Predicting the network of substrate-enzyme-product triads by combining compound similarity and functional domain composition

Lei Chen2,3, Kai-Yan Feng4, Yu-Dong Cai*1,5, Kuo-Chen Chou5 and Hai-Peng Li*6

Abstract

Background: Metabolic pathway is a highly regulated network consisting of many metabolic reactions involving substrates, enzymes, and products, where substrates can be transformed into products with particular catalytic enzymes. Since experimental determination of the network of substrate-enzyme-product triad (whether the substrate can be transformed into the product with a given enzyme) is both time-consuming and expensive, it would be very useful to develop a computational approach for predicting the network of substrate-enzyme-product triads.

Results: A mathematical model for predicting the network of substrate-enzyme-product triads was developed. Meanwhile, a benchmark dataset was constructed that contains 744,192 substrate-enzyme-product triads, of which 14,592 are networking triads, and 729,600 are non-networking triads; i.e., the number of the negative triads was about 50 times the number of the positive triads. The molecular graph was introduced to calculate the similarity between the substrate compounds and between the product compounds, while the functional domain composition was introduced to calculate the similarity between enzyme molecules. The nearest neighbour algorithm was utilized as a prediction engine, in which a novel metric was introduced to measure the "nearness" between triads. To train and test the prediction engine, one tenth of the positive triads and one tenth of the negative triads were randomly picked from the benchmark dataset as the testing samples, while the remaining were used to train the prediction model. It was observed that the overall success rate in predicting the network for the testing samples was 98.71%, with 95.41% success rate for the 1,460 testing networking triads and 98.77% for the 72,960 testing non-networking triads.

Conclusions: It is quite promising and encouraged to use the molecular graph to calculate the similarity between compounds and use the functional domain composition to calculate the similarity between enzymes for studying the substrate-enzyme-product network system. The software is available upon request.

Background

Metabolism (the Greek word for "change" or "overthrow") is the biochemical modification of chemical compounds in living organisms and cells. It comprises a series of chemical reactions that occur in a cell and enable it to keep living, growing and dividing. Without metabolism we would not be able to survive. Metabolism comprises a series of chemical reactions that occur in a cell and enable it to keep living, growing and dividing. Metabolism usually consists of sequences of enzymatic steps, the so-called metabolic pathways. The number of metabolic pathways is very large, reflecting the fact that "life is extremely complicated". Metabolic pathways interact in a complex way in order to allow an adequate regulation. This interaction includes the enzymatic control and hormone control. In the current study, we are focused on the enzyme control category, where metabolic pathway is the network linking various chemical reactions of compounds (substrates or products) catalyzed by enzymes. As is known, many metabolic pathways are available in the pathway databases, such as KEGG PATHWAY [1],...
which enable us to analyze known metabolic pathways. However, since there are many compounds and enzymes whose biological functions are not discovered completely, many reactions cannot be determined. Thus, determination of the network of substrate-enzyme-product triads (whether the substrate can be transformed into the product with the catalyst enzyme) would be very helpful for expanding our knowledge about the metabolic pathways, and conducting in-depth studies in this regard. However, it is time-consuming and expensive to determine the network through biological experiments alone. Therefore, it is highly desired if an automated method can be developed to address this problem. Encouraged by the successes of using computational approaches to tackle various problems in different biological systems (see, e.g., [2-7]), here we are to develop a different computational approach for predicting the network of substrate-enzyme-product triads.

The benchmark dataset used in this study consists of positive triads and negative triads, where the number of negative triads was about 50 times as many as positive ones. To evaluate the prediction model, one-tenth triads were randomly selected as testing samples and the rest triads used to train the prediction engine. The Nearest Neighbour Algorithm [8,9] was used to conduct prediction, where the metric to measure the nearness was formulated by combining the compound similarity and functional domain composition. The compound similarity was calculated based on the SMILES [10,11] and graph representations [12]; while the functional domain composition representations [13,14] were used to represent the enzyme samples and estimate their similarity. The highest accuracy thus obtained in predicting the positive triads was 95.41%. Interestingly, it was observed through this research that similar triads always tended to have the same network.

Methods

Materials

Molecular samples were downloaded from the public database KEGG [15,16] at http://www.genome.jp/kegg/ (release 53.0 in 2010), from which 16,144 molecules were retrieved. Among these molecules, only 2123 compounds take part in the main reactant-pairs in each metabolic reaction of yeast. For these selected small molecules, after removing those that had no information to calculate their similarity with other small molecules, we had 1,326 small molecules left; for enzyme molecules, after removing those whose functional domain compositions were not available, 939 enzyme molecules of yeast genome were obtained.

Although a same substrate might be converted into many products with different catalyst enzymes, a triad and its network would be unique. Each of the triads in the positive dataset consists of two small molecules (one for the substrate and one for the product) and one enzyme molecule. All the triads in the positive dataset were determined by solid experiments, and they were extracted from two KEGG files "reaction" and "enzyme", downloaded from ftp://ftp.genome.jp/pub/kegg/pathway/map/ (8th January, 2010). Each of the samples in the negative dataset, the so-called "negative triad", was generated by randomly picking two small molecules (one for the substrate and one for the product) and one enzyme molecule. Since the possibility for such three molecules to be a positive triad was extremely low, the credibility of the negative dataset thus constructed would be also very high. Also, to reflect the real world that the number of positive triads is much less than that of the negative ones, the negative triads were generated 50 times as many as the positive ones. The final benchmark dataset thus constructed contains 14,592 positive triads and 729,600 negative triads. Positive triads are also termed as networking triads, and negative triads termed as non-networking triads.

In order to evaluate the prediction model, one-tenth positive triads and one-tenth negative triads were randomly selected as testing samples, while the rest triads in the benchmark dataset were used to train the prediction engine. The detail information for the (1,460+72,960) = 74,420 testing samples and (13,132+656,640) = 669,772 training samples can be found in Additional File 1.

Encoding Methods

A key step for conducting accurate prediction and analysis is to effectively encode and compare the three components: substrates, enzymes, and products. Since substrates and products are compounds, some established methods, such as SMILES [10,11] and MACCS keys [17,18] can be used to estimate the similarity of compounds. Recently, a method based on graph theory was proposed to measure the similarity of two compounds by means of the undirected graph [12]. Using graphic approaches to study biological systems can provide an intuitive vision and useful insights for helping analyze complicated relations therein, as indicated by many previous studies on a series of important biological topics, such as enzyme-catalyzed reactions [19-26], protein folding kinetics and folding rates [27-29], inhibition of HIV-1 reverse transcriptase [30-32], inhibition kinetics of progressive nucleic acid polymerases and nuclease [33], and drug metabolism systems [34]. In this study, a different graph approach [12] will be utilized as described below.

Graph representation

Using graph representation to estimate the similarity of two compounds was proposed by Hattori et al. [12]. According to their method, each chemical structure can be represented by a two-dimensional (2D) graph where the vertices correspond to the atoms and the edges corre-
spond to the bonds between them. The similarity of the two compounds is estimated by detecting their common subgraphs, followed by aligning them accordingly. The similarity score between two compounds by the graph representation can be calculated by the online web-server at http://www.genome.jp/ligand-bin/search_compound. However, the web-server only provides similarity scores that are greater than 0.4. Accordingly, in the current study, the similarity of two compounds is assigned to be zero if it is less than 0.4. The similarity score thus obtained between two compounds c_1 and c_2 is denoted by $S_{\text{graph}}(c_1, c_2)$.

Meanwhile, the following non-graphic SMILES [10,11] approach will also be utilized to facilitate comparison.

SMILES

Abbreviated from the full name of "Simplified Molecular Input Line Entry System" [10,11], SMILES is a line representation for compound, which consists of a series of characters without including spaces. The similarity score between two compounds with the SMILES representation can be obtained from a pre-computed database called STITCH [35] at http://stitch.embl.de/cgi/, where the similarity score between two compounds c_1 and c_2 is denoted by $S_{\text{SMILES}}(c_1, c_2)/1000$. The developers of STITCH applied the open-source Chemistry Development Kit [36] to calculate the chemical fingerprints and used the Tanimoto 2 D chemical similarity scores [37,38].

Functional domain composition representation

Since enzyme belongs to protein, we can use various descriptors for proteins as summarized in a recent review [39] to represent enzymes. In this study, we adopted the functional domain composition to represent the enzyme samples because it has been successfully used for predicting various protein attributes [6,13,14,40-46]. The concept of protein functional domain composition was first introduced by Chou and Cai for predicting protein subcellular localization [13], where the SBASE-A database [47] was used that contained 2,005 functional domains. In this research, we used a more complete database, the InterPro database (release 23.1, December 2009) [48] that contained 21,144 functional domain entries. Accordingly, by following the similar procedures as elaborated in [13], an enzyme molecule e can be formulated as the following 21144-D vector

$$\vec{F}(e) = [x_1, x_2, \cdots, x_{21144}]^T$$

where $x_i = 1$ if there is a hit at the i-th functional domain entry by searching the InterPro database for the enzyme sample e; otherwise, $x_i = 0$. Thus, the similarity between two enzyme molecules, e_1 and e_2 is given by [13]

$$S_{\text{FunD}}(e_1, e_2) = \frac{\vec{F}(e_1) \cdot \vec{F}(e_2)}{||\vec{F}(e_1)|| ||\vec{F}(e_2)||}$$

(2)

where $\vec{F}(e_1) \cdot \vec{F}(e_2)$ is the dot product of two vectors, and $||\vec{F}(e_1)||$ and $||\vec{F}(e_2)||$ are their modulus, respectively.

Thus, the similarities between any two substrate-enzyme-product triads can be calculated using the above equations, as will be further discussed below.

K-Nearest Neighbour Algorithm (KNN)

In this research, the K-Nearest Neighbour (KNN) algorithm [5,8] was applied to predict a query triad belonging to networking or non-networking. To utilizing the KNN algorithm, we have to first define a metric to measure the nearness between two triads $T_1 = (s_1, e_1, p_1)$ and $T_2 = (s_2, e_2, p_2)$, where s_1, e_1, p_1 represent the substrate, enzyme, product in the first triad T_1, and s_2, e_2, p_2 those in the second triad T_2. Since there are three members in each triad, and we do not know which one of the three will play more important role in determining the network, let us first define the following metric with a weight parameter to measure the nearness between the two triads:

$$D(T_1, T_2) = 1 \cdot \frac{1-w}{2} [S(s_1, s_2) + S(p_1, p_2)]$$

- $wS_{\text{FunD}}(e_1, e_2)$

(3)

where the weight factor w can be obtained by optimizing the predicted result. According to the KNN rule [8,49,50], also named the "voting KNN rule", a query triad should be assigned to the class represented by a majority of its K nearest neighbours. If the majority of its K nearest neighbour triads belong to the triad networking, and so does the query triad; otherwise, it belongs to the non-networking triad.

Accuracy Measurement

The accuracy of prediction is defined by

$$ACC = \frac{TP+TN}{TP+TN+FP+FN}$$

(4)

where TP represents true positives, TN true negative, FP false positive, and FN false negative [51-54], with

$$SN = \frac{TP}{TP+FN}$$

(5)

for the sensitivity and

$$SP = \frac{TN}{TN+FP}$$

(6)
for the specificity.
In order to evaluate the performance of prediction models more accurate, Matthew’s correlation coefficient (MCC) [55] was employed in this study, which is defined by

\[
MCC = \frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TN + FN)(TN + FP)(TP + FN)(TP + FP)}}
\]

(7)

Results
The predicted accuracies with \(K = 1 \) and \(w = 1/4, 1/2, \) and \(3/4 \) for the testing triads in which the substrate and product compounds were represented by SMILES are given in Table 1, while those with graph to represent the compounds are given in Table 2. The detailed predicted results are provided in Additional File 2.

It can be seen from Table 1 and 2 that, when \(w = 1/4 \) and using the graph representation for the substrate and product compounds, we obtained not only the highest overall prediction accuracy (ACC = 98.71%) but also the highest MCC value (MCC = 75.67%), indicating that the graph representation approach is really quite effective.

Shown in Table 3 are the prediction accuracies when \(K = 3, 5, \) and \(w = 1/4. \) Compared with the case of \(K = 1, \) although the rate for the non-networking triads was remarkably increased somewhat, the rate for the networking triads was decreased.

Discussion
Our results have shown that, in the study of the substrate-enzyme-product triad network, it is quite promising and encouraged to use the functional domain composition to represent enzyme and use the graph descriptor to represent substrate and product compounds, fully consistent with the advantage of using functional domain to represent enzyme samples for predicting enzyme family classification [56-58] and the advantage of using the graph descriptor to represent compounds as discussed in [12].

As indicated in Additional File 1, there are 1,460 positive triads in testing samples. For each of these positive triads \(T_i (i = 1, 2, \ldots,1460) \), we calculated the distance of Eq.3 (with \(w = 1/4 \) and using the graph descriptor for substrate and product compounds) from \(T_i \) to its nearest positive triad and nearest negative triad in the training set, respectively. Denote the two distances thus obtained by \(P_i \) and \(N_i \), respectively. Shown in Fig 1 are two curves generated from \(P_i \) and \(N_i \), named as P-curve and N-curve, respectively. The P-curve is the one with the index \(i \) of \(T_i \) as its X-axis and \(P_i \) as its Y-axis. The N-curve is the one with the index \(i \) of \(T_i \) as its X-axis and \(N_i \) as its Y-axis. It can be seen from Fig 1 that the N-curve is almost always above the P-curve, meaning that the distances of the 1,460 testing triads to their nearest positive triads in the training set are almost always smaller than those to their nearest negative triads in the training set, fully consistent with the very high success rate of 95.41% for predicting

Table 1: Prediction accuracies of testing samples using SMILES to represent substrate and product compounds.

\(w \)	Networking triads (SN)	Non-networking triads (SP)	Overall prediction accuracy (ACC) (%)	Matthew’s correlation coefficient (MCC) (%)
1/4	94.25	94.95	94.94	49.14
1/2	83.01	87.77	87.68	28.62
3/4	79.11	83.74	83.65	22.94

Table 2: Prediction accuracies of testing samples using graph to represent substrate and product compounds.

\(w \)	Networking triads (SN)	Non-networking triads (SP)	Overall prediction accuracy (ACC) (%)	Matthew’s correlation coefficient (MCC) (%)
1/4	95.41	98.77	98.71	75.67
1/2	85.68	97.56	97.32	58.39
3/4	82.19	97.47	97.17	55.77
the 1,460 networking triads, as shown in Table 2. Furthermore, for the distribution of these distance values, there are 1,104 (75.62%) T_i with $P_i < 0.15$, while there are only 174 (11.92%) T_i with $N_i < 0.15$. The most of N_i (1268, 86.85%) were clustered in the interval from 0.15 to 0.4, indicating that the distance defined by Eq.3 for the KNN algorithm with $w = 1/4$ can separate the positive triads and negative triads very well. Also, since the distance of

![Table 3: Prediction accuracies of testing samples using different K.](image-url)

| Representation of compound | K | Prediction accuracy for each class (%) | | | | Networking triads (SN) | Non-networking triads (SP) |
|---------------------------|-----|--|---|---|--------------------------|---------------------------|
| SMILES | 3 | 92.67 | 92.03 | 92.03 |
| | 5 | 89.79 | 92.92 | 92.92 |
| Graph | 3 | 95.34 | 99.48 | 99.48 |
| | 5 | 94.18 | 99.48 | 99.48 |

![Figure 1 P-curve and N-curve](image-url)
Table 4: Distance to nearest positive triads and negative triads of misclassified positive triads.

Substrates	Enzymes	Products	Distance	Differences	
			Positive triads	Negative triads	
C00002	YIL139C	C06397	0.24	0.19125	0.04875
C00002	YPL271W	C00008	0.25	0.22125	0.02875
C00002	YPR033C	C00020	0.1	0.03375	0.06625
C00003	YKR066C	C00004	0.25	0.225	0.025
C00003	YPR167C	C00004	0.25	0.177831	0.072169
C00010	YER090W	C00024	0.25	0.1125	0.1375
C00010	YER178W	C00024	0.189188	0.1425	0.046688
C00024	YAL054C	C00033	0.21	0.199626	0.010374
C00024	YCL030C	C06548	0.25	0.0975	0.1525
C00024	YLR153C	C00033	0.21	0.199626	0.010374
C00025	YHR037W	C03912	0.375	0.202643	0.172357
C00026	YIR034C	C00449	0.271688	0.25	0.021688
C00035	YGL047W	C00996	0.1875	0.165	0.0225
C00037	YOL049W	C00051	0.48375	0.25	0.23375
C00047	YPL096W	C12989	0.25	0.225	0.025
C00055	YBL013W	C04121	0.177831	0.12375	0.054081
C00055	YDR410C	C04121	0.25	0.22125	0.02875
C00055	YKR069W	C04121	0.25	0.19125	0.05875
C00065	YBR263W	C00143	0.375	0.25	0.125
C00065	YLR058C	C00143	0.375	0.25	0.125
C00083	YPL231W	C12647	0.073223	0.02625	0.046973
C00085	YKL104C	C00352	0.25	0.2325	0.0175
Table 4: Distance to nearest positive triads and negative triads of misclassified positive triads. (Continued)

Gene1	Gene2	Gene3	Distance to Nearest Positive Triads	Distance to Nearest Negative Triads
C00086	YIR029W	C00499	0.4525	0.375
C00096	YBR252W	C00144	0.25	0.12
C00096	YGR036C	C00636	0.25	0.24375
C00108	YDR354W	C04302	0.375	0.2325
C00109	YCL018W	C06032	0.383376	0.36625
C00118	YGL026C	C03506	0.375	0.37375
C00143	YGL125W	C00440	0.3025	0.28375
C00155	YNL256W	C01118	0.25	0.22125
C00167	YJR131W	C00191	0.25	0.21
C00191	YOR065W	C05787	0.25	0.19875
C00223	YDR062W	C12096	0.0825	0.082244
C00223	YMR296C	C12096	0.0825	0.04875
C00234	YDR408C	C04376	0.36625	0.32125
C00333	YJR153W	C00470	0.375	0.12375
C00448	YDL205C	C16144	0.225	0.19125
C00582	YHL003C	C05598	0.25	0.1875
C00582	YKL008C	C05598	0.25	0.1875
C00632	YDR120C	C05831	0.25	0.15
C00652	YML086C	C06316	0.565	0.36625
C00842	YDR127W	C06017	0.1125	0.09
C00864	YDR531W	C03492	0.25125	0.25
C00931	YDL205C	C01024	0.59625	0.375
C01063	YBL015W	C09813	0.1275	0.1125
C01079	YDR044W	C03263	0.41875	0.25
Eq. 3 is defined based on the similarities of two substrates, two enzymes and two products, the smaller the distance between the two triads, the more similar the two triads are. It is interesting to see from the current study that the similar triads as defined by our formulation almost always exhibit the same network.

As indicated by comparing the results in Table 1, Table 2 and Table 3, the best predicted rate for the 1,460 networking triads in the testing set was 95.41%, with $w = 1/4$ and $K = 1$. Of these triads, 67 were mispredicted. It is instructive to see the reason behind these by examining Table 4, where the difference between the distance to the
nearest positive triad and the distance to the nearest negative triad for each of the 67 misclassified triad samples was given. As we can see from the table, the maximum difference was 0.285 and the minimum difference was 0.000256. Shown in Fig 2 is the distribution of the distance differences listed in Table 4. Of the 67 misclassified positive samples, 47 (70.15%) samples are with the distance differences less than 0.1, implying that the mispredicted triads are pretty close to the margin of correct prediction, and that the current metric as defined in Eq.3 for measuring the nearness for the KNN algorithm is quite effective.

Like most of the other prediction methods, the current prediction method also has its own limitation. For example, for those query triads without any similarity at all to any of the triads in the training datasets, the performance of the current prediction method might be poor. This is because the current prediction method was established on the basis of the “triad similarity”, i.e., the similarity between substrates, between enzymes, and between products.

As pointed out by one of the anonymous reviewers, it would be interesting to further discuss the current algorithm from the viewpoint of divergent and convergent evolution [59]. We shall work on such an interesting topic in our future work.

Conclusions
Metabolic pathway is one of the key biological networks, consisting of many metabolic reactions involving substrates, enzymes, and products, where substrates can be transformed into products with some particular catalytic enzymes. Knowledge about the network of substrate-enzyme-product triads is very useful for in-depth studies of the metabolic pathways. It is both time-consuming and costly to determine the network through biological experiments alone, and hence it is highly desired to develop computational methods in this regard. The computational method reported in this paper can be used to identify the network of substrate-enzyme-product triads with quite high success rate. It is anticipated that the method may become a very useful tool for studying drug metabolism systems. Meanwhile, as shown through this study, it is quite promising to introduce the molecular graph and functional domain composition into this area. Since user-friendly and publicly accessible web-servers represent the future direction for developing practically more useful predictors [60], we shall design a user-friendly web-server for the prediction method so that many experimental bench scientists can easily use it to get the desired results without the need to go through all the mathematical details.

Additional material

Additional file 1 Networking and non-networking triad samples in the training dataset and testing dataset used in this study. Each triad consists of a substrate, an enzyme, and a product.

Additional file 2 The detailed prediction results. This file lists the prediction results for each of the testing sample in Additional File 1.

Authors’ contributions
LC, KYF, and YDC did materials preparation, method design and programming. LC wrote the paper. KYF, YDC, KCC, and HPL gave scientific advice and made revision. All authors have read and approved the final manuscript.

Acknowledgements
We would like to take this opportunity to thank the four anonymous Reviewers for their constructive comments, which are very helpful for strengthening the presentation of this paper. This study was supported by the Grant from Shanghai Commission for Science and Technology (KSCX2-YW-R-112).
Received: 20 November 2009 Accepted: 31 May 2010

Author Details

1. Institute of Systems Biology, Shanghai University, Shanghai 200444, PR China,
2. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, PR China,
3. Centre for Computational Systems Biology, Fudan University, Shanghai 200433, PR China,
4. Division of Imaging Science, Medical School, Stopford Building, The University of Manchester, M13 9PT, UK,
5. Gordon Life Science Institute, San Diego, California 92130, USA and
6. CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences,
7. Chinese Academy of Sciences, Shanghai 200031, PR China

Received: 20 November 2009 Accepted: 31 May 2010

Published: 31 May 2010

References

1. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T,
2. Chou KC, Shen HB. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPloc 2.0. PLoS ONE 2010, 5(4):e9931.
3. Du QS, Huang RB, Wang SQ, Chou KC. Designing inhibitors of M2 proton channel against H1N1 swine influenza virus. PLoS ONE 2010, 5(2):e9388.
4. Cover TM, Hart PE. Nearest neighbor pattern classification. IEEE Transactions on Information Theory 1967, 13:21-27.
5. Chou KC, Cai YD. Prediction of protein subcellular locations by GO-Fund-D-PseA-PAA predictor. Biochemical and Biophysical Research Communications 2004, 320:1236-1239.
6. Weiginger D: SMILES 1. Introduction and Encoding Rules. J Chem Inf Comput Sci 1988, 28:31-36.
7. Qu DL, Fu B, Muraki M, Hayakawa T: An encoding system for a group of amino acid composition method. J Chem Inf Comput Sci 1992, 32:443-447.
8. Hattori M, Okuno Y, Goto S, Kanehisa M. KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008:D480-484.
9. Wang JF, Yan JY, Wei DQ, Chou KC. Binding of CYP2C9 with diverse drugs and its implications for metabolic mechanism, Medicinal Chemistry 2009, 5:263-270.
10. Chou KC, Shen HB. New developments in KEGG. Curr Opin Chem Biol 2006, 10:591-599.
11. Qu DL, Fu B, Muraki M, Hayakawa T: An encoding system for a group of amino acid composition method. J Chem Inf Comput Sci 1992, 32:443-447.
12. Chou KC. Informatics: Using functional domain composition and support vector machines for prediction of protein subcellular location. Journal of Biological Chemistry 2002, 277(48):45765-45769.
13. Cai YD, Chou GP, Chou KC. Support vector machines for predicting membrane protein types by using functional domain composition. Bioinformatics 2005, 21:3257-3263.
14. Goto S, Nishitani K, Kanehisa M: LIGAND: chemical database for enzyme reactions. Bioinformatics 1998, 14(8):751-759.
15. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Kanehisa M. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006;34:S35-S37.
16. Fukunaga K: Introduction to Statistical Pattern Recognition 2nd edition. New York:Academic, 1990.
17. Chou KC, Cai YD. Using functional domain composition and support vector machines for prediction of protein subcellular location. Journal of Biological Chemistry 2002, 277(48):45765-45769.
18. Cui Y, Zhou GP, Chou KC. Support vector machines for predicting membrane protein types by using functional domain composition. Bioinformatics 2005, 21:3257-3263.
19. Goto S, Nishitani K, Kanehisa M: LIGAND: chemical database for enzyme reactions. Bioinformatics 1998, 14(8):751-759.
20. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Kanehisa M. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006;34:S35-S37.
21. Fukunaga K: Introduction to Statistical Pattern Recognition 2nd edition. New York:Academic, 1990.
22. Chou KC, Cai YD. Using functional domain composition and support vector machines for prediction of protein subcellular location. Journal of Biological Chemistry 2002, 277(48):45765-45769.
23. Chou KC. A new schematic method in enzyme kinetics. European Journal of Biochemistry 1980, 113:195-198.
24. Myers D, Palmer G: Microcomputer tools for steady-state enzyme kinetics. Bioinformatics (Original: Computer Applied Bioscience) 1985, 1(2):105-110.
25. Chou KC. Graphical rules in steady and non-steady enzyme kinetics. Journal of Biological Chemistry 1989, 264:12074-12076.
26. Andreas. Kinetic plasticity and the determination of product ratios for kinetic schemes leading to multiple products without rate laws: new methods based on directed graphs. Canadian Journal of Chemistry 2008, 86:342-357.
27. Chou KC. Review: Applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady state systems. Biophysical Chemistry 1990, 35:1-24.
28. Chou KC, Shen HB. FoldRate: A web-server for predicting protein folding rates from primary sequence. The Open Bioinformatics Journal 2009, 3:31-50 [http://www.bentham.com/open/tobioj/]
29. Chou KC, Shen HB: Review: recent advances in developing web-servers for predicting protein attributes. Natural Science 2009, 2:63-92 [http://www.scirp.org/journal/NS/]
30. Althaus IW, Chou JI, Gonzales AJ, Diebel MR, Chou KC, Kezdy FJ, Romero DL, Aristoff PA, Tarpley WG, Reuss F: Kinetic studies with the nonnucleoside HIV-1 reverse transcriptase inhibitor U-88204E. Biochemistry 1993, 32:6548-6554.
31. Althaus IW, Chou JI, Gonzales AJ, Diebel MR, Chou KC, Kezdy FJ, Romero DL, Aristoff PA, Tarpley WG, Reuss F: Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E. Journal of Biological Chemistry 1993, 268:6119-6124.
32. Althaus IW, Gonzales AJ, Chou JI, Diebel MR, Chou KC, Kezdy FJ, Romero DL, Aristoff PA, Tarpley WG, Reuss F: The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase. Journal of Biological Chemistry 1993, 268:14875-14880.
33. Chou KC, Kezdy FJ, Reuss F: Review: Steady-state inhibition kinetics of processive nucleic acid polymerases and nucleases. Analytical Biochemistry 1994, 221:217-230.
34. Chou KC. Graphical rule for drug metabolism systems. Current Drug Metabolism 2010, 11:369-78.
35. Kuhn M, Mering C, Campillos M, Jensen LJ, Bork P: STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res 2008:D684-D688.
36. Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R, Willighagen EL: Recent developments of the chemistry development kit (CDK) - an open-source java library for chemoinformatics. Curr Pharm Des 2006, 12:2111-2120.
37. Martin YC, Kofron JL, Traphagen LM: Do structurally similar molecules have similar biological activity? J Med Chem 2002, 45(19):4350-4358.
38. Willett P, Barnard JM, Downs GM: Chemical similarity searching. Journal of Chemical Information and Computer Sciences 1998, 38(6):983-996.
39. Chou KC. Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Current Proteomics 2009, 6(4):262-274.
40. Chou KC, Cai YD. Predicting protein structural class by functional domain composition. Biochimie 2006, 88:2020-2026.
41. Chou KC, Cai YD. Predicting protein structural class by functional domain composition. Biochimie 2006, 88:2020-2026.
42. Jia P, Qian Z, Zeng Z, Cai Y, Li Y: Prediction of subcellular protein localization based on functional domain composition. Biochimie 2007, 89(5):566-370.
43. Yu X, Wang C, Li Y: Classification of protein quaternary structure by functional domain composition. BMC Bioinformatics 2006, 7:187.
44. Xu X, Yu D, Fang W, Cheng Y, Qian Z, Lu W, Cai Y, Feng K: Prediction of peptidase category based on functional domain composition. J Proteome Res 2008, 7(10):4521-4524.
45. Chou KC, Shen HB: ProtIdent: A web server for identifying proteases and their types by fusing functional domain and sequential evolution information. Biochem Biophys Res Commun 2007, 356:321-325.
46. Shen HB, Chou KC: QuatIdent: A web server for identifying protein quaternary structural attributes by fusing functional domain and sequential evolution information. J Proteome Res 2009, 8:1577-1584.
amino acid composition. Journal of Applied Crystallography 2009, 42:169-173.

47. Murvai J, Vlahovicek K, Barta E, Pongor S: The SBASE protein domain library, release 8.0: a collection of annotated protein sequence segments. Nucleic Acids Res 2001, 29(1):58-60.

48. Hunter S, Apweiler R, Attwood TK, Bateman A, Birney E, Bork P, Dodou D, Duqueguye E, Finn R, et al.: InterPro: the integrative protein signature database. Nucleic Acids Res 2009 D211-215.

49. Denoeux T: A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Transactions on Systems, Man and Cybernetics 1995, 25:804-813.

50. Keller JM, Gray MR, Givens JA: A fuzzy k-nearest neighbours algorithm. IEEE Trans Syst Man Cybern 1985, 15:580-585.

51. Cai YD, Chou KC: Nearest neighbour algorithm for predicting protein subcellular location by combining functional domain composition and pseudo-amino acid composition. Biochem Biophys Res Comm 2003, 305:407-411.

52. Ding CH, Dubchak I: Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 2001, 17:349-358.

53. Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 2000, 16(5):412-424.

54. Shen HB, Chou KC: Predicting protein fold pattern with functional domain and sequential evolution information. Journal of Theoretical Biology 2009, 256:441-446.

55. Matthews B: Comparison of predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 1975, 405:442-451.

56. Cai YD, Chou KC: Using functional domain composition to predict enzyme family classes. Journal of Proteome Research 2005, 4:109-111.

57. Cai YD, Chou KC: Predicting enzyme subclass by functional domain composition and pseudo amino acid composition. Journal of Proteome Research 2005, 4:967-971.

58. Shen HB, Chou KC: EzPred: A top-down approach for predicting enzyme functional classes and subclasses. Biochem Biophys Res Comm 2007, 364:53-59.

59. Almonacid DE, Yera ER, Mitchell JB, Babbitt PC: Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function. Proteins 2010, 78(3):599-609.

60. Chen C, Chen L, Zou X, Cai P: Prediction of protein secondary structure content by using the concept of Chou’s pseudo amino acid composition and support vector machine. Protein & Peptide Letters 2009, 16(1):27-31.

doi: 10.1186/1471-2105-11-293

Cite this article as: Chen et al., Predicting the network of substrate-enzyme-product triads by combining compound similarity and functional domain composition BMC Bioinformatics 2010, 11:293