Regulation of the Anaphase-promoting Complex by the Dual Specificity Phosphatase Human Cdc14a*

Received for publication, August 23, 2001, and in revised form, October 3, 2001
Published, JBC Papers in Press, October 11, 2001, DOI 10.1074/jbc.M108126200

Joshua Bembenek and Hongtao Yu‡
From the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041

Two forms of the anaphase-promoting complex (APC) mediate the degradation of critical cell cycle regulators. APCCdc20 promotes sister-chromatid separation by ubiquitinating securin, whereas APCCdh1 ubiquititates mitotic cyclins, allowing the exit from mitosis. Here we show that phosphorylation of human Cdh1 (hCdh1) by cyclin B-Cdc2 alters the conformation of hCdh1 and prevents it from activating APC. A human homologue of yeast Cdc14, human Cdc14a (hCdc14a), dephosphorylates hCdh1 and activates APCCdh1. In contrast, hCdc14a does not affect the activity of APCCdc20. hCdc14a is a major phosphatase for hCdh1 and localizes to centrosomes in HeLa cells. Therefore, hCdc14a may promote the activation of APCCdh1 and exit from mitosis in mammalian cells.

Orderly progression through the cell cycle relies on the activity of a large ubiquitin protein ligase, the anaphase-promoting complex (APC)1 or cyclosome (1–4). APC requires two related WD40 repeat-containing cofactors, Cdc20 and Cdh1, for the recruitment and selection of various substrates at different stages of the cell cycle (5–9). During the metaphase-to-anaphase transition, APCCdc20 mediates the ubiquitination and degradation of the securin protein, leading to the activation of the separase, dissolution of the cohesion complex, and chromatid separation (3). In late anaphase, APCCdh1 is turned on and ubiquititates cyclin B, thus inactivating the cyclin B-Cdc2 mitotic kinase and triggering the exit from mitosis (2–4, 10). The substrates of APCCdc20 contain the destruction box (D box) motif, whereas APCCdh1 has a broader substrate specificity (8). In addition to ubiquitinating D box-containing substrates, APCCdh1 promotes the ubiquitination of additional mitotic regulatory proteins containing the KEN box motif, thus resetting the cell cycle (11). To ensure that the APCCdh1 substrates are degraded after chromatid separation, APCCdh1 has to be activated at a later time as compared with APCCdc20 (10). Therefore, the conversion from the APCCdc20 complex to APCCdh1 is tightly regulated during mitosis (4, 10).

The mechanism of the activation of APCCdh1 and exit from mitosis is best characterized in budding yeast (4). Mutations of a set of yeast genes, including TEM1, LTE1, DBF2, DBF20, CDC5, CDC14, CDC15, and MOB1, stabilize mitotic cyclin Clb2p and cause late anaphase arrest, indicating that they are required for the exit from mitosis (4, 12–14). These genes are collectively referred to as the mitotic exit network (MEN) (13). Among the MEN genes, Tem1 is a small GTP-binding protein that belongs to the Ral subfamily (4, 15). Lte1 is a guanine nucleotide exchange factor for Tem1 and presumably regulates its activity positively (4, 16). Lte1 and Tem1 remain spatially segregated until late anaphase, at which time Lte1 and Tem1 co-localize to the bud (17). The activation of Tem1 then triggers the dissociation of the Cdc14 dual specificity protein phosphatase from the RENT (for regulator of nucleolar silencing and telophase) complex, resulting in the release of Cdc14 from the nucleolus (13, 14, 18). In early mitosis, the yeast Cdh1 is phosphorylated by the Clb2-Cdc28 mitotic kinase, and phosphorylation of Cdh1 prevents its interaction with APC (19). In late anaphase, the Cdc14 protein liberated from the nucleolus dephosphorylates Cdh1 and activates APCCdh1 (20). Therefore, Cdc14 may be the most downstream component of the MEN proteins.

Homologues of several yeast MEN proteins, such as Cdc14, Cdc5, and Mob1 have been identified in vertebrates (21–23). In particular, the polo-like kinases, the vertebrate homologs of Cdc5, have been implicated in the activation and maintenance of APC activity (24). Moreover, phosphorylation of human Cdh1 (hCdh1) blocks its ability to activate APC (25, 26). These findings suggest that similar mechanisms for the regulation of APCCdh1 and the exit from mitosis may exist in mammalian cells. However, little is known about whether and how the MEN genes might regulate APCCdh1 in organisms other than the budding yeast.

Here we report the biochemical characterization of a human homologue of Cdc14, hCdc14a. Phosphorylation of hCdh1 by cyclin B1-Cdc2 alters the conformation of hCdh1 and blocks its ability to stimulate the ligase activity of APC. The purified hCdc14a protein dephosphorylates hCdh1 and restores its ability to activate APC. Expectedly, hCdc14a does not affect the activity of APCCdc20. Moreover, hCdc14a exists as part of a 500-kDa complex and is a major phosphatase of hCdh1 in HeLa cells. Finally, hCdc14a localizes to centrosomes throughout the cell cycle. Because several yeast MEN proteins have been shown to localize to spindle pole bodies, the centrosome localization of hCdc14a is consistent with it playing an important role in the regulation of APC in mammalian cells. Therefore, our data suggest that hCdc14a activates APCCdh1 in late anaphase and is a member of the MEN family of proteins in mammals.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification—For the production of hCdc14, the phosphatase-inactivating mutant of hCdc14 with its active site...
cysteine mutated to a serine (hCdc14-PSD), hCdc20, and hCdc1 proteins, recombinant baculoviruses encoding these proteins fused at the N termini with the Hi

APC Ubiquitination Assay—For the interaction between APC and Cdh1, we constructed baculoviruses encoding human cyclin B1 and an AF mutant of human Cdc2. The Cdc2-AF mutant changes Thr

Phosphorylation of hCdh1 by Cyclin B1-Cdc2 Blocks Its Ability to Activate APC—Because Clb2-Cdc28 inactivates Cdh1 during mitosis in yeast (19), we expected that cyclin B1-Cdc2 might act similarly in vertebrates. We therefore tested whether purified cyclin B1-Cdc2 inhibited the activity of APC

Cell Culture—HeLa cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum in the presence of 2 mM thymidine (Sigma) for 18 h to arrest the cell cycle at the G1/S boundary, washed with phosphate-buffered saline, and grown in fresh medium without thymidine for 8 h. Cells were then incubated with 2 mM thymidine for another 18 h, transferred into fresh medium, and harvested at various time points. The cells were lysed with the Nonidet P-40 lysis buffer. HeLa lysates were then fractionated on a Superose 6 column and blotted with α-hCdc14a.

Immunofluorescence—The α-hCdc14a antibody was made against a glutathione S-transferase fusion protein containing a C-terminal fragment (residues 330–580) of hCdc14a. The fusion protein was expressed in bacteria and purified with glutathione-agarose beads and used to immunize rabbits at Zymed Laboratories Inc. For immunostaining, HeLa cells grown to 50–70% confluence were fixed with 4% paraformaldehyde, permeabilized with 0.1% Triton X-100 in phosphate-buffered saline, and incubated with 1 µg/ml affinity-purified polyclonal α-hCdc14a and a 1:2000 dilution of α-tubulin monoclonal antibody. After washing, fluorescent secondary antibodies against rabbit and mouse IgG were added at 1:500 dilution. The cells were again washed three times in phosphate-buffered saline and viewed using a ×63 objective on a Bio-Rad confocal microscope.

RESULTS

Phosphorylation of hCdh1 by Cyclin B1-Cdc2 Blocks Its Ability to Activate APC—Because Clb2-Cdc28 inactivates Cdh1 during mitosis in yeast (19), we expected that cyclin B1-Cdc2 might act similarly in vertebrates. We therefore tested whether purified cyclin B1-Cdc2 inhibited the activity of APC

Fig. 1. Human cyclin B1-Cdc2 inactivates APC

A

I-APC

hCdh1

ATP

AMP-PNP

Cyclin B1/cdc2

B

MW (kD)

Cyclin Ub

Conjugates

1 2 3 4 5

29 43 48

Cyclin B1

hCdh1

hCdh1
hCdc14a Is a Functional Phosphatase for hCdh1—Li et al. identified a human homologue of the yeast Cdc14, hCdc14a, on the basis of sequence similarity (21). The hCdc14a protein is 64% identical to yeast Cdc14 (21). Furthermore, overexpression of hCdc14 rescued the temperature-sensitive phenotype of cdc4−117p in budding yeast (21). These data suggest that hCdc14a might be functionally related to yeast Cdc14. To determine whether hCdc14a is a functional phosphatase for hCdh1, purified recombinant hCdc14a protein was added to kinase assays containing cyclin B1-Cdc2 and 35S-labeled hCdh1. Incubation of hCdh1 with cyclin B1-Cdc2 generated slower migrating phosphorylated species of hCdh1 (Fig. 2A). The addition of hCdc14a reversed the mobility shift of hCdh1, indicating that hCdc14a dephosphorylated hCdh1 (Fig. 2A).

We also performed kinase and phosphatase assays in the presence of [γ-32P]ATP (Fig. 2B). Cyclin B1-Cdc2 phosphorylated both histone H1 and an N-terminal fragment of hCdh1 (hCdh1N) (Fig. 2B, lanes 1–5). The inclusion of hCdc14 in the kinase assays greatly reduced hCdh1N phosphorylation, while it dephosphorylated histone H1 to a much lesser extent (Fig. 2B, lanes 6–10). Therefore, hCdh1 is a substrate of the hCdc14a phosphatase. Because recombinant hCdc14 was purified from SF9 cells, it is possible that there was a trace amount of other phosphatase contamination in our preparation of hCdc14a. To rule out this possibility, high concentrations of microcystin or okadaic acid were added to the hCdc14a reactions. The two most abundant phosphatases in cells are PP1 and PP2A, both of which can be inhibited by microcystin or okadaic acid. In contrast, hCdc14a belongs to the family of dual specificity phosphatases, which use distinct mechanisms for catalysis. As expected, the phosphatase activity of hCdc14a was not inhibited by either microcystin or okadaic acid (Fig. 2C).

Regulation of APC by hCdc14a

hCdc14a Activates APC Cdh1—We next tested whether dephosphorylation of hCdh1 by hCdc14a restored the ability of hCdh1 to activate APC. To obtain phosphorylated hCdh1 protein in large quantities, we treated SF9 cells infected by hCdh1-encoding baculoviruses with okadaic acid, which inhibited abundant phosphatases and promoted a mitotic-like state in these cells (25). The hCdh1 protein purified from okadaic acid treated cells was hyperphosphorylated. Consistent with an earlier report (25), phosphorylated hCdh1 protein was much less active in stimulating the APC activity, as compared with hCdh1 purified from untreated SF9 cells (Fig. 3A). The addition of hCdc14a dramatically increased the ability of phosphorylated hCdh1 to stimulate the ligase activity of APC (Fig. 3B). Interestingly, hCdc14a also slightly enhanced the activity of hCdh1 purified from SF9 cells not treated with okadaic acid (Fig. 3B). It is possible that a portion of Cdh1 protein purified from SF9 cells was phosphorylated even in the absence of okadaic acid treatment. To estimate the activity enhancement of APC Cdh1 by hCdc14a, we repeated the experiment with much less hCdh1 added to the reactions (Fig. 3C). The activity of hCdc14a-treated APC Cdh1 at 20 nm was similar to that of APC activated with 400 nm of phosphorylated hCdh1. Therefore, hCdc14a enhanced the activity of phosphorylated APC Cdh1 by about 20-fold. To determine whether the phosphatase activity of hCdc14a was required for this stimulation, we constructed, expressed, and purified a phosphatase-inactive mutant of hCdc14a by replacing its active site cysteine with serine. The addition of the phosphatase-dead mutant of hCdc14a (hCdc14a-PD) only stimulated the activity of APC Cdh1 slightly (Fig. 3D). Therefore, the phosphatase activity of hCdc14a is required for its ability to activate APC Cdh1.

To ascertain that the stimulatory effect of hCdc14a was specific to Cdh1, we tested the effect of hCdc14a addition on the activity of the APC Cdc20 complex. Expectedly, hCdc14a did not affect the activity of APC Cdc20 (Fig. 4). Therefore, dephosphorylation of hCdh1 by hCdc14a was probably responsible for the observed stimulatory effect of hCdc14a.
hCdc14a Is a Major Phosphatase of hCdh1 in HeLa Cells

We next determined the native size of hCdc14 in HeLa cell lysates synchronized at different cell cycle stages. HeLa cells were synchronized at the G1/S boundary by a double thymidine block and released into fresh medium. Samples were taken at various time points. Based on fluorescence-activated cell sorting analysis and cyclin B1 immunoblotting, cells were effectively synchronized (data not shown). The cell lysates were fractionated on a gel filtration column, and the resulting fractions were then blotted with the anti-hCdc14 antibody (Fig. 5A). In all cell cycle stages, the majority of hCdc14 eluted in fractions 14 and 15, which corresponded to a molecular mass of about 500 kDa. We then concentrated the fractions of the G1 phase lysate (12 h after the release of the thymidine block) and assayed their ability to dephosphorylate hCdh1N. A final concentration of 2 μM of microcystin was added to inhibit PP1 and PP2A in these fractions. Phosphatase activity that dephosphorylates hCdh1N co-eluted with hCdc14a, with the exception of fraction 17 (Fig. 5B). Therefore, hCdc14a co-elutes with a major hCdh1 phosphatase in HeLa cell lysates.

hCdc14a Localizes to the Centrosomes—The yeast Cdc14 protein is sequestered by Net1/Cfi1 in the nucleolus (13, 14, 18). The release of Cdc14 from the nucleolus at late anaphase then activates APCCdh1, leading to the exit from mitosis (13, 14). To determine whether a similar regulatory mechanism exists in mammals, we examined the localization of hCdc14 in HeLa cells by indirect immunofluorescence. The affinity-purified polyclonal hCdc14a antibody recognized a predominant band of 68 kDa in HeLa cell lysate (Fig. 6A). The predicted molecular mass of hCdc14a is 69.6 kDa. Therefore, the hCdc14a antibody specifically detects hCdc14a in HeLa cell lysate. HeLa cells were then fixed with paraformaldehyde, permeabilized, and stained with the hCdc14a antibody. In addition to the nuclear staining, hCdc14 also localized to the centrosomes in interphase cells (Fig. 4).
6B). The centrosomal localization of hCdc14 persisted in all phases of mitosis (Fig. 6B). We did not observe clear nucleolus staining of hCdc14a at any stages of the cell cycle.

DISCUSSION

Conversion from APC^{CDc20} to APC^{CDc14} in Late Anaphase—APC controls two critical transitions during the cell cycle: sister-chromatid separation and the exit from mitosis by mediating the sequential degradation of securins and mitotic cyclins. The degradation of securins should always precede that of cyclin B and other APC substrates, such as Cdc5/Plk (8, 28, 29) and Cdc20 itself (11), that are essential for various late mitotic events. Therefore, the timing of degradation of these APC sub-
strates has to be carefully orchestrated. The timely degradation of the APC substrates depends on the proper regulation of the APC activity, especially the conversion from APC^{Cdc20} to APC^{Cdh1} in late anaphase. Phosphorylation of APC and Cdh1 plays an important role in controlling this conversion. In mitosis, phosphorylation of several APC subunits enhances the activity of APC^{Cdc20} (8, 25). On the other hand, phosphorylation of hCdh1 inhibits its ability to stimulate APC. This is essential for keeping APC^{Cdh1} off until cyclin B-Cdc2 has completed its functions in mitosis. Our results reported herein indicate that, similar to the regulation of APC^{Cdh1} in budding yeast, dephosphorylation of hCdh1 by hCdc14a leads to the activation of APC^{Cdh1} at late anaphase in mammalian cells.

In addition to phosphorylation, both APC^{Cdc20} and APC^{Cdh1} are also regulated by Mad2 and its related protein Mad2b, in response to the mitotic checkpoint signals (30–32). It remains to be determined whether and how phosphorylation of hCdh1 and Mad2b binding cooperate to inhibit APC^{Cdh1} in late anaphase.

Localization and Regulation of hCdc14a—In yeast, a major mechanism for regulating the function of Cdc14 is to control its cellular localization (13, 14). Prior to late anaphase, Cdc14 is anchored in the nucleolus by the RENT protein complex containing Net1/Cfi1. It is the release of Cdc14 from the nucleolus that allows Cdc14 to encounter its substrate Cdh1 and activate APC^{Cdh1}. However, hCdc14a does not appear to localize to the nucleolus in HeLa cells. Instead, aside from the diffusive nuclear distribution, hCdc14a localizes to the centrosomes. Spatio-temporal separation between hCdc14a and its substrate might not be the mechanism of regulation for hCdc14a in mammalian cells. In any case, nucleolus sequestration is not expected to be the sole mechanism for the regulation of the vertebrate Cdc14, simply because the nucleoli in vertebrate cells dissolve in prophase long before the activation of APC^{Cdh1}. It is also worth noting that no Net1/Cfi1 homologs have been identified in vertebrates so far.

The localization pattern of hCdc14a is consistent with its role in regulating APC^{Cdh1} in vivo for several reasons. In Drosophila, the degradation of cyclin B is spatially regulated; the spindle-associated cyclin B is degraded first at the spindle poles, and the degradation then spreads toward the equator, whereas the cytosolic cyclin B is degraded at an even later time (33). In mammalian cells, cyclin B1 degradation also occurs first at the spindle poles and chromosomes (34). Several APC subunits are enriched at centrosomes (35). Therefore, the localization of hCdc14a, an activator of APC^{Cdh1}, at the centrosomes provides the potential explanation for the initiation of cyclin B degradation at the spindle poles. In addition, several MEN proteins, such as Dbf2 and Cdc15, and the negative regulator of the MEN pathway, Bub2, localize to spindle poles in budding yeast (36–39). The centrosome localization of hCdc14a suggests that the MEN proteins in mammalian cells might also be enriched at the centrosomes. The lack of nucleolus sequestration of hCdc14a in HeLa cells suggests that, despite the conservation of some of the molecular players of the mitotic exit network, the MEN proteins might utilize distinct mechanisms to regulate hCdc14a in mammalian cells.

Acknowledgments—We thank Bing Li for maintaining the Sf9 cell culture and Zhanyun Tang for providing ubiquitination reagents. We also thank Rajnish Bharadwaj and the members of the Yu laboratory for helpful discussions.

REFERENCES
1. King, R. W., Deshaies, R. J., Peters, J.-M., and Kirschner, M. W. (1996) Science 274, 1652–1659
2. Zachariae, W., and Nasmyth, K. (1999) Genes Dev. 13, 2039–2056
3. Nasmyth, K., Peters, J.-M., and Uhmann, F. (2000) Science 288, 1379–1385
4. Morgan, D. O. (1999) Nat. Cell Biol. 1, E47–E53
5. Schwab, M., Lutum, A. S., and Seufert, W. (1997) Cell 90, 683–693
6. Siggia, E. J., and Lehner, C. F. (1997) Cell 90, 671–681
7. Visintin, R., Prinz, S., and Amon, A. (1997) Science 276, 460–463
8. Fang, G., Yu, H., and Kirschner, M. W. (1998) Mol. Cell 2, 163–171
9. Kramer, E. R., Giessers, C., Holzu, G., Hengstschlager, M., and Peters, J.-M. (1998) Curr. Biol. 8, 1207–1210
10. Zachariae, W. (1999)Curr. Opin. Cell Biol. 11, 708–716
11. Pfleger, C. M., and Kirschner, M. W. (2000) Genes Dev. 14, 655–665
12. Jaspersen, S. L., Charles, J. F., Tinker-Kulberg, R. L., and Morgan, D. O. (1998) Mol. Biol. Cell 9, 2803–2817
13. Shou, W., Seol, J. H., Shevchenko, A., Baskerville, C., Moazed, D., Chen, Z. W., Fang, J., Charbonneau, H., and Deshaies, R. J. (1999) Cell 97, 233–244
14. Visintin, R., Hwang, E. S., and Amon, A. (1999) Nature 398, 818–823
15. Shirayama, M., Maitou, Y., and Tob-E, A. (1994) Mol. Cell. Biol. 14, 7476–7482
16. Keng, T., Clark, M. W., Storms, B. K., Forin, T., Zhong, W., Ouellette, B. F., Barton, A. B., Kadam, D., and Bussey, H. (1994) Yeast 10, 953–958
17. Bardin, A. J., Visintin, R., and Amon, A. (2000) Cell 102, 21–31
18. Straight, A. F., Shou, W., Dower, G. J., Turck, C. W., Deshaies, R. J., Johnson, A. D., and Moazed, D. (1999) Cell 97, 245–256
19. Zachariae, W., Schwab, M., Nasmyth, K., and Seufert, W. (1998) Science 282, 1721–1724
20. Jaspersen, S. L., Charles, J. F., and Morgan, D. O. (1999) Curr. Biol. 9, 227–236
21. Li, L., Ernsting, B. R., Wishart, M. J., Lobhe, D. L., and Dixon, J. E. (1997) J. Biol. Chem. 272, 29403–29406
22. Lee, K. S., and Erikson, R. L. (1997) Mol. Cell. Biol. 17, 3408–3417
23. Moreno, C. S., Lane, W. S., and Pallas, D. C. (2001) J. Biol. Chem. 276, 24253–24260
24. Nigg, E. A. (1998) Curr. Opin. Cell Biol. 10, 776–783
25. Kramer, E. R., Scheuringer, N., Podtelejnikov, A. V., Mann, M., and Peters, J. M. (2000) Mol. Cell 11, 1555–1569
26. Lukac, C., Sorensen, C. S., Kramer, E., Santonji-Rugiu, E., Lindeng, C., Peters, J.-M., Bartek, J., and Lukas, J. (1999) Nature 401, 815–818
27. Hersko, A., and Ciechanover, A. (1998) Annu. Rev. Biochem. 67, 425–479
28. Charles, J. F., Jaspersen, S. L., Tinker-Kulberg, R. L., Hwang, L., Szidon, A., and Morgan, D. O. (1998) Curr. Biol. 8, 497–507
29. Shirayama, M., Zachariae, W, Ciosk, R., and Nasmyth, K. (1998) EMBO J. 17, 1536–1549
30. Fang, G., Yu, H., and Kirschner, M. W. (1998) Genes Dev. 12, 1871–1883
31. Chen, J., and Fang, G. (2001) Genes Dev. 15, 1765–1770
32. Pfleger, C. M., Salic, A., Lee, E., and Kirschner, M. W. (2001) Genes Dev. 15, 1759–1764
33. Huang, J., and Raff, W. J. (1999) EMBO J. 18, 2184–2195
34. Clute, P., and Pines, J. (1999) Nat. Cell Biol. 1, 82–87
35. Togendreich, S., Tomkiel, J., Earnshaw, W., and Hieter, P. (1995) Cell 81, 261–268
36. Frezn, L. M., Lee, S. E., Pesquet, D., and Johnston, L. H. (2000) J. Cell Sci. 113, 3399–3408
37. Moses, R., Neuman, A., and Seufert, W. (2001) Curr. Biol. 11, 345–350
38. Blochea, A., Venturi, G. M., and Tatchell, K. (2000) Nat. Cell Biol. 2, 556–558
39. Pereira, G., Hofken, T., Grindlay, J., Manso, C., and Schiebel, E. (2000) Mol. Cell 6, 1–10