Ab initio studies of phonon softening and high pressure phase transitions of α-quartz SiO₂

N. Choudhury and S. L. Chaplot
Solid State Physics Division, Bhabha Atomic Research Centre
Trombay, Mumbai 400 085, India

Abstract
Density functional perturbation theory calculations of α-quartz using extended norm conserving pseudopotentials have been used to study the elastic properties and phonon dispersion relations along various high symmetry directions as a function of bulk, uniaxial and non-hydrostatic pressure. The computed equation of state, elastic constants and phonon frequencies are found to be in good agreement with available experimental data. A zone boundary (1/3, 1/3, 0) K-point phonon mode becomes soft for pressures above P = 32 GPa. Around the same pressure, studies of the Born stability criteria reveal that the structure is mechanically unstable. The phonon and elastic softening are related to the high pressure phase transitions and amorphization of quartz and these studies suggest that the mean transition pressure is lowered under non-hydrostatic conditions. Application of uniaxial pressure, results in a post-quartz crystalline monoclinic C2 structural transition in the vicinity of the K-point instability. This structure, intermediate between quartz and stishovite has two-thirds of the silicon atoms in octahedral coordination while the remaining silicon atoms remain tetrahedrally coordinated. This novel monoclinic C2 polymorph of silica, which is found to be metastable under ambient conditions, is possibly one of the several competing dense forms of silica containing octahedrally coordinated silicon. The possible role of high pressure ferroelastic phases in causing pressure induced amorphization in silica are discussed.

I. Introduction
The silica polymorph quartz exhibits several interesting properties1-17 including pressure induced amorphization1-2, 8, high pressure and temperature phase transitions4-7, 11,19, anomalous elastic properties1-6, negative Poisson ratios6(b-c), soft mode behavior10-17, etc. Silica in its various crystalline and amorphous forms finds several industrial applications including being a raw material for glasses, ceramics, production of silicon, etc. Quartz oscillators and optical waveguides are used extensively in long distance telecommunications and industry. Despite its simple chemical composition, silica is known to assume various structures which have a wide range of densities (2.3-4.3 gm/cm³) and bulk modulii and has aroused considerable theoretical26 and experimental3-6,6(a-b),27-30 interest.

α-quartz is the most stable silica polymorph at ambient conditions (up to 3 GPa), and persists as a metastable state at higher pressures. Quartz amorphizes at pressures of around 18-35 GPa1-3. On release of pressure, quartz remains amorphous1, but is anisotropic with memory of the quartz crystallographic orientation1(c,6a). The atomic disorder with pressure was therefore believed to derive from small perturbations of the quartz structure. Although pressure induced amorphization occurs in a variety of solids like α-quartz1-2, coesite22, ice31, etc. its origins are not clearly understood. Several post-quartz crystalline phases have also been reported both from theory1(b,4) and experiments1(b),4. First principles molecular dynamics simulations predicted a new structure for silica which results from annealing quartz at pressures near a major phonon instability7. The diffraction pattern of this phase compared favorably with that of an unidentified intermediate crystalline phase10 found in silica during the amorphization.

Molecular dynamics (MD) simulations using interatomic potentials fitted to first principles total energy surfaces24-25 reveal pressure induced amorphization8 at P ~ 22 GPa, in agreement with experiments. Around the amorphization pressure, α-quartz displays soft phonon modes9-10 with a Kpoint phonon mode becoming unstable above P = 21 GPa. First principles high pressure calculations, however indicated that the Kpoint phonon instability occurs at a higher pressure17. Although the interatomic potentials24-26 reproduce the observed pressure induced amorphization transition9-10 pressure correctly, there are important differences in the computed elastic constants and Born stability criteria15, Raman and infrared data as compared to experimental data3,29-30 and available first principles results15,20.

We report density functional theory32-38 (DFT) and density functional perturbation theory32-38 (DFPT) calculations of the equation of state, elastic constants, Born stability criteria, phonon dispersion relations and their variations with pressure of α-quartz. Our goals are to (i) understand the K-point phonon instability and its variations under bulk and uniaxial compression as well as under non-hydrostatic conditions (ii) study the high pressure phase transitions of quartz, and (iii) understand the mechanical stability of quartz at high pressure as studied from the elastic constants and Born stability criteria. There are various controversies in the literature3,16 on the appropriate Born stability criteria to be applied to study the mechanical stability of quartz at high pressure, etc. We address these issues, and have undertaken systematic high pressure studies of a variety of
properties, including under non-hydrostatic conditions. A new high pressure crystalline post-quartz monoclinic phase is obtained and its structural properties studied.

II. Techniques

Quartz has a trigonal structure (space group P_3_21) with 9 atoms/unit cell. Density functional perturbation theory (DFPT) linear response calculations with a plane-wave basis set as implemented in the code ABINIT were undertaken. We used the local density approximation (LDA) involving a rational polynomial parametrization of the exchange-correlational functional based on Ceperley and Alder electron-gas data and employ well tested extended norm conserving separable pseudopotentials used earlier for zero pressure calculations of α-quartz and stishovite. The computed phonon frequencies and LO-TO splittings, dispersion relations, density of states, specific heat and mean square atomic displacements using these pseudopotentials were found to be in good agreement with experiments. A large planewave energy cutoff of 120 Ry and smearing of 1 Ry were used to obtain precise values of the stress tensor in the high pressure studies. The Brillouin zone (BZ) integrations were performed using a $4x4x4$ special k-point mesh. Selected computations of the long wavelength and zone boundary K-point phonons with a $6x6x6$ special k-point mesh showed that the $4x4x4$ mesh was sufficient and the total energies, structural variables and phonon frequencies were well converged at the highest pressures. At each pressure, the structures were completely relaxed prior to the calculations.

To obtain the phonon frequencies at a general wave vector, we first computed the dynamical matrices on the $(4,4,4)$ wavevector grid involving 10 wave vectors in the reciprocal space and computed the interatomic force constants. The long-range dipole-dipole interactions were taken into account separately using the calculated anisotropic Born effective charge tensor and dielectric tensor. The elastic constants as a function of pressure were evaluated both from DFPT linear response using a $6x6x6$ special k-point mesh with an energy cutoff of 120 Ry as well as directly from the stress-strain relations. To compute the elastic constants under pressure, we applied the appropriate strains that yield the various elastic constants and computed the total energies and stresses, after careful relaxation of the strained structures. Linear response DFPT studies with strain perturbations using the reduced coordinate metric tensor method of Hamann et al. were also used to study the elastic constants at high pressure. The linear response results give the proper elastic constant tensors and appropriate pressure corrections were applied to obtain the stiffness constants which satisfy the Born stability criteria.

III. Results

(A) Equation of state and long wavelength phonon frequencies

The computed crystal structure, equation of state and long wavelength phonon frequencies (Figs. 1-3) are found to be in good agreement with reported high pressure experimental data and available first principles LDA calculations. First principles LDA and Generalized Gradient Approximation (GGA) studies of the equation-of-state of α-Quartz have been reported by various workers and we have compared our calculated results with the theoretical and reported experimental studies in Fig. 2. Quartz has a framework structure (Fig. 1) formed by corner shared silicate tetrahedral units. Application of pressure distorts and causes tilts in the tetrahedral units and quartz reconstructively transforms successively to the coesite and octahedrally coordinated stishovite phases at high pressure. Due to large kinetic barriers, quartz however persists as a metastable state up to very high pressures at room temperature. The 4 to 6 coordinated silicon transition is known to cause seismic discontinuities in the Earth’s mantle which marks the transition from the upper to lower mantle, and understanding the mechanism of this transition particularly for a model system like silica is particularly useful. Hamann’s studies on the quartz to stishovite phase transition indicates that only the GGA yields correct relative energies and leads to a reasonably accurate prediction of the transition pressure. However the structural parameters within the GGA are less accurately predicted; these have motivated the development of more accurate GGA. The LDA calculations of α-quartz predict the equilibrium volume with an accuracy of 1%, whereas the GGA lead to an overestimate of 6.6%. The LDA also lead to a consistently more accurate description of all atomic coordinates; we have therefore adopted the LDA for our high pressure studies. Even within the LDA, the reported bulk moduli show a large scatter (35 GPa, 45 GPa, both having $B’=4.9; B=38.1$ GPa); the corresponding equilibrium LDA volumes typically scatter between 35.8 Å3 and 38.55 Å3. Experimental synchrotron x-ray diffraction measurements of Haines et al. indicate that quartz is metastable up to much higher pressures than the reported equation-of-state measurements which are typically available in the 0-10 GPa range; in the present study, we report the equation-of-state over the entire pressure range (0-32 GPa) over which α-quartz is dynamically and mechanically stable (Fig. 2).

The long wavelength phonon modes in α-quartz at the zone center Γ point can be classified as

\[\Gamma: 4A_1 + 5A_2 + 9E \]
The E phonon modes are doubly degenerate polar phonon modes. The computed structures and variations of the Born effective charge tensors, electronic dielectric tensors and phonon frequencies with pressure are given in Tables I-V. All the structures given in Table I are dynamically stable in the entire Brillouin zone and represent stable and metastable high-pressure quartz structures under hydrostatic and non-hydrostatic conditions. Both the Born effective charges (Table II) and electronic dielectric tensors (Table III) are required to understand the influence of the macroscopic electric field on long wavelength phonon properties. The Born effective charge tensor gives a measure of the local dipole moment which develops when the nuclei are moved and corresponds to the variation of the polarization with atomic displacements. As the Born effective charge tensor $Z_{\mathbf{q}}^+(k)$ is a mixed second derivative of the total energy, with respect to macroscopic electric field component $E_{\mathbf{q}}$ and atomic displacement component $r_{\mathbf{q}}$, there is no requirement that the tensor be symmetric. The pressure variations of the low and high frequency dielectric tensors are given in Table III. The zero pressure dielectric tensors are overestimated as is typical within the LDA; however, application of the scissors correction\(^{20(a)}\) has been found to improve the agreement with experimental data for both high and low frequency tensors. Gonze et al.\(^{20(a)}\) discuss the important role of the anisotropy of the Born effective charge tensors in describing the observed zero pressure LO-TO splittings in α-quartz. Our zero pressure results (Table IV) are in complete agreement with their studies\(^{20(a)}\). At higher pressures, the anisotropy of the charge tensor (Table III) is found to significantly reduce which indicates important changes in bonding character. The LO-TO splittings of the A_2 phonon modes (with macroscopic electric field parallel to the c-axis) especially the 343 and 763 cm$^{-1}$ phonon modes, significantly increase with pressure. The splittings of the doubly degenerate E phonon modes which have their macroscopic electric field perpendicular to the c-axis are not largely altered by pressure with the simultaneous hardening of both the LO and TO modes. The 465 cm$^{-1}$ non-polar A_1 phonon mode (Table V) hardens significantly with pressure in good agreement with experimental measurements\(^{39}\).

(B) High pressure elastic constants and Born stability criteria

The computed $P=0$ elastic constants obtained from linear response DFPT calculations are in good agreement with reported experimental data (Table VI). We have compared our zero pressure elastic constants with the calculated LDA results of Holm and Ahuja\(^{18}\); although the overall agreements with experiments seem similar, the calculated individual elastic constants obtained have some differences (Table VI). The elastic constants of α-quartz, particularly, the soft elastic constants C_{12}, C_{13} and C_{44} are very sensitive to the relaxed structural parameters obtained. While we obtain better agreement with experiments for C_{13} and C_{44}, Holm and Ahuja\(^{18}\) obtain better agreement for C_{11} and C_{12}. It is interesting to see that even in the experiments, the C_{33} values reported\(^{3,5}\) (Table VI) are different; a somewhat large scatter is also obtained in the bulk modulii and observed equation of state\(^{30(a,4)}\).

There are various definitions of the elastic constants\(^{38,43,45-47}\) however the elastic constant obtained from stress-strain relations and from long-wavelength lattice dynamics are different\(^{43,45-47}\) for non-zero stresses. The elastic constants that define the mechanical stability criteria under pressure are those appearing in stress-strain relations\(^{45-47}\). The linear response formulation\(^{32}\) taking into account strain perturbations on the other hand gives the “proper elastic constant tensor”\(^{38}\). While these two definitions become identical at zero pressure, under hydrostatic pressure appropriate pressure corrections have to be applied\(^{38,45-47}\) to the linear response results.

The computed high pressure elastic constants of α-quartz evaluated for bulk hydrostatic pressure using the stress-strain relations are compared with reported high pressure Brillouin scattering measurements\(^4\) in Fig. 4. The computed elastic constants obtained from linear response studies with strain perturbations and appropriate pressure corrections\(^{38,45-47}\) are found to be in excellent agreement (to well within 0.5 GPa) with the values obtained from stress-strain relations. The elastic constants C_{11} and C_{33} increase sharply with pressure. Although the zero pressure elastic constants are in good agreement with experiments (Table VI), the computed high pressure average elastic constants seem underestimated (Fig. 4). The elastic constants of α-quartz are found to be quite sensitive to the hydrostatic pressure conditions and the variations could perhaps be due to the difficulties in maintaining perfect hydrostatic conditions at high pressure in the experiments.

The mechanical Born stability criteria for trigonal structures results in various constraints for the elastic constants which are given by\(^{11(a,15b)}\),

\[
\begin{align*}
B_1 &= C_{11}C_{12} > 0 \\
B_2 &= (C_{11}+C_{12}+C_{33}+2(C_{13})^2 > 0 \\
B_3 &= (C_{11}+C_{12})(C_{44}+2(C_{14})^2 > 0
\end{align*}
\]

(1)

The computed variations of B_1, B_2 and B_3 with pressure are shown in Fig. 5. All the three conditions given in Equation (1) must be simultaneously satisfied for the system to be mechanically stable\(^{11(a,15)}\). B_1 and B_2 are positive up to 40 GPa (Fig. 5).
The quartz structure becomes mechanically unstable around P=32 GPa as B_3 becomes negative and the Born stability criteria gets violated. Our computed results and trends for B_1, B_2 and B_3 (Fig. 5) are in good qualitative agreement with the reported experimental Brillouin scattering results of Gregoryanz et al.3 and the theoretical studies of Bingelli et al.15(b). While the interatomic potentials yield lower transition pressures15(b) of around P=20 GPa, the first principles results reveal that the system is mechanically unstable at pressures around P=32 GPa.

(C) High pressure phonon instabilities and structural phase transitions

The computed phonon dispersion relations in α-quartz at various bulk pressures, namely, P=0, 24, 30 and 38 GPa are shown in Fig. 6. Almost all the zone center Raman and infrared modes harden with pressure as observed experimentally (Fig. 3). The zero pressure phonon dispersion reveals a large band gap from 24-31 THz; this gap significantly lowers at high pressures. The lowest zone boundary K-point phonon mode becomes soft for bulk pressures above P=32 GPa and the pressure evolution of the phonon instability can be clearly seen from Figs. 5 and 6. At P=24 GPa, the K-point lowest phonon mode is quite stable; the onset of the instability occurs well above this pressure.

We have also computed the “elastic constant” corresponding to the soft acoustic mode using the relation3

$$\rho v^2 = \frac{1}{4} \left\{ (C_{11} - C_{12} + 2C_{44}) - \left[(C_{11} - C_{12} - 2C_{44})^2 + 16C_{14}^2 \right]^\frac{1}{2} \right\}$$

For small B_3, $\rho v^2 = \frac{B_3 C_{44}}{2(C_{14}^2 + C_{12}^2)}$, which is found to be proportional to B_3. The computed ρv^2 (Fig. 5) goes through a maximum near 6.5 GPa and then decreases linearly, vanishing at high pressures. Similar trends have been noticed from Brillouin scattering measurements3 and have been associated with proper ferroelastic behavior in the high pressure regime.3

The phase transition pressure obtained from the vanishing “elastic constant” ρv^2 (Fig. 5(d)) and K-point phonon frequency (Fig. 5(d)) are very close (P=32 GPa). The transition pressure predicted from first principles studies (P=32 GPa) is higher than that obtained from interatomic potentials (P=21 GPa3 using Tsuneyuki et al. potentials24, P=27 GPa10 using other potentials) and in good agreement with the LDA calculations of Baroni and Giannozzi17 giving the K-point instability at P=32 GPa. The mechanical instability of the quartz structure obtained from the Born stability criteria B_3 occurs in the vicinity of the K-point instability, both using interatomic potentials15(b) and from first principles studies.

In Fig. 6, we also display the phonon dispersion for various non-hydrostatic situations. While the plot in Fig. 6(e) with non-hydrostatic pressure involving high pressure along the c-axis as well as the ab-plane has a dispersion similar to under hydrostatic situations, there is a drastic change in dispersion for compression only along the c-axis (Fig. 6(f)). On gradual application of uniaxial pressure, phonon softening is found for the stress tensor $\sigma_{xx}=\sigma_{yy}=0$, $\sigma_{zz}=-15.8$ GPa, $\sigma_{xy}=-15.8$ GPa, $\sigma_{xz}=\sigma_{yz}=\sigma_{z}=0$. The phonon softening is related to the high pressure phase transitions and amorphization of quartz9,10 and these results suggest that the mean transition pressure is significantly lowered under non-hydrostatic conditions. This possibly explains the wide range of amorphization pressure (18-55 GPa) obtained in the experiments1,3. The nature of phonon dispersion (Fig. 6(f)) along the Γ-A direction is quite different for uniaxial compression along the c-axis.

Unconstrained structural relaxation of the 9-atom unit cell of α-quartz around this stress tensor $\sigma_{xx}=\sigma_{yy}=0$, $\sigma_{zz}=-15.8$ GPa, $\sigma_{xy}=\sigma_{yz}=\sigma_{z}=0$ yields a post-quartz transition to a crystalline monoclinic C2 structure. Gradual symmetry preserving structural relaxation yields the corresponding monoclinic C2 structure for bulk pressures. The C2 structure has a significantly lower volume which results in a lower enthalpy (which gives the zero temperature free energy, neglecting zero-point vibrational contributions) than the α-quartz structure for bulk pressures of above P=9 GPa (Fig. 7). Two thirds of the silicon atoms are in octahedral coordination in the C2 structure (Table VII), while the remaining one-thirds silicon are tetrahedrally coordinated both under uniaxial and bulk pressure conditions. The C2 structure has edge-shared octahedral units with corner shared silicate tetrahedra which form a framework structure (Fig. 1).

The computed x-ray diffraction patterns and d-spacings of the post-quartz monoclinic C2 structure at P=38 GPa have been studied (Table VIII). The largest intensities in the C2 structure occur for d-spacings (Å) of 4.7944 (19.5), 3.6912 (14.5), 3.0573 (26.7), 2.7505 (50), 2.6045 (64.8), 2.4478 (31.4), 1.8456 (39.67), 1.7819 (33.35) and 1.6642 (30.91), where the numerical values in parentheses give the relative intensities. The computed x-ray intensities of the high pressure C2 structure are compared with experimental synchrotron x-ray diffraction data (Fig. 8) for the observed high pressure post-quartz crystalline phases10,14. Haines et al.14, obtained a post-quartz crystalline phase by compressing quartz to 45 GPa at room temperature in a close to hydrostatic, helium pressure medium. Kingma et al.1(b) have reported the energy-dispersive diffraction spectra of a post-quartz crystalline phase obtained by quasi-hydrostatic compression of polycrystalline α-quartz. The computed
diffraction patterns (Fig. 8) and d-spacings (Table VIII) of the C2 structure are overall in fair agreement with the synchrotron x-ray data of Haines et al., which have been indexed based on a low symmetry P21/c monoclinic structure. While we obtain diffraction peaks and d-spacings around the positions indicated by Kingma et al., the C2 structure has more peaks (Table VIII, Fig. 8) and lower symmetry than their reported post-quartz crystalline phase.

Although the monoclinic C2 structure has a lower free energy for pressures above P=9 GPa (Fig. 7), quartz can persist metastably up to the point of onset of elastic and dynamical instability, which occurs around bulk pressures of P=32 GPa (Fig. 5). This novel C2 monoclinic polymorph of silica, which is found to be metastable under ambient conditions, is possibly one of the several competing dense forms of silica containing octahedrally coordinated silicon. It is interesting to note that the zero pressure metastable C2 quenched structure obtained from our studies has two-thirds of the silicon atoms which are 5 coordinated to within 1.8 Å, with a sixth oxygen at 2.04 Å. The longest Si-O bond is quite compressible, and with increasing bulk pressure, the octahedral distortions in the C2 structure are lowered.

IV. Discussion

First principles calculations have revealed that the energy landscape in silica at high pressure is quite complex and there are several possible octahedrally coordinated competing dense high pressure silica structures. The crystalline high pressure structures obtained seems to depend on the kinetics and the pathway adopted and several post quartz crystalline structures have been reported both from theory and experiments. Haines et al. have indexed the diffraction patterns for their observed high pressure crystalline post quartz phase based on a monoclinic cell with space group P21/c, with a model structure built up of 3x3x2 zigzag chains of SiO6 octahedra. There are key differences in the observed high pressure post-quartz crystalline structures of Kingma et al. and Haines et al., which probably stem from the different hydrostatic conditions and pathways adopted in the experiments.

First principles molecular dynamics simulations predicted a new trigonal structure for silica (space group P312) with two thirds of silicon atoms in octahedral coordination and three which are 5-coordinated. The diffraction pattern of this phase compared well with the crystalline phase reported by Kingma et al. Due to the different approaches adopted, the post-quartz crystalline structures obtained by Wentzcovitch et al. are different from those obtained in the present study. While our results involve structural optimization of the 9 atom quartz unit cell at high pressure and zero-temperature, Wentzcovitch et al. optimized the geometry of their 27 atom supercell while compressing it to 33 GPa and their resulting structure was annealed at temperatures fluctuating between 300–600 K for 0.8 ps followed by a rapid quench to 0 K.

Theoretical calculations using interatomic potentials to understand the high pressure post quartz crystalline phases have also been reported. Molecular-dynamics calculations at T=300 K reveal a crystalline-to-crystalline transition from α-quartz to a phase with five-coordinated silicon structure at high pressure under non-hydrostatic conditions having the same space group as α-quartz. Various other low symmetry monoclinic structures have also been obtained using the Tsuneyuki et al. and Van Beest et al. interatomic potentials. Our studies reveal that while the simulations using interatomic potentials fitted to first principles energy surface give results in qualitative agreement with first principles, there are important differences. A possible reason for this discrepancy is the inability of isotropic pair potentials to accurately describe the zero pressure LO-T0 splittings and in consequence the complete phonon spectra of quartz. There are reported controversies on the appropriate Born stability criteria adopted at high pressure and the reported mechanical instabilities at high pressure. Our studies however, are in qualitative agreement with the reported Brillouin scattering measurements of Gregoryanz et al. that suggest high pressure ferroelastic transitions in α-quartz driven by the violations of the Born stability criteria for B3.

The new C2 structure we report as well as the various high pressure post-quartz structures reported by others are interestingly racemic with chiral properties. The α-quartz structure features helices of corner-linked SiO4 tetrahedra that can adopt either left- or right-handed configurations; the chiral behavior of quartz has aroused much interest. Theoretical studies using interatomic potentials indicate that while the high pressure monoclinic quartz II structure is ferroelastic in principle, the transition itself is coelastic, as the shape of the newly formed crystal is determined by the handedness of α-quartz. Ab initio studies of the energy barriers for switching the handedness in the high pressure monoclinic quartz structure are desirable, due to the differences between the interatomic potentials and first principles results.

Toledano et al. have explained the mechanism of amorphization under pressure of α-quartz and ice, and the microstructural properties of some ferroelectric relaxors based on a ferroelastic glass state which may form in a crystalline material under the following conditions: (i) the ferroelastic structure can exist in crystallographic configurations corresponding to different spontaneous strain components, and. (ii) an internal stress field is created involving the stress components conjugated to the preceding strains which induces sufficiently large mismatches between the differently sheared domains, leading to a splitting and disintegration of the mesoscopic-size domains into nanodomains, destroying the long-range order in the crystal.
Ferroelastic behavior in the high pressure regime in α-quartz is indicated and is of interest as spontaneous strains can lower the symmetry. All these materials including silica23, ice2 and some relaxors82 seem to have a complex energy landscape with a soft energy surface and various competing energetically equivalent structures. It is interesting to contemplate whether competing high pressure ferroelastic phases can lead to a ferroelastic glass state in silica which in turn leads to its amorphization. A microscopic understanding of the complex energy landscape in silica and the possible role of ferroelastic phases may perhaps provide more insights into the fundamental mechanisms of the observed high pressure amorphization.

V. Conclusions

High pressure first principles density functional theory calculations help understand the role of phonon and elastic instabilities in the high pressure structural phase transitions and amorphization of α-quartz. Non-hydrostatic stresses are found to significantly influence the instabilities and explain the wide range of transition pressures observed in the experiments. A new high pressure post quartz dense silica phase is obtained from structural relaxation in the vicinity of the K-point instability in which two-thirds of the silicon atoms are in octahedral coordination. This structure with effective silicon coordination significantly influence the instabilities and explain the wide range of transition pressures observed in the experiments. A new high pressure first principles density functional theory calculations help understand the role of phonon and elastic instabilities in the high pressure structural phase transitions and amorphization of α-quartz. Non-hydrostatic stresses are found to significantly influence the instabilities and explain the wide range of transition pressures observed in the experiments. A new high pressure post quartz dense silica phase is obtained from structural relaxation in the vicinity of the K-point instability in which two-thirds of the silicon atoms are in octahedral coordination. This structure with effective silicon coordination intermediate between quartz and stishovite is metastable at ambient pressure. Possible links between the ferroelastic nature of high pressure silica transformations and pressure induced amorphization are outlined.

References

1. (a) K. J. Kingma, C. Meade, R. J. Hemley, H. K. Mao, and D. R. Veblen, Science 259, 569 (1993); (b) K. J. Kingma, R. J. Hemley, H. K. Mao, and D. R. Veblen, Phys. Rev. Lett. 70, 3927 (1993); (c) L. E. McNeil and M. Grimsditch, Phys. Rev. Lett. 72, 1301 (1994).
2. E. G. Ponyatovsky and O. I. Barkalov, Mater. Sci. Rep. 8, 147 (1992).
3. (a) E. Gregoryanz, R. J. Hemley, H. K. Mao, and P. Gillet, Phys. Rev. Lett. 84, 3117 (2000); (b) M. H. Muser and P. Schoffel, Phys. Rev. Lett. 90, 079701 (2003); (c) E. Gregoryanz, R. J. Hemley, H. K. Mao, R. E. Cohen, and P. Gillet, Phys. Rev. Lett. 90, 079702 (2003).
4. J. Haines, J. M. Léger, F. Gorelli, and M. Hanfland, Phys. Rev. Lett. 87, 155503 (2001).
5. H. J. McSkimin et al., J. Appl. Phys. 36, 1624 (1965).
6. (a) L. E. McNeil and M. Grimsditch, Phys. Rev. Lett. 68, 83 (1991); (b) Kittinger, J. Tichy, and E. Bertagnolli, Phys. Rev. Lett. 47, 712 (1981); (c) N. Keskar and J.R. Chelikowsky, Nature 358, 222 (1992).
7. R. M. Wentzcovitch, C. da Silva, and J. R. Chelikowsky, Phys. Rev. Lett. 80, 2149 (1998).
8. S. L. Chaplot and S. K. Sikka, Phys. Rev. B 47, 5710 (1993).
9. S. L. Chaplot and S. K. Sikka, Phys. Rev. Lett. 71, 2674 (1993).
10. S. L. Chaplot, Phys. Rev. Lett. 78, 3749 (1999).
11. (a) J. S. Tse and D. D. Klug, Phys. Rev. Lett. 67, 3559 (1991); J. S. Tse and D. D. Klug, Phys. Rev. Lett. 70, 174 (1993); (b) J. S. Tse, D. D. Klug, Y. Le Page, M. Bernasconi, Phys. Rev. B 56, 10878 (1997).
12. J. Badro, D. M. Teter, R. T. Downs, P. Gillet, R. J. Hemley, and J. L. Barrat Phys. Rev. B 56, 5797 (1997).
13. J. Badro, J. L. Barrat, and P. Gillet, Phys. Rev. Lett. 76, 772 (1996); J. Badro, P. Gillet and J.-L. Barrat, Europhys. Lett. 42, 643 (1998).
14. M. S. Somayazulu, S. M. Sharma, and S. K. Sikka, Phys. Rev. Lett. 73, 98 (1994).
15. (a) N. Binggeli and J. R. Chelikowsky, Phys. Rev. Lett. 69, 2220 (1992); (b) N. Binggeli, N. R. Keskar, J. R. Chelikowsky, Phys Rev B 49, 3075 (1994).
16. C. Campana, Martin H. Muser, J. S. Tse, D. Herzbach, and P. Schoffel, Phys. Rev. B 70, 224101 (2004).
17. S. Baroni and P. Gianozzi, in "High Pressure Materials Research", (Ed. R.M. Wentzcovitch, R.J. Hemley, W.J. Nellis and P.Y. Yu) Materials Research Society Proc. 499, (Pittsburgh, p233).
18. B. Holm and R. Ahuja, J. Chem. Phys. 111, 2071 (1999).
19. A. Trave, P. Tangney, S. Scandolo, A. Pasquarello, and R. Car, Phys. Rev. Lett. 89, 245504 (2002); M. B. Smirnov and A. P. Mirmorodsky, Phys. Rev. Lett. 78, 2413 (1997).
20. (a) A. Gonze, D. C. Allan, and M. P. Teter, Phys. Rev. Lett. 68, 3603 (1992); (b) X. Gonze, J.-C. Charlier, D.C. Allan, and M. P. Teter, Phys. Rev. B 50, 13035 (1994); (c) C. Lee and X. Gonze, Phys. Rev. B 51, 8610 (1995).
21. C. Lee and X. Gonze, Phys. Rev. Lett. 72, 1686 (1994); C. Lee and X. Gonze, Phys. Rev. B 56, 7321 (1997).
22. D. W. Dean, R. M. Wentzcovitch, N. Keskar, J. R. Chelikowsky, and N. Binggeli, Phys. Rev. B 61, 3303 (2000).
23. D. M. Teter, R. J. Hemley, G. Kresse, and J. Hafner, Phys. Rev. Lett. 80, 2145 (1998).
24. S. Tsuneyuki, H. Aoki, M. Tsukada, and Y. Matsui, Phys. Rev. Lett. 64, 776 (1990).
25. B. W. van Beest, G. J. Kramer, and R. A. van Santen, Phys. Rev. Lett. 64, 1955 (1990).
26. E. Demiralp, T. Cagin, and W. A. Goddard III, Phys. Rev. Lett. 82, 1708 (1999).
27. G. Dolino, P. Bastie, B. Capelle, V. Chamard, J. Hartwig, and P. L. Guzzo, Phys. Rev. Lett. 94, 155701 (2005); F. Mogeon, G. Dolino, and M. Vallade, Phys. Rev. Lett. 62, 179 (1989).

(a) R.A. Angel, D.R. Allan, R. Miletich and L.W. Finger, J. Appl. Crys. 30, 461 (1997); (b) L. Levien, C.T. Prewitt and D.J. Weidner Am. Mineral. 65, 920 (1980); (c) J. Glinnemann, H.E. King, H. Schulz, Th. Hahn, S.J. La Placa and F. Dacol, Z. Kristallogr. 198, 177 (1992); (d) Hazen R M, Finger L W, Hemley R J and Mao H K, Solid State Commun. 72, 507 (1989); (e) W.G. Wyckoff, Crystal structures (interscience, New York, 1974).

R.J. Hemley (1997) In “High pressure research in mineral physics”, (Ed. M.H. Manghnani et al., Terra Scientific), p233

(a) For a review, see R. J. Hemley, C. T. Prewitt, and K. J. Kingma, in "Silica: Physical Behavior, Geochemistry and Materials Applications", Reviews in Mineralogy 29, (P. J. Heaney, C. T. Prewitt, and G. V. Gibbs Ed., Mineralogical Society of America, Washington DC,1994), p. 41; (b) D. Strauch and B. Dorner, J. Phys. Cond. Matt. 5, 6149 (1993); H. Schober et. al., ibid 5, 6155 (1993).

(a) R. M. Wentzcovitch, Proc. of CECAM Workshop on "Atomic structure and transport in glassy networks" (2002 (unpublished); (b) K. Umemoto, R. M. Wentzcovitch, S. Baroni, and S. de Gironcoli, Phys. Rev. Lett. 92, 105502 (2004); (c) K. Umemoto and R. M. Wentzcovitch, Phys. Rev. B 69, 180103 (2004).

S. Baroni, S. de Gironcoli, A. D. Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).

S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987); P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Phys. Rev. B 43, 7231 (1991).

M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

X. Gonze, Phys. Rev. B 54, 4383 (1996).

X. Gonze, Phys. Rev. B 55, 10337 (1997).

X. Gonze and C. Lee, Phys. Rev. B 55, 10 355 (1997).

D. R. Hamann, X. Wu, K.M. Rabe, and D. Vanderbilt, Phys. Rev. B 71, 035117 (2005); X Wu, D. Vanderbilt, and D. R. Hamann, Phys. Rev. B 72, 035105 (2005)

The ABINIT code is a collaborative project of the Universite Catholique de Louvain, Corning Inc. and other collaborators (URL: http://www.abinit.org/); X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, D.C. Allan, Computational Materials Science 25, 478 (2002).

J.P Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).

M.P. Teter (unpublished)

B.B. Karki, L. Stixrude, and R. M. Wentzcovitch, Reviews of Geophys. 39, 507 (2001).

L. Fast, J.M. Wills, B. Johansson and O. Eriksson, Phys. Rev. B 51, 17431 (1995).

J. Wang, S. Yip, S.R. Phillpot and D. Wolf, Phys. Rev. Lett. 71, 4182 (1983); T. Barron and M. L. Klein, Proc. Phys. Soc. London 85,523 (1965).

C. Wallace, Rev. Mod. Phys. 37, 57 (1965); D.C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972).

J.G. Ackland and S.K. Reed, Phys. Rev. B 51, 174108 (2003).

J.R. Chelikowsky, H. E. King, Jr., N. Troullier, J. L. Martins, and J. Glinnemann, Phys. Rev. Lett. 65, 3309 (1990).

Th. Demuth, Y. Jeanvoine, J. Hafner and J. G. Angyan, J. Phys. Cond. Matt. 11, 3833 (1999).

D.R. Hamann, Phys. Rev. Lett. 76, 660 (1996).

Z. Wu and R.E. Cohen, Cond-Matt. 0508004 (2005).

R.T. Downs and M.H. Wallace, Am. Mineral. 88, 247 (2003).

R.M. Hazen and D.S. Sholl, Nature Materials 2, 367 (2003).

R.T. Downs and R.M. Hazen, J. Mol. Catalysis A: Chemical 216 (2004) 273-285;

P. Tolédano and D. Machon, Phys. Rev. B 71, 024210 (2005)

N. Choudhury and R.E. Cohen (unpublished); N. Choudhury, Z.Wu, E.J. Walter and R.E. Cohen, Phys. Rev. B71, 125134 (2005); N. Choudhury, R.E. Cohen and E.J. Walter, Computational Materials Science (In Press).

Acknowledgements

NC acknowledges useful discussions and partial support from R.E Cohen of the Carnegie Institution of Washington (National Science Foundation grant EAR-0310139 to R.E.C.). NC also thanks X.Gonze and F. Detraux for useful discussions These studies have been carried out using the supercomputing resources of the Bhabha Atomic Research Centre (BARC), India. We gratefully acknowledge computing support from Computer Division, BARC and we thank K. Bhatt and R.S. Sharma, RRSD for technical support.
Table I: Stable and metastable quartz structures as a function of pressure obtained from symmetry preserving structural relaxations with space group $P3_21$. The Si atoms are in $3b$ Wyckoff positions with fractional coordinates $(u, 0, 1/6)$, $(0, u, 5/6)$, $(-u, -u, 1/2)$ and the O atoms in $6c$ positions with coordinates (x, y, z) $(-y, x - y, z + 2/3)$ $(-x + y, -x, z + 1/3)$ $(y, x, -z)$ $(x - y, -y, z + 1/3)$ $(-x, -x + y, -z + 2/3)$. $P1$, $P2$ and $P3$ represent non-hydrostatic pressures with stress tensor \(\sigma_{xx} = \sigma_{yy} = -19 \text{ GPa} \), \(\sigma_{xy} = \sigma_{yz} = \sigma_{zx} = 0 \) and \(\sigma_{zz} = -24.8, -29.6 \) and -38 GPa, respectively. $Pc1$ has the stress tensor \(\sigma_{xx} = \sigma_{yy} = 1.1 \text{ GPa} \), \(\sigma_{xy} = \sigma_{yz} = \sigma_{zx} = 0 \) and \(\sigma_{zz} = -6.9 \text{ GPa} \). All these structures are dynamically stable in the entire Brillouin zone.

P (GPa)	\(a (\text{Å}) \)	\(c (\text{Å}) \)	\(u \)	\(x \)	\(y \)	\(z \)
Bulk Pressure						
0.24	4.8137	5.3150	0.4613	0.4097	0.2814	0.2748
7.1	4.5795	5.1908	0.4451	0.3964	0.3048	0.2589
19.1	4.3444	5.0881	0.4311	0.3773	0.3208	0.2513
23.7	4.2773	5.0584	0.4271	0.3708	0.3247	0.2501
29.6	4.2057	5.0229	0.4227	0.3633	0.3286	0.2491
Non-hydrostatic Pressure						
$P1$	4.3825	4.9724	0.4286	0.3780	0.3203	0.2494
$P2$	4.4135	4.8887	0.4271	0.3788	0.3193	0.2484
$P3$	4.4813	4.7386	0.4258	0.3809	0.3161	0.2468
$Pc1$	4.8316	5.0438	0.4546	0.4070	0.2879	0.2646

Table II: Variations of the dynamic Born effective charge tensors of the Si and O atoms with pressure. Only the tensors of the inequivalent atoms are listed. The charge tensors of other atoms can be derived from symmetry. \(x \) and \(z \) are respectively along the \(a \) and \(c \)-axis.

P (GPa)	Z_{xx}	Z_{yy}	Z_{zz}	Z_{xy}	Z_{xz}	Z_{yx}	Z_{zy}	Z_{zx}	Z_{zy}
Si 0.24	3.01	3.63	3.45	0	0	.28	0	-.32	
19.1	3.17	3.53	3.53	0	0	.26	0	-.32	
O 0.24	-1.32	-2.00	-1.72	.42	.22	.48	-.71	.29	-.66
19.1	-1.39	-1.96	-1.76	.31	.043	.36	-.56	.11	-.48
Si 29.6	3.25	3.56	3.58	0	0	.21	0	-.31	
O 29.6	-1.43	-1.97	-1.79	.28	.00	.33	-.51	.05	-.42
Si 38.4	3.31	3.61	3.63	0	0	.16	0	-.30	
O 38.4	-1.57	-1.99	-1.81	.27	-.02	.31	-.48	.01	-.38

Table III: The computed electronic (ε^{∞}) and zero frequency (ε^{0}) dielectric tensors as function of bulk pressure. \(z \) and \(x \) are respectively, along and perpendicular to the \(c \)-axis.

\(P \) (GPa)	\(\varepsilon^{\infty}_{xx} \)	\(\varepsilon^{\infty}_{zz} \)	\(\varepsilon^{0}_{xx} \)	\(\varepsilon^{0}_{zz} \)
0.24 GPa	2.53	2.56	4.766	4.967
7 GPa	2.71	2.75	5.19	5.37
19 GPa	2.90	2.95	5.87	6.03
24 GPa	2.97	3.01	6.16	6.31
30 GPa	3.04	3.08	6.55	6.70
Table IV: The computed long wavelength longitudinal optic (LO) and transverse optic (TO) phonon frequencies (cm\(^{-1}\)) and LO-TO splittings ($\Delta\omega = \omega_{\text{LO}} - \omega_{\text{TO}}$) of α-quartz at selected bulk pressures. The group theoretical mode assignments are indicated. The E (A_2) phonon modes are polar with macroscopic electric field perpendicular(parallel) to the c-axis, respectively.

Pressure (GPa)	ω_{TO}	ω_{LO}	$\Delta\omega$									
P=0.24	133	134	1	152	152	0	172	177	5	190	190	0
P=0.7	263	265	2	294	298	4	341	349	8	352	366	14
P=0.7	379	390	11	377	396	19	367	395	28	368	393	25
P=0.7	445	500	55	470	520	50	497	544	47	505	552	47
P=0.7	694	698	1	735	742	7	782	790	8	796	805	9
P=0.7	795	807	12	834	845	11	876	883	7	888	893	5
P=0.24	1050	1214	164	1049	1217	168	1048	1229	181	1048	1233	185
P=0.24	1134	1129		1124	1116		1125	1112		1125	1112	

Table V: The computed long wavelength non-polar phonon frequencies (cm\(^{-1}\)) of α-quartz at selected bulk pressures.

Pressure (GPa)	ω_{TO}	ω_{LO}
P=0.24	343	368
P=0.7	334	363
P=0.7	334	373
P=0.7	336	379
P=0.7	337	387
P=0.24	239	291
P=0.7	303	306
P=0.7	310	310
P=0.7	340	346
P=0.7	378	392
P=0.7	411	465
P=0.7	516	574
P=0.7	591	608
P=0.24	1068	1077
P=0.24	1098	1105
P=0.24	1118	1118

Table VI: Zero pressure elastic constants (GPa) of α-Quartz (*$C_{12}=C_{11}-2C_{66}$).

Elastic Constants	LDA calculations This work	LDA calculations Ref. [18],	Experimental Ref. [5]	Experimental Ref. [3]
C_{11}	78.1	90	86.8	85.9
C_{12}	16.0	12	7.04	7.16
C_{13}	13.9	21	11.91	10.94
C_{14}	-15.7	-12	-18.04	-17.66
C_{33}	110.8	97	105.75	89.59
C_{44}	55.2	61	58.2	57.66
Table VII: The computed unit cell constants and Si-O bond lengths in the monoclinic C2 structure. The fractional coordinates x, y and z of the Si and O atoms in the asymmetric unit cell are listed. The Si1 silicon atoms are tetrahedrally coordinated, while the two equivalent Si2 atoms are in octahedral coordination; bond-length numbers in parenthesis represent the multiplicity. The zero pressure C2 structure is metastable and has a higher free energy than the α-quartz structure. P* represents the structure under uniaxial pressure conditions with stress tensor $\sigma_{xx}=\sigma_{yy}=0$ GPa, $\sigma_{xy} = \sigma_{yz} = \sigma_{zx} = 0$ and $\sigma_{zz} = -16$ GPa.

	P=0 GPa	P=8.8 GPa	P=38 GPa	P* GPa
a (Å)	8.5527	8.46909	8.2318	8.6327
b (Å)	3.4566	3.4200	3.3285	3.5142
c (Å)	5.375	5.29399	5.1040	5.1578
β	109.26147	109.85238	110.05966	111.05422
Si1 (x,y,z)	0., 0.5414, 0.	0., 0.5423, 0.	0., 0.5460, 0.	0., 0.5548, 0.
Si2 (x,y,z)	0.1797, 0.3086, 0.6240	0.1774, 0.3081, 0.6209	0.1754, 0.3065, 0.6192	0.1762, 0.3068, 0.6157
O (x,y,z)	0.8106, 0.8084, 0.4279	0.8123, 0.8082, 0.4277	0.8160, 0.8070, 0.4268	0.8099, 0.8063, 0.4246
O (x,y,z)	0.1647, 0.7943, 0.0924	0.1656, 0.7982, 0.0893	0.1671, 0.8086, 0.08114	0.1654, 0.7955, 0.0841
Si(1)-O (Å)	1.6831(2), 1.5915(2)	1.6694(2), 1.5832(2)	1.6258(2), 1.5611(2)	1.6682(2), 1.5805(2)
Si(2)-O (Å)	1.6614, 1.7116, 1.7562, 2.0425	1.6564, 1.7087, 1.7352, 1.7578	1.6312, 1.6809, 1.6836, 1.7578	1.6573, 1.7434, 1.7662, 1.7768

Table VIII: Comparisons of the computed d-spacings in the computed C2 structure with the reported d-spacings in the observed post-quartz structures of Haines et al. and Kingma et al.1(b).

C2 structure (P=38 GPa)	Post-Quartz structure of Haines et al.	Post-Quartz structure of Kingma et al.
d-spacing (Å)	d-spacing (Å)	d-spacing (Å)
4.794	3.776	
3.867	3.603	3.613
3.691	3.161, 2.976	3.027
3.057	2.745	2.668
2.751	2.48	
2.605	2.225	
2.448	2.175	2.129
2.397	1.968	
2.091	1.926	
2.024	1.725	
1.846	1.665	
1.782	1.572	
1.716	1.546	
1.665	1.517	
1.572	1.492	
1.529	1.413	
1.513	1.305	
1.344	1.278	
1.302	1.258	
1.275	1.236	
1.216	1.191	
1.188	1.169	
Fig. 1: (Color online). Polyhedral representation of the computed α-quartz and the high pressure C2 structure obtained using the software xtaldraw. The crystallographically distinct silicon atoms are shown with different shades.

α-Quartz

C2 Structure
Fig. 2: (Color Online): Comparison of the calculated (full line) equation of state of α-quartz with reported LDA and GGA calculations 49 and experimental data $^{28(a-d)}$ (symbols).

Fig. 3: Comparison of the computed (open symbols and lines) and experimental 29 (filled symbols) long wavelength phonon frequencies as a function of hydrostatic pressure. The group theoretical phonon mode assignments are indicated.
Fig. 4. Comparison of the computed elastic constants as a function of pressure with the reported Brillouin scattering single crystal experimental data of Gregoryanz et al. 3(a).
Fig 5. The variations of the computed B_1, B_2 and B_3 and the soft acoustic mode elastic constant ρv^2 with pressure. B_3 and ρv^2 are negative above $P \sim 32$ GPa, which indicates the onset of mechanical instability in α-quartz at high pressure. In (d), we also display the variation of the calculated soft mode K-point phonon frequency with pressure.
Fig. 6. The computed high pressure phonon dispersion relations of α-Quartz. While Γ is the zone center point, K, M and A are zone boundary points in the Brillouin zone\(^9\). The wave vector directions are as indicated on the top of the figure in (a). At high pressures, the lowest phonon mode at the K-point becomes unstable. While (a), (b), (c) and (d) give the phonon dispersion of α-Quartz for bulk hydrostatic pressures, (e) corresponds to the non-hydrostatic situation with \(\sigma_{xx}=\sigma_{yy}=-19\) GPa, \(\sigma_{xy}=\sigma_{yz}=\sigma_{zx}=0\) and \(\sigma_{zz}=-29.6\) GPa. (f) has the stress tensor \(\sigma_{xx}=\sigma_{yy}=0\) GPa, \(\sigma_{xy}=\sigma_{yz}=\sigma_{zx}=0\) and \(\sigma_{zz}=-15.8\) GPa.
Fig. 7. The computed enthalpy of α-Quartz and the C2 structure as a function of pressure.
Fig. 8. Comparison of the observed x-ray diffraction intensities in the reported (λ=0.41693 Å) post-quartz phase of Haines et al.4 (a) with the computed x-ray intensities in the C2 structure (b). Peaks labeled Q in (a) correspond to quartz peaks. The calculated d-spacings and energy dispersive spectra of the C2 structure (c–d) are compared with the reported synchrotron energy-dispersive x-ray diffraction pattern (e) in the post-quartz phase crystalline phase of Kingma et al.1(b). In (e), * represents new post-quartz phase peaks, Q’ are shifted quartz-like diffraction peaks and Ne has been identified as diffraction lines of the pressure transmitting medium neon1(b).