Berry phase in a two-atom Jaynes–Cummings model with Kerr medium

Shen-Ping Bu, Guo-Feng Zhang, Jia Liu and Zi-Yu Chen

Department of Physics, School of Science, BeiHang University, Xueyuan Road, Beijing 100083, People’s Republic of China
E-mail: chenzy@buaa.edu.cn

Received 12 June 2008
Accepted for publication 9 October 2008
Published 19 November 2008
Online at stacks.iop.org/PhysScr/78/065008

Abstract
The Jaynes–Cummings model (JCM) is an very important model for describing interaction between quantized electromagnetic fields and atoms in cavity quantum electrodynamics (QED). This model is generalized in many different directions since it predicts many novel quantum effects that can be verified by modern physics experimental technologies. In this paper, the Berry phase and entropy of the ground state for arbitrary photon number n of a two-atom Jaynes–Cummings model with Kerr-like medium are investigated. It is found that there is some correspondence between their images, especially the existence of a curve in the $\Delta - \epsilon$ plane along which the energy, Berry phase and entropy all reach their special values. So it is available for detecting entanglement by applying Berry phase.

PACS numbers: 03.65.Vf, 03.65.Ta

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

Berry phase [1] or geometric phase, which does not have classical correspondence, has become a focus point in modern physics. It describes a phase factor gained by the wavefunction after the system undergoes an adiabatic and cyclic evolution, which reflects the topological properties [2, 3] of the state space of the system and has untrivial connections with the character of the system [4], especially with the entanglement [5, 6]. Recently, the Berry phase was introduced into quantum computation to construct a universal quantum logic gate that may be robust to certain kinds of errors [7–11].

Cavity quantum electrodynamics (QED) is an important solid-state system for implementing quantum computation, and is studied extensively. In the theory of cavity QED, the Jaynes–Cummings [12] model (JCM) is recognized as the simplest and most effective model on the interaction between radiation and matter, which can be solved exactly. As an important theoretical model, JCM has led to many nontrivial predictions such as collapse–revival phenomenon [13], squeezing [14], antibunching [15, 16], chaos [17], and trapping states [18–20], etc. Furthermore, despite the simplicity of JCM, it is of great significance because recent technologies enabled scientists to experimentally realize this rather idealized model [21, 22] and to verify some of the theoretical predictions.

Stimulated by the success of the JCM, many people extend this model to explore new quantum effects. One simple way of extending is considering multiple atom and multiple mode fields instead of single atom and single mode fields [23, 24]. Another way is to consider the interactions between field and medium and fields themselves, such as a cavity filled with Kerr medium. Introducing Kerr nonlinearity into the system Hamiltonian will cause various nonlinear effects, so it attracts much attention of scientists [25–29]. One of the many applications of these nonlinear effects is to produce entangled states [30], which is extensively applied in quantum information, especially in quantum communication.

In this paper, we try to investigate a two-atom JCM in Kerr medium. First, we calculate the eigenvalues and eigenstates of the system. Then we evaluate the Berry phase of the ground state for arbitrary photon number n in terms of the introduction of the phase shift operator, and for
comparing the phase with the entanglement we compute the von Neumann entropy as a measurement of entanglement. After these tedious computations, we compare the ground state energy, Berry phase and entropy, and find that there are tight connections between them.

2. Hamiltonian and ground state energy

The Hamiltonian of the system in the rotating wave approximation can be written as (assuming $\hbar = 1$)

$$H = \omega_0 a^\dagger a + \frac{\omega_0}{2} \sum_{j=1}^2 \sigma_j^\dagger + \varepsilon \sum_{j=1}^2 (a \sigma_j^\dagger + a^\dagger \sigma_j)$$

$$+ \chi (a^\dagger a a^\dagger a),$$

where a^\dagger and a denote the creation and annihilation operators of the single mode field, ω_0 is the transition frequency of the field, ω_0 is the atomic transition frequency, ε is the coupling constant between these two atoms and field, χ represents the coupling of the fields induced by the Kerr medium. $\sigma_j = |e_j\rangle\langle g_j| - |g_j\rangle\langle e_j|$, $\sigma_j^\dagger = |e_j\rangle\langle e_j|$ and $|g_j\rangle$, with $|e_j\rangle$ and $|g_j\rangle$ being the excited and ground states of the jth atom, $j = 1, 2$. By the way, there exists a conserved quantity K for the above Hamiltonian, which is

$$K = a^\dagger a + \frac{\sigma_1^\dagger + \sigma_2^\dagger}{2}.$$

The basis of the subspace $(K = n + 2)$ is

$$|n, e_1, e_2\rangle, \quad |n+1, e_1, e_2\rangle, \quad |n+1, g_1, e_2\rangle, \quad |n+2, g_1, g_2\rangle.$$

And in this basis, the Hamiltonian is written as (in an appropriate interaction picture)

$$H = \begin{pmatrix}
\Delta - \chi(2n + 2) & \varepsilon \sqrt{n+1} & \varepsilon \sqrt{n+1} & 0 \\
\varepsilon \sqrt{n+1} & -\chi & 0 & \varepsilon \sqrt{n+2} \\
-\chi & 0 & \varepsilon \sqrt{n+2} & \Delta - \chi(2n+2) \\
0 & \varepsilon \sqrt{n+2} & \varepsilon \sqrt{n+2} & \Delta - \chi(2n+2)
\end{pmatrix},$$

where $\Delta = \omega_0 - \omega_0$ is the detuning of the cavity field. The four eigenvalues λ_j ($j = 1, 2, 3, 4$) and corresponding eigenstates $|\psi_j\rangle$ have been calculated analytically. However, it is useless to present their complicated formulae here, but $|\psi_j\rangle$ can be written simply as follows:

$$|\psi_j\rangle = c_j^1 |n, e_1, e_2\rangle + c_j^2 |n+1, e_1, e_2\rangle + c_j^3 |n+1, g_1, e_2\rangle + c_j^4 |n+2, g_1, g_2\rangle.$$

When $n = 0$, the ground state energy, i.e. the lowest eigenvalue of the Hamiltonian for $n = 0$, as a function of detuning Δ and coupling constant ε, is shown in figure 1. We find in the figure that when ε approaches 0 there exist two discontinuity points in the derivative of the energy, and the image of the function is symmetric to the line $\Delta = 2$ to some extent. As we will see, these two points will be singularities of Berry phase, and the symmetry of the energy function will also be inherited by the Berry phase.

3. Berry phase and entropy

Obviously, the whole system is quantized; to study the geometric properties of this system we resort to the method of [31] to evaluate the Berry phase of the system by introducing a phase shift operator:

$$R(t) = e^{-i\psi(t)a^\dagger a},$$

where $\psi(t)$ is changed from 0 to 2π adiabatically. Then the time independent eigenequation of the system: $H|\psi_j\rangle = \lambda_j |\psi_j\rangle$ is changed into $H'|\psi_j\rangle = \lambda_j' |\psi_j\rangle$, with $H' = R(t)HR(t) - iR(t)dR(t)/dt$ and $|\psi_j\rangle = R(t)|\psi_j\rangle$. Hence, the Berry phase can be evaluated according to the standard method as follows:

$$\gamma_j = \int_0^{2\pi} d\phi \left(\psi_j \frac{d}{d\phi} \psi_j \right) = \int_0^{2\pi} d\phi \left(\psi_j \left| R(t) \frac{d}{dt} R(t)^\dagger \right| \psi_j \right).$$

For our model, the Berry phase is given as

$$\gamma_j = 2\pi |c_j^1|^2 + (n+1) \left(|c_j^2|^2 + |c_j^3|^2 + (n+2) |c_j^4|^2 \right).$$

(7)

Apparently, c_j^i ($i, j = 1, 2, 3, 4$) are functions of detuning Δ and coupling constant ε. So the Berry phase of the ground state can be controlled by Δ and ε. Figure 2 shows its image in the case $n = 0$.

Just as we have mentioned before, there are two singularities when ε approaches 0 for the Berry phase, and
the image is centrosymmetric to some extent against the intersection curve of the Berry phase image and 2π plane where Berry phase is identically equal to 2π, which is adjacent to the plane $\Delta = 2$. This result is similar to that of [32]. In the article [32], the authors calculate the Berry phase of the ground state of the Tavis–Cummings model, and it is also found that there is correspondence between the singularities of Berry phase and ground state energy as well as symmetry.

According to our computations, we present the figure of entropy as a function of detuning Δ and coupling constant ϵ when $n = 0$ in figure 3. Apparently, as the figures show, there are the same two points and symmetry corresponds to that of the Berry phase and energy.

To compare the Berry phase with the entanglement of the system, we consider the density operator of the system. Generally, when the system is in a pure state $|\psi\rangle$, its density operator $\rho_{\psi\psi} = |\psi\rangle \langle \psi|$.

According to our computations, we present the figure of entropy as a function of detuning Δ for each different value of ϵ and $\rho_{\psi\psi}$ is the reduced density operator of $\rho_{\psi\psi}$, and $\rho_{\psi\psi}$ represents the density operator of the system.

According to the image and our calculations, we find that for each different value of ϵ, there exists a maximum value for the energy of the ground state when Δ satisfies the following equation:

$$\Delta = \frac{1}{2} + \sqrt{\frac{1}{2}} \sqrt{17 - 12\sqrt{2} + (12 - 8\sqrt{2})\epsilon^2(\epsilon \neq 0)}. \quad (9)$$

To our surprise, at these points where Δ and ϵ satisfy the above equation, the Berry phase is 2π and the entropy of the system reaches its relative minimum value when ϵ is near 0. The equation determines a curve in the $\Delta-\epsilon$ plane and because this curve reflects the main character of the ground state, we call it the characteristic curve of the ground state. The existence of the characteristic curves proves the tight connections between energy, Berry phase and entanglement.

We also considered the case $n \neq 0$, and find that the images of ground state energy, Berry phase and entropy versus Δ and ϵ are similar to the case $n = 0$, such as the symmetry against a line ($\Delta = 2n + 2$) to some extent, and the correspondence of singularities. To illustrate this, we represent the images of ground state energy, Berry phase and entropy when $n = 40$ in parts (b) of figures 1–3 respectively. Obviously, the main difference between them is the movement of the characteristic curve in the $\Delta-\epsilon$ plane and its equation reads ($\epsilon \neq 0$):

$$\Delta = \frac{1}{2}(2n + 1) + A$$

$$-\frac{1}{2}\sqrt{1 - 4(2n + 3)A + 8A^2 + (12 + 8n - 8A)\epsilon^2},$$

$$A = \sqrt{n^2 + 3n + 2}. \quad (10)$$

Figure 4 shows the characteristic curves for different values of n. We think this result may be due to the fact that the Berry phase and entropy are all functions of the ground state energy.

4. Conclusion

In conclusion, we calculated the Berry phase and entropy of a two-atom Jaynes–Cummings model with Kerr medium, and found that there are correspondences between their singularities and symmetry. Especially, there exists a class of curves in the $\Delta-\epsilon$ plane, along which the Berry phase and entropy all reach their special values like 2π for Berry phase. These results reflect the tight relations between the Berry phase and entanglement of the system, and may be caused by the fact that they are all functions of energy. Some physicists are trying to measure entanglement using Berry phase, and our results may be useful to them.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant no 10604053) and the Beihang Lantian Project; GFZ also acknowledges the support of the National Natural Science Foundation of China (grant no 10874013).

References

[1] Berry M V 1984 Proc. R. Soc. Lond. A 392 45
[2] Simon B 1983 Phys. Rev. Lett. 51 2167
[3] Samuel J and Bharti R 1988 Phys. Rev. Lett. 60 2339
[4] Wang Z S, Wu C F, Feng X L, Kwek L C, Lai C H, Oh C H and Vedral V 2008 Phys. Lett. A 372 775
[5] Basu B 2006 Europhys. Lett. 73 833
[6] Cui H T, Wang L C and Yi X X 2007 Eur. J. Phys. D 41 385
[7] Ekert A, Ericsson M, Hayden P, Inamori H, Jones J A, Oi D L and Vedral V 2000 J. Mod. Opt. 47 2501
[8] Wang X B and Keiji M 2001 Phys. Rev. Lett. 87 097901
[9] Zhu S L and Wang Z D 2003 Phys. Rev. A 91 187902
[10] Zhang X D, Zhu S L, Hu L and Wang Z D 2005 Phys. Rev. A 71 014302
[11] Wang Z S, Wu C F, Feng X L, Kwek L C, Lai C H, Oh C H and Vedral V 2007 Phys. Rev. A 76 044303
[12] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[13] Eberly J H, Narozhny N B and Sanchez-Mondragan J J 1980 Phys. Rev. Lett. 44 1328
[14] Kuklinski J R and Madajczyk J L 1988 Phys. Rev. A 37 3175
[15] Short R G and Mandel L 1983 Phys. Rev. Lett. 51 384
[16] Diedrich F and Walther H 1987 Phys. Rev. Lett. 58 203
[17] Milonni P W, Ackerhalt J R and Galbraith H W 1983 Phys. Rev. Lett. 50 966
[18] Slosser J J, Meystre P and Braunstein S L 1989 Phys. Rev. Lett. 63 934
[19] Gea-Banacloche J 1990 Phys. Rev. Lett. 65 3385
[20] Phoenix S J D and Knight P L 1991 Phys. Rev. Lett. 66 2833
[21] Benson O, Raitel G and Walther H 1994 Phys. Rev. Lett. 72 3506
[22] Bruun M, Schmidt-Kaler F, Maali A, Dreyer J, Hagley E, Raimond J M and Haroche S 1996 Phys. Rev. Lett. 76 1800
[23] Tavis M and Cummings F W 1968 Phys. Rev. 170 387
[24] Abdel-Hafez A M, Obada A S F and Ahmad M 1987 J. Phys. A: Math. Gen. 20 L359
[25] Joshi A and Lawande S V 1991 Phys. Rev. A 46 5906
[26] Dung H T and Shumovsky A S 1991 Phys. Lett. A 160 437
[27] Gruver J L, Aliaga J, Cereira Hilda A and Proto A N 1994 Phys. Lett. A 190 363
[28] Berlin G and Aliaga J 2001 J. Mod. Opt. 48 1819
[29] Zait R A 2005 Opt. Commun. 247 367
[30] Vitali D, Fortunato M and Tombesi P 2000 Phys. Rev. Lett. 85 445
[31] Carollo A, Fuentes-Guridi I, Santos M F and Vedral V 2004 Phys. Rev. Lett. 92 020402
[32] He M M, Chen G and Liang J Q 2007 Eur. J. Phys. D 44 581