Transcriptional decomposition reveals active chromatin architectures and cell specific regulatory interactions

Rennie, Sarah; Dalby, Maria; van Duin, Lucas; Andersson, Robin

Published in:
Nature Communications

DOI:
10.1038/s41467-017-02798-1

Publication date:
2018

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Rennie, S., Dalby, M., van Duin, L., & Andersson, R. (2018). Transcriptional decomposition reveals active chromatin architectures and cell specific regulatory interactions. Nature Communications, 9, [487].
https://doi.org/10.1038/s41467-017-02798-1
Transcriptional regulation is tightly coupled with chromosomal positioning and three-dimensional chromatin architecture. However, it is unclear what proportion of transcriptional activity is reflecting such organisation, how much can be informed by RNA expression alone and how this impacts disease. Here, we develop a computational transcriptional decomposition approach separating the proportion of expression associated with genome organisation from independent effects not directly related to genomic positioning. We show that positionally attributable expression accounts for a considerable proportion of total levels and is highly informative of topological associating domain activities and organisation, revealing boundaries and chromatin compartments. Furthermore, expression data alone accurately predict individual enhancer-promoter interactions, drawing features from expression strength, stabilities, insulation and distance. We characterise predictions in 76 human cell types, observing extensive sharing of domains, yet highly cell-type-specific enhancer-promoter interactions and strong enrichments in relevant trait-associated variants. Overall, our work demonstrates a close relationship between transcription and chromatin architecture.
The three-dimensional organisation of a genome within a nucleus is strongly associated with cell-specific transcriptional activity. On a global level, transcriptional activation or repression is often accompanied by nuclear relocation of chromatin in a cell-type-specific manner, forming chromatin compartments of coordinated gene transcription or silencing. Locally, chromatin forms sub-mega base pair domains of self-contained chromatin proximity, commonly referred to as topologically associating domains (TADs). TADs frequently encompass interactions between regulatory elements, such as between promoters and enhancers, as well as between co-regulated genes, which reflects cell-type-restricted transcriptional programmes. In contrast, ubiquitously expressed promoters are enriched close to domain boundaries and co-localise in the nucleus. A tight coupling between transcriptional activity and chromosomal positioning is further supported by positional clustering of co-expressed eukaryotic genes, a phenomenon that is preserved across taxa. In addition, neighbouring gene expression correlation co-evolves and is particularly evident at distances below a mega base pair. Furthermore, facultative heterochromatin may cover mega base pair regions and thus affect several neighbouring genes. These observations are in line with coordinated gene expression and chromatin states within TADs, suggesting that the coupling between gene expression and chromatin architecture is, at least partly, linked to chromosomal positioning.

Genetic disruption or chromosomal rearrangements of TAD boundaries may result in aberrant gene transcription as a consequence of altered regulatory activities or regional chromatin states. While this suggests a key role for chromatin structure in correct transcriptional activity, a general directional cause and effect between chromatin architecture and transcriptional activity is unclear. On one hand, TAD boundaries are to a large extent invariant between cell types and have been suggested to be mainly formed by architectural proteins. In contrast, transcription seems to play a major role in the maintenance of regulatory organisation within TADs. In addition, chromatin compartments are not affected by architectural protein depletion. Rather, nuclear three-dimensional co-localisation of genes seems to be driven to a large degree by transcriptional activity.

The strong relationships between transcription, chromatin state, chromosomal positioning and three-dimensional chromatin organisation can be exploited for inference of one feature from another. Compartments of transcriptional activity can be deduced from genome-wide chromatin interaction data and, inversely, co-expression is indicative of enhancer–promoter (EP) interactions. In addition, RNA expression was placed among the top-ranked features for predicting EP interactions in a recent machine-learning approach. However, it is unclear what proportion of expression is associated with chromatin topology and chromosomal positioning and what proportion is reflecting regulatory programmes independent of the former. A way to systematically extract and separate these components from expression data could lead to new insights into chromatin topology and cell-type-specific transcriptional regulation. This is of high importance since genome-wide profiling of chromatin interactions using chromatin conformation capture techniques such as HiC is largely intractable due to several limitations including low spatial resolution, high cost and requirements of large abundant cellular material.

In this study, we establish a transcriptional decomposition approach to investigate and model the coupling between transcriptional activity, chromosomal positioning and chromatin architecture. Via modelling of expression similarities between neighbouring genomic loci, we show that the proportion of expression related to effects independent of genomic positioning, and that both components are strongly represented with contributions depending on cell type and location. We demonstrate that the positionally dependent (PD) component is highly reflective of chromatin organisation, revealing chromatin compartments and structures of transcriptionally active TADs. We further demonstrate how transcriptional components can be used to infer cell-type-specific chromatin interactions and find informative transcriptional features, including enhancer expression strength, which distinguish long-distance interacting from non-interacting EP pairs. We demonstrate the accuracy of our approach in well-established cell lines and then decompose expression data from 76 human cell types in order to investigate their active chromatin architectures. Our results indicate extensive sharing of expression-associated domain structures across human cells, reminiscent of that observed for active TADs. Promoter-localised, positionally independent (PI) events as well as EP interactions are, on the other hand, highly cell-type specific. Finally, we demonstrate how transcriptional components and predicted EP interactions can be used to gain insights into the genetic consequences of complex diseases. We observe variable enrichments of genetic variants in expression components across cell types and traits and find several EP interactions in which disease-associated SNPs at enhancers may cause aberrant expression of distal genes. Taken together, we observe a tight coupling between transcriptional activity and three-dimensional chromatin architecture and suggest that regulatory topologies, domain structures and their activities may be inferred from RNA expression data and chromosomal position alone.

Results

Transcriptional decomposition of RNA expression data. We posited that a proportion of steady-state RNA expression is reflecting three-dimensional chromatin organisation. We reasoned that a transcription unit (TU) is likely to be more similar in terms of expression to its proximal TUs than to distal loci, which are likely to be associated with different domains of chromatin interactions. Thus, coordination of expression is related between positional and chromatin neighbourhoods (Fig. 1a). However, expression is also influenced by gene-specific transcriptional and post-transcriptional regulatory programmes independent of a TU’s chromosomal position. Therefore, in order to investigate the coupling between transcriptional activity and genome organisation, we need to be able to estimate the proportion of expression from a genomic region that can be explained by its chromosomal position. To this end, we developed a transcriptional decomposition approach to separate the component of expression reflecting an underlying positional relationship between neighbouring genomic regions (PD component) from the expression dictated by TUs’ individual regulatory programs (PI component). Our strategy is based on approximate Bayesian modelling and utilises replicate measurements to decompose normalised aggregated RNA expression read counts in genomic bins into two components (PD and PI) and some constant intercept (Methods). The expression associated with each genomic bin was modelled as a sum of the two transcriptional components (random effects model), as illustrated in Fig. 1a. The decomposition of this sum into its respective components (summands) can be interpreted as an optimisation problem over a chromosome to best separate the proportion of total expression that is similar between consecutive genomic bins (PD) from position-independent expression (PI).
Decomposition reveals positional dependency on expression. We applied transcriptional decomposition to replicated cap analysis of gene expression (CAGE) data, measuring transcription initiation sites and steady-state abundances of capped RNAs from GM12878, HeLa-S3, and HepG2 cells. In the modelling, we used 10-kb genomic bins to capture large-scale positional effects. We first asked whether the information content of the two components contained different biological interpretations as posited. Upon close inspection (Fig. 2a), the PD component displayed considerably broader patterns than the PI component and appeared to be highly similar between cell types. Despite the overall similarities in the PD component, we identified large differences in individual loci between cells, as exemplified by KCNN3 and NOS1AP genes (Fig. 2b, c). For instance, NOS1AP is in GM12878 cells associated with low PD signal and appears to reside in polycomb-repressed chromatin, as indicated by high levels of histone modification H3K27me3 and low levels of histone modification H3K36me3. HepG2 and HeLa-S3 cells displayed opposing signals for this locus, suggesting that the PD component contains information about chromatin compartments.

In order to understand the observed effects on a genome-wide scale, we compared the PD component with HiC-predicted chromatin compartments in GM12878 cells. We observed that the PD signal in regions of active chromatin was higher than in those of facultative or constitutive chromatin, while constitutive chromatin states had the lowest signal (Fig. 3a). Congruently, we noted that regions of positive PD signal were highly enriched in regions of active chromatin. We thus trained a random forest model to predict the presence or absence of DNase I hypersensitive sites (DHSs), histone variant H2AZ

Fig. 1 Transcriptional decomposition separates the proportion of RNA expression related to chromosomal position from positionally independent (PI) effects. **a** Schematic illustrating how RNA expression derives from two major sources. The positionally dependent (PD) component reflects the underlying dependency between linearly proximal TUs in chromosomal, positional neighbourhoods, which are related to chromatin neighbourhoods of TU three-dimensional proximity. The PI component reflects localised, gene-specific regulatory programs unaffected by the positioning of TUs. **b** Overall strategy of how replicated samples are decomposed into transcriptional components. Via approximate Bayesian modelling, normalised RNA expression count data quantified in genomic bins (here 10 kb), are decomposed into an intercept (α), a PI component and a PD component. The PD component is modelled as a first-order random walk, in which the difference between consecutive bins is assumed to be Normal and centred at 0 (Methods). The variable y represents the expression level, x represents the component value in bin i and τ represents the precision of a normally distributed random variable.
and post-translational histone modifications H3K4me3 and H3K27ac (binarised DNase-seq and ChIP-seq data in each bin), each associated with features of (transcriptionally) active regulatory elements. The resulting models allowed us to generate a probability distribution for each mark given each transcriptional component. For all tested marks, we observed a clear bias with stronger predictive power from the PI component than the PD component. These results indicate that the PI component, in contrast to the PD component, carries information about regulatory element-localised and expression-level-associated effects.

Overall, we found that both the PD and PI components explained considerable proportions of expression levels in GM12878 cells (Supplementary Fig. 2a). Each component on a median explained roughly half of the expression levels in expressed bins, with contributions varying between loci (Supplementary Fig. 2d). When compared with HeLa-S3 cells, we observed clear differences in both the PD and PI components between cell types and that these differences were orthogonal between components (Fig. 3c, d). Differentially expressed (DE) bins in the PD component (Benjamini–Hochberg FDR < 0.01, z-score approximations of the posterior estimates of the PD differences between GM12878 and HeLa-S3 cells, Supplementary Data 1) were in line with its relationship with chromatin compartments, to a large degree associated with cell-type differences in chromatin states, changing from silent to H3K36me3-associated active chromatin in upregulated bins (Supplementary Fig. 2c, d). The PI component, on the other hand, showed localised differential expression of bins (Supplementary Data 2) that were associated with cell-type-specific enrichments of predicted binding sites from sequence motifs recognised by expressed transcription factors (TFs) (Fig. 3c and 3d).
Supplementary Fig. 2e), for instance NFKB and IRF in GM12878 cells.

Similar patterns of transcriptional components derived from GM12878 CAGE data were found when we applied transcriptional decomposition, guided by CAGE-estimated hyperparameters, to GM12878 RNA-seq data (Supplementary Fig. 3, Supplementary Table 1, Methods), confirming the observed characteristics and differences between CAGE-derived components. Taken together, we conclude that expression data can be decomposed into a PD component, revealing chromatin compartment activity, and a PI component carrying information about localised, independent expression-associated events.

Expression-associated domains mark active chromatin topology. Apart from displaying clear shifts at compartment boundaries, we noted that the PD component contained sub-patterns within broader consecutive regions of positive signals (Fig. 2a). We posited that such structures could represent finer, transcriptionally active chromatin organisation not necessarily reflecting chromatin compartments, but rather boundaries of active TADs. To test this hypothesis, we trained a generalised linear model (GLM) to predict HiC-derived TAD boundaries from features derived from transcriptional components (Supplementary Table 2, Methods). The GLM yielded an area under the receiver operating characteristic (ROC) curve (AUC) of 0.73 (AUC 0.85 in regions of positive PD signal), indicating that there is information in expression data to infer TAD boundaries (Supplementary Fig. 4a, b). Among the features considered, the model ranked the PD gradient (first-order derivative), the PD inter-cell stability and PD variance as among the most important for predicting TAD boundaries (Supplementary Fig. 4c). Based on the GLM feature importance ranking, we devised a score to rank...
PD boundaries at significant gradients in the PD signal that also had low positional standard deviation (high stability) across cells (Fig. 4a, Methods). In GM12878 cells, we detected 4158 boundary locations of PD sub-patterns. We refer to the regions demarcated by PD boundaries as expression-associated domains (XADs, Fig. 4a). In general, GM12878 XAD boundaries coincided with, or were very close to, the locations of TAD boundaries (Fig. 4d).

We next assessed the occurrence of DHSs, ChIP-seq binding site peaks for architectural proteins CTCF and Rad21 (a subunit of cohesin) and histone modifications H3K36me3, H3K27me3 and H3K27ac at XAD boundaries (Fig. 4b). We observed an enrichment of DHSs, H3K27ac and binding of CTCF alone and, albeit weaker, in combination with Rad21 around XAD boundaries. In addition, H3K36me3, H3K27ac and DHSs were more enriched downstream than upstream of positive-gradient XAD boundaries. The opposite trend was observed for H3K27me3. The observed DHS and ChIP-seq patterns around XAD boundaries (Fig. 4b) resemble those around TAD boundaries in active compartments24,39,40. Taken together, these results demonstrate that expression data (PD component) can be used to infer chromatin topology in active chromatin compartments.

Decomposed expression data predict chromatin interactions. Since positionally attributable RNA expression was strongly associated with structures of transcriptionally active TADs, we questioned the utility of expression data alone in reflecting individual proximity-based interactions. Namely, what does it mean to be proximal in the nucleus, from a transcriptional perspective?

To this end, we collected a total of 25 features in GM12878 that may be derived from expression data sets alone (Supplementary Table 3), relating to the values, differences, cross-cell-type correlations, standard deviations and stabilities of the transcriptional components, as well as XAD boundary insulation and features relating to local CAGE-measured promoter and enhancer activities, directionality scores and their chromosomal distances. To test the power of expression-universal features to classify chromatin interactions, we used a random forest classification scheme where we compared it to GM12878 promoter-capture HiC (CHiC) data12 (Methods). To enable a direct assessment of the relationships between transcriptional component-derived features and chromatin interactions, we mapped CHiC data at 10-kb resolution. We used a lenient interaction score threshold to define positively interacting bin–bin pairs (bin–bin distance >50 kb and ≤52 Mb, based on CHiCAGO12 score ≥ 3, see Supplementary Table 4), for which each pair referred to a CHiC promoter bait and a potential target that overlapped with a transcribed promoter36 or transcribed enhancer31,45. In order to
deal with the resulting unbalanced data, we over-sampled44 the positives and under-sampled the negatives in the training data to a fully balanced set across distances in a 10-fold cross-validation scheme. However, validations were performed using a 20:1 negative:positive (NP) ratio, similarly to a previous method32, but also on raw (unmodified) NP ratio. Thus, in each cross-validation round, we fully balanced the training data and predicted on held-out data at 20:1 or raw NP ratios.

Overall, we observed a good predictive performance (AUC=0.74) on raw NP ratios for lenient interaction thresholds (Fig. 5a). Using a strict interaction threshold (CHiCAGO score ≥ 5) for evaluation increased the AUC (0.83) but reduced the recall (Fig. 5b). At a 20:1 NP test ratio, the overall predictive performances increased (AUC 0.82 and 0.88 for lenient and strict interaction thresholds, respectively). Interestingly, we observed a better precision and recall when evaluation of results was limited to enhancer targets (Supplementary Data 3, AUC of 0.85 and 0.89 for lenient and strict interaction thresholds at a 20:1 NP ratio, respectively; see Supplementary Fig. 6 for the effect of interaction thresholds on EP prediction performance). We observed varying predictive performances across chromosomes (Supplementary Fig. 7), likely reflecting differences in gene densities and transcriptional activities. Despite the overall good EP predictive performance, both precision and recall decreased over increasing distances on held-out test data, in accordance with an increasing NP ratio (Supplementary Fig. 8). To circumvent the distance effect, we established a distance-dependent threshold in random forest voting, guided by the optimal F1 score, significantly improving the predictive performance over distance (Supplementary Fig. 9). Taken together, we conclude that there is a wealth of information from properties of expression data alone which could explain chromatin interactions, and in particular EP interactions. This

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{Expression data are predictive of cell-type-specific regulatory interactions. \textbf{a, b} Performance curves for predicting bait-target interactions from CAGE-universal features, split according to CHiCAGO score, testing negative-to-positive ratios and target feature type. \textbf{c} Features predictive of bait-target interactions, ordered by average mean decrease accuracy (MDA) across models from 10-fold cross-validation. \textbf{d, e} Loess curves representing feature separation over distance between high (top) and low (bottom) predicted probabilities, shown for features (\textbf{d}) XAD boundary insulation (nbounds, number of XAD boundaries between bins) and \textbf{(e)} enhancer expression at the target (eRNA_targ, mean tags per million across three replicates). \textbf{f} Overlaps of predicted bait-enhancer interactions between GM12878, HeLa-S3 and HepG2 cells. \textbf{g} An example of a loop predicted in HeLa-S3, but not in GM12878 cells, validated by HeLa-S3 RNAPII ChIA-PET interaction data.}
\end{figure}
suggests a tight coupling between expression of regulatory elements and their proximity.

Next, we asked what properties of expression data explained chromatin interactions. High transcriptional activity at the target or bait was ranked among the top features for predicting chromatin interactions (Fig. 5c). In addition, the standard deviation of the PD component at either the bait or the target was informative (Fig. 5c). Predicted interactions had a lower PD standard deviation on average (Supplementary Fig. 10), suggesting that high-confidence interactions are associated with stable estimates of active chromatin compartments. Boundary insulation, defined as the number of XAD boundaries predicted between the bait and the target, also ranked highly, with a weaker insulation associated with a higher probability of a chromatin interaction compared to other pairs at a similar distance (Supplementary Fig. 10). Since the observation of this property forms the definition of TAD domains, this lends support of XAD boundaries as predictors of boundaries of transcriptionally active TADs.

Separately training three random forest classifiers for short-, medium-, and long-range distances (covering bait–target distances within (50,200), (200,500) and (500,2000) kb, respectively) allowed us to further investigate features driving long-range interactions (Supplementary Fig. 11a). As expected, boundary insulation had a higher influence on long-distance interactions than shorter ones (Fig. 5d). Interestingly, when we specifically considered interactions between enhancers and promoters, eRNA expression at the target enhancer clearly distinguished predicted positive from predicted negative interactions, and its importance increased over increasing distances (Fig. 5e).

Motivated by the good performance in predicting EP interactions, we next used the GM12878-trained random forest model to predict EP interactions also in HeLa-S3 and HepG2 cells (Supplementary Data 4, 5). We noted that many predicted interactions were specific to each cell type (Fig. 5f; 48–78%), with only a small fraction (9–20%) of interactions shared between all three cell lines (see Supplementary Fig. 12 for results using a strict interaction threshold). For instance, the promoter of gene TDA2P2A was predicted to interact with an ~100-kb downstream enhancer specifically in HeLa-S3 cells, supported by HeLa-S3 RNAPII ChIA-PET interaction data38 (Fig. 5g).

In support of eRNA production at positive interactions, both enhancers and promoters in predicted cell-type-specific interactions clearly showed an expression bias towards the cell type in which the interactions were identified, in contrast to shared EP interactions (Supplementary Fig. 11b, c). These results indicate that expression of regulatory elements is reflecting both their cell-type-specific regulatory activities and their regulatory interactions. This is supported by observations that regulatory active enhancers that are interacting with promoters are more likely to be transcribed than non-interacting ones45. Taken together, we demonstrate that transcription is highly informative of three-dimensional chromatin architecture and may be used to accurately infer EP interactions.

Transcriptional decomposition reveals cell-type differences.

We have demonstrated that positionally attributable expression (PD component) can be used to accurately infer boundaries of active TADs, as well as differences in chromatin compartments and EP interactions between well-established and biologically distal cell lines. We continued with exploring what insights could be gained by transcriptional decomposition of primary cell expression data, for cell types for which chromatin topology is to a large degree unknown. We applied transcriptional decomposition to replicated primary cell CAGE data36 expanding to a total of 76 human decomposed cell types from 249 CAGE libraries (Supplementary Data 6, Methods). Using the resulting components, we calculated XAD boundaries and extended the previous set of pairs defined in the GM12878 training above to a common set of bin pairs across all cell types (Supplementary Table 5), over which EP interactions were predicted.

Consistent with observations in cell lines (Fig. 2a), the PD and PI components displayed opposing trends when compared across cell types. Many genomic bins showed a highly similar PD signal across cells, while the PI component was rarely shared across more than a few cell types (Supplementary Fig. 13a,b). The PI component was grouped more closely according to cell-type association than the PD component and clearly distinguished blood cells from mesenchymal, muscle and epithelial cells (Fig. 6a, b). XAD boundaries tended to be either highly cell-type specific or ubiquitous (Supplementary Fig. 13c), similar to that of TAD boundaries46, reflecting the cell-type-specific behaviour of features around XAD boundaries (Fig. 4b), e.g. DHSs47. In comparison, EP interactions exhibited very little agreement across cell types (Fig. 6c), with very few shared interactions across the full repertoire of samples (Supplementary Fig. 13d). Interestingly, cell-type-specific EP interactions were on average more distant than interactions shared across cells (Supplementary Fig. 13e). When examining EP interactions between groups of cells, we observed clear differences at key identity genes. Leukocyte-biased genes ARHGAP25 (Fig. 6d) and CD48 (Supplementary Fig. 14) showed clear differences in predicted EP interactions, which were validated by GM12878 CHIC interaction data. Taken together, these results indicate largely invariant chromatin compartments between cells and that cell-type identities are governed by differences in EP interactions or position-independent effects, which may be driven by localised, cell-type-specific TF-binding events.

Components guide interpretation of trait-associated variants.

Many complex genetic diseases are associated with genetic variants outside of protein-coding gene sequences in gene-distal enhancers31,48 and these variants have been suggested to explain a large portion of disease heredity, in particular in immunological disorders39. Thus, we investigated the utility of decomposed expression data and predicted EP interactions in the interpretation of disease-associated genetic variants. Based upon enrichment analysis of trait-associated SNPs50 and those in strong linkage disequilibrium (Methods), we observed largely variable preferences between traits and transcriptional components (Supplementary Fig. 15a). Interestingly, several diseases and traits showed a preference for enrichment in positionally attributable expression (PD-positive bins) or within two bins of XAD boundaries, indicating that associated genetic variants may alter chromatin compartments or the activities or structures of enclosing TADs. Furthermore, while most trait enrichments were restricted to a few cell types, many of those biased to positionally attributable expression, for instance Crohn’s disease, displayed broad association across the panel of investigated cell types (Supplementary Fig. 15b). Monocytes, including those subjected to various pathogens, T cells, B cells and natural killer cells were found amongst the most highly ranked cell types associated with Crohn’s disease in PD and PI components as well as at XAD boundaries (Fig. 7a). This is consistent with the strong links between Crohn’s disease, inflammation, innate and adaptive immune system deficiency51. Amongst genes in SNP-associated bins, we found Crohn’s disease-associated genes STAT3, ATG16L1 and MHC genes HLA-DWB, HLA-DRA and HLA-DQA252. Similar to Crohn’s disease, lymphoid leukemia was strongly associated with cells of the immune system (Supplementary Fig. 16a), but had different genes associated with
Fig. 6 Transcriptional decomposition across 76 human cell types. a-c Heat maps depicting pairwise similarities of the PD (a), PI (b) components and EP interactions (c) across cell types. All similarity scores were calculated between cell types using 1-L1 norm on binary data sets based on the sign of the PD, PI components or the presence/absence of EP interactions. Cell-type ordering is fixed according to the results of a hierarchical clustering (complete linkage) of the raw expression data. d Predicted probability of EP interactions averaged across groups of cells and CHiCAGO score of interaction based on GM12878 capture HiC data. GENCODE v24 transcripts, FANTOM5 enhancers and the average PD and PI component across blood cells are displayed below.
the PD and PI components and at XAD boundaries, including IRF4, IKZF1, ARID5B, CEBPE, IRF8 and GCSAML.

For Crohn’s disease, we found a significant enrichment of enhancer-overlapping SNPs in predicted EP interactions of monocytes treated with Cryptococcus or Salmonella, as well as in peripheral blood mononuclear cells (Fig. 7a). SNP-associated enhancers were predicted to interact with several disease-relevant genes, including PTGER4 (Fig. 7b), TRIB1 (Fig. 7c), CCLI, OTUD1 and ARMC3, and genes so far not associated with Crohn’s disease ENKUR and THNSL1. For example, promoters of PTGER4 were predicted to interact with enhancers more than 250 kb upstream of the gene situated in an LD block of GWAS-associated SNPs (Fig. 7b). Similarly, promoters of TRIB1 were predicted to interact with an ~100-kb downstream enhancer overlapping a disease risk locus of SNPs (Fig. 7c). These results clearly demonstrate how transcriptional decomposition of expression data can be used to gain insights into disease aetiology, and thus the value of our generated resource.

Discussion

A detailed understanding of the intricate relationship between transcription and three-dimensional chromatin organisation and to what extent they are attributable to each other has been lacking. Under the assumption that the link between transcriptional activity and chromatin organisation is reflected, at least partly, by chromosomal positioning, in this study we have aimed to separate the fraction of RNA expression that is associated with chromatin topology from localised, independent effects. To this end, we have developed a transcriptional decomposition approach that decomposes expression data into positionally attributable (PD) and independent (PI) components along chromosomes. We show that positionally attributable expression, according to the PD component, closely reflects chromatin compartments and domain architecture, and accounts for a sizeable overall fraction of TU expression levels. This points to the existence of large constraints on genomic organisation, suggesting that the global maintenance of chromatin formation is crucial for correct and precise transcriptional output. On the other hand, the PI component carries information about regulatory element-localised and expression-level-associated effects.

Fig. 7 Analysis of Crohn’s disease associated SNPs reveals cell-type preferences and regulatory associations. a Crohn’s disease SNP enrichments in transcriptional components, XAD boundaries and inferred enhancer-promoter interactions (FDR-corrected \(\chi^2 \) tests based on the PD/PI positive bins or the presence of XAD boundaries/target enhancers per cell type, and trait-associated SNPs). See also Supplementary Figure 16 for enrichments in lymphoid leukaemia. Significance stars above bars are interpreted as: *P<0.1, **P<0.01 or ***P<0.001. b, c Predicted EP interactions in CD14+ monocytes treated with Cryptococcus, for genes PTGER4 (b) and TRIB1 (c) for which interacting enhancers overlap or are in close proximity with disease-associated SNPs (highlighted in yellow). Predicted EP interactions, GENCODE v24 transcripts, FANTOMS enhancers and the locations of relevant SNPs are displayed below.
We suggest that PI effects may be the result of cell-type-specific programmes involving, for instance, the differential binding or effect of TFs, potentially based on a layer of localised regulation not necessarily attributable to higher-order three-dimensional chromatin. However, we observe that the level of positional dependency of expression data varies between loci and cell types, suggesting locus- and cell-dependent effects of topological organisation and activity, as well as varying the impact of individual gene regulatory programmes. This suggests that genes strongly associated with non-positional expression may be more resistant to perturbations in chromatin domains, such as deletions of TAD boundaries, particularly in the context of a certain disease.

The usage of expression data to infer topological chromatin organisation is limited by the inability to inform on transcriptionally silenced, closed or poised states. However, by focussing only on expressed TUs, such as those observed with CAGE, and their relative relationships, we can attempt to understand patterns that are highly relevant to various cell types of interest. For example, the majority of detected XAD boundaries were proximal to TAD boundaries associated with an open chromatin site in GM12878 cells. Interestingly, XAD boundary locations were seen to be strongly informed by the presence of a stable PD signal across cell types, reflected in their high degree of sharing, which closely corresponds to the nature of TADs, whose locations appear to be largely cell-type invariant. This is likely connected to the enrichment of promoters for actively transcribed housekeeping genes at the locations of TAD boundaries, whose expression levels remain stable across cell types. Our predictions also suggest that active transcription at open chromatin loci is linked with stronger TAD boundaries, according to the observation that chromatin interaction directionality scores were stronger at TAD boundaries proximal to XAD boundaries compared to those distal from XAD boundaries, which were associated with closed chromatin. These results suggest that the presence of active transcription aids in the reinforcement of the insulation properties associated with boundary formation, but may also point to different regulatory mechanisms or roles involved in boundaries according to their link to active transcription.

We have shown that expression data alone are predictive of fine-scale chromatin interactions, based on predictive models incorporating expression component information, expression strength, stability and distance. Our results concur with, and significantly extend, the previous finding that CAGE is an informative predictor of interactions. Crucially, we bring up the question of what proximity within the nucleus means from the standpoint of transcriptional initiation, and our results suggest the two to be tightly coupled. Analysis of predicted features points to a model whereby a strongly expressed TU with stable positionally attributable expression is the key predictor of within-domain interactions in a given cell type, and whereby strength of target expression becomes more important for predictions over long distances. Interestingly, of all predicted chromatin interactions, those restricted to EP interactions showed the strongest predictive power, were biased towards the cell types in which they are actively transcribed and target enhancer RNA expression levels rapidly increased with the distance between the bait and the target.

Since transcriptional decomposition is broadly scalable across large numbers of samples and applicable to different expression-sequencing assays, including CAGE and RNA-seq, it potentially paves the way for large-scale cost- and time-effective computational analyses across atlases of high-quality expression data sets, such as FANTOM5 or GTEx. We have applied our models to 76 cell types from the FANTOM5 consortium, generating predicted components, XAD boundaries and EP interactions. This resource allows a deeper understanding of the dynamic regulation at key identity genes in a wide diversity of cellular states not yet subjected to methods informing on their higher-order structures. Comparison across cell types revealed extensive sharing of positionally attributable expression, while PI effects and, in particular EP interactions, were to a large degree cell-type specific, particularly at long distances, and separated cells into groups of similar type. These results indicate that chromatin compartments are mostly invariant across cells and that fine-tuning of cell-type-specific expression levels is mainly mediated by promoter-localised, position-independent effects or enhancer regulation. The differences in cell-type specificity also indicate that positionally attributable expression, on its own, is not sufficient to inform on EP interactions. While positionally attributable expression seems to reflect the overall large-scale chromatin state in which a TU resides, and informs on the architectural compatibility between regulatory elements, many EP interactions are cell-type specific and associated with punctuated elevated enhancer and promoter expression levels. These results argue for RNAPII-centred chromatin architecture, whereby transcriptional regulation is associated with cell-type-specific tethering of EP pairs to RNAPII foci, leading to coordinated expression increases.

While many complex diseases have clear cell-type-specific effects and that positionally attributable expression was chiefly shared between cells, we found an unexpected preference for enrichments of trait-associated genetic variants in the PD component. This suggests that the aetiology of certain diseases may be coupled with the disruption or alteration of TAD structures or association with chromatin compartments, which finds support in the literature. Other traits were associated with cell-type-specific enrichments of variants in the PI component or at enhancers in cell-type-specific EP interactions, likely to cause altered gene expression levels. Our generated resource of regulatory interactions enabled us to identify several cases of predicted EP interactions for which enhancer overlap with disease-associated SNPs was linked with promoters of genes often associated with the disease itself. Overall, we expect that our transcriptional decomposition approach and resource will have large implications for future interpretations of genetic variants associated with disease in cell types that are otherwise largely intractable.

Methods

Processing of CAGE data sets. CAGE data were produced by the FANTOM5 project. The data mapped to hg38 and CTSSs (CAGE transcription start sites) were clustered into tag clusters (TCs) according to decomposition peak identification (DPI) generation as per FANTOM5. Only samples with more than 0.5 million tags mapping within the TCs were included in the analysis.

Enhancers were called based on bidirectional balanced RNA signatures as per the FANTOM5 consortium. Enhancers were only identified distal to known exons (±100-bp region from boundaries) and transcription start sites ±300 bp defined by GENCODE v24 annotation. In total, 63,285 enhancers were identified across libraries. Due to varying noise levels across CAGE libraries and the intrinsic low expression levels of transcribed enhancers, library-specific noise levels were estimated to define a robust set of active (transcribed) enhancers in each sample. For each library, expression was quantified in randomly sampled mappable genomic regions distal to assembly gaps, DNAse hypersensitive sites (GENCODE), known exons, and gene TSSs (GENCODE) to create a genomic background expression distribution. For each library, we called an enhancer active (used) if its expression was above the 99.9th quantile of the library’s genomic background expression distribution. The resulting robust set consists of 60,215 enhancers over 1829 libraries, being significantly expressed above the background in at least one library. The expression was quantified and TPM normalised according to the total number of mapped reads within the full set of TCs (tags per million (TPM)).

CTSS files containing positions of raw CAGE counts from libraries for the ENCODE tier 1 cell lines (GM12878, K562, HeLa-S3 and HepG2) were intersected with non-overlapping 10-kb regions across the genome. For each chromosome (chr1–chr22 and chrX), regions were defined from coordinate 1 (1-based) and in consecutive complete 10-kb blocks, up to two blocks after the last bin containing a single CAGE tag across the set of libraries. Region sizes of 40 kb and 100 kb were
also considered, but 10 kb was exclusively used in the analyses for comparability to high-resolution chromatin capture data sets. Due to the sparsity of CAGE tags in eukaryotic regions and regions poorly mapped, including the case of libraries with poor sequencing depth, a zero-inflated negative binomial distribution was assumed to hold for the counts across the 10-kb bins on each chromosome, given, for bin i, $Y_i \sim NZBi(\mu_i, \kappa_i, \nu)$, where Y_i is the bin count, μ_i represents the zero-probability parameter, κ_i represents the mean and κ the size or dispersion parameter. The mean is given by $\mu_i = K \frac{\nu}{C_24}$, with variance $\sigma^2_i = \mu_i(1+\frac{1}{\nu})$. The model assumes a zero-truncated negative binomial distribution on the non-zero counts ($Y_i \sim NB(\mu_i, \kappa_i, \nu)$ for $\nu = 1, 2, \ldots$) with probability equal to 1. -p.

Transcriptional decomposition of CAGE data. The transcriptional decomposition models the mean log count as a combination of an intercept and two random effects, set up as $\nu_i = \alpha + PD_i + PI_i$, where α is the intercept, PD_i, and PI_i are random effects for the PD and PI components, respectively and ν_i is the linear predictor given by $\nu_i = \log(\mu_i) - \log(\xi)$ for library depth ξ where $\log(\xi)$ is the offset term. The PD component is modelled as a first-order random walk $PD_i - PD_{i+1} \sim N(0, r_{PD}^2)$ where PD$-PD_{i+1}$ represents the component difference between successive bins and τ_{PD} is the precision of the normally distributed differences, with mean 0. The PI component assumes that bins are represented by a vector of independent and Gaussian-distributed random variables with precision τ_{PI}. The model was fit in the form of a Bayesian mixed model using the R package R-INLA which implicitly assumes a Gaussian field on the parameter space and uses a Laplacian approximation to allow for fast and deterministic convergence of hyperparameters. Hyperparameters were defined for the size and zero-probability parameters (gamma-distributed and Gaussian-distributed prior distributions, respectively) of the negative binomial block and precision parameters r_{PD} and τ_{PI} (log-gamma-distributed priors) for the PD and PI components, respectively. Three replicates for each of the ENCODE tier 1 cell lines were included, assuming library depths equal to the sum of the tags in their respective CTSS files. ENCODE cell models were fitted concurrently for each chromosome, assuming a common distribution for the hyperparameters. In order to allow for efficient prior estimations, we scaled the random walk components such that the average variance (measured by the diagonal of the generalised inverse) is equal to 1. In order to achieve efficient convergence and avoid precisely defining priors beforehand, the option diagonal = 1 was set within the INLA (for preventing parameters from dropping into sparse errors). The posterior distribution of the converged model was then fed into a second model specifying diagonal = 0 in order to achieve more accurate estimates.

Transcriptional decomposition of RNA-seq data. To see if chromosomal transcriptional decomposition is broadly applicable to RNA data sets, we applied the same modelling procedure to deeply sequenced GM12878 RNA-seq samples. The libraries were mapped to hg38 using HISAT with default parameters. Multimappers were removed using samtools and reads were binned at 10-kb resolution (based on bins defined previously for CAGE) using bamCoverage. The libraries were mapped to hg38 using HISAT with default parameters. Multimappers were removed using samtools and reads were binned at 10-kb resolution (based on bins defined previously for CAGE) using bamCoverage. Transcriptional decomposition was applied to the resulting counts, assuming library depth to be the totality of the -log10(reads per million). Random walk components for the PD and PI components was tested (corresponding to the CAGE defined values of the parameters, and −3 to +3 relative) and the combination was selected, per chromosome, whereby the PD component correlated the most strongly with the PD component in GM12878 CAGE (ignoring regions not within 25 bins of a TU in RNA-seq).

Analysis of differences between PD and PI components. To address the proportions of total RNA expression levels allocated to each of the PD and PI components, the raw CAGE counts in GM12878 were used to identify 10-kb bin regions with a mean count greater than 50 tags across the three replicates, thus ensuring that most selected bins were positive in both components (but removing those which were not). For each of these bins, the fraction f_{PD} was calculated, where PD and PI are the respective estimates of the PD and PI components in the bin. These fractions were plotted as a histogram and the median value was identified as an average ballpark for relative allocation to PD component versus the PI component.

XAD boundary predictions. TAD regions based on 1-kb resolution HiC data in GM12878 were downloaded and lifted over to hg38, requiring a 1:1 correspondence between regions defined in each of the two builds. Boundaries were assigned to 10-kb bins based on overlaps. Adjacent bins with boundaries were dealt with by assigning the boundary to the bin with the largest overlap, so that no two adjacent bins contained boundaries, resulting in a total of 14,799 distinct bin-sized regions containing TAD boundaries. Active regions were defined as expressed FANTOM5 DIP TCGs, requiring >1 TP in at least two of the six libraries (three GM12878 and three HeLa-S3). DIP TCGs were extended to regions of ~500/+100 around TSSs. DE regions of the PD components with upregulation in HeLa-S3 or in GM12878 (HeLa-S3 PD, GM12878 PD), and DE regions of the PI components with upregulation in HeLa-S3 or in GM12878 (HeLa-S3 PI, GM12878 PI), were tested individually against the universe of expressed TCG regions. The analyses were performed using the human database of TF-binding motifs imported from the Cis-BP database, restricted to motifs recognised by TFs expressed in the six libraries of interest, measured using functional data profiling gene expression levels as described in the Materials and Methods. TFs were contained in the set of active regions defined in each of the four tests and plotted together in a heatmap using the R package pheatmap (version 1.0.8) with clustering of TFs based on Euclidean distance.
per-chromosomal basis, and for all of the chromosomes together, using the ROCR package\(^7\) in R and plotted using custom functions.

The top three features from the generalised linear model outlined in the previous section were selected, namely the PD component (PD), the difference in the PD component (PD\(_{diff}\)) and the PD component stability (PD\(_{stab}\)). Based on these three features, the following algorithm was implemented for the detection of XAD boundaries:

1. Calculate \(X = \frac{PD_{diff}}{PD_{stab}}\) and take the \(N_i\) of the ranked maxima such that \(N_i = \frac{1}{N} \sum_j P_i\), where \(N\) is the total number of XAD boundaries.

2. Calculate the local maxima of \(X\) and rank in order of largest to smallest values of \(X\).

3. For each chromosome \(k\), calculate the proportion of bins of positive PD, \(P_{pos}(k)\), and take the \(N_i\) of the ranked maxima such that \(N_i = \frac{1}{N} \sum_j P_{pos}(k)\), where \(N\) is the total number of XAD boundaries.

4. Split the boundaries into \('up jumps'\) and \('down jumps'\) according to positive PD and negative PD, respectively.

5. Shift the \('up jumps'\) to the right by one bin (to account for the discrepancy in which of the bins on either end of the PD\(_{diff}\) should be called the bound) and the \('down jumps'\) as is.

6. Return the vector sort (down jumps, up jumps).

7. Repeat for the ENCODE cell cycle.

For the final set of boundaries in GM12878, choose the set such that the bound is in GM12878 and in at least one other ENCODE cell line (and similarly for the set in the other cell types).

The above algorithm was applied to the ENCODE random walks, using the EMD package\(^6\) in R to generate the local maxima and specifying a target of 5000 XAD boundaries. This resulted in a final list of 4158 XAD boundaries after the final filtering step.

XAD boundaries were calculated at bins where the PD component had either a positive or negative change (first-order difference in PD component). To generate enrichment of ChIP-seq marks around XAD boundaries, only those with a positive change were considered, in order to avoid biases from signal averaging. The results for the negative-gradient boundaries were similar or opposing to those of the positive-gradient boundaries.

For each of CTCF, DNaseI, H3K36me4, H3K27me3 and H3K27ac, the list of 10-kb bins was overlapped with significantly bound sites to determine how many sites appeared in each bin. The mean number of sites overlapping the bins containing the predicted (positive change) XAD boundaries was calculated, then for bins one away from the boundary and so forth in steps of 10 kb up to a distance of 300 kb. Cases in a given distance whereby another boundary bin was encountered were removed to avoid contaminated signal. For the background set, a set of random XADs was generated, taking XADs of equal cardinality to the real boundaries were generated, under the conditions of a positive gradient and within the set of bins plausible for being predicted as boundaries as previously defined. The same analysis was performed for CTCF-Rad21, which was based on the number of CTCF sites multiplied by the number of Rad21 sites which overlapped a given bin.

To calculate the overlap between the XAD set and the TAD set, regions around the XAD set were extended by five bins (50 kb) on either side and then overlapped with the set of 10-kb regions deemed to contain TAD boundaries. The number of TAD boundaries associated with a DHS which fell within these regions were then counted, together with the number of predicted boundaries which fell in the vicinity of this DHS (defined as at least 50 kb overlapping the TAD boundary bin or one or more of the two adjacent bins). To calculate the enrichment of XAD boundaries at the locations of boundary bins overlapping TAD boundaries, the proportion of bins with predicted boundaries (e.g. overlapped the TAD boundary bin was set as 1 and divided by the same value generated from a random set of boundaries (of the same length as the XAD set, falling within the set of plausible bins). The randomisation step was repeated 100 times and the mean enrichment and standard deviation were calculated. The same analysis was repeated according to where the TAD boundary was DHS associated and where the TAD boundary was not associated with a DHS site (defined as above).

Processed intron-chromosomal HIC data for GM12878 at 10-kb resolution\(^1\) were downloaded and normalised, according to supplied recommendations, using the KR method. The Hi-C directionality score\(^8\) was calculated and applied to locations of TAD boundaries whose corresponding liftovers in hg38 were either supported or not supported by XAD boundaries (within ±5 bins of the boundary). The directionality score was calculated for ±25 bins around the location of the boundary bins and for a jump size of 50 bins to calculate the direction bias of interactions. Means were plotted to obtain patterns of global directionality bias.

Modelling of chromatin interactions.

Capture HiC data for GM12878 were downloaded and fastq files were extracted using the SRA toolkit. The data were mapped and corrected using UCSC\(^7\), specifying bowtie2\(^7\) for the mapping and GRC38 for the genome (downloaded from ftp://ftp.ensembl.org/pub/release-85/). ChiCAGO\(^4\) was then applied to the remapped BAM files to call significant interactions against each bait, using default settings except for specifying 10-kb binning with the window defined as the bin containing the distance sequences from the Capture HiC protocol\(^12\) lifted over from hg19 to hg38. Score cut-offs of ≥2.3 or ≥2 were applied to the final output in order to determine which bait-target pairs were considered as interacting, with the rest assigned as non-interacting.

Binned 10-kb regions were overlapped with Capture HiC protocol defined baits\(^12\), lifted over to hg38. For each such 'bait', potential targets within 2 Mb (200 bins) were assigned and their numbers reduced according to the presence of CAGE tags in more than one replicate in at least one of the ENCODE cell lines. For analyses based on enhancer-associated targets, targets were considered based on overlap with at least one CAGE enhancer which was one tag in more than one replicate) in at least one of the ENCODE cell lines. Only bait-target pairs which fell into the distance range of between 6 and 200 bins were considered (corresponding to >90 kb and up to 2 Mb).

To assess whether there are different features which are important for specific distances without the bias of most examples being weighted towards short distances, the above analysis outline was repeated for the same data set but restricted to three possible distances: (50 kb, 250 kb), (250 kb, 500 kb) and (500 kb, 2 Mb). For each set of distances, the mean decrease accuracy (MDA) was averaged across the 10 runs in order to determine the final feature performance.

To find the optimal prediction cut-off for calling a predicted interaction, the value for which the F1 statistic was maximised was calculated using the optimal package in R, according to the desired score cut-off. Since the most efficient cut-off is not fixed according to distance, the F1 statistic was maximised separately for five sets of target distances: (50 kb target distance), (100 kb, 250 kb), (250 kb, 500 kb), (500 kb, 1 Mb) and (1 Mb, 2 Mb), and performance was analysed for predictions generated using the cutting cut-offs. To calculate the effect of the CHICAGO score cut-off on precision and recall, we optimised the F1 statistic separately for the five sets based on a range of score cut-offs (0.1, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5 and 6).

The ROC\(^7\) package in R was used to generate AUC statistics and the caret package (version 6.0-73) in R was used to generate the precision, recall and F1 statistics. Plots were generated using custom functions based on statistics generated from the ROC\(^7\) package.

Protein interaction enrichment was determined as described above against a score of ≥3 and was used to predict on the equivalent set of bin pairs in HeLa-S3 and HepG2, which were subsequently reduced to those with enhancer targets only (using the same criteria as described above). Final probabilities were calculated based on the

ARTICLE
mean of probabilities over the 10 runs. The distance-based F1-maximising cut-offs were applied to obtain a final list of interactions. EP interaction sharing between GM12878, HeLa-S3 and HepG2 was calculated based on whether the interactions were present in 1, 2 or 3 of the cell types and venn diagrams were generated using the R package VennDiagram (version 1.6.17).

Protein–Pol ChEA-PET interaction data for HeLa-S3 were downloaded from ENCODE38 and the start and end regions were lifted over to hg38, removing those without a 1:1 correspondence between the two builds. Bait–target pairs for predicted EP interactions in HeLa-S3 were selected according to a probability of at least 0.6 in HeLa-S3 and a probability of less than 0.4 in GM12878. Both ends were intersected with the lifted over start and end regions in the ChEA-PET data in order to generate a list of example EP interactions. We selected an example on chromosome 6 due to that chromosome’s high-performance statistics from the modelling described above. The R package Sushi (version 1.10.0) was used to generate plots of the resulting loops and lines together with annotations and enhancer locations for the data sets in the example region.

Analysis and predictions across 76 cell types. A total of 249 FANTOM5 CAGE libraries were selected according to the availability of sample replicates. Transcriptional decomposition was applied to generate PD and PI components for a total of 76 cell types (including four ENCODE cell lines and 72 primary cells, see Supplementary Data 6 for a list of library identifiers and names). For the purposes of consistency between the ENCODE-generated data sets and the primary cell-type-generated data sets, the hyperparameters were fixed for the random walk and independent components to the same values which were generated from the models in ENCODE (while allowing the hyperparameters for the zero-inflated negative binomial distribution to vary).

Raw binned data at 10-kb resolution were normalised into tags per million (TPM) data and then taken across replicates to obtain a matrix of 76 columns against the total genomic bin count (303,065). Only regions potentially transcribed in the given set of CAGE libraries were considered by asking for bins which had more than one cell type containing tags. The matrix was transformed into log(\(\hat{\text{TPM}}\)) values (adding a pseudo-count of 1) and hierarchical clustering using hclust (complete linkage method) was applied in R. The ordering from the clustering was used to guide the row and column ordering in the heatmaps for Fig. 6. The R function cutree was used to find 10 groups from the clustering, which were annotated and merged manually to generate the most biologically relevant cell-type groupings from the data.

A common set of bins (34,953) was derived for comparison between cell types of the PD and the PI components by choosing the set of bins where the sign of the PI component was positive in more than one cell type. To generate similarity matrices, the PD and PI signals were converted into binary values according to whether the signal was positive (1) or negative (0) (PI – 0.1 was used for the independent component to avoid regions with very small positive estimates). The resultant matrix of 76 columns and rows according to the common bin set was used to calculate 1–1 norm between each pair of cell types to calculate a similarity matrix. The same metric was used for calculating similarity matrices representing cell-type boundary sharing and cell-type EP sharing, with methods described above and in the R package pheatmap (versions 1.0.8) was used to generate cell-type group-annotated heatmaps directly from the similarity matrix. The same metric was used for calculating similarity matrices representing cell-type boundary sharing and cell-type EP sharing, with methods described above and in the R package pheatmap (versions 1.0.8) was used to generate cell-type group-annotated heatmaps directly from the similarity matrix. The same metric was used for calculating similarity matrices representing cell-type boundary sharing and cell-type EP sharing, with methods described above and in the R package pheatmap (versions 1.0.8) was used to generate cell-type group-annotated heatmaps directly from the similarity matrix.

Feature non-specific to a cell type were also calculated more broadly with a similarity matrix. The same metric was used for calculating similarity matrices representing cell-type boundary sharing and cell-type EP sharing, with methods described above and in the R package pheatmap (versions 1.0.8) was used to generate cell-type group-annotated heatmaps directly from the similarity matrix.

Received: 9 July 2017 Accepted: 29 December 2017
Published online: 05 February 2018

References
1. Gorkin, D. U., Leung, D. & Ren, B. The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 14, 762–775 (2014).
2. Pombo, A. & Dillon, N. Three-dimensional genome architecture: players and mechanisms. Nat. Rev. Mol. Cell Biol. 16, 245–257 (2015).
3. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
4. Osborne, C. S. et al. Chromatin splicing reveals shared sites of ongoing transcription. Nat. Genet. 36, 1065–1071 (2004).
5. Schoenfelder, S. et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet. 42, 53–61 (2010).
6. Papantonis, A. et al. TINFe signals through specialized factories where heat-responsive coding and miRNA genes are transcribed. EMBO J. 31, 4404–4414 (2012).
7. Guelden, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).
8. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).
24. de Wit, E. et al. CTCF binding polarity determines chromatin looping. *Nature Communications*.

37. Zerbino, D. R., Wilder, S. P., Johnson, N., Juettemann, T. & Flicek, P. R. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. *Genome Biol.* 16, 243–248 (2008).

16. Cohen, B. A., Mitra, R. D., Hughes, J. D. & Church, G. M. A computational resolution cap (CRIC) of nuclear dynamics and developmental memory of 3D chromatin architecture at Hox gene loci. *EMBO eLife* 3, e02557 (2014).

19. de Wit, E. & de Laat, W. A decade of 3C technologies: insights into nuclear chromosome organization. *Mol. Cell* 62, 668–680 (2016).

20. Pauler, F. M. et al. H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. *Genome Res.* 19, 231–239 (2009).

21. Le Dily, F. et al. Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. *Genes Dev.* 28, 2151–2162 (2014).

22. Krüger, P. H. L. & de Laat, W. Regulation of disease-associated gene expression in the 3D genome. *Nat. Rev. Mol. Cell Biol.* 17, 771–782 (2016).

25. Benedict, T. E., Rinn, J. L., Kellis, M. & Chang, H. Y. Chromosome Hi-C. *Nat. Biotechnol.* 32, 1748–1766 (2015).

26. Birney, E., Stamatoyannopoulos, J., Dutta, A.,以此类推。

27. Li, Y. et al. Characterization of constitutive CTCF/cohesin loci: a possible role in establishing topological domains in mammalian genomes. *BMJ: Genom.* 14, 553 (2013).

28. Tang, Z. et al. CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. *Cell* 163, 1611–1627 (2015).
Union’s Horizon 2020 research and innovation programme (Grant 638173). We would like to thank Hideya Kawaji for remapping and DPI tag clustering of FANTOM5 CAGE data. Furthermore, we thank Alvaro Rada-Iglesias and members of the Robin Andersson lab and Albin Sandelin lab for their rewarding comments and discussions.

Author contributions

S.R and R.A. conceived the project; S.R conducted most analyses, with support from M. D., L.v.D. and R.A., S.R. and R.A wrote the paper; all authors reviewed the final manuscript.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-017-02798-1.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.