The discovery of doubly heavy baryon provides us with a new platform for precisely testing Standard Model and searching for new physics. As a continuation of our previous works, we investigate the FCNC processes of doubly heavy baryons. Light-front approach is adopted to extract the form factors, in which the two spectator quarks are viewed as a diquark. Results for form factors are then used to predict some phenomenological observables, such as the decay width and the forward-backward asymmetry. We find that most of the branching ratios for $b \to s$ processes are $10^{-8} \sim 10^{-7}$ and those for $b \to d$ processes are $10^{-9} \sim 10^{-8}$. The flavor SU(3) symmetry and symmetry breaking effects are explored. Parametric uncertainties are also investigated.

I. INTRODUCTION

Just one year ago, LHCb collaboration announced the discovery of a doubly charmed baryon Ξ^{++}_{cc} with the mass \(m_{\Xi^{++}_{cc}} = (3621.40 \pm 0.72 \pm 0.27 \pm 0.14) \text{MeV} \). (1)

Since then, great theoretical interests have been devoted to the study of doubly heavy baryons, some of them can be found in Refs. [2–22]. Recently, some more new results were reported on Ξ^{++}_{cc} by LHCb collaboration, including the first measurement of the lifetime \([23]\) and the first observation of the new decay mode $\Xi^{++}_{cc} \to \Xi^{+}_{c} c\pi^{+} \pi^{+} \pi^{-}$ \([24]\). After discovering Ξ^{++}_{cc} in the decay mode of $\Xi^{++}_{cc} \to \Lambda^{+}_{c} K^{-} \pi^{+} \pi^{+}$, LHCb collaboration is also continuing to search for the Ξ^{+}_{cc} and Ξ_{bc} baryons \([25]\). Comprehensive theoretical studies on weak decays are highly demanded and our previous and forthcoming works aim to fill this gap. In our previous works \([4, 5]\), we have presented the calculations of $1/2$ to $1/2$ and $1/2$ to $3/2$ weak decays. As a continuation, we investigate the flavor-changing neutral current (FCNC) processes in this work.

FCNC processes are considered to be an ideal place to the precise test of Standard Model (SM) and the search for new physics (NP), while the discovery of the doubly heavy baryon provides us a new platform. $b \to d/s$ process in SM is induced by the loop effect, thus its decay width is small. NP effects manifest themselves in two different ways. One is to enhance the Wilson coefficients, and the other is to introduce new effective operators which are absent in the SM. The typical value of branching ratio for FCNC processes is $\sim 10^{-6}$ for mesonic sector. However, the small branching ratio can be compensated by the high luminosity at the B factories. Also, with the accumulation of data, we are in an increasingly better position to study these semi-leptonic process. Baryonic rare decay modes, which are also induced by $b \to d/s l^{+} l^{-}$ at the quark level, are also important as its mesonic counterparts. Serious attention is deserved, both theoretically and experimentally.

A doubly heavy baryon is composed of two heavy quarks and one light quark. Light flavor SU(3) symmetry arranges them into the presentation $\mathbf{3}$. For $1/2^{+}$ doubly heavy baryons, we have Ξ^{+++}_{cc} and Ω^{++}_{cc} in the cc sector, Ξ^{0-}_{bb} and Ω^{-}_{bb} in the bb sector, while there are two sets of baryons in the bc sector depending on the symmetric property under the interchange of b and c quarks. For the symmetric case, the set is denoted by Ξ^{++}_{bc} and Ω^{0}_{bc}, while for the asymmetric case, the set is denoted by Ξ^{+0}_{bc} and Ω^{+0}_{bc}. \(^1\) In reality these two sets probably mix with each other, which will not be

\(^{1}\) The convention here for bc sector is opposite to that in Ref. [26].
considered in this work.

To be explicit, we will concentrate on the following FCNC decay modes of doubly heavy baryons. For $b \to s$ process,

- **bb sector**

 \[
 \Xi^0_{bb} (bbu) \to \Xi^0_b (sbu) / \Xi^0_b (sbu), \\
 \Xi^0_{bb} (bbd) \to \Xi^0_b (sbd) / \Xi^0_b (sbd), \\
 \Omega^0_{bb} (bbs) \to \Omega^0_b (sbs),
 \]

- **bc sector**

 \[
 \Xi^+_bc (bcu) / \Xi^+_bc (bcu) \to \Xi^+_c (scu) / \Xi^+_c (scu), \\
 \Xi^0_{bc} (bcd) / \Xi^0_{bc} (bcd) \to \Xi^0_c (scd) / \Xi^0_c (scd), \\
 \Omega^0_{bc} (bcs) / \Omega^0_{bc} (bcs) \to \Omega^0_c (scs).
 \]

For $b \to d$ process,

- **bb sector**

 \[
 \Xi^0_{bb} (bbu) \to \Lambda^0_b (dbu) / \Sigma^0_b (dbu), \\
 \Xi^-_{bb} (bbd) \to \Sigma^-_b (dbd), \\
 \Omega^-_{bb} (bbs) \to \Xi^-_b (dbs) / \Xi^-_b (dbs),
 \]

- **bc sector**

 \[
 \Xi^+_bc (bcu) / \Xi^+_bc (bcu) \to \Lambda^+_c (dcu) / \Sigma^+_c (dcu), \\
 \Xi^0_{bc} (bcd) / \Xi^0_{bc} (bcd) \to \Sigma^0_c (dcd), \\
 \Omega^0_{bc} (bcs) / \Omega^0_{bc} (bcs) \to \Xi^0_c (dcs) / \Xi^0_c (dcs).
 \]

In the above, the quark components of the baryons have been explicitly presented in the brackets, and the quarks that participate in weak decay are put in the first place. Taking the $b \to s$ process in bc sector as an example, the final baryons Ξ^+_c belong to the presentation of $\bar{3}$, while $\Xi^{'+0}_c$ and Ω^0_c belong to the presentation of 6, as can be seen from Fig. 1.

Light front approach will be adopted to deal with the dynamics in the decay. This method has been widely used to study the mesonic decays [27–44]. Its application to baryonic sector can be found in Refs. [45–49]. As in our previous works, diquark picture is once again adopted, i.e., the two spectator quarks are viewed as a whole system, as can be seen from Fig. 2. The two spectator quarks form a scalar diquark or an axial-vector diquark. Generally speaking, both types of diquarks contribute to the decay process and their contribution weights can be determined by the wave functions of the baryons in the initial and final states.

SU(3) analyses for FCNC processes will also be conducted. A quantitative predictions of SU(3) symmetry breaking effects will be performed within the light-front approach.

The rest of the paper is arranged as follows. In Sec. II, we will present the effective Hamiltonian responsible for the $b \to d/s l^+ l^-$ process. Then the framework of light-front approach under the diquark picture will be briefly introduced, then flavor-spin wave functions will also be discussed. Some phenomenological observables are collected in the last subsection of Sec. II. Numerical results are shown in Sec. III, including the results for form factors, decay widths, forward-backward asymmetry, the SU(3) symmetry breaking and the error estimates. A brief summary is given in the last section.
FIG. 1: Spin-1/2 anti-triplets (panel a) and sextets (panel b) of charmed baryons. It is similar for the bottomed baryons.

FIG. 2: Feynman diagram for baryon-baryon transition in the diquark picture. $P^{(i)}$ is the momentum of the parent (daughter) baryon, $p_{1}^{(i)}$ is the initial (final) quark momentum, p_{2} is the diquark momentum and the cross mark denotes the weak interaction.

II. THEORETICAL FRAMEWORK

A. The effective Hamiltonian

The effective Hamiltonian for $b \to s l^+ l^-$ is given as

$$H_{\text{eff}}(b \to s l^+ l^-) = -\frac{G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \sum_{i=1}^{10} C_{i}(\mu) O_{i}(\mu).$$

Here the explicit forms of the four-quark and the penguin operators O_{i} can be found in Ref. [50] and C_{i} are their corresponding Wilson coefficients, which are presented in Table I in the leading logarithm approximation [50]. The transition amplitude for $B \to B' l^+ l^-$ turns out to be

$$\mathcal{M}(B \to B' l^+ l^-) = -\frac{G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \Omega_{\text{em}} \frac{2}{2\pi} \left\{ \left(C_{7}^{\text{eff}}(q^2) \langle B' | \bar{s} \gamma_{\mu}(1 - \gamma_{5}) b | B \rangle - 2 m_{b} C_{9}^{\text{eff}}(q^2) \langle B' | \bar{s} \gamma_{\mu} \sigma_{\mu\nu} q^{\nu}/q^{2} (1 + \gamma_{5}) b | B \rangle \right) \tilde{l}_{\gamma}^{\mu} l \\
+ C_{10}(B' | \bar{s} \gamma_{\mu}(1 - \gamma_{5}) b | B \rangle \tilde{l}_{\gamma}^{\mu} \gamma_{5} l \right\}.$$

Note that the sign before C_{7}^{eff} is different in literatures. Our result coincides with those in Refs. [51, 52], but is different from that in Ref. [53]. In Eq. (3), C_{7}^{eff} and C_{9}^{eff} are defined by [54]

$$C_{7}^{\text{eff}} = C_{7} - C_{5}/3 - C_{6},$$

$$C_{9}^{\text{eff}}(q^2) = C_{9}(\mu) + h(\tilde{m}_{c}, \tilde{s}) C_{0} - \frac{1}{2} h(1, \tilde{s})(4 C_{3} + 4 C_{4} + 3 C_{5} + C_{6})$$

$$- \frac{1}{2} h(0, \tilde{s})(C_{3} + 3 C_{4}) + \frac{2}{9}(3 C_{3} + C_{4} + 3 C_{5} + C_{6}),$$

(4)
with $\hat{s} = q^2/m_b^2$, $C_0 = C_1 + 3C_2 + 3C_3 + C_4 + 3C_5 + C_6$, and $\tilde{m}_c = m_c/m_b$. The auxiliary functions h are given by

$$h(z, \hat{s}) = -\frac{8}{9} \ln \frac{m_b}{\mu} - \frac{8}{9} \ln z + \frac{8}{27} + \frac{4}{9} x - \frac{2}{9} (2 + x)|1 - x|^{1/2} \times \begin{cases} \{ \ln |\sqrt{1 - x + 1}| - i\pi \}, & x \equiv \frac{4x^2}{\hat{s}} < 1, \\ 2 \arctan \frac{1}{\sqrt{2 - 1}}, & x \equiv \frac{4x^2}{\hat{s}} > 1, \end{cases}$$

$$h(0, \hat{s}) = -\frac{8}{9} \ln \frac{m_b}{\mu} - \frac{4}{9} \ln \hat{s} + \frac{8}{27} + \frac{4}{9} i\pi.$$ \hspace{1cm} (5)

The effective Hamiltonian and transition amplitude for $b \to d$ process can be written down in a similar way.

TABLE I: Wilson coefficients $C_i(m_b)$ calculated in the leading logarithmic approximation, with $m_W = 80.4$ GeV and $\mu = m_{b,\text{pole}}$.

C_1	C_2	C_3	C_4	C_5	C_6	C_7^{eff}	C_9	C_{10}
1.107	-0.248	-0.011	-0.026	-0.007	-0.031	-0.313	4.344	-4.669

B. Light-front approach

Light-front approach for $1/2 \to 1/2$ FCNC transition will be briefly introduced in this subsection, including the definitions of the states for spin-1/2 baryons, and the extraction of form factors. More details can be found in Ref. 45-49.

In the light-front approach, the wave function of $1/2^+$ baryon with a scalar or an axial-vector diquark are expressed as

$$|\mathcal{B}(P, S, S_z)\rangle = \int \{d^3p_1\} \{d^3p_2\} 2(2\pi)^3 \delta^3(\vec{P} - \vec{p}_1 - \vec{p}_2) \times \sum_{\lambda_1, \lambda_2} \Psi^{SS_z}(\vec{p}_1, \vec{p}_2, \lambda_1, \lambda_2)|q_1(p_1, \lambda_1)(d_i)(p_2, \lambda_2)\rangle, \hspace{1cm} (6)$$

where q_1 stands for b/s quark in the initial/final state, and the diquark is denoted by (d_i), which is composed of one b quark and one light quark. The momentum-space wave function Ψ^{SS_z} is given as

$$\Psi^{SS_z}(\vec{p}_1, \vec{p}_2, \lambda_1, \lambda_2) = \frac{A}{\sqrt{2(p_1 \cdot P + m_1 M_0)}} \bar{u}(p_1, \lambda_1)\Gamma u(P, S_z)\phi(x, k_\perp), \hspace{1cm} (7)$$

with $A = 1$ and $\Gamma = 1$ for the case of a scalar diquark involved, and $A = \sqrt{\frac{3(m_1 M_0 + p_1 \cdot P)}{3m_1 M_0 + p_1 \cdot P + 2(p_1 \cdot P)(p_2 \cdot P)/m_2^2}}$ and $\Gamma = -\frac{4}{\sqrt{3}} \gamma_5 f^*(p_2, \lambda_2)$ for the case of an axial-vector diquark involved. A Gaussian-type function is usually adopted for ϕ:

$$\phi = 4 \left(\frac{\pi}{\beta^2} \right)^{3/4} \sqrt{c_1 c_2} \frac{\beta}{x_1 x_2 M_0} \exp \left(-\frac{\beta^2}{2x^2} \right). \hspace{1cm} (8)$$

Taking the $V - A$ current of $b \to s$ process as an example, the transition matrix element can be derived as

$$\langle \mathcal{B}'(P', S'_z) | \bar{s} \gamma_\mu (1 - \gamma_5)b | \mathcal{B}(P, S_z) \rangle = \int \{d^3p_2\} \frac{\varphi'(x', k'_\perp)\varphi(x, k_\perp)}{2\sqrt{p^+_1 p^+_{1\prime}} (p_1 \cdot P + m_1 M_0)(p_{1\prime} \cdot P' + m_1 M_0)} \times \sum_{\lambda_2} \bar{u}(P', S'_z)\Gamma'(\vec{p}_{1\prime} + m_1')\gamma_\mu (1 - \gamma_5)(\vec{p}_{1\prime} + m_1)\Gamma u(P, S_z), \hspace{1cm} (9)$$

where

$$m_1 = m_b, \hspace{0.5cm} m_1' = m_s, \hspace{0.5cm} m_2 = m_{(di)}.$$ \hspace{1cm} (10)
and \(\varphi^{(i)} = A^{(i)} \phi^{(i)} \), \(p_1 (p'_1) \) denotes the four-momentum of the initial (final) quark, \(P (P') \) stands for the four-momentum of \(B (B') \) in the initial (final) state. For the case of a scalar diquark involved,

\[
\Gamma = \Gamma' = 1,
\]

while for the case of an axial-vector diquark involved,

\[
\Gamma = -\frac{1}{\sqrt{3}} \gamma_5 \langle p_2, \lambda_2 \rangle
\]

and

\[
\tilde{\Gamma}' = -\frac{1}{\sqrt{3}} \gamma_5 \langle p_2, \lambda_2 \rangle.
\]

The transition matrix element \(\langle B'(P', S'_z) | \bar{s} \gamma_{\mu} (1 - \gamma_5) b | B(P, S_z) \rangle \) can be parameterized as

\[
\langle B'(P', S'_z) | \bar{s} \gamma_{\mu} b | B(P, S_z) \rangle = \bar{u}(P', S'_z) \left[\gamma_{\mu} f_1(q^2) + i \sigma_{\mu \nu} \frac{q'^\nu}{M} f_2(q^2) + \frac{q_{\mu}}{M} f_3(q^2) \right] u(P, S_z),
\]

\[
\langle B'(P', S'_z) | \bar{s} \gamma_{\mu} \gamma_5 b | B(P, S_z) \rangle = \bar{u}(P', S'_z) \left[\gamma_{\mu} g_1(q^2) + i \sigma_{\mu \nu} \frac{q'^\nu}{M} g_2(q^2) + \frac{q_{\mu}}{M} g_3(q^2) \right] \gamma_5 u(P, S_z),
\]

while \(\langle B'(P', S'_z) | \bar{s} \gamma_{\mu} q'^\nu (1 + \gamma_5) b | B(P, S_z) \rangle \) can be parameterized as

\[
\langle B'(P', S'_z) | \bar{s} \gamma_{\mu} \gamma_5 b | B(P, S_z) \rangle = \bar{u}(P', S'_z) \left[\gamma_{\mu} g_1(q^2) + i \sigma_{\mu \nu} \frac{q'^\nu}{M} g_2(q^2) + \frac{q_{\mu}}{M} g_3(q^2) \right] \gamma_5 u(P, S_z).
\]

Here \(q = P - P' \), and \(f_1^{(T)}, g_1^{(T)} \) are the form factors.

It should be noted that \(f_1^{(T)} \) and \(f_3^{(T)} \) are not independent. Multiply the first equation of Eqs. (15) by \(q^\mu \) to yield

\[
0 = \bar{u}(P', S'_z) \left[(M - M') f_1^{(T)} + q^2 f_3^{(T)} \right] u(P, S_z),
\]

and one obtains

\[
f_1^{(T)} = -\frac{q^2}{M(M - M')} f_3^{(T)}.
\]

In a similar way, one can obtain from the second equation of Eqs. (15)

\[
g_1^{(T)} = \frac{q^2}{M(M + M')} g_3^{(T)}.
\]

Taking the extraction of \(f_1 \) as an example, these form factors can be extracted as follows [49]. Multiplying the corresponding expressions in Eq. (9) and Eqs. (14) by \(\bar{u}(P, S_z) (\Gamma^\mu)_i u(P', S'_z) \) with \((\Gamma^\mu)_i = \{ \gamma_\mu, P^\mu, P'^\mu \} \) respectively, and taking the approximation \(P^{(i)} \rightarrow \bar{P}^{(i)} \) within the integral, and then summing over the polarizations in the initial and final states, one can arrive at

\[
\text{Tr} \left\{ (\Gamma^\mu)_i (P'^\mu + M') \gamma_{\mu} f_1 + i \sigma_{\mu \nu} \frac{q'^\nu}{M} f_2 + \frac{q_{\mu}}{M} f_3 (P + M) \right\}
\]

\[
= \int \{ d^4 p_2 \} \frac{\varphi'(x', k'_1) \varphi(x, k_1)}{2 \sqrt{p_1^+ p'^+_1 (p_1 \cdot P + m_1 M_0) (p'_1 \cdot P' + m'_1 M'_0)}}
\]

\[
\times \sum_{\lambda_2} \text{Tr} \left\{ (\tilde{\Gamma}^\mu)_i (\tilde{P}' + M'_0) \tilde{f}' (p'_1 + m'_1) \gamma_{\mu} (\tilde{p}_1 + m_1) \Gamma (\tilde{P} + M_0) \right\}
\]

with \((\Gamma^\mu)_i = \{ \gamma_\mu, P^\mu, \bar{P}^\mu \} \). Then \(f_1 \) can be determined by solving linear equations. The form factors \(g_i \) can be obtained in a similar way. Only \(f_2^{(2,3)} \) or \(g_2^{(2,3)} \) can be extracted in this way with \((\Gamma^\mu)_i = \{ \gamma_\mu, P^\mu \} \), \(f_1^{(T)} \) or \(g_1^{(T)} \) is then obtained by Eq. (17) or (18).
C. Flavor-spin wave functions

In fact, the flavor-spin wave functions are not taken into account in the last subsection. This problem will be fixed in this subsection. We consider first the initial states. For the doubly bottomed baryons, the wave functions are given as

\[B_{bb} = \frac{1}{\sqrt{2}} \left[-\sqrt{\frac{3}{2}} b^1 (b^2 q)_S + \frac{1}{2} b^1 (b^2 q)_A \right] + (b^1 \leftrightarrow b^2), \tag{20} \]

with \(q = u, d \) or \(s \) for \(\Xi_{bb}^0, \Xi_{bb}^- \) or \(\Omega_{bb}^- \), respectively. For the bottom-charm baryons, there are two sets of states, as discussed in Sec. I. The wave functions of bottom-charm baryons with an axial-vector \(bc \) diquark are given as

\[B_{bc} = -\frac{\sqrt{3}}{2} b(cq)_S + \frac{1}{2} b(cq)_A \tag{21} \]

while those with a scalar \(bc \) diquark are

\[B'_{bc} = -\frac{1}{2} b(cq)_S - \frac{\sqrt{3}}{2} b(cq)_A \tag{22} \]

with \(q = u, d \) or \(s \) for \(\Xi_{bc}^{(1)+}, \Xi_{bc}^{(0)+} \) or \(\Omega_{bc}^{(0)} \), respectively.

For the final states, the singly charmed baryon which belongs to anti-triplets are given as

\[
\begin{align*}
\Lambda_c^+ &= -\frac{1}{2} d(cu)_S + \frac{\sqrt{3}}{2} d(cu)_A, \\
\Xi_c^+ &= \frac{1}{2} s(cu)_S + \frac{\sqrt{3}}{2} s(cu)_A, \\
\Xi_c^0 &= -\frac{1}{2} s(cd)_S + \frac{\sqrt{3}}{2} s(cd)_A = \frac{1}{2} d(cs)_S - \frac{\sqrt{3}}{2} d(cs)_A. \tag{23}
\end{align*}
\]

For the sextet of singly charmed baryons, the following wave functions are needed

\[
\begin{align*}
\Sigma_c^+ &= \frac{\sqrt{3}}{2} d(cu)_S + \frac{1}{2} d(cu)_A, \\
\Sigma_c^0 &= \frac{1}{\sqrt{2}} \left[\frac{\sqrt{3}}{2} d^1 (cd^2)_S + \frac{1}{2} d^1 (cd^2)_A + (d^1 \leftrightarrow d^2) \right], \\
\Xi_c^{*+} &= \frac{\sqrt{3}}{2} s(cu)_S + \frac{1}{2} s(cu)_A, \\
\Xi_c^0 &= \frac{\sqrt{3}}{2} s(cd)_S + \frac{1}{2} s(cd)_A = \frac{\sqrt{3}}{2} d(cs)_S + \frac{1}{2} d(cs)_A, \\
\Omega_c^0 &= \frac{1}{\sqrt{2}} \left[\frac{\sqrt{3}}{2} s^1 (cs^2)_S + \frac{1}{2} s^1 (cs^2)_A + (s^1 \leftrightarrow s^2) \right]. \tag{24}
\end{align*}
\]

The final states of singly bottomed baryons can be written down in a similar way.

Finally, the overlapping factors are determined by taking the inner product of the flavor-spin wave functions in the initial and final states. The corresponding results are collected in Table II for both \(b \to s \) and \(b \to d \) processes. The physical form factors are then obtained by

\[F_{phy} = c_S F_S + c_A F_A, \tag{25} \]

where \(F_{S(A)} \) denotes the form factor \(f_i, g_i, f_i^T \) or \(g_i^T \) with a scalar diquark (an axial-vector diquark) involved.
The hadronic helicity amplitudes can be defined by

$$H_{X',\lambda}^{V,A} \equiv \left(C_9^{\text{eff}}(q^2)\langle B' | i\gamma^\mu (1 - \gamma_5)b | B \rangle - C_7^{\text{eff}}2m_b\langle B' | i\sigma^{\mu\nu}q_\nu q_\mu (1 + \gamma_5)b | B \rangle \right) \epsilon^*_\mu(\lambda_V),$$

$$H_{X',t}^{V,A} \equiv \left(C_9^{\text{eff}}(q^2)\langle B' | i\gamma^\mu (1 - \gamma_5)b | B \rangle \right) \frac{q_\mu}{\sqrt{q^2}},$$

and

$$H_{X',\lambda}^{A} \equiv \left(C_{10}(B' | i\gamma^\mu (1 - \gamma_5)b | B) \right) \epsilon^*_\mu(\lambda_V),$$

$$H_{X',t}^{A} \equiv \left(C_{10}(B' | i\gamma^\mu (1 - \gamma_5)b | B) \right) \frac{q_\mu}{\sqrt{q^2}},$$

where $\epsilon_\mu (q_\mu)$ is the polarization vector (four-momentum) for an intermediate vector particle, λ_V denotes its polarization, $\lambda^{(t)}$ is the polarization of the baryon in the initial (final) state. Hereafter the superscript “V” (“A”) always means that its corresponding leptonic counterpart is $\tilde{\ell}\gamma^\mu\ell$ ($\tilde{\ell}\gamma^\mu\gamma_5\ell$). It should not be confused with the notation of the vector current (axial-vector current) in the hadronic matrix element.

D. Phenomenological observables

Note that Eqs. (14) and (15) have the same parameterization, so it is convenient to introduce the following notations:

$$F_i^V(q^2) \equiv C_9^{\text{eff}}(q^2)f_i(q^2) - C_7^{\text{eff}}\frac{2m_bM}{q^2}f_i(q^2),$$

$$G_i^V(q^2) \equiv C_9^{\text{eff}}(q^2)g_i(q^2) + C_7^{\text{eff}}\frac{2m_bM}{q^2}g_i(q^2),$$

and

$$F_i^A(q^2) \equiv C_{10}f_i(q^2),$$

$$G_i^A(q^2) \equiv C_{10}g_i(q^2).$$
Then the Γ^μ and $\Gamma^\mu\gamma_5$ parts in Eq. (29) are calculated respectively as:

\[
\begin{align*}
HV_{\frac{1}{2},0}^{V,-\frac{1}{2}} &= -i\sqrt{\frac{Q}{q^2}} \left((M + M')F_1^V - \frac{q^2}{M}F_2^V \right), \\
HV_{\frac{1}{2},1}^{V,-\frac{1}{2}} &= i\sqrt{2q_+} \left(-F_1^V + \frac{M + M'}{M}F_2^V \right), \\
HA_{\frac{1}{2},0}^{V,-\frac{1}{2}} &= -i\sqrt{\frac{Q_+}{q^2}} \left((M - M')G_1^V + \frac{q^2}{M}G_2^V \right), \\
HA_{\frac{1}{2},1}^{V,-\frac{1}{2}} &= i\sqrt{2q_-} \left(-G_1^V - \frac{M - M'}{M}G_2^V \right)
\end{align*}
\]

and

\[
\begin{align*}
HV_{-\frac{1}{2},-\frac{1}{2}}^{V,-\lambda} &= HV_{\frac{1}{2},\lambda}^{V,-\lambda}, \\
HA_{-\frac{1}{2},-\frac{1}{2}}^{V,-\lambda} &= -HA_{\frac{1}{2},\lambda}^{V,-\lambda}.
\end{align*}
\]

The total hadronic helicity amplitude is then given by

\[
H_{\chi',\chi}^{V,\lambda} = HV_{\chi',\chi}^{V,\lambda} - HA_{\chi',\chi}^{V,\lambda}.
\]

$H_{\chi',\chi}^{V,\lambda}$ has the complete the same form as the corresponding $H_{\chi',\chi}^{V,\lambda}$, but with the following replacements:

\[
\begin{align*}
F_i^V &\rightarrow F_i^A, \\
G_i^V &\rightarrow G_i^A.
\end{align*}
\]

In addition, the timelike polarizations for H^A are also needed

\[
\begin{align*}
HV_{-\frac{1}{2},t}^{A,-\frac{1}{2}} &= HV_{\frac{1}{2},t}^{A,-\frac{1}{2}} = -i\sqrt{\frac{Q_+}{q^2}} \left((M - M')F_1^A + \frac{q^2}{M}F_3^A \right), \\
-HA_{-\frac{1}{2},t}^{A,-\frac{1}{2}} &= HA_{\frac{1}{2},t}^{A,-\frac{1}{2}} = -i\sqrt{\frac{Q_-}{q^2}} \left((M + M')G_1^A - \frac{q^2}{M}G_3^A \right)
\end{align*}
\]

and

\[
H_{\chi',t}^{A,\lambda} = HV_{\chi',t}^{A,\lambda} - HA_{\chi',t}^{A,\lambda}.
\]

Finally, the angular distribution is given by the following expression

\[
\frac{d^2\Gamma}{dq^2d\cos\theta} = \frac{|\vec{p}_t||\vec{p}_1|}{16(2\pi)^3M^2q^2}\sqrt{|\mathcal{M}|^2},
\]

Here the squared amplitude is

\[
|\mathcal{M}|^2 = \frac{1}{2}|\lambda|^2(I_0 + I_1\cos\theta + I_2\cos2\theta)
\]

with

\[
\lambda \equiv \frac{G_F V_{tb} V_{ts}^* \alpha_{em}}{\sqrt{2}}
\]

and

\[
I_0 = (q^2 + 4m_t^2)(|H_{-\frac{1}{2},0}^{V,-\frac{1}{2}}|^2 + |H_{\frac{1}{2},0}^{V,-\frac{1}{2}}|^2) + (\frac{3}{2}q^2 + 2m_t^2)(|H_{\frac{1}{2},1}^{V,-\frac{1}{2}}|^2 + |H_{-\frac{1}{2},-1}^{V,-\frac{1}{2}}|^2)
\]
respectively

The constituent quark masses are given as (in units of GeV)

\[m_u = m_d = 0.25, \quad m_s = 0.37, \quad m_c = 1.4, \quad m_b = 4.8. \]

The masses of the scalar and axial-vector diquarks are approximated by

\[m_{(Qq)} = m_{(Qq)} = m_Q + m_q. \]

The shape parameters \(\beta \) in Eq. (8) are given as (in units of GeV)

\[\beta_{d_{(cq)}} = \beta_{d_{(cq)}} = 0.470, \quad \beta_{s_{(cq)}} = \beta_{s_{(cq)}} = 0.535, \quad \beta_{b_{(cq)}} = \beta_{b_{(cq)}} = 0.886, \]

\[\beta_{d_{(bg)}} = \beta_{d_{(bg)}} = 0.562, \quad \beta_{s_{(bg)}} = \beta_{s_{(bg)}} = 0.623, \quad \beta_{b_{(bg)}} = \beta_{b_{(bg)}} = 1.472. \]
where \(q = u, d, s \).

The masses and lifetimes of the parent baryons are collected in Table III\[26, 55, 56\]. The masses of the daughter baryons are given in Table IV\[57\]. Fermi constant and CKM matrix elements are give as \(G_F = 1.166 \times 10^{-5} \text{ GeV}^{-2} \), \(|V_{tb}| = 0.999 \), \(|V_{ts}| = 0.999 \), \(|V_{td}| = 0.999 \).

\[
G_F = 1.166 \times 10^{-5} \text{ GeV}^{-2},
\]
\[
|V_{tb}| = 0.999, \quad |V_{ts}| = 0.999, \quad |V_{td}| = 0.999.
\]

(TAB. III: Masses (in units of GeV) and lifetimes (in units of fs) of doubly heavy baryons. We have quoted the results from Refs. \[26, 55, 56\].

baryons	\(\Xi_{bc}^{(0)} \)	\(\Xi_{bc}^{(0)*} \)	\(\Omega_{bc}^{(0)} \)	\(\Xi_{bb}^{0} \)	\(\Xi_{bb}^{+} \)	\(\Omega_{bb}^{+} \)
masses	6.943 [26]	6.943 [26]	6.998 [26]	10.143 [26]	10.143 [26]	10.273 [26]
lifetimes	244 [55]	93 [55]	220 [56]	370 [55]	370 [55]	800 [56]

B. Results for form factors

To access the \(q^2 \)-distribution, the following single pole structure is assumed for form factors

\[
F(q^2) = \frac{F(0)}{1 - \frac{q^2}{m_{pole}^2}}.
\]

Here \(F(0) \) is the value of the form factor at \(q^2 = 0 \), and the numerical results for \(f_i^{(T)} \) and \(g_i^{(T)} \) predicted by the light-front approach are collected in Tables \[V to VIII\] for \(b \to s \) process and Tables \[IX to XII\] for \(b \to d \) process. \(m_{pole} \) is taken as 5.37 GeV for \(b \to s \) process and 5.28 GeV for \(b \to d \) process, which, in practice, are taken as the masses of \(B_s \) and \(B \) mesons, respectively. The discussion for the validity of this assumption can be found in our previous work \[44\].

The physical form factors can then be obtained by Eq. \[25\] and Eq. \[48\].

C. Results for phenomenological observables

The decay widths are shown in Tables \[XIII to XV\] for \(b \to s \) process and Tables \[XVI to XVIII\] for \(b \to d \) process. Some comments are given in order.

- Since there exist uncertainties in the lifetimes of the parent baryons, there may exist small fluctuations in the results for branching ratios.
- It can be seen from these tables that, the decay widths are very close to each other for \(l = e/\mu \) cases, while it is roughly one order of magnitude smaller for \(l = \tau \) case. This can be attributed to the much smaller phase space for \(l = \tau \) case.

baryons	\(\Lambda_{bc}^{+} \)	\(\Xi_{bc}^{+} \)	\(\Xi_{bc}^{0} \)	\(\Sigma_{bc}^{0} \)	\(\Sigma_{bc}^{+} \)	\(\Xi_{bc}^{+} \)	\(\Omega_{bc}^{0} \)	\(\Omega_{bc}^{+} \)
masses	2.286	2.468	2.471	2.453	2.454	2.576	2.576	2.695
lifetimes	5.620	5.793	5.795	5.814	5.816	5.935	5.935	6.046
TABLE V: Values of form factors f_i and g_i at $q^2 = 0$ for $b \to s$ process in bb sector. The left (right) half of the table corresponds to a scalar diquark (an axial-vector diquark) involved case.

F	$F(0)$	F	$F(0)$	F	$F(0)$	F	$F(0)$
f_{1S}^bb	0.141	g_{1S}^bb	0.122	f_{1S}^{2bb}	0.138	g_{1S}^{2bb}	0.030
f_{2S}^bb	-0.189	g_{2S}^bb	0.056	f_{2S}^{2bb}	0.132	g_{2S}^{2bb}	0.055
g_{3S}^bb	0.016	g_{3S}^{2bb}	-0.406	f_{3S}^{2bb}	-0.068	g_{3S}^{2bb}	0.261

TABLE VI: Values of form factors f_i^T and g_i^T at $q^2 = 0$ for $b \to s$ process in bb sector. The left (right) half of the table corresponds to a scalar diquark (an axial-vector diquark) involved case. f_i^T and g_i^T are obtained by Eqs. (17) and (18) respectively.

F	$F(0)$	F	$F(0)$	F	$F(0)$	F	$F(0)$
$f_{1S}^{T,bb \to s}$	0.108	$g_{1S}^{T,bb \to s}$	0.128	$f_{1A}^{T,bb \to s}$	0.133	$g_{1A}^{T,bb \to s}$	0.049
$f_{2S}^{T,bb \to s}$	0.091	$g_{2S}^{T,bb \to s}$	0.156	$f_{2A}^{T,bb \to s}$	0.134	$g_{2A}^{T,bb \to s}$	0.032
$f_{3S}^{T,bb \to s}$	0.117	$g_{3S}^{T,bb \to s}$	0.127	$f_{3A}^{T,bb \to s}$	0.134	$g_{3A}^{T,bb \to s}$	0.049
$f_{bb}^{T,bb \to s}$	0.091	$g_{bb}^{T,bb \to s}$	0.198	$f_{bb}^{T,bb \to s}$	0.134	$g_{bb}^{T,bb \to s}$	0.026
$f_{bc}^{T,bb \to s}$	0.112	$g_{bc}^{T,bb \to s}$	0.123	$f_{bc}^{T,bb \to s}$	0.134	$g_{bc}^{T,bb \to s}$	0.047
$f_{c}^{T,bb \to s}$	0.088	$g_{c}^{T,bb \to s}$	0.186	$f_{c}^{T,bb \to s}$	0.130	$g_{c}^{T,bb \to s}$	0.027

TABLE VII: Same as Table V but for $b \to s$ process in bc sector. bc' sector has the same form factors.

F	$F(0)$	F	$F(0)$	F	$F(0)$	F	$F(0)$
$f_{1S}^{bc}^b$	0.203	$g_{1S}^{bc}^b$	0.167	$f_{1A}^{bc}^b$	0.185	$g_{1A}^{bc}^b$	0.033
$f_{2S}^{bc}^b$	-0.079	$g_{2S}^{bc}^b$	0.097	$f_{2A}^{bc}^b$	0.203	$g_{2A}^{bc}^b$	0.068
$f_{3S}^{bc}^b$	0.015	$g_{3S}^{bc}^b$	-0.329	$f_{3A}^{bc}^b$	-0.109	$g_{3A}^{bc}^b$	0.166
$f_{1S}^{bc}^c$	0.204	$g_{1S}^{bc}^c$	0.174	$f_{1A}^{bc}^c$	0.186	$g_{1A}^{bc}^c$	0.035
$f_{2S}^{bc}^c$	-0.090	$g_{2S}^{bc}^c$	0.074	$f_{2A}^{bc}^c$	0.205	$g_{2A}^{bc}^c$	0.063
$f_{3S}^{bc}^c$	0.007	$g_{3S}^{bc}^c$	-0.300	$f_{3A}^{bc}^c$	-0.116	$g_{3A}^{bc}^c$	0.164
$f_{1S}^{bc}^{10}$	0.192	$g_{1S}^{bc}^{10}$	0.165	$f_{1A}^{bc}^{10}$	0.177	$g_{1A}^{bc}^{10}$	0.033
$f_{2S}^{bc}^{10}$	-0.091	$g_{2S}^{bc}^{10}$	0.064	$f_{2A}^{bc}^{10}$	0.194	$g_{2A}^{bc}^{10}$	0.061
$f_{3S}^{bc}^{10}$	0.004	$g_{3S}^{bc}^{10}$	-0.288	$f_{3A}^{bc}^{10}$	-0.112	$g_{3A}^{bc}^{10}$	0.163

TABLE VIII: Same as Table VII but for $b \to s$ process in bc sector. bc' sector has the same form factors.

F	$F(0)$	F	$F(0)$	F	$F(0)$	F	$F(0)$
$f_{1S}^{bc}^{T,bb \to s}$	0.160	$g_{1S}^{bc}^{T,bb \to s}$	0.202	$f_{1A}^{bc}^{T,bb \to s}$	-0.070	$g_{1A}^{bc}^{T,bb \to s}$	0.072
$f_{2S}^{bc}^{T,bb \to s}$	0.085	$g_{2S}^{bc}^{T,bb \to s}$	-0.021	$f_{2A}^{bc}^{T,bb \to s}$	0.172	$g_{2A}^{bc}^{T,bb \to s}$	0.068
$f_{3S}^{bc}^{T,bb \to s}$	0.160	$g_{3S}^{bc}^{T,bb \to s}$	0.200	$f_{3A}^{bc}^{T,bb \to s}$	-0.071	$g_{3A}^{bc}^{T,bb \to s}$	0.072
$f_{bb}^{T,bb \to s}$	0.083	$g_{bb}^{T,bb \to s}$	-0.006	$f_{bb}^{T,bb \to s}$	0.170	$g_{bb}^{T,bb \to s}$	0.068
$f_{bc}^{T,bb \to s}$	0.159	$g_{bc}^{T,bb \to s}$	0.188	$f_{bc}^{T,bb \to s}$	-0.070	$g_{bc}^{T,bb \to s}$	0.069
$f_{c}^{T,bb \to s}$	0.081	$g_{c}^{T,bb \to s}$	-0.001	$f_{c}^{T,bb \to s}$	0.163	$g_{c}^{T,bb \to s}$	0.067
TABLE IX: Same as Table [V] but for \(b \to d \) process.

\(F \)	\(F(0) \)	\(F(0) \)	\(F \)	\(F(0) \)	\(F \)	\(F(0) \)	
\(f_{1.3} \to \Lambda_b^0 \)	0.100	\(g_{1.3} \to \Lambda_b^0 \)	0.087	\(f_{1.3} \to \Lambda_b^0 \)	0.098	\(g_{1.3} \to \Lambda_b^0 \)	−0.020
\(f_{2.3} \to \Lambda_b^0 \)	−0.136	\(g_{2.3} \to \Lambda_b^0 \)	0.041	\(f_{2.3} \to \Lambda_b^0 \)	0.099	\(g_{2.3} \to \Lambda_b^0 \)	−0.043
\(f_{3.3} \to \Lambda_b^0 \)	0.008	\(g_{3.3} \to \Lambda_b^0 \)	−0.298	\(f_{3.3} \to \Lambda_b^0 \)	−0.057	\(g_{3.3} \to \Lambda_b^0 \)	0.191

TABLE X: Same as Table [VI] for \(b \to d \) process.

\(F \)	\(F(0) \)	\(F(0) \)	\(F \)	\(F(0) \)	\(F \)	\(F(0) \)	
\(f_{2.3} \to \Sigma_b^- \)	0.075	\(g_{2.3} \to \Sigma_b^- \)	0.091	\(f_{2.3} \to \Sigma_b^- \)	−0.049	\(g_{2.3} \to \Sigma_b^- \)	−0.035
\(f_{3.3} \to \Sigma_b^- \)	0.072	\(g_{3.3} \to \Sigma_b^- \)	0.114	\(f_{3.3} \to \Sigma_b^- \)	0.104	\(g_{3.3} \to \Sigma_b^- \)	0.028

TABLE XI: Same as Table [VII] but for \(b \to d \) process.

\(F \)	\(F(0) \)	\(F(0) \)	\(F \)	\(F(0) \)	\(F \)	\(F(0) \)	
\(f_{1.3} \to \Sigma_c^- \)	0.143	\(g_{1.3} \to \Sigma_c^- \)	0.117	\(f_{1.3} \to \Sigma_c^- \)	0.130	\(g_{1.3} \to \Sigma_c^- \)	0.020
\(f_{2.3} \to \Sigma_c^- \)	−0.055	\(g_{2.3} \to \Sigma_c^- \)	0.070	\(f_{2.3} \to \Sigma_c^- \)	0.149	\(g_{2.3} \to \Sigma_c^- \)	−0.054
\(f_{3.3} \to \Sigma_c^- \)	0.009	\(g_{3.3} \to \Sigma_c^- \)	−0.224	\(f_{3.3} \to \Sigma_c^- \)	−0.087	\(g_{3.3} \to \Sigma_c^- \)	0.121

\(f_{1.3} \to \Xi_c^- \)	0.143	\(g_{1.3} \to \Xi_c^- \)	0.123	\(f_{1.3} \to \Xi_c^- \)	0.130	\(g_{1.3} \to \Xi_c^- \)	−0.021
\(f_{2.3} \to \Xi_c^- \)	−0.067	\(g_{2.3} \to \Xi_c^- \)	0.046	\(f_{2.3} \to \Xi_c^- \)	0.150	\(g_{2.3} \to \Xi_c^- \)	−0.050
\(f_{3.3} \to \Xi_c^- \)	0.001	\(g_{3.3} \to \Xi_c^- \)	−0.197	\(f_{3.3} \to \Xi_c^- \)	−0.094	\(g_{3.3} \to \Xi_c^- \)	0.121

\(f_{1.3} \to \Omega_c^- \)	0.133	\(g_{1.3} \to \Omega_c^- \)	0.111	\(f_{1.3} \to \Omega_c^- \)	0.122	\(g_{1.3} \to \Omega_c^- \)	−0.019
\(f_{2.3} \to \Omega_c^- \)	−0.060	\(g_{2.3} \to \Omega_c^- \)	0.053	\(f_{2.3} \to \Omega_c^- \)	0.139	\(g_{2.3} \to \Omega_c^- \)	−0.049
\(f_{3.3} \to \Omega_c^- \)	0.003	\(g_{3.3} \to \Omega_c^- \)	−0.204	\(f_{3.3} \to \Omega_c^- \)	−0.085	\(g_{3.3} \to \Omega_c^- \)	0.118

\(f_{1.3} \to \Omega_c^0 \)	0.133	\(g_{1.3} \to \Omega_c^0 \)	0.116	\(f_{1.3} \to \Omega_c^0 \)	0.122	\(g_{1.3} \to \Omega_c^0 \)	−0.020
\(f_{2.3} \to \Omega_c^0 \)	−0.067	\(g_{2.3} \to \Omega_c^0 \)	0.038	\(f_{2.3} \to \Omega_c^0 \)	0.140	\(g_{2.3} \to \Omega_c^0 \)	−0.047
\(f_{3.3} \to \Omega_c^0 \)	−0.001	\(g_{3.3} \to \Omega_c^0 \)	−0.185	\(f_{3.3} \to \Omega_c^0 \)	−0.089	\(g_{3.3} \to \Omega_c^0 \)	0.118
The meaning of \mathcal{R} can be seen more clear in $\Lambda_b \rightarrow \Lambda$ process with the help of the heavy quark symmetry. In the heavy quark symmetry limit, the matrix elements of all the hadronic currents can be parameterized by only two independent form factors 58

$$
\langle \Lambda(p_\Lambda) | s\Gamma \bar{b} | \Lambda_b(p_{\Lambda_b}) \rangle = \bar{u}_\Lambda [F_1(q^2) + \gamma \cdot F_2(q^2)] \Gamma u_{\Lambda_b},
$$

where Γ is the product of Dirac matrices, $u'^\mu \equiv p'^\mu_{\Lambda_b}/m_{\Lambda_b}$ is the four velocity of Λ_b.
FIG. 3: $d\mathcal{B}/dq^2$ for $\Xi_{bb}^0 \rightarrow \Xi_{bb}^0 l^+ l^-$ with $l = e, \mu, \tau$. The blue solid line, the red dashed line and the black dotdashed line correspond to the cases of $l = e, \mu, \tau$, respectively. Here the resonant contributions are not taken into account.

Under the heavy quark symmetry,

\[
\begin{align*}
 f_1, g_1, f_2^T, g_2^T & \rightarrow F_1, \\
 f_2, g_2 & \rightarrow F_2, \\
 f_1^T, g_1^T & \rightarrow 0,
\end{align*}
\]

and \mathcal{R} is reduced to the following form

\[
\mathcal{R} = \frac{F_2^2}{F_1^2 - F_2^2},
\]

where we have also neglected the m_A/m_{Λ_b} term. If we further take into account the fact that $F_2 \ll F_1$ for $\Lambda_b \rightarrow \Lambda$ process [59–61], then

\[
\mathcal{R} \approx 1.
\]

The values of \mathcal{R} for FCNC processes of doubly heavy baryons can be found in Tables XXX and XXX. It can be seen from these tables that \mathcal{R} roughly ranges from 0.3 to 0.4 for bb sector, while it lies in the interval of $[0.6, 0.7]$ for bc sector.
TABLE XIII: Decay widths and branching ratios for $b \rightarrow s$ process in $b\bar{b}$ sector.

channels	Γ/ GeV	\mathcal{B}	Γ_L/Γ_T
$\Xi_{bb}^0 \rightarrow \Xi_b^0 e^+ e^-$	1.98×10^{-19}	1.11×10^{-7}	3.48
$\Xi_{bb}^0 \rightarrow \Xi_b^0 e^+ e^-$	5.20×10^{-19}	2.92×10^{-7}	0.70
$\Xi_{bb}^0 \rightarrow \Xi_b^0 e^+ e^-$	1.92×10^{-19}	1.11×10^{-7}	3.49
$\Xi_{bb}^0 \rightarrow \Xi_b^0 e^+ e^-$	5.20×10^{-19}	2.92×10^{-7}	0.70
$\Omega_{bb} \rightarrow \Omega_b^0 e^+ e^-$	1.02×10^{-18}	1.25×10^{-6}	0.70
$\Xi_{bb}^0 \rightarrow \Xi_b^0 \mu^+ \mu^-$	3.72×10^{-20}	2.09×10^{-8}	6.17
$\Xi_{bb}^0 \rightarrow \Xi_b^0 \tau^+ \tau^-$	4.87×10^{-20}	2.74×10^{-8}	1.02
$\Xi_{bb}^0 \rightarrow \Xi_b^0 \tau^+ \tau^-$	3.69×10^{-20}	2.07×10^{-8}	6.18
$\Xi_{bb}^0 \rightarrow \Xi_b^0 \tau^+ \tau^-$	4.87×10^{-20}	2.74×10^{-8}	1.02
$\Omega_{bb} \rightarrow \Omega_b^0 \tau^+ \tau^-$	1.02×10^{-19}	1.24×10^{-7}	1.00

TABLE XIV: Decay widths and branching ratios for $b \rightarrow s$ process in $b\bar{c}$ sector.

channels	Γ/ GeV	\mathcal{B}	Γ_L/Γ_T
$\Xi_{bc}^+ \rightarrow \Xi_c^+ e^+ e^-$	1.46×10^{-19}	5.43×10^{-8}	2.92
$\Xi_{bc}^+ \rightarrow \Xi_c^+ e^+ e^-$	4.54×10^{-19}	1.69×10^{-7}	0.68
$\Xi_{bc}^+ \rightarrow \Xi_c^+ e^+ e^-$	1.46×10^{-19}	2.06×10^{-8}	2.93
$\Xi_{bc}^+ \rightarrow \Xi_c^+ e^+ e^-$	4.53×10^{-19}	6.40×10^{-8}	0.68
$\Omega_{bc}^0 \rightarrow \Omega_c^0 e^+ e^-$	7.42×10^{-19}	2.48×10^{-7}	0.68
$\Xi_{bc}^+ \rightarrow \Xi_c^+ \mu^+ \mu^-$	1.40×10^{-19}	5.21×10^{-8}	3.44
$\Xi_{bc}^+ \rightarrow \Xi_c^+ \mu^+ \mu^-$	3.97×10^{-19}	1.47×10^{-7}	0.86
$\Xi_{bc}^+ \rightarrow \Xi_c^+ \mu^+ \mu^-$	1.40×10^{-19}	1.98×10^{-8}	3.45
$\Xi_{bc}^+ \rightarrow \Xi_c^+ \mu^+ \mu^-$	3.95×10^{-19}	5.59×10^{-8}	0.86
$\Omega_{bc}^0 \rightarrow \Omega_c^0 \mu^+ \mu^-$	6.41×10^{-19}	2.14×10^{-7}	0.88
$\Xi_{bc}^+ \rightarrow \Xi_c^+ \tau^+ \tau^-$	3.02×10^{-20}	1.12×10^{-8}	4.19
$\Xi_{bc}^+ \rightarrow \Xi_c^+ \tau^+ \tau^-$	6.50×10^{-20}	2.41×10^{-8}	0.99
$\Xi_{bc}^+ \rightarrow \Xi_c^+ \tau^+ \tau^-$	2.98×10^{-20}	4.22×10^{-9}	4.20
$\Xi_{bc}^+ \rightarrow \Xi_c^+ \tau^+ \tau^-$	6.45×10^{-20}	9.12×10^{-9}	0.99
$\Omega_{bc}^0 \rightarrow \Omega_c^0 \tau^+ \tau^-$	9.12×10^{-20}	3.05×10^{-8}	0.99

D. SU(3) analyses

According to the flavor SU(3) symmetry, there exist the following relations among these FCNC processes. These relations can be readily derived using the overlapping factors given in Table XIII. For $b \rightarrow s$ process, we have

\[
\Gamma(\Xi_{bb}^0 \rightarrow \Xi_b^0 l^+ l^-) = \Gamma(\Xi_{bb}^0 \rightarrow \Xi_b^0 l^+ l^-),
\]
\[
\Gamma(\Xi_{bb}^0 \rightarrow \Xi_b^0 l^+ l^-) = \Gamma(\Xi_{bb}^0 \rightarrow \Xi_b^0 l^+ l^-) = \frac{1}{2} \Gamma(\Omega_{bb} \rightarrow \Omega_b^- l^+ l^-)
\]
(57)

for bb sector,

\[
\Gamma(\Xi_{bc}^+ \rightarrow \Xi_c^+ l^+ l^-) = \Gamma(\Xi_{bc}^0 \rightarrow \Xi_c^0 l^+ l^-),
\]
TABLE XV: Decay widths and branching ratios for $b \to s$ process in bc' sector.

channels	Γ / GeV	B	Γ_L / Γ_T
$\Xi_{qc}' \to \Xi_{qc}'^+ e^- e^-$	1.93×10^{-19}	7.16×10^{-8}	0.58
$\Xi_{qc}' \to \Xi_{qc}'^+ e^- e^-$	1.27×10^{-19}	4.70×10^{-8}	3.16
$\Xi_{qc}' \to \Xi_{qc}'^0 e^- e^-$	1.92×10^{-19}	2.72×10^{-8}	0.58
$\Xi_{qc}' \to \Xi_{qc}'^0 e^- e^-$	1.68×10^{-19}	1.79×10^{-8}	3.16
$\Omega_{bc}^0 \to \Omega_{bc}^0 e^+ e^-$	2.11×10^{-19}	7.05×10^{-8}	3.34
$\Xi_{bc}' \to \Xi_{bc}'^+ \mu^+ \mu^-$	1.69×10^{-19}	6.27×10^{-8}	0.71
$\Xi_{bc}' \to \Xi_{bc}'^+ \mu^+ \mu^-$	1.21×10^{-19}	4.48×10^{-8}	3.87
$\Xi_{bc}' \to \Xi_{bc}'^0 \mu^+ \mu^-$	1.68×10^{-19}	2.38×10^{-8}	0.71
$\Xi_{bc}' \to \Xi_{bc}'^0 \mu^+ \mu^-$	1.20×10^{-19}	1.70×10^{-8}	3.88
$\Omega_{bc}^0 \to \Omega_{bc}^0 \mu^+ \mu^-$	2.01×10^{-19}	6.71×10^{-8}	4.15
$\Xi_{bc}' \to \Xi_{bc}'^+ \tau^+ \tau^-$	3.27×10^{-20}	1.21×10^{-8}	0.71
$\Xi_{bc}' \to \Xi_{bc}'^+ \tau^+ \tau^-$	2.03×10^{-20}	7.53×10^{-9}	4.56
$\Xi_{bc}' \to \Xi_{bc}'^0 \tau^+ \tau^-$	3.23×10^{-20}	4.57×10^{-9}	0.71
$\Xi_{bc}' \to \Xi_{bc}'^0 \tau^+ \tau^-$	2.01×10^{-20}	2.85×10^{-9}	4.56
$\Omega_{bc}^0 \to \Omega_{bc}^0 \tau^+ \tau^-$	2.91×10^{-20}	9.74×10^{-9}	4.85

TABLE XVI: Decay widths and branching ratios for $b \to d$ process in bb sector.

channels	Γ / GeV	B	Γ_L / Γ_T
$\Xi_{bb} \to \Lambda_{bb}^0 e^- e^-$	6.46×10^{-21}	3.63×10^{-9}	3.22
$\Xi_{bb} \to \Sigma_{bb}^- e^- e^-$	1.60×10^{-20}	9.00×10^{-9}	0.70
$\Xi_{bb} \to \Sigma_{bb}^- e^- e^-$	3.19×10^{-20}	1.79×10^{-8}	0.70
$\Omega_{bb} \to \Xi_{bb}^0 e^- e^-$	5.71×10^{-21}	6.94×10^{-9}	3.36
$\Omega_{bb} \to \Xi_{bb}^- e^- e^-$	1.54×10^{-20}	1.88×10^{-8}	0.70
$\Xi_{bb} \to \Lambda_{bb}^0 \mu^+ \mu^-$	6.32×10^{-21}	3.55×10^{-9}	3.51
$\Xi_{bb} \to \Sigma_{bb}^- \mu^+ \mu^-$	1.41×10^{-20}	7.94×10^{-9}	0.88
$\Xi_{bb} \to \Sigma_{bb}^- \mu^+ \mu^-$	2.81×10^{-20}	1.58×10^{-8}	0.88
$\Omega_{bb} \to \Xi_{bb}^- \mu^+ \mu^-$	5.58×10^{-21}	6.78×10^{-9}	3.70
$\Omega_{bb} \to \Xi_{bb}^- \mu^+ \mu^-$	1.36×10^{-20}	1.66×10^{-8}	0.87
$\Xi_{bb} \to \Lambda_{bb}^0 \tau^+ \tau^-$	1.75×10^{-21}	9.86×10^{-10}	5.59
$\Xi_{bb} \to \Sigma_{bb}^- \tau^+ \tau^-$	2.10×10^{-21}	1.18×10^{-9}	1.01
$\Xi_{bb} \to \Sigma_{bb}^- \tau^+ \tau^-$	4.17×10^{-21}	2.35×10^{-9}	1.01
$\Omega_{bb} \to \Xi_{bb}^- \tau^+ \tau^-$	1.40×10^{-21}	1.71×10^{-9}	5.80
$\Omega_{bb} \to \Xi_{bb}^- \tau^+ \tau^-$	2.08×10^{-21}	2.53×10^{-9}	1.01

\[\Gamma(\Xi_{bc}^+ \to \Xi_{bc}^+ l^+ l^-) = \Gamma(\Xi_{bc}^0 \to \Xi_{bc}^0 l^+ l^-) = \frac{1}{2} \Gamma(\Omega_{bc}^0 \to \Omega_{bc}^0 l^+ l^-) \] \hspace{1cm} (58)

for bc sector and

\[\Gamma(\Xi_{bb}^+ \to \Xi_{bb}^+ l^+ l^-) = \Gamma(\Xi_{bb}^0 \to \Xi_{bb}^0 l^+ l^-), \]
\[\Gamma(\Xi_{bc}^+ \to \Xi_{bc}^+ l^+ l^-) = \Gamma(\Xi_{bc}^0 \to \Xi_{bc}^0 l^+ l^-) = \frac{1}{2} \Gamma(\Omega_{bc}^0 \to \Omega_{bc}^0 l^+ l^-) \] \hspace{1cm} (59)

for bc' sector.

For $b \to d$ process, we have

\[\Gamma(\Xi_{bb}^0 \to \Lambda_{bb}^0 l^+ l^-) = \Gamma(\Omega_{bb}^0 \to \Xi_{bb}^+ l^+ l^-), \]
TABLE XVII: Decay widths and branching ratios for $b \to d$ process in bc sector.

channels	Γ / GeV	\mathcal{B}	Γ_{L}/Γ_{T}
$\Xi_{bc}^{0} \to \Lambda_{c}^{+} e^{+} e^{-}$	4.54×10^{-21}	1.68×10^{-9}	2.72
$\Xi_{bc}^{+} \to \Sigma_{c}^{+} e^{+} e^{-}$	1.34×10^{-20}	4.97×10^{-9}	0.68
$\Xi_{bc}^{0} \to \Sigma_{c}^{0} e^{+} e^{-}$	2.67×10^{-20}	3.78×10^{-9}	0.68
$\Omega_{bc}^{0} \to \Xi_{c}^{0} e^{+} e^{-}$	3.28×10^{-21}	1.10×10^{-9}	3.10
$\Omega_{bc}^{0} \to \Xi_{c}^{+} e^{+} e^{-}$	1.04×10^{-20}	3.47×10^{-9}	0.68
$\Xi_{bc}^{+} \to \Lambda_{c}^{+} \mu^{+} \mu^{-}$	4.40×10^{-21}	1.63×10^{-9}	3.05
$\Xi_{bc}^{+} \to \Sigma_{c}^{+} \mu^{+} \mu^{-}$	1.20×10^{-20}	4.44×10^{-9}	0.83
$\Xi_{bc}^{0} \to \Sigma_{c}^{0} \mu^{+} \mu^{-}$	2.39×10^{-20}	3.38×10^{-9}	0.83
$\Omega_{bc}^{0} \to \Xi_{c}^{0} \mu^{+} \mu^{-}$	3.16×10^{-21}	1.06×10^{-9}	3.58
$\Omega_{bc}^{0} \to \Xi_{c}^{+} \mu^{+} \mu^{-}$	9.16×10^{-21}	3.06×10^{-9}	0.85
$\Xi_{bc}^{+} \to \Lambda_{c}^{+} \tau^{+} \tau^{-}$	1.31×10^{-21}	4.87×10^{-10}	3.86
$\Xi_{bc}^{0} \to \Sigma_{c}^{0} \tau^{+} \tau^{-}$	2.54×10^{-21}	9.43×10^{-10}	0.98
$\Xi_{bc}^{0} \to \Sigma_{c}^{0} \tau^{+} \tau^{-}$	5.06×10^{-21}	7.16×10^{-10}	0.99
$\Omega_{bc}^{0} \to \Xi_{c}^{0} \tau^{+} \tau^{-}$	7.46×10^{-22}	2.49×10^{-10}	4.38
$\Omega_{bc}^{0} \to \Xi_{c}^{0} \tau^{+} \tau^{-}$	1.70×10^{-21}	5.70×10^{-10}	1.00

TABLE XVIII: Decay widths and branching ratios for $b \to d$ process in bc' sector.

channels	Γ / GeV	\mathcal{B}	Γ_{L}/Γ_{T}
$\Xi_{bc}^{+} \to \Lambda_{c}^{+} e^{+} e^{-}$	6.61×10^{-21}	2.45×10^{-9}	0.54
$\Xi_{bc}^{+} \to \Sigma_{c}^{+} e^{+} e^{-}$	3.55×10^{-21}	1.32×10^{-9}	3.17
$\Xi_{bc}^{0} \to \Sigma_{c}^{0} e^{+} e^{-}$	7.09×10^{-21}	1.00×10^{-9}	3.17
$\Omega_{bc}^{0} \to \Xi_{c}^{0} e^{+} e^{-}$	4.59×10^{-21}	1.54×10^{-9}	0.55
$\Omega_{bc}^{0} \to \Xi_{c}^{+} e^{+} e^{-}$	2.82×10^{-21}	9.43×10^{-10}	3.39
$\Xi_{bc}^{+} \to \Lambda_{c}^{+} \mu^{+} \mu^{-}$	5.98×10^{-21}	2.22×10^{-9}	0.63
$\Xi_{bc}^{+} \to \Sigma_{c}^{+} \mu^{+} \mu^{-}$	3.41×10^{-21}	1.26×10^{-9}	3.74
$\Xi_{bc}^{0} \to \Sigma_{c}^{0} \mu^{+} \mu^{-}$	6.81×10^{-21}	9.62×10^{-10}	3.75
$\Omega_{bc}^{0} \to \Xi_{c}^{0} \mu^{+} \mu^{-}$	4.06×10^{-21}	1.36×10^{-9}	0.67
$\Omega_{bc}^{0} \to \Xi_{c}^{+} \mu^{+} \mu^{-}$	2.71×10^{-21}	9.05×10^{-10}	4.06
$\Xi_{bc}^{+} \to \Lambda_{c}^{+} \tau^{+} \tau^{-}$	1.60×10^{-21}	5.95×10^{-10}	0.65
$\Xi_{bc}^{0} \to \Sigma_{c}^{0} \tau^{+} \tau^{-}$	7.32×10^{-22}	2.71×10^{-10}	4.48
$\Xi_{bc}^{0} \to \Sigma_{c}^{0} \tau^{+} \tau^{-}$	1.46×10^{-21}	2.06×10^{-10}	4.48
$\Omega_{bc}^{0} \to \Xi_{c}^{0} \tau^{+} \tau^{-}$	8.80×10^{-22}	2.94×10^{-10}	0.68
$\Omega_{bc}^{0} \to \Xi_{c}^{0} \tau^{+} \tau^{-}$	5.04×10^{-22}	1.69×10^{-10}	4.81

TABLE XIX: Zero-crossing points of $d \bar{A}_{FB}/dq^2$ and \mathcal{R} defined in Eqs. (51) and (52) for $b \to s$ process with $l = e/\mu$.

channels	s_{0} / GeV^2	$\mathcal{R}(s_{0})$	channels	s_{0} / GeV^2	$\mathcal{R}(s_{0})$	channels	s_{0} / GeV^2	$\mathcal{R}(s_{0})$
$\Xi_{bs} \to \Xi_{b}^{+} l^{+} l^{-}$	2.01	0.30	$\Xi_{bs} \to \Xi_{b}^{0} l^{+} l^{-}$	2.80	0.61	$\Xi_{bc}^{+} \to \Xi_{c}^{+} l^{+} l^{-}$	3.12	0.68
$\Xi_{bs} \to \Xi_{b}^{0} l^{+} l^{-}$	2.88	0.43	$\Xi_{bc}^{+} \to \Xi_{c}^{+} l^{+} l^{-}$	3.02	0.66	$\Xi_{bc}^{0} \to \Xi_{c}^{0} l^{+} l^{-}$	2.87	0.62
$\Omega_{bs} \to \Omega_{b}^{0} l^{+} l^{-}$	2.88	0.42	$\Omega_{bc}^{0} \to \Omega_{c}^{0} l^{+} l^{-}$	3.00	0.65	$\Omega_{bc}^{0} \to \Omega_{c}^{0} l^{+} l^{-}$	2.80	0.60
Quantitative analysis for SU(3) symmetry breaking is given in Tables XXI to XXIII for \(b \rightarrow d \) process.

channels	\(s_0 \)/ GeV \(^2\) \(R(s_0) \)	channels	\(s_0 \)/ GeV \(^2\) \(R(s_0) \)	channels	\(s_0 \)/ GeV \(^2\) \(R(s_0) \)
\(\Xi_{b0} \rightarrow \Sigma_0^{0}t^+l^- \)	1.96 0.29 & \(\Xi_{c0}^{+} \rightarrow \Lambda_0^{+}t^+l^- \)	2.81 0.61 & \(\Xi_{b0}^{+} \rightarrow \Lambda_0^{+}t^+l^- \)	3.09 0.67		
\(\Omega_{b0} \rightarrow \Xi_0^{0}t^+l^- \)	2.00 0.60 & \(\Omega_{bc}^{0} \rightarrow \Xi_0^{0}t^+l^- \)	2.77 0.60 & \(\Omega_{bc}^{0} \rightarrow \Xi_0^{0}t^+l^- \)	3.11 0.63		
\(\Xi_{b0}^{+} \rightarrow \Sigma_0^{0}t^+l^- \)	2.88 0.43 & \(\Xi_{c0}^{+} \rightarrow \Sigma_0^{0}t^+l^- \)	3.02 0.66 & \(\Xi_{b0}^{+} \rightarrow \Sigma_0^{0}t^+l^- \)	2.91 0.63		
\(\Xi_{b0} \rightarrow \Sigma_0^{0}t^+l^- \)	2.88 0.42 & \(\Omega_{bc}^{0} \rightarrow \Xi_0^{0}t^+l^- \)	3.01 0.65 & \(\Omega_{bc}^{0} \rightarrow \Xi_0^{0}t^+l^- \)	2.84 0.61		

Table XXI: Quantitative predictions of SU(3) symmetry breaking for \(b \rightarrow s \) process in \(bb \) sector.

channels	\(\Gamma \)/ GeV (LFQM)	\(\Gamma \)/ GeV (SU(3))	\(\Gamma \)/ GeV (SU(3))/SU(3)
\(\Xi_{b0} \rightarrow \Xi_0^{0}e^+e^- \)	\(5.20 \times 10^{-19} \)	\(5.20 \times 10^{-19} \)	- -
\(\Xi_{b0} \rightarrow \Xi_0^{0}\mu^+\mu^- \)	\(4.47 \times 10^{-19} \)	\(4.47 \times 10^{-19} \)	- -
\(\Omega_{b0} \rightarrow \Omega_0^{0}e^+e^- \)	\(1.02 \times 10^{-18} \)	\(1.04 \times 10^{-18} \)	2%
\(\Xi_{b0} \rightarrow \Xi_0^{0}e^+e^- \)	\(4.47 \times 10^{-19} \)	\(4.47 \times 10^{-19} \)	- -
\(\Xi_{b0} \rightarrow \Xi_0^{0}e^+e^- \)	\(8.85 \times 10^{-19} \)	\(8.94 \times 10^{-19} \)	1%

\[
\Gamma(\Xi_{bb} \rightarrow \Sigma_0^{0}t^+l^-) = \frac{1}{2} \Gamma(\Xi_{bb} \rightarrow \Sigma_0^{0}t^+l^-) = \Gamma(\Omega_{bb} \rightarrow \Xi_0^{0}t^+l^-) \tag{60}
\]

for \(bb \) sector,

\[
\Gamma(\Xi_{bc} \rightarrow \Lambda_0^{0}t^+l^-) = \Gamma(\Omega_{bc}^{0} \rightarrow \Xi_0^{0}t^+l^-),
\Gamma(\Xi_{bc} \rightarrow \Sigma_0^{0}t^+l^-) = \frac{1}{2} \Gamma(\Xi_{bc} \rightarrow \Sigma_0^{0}t^+l^-) = \Gamma(\Omega_{bc}^{0} \rightarrow \Xi_0^{0}t^+l^-) \tag{61}
\]

for \(bc \) sector and

\[
\Gamma(\Xi_{bc} \rightarrow \Lambda_0^{0}t^+l^-) = \Gamma(\Omega_{bc}^{0} \rightarrow \Xi_0^{0}t^+l^-),
\Gamma(\Xi_{bc} \rightarrow \Sigma_0^{0}t^+l^-) = \frac{1}{2} \Gamma(\Xi_{bc} \rightarrow \Sigma_0^{0}t^+l^-) = \Gamma(\Omega_{bc}^{0} \rightarrow \Xi_0^{0}t^+l^-) \tag{62}
\]

for \(bc' \) sector.

Quantitative analysis for SU(3) symmetry breaking is given in Tables XXI to XXIII for \(b \rightarrow s \) process and some comments on SU(3) symmetry breaking are given as follows.

- SU(3) symmetry breaking is larger for the \(Qs \) diquark involved case than that for the \(Qu/Qd \) diquark involved case. Here \(Q = b, c \).
- SU(3) symmetry breaking is larger for the \(cq \) diquark involved case than that for the \(bq \) diquark involved case. Here \(q = u, d, s \).
- SU(3) symmetry breaking is smaller for \(l = e/\mu \) cases than that for \(l = \tau \) case. This can be attributed to the much smaller phase space for \(l = \tau \) case. Smaller phase space is more sensitive to the variation of the masses of baryons in the initial and final states.
TABLE XXII: Quantitative predictions of SU(3) symmetry breaking for $b \rightarrow s$ process in bc sector.

channels	$\Gamma / \text{GeV (LFQM)}$	$\Gamma / \text{GeV (SU(3))}$	$\text{LFQM - SU(3)}/\text{SU(3)}$
$\Xi_{bc}^{+} \rightarrow \Xi_{c}^{0} e^{+} e^{-}$	4.54×10^{-19}	4.54×10^{-19}	-
$\Xi_{bc}^{0} \rightarrow \Xi_{c}^{+} e^{+} e^{-}$	4.53×10^{-19}	4.54×10^{-19}	0%
$\Omega_{bc}^{0} \rightarrow \Omega_{c}^{0} e^{+} e^{-}$	7.42×10^{-19}	9.08×10^{-19}	18%
$\Xi_{bc}^{+} \rightarrow \Xi_{c}^{0} \mu^{+} \mu^{-}$	3.97×10^{-19}	3.97×10^{-19}	-
$\Xi_{bc}^{0} \rightarrow \Xi_{c}^{0} \mu^{+} \mu^{-}$	3.95×10^{-19}	3.97×10^{-19}	1%
$\Omega_{bc}^{0} \rightarrow \Omega_{c}^{0} \mu^{+} \mu^{-}$	6.41×10^{-19}	$7.94 \mu^{+} \mu^{-}$	19%
$\Xi_{bc}^{+} \rightarrow \Xi_{c}^{0} \tau^{+} \tau^{-}$	6.50×10^{-20}	6.50×10^{-20}	-
$\Xi_{bc}^{0} \rightarrow \Xi_{c}^{0} \tau^{+} \tau^{-}$	6.45×10^{-20}	6.50×10^{-20}	1%
$\Omega_{bc}^{0} \rightarrow \Omega_{c}^{0} \tau^{+} \tau^{-}$	9.12×10^{-20}	1.30×10^{-19}	30%

TABLE XXIII: Quantitative predictions of SU(3) symmetry breaking for $b \rightarrow s$ process in bc' sector.

channels	$\Gamma / \text{GeV (LFQM)}$	$\Gamma / \text{GeV (SU(3))}$	$\text{LFQM - SU(3)}/\text{SU(3)}$
$\Xi_{bc}^{+} \rightarrow \Xi_{c}^{0} e^{+} e^{-}$	1.27×10^{-19}	1.27×10^{-19}	-
$\Xi_{bc}^{0} \rightarrow \Xi_{c}^{0} e^{+} e^{-}$	1.26×10^{-19}	1.27×10^{-19}	1%
$\Omega_{bc}^{0} \rightarrow \Omega_{c}^{0} e^{+} e^{-}$	2.11×10^{-19}	2.54×10^{-19}	17%
$\Xi_{bc}^{+} \rightarrow \Xi_{c}^{0} \mu^{+} \mu^{-}$	1.21×10^{-19}	1.21×10^{-19}	-
$\Xi_{bc}^{0} \rightarrow \Xi_{c}^{0} \mu^{+} \mu^{-}$	1.20×10^{-19}	1.21×10^{-19}	1%
$\Omega_{bc}^{0} \rightarrow \Omega_{c}^{0} \mu^{+} \mu^{-}$	2.01×10^{-19}	$2.42 \mu^{+} \mu^{-} \times 10^{-19}$	17%
$\Xi_{bc}^{+} \rightarrow \Xi_{c}^{0} \tau^{+} \tau^{-}$	2.03×10^{-20}	2.03×10^{-20}	-
$\Xi_{bc}^{0} \rightarrow \Xi_{c}^{0} \tau^{+} \tau^{-}$	2.01×10^{-20}	2.03×10^{-20}	1%
$\Omega_{bc}^{0} \rightarrow \Omega_{c}^{0} \tau^{+} \tau^{-}$	2.91×10^{-20}	4.06×10^{-20}	28%

E. Uncertainties

Also taking the process of $\Xi_{bc}^{0} \rightarrow \Xi_{b}^{0}$ as an example, the uncertainties caused by the model parameters and the single pole assumption will be given in this subsection. The error estimates for the form factors can be found in Table XXIV, in which the errors come from β_{i}, β_{f} and m_{di}, respectively. The error estimates for the decay widths are listed below:

$$
\Gamma(\Xi_{bc}^{0} \rightarrow \Xi_{b}^{0} e^{+} e^{-}) = (1.98 \pm 0.49 \pm 1.21 \pm 0.13 \pm 0.26) \times 10^{-19} \text{ GeV},
\Gamma(\Xi_{bc}^{0} \rightarrow \Xi_{b}^{0} \mu^{+} \mu^{-}) = (1.92 \pm 0.48 \pm 1.18 \pm 0.14 \pm 0.26) \times 10^{-19} \text{ GeV},
\Gamma(\Xi_{bc}^{0} \rightarrow \Xi_{b}^{0} \tau^{+} \tau^{-}) = (3.72 \pm 0.96 \pm 2.52 \pm 0.51 \pm 1.28) \times 10^{-20} \text{ GeV},
$$

where these errors come from β_{i}, β_{f}, m_{di} and m_{pole}, respectively. The first three model parameters are all varied by 10%, while m_{pole}, which is responsible for the single pole assumption, is varied by 5%. It can be seen from Table XXIV and Eqs. (63) that, the uncertainties caused by these parameters may be sizable.

IV. CONCLUSIONS

In our previous work, we have investigated the weak decays of doubly heavy baryons for 1/2 to 1/2 case and for 1/2 to 3/2 case. As a continuation, we investigate the FCNC processes in this work. Light-front approach under the diquark picture is once again adopted to extract the form factors. The same method was applied to study the singly heavy baryon decays and reasonable results were obtained (62). The extracted form factors are then applied
TABLE XXIV: Error estimates for the form factors, taking $\Xi^0_{bb} \to \Xi^0_s$ as an example. The first number is the central value, and the following 3 errors come from $\beta_i = \beta_{\Xi^0_{bb}}$, $\beta_f = \beta_{\Xi^0_s}$ and $m_{d_i} = m_{(b_i)}$, respectively. These parameters are all varied by 10%.

F	$F(0)$
$f_{\Xi^0_{bb} \to \Xi^0_s}$	$0.141 \pm 0.018 \pm 0.036 \pm 0.002$
$f_{\Xi^0_{bb} \to \Xi^0_s}$	$-0.189 \pm 0.039 \pm 0.037 \pm 0.014$
$f_{\Xi^0_{bb} \to \Xi^0_s}$	$0.016 \pm 0.009 \pm 0.013 \pm 0.019$

F	$F(0)$
$g_{\Xi^0_{bb} \to \Xi^0_s}$	$0.122 \pm 0.020 \pm 0.025 \pm 0.007$
$g_{\Xi^0_{bb} \to \Xi^0_s}$	$0.056 \pm 0.016 \pm 0.045 \pm 0.030$
$g_{\Xi^0_{bb} \to \Xi^0_s}$	$-0.406 \pm 0.088 \pm 0.225 \pm 0.120$

F	$F(0)$
$f_{\Xi^0_{bb} \to \Xi^0_s}$	$0.108 \pm 0.016 \pm 0.023 \pm 0.020$
$f_{\Xi^0_{bb} \to \Xi^0_s}$	$0.091 \pm 0.018 \pm 0.018 \pm 0.013$
$g_{\Xi^0_{bb} \to \Xi^0_s}$	$0.128 \pm 0.012 \pm 0.036 \pm 0.002$
$g_{\Xi^0_{bb} \to \Xi^0_s}$	$0.156 \pm 0.122 \pm 0.020 \pm 0.012$

To study some observables in these FCNC processes, we find that most of the branching ratios for $b \to s$ processes are $10^{-8} \sim 10^{-7}$, while those for $b \to d$ processes are $10^{-9} \sim 10^{-8}$, which are roughly one order of magnitude smaller than those in mesonic sector. This is because we believe that the lifetime of the doubly heavy baryon is roughly one order of magnitude smaller than that of B meson. SU(3) symmetry and sources of symmetry breaking are discussed. The error estimates are also investigated.

Acknowledgements

The authors are grateful to Prof. Wei Wang for valuable discussions and constant encouragements. This work is supported in part by National Natural Science Foundation of China under Grant Nos. 11575110, 11655002, 11735010, Natural Science Foundation of Shanghai under Grant No. 15DZ2272100.

[1] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. **119**, no. 11, 112001 (2017) doi:10.1103/PhysRevLett.119.112001 [arXiv:1707.01621] [hep-ex].
[2] H. X. Chen, Q. Mao, W. Chen, X. Liu and S. L. Zhu, Phys. Rev. D **96**, no. 3, 031501 (2017) Erratum: [Phys. Rev. D **96**, no. 11, 119902 (2017)] doi:10.1103/PhysRevD.96.031501, 10.1103/PhysRevD.96.119902 [arXiv:1707.01779] [hep-ph].
[3] F. S. Yu, H. Y. Jiang, R. H. Li, C. D. L, W. Wang and Z. X. Zhao, Chin. Phys. C **42**, no. 5, 051001 (2018) doi:10.1088/1674-1137/42/5/051001 [arXiv:1703.09086] [hep-ph].
[4] W. Wang, F. S. Yu and Z. X. Zhao, Eur. Phys. J. C **77**, no. 11, 781 (2017) doi:10.1140/epjc/s10052-017-5360-1 [arXiv:1707.02834] [hep-ph].
[5] Z. X. Zhao, arXiv:1805.10878 [hep-ph].
[6] H. S. Li, L. Meng, Z. W. Liu and S. L. Zhu, Phys. Rev. D **96**, no. 7, 076011 (2017) doi:10.1103/PhysRevD.96.076011 [arXiv:1707.02763] [hep-ph].
[7] L. Meng, N. Li and S. I. Zhu, arXiv:1707.03598 [hep-ph].
[8] W. Wang, Z. P. Xing and J. Xu, Eur. Phys. J. C **77**, no. 11, 800 (2017) doi:10.1140/epjc/s10052-017-5363-y [arXiv:1707.06370] [hep-ph].
[9] M. Karliner and J. L. Rosner, Phys. Rev. Lett. **119**, no. 20, 202001 (2017) doi:10.1103/PhysRevLett.119.202001 [arXiv:1707.07666] [hep-ph].
[10] T. Gutsche, M. A. Ivanov, J. G. Krner and V. E. Lyubovitskij, Phys. Rev. D **96**, no. 5, 054013 (2017) doi:10.1103/PhysRevD.96.054013 [arXiv:1708.00703] [hep-ph].
[11] H. S. Li, L. Meng, Z. W. Liu and S. L. Zhu, Phys. Lett. B 777, 169 (2018) doi:10.1016/j.physletb.2017.12.031 [arXiv:1708.03620 [hep-ph]].
[12] Z. H. Guo, Phys. Rev. D 96, no. 7, 074004 (2017) doi:10.1103/PhysRevD.96.074004 [arXiv:1708.04145 [hep-ph]].
[13] Q. F. Li, K. L. Wang, L. Y. Xiao and X. H. Zhong, Phys. Rev. D 96, no. 11, 114006 (2017) doi:10.1103/PhysRevD.96.114006 [arXiv:1708.04468 [hep-ph]].
[14] L. Y. Xiao, K. L. Wang, Q. f. Lu, X. H. Zhong and S. L. Zhu, Phys. Rev. D 96, no. 9, 094005 (2017) doi:10.1103/PhysRevD.96.094005 [arXiv:1708.04384 [hep-ph]].
[15] N. Sharma and R. Dhir, Phys. Rev. D 96, no. 11, 113006 (2017) doi:10.1103/PhysRevD.96.113006 [arXiv:1708.04468 [hep-ph]].
[16] Y. L. Ma and M. Harada, arXiv:1709.09746 [hep-ph].
[17] L. Meng, H. S. Li, Z. W. Liu and S. L. Zhu, Eur. Phys. J. C 77, no. 12, 869 (2017) doi:10.1140/epjc/s10052-017-5447-8 [arXiv:1710.08283 [hep-ph]].
[18] R. H. Li, C. D. L, W. Wang, F. S. Yu and Z. T. Zou, Phys. Lett. B 767, 232 (2017) doi:10.1016/j.physletb.2017.02.003 [arXiv:1701.03284 [hep-ph]].
[19] C. Y. Wang, C. Meng, Y. Q. Ma and K. T. Chao, arXiv:1708.04563 [hep-ph].
[20] Y. J. Shi, W. Wang, Y. Xing and J. Xu, Eur. Phys. J. C 78, no. 1, 56 (2018) doi:10.1140/epjc/s10052-018-5532-7 [arXiv:1712.03830 [hep-ph]].
[21] X. H. Hu, Y. L. Shen, W. Wang and Z. X. Zhao, arXiv:1711.10289 [hep-ph].
[22] W. Wang and J. Xu, Phys. Rev. D 97, 093007 (2018) doi:10.1103/PhysRevD.97.093007 [arXiv:1803.01476 [hep-ph]].
[23] R. Aaij et al. [LHCb Collaboration], arXiv:1806.02744 [hep-ex].
[24] R. Aaij et al. [LHCb Collaboration], arXiv:1807.01919 [hep-ex].
[25] M. T. Traill [LHCb Collaboration], PoS Hadron 2017, 067 (2018). doi:10.22323/1.310.0067
[26] Z. S. Brown, W. Detmold, S. Meinel and K. Orginos, Phys. Rev. D 90, no. 9, 094507 (2014) doi:10.1103/PhysRevD.90.094507 [arXiv:1409.0497 [hep-lat]].
[27] W. Jaus, Phys. Rev. D 60, 054026 (1999). doi:10.1103/PhysRevD.60.054026
[28] W. Jaus, Phys. Rev. D 41, 3394 (1990). doi:10.1103/PhysRevD.41.3394
[29] W. Jaus, Phys. Rev. D 44, 2851 (1991). doi:10.1103/PhysRevD.44.2851
[30] H. Y. Cheng, C. Y. Cheung and C. W. Hwang, Phys. Rev. D 55, 1559 (1997) doi:10.1103/PhysRevD.55.1559 [hep-ph/9607332].
[31] H. Y. Cheng, C. K. Chua and C. W. Hwang, Phys. Rev. D 69, 074025 (2004) doi:10.1103/PhysRevD.69.074025 [hep-ph/0310359].
[32] H. Y. Cheng and C. K. Chua, Phys. Rev. D 69, 094007 (2004) Erratum: [Phys. Rev. D 81, 059901 (2010)] doi:10.1103/PhysRevD.69.094007, 10.1103/PhysRevD.81.059901 [hep-ph/0401141].
[33] H. W. Ke, X. Q. Li and Z. T. Wei, Phys. Rev. D 80, 074030 (2009) doi:10.1103/PhysRevD.80.074030 [arXiv:0907.5465 [hep-ph]].
[34] H. W. Ke, X. Q. Li and Z. T. Wei, Eur. Phys. J. C 69, 133 (2010) doi:10.1140/epjc/s10052-010-1383-6 [arXiv:0912.4094 [hep-ph]].
[35] H. Y. Cheng and C. K. Chua, Phys. Rev. D 81, 114006 (2010) Erratum: [Phys. Rev. D 82, 059904 (2010)] doi:10.1103/PhysRevD.81.114006, 10.1103/PhysRevD.82.059904 [arXiv:0909.4627 [hep-ph]].
[36] C. D. Lu, W. Wang and Z. T. Wei, Phys. Rev. D 76, 014013 (2007) doi:10.1103/PhysRevD.76.014013 [hep-ph/0701265 [HEP-PH]].
[37] W. Wang, Y. L. Shen and C. D. Lu, Eur. Phys. J. C 51, 841 (2007) doi:10.1140/epjc/s10052-007-0334-3 [arXiv:0704.2493 [hep-ph]].
[38] W. Wang, Y. L. Shen and C. D. Lu, Phys. Rev. D 79, 054012 (2009) doi:10.1103/PhysRevD.79.054012 [arXiv:0811.3748 [hep-ph]].
[39] W. Wang and Y. L. Shen, Phys. Rev. D 78, 054002 (2008). doi:10.1103/PhysRevD.78.054002
[40] X. X. Wang, W. Wang and C. D. Lu, Phys. Rev. D 79, 114018 (2009) doi:10.1103/PhysRevD.79.114018 [arXiv:0901.1934 [hep-ph]].
[41] C. H. Chen, Y. L. Shen and W. Wang, Phys. Lett. B 686, 118 (2010) doi:10.1016/j.physletb.2010.02.056 [arXiv:0911.2875]
[hep-ph]].
[42] G. Li, F. L. Shao and W. Wang, Phys. Rev. D 82, 094031 (2010) doi:10.1103/PhysRevD.82.094031 [arXiv:1008.3696 [hep-ph]].
[43] R. C. Verma, J. Phys. G 39, 025005 (2012) doi:10.1088/0954-3899/39/2/025005 [arXiv:1103.2973 [hep-ph]].
[44] Y. J. Shi, W. Wang and Z. X. Zhao, Eur. Phys. J. C 76, no. 10, 555 (2016) doi:10.1140/epjc/s10052-016-4405-1 [arXiv:1607.00622 [hep-ph]].
[45] H. W. Ke, X. Q. Li and Z. T. Wei, Phys. Rev. D 77, 014020 (2008) doi:10.1103/PhysRevD.77.014020 [arXiv:0710.1927 [hep-ph]].
[46] Z. T. Wei, H. W. Ke and X. Q. Li, Phys. Rev. D 80, 094016 (2009) doi:10.1103/PhysRevD.80.094016 [arXiv:0909.0100 [hep-ph]].
[47] H. W. Ke, X. H. Yuan, X. Q. Li, Z. T. Wei and Y. X. Zhang, Phys. Rev. D 86, 114005 (2012) doi:10.1103/PhysRevD.86.114005 [arXiv:1207.3417 [hep-ph]].
[48] J. Zhu, Z. T. Wei and H. W. Ke [arXiv:1803.01297 [hep-ph]].
[49] H. W. Ke and X. Q. Li [arXiv:1711.02518 [hep-ph]].
[50] G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996) doi:10.1103/RevModPhys.68.1125 [hep-ph/9512380].
[51] R. H. Li, C. D. Lu and W. Wang, Phys. Rev. D 79, 094024 (2009) doi:10.1103/PhysRevD.79.094024 [arXiv:0902.3291 [hep-ph]].
[52] C. D. Lu and W. Wang, Phys. Rev. D 85, 034014 (2012) doi:10.1103/PhysRevD.85.034014 [arXiv:1111.1513 [hep-ph]].
[53] A. K. Giri and R. Mohanta, Eur. Phys. J. C 45, 151 (2006) doi:10.1140/epjc/s2005-02407-6 [hep-ph/0510171].
[54] A. J. Buras and M. Munz, Phys. Rev. D 52, 186 (1995) doi:10.1103/PhysRevD.52.186 [hep-ph/9501281].
[55] M. Karliner and J. L. Rosner, Phys. Rev. D 90, no. 9, 094007 (2014) doi:10.1103/PhysRevD.90.094007 [arXiv:1408.5877 [hep-ph]].
[56] V. V. Kiselev and A. K. Likhoded, Phys. Usp. 45, 455 (2002) [Usp. Fiz. Nauk 172, 497 (2002)] doi:10.1070/PU2002v045n05ABEH000958 [hep-ph/0103169].
[57] C. Patrignani et al. [Particle Data Group], Chin. Phys. C 40, no. 10, 100001 (2016). doi:10.1088/1674-1137/40/10/100001
[58] A. V. Manohar and M. B. Wise, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10, 1 (2000).
[59] C. S. Huang and H. G. Yan, Phys. Rev. D 59, 114022 (1999) Erratum: [Phys. Rev. D 61, 039901 (2000)] doi:10.1103/PhysRevD.59.114022, 10.1103/PhysRevD.61.039901 [hep-ph/9811303].
[60] C. H. Chen and C. Q. Geng, Phys. Lett. B 516, 327 (2001) doi:10.1016/S0370-2693(01)00937-6 [hep-ph/0101201].
[61] C. H. Chen and C. Q. Geng, Phys. Rev. D 63, 114024 (2001) doi:10.1103/PhysRevD.63.114024 [hep-ph/0101171].
[62] Z. X. Zhao, arXiv:1803.02292 [hep-ph].