Integrative Analysis of Transcriptomic and Physiological Reveals Drought Adaption Strategies in Different Maize Genotypes

Yifan Wang
Northwest A& F University

Xi Wu
Northwest A& F University

Hongjie Li
Northwest A& F University

Miaoyi Hao
Northwest A& F University

Renhe Zhang (zhangrenhe@nwsuaf.edu.cn)
Northwest A& F University

Research Article

Keywords: Maize, Drought stress, Transcriptome, Adaption strategy, Tolerance mechanism

Posted Date: October 5th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-902784/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Integrative analysis of transcriptomic and physiological reveals drought adaption strategies in different maize genotypes

Yifan Wang¹, Xi Wu¹, Hongjie Li¹, Miaoyi Hao¹, Renhe Zhang¹*

¹ College of Agronomy, Northwest A&F University, Shaanxi, Yangling 712100, China

*Corresponding author: zhangrenhe@nwsuaf.edu.cn
Abstract

Background: Drought is an environmental stress that adversely affects maize productivity. However, drought adaption strategies of different maize varieties are not fully clear at the transcriptomic level. In the paper, drought-sensitive SD902 and resistant SD609 varieties were analyzed to explore transcriptional and physiological alterations to drought stress.

Results: The higher SOD, CAT, GSH enzymatic antioxidants, stomatal conductance, transpiration, net photosynthesis rate suggested better performance of SD609 than SD902 variety under drought stress. In transcriptome profiling, a total of 8985 and 7305 difference expression genes (DEGs) were identified in SD902 and SD609 respectively. These genes were overall involved in antioxidation reduce, osmotic adjustment, protein modification (e.g. HSP and chaperone protein), photosynthesis, phytohormone (e.g. ABA, IAA, ethylene), transcription factors (TFs) (e.g. ERF, WRKY, NAC and bZIP) and MAPK (MAPK1/8, MKK4/9 and MKKK17) cascade. Among them, the upregulated genes significantly correlated with stress adjustment, HSPs and chaperone functions might better reduce drought-induced damage in both SD902 and especially SD609. The higher genes expression of IAA, ethylene and electron transfer in SD609 may be closely related to drought-tolerant performance than SD902 plants. Moreover, the misregulation of TFs, MAPK and ABA signaling would appear vital to explain the various sensitivity to drought in both varieties.

Conclusion: The more drought-tolerant SD609 presented a beneficial and significantly higher genes expression of stress protection, IAA transduction, photosynthesis compared with drought-sensitive SD902 variety. Our findings provide vital insights into the molecular signatures underpinning drought resistance in maize.

Keywords: Maize, Drought stress, Transcriptome, Adaption strategy, Tolerance mechanism
Background

Sufficient water supply is essential for land plants growth and reproduction in natural environment. However, increasing global temperature leads to more frequency drought risk in agricultural production [1–3]. Drought adversely affect photosynthesis and thereby cause excessive accumulation of reactive oxygen species (ROS) that damage the plant growth and survival by oxidation [4]. To cope with the damage under drought stressful conditions, plants have evolved multiple strategies to adaption to drought condition [5]. For example, plants appropriately close stomatal to reduce water loss; decrease photoinhibition to protect photosystem; improve antioxidant level to decrease oxidative damage; induce heat shock proteins (HSPs) and molecular chaperones to protect proteins [6, 7]. At the molecular levels, molecular sensors promote the signal transduction and thereby activate various transcriptional regulators. Ultimately, the upstream controls result in a great variety of activation of genes and proteins to achieve stress adjustment and growth [7]. Also, phytohormones [8], transcription factors (TFs) [9] and others drought-responsive factors also widely participate in the response to drought in plant. In general, drought adaption process involved in multiple metabolism pathways that cause complex regulation mechanism in plants.

With rapid development of high-throughput sequencing technology, transcriptomic has provided huge amounts of transcriptional evidences to systematically compare and analyze complex mechanism in response to drought stress in plants [10]. Currently, transcriptomic analyses has been widely used to reveal biological adaption to drought and other stresses in rice [11], sorghum [5], wheat [12], watermelon [13] and other plants. Nevertheless, despite major progress in crops, there are relatively few studies on drought adaptation at the transcriptome level in maize.

Maize (Zea mays L.), a most important food crop as it is economically valuable and nutritious in industry, agriculture and animal husbandry, is wildly grown in the world. Previous reports suggested that maize plants are more sensitive to drought environment that adversely affect maize growth and development in the seedling stage [3]. Until now, a number of studies associated with water-deficit resistance and water use efficiency have been performed, and some vital drought-induced genes were identified in maize [14–17]. Thus, it is necessary that drought adaption strategies in the regulation of plant tolerance to drought stress needs to be further clarified, especially in contrasting maize varieties.

In the present paper, an integrated transcriptome and physiological analysis were
performed to assay the drought response of SD902 and SD609. Combined with the RNA-seq data, we analyzed the physiological responses of maize plants subjected to drought stress, such as ROS level, antioxidants activity and photosynthesis. Our study provides the complete information about photosynthesis system, energy metabolism, protein protection, phytohormone transduction, and MAPK cascade and TFs in the maize leaves responding to drought stress. These data systematically reflect a regulation network to drought tolerance on maize and exist a modulation difference between SD902 and SD609 during drought stressful environment.

Results

Variety SD609 exhibit stronger tolerance than SD902 under drought stress

To obtain insight into the phenotypic and physiological features under drought stress condition, seedings of two maize hybrids were exposed to drought treatment. As shown in Fig.1A, drought stress result in leaves wilting, curl and chlorosis in SD609 and SD902 varieties, and the latter displayed a more obvious drought-susceptible symptom in morphologies. According to physiological indexes and photosynthesis parameters, we found significant differences in hydrogen peroxide (H$_2$O$_2$), oxygen radical (O$_2^-$) and malondialdehyde (MDA) content, antioxidant enzymatic activities and total photosynthesis rate in both the varieties. Compared with drought-tolerant SD609 variety, there are higher levels of H$_2$O$_2$, O$_2^-$ and MDA in SD902 subjected to drought treatment (Fig.1B-D). The activity of antioxidant enzymes (SOD, POD, CAT APX, GSH and GR) was significantly improved in drought-treated maize, compared with control plants (Fig.1E-G, I-K). Apart from GR, others antioxidants had a significant difference in two varieties. Moreover, drought stress adversely reduced total chlorophyll level in two hybrids, inducing various significance in leaves color compared to well-watered condition (Fig.1H). The survey of gas exchange parameters found that drought significantly decreased stomatal conductance (G$_s$), intercellular CO$_2$ concentration (C$_i$) and transpiration rate (Tr) in SD902 and SD609 variety. Compared with SD902 plants, SD609 had a lower G$_s$ and Tr under drought condition, which effectively prevent water loss and caused a higher net photosynthetic rate (P$_n$) (Fig.1L-O). In short, drought stress increases reactive oxygen species (ROS) accumulation, enhances antioxidants activity and decreases photosynthetic efficiency at the physiological level in maize plants, which ultimately might affect growth and development of maize plants.
Screening of transcripts abundance and different expression analysis to drought stress

Based on the RNA-seq, the transcription profiles of leaf samples from SD609 and SD902 varieties exposed to drought and normal treatment condition then were analyzed and compared systematically to study gene expression. Twelve cDNA libraries were prepared from collection samples and subjected to paired-end sequencing. The total number of raw reads in the libraries ranged from 22.71 to 39.12 million. After filtering out low quality reads, clean reads were between 22 and 38 million, with 97.17% clean reads and 93.46% Q30 rate. The clean reads were then mapped onto the maize reference genome (NCBI accession No. GCF_000005005.2) using HISAT (hierarchical indexing for spliced alignment of transcripts). The reads that could not be mapped to the maize genome were discarded, and only the mapped reads were further analyzed. FPKM values were calculated to measure the expression abundance of the transcripts. Finally, totals of 8985 DEGs (4826 up-regulated and 4159 down-regulated) in SD902 and 7305 DEGs (3892 up-regulated and 3413 down-regulated) in SD609 with the standards of fold changes > 1 and \(P \)-value < 0.05 were found respectively (Fig. 2A, Table S1). The Venn diagram discovered that 4707 DEGs were common to two drought stress treatment groups, of which, 2413 DEGs were increased by drought pressure (Fig. 2B). These DEGs may play the important roles in the adaption to drought stress.

Functional categorization and enrichment analysis of DEGs among SD902 and SD609

The Gene Ontology (GO) enrichment revealed 55 biological terms consisted of 21 cellular components (CC), 9 molecular functions (MF) and 25 biological processes (BP) in SD609 and SD902 varieties (Figure S1). The highly related to CC terms were thylakoid (GO:0009579) and photosystem (GO:0009521). For MF category, chlorophyll binding (GO:0016168) and tetrapyrrole binding (GO:0046906) obviously were involved in stress. The most significant enrichment of BP was photosynthesis (GO:0015979), light harvesting (GO:0009765), light reaction (GO:0019684) and protein-chromophore linkage (GO:0018298). Further analysis of BP found that drought induced more BP terms (1063 DEGs) in SD902, such as various amino acid catabolic (GO:1901606, GO:0009063, GO:0009074), benzene-containing compound metabolic (GO:0042537), monocarboxylic acid metabolic (GO:0072330, GO:0032787), phenylpropanoid metabolic (GO:0009698) and carbohydrate derivative catabolic
(GO:1901136). By contrast, generation of precursor metabolites and energy (GO:0006091) and chlorophyll biosynthetic (GO:0015995) were found only in SD609 variety (Fig. 2C). Moreover, KEGG enrichment found 51 and 26 metabolic pathways in SD902 and SD609, respectively (Table S2). The highest enrichment category was photosynthesis proteins (ko00194), and second highest enrichment category were photosynthesis (ko00195) and photosynthesis-antenna proteins (ko00196) in SD902 and SD609. The top 5 enrichment factors were involved in photosynthetic reaction (ko00194, ko00195, ko00196), carbon fixation (ko00710), starch and sucrose metabolism (ko00500), glutathione metabolism (Ko00799) and chaperones and folding catalysts (ko03110) (Figure S2). Ribosome (ko03011 and ko03010) pathways were significantly enriched only in SD902, while protein processing in endoplasmic reticulum (ko04141), carbohydrate metabolism (ko99981), fructose and mannose metabolism (ko00051), butanoate metabolism (zma:00650) were certainly triggered in SD609. These results suggested that photosynthesis, energy transformation, protein protection and cell detoxification processes may mainly respond to drought stress in two maize varieties.

Drought affect light harvesting antenna system among SD902 and SD609

As shown in Table 1, seventeen genes concentrated in light harvesting antenna complex I (LHCI) and light harvesting antenna complex II (LHCII) were significantly downregulated during drought stress condition. Apart from LhcI3 belonged to LHCI, other sixteen decreased DEGs are part of LHCII system, such as CP30, CP29, CP25, CP24 and other members. The downregulated ratio of LhcI3 in SD902 and SD609 was 4.61 and 2.41, respectively. The other identified LHCII genes in SD902 were decreased by 1.83 to 11.16 times, while them were also decreased by 1.67 to 4.55 times in SD609. In short, numerous genes related to light harvesting antenna proteins were adversely downregulated during drought condition, which suggest that LHCII system is more sensitive to drought stress in SD609 and especially SD902 variety.

Drought decrease photosynthesis efficiency among SD609 and SD902

We found that 41 DEGs correlated with electron transport of photosystem were changed under drought condition (Table 2). In SD902 variety, in addition to a \textit{OEE3} gene upregulated, other eight DEGs (LOC100272890, LOC100191684, LOC107648855, LOC100281199, LOC100273117, LOC103627333, PSBQ1 and LOC103647735)
related to oxygen-evolving enhancer proteins were also downregulated by 1.74 to 7.81 times, while these DEGs were downregulated by 1.68 to 3.33 in SD609. Moreover, a total of five DEGs (involved in \textit{PsbY}, \textit{PsbR}, \textit{PsbS} and \textit{PsbW}) encoding photosystem II reaction center subunits were significantly decreased by 1.26 to 4.65 times, while 14 DEGs (involved in \textit{PsaD}, \textit{PsaF}, \textit{PsaE}, \textit{PsaG}, \textit{PsaL} and \textit{PsaN}, \textit{PsaH} and \textit{PsaK}) related to photosystem I reaction center subunits were remarkably reduced by 1.97 to 6.10 times among SD902 and SD609. Drought stress also adversely affected expression of Cyt b6/f complex (\textit{petB}), plastocyanin (PC) and ferredoxin (Fd). Apart from four Fd genes of SD902 and two Fds of SD609, other DEGs involved in electron transport elements were drastically decreased in SD902 and SD609 such as \textit{petB} (cyt b6), \textit{petE} (PC) and \textit{petF} (Fd) genes. Accordingly, compared with SD902 variety, we also found that SD609 variety had a higher effective quantum yield (Y(I)), electron transport rate (ETR(I)), the quantum yield of regulatory energy dissipation (Y(NPQ)) and the quantum yield of non-regulatory energy dissipation (Y(NO)) to drought (Fig. 3A, B, G and H). Effective quantum yield (Y(II)) and the electron transport rate (ETR(II)) only displayed slightly difference in SD902 and SD609 (Fig. 3E, F). The Y(NA) of SD902 had a higher level than SD609, while Y(ND) was significantly decreased in two varieties (Fig. 3 C, D). In general, 88% and 94% genes involved in electron transport on photosynthesis in SD902 and SD609 were significantly downregulated compared to CK plants, and these genes caused a difference of photosynthetic efficiency in two varieties.

\textbf{Drought change energy catabolism among SD902 and SD609}

Upon drought stress treatment, as shown in Table 3, the expression abundance of genes encoding ATPase γ, ATPase δ and ATPase b in SD902 and SD609 were decreased by 1.49 to 3.08 times. A total of 15 DEGs related to CO\textsubscript{2} assimilation were significantly changed at the transcription level. Among them, two DEGs (\textit{PEPC} and \textit{NADP-ME}) in SD902 were increased by 1.87 and 6.08 times, respectively. The other 13 DEGs were significantly downregulated by 1.29 to 5.57 times, such as \textit{phosphoenolpyruvate carboxylase} (\textit{PEPC}), \textit{sedoheptulose-1,7-bisphosphatase} (\textit{SBPase}), \textit{ribulose-bisphosphate carboxylase small chains} (\textit{rbcS}), \textit{pyruvate orthophosphate dikinases} (\textit{PPDK}), \textit{phosphoenolpyruvate carboxykinases} (\textit{PEPCK}), \textit{malatedehydrogenases} (\textit{MDH}) and \textit{NADP-malatedehydrogenases} (\textit{NADP-ME}). By comparison, a \textit{PEPC}, \textit{PEPCK} and \textit{NADP-ME} in SD609 were upregulated by 1.46, 1.44 and 3.29 times.
respectively, and the other 12 DEGs were decreased by 1.17 to 2.71 times. The analysis of qRT-PCR and enzyme activity found that drought stress significantly decreased enzyme activity and gene transcription abundance for PPDK, PEPC, NADP-ME and Rubisco in SD902 and SD609 (Fig. 3I-P). The NADP-ME and Rubisco had an obvious difference in maize varieties after drought treatment, while genes expression level of \textit{PEPC} and \textit{rbcS} displayed significant difference. Moreover, we also found many DEGs were involved in glucose metabolism in SD902 and SD609 under drought-adaption process (Table 4). More than 76% DEGs were downregulated impacting starch and sucrose biosynthesis, such as starch synthase, granule-bound starch synthase (GBSS), hexokinase (HK), sucrose-6-phosphatase and sucrose-phosphate synthase (SPS). Except for one alpha-amylase gene (LOC103651265) was upregulated, and more than 83% DEGs related to starch and sucrose degradation were slightly downregulated including beta-amylase, beta-fructofuranosidase and sucrose synthase in SD902 and SD609. Furthermore, 53% and 33% beta-glucosidase genes involved in cellulose degradation were significantly upregulated in both SD902 and especially SD609. In general, drought stress affects the ATP and starch production by photosynthesis, sucrose and starch conversion, and the transcriptional difference of the related-genes cause various adaption to drought in SD92 and SD609 varieties.

Drought enhance anti-oxidation and protein protection among SD902 and SD609

After drought stress treatment, ten DEGs related to osmotic adjustment were identified in SD902 and SD609 varieties. As shown in Table S3, four DEGs (LOC541646, LOC103626390, LOC100384855 and LOC100136885) encoding superoxide dismutase in SD902 were decreased by 1.32 to 1.74 times, but two superoxide dismutase (LOC541646 and LOC542722) in SD609 were significantly increased by 1.63 and 1.78 times. Three peroxidases (LOC100384529, LOC100194355 and LOC103504713) in SD902 and SD609 were identified. Among them, apart from LOC100384529 upregulated in SD902 (6.26 times) and SD902 (5.44 times), other two peroxidases were also decreased respectively. The expression abundance of two catalase DEGs (LOC542369 and LOC542230) were significantly changed in two maize varieties by drought stress. Furthermore, a number of DEGs involved in GSH-AsA metabolism were widely changed, including glutamate cysteine ligase, glutathione dehydrogenase/transferase, glutathione peroxidase (GSH-Px), NADPH-glutathione reductase, glutathione S-transferase (GST) and L-ascorbate peroxidase (APX). The
upregulated glutamate cysteine ligase and downregulated glutathione dehydrogenase/transferase were specifically found only in SD902. GSH-Px had a downregulation trend in two plants, but NADPH-glutathione reductase was upregulated in SD902 (1.42 times) and SD609 (2.01 times) respectively. A total of 29 and 22 DEGs encoding GST in SD902 and SD609 were identified, of which, 38% genes (eleven GSTs) in SD902 were decreased by 1.02 to 4.46, and 23% genes (five GSTs) in SD609 were decreased by 1.49 to 2.96. Two out of nine APX increased were common to drought stress in SD902 and SD609, and all APX in SD902 have a higher ratio than SD609. In addition, numerous genes related to molecular chaperonin and heat shock protein (HSP) were found in SD902 and SD609 under drought condition, such as ATP-dependent Clp protease ATP-binding subunit (ClpB), calreticulin, FtsH, GroEL, GroES, DnaK, GrpE, HtpG, HscB, HSP20s, HSP70s and HSP90s (Table 5). The total number of chaperonin genes induced by drought stress were similar between SD902 and SD609, but there were obvious differences in transcripts types, such as ClpB and FtsH genes. Compared to SD902, more HSPs consisted of HSP90, HSP70 and HSP20 in SD609 were upregulated. In short, the DEGs of antioxidants and protein protection were significantly upregulated in SD902 and especially SD609, which cause the stronger resistance in SD609 to drought.

Differential modulation of TFs among SD902 and SD609

Except for structure genes, transcription factors (TFs) play the essential roles in regulation plant development and induction expression of downstream stress-related genes to adaption stress. Our RNA-seq data revealed 346 TFs (154 upregulated and 192 downregulated) belonged to 39 diverse families in SD902 and 279 TFs (126 upregulated and 153 downregulated) belonged to 44 diverse families in SD609, respectively (Table S4). We compared the top ten TF families in two maize varieties due to the TFs numbers (Fig. 4A), which suggested that bHLH, WRKY, ERF, MYB, NAC, bZIP, etc. TFs participated in the response and modulation to drought in two varieties. For example, the TFs MYB166 and WRKY29 were significantly upregulated, while WRKY96, MYBR115, bZIP17, MYBR95, EREB68 and bHLH36 were significantly downregulated both SD902 and SD609. In addition, the upregulated bHLH104 (9.60-fold), EREB34 (4.14-fold) and HDZIV14 (6.10-fold) and downregulated MYB64 (-6.15-fold) only exists in SD902, while EREB179 (6.84-fold), bZIP111 (5.60-fold) and EREB27 (-4.06-fold), MYB103 (-3.72-fold) only were promoted in SD609.
Furthermore, the interaction analysis of TFs in two varieties discovered that SD902 variety has a more complex biological relationship involved in more TF genes than SD609 (Fig. 4B), which may imply a more efficient response process to drought by the regulation of TFs.

Various modulation of MAPK and phytohormone signaling

MAPK is an important signals transmitter from cell to nucleus. Here, as shown in Table 6, nine MAPK family genes were identified involved in MAPKs (MAPK1 and MAPK8), MKKs (MKK4 and MK9) and MKKKs (four MKKK17s). Compare with control plants, these MAPK genes involved in nine MAPKs in SD902 and two MAPKs in SD609 were significantly decreased at the transcription level, which may show a more drastically MAPK cascade in response to drought in SD902 variety. Moreover, we found a number of plant hormones in response to drought stress in two varieties, such as abscisic acid (ABA), ethylene (ET), jasmonic acid (JA), cytokinin and auxin (IAA). Compared to two downregulated PYR/PYL elements of ABA signal in SD609, SD902 had more ABA response genes including five PYR/PYLs and four PP2Cs. For ethylene signaling, two varieties displayed a response different that ethylene-responsive transcription factor in SD902 was decreased by 1.63 times and ethylene-insensitive protein 3 was increased in SD609 by 4.04 times. The identified JA-acid amino signaling in two varieties was also downregulated. Two cytokinin receptor kinases, HK1b2 and hk3 were reduced in SD609 by 1.57 and 1.61 times, and HK1b2 was decreased in SD902 by 2.43 times. In addition, drought induced a number of auxin response genes, such as SAUR and auxin members. By comparison, more genes (four genes) related to auxin signaling pathway in SD609 were upregulated than of SD902 (one gene), which may lead to a better cell growth in SD609 variety under drought stress environment.

Discussion

Drought event is one of the environment stresses treating the growth, yield and quality of crop plants. In plants, the responses to drought are generally regulated based on multiple metabolic pathways that may form complex interaction each other, through the promotion of TFs and kinases signals as essential core regulators. Therefore, understanding genes transcription strategies to drought stress are vital. In the present study, we used RNA-seq profiling to characterize abundance of transcripts from two
distinct drought-sensitive maize varieties under drought stress condition. Our findings reveal a stronger resistance to drought stress in SD609 than SD902 based on the biological regulations involved in photosynthesis, energy metabolism, osmotic regulation and protein protection.

SD902 and SD609 exert difference in response to drought stress

After drought stress treatment, plants phenotype from two maize hybrids displayed a significant difference in leaves color and shape compared with well-watered treatment. The drought-sensitive SD902 have a weaker drought-tolerant performance (Fig. 1A). ROS accumulation along with oxidized plasma membrane are vital challenge for growth of maize plants under drought condition [22, 23]. Herein, we also found significant accumulation of H$_2$O$_2$, O$_2^-$ and MDA after drought treatment (Fig. 1B-D). Antioxidant enzymes play the essential role in improving drought resistance [24]. According to activity measure, we suggest that SOD, POD and CAT enzymes participate in drought-resistant adjustment at the physiological level, especially SOD and CAT (Fig. 1E-G). Moreover, GSH-AsA system contains important reducing substances in plants, which have the role in maintaining the stability of proteins, the structural integrity of the bio-membrane system and the defense against membrane lipid peroxidation [25]. Our results confirm that these substances (APX, GSH and GR) played an important function in decreasing oxidative damage from drought stress (Fig. 1H-K). RNA-seq data provide important transcriptomic evidences at the molecular level. The higher upregulation and stronger antioxidant enzymes by DEGs showed a correlation between physiology response and molecular regulation to enhance drought-tolerant ability in maize varieties and cause better drought resistance in SD609 varieties compared with SD902.

Responses of photosynthetic system involved in drought stress

Photosynthesis, a most basic physiological process, provide vital energy for various biological activities. Previous reports showed that drought can inhibit photosynthetic efficiency on maize [26, 27], rice [28], wheat [29] and other photosynthetic plants. In this study, a major number of genes related to Chl metabolism, light energy transfer and carbon fixation were significantly affected at the transcription level. We identified 13 DEGs decreased involved in chlorophyll biosynthesis in SD902 and SD609 (Table S4).
For example, three glutamyl tRNA reductases (GluTRs) genes as rate-limiting enzyme in tetrapyrrole control the Chl synthesis rate [30]. Eight DEGs downregulated including porphobilinogen synthase (PBGS), protoporphyrinogen oxidase (PPO), Mg chelatase subunit I/H/D (CHLI/H/D), Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase (CRDI) and divinyl chlorophyllide a 8-vinyl-reductase (DVR) respectively participate in the formation porphobilinogen, protoporphyrin IX, Mg-protoporphyrin IX, Mg-protoporphyrin IX monomethyl ester and protochlorophyllide [31–33]. Two chlorophyllide a oxygenase (CAO) genes catalyze the conversion of Chl a to Chl b [34]. Moreover, four DEGs (encoding chlorophyll b reductase, chlorophyllase (Chlase) and Mg siumdechelatase) were upregulated involved in chlorophyll degradation [35, 36].

The antenna system mainly responsible for light harvest and electron transfer, but there are sensitive to stresses factor, especially drought environment [37]. Therefore, we found numerous chlorophyll a-b binding elements (CP24, CP25, CP29, CP30 and other members), PSI reaction center subunits (PsaD, PsaF, PsaE, PsaG, PsaH, PsaK, PsaL and PsaN) and PSII reaction center subunits (PsbY, PsbW, PsbS and PsbR) were significantly decreased. In addition, more over 77% genes of electron transfer were also decreased, such as oxygen-evolving enhancer protein, cyt b6, PC and Fd. Compare with SD609 plants, these DEGs have a higher downregulation ratio at the transcriptional level in SD902 variety (Table 1, 2). Accordingly, SD609 variety display a higher Y(I), ETR (I) and Y (NPQ) than SD902, ultimate causing batter photosynthetic efficiency to adaption drought (Fig. 1, 3). ATPase as main component on photosynthesis system drive Calvin cycle to produce sucrrose [38]. Here, four genes encoding ATPase subunits (γ, δ and b) were downregulated after drought stress. The key enzymes of carbon assimilation is an underlying inhibition mechanism on plant photosynthesis by drought [39]. In our drought experiment, rbcS, PPDK, PEPC, PEPCK, MDH, NADP-ME and SBPase were significantly downregulated (Fig. 3, Table 3). The enzymes activity of carbon fixation in C4 plant photosynthesis determine the utilization rate of CO₂ in the intercellular space [28]. These evidences show that key genes involved in photosynthesis were affected by drought stress limiting energy production in both SD609 and especially SD902.

Osmotic adjustment and protein protection relate to drought resistance

Osmotic adjustment is widely regarded as significant role in regulation plant adaption and survival under stress conditions based on protecting cellular functions and maintaining turgor. Antioxidant mechanism is an important part of osmotic response
Herein, we have confirmed effective ROS-removing by various antioxidants. Importantly, transcriptome data found significantly up-regulated polysaccharide degradation genes, such as α-amylase, beta-fructofuranosidase (Table 4). Soluble sugars are vital compounds related to energy production and protein biosynthesis, but also as indispensable osmoprotectants that participate in plant biological resistance to osmotic stress [40, 41]. Accompanied with the transcriptional difference of DEGs related mainly to starch biosynthesis and degradation, sucrose biosynthesis and degradation and cellulose degradation, the levels of soluble sugar based on several monosaccharide may be increased maximum in both SD902 and especially SD609 under drought treatment. These alterations are also part of the drought tolerance of maize.

In addition to antioxidation and osmotic adjustment, molecular chaperones and heat shock proteins (HSPs), as essential modification tools in organisms, are responsible for protein assembly, folding, translocation and degradation in normal cellular processes, and can help to stabilize proteins and membranes as well as promote protein refolding under numerous stress conditions [42]. According to our results, more DEGs involved to HSP members consisted of HSP90, HSP70 and HSP20 were significantly upregulated in both SD902 and especially SD609 (Table 5). Furthermore, drought induced more upregulated DEGs encoding ClpB, calreticulin, FtsH, GroES, DnaK, GrpE and HtpG in SD609 plants, about which, play the vital role in keeping proteins biological function and decreasing damage from stress environment [43–46]. In general, the higher regulation from antioxidation, osmotic adjustment and protein protect may result in the stronger tolerance in both SD902 and especially SD609 variety.

Responses of TFs, MAPK and plant hormone involved in drought stress

TFs as regulatory molecules that play the key role in controlling genes transcription and adapting to variety stress environment [9]. There are 346 TFs belonging to 39 families in SD902 and 279 TFs belonging to 44 families in SD609, respectively (Table S3). The major TFs members including ERF, WRKY, NAC and bZIP were significantly increased, whereas the MYB and bHLH were decreased in drought stress condition (Fig. 4). Previous research shown that overexpression of ERF genes in Arabidopsis, rice, tomato and tobacco were able to enhance tolerance capability under diverse biotic and abiotic stresses [47, 48]. Here, more than 60% ERF TFs in SD902 and SD609 were upregulated responding to drought stress, such as ERF1, ERF34 and ERF65. WRKYs were identified...
in response to numerous stress factors and involved in regulating transcription reprogramming under stress condition [49]. More than 70% WRKYs were upregulated in SD609 variety. Overexpression of NAC in rice increased resistance to drought and heat stresses via resulting in stress-inducible gene [50]. Here, 11 out of 25 and 13 out of 15 NACs were upregulated in SD902 and SD609, which may play the important roles in enhancing drought tolerance. The biological functions of bHLHs are gradually being identified in regulating drought and other stresses (Li et al., 2016; Z. Li et al., 2019; Yao et al., 2018). Numerous bHLHs (more than 73%) were changed at the transcription level in SD902 and SD609, such as bHLH36, bHLH145, bHLH104. Among them, bHLH104 played a vital role in improving plant iron tolerance [52, 53, 55]. MfbHLH38 identified effectively improves the drought resistance of Arabidopsis [56]. In general, biological function of these TFs are yet to be discovered on maize, especially in drought adaption process.

Signal transmission is a crucial part of cell growth and response to environment. MAPK cascade, as one of the important signal pathways, is widely involved in plant developmental regulation and stress response [57]. Here, we identified three types MAPKs (MAPK, MKK and MKKK) (Table 6). Compared with well-watered treatment plants, these KAPKs were significantly decreased in drought-treated SD902 and SD609 plants. Previous study found that many MAPK members negatively participate in maintaining ROS homeostasis and controlling other life events [58, 59]. The results in our experiment may result from co-regulation with other signal networks and/or negative feedback regulation. Furthermore, plant hormones are essential way in plants avoiding to stresses damage [8]. Our research also found five kinds of phytohormones that together cope with drought stress (Table 6). These plant hormones displayed a response difference in quantity and type in two maize varieties exposed to drought stress, especially ABA, IAA and ethylene. Through coping strategies of the phytohormones involved in drought resistance in plants has done a lot of research [8], the complex networks still require more studies to identify their biological mechanism.

Conclusion

In this paper, two maize varieties, drought-tolerant SD609 and -sensitive SD902, were detailed investigated. We found that drought results in significant ROS accumulation and limits photosynthesis, which decreases performance of maize to drought condition in both SD609 especially SD902 variety. The expression of genes related to
antioxidants, osmotic adjustment, HSPs and chaperone protein enhance maize tolerance to drought via the regulation of ABA, MAPK cascade and TFs. Compared to drought-sensitive SD902 variety, the higher stress adjustment (enzymatic antioxidants, HSPs and chaperone proteins), IAA signaling response, photosynthesis efficiency and drought-induced factors regulation to cope better drought stress in SD609. Accordingly, we proposed a molecular adaption network to drought based on two contrasting maize (Fig. 5). The study is helpful to further explore drought-tolerant mechanisms and develop cultivars withstand.

Materials and methods

Plant material and treatment design

Two maize (Zea mays L.) cultivars Shaandan609 (SD609) and Shaandan902 (SD902) obtained from Shaanxi Dadi Seed Company, were identified as drought-resistant and -sensitive genotypes in our previous work [18]. Here, drought-tolerance SD609 and drought-sensitive SD902 were used as experimental material. Uniformly germinated seeds directly were sown into plastic pots (diameter 30 cm, deep 45 cm) filled with a mixture consisted of 0.064% total nitrogen and 1.62% organic matter. All treatment seedings were sustained in a green-house at 28/20°C (day/night) with relative humidity of 60% and nature light at Northwest A&F University, Yangling (34°283′N, 108°067′E), China. Before the treatment experiments, all plants were normally watered every day, maintaining soil water content (SWC) at 80 ± 5%. At five-leaf stage, half of SD902 and SD609 seedings were exposed to drought stress condition (50 ± 5% SWC) for five days by controlled water measure. Finally, the collected leaves samples with three biological replicates for each treatment were frozen immediately in liquid nitrogen and stored at -80°C.

Chl concentration and gas exchange measurement

The chlorophyll (Chl) concentration was measured using SPAD meter (SPAD-502, Konica-Minolta, Japan) [19]. The gas exchange parameters including net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO₂ concentration (Ci), and transpiration rate (Tr) were determined by a portable photosynthesis system instrument (LI-6400XT; LI-COR Biosciences, United States) at a light intensity of 1000 μmol/(m² s) [20]. Each experiment was repeated three time, and the measurements were taken for six plants.
Energy conversion efficiency measurement

According to the previous methods [21], the quantum yields of photosystem I (PSI) and photosystem II (PSII) with the upper second fully expanded maize leaves were measured by a pulse amplitude-modulated system (Dual-PAM-100, Heinz Walz, Germany). The measured fluorescence parameters of PSII were involved in the effective quantum yield (Y(II)), the quantum yield of non-regulatory energy dissipation (Y(NO)), the quantum yield of regulatory energy dissipation (Y(NPQ)) and the electron transport rate (ETR(II)). The measured fluorescence parameters of PSI were involved in the effective quantum yield (Y(I)), the quantum yield of non-photochemical energy dissipation due to donor side limitation (Y(ND)), the quantum yield of non-photochemical energy dissipation due to accept or side limitation (Y(NA)) and the electron transport rate (ETR(I)).

Chemical measurement and enzyme activity assay

According to thiobarbituric (TBA) method, MDA content was measured using MDA Kit (MDA-2-Y) to reply to lipid peroxidation in maize leaves. The contents of H_2O_2 and O_2^- were measured using H_2O_2 Kit (H_2O_2-2-Y) and O_2^- Kit (SAQ-2-G), respectively. The enzyme activity of SOD, POD, CAT, APX, GSH and GR were measured based on manufacturer instructions of Kit including SOD Kit (SOD-2-Y), POD Kit (POD-2-Y), CAT Kit (CAT-2-Y), APX Kit (APX-2-W), GSH Kit (GSH-2-W), GR Kit (GR-2-W), respectively. All Kits were obtained from Suzhou Comin Biotechnology Co., Ltd., China. The activity of photosynthesis enzymes was measured by enzyme-linked immunosorbent assay (ELISA) Kit (JINGKANG, Shanghai) based on operation instruction.

RNA extraction, library preparation and mRNA sequencing

Total RNA was extracted from 0.2 g leaf samples using the RNeasy Plant Mini Kit (Qiagen) following the manufacturer instructions. RNA quality and quantity were determined by the NanoDrop (Thermo Fisher Scientific). For each sample, 0.5 μg of high-quality total RNA with RNA Integrity Number > 8.8 were used for cDNA library preparation by the TruSeq RNA Sample Preparation Kit (Illumina Inc.). Sequence determination of 150 bp pair-end reads were performed on an Illumina HiSeq2500 platform. For each treatment, three biological replicates were constructed libraries and sequenced independently, and each replicate pooled from three individuals. The
sequencing of cDNA was carried by Novogene Bioinformatics Technology Co., Ltd. (Beijing, China) using Illumina HiSeq 2500 platform.

Bioinformatics analysis
Gene Ontology (GO) enrichment was conducted based annotation (http://geneontology.org/). The pathway enrichment was carried out with the Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.genome.jp/kegg). GO and KEGG enrichment analysis were performed via clusterProfile R package. The ggplot2 and pathview R package were used for plotting. Transcription factors (TFs) were predicted using PlantTFDB (http://planttfdb.cbi.pku.edu.cn). STRING online database (https://string-db.org/cgi/input.pl) and cytoscape software were used to visualize interaction relationship.

qRT-PCR analysis
Total RNA from leaf samples (1.0 g) ground into liquid nitrogen was extracted using RNA extraction kit (TIANGEN, China). The 20 μL reverse transcription system was performed by manufacturer instructions (Fast Quant RT Kit, TIANGEN, China). The gene specific primers were designed using Primer Premier 3.0 (Table S6). The qRT-PCR program was performed based on manufacturer instructions (SYBR Green, TIANGEN) with three biological replicates. The maize gene ZmGADPH (gene ID: 542367) was used to achieve data proof. The correlative expression levels were calculated using $2^{-\Delta\Delta CT}$ method.

Statistical analyses
The results were means ± standard deviation (SD) with three independent biological replicates. Statistical was analyzed using the SPSS 17.0 software based on Duncan’s multiple range test ($P < 0.05$). The SigmaPlot 14.0 software was used to achieve data visualization.

Abbreviations
ROS: reactive oxygen species; HSPs: heat shock proteins; TF: transcription factor; H_2O_2: hydrogen peroxide; O_2^-: oxygen radical; MDA: malondialdehyde; SOD: superoxide dismutase; POD: peroxidase; CAT: catalase; APX: ascorbateperoxidase; GSH: glutathione; GR: glutathione reductase; Gs: stomatal conductance; Ci:
intercellular CO₂ concentration; Tr: transpiration rate; Pn: net photosynthetic rate; LHCI: light harvesting antenna complex I; LHCII: light harvesting antenna complex II; PEPC: phosphoenolpyruvate carboxylase; SBPase: sedoheptulose-1,7-bisphosphatase; rbcS: ribulose-bisphosphate carboxylase small chains; PPDK: pyruvate orthophosphate dikinases; PECK: phosphoenolpyruvate carboxykinases; MDH: malate dehydrogenases; NADP-ME: NADP-malate dehydrogenases; Chl a: chlorophyll a; Chl b: chlorophyll b; GluTRs: glutamyl tRNA reductases; PBGS: porphobilinogen synthase; PPO: protoporphyrinogen oxidase; CHLI/H/D: Mg chelatase subunit I/H/D; CRDI: Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase; DVR: divinyl chlorophyllide a 8-vinyl-reductase; CAO: chlorophyllide a oxygenase; Y(II): effective quantum yield of PSII; Y(NO): the quantum yield of non-regulatory energy dissipation of PSII; Y(NPQ): the quantum yield of regulatory energy dissipation of PSII; ETR(II): the electron transport rate of PSII; Y(I): effective quantum yield of PSI; Y(ND): the quantum yield of non-photochemical energy dissipation due to donor side limitation of PSI; Y(NA): the quantum yield of PSI; non-photochemical energy dissipation due to acceptor side limitation of PSI; ETR(I): electron transport rate of PSI.

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Availability of data and materials
All data generated and/or analyzed during this study are including in this published article and its supplementary information files. The sequencing data are available in NCBI SRA database under accession number PRJNA765291 (https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA765291).

Competing interest
The authors declare that they have no competing interests.
Funding

This work, including the design of the study and collection, analysis, and interpretation of data, and write manuscript, was supported by National Key Research and Development Program of China (2017YFD0300304) and the Shaanxi Technology Innovation and Guide Project (2019 TG-002).

Authors contributions

YFW designed the experiment, analyzed the data and wrote the manuscript. XW did the experiment and gave some good suggestions on the manuscript. HJL and MYH did a part of experiment, RHZ conceived the experiment, revised the manuscript and provided the funding. All authors have read and approved the manuscript.

Acknowledgements

Not applicable

References

1. Dai A. Increasing drought under global warming in observations and models. Nat Clim Chang. 2013;3:52–8. https://doi:10.1038/nclimate1633.

2. Liu Y, Stanturf J, Goodrick S. Trends in global wildfire potential in a changing climate. For Ecol Manage. 2010;259:685–97. doi:https://doi.org/10.1016/j.foreco.2009.09.002.

3. Leng G, Hall J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci Total Environ. 2019;654:811–21. https://doi:10.1016/j.scitotenv.2018.10.434.

4. Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 2012;35:259–70. https://doi.org/10.1111/j.1365-3040.2011.02336.x.

5. Varoquaux N, Cole B, Gao C, Pierroz G, Baker CR, Patel D, et al. Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proc Natl Acad Sci U S A. 2019;116:27124–32. https://doi.org/10.1073/pnas.1907500116.

6. Baker NR, Rosenqvist E. Corrigendum to: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot. 2004;55:1607–21. https://doi.org/10.1093/jxb/erh196.
7. Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167:313–24. doi: https://doi.org/10.1016/j.cell.2016.08.029.

8. Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, et al. Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res Int. 2018;25:33103–18. https://doi.org/10.1007/s11356-018-3364-5

9. Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, Salvi P. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiol Plant. 2021;172:847–68. https://doi.org/10.1111/ppl.13268

10. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13. https://doi.org/10.1186/s13059-016-0881-8.

11. Jia Y, Liu H, Qu Z, Wang J, Wang X, Wang Z, et al. Transcriptome sequencing and iTRAQ of different rice cultivars provide insight into molecular mechanisms of cold-tolerance response in Japonica rice. Rice (N Y). 2020;13:43. https://doi.org/10.1186/s12284-020-00401-8.

12. Kumar RR, Goswami S, Sharma SK, Kala YK, Rai GK, Mishra DC, et al. Harnessing next generation sequencing in climate change: RNA-Seq analysis of heat stress-responsive genes in wheat (Triticum aestivum L.). OMICS. 2015;19:632–47. https://doi.org/10.1089/omi.2015.0097.

13. Li H, Mo Y, Cui Q, Yang X, Guo Y, Wei C, et al. Transcriptomic and physiological analyses reveal drought adaptation strategies in drought-tolerant and -susceptible watermelon genotypes. Plant Sci. 2019;278:32–43. https://doi.org/10.1016/j.plantsci.2018.10.016.

14. Choudhary M, Wani SH, Kumar P, Bagaria PK, Rakshit S, Roorkiwal M, et al. QTLian breeding for climate resilience in cereals: progress and prospects. Funct Integr Genomics. 2019;19:685–701. https://doi.org/10.1007/s10142-019-00684-1.

15. Wang G, Yuan Z, Zhang P, Liu Z, Wang T, Wei L. Genome-wide analysis of NAC transcription factor family in maize under drought stress and rewatering. Physiol Mol Biol plants an Int J Funct plant Biol. 2020;26:705–17. https://doi.org/10.1007/s12298-020-00770-w.

16. Li L, Staden J, Jäger AK. Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. Plant Growth Regul. 1998;25:81–7. https://doi.org/10.1023/A:1010774725695.

17. Zheng J, Fu J, Gou M, Huai J, Liu Y, Jian M, et al. Genome-wide transcriptome
analysis of two maize inbred lines under drought stress. Plant Mol Biol. 2010;72:407–21. https://doi.org/10.1007/s11103-009-9579-6.

18. Xue JQ, Zhang XH, Hao YC, Zhang ZR. Breeding research of new maize hybrid Shaandan609. J Maize Sci. 2016;24:30–4.
https://doi.org/10.13597/j.cnki.maize.science.20160406.

19. Markwell J, Osterman JC, Mitchell JL. Calibration of the minolta SPAD-502 leaf chlorophyll meter. Photosynth Res. 1995;46:467–72.
https://doi.org/10.1007/BF00032301.

20. Wang D, Heckathorn SA, Barua D, Joshi P, Hamilton EW, Lacroix JJ. Effects of elevated CO2 on the tolerance of photosynthesis to acute heat stress in C3, C4, and CAM species. Am J Bot. 2008;95:165–76. https://doi.org/10.3732/ajb.95.2.165.

21. Zhou R, Kan X, Chen J, Hua H, Li Y, Ren J, et al. Drought-induced changes in photosynthetic electron transport in maize probed by prompt fluorescence, delayed fluorescence, P700 and cyclic electron flow signals. Environ Exp Bot. 2019;158:51–62. https://doi.org/10.1016/j.envexpbot.2018.11.005.

22. Qi J, Song CP, Wang B, Zhou J, Kangasjärvi J, Zhu JK, et al. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J Integr Plant Biol. 2018;60:805–26.
https://doi.org/10.1111/jipb.12654.

23. Gawel S, Wardas M, Niedworok E, Wardas P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek. 2004;57:453–5.

24. Liu S, Wang W, Li M, Wan S, Sui N. Antioxidants and unsaturated fatty acids are involved in salt tolerance in peanut. Acta Physiol Plant. 2017;39:207.
https://doi.org/10.1007/s11738-017-2501-y.

25. Srivastava RK, Pandey P, Rajpoot R, Rani A, Dubey RS. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma. 2014;251:1047–65. https://doi.org/10.1007/s00709-014-0614-3.

26. Li HJ, Wang YF, Zhang CF, Yang M, Wang GX and Zhang RH. The quantitative proteomic analysis provides insight into the effects of drought stress in maize. Photosynthetica. 2020;59. https://doi.org/10.32615/ps.2020.078.

27. Juzoń K, Idziak-Helmcke D, Rojek-Jelonek M, Warzecha T, Warchol M, Czyczyla-Mysza I, et al. Functioning of the photosynthetic apparatus in response to drought stress in Oat ×Maize addition lines. Int J Mol Sci. 2020;21.
https://doi.org/10.3390/ijms211186958.
28. Liu X, Li X, Zhang C, Dai C, Zhou J, Ren C, et al. Phosphoenolpyruvate carboxylase regulation in C4-PEPC-expressing transgenic rice during early responses to drought stress. Physiol Plant. 2017;159:178–200. https://doi.org/10.1111/ppl.12506.

29. Sehar Z, Jahan B, Masood A, Anjum NA, Khan NA. Hydrogen peroxide potentiates defense system in presence of sulfur to protect chloroplast damage and photosynthesis of wheat under drought stress. Physiol Plant. 2021;172:922–34. https://doi.org/10.1111/ppl.13225.

30. Wang P, Liang FC, Wittmann D, Siegel A, Shan SO, Grimm B. Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis. Proc Natl Acad Sci U S A. 2018;115:E3588–96. https://doi.org/10.1073/pnas.1719645115.

31. Erdtman E, Bushnell EAC, Gauld JW, Eriksson LA. Computational insights into the mechanism of porphobilinogen synthase. J Phys Chem B. 2010;114:16860–70. https://doi.org/10.1021/jp103590d.

32. Adhikari ND, Froehlich JE, Strand DD, Buck SM, Kramer DM, Larkin RM. GUN4-porphyrin complexes bind the ChlH/GUN5 subunit of Mg-Chelatase and promote chlorophyll biosynthesis in Arabidopsis. Plant Cell. 2011;23:1449–67. https://doi.org/10.1105/tpc.110.082503.

33. Nagata N, Tanaka R, Tanaka A. The major route for chlorophyll synthesis includes [3,8-divinyl]-chlorophyllide a reduction in Arabidopsis thaliana. Plant Cell Physiol. 2007;48:1803–8. https://doi.org/10.1093/pcp/pcm153.

34. Yang Y, Xu J, Huang L, Leng Y, Dai L, Rao Y, et al. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice. J Exp Bot. 2016;67:1297–310. https://doi.org/10.1093/jxberv529.

35. Sato R, Ito H, Tanaka A. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions. Photosynth Res. 2015;126:249–59. https://doi.org/10.1007/s11120-015-0145-6.

36. Büchert AM, Civello PM, Martínez GA. Chlorophyllase versus pheophytinase as candidates for chlorophyll dephytilation during senescence of broccoli. J Plant Physiol. 2011;168:337–43. https://doi.org/10.1016/j.jplph.2010.07.011.

37. Borisova-Mubarakhshina MM, Vetoshkina DV, Naydov IA, Rudenko NN, Zhurikova EM, Balashov N V, et al. Regulation of the size of photosystem II light harvesting antenna represents a universal mechanism of higher plant acclimation to
38. Beyenbach KW, Wieczorek H. The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol. 2006;209 Pt 4:577–89. https://doi.org/10.1242/jeb.02014.

39. Feller U. Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts. J Plant Physiol. 2016;203:84–94. https://doi.org/10.1016/j.jplph.2016.04.002.

40. Kuang Y, Xu Y, Zhang L, Hou E, Shen W. Dominant Trees in a subtropical forest respond to drought mainly via adjusting tissue soluble sugar and proline content. Front Plant Sci. 2017;8:802. https://doi.org/10.3389/fpls.2017.00802.

41. Živanović B, Milić Komić S, Tosti T, Vidović M, Prokić L, Veljović Jovanović S. Leaf soluble sugars and free amino acids as important components of abscisic acid-mediated drought response in tomato. Plants (Basel, Switzerland). 2020;9. https://doi.org/10.3390/plants9091147.

42. Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004;9:244–52. https://doi.org/10.1016/j.tplants.2004.03.006.

43. Acebrón SP, Martín I, del Castillo U, Moro F, Muga A. DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface. FEBS Lett. 2009;583:2991–6. https://doi.org/10.1016/j.febslet.2009.08.020.

44. Doyle SM, Shastry S, Kravats AN, Shih Y-H, Miot M, Hoskins JR, et al. Interplay between E. coli DnaK, ClpB and GrpE during protein disaggregation. J Mol Biol. 2015;427:312–27. https://doi.org/10.1016/j.jmb.2014.10.013.

45. Haldar S, Gupta AJ, Yan X, Miličić G, Hartl FU, Hayer-Hartl M. Chaperonin-assisted protein folding: Relative population of asymmetric and symmetric GroEL:GroES complexes. J Mol Biol. 2015;427:2244–55. https://doi.org/10.1016/j.jmb.2015.04.009.

46. Hossain MM, Nakamoto H. Role for the cyanobacterial HtpG in protection from oxidative stress. Curr Microbiol. 2003;46:70–6. https://doi.org/10.1007/s00284-002-3831-5.

47. Zhang Z, Li F, Li D, Zhang H, Huang R. Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta. 2010;232:765–74. https://doi.org/10.1007/s00425-010-1208-8.
48. Sharma R, De Vleesschauwer D, Sharma MK, Ronald PC. Recent advances in dissecting stress-regulatory crosstalk in rice. Mol Plant. 2013;6:250–60. https://doi.org/10.1093/mp/sss147.

49. Chen L, Song Y, Li S, Zhang L, Zou C, Yu D. The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta. 2012;1819:120–8. https://doi.org/10.1016/j.bbagen.2011.09.002.

50. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A. 2006;103:12987–92. https://doi.org/10.1073/pnas.0604882103.

51. Li Z, Liu C, Zhang Y, Wang B, Ran Q, Zhang J. The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis. J Exp Bot. 2019;70:5471–86. https://doi.org/10.1093/jxb/erz307.

52. Yao X, Cai Y, Yu D, Liang G. bHLH104 confers tolerance to cadmium stress in Arabidopsis thaliana. J Integr Plant Biol. 2018;60:691–702. https://doi.org/10.1111/jipb.12658.

53. Li X, Zhang H, Ai Q, Liang G, Yu D. Two bHLH transcription factors, bHLH34 and bHLH104, regulate iron homeostasis in Arabidopsis thaliana. Plant Physiol. 2016;170:2478–93. https://doi.org/10.1104/pp.15.01827.

54. Dong Y, Wang C, Han X, Tang S, Liu S, Xia X, et al. A novel bHLH transcription factor PebHLH35 from populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochem Biophys Res Commun. 2014;450:453–8. https://doi.org/10.1016/j.bbrc.2014.05.139.

55. Wang C, Yao X, Yu D, Liang G. Fe-deficiency-induced expression of bHLH104 enhances Fe-deficiency tolerance of Arabidopsis thaliana. Planta. 2017;246:421–31. https://doi.org/10.1007/s00425-017-2703-y.

56. Qiu JR, Huang Z, Xiang XY, Xu WX, Wang JT, Chen J, et al. MfbHLH38, a myrothamnus flabellifolia bHLH transcription factor, confers tolerance to drought and salinity stresses in Arabidopsis. BMC Plant Biol. 2020;20:542. https://doi.org/10.1186/s12870-020-02732-6.

57. Moustafa K, AbuQamar S, Jarrar M, Al-Rajab AJ, Trémouillaux-Guiller J. MAPK cascades and major abiotic stresses. Plant Cell Rep. 2014;33:1217–25.
58. Takahashi F, Mizoguchi T, Yoshida R, Ichimura K, Shinozaki K. Calmodulin-
dependent activation of MAP kinase for ROS homeostasis in *Arabidopsis*. Mol Cell. 2011;41:649–60. https://doi.org/10.1016/j.molcel.2011.02.029.

59. Zhu S, Song W, Sun Y, Zhou Y, Kong F. MiR-342 attenuates lipopolysaccharide-
induced acute lung injury via inhibiting MAPK1 expression. Clin Exp Pharmacol Physiol. 2020;47:1448–54. https://doi.org/10.1111/1440-1681.13315.
Table 1. Effect of drought stress on the expression of chlorophyll a-b binding protein in maize leaves.

Gene name	Gene ID	Description	log2 (Fold change)
LhclI1	LOC103651578	chlorophyll a-b binding protein	-11.16
LhclI2	LOC103651577	chlorophyll a-b binding protein	-10.65
LhclI3	LOC100282054	chlorophyll a-b binding protein	-9.73
LhclI3	LOC100274453	chlorophyll a-b binding protein	-9.62
LhclI9	LOC103643653	chlorophyll a-b binding protein	-8.65
LhclI2	LOC100284154	chlorophyll a-b binding protein	-7.55
LhclI9	LOC103643653	chlorophyll a-b binding protein	-7.39
LhclI2	LOC100281879	chlorophyll a-b binding protein	-6.99
LhclI5	LOC542530	chlorophyll a-b binding protein	-6.26
LhclI6	LOC542716	chlorophyll a-b binding protein	-5.98
LhcIIa (CP29)	LOC100283212	chlorophyll a-b binding protein	-5.66
LhcIIa (CP29)	LOC542478	photosystem II subunit 29	-5.62
LhcIIa (CP30)	LOC100216729	photosystem II subunit 29	-5.24
LhcIIa (CP24)	LOC100273752	photosystem II subunit 24	-5.24
LhcII7	LOC100193833	chlorophyll a-b binding protein	-4.81
LhcI3	LOC100282214	chlorophyll a-b binding protein	-4.61
LhcII4	LOC100281795	chlorophyll a-b binding protein	-1.83
Table 2. Effect of drought stress on the expression of the photosynthetic electron transport related genes in maize leaves.

Gene name	Gene ID	Description	log2 (Fold change)
			SD902
PsbO1 (OEE1)	LOC100272890	oxygen-evolving enhancer protein 1	-3.71
PsbO2 (OEE2)	LOC100191684	oxygen-evolving enhancer protein 1.2	-3.77
PsbP1 (MSP1)	LOC107648855	oxygen-evolving enhancer protein 2.1	-3.29
PsbP2 (MSP2)	LOC100281199	oxygen-evolving enhancer protein 2.2	-3.31
PsbP3 (MSP3)	LOC100273117	oxygen-evolving enhancer protein 2.3	-5.04
OEE3	LOC103653672	oxygen-evolving enhancer protein 3	1.35
OEE3-2	LOC103627333	oxygen-evolving enhancer protein 3.2	-1.74
OEE3-3	PSBQ1	oxygen-evolving enhancer protein 3.3	-4.09
OEE3-4	LOC103647735	oxygen-evolving enhancer protein 3.4	-7.81
PsbY	LOC100280994	photosystem II reaction center Y protein	-4.15
PsbW	cl5838_2	photosystem II reaction center PsbW protein	-2.59
PsbW	peco070877	photosystem II reaction center PsbW protein	-3.63
PsbR	LOC100281646	photosystem II 10 kDa protein	-1.95
PsbS	psbS1	Photosystem II 22 kDa protein	-2.01
PsaD	LOC100191984	photosystem I reaction center subunit II	-4.31
PsaD	LOC541791	photosystem I reaction center subunit II	-4.88
PsaF	LOC100282027	photosystem I reaction center subunit III	-3.33
PsaF	LOC103625835	photosystem I reaction center subunit III	-4.41
PsaE	LOC100283327	photosystem I reaction center subunit IV	-3.78
PsaE	gpm930	photosystem I reaction center subunit IV	-3.88
PsaG	LOC100285458	Photosystem I reaction center subunit V	-3.96
PsaG	LOC100284847	Photosystem I reaction center subunit V	-4.16
PsaH	psaH1	photosystem I reaction center subunit VI	-4.22
PsaK	psaK	photosystem I reaction center subunit X	-6.10
PsaL	LOC100281679	photosystem I reaction center subunit XI	-2.83
PsaL	umc1974	photosystem I reaction center subunit XI	-4.25
PsaN	LOC103640891	photosystem I reaction center subunit PsaN	-3.57
PsaN	LOC542605	photosystem I reaction center subunit PsaN	-4.05
petB (cyt b6)	LOC100273026	cytochrome b6	-2.69
petB (cyt b6)	ris2	cytochrome b6	-2.82
petE (PC)	LOC103629356	plastocyanin	-2.75
petE (PC)	LOC100192779	plastocyanin	-5.04
petF (Fd)	LOC100382495	ferredoxin	7.79
petF (Fd)	LOC100281226	ferredoxin	3.01
petF (Fd)	pco072676(750)	ferredoxin	1.97
petF (Fd)	fdx3	ferredoxin	1.52
petF (Fd)	LOC100284745	ferredoxin	-1.79
petF (Fd)	fdx5	ferredoxin	-2.41
petF (Fd)	fdx2	ferredoxin	-2.83
petF (Fd)	FDX1	ferredoxin	-2.98
petF (Fd)	LOC100283643	ferredoxin	-1.27
Table 3. Effect of drought stress on the expression of the energy metabolism related genes in maize leaves.

Gene name	Gene ID	Description	log2 (Fold change)
ATPase γ	LOC100284505	ATP synthase gamma chain	-2.83
ATPase δ	LOC100281924	ATP synthase delta chain	-2.93
ATPase δ	LOC103627748	ATP synthase delta chain	-3.08
ATPase b	LOC100282566	ATP synthase subunit b	-2.63
rbcS	LOC542212	ribulose-bisphosphate carboxylase small chain 1	-2.86
rbcS	LOC100279574	ribulose-bisphosphate carboxylase small chain 2	-2.84
PPDK	LOC542759	pyruvate orthophosphate dikinase	-3.86
PPDK	LOC103635678	pyruvate orthophosphate dikinase	-5.57
PEPC	LOC542372	phosphoenolpyruvate carboxylase	-4.37
PEPC	LOC542479	phosphoenolpyruvate carboxylase	1.87
PEPC	LOC103642664	phosphoenolpyruvate carboxylase	-4.32
PEPC	LOC541622	phosphoenolpyruvate carboxykinase	-3.69
PEPC	LOC100279748	phosphoenolpyruvate carboxykinase	1.44
MDH	LOC100282134	malatedehydrogenase	-1.29
MDH	mdh5	malatedehydrogenase	-2.49
MDH	LOC107305678	malatedehydrogenase	-5.38
MDH	LOC103648465	malatedehydrogenase	3.29
NADP-ME	me4	malatedehydrogenase (NADP⁺)	6.08
NADP-ME	me3	malatedehydrogenase (NADP⁺)	-2.92
NADP-ME	mdh6	malatedehydrogenase (NADP⁺)	-1.49
SBPase	shhp1	sedoheptulose-1,7-bisphosphatase	-2.03
Table 4. Effect of drought stress on the expression of the sugar metabolism related genes in maize leaves.

Gene name	Gene ID	Description	log2 (Fold change) DS902	log2 (Fold change) DS6009
α-amylase	LOC103651265	alpha-amylase	5.52	1.93
α-amylase	LOC100383492	alpha-amylase	-2.70	-
β-amylase	LOC100192000	beta-amylase	-1.03	-
β-amylase	LOC1001194176	beta-amylase	-1.23 -1.66	-
β-amylase	pco104637	beta-amylase	-2.12 -1.97	-
β-amylase	LOC10367673	beta-amylase	-3.29 -1.64	-
β-amylase	LOC100150394	beta-amylase	-3.40 -1.35	-
β-amylase	LOC100382206	beta-amylase	-6.86 -3.54	-
Starch degradation		Cellulose degradation		
SS	dsh1	starch synthase	4.34 8.13	-
SS	LOC542481	starch synthase	2.57 -1.07	-
SS	LOC100170236	starch synthase	-1.24 -1.07	-
SS	LOC100101526	starch synthase	-1.66 -1.19	-
SS	LOC100156828	starch synthase	-1.76 -2.55	-
SS	gs51	starch synthase	-2.23 -2.14	-
SS	LOC100101527	starch synthase	-3.37 -2.06	-
SS	LOC100101528	starch synthase	-3.70 -1.88	-
SS	ssi	starch synthase	1.13 -1.13	-
GBSS	LOC111599219	granule-bound starch synthase	6.34 -2.79	-
GBSS	GBSSIa	granule-bound starch synthase	-4.44 -2.79	-
HK	LOC100279587	hexokinase	1.36 -	-
HK	LOC100283735	hexokinase	-1.69 SPS	LOC100501516 Succrose synthenase 1.13 -1.05
HK	LOC103851233	hexokinase	-1.20 SPS	LOC100525248 Succrose synthenase -1.58 -1.37
Sucrose degradation		Sucrose synthase	-1.25 -1.55	-
HK	beta-fructofuranosidase	LOC100934123	-2.26 -1.07	-

Table 5. Effect of drought stress on the expression of the Molecular chaperones and heat shock proteins related genes in maize leaves.

Gene ID	Description	log2 (Fold change) SD092 SD060	Gene ID	Description	log2 (Fold change) SD092 SD060
bgl101	ATP-dependent Chaperones ATP-binding subunit Cip9	-0.05 ± 0.50	LOC106525029	heat shock protein 70Da	-1.22 ± 2.43
LOC1006201702	ATP-dependent Chaperones ATP-binding subunit Cip9	2.03 ± 3.50	LOC106525762	heat shock protein 70Da	-2.16 ± 2.67
poc9354184	ATP-dependent Chaperones ATP-binding subunit Cip9	-1.85 ± 1.85	LOC106523712	heat shock protein 70Da	-1.56 ± 1.56
suc98	ATP-dependent Chaperones ATP-binding subunit Cip9	-1.94 ± 1.94	LOC106520834	heat shock protein 70Da	-1.30 ± 1.30
cvt1164	calreticulin	-1.57 ± 1.57	poc1334247	heat shock protein 70Da	3.56 ± 3.56
LOC1065272598	calreticulin	1.22 ± 2.66	LOC100620125	heat shock protein 70Da	-2.41 ± 2.41
LOC106521560	cell division protein Hsfl	-1.60 ± 1.60	LOC1065208213	heat shock protein 70Da	-1.27 ± 1.27
LOC1006254218	cell division protein Hsfl	-1.43 ± 1.43	LOC1065201411	heat shock protein 70Da	-1.24 ± 1.24
LOC106521562	cell division protein Hsfl	-1.25 ± 1.25	LOC1065201370	heat shock protein 70Da	-2.06 ± 2.06
poc10757784	cell division protein Hsfl	-1.30 ± 1.30	bip2	heat shock protein 70Da	-2.66 ± 2.66
LOC1065355557	chaperonin GmEL	8.41 ± 3.97	bip1	heat shock protein 70Da	-4.60 ± 4.60
CP96A	chaperonin GmEL	2.83 ± 3.00	LOC106525888	heat shock protein 71Da	-1.41 ± -1.41
CP96B	chaperonin GmEL	1.42 ± 2.46	LOC106520106	heat shock protein 72Da	1.31 ± 1.31
LOC1006204948	chaperonin GmEL	2.05 ± 1.78	LOC1065215716	heat shock protein 74Da	-2.33 ± -2.33
LOC1006272259	chaperonin GmEL	1.60 ± 1.71	LOC1065275241	heat shock protein 75Da	1.14 ± 2.22
LOC1065204898	chaperonin GmEL	2.05 ± 1.78	LOC1065279393	heat shock protein 76Da	-2.12 ± -2.12
LOC1065320984	chaperonin GmEL	1.98 ± 1.98	LOC1065301938	heat shock protein 20Da	9.03 ± 9.03
LOC106542185	chaperonin GmEL	1.29 ± 1.29	LOC1065272541	heat shock protein 70Da	6.12 ± 6.12
LOC1065257977	chaperonin GmES	3.14 ± 3.14	bap18c	heat shock protein 20Da	7.23 ± 7.23
LOC1065478902	chaperonin GmES	2.65 ± 2.65	TDRP2749	heat shock protein 20Da	2.83 ± 2.83
poc1137154a	chaperonin GmES	3.65 ± 3.65	bap19	heat shock protein 20Da	7.88 ± 7.88
LOC1065326801	chaperonin GmES	4.85 ± 3.85	LOC106539183	heat shock protein 20Da	7.74 ± 7.74
LOC1065363202	chaperonin GmES	2.70 ± 2.70	bap22	heat shock protein 20Da	3.50 ± 3.50
LOC106539174	chaperonin GmES	2.56 ± 2.56	bap118g	heat shock protein 20Da	7.71 ± 7.71
g21464_1	chaperonin GmES	1.34 ± 1.34	poc113768a	heat shock protein 20Da	-6.81 ± -6.81
LOC1065385971	chaperonin GmES	2.89 ± 2.89	LOC106520869	heat shock protein 20Da	7.03 ± 7.03
LOC106535574	molecular chaperone 1MaK	1.07 ± 1.07	LOC1065201064	heat shock protein 20Da	8.94 ± 8.94
LOC1065262401	molecular chaperone 1MaK	-1.31 ± -1.31	LOC1065201570	heat shock protein 20Da	7.46 ± 7.46
poc113767a	molecular chaperone GmPl	-1.22 ± -1.22	LOC106524772	heat shock protein 20Da	-7.25 ± -7.25
poc11354115	molecular chaperone Hpg1	-4.58 ± -4.58	LOC106521790	heat shock protein 20Da	-5.09 ± -5.09
heat58	molecular chaperone Hpg1	3.58 ± 3.58	LOC106534220	heat shock protein 20Da	-4.01 ± -4.01
mcp11356b9a	molecular chaperone Hpg1	1.70 ± 1.70	LOC106525295	heat shock protein 20Da	3.90 ± 3.90
LOC106551583	molecular chaperone Hsp11	1.31 ± 1.31	IDP175	heat shock protein 20Da	3.74 ± 3.74
LOC1065251018	heat shock protein 90Da	-2.99 ± -2.99	LOC106520239	heat shock protein 20Da	1.29 ± 1.29
LOC1065219318	heat shock protein 90Da	2.26 ± 2.26	LOC106550295	heat shock protein 20Da	-2.80 ± -2.80
LOC1065260003	heat shock protein 90Da	1.83 ± 1.83	LOC1065271333	heat shock protein 20Da	-2.56 ± -2.56
LOC1065279292	heat shock protein 90Da	3.25 ± 3.25	LOC106554800	heat shock protein 20Da	2.42 ± 2.42
shp118	heat shock protein 90Da	-2.02 ± -2.02	LOC106532323	heat shock protein 20Da	2.71 ± 2.71
LOC1065387393	heat shock protein 90Da	3.25 ± 3.25	LOC106554900	heat shock protein 20Da	-4.34 ± -4.34
poc1134428	heat shock protein 70Da	4.85 ± 4.85	LOC1065205756	heat shock protein 20Da	-1.64 ± -1.64
LOC106531536	heat shock protein 70Da	2.58 ± 2.58	LOC106528186	heat shock protein 214Da	1.70 ± 1.70
Table 6. Effect of drought stress on the expression of the MAPK and phytohormone related genes in maize leaves.

Gene name	Gene ID	Description	Log2(Fold Change)	Signal pathway
MAPK1	LOC100203152	MAP kinase 1	0.82	ABA signaling pathway
MAPK3	LOC100203152	MAP kinase 3	-3.32	ABA signaling pathway
MKK4	LOC100994097	Mitogen-activated protein kinase kinase 4	-1.87	ABA signaling pathway
MKK5	LOC100994097	Mitogen-activated protein kinase kinase 5	-1.87	ABA signaling pathway
MKK7	LOC100479809	Mitogen-activated protein kinase kinase 7	-1.42	ABA signaling pathway
MKK7	LOC100479809	Mitogen-activated protein kinase kinase 7	-1.87	ABA signaling pathway
ABA signaling pathway				
PYR1/PYL	LOC100214312	ABA receptor PYR/PYL family	0.55	ABA signaling pathway
ABA signaling pathway				
JAK/STAT signaling pathway				
Fig. 1 Effects of drought stress on maize (A) phenotypes, (B-G, I-K) physiological index, (H) chlorophyll concentration and (L-O) gas exchange parameters. The data shown are the means of three replicates (± SD) based on Duncan’s multiple range test. Means denoted with the same letter did not significantly differ at $P < 0.05$. DS, drought stress treatment; CK, well-watered treatment.
Fig. 2 Effects of drought stress on the genome-wide expression profiles of SD902 and SD609 based on RNA-seq. (A) The bar graph shows the up-regulated and down-regulated DEGs in two maize materials. (B) Venn diagram shows the numbers of DEGs. (C) The enrichment analysis of biology process of GO in SD902 and SD609.
Fig. 3 Effects of drought stress on the (A-H) photosynthesis feature and (I-P) carbon assimilation in SD902 and SD609. The data shown are the means of three replicates (± SD). Means denoted with the same letter did not significantly differ at $P < 0.05$. DS, drought stress treatment; CK, well-watered treatment. (I-L) The correlation analysis of enzyme activity was obtained from the enzyme-linked immunosorbent assay (ELISA) Kit. (M-P) The expression level of genes was obtained from qRT-PCR.
Fig. 4 Effects of drought stress on the transcription factors regulation network in SD902 and SD609. (A) The transcription factors were obtained by RNA-seq. (B) The visual regulation network from transcription factors was obtained by online data STRING and cytoscape software.
Fig. 5 Drought adaption strategy at the molecular level in SD902 and SD609 plants exposed to drought stress condition. Heat maps were summarized by Log2 (FC) of mRNA levels. Red words represent DEGs in two maize seedings.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplementaryfiles.zip