Oriented straight lines and twistor correspondence

Maciej Dunajski
Department of Applied Mathematics and Theoretical Physics,
University of Cambridge,
Wilberforce Road,
Cambridge CB3 0WA, UK

November 15, 2004

Abstract

The tangent bundle to the \(n \)-dimensional sphere is the space of oriented lines in \(\mathbb{R}^{n+1} \). We characterise the smooth sections of \(TS^n \to S^n \) which correspond to points in \(\mathbb{R}^{n+1} \) as gradients of eigenfunctions of the Laplacian on \(S^n \) with eigenvalue \(n \). The special case of \(n = 6 \) and its connection with almost complex geometry is discussed.

1 Oriented lines in \(\mathbb{R}^{n+1} \)

Oriented geodesics in \(\mathbb{R}^{n+1} \) are straight lines. They can be parametrised by choosing a unit vector \(u \) giving a direction, and taking the position vector \(v \) of the point on the geodesic nearest to the chosen origin. A pair of vectors \((u, v) \) corresponds to the oriented line \(v + tu \), where \(t \in \mathbb{R} \). The space of oriented geodesics is then given by

\[T = \{ (u, v) \in S^n \times \mathbb{R}^{n+1}, \ u \cdot v = 0 \}. \tag{1.1} \]

For each fixed \(u \) this space restricts to a tangent plane to a unit \(n \)-sphere, and so \(T \) is just the tangent bundle \(TS^n \). We shall call \(T \) the twistor space. There exists a fix-point-free map \(\tau : T \to T \), such that \(\tau^2 = 1 \), obtained by reversing the orientation of each geodesic, i.e. \(\tau(u, v) = (-u, v) \).

Let \(p \) be a point in \(\mathbb{R}^{n+1} \) with a position vector \(p \). The oriented lines through \(p \) are parametrised by the unit \(n \)-sphere in \(T_p \mathbb{R}^{n+1} \), and therefore each \(p \) corresponds to a section \(L_p : S^n \to TS^n \) given by

\[u \to (u, s(u)), \quad \text{where} \quad s(u) = p - (p \cdot u)u. \tag{1.2} \]

Note that these sections are preserved by \(\tau \). Each section vanishes at two points, where \(\pm p \) is normal to the sphere.
1.1 Laplace sections

The Euclidean group $E(n+1)$ acts on \mathbb{R}^{n+1} and on TS^n, and $E(n+1)/so(n+1) = \mathbb{R}^{n+1}$, so the preferred sections are orbits of $so(n+1)$. The $(n+1)$-dimensional space of preferred sections of T corresponding to points in \mathbb{R}^{n+1} can be characterised as the eigenspace of the Laplacian on the n-sphere with eigenvalue n, with the vector fields being the gradients for the eigenfunctions.

Definition 1.1 The gradients of eigenfunctions of the Laplacian on S^n with eigenvalue n are called the Laplace sections of TS^n.

Theorem 1.2 There is a one-to-one correspondence between (Fig. 1)

$$\mathbb{R}^{n+1} \longleftrightarrow TS^n$$

Points \longleftrightarrow Laplace sections

Oriented lines \longleftrightarrow Points.

Proof. To complete the proof we need to show that all Laplace sections are of the form (1.2) in some coordinates. To see it consider a unit sphere S^n isometrically immersed in \mathbb{R}^{n+1}, and identify a point of S^n with a unit position vector u. Let h be the Riemannian metric on S^n induced by the Euclidean inner product on \mathbb{R}^{n+1}, and let $X, Y \in T_uS^n$.

Then

$$\nabla'_{X}Y = \nabla X Y + h(X,Y)u$$

where ∇' is the flat connection on \mathbb{R}^{n+1}, and ∇ is the induced connection on the sphere. If $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$, then

$$\triangle_{\mathbb{R}^{n+1}}(F) = -r^{-n} \frac{\partial}{\partial r} \left(r^n \frac{\partial F}{\partial r} \right) + r^{-2} \triangle_{S^n}(F|_{S^n(r)}),$$

(1.3)

where $\triangle_{\mathbb{R}^{n+1}} = -\nabla' \cdot \nabla'$ is the Laplacian on \mathbb{R}^{n+1}, \triangle_{S^n} is the Laplacian on the unit n–sphere, and $F|_{S^n(r)}$ is the restriction of F to an n–sphere of radius r.

For any constant vector $p \in \mathbb{R}^{n+1}$ consider a function $\chi(u) = u \cdot p$ on S^n. We verify that

$$\nabla'(\chi) = -r^{-1}(p - (u \cdot p)u), \quad \triangle_{\mathbb{R}^{n+1}}(\chi) = \frac{n}{r^2} \chi,$$

(1.4)
Restricting the Laplacian to the unit sphere with \(r = 1 \) we deduce that
\[
\triangle_{S^n}(\chi) = n\chi.
\] (1.5)

In particular each coordinate function in \(\mathbb{R}^{n+1} \) regarded as a function on \(S^n \) is an eigenfunction of \(\triangle_{S^n} \) with an eigenvalue \(n \).

The space of solutions to (1.5) is \(n + 1 \) dimensional and the bijection between linear functions on \(\mathbb{R}^{n+1} \) and solutions to (1.5) can be established as follows: We have already verified that restrictions of linear functions from \(\mathbb{R}^{n+1} \) to \(S^n \) satisfy (1.5). Conversely, let \(\chi : S^n \rightarrow \mathbb{R} \) satisfy (1.5). Using the representation (1.3) we deduce that \(r\chi \) is a harmonic function homogeneous of degree one on \(\mathbb{R}^{n+1} \). Let \(x_i \) be local coordinates on \(\mathbb{R}^{n+1} \) with \(|x| = r \). Therefore for each \(i = 1, ..., n + 1, \) \(\partial(r\chi)/\partial x_i \) is harmonic and homogeneous of degree 0, and so it descends to a harmonic function on \(S^n \). There are no such functions apart from the constants, so we deduce that \(r\chi = x \cdot p \), thus establishing the bijection\(^1\).

\[\square\]

This argument can be extended to show that the space of homogeneous harmonic polynomials on \(\mathbb{R}^{n+1} \) of degree \(k > 1 \), when restricted to \(S^n \) constitute the eigenspace of \(\triangle_{S^n} \) with eigenvalue \(k(k+n-1) \). The multiplicity of this eigenvalue is (consult [1] for details)
\[
\binom{n+k}{k} - \binom{n+k-2}{k-2}.
\]

Let us list the properties of the Laplace sections which follow from Theorem 1.2

• Laplace sections are invariant under a map \(\tau : TS^n \rightarrow TS^n \) given by reversing orientations of lines in \(\mathbb{R}^{n+1} \).

• Each non-zero Laplace section vanishes at exactly two points on \(S^n \). Two distinct non-zero Laplace sections \(L_p \) and \(L_q \) intersect at two points in \(TS^n \). These points correspond to two oriented lines joining \(p, q \in \mathbb{R}^{n+1} \)
\[
\begin{align*}
u &= \pm \frac{p - q}{|p - q|}, \quad v = \frac{p \cdot q - |q|^2}{|p - q|} p + \frac{p \cdot q - |p|^2}{|p - q|} q.
\end{align*}
\]

Three (or more) Laplace sections generically don’t meet.

To make the whole construction independent on the choice of the origin in \(\mathbb{R}^{n+1} \), we should regard the twistor space as an affine vector bundle over \(S^n \) with no preferred zero section.

The twistor space \(T \) can also be obtained by factoring the correspondence space \(S^n \times \mathbb{R}^{n+1} \) by the action \((u,v) \rightarrow (u,tu + v) \) for \(t \in \mathbb{R} \). This action is generated by the geodesic flow \(X \), and leads to a double fibration
\[
\begin{array}{ccc}
S^n \times \mathbb{R}^{n+1} & \rightarrow & T \\
p_2 \searrow & & \swarrow p_1 \\
\mathbb{R}^{n+1} & & \\
\end{array}
\]
given by
\[
p_2(u,v) = v, \quad p_1(u,v) = (u,v - (v \cdot u)u).
\]

Let us look at some special cases: (here \(\nabla = \partial/\partial u \))

\(^1\)Another (equivalent) characterisation of the preferred sections (1.2) is a direct consequence of (1.4). Consider the infinitesimal generators \(s \) of non-homothetic conformal transformations, such that \(s = \nabla \chi \). The equation \(\mathcal{L}_s \chi = 2\chi h \) will then imply that \(\chi \) satisfies (1.5).
• For $n = 1$ the unit circle S^1 is parametrised by $\phi \in [0, 2\pi]$, $p = (x_1, x_2)$, and

$$s(u) \cdot \nabla = \text{Re} \left((x_1 + ix_2) \exp(i\phi) \frac{d}{d\phi} \right).$$

• For $n = 2$ one easily verifies

$$s(u) \cdot \nabla = \text{Re} \left(\left((x_1 + ix_2) + 2\lambda x_3 - \lambda^2(x_1 - ix_2)\right) \frac{d}{d\lambda} \right),$$

where $\lambda = (u_1 + iu_2)/(1 - u_3)$ is a holomorphic coordinate on $\mathbb{CP}^1 = S^2$, and $p = (x_1, x_2, x_3)$. The Laplace sections are in this case holomorphic sections of $T\mathbb{CP}^1$ preserved by τ. This is the original twistor correspondence established by Hitchin [6] in his construction of magnetic monopoles, and recently used in [5] in a study of generalised surfaces in \mathbb{R}^3.

A much older application goes back to Whittaker [10]. We shall explain it in a modern language of Hitchin: Given an element of $f \in H^1(T\mathbb{CP}^1, \mathcal{O}(-2))$ restrict it to a Laplace section. The general harmonic function on \mathbb{R}^3 is then given by

$$V(x_1, x_2, x_3) = \oint_{\Gamma} f(\lambda, (x_1 + ix_2) + 2\lambda x_3 - \lambda^2(x_1 - ix_2)) d\lambda,$$

where $\Gamma \subset L_p \cong \mathbb{CP}^1$ is a real closed contour.

A different integral transform (the X-ray transform introduced by John [7]) can be used to construct solutions to ultra-hyperbolic wave equation on the twistor space. This takes a smooth function on \mathbb{RP}^3 (a compactification of \mathbb{R}^3) and integrates it over an oriented geodesic. The resulting function is defined on the Grassmannian $\text{Gr}_2(\mathbb{R}^4)$ of two-planes in \mathbb{R}^4 and satisfies the wave equation for a flat metric in $(++-\cdots)$ signature.

2 Almost complex structure and TS^6

The Riemannian connection ∇ on S^n can be used to define an almost complex structure on TS^n for any n. Let $T(TS^n) = V \oplus H$ be the splitting of the tangent space to TS^n into vertical and horizontal components. Define $J_D : TS^n \to TS^n$ by

$$J_D(X_H) = X_V, \quad J_D(X_V) = -X_H,$$

where X_V and X_H are the vertical and horizontal parts of a vector on TS^n. This structure was studied by Dombrowski [3] who showed that the torsion of J_D does not vanish unless both the torsion and the curvature of ∇ are zero. This almost complex structure has nothing to do with the Laplace sections defined in Def. 1.1. From now on we shall restrict to the case $n = 6$ where another (inequivalent) almost complex structure can be defined on T. The basic facts about the cross products on \mathbb{R}^7 will be recalled, and used to show that the Laplace sections are almost complex.

2.1 Cross product in \mathbb{R}^7 and the group G_2

Let $(x_1, ..., x_7)$ be coordinates on \mathbb{R}^7, and let dx_{ijk} be a shorthand notation for $dx_i \wedge dx_j \wedge dx_k$. Following Bryant [2] we define the exceptional group G_2 as

$$G_2 = \{ \rho \in GL(7, \mathbb{R}) | \rho^*(\phi) = \phi \},$$
where
\[\phi = dx_{123} + dx_1 \wedge (dx_{45} + dx_{67}) + dx_2 \wedge (dx_{46} - dx_{57}) - dx_3 \wedge (dx_{47} + dx_{56}). \]

It is a compact, connected, and simply connected Lie group of dimension 14. It also preserves the Euclidean metric
\[g = dx_1^2 + \ldots + dx_7^2, \]
the orientation
\[dx_{1234567}, \]
and the four-form
\[*\phi = dx_{4567} + dx_2 \wedge (dx_{45} + dx_{67}) - dx_3 \wedge (dx_{46} - dx_{57}) - dx_1 \wedge (dx_{47} + dx_{56}). \]

The group \(G_2 \) acts transitively on a unit sphere \(S^6 \subset \mathbb{R}^7 \) with a stabiliser \(SU(3) \).

A cross product \(\times : \mathbb{R}^7 \times \mathbb{R}^7 \rightarrow \mathbb{R}^7 \) can be defined by
\[g(X \times Y, Z) = \phi(X, Y, Z). \]

This cross product has the same properties as the one induced by the octonion multiplication, which leads to a more standard definition of \(G_2 \) as the group of automorphisms of the octonions. The induced cross product satisfies the identities analogous to those in three-dimensions
\[g(X \times Y, X \times Y) = g(X, X)g(Y, Y) - g(X, Y)^2, \quad X \times (X \times Y) = g(X, Y)X - g(X, X)Y. \]

\[(2.6) \]

2.2 Pseudoholomorphic sections of \(TS^6 \)

Consider a curve \(\gamma(s, t) \) of oriented lines in \(\mathbb{R}^7 \) parametrised by \(s \in \mathbb{R} \), and given by
\[\gamma(s, t) = v(s) + tu(s). \]

A \(u \)-orthogonal projection of tangent vector \(t\dot{u} + \dot{v} \) gives rise to a normal Jacobi field
\[V = (\dot{v} - (\dot{v} . u)u + t\dot{u})|_{s=0} = (\dot{u}, \dot{v} - (\dot{v} . u)u), \quad \text{where} \quad \dot{\cdot} = \frac{\partial}{\partial s}. \]

All vectors tangent to a space of oriented geodesics are of this form.

Let us define a map \(\tilde{J} : TT \rightarrow TT \) by
\[V \rightarrow \tilde{J}(V) = u \times V, \quad \text{where} \quad V \in T_{(u,v)}\mathbb{T}. \]

From the properties (2.6) of cross-product \(\times \) in \(\mathbb{R}^7 \) it follows that \(\tilde{J} \) is an almost complex structure. Indeed,
\[\tilde{J}^2(V) = u \times (u \times V) = (u.V)u - (u.u)V = -V. \]

Note that \(\tau(\tilde{J}) = -\tilde{J} \).

This almost complex structure is related to a standard almost complex structure \(J \) on \(S^6 \) defined by \(J(v) = u \times v \). To see this consider the restriction of the Euclidean scalar product from \(\mathbb{R}^7 \) to \(S^6 \). This gives the unique nearly Kähler metric \(h \) on \(S^6 \) compatible with \(J \) in a sense that
\[h(X, Y) = h(JX, JY), \quad \nabla_X J(X) = 0, \quad \forall X, Y \in TS^6, \]
where ∇ is the Levi–Civita connection of h. Let

$$T(TS^6) = V \oplus H$$

be the splitting of the tangent space to TS^6 into vertical and horizontal components with respect to ∇. The almost complex structure on TS^6 defined by taking the standard almost complex structure J on each factor H and V coincides with the almost–complex structure (2.8), because the splitting (2.7) coincides with the splitting $T(TS^6)$ induced by ∇ (which is a projection of splitting given by restricting ∇' to a tangent space). In particular \tilde{J} is not integrable, since J isn’t.

Let $\rho : S^6 \to S^6$ be an element of G_2, and let $v \in T_uS^6$. Then

$$\rho_*(J(v)) = \rho(u) \times \rho_*(v) = \tilde{J}(\rho_*(v)) \in T_{\rho(u)}S^6.$$

and we deduce that the Laplace sections L_p of $T \to S^6$ which correspond to points in \mathbb{R}^7 are G_2–invariant in a sense that

$$\rho_*(L_p(u)) = L_{\rho(p)}(\rho(u)).$$

Now we want to argue that the Laplace sections are also almost complex in the sense that

$$\tilde{J} \circ (L_p)_* = (L_p)_* \circ J.$$

This follows directly from the geometrical construction because u is a unit normal to a sphere of geodesics L_p through p, and the cross product preserves the almost complex structure on S^6 (the almost complex structure on the space of lines is a rotation in \mathbb{R}^7 through 90 degrees about the direction of the line which preserves the tangent spaces of L_p).

It can also be seen by applying \tilde{J} to (2.7) and performing a direct calculation. This leads to an overdetermined system of equations for $L : S^6 \to TS^6$, $L(u) = (u^j, L^j(u))$

$$\left(\phi_{ijm}u^j\Sigma_{pk} + \phi_{kjp}u^j\Sigma_{ml} \right) \frac{\partial L^m}{\partial u^p} = 0,$$

where $\Sigma_{ij} = \delta_{ij} - u_iu_j$. These equations are satisfied by the Laplace sections.

3 Other twistor correspondences

In this final section we shall mention two other generalisations of the Hitchin correspondence. The first one (due to Study [9] for $n = 2$) is more than hundred years old. The second one (due to Murray [8]) gives a way of solving the Laplace equation.

Study’s correspondence. The correspondence between oriented lines in \mathbb{R}^{n+1} and points in TS^n can be re-expressed in terms of the dual numbers of the form

$$a + \tau b$$

where $a, b \in \mathbb{R}$, and $\tau^2 = 0$. Let \mathbb{D} denote the space of the dual numbers. Any oriented line in \mathbb{R}^{n+1} can be represented by a vector in \mathbb{D}^{n+1}

$$A = u + \tau v$$
which is of unit length with respect to an Euclidean norm in \mathbb{D}^{n+1} induced from \mathbb{R}^{n+1}. This gives an analogue of Study’s result [9]: There is a one to one correspondence between oriented lines in \mathbb{R}^{n+1} and points on the dual unit sphere in \mathbb{D}^{n+1}. Comparing this with (1.1), we see that the dual unit sphere in \mathbb{D}^{n+1} is equivalent to TS^n with an additional structure (that of dual numbers) selected on the fibres.

Let θ and ρ be the angle and the distance between two oriented lines represented by A and B. Define a dual angle by

$$\Theta = \theta + \tau \rho.$$

Using a formal definition

$$\cos \Theta = 1 - \frac{1}{2!} \Theta^2 + \frac{1}{4!} \Theta^4 + ... = \cos \theta - \tau \sin \theta,$$

one can verify an attractive looking formula

$$A \cdot B = \cos \Theta,$$

and deduce that group of Euclidean motions in \mathbb{R}^{n+1} is equivalent to $O(n+1, \mathbb{D})$.

Murray’s correspondence. Let $[z_0, z_1, ..., z_n]$ be homogeneous coordinates on $\mathbb{C}P^n$, and let $f = z_0^2 + z_1^2 + ... + z_n^2$ define a section of $O(2) \rightarrow \mathbb{C}P^n$. This section vanishes on a hyper-quadric

$$X = \{f = 0, [z] \in \mathbb{C}P^n\} \subset \mathbb{C}P^n.$$

Murray [8] defines a twistor space Z to be a restriction of the total space of $O(1) \rightarrow \mathbb{C}P^n$ to X. This leads to a double fibration

$$X \times \mathbb{R}^{n+1} \xrightarrow{m_2} \mathbb{R}^{n+1} \xleftarrow{m_1} Z.$$

The canonical bundle of K_X of X in Z is $O(-n+1)$.

Theorem 3.1 (Murray [8]) Let $\Delta_{\mathbb{R}^{n+1}}$ be the Laplacian on \mathbb{R}^{n+1}. There exists an isomorphism

$$T : H^{n-1}(Z, K_X) \rightarrow Ker(\Delta_{\mathbb{R}^{n+1}})$$

given by

$$T(\omega)(z) = \int_{X_z} \omega,$$

where (ω) is a K_X-valued $(0,n)$ form on Z pulled back to $X \times \mathbb{R}^{n+1}$.

The twistor spaces T and Z have the same dimensions, but the connection between Theorem 1.2 and the Murray correspondence is not clear.

Acknowledgements

I thank Michael Eastwood, Nigel Hitchin and Simon Salamon for useful discussions, and Marc Lachièze-Rey for pointing out some errors in an earlier version of this paper.
References

[1] Berger, M. Gauduchon, P., & Mazet, E. (1971) *Le spectre d’une variété riemannienne*. Lecture Notes in Mathematics, Vol. 194 Springer-Verlag, Berlin-New York.

[2] Bryant, R. (1987) Metrics with exceptional holonomy. Ann. of Math. (2) 126, no. 3, 525–576.

[3] Dombrowski, P. (1962) On the geometry of the tangent bundle. J. Reine Angew. Math. 210, 73–88.

[4] Fukami, T & Ishihara, S. (1955) Almost Hermitian Structure in S^6 Tohoku Math. J. (2), 151–156.

[5] Guilfoyle, B. & Klingenberg, W. (2004) Generalised Surfaces in \mathbb{R}^3. Math. Proc. of the R.I.A. **104A**. [math.DG/0406185]

[6] Hitchin, N.J. (1982) Monopoles and Geodesics, Commun. Math. Phys. **83** 579-602.

[7] John, F. (1938) The ultrahyperbolic differential equation with four independent variables. Duke Math. Journ **4** 300-322.

[8] Murray, M. K. (1985) A twistor correspondence for homogeneous polynomial differential operators. Math. Ann. 272, no. 1, 99–115.

[9] Study, E. (1903) *Geometrie der Dynamen* B.G. Teubner Verlagsgesellschaft, mbH, Leipzig.

[10] Whittaker E.T. (1903). On the partial differential equations of mathematical physics. Math. Ann. **70** 333-355.