Low energy carbon capture via electrochemically induced pH swing with electrochemical rebalancing

Shijian Jin, Min Wu, Yan Jing, Roy G. Gordon & Michael J. Aziz

We demonstrate a carbon capture system based on pH swing cycles driven through proton-coupled electron transfer of sodium (3,3’-(phenazine-2,3-diylbis(oxy))bis(propane-1-sulfonate)) (DSPZ) molecules. Electrochemical reduction of DSPZ causes an increase of hydroxide concentration, which absorbs CO₂; subsequent electrochemical oxidation of the reduced DSPZ consumes the hydroxide, causing CO₂ outgassing. The measured electrical work of separating CO₂ from a binary mixture with N₂, at CO₂ inlet partial pressures ranging from 0.1 to 0.5 bar, and releasing to a pure CO₂ exit stream at 1.0 bar, was measured for electrical current densities of 20–150 mA cm⁻². The work for separating CO₂ from a 0.1 bar inlet and concentrating into a 1 bar exit is 61.3 kJ mol⁻¹ CO₂ at a current density of 20 mA cm⁻². Depending on the initial composition of the electrolyte, the molar cycle work for capture from 0.4 mbar extrapolates to 121–237 kJ mol⁻¹ CO₂ at 20 mA cm⁻². We also introduce an electrochemical rebalancing method that extends cell lifetime by recovering the initial electrolyte composition after it is perturbed by side reactions. We discuss the implications of these results for future low-energy electrochemical carbon capture devices.
Accumulating CO₂ emissions from anthropogenic activities constitute the major cause of global climate change. While efforts are being made in switching from fossil fuel-based energy to virtually emissions-free sources such as nuclear, solar, wind and geothermal, fossil fuel combustion will remain an important component of the world economy for a long time. Consequently, carbon removal—whether captured from a point source such as a combustion power plant or directly from the air (a.k.a. direct air capture, DAC) or the ocean—in order to reduce atmospheric CO₂ concentrations, is gaining increasing attention.

Numerous methods for point source capture and DAC have been developed. Among the most studied is wet amine scrubbing for point source capture and strongly alkaline (pH > 4) solution for DAC, both of which rely on a large temperature-swing cycle to regenerate sorbents. Although sorbent composition has been optimized to lower the energy cost for both strategies, the thermal energy requirement for heating is still ~100 kJ mol⁻¹ CO₂ for point source capture, and ~150 kJ mol⁻¹ CO₂ for DAC. In addition, sorbent volatility, toxicity, and corrosivity cause environmental concerns. Methods that remove CO₂ from the ocean, which allow it to absorb more CO₂, have also been studied, but the high water-handling requirement is a challenge.

Electrochemically mediated separation technologies constitute an increasingly attractive alternative to traditional temperature-swing or pressure-swing methods because of the rapidly decreasing cost of intermittent renewable electricity and the mild operating conditions of ambient temperature and pressure. However, most existing methods operate at low current density (<5 mA cm⁻²) because of large overpotentials and the corresponding energetic cost at higher current density, implying a high capital cost of electrochemical hardware. Recently, our group proposed and demonstrated a pH swing cycle for CO₂ separation electrochemically driven through proton-coupled electron transfer (PCET) of redox active organic molecules (“Q”) in this scheme, proton-coupled electrochemical reduction of these molecules (Q + H₂O + 2e⁻ → QH₂ + 2OH⁻) raises the electrolyte pH and total alkalinity (TA), leading to CO₂ capture from point source or air and conversion to dissolved inorganic carbon (DIC); subsequent electrochemical oxidation of the reduced molecules (QH₂ + 2OH⁻ → Q + 2H₂O + 2e⁻) acidifies the electrolyte and lowers TA, resulting in the conversion of DIC to CO₂ gas and its release.

Here, we report a proof-of-concept point source (10%) CO₂ separation system that uses a sodium (3,3′-(phenazine-2,3-diyldibis(oxyl))bis(propane-1-sulfonate)) i.e., DSPZ (Fig. 1a), based electrochemical pH-swing cell with an energy cost of only 61.3 kJ mol⁻¹ CO₂ at 20 mA cm⁻². Through analyzing the cycle work obtained under systematically varied inlet partial pressure and current density, we estimate that the cost for capturing from a 0.4 mbar CO₂ inlet using this system extrapolates to 121–237 kJ mol⁻¹ CO₂ at 20 mA cm⁻², and that it can be further lowered if a higher concentration of DSPZ, or other PCET-active molecules, is used. Recognizing the sensitivity of the reduced form of DSPZ, i.e., DSPZH₂, to chemical oxidation by atmospheric or dissolved O₂, we introduce and demonstrate an electrochemical rebalancing method that expels oxygen from solution and restores the initial composition of the electrolytes.

Results and discussion

Device setup and process flow. Figure 1b shows the schematic of the Fe(CN)₆⁴⁻|DSPZ carbon capture flow cell and the hardware for providing the gas mixture and analyzing the exhaust. The upstream gas composition in the negolyte headspace was controlled by CO₂ and N₂ mass flow controllers (MFCs). Downstream of the negolyte reservoir, the gas was dried with a desiccator and the total gas flow rate and CO₂ partial pressure were measured using a digital flow meter and a CO₂ sensor, respectively. A pH probe immersed in the negolyte solution reported the temporal evolution of its pH, which enabled the tracking of total alkalinity (TA) and dissolved inorganic carbon (DIC) in real time. Figure 1c illustrates the electrolyte composition in the four states of the pH swing carbon capture cycle and the processes connecting the states. We denote the CO₂ partial pressure during the CO₂ capture process as the inlet pressure or p_EXP, and that during the CO₂ outgassing process as the exit pressure or p_EXIT, which is always set to 1 bar (100% CO₂) in this study. Similarly, the subscripts following TA or DIC refer to the TA and DIC of the corresponding states. The naming convention for the states is adopted from previous work, where the equilibrium and constraints governing pH, TA, DIC, and pCO₂ are explained in detail.

The four colored arrows in Fig. 1c refer to the four processes in the carbon capture cycle. The four sequential processes are as follows: 1–→3: two-stage deacidification+CO₂ invasion (inlet). In this process, DSPZH₂ is electrochemically reduced to DSPZH₂⁺ and hydroxide is produced, which reacts with CO₂ to form carbonate/bicarbonate. 1–→1¹⁻: change of the headspace atmosphere from inlet to exit pressure, i.e., switching from p_EXP to p_EXIT. 3–→5: two-stage deacidification+CO₂ outgassing (exit). In this process DSPZH₂⁺ is electrochemically oxidized to DSPZ and hydroxide is consumed, which in turn leads to carbonate/bicarbonate decomposition and CO₂ evolution. 3–→3¹⁻: change of the headspace atmosphere from exit to inlet pressure, i.e., switching from p_EXIT to p_EXP. The change in TA and DIC in these processes are denoted with ΔTAₚ and ΔDICₚ, respectively, where the subscript refers to process “a→b”, and a and b are any pairs of states. An example cycle is described quantitatively in the next section.

As DSPZH₂ is reversibly chemically oxidized by atmospheric O₂ to DSPZ (right dashed arrow in Fig. 1c), the posolyte supplies extra charge to electrochemically reduce the extra oxidized DSPZ; this is reflected in the low Coulombic efficiency of the cell and an accumulation of TA and DIC in the negolyte. This process also transforms more of the posolyte to its oxidized form, i.e., [K⁺][Fe⁶⁺(CN)₆]⁴⁻→[K⁺][Fe⁴⁺(CN)₆]⁴⁻⁺K⁺+e⁻, than at a similar point in the previous deacidification-acidification cycle. During cell operation reduction on one side must be accompanied by oxidation on the other side but, as the available fraction of reduced species on the posolyte side, i.e., [K⁺][Fe⁶⁺(CN)₆]⁴⁻, decreases, the cell can access less and less of its theoretical capacity during its oxidation-reduction oscillations; this is reflected in the decaying capacity of the cell. Eventually, both sides become 100% oxidized and cell operation ceases. Our remedy for such situations is the electrochemical rebalancing mechanism (left dashed arrow in Fig. 1c) explained later in the text.

One carbon capture cycle with p_EXP = 0.1 bar and p_EXIT = 1 bar at 40 mA cm⁻². In previous work we demonstrated a series of non-concentrating cycles, in which both exit and inlet pCO₂ were 0.47 bar, utilizing a DSPZ-based flow cell at 40–150 mA cm⁻². In the present work, we show the use of this setup for CO₂ separation from low partial pressure in a mixture with nitrogen and release into a pure CO₂ exit stream at 1.0 bar. Figure 2 demonstrates one such cycle with pCO₂ = 1.0 and 0.1 bar at the exit and inlet, respectively. Beginning at state 3, the upstream CO₂ partial pressure was set to 0.1 bar, which is close to its value in the flue gas from coal fired power plants. We define t as the time elapsed. As deacidification began (Fig. 2a, b, t = 0.2 h), the TA went up at a linear rate because only K⁺ ions crossed the
Fig. 1 Scheme of the pH swing carbon capture flow system. a Schematic of the reversible PCET (proton-coupled electron transfer) reaction underwent by DSPZ (sodium (3,3′-(phenazine-2,3-diylbis(oxy))bis(propane-1-sulfonate))) in an aqueous solution. b Schematic of the Fe(CN)$_6$ (posolyte) | DSPZ (negolyte) flow cell and full system. Blue arrows indicate gas flow direction. Adapted from ref. 18. c Process flow. TA is total alkalinity and DIC is dissolved inorganic carbon. The solid arrows refer to desired reactions in a complete carbon capture/release cycle. The carbonate formation and decomposition reactions are neglected for simplicity. The dashed arrow on the right side refers to the side reaction caused by oxygen and the dashed arrow on the left refers to reactions in the electrochemical rebalancing step.
alkalinity. Pressure in between 0 < p_f < 35 mL 0.1 M K$_4$Fe(CN)$_6$ and 0.04 M K$_3$Fe(CN)$_6$ in 1 M KCl. Electrolytes comprised 10 mL 0.11 M DSPZ in 1 M KCl (negolyte, capacity limiting) and 35 mL 0.1 M K$_4$Fe(CN)$_6$ and 0.04 M K$_3$Fe(CN)$_6$ in 1 M KCl (posolyte, non-capacity limiting). a Current density. b Voltage. c Total alkalinity. d pH of the negolyte. States 3’, 1, 1’, 3 and 3’ represent pH values before deacidification under 0.1 bar pCO$_2$, after deacidification + absorption under 0.1 bar pCO$_2$, after changing pCO$_2$ from 0.1 bar to 1 bar, after acidification + desorption under 1 bar and after changing pCO$_2$ from 1 bar to 0.1 bar, respectively. The detailed composition of these states is elaborated in Table 1. e N$_2$ and CO$_2$ percentage in the upstream source gas, controlled by mass flow controllers. f Downstream CO$_2$ partial pressure. The baseline indicates pCO$_2$ = 0.1 bar. Inset: Zoomed-in view of downstream CO$_2$ partial pressure in between 0 < t < 2 h, where CO$_2$ capture takes place. g Downstream total gas flow rate; the baseline is 11.8 mL min$^{-1}$. Inset: Zoomed-in view of downstream gas flow rate (filtered) in between 0 < t < 2 h, where CO$_2$ capture takes place.

cation exchange membrane (CEM) when a constant 40 mA cm$^{-2}$ current density was applied (Fig. 2c)[18]. As a result of the PCET reactions during the reduction of DSPZ, the negolyte pH (Fig. 2d) increased from near neutral to ~13.5 at the end of the deacidification process, indicated by the steep increase of voltage until reaching the preset voltage cutoff of 1.65 V (Fig. 2b, t = 2.2 h). The drop in flow rate at t = 2.2 h and its return to the baseline at 2.5 h is caused by the combined effect of mismatched valve response rate in the MFCs (the N$_2$ MFC valve closes faster than the CO$_2$ MFC valve opens) and a small increase in DIC due to increased pCO$_2$ in the headspace. This increase in DIC, corresponding to ΔDIC$_{1’}$, is difficult to quantify via the flowmeter and CO$_2$ sensor, but can be determined using pH$_{\text{meas}}$ (ΔDIC$_{\text{TA}=1’–3’}$) or assuming gas-solution equilibrium (ΔDIC$_{\text{TA} \text{pH}=1’–3’}$), which both give 0.03 M (Table 1). The acidification+CO$_2$ outgassing (process 1’→3) started at t = 3.2 h and ended at a little over 3.6 h (Fig. 2a–d, g). Note that, unlike in process 3’→1, the CO$_2$ outgassing, which is observable from pH change and an increase in flow rate, (Fig. 2d, g) lasted for no more than ten minutes after the acidification process (Fig. 2a, b) finished. The outgassed CO$_2$ volume was 49 mL (Eq. 1), which is equivalent to 0.20 M, determined by TA and DIC measured, ±0.035 × DIC, corresponding to ΔpCO_2, where 0.035 comes from Henry’s law constant of 35 mM bar$^{-1}$ for CO$_2$ at room temperature. Because ΔTA$_{3’}$$-1$ is known from Fig. 2c, TA$_3$ can be evaluated, and so can the TA values at other states. One way of obtaining DIC in all states except 3’ and of obtaining ΔDIC values between all states is to use the known TA and CO$_2$(aq), and we denote these values with subscript “TA-equ” (Table 1). This method is also used to construct the ideal cycles (Supplementary Fig. 1). Another way to calculate DIC is to use the TA and pH$_{\text{meas}}$ without assuming gas-solution equilibrium. We denote DIC and ΔDIC calculated this way with subscript “TA-pH”. The DIC between state 3’, and 1, i.e., 0.20 M, determined by flow meter and CO$_2$ sensor, $\Delta DIC_{\text{flow},3’1}$, is corroborated by ΔDIC$_{\text{TA}=1’–3’}$ and ΔDIC$_{\text{TA} \text{pH}=1’–3’}$ (Table 1).

After CO$_2$ capture at 0.1 bar (p_f) was completed, the headspace of the negolyte was switched to a pure CO$_2$ environment (p_f) to prepare for CO$_2$ outgassing, i.e., going through process 1→1’ (Fig. 2c, t = 2.2 h). The drop in flow rate at t = 2.2 h and its return to the baseline at 2.5 h is caused by the combined effect of mismatched valve response rate in the MFCs (the N$_2$ MFC valve closes faster than the CO$_2$ MFC valve opens) and a small increase in DIC due to increased pCO$_2$ in the headspace. This increase in DIC, corresponding to ΔDIC$_{1’}$, is difficult to quantify via the flowmeter and CO$_2$ sensor, but can be determined using pH$_{\text{meas}}$ (ΔDIC$_{\text{TA}=1’–3’}$) or assuming gas-solution equilibrium (ΔDIC$_{\text{TA} \text{pH}=1’–3’}$), which both give 0.03 M (Table 1). The acidification+CO$_2$ outgassing (process 1’→3) started at t = 3.2 h and ended at a little over 3.6 h (Fig. 2a–d, g). Note that, unlike in process 3’→1, the CO$_2$ outgassing, which is observable from pH change and an increase in flow rate, (Fig. 2d, g) lasted for no more than ten minutes after the acidification process (Fig. 2a, b) finished. The outgassed CO$_2$ volume was 49 mL (Eq. 1), which is equivalent to 0.20 M, determined by TA and DIC measured, ±0.035 × DIC, corresponding to ΔpCO_2, where 0.035 comes from Henry’s law constant of 35 mM bar$^{-1}$ for CO$_2$ at room temperature. Because ΔTA$_{3’}$$-1$ is known from Fig. 2c, TA$_3$ can be evaluated, and so can the TA values at other states. One way of obtaining DIC in all states except 3’ and of obtaining ΔDIC values between all states is to use the known TA and CO$_2$(aq), and we denote these values with subscript “TA-equ” (Table 1). This method is also used to construct the ideal cycles (Supplementary Fig. 1). Another way to calculate DIC is to use the TA and pH$_{\text{meas}}$ without assuming gas-solution equilibrium. We denote DIC and ΔDIC calculated this way with subscript “TA-pH”. The DIC between state 3’, and 1, i.e., 0.20 M, determined by flow meter and CO$_2$ sensor, $\Delta DIC_{\text{flow},3’1}$, is corroborated by ΔDIC$_{\text{TA}=1’–3’}$ and ΔDIC$_{\text{TA} \text{pH}=1’–3’}$ (Table 1).

Calculation of ΔDIC$_{\text{flow},3’1}$ molar cycle work, and productivity. The discussion above shows how ΔDIC$_{\text{flow},3’1}$ and ΔDIC$_{\text{flow},3’1}$ are obtained by gas flow measurement, but neither of these two quantities reflect the actual amount captured at 0.1 bar and released at 1.0 bar, because both states 3’ and 1 are at p_f = 0.1 bar while both states 1’ and 3 are at p_f = 1 bar. The important quantity is the difference in DIC between states 3 and 1. With help of TA and pH measurements, ΔDIC$_{\text{flow},1’–3}$ is evaluated as ΔDIC$_{\text{TA}=1’–3’}$ + ΔDIC$_{\text{TA} \text{pH}=1’–3’}$ = −0.17 M; equivalently, with opposite sign, ΔDIC$_{\text{flow},3’1}$ = ΔDIC$_{\text{flow},3’1}$ + ΔDIC$_{\text{TA} \text{pH}=1’–3’}$ = 0.17 M, i.e., 1.7 mol CO$_2$ in a 10 mL negolyte volume. Because sufficient gas-solution equilibrium is approached (Fig. 2f, g), ΔDIC$_{\text{TA}=\text{eq}}$ may also
Table 1 Summary of TA, pCO2, pH, DIC and ∆DIC.

State	TA (M)	p_pCO2 (bar)	pH_{meas}	pH_{TA}	DIC_{flow} (M)	DIC_{TA}	DIC_{TA}	∆DIC_{flow} (M)	∆DIC_{TA}	∆DIC_{TA}
3'	0.11	0.1	7.4	7.4	0.11	0.11	0.11	0.20	0.20	0.20
1	0.32	0.1	8.1	7.9	0.31	0.31	0.31	N/A	0.03	0.03
1'	0.32	1.0	7.1	6.9	0.34	0.34	0.34	0.20	−0.20	−0.20
3	0.12	1.0	6.6	6.5	0.14	0.14	0.14	N/A	−0.03	−0.03
3'f	0.12	0.1	7.5	7.5	0.12	0.12	0.12	0.12	0.12	0.12

TA is calculated by counting charges and assuming K^+ is the only ion passing through the CEM; pCO2 is the CO2 partial pressure at each state; pH_{meas} refers to the negolyte pH measured by the pH probe. All DIC and TA values at state 3’ were employed. DIC and TA calculated using TA and pH_{meas}, DIC_{TA} and DIC_{TA} are calculated using DIC_{flow} and DIC_{TA} values, respectively, between two consecutive states. ∆DIC_{flow} is calculated from the volume of CO2 captured or released, measured by the downstream flow meter and CO2 sensor and DIC_{eq} is calculated by adding DIC_{flow} at the state one row above. Because ∆DIC_{flow} is not measurable between states 1 and 1’ and states 3 and 3’, DIC_{flow} at states 1 and 3’ is calculated by adding DIC_{flow} with DIC_{TA} values between the corresponding states.

The productivity measures the rate of a CO2 separation process and may be evaluated by dividing ∆DIC_{flow,i−i−1}, i.e., 0.17 M, by the sum of the absorption time and the desorption time. The CO2 absorption and desorption processes took 1.6 and 0.4 h, respectively, leading to a productivity of 0.085 M h^{-1} or 8.5 \times 10^{-4} mol\cdot CO2\cdot h^{-1}. The productivity should vary monotonically with current density because the desorption process is mostly limited by the rate of TA consumption, which is proportional to the rate of electrochemical oxidation. The solution-gas contacting area is quite limited in this experiment: gas was simply bubbled through the solution at a low rate (11.8 mL/min). Engineered contactor structures have many orders of magnitude higher contact area. Because the sorbent in this process is aqueous KOH, the contactor that is used for the concentrated alkaline process^9 might be adopted, for example, and a similar capture rate would be expected. Other factors such as solution concentration, gas flow rate, etc. also influence the productivity but analysis of such dependencies is beyond the scope of this study.

Carbon capture cycles with \(p_1 = 0.1\text{–}0.5\text{ bar at 40 mA cm}^{-2} \). In order to understand how the electrical work depends on the inlet pCO2, we performed five cycles each at \(p_1 = 0.1 \) to 0.5 bar with \(p_3 = 1.0\text{ bar (Fig. 3) } \). The same cell components and negolyte as in Fig. 2 were used, and the posolyte was replaced with a fresh solution for each inlet condition to avoid oxygen-induced long-term cell imbalance (Fig. 1c)^23. Supplementary Figure 5b shows that the CO2 outgassing period is identical regardless of inlet pCO2 because the exit pCO2 is always 1 bar and the current density is always 40 mA cm^{-2}. In contrast, the capture period increases as inlet pCO2 decreases (Supplementary Fig. 5a) because of the expected trend of reaction rate with decreasing reactant concentration. ∆DIC_{flow,3−1} values decrease as \(p_1 \) decreases (Fig. 4a) because of greater ∆DIC during processes 1−→1’ and 3’→3 (vertical arrows in Fig. 4c) at smaller \(p_1 \). The measured values closely align with the theoretical ∆DIC_{TA,3−1} vs. \(p_1 \) curve (Fig. 4a).

This alignment permits us to estimate ∆DIC_{flow,3−1} for \(p_1 = 0.4 \) mbar and \(p_3 = 1 \) bar, i.e., similar to DAC conditions, by following the ∆DIC_{TA,3−1} vs. \(p_1 \) curve to obtain a value of 0.049 M. Note that the ∆DIC_{TA,3−1} vs. \(p_1 \) curve shifts downward as TA increases (Supplementary Fig. 3b). This has relatively small impacts on ∆DIC_{TA,3−1} with high \(p_1 \), but it causes significant differences for small \(p_1 \) values. For example, when \(p_1 = 0.4 \) mbar, ∆DIC_{TA,3−1} is 0, 0.11 and 0.21 M is 0.097, 0.049 and

Fig. 3 Twenty five CO2 concentrating cycles with 0.5, 0.4, 0.3, 0.2, and 0.1 bar inlet pCO2 and 1 bar exit pCO2 at 40 mA cm^{-2}. Same cell and negolyte as in Fig. 2 were employed. a Current density. b Voltage. c pH of the negolyte. d N2 and CO2 percentage in the upstream source gas, controlled by mass flow controllers; total pressure 1.0 bar. e Downstream CO2 partial pressure. f Downstream total gas flow rate.

be used in place of ∆DIC_{TA} in such calculations, resulting in the same values of ∆DIC_{flow,1−3} and ∆DIC_{flow,3−1}.

In this cycle, the deacidification work into the system, w_{deacidification} = 0.267 kJ and the acidification work, w_{acidification} = −0.119 kJ (Eq. 3). Dividing the cycle work, w_{cycle} (Eq. 2), by 1.7 mmol CO2 gives the molar cycle work of 87 kJ mol^{-1} CO2. This value is already competitive with commercial amine scrubbing processes^45, and it can be further decreased by using membranes with lower ohmic resistance or molecules with lower electron transfer overpotential^22.
transport overpotentials at higher current density. It is noted that trends are caused by increased ohmic, electron-transfer, and mass-solution equilibrium.

direction of the processes in the experiments. a DIC relations of the ideal cycles with corresponding experimental conditions. b DIC vs TA in the ideal cycles, assuming TA3 = 0.11 M, ΔTA3−1 = 0.21 M and gas-solution equilibrium. p1 in the legends represents pCO2 during the two-stage deacidification+CO2 invasion process. The arrows indicate the direction of the processes in the experiments. c DIC vs. TA in the ideal cycles. d DIC vs. pH in the ideal cycles.

Carbon capture cycles with p1 = 0.1–0.5 bar at 20–150 mA cm−2. The average CO2 molar cycle work under 40 mA cm−2 is compared with those obtained under 20–150 mA cm−2 (Fig. 5a and Supplementary Fig. 7). As current density increases at a fixed p1, the net cycle work increases as the required deacidification work increases and the acidification work returned decreases in magnitude; these trends are caused by increased ohmic, electron-transfer, and mass-transport overpotentials at higher current density. It is noteworthy that we achieve 61.3 kJ molCO2−1 cycle work for p1 = 0.1 bar and p1 = 1 bar using a current density of 20 mA cm−2, which is a competitive energy cost at a much higher current density compared to other electrochemical CO2 separation methods for flue gas capture.

It is evident from Fig. 5b that ΔDICflow,3−→1 is independent of current density for a given value of p1. This occurs because varying current density changes only the rate of change in TA and not the value of ΔTA3−1, and sufficient reaction time was allowed to approach gas-solution equilibrium, whether the current density was low (Fig. 2f, g) or high (Supplementary Fig. 9). The consistent ΔTA3−1 across various current densities is supported by the consistent charge/discharge capacities (Supplementary Fig. 8). The slight variations in ΔTA and ΔDIC were caused by occasional foaming or negolyte droplets clinging to the wall of the reservoir, both of which cause small amounts of charge capacity to be instantaneously inaccessible from time to time. In contrast, increasing pCO2 at the inlet raises ΔDICflow,3−→1 (Fig. 5b), for the reason explained in the discussion of Fig. 4d. In addition to the cycle results presented in Fig. 5, five cycles with p1 = 0.05 bar and p1 = 1 bar and current density being 40 mA cm−2 were tested under faster negolyte pumping to enhance mass transport rates, yielding an average cycle work of 92.6 kJ molCO2−1 (Supplementary Fig. 10).

Estimate of molar cycle work at p1 = 0.4 mbar and p1 = 1 bar. Because of the limited sensitivity of our equipment, a direct measurement of CO2 molar cycle work at p1 = 400 ppm and p1 = 1 bar, i.e., similar to DAC conditions, is currently infeasible in our laboratory, but we can extrapolate the molar cycle work under these conditions using the results obtained from p1 = 0.1–0.5 bar. However, a simple linear regression of the molar cycle work from higher p1 values to p1 = 0.4 mbar does not guarantee accurate extrapolation because the deacidification work (Fig. 5c), i.e., part of the numerator in the calculation of molar cycle work (Eqs. (2)–(4) in the “Methods” section), scales linearly with p1, whereas ΔDICflow,3−→1, i.e., part of the denominator in the calculation of molar cycle work (Eq. (4) in the method section), scales non-linearly with p1 (Fig. 4a, d and Supplementary Fig. 3b). Therefore, we evaluate the molar cycle work at p1 = 0.4 mbar by separately calculating ΔDICflow,3−→1 and the cycle work (i.e., the sum of the experimental deacidification work (Fig. 5c) and the acidification work (Fig. 5d)). The deacidification work at p1 = 0.4 mbar is simply approximated by the deacidification work under a pure N2 atmosphere, i.e., 0.0 bar pCO2 (Fig. 5c); the reason that
Extrapolation is performed using deacidification densities. The cycle work obtained at other pressures for current densities indicated above the bars, in mA cm\(^{-2}\). In both (a) and (b) the horizontal axis is categorical, and each shadowed region refers to a single p\(_1\) value. b \(\Delta\text{DIC}_{\text{flow,3-1}}\) vs. p\(_1\) for various current densities. c Deacidification work vs. p\(_1\) for various current densities. The “x” markers refer to measured data. The deacidification work of the cycles under pure N\(_2\) is used for p\(_1\) = 0.0 bar. d Acidification work vs. p\(_1\) for various current densities. The “x” markers refer to measured data. For each current density, the acidification work at p\(_1\) = 0.0 bar (“o” markers) is chosen to be the average value of the work obtained at other p\(_1\) values at the same current density. e CO\(_2\) molar deacidification, acidification and cycle work vs. current density for p\(_1\) = 0.1, 0.3 and 0.5 bar. The curves are fitted using a Tafel model. f Extrapolated CO\(_2\) molar deacidification, acidification and cycle work for p\(_1\) = 0.4 mbar. Extrapolation is performed using deacidification and acidification work at 0.0 bar p\(_1\) in (c) and (d), and divided by \(\Delta\text{DIC}_{\text{TA-equ,3-1}}\) at p\(_1\) = 0.4 mbar obtained from Fig. 4a and Supplementary Fig. 2b. The solid line refers to a Tafel model fit of CO\(_2\) molar cycle work vs. current density assuming TA\(_{31}\) = 0.11 M (\(\Delta\text{DIC}_{3-1}\) = 0.049 M) and the dashed line refers to the same fitting but assuming TA\(_{31}\) = 0.0 M (\(\Delta\text{DIC}_{3-1}\) = 0.097 M).

deacidification work decreases with increasing p\(_1\) is that increasing p\(_1\) lowers the average negolyte pH, which in turn decreases the cell voltage and thereby decreases the work (Eq. 3 in the “Methods” section). The acidification work is always the same regardless of p\(_1\) because p\(_3\) is always 1 bar and \(\Delta\text{TA}_{3-1}\) is always the same (hence the flat lines in Fig. 5d); therefore, for p\(_1\) = 0.0 bar we use the average acidification work from higher p\(_1\) values. As for \(\Delta\text{DIC}_{\text{flow,3-1}}\) at p\(_1\) = 0.4 mbar, we assume it is equal to the value of \(\Delta\text{DIC}_{\text{TA-equ,3-1}}\) in the ideal cycle at the same pressure. We have shown that measured (\(\Delta\text{DIC}_{\text{flow,3-1}}\)) and ideal cycle (\(\Delta\text{DIC}_{\text{TA-equ,3-1}}\)) values of \(\Delta\text{DIC}_{3-1}\) at p\(_1\) = 0.1–0.5 bar agree very well (Fig. 4a, blue curve). With TA\(_{31}\) = 0.11 M and \(\Delta\text{TA}_{3-1}\) = 0.21 M, the ideal cycle value of \(\Delta\text{DIC}_{\text{TA-equ,3-1}}\) at p\(_1\) = 0.4 mbar and p\(_3\) = 1 bar is 0.049 M (Fig. 4a, Supplementary Fig. 2b). The molar cycle work for various current densities, evaluated by dividing the sum of deacidification and acidification work at p\(_1\) = 0.0 bar by \(\Delta\text{DIC}_{\text{TA-equ,3-1}}\) of 0.049 M, is shown in Fig. 5f. Figure 5f suggests that the molar cycle work at 20 mA cm\(^{-2}\) is 237.4 kJ mol\(^{-1}\) CO\(_2\). This is on par with the concentrated KOH process\(^9\). However, if there is no initial alkalinity, i.e., TA\(_{31}\) = 0.0 M, and the same \(\Delta\text{TA}_{3-1}\) = 0.21 M is kept, the cycle work may be cut in half to 121.0 kJ mol\(^{-1}\) CO\(_2\); this occurs because of the nearly doubled \(\Delta\text{DIC}_{\text{flow,3-1}}\) of 0.097 M despite similar cycle work (Supplementary Figs. 2 and 3). The non-linear molar cycle work...
trend was fitted with a Tafel model, which suggests 72.8 and 98.1 kJ mol-1 CO\textsubscript{2} at 5 and 10 mA cm-2, respectively (ESI, Non-Linear Fit of Molar Cycle Work With Tafel Model). In addition, due to its solubility of 0.7 M in aqueous solution18, DSPZ can induce a Δ\textsubscript{T}max \textsubscript{1} or Δ\textsubscript{OH}− \textsubscript{1} of 1.4 M and thereby potentially yield even lower molar cycle work (Supplementary Fig. 4).

Comparison with existing technologies. Table 2 summarizes some of the emerging technologies for point source capture, DAC, and direct ocean capture (DOC), where CO\textsubscript{2} is removed from seawater, allowing more CO\textsubscript{2} uptake by the ocean. Many approaches to DAC have used aqueous alkaline solutions2,9 or solid amine-based adsorption methods1,24,29, which require thermal excursions to release captured CO\textsubscript{2}. One of the state-of-the-art DAC approaches relies on concentrated (2–5 M) alkaline solutions on a high-area contactor to absorb CO\textsubscript{2} and transform it into aqueous K\textsubscript{2}CO\textsubscript{3} and KHCO\textsubscript{3}. These are then converted into solid CaCO\textsubscript{3} in a pellet reactor by mixing the aqueous carbonates with Ca(OH)\textsubscript{2}. Releasing the CO\textsubscript{2} requires heating the CaCO\textsubscript{3} to 900 °C in an oxygen-fired calciner, which costs 264–296 kJ mol-1 CO\textsubscript{2}2,9. Another, less mature, aqueous approach uses amino acids for the carbon capture step and undergoes a subsequent sorbent regeneration cycle employing solid bis-iminoguanidine carbonate precipitation and CO\textsubscript{2} release through heating to >100 °C; this cycle requires 152–422 kJ/mol-1 CO\textsubscript{2}, depending on the type of guanidine, because a significant portion of the energy contributes to removing the undesirable hydrate from guanidine carbonate crystals10,16. Solid sorbent DAC, mostly based on solid amine absorption and release through thermal and/or pressure swing, allows reduced heating requirements (~100 °C), but amine decomposition may lead to high operational and end-of-life costs2,26–28.

Electrochemical carbon capture methods may offer solutions to overcome the high sorbent regeneration energy penalty and sorbent decomposition issues. Electrochemically mediated point source carbon capture methods7,24,29, at low current densities, have exhibited lower energetic costs than amine-scrubbing methods. In addition, CO\textsubscript{2} removal from ocean water, which restores the CO\textsubscript{2} capture capability of oceans, via electrochemical methods such as bipolar membrane electrodialysis (BPMED), have shown promisingly low energetic cost12,13. However, the demonstrated works exhibited either low current density (slow kinetics) or low voltage efficiency. In addition, the high water-handling requirement of direct ocean capture adds significantly to the energetic cost.

The performance of our pH-swing flow cell, demonstrated for capture at 0.1 bar and projected for 0.4 mbar appears competitive compared with existing technologies, not only in terms of energetic cost with cheap electricity from renewable sources, but also because of much larger applicable current density (Table 2)30.

Additionally, the all-liquid configuration obviates the need for the precipitation and heating of solid carbonates. Furthermore, the compatibility with an aqueous electrolyte of non-volatile, non-corrosive and potentially low-cost organic molecules implies that a carbon capture technology based on this concept has the potential for wide scale practical implementation.

Electrochemical rebalancing. It is clearly difficult to avoid O\textsubscript{2} in either DAC or flue gas capture because the source gas contains 20% and 3–5% O\textsubscript{2}, respectively. In the short term, the oxidation of DSPZH\textsubscript{2} by O\textsubscript{2} incurs an instantaneous loss in Coulombic efficiency. In the long term the cell will go out of balance, accumulating oxidized species in both electrolytes and T\textsubscript{A}\textsubscript{3+}, KOH, and DIC\textsubscript{3−} in the negolyte (Fig. 1c)23. As a result, ΔDIC\textsubscript{3−} will shrink without a concomitant decrease in cycle work (Supplementary Fig. 2b), leading to an increase in CO\textsubscript{2} molar cycle work (Supplementary Fig. 2c). Eventually, the cell will no longer operate because both electrolytes are completely oxidized. As

Table 2 Comparison of this work and emerging technologies for DAC, DOC, and point source capture. CO\textsubscript{2} separation work with “th” subscript denotes thermal energy inputs, whereas “e” subscript denotes electrical work input.

Method	Purpose	CO\textsubscript{2} separation work inputs (kJ mol-1 CO\textsubscript{2})	Current density (mA cm-2)
Alkaline solvent2,9	DAC	264–396a	N/A
Solid amine sorbents2	DAC	150–211b	N/A
Amino acid solvents and solid bis-iminoguanidines10	DAC	152–422c	N/A
Fuel cell concentrator17	DAC	350d	0.5
Electrochemical alkaline sorbent regeneration31	DAC	374f	0.5
Processing seawater within a BPMED reactor13	DOC	155g	3.3
Titrating seawater with BPMED acid/base12	DOC	394h	100
Traditional amine adsorption/desorption4	Point source capture	132–150\textsubscript{th}	N/A
Amine adsorption/desorption with advanced flash stripper32	Point source capture	92\textsubscript{tth}	N/A
Shell CanSolv3	Point source capture	103\textsubscript{th}	N/A
Petra Nova33	Point source capture	89\textsubscript{th}	N/A
Quinone Direct binding7	Point source capture	56\textsubscript{k}	0.5
EMAR8	Point source capture	30–113\textsubscript{l}	2.7–11.8
This work	0.1 bar capture	61–145\textsubscript{a}	20–150
	0.4 mbar capture	121–237\textsubscript{a}	20 (extrapolated)

aWork input excludes electrical work required to operate air–liquid contactor, pellet reactor, and auxiliary equipment.
bDescription energy for mid-range scenario; work input excludes electrical work required to operate air contactor fans and desorption vacuum pump.
cEnergy required for bis(iminoguanidine) regeneration.
dHydrogen gas is the energy source; Energy required to operate water cooling system is excluded.
eThe process starts with a bicarbonate/carbonate solution, simulating a solution saturated with DIC under 0.4 mbar inlet pCO\textsubscript{2}. The value is the required work for alkaline sorbent solution regeneration.
fWork input excludes costs for ocean water intake, pre-treatment, and pumping.
gEnergy consumption for the best-case process; work input excludes electrical work required to operate pumps and chiller.
hThe inlet gas source contains 11.3% CO\textsubscript{2}, and the exit is 99% CO\textsubscript{2}.
iThe inlet gas source contains 11% CO\textsubscript{2}, and the exit is 97% CO\textsubscript{2}. This energy is calculated using the electrical power cost, excluding 50% used for compression, plus the steam cost associated with the CCS plant. The captured CO\textsubscript{2} was offset by the CO\textsubscript{2} emission in the CCS plant.
jEnergy required for bis(iminoguanidine) regeneration.

Work input excludes electrical work required to operate air–liquid contactor, pellet reactor, and auxiliary equipment.
shown in Fig. 6a, b, as soon as the headspace was opened to air the Coulombic efficiency decreased to ~65%, and by the 20th subsequent cycle the cell lost all capacity due to depletion of reduced species, i.e., $[K^+][Fe^{II}(CN)_6]^{4-}$, in the posolyte side. The negolyte pH also increased from near neutral to almost 14 during air exposure (Supplementary Fig. 14b). Development of oxygen-insensitive molecules may alleviate the problem caused by oxygen, but even if a tiny amount of Coulombic efficiency loss, e.g., 0.1%, took place every cycle, the effect is cumulative and will eventually lead to an out-of-balance cell problem (Fig. 1c).

Here we demonstrate the efficacy of the electrochemical rebalancing method. The method successfully recovers the pH of the negolyte and the capacity of the cell, which is thrown out-of-balance by O$_2$-induced side reactions. The electrochemical rebalancing process comprises the cathodic reaction $[K^+]_3[Fe^{II}(CN)_6]^{3-} + e^- \rightarrow [K^+]_4[Fe^{II}(CN)_6]^{4-}$ in the posolyte and the anodic oxygen evolution reaction, $\text{OH}^- \rightarrow 2e^- + \frac{1}{2}\text{O}_2$, in the negolyte. Figure 6d–f shows the cell behavior when the electrochemical rebalancing process is applied to the completely out-of-balance cell (Fig. 6b). The process starts when a constant current of -40 mA cm$^{-2}$ is applied (Fig. 6d). The voltage immediately drops from 0.2 V to negative values because both the cathodic and anodic half reactions are at ~0.4 V vs. SHE at pH 14, and there is high activation overpotential for the oxygen evolution reaction (Fig. 6e). As the rebalancing process progresses, the pH of the negolyte side decreases (Fig. 6f), causing the anodic half reaction to shift to higher potential, thereby further decreasing the cell potential (Fig. 6e). The sharp drop in voltage to a plateau near 0.8 h indicates the completion of the electrochemical rebalancing process. Figure 6c shows the post-rebalancing cell capacity, which is almost identical to that prior to air exposure (Fig. 6a), indicating that essentially all lost capacity due to imbalance has been restored. The capacity accounting for all the electrons passed in the electrochemical rebalancing step is 476.8 C, which is within 1% of the theoretical capacity (473 C) of the posolyte side, suggesting a complete recovery of the $K_4Fe(CN)_6$ and minimal side reactions other than oxygen evolution. The posolyte pH did not change much.
during the process because the cathodic half-reaction is not proton-coupled (Fig. 6f). The neutral pH of the negolyte at the end of the process indicates that virtually all of the accumulated hydroxide has been removed (Fig. 6f). The undiminished capacity also suggests that this method is not detrimental to DSPZ. Supplementary Figure 14 shows that the electrolytes, after electrochemical rebalancing, have the same carbon-capture capability as the original electrolytes, and the NMR spectra in Supplementary Fig. 15 suggest no new species was generated during the process. Hence, the electrochemical rebalancing process is a very effective method to remove the adverse effect of oxygen in DSPZ-based carbon capture flow cells. This method has potentially broad application beyond DSPZ and carbon capture, e.g., mitigating the oxygen effect in flow batteries with air or pH-sensitive electrolytes (ESI, More on Electrochemical Rebalancing). The overall energy cost is 378 J, which is approximately 1.4 times of the cost of one decacidification half cycle at 40 mA cm$^{-2}$ (Fig. 5c). This will be a significant cost if the electrochemical rebalancing is applied every few cycles, which may be necessary for a DSPZ-based system for DAC, but if the negolyte molecule is much less air sensitive or the source gas has lower oxygen content, requiring electrochemical rebalancing less frequently than once every few tens of carbon capture/release cycles, the cost will be negligible. The development of oxygen-insensitive molecules for this purpose is the subject of active research.

In this work, we have performed a series of CO$_2$ concentrating cycles using a DSPZ-based flow cell with electrochemically induced pH swings, and the cycle work under different inlet partial pressures and current densities was analyzed and compared. We demonstrated a 61.3 kJ mol CO$_2$⁻¹ cycle work for CO$_2$ separation for capture at $p_1 = 0.1$ bar and release at $p_2 = 1$ bar, at a current density of 20 mA cm$^{-2}$. If TAF$_{1/2}$ is carefully maintained at a low level, the extrapolated separation work for $p_1 = 0.4$ mbar and $p_2 = 1$ bar is 121 kJ mol CO$_2$⁻¹ at 20 mA cm$^{-2}$ and this figure can be further lowered if a higher concentration of DSPZ or another PCET-active molecule is used. Our Tafel model suggests that molar cycle work at $p_1 = 0.4$ mbar may be even lower than 100 kJ mol CO$_2$⁻¹ at smaller current densities. Recognizing the inevitable O$_2$-induced imbalance and capacity fade in both point source capture and DAC, we report an electrochemical rebalancing method that recovers the initially healthy cell composition. This method can serve as a convenient tool for mitigating oxygen-related problems in many electrochemical applications. We anticipate that the low energetic cost of the pH swing cycles and the effectiveness of the oxygen mitigation method demonstrated here will accelerate the techno-economic competitiveness of electrochemically-driven carbon capture systems.

Methods

Materials and characterization. All chemicals were purchased from Sigma-Aldrich or Acros Organics and were used as received. The synthetic method for DSPZ is adapted from previous work. In this work, sodium hydride was used to deprotonate the reaction intermediate phenazine-2,3-diol (DHPZ) instead of sodium methoxide (Supplementary Fig. 17).

Flow cell experiments. Flow cell experiments were constructed with cell hardware from Fuel Cell Tech. (Albuquerque, NM), assembled into a zero-gap flow cell configuration, similar to a previous report. Pyroscorched Pyroco electrode graphite plates with serpentine flow patterns were used for both electrodes. Each electrode comprised a 5 cm² geometric surface area covered by a stack of four sheets of Sigraet SGL 39AA porous carbon paper pre-baked in air for 24 h at 400 °C. The outer portion of the space between the electrodes was gasketed by Viton sheets with the area over the electrodes cut out. Torque applied during cell assembly was 80 lb-in on each of eight 1/4-28 bolts. The membrane used is a Fuelasence 600(K) CEM. Cell electrolytes comprised 10 mL 0.1 M DSPZ in 1 M KCl (negolyte, capacity limiting, theoretical capacity 212 C) and 35 mL 0.1 M K$_2$Fe(CN)$_6$, and 0.04 M K$_3$Fe(CN)$_6$ in 1 M KCl (posolyte, non-capacity limiting, theoretical capacity of 473 C). For every new CO$_2$ capture cycle condition (changing current density or inlet pCO$_2$), the posolyte was replaced with a fresh solution and the negolyte was acidified by adding drops of 1 M HCl to remove the accumulating effect of oxygen side reactions. 10 μL of antifoam B emulsion purchased from Sigma-Aldrich was added into the negolyte solution before cell cycling to suppress foam formation. Posolyte was fed into the cell through fluorinated ethylene propylene (FEP) tubing at a rate of 100 mL min$^{-1}$ controlled by a Cole-Parmer 6 Masterflex L/S peristaltic pump, and the negolytes were circulated at the same rate controlled by a Cole-Parmer Masterflex digital benchtop gear pump system. Both posolyte and negolyte upstream gas was controlled by Sierra Smart Trak 50 Mass Flow Controllers. The flowmeter used in the downstream of negolyte headspace was a Servo-Fl F4001-100-V-A. The CO$_2$ sensor was an ExplorIR-W 100% CO$_2$ sensor purchased from ozometre.com. A Mettler Toledo pH electrode LE422 was used to monitor electrolyte pH. As shown in Fig. 1b, a drierite drying tube (Cole Parmer) was placed in between the sensors and the negolyte chamber to reduce the humidity level of the gas.

Glasy carbon (BASF MSF-2012, 3.0 mm diameter) was used as the working electrode for all three-electrode CV tests. A Ag/AgCl reference electrode (BASF 2052, pre-soaked in 3 m NaCl solution), and a graphite counter electrode were used for CV tests. CV tests and cell cycling were performed using a Gamry Reference 3000 potentiostat. All cycles were galvanostatic until the 1.65 and 0.2 V voltage cutoff for decacidification and acidification, respectively, were reached, and then went through a potentiostatic process until the current reached 10 mA cm$^{-2}$. In the CO$_2$ cycles with $p_1 = 0.1, 0.2, 0.3, 0.4, and 0.5$ bar, the MFCs set the initial negolyte headspace atmosphere to be p_2, which was then switched back and forth between p_1 and p_2 every three hours. In the cycles with $p_1 = 0.05$ bar, the switching period was 5 h.

Calculation of absorbed or released CO$_2$ amount. Because the deviation from baseline in Fig. 2g is solely caused by CO$_2$ absorption, the amount of CO$_2$ captured is calculated by integrating over the difference between the recorded flow rate and the baseline in between 0.2 and 1.8 h, i.e.,

$$Q_{CO_2} = \sum \frac{V_{flow}}{\Delta t} - \sum \frac{V_{flow}}{\Delta t}$$

where Q_{CO_2} is the volume of CO$_2$, t_i is the start time, t_f is the final time, V_{flow} is the instantaneous volumetric flow rate at nth data recording time t_n, V_{flow} is the flow rate of 11.6 mL min$^{-1}$, and Δt is the time difference between successive measurements.

Calculation of decacidification, acidification, and cycle work. The net cycle work is calculated by combining the work required for decacidification in process 3$^{-\prime}$→1 and the work returned by acidification in process 1$^{-\prime}$→3, i.e.,

$$w_{cycle} = w_{decacidification} + w_{acidification}$$

The work in a process is calculated by summing over the product of voltage (Fig. 2a) and current (Fig. 2b), i.e.,

$$w_{decacidification/acidification} = \sum \frac{V_{flow}}{\Delta t} p_{A/M}$$

where V_{flow} is the cell voltage at the nth data recording time t_n, p_{A} is the current density at t_n and A is the active geometric area of 5 cm2.

The molar cycle work w is calculated by dividing w_{cycle} by $-\Delta DIC_{flow,1^{-\prime} \rightarrow 3^{-\prime}}$ or $\Delta DIC_{flow,3^{-\prime} \rightarrow 1^{-\prime}}$:

$$w = \frac{w_{cycle}}{-\Delta DIC_{flow,1^{-\prime} \rightarrow 3^{-\prime}}} = \frac{w_{cycle}}{\Delta DIC_{flow,3^{-\prime} \rightarrow 1^{-\prime}}}$$

where $\Delta DIC_{flow,1^{-\prime} \rightarrow 3^{-\prime}} = \Delta DIC_{TA_{-\text{eq}},3^{-\prime} \rightarrow 1^{-\prime}} + \Delta DIC_{TA_{-\text{eq}},1^{-\prime} \rightarrow 3^{-\prime}}$ and $\Delta DIC_{flow,3^{-\prime} \rightarrow 1^{-\prime}} = \Delta DIC_{flow,1^{-\prime} \rightarrow 3^{-\prime}} + \Delta DIC_{TA_{-\text{eq}},3^{-\prime} \rightarrow 1^{-\prime}}$. For high current densities (100 and 130 mA cm$^{-2}$), we use $\Delta DIC_{TA_{-\text{eq}},3^{-\prime} \rightarrow 1^{-\prime}}$ and $\Delta DIC_{TA_{-\text{eq}},1^{-\prime} \rightarrow 3^{-\prime}}$ instead of $\Delta DIC_{TA_{-\text{eq}},3^{-\prime} \rightarrow 1^{-\prime}}$ and $\Delta DIC_{TA_{-\text{eq}},1^{-\prime} \rightarrow 3^{-\prime}}$, respectively, because of an artifact in the baseline measurement at high current density, tentatively attributed to crosstalk between potentialstat lines. We explain in the main text that $\Delta DIC_{TA_{-\text{eq}},3^{-\prime} \rightarrow 1^{-\prime}}$ and $\Delta DIC_{TA_{-\text{eq}},1^{-\prime} \rightarrow 3^{-\prime}}$ are interchangeable when the pH measurement is valid.

Data availability

Source data are provided with this paper and available at https://github.com/martin94jjj/2022_nat_comm_CO2_data. Source data are provided with this paper.

Code availability

The code that supports the plots and discussion of this study is available from the corresponding author upon reasonable request.

Received: 9 September 2021; Accepted: 16 March 2022; Published online: 19 April 2022
References

1. Raupach, M. R. et al. Global and regional drivers of accelerating CO2 emissions. Proc. Natl Acad. Sci. USA 104, 10288 (2007).
2. National Academies of Sciences, Engineering, and Medicine, Division on Earth and Life Studies, Ocean Studies Board, Board on Chemical Sciences and Technology, Board on Earth Sciences and Resources, Board on Agriculture and Natural Resources, Board on Energy and Environmental Systems, Board on Atmospheric Sciences and Climate, Committee on Developing a Research Agenda for Carbon Dioxide Removal and Reliable Sequestration. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda (2019) (The National Academies Press, 2019).
3. U.S. Energy Information Administration, Office of Energy Analysis, U.S. Department of Energy. Annual Energy Outlook 2020 with Projections to 2050, 8th Edition (2020), 8th Edition (2020).
4. Goto, K., Kodama, S., Higashii, T. & Kitamura, H. Evaluation of amine-based solvent for post-combustion capture of carbon dioxide. J. Chem. Eng. Jpn. 47, 663 (2014).
5. Li, K. et al. Systematic study of aqueous monoethanolamine-based CO2 capture process: Model development and process improvement. Energy Sci. Eng. 4, 23 (2016).
6. Singh, A. & Stéphene, K. Shell cansolv CO2 capture technology: Achievement from first commercial plant. Energy Proc. 63, 1678 (2014).
7. Liu, Y., Ye, H. Z., Diederichsen, K. M., Van Voorhis, T. S. & Hatton, T. A. Electrochemically mediated carbon dioxide saturation with quinone chemistry in salt-concentrated aqueous media. Nat. Commun. 11, 2278 (2020).
8. Wang, M., Herzog, H. & Hatton, T. A. CO2 capture using electrochemically mediated amine regeneration. Ind. Eng. Chem. Res. 59, 7087 (2020).
9. Keith, D. W., Holmes, G., St. Angelo, D. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573 (2018).
10. Brethem, F. M., Williams, N. J., Seipp, C. A., Kidder, M. K. & Castelcane, R. Development of a CO2 capture process via aqueous-phase absorption and crystalline-phase release using concentrated solar power. Nat. Energy 3, 553 (2018).
11. Sanz-Perez, E. S., Murdock, C. R., Didas, S. A. & Jones, C. W. Direct capture of CO2 from ambient air. Chem. Res. 116, 11840 (2016).
12. de Lannoy, C.-F. et al. Indirect ocean capture of atmospheric CO2: Part I. Prototype of a negative emissions technology. Int. J. Greenhouse Gas Control 76, 243 (2018).
13. Digdaya, I. A. et al. A direct coupled electrochemical system for capture and conversion of CO2 from ocean water. Nat. Commun. 11, 4412 (2020).
14. Lail, M., Tanthana, J. & Coleman, L. Non-aqueous solvent (Nas) CO2 capture process. Energy Proc. 63, 580 (2014).
15. Heldebrandt, D. J. et al. Water-less solvents for post-combustion CO2 capture: Fundamentals, uncertainties, opportunities, and outlook. Chem. Rev. 117, 9594 (2017).
16. Castelcane, R. et al. Dialing in direct air capture of CO2 by crystal engineering of bisimimoguanidines. ChemSusChem 13, 6381 (2020).
17. Iasaman, M. et al. Energy-efficient electrochemical CO2 capture from the atmosphere. Presented at the Technical Proceedings of the 2009 Clean Technology Conference and Trade Show (2009) (unpublished).
18. Jin, S., Wu, M., Gordon, R. G., Aizit, M. I. & Kwabi, D. G. pH swing cycle for CO2 capture electrochemically driven through proton-coupled electron transfer. Energy Environ. Sci. 13, 3706 (2020).
19. Xie, H. et al. Low-energy-consumption electrochemical CO2 capture driven by bimimetic phenazine derivatives redox medium. Appl. Energy 259, 114119 (2020).
20. Xie, H. et al. Low-energy electrochemical carbon dioxide capture based on a biological redox proton carrier. Cell Rep. Phys. Sci. 1, 100046 (2020).
21. Zeebe, R. E. & Wolf-Gladrow, D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes (ed. Halpern, D.) Vol. 65 (Elsevier, 2005).
22. Chen, Q., Gerhardt, M. R. & Aizit, M. J. Dissection of the voltage losses of an acidic quinone redox flow battery. J. Electrochem. Soc. 164, A1122 (2017).
23. Goulet, M.-A. & Aizit, M. J. Flow battery molecular reactor stability determined by symmetric cell cycling methods. J. Electrochem. Soc. 165, A1466 (2018).
24. Renfrew, S. E., Starr, D. E. & Strasser, P. Electrochemical approaches toward CO2 capture and concentration. ACS Catal. 10, 13058 (2020).
25. Kang, J. S., Kim, S. & Hatton, T. A. Redox-responsive sorbents and mediators for electrochemically based CO2 capture. Curr. Opin. Green. Sustain. Chem. 31, 100504 (2021).
26. Broberg, D., Normile, C. & Stark, A. K. Uncertainty drives carbon ambition, even as deployment potential still at some reserve. Chem. 7, 2854 (2021).
27. Deutz, S. & Bardow, A. Life-cycle assessment of an industrial direct air capture process based on temperature-vacuum swing adsorption. Nat. Energy 6, 203 (2021).
28. Fuss, S. et al. Negative emissions—Part 2: Costs, potentials, and side effects. Environ. Res. Lett. 13, 063002 (2018).
29. Voskian, S. & Hatton, T. A. Faradaic electro-swing reactive adsorption for CO2 capture. Energy Environ. Sci. 12, 3530 (2019).
30. Sharifian, R., Wagtreveld, R. M., Digdaya, I. A., Xiang, C. & Vermaas, D. A. Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ. Sci. 14, 781–814 (2021).
31. Shu, Q., Legrand, L., Kuntpe, P., Tedesco, M. & Hamelers, H. Electrochemical regeneration of spent alkaline absorbent from direct air capture. Environ. Sci. Technol. 54, 8990 (2020).
32. Rochelle, G. T. et al. Pilot plant demonstration of pipervazine with the advanced flash stripper. Int. J. Greenhouse Gas Control 84, 72 (2019).
33. Greg, K. W. A. Parish Post-Combustion CO2 Capture and Sequestration Demonstration Project (Final Technical Report). United States: N. p., 2020. Web. https://doi.org/10.2172/1608572.
34. Jin, S. et al. A water-miscible quinone flow battery with high volumetric capacity and energy density. ACS Energy Lett. 4, 1342 (2019).
35. J. Y. et al. A phosphate-functionalized quinone redox flow battery at near-neutral pH with record capacity retention rate. Adv. Energy Mater. 9, 1900039 (2019).
36. Beh, E. S. et al. A neutral pH aqueous-organic-ganometallic redox flow battery with extremely high capacity retention. ACS Energy Lett. 2, 639 (2017).
37. Jin, S. et al. Near neutral pH redox flow battery with low permeability and long-lifetime phospholated viologen active species. Adv. Energy Mater. 10, 2000100 (2020).
38. Kwabi, D. G. et al. Alkaline quinone flow battery with long lifetime at pH 12. Joule 2, 1907 (2018).
39. Hu, B., DeBruler, C., Rhodes, Z. & Liu, T. L. Long-cycling aqueous organic redox flow battery (Aorb) toward sustainable and safe energy storage. J. Am. Chem. Soc. 139, 1207 (2017).
40. Huang, C. L. et al. CO2 capture from flue gas using an electrochemically reversible hydroquinone/quinone solution. Energy Fuels 33, 3380 (2019).
41. Ulaganathan, M. et al. Recent advancements in all-vanadium redox flow batteries. Adv. Mater. Interfaces 3, 1500309 (2016).

Acknowledgements
This research was supported by a grant from the Harvard University Climate Change Solutions Fund. We thank Daniel Schrag, Robert Gustafson, Anatoly Rinberg, Andrew Bergman, Tommy George, and Eric Feli for helpful discussions.

Author contributions
S.J. and M.A. conceived the idea on electrochemical rebalancing. M.W. designed and supervised the project. R.G. and Y.J. commented on the manuscript drafts.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-29791-7.

Correspondence and requests for materials should be addressed to Michael J. Aziz.

Peer review information Nature Communications thanks Matteo Gazzani and the other, anonymous, reviewers for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.