Applying the stress-gradient hypothesis to curb the spread of invasive bamboo

Rebecca Spake1 | Masashi Soga2 | Jane A. Catford3 | Felix Eigenbrod1

1School of Geography and Environmental Science, University of Southampton, Southampton, UK
2Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
3Department of Geography, King’s College London, London, UK

\textbf{Correspondence}
Rebecca Spake
Email: R.Spake@soton.ac.uk

\textbf{Funding information}
Japan Society for the Promotion of Science London; H2020 European Research Council, Grant/Award Number: 680176

\textbf{Handling Editor:} Inderjit Singh

\textbf{Abstract}

1. The stress-gradient hypothesis (SGH) provides a conceptual framework for explaining how environmental context determines the nature of biotic interactions. It may be also useful for predicting geographic variability in the effect of management interventions on biological invasions. We aimed to test hypotheses consistent with the SGH to explain context dependency in bamboo invasion of secondary forests in Japan, and establish a predictive understanding of forest management impacts on invasion.

2. We use a priori physiological knowledge of invasive giant bamboo, \textit{Phyllostachys bambusoides}, to generate hypotheses consistent with the SGH. We modelled variation in giant bamboo occupancy within 810 secondary forest plots across the broad environmental gradients of Japan using a national vegetation database.

3. Consistent with the SGH, we find that the effect of tree canopy cover on bamboo occupancy depends on interactions between solar radiation and mean annual temperature. In cool regions with high solar radiation—stressful conditions for bamboo—shade cast by dense canopies facilitates invasion. However, in warmer regions that are more benign, dense canopies tend to inhibit spread via competition for light, space and other resources.

4. \textit{Synthesis and applications}. We provide evidence that the stress-gradient hypothesis can inform practical recommendations for invasive species control. We characterised geographic variability in the effect of forest thinning, a widespread management intervention used to enhance forest biodiversity, on the risk of bamboo spread into secondary forests in Japan. Thinning forest canopies to increase understory light radiation should limit bamboo spread in cooler regions, while tree planting to increase canopy shade should limit bamboo spread in warmer regions.

\textbf{KEYWORDS}
bamboo, competition-facilitation, invasive alien plant species, Japan, light stress, photo-inhibition, vegetation management
1 | INTRODUCTION

World-wide, invasive species threaten the capacity of ecosystems to sustain biodiversity and deliver critical ecosystem services (Pyšek et al., 2012). To effectively prevent and control their negative impacts now and in the future, a predictive understanding of invasion success is required (González-Moreno et al., 2014). However, predicting invasion success is challenging due to its contingency on myriad interdependent abiotic and biotic drivers (Elliott-Graves, 2016; Pyšek et al., 2020). While abiotic conditions such as climate can explain the distribution of invasive species at macro-ecological scales (Ficetola et al., 2007), patterns of invasion often appear geographically idiosyncratic even within hospitable climatic ranges (Holmes et al., 2010). Such patterns are suggestive of interactive effects of broad-scale environmental conditions with local biotic interactions (González-Moreno et al., 2014). Both negative (e.g. competition) and positive (facilitation) biotic interactions are well-recognised in invasion ecology (Cavieres et al., 2005; Lucero et al., 2019), and the nature of these interactions have been shown to vary across broad extents (Early & Keith, 2019). However, the drivers of this variability, or ‘context dependence’, have yet to be characterised for a range of taxa and ecosystems (Chamberlain et al., 2014).

The stress-gradient hypothesis (SGH) provides a unifying conceptual framework that can help explain how environmental context determines whether native species inhibit or facilitate invasion (Bruno et al., 2003). The SGH predicts that the relative frequency or strength of facilitation and competition will vary inversely across abiotic stress-gradients (Bertness & Callaway, 1994; Callaway & Walker, 1997). Under increasingly stressful conditions, the presence, size and density of neighbouring ‘nurse’ species can become increasingly important in facilitating the persistence of a species in conditions that would otherwise not be tolerated, enabling the latter species to expand its realised niche (Bruno et al., 2003). For instance, cushion plants can facilitate recruitment of other herbaceous species in alpine environments by buffering temperature extremes (Cavieres et al., 2005). Conversely, under benign physical conditions, interspecific competition with neighbours may increase, such that otherwise facilitating ‘nurse’ species become competitors instead (Bertness & Callaway, 1994; Brooker et al., 2008; Callaway & Walker, 1997). While the SGH has successfully explained variability in biotic interactions in stressful settings, such as alpine, intertidal and early successional environments (He et al., 2013), there have been few applications, however, to applied questions relevant to ecosystem management, except for the deliberate use of nurse plants as restoration tools in harsh environments (Guignabert et al., 2020). However, management efforts that alter the abundance or distribution of nurse species could also have unintended consequences for invasive species, which the SGH could help to mitigate.

Here, we apply the SGH to predict plant invasion success in response to forest management across the broad environmental gradients of Japan. Specifically, we use the SGH and a priori physiological knowledge of invasive giant bamboo *Phyllostachys bambusoides*, to generate hypotheses about bamboo occupancy, and apply this to fine-scale forest survey data collected across the broad environmental gradients of Japan. Importantly, we show how the SGH could help elucidate where species interactions should be considered when formulating local forest management practices that involve changes to the abundance of species facilitating or competing with invaders.

Bamboo invasion is an ideal case study for testing the applicability of the SGH in an applied context. First, the distributional limits of *Phyllostachys* species in both their native and non-native ranges are strongly temperature-dependent (Song et al., 2017; Takano et al., 2017). Within these limits, its occupancy within secondary forests is highly variable (Isagi & Torii, 1997; examples in Appendix S1), which could reflect interactions between biotic and abiotic drivers. Second, physiological studies of multiple *Phyllostachys* species under controlled settings have demonstrated that photo-inhibition (light-induced decline of photosynthesis) occurs under moderate light intensities at low temperatures, but can be ameliorated at warmer temperatures or under shade (Lou et al., 2018; Van Goethem et al., 2013, 2015). In other words, physiological understanding of *Phyllostachys* points to interactions among multiple abiotic drivers (He & Bertness, 2014; Maestre et al., 2009), suggesting observed fine-scale geographic variation in its invasion success might be consistent with the SGH. Specifically, we hypothesised that in cool and high-light environments, the shade cast by forest canopies could exert positive (facilitative) effects on bamboo invasion under stress (Hypothesis 1, Figure 1c). However, under benign conditions corresponding to warmer temperatures, we hypothesised that dense canopies might exert negative effects due to competition for space, nutrients or available light (Hypothesis 2, Figure 1d). We made the explanatory prediction (sensu Mouquet et al., 2015) that when under high light, effects of photo-inhibition would manifest as a shift in the thermal niche of bamboo along a gradient of canopy cover, consistent with the SGH.

2 | MATERIALS AND METHODS

2.1 | Study system and taxa

Giant bamboo (*Phyllostachys*) species were introduced to Japan from China around three centuries ago for their culm woods and edible shoots (Isagi & Torii, 1997). Bamboo forests were widely planted across western and central Japan as part of production landscapes known as ‘satoyama’, mosaics of secondary broadleaved forests managed as coppices, residential areas, paddy fields and grasslands (Takeuchi, 2010). Rapid economic growth, the introduction of new fuels and large-scale urban development during the 1950s–1960s resulted in widespread satoyama abandonment. Without active management, bamboo plants extend their rhizomes laterally, driving bamboo forest expansion into adjacent secondary forests that were historically managed as coppices, but are now abandoned (Fukamachi et al., 2001). Carbohydrates from the clonal adult root system can sustain the growth of new bamboo shoots, that are initiated every summer and emerge above-ground the following spring,
making them shade-tolerant and able to invade forests with dense canopies (Wang et al., 2016). Bamboo invasion can inhibit regeneration, decimate understory plant communities and alter soil chemistry (Nakai & Kisanuki, 2006).

2.2 | **Ecophysiology of Phyllostachys spp**

Photosynthetic and growth rates of bamboo are strongly temperature-dependent. *P. bambusoides* can achieve 90% of its
maximum photosynthetic rate when its leaves are warm (13.8–24.2°C), but only 50% when its leaves are cooler (6.2–32.1°C; et al., 2008). Temperature moderates the impact of light stress in Phyllostachys species (Van Goethem et al., 2013). Phyllostachys species exhibit photoinhibition, light-induced decline of photosynthetic activity due to excess excitation energy, even under relatively low light intensities (Lou et al., 2018; Van Goethem et al., 2015). Factorial experiments have demonstrated strong photoinhibition of Phyllostachys species under unshaded cold conditions (3–10°C), but weak photoinhibition in both unshaded warm (13–20°C) conditions and shaded cold conditions (Van Goethem et al., 2015). In contrast to warm conditions, thermal dissipation of excess excitation energy is not possible under cold conditions. Phyllostachys species photosynthesise year-round (Wang et al., 2016), with photosynthetic capacity increasing from a spring minimum, due to the combination of low air temperatures and increasing light irradiation, to an autumn maximum (Gratani et al. 2008; Van Goethem et al., 2013). These results suggest that the degree of shade cast by dense forests might have important facilitative effects at low temperatures, protecting Phyllostachys from photoinhibition. We therefore set out to test the hypothesis that the effect of canopy cover on bamboo invasion probability would depend on, that is, interact with, light intensity and temperature (Figure 1c,d). In regions with warmer temperatures, where growth is less limited by photoinhibition, canopies could plausibly exert negative effects due to competition for space, nutrients or light.

2.3 | Vegetation data

We retrieved bamboo incidence data from the vegetation survey database of Japan, provided by the Biodiversity Center of Japan (http://gis.biodic.go.jp/webgis/files/). This dataset consists of vegetation and geospatial data for >55,000 plots surveyed between 2000 and 2015, compiled from a range of sources, comprising species presence/absences, in addition to the percentage cover and height of vegetation. For plots located in forest habitats, consultants recorded the percentage cover of canopy, and soil properties. We focussed on P. bambusoides, which was the most prevalent in secondary deciduous forests, and refer to it as ‘bamboo’ from hereon.

2.4 | Environmental data

We selected potential explanatory variables of bamboo occupancy based on existing empirical studies (Someya et al., 2010; Suzuki, 2015; Suzuki & Nakagoshi, 2008; Table S2). Climatic variables were available at a 1-km resolution (Japan Meteorological Agency, 2010), and included temperature, rainfall, solar radiation, sunshine duration and snow depth based on annual averages between 1971 and 2000. For temperature, we calculated average annual values of monthly minima, means and maxima, in addition to obtaining values for the coldest and warmest months. We calculated two distance metrics to characterise the likelihood of propagule dispersal by vegetative spread. Distance to forest edge was expected to drive down invasion probability, as bamboo invades by spreading from bamboo forest into adjacent habitats, resulting in bamboo forest expansion. Distance to road serves as a proxy of secondary forest abandonment, because secondary forests and bamboo forests are less likely to be managed if far from roads and relatively inaccessible (Kobayashi & Nakamura, 2018). Indeed, distance to road has been shown to be positively correlated with expansion rates (Suzuki, 2015; Suzuki & Nakagoshi, 2008).

Local topographical variables have been shown to affect bamboo spread, including slope and measures of aspect (Suzuki & Nakagoshi, 2008), and were calculated using a 30-m digital elevation model (Table S2). Invasion of secondary forest by bamboo is more likely to occur in abandoned areas where bamboo and secondary forest management have ceased (Suzuki, 2015). In the absence of fine-resolution forest management data and assuming that bamboo and secondary forest abandonment coincide with agricultural abandonment, we used the extent of abandoned agricultural land (paddy fields, farmland, pasture) available at a 5-km resolution (Osawa et al., 2013), following Suzuki (2015). It has been suggested that stand structure might be important in determining the likelihood of giant bamboo spread (Isagi & Torii, 1997), so measures of forest canopy cover and forest type (i.e. whether dominated by an evergreen or deciduous tree species) were extracted from the plot database. We also considered survey year as a potential explanatory variable, as a correlate of time since widespread landscape abandonment. Minimum residence time (Wilson et al., 2007) is not relevant in this case study because all bamboo plantations were deliberately established and commercially productive before abandonment such that their residence time was effectively uniform across the country. The more relevant time period, therefore, is year of abandonment, which we have represented with distance to road as a proxy.

We translated our hypotheses concerning regional and local variables, and their interactions, into statistical models (Spake, Bellamy, et al., 2019). Consistent with the SGH (Figure 1), we hypothesised a three-way interaction between solar radiation, temperature and canopy cover. Aspect and slope can moderate the amount of solar radiation and hence the microclimate of a locality (Ashcroft & Gollan, 2013). Suzuki and Nakagoshi (2008) found differences in the importance of slope in limiting bamboo expansion across two regions varying in precipitation and temperature variables (Suzuki & Nakagoshi, 2008). We therefore hypothesised interactions between these topographical and climatic variables.

2.5 | Vegetation plot stratification

We required a subset of plots, surveyed in secondary forests, which were plausibly at risk of invasion by bamboo over the sampling period. This was to ensure that our absence records used in our models were ‘real’ absences and not simply due to plots being outside of the dispersal range of the species. First, we selected plots with complete data available for climate variables, canopy dominant species and canopy cover (n = 16,556), and excluded plots from the southern
subtropical islands due to a low sample size of plots occurring at outlying temperature values, and differences in management in these regions ($n = 16,156$; Figure S3.2).

Second, we selected plots that were plausibly at risk. The susceptibility of an ecosystem to invasion depends on propagule pressure, abiotic conditions and biotic interactions (Catford et al., 2009). For transparency, a detailed account of our plot stratification procedure is in Appendix S3. Not all of the $>16,156$ plots were at risk of invasion by bamboo during the survey period (2000–2015). We considered plots at risk if they were close to planted bamboo forest, according to distance and elevation. For example, bamboo forests (vegetative propagule sources) were planted predominantly across central and western Japan, therefore plots in northern Japan were not at risk during the survey period. To identify such plots, we used a digital elevation map and a land cover map that distinguished bamboo forests (The 5th Basic Survey of Natural Environment Conservation by the Ministry of Environment of Japan; http://www.biodic.go.jp/trialSystem/shpddll.html). We considered plots within a distance of 1 km of mapped bamboo forests to be at risk of invasion; 99% of vegetation plots containing bamboo were within 1,000 m of mapped bamboo forests (Figure S3.3). Plot elevation ranged between 0 and 2,735 m. We selected all plots below an elevation of 750 m, to identify plots near to residential areas, that is, at elevations below which bamboo forests were extensively planted; 99% of plots containing bamboo were below 750 m. This yielded 10,287 plots (Figure S3.3).

The environmental characteristics of a site must be hospitable for invasion to occur (Catford et al., 2009), so we further selected plots with abiotic characteristics within the ranges that were hospitable to bamboo. We selected only deciduous plots by matching the canopy dominant with the phenology type (deciduous/evergreen) of the TRY database (Kattge et al., 2020). Only deciduous plots were selected to limit covariation between temperature and phenology type in Japan (Kira, 1991; Suzuki et al., 2015), which in turn could be confounded with an effect of canopy cover on invasibility ($n = 5,906$, Figure S2.4). Next we selected plots dominated by tree species within which bamboo was present in at least 1% of plots dominated by that species, in order to select forest types, with corresponding microclimates and management regimes, at risk. Finally, we stratified plots based on the range of abiotic variables observed within plots where bamboo was present. We did this by selecting plots that occurred within the range of plots that contained bamboo for mean annual temperature, rainfall and solar radiation (Figure S3.6).

In total, this multi-step plot selection procedure yielded 810 plots dominated by deciduous broadleaved tree species, of which 67 contained bamboo, distributed across Japan. Hereon we refer to these as secondary forests sensu lato, due to the history of deciduous broadleaved forest exploitation in Japan (Totman, 1989).

2.6 | Statistical analysis

All analyses were carried out using R version 3.5.3 (R Core Team, 2019). Data exploration was carried out following the protocol described in Zuur et al. (2010; see Appendix S4). Covariation among survey year and temperature suggested that vegetation survey campaigns were conducted progressively across space in successive sampling years. To avoid collinearity, we excluded survey year from the global models (we retained temperature, reflecting our hypotheses, Figure 1). Snow depth was also excluded due to moderate collinearity with temperature and solar radiation. Moreover, the more relevant temporal variable for bamboo invasion is year of abandonment, which we have represented with distance to road as a proxy (which did not covary with temperature). Distance measures (to forest edge and nearest road), and agricultural abandonment required log transformation to reduce the effect of outliers.

To quantify how the probability of secondary forest invasion by bamboo varies with regional, landscape and local-level drivers (Table S2) and their interactions (Figure 1), we fitted generalised linear models against a binomial distribution with a clog-log link function to the bamboo occupancy (presence/absence) data, due to unbalanced presences and absences (Zuur et al., 2009). Our modelling approach had two stages: exploration and multi-model inference (detailed in Appendix S5).

2.6.1 | Stage 1: Exploring the shapes of predictor relationships

While we had formulated a priori hypotheses about the effects of environmental drivers (Figure 1), we did not know the exact shape of relationships, that is, whether to include a quadratic term for temperature, or whether annual temperature means, minima or maxima would provide superior fit, necessitating model comparison (Fisher et al., 2018).

We created global models that contained the additive main effects of slope, northness and eastness, temperature variables, distance to road, distance to forest edge, in addition to a three-way interaction between temperature, solar radiation and canopy cover, and an interaction between solar radiation and slope as hypothesised (see Appendix S6 for details of the global model). A log transformation of plot size was included as an offset to adjust for variation in plot size.

Global models differed in the substitutions of temperature variables, whether annual means minima or maxima were included. They were not included in the same model due to high collinearity (e.g. mean and maximum annual temperature had $r > 0.8$, Appendix S5). We also ran models with and without an additional quadratic term for temperature. From these global models, we generated full, ‘all subsets’ sets of nested models, with the dredge function from package MuMln (Bartoń, 2018; see Appendix S5), to be compared with Akaike’s Information Criterion (AIC). All variables were centred and scaled to unit S.D. prior to model fitting (Grueber et al., 2011).

This initial model exploration demonstrated that the hypothesised interactions, and a main effect of a quadratic term for mean annual temperature, were supported by the data, that is, were included in models with ΔAIC < 2. Prior to multi-model inference, we
therefore restricted the model set to models containing the hypothesised interactions, and both a linear and quadratic term for mean annual temperature. This was done because the sign and magnitude of regression coefficients can change considerably across models depending on the presence or absence of interactions and polynomial terms, precluding multi-model inference (Cade, 2015).

2.6.2 | Stage 2: Multi-model inference

We identified a ‘top model set’ containing models with ΔAIC < 6 (Harrison et al., 2018; Richards, 2005). The goodness of fit of these models (pseudo-R²) was calculated following Nagelkerke (1991). We applied natural model averaging of parameter estimates for each predictor (Grueber et al., 2011; Nakagawa & Freckleton, 2010). Natural averaging was done instead of zero averaging, where parameter estimates (and errors) of zero are substituted into models where the given parameter is absent, because our aim was not to rank the importance of predictor variables (Nakagawa & Freckleton, 2010), but to model biologically meaningful responses.

We graphed the relationships between covariates and predicted values of occupancy using the predict.glm() function, using the average predicted values from the models in the top model set, following Cade (2015). We expected the thermal niche of bamboo to shift with increasing canopy cover under high solar radiation, consistent with the SGH (see above). To visualise a potential shift in the realised thermal niches of bamboo, we plotted the predicted probabilities of bamboo occupancy (averaged across the top models) along a temperature gradient in the presence of relatively strong and weak biotic interactions, corresponding to secondary forests with dense (100%) and more open (60%) canopy covers, respectively. We plotted thermal niches for bamboo at relatively low and high levels of solar radiation (120 and 135 MJ/m²), with R package DHARMA (Hartig, 2018) for each model in the top model set. We also assessed the residuals for temporal and spatial dependency. Model validation indicated all assumptions were met (Appendix S7). Generalised variance inflation factors were calculated to check for collinearity. Because predictors were centred and scaled, we interpreted the relative magnitudes of averaged regression coefficients as a measure of relative, standardised effect sizes (Schielzeth, 2010).

2.6.3 | Application to forest management in Japan

To identify where biotic interactions (i.e. shade from forest canopy) should be considered when implementing forest management, we mapped the spatial heterogeneity of the effect of thinning (i.e. reductions in canopy cover) on bamboo invasion across Japan. To do this, we first mapped the predicted occupancies of bamboo in space using 1 x 1 km pixel-level values of the climate variables that were important in predicting occupancy. Occupancies were predicted for 100% and 60% canopy cover, corresponding to a typical reduction in stand volume that is incurred during secondary forest thinning in Japan (Spake, Yanou, et al., 2019). Occupancies were only predicted within the sampled range of predictor variables, for pixels within 1 km of existing bamboo forest, where secondary forests are plausibly at risk. Predictions were made for each model in the top model set while holding all other covariates at their median values, and averaged across models for each pixel. Following Spake, Bellamy, et al. (2019), we then estimated and mapped an effect size, the risk difference (the difference in average occupancy probabilities) between forests with 100% and 60% canopy cover, to represent the direction and magnitude of the effect of thinning. Positive values correspond to increases in the probability of bamboo occupancy following a reduction in canopy cover, while negative values correspond to a decrease in occupancy probability.

3 | RESULTS

We found that both regional climate, landscape and local variables and their interactions explained variation in bamboo occupancy in secondary deciduous forests across Japan (details of multi-model inference and parameter estimation in Appendix S6).

Models within the top model set (ΔAIC < 6) explained 21%–24% of variation in bamboo occupancy (Table S6.1). The averaged model predicted occupancy to decline weakly with rainfall and distance to road (Figure 2). Occupancy declined with hill slope, with a more strongly negative relationship observed in regions with higher solar radiation (Figure 2). Occupancy was best explained by annual means of monthly average temperatures (‘average temperature’ from hereon), with a main effect of a quadratic term.

A three-way interaction between average temperature, solar radiation and canopy cover explained variation in bamboo occupancy (Appendix S6; Figure 3). Consistent with the SGH and our hypotheses specific to bamboo invasion (Figure 1), we observed a shift in the thermal niche of bamboo with canopy cover under high light intensity. At relatively low levels of solar radiation, canopy cover had little effect on the thermal niche of bamboo in secondary forests, shown by the similarity of bamboo probability distributions with different levels of canopy cover (Figure 3a). In regions with high light intensity, however, canopy cover became an important facilitator of bamboo occupancy, with bamboo more able to establish in secondary forests at lower temperatures under dense canopies, than in forests with more open canopies (Figure 3b). However, at higher temperatures, dense canopies become more limiting than open canopies, with bamboo occupancy tending towards being more likely in open (60% cover) than closed (100%) canopies beyond 15°C (Figure 3b).

The interactive effects of canopy cover with solar radiation and temperature translated to high spatial heterogeneity in the effect of canopy cover—and hence the effect of thinning—on bamboo occupancy across Japan (Figure 4a–c).
4 | DISCUSSION

Our study of *P. bambusoides* invasion in Japan demonstrates that the stress-gradient hypothesis (SGH) provides a valuable framework for applied invasion ecology: It can help explain the context dependence of invasion across locations, and can be used to guide management. Implicit to the SGH is the integration of ecophysiology, species interactions and biogeography, which—although inherent to the niche concept (Helmuth et al., 2005)—are rarely integrated (Godsoe et al., 2017; Wiens, 2011). Here we have documented a thermal niche shift of bamboo occupancy under high solar radiation (Figure 3b): When under dense canopies, the optimal niche of bamboo shifts to several degrees lower. At low temperatures, bamboo cannot establish in secondary forests with sparse canopies where it is prone to light stress. At higher temperatures, where light stress is ameliorated, dense canopies can be limiting to its spread (consistent with hypotheses in Figure 1). This apparent contradiction explains why bamboo invasion success is highly variable among deciduous secondary forests in Japan (Isagi & Torii, 1997). Our study suggests that the SGH holds much potential for applied fields of ecology that aim to inform conservation and management plans.

The SGH has been subject to debate since its conception, motivating numerous refinements since its conception (e.g. Maestre et al., 2009). Observed exceptions from the SGH have been attributed, among other factors, to multiple, uncorrelated stress-gradients that can ‘cancel out’ SGH effects (Maestre et al., 2009). Controlled, factorial experiments have therefore been widely advocated to identify actual exceptions to the SGH rather than those due to failures to meet its underlying assumptions (He & Bertness, 2014; Maestre et al., 2009). So while the SGH makes predictions about species’ niches—and is therefore inherently a question of biogeographic scale (Wiens, 2011)—most studies have been conducted across limited extents (Ziffer-Berger et al., 2014), with communities compared across subjectively defined ‘high’ and ‘low’ stress conditions (He et al., 2013). Here we show that applying the SGH to field data spanning broad gradients helps explain context dependence in bamboo invasion, a ubiquitous phenomenon in invasion ecology (Catford et al., 2019; Pyšek et al., 2020). This yielded two main benefits. First, the SGH’s focus on the niche encourages integration of
physiological knowledge into analyses, so that models are appropriately parameterised with necessary interactions. A priori physiological insight and hypotheses concerning the SGH led us to examine and reveal a three-way interaction among solar radiation, temperature and canopy cover. This allowed us to detect a thermal niche shift for bamboo under dense canopies (Figure 3). Such insights are difficult to obtain from typical correlative species distribution modelling, as these require little knowledge of the mechanistic links between an organism’s physiology and their abiotic environment (Helmuth et al., 2005). Indeed, both physiological insight and biotic interactions are typically omitted from models that approximate species occupancy or abundance (Kearney & Porter, 2009; Staniczenko et al., 2017).

Our findings agree with experimental evidence and make sense mechanistically, with the degree of shade cast by dense forest canopies facilitating invasion at low temperatures, where thermal dissipation of excess excitation energy is not possible. Nevertheless, before implementing our findings into management, we suggest that manipulative mesocosm experiments in the field, designed to emulate this three-way interaction in forests, would be a useful intermediary to ground truth that shading cast by forest canopies exerts facilitative and competitive effects under different abiotic conditions, and to confirm whether forest trees are competing with the bamboo for resources unmeasured in this study. This study could be carried out on existing bamboo forests, as annual expansion rates can be reliably estimated by rapid, one-time measurements of bamboo culms spreading from source bamboo forests (Kobayashi et al., 2018).

Second, the application of the SGH permits the characterisation of geographic variability in the magnitude, and even direction, of a widespread management intervention, forest thinning (Figure 4). While biotic interactions can challenge forecasts of community responses to climate change (Hillerislambers et al., 2013), these interactions also present management opportunities: the SGH can help characterise spatial variability in the effect of management. Across Japan, forest thinning is widely used to enhance the biodiversity and recreational value of forests (Spake, Yanou, et al., 2019). Incorporating the SGH into our analytical design revealed potentially adverse effects of forest thinning in cooler areas. Given that...
giant bamboo is projected to expand its range northwards in Japan with rising temperatures (Takano et al., 2017), thinning might reduce spread at these northern limits.

We expected distance to road to relate positively with invasion probability, due to its representation of the likelihood that a bamboo and/or secondary forest has been abandoned (Kobayashi & Nakamura, 2018), and because distance to road has previously correlated positively with expansion rates in Japan (Isagi & Torii, 1997; Suzuki & Nakagoshi, 2008). On the contrary, we found a negative relationship with distance to road. This is likely due to differences in study design: Here we investigated bamboo occupancy in secondary forest plots, while previous studies have measured annual expansion rates of existing bamboo forests into neighbouring vegetation (Appendix S1). Distance to road likely correlates with the occupancy of source bamboo forests, because bamboo forests were typically planted near roads and residential areas (Fukamachi et al., 2001). We did not detect an effect of our measure of agricultural abandonment, possibly due to this variable’s coarse resolution (5 km) and consequent poor representation of bamboo and secondary forest abandonment, which varies at a finer scale than 5 km.

We found that hill slope increasingly related negatively to forest invasion with increasing solar radiation (Figure 2). Slope can modify the amount solar radiation received by a surface (Ashcroft & Gollan, 2013), but can also covary with soil types (Kamoshita, 1955). Suzuki and Nakagoshi (2008) compared drivers of bamboo forest expansion rates in two regions of Japan, and concluded that slope exerted a more strongly negative effect in the region with drier, less developed soils. We were unable to include soil variables in our analyses, as available soil type information was too inconsistent across plots to serve as a useful covariate. Soil type and moisture are likely to directly drive bamboo occupancy and abundance (Takano et al., 2017), and also has the potential to mediate the effects of temperature extremes on plant communities (Fridley et al., 2010). We recommend that future vegetation surveys in Japan adopt a systematic soil classification scheme, to permit the use of this covariate.

Tests of the SGH have been applied much less to diffuse, rather than species-specific interactions, despite their wider prevalence (Brooker et al., 2008), and rarely in forest ecosystems, which are not classically considered as extreme environments (He et al., 2013). However, our findings are consistent with tests of the SGH for species-specific interactions conducted across smaller extents. For example, Cavieres et al. (2005) found that seedling survival and net-photosynthetic rates of invasive Taraxacum officinale, were higher when growing within native cushion plants, Azorella monantha, than in open areas in the high-Andes (Cavieres et al., 2005). This suggests that the SGH may be broadly applicable across ecosystems and communities, and in invasion ecology. Given that rising temperatures are expected to increase the spread of invasive species, and have stronger positive effects on the performance of invasive than native plant species (Liu et al., 2017), future applications of the SGH present a promising way forward for predicting future species invasions—and how to mitigate them.

ACKNOWLEDGEMENTS
This research was funded by a Japan Society for the Promotion of Science Bridge Fellowship awarded to RS and an ERC Starting Grant ‘SCALEFORES’ (grant no. 680176) awarded to FE. We thank all the surveyors who contributed data to the Ministry of Environment’s ‘Natural Environment Information GIS’ dataset. We thank Y. Yamaura for insightful comments on an earlier version of the manuscript.

AUTHORS’ CONTRIBUTIONS
R.S. and M.S. designed the initial analysis and collated the data; R.S., M.S., J.A.C. and F.E. further developed the conceptual ideas; R.S. analysed the data and wrote a first draft. All authors contributed substantially to revising the manuscript.

DATA AVAILABILITY STATEMENT
Vegetation plot data are available upon request from the Ministry of Environment’s ‘Natural Environment Information GIS’ dataset (http://www.biodic.go.jp/chm/). Climate data are publically available from the Japan Meteorological Agency (https://www.jma.go.jp/jma/indexe.html). Topographical variables were derived from Global 30 Arc-Second Elevation model (GTOPO30; https://doi.org/10.5066/F7DF6PQS).

REFERENCES
Ashcroft, M. B., & Gollan, J. R. (2013). Moisture, thermal inertia, and the spatial distributions of near-surface soil and air temperature: Understanding factors that promote microrefugia. Agricultural and Forest Meteorology, 176, 77–89.
Bartoń, K. (2016). MuMIn: Multi-model inference. R package version 1.15.6. Retrieved from https://cran.r-project.org/package=MuMIn
Bertness, M., & Callaway, R. M. (1994). Positive interactions in communities. Trends in Ecology & Evolution, 9, 191–193. https://doi.org/10.1016/0169-5347(94)90088-4
Brooker, R. W., Maestre, F. T., Callaway, R. M., Lortie, C. J., Cavieres, L. A., Kunstler, G., Liencourt, P., Tielbörger, K., Travis, J. M. J., Anthelme, F., Armas, C., Coll, L., Corcket, E., Delzon, S., Forey, E., Kikvidze, Z., Olofsson, J., Pugnaire, F., Quiroz, C. L., … Michalet, R. (2007). Facilitation in plant communities: the past, the present, and the future. Journal of Ecology, 96(1), 18–34. https://doi.org/10.1111/j.1365-2745.2007.01295.x
Bruno, J. F., Stachowicz, J. J., & Bertness, M. D. (2003). Inclusion of facilitation into ecological theory. Trends in Ecology & Evolution, 18(3), 119–125. https://doi.org/10.1016/S0169-5347(02)00045-9
Cade, B. S. (2015). Model averaging and muddled multimodel inferences. Ecology, 96(9), 2370–2382. https://doi.org/10.1890/14-1639.1
Callaway, R. M., & Walker, L. R. (1997). Competition and facilitation: A synthetic approach to interactions in plant communities. Ecology, 78(7), 1958–1965.
Catford, J. A., Jansson, R., & Nilsson, C. (2009). Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity and Distributions, 15, 22–40. https://doi.org/10.1111/j.1472-4642.2008.00521.x
Moquet, N., Lagardeuc, Y., Devictor, V., Doyen, L., Duputi, A., Eveillard, D., ... Morin, X. (2015). "Predictive ecology in a changing world e" (pp. 1293–1310). https://doi.org/10.1111/ele.12482

Nagelkerke, N. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78, 691–692. https://doi.org/10.1093/biomet/78.3.691

Nakagawa, S., & Freckleton, R. P. (2010). Model averaging, missing data and multiple imputation: A case study for behavioural ecology. Behavioral Ecology and Sociobiology, 65, 103–116. https://doi.org/10.1007/s00265-010-1044-7

Nakai, A. & Kisanuki, H. (2006). Effect of bamboo culm density on the tree species diversity and density of understory at a forest stand on a major bed along Miya River downstream. Bulletin of the Faculty of Bioresources, Mie University, 33, 1–28.

Osawa, T., Kohyama, K., & Mitsuhashi, H. (2013). Areas of increasing agricultural abandonment overlap the distribution of previously common. Currently Threatened Plant Species, 8(11), 1–9. https://doi.org/10.1371/journal.pone.0079978

Pyšek, P., Bacher, S., Kühn, I., Novoa, A., Catford, J. A., Hulme, P. E., Pergl, J., Richardson, D. M., Wilson, J. R. U., & Blackburn, T. M. (2020). NeoBiota MACroecological Framework for Invasive Aliens (MAFIA): Disentangling large-scale context dependence in biological invasions. NeoBiota, 461, 407–461. https://doi.org/10.3897/neobiota.62.52787

Pyšek, P., Jarošík, V., Hulme, P. E., Pergl, J., Hejda, M., Schaffner, U., & Vilá, M. (2012). A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environments. Global Change Biology, 18(5), 1725–1737. https://doi.org/10.1111/j.1365-2486.2011.02636.x

R Core Team. (2019). R: A language and environment for statistical computing. v. 3.5.3. R Foundation for Statistical Computing.

Richards, S. A. (2005). Testing ecological theory using the information-theoretic approach: Examples and cautionary results. Ecology, 86, 2805–2814. https://doi.org/10.1890/05-0074

Schielzeth, H. (2010). Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution, 1, 103–113. https://doi.org/10.1111/j.2041-210X.2010.00012.x

Someya, T., Takemura, S., Miyamoto, S., & Kamada, M. (2010). Predictions of bamboo forest distribution and associated environmental factors using natural environmental information GIS and digital national land information in Japan. 景観生態学, 41–54.

Song, Q., Lu, H., Liu, J., Yang, J., Yang, G., & Yang, Q. (2017). Accessing the impacts of bamboo expansion on NPP and N cycling in evergreen broadleaved forest in subtropical China. Scientific Reports, 7(1). https://doi.org/10.1038/srep40383

Spake, R., Bellamy, C., Graham, L. J., Watts, K., Wilson, T., Norton, L. R., Wood, C. M., Schmucki, R., Bullock, J. M., & Eigenbrod, F. (2019). An analytical framework for spatially targeted management of natural capital. Nature Sustainability, 2(2), 90–97. https://doi.org/10.1038/s41893-019-0223-4

Spake, R., Yanou, S., Yamaura, Y., Kawamura, K., Kitayama, K., & Doncaster, C. P. (2019). Meta-analysis of management effects on biodiversity in plantation and secondary forests of Japan. Conservation Science and Practice, 1(2), e14. https://doi.org/10.1002/csp2.14

Staniczenko, P. P. A., Sivasubramanian, P., Suttle, K. B., & Pearson, R. G. (2017). Linking macroecology and community ecology: Refining predictions of species distributions using biotic interaction networks. Ecology Letters, 20, 693–707. https://doi.org/10.1111/ele.12770

Suzuki, S. (2015). Chronological location analyses of giant bamboo (Phyllostachys pubescens) groves and their invasive expansion in a satoyama landscape area, western Japan. Plant Species Biology, 30, 63–71. https://doi.org/10.1111/1442-1984.12067

Suzuki, S. N., Ishihara, M. I., & Hidaka, A. (2015). Regional-scale directional changes in abundance of tree species along a temperature gradient in Japan. Global Change Biology, 21(9), 3436–3444. https://doi.org/10.1111/gcb.12911

Suzuki, S., & Nakagoshi, N. (2008). Expansion of bamboo forests caused by reduced bamboo-shoot harvest under different natural and artificial conditions. Ecological Research, 23(4), 641–647. https://doi.org/10.1007/s11284-007-0422-8

Takano, T. K., Hibino, K., Numata, A., Oguro, M., Aiba, M., Shiogama, H., ... Nakashizuka, T. (2017). Detecting latitudinal and altitudinal expansion of invasive bamboo Phyllostachys edulis and Phyllostachys bambusoides (Poacea) in Japan to project potential habitats under 1.5°C–4.0°C global warming. Ecology and Evolution, 7, 9848–9859. https://doi.org/10.1002/ece3.4371

Takeuchi, K. (2010). Rebuilding the relationship between people and nature: The Satoyama Initiative. Ecological Research, 25, 891–897. https://doi.org/10.1111/j.1105-0098.2010.09901.x

Totman, C. D. (1989). The green archipelago: Forestry in preindustrial Japan. University of California Press.

Van Goethem, D., Elst, A. V., Smedt, S. D., Valcke, R., Potters, G., & Samson, R. (2015). The effect of light intensity and temperature on the chlorophyll fluorescence of Phyllostachys aureosulcata bamboo plants under controlled growth chamber conditions. The Journal of the American Bamboo Society, 23(1), 10–22.

Wang, Y., Bai, S., Binkley, D., Zhou, G., & Fang, F. (2016). The independence of clonal shoot’s growth from light availability supports moose bamboo invasion of closed-canopy forest. Forest Ecology and Management, 368, 105–110. https://doi.org/10.1016/j.foreco.2016.02.037

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag.

Wiens, J. J. (2011). The niche, biogeography and species interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2336–2350. https://doi.org/10.1098/rstb.2011.0059

Wilson, J. R. U., Richardson, D. M., & Rouget, M. (2007). Residence time and potential range: Crucial considerations in modelling plant residence time and potential range: Crucial considerations in modelling plant invasions. Diversity and Distributions, 13, 10–22. https://doi.org/10.1111/j.1366-9516.2006.00302.x

Ziffer-Berger, J., Weisberg, P. J., Cablak, M. E., & Osem, Y. (2014). Spatial patterns provide support for the stress-gradient hypothesis over a range-wide aridity gradient. Journal of Arid Environments, 102, 27–33. https://doi.org/10.1016/j.jaridenv.2013.11.006

Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R (Vol. 1). Springer-Verlag. https://doi.org/10.1017/CBO9781107451532.004

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Spake, R., Soga, M., Catford, J. A., & Eigenbrod, F. (2021). Applying the stress-gradient hypothesis to curb the spread of invasive bamboo. *Journal of Applied Ecology*, 00, 1–11. https://doi.org/10.1111/1365-2664.13945