Using Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction of Barbodes spp. in Thailand

1Keeravit Petjul, 2Aphidech Sangdee and 3Bungorn Thaewnon-ngiw
1Department of Biotechnology, Faculty of Agro-Industrial Technology, Rajamangala University of Technology Isan, Kalasin Campus, Kalasin, Thailand
2Department of Biology, Faculty of Science, Mahasarakam University, Mahasarakam, Thailand

Abstract: Problem statement: The genetic diversity of Barbodes species in Thailand is presently unavailable. The objectives of this study were to study external morphology and genetic diversity using Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) of three Barbodes species; Barbodes altus, B. gonionotus and Barbodes sp. Approach: Two of twelve screened decanucleotide primers (OPA07 and UBC122), were selected for the genetic analysis of Barbodes genera. Results: Thirty-five reproducible and polymorphic fragments (250-2150 bp in length) were generated across the investigated species. The percentages of polymorphic band were 7.69, 3.85 and 6.25% for B. altus, B. gonionotus and Barbodes sp., respectively. The UPGMA indicated a similarity coefficient between B. gonionotus and Barbodes sp. up to 90%. The candidate species-specific marker of UBC122 primer was found in only Barbodes sp. Conclusion: This approach indicates that Barbodes sp. may be a variant species of B. gonionotus.

Key words: Genetic diversity, Barbodes, DNA analysis, RAPD-PCR

INTRODUCTION

The diverse family Cyprinidae, the most species-rich family of all vertebrates, has been paid only limited attention in population genetics studies. In the few studies available, the primary focus has been on a few species that have shared the status of being either commercially important or popular game fish; exemplified by studies on common carp, Cyprinus carpio L. (Desvignes et al., 2001; Fuchs et al., 2000; Zhou et al., 2003), gold fish, Carassius auratus L. (Zhou et al., 2001), European chub, Leuciscus cephalus L. (Larno et al., 2005) and the genetic model species zebrafish, Danio rerio Hamilton (Shimoda et al., 1999). The family Cyprinidae with about 2,000 species seems to have originated in Southeast Asia but now is also distributed in fresh water lakes, rivers and streams of Europe, Asia, Africa and North America. About half the known species are native to Asia. Many important ornamental and aquarium fish belong to this family, ranging from barbs, danios and rasboras to goldfish such as Carassius auratus and carp, Cyprinus carpio which have ornamental varieties. Because of the great ecological and economical importance of Cyprinidae as cultured food fish, many species have been distributed almost globally from their original range in Eurasia. In Thailand, the genus Barbodes has been cultivated because of the occurrence of high-backed and deep-bodied individuals with few scales and rapid growth (Bond, 1996). Moreover, it is highly efficient in food utilization. It is also well accepted as food. Rainboth (1996) identified the genus Barbodes using such external characteristics as serrated dorsal-fin spines, 8 branched pelvic-fin rays, and skin of the lower lip separated from the lower jaw by a shallow groove, anal-fin base length that is 90% of head length and no tubercles on the snout. He identified 3 Barbodes species in the Klong River: Barbodes gonionotus, B. altus and B. schwanenfeldii. These species are also distributed in rivers in every region of Thailand and as a result genetic markers are unavailable for the great majority of cyprinids. Since 2004, a fisherman from Surin province in northeastern Thailand, has been cultivating B. gonionotus for several generations and has found that the body color of new generations changed in some individuals. Also offspring tend to increase in numbers when inbreeding occurs. This new fish strain looks like B. gonionotus but its body color is golden.

Classification of Barbodes has been based principally on external morphological characters. However, characteristics are apparently influenced by a variety of habitats and environmental conditions. Thus, two sympatric species may be morphologically similar...
but misidentified as a single species. On the other hand, allopatric populations inhabiting different habitats may show ecomorphological variation and have questionable species status. The basic information on numbers of species and/or population in a particular area is important for conservation programs (Carvalho and Hauser, 1994). In an earlier study, Holmen et al. (2005) established a platform for optimization of microsatellite markers for six different cyprinids based on cross-species amplification of markers that initially were developed for *D. rerio* and central stoneroller (*Campostoma anomalum* Rafinesque). Knowledge of genetic variation of *Barbodes* species in Thailand is, therefore, important for creating appropriate management schemes. However, information about genetic diversity of *Barbodes* species in Thailand is presently unavailable. Therefore, the objectives of this study were to study external morphology and genetic diversity using Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) of three *Barbodes* species.

RAPD-PCR analysis: Twelve decanucleotide primers were screened for amplification success in 3 representative individuals of each species. UBC122 (5’GTTAGACGAGC3’) and OPA07 (5’GGTGACGCAG3’) primers were selected for RAPD analysis. Amplification was carried out in a 25 µL reaction volume containing 10 mm Tris-HCl, pH 8.8, 50 mm KCl, 1% Triton-X 100, 2 mm MgCl2, 100 mm each of dNTP, 0.4 µ m of a primer, 1 unit of DyNAzyme TM II DNA Polymerase (Finnzymes) and 25 ng of DNA template. PCR was performed in a thermal cycler (Franklin, USA) for 40 cycles including denaturation at 94°C for 10 sec, annealing at 36°C for 30 sec and extension at 72°C for 90 sec. The final extension was performed at 72°C for 5 min. After amplification, PCR products were electrophoretically analyzed through 1.5% agarose gels, in 0.5XTBE buffer (50 mm Tris, 50 mm Boric Acid, 2.5 mm EDTA, pH 8.3). Gels were stained with ethidium bromide and photographed under UV light. The sizes of the amplified products were determined by comparison with a 100 bp ladder. Bands were scored as a binary variable, (1) for presence and (0) for absence of band. Only distinct well-resolved stable bands were considered for resolving.

Data analysis: Band-sharing analysis (Jaccard’s similarity coefficient) was conducted. Cluster analysis and dendrograms based on the single linkage method were generated to estimate relationships among *Barbodes* species using NTSYSpc (Rohlf, 1992). The dendrogram was constructed based on data obtained from the two primers.

RESULTS

External morphological studies found that *Barbodes* sp. had serrated dorsal-fin spine, soft fins (6-7), 8 branched pelvic fin rays and no adipose fin.
Table 1: Sequences of oligonucleotide primers, sizes and number of scorable RAPD bands, and percentage of polymorphic bands resulting from RAPD analysis using primers OPA07 and UBC122

Primer	Sequence	Size range (bp)	Percentage of polymorphic bands
		(No. of scorable bands)	(No. of polymorphic bands)
OPA07	GGTGACGCAG	300-1300 (13)	61.53 (8)
UBC122	GTAGACGAGC	250-2150 (22)	86.36 (17)
Average			77.14 (12.5)

Table 2: Total number of bands and percentage of polymorphic and monomorphic bands of each Barbodes species in this study based on RAPD analysis using primers OPA07 and UBC122

	B. gonionotus	B. altus	Barbodes sp.
OPA07 UBC122	Total	Total	Total
No. of bands	10	8	10
No. of polymorphic bands	0 (100%)	1 (6.3%)	1 (10%)
No. of monomorphic bands	10 (100%)	7 (93.8%)	24 (92.4%)

Fig. 1: RAPD pattern of Barbodes sp. (lanes1-5) and B. gonionotus (lanes 6-10) and B. altus (lanes11-15) generated from RAPD-PCR using primer UBC122, a 100-bp ladder (lane m) and λ/Hind III (lane m) were used as DNA markers. Arrowheads indicate species-diagnostic RAPD bands described in Table 3.

The anal fin had a gold color. The skin of the lower lip was separated from the lower jaw by a shallow groove. The anal fin base length was 90% of head length. Other characteristics noted were a flat body shape, small head, sharp premaxilla, 2 barbels and no tubercles on the snout. The origin of the dorsal fins was opposite the tenth scale of the lateral line which had 29-31 scales. The body from head to tail was yellow without any red color so the fish was classified as Barbodes species. Characteristics such as the shape and fin of Barbodes sp. are similar to B. gonionotus, but Barbodes sp. has a golden color whereas B. gonionatus is white. The color of Barbodes sp. is similar to B. altus, but has no red band on the distal fin. For the result of RAPD analysis, a total of 35 scorable bands ranging from 250-2150 bp was observed from analysis of three species: Barbodes altus, B. gonionotus and Barbodes sp. using RAPD analysis of two oligonucleotide primers (OPA07 and UBC122) (Fig. 1, 2 and Table 1). The number of amplified bands of all investigated samples were 13 bands for primers OPA07 and 22 bands for UBC122. The percentage of polymorphic bands for each primer was moderate (61.53-86.36%).

The average number of bands per primer were 12 for B. gonionotus, 8 for Barbodes altus and 13 for Barbodes sp. The percentage of polymorphic bands of the respective species were 3.9, 6.3 and 7.7% (Table 2) indicating low genetic diversity in each species. The percentage of monomorphic bands were 96.15, 93.75 and 92.39%, respectively.

Fig. 2: RAPD pattern of Barbodes sp. (lanes1-5) and B. gonionotus (lanes 6-10) and B. altus (lanes11-15) generated from RAPD-PCR using primer OPA07, a 100-bp ladder (lane m) was used as DNA markers. Arrowheads indicate species-diagnostic RAPD bands described in Table 3.
Fig. 3: A hierarchical cluster analysis dendrogram of Barbodes sp. (Bsp), B. gonionotus (Bg) and B. altus (Ba) based on variation of RAPD pattern obtained with OPA07 and UBC122 primer

Table 3: Candidate species-specific RAPD markers of Barbodes sp. in northeastern Thailand revealed by RAPD analysis

Primer	RAPD marker	Species/genus	Specificity in target species (%)
OPA07	820 and 950	B. altus	100
UBC122	420, 500, 720	B. gonionotus	100
	and 950	and Barbodes sp.	
	580 and 890	B. altus	100

Candidate species-specific RAPD markers: Several RAPD fragments showed fixed frequencies in each of the particular species. These could be used as species-specific markers to distinguish Barbodes species in northeastern, Thailand. The 580 and 890 bp bands generated from UBC122 were fixed in B. altus, but 420, 600, 720 and 950 bp bands were found in B. gonionotus and Barbodes sp. Both 820 and 950 bp bands were found only in B. altus and 670 bp in B. gonionotus and Barbodes sp. from OPA07. Thus a distinction between B. altus and B. gonionotus and Barbodes sp. could be recognized by the existence of the 580 bp band from UBC122 in B. altus but which was absent in Barbodes sp. (Fig. 1, 2 and Table 3).

Cluster analysis of the genetic distance values (Jaccard’s coefficient) from UBC122 was conducted to generate a dendrogram indicating relationships between the Barbodes species. The genetic distance was 97% between Barbodes sp. and B. gonionotus and 24% between B. altus, Barbodes sp. and B. gonionotus. OPA07 was 100% between Barbodes sp. and B. gonionotus and 38% between B. altus and Barbodes sp. and B. gonionotus, (Fig. 3) which indicates that the relationships between Barbodes sp. and B. gonionotus is closer than B. altus.

DISCUSSION

External morphological studies found that Barbodes sp. have characteristics described in Rainboth (1996) such as serrated dorsal-fin spines, soft fins (6-7) and 8 branched pelvic fin rays. Anal fins are gold. The skin of the lower lip is separated from the lower jaw by a shallow groove. Anal fin base length is 90% of head length, there are no tubercles on the snout and it has a flat body shape, small head, sharp premaxilla and 2 barbels. The origin of the dorsal fin is opposite the tenth scale of the lateral line which has 29-31 scales. The body from head to tail is yellow and there is no red coloration on the body or fins. Therefore the new individual is classified as Barbodes sp. The characteristics of Barbodes sp. are similar to those of B. gonionotus and B. altus, although it has no red coloration on the body or fins.

Two of twelve screened decanucleotides were selected for genetic analysis of Barbodes genera. The results show the RAPD pattern of B. gonionotus and Barbodes sp. as identical main bands after performing with OPA07 and UBC122 primers. RAPD fragments using primer UBC122 found 400, 460, 600, 700, 800 and 920 bp, whereas Barbodes altus did not show 400 bp. When using primer OPA07 RAPD fragments show 650 and 1400 bp main bands in
B. gonionotus and Barbodes sp. but which are absent in B. altus. These results are supported by the external morphological results of Barbodes sp. which differed from B. altus and B. gonionotus. Barbodes is more similar in external morphology to B. gonionotus than B. altus. Thirty-five reproducible and polymorphic fragments (250-2150 bp in length) were generated across the investigated species. The percentages of polymorphic band were 7.69, 3.85 and 6.25% for Barbodes altus, B. gonionotus and Barbodes sp., respectively. However, the polymorphic values that were performed with both primers were lower than mud crabs in eastern Thailand. Genetic diversity among samples from interspecies was higher than those from intraspecies. The UPGMA indicated that relationships between Barbodes gonionotus and Barbodes sp. were closer than B. altus. Moreover, a candidate species-specific marker of UBC122 primer was found in only Barbodes sp.

Identification of Barbodes species and evaluation of heritability for the growth rate of each Barbodes species are necessary steps for broodstock selection and selective breeding programs in these tax. Our results illustrate that RAPD analysis is a rapid and convenient technique to generate useful genetic markers in Barbodes. Species-diagnostic RAPD markers should be developed which can be utilized to determine from generation to generation a comparison of growth performance of each Barbodes species under commercial growing conditions.

CONCLUSION

From the above considerations a clear differentiation of the Barbodes sp. from B. gonionotus was achieved. In conclusion, this is the first report showing genetic diversity of Barbodes sp in Thailand. However, an RAPD approach also requires a good quality DNA template for reliable and consistent results which may not be possible for field specimens. Significantly, this may cause false negative results from investigated samples which actually are Barbodes fishes. To eliminate this problem, candidate RAPD fragments should be converted to Sequencecharacterized Amplified Region (SCAR) markers for the next time.

ACKNOWLEDGEMENT

This research was supported by grants from the Department of Biotechnology, Faculty of Agro-Industrial Technology, Rajamangala University of Technology Isan, Kalasin Campus, Kalasin and Faculty of Science, Mahasarakam University, Mahasarakam, Thailand. The authors would like to thank Ms. Narumon Prakongruk and Ms. Bupachat Kuntiwong for collecting specimens and preparing chemical reactions in this study.

REFERENCES

Bond, C.E., 1996. Biology of Fishes. 2nd Edn., Saunders College Publishing, Fort Worth, ISBN-10: 0030703425, pp: 768.

Carvalho, G.R. and L. Hauser, 1994. Molecular genetics and the stock concept in fisheries. Rev. Fish. Biol. Fish., 4: 326-350. DOI: 10.1007/BF00042908

Desvignes, J.F., J. Laroche, J.D. Durand and Y. Bouvet, 2001. Genetic variability in reared stocks of common carp (Cyprinus carpio L.) based on allozymes and microsatellites. Aquaculture, 194: 291-301. DOI: 10.1016/S0044-8486(00)00534-2

Fuchs, H., P. Schlee, J. Blusch, T. Werner and H. Stein et al., 2000. Phylogenetic studies in cyprinid species from central Europe by cytochrome b sequences of mitochondrial DNA. J. Applied Ichthyol., 16: 79-82. DOI: 10.1046/j.1439-0426.2000.00162

Holmen, J., L.A. Vollestad, K.S. Jakobsen, and C.R. Primmer, 2005. Cross-species amplification of zebrafish and central stoneroller microsatellite loci in six other cyprinids. J. Fish Biol., 66: 851-859. DOI: 10.1111/j.0022-1112.2005.00637

Larno, V., S. Launey, A. Devaux, and J. Laroche, 2005. Isolation and characterization of microsatellite loci from chub Leuciscus cephalus (pisces: Cyprinidae). Mol. Ecol. Notes, 54: 752-754. DOI: 10.1111/j.1471-8286.2005.01052

Maniatis, T., E.F. Fritsch and J. Sambrook, 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, New York, ISBN: 0879691360, pp: 545.

Purdom, C.E., 1993. Genetic and fish breeding. Ministry of Agriculture, Fisheries and Food. pp: 376. ISSN: 14154757

Rainboth, W.J., 1996. Fishes of the Cambodian Mekong. FAO Species Identification Field Guide for Fishery Purpose. Mekong River Comission, FAO and DANIDA, ISBN: 9251037434, pp: 265.

Rohlf, F.J., 1992. NTSYS-PC: Numerical Taxonomy and Multivariate Analysis System. Exeter Software, New York. pp: 236. ISSN: 15362442
Shimoda, N., E.W. Knapik, J. Ziniti, C. Sim and E. Yamada et al., 1999. Zebrafish genetic map with 2000 microsatellite markers. Genomics, 58: 219-232. DOI:10.1006/geno.1999.5824

Weising, K., H. Nybom, K. Wolf and W. Meyer. 1995. DNA Fingerprinting in Plant and Fungi. Boca Raton, CRC Press, Fla, London, pp: 472. ISSN: 10958290

William, J.G.K., A.R. Kubelik, K.L. Livak, J.A. Rafalski and S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18: 6531-6535. DOI: 10.1093/nar/18.22.6531

Winnepennickx, B., T. Backeljau and R. De Wachter. 1993. Extraction of high molecular weight DNA from mollusk. Trends Genetics, 9: 407. DOI: 10.1016/0168-9525(93)90102-N

Zhou, J.F., Q.J. Wu, Y.Z. Ye and J.G. Tong, 2003. Genetic divergence between Cyprinus carpio carpio and Cyprinus carpio haematopterus as assessed by mitochondrial DNA analysis, with emphasis on origin of European domestic carp. Genetica, 119: 93-97. DOI: 10.1023/A:1024421001015

Zhou, L., Y. Wang and J.F. Gui, 2001. Molecular analysis of silver crucian carp (Carassius auratus gibelio Bloch) clones by SCAR markers. Aquaculture, 201: 219-228. DOI: 10.1016/S00448486(01)00603-2