Roughly Polynomial Time: A Concept of Tractability Covering All Known Natural NP-complete Problems

András Faragó
Department of Computer Science
The University of Texas at Dallas
Richardson, Texas
farago@utdallas.edu

Abstract

We introduce a concept of efficiency for which we can prove that it applies to all paddable languages, but still does not conflict with potential worst case intractability. Note that the family of paddable languages apparently includes all known natural NP-complete problems. We call our concept Roughly Polynomial Time (RoughP). A language \( L \subseteq \Sigma^* \), with \( |\Sigma| \geq 2 \), is in RoughP, if the following hold: (1) there exists a bijective encoding \( \alpha : \Sigma^* \mapsto \Sigma^* \) of strings, such that both \( \alpha \) and \( \alpha^{-1} \) are computable in polynomial time; (2) there is a polynomial time algorithm \( A \), which is an errorless heuristic for \( L \), with exponentially vanishing failure rate relative to the \( \alpha \)-spheres \( S_n^{(\alpha)} = \{ \alpha(x) \mid |x| = n \} \). It means, \( A \) always correctly decides whether \( x \in L \) or \( x \notin L \), whenever it outputs a decision. For some inputs, however, it may not output a decision, rather it may return a special sign, meaning “don’t know.” But the latter can happen only on an exponentially small fraction of each \( \alpha \)-sphere \( S_n^{(\alpha)} \). We prove that RoughP contains all paddable languages. The result may contribute to the explanation of the often observed gap between practical algorithm performance and theoretical worst case analysis for hard problems. Furthermore, the proof also provides a general method to construct the desired encoding and the errorless heuristic. Additionally, we also show how to use it for efficiently generating large, random, guaranteed positive and negative test instances for any paddable language, including all known natural NP-complete problems. In fact, it appears that every practical decision task (whether in NP or not) can be represented by paddable languages, and, therefore, our RoughP framework applies to all of them. We also explore some connections between RoughP and other complexity classes.
1 Introduction and Motivation

It is a well known phenomenon that algorithms often exhibit better performance in practice than what follows from their theoretical analysis. For example, modern SAT solvers routinely (and successfully!) attack industrial SAT instances with millions of variables, despite the conjectured exponential worst-case running time, as pointed out by Vardi [15]. This kind of experience, as well as the discontent with the pessimistic view of worst-case complexity, genuinely motivated the search for weaker concepts of tractability that could cover $NP$-complete problems, yet avoiding conflict with worst-case hardness. This has been a long-standing pursuit, producing a multitude of approaches. None of them has led, however, to a reasonable weaker concept of tractability that would be known to cover all $NP$-complete problems, or at least all the intuitively natural ones. In fact, no such broad notion of efficiency has been expected to exist.

Numerous well known algorithmic concepts pursue, in one way or another, the relaxation of the stringent requirement of a worst case deterministic polynomial time solution. A few examples: average case analysis; heuristic algorithms (algorithms that may err, but with limited frequency); errorless heuristics (algorithms that never return an incorrect answer, but may fail on some instances); algorithms with extra resources (such as randomness or non-uniformity); restricting some parameters to constants (fixed parameter tractability); weakening the original question (as in property testing); combining adversarial choices with random perturbations (as in smoothed analysis); approximations (for optimization versions); and a number of others.

While such methods show impressive success in quite a few cases, none of them offer serious hope to cover all $NP$-complete problems. In fact there are many hardness results, which point in the direction that such a full coverage of $NP$ is likely impossible. Then one can reasonably ask: what if we only want to cover the natural $NP$-complete problems? After all, they are the ones that people really want to solve in practical applications. There are, however, two concerns with this:

**What is “natural?”** From the theoretical point of view, there is no definition to identify which algorithmic problems are natural. Nonetheless, this is the smaller issue. After all, for any specific task, there is usually clear consensus whether it is natural or not. For example, if a language is constructed by diagonalization, solely for the purpose of exhibiting some complexity phenomenon, then it is viewed artificial. On the other hand, if a task is motivated by independent interest, or it has already been studied in some different context (such as graph theory, combinatorics, algebra, logic, number theory, programming languages, machine learning, pattern recognition, etc.), or it even manifests a practical effort, then its naturalness is rarely debated, if ever.

**How to cover at least the naturals?** The bigger problem, however, is this: even if we restrict attention merely to the natural tasks (relying on consensus, rather than definition), still none of the weaker tractability concepts appear to have the ability to cover all, or even most, natural $NP$-complete problems. We would like to focus on this issue.

Let us now take a closer look at heuristic algorithms, because our approach falls in this class. Heuristic algorithms come in two primary flavors:

1. **Algorithms that may err on some inputs.** These algorithms are required to run in polynomial time, but may return a wrong answer on some inputs. The key issue here is the error frequency: on how many instances can the answer be wrong, out of the total of $2^n$ $n$-bit instances? (Note: we distinguish this error frequency from the error rate, by which we mean the relative frequency of errors.) Unfortunately, aiming at low error frequencies runs into conflict with widely accepted hypotheses in complexity theory. For a survey, see Hemaspaandra and Williams [5]. For example, it has been known for a long time that achieving polynomially bounded error frequency
is impossible, unless $P = \text{NP}$. Subexponentially bounded error frequency is still known to imply highly unlikely complexity class collapses.

How about then exponential error frequency? Note that it can still yield an exponentially low error rate. For instance, a $2^{n/2}$ error frequency yields an error rate of $2^{n/2}/2^n = 2^{-n/2}$. Is that not good enough? The answer is that this task already turns “too easy”: it allows meaningless trivial heuristics. For example, if we pad an $n$-bit input $x$ to $x0^n$, so that it becomes $N = 2n$ long, and apply the trivial heuristic that accepts all inputs, then the error rate on the padded language is at most $2^{N/2}/2^N = 2^{-N/2}$. Of course, it does not produce the same error rate when mapped back to the original problem. But often just the strong asymmetry of yes- or no-instances in the original language can already lead to similar trivial cases, without the need for padding. This is quite common, even in natural tasks. For example, regarding the well known Hamiltonian Circuit problem in graphs, one can prove[1] that all but an exponentially small fraction of $n$-vertex graphs have a Hamiltonian circuit. Thus, the “accept everything” trivial heuristic works with exponentially low error rate for this natural problem. Another example is HALF-CLIQUE: does the input graph have a clique that contains at least half of the vertices? Here one can prove, using random graph theory again, that the answer is negative for all but an exponentially small fraction of $n$-vertex graphs. Therefore, this NP-complete problem is also solved with exponentially small error rate by a trivial heuristic: reject all instances. Such a trivial heuristic is not meaningful, as it ignores the very structure we are looking for.

2. Errorless heuristics. These polynomial time algorithms never output a wrong decision, but may fail on some inputs (returning “don’t know”). The error rate is zero, since no error is allowed, but there may be a nonzero failure rate. These schemes have intimate connections to average-case complexity, for a survey see Bogdanov and Trevisan [3]. Observe that in the errorless case one cannot simply use a trivial heuristic, capitalizing on the strong asymmetry of yes- or no-instances, as in the above examples. It would unavoidably lead to errors, which are not allowed here at all. That is, the algorithm has to correctly know when to say “don’t know,” which may be rather hard to achieve.

Note that the failure rate can depend on which sets of strings are used for reference. The traditional way is to count the failures relative to all $2^n$ bit strings of length $n$. Let us call the latter sets the spheres of radius $n$, denoted by $S_n$. Nothing forces us, however, to use the $S_n$ as reference sets. If $\alpha$ is a bijection on all strings, then we may just as well count the failures on the same sized sets $\alpha(S_n)$. If both $\alpha$ and $\alpha^{-1}$ are computable in polynomial time, then we call it a $p$-isomorphic encoding. Observe that such a transformation cannot hide much complexity, and it preserves the sphere sizes. But it may still alter the failure rate, because $|\alpha(S_n)| = |S_n|$ does not imply that the two sets have the same number of “don’t know”-instances of the errorless heuristic, even though the entire set of “don’t know”-instances, of course, remains the same. This regrouping of the instances is somewhat reminiscent to what is called redistricting in election systems.

Our approach can be characterized as an errorless heuristic, which achieves exponentially low failure rate, capitalizing on an appropriate $p$-isomorphic encoding of the input. The main result is that this can always be achieved for paddable languages, which is a very large class.

2 Notations and Definitions

Let $\Sigma$ be a finite alphabet, with $|\Sigma| = k \geq 2$, that we fix for the entire paper. Using standard notation, $\Sigma^*$ denotes the set of all finite strings formed from the elements of $\Sigma$ (also containing the

---

[1] Non-trivially, using methods from random graph theory, see, e.g., Bollobas [4]
empty string \( \lambda \)). It will simplify our treatment if we identify the elements of \( \Sigma \) with the numbers \( 0, 1, \ldots, k-1 \), each viewed as a single symbol, so we adopt this convention. Subsets of \( \Sigma^* \) are referred to as languages.

We use the notation \( \mathbb{N} = \{0, 1, 2, \ldots \} \). The length of a string \( x \), i.e., the number of symbols in \( x \), is denoted by \( |x| \). The length of the empty string is 0. If a string \( x \) is of the form \( x = uu \) for some \( u \in \Sigma^* \), then \( x \) is called symmetric, otherwise it is asymmetric. A language \( L \) is called trivial if \( L = \emptyset \) or \( L = \Sigma^* \), otherwise it is called nontrivial.

**Definition 1 (p-isomorphic encoding)** A function \( \alpha : \Sigma^* \mapsto \Sigma^* \) is called a polynomial time isomorphic (p-isomorphic) encoding, if it is a bijection, computable in polynomial time, and its inverse is also computable in polynomial time.

**Definition 2 (Ball, sphere)** For any \( n \in \mathbb{N} \), the set \( B_n = \{ x \in \Sigma^* \mid |x| \leq n \} \) is called the ball of radius \( n \). The set \( S_n = \{ x \in \Sigma^* \mid |x| = n \} \) is called the sphere of radius \( n \). For a p-isomorphic encoding \( \alpha \), the sets \( B_n^{(\alpha)} = \alpha(B_n) = \{ \alpha(x) \mid x \in B_n \} \) and \( S_n^{(\alpha)} = \alpha(S_n) = \{ \alpha(x) \mid x \in S_n \} \) are called the \( \alpha \)-ball and \( \alpha \)-sphere, respectively.

Now we can define RoughP, the family of languages that are accepted in roughly polynomial time.

**Definition 3 (RoughP)** Let \( \Sigma \) be an alphabet with \(|\Sigma| \geq 2\), and let \( L \subseteq \Sigma^* \) be a language. We say that \( L \in \text{RoughP} \), if there exist a p-isomorphic encoding \( \alpha \), and a polynomial time algorithm \( A : \Sigma^* \mapsto \{ \text{accept}, \text{reject}, \bot \} \), such that the following hold:

(i) \( A \) correctly decides \( L \), as an errorless heuristic. That is, it never outputs a wrong decision: if \( A \) accepts a string \( x \), then \( x \in L \) always holds, and if \( A \) rejects \( x \), then always \( x \notin L \).

(ii) Besides accept/reject, \( A \) may output the special sign \( \bot \), meaning “don’t know” (failure).

This can occur, however, only for an exponentially vanishing fraction of strings in \( S_n^{(\alpha)} \). That is, there is a constant \( c \) with \( 0 \leq c < 1 \), such that for every \( n \in \mathbb{N} \)

\[
\frac{|S_n^{(\alpha)} \cap \{ x \mid A(x) = \bot \}|}{|S_n^{(\alpha)}|} \leq c^n.
\]

**Remark:** It follows directly from the definition that \( \text{P} \subseteq \text{RoughP} \), since for \( L \in \text{P} \) we can always choose for \( A \) the polynomial time algorithm that decides \( L \), and use \( \alpha(x) = x \).

A concept that will be important in our treatment is the paddability of a language. This notion originally gained significance from the role it played in connection with the well known Isomorphism Conjecture of Berman and Hartmanis [2]. The conjecture states that all \( \text{NP} \)-complete languages are polynomial time isomorphic (p-isomorphic, for short), see [2]. (Note that a p-isomorphism between languages is not the same as our p-isomorphic encoding in Definition 1, because the latter does not depend on a particular language.)

Informally, a language is paddable, if in any instance we can encode arbitrary additional information, without changing the membership of the instance in the language. Moreover, both the encoding and unique decoding can be carried out in polynomial time. To the authors knowledge, all practical/natural decision tasks (whether in \( \text{NP} \) or not) can be represented by paddable languages.[2]

Among the equivalent formal definitions we use the following:

---

[2] This does not mean that every language that represents a practical problem is necessarily paddable. For example, it is known that polynomially sparse (nonempty) languages are not paddable (see, e.g., [7], Theorem 7.15), yet they may still represent practical problems. We only say that, to our knowledge, for any practical/natural problem it is possible to construct a paddable representation, not excluding that there may be other, non-paddable representations, as well.
Theorem 1 Let $\Sigma$ be an alphabet with $|\Sigma| = k \geq 2$, and $L \subseteq \Sigma^*$ be a paddable language. Then $L \in \text{RoughP}$. Furthermore, the constant $c$ in (ii) of Definition 3 can be chosen as $c = 1/\sqrt{k} \leq 1/\sqrt{2}$.

Proof. If $L$ is trivial\(^3\) then $L \in \text{P} \subseteq \text{RoughP}$, so it is enough to consider a nontrivial $L$. For the $k$-element alphabet w.l.o.g. assume $\Sigma = \{0,1,\ldots,k-1\}$. For any string $x = x_1 \ldots x_n \in \Sigma^*$, define $w(x) = x_1 + \ldots + x_n$, which we refer to as the weight of $x$.

Using the paddable language $L$, we define an auxiliary language $H \subseteq \Sigma^*$ by

$$H = \{xx \mid x \in L\} \cup \{x \mid w(x) \text{ is odd}\}.$$  

To show that $H$ has useful properties, let us also define a polynomial time computable auxiliary function $u : \Sigma^* \mapsto \Sigma^*$. Fix two strings $w_0 \notin L$, $w_1 \in L$ (they always exist for nontrivial $L$), and define $u$ as follows:

$$u(z) = \begin{cases} x & \text{if } z = xx \text{ for } x \in \Sigma^* \\ w_0 & \text{if } z \text{ is asymmetric and } w(z) \text{ is even} \\ w_1 & \text{if } w(z) \text{ is odd} \end{cases}$$

Recall that a string $z$ is called symmetric if $z = xx$ for some $x \in \Sigma^*$, otherwise $z$ is asymmetric. Symmetry can be easily checked in polynomial time by comparing the two halves of the string (if it has even length, which is obviously necessary for symmetry). Now we prove some properties of $H$ that we are going to use in the sequel.

(a) $L$ has a $\leq_m^P$ (polynomial time many-one) reduction to $H$. Observe that $x \in L$ if and only if $xx \in H$. (Note that $w(xx)$ is always even, so $xx \in H$ can only occur through the first set on the right-hand side of (1).) Thus, the reduction can be implemented by the function $f : \Sigma^* \mapsto \Sigma^*$ defined by $f(x) = xx$, which is clearly computable in polynomial time.

(b) $H$ has a $\leq_m^P$ reduction to $L$. It can be implemented by the function $g : \Sigma^* \mapsto \Sigma^*$ defined as $g(z) = u(z)$. To see that it is indeed a $\leq_m^P$ reduction, consider first $z \in H$. Then either $z = xx$ with $x \in L$, or $w(z)$ is odd. In the first case $u(z) = x \in L$, in the second case $u(z) = w_1 \in L$. Therefore, $z \in H$ implies $u(z) \in L$. Consider now $z \notin H$. In this case $w(z)$ must be even. Then there are two possibilities: (1) $z$ is asymmetric. Since $w(z)$ is even, we have $u(z) = w_0 \notin L$. (2) $z = xx$ for some $x \in \Sigma^*$, but $x \notin L$. Then $u(z) = x \notin L$, so in either case we obtain that $z \notin H$ implies $u(z) \notin L$. Thus, noting the polynomial time computability of $u(z)$, we indeed get a $\leq_m^P$ reduction of $H$ to $L$.

(c) $H$ is paddable. Using that $L$ is paddable by assumption, let $\text{pad}(x,y)$ be a padding function for $L$, with decoding function $\text{dec}(z)$. Then a padding function for $H$ can be defined as

$$\text{pad}'(z,y) = \text{pad}(u(z),y)\text{pad}(u(z),y).$$  

---

\(^3\)Recall that $L$ is called trivial if either $L = \emptyset$ or $L = \Sigma^*$. Observe that a trivial language formally satisfies Definition 3 via the functions $\text{pad}(x,y) = y$ and $\text{dec}(z) = z$. 

4
To see that it satisfies Definition 4 take first \( z \in H \). Then there are two possibilities:

\( \alpha \)  \( z = xx \) for some \( x \in L \), leading to \( u(z) = x \). Then \( \text{pad}(u(z), y) = \text{pad}(x, y) \in L \), due to \( x \in L \), from which \( \text{pad}'(z, y) = \text{pad}(x, y)\text{pad}(x, y) \in H \) follows.

\( \beta \)  \( w(z) \) is odd, so \( u(z) = w_1 \). Then \( \text{pad}(u(z), y) = \text{pad}(w_1, y) \in L \), due to \( w_1 \in L \), resulting in \( \text{pad}'(z, y) = \text{pad}(w_1, y)\text{pad}(w_1, y) \in H \).

Now take \( z \notin H \). Then there are again two possibilities:

\( \alpha \)  \( z = xx \), but \( x \notin L \). In this case \( u(z) = x \), yielding \( \text{pad}'(z, y) = \text{pad}(x, y)\text{pad}(x, y) \).

Since \( \text{pad}(x, y) \notin L \), due to \( x \notin L \), and \( w(\text{pad}(x, y)\text{pad}(x, y)) \) is always even, therefore, \( \text{pad}'(z, y) \notin H \).

\( \beta \)  \( z \neq xx \) for any \( x \), but \( w(z) \) is even. Then we get \( u(z) = w_0 \), which gives \( \text{pad}'(z, y) = \text{pad}(w_0, y)\text{pad}(w_0, y) \).

Since \( \text{pad}(w_0, y) \notin L \), due to \( w_0 \notin L \), and \( w(\text{pad}(w_0, y)\text{pad}(w_0, y)) \) is always even, therefore, \( \text{pad}'(z, y) \notin H \).

Thus, we indeed have \( \text{pad}'(z, y) \in H \) if and only if \( z \in H \). To get a decoding function \( \text{dec}' \) for \( H \), define

\[
\text{dec}'(z) = \text{dec}(u(z)).
\]

We need to show that \( \text{dec}'(\text{pad}'(v, y)) = y \) holds for any \( v, y \in \Sigma^* \). Observe that (2) and the definition of \( u \) imply

\[
\text{dec}(\text{pad}'(v, y) = \text{dec}(\text{pad}(u(v), y)).
\]

Using this, and (3), we get

\[
\text{dec}'(\text{pad}'(v, y)) = \text{dec}(u(\text{pad}'(v, y))) = \text{dec}(\text{pad}(u(v), y)) = y,
\]

where the last equality follows from (ii) in Definition 4. Thus, the function \( \text{dec}' \) indeed carries out correct decoding for \( \text{pad}' \).

Now we know that both \( L \) and \( H \) are paddable. Furthermore, we have shown that they are both \( \leq_m^P \) reducible to the other. Therefore, it follows from the well known results of Berman and Hartmanis [2] that there is a \( p \)-isomorphism between \( H \) and \( L \). That is, there exists a bijection \( \varphi : \Sigma^* \mapsto \Sigma^* \), such that both \( \varphi \) and \( \varphi^{-1} \) are computable in polynomial time, and for every \( x \in \Sigma^* \) it holds that \( x \in L \) if and only if \( \varphi(x) \in H \).

Let us define the \( p \)-isomorphic encoding \( \alpha \) by \( \alpha(x) = \varphi^{-1}(x) \), and define the algorithm \( \mathcal{A} \) by

\[
\mathcal{A}(x) = \begin{cases} 
\text{accept} & \text{if } \varphi(x) \text{ is odd} \\
\text{reject} & \text{if } \varphi(x) \text{ is even and } \varphi(x) \text{ is asymmetric} \\
\bot & \text{if } \varphi(x) \text{ is symmetric.}
\end{cases}
\]

Next we show that this \( \alpha \) and \( \mathcal{A} \) together satisfy Definition 3:

- The function \( \alpha \) is a \( p \)-isomorphic encoding: it is a bijection, plus both \( \alpha \) and \( \alpha^{-1} \) are computable in polynomial time, due to the same properties of \( \varphi \).

- The algorithm \( \mathcal{A} \) runs in polynomial time, as \( \varphi \) is computable in polynomial time, likewise the symmetry and the parity of the weight of any string can be checked in polynomial time.

- \( \mathcal{A} \) is an errorless heuristic for \( L \), that is, \( \mathcal{A} \) correctly decides \( L \), whenever \( \mathcal{A}(x) \neq \bot \). Indeed, if \( \mathcal{A} \) accepts, then \( \varphi(x) \) is odd. This means, \( \varphi(x) \in H \). Then, due to the properties of \( \varphi \), it must hold that \( x \in L \). Similarly, if \( \mathcal{A} \) rejects, then \( \varphi(x) \) is even and \( \varphi(x) \) is asymmetric. This implies \( \varphi(x) \notin H \), yielding \( x \notin L \). Thus, condition (i) in Definition 3 is satisfied.
Finally, it remains to prove condition (ii) in Definition 3. Let \( F = \{ z \mid \mathcal{A}(z) = \perp \} \) be the set where \( \mathcal{A} \) fails. We need to prove that there is a constant \( c < 1 \), with

\[
\frac{|S_n^{(\alpha)} \cap F|}{|S_n^{(\alpha)}|} \leq c^n.
\]

From (4) we know that \( \mathcal{A}(z) = \perp \) if and only if \( \varphi(z) \) is symmetric. Let \( Y \) be the set of all symmetric strings in \( \Sigma^* \), then \( F = \{ z \mid \varphi(z) \in Y \} \). Consider now the set \( S_n^{(\alpha)} \cap F \). The \( \alpha \)-sphere \( S_n^{(\alpha)} \) contains all strings of the form \( \alpha(x) \) with \( |x| = n \). Among these, those strings \( z \) belong to \( F \), for which \( \varphi(z) \in Y \) also holds. Therefore, we can write

\[
S_n^{(\alpha)} \cap F = \{ z \mid z = \alpha(x), |x| = n, \varphi(z) \in Y \}.
\]

Observe that if \( z = \alpha(x) \), then \( \varphi(z) = x \), since \( \alpha = \varphi^{-1} \). This gives us

\[
S_n^{(\alpha)} \cap F = \{ z \mid z = \alpha(x), |x| = n, x \in Y \} = \{ \alpha(x) \mid |x| = n, x \in Y \}.
\]

The number of symmetric strings among all \( n \)-long strings is \( |\Sigma|^{n/2} \), if \( n \) is even, as the first half already determines a symmetric string. If \( n \) is odd, then their number is 0. This yields

\[
|S_n^{(\alpha)} \cap F| \leq |\Sigma|^{n/2} = k^{n/2}.
\]

Taking into account that, due to the bijective property of \( \alpha \), we have \( |S_n^{(\alpha)}| = |S_n| = |\Sigma|^n = k^n \), the bound

\[
\frac{|S_n^{(\alpha)} \cap F|}{|S_n^{(\alpha)}|} \leq \frac{k^{n/2}}{k^n} = \left( \frac{1}{\sqrt{k}} \right)^n
\]

follows. Thus, with the choice of \( c = 1/\sqrt{k} \leq 1/\sqrt{2} < 1 \) we can indeed satisfy condition (ii) in Definition 3, completing the proof.

\[\blacklozenge\]

Remark. The proof actually shows a way to construct the \( p \)-isomorphic encoding \( \alpha \), and the algorithm \( \mathcal{A} \). Once the \( p \)-isomorphism \( \varphi \), and its inverse \( \varphi^{-1} \) are available, \( \alpha \) is expressed as \( \alpha = \varphi^{-1} \), and \( \mathcal{A} \) is given by (1). In order to obtain \( \varphi \) and \( \varphi^{-1} \), recall that we constructed the \( \leq_p \) reductions \( f, g \) between \( L \) and \( H \), as well as the padding/decoding function pair \( (\text{pad}', \text{dec}') \) for \( H \), using the the padding/decoding function pair \( (\text{pad}, \text{dec}) \) which is assumed available for \( L \). Having the six polynomial time computable functions \( f, g, \text{pad}, \text{dec}, \text{pad}', \text{dec}' \), we can then obtain the \( p \)-isomorphism \( \varphi \) and its inverse \( \varphi^{-1} \) via the method of Berman and Hartmanis [2] (see also the textbook description of Du and Ko [7, Theorem 7.14]). The construction of the \( p \)-isomorphism is nontrivial, but can be carried out in polynomial time. Note that while the expression (4) for the algorithm \( \mathcal{A} \) may appear deceptively simple, in fact it can be a rather complex polynomial time algorithm, since the function \( \varphi \) may be complicated.

4 RoughP and Other Complexity Classes

From Theorem 1 we know that all paddable languages belong to RoughP, and this includes, among others, all known intuitively natural \( \text{NP} \)-complete problems, making RoughP fairly large. It is then quite reasonable to ask: could it go as far as \( \text{NP} \subseteq \text{RoughP} \)? Another related question is this: if we cannot prove \( \text{NP} \not\subseteq \text{RoughP} \) then which is the smallest mainstream complexity class that is provably not a subset of RoughP? In this section we present some claims about these issues.
Lemma 1  \( E \not\subseteq \text{RoughP}, \) where \( E = \cup_{c>0}\text{DTIME}(2^{cn}). \)

Proof. An infinite and co-infinite language \( L \) is called \( \text{P}-\text{bi-immune}, \) if for every infinite \( L_0 \in \text{P} \) it holds that \( L_0 \not\subseteq L \) and \( L_0 \not\subseteq \overline{L}. \) It is known that \( E \) contains \( \text{P}-\text{bi-immune} \) languages (see Balcàzar and Schöning [1]). Pick a \( \text{P}-\text{bi-immune} \) language \( L \in E, \) and assume \( L \in \text{RoughP}. \) Let \( A \) be the algorithm from Definition 3 for \( L \), and let \( A \) be the set on which \( A \) accepts. Then \( A \in \text{P}. \) Furthermore, since \( A \) is an errorless heuristic, it never accepts falsely, so \( A \subseteq L. \) Similarly, let \( B \) be the set where \( A \) rejects. Again, \( B \in \text{P}, \) and \( B \subseteq \overline{L}, \) as \( A \) never rejects falsely. Due to the failure rate requirement (ii) in Definition 3, \( A \cup B \) must be infinite. Therefore, at least one of \( A, B \) is infinite, so either \( L \) or \( \overline{L} \) has an infinite subset in \( \text{P}. \) Thus, \( L \) cannot be \( \text{P}-\text{bi-immune}, \) a contradiction, proving the claim.

\( \blacklozenge \)

Note that if \( \text{NP} \) contains a \( \text{P}-\text{bi-immune} \) language (which is not known), then the same proof would yield \( \text{NP} \not\subseteq \text{RoughP}. \) There is some evidence which supports that \( \text{NP} \) may contain a \( \text{P}-\text{bi-immune} \) language. Hemaspaandra and Zimand [9] prove that relative to a random oracle \( \text{NP} \) contains a \( \text{P}-\text{bi-immune} \) language, with probability 1. Another evidence comes from the theory of resource bounded measure, for a survey see Lutz and Mayordomo [10]. In this theory a central conjecture is that the \( p\)-measure of \( \text{NP}, \) denoted by \( \mu_p(\text{NP}), \) is nonzero. Informally, this means that \( \text{NP}-\)languages within \( E \) do not constitute a negligible subset. The \( \mu_p(\text{NP}) \neq 0 \) conjecture can be viewed as a stronger from of the \( \text{P} \neq \text{NP} \) conjecture, as \( \mu_p(\text{NP}) \neq 0 \) implies \( \text{P} \neq \text{NP}, \) but the reverse implication is not known. Mayordomo [11] proves that \( \mu_p(\text{NP}) \neq 0 \) implies the existence of a \( \text{P}-\text{bi-immune} \) language in \( \text{NP}, \) thus reusing the proof idea of Lemma 1 for this case yields that \( \mu_p(\text{NP}) \neq 0 \) implies \( \text{NP} \not\subseteq \text{RoughP}. \)

Further contemplating on the \( \text{NP} \not\subseteq \text{RoughP} \) question, observe that while there are plenty of natural problems that are provably in \( \text{NP} \not\subseteq \text{P}, \) assuming the set is not empty, the situation is different with \( \text{NP} \not\subseteq \text{RoughP}. \) The reason is that any \( L \in \text{NP} \not\subseteq \text{RoughP} \) must be non-paddable, by Theorem 1 and, of course, be outside \( \text{P}. \) Such languages in \( \text{NP} \) are in short supply. In fact, it is not known if \( \text{NP} \not\subseteq \text{P} \) contains a non-paddable language, assuming only \( \text{P} \not\subseteq \text{NP}. \) The point is that deciding the \( \text{NP} \not\subseteq \text{RoughP} \) question in either direction is likely to be hard, because in either case it resolves a long-standing, mainstream complexity class separation.

Lemma 2  If \( \text{NP} \not\subseteq \text{RoughP}, \) then \( \text{P} \neq \text{NP}. \) If \( \text{NP} \subseteq \text{RoughP}, \) then \( \text{NP} \neq \text{EXP}, \) where \( \text{EXP} = \cup_{c>0}\text{DTIME}(2^{cn}). \)

Proof. The first implication follows from \( \text{P} \subseteq \text{RoughP}. \) The second claim is implied by Lemma 1 along with \( E \subseteq \text{EXP}. \)

\( \blacklozenge \)

Remark: Note that \( \text{NP} \subseteq \text{RoughP} \) also implies \( \text{NP} \neq \text{E}, \) but that is not an open problem, as \( \text{NP} \neq \text{E} \) has been known for a long time (see Book [7]). But \( \text{NP} \subseteq \text{E} \) is not known, in contrast to \( \text{NP} \subseteq \text{EXP}. \)

Another interesting issue is that, in analogy with \( \text{NP}, \) we can also define a class \( \text{RoughNP}. \) Let us use the notation \( \langle x, w \rangle \) to represent any standard pairing function (see, e.g., [7], p. 5). Here \( x \) will be the instance, and \( w \) will represent a witness.

Definition 5 (RoughNP) A language \( L \) is in the class \( \text{RoughNP}, \) if there exists a language \( L_0 \in \text{RoughP} \) and a polynomial \( p(n), \) such that for every \( x \in \Sigma^* \) the following holds: \( x \in L \) if and only if there is a \( w \in \Sigma^*, \) such that \( |w| \leq p(|x|) \) and \( \langle x, w \rangle \in L_0. \)
The definition directly implies \( \text{NP} \subseteq \text{RoughNP} \), since, due to \( \text{P} \subseteq \text{RoughP} \), we can take an \( L_0 \in \text{P} \) in Definition 5. In analogy with \( \text{P} \neq \text{NP} \), one may conjecture \( \text{RoughP} \neq \text{RoughNP} \). This conjecture may be supported by the following:

**Lemma 3** If \( \mu_p(\text{NP}) \neq 0 \), then \( \text{RoughP} \neq \text{RoughNP} \).

**Proof.** As shown in the proof of Lemma 1, \( \text{RoughP} \) cannot contain a \( \text{P} \)-bi-immune language. On the other hand, Mayordomo [11] proves that \( \mu_p(\text{NP}) \neq 0 \) implies the existence of a \( \text{P} \)-bi-immune language in \( \text{NP} \). As \( \text{NP} \subseteq \text{RoughNP} \), this yields \( \text{RoughP} \neq \text{RoughNP} \).

There are many more questions that can be raised in connection with the new classes. We plan to address them in the journal version of the paper.

5 Positive and Negative Test Instance Generation for Paddable Languages

In this section we present a specific constructive application of the \( \text{RoughP} \) approach: generating large, random, guaranteed positive and negative test instances for hard algorithmic problems.

For motivation note that in the development of practical algorithms it is a fundamental need to find appropriate test instances to empirically evaluate the performance and correctness of the algorithm. For comprehensive testing it is necessary to have large, random test instances, both positive (yes-instances) and negative (no-instances). Ad hoc solutions of test instance generation for various specific problems have been known for a long time, in particular for SAT (for an earlier survey see, e.g., Cook and Mitchell [6]; for state of the art practical SAT solvers see the International SAT Competitions web page [14]).

Arguably, the simplest test instance generation task is when for a given instance length we want to generate just a single, arbitrary positive instance of that length. It is quite natural to ask: can we carry it out efficiently for problems in \( \text{NP} \)? The complexity of this problem was studied by Sanchis and Fulk [12]. Among other concepts, they introduce the following definition:

**Definition 6 (PTC)** A Polynomial Time Constructor (PTC) for a language \( L \) is a deterministic polynomial time algorithm, which, upon input \( 1^n \), outputs a string \( x \) with \( x \in L \), \( |x| = n \), if such a string exists. If there is no such string, then the algorithm outputs a special sign \( \perp \).

Unfortunately, it is unlikely that even this simplest instance generation task can always be carried out for problems in \( \text{NP} \), as the following theorem can be extracted from [12]:

**Theorem 2** (Sanchis and Fulk [12]) Every \( L \in \text{NP} \) has a PTC, if and only if every \( L \in \text{P} \) has a PTC, if and only if \( \text{E} = \text{NE} \).

Here \( \text{NE} = \cup_{c>0} \text{NTIME}(2^{cn}) \). The message of Theorem 2 is that unless an unlikely collapse happens, there are languages in \( \text{NP} \), and also in \( \text{P} \), for which we cannot perform even this simplest test instance generation task in deterministic polynomial time.

On the other hand, for those \( \text{NP} \)-complete problems that are deemed natural, finding a PTC is often quite easy, sometimes outright trivial. For example, consider the well known INDEPENDENT SET problem in graphs. To create just any graph on \( n \) vertices containing an independent set of size at least \( k \), we could simply take \( n \) isolated vertices. Of course, this is not viewed as a reasonable test instance, but technically it satisfies the PTC requirements.
Note, however, that other variants, still within the INDEPENDENT SET related problem classes, can be significantly harder. For example, considering the search problem for independent sets, Sanchis and Jagota [13] prove the following. As a notation, let us say that for a real number \( p \), an \( n \)-vertex graph has edge density \( p \), if it has \( \lfloor pn(n-1)/2 \rfloor \) edges.

**Theorem 3** (Sanchis and Jagota [13]) For any rational number \( q \in (0, 1) \), and for any real number \( p \), with \( 0 < p \leq 1 - q^2 \), there is an integer \( n_0 \), such that when \( n \geq n_0 \), and \( qn \) is an integer, there is always a graph with \( n \) vertices, maximum independent set of size exactly \( qn \), and edge density \( p \). Furthermore, finding a maximum independent set in these graphs is \( \text{NP} \)-hard.

Generating a test instance for this class is much less trivial. It would require creating a large graph, precisely with a given edge density, such that its maximum independent set size is exactly \( qn \). Finding negative instances efficiently would also be quite nontrivial.

So far we have considered the generation of single, arbitrary instances. As demonstrated with a simple example, this can lead to degenerated cases. Therefore, for practical purposes, it is much more desirable to generate large random instances.

How hard is random instance generation for \( \text{NP} \) languages? On the one hand, a random instance also passes for an arbitrary instance, with the additional requirement of the random choice from a complicated set. Hence, we can expect it to be at least as hard as the PTC problem, which already implies an unlikely collapse (see Theorem 2). On the other hand, the random instance generator can use the additional power of randomness, which the PTC cannot use, being deterministic. Therefore, they are not directly comparable. But hardness results are still available for random instance generation. Watanabe [16] proves such a hardness result for distributional \( \text{NP} \) search problems. He considers polynomial time computable distributions over the instances, and the generator is required to output a certified positive instance with a probability that is polynomially related to the original probability of the instance.

**Theorem 4** (Watanabe [16]) If every distributional \( \text{NP} \) search problem, with a polynomial time computable distribution, has a polynomial-time random test instance generator, then \( \text{RE} = \text{NE} \).

Here \( \text{RE} \) is the exponential time analog of \( \text{RP} \), with linear exponent. The \( \text{RE} = \text{NE} \) collapse is slightly weaker than the \( \text{E} = \text{NE} \) collapse in Theorem 2 but it is still deemed unlikely.

In view of the hardness results, it seems reasonable to somewhat relax the requirements. We are going to present a random test instance generator, both for positive and negative instances, such that it provably always provides guaranteed positive and negative random instances for any paddable language. Recall that this includes all known natural \( \text{NP} \)-complete problems. The generated instances are uniformly random, but possibly not over all instances of a given length. To capture their distribution, let us introduce the following concept.

**Definition 7** (\( M \)-uniform distribution) Let \( M \) be a positive integer. A random variable \( \xi \) is called \( M \)-uniform, if there is a set \( S \) with \( |S| = M \), such that for every \( x \in S \) it holds that \( \Pr(\xi = x) = 1/M \).

Note that this simply means \( \xi \) is uniform over \( S \), and does not take any value outside \( S \), but \( S \) may not be known, apart from its size. In our application \( \xi \) will represent the randomly generated instance, but the set \( S \) will not be explicitly given. Therefore, we will not be able to claim that we generate a uniform random instance from a simple specific set. Rather, we can only say that an \( M \)-uniform instance is generated, with exponentially large \( M \), but \( S \) will not be explicitly given, apart from polynomial lower and upper bounds on most instance lengths in \( S \). This can be viewed as a relaxation of a uniformly random instance from all instances of a given length.
Now we can define our test instance generator, which we call RoughP-generator, since it is based on our concept of roughly polynomial time.

**Definition 8 (RoughP-generator)** A probabilistic polynomial time algorithm is called a RoughP-generator for a language \( L \subseteq \Sigma^* \), with \( |\Sigma| = k \geq 2 \), if upon receiving the input \((1^n, s)\), where \( n \in \mathbb{N} \) and \( s \in \{\text{pos, neg}\} \), the generator always outputs a string \( x \in \Sigma^* \) in polynomial time, with the following properties:

(i) If \( s = \text{pos} \), then \( x \in L \) always holds (positive instance).

(ii) If \( s = \text{neg} \), then \( x \not\in L \) always holds (negative instance).

(iii) There exist a polynomial \( p(n) \geq n \), depending only on \( L \), and a constant \( c > 1 \), such that

\[
\Pr( n \leq |x| \leq p(n)) \geq 1 - c^{-n}
\]

where the probability is meant with respect to the internal random choices of the algorithm.

(iv) There is a constant \( a > 1 \), such that the output \( x \) is \( M \)-uniform, with \( M \geq a^n \).

**Theorem 5** Every paddable language \( L \subseteq \Sigma^* = \{0, 1, \ldots, k-1\}^* \), \( k \geq 2 \), has a RoughP-generator, which can be implemented by the following algorithm:

Upon receiving input \((1^n, s)\), do

**Step 1** Compute \( m = 4\lfloor n/2 \rfloor + 3 \).

**Step 2** Draw a uniformly random string \( z \) with \( |z| = m \), by drawing symbols \( z_1, \ldots, z_m \) independently and uniformly at random from \( \Sigma \), and setting \( z = z_1 \ldots z_m \).

**Step 3** Compute \( w(z) = z_1 + \ldots + z_m \). If \( s = \text{pos} \) and \( w(z) \) is odd, or if \( s = \text{neg} \) and \( w(z) \) is even, then go to Step 5.

**Step 4** Draw a number \( \nu \in \{1, \ldots, m\} \) uniformly at random. Replace \( z_\nu \) in \( z \) by another symbol that is chosen independently and uniformly at random among those symbols that have opposite parity to \( z_\nu \).

**Step 5** Output \( x = \varphi(z) \), where \( \varphi \) is the same polynomial time computable function that is used in the algorithm (4).

This algorithm satisfies Definition 8 such that the constant in (iii) is \( c = k \geq 2 \), and the constant in (iv) is \( a = k^2 \geq 4 \).

**Proof:** See appendix A.

6 **Discussion**

Our main result is that every paddable language is in RoughP. This means, it can be recognized by an efficient algorithm in the relaxed sense we have defined: by an errorless heuristic with exponentially vanishing failure rate over the \( \alpha \)-spheres. Note that this does not conflict with potential worst case intractability.

How large is the set of paddable languages? Apparently, to the author’s best knowledge, it includes all known intuitively natural \( \text{NP} \)-complete problems. But how much farther can it go? Surprisingly, it appears that every practical decision problem, whether in \( \text{NP} \) or not, has a paddable representation, when represented by a formal language. As noted earlier, we do not mean that all
languages that represent a natural problem are necessarily paddable. For example, it is known that polynomially sparse (nonempty) languages are not paddable, and they may also represent natural problems. We only say that, to our knowledge, for any practical/natural task it is possible to construct a paddable representation, not excluding that there may be other, non-paddable representations, as well. Since there is no definition of what constitutes a practical decision problem, we cannot make a formal claim here. But we venture into the following (bold) thesis:

**Paddability Thesis:** Every practical decision problem has a representation by a paddable formal language.

In itself, this would not be extremely surprising. However, by our results, we can go further, and assert a thesis, which already becomes provable, once we accept the Paddability Thesis.

**RoughP Thesis:** Every practical decision problem has a RoughP algorithm. Furthermore, it also has a RoughP-generator, which can efficiently generate large, random, guaranteed positive and negative instances.

This thesis sends the unexpected, but still supportable message that every practical decision problem is solvable with the sense of efficiency that RoughP offers.

References

[1] J.L. Balcázar and U. Schöning, “Bi-Immune Sets for Complexity Classes,” *Mathematical Systems Theory*, Vol. 18, pp. 1–10, 1985.

[2] L. Berman and J. Hartmanis, “On Isomorphisms and Density of NP and Other Complete Sets,” *SIAM Journal on Computing*, Vol. 6, No. 2, pp. 305–322, June 1977.

[3] A. Bogdanov and L. Trevisan, “Average-Case Complexity,” *Foundations and Trends in Theoretical Computer Science*, Vol. 2, No. 1, pp. 1-106, 2006.

[4] B. Bollobás, *Random Graphs*, Cambridge University Press, 2001.

[5] R.V. Book, “On Languages Accepted in Polynomial Time,” *SIAM Journal on Computing*, Vol. 1, No. 4, pp. 281–287, Dec. 1972.

[6] S.A. Cook and D.G. Mitchell, “Finding Hard Instances of the Satisfiability Problem: A Survey,” In: *Satisfiability Problem: Theory and Applications*, (DIMACS Workshop, May 11–13, 1996), Eds.: D.-Z. Du, J. Gu, and P.M. Pardalos, American Mathematical Society, 1997.

[7] D.-Z. Du and K.-I. Ko, *Theory of Computational Complexity*, Wiley, 2000.

[8] L.A. Hemaspaandra and R. Williams, “An Atypical Survey of Typical-Case Heuristic Algorithms,” *ACM SIGACT News*, Complexity Theory Column 76, Vol. 43, No. 4, pp. 70–89, Dec. 2012.

[9] L.A. Hemaspaandra and M. Zimand, “Strong self-reducibility precludes strong immunity,” *Mathematical Systems Theory*, Vol. 29, No. 5, pp. 535–548 Oct. 1996.

[10] J.H. Lutz and E. Mayordomo, “Twelve Problems in Resource-Bounded Measure,” In: *Current Trends in Theoretical Computer Science: Entering the 21st Century*, G. Păun, G. Rozenberg and A. Salomaa (Eds.), pp. 83–101, World Scientific, 2001.
Appendix A

Proof of Theorem 5. Let us consider again the auxiliary language $H$ that we used in the proof of Theorem 1:

$$H = \{xx \mid x \in L\} \cup \{x \mid w(x) \text{ is odd}\}.$$ 

We know from the proof of Theorem 1 that $H$ and $L$ are $\leq_P$ equivalent (that is, both are $\leq_P$ reducible to the other), and we have also proved that $H$ is paddable. As $L$ is also paddable by assumption, there is a $p$-isomorphism $\varphi$ between $H$ and $L$, which we have also used, including the algorithm (1).

Observe that $m = 4\lfloor n/2 \rfloor + 3$ is always an odd number. Since the generated string $z$ has length $m$, therefore, it always has the property that $z \neq xx$ for any $x \in \Sigma^*$. Consequently, $z \in H$ if and only if $w(z)$ is odd. Consider now the following four cases, depending on the value of $s$ and the parity of $w(z)$.

**Case 1:** $s = \text{pos}$ and $w(z)$ is odd. In this case $z \in H$, and $z$ is uniformly random over all strings in $H$ with $|z| = m$. Since $\varphi$ is a bijection, therefore, the output $x = \varphi(z)$ is uniformly random over the set

$$S = \{x \mid x = \varphi(z), |z| = m, w(z) \text{ is odd}\}.$$ 

Furthermore, as $\varphi$ is a $p$-isomorphism, we get that $S \subseteq L$, so all output instances are guaranteed to be positive. Regarding the cardinality of $S$, observe that among all strings $z$, with $|z| = m$, there are at least $\lfloor k^m/2 \rfloor$ strings for each of the two possible parity values of $w(z)$. This yields $|S| \geq \lfloor k^m/2 \rfloor$. From the definition of $m$ we get

$$m = \begin{cases} 2n + 3 & \text{if } n \text{ is even} \\ 2n + 1 & \text{if } n \text{ is odd}. \end{cases}$$ 

Thus, we obtain $|S| \geq \lfloor k^m/2 \rfloor \geq \lfloor k^{2n+1}/2 \rfloor \geq \lfloor k^{2n+1}/k \rfloor = k^n$, so the random output is an $M$-uniform positive instance with $M \geq k^n$. This satisfies requirement (iv) in Definition 8 with $a = k^2 \geq 4$.

Considering requirement (iii) in Definition 8 first observe that due to the polynomial time computability of $\varphi$, the length of $x$ is bounded by some polynomial of $|z| = m$. As $m$ is linearly
bounded by \( n \), there must exist a polynomial \( p(n) \) with \( |x| \leq p(n) \). Moreover, the polynomial depends only on \( \varphi \), and for a fixed \( L \) we can also fix the \( p \)-isomorphism, implemented by \( \varphi \).

For the lower bound \( |x| \geq n \), let us estimate \( |L \cap B_{n-1}| \), where \( B_{n-1} \) is the ball \( B_{n-1} = \{ x \mid |x| \leq n - 1 \} \). We can write
\[
|B_{n-1}| = \sum_{i=0}^{n-1} |\Sigma|^i = \sum_{i=0}^{n-1} k^i = \frac{k^n - 1}{k - 1} \leq k^n - 1,
\]
yielding \( |L \cap B_{n-1}| \leq k^n - 1 \). Hence, the bijection \( \varphi \) can map at most \( k^n - 1 \) strings \( z \), with \( |z| = m \), into strings \( x = \varphi(z) \), with \( |x| < n \). On the other hand, we already know \( |S| \geq k^{2n} \), and that \( x \) is uniformly random over \( S \). Therefore, we obtain
\[
\Pr(|x| < n) \leq \frac{k^n - 1}{k^{2n}} < k^{-n}.
\]
Taking into account that \( |x| \leq p(n) \) always holds, we get
\[
\Pr\left( n \leq |x| \leq p(n) \right) \geq 1 - k^{-n}
\]
with \( k \geq 2 \).

**Case 2:** \( s = \text{pos} \) and \( w(z) \) is even. In this case we flip the parity of a random symbol \( z_{\nu} \) in \( z = z_1 \ldots z_m \) by replacing \( z_{\nu} \) with a uniformly random symbol of opposite parity. Then the parity of \( w(z) \) also flips, becoming odd. By the symmetry of this operation we get that the new string \( z' \) is uniformly distributed over the set \( \{ z' \mid w(z') \text{ is odd}, \ |z'| = m \} \). Thus, \( z' \in H \), and \( z' \) is uniformly random over all strings in \( H \) with \( |z'| = m \), and therefore, we are back in Case 1.

**Case 3:** \( s = \text{neg} \) and \( w(z) \) is even. Then we can repeat the reasoning of Case 1, just replacing the set \( S \) by
\[
S' = \{ x \mid x = \varphi(z), \ |z| = m, w(z) \text{ is even} \},
\]
and \( L \) by \( \overline{L} \). Then we get an \( M \)-uniform negative instance with \( M \geq k^{2n} \), satisfying requirement (iv) in Definition 8. Requirement (iii) is satisfied again with the same argument as in Case 1, with the only change of using \( S' \) and \( \overline{L} \) in place of \( S \) and \( L \).

**Case 4:** \( s = \text{neg} \) and \( w(z) \) is odd. Then we can re-use the reasoning of Case 2: in Step 4 of the algorithm we flip the parity of a random symbol \( z_{\nu} \) in \( z = z_1 \ldots z_m \) by replacing \( z_{\nu} \) with a uniformly random symbol of opposite parity. Then the parity of \( w(z) \) also flips, becoming even now. By the symmetry of the operation we get that the new string \( z' \) is uniformly distributed over the set of all even weight strings of length \( m \). Therefore, we are in the same situation as in Case 3.

Thus, in all cases we established that the requirements (i), ..., (iv) of a \( \text{RoughP} \)-generator (Definition 8) are satisfied. The running time of the algorithm depends on the time need to compute \( \varphi \), about which we know it can be done in polynomial time. The additional side computations are clearly done in polynomial time, which completes the proof.