A spider survey in a protected area of La Palma (Canary Islands, Spain) reveals five new records for the island

Authors: Javier García, and Daniel Suárez
Source: Arachnologische Mitteilungen: Arachnology Letters, 57(1): 69-76
Published By: Arachnologische Gesellschaft e.V.
URL: https://doi.org/10.30963/aramit5713
A spider survey in a protected area of La Palma (Canary Islands, Spain) reveals five new records for the island

Javier García & Daniel Suárez

Abstract. During a survey of spiders in the protected area of Montaña de La Breña (La Palma, Canary Islands), a total of 54 species from 24 families were recorded. *Porrhoculbiona minor*, *Leptodrassus albidus*, *Macrophaeus varius*, *Silhouettella ioricatula* and *Ballus chalybeus* are reported for the first time for La Palma.

Keywords: COBRA protocol, distribution, faunistics, laurel forest, Macaronesia

Material and methods

The study site, Montaña de la Breña (Protected Area Code: 100190), is located off northwest Africa, comprising seven major islands. The second-highest island, La Palma, is 1.77 million years old and comprises two large volcanoes; the extinct northern shield volcano and the southern volcanic ridge, the most active volcanic region in the Canaries (Troll & Carracedo 2016). Due to its height, in this island five main vegetation belts are present; spurge scrub (0–200 m of altitude), thermo-sclerophyllous woodland (200–500 m), laurel forest (500–1200 m), pine forest (1200–1900) and summit broom scrub (above 1900 m) (Garzón-Machado et al. 2013). Among them, laurel forest may be one of the most interesting ecosystems because, as for most taxa, in this ecosystem spider richness reaches its maximum (Suárez 2018). In La Palma, there are well preserved laurel forest areas in the northeast as well as some relics at mid-altitudes in the southeast.

The Canary Islands are an archipelago of volcanic origin located off northwest Africa, comprising seven major islands. The second-highest island, La Palma, is 1.77 million years old and comprises two large volcanoes; the extinct northern shield volcano and the southern volcanic ridge, the most active volcanic region in the Canaries (Troll & Carracedo 2016). Due to its height, in this island five main vegetation belts are present; spurge scrub (0–200 m of altitude), thermo-sclerophyllous woodland (200–500 m), laurel forest (500–1200 m), pine forest (1200–1900) and summit broom scrub (above 1900 m) (Garzón-Machado et al. 2013). Among them, laurel forest may be one of the most interesting ecosystems because, as for most taxa, in this ecosystem spider richness reaches its maximum (Suárez 2018). In La Palma, there are well preserved laurel forest areas in the northeast as well as some relics at mid-altitudes in the southeast.

The study site, Montaña de la Breña (Protected Area Code: ES7020072), is a Special Area of Conservation of the Natura 2000 Network with a surface of 26.15 ha located in the southeast of the island at an altitude of 565 m. This old tephritic volcanic cone is covered mainly by a dry laurel forest while on the southern slope there is a canary pine (*Pinus canariensis*) plantation as well as a nitrophilous shrubby community of *Artemisia ibusula* and *Rumex lunaria* (García et al. 2018). The study area was divided into four sectors, matching with the 500 m × 500 m quadrats used in the Canary Biodiversity DataBase (Gobierno de Canarias 2018). The coordinates of the centres of the four sectors are 28.6342°N/17.7826°W (Sector 1), 28.6340°N/17.7806°W (Sector 2), 28.6326°N/17.7813°W (Sector 3) and 28.6325°N/17.7825°W (Sector 4).

Sampling was conducted between November 2014 and January 2015 (three days; 14 hours of sampling effort) and between November 2018 and January 2019 (two days; 4 hours of sampling effort), applying several collecting methods, following the COBRA protocol (Cardoso et al. 2009), such as active aerial searching (AAS), litter sifting (LIT), beating (BET), sweeping (SWE), ground and wood searching (GWS) and pitfall trapping (PIT). Active collecting methods (AAS, BET, SWE and GWS) were conducted during an hour per plot and per date. A grid of 48 non-baited pitfall traps were laid, filled with propylene glycol and retired after 5 weeks. Regarding sifting, a total number of 22 samples of 2 m² of leaves litter were obtained with a Winkler sieve. Then, spiders were extracted from those samples with the Berlese funnel method. The habitats were not documented. All specimens are preserved in 70 % ethanol and deposited in the collection of the first author. Global distribution data were taken from the World Spider Catalog (2018).

Results

A total number of 430 individuals (undeterminable juveniles excluded) were collected, belonging to 54 species of 24 different families. Regarding richness per quadrat, both Sectors 1 and 4 harboured up to 23 species, while in Sectors 2 and 3, 36 and 34 species were found, respectively (Tab. 1).

Family	Sector 1	Sector 2	Sector 3	Sector 4
Agelenidae	23	23	25	23
Lycosoides coarctata (Dufour, 1831)				
Determination	Nentwig et al. (2018).			
Material examined	Sector 2: ['SWE', '15. Nov. 2014', '2 j.'], Sector 2: ['PIT', '1–15. Nov. 2014', '1 j.'], Sector 3: ['GWS', '6. Jan. 2015', '1 j.'], Sector 4: ['GWS', '6. Jan. 2015', '1 j.']			
Distribution	Mediterranean			
Tab. 1: Number of specimens collected in each sector (S), species abundance, species richness and family richness

Taxa	S1	S2	S3	S4	Total
Agelenidae					
Lycoseodes coarctata	3	1	.	.	4
Tegenaria pagana	5	.	1	6	
Araneidae					
Araniella maderiana	.	1	.	.	1
Arigio trifusciata	.	.	1	1	2
Cyrtophora citricola	1	.	1	1	3
Mangora acaulpha	.	.	1	.	1
Neoscona crucifera	17	10	8	3	38
Zygiella minima	.	.	1	1	.
Cheiracanthiidae					
Cheiracanthium canariense	9	9	.	1	19
Clubionidae					
Porroclubiona minor	5	13	5	7	30
Dictynidae					
Lathys dentichelis	1	2	.	.	3
Nigma puella	.	.	4	4	
Nigma tuberosa	1	.	1	2	
Dysderida					
Dysdera calderensis	1	2	.	.	2
Dysdera crocata	11	2	.	13	
Gnaphosidae					
Leptodrassus albidus	1	.	8	2	10
Macaraphex varius	1	16	2	.	19
Nomiacia musiva	9	.	.	2	11
Setaphis gomerae	1	2	1	3	7
Linyphiidae					
Microlinyphia johnsoni	4	3	.	.	7
Minicia gomerae	.	.	11	11	
Walkenaeria hierrepalma	2	2	.	2	6
Lycosidae					
Alopecosa canariola	6	.	3	9	
Mimetidae					
Ero flammeola	.	3	.	3	
Oecobiidae					
Oecobius nawus	1	2	.	3	
Oonopidae					
Silhouettella leucipigula	.	.	1	1	
Oxyopidae					
Oxyopes krupelinorum	3	5	19	1	28
Philodromidae					
Pulchelldromus punctigerus	10	1	4	.	15
Pholcidae					
Pholcus ornatus	.	1	.	1	
Spermophorides mercedes	.	4	1	.	5
Pisauridae					
Cladonyx insignis	.	4	.	4	
Salticidae					
Ballus chalybeius	1	.	.	1	
Chalcocirsus infimus	1	.	1	2	
Cyrtus algerina	.	.	1	3	4

Tegenaria pagana C. L. Koch, 1840

Determination. Nentwig et al. (2018).

Material examined. Sector 2, PIT, 23. Dec. 2014 – 6. Jan. 2015, 2 ♂♂, 2 ♀; Sector 2, GWS, 14. Jan. 2019, 1 ♂; Sector 4, AAS, 10. Nov. 2018, 1 ♂.

Distribution. Europe to Central Asia. Introduced to USA, Mexico, Brazil, Chile.

Araneidae

Araniella maderiana (Kulczyński, 1905)

Determination. Wunderlich (1992).

Material examined. Sector 3, GWS, 15. Nov. 2014, 1 ♂.

Distribution. Canary Islands and Madeira.

Argiope trifisciata (Forsskål, 1775)

Determination. Nentwig et al. (2018).

Material examined. Sector 3, AAS, 6. Jan. 2015, 1 ♂; Sector 4, AAS, 6. Jan. 2015, 1 ♂.

Distribution. North, Central and South America. Introduced to Africa, Portugal to Israel, China, Japan, Australia (Tasmania) and Pacific Islands.
Cyrtophora citricola (Forsskål, 1775)
Determination. Nentwig et al. (2018).
Material examined. Sector 1, BET, 9. Jan. 2015, 1 j.; Sector 3, AAS, 15. Nov. 2014, 1 ♀; Sector 4, AAS, 10. Nov. 2018, 1 j.
Distribution. Southern Europe, Africa, Middle East, Pakistan, India, China, Japan. Introduced to Dominican Rep., Costa Rica, Colombia, Brazil.

Mangora acalypha (Walckenaer, 1802)
Determination. Nentwig et al. (2018).
Material examined. Sector 4, BET, 10. Nov. 2018, 1 ♀.
Distribution. Madeira, Europe, North Africa, Turkey, Middle East, Caucasus, Russia (Europe to South Siberia), Central Asia and China.

Neoscona crucifera (Lucas, 1839)
Determination. Nentwig et al. (2018).
Material examined. Sector 1, BET, 9. Jan. 2015, 2 j.; Sector 2, SWE, 15. Nov. 2014, 2 j.; Sector 2, BET, 23. Dec. 2014, 6 j.; Sector 3, BET, 14. Nov. 2014, 2 j.; Sector 3, AAS, 15. Nov. 2014, 2 ♀, 3 j.; Sector 4, BET, 14. Nov. 2014, 1 ♂, 2 j.; Sector 5, BET, 14. Nov. 2014, 1 ♀, 2 j.
Distribution. North America. Introduced to Hawaii, Canary Islands and Madeira.

Zygiella minima Schmidt, 1968
Determination. Wunderlich (1987).
Material examined. Sector 3, BET, 14. Nov. 2014, 1 ♀.
Distribution. Canary Islands and Madeira.

Cheiracanthidae
Cheiracanthium canariense Wunderlich, 1987
Determination. Wunderlich (1987).
Material examined. Sector 1, BET, 9. Jan. 2015, 1 ♂, 1 j; Sector 1, SWE, 10. Nov. 2018, 7 j.; Sector 2, SWE, 15. Nov. 2014, 2 j.; Sector 2, BET, 23. Dec. 2014, 2 ♀, 1 ♀, 3 j.; Sector 2, PIT, 23. Dec. 2014 – 6. Jan. 2015, 1 j.; Sector 4, SWE, 10. Nov. 2018, 1 j.
Distribution. Canary Islands, Turkey and Egypt.

Clubionidae
Porrhocubiona minor (Wunderlich, 1987) (Fig. 2a, b)
Determination. Wunderlich (1987).
Material examined. Sector 1, LIT, 19. Jan. 2019, 1 j.; Sector 3, LIT, 14. Jan. 2019, 2 ♀.j.; Sector 2, BET, 23. Dec. 2014, 3 ♀, 6 j.; Sector 2, PIT, 23. Dec. 2014 – 6. Jan. 2015, 1 ♂, 3 j.; Sector 3, BET, 14. Nov. 2014, 5 j.; Sector 4, BET, 14. Nov. 2014, 3 j.; Sector 4, SWE, 10. Nov. 2018, 4 j.
Distribution. Canary Islands. New record for La Palma.

Dictynidae
Lathys dentichelis (Simon, 1883)
Determination. Wunderlich (1992).
Material examined. Sector 2, LIT, 14. Jan. 2019, 1 ♀; Sector 3, LIT, 14. Jan. 2019, 2 ♀.
Distribution. Azores, Canary Islands.

Nigma puella (Simon, 1870)
Determination. Nentwig et al. (2018).
Material examined. Sector 4, SWE, 10. Nov. 2018, 1 ♂, 3 j.
Distribution. Europe, Azores, Madeira, Canary Islands.

Nigma tuberosa Wunderlich, 1987
Determination. Wunderlich (1987).
Material examined. Sector 2, BET, 23. Dec. 2014, 1 ♂; Sector 4, GWS, 6. Jan. 2015, 1 ♀.
Distribution. Canary Islands.

Dysderidae
Dysdera calderensis Wunderlich, 1987
Determination. Arnedo et al. (1996).
Material examined. Sector 1, LIT, 19. Nov. 2014, 1 ♂; Sector 2, PIT, 23. Dec. 2014 – 6. Jan. 2015, 1 ♂.
Distribution. Canary Islands.

Dysdera crocata C. L. Koch, 1838
Determination. Arnedo et al. (1996).
Material examined. Sector 2, PIT, 23. Dec. 2014 – 6. Jan. 2015, 1 ♀, 1 ♂; Sector 2, PIT, 23. Dec. 2014 – 6. Jan. 2015, 2 ♀, 6 ♂; Sector 2, GWS, 14. Jan. 2019, 1 ♂; Sector 3, GWS, 14. Jan. 2019, 2 ♀, 1 ♂.
Distribution. Europe, Caucasus, Iraq, Central Asia. Introduced to North America, Chile, Brazil, Australia, New Zealand, Hawaii and Canary Islands.

Gnaphosidae

Leptodrassus albidos Simon, 1914 (Fig. 2c)
Determination. Murphy (2007).
Material examined. Sector 3, LIT, 14. Nov. 2014, 7 ♂; Sector 3, BET, 14. Nov. 2014, 1 ♀; Sector 4, BET, 14. Nov. 2014, 1 ♀.
Distribution. Azores, Canary Islands, Spain to Greece (Crete), Turkey and Israel. New record for La Palma.

Nomisia musiva (Simon, 1899)
Determination. Wunderlich (2011).
Material examined. Sector 1, AAS, 10. Nov. 2018, 4 ♀; Sector 1, SWE, 10. Nov. 2018, 1 ♀; Sector 4, AAS, 10. Nov. 2018, 1 ♀.
Distribution. Canary Islands.

Setaphis gomerae Schmidt, 1981
Determination. Platnick & Murphy (1996).
Material examined. Sector 1, LIT, 19. Nov. 2014, 1 ♀; Sector 2, LIT, 14. Nov. 2014, 1 ♀; Sector 2, PIT, 23. Dec. 2014 – 6. Jan. 2015, 1 ♀; Sector 3, LIT, 14. Jan. 2019, 1 ♀; Sector 4, LIT, 14. Nov. 2014, 3 ♂.
Distribution. Canary Islands.

Linophyllidae

Microlinyphia johnsoni (Blackwall, 1859)
Determination. Wunderlich (1987).
Material examined. Sector 1, BET, 9. Jan. 2015, 1 ♀; Sector 1, SWE, 10. Nov. 2018, 2 ♀♂; Sector 2, SWE, 15. Nov. 2014, 1 ♀; Sector 2, GWS, 14. Jan. 2019, 2 ♀♂.
Distribution. Canary Islands and Madeira.

Minicia gomerae Schmidt, 1975
Determination. Wunderlich (1987).
Material examined. Sector 3, LIT, 14. Nov. 2014, 2 ♀♂, 1 ♀; Sector 3, LIT, 14. Jan. 2019, 8 ♀♂.
Distribution. Canary Islands.

Walckenaeria hieropolalma Wunderlich, 1987
Determination. Wunderlich (1987).
Material examined. Sector 1, SWE, 10. Nov. 2018, 1 ♀; Sector 2, SWE, 15. Nov. 2014, 1 ♀; Sector 3, LIT, 14. Nov. 2014, 1 ♀; Sector 3, BET, 14. Nov. 2014, 1 ♀.
Distribution. Canary Islands.

Lycosidae

Alopecosa canaricola Schmidt, 1982
Determination. Wunderlich (1992).
Material examined. Sector 1, LIT, 19. Nov. 2014, 1 ♂, 1 ♀; Sector 1, AAS, 10. Nov. 2018, 4 ♀; Sector 4, AAS, 10. Nov. 2018, 2 ♀♂, 1 ♀.
Distribution. Canary Islands.

Mimetidae

Ero flammeola Simon, 1881
Determination. Nentwig et al. (2018).
Material examined. Sector 3, LIT, 14. Nov. 2014, 1 ♀, 1 ♂; Sector 3, LIT, 14. Jan. 2019, 1 ♀.
Distribution. Portugal to Greece (Corfu), Turkey and Israel and Canary Islands.

Oecobiidae

Oecobius navus Blackwall, 1859
Determination. Nentwig et al. (2018).
Material examined. Sector 2, GWS, 15. Nov. 2014, 1 ♀; Sector 3, LIT, 14. Nov. 2014, 1 ♀, 1 j.
Distribution. Europe to North Africa. Introduced to China, New Zealand, Canada, USA and South America.

Oonopidae

Silhouettella loricatula (Roewer, 1942) (Fig. 2c)
Determination. Nentwig et al. (2018).
Material examined. Sector 3, LIT, 14. Nov. 2014, 1 ♀.
Distribution. Europe to Central Asia, North Africa and Canary Islands. New record for La Palma.

Oxyopidae

Oxyopes kraepelinorum Bösenberg, 1895
Determination. Bellvert (2018).
Material examined. Sector 1, BET, 9. Jan. 2015, 3 ♂; Sector 2, BET, 23. Dec. 2014, 1 ♀, 3 ♂; Sector 2, LIT, 14. Jan. 2019, 1 ♀; Sector 3, LIT, 14. Nov. 2014, 3 ♀; Sector 3, BET, 14. Nov. 2014, 12 ♂; Sector 3, GWS, 15. Nov. 2014, 4 ♀; Sector 4, LIT, 14. Nov. 2014, 1 ♀.
Distribution. Canary Islands.

Philodromidae

Pulchelodromus punctiger (O. Pickard-Cambridge, 1908)
Determination. Muster et al. (2007).
Material examined. Sector 1, BET, 9. Jan. 2015, 1 ♀; Sector 1, SWE, 10. Nov. 2018, 9 ♂; Sector 2, BET, 23. Dec. 2014, 1 ♀; Sector 3, BET, 14. Nov. 2014, 1 ♀, 1 ♂; Sector 3, GWS, 14. Jan. 2019, 2 ♀.
Distribution. Canary Islands, Spain.
Pholcidae

Pholcus ornatus Bösenberg, 1895

Determination. Wunderlich (1987).

Material examined. Sector 2, GWS, 14. Jan. 2019, 1 ♂.

Distribution. Canary Islands.

Spermophorides mercedes (Wunderlich, 1987)

Determination. Wunderlich (1987).

Material examined. Sector 2, PIT, 23. Dec. 2014 – 6. Jan. 2015, 1 ♂, 2 ♀; Sector 2, LIT, 14. Jan. 2019, 1 ♂; Sector 3, LIT, 14. Nov. 2014, 1 ♀.

Distribution. Canary Islands.

Pisauridae

Cladynis insignis (Lucas, 1838)

Determination. Wunderlich (1987).

Material examined. Sector 2, GWS, 14. Jan. 2019, 1 ♀, 3 jj.

Distribution. Canary Islands.

Salticidae

Ballus chalybeus (Walckenaer, 1802) (Fig. 2f)

Determination. Nentwig et al. (2018).

Material examined. Sector 1, LIT, 19. Nov. 2014, 1 ♂.

Distribution. Europe, North Africa to Central Asia. New record for La Palma.

Chalosscritus infinitus (Simon, 1868)

Determination. Nentwig et al. (2018).

Material examined. Sector 2, PIT, 23. Dec. 2014 – 6. Jan. 2015, 1 ♂, 2 ♀; Sector 4, LIT, 14. Nov. 2014, 1 ♀.

Distribution. Southern, Central Europe to Central Asia.

Cyba algerina (Lucas, 1846)

Determination. Nentwig et al. (2018).

Material examined. Sector 3, GWS, 15. Nov. 2014, 1 ♀; Sector 4, GWS, 6. Jan. 2015, 1 ♀, 2 ♀j.

Distribution. Canary Islands to Central Asia.

Euophrys canariensis Denis, 1941

Determination. Wunderlich (1987).

Material examined. Sector 3, LIT, 14. Nov. 2014, 1 ♀.

Distribution. Canary Islands.

Macaroeris nidicolens (Walckenaer, 1802)

Determination. Wunderlich (1992).

Material examined. Sector 1, BET, 9. Jan. 2015, 2 j♀; Sector 1, SWE, 10. Nov. 2018, 1 ♀; Sector 2, SWE, 15. Nov. 2014, 5 j♀; Sector 2, GWS, 15. Nov. 2014, 3 j♀; Sector 2, BET, 23. Dec. 2014, 3 j♀; Sector 3, LIT, 14. Nov. 2014, 2 j♀; Sector 3, LIT, 14. Jan. 2019, 3 j♀, 3 jj.

Distribution. Macaronesia, Europe, North Africa to Turkey, Caucasus, Turkmenistan, Iran. Introduced to Sri Lanka.

Sicariidae

Lasoeceus rufescens (Dufour, 1820)

Determination. Nentwig et al. (2018).

Material examined. Sector 2, PIT, 23. Dec. 2014 – 6. Jan. 2015, 1 ♀♀.

Distribution. South Europe, North Africa to Iran. Introduced to USA, Macaronesia, South Africa, India, China, Japan, Korea, Laos, Thailand, Australia and Hawaii.

Sparassidae

Olios canariensis (Lucas, 1838)

Determination. Wunderlich (1987).

Material examined. Sector 2, BET, 23. Dec. 2014, 2 j♀; Sector 2, GWS, 14. Jan. 2019, 1 ♀; Sector 3, BET, 14. Nov. 2014, 1 ♀.

Distribution. Canary Islands.

Tetragnathidae

Metellina minima (Denis, 1953)

Determination. Wunderlich (1992).

Material examined. Sector 2, GWS, 14. Jan. 2019, 1 ♀.

Distribution. Canary Islands.

Theridiidae

Ecbnotheridion gibberosum (Kulczyński, 1899)

Determination. Wunderlich (1987).

Material examined. Sector 2, GWS, 14. Jan. 2019, 1 ♀.

Distribution. Canary Islands and Madeira.

Koschiura aulica (C. L. Koch, 1838)

Determination. Nentwig et al. (2018).

Material examined. Sector 1, BET, 9. Jan. 2015, 1 ♀; Sector 2, SWE, 15. Nov. 2014, 9 ♀♀; Sector 2, BET, 23. Dec. 2014, 1 ♀, 1 δ, 10 jj; Sector 3, BET, 14. Nov. 2014, 5 jj; Sector 4, BET, 14. Nov. 2014, 2 jj.

Distribution. Canary Islands and Madeira.

Laseoela striata (Wunderlich, 1987)

Determination. Wunderlich (1987).

Material examined. Sector 2, SWE, 15. Nov. 2014, 1 ♀, 2 ♀♂; Sector 2, BET, 23. Dec. 2014, 1 ♀; Sector 4, LIT, 14. Nov. 2014, 1 ♀.

Distribution. Canary Islands.

Macaridion barretti (Kulczyński, 1899)

Determination. Wunderlich (1992).

Material examined. Sector 1, BET, 10. Nov. 2018, 1 ♀; Sector 2, BET, 23. Dec. 2014, 1 ♀; Sector 2, SWE, 10. Nov. 2018, 1 ♀.

Distribution. Canary Islands and Madeira.

Paidiscra orotavensis (Schmidt, 1968)

Determination. Knoflach & Thaler (2000).

Material examined. Sector 1, BET, 9. Jan. 2015, 1 ♀; Sector 1, SWE, 10. Nov. 2018, 1 ♀; Sector 2, BET, 23. Dec. 2014, 1 ♀; Sector 3, BET, 14. Nov. 2014, 1 ♀, 1 δ, 1 jj; Sector 4, BET, 14. Nov. 2014, 1 ♀; Sector 4, SWE, 6. Jan. 2015, 2 jj.

Distribution. Canary Islands and Madeira.

Rhomphaea nasica (Simon, 1873)

Determination. Lissner (2017).

Material examined. Sector 1, BET, 9. Jan. 2015, 1 ♀; Sector 2, BET, 23. Dec. 2014, 1 ♀.

Distribution. Canary Islands, Portugal, Spain, France, Italy, Croatia, Greece, Africa and Saint Helena.
Rhomphaea rostrata (Simon, 1873)
Determination. Lissner (2017).
Material examined. Sector 3, GWS, 15. Nov. 2014, 1 ♂.
Distribution. Canary Islands, Portugal, Spain, France, Italy, Bosnia and Herzegovina, Croatia and Greece.

Steatoda grossa (C. L. Koch, 1838)
Determination. Nentwig et al. (2018).
Material examined. Sector 2, GWS, 14. Jan. 2019, 1 ♂.
Distribution. Europe, Turkey, Caucasus, Russia (Europe to Far East), Central Asia, China, Korea, Japan. Introduced to North America, Ecuador, Peru, Chile, Hawaii Islands, Macaronesia and Algeria.

Steatoda nobilis (Thorell, 1875)
Determination. Nentwig et al. (2018).
Material examined. Sector 2, SWE, 15. Nov. 2014, 1 j.; Sector 2, PIT, 23. Dec. 2014 – 6. Jan. 2015, 1 ♀; Sector 3, GWS, 15. Nov. 2014, 1 ♂, 1 j.
Distribution. Macaronesia. Introduced to USA, Chile, Europe, Turkey and Iran.

Thomisidae
Misumena spinifera (Blackwall, 1862)
Determination. Kulczyński (1899).
Material examined. Sector 1, SWE, 10. Nov. 2018, 1 j.; Sector 2, SWE, 15. Nov. 2014, 1 ♂; Sector 2, BET, 23. Dec. 2014, 1 ♀, 1 j.; Sector 3, BET, 14. Nov. 2014, 1 ♂, 1 ♂; Sector 4, BET, 14. Nov. 2014, 1 ♂; Sector 4, GWS, 6. Jan. 2015, 1 ♀.
Distribution. Canary Islands and Madeira.

Synema globosum (Fabricius, 1775)
Determination. Nentwig et al. (2018).
Material examined. Sector 1, LIT, 19. Nov. 2014, 1 j.; Sector 2, SWE, 15. Nov. 2014, 2 ♂♂, 2 j.; Sector 2, BET, 23. Dec. 2014, 3 j.; Sector 3, BET, 14. Nov. 2014, 4 j.; Sector 3, BET, 14. Jan. 2019, 3 ♂♂, 1 j.; Sector 4, SWE, 10. Nov. 2018, 2 ♂♂, 1 j.
Distribution. Europe, Turkey, Israel, Caucasus, Russia to Central Asia, Iran, China, Korea and Japan.

Synema globosum (Fabricius, 1775)
Determination. Nentwig et al. (2018).
Material examined. Sector 1, LIT, 19. Nov. 2014, 1 j.; Sector 2, SWE, 15. Nov. 2014, 2 ♂♂, 2 j.; Sector 2, BET, 23. Dec. 2014, 3 j.; Sector 3, BET, 14. Jan. 2019, 3 ♂♂, 1 j.; Sector 3, LIT, 14. Nov. 2014, 4 j.; Sector 3, LIT, 14. Jan. 2019, 1 j.
Distribution. Canary Islands and Madeira.

Xysticus verneaui Simon, 1883
Determination. Wunderlich (1992).
Material examined. Sector 3, BET, 14. Nov. 2014, 1 ♀, 2 j.; Sector 3, LIT, 14. Jan. 2019, 1 ♂; Sector 4, BET, 14. Nov. 2014, 2 ♂♂.
Distribution. Canary Islands and Madeira.

Uloboridae
Hyptiotes flavidus (Blackwall, 1862)
Determination. Wunderlich (2017).
Material examined. Sector 1, BET, 9. Jan. 2015, 1 ♂; Sector 2, BET, 23. Dec. 2014, 2 ♂♂; Sector 2, GWS, 14. Jan. 2019, 1 ♂; Sector 3, BET, 14. Nov. 2014, 1 ♂.
Distribution. Canary Islands, Madeira, Mediterranean, Russia (Europe) and Caucasus.

Zoropsidae
Zoropsis rufipes (Lucas, 1838)
Determination. Wunderlich (1987).
Material examined. Sector 2, SWE, 15. Nov. 2014, 2 j.; Sector 2, BET, 23. Dec. 2014, 1 j.; Sector 2, BET, 14. Jan. 2019, 1 ♂, 3 j.; Sector 3, BET, 14. Nov. 2014, 3 j.; Sector 3, LIT, 14. Jan. 2019, 1 j.
Distribution. Canary Islands and Madeira.

Discussion
Five new local records (Porrhoclubiona minor, Leptodrassus albida, Macarophasus variaus, Silhouettella loricatula, Ballus chalybeius) have been detected, thus increasing the number of species recorded in the study area.
of species for La Palma to 132. Regarding the study site, 51 species have been newly reported for this protected area. Moreover, Sectors 2 and 3 are, with this new information, among the richest 500 m × 500 m quadrats of La Palma. Sector 1 and 4 were the ones where the least richness was found, mainly because the sampling area was lower than in Sector 2 and 3. The sampling methods which recovered the higher species abundance was foliage beating (131 individuals), followed by vegetation sweeping (120 individuals). However, the higher richness was recovered by sifting, with 27 species. Twenty species were collected just with one type of sampling method, which points the importance of applying several methods to potentially survey every single niche.

A total of 160 females (37.2%) and 70 males (16.0%) was collected, thus indicating that more than half of the specimens were adults. Neoscona crucifera, an introduced species, was the most abundant one with 38 individuals. It was followed by Kochiura aulica (36 specimens), Porrhocubiona minor (30) and Oxyopes kraepelinorum (28). All of these species were collected all four plots. The most abundant species that was collected in just one plot was Minicia gomerae, with 11 individuals just in the Sector 3. In contrast, 11 species were represented by just one individual. It is noticeably that almost 50% of the species collected (29 species) were Macaronesian endemics, which indicates the high level of endemicity of the spider assemblages in laurel forest areas. Also, they were more abundant (207 individuals) than introduced species (61). In general, introduced species were more linked to the nitrophilous community than to the laurel forest, but some individuals were collected in the more preserved areas. As Montaña de la Breña is a narrow laurel forest relic, even a higher richness should be expected in the wider and more humid laurel forests of the north of La Palma.

A similar research was carried out by the first author in the same area following the same protocol (García et al. 2018) and obtained 839 specimens of 102 beetle species, almost double the number of spiders in this study, but the proportion of endemic species was the same for both groups. This pattern is rather common in the Canary Islands; beetles seem to be much more diverse and abundant than spiders as was shown by Hernández-Teixidor et al. (2009, 2011) in malpais de La Rasca (Tenerife) and by Oromí et al. (2003) and Macías et al. (2004) on the islet of Montaña Clara, both conducted in sweet spurge shrubs. In this study, the family Theridiidae was the one with the highest richness (10 species) while in Hernández-Teixidor et al. (2009, 2011) and Macías et al. (2004), that family only recovered four and three species, respectively. Also, in those studies the number of Salticidae and Gnaphosidae species was higher than in this study, thus indicating that species belonging to those families maybe more adapted to xeric conditions while Theridiidae species seem to prefer more humid areas.

Spider inventories in the Canary Islands are still necessary because the spider fauna is not well studied (Wunderlich 2011: 353) and chorological data is crucial to assess the conservation status of the endemic spider species. Moreover, if these surveys are repeated through time, reliable trends in distributional range and population size can be measured. Cardoso et al. (2017) suggested that most endemic spiders from Madeira are in a favourable situation as laurel forests are well preserved. As the spider assemblage in the Canary laurel forest highlights for its richness and endemicity, conservation efforts should be focused on the protection of this habitat in order to preserve its biota.

Acknowledgements

We are very grateful to Rafael García and to Nuria Macías for their help during the fieldwork and identification, respectively. In addition, we wish to thank the Insular Cabildo of La Palma for providing a sampling permit that allowed us to carry out this survey.

References

Arnedo M, Oromí C & Ribera C 1996 Radiation of the genus Dysdera (Araneae, Dysderidae) in the Canary Islands: The western islands. – Zoologica scripta 25: 241–274 – doi: 10.1111/j.1463-6409.1996.tb0165.x
Bellvert A 2018 First records of some spiders (Arachnida: Araneae) from La Palma (Spain: Canary Islands). – Revista Ibérica de Aracnología 33: 101–105
Bini LM, Diniz-Filho JAF, Rangel TFLV, Bastos RG & Pinto MP 2006 Challenging Wallacian and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. – Diversity and Distributions 12: 475–482 – doi: 0.1111/j.1366-9516.2006.00286.x
Cardoso P, Crespo L, Carvalho R, Rufino AC & Henriques SS 2009 Ad-hoc vs. standardized and optimized arthropod diversity sampling. – Diversity 1(1): 36–51 – doi: 10.3390/di10010036
Cardoso P, Crespo L, Silva I, Borges P & Boieiro M 2017 Species conservation profiles of endemic spiders (Araneae) from Madeira and Selvagens archipelagos, Portugal. – Biodiversity Data Journal 5(e20810): 1–218 – doi: 10.3897/BDJ.v.5.e20810
García J, García R, Báez M & Oromí P 2018 Análisis de la diversidad de coleópteros en la Zona de Especial Conservación “Montaña de la Breña”. – Revista de la Academia Canaria de Ciencias 30: 19–32
Garzón-Machado V, Otto R & Arco Aguilar M del 2013 Bioclimatic and vegetation mapping of a topographically complex oceanic island applying different interpolation techniques. – International Journal of Biometeorology 58: 887–889 – doi: 10.1007/s00484-013-0670-y
Gobierno de Canarias 2018 Banco de datos de biodiversidad de Canarias. – Internet: http://www.biodiversidadcanarias.es (27. Okt. 2018)
Hernández-Teixidor D, López H, Pérez AJ & Oromí P 2009 Fauna de artrópodos del malpais de La Rasca (Islas Canarias). I. Coleópteros. – Revista de la Academia Canaria de Ciencias 20 (2008): 83–101
Hernández-Teixidor D, Castro-Urgal R, Txasko N, Macías-Hernández N & Oromí P 2011 Fauna de arácnidos del malpais de La Rasca (Tenerife, Islas Canarias). – Vieraea 39: 77–95
Knoffl B & Thaler K 2000 Notes on Mediterranean Theridiidae (Araneae) – I. – Memorie della Società Entomologica Italiana, Genova 78: 411–442
Kulczyński W 1899 Arachnoidea opera Rev. E. Schmitz collecta in insulis Mäderianis et in insulis Selvages dictis. – Rozprawy i Spro-wozdania z Wsiedzen Wydziału Matematyczno Przyrodniczego Akademii Umiejności, Krakow 36: 319–461
Lissner J 2017 A contribution to the knowledge of Rhombphaea L. Koch, 1872 (Araneae: Theridiidae) in the Mediterranean and Macaronesian regions. – Arachnology 17: 287–293 – doi: 10.13156/arc.2017.6.287
Macías N, Pérez AJ, López H & Oromí P 2004 Fauna de artrópodos de Montaña Clara (Islas Canarias) III: arácnidos, miriápodos y crustáceos terrestres. – Revista de la Academia Canaria de Ciencias 25: 3–4
Murphy JA 2007 Gnaphosid genera of the world. British Arachnological Society, Dorchester. 605 pp.
Muster C, Bomsans R & Thaler K 2007. The Philodromus pulchellus-group in the Mediterranean: taxonomic revision, phylogenetic analysis and biogeography (Araneae: Philodromiidae). – Invertebrate Systematics 21: 39–72 – doi: 10.1071/IS06014.
Nentwig W, Blick T, Gloor D, Hänggi A & Kropf C 2018 araneae – Spiders of Europe, version 10.2018. – Internet: http://www.araneae.nmbe.ch (27. Oct. 2018) – doi: 10.24436/1
Oromí P, López H, Arechavaleta M, Contreras-Díaz H & Rodríguez B 2003 Fauna de artrópodos de Montaña Clara (Islas Canarias) I: Coleópteros. – Vieraea 31: 167-182.
Platnick NI & Murphy JA 1996 A review of the zelotine ground spider genus Setaphis (Araneae, Gnaphosidae). – American Museum Novitates 3162: 1-23
Schenkel E 1938 Die Arthropodenfauna von Madeira nach den Ergebnissen der Reise von Prof. Dr O. Lundblad, Juli–August 1935. – Arkiv för Zoologi 30(A7): 1-42
Suárez D 2018 New records of spider species from the Canary Islands (Araneae). – Arachnologische Mitteilungen 55: 60-63 – doi: 10.30963/aramit5511
Troll V & Carracedo JC 2016 The geology of the Canary Islands. Elsevier, Amsterdam. 606 pp.

Wunderlich J 1987 Die Spinnen der Kanarischen Inseln und Madeiras. Adaptive Radiation, Biogeographie, Revisionen und Neubeschreibungen. Triops, Langen/Germany. 435 pp.
Wunderlich J 1992 Die Spinnen-Fauna der Makaronesischen Inseln. Taxonomie, Ökologie, Biogeographie und Evolution. – Beiträge zur Araneologie 1: 1-619
Wunderlich J 2011 Extant and fossil spiders (Araneae). – Beiträge zur Araneologie 6: 1-640
Wunderlich J 2017 Descriptions, notes and synonyms of some mainly Mediterranean and Macaronesian spiders (Araneae) of various families. – Beiträge zur Araneologie 10: 298-326, 354

World Spider Catalog 2018 World spider catalog. Version 19.5. Natural History Museum, Bern. – Internet: http://wsc.nmbe.ch (15. Dec. 2018) – doi: 10.24436/2