Electromagnetic Time Reversal Algorithms and Source Localization in Lossy Dielectric Media

Abdul Wahab,1,* Amer Rasheed,1,† Tasawar Hayat,2,3,‡ and Rab Nawaz1,§

1Department of Mathematics, COMSATS Institute of Information Technology, 47040, Wah Cantt., Pakistan
2Department of Mathematics, Quaid-i-Azam University, 45320, Islamabad, Pakistan
3Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

(Rceived March 27, 2014)

Abstract The problem of reconstructing the spatial support of an extended radiating electric current source density in a lossy dielectric medium from transient boundary measurements of the electric fields is studied. A time reversal algorithm is proposed to localize a source density from loss-less wave-field measurements. Further, in order to recover source densities in a lossy medium, we first build attenuation operators thereby relating loss-less waves with lossy ones. Then based on asymptotic expansions of attenuation operators with respect to attenuation parameter, we propose two time reversal strategies for localization. The losses in electromagnetic wave propagation are incorporated using the Debye’s complex permittivity, which is well-adopted for low frequencies (radio and microwave) associated with polarization in dielectrics.

PACS numbers: 02.30.Zz, 02.60.Cb, 03.50.De, 41.20.Jb, 42.30.Wb, 42.81.Dp

Key words: time reversal, electromagnetic waves, inverse source problem, Debye’s law, attenuation operators

1 Introduction

Time reversal algorithms have been an important tool to solve inverse problems in science and engineering since their premier applications.1–3 These algorithms exploit the time invariance and the reciprocity of non-attenuating waves which substantiate that a wave travels through a loss-less medium and converges at the location of its source (scatterer, reflector, or emitter) on re-emission after reversing the time using transformation \(t \rightarrow t_{\text{final}} - t \). The idea has been successively used in telecommunication,4–6 biomedical imaging,7 inverse scattering theory,8–10 non-destructive evaluation,11–12 and prospecting geophysics13 for instance.

The robustness and simplicity of time-reversal techniques make them an impressive choice to resolve source localization problems. These problems have been the subject of numerous studies over the recent past due to a plethora of applications in diverse domains, especially in biomedical imaging, non destructive testing and geophysics, see for instance Refs. [14–24] and references therein. Several frameworks to recover spatial support of the stationary acoustic, elastic and electromagnetic sources in time and frequency domain have been developed,16–17,22,25 including time reversal algorithms.1,9–11,14–15,20 The inverse source problems are ill-posed having non-uniqueness issues generally due to the presence of non radiating sources,22,24,26 The stability and localization of radiating electromagnetic sources with single frequency, multiple frequency and complete frequency bandwidth as well as transient data have been studied extensively, refer for instance to Refs. [24, 26–30].

An interesting problem in imaging is to model and compensate for the effects of wave attenuation on image quality. Most of the imaging techniques either emphasize a non-attenuating medium or do not adequately incorporate underlying phenomenon in reconstruction algorithms. As a consequence, one retrieves erroneous or less accurate wave synthetics which produce serious blurring in reconstructed images. This is further blended with intrinsic instability and uncertainty of the reconstruction. All together, these effects complicate attempts to track the key features of the image and result in unfortunate information loss, refer to Ref. [31] for a detailed account of attenuation artifacts in imaging.

This investigation aims to establish time reversal algorithms for isotropic dielectric lossy media thereby retrieving extended radiating current sources using transient measurements of the electric field over an imaging domain in attenuating environment.

Unfortunately, the time-reversibility of waves is forsaken in lossy media thereby impeding classical time reversal algorithms to be applicable. Recently, Ammari et al.14–19 have extended the time reversal algorithms to attenuating acoustic and elastic media and to inverse source...
problems using asymptotic expansions of so-called attenuation maps with respect to attenuation parameters. Considering Stoke’s thermo-viscous wave model for attenuation two algorithms are implemented in acoustic and elastic media. First an adjoint wave time reversal algorithm is established wherein the adjoint lossy wave is re-emitted into the medium. However, since the adjoint lossy wave is explosive in nature, indeed due to the exponentially growing component of the respective adjoint Green functions with frequency, a regularization using frequency truncation of the attenuation maps is discussed. Then, a pre-processing time reversal algorithm is established based on a higher order asymptotic development with respect to attenuation parameter by virtue of stationary phase theorem. The asymptotic expansion is utilized to filter the attenuated measurements and subsequently the classical time reversal algorithm is invoked to back propagate the data. Since, the considered attenuation model lacks the causality property, the results of these studies were extrapolated to more realistic causal power-law type attenuation models and were combined with variant time reversal strategies by Scherzer[32] and Kower.[33]

In this work, we concentrate on Debye’s complex permittivity model for attenuation and leave the discussion on causality of the model and its generalizations to power-law models for future. Two situations are taken into account. We begin with a non-attenuating medium and afterwards focus on extended source recovery when the medium is lossy and obeys the Debye’s law. We follow the approach by Ammari et al.[15] for constructing imaging functions. In order to achieve time reversal in lossy media, the so-called attenuation maps are identified and their asymptotic developments with respect to Debye’s attenuation parameter are established informally. The formal developments can still be achieved using theorem of stationary phases or of steepest descent as in Refs. [17, 32, 34], and will not be discussed.

The investigation is sorted in the following order. A few preliminary results and some key identities are collected in Sec. 2. In Sec. 3, an electromagnetic source is retrieved using transient measurements of the electric field in a lossless medium. Section 4 is dedicated to the construction of attenuation maps. Their asymptotic expansions are derived and lossy time reversal algorithms are established. A few numerical illustrations are provided in Sec. 5 to elucidate the pertinence of imaging functions proposed in this work. The principle contributions of the investigation are finally summarized in Sec. 6.

2 Preliminaries
Let \(\Omega \subset \mathbb{R}^d \), \(d = 3 \), be an open bounded domain with a Lipschitz boundary \(\Gamma \). Consider the time-dependent homogeneous linear Maxwell equations

\[
\begin{align*}
\nabla \times E_0(x, t) + \mu_0 \frac{\partial H_0}{\partial t}(x, t) &= 0, \quad (x, t) \in \mathbb{R}^d \times \mathbb{R}, \\
\nabla \times H_0(x, t) - \epsilon_0 \frac{\partial E_0}{\partial t}(x, t) &= \delta_0(t) J(x), \quad (x, t) \in \mathbb{R}^d \times \mathbb{R},
\end{align*}
\]

subject to the Silver–Müller radiation conditions

\[
\begin{align*}
0 &= \lim_{|\hat{x}| \to \infty} \left| \begin{array}{c}
\sqrt{\mu_0} \hat{H}_0 \times \hat{x} - \sqrt{\epsilon_0} \hat{E}_0 \\
\sqrt{\epsilon_0} \hat{E}_0 \times \hat{x} + \sqrt{\mu_0} \hat{H}_0
\end{array} \right|.
\end{align*}
\]

Consequently, the time-harmonic fields \(\hat{E}_0 \) and \(\hat{H}_0 \) then satisfy the Helmholtz equations

\[
\begin{align*}
\nabla \times \nabla \times \hat{E}_0 - k_0^2 \hat{E}_0 &= -i \omega \mu_0 J(x), \quad x \in \mathbb{R}^d, \\
\nabla \times \nabla \times \hat{H}_0 - k_0^2 \hat{H}_0 &= \nabla \times J(x), \quad x \in \mathbb{R}^d,
\end{align*}
\]

subject to the outgoing radiation conditions (5).

2.1 Electromagnetic Fundamental Solutions
In order to derive a time reversal algorithms for electromagnetic source imaging and to analyze their localization properties, we recall electromagnetic fundamental solutions and discuss some of their important features and properties.
Let $\hat{G}_0^{ee}(x, \omega)$ and $\hat{G}_0^{me}(x, \omega)$ be the outgoing electric-electric and magnetic-electric time-harmonic Green functions for the Maxwell equations in \mathbb{R}^d, that is, for all $x \in \mathbb{R}^d$

$$\nabla \times \hat{G}_0^{ee}(x, \omega) - i\omega \mu_0 \hat{G}_0^{me}(x, \omega) = 0,$$

$$\nabla \times \hat{G}_0^{me}(x, \omega) + i\omega \epsilon_0 \hat{G}_0^{ee}(x, \omega) = \delta(x),$$ (7)

where I is $d \times d$ identity matrix. It is well-known, see for instance Refs. [35–36], that for all $x \neq 0$

$$\hat{G}_0^{ee}(x, \omega) = i\omega \mu_0(I + \frac{1}{\kappa_0} \nabla \nabla) \delta(x),$$ (8)

$$\hat{G}_0^{me}(x, \omega) = -\nabla \times I \delta(x),$$

where $\delta(x)$ is the fundamental solution to the Helmholtz operator $-(\Delta + \kappa_0^2)$ in \mathbb{R}^d, subject to Sommerfeld’s outgoing radiation conditions, given by

$$\delta(x) = \left\{ \begin{array}{ll}
\frac{1}{4\pi|x|} \exp\{i\kappa_0|x|\}, & x \neq 0, \ x \in \mathbb{R}^2, \\
0, & x \neq 0, \ x \in \mathbb{R}^3,
\end{array} \right.$$ (9)

where $H_0^{(1)}$ is the zeroth order Hankel function of first kind.

Let us define $G_0^{ee}(x, t)$ and $G_0^{me}(x, t)$ for all $x \in \mathbb{R}^d$, and $t \in \mathbb{R}$ by

$$G_0^{ee}(x, t) = F^{-1}[\hat{G}_0^{ee}(x, \omega)](t) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{G}_0^{ee}(x, \omega) e^{i\omega t} d\omega,$$ (10)

$$G_0^{me}(x, t) = F^{-1}[\hat{G}_0^{me}(x, \omega)](t) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{G}_0^{me}(x, \omega) e^{i\omega t} d\omega.$$ (11)

\textbf{Spatial Reciprocity.} It can be proved for isotropic dielectrics (see for instance Ref. [13]) that for all $x, y \in \mathbb{R}^d, x \neq y$ and $t \in \mathbb{R}$,

$$G_0^{ee}(x - y, t) = G_0^{ee}(y - x, t),$$

$$G_0^{me}(x - y, t) = G_0^{me}(y - x, t).$$ (12)

\textbf{The following identities from Ref. [37] are the key ingredients to elucidate the localization property of the imaging algorithms proposed in the subsequent sections.}

\textbf{Lemma 1} (Electromagnetic Helmholtz–Kirchhoff identity)

Let $B(0, R)$ be an open ball in \mathbb{R}^d with large radius $R \rightarrow \infty$ and boundary $\partial B(0, R)$. Then, for all $x, y \in \mathbb{R}^d$, we have

$$\lim_{R \rightarrow +\infty} \int_{\partial B(0, \gamma)} G_0^{ee}(x - \xi, \omega) \overline{G_0^{me}(\xi - y, \omega)} d\sigma(\xi)$$

$$= \mu_0 c_0 \Re\{ \hat{G}_0^{ee}(x - y, \omega) \},$$

where the superposed bar indicates a complex conjugate.

\textbf{Lemma 2} For all $x, y \in \mathbb{R}^d, x \neq y$,

$$\frac{\epsilon_0}{2\pi} \int_{\mathbb{R}} \Re\{ \hat{G}_0^{ee}(x - y, \omega) \} d\omega = \delta_\omega(y) I.$$

\section{Source Reconstruction in Ideal Media}

Assume that we are able to collect the fields E_0 and H_0 for all $(x, t) \in \Gamma \times [0, T]$, for T sufficiently large. If both components on Γ are time-reversed from the final time T (using transformation $t \rightarrow T - t$) and re-emitted from Γ, two fields propagate inside Ω in time reverse chronology converging towards the source $J(x)$ as $T \rightarrow 0$. The ultimate goal of this section is to use the convergence of the back-propagating fields to identify support of the current density $J(x)$. Precisely, the problem under consideration is the following:

\textbf{Inverse Source Problem.} Given the measurements of the electric and magnetic fields, E_0 and H_0 satisfying Eq. (1), over $\Gamma \times [0, T]$, for T sufficiently large, find the support, $\text{supp}\{J\}$, of the current source density J.

\subsection{Time Reversal of the Electric Field}

In the rest of this contribution, we concentrate only on the time reversal imaging functions related to the electric field E_0 in order to identify $\text{supp}\{J\}$. The case of magnetic field can be dealt with analogously.

Let us introduce an adjoint wave E_0^a, for a fixed $s \in [0, T]$, satisfying

$$\nabla \times \nabla \times E_0^a(x, t) + \frac{1}{\epsilon_0} \frac{\partial^2}{\partial t^2} E_0^a(x, t)$$

$$= -\mu_0 \sigma(x, T - s) \frac{\partial \delta_s}{\partial t} \chi_\Lambda, \ (x, t) \in \mathbb{R}^d \times \mathbb{R},$$

$$E_0^a(x, t) = 0 \quad \text{and} \quad \frac{\partial E_0^a}{\partial t}(x, t) = 0, \ x \in \mathbb{R}^d, \ t \ll s,$$ (13)

where χ_Λ is the characteristic function of Γ and the data set

$$W_s = \{ d_s(x, t) : = E_0(x, t), \forall (x, t) \in \Gamma \times [0, T] \},$$

contains the electric field E_0 where T is large enough so that electric field and its time derivative almost vanish identically.

By definition, the adjoint wave can be represented for all $(x, t) \in \mathbb{R}^d \times \mathbb{R}$ as,

$$E_0^a(x, t) = -\int_{\Gamma} G_0^{ee}(x - \xi, t - s) d_s(\xi, T - s) d\sigma(\xi).$$ (14)

Each one of these waves is associated with a datum collected at a particular time instance $t = s$ and therefore contributes to the reconstruction of the source on re-emission. In order to gather all the information about source distribution, we add up the adjoint waves E_0^a for all $s \in [0, T]$. Precisely, we define a time reversal imaging function by

$$J_0(x) : = \frac{\epsilon_0}{\mu_0 c_0} \int_0^T E_0^a(x, T) d\omega, \ x \in \Omega,$$ (15)

and claim that $J_0(x) \approx J(x)$. Indeed, we have the following theorem.

\textbf{Theorem 1} Let J_0 be the time reversal functional defined by Eq. (15). For all $x \in \Omega$ far from the boundary Γ (compared to the wavelength),

$$J_0(x) \approx J(x).$$
Proof} Notice that since \(\mathbf{J} \) is compactly supported in \(\Omega \), and \(T \) is sufficiently large so that the field is negligible outside \([0, T]\),
\[
\mathcal{J}_\epsilon(x, \omega) = \mathcal{F}[\mathcal{J}_\epsilon(x)](\omega) = \mathcal{F}[\mathbf{E}_0(\xi, \omega)](\mathcal{G}_0, \mathcal{G}_a, \mathcal{G}^\text{ee}, \mathcal{\hat{G}}_a, \mathcal{G}^\text{ee})\text{.}
\]

We consider a Debye law to incorporate losses in wave propagation, which is suitable for low frequencies (radio to microwave) associated with polarization in dielectrics.\(^{[5–6,38]}\) We will only consider the electric case.

Let \(\mathbf{E}_a(x, \omega) \) be the electric field in a lossy dielectric medium, that is, the solution to
\[
\nabla \times \nabla \times \mathbf{E}_a(x, \omega) = - i \omega \mu_0 \mathbf{J}(x)\text{,}
\]

subject to Sommerfeld radiation condition,
\[
\lim_{|x| \to \infty} |x| \nu \times \nabla \times \mathbf{E}_a(x, \omega) = 0\text{.}
\]

where \(\kappa_a^\omega(\omega) = \omega \sqrt{\mu_0 \epsilon_\infty} \) is the wave-number defined in terms of the Debye’s complex permittivity:
\[
\epsilon_a^\omega = \epsilon_\infty + \epsilon_s - \epsilon_\infty \frac{i \sigma}{\Gamma + i \omega} \frac{1}{\omega \epsilon_0}\text{.}
\]

Now invoking Lemma 1, we obtain
\[
- \frac{\epsilon_0}{\mu_0} \int \int_{[0, T]} \mathcal{G}_0^\text{ee}(x, \xi, t - s) \times \mathcal{J}_\epsilon(x, \omega) \times \omega \text{d} \sigma(\xi) \text{d} \omega
= - \frac{\epsilon_0}{2\pi \mu_0} \int \int_{R^d \times R^d} \hat{\mathcal{G}}_0^\text{ee}(x, \xi, \omega) \times \hat{\mathcal{J}}_\epsilon(\xi, \omega) \times \omega \text{d} \sigma(\xi) \text{d} \omega
\]

Now invoking Lemma 1, we obtain
\[
\frac{1}{\mu_0} \int \mathcal{G}_0^\text{ee}(x, \xi, \omega) \mathcal{G}_a^\text{ee}(\xi - y, \omega) \text{d} \sigma(\xi)
\]

and therefore we have
\[
\mathcal{J}_\epsilon(x) \approx \frac{\epsilon_0}{2\pi} \int \mathcal{G}_0^\text{ee}(x, \xi, \omega) \mathcal{G}_a^\text{ee}(\xi - y, \omega) \text{d} \omega \times \mathcal{J}_\epsilon(y) \text{d} y
\]

where we have used the identity
\[
\frac{\epsilon_0}{2\pi} \int \mathcal{G}_0^\text{ee}(x, \xi, \omega) \text{d} \omega = \delta_x(y) \text{I},
\]

from Lemma 2.

\[\square\]

4 Source Reconstruction in Lossy Media

In this section, we present a time reversal strategy for imaging in lossy media. We consider a Debye law to in-
Let us also introduce operator $L_{a,\rho}$ related to $\kappa_{a,\rho}^{-1}(\omega)$ and its adjoint operator $L_{a,\rho}^*$ for all $\rho > 0$ by:

$$L_{a,\rho} : S'(\mathbb{R}) \rightarrow S'(\mathbb{R}) \quad \phi(t) \mapsto \frac{1}{2\pi} \int_{\mathbb{R}} \phi(t) \int_{|\omega|\leq \rho} \frac{\omega e^{i\omega t}}{c_0\kappa_{\omega,a}^{-1}(\omega)} \exp \{ -ic_0\kappa_{\omega,a}^{-1}(\omega)\tau \} \mathrm{d}\omega \mathrm{d}\tau,$$

$$L_{a,\rho}^* : S'(\mathbb{R}) \rightarrow S'(\mathbb{R}) \quad \phi(t) \mapsto \frac{1}{2\pi} \int_{|\omega|\leq \rho} \frac{\omega}{c_0\kappa_{\omega,a}^{-1}(\omega)} \left(\int_{|\tau|\leq \rho} \phi(\tau) e^{i\omega \tau} \mathrm{d}\tau \right) \exp \{ -ic_0\kappa_{\omega,a}^{-1}(\omega)t \} \mathrm{d}\omega. \quad (23)$$

We extend operators $L_{\rho}, L_{a,\rho},$ and $L_{a,\rho}^*$ to C_0^∞, that is, for all constant vectors $p \in \mathbb{R}^d$, we define

$$L_{\rho}[G_0^\infty]p = L_{\rho}[G_0^\infty]p,$$

$$L_{a,\rho}[G_0^\infty]p = L_{a,\rho}[G_0^\infty]p,$$

$$L_{a,\rho}^*[G_0^\infty]p = L_{a,\rho}^*[G_0^\infty]p.$$

4.2 Asymptotic Analysis of Attenuation Operators

We assume that the attenuation parameter a is sufficiently small compared to the wavelength (denoted by λ), that is,

$$a < c_0\lambda^{-1} = : \lambda.$$

For brevity, we consider the case of a non-conductive medium, that is, $\sigma = 0$. Henceforth, we drop the superscript from κ_a and $\kappa_{a,\rho}$ for simplicity. Then

$$c_0\kappa_{a}(\omega) = \frac{\omega}{c_0} \sqrt{\epsilon_0 + \frac{\epsilon_0 - \epsilon_{\infty}}{1 + i\omega a}} \sim \frac{\omega}{\sqrt{\epsilon_0}} \sqrt{\epsilon_0 + \epsilon_0 - \epsilon_{\infty}} [1 - (i\omega a) + o(\omega a)]$$

(i) Up to leading order of attenuation parameter a

$$L_{\rho}[\phi](t) \simeq \frac{1}{\gamma^2} \phi \left(\frac{t}{\gamma} \right) + \frac{\beta a}{2\gamma^2} \left[\phi'(t) + (\phi')'' \right] \left(\frac{t}{\gamma} \right) \quad \text{as} \quad a \to 0.$$

(ii) For all $\rho > 0$, up to leading order of attenuation parameter a

$$L_{a,\rho}^*[\phi](t) \simeq \frac{1}{\gamma} \mathcal{P}_{\rho}[\phi](\gamma t) - \frac{\beta a}{2\gamma} \mathcal{P}_{\rho}[\phi'(t) + (\phi')''(t)](\gamma t) \quad \text{as} \quad a \to 0.$$

(iii) For all $\rho > 0$, up to leading order of attenuation parameter a

$$L_{a,\rho}^*[L_{\rho}[\phi](t)] \simeq \frac{1}{\gamma^3} \mathcal{P}_{\rho}[\phi](t) + o(a),$$

where \mathcal{P}_{ρ} is defined by

$$\mathcal{P}_{\rho} : S'(\mathbb{R}) \rightarrow S'(\mathbb{R}) \quad \phi(t) \mapsto \frac{1}{2\pi} \int_{|\omega|\leq \rho} e^{-i\omega t} \mathcal{F}[\phi](\omega) \mathrm{d}\omega. \quad (24)$$

Proof We prove only Statements 1 and 2. Statement 3 is an immediate consequence of Statements 1 and 2.

(i) As $a \to 0$ the attenuation operator L_{ρ} can be approximated by:

$$L_{\rho}[\phi](t) \simeq \frac{1}{2\pi \gamma} \int_{\mathbb{R}} \left(1 + i\frac{\beta}{2} \omega a \right) \left(\int_{\mathbb{R}} e^{-\gamma(\beta/2)\omega a^2 \tau^2} \phi(\tau) e^{-i\omega t \tau} \mathrm{d}\tau \right) e^{i\omega t} \mathrm{d}\omega + o(a)$$

$$\simeq \frac{1}{2\pi \gamma} \int_{\mathbb{R}} \left(1 + i\frac{\beta}{2} \omega a \right) \left(\int_{\mathbb{R}} e^{-\gamma(\beta/2)\omega a^2 \tau^2} \phi(\tau) e^{-i\omega t \tau} \mathrm{d}\tau \right) e^{i\omega t} \mathrm{d}\omega + o(a)$$

$$\simeq \frac{1}{2\pi \gamma} \int_{\mathbb{R} \times \mathbb{R}^+} \phi(\tau) e^{-i\omega t \tau} e^{i\omega \tau} \mathrm{d}\omega + \frac{\beta a}{2\gamma} \int_{\mathbb{R}} \int_{\mathbb{R}} \phi(\tau) e^{-i\omega \tau} e^{i\omega t} \mathrm{d}\tau \mathrm{d}\omega$$

$$+ \frac{\beta a}{2\pi \gamma} \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |\phi(\tau)| e^{-i\omega \tau} e^{i\omega t} \mathrm{d}\tau \mathrm{d}\omega + o(a) \right) \simeq \frac{1}{\gamma^2} \phi \left(\frac{t}{\gamma} \right) + \frac{\beta a}{2\gamma^2} \left[\phi'(t) + (\phi')'' \right] \left(\frac{t}{\gamma} \right) + o(a),$$

which is the required result.

(ii) Let the support of ϕ be contained in $[0, t_{\max}] \subseteq [0, \infty)$. As $a \to 0$ the operator $L_{a,\rho}^*$ can be approximated by:

$$L_{a,\rho}^*[\phi](t) \simeq \frac{1}{2\pi \gamma} \int_{|\omega|\leq \rho} \frac{\omega}{c_0k_{\omega,a}^{-1}(\omega)} \exp \{ -ic_0k_{\omega,a}^{-1}(\omega)t \} \left(\int_{0}^{t_{\max}} \phi(\tau) e^{i\omega \tau} \mathrm{d}\tau \right) \mathrm{d}\omega + o(a)$$
where we have made use of the approximation of lossy wavenumber \(\kappa_{-a} \) for \(a \ll c \omega^{-1} \).

On further simplifications, we arrive at

\[
\mathcal{L}_{-a,\rho}^{\ast} \phi(\cdot)(t) \simeq \frac{1}{2\pi \gamma} \int_{[\rho,\rho] \times [0, t_{\text{max}}]} \left(1 - \frac{i \beta_2}{2} \omega a \right) e^{\gamma (\beta/2) \omega \tau^t} \phi(\tau) e^{-i \gamma \omega t + i \omega \tau} d\tau d\omega + o(a)
\]

\[
\simeq \frac{1}{2\pi \gamma} \int_{[\rho,\rho] \times [0, t_{\text{max}}]} \left(1 - \frac{i \beta_2}{2} \omega a \right) \left(1 + \gamma \frac{2}{2} \omega \omega t \right) \phi(\tau) e^{-i \gamma \omega t + i \omega \tau} d\tau d\omega + O(a)
\]

\[
\simeq \frac{1}{2\pi \gamma} \int_{[\rho,\rho] \times [0, t_{\text{max}}]} \phi(\tau) e^{-i \gamma \omega t + i \omega \tau} d\tau d\omega - \frac{\beta a}{2 \pi \gamma} \int_{[\rho,\rho]} i \omega \int_{R^+} \phi(\tau) e^{-i \gamma \omega t + i \omega \tau} d\tau d\omega.
\]

Finally on introducing the operator \(\mathcal{P}_\rho \), we arrive at

\[
\mathcal{L}_{-a,\rho}^{\ast} \phi(\cdot)(t) \simeq \frac{1}{\gamma} \mathcal{P}_\rho \phi(\cdot)(\gamma t) - \frac{\beta a}{2 \gamma^2} \mathcal{P}_\rho [\phi' + (t \phi)''](\gamma t) + o(a).
\]

\[\square\]

Remark 1 We precise that the Lemma 3, can be proved formally using the argument of stationary phase theorem or steepest decent theorem as in Refs. [17, 32, 34].

4.3 Time Reversal of the Electric Field in Lossy Media

Suppose we are able to collect the attenuated electric field, \(\mathbf{E}_a \), for all \(t \in [0, T] \) over \(\Gamma \), that is we are in possession of the data set

\[W_{e,a} : = \{ \mathbf{d}_{e,a}(x, t) : = \mathbf{E}_a(x, t) : (x, t) \in \Gamma \times [0, T] \}. \]

If we simply time-reverse and re-emit the measured data \(\mathbf{d}_{e,a} \) in attenuating medium, the electric field is attenuated twice, that is, both in direct and back-propagation. Therefore, resolution of the reconstruction, when localizing the spatial support of the sources, is forsaken. In this section, we present two time reversal strategies for localizing supp\(\{ \mathbf{J} \} \) in a lossy medium.

(i) **Adjoint Operator Approach**

In order to compensate for losses, we back propagate the measured data using the adjoint wave operator. Unfortunately, the adjoint wave problem is severely ill-posed, somewhat similar phenomenon was observed in acoustic and elastic media. Therefore, high frequencies must be suppressed as in the acoustic and elastic cases; refer to Ref. [31] Remark 2.3.6. More precisely, let

\[\mathcal{E}_{a}^* (x, t) := \mathcal{F}^{-1} \mathcal{E}_{a}^* (\xi, -\tau) \]

be the adjoint (time reversed) field corresponding to datum \(\mathbf{d}_{e,a}(x, t) \) at time \(t = s \) propagating inside the medium, where \(\mathbf{E}_{a}^* (x, \omega) \) is the solution to adjoint lossy Helmholtz equation

\[
(\nabla \times \nabla \times \mathbf{E}_{a}^* - \kappa_{a}^2 \mathbf{E}_{a}^*) (x, \omega) = -i \omega \mu_0 \mathbf{d}_{e,a}(x, \omega) \chi_{T} (x),
\]

\((x, \omega) \in \mathbb{R}^3 \times \mathbb{R} \),

and let

\[\mathbf{E}_{a,\rho}^*(x, t) : = \mathcal{P}_\rho [\mathbf{E}_{a}^*(x, \cdot)](t), \]

where \(\rho \) is the cutoff frequency. Here \(\rho \) is chosen in such a way that \(\mathbf{E}_{a,\rho}^* \) does not explode whereas the resolution of the time reversal algorithm remains reasonably intact, refer to Ref. [31] for further details. The aim of this section is to justify that \(\mathcal{J}_{a,\rho}(x) \) is an approximation of \(\mathbf{J}(x) \) up to leading order of Debye’s loss parameter \(a \), when \(\rho \to +\infty \), where

\[\mathcal{J}_{a,\rho}(x) : = \frac{\epsilon_0 \gamma^3}{\mu_0 c_0} \int_{0}^{T} \mathbf{E}_{a,\rho}^*(x, t) ds, \quad \forall x \in \Omega . \]

We conclude this subsection with the following key result. It simply states that the adjoint operator approach provides a localization of the supp\(\{ \mathbf{J} \} \) with a correction to the attenuation effects up to leading order of the damping parameter \(a \).

Theorem 2 For all \(x \in \Omega \) sufficiently far from \(\Omega \), compared to wavelength, the truncated time-reversal imaging functional \(\mathcal{J}_{a,\rho} \) satisfies

\[\mathcal{J}_{a,\rho}(x) \to \mathcal{J}_{0,\rho}(x) + O(a) , \]

where

\[\mathcal{J}_{0,\rho}(x) : = - \frac{\epsilon_0}{\mu_0 c_0} \int_{[0, T] \times \Gamma} \mathcal{G}_0^c (x - \xi, \tau) \]

\[\times \mathcal{P}_\rho [\mathbf{d}_{e,\rho}(\xi, \cdot)](\tau) d\sigma(\xi) d\tau . \]

Moreover,

\[\mathcal{J}_{0,\rho}(x) \to \mathcal{J}(x) \quad \text{as} \quad \rho \to +\infty . \]

Proof Notice that

\[G_{-a,\rho}^c (x, t) : = \mathcal{P}_\rho [G_{a}^c(x, \cdot)](t) \]

\[= \mathcal{L}_{-a,\rho}[\mathbf{d}_{e,\rho}(\xi, \cdot)](s) ds d\sigma(\xi) . \]

By virtue of Eq. (26), \(\mathcal{J}_{a,\rho}(x) \) can be rewritten in the form

\[\mathcal{J}_{a,\rho}(x) = - \frac{\epsilon_0 \gamma^3}{\mu_0 c_0} \int_{\Gamma \times [0, T]} \mathcal{G}_0^c (x - \xi, s) \mathcal{L}_{-a,\rho}[\mathbf{d}_{e,\rho}(\xi, \cdot)](s) ds d\sigma(\xi) . \]
Remark as well that $d_{e,a}(x,t) = \mathcal{L}_a[d_e(x,\cdot)](t)$, where $d_e(x,t)$ represents the ideal data, so that

$$
\mathcal{J}_{a,\rho}(x) = - \frac{\epsilon_0}{\mu_0 c_0} \int_{\Gamma \times [0,T]} C^{ee}_0(x - \xi, s) \mathcal{L}_{-a,\rho}^{-*}[\mathcal{L}_a[d_e(\xi,\cdot)]](s) \, ds \, d\sigma(\xi),
$$

where x is far away from the boundary Γ. The conclusion follows immediately.

(ii) Pre-processing Approach

According to Lemma 3, for weakly attenuating media up to leading order

$$
\mathcal{L}_a[\phi(\cdot)](t) \approx \frac{1}{\gamma^2} \phi \left(\frac{t}{\gamma} \right) + \frac{\beta a}{2\gamma^2} (\phi'' + (t\phi)') \left(\frac{t}{\gamma} \right).
$$

(27)

Therefore, its first order approximate inverse, $\mathcal{L}_{a,1}^{-1}$, can be given by

$$
\mathcal{L}_{a,1}^{-1}[\phi(\cdot)](t) = \frac{1}{\gamma} \phi(\gamma t) - \frac{\beta a}{2\gamma^2} \phi'((t\phi)'(\gamma t).
$$

(28)

In the similar fashion, using higher order asymptotic expansions, k^{th} order approximate inverse $\mathcal{L}_{a,k}^{-1}$ can be constructed. Therefore, a pre-processing approach to time reversal can be described in two steps: refer also to Table 1:

(a) Filter the measured data in order to compensate for the attenuation effects using $\mathcal{L}_{a,k}^{-1}$.

(b) Use classical time reversal (in ideal medium) with filtered data as input.

Table 1. Algorithm 1.

Pre-processing Time Reversal Algorithm: k^{th} Order
Require: $\mathcal{W}_{e,a} = \{d_{e,a}(x,t) : = E_a(x,t) : \forall (x,t) \in \Gamma \times [0,T]\}$, $0 < a \ll c_0 \omega^{-1}$ and $k \geq 1$.
1: Procedure Filter(Pre-process $d_{e,a}(x,t)$.)
Return $d_e(x,t) : = \mathcal{L}_{a,k}^{-1}[d_{e,a}(x,\cdot)](t)$
2: End procedure
3: Procedure Time-Reversal(Evaluate $\mathcal{J}_0(x)$.)
4: For each $s \in [0,T]$ do
5: Construct $E_0^n(x,T)$ for $x \in \Omega$ using $d_e(x,t)$:
6: End for
7: Evaluate $\mathcal{J}_0(x) = \int_0^T E_0^n(x,T) \, ds$.
Return $\mathcal{J}_0(x)$.
8: End Procedure
Return $\mathcal{J}_{a,k} = \mathcal{J}_0(x) + o(a^k)$.

Remark 2

Pre-processing approach has two principle advantages over adjoint approach:

(a) It allows for higher order correction to attenuation artifacts. Indeed using higher order approximations of the operator \mathcal{L}_a, using stationary phase theorem,[34] one can iteratively construct higher order pseudo-inverse $\mathcal{L}_{a,k}^{-1}$. Consequently filtered data using $\mathcal{L}_{a,k}$ yield a k^{th} order correction for the attenuation artifacts. In this context, we refer to Refs. [15, 17, 32].

(b) It is much more stable numerically than the adjoint operator approach, as it has been observed for the case of acoustic imaging; refer to Refs. [14–15, 19, 31].

5 Numerical Illustrations

The aim here is to numerically illustrate the apposite-ness of the algorithms proposed in the previous sections. For brevity, we only consider a transverse magnetic case and let $\Omega = \Omega' \times \mathbb{R}$. In order to numerically resolve the initial value problem (2), we use a Fourier spectral splitting approach[40] together with a perfectly matched layer (PML) technique[41] to simulate a free outgoing interface blended with the Strange’s splitting method.[42]

We consider a rectangular domain $X = [-l/2, l/2] \times [-l/2, l/2]$ such that $\Omega' \subset X$ with periodic boundary conditions. For simplicity, we take $\epsilon_0 = 1 = c_0$ and $\mu_0 = 1$, and consequently $c_0 = 1 = \gamma$. Furthermore, we choose $\epsilon_\infty = 0.5$ and therefore $\beta = 0.5$. Let E_1 (resp. J_1) and E_2 (resp. J_2) are the x and y components of E_0 (resp. J). Then the system (2) can be rewritten as

$$
\frac{\partial^2 E_0}{\partial t^2}(x,t) = - \nabla \times \nabla \times E_0(x,t), \quad (x,t) \in \mathbb{R}^2 \times \mathbb{R},
$$
Let Ω be a unit disk centered at origin and place 1024 equi-distributed sensors on its boundary. We compute the electric fields over $x \in \mathbb{R}^d$, $t < 0$. The adjoint wave operator can be integrated to yield

$$u_W(x, t) = u(x) e^{-Wt} = \begin{pmatrix} E_1(x) \\ \partial_t E_1(x) + t \partial_{x_1} \partial_{x_2} E_2(x) \\ \partial_{x_1} \partial_{x_2} E_2(x) \end{pmatrix}.$$

This global algorithm can be proved stable under a standard CFL condition.\cite{40} Same approach is adopted to simulate the lossy electric fields.

Example 1 We choose Ω to be a unit disk centered at origin and place 1024 equi-distributed sensors on its boundary. We compute the electric fields over $X \times [0, T]$ with $l = 4$ and $T = 2$ and the space and time discretization steps are taken respectively $\tau = 2^{-13}T$ and $h = 2^{-9}l$. In Fig. 1, a current source reconstruction using time reversal function J_0 is compared to the initial current source density in a loss-less dielectric medium. The reconstructions clearly substantiate the accuracy and a high resolution of the time reversal algorithm J_0.

Example 2 Let Ω' to be a unit disk centered at origin and place 512 equi-distributed sensors on its boundary. We compute the electric fields over $X \times [0, T]$ with $l = 4$ and $T = 2$ and the space and time discretization steps are taken respectively $\tau = 2^{-13}T$ and $h = 2^{-9}l$. Let the Debye’s loss parameter a be 2×10^{-4}. The adjoint wave operator approach for time reversal is tested with cut-off frequencies $\rho = 15$ and $\rho = 35$ in Fig. 2. The results clearly indicate an improvement in the resolution in successive reconstructions using $J_{u, \rho}$ as compared to that using J_0.

![Fig. 1](image-url) Reconstruction of the initial current source J in a non-attenuation medium using time reversal functional J_0. Top: Initial source, Bottom: Reconstruction. Left: First component of source density, Right: Second component of source density.
without attenuation correction are blurry whereas the edges in images obtained using \(J_{a,\rho} \) are sharper than those obtained using \(J_0 \) and the contrast is relatively higher.

Fig. 2 Reconstruction of the spatial support of electric current source \(J \) in an attenuating medium with \(a = 2 \times 10^{-4} \) using time reversal. Left: \(J_1 \), Right: \(J_2 \). Top to bottom: Initial source, reconstruction using \(J_0 \) (without attenuation correction), reconstruction using \(J_{a,\rho} \) with \(\rho = 15 \) and \(\rho = 35 \), respectively.

Example 3 Let \(\Omega, I, T, \tau, \) and \(h \) be identical with Example 2 and the Debye’s loss parameter \(a \) be \(4 \times 10^{-4} \). In Fig. 3, the adjoint wave operator approach for time reversal is tested with cut-off frequencies \(\rho = 15 \) and \(\rho = 25 \). Again, the improvement in the contrast and resolution can be remarked. Albeit, as predicted in the previous sections, increasing the cut-off frequency induces numerical instability. To this end, the choice of truncation frequency \(\rho \), of course as a function of attenuation parameter, is very critical. In this regard, we refer to (Ref. [31] Remark 2.3.6) for a detailed discussion on the issue and for a threshold value of \(\rho \) rendering stability while keeping the resolution intact.
Communications in Theoretical Physics

Vol. 62

788

Fig. 3 Reconstruction of the spatial support of electric current source density \mathbf{J} in an attenuating medium with $a = 4 \times 10^{-4}$ using time reversal. Left: J_1, Right: J_2. Top to bottom: Initial source, reconstruction using J_0 (without attenuation correction), reconstruction using $J_{a,\rho}$ with $\rho = 15$ and $\rho = 25$, respectively.

6 Conclusion

In this investigation, an electromagnetic inverse source problem is tackled using transient boundary measurements of the electric field. A time reversal algorithm is established for an extended source localization in non-attenuating media. Motivated by this, two more algorithms based on time reversal framework are proposed in order to deal with the problem associated to lossy media wherein the time reversal invariance breaks down. First an adjoint wave back-propagation technique is proposed and justified using asymptotic expansions versus Debye’s attenuation parameter of some ill-conditioned attenuation maps. It is proved that this approach yields the current source density up to leading order of attenuation parameter. Then, a second approach is outlined where the lossy data are pre-processed to yield the ideal (non-attenuating) measurements and subsequently the classical time reversal algorithm is invoked to retrieve the current source density. The numerical illustrations clearly indicate the pertinence of the proposed imaging functions. For brevity, the medium is assumed to be non-conducting, but, the results extend to the case otherwise. Time reversal algorithms for inverse scattering problems in lossy dielectric media can be developed similarly and will be the subject of a fourth coming work.
References

[1] M. Fink, Physics Today 50 (1997) 34.
[2] L. Borcea, G.C. Papanicolaou, C. Tsogka, and J.G. Berryman, Inverse Problems 18 (2002) 1247.
[3] J.P. Fouque, J. Garnier, G. Papanicolaou, and K. Solna, Wave Propagation and Time Reversal in Randomly Layered Media, Springer, New York (2007).
[4] G. Lerosey, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, Radio Sci. 40 (2005) RS612.
[5] M.E. Yavuz and F.L. Teixera, IEEE Transactions on Antennas and Propagation 54 (2006) 2305.
[6] M.E. Yavuz and F.L. Teixera, IEEE Transactions on Antennas and Propagation 56 (2008) 834.
[7] M. Tanter and M. Fink, Time Reversing Waves for Biomedical Applications, In Mathematical Modeling in Biomedical Imaging I, Lecture Notes in Mathematics, Vol. 1983, Springer-Verlag, Berlin (2009) pp. 73–97.
[8] Y. Xu and L. V. Wang, Phys. Rev. Lett. 92 (2004) 033902.
[9] S. Gdoura and L. Guadarrama-Bustos, Contemporary Mathematics Vol. 548 AMS (2011) pp. 91–43.
[10] S. Gdoura, A. Wahab, and D. Lesselier, J. Phys. Conference Series, 386 (2012) Paper ID. 012010.
[11] R. Carminati, R. Pierrat, J. de Rosny, and M. Fink, Opt. Lett. 32 (2007) 3107.
[12] D. Cassereau and M. Fink, IEEE Trans. Ultrasonics, Ferroelect. Freq. Control 39 (1992) 579.
[13] K. Wapenaar, Geophysics 75 (2007) pp. SM5–SM17.
[14] H. Ammari, E. Bretin, J. Garnier, and A. Wahab, European Journal of Applied Mathematics 24 (2013) 565.
[15] H. Ammari, E. Bretin, J. Garnier, and A. Wahab, Time Reversal in Attenuating Acoustic Media, in Mathematical and Statistical Methods for Imaging, Contemporary Mathematics, Vol. 548 (2011) pp. 151-163.
[16] H. Ammari, E. Bretin, J. Garnier, and A. Wahab, SIAM J. Appl. Math. 72 (2012) 317.
[17] H. Ammari, E. Bretin, V. Jugunon, and A. Wahab, Photoviscous Modeling of Attenuating Acoustic Media, in Mathematical Modeling in Biomedical Imaging II, Lecture Notes Math., Vol. 2053, Springer, Berlin (2012) pp. 57–84.
[18] H. Ammari, E. Bretin, J. Garnier, H. Kang, H. Lee, and A. Wahab, Mathematical Methods in Elasticity Imaging, Princeton University Press, New Jersey, USA (2015), ISBN: 978-0-69116531-8.
[19] H. Ammari, J. Garnier, W. Jing, H. Kang, M. Lim, K. Solna, and H. Wang, Mathematical and Statistical Methods for Multistatic Imaging, Lecture Notes in Mathematics, Vol. 2098, Springer, Berlin (2014).
[20] H. Ammari, L. Guadarrama Bustos, P. Garapon, and H. Kang, Journal of Differential Equations 249 (2010) 1579.
[21] H. Ammari, Introduction to Mathematics of Emerging Biomedical Imaging, Math. App. Vol. 62, Springer, Berlin (2008).
[22] N.P. Valdivia, Electromagnetic Source Identification Using Multiple Frequency Information, Inverse Problems, 28(2012) Article ID 115002.
[23] C.M. Michel, M.M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. Grave de Peralta, EEG source imaging, Clinical Neurophysiology 115 (2004) pp. 2195.
[24] R.P. Porter and A.J. Devaney, Journal of Optical Society of America 72 (1982) 327.
[25] A. Lakhal and A.K. Louis, Inverse Problems 24 (2008) ID. 045020.
[26] N. Bleistein and J. Cohen, J. Math. Phys. 18 (1977) 194.
[27] R. Albanese and P.B. Monk, Inverse Problems 22 (2006) ID. 1023.
[28] G. Bao, J. Lin, and F. Triki, Journal of Differential Equations 249 (2010) 3443.
[29] J.C. Nedelec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Applied Mathematical Sciences, Vol. 144, Springer Verlag, New York (2001).
[30] A. Wahab, A. Rasheed, R. Nawaz, and S. Anjum, Localization of Extended Current Source with Finite Frequencies, Comptes Rendus Mathématique, Vol. 352(11) (2014) pp. 917–921.
[31] M.Y. Koledintseva, K.N. Rozanova, A. Orlandi, and J.L. Drewniak, Journal of Electrical Engineering 53 (2002) 97.
[32] E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford (1948).
[33] G. Strang, SIAM Journal on Numerical Analysis 5 (1968) 506.