Classification of Riboswitch Families Using Block Location-Based Feature Extraction (BLBFE) Method

Faegheh Golabi1,* , Moussa Shamsi2,* , Mohammad Hosein Sedaaghi3, Abolfazl Barzegar2,4, Mohammad Saeid Hejazi5,6,*

1Genomic Signal Processing Laboratory, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran.
2School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
3Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran.
4Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran.
5Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
6Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.

Article Info
Article History:
Received: 25 May 2019
Revised: 4 Sep. 2019
Accepted: 30 Sep. 2019
epublished: 11 Dec. 2019

Keywords:
- Riboswitch
- Non-coding RNA
- Sequential blocks
- Block location-based feature extraction
- BLBFE
- Classification
- Performance measures

Abstract
Purpose: Riboswitches are special non-coding sequences usually located in mRNAs' un-translated regions and regulate gene expression and consequently cellular function. Furthermore, their interaction with antibiotics has been recently implicated. This raises more interest in development of bioinformatics tools for riboswitch studies. Herein, we describe the development and employment of novel block location-based feature extraction (BLBFE) method for classification of riboswitches.

Methods: We have already developed and reported a sequential block finding (SBF) algorithm which, without operating alignment methods, identifies family specific sequential blocks for riboswitch families. Herein, we employed this algorithm for 7 riboswitch families including lysine, cobalamin, glycine, SAM-alpha, SAM-IV, cyclic-di-GMP-I and SAH. Then the study was extended toward implementation of BLBFE method for feature extraction. The outcome features were applied in various classifiers including linear discriminant analysis (LDA), probabilistic neural network (PNN), decision tree and k-nearest neighbors (KNN) classifiers for classification of the riboswitch families. The performance of the classifiers was investigated according to performance measures such as correct classification rate (CCR), accuracy, sensitivity, specificity and f-score.

Results: As a result, average CCR for classification of riboswitches was 87.87%. Furthermore, application of BLBFE method in 4 classifiers displayed average accuracies of 93.98% to 96.1%, average sensitivities of 76.76% to 83.61%, average specificities of 96.53% to 97.69% and average f-scores of 74.9% to 81.91%.

Conclusion: Our results approved that the proposed method of feature extraction; i.e. BLBFE method; can be successfully used for classification and discrimination of the riboswitch families with high CCR, accuracy, sensitivity, specificity and f-score values.

Introduction
Regulation of cellular functions are achieved by effective collaboration of varying types of bio-molecules such as DNAs, RNAs and proteins. Riboswitches1-4 as an example of regulatory RNAs, are a part of mRNA molecules and regulate the expression of corresponding genes by directly binding to the target metabolites and undergoing consequent structural changes.5-7 For instance, the riboswitch structural conformation alteration blocks the ribosome binding site and inhibits protein synthesis by the ribosome. Riboswitches are usually located in mRNAs' 5' un-translated regions.3 Riboswitches with similar sequence and secondary and tertiary structures perform similar tasks.6,9 Therefore, riboswitches are categorized to families according to their function, sequence conservation and structural similarities.10,11

Studies showed that riboswitches interact with antibiotics and regulate the expression of the corresponding gene. The interaction of antibiotics with riboswitches could be attributed at least partly to the action mechanism of the antibacterial agents.12 Sudarsan and colleagues13 showed the interaction of pyrithiamine with thiamine pyrophosphate riboswitch. Interaction of lysine riboswitch with antibiotics was reported by Blount and co-workers14 and interaction of roseoflavin antibiotic with FMN riboswitch was also confirmed.15-17 Our in-
Materials and Methods

Datasets

Table 1 shows seven families of riboswitches, whose seed data were used for block detection and classification in this study. The riboswitch families include lysine,36,37 cobalamin,38-40 glycine,41-43 SAM-alpha,44-45 SAM-IV,46,47 cyclic-di-GMP-I48,49 and SAH50,51 families, containing 47, 43, 40, 40, 155 and 52 seed members in each family, respectively. Datasets along with their sequential and secondary structure characteristics were downloaded from Rfam 13.0 database in un-gapped FASTA format.52,53 Table 1 also represents calculated mean lengths and variance of lengths of the members for the studied families.

Application of the block finding algorithm

We have previously designed a block finder program for detection of frequent RNA blocks in riboswitch families.30 In this method, an algorithm was used to identify the frequently appearing specific sequential blocks in riboswitch families. These blocks are characteristic motifs of a certain riboswitch family which are present in a very high percentage of the riboswitch family members complying the sequence conservation of riboswitch families. Also in a high percentage of family members, location of the motifs on the sequences should be the same or in a close defined neighborhood. In this path, the algorithm first recognizes all potential blocks, then checks each block’s location on every member of the family and eliminates the excess blocks accordingly. Finally, for each riboswitch family a set of specific sequential blocks is determined.

Feature extraction

We employed the locations of family-specific blocks on riboswitch sequences as features for classification of the riboswitches. To extract the features, first, sequential

Riboswitch family name	Rfam accession number	Number of seed data	Average length of members (nucleotides)	Variance of the length of members
Lysine	RF00168	47	183	11.06
Cobalamin	RF00174	430	203	15.54
Glycine	RF00504	44	101	15.99
SAM-alpha	RF00521	40	79	1.18
SAM-IV	RF00634	40	116	4.13
Cyclic-di-GMP-I	RF01051	155	87	6
SAH	RF01057	52	85	15.4

98 | Advanced Pharmaceutical Bulletin, 2020, Volume 10, Issue 1
of the proposed feature extraction method.

Linear discriminant analysis (LDA) classifier: This method finds a linear combination of features to characterize or discriminate two or more classes and uses the resulting combination as a linear classifier. The LDA method is a generalization of Fisher's linear discriminant.31

Probabilistic neural network (PNN) classifier: The PNN algorithm estimates the class probability of an input data using the probability distribution function of each class. Then Bayes’ rule is employed to assign the input data to the class with highest posterior probability.32

Decision tree classifier: Decision tree method creates a predictive tree-like model using a series of carefully created questions. Based on the tree as the model, it goes from observations about an input data, represented by the branches of the tree, to decisions about the input data’s class label, represented by the leaves.33

K-nearest neighbors (KNN) classifier: In KNN classification, an input data is classified to the class most common among its K nearest neighbors. K is a positive integer number, usually small.34 In this study, the optimum K was equaled to 4.

Evaluation of classifiers’ performance

Four performance measures of accuracy, sensitivity, specificity and f-score are calculated according to the confusion matrices using the equations (1) to (4):35,36

\[
\text{Accuracy} = \frac{TP + TN}{TP + FP + TN + FN} \quad (1)
\]

\[
\text{Sensitivity} = \frac{TP}{TP + FN} \quad (2)
\]

\[
\text{Specificity} = \frac{TN}{FP + TN} \quad (3)
\]

\[
\text{F-score} = \frac{2TP}{2TP + FP + FN} \quad (4)
\]

TP denotes the true positive rate; i.e. the members of each class which are correctly classified to the right class. FP is the false positive rate; i.e. the sequences which are falsely annotated to another class. Also, TN and FN are the true negative and the false negative rates, respectively.

Results and Discussion

Detection of family specific blocks

Frequently appearing RNA sequential blocks for seven riboswitch families were detected using SBF method.39

Results of the block finder algorithm for 7 families are presented in Table 2.

As can be seen, our algorithm detected 2 blocks for the lysine family including ‘AGAGGUGC’ and ‘AGUAA’ blocks at locations 10 and 28, respectively. For the cobalamin family, 5 blocks including ‘CGGUG’, ‘GCA’, ‘AGC’, ‘AGA’ and ‘GACC’ were recognized which are

Cross-validation

To validate the generalization of the classifiers, V-fold cross-validation (VFCV) was used.35 VFCV, due to its mild computational cost, is the most popular CV procedure. For a dataset with N members, VFCV partitions the data randomly into V subsets with approximately equal cardinality of N/V. Each subset successively plays the role of test data while the rest of the data is used to train the classifier. The overall correct classification rate (CCR) is average of the CCRs of the V stages. Here, V=10 was used for cross-validation because of the good error estimation in addition to suitably low computational cost.35,54-56

The classifiers

Four classifiers were employed to study the performance...
Table 2. Results of the application of the sequential block finding (SBF) algorithm for 7 families of riboswitches

Riboswitch family name	Blocks	Approximate Location on the sequences
Lysine	AGAGGUG	10
	AGUAA	28
Cobalamin	CGGUG	18
	GCA	77
	AGC	92
	AGA	175
	GACC	180
Glycine	GAGGA	13
	CCGA	35
SAM-alpha	GUGGU	11
	AUUUG	17
	GCCACGU	37
SAM-IV	UCA	3
	CAG	13
	GCUGG	32
	CGCCAACC	38
Cyclic-di-GMP-I	GAAA	23
	CGCCAAGC	35
SAH	GAGGAGCG	7
	UGC	16
	AGGCCUCCG	36

located at locations 18, 77, 92, 175 and 180, respectively. Also, 2 blocks were detected for the glycine family including ‘GGAGA’ and ‘CGGA’ recognized at locations 13 and 35, respectively. For the SAM-alpha riboswitch family, 3 blocks including ‘GUGGU’, ‘AUUUG’ and ‘GCCACGU’ were recognized at locations 11, 17 and 37, respectively. Five specific blocks were detected for SAM-IV family including ‘UCA’, ‘GAG’, ‘CAG’, ‘GCUGG’ and ‘CGCCAACC’ blocks located at 3, 7, 13, 32 and 38 locations, respectively. For cyclic-di-GMP-I family, 2 blocks of ‘GAAA’ located at 23 and ‘CGCCAAGC’ located at 35 nucleotides were identified. And finally 3 blocks were detected for SAH family including ‘GAGGAGCG’, ‘UGC’ and ‘AGGCCUCGG’ located at locations 7, 16 and 36, respectively. Therefore, 22 sequential blocks were identified for 7 studied riboswitch families, in total.

Model validation

Our results for 7 riboswitch families were compared to the conserved regions observed in the alignment results from Rfam database (Figure 1). As seen, most of the detected blocks fall into the highly conserved regions (shown in red) in the studied families. For example, two 8 and 5-mer blocks, AGAGGUGG and AGUAA, were detected for lysine family. As shown in Figure 1a, these blocks are located exactly in the highly conserved areas of the lysine riboswitch structure. Also, Figures 1b-1g demonstrate the accordance of the detected blocks for cobalamin, glycine, SAM-alpha, SAM-IV, cyclic-di-GMP-I and SAH riboswitches with the consensus segments of the families, respectively.

Classification results

Using sequential based block finding algorithm, SBF, 22 RNA sequential blocks [AGAGGUGG, AGUAA, CGGUG, GCA, AGC, AGA, GACC, GGAGA, CGGA, GCCA, UCACG, GCCACGU, GAG, CAG, CCGUG, CGCCAACC, GAAA, CGCCAAGC, GAGGAGCG, UGC, AGGCCUCGG] were detected and determined as family specific blocks for 7 families. Having detected the specific blocks, observations were created using BLBFE method for classification of the riboswitches. Locations of these blocks on the family members are considered as features. The resulted 1 by 22 arrays are observations, each representing one of the riboswitches for designed classifier. As there are 808 members in total in 7 studied riboswitch families, 808 arrays of 1 by 22 as observations were produced. Of 808 created observations, 47, 430, 44, 40, 155 and 52 ones belong to lysine, Cobalamin, Glycine, SAM-alpha, SAM-IV, Cyclic-di-GMP-I and SAH.
families, respectively. For each set of observations, LDA, PNN, decision tree and KNN classifiers accompanied by 10-fold cross-validation were applied. Then, correct and incorrect classified samples for each set were counted.

Figure 2 shows the correct classification rates (CCRs) of the studied classifiers. With the BLBFE method, PNN with 92.31% had the highest CCR while the other classifiers showed CCRs of 89.37% for decision tree classifier, 88.86% for KNN classifier and finally 80.94% for LDA classifier. Overall, the average CCR of four classifiers when using locations of specific sequential blocks as features was 87.87%.

Evaluation results

Table 3 represents the multiclass confusion matrix for LDA classifier with the BLBFE. Also, the multiclass confusion matrices for PNN, decision tree and KNN classifiers with the same method of feature extraction are represented in Tables 4 to 6, respectively. Based on the confusion matrices, accuracy, sensitivity, specificity and f-score measures for the BLBFE method were calculated and illustrated in Figure 3.

As seen in Figure 3a, classification accuracy measures for LDA classifier is ranged between 99.09% for SAM-IV and 83.63% for glycine families. For PNN classifier, SAM-IV family again displays the highest accuracy of 99.33% while the lowest accuracy is 87.66% for SAH family.

Figure 2. Correct classification rates for 4 classifiers using block location-based feature extraction method (BLBFE).

Decision tree classifier has maximum accuracy of 97.93% for SAM-alpha family and minimum accuracy of 88.07% for SAH family. At last, the highest accuracy for KNN classifier is 99.03% which belongs to SAM-IV family, and the lowest accuracy is 87.67% for SAH family.

Figure 3b shows individual sensitivities of 4 classifications. The LDA classifier resulted in sensitivity of 100% for glycine family while the lowest sensitivity is 66.45% for cyclic-di-GMP-I family. For PNN classifier, sensitivities are ranged between 94.65% for cobalamin and

Table 3. Multiclass confusion matrix for the LDA classifier, based on the features extracted by the block location-based feature extraction (BLBFE) method

Predicted/True Riboswitch Families	Lysine	Cobalamin	Glycine	SAM-alpha	SAM-IV	Cyclic-di-GMP-I	SAH
Lysine	33	1	10	3	0	0	0
Cobalamin	13	361	46	3	1	1	3
Glycine	0	0	44	0	0	0	0
SAM-alpha	0	0	4	36	0	0	0
SAM-IV	0	0	4	0	36	0	0
Cyclic-di-GMP-I	0	0	52	0	0	103	0
SAH	0	0	12	0	1	0	39
TP	33	361	44	36	36	103	39
FP	13	1	128	6	2	1	3
FN	621	291	610	618	618	551	615
FN	14	67	0	4	4	52	13

Table 4. Multiclass confusion matrix for the PNN classifier, based on the features extracted by the block location-based feature extraction (BLBFE) method

Predicted/True Riboswitch Families	Lysine	Cobalamin	Glycine	SAM-alpha	SAM-IV	Cyclic-di-GMP-I	SAH
Lysine	39	1	4	0	0	1	2
Cobalamin	6	407	7	3	1	5	1
Glycine	1	1	39	0	0	3	0
SAM-alpha	0	1	1	35	1	2	0
SAM-IV	0	1	0	1	37	1	0
Cyclic-di-GMP-I	1	2	7	2	0	141	2
SAH	0	0	2	0	0	2	48
TP	39	407	39	35	37	141	48
FP	8	6	21	6	2	14	53
TN	707	319	707	711	709	605	698
FN	8	23	5	5	3	14	52
48% for SAH families. The highest sensitivity for decision tree classifier is 93.49% for cobalamin family and the lowest is 44.09% for SAH family. Finally, KNN classifier results in sensitivities from 94.42% for cobalamin to 44.09% for SAH families.

The specificities of 4 classifiers are demonstrated in Figure 3c. As demonstrated, the highest specificity for LDA classifier is 99.82% belonging to cyclic-di-GMP-I family and glycine family has the lowest specificity of 82.66%. For PNN classifier, specificities range from 99.72% for SAM-IV to 92.94% for SAH families. SAM-alpha has the highest of 99.27% with decision tree classifier while cobalamin has the lowest specificity of 93.31%. For KNN classifier, the highest specificity, 100% belongs to SAM-IV family and the lowest is 89.14% belonging to cobalamin family.

Finally, Figure 3d presents the f-scores of 4 classifiers. For LDA classifier, f-scores range from 92.31% for SAM-IV to 40.74% for glycine families. The highest f-score with PNN classifier is 96.56% belonging to cobalamin family while the lowest f-score is 47.76% for SAH family. Application of decision tree classifier results in f-scores from 94.15% for cobalamin family to 46.07% for SAH. The KNN classifier also gives maximum f-score of 92.91% for cobalamin family in addition to minimum f-score of 44.81% for SAH family.

Figure 4 shows the average performance measures of 7 riboswitch families for the BLBFE method applied in 4 classifiers. As can be seen, PNN classifier has the best average accuracy, equal to 96.1%. This is while, other classifiers also represent good average accuracies of 95.2% for KNN classifier, 94.79% for decision tree classifier and 93.98% for LDA classifier. PNN classifier has the highest average sensitivity too. 83.61%, 82.3%, 76.81% and 76.76% are average sensitivities of PNN, LDA, decision tree and KNN classifiers, respectively.

The highest average specificity, 97.69%, belongs to the PNN classifier, followed by 96.9%, 96.58% and 96.53% for LDA, decision tree and KNN classifiers, respectively. Finally, PNN classifier again has the best average f-score, 81.91%. Other classifiers display average f-scores of 78.44% for KNN classifier, 77.97% for LDA classifier and 74.9% for decision tree classifier.

Conclusion

The importance of riboswitches’ role in gene expression regulation and their interaction with antibiotics, have attracted more interest for development of new bioinformatics tools for recognition and characterization of riboswitches. Following development of SBF algorithm for detection of frequently appearing family specific sequential blocks in riboswitch families, in this paper we first elucidated the performance of the designed algorithm...
Classification of riboswitches using BLBFE method

in detection of the family related blocks in lysine, cobalamin, glycine, SAM-alpha, SAM-IV, cyclic-di-GMP-I and SAH riboswitches. Results showed that the developed method detected most of the conserved motifs present in each family defined as family specific blocks. Then, the identified blocks on riboswitch sequences were used for classification of the members into their corresponding families. For this, we proposed a new feature extraction strategy called BLBFE, which employs the locations of the specified blocks on riboswitch sequences as features. Therefore, each riboswitch sequence is converted into a numerical array called an observation. In order to validate the performance of the proposed feature extraction method, 4 popular classifiers including LDA, PNN, decision tree and KNN were applied and their functions in classification of the riboswitches were evaluated and compared. Putting together the results, the BLBFE strategy led to suitable performance in classification of the riboswitches with average CCR of 87.87%. Having applied BLBFE, all the studied classifiers displayed closely suitable performances, where PNN classifier performed the best according to its higher accuracy, sensitivity, specificity and f-score. Considering the proposed BLBFE method's performance, it is concluded that the developed methods of SBF and BLBFE are promising strategies for classification of the riboswitches. More reports from our group in development and application of the BLBFE method for other groups of RNAs, DNAs and genes are in progress.

Ethical Issues
Not applicable.

Conflict of Interest
Authors declare no conflict of interest in this study.

References
1. Winkler W, Nahvi A, Breaker RR. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 2002;419(6910):952-6. doi: 10.1038/nature01145
2. Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 2004;428(6980):281-6. doi: 10.1038/nature02362
3. Mandal M, Breaker RR. Gene regulation by riboswitches. Nat Rev Mol Cell Biol 2004;5(6):451-63. doi: 10.1038/nrm1403
4. Winkler WC, Nahvi A, Sudarsan N, Barrick JE, Breaker RR. An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Biol 2003;10(9):701-7. doi: 10.1038/nsb967
5. Robinson CJ, Vincent HA, Wu MC, Lowe PT, Dunstan MS, Leys D, et al. Modular riboswitch toolsets for synthetic genetic control in diverse bacterial species. J Am Chem Soc 2014;136(30):10615-24. doi: 10.1021/ja502873j
6. Peselis A, Serganov A. Themes and variations in
riboswitch structure and function. Biochim Biophys Acta 2014;1839(10):908-9. doi: 10.1016/j.bbabmb.2014.02.012
7. Barrick JE, Breaker RR. The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol 2007;8(11):R239. doi: 10.1186/gb-2007-8-11-r239
8. Chen J, Gottesman S. RNA. Riboswitch regulates RNA. Science 2014;345(6199):876-7. doi: 10.1126/science.1258494
9. Havill JT, Bhatiya C, Johnson SM, Sheets JD, Thompson JS. A new approach for detecting riboswitches in DNA sequences. Bioinformatics 2014;30(21):3012-9. doi: 10.1093/bioinformatics/btu479
10. Roth A, Winkler WC, Regulski EE, Lee BW, Lim J, Iona I, et al. A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain. Nat Struct Mol Biol 2007;14(4):308-17. doi: 10.1038/nsmb1224
11. Kang M, Peterson R, Feigon J. Structural insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. Mol Cell 2009;33(6):784-90. doi: 10.1016/j.molcel.2009.02.019
12. Blount KF, Breaker RR. Riboswitches as antibiotic drug targets. Nat Biotechnol 2006;24(12):1558-64. doi: 10.1038/nbt1268
13. Sudarsan N, Cohen-Chalamish S, Nakamura S, Emlisson GM, Breaker RR. Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Chem Biol 2005;12(12):1325-35. doi: 10.1016/j.chembiol.2005.10.007
14. Blount KF, Wang JX, Lim J, Sudarsan N, Breaker RR. Antibacterial lysine analogs that target lysine riboswitches. Nat Chem Biol 2007;3(1):44-9. doi: 10.1038/nchembio842
15. Serganov A, Huang L, Patel DJ. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature 2009;458(7235):233-7. doi: 10.1038/nature07642
16. Ott E, Stolz J, Lehmann M, Mack M. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis. RNA Biol 2009;6(3):276-80. doi: 10.4161/rna.6.3.8342
17. Lee ER, Blount KF, Breaker RR. Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression. RNA Biol 2009;6(2):187-94. doi: 10.4161/rna.6.2.7727
18. Mehdizadeh Aghdam E, Barzegar A, Hejazi MS. Evolutionary Origin and Conserved Structural Building Blocks of Riboswitches and Ribosomal RNAs: Riboswitches as Probable Target Sites for Aminoglycosides Interaction. Adv Pharm Bull 2014;4(3):225-35. doi: 10.5681/aphb.2014.033
19. Mehdizadeh Aghdam E, Hejazi ME, Hejazi MS, Barzegar A. Riboswitches as Potential Targets for Aminoglycosides Compared with rRNA Molecules: In Silico Study. J Microbiol Biochem Technol 2014;59:1-9. doi: 10.4172/1948-5948.59-002
20. Baird NJ, Inglese J, Ferre-D’Amare AR. Rapid RNA-ligand interaction analysis through high-information content conformational and stability landscapes. Nat Commun 2015;6:8888. doi: 10.1038/ncomms9898
21. Yoon BJ, Vaidyanathan PP. Structural alignment of RNAs using profile-csHMMs and its application to RNA homology search: overview and new results. IEEE Trans Automat Contr 2008;53(Specia):10-25. doi: 10.1109/TAC.2007.911322
22. Krogh A, Mian IS, Haussler D. A hidden Markov model that finds genes in E. coli DNA. Nucleic Acids Res 1994;22(21):4768-78. doi: 10.1093/nar/22.22.4768
23. Salzberg SL, Delcher AL, Kasif S, White O. Microbial gene identification using interpolated Markov models. Nucleic Acids Res 1998;26(2):544-8. doi: 10.1093/nar/26.2.544
24. Yoon BJ, Vaidyanathan PP. HMM with auxiliary memory: a new tool for modeling RNA structures. Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004. IEEE; 2004. doi: 10.1109/ACSSC.2004.1399438
25. Singh P, Bandypadhyay P, Bhattacharya S, Krishnamachari A, Sengupta S. Riboswitch detection using profile hidden Markov models. BMC Bioinformatics 2009;10:325. doi: 10.1186/1471-2105-10-325
26. Eddy SR, Durbin R. RNA sequence analysis using covariance models. Nucleic Acids Res 1994;22(11):2079-88. doi: 10.1093/nar/22.11.2079
27. Singh S, Singh B. Application of supervised machine learning algorithms for the classification of regulatory RNA riboswitches. Brief Funct Genomics 2017;16(2):99-105. doi: 10.1093/bfgp/elw005
28. Liu B, Liu F, Wang X, Chen J, Fang L, Chou KC. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res 2015;43(W1):W65-71. doi: 10.1093/nar/gkv458
29. Liu B, Wu H, Chou KC. Pse-in-One 2.0: an improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nat Sci 2017;9(4):67-91. doi: 10.4236/nts.2017.94007
30. Golabi F, Shamsi M, Sedaaghi MH, Barzegar A, Hejazi MS. Development of a new sequential block finding strategy for detection of conserved sequences in riboswitches. Bioimpacts 2018;8(1):13-22. doi: 10.15171/bi.2018.03
31. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. Springer; 2009.
32. Specht DF. Probabilistic neural networks. Neural Netw 1990;3(1):109-18. doi: 10.1016/0893-6080(90)90049-Q
33. Quinlan JR. C4.5: Programs for machine learning. Elsevier; 2014.
34. van der Heijden F, Duin RPW, de Ridder D, Tax DMJ. Classification, parameter estimation and state estimation: an engineering approach using MATLAB. John Wiley & Sons, Ltd; 2004. p. 13-44.
35. Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Stat Surv 2010;4:40-79. doi: 10.1214/09-SS054
36. Sudarsan N, Wickiser JK, Nakamura S, Ebert MS, Breaker RR. An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev 2003;17(21):2688-97. doi: 10.1101/gad.114003
37. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? Nucleic Acids Res 2003;31(23):6748-57. doi: 10.1093/nar/gkg900
38. Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR. Genetic control by a metabolite binding mRNA. Chem Biol 2002;9(9):1043. doi: 10.1016/s1074-5521(02)90224-7
39. Serganov A, Huang L, Patel DJ. Structural insights into amino acid binding and gene control by a lysine riboswitch.
Classification of riboswitches using BLBFE method

Nature 2008;455(7217):1263-7. doi: 10.1038/nature07326

40. Weinberg Z, Wang JX, Bogue J, Yang J, Corbino K, Moy RH, et al. Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. Genome Biol 2010;11(3):R31. doi: 10.1186/gb-2010-11-3-r31

41. Mandal M, Lee M, Barrick JE, Weinberg Z, Emilsson GM, Ruzzo WL, et al. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 2004;306(5694):275-9. doi: 10.1126/science.1100829

42. Kwon M, Strobel SA. Chemical basis of glycine riboswitch cooperativity. RNA 2008;14(1):25-34. doi: 10.1261/rna.771608

43. Sherman EM, Esquíaqui J, Elsayed G, Ye JD. An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches. RNA 2012;18(3):496-507. doi: 10.1261/rna.031286.111

44. Poiata E, Meyer MM, Ames TD, Breaker RR. A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria. RNA 2009;15(11):2046-56. doi: 10.1261/rna.1824209

45. Corbino KA, Barrick JE, Lim J, Welz R, Tucker BJ, Puskarz I, et al. Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alphaproteobacteria. Genome Biol 2005;6(8):R70. doi: 10.1186/gb-2005-6-8-r70

46. Weinberg Z, Barrick JE, Yao Z, Roth A, Kim JN, Gore J, et al. Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Res 2007;35(14):4809-19. doi: 10.1093/nar/gkm487

47. Weinberg Z, Regulski EE, Hammond MC, Barrick JE, Yao Z, Ruzzo WL, et al. The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. RNA 2008;14(5):822-8. doi: 10.1261/rna.988608

48. Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, et al. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 2008;321(5887):411-3. doi: 10.1126/science.1159519

49. Smith KD, Lipchuck SV, Ames TD, Wang J, Breaker RR, Strobel SA. Structural basis of ligand binding by a c-di-GMP riboswitch. Nat Struct Mol Biol 2009;16(12):1218-23. doi: 10.1038/nsmb.1702

50. Weinberg Z, Lee ER, Morales DR, Lim J, Breaker RR. Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell 2008;29(6):691-702. doi: 10.1016/j.molcel.2008.01.012

51. Edwards AL, Reyes FE, Heroux A, Batey RT. Structural basis for recognition of S-adenosylhomocysteine by riboswitches. RNA 2010;16(11):2144-55. doi: 10.1261/rna.2341610

52. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 2005;33(Database issue):D121-4. doi: 10.1093/nar/gki081

53. Kalvari I, Argasinska J, Quinones-olvera N, Nawrocki EP, Rivas E, Eddy SR, et al. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res 2018;46(D1):D335-D42. doi: 10.1093/nar/gkx1038

54. Breiman L, Specter P. Submodel selection and evaluation in regression. The X-random case. Int Stat Rev 1992;60(3):291-319. doi: 10.2307/1403680

55. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2. Montreal, Quebec, Canada. Morgan Kaufmann Publishers Inc; 1995. p. 1137-43.

56. Braga-Neto UM, Dougherty ER. Is cross-validation valid for small-sample microarray classification? Bioinformatics 2004;20(3):374-80. doi: 10.1093/bioinformatics/btg419

57. Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett 2006;27(8):861-74. doi: 10.1016/j.patrec.2005.10.010

58. Sun Y, Kamel MS, Wong AKC, Wang Y. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit 2007;40(12):3358-78. doi: 10.1016/j.patcog.2007.04.009

59. Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks. Inf Process Manag 2009;45(4):427-37. doi: 10.1016/j.ipm.2009.03.002