Observations of Galactic star-forming regions with the Cosmic Background Imager at 31 GHz

C. Demetrioullas, C. Dickinson, D. Stamadianos, S.E. Harper, K. Cleary, Michael E. Jones, T.J. Pearson, A.C.S. Readhead, Angela C. Taylor.

1 Jodrell Bank Centre for Astrophysics, Alan Turing building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
2 Cahill Centre for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA.
3 School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, AL 10 9AB, U.K.
4 Sub-department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, U.K.

Accepted xxxx xxxxxxxxx xx. Received xxxx xxxxxxxxx xx; in original form xxxx xxxxxxxxx xx

ABSTRACT
Studies of the diffuse Galactic radio emission are interesting both for better understanding the physical conditions in our Galaxy and for minimising the contamination in cosmological measurements. Motivated by this we present Cosmic Background Imager 31 GHz observations of the Galactic regions NGC 6357, NGC 6334, W51 and W40 at ~4.5 resolution and conduct an investigation of the spectral emission process in the regions at 4.5 and 1° resolution. We find that most of the emission in the regions is due to optically thin free-free. For 2 sub-regions of NGC 6334 and for a sub-region of W51 though, at 4.5 resolution and at 31 GHz we detect less emission than expected from extrapolation of radio data at lower frequencies assuming a spectral index of ~0.12 for optically thin free-free emission, at 3.3σ, 3.7σ and 6.5σ respectively. We also detect excess emission in a sub-region of NGC 6334 at 6.4σ, after ruling out any possible contribution from Ultra Compact HII (UCHII) regions. At 1° resolution we detect a spinning dust component in the Spectral Energy Distribution (SED) of W40 that accounts for 18 ± 7 % of the total flux density in the region at the peak frequency of 37 GHz. Comparison with 100 μm data indicate an average dust emissivity for the sub-regions of 0.5 ± 4.4 μK(MJy sr^-1)^-1. Finally we translate the excess emission in the regions to an Anomalous Microwave Emission (AME) emissivity relative to the optical depth at 250 μm. We find that this form of emissivity is independent of the AME significance and has a value somewhere in the order of 10^4 Jy.

Key words: radiation mechanisms: thermal - ISM: clouds - HII regions - supernova remnants - radio continuum

1 INTRODUCTION
The Galactic diffuse emission at radio frequencies provides us with a wealth of information about the formation, structure and evolution of our Galaxy (Planck Collaboration et al. 2011a,b). Studies of the Milky Way’s radio emission among others enabled us to learn about the nurseries and graveyards of stars (Walsh et al. 1998; Green 2009; Becker et al. 2010; Peters et al. 2010) and the magnetic field of the Galaxy (Mathewson 1968; Spoelstra 1972; Vinyaikin 1995). Deciphering the diffuse emission mechanisms of the Galaxy at radio frequencies, also enables us to better probe the CMB fluctuations (Jaffe et al. 2004; Eriksen et al. 2006, 2008; Bennett et al. 2013; Planck Collaboration et al. 2014a), thus providing more accurate cosmological information. Knowledge of the spatial morphology and frequency dependence is crucial in an accurate characterization of the foreground emission. Firmly understood components of the diffuse foreground emission include synchrotron, free-free and thermal (vibrational) dust emission. It has been established that free-free is the dominant emission mechanism near the Galactic plane at frequencies between ~10 and 100 GHz (Planck Collaboration et al. 2014c).

In recent years an additional Galactic component has been identified. Anomalous Microwave Emission (AME) has been detected in numerous experiments over the frequency range of ~10-60 GHz, peaking at ~30 GHz in flux density (Kogut et al. 1996; Leitch et al. 1997; de Oliveira-Costa et al. 1997; Lagache 2003; Casassus et al. 2004; Finkbeiner 2004; Davies et al. 2006; Dickinson et al. 2007, 2009; Todorovic et al. 2010; Gold et al. 2011; Bonaldi & Ricciardi 2012; Tibbs et al. 2013). This new component also shows a strong correlation with far infrared emission, thus inferring a relation to dust grains (Leitch et al. 1997; Finkbeiner et al. 2004; Planck Collaboration et al. 2011b).

A number of possible emission mechanisms were proposed over the years to interpret this excess emission in the radio. These include hot (T_e > 10^6 K) free-free (Leitch et al. 1997), flat syn-
chrotron (Bennett et al. 2003), electric dipole radiation from small
grains rotating very rapidly (hereafter referred to as spinning dust
emission, Draine & Lazarian 1998) and magnetic dipole radiation
from thermal fluctuations in the magnetization of the interstellar
grains (Draine & Lazarian 1999). However current observations
favour the spinning dust model (Watson et al. 2005; Casassus et al.
2008; AMI collaboration et al. 2010; Planck Collaboration et al.
2011b).

AME has been observed in a number of different environmental
conditions throughout the Galaxy. It has been observed in bright
HII regions (Dickinson et al. 2007, 2009), molecular clouds (Wat-
son et al. 2005; Casassus et al. 2008; Tibbs et al. 2010), plane-
tary nebulae (Casassus et al. 2004, 2007), dark clouds (Finkbeiner
et al. 2002; Casassus et al. 2006; Scaife et al. 2008; Dickinson et al.
2010; Harper et al. 2015), supernova remnants (Scaife et al. 2007),
and photodissociation regions (Casassus et al. 2008; Tibbs et al.
2012a). On the other hand only upper limits have been placed for
AME in compact HII regions (Scaife et al. 2008).

This paper presents a search for excess emission in a number
of bright HII regions and Supernova Remnants (SNRs) near the
Galactic plane, at 31 GHz and ~ 4.5 resolution, using the Cosmic
Background Imager (CBI). Most of the regions that this paper fo-
cusses on were not surveyed in the past to look for excess emission
at these frequencies, while the one of them that has (W40) showed
tentative evidence of spinning dust (Finkbeiner 2004). Additionally
the radio emission in all regions of interest shows a strong corre-
lation with the emission in the far infrared (FIR). By using data
from the literature convolved to the CBI resolution we estimate the
free-free contribution for the sources at 31 GHz and by comparing
the results with data taken by the CBI we measure or place upper
limits on excess emission in some regions while detect an emission
deficit in others. We then use ancillary data to form the SED of the
regions at 1\,resolution. Section 2 describes the CBI and ancillary
data that were used, while Section 3 presents the results for each
region. Finally conclusions and discussion are given in Section 4.

2 DATA

2.1 Cosmic Background Imager

The Cosmic Background Imager (CBI) was an interferometer array,
located in Atacama desert in northern Chile at an altitude of 5080 m
(Padin et al. 2002; Taylor et al. 2011). The CBI operated from 1999
to 2008 (CBI1 from 1999 to 2006 and CBI2 from 2006 to 2008).
The CBI1 consisted of 13, 0.9 m antennas that were mounted on
a 6 m tracking platform. The platform could rotate about the opti-
cal axis providing improved u-v coverage. The antennas could take
measurements either of right (R) or left (L) circular polarisation,
allowing observations in total intensity (RR or LL) or polarisation
(RL or LR). Each antenna had a receiver operating between 26 and
36 GHz. This frequency bandwidth was divided into 10 channels
of 1 GHz (Padin et al. 2002). The platform supported baselines be-
tween 1 and 5.5 m thus providing a maximum resolution of $\sim 6'$,
and a primary beam full width at half maximum (FWHM) of 45.2'$
at the central frequency of 31 GHz. The nominal system tempera-
ture of the telescope was 30 K. In 2006 the CBI1 was upgraded to
CBI2 by replacing the 0.9 m antennas with 1.4 m antennas. This
upgrade increased the effective collecting area and allowed obser-
vations at higher resolution (~ 4.5) without having to compromise
surface brightness sensitivity. The measured CBI2 RMS thermal
noise in each frequency channel was at 3.9 Jy$^{1/2}$ (Pearson et al.
2005; Taylor et al. 2011).

2.2 Observations

This paper presents the results for the observations at 31 GHz of
the two regions designated as Area-I and Area-II, and the cloud
complex W40 (see Table 1). These short time observations were
designed to fit between the longer CMB and SZ experiments con-
ducted by the CBI (refs in preparation).

The two (Area) regions were chosen as they have very bright
radio emission that is aligned with the FIR emission, and have not
been surveyed in the past at frequencies where AME dominates
the spectrum (~ 30 GHz). The two regions combined cover an area
of ~ 30 deg2. Area-I, consists of 70 individual pointings. The area
spans between 349$^\circ$ and 353$^\circ$ in Galactic longitude (l) and 0$^\circ$
up to +3$^\circ$ in Galactic latitude (b). Area-I was observed for 10 days be-
tween September and October 2007, with a total integration time of
~ 13.5 hours. Area-II consists of 40 individual pointings. It extends
between 47$^\circ$ and 51$^\circ$ in l and -02° to 00$^\circ$ in b. Area-
II data were collected in a total of 31 days spread across February
and April 2008. The total integration time was ~ 26.5 hours. The
mapping strategy for both regions was to observe a number of ad-

djacent fields (10 for Area-I and 8 for Area-II) for 0.5$^\circ$ in diameter,
over identical ranges in azimuth and elevation, for short time periods
(~ 2 minutes per field). Each set of adjacent pointings had one or
two associated primary flux calibration observations. This strategy
was selected to remove the ground spillover that was a problem for
the telescope on the shortest baselines.

The W40 complex has been chosen as previous studies of the
region showed indications of anomalous emission; Finkbeiner et al.
(2004) reported an emission excess at ~ 33 GHz as shown in the
spectrum of W40 in fig. 8 of Finkbeiner et al. (2004) where it is
demonstrated that the spinning dust model fits the data quite well. W40
is a relatively compact source ($\sim 8'$) centred at $(l,b) = (28^5,3^5)$. The
W40 data comprise a total of seven hours of lead/trail scans of the
region, bracketed by observations of the primary calibrators. The
data were collected on six days between June 2006 and May 2008
(Stamadianos 2010).

2.3 Data reduction and Calibration

The reduction and calibration of the data was performed using
the software package CIBICAL (developed by T.J. Pearson; see
Readhead et al. 2004a,b and references therein). The editing and flag-
ing included removing receivers that were malfunctioning, base-
lines and channels that were contaminated by non-astronomical
signal, and data for which the amplitude and phase of the cali-
brating sources was not constant in time. Absolute flux calibra-
tions were performed using Jupiter (mainly), Saturn or Tau A tied
to the temperature of Jupiter at 33 GHz. We assume a temperature
$T_{33GHz} = 146.6 \pm 0.8$ K and a spectral index $\alpha = -0.1$ (Taylor et al.
2011). The accuracy of the calibrations was limited by telescope
phase and amplitude errors and u-v coverage. Comparison of vari-
ous calibrators over time to estimate the accuracy of the relative
flux calibrations indicated that the flux measurements for Area-I,
Area-II and W40 were accurate to $\sim 6.5\%$, $\sim 10\%$ and $\sim 5\%$
respectively.

The dominant source of systematic contamination for the CBI
at the level of ~ 0.5 Jy, especially for the shortest baselines was
likely due to radiation from the ground (‘ground spillover’, Dick-
inson et al. 2007). For the Area-I and W40 data-sets the ground
spillover was removed by performing lead/trail field observations in
a differenced mode. Performing the same technique on the Area-II
data-set led to a reduction in the signal-to-noise ratio and dynamic
range of the lead fields. Therefore we decided to use the data without performing the ground spillover removal. This is not a significant factor as we have found that for sources at the level of ≥10 Jy (applies for all Area-II sources) the ground signal is negligible.

2.4 Imaging the Data

The reduced and calibrated CBI-2 data were imaged using the software DIFMAP (Shepherd et al. 1994). A uniform weighting was selected to provide optimal resolution maps since it was found that our data, due to deconvolution residuals and calibration/pointing errors, were limited by dynamic range at a level of 100:1 (the thermal noise in all maps was ∼1000:1). Finally the images were primary beam corrected up to the telescope’s FWHM. The CBI CLEANed maps of Area-I, Area-II and W40 are shown in Fig. 1.

The peak 31 GHz flux for the two bright sources of emission in Area-I map are 39.2 Jy/beam and 30.2 Jy/beam. The maximum flux density in the Area-II map is 64.9 Jy/beam, while the peak flux value for W40 is 9.2 Jy/beam. The synthesised beam for the Area-I and Area-II and W40 CBI maps at 31 GHz are 5.4′ × 4.2′, 5.9′ × 4.8′ and 4.3′ × 3.8′, respectively. The measured noise away from any bright sources was found to be ∼0.05 Jy/beam, for all three data-sets.

Table 1. Summary of the CBI observations.

Region	l	b	Total Integration time (hr)	Notes
Area-I	349° − 354°	0° − 3°	13.5	Contains the star forming regions NGC 6334 and NGC 6357.
Area-II	48° − 52°	−3° − 1°	26.5	Contains the radio source W51, which in turn is composed of two star-forming regions and an SNR.
W40	28′8	3:5	6.7	Single complex located near the Galactic plane. At radio frequencies W40 is ∼8 arcmin across.

maps of NGC 6334 and NGC 6357 to data at microwave/IR frequencies. The main discrepancy between the CBI and the lower frequency maps is the diffuse emission east of NGC 6334 detected by the CBI designated as NGC 6334E (see Fig. 2). The diffuse emission at 31 GHz is higher, and has a peak flux at ∼1.4 Jy/beam, compared to the emission detected by Parkes which has a peak only at ∼0.8 Jy/beam. Further investigation of the NGC 6334E region showed that the emission detected at 31 GHz exhibits a strong correlation with the emission in FIR frequencies (for more details see Section 3.1).

We also detect a strong correlation between the CBI map and the Effelsberg map at ∼2.7 GHz of W51 (see Fig. 1). There is some low level diffuse emission, both to the east and north of the cloud, that is visible only to the CBI, due to the different sensitivity of the telescopes. When we compared the W51 map at 31 GHz to microwave/IR maps we notice that in all cases the bright diffuse emission centred around (l,b) = (49°1′,0°7′), hereafter W51C (see Fig. 2), disappears. The rest of the emission seen both by the CBI and Effelsberg is traced well by the higher frequency maps. The low level diffuse emission traced only by the CBI is not present at FIR frequencies (∼3000 GHz).

Finally we compared the CBI map of W40 against the 353, 545 and 857 GHz Planck maps and the Parkes 5 GHz map (see Fig. 1). We confirm that most of the emission in the area is confined within the ∼7′ region also detected by the CBI. In Planck maps though the emission is originating from 2 compact like sources around the peak position at 31 GHz. In addition to that in the Planck HFI maps we detect diffuse emission, probably originating from cold dust (T ≲ 15K), in 2 shell-like regions, surrounding the central W40 area extending up to ∼1′ away from the centre. The compact sources and shell-like diffuse emission detected in the HFI Planck maps does not seem to be present in the IRAS maps.

2.5 Ancillary Data

To study the morphology of the two regions and to understand the emission mechanisms that are in operation, the CBI maps were compared with maps at different frequencies. The ancillary data used for this survey were acquired through the NASA’s Skyview and the Max Planck Institute for Radioastronomy survey sampler web services. Table 2 lists the frequencies, angular resolution, units and references for the data.

Archival maps of the two NGC regions at 5 GHz (after convolving them to the appropriate resolution) are shown as contours in Fig. 1. The contours seem to trace the emission of the CBI maps very well. The offset of the brightest sources on the two maps is ∼60 arcsec and consistent with pointing errors. The diffuse emission is also traced by the contours. This confirms that the data reduction and alignment procedure that was followed performed as expected. It also shows that most of the emission that has been detected by the CBI strongly correlates with the emission at lower frequencies.

A similar picture was observed when we compared the CBI maps with the archival NGC 6334 and NGC 6357 data. The main discrepancy between the CBI and the lower frequency maps is the diffuse emission east of NGC 6334 detected by the CBI designated as NGC 6334E (see Fig. 2). The diffuse emission at 31 GHz is higher, and has a peak flux at ∼1.4 Jy/beam, compared to the emission detected by Parkes which has a peak only at ∼0.8 Jy/beam. Further investigation of the NGC 6334E region showed that the emission detected at 31 GHz exhibits a strong correlation with the emission in FIR frequencies (for more details see Section 3.1).

We also detect a strong correlation between the CBI map and the Effelsberg map at ∼2.7 GHz of W51 (see Fig. 1). There is some low level diffuse emission, both to the east and north of the cloud, that is visible only to the CBI, due to the different sensitivity of the telescopes. When we compared the W51 map at 31 GHz to microwave/IR maps we notice that in all cases the bright diffuse emission centred around (l,b) = (49°1′,0°7′), hereafter W51C (see Fig. 2), disappears. The rest of the emission seen both by the CBI and Effelsberg is traced well by the higher frequency maps. The low level diffuse emission traced only by the CBI is not present at FIR frequencies (∼3000 GHz).

Finally we compared the CBI map of W40 against the 353, 545 and 857 GHz Planck maps and the Parkes 5 GHz map (see Fig. 1). We confirm that most of the emission in the area is confined within the ∼7′ region also detected by the CBI. In Planck maps though the emission is originating from 2 compact like sources around the peak position at 31 GHz. In addition to that in the Planck HFI maps we detect diffuse emission, probably originating from cold dust (T ≲ 15K), in 2 shell-like regions, surrounding the central W40 area extending up to ∼1′ away from the centre. The compact sources and shell-like diffuse emission detected in the HFI Planck maps does not seem to be present in the IRAS maps.

1 Skyview: http://skyview.gsfc.nasa.gov/cgi-bin/query.pl, McGlynn et al. (1998).
2 MPIfIR sampler: http://www3.mpifr-bonn.mpg.de/survey.html
Figure 1. In colour-scale are the CBI maps at 31 GHz of Area-I (left), Area-II (middle) and W40 (right). In the first case over plotted in contours is the simulated-Parkes 5 GHz map of the region. In the other two cases in contours are the simulated-Effelsberg 2.7 GHz maps of each region. Both the colour map and the contours are scaled to highlight the fainter sources. The colourbar on the right and top of each map show the brightness levels in the CBI and in the archival maps respectively. The maps are in units of Jy/beam.

Frequency (GHz)	Telescope/Survey	Angular resolution (arcmin)	Units	Reference for the data
0.408	Haslam	~ 51	mK(R-J)	Haslam et al. (1982)
1.4	NVSS	~ 0.75	Jy/Beam	Condon et al. (1998)
2.72	Effelsberg	~ 4.3	mK(R-J)	Furst et al. (1990)
4.85	GB6	~ 3.5	Jy/Beam	Condon et al. (1991, 1993, 1994)
5.0	Parkes	~ 4.1	mK(R-J)	Haynes et al. (1978)
31	CBI	~ 4.5	Jy/beam	This work
23	WMAP	55.8	mK(CMB)	Bennett et al. (2013)
33	WMAP	40.8	mK(CMB)	Bennett et al. (2013)
41	WMAP	31.8	mK(CMB)	Bennett et al. (2013)
61	WMAP	21	mK(CMB)	Bennett et al. (2013)
94	WMAP	13.8	mK(CMB)	Bennett et al. (2013)
28.4	Planck LFI	33	mK(CMB)	Planck Collaboration et al. (2014a)
44.1	Planck LFI	24	mK(CMB)	Planck Collaboration et al. (2014a)
70.4	Planck LFI	14	mK(CMB)	Planck Collaboration et al. (2014a)
100	Planck HFI	9.5	mK(CMB)	Planck Collaboration et al. (2014a)
143	Planck HFI	7.1	mK(CMB)	Planck Collaboration et al. (2014a)
217	Planck HFI	5	mK(CMB)	Planck Collaboration et al. (2014a)
353	Planck HFI	5	mK(CMB)	Planck Collaboration et al. (2014a)
545	Planck HFI	5	MJy/Sr	Planck Collaboration et al. (2014a)
857	Planck HFI	5	MJy/Sr	Planck Collaboration et al. (2014a)
2997 (100 μm)	IRAS	~ 2	MJy/Sr	Miville-Descênes & Lagache (2005)
4995 (60 μm)	IRAS	~ 2	MJy/Sr	Miville-Descênes & Lagache (2005)
12875 (25 μm)	IRAS	~ 2	MJy/Sr	Miville-Descênes & Lagache (2005)
25750 (12 μm)	IRAS	~ 2	MJy/Sr	Miville-Descênes & Lagache (2005)

Table 2. Summary of the data used in the study.

deconvolved maps of a given region of the sky we conclude that the process we used is accurate to ≤1%. Finally the deconvolved ancillary maps were converted to CBI visibilities using the MOCKCBI software package (for references see Section 2.3).

All Area-I, Area-II and W40 measurements were made using aperture photometry. The size and position of each aperture was carefully chosen so that the contamination from nearby sources would be minimised. Additionally bright sources were masked out. Finally the sky contribution was removed. This was done by calculating the median flux density/pixel value within an annulus of an area and inner radius matching the area and radius of the aperture. That value was multiplied by the number of pixels contained in the aperture and was subtracted from the measurement.

The non-constant spectral distribution of our sources affects the wavelength response of the telescopes’ systems. The effect is significant (up to ~10%) mainly in the IRAS, WMAP and Planck data due to the large bandwidths of their frequency bands. The method of adjusting the measured flux density to account for that is called colour correcting (CC). To do that we use the publicly available Planck code and the IRAS and WMAP CC tables.

Using standard propagation of errors we calculate the level of confidence in our measurements. The sources of uncertainties we have taken into account were the CBI calibration errors (see Section 2.3), deconvolution accuracy (~1%), uncertainties on the predicted flux at 31 GHz (~5%) caused by our confidence level on the assumed spectral index, contamination from the CMB fluctuations (found to be negligible for most cases) and nominal errors quoted in the archival data (~10%). Due to the aforementioned sources of uncertainty, on all flux density measurements of NGC 6357, NGC 6334, W51 and W40 where CBI data were used we assign a minimum uncertainty of 4.5, 7, 10 and 5 per cent respectively. All measurements containing Parkes, Effelsberg, Haslam and GB6 data...
extrapolated to 31 GHz were considered to be accurate to 11.5\%.
Finally to all flux density measurements containing IRAS, WMAP
and Planck data we assign a conservative minimum 3 per cent un-
certainty. Finally the overall uncertainty includes a varying ambi-
guity in background noise measurements, based on an estimate of
the dispersion of the distribution in the background annulus, which
was added in quadrature to the uncertainties.

To estimate a possible excess emission at ~ 31 GHz we extrap-
olated the flux from the lower frequency maps using a power-law
fit of the form

$$S = S_{\nu_0} (\nu/31)^{\alpha}, \quad (1)$$

assuming a constant free-free spectral index $\alpha = -0.12$. This
should be a good approximation since we expect that the observed
radiation at frequencies $\sim 1-60$ GHz in the absence of Ultra Com-
 pact HII (UCHII) regions and AME, to originate from optically thin
free-free emission. This type of emission in a typical HII region of
our Galaxy has a spectral index $\alpha \approx -0.12$ and should not vary
by more than ± 0.02 for a temperature range $\Delta T = 2000$ K (Draine
2011).

An independent investigation for the source of emission for
the regions was conducted using the WMAP, Planck, IRAS, GB6,
Haslam and Effelsberg maps convolved to ~ 1 resolution.

After measuring the flux S of each source, we fit a model of
free-free, synchrotron (where appropriate), thermal dust and spinn-
ing dust (where appropriate) components:

$$S = S_{\alpha} + S_{\text{syn}} + S_{\text{dust}} + S_{\text{sd}}. \quad (2)$$

The free-free flux density assuming an electron temperature
$T_e = 8000$ K was fitted as a power-law

$$S_{\alpha} = A_{\alpha} \nu^{\alpha}, \quad (3)$$

where α is an approximation of the free-free spectral index cal-
culated in Draine (2011). This expression is in very good agree-
ment with the theoretical values at frequencies between 0.5 and
10 000 GHz taking into account the steepening of the free-free
spectral index at frequencies $\nu \geq 100$ GHz.

The synchrotron component used only for W51 was fitted as a
power-law with amplitude A_{syn}, and a spectral index α_{syn} calcu-
lated using the higher resolution CBI and Effelsberg maps

$$S_{\text{syn}} = A_{\text{syn}} \nu^{\alpha_{\text{syn}}}. \quad (4)$$

The thermal dust was fitted as a modified blackbody
density τ_{250} is the optical depth at 250 μm, τ_d is the dust tem-
perature, and β_d is the dust emissivity index.

Finally the spinning dust flux density S_{sd} was fitted as a re-
versed lognormal parabola (Eq.10 in Bonaldi et al. 2007 trans-
formed to flux density units)

$$S_{\text{sd}} = A_{\text{sd}} \nu^{2 \log (\nu/\nu_0) + F_2 \log \nu}, \quad (6)$$

where F_1 and F_2 are

$$F_1 = \frac{m_0}{2 \log (\nu_{\text{max}}/60 \text{GHz})}, \quad (7)$$

$$F_2 = \frac{-M_0 \log (\nu_{\text{max}})}{\log (\nu_{\text{max}}/60 \text{GHz})}, \quad (8)$$

m_0 is the angular coefficient at 60 GHz and ν_{max} is the spin-
ing dust peak frequency.

3 RESULTS

The resolution of the CBI, Parkes and Effelsberg telescopes (~ 4.5)
enabled us to discern the internal structure of all three bright
sources of emission in Area-I and Area-II. This allowed us to con-
duct a separate investigation for each of their components. The di-
vision for the three sources is illustrated in Fig. 2: NGC 6334 was
divided into 6 sub-regions, while both NGC 6357 and W51 were
divided into 4 smaller fields. The names of each sub-region are ar-
bitrary. The dashed line denotes that two measurements were taken
for that region, one by having masked out the rest of the sub-regions
and thus calculating the diffuse emission in the cloud (thereafter
CLEAN), and one without doing that.

None of the sources’ components were distinguishable when we
convolved the maps at 1” resolution. W40 appears to be a compa-
ract source even in our higher resolution maps (see Fig. 1); It was
therefore treated as a single source throughout the study.

3.1 Analysis at 4.5 resolution

NGC 6357

The main formations visible in the part of the sky covered by Area-
I are NGC 6357 and NGC 6334 (Fig. 1). Russell et al. (2010) con-
cludes that the extinction and the morphology of the 1.2 mm cold
dust emission indicates that both the NGC 6357 and NGC 6334 for-
mannations are connected by a filamentary structure, therefore belong
to a single complex. Neckel (1978) and Russell et al. (2012) con-
clude that both regions are located in the inner edge of the Sagittar-
ius Carina arm at a distance of 1.75 kpc. NGC 6357 is an extended
(~ 20 pc to 30 pc) region that includes several distinct HII regions
in different stages of evolution. At optical wavelengths NGC 6357
exhibits several bubbles and shell-like regions. At radio wave-
lengths it is dominated by the two components G353.2+0.9 and
G353.1+0.6 (fig. 1 in Gvaramadze et al. 2011). Two open clusters,
Pismis 24 and AH03 31725-34.4, are associated with these com-
ponents respectively (Massi et al. 1997; Gvaramadze et al. 2011).
Finally a large number of OB-type stars (~ 1500) located mainly
close to the centre of NGC 6357 are responsible for the excitation
of the ionized nebula (Russell et al. 2012).

The Russell et al. (2012) study found that there is more
12 μm emission normalised to the emission at 60 μm and 100 μm
in NGC 6357 than in NGC 6334. The normalised 25 μm is at a sim-
ilar level in both clouds. Desert et al. (1990) and Galliano et al.
(2003) found that polycyclic aromatic hydrocarbons (PAHs) dom-
inate the spectrum at wavelengths $\lambda \lesssim 12$ μm while very small
grains (VSGs) at wavelengths $\lambda \sim 25$ μm. VSG radius ranges be-
tween 1 \AA $\lesssim \alpha_{\text{VSG}} \lesssim 10$ \AA, while PAH radius is $\alpha_{\text{PAH}} \lesssim 1$ \AA (Gall-
iano et al. 2003, 2005). The fact that there are more PAHs in
NGC 6357 than in NGC 6334 suggests that the former is at a more
evolved stage than the latter (Russell et al. 2012). It also suggests
that NGC 6357 may be emitting substantial spinning dust since Ali-
Haimoud et al. (2009) showed that is more likely for the smallest of
the VSGs, with a radius $\alpha \sim 0.5$ \AA (i.e the PAHs), to produce
electric dipole emission at the observed by many experiments peak
frequency of ~ 30 GHz.

The fitted and predicted values that were calculated using the
~ 4.5 resolution CBI and Parkes maps, are listed in Table 3. The
data show that in all sub-regions of NGC 6357 the predicted val-
ues for the optically thin free-free emission at 31 GHz agree with
the measured values at the 2σ level. The emission in the diffuse
component of the cloud (NGC 6357 CLEAN) is also consistent
with optically thin free-free-at the 2σ level. It is also likely that
the overall absolute calibration for the Parkes map could be over-
estimated as most of the predicted values are slightly higher than
the ones measured in the CBI map. Using only the free-free dom-
inated sub-regions we find that the predicted by Parkes flux is on
average higher than the CBI by 5%. This has been taken into ac-
count by assigning a conservative limit of 10% uncertainties on
the Parkes data. We also investigate if AME is associated with cold
dust (hereafter NGC 6334), G351.0 + 0.7 (hereafter NGC 6334B) and
G351.2 + 0.5 (hereafter NGC 6334C). NGC 6334A is one of the most
active OB star formation region in the Galaxy (Loughran et al.
1986). Across the nebula there are a number of extended far-
infrared and millimetre sources and radio HII regions that are as-
associated with CO hot spots, some of them having OH and H2O
masers. Each of the regions is at a different evolutionary stage. Ad-
ditionally in contrast with NGC 6357, NGC 6334 is ionized by a
small number of OB stars that are spread around the whole nebula
(Tapia et al. 1996; Russell et al. 2012).

In the results of the investigation that was carried out using the
CBI and simulated Parkes maps of NGC 6334 (see Table 3), unlike
to NGC 6357, a complex picture emerges. Although for the bright-
est parts of the nebula (NGC 6334A, NGC 6334B, NGC 6334C) and
its diffuse component (NGC 6334 CLEAN) the measured flux
density agrees with predicted values for an optically thin free-free
dominated region, for the sub-regions NGC 6334D, NGC 6334E
and NGC 6334F this is not the case. Relative to a single power-law
with slope $\alpha = -0.12$ used to extrapolate the flux from 5 to 31 GHz
we detected excess emission in NGC 6334E at $\sim 6.4\sigma$ level and
emission deficiency in NGC 6334D and NGC 6334F at $\sim 3.7\sigma$ and
$\sim 3.3\sigma$ respectively. The excess emission at 31 GHz for the rest of
the NGC 6334 sub-regions were converted to a dust emissivity, rel-
ative to the IRAS 100-μm map. This corresponds to an emissivity
of $-1.8 \pm 2.3 \mu K (MJy sr^{-1})^2$ or a 2σ upper limit of $< 2.8 \mu K (MJy$
$sr^{-1})^2$. For more discussion about the dust emissivity in the clouds
see Section 3.3.

NGC 6334 and NGC 6334F

For the three NGC 6334 sub-regions we have found that optically
thin free-free is not the only emission mechanism that is active,
thus a separate investigation is required. We first focus on the two
sub-regions where the emission deficit has been detected. Using the
measured flux densities at 5 and 31 GHz we calculate the value for
the spectral index of NGC 6334D and NGC 6334F and find it to be
$\alpha = -0.42 \pm 0.08$ and $\alpha = -0.39 \pm 0.11$ respectively.

NGC 6334F is the SNR G351.2+0.1. Its spectral index at
1 GHz has been measured to be -0.4 (Caswell et al. 1975;
Whiteoak & Green 1996), consistent with our findings. The lack
of any significant spectral breaks denotes that a power-law is a
good model for the SED of the source for frequencies between
1 and 30 GHz. The investigation for the source of emission in
NGC 6334D focussed on finding SNR candidates by using the D.
A. Green SNR catalogue3 (Green 2014), and finding Galactic and
extragalactic sources that would have a steep spectral index by
looking at the Set of Identifications, Measurements and Bibliog-
yraphy for Astronomical Data SIMBAD4 (Wenger et al. 2000) and
at the NASA Extragalactic Database NED5. We did not find any syn-
chronization emission sources in that region of the Galaxy that could
account for the emission that has been observed. Looking in the
higher resolution 1.4 GHz NVSS map of the region we found two
point like sources with peak values at 2.1 Jy/beam and 2.0 Jy/beam.

3 Green catalogue: http://www.mrao.cam.ac.uk/surveys/snrs.
4 SIMBAD: http://simbad.a-strasbg.fr/simbad/.
5 NED: http://ned.ipac.caltech.edu/forms/nearposn.htm. The NASA/IPAC
Extragalactic Database (NED) is operated by the Jet Propulsion Labora-
ory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration.
Integrated flux densities for the sources in the CBI and simulated Area-I maps, derived using aperture photometry at 4 GHz. Table 3. have boldface names. The notation CLEAN stands for detected might be spinning dust. There is an excess emission detected at the 6.4 GHz level in NGC 6334E which is quite bright in the IR. When we compared the CBI map of the sub-region at frequencies between 5 and 31 GHz is not optically thin free-free. The excess emission accounts for 70% of the total emission of NGC 6334E.

NGC 6334 is also visible on all IRAS and Herschel maps of the region. The calibration errors alone could not have altered our findings of NGC 6334D by more than 10%. Primary beam errors even as far as 2 times the FWHM of the telescope could not have affected the flux density value of the source by more than 20% either (see left panel of fig. 5 in Taylor et al. 2011). The emission deficit in the region can be accounted for if NGC 6334D is a hotter HII region (T = 15000 K), and if with the aforementioned sources of errors working together are conspiring to force the spectral index to become steeper. Finally in order to cover all possibilities we speculate that the source is likely to be an unknown SNR, or a distant galaxy with a steep spectral index that happens to lie close to the Galactic plane.

NGC 6334E

As mentioned in Section 2.4, NGC 6334E is a 10 by 10 arcmin² area east of the main NGC 6334 formation (see Fig. 3). At this point we can not be certain if it is part of the cloud or it happened to lay on the line-of-sight either closer or further away from it. Most of the emission in the sub-region is originating from two compact components, which are connected with a filament. More low level emission is being emitted from the two components extending further to their east and south-east. Although there is faint to no emission in the sub-region at 5 GHz (see Table 3), NGC 6334E is quite bright in the IR. When we compared the CBI map of the sub-region against maps at higher frequency we find that there is a strong correlation with the IRAS 25 μm map (shown as contours in Fig. 3), and the Spitzer 24 μm map indicating that the excess emission we have detected might be spinning dust. There is an offset though of ~1.5' between the two maps. This offset has been observed in previous CBI studies as well. We could have performed a separate investigation for each of the two sources, but due to their small size (smaller than the beam of the CBI), their proximity to each other and to the rest of NGC 6334 we chose to consider them as one source.

The excess emission detected at the 6.4μm level in NGC 6334E clearly shows that the dominant emission mechanism in the region at frequencies between 5 and 31 GHz is not optically thin free-free. Using the measured flux densities at 5 and 31 GHz we calculate the spectral index of the region to have a value of $\alpha = 0.50 \pm 0.06$. The excess emission accounts for ~70% of the total emission of

Region	Measured S_{5GHz} [Jy]	Measured S_{31GHz} [Jy]	Predicted S_{31GHz} [Jy]	Excess S_{31GHz} [Jy]	Excess 100μm emissivity [μK(MJy sr⁻¹)⁻¹]
NGC 6357	331 ± 38	266 ± 16	266 ± 31	<75	<11
NGC 6357A	110 ± 13	80.8 ± 4.9	88.3 ± 10.2	<16.4	<8.8
NGC 6357B	152 ± 18	122 ± 7	122 ± 14	<35	<10
NGC 6357C	23.3 ± 2.7	20.2 ± 1.2	18.8 ± 2.2	<7.0	<27.5
NGC 6357D	5.0 ± 0.6	3.7 ± 0.2	4.0 ± 0.5	<0.8	<9.1
NGC 6357 CLEAN	35.1 ± 4.0	24.3 ± 1.5	28.2 ± 3.2	<3.6	<5.3
NGC 6334	214 ± 25	157 ± 13	172 ± 20	<31	<4
NGC 6334A	132 ± 15	97.8 ± 8.3	106 ± 12	<20.8	<4.5
NGC 6334B	44.6 ± 5.1	30.5 ± 2.6	35.8 ± 4.1	<4.1	<5.6
NGC 6334C	14.8 ± 1.7	10.0 ± 0.9	11.9 ± 1.4	<1.2	<8.3
NGC 6334D	15.6 ± 1.8	7.2 ± 0.6	12.5 ± 1.4	<3.7 σ	---
NGC 6334E	1.6 ± 0.2	4.0 ± 0.3	1.3 ± 0.2	2.7 ± 0.4 (6.4σ)	9.9 ± 1.6 (6.4σ)
NGC 6334F	2.3 ± 0.3	1.1 ± 0.1	1.8 ± 0.2	<0.7 ± 0.2 (3.3σ)	---
NGC 6334 CLEAN	5.0 ± 0.6	3.5 ± 0.3	4.0 ± 0.5	<0.6	<4.3

Table 3. Integrated flux densities for the sources in the CBI and simulated Area-I maps, derived using aperture photometry at 4.5 GHz resolution. Errors are quoted at 1σ level while the upper limits are given at the 2σ level. Regions where the measured flux deviates significantly (>3σ) from the predicted free-free values have boldface names. The notation CLEAN stands for diffuse emission in the cloud.

Figure 3. CBI map of NGC 6334E at 31 GHz and at ~4.5' resolution. Over-plotted in contours is the IRAS 25μm map convolved at the same resolution and sampled in the CBI u-v coverage.
the sub-region at 31 GHz. The additional emission that has been observed could originate from the AME mechanism or from free-free emission coming from UCHII regions.

UCHII regions with an EM $> 10^4$ cm$^{-6}$ (UCHII regions) will produce free-free emission that is optically thick at frequencies below ~ 15 GHz (Kurtz et al. 1994). In the optically thick regime the flux in the region will increase as ν^2, while at higher frequencies it will fall off like $\nu^{-6.1}$. This could mean that although faint at frequencies lower than 15 GHz, these sources could exhibit flux densities of up to ~ 10 Jy at ~ 30 GHz. It is therefore possible that the AME (or a portion of it) that was detected in NGC 6334E could be produced by UCHII regions. There are several methods for calculating the contribution of UCHII in the overall flux of a region. One way involves using high resolution radio data at frequencies below 15 GHz, to identify the point sources in the region. After measuring their EM and assuming an angular size for the sources we extrapolate the flux density at higher frequencies. We looked at the NRAO VLA survey NVSS at 1.4 GHz (Condon et al. 1998) and the Co-Ordinated Radio 'N' Infrared Survey for High-mass star formation CORNISH at 5 GHz (Hoare et al. 2012; Purcell et al. 2013) to verify if any UCHII are present in the NGC 6334E region, find their optical depth and estimate their contribution to the overall flux that was measured in the CBI final maps at 31 GHz. The optical depth of the brightest source in NGC 6334E at 1.4 GHz, assuming a $T_e = 8000K$, is $\tau << 1 \pm 0.002$, i.e we found no significant UCHII in the region. Unfortunately the CORNISH survey does not cover this part of the sky. An alternative method, proposed by Dickinson (2013), is to look for UCHII candidates by looking at the colour–colour relation of Wood & Churchwell (1989), who found that UCHII regions tend to have IRAS colour ratios of $\log_{10}(S_{8}/S_{12}) = 1.30$ and $\log_{10}(S_{25}/S_{12}) = 0.57$. Then by using the empirical relation between the ratio of the flux at 100μm and 15 GHz (Kurtz et al. 1994) and a free-free spectral index we extrapolate the flux at 31 GHz (Dickinson 2013). We looked for sources that matched the aforementioned criteria within 10$^\circ$ of 351.693+0.579. We found no such sources in the region surrounding NGC 6334E. Both tests leave AME as the most plausible candidate. If NGC 6334E is part of the NGC 6334 cloud it means that the AME (or a portion of it) that was detected in NGC 6334E could originate from the AME mechanism or from free-free emission coming from UCHII regions. Comparing the Spitzer maps of NGC 6334E at 8μm (tracing the PAH population) and 24μm (tracing the VSGs) we found that no such morphological conditions are present in the sub-region. We then compared the PAH/VSG ratio of NGC 6334E to the rest of the cloud. To do that we normalised the Spitzer 8μm emission of each area to the corresponding IRAS 25μm emission. We use the IRAS 25μm map as a tracer for the VSGs because there are no Spitzer data for the NGC 6334 cloud other than for NGC 6334E. The 8/24 flux (and i.e PAH/VSG) ratio for NGC 6334 and NGC 6334E was found to be ~ 0.25 and ~ 0.95 respectively. This much higher PAH/VSG ratio in NGC 6334E compared to the rest of the cloud indicates that the whole sub-region might be a PDR of NGC 6334.

Finally we use the Planck maps at 147, 353, 454 and 857 GHz and the IRAS 100μm map (after sampling them to the u-v coverage of the CBI) to fit for the thermal dust optical depth depth of NGC 6334E at 1.2 THz (τ_{250}). We then normalise the excess emission measured in the CBI map with the optical depth at 1.2 THz to calculate the AME emissivity of the sub-region at 31 GHz relative to τ_{250}. We find it to be equal to $(1.0 \pm 0.2) \times 10^3$ Jy. For further discussion about AME emissivities in the clouds see Section 3.3.

W51

In the second data-set (Area-II) one important formation is visible, the W51 complex. W51 is a massive molecular complex located at the tangential point of the Sagittarius arm of the Galaxy at a distance of ~ 5.5 kpc (Sato et al. 2010). W51, as seen in the radio band images, can be divided into three main components. W51A and W51B are two star forming regions that form what is called the W51 giant molecular cloud (W51 GMC), which spreads across an area of 1 deg2. W51C is a diffuse and extended component that is attached to the south-eastern boundary of W51B and expands to the east. W51C was identified as a supernova remnant (SNR) and is estimated to be around 30$\times 10^3$ years old (Koo et al. 1995). Finally the existence of two 1720 MHz OH masers and the detection of about 100 solar masses of atomic gas at a velocity shifted between 20 and 120 kms$^{-1}$ with respect to its ambient medium (Green et al. 1997; Koo & Moon 1997) suggest that there is interaction between the two regions, W51B and W51C.

The results for the investigation that was carried out using the CBI and Effelsberg maps are shown in Table 4. The predicted optically thin free-free and measured integrated flux densities of W51A, W51B, W51D and W51 CLEAN are in agreement at the 2σ level. The predicted optically thin free-free overall flux for the region is higher than the one measured in the CBI maps by $\sim 15 \% (1\sigma)$. This could be either due to calibration errors (see Section 2.3) or due to the additional synchrotron emission at low radio frequencies that was recorded in W51C at the 6.5σ significance level.

We can once again convert the limits on excess emission in the sub-regions of the W51 (besides W51C) at 31 GHz to a dust emissivity, relative to the IRAS 100μm map (Table 4). The values that were calculated are considerably lower than the values that were found in diffuse regions at high Galactic latitudes. The mean dust emissivity of the sub-regions is $-1.5 \pm 3.3 \mu K (MJy sr^{-1})^{-1}$ which corresponds to a 2σ limit of $< 5.1 \mu K (MJy sr^{-1})^{-1}$.

W51C

The quoted spectral index of W51C at 1 GHz is $\alpha = -0.3$ (Shaver & Goss 1970; Velusamy & Kundu 1974; Subrahmanyan & Goss 1995), confirming that the dominant emission mechanism in the region is synchrotron radiation. W51C is a type S SNR with an age of $\sim 3 \times 10^7$ yr (Hanabata et al. 2013; Park et al. 2013). Using CBI and Effelsberg data we calculate a spectral index of $\alpha = -0.58 \pm 0.06$. This value indicates spectral ageing of the more energetic electrons resulting in a steeper index at about a few GHz.
Observations of Galactic star-forming regions with the Cosmic Background Imager at 31 GHz

Table 4. Integrated flux densities for the sources on the CBI and Effelsberg Area-II and W40 maps, derived using aperture photometry at 4' resolution. Errors are quoted at 1σ level while the upper limits are given at the 2σ level. W51C deviates significantly (>3σ) from the predicted optically thin free-free and is shown in boldface. The notation CLEAN stands for diffuse emission in the cloud.

Region	Measured $S_{31\text{GHz}}^{2.7\text{GHz}}$ [Jy]	Measured $S_{31\text{GHz}}^{3.4\text{GHz}}$ [Jy]	Predicted $S_{31\text{GHz}}^{3.4\text{GHz}}$ [Jy]	Excess $S_{31\text{GHz}}^{3.4\text{GHz}}$ [Jy]	Excess $S_{100\mu m}^{3.4\text{GHz}}$ emissivity
W51	354 ± 41	231 ± 23	264 ± 30	<37	<5
W51A	150 ± 17	117 ± 12	112 ± 13	<37	<9
W51B	95.5 ± 11.0	63.8 ± 6.4	71.3 ± 8.2	<11.6	<5.5
W51C	49.0 ± 5.6	11.7 ± 1.2	36.6 ± 4.2	−24.9 ± 3.8 (6.5σ)	——
W51D	9.5 ± 1.1	7.5 ± 0.8	7.1 ± 0.8	<2.5	<8.0
W51 CLEAN	40.5 ± 4.7	25.0 ± 2.5	30.2 ± 3.5	<2.6	<2.6
W40	31.5 ± 3.4	28.1 ± 1.7	23.5 ± 2.5	<10.6	<8.2

Assuming now that all the emission in W51C at 31 GHz is due to free-free we extrapolate to 2.7 GHz to find $S_{\text{free-free}}^{2.7\text{GHz}} = 15.7 ± 1.6$ Jy. We then subtract that value from the measured flux of W51C at 2.7 GHz to find $S_{\text{free-free}}^{3.4\text{GHz}} = 34.0 ± 5.9$ Jy. We therefore conclude that at least ~70% of the flux of W51C and ~10% of W51 at 2.7 GHz is due to synchrotron radiation.

W40

W40 is an HII complex ~8’ in diameter. A number of energy sources reside inside this cloud, with the most prominent being three young and large OB stars giving rise to ionising UV radiation (Zeilik & Lada 1978). Rodney & Reipurth (2008) found a total of 20 radio sources, half of which presented fluctuations in their flux over time. Their results were recently confirmed by VLA observations in radio frequencies (Rodríguez et al. 2010). The same authors speculate on the nature of these sources suggesting that they may be combination of ultra compact HII regions, young stellar objects (YSOs) and shocked interstellar gas. Finally, a thick dust cloud heavily reduces the visibility of W40 to such an extent that we cannot view a significant portion of W40 in the optical and IR bands (Reylé & Robin 2002; Rodríguez et al. 2010). The distance to W40 has not been well determined yet. Estimates give values between 0.3 and 0.9 kpc (Radhakrishnan et al. 1972). The mass of the cloud has been estimated to be around $10^4 M_\odot$ (Zhu et al. 2006).

Assuming a free-free spectral index $\alpha = −0.12$ we find that the measured fluxes at 2.7 GHz and 31 GHz agree at the 2σ level (see Table 4). We therefore conclude that at ~68% and ~95% confidence limits that the AME in the region is $S_{\text{AME}}^{2.7\text{GHz}} < 7.6$ Jy and $S_{\text{AME}}^{3.4\text{GHz}} < 10.6$ Jy, respectively. Once again the excess emission was converted to dust emissivity relative to the IRAS maps 100 μm, returning a value of $3.7 ± 2.4 \mu K (MJy sr^{-1})^{-1}$.

3.2 Analysis at 1’ resolution

The Spectral Energy Distributions (SEDs) at 1’ scale for NGC 6357, NGC 6334, W51 and W40 are shown in Fig. 4. Solid black circles show the Planck data at 100 and 217 GHz. These points were identified as being consistently higher than the rest due to contamination by strong CO line emission at 115 and 230 GHz, so they were not considered during the parameter fitting stage (Planck Collaboration et al. 2014b). Table 5 summarises the results.

From the four plots we can infer that there is a small excess emission in all 4 regions at 31 GHz although too faint to be definitively detected. It might be that AME is present in all 4 cases or that there is an unknown source of systematics in the data. We do not expect though that systematics of that level would significantly bias our results.

For NGC 6357 we find that our fitted values for the optical depth at 1.2 THz $\tau_{250} = (23.0 ± 3.8) \times 10^4$, the dust temperature $T_d = 21.3 ± 0.7$ K and the dust emissivity $\beta_d = 1.81 ± 0.07$ are consistent at the 2σ level with the results of Planck Collaboration et al. (2014d). We also find that at 28.4 GHz the overall flux density of NGC 6357 is consistent with a free-free emission at the 2σ level ($\tau d = 85.9 ± 45$ Jy). The emissivity of the cloud at 28.4 GHz relative to τ_{250} is $(1.5 ± 1.2) \times 10^4$ Jy, a value also consistent at the 2σ level with the results of Planck Collaboration et al. (2014d).

For NGC 6334 the results indicate that the cloud is dominated by optically thin free-free in the frequency range of 20-80 GHz and if additional radiation is emitted from any part of the nebula, is not significant enough (AME significance = 1.3σ) to make a difference in the overall flux that we have measured. The fitted values for τ_{250}, T_d and β_d are $(24.1 ± 3.8) \times 10^4$, $19.9 ± 0.5$ K and $1.93 ± 0.06$ respectively. The limits on excess emission at 28.4 GHz were once again used to calculate the emissivity relative to τ_{250} corresponding to a value of $(1.5 ± 1.2) \times 10^4$ Jy.

The SED of W51 is shown in the bottom-left panel of Fig. 4. To account for the synchrotron emission that was detected earlier we additionally use the Haslam 408 MHz map and the Effelsberg 2.7 GHz and fit a power-law with a fixed spectral index $\alpha = −0.58$ (value calculated using the CBI and Effelsberg maps). The results show that synchrotron accounts for ~5% of the emission of the cloud at 408 MHz, ~10% at 2.7 GHz, and is negligible at higher frequencies. These findings are in good agreement with our results on W51C at 4.5’ resolution. We also fit for τ_{250}, T_d and β_d and find that they are equal to $(11.3 ± 2.3) \times 10^4$, $20.7 ± 0.8$ K and $1.82 ± 0.09$ respectively. Finally we calculated the emissivity at 28.4 GHz relative to τ_{250} and found it to be equal to $(4.1 ± 1.8) \times 10^4$ Jy.

The SED of W40 calculated at ~1’ resolution is shown in Fig. 4. The fitted values for τ_{250}, T_d and β_d are $(3.9 ± 0.3) \times 10^4$, $21.7 ± 0.6$ K and $1.60 ± 0.06$ respectively. To better constrain the free-free component in the region, in addition to the WMAP and Planck maps, we use the Effelsberg map at 2.7 GHz and the GB6 map at 4.8 GHz. We detect a slightly rising spectrum at frequencies between ~20 and 40 GHz where the spinning dust emission mech-
Figure 4. Spectral energy distributions of NGC 6357 (top-left), NGC 6334 (top-right), W51 (bottom-left) and W40 (bottom-right) at 1° resolution. A conservative limit of 3% uncertainties was used to fit the data. The uncertainties include calibration errors and the fact that the CMB anisotropies are no longer negligible at these scales and frequencies. In all four cases the spectrum was fitted using a model for free-free (dotted line) and thermal dust (dashed line). Additionally the SED of W51 includes a synchrotron emission model (dot-dash line) and of W40 a model for the spinning dust (treble dot-dashed line). The sub-figure of the W40 spectral energy distribution shows the residual flux density in each data point after subtracting the free-free and synchrotron components of the spectrum. Overplotted (dashed line) is the fitted to the data spinning dust model.

Table 5. A list of the fitted parameters to the SEDs of the four regions at 1° resolution. Uncertainties are quoted at 1σ level. Note that \(\sigma_{\text{AME}} \) and \(\sigma_{\text{cumul}} \) are the AME detection significance at 28.4 GHz and cumulative detection of AME in all frequency channels between 10 and 100 GHz.

Region	\(\tau_{250} \times 10^4 \)	\(T_d \) [K]	\(\rho_d \)	\(\Delta S_{28.4} \) [Jy]	\(\sigma_{28.4}^{\text{AME}} \)	\(\sigma_{\text{cumul}}^{\text{AME}} \)	\(A_d \) [Jy]	\(\nu_d \) [GHz]	
NGC 6334	24.1 ± 3.8	19.9 ± 0.5	1.93 ± 0.06	43.2 ± 25.2	1.4 ± 0.8	1.7	–	–	
NGC 6357	23.0 ± 3.8	21.3 ± 0.7	1.81 ± 0.07	45.1 ± 34.5	1.5 ± 1.2	1.3	–	–	
W51	11.3 ± 2.3	20.7 ± 0.8	1.82 ± 0.09	60.1 ± 25.0	4.1 ± 1.8	2.3	–	–	
W40	3.9 ± 0.3	21.7 ± 0.6	1.60 ± 0.06	6.2 ± 1.9	1.6 ± 0.5	3.3	6.4	7.1 ± 2.8	37.6 ± 4.3

An investigation for UCHII regions within a 30′ radius from W40, using the IRAS data and the colour-colour relation of Wood & Churchwell 1989 (see Section 3.1) revealed two UCHII candidates. The estimated upper limit on the combined flux density of the two sources at \(\nu = 28.4 \) GHz, based on the empirical relation between the flux density of a source at 100 µm and 15 GHz (Kurtz et al. 1994) and a free-free spectral index \(\alpha = -0.12 \), is \(\sim 0.25 \) Jy. This value accounts for < 5% of the detected excess emission in the area. Using the NVSS data at 1.4 GHz to identify point sources around W40 we found one potential UCHII region. The derived optical depth of the source, assuming an electron temperature of \(T_e = 8000 \) K, is \(\tau \approx 0.01 \ll 1 \). Unfortunately no CORNISH data of the region are available. Our study has shown that no significant contribution from UCHII regions is expected at frequencies

© 2012 RAS, MNRAS 000, 1–13
Observations of Galactic star-forming regions with the Cosmic Background Imager at 31 GHz

~ 30 GHz leaving the spinning dust emission mechanism as the only known valuable alternative.

We therefore fit a spinning dust component to the spectral energy distribution of W40 (shown as a treble dot-dashed line in the SED of W40 in Fig. 4, and emphasised in the sub-figure of the same plot) which in turn reduces the value of χ^2 by ~ 15 with only 3 additional parameters. The fitted flux density and peak frequency are $A_{d}=7.1\pm 2.8\text{ Jy} \ (\sim 2.7\sigma)$ and $\nu_d = 37.6\pm 4.3\text{ GHz}$. These values are also in good agreement with Finkbeiner et al. (2004). Planck Collaboration et al. (2014d) on the other hand detected an AME significance in the region of only 0.2σ. The results depend significantly on the two higher uncertainty lower frequency data, not used by the Planck collaboration, since they are the ones constraining the level of free-free in the region. The values constrained by the thermal dust component of the SED on the other hand (T_{250}, T_d and β_d), are consistent with the values calculated in Planck Collaboration et al. (2014d) at the 1σ level. The results are also consistent with our CBI-Enfelsberg study of the region at the 1σ level. Finally we calculated the AME emissivity at 28.4 GHz relative to the optical depth at 1.2 THz, τ_{250} and found it to be $(1.6\pm 0.5)\times 10^4\text{ Jy}$. The emission detected in all sub-regions of W51 other than W51C at frequencies between 20 and 80 GHz is due to optically thin free-free. W51C on the other hand is an SNR with a spectral index of -0.58. Synchrotron accounts for $\geq 70\%$ of the measured flux of W51C and ~ 10% of the W51 cloud at 2.7 GHz. The results are consistent both using the higher resolution interferometric data and the lower resolution single dish data.

Although optically thin free-free is the dominant emission mechanism in W40 at the frequency range of 20-80 GHz we detected a spinning dust component at ~ 3.3σ, that accounts up to 20% of its total emission at the peak frequency $\nu_d \approx 37\text{ GHz}$. Finally we calculated the AME emissivity at 31 GHz of all sub-regions of the clouds relative to maps at 100 μm. We find an average value of $0.5\pm 4.4\text{ Jy K}\text{(MJy sr)}^{-1}\mu\text{K}$. This value is lower than the $10\text{ Jy K}\text{(MJy sr)}^{-1}\mu\text{K}$ measured at high Galactic latitudes (Davies et al. 2006), probably due to temperature variations. We also calculated the AME emissivity of the 4 regions at 28.4 GHz, and the AME emissivity of NGC 6334E at 31 GHz relative to the optical depth at 1.2 THz. This form of emissivity in all 4 regions and the AME emissivity for the sub-region at 31 GHz relative to the optical depth at 1.2 THz find it to be equal to $(1.0\pm 0.2)\times 10^4\text{ Jy}$. The PAH/VS ratio in NGC 6334E compared to the rest of NGC 6334 suggests that the former might be a PDR of the latter.

The emission detected in all sub-regions of W51 other than W51C at frequencies between 20 and 80 GHz is due to optically thin free-free. W51C on the other hand is an SNR with a spectral index of -0.58. Synchrotron accounts for $\geq 70\%$ of the measured flux of W51C and ~ 10% of the W51 cloud at 2.7 GHz. The results are consistent both using the higher resolution interferometric data and the lower resolution single dish data.

Although optically thin free-free is the dominant emission mechanism in W40 at the frequency range of 20-80 GHz we detected a spinning dust component at ~ 3.3σ, that accounts up to 20% of its total emission at the peak frequency $\nu_d \approx 37\text{ GHz}$. Finally we calculated the AME emissivity at 31 GHz of all sub-regions of the clouds relative to maps at 100 μm. We find an average value of $0.5\pm 4.4\text{ Jy K}\text{(MJy sr)}^{-1}\mu\text{K}$. This value is lower than the $10\text{ Jy K}\text{(MJy sr)}^{-1}\mu\text{K}$ measured at high Galactic latitudes (Davies et al. 2006), probably due to temperature variations. We also calculated the AME emissivity of the 4 regions at 28.4 GHz, and the AME emissivity of NGC 6334E at 31 GHz relative to the optical depth at 1.2 THz. This form of emissivity in all 4 regions and the AME emissivity for the sub-region lies somewhere on the order of 10^4 Jy, and is independent of the AME significance, similar to recent findings of Planck Collaboration et al. (2014d).

AME is a significant component of the spectrum at frequencies around 30 GHz, for a number of sources in our Galaxy. Additionally AME seems to be present mainly in diffuse parts of the Galaxy. NGC 6334E should be followed-up at higher resolution and at frequencies ~ 30 GHz.

4 CONCLUSIONS

In this paper we present the results of the investigation for the source of emission for the Galactic regions NGC 6357, NGC 6334, W51 and W40. CBI observations of the four regions were conducted at ~ 4.5 resolution.

We have confirmed both using high resolution (~ 4.5) interferometric data and single dish data convolved at 1° resolution that the source of emission at frequencies between 20 and 80 GHz in NGC 6357 is consistent with optically thin free-free at the 2σ level. For frequencies $\geq 100\text{ GHz}$ thermal dust takes over in NGC 6357 as in the rest of the clouds.

The main source of emission in NGC 6334 at 1° resolution and in the frequency range of 20-80 GHz is optically thin free-free. Using the higher resolution interferometric data we detected that at 31 GHz, 3 of the cloud’s sub-regions, designated as NGC 6334D, NGC 6334E and NGC 6334F were inconsistent with the extrapolated from lower frequency data optically thin free-free, at the 2σ level. NGC 6334D and NGC 6334F show a lack of emission relative to the predicted optically thin free-free at 3.3σ and 3.7σ respectively. NGC 6334F is a known SNR with a spectral index of -0.4 consistent with values from the literature. We could not identify a source (or group of sources) that match the spectral characteristics found in NGC 6334D. We therefore conclude that the sub-region might be an unknown SNR.

We also detected an excess emission compared to the predicted free-free in NGC 6334E at 6.4σ. We ruled out the possibility that the excess emission is due to UCHII regions. We calculated the AME emissivity for the sub-region at 31 GHz relative to the optical depth at 1.2 THz and find it to be equal to $(1.0\pm 0.2)\times 10^4\text{ Jy}$. The PAH/VS ratio in NGC 6334E compared to the rest of NGC 6334 suggests that the former might be a PDR of the latter.

We also detected an excess emission compared to the predicted free-free in NGC 6334E at 6.4σ. We ruled out the possibility that the excess emission is due to UCHII regions. We calculated the AME emissivity for the sub-region at 31 GHz relative to the optical depth at 1.2 THz and find it to be equal to $(1.0\pm 0.2)\times 10^4\text{ Jy}$. The PAH/VS ratio in NGC 6334E compared to the rest of NGC 6334 suggests that the former might be a PDR of the latter.

The emission detected in all sub-regions of W51 other than W51C at frequencies between 20 and 80 GHz is due to optically thin free-free. W51C on the other hand is an SNR with a spectral index of -0.58. Synchrotron accounts for $\geq 70\%$ of the measured flux of W51C and ~ 10% of the W51 cloud at 2.7 GHz. The results are consistent both using the higher resolution interferometric data and the lower resolution single dish data.

Although optically thin free-free is the dominant emission mechanism in W40 at the frequency range of 20-80 GHz we detected a spinning dust component at ~ 3.3σ, that accounts up to 20% of its total emission at the peak frequency $\nu_d \approx 37\text{ GHz}$. Finally we calculated the AME emissivity at 31 GHz of all sub-regions of the clouds relative to maps at 100 μm. We find an average value of $0.5\pm 4.4\text{ Jy K}\text{(MJy sr)}^{-1}\mu\text{K}$. This value is lower than the $10\text{ Jy K}\text{(MJy sr)}^{-1}\mu\text{K}$ measured at high Galactic latitudes (Davies et al. 2006), probably due to temperature variations. We also calculated the AME emissivity of the 4 regions at 28.4 GHz, and the AME emissivity of NGC 6334E at 31 GHz relative to the optical depth at 1.2 THz. This form of emissivity in all 4 regions and the AME emissivity of NGC 6334E sub-region lies somewhere on the order of 10^4 Jy, and is independent of the AME significance, similar to recent findings of Planck Collaboration et al. (2014d).

AME is a significant component of the spectrum at frequencies around 30 GHz, for a number of sources in our Galaxy. Additionally AME seems to be present mainly in diffuse parts of the Galaxy. NGC 6334E should be followed-up at higher resolution and at frequencies ~ 30 GHz.

ACKNOWLEDGEMENTS

This work was supported by the Strategic Alliance for the Implementation of New Technologies (SAINT - see www.astro.caltech.edu/chajnantor/saint/index.html) and we are most grateful to the SAINT partners for their strong support. We gratefully acknowledge support from the Kavli Operating Institute and thank B. Rawn and S. Rawn Jr. The CBI was supported by NSF grants 9802989, 0098734 and 0206416, and a Royal Society

© 2012 RAS, MNRAS 000, 1–13
Small Research Grant. We are particularly indebted to the engineers who maintained and operated the CBI: Cristóbal Achermann, José Cortés, Cristóbal Jara, Noberto Oyarace, Martin Shepherd and Carlos Verdugo.

Constantinos Demetroullas is grateful to Anna Bonaldi for clarifying the equation for fitting spinning dust and to Matias Vidal for his valuable comments and support throughout many stages of this study. Constantinos also acknowledges the support of a STFC Consolidated Grand (no. ST/L000768/1), an EU Marie Curie Re-Integration Grant and an ERC Starting Grant (No. 307209). Constantinos and Clive would like to thank NVSS, CORNISH, NED, SIMBAD and Green catalogue.

REFERENCES

Ali-Ha¨ımoud Y., Hirata C. M., Dickinson C., 2009, MNRAS, 395, 1055

AMI collaboration, Scaife A. M. M., Nikolic B., et al., 2010, MNRAS, 406, L45

Becker R. H., Helfand D. J., White R. L., Proctor D. D., 2010, AJ, 140, 157

Bennett C. L., Halpern M., Hinshaw G., et al., 2003, ApJS, 148, 1

Bennett C. L., Larson D., Weiland J. L., et al., 2013, ApJS, 208, 20

Bonaldi A., Ricciardi S., 2012, Advances in Astronomy, 2012

Bonaldi A., Ricciardi S., Leach S., Stivoli F., Baccigalupi C., de Zotti G., 2007, MNRAS, 382, 1791

Casassus S., Cabrera G. F., Förster F., Pearson T. J., Readhead A. C. S., Dickinson C., 2006, ApJ, 639, 951

Casassus S., Dickinson C., Cleary K., et al., 2008, MNRAS, 391, 1075

Casassus S., Nyman L.-Å., Dickinson C., Pearson T. J., 2007, MNRAS, 382, 1607

Casassus S., Readhead A. C. S., Pearson T. J., Nyman L.-Å., Shepherd M. C., Bronfman L., 2004, ApJ, 603, 599

Caswell J. L., Clark D. H., Crawford D. F., Green A. J., 1975, Australian Journal of Physics Astrophysical Supplement, 37, 1

Condon J. J., Broderick J. J., Seielstad G. A., 1991, AJ, 102, 2041

Condon J. J., Broderick J. J., Seielstad G. A., Douglas K., Gregory P. C., 1994, AJ, 107, 1829

Condon J. J., Cotton W. D., Greisen E. W., et al., 1998, AJ, 115, 1693

Condon J. J., Griffith M. R., Wright A. E., 1993, AJ, 106, 1095

Davies R. D., Dickinson C., Banday A. J., Jaffe T. R., Görski K. M., Davis R. J., 2006, MNRAS, 370, 1125

de Oliveira-Costa A., Kogut A., Devlin M. J., Netterfield C. B., Page L. A., Wollack E. J., 1997, ApJL, 482, L17

Desert F.-X., Boulanger F., Puget J. L., 1990, A&A, 237, 215

Dickinson C., 2013, Advances in Astronomy, 2013

Dickinson C., Casassus S., Davies R. D., et al., 2010, MNRAS, 407, 2223

Dickinson C., Davies R. D., Allison J. R., et al., 2009, ApJ, 690, 1585

Dickinson C., Davies R. D., Bronfman L., et al., 2007, MNRAS, 379, 297

Draine B. T., 2011, Physics of the Interstellar and Intergalactic Medium

Draine B. T., Lazarian A., 1998, ApJ, 508, 157

Draine B. T., Lazarian A., 1999, ApJ, 512, 740

Eriksen H. K., Dickinson C., Lawrence C. R., et al., 2006, ApJ, 641, 665

Eriksen H. K., Jewell J. B., Dickinson C., Banday A. J., Görski K. M., Lawrence C. R., 2008, ApJ, 676, 10

Finkbeiner D. P., 2004, ApJ, 614, 186

Finkbeiner D. P., Davis M., Schlegel D. J., 1999, ApJ, 524, 867

Finkbeiner D. P., Langston G. I., Minter A. H., 2004, ApJ, 617, 350

Finkbeiner D. P., Schlegel D. J., Frank C., Heiles C., 2002, ApJ, 566, 898

Furst E., Reich W., Reich P., Reif K., 1990, A&AS, 85, 691

Galliano F., Madden S. C., Jones A. P., Wilson C. D., Bernard J.-P., 2005, A&A, 434, 867

Galliano F., Madden S. C., Jones A. P., Wilson C. D., Bernard J.-P., Le Peintre F., 2003, A&A, 407, 159

Gold B., Odegard N., Weiland J. L., et al., 2011, ApJS, 192, 15

Green A. J., Frail D. A., Goss W. M., Otrupcek R., 1997, AJ, 114, 2058

Green D. A., 2009, Bulletin of the Astronomical Society of India, 37, 45

Green D. A., 2014, Bulletin of the Astronomical Society of India, 42, 47

Gvaramadze V. V., Kniazev A. Y., Kroupa P., Oh S., 2011, A&A, 535, A29

Hanabata Y., Sawada M., Katagiri H., Bamba A., Fukazawa Y., 2013, Publications of the Astronomical Society of Japan, 65, 2

Harper S. E., Dickinson C., Cleary K., 2015, ArXiv e-prints

Haslam C. G. T., Salter C. J., Stoffel H., Wilson W. E., 1982, A&AS, 47, 1

Haynes R. F., Caswell J. L., Simons L. W. J., 1978, Australian Journal of Physics Astrophysical Supplement, 45, 1

Hoare M. G., Purcell C. R., Churchwell E. B., et al., 2012, PASP, 124, 939

Jaffe A. H., Balbi A., Bond J. R., et al., 2004, ApJ, 615, 55

Kogut A., Banday A. J., Bennett C. L., Gorski K. M., Hinshaw G., Reach W. T., 1996, ApJ, 460, 1

Koo B.-C., Kim K.-T., Seward F. D., 1995, ApJ, 447, 211

Koo B.-C., Moon D.-S., 1997, ApJ, 475, 194

Kurtz S., Churchwell E., Wood D. O. S., 1994, ApJS, 91, 659

Lagache G., 2003, A&A, 405, 813

Leitch E. M., Readhead A. C. S., Pearson T. J., Myers S. T., 1997, ApJL, 486, L23

Loughran L., McBreen B., Fazio G. G., et al., 1986, ApJ, 303, 629

Massi F., Brand J., Felli M., 1997, A&A, 320, 972

Mathewson D. S., 1968, ApJL, 153, L47

McBreen B., Fazio G. G., Stier M., Wright E. L., 1979, ApJL, 232, L183

McGlynn T., Scollick K., White N., 1998, in New Horizons from Multi-Wavelength Sky Surveys, edited by B. J. McLean, D. A. Golombe, J. E. Hayes, H. E. Payne, vol. 179 of IAU Symposium, 465

Miville-Deschênes M.-A., Lagache G., 2005, ApJS, 157, 302

Neckel T., 1978, A&A, 69, 51

Padin S., Shepherd M. C., Cartwright J. K., et al., 2002, PASP, 114, 83

Park G., Koo B.-C., Gibson S. J., et al., 2013, ApJ, 777, 14

Pearson T. J., Mason B. S., Padin S., et al., 2005, in New Cosmological Data and the Values of the Fundamental Parameters,
Observations of Galactic star-forming regions with the Cosmic Background Imager at 31 GHz

edited by A. N. Lasenby, A. Wilkinson, vol. 201 of IAU Symposium, 23

Peters T., Banerjee R., Klessen R. S., Mac Low M.-M., Galván-Madrid R., Keto E. R., 2010, ApJ, 711, 1017

Planck Collaboration, Abergel A., Ade P. A. R., et al., 2011a, A&A, 536, A21

Planck Collaboration, Ade P. A. R., Aghanim N., et al., 2011b, A&A, 536, A20

Planck Collaboration, Ade P. A. R., Aghanim N., et al., 2014a, A&A, 571, A1

Planck Collaboration, Ade P. A. R., Aghanim N., et al., 2014b, A&A, 571, A13

Planck Collaboration, Ade P. A. R., Aghanim N., et al., 2014c, A&A, 571, A16

Planck Collaboration, Ade P. A. R., Aghanim N., et al., 2014d, A&A, 565, A103

Planck Collaboration, Ade P. A. R., Aghanim N., et al., 2014e, ArXiv e-prints:1406.5093

Povich M. S., Stone J. M., Churchwell E., et al., 2007, ApJ, 660, 346

Purcell C. R., Hoare M. G., Cotton W. D., et al., 2013, ApJS, 205, 1

Radhakrishnan V., Goss W. M., Murray J. D., Brooks J. W., 1972, ApJS, 24, 49

Readhead A. C. S., Mason B. S., Contaldi C. R., et al., 2004a, ApJ, 609, 498

Readhead A. C. S., Myers S. T., Pearson T. J., et al., 2004b, Science, 306, 836

Reylé C., Robin A. C., 2002, A&A, 384, 403

Richardson W. H., 1972, Journal of the Optical Society of America (1917-1983), 62, 55

Rodney S. A., Reipurth B., 2008, The W40 Cloud Complex, 683

Rodríguez L. F., Rodney S. A., Reipurth B., 2010, AJ, 140, 968

Russeil D., Zavagno A., Adami C., et al., 2012, A&A, 538, A142

Russeil D., Zavagno A., Motte F., Schneider N., Bontemps S., Walsh A. J., 2010, A&A, 515, A55

Sato M., Reid M. J., Brunthaler A., Menten K. M., 2010, ApJ, 720, 1055

Scaife A., Green D. A., Battye R. A., et al., 2007, MNRAS, 377, L69

Scaife A. M. M., Hurley-Walker N., Davies M. L., et al., 2008, MNRAS, 385, 809

Shaver P. A., Goss W. M., 1970, Australian Journal of Physics Astrophysical Supplement, 14, 133

Shepherd M. C., Pearson T. J., Taylor G. B., 1994, in Bulletin of the American Astronomical Society, vol. 26 of Bulletin of the American Astronomical Society, 987–989

Spoelstra T. A. T., 1972, A&A, 21, 61

Stamadianos D., 2010, Microwave Observations of W40, Master’s thesis, The University of Manchester

Subrahmanyan R., Goss W. M., 1995, MNRAS, 275, 755

Tapia M., Persi P., Roth M., 1996, A&A, 316, 102

Taylor A. C., Jones M. E., Allison J. R., et al., 2011, MNRAS, 418, 2720

Tibbs C. T., Paladini R., Compiègne M., et al., 2012a, ApJ, 754, 94

Tibbs C. T., Paladini R., Dickinson C., 2012b, Advances in Astronomy, 2012

Tibbs C. T., Scaife A. M. M., Dickinson C., et al., 2013, ApJ, 768, 98

Tibbs C. T., Watson R. A., Dickinson C., et al., 2010, MNRAS, 402, 1969

© 2012 RAS, MNRAS, 000, 1–13