Measurement of relative branching fractions of B decays to $\psi(2S)$ and J/ψ mesons

The LHCb Collaboration

CERN, 1211 Geneva 23, Switzerland

Abstract The relative rates of B-meson decays into J/ψ and $\psi(2S)$ mesons are measured for the three decay modes in pp collisions recorded with the LHCb detector. The ratios of branching fractions (B) are measured to be

$$
\frac{\mathcal{B}(B^+ \to \psi(2S)K^+)}{\mathcal{B}(B^+ \to J/\psi K^+)} = 0.594 \pm 0.006 \text{(stat)} \pm 0.016 \text{(syst)} \pm 0.015 \text{(R_\phi)},
$$

$$
\frac{\mathcal{B}(B^0 \to \psi(2S)K^{*0})}{\mathcal{B}(B^0 \to J/\psi K^{*0})} = 0.476 \pm 0.014 \text{(stat)} \pm 0.010 \text{(syst)} \pm 0.012 \text{(R_\phi)},
$$

$$
\frac{\mathcal{B}(B^0 \to \psi(2S)\phi)}{\mathcal{B}(B^0 \to J/\psi \phi)} = 0.489 \pm 0.026 \text{(stat)} \pm 0.021 \text{(syst)} \pm 0.012 \text{(R_\phi)},
$$

where the third uncertainty is from the ratio of the $\psi(2S)$ and J/ψ branching fractions to $\mu^+\mu^-$.

1 Introduction

Decays of B mesons to two-body final states containing a charmonium resonance such as a J/ψ or $\psi(2S)$ offer a powerful way of studying electroweak transitions. Such decays probe charmonium properties and play a role in the study of CP violation and mixing in the neutral B system [1].

The relative branching fractions of B^+, B^0 and B^{*0} mesons into J/ψ and $\psi(2S)$ mesons have previously been studied by both the CDF and D0 collaborations [2–4]. Since the current experimental results for the study of CP violation in B^0 mixing using the $B^0 \to J/\psi \phi$ decay [5–7] are statistically limited, it is important to establish other channels where this analysis can be done. One such channel is the $B^{*0} \to \psi(2S)\phi$ decay.

In this paper, measurements of the ratios of the branching fractions of B mesons decaying to $\psi(2S)X$ and $J/\psi X$ are reported, where B denotes a B^+, B^0 or B^{*0} meson (charge conjugate decays are implicitly included) and X denotes a K^+, K^{*0} or ϕ meson. The data were collected by the LHCb experiment in pp collisions at the centre-of-mass energy $\sqrt{s} = 7$ TeV during 2011 and correspond to an integrated luminosity of 0.37 fb$^{-1}$.

2 Detector description

The LHCb detector [8] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of b- and c-hadrons. The detector includes a high precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift-tubes placed downstream. The combined tracking system has a momentum resolution $\Delta p/p$ that varies from 0.4 % at 5 GeV/c to 0.6 % at 100 GeV/c, and an impact parameter resolution of 20 μm for tracks with high transverse momentum. Data were taken with both magnet polarities to reduce systematic effects due to detector asymmetries. Charged hadrons are identified using two ring-imaging Cherenkov (RICH) detectors. Photon, electron and hadron candidates are identified by a calorimeter system consisting of scintillating-pad and pre-shower detectors, and electromagnetic and hadronic calorimeters. Muons are identified by a muon system composed of alternating layers of iron and multiwire proportional chambers. The trigger consists of a hardware stage based on information from the calorimeter and muon systems, followed by a software stage which applies a full event reconstruction.

Events with a $J/\psi \to \mu^+\mu^-$ final state are triggered using two hardware trigger decisions: the single-muon decision, which requires one muon candidate with a transverse momentum p_T larger than 1.5 GeV/c, and the di-muon decision, which requires two muon candidates with
transverse momenta p_{T1} and p_{T2} satisfying the relation $\sqrt{p_{T1}^2 + p_{T2}^2} > 1.3$ GeV/c. The di-muon trigger decision in the software trigger requires muon pairs of opposite charge with $p_T > 500$ MeV/c, forming a common vertex and with an invariant mass in excess of 2.9 GeV/c2.

3 Event selection

In this analysis, the decays $B^+ \to \psi K^+(B^0 \to \psi K^{*0})$, $B^0 \to \psi \phi$ are reconstructed, where ψ represents $\psi(2S)$ or J/ψ. The nondynamical background from particles produced in the primary vertex constraint is required to be less than 5, where the DTF algorithm takes into account the number of degrees of freedom. The B^+ candidates, where a muon from the $\psi(2S) \to \mu^+\mu^-$ decay is reconstructed as both muon and kaon, are removed by requiring the angle between the same sign muon and kaon to be greater than 3 mrad.

4 Measurement of $N_{\psi(2S)}/N_J\phi$

The mass distributions for selected candidates are shown in Fig. 1. The number of the $B^+ \to \psi K^+$ candidates is estimated by performing an unbinned maximum likelihood fit. The same procedure is used to determine the number of the $B^0 \to \psi K^+\pi^-$ candidates in a $942 < M_{K^+\pi^-} < 942$ MeV/c2 mass window and the number of the $B^0 \to \psi K^+K^-$ candidates in a $1030 < M_{K^+K^-} < 1030$ MeV/c2 mass window. The number of signal candidates is determined by fitting a double-sided Crystal Ball function [12, 13] for signal together with an exponential function to model the background. The tail parameters of the Crystal Ball function are fixed to values determined from simulation.

To estimate the contribution from non-resonant $B^0 \to \psi K^+\pi^-$ and $B^0 \to \psi K^+K^-$, the $K^+\pi^-$ and K^+K^- invariant mass distributions have been studied after relaxing requirements on the $K^+\pi^-$ and K^+K^- invariant masses, see Fig. 2. The $K^+\pi^-$ and K^+K^- invariant mass distributions are then fitted with the sum of a relativistic Breit-Wigner function convolved with a Gaussian, to describe the resonant contribution from the K^{*0} or ϕ, two-body phase space function multiplied by a second order polynomial, to describe the non-resonant $K^+\pi^-$ or K^+K^- contribution. The sPlot technique [14] is used to unfold the $\psi K^+\pi^-$ or ψK^+K^- invariant mass of the non-resonant (in $K^+\pi^-$ and K^+K^-) candidates. This unfolded distribution contains a mixture of combinatorial background and non-resonant $B^0 \to \psi K^+\pi^-$ or $B^0 \to \psi K^+K^-$ decays. The invariant mass of the unfolded B candidates is shown in Fig. 3. The same function used in Fig. 1 is then used to estimate the contribution from the non-resonant B decays, which is subtracted from the total yield to estimate the contribution from resonant $B^0 \to \psi K^{*0}$ or $B^0 \to \psi \phi$ decays. The contribution of the resonant decays can also be extracted by unfolding the contribution of resonant $K^+\pi^-$ or K^+K^- decays to the $\psi K^+\pi^-$ or ψK^+K^- invariant mass distribution. This yields a compatible, but a statistically less precise, result. The yields are summarized listed in Table 1.
5 Efficiencies and systematic uncertainties

The branching fraction ratio is calculated using

\[
\frac{B(B \rightarrow \psi(2S) X)}{B(B \rightarrow J/\psi X)} = \frac{N_{\text{res}}^{\psi(2S)X}}{N_{\text{res}}^{J/\psi X}} \times \frac{\varepsilon_{J/\psi X}}{\varepsilon_{\psi(2S)X}} \times \frac{B(J/\psi \rightarrow \mu^+\mu^-)}{B(\psi(2S) \rightarrow \mu^+\mu^-)},
\]

where \(N_{\text{res}}\) is the number of signal candidates and \(\varepsilon\) is the overall efficiency.
the hardware and software trigger and then reconstructed in digitized output is passed through a full simulation of both the combinatorial background (dashed) and the signal yield for resonant and non-resonant modes only and \(N_{s} / N_{X} \) is the signal yield for resonant decays (through \(K^{*0} \) or \(\phi \)). The uncertainties are statistical only.

The overall efficiency ratio is 0.901 ± 0.016, 1.011 ± 0.014 and 0.994 ± 0.014 for the \(B^{+} \), the \(B^{0} \) and the \(B^{0} \) channels respectively. Since the selection criteria for \(B \to J/\psi X \) and \(B \to \psi(2S)X \) decays are identical, the ratio of efficiencies is expected to be close to unity. The deviation of the overall efficiency ratio from unity in the case of the \(B^{+} \to \psi K^{+} \) decays is due to the difference between the \(p_{T} \) spectra of muons for the \(J/\psi \) and \(\psi(2S) \) decays. For the \(B^{0} \) and \(B^{0} \) channels this difference is small. It has been checked that the behaviour of the efficiencies of all selection criteria is consistent in the data and simulation.

Since the decay products in each of the pairs of channels considered have similar kinematics, most uncertainties cancel in the ratio. The different contributions to the systematic uncertainties affecting this analysis are discussed in the following and summarized in Table 2.

The dominant source of systematic uncertainty arises from the subtraction of the non-resonant components in the digitized output is passed through a full simulation of both the hardware and software trigger and then reconstructed in the same way as the data.

The overall efficiency ratio is 0.901 ± 0.016, 1.011 ± 0.014 and 0.994 ± 0.014 for the \(B^{+} \), the \(B^{0} \) and the \(B^{0} \) channels respectively. Since the selection criteria for \(B \to J/\psi X \) and \(B \to \psi(2S)X \) decays are identical, the ratio of efficiencies is expected to be close to unity. The deviation of the overall efficiency ratio from unity in the case of the \(B^{+} \to \psi K^{+} \) decays is due to the difference between the \(p_{T} \) spectra of muons for the \(J/\psi \) and \(\psi(2S) \) decays. For the \(B^{0} \) and \(B^{0} \) channels this difference is small. It has been checked that the behaviour of the efficiencies of all selection criteria is consistent in the data and simulation.

Since the decay products in each of the pairs of channels considered have similar kinematics, most uncertainties cancel in the ratio. The different contributions to the systematic uncertainties affecting this analysis are discussed in the following and summarized in Table 2.

The dominant source of systematic uncertainty arises from the subtraction of the non-resonant components in the digitized output is passed through a full simulation of both the hardware and software trigger and then reconstructed in the same way as the data.

The overall efficiency ratio is 0.901 ± 0.016, 1.011 ± 0.014 and 0.994 ± 0.014 for the \(B^{+} \), the \(B^{0} \) and the \(B^{0} \) channels respectively. Since the selection criteria for \(B \to J/\psi X \) and \(B \to \psi(2S)X \) decays are identical, the ratio of efficiencies is expected to be close to unity. The deviation of the overall efficiency ratio from unity in the case of the \(B^{+} \to \psi K^{+} \) decays is due to the difference between the \(p_{T} \) spectra of muons for the \(J/\psi \) and \(\psi(2S) \) decays. For the \(B^{0} \) and \(B^{0} \) channels this difference is small. It has been checked that the behaviour of the efficiencies of all selection criteria is consistent in the data and simulation.

Since the decay products in each of the pairs of channels considered have similar kinematics, most uncertainties cancel in the ratio. The different contributions to the systematic uncertainties affecting this analysis are discussed in the following and summarized in Table 2.

The dominant source of systematic uncertainty arises from the subtraction of the non-resonant components in the digitized output is passed through a full simulation of both the hardware and software trigger and then reconstructed in the same way as the data.

The overall efficiency ratio is 0.901 ± 0.016, 1.011 ± 0.014 and 0.994 ± 0.014 for the \(B^{+} \), the \(B^{0} \) and the \(B^{0} \) channels respectively. Since the selection criteria for \(B \to J/\psi X \) and \(B \to \psi(2S)X \) decays are identical, the ratio of efficiencies is expected to be close to unity. The deviation of the overall efficiency ratio from unity in the case of the \(B^{+} \to \psi K^{+} \) decays is due to the difference between the \(p_{T} \) spectra of muons for the \(J/\psi \) and \(\psi(2S) \) decays. For the \(B^{0} \) and \(B^{0} \) channels this difference is small. It has been checked that the behaviour of the efficiencies of all selection criteria is consistent in the data and simulation.

Since the decay products in each of the pairs of channels considered have similar kinematics, most uncertainties cancel in the ratio. The different contributions to the systematic uncertainties affecting this analysis are discussed in the following and summarized in Table 2.

The dominant source of systematic uncertainty arises from the subtraction of the non-resonant components in the digitized output is passed through a full simulation of both the hardware and software trigger and then reconstructed in the same way as the data.
of candidates containing genuine $K^*(0)(\phi)$ resonances. Second, using the B^0_s mass distribution as the discriminating variable to unfold the $K^+\pi^-(K^+K^-)$ mass distribution of genuine B^0_s candidates and fitting this distribution to determine the number of non-resonant decays. The corresponding uncertainties are found to be 1.5 % in the B^0 channel and 3.4 % in the B^0_s channel.

The other important source of uncertainty arises from the estimation of the efficiencies due to the potential disagreement between data and simulation. This is studied by varying independently selection criteria in data and simulation. The corresponding uncertainties are found to be 1.7 % in the B^+ channel, 0.5 % in the B^0 channel and 2.0 % in the B^0_s channel. The observed difference in the efficiency ratios for the two magnet polarities is conservatively taken as an estimate of the systematic uncertainty. This is 1.4 % in the B^+ channel, 0.6 % in the B^0 channel and 0.7 % in the B^0_s channel.

The trigger is highly efficient in selecting B meson decays with two muons in the final state. For this analysis the di-muon pair is required to trigger the event. Differences in the trigger efficiency between data and simulation are studied in the data using events which were triggered independently on the di-muon pair [20]. Based on these studies, an uncertainty of 1.1 % is assigned.

A further uncertainty arises from the imperfect knowledge of the shape of the signal and background in the B meson mass distribution. To estimate this effect, a linear and a quadratic function are considered as alternative models for the background mass distribution. In addition, a double Gaussian shape and a sum of double-sided Crystal Ball and Gaussian shapes are used as alternative models for the signal shape. The maximum observed change in the ratio of yields in the $\psi(2S)$ and J/ψ modes is taken as systematic uncertainty.

The central value of the relative efficiency is determined by assuming that the angular distribution of the $B \rightarrow \psi(2S)X$ decay is the same as that of the $B \rightarrow J/\psi X$. The systematic uncertainty due to the unknown polarization of the $\psi(2S)$ in the B meson decays is estimated as follows. The simulation samples were re-weighted to match the angular distributions found from the data and the relative efficiency was recalculated. The difference between the baseline analysis and the re-weighted simulation is taken as the systematic uncertainty, as shown in Table 2.

Finally, the uncertainty due to potential contribution from the Cabibbo-suppressed mode with a π misidentified as K is found to be 0.4 % in the B^+ channel and negligible in the B^0 and B^0_s channels. The uncertainty due to the cross-feed between B^0 and B^0_s channels with a π misidentified as K (or a K misidentified as π) is negligible.

6 Results

Since the di-electron fraction is measured more precisely than those of the di-muon decay modes, we assume lepton universality and take $R_\psi = B(\psi \rightarrow \mu^+\mu^-)/B(\psi(2S) \rightarrow \mu^+\mu^-) = B(\psi \rightarrow e^+e^-)/B(\psi(2S) \rightarrow e^+e^-) = 7.69 \pm 0.19$ [10]. The results are combined using Eq. (1) to give

$$B(B^+ \rightarrow \psi(2S)K^+) / B(B^+ \rightarrow J/\psi K^+) = 0.594 \pm 0.006(\text{stat}) \pm 0.016(\text{syst}) \pm 0.015(R_\psi),$$

$$B(B^0 \rightarrow \psi(2S)K^{*0}) / B(B^0 \rightarrow J/\psi K^{*0}) = 0.476 \pm 0.014(\text{stat}) \pm 0.010(\text{syst}) \pm 0.012(R_\psi),$$

$$B(B^0_s \rightarrow \psi(2S)\phi) / B(B^0_s \rightarrow J/\psi \phi) = 0.489 \pm 0.026(\text{stat}) \pm 0.021(\text{syst}) \pm 0.012(R_\psi),$$

where the first uncertainty is statistical, the second is systematic and the third is the uncertainty on the R_ψ value [10].

The resulting branching fraction ratios are compatible with, but significantly more precise than, the current world averages of $B(B^+ \rightarrow \psi(2S)K^+)/B(B^+ \rightarrow J/\psi K^+) = 0.60 \pm 0.07$ and $B(B^0 \rightarrow \psi(2S)\phi)/B(B^0 \rightarrow J/\psi \phi) = 0.53 \pm 0.10$ [10] and the CDF result of $B(B^0 \rightarrow \psi(2S)K^{*0})/B(B^0 \rightarrow J/\psi K^{*0}) = 0.515 \pm 0.113 \pm 0.052$ [2]. The $B^0_s \rightarrow \psi(2S)\phi$ decay is particularly interesting since, with more data, it can be used for the measurement of CP violation in B^0_s mixing.

Acknowledgements We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at CERN and at the LHCb institutes, and acknowledge support from the National Agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); CERN; NSC (China); CNRS/IN2P3 (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCMR (Poland); ANCS (Romania); MinES of Russia and Rosatom (Russia); MICINN, XuntaGal and GENCAT (Spain); SNSF (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7 and the Region Auvergne.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. I.I.Y. Bigi, A.I. Sanda, Notes on the observability of CP violations in B decays. Nucl. Phys. B 193, 85 (1981)

2. F. Abe et al. (CDF collaboration), Observation of $B^+ \rightarrow \psi(2S)K^+$ and $B^0 \rightarrow \psi(2S)K^{*0}(892)$ decays and measurements of B-meson branching fractions into J/ψ and $\psi(2S)$ final states. Phys. Rev. D 58, 072001 (1998). arXiv:hep-ex/9803013
The LHCb Collaboration

R. Aaij 38, C. Abellan Beteta 33,n, A. Adampol 11, B. Adeva 34, M. Adinolfi 43, C. Adrover 6, M. Adinolfi 43, C. Adrover 6, A. Affolder 49, Z. Ajaltouni 5, T. Aaltonen et al. (CDF collaboration), Measurement of CP-vio-
3. A. Abulencia et al. (CDF collaboration), Observation of $B^+ \rightarrow \psi (2S) \phi$ and measurement of ratio of branching fractions $B(\phi \rightarrow \psi (2S)) / B(\phi \rightarrow J/\psi \phi)$. Phys. Rev. Lett. 96, 231801 (2006). arXiv:hep-ex/0602005
4. V. Abazov et al. (D0 collaboration), Relative rates of B meson decays into $\psi (2S)$ and J/ψ mesons. Phys. Rev. D 79, 111102(R) (2009). arXiv:0805.2576
5. T. Aaltonen et al. (CDF collaboration), Measurement of CP-violating phase β_s in $B_s^0 \rightarrow J/\psi \phi$ decays with the CDF II detector. Phys. Rev. D, submitted. arXiv:1112.1726
6. V.M. Abazov et al. (D0 Collaboration), Measurement of the CP-violating phase ϕ_s using the flavor-tagged decay $B^0 \rightarrow J/\psi \phi$ in 8 fb-1 of $p\bar{p}$ collisions. Phys. Rev. D 85, 032006 (2012). arXiv:1109.3166
7. R. Aaij et al. (LHCb collaboration), Measurement of the CP-violating phase ϕ_s in the decay $B^0 \rightarrow J/\psi \phi$. arXiv:1112.3183
8. A.A. Alves Jr. et al. (LHCb collaboration), The LHCb detector at the LHC. J. Instrum. 3, S08005 (2008)
9. A. Powell et al., Particle identification at LHCb. PoS ICHEP2010, 020 (2010). LHCb-PROC-2011-008
10. K. Nakamura et al. (Particle Data Group), Review of particle physics. J. Phys. G 37, 075021 (2010)
11. W. Hulsbergen, Decay chain fitting with Kalman filter. Nucl. Instrum. Methods A 552, 566 (2005). arXiv:physics/0503191v1
12. T. Skwarnicki, A study of the radiative cascade transitions between the Upsilon-prime and Upsilon resonances. PhD thesis, Institute of Nuclear Physics, Krakow, 1986. DESY-F31-86-02
13. R. Aaij et al. (LHCb collaboration), Observation of J/ψ pair production in pp collisions at $\sqrt{s} = 7$ TeV. Phys. Lett. B 707, 52 (2012). arXiv:1109.0963
14. M. Pivk, F.R. Le Diberder, sPlot: a statistical tool to unfold data distributions. Nucl. Instrum. Methods A 555, 356 (2005). arXiv:physics/0402083v3
15. T. Sjostrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. J. High Energy Phys. 05, 026 (2006). arXiv:hep-ph/0603175
16. I. Belyaev et al., Handling of the generation of primary events in GAUSS, the LHCb simulation framework, in Nuclear Science Symposium Conference Record (NSS/MIC) (IEEE, New York, 2010), p. 1155
17. P. Golonka, Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays. Eur. Phys. J. C 45, 97 (2006). arXiv:hep-ph/0506026
18. D.J. Lange, TheEvtGen particle decay simulation package. Nucl. Instrum. Methods A 462, 152 (2001)
19. S. Agostinelli et al. (GEANT4 collaboration), GEANT4: a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003)
20. V. Gligorov, C. Thomas, M. Williams, The HLT inclusive B triggers. LHCb-PUB-2011-016
bUniversità di Bari, Bari, Italy
cUniversità di Bologna, Bologna, Italy
dUniversità di Cagliari, Cagliari, Italy
eUniversità di Ferrara, Ferrara, Italy
fUniversità di Firenze, Firenze, Italy
gUniversità di Urbino, Urbino, Italy
hUniversità di Modena e Reggio Emilia, Modena, Italy
iUniversità di Genova, Genova, Italy
jUniversità di Milano Bicocca, Milano, Italy
kUniversità di Roma Tor Vergata, Roma, Italy
lUniversità di Roma La Sapienza, Roma, Italy
mUniversità della Basilicata, Potenza, Italy
nLIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
oHanoi University of Science, Hanoi, Viet Nam
pAssociated to Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
qAssociated to Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany