We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

5,500
Open access books available

136,000
International authors and editors

170M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the
most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter

The Unique Existence of Chromosomal Abnormality in Polyploidy Plants

Van Hieu Pham

Abstract

It is commonly acknowledged that chromosomal abnormality is the popular natural phenomenon especially with polyploidy plants. The unique existence in plants has actually become one of major forces for speciation and evolution. This means that plants existing chromosomal abnormality developing through sexual and asexual pathways shed light on increasing biomass, adapting ecology so these benefits are more important and worth exploring. With regard to the former, chromosomal abnormality plants lead to not only gigantic effect but also increasing phytochemical compounds. As far as ecological perspectives are concerned, this abnormality enhances biotic and abiotic tolerance to adapt to climate change. These things also answer a question why plants can commonly exist with many kinds of chromosomal abnormalities. Based on aforementioned benefits, this review provides human beings with several chances when they need in developing the food security strategies.

Keywords: chromosomal abnormality, polyploidy, evolution, climate change, reproductive

1. Introduction

To start with, message being conveyed an in-depth analytical discourse on the popular evolutionary theory, named natural selection theory developed by Darwin. It was natural selection that maintains the polymorphism existing gross chromosomal alternation in plant as a way to reciprocally translocate along with change in segregation of pairs of chromosomes to ensure heterozygosity maintained and limitation of the expression of lethal genes. The theory is categorically not as such as discussion has been intensively dealt with countless studies. Since time immemorial, human beings has been investigating for a means to maintain their life especially with eventual goal of achieving aim of food security. Yet the demand for it remains elusive for thousand years. Everyday living organisms keep ingesting all kinds of food, taking energy and nutrient to nourish, maintain and develop their body. Yet after several centuries or maximum of more than ten thousand years, humanity continue studying and finding new sustainable food resource for securing demand of food security to those living on this planet. The answer might lie in genetic mechanism regulating reproductive process, a jargon denoting a preprogramed pathway to create offspring. Each organism has a different reproductive
way dictating next generation by either sexual combining of male and female gametes or asexual. Without no doubt, asexual reproductive generating a new plant from using part of the parent plants. Some artificial asexual reproduction has used some popular methods such a grafting, layering and micropropagation. A genetically identical to the progenitor plant is outstanding features of new plant as well as thriving development in stable environments of asexually reproducing plant also have a hugely positive impact on creatures. Yet sexual and asexual reproductive still play much more critical role in deciding how adaptive plant species can exist on this planet. The interesting facts about the plant Kingdom when studied the karyotypes of distinct plant species is chromosomal abnormality in productive processes. Those reproductive have been happening chromosome abnormality deriving from mistaking meiosis and mitosis [1]. For instance, observing meiotic processes revealed the evidence that trio of SMG7, SDS, and MS5 interrelated with both other chromatin organizing factors and proteins functioning DNA repair-related, involving in MSH6 and DAYSLEEPER. The convergent tasks detected (other meiotic pathway, chromosome arrangement or remodeling, ABA cues and ion transport) offer initially insights into the noticeable challenges related to polyploidization. Another example, investigating the meiosis of autotetraploid potato S. tuberosum revealed variety of challenges in correct segregation and recombination of multiple homologous chromosomes that constraints on meiotic chromosomal configuration [2].

With advances in genetic engineering and continual elucidation of genes governing the reproductive pathway, humanity is on the verge of making our dream a reality by controlling the expression and regulation of those genes [1, 3]. To be more precise, key genes related to flowering such as CO, CRY2, FT, FPF1, FD, GA1, ELA1... have been studied [3]. Scientists and breeders are implemented biotechnology as a means to study as it bases on many well-established fundamental grounds. It may be attempted to speculate that everywhere around the world researching on reproductive process is being conducted in laboratories and field trials sponsored by not only private enterprises but also governmental agencies. Human being is the most intelligent species of all. Since time gradually moves on. It is believed that technology will progressively develop as it has been happening in various aspects of our modern society for such researching on reproductive to be implemented. What would happen to the future of humanity when not securing food security? Besides those that are over-population development, pollution is not controlled in the condition’s climate variability. The tendency of sustainable agricultural development is required to increase crop diversity, high stability of yield and resilience of environment based on accelerating development of several crops containing desired traits which are capacity of adaptation to and mitigation of consequence from climate change [4, 5].

Concerning to the biodiversity, speciation and evolution, thousands of plant species popularly exist in this planet and adapt in various topographies and climates. This means that plant species not only increase plenty of genetic but enhance the ability of adaptation to boost genome evolution in harsh environments [1, 6]. The best example of which are those which involve autopolyploid, allopolyploid and aneuploid. A case in point is that potato contributes over 4,000 native varieties including more than 180 wild potato relatives detailed [7]. To be more specific, potato, one of the most multifaceted genetic modes with the variety of ploidy levels such as 76% were recognized diploids, 3% triploids, 12% tetraploids, 2% pentaploids, and 7% hexaploids, among which the highest yield is tetraploid due to further level of genetic heterogeneity [8–10]. Based on the practically empirical proofs, it is categorized two clusters of cultivated potato, one called the Andigenum group located in high Andes of northern and central South America consists of wide range of ploidy level, and the others exist in the lowlands southern Chile named...
The Unique Existence of Chromosomal Abnormality in Polyploidy Plants
DOI: http://dx.doi.org/10.5772/intechopen.99821

Studying chromosomal arrangement and the plant karyotypes in the individual, the species, genera exist abnormal number of chromosomes. A typical example is that Chayote (S. edule (Jacq.) Sw.) is variable chromosome numbers n = 12, 13, 14 resulted by cytological analysis [12] is mentioned in Table 1. In the score of the review only focuses on chromosomal abnormality in whole genome doubling such as autopolyploid, allopolyploid and aneuploidy plants and then discuss the effects and importance of its benefits to evolution and ecological adaptation at individual and population level. Some advantageous and disadvantageous aspects of polyploid animals in comparison with polyploid plants are mentioned in this review.

2. Chromosomal abnormality affects to gigantic effects and alternative natural secondary metabolites

That chromosomal abnormality outranks other plants in terms of parts of plant size and biochemical compounds characteristically states that gene regulating plays an important role. As far as up-regulation of genes is concerned, cell division and cell expansion related to genes consisting of ARGOS, ANT (AITEGUMENTA), CYCD3;1, Growth Regulating Factor 1 (AtGRF1) and EXPASIN 10 (AtEXPA10) [27–29], EXPB3 and TCP [30]. Alongside above genes, lipid transport genes such as wbc11–2 and cer5–2 was as a way to make large body size of autotetraploid plants [31–33]. Moreover, proteins involving in cell proliferation, glutathione metabolic pathways and cellulose, chlorophyll, pectin, lignin synthesis engage in this gigantic effect [34, 35]. Cytosine methylation in whole genome also contribute to change organ size in polyploidy plants that can be effectively improve potential and complex agronomic traits in many crops [36, 37]. Cell size in polyploidy plant plays an important role in changing phenotype is apparent [38]. Enlarged organ size in chromosomal abnormality usually clues to increased yield and production of cultivated plants can be seen [39]. Studying autotetraploid V. cracca L. revealed that seed size and germination of tetraploid are more dominant than diploid one [40]. Although aforementioned advantages, chromosomal abnormality leading large size of plants, autotetraploid Birch plant (B. platyphylla) and apple plants (M. domestica) have happened a dwarf phenotype caused by reducing growth regulation signals [41, 42].

Similarly, chromosomal abnormality also alters secondary metabolites especially with phytochemical compound in a number of plant species [43], the typical case in point of which are those which involve natural components in plants observing in tetrasomic tetraploid opium poppy (P. somniferum L.) enhanced morphine

Species	n	2n	Source
S. edule	11,12,13,14	22,24,26,28	[13–17]
Curcuma parviflora	14,14,16	28,30,32	[38]
C. zedoaria	21	63,64	[19–23]
C. longa	21	62,63,64	[19–22,24]
Paspalum aff.arundinellum	10	50,51	[25]
J. vulgaris	20	30,31	[26]
B. rapa L. ssp. pekinensis	10	20,24	[27]

Table 1: Summary of plant species having chromosome abnormality.
content 25–50% by changing the expression of several genes regulating alkaloid biosynthesis pathway [44]. Another example is that cytosine methylation happens in genome-wide makes autotetraploid *Cymbopogon* enhancing phytochemical [36]. Autotetraploids *A. thaliana* Col-0 alters metabolites and genes regulating TCA (tricarboxylic acid cycle) and GABA (γ-amino butyric acid) in compared with its diploid is a good example [45]. Lycopene significantly increased autotripliod watermelons because of a regulation of phytohormone on metabolic pathways and upregulation of genes controlled biosynthetic lycopene [46]. Interestingly, polyploisation is a promising approach for gaining a significant value addition especially with medicinal plants by producing secondary metabolite [47]. Upregulating genes contributing to biosynthesis pathway of PTOX in autotetraploid *Linum album* enhanced content of podophyllotoxin (PTOX) plays a good example here [48]. Aiming to vitamin A enriching in triploid banana has been initiated by inducing tetraploid one from serval types of diploid and then conducting hybrid between them [49]. Much contents of total flavonoid and gastrodin significantly produced in Autotetraploid *Anoectochilus formosanus* Hayata [50]. Tetraploid type of *Physalis angutala* Linn. from Rajasthan alters palmitic acid, linoleic acid and linolenic acid, for instance [51]. In the last decade, many plant studies have given objects based on the outstanding benefits of chromosomal abnormality. Those breeders have been observing chromosomal abnormality as a way to gain elite plant cultivars due to the fact that the increment in plant organs size derived from some of the most significant consequence of chromosomal abnormality [52, 53].

The chromosomal abnormality mentioned above in light of level of ploidy variation that is useful for breeding both within and among plant species belonging to autopolyploid and allopolyploid [25]. Other view is that chromosomal abnormality contributes better detrimental environment condition in terms of suitability for certain species and the benefits of physiological response. As far as the first idea is concerned, a chromosomal abnormality is not appropriate to sexual reproductive in aneuploidy due to chromosomal abnormality in gametes. Another utilizing of polyploidy is that grafted crops can use artificial polyploidy as parts of rootstock and scion having potential agronomic traits in the context of climate variability [54].

3. Chromosomal abnormality enhances abiotic and biotic tolerance

That chromosomal abnormality in plants enhanced abiotic stress tolerance and biotic resistance was clearly witnessed in coping with harmfully environmental conditions. Many studies proved that several pathways to response to salinity stress, and chromosomal abnormality flora used several processes to adapt to high salt concentration condition involving in cumulating Na⁺ extrusion in root, rising Na⁺ transport to leaf, regulating osmotic, enhancing the genes expression related to antioxidant, mitigating ROS, photosynthesize cues, changing SNP marker related to salt stress, up-regulating aquaporin genes, phytohormone transduction cues, protein processing, regulating transcription factors, up-regulating ATP synthase to enhance ion transport changing proton; and using miRNAs [55–64]. To adapt with water insufficiency, chromosomal abnormal plants through miRNAs mechanisms and target genes controlling transcriptional regulation, hormone metabolism and plant defense, a rise in ABA content cope with drought stress in several polyploidy plants were observed in several plant species such as *Paulownia fortunei*, *Paulownia australis*, *P. tomentosa*, *Lycium ruthenicum* [65–70]. Antioxidant defense systems were activated to support heat tolerance sufficiently in *Dioscorea* and *Arabidopsis* [71, 72]. Chromosomal abnormality plants might be tolerance of cold stress via growing antioxidant and epigenetic [73, 74]. Changing root anatomical characters
support autotetraploid to adapt high concentration of boron in soil and enhancing Cu transport gene, activation of anti-oxidation defense, positive regulation of expression ABA-responsive genes is a way to survive in environment containing high concentration of copper [75, 76]. Enhancing expression of target genes regulated proline biosynthesis to support autopolyploid birch plant (B. platyphilla) in capacity of NaHCO₃ stress tolerance is investigated [77]. Besides, biotic resistance was demonstrated in autotetraploid Malus × domestica and S. chacoense. To be more specific, significantly increasing Rvi6 resistance gene-locus was observed as a way to assist autopolyploid enhanced to resistance of Venturia [78]. Similarly, autotetraploid potato have been capacity of common scab resistance by crossing 2n gametes from diploid S. chacoense [79].

4. Chromosomal abnormality adapts to ecological invasion and climate variability

Chromosomal abnormality is one of the major adaptation ecologies and climate changes such by fixing on growth, potential morphological traits as well as ecology invasion, pollinators, the factors supporting pollinating in nature [80]. After chromosomal abnormality appearance in some rare cases, the increasing cell size leads to alteration of physiological manners with their environmental condition as well as augmenting multiple novel alleles and changing regulatory pathways can create new potentially beneficial phenotypic variation. For instance, studying transcriptome in aneuploidy maize revealed qualitative changes in gene expression in comparison to wild-type plants [81]. The number of expanding ecological space to polyploidy plants are recorded in various studies [82]. Polyploidy A. thaliana contained adaptive potential plant caused by the increase resources of TE insertions in higher ploid-level and enhance gene expression related to reproductive [83, 84]. There are several studies to prove that chromosomal abnormality adapts to ecological invasion and climate variety. A good illustration is that biological invasions in the Brassicaceae proved to be evolutionary processes to adapt and widespread in central Europe [85]. Another example is that the native range of distribution of L. salicaria distributes several cytotypes as 2x, 3x, 4x, 6x variation rigorous in the Middle Eastern regions, while only tetraploids one located in North America. Besides, the invasive spread of North American populations lacks differences in ploidy level [86]. Studying potato germplasm demonstrated markers related to unique geographic identity associated to traits of abiotic stresses tolerance [87]. One of priorities in genotype development is to gain through combination of potential traits which benefits in stress tolerance and nutritional aspects as a way to reduce the effects of climate change as a challenge of the 21st century [88, 89]. The view is that polyploidization contributes to better adapting environment in terms of suitability for growth and other benefits of cell size. Breeders and human beings can benefit immensely from more ecological adapting after chromosomal abnormality since it improves potential traits being exploited for breeding experiments as a whole.

For the most part, it is probably that polyploidy is less popular in animal kingdom than in plant kingdom. To be more specific, it is observed that in amphibia (Africa clawed frog-Xenopus spp) and different species of fishes exist polyploid [90]. This is due to the fact that polyploid animal species mentioned above can overcome meiosis and exist a parthenogenesis that an egg cell can develop into an individual without fertilizing. In addition to this, polyploidy animal kingdoms are similar plant kingdoms and they have had their beneficial and detrimental effects and reason for meiotic imbalance. Concerning the benefits of polyploidy animal,
the most advantage is that polyploid offspring are shielded from the deleterious effects of recessive mutation. As far as harmful effects are concerned, chromosomal abnormality may lead to congenital diseases and pregnancy loss in animal, especially in human beings. With regard to meiotic imbalance, the reason related to this is that spindle irregularities might occur in polyploid resulting in leading the chaotic segregation of chromatids and aneuploid cells was produced. Abnormal number of chromosomes in aneuploid cells might obtain three or more sets of chromosomes produced in meioses were different from diploid cells. This can explain that polyploidy animal could form multiple arrangements of homologous chromosomes in metaphase I resulting in abnormally or randomly segregating to produce aneuploid gametes or to form imbalanced gametes [90, 91].

5. Conclusion

In brief, it is unquestionable that chromosomal abnormality deriving from whether sexual or asexual is essential for successfully existing of organisms on this planet. With climate variability becoming more alarming than ever, chromosomal abnormality has been happening like a commonly natural events as a way to redress the issue assuring food security to those existing on our world based on crop improvement by expanding breeding opportunities to develop seedless triploid plants, increase ornamental features, adversely environmental tolerance, enhance biomass etc. Chromosomal abnormality is also vital to human beings mainly because it can open door of opportunities for secure the food security to those living on this planet. A case in point is that breeders who are experienced in hybrid development are more likely to find desired agronomic traits rather than on a minimum requirement. More importantly, a number of breeders today require at least a desired trait of novel crops before considering a utilization for production. This means that chromosomal abnormality has credential to provide insight into an ample opportunity for securing food resource to humanity. It is without a doubt that chromosomal abnormality is essential for success in adapting ecology and plays a vital role in evolution due to generating variation in a natural population.

Acknowledgements

Author thanks the financial support and convenient conditions from HCMC Biotechnology Center.

Author details

Van Hieu Pham
Biotechnology Center of Ho Chi Minh, Ho Chi Minh City, Vietnam

*Address all correspondence to: hieupvbio@gmail.com

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References

[1] Bohutinska M, Alston M, Monnahan P, Mandakova T, Bray S, Paajanen P, Kolář F, and Yant L (2021) Novelty and convergence in adaptation to whole genome duplication. Molecular Biology and Evolution DOI:10.1093/molbev/msab096

[2] Choudhary A, Wright L, Ponce O, Chen J, Prashar A, Sanchez-Moran E, Luo Z and Compton L (2020) Varietal variation and chromosome behaviour during meiosis in Solanum tuberosum. Heredity 125:212-226 doi:10.1038/s41437-020-0328-6

[3] Braynen J, Yang Y, Yuan J, Xie Z, Cao G, Wei X, Shi G, Zhang X, Wei F and Tian B (2021) Comparative transcriptome analysis revealed differential gene expression in multiple signaling pathways at flowering in polyploidy Brassica rapa. Cell & Bioscience 11:17 doi:10.1186/s13578-021-00328-6

[4] Abberton M, Batley J, Bentley A, Bryant J, Cai H, Cockram J… and Yano M (2016) Global agricultural intensification during climate change: a role for genomics. Plant Biotechnology Journal 14:1095-1098 doi:10.1111/pbi.12467

[5] Touchell DH, Palmer IE and Ranney TG (2020) In vitro Ploidy Manipulation for Crop Improvement. Frontiers in Plant Sciences. 11:722. doi:10.3389/fpls.2020.00722

[6] Storme ND and Mason A (2014) Plant speciation through chromosome instability and ploidy change: Cellular mechanisms, molecular factors and evolutionary relevance. Current Plant Biology 1:10-33

[7] Machida-Hirano R (2015) Diversity of potato genetic resources. Breeding Science 65:26-40. DOI:10.1270/jsbbs.65.26

[8] Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. American Potato Journal 67:733-735. doi:10.1007/BF03044023.

[9] Watanabe KN (2015) Potato genetics, genomics, and applications. Breeding Science 65:53-68. DOI:10.1270/jsbbs.65.53.

[10] Muthoni J, Kabira J, Shimelis H and Melis R (2015) Tetrasomic inheritance in cultivated potato and implications in conventional breeding. Australian Journal of Crop Science 9:185-190.

[11] Jansky SH and Spooner DM (2018) The Evolution of Potato Breeding. Plant Breeding Review 41:169–214. DOI:10.1002/9781119414735

[12] Olvera-Vazquez S, Cadena-Iñiguez J, Gilani S and Watanabe K (2019) The Cytological Studies on Neglected and Underutilized Cucurbit Species with Special Reference to Chayote, an Under-Exploited Species. American Journal of Plant Sciences, 10(8), 1261-1279. doi:10.4236/ajps.2019.108091.

[13] Lira-Saade, R. (1996) Chayote. Sechium edule (Jacq.) Sw. Promoting the Conservation and Use of Underutilized and Neglected Crops. Institute of Plant Genetics and Crop Plant Research, Rome.

[14] De Donato, M. and Cequea, H. (1994) A Cytogenetic Study of Six Cultivars of the Chayote, Sechium edule Sw. (Cucurbitaceae). Journal of Heredity 85:238-241. https://doi.org/10.1093/oxfordjournals.jhered.a111444

[15] Mercado, P. and Lira, R. (1994) Contribucion al conocimiento de los numeros cromosomicos de los generos Sechium P. BR. Y Sicana Naudin (Cucurbitaceae). Acta Botanica Mexicana 27, 7-13. https://doi.org/10.21829/abm27.1994.706
[16] Bisognin, D.A. (2002) Origin and Evolution of Cultivated Cucurbits. Ciencia Rural 32, 715-723. https://doi.org/10.1590/S0103-84782002000400028

[17] Varghese, R.M. (1973) Cytology of Sechium edule Sw. Current Science 42:30.

[18] eFloras. 11. Curcuma Linnaeus. In: Flora of China [Internet] (2020) St.Louis, 15 MO/Cambridge, MA: Missouri Botanical Garden/Harvard University Herbaria; 24 p. 359. Available from: http://www.efloras.org

[19] Wu DL and Larsen K (2000) Zingiberaceae. In: Wu ZY, Raven P, Hong DY, editors. Flora of China. Beijing, China/ St. Louis, MO: Science Press/ Missouri Botanical Garden Press 24:322-377

[20] Leong-Skornickova J and Newman M (2015) Gingers of Cambodia, Laos and Vietnam. Singapore: Singapore Botanic Gardens

[21] Larsen K (1996) A preliminary checklist of the Zingiberaceae of Thailand. ThaiForest Bulletin (Botany) 24:35-49

[22] Leong-Skornickova J, Sida O, Jarolimova V, Sabu M, Fer T, Travnick P, et al. (2007) Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae). Annals of Botany 100:505-526

[23] Maknoi C (2006) Taxonomy and phylogeny of the genus Curcuma L. (Zingiberaceae) with particular reference to its occurrence in Thailand [PhD thesis]. Thailand: Prince of Songkla University

[24] eFloras. 20. Zingiberaceae Lindley. In: Flora of China (2020) St. Louis, 15 MO/Cambridge, MA: Missouri Botanical Garden/Harvard University Herbaria; 24:322. http://www.efloras.org

[25] Hojsgaard D, Honfi Al, Rua G, Daviña J (2009) Chromosome numbers and ploidy levels of Paspalum species from subtropical South America (Poaceae). Genetic Resources and Crop Evolution 56:533-545, DOI 10.1007/s10722-008-9384-0

[26] Hodálová I, Mered' a jun P, Viníkarová A, Grulich V and Rotreklová O (2010) A new cytotype of Jacobaea vulgaris (Asteraceae): frequency, morphology and origin. Nordic Journal of Botany 28:413-427 doi: 10.1111/j.1756-1051.2010.00603.x,

[27] Gu AX, Zhao JJ, Li LM, Wang YH, Zhao YJ, Hua F, XuYC and Shen SX (2016) Analyses of phenotype and ARGOS and ASY1 expression in a ploidy Chinese cabbage series derived from one haploid. Breeding Science 66(2): 161-168. DOI:10.1270/jsbbs.66.161.

[28] Wang B, Sang Y, Song J, Gao XQ and Zhang X (2009) Expression of a rice OsARGOS gene in Arabidopsis promotes cell division and expansion and increases organ size. Journal of Genetics and Genomics 36 (1): 31-40. DOI:10.1016/s1673-8527(09)60004-7.

[29] Allario T, Brumos J, Colmenero-Flores JM, Tadeo F, Froelicher Y, Talon M, Navarro L, Ollitrault P and Morillon R (2011) Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. Journal of experimental botany 62(8): 2507-2519. DOI:10.1093/jxb/erq467.

[30] Qiao G, Liu M, Song K, Li H, Yang H, Yin Y and Zhuo R (2017) Phenotypic and comparative transcriptome analysis of different ploidy plants in Dendrocalamus latiflorus
The Unique Existence of Chromosomal Abnormality in Polyploidy Plants
DOI: http://dx.doi.org/10.5772/intechopen.99821

Munro. Frontiers in Plant Science 8:1371. DOI:10.3389/fpls.2017.01371.

[31] Bird D, Beisson F, Brigham A, Shin J, Greer S, Jetter R, Kunst L, Wu X, Yephremov A and Samuels L (2007) Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant Journal 52(3): 485-498. DOI:10.1111/j.1365-313X.2007.03252.x.

[32] Narukawa, H., R. Yokoyama, S. Komaki, K. Sugimoto, and K. Nishitani (2015). Stimulation of Cell Elongation by Tetraploidy in Hypocotyls of Dark-Grown Arabidopsis Seedlings. PLOS ONE, 10(8): p. e0134547. doi:10.1371/journal.pone.0134547

[33] Narukawa H, Yokoyama R and Nishitani K (2016) Possible pathways linking ploidy level to cell elongation and cuticular function in hypocotyls of dark-grown Arabidopsis seedlings. Plant Signaling and Behavior 11(2): e1118597. DOI:10.1080/15592324.2015.1118597.

[34] Zhou Y, Kang L, Liao S, Pan Q, Ge X and Li Z (2017) Transcriptomic analysis reveals differential gene expressions for cell growth and functional secondary metabolites in induced autotetraploid of Chinese woad (Isatis indigotica Fort.). PLOS ONE 10(3): e0116392. DOI:10.1371/journal.pone.0116392.

[35] Wang Z, Fan G, Dong Y, Zhai X, Deng M, Zhao Z, Liu W and Cao Y (2017) Implications of polyploidy events on the phenotype, microstructure, and proteome of Paulownia australis. PLOS ONE 12(3): e0172633. DOI:10.1371/journal.pone.0172633.

[36] Lavanaia UC, Srivastava S, Lavana S, Basu S, Misra NK and Mukai Y (2012) Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. The Plant Journal 71(4): 539-549. DOI:10.1111/j.1365-313X.2012.05006.x

[37] Ding M and Chen ZJ (2018) Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. Current opinion in Plant Biology 42:37-48. doi:10.1016/j.pbi.2018.02.003

[38] Doyle JJ & Coate JE (2019) Polyploidy, the nucleotype, and novelty: the impact of genome doubling on the biology of the cell. International journal of plant sciences 180(1): 1-52. DOI:10.1086/700636

[39] Alam H, Razaq M and Salahuddin (2015) Induced polyploidy as a tool for increasing tea (Camellia sinensis L.). Production Journal of Northeast Agricultural University (English Edition) 22(3): 43-47. doi:10.1016/S1006-8104 (16)30005-8

[40] Eliášová A and Münzbergová Z (2014) Higher seed size and germination rate may favour autotetraploids of Vicia cracca L. (Fabaceae). Biological Journal of the Linnean Society 113, 57-73

[41] Mu H, Liu Z, Lin L, Li H, Jiang J and Liu G (2012) Transcriptomic analysis of phenotypic changes in birch (Betula platyphylla) autotetraploids. International Journal of Molecular Sciences 13(10): 13012-13029. DOI:10.3390/ijms131013012.

[42] Ma Y, Xue H, Zhang L, Zhang F, Ou C, Wang F and Zhang Z (2016) Involvement of auxin and brassinosteroid in dwarfism of autotetraploid apple (Malus × domestica). Scientific Reports 6:26719. DOI:10.1038/srep26719.

[43] Gantait S and Mukherjee E (2021) Induced autopolyploidy – a promising approach for enhanced biosynthesis of plant secondary metabolites: an insight. Genetic Engineering and Biotechnology 19:4. doi:10.1186/s43141-020-00109-8
[44] Mishra B, Pathak S, Sharma A, Trivedi P and Shukla S (2010) Modulated gene expression in newly synthesized auto-tetraploid of *Papaver somniferum* L. South African Journal of Botany 76(3): 447-452. DOI:10.1016/j.sajb.2010.02.090.

[45] Vergara F, Kikuchi J and Breuer C (2016) Artificial autopolyploidization modifies the tricarboxylic acid cycle and GABA shunt in *Arabidopsis thaliana* Col-0. Scientific Reports 6:26515. DOI:10.1038/srep26515

[46] Dou J, Yuan P, Zhao S, He N, Zhu H, Gao L, Ji W, Lu X and Liu W (2017) Effect of ploidy level on expression of lycopene biosynthesis genes and accumulation of phytohormones during watermelon (*Citrullus lanatus*) fruit development and ripening. Journal of Integrative Agriculture 16(9): 1956-1967. DOI:10.1007/S2095-3119(16)61618-0.

[47] Gantait S and Mukherjee E (2021) Induced autopolyploidy—a promising approach for enhanced biosynthesis of plant secondary metabolites: an insight. Journal of Genetic Engineering and Biotechnology 19:4 doi:10.1186/s43141-020-00109-8

[48] Javadian N, Karimzadeh G, Sharifi M, Moieni A and Behmanesh M (2017) *In vitro* polyploidy induction: changes in morphology, podophyllotoxin biosynthesis, and expression of the related genes in *Linum album* (*Linaceae*). Planta 245(6): 1165-1178. DOI:10.1007/s00425-017-2671-2.

[49] Amah D, van Biljon A, Maziya-Dixon B, Labuschagne M and Swennen R (2019) Effects of In Vitro Polyploidization on Agronomic Characteristics and Fruit Carotenoid Content; Implications for Banana Genetic Improvement. Frontiers in Plant Science. 10:1450. doi:10.3389/fpls.2019.01450

[50] Chung HH, Shi SK, Huang B and Chen JT (2017) Enhanced agronomic traits and medicinal constituents of autotetraploids in *Anoectochilus formosanus* Hayata, a top-grade medicinal orchid. Molecules 22(11). DOI:10.3390/molecules2211907.

[51] Preet R and Gupta RC (2017) Fatty acid profiling in diploid (n=12) and tetraploid cytotypes (n=24) of *Physalis angulata* Linn. from Rajasthan by gas chromatography. International Journal of Pharmaceutical Sciences and Research 8(8): 3458-3462.

[52] Catalano C, Abbate L, Motisi, A.; Crucitti D, Cangelosi V, Pisciotta A, Di Lorenzo R, Carimi F and Carra A (2021) Autotetraploid Emergence via Somatic Embryogenesis in *Vitis vinifera* Induces Marked Morphological Changes in Shoots, Mature Leaves, and Stomata. Cells 10, 1336. doi:10.3390/cells10061336

[53] Sattler MC, Carvalho CR and Clarindo WR (2015) The polyploidy and its key role in plant breeding. Planta. DOI 10.1007/s00425-015-2450-x

[54] Ruiz M, Oustric J, Santini J and Morillon R (2020) Synthetic Polyploidy in Grafted Crops. Frontiers in Plant Sciences. 11:540894. doi:10.3389/fpls.2020.540894

[55] Meng H, Jiang S, Hua S, Lin X, Li Y, Guo W and Jiang L (2013) Comparison between a tetraploid turnip and its diploid progenitor (*Brassica rapa* L.): The adaptation to salinity stress. Agricultural Sciences in China 10(3): 363-375. DOI:10.1016/S1671-2927(11)60015-1.

[56] Tu Y, Jiang A, Gan L, Hossain M, Zhang J, Peng B, Xiong Y, Song Z, Cai D, Xu W, Zhang J and He Y (2014) Genome duplication improves rice root resistance to salt stress. Rice 7(1): 15-15. DOI:10.1186/s12284-014-0015-4.
[57] Xue H, Zhang F, Zhang Z, Fu J, Wang F, Zhang B and Ma Y (2015) Differences in salt tolerance between diploid and autotetraploid apple seedlings exposed to salt stress. Scientia Horticulturae 190:24-30. DOI:10.1016/j.scienta.2015.04.009.

[58] Yan K, Wu C, Zhang L and Chen X (2015) Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica Thunb.) under salt stress. Frontiers of Plant Science 6:227. DOI:10.3389/fpls.2015.00227.

[59] Fan G, Li X, Deng M, Zhao Z and Yang L (2016) Comparative analysis and identification of miRNAs and their target genes responsive to salt stress in diploid and tetraploid Paulownia fortunei seedlings. PLOS ONE 11(2): e0149617. DOI:10.1371/journal.pone.0149617.

[60] Fan G, Wang L, Deng M, Zhao Z, Dong Y, Zhang X and Li Y (2016) Changes in transcript related to osmosis and intracellular ion homeostasis in Paulownia tomentosa under salt stress. Frontiers in Plant Science 7:384. DOI:10.3389/fpls.2016.00384.

[61] Yu L, Liu X, Boge W and Liu X (2016) Genome-wide association study identifies loci for salt tolerance during germination in autotetraploid alfalfa (Medicago sativa L.) using genotyping-by-sequencing. Frontiers in Plant Science 7:956. DOI: 10.3389/fpls.2016.00956.

[62] Deng M, Dong Y, Zhao Z, Li Y and Fan G (2017) Dissecting the proteome dynamics of the salt stress induced changes in the leaf of diploid and autotetraploid Paulownia fortunei. PLOS ONE 12(7): e0181937. DOI: 10.1371/journal.pone.0181937.

[63] Liu, B. and G. Sun (2017). microRNAs contribute to enhanced salt adaptation of the autopolyplloid Hordeum bulbosum compared with its diploid ancestor. Plant Journal 91(1): 57-69. doi: 10.1111/tpj.13546.

[64] Zhao Z, Li Y, Liu H, Zhai X, Deng M, Dong Y and Fan G (2017) Genome-wide expression analysis of salt-stressed diploid and autotetraploid Paulownia tomentosa. PLOS ONE 12(10): e0185455. DOI: 10.1371/journal.pone.0185455.

[65] del Pozo JC and Ramirez-Parra E (2014) Deciphering the molecular bases for drought tolerance in Arabidopsis autotetraploids. Plant, Cell and Environment. 37(12): 2722-2737. DOI: 10.1111/pce.12344.

[66] Niu, S., Y. Wang, Z. Zhao, M. Deng, L. Cao, L. Yang, and G. Fan (2016). Transcriptome and Degradome of microRNAs and Their Targets in Response to Drought Stress in the Plants of a Diploid and Its Autotetraploid Paulownia australis. PLOS ONE, 11(7): p. e0158750. https://doi.org/10.1371/journal.pone.0158750.

[67] Cao X, Fan G, Cao L, Deng M, Zhao Z, Niu S, Wang Z and Wang Y (2017) Drought stress-induced changes of microRNAs in diploid and autotetraploid Paulownia tomentosa. Genes and Genomics 39(1): 77-86. DOI: 10.1007/s13258-016-0473-8.

[68] Zhao Z, Niu S, Fan G, Deng M and Wang Y (2018) Genome-wide analysis of gene and microRNA expression in diploid and autotetraploid Paulownia fortunei (Seem) Hemsl. under drought stress by transcriptome, microRNA, and degradome sequencing. Forests 9(2): 88. DOI: 10.3390/f9020088

[69] Rao S, Tian Y, Xia X, Li Y and Chen J (2020) Chromosome doubling mediates superior drought tolerance in Lycium ruthenicum via abscisic acid signaling. Horticulture Research 7:40 https://doi.org/10.1038/s41438-020-0260-1
[70] Li M, Zhang C, Hou L, Yang W, Liu S, Pang X and Li Y (2021) Multiple responses contribute to the enhanced drought tolerance of the autotetraploid *Ziziphus jujuba* Mill. var. *spinosa*. Cell Bioscience 11:119 https://doi.org/10.1186/s13578-021-00633-1

[71] Zhang XY, Hu CG and Yao JL (2010) Tetraploidization of diploid *Dioscorea* results in activation of the antioxidant defense system and increased heat tolerance. Journal of Plant Physiology 167(2): 88-94. DOI: 10.1016/j.jplph.2009.07.006.

[72] DeBolt S (2010) Copy number variation shapes genome diversity in *Arabidopsis* over immediate family generational scales. Genome Biol Evol 2:441-453. https://doi.org/10.1093/gbe/evq033

[73] Deng B, Du W, Changlai L, Sun W, Tian S and Dong H (2012) Antioxidant response to drought, cold and nutrient stress in two ploidy levels of tobacco plants: low resource requirement confers polytolerance in polyploids. Plant Growth Regulation 66(1): 37-47. DOI: 10.1007/s10725-011-9626-6.

[74] Syngelaki E, Daubert M, Klatt S and Hörandl E (2020) Phenotypic Responses, Reproduction Mode and Epigenetic Patterns under Temperature Treatments in the Alpine Plant Species *Ranunculus kuepferi* (*Ranunculaceae*). Biology 9:315. doi:10.3390/biology9100315

[75] Ruiz, M., A. Quiñones, B. Martínez-Alcántara, P. Aleza, R. Morillon, L. Navarro, E. Primo-Millo, and M. Martínez-Cuenca (2016). Tetraploidy Enhances Boron-Excess Tolerance in Carrizo Citrange (*Citrus sinensis* L. Osb. × *Poncirus trifoliata* L. Raf.). Frontiers in Plant Science 7. p. 701. DOI: 10.3389/fpls.2016.00701

[76] Li M, Xu G, Xia X, Wang M, Yin X, Zhang B, Zhang X and Cui Y (2017) Deciphering the physiological and molecular mechanisms for copper tolerance in autotetraploid *Arabidopsis*. Plant Cell Reports 36(10): 1585-1597. DOI: 10.1007/s00299-017-2176-2.

[77] Mu H, Lin L, Zhang Q, Tang X, Zhang X and Cheng G (2016) Growth, proline content and proline-associated gene expression of autotetraploid *Betula platyphylla* responding to NaHCO3 stress. Dendrobiology 75:123-129. DOI: 10.12657/denbio.075.012.

[78] Hias N, Svara A and Wannes Keulemans J (2018) Effect of polyploidisation on the response of apple (*Malus × domestica* Borkh.) to *Venturia inaequalis* infection. European Journal of Plant Pathology 151(2): 515-526. DOI: 10.1007/s10658-017-1395-2.

[79] Jansky S, Haynes K and Douches D (2019) Comparison of Two Strategies to Introgress Genes for Resistance to Common Scab from Diploid *Solanum chacoense* into Tetraploid Cultivated Potato. American Journal of Potato Research 96:255-261. https://doi.org/10.1007/s12230-018-09711-6

[80] Ramsey J & Ramsey TS (2014) Ecological studies of polyploidy in the 100 years following its discovery. Philosophical Transaction of the Royal Society B 369:20130352. http://dx.doi.org/10.1098/rstb.2013.0352

[81] Makarevitch I and Harris C (2010) Aneuploidy Causes Tissue-Specific Qualitative Changes in Global Gene Expression Patterns in Maize. *Plant Physiology* 152:927-938 www.plantphysiol.org/cgi/doi/10.1104/pp.109.150466

[82] Spoelhof JP, Soltis PS, and Soltis DE (2017). Pure polyploidy: Closing the gaps in autoploidy research. Journal of Systematics and Evolution 55(4): 340-352. https://doi.org/10.1111/jse.12253
The Unique Existence of Chromosomal Abnormality in Polyploidy Plants
DOI: http://dx.doi.org/10.5772/intechopen.99821

[83] Bohutínská M, Alston M, Monnahan P, Mandáková T, Bray S, Paajanen P, Kolář F, Yant L (2021) Novelty and Convergence in Adaptation to Whole Genome Duplication. Molecular Biology and Evolution, msab096, https://doi.org/10.1093/molbev/msab096

[84] Baduel P, Quadrana L, Hunter B, Bomblies K and Colot V (2019) Relaxed purifying selection in autoployploids drives transposable element over-accumulation which provides variants for local adaptation. Nature Communications 10:5818. DOI: https://doi.org/10.1038/s41467-019-13730-0

[85] Hurka H, Bleeker W & Neuffer B (2003) Evolutionary processes associated with biological invasions in the Brassicaceae. Biological Invasions 5:281-292

[86] Kubátová B, Trávníček P, Bastlová D, Čurn V, Jarolímová V and Suda J (2008) DNA ploidy-level variation in native and invasive populations of Lythrum salicaria at a large geographical scale. Journal of Biogeography 35, 167-176

[87] del Rio, A.H. and Bamberg, J.B. (2020) Detection of Adaptive Genetic Diversity in Wild Potato Populations and Its Implications in Conservation of Potato Germplasm. American Journal of Plant Sciences, 11, 1562-1578. https://doi.org/10.4236/ajps.2020.1110113

[88] Fox DT, Soltis DE, Soltis PS, Ashman TL and de Peer YV (2020) Polyploidy: A Biological Force from Cells to Ecosystems. Trends in Cell Biology, https://doi.org/10.1016/j.tcb.2020.06.006

[89] Campos H and Ortiz (2020) The potato crop. Its agricultural, Nutritional and social contribution to humankind. https://doi.org/10.1007/978-3-030-28683-5

[90] Stenberg P and Saura A (2013) Meiosis and its deviations in polyploid animals. Cytogenetic and Genome Research 140:185-203. DOI: 10.1159/000351731

[91] Comai L (2005) The advantages and disadvantages of being polyploid. Nature 6:836-846. DOI: 10.1038/nrg1711