Antibacterial, antivirulence and antifungal activity of silver nanoparticles synthesized using alkhal mother shae

Esam J. Al-Kalifawi¹, Yasamine. J. Al-Azzawi¹ and Mohammed A. Feaza¹

¹Department of Biology, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq.

*E-mail: aesam365@yahoo.com

Abstract. Silver nanoparticles were biosynthesized using alkhal mother shae. Nanoparticles were characterized using four methods. The results of the fourth methods proved that silver nanoparticles are spherical shape with a size ranging between 30-40 nm. AMS-AgNPs has antibacterial and antibiofilm activity against gram negative and gram positive tested bacteria, and it has antifungal and antivirulence activity against five types of fungi. Results declare the effect of AMS-AgNPs on the fungus, it can disrupt the integrity fungal cell wall, promoting the permeability and the leakage of the cell constituents, and eventually induce cell death, which is reached from the Congo red dye absorption test and the formation of swelling in the hyphae of the fungal. This study revealed that AMS-AgNPs can be used as an alternative medicin for pathogenic bacteria and fungi.

Keywords. Alkhal Mother Shae, Silver nanoparticles, antibacterial, antifungal, antivirulence.

1. Introduction

Alkhal Mother is a substance composed of yeast and acetic acid bacteria especially, Acetobacter xylinum which forms a cellulose pellicle on shae broth. It is produced by fermenting shae using a "symbiotic 'colony' of bacteria and yeast" (SCOBY). Actual contributing microbial populations in SCOBY cultures vary, but the yeast component generally includes Saccharomyces and other species, and the bacterial component almost includes A. xylinus to oxidize yeast-produced alcohols to acetic and other acids [1]. Tea is the oldest and cheapest health beverage in the world next to water [2]. Today, tea is produced in over 20 countries in tropical, sub-tropical and temperate regions. It is the most widely consumed beverage after water, due to its health, sensory, stimulant, relaxing and cultural properties [3]. The beneficial effects of tea are owing to its polyphenolic compounds. Among the shae polyphenols, flavonoids, especially catechins, are the leading functional components, which accounts for 30% of the dry weight of green tea leaves. Fresh tea leaves are very rich in catechins, which include mainly epicatechin (EC), epicatechin-3-gallate (ECG), epigallocatechin (EGC), epigallocatechin-3-gallate (EGCG), and gallatechin (GC). EGCG is the most abundant catechin in green tea which accounts for at least 65% of the total catechin [4]. Black tea which grows in many parts of world, is used as an herbal tea for Drinking. Camellia sinensis leaves (Black tea) have been reported to contain considerable amounts of tannin products [5]. In Iraq, mats of personally are

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
individually circulated among those people seeking for health remedy. So, this mat is called “Alkhal mother” as an acquired local traditional Iraqi name, however, it has little scientific studies. The goal of this study is to examine the antibacterial and antifungal activities of silver nanoparticles synthesized using Alkhal Mother Shae (AMS).

2. Materials and Methods

2.1. Collection of bacteria

The bacteria were isolated from patients with infection wounds and burns attending to Al-Yarmouk Teaching Hospital for the period from October to December, 2019, and used as an antimicrobial.

2.2. Collection of fungi

Five types of fungi isolates from Mycotoxins laboratory. Faculty of Sciences, University of Baghdad.

2.3. Alkhal Mother SCOBY

Alkhal Mother SCOBY was obtained from (Dr. Al-Kalifawi, Esam J.), as described by [6].

2.4. Cultivation of Alkhal Mother SCOBY

Alkhal Mother cultured as described by [7].

2.5. Extracellular synthesis of silver nanoparticles

AMS-AgNPs synthesized as described by [8].

2.6. Properties of AgNPs

2.6.1. UV-Vis analysis

The silver nanoparticle colloidal was examined for the absorption peak, which falls within the range 350-450 nm

2.6.2. FT-IR Spectroscopy

The active biological groups present in Alkhal Mother Shae, which serve to reducing and capping the resulting silver nanoparticles, have been identified as described by [8].

2.6.3. XRD analysis

The peaks of the AgNPs were determined using the XRD device as described by [9].

2.6.4. SEM Analysis

The silver nanoparticles were scanned to find out the shape and clustering of the particles.

2.6.5. Antibacterial activity determination
The effect of AMS-AgNPs was determined as described by [10].

2.6.6. Antibiofilm activity determination

Detection of antibiofilm activity of AMS-AgNPs against *Pseudomonas aeruginosa* and *Staphylococcus aureus* isolates using Microtiter plate method as mentioned in [11].

2.6.7. Antifungal activity determination

The antifungal activity of AMS-AgNPs was tested by the radial growth of tested fungi, after the addition of different concentration of silver nanoparticles to potato dextrose agar medium. The media inoculated with the tested fungi and incubated at 25±2°C [12].

2.6.8. The effect of AMS-AgNPs on cell wall function

The effect of AMS-AgNPs on cell wall efficacy was studied by phenotypic changes and congo-red dye test [13].

3. Results and Discussion

The fresh suspension of (AMS) was bright brown but it turned reddish brown after adding it to the silver nitrate solution. This color change indicates the completion of the reaction and the formation of silver nanoparticles Figure 1.

![Figure 1. Synthesis of AMS-AgNPs: A- Solution of silver nitrate. B- (AMS), and C- AMS-AgNPs colloidal.](image)

3.1. UV-Vis Spectrophotometry

UV-Vis absorption spectrum of AMS-AgNPs is shown in figure 2. It’s at 430 nm.
3.2. Fourier Transform Infra-Red Spectroscopy

Figure 3 shows the spectra for Alkhal Mother Shae were obtained using an FTIR spectrophotometer. Several peaks were observed indicating the Alkhal Mother Shae is composed of various functional groups. The broad band at about 3448.72 cm$^{-1}$ can be attributed to bond –OH groups. The band at about 2356.89 cm$^{-1}$ can be attributed to C=N bond Amine I groups are also observed at 1635.64 cm$^{-1}$. The peak at 1543.05 cm$^{-1}$ is attributed to secondary amine groups. The peaks at 1458.18 and 1396.46 cm$^{-1}$ are both related to the symmetric bending of CH3. While the peak at about 1107.14 cm$^{-1}$ can be attributed to C=O stretching vibrations groups. The peak at 470.63 cm$^{-1}$ correspond to stretching vibration of amine groups.
3.3. XRD pattern of AMS-AgNPs

Figure 4 shows the main peaks obtained at 111, 200, 220, and 311 correspond to reflections with 2θ values of the Bragg angles 38.12°, 44.31°, 64.46°, and 76.98°, respectively. These results confirm that the material tested are AgNPs and are of high purity. The average crystallite size of AMS-AgNPs in range (30-40 nm).

![Figure 4. X-ray diffraction of AMS-AgNPs.](image)

3.4. SEM analysis of AMS-AgNPs

The scanning showed that the AMS-AgNPs are spherical in shape and are aggregated in clusters Figure 5.

![Figure 5. SEM micrographs of AMS-AgNPs.](image)
The results in Table (1) and Figures (6 and 7) shows the inhibition zone was 18 mm for *P. aeruginosa* No.1, 3, 4, 7, 9, 10 and *S. aureus* No.3, 5, 6, 9. 16 mm for *P. aeruginosa* No.2, 8 and *S. aureus* No.4, 10, 14 mm for *P. aeruginosa* No. 5, 6 and *S. aureus* No.1, 2, 7. The IZ was 10 mm for *P. aeruginosa* No.1, 4, 6, 8, 9, 10 and *S. aureus* No.2, 3, 7, 8, 9. 11 mm for *P. aeruginosa* No.2, 5 and *S. aureus* No.1, 5, 10, 12 mm for *P. aeruginosa* No.3, 7 and *S. aureus* No.4, 6.

Table 1. Activity of the AMS-AgNPs against the tested bacteria.

Isolated bacteria	Zone of Inhibition (mm)		
	Silver nitrate solution	Alkhal mother tea	Silver nanoparticles colloidal
P. aeruginosa No.1	0	10	18
P. aeruginosa No.2	0	11	16
P. aeruginosa No.3	0	12	18
P. aeruginosa No.4	0	10	18
P. aeruginosa No.5	0	11	14
P. aeruginosa No.6	0	10	14
P. aeruginosa No.7	0	12	18
P. aeruginosa No.8	0	10	16
P. aeruginosa No.9	0	10	18
P. aeruginosa No.10	0	10	18
S. aureus No.1	0	11	14
S. aureus No.2	0	10	14
S. aureus No.3	0	10	18
S. aureus No.4	0	12	16
S. aureus No.5	0	11	18
S. aureus No.6	0	12	18
S. aureus No.7	0	10	14
S. aureus No.8	0	10	14
S. aureus No.9	0	10	18
S. aureus No.10	0	11	16

Figure 6: Antibacterial of AMS-AgNPs using the test bacterium Pseudomonas aeruginosa No.4. A - Solution of silver nitrate, B - Alkhal Mother Shae, C - AgNPs colloidal.
The results showed the inhibition of biofilm formation for *P. aeruginosa* and *S. aureus* was 70% and 60%, respectively when using AMS-AgNPs at 0.1 concentration. While the inhibition of biofilm formation for *P. aeruginosa* and *S. aureus* was 80% and 70%, respectively when using AMS-AgNPs at 0.5 concentration table 2 and figures 8 and 9.

Table 2. Inhibition of biofilm formation of *Pseudomonas aeruginosa* and *Staphylococcus aureus* using AMS-AgNPs.

Isolate number	The value of biofilm	The value of biofilm after addition 0.1 mg/ml AgNPs	The value of biofilm after addition 0.5 mg/ml AgNPs
P. aeruginosa No.1	0.176	0.90	0.80
P. aeruginosa No.2	0.169	0.75	0.62
P. aeruginosa No.3	0.188	0.95	0.86
P. aeruginosa No.4	0.179	0.88	0.75
P. aeruginosa No.5	0.295	0.280	0.200
P. aeruginosa No.6	0.289	0.222	0.210
P. aeruginosa No.7	0.170	0.89	0.78
P. aeruginosa No.8	0.187	0.170	0.91
P. aeruginosa No.9	0.200	0.93	0.85
P. aeruginosa No.10	0.199	0.87	0.70
S. aureus No.1	0.274	0.200	0.192
S. aureus No.2	0.217	0.195	0.187
S. aureus No.3	0.223	0.102	0.89
S. aureus No.4	0.224	0.188	0.171
S. aureus No.5	0.193	0.88	0.76
S. aureus No.6	0.184	0.90	0.83
S. aureus No.7	0.234	0.210	0.200
S. aureus No.8	0.310	0.304	0.298
S. aureus No.9	0.198	0.84	0.71
S. aureus No.10	0.186	0.160	0.90
Inhibition of biofilm formation of Pseudomonas aeruginosa using AMS-AgNPs.

Inhibition of biofilm formation of Staphylococcus aureus using AMS-AgNPs.

The results in Table (3) and Figure (10, 11) shows that AMS-AgNPs has effective antifungal activities on the Aspergillus flavus, Aspergillus parasiticus, Aspergillus niger, Fusarium oxysporum and Fusarium verticillioides as indicated by the diameter of their radial growth. The radial growth of Aspergillus flavus, Aspergillus parasiticus and Aspergillus niger reduce from 9 cm for control to 2 cm at 15% concentration of silver nanoparticles in the culture media. Whereas the radial growth of Fusarium oxysporum and Fusarium verticillioides reduce from 7 cm for control to 1 cm at 15% concentration of silver nanoparticles in the culture media.

Table 3. The antifungal effect of the AMS-AgNPs.

Isolated microbes	control	5%	10%	15%
Aspergillus flavus	9	7	4	2
Aspergillus parasiticus	9	7	4	2
Aspergillus niger	9	7	3	2
Fusarium oxysporum	7	2	1.5	1
Fusarium verticillioides	7	3	2	1

* Radial growth of fungi (cm).
Figure 10. Antifungal activity of AMS-AgNPs against *Aspergillus flavus*.

Figure 11. Antifungal activity of AMS-AgNPs against *Fusarium oxysporum*.

The effect of silver nanoparticles on the fungus was also studied and it was found that AMS-AgNPs lead to swelling in the fungal hyphae Figure 12. These swelling effect on permeability of hyphae cell and thus kill it, which is reached from the Congo red dye absorption test Figure 13.
Figure 12. Show the effect of AMS-AgNPs on the *Fusarium verticillioides* hyphae. A- Control. B- treated with AMS-AgNPs. Power of magnification 100X.

Figure 13. Show the Congo red dye absorption test. A- Normal hypha of *Fusarium verticillioides*. B- treated with AMS-AgNPs. Power of magnification 100X.

4. Discussion

In the present study, AgNPs was biosynthesized using alkhal mother shae. Production of AgNPs was confirmed by the change in colour and formation of gray aggregates of AgNPs. This result is in agreement with many studies [16, 17, 18] which found that the formation of gray aggregates is
evidence of completeness of reaction and formation of AgNPs. The crystalline AgNPs were confirmed by UV absorption spectrum at 430 nm. This result is accordance with several studies [19, 20, 21] which reported that the peak absorption of AgNPs is around 300-500 nm. The functional groups associated with the process of reducing and stabilizing AgNPs were analyzed using Fourier Transform Infrared Spectroscopy. Several peaks were observed indicating that the alkhal mother shae is composed of various functional groups are attributed to secondary amine groups. These finding are acceptable with many studies [22, 23, 24] which found these groups are responsible for reducing and capping of AgNPs. The results of X-ray Diffraction spectrum with 2θ values was at Bragg angles 38.12, 44.31, 64.46 and 76.98, respectively. These results are consistent with several studies in which biosynthesis of nanoparticles of silver molecules using tea leaf extract and kombucha tea [25, 26, 27]. Particle size causes the broadening of peaks in the XRD patterns and by using Debye-Scherrer’s equation, the average particles size were arrange 30-40 nm. Results of the present study show that AMS-AgNPs have antibacterial activity against Gram positive and Gram negative bacteria which tested. The antimicrobial activity of alkhal mother shae has less effect against tested isolates. These finding are in agreement with several studies [28, 29, 30, 31]. Who’s found that the silver nanoparticles synthesized by leaf tea extract had antibacterial activity against Gram-negative and Gram-positive bacteria. The inhibition of biofilm formation for P. aeruginosa and S. aureus was 70% and 60%, respectively when using AMS-AgNPs at 0.1 concentration. While the inhibition of biofilm formation for P. aeruginosa and S. aureus was 80% and 70% respectively when using AMS-AgNPs at 0.5 concentration. These finding are in agreement with several studies [32, 33, 34] which found that the antibiofilm activity of AgNPs was between 50 to 90 in Gram negative bacteria and about 50 to 80 in Gram positive bacteria. AMS-AgNPs has antifungal activity on the Aspergillus flavus, Aspergillus parasiticus, Aspergillus niger, Fusarium oxysporum and Fusarium verticillioides as indicated by the diameter of their radial growth. Whereas the radial growth of Aspergillus flavus, Aspergillus parasiticus and Aspergillus niger reduce from 9 cm for control to 2cm at 15% concentration of silver nanoparticles in the culture media. These finding are in agreement with several studies which found the effect of silver nanoparticles against various plant pathogenic fungi [35, 36, 37]. The two species have been selected because they are producers of the mycotoxins. The Aspergillus, especially A. flavus and A. parasiticus, which produce aflatoxins and Fusarium, which produces Trichothecenes. Aflatoxins is the leading cause of cancer. Trichothecenes is used in chemical warfare [38, 39]. For these reasons, the eradication of these fungi protects plants, from the infection of and animals, humans from their toxins [40, 41]. The effect of silver nanoparticles on the fungus was also studied and it was found that silver nanoparticles lead to swelling in the fungal hyphae and thus kill it, which is reached from the Congo red dye absorption test [42]. These finding are in agreement with several studies [43, 44, 45] in which found AMS-AgNPs disrupt the integrity fungal cell wall, promoting the permeability and the leakage of the cell constituents, and eventually induce cell death.

5. Conclusions

We concluded that the AMS-AgNPs can be used as an alternative medicin for pathogenic bacteria and fungi.

6. Acknowledgement

We would like to thanks Dr. Nehmeh, Mycotoxins laboratory. Faculty of Sciences, University of Baghdad for supplying us with fungal isolates.
7. References

[1] Al-Kalifawi E J and Hassan IA 2014 Factors Influence on the yield of bacterial cellulose of Kombucha (Khubdat Humza) Baghdad Sci. J. 11 1420.

[2] Rahman MM, Kalam MA Salam MA and Rana MR 2013 Aged leaves effect on essential components in green and oolong tea Int. J. Agril. Res. Innov. Tech. 3 54.

[3] Ahmed S and Stepp JR 2012 Green tea: plants, processing, manufacturing and production Tea Health Dis. Prev. 1 19.

[4] Zaveri NT 2006 Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications Life Sci. 78 2073.

[5] Gramza A, Korczak J and Amarowicz R 2005 Tea polyphenols-their antioxidant properties and biological activity-a review Pol. J. Food Nutr. Sci. 14 219.

[6] Al-Kalifawi EJ 2014 Produce bacterial cellulose of kombucha (Khubdat Humza) from honey. J. Genet. Environ Resour. Conserv. 2 39.

[7] Chen C and Liu BY 2000 Changes in major components of tea fungus metabolites during prolonged fermentation J. Appl. Microbiol. 89 834.

[8] Moosa AA, Ridha AM and Allawi MH 2015 Green Synthesis of Silver Nanoparticles using Spent Tea Leaves Extract with Atomic Force Microscopy Int. J. Curr. Eng. Technol. 5 3233.

[9] Bykkam S, Ahmadipou M, Narisingam S, Kalagadda VR and Chidurala SC 2015 Extensive Studies on X-Ray Diffraction of Green Synthesized Silver Nanoparticles Adv. Nanopart. 4 1.

[10] Valgas C, de Souza SM, Smânia EFA and Jr. AS 2007 Screening Methods to Determine Antibacterial Activity of Natural Products Braz. J. Microbiol. 38 369.

[11] Sharma BK, Saha A, Rahaman L, Bhattacharjee S. and Tribedi P 2015 Silver Inhibits the Biofilm Formation of Pseudomonas aeruginosa Adv. Microbiol. 5 677.

[12] Kim SW, Jung JH, Lamsal K, Kim YS, Min JS and Lee YS 2012 Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi Mycobiology 40 53.

[13] Linder T 2018 Evaluation of the chitin-binding dye Congo red as a selection agent for the isolation, classification, and enumeration of ascomycete yeasts Arch. Microbiol. 200 671.

[14] Loo YY, Chieng BW, Nishibuchi M and Radu S 2012 Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis Int. J. Nanomed. 7 4263.

[15] Langford JI and Wilson AJC 1978 Scherrer after sixty years: A survey and some new results in the determination of crystallite size J. Appl. Cryst. 11 102.

[16] Al-Kalifawi EJ, Al-Saadi TM, Al-Dulaimi SA and Al-Obodi EE 2015 Biosynthesis of silver nanoparticles by using onion (Allium cepa) extract and study antibacterial activity J. Gene c Environ. Resour. Conserv. 3 1.

[17] Shihab RN, Al-Kalifawi EJ and Al-Haidari SHJ 2016 Environmental Friendly Synthesis of Silver Nanoparticles Using Leaf Extract of Mureira Tree (Azadirachta indica) cultivated in Iraq and Efficacy the Antimicrobial Activity J. Nat. Sci. Res. 6 47.

[18] Al-Kalifawi EJ, Hasan SAR, Al-Saadi TM and AlObodi EE 2015 Green synthesis of silver nanoparticles by kumquat (Fortunella margarita) fruit extract and efficacy the antimicrobial activity J. Al-Fath 1.

[19] Panda SK, Chakraborti S and Basu RN 2018 Size and shape dependences of the colloidal silver nanoparticles on the light sources in photo-mediated citrate reduction technique Bull. Mater. Sci. 41 1.

[20] Hamouda RA, Hussein MH., Abo-elmagd RA and Bawazir SS 2019 Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica Sci. Rep. 9 1.

[21] Anandalakshmi K, Venugobal J and Ramasamy V 2016 Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity Appl. Nanosci. 6 399.
[22] Narasimha G, Alzohairy JM, Khadri H and Mallikarjuna K 2013 Extracellular synthesis, characterization and antibacterial activity of silver nanoparticles by *Actinomycetes* isolative *Int. J. Nano Dimens.* 4 77.

[23] Narasimha G, Praveen B, Mallikarjuna K and Raju BDP 2011 Mushrooms (*Agaricus bisporus*) mediated biosynthesis of silver nanoparticles, characterization and their antimicrobial activity *Int. J. Nano Dim.*** 2** 29.

[24] Prabakaran M, Subha K, Thennarasu V and Merinal S 2012 Biosynthesis of silver nanoparticles using *Sphaerulina albispiculata* and evaluation of antibacterial activity *Europ. J. Exper. Biol.* 2 297.

[25] Shameli K, Ahmad MB, Zamanian A, Sangpour P, Shabanzadeh P, Abdollahi Y and Zargar M 2012 Green biosynthesis of silver nanoparticles using *Curcuma longa* tuber powder *Int. J. Nanomed.* 7 5603.

[26] Kandakumar S, Sathya V and Manju V 2014 Synthesis and Characterization of Silver Nanoparticles Using *Hydnocarpus alpina*, Its Application as a Potent Antimicrobial and Antioxidant Agent–A Novel Study *Int. J. ChemTech Res.* 6 4770.

[27] Jyoti K, Baunthiyal M and Singh A 2016 Characterization of silver nanoparticles synthesized using *Urtica dioica* Linn. Leaves and their synergistic effects with antibiotics *J. Rad. Res. Appl. Sci.* 9 217.

[28] Al-Kalifawi EJ 2018 Silver Nanoparticles Synthesis by Hamza’s Khubdat (A.S.) (Kombucha) Tea and used in Burn Wounds Treatment *J. Glob. Pharma Technol.* 10 489.

[29] Al-Kalifawi EJ 2016 Green Synthesis of Silver Nanoparticles Using Leaf Extract of *Al-Rawat* tree (*Moringa oleifera* Lamarck) Cultivated in Iraq and Efficacy the Antimicrobial activity *Mesopot. Environ. J.*, A 39.

[30] Vaseeharan B, Ramasamy P and Chen JC 2010 Antibacterial activity of silver nanoparticles (AgNPs) synthesized by tea leaf extracts against pathogenic *Vibrio harveyi* and its protective efficacy on juvenile *Feneropenaeus indicus* Lett. Appl. Microbiol. 50 352.

[31] Al-Kalifawi EJ 2014 Bacterial isolated from burn wound patients, study resistance to antimicrobials and effect of Kombucha (Khubdat Humza) tea on isolates bacteria *J. Genet. Environ. Resour. Conserv.* 2 159.

[32] Ebrahimia A, Jafferib H, Habibianc S and Lotfalian S 2018 Evaluation of Anti biofilm and Antibiotic Potentiation Activities of Silver Nanoparticles against Some Nosocomial Pathogens *IJPS*, 14 7.

[33] Gurnunathan S, Han JW, Kwon DN and Kim JH 2014 Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria *Nanosc. Res. Lett.* 9 1.

[34] Ramachandran R and Sangeetha D 2017 Antibiofilm efficacy of silver nanoparticles against biofilm forming multidrug resistant clinical isolates *Pharma Innov. J.* 6 36.

[35] Al-Kalifawi EJ, Al-Azzawi YJ and Hassan FF 2018 Biosynthesis of silver nanoparticles using Al-Ankabut’s home extract and its antimicrobial activity *Acad. J. Agric. Res.* 6 33.

[36] Jo, YK, Kim B.H and Jung G 2009 Antifungal Activity of Silver Ions and Nanoparticles on Phytopathogenic Fungi *Plant Dis.* 93 1037.

[37] Abdelmaks JAMA and Salaheldin TA 2016 Silver Nanoparticles as a Potent Fungicide for Citrus Phytopathogenic Fungi *J. Nanomed. Res.* 3 1.

[38] Al-Abdalall AHA 2009 Production of aflatoxins by *Aspergillus flavus* and *Aspergillus niger* strains isolated from seeds of pulses *J. Food. Agric. Environ.* 7 33.

[39] Kimura M, Tokai T, Takahashi-Ando N, Ohsato S and Fujimura M 2014 Molecular and Genetic Studies of Fusarium Trichotheccenes Biosynthesis: Pathways, Genes, and Evolution. *Biosci. Biotechnol. Biochem.* 71 2105.

[40] Michael C and Kew MC 2013 Aflatoxins as a Cause of Hepatocellular Carcinoma *J. Gastrointestin. Liver Dis.* 22 305.
Kankkunen P, Rintahaka J, Aalto A, Leino M, Majuri ML, Alenius H, Wolff H and Matikainen S 2018 Trichothecenes Mycotoxins activate inflammatory response in human macrophages J. Immunol. 182 6418.

Slifkin M and Cumbie R 1988 Congo red as a Fluorochrome for the Rapid Detection of Fungi J. Clin. Microbiol. 26 827.

Hwang IS, Lee J, Hwang JH, Kim KJ and Lee DG 2012 Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals FEBS J. 279 1327.

Matei PM, Iacomi BM, Martín-Gil J, Pérez-Lebeña E, Ramos-Sánchez MC, Barrio-Arredondo MT and Martín-Ramos P 2018 In vitro antifungal activity of composites of AgNPs and polyphenol inclusion compounds against Fusarium culmorum in different dispersion media Agronomy 8 1.

Al-Zubaidi S, Al-Ayafí A and Abdelkader H 2019 Biosynthesis, Characterization and Antifungal Activity of Silver Nanoparticles by Aspergillus niger Isolate J. Nanotechnol. Res. 1 23.