Childhood Cancer: Overview of Incidence Trends and Environmental Carcinogens

Shelia Hoar Zahm and Susan S. Devesa

Epidemiology and Biostatistics Program, Division of Cancer Etiology, National Cancer Institute, Rockville, Maryland

An estimated 8000 children 0 to 14 years of age were diagnosed with cancer in 1993 in the United States (1). According to population-based data from the National Cancer Institute’s Surveillance, Epidemiology and End Results program, which covers about 10% of the U.S. population (1), leukemia and brain tumors (gliomas and meningiomas) are the most common childhood malignancies, accounting for 30 and 20% of newly diagnosed cases, respectively. From 1975 to 1978 to 1987 to 1990, cancer among white children increased slightly from 12.8 to 14.1/100,000. Increases are suggested for leukemia, gliomas, and, to a much lesser extent, Wilms’ tumor. There are a few well-established environmental causes of childhood cancer such as radiation, chemotherapeutic agents, and diethylstilbestrol. Many other agents such as electromagnetic fields, pesticides, and some parental occupational exposures are suspected of playing roles, but the evidence is not conclusive at this time. Some childhood exposures such as secondhand cigarette smoke may contribute to cancers that develop many years after childhood. For some exposures such as radiation and pesticides data suggest that children may be more susceptible to the carcinogenic effects than similarly exposed adults. — Environ Health Perspect 103(Suppl 6):177–184 (1995)

Key words: children, cancer, radiation, electromagnetic fields, medications, tobacco, pesticides, water, leukemia, brain tumors

Introduction

An estimated 8000 children 0 to 14 years of age were diagnosed with cancer in 1993 in the United States (1). According to population-based data from the National Cancer Institute’s Surveillance, Epidemiology and End Results program, which covers about 10% of the U.S. population (1), leukemia and brain tumors (gliomas and meningiomas) are the most common childhood malignancies, accounting for 30 and 20% of newly diagnosed cases, respectively (Table 1). Almost 80% of childhood leukemia cases are acute lymphocytic leukemia (ALL). For most childhood malignancies, incidence is highest between 0 and 4 years of age. Incidence rates for non-Hodgkin’s lymphoma (NHL), Hodgkin’s disease, osteosarcoma, and Ewing’s sarcoma, however, increase with age. Boys are more likely than girls to be diagnosed with cancer, primarily due to the excess among males of ALL, NHL, soft tissue sarcoma, and Hodgkin’s disease (Table 2). Wilms’ tumor, on the other hand, is slightly more common among girls than boys. Racial differences in cancer incidence are also evident among children. For all cancers combined, whites have a 23% higher incidence (13.5/100,000) than blacks (11.0/100,000). Leukemia and, to a lesser extent, gliomas and meningiomas, neuroblastoma, NHL, and Hodgkin’s disease are more common among whites than blacks, whereas Wilms’ tumor is slightly more common among black children. Ewing’s sarcoma, rare among whites, is virtually nonexistent among blacks. From 1975 to 1978 to 1987 to 1990, cancer among white children increased slightly, from 12.8 to 14.1/100,000.

Table 1. Estimated number of incident cases annually in the United States for selected cancers among children (0–14 years of age) based on data from the SEER program (1975–1990) and the American Cancer Society.†

Cancer	Estimated annual U.S. cases
Leukemia	2370
Acute lymphocytic	1850
Acute myeloid	230
Other leukemia	290
Glioma and meningioma	1590
Neuroblastoma	660
Wilms’ tumor	520
Soft tissue sarcoma	460
Non-Hodgkin’s lymphoma	500
Hodgkin’s disease	400
Retinoblastoma	230
Osteosarcoma	190
Ewing’s sarcoma	150
Other	930
Total	8000

†American Cancer Society, Cancer Facts and Figures—1993.

Increases are suggested for leukemia, particularly ALL, gliomas, and, to a much lesser extent, Wilms’ tumor (Figure 1). At least part of the increase in ALL likely is due to increasing cell-type specificity; total leukemia incidence rose less rapidly. Incidence rates for brain and nervous system cancers among adults have also risen, particularly among the elderly; improved diagnostic technology and application has played a role in this trend. Data are inadequate to evaluate incidence trends among black children. Cancer mortality among children has decreased over time due largely to dramatic improvements in treatment, particularly for acute leukemia and Hodgkin’s disease. Cancer remains, however, the most common cause of death, after accidents, among children, accounting for approximately 1500 deaths annually.

Environmental Carcinogens

Environmental exposures that contribute to cancer etiology among children include most of the same exposures known to cause cancer in adults, such as radiation, certain medications, and some industrial and agricultural chemicals (2) (Table 3). Some childhood exposures such as secondhand cigarette smoke may contribute to cancers that develop many years after childhood. There are also factors suspected of playing a role in childhood cancer but for which the evidence to date is inconsistent or speculative; for example, electromagnetic fields (EMF). For some exposures, such as radiation and pesticides, data suggest that children may be more susceptible to the...
carcinogenic effects than similarly exposed adults. There are also suggestions of possible interactions between environmental carcinogens and genetic susceptibility.

Radiation

The most well-established cause of childhood cancer is radiation. High-dose radiation exposure, such as that experienced by atomic bomb survivors and children receiving radiation therapy for cancer, enlarged thymus, tinea capitis (ringworm of the scalp), and other conditions, has caused increases in acute leukemia, chronic myelogenous leukemia, osteosarcoma, thyroid cancer, breast cancer, and soft tissue sarcoma (2–4). The effects of lower dose radiation exposure are more controversial, however. Many studies have shown a small increase of leukemia after low-dose prenatal irradiation (5–8). The apparent association may not be causal, however, but may reflect selection factors related to the medical reasons for the prenatal X-rays (9).

One study that strongly supports a causal relation investigated childhood cancer among twins, who are often X-rayed to verify twinship or to determine fetal position rather than for medical conditions that might independently be associated with cancer (10). Twins who were X-rayed prenatally were found to have twice the risk of leukemia compared to twins who were not X-rayed. In contrast, atomic bomb survivors exposed in utero have not shown excess cancer (11,12). Fallout from nuclear weapons tests has unequivocally been linked to thyroid cancer in children exposed to high doses in the Marshall Islands (2). Lower exposure to fallout in Utah has shown no association with thyroid cancer (13). An apparent association between fallout and childhood leukemia found in some studies (14) but not in others (15) has been challenged based on a lower than expected cancer rate in the low-exposure population, small numbers of deaths, and for an unexplained deficit of other childhood cancer deaths (3,16). Some studies have suggested that residence near a nuclear facility was linked to clusters of childhood leukemia and lymphoma in other countries (17–19), but more rigorous studies have not demonstrated increased risks (20–25). Paternal employment at nuclear facilities, particularly prior to the child’s conception, was suggested as a risk factor for childhood cancer in one study (19) but not in others (26,27). One study found paternal exposure to radionuclides but not external radiation to be associated with leukemia and NHL (27). Other possible explanations for the increases in the vicinities of nuclear facilities include chance, boundaries for the areas under study being determined by the existence of cases, outbreaks of an infectious disease, and exposure to some other unidentified environmental agent (20,25,28–32). To date, the evidence is not convincing that extremely low doses of radiation from fallout or from residing near nuclear facilities are associated with childhood cancers. The studies have been limited by the lack of detailed exposure information for the individuals under study, which can lead to underestimation of risks in epidemiologic studies. Radon, a radioactive decay product of radium that leaches out of the soil into air and groundwater, has been linked to lung cancer in

Table 2. Number of cases and incidence rates for selected cancers by race and gender among children (0–14 years of age), based on data from the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) program for 1975 to 1990.

Cancer	White males		White females		Black males		Black females	
	Count	Rate	Count	Rate	Count	Rate	Count	Rate
Leukemia	1472	4.41	1181	3.70	130	2.55	127	2.51
Acute lymphocytic	1159	3.46	936	2.92	91	1.78	94	1.63
Acute myeloid	125	0.38	122	0.39	16	0.32	24	0.49
Other leukemia	188	0.56	123	0.39	23	0.45	19	0.39
Gliomas and meningiomas	943	2.89	778	2.50	117	2.31	112	2.25
Neuroblastoma	376	1.06	346	1.03	43	0.77	46	0.89
Wilms’ tumor	254	0.74	291	0.86	42	0.78	54	1.02
Soft tissue sarcoma	262	0.80	211	0.68	46	0.91	39	0.90
Non-Hodgkin’s lymphoma	415	1.30	142	0.46	35	0.72	18	0.36
Hodgkin’s disease	253	0.81	188	0.64	34	0.72	14	0.30
Retinoblastoma	116	0.32	124	0.36	23	0.41	23	0.41
Osteosarcoma	99	0.32	93	0.31	18	0.38	22	0.47
Ewing’s sarcoma	97	0.31	89	0.30	1	0.02	2	0.04
Other	451	1.37	534	1.74	57	1.34	93	1.94
Total	4738	14.33	3967	12.58	556	10.90	552	10.99

*Per 100,000 person-years, age-adjusted using the 1970 U.S. standard population.

Table 3. Selected environmental exposures and associated cancers among children.

Exposure	Cancer
Radiation	Leukemia, thyroid, brain, breast, skin, melanoma, soft tissue sarcoma, osteosarcoma
Electromagnetic fields	Leukemia, brain, lymphoma, soft tissue sarcoma
Diethyldithostrobol	Vagina
Phenootin	Neuroblastoma, soft tissue sarcoma
Alkylating agents	Leukemia, osteosarcoma
Chloramphenicol	Leukemia
Immunosuppressive therapy	Non-Hodgkin’s lymphoma, Hodgkin’s disease, skin, soft tissue sarcoma, lung cancer
Tobacco	Oral cancer, leukemia, rhabdomyosarcoma, lymphoma, lung cancer
Pesticides	Leukemia, brain cancer, neuroblastoma, Ewing’s sarcoma, Wilms’ tumor, lymphoma
Epstein-Barr virus	Burkitt’s lymphoma

*Usually develops in adulthood. †Evidence to date is inconsistent or preliminary. ‡Cigarette smoking is unequivocally linked to lung cancer. The evidence to date for childhood passive smoking as a causal agent of subsequent lung cancer in adulthood is inconclusive.

Figure 1. Trends in childhood cancer incidence among white children 0 to 14 years of age, SEER Program, 1975 to 1978 to 1987 to 1990.
uranium miners and is thought to play a role in lung cancer in adults in the general population (33). Two reports found a correlation between indoor radon and acute myeloid leukemia (34,35), although this malignancy has not been found to be elevated in uranium miners. A study that evaluated childhood cancer county mortality rates and radon concentrations in drinking water in North Carolina found a dose-related association with leukemia (36). More research is needed to determine the role of radon in cancer etiology among both adults and children. Ultraviolet radiation causes skin carcinomas and melanomas (37). These tumors rarely appear in childhood because of the long latent period involved, but evidence is increasing that the exposures sustained during childhood are important determinants of risk, particularly for melanoma. The number of blistering sunburns experienced before 20 years of age, especially by fair-skinned, blue-eyed persons, is a strong determinant of risk for melanoma later in life (38).

Electromagnetic Fields

The role of EMF generated by power lines, electrical appliances, and large electrical machinery in the development of cancer is controversial. Adults exposed occupationally to EMF have consistently been found to have increased risk for all leukemia, acute myeloid leukemia, and brain cancer, but the workers usually were also exposed to other potential carcinogens, such as solvents (39,40), leaving the role of EMF unclear. Studies of residential EMF exposure have shown associations with leukemia and brain cancer among children (41-43), but generally not among adults (39,44-46). The most puzzling aspect is that the association between EMF and childhood leukemia appeared stronger when EMF was indirectly estimated by evaluating wiring code configurations and appeared weaker when EMF was directly measured (43,47), contrary to what would be expected if the association were causal. On the other hand, as suggested by Theriault (40), perhaps the wiring code configurations provide a better indication of long-term exposure than short-term direct measures of EMF. Parental employment in occupations involving EMF was linked to neuroblastoma among children in two studies (48,49) but not in another (50). Ongoing studies, some of which involve monitoring exposures throughout the subject children's day (i.e., residence, school, daycare, etc.) (51,52) plus wiring configuration codes, may help clarify the role of EMF and childhood cancer.

Medications

Transplacental carcinogenesis was established by the discovery in 1971 of vaginal adenocarcinoma in the daughters of women who took the hormone diethylstilbestrol (DES) during pregnancy to avoid miscarriages (53). This very rare cancer has been detected in girls as young as 7 years old, with most affected between 15 and 22 years of age (54). There are concerns that at older ages the exposed daughters may also have increased risk of squamous carcinomas of the vagina and cervix and cancers of the breast (55-59) and that exposed sons may have excess testicular and prostate cancer (55,60,61). Continued followup of the DES-exposed daughters and sons is ongoing at the National Cancer Institute and may provide further information on the late effects of DES and on transplacental carcinogenesis in general (62). Suspected, but less well-established, of being a transplacental carcinogen is phencytoin, an antiepileptic drug. There are reports of neuroblastoma (63-65) and soft tissue sarcoma (66) in children exposed in utero to phencytoin. There have also been reports of excess brain tumors, neuroblastomas, leukemia, and retinoblastomas in children of women who used antinausea medications (e.g., Bendectin) during pregnancy (67-71). This issue had received considerable publicity, however, which may have affected recall of use by study subjects. One study used medical records, not subject recall, to assess exposure and did not show any associations (72). There is one report of excess Wilms' tumor among Swedish children whose mothers were exposed to penthrane (methoxyfluorane) anesthesia during delivery (73). The excess risk was higher in females and increased with age at diagnosis. Some medical treatments received during childhood also play a role in the development of childhood cancer. Chemotherapy and radiation therapy received for an initial childhood cancer can dramatically increase the risk for second cancers (74,75). For example, in one study children treated with alkylating agents for cancer have a 5-fold risk of subsequently developing leukemia (76). At high doses, the risk was increased as much as 25 times the expected rate of leukemia (76). Bone sarcomas were also elevated in children treated with radiation and chemotherapy (77). The potent antibiotic chloramphenicol, given to treat life-threatening infectious conditions, has been linked to excess acute lymphocytic leukemia and acute nonlymphocytic leukemia in children in Shanghai (78). This association with leukemia is consistent with a report of bone marrow depression following use of chloramphenicol (79). Parental use of illegal drugs has been linked to childhood cancer in a few reports. Marijuana use was associated with rhabdomyosarcoma (80), leukemia (71), and brain tumors (67). Cocaine use was also associated with rhabdomyosarcoma (80). These exposures are difficult to study accurately and need further research, but prevention efforts clearly must continue for noncancer-related reasons even in the absence of convincing data on childhood cancer.

Tobacco

Tobacco, the single exposure responsible for the largest proportion of cancers among adults, is also important to consider in a discussion of cancer among children. At ages 16 to 19, 16% of boys and 15% of girls were current smokers during 1985 (81). Smoking prevention programs must be vigorous and start at young ages. It is also important to recognize that a large proportion of children are exposed to tobacco by-products from parental smoking during pregnancy and during childhood. Several studies of leukemia and lymphoma have reported increased risks associated with parental cigarette smoking (82-85). In one study, risk increased if more than one parent smoked (82). The evidence is less convincing that tobacco plays a role in the etiology of other childhood cancers. Rhabdomyosarcoma was associated with paternal but not maternal smoking in one study (86). No associations between smoking and soft tissue sarcoma in general or rhabdomyosarcoma specifically were seen in other studies (87,88). Neuroblastoma (69), brain tumors (85,89-91), and Wilms' tumor (92) also have not shown any association with parental smoking. Use of smokeless tobacco by children has been increasing at an alarming rate (93). In 1985, 30% of white males 12 to 17 years of age reported having used smokeless tobacco, approximately twice the prevalence of use in men over age 35 (94). Use is primarily among males except for Native Americans, among whom 45% of teenage girls also use smokeless tobacco (95). One study of junior and senior high school students reported that 55% of smokeless tobacco users began use...
before age 13 (96). Smokeless tobacco use is strongly associated with oral and pharyngeal cancer (97), and cases of oral mucosal changes and cancer have been diagnosed in teenage boys (98).

Alcohol

Excessive alcohol use has been linked to adult cancers of the oral cavity, pharynx, esophagus, larynx, and liver, with suggestive evidence for increased risk of colorectal and breast cancer (99). Alcohol is known to cross the placenta, with heavy maternal drinking resulting in fetal alcohol syndrome, a constellation of deformities and impairments (100). It is not known if transplacental exposure to alcohol also increases risk of childhood cancer or subsequent cancers in adulthood.

Pesticides

Many pesticides are carcinogenic in laboratory animals, and several have been associated with cancer in adults (101). Phenoxyacetic acid herbicides have been linked to lymphoma and soft tissue sarcoma. Organochlorine insecticides have been associated with lymphoma, leukemia, soft tissue sarcoma, neuroblastoma, and cancers of the pancreas, breast, and lung. Organophosphate insecticides have been reported to increase the risk of lymphoma and leukemia. Arsenicals appear to cause lung and skin cancers, while triazine herbicides have been associated with ovarian cancer. Most of the human data come from studies of farmers, licensed pesticide applicators, other agricultural workers, and manufacturing populations. Children are potentially exposed to pesticides from use in homes, gardens, and yards, through the diet, and through contaminated drinking water. Children of farmworkers are also often heavily exposed while accompanying their parents to the fields, while in housing contaminated by direct pesticide spray or drift from nearby fields, and through their own farmwork (102). Beginning in the late 1970s, there have been several case reports of cancer among children exposed to pesticides. Pre- and postnatal exposure to the termiticide chlordane was associated with neuroblastoma and childhood leukemia (103–105). Cases of organophosphate insecticide exposure linked to aplastic anemia and acute leukemia were reported in children (106,107). Nine of 13 extremely rare cases of colorectal cancer were found among children exposed to insecticides used in the production of cotton and soybeans (108). A cluster of cancers including leukemia, lymphoma, neuroblastoma, and Wilms' tumor was noted among farmworker children in California (109). Case-control studies have appeared to confirm the leads generated by these case reports. Maternal employment in agricultural occupations (OR = 1.8) or reported exposure to pesticides during pregnancy (OR = 3.5) was associated with acute lymphocytic leukemia in a case-control study in China (78). Occupational exposure to pesticides by either parent and use of pesticides in the home or garden during childhood was linked to acute myeloid leukemia in U.S. children (110). Parental use of pesticides in the home or garden during pregnancy (father or mother) or nursing (mother only) was associated with 3- to 9-fold increases in childhood leukemia in a case-control study in Los Angeles County, CA (111). Brain cancer has also been linked to pesticide exposure of children (112,113) or the mother (112,114) or father (115) during pregnancy. In one study, paternal employment in agriculture (OR = 9) or in any occupation with exposure to pesticides (OR = 6) was strongly associated with Ewing's sarcoma (116). Another study had similar findings but reported lower levels of increased risk (117). Wilms' tumor (92) and childhood NHL (J Buckley, unpublished data) have also been associated with household or garden insecticide use in one case-control study each. Many of the case-control studies of pesticides and childhood cancer are limited by the small number of exposed subjects and in some instances by the possibility of recall bias, but it is striking that many of the reported increased risks are of greater magnitude than those observed in studies of pesticide-exposed adults. These reports suggest that children may be a particularly sensitive subgroup of the population with respect to possible carcinogenic effects of pesticides. This is of concern, given the children employed in farmwork and the high prevalence of pesticide use in the home in the general population. The U.S. EPA has estimated that 82% of U.S. households use pesticides annually (75% insecticides inside the home, 22% insecticides or herbicides in the yard or garden) (118). Another survey reported that approximately one-third of single-family households treat their lawns with herbicides (119), a practice that is estimated to be increasing 5 to 8% annually (120). The possible carcinogenic effects, particularly to children, of this liberal use of pesticides within and around the home must be evaluated further.

Other Industrial Chemicals and Physical Agents

Children who have been exposed to the carcinogen asbestos carried home on their fathers' workclothes (121) or by playing near open pits at an asbestos mine (122) have developed mesothelioma decades later. These findings have raised concern about the potential exposure of children to deteriorating asbestos ceilings in schools built in the United States between 1950 and 1973 (2). The roles of other environmental or parental occupational exposures in the development of childhood cancer are unclear. There have been several studies evaluating parental occupation, for example, with conflicting results. Fabia and Thuy (123) found a greater proportion of the fathers of children with Wilms' tumor to have been employed in jobs involving lead and hydrocarbon exposures, but these findings were not confirmed in a later study by Wilkins and Sinks (124). Fabia and Thuy (123) also reported an association between hydrocarbon exposures and brain cancer. Some later studies found a similar increase (115,125), but other studies did not (68,126–130). In most if not all the studies to date of childhood cancer and parental occupation, potential exposures were determined either by examination of parental job title alone or by use of relatively crude job-exposure matrices that contained data on known and suspected carcinogens only. More comprehensive and sensitive methods of assessing exposures by expert industrial hygienists (131) are needed to improve the quality of this line of research and possibly resolve the conflicting results concerning childhood cancer and parental occupational exposures.

Air and Drinking Water

Some general environmental exposures via drinking water and air have been investigated with respect to childhood cancers. Possible carcinogenic effects related to fluoridation of municipal drinking water supplies have been evaluated thoroughly many times, most recently using 36 years of cancer mortality data and 15 years of cancer incidence data (132). Osteosarcoma was a cancer of particular interest because a 2-year bioassay had reported a small number of osteosarcomas in male rats but not in female rats or mice of either gender (133). The human cancer incidence data revealed increases over time of osteosarcoma in
young males under age 20 that were more prominent in fluoridated areas than in nonfluoridated areas. The increases were not related to the timing of fluoridation, however, so the authors concluded there was no link of cancer to fluoridation (134). This conclusion was consistent with several earlier expert evaluations of fluoride and cancer (135–137). A cluster of leukemia cases detected in 1979 in Woburn, Massachusetts, was thought by some researchers (138) but not by others (139) to be related to contamination of the town drinking water supply by trichloroethylene from a nearby chemical plant. Other general environmental exposures have been studied less extensively. One case-control study (140) and two correlational studies (141,142) have suggested that motor vehicle exhaust may increase risk of childhood leukemia.

Infectious Agents

Infectious agents, generally viruses, are included in the category of environmental exposures and have been linked to a few types of cancer in adults. There is little evidence, however, of viral- or bacterial-induced cancer in children. An exception would be Burkitt’s lymphoma, which in Africa is related to infection with Epstein-Barr virus (143). Considerable attention is being given currently to the hypothesis that the excesses of leukemia seen in populations near nuclear facilities in England and other areas where large-scale population mixing occurred may, in fact, be due to some infectious agent as yet unidentified (29–32). Not all areas with similarly large influxes of children or their parents have demonstrated increases in childhood leukemia, however (28).

Future Research Recommendations

There are a few well-established environmental causes of childhood cancer, such as radiation, chemotherapeutic agents, and diethylstilbestrol. Many other agents such as EMF, pesticides, and some parental occupational exposures are suspected of playing a role, but the evidence is not conclusive at this time. There is a need to research and better quantify these exposures. Studies must entail sophisticated exposure assessment, such as that used in epidemiologic studies of occupational exposures and adult cancers, and consideration of possible genetic and environmental interactions.

REFERENCES

1. Miller BA, Ries LAG, Hankey FR, Kosary FL, Harras A, Devesa SS, Edwards BK, eds. SEER Cancer Statistics Review: 1973–1990. NIH Publ No 93-2789. Bethesda, MD: National Cancer Institute, 1993;XXVI.1–XXVI.15.
2. Miller RW. Frequency and environmental epidemiology of childhood cancer. In: Principles and Practice of Pediatric Oncology (Pizzo PA, Poplack DG, eds). Philadelphia: JB Lippincott, 1989:3–18.
3. Boice JD Jr, Land CE. Ionizing radiation. In: Cancer Epidemiology and Prevention (Schottenfeld D, Fraumeni Jr JF, eds). Philadelphia:WB Saunders, 1982:231–253.
4. Fraser MC, Tucker MA. Second malignancies following cancer therapy. Semin Oncol Nurs 5:43–55 (1989).
5. Stewart AM, Webb J, Hewitt D. A survey of childhood malignancies. Br Med J 1:1495–1508 (1958).
6. MacMahon B. Prenatal X-ray exposure and childhood cancer. J Natl Cancer Inst 28:1173–1191 (1962).
7. MacMahon B, Hutchison GB. Prenatal X-ray and childhood cancer: a review. Acta Union Int Contre Le Cancer 20:1172–1174 (1964).
8. Bithell JF, Stewart APM. Pre-natal irradiation and childhood malignancy: a review of British data from the Oxford survey. Br J Cancer 31:271–187 (1975).
9. MacMahon B. Prenatal X-ray exposure and twins. N Engl J Med 312:576–577 (1985).
10. Harvey EB, Boice JD Jr, Honeyman M, Flannery JT. Prenatal X-ray exposure and childhood cancer in twins. N Engl J Med 312:541–545 (1985).
11. Jablon S, Kato H. Childhood cancer in relation to prenatal exposure to atomic-bomb radiation. Lancet 2:1000–1003 (1970).
12. Kato H, Schull WJ, Neel JV. A cohort-type study of survival in the children of parents exposed to the atomic bombs. Am J Hum Genet 18:339–373 (1966).
13. Rallison ML, Dobyns BM, Keating FR, Rall JE, Tyler FH. Thyroid disease in children: a survey of subjects potentially exposed to fallout radiation. Am J Med 56:457–463 (1974).
14. Lyon JL, Klauber MR, Gardner JW, Udall KS. Childhood leukemias associated with fallout from nuclear testing. N Engl J Med 300:397–402 (1979).
15. Machado SG, Land CE, McKay FW. Cancer mortality and radioactive fallout in southwestern Utah. Am J Epidemiol 125:44–61 (1987).
16. Land CE. The hazards of fallout or of epidemiologic research? N Engl J Med 300:431–432 (1979).
17. Craft AW, Openshaw S, Birch J. Apparent clusters of childhood lymphoid malignancy in Northern England. Lancet 2:96–97 (1984).
18. Heasman MA, Kemp JW, Urruquhart JD, Black R. Childhood leukaemia in Northern Scotland (letter). Lancet 1:266 (1986).
19. Gardner MJ, Snee MP, Hall AJ, Powell CA, Downes S, Terrell JD. Results of case-control study of leukaemia and lymphoma among young people near Sellafield nuclear plant in West Cumbria. Br Med J 300:423–429 (1990).
20. Darby SC, Doll R. Fallout, radiation doses near Dounreay, and childhood leukaemia. Br Med J 294:603–607 (1987).
21. Hill C, Laplanche A. Overall mortality and cancer mortality around French nuclear sites. Nature 347:755–757 (1990).
22. Jablon S, Hrubec Z, Boice JD Jr. Cancer in populations living near nuclear facilities. A survey of mortality nationwide and incidence in two states. JAMA 265:1403–1408 (1991).
23. Michaelis J, Keller B, Haaf G, Kaatsch P. Incidence of childhood malignancies in the vicinity of (West) German nuclear power plants. Cancer Causes Control 3:255–263 (1992).
24. McLaughlin JR, Clarke EA, Nishri ED, Anderson TW. Childhood leukaemia in the vicinity of Canadian nuclear facilities. Cancer Causes Control 4:51–58 (1993).
25. MacMahon B. Leukaemia clusters around nuclear facilities in Britain. Cancer Causes Control 3:283–288 (1992).
26. Urruquhart JD, Black RJ, Muirhead MF, Sharp L, Maxwell M, Eden OB, Jones DA. Case-control study of leukaemia and non-Hodgkin’s lymphoma in children in Caithness near the Dounreay nuclear installation. Br Med J 302:687–692 (1991).
27. Sorahan T, Roberts PJ. Childhood cancer and paternal exposure to ionizing radiation: preliminary findings from the Oxford survey of childhood cancers. Am J Ind Med 23:343–354 (1993).
28. MacMahon B. Is acute lymphoblastic leukaemia in children virus-related? Am J Epidemiol 136:916–924 (1992).
29. Kinlen L. Evidence for an infective cause of childhood leukaemia: comparison of a Scottish New Town with nuclear reprocessing sites in Britain. Lancet 2:1324–1327 (1988).
30. Kinlen LJ, Clarke K, Hudson C. Evidence from population mixing in British New Towns 1946–85 of an infective basis for childhood leukaemia. Lancet 336:577–582 (1990).
31. Kinlen LJ, Hudson CM, Stiller CA. Contacts between adults as
evidence for an infective origin of childhood leukaemia; an explanation for the excess near nuclear establishments in West Berkshire? Br J Cancer 64:549–554 (1991).
32. Kinlen LJ, Hudson C. Childhood leukaemia and polymyelitis in relation to military encampments in England and Wales in the period of national military service, 1950–63. Br Med J 303:1357–1362 (1991).
33. Savitz JM. Radon and lung cancer. J Natl Cancer Inst 81:745–757 (1989).
34. Lucie NP. Radon exposure and leukaemia. Lancet 2 (8654):99–100 (1989).
35. Henshaw DL, Eaton JP, Richardson RB. Radon as a causative factor in induction of myeloid leukaemia and other cancers. Lancet 335 (8696):1008–1012 (1990).
36. Collman GW, Loomis DP, Sandler DP. Childhood cancer mortality and radon concentration in drinking water in North Carolina. Br J Cancer 63:626–629 (1991).
37. Stern RS. The epidemiology of cutaneous disease. In: Dermatology in General Medicine (Fitzpatrick TB, Eisen AZ, Wolff K, Freedberg IM, Austen KF, eds). New York:McGraw-Hill, 1987:6–10.
38. Weinstock MA, Colditz GA, Willett WC, Stampfer MJ, Bronstein BR, Mihm MC Jr, Speizer FE. Nonfamilial cutaneous melanoma incidence in women associated with sun exposure before 20 years of age. Pediatrics 84:199–204 (1989).
39. Sandler DP. Epidemiology and etiology of acute leukemia: an update. Leukemia 6(Suppl 4):3–5 (1992).
40. Theriault R. Electromagnetic fields and cancer risks. Rev Epidémié& Santé Publ 40:555–562 (1992).
41. Wertheimer N, Leeper E. Electrical wiring configurations and childhood cancer. Am J Epidemiol 109:273–284 (1979).
42. Tomenius L. 50-Hz electromagnetic environment and the incidence of childhood tumors in Stockholm County. Bioelectromagnetics 7:191–207 (1986).
43. Savitz DA, Wachtel H, Barnes FA, John EM, Tvrlik JG. Case-control study of childhood cancer and exposure to 60-Hz magnetic fields. Am J Epidemiol 128:21–38 (1988).
44. McDowell ME. Mortality of persons resident in the vicinity of electricity transmission facilities. Br J Cancer 53:271–279 (1986).
45. Severson RK, Stevens RG, Kaune WT, Thomas DB, Hevrse L, Davis S, Sever LE. Acute nonlymphocytic leukemia and residential exposure to electromagnetic fields. Am J Epidemiol 128:10–20 (1988).
46. Savitz DA. Overview of epidemiologic research on electric and magnetic fields and cancer. Am Ind Hyg Assoc J 54:197–204 (1993).
47. London SJ, Thomas DC, Bowman JD, Sobel E, Chang T-C, Peters JM. Exposure to residential electric and magnetic fields and risk of childhood leukemia. Am J Epidemiol 134:923–937 (1991).
48. Spitz MR, Johnson CC. Neuroblastoma and paternal occupation: a case-control analysis. Am J Epidemiol 121:924–929 (1985).
49. Wilkins JR III, Hundley VD. Paternal occupational exposure to electromagnetic fields and neuroblastoma in offspring. Am J Epidemiol 131:995–1008 (1990).
50. Bunin GR, Ward E, Kramer S, Rhee CA, Meadows AT. Neuroblastoma and parental occupation. Am J Epidemiol 131:776–780 (1990).
51. Theriault R. Cancer risks due to exposure to electromagnetic fields. In: Recent Results in Cancer Research, Vol 120. Berlin:Springer-Verlag, 1990:166–180.
52. Linet M, Hrubec Z, Kaune W, Buckley J, Severson R, Robison L, Kleinerman R, Gardner S, Boice JD Jr. Collaborative epidemiologic study of childhood acute lymphocytic leukemia and possible associations with low frequency electromagnetic field radiation and radon exposures between the Epidemiology and Biostatistics Program, National Cancer Institute and the Children’s Cancer Study Group, Protocol. Bethesda, MD:National Cancer Institute, October 1990.
53. Herbst AL, Ulfelder H, Poskanzer DC. Adenocarcinoma of the vagina: association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med 284:878–881 (1971).
54. Melnick S, Cole P, Anderson D, Herbst A. Rates and risks of diethylstilbestrol related clear-cell adenocarcinoma of the vagina and cervix: an update. N Engl J Med 316:514–516 (1987).
55. Bibbo M, Gill WB, Azizi F, Blough R, Fang VS, Rosenfeld RL, Schumacher GFB, Sleeper K, Sonnek MG, Wied GL. Follow-up study of male and female offspring of DES-exposed mothers. Obstet Gynecol 49:1–8 (1977).
56. Bibbo M, Haenszel WM, Wied GL, Hubby M, Herbst AL. A twenty-five year follow-up of women exposed to diethylstilbestrol during pregnancy. N Engl J Med 298:763–767 (1978).
57. Labarthe D, Adam E, Noller KL, O’Brien PC, Robboy SJ, Tilley BC, Townsend D, Barnes AB, Kaufman RH, Decker DG, Fish CR, Herbst AL, Gundersen J, Kurland LT. Design and preliminary observations of the National Cooperative Diethylstilbestrol Adenosis (DESAD) Project. Obstet Gynecol 51:453–458 (1978).
58. Greenberg ER, Barnett AB, Ressegui L, Barrett JA, Burnside S, Lanza LL, Neff RK, Stevens M, Young RH, Colton T. Breast cancer in mothers given diethylstilbestrol in pregnancy. N Engl J Med 311:1393–1398 (1984).
59. Hadjmichael OC, Meigs JW, Falciar FW, Thompson WD, Flannery JT. Cancer risk among women exposed to exogenous estrogens during pregnancy. J Natl Cancer Inst 73:831–834 (1984).
60. Gill WB, Schumacher GFB, Bibbo M, Straus FH 2nd, Schoenberg HW. Association of diethylstilbestrol exposure in utero with cryptorchidism, testicular hypoplasia and semen abnormalities. J Urol 122:36–39 (1979).
61. Vessey MP, Fairweather D, Norman-Smith B, Buckley J. A randomized double-blind trial of the value of stilbestrol therapy in pregnancy: long-term follow-up of mothers and their offspring. Br J Obstet Gynecol 90:1007–1017 (1983).
62. Hatch E, Hargre P, Hoover R, Obrams I, Kaufman R, Adam E, Herbst A, Mittendorf R, Colton T, Palmer J, Greenberg ER, Titus-Ernstof L, Noller K, Ressegui L. Protocol: Continuation of Follow-up of DES-exposed Cohorts. Bethesda, MD:National Cancer Institute, 1993.
63. Allen RW, Ogden B, Bently FL, Jung AL. Fetal hydatidoid syndrome, neuroblastoma, and hemorrhagic disease in a neonate. JAMA 244:1464–1465 (1980).
64. Pendergrass TW, Hanson JW. Fetal hydatidoid syndrome and neuroblastoma. Lancet 2:150 (1976).
65. Sherman S, Roizen N. Fetal hydatidoid syndrome and neuroblastoma. Lancet 2:517 (1976).
66. Blattner WA, Henson DE, Young RC, Fraumeni JF Jr. Malignant mesenchymoma and birth defects: prenatal exposure to phenytoin. J Am Med Assoc 238:334–335 (1977).
67. Kuijten RR, Bunin GR, Nass CC, Meadows AT. Gestational and familial risk factors for childhood astrocytoma: results of a case-control study. Cancer Res 50:2608–2612 (1990).
68. Kuijten RR, Bunin GR. Risk factors for childhood brain tumors. Cancer Epidemiol Biomarkers Prev 2:277–288 (1993).
69. Kramer S, Ward E, Meadows AT, Malone K. Medical and drug risk factors associated with neuroblastoma: a case-control study. J Natl Cancer Inst 78:797–804 (1987).
70. Bunin GR, Meadows AT, Emanuel BS, Buckley JD, Woods WC, Hammond GD. Pre- and post-conception factors associated with heritable and non-heritable retinoblastoma. Cancer Res 49:5730–5735 (1989).
71. Robison LL, Buckley J, Daigle A, Arthur DC, Wells R, Benjamin D, Hammond GD. Maternal drug use and risk of a childhood non-lymphoblastic leukemia among offspring: a preliminary report from the Children’s Cancer Study Group. Cancer 64:1169–1176 (1989).
72. McKinney PA, Cartwright RA, Stiller CA, Hopton PA, Mann JR, Birch JM, Hartley AL, Waterhouse JAH, Johnston HE. Inter-regional epidemiological study of childhood cancer (IRESCC): childhood cancer and the consumption of...
Debenedo and related drugs in pregnancy. Br J Cancer 52:923–929 (1985).
73. Lindblad P, Zack M, Adami H-O, Ericson A. Maternal and perinatal risk factors for Wilms' tumor: a nationwide nested case-control study in Sweden. Int J Cancer 51:38–41 (1992).
74. Fraser MC, Tucker MA. Late effects of cancer therapy: chemotherapeutically related malignancies. Oncol Nurs Forum 15:67–77 (1988).
75. Tucker MA, Coleman CN, Cox RS, Varghese A, Rosenberg SA. Risk of second cancers after treatment for Hodgkin's disease. N Engl J Med 318:76–81 (1988).
76. Tucker MA, Meadows AT, Boice JD Jr, Stovall M, Oberlin O, Stone BJ, Birnbaum M, Hoover RN, Fraumeni JF Jr. Leukemia after therapy with alkylating agents for childhood cancer. J Natl Cancer Inst 78:459–464 (1987).
77. Tucker MA, D'Angio GJ, Boice JD Jr, Strong LC, Li FP, Stovell M, Stone BJ, Green DM, Lombardi F, Newton W, Hoover RN, Fraumeni JF Jr. Bone sarcomas linked to radiotherapy and chemotherapy in children. N Engl J Med 317:588–593 (1987).
78. Shu XO, Gao YT, Brinton LA, Linet MS, Tu JT, Zheng W, Fraumeni JF Jr. A population-based case-control study of childhood leukemia in Shanghai. Cancer 62:635–644 (1988).
79. Fraumeni JF Jr. Bone marrow depression induced by chlorophenicol or phenylbutazone. JAMA 201:828–834 (1967).
80. Grufferman S, Schwartz AG, Runyan PB, Maurer HM. Parents' use of cocaine and marijuana and increased risk of rhabdomyosarcoma in their children. Cancer Causes Control 4:217–224 (1993).
81. Marcus AC, Shopland DR, Crane LA, Lynn WR. Prevalence of cigarette smoking in the United States: estimates from the 1985 Current Population Survey. J Natl Cancer Inst 81:409–414 (1989).
82. Sandler DP, Everson RB, Wilcox AJ, Browder JP. Cancer risk in adulthood from early life exposure to parents' smoking. Am J Public Health 75:487–492 (1985).
83. Stjernfeldt M, Berglund K, Lindström J, Ludvigspon J. Maternal smoking during pregnancy and risk of childhood cancer. Lancet 1:1350–1352 (1986).
84. Magnani C, Pastore G, Luzatto L, Terracini B. Parental occupational and other environmental factors in the etiology of leukemias and non-Hodgkin's lymphomas in childhood: a case-control study. Tumori 76:413–419 (1990).
85. John EM, Savitz DA, Sandler DP. Prenatal exposure to parents' smoking and childhood cancer. Am J Epidemiol 133:123–132 (1991).
86. Grufferman S, Wang HH, DeLong ER, Kimm SYS, Delzell ES, Falletta JM. Environmental factors in the etiology of rhabdomyosarcoma in childhood. J Natl Cancer Inst 68:107–113 (1982).
87. Hartley AL, Birch JM, McKinney PA, Teare MD, Blair V, Carrette J, Mann JR, Draper GJ, Stiller CA, Johnston HE, Cartwright RA, Waterhouse JAH. The Inter-Regional Epidemiological Study of Childhood Cancer (IRESCC): case-control study of children with bone and soft tissue sarcomas. Br J Cancer 58:838–842 (1988).
88. Magnani C, Pastore P, Luzzatto L, Carli M, Lubrano P, Terracini B. Risk factors for soft tissue sarcomas in childhood: a case-control study. Tumori 75:396–400 (1989).
89. McKinney PA, Stiller CA. Maternal smoking during pregnancy and the risk of childhood cancer. Lancet 2:519–520 (1986).
90. Howe GR, Burch JD, Chiarelli AM, Risch HA, Choi BCK. An exploratory case-control study of brain tumors in children. Cancer Res 49:4349–4352 (1989).
91. Gold EB, Leshner AM, Lopez R, Gilles FH, Hedley-Whyte ET, Kolonel LN, Lyon JL, Swanson GM, Weiss NS, West D, Aschenbrenner C, Austin DF. Parental smoking and risk of childhood brain tumors. Am J Epidemiol 137:620–628 (1993).
92. Olshan AF, Breslow NE, Falletta JM, Grufferman S, Pendergrass T, Robison LL, Waskerwitz, Woods WG, Vietti TJ, Hammond GD. Risk factors for Wilms' tumor: report from the National Wilms' Tumor Study. Cancer 72:938–944 (1993).
93. Marcus AC, Crane LA, Shopland DR, Lynn WR. Use of smokeless tobacco in the United States: recent estimates from the Current Population Survey. NCI Monogr 8:17–23 (1989).
94. Rouse BA. Epidemiology of smokeless tobacco use: a national study. NCI Monogr 8:23–33 (1989).
95. MacWick C. Increased use of chewing tobacco, especially among younger persons, alarms Surgeon General. JAMA 269:195 (1993).
96. Schaefer SD, Henderson AH, Glover ED, Christen AG. Patterns of use and incidence of smokeless tobacco consumption in school-age children. Arch Otolaryngol 111:639–642 (1985).
97. Wins DM, Blot WJ, Shy CM, Pickle LW, Toledo A, Fraumeni JF Jr. Snuff dipping and oral cancer among women in the southern United States. N Engl J Med 304:745–749 (1981).
98. Poulson TC, Lindemuth JE, Greer RO Jr. A comparison of the use of smokeless tobacco in rural and urban teenagers. CA–A Cancer Journal for Clinicians 34:248–261 (1984).
99. Blot WJ. Alcohol and cancer. Cancer Res 52(Suppl): 2119s–2123s (1992).
100. Council on Scientific Affairs. Fetal effects of maternal alcohol use. JAMA 249:2517–2521 (1983).
101. Zahm SH, Blair A. Carcinogenic risks from pesticides. In: Parental Accomplishments in Cancer Research (Forntner JG, Rhoads JE, eds). General Motors Cancer Research Foundation. Philadelphia: Lipincott, 1993:266–279.
102. Zahm SH, Blair A. Cancer among migrant and seasonal farmworkers: an epidemiologic review and research agenda. Am J Ind Med 24:753–766 (1993).
103. Infante PF, Newton WA. Prenatal chordane exposure and neuroblastoma. N Engl J Med 293:308 (1975).
104. Infante P, Epstein SS, Newton WA Jr. Blood dyscrasias and childhood tumors and exposure to chlorodane and heptachlor. Scand J Work Environ Health 4:137–150 (1978).
105. Epstein SS, Otonoff D. Leukemias and blood dyscrasias following exposure to chlorodane and heptachlor. Teratog Carcinog Mutagen 7:527–540 (1987).
106. Reeves JD, Driggers DA, Kiley VA. Household insecticide associated aplastic anemia and acute leukemia in children. Lancer 8241:300 (1981).
107. Reeves JD. Household insecticide-associated blood dyscrasias in children. Am J Hematol/Oncol 4:438–439 (1982).
108. Pratt CB, Rivera G, Shanks E, Johnson WW, Howarth C, Tenney W, Kumar JM. Colorectal carcinoma in adolescents —implications regarding etiology. Cancer 40:2464–2472 (1977).
109. Moses M. Pesticide-related health problems and farmworkers. Am Assoc Ocup Hlth Nurses J 37:115–130 (1989).
110. Buckley JD, Robison LL, Swotinsky R, Garabrant DH, LeBeau M, Manchester P, Nesbit ME, Odom L, Peters JM, Woods WG, Hammond GD. Occupational exposures of parents of children with acute nonlymphocytic leukemia: a report from the Children's Cancer Study Group. Cancer Res 49: 4030–4039 (1989).
111. Lowengart RA, Peters JM, Cicioni C, Buckley J, Bernstein L, Preston-Martin S, Rappaport E. Childhood leukemia and parents’ occupation and home exposures. J Natl Cancer Inst 79:39–46 (1987).
112. Davis JR, Brownson RC, Garcia R, Bentz BJ, Turner A. Family pesticide use and childhood brain cancer. Arch Environ Contam Toxicol 24:87–92 (1993).
113. Gold E, Gords L, Tonascia J, Szkl M. Risk factors for brain tumors in children. Am J Epidemiol 109:309–319 (1979).
114. Sinka TH Jr. N-Nitroso compounds, pesticides, and parental exposures in the workplace as risk factors for childhood brain cancer: a case-control study. PhD dissertation, Ohio State University, Columbus, 1985.
115. Wilkins J, Sinka TH. Parental occupation and intracranial neoplasms of childhood: results of a case-control interview study. Am J Epidemiol 132:275–292 (1990).
116. Holly EA, Aston DP, Ahn PKA, Kristiansen JJ. Ewing’s bone sarcoma, parental occupational exposure, and other factors. Am J Epidemiol 135:122–129 (1992).

117. Winn DM, Li FP, Robison LL, Mulvihill JJ, Daigle AE, Fraumeni JF Jr. A case-control study of the etiology of Ewing’s sarcoma. Cancer Epidemiol Biomarkers Prev 1:525–532 (1992).

118. Whitmore RW, Kelly JE. Reading PL. Executive summary, results, and recommendations. In: The National Home and Garden Pesticide Survey, Vol 1. Report RTI/5100/17-01F. Washington:U.S. Environmental Protection Agency, 1992.

119. U.S. GAO. Lawn Care Pesticides: Risks Remain Uncertain While Prohibited Safety Claims Continue. U.S. GAO/RCED-90-134. Washington:U.S. Government Accounting Office, 1990.

120. Stevens WK. Public said to disregard dangers of maneuvering the greensward. New York Times, 17 April 1990.

121. Anderson HA, Lilis R, Daum SM, Fischbein AS, Selikoff JI. Household-contact asbestos. Neoplastic risk. Ann NY Acad Sci 271:311–323 (1976).

122. Wagner JC, Sleggs CA, Marchand P. Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province. Br J Ind Med 17:260–271 (1960).

123. Fabia J, Thuy TD. Occupation of father at time of birth of children dying of malignant diseases. Br J Prev Soc Med 28:98–100 (1974).

124. Wilkins JR III, Sinks TH Jr. Occupational exposures among fathers of children with Wilms tumor. J Occup Med 26:427–435 (1984).

125. Gold EB, Diener MD, Szkel M. Parental occupations and cancer in children: a case-control study and review of the methodologic issues. J Occup Med 24:578–584 (1982).

126. Hakulinen T, Salonen T, Teppo L. Cancer in the offspring of fathers in hydrocarbon-related occupations. Br J Prev Soc Med 30:138–140 (1976).

127. Zack M, Cannon S, Loyd D, Heath CW Jr, Falletta JM, Jones B, Housworth J, Crowley S. Cancer in children of parents exposed to hydrocarbon-related industries and occupations. Am J Epidemiol 111:329–336 (1980).

128. Kwa L-L, Fike LJ. The association between parental occupation and childhood malignancy. J Occup Med 22:792–794 (1980).

129. Sanders BM, White GC, Draper GJ. Occupations of fathers of children dying from neoplasms. J Epidemiol Community Health 35:245–250 (1981).

130. Nasca PC, Baptiste MS, MacCunnin PA, Merzger BB, Carlton K, Greenwald P, Armbrustmacher VW, Earle KM, Waldman J. An epidemiologic case-control study of central nervous system tumors in children and parental occupational exposures. Am J Epidemiol 128:1256–1265 (1988).

131. Stewart PA, Herrick RF. Issues in performing retrospective exposure assessment. Appl Occup Environ Hyg 6:421–427 (1991).

132. Hoover RN, Devesa SS, Cantor KP, Lubin JH, Fraumeni JF Jr. Appendix E: Fluoridation of drinking water and subsequent cancer incidence and mortality. In: Review of Fluoride: Benefits and Risks. Washington:U.S. Public Health Service, 1991.

133. National Toxicology Program. Technical report on the toxicology and carcinogenesis of sodium fluoride in F344/N rats and B6C3F1 mice. NIH Publ No 90-2848. Washington:National Institutes of Health, 1990.

134. Hoover RN, Devesa SS, Cantor KP, Fraumeni JF Jr. Appendix F: Time trends for bone and joint cancers and osteosarcomas in the Surveillance, Epidemiology and End Results (SEER) Program, National Cancer Institute. In: Review of Fluoride: Benefits and Risks. Washington:U.S. Public Health Service, 1991.

135. National Academy of Sciences National Research Council. Drinking Water and Health. Washington: National Academy of Sciences Press, 1977;381–389.

136. IARC. Monographs on the evaluation of the carcinogenic risks of chemicals to humans. In: Inorganic Fluorides. Monograph 27. Lyon:International Agency for Research on Cancer, 1982;279–303.

137. Knox EG. Fluoridation of water and cancer: a review of the epidemiologic evidence. Report of a working party. London:Her Majesty’s Stationery Office, 1985.

138. Lagakos SW, Wessen BJ, Zelen M. An analysis of contaminated well water and health effects in Woburn, Massachusetts. J Am Stat Assoc 81:583–596 (1986).

139. MacMahon B. Comment. J Am Stat Assoc 81:587–599 (1986).

140. Savitz DA, Feingold L. Association of childhood cancer with residential traffic density. Scand J Work Environ Health 15:360–363 (1989).

141. Robinson AA. Leukemia, a close association with vehicle travel. Medical Hypothesis 36:172–177 (1991).

142. Wolff SP. Correlation between car ownership and leukemia: is non-occupational exposure to benzene from petrol and motor vehicle exhaust a causative factor in leukemia and lymphoma? Expierienta 48:301–304 (1992).

143. Morrow RH Jr. Burkitt’s lymphoma. In: Cancer Epidemiology and Prevention (Schottenfeld D, Fraumeni JF Jr, eds). Philadelphia:WB Saunders, 1982;779–794.