A Provably Secure ID-Based Signcryption Protocol for Secure and Authentic Energy Efficient Communication

Sunil Kumar · Pratik Gupta · Dharminder Dharminder*

Abstract Signcryption was first proposed by Yuliang Zheng in 1997, based on the construction of a shortened ElGamal-based signature scheme in parallel to authenticated encryption in a symmetric environment. Signcryption is a cryptographic primitive that enables the conventional two-step method of secure and authenticated message transmission or storage (sign-then-encrypt or encrypt-then-sign) to be done in a single step at a much lower computational cost than the traditional two-step approach. This article concentrates on designing a provably secure identity-based signcryption (IBSC) scheme. The user performs pairing-free computation during encryption in the proposed scheme, making it user-side effective. In addition, the IBSC structure is shown to be secure when dealing with modified bilinear Diffie-Hellman inversion (MBDHI) and modified bilinear strong Diffie-Hellman (MBSDH) problems. The proposed framework supports efficient communication, protection against chosen cipher attack, and existential unforgeability against chosen message attack, according to the performance review of IBSC with related schemes.

Keywords Signcryption · Confidentiality · Authenticity · Provable Security · Cryptography
1 Introduction

Achieving secure and authenticated message transmission or storage has been one of the major interests of computer and communication fortified research. Between the beginning of public key infrastructure (PKI) and 1997, the standard notion for obtaining this objective had been to adopt the two-step approach namely signature then encryption or encryption then signature under a randomly chosen key. Then in 1997 presence of a redundant (in the sense not explicitly contained in a signature) parameter in a shortened ElGamal based signature scheme motivates Zheng [1] to introduce a new cryptographic primitive so-called “signcryption”, for the authentic message delivery or storage. The main aim of signcryption is to provide authentication and non-repudiation of signature and confidentiality of message in a single step with less computation cost, compared to the traditional two-step approach. This makes the scheme more useful in numerous real-time applications such as communication between unmanned vehicles, secure e-mailing, broadcast communication with multiple recipients, and electronic commerce. In addition, Steinfeld et al. [2] and Malone-Lee et al. [3] introduced efficient signcryption scheme using the factorization problem and RSA trapdoor one-way function, respectively.

In 1984, Shamir introduced the concept of identity-based cryptography (IBC). The main motivation behind IBC was to simplify many practical problems regarding certificate management system in public key infrastructure like verification of the authenticity of receiver’s public key, revocation of certificates by the Certifying Authority (CA) and user credential management (before the existence of SSL and TLS protocols). The idea behind an IBC is that the public key can be any string \(\in \{0,1\}^* \) such as an e-mail address or phone number, without the need for a CA. In order to work such a system, a trusted authority known as Private Key Generator (PKG) generates a private key using the user’s identity and own master key, and then sends it to the user through a secure channel. In such a system sender can impose a set of rules for the receiver before the transfer of the receiver’s secure key by the PKG. Thus, in an IBC, PKG works as a policy enforcer and this mitigates, a lot of practical problems inherent with the CA system. In 2001, Boneh et al. [5] introduced the first ID-based cryptographic primitive. Since then numerous identity-based cryptosystems using viewpoint of [5] have been designed [6–9].

In 2002, Malone-Lee [10] proposed the first ID-based signcryption scheme. Libert et al. [11], found that this scheme is not secure against semantic attack and introduced a new three IBSC scheme, capturing the insider security model, with public verifiability. Since then numerous efficient IBSC schemes [12–16] have been proposed. All of the above schemes’ security proofs have been formulated (or rely upon) using Bellare and Rogaway’s random Oracle model [17]. Even though the model is useful but it has been criticized [18] as proofs in random Oracle model only establish working correctness of the scheme as real-world hash functions and random oracles are not at all the same things. Canetti et al. [19] and Bellare et al. [20] also have shown various security threats of using random oracle model. So designing identity-based signcryption without a random oracle model has been an important and interesting work for the researcher. In 2009 using concept of Paterson et al. scheme [21] and Waters’ IBE scheme [22], Yu et al. [18] introduced the initial IBSC in standard (ST) model. But in the subsequent years (2010) their scheme was shown insecure under CPA in [23–25]. Meantime Ren et al. [26] proposed an IBSC scheme based on Gentry’s [27] approach. Wang et al. [28] identified the weakness in [26] against confidentiality and existential unforgeability. Then, based on Waters IBE, Jin et al. [29] provided an improved semantically secure scheme, but it was not resistant to the IND-CCA2 property and the EUF-CMA property, as discussed in [30]. Another new scheme was proposed by Zhang [25]. But we find that [25] is not IND-CCA2 secure as in challenged ciphertext \(\sigma^* \) an adversary can guess in advance that it is encryption of \(m_0 \). Then the adversary can check the validity of signature equation by computing \(R = H_1(m_0||R) \) and \(\hat{m} = H_2(g^t h^{\sigma^*}) \), and can conclude whether \(m_0 \) or \(m_1 \) is a plaintext corresponding to the challenged ciphertext [31]. Thereafter in 2016, Ming and Wang [32] demonstrated that the scheme proposed by Li et al. [33] is insecure under the IND-CCA2 property using concrete attacks. In 2020 Dharminder et al. [34] proposed a new scheme, but here also the scheme is not secure against IND-CCA2 property. Thus in conclusion to the best of our knowledge, the majority of ID-based signcryptions proposed thus far are not provably secure. This motivates us to create a new signcryption that can be proven to be provably secure.
1.1 Our contribution

We have proposed a provably secure identity-based signcryption without the use of a random oracle model in this article. Our scheme alleviates the problem of IND-CCA2 (indistinguishable against chosen cipher text) property. Apart from this, our scheme is computationally hard problems, which we used to construct our computations of bilinear pairings, as well as some computation efficiency due to pairing-free computation on the user side and the use of symmetric key encryption. The proposed work presents that the implementation of the scheme can ensure the confidentiality and authenticity of the data transmitted.

1.2 Paper Organisation:

Section 2 of the remaining paper deals with preliminary work. In section 3, we introduced a formal IBSC model, and in section 4, we define the scheme. Section 5 introduces the most critical work of security-proof. Section 6 compares the performance of the signcryption to that of other similar ones, followed by a discussion in section 7.

2 Preliminaries

This section covers the fundamental tools and definitions of bilinear pairings, as well as some computationally hard problems, which we used to construct our scheme. [5, 11, 12, 16, 21, 22].

2.1 Bilinear Pairings

Let \(G_1 \) and \(G_2 \) be two well known groups under multiplicative of prime order \(q \) and a map \(\Phi : G_1 \times G_1 \rightarrow G_2 \). Then we say \(\Phi \) is bilinear pairing under following three properties.

1. Bilinearity:
 - \(\Phi(x, yz) = \Phi(x, z) \cdot \Phi(y, z) \)
 - \(\Phi(x, yz) = \Phi(x, y) \cdot \Phi(x, z) \)
 Where \(x, y, z \in G_1 \)
2. Non-Degeneracy: \(\Phi(\hat{x}, \hat{x}) \neq I_{G_2} \), where \(I_{G_2} \) is the identity of group \(G_2 \) and \(\hat{x} \) is a generator of \(G_1 \)
3. Computability: \(\forall x, y \in G_1, \Phi(x, y) \) is efficiently computable.

2.2 Hard Assumption

In this subsection, we will describe some hard problems admissible to the proposed scheme.

Definition 1 Bilinear Diffie-Hellman Problem (BDHP): For given a bilinear map \(\Phi : G_1 \times G_1 \rightarrow G_2 \), and a generator \(\hat{x} \) of \(G_1 \), the task of BDHP is to compute \(\Phi(\hat{x}, \hat{x})^\alpha \) provided polynomial time adversary (A) is aware of \((\hat{x}, \hat{x}^\alpha, \hat{x}^\beta, \hat{x}^\gamma) \), where \(\alpha, \beta, \gamma \in Z_q^* \); i.e., multiplicative group of order \(p - 1 \).

Definition 2 Decision Bilinear Diffie-Hellman Problem (DBDHP): Given a generator \(\hat{x} \) of \(G_1 \) and a bilinear map \(\Phi : G_1 \times G_1 \rightarrow G_2 \), the task of DBDHP is to differentiate between \(\Phi(\hat{x}, \hat{x})^\alpha \) and \(\Phi(\hat{x}, \hat{x})^h \) provided \(A \) is aware of \((\hat{x}, \hat{x}^\alpha, \hat{x}^\beta, \hat{x}^\gamma) \) and \(h \in Z_q^* \) is random.

Definition 3 \(q \)-Modified Bilinear Diffie-Hellman Inversion (q-MBDHI) Problem: Given a generator \(\hat{x} \) of \(G_1 \) and a bilinear map \(\Phi : G_1 \times G_1 \rightarrow G_2 \), the task of q-MBDHI is to compute \(\Phi(\hat{x}, \hat{x})^{\frac{\alpha}{h}} \) with given \(\langle \hat{x}, \hat{x}^\alpha, \hat{x}^\beta, \cdots, \hat{x}^{\alpha n - 1} \rangle \) by submitting polynomial queries, where \(\alpha \in Z_q^* \) is a random number.

Definition 4 \(q \)-Modified Bilinear Strong Diffie-Hellman (q-MBSDH) Problem: Given a generator \(\hat{x} \) of \(G_1 \) and a bilinear map \(\Phi : G_1 \times G_1 \rightarrow G_2 \), the task of q-MBSDH is to compute \(\Phi(\hat{x}, \hat{x})^{\frac{\beta}{h^{\delta}}} \) with given \(\langle \hat{x}, \hat{x}^\alpha, \hat{x}^\beta, \cdots, \hat{x}^{\alpha n - 1} \rangle \) by submitting polynomial queries, where \(\alpha, \beta, \gamma, \delta \in Z_q^* \) are random numbers.

3 Formal Model of IBSC

This section is pertaining to the basic definition and security notion for our proposed IBSC scheme.

3.1 Generic model

An IBSC essentially is consisting of the four algorithms.

- Setup: The private key generator (PKG) executes the setup algorithm and produces the system’s public parameters \(\text{params} \) and a master key \(MK \) under security parameter \(1^k \). The PKG then publishes the \(\text{params} \) and stores \(MK \) in a secure location.
- Extract: In this phase PKG runs key generation algorithm using his master key \(MK \) and identity \(ID_A \in \{0, 1\}^* \) of user A, and creates private key \(SK_A \) corresponding to \(ID_A \)
3.2 Security Notions

Our proposed scheme satisfies two main IBSC security concepts.

1. Indistinguishable under adaptive chosen ciphertext attack (IND-CCA2).
2. Existential unforgeable against adaptive chosen message attack (EUF-CMA) \cite{8, 18, 22}.

Definition 5 An IBSC possesses IND-CCA2 property if in the game played between a challenger(C) and an adversary (A), an adversary (A) gains a non-negligible advantage.

Initial: C executes the setup phase under security parameter 1^k and obtains params and a master key MK. He sends params to A and keep MK secretly with himself.

Phase-1: A polynomial bounded queries are executed between A and C. In fact these queries are performed by A and may be made adaptively as follows.

1. Key-generation: A chooses ID_A and submits to C, then C computes $SK_A = \text{Extract}(ID_A)$ and sends SK_A to A.
2. Signcryption: A chooses ID_A and ID_B, as well as a message m. Then C computes $SK_A = \text{Extract}(ID_A)$ and $c = \text{Signcryption}(m, SK_A, ID_B)$ and sends c to A.
3. Unsigncryption: A chooses ID_A, then C selects a random bit $b \in \{0,1\}$ and executes $c^* = \text{Signcryption}(m^*, SK_A, ID_B)$, where $m^* = \begin{cases} m & \text{if } b = 1 \\ \bot & \text{if } b = 0 \end{cases}$. Now, as a challenge, C now sends c^* to A.

Challenge: Finally, after completing phase-1 (as determined by A), A chooses $m_0, m_1 \in \{0,1\}^k$ and two identities, ID_A' and ID_B', for which it wishes to receive a challenge, and sends them to C. In this case, A should not have asked SK_B in phase-1. C selects a random bit $b' \in \{0,1\}$ and executes $c'^* = \text{Signcryption}(m_{b'}, SK_A, ID_B')$. Now, as a challenge, C now sends c'^* to A.

Guess: A guesses a bit b' at the end of phase-2 and wins the game if $b' = b$.

Definition 6 In the EUF-CMA phase defined below, an IBSC is EUF-CMA if adversary A gains a non-negligible advantage.

EUF-CMA-phase: The game is played in the same way as in phase-1, C runs setup(1^k) and generates parameters, which he sends to A, who then executes queries in the same way as in phase-1. At last, A produces a triplet (c', ID_A', ID_B') as a forgery, where private key i.e. SK_A' never extracted during the process.
of attack. If Unsigncryption(c', ID_A, SK_B) returns a value other than the ⊥ symbol, A wins the game.

4 Proposed provable secure signcryption scheme

We have described the signcryption in the four phases namely, (1) setup, (2) key-extraction, (3) signcryption, and (4) unsigncryption. The setup is responsible to generate the essential parameter for the corresponding PKG. And private key of the corresponding user or receiver is generated by key extraction. The scheme possesses the architecture as

Sender (A)

PKG executes the setup algorithm under security parameter κ, and generates two groups $({\mathcal G}_1, {\mathcal G}_2)$ of order "q", where q is an arbitrary large prime number, $g \in {\mathcal G}_1$ is a generator of the group, $\Phi : {\mathcal G}_1 \times {\mathcal G}_1 \rightarrow {\mathcal G}_2$ is a bilinear map, E, D symmetric encryption, decryption and $H : \{0, 1\}^* \rightarrow Z_q^*$ is a collision resistant hash function.

Computes $\vartheta = H(m || ID_A || ID_B || \kappa)$.

Fig. 2: Registration phase executed via secure channel

(1) Calculates $c_1 = g^r$.
(2) Calculates $c_2 = (g_1 w_3)(g_2 w_4)^{ID_B}$.
(3) Calculates $\kappa = H(\varphi(g, g)^{\vartheta})$, where "\kappa" is fixed length key for AES or DES algorithms. (4) Calculates $c_3 = E_{\kappa}(m)$, where "E" stands for symmetric encryption algorithm.

Unsigncryption(c, params, ID_B, SK_B, ID_A):

The receiver “B” obtains the encrypted text $c = (c_1, c_2, c_3, \theta)$, and follows the decryption of “c” as follows:

(1) Calculate $c_3' = w_2 w_1^{ID_A}$.
(2) Calculate $\kappa = H(\varphi(c_3, \vartheta)\varphi(c_1, \vartheta)^{ID_A})^{-1}$.
(3) Calculate $D_{\kappa}(c_3') = m$, where "D" stands for symmetric decryption algorithm.
(4) Message is authentic if $\theta = ?H(m || ID_A || ID_B || \kappa)$ holds.

5 Security and correctness analysis

We have analyzed the signcryption under the MBDHI and MBSDH assumptions, where \(C \) and \(A \) play a game. \(C \) uses \(A \) as a subroutine to break down security and, under hard assumptions, solves an arbitrary instance of the given problem. However, theorem (4.1) ensures the correctness of the scheme, theorem (4.2) and theorem (4.3) ensures confidentiality and unforgeability of the scheme respectively.

Theorem 4.1. Proposed signcryption follows the mathematical correctness i.e. if sender “A” follows the given signcryption algorithm, the message is always recovered correctly by receiver “B” with the correct secret key.

Proof. The receiver “B” gets $SK_B = (w_1, w_2)$, where $w_1 = g^{s_r+ID_B}, w_2 = w_1^s$ and computes c_2^\prime as

$$w_2 w_1^{ID_A} = g^{s_r+ID_A}$$

(1)
Now, "B" uses the equation (1) and computes
\[d = \Phi(c_2, c_3^2) \Phi(c_3, g, d^{ID_A})^{-2} \]

\[\Phi(g, g)^{\tau(s+ID_A)} = \Phi(g, g)^{\tau(s+ID_A)} \]

Therefore, "B" uses the equation (2) and computes \(n' = d^{-1}.c_3 \) and gets the correct message. Now, "B" confirms the verification with the help of the equations (1) and (2) as \(\delta' = H(m' || ID_A || ID_B || d) \).

Theorem 4.2. Under the q-MBDHI assumption, if \(A \) can distinguish two ciphers in IND-CCA2 phase defined in definitions (5) and (6) with an arbitrarily however small advantage \(\epsilon \) via executing polynomial times private key extractions at most \(q_0 \) in time \(t \), where \(q_0 \) and \(q_s \) are signcryption unsigncryption queries. Then, one can design a subroutine or distinguisher \(B \) who can solve a problem instance in time \(t + O((6g_0 + 5q_1 + q_2)T_e + q_1 T_p) \), where \(T_e \) exponentiation time, \(T_p \) pairing time respectively.

Proof. If \(A \) breaks down the security of proposed scheme, then one can easily model a subroutine algorithm \(B \), who solves decision version of the q-MBDHI assumption by using subroutine \(A \). In general, \(B \) has to distinguish \(\Phi(g, g)^{\frac{x}{\tau}} \) from an arbitrary instance \(\Phi(g, g)^{\frac{x}{\tau}} \), where \(< g, g^x, g^{x^2}, \ldots, g^{x^q} > \) is given and \(x \leftarrow Z^*_q \) is a random number respectively. For simplicity, one can assume that \(I_i = g^{\epsilon_i} \), where \(i \in Z_q \). Now, a challenger in the game \(C \) chooses a random \(b \in \{0, 1\} \) and if \(b = 0 \), then sets \(Z' = \Phi(g, g)^{\frac{x}{\tau}} \), otherwise sets \(Z' = \Phi(g, g)^{\frac{x}{\tau}} \), where \(z \leftarrow Z^*_q \) is random and it sends \((Z', T, H) \) to \(B \).

Setup-phase: In setup, \(B \) chooses \(P(y) = \pi_i^{-1} (y + ID_i) \) and an arbitrary random \(\beta \leftarrow Z^*_q \) respectively. Now, \(B \) computes \(g' = g^{\beta} \) and \(g'_3 = \prod_{i=1}^{q-2} (I_i + 1)^\alpha_i = g^{p(x)} \), \(g'_2 = (g'_3)^{\beta} \) and \(g'_1 = (\prod_{i=1}^{q-2} (I_i + 2)^\alpha_i)^{\beta} = g^{2\beta p(x)} \), then sends \(\text{params} = (g', g'_1, g'_2, g'_3, E, D, \Phi, Z', H) \) to \(A \) and keeps master key \(MK = \beta \) secret.

Phase 1: \(A \) asks polynomial times any of the query "\(g^r \)" as discussed above.

Extraction Queries: If \(A \) submits a query on secret key related to an identity \(ID_i \), then \(B \) chooses polynomials of \((q - 4) \) degree as

\[F_{w_1, ID_i}(y) = \frac{P(y) + 1}{y(y + ID_i)} + \mu_0 = \sum_{j=0}^{q-2} \mu_j y^j \]

\[F_{w_2, ID_i}(y) = \frac{P(y)}{y(y + ID_i)} + \mu'_0 = \sum_{j=0}^{q-2} \mu'_j y^j \]

Signcryption Queries: If \(A \) submits a polynomial times queries for \((m_i, ID_A, ID_B) \), and then \(B \) generates corresponding to the secret key \(SK_B \) under extraction phase and returns \(c_i = \text{Signcryption}(m_i, SK_A, ID_A, ID_B) \) to \(A \).

Unsigncryption Queries: If \(A \) submits \((c_i, ID_A, ID_B) \), then \(B \) generates corresponding to the secret key \(SK_B \) by executing the extraction queries, and then returns \(\text{Unsigncryption}(c_i, ID_A, params, ID_B, SK_B) \) to \(A \).

Challenge: If \(A \) queries \((m_0, m_1, ID_A^*, ID_B^*) \), then \(B \) chooses an arbitrary \(b \in \{0, 1\} \) and generates signcryption \(c^* = (c_1^*, c_2^*, c_3^*, \delta^*) \) as:

1. \(B \) chooses an arbitrary \(r \leftarrow Z^*_q \) and computes \(c_1^* = g^r \).
2. \(B \) computes \(SK^*_A = (w_1, w_2) \) using extraction-phase.
3. \(B \) computes \(c_2^* = \prod_{i=0}^{q-2} (I_i + 1)^\alpha_i g^{y^{r(p(x))}} \), then \(\delta^* = H((m_0 || ID_A^* || ID_B^* || \Phi(g, g)^{\frac{x}{\tau}})) \)

Now, \(B \) sends a challenge \(c^* \) to \(A \), under the assumption \(k = x \beta, \delta'_x = g^{x^2} \), \(g'_2 = g^x, g'_3 = g^{x^2}, \kappa' = H(\Phi(g', g^{x^2})) \), \(w_1 = g^{y^{r(1+2)x^2}} \) and \(w_2 = g^{y^{r(1+2)x^2}} \), where all the distributions are
uniform for \(\mathcal{A} \).

Phase 2: \(A \) submits adaptive queries to \(B \) following the phase (1), except an extraction query on \(ID_B \) and Unsigncryptions(\(e^*, ID_A^*, ID_B^* \)).

Guess: At last, mathealA guesses a bit \(b' \in \{0,1\} \) and wins the game if \(b' = b \).

Probability: If \(\xi = 0 \), then \(A \) answers \(m_b \), where \(b \leftarrow \{0,1\} \) with advantage \(\epsilon \), it has \(Pr[\xi = 0 | b' = b] = \frac{1}{2} + \epsilon \) and if \(B \) guesses \(\xi' = 0 \) under \(b' = b \), so one gets \(Pr[\xi' = \xi | \xi = 0] = \frac{1}{2} + \epsilon \). Now, if \(\xi = 1 \), then \(A \) cannot recover correct "b" and estimated probability is given \(Pr[\xi = 1 | c \neq c'] = \frac{1}{4} \). If \(B \) answers correct \(\xi' = 1 \) when \(b' \neq b \), then \(Pr[\xi'] = \xi = 1 \). Therefore, \(B \) gains an advantage in decision version of \(q \)-MBDH game as

\[
e' = \frac{1}{2} Pr[\xi' = \xi = 1] + \frac{1}{2} Pr[\xi' = \xi = 0] = \frac{1}{4} (1 + \epsilon) + \frac{1}{4} (1 + \frac{1}{2} - \frac{1}{2} (\epsilon - \frac{1}{2})
\]

Time analysis: In extractions, signcryption and unsigncryptions phases, Oracle requires \(3q_e T_e, 5q_i T_e \) and \((5T_e + T_p)q_2 \) operations respectively. Therefore, \(B \) costs \(t' = t + O((6q_e + 5q_1 + 4q_2)T_e + q_1 T_p) \) to be successful in the game.

Theorem 4.3: Our signcryption is \((t, q_e, q_i, q_2, \epsilon) \) existential unforgeable under chosen message (EUF-CMA) with \((t', q_e, c') \) \(q \)-MBDH assumption, where \(c' = c + \epsilon \) and \(t' = t + O((2q_e + 5q_1 + 4q_2)T_e + q_1 T_p) \), where \(q_e \) extractions, \(q_i \) signcryptions and \(q_2 \) unsigncryptions queries in polynomial time "t", \(T_e \) exponentiation-time, \(T_p \) pairing-time respectively.

Proof: If \(\mathcal{A} \) can break the security of the proposed signcryption, then one can develop an algorithm \(B \) under \(q \)-MBDH problem using subroutine \(\mathcal{A} \). Let \(T_e = g, g^2, g^3, \ldots, g^q > \) for an arbitrary random \(x \leftarrow Z_q^* \) be a random instance sent by challenger \(C \). Now, \(B \) tries to estimate correct \(\rho = \Phi(g, g) \) for some arbitrary random \(k_1, k_2 \leftarrow Z_q^* \). Now, \(C \) publishes all parameters \((p, G_1, G_2, \Phi, T, H) \) same as in theorem (2), and \(I_1 = g^{k_1} \), where \(i \in Z_q \).

Setup: \(B \) uses the setup phase as in theorem (2), and publishes the values \(\text{params} = (g', g\prime, q_1^*, q_2^*, \Phi, T, H) \), where master key is secret \(MK = \beta \).

Now, \(\mathcal{A} \) will ask at most \(q_a \) queries, but one at a time to \(C \) respectively.

Extraction queries: \(B \) follows the theorem (2), and generates \(w_1 \) and \(w_2 \) as \(w_1 = \frac{w'_1}{w} = g^{r\xi_1} \) and \(w_2 = \frac{w'_2}{w} = g^{r\xi_2} \), then it will return \(Sk_i = (w_1, w_2) \) to \(\mathcal{A} \) relative to \(ID_i \) respectively.

Signcryptions queries: If \(A \) sends query \((m, ID_A^*, ID_B^*) \), then \(B \) chooses an arbitrary random \(r \leftarrow Z_q^* \) and calculates \(c_1 = (g')^r \). Now, \(B \) sets \(k = x\beta \), then it computes \(w_1 = \frac{w'_1}{w} = g^{r\xi_1} \) and \(w_2 = \frac{w'_2}{w} = g^{r\xi_2} \). Further, \(B \) computes \(c_2 = ((g'_1(w_1); (g'_2, w_1))^{ID_B} r \) and \(\eta_i = H(m || ID_A^* || ID_B^* || \Phi(g, g) T) \) and returns \(c' = (c_1, c_2, \eta_1, \eta_2) \) to \(\mathcal{A} \).

Unsigncryptions queries: If \(A \) submits a query related to \((c, ID_A^*, ID_B^*) \), then \(B \) calls extraction-phase to construct \(SK_B \), and then it generates \(Unsigncryptions(c', \text{params}, ID_A, ID_B, SK_B) \) sends to \(\mathcal{A} \).

Forgery: After submitting polynomial times queries, \(\mathcal{A} \) guesses \((m^*, c^*, ID_A^*, ID_B^*) \), where \((m^*, ID_A^*, ID_B^*) \) has never been queried to \(B \). However, \(c^* = (c_1^*, c_2^*, \eta_1, \eta_2^*) \) claims a correct signcryptions, so \(B \) confirms that \(c^* \) is correct generated by \(c^* = r\xi_1 + \xi_2 \). Now, \(B \) views \(c_2^* = (g'_1)^{r\xi_1} (g'_2)^{r\xi_2} \), where \(r, \xi_1, \xi_2 \leftarrow Z_q^* \) randomly chosen by \(A \). Now, \(B \) selects a polynomial as \(\psi(y) = g^t (y^2 + ID_B^* P(y) + \delta_0 + \sum_{i=0}^{\delta_0} y^i) \), where \(0 < \delta_0, \delta_1, \ldots, \delta_\delta \in Z_q \).

Now, \(B \) computes \(d = \prod_{i=0}^{t} (g^{x^{i+1}})^{\beta^{i}} \) \(g^{t\beta^0} g^{t\beta^0} = (g'_1)^{r\xi_1} (g'_2)^{r\xi_2} \). Further, \(B \) computes \(\tilde{\rho} = \Phi(c_2^*, g) \Phi(c_1^*, d^\beta) \)\(-1 = \Phi(d^\beta, g) \Phi((g')^{r\xi_1} (g_2)^{r\xi_2}) \Phi(c_1^*, d^\beta) \)\(= \Phi(d^\beta, g) \Phi((g')^{r\xi_1} (g_2)^{r\xi_2}) \Phi(c_1^*, d^\beta) \)\(= \Phi(g, g) \Phi((g')^{r\xi_1} (g_2)^{r\xi_2}) \Phi(c_1^*, d^\beta) \)\(= \Phi(g, g) \Phi((g')^{r\xi_1} (g_2)^{r\xi_2}) \Phi(c_1^*, d^\beta) \)\(\)\(\)\(. \)

Finally, \(B \) claims a \(q \)-MBSDH solution relative to the challenge \((c_1^*, T, H) \) as \(\rho = \tilde{\rho}^k = \Phi(g, g) \Phi((g')^{r\xi_1} (g_2)^{r\xi_2}) \). In order to output a correct signcryptext corresponding to the challenge \((m^*, c^*, ID_A^*, ID_B^*) \), \(B \) requires \(3q_e T_e, 5q_i T_e \) and \((4T_e + T_p)q_2 \) times queries during signcryptions and unsigncryptions respectively. Therefore, \(B \) takes time \(t' = t + O((2q_e + 4q_1 + 4q_2)T_e + q_1 T_p) \) to breach q-
MBSDH assumption, which is not possible, hence no such B exists.

6 Performance analysis

This scheme uses the public parameters as groups G_1 and G_2, a bilinear map Φ and a collision resistant hashing, where the scheme is being efficient due to pairing-free computation on sender-side during signcryption. The signcryptext c is 3-tuple with size in terms of group elements is $|c| = 2|G_1| + |AES| + 1|Hash|$ where hashing-160 bits, Z_q^{*}-1024 bits, E_{sym}-128 bits, message m-128 bits, G_2-1024 bits and G_1-160 bits, where total cost of [18, 29, 33, 34, 36, 37] is given in Figure 4.

Moreover, various cryptographic operations [34] such as, bilinear costs $t_p \approx 2.485$ ms, one exponentiation costs $t_e \approx 0.311$ ms in G_1, 0.058 ms in G_2 point-add arithmetic $t_a \approx 0.001$ ms, point-mul $t_m \approx 0.317$ ms for multiplications, inversion group costs $t_i \approx 0.009$ ms, symmetric-encryption costs $t_{sym} \approx 0.0817$ ms and hashing $t_h \approx 0.004$ ms in the proposed scheme, where cryptographic operations costs taken via experiment $Sorry - i5$- personal computer with processor i5-2310M CPU@2.10 GHzs and 2-GB-RAM on 14.04 Ubuntu.

Moreover, Table 1 shows a relevant comparison between the signcryption-phase, unsigncryption-phase in the proposed scheme. Moreover, various relevant schemes [18] takes $4t_e + t_p$ in signcryption and $6t_p + 1t_i$ costs in unsigncryption, [29] costs $4t_e$ in signcryption and costs in unsigncryption 6t_p + 1t_i, [35] costs in signcryption 6t_e + t_p and costs in unsigncryption 2t_e + 6t_p + 1t_i, [33] costs in signcryption and costs in unsigncryption 6t_e + t_p, [36] costs in signcryption 6t_e and costs in unsigncryption 4t_p+1t_i, [37] costs during signcryption 4t_e + t_p and costs during unsigncryption 2t_e + 2t_p + 2t_i + t_h, [34] costs during signcryption 3t_e + t_h and costs during unsigncryption 1t_e + 2t_p + 1t_i + t_h and proposed scheme costs 3t_e + t_h + t_{sym} in signcryption and 1t_e + 2t_p + 1t_i + t_h + t_{sym} in unsigncryption, where total cost is 4t_e + 2t_p + 1t_i + 2t_h + 2t_{sym} respectively.

Therefore, various discussed schemes [18] costs 7t_p + 1t_i + 4t_e \approx 18.648 ms, [29] costs 6t_p + 4t_e + 1t_i \approx 16.163 ms, [35] costs 7t_p + 8t_e + 1t_i \approx 19.892 ms, [33] costs 7t_p + 8t_e + t_i \approx 19.892 ms, [36]
costs $6t_e + 4t_p + 1t_i \approx 11.735$ ms. [37] scheme costs $6t_e + 2t_p + 2t_i + t_h \approx 6.858$ ms. [34] costs $4t_e + 2t_p + 1t_i + t_h \approx 6.127$ ms and proposed scheme costs $4t_e + 2t_p + 1t_i + 2t_h + 2t_{sym} \approx 6.289$ ms (see 4) respectively.

We used AVISPA, an excellent verification tool, to demonstrate the resistance against replay and man-in-the-middle attacks. The “On-the-fly Model-Checker (OFMC)”, “Constraint Logic-based Attack Searcher (CL-AtSe)”, “SAT-based Model-Checker (SATMC)”, and “Tree Automata based on Automated Approximations for the Study of Security Protocols (TA4SP)” are the four backends that make up AVISPA.

7 Conclusion

This article demonstrates an efficient and secure signcryption technique based on MBDHI and MBSDH hard problems. This scheme ensures that confidentiality is indistinguishable from the chosen cipher, and that authenticity is existentially unforgeable from the chosen message. This scheme attains efficiency on the user end as it is being paired free. In terms of computing and communication costs, the proposed scheme has been compared to other similar schemes. Therefore, it becomes very useful where both confidentiality and authenticity required in one step. In the future, it can be used in E-mails, e-transactions, and e-commerce respectively.

8 Declaration

The authors have no conflicts of interest/Competing interests. We have not received any funding for this article. Availability of data and material is supported on request only. We have not used any special code required for the study of article.

References

1. Yuliang Zheng. Digital signcryption or how to achieve cost (signature & encryption) << cost (signature)+ cost (encryption). In Annual international cryptology conference, pages 165–179. Springer, 1997.
2. Ron Steinfeld and Yuliang Zheng. A signcryption scheme based on integer factorization. In International Workshop on Information Security, pages 308–322. Springer, 2003.
3. John Malone-Lee and Wenbo Mao. Two birds one stone: signcryption using rsa. In Cryptographers Track at the Rsa Conference, pages 211–226. Springer, 2003.
4. Adi Shamir. Identity-based cryptosystems and signature schemes. In Workshop on the theory and application of cryptographic techniques, pages 47–53. Springer, 1984.
5. Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In Annual international cryptology conference, pages 213–229. Springer, 2001.
6. Jae Choon Cha and Jung Hee Cheon. An identity-based signature from gap diffie-hellman groups. Cryptology ePrint Archive, Report 2002/018, 2002. https://eprint.iacr.org/2002/018.
7. Florian Hess. Efficient identity based signature schemes based on pairings. In Selected Areas in Cryptography, pages 310–324. Springer Berlin Heidelberg, 2003.
8. Kenneth G. Paterson. Id-based signatures from pairings on elliptic curves. Cryptology ePrint Archive, Report 2002/004, 2002. https://eprint.iacr.org/2002/004.
9. N.P. Smart. Identity-based authenticated key agreement protocol based on weil pairing. Electronics Letters, 38(13):630, 2002.
10. John Malone-Lee. Identity-based signcryption. IACR Cryptology ePrint Archive, 2002:98, 2002.
11. Benoit Libert and Jean-Jacques Quisquater. A new identity based signcryption scheme from pairings. In Information Theory Workshop, 2003. Proceedings. 2003 IEEE, pages 155–158. IEEE, 2003.
12. Paulo S. L. M. Barreto, Benoît Libert, Noel McCullagh, and Jean-Jacques Quisquater. Efficient and provably-secure identity-based signatures and signcryption from bilinear maps. In Lecture Notes in Computer Science, pages 515–532. Springer Berlin Heidelberg, 2005.
13. Xavier Boyen. Multipurpose identity-based signcryption. In Advances in Cryptology - CRYPTO 2003, pages 383–399. Springer Berlin Heidelberg, 2003.
14. Liquan Chen and John Malone-Lee. Improved identity-based signcryption. In International Workshop on Public Key Cryptography, pages 362–379. Springer, 2005.
15. Benoit Libert and Jean-Jacques Quisquater. Efficient signcryption with key privacy from gap diffie-hellman groups. In Public Key Cryptography – PKC 2004, pages 187–200. Springer Berlin Heidelberg, 2004.
16. S S M Chow, S M Yiu, L C K Hui, and K P Chow. Efficient forward and provably secure id-based signcryption scheme with public verifiability and public ciphertext authenticity. In *Information Security and Cryptology-ICISC 2003*, pages 352–369. Springer-Verlag, 2004.

17. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In *Proceedings of the 1st ACM conference on Computer and communications security*, pages 62–73, 1993.

18. Yong Yu, Bo Yang, Ying Sun, and Sheng-lin Zhu. Identity based signcryption scheme without random oracles. *Computer Standards & Interfaces*, 31(1):56–62, 2009.

19. Mihir Bellare, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. *Journal of the ACM (JACM)*, 51(4):557–594, 2004.

20. Kenneth G. Paterson and Jacob C. N. Schuldt. Efficient identity-based signatures secure in the standard model. In *Information Security and Privacy*, pages 207–222. Springer Berlin Heidelberg, 2006.

21. Brent Waters. Efficient identity-based encryption without random oracles. In *Annual International Conference on the Theory and Applications of Cryptographic Techniques*, pages 114–127. Springer, 2005.

22. Xing Wang and Hai feng Qian. Attacks against two identity-based signcryption schemes. In *2010 Second International Conference on Networks Security, Wireless Communications and Trusted Computing*. IEEE, 2010.

23. Zhengping Jin, Qiaoyan Wen, and Hongzhen Du. An improved semantically-secure identity-based signcryption scheme in the standard model. *Computers & Electrical Engineering*, 36(3):545–552, 2010.

24. Fagen Li and Tsuyoshi Takagi. Secure identity-based signcryption in the standard model. *Mathematical and Computer Modelling*, 57(11-12):2685–2694, 2013.

25. Yang Ming and Yumin Wang. Cryptanalysis of an identity based signcryption scheme in the standard model. *IJ Network Security*, 18(1):165–171, 2016.

26. Yang Ming and Yumin Wang. Cryptanalysis of an identity based signcryption scheme in the standard model. *IJ Network Security*, 18(1):165–171, 2016.

27. S Sharmila Deva Selvi, S Sree Vivek, Dhinakaran Vinayagamurthy, and C Pandu Rangan. Id based signcryption scheme in standard model. In *International Conference on Provable Security*, pages 35–52. Springer, 2012.

28. Gaurav Agrawal, Jun Shao, Yang Xiang, Pingpang Zhu, and Rongxing Lu. Obtain confidentiality or/and authenticity in big data by id-based generalized signcryption. *Information Sciences*, 318:111–122, 2015.

29. S Sharmila Deva Selvi, S Sree Vivek, Dhinakaran Vinayagamurthy, and C Pandu Rangan. Id based signcryption scheme in standard model. In *International Conference on Provable Security*, pages 35–52. Springer, 2012.