Bond Market Intermediation and the Role of Repo*

Yesol Huh Sebastian Infante

Federal Reserve Board

October 20, 2018

Abstract

We model the role that repos play in bond market intermediation. Not only do repos allow dealers to finance their activities, but also enable dealers to source assets without taking ownership. When the asset trades with repo specialness, borrowing the asset is more expensive, resulting in higher bid-ask spreads. Limiting a single dealer’s leverage decreases its market-making abilities and increases its bid-ask spread. However, limiting all dealers’ leverage reduces pressure on repo specialness, thus decreasing bid-ask spreads. More generally, the model gives insights into how frictions in repo markets can affect the underlying cash market liquidity.

*This paper was previously circulated under the title “Bond Market Liquidity and the Role of Repo.” We thank Giovanni Favara, Erik Heitfield, Stefan Nagel, Jean-David Sigaux, Adrian Walton, participants at the 12th Annual Central Bank Conference on Market Microstructure of Financial Markets, 2018 Federal Reserve Research Scrum and seminar participants at the Bank of Canada, the Federal Reserve Board, and Vanderbilt University for their helpful feedback, and Joseph Shadel for excellent research assistance. The views of this paper are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or of any other person associated with the Federal Reserve System. Federal Reserve Board, 20th St. and Constitution Avenue, NW, Washington, DC, 20551. Please send comments to: sebastian.infantebilbao@frb.gov.
1 Introduction

A well-functioning market for repurchase agreements (repos) is often cited as being crucial for U.S. Treasury bond markets, but the precise way in which these contracts facilitate market making is not well understood. This paper fills the gap by providing a theoretical framework that captures how dealers use repos to intermediate fixed income markets. Our model gives insight into how frictions in repo markets can affect the underlying cash market liquidity, and how restrictions on dealers’ balance sheet can impact their ability to intermediate the cash market.\(^1\) The theoretical framework in this paper provides guidance on how to interpret data on dealers’ cash and repo positions in the context of bond market intermediation.

We build a model in which dealers use repo markets to intermediate leveraged client order flow. Dealers access repo markets for three reasons: to finance their position and that of their counterparties, to take short positions, and finally, to source assets for delivery without altering their cash portfolio position. In our model, all three functions of repos arise endogenously. While the first two roles of repo are well known, the third has not been captured by the existing literature, and we show that this role is a key ingredient for cash market intermediation.

We show that dealers heavily rely on repo markets to intermediate leveraged client order flow and that frictions in the repo market can spill over to the cash market. Specifically, our model shows how repo specialness—the cost associated with sourcing a specific security—is correlated with bond market liquidity. We also characterize how balance sheet constraints can directly impact dealers’ ability to make markets, highlighting the potential impact bank regulations can have on market liquidity. Somewhat surprisingly, we find that these types of restrictions can in fact reduce intermediation costs, as they alleviate pressures on repo specialness.

The model features a continuum of dealers that access three distinct markets—an interdealer cash market, a general collateral (GC) repo market, and a specific issue (SI) repo market—to intermediate leveraged trades for their clients. The interdealer cash market allows dealers to buy and sell securities outright. The GC repo market enables dealers to borrow or lend funds on a secured basis. Finally, the SI repo market allows dealers to borrow or lend specific securities using

\(^1\)Throughout the paper, the term cash market refers to the spot market for securities.
cash collateral. Scarcity of specific securities can lead to repo rates in the SI market to trade below that of the GC market, an occurrence referred to as the SI market trading special. We assume that the securities lending sector is the net supplier of securities in the SI repo market and profits whenever repos trade special. Importantly, clients cannot access these markets directly, so they rely on dealers to intermediate their trades.

A key restriction that incentivizes dealers to use the repo markets is the box constraint. Broadly speaking, the box constraint is a physical restriction that forces dealers to have access to securities, either by owning or borrowing them, to deliver to counterparties. This constraint can be interpreted as a budget constraint for securities, where the box refers to the net amount of securities owned and sourced. In the model, we consider two such constraints. The first constraint, the global box constraint, posits that the amount of securities sourced or delivered through the cash, GC, and SI repo market must be greater or equal to zero. The second constraint, the SI box constraint, is stricter than the global box constraint in two dimensions. First, SI box excludes the securities sourced and delivered through GC repo markets. Second, the SI box has to be no less than an amount proportional to clients’ leveraged orders.

To satisfy the SI box constraint, dealers can either buy the securities from the interdealer cash market or borrow them from the SI repo market; however, the impact on dealers’ portfolio payoff will be different. Namely, by purchasing a security, a dealer alters the risk of its portfolio, whereas by borrowing a security, his risk profile remains unchanged.\footnote{The focus of the paper is to characterize how dealers intermediate markets, and thus, we abstract from counterparty risk.} In the model, the dealer is able to post the additional amount of securities needed to satisfy the SI box in the GC market in order to finance them. But it entails a cost: the dealer will raise funding at the GC repo rate which is higher than the SI repo rate.

In equilibrium, dealers choose not to alter their optimal portfolio position, but instead heavily use repos to intermediate client order flow. This result implies that their inventory is an incomplete measure of their intermediation capacity and also that their flexibility to increase the size of the balance sheet is crucial. The model also suggests that repo specialness—the spread between the repo rate in the GC market and the repo rate in the SI market—is an intermediation cost dealers
must bear and is thus correlated with the bid/ask spreads they charge their clients. This finding suggests that, in the time series, repo specialness is an indirect measure of bond market liquidity.\(^3\) This is particularly useful in markets where cash market liquidity is difficult to measure directly. For example, data from the interdealer U.S. Treasury cash market suggests that liquidity has been fairly stable over the last few years, whereas specialness data suggests otherwise.

The SI box constraint is a key friction of the model and is motivated by a number of economic incentives. For example, failing on a promise to deliver a security entails a cost, which generates a motive to source in additional amount of securities.\(^4\) In order to avoid the cost of failing to deliver, dealers have an incentive to hold or source additional securities in case a counterparty fails to deliver to them. Without any buffer, a dealer would be forced to fail to deliver to his counterparties when others fail to deliver to him. Therefore, dealers have a precautionary motive to source in more securities than are needed, and specifically, in proportion to the amount of assets it has to intermediate.\(^5\)\(^6\)

Inspired by newly implemented regulations, we study how the equilibrium changes when limits to the size of dealers’ balance sheet are introduced. Such restrictions impact cash market liquidity because the use of repos in cash market intermediation expands the size of dealers’ balance sheets. In a partial equilibrium setting where a single dealer faces a size limit, all else equal, the affected dealer has less incentive to attract large trades from their clients; hence, the dealer increases its bid/ask spread. However, in a general equilibrium setting where all dealers face the balance sheet restriction, bid/ask spreads decrease. This seemingly counterintuitive result is because such restriction reduces dealers’ demand to source assets in the SI repo market, alleviating pressures on repo specialness. Since specialness is a cost of intermediation, lower costs will get passed on to clients in the form of lower bid/ask spreads.

Comparing our general equilibrium result with recent data suggests that the introduction of

\(^3\)This result is seemingly at odds with previous literature which finds that repo specialness manifests itself in the most liquid securities. But those finding are about the relative liquidity across different types of bonds, for example, on-the-run vs off-the-run Treasury securities. See Subsection 7.2 for a more detailed discussion.

\(^4\)The cost is proportional to the repo rate or a fails charge imposed by market convention. For more information on the history of the fails charge see Garbade et al. (2010).

\(^5\)Subsection 7.1 provides suggestive empirical evidence of the buffer of securities.

\(^6\)SI box constraint may also be justified by different intraday settlement timing between various repo and cash markets. Additionally, without such constraint, a dealer may engage in an infinite amount of leveraged orders.
Supplementary Leverage Ratio (SLR) cannot explain the increase in specialness in recent years. In our model, balance sheet restrictions decrease specialness, whereas it has increased modestly in recent years. This suggests that other factors are in play. We conjecture that changes in securities lenders’ willingness to provide SI repos is a potential explanation, which is supported by our model.

Although the specific modeling ingredients of the paper are inspired by the U.S. Treasury market, the insights from the model can be applied more generally to securities with dealer-intermediated cash markets, and active and liquid repo markets. For example, many of the European government securities markets exhibit these characteristics.

2 Institutional Setting

The cash Treasury market in the U.S. is segmented into interdealer markets and dealer-customer markets. Interdealer trades take place on fully electronic, anonymous limit order book platforms. Dealer-customer trades take place over-the-counter or on “request for quote” platforms such as TradeWeb or Bloomberg with each customer generally trading with one or a few dealers. Thus, the U.S. Treasury market can be thought to have a core-periphery structure, with securities broker-dealers in the core and their customers in the periphery.

The U.S. Treasury repo market can be divided into the tri-party repo market and the bilateral repo market. Tri-party repo market is a wholesale funding market where broker-dealers raise short-term secured funding from cash investors such as money market funds. In this repo market, within a certain collateral class, cash borrowers have the flexibility to choose from a wide range of assets to post as collateral. This flexibility is valued by cash borrowers, who can manage their collateral holdings by exchanging assets within a collateral class whenever different asset demands arise. This flexibility is not costly to borrowers because in this market cash lenders only value collateral as a backstop to a borrower default. Thus, given an appropriately sized haircut, cash lenders are largely indifferent to which specific asset is posted as collateral. This makes the tri-party market a GC

7Tri-party repo markets can be further separated into two distinct segments: the general tri-party market and the GCF (general collateral financing) repo market. The general tri-party allows cash lenders, such as money market mutual funds, to enter into repo contracts with large broker dealers. The GCF repo market is a blind brokered interdealer market allowing broker dealers to manage their cash and collateral. For more details, see Copeland et al. (2012).
repo market.

In the bilateral repo markets, collateral can be specified—allowing participants to borrow a particular security via a reverse repo. This makes the bilateral repo market a *SI* repo market. Because a large fraction of cash trading in the Treasury market happens on the “on-the-run” securities (Barclay et al. (2006))—the most recently issued U.S. Treasury bond—an important fraction of *SI* repo market activity is for the on-the-run securities. When demand for borrowing a specific issue is high, the bilateral repo rate can be lower than the tri-party repo rate. This incentivizes the original collateral owners to lend their securities in the *SI* market, reinvest the cash proceeds into the *GC* repo market, and reap the difference between *GC* and *SI* repo rates, i.e., repo specialness. Collateral owners who participate in this market are typically long term investors who lend their securities through securities lenders to profit from repo specialness.

Figure 1 plots the 20 day moving average of repo specialness for on-the-run Treasury securities, showing a clear upward trend in repo specialness. Because our model predicts that repo specialness and bond illiquidity is correlated, this evidence is consistent with market commentary that Treasury markets have become more illiquid. Given that bid-ask spread data is generally only available for the interdealer segment of the U.S. Treasury market, it is not surprising that illiquidity has been hard to detect. This paper shows that the overall market can be illiquid while exhibiting limited evidence of illiquidity in the interdealer market.

3 Literature Review

Our paper is related to literature on repo specialness in the U.S. Treasury market and its effect on pricing. Duffie (1996) shows that the degree of repo specialness depends on the demand for short positions and the supply of loanable collateral, and provides a theoretical relationship between bond prices and repo specialness. Krishnamurthy (2002) studies the spread between on-the-run and off-the-run U.S. Treasuries and shows that trading profits from shorting on-the-run securities and buying off-the-run securities are close to zero because of the on-the-run securities’ specialness. The model in that paper incorporates frictions on agents’ liquidity needs and their ability to lend

8 Of note, dealers may also use the bilateral market to raise funding rather than to borrow specific securities.
Figure 1: Repo specialness for on-the-run Treasuries
This figure presents the 20 day rolling average of repo specialness for the 2, 5, and 10 year on-the-run Treasury bonds. Repo specialness is calculated as the difference between the overnight general collateral repo rate on U.S. Treasuries and the volume-weighted average of the specific issue repo rate. A more positive number refers to higher specialness. General collateral rates are from DTCC, and the specific issue repo rates are from repo interdealer broker community.
securities in order to disentangle changes in bond prices from changes in their special repo rates. In our model, bond prices and special repo rates are determined uniquely because of the participation of a third party that supplies collateral in the SI repo market: securities lenders. In our model, securities lenders only participate in the SI repo market, allowing us to uniquely determine the bond price and its repo specialness.\footnote{Relatedly, DAmico et al. (2018) study the supply and demand factors that drive repo specialness, focusing on the Federal Reserve's purchase programs.}

The on-the-run/off-the-run yield difference is often used as a measure of liquidity in Treasury markets, as the price difference may be due to the liquidity premium embedded in the more-liquid on-the-run security. Vayanos and Weill (2008) argue that repo specialness of the on-the-run securities arises naturally to alleviate search frictions that short sellers face when they need to return a borrowed asset in the future. This perspective implies that on-the-run specialness is a result of the security’s higher liquidity relative to others. The framework developed in our paper adds to this insight by noting that even though specialness reflects liquidity across assets, it contributes to illiquidity across time because it exposes dealers to intermediation costs. This insight implies that repo specialness is a proxy for market liquidity.

In terms of the model setup, our model is closest to the literature on how market makers’ inventory management affect their liquidity provision. Amihud and Mendelson (1986) models a monopolistic, risk-neutral dealer with inventory size constraints, Stoll (1978) models a risk-averse monopolistic dealer, Ho and Stoll (1983) models a market with multiple dealers, and Ho and Stoll (1983) incorporates an interdealer market to offset the inventory. The main difference between this literature and our model is how dealers source securities. In our model, dealers can access securities via two distinct markets, by either buying or borrowing them. This means that dealers’ inventory positions are not representative of their intermediation capacity. Their ability to expand their balance sheet without altering the risk of their portfolio is more relevant in determining their intermediation capacity.

The paper is also related to the large literature on trading frictions in securities markets. In particular, Bottazzi et al. (2012) show how asset and repo markets coexist in a stylized general equilibrium framework. In that paper, the authors underscore a particularly relevant restriction
that securities dealers must satisfy: the box constraint. This constraint forces intermediaries to borrow a security whenever they want to short. Our paper focuses on a market structure where clients pay dealers to service trades, allowing us to gauge the amount of liquidity dealers provide. This structure gives us a framework to understand how dealers intermediate markets and to interpret dealers balance sheet data.

There is a growing literature aiming to understand how newly implemented bank regulation has affected liquidity in securities markets. For example, Trebbi and Xiao (2017), Bao et al. (2018), and Choi and Huh (2017) studies whether corporate bond liquidity has deteriorated after regulations were adopted. Cimon and Garriott (2017) build a model to study the impact of liquidity, capital, and position constraints on banks’ ability to make markets. Their focus is to study how regulations promote the entry of new non-regulated dealers, having varying effects on liquidity. Our focus is to explicitly characterize the link between the cash market and different repo markets, and to study how the leverage ratio, which is particularly onerous on repo, affects the cash market.

Lastly, securities lenders also play an important role in the repo market. Foley-Fisher et al. (2015) argue that securities lenders are not merely responding to the demand to borrow securities, but they also use securities lending as a way to finance higher yielding, less liquid securities. To this end, we model the supply of assets from securities lenders as not only responding to changes in repo specialness, but also as having a free parameter which reflects their willingness to supply assets. We look at how the equilibrium changes with their willingness parameter.

4 Model Setup

The model consists of 3 periods $t \in \{0, 1, 2\}$. In $t = 0$, dealers post their bid and ask to clients. The size of clients’ order flow is stochastic, with larger orders being more likely for smaller bid and ask quotes. At $t = 1$, client orders are realized. Dealers receive both buy and sell orders, a fraction of which will be levered. That is, a portion of client orders will be a simultaneous cash and repo trade with the dealer, establishing either levered long or short positions. Throughout the model, we will assume SI repos will be trading special, which in the model will imply that dealers have to bear a cost to source a specific asset.
Figure 3: Model Timeline

4.1 Assets & Contracts

The risky asset will have a final payoff given by $\tilde{v} \sim N(\mu, \sigma)$. We assume that there is an unrestricted secured lending market for GC repos with an exogenously specified one-period risk-free rate R. This means there is an abundance of cash and GC assets from outside investors. Only secured debt is allowed (i.e., repo) to raise funding.

The price of the risky asset p and the specific issue repo rate R^S will be determined by market clearing. We will consider settings where in equilibrium, the repo rate on SI repos are below the risk free rate: $R^S < R$, and the difference between rates (i.e., repo specialness) is denoted by $s = R - R^S$. The main difference between SI and GC repos is that dealers can use SI repos to establish short positions and deliver them to their clients.

For simplicity, we assume that repos do not have haircuts, yet are risk-free. More specifically, we assume contract enforceability and no limited liability. These assumptions simplify the analysis greatly and keeps the focus on dealers’ use of repo to borrow assets in order to deliver them to clients. We can relax the assumption of risk-free repos somewhat by incorporating haircuts to make GC repos “virtually risk free” and by allowing dealers to charge different haircuts to their clients, depending on whether they submit a levered long or short sale.\footnote{10}{The case of virtually risk free can be interpreted as repos with U.S. Treasuries that have a 2\% haircut.} \footnote{11}{Infante (2015) shows that SI repo haircuts can be negative whenever investors need to source an asset.} \footnote{12}{Ignoring counterparty risk implies that the current version of the model is not well suited to study systemic risks that come from rehypothecation.} Adding these features complicates the analysis without significantly altering the results.

The model’s state variables in $t = 0$ are dealers’ initial asset position D and dealers’ initial cash holdings W. In terms of notation, a repo using Q assets as collateral implies that the cash borrower receives pQ in funds and distributes Q in risky assets to the cash lender. On the closing leg of the repo, the cash lender of a repo receives $R \times pQ$ or $R^S \times pQ$ in cash, depending on whether it was...
a GC or SI repo, and returns the asset back to the cash borrower.

4.2 Agents

There are three types of agents in the economy: dealers, securities lenders, and clients. Each client can only interact with one dealer; thus, there is no outright competition between dealers. Dealers are endowed with an initial portfolio in \(t = 0 \), but have the ability to rebalance their position once a client order is received. Dealers service their client orders, which may be buys or sells, or levered long or short positions. Securities lenders are long-term investors who already hold their optimal portfolio in \(t = 0 \), but have the ability to lend their securities to dealers.

4.2.1 Dealers

There is a continuum \([0,1]\) of dealers with CARA utility and risk aversion \(\gamma \) which consume the payoff from their portfolio in the final period. Specifically, their final payoff consists of cash flows from their risky investments, payoff from their repos, and fees in the form of bid/ask from clients. Therefore, a dealer’s final wealth takes the following form:

\[
\tilde{W}_2 = (\tilde{v} - p)Q_D + (R^S - 1)pQ^S_R + (R - 1)pQ^G_R \\
- (\tilde{v} - \phi_L R^S p)\tilde{Q}_L + (\tilde{v} - \phi_S R^S p)\tilde{Q}_S + (1 - \phi_L) p\tilde{Q}_L - (1 - \phi_S) p\tilde{Q}_S + ap\tilde{Q}_L + bp\tilde{Q}_S \\
+ \tilde{v}D + W
\]

(1)

where \(Q_D \) is the dealer’s portfolio rebalancing in the cash market, \(Q^S_R \) is the amount of assets sourced through \(SI \) repos, and \(Q^G_R \) the amount of assets received as collateral through \(GC \) repos (i.e. cash lending); all are chosen in \(t = 1 \).\(^{13}\) Transactions with clients are not included in \(Q_D, Q^S_R, \) and \(Q^G_R \). The second line in expression (1) highlights the effect of clients’ orders on the dealer’s portfolio. The size of a client’s buy and sale orders are given by \(\tilde{Q}_L \) and \(\tilde{Q}_S \), of which a fraction \(\phi_L \) and \(\phi_S \) are accompanied by repo orders, respectively. Note that a client buy order implies a

\(^{13}\)Since our model is a one-shot trading game, there is no rollover risk. If there were multiple periods where repo trading happens, dealers face the risk that the cash borrower may not want to roll over the overnight repo, or roll over at unfavorable rates. This potentially may have a large effect.
negative position for the dealer, thus it is associated with \(-(\tilde{v} - p)\). We assume all dealers are endowed initially with the same amount of securities \(D\) and cash \(W\), and we assume \(W + pD > 0\).

Finally, \(a\tilde{Q}_L\) and \(b\tilde{Q}_S\) are the profits from the bid \((b)\) and ask \((a)\) spreads. The dealer chooses \(a\) and \(b\) at \(t = 0\), and as we will show when describing dealers’ clients, the tradeoff is between spreads and intermediation quantity. Note that in this setup, dealers charge their clients in the form of bid/ask spreads, but the model is equivalent to a case where dealers use other forms of contracting arrangements to charge their clients, such as repo markups.

The main restrictions for dealers are their global and \(SI\) box constraint. The total amount of assets \((SI\) and \(GC\)) must always be non-negative, and the amount of \(SI\) assets the dealer can access must be large enough to cover the clients’ levered orders. Specifically, we assume dealers’ \(SI\) box restriction is a function of levered orders: \(g(\phi\tilde{Q}_L, \phi\tilde{Q}_S) > 0\). This assumption captures the intuition that dealers need to, at least in part, access assets in order to establish client positions.\(^{14}\)

Specifically, given client order sizes \(\tilde{Q}_L = Q_L\) and \(\tilde{Q}_S = Q_S\), the dealer’s \(SI\) box constraint is given by

\[
D + Q_D + Q_S^R - (1 - \phi_L)Q_L + (1 - \phi_S)Q_S \geq g(\phi Q_L, \phi S Q_S).
\]

That is, the total amount of \(SI\) assets the dealer can access—its initial holdings, its assets bought in the interdealer market, assets source via \(SI\) repos, and unlevered buy/sell orders which alters the dealer’s inventory—must be enough to establish their levered clients position, which is a function of \(g\). Note that with levered long (short) orders, the dealer will get back the asset it buys (sells) and lends to (borrows from) their client, but we assume that the dealer must have \(g\) assets to facilitate these levered trades. Without such an assumption, the dealer would be able to do infinitely many levered trades with its clients.\(^{15}\) The presence of \(g\) implies a cost that dealers must bear to intermediate levered trades; in Section 7.1, we will present suggestive evidence that such friction exists.

\(^{14}\)In effect, if \(g = 0\), dealers would be able to write “naked” shorts and longs with their clients.

\(^{15}\)This assumption incorporates a friction that will decouple the cash market from the \(SI\) repo market, similar to Krishnamurthy (2002).
4.2.2 Securities Lenders

We model securities lenders in a reduced form to focus on dealer behavior. Securities lenders lend assets through SI repos based on an exogenously specified supply function $SL(s; \eta)$ with $\frac{\partial SL}{\partial s} > 0$. That is, the more the repo trades on special, the more the securities lenders are willing to lend. We also assume that the supply from securities lenders depends on η, which governs their willingness to provide securities lending services. In effect, Foley-Fisher et al. (2015) show that securities lending programs use funds from their activities to finance long dated assets, making their lending services depend on factors beyond repo specialness. We capture these incentives in reduced form through η, and assume $\frac{\partial SL}{\partial \eta} > 0$.

4.2.3 Clients

Client order sizes are stochastic and exogenously specified. Specifically, the size of client orders are independent and distributed $\tilde{Q}_L, \tilde{Q}_S \sim \text{Exp}(\lambda(x))$ ($x \in \{a, b\}$), where λ is a function of the dealer’s bid/ask quote. We assume $\lambda, \lambda', \lambda'' \geq c > 0$ where c is an arbitrarily small constant. This setup implies that higher dealer markups make larger trade sizes less likely. Clients can be interpreted as liquidity traders, who can only access one dealer, and are price sensitive to the dealer’s markup: their trade sizes depend on their dealer’s bid/ask quote. Note that a levered client order is in fact two transactions: an asset purchase (sale) with a client repo (reverse repo).

4.3 Market Structure Summary

To summarize our setup, Figure 4 illustrates how dealers distribute collateral between all three markets—cash, SI repo, and GC repo—and the role securities lenders and clients play. Clients will approach a dealer and submit buy (Q_L) and sell (Q_S) orders, a fraction ϕ_L and ϕ_S of which will be accompanied by repos and reverse repos, respectively. After clients order flow is realized, dealers trade in these three markets. The cash market will serve to buy and sell securities for dealers to rebalance their risky asset position. The GC repo market will allow dealers to raise or invest funds at the GC repo rate. The SI repo market will allow dealers to either source assets to satisfy their SI box constraint or deliver assets to raise relatively cheap funding. Finally, securities lenders will
provide assets to the SI repo market as a function of repo specialness and their willingness to lend assets.

5 Optimal Strategies and Symmetric Equilibrium in Unrestricted Case

In this section, we first solve for dealers’ optimal strategies in \(t = 1 \) assuming no balance sheet restrictions. We then characterize the optimal bid/ask spreads, which determine the order intensity.

5.1 Optimal Strategies & Equilibrium in Interdealer Market

Given an initial total position \(D, W \) and order size \(\hat{Q}_L = Q_L \) and \(\hat{Q}_S = Q_S \), the dealer’s final payoff takes the expression in equation (1). Therefore, the dealer solves the following problem.

\[
\max_{\{Q_D, Q_R^S, Q_R^G\}} \mathbb{E}(u(\hat{W}_2)|\hat{Q}_L = Q_L, \hat{Q}_S = Q_S),
\]

subject to

\[
pQ_D + pQ_R^S + pQ_R^G - p(1 - \phi_L)Q_L + p(1 - \phi_S)Q_S \leq W \tag{3}
\]

\[
D + Q_D + Q_R^S - (1 - \phi_L)Q_L + (1 - \phi_S)Q_S \geq g(\phi Q_L, \phi S Q_S) \tag{4}
\]

\[
D + Q_D + Q_R^S + Q_R^G - (1 - \phi_L)Q_L + (1 - \phi_S)Q_S \geq 0. \tag{5}
\]

(3) is the dealer’s budget constraint, (4) is the SI box constraint, and (5) is the global box constraint. In (3), we assume that fees reaped from intermediation do not alter the dealer’s budget. This is a simplifying assumption merely for tractability because we do not want client order sizes to affect the dealer’s budget constraint. In reality, this effect, if any, is likely negligible. Given an asset price \(p \), a GC repo rate \(R \), and a SI repo rate \(R^S \), dealers will employ the following optimal strategies.

Lemma 1 (Dealer’s Optimal Strategy — Unrestricted Case). Given asset price \(p \), SI repo rate \(R^S \), and secured funding rate \(R > R^S \); a dealer’s optimal rebalancing strategy after receiving
Figure 4: Model Market Structure

D stands for dealer, C stands for a dealer’s client, Sec Lender stands for the securities lender. The dealer receives client long and sale orders Q_L and Q_S, a fraction ϕ_L and ϕ_S are accompanied by repos and reverse repos, respectively. GC Market stands for general collateral market, SI Market stands for specific issue collateral market, and Cash Market stands for the underlying asset market. Upon receiving client orders, a dealer chooses how much collateral to source or deliver to the GC market (Q^G_R) and the SI market (Q^S_R), and how much to buy or sell in the cash market (Q_D). Positive Q^G_R or Q^S_R means that the dealer is engaging in reverse repos. Positive Q_D means that the dealer is buying the asset. Securities lenders supply SL assets to the SI market. Only the asset movements (either through outright purchases and sales or as repo collateral) are drawn. Straight arrows indicate outright sales, and curved arrows indicate repo collateral movements.
client orders $\tilde{Q}_L = Q_L$ and $\tilde{Q}_S = Q_S$ is:

$$Q_D^* = \frac{\mu - R^S p}{\gamma \sigma^2} - D + Q_L - Q_S$$

$$Q_R^{S*} = g(\phi_L Q_L, \phi_S Q_S) - \frac{\mu - R^S p}{\gamma \sigma^2} - \phi_L Q_L + \phi_S Q_S$$

$$Q_R^{G*} = \frac{W}{p} + D - g(\phi_L Q_L, \phi_S Q_S).$$

Proof. See appendix. \square

Lemma 1 shows how dealers react to client order flow. One important observation from this result is that dealers’ final asset position is proportional to the asset’s risk adjusted return, which is the optimal solution for a regular CARA investor. That is,

$$D + Q_S - Q_L + Q_D^* = \frac{\mu - R^S p}{\gamma \sigma^2}.$$ \hfill (6)

Because dealers have access to frictionless interdealer markets, it allows them to optimally adjust their portfolio to accommodate their clients’ trades. Figure 5 shows how dealers rebalance portfolio. To better show the intuition, we consider a simple example where the dealer only receives a fully levered long or a short order (i.e., $\phi_L = \phi_S = 1$) of size Q. Additionally, assume

$$D = \frac{\mu - R^S p}{\gamma \sigma^2}$$

$$g(Q_L, Q_S) = Q.$$

Then, if the dealer receives a client short order, its optimal strategy will be

$$Q_D = -Q$$

$$Q_R^{S*} = 2Q - D$$

$$Q_R^{G*} = \frac{W}{p} + D - Q.$$

This is shown in Panel (a) of Figure 5. To maintain its optimal portfolio, the dealer wants to sell
Figure 5: Simple example

These diagrams show the dealer’s optimal solution in a simple case where \(W = 0, D = \frac{\mu - R^s}{\sigma^s} \), \(\phi_L = \phi_S = 1 \), and clients either submit a levered long order (panel (a)) or a short order (panel (b)). D stands for dealer, C stands for a dealer’s client, Sec Lender stands for the securities lender. GC Market stands for general collateral market, SI Market stands for specific issue collateral market, and Cash Market stands for the underlying asset market. Dealers optimally choose how much collateral to source or deliver in the GC market, the SI market, and how much to buy or sell in the cash market. Only the asset movements (either through outright purchases and sales or as repo collateral) are drawn. Straight arrows indicate outright sales, and curved arrows indicate repo collateral movements. \(g \) stands for \(g(Q_L) \) in panel (a) and \(g(Q_S) \) in panel (b).

\[\int_i Q_{Di} \, di = 0. \] \hspace{1cm} (7)

The SI repo market, which also incorporates securities lenders’ asset supply, clears through the
following equation,

\[\int_{i} Q_{i}^{S} di = S \mathcal{L}(s; \eta). \]

(8)

Proposition 1 (Interdealer Equilibrium — Unrestricted Case). Given dealers’ initial position \(W \) and \(D \), with \(W + pD > 0 \), GC repo rate of \(R \), securities lending function sufficiently small, and symmetric dealer bid and ask spreads \(a \) and \(b \), dealers’ optimal strategies characterized in Lemma 1 result in an asset price \(p \) and SI repo rate \(R^{S} < R \) which solves the following system of equations:

\[
\frac{\mu - R^{S}p}{\gamma \sigma^2} = D - \frac{\mathbb{P}(CL)}{\lambda(a)} + \frac{\mathbb{P}(CS)}{\lambda(b)} \\
S \mathcal{L}(s; \eta) = \mathbb{E}(g(\phi_L \tilde{Q}_L, \phi_S \tilde{Q}_S)) - D + \frac{(1 - \phi_L)\mathbb{P}(CL)}{\lambda(a)} - \frac{(1 - \phi_S)\mathbb{P}(CS)}{\lambda(b)}
\]

(9)

(10)

where \(\mathbb{P}(CL) \) and \(\mathbb{P}(CS) \) are the probability of a client long and short order, respectively.

Proof. The proof stems from considering dealers’ strategies in Lemma 1, imposing market clearing conditions (7) and (8), and applying the law of large numbers for client orders.

Equation (9) shows how the price responds to client order flow: An increase in client longs increases the price, whereas an increase in client shorts reduces the price. Equation (10) highlights what drives repo specialness. Specifically, if there are larger frictions, namely if dealers need to hold more assets to service levered longs and shorts, captured through a higher \(g \), then dealers need to source more assets in the \(SI \) market which puts upward pressure on repo specialness. In addition, changes in \(\phi_L \) or \(\phi_S \) changes the amount of assets in the market due to unlevered client order flow, giving a predictable effect on repo specialness.

It is interesting to note that considering the \(SI \) market clearing condition in isolation gives

\[S \mathcal{L}(s; \eta) = \mathbb{E}(g(\phi_L \tilde{Q}_L, \phi_S \tilde{Q}_S)) - \left(\frac{\mu - R^{S}p}{\gamma \sigma^2} \right) - \frac{\phi_L \mathbb{P}(CL)}{\lambda(a)} + \frac{\phi_S \mathbb{P}(CS)}{\lambda(b)}. \]

The above partial equilibrium equation highlights what market participants often comment regards repo specialness: an increase in client short base increases repo specialness. In effect, if \(\phi_S \) increases, \(s \) would need to increase to clear the market. But this observation neglects the effect of repo
specialness on the asset price. The general equilibrium solution in (10) shows that what matters is the total amount of assets added and subtracted from the interdealer market, along with any frictions associated with intermediating levered trades.

Dealer’s final wealth when using the optimal strategy is given by

$$
\tilde{W}_2^*\{\tilde{Q}_L = Q_L, \tilde{Q}_S = Q_S\} = (\tilde{v} - R^S p) \left(\frac{\mu - R^S p}{\gamma \sigma^2} \right) - s p g(\phi_L Q_L, \phi_S Q_S)
+ R p D + R W + a p Q_L + b p Q_S.
$$

Dealers’ final wealth consists of the upside from taking a levered position in the asset, the fees charged to its clients, and the cost of having to source SI collateral to intermediate client orders, i.e., g. Dealer’s final utility is

$$
\mathbb{E}(u(W^*))|\tilde{Q}_L = Q_L, \tilde{Q}_S = Q_S) = -\exp \left\{ -\gamma \left[\frac{1}{2} \left(\frac{(\mu - R^S p)^2}{\gamma \sigma^2} \right) - s p g(\phi_L Q_L, \phi_S Q_S)
+ R p D + R W + a p Q_L + b p Q_S \right] \right\},
$$

where p and R^S are given by Proportion 1.

5.2 Posting Bid/Ask at $t = 0$

Having the dealer’s optimal strategy and final expected utility, we characterize the optimal bid/ask spread that dealers quote at $t = 0$. For simplicity, assume that

$$
g(\phi_L Q_L, \phi_S Q_S) = g_0(\phi_L Q_L + \phi_S Q_S).
$$

with $g_0 < 1$ being a constant. This assumption implies that there is no internalization in dealer’s levered operations. In a way, this stark assumption implies that dealers cannot offset client levered longs and shorts to intermediate assets, but we adopt it for tractability. Therefore, the dealer’s expected payoff is given by

$$
\mathbb{E}(u(W^*)) = -\Gamma \mathbb{E} \left\{ \exp \left\{ -\gamma p[a \tilde{Q}_L + b \tilde{Q}_S - s g_0(\phi_L \tilde{Q}_L + \phi_S \tilde{Q}_S)] \right\} \right\} ,
$$
where $\Gamma = \exp \left\{ -\gamma \left[\frac{1}{2} \left(\frac{(\mu - R^S p)^2}{\gamma \sigma^2} \right) + RpD + RW \right] \right\} > 0$ is a constant. Although p is determined by market clearing in $t = 1$, p is already known in $t = 0$. This is because dealer know all other dealers’ strategies and also know the actual client order distribution due to the law of large numbers. Integrating over \tilde{Q}_L and \tilde{Q}_S gives

$$
\mathbb{E}(u(W^*)) = -\Gamma \frac{\lambda(a)}{(\lambda(a) + \gamma p a - \gamma p s g_0 \phi_L)} \times \frac{\lambda(b)}{(\lambda(b) + \gamma p b - \gamma p s g_0 \phi_S)}.
$$

(13)

For the integral to exist, we need $\lambda(a) + \gamma p a - \gamma p (R - R^S) \phi_L > 0$ and $\lambda(b) + \gamma p b - \gamma p (R - R^S) \phi_S > 0$. Recall that dealers do not internalize the effect of their optimal strategy on the price or repo specialness. This leads to the following Lemma on dealers’ optimal bid/ask.

Lemma 2 (Dealer’s Optimal Bid/Ask — Unrestricted Case). Given a dealer’s initial position W and D, with $W + pD > 0$, GC repo rate of R, securities lending function sufficiently small enough, and g as in (11); the dealer’s optimal bid and ask spread solve the following equations

$$
\lambda'(a^*) a^* - \lambda(a^*) - \lambda'(a^*) s g_0 \phi_L = 0,
$$

$$
\lambda'(b^*) b^* - \lambda(b^*) - \lambda'(b^*) s g_0 \phi_S = 0,
$$

with $a^* > s g_0 \phi_L$ and $b^* > s g_0 \phi_S$.

Proof. Taking the first order condition of expression (13), deduced from Proposition 1 with g as in equation (11) gives the Lemma’s optimality conditions. In addition, note that $a^* > s g_0 \phi_L$ and $b^* > s g_0 \phi_S$ because

$$
\left. \frac{\partial \mathbb{E}(u(W^*))}{\partial a} \right|_{a = s g_0 \phi_L} = \Gamma \frac{\lambda(b)}{\lambda(b) + \gamma p b - \gamma p s g_0 \phi_S} \times \frac{\gamma p}{\lambda(s g_0 \phi_L)} > 0,
$$

implying $a^* > s g_0 \phi_L$. The same argument holds for b^*. \qed

Note that each individual dealer’s bid and ask spread is increasing in repo specialness. Because dealers need to source g assets in order to intermediate, forcing them to bear the cost of repo specialness, they pass on those costs to their clients. That is, in a partial equilibrium setting, client’s market liquidity is decreasing in repo specialness.
Note that the optimal bid and ask in Lemma 2 do not depend on the underlying asset’s price. This feature will be useful when characterizing how liquidity changes with securities lending activity.

5.3 Sensitivity of Liquidity to Changes in Securities Lending

In this section, we can characterize how the equilibrium changes with \(\eta \), the willingness of securities lenders to provide assets. To do this, we first further simplify the model by setting \(\phi_L = \phi_S \). This simplifying assumption eliminates imbalances that affect repo specialness because of assets being added to, or drained from, the SI repo market mechanically through client trades.

If \(\phi_L = \phi_S = \phi \), from Lemma 2 we have that \(a^* = b^* \) can constitute an equilibria. Focusing on symmetric equilibria, we assume that the probability of a buy or sell order is equality likely—that is, \(\mathbb{P}(CL) = \mathbb{P}(CS) \), and thus characterize equilibria where \(a^* = b^* \).

\[
T_1 := \mathbb{E}(g_0(\phi \tilde{Q}_L, \phi \tilde{Q}_S)) - D - \mathcal{SL}(s; \eta) = 0
\]
\[
T_2 := \lambda'(a^*)a^* - \lambda(a^*) - \lambda'(a^*)sg_0\phi = 0
\]

Proposition 2 (Sensitivity of Liquidity to \(\eta \) — Unrestricted Case). Given the same assumptions from Lemma 2, with \(\phi_L = \phi_S = \phi \), increases in securities lenders’ willingness to provide assets decreases repo specialness and dealers’ optimal bid/ask. Specifically,

\[
\frac{\partial(R - R^S)}{\partial \eta} = \frac{1}{|J|}(\lambda''(a^*)(a^* - sg_0\phi))\frac{\partial \mathcal{SL}}{\partial \eta} < 0
\]
\[
\frac{\partial a^*}{\partial \eta} = \frac{1}{|J|}\lambda'(a^*)g_0\phi\frac{\partial \mathcal{SL}}{\partial \eta} < 0,
\]

where \(|J| < 0 \) is the determinant of the Jacobian matrix of partial derivatives of \(T_1, T_2 \) with respect \((R - R^S) \) and \(a^* \).

Proof. Proof involves applying the implicit function theorem to equations \(T_1 \) and \(T_2 \). See details in the appendix. \(\square \)

Proposition 2 shows that as securities lenders provide more assets into the market through
repos, repo specialness and dealers’ markup decrease. Both of these changes are intuitive. More assets available to lend reduces the degree of repo specialness. And because repo specialness is a cost borne by dealers, they pass those savings onto their clients. This result highlights the tight link between repo specialness and market liquidity.

6 Optimal Strategies and Symmetric Equilibrium in Restricted Balance Sheet Case

The analysis in Section 5 assumed that dealers had the liberty to alter the size of their balance sheets to accommodate arbitrarily large client orders. But since the financial crisis, broker-dealers affiliated with Bank Holding Companies (BHCs) are subject to a number of regulatory restrictions in an effort to make these BHCs more resilient. One of these regulatory initiatives, the Supplementary Leverage Ratio (SLR), restricts the amount of leverage a large BHC can take.

In the context of our model, the specific functional form of the leverage ratio restriction used in the SLR would be difficult to model. But, assuming the the BHC has a fixed level of equity, a leverage restriction can be translated into a size restriction on the dealer’s balance sheet. In order to understand how this restriction may affect the dealer’s intermediation activities, we first have to translate the model’s outcome onto a balance sheet.

Given the additional complexity of incorporating a limit on dealers’ balance sheet, this section will adopt a number of simplifying assumptions relative to the general model presented in Section 4. First, we assume that each dealer receives only one levered long or short order.16 These orders can still be arbitrarily large, but the focus is on how each of them affect the dealer’s ability to intermediate. Given that each dealer will receive one client order, \(g \) will be a function of that order’s size.

Without loss of generality, we will assume that \(\mu > R^S p \), which implies that dealers’ unrestricted optimal asset position is positive. To simplify dealers’ initial size, we assume all dealers’ initial asset position is \(D = 0 \), and their initial wealth \(W > 0 \) is arbitrarily small.

16This implies that \(\phi_L = \phi_S = 1 \).
The innovation of this section is that dealers have an upper bound C on the size of their balance sheet. Given that the dealer’s balance sheet composition is different for long and short orders, a convenient form to express the constraint is to impose that total assets and liabilities must be smaller than $2C$. In addition, dealers have an additional choice variable: how much of the order to intermediate Q_I. In its general form, the balance sheet restriction can be written as,

$$\frac{W}{p} + |Q_D + Q_I(1_{CS} - 1_{CL})| + |Q^S_R| + |Q^G_R| + Q_I \leq 2C. \tag{14}$$

Similar to the assumption adopted for dealers’ budget constraint, we assume that dealers’ markups do not affect the size of their balance sheet. These cash flows are likely to be negligible relative to the total size of a BHC’s balance sheet. In this notation 1_{CL} is an indicator function that equals 1 if the client order is a levered long and zero otherwise. 1_{CS} is defined similarly for client shorts. The five components of equation (14) are a dealer’s initial wealth, its final asset position, its interdealer SI and GC repos, and finally the repo (or reverse repo) issued to its client.

6.1 Optimal Strategies & Equilibrium in Interdealer Market

Given a levered long order $\tilde{Q}_L = 1_{CL}Q$ or a levered short order $\tilde{Q}_S = 1_{CS}Q$, the dealer’s final payoff takes the expression in equation (1). Therefore, the dealer solves the following problem,

$$\max_{\{Q_D, Q^S_R, Q^G_R, Q_I\}} \mathbb{E}(u(W)|\tilde{Q}_L = 1_{CL}Q, \tilde{Q}_S = 1_{CS}Q)$$

subject to,

$$pQ_D + pQ^S_R + pQ^G_R \leq W$$

$$Q_D + Q^S_R \geq g(Q_I)$$

$$Q_D + Q^S_R + Q^G_R \geq 0$$

$$\frac{W}{p} + |Q_D + Q_I(1_{CS} - 1_{CL})| + |Q^S_R| + |Q^G_R| + Q_I \leq 2C$$

$$Q_I \leq Q$$
That is, the dealer’s problem is the same as Section 5 except now dealers face a balance sheet restriction (equation (14)) and must also decide how much to intermediate \(Q_I \leq Q \). The above problem gives way to the following solution,

Lemma 3 (Dealer’s Optimal Strategy — Balance Sheet Restricted Case). Given an asset price \(p \), SI repo rate \(R^S \), secured funding rate \(R > R^S \), and \(\mu > R^S p \), then upon receiving a client long order \(\tilde{Q} = Q_{1CL} \), the dealer’s optimal portfolio is equal to the solution of Lemma 1 with \(Q_1 = Q \) whenever \(Q < C - \frac{\mu - R^S p}{\gamma \sigma^2} := Q^L_1 \). If \(Q \geq Q^L_1 \), then the dealer’s optimal strategy is

\[
Q^*_D = \frac{\mu - R^S p}{\gamma \sigma^2} + Q^L_1,
Q^*_R = g(Q^*_I) - \frac{\mu - R^S p}{\gamma \sigma^2} - Q^L_1,
Q^*_G = \frac{W}{p} - g(Q^*_I),
Q^*_I = \min\{Q, Q^L_2\},
\]

where \(Q^L_2 \) solves \(Q^L_2 = Q^L_1 + \frac{\alpha R - p(R^S)}{\gamma \sigma^2} g(Q^L_2) \).

Upon receiving a client short order \(\tilde{Q} = Q_{1CS} \), the dealer’s optimal portfolio is equal to the solution of Lemma 1 with \(Q_1 = Q \) whenever \(Q < Q^S \) which solves \(g(Q^S) + Q^S = C \). If \(Q \geq Q^S \), then the dealer’s optimal strategy is

\[
Q^*_D = \frac{\mu - R^S p}{\gamma \sigma^2} - Q^S,
Q^*_R = g(Q^*_I) - \frac{\mu - R^S p}{\gamma \sigma^2} + Q^S,
Q^*_G = \frac{W}{p} - g(Q^*_I),
Q^*_I = Q^S.
\]

Proof. See appendix. \(\square \)

The intuition for the dealer’s optimal response to a client short order is illustrated in Figure 6. For a relatively small order \(Q < Q^S \), the dealer intermediates the trade as in the unrestricted case. If the client order size increases by \(\epsilon \) as in Panel (b), dealer has to increase the size of
his balance sheet in order to accommodate the increase. This expansion happens because of the increase in repo it issues to its client and the increase in the amount needed to intermediate the trade $g(Q)$. The dealer can do this until the balance sheet size reaches the limit C, which happens when $g(Q) + Q = C$, that is, when $Q = \overline{Q}^S$. Once the balance sheet limit is reached, the dealer will only intermediate \overline{Q}^S.

The difference in dealers’ intermediation of long orders stem from the assumption that the unrestricted optimal portfolio is positive, i.e., $\mu > R^S p$. This implies that a dealer may accommodate larger client orders without increasing its balance sheet by compromising its risky asset position. The dealer is willing to alter its optimal position because it receives payments through a for intermediating large orders. The dealer will stop intermediating more when the benefit from doing so is equal to the cost of altering its portfolio. That is, when Q solves

$$(\mu - R^S p) - \gamma \sigma^2 \frac{(Q_D - Q)}{p(R - R^S) g'(Q)} = ap - p(R - R^S) g'(Q)$$

which defines \overline{Q}^L_2.

For both client long and short, a constraint on dealer’s balance sheet limits the amount of orders it can intermediate. For the remainder of Section 6, for tractability, we take a simplified view of how
regulatory restrictions limit the size of dealers’ balance sheet. Specifically, instead of assuming that there is an overall restriction on the size of the dealer’s balance sheet as in equation (14), we assume that dealers have an upper bound K on the total amount of securities they can intermediate for both client long or short orders. This simplifies the analysis because dealers’ optimal rebalancing strategies become symmetric, reducing the number of equilibrium conditions. In the following subsections, we characterize this equilibrium and study how it change as constraints become tighter and securities lenders’ willingness to intermediate changes.

6.2 Optimal Strategies & Equilibrium in Interdealer Market—Simplified Case

In this subsection we modify the dealers’ balance sheet constraint and simply assume that each dealer will only be able to intermediate up to K securities of its client’s order flow, irrespective of its direction.

This can be interpreted as internal controls imposed on traders to limit their contribution to the overall size of BHCs’ balance sheet. The benefit of this modification is that now dealers’ strategies to intermediate client order flow are symmetric for both long and short order. Note that this restriction is mathematically equivalent to how the overall balance sheet restriction affects dealers’ intermediation of client short position when $\mu > R^S_p$.

As in the previous subsection, for simplicity, we continue to assume that dealers do not have an initial asset holdings, $D = 0$, and that their initial wealth $W > 0$ is arbitrarily small. It then follows that, conditional on a client’s order of size Q, dealer’s optimal strategies when intermediating a client long and short order take the following form, respectively,

17This assumption allows us to characterize closed form solutions without affecting the main impact of the restriction.
\[
\begin{align*}
\text{client long} & \quad Q_D^* = \frac{\mu - R^S p}{\gamma \sigma^2} - Q_I^* \\
\text{client short} & \quad Q_D^* = \frac{\mu - R^S p}{\gamma \sigma^2} + Q_I^* \\
Q_R^{S*} & = g(Q_I^*) - \frac{\mu - R^S p}{\gamma \sigma^2} + Q_I^* \\
Q_R^{G*} & = \frac{W}{p} - g(Q_I^*) \\
Q_I^* & = \min\{Q, K\},
\end{align*}
\]

That is, in the modified restricted balance sheet model, for relatively small order flow, dealers intermediate as in the unrestricted balance sheet case. For relatively large order flow, dealers intermediate up to \(K\). Importantly, dealers’ optimal response to long and short orders are now symmetric.

As in the unrestricted balance sheet case, both the cash and \(SI\) repo market clears. That is, integrating over all dealers \(i\), market clearing is given by

\[
\int_i Q_{Di} di = 0, \quad \int_i Q_{Ri}^S di = \mathcal{SL}(s; \eta),
\]

which results in the following equilibrium.

Proposition 3 (Interdealer Equilibrium — Modified Restricted Balance Sheet Case). Given dealers’ initial position \(D = 0\), wealth \(W\), with \(W > 0\) arbitrarily small, GC repo rate of \(R\), and securities lending function sufficiently small; dealers’ optimal strategies characterized above result in an asset price \(p\) and specialness spread \(s = R - R^S > 0\) which solves the following system of equations:

\[
\begin{align*}
\frac{\mu - R^S p}{\gamma \sigma^2} & = -\frac{\mathbb{P}(CL)}{\lambda(a)} [1 - e^{-\lambda(a)K}] + \frac{\mathbb{P}(CS)}{\lambda(b)} [1 - e^{-\lambda(b)K}] \\
\mathcal{SL}(s; \eta) & = \mathbb{P}(CL) \left[\int_0^K g(q) \lambda(a) e^{-\lambda(a)q} dq + g(K) e^{-\lambda(a)K} \right] + \\
& \quad \mathbb{P}(CS) \left[\int_0^K g(q) \lambda(b) e^{-\lambda(b)q} dq + g(K) e^{-\lambda(b)K} \right]
\end{align*}
\]
where \(\mathbb{P}(CL) \) and \(\mathbb{P}(CS) \) are the probability of a client long and short order, respectively.

Proof. The proof stems from considering dealers’ strategies, imposing market clearing conditions (15), and applying the law of large numbers for client orders.

From Proposition 3, it can be appreciated how constraints on dealers’ balance sheet can have a direct impact on the underlying asset price and repo specialness. Specifically, for a given bid and ask, reducing dealers’ balance sheet reduces the demand for interdealer repos, thereby limiting repo specialness. This last effect depends on frictions in dealer intermediation given by \(g \).

6.3 Posting Bid/Ask at \(t = 0 \)

As before, having characterized a dealer’s optimal strategy given clients’ order flow, we can express their expected payoff in terms of their initial wealth and their optimal markup. As in the unrestricted balance sheet case, the expected payoff from intermediating a client long or short position take the same functional form. The expression for a client long order of size \(Q \) is

\[
\mathbb{E}(u(W^*)|Q_L = Q) = \begin{cases}
-\Gamma \exp\left\{-\gamma [aQ - sg(Q)]p\right\} & \text{if } Q < K \\
-\Gamma \exp\left\{-\gamma [aK - sg(K)]p\right\} & \text{if } Q \geq K,
\end{cases}
\]

where \(\Gamma = \exp\left\{-\frac{1}{2} \left(\frac{\mu - RS}{\sigma^2}\right)^2\right\} > 0 \) in this case. That is, the payoff is as in the unrestricted balance sheet case, but it is capped at \(\tilde{Q}_L = K \). For tractability we will assume that \(g(Q) = g_0Q \), with \(g_0 \) a constant between 0 and 1.\(^{18}\) Integrating over all possible client long orders, \(\tilde{Q}_L \), gives

\[
\mathbb{E}(u(W^*)|\text{Client Long}) = -\Gamma \left(\frac{\lambda(a)}{\lambda(a)} + \frac{\gamma p(a - g_0s)}{\lambda(a) + \gamma p(a - g_0s)} e^{-[\lambda(a) + \gamma p(a - g_0s)]K} \right).
\]

The expression of dealers’ expected payoff after a client short is identical. Defining \(w(a, s, K) := e^{-[\lambda(a) + \gamma p(a - g_0s)]K} \) which is between 0 and 1, we have the following Lemma for the restricted dealer’s optimal ask.

\(^{18}\) Assumption \(g' \leq 1 \) is to take into account that the dealer may not need the entire asset to intermediate a client’s levered order.
Lemma 4 (Dealer’s Optimal Ask — Modified Restricted Balance Sheet Case). Given
the assumptions of Proposition 3, if K is sufficiently large and $g(Q) = g_0Q$; dealer’s optimal ask
solves the following equation:

$$
0 = (\lambda'(a^*)a^* - \lambda'(a^*)g_0s - \lambda(a^*)) [1 - w(a^*, s, K)] \\
- \lambda(a^*) + \gamma p(a^* - g_0s)(a^* - g_0s)(\lambda'(a^*) + \gamma p)K w(a^*, s, K).
$$

Proof. See Appendix. □

Lemma 4 shows how the balance sheet constraint affects a dealer’s decision when setting its
optimal ask. Equation (19) can be interpreted as a weighted average of two considerations. The
first is identical to the optimality condition of Lemma (2), which takes into account the tradeoff
between larger fees, adjusted for the cost of specialness, with smaller expected order flow. The
second highlights the limit on how much a dealer can intermediate. Note that that as K increases,
the second term disappears, reducing the optimality condition to the unrestricted case.

6.4 Sensitivity of Liquidity to Changes in Balance Sheet Constraints

To understand the aggregate effects of balance sheet restrictions, we would like to see how the gen-
eral equilibrium changes with tighter balance sheet constraints. This analysis involves taking into
account how dealers’ optimal bid and ask change, as well as p and R^S, which implies incorporating
the changes in market clearing conditions (16) and (17). To better understand how the balance
sheet constraint works, we first characterize how an individual dealer’s balance sheet constraint
affects its own bid decision.

6.4.1 Balance Sheet Constraints on an Individual Dealer

In this subsection we ask how an individual dealer’s balance sheet restriction can affect the ask its
clients are offered. That is, we only explore a partial equilibrium change, taking as given the p and
R^S:
Proposition 4 (Sensitivity of Individual Dealer’s Optimal Ask to Changes in K). Given the assumptions of Proposition 3, if K is sufficiently large and $g(Q) = g_0Q$; a tightening of an individual dealers balance sheet constraint leads to in increase in its optimal ask. That is,

$$\frac{\partial a^*}{\partial K} < 0.$$

Proof. See Appendix.

The result from Proposition 4 shows that—at least in a partial equilibrium setting—tighter balance sheet constraints induce dealers to increase their markups, effectively reducing liquidity for their clients. Intuitively, given that dealers are restricted from filling large client orders, they opt to increase the revenue from filling smaller ones. This increases clients’ intermediation cost, making the underlying cash market less liquid.

This result is consistent with market commentary which suggests that size constraints on dealers’ balance sheet have limited their ability to intermediate markets, and hence, reduced bond market liquidity. Similar to the intuition borne out of the model, market participants suggest that allocating balance sheet space to their market-making restricts them from accommodating larger trades. Therefore, dealers will charge their clients more for their market-making services, reducing the overall market’s liquidity. But this intuition is from the narrow view of a single dealer’s constraint. To explore the validity of this channel, in the following subsection, we study how aggregate constraints affect overall dealer liquidity provision.

6.4.2 Balance Sheet Constraints on All Dealers

Now we turn to analyze the equilibrium’s sensitivity when all dealers face balance sheet restrictions. In this case, restricting the size of trades that dealers can intermediate has an effect on both the price and specialness.

Given the symmetry of the modified restricted balance sheet model, from Lemma 4 we know that the first order condition for its optimal ask and bid are the same. Focusing on symmetric equilibria, we assume that the probability of a buy or sell order is equality likely—that is, $P(CL) = P(CS)$,
and thus characterize equilibria where \(a^* = b^* \). The equilibrium is given by the dealer’s optimal bid/ask and the equilibrium conditions in Proposition 3, that is,

\[
\hat{T}_1 = S\mathcal{L}(s; \eta) - \frac{g_0}{\lambda(a)}[1 - e^{-\lambda(a)K}] = 0
\]

\[
\hat{T}_2 = (\lambda'(a)a - \lambda'(a)g_0s - \lambda(a))[1 - w(a, s, K)]
\]

\[
-(\lambda(a) + \gamma p(a - g_0s))(a - g_0s)(\lambda'(a) + \gamma p)K w(a, s, K) = 0.
\]

Note that in this formulation, the equilibrium conditions do depend on \(p \). We implicitly use the cash market clearing equation, which in this case implies \(pR^S = \mu \).

Proposition 5 (Sensitivity of All Dealer’s Optimal Ask to Changes \(K \) and \(\eta \)). Given the assumptions of Proposition 3, if \(K \) is sufficiently large and \(g(Q) = g_0Q \); a loosening of an individual dealers balance sheet constraint leads to an increase in its optimal ask and repo specialness. That is,

\[
\frac{\partial a^*}{\partial K} > 0, \quad \frac{\partial s}{\partial K} > 0.
\]

And an increase in securities lenders willingness to provide securities leads to a decrease in dealers optimal ask and repo specialness. That is,

\[
\frac{\partial a^*}{\partial \eta} < 0, \quad \frac{\partial s}{\partial \eta} < 0.
\]

Proof. See Appendix.

The result from Proposition 5 shows that partial equilibrium intuition of Proposition 4 is reversed once the effect on prices are considered. Intuitively, as the balance sheet constraint becomes tighter, dealers’ aggregate demand for specific issue securities goes down, reducing repo specialness. As the cost of intermediation goes down, so does dealer’s markup. From an individual dealer’s perspective, the partial equilibrium incentive is still present: as their ability to intermediate large order flow is restricted, dealers opt to increase revenue from smaller client orders. But the effect on specialness reduces dealers’ marginal intermediation costs for all trades, incentivizing them to
attract a larger share of smaller client order flow by lowering their markup.

The effect on changes in securities lenders willingness to supply securities is intuitive. As their willingness to provide specific issues securities increases (higher η), the cost of sourcing specific issue securities goes down and so does dealers’ ask. In Section 7.2, we will discuss how these findings relate to recent evidence and current trends in bond market intermediation.

To illustrate the intuition, we provide a numerical simulation here. The exogenous parameters and functions of the model are specified as below, and we calculate the equilibrium for different values of K.

$$g = 1, \quad R = 1.1$$
$$\mu = 100, \quad \sigma = 2$$
$$\gamma_0 = 1, \quad D = 0$$

$$SL(R - R^S) = SL_1 * (R - R^S)$$

$$SL_1 = 100$$

$$\lambda(a) = 0.2 + 100 * a^2$$

Figure 7 plots the equilibrium bid/ask spread and specialness for various values of K. As a benchmark, in the unrestricted case (i.e., $K = \infty$), the equilibrium a is 0.064, which implies that the order arrival is $Exp(0.6099)$, and the average order size is 1.6395. Consistent with Proposition 5, for sufficiently large values of K, equilibrium bid-ask spread and specialness decreases as balance sheet constraint gets tighter (K decreases). At low levels of K, tighter balance sheet constraints increase bid-ask spread as the partial equilibrium incentives outweigh the effects of lower specialness.

One of the crucial determinants of whether tighter balance sheets will decrease or increase the equilibrium a (for a given value of K) is the sensitivity of securities lending to specialness. To illustrate this, we look how a and s change when K decreases from 1.1 to 1 for various values of $SL1$. Higher values of $SL1$ implies a more elastic supply curve. Figure 8 plots Δa and Δs across various values of $SL1$. When securities lending function is inelastic ($SL1$ is low), the equilibrium a
Figure 7: Simulation results for general equilibrium
We numerically calculate the general equilibrium for various values of K. Simulation specification is in (20). Top graph plots the equilibrium bid/ask spread, and the bottom graph plots the equilibrium specialness s.
Figure 8: Securities Lending Elasticity and Equilibrium
This plots the change in equilibrium a and s when K changes from 1.1 to 1, for various values of SL_1. Simulation specification is in (20), but across various values of SL_1. Top graph plots Δa, and the bottom graph plots Δs.

decreases when balance sheet restriction gets stricter. Conversely, when securities lending function is elastic (SL_1 is higher), the equilibrium a increases when balance sheet restriction gets stricter.

To see the intuition, consider the case where securities lending function is perfectly elastic, that is, SL_1 is infinity. This will imply that specialness will not change with changes in K. Hence, given that p and s remains the same, only the partial equilibrium channel remains, and equilibrium a will always increase with tighter balance sheet constraints. In contrast, if securities lending function is fairly inelastic, specialness would decrease by a large amount when K decreases, and thus, the impact of lower specialness would outweigh, and equilibrium a will decrease.
7 Discussion

In this section, we discuss how the model’s assumptions and setup capture key features of bond market intermediation in practice. This section also discusses how the model outcome and its implications can help interpret available data on dealers’ securities books and explain observed patterns in the data.

7.1 Discussion of Model Assumptions

The model considers a continuum of dealers that trade in three distinct markets to manage their portfolio and intermediate client order flow. This is in the spirit of many market making models, where a subset of agents are endowed with the ability to access markets, but some of their counterparties (in this case, clients) cannot. Clients cannot directly access interdealer cash or repo markets in our model, which is similar to current institutional arrangements of the U.S. Treasury market.19

The novelty of the model is to allow dealers to use both cash and repo markets to intermediate client order flow. The setup captures how dealers rely on the cash market to trade and how they depend on—and stand in the middle of—different repo markets to finance and source securities. As detailed in Adrian et al. (2013), dealers engage in large volume repo transactions not only to finance their positions (and those of their clients), but also to distribute collateral throughout the financial system. Figure 9 shows primary dealers’ aggregate repo and trading volumes in the U.S. Treasury market. The high correlation between these two series is suggestive of how important the repo market is for trading activity.

The use of all three markets to intermediate client order flow arises naturally in the model because of dealers’ box constraints. Without access to repo markets, dealers would not be able to intermediate leveraged client orders without deviating from their optimal portfolio.

An important feature of the model is the SI box constraint, which assumes that the dealer should have securities in an amount commensurate to clients’ leveraged order flow. This can be motivated by the fact that cash and repo trades have to be physically settled and failing to deliver a security entails a cost. For example, consider a case where a client wants to short one unit of the

19 See Section 2 for institutional details of the U.S. Treasury markets.
This graph plots the standardized trading volume and repo volume for Treasury securities over time. Both are calculated using the primary dealer statistics data on the NY Fed website. We take the sum across all Treasury notes and bonds, and for repo volume, we include both repo and reverse repo.
asset and his dealer arranges for this by borrowing one unit of the asset from another dealer. If the dealer does not have the asset in the beginning, his SI box equals zero. If the dealer providing the initial asset fails to deliver it, the dealer filling the client order flow would have to fail to deliver to its customer. Because failing-to-deliver entails a cost (either an outright fails charge or not being able to intermediate clients’ order), dealer \textit{ex ante} would have precautionary motive to source in more assets than is needed. We do not model and solve for the optimal amount of precautionary sourcing, but instead assume a function $g()$ that is proportional to the clients’ leveraged order flow.

Empirical evidence suggests that the global box constraint and the SI box constraint are relevant. Figure 10 shows the average SI box and the global box (which includes assets sourced through GC repos) for the 2-year and 10-year on-the-run U.S. Treasury note. It indicates that the SI box is mostly positive. This implies that assets which can be delivered into the SI market are either posted in the GC market or not used at all. Absent a SI box constraint, this behavior seems puzzling, because whenever the bond trades on special, this allocation implies a loss. That is, assets are used to raise cash at a higher rate than they would otherwise if used in the SI market. This behavior is observed across U.S. Treasury securities of other tenors, providing evidence that dealers’ SI box constraint results in an intermediation cost that they must bear. The summary statistics for the global and SI box, provided in Table 1, also shows similar results.

7.2 Discussion of Model Outcome

One of the main implications of the model is that higher specialness leads to a more illiquid market. This seemingly goes against previous research that argues that a bond trades special \textit{because} it is liquid. Vayanos and Weill (2008) argue that on-the-run securities are easier to find than off-the-run securities, increasing demand to source the on-the-run securities in SI repo markets in order to short, and consequently, increasing their specialness. That is, in the cross section, the more liquid securities will trade with higher specialness. The intuition that higher demand for SI repos increases specialness is consistent with our model; however, we do not model the cross-section of securities directly.

But the positive relationship between illiquidity and specialness predicted by the model is in the
Figure 10: SI box and global box for primary dealers.
SI box and global box is calculated from FR 2004 data downloaded from NY Fed website. SI box is defined as net position plus the reverse repo on specific issue minus the repo on specific issue. Global box is defined as SI box plus reverse repo on general collateral minus the repo on general collateral. Panel A calculates the SI box and global box for the 2 year Treasury note, and Panel B calculates for the 10 year Treasury note.
Table 1: Summary statistics of SI box
This table shows summary statistics for SI box and global box for each tenor, calculated from FR2004 data. SI box is calculated as net position plus SI reverse repo position minus the SI repo position for the on-the-run treasury. Global box is calculated as SI box plus the reverse repo position in the GC market that uses the on-the-run security for the underlying, minus the repo position in the GC market with the on-the-run as underlying collateral. Data is weekly, reported as of end of Wednesday, from March 2007 to April 2015.

For each week, we calculate the average SI box and average global box across primary dealers. We then report the summary statistics for this time series data. Third and fourth column report the average SI box and global box, and the fifth column presents the fraction of dealer-week with positive SI box.

Tenor	# of weeks	avg SI box	avg global box	SI box >0
2 year	424	188.14	25.74	89%
3 year	424	166.64	27.78	90%
5 year	424	140.45	26.67	80%
7 year	320	214.53	32.55	94%
10 year	424	191.04	57.57	88%
30 year	424	176.8	44.05	95%

time series. The intuition is that because specialness is a cost dealers must bear to intermediate client order flow, a higher degree of specialness will translate into a higher transaction cost for the client, and hence, lower liquidity. This result is significant because it provides a different metric to gauge bond market liquidity. Measuring market liquidity is particularly difficult in the U.S. Treasury market because there is little to no data in the OTC dealer to customer market. The model prescribes that specialness can gauge the relevant costs to intermediate bonds and hence their liquidity. Figure 1 shows that in recent years, specialness has been increasing implying a deterioration of bond market liquidity which has not been measured elsewhere, but has been commented on by market participants.

Much of the aforementioned market commentary has blamed regulation, in particular the SLR, for the deterioration in bond market liquidity. The results from our restricted balance sheet model suggests this intuition is incomplete. From a partial equilibrium setting, restricting an individual dealer’s balance sheet would reduce its incentives to attract large order flow, increasing the markup for smaller trades, and hence market illiquidity. But this conclusion ignores the effects dealer balance sheet restrictions can have on specialness. Intuitively, if dealer demand for SI repos is
capped, then the the cost to source them should decrease. Our general equilibrium analysis shows that as balance sheet constraints for all dealers tighten, specialness decreases, and so do dealers’ bid and ask.

This suggests that something other than the SLR might be hindering liquidity. In the general equilibrium model, we show that an decrease in securities lenders’ willingness to lend will increase both specialness and bid/ask spreads. That is, if the overall supply of securities is reduced, then dealers’ intermediation cost to source them increases, which translates into higher dealer markups. This observation is consistent with anecdotal evidence which suggests that securities lenders have become conservative with their lending activity since the financial crisis. Specifically, securities lenders have imposed stricter counterparty limits and become more conservative with their reinvestment portfolios, reducing their incentives to lend securities. From the model, this trend is consistent with both the increase in specialness and market illiquidity.

Lastly, the model is also useful in interpreting data on dealers’ securities book and in backing out information on dealers’ market activity. One example of this data is the FR 2004 survey that documents dealers’ positions, trading, and short-term financing (which includes both repos and securities lending activity) for U.S. Primary Dealers. The analysis in Section 6 illustrates that when dealers intermediate trades, repos have a much larger impact on the size of the dealers’ balance sheets than the outright long and short positions which can be netted. Therefore, restrictions on the size of dealers’ balance sheets have a larger impact on their repo activity than on their outright positions. Moreover, Figures 6 show that an important fraction of repos and reverse repos are not just to raise and distribute funding, but also to source and deliver securities, a fact which is often overlooked. In particular, a contraction in a dealer’s repo book may not be solely attributed to a reduction in funding, but also on a reduction in trading activity. This interpretation is consistent with Figure 9.

8 Concluding Remarks

This paper presents a model of dealers’ bond market making activities taking into account the importance of repo markets, and shows how repo markets are closely linked to the underlying asset
market. Repos allow dealers to source and finance assets in order to fill client orders. We show that filling client orders is balance sheet intensive. The fees dealers charge are proportional to the cost of sourcing specific assets, which is captured by the repo specialness.

In a world where the size or the leverage of dealers’ balance sheet is limited, dealers have reduced incentives to service large orders and increase the costs they pass onto their clients. In effect, balance sheet limits reduces dealers’ ability to intermediate large trades, reducing market depth. In the partial equilibrium setting with fixed prices, reducing dealers’ balance sheet size increases the bid-ask spreads dealers charge to their clients, thus decreasing market liquidity. In the general equilibrium setting when specialness is endogenous, reducing dealers’ balance sheet size decreases their demand for specific issue repo, reducing repo specialness and putting downward pressure on bid-ask spreads.

The above observation puts into question recent criticism that new regulatory initiatives restricting the size of dealers balance sheet have decreased bond market liquidity. In the context of the model, the criticism is natural from an individual firm’s perspective: balance sheet restrictions limit order flow, incentivizing an increase in intermediation fees. But the general equilibrium model shows a more complex picture, since these types of restrictions can translate into lower repo specialness.

The general equilibrium results suggest that further research is needed to explain the upward trend in the main intermediation cost highlighted in this paper: repo specialness. In the paper we present one possible channel which is consistent an increase in specialness and a decrease in liquidity: securities lenders’ willingness to lend. Anecdotally, the securities lenders’ business model has significantly changed over the past decade. Understand securities lenders’ activities, and how their incentives to lend securities may have changed, is an interesting topic for future research.

References

Adrian, T., Begalle, B., Copeland, A. and Martin, A. (2013), Repo and securities lending, in ‘Risk Topography: Systemic Risk and Macro Modeling’, University of Chicago Press.
Amihud, Y. and Mendelson, H. (1986), ‘Asset pricing and the bid-ask spread’, *Journal of Financial Economics* **17**(2), 223–249.

Bao, J., OHara, M. and Zhou, X. A. (2018), ‘The volcker rule and corporate bond market making in times of stress’, *Journal of Financial Economics*.

Barclay, M. J., Hendershott, T. and Kotz, K. (2006), ‘Automation versus intermediation: Evidence from treasuries going off the run’, *The Journal of Finance* **61**(5), 2395–2414.

Bottazzi, J.-M., Luque, J. and Páscoa, M. R. (2012), ‘Securities market theory: Possession, repo and rehypothecation’, *Journal of Economic Theory* **147**(2), 477–500.

Choi, J. and Huh, Y. (2017), ‘Customer liquidity provision: Implications for corporate bond transaction costs’, *Working Paper*.

Cimon, D. A. and Garriott, C. (2017), ‘Banking regulation and market making’, *Bank of Canada Staff, Working Papers* (7).

Copeland, A., Duffie, D., Martin, A. and McLaughlin, S. (2012), ‘Key mechanics of the us tri-party repo market’, *Federal Reserve Bank of New York Economic Policy Review* **18**(3), 17–28.

Duffie, D. (1996), ‘Special repo rates’, *The Journal of Finance* **51**(2), 493–526.

DAmico, S., Fan, R. and Kitsul, Y. (2018), ‘The scarcity value of treasury collateral: Repo-market effects of security-specific supply and demand factors’, *Journal of Financial and Quantitative Analysis* **53**(5), 2103–2129.

Foley-Fisher, N., Narajabad, B. and Verani, S. (2015), ‘Securities lending as wholesale funding: Evidence from the US life insurance industry’, *Available at SSRN*.

Garbade, K. D., Keane, F. M., Logan, L., Stokes, A. and Wolgemuth, J. (2010), ‘The introduction of the tmpg fails charge for us treasury securities’, *Economic Policy Review* (Oct), 45–71.

Ho, T. S. and Stoll, H. R. (1983), ‘The dynamics of dealer markets under competition’, *The Journal of Finance* **38**(4), 1053–1074.
Infante, S. (2015), ‘Liquidity windfalls: The consequences of repo rehypothecation’, *forthcoming, Journal of Financial Economics*.

Krishnamurthy, A. (2002), ‘The bond/old-bond spread’, *Journal of Financial Economics 66*(2), 463–506.

Stoll, H. R. (1978), ‘The supply of dealer services in securities markets’, *The Journal of Finance 33*(4), 1133–1151.

Trebbi, F. and Xiao, K. (2017), ‘Regulation and market liquidity’, *forthcoming, Management Science*.

Vayanos, D. and Weill, P.-O. (2008), ‘A search-based theory of the on-the-run phenomenon’, *The Journal of Finance 63*(3), 1361–1398.
A Appendix

Proof of Lemma 1:
Given a realization $\tilde{Q}_L = Q_L$ and $\tilde{Q}_S = Q_S$, the dealer’s optimization problem has the following Lagrangean,

$$\mathcal{L} = \gamma \left[(\mu - p)Q_D + (R^S - 1)pQ^S_R + (R - 1)pQ^G_R \right]$$

$$- (\mu - \phi_L R^S p)Q_L + (\mu - \phi_L R^S p)Q_S + (1 - \phi_L)pQ_L - (1 - \phi_S)pQ_S + apQ_L + bpQ_S$$

$$+ \mu D + W$$

$$- \frac{1}{2} \gamma^2 \sigma^2 (Q_D + D - Q_L + Q_S)^2$$

$$+ \lambda \left[\frac{W}{p} - (Q_D + Q^S_R + Q^G_R - (1 - \phi_L)Q_L + (1 - \phi_S)Q_S) \right]$$

$$+ \xi_S [D + Q_D + Q^S_R - (1 - \phi_L)Q_L + (1 - \phi_S)Q_S - g(\phi_L Q_L, \phi_S Q_S)]$$

$$+ \xi_G [D + Q_D + Q^S_R - (1 - \phi_L)Q_L + (1 - \phi_S)Q_S + Q^G_R]$$

Giving the following FOC:

$$Q^*_D : \gamma (\mu - p) - \gamma^2 \sigma^2 (Q_D + D - Q_L + Q_S) - \lambda + \xi_S + \xi_G = 0$$

$$Q^*_R : \gamma (R^S - 1)p - \lambda + \xi_S + \xi_G = 0$$

$$Q^*_G : \gamma (R - 1)p - \lambda + \xi_G = 0$$

Using the 3rd FOC in the 2nd gives, $\xi_S = \gamma (R - R^S)p > 0$, therefore the box constraint is binding. Directly from the 3rd FOC we can note that $\lambda > 0$, implying that the budget constraint is binding. Finally, using the 2nd FOC in the first gives an expression for the optimal portfolio. Therefore, the dealer has the following optimal strategies,

$$Q^*_D = \frac{\mu - R^S p}{\gamma \sigma^2} - D + Q_L - Q_S$$

$$Q^*_R = g(\phi_L Q_L, \phi_S Q_S) - \frac{\mu - R^S p}{\gamma \sigma^2} - \phi_L Q_L + \phi_S Q_S$$

$$Q^*_G = \frac{W}{p} + D - g(\phi_L Q_L, \phi_S Q_S)$$

Proof of Proposition 2: The result is derived from applying the implicit function theorem. Consider the two equilibrium equations,

$$T_1 = \frac{\phi}{\lambda(a^*)} - D - S \mathcal{L}(s; \eta) = 0$$

$$T_2 = \lambda'(a^*)a^* - \lambda(a^*) - \lambda'(a^*)s_0 \phi = 0$$
The sensitivities of T_1 and T_2 respect to equilibrium variables $R - R^S$ and a^* are,

$$\frac{\partial T_1}{\partial s} = -e^{SL(R - R^S; \eta)} \frac{\partial}{\partial (R - R^S)} $$

$$\frac{\partial T_1}{\partial a^*} = \frac{\lambda'(a^*)\phi}{\lambda(a^*)^2}$$

$$\frac{\partial T_2}{\partial s} = -\lambda'(a^*)g_0\phi$$

$$\frac{\partial T_2}{\partial a^*} = \lambda''(a^*)(a^* - s g_0\phi)$$

Therefore, the determinant of the Jacobian is,

$$|J| = \frac{\partial T_1}{\partial s} \frac{\partial T_2}{\partial a^*} - \frac{\partial T_1}{\partial a^*} \frac{\partial T_2}{\partial s}$$

$$= -e^{SL(s; \eta)} \lambda''(a^*)(a^* - s g_0\phi) - \frac{(\lambda'(a^*))^2}{\lambda(a^*)^2} g_0\phi^2 < 0$$

And the partial derivatives of T_1 and T_2 respect η are,

$$\frac{\partial T_1}{\partial \eta} = -e^{SL(s; \eta)}$$

$$\frac{\partial T_2}{\partial \eta} = 0$$

Applying the implicit function theorem gives the result.

\[\blacksquare\]

Reminder:

$$\left(\begin{array}{c} \frac{\partial s}{\partial \eta} \\ \frac{\partial a^*}{\partial \eta} \end{array} \right) = -\left(\begin{array}{cc} \frac{\partial T_1}{\partial s} & \frac{\partial T_1}{\partial a^*} \\ \frac{\partial T_2}{\partial s} & \frac{\partial T_2}{\partial a^*} \end{array} \right)^{-1} \left(\begin{array}{c} \frac{\partial T_1}{\partial \eta} \\ \frac{\partial T_2}{\partial \eta} \end{array} \right)$$

Proof of Lemma 3:

Given a realization $\tilde{Q}_L = 1_{CL} Q$ or $\tilde{Q}_S = 1_{CS} Q$, the dealer’s optimization problem has the following Lagrangean,

$$\mathcal{L} = \gamma \left[(\mu - p)Q_D + (R^S - 1)pQ_D^C + (R - 1)pQ_R^C + W + (\mu - R^S)pQ_I(1_{CS} - 1_{CL}) + apQ_I \right]$$

$$-\frac{1}{2} \gamma^2 \sigma^2 (Q_D + (Q_I(1_{CS} - 1_{CL}))^2$$

$$+ \lambda \left[\frac{W}{p} - \{Q_D + Q_D^C + Q_R^C\} + \xi_c[Q_D + Q_D^C + Q_R^C] + \xi_s[Q_D + Q_R^C - g(Q_I)] \right]$$

$$+ \psi \left[\frac{2C}{p} + |Q_D + Q_I(1_{CS} - 1_{CL})| + |Q_D^C| + |Q_R^C + Q_I| \right] + \psi_m[\tilde{Q} - Q_I]$$
Giving the following FOC:

\[
Q_D = \gamma(\mu - p) - \gamma^2 \sigma^2(Q_D + Q_I(1_{CS} - 1_{CL})) - \lambda + \xi_S + \xi_G - \psi \text{sgn}(Q_D + Q_I(1_{CS} - 1_{CL})) = 0 \tag{21}
\]

\[
Q_S^R = \gamma(R^S - 1)p - \lambda + \xi_G + \xi_S - \psi \text{sgn}(Q_S^R) = 0 \tag{22}
\]

\[
Q_G^R = \gamma(R - 1)p - \lambda + \xi_G - \psi \text{sgn}(Q_G^R) = 0 \tag{23}
\]

\[
Q_I = \gamma(\mu - R^S)p(1_{CS} - 1_{CL}) - \gamma^2 \sigma^2(Q_D + Q_I(1_{CS} - 1_{CL})) \text{sgn}(1_{CS} - 1_{CL}) + \gamma \phi - \xi_S g'(Q_I) - \psi \text{sgn}(Q_D + Q_I(1_{CS} - 1_{CL}))(1_{CS} - 1_{CL}) + \psi - \phi = 0 \tag{24}
\]

where \(\text{sgn}(\cdot)\) is the operator which is either 1 or -1 depending on whether the argument is positive or negative, respectively. Note that whenever \(\psi = 0\), then we have the original FOC which are characterized in Lemma 1.

Intuitively, given that \(a - (R - R^S) > 0\), the dealer would want to intermediate as much as possible, that is, from the final FOC we have \(\psi_m > 0\).

We separate the analysis between client longs and client shorts. In each case, the sign of dealers interdealer repos will give different representations of the balance sheet constraint. It is reasonable to assume that the restricted model will be some sort of “continuation” of the unrestricted case. Therefore, we assume that dealers will have the same type of interdealer repo trade and verify that in fact it is an equilibrium.

Client Short

In the unrestricted model, dealers’ optimal strategies are,

\[
Q_D = \frac{\mu - R^S p}{\gamma \sigma^2} - Q_I
\]

\[
Q_S^R = Q_I + g(Q_I) - \frac{\mu - R^S p}{\gamma \sigma^2}
\]

\[
Q_G^R = \frac{W}{p} + D - g(Q_I)
\]

\[
Q_I = Q
\]

Because we expect \(Q_I\) to be relatively large whenever the balance sheet constraint binds, it is natural to assume that \(\text{sgn}(Q_S^R) = -1, \text{sgn}(Q_G^R) = 1\). Also, because \(\mu > R^S p\), we expect the dealer’s final cash position to be positive, that is, \(\text{sgn}(Q_D + Q_I) = 1\). We denote \(Q^S\) as the maximum amount intermediated which is to be determined. In that case, because \(\text{sgn}(Q_D + Q_I) = \text{sgn}(Q_S^R)\), from FOC (21) and (22) we have,

\[
Q_D = \frac{\mu - R^S p}{\gamma \sigma^2} - Q^S.
\]

Because \(\text{sgn}(Q_S^R) = -1\) FOC (23) implies that \(\lambda > 0\), making the budget bind. In addition, because \(\text{sgn}(Q_G^R) = -\text{sgn}(Q_S^R) = -1\), FOC (22) and (23) imply that \(\xi = \gamma(R - R^S)p + 2\phi > 0\), making the SI box constraint bind. The
above observations imply,

\[Q^R_* = g(Q^*_I) - \frac{\mu - R^S p}{\gamma \sigma^2} + Q^S \]

\[Q^G_* = \frac{W}{p} - g(Q^*_I) \]

Finally, the total amount intermediated is \(Q^*_I = Q^S \) and is determined by the balance sheet constrain, which in this case is,

\[\frac{W}{p} + Q^*_D + Q^*_I + Q^R_* - Q^G_* + Q^S = 2(Q^*_I + g(Q^*_I)) = 2C \]

pinning down \(Q^S \), characterizing the optimal position.

Client Long

In the unrestricted model, dealers' optimal strategies are,

\[Q_D = \frac{\mu - R^S p}{\gamma \sigma^2} + Q_I \]

\[Q^S = g(Q_I) - \frac{\mu - R^S p}{\gamma \sigma^2} - Q_I \]

\[Q^G = \frac{W}{p} - g(Q_I) \]

As before, because we expect \(Q_I \) to be relatively large whenever the balance sheet constraint binds. Because \(g' \in (0, 1] \) and \(\mu > R^S p \) it is natural to assume that \(\text{sgn}(Q^G_R) = -1 \), \(\text{sgn}(Q^S_R) = -1 \). And that the dealer’s final cash position to be positive, that is, \(\text{sgn}(Q_D - Q_I) = 1 \)

Using FOC (22) and (23) we have \(\xi_S = \gamma(R - R^S)p \) and \(\lambda > 0 \), therefore both the SI box constraint and the budget constraint bind.

\[Q^R_* = g(Q^*_I) - Q_D \]

\[Q^G_* = \frac{W}{p} - g(Q^*_I) \]

In this case, the balance sheet restriction takes the following form,

\[\frac{W}{p} + Q^*_D + Q^*_I - Q^S_* - Q^G_* + Q^S = 2Q^*_D = 2C \]

that is, the total cash trades in the interdealer market is the total size of the balance sheet.

From FOC (24), and expressions for \(Q^D_D \) and \(\xi \) we have,

\[-\gamma(\mu - R^S p) + \gamma^2 \sigma^2(C - Q_I) + \gamma p - \gamma(R - R^S)g'(Q_I) = \psi_m.\]

Therefore, the optimal solution has \(Q^*_D = \frac{\mu - R^S p}{\gamma \sigma^2} + Q \), until \(Q^*_D = C \) which defines \(Q^*_L = C - \frac{\mu - R^S p}{\gamma \sigma^2} \). For \(Q > Q^*_L \)
the optimal interdealer cash purchase stays constant at C, but the dealer keeps on intermediateing client orders, altering SI and GC interdealer repos, until $\psi_m = 0$. That is,

$$\gamma ap - \gamma(R - R^S)g'(Q_I) = \gamma(\mu - R^Sp) - \gamma^2 a^2(C - Q_I)$$

which pins down \mathcal{Q}_2^L. For any $Q > \mathcal{Q}_2^L$ the dealer just intermediates \mathcal{Q}_2^L. Therefore,

$$Q_I^* = \min\{Q, \mathcal{Q}_2^L\}$$

classifying the optimal position.

Proof of Lemma 4:

Given p and s and taking the derivative of expression (18) with respect to a gives the equation in shows in the Lemma. To ensure that this equation has a solution, consider the solution to limit of $\frac{\partial E(u(W^*)(CL))}{\partial a}$ when $K \rightarrow \infty$, that is, the solution of the unrestricted balance sheet case, $a^* \infty$.

$$\frac{\partial E(u(W^*)(CL))}{\partial a}$$

evaluated in $a = a^* \infty$ is negative, because the term associated with $1 - w$ is zero and the remaining expression is strictly less than zero ($a^* \infty > s$). Because $\lambda''(a) > c > 0$, $\lambda'(a)a - \lambda'(a)s - \lambda(a)$ strictly increases to infinity, with K sufficiently large there exists a $a^* > a^* \infty$ which solves equation (19).

Proof of Proposition 4

Denote \hat{T} the right-hand side of the optimality equation in (19). Taking the implicit derivatives of the dealers optimal choice of a while holding the price and specialness fixed implies,

$$\frac{\partial a^*}{\partial K} = \frac{- \frac{\partial \hat{T}}{\partial K}}{\frac{\partial \hat{T}}{\partial a}}.$$

Note that

$$\frac{\partial \hat{T}}{\partial K} = (\lambda + \gamma p(a - g_0 s))(\lambda' a - \lambda' g_0 s - \lambda)w - (\lambda + \gamma p(a - g_0 s))(a - g_0 s)(\lambda' + \gamma p)w$$

$$+ (\lambda + \gamma p(a - g_0 s))^2(a - g_0 s)(\lambda' + \gamma p)K w$$

$$= (\lambda + \gamma p(a - g_0 s))^2[(a - g_0 s)(\lambda' + \gamma p)K - 1]w$$

Note that $\lim_{K \to \infty} (a - s)(\lambda(a) + \gamma p(a - s))w_a(a, K) = 0$ where $w_a(a, Q) = - (\lambda'(a) + \gamma p)Qw(a, Q)$ is the partial derivative of w with respect to a, because the exponential term converges faster to zero than a polynomial to infinity.
and
\[
\frac{\partial \hat{T}}{\partial a} = (a - g_0 s) \lambda'' (1 - w) - (\lambda' a - \lambda' g_0 s - \lambda) w_a \\
-(a - g_0 s)(\lambda' + \gamma p)^2 K w - (\lambda + \gamma p(a - g_0 s))(\lambda' + \gamma p) K w \\
-(\lambda + \gamma p(a - g_0 s))(a - g_0 s) \lambda' K w - (\lambda + \gamma p(a - g_0 s))(a - g_0 s)(\lambda' + \gamma p) K w_a \\
= (a - g_0 s) \lambda' \{1 - w - (\lambda + \gamma p(a - g_0 s)) K w\} \\
+ (\lambda + \gamma p(a - g_0 s))(\lambda' + \gamma p) \{(a - g_0 s)(\lambda' + \gamma p) K - 2\} K w
\]

where \(w_a = \frac{\partial w}{\partial a} \). Note that \(1 - w - (\lambda + \gamma p(a - g_0 s)) K w > 0 \) because \(1 - e^{-x} - xe^{-x} \) for \(x > 0 \). From the dealer's first order condition we have that,
\[
(a - g_0 s) > \frac{\lambda}{\lambda'}
\]

Given that \(\lambda \) is increasing, if \(\lambda(0) K > 2 \), then \((a - g_0 s)(\lambda' + \gamma p) K > 2 \) when evaluated in \(a^* \). This condition implies that both \(\frac{\partial T}{\partial \kappa} \) and \(\frac{\partial T}{\partial x} \) are positive, completing the proof.

Proof of Proposition 4 The result is derived from applying the implicit function theorem on the system of equations \(\hat{T}_1 \) and \(\hat{T}_2 \). Consider the two equilibrium equations,
\[
\frac{\partial a^*}{\partial x} = -\frac{1}{J} \left[\frac{\partial \hat{T}_2}{\partial s} \frac{\partial \hat{T}_1}{\partial x} - \frac{\partial \hat{T}_1}{\partial s} \frac{\partial \hat{T}_2}{\partial x} \right], \quad \frac{\partial s}{\partial x} = -\frac{1}{J} \left[\frac{\partial \hat{T}_1}{\partial a} \frac{\partial \hat{T}_1}{\partial x} \right. \left. - \frac{\partial \hat{T}_2}{\partial a} \frac{\partial \hat{T}_1}{\partial x} \right]
\]

for \(x \in \{K, \eta\} \). In the above formulation \(J \) is the Jacobian of the partial derivatives of \(\hat{T}_1, \hat{T}_2 \). The partial derivative for \(\hat{T}_1 \) are given by,
\[
\frac{\partial \hat{T}_1}{\partial a} = \frac{g_0 \lambda'(a)}{\lambda'(a)} \left[1 - e^{-K} - \lambda(a) K e^{-K} \right] > 0 \\
\frac{\partial \hat{T}_1}{\partial s} = \frac{\partial SL(s; \eta)}{\partial s} > 0 \\
\frac{\partial \hat{T}_1}{\partial K} = -g_0 e^{-K} < 0 \\
\frac{\partial \hat{T}_1}{\partial \eta} = \frac{\partial SL(s; \eta)}{\partial \eta} > 0
\]

where the sign of \(\frac{\partial \hat{T}_1}{\partial a} \) is positive because \(1 - e^{-x} - xe^{-x} \) for \(x > 0 \). Note that the partial derivatives of \(\hat{T}_2 \) are the same as that of \(\hat{T} \) in the proof of Proposition 4. From that proof, we were able to determine that for a high enough \(K, \frac{\partial \hat{T}}{\partial a} \) and \(\frac{\partial \hat{T}}{\partial \eta} \) are positive. We are only left to characterize it’s partial derivative with respect to \(s \) and \(\eta \).
\[
\frac{\partial T_2}{\partial s} = -\lambda'(a - g_0 s) \frac{\partial w}{\partial s} + \lambda \frac{\partial w}{\partial s} - \left(\gamma \frac{\partial p}{\partial s} (a - g_0 s) - \gamma p g_0 \right) (a - g_0 s) (\lambda' + \gamma p) K w
\]
\[+ (\lambda + \gamma p (a - g_0 s)) g_0 (\lambda' + \gamma p) K w - (\lambda + \gamma p (a - g_0 s)) (a - g_0 s) \gamma p \frac{\partial p}{\partial s} K w
\]
\[-(\lambda + \gamma p (a - g_0 s)) (a - g_0 s) (\lambda' + \gamma p) K \frac{\partial w}{\partial s}
\]
\[
= -\lambda' g_0 \{ 1 - w - (\lambda + \gamma p (a - g_0 s)) K w \} + (\lambda + \gamma p (a - g_0 s)) \gamma p (a - g_0 R) \{(a - g_0 s) (\lambda' + \gamma p) K - 2\} \frac{K w}{R s}
\]
\[
\frac{\partial T_2}{\partial \eta} = 0
\]

Note that if \(K \) is large enough then \(\frac{\partial T_2}{\partial s} < 0 \). In effect,

\[
\frac{\partial T_2}{\partial s} = -\lambda'(a) g_0 + \Gamma_0(a, s) w + \Gamma_1(a, s) K w + \Gamma_2(a, s) K^2 w
\]

where \(\Gamma_0(a, s), \Gamma_1(a, s), \) and \(\Gamma_2(a, s) \) are finite. As \(K \) increases, we have that the terms accompanying \(\Gamma_0(a, s), \Gamma_1(a, s), \Gamma_2(a, s) \) tend to zero and \(-\lambda'(a) g_0 \) is bounded below by \(-\lambda(0) g_0 \). Thus for a large enough \(K \) we have \(\frac{\partial T_2}{\partial s} < 0 \). From this, it is direct to see that,

\[
|J| = \frac{\partial T_1}{\partial a} \frac{\partial T_2}{\partial s} - \frac{\partial T_1}{\partial a} \frac{\partial T_2}{\partial s} < 0.
\]

With the above analysis, turning to equations (25) we can quickly see that \(\frac{\partial a^*}{\partial \eta}, \frac{\partial s}{\partial \eta} < 0 \). Similarly, \(\frac{\partial a}{\partial \kappa} > 0 \) can also be observed directly. Finally, for \(\frac{\partial a^*}{\partial \kappa} > 0 \) we have,

\[
\frac{\partial T_2}{\partial s} \frac{\partial T_1}{\partial K} = \lambda'(a) g_0 e^{-\lambda K}
\]
\[+ \left[\Gamma_0(a, s) + \Gamma_1(a, s) K + \Gamma_2(a, s) K^2 \right] w g_0 e^{-\lambda K}
\]
\[
\frac{\partial T_1}{\partial s} \frac{\partial T_2}{\partial K} = \frac{\partial S L(s; \eta)}{\partial (s)} \times
\]
\[
(\lambda + \gamma p (a - g_0 s))^2 [(a - g_0 s) (\lambda' + \gamma p) K - 1] w
\]

Note that \(w = e^{-(\lambda + \gamma p (a - g_0 s)) K} \), and as \(K \) increases the expression in equation (27) converges to zero faster than the expression in (26). Thus, for \(K \) high enough, \(\frac{\partial a}{\partial \kappa} > 0 \), completing the proof.