THE SKIN MICROBIOTA AND ITCH: Is There a Link?

by HEI SUNG KIM and GIL YOSIPOVITCH

Dr. Kim is with the Department of Dermatology and Cutaneous Surgery at Miami Itch Center, Miller School of Medicine at University of Miami in Miami, Florida, the Department of Dermatology at Incheon St. Mary's Hospital, The Catholic University of Korea in Seoul, Korea, and the Department of Biomedicine and Health Sciences, at The Catholic University of Korea in Seoul, Korea. Dr. Yosipovitch is with the Department of Dermatology and Cutaneous Surgery at Miami Itch Center, Miller School of Medicine at the University of Miami in Miami, Florida.

Originally published in J Clin Med. 2020 Apr 22;9(4):1190. doi: 10.3390/jcm9041190. Reprinted and distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Minor revisions to the text were made to adhere to journal style.

ABSTRACT

Itch is an unpleasant sensation that emanates primarily from the skin. The chemical mediators that drive neuronal activity originate from a complex interaction between keratinocytes, inflammatory cells, nerve endings, and the skin microbiota, relaying itch signals to the brain. Stress also exacerbates itch via the skin-brain axis. Recently, the microbiota has surfaced as a major player to regulate this axis, notably during stress settings aroused by actual or perceived homeostatic challenge. The routes of communication between the microbiota and brain are slowly being unraveled and involve neurochemicals (i.e., acetylcholine, histamine, catecholamines, and corticotropin) that originate primarily from the skin. The chemical mediators that drive neuronal activity arise from complex interaction between keratinocytes, inflammatory cells, and nerve endings, coupled with upregulated immune cascades, epidermal barrier dysfunction, and exogenous environmental stimuli (e.g., microbiota, allergens, irritants). Peripheral nerves relay cues from the skin to the dorsal root and trigeminal ganglia and then to the spinal cord and brain where central itch processing takes place (Figure 1). Skin barrier. The skin barrier shields the body from a wide range of external dangers. It consists of the epidermis and several layers below that harbor microbiota. The physical skin barrier is the stratum corneum, which comprises dead keratinocytes and proteinaceous crosslinking filaments. The skin also has a chemical barrier of antimicrobial peptides (AMPs) that are constitutively expressed or induced. AMPs directly block microbial growth or provoke the immune response.

The skin also has a chemical barrier of antimicrobial peptides (AMPs) that are constitutively expressed or induced. AMPs directly block microbial growth or provoke the immune response.

Minor revisions to the text were made to adhere to journal style.

Bacteria, viruses, fungi, archaean, helminths, and protota that inhabit our body are a prospering dynamic community shaping a symbiotic superorganism. Roughly 1,014 microbiota populate the entire body, with their number approximating that of human cells. Evidence suggests that microbiota take part in maintaining human health. As a crucial barrier to the exterior world, skin is the body’s largest organs. A square centimeter of human skin holds around 10^6 of microbiota. The symbionts defend against illness by regulating the skin barrier and host immune response. On the other hand, microbial imbalance (dysbiosis) has been noted to exacerbate skin lesions and delay wound healing. Recently, the emerging role of the skin microbiota in itch has received attention. Large-scale changes of the skin microbiota have been noted in itchy skin diseases. Staphylococcus aureus (S. aureus) participates in atopic dermatitis (AD) flare-up; its colonization correlates with disease severity and itch.

In the present review, we offer an integrative perspective on the skin microbiota and itch. The first section describes the interplay of the cutaneous microbiota with the epidermal barrier, the local immune system, and the sensory nerve, proposing the microbiota’s peripheral mechanism of itch. The second section concentrates on the concept of microbial endocrinology and addresses the microbiota–skin–brain axis. Moreover, the interaction between the skin microbiota and the amygdala is discussed to explain the microbiota’s central mechanism of itch. Overall, this article describes the putative role of the skin microbiota in itch.

THE PERIPHERAL MECHANISM LINKING THE SKIN MICROBIOTA AND ITCH

Itch arises from the activation of epidermal nerve fibers that belong to a specialized class of itch-provoking neurons (“pruriceptors”). The chemical mediators that drive neuronal activity arise from complex interaction between keratinocytes, inflammatory cells, and nerve endings, coupled with upregulated immune cascades, epidermal barrier dysfunction, and exogenous environmental stimuli (e.g., microbiota, allergens, irritants). Peripheral nerves relay cues from the skin to the dorsal root and trigeminal ganglia and then to the spinal cord and brain where central itch processing takes place (Figure 1).

Skin barrier. The skin barrier shields the body from a wide range of external dangers. It consists of the epidermis and several layers below that harbor microbiota. The physical skin barrier is the stratum corneum, which comprises dead keratinocytes and proteinaceous crosslinking filaments. The skin also has a chemical barrier of antimicrobial peptides (AMPs) that are constitutively expressed or induced. AMPs directly block microbial growth or provoke the immune response.

FUNDING: This study was supported by a National Research Foundation of Korea (NRF) grant founded by the South Korean Government (2017R1C1B501644).

DISCLOSURES: Yosipovitch reports serving on the scientific board and being a consultant for Trevi, Sanofi Regeneron, Galderma, Pfizer, Novartis, Kiniksa, Eli Lilly, Bellus, LEO and is supported by Sun Pharma, Pfizer, Novartis, Kiniksa, Leo Pierre Fabre. None of these involvements had influence on the content of the presented paper.

CORRESPONDENCE: Gil Yosipovitch; Email: gyosipovitch@med.miami.edu
reaction. One example is the liberation of histamine and prostaglandin D₁ (PGD₁) by mast cells in respect to human β-defensins (hβ3Ds) and LL-37, causing pruritus. The skin microbiota is an integral part of the skin barrier. It protects the host from pathogens by competing for nutrients and space. Some S. aureus (MRSA). In short, which inhibits the growth of methicillin-resistant skin resident is (Cutibacterium acnes C. acnes), some molecules further modify the function of epithelial barrier disruption opens the door into a vicious itch—scratch cycle. Upon damage or stress, keratinocytes and skin microbiota emit cytokines, AMPs, and proteases that activate immunocytes and nerves. Protease–activated receptors (PARs), which are cleaved by serine proteases, manifest on different cell types, including sensory neurons and mediate itch. β-defensin, an AMP released from epithelial cells, has the ability to stimulate IL-31 production by mast cells. IL-31, initially discovered in 2004, is the first cytokine that is known to facilitate itch by directly operating on sensory neurons (Figure 1).

FIGURE 1. Inflammatory circuit of the skin microbiota. Various microbiota (bacteria, fungi and viruses) cover the exterior of a healthy skin where the barrier is intact. In the event of dysbiosis, pathogens release proteases, which may disrupt the epidermal barrier. Delta-toxin causes mast cell degranulation, which prompt inflammation and itching. AMP: antimicrobial peptides; DRG: dorsal root ganglia; IL: interleukin; LTB₄: leukotriene B₄; PAMP: pathogen associated molecular pattern; PGE₂: prostaglandin E₂; TLR: Toll-like receptor; TRPA1: transient receptor potential antigen 1; TSLP: thymic stromal lymphopoietin.

The immune system Skin is flushed with a wide scope of cells of the innate and adaptive immune system. The skin microbiota keeps immune homeostasis by modulating the expression of diverse innate factors, including AMPs, interleukin 1α (IL-1α), L. Aden Scabies mites (Sarcoptes scabiei) alter the skin microbiota by breaching the epidermal barrier. Symbionts calibrate inflammation. S. epidermidis suppresses inflammation by inducing IL-10, an anti-inflammatory cytokine, from antigen-presenting cells (APCs). The Toll-like receptor (TLR)-2–facilitated recognition of lipoteichoic acid (LTA) from S. epidermidis inhibits TLR-3–driven inflammatory cytokine production in cultured keratinocytes (Table 1). This also reduces inflammation in wounds, which, when uncontrolled, is damaging to the host. Finally, S. epidermidis can finely tune the response of resident T cells and promote selective immunity against skin pathogens.

Alteration in the normal makeup of the skin microbiota can induce inflammation. Moreover, the constitution of the cutaneous microbiota can shift dramatically in the course of inflammation. For example, AD flares have been associated with an expansion of staphylococcal species, which can lead to an overall decrease in microbial diversity. The resulting bacterial and viral infection can cause itch. One possible mechanism of itch from S. aureus colonization is found in up to 90 percent of patients with AD. It produces ceramidase, which breaks down ceramides, an essential component of the skin barrier. S. aureus also produces toxins that impede wound healing and bring epithelial barrier disintegration. Scabies mites (Sarcoptes scabiei) alter the skin microbiota by breaching the physical barrier. Epidemiologic studies in patients with scabies confirmed secondary bacterial infections by two clinically important pathogens S. aureus and Streptococcus pyogenes. Lately, there has been a growing awareness of fungi and their interaction with the skin barrier. When the chemical composition (e.g., sweat, pH) of the host epidermis is disturbed, Malassezia spp. acquire pathogenicity and liberate an array of bioactive indoles, lipases, and phospholipases. These molecules further modify the function of the skin barrier. Epithelial barrier disruption opens the door to clear. Symbiont strains of S. epidermidis suppress S. aureus biofilm formation by producing serine protease (Esp), which also enhances the antimicrobial effect of hβ3Ds. Another typical skin resident is Cutibacterium acnes (C. acnes), which inhibits the growth of methicillin-resistant S. aureus (MRSA). In short, C. acnes ferments glycerol, a natural metabolite in human skin, into short-chain fatty acids (SCFAs) that maintain an acidic skin pH. Symbionts flourish at acidic pH, whereas potential pathogens, such as S. aureus, thrive at neutral pH.

Intrinsic (host) and extrinsic (environmental) factors affect skin barrier function by shaping microbial structure. S. aureus colonization is found in up to 90 percent of patients with AD. It produces ceramidase, which breaks down ceramides, an essential component of the skin barrier. S. aureus also produces toxins that impede wound healing and bring epithelial barrier disintegration. Scabies mites (Sarcoptes scabiei) alter the skin microbiota by breaching the physical barrier. Epidemiologic studies in patients with scabies confirmed secondary bacterial infections by two clinically important pathogens S. aureus and Streptococcus pyogenes. Lately, there has been a growing awareness of fungi and their interaction with the skin barrier. When the chemical composition (e.g., sweat, pH) of the host epidermis is disturbed, Malassezia spp. acquire pathogenicity and liberate an array of bioactive indoles, lipases, and phospholipases. These molecules further modify the function of the skin barrier. Epithelial barrier disruption opens the door to clear.
aureus infection is mast cell-mediated pruriceptor stimulation. Nunez et al. discovered that *S. aureus* releases delta-toxin, an amphipathic peptide that stimulates chemical release from mast cells and mediates skin pathology in AD. Serine protease from *S. aureus* is also involved in type-2 inflammation and itch. Varicella zoster virus (VZV) causes pruritus in chickenpox by mast-cell-derived histamine. Keratinocytes first detect pathogens and initiate an immune response. Keratinocytes identify an array of microbial ligands via Toll-like receptors (TLRs) exhibited on their surface. In response to stimulation, keratinocytes produce alarmins or epithelial cell-derived cytokines (i.e., IL-33, thymic stromal lymphopoietin [TSLP]), which potentiate innate and adaptive immunity. TSLP also acts upon a subdivision of TRPA1 sensory neurons to spark itch.

Mast cells are also an essential element of innate immunity. Mast cells recognize pathogens via pathogen-associated molecular pattern (PAMP) receptors (e.g., TLR) on their surface. Once they detect pathogens, inflammatory mediators are released to attract other immune cells. Downstream of IL-33 and TSLP, mast cells, neutrophils, basophils, eosinophils, T helper-2 (Th2) cells, and macrophages generate cytokines (IL-4, IL-13, IL-31), histamine, proteases, serotonin (5-HT), lipids, S100 proteins, cytokines (IL-4, IL-13, IL-31), histamine, proteases, serotonin (5-HT), lipids, S100 proteins, prostaglandin E2 (PG-E2), leukotriene B4 (LT-B4), and growth factors. While it is understood that microbial inflammation propagates itch, how the skin microbiota directly triggers sensory nerves is a new area of inquiry. The latest studies suggest that sensory neurons (e.g., immune cells) are able to detect microbiota. Ji et al. noted Toll-like receptor 7 (TLR7) on pruriceptors and noted synthetic TLR7 ligands (i.e., imiquimod) causing itch behavior in mice. Viral single-stranded RNA and double-stranded RNA are known pathogen-derived ligands for TLR7 and TLR3, respectively, and there is a possibility that these viral ligands cause itch by directly interacting with pruriceptor neurons. Lipopolysaccharide (LPS), an important component of the Gram-negative bacteria outer membrane binds to TLR4. Although LPS has only been reported with pain, it can also modulate itch since TLR4 promotes histamine-mediated itch. Interestingly, LPS has also been found to stimulate sensory neurons in an TLR4-independent manner, via the activation of TRPA1.

FIGURE 2. Pruriceptor neurons recognize skin pathogens and their molecular ligands by various mechanisms to facilitate itch. LPS, a key cell wall component of Gram-negative bacteria attaches to neuronal TLR4 and primes TRPV1 ion channel or opens the TRPA1 ion channel. *S. aureus* triggers itch with bacterial N-formyl peptides that bind to FPR1 or via α-hemolysin, which couples with ADAM10. *C. albicans* stimulates pruriceptors with its cell wall component zymosan. Viral double-strand RNA and single-strand RNA bind to TLR3 and TLR7, respectively, which are believed to sensitize the TRPA1 ion channel. ADAM10: a disintegrin and metalloprotease domain-containing protein 10; FPR1: formyl peptide receptor 1; LPS: lipopolysaccharide; RNA: ribonucleic acid; TLR: Toll-like receptor; TRPA1: transient receptor potential ankyrin 1; TRPV1: transient receptor potential vanilloid 1.
histamine-mediated itch.92 Interestingly, LPS has also been found to stimulate sensory neurons in an TRPA1-independent manner, via the activation of TRPA1.83,84

Besides TLR ligands, sensory neurons detect pathogens through various molecular means. Specifically, zymosan from Candida albicans,85 N-formylated peptides and α-hemolysin from S. pyogenes87 were shown to mediate pain through direct neuronal stimulation. It remains to be discovered whether pruripceptors similarly detect these pathogens to elicit itch.

Itch is bothersome in patients with cholestatic liver disease.48 Recently, alteration of the skin microbiota was identified in patients with cirrhosis where specified microbial taxa correlated with itch severity and serum autotaxin (ATX) level.49 Lysophosphatidic acid (LPA), a powerful neuronal activator, and ATX (ectonucleotide pyrophosphatease/ phosphodiesterase 2), the enzyme that creates LPA, are pruritogens in cholestasis.90,91 It has been suggested that LPA directly activates TRPV1 on peripheral sensory neurons to mediate itch.52

Neuroimmune conversation is bidirectional in the body’s first detector of pathogen invasion and the prime orchestrator of itch.76

THE CENTRAL MECHANISM LINKING THE SKIN MICROBIOTA AND ITCH

Microbial endocrinology. Microbial endocrinology is a combination of two distinct areas of study—microbiology and neurobiology—and is based on the shared presence of neurochemicals in the host and the microbiota.66 The scope of neurochemicals and the variety of microbiota in which they have been discovered is expansive,96 including acetylcholine,100 histamine,100,101 serotonin,104 catecholamines,105,106 and agmatine,107,108 which are essential elements of an animal’s nervous system. Others, such as corticotropin,109 somatostatin,110 and progesterone,111 have biological action in mammalian cells. The ability of the microbiota to not only respond to but also create the same neurochemicals found in mammalian systems indicates that host interplay with its microbiota is more interactive than was previously thought. Hence, microbial endocrinology could potentially be applied beyond the study of infectious disease to other conditions, such as neurological disease, through the microbiota–skin–brain axis. Microbiota has multiple transmission pathways to access the brain, including the neural signals carried by the afferent neurons, endocrine messages transmitted by neurochemicals, and the immune response messages transferred by cytokines.112,113

Supporting cutaneous microbiota improves the skin’s barrier functioning and local immune system and assists in its communication with other organ systems, including the brain (microbiota–skin–brain axis).114

Stress. Stress is a complex, dynamic event that mediate itch. Sensory neurons are sensitized by immune cell–made cytokines, such as TNF-α and IL-1β; chemicals, such as histamine; and lipid mediators, such as prostaglandins; which phosphorylate ion channels and lower the bar of action potential firing. Neurons, in turn, secrete neuropeptides (e.g., calcitonin gene–related peptide, substance P) that modulate immune cell function and microbial virulence causing itch.89 Because neurons will respond within milliseconds to danger, the sensory nervous system is likely the prime orchestrator of itch.76

BACTERIA	EFFECTS OF STRESS MEDIATORS
Staphylococcus epidermidis	Glucocorticoids decrease the effects of super antigen activated T cells and inhibit staphylococcal exotoxin–induced T cell proliferation, cytokine secretion.112 Catecholamines induce biofilm growth.113
Propionibacterium acnes	Cortisol and steroids significantly exacerbate inflammation associated with P. acnes via TLR2 stimulation.114,115
Pseudomonas aeruginosa	Norepinephrine increases expression of the attachment factor PA-1 of P. aeruginosa and increase biofilm formation.116,117
Staphylococcus aureus	Acetylcholine augments susceptibility to infection by S. aureus.118 Norepinephrine increases S. aureus’ ability to remove iron from host and therefore facilitates the bacteria to form biofilms.119,120
Group A Streptococcus	Cortisol alters vulnerability to Group A Streptococcus pyogenes skin infection.121 Acetylcholine augments susceptibility to infection by Group A Streptococcus.122 Catecholamines raise Staphylococcus growth by S-log orders.123,124 Catecholamines enhance Group A Streptococcus growth likely by increasing iron availability.125,126
Candida	Estrogen enhances Candida infectivity, switching yeast form to an invasive hyphae.127

FIGURE 3. Brain to microbiota communication under chronic stress. The HPA axis is activated under chronic stress. The final product of the HPA axis, cortisol, directly activates skin microbes. Cortisol activates the amygdala, promoting central sensitization to itch. The amygdala also promotes CRH signaling to the brain stem (PAG), altering the “descending itch modulatory system.” Prolonged exposure to cortisol, NE, and ACTH is associated with increased growth and biofilm genesis and augmented virulence of the skin microbiota. Ach: acetylcholine; ACTH: adrenocorticotropic hormone; CRH: corticotropin–releasing hormone; HPA: hypothalamic–pituitary–adrenal axis; 5-HT: serotonin; NE: norepinephrine; PNS: parasympathetic nervous system; RVM: rostral ventromedial medulla; SNS: sympathetic nervous system; VLPAG: ventrolateral periaqueductal grey matter.
that alters the body’s homeostasis and illicit a response in the host. Stress can aggravate itch,
which indicates that the brain is engaged in the final common stage of itch processing. The stress response by the central nervous system (CNS) can alter the microbiota via the release of neurochemicals. Glucocorticoids, essential components of the stress response, repress AMP release/localization in the epidermis, weaken the barrier, and raise host susceptibility to infection. Chronic stress is associated with an aberrant parasympathetic tone (Figure 3). Cholinergic signaling from physiologic stress can negatively impact the skin barrier and immunity. Cathelicidin and β-defensins, AMPs important for innate immunity, are cut down after α7nAChR stimulation, leading to bacterial dissemination (Figure 3). Skin microbiota, especially the coagulase-negative staphylococci, are sensitive to catecholamines. Norepinephrine (NE), epinephrine, dopamine, and their structurally related isomers (dobutamine and isoprorenaline) raise staphylococcal growth by 5-log orders or more. Catecholamines also strengthen bacterial attachment to host tissues and increase bacteria virulence. Catecholamines stimulate the biofilm formation of and . Within a polymicrobial biofilm, enhances USA300 MRSA virulence. Substance P is released in sweat during stress and increases the virulence of Gram-positive skin bacteria, namely and . Thus, the effect of stress on the skin microbiota might be twofold: dampening the host defense to infection and causing changes to the microenvironment that make it more ideal for pathogens. The resultant dysbiosis can exacerbate itch (i.e., “stress aggravated itch”) (Table 2).

The amygdala. Itch encompasses sensory-discriminative and affective-motivational aspects and undergoes extensive processing in the higher brain centers. The amygdala is involved in pain, especially in the emotional-affective aspects of pain perception. The central nucleus of the amygdala (CeA) is commonly called the “nociceptive amygdala” and receives peripheral pain signals via the parabrachial nucleus. The role of amygdala in itch has also been shown in animal studies. A recent study noted that scratching was suppressed after blocking itch-mediating spinal neurons connected to the spinoparabrachial pathway. Additionally, an animal functional MRI (fMRI) study demonstrated amygdala activation during itch stimuli. The findings suggest that itch signals are delivered by both the spinothalamic pathway and the spinoparabrachial-CeA path. Injection of muscimol (γ-aminobutyric acid agonist) to the amygdala appeared to minimize the scratching elicited by the injection of serotonin to the cheek, suggesting a modulatory role of the amygdala in itch processing. Chronic stress brings functional and configurational changes in the amygdala (central sensitization) (Figure 3). This change might influence itch processing in the brain, which might explain why stress can worsen itch in individuals with chronic itch. Studies suggest that the amygdala itself is susceptible to microbial influences. Most convincingly, data from germ-free (GF) mice showed hyperactivity in the amygdala transcriptome in the absence of microbiota. This hyperactive state is in line with the altered pain sensitivity and stress response in GF mice.

Currently, it is not clear how microbial signals navigate through the skin—brain axis to reach the amygdala specifically; however, there are some strong candidate paths, including the blood stream (circulation) and the spinal cord.

CONCLUSION AND FUTURE PERSPECTIVES

Increased recognition and understanding of the presence and functionality of the microbiota has changed what we know about the human body. Cutaneous microbiota appear to have a diverse and far-reaching influence on human physiology by calling upon the host nervous system. Bacteria produce metabolites, toxins, and structural components that are recognized by peripheral and central neurons via matching receptors. Microbiota also appear to indirectly affect neural function by causing endocrine (e.g., keratinocytes) and immune cells to transmit signals (e.g., cytokines, proteases). Itch is a prototypic sensory neural function, and microbiota appear to propel the itch—scratch cycle.

Some descriptive studies have differentiated the microbiota found in itchy skin versus those of healthy skin. While dysbiosis is found in various pathologies, their presence raises a “chicken-or-the-egg” type question in that it remains unclear if dysbiosis leads to disease or the underlying disease results in microbial imbalance. To differentiate cause and effect, a deeper and more mechanistic (functional) understanding of the skin microbiota’s role in itch is required. Increased understanding will help us find microbiological markers in itchy conditions and develop more effective therapeutics that utilize host—microbiota relationship. The gut and skin are uniquely related in function, and numerous studies link gut microbiota to skin homeostasis (skin—gut axis or skin—gut—brain axis). Commonalities have also been found between itch transition in the skin and neural signaling in the lower intestinal tract, which raises the question of whether intestinal microbiota also

FIGURE 4. Two main approaches of controlling the human skin microbiota for the itch control. Topical pre- and probiotics target to increase the number of advantageous bacteria (green) and reduce pathogens (red). Skin microbial transplant is a new approach that transfers beneficial microbiota from healthy skin to itchy and dysbiotic skin.
system through toxins and metabolites. J Mol Biol. 2017;429:587–605.
4. Chen YE, Fischbach MA, Belkaid Y. Skin microbiota-host interactions. Nature. 2018;553:427–436.
5. Gallo RL. Human skin is the largest epithelial surface for interaction with microbes. J Invest Dermatol. 2017;137:1213–1214.
6. Fyrhquist N, Salava A, Auvinen P, et al. Skin biomes. Carr Asthma Allergy Rep. 2016;16:40.
7. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14:e1002533.
8. Leyden JJ, McKinley KJ, Nordstrom KM, et al. Skin microflora. J Invest Dermatol. 1987;88:65–72.
9. Wang WM, Jin HZ. Skin microbiome: an actor in the pathogenesis of psoriasis. Chin Med (Engl). 2018;131:95–98.
10. Trivedi B. Microbiome: the surface bridge. Nature. 2012;492:560–561.
11. Gontcharova Y, Touen Y, Sun Y, et al. A comparison of bacterial composition in diabetic ulcers and contralateral intact skin. Open Microbiol J. 2010;4:8–19.
12. Johnson TR, Gomez BI, McIntyre MK, et al. The cutaneous microbiome and wounds: new molecular targets to promote wound healing. Int J Mol Sci. 2018;19:2699.
13. Chiu IM. Infection, pain, and itch. Neurosusc Bull. 2016;34:109–119.
14. Kong HH, Oh J, Deming C, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:880–850.
15. Blichzar L, Uteak P, Mlynarczyk G, et al. Is itch intensity in atopic dermatitis associated with skin colonization by Staphylococcus aureus? Indian J Dermatol. 2020;65:17–21.
16. Allen HB, Vaze ND, Choi C, et al. The presence and impact of biofilm-producing Staphylococci in atop dermatitis. JAMA Dermatol. 2014;150:260–265.
17. Azmi E, Xia J, Lerner EA. Peripheral mechanisms of itch. Curr Probl Dermatol. 2016;50:18–23.
18. Baldwin HE, Bhata ND, Friedman A, et al. The role of cutaneous microbiota harmony in maintaining a functional skin barrier. J Drugs Dermatol. 2017;16:12–18.
19. Sanford JA, Gallo RL. Functions of the skin microbiota in health and disease. Semin Immunol. 2013;25:370–377.
20. Nakatsuji T, Chiang HJ, Jiang SB, et al. The microbiome extends to subepidermal compartments of normal skin. Nat Commun. 2013;4:1413.
21. Proksch E. pH in nature, humans and skin. J Dermatol. 2018;45:1044–1052.
22. Boer M, Duchiñik E, Maleška R, et al. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Postepy Dermatol Alergor. 2016;33:1–5.
23. Niyonsaba F, Someya A, Hirata M, et al. Evaluation of the effects of peptide antibiotics human beta-defensins-1/2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur J Immunol. 2001;31:1066–1075.
24. Capone KA, Dowel SE, Stamatis GN, et al. Diversity of the human skin microbiome early in life. J Invest Dermatol. 2011;131:2026–2032.
25. Otto, M. Staphylococcus epidermidis—the ‘accidental’ pathogen. Nat Rev Microbiol. 2009;7:555–567.
26. Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9:34–39.
27. Iwase T, Ueha Y, Shioji H, et al. Staphylococcus epidermidis. Etiopatho-logic relationship with Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010;465:346–349.
28. Shu M, Wang Y, Yu J, et al. Fermentation of Propionibacterium acneus, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS ONE. 2013;8:e55380.
29. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9:244–253.
30. Korting HC, Huber K, Greiner K, et al. Differences in the skin surface pH and bacterial microflora due to the long-term application of synthetic detergent preparations of pH 5.5 and pH 7.0. Results of a crossover trial in healthy volunteers. Acta Derm Venereol. 1990;70:429–431.
31. Ali SM, Youpswich G. Skin pH—from basic science to basic skin care. Acta Derm Venerol. 2013;93:261–267.
32. Van Smeden J, Bouwstra JA. Stratum corneum lipids: their role for the skin barrier function in healthy subjects and atop dermatitis patients. Curr Probl Dermatol. 2016;49:8–26.
33. Baker BS. The role of microorganisms in atop dermatitis. Clin Exp Immunol. 2006;144:7–9.
34. Nohmi Y, Okino N, No M, et al. Ceramide activity in bacterial skin flora as a possible cause of ceramide deficiency in atop dermatitis. Clin Dermatol. 1996:991–1010.
35. Kim JE, Kim HS. Microbiome of the skin and gut in atop dermatitis (AD): understanding the pathophysiology and finding novel management strategies. J Clin Med. 2019;8(4):444.
36. Sse PM, Zakrzewski M, Kelly A, et al. Scabies mites alter the skin microbiome and promote growth of opportunistic pathogens in a porcine model. PLoS Negl Trop Dis. 2014;8:e2697.
37. Xu J, Saunders CW, Hu P, et al. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci USA. 2007;104:18730–18735.
38. Mack MR, Kim BS. The itch-scratch cycle: a neuroimmune perspective. Trends Immunol. 2018;39:980–991.
39. Potenziere C, Undem BJ. Basic mechanisms of itch. Clin Exp Allergy. 2012;42:8–19.
40. Borgono CA, Michael IP, Komatsu N, et al. A potential role for multiple tissue kallikrein serine proteases in epithelial desquamation. J Biol Chem. 2007;282:3640–3652.
41. Yosipovitch G, Misery L, Prosko E, et al. Skin barrier damage and itch: review of mechanisms, topical management and future directions. Acta Derm Venereol. 2019;99:1201–1209.
42. Komatsu N, Saijoh K, Kuk C, et al. Human tissue kallikrein expression in the stratum corneum and serum of atopic dermatitis patients. Exp Dermatol. 2007;16:513–519.
43. Steinhoff M, Neissiu II, Ikoma A, et al. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci. 2003;23:6176–6180.
44. Stefanosson K, Brattasad M, Roosterman D, et al. Activation of proteinase-activated receptor-2 by human kallikrein-related peptide 7. J Invest Dermatol. 2008;128:18–25.
45. Sanders KM, Nattkemper LA, Rosen JG, et al. Non-histaminergic itch mediators elevated in the skin of a porcine model of scabies and of human scabies patients. J Invest Dermatol. 2019;139:971–973.
46. Niyonsaba F, Ushio H, Hara M, et al. Antimicrobial peptides human beta-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells. J Immunol. 2010;184:3526–3534.
47. Cerovkic B, Wang X, Akimaya T, et al. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPAP1. J Allergy Clin Immunol. 2014;133:448–460.
48. Naik S, Boudloua N, Wilhelm C, et al. Compartmentalized control of skin immunity by resident commensals. Science. 2012;337:1115–1119.
brain axis. Adv Exp Med Biol. 2014;817:195–219.

115. Yosipovitch G, Ansari N, Goon A, et al. Clinical characteristics of pruritus in chronic idiopathic urticaria. Br J Dermatol. 2002;147:32–36.

116. Yosipovitch G, Goon A, Wee J, et al. The prevalence and clinical characteristics of pruritus among patients with extensive psoriasis. Br J Dermatol. 2000;143:969–973.

117. Yosipovitch G, Goon AT, Wee J, et al. Itch characteristics in Chinese patients with atopic dermatitis using a new questionnaire for the assessment of pruritus. Int J Dermatol. 2002;41:212–216.

118. Golpanian RS, Kim HS, Yosipovitch G. Effects of stress on itch. Clin Ther. 2020.

119. Yosipovitch G, Mochizuki H. Neuroimaging of itch as a tool of assessment of chronic itch and its management. Handb Exp Pharmacol. 2015;226:57–70.

120. Galley JD, Nelsen MC, Yu Z, et al. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol. 2014;14:189.

121. Bailey MT. Influence of stressor-induced nervous system activation on the intestinal microbiota and the importance for immunomodulation. Adv Exp Med Biol. 2014;817:255–276.

122. Slominski A. A nervous breakdown in the skin: stress and the epidermal barrier. J Clin Invest. 2007;117:3166–3169.

123. Aberg KM, Radek KA, Choi EH, et al. Psychological stress downregulates epidermal antimicrobial peptide expression and increases severity of cutaneous infections in mice. J Clin Invest. 2007;117:3339–3349.

124. Radek KA. Antimicrobial anxiety: the impact of stress on antimicrobial immunity. Lurkec Med. 2010;80:263–277.

125. Kim HS, Yosipovitch G. An aberrant parasympathetic response: a new perspective linking chronic stress and itch. Exp Dermatol. 2013;22:239–244.

126. Tran BW, Papou AD, Russinelli CV, et al. Effect of itch, scratching and mental stress on autonomic nervous system function in atopic dermatitis. Acta Derm Venereol. 2010;90:354–361.

127. Curtis BJ, Radek KA. Cholinergic regulation of keratinocyte innate immunity and permeability barrier integrity: new perspectives in epidermal immunity and disease. J Invest Dermatol. 2012;132:28:42.

128. Radek KA, Elias PM, Taupenot L. Neuroendocrine nictinic receptor activation increases susceptibility to bacterial infections by suppressing antimicrobial peptide production. Cell Host Microbe. 2010;7:277–289.

129. Curtis BJ, Plichta JK, Blatt H, et al. Nicotinic acetylcholine receptor stimulation impairs epidermal permeability barrier function and recovery and modulates cornified envelope proteins. Life Sci. 2012;91:1070–1076.

130. Lyte M, Freeston PP, Neal CP, et al. Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine indolopins. Lancet. 2003;361:130–135.

131. Freeston PP, Haigh RD, Williams PH, et al. Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiol Lett. 1999;172:53–60.

132. Neal CP, Freeston PP, Maggs AF, et al. Catecholamine inotropes as growth factors for Staphylococcus epidermidis and other coagulase-negative staphylococci. FEMS Microbiol Lett. 2001;194:163–169.

133. Borrel V, Thomas P, Catovic C, et al. Acne and stress: impact of catecholamines on Cutibacterium acnes. Front Med (Lausanne). 2019;6:155.

134. Clarke SR, Mohamed R, Bian L, et al. The Staphylococcus aureus surface protein IsdA mediates resistance to innate defenses of human skin. Cell Host Microbe. 2007;1:199–212.

135. Freeston PP, Sandrini SM, Haigh RD, et al. Microbiological endococobiology: how stress influences susceptibility to infection. Trends Microbiol. 2008;16:55–64.

136. Pastar I, Nusbaum AG, Gil J, et al. Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection. PLoS ONE. 2013;8:e56046.

137. Choi EH, Demersian M, Cunmune D, et al. Glucocorticoid blockade reverses physiological stress-induced abnormalities in epidermal structure and function. Am J Physiol Regul Integr Physiol. 2006;291:R1657–R1662.

138. Sandrini SM, Shergill R, Woodward J, et al. Elucidation of the mechanism by which catecholamine stress hormones liberate iron from the innate immune defense proteins transferrin and lactoferrin. J Bacteriol. 2010;192:587–594.

139. Shibata M, Katsuyama M, Ondera T, et al. Glucocorticoids enhance Toll-like receptor 2 expression in human keratinocytes stimulated with Propionibacterium acnes or proinflammatory cytokines. J Invest Dermatol. 2009;129:373–382.

140. Seth AK, Geringer MR, Nguyen KT, et al. Bacteriophages therapy for Staphylococcus aureus biofilm-infected wounds: a new approach to chronic wound care. Plast Reconstr Surg. 2013;131:225–234.

141. Rojas IG, Padgett DA, Sheridan JF, et al. Stress-induced susceptibility to bacterial infection during cutaneous wound healing. Brain Behav Immun. 2002;16:74–84.

142. Cogen AL, Nizet V, Gallo RL. Skin microbiota: a source of disease or defence? Br J Dermatol. 2008;158:442–455.

143. Sonnen C. Influence of ovarian hormones on urogenital infection. Sex Transm Infect. 1998;74:11–19.

144. Veinante P, Vaycin J, Barrot M. The amygdala between sensation and affect: a role in pain. J Mol Psychiatry. 2013;1:9.

145. Neugebauer V, Liw D. Differential sensitization of amygdala neurons to different inputs in a model of arthritic pain. J Neurophysiol. 2003;89:716–727.

146. Neugebauer V, Liw D, Bird GC, et al. The amygdala and persistent pain. Neuroscience. 2004;10:221–234.

147. Sanders KM, Akiyama T. The vicious cycle of itch and persistent pain. Neuroscience. 2003;129:375–382.

148. Salem I, Ramsay A, Isham N, et al. The gut microbiome as a major regulator of the gut–skin axis. Front Microbiol. 2018;9:1459.

149. Ark P, Handjiski B, Hagen E, et al. Is there a gut-brain–skin axis? Exp Dermatol. 2010;19:401–405.

150. Lee YB, Byun EJ, Kim HS. Potential role of the microbiome in acne: a comprehensive review. J Clin Med. 2019;8:987.

151. Sanders KM, Nattkemper LA, Yosipovitch G. The gut–itch connection. Exp Dermatol. 2016;25:344–354.

152. Castro J, Harrington AM, Liu E, et al. Activation of pruritogenic TGR5, MRpArA3, and Mrgpc171 on colonic innervating afferents induces visceral hypersensitivity. JCI Insight. 2019;4.

153. Eget M, Simmering R, Riedel CU. The association of the skin microbiota with health, immunity, and disease. Clin Pharmacol Ther. 2017;102:62–69.

154. Derno B, Araviskas E, Berardesca E, et al. Microbiome in healthy skin, update for dermatologists. J Eur Acad Dermatol Venereol. 2016;30:2038–2047.

155. Bastiaanssen TFS, Cowan CSM, Claeson MJ, et al. Making sense of the microbiome in psychiatry. Int J Neuroopharmacol. 2019;22:37–52.

156. Davani-Davari D, Negahdaripour M, Karimzadeh I, et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods. 2019;8:92.