Scalarization of compact stars in the scalar-Gauss-Bonnet gravity

Yan Peng

School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, China
E-mail: yanpengphy@163.com

ABSTRACT: We study scalarization of horizonless neutral compact reflecting stars. In our model, the scalar hair can be induced by the coupling of static scalar fields to the Gauss-Bonnet invariant. We analytically obtain lower bounds on the coupling parameter. Below the bound, the static scalar hair cannot form. And above the bound, we numerically get the discrete coupling parameter that can support scalar hairs outside stars. We also disclose effects of model parameters on the discrete coupling parameter.

KEYWORDS: Classical Theories of Gravity, Models of Quantum Gravity

ArXiv ePrint: 1910.13718
1 Introduction

The recent direct detection of gravitational waves provided the strong evidence that extremely compact black holes exist in nature [1-3]. Astrophysical black holes were usually believed to be endowed with an absorbing horizon. Interestingly, however, some candidate quantum-gravity models suggested that quantum effects may prevent the formation of classical horizons [4]-[8]. An intriguing idea is replacing the horizon by a reflecting wall outside (but extremely close to) the gravitational radius [9]-[15]. From astrophysical and theoretical aspects, it is very interesting to search for similarities and differences between such horizonless reflecting compact stars and classical absorbing black holes.

For classical black holes, one famous property is the no hair theorem, see references [16]-[24] and reviews [25, 26]. The original no hair theorem states that static scalar fields cannot exist outside asymptotically flat black holes. Nevertheless, the scalar hair can form when violating some of their assumptions, such as considering stationary scalar fields or enclosing the black hole in a box [27]-[36]. Another well studied model is considering static scalar fields non-minimally coupled to the Gauss-Bonnet invariant, which allows the existence of thermodynamically stable hairy black holes [37]-[43]. This scalar-Gauss-Bonnet gravity attracted lots of attentions and more complete models were constructed [44]-[52].

For horizonless compact reflecting stars [9]-[15], intriguingly, such no scalar hair behavior also appears. Hod firstly showed that massive static scalar fields cannot exist outside asymptotically flat neutral horizonless compact stars with a scalar reflecting surface [53]. For massless static scalar fields outside such asymptotically flat neutral horizonless reflecting compact stars, the no hair theorem was firstly analysed in [54] and another proof was provided based on Cauchy-Kowalevski theorem [55]. In the asymptotically dS gravity, static scalar hairs still cannot form outside the neutral horizonless reflecting compact stars [56]. With field-curvature couplings, there is also no static hair theorem for the neutral horizonless reflecting stars [54, 57]. It seems that no static hair behavior is a very
general property in the background of neutral horizonless compact reflecting stars, for extended discussion in charged backgrounds see [58]–[67]. On the other side, as mentioned in the front paragraph, black holes can be hairy in the scalar-Gauss-Bonnet gravity. Along this line, it is interesting to examine whether the scalar-Gauss-Bonnet coupling can induce scalar hairs outside neutral horizonless compact reflecting stars.

This work is organized as follows. We firstly construct a system with a scalar field coupled to the Gauss-Bonnet invariant in the background of a neutral horizonless compact reflecting star. Then we analytically obtain a lower bound on the coupling parameter, below which there is no hair theorem. And above the bound, we numerically get discrete coupling parameters that can support horizonless neutral hairy compact stars. At last, we give the main conclusion.

2 Lower bounds on the scalar-Gauss-Bonnet coupling parameter

In this paper, we consider the coupling of massive scalar fields to the Gauss-Bonnet invariant in the asymptotically flat gravity. The general Lagrange density reads [37]–[43]

$$\mathcal{L} = R - |\nabla \psi|^2 - m^2 \psi^2 + f(\psi)\mathcal{R}_{\text{GB}}^2,$$

(2.1)

where R is the Ricci scalar curvature, $\psi(r)$ is the scalar field with mass m, $\mathcal{R}_{\text{GB}}^2$ is the Gauss-Bonnet invariant in the form $\mathcal{R}_{\text{GB}}^2 = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - 4R_{\mu\nu}R^{\mu\nu} + R^2$ and $f(\psi)$ represents the coupling function. Neglecting backreaction of scalar fields, there is $\mathcal{R}_{\text{GB}}^2 = \frac{48M^2}{r^6}$. In the linear limit, without loss of generality, one can put the coupling function in a simple quadratic form $f(\psi) = \eta\psi^2$ with η as the coupling parameter [39, 40].

In the Schwarzschild coordinates, the spherically symmetric spacetime is described by [40]

$$ds^2 = -g(r)dt^2 + \frac{dr^2}{g(r)} + r^2(d\theta^2 + \sin^2 \theta d\phi^2).$$

(2.2)

The metric outside the star is a Schwarzschild type solution $g(r) = 1 - \frac{2M}{r}$, where M is the star mass. We define the radial coordinate $r = r_s$ as the star surface radius. The horizonless condition of the compact star requires the relation $r_s > 2M$.

We take the static scalar field only depending on the radial coordinate in the simple form $\psi = \psi(r)$. After varying the action, the scalar field equation of motion is

$$\psi'' + \left(\frac{2}{r} + \frac{g'}{g}\right)\psi' + \left(\frac{\eta\mathcal{R}_{\text{GB}}^2}{g} - \frac{m^2}{g}\right)\psi = 0$$

(2.3)

with $g = 1 - \frac{2M}{r}$ and $\mathcal{R}_{\text{GB}}^2 = \frac{48M^2}{r^6}$.

We assume that the scalar field vanishes at the star surface. The bound-state (spatially localized) massive scalar fields are characterized by asymptotically decaying behaviors $\psi(r \to \infty) \sim \frac{1}{r}e^{-mr}$. So the scalar field boundary conditions are

$$\psi(r_s) = 0, \quad \psi(\infty) = 0.$$

(2.4)
With a new function $\tilde{\psi} = \sqrt{r}\psi$, one can rewrite the differential equation (2.3) into

$$r^2\tilde{\psi}'' + \left(r + \frac{r^2g'}{g} \right)\tilde{\psi}' + \left(-\frac{1}{4} - \frac{rg'}{2g} + \frac{\eta R^2_{GB}r^2}{g} - \frac{m^2r^2}{g} \right)\tilde{\psi} = 0.$$ \hfill (2.5)

According to boundary conditions (2.4), the new function $\tilde{\psi}$ satisfies

$$\tilde{\psi}(r_s) = 0, \quad \tilde{\psi}(\infty) = 0.$$ \hfill (2.6)

The function $\tilde{\psi}$ must possess one extremum point $r = r_{\text{peak}}$ between the star surface r_s and the infinity boundary. If r_{peak} is a positive maximum extremum point, there are relations

$$\tilde{\psi}(r_{\text{peak}}) > 0, \quad \tilde{\psi}'(r_{\text{peak}}) = 0, \quad \tilde{\psi}''(r_{\text{peak}}) \leq 0,$$ \hfill (2.7)

otherwise it will be negative minimum extremum point satisfying

$$\tilde{\psi}(r_{\text{peak}}) < 0, \quad \tilde{\psi}'(r_{\text{peak}}) = 0, \quad \tilde{\psi}''(r_{\text{peak}}) \geq 0.$$ \hfill (2.8)

In summary, at the extremum point $r = r_{\text{peak}}$, the scalar field is characterized by

$$\{ \tilde{\psi} \neq 0, \quad \tilde{\psi}' = 0 \quad \text{and} \quad \tilde{\psi}'' \leq 0 \} \quad \text{for} \quad r = r_{\text{peak}}.$$ \hfill (2.9)

Multiplying both sides of (2.5) with $\tilde{\psi}$, we arrive at the equation

$$r^2\tilde{\psi}' + \left(r + \frac{r^2g'}{g} \right)\tilde{\psi}' + \left(-\frac{1}{4} - \frac{rg'}{2g} + \frac{\eta R^2_{GB}r^2}{g} - \frac{m^2r^2}{g} \right)\tilde{\psi} = 0.$$ \hfill (2.10)

Relations (2.9) and (2.10) yield the inequality

$$-\frac{1}{4} - \frac{rg'}{2g} + \frac{\eta R^2_{GB}r^2}{g} - \frac{m^2r^2}{g} \geq 0 \quad \text{for} \quad r = r_{\text{peak}}.$$ \hfill (2.11)

It can be transformed into

$$(m^2 - \eta R^2_{GB})r^2g \leq -\frac{rg'}{2} - \frac{1}{4}g^2 \quad \text{for} \quad r = r_{\text{peak}}.$$ \hfill (2.12)

Since $r \geq r_s > 2M$, we have

$$g = 1 - \frac{2M}{r} = \frac{1}{r}(r - 2M) > 0, \quad \text{(2.13)}$$

$$rg' = r \left(1 - \frac{2M}{r} \right) = \frac{2M}{r} > 0.$$ \hfill (2.14)

From (2.12)–(2.14), one deduces that

$$m^2 - \eta R^2_{GB} < 0 \quad \text{for} \quad r = r_{\text{peak}}.$$ \hfill (2.15)

According to (2.15), there are relations

$$\eta > \frac{m^2}{R^2_{GB}} = \frac{m^2r^6_{\text{peak}}}{48M^2} \geq \frac{m^2r^6_s}{48M^2}.$$ \hfill (2.16)
We describe the system with dimensionless quantity $m r_s$, $m M$ and $m^2 \eta$ in accordance with the symmetry of the equation (2.3) in the form

$$r \rightarrow kr, \quad m \rightarrow m/k, \quad M \rightarrow kM, \quad \eta \rightarrow k^2 \eta. \quad (2.17)$$

From (2.16), we obtain a lower bound on the dimensionless coupling parameter $m^2 \eta$ as

$$m^2 \eta > \frac{m^4 r_s^6}{48 M^2}. \quad (2.18)$$

Below this bound, the static scalar field cannot exist outside the horizonless neutral compact reflecting stars. Above this bound, in the following section, we will numerically obtain the scalar hairy configurations supported by horizonless neutral compact reflecting stars.

3 Static scalar hairy configurations supported by horizonless neutral compact reflecting stars

As the scalar field equation (2.3) is of the second order, we need values of $\psi(r_s), \psi'(r_s), m r_s, m M$ and $m^2 \eta$ to integrate the equation from the star surface to the infinity. Scalar reflecting surface conditions yield $\psi(r_s) = 0$. With the symmetry $\psi \rightarrow k \psi$, one can take $\psi'(r_s) = 1$. Fixing values of $m r_s$ and $m M$, we search for the proper $m^2 \eta$ that can support a scalar field asymptotically decaying at the infinity.

We show the numerical results with $m r_s = 3.5$, $m M = 1.5$ and various $m^2 \eta$ in figure 1. In the left panel, for $m^2 \eta = 132$, the scalar field increases to be more positive at the infinity. When we choose $m^2 \eta = 134$ in the right panel, the scalar field decreases to be more negative in the larger r region. So $m^2 \eta = 132$ and $m^2 \eta = 134$ are not related to the bound-state scalar field.

The mathematical solutions of equation (2.3) have the general asymptotic behavior

$$\psi \approx A \cdot \frac{1}{r} e^{-m r} + B \cdot \frac{1}{r} e^{m r} \text{ with } r \rightarrow \infty.$$

We find $B > 0$ in cases of $m^2 \eta < 133.002493$ and $B < 0$ in cases of $m^2 \eta > 133.002493$, also in accordance with results in figure 1. It implies there is a critical value of $m^2 \eta$ corresponding to $B = 0$, which leads to physical...
solutions with asymptotically decaying behaviors $\psi \propto \frac{1}{r} e^{-mr}$ at the infinity. With more detailed calculations, we obtain a discrete value $m^2 \eta \approx 133.002493$, which corresponds to the scalar field satisfying $\psi(\infty) = 0$. We plot the scalar field with $mr_s = 3.5$, $mM = 1.5$ and $m^2 \eta = 133.002493$ in figure 2. As shown in the picture, the scalar field approaches zero in the far region. In the case of black holes, as explicitly shown in refs. [38, 39], in the linearized regime, the non-minimally coupled scalar hair is also characterized by a discrete resonant set of the non-trivial coupling parameter. It should be noted that the continuous spectrum found numerically in [38, 39] belongs to non-linear (self-gravitating) field configurations.

In the following, we disclose effects of model parameters mr and mM on the dimensionless scalar-Gauss-Bonnet coupling parameter $m^2 \eta$, which can support the existence of bound-state scalar field hairs. In table 1, we show $m^2 \eta$ with respect to different mM in the case of $mr_s = 3.5$ and in table 2, we show values of $m^2 \eta$ by choosing various mr_s with $mM = 1.5$. We find that $m^2 \eta$ decreases as a function of mM and $m^2 \eta$ becomes larger if we choose a larger value of mr_s. In particular, according to the data in table 1, $m^2 \eta$ is almost a linear function with respect to mM.

Figure 2. (Color online) We show behaviors of the scalar field function $\psi(r)$ with respect to the coordinate r for $mr_s = 3.5$, $mM = 1.5$ and $m^2 \eta = 133.002493$.

Table 1. The coupling parameter $m^2 \eta$ with $mr_s = 3.5$ and various mM.

mM	1.50	1.55	1.60	1.65	1.70
$m^2 \eta$	133.002493	122.364486	112.393858	102.719683	92.479122

Table 2. The coupling parameter $m^2 \eta$ with $mM = 1.5$ and various mr_s.

mr_s	3.1	3.3	3.5	3.7	3.9
$m^2 \eta$	65.351225	95.872104	133.002493	179.588365	237.794024
4 Conclusions

We studied the formation of scalar field hairs in the background of asymptotically flat horizonless neutral compact stars. We considered a static scalar field coupled to the Gauss-Bonnet invariant. At the star surface, we took the scalar reflecting condition. With analytical methods, we obtained lower bounds on the scalar-Gauss-Bonnet coupling parameter as $m^2 \eta > \frac{m^4 r_s^6}{36M^2}$, where η is the coupling parameter, m is the scalar field mass, M is the star mass and r_s represents star radii. Below the lower bound, static scalar fields cannot exist or there is no hair theorem. And above the bound, we numerically obtained discrete coupling parameters $m^2 \eta$, which can support static scalar hairs outside horizonless neutral compact reflecting stars. Moreover, we disclosed effects of model parameters on the discrete coupling parameter.

Acknowledgments

This work was supported by the Shandong Provincial Natural Science Foundation of China under Grant No. ZR2018QA008. This work was also supported by a grant from Qufu Normal University of China under Grant No. xkjjc201906.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [inSPIRE].

[2] LIGO Scientific and Virgo collaborations, GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett. 116 (2016) 241103 [arXiv:1606.04855] [inSPIRE].

[3] LIGO Scientific and Virgo collaborations, Binary Black Hole Mergers in the first Advanced LIGO Observing Run, Phys. Rev. X 6 (2016) 041015 [arXiv:1606.04856] [inSPIRE].

[4] P.O. Mazur and E. Mottola, Gravitational condensate stars: An alternative to black holes, gr-qc/0109035 [inSPIRE].

[5] C.B. M.H. Chirenti and L. Rezzolla, How to tell a gravastar from a black hole, Class. Quant. Grav. 24 (2007) 4191 [arXiv:0706.1513] [inSPIRE].

[6] K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [inSPIRE].

[7] V. Cardoso, L.C.B. Crispino, C.F.B. Macedo, H. Okawa and P. Pani, Light rings as observational evidence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects, Phys. Rev. D 90 (2014) 044069 [arXiv:1406.5510] [inSPIRE].
[8] M. Saravani, N. Afshordi and R.B. Mann, Empty black holes, firewalls and the origin of Bekenstein-Hawking entropy, Int. J. Mod. Phys. D 23 (2015) 1443007 [arXiv:1212.4176] [INSPIRE].

[9] V. Cardoso and P. Pani, Testing the nature of dark compact objects: a status report, Living Rev. Rel. 22 (2019) 4 [arXiv:1904.05363] [INSPIRE].

[10] C. Barceló, R. Carballo-Rubio and L.J. Garay, Gravitational wave echoes from macroscopic quantum gravity effects, JHEP 05 (2017) 054 [arXiv:1701.09156] [INSPIRE].

[11] S. Hod, Stationary bound-state scalar configurations supported by rapidly-spinning exotic compact objects, Phys. Lett. B 770 (2017) 186 [arXiv:1803.07093] [INSPIRE].

[12] J. Abedi, H. Dykaar and N. Afshordi, Echoes from the Abyss: Tentative evidence for Planck-scale structure at black hole horizons, Phys. Rev. D 96 (2017) 082004 [arXiv:1612.00266] [INSPIRE].

[13] B. Holdom and J. Ren, Not quite a black hole, Phys. Rev. D 95 (2017) 084034 [arXiv:1612.04889] [INSPIRE].

[14] E. Maggio, P. Pani and V. Ferrari, Exotic Compact Objects and How to Quench their Ergoregion Instability, Phys. Rev. D 96 (2017) 104047 [arXiv:1703.03696] [INSPIRE].

[15] P. Pani, E. Berti, V. Cardoso, Y. Chen and R. Norte, Gravitational wave signatures of the absence of an event horizon. I. Nonradial oscillations of a thin-shell gravastar, Phys. Rev. D 80 (2009) 124047 [arXiv:0909.0287] [INSPIRE].

[16] J.D. Bekenstein, Transcendence of the law of baryon-number conservation in black hole physics, Phys. Rev. Lett. 28 (1972) 452 [INSPIRE].

[17] J.E. Chase, Event horizons in Static Scalar-Vacuum Space-Times, Commun. Math. Phys. 19 (1970) 276.

[18] C. Teitelboim, Nonmeasurability of the baryon number of a black-hole, Lett. Nuovo Cim. 3 (1972) 326.

[19] R. Ruffini and J.A. Wheeler, Introducing the black hole, Phys. Today 24 (1971) 30.

[20] J.D. Bekenstein, Novel “no-scalar-hair” theorem for black holes, Phys. Rev. D 51 (1995) R6608 [INSPIRE].

[21] D. Núñez, H. Quevedo and D. Sudarsky, Black holes have no short hair, Phys. Rev. Lett. 76 (1996) 571 [gr-qc/9601020] [INSPIRE].

[22] S. Hod, Hairy Black Holes and Null Circular Geodesics, Phys. Rev. D 84 (2011) 124030 [arXiv:1112.3286] [INSPIRE].

[23] Y. Peng, Hair mass bound in the black hole with nonzero cosmological constants, Phys. Rev. D 98 (2018) 104041 [arXiv:1807.06257] [INSPIRE].

[24] Y. Peng, Hair distributions in noncommutative Einstein-Born-Infeld black holes, Nucl. Phys. B 941 (2019) 1 [arXiv:1808.07988] [INSPIRE].

[25] J.D. Bekenstein, Black hole hair: 25-years after, in Physics. Proceedings, 2nd International A.D. Sakharov Conference, Moscow, Russia, 20–24 May 1996, pp. 216–219 (1996) [gr-qc/9605059] [INSPIRE].

[26] C.A.R. Herdeiro and E. Radu, Asymptotically flat black holes with scalar hair: a review, Int. J. Mod. Phys. D 24 (2015) 1542014 [arXiv:1504.08209] [INSPIRE].
[27] S. Hod, Stationary Scalar Clouds Around Rotating Black Holes, Phys. Rev. D 86 (2012) 104026 [Erratum ibid. D 86 (2012) 129902] [arXiv:1211.3202] [inSPIRE].
[28] C.A.R. Herdeiro and E. Radu, Kerr black holes with scalar hair, Phys. Rev. Lett. 112 (2014) 221101 [arXiv:1403.2757] [inSPIRE].
[29] C.A.R. Herdeiro, J.C. Degollado and H.F. Rúnarsson, Rapid growth of superradiant instabilities for charged black holes in a cavity, Phys. Rev. D 88 (2013) 063003 [arXiv:1305.5513] [inSPIRE].
[30] N. Sanchis-Gual, J.C. Degollado, P.J. Montero, J.A. Font and C. Herdeiro, Explosion and Final State of an Unstable Reissner-Nordström Black Hole, Phys. Rev. Lett. 116 (2016) 141101 [arXiv:1512.05358] [inSPIRE].
[31] S.R. Dolan, S. Ponglertsakul and E. Winstanley, Stability of black holes in Einstein-charged scalar field theory in a cavity, Phys. Rev. D 92 (2015) 124047 [arXiv:1507.02156] [inSPIRE].
[32] P. Basu, C. Krishnan and P.N. Bala Subramanian, Hairy Black Holes in a Box, JHEP 11 (2016) 041 [arXiv:1609.01208] [inSPIRE].
[33] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [inSPIRE].
[34] Y. Peng, Studies of a general flat space/boson star transition model in a box through a language similar to holographic superconductors, JHEP 07 (2017) 042 [arXiv:1705.08694] [inSPIRE].
[35] Y. Peng, B. Wang and Y. Liu, On the thermodynamics of the black hole and hairy black hole transitions in the asymptotically flat spacetime with a box, Eur. Phys. J. C 78 (2018) 176 [arXiv:1708.01411] [inSPIRE].
[36] P. Wang, H. Wu and H. Yang, Thermodynamic Geometry of AdS Black Holes and Black Holes in a Cavity, arXiv:1910.07874 [inSPIRE].
[37] T.P. Sotiriou and S.-Y. Zhou, Black hole hair in generalized scalar-tensor gravity, Phys. Rev. Lett. 112 (2014) 251102 [arXiv:1312.3622] [inSPIRE].
[38] D.D. Doneva and S.S. Yazadjiev, New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories, Phys. Rev. Lett. 120 (2018) 131103 [arXiv:1711.01187] [inSPIRE].
[39] H.O. Silva, J. Sakstein, L. Gualtieri, T.P. Sotiriou and E. Berti, Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling, Phys. Rev. Lett. 120 (2018) 131104 [arXiv:1711.02080] [inSPIRE].
[40] S. Hod, Spontaneous scalarization of Gauss-Bonnet black holes: Analytic treatment in the linearized regime, Phys. Rev. D 100 (2019) 064039 [inSPIRE].
[41] G. Antoniou, A. Bakopoulos and P. Kanti, Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories, Phys. Rev. Lett. 120 (2018) 131102 [arXiv:1711.03390] [inSPIRE].
[42] C.A.R. Herdeiro, E. Radu, N. Sanchis-Gual and J.A. Font, Spontaneous Scalarization of Charged Black Holes, Phys. Rev. Lett. 121 (2018) 101102 [arXiv:1806.05190] [inSPIRE].
[43] P.V.P. Cunha, C.A.R. Herdeiro and E. Radu, Spontaneously Scalarized Kerr Black Holes in Extended Scalar-Tensor-Gauss-Bonnet Gravity, Phys. Rev. Lett. 123 (2019) 011101 [arXiv:1904.09997] [inSPIRE].
[44] Y. Brihaye, C. Herdeiro and E. Radu, *The scalarised Schwarzschild-NUT spacetime*, Phys. Lett. B 788 (2019) 295 [arXiv:1810.09560] [nSPIRE].

[45] Y. Brihaye and B. Hartmann, *Charged scalar-tensor solitons and black holes with (approximate) Anti-de Sitter asymptotics*, JHEP 01 (2019) 142 [arXiv:1810.05108] [nSPIRE].

[46] C.A.R. Herdeiro and E. Radu, *Black hole scalarization from the breakdown of scale invariance*, Phys. Rev. D 99 (2019) 084039 [arXiv:1901.02953] [nSPIRE].

[47] D.D. Doneva, S. Kiorpelidi, P.G. Nedkova, E. Papantonopoulos and S.S. Yazadjiev, *Charged Gauss-Bonnet black holes with curvature induced scalarization in the extended scalar-tensor theories*, Phys. Rev. D 98 (2018) 104056 [arXiv:1809.00844] [nSPIRE].

[48] H. Motohashi and S. Mukohyama, *Shape dependence of spontaneous scalarization*, Phys. Rev. D 99 (2019) 044030 [arXiv:1810.12691] [nSPIRE].

[49] M. Minamitsuji and T. Ikeda, *Scalarized black holes in the presence of the coupling to Gauss-Bonnet gravity*, Phys. Rev. D 99 (2019) 044017 [arXiv:1812.03551] [nSPIRE].

[50] Y.S. Myung and D.-C. Zou, *Scalarized Charged Black Holes with Scalar Mass Term*, arXiv:1909.11859 [nSPIRE].

[51] C.F.B. Macedo, J. Sakstein, E. Berti, L. Gualtieri, H.O. Silva and T.P. Sotiriou, *Self-interactions and Spontaneous Black Hole Scalarization*, Phys. Rev. D 99 (2019) 104041 [arXiv:1903.06784] [nSPIRE].

[52] S. Hod, *No-scalar-hair theorem for spherically symmetric reflecting stars*, Phys. Rev. D 94 (2016) 104073 [arXiv:1612.04823] [nSPIRE].

[53] S. Hod, *No nonminimally coupled massless scalar hair for spherically symmetric neutral reflecting stars*, Phys. Rev. D 96 (2017) 024019 [arXiv:1709.01933] [nSPIRE].

[54] Y. Peng, *No hair theorem for massless scalar fields outside asymptotically flat horizonless reflecting compact stars*, Eur. Phys. J. C 79 (2019) 850 [arXiv:1904.00911].

[55] S. Bhattacharjee and S. Sarkar, *No-hair theorems for a static and stationary reflecting star*, Phys. Rev. D 95 (2017) 084027 [arXiv:1704.02873] [nSPIRE].

[56] S. Hod, *Charged reflecting stars supporting charged massive scalar field configurations*, Phys. Lett. B 773 (2017) 208 [arXiv:1801.02801] [nSPIRE].

[57] S. Hod, *Charged massive scalar field configurations supported by a spherically symmetric charged reflecting shell*, Phys. Lett. B 768 (2017) 97 [arXiv:1806.06831] [nSPIRE].

[58] Y. Peng, B. Wang and Y. Liu, *Scalar field condensation behaviors around reflecting shells in Anti-de Sitter spacetimes*, Eur. Phys. J. C 78 (2018) 680.

[59] Y. Peng, *Scalar field configurations supported by charged compact reflecting stars in a curved spacetime*, Phys. Lett. B 780 (2018) 144 [arXiv:1801.02495].

[60] S. Hod, *Charged reflecting stars supporting charged massive scalar field configurations*, Eur. Phys. J. C 78 (2018) 173 [arXiv:1801.02801] [nSPIRE].
[63] Y. Peng, *Static scalar field condensation in regular asymptotically AdS reflecting star backgrounds*, Phys. Lett. B 782 (2018) 717 [arXiv:1804.10787].

[64] Y. Peng, *On instabilities of scalar hairy regular compact reflecting stars*, JHEP 10 (2018) 185 [arXiv:1810.04102].

[65] Y. Peng, *Hair formation in the background of noncommutative reflecting stars*, Nucl. Phys. B 938 (2019) 143 [arXiv:1809.05329].

[66] M. Khodaei and H. Mohseni Sadjadi, *No skyrmion hair for stationary spherically symmetric reflecting stars*, Phys. Lett. B 797 (2019) 134922 [arXiv:1908.04591].

[67] B. Kiczek and M. Rogatko, *Ultra-compact spherically symmetric dark matter charged star objects*, JCAP 09 (2019) 049 [arXiv:1904.07232] [InSPIRE].