ERRATUM TO: DEFORMATION QUANTIZATION IN
ALGEBRAIC GEOMETRY

AMNON YEKUTIELI

Abstract. This note contains a correction of the proofs of the main results of the paper [A. Yekutieli, Deformation quantization in algebraic geometry, Adv. Math. 198 (2005), 383-432]. The results are correct as originally stated.

0. Introduction

This note contains a correction of the proofs of the main results of [Ye1], namely Theorems 0.1 and 0.2. The results are correct as originally stated.

The mistake in my original proofs was discovered Michel Van den Bergh, and I thank him for calling my attention to it. The way to fix the proofs is essentially contained in his paper [VdB].

Let me begin by explaining the mistake. As can be seen in Example 0.1 below, the mistake itself is of a rather elementary nature, but it was obscured by the complicated context.

Suppose \(K \) is a field of characteristic 0, and \(X \) is a smooth separated \(n \)-dimensional scheme over \(K \). Recall that the coordinate bundle \(\text{Coor}_X \) is an infinite dimensional bundle over \(X \), with free action by the group \(\text{GL}_{n,K} \). The quotient bundle is by definition \(\text{LCC}_X := \text{Coor}_X / \text{GL}_{n,K} \), and the projection \(\pi_{\text{gl}} : \text{Coor}_X \to \text{LCC}_X \) is a \(\text{GL}_{n,K} \)-torsor.

The erroneous (implicit) assertion in [Ye1] is that the de Rham complexes satisfy

\[
(\pi_{\text{gl}}^* \Omega_{\text{Coor}_X}^{\text{GL}_{n,K}}) = \Omega_{\text{LCC}_X}.
\]

From that I deduced (incorrectly, top of page 424) that the Maurer-Cartan form \(\omega_{MC} \) is a global section of the sheaf

\[
\Omega^1_{\text{LCC}_X} \otimes_{\mathcal{O}_{\text{LCC}_X}} \pi_{\text{LCC}}^*(\mathcal{P}_X \otimes_{\mathcal{O}_X} \mathcal{T}^0_{\text{poly}_X}).
\]

(This false, as can be seen from [VdB, Lemma 6.5.1]). This led to many incorrect formulas in [Ye1, Section 7].

The correct thing to do is to work with the infinitesimal action of the Lie algebra \(\mathfrak{g} := \mathfrak{gl}_n(K) \). For \(v \in \mathfrak{g} \) one has the contraction (inner derivative) \(\iota_v \), which is a degree \(-1\) derivation of the de Rham complex \(\pi_{\text{gl}}^* \Omega_{\text{Coor}_X} \). Recall that the Lie derivative is \(L_v := d \circ \iota_v + \iota_v \circ d \). A local section \(\omega \in \pi_{\text{gl}}^* \Omega_{\text{Coor}_X} \) is said to be \(\mathfrak{g} \)-invariant if \(\iota_v(\omega) = L_v(\omega) = 0 \) for all \(v \in \mathfrak{g} \). According to [VdB, Lemma 9.2.3] one has

\[
(\pi_{\text{gl}}^* \Omega_{\text{Coor}_X})^\mathfrak{g} = \Omega_{\text{LCC}_X}.
\]
It is worthwhile to note that in my incorrect proof there was no need to invoke Kontsevich’s property (P5) from [Ko]. The correct proof does require property (P5) – cf. [vdB3, Lemma 9.2.1].

Example 0.1. Here is a simplified example. Suppose G is the affine algebraic group $\text{GL}_1, K = \text{Spec} K[t, t^{-1}]$, and X is the variety G, with regular left action. The group of rational points is $G(K) = K^\times$. The action of G on X is free, the invariant ring is $\mathcal{O}(X)^{G(K)} = K$, and the quotient is $X/G = \text{Spec} K$. For the de Rham complex

$$\Omega(X) = \mathcal{O}(X) \oplus \Omega^1(X) = K[t, t^{-1}] \oplus K[t, t^{-1}] \cdot dt$$

we have $\Omega(X)^{G(K)} \neq K$, since it contains $t^{-1}dt$. But for the infinitesimal action of the Lie algebra $g := gl_1(K)$ it is easy to see that $\Omega(X)^g = K$.

After some deliberation I decided that the best way to present the erratum is by completely rewriting [Ye1, Section 7]. This is Section 1 below. Section 2 contains some additional minor corrections to [Ye1].

1. The Global L_∞ Quasi-isomorphism

This is a revised version of [Ye1, Section 7]. In this section we prove the main results of the paper [Ye1], namely Theorem 0.1 (which is repeated here as Corollary 1.19), and Theorem 0.2 (which is repeated here, with more details, as Theorem 1.2). Throughout K is a field containing \mathbb{R}, and X is a smooth irreducible separated n-dimensional scheme over K. We use all notation, definitions and results of [Ye1, Sections 1-6] freely. However the bibliography references relate to the list at the end of this note.

Suppose $U = \{U_0, \ldots, U_m\}$ is an open covering of the scheme X, consisting of affine open sets, each admitting an étale coordinate system, namely an étale morphism $U_i \to \mathbb{A}^2_k$. For every i let $\sigma_i : U_i \to \text{LCC}(X)$ be the corresponding section of $\pi_{lcc} : \text{LCC}(X) \to X$, and let σ be the resulting simplicial section (see [Ye1, Theorem 6.5]).

Let \mathcal{M} be a bounded below complex of quasi-coherent \mathcal{O}_X-modules. The mixed resolution $\text{Mix}_U(\mathcal{M})$ was defined in [Ye1, Section 6]. For any integer i let

$$G^i \text{Mix}_U(\mathcal{M}) := \bigoplus_{j=i}^{\infty} \text{Mix}_U^j(\mathcal{M}),$$

so $\{G^i \text{Mix}_U(\mathcal{M})\}_{i \in \mathbb{Z}}$ is a descending filtration of $\text{Mix}_U(\mathcal{M})$ by subcomplexes, with $G^i \text{Mix}_U(\mathcal{M}) = \text{Mix}_U(\mathcal{M})$ for $i \leq 0$, and $\bigcap_i G^i \text{Mix}_U(\mathcal{M}) = 0$. Let

$$\text{gr}^i G \text{Mix}_U(\mathcal{M}) := G^i \text{Mix}_U(\mathcal{M}) / G^{i+1} \text{Mix}_U(\mathcal{M})$$

and $\text{gr}_G \text{Mix}_U(\mathcal{M}) := \bigoplus_i \text{gr}^i G \text{Mix}_U(\mathcal{M})$.

By [Ye1, Proposition 6.3], if G_X is either $\mathcal{T}_{\text{poly}, X}$ or $\mathcal{D}_{\text{poly}, X}$, then $\text{Mix}_U(G_X)$ is a sheaf of DG Lie algebras on X, and the inclusion

$$\eta_G : G_X \to \text{Mix}_U(G_X)$$

is a DG Lie algebra quasi-isomorphism.

Note that if $\phi : \text{Mix}_U(\mathcal{M}) \to \text{Mix}_U(\mathcal{N})$ is a homomorphism of complexes that respects the filtration $\{G^i \text{Mix}_U\}$, then there exists an induced homomorphism of complexes

$$\text{gr}_G(\phi) : \text{gr}_G \text{Mix}_U(\mathcal{M}) \to \text{gr}_G \text{Mix}_U(\mathcal{N}).$$
Suppose \(\mathcal{G} \) and \(\mathcal{H} \) are sheaves of DG Lie algebras on a topological space \(Y \). An \(L_\infty \) morphism \(\Psi : \mathcal{G} \to \mathcal{H} \) is a sequence of sheaf morphisms \(\psi_j : \prod [\mathcal{G}] \to \mathcal{H} \), such that for every open set \(V \subset Y \) the sequence \(\{ \Gamma(V, \psi_j) \}_{j \geq 1} \) is an \(L_\infty \) morphism \(\Gamma(V, \mathcal{G}) \to \Gamma(V, \mathcal{H}) \). If \(\psi_1 : \mathcal{G} \to \mathcal{H} \) is a quasi-isomorphism then \(\Psi \) is called an \(L_\infty \) quasi-isomorphism.

Recall that there is a canonical quasi-isomorphism of complexes of \(O_X \)-modules
\[
U_1 : T_{\text{poly}, X} \to D_{\text{poly}, X}.
\]
According to [Ye2] Theorem 4.17, the induced homomorphism
\[
gr_G(\text{Mix}_U(U_1)) : gr_G \text{Mix}_U(T_{\text{poly}, X}) \to gr_G \text{Mix}_U(D_{\text{poly}, X})
\]
is a quasi-isomorphism.

Theorem 1.2. Let \(X \) be an irreducible smooth separated \(\mathbb{K} \)-scheme. Let \(U = \{U_0, \ldots, U_m\} \) be an open covering of \(X \) consisting of affine open sets, each admitting an étale coordinate system, and let \(\sigma \) be the associated simplicial section of the bundle \(\text{LCC}_X \to X \). Then there is an induced \(L_\infty \) quasi-isomorphism
\[
\Psi_{\sigma : 1} : \text{Mix}_U(T_{\text{poly}, X}) \to \text{Mix}_U(D_{\text{poly}, X}).
\]
The homomorphism \(\Psi_{\sigma : 1} \) respects the filtration \(\{G^i \text{Mix}_U\} \), and
\[
gr_G(\Psi_{\sigma : 1}) = gr_G(\text{Mix}_U(U_1)).
\]

Proof. Let \(Y \) be some \(\mathbb{K} \)-scheme, and denote by \(\mathbb{K}_Y \) the constant sheaf. For any \(p \) we view \(\Omega^p_Y \) as a discrete inv \(\mathbb{K}_Y \)-module, and we put on \(\Omega_Y = \bigoplus_{p \in \mathbb{N}} \Omega^p_Y \) direct sum dir-inv structure. So \(\Omega_Y \) is a discrete (and hence complete) DG algebra in \(\text{Dir Inv Mod} \mathbb{K}_Y \).

We shall abbreviate \(\mathcal{A} := \Omega_{\text{Coor}, X} \), so that \(\mathcal{A}^0 = O_{\text{Coor}, X} \) etc. As explained above, \(\mathcal{A} \) is a DG algebra in \(\text{Dir Inv Mod} \mathbb{K}_{\text{Coor}, X} \), with discrete (but not trivial) dir-inv module structure.

There are sheaves of DG Lie algebras \(\mathcal{A} \otimes T_{\text{poly}}(\mathbb{K}[[t]]) \) and \(\mathcal{A} \otimes D_{\text{poly}}(\mathbb{K}[[t]]) \) on the scheme \(\text{Coor} X \). The differentials are \(d_{\text{for}} = d \otimes 1 \) and \(d_{\text{for}} + 1 \otimes d_{\text{P}} \) respectively. As explained just prior to [Ye1] Theorem 3.16, \(\mathcal{U} \) extends to a continuous \(\mathcal{A} \)-multilinear \(L_\infty \) morphism
\[
\mathcal{U}_A = \{ \mathcal{U}_{A j} \}_{j \geq 1} : \mathcal{A} \otimes T_{\text{poly}}(\mathbb{K}[[t]]) \to \mathcal{A} \otimes D_{\text{poly}}(\mathbb{K}[[t]])
\]
of sheaves of DG Lie algebras on \(\text{Coor} X \).

The MC form \(\omega := \omega_{\text{MC}} \) is a global section of \(\mathcal{A}^1 \otimes T_{\text{poly}}^0(\mathbb{K}[[t]]) \) satisfying the MC equation in the DG Lie algebra \(\mathcal{A} \otimes T_{\text{poly}}(\mathbb{K}[[t]]) \). See [Ye1] Proposition 5.9. According to [Ye1] Theorem 3.16, the global section \(\omega' := \mathcal{U}_{A,1}(\omega) \in \mathcal{A}^1 \otimes D_{\text{poly}}^0(\mathbb{K}[[t]]) \) is a solution of the MC equation in the DG Lie algebra \(\mathcal{A} \otimes D_{\text{poly}}(\mathbb{K}[[t]]) \), and there is a continuous \(\mathcal{A} \)-multilinear \(L_\infty \) morphism
\[
\mathcal{U}_{A,\omega} = \{ \mathcal{U}_{A,\omega j} \}_{j \geq 1} : \left(\mathcal{A} \otimes T_{\text{poly}}(\mathbb{K}[[t]]) \right)_\omega \to \left(\mathcal{A} \otimes D_{\text{poly}}(\mathbb{K}[[t]]) \right)_\omega
\]
between the twisted DG Lie algebras. The formula is
\[
\mathcal{U}_{A,\omega j}(\gamma_1 \cdots \gamma_j) = \sum_{k \geq 0} \frac{1}{(j + k)!} \mathcal{U}_{A,j+k}(\omega^k \cdot \gamma_1 \cdots \gamma_j)
\]
for \(\gamma_1, \ldots, \gamma_j \in \mathcal{A} \otimes T_{\text{poly}}(\mathbb{K}[[t]]) \). The two twisted DG Lie algebras have differentials \(d_{\text{for}} + \text{ad}(\omega) \) and \(d_{\text{for}} + \text{ad}(\omega') + 1 \otimes d_{\text{P}} \) respectively.
This sum in (1.3) is actually finite, the number of nonzero terms in it depending on the bidegree of $\gamma_1 \cdots \gamma_j$. Indeed, if $\gamma_1 \cdots \gamma_j \in A^q \otimes T^p_{\text{poly}}(K[[t]])$, then

$$U_{A; j+k}(\omega^k \cdot \gamma_1 \cdots \gamma_j) \in A^{q+k} \otimes T^p_{\text{poly}}(K[[t]])$$

which is is zero for $k > p - j + 2$; see proof of [Ye2 Theorem 3.23].

By [Ye1 Theorem 5.6] (the universal Taylor expansions) there are canonical isomorphisms of graded Lie algebras in $\text{Dir Inv Mod} K\text{Coor}_X$

$$(1.5) \quad A \otimes T_{\text{poly}}(K[[t]]) \cong A \otimes \Lambda^0 \pi_{\text{coor}}(P_X \otimes_{O_X} T_{\text{poly}, X})$$

and

$$(1.6) \quad A \otimes D_{\text{poly}}(K[[t]]) \cong A \otimes \Lambda^0 \pi_{\text{coor}}(P_X \otimes_{O_X} D_{\text{poly}, X})$$

According to [VdB, Lemma 9.2.1], the $L\infty$ morphism $U_{A;1}$ gives a continuous A-multilinear $L\infty$ morphism between these DG Lie algebras, whose differentials are ∇_ν and $\nabla_{\nu} + 1 \otimes_D$ respectively. As in the proof of [Ye1 Theorem 5.6], under the identifications (1.5) and (1.6) we have the equality

$$U_{A;1} = 1 \otimes \pi_{\text{coor}}(1 \otimes U_1),$$

i.e., it is the pullback of the map (1.1).

Let us filter the DG algebra A by the descending filtration $\{G^j A\}_{j \in \mathbb{Z}}$, where $G^j A := \bigoplus_{i=j}^{\infty} A^i$. The DG Lie algebras appearing in equation (1.7) inherit this filtration. From formulas (1.3) and (1.4) we see that the homomorphism of complexes $U_{A; \omega:1}$ respects the filtration, and from (1.8) we see that

$$\text{gr}_G(U_{A; \omega:1}) = \text{gr}_G(U_{A;1}) = 1 \otimes \pi_{\text{coor}}(1 \otimes U_1).$$

Let $n := \dim X$. As noted earlier, the action of $g := gl_n(K)$ gives

$$(\pi_{gl_n}(\Lambda)^\theta = (\pi_{gl_n} \cdot \Omega_{\text{Coor}_X})^\theta = \Omega_{LCC}_X.$$

According to [VdB Lemma 9.2.1], the $L\infty$ morphism $U_{A; \omega}$ commutes with the action of the Lie algebra g. Therefore $U_{A; \omega}$ descends (i.e., restricts) to a continuous Ω_{LCC}_X-multilinear $L\infty$ morphism

$$(1.9) \quad U_{A; \omega}^\theta : \Omega_{LCC}_X \otimes_{C_{\text{CC}X}} \pi_{\text{lecc}}(P_X \otimes_{O_X} T_{\text{poly}, X})$$

$$\rightarrow \Omega_{LCC}_X \otimes_{C_{\text{CC}X}} \pi_{\text{lecc}}(P_X \otimes_{O_X} D_{\text{poly}, X}).$$

The DG Lie algebras in formula (1.9) also have filtrations $\{G^j\}_{j \in \mathbb{Z}}$, the homomorphism $U_{A; \omega:1}^\theta$ respects this filtration, and we now have

$$\text{gr}_G(U_{A; \omega:1}^\theta) = \text{gr}_G(U_{A;1}^\theta) = 1 \otimes \pi_{\text{lecc}}(1 \otimes U_1).$$

According to [Ye1 Theorem 6.4] there are induced operators

$$\Psi_{\sigma; j} := \sigma^*(U_{A; \omega:1}^\theta) : \text{Mix}_U(T_{\text{poly}, X}) \rightarrow \text{Mix}_U(D_{\text{poly}, X})$$

for $j \geq 1$. The $L\infty$ identities in [Ye1 Definition 3.7], when applied to the $L\infty$ morphism $U_{A; \omega}^\theta$, are of the form considered in [Ye1 Theorem 6.4(iii)]. Therefore these
identities are preserved by σ^*, and we conclude that the sequence $\Psi_\sigma = \{\Psi_{\sigma,j}\}_{j=1}^\infty$ is an L_∞ morphism. Furthermore, $\Psi_{\sigma,1}$ respects the filtration $\{G^i\text{Mix}_U\}$, and from (1.10) we get

$\text{gr}_G(\Psi_{\sigma,1}) = \text{gr}_G(\sigma^*(U_{i,1}^\theta)) = \text{gr}_G(M\text{ix}_U(U_1)).$

According to [Ye2, Theorem 4.17] the homomorphism $\text{gr}_G(M\text{ix}_U(U_1))$ is a quasi-isomorphism. Since the complexes $\text{Mix}_U(T_{\text{poly},X})$ and $\text{Mix}_U(D_{\text{poly},X})$ are bounded below, and the filtration is nonnegative and exhaustive, it follows that $\Psi_{\sigma,1}$ is also a quasi-isomorphism.

Corollary 1.12. Taking global sections in Theorem 1.2 we get an L_∞ quasi-isomorphism

$\Gamma(X, \Psi_\sigma) = \{\Gamma(X, \Psi_{\sigma,j})\}_{j\geq 1} : \Gamma(X, \text{Mix}_U(T_{\text{poly},X})) \to \Gamma(X, \text{Mix}_U(D_{\text{poly},X})).$

Proof. Theorem 1.2 tells us that $\Psi_{\sigma,1}$ is a quasi-isomorphisms of complexes of sheaves. By [Ye1, Theorem 6.2] it follows that

$\Gamma(X, \Psi_{\sigma,1}) : \Gamma(X, \text{Mix}_U(T_{\text{poly},X})) \to \Gamma(X, \text{Mix}_U(D_{\text{poly},X}))$

is a quasi-isomorphism. □

Corollary 1.13. The data (U, σ) induces a bijection

$\text{MC}(\Psi_\sigma) : \text{MC}(\Gamma(X, \text{Mix}_U(T_{\text{poly},X})[[h]^+]) \cong \text{MC}(\Gamma(X, \text{Mix}_U(D_{\text{poly},X})[[h]^+]).$

Proof. Use Corollary 1.12 and [Ye1 Corollary 3.10]. □

Recall that $T_{\text{poly},X} = \Gamma(X, T_{\text{poly},X})$ and $D_{\text{poly},X} = \Gamma(X, D_{\text{poly},X})$; and the latter is the DG Lie algebra of global poly differential operators that vanish if one of their arguments is 1.

Suppose $f : X' \to X$ is an étale morphism. According to [Ye2 Proposition 4.6] there are DG Lie algebra homomorphisms $f^* : T_{\text{poly},X} \to T_{\text{poly},X'}$ and $f^* : D_{\text{poly},X} \to D_{\text{poly},X'}$. These homomorphisms extend to formal coefficients, and we get functions

$\text{MC}(f^*) : \text{MC}(T_{\text{poly},X}[[h]^+]) \to \text{MC}(T_{\text{poly},X'}[[h]^+])$

etc.

One says that X is a D-affine variety if $H^q(X, \mathcal{M}) = 0$ for every quasi-coherent left D_X-module \mathcal{M} and every $q > 0$.

Theorem 1.14. Let X be an irreducible smooth separated \mathbb{K}-scheme. Assume X is D-affine. Then there is a canonical function

$Q : \text{MC}(T_{\text{poly},X}[[h]^+]) \to \text{MC}(D_{\text{poly},X}[[h]^+])$

called the quantization map. It has the following properties:

(i) The function Q preserves first order terms.

(ii) The function Q respects étale morphisms. Namely if X' is another D-affine scheme, with quantization map Q', and if $f : X' \to X$ is an étale morphism, then

$Q' \circ \text{MC}(f^*) = \text{MC}(f^*) \circ Q.$

(iii) If X is affine, then Q is bijective.
The quantization map Q is a DG Lie algebra homomorphism. So by continuity we might as well assume that

$$\sigma \equiv \text{MC}(\mathcal{L}) \overset{Q}{\longrightarrow} \text{MC}(\mathcal{R})$$

in which the arrows $\text{MC}(\sigma)$ and $\text{MC}(\eta_D)$ are bijections. Here Ψ_{σ} is the L_∞ quasi-isomorphism from Theorem 1.2, and η_D and η are the inclusions of DG Lie algebras.

Let's elaborate a bit on the statement above. It says that to any MC solution $\alpha = \sum_{j=1}^{\infty} \alpha_j h^j \in \mathcal{T}_{\text{poly}}(X)[[h]]^+$ there corresponds an MC solution $\beta = \sum_{j=1}^{\infty} \beta_j h^j \in \mathcal{D}_{\text{poly}}(X)[[h]]^+$. The element $\beta = Q(\alpha)$ is uniquely determined up to gauge equivalence by the group $\exp(D_{\text{poly}}^0(X)[[h]]^+).$ Given any local sections $f, g \in \mathcal{O}_X$ one has

$$\frac{i}{\hbar}(\beta_1(f, g) - \beta_1(g, f)) = \alpha_1(f, g) \in \mathcal{O}_X.$$

The quantization map Q can be calculated (at least in theory) using the collection of sections σ and the universal formulas for deformation in Ye1, Theorem 3.13.

We'll need a lemma before proving the theorem.

Lemma 1.16. Let $f, g \in \mathcal{O}_X = \mathcal{D}_{\text{poly}, X}^{-1}$ be local sections.

1. For any $\beta \in \text{Mix}_U^0(\mathcal{D}_{\text{poly}, X}^1)$ one has

$$[[\beta, f], g] = \beta(g, f) - \beta(f, g) \in \text{Mix}_U^0(\mathcal{O}_X).$$

2. For any $\beta \in \text{Mix}_U^0(\mathcal{D}_{\text{poly}, X}^0) \oplus \text{Mix}_U^0(\mathcal{D}_{\text{poly}, X}^{-1})$ one has $[[\beta, f], g] = 0.$

3. Let $\gamma \in \text{Mix}_U(\mathcal{D}_{\text{poly}, X}^0)^0,$ and define $\beta := (d_{\text{mix}} + d_{\text{D}})(\gamma).$ Then $[[\beta, f], g] = 0.$

Proof. (1) [Ye1] Proposition 6.3 implies that the embedding ([Ye1] (6.1):

$$\text{Mix}_U(\mathcal{D}_{\text{poly}, X}) \subset \bigoplus_{p, q, r} \prod_{j \in \mathbb{N}} \prod_{i \in \Delta^n} g_{i*} g_{i}^{-1}(\Omega^p(\Delta^n)^{\otimes} (\Omega^q_X \otimes \mathcal{O}_X \circ \mathcal{O}_X \circ \mathcal{D}_{\text{poly}, X}^r))$$

is a DG Lie algebra homomorphism. So by continuity we might as well assume that

$$\beta = aD$$

with $a \in \Omega_X^0 = \mathcal{O}_X$ and $D \in \mathcal{D}_{\text{poly}, X}^1$. Moreover, since the Lie bracket of $\Omega_X \otimes \mathcal{O}_X \circ \mathcal{O}_X \circ \mathcal{D}_{\text{poly}, X}$ is \mathcal{O}_X-bilinear, we may assume that $a = 1,$ i.e., $\beta = D.$ Now the assertion is clear from the definition of the Gerstenhaber Lie bracket, see [Ko] Section 3.4.2).

(2) Applying the same reduction as above, but with $D \in \mathcal{D}_{\text{poly}, X}^r$ and $r \in \{0, -1\},$ we get $[[D, f], g] \in \mathcal{D}_{\text{poly}, X}^{r-2} \circ \mathcal{O}_X = 0.$

(3) By part (2) it suffices to show that $[[\beta, f], g] = 0$ for $\beta := d_{\text{D}}(\gamma)$ and $\gamma \in \text{Mix}_U^0(\mathcal{D}_{\text{poly}, X}^0).$ As explained above we may further assume that $\gamma = D \in \mathcal{D}_{\text{poly}, X}^0.$ Now the formulas for d_{D} and $[-, -]$ in [Ko] Section 3.4.2 imply that $[[d_{\text{D}}(D), f], g] = 0.$
Proof of Theorem 1.13 Step 1. Take an open covering \(U \) as in property (iv). Since the sheaves \(\mathcal{D}_{\text{nor},X}^{\text{pol}} \) are quasi-coherent left \(\mathcal{D}_X \)-modules, it follows that \(H^q(X, \mathcal{D}_{\text{nor},X}^{\text{pol}}) = 0 \) for all \(p \) and all \(q > 0 \). Therefore \(\Gamma(X, \mathcal{D}_{\text{nor},X}^{\text{pol}}) \to R\Gamma(X, \mathcal{D}_{\text{poly},X}^{\text{pol}}) \) in the derived category \(D(\text{Mod} \mathbb{K}) \). Now by [Ye1] Theorem 3.12 the inclusion \(\mathcal{D}_{\text{nor},X}^{\text{pol}} \to \mathcal{D}_{\text{poly},X}^{\text{pol}} \) is a quasi-isomorphism, and by [Ye1] Theorem 6.2(1) the inclusion \(\mathcal{D}_{\text{poly},X}^{\text{pol}} \to \text{Mix}_U(\mathcal{D}_{\text{poly},X}) \) is a quasi-isomorphism. According to [Ye1] Theorem 6.2(2) we have \(\Gamma \left(\mathbb{X}, \text{Mix}_U(\mathcal{D}_{\text{poly},X}) \right) = R\Gamma \left(\mathbb{X}, \text{Mix}_U(\mathcal{D}_{\text{poly},X}) \right) \). The conclusion is that

\[
\mathcal{D}_{\text{nor}}^{\text{pol}}(X) = \Gamma(X, \mathcal{D}_{\text{nor},X}^{\text{pol}}) \to \Gamma(X, \text{Mix}_U(\mathcal{D}_{\text{poly},X}))
\]

is a quasi-isomorphism of complexes of \(\mathbb{K} \)-modules. But in view of [Ye1] Proposition 6.3, this is in fact a quasi-isomorphism of DG Lie algebras.

From (1.17) we deduce that

\[
\eta_{\mathcal{D}} : \mathcal{D}_{\text{nor}}^{\text{pol}}(X)[[\hbar]]^+ \to \Gamma(X, \text{Mix}_U(\mathcal{D}_{\text{poly},X}))[\hbar]^+
\]

is a quasi-isomorphism of DG Lie algebras. Using [Ye1] Corollary 3.10 we see that \(\text{MC}(\eta_{\mathcal{D}}) \) is bijective. Therefore the diagram in property (iv) defines \(Q \) uniquely.

According to Corollary 1.13 the arrow marked \(\text{MC}(\Psi_{\sigma}) \) is a bijection. So we have established property (iv), except for the independence of the open covering.

Step 2. The left vertical arrow comes from the DG Lie algebra homomorphism

\[
\eta_T : T_{\text{poly}}(X)[[\hbar]]^+ \to \Gamma(X, \text{Mix}_U(T_{\text{poly},X}))[\hbar]^+;
\]

which is a quasi-isomorphism when \(H^q(X, T_{\text{poly},X}) = 0 \) for all \(p \) and all \(q > 0 \). So in case \(X \) is affine, the quantization map \(Q \) is bijective. This establishes property (iii).

Step 3. Now suppose \(U' = \{ U'_0, \ldots, U'_{m'} \} \) is another such affine open covering of \(X \), with sections \(\sigma'_i : U'_i \to \text{LCC} \). Without loss of generality we may assume that \(m' \geq m \), and that \(U'_0 = U_0 \) and \(\sigma'_i = \sigma_i \) for all \(i \leq m \). There is a morphism of simplicial schemes \(f : U \to U' \), that is an open and closed embedding. Correspondingly there is a commutative diagram

\[
\begin{array}{ccc}
\text{MC}(T_{\text{poly}}(X)[[\hbar]]^+) & \xrightarrow{Q} & \text{MC}(\mathcal{D}_{\text{nor}}^{\text{pol}}(X)[[\hbar]]^+) \\
\downarrow \text{MC}(\eta_T) & & \downarrow \text{MC}(\eta_{\mathcal{D}})
\end{array}
\]

\[
\begin{array}{ccc}
\text{MC}(\Gamma(X, \text{Mix}_{U'}(T_{\text{poly},X}))[\hbar]^+) & \xrightarrow{\text{MC}(\Psi_{\sigma'})} & \text{MC}(\Gamma(X, \text{Mix}_U(\mathcal{D}_{\text{poly},X}))[\hbar]^+) \\
\downarrow \text{MC}(f^+) & & \downarrow \text{MC}(f^+)
\end{array}
\]

\[
\begin{array}{ccc}
\text{MC}(\Gamma(X, \text{Mix}_{U'}(T_{\text{poly},X}))[\hbar]^+) & \xrightarrow{\text{MC}(\Psi_{\sigma'})} & \text{MC}(\Gamma(X, \text{Mix}_U(\mathcal{D}_{\text{poly},X}))[\hbar]^+)
\end{array}
\]

where the vertical arrows on the right are bijections. We conclude that \(Q \) is independent of \(U \) and \(\sigma \). This concludes the proof of property (iv).

Step 4. Suppose \(f : X' \to X \) is an étale morphism. Then we can choose an affine open covering \(U' \) of \(X' \) that refines \(U \) in the obvious sense. Each of the open sets \(U'_i \) inherits an étale coordinate system, and hence a section \(\sigma'_i : U'_i \to \text{LCC} \). We
get a commutative diagram

\[
\begin{array}{cccc}
\text{MC}(\Gamma(X, \text{Mix}_U(\mathcal{T}_\text{poly}, X)))[[h]]^+ & \xrightarrow{\text{MC}(\Psi_{\sigma,1})} & \text{MC}(\Gamma(X, \text{Mix}_U(\mathcal{D}_\text{poly}, X)))[[h]]^+) \\
\downarrow \text{MC}(f^*) & & \downarrow \text{MC}(f^*) \\
\text{MC}(\Gamma(X', \text{Mix}_U(\mathcal{T}_\text{poly}, X')))[[h]]^+ & \xrightarrow{\text{MC}(\Psi_{\sigma',1})} & \text{MC}(\Gamma(X', \text{Mix}_U(\mathcal{D}_\text{poly}, X')))[[h]]^+
\end{array}
\]

This proves property (ii).

Step 5. Finally we must show that \(Q\) preserves first order terms, i.e. property (i). Let

\[\alpha = \sum_{j=1}^{\infty} \alpha_j h^j \in \mathcal{T}_\text{poly}(X)^1[[h]]^+\]

be an MC solution, and let

\[\beta = \sum_{j=1}^{\infty} \beta_j h^j \in \mathcal{D}_\text{poly}(X)^1[[h]]^+\]

be an MC solution such that \(\beta = Q(\alpha)\) modulo gauge equivalence. This means that there exists some

\[\gamma = \sum_{k \geq 1} \gamma_k h^k \in \Gamma(X, \text{Mix}_U(\mathcal{D}_\text{poly}, X))^0[[h]]^+\]

such that

\[\sum_{j \geq 1} \frac{1}{j} \Psi_{\sigma,j}(\alpha^j) \exp(af)(\exp(\gamma))(\beta),\]

with notation as in [Ye1, Lemma 3.2]. Cf. [Ye1, Theorem 3.8]. In the first order term (i.e. the coefficient of \(h^1\)) of this equation we have

(1.18) \(\Psi_{\sigma,1}(\alpha_1) = \beta_1 - (d_{\text{mix}} + d_{\mathcal{D}})(\gamma_1)\);

see [Ye1, equation (3.3)].

In order to apply Lemma 1.16(2), we are interested in the component of \(\Psi_{\sigma,1}(\alpha_1)\) living in the summand \(\text{Mix}_U(\mathcal{T}_1, X)\). But this is exactly

\[\text{gr}_G(\Psi_{\sigma,1})(\alpha_1) \in \text{gr}_G(\text{Mix}_U(\mathcal{T}_1, X)) = \text{Mix}_U^0(\mathcal{D}_1, X).\]

Since according to Theorem 1.2 we have

\[\text{gr}_G^0(\Psi_{\sigma,1}) = \text{gr}_G^0(\text{Mix}_U(U_1)),\]

it follows that the component we are interested in is

\[\text{gr}_G^0(\text{Mix}_U(U_1))(\alpha_1) = U_1(\alpha_1).\]

Now take any two local sections \(f, g \in O_X\). Using Lemma 1.16 we get

\[[[\Psi_{\sigma,1}(\alpha_1), f], g] = [[U_1(\alpha_1), f], g] = U_1(\alpha_1)(g, f) - U_1(\alpha_1)(f, g) = -2\alpha_1(f, g),\]

and

\[[[\beta_1, f], g] = \beta_1(g, f) - \beta_1(f, g)\]

and

\[[[(d_{\text{mix}} + d_{\mathcal{D}})(\gamma_1), f], g] = 0.\]

Combining these equations with equation (1.18) we see that equation (1.15) indeed holds. So the proof is done. \[\square\]
Corollary 1.19. Let X be an irreducible smooth separated \mathbb{K}-scheme. Assume X is \mathcal{D}-affine. Then the quantization map Q of Theorem 1.14 may be interpreted as a canonical function

$$Q : \left\{ \text{formal Poisson structures on } X \right\}_{\text{gauge equivalence}} \rightarrow \left\{ \text{deformation quantizations of } \mathcal{O}_X \right\}_{\text{gauge equivalence}}.$$

The quantization map Q preserves first order terms, and commutes with étale morphisms $f : X' \rightarrow X$. If X is affine then Q is bijective.

Proof. By definition the left side is $\text{MC}(\mathcal{T}_{\text{poly}}(X)[[\hbar]]^+)$. On the other hand, according to [Ye1, Theorem 1.13] every deformation quantization of \mathcal{O}_X can be trivialized globally, and by [Ye1, Proposition 1.14] any gauge equivalence between globally trivialized deformation quantizations is a global gauge equivalence. Hence the right side is $\text{MC}(\mathcal{D}_{\text{nor}}_{\text{poly}}(X)[[\hbar]]^+)$. \qed

2. Miscellaneous Errors

Here is a list of minor errors in the paper [Ye1].

1. Section 3, bottom of page 395: the formula should be

$$\text{af}(\gamma)(\omega) := [\gamma, \omega] - d(\gamma) = \text{ad}(\gamma)(\omega) - d(\gamma) \in \mathfrak{m} \otimes \mathfrak{g}^1,$$

2. Definition 5.2, page 411: the formula should be

$$\nabla_P : \mathcal{P}_X \rightarrow \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{P}_X.$$

References

[CKTB] A. Cattaneo, B. Keller, C. Torossian and A. Bruguières, “Déformation, Quantification, Théory de Lie”, Panoramas et Synthèses 20 (2005), Soc. Math. France.

[Ko] M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157-216.

[VdB] M. Van den Bergh, On global deformation quantization in the algebraic case, J. Algebra 315 (2007), 326-395.

[Ye1] A. Yekutieli, Deformation Quantization in Algebraic Geometry, Adv. Math. 198 (2005), 383-432.

[Ye2] A. Yekutieli, Mixed Resolutions and Simplicial Sections, to appear in Israel J. Math. Eprint math.AG/0502206 at http://arxiv.org

[Ye3] A. Yekutieli, Continuous and Twisted L^∞ Morhpisms, J. Pure Appl. Algebra 207 (2006), 575-606.

[Ye4] A. Yekutieli, An Averaging Process for Unipotent Group Actions, Representation Theory 10 (2006), 147-157.

A. YEKUTIELI: DEPARTMENT OF MATHEMATICS BEN GURION UNIVERSITY, BE‘ER SHEVA 84105, ISRAEL

E-mail address: amyekut@math.bgu.ac.il