 & \text{if } e \in C \text{ has the reverse orientation in } C, \\ 0 & \text{if } e \text{ is not in the cycle.} \end{cases}$$

Now, for the ith row of the incidence matrix a_i it follows that $a_i^T w = 0$ for every $i \in V$. Thus w is in the null space of the incidence matrix.

The grid graphs. We are now ready to construct vectors in the orthogonal complement of T for the grid graph G_{pq}, see Example 2.1. Define cycles $(v_{i,j}, v_{i,j+1}, v_{i+1,j+1}, v_{i+1,j})$ for $i = 1, \ldots, p - 1$ and $j = 1, \ldots, q - 1$, and take vectors $w_{ij} \in \mathbb{R}^m$ as in Lemma 4.3. Additionally, let w be the characteristic vector of the path $(v_{1,1}, \ldots, v_{1,q}, \ldots, v_{p,q})$. It is not difficult to verify the following:

$$(a_k^T, -b_k) \begin{pmatrix} w_{ij} \\ 0 \end{pmatrix} = a_k^T w_{ij} = 0 \text{ and } (a_k^T, -b_k) \begin{pmatrix} w \\ 1 \end{pmatrix} = a_k^T u - b_k = 0,$$

for $i = 1, \ldots, p - 1$ and $j = 1, \ldots, q - 1$ and $k \in V$. Thus, the following $m - n + 2$ independent vectors

$$\begin{pmatrix} w \\ 1 \end{pmatrix} \cup \left\{ \begin{pmatrix} w_{ij} \\ 0 \end{pmatrix} \mid i = 1, \ldots, p - 1, j = 1, \ldots, q - 1 \right\}$$

9
span the null space of the column space of T. Thus, we have

$$W = \begin{bmatrix} w & w_{1,1} & \cdots & w_{p-1,q-1} \\ 1 & 0 & \cdots & 0 \end{bmatrix} \in \mathbb{R}^{m+1,m-n+2}.$$

The flow grid graphs. Here, we construct vectors in the orthogonal complement of T for the flow grid graph with $pq + 2$ vertices, see Example 2.2. We first define cycles $(v_{i,j}, v_{i,j+1}, v_{i+1,j+1}, v_{i+1,j})$ for $i = 1, \ldots, p - 1$ and $j = 1, \ldots, q - 1$, and cycles $t_{s,i} = (s, v_{i,1}, v_{i+1,1})$, $t_{i,t} = (t, v_{i,q}, v_{i+1,q})$ for $i = 1, \ldots, p - 1$. Then, we take vectors $w_{ij} \in \mathbb{R}^m$ as in Lemma 4.3 for the defined cycles. Let $w \in \mathbb{R}^m$ be the characteristic vector of the path $(s, v_{1,1}, \ldots, v_{1,q}, t)$. Similar to the construction of W for the grid graphs, we obtain an explicit expression for $W \in \mathbb{R}^{m+1,m-n+2}$ from vectors w_{ij} and w.

5 SDP relaxations and directed acyclic graphs

Most of the constraints in the SDP relaxations SDP_L and SDP_{NL} are derived from the incidence matrix of the underlying graph. Therefore, constraints in the relaxations differ for different graphs. In this section we show some additional properties of the feasible sets of SDP_L and SDP_{NL} when the considered graph is acyclic.

We show first results for graphs in which every s-t path has the same length.

Lemma 5.1. Let $G_{p,q}$ be the grid graph, and $Y = \begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix}$ feasible for SDP_L. Then,

(i) $X e = L x$;

(ii) $x^T X e = L^2$ and $e^T Y e = (L + 1)^2$,

where $L = p + q - 2$ is the length of the s-t path.

Proof. Let $T \in \mathbb{R}^{m+1,n-1}$ be the matrix defined in (6). Note that the columns of T can be indexed by the vertices v_{ij} of $G_{p,q}$. Define the vector $w \in \mathbb{R}^{n-1}$ such that the element of w that corresponds to the vertex v_{ij} equals $p + q - i - j$. Then we have $Tw = (e^T, -L)^T$.

Since the column space of the matrix $T \in \mathbb{R}^{m+1,n-1}$ spans the null space of Y, the vector $(e^T, -L)^T$ is also in the null space of Y, i.e., $Y(e^T, -L)^T = 0$. From here it follows that $X e = L x$. Using the fact that $e^T x = L$, we can derive (ii) from (i).

Clearly Lemma 5.1 also holds for feasible solutions of SDP_{NL}. We should note that the similar proof follows for any graph in which every s-t path has the constant length.

In the following lemma we show that a particular zero pattern holds for feasible points of SDP_{NL} when the considered graph is acyclic.
Lemma 5.2. Let \((X, x)\) be feasible for \(SDP_{NL}\). If \(G\) is a directed acyclic graph, then \(X_{ef} = 0\) whenever there exists no \(s\)-\(t\) path containing both arcs \(e\) and \(f\).

Proof. Let \((v_1, \ldots, v_n)\) be a topological ordering of the directed acyclic graph \(G\), and \(s = v_1\) and \(t = v_n\). Assume without loss of generality that \(e = (v_i, v_j), f = (v_k, v_l)\) and \(i < k\).

We define a subset \(S\) of vertices based on the order of \(v_j\) and \(v_k\). If \(j > k\), then \(S := \{v_1, \ldots, v_k\}\). If \(j < k\), then we define

\[
S := \{v_1, \ldots, v_{j-1}\} \cup \{v \in \{v_{j+1}, \ldots, v_{k-1}\} \mid \text{there exists a path from } v \text{ to } v_k\} \cup \{v_k\}.
\]

We claim that there does not exist an arc from \(V \setminus S\) to \(S\). The claim is trivial when \(j > k\). Therefore we discuss the case when \(j < k\). Suppose for the sake of contradiction that there exists an arc \((v_{j'}, v_{j''})\) with \(v_{j'} \in V \setminus S\) and \(v_{j''} \in S\). By the construction of \(S\), we know \(j'\) and \(j''\) satisfy \(j \leq j' < j'' \leq k\). As \(v_{j''} \in S\) and \(j < j'' \leq k\), we have that there is a path from \(v_{j''}\) to \(v_k\). Since \((v_{j'}, v_{j''})\) is an arc of \(G\), this means that there is also a path from \(v_{j'}\) to \(v_k\), and thus \(v_{j'} \in S\). This contradicts the assumption \(v_{j'} \in V \setminus S\) for \(i' > j\). If \(i' = j\), then this contradicts the assumption that there does not exist \(s\)-\(t\) path containing both arcs \(e\) and \(f\).

Let \(A'\) be the set that contains arcs from \(S\) to \(V \setminus S\). Thus \(e, f \in A'\). Define \(\lambda \in \mathbb{R}^{n-1}\) such that \(\lambda_i = 1\) if \(i \in S\), and zero otherwise. Because there are no arcs from \(V \setminus S\) to \(S\), we know that \(a := \sum_i \lambda_i a_i\) is a vector such that \(a_e = 1\) if \(e \in A'\), and zero otherwise. Clearly, \(\lambda^T b = 1\). Thus \(a^T x = 1\) is a valid constraint, which has the interpretation that every \(s\)-\(t\) path contains exactly one arc in \(A'\). Applying Lemma 3.2, we know that the squared linear constraint \(\langle aa^T, X \rangle = 1\) is a redundant constraint.

Let \(X_1\) be the submatrix of \(X\) associated to the arcs in \(A'\). From \(a^T x = 1\) and \(\langle aa^T, X \rangle = 1\), we have \(\text{tr}(X_1) = 1\) and \(\langle J, X_1 \rangle = 1\). As \(X_1 \succeq 0\), it holds that \(X_1\) is a diagonal matrix. Thus \(X_{e',f'} = (X_1)_{e',f'} = 0\) for every distinct arcs \(e', f' \in A'\). In particular, we have \(X_{e,f} = 0\) as \(e, f \in A'\).

It is not difficult to verify that Lemma 5.2 does not hold for feasible points in \(SDP_L\). Therefore, in order to tighten the \(SDP_L\) relaxation one may enforce constraints \(X_{ef} = 0\) for \(e, f \in A\), whenever there exists no \(s\)-\(t\) path containing both arcs \(e\) and \(f\). We denote so obtained relaxation by \(SDP_{L+}\) and its Slater feasible version \(SDP_{LS+}\). Note that for a directed acyclic graph it is not difficult to determine all such pairs of arcs, but this is not the case in general. Table 4 shows that \(SDP_{LS+}\) provides significantly better bound than \(SDP_{LS}\). Therefore, in Section 8 we compute \(SDP_{LS+}\) for the QSPP instances on the grid graphs.
Table 1: SDP bounds for the QSPP instances on $G_{20,20}$.

n	m	sdp_{ls}	sdp_{ls+}
400	760	-1057.81	393.38
400	760	-1052.84	428.69
400	760	1146.86	3109.75
400	760	2846.78	4773.37

6 The alternating direction method of multipliers

Although semidefinite programming has proven effective for combinatorial optimization problems, SDP solvers based on interior-point methods might have considerable memory demands already for medium-scale problems. The alternating direction method of multipliers is a first-order method for convex problems developed in the 1970s. This method decomposes an optimization problem into subproblems that may be easier to solve. This feature makes the ADMM well suited for large-scaled problems. For state of the art in theory and applications of the ADMM, we refer the interested readers to [1]. The study of the ADMM for solving semidefinite programming problems can be found in [25, 19, 18].

Oliveira, Wolkowicz and Xu [18] propose solving an SDP relaxation for the quadratic assignment problem using the ADMM. Their computational experiments show that the proposed variant of the ADMM exhibits remarkable robustness, efficiency, and even provides improved bounds. In this section, we briefly outline the approach from [18] and show how to apply it for solving our SDP relaxations of the QSPP.

We consider now the SDP relaxation SDP_{NLS}. In order to obtain a separable objective, we replace WUW^T by Y, and add the coupling constraint $Y = WUW^T$. Furthermore, we add the redundant constraint $Y \leq 1$, which is known to improve the performance of the algorithm, see [18]. This yields the following program:

$$\begin{align*}
\text{minimize} & \quad \langle \hat{Q}, Y \rangle \\
\text{subject to} & \quad \text{diag}(Y) = Ye_{m+1}, \\
& \quad Y_{m+1,m+1} = 1, \\
& \quad Y = WUW^T, \\
& \quad 0 \leq Y \leq 1, U \succeq 0. \\
\end{align*}$$ (9)

The augmented Lagrangian of (9) corresponding to the linear constraint $Y = WUW^T$ is given by:

$$\mathcal{L}(U,Y,Z) = \langle \hat{Q}, Y \rangle + \langle Z, Y - WUW^T \rangle + \frac{\beta}{2} \|Y - WUW^T\|_F^2,$$
where $Z \in S^{m+1}$ is the dual variable, and $\beta > 0$ the penalty parameter, and $\| \cdot \|_F$ the Frobenius norm. The alternating direction method of multipliers solves in the $(k+1)$-th iteration the following subproblems:

\[
U^{k+1} = \arg \min_{U \succeq 0} \mathcal{L}(U, Y^k, Z^k), \\
Y^{k+1} = \arg \min_{Y \in P} \mathcal{L}(U^{k+1}, Y, Z^k), \\
Z^{k+1} = Z^k + \gamma \cdot \beta (Y^{k+1} - WU^{k+1}W^T),
\]

where

\[
P = \{ Y \in S^n \mid \text{diag}(Y) = Ye_{m+1}, Y_{m+1,m+1} = 1, 0 \leq Y \leq 1 \}.
\]

Here $\gamma \in (0, \frac{1+\sqrt{5}}{2})$ is the step-size for updating the dual variable Z, see e.g., [25].

Let W be normalized such that $W W^T = I$. Then, the U-subproblem reduces to the following:

\[
U^{k+1} = \arg \min_{U \succeq 0} \langle Z^k, Y^k - WUW^T \rangle + \frac{\beta}{2} \| Y^k - WUW^T \|_F^2 \\
= \mathcal{P}_{S_+}(W^T(Y^k + \frac{1}{\beta}Z^k)W),
\]

where $\mathcal{P}_{S_+}(M)$ is the projection to the cone of positive semidefinite matrices.

The closed-form solution of the Y-subproblem is as follows:

\[
Y^{k+1} = \arg \min_{Y \in P} \left\| Y - WU^{k+1}W^T + \frac{\hat{Q} + Z^k}{\beta} \right\|_F^2 \\
= \begin{cases}
\min\{1, \max\{0, \hat{Y}_{i,j}\}\} & \text{if } i < j < m + 1, \\
\min\{1, \max\{0, \frac{1}{3}\hat{Y}_{i,i} + \frac{2}{3}\hat{Y}_{i,m+1}\}\} & \text{if } i = j < m + 1, \\
\min\{1, \max\{0, \frac{1}{3}\hat{Y}_{i,i} + \frac{2}{3}\hat{Y}_{i,m+1}\}\} & \text{if } i < j = m + 1, \\
1 & \text{if } i = j = m + 1,
\end{cases}
\]

where

\[
\hat{Y} = WU^{k+1}W^T - \frac{\hat{Q} + Z^k}{\beta}.
\]

In a similar fashion, we can solve SDP_L by the ADMM. Note that the non-negativity constraints are very strong cuts for the SDP relaxations. These constraints are also extremely expensive when solving SDP relaxations with interior-point methods. However, the complexity of the ADMM only slightly increases when the non-negativity constraints are imposed to strengthen the relaxation, as noticed in [18].
Lower and upper bounds. To solve an SDP problem to a high accuracy by an ADMM-based solver can be prohibitively expensive. Therefore Oliveira et al. [18] consider solving (9) to a moderate accuracy, while obtaining a valid bound. We implement their approach for the QSPP. This is explained in the sequel.

Let P be the feasible set for Y-subproblem, see (13), and $Z = \{Z \mid W^TZW \preceq 0\}$. The Lagrangian dual of (9) is as follows:

$$\max_Z \min_{U \succeq 0, Y \in P} \langle \hat{Q}, Y \rangle + \langle Z, Y - WUW^T \rangle = \max_{Z \in Z} \min_{Y \in P} \langle \hat{Q} + Z, Y \rangle,$$

and satisfies weak duality. Thus, for a feasible dual variable $Z \in Z$

$$g(Z) = \min_{Y \in P} \langle \hat{Q} + Z, Y \rangle$$

provides a lower bound for (9). Now, let $(\bar{U}, \bar{Y}, \bar{Z})$ be the output of the ADMM for (9). The projection of \bar{Z} onto Z gives us a feasible Z that we use to compute a lower bound. The projection can be done efficiently, as explained in [18].

One can also compute an upper bound for the problem from the output $(\bar{U}, \bar{Y}, \bar{Z})$ of the ADMM for (9). We define $d \in \mathbb{R}^m$ such that $d_{ii} := \bar{Y}_{ii}$ for $i = 1, \ldots, m$, and solve the following linear programming problem:

$$\min_{x \in \mathbb{R}^m} d^T x \quad \text{s.t.} \quad x \in P_{st}(G).$$

This gives a feasible s-t path x whose quadratic cost is an upper bound for the QSPP. We note that the quality of the upper bound from (17) heavily depends on the quality of the ADMM output \bar{Y}.

7 Improving performance of the ADMM

Oliveira et al., [18] (see also Section 6) show how to obtain a lower bound for the optimization problem from the output of the ADMM-based algorithm that solves an SDP relaxation to a moderate accuracy. So obtained bounds are weaker than the bounds obtained using higher accuracy. Clearly, there is a trade-off between the computational effort and the quality of the SDP bound. Our numerical results show that within a branch-and-bound framework it is preferable to use slightly weaker bounds that can be efficiently computed.

Therefore, in this section we study how to improve the performance of the ADMM algorithm in the first few hundreds of iterations. We restrict here on graphs for which every s-t path has the same length.

Let us first recall the projection onto the simplex problem. The projection of a vector onto the simplex is a well-studied problem. The simplex is defined as a set of non-negative
vectors whose entries sum up to a non-negative number \(a \): \(\Delta(a) := \{ x \in \mathbb{R}^n \mid x \geq 0, \sum_{i=1}^n x_i = a \} \). Then, the minimization problem

\[
\mathcal{P}_a(y) = \arg \min_{x \in \Delta(a)} \| x - y \|
\]

is a projection onto the simplex \(\Delta(a) \). We refer the reader to [4] for a comprehensive overview of this problem. It is also known that the projection onto the simplex can be solved in \(\mathcal{O}(n \log n) \), see [11].

Suppose now that the length of every \(s-t \) path is equal to \(L \). Then, the constraint \(e^T Y e = (L + 1)^2 \) is a valid constraint for \(SDP_{NLS} \), see [9] and Lemma 5.1. Let us show that this constraint can be incorporated in a way that our ADMM algorithm retains fast iterates.

Define matrix \(S \in \mathbb{S}^{m+1} \) such that \(S_{ii} = S_{i,m+1} = S_{m+1,i} = 1 \) for \(i = 1, \ldots, m+1 \), and zero otherwise. Then the constraints \(\langle S, Y \rangle = 3 \cdot L + 1 \) and \(\langle e^T e - S, Y \rangle = L \cdot (L - 1) \) are valid for \(SDP_{NLS} \). Clearly, the \(U \)-update (10) and \(Z \)-update (12) in the ADMM for solving \(SDP_{NLS} \) are not affected by adding those constraints. The only change is in the feasible region \(P \) (see (14)) of the \(Y \)-subproblem (11). Let us define the new feasible region \(\tilde{P} := P_1 \cap P_2 \) where

\[
P_1 = \{ Y \in \mathbb{S}^n \mid \langle S, Y \rangle = 3L + 1, \ Y \geq 0, \ \text{diag}(Y) = Ye_{m+1}, \ Y_{m+1,m+1} = 1 \},
\]

\[
P_2 = \{ Y \in \mathbb{S}^n \mid \langle e^T e - S, Y \rangle = L(L - 1), \ Y \geq 0 \}.
\]

In the sequel we show that the new \(Y \)-subproblem can be solved efficiently. This is accomplished by splitting the problem into two subproblems based on the nonzero entries in \(S \) and \(e^T e - S \) as follows:

\[
\min_{Y \in \tilde{P}} \mathcal{L}(U^{k+1}, Y, Z^k) = \min_{Y \in \tilde{P}} \| Y - \hat{Y} \|_F^2 = \min_{Y \in P_1} \| Y - \hat{Y} \|_F^2 + \min_{Y \in P_2} \| Y - \hat{Y} \|_F^2,
\]

where \(\hat{Y} \) is given in (15). Each of the two minimization problems on the right-hand side above is the projection onto the simplex problem.

For the first problem, we have that \(\min_{Y \in P_1} \| Y - \hat{Y} \|_F^2 = \min_{Y \in P_1} \sum_{i=1}^m (Y_{ii} - \hat{Y}_i)^2 \), where \(\hat{Y} \in \mathbb{R}^m \) is a vector such that \(\hat{Y}_i = \frac{1}{2} \hat{Y}_{ii} + \frac{1}{2} \hat{Y}_{i,m+1} \) for \(i = 1, \ldots, m \). Then, the minimizer of the first problem can be found via the following projection onto the simplex \(\mathcal{P}_L(\hat{Y}) = \arg \min_{x \in \Delta(L)} \| x - \hat{Y} \| \). More precisely, the explicit solution of the first problem is given by

\[
Y_{m+1,m+1} = 1 \text{ and } Y_{ii} = Y_{i,m+1} = Y_{m+1,i} = (\mathcal{P}_L(\hat{Y}))_{ii} \quad \text{for } i = 1, \ldots, m.
\]

For the second problem, we take the vector \(\hat{Y} \in \mathbb{R}^m \) whose entries are indexed by the nonnegative entries \((i,j), \ i < j \), in \(e^T e - S \) such that \(\hat{Y}_{ij} = \hat{Y}_{ij} \). Then, the second problem
is equivalent to the projection onto the simplex $P_{L^2 - L}^{y}$, and the solution is given by

$$Y_{ij} = Y_{ji} = (P_{L^2 - L}^{y})_{ij} \quad \text{for } i < j < m + 1.$$

To sum up, we add redundant constraints to SDP_{NLS} and obtain a different Y-subproblem from (11). The new Y-subproblem can be decomposed into two projections onto the simplex, which can be solved efficiently.

![Figure 1: Lower bounds for the QSPP](image)

(a) bounds for an instance on $G_{20,20}$
(b) bounds for an instance on G_8

Figure 1: Lower bounds for the QSPP

We test an impact of adding $e^T Y e = (L + 1)^2$ to SDP_{NLS} on performance of the ADMM algorithm. Figure 1 (resp. 11) presents lower bounds computed in the first few hundred iterations of the ADMM algorithm for a QSPP instance on $G_{20,20}$ (resp. G_8). The dashed lines present bounds obtained without using the projections onto the simplex, while the solid line presents bounds obtained by using the projections. We observe that the bounds obtained by using the redundant constraints are better. The lines end up at the points in which the stopping criteria is satisfied, see the next section for details. Clearly, one should incorporate additional redundant constraints in order to obtain a better performance of the algorithm in the earlier iterates. Since the dashed line stabilizes after the initial fluctuations, the effect of the redundant constraints in not beneficial in the long run.

7.1 A branch-and-bound algorithm

We describe here our branch-and-bound algorithm for solving the QSPP on the grid graphs. The B&B algorithm combines our strongest SDP relaxation SDP_{NLS}, the ADMM-based solver, simulated annealing heuristics, and (17) to solve instances of the grid graph.

Our branching rule is as follows: starting with the vertex i, we branch over each of its unvisited neighbors j, i.e., $e = (i, j) \in A$. If we branch over an arc e, then the linear cost of
each arc f is increased by $2q_{e,f}$. The linear cost of each of the outgoing arcs from vertex j is increased by $q_{e,e}$. This leads to two smaller quadratic shortest path problems, and each subproblem partitions the original QSPP.

The bounding scheme uses the semidefinite programming relaxation SDP_{NLS} with redundant constraints in the way as described in this section. At each node of the branching tree, we compute a lower bound for the current node using the ADMM algorithm, and also update the best upper bound found so far. At the root node, we compute an upper bound by using our simulated annealing algorithm. In all other nodes we solve the linear programming problem (17) in order to get an upper bound.

The settings of the ADMM turn out to be crucial for the performance of the branch-and-bound algorithm. The ADMM is notorious for its slow convergence to high accuracy. Therefore we compromise this by using the SDP relaxation with additional redundant constraints, and low-precision in the way as described in this section. Here, we set the stopping criteria as follows: if the primal and dual residual is less than 0.5, and the difference between the objective values of two consecutive iterations is less than 0.1 for at least 15 iterations in a row, then we terminate the algorithm. This termination rule still yields lower bounds comparable to those obtained with high precision tolerance. However, the computational cost is lower.

An implementation details of the branch-and-bound algorithm that incorporates SDP bounds and the ADMM for solving the quadratic assignment problem can be found in the master thesis of Liao \cite{14}.

8 Numerical experiments

In this section we present numerical results for the quadratic shortest path problem. We compute SDP_{LS+} and SDP_{NLS} bounds by using the ADMM. For comparison reasons we also compute lower bounds from \cite{20}. We present numerical results for solving to optimality the QSPP on the grid graphs by using our B&B algorithm as described in see Section 7.

The experiments are implemented in Matlab on the machine with an Intel(R) Core(TM) i7-6700 CPU, 3.40GHz and 16 GB memory. The bounds from \cite{20} are solved by Cplex \cite{5} and the Bellman-Ford algorithm.

To test and compare various bounding techniques for the QSPP, we use different types of instances. First of all, we define the random variable $W(d)$ for fixed $d \in (0, 1]$ such that $\mathcal{P}(W(d) = 0) = 1 - d$ and $\mathcal{P}(W(d) = i) = d/10$ for $i \in \{1, \ldots, 10\}$. Now we present the instances as follows.

(i) GRID1 is a QSPP instance on the grid graph from Example \cite{21}. The cost $q_{e,f} = q_{f,e} = w_{e,f}(d)$ is the realization of the random variable $W_{e,f}(d)$ for $d \in (0, 1]$, for each
pair of distinct arcs e and f. Similarly, we take the linear costs $q_{e,e} = w_e(d)$ for each arc e.

(ii) **GRID2** is a QSPP instance on the flow grid graph defined in Example 2.2. The costs are produced in the same way as for **GRID1**. We note that both **GRID1** and **GRID2** are used in [2 20].

(iii) **GRID3** is a QSPP instance on the flow grid graph. The difference between **GRID2** and **GRID3** is that **GRID3** depends on two parameters; d and d' that are related to the horizontal and vertical arcs, respectively. In particular, we set the quadratic cost $q_{e,f} = q_{f,e} = w_{ef}(d)$ if e and f are horizontal arcs, and $q_{e,f} = q_{f,e} = w_{ef}(d')$ if e or f are vertical arcs. Similarly, we set the linear cost $q_{e,e} = w_e(d)$ if e is a horizontal arcs, and $q_{e,e} = w_e(d')$ if e is a vertical arcs.

(iv) **GRID4** is a QSPP instance on the double-directed grid graph, see Example 2.3. For the case that the arcs e and f are of the form $(v_{i,j}, v_{i,j+1})$ or $(v_{i,j}, v_{i+1,j})$, we set the linear costs $q_{e,e} = w_e(d)$ and $q_{f,f} = w_f(d)$, and interaction costs $q_{e,f} = q_{f,e} = w_{ef}(d)$. Here $d \in (0,1]$. All other costs are zero.

(v) **PAR-K** is a QSPP instance on the incomplete K-partite graph, see Example 2.4. We set $V_1 = \{s\}$, $V_2 = \{t\}$, and $|V_i| = K$ for $i = 2, \ldots, K - 1$. Thus, we have that $|V| = K(K - 2) + 2$ and $|A| = K^2(K - 3) + 2K$. The quadratic and linear costs of the arcs in G_K are generated in the same way as for **GRID1** instances.

The size of the grid graph $G_{p,q}$ depends on the parameters p and q. If $p = q$, then we say that the associated graph is a SQUARE grid graph. Similarly, a grid graph with $4p = q$ is called a LONG grid graph, and $p = 4q$ is called a WIDE grid graph. These test graphs are introduced in [13], and used in [20].

All the SDP bounds are solved approximately by our ADMM-based algorithm, see Section 6. The ADMM stops when either the maximum number of iterations 25000 is reached, or when the tolerance $1e-5$ is reached. We heuristically take $\gamma = 1.618$ and $\beta = \sqrt{n}/2$. We note that smaller tolerance significantly increases running time of the algorithm, but yields small improvement in the value of the bound. To solve the QSPP by using the B&B algorithm, we use different tolerance and SDP_{NLS} with additional constraints as described in Section 7.1.

Since we compare our bounds with several bounding approaches from the literature, we briefly outline those. Rostami et al. [20] proposed a reformulation scheme by constructing an equivalent QSPP such that the linear cost has more impact on the solution value. The procedure can be applied iteratively to obtain increasingly better lower bounds. We test here this iterative approach. Our results show that it is the most efficient to stop the iterative procedure when the improvement between the $(k - 1)$th and the kth iteration is less
than \(\min\{k, 10\} \) percentage. This results with the best trade-off between the computed bound and its computational cost. The obtained lower bound is denoted here by \(\text{RBB} \). We also compute the Gilmore-Lower type bound \((\text{GL})\) for the QSPP, see [20]. Finally, we note that \(\text{RBB} \) at the first iteration equals the \(\text{GL} \).

Test results.

In what follows we present and summarize numerical results.

(i) We report our results in Table 2 and 3 for the GRID1 instances on SQUARE grid graphs. The size of the instances ranges from 220 to 760 arcs. For each size, we generate four instances with \(d = 0.2, 0.2, 0.8, 0.8 \).

Table 2 reads as follows. In the first two columns, we list the number of the vertices and the number of arcs in the grid graph \(G_{p,q} \), respectively. In particular, we have \(p = q = \sqrt{n} \), and \(m = 2pq - p - q \). The third and fourth columns list the Gilmore-Lower bounds and the reformulation-based lower bounds \(\text{RBB} \), respectively. The fifth column provides the lower bound \(\text{SDP}_{\text{LS}} \). Note that \(\text{SDP}_{\text{LS}} \) stands for the SDP bound \(\text{SDP}_{\text{LS}} \) with the additional zero pattern, see Section 5. The sixth column provides the lower bounds \(\text{SDP}_{\text{NLS}} \), and the seventh column contains the associated upper bounds. Here, the upper bound is obtained by solving (17) where \(d \) is derived from the output of the ADMM for \(\text{SDP}_{\text{NLS}} \). The eighth column presents the lower bound of the root node with the tolerance 0.5 in the branch-and-bound tree (see also Section 7.1), and the last column is the optimal value computed by our branch-and-bound algorithm. Table 3 presents the computational times and the number of iterations required to obtain bounds in Table 2. The column marked with \((s) \) is the running time in seconds, \((it) \) the number of iterations, and \((n) \) the number of vertices in the branching tree. This labeling also applies to the other tables.

We observed that both, the GL bounds and the RBB bounds heavily depend on the choice of the parameter \(d \). If \(d \) is small, the bound is rather weak. For larger \(d \), \(\text{RBB} \) is usually 50\% to 80\% of the optimal value. It is worth to note that \(\text{RBB} \) is a linear programming-based bound.

\(\text{SDP}_{\text{LS}} \), provides significantly better bounds than those obtained from the reformulation scheme. However, \(\text{SDP}_{\text{NLS}} \) yields extremely strong lower bounds. For almost all of the tested instances with \(n \leq 225 \), \(\text{SDP}_{\text{NLS}} \) provides tight bounds in a short time. Note also that in most of the cases the \(\text{SDP}_{\text{NLS}} \) bounds are computed faster than the \(\text{SDP}_{\text{LS}} \) bounds. This is due to the fact that the ADMM-based algorithm requires more iterations to reach the tolerance for a weaker relaxation than for a stronger relaxation. The upper bounding procedure from Section 6 yields a good upper bound only when \(\text{SDP}_{\text{NLS}} \) is close to the optimal value.

Our B&B algorithm is able to solve to optimality instances with 760 arcs within 3
minutes (!). Also, our branch-and-bound algorithm solves instances on the 25×25 grid graph (1200 arcs) within 30 minutes, and instances on the 26×26 grid graph (1300 arcs) within 50 minutes.

We note that the interior-point algorithm from Mosek [15] solves the SDP relaxation SDP_{NLS} for an instance with 480 arcs in 45 minutes. Cplex solver cplexqp is capable to handle the QSPP instances with $m \leq 364$ arcs within one hour.

(ii) In Table 4, 5 and 6 we report the results for the grid2 instances. Those tables read similarly to the Tables 2 and 3. For each different size of m, we generate four grid2 instances with $d = 0.2, 0.2, 0.8, 0.8$, respectively. It turns out that grid2 instances are easy instances. In particular, the computed SDP bounds presented in Tables 4, 5 and 6 are tight. We report here only results for large instances with the number of arcs ranging from 1352 to 2646. However, we could solve even larger instances but the computation time would exceed one hour. Note also that for several instances the GL bound is trivial, i.e., equal to zero.

The reason for being able to solve large grid2 instances could be explained as follows. As the costs of the arcs are independent, a path with longer length is expected to have a higher cost. Therefore, an optimal path tends to be the path with a smaller length. Indeed, we observe that the length of the optimal path for any test instance reported in Table 4, 5 or 6 is longer for at most three arcs from the minimal path length $q+1$.

(iii) Tables 7, 8 and 9 present results for the grid3 instances. For each different size of m, we generate four grid3 instances with $d' = 0, 0.1, 0.1, 0.5$ fixed. Small d' enables that a path with a length longer than $q+1$ is more likely to be an optimal path. This results with more difficult instances than the grid2 instances. Consequently we were only able to compute lower bounds for instances of up to 2000 arcs in a reasonable amount of time. We remark that for the smaller size instances than those presented in the tables, the SDP lower bounds are mostly tight.

The upper bounds reported in Tables 7, 8 and 9 are obtained by solving the linear programming problem (17), or by using simulated annealing. In particular, we write down the better among these two. The reason that we also use simulated annealing is that the SDP lower bounds are sometimes not strong enough. For the test instances for which the SDP bound is tight, we observe that the length of the optimal path here might be longer up to seventeen more arcs than $q + 1$.

(iv) In Table 10, we report results for the grid4 instances. For each size, four instances are generated with $d = 0.2, 0.2, 0.8, 0.8$, respectively. Similar to grid2 and grid3 instances, the optimal path tends to have shorter length. Consequently the problem is easy to solve when the cost matrix is dense. In fact, removing all the arcs of the form $(v_{i,j}, v_{i-1,j})$ or $(v_{i,j}, v_{i,j-1})$ does not change the optimal value for all the tested
instances with high density $d = 0.8$. To the contrary, an instance with low density $d = 0.2$ is much harder to solve, and none of the lower bounds is tight in this case. Upper bounds in Table 10 are obtained by solving (17).

(v) We report numerical results for the PAR-K instances in Table 11 and 12. For each K, we generate four instances with $d = 0.8$. The relaxation SDP_{LS+} provides trivial lower bounds with negative values, while SDP_{NLS} remains strong. In particular, SDP_{NLS} provides optimal values for all tested instances with $m \leq 720$. Note also that RBB and GL give weak bounds for these dense instances. Upper bounds in Table 11 are obtained by solving (17).

It is also worth mentioning that we tested QSPP instances on the double-directed grid graphs, where quadratic costs are given as reload costs, see [8, 10]. In particular, each arc is colored by one of the given c colors and there is no interaction cost between arcs with the same color. For so generated instances, the GL and RBB bounds equal to the bound obtained by solving the standard shortest path problem using the linear cost. However, our strongest SDP relaxation provides tight bounds for large instances.

To summarize, we present numerical results for many different types of the QSPP instances whose sizes vary from 220 to 2646 arcs. Since for smaller instances we mostly obtain tight bounds, we do not present those results. Our results show that the SDP bounds together with the ADMM make a powerful combination for the computations of strong bounds for the QSPP. Finally, we show that adding redundant constraints to the SDP relaxation helps to improve the performance of the ADMM. We exploit this to develop an efficient branch-and-bound algorithm for solving the QSPP to optimality.

Acknowledgements. The authors would like to thank Henry Wolkowicz and Lieven Vandenberghe for useful discussions on the ADMM and facial reduction.
n	m	gl	rbb	$sdp_{p_{u+}}$	$sdp_{p_{ls}}$	$sdp_{m_{ls}}$	BnB_{root}	BnB_{opt}
121	220	2	21.55	132.90	205.72	206	200.28	206
121	220	11	25.78	128.60	181	181	179.56	181
121	220	750	978.63	1319.62	1374.96	1375	1373.31	1375
121	220	740	950.50	1277.39	1323.72	1324	1319.31	1324
144	264	3	27.59	173.63	248	248	244.33	248
144	264	17	36.50	151.08	221	221	217.97	221
144	264	867	1161.75	1552.80	1589	1589	1585.45	1589
144	264	898	1192.38	1591.41	1611	1611	1608.93	1611
169	312	14	46.14	197.76	298.42	299	297.74	299
169	312	0	27.33	190.14	263	263	257.03	263
169	312	1042	1376.38	1902.88	2001.62	2004	1990.20	2004
169	312	1066	1399	1917.76	2064.88	2065	2041.45	2065
196	364	3	18.14	177.12	331	331	324.81	331
196	364	1	21.50	211.56	263	263	257.03	263
196	364	1227	1631.88	2242.57	2328	2328	2322.88	2328
196	364	1210	1617.50	2262.75	2338	2338	2336.72	2338
225	420	13	32.19	226.66	382	382	369.06	382
225	420	11	58.14	267.89	450.86	459	435.96	459
225	420	654	1088.50	1741.08	1955.95	1957	1943.75	1956
225	420	1447	1938.50	2633.71	2794.97	2795	2776	2795
256	480	9	40.38	257.66	457	457	443.35	457
256	480	5	41.34	297.91	489	489	475.56	489
256	480	661	1154.81	1893.53	2163.13	2165	2135.41	2165
256	480	1592	2118.75	3012.44	3267.70	3276	3231.93	3276
289	544	11	44.02	307.21	543.80	544	529.74	544
289	544	3	59.28	341.04	552.43	553	540.22	553
289	544	804	1367.06	2244.03	2515.76	2516	2495.51	2516
289	544	1794	2329.38	3375.07	3676	3676	3657.65	3676
324	612	3	39.90	322.10	616.44	638	601.15	622
324	612	13	63.64	359.33	649	649	638.26	649
324	612	858	1555.19	2496.70	2861.30	2863	2824.80	2863
324	612	1954	2645.63	3790.17	4147.71	4149	4113.88	4149
361	684	7	38.66	355.35	682.39	786	669.61	715
361	684	6	32.92	342.55	680.55	681	663.38	681
361	684	939	1670.13	2845.50	3274.01	3477	3246.62	3307
361	684	2260	3025.50	4292.52	4662	4662	4632.17	4662
400	760	8	32.87	393.38	746.53	747	730.06	747
400	760	5	42.10	428.69	809.13	858	793.11	837
400	760	1052	1902.31	3109.75	3580	3580	3544.68	3580
400	760	2465	3381.13	4773.37	5224.91	5226	5184.97	5226

Table 2: GRID1-SQUARE: bounds and optimal values
n	m	$gl(s)$	$rbb(s)$	$rbb(it)$	$sdp_{ls}(s)$	$sdp_{ls}(it)$	$BnB(s)$	$BnB(it)$
121	220	0.17	1.97	9	7.41	3323	1.43	705
121	220	0.15	1.56	7	7.46	3381	1.35	692
121	220	0.14	0.89	4	7.32	3425	1.49	785
144	264	0.20	1.79	6	11.16	3430	2.71	932
144	264	0.20	1.49	5	11.61	3580	1.59	544
144	264	0.20	1.23	4	10.45	3232	0.87	299
169	312	0.27	2.87	7	16.59	3454	5.70	1332
169	312	0.26	3.19	8	17.17	3633	3.37	779
169	312	0.26	1.66	4	15.80	3346	2.93	674
196	364	0.36	4.22	7	32.35	3518	12.38	1434
196	364	0.37	5.40	9	33.47	3593	33.17	3845
196	364	0.35	2.45	4	30.89	3396	3.18	371
196	364	0.34	2.42	4	31.51	3398	3.61	427
225	420	0.46	4.89	6	47.26	3590	43.26	3374
225	420	0.46	5.74	7	46.06	3662	51.24	4097
225	420	0.44	4.15	5	43.56	3492	9.24	777
225	420	0.48	3.98	4	46.07	3423	17.97	1405
256	480	0.67	9.48	7	65.97	3650	42.34	2660
256	480	0.62	9.07	8	60.90	3583	29.24	1814
256	480	0.59	5.84	5	64.80	3772	60.79	3799
256	480	0.58	4.67	4	59.37	3479	63.45	3707
289	544	0.99	15.93	7	95.72	3726	89.33	3594
289	544	1	16.10	7	99.77	3771	35.50	1432
289	544	0.94	10.43	5	93.10	3650	31.43	1326
289	544	0.86	7.37	4	80.23	3492	72.88	3268
324	612	1.12	20.67	8	119.62	3841	127.83	4286
324	612	1.12	20.18	8	118.87	3808	110.88	3733
324	612	1.04	12.84	5	116.82	3767	121.60	4097
324	612	1.06	10.40	4	109.41	3535	110.56	3722
361	684	1.49	28.18	8	158.36	3868	168.60	4320
361	684	1.51	24.56	7	155.70	3858	152.63	3929
361	684	1.42	17.88	5	151.74	3716	157.10	3965
361	684	1.63	16.73	4	160.54	3557	62.77	1414
400	760	2.20	41.17	8	221.28	4067	76.24	1536
400	760	1.88	37.88	8	237.60	4072	249.98	4349
400	760	1.76	23.86	5	201.16	3866	191.43	3833
400	760	1.79	19.08	4	192.58	3640	200.97	3980

Table 3: GRID1-SQUARE: running times and iterations
Table 4: grid2-square: bounds, running times, iterations

n	m	gl	rbb	sdp_{nlz}	sdp_{nlz}^{opt}	gl(s)	rbb(s)	rbb(it)	sdp_{nlz}(s)	sdp_{nlz}(it)
678	1352	0	15.30	598	598	8.90	33.79	13	157.04	626
678	1352	0	16.67	564	564	8.78	260.26	10	398.39	1628
678	1352	1843	2433.56	3001	3001	8.66	156.87	6	168.63	683
678	1352	1918	2451.09	2988	2988	8.70	157.03	6	129.40	508
731	1458	0	8.49	587	587	10.93	324.82	10	2209.94	7563
731	1458	0	24.25	625	625	10.94	355.14	11	875.70	2986
731	1458	1980	2492.94	3127	3127	10.75	192.05	6	184.63	601
731	1458	1940	2534.22	3267	3267	10.69	192.25	6	189.17	613

Table 5: grid2-long: bounds, running times, iterations

n	m	gl	rbb	sdp_{nlz}	sdp_{nlz}^{opt}	gl(s)	rbb(s)	rbb(it)	sdp_{nlz}(s)	sdp_{nlz}(it)
1158	2261	233	1020.13	4648	4648	38.32	738.20	6	2516.16	3090
1158	2261	221	956.78	4641	4641	38.05	735.49	6	2898.22	3543
1158	2261	13643	16898.06	19950	19950	38.07	747.63	6	744.92	866
1158	2261	13801	17255.94	20423	20423	38.04	748.45	6	1373.16	1631
1298	2538	259	1093.03	5224	5224	52.24	1033.70	6	2578.47	2327
1298	2538	288	1152.31	5243	5243	52.15	1036.49	6	2661.94	2392
1298	2538	15479	19311.78	22971	22971	52.48	1052.25	6	4387.72	3910
1298	2538	15424	19186.53	22755	22755	52.52	1051.36	6	1675.82	1450

Table 6: grid2-wide: bounds, running times, iterations

n	m	gl	rbb	sdp_{nlz}	sdp_{nlz}^{opt}	gl(s)	rbb(s)	rbb(it)	sdp_{nlz}(s)	sdp_{nlz}(it)
1158	2363	0	2.84	204	204	39.96	1595.04	13	2817.37	3046
1158	2363	0	2.57	186	186	40.67	1220.44	10	4629.67	5016
1158	2363	782	980.56	1240	1240	39.19	716.12	6	1676.66	1759
1158	2363	785	981.91	1236	1236	39.32	721.11	6	1085.42	1125
1298	2646	0	0.52	241	241	55.62	1206.43	7	2733.47	2200
1298	2646	0	2.57	206	206	55.69	2918.56	17	685.66	525
1298	2646	906	1143.25	1406	1406	54.19	1004.12	6	1257.34	967
1298	2646	884	1116.31	1385	1385	54.09	1004.72	6	836.93	627
n	m	gl	rbb	sdp_{\text{nl}s}	ub	gl(s)	rbb(s)	rbb(it)	sdp_{\text{nl}s}(s)	sdp_{\text{nl}s}(it)
----	----	-----	------	------------------	-----	-------	--------	---------	------------------	------------------
363	722	38	64.88	576.43	572	1.69	21.13	5	342.67	7304
363	722	36	51.13	577.70	579	1.56	20.40	5	345.94	7400
363	722	54	118.97	762	762	1.64	25.91	6	19.83	421
363	722	36	111.14	768	768	1.65	29.79	7	33.94	729
402	800	27	32.25	601	601	1.98	21.74	4	80.55	1397
402	800	26	38.88	638.45	671	1.94	27.88	5	400.87	6891
402	800	43	113.72	882.35	888	2.04	39.54	7	504.74	8737
402	800	37	88.75	878.70	879	2.05	39.60	7	274.39	4774

Table 7: GRID3-SQUARE: bounds, running times, iterations

n	m	gl	rbb	sdp_{\text{nl}s}	ub	gl(s)	rbb(s)	rbb(it)	sdp_{\text{nl}s}(s)	sdp_{\text{nl}s}(it)
902	1755	2548	4445.19	8297	8297	17.61	280.89	5	1344.58	3634
902	1755	2625	4145.44	8347.39	8384	17.11	278.69	5	4442.90	11946
902	1755	2915	4885.81	9010	9010	17.99	287.92	5	844.73	2262
902	1755	2913	4848.56	9059	9059	18.24	288.45	5	1572.34	4198
1026	2000	2998	4812.06	9450.67	9697	25.32	420.15	5	7614.34	14625
1026	2000	3033	4992.44	9431	9431	25.03	419.66	5	3414.82	6593
1026	2000	3108	5565.56	10251	10251	26.24	428.71	5	3555.13	7115
1026	2000	3121	5296.31	10261.56	10341	26.22	426.64	5	8473.91	16472

Table 8: GRID3-LONG: bounds, running times, iterations

n	m	gl	rbb	sdp_{\text{nl}s}	ub	gl(s)	rbb(s)	rbb(it)	sdp_{\text{nl}s}(s)	sdp_{\text{nl}s}(it)
678	1313	2243	3472.81	6294	6294	8.72	146.23	6	553.25	3040
678	1313	2150	3479.13	6207	6207	7.74	143.66	6	505.02	2783
678	1313	2271	3899.16	6769	6769	8.26	147.67	6	619.16	3471
678	1313	2336	3926.78	6853	6853	8.46	147.64	6	402.67	2180
786	1526	2477	4006.72	7325.83	7352	12.25	227.85	6	6670.28	25000
786	1526	2311	3883.09	7036	7036	12.18	227.35	6	594.11	2310
786	1526	2532	4312.78	7825	7825	12.81	231.30	6	2403.64	9253
786	1526	2581	4394.06	7883	7883	12.81	231.37	6	867.23	3290

Table 9: GRID3-WIDE: bounds, running times, iterations
\(n \)	\(m \)	\(gl \)	\(sdp_{\text{nls}} \)	\(sdp_{\text{nls}}^\star \)	\(gl(s) \)	\(sdp_{\text{nls}}(s) \)	\(sdp_{\text{nls}}(\text{it}) \)
121	440	0	149.02	265	0.26	83.69	4118
121	440	0	132.23	216	0.24	78	3874
121	440	606	1375	1375	0.34	19.16	972
121	440	579	1323.72	1324	0.35	7.90	398
144	528	0	166.33	264	0.46	139.44	4360
144	528	0	169.06	250	0.38	130.39	4072
144	528	682	1589	1589	0.50	8.67	267
144	528	700	1611	1611	0.50	9.41	289
169	624	4	219.01	450	0.53	203.16	4217
169	624	0	207.01	325	0.52	201.29	4170
169	624	816	2004	2004	0.71	32.10	662
169	624	811	2064.91	2065	0.74	236.86	4889
196	728	0	212.31	506	0.77	301.13	4274
196	728	0	241.46	596	0.82	301.07	4263
196	728	948	2328	2328	1.48	25.17	350
196	728	941	2338	2338	1.15	27.01	374

Table 10: GRID4: bounds, running times, iterations

\(K \)	\(n \)	\(m \)	\(gl \)	\(rbb \)	\(sdp_{\text{nls}} \)	\(sdp_{\text{nls}}^\star \)
9	65	504	10	40.91	-265.04	115.85
9	65	504	10	40.13	-266.50	113.13
9	65	504	9	40.19	-272.79	96.96
9	65	504	8	30.84	-275	101.101
10	82	720	3	40.80	-450.79	139.99
10	82	720	7	33.25	-446.06	125.125
10	82	720	4	36.59	-446.21	136.136
10	82	720	10	37.47	-444.82	137.137
11	101	990	3	34.20	-674.08	160.12
11	101	990	8	34.95	-667.69	168.09
11	101	990	5	34.50	-667.78	164.21
11	101	990	6	34.44	-668.19	165.12

Table 11: PAR-K: bounds
K	n	m	$ql(s)$	$rbb(s)$	$rbb(it)$	$sdp_{ls+}(s)$	$sdp_{ls+}(it)$	$sdp_{nl+}(s)$	$sdp_{nl+}(it)$
9	65	504	0.43	4.18	6	151.79	3605	40.28	953
9	65	504	0.44	4.11	6	149.55	3515	64.35	1548
9	65	504	0.45	4.16	6	153.17	3647	20.51	466
9	65	504	0.44	4.23	6	152.13	3617	24.65	559
10	82	720	0.88	10.76	7	399.62	3987	284.72	2720
10	82	720	0.90	9.15	6	389.82	3832	111.59	1028
10	82	720	0.94	9.09	6	372.30	3713	235.01	2203
10	82	720	0.92	9.14	6	375.81	3713	233.67	2256
11	101	990	1.63	19.99	7	980.90	4158	1580.83	6108
11	101	990	1.67	20.12	7	936.08	3962	1508.11	6163
11	101	990	1.69	18.36	6	953.89	3985	1521.10	5859
11	101	990	1.66	20.67	7	965.39	4081	1532.04	5904

Table 12: PAR-K: running times, iterations
References

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning, 3(1):1–122, 2011.

[2] C. Buchheim, E. Traversi. Quadratic 0–1 optimization using separable underestimators. Technical Report, Optimization Online, 2015.

[3] N. Biggs. Algebraic graph theory. Cambridge university press, 1993.

[4] L. Condat. Fast projection onto the simplex and the l_1 ball. Math. Programming, 158(1):575–585, 2016.

[5] Cplex, ILOG. 7.0 Reference Manual. ILOG CPLEX Division, Incline Village, NV. 2000.

[6] D. Drusvyatskiy, H. Wolkowicz. The many faces of degeneracy in conic optimization. Preprint 2017, [arXiv:1706.03705]

[7] G. Galbiati. The complexity of a minimum reload cost diameter problem. Discrete Appl. Math., 156(18):3494-3497, 2008.

[8] G. Galbiati, S. Gualandi, F. Maffioli. On minimum reload cost cycle cover. Discrete Appl. Math., 164(1):112120, 2014.

[9] I. Gamvros. Satellite network design, optimization and management. PhD thesis, University of Maryland, 2006.

[10] L. Gourvès, A. Lyra, C. Martinhon and J. Monnot. The minimum reload s-t path/trail/walk problems. SOFSEM 2009: Theory and Practice of Computer Science, Springer, p. 621–632, 2009.

[11] M. Held, P. Wolfe, H.P. Crowder. Validation of subgradient optimization. Math. Programming, 6(1):62–88, 1974.

[12] H. Hu, R. Sotirov, Special cases of the quadratic shortest path problem. [arXiv:1611.07682] [math.OC].

[13] P. Kovács. Minimum-cost flow algorithms: An experimental evaluation. Optimization Methods and Software, 30(1):94–127, 2015.

[14] Z. Liao. Branch and bound via the alternating direction method of multipliers for the quadratic assignment problem. Master Thesis, University of Waterloo, 2016.
[15] MOSEK, Aps. The MOSEK optimization software. Online at http://www.mosek.com, vol. 54, 2010.

[16] K. Murakami, H.S. Kim. Comparative study on restoration schemes of survivable ATM networks, INFOCOM’97. Sixteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Driving the Information Revolution., Proceedings IEEE, vol. 1:345–352, 1997.

[17] Y.M. Nie, X. Wu. Reliable a priori shortest path problem with limited spatial and temporal dependencies. In: W.H.K. Lam, S.C. Wong, H.K. Lo (eds.), Transportation and Traffic Theory 2009: Golden Jubilee, 169–195, 2009.

[18] D.E. Oliveira, H. Wolkowicz, Y. Xu. ADMM for the SDP relaxation of the QAP, arXiv preprint [arXiv:1512.05448](http://arxiv.org/abs/1512.05448), 2015.

[19] J. Povh, F. Rendl, A. Wiegele. A boundary point method to solve semidefinite programs. Computing, 78(3):277–286, 2006.

[20] B. Rostami, A. Chassein, M. Hopf, D. Frey, C. Buchheim, F. Malucelli, M. Goerigk. The quadratic shortest path problem: complexity, approximability, and solution methods, Optimization online, 2016.

[21] B. Rostami, F. Malucelli, D. Frey, C. Buchheim. On the quadratic shortest path problem. In: E. Bampis (ed.) Experimental Algorithms, Lecture Notes in Computer Science, vol. 9125, Springer International Publishing, 379–390, 2015.

[22] S. Sen, R. Pillai, S. Joshi, A.K. Rathi. A mean-variance model for route guidance in advanced traveler information systems. Transportation Science, 35(1):37–49, 2001.

[23] R.A. Sivakumar, R. Batta. The variance-constrained shortest path problem. Transportation Science, 28(4):309–316, 1994.

[24] L. Tunçel. On the Slater condition for the SDP relaxations of nonconvex sets. Oper. Res. Lett., 29(4):181-186, 2001.

[25] Z. Wen, D. Goldfarb, and W. Yin. Alternating direction augmented Lagrangian methods for semidefinite programming. Math. Program. Comput., 2(3):203–230, 2010.

[26] H.C. Wirth, J.Steffan. Reload cost problems: minimum diameter spanning tree. Discrete Appl. Math., 113:73-85, 2001.

[27] Q. Zhao, S.E. Karisch, F. Rendl, H. Wolkowicz. Semidefinite programming relaxations for the quadratic assignment problem. J. Comb. Optim., 2:71–109, 1998.