Architecture information system for zakat, infaq and sadaqah management institutions

R Setiawan¹, *, M R Nashrullah¹, A Mulyani¹ and M S Mubarok²

¹ Department of Informatics, Sekolah Tinggi Teknologi Garut, Garut, Indonesia
² Department of Civil Engineering, Sekolah Tinggi Teknologi Garut, Garut, Indonesia

*ridwan.setiawan@sttgarut.ac.id

Abstract. Indonesia had potential zakat as much as 217 Trillion Rupiah in 2017, but can only be collected 6 trillion or 0.2%, one of the factors is Muzakki's (Zakat Giver) lack of trust in zakat management institutions so that they prefer to distribute their zakat without going through zakat management institutions directly. To encourage improving management of zakat management institutions requires planning, designing, and building systems that can assist in managing zakat. This study aims to design an architectural enterprise for zakat management institutions in achieving the collection, management, utilization, and distribution of zakat and alms. The methodology used in this study uses the TOGAF ADM approach by collecting data through observation and interviews with one of the private zakat management institutions. The results of this study are in the form of a system architecture design that can be used as a reference for zakat management institutions with a prototype of the zakat reporting system.

1. Introduction

Zakat is very important in Islam, where zakat is the third pillar of Islam which can be a balance in the economic sector of society [1–3] in this case helping alleviate poverty and improve the welfare of the people. Indonesia is the country with the largest Muslim population in the world, where the number of Muslim people in Indonesia is 207.176.162 people or 87.18% of the total population in Indonesia [4], based on this amount of zakat income potential in Indonesia in 2017 it reaches 217 Trillion Rupiah [5] but only 6 Trillion can be collected per year or as much as 0.2%.

Management of zakat in Indonesia is regulated in Law No. 23/2011 in which a body created by the government manages the management of zakat, namely the Amil Zakat Agency (BAZ) as the coordinator of zakat management, also the Community Institution (LAZ) [6], Problems that result in not recorded all zakat activities by zakat management institutions, one of which is muzakki (Zakat Giver) which directly gives zakat to mustahiq (Zakat Recipients). The solution that can be offered to overcome this problem is to build an Information System and Information Technology (IS & IT), but the development of unplanned IS & IT can be a new problem [7–9].

The Pusat Zakat Umat (PZU) is a zakat institution that is consistent in managing Zakat, Infaq, and Shadaqah (ZIS). PZU in 2016 has managed zakat, infaq, and shadaqah funds for not less than 1 billion rupiahs per month, PZU has a vision of being a Superior and Competitive Institution in Empowering People, to support that vision, it requires support from good IS and IT so that the organization can achieve its goals [10], enterprise architecture design is a solution for IS and IT planning that is harmonious between organizational needs and the role of IS and IT.
TOGAF is a specific framework and has supporting tools that are quite complete in its implementation [11]. TOGAF issued by The Open Groups Architecture Framework released in 1995, with the latest version currently available is version 9.1 [12,13]. The core of TOGAF is the Architectural Development Method (ADM): a process-based model that explains the steps needed to develop and use company architecture [14,15]. Several studies have succeeded in designing enterprise architecture using TOGAF applied to organizations including banking [16], government [17], tourism [18], manufacturing industry [19], and also education [20], along with other organizations using TOGAF [6,8,16]. In this study aims to build an enterprise architecture with the results in the form of a system development blueprint at the Garut representative office with TOGAF with the stages of Preliminary, Architecture Vision, Business Architecture, Information System Architecture, and Technology Architecture and focuses on the main activities.

2. Methodology
This study uses two methodological approaches consisting of data collection methods conducted by interviewing, observing, and studying literature. And system design analysis methods using TOGAF ADM Framework version 9.1 [14,21] to produce integrated SI & IT governance [22]. The research framework adopting TOGAF ADM can be seen in figure 1.

- Data Retrieval: This stage is carried out to identify components related to research by conducting observations and study of documents used in the process of activities related to the system at PZU;
- Preliminary Phase: At this stage, it will produce a Value Chain from the organization that be used as parameters and limitations in system planning in this study;
- Architecture Vision: This phase aims to explain the scope of the architecture, coordinate with stakeholders in creating architecture vision, obtain management commitment to the ADM phase;
- Business Architecture: Defines business architecture development, initial conditions of business architecture, determines business models or business activities that support the desired Vision Architecture;
- Information System Architecture: At this stage, more emphasis on activities is how information system architecture be expanded that includes the data architecture and application architecture that will be used by the organization;
- Technology Architecture: describes the desired technology architecture, starting from determining the type of candidate technology needed, which includes software and hardware. And by considering alternatives needed in technology selection.
3. Result and discussion
In this section, the results of the research will be presented based on the framework that has been prepared previously.

3.1. Preliminary
This stage is the first stage approved by TOGAF ADM [6,14,15]; at this stage, the identification of needs is carried out. Based on the results of observations and interviews that have been carried out, architectural principles are obtained: Excellent, Competitive, Reliable, Transparent, Perfect Service, Professional, Innovative and Solutive, Integrated.

3.2. Architecture vision
The architectural vision presented in the Value Chain is divided into two activities, namely the main activities and supporting activities shown in figure 2; this vision is obtained based on the preliminary stages.

![Figure 2. Value chain PZU.](image)

3.3. Business architecture
In the stages of architecture, modeling carried out on business processes that are directly related to the central business processes that are mapped in table 1 by describing all functional areas.

Functional Area	Business Process
Management Fund Board	Approving the monthly, annual budget plan, make decisions about managing the funds collected to fit with the provisions
Supervisory Board	Approved the monthly, annual budget plan, and overseeing the management of funds
Managerial Board	Compile a draft annual budget. Prepare a program plan for collecting, distributing, and utilizing funds ZIS. Carry out management, supervision, and evaluation of the implementation of fundraising, distribution, and utilization programs. Staff recruitment and coaching
Fundraising Distribution	Developing and implement a fundraising strategy
Division	Identification of muzakki and prospective muzakki (institutions or individuals)
	Building communication with muzakki and prospective muzakki (institutions or individuals)
Table 1. Cont.

Division	Activity
Distribution Division	The spread of ZIS Fund
Utilization Division	Manage programs to use ZIS funds
Administrative Management Division	Create and examine activity documents and proposals
Financial Management Division	ZIS fundraising data collection
Facilities and Infrastructure Management Division	Make reports on the progress and use of ZIS funds
Public Relations and Publications Division	Acquisition, Maintenance and Management of infrastructure and facilities
	Cooperating with others, Communicating with Muzakki and Mustahiq, and Publication to the media

3.4. Information system architecture

In this phase, the design has been focused on PZU’s main activities, namely ZIS management both collection, management, and distribution, so that the user activities described in Figure 3 are in the form of a use case diagram. While in figure 4 is a system view that has been built for the ZIS management process.

![Management Information System of ZIS](image)

Figure 3. Use case diagram management information system of ZIS.
3.5. Technology architecture

At this stage, a technology architecture is defined that supports the planning of technology architecture. In Figure 5 is the network conceptual architecture needed, the network architecture that is designed must be able to support information systems that are reliable, flexible, and adaptable if changes occur [6,15]. Figure 6 is the architectural design layer divided into five tiers with details: 1) Interface Layer, in this section depicted devices that can be used as system access devices; 2) Application Layer, this section provides a page that emphasizes user convenience, application functions, and multi-platform or displays supplied in accordance with the tools that access it; 3) Support Layer, is part of the system configuration, modules used, algorithms, and services used; 4) Data Layer is a picture of how data is stored to support business functions; and 5) Base Layer is a layer containing about the operating system used, network infrastructure used, servers, and other IT infrastructure. This section is the main foundation that manages the entire process and resources used. Figures 5 and 6 are made based on organizational needs and long-term system development, where the information system architecture built requires a flexible, anywhere-accessible, multi-platform, reliable and fast design, so that the design adopts some concepts from IoT (Internet of Things) [15,23].
Figure 5. Network architecture design.

Figure 6. Architecture layer design.
4. Conclusion
As a framework for designing enterprise system architecture, TOGAF 9.1 can be used as a reference for developing system architecture for both government and private organizations with various fields with detailed and flexible results for the development of long-term (future) organizational information systems. The use of TOGAF 9.1 in the design of the PZU enterprise architecture in managing ZIS produces an SI & IT architecture blueprint, which is divided into ten functional business fields.

Acknowledgments
Thanks to Sekolah Tinggi Teknologi Garut which inspiringly support the publication of this article.

References
[1] Saad R A J, Aziz N M A and Sawandi N 2014 Islamic Accountability Framework in the Zakat Funds Management Procedia - Soc. Behav. Sci. 164 508–15
[2] Alaydrus M Z and Tika W 2017 The Effect of Productive Zakah, Infaq And Shadaqah To the Growth of Micro-Enterprises and Welfare Mustahiq In Pasuruan J. Islam. Econ. Sci. 1 28–38
[3] Farikhatusholikhah, Novianti T and Ali K M 2018 Implementation of the Zakat Village Index to Support a Zakat Community Development Program in Bedono Village, Demak District Int. J. Zakat 3 25–38
[4] Mohammad J A-S and Gavin W J 2018 Population dynamics and human capital in Muslim countries Vienna Yearb. Popul. Res. 16 1–25
[5] Komala A R 2018 The Analysis of Zakat Accounting Implementation on Amil Zakat Institutions in Bandung Proceedings of the International Conference on Business, Economic, Social Science and Humanities (ICOBEST 2018) (Atlantis Press) pp 105–7
[6] Fahana J and Azhari A 2019 TOGAF for designing the enterprise architecture of LAZISMU Bull. Soc. Informatics Theory Appl. 2 58–64
[7] Darmawati D and Nawarini A T 2016 Potensi, Pencapaian Pengumpulan Zakat dan Permasalahannya di Kabupaten Banyumas dan Purbalingga Al-Tijary 1 141–50
[8] Arman A A, Ruhman G and Hurriyati R 2017 Design of EA Development Guideline for Small Enterprises Based on TOGAF 9.1 International Conference on Information Systems Architecture and Technology (Springer, Cham) 210–9
[9] Dwivedi Y K, Wastell D, Laumer S, Henriksen H Z, Myers M D, Bunker D, Elbanna A, Ravishankar M N and Srivastava S C 2015 Research on information systems failures and successes: Status update and future directions Inf. Syst. Front. 17 143–57
[10] Fahana J 2018 Perencanaan Strategis Sistem Informasi untuk Pengelolaan Guru Sekolah Muhammadiyah J. Ilm. Tek. Elektro Komput. dan Inform. 4 51
[11] Nama G F, Tristiyan and Kurniawan D 2017 An enterprise architecture planning for higher education using the open group architecture framework (togaf): Case study University of Lampung 2017 Second International Conference on Informatics and Computing (ICIC) (IEEE) pp 1–6
[12] Buckl S, Ernst A M, Matthes F, Ramacher R and Schweda C M 2009 Using Enterprise Architecture Management Patterns to Complement TOGAF 2009 IEEE International Conference Distributed Object Computing Conference (IEEE) 34–41
[13] Malyzhenkov P and Ivanova M 2017 An Enterprise Architecture-Based Approach to the IT-Business Alignment: An Integration of SAM and TOGAF Framework (Springer, Cham) 159–73
[14] Weisman R 2011 An Overview of TOGAF TOGAF® Version 9.1
[15] Setiawan R 2018 Architecture of human resource management system at universities IOP Conf. Ser. Mater. Sci. Eng. 434 012258
[16] Sarno R and Herdiyanti A 2010 A Service Portfolio for an Enterprise Resource Planning Int. J. Comput. Sci. Netw. Secur. 10 1–13
[17] Tanaka S A, de Barros R M and de Souza Mendes L 2018 A Proposal to a Framework for Governance of ICT Aiming At Smart Cities with a Focus on Enterprise Architecture Proceedings of the XIV Brazilian Symposium on Information Systems - SBSI’18 (New York, New York, USA: ACM Press) 1–8

[18] Sari T R, Rahmawati E and Harafani H 2019 TOGAF ADM to Improve The Promotion of Farm Edu-Tourism in Pondok Rangon Area SinkrOn 3 280

[19] Hariawan R, Wiharja K and Perdana E 2014 Perencanaan Strategis Sistem Informasi Menggunakan Togaf Adm (Studi Kasus : Bagian Pelayanan Barang Pada Pt. Pelabuhan Indonesia II) eProceedings Eng. 1

[20] Anggrawan A, Satria C and Husain H 2018 Smart Campus: Model Baru Enterprise Architecture STMIK Bumigora Mataram dalam Manajemen Tata Kelola TIK Berbasis TOGAF ADM J. Mantik Penusa 2

[21] Harrison R 2011 TOGAF 9 foundation : study guide : preparation for the TOGAF 9 part 1 examination (Van Haren Publishing)

[22] Wahab I H A and Arief A 2015 An integrative framework of COBIT and TOGAF for designing IT governance in local government 2015 2nd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE) (IEEE) pp 36–40

[23] Sun Y, Song H, Jara A J and Bie R 2016 Internet of Things and Big Data Analytics for Smart and Connected Communities IEEE Access 4 766–73