Increase in HIV-1 transmitted drug resistance among untreated 16~25-y-old youths in the China-Myanmar border areas during 2009~2017

Yibo DING
National Center for AIDS STD Control and Prevention https://orcid.org/0000-0002-2544-3882

Min CHEN
institute for aids std control and prevention, yunnan center for disease control and prevention

Jibao WANG
dehong dai and jingpo autonomous prefectrue center for disease control and prevention

Yuecheng YANG
dehong dai and jingpo autonomous prefectrue center for disease control and prevention

Yi FENG
National Center for AIDS STD Control and Prevention

Lijie WANG
National Center for AIDS STD Control and Prevention

Song DUAN
dehong dai and jingpo autonomous center for disease control and prevention

Qianru LIN
National Center for AIDS STD Control and Prevention

Hui XING
National Center for AIDS STD Control and Prevention

Yanling MA
institute for AIDS/STD control and prevention, Yunnan center for disease control and prevention

Mengjie HAN
National Center for AIDS STD Control and Prevention

Liying MA (✉ mal@chinaaids.cn)
National Center for AIDS STD Control and Prevention

Research Article

Keywords: HIV, transmitted drug resistance, molecular network, CD4 count

DOI: https://doi.org/10.21203/rs.3.rs-42813/v1
Abstract

Background Transmitted drug resistance (TDR) can affect antiretroviral therapy (ART) efficacy. Surveillance drug resistance mutations in untreated youths newly reported with HIV-1 are highly representative of local TDR. We investigated HIV-1 TDR, TDR transmission based on molecular networks, and the effect of TDR mutations (TDRMs) on the CD4 count among youths in the China-Myanmar border area near the “Golden Triangle” to better understand TDR and guide ART.

Methods From 2009 to 2017, 573 ART-naive youths (16~25 y) newly reported with HIV-1 were enrolled. CD4 counts were obtained from whole blood. HIV pol gene sequences were amplified from RNA extracted from plasma. The Stanford REGA program and phylogenetic trees were used to determine genotypes. TDRMs were analyzed using the Stanford Calibrated Population Resistance tool. TDR transmission was evaluated from molecular networks of HIV-1 pol genes.

Results The average prevalence of TDR was 6.3%, and the resistance to NNRTIs, NRTIs, and PIs was 3.49%, 2.62%, and 0.52%, respectively. TDR prevalence increased significantly during the period 2009~2017 (3.92%~9.48%, p<0.05). The mean CD4 count was significantly lower among individuals with TDRMs (373/mm³ vs. 496/mm³, p=0.013). The rate of network entry of youths harboring TDRMs (63.89%) was significantly higher than that of youths without TDRMs (44.9%).

Conclusions The HIV-1 TDR increase and low CD4 count of patients with TDRMs in Dehong at the China-Myanmar border suggest the need for early ART and completion of resistance testing before initiating ART in HIV hotspots. Youths with TDRMs are likely to have links to others, necessitating intervention in onward transmission.

Introduction

Worldwide, 37.9 million people live with HIV, and 24.5 million people were receiving antiretroviral therapy (ART) at the end of 2018.[1] However, with the increasing use of ART, the problem of drug resistance (DR) has also been a focus. DR, transmitted HIV drug resistance (TDR) and acquired drug resistance (ADR) are caused by one or more mutations in the viral genetic structure that affect the efficacy of ART. ADR develops during viral replication in the presence of ART drugs. TDR is found in ART-naive populations and occurs when uninfected individuals are infected with virus that carries DR mutations.[2] TDR surveys can effectively guide future first- and second-line ART regimens, help prevent mother-to-child transmission and aid pre-/postexposure prophylactic therapy.[3]

TDR has been detected in ART-naive populations in the United States, Switzerland, Peru, Argentina, Brazil, and Colombia, and the estimate of the number of people infected with virus carrying TDR mutations has increased with time.[3-5] In these populations, demographic and clinical characteristics usually cannot predict TDR. Interestingly, some studies reported higher CD4 counts in people with TDR mutations (TDRMs) than in individuals without TDRMs,[6, 7] but others came to the opposite conclusion.[8, 9] Additional evidence is needed to verify an association between TDR and decreased CD4 count. In
addition, molecular networks analysis can identify genetically similar sequences; viruses with close genetic similarity indicate the spread between individuals. These network-forming clusters increase the efficiency of HIV spread in a population.\[10\] Molecular network analysis can play a crucial role in revealing potential transmission relationships and in evaluating the relationship of TDR within the context of a cohort.\[9, 11\]

Free ART has been widely provided in China since 2006. At the end of 2019, 0.958 million people in China were living with HIV, and 0.83 million people (86.6%) were accessing ART.\[12\] Yunnan Province is in the southwestern part of China, bordering Myanmar, Vietnam, and Laos. By the end of 2016, the number of people living with HIV/AIDS in Yunnan (91,986) was the second highest of all provinces in China; of these, 70,577 (76.7%) were receiving ART. Dehong city, as a hotspot of HIV recombination and transmission,\[13\] is a major city for trading in the Yunnan-Myanmar border area. Dehong shares an international border with Kachin and with Shan state, Myanmar, two of the major states of the "Golden Triangle" (Fig 1). The "Golden Triangle" is one of the world's largest drug production centers,\[14\] and there is a severe HIV transmission problem around this area. In China, the first HIV spread in people who inject drugs (PWID) was found in Dehong.\[15\] According to the WHO HIV drug resistance (HIVDR) threshold survey method, untreated youths (<25 y) are more likely to have recent and incident infections.\[2, 16, 17\]

To better understand TDR and guide ART therapy, we aimed to investigate TDRMs in youths over a 9-year period. We examined the effect of TDRMs on CD4 counts and the relationships of HIV youths in molecular networks in Dehong city in the China-Myanmar border area near the "Golden Triangle".

Methods

Study population and ethical review

The ethical review of this study was approved by the Medical Ethics Certification Committee of the Chinese Center for Disease Control and Prevention (approval no. X190111549).

From 2009 to 2017, a total of 10832 people were newly reported with HIV-1 infection at the Dehong border of China. Among these individuals, 2210 are youths (<25 y). We attempted to amplify the HIV-1 pol gene in virus isolated from 666 of these youths who were chosen according to the following criteria: 1) 16~25 y, newly diagnosed with HIV within 3-6 months, and not infected as a result of mother-to-infant transmission; 2) never received ART; 3) agreed to provide written informed consent and to allow plasma samples to be collected and stored for follow-up studies; 4) agreed to provide epidemiological information. Finally, 573 (86%, 573/666) youths from whom the viral pol gene was successfully amplified were used in the analysis. The sampling percentage for this study, by year, was 13.58% in 2009~2011, 22.65% in 2012~2013, 26.90% in 2014~2015, and 52.25% in 2016~2017 (Table 1).

Year Range	Sampling Percentage
2009~2011	13.58%
2012~2013	22.65%
2014~2015	26.90%
2016~2017	52.25%

Table 1 Age distribution of newly reported HIV infections in Dehong city, during 2009~2017
CD4 count and pol gene amplification

The CD4 counts of 461 (80%) of the youths in the study were recorded. RNA was extracted from 140 μL of plasma samples using the QIAamp RNA Blood Mini Kit (Qiagen, Hilden, Germany). The partial pol gene, including the protease and reverse transcriptase (PR and RT) coding regions, was amplified by nested polymerase chain reaction (PCR) using an “in-house” method[18] by one-step RT-PCR using the primers F1a (TGAARGAITGYACTGARAGRCAGGCTAAT), F1b (ACTGARAGRCAGGCTAATTTTTTAG), and RT-R1 (ATCCCTGCATAAATCTGACTTGC). The primers used in nested PCR were PRT-F2 (CTTTARCTTCCCTCARATCACTCT) and RT-R2 (CTTCTGTATGTCATTGACAGTCC). PR/RT covered a fragment of 1056 bp corresponding to nucleotides 2259 to 3314 relative to the HXB2 genome. The positive PCR amplicons were purified using the QIAquick Gel Extraction Kit (Qiagen, Valencia, CA) and sequenced. Amplicons were purified using the Illustra GFXR PCR DNA and Gel Band Purification Kit (GE Healthcare, United Kingdom) according to the manufacturer's recommendations. The purified DNA was sequenced using the Big Dye Terminator Cycle Sequencing Ready Reaction Kit v.3.1 (Applied Biosystems, CA, United States) with processing on an automated ABI 3130xl sequencer (Applied Biosystems) using Sanger's method. All sequence data were spliced and cleaned using Sequencher v5.1 (Gene Codes Corporation).

Genotype identification and analysis

Sequences were edited in AliView software and then aligned with HXB2 reference sequences by the Los Alamos HIV Align tool. A phylogenetic tree was approximated using the maximum likelihood method with general time-reversible (GTR) modeling with RAxML (version 8) software[19] and Figtree v1.4.3. Identification of HIV-1 genotypes was conducted using the Stanford REGA HIV-1 Subtyping Tool 3.0.[20] If the result of the REGA tool contained ‘Recombination’, ‘potential-Recombination’ or ‘check the report’, the jPHMM recombination prediction tool[21] was used for confirmation. Discordant subtyping results between the two tools were analyzed by using the phylogenetic tree.

Drug resistance mutations and analysis

TDRMs were defined as the proportion of surveillance drug resistance mutations (SDRMs), identified by the Stanford Calibrated Population Resistance (CPR) tool 8.0 (last updated on 2019-07-01), according to the WHO-2009 SDRM list.[22] The Stanford HIVDB Program 8.9.1 (last updated on 2019-10-25, https://hivdb.stanford.edu/hivdb/) was used to score resistance to protease inhibitors (PIs), nucleoside
reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs).[23] Sequences were determined to be either susceptible (<15, including potential resistance) or resistant (15≤low<30, 30≤medium<60, or high>60) based on their scores.

HIV molecular network analysis of TDR

Pairwise genetic distances were calculated by HyPhy 2.2.4 under the TN93 model. Cytoscape_v3.7.1 was used to visualize and analyze the molecular transmission network. We tested distance thresholds from 0.25% to 2% and inferred 1.25% as the genetic distance threshold, since 1.25% identified the maximum number of clusters.[24] We defined a node as one youth and an edge as a single link between two nodes. Edges linked nodes to each other when their genetic distance was =<1.25%. Nodes were classified as belonging to a network if they were linked to at least one other node.

Statistical analysis

Statistical analyses were conducted using R 3.6.2 and R-Studio 1.1.463. The Chi-square test or Fisher’s exact test was used to verify differences in the distribution of demographic and clinical characteristics and genotypes. The Cochran-Armitage trend test was used to test trends such as TDR trend and the proportion of genotypes changed. Univariate logistic analysis was used to report proportions of TDRMs or network inclusion by participant characteristics (for example, nationality, educational status, etc.). Multivariate logistic analysis was performed on variables that showed statistically significant differences in the univariate logistic analysis. When appropriate, \(p < 0.05 \) was defined as statistically significant.

Results

Demographic and clinical characteristics

Overall, the \textit{pol} gene was amplified successfully from 573 untreated youths with HIV-1; of these, 351 (61\%) were male, and 222 (39\%) were female. The most common infection route was sex among heterosexuals (70.51\%), followed by PWID (19.20\%) and men who have sex with men (MSM) (8.9\%). The proportion of the MSM population is increasing annually (\(p < 0.001 \)). More than half of the youths were single (58.81\%), and the rest were married/cohabiting (37.35\%) or divorced (3.84\%). The subjects were Chinese (55.67\%) or Burmese (44.33\%). The proportion of PWID was higher among Burmese than among Chinese subjects (29.13\% vs. 11.29\%, \(p < 0.001 \)). The educational status of the subjects was mainly primary education (28.27\%) and junior high school education (27.23\%) (Table 2). The Chinese subjects had a higher rate of junior high school education (34.84\%) than the others, while the Burmese subjects had a higher illiteracy rate (38.58\%).

\begin{table}[h]
\centering
\caption{Clinical characterizes of untreated 16~25y youths infected HIV during 2009~2017}
\end{table}
High genotype diversity among ART-naïve HIV-infected youths

The Stanford REGA online tool[20] was used for classification of genotypes, and the classification was then rechecked in the phylogenetic tree and using the jPHMM recombination prediction tool.[21] The distribution of HIV genotypes included C (31.59%), unique recombinant form (URF) (31.59%), URF_BC (25.48%), URF01BC (4.19%), URF01B (0.7%), URF01C (1.22%), CRF01_AE (21.12%), CRF07_BC (5.41%), CRF08_BC (4.54%), B’ (4.01%), CRF5501B (0.7%), CRF57BC (0.17%), and CRF64BC (0.87%) (Fig 1b). The prevalence of genotypes changed over time; the prevalence of B and C decreased from 2009~2017, while that of CRF01_AE, CRF07BC and URFs continued to increase (Fig 1c). According to the route of infection, the proportion of URF and C in PWID was higher than that observed via sexual transmission (heterosexuals and MSM), but the proportions of CRF01_AE and CRF_08BC in cases of sexual transmission were high ($p<0.001$) (Fig 1d). The distribution of infection routes differed between China and Myanmar; the distribution of genotypes also differed. URF was higher in Burmese subjects than in
Chinese subjects (31.89% vs. 21.63%, \(p < 0.05 \)), and CRF07_BC was higher in Chinese subjects than in Burmese subjects (8.46% vs. 1.57%, \(p < 0.01 \)) (Fig 1e).

The prevalence of TDR increased significantly from 2009 to 2017

A total of 36 (6.3%) youths with TDRMs were identified by the CPR program. The prevalence of TDR increased significantly from 2009 to 2017 (3.48% to 9.48%, \(p < 0.05 \), Cochran-Armitage trend test). Among these youths, the TDR prevalence in Chinese subjects increased from 3.33% to 5.93% (\(p = 0.37 \), Cochran-Armitage trend test), and the highest prevalence appeared in 2014~2015 (6.38%). The TDR prevalence in Burmese subjects significantly increased from 4.00% to 13.16% (\(p < 0.05 \), Cochran-Armitage trend). The prevalence of TDR to NNRTIs (3.9% to 4.31%, \(p = 0.57 \)) and PIs (0% to 0.86%, \(p = 0.20 \)) increased from 2009 to 2017. Moreover, the resistance to NRTIs increased significantly (0.87% to 5.17%, \(p = 0.004 \), Cochran-Armitage trend test) (Fig 2a).

Overall, the average TDR to NNRTIs, NRTIs, and PIs was 3.49%, 2.62%, and 0.52%, respectively. Among these cases of TDR, 94.4% (n=34) had one class of TDRMs, and 5.6% (n=2) had two classes. Y181I/C and K103N were the most common NNRTI-related mutations and were found in 7 and 9 infected individuals, respectively. The distributions of NRTI- and PI-related mutations were scattered (Table 3). We used the Stanford HIVdb tool to assess the clinical impact of these mutations (excluding other polymorphism sites). Among NNRTIs, resistance to doravirine (DOR), etravirine (ETR), and rilpivirine (RPV) occurred mainly at a moderate level (50%, 63%, and 78%, respectively), and efavirenz (EFV) and nevirapine (NVP) had the highest composition ratio of high-level resistance (55% and 95%). Among NRTIs, excepting M184I (1), L74I (1), D67N (1), and T215I (1), the remaining mutations (75%, 12/16) only conferred potential resistance (score<15) to NRTIs. Although only three youths carried TDRMs associated with PI resistance, two I54M sites caused universal resistance to PI drugs (Fig 2b).

Table 3 Prevalence of HIV Transmitted Drug Resistance Mutations among untreated 16~25y youths in Dehong during 2009~2017
Correlates of TDR

The characteristics of individuals with and without TDR were comparable with respect to nationality, year of diagnosis, infection route, gender, ethnicity, marital status, educational level and CD4 cell count (Table 4). Only the mean CD4 count was significantly lower among youths with TDRMs than among those without TDRMs (373/mm3 vs. 496/mm3, $p=0.013$). The average CD4 count was 483/mm3 (2009~2011: 529/mm3, 2012~2013: 523/mm3, 2014~2015: 451/mm3, and 2016~2017: 450/mm3).

Table 4 Demography and clinical characteristics of untreated 16~25y youths infected HIV with or without TDRMs

Type	With TDRM (%)	Heterosexual n=404	IDU n=110	MSM n=51	2009-2011 n=115	2012-2013 n=113	2014-2015 n=113	2016-2017 n=232
Total	38*	24(5.94%)*	10(9.1%)	4(6.25%)	4(3.48%)	5(4.42%)	5(4.42%)	24(10.34%)*
TDRM NRTI	15(2.62%)							
	D67E 4(0.70%)	2	1	1				4
	D67N 1(0.17%)							1
	F77L 3(0.52%)							3
	K219N 3(0.52%)							3
	L74I 1(0.17%)							1
	M184I 1(0.17%)	1						1
	T215I 1(0.17%)							1
	T69D 1(0.17%)							1
NNRTI	20(3.49%)							
	G190A 1(0.17%)	1						1
	K101E 1(0.17%)							1
	K103N 9(1.57%)						3	2
	V106M 2(0.35%)	1					1	2
	Y181C 6(1.05%)						1	1
	Y181I 1(0.17%)						1	1
PI	3(0.52%)							
	I54M 2(0.35%)	2						2
	M46I 1(0.17%)							1

* “Heterosexual” and “2016-2017” have two infectors who have two classes of TDRMs.
Youths with TDRMs were more likely to be linked to others based on the molecular transmission network

Molecular transmission networks were established to show transmission relationships among the youths with HIV-1. Of the 573 sequences, 264 (46.1%) were linked to at least one other sequence, forming 87 networks (nodes>=2). A total of 23 (63.89%) youths with TDRMs entered networks, and 15 networks contained at least one TDR node (Fig 3). The network entry rate of sequences containing TDRMs was significantly higher than that of sequences without TDRMs (63.89% vs. 44.9%, \(p=0.037 \), Chi-square test). The result also shows the different frequencies of TDRMs in in-network versus nonnetwork youths (8.7% vs. 4.2%). We determined that people who have a risk factor, i.e., those with TDRMs and those with CRF07_BC or C genotypes, were likely to have a link to others (Table S1). Y181C, D67E, V106M, and K103N were cases of shared DRMs with recent transmission (gene distance <0.5%) (Fig 3).

Discussion
The city of Dehong is located in the China-Myanmar border area near the “Golden Triangle” and is a hotspot of HIV transmission and recombination, having a strong impact on the HIV-1 epidemic in China. [25, 26] We determined and statistically analyzed the age distribution of newly reported HIV infections in Dehong city (Table 1). TDR can better guide future ART regimens, prevent mother-to-child transmission and aid pre-/post-exposure prophylactic therapy. Untreated youths (<25 y) are more likely to have recent and incident infections.[2, 16, 17] Therefore, we analyzed the TDR of untreated youths (16~25 y) newly diagnosed with HIV-1 over a relatively long period (from 2009 to 2017) in Dehong.

The distribution of HIV-1 genotypes in China is mainly CRF01AE, CRF07BC, CRF08BC, and B, while C, URF, and other circulating recombinant forms (CRFs) account for only a small proportion of cases.[27] However, the distribution of genotypes differs in Dehong, which has a high prevalence of URF and C subtypes.[28, 29] Similar to previous studies, the distribution of HIV genotypes in this study was diverse and complex. Interestingly, the prevalence of B and C has decreased annually, while that of CRF01AE, CRF07BC and URFs continues to increase. We also found that the proportion of URFs in Burmese and PWID populations was significantly higher than that in other populations. The result may indicate that due to the influence of drug injection in the “Golden Triangle”, the presence of HIV-1 recombination networks occurred early among PWID in Dehong.[30-32] This has had a long-term impact on the HIV-1 epidemic in this area, making Dehong a hotspot for HIV recombination.

Frequent recombination is more effective than mutation in spreading drug resistance mutations.[33, 34] Frequent communication around the China-Myanmar border has increased the frequency of recombination[28, 35] and the probability of TDRM transmission. Overall, the average prevalence of TDR was 5.4%, a value that exceeds the 5% moderate prevalence level. It is worth noting that during 2016~2017, the prevalence of TDR was 9.48%, significantly higher than the average TDR prevalence in China[36] and Myanmar.[3] The prevalence of TDR in this study does not represent the average resistance level in China and Myanmar but indicates the increase in TDR among youths in hotspots of HIV transmission and recombination. In this study, no significant difference was found in TDR prevalence between Burmese and Chinese subjects. Furthermore, whereas the prevalence of TDR in Chinese subjects increased from 2009 to 2017 (from 3.92% to 5.93%), the prevalence of TDR in Burmese migrants increased significantly from 2010 to 2017 (from 4.00% to 13.16%). Burmese migrants are a key population for HIV prevention in this region.

Resistance to NNRTIs (2.92%) was the most frequently observed TDRM. Among these mutations, K103N (n=9) and Y181C/I (n=7) were the most common DRMs. These mutations caused a high level of drug resistance to first-line treatment drugs (EFV and NVP). Among NRTI-related TDRMs (2.34%), most (75%, 12/16) exhibited only potential resistance. Azidothymidine (AZT), lamivudine (3TC), and tenofovir (TDF), as first-line NRTI drugs in China, have meager rates of transmission resistance (0.3%, 0.15%, and 0%, respectively). However, unlike the findings reported in other studies,[4, 5, 36-40] NRTI resistance showed the most significant increase (from 0% to 5.17%) from 2009 to 2017 in this study. Although the prevalence of TDR to PIs (0.44%) was significantly lower than the prevalence of TDR to NNRTIs/NRTIs,
the I54M mutation caused universal resistance to PI drugs. These results suggest that, in the future, resistance testing before initiating ART is essential.

Previous studies suggested that DRMs impair viral fitness, resulting in increased CD4 count.[6, 7] However, some DRMs have a low impact on viral fitness and even improve it, which may lead to a more rapid decline in CD4 count.[9, 41] In the latest research,[8] no association was found between DRMs and decreased CD4 count. In this study, HIV-1-infected youths with TDRMs had low CD4 counts; this provides some evidence for a relationship between TDRMs and decreased CD4 count.

We analyzed TDR transmission based on the molecular transmission network. The rate of entry into the network (46.1%) of youths in our study was significantly higher than that reported in other studies.[42, 43] Moreover, youths with TDR (63.89%) were more likely to enter the network. These results indicate that youths in Dehong are in an active period of HIV transmission. Youths who had TDRMs were more likely to be linked to others in the HIV-1 transmission network. Moreover, the Y181C, D67E, and V106M mutations have recent transmissions (gene distance <0.5%) and were shared TDRMs among 8 youths during 2016~2017. The result indicates that the rapid increase in TDR during 2016~2017 is related to the recent spread of TDRMs such as Y181C, D67E, and V106M. The result also indicates the need for monitoring and intervention in the spread of HIV through molecular transmission network analysis of youths.

Our research has some limitations. Since the first years of ART scale-up, TDR strains of HIV are likely to be limited, and all youths were ART-naïve; in addition, the total number of TDRMs is small (n=36), possibly resulting in statistical bias. In 2016-2017, we increased the sample capacity and observed a significant increase in TDR. This suggests that TDR may be increasing rapidly among young people in this border region. In addition, we did not investigate TDR to integrase inhibitor (INSTI); because these sequences were previously amplified and stored by our laboratory, the primers did not include the INSTI region. We will continue to increase the sample capacity and to monitor TDR (including INSTI) in the China-Myanmar border region.

Conclusion

TDR increased by 200% from 2009 to 2017 among untreated youths in Dehong at the China-Myanmar border. The prevalence of TDR exceeded the 5% moderate prevalence level. The HIV-1 TDR increase and low CD4 count of patients with TDRMs suggest the need for early ART and completion of resistance testing before initiating ART in the future. The youths in Dehong are in an active period of HIV transmission. Furthermore, molecular network analysis shows that youths with TDRMs are more likely to have links to others, suggesting the need to intervene to prevent onward transmission.

Abbreviations

HIV: Human immunodeficiency virus

PDR: Pretreatment drug resistance
PLWHA: People living with HIV or AIDS
WHO: World Health Organization
ART: Antiretroviral therapy
NNRTI: Non-nucleoside reverse-transcriptase inhibitor
NRTI: Nucleoside reverse-transcriptase inhibitor
PI: Protease inhibitor
PWID: People who injected drug
PrEP: Pre-exposure prophylaxis
EFV: Efavirenz
NVP: Nevirapine
FTC: Emtricitabine
3TC: Lamivudine
ABC: Abacavir
DDI: Didanosine
D4T: Stavudine
TDF: Tenofovir
AZT: Azidothymidine
DRV/r: Darunavir
LPV/r: Lopinavir
ATV/r: Atazanavir
DRM: Drug resistance mutation
HIVDR: HIV Drug Resistance Database
TN93: Tamura–Nei 93
OR: Odds ratio
CI : Confidence interval

Declarations

Ethical Approval: The ethical review of this study was approved by the Medical Ethics Certification Committee of the Chinese Center for Disease Control and Prevention (approval no. X190111549).

Consent for publication: Not applicable.

Conflicts of Interest: The authors report no conflicts of interest in this work.

Availability of data and materials: The datasets are available from the corresponding author on reasonable request.

Funding Source: This work was supported by the National Science and Technology Major Project (Grant 2018ZX10101002), the National Natural Science Foundation of China (Grants 81871694, 81773447, 81561128006), and the National Major Project of the State Key Laboratory of Infectious Diseases Prevention and Control (Grant 2011SKLID102).

Author Contributions: L.M. M.H. conceived and designed the experiments; M.C., J.B., Y.Y., Y.M. collected samples. Y.D. M.C. Y.Z., L.W., Q.L. performed the experiments; Y.D., Y.F., H.X., S.D. analyzed the data; Y.D., L.M. M.H. wrote the paper; all authors discussed the results and contributed to the final manuscript.

Acknowledgements: Not applicable.

References

1. Latest global and regional statistics on the status of the AIDS epidemic. [https://www.unaids.org/en/resources/documents/2019/UNAIDS_FactSheet], 26 NOVEMBER 2019
2. HIV drug resistance surveillance guidance [https://apps.who.int/iris/handle/10665/204471], 2016
3. HIV drug resistance report 2019 [https://apps.who.int/iris/handle/10665/325891], WHO/CDS/HIV/19.21
4. Trebelcock WL, Lama JR, Duerr A, Sanchez H, Cabello R, Gilada T, Segura P, Reisner SL, Mayer KH, Mullins J et al: HIV pretreatment drug resistance among cisgender MSM and transgender women from Lima, Peru. *J Int AIDS Soc* 2019, 22(11):e25411.
5. Andersson E, Nordquist A, Esbjornsson J, Flamholc L, Gisslen M, Hejdeman B, Marrone G, Norrgren H, Svedhem V, Wendahl S et al: Increase in transmitted drug resistance in migrants from sub-Saharan Africa diagnosed with HIV-1 in Sweden. *AIDS* 2018, 32(7):877-884.
6. Grant RM, Hecht FM, Warmerdam M, Liu L, Liegler T, Petropoulos CJ, Hellmann NS, Chesney M, Busch MP, Kahn JO: Time trends in primary HIV-1 drug resistance among recently infected persons. *JAMA* 2002, 288(2):181-188.
7. Booth CL, Garcia-Diaz AM, Youle MS, Johnson MA, Phillips A, Geretti AM: Prevalence and predictors of antiretroviral drug resistance in newly diagnosed HIV-1 infection. *J Antimicrob Chemother* 2007, 59(3):517-524.

8. Schultze A, Torti C, Cozzi-Lepri A, Vandamme AM, Zazzi M, Sambatakou H, De Luca A, Geretti AM, Sonnerborg A, Ruiz L et al: The effect of primary drug resistance on CD4+ cell decline and the viral load set-point in HIV-positive individuals before the start of antiretroviral therapy. *AIDS* 2019, 33(2):315-326.

9. Panichsillapakit T, Smith DM, Wertheim JO, Richman DD, Little SJ, Mehta SR: Prevalence of Transmitted HIV Drug Resistance Among Recently Infected Persons in San Diego, CA 1996-2013. *J Acquir Immune Defic Syndr* 2016, 71(2):228-236.

10. Wertheim JO, Oster AM, Switzer WM, Zhang C, Panneer N, Campbell E, Saduvala N, Johnson JA, Heneine W: Natural selection favoring more transmissible HIV detected in United States molecular transmission network. *Nature communications* 2019, 10(1):5788.

11. Stecher M, Chaillon A, Eis-Hubinger AM, Lehmann C, Fatkenheuer G, Wasmuth JC, Knops E, Vehreschild JJ, Mehta S, Hoenigl M: Pretreatment human immunodeficiency virus type 1 (HIV-1) drug resistance in transmission clusters of the Cologne-Bonn region, Germany. *Clin Microbiol Infect* 2019, 25(2):253 e251-253 e254.

12. New progress in AIDS prevention and control in China in 2019 [http://www.nhc.gov.cn/jkj/s3586/201911/c2388ce70bdd404ea6dfcd886591784d.shtml], 30/11/2019

13. Jia Y, Sun J, Fan L, Song D, Tian S, Yang Y, Jia M, Lu L, Sun X, Zhang S et al: Estimates of HIV prevalence in a highly endemic area of China: Dehong Prefecture, Yunnan Province. *Int J Epidemiol* 2008, 37(6):1287-1296.

14. World Drug Report 2016, united nations office on drugs and crime. [http://www.unodc.org/wdr2016/], 2016

15. Ma Y, Li Z, Zhang K, Yang W, X R: HIV was first discovered among injection drug users in China. *Chinese Journal of Epidemiology* 1990, 11:184–185.

16. Bennett DE, Myatt M, Bertagnolio S, Sutherland D, Gilks CF: Recommendations for surveillance of transmitted HIV drug resistance in countries scaling up antiretroviral treatment. *Antivir Ther (Lond)* 2008, 13 Suppl 2:25-36.

17. World Health O: World Health Organization protocol for surveillance of transmitted HIV drug resistance: 2012 update. In. Geneva: World Health Organization; 2012.

18. Zhou Z, Wagar N, DeVos JR, Rottinghaus E, Diallo K, Nguyen DB, Bassey O, Ugbeha R, Wadonda-Kabondo N, McConnell MS et al: Optimization of a low cost and broadly sensitive genotyping assay for HIV-1 drug resistance surveillance and monitoring in resource-limited settings. *PLoS One* 2011, 6(11):e28184.

19. Stamatakis A: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 2014, 30(9):1312-1313.
20. Pineda-Pena AC, Faria NR, Imbrechts S, Libin P, Abecasis AB, Deforche K, Gomez-Lopez A, Camacho RJ, de Oliveira T, Vandamme AM: Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes: performance evaluation of the new REGA version 3 and seven other tools. *Infect Genet Evol* 2013, 19:337-348.

21. Schultz AK, Zhang M, Bulla I, Leitner T, Korber B, Morgenstern B, Stanke M: jpHMM: improving the reliability of recombination prediction in HIV-1. *Nucleic Acids Res* 2009, 37(Web Server issue):W647-651.

22. Gifford RJ, Liu TF, Rhee SY, Kiuchi M, Hue S, Pillay D, Shafer RW: The calibrated population resistance tool: standardized genotypic estimation of transmitted HIV-1 drug resistance. *Bioinformatics* 2009, 25(9):1197-1198.

23. Liu TF, Shafer RW: Web resources for HIV type 1 genotypic-resistance test interpretation. *Clin Infect Dis* 2006, 42(11):1608-1618.

24. Wertheim JO, Kosakovsky Pond SL, Forgione LA, Mehta SR, Murrell B, Shah S, Smith DM, Scheffler K, Torian LV: Social and Genetic Networks of HIV-1 Transmission in New York City. *PLoS Pathog* 2017, 13(1):e1006000.

25. Feng Y, Takebe Y, Wei H, He X, Hsi JH, Li Z, Xing H, Ruan Y, Yang Y, Li F et al: Geographic origin and evolutionary history of China's two predominant HIV-1 circulating recombinant forms, CRF07_BC and CRF08_BC. *Sci Rep* 2016, 6:19279.

26. Feng Y, He X, Hsi JH, Li F, Li X, Wang Q, Ruan Y, Xing H, Lam TT, Pybus OG et al: The rapidly expanding CRF01_AE epidemic in China is driven by multiple lineages of HIV-1 viruses introduced in the 1990s. *AIDS* 2013, 27(11):1793-1802.

27. Li X, Li W, Zhong P, Fang K, Zhu K, Musa TH, Song Y, Du G, Gao R, Guo Y et al: Nationwide Trends in Molecular Epidemiology of HIV-1 in China. *AIDS Res Hum Retroviruses* 2016, 32(9):851-859.

28. Wei H, Xing H, Hsi JH, Jia M, Feng Y, Duan S, He C, Yao S, Ruan Y, He X et al: The sexually driven epidemic in youths in China's southwestern border region was caused by dynamic emerging multiple recombinant HIV-1 strains. *Sci Rep* 2015, 5:11323.

29. Chen M, Ma Y, Duan S, Xing H, Yao S, Su Y, Luo H, Yang L, Chen H, Fu L et al: Genetic diversity and drug resistance among newly diagnosed and antiretroviral treatment-naive HIV-infected individuals in western Yunnan: a hot area of viral recombination in China. *BMC Infect Dis* 2012, 12:382.

30. Yang R, Xia X, Kusagawa S, Zhang C, Ben K, Takebe Y: On-going generation of multiple forms of HIV-1 intersubtype recombinants in the Yunnan Province of China. *AIDS* 2002, 16(10):1401-1407.

31. Bar KJ, Li H, Chamberland A, Tremblay C, Routy JP, Grayson T, Sun C, Wang S, Learm GH, Morgan CJ et al: Wide variation in the multiplicity of HIV-1 infection among injection drug users. *J Virol* 2010, 84(12):6241-6247.

32. Delviks-Frankenberry K, Galli A, Nikolaitchik O, Mens H, Pathak VK, Hu WS: Mechanisms and factors that influence high frequency retroviral recombination. *Viruses* 2011, 3(9):1650-1680.

33. Carvajal-Rodriguez A, Crandall KA, Posada D: Recombination favors the evolution of drug resistance in HIV-1 during antiretroviral therapy. *Infect Genet Evol* 2007, 7(4):476-483.
34. Rouzine IM, Coffin JM: **Evolution of human immunodeficiency virus under selection and weak recombination.** *Genetics* 2005, **170**(1):7-18.

35. Liu J, Jia Y, Xu Q, Zheng YT, Zhang C: **Phylodynamics of HIV-1 unique recombinant forms in China-Myanmar border: implication for HIV-1 transmission to Myanmar from Dehong, China.** *Infect Genet Evol* 2012, **12**(8):1944-1948.

36. Ye J, Hao M, Xing H, Zhang F, Wu H, Lv W, Jiang T, Wang Y, Wang J, Feng Y *et al:* **Transmitted HIV drug resistance among individuals with newly diagnosed HIV infection: A multicenter observational study.** *AIDS* 2019.

37. Park M, Kee MK, Rhee J, Park JY, Kim SS, Kang C, Choi JY: **The trend of transmitted drug resistance in newly diagnosed antiretroviral-naive HIV/AIDS patients during 1999-2012 in South Korea.** *J Clin Virol* 2016, **81**:53-57.

38. Rocheleau G, Brumme CJ, Shoveller J, Lima VD, Harrigan PR: **Longitudinal trends of HIV drug resistance in a large Canadian cohort, 1996-2016.** *Clin Microbiol Infect* 2018, **24**(2):185-191.

39. D'Costa J, Gooey M, Richards N, Sameer R, Lee E, Chibo D: **Analysis of transmitted HIV drug resistance from 2005 to 2015 in Victoria, Australia: a comparison of the old and the new.** *Sex Health* 2017, **14**(6):558-565.

40. Ferreira ACG, Coelho LE, Grinsztejn E, Jesus CS, Guimaraes ML, Veloso VG, Grinsztejn B, Cardoso SW: **Transmitted drug resistance in patients with acute/recent HIV infection in Brazil.** *Braz J Infect Dis* 2017, **21**(4):396-401.

41. Pillay D, Bhaskaran K, Jurriaans S, Prins M, Masquelier B, Dabis F, Gifford R, Nielsen C, Pedersen C, Balotta C *et al:* **The impact of transmitted drug resistance on the natural history of HIV infection and response to first-line therapy.** *AIDS* 2006, **20**(1):21-28.

42. Morgan E, Oster AM, Townsell S, Peace D, Benbow N, Schneider JA: **HIV-1 Infection and Transmission Networks of Younger People in Chicago, Illinois, 2005-2011.** *Public Health Rep* 2017, **132**(1):48-55.

43. Stecher M, Hoenigl M, Eis-Hubinger AM, Lehmann C, Fatkenheuer G, Wasmuth JC, Knops E, Vehreschild JJ, Mehta S, Chaillon A: **Hotspots of Transmission Driving the Local Hiv Epidemic in the Cologne-Bonn Region, Germany.** *Clin Infect Dis* 2018.

Supplemental Table 1

Table S1 Network analysis of demography and clinical characterizes among untreated 16~25y youths infected HIV
	network n(%)	Univariate			Multivariate		
		p	OR	95% C.I.	p	OR	95% C.I.
Gender							
Male	179(51%)	0.003	0.60	0.423~0.839	0.078	0.686	0.451~1.043
Female	85(38%)	Reference					
Marriage status							
Single	172(51%)	Reference					
Married	83(39%)	0.005	0.608	0.429~0.861	0.107	0.725	0.490~1.072
Divorce	9(41%)	0.360	0.664	0.276~1.595	0.765	0.869	0.347~2.178
Ethnicity							
Han	76(48%)	Reference					
minorities	188(46%)	0.670	0.924	0.641~1.331			
Infected Routes							
Heterosexual	177(44%)	Reference					
PWID	52(47%)	0.518	1.150	0.753~1.755	0.557	0.861	0.522~1.419
MSM	32(63%)	0.012	2.160	1.185~3.939	0.140	1.663	0.846~3.272
Unknown	3(38%)	0.722	0.769	0.181~3.263	0.765	0.798	0.182~3.506
Genotypes							
CRF01AE	49(41%)	Reference					
CRF07BC	25(81%)	0.001	6.122	2.339~16.02	0.001	5.179	1.933~13.87
CRF08BC	9(35%)	0.578	0.778	0.321~1.886	0.718	0.876	0.351~2.182
B	8(35%)	0.608	0.784	0.309~1.990	0.748	0.942	0.365~2.433
C	110(55%)	0.012	1.796	1.137~2.838	0.008	2.151	1.320~3.506
URFBC	60(37%)	0.554	0.864	0.533~1.401	0.704	0.986	0.593~1.640
OTHER	3(30%)	0.517	0.630	0.155~2.555	0.523	0.631	0.152~2.616
Nationality							
China	160(50%)	Reference					
Myanmar	104(41%)	0.028	0.689	0.494~0.961	.144	.761	0.528~1.098
TDR							
Without-TDR	241(45%)	Reference					
TDR	23(64%)	0.037	1.058	4.227	0.042	2.152	1.029~4.499

Figures
Figure 1

Genotypes analysis of HIV-1 pol genes. Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.

Figure 2

Resistance level and TDR prevalence trend
Figure 3

Network of youths newly reported with HIV from 2009 to 2017