A SUFFICIENT CONDITION FOR A COMPLEX POLYNOMIAL TO HAVE ONLY SIMPLE ZEROS AND AN ANALOG OF HUTCHINSON’S THEOREM FOR REAL POLYNOMIALS

KATERYNA BIELENOWA, HRYHORII NAZARENKO AND ANNA VISHNYAKOVA *

Abstract. We find the constant b_∞ ($b_\infty \approx 4.81058280$) such that if a complex polynomial or entire function $f(z) = \sum_{k=0}^{\infty} a_k z^k$, $\omega \in \{2, 3, 4, \ldots\} \cup \{\infty\}$, with nonzero coefficients satisfy the conditions $\left| \frac{a_k^2}{a_{k-1} a_{k+1}} \right| > b_\infty$ for all $k = 1, 2, \ldots, \omega - 1$, then all the zeros of f are simple. We show that the constant b_∞ in the statement above is the smallest possible. We also obtain an analog of Hutchinson’s theorem for polynomials or entire functions with real nonzero coefficients.

Mathematics subject classification (2020): 30C15, 26C10, 30D15.

Keywords and phrases: Complex polynomial, entire function, simple zeros, Hutchinson’s theorem, second quotients of Taylor coefficients.

REFERENCES

[1] T. CRAVEN AND G. CSORDAS, Complex zero decreasing sequences, Methods Appl. Anal. 2, 4 (1995), 420–441.
[2] DAVID HANDelman, Arguments of zeros of highly log concave polynomials, The Rocky Mountain Journal of Mathematics 43, 1 (2013), 149–177.
[3] J. I. HUTCHINSON, On a remarkable class of entire functions, American M. S. Trans. 25, 1 (1923), 325–332.
[4] IRINA KARPENKO AND ANNA VISHNYAKOVA, On sufficient conditions for a polynomial to be sign-independently hyperbolic or to have real separated zeros, Mathematical Inequalities and Applications 20, 1 (2017), 237–245.
[5] OLGA M. KATKOVA AND ANNA M. VISHNYAKOVA, A sufficient condition for a polynomial to be stable, Journal of Mathematical Analysis and Applications 347, 1 (2008), 81–89.