ORIGINAL ARTICLE

IMpower132: Atezolizumab plus platinum-based chemotherapy vs chemotherapy for advanced NSCLC in Japanese patients

Makoto Nishio1 | Haruhiro Saito2 | Koichi Goto3 | Satoshi Watanabe4 | Naoko Sueoka-Aragane5 | Yusuke Okuma6 | Kazuo Kasahara7 | Kenichi Chikamori8 | Yuki Nakagawa9 | Tomohisa Kawakami9

1Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
2Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
3Division of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
4Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
5Division of Hematology, Respiratory Medicine and Oncology, Faculty of Medicine, Saga University, Saga, Japan
6Department of Respiratory Medicine and Thoracic Oncology, Tokyo Metropolitan Cancer and Infectious disease Center Komagome Hospital, Tokyo, Japan
7Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa, Japan
8Department of Medical Oncology, National Hospital Organization Yamaguchi-Ube Medical Center, Ube, Japan
9Chugai Pharmaceutical Co., Ltd. Tokyo, Japan

Correspondence
Makoto Nishio, Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake Koto-ku, Tokyo 135-8550, Japan.
Email: mnishio@jfcr.or.jp

Funding information
Chugai Pharmaceutical Co., Ltd.; F. Hoffmann-La Roche

Abstract

IMpower132 explored the safety and efficacy of atezolizumab plus pemetrexed and platinum-based chemotherapy as first-line treatment for advanced non-small-cell lung cancer (NSCLC). Key eligibility criteria for the phase 3, open-label, IMpower132 study included age ≥18 y, histologically or cytologically confirmed advanced non-squamous NSCLC per Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, Eastern Cooperative Oncology Group performance status of 0/1, and no prior systemic treatment for stage IV NSCLC. Patients received atezolizumab (1200 mg) plus pemetrexed (500 mg/m^2) and cisplatin (75 mg/m^2) or carboplatin (area under the concentration curve, 6 mg/mL/min) (APP arm) or chemotherapy alone (PP arm). The co-primary study endpoints were overall survival (OS) and investigator-assessed progression-free survival (PFS) per RECIST 1.1 in the intention-to-treat population. A subgroup analysis was conducted in Japanese patients. In the Japanese subgroup (n = 101), median OS was 30.8 (95% CI, 24.3 to not estimable) mo in the APP arm (n = 48) and 22.2 (95% CI, 15.7-30.8) mo in the PP arm (n = 53; hazard ratio [HR], 0.63 [95% CI, 0.36-1.14]). PFS was 12.8 (95% CI, 8.6-16.6) mo in the APP arm vs 4.5 (95%...
1 | INTRODUCTION

Lung cancer is one of the most common forms of malignancy and a leading cause of cancer-related deaths worldwide, accounting for the highest number of diagnosed cases (11.6%) and the highest mortality rate (18.4%) among all cancers, in both sexes combined. NSCLC is the most dominant form of lung cancer, accounting for more than 80% of all lung cancers. The incidence and mortality of lung cancer are significantly higher in Asian populations, particularly in Japanese patients, compared with in other demographics. Treatment strategies for advanced or metastatic NSCLC (stage IV) are limited to systemic therapies such as chemotherapy, targeted therapy, and immunotherapy, or their combinations. The standard first-line treatment for patients with metastatic NSCLC without EGFR or ALK gene alterations, having tumors with high expression of programmed death-ligand 1 (PD-L1; tumor proportion score, ≥50%) and no contraindications for the use of immunotherapy, irrespective of histology, is anti–programmed death-1 monotherapy with pembrolizumab. Additionally, chemo-immunotherapy combinations of pembrolizumab plus carboplatin or cisplatin and pemetrexed, carboplatin plus paclitaxel plus bevacizumab and atezolizumab, and carboplatin plus nab-paclitaxel and atezolizumab are approved first-line treatments for advanced non-squamous NSCLC, irrespective of PD-L1 expression levels, in the USA, Europe, and other countries worldwide.

The humanized anti–PD-L1 monoclonal antibody atezolizumab inhibits the interaction of PD-L1 with PD-1 and B7.1, thereby reinvigorating tumor-specific T-cell immunity. Second-line atezolizumab monotherapy in patients with advanced or metastatic NSCLC who previously received platinum-based chemotherapy showed improved OS compared with those who received docetaxel in the phase 3 OAK clinical trial. Phase 3 trials evaluating the efficacy of atezolizumab combined with carboplatin and nab-paclitaxel (IMpower130) or atezolizumab combined with bevacizumab and carboplatin plus paclitaxel (IMpower150) in first-line treatment of metastatic non-squamous NSCLC also achieved their co-primary endpoints of OS and PFS. In the IMpower130 study, a median OS benefit of 1.5 mo (stratified HR, 0.64; 95% CI, 0.54-0.77) was observed with the addition of atezolizumab to carboplatin plus nab-paclitaxel. Median OS with atezolizumab plus bevacizumab and chemotherapy treatment in the IMpower150 study was 19.2 mo vs 14.7 mo with bevacizumab plus chemotherapy treatment (stratified HR, 0.78; 95% CI, 0.64-0.96), and the median PFS was 8.3 mo with atezolizumab vs 6.8 mo without atezolizumab (stratified HR, 0.62; [95% CI, 0.52-0.74]). Atezolizumab in combination with chemotherapy with or without bevacizumab is approved for the first-line treatment of non-squamous stage IV NSCLC.

Previous studies have demonstrated differences between Asian and non-Asian populations in their clinical responses and AEs with systemic therapy. Japanese populations in particular have shown greater clinical benefit with some targeted therapies and immunotherapies. However, a higher incidence of treatment-related pneumonitis and risk of hepatotoxicities has also been observed in Japanese patients. Anti–PD-1/PD-L1 treatments are associated with a greater risk of immune-related pneumonitis compared with chemotherapy or placebo, particularly in patients with NSCLC. For example, the Japanese subpopulation in the OAK study had a survival benefit similar to that of the non-Japanese population, but these patients had a higher incidence of pneumonitis as an AESI (Japanese patients, 3.6%; overall population, 0.8%). In addition, the clinical study data in the Japanese patients on anti–PD-1/PD-L1 treatment plus carboplatin or cisplatin and pemetrexed are limited.

Therefore, it is of interest to analyze the clinical outcomes and safety risks with immunotherapy specifically in Asian populations, particularly Japanese patients, in order to study demographic-specific clinical responses and toxicities and further help to tailor treatment strategies.

The global phase 3 IMpower132 study (NCT02657434) compared the safety and efficacy of atezolizumab in combination with PP with those of PP in chemotherapy-naïve patients with stage IV NSCLC. Here we describe the efficacy and safety results for the Japanese subgroup of the IMpower132 study.

2 | PATIENTS AND METHODS

2.1 | Study design and treatment

IMpower132 (NCT02657434) is a multicenter, randomized, open-label, phase 3 trial in which the safety and efficacy of atezolizumab

| KEYWORDS |
| atezolizumab, checkpoint inhibitors, IMpower132, Japan, programmed death-ligand 1 |
plus pemetrexed and carboplatin or cisplatin were compared with those of pemetrexed and carboplatin or cisplatin as first-line treatment in chemotherapy-naïve patients with stage IV non-squamous NSCLC.

Eligible patients were randomized in a 1:1 ratio through an interactive voice/web response system into the atezolizumab plus platinum-based chemotherapy plus pemetrexed (APP) arm or the platinum-based chemotherapy PP arm. The study was conducted in 2 phases: induction and maintenance. Patients in the APP arm received atezolizumab (1200 mg) plus pemetrexed (500 mg/m²) and, based on the investigator’s choice, either cisplatin (75 mg/m²) or carboplatin (area under the curve of 6 mg/mL/min) on day 1 of a 3-wk cycle, for 4 or 6 cycles. All drugs were administered intravenously. Patients in the PP arm received identical doses of pemetrexed and carboplatin or cisplatin. The number of cycles in the induction phase was determined and documented by the investigator prior to randomization. Induction treatment was administered until completion of 4 or 6 cycles, as determined by the investigator, or until unacceptable toxicity or disease progression. Participants in either arm who experienced clinical benefit during the induction phase proceeded to the maintenance phase, in which APP patients received atezolizumab (1200 mg) plus pemetrexed (500 mg/m²) and PP patients received pemetrexed alone on day 1 of every 3-wk cycle until disease progression, loss of clinical benefit, or unacceptable toxicity.

The trial was conducted in accordance with Good Clinical Practice guidelines and the principles of the Declaration of Helsinki. Ethics approval was obtained from the Institutional Review Board or Ethics Committees of each participating institution. To participate in the trial, all patients provided written informed consent.

2.2 | Patients

Japanese patients, both male and female and aged ≥18 y, were eligible for enrollment in the trial if they had histologically or cytologically confirmed stage IV NSCLC in accordance with the Union Internationale contre le Cancer/American Joint Committee on Cancer staging system (7th edition) with measurable disease as defined by RECIST version 1.1. Patients with tumors of mixed non-small-cell histology (ie, squamous and non-squamous) were eligible if the major histological component appeared to be non-squamous. Eligibility criteria also included no prior treatment for stage IV non-squamous NSCLC and an Eastern Cooperative Oncology Group performance status (ECOG PS) of 0 or 1. A treatment-free interval of at least 6 mo before randomization since the last dose of chemotherapy and/or radiotherapy was required for patients who had received any systemic treatment with curative intent for non-metastatic disease. The anti–PD-L1 SP142 immunohistochemistry assay (Ventana Medical Systems Inc) was used to determine PD-L1 status for investigational purposes. PD-L1 expression on TC or tumor-infiltrating IC was scored as: TC1/2/3 or IC1/2/3, defined as PD-L1 expression on ≥5% TCs or ICs; and TC3 or IC3, defined as PD-L1 expression on ≥50% TCs or ≥10% ICs.

Patients were excluded from the study if they had a sensitizing EGFR mutation or an ALK fusion oncogene. Patients with unknown EGFR/ALK status were required to be tested before enrolling. Other exclusion criteria were active or untreated central nervous system metastases, prior treatment with EGFR or ALK inhibitors, CD137 agonist or immune checkpoint blockade therapies and treatment with systemic immunosuppressants or immunostimulatory agents within 4 wk prior to randomization.

2.3 | Assessments and endpoints

The co-primary efficacy endpoints of this study were investigator-assessed PFS based on RECIST 1.1 and OS. Tumor assessment was conducted at baseline and every 6 wk for the first 48 wk after day 1 of cycle 1 of a 21-d cycle, followed by assessment every 9 wk until radiographic disease progression, consent withdrawal, death, or study termination by sponsor, whichever occurred first. Key secondary efficacy endpoints included investigator-assessed objective response rates (ORR) and the DOR in accordance with RECIST 1.1 and the OS rate at 12 and 24 mo. Stratification factors for randomization were sex (male vs female), ECOG PS (0 vs 1), smoking status (never vs current and/or former), and chemotherapy regimen (carboplatin vs cisplatin).

2.4 | Safety

The safety and tolerability of PP with or without atezolizumab were evaluated by monitoring the incidence, nature, and severity of AEs graded in accordance with the National Cancer Institute Common Terminology Criteria for Adverse Events v4.0 (NCI CTCAE) in all randomized patients who received any amount of study drug, with patients grouped based on whether a full or partial dose of any amount of atezolizumab was received, including cases where atezolizumab was administered by error. From initiation of study drug, all serious AEs and AESIs were reported until 90 d after the last dose of study drug or initiation of non-protocol systemic therapy after the last dose of study treatment, whichever occurred first. All other AEs were reported until 30 d after the last dose of study drug or initiation of new anti-cancer therapy after the last dose of study drug.

2.5 | Statistical analysis

Detailed statistical methods for the global IMpower132 study have been previously described (Nishio et al J Thorac Oncol in preparation). Briefly, primary PFS analysis for the global ITT population was conducted at 458 PFS events, along with interim efficacy analysis of OS. Final OS analysis was conducted when 389 OS events in the ITT population occurred. Primary PFS and final OS results are reported.
here. Comparisons of PFS and OS between the treatment and control arms in the ITT population were tested based on a stratified log-rank test, using sex (male vs female), ECOG PS (0 vs 1), and chemotherapy regimen (carboplatin vs cisplatin) as stratification factors. HRs including 95% CIs were estimated using a stratified Cox regression model. Kaplan-Meier methodology was used to estimate median PFS and OS for each treatment arm, and the 95% CI for the median PFS and OS was constructed using the Brookmeyer-Crowley methodology.

The Japanese subpopulation, which included patients enrolled at sites in Japan during the global enrollment phase, was analyzed using the same statistical methods as described for the global population. The Japanese ITT population included all patients in the Japanese subgroup, with patients grouped based on the treatment assigned at randomization, regardless of whether they received any assigned study drug. Safety was evaluated in all Japanese patients who received any amount of any study drug.

3 | RESULTS

3.1 | Patients

In total, 578 patients were enrolled globally in the IMpower132 study, of which 101 patients from 20 sites in Japan enrolled between July 22, 2016, and April 14, 2017 (Figure 1). Among the Japanese subpopulation, 48 patients were randomized to the APP arm and 53 to the PP arm. Baseline characteristics were similar between the 2 treatment arms in the Japanese subpopulation, with the exception of PD-L1 expression. High PD-L1 expression (TC3 or IC3) was observed in a higher proportion of patients in the APP arm (n = 7, 14.6%) compared with in the PP arm (n = 1, 1.9%, Table 1). However, only 49.5% of the Japanese subpopulation was evaluable for exploratory PD-L1 biomarker analysis. Baseline characteristics were similar between the Japanese and the global ITT populations in both treatment arms (Nishio et al J Thorac Oncol in preparation).

3.2 | Efficacy

The cutoff dates were May 22, 2018, for the primary PFS analysis and July 18, 2019, for the OS final analysis. In the Japanese subpopulation, the median duration of survival follow-up for PFS at primary analysis was 17.5 (range, 0.8-21.6) mo in the APP arm and 15.9 (range, 0-21.5) mo in the PP arm. The median PFS in the APP arm was 12.8 (95% CI, 8.6-16.6) mo compared with 4.5 (95% CI, 4.1-6.7) mo in the PP arm (stratified HR, 0.35 [95% CI, 0.21-0.58]) (Figure 2A). At the time of the OS final analysis, the updated median PFS in the Japanese subpopulation was 13.3 (95% CI, 9.5-17.4) mo with APP
TABLE 1 Demographics and baseline characteristics of the Japanese patients

	APP (n = 48)	PP (n = 53)	All patients (N = 101)
Age			
Median (range)	65 (37.83)	66 (44.78)	65 (37.83)
≥65 y, n (%)	29 (60.4)	29 (54.7)	58 (57.4)
Age group, y, n (%)			
<65	19 (39.6)	24 (45.3)	43 (42.6)
65-74	22 (45.8)	26 (49.1)	48 (47.5)
75-84	7 (14.6)	3 (5.7)	10 (9.9)
Sex, n (%)			
Male	31 (64.6)	39 (73.6)	70 (69.3)
Female	17 (35.4)	14 (26.4)	31 (30.7)
Baseline ECOG, n (%)			
0	21 (43.8)	22 (41.5)	43 (42.6)
1	27 (56.3)	31 (58.5)	58 (57.4)
Tobacco use history, n (%)			
Never	9 (18.8)	5 (9.4)	14 (13.9)
Current or former	39 (81.3)	48 (90.6)	87 (86.1)
Liver metastasis at enrollment			
Yes	3 (6.3)	3 (5.7)	6 (5.9)
No	45 (93.8)	50 (94.3)	95 (94.1)
EGFR mutation status, n (%)			
Positive	0	0	0
Negative	48 (100)	53 (100)	101 (100)
EML4-ALK Rearrangement status, n (%)			
Positive	0	0	0
Negative	48 (100)	53 (100)	101 (100)
KRAS mutation status, n (%)			
Positive	0	0	0
Negative	2 (3.8)	2 (2.0)	4 (4.0)
Unknown	48 (100)	51 (96.2)	99 (98.0)
Creatinine clearance, n (%)			
<60 mL/min	9 (18.8)	8 (15.4)	17 (17.0)
>60 mL/min	39 (81.3)	44 (84.6)	83 (83.0)
PD-L1 subgroups, n (%)			
TC3 or IC3	7 (14.6)	1 (1.9)	8 (7.9)
TC2/3 or IC2/3	11 (22.9)	2 (3.8)	13 (12.9)
TC1/2/3 or IC1/2/3	14 (29.2)	9 (17.0)	23 (22.8)
TC0 and IC0	13 (27.1)	14 (26.4)	27 (26.7)
Unknown	21 (43.8)	30 (56.6)	51 (50.5)

Abbreviations: ALK, anaplastic lymphoma kinase; APP, atezolizumab + carboplatin or cisplatin + pemetrexed; ECOG, Eastern Cooperative Oncology Group; EGFR, epidermal growth factor receptor; EML4, echinoderm microtubule-associated protein-like 4; IC, tumor-infiltrating immune cells; PD-L1, programmed death-ligand 1; PP, carboplatin or cisplatin + pemetrexed; TC, tumor cells.

*Weight for 1 patient in the PP arm could not be measured and hence was not evaluable for creatinine clearance.

compared with 4.5 (95% CI, 4.1-6.7) mo in the PP patients (stratified HR, 0.33; [95% CI, 0.20-0.54]) (Figure S1).

At the OS final analysis, the median follow-up duration for Japanese patients was 31.7 (range, 0.8-35.7) mo in the APP arm and 29.3 (range, 0-35.2) mo in the PP arm. The median OS in the APP arm was 30.8 (95% CI, 24.3-not estimable [NE]) mo compared with 22.2 (95% CI, 15.7-30.8) mo in the PP arm (stratified HR, 0.63; [95% CI, 0.36-1.14]) (Figure 2B). The OS rate at 12 mo was 82.6% (95% CI, 71.7%-93.6%) in the APP arm and 77.6% (95% CI, 65.9%-89.3%) in the PP arm and at 24 mo was 65.2% (95% CI, 51.5%-79.0%) in the APP arm and 46.1% (95% CI, 32.0%-60.2%) in the PP arm. Exploratory subgroup analyses in Japanese patients have been shown as a reference (Figure S2).

Confirmed investigator-assessed ORR was 64.6% with APP compared with 28.3% with PP treatment (Table 2). Median DOR was 15.2 (95% CI, 7.9-NE) mo with APP and 5.6 (95% CI, 4.3-11.8) mo with PP. Ongoing response at the data cutoff for final analysis was observed in 11 of the 31 evaluable patients (35.5%) in the APP arm and in none of the 15 evaluable patients in the PP arm.

3.3 Safety

At the time of final OS analysis, 32 Japanese patients (66.7%) received more than 6 doses of atezolizumab (Table S1), and 22 (42.3%) and 29 patients (60.4%) received more than 6 pemetrexed doses in the APP and PP arms, respectively. The median duration of treatment was 7.9 (range, 0-34) mo and 3.7 (range, 0-31) mo with APP and PP, respectively.

Both treatment arms in the Japanese population reported the same rates of all-cause AEs (100% in both arms) and treatment-related AEs (TRAEs) (100% in both arms) (Table 3). Higher incidences of all-cause and treatment-related grade 3/4 AEs were observed with APP (Table 3; all-cause, 72.9%; treatment related, 68.8%) compared with taking PP (all-cause, 50.0%; treatment related, 44.2%). The most-frequent all-grade AEs were nausea (APP, 62.5%; PP, 51.9%), decreased appetite (APP, 56.3%; PP, 48.1%), and constipation (APP, 45.8%; PP, 46.2%) (Table 4). The most frequently reported grade 3/4 AEs were neutrophil count decreased (APP, 22.9%; PP, 19.2%), white blood cell decreased (APP, 14.6%; PP, 9.6%), and lymphocyte count decreased (APP, 14.6%; PP, 1.9%). More serious AEs were reported with APP (52.1%) compared with taking PP (23.1%), with a higher incidence of treatment-related serious AEs with APP (35.4%) compared with taking PP (21.2%). Two deaths occurred in each arm (APP, 4.2%; PP, 3.8%) and they were both deemed treatment related.

In the APP arm, a higher incidence of respiratory, thoracic, and mediastinal disorders (69.0%) and renal and urinary disorders (42.1%) were reported in patients >65 y of age (n = 19; respiratory, thoracic, and mediastinal disorders, 42.1%; renal and urinary disorders, 5.3%: Table 5). Further analysis of reported AEs based on advanced age (<65 y or ≥65 y; Table S2) showed an 85.7% incidence of respiratory, thoracic, and mediastinal disorders, and a 28.6% incidence of renal and urinary disorders, and a 28.6% incidence of renal and urinary
disorders in patients >75 y of age in the APP arm (n = 7), compared with a 53.7% incidence of respiratory, thoracic, and mediastinal disorders, and a 14.6% incidence of renal and urinary disorders in patients <75 y of age (n = 41).

In the Japanese subpopulation, AEs led to withdrawal from any treatment in 20 (41.7%) patients in the APP arm (Table 3), which included 3 out of 7 patients (42.9%) who were aged ≥75 y and 17 of 41 patients who were aged <75 y. AEs led to withdrawal from any treatment in 63 (25.9%) patients in the PP arm, with all 3 patients (100%) with advanced age (≥75 y) and 12 (41.5%) out of 49 patients aged <75 y withdrawing from any treatment.

A higher incidence of TRAEs was observed with the atezolizumab combination in Japanese patients (100%) compared with in the non-Japanese IMpower132 population (89.7%). The Japanese subpopulation also had a higher incidence of all-cause AEs (Japanese, 72.9%; non-Japanese, 61.7%) and treatment-related grade 3-4 AEs (Japanese, 68.8%; non-Japanese, 51.9%) with APP. In the Japanese and non-Japanese populations treated with APP, similar rates of

FIGURE 2 In Japanese patients, (A) investigator-assessed progression-free survival at primary analysis and (B) overall survival at final analysis. APP, atezolizumab + carboplatin or cisplatin + pemetrexed; HR, hazard ratio; NE, not estimable; PP, carboplatin or cisplatin + pemetrexed.
The global IMpower132 study met its co-primary PFS endpoint at primary analysis, with a median PFS of 7.6 mo in the APP arm and 5.2 mo in the PP arm (stratified HR, 0.60; [95% CI, 0.49-0.72]). However, the co-primary OS endpoint was not met at final analysis in the ITT population, with a median OS of 17.5 mo in the APP arm and 13.6 mo in the PP arm (stratified HR, 0.86, [95% CI, 0.71-1.06]) (Nishio et al, J Thorac Oncol in preparation). Consistent with the results obtained in the global population, the Japanese subpopulation had a longer median PFS of 13.3 mo in the APP arm, a significant PFS benefit over chemotherapy alone (PP, 4.5 mo; stratified HR, 0.33 [95% CI, 0.20-0.54]). The Japanese subgroup also showed a longer median OS in the APP arm (30.8 mo) compared with the PP arm (24.3 mo; stratified HR, 0.63 [95% CI, 0.36-1.1]). In these Japanese patients, the ORR was 64.6% with APP compared with 28.3% with PP, and the median DOR was 15.2 mo with APP vs 5.6 mo with PP.

Japanese patients have had better clinical response with immunotherapy compared with non-Japanese patients in second-line treatment of advanced non-squamous NSCLC, as seen in studies of atezolizumab and the anti–PD-1 nivolumab. In the Japanese subgroup analysis of the IMpower132 study, survival rates were largely consistent with those in patients in the global study. It should be noted that in the Japanese subgroup of the IMpower132 study, the proportion of patients with high PD-L1 expression (TC3 or IC3)
The safety profile of the atezolizumab combination in the Japanese subgroup of the IMpower132 study, a relatively smaller proportion of patients received subsequent therapy following APP treatment (50.0%) compared with those who received PP treatment (77.4%), with only 8.3% patients in the APP arm receiving subsequent immunotherapy vs. 73.6% in the PP arm (Table S4), which was higher compared with the proportion of patients receiving immunotherapy following PP treatment, in the global study (PP, 45.8%; APP, 5.5%; Nishio et al J Thorac Oncol in preparation). This underscores the potential of this regimen for first-line use in Japanese patients with advanced NSCLC.

The safety profile of the atezolizumab combination in the Japanese subgroup was generally consistent with that in the non-Japanese IMpower132 population, although higher rates of all-cause and treatment-related grade 3/4 AEs were observed in Japanese patients. A higher incidence of any-grade pneumonitis was reported in the APP arm (12.5%) compared with in the PP arm (1.9%). Additionally, in the Japanese subgroup of the IMpower132 study, a relatively smaller proportion of patients received subsequent therapy following APP treatment (50.0%) compared with those who received PP treatment (77.4%), with only 8.3% patients in the APP arm receiving subsequent immunotherapy vs. 73.6% in the PP arm (Table S4), which was higher compared with the proportion of patients receiving immunotherapy following PP treatment, in the global study (PP, 45.8%; APP, 5.5%; Nishio et al J Thorac Oncol in preparation). This underscores the potential of this regimen for first-line use in Japanese patients with advanced NSCLC.

Although higher incidences of respiratory, thoracic, and mediastinal disorders as well as renal and urinary disorders were reported in Japanese patients (>75 y in the APP arm (Table S2), the small size of this age-specific subgroup (n = 7) precludes any implications for administration of the APP treatment in elderly Japanese patients (age >75 y).

The safety profile of the atezolizumab combination was consistent with the known risks of the individual components and in line with the findings from other NSCLC studies involving first-line atezolizumab and platinum-based chemotherapy combinations. No new safety signals were identified.
The strengths of this phase 3 study include its randomized nature and the consistency of the efficacy findings between these Japanese patients and the relatively large, global, non-Japanese population.

In conclusion, combining atezolizumab with pemetrexed and platinum-based chemotherapy was tolerable and improved OS and PFS compared with chemotherapy alone in Japanese patients with chemotherapy-naïve, advanced, or metastatic non-squamous NSCLC. The safety profile of the atezolizumab combination was consistent with the known safety profile of the individual treatment components, and with the findings from other NSCLC studies involving first-line atezolizumab and platinum-based chemotherapy combinations. No new safety signals were identified. Although the incidence of grade 3/4 TRAEs in the APP arm of the Japanese population was higher compared with that in the global population, the overall improvement in efficacy with the addition of atezolizumab to chemotherapy was similar to that observed in the global ITT population.

ACKNOWLEDGMENTS

We would like to thank the patients and their families, participating study investigators, and clinical sites. This work was supported by F. Hoffmann-La Roche, Ltd. Medical writing assistance for this manuscript was provided by Madhubrata Ghosh, PhD, of Health Interactions, and funded by Chugai Pharmaceutical Co, Ltd. F. Hoffmann-La Roche Ltd/Genentech, Inc sponsored the study, provided study drugs, was involved in the study design, data collection, data analysis, and data interpretation for the IMpower132

| TABLE 5 Adverse events by age (≥65 y vs <65 y) in Japanese patients |
|---------------------------------|-----------------|-----------------|
| | APP (n = 48) | PP (n = 52) |
| Total number of patients with at least 1 AE, n (%) | | |
| MedDRA System Organ Class | | |
| Gastrointestinal disorder | 19 (100.0) | 20 (83.3) |
| Investigations* | 15 (78.9) | 19 (79.2) |
| General disorders and administration site conditions | 16 (84.2) | 12 (50.0) |
| Metabolism and nutrition disorders | 14 (73.7) | 12 (50.0) |
| Blood and lymphatic system disorders | 11 (57.9) | 7 (29.2) |
| Respiratory, thoracic, and mediastinal disorders | 8 (42.1) | 9 (37.5) |
| Skin and subcutaneous tissue disorders | 12 (63.2) | 4 (16.7) |
| Infections and infestations | 12 (63.2) | 5 (20.8) |
| Nervous system disorders | 11 (57.9) | 5 (20.8) |
| Musculoskeletal and connective tissue disorders | 9 (47.4) | 3 (12.5) |
| Vascular disorders | 4 (21.1) | 4 (16.7) |
| Eye disorders | 2 (10.5) | 1 (4.2) |
| Psychiatric disorders | 2 (10.5) | 2 (8.3) |
| Renal and urinary disorders | 1 (5.3) | 1 (4.2) |
| Ear and labyrinth disorders | 3 (15.8) | 3 (12.5) |
| Hepatobiliary disorders | 2 (10.5) | 2 (8.3) |
| Injury, poisoning, and procedural complications | 3 (15.8) | 0 |
| Endocrine disorders | 4 (21.1) | 0 |
| Cardiac disorders | 1 (5.3) | 1 (4.2) |
| Immune system disorders | 2 (10.5) | 1 (4.2) |
| Neoplasms benign, malignant, and unspecified (including cysts and polyps) | 2 (10.5) | 0 |
| Reproductive system and breast disorders | 0 | 0 |
| Congenital, familial, and genetic disorders | 0 | 0 |

Abbreviations: AEs, adverse events; APP, atezolizumab + carboplatin or cisplatin + pemetrexed; MedDRA, Medical Dictionary for Regulatory Activities; PP, carboplatin or cisplatin + pemetrexed.

*Abnormal laboratory tests.
analysis, and gave approval to submit for this publication. Chugai Pharmaceutical Co, Ltd was involved in the data collection for the IMpower132 analysis, data analysis, data interpretation, and writing of the report for the Japanese subgroup analysis of IMpower132 and gave approval to submit for publication. Makoto Nishio had full access to all the data in the study and had final responsibility for the decision to submit for publication.

DISCLOSURES
All authors disclose medical writing support funded by Chugai Pharmaceutical Co., Ltd. Dr. Nishio reports research funds from Ono Pharmaceutical, Eli Lilly, Taiho Pharmaceutical, Bristol Myers Squibb, Pfizer, Chugai Pharmaceutical Co. Ltd., AstraZeneca, MSD, Novartis, Merck Biopharma, Daiichi Sankyo, Boehringer Ingelheim and Takeda Pharmaceutical Co. Ltd.; lecture fees or honoraria from Ono Pharmaceutical, Bristol Myers Squibb, Pfizer, Chugai Pharmaceutical Co. Ltd., Eli Lilly, Taiho Pharmaceutical, AstraZeneca, Boehringer Ingelheim, MSD, Novartis, Merck Biopharma, Daiichi Sankyo, Takeda Pharmaceutical Co. Ltd., Teijin Pharma and AbbVie. Dr. Saito reports research funds from AstraZeneca, Chugai Pharmaceutical Co. Ltd., and MSD. Dr. Goto reports research funds and lecture fees or honoraria from Chugai Pharmaceutical Co. Ltd. Dr. Watanabe reports lecture fees or honoraria from AstraZeneca and Chugai Pharmaceutical Co. Ltd. Dr. Sueoka-Aragane reports research funds from AstraZeneca, Boehringer Ingelheim, Taiho Pharmaceutical Co. Ltd., Chugai Pharmaceutical Co. Ltd., and Eli Lilly. Dr. Okuma reports research grants from Chugai Pharmaceutical Co. Ltd., and AbbVie. Dr. Kasahara reports research grants from Boehringer Ingelheim. Dr. Chikamori reports research funds from Chugai Pharmaceutical Co. Ltd, MSD, Bristol Myers Squibb, and Takeda Pharmaceutical Co. Ltd. Dr. Nakagawa is an employee of Chugai Pharmaceutical Co., Ltd. Dr. Kawakami is an employee of Chugai Pharmaceutical Co., Ltd.

DATA AVAILABILITY STATEMENT
Qualified researchers may request access to individual patient level data through the clinical study data request platform (www.clinicalstudydatarequest.com). Please visit www.chugai-pharm.co.jp/english/profile/rd/ctds_request.html for further details on Chugai's Data Sharing Policy and how to request access to related clinical study documents.

ORCID
Makoto Nishio https://orcid.org/0000-0003-4969-4165
Haruhiro Saito https://orcid.org/0000-0002-8541-8339
Koichi Goto https://orcid.org/0000-0002-3023-2510
Satoshi Watanabe https://orcid.org/0000-0003-0041-6981
Yusuke Okuma https://orcid.org/0000-0001-5743-0149
Kazuo Kasahara https://orcid.org/0000-0001-5551-1543
Yuki Nakagawa https://orcid.org/0000-0003-4103-2423

REFERENCES
1. Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Glob Health. 2019;85:1-16.
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424.
3. IARC. Globocan Worldwide Fact Sheet 2018. Lyon, France: International Agency for Research on Cancer/World Health Organization; 2018.
4. Planchar D, Popat S, Kerr K, et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29:v192-v237.
5. NCCN Clinical Practice Guidelines in Oncology: Non-Small Cell Lung Cancer. Plymouth Meeting: National Comprehensive Cancer Network; 2020;v3.0.
6. Hanna NH, Schneider BJ, Temin S, et al. Therapy for stage IV non-small-cell lung cancer without driver alterations: ASCO and OH (CCO) joint guideline update. J Clin Oncol. 2020;38:1608-1632.
7. Martínez P, Peters S, Stammers T, Soria JC. Immunotherapy for the first-line treatment of patients with metastatic non-small cell lung cancer. Clin Cancer Res. 2019;25:2691-2698.
8. Rocco D, Della Gravara L, Battiloro C, Gridelli C. The role of combination chemo-immunotherapy in advanced non-small cell lung cancer. Expert Rev Anticancer Ther. 2019;19:561-568.
9. Mok TSK, Wu YL, Kabuda I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 2019;393:1819-1830.
10. Gandhi L, Rodriguez-Arneg D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378:2078-2092.
11. Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018;378:2288-2301.
12. West H, McCleod M, Hussein M, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20:924-937.
13. Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563-567.
14. Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389:255-265.
15. Ahn M-J, Sun J-M, Ahn JS, Park K. Ethnic differences in non-small-cell lung cancer treatment: the Asian perspective. Lung Cancer Management. 2013;2:7.
16. Peng L, Wu YL. Immunotherapy in the Asiatic population: any differences from Caucasian population? J Thorac Dis. 2018;10:S1482-S1493.
17. Soo RA, Kawaguchi T, Loh M, et al. Differences in outcome and toxicity between Asian and caucasian patients with lung cancer treated with systemic therapy. Future Oncol. 2012;8:451-462.
18. Shohdy KS, Abdel-Rahman O. Risk of pneumonitis with different immune checkpoint inhibitors in NSCLC. Ann Transl Med. 2017;5:365.
19. Wu J, Hong D, Zhang X, Lu X, Miao J. PD-1 inhibitors increase the incidence and risk of pneumonitis in cancer patients in a dose-independent manner: a meta-analysis. Sci Rep. 2017;7:44173.
20. Naidoo J, Wang X, Woo KM, et al. Pneumonitis in patients treated with anti-programmed death-1/programmed death ligand 1 therapy. J Clin Oncol. 2017;35:709-717.
21. Antonia SJ, Villegas A, Daniel D, et al. Durvalumab after chemo-radiotherapy in stage III non-small-cell lung cancer. *N Engl J Med*. 2017;377:1919-1929.

22. Hida T, Kaji R, Satouchi M, et al. Atezolizumab in Japanese patients with previously treated advanced non-small-cell lung cancer: a subgroup analysis of the phase 3 OAK study. *Clin Lung Cancer*. 2018;19:e405-e415.

23. Detterbeck FC, Boffa DJ, Tanoue LT. The new lung cancer staging system. *Chest*. 2009;136:260-271.

24. Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. *N Engl J Med*. 2015;373:1627-1639.

25. Nishio M, Hida T, Atagi S, et al. Multicentre phase II study of nivolumab in Japanese patients with advanced or recurrent non-squamous non-small cell lung cancer. *ESMO Open*. 2016;1:e000108.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Nishio M, Saito H, Goto K, et al. IMpower132: Atezolizumab plus platinum-based chemotherapy vs chemotherapy for advanced NSCLC in Japanese patients. *Cancer Sci*. 2021;112:1534-1544. https://doi.org/10.1111/cas.14817