SOME TYPE I SOLUTIONS OF RICCI FLOW WITH ROTATIONAL SYMMETRY

JIAN SONG

Abstract. We prove that the Ricci flow on \mathbb{CP}^n blown-up at one point starting with any rotationally symmetric Kähler metric must develop Type I singularities. In particular, if the total volume does not go to zero at the singular time, the parabolic blow-up limit of the Type I Ricci flow along the exceptional divisor is a complete non-flat shrinking gradient Kähler-Ricci soliton on a complete Kähler manifold homeomorphic to \mathbb{C}^n blown-up at one point.

1. Introduction

In this paper, we study the Ricci flow on Kähler manifolds defined by

$$X_{n,k} = \mathbb{P}(\mathcal{O}_{\mathbb{CP}^{n-1}} \oplus \mathcal{O}_{\mathbb{CP}^{n-1}}(-k))$$

for $k, n \in \mathbb{N}^+$. Such manifolds are holomorphic \mathbb{CP}^1 bundle over the projective space \mathbb{CP}^{n-1}. They are called Hirzebruch surfaces when $n = 2$ and $X_{n,1}$ is exactly \mathbb{CP}^n blown-up at one point. The maximal compact subgroup of the automorphism group of $X_{n,k}$ is given by $G_{n,k} = U(n)/\mathbb{Z}_k$ (2).

The unnormalized Ricci flow introduced by Hamilton [9] is defined on a Riemannian manifold M starting with a Riemannian metric g_0 by

$$\frac{\partial g}{\partial t} = -\text{Ric}(g), \ g(0) = g_0.$$ (1.1)

We apply the Ricci flow (1.1) to $X_{n,k}$ with a $G_{n,k}$-invariant initial Kähler metric. In [18], it is shown that the Ricci flow (1.1) must develop finite time singularity and it either shrinks to a point, collapses to \mathbb{CP}^{n-1} or contracts an exceptional divisor, in Gromov-Hausdorff topology.

When the flow shrinks to a point, $X_{n,k}$ is a Fano manifold and $1 \leq k < n$. It is shown by Zhu [28] that the flow must develop Type I singularities and the rescaled Ricci flow converges in Cheeger-Gromov-Hamilton sense to the unique compact Kähler-Ricci soliton on $X_{n,k}$ constructed in [8, 3, 24].

When the flow collapses to \mathbb{CP}^{n-1}, it is shown by Fong [7] that the flow must develop Type I singularities and the rescaled Ricci flow converges in Cheeger-Gromov-Hamilton sense to the ancient solution that splits isometrically as $\mathbb{C}^{n-1} \times \mathbb{CP}^1$.

Our main result is to show that the flow must also develop Type I singularities when it does not collapse and the blow-up limit is a nontrivial complete shrinking

Research supported in part by National Science Foundation grant DMS-0847524 and a Sloan Foundation Fellowship.
Let X be \mathbb{CP}^n blown-up at one point. Then the Ricci flow on X must develop Type I singularities for any $U(n)$-invariant initial Kähler metric.

Let $g(t)$ be the smooth solution defined on $t \in [0, T)$, where $T \in (0, \infty)$ is the singular time. For every $K_j \to \infty$, we consider the rescaled Ricci flow $(X, g_j(t'))$ defined on $[-K_jT, 0)$ by

$$g_j(t') = K_jg(T + K_j^{-1}t').$$

Then one and only one of the following must occur.

1. If $\liminf_{t \to T} (T-t)^{-1}\text{Vol}(g(t)) = \infty$, then $(X, g_j(t'), p)$ subconverges in Cheeger-Gromov-Hamilton sense to a complete shrinking non-flat gradient Kähler-Ricci soliton on a complete Kähler manifold homeomorphic to \mathbb{CP}^n blown-up at one point, for any p in the exceptional divisor.

2. If $\liminf_{t \to T} (T-t)^{-1}\text{Vol}(g(t)) \in (0, \infty)$, then $(X, g_j(t'), p_j)$ subconverges in Cheeger-Gromov-Hamilton sense to $(\mathbb{C}^{n-1} \times \mathbb{CP}^1, g_{\mathbb{C}^{n-1}} \oplus (-t')g_{FS})$, where $g_{\mathbb{C}^{n-1}}$ is the standard flat metric on \mathbb{C}^{n-1} and g_{FS} the Fubini-Study metric on \mathbb{CP}^1 for any sequence of points p_j.

3. If $\liminf_{t \to T} (T-t)^{-1}\text{Vol}(g(t)) = 0$, then $(X, g_j(t'))$ converges in Cheeger-Gromov-Hamilton sense to the unique compact shrinking Kähler-Ricci soliton on \mathbb{CP}^n blown-up at one point.

The generalization of Theorem 1.1 for $X_{n,k}$ is given in section 6. In order to exclude Type II singularities, we first prove a lower bound for the holomorphic bisectional curvature and then we apply Cao’s splitting theorem for the Kähler Ricci flow with nonnegative holomorphic bisectional curvature [4]. Theorem 1.1 gives evidence that the Kähler-Ricci flow can only develop Type I singularities for Kähler surfaces and if the flow does not collapse in finite time. Combined with the results of [18, 19], Theorem 1.1 verifies that the flow indeed performs a geometric canonical surgery with minimal singularities in the Kähler case. We also remark that the shrinking soliton as the pointed blow-up limit is trivial if the parabolic rescaling takes place at a fixed base point outside the exceptional divisor D_0. We believe that the blow-up limit should be the unique homothetically rotationally symmetric complete shrinking soliton on \mathbb{C}^2 blown-up at one point constructed by Feldman-Ilmanen-Knopf in [6]. Unfortunately, we are unable to show that that limiting complete Kähler manifold is biholomorphic to \mathbb{CP}^n blown-up at one point, although it has the same topological structure with the unitary group $U(n)$ lying in the isometry group of the limiting soliton.

The organization of the paper is as follows. In section 2, we introduce the Calabi ansatz. In section 3, we obtain a lower bound for the holomorphic bisectional curvature. In section 4, we prove the flow must develop Type I singularities if non-collapsing. In section 5, we construct the blow-up limit. In section 6, we discuss some generalizations of Theorem 1.1.

We would also like to mention that we have been informed by Davi Maximo that he has a different approach to understand the singularity formation in similar settings [13].
2. Calabi symmetry

In this section, we introduce the Calabi ansatz on $\mathbb{C}P^n$ blown-up at one point introduced by Calabi [2] (also see [3, 6, 18]). From now on, we let X be $\mathbb{C}P^n$ blown-up at one point and it is in fact a $\mathbb{C}P^1$ bundle over $\mathbb{C}P^{n-1}$ given by

$$X = \mathbb{P}(O_{\mathbb{C}P^{n-1}} \oplus O_{\mathbb{C}P^{n-1}}(-1)).$$

Let D_0 be the exceptional divisor of X defined by the image of the section $(1,0)$ of $O_{\mathbb{C}P^{n-1}} \oplus O_{\mathbb{C}P^{n-1}}(-1)$ and D_∞ be the divisor of X defined by the image of the section $(0,1)$ of $O_{\mathbb{C}P^{n-1}} \oplus O_{\mathbb{C}P^{n-1}}(-1)$. Both the 0-section D_0 and the ∞-section are complex hypersurfaces in X isomorphic to $\mathbb{C}P^{n-1}$. The Kähler cone on X is given by

$$\mathcal{K} = \{-a[D_0] + b[D_\infty] \mid 0 < a < b\}.$$

In particular, when $n = 2$, D_0 is a holomorphic S^2 with self-intersection number -1.

Let $z = (z_1, \ldots, z_n)$ be the standard holomorphic coordinates on \mathbb{C}^n. Let $\rho = \log |z|^2 = \log(|z_1|^2 + |z_2|^2 + \ldots + |z_n|^2)$. We consider a smooth convex function $u = u(\rho)$ for $\rho \in (-\infty, \infty)$ satisfying the following conditions.

1. $u'' > 0$ for $\rho \in (-\infty, \infty)$.
2. There exist $0 < a < b$ and smooth function $u_0, u_\infty : [0, \infty) \rightarrow \mathbb{R}$ such that
 $$u_0'(0) > 0, \quad u_\infty'(0) > 0,$$
 $$u_0(e^\rho) = u(\rho) - a\rho, \quad u_\infty(e^{-\rho}) = u(\rho) - b\rho.$$

For any u satisfying the above conditions, $\omega = \sqrt{-1} \partial \bar{\partial} u$ defines a smooth Kähler metric on $\mathbb{C}^n \setminus \{0\}$ and it extends to a smooth global Kähler metric on $\mathbb{C}P^n$ blown-up at one point in the Kähler class $-a[D_0] + b[D_\infty]$.

On $\mathbb{C}^n \setminus \{0\}$, the Kähler metric g induced by u is given by

$$g_{ij} = e^{-\rho} u' \delta_{ij} + e^{-2\rho} \bar{z}_i z_j (u'' - u').$$

Obviously, the Kähler metric g induced by u is invariant under the standard unitary $U(n)$ transformations on \mathbb{C}^n.

We define the Ricci potential of $\omega = \sqrt{-1} \partial \bar{\partial} u$ by

$$v = -\log \det g = n\rho - (n - 1) \log u'(\rho) - \log u''(\rho).$$

and the Ricci tensor of g is given by

$$R_{ij} = e^{-\rho} u' \delta_{ij} + e^{-2\rho} \bar{z}_i z_j (v'' - v').$$

After applying a unitary transformation, we can assume $z = (z_1, 0, \ldots, 0)$ and then

$$\{g_{ij}\} = e^{-\rho} \text{diag}\{u'', u', \ldots, u'\}$$

$$R_{ij} = \sqrt{-1} e^{-\rho} \text{diag}\{v'', v', \ldots, v'\}.$$
where

\[c_t = - \log u''(0, t) - (n - 1)u'(0, t) \]

and \[u'(\rho, t) = \frac{\partial}{\partial \rho} u(\rho, t) \]. The evolving Kähler form \(\omega(t) \) is then given by

\[\omega(t) = \sqrt{-1} \partial \bar{\partial} u(\rho, t). \]

It is also shown in [18] that if the initial Kähler class is given by \(-a_0[D_0] + b_0[D_{\infty}] \), the evolving Kähler class is given by

\[[\omega(t)] = -a_t [D_0] + b_t [D_{\infty}], \quad a_t = a_0 - (n - 1)t, \quad b_t = b_0 - (n + 1)t. \]

In particular, we have an immediate bound for \(u'(\rho, t) \)

(2.5) \[\lim_{\rho \to -\infty} u'(\rho, t) = a_t, \quad \lim_{\rho \to \infty} u'(\rho, t) = b_t. \]

3. A lower bound for the holomorphic bisectional curvature

In this section, we will obtain a lower bound for the holomorphic bisectional curvature. We consider the Ricci flow (1.1) on \(X \) with a \(U(n) \)-invariant initial Kähler metric in the Kähler class \(-a_0[D_0] + b_0[D_{\infty}] \). For our purpose, it suffices to consider the case

\[0 < a_0(n + 1) < b_0(n - 1). \]

This assumption is shown in [18] to be equivalent to the condition

\[\lim_{t \to T} \inf Vol(g(t)) > 0, \quad \text{or,} \quad \lim_{t \to T} (T - t)^{-1} Vol(g(t)) = \infty \]

and then the Kähler-Ricci flow will contract the exceptional divisor \(D_0 \) at the singular time

\[T = \frac{a_0}{n - 1}. \]

We will assume throughout this section that the initial Kähler class lies in \(-a_0[D_0] + b_0[D_{\infty}] \) with \(0 < a_0(n + 1) < b_0(n - 1) \).

The following theorem is proved in [22].

Theorem 3.1. For any relatively compact set \(K \) of \(X \setminus D_0 \) and \(k > 0 \), there exists \(C_{K,k} > 0 \) such that for all \(t \in [0, T) \),

\[\|g(t)\|_{C^k(K, g_0)} \leq C_{K,k}. \]

It immediately implies that the Ricci flow converges in local \(C^\infty \) topology outside the exceptional divisor \(D_0 \) as \(t \to T \).

The evolution equations for \(u', u'', u''' \) are derived in [18] as below.
\[
\frac{\partial}{\partial t} u' = \frac{u'''}{w'} + \frac{(n-1)u''}{w'} - n \tag{3.6}
\]
\[
\frac{\partial}{\partial t} u'' = \frac{u(4)}{w''} - \frac{(u'''^2 + (n-1)u'' - (n-1)(u')^2}{w'} \tag{3.7}
\]
\[
\frac{\partial}{\partial t} u''' = \frac{u(5) - 3u'''u(4)}{(u'')^2} + \frac{2(u'''^3)}{(u')^3} + \frac{(n-1)u(4)}{u'} - \frac{3(n-1)u''u'''^2}{(u')^2} + \frac{2(n-1)(u'')^3}{(u')^3}. \tag{3.8}
\]

The following lemma is proved in [18] for the collapsing case when \(a_0(n+1) > b_0(n-1)\) and the same proof can be applied here. We include the proof for the sake of completeness.

Lemma 3.1. There exists \(C > 0\) such that for all \(t \in [0, T)\) and \(\rho \in (-\infty, \infty)\),

\[
(n-1)(T-t) \leq u' \leq C
\]

and

\[
0 \leq \frac{u''}{u'} \leq C, \quad -C \leq \frac{u'''}{u''} \leq C. \tag{3.10}
\]

Proof. The estimate (3.9) follows from the monotonicity of \(u'\) with \(a_t < u' < b_t\) and \(a_t = (n-1)(T-t)\).

We apply the maximum principle to prove (3.10). It is straightforward to verify that for all \(t \in [0, T)\),

\[
\lim_{\rho \to -\infty} \frac{u''(\rho, t)}{u'(\rho, t)} = \lim_{\rho \to \infty} \frac{u''(\rho, t)}{u'(\rho, t)} = 0
\]

\[
\lim_{\rho \to -\infty} \frac{u'''(\rho, t)}{u''(\rho, t)} = 1, \quad \lim_{\rho \to \infty} \frac{u'''(\rho, t)}{u''(\rho, t)} = -1.
\]

Let \(H = \frac{u''}{u'}\). \(H\) is strictly positive for all \(\rho \in (-\infty, \infty)\) and \(t \in [0, T)\). The evolution for \(H\) is given by

\[
\frac{\partial H}{\partial t} = \frac{H''}{u''} + \frac{2H'}{u'} - \frac{2H^2 - H}{u'}.
\]

Therefore \(\sup_{\rho \in (-\infty, \infty), t \in [0, T]} H \leq C\) for some uniform constant \(C > 0\) by applying the maximum principle.

Let \(G = \frac{u'''}{u''}\). Then the evolution for \(G\) is given by

\[
\frac{\partial}{\partial t} G = \frac{1}{u''} G'' + \left(\frac{n-1}{u'} - \frac{u'''}{(u'')^2}\right) G' - \frac{2(n-1)u''}{(u')^2} \left(G - \frac{u''}{u'} \right).
\]

Therefore \(\sup_{\rho \in (-\infty, \infty), t \in [0, T]} |G| \leq C\) for some uniform constant \(C > 0\) by combining the maximum principle and the uniform upper bound for \(H\).

\[\square\]
By taking the trace, we obtain an explicit expression for the scalar curvature (3.11)
\[R = -\frac{\partial u''}{\partial t} - \frac{(n - 1)2u'}{u'} - \frac{u^{(4)}}{(u'')^2} + \frac{(u'')^2}{(u'')^3} - \frac{2(n - 1)u''}{u'u''} - \frac{(n - 1)(n - 2)u''}{(u')^2} + \frac{n(n - 1)}{u'} . \]

Corollary 3.1. There exists \(C > 0 \) such that for all \(\rho \in (-\infty, \infty) \) and \(t \in [0, T) \),
\[-\frac{u^{(4)}}{(u'')^2} + \frac{(u'')^2}{(u'')^3} \geq \frac{C}{T - t} . \]

Proof. Since the scalar curvature \(R \) is uniformly bounded below, there exists \(C_1 > 0 \) such for all \(t \in [0, T) \) and \(\rho \in (-\infty, \infty) \),
\[-\frac{u^{(4)}}{(u'')^2} + \frac{(u'')^2}{(u'')^3} - \frac{2(n - 1)u''}{u'u''} - \frac{(n - 1)(n - 2)u''}{(u')^2} + \frac{n(n - 1)}{u'} \geq -C_1 . \]

There also exist \(C_2, C_3 > 0 \) such that
\[u' \geq C_2(T - t) \]
and
\[\left| \frac{u''}{u'} \right| + \left| \frac{u''}{u''} \right| \leq C_3 . \]

The estimate (3.12) immediately follows from the above estimates.

The holomorphic bisectional curvature \(R_{ijkl} \) is computed in [3] and is given by
\[R_{ijkl} = e^{-2\rho}(u' - u'')(\delta_{ij}\delta_{kl} + \delta_{ik}\delta_{jl}) + e^{-2\rho}(3u'' - 2u' - u'')(\delta_{ij}\delta_{kl} + \delta_{ik}\delta_{jl} + \delta_{kl}\delta_{ij} + \delta_{kj}\delta_{il}) + e^{-2\rho}\left(6u'' - 11u'' - u^{(4)} + 6u' + \frac{(u'' - u'')^2}{u''}\right)\delta_{ijkl} + e^{-2\rho}\frac{(u' - u'')^2}{u'}(\delta_{ij}\delta_{kl} + \delta_{ik}\delta_{jl} + \delta_{kl}\delta_{ij} + \delta_{kj}\delta_{il}) \]

Here \(\delta_{ij} \) and \(\delta_{ijkl} \) vanish unless all the indices are 1, while \(\delta_{ij} \) vanishes unless \(i = j \neq 1 \).

For any point \(p \) on \(\mathbb{C}^n \setminus \{0\} \), we can assume the coordinates at \(p \) are given by \(z(p) = (z_1, ..., z_n) = (z_1, 0, ..., 0) \) after a unitary transformation.

Then all the nonvanishing terms of the holomorphic bisectional curvature are given by
\[R_{1111} = e^{-2\rho}\left(-u^{(4)} + \frac{(u'')^2}{u'}\right) \]
\[R_{kkkk} = 2e^{-2\rho}(u' - u''), \ k > 1 \]
\[R_{11kk} = e^{-2\rho}\left(-u'' + \frac{(u'')^2}{u'}\right), \ k > 1 \]
\[R_{kkll} = e^{-2\rho}(u' - u''), \ k > 1, l > 1, \ k \neq l. \]
Lemma 3.2. There exists $C > 0$ such that on for all $t \in [0, T)$, $p = (z_1, 0, ..., 0)$ and i, j, k, l, we have at (p, t),

$$R_{ijkl} \geq -\frac{C}{T-t}(g_{ij}g_{kl} + g_{il}g_{kj}).$$

Furthermore,

$$|R_{ijkl}| \leq \frac{C}{T-t}(g_{ij}g_{kl} + g_{il}g_{kj})$$

unless $i = j = k = l = 1$.

Proof. Since $p = (z_1, 0, ..., 0)$, it suffices to verify the estimates for R_{1111}, R_{11kk} and R_{kkkl} for $k, l = 2, ..., n$.

Let $Q_{ijkl} = g_{ij}g_{kl} + g_{il}g_{kj}$. Then

$$Q_{1111} = 2e^{-2\rho(u')}^2,$$
$$Q_{kkkk} = 2e^{-2\rho(u')}^2, \quad k > 1,$$
$$Q_{11kk} = e^{-2\rho}u'u'', \quad k > 1,$$
$$Q_{kkll} = e^{-2\rho}u'^2, \quad k > 1, l > 1, \quad k \neq l.$$

Comparing R_{ijkl} and Q_{ijkl}, the lemma follows immediately. \hfill \Box

Proposition 3.1. The holomorphic bisectional curvature is uniformly bounded below by $-C(T-t)^{-1}$ on $X \times [0, T)$ for some fixed constant $C > 0$.

Proof. It suffices to calculate the lower bound of the holomorphic bisectional curvature at a point $p = (z_1, 0, ..., 0)$ and $t \in [0, T)$. Let $V = V^i \frac{\partial}{\partial z^i}$ and $W = W^i \frac{\partial}{\partial z^i}$ be two vectors in TX_p. Then there exists $C > 0$ such that

\[
R_{ijkl}V^iV^jW^kW^l
= R_{1111}V^1V^1W^1W^1 + (1 - \delta_{ijkl})R_{ijkl}W^kW^l
\geq -\frac{2C}{T-t}g_{11}g_{11} |V^1|^2 |W^1|^2 - \frac{C}{T-t}(g_{ij}g_{kl} + g_{il}g_{kj}) |V^i| |V^j| |W^k| |W^l|
\geq -\frac{4C}{T-t} |V|^2 |W|^2.
\]

Definition 3.1. Let g be a Kähler metric on a Kähler manifold M. At each point $p \in X$, we can choose the normal coordinates at p such that for $i, j = 1, ..., n$, $g_{ij}(p) = \delta_{ij}$ is the identity matrix and

$$R_{ij}(p) = \delta_{ij}\lambda_j.$$

We define the k^{th} symmetric polynomial of Ricci curvature of g at p by

$$\sigma_k = \sigma_k(\text{Ric}(g)) = \sum_{j_1 < j_2 < ... < j_k} \lambda_{j_1}\lambda_{j_2}...\lambda_{j_k}$$

for $1 \leq k \leq n$.
The next proposition gives a uniform bound for σ_k in terms of the curvature tensor $R_{1\bar{1}1\bar{1}}$ at each point $z = (z_1, 0, ..., 0)$.

Proposition 3.2. There exists $C > 0$ such that for all $(p, t) \in X \times [0, \infty)$,

$$|\sigma_k(p, t)| \leq \frac{C |Rm(p, t)|}{(T - t)^{k-1}}.$$

Proof. For any point $p \in \mathbb{C}^n \setminus \{0\}$, we can assume that $p = (z_1, 0, ..., 0)$. Then the eigenvalues of $Ric(g)$ at p with respect to g are given by

$$\lambda_1 = -\frac{\partial u''}{u''} = -\frac{1}{2} \frac{u'''}{u''}^2 + \frac{(n-1)u''}{(u'')^2} + \frac{n-1}{u''}$$

$$\lambda_2 = ... = \lambda_n = -\frac{\partial u''}{u'} = -\frac{u''}{u''' - \frac{(n-1)u''}{(u'')^2} + \frac{n}{u''}.$$

Then $(T - t)|\lambda_j|$ is uniformly bounded for $j = 2, ..., n$ and

$$|\sigma_k|(p, t) = \sum_{j_1 < j_2 < ... < j_k} |\lambda_{j_1} \lambda_{j_2} ... \lambda_{j_k}| \leq C(T-t)^{-(k-1)}|\lambda_1| \leq C(T-t)^{-(k-1)}|Rm|_{g(p, t)}.$$

□

Lemma 3.3. For any $p \in D_0$, we have

$$|Ric(p, t)|_{g(t)} \geq \frac{1}{T - t}.$$

Proof. It suffices to compute $e^{-\rho v'}$ which is one of the eigenvalues in the Ricci tensors since $D_0 = \{\rho = -\infty\}$.

$$\lim_{\rho \to -\infty} e^{-\rho v'}(\rho) = -\lim_{\rho \to -\infty} \frac{u''}{u'} - \frac{(n-1)u''}{(u')^2} + \lim_{\rho \to -\infty} \frac{n}{u'}$$

$$= (n-1) \lim_{\rho \to -\infty} (u')^{-1}$$

$$= \frac{1}{T - t}.$$

Therefore $|Ric|_g$ is uniformly bounded below by $(T-t)^{-1}$ along the exceptional divisor D_0. □

4. **Type I singularities**

In this section, we prove that the Ricci flow must develop Type I singularities with the same assumptions in section 4.

Let’s first recall the definition for a Type I singularity of the Ricci flow.

Definition 4.1. Let $(M, g(t))$ be a smooth solution of the Ricci flow (1.1) for $t \in [0, T)$ with $T < \infty$. It is said to develop a Type I singularity at T if it cannot be smoothly extended past T and there exists $C > 0$ such that for all $t \in [0, T)$,

$$\sup_M |Rm(g(t))|_{g(t)} \leq \frac{C}{T - t}.$$

The following splitting theorem is proved in [4] as a complex analogue of Hamilton’s splitting theorem on Riemannian manifolds with nonnegative curvature operator [10].

Theorem 4.1. Let \(g \) be a complete solution of the Kähler-Ricci flow on a noncompact simply connected Kähler manifold \(M \) of dimension \(n \) for \(t \in (-\infty, \infty) \) with bounded and nonnegative holomorphic bisectional curvature. Then either \(g \) is of positive Ricci curvature for all \(p \in M \) and all \(t \in (-\infty, \infty) \), or \((M, g)\) splits holomorphically isometrically into a product \(\mathbb{C}^k \times N^{n-k} \) \((k \geq 1)\) flat in \(\mathbb{C}^k \) direction and \(N \) being of nonnegative holomorphic bisectional curvature and positive Ricci curvature.

We are now able to exclude Type II singularities.

Theorem 4.2. Let \(X = \mathbb{CP}^n \) blown-up at one point and \(g(t) \) be the solution of the Kähler-Ricci flow on \(X \) starting with a \(U(n) \)-invariant Kähler metric \(g_0 \). If \(g_0 \) lies in the Kähler class \(-a_0[D_0] + b_0[D_\infty]\) for \(0 < a_0(n+1) < b_0(n-1) \). Then the flow develops Type I singularities at \(T = a_0/(n-1) \).

Proof. Suppose the flow develops Type II singularities. Let \(t_j \) be an increasing sequence converging to \(T = (n-1)a_0 > 0 \) and \(p_j \) a sequence of points on \(X \) such that

\[
K_j = |Rm(p_j, t_j)|_{g(t_j)} = \sup_X |Rm|_{g(t_j)}
\]

and

\[
\lim_{j \to \infty} (T - t_j)^{-1} K_j^{-1} = 0.
\]

Applying the standard parabolic rescaling, we define

\[
g_j(t) = K_j g(t_j + K_j^{-1} t).
\]

After extracting a convergent subsequence, \((X, g_j(t), p_j)\) converges in pointed Cheeger-Gromov-Hamilton sense to a complete eternal solution \((X_\infty, g_\infty(t), p_\infty)\) on a complete Kähler manifold \(X_\infty \) of dimension \(n \). Furthermore, by the lower bound of the holomorphic bisectional curvature of \(g(t) \) by Proposition 3.1, the limiting Kähler metric \(g_\infty(t) \) has nonnegative holomorphic bisectional curvature everywhere on \(X_\infty \). On the other hand, the symmetric product of the Ricci curvature \(g_\infty \) vanishes everywhere in \(X_\infty \),

\[
\sigma_k(Ric(g_\infty)) = 0
\]

for \(2 \leq k \leq n \). This implies that the Ricci curvature of \(g_\infty \) is not positive at each point of \(X_\infty \). By applying the splitting theorem [4] for \((n-1)\) times, \((X_\infty, g_\infty, p_\infty)\), the eternal solution on the universal cover of \((X_\infty, g_\infty, p_\infty)\), splits holomorphically isometrically into \(\mathbb{C}^{n-1} \times N \), where \(N \) is a compact or complete Riemann surface with positive scalar curvature. By the classification of eternal solutions of real dimension 2 by Hamilton [11], \((N, \tilde{g}_\infty(t)|_N)\) is a steady gradient soliton and hence it must be the cigar soliton. However, it violates Peralman’s local non-collapsing [15], so does \((X_\infty, g_\infty)\). It then leads to a contradiction.
5. Blow-up limits

In this section, we will prove that the blow-up limit of the Ricci flow near the singular time T along the exceptional divisor is a nontrivial complete shrinking gradient Kähler-Ricci soliton.

We first prove a diameter bound of the exceptional divisor D_0.

Lemma 5.1. For all $t \in [0, T)$,

\begin{equation}
 g(t)|_S = a_0(n - 1)(T - t)g_{FS}.
\end{equation}

and so

\begin{equation}
 \text{diam}(S, g(t)|_{D_0}) = \alpha_n(a_0(n - 1)(T - t))^{1/2}
\end{equation}

where g_{FS} is a Fubini-Study metric on \mathbb{CP}^{n-1} and α_n is the diameter of $(\mathbb{CP}^{n-1}, g_{FS})$.

Proof. The Kähler metric $g(t)$ is the metric completion of the following metric on $\mathbb{C}^n \setminus \{0\}$

\[\omega(t) = a_0(n - 1)(T - t)\sqrt{-1}\partial\bar{\partial}\rho + \sqrt{-1}\partial\bar{\partial}u_0(e^\rho, t), \]

where $u_0(\cdot, t)$ is smooth and for each $t \in [0, T)$ with $u'(0, t) > 0$. Note that after extending $\sqrt{-1}\partial\bar{\partial}\rho = \sqrt{-1}\partial\bar{\partial}\log |z|^2$ to \mathbb{CP}^n blown-up at one point, its restriction on D_0 is exactly a Fubini-Study metric. The lemma then follows immediately. \(\square\)

Now we can complete the proof of Theorem 1.1 by identifying the blow-up limit of the Ricci flow at the singular time.

Proposition 5.1. Fix any $p \in D_0$. Then for every $K_j \to \infty$, the rescaled Ricci flows $(X, g_j(t), p)$ defined on $[-K_jT, 0)$ by

\[g_j(t) = K_jg(T + K_j^{-1}t) \]

subconverges in Cheeger-Gromov-Hamilton sense to a complete shrinking gradient Kähler-Ricci soliton on a complete Kähler manifold homeomorphic to \mathbb{C}^n blown-up at one point.

Proof. We first show that the blow-up limit is a nontrivial complete shrinking soliton. Fix any point $p \in D_0$ in the exceptional divisor. Since $(X, g(t))$ is a Type I Ricci flow, the rescaled Ricci flow $(X, g_j(t), p)$ always subconverges to a shrinking gradient soliton $(X_\infty, g_\infty(t), p_\infty)$ in pointed Cheeger-Gromov-Hamilton sense, by the compactness result of Naber [14]. Such a limiting soliton cannot be flat because of Lemma 3.3. In particular, $(X_\infty, g_\infty, p_\infty)$ is a complete shrinking gradient Kähler-Ricci soliton on a complete Kähler manifold X_∞.

We now show that X_∞ is in fact homeomorphic to \mathbb{C}^n blown-up at one point. Fix a closed interval $[a, b] \subset (-\infty, 0)$, the rescaled Ricci flow $g_j(t)$ restricted to D_0 is uniformly equivalent to a fixed standard Fubini-Study metric on \mathbb{CP}^{n-1} for all j and $t \in [a, b]$ by Lemma 5.1 and so there exist $d, D > 0$ such that the diameter of D_0 with respect to $g_j(t)$ is uniformly bounded between d and D for all j and $t \in [a, b]$. We denote by

\[B_g(p, R) \]
the geodesic ball with respect to \(g \) centered at \(p \) with radius \(R \). We then consider
\[
B_{j,t}(D_0, R) = \bigcup_{p \in D_0} B_{g_j(t)}(p, R)
\]
for each \(t \in [a, b] \). By choosing \(R \) sufficiently large, we have
\[
B_{g_j(t)}(p, R) \subset B_{j,t}(D_0, R) \subset B_{g_j(t)}(p, 2R)
\]
for any point \(p \in D_0 \) because \(g_j(t) \) is \(U(n) \)-invariant. By definition, for all \(t \in [a, b] \), \(B_{g_j(t)}(p, R) \) subconverges to \(B_{g_{\infty}(t)}(p_{\infty}, R) \) in Cheeger-Gromov-Hamilton sense and so \(B_{g_{\infty}(t)}(p_{\infty}, R) \) is homeomorphic to \(B_{g_j(t)}(p, R) \) for sufficiently large \(j \). We then obtain an exhaustion \(B_{g_{\infty}(t)}(p, R_k) \) with each \(R_k \) sufficiently large and \(R_k \to \infty \). Each of them is homeomorphic to \(\mathbb{C}^n \) blown-up at one point. Therefore \(X_{\infty} \) is homeomorphic to \(\mathbb{C}^n \) blown-up at one point.

We remark that the convergence in the above proof is \(U(n) \)-equivariant and the limiting shrinking soliton \((X_{\infty}, g_{\infty}, p_{\infty}) \) is invariant under a free action of the unitary group \(U(n) \). We also remark that the Type I blow-up limit is a trivial shrinking soliton if one chooses a fixed base point outside the exceptional divisor \(D_0 \). This is because the flow converges in local \(C^\infty \) topology outside \(D_0 \) to a smooth Kähler metric on \(X \setminus D_0 \) by Theorem \textbf{[3.1]} \textbf{[22]}

Combing Theorem \textbf{4.2} and Proposition \textbf{5.1} we complete the proof of Theorem \textbf{[1.1]}

6. Some generalizations

In this section, we discuss some generalizations of Theorem \textbf{[1.1]}. First, Theorem \textbf{[1.1]} can be easily generalized to \(X_{n,k} \) defined in section 1 by the same argument in the previous sections.

\textbf{Theorem 6.1.} The Ricci flow on \(X_{n,k} \) must develop Type I singularities for any \(G_{n,k} \)-invariant initial Kähler metric.

Let \(g(t) \) be the smooth solution defined on \(t \in [0, T) \), where \(T \in (0, \infty) \) is the singular time. For every \(K_j \to \infty \), we consider the rescaled Ricci flow \((X, g_j(t')) \) defined on \([-K_j T, 0) \) by
\[
g_j(t') = K_j g(T + K_j^{-1} t').
\]
Then one and only one of the following must occur.

1. If \(\lim \inf_{t \to T} (T-t)^{-1} \text{Vol}(g(t)) = \infty \), then \((X, g_j(t'), p) \) subconverges in Cheeger-Gromov-Hamilton sense to a complete nontrivial shrinking gradient Kähler-Ricci soliton on a complete Kähler manifold homeomorphic to the total space of \(L^{-k} = O_{\mathbb{C}^{n-1}}(-k) \), for any \(p \) in the exceptional divisor.

2. If \(\lim \inf_{t \to T} (T-t)^{-1} \text{Vol}(g(t)) \in (0, \infty) \), then \((X, g_j(t'), p_j) \) subconverges in Cheeger-Gromov-Hamilton sense to \((\mathbb{C}^{n-1} \times \mathbb{C}^1, g_{\mathbb{C}^{n-1}} \oplus (-t') g_{FS}) \), where \(g_{\mathbb{C}^{n-1}} \) is the standard flat metric on \(\mathbb{C}^{n-1} \) and \(g_{FS} \) the Fubini-Study metric on \(\mathbb{C}^1 \) for any sequence of points \(p_j \) \textbf{[7]}

3. If \(\lim \inf_{t \to T} (T-t)^{-1} \text{Vol}(g(t)) = 0 \), then \((X, g_j(t')) \) converges in Cheeger-Gromov-Hamilton sense to the unique compact shrinking Kähler-Ricci soliton on \(X_{n,k} \) blown-up at one point \textbf{[24]}.
We can also consider the Calabi symmetry introduced by Calabi [2] for projective bundles over a Kähler-Einstein manifold (also see [12, 20]). In particular, we can consider the Ricci flow on generalizations of $X_{n,k}$

$$X_{m,n,k} = \mathbb{P} (\mathcal{O}_{\mathbb{C}P^n} \oplus \mathcal{O}_{\mathbb{C}P^n} (-k)^{\oplus (m+1)}), \ k = 1, 2, \ldots.$$

Similar results are obtained for $X_{m,n,k}$ in [20] for global Gromov-Hausdorff convergence at the singular time, as those for $X_{n,k}$ in [18]. Furthermore, one can obtain the same lower bound for the holomorphic bisectional curvature as in Proposition 3.1.

Proposition 6.1. Let $g(t)$ be the solution of the Ricci flow on $X_{m,n,k}$ for an initial Kähler metric with Calabi symmetry. Then if $1 \leq m \leq n$ and if

$$\liminf_{t \to T} \text{Vol}(g(t)) > 0$$

where $T > 0$ is the singular time, then the holomorphic bisectional curvature of $g(t)$ is uniformly bounded below by $-\frac{C}{t}$ for some constant $C > 0$.

Although we are unable to exclude Type II singularities, one can show by the same argument in section 4, that the universal cover of the blow-up limit is an eternal solution of the Ricci flow which splits into $\mathbb{C}^n \times N^{m+1}$ flat in \mathbb{C}^n and N^{m+1} of nonnegative holomorphic bisectional curvature, if the flow develops Type II singularities. Of course, a Type I bound for the scalar curvature suffices to prove a similar theorem as Theorem 1.1.

Acknowledgements The author would like to thank Zhenlei Zhang for many stimulating discussions. He would like also like to thank Valentino Tosatti for many helpful suggestions.

References

[1] Aubin, T. *Équations du type Monge-Ampère sur les variétés kählériennes compactes*, Bull. Sci. Math. (2) 102 (1978), no. 1, 63–95

[2] Calabi, E. *Extremal Kähler metrics*, in Seminar on Differential Geometry, pp. 259–290, Ann. of Math. Stud., 102, Princeton Univ. Press, Princeton, N.J., 1982

[3] Cao, H.-D. *Existence of gradient Kähler-Ricci solitons*, Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), 1–16, A K Peters, Wellesley, MA, 1996

[4] Cao, H.-D. *Dimension reduction in the Kähler-Ricci flow*, Comm. Anal. Geom. 12 (2004), no. 1-2, 305–320

[5] Chow, B. *The Ricci flow on the 2-sphere*, J. Differential Geom. 33 (1991) 325–334

[6] Feldman, M., Ilmanen, T. and Knopf, D. *Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons*, J. Differential Geom. 65 (2003), no. 2, 169–209

[7] Feng, T. On the collapsing rate of the Kähler-Ricci flow with finite-time singularity, arXiv:1112.5987

[8] Koiso, N. *On rotationally symmetric Hamilton’s equation for Kähler-Einstein metrics*, Recent topics in differential and analytic geometry, 327–337, Adv. Stud. Pure Math., 18-I, Academic Press, Boston, MA, 1990

[9] Hamilton, R. S. *Three-manifolds with positive Ricci curvature*, J. Differ. Geom. 17 (1982), no. 2, 255–306

[10] Hamilton, R. S. *Four-manifolds with positive curvature operator*, J. Differ. Geom. 24 (1986), 153–179
Hamilton, R.S. The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), 7–136, Int. Press, Cambridge, MA, 1995

[12] Li, C. On rotationally symmetric Kähler-Ricci solitons, [arXiv:1004.4049]

[13] Maxim, D. On the blow-up of four dimensional Ricci flow singularities, preprint

[14] Naber, A. Noncompact shrinking 4-solitons with nonnegative curvature, J. Reine Angew. Math. 645 (2010), 125–153

[15] Perelman, G. The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159

[16] Perelman, G. unpublished work on the Kähler-Ricci flow

[17] Phong, D.H. and Sturm, J. On stability and the convergence of the Kähler-Ricci flow, J. Differential Geom. 72 (2006), no. 1, 149–168

[18] Song, J. and Weinkove, B. The Kähler-Ricci flow on Hirzebruch surfaces, J. Reine Angew. Math. 659 (2011), 141–168

[19] Song, J. and Weinkove, B. Contracting exceptional divisors by the Kähler-Ricci flow, arXiv:1003.0718

[20] Song, J. and Yuan, Y. Metric flips with Calabi ansatz, to appear in G.A.F.A., arXiv:1011.1608

[21] Tian, G. Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1–37

[22] Tian, G. and Zhang, Z. On the Kähler-Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B 27 (2006), no. 2, 179–192

[23] Tsuji, H. Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type, Math. Ann. 281 (1988), 123–133

[24] Wang, X.J. and Zhu, X. Kähler-Ricci solitons on toric manifolds with positive first Chern class, Advances Math. 188 (2004) 87–103

[25] Yau, S.-T. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978), 339–411

[26] Yau, S.-T. Open problems in geometry, Proc. Symposia Pure Math. 54 (1993), 1–28 (problem 65)

[27] Zhang, Z. On degenerate Monge-Ampère equations over closed Kähler manifolds, Int. Math. Res. Not. 2006, Art. ID 63640, 18 pp

[28] Zhu, X. Kähler-Ricci flow on a toric manifold with positive first Chern class, arXiv:math/0703486

Department of Mathematics, Rutgers University, Piscataway, NJ 08854
E-mail address: jiansong@math.rutgers.edu