Utility of immunochemistry in cytology

ABSTRACT

Background: The role played by cytology in primary diagnosis is undeniable. With improved management protocols and targeted therapy, the need for accurate diagnosis has become mandatory. Immunochemistry and molecular techniques are increasingly being used on limited tissue samples.

Aims: This study was conducted to find out the impact of immunocytochemistry (ICC) on cytology material in cytology practice.

Materials and Methods: Immunocytochemistry was done on alcohol-fixed smears and cell-block preparations. It was done with i6000 BioGenex autostainer using BioGenex reagents.

Results: A total of 148 cases occurring over a period of 3 years (September 2010-June 2013) were analyzed. Staining was done on cytology smears in 77 cases and on cell-block sections in 71 cases. ICC helped in diagnosis in 8 cases, confirmed the diagnosis in 26 cases, helped in subtyping in 60 cases, and helped in prognostication in 6 cases. ICC has altered the diagnosis in two cases. It was noncontributory in 43 cases, and the material was inadequate in three cases.

Conclusion: In 102 cases (69%), ICC proved to be a useful adjunct in the diagnosis and prognostication; hence, its use is recommended in practice to aid in cytology services.

Key words: Cell block, cytology, immunochemistry, utility

Introduction

Fine-needle aspiration cytology (FNAC) is a rapid and convenient method of diagnosing any accessible lesion. With improved management protocols and targeted therapy, the need for accurate diagnosis has become mandatory. Immunochemistry and molecular techniques are increasingly being used on limited tissue samples.[1]

Immunocytochemistry (ICC) is helpful to exclude pertinent differential diagnosis and permit a reliable preoperative diagnosis of tumor in doubtful cases. The study was conducted to find out the impact of ICC on cytology material to make a specific diagnosis and to study the limitations of ICC.

Materials and Methods

Cytology material used included alcohol-fixed smears and cell-block preparations. Immunocytochemistry was done with i6000 BioGenex autostainer (California, USA) using BioGenex reagents. The control samples taken and the conditions in which ICC was carried out were similar to that of immunohistochemistry. Results were categorized as follows: helped in diagnosis, confirmed the diagnosis, altered the
diagnosis, helped in subtyping, helped in prognostication, and noncontributory [Figure 1].

Results

The study period was September 2010 to June 2013. A total of 148 cases were analyzed; staining was done on cytology smears in 77 (52.1%) cases and on cell blocks in 71 (47.9%) cases. Twenty-eight cases (18.9%) had subsequent or previous histologic evaluation. Out of 148 cases, ICC was contributory in 69% of the cases. It has helped in the diagnosis in 8 cases (5.4%), helped in subtyping in 60 cases (40.5%) [Figure 2], helped in prognostication in 6 cases (4.0%) [Figure 3], and confirmed the diagnosis in 26 cases (17.5%). In two cases (1.6%), the cytomorphologic diagnosis was altered after ICC. However, ICC was noncontributory in 46 cases (31%), of which smears were 29, cell blocks were 14. Material was inadequate in three cases (2%).

Among these 102 cases, 56 cases had cell-block preparations including 5 fluids. The remaining 49 cases were without cell blocks and these included 19 fluids. In 21 cases, single marker was done. Immunohistochemistry (IHC) on histopathology specimens was available in 28 cases [Table 1].

Discussion

In this era of targeted therapy and personalized treatment protocols, the role of cytologist and pathologists is very vital. The role of cytology improved from screening in cervical smears to diagnosis, prognostication, and currently predictive aspects of pathology.[2] In the diagnosis of malignant tumors, specific subtyping is necessary to find out the tumors that have better prognosis or the ones that respond to specific therapies.[3] Efforts are on to get more from the limited tissue samples. ICC and molecular techniques are being tried on limited tissue samples.[1]

Majority of studies on ICC are on lesions at specific sites.[4–7] Maximum number of studies is on effusion cytology trying to validate the role of several ICC markers.[8–13] Subtyping of non small cell carcinoma into squamous cell

Table 1: Correlation between immunohistochemistry (IHC) and immunocytochemistry (ICC) (N = 28)

Diagnostic category	Number of cases (%)
Confirmed	16 (57.1)
Subcategorized	7 (25)
Altered the diagnosis	2 (7.1)
No representative tissue on cytology	2 (7.1)
No tissue on histology	1 (3.6)

![Figure 1: Analysis of immunocytochemistry in all the samples based on their relevance (N = 148)](image1)

![Figure 2: Fine needle aspiration cytology from a case of nonsmall cell lung carcinoma. (a) Cytology smear shows cluster of atypical cells with pleomorphic nuclei (MGG, ×400). (b) Cell-block preparation showing nests of atypical cells (H and E, ×100). (c) ICC with CK7 showing strong cytoplasmic positivity (HRP POLYMER, ×100). (d) ICC with p63-strong nuclear positivity (HRP POLYMER × 100)](image2)

![Figure 3: A case of metastatic breast carcinoma. (a) Lesional cells seen in clusters and vague acini in a hemorrhagic background (MGG, ×400). (b) ICC with estrogen receptor (ER) showing grade 2 positivity (HRP POLYMER, ×400). (c) ICC with progesterone receptor (PR) showing grade 3 positivity (HRP POLYMER, ×100)](image3)
carcinoma, adenocarcinoma, adenosquamous or large cell neuroendocrine could be done by ICC.[14-18]

ICC has some inherent technical problems.[19,20] In one case, ICC with calcitonin was noncontributory that later came positive in histology. Hence, a negative result may not be contributory when the morphology strongly points a diagnosis.

ICC was done on smears in 52.1% of the cases in the present study. Background artifacts, limited panel, and ethanol or prior staining may adversely influence the results in smears.[20,21] ICC on cell block has the advantage of being able to perform IHC with proper controls and repeatability on sections for multiple markers. Cell block also helps in retaining a banked archive for future studies.[17]

However, effective sampling during dedicated fine-needle aspiration passes for cell-block preparation and the variability in cellularity might be a problematic issue as reported by Roh et al. We had a similar experience; however, we noted inadequacy of material for cell-block preparation in only 3 cases (2%) as compared with 37% of cases described by Roh et al. Another concern is that formalin may destroy some epitopes in paraffin-embedded tissues.[18]

Mandal et al. studied the role of ICC in undifferentiated neoplasms; ICC on cell block may not have 100% accuracy. Direct smears have the advantage of confirmation of adequacy on unstained smears at the time of procedure itself.[17] ICC is a rapid and sensitive method for the diagnosis and classification of lesions. As the sample is limited, conventional light microscopy should not be ignored for the judicious selection of antibodies.[1] A combination of morphologic examination, immunochemistry, and clinicopathological findings can further improve the rate of positive diagnosis.

Wallace and Rassl et al. studied endoscopic ultrasound guided bronchial cytology and correlated it with histopathology.[6] They observed that the cytology alone could subclassify nonsmall cell lung cancer in 44.4% of the cases which rose to 64.1% with cytology and cell block and further increased to 84.6% when ICC is added.

ICC can also help in prognostication. Sahebali et al. studied the role of Ki-67 in liquid based cytology samples and found it to be helpful in identifying high grade squamous intraepithelial lesion (HSIL) and human papillomavirus (HPV) 16 positive samples.[22,23]

In one of our earlier studies on direct smears for hormone receptor status of breast cancer by ICC, there was low sensitivity and negative predictive value.[14] The present study has better results probably because we have used rabbit monoclonal antibodies for estrogen and progesterone receptors (earlier mouse monoclonal was used). It is also possible that the number of breast cancer cases for hormone receptor included in this study is less. Two cases of thyroid aspirate, one for calcitonin and the other for thyroglobulin, were negative on cell block. However, they were positive on histopathology sections. Though the cell-block preparation for other antibodies did not pose problems in the present study, it appears that some antibodies require more care in antigen retrieval.

Fowler discouraged the use of single marker for ICC.[20] However, in the present study, due to the paucity of material, single marker was used in 21 cases. Most commonly used single marker was chromogranin (4) followed by CD99 (3). Single marker ICC was noncontributory in 9 (42.9%) cases; however, it helped in subtyping in 7 (33.3%) cases, in confirming the diagnosis in 4 (19%) cases, and in prognostication in 1 (4.8%) case.

The most useful marker overall was pancytokeratin that was used in 61 cases. It was contributory in 44 cases. Cytokeratin 7 (CK7) was contributory in 13 out of 21 cases in which it was used. Thyroid transcription factor1 (TTF1) helped in giving a conclusive opinion in 33 out of 148 cases. Other important conclusive markers were chromogranin (17 cases), p63 (13 cases), cluster of differentiation 99 (CD99) (12 cases), and neuron-specific enolase (NSE) (9 cases). Hematological markers were useful in 20 cases. CD20 was used in 17 cases and was conclusive in 12 cases; leucocyte common antigen (LCA) was used in 15 cases and was contributory in 13 cases.

Vimentin was contributory in 10 out of 11 cases in which it was used. Carcinoembryonic antigen (CEA) was contributory in 9 out of 14 cases.

ICC was most useful in fluids (24 cases, 5 of which had cell-block preparation). It helped in differentiating reactive mesothelial cells from adenocarcinoma. Similar utility in fluids was demonstrated by Kitazume et al.[24] Broad based studies like the present study on the utility of ICC in cytology are fewer. Mao et al. conducted a similar study and the results were comparable to the present study.[25]

The most common solid tissue on which ICC was performed is lymph node (20 cases) followed by soft-tissue swellings (17 cases) and lung masses (12). Of the 17 soft-tissue swellings, 12 were abdominal masses. The utility of ICC in giving a
conclusive result to solid organ cases also had a similar profile.

In the present study, technical difficulties formed 12.8% of the total cases. Scant material was responsible for limiting the panel and noncontributory results. In spite of the above limitations, ICC was proved to be a useful adjunct in the diagnosis, subtyping, and prognostication in majority of the cases.

Among the cases which had IHC correlation (n=28), ICC diagnosis was confirmed in 57.1% cases and further subtyping was done by using IHC in 25% cases. In seven cases (25%), further subtyping could be done. The major utility of ICC in our study was in subtyping malignancies (40.5%). Nevertheless, complete subtyping was not possible in many cases due to insufficient material. One follow-up case of Ewing’s sarcoma was treated and showed no residual tumor at the time of histopathology.

It may be concluded from the study that the primary diagnosis could be done on morphology alone in a significant number of cases. However, in the era of targeted therapy and due to the need to deliver accurate treatment with minimal invasive procedures, ICC seems to be a very useful option. It must also be emphasized that there is a need to obtain high-quality cytology material for a completely satisfactory result.

Acknowledgement
The authors thank Mr. P. Madhavan and Dr. CH Padmini for performing ICC.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1. Mandal PK, Mondal SK, Roy S, Adhikari A, Basu N, Sinha SK. Immunocytochemistry: Its role in diagnosis of undifferentiated neoplasms by fine needle aspiration. J Cytol 2013;30:121-4.
2. Krausz T, Schofield JB, Noorden SV, Stamp GW, Maclennan KA. Application of immunocytochemistry to fine needle aspirates. In: Young JA, editor. Fine Needle Aspiration Cytopathology. Birmingham: Blackwell Scientific Publications; 1993. p. 310-47.
3. Dalquen P, Sauter G, Epper R, Kleiber B, Feichter G, Gudat F. Immunocytochemistry in diagnostic cytology. Recent Results Cancer Res 1993;133:47-80.
4. Nizzoli R, Tiseo M, Gelsomino F, Bartolotti M, Majori M, Ferrari L, et al. Accuracy of fine needle aspiration cytology in the pathological typing of non-small cell lung cancer. J Thorac Oncol 2011; 6:489-93.
5. Fischer AH, Cibas ES, Howell LP, Kurian EM, Laucirica R, Moriarty AT, et al. Role of cytology in the management of non-small-cell lung cancer. J Clin Oncol 2011;29:3331-2.
6. Wallace WA, Rassl DM. Accuracy of cell typing in nonsmall cell lung cancer by EBUS/EUS-FNA cytological samples. Eur Respir J 2011;38:911-7.
7. Ko HM, Jhu IK, Yang SH, Lee JH, Nam JH, Juhng SW, et al. Clinicopathologic analysis of fine needle aspiration cytology of the thyroid: A review of 1,613 cases and correlation with histopathologic diagnoses. Acta Cytol 2003;47:727-32.
8. Ikeda K, Tate G, Suzuki T, Mitsuya T. Comparison of immunocytochemical sensitivity between formalin-fixed and alcohol-fixed specimens reveals the diagnostic value of alcohol-fixed cytocentrifuged preparations in malignant effusion cytology. Am J Clin Pathol 2011;136:934-42.
9. Saleh HA, El-Fakaharany M, Makki H, Kadhim A, Masood S. Differentiating reactive mesothelial cells from metastatic adenocarcinoma in serous effusions: The utility of immunocytochemical panel in the differential diagnosis. Diagn Cytopathol 2009;37:324-32.
10. Yahya ZM, Ali HH, Hussein HG. Evaluation of the sensitivity and specificity of immunohistochemical markers in the differential diagnosis of effusion cytology. Oman Med J 2013;28:410-6.
11. Fetsch PA, Abati A. Immunocytochemistry in effusion cytology: A contemporary review. Cancer 2001;93:293-308.
12. Fetsch PA, Simisir A, Brosky K, Abati A. Comparison of three commonly used cytologic preparations in effusion immunocytochemistry. Diagn Cytopathol 2002;26:61-6.
13. Beraki E, Olsen TK, Sauer T. Establishing a protocol for immunocytochemical staining and chromogenic in situ hybridization of Giemsa and Diff-Quick prestained cytological smears. Cytojournal 2012;9:8.
14. Sigel CS, Moreira AL, Travis WD, Zakowski MF, Thornton RH, Riely GJ, et al. Subtyping of non-small cell lung carcinoma: A comparison of small biopsy and cytology specimens. J Thorac Oncol 2011;6:1849-56.
15. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, et al. International association for the study of lung cancer/ American Thoracic Society/European respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 2011;6:244-85.
16. Navani N, Brown JM, Nankivell M, Woolhouse I, Harrison RN, Jeebun V, et al. Suitability of endobronchial ultrasound-guided transbronchial needle aspiration specimens for subtyping and genotyping of non-small cell lung cancer: A multicenter study of 774 patients. Am J Respir Crit Care Med 2012;185:1316-22.
17. Roh MH, Schmidt L, Placido J, Farmen S, Fields KL, Courey AJ, et al. The application and diagnostic utility of immunocytochemistry on direct smears in the diagnosis of pulmonary adenocarcinoma and squamous cell carcinoma. Diagn Cytopathol 2011;40:949-55.
18. Radhika K, Prayaga AK. Estrogen and progesterone hormone receptor status in breast carcinoma: Comparison of immunocytochemistry and immunohistochemistry. Indian J Cancer 2010;47:148-50.
19. Leong A, SY, Suthipintawong C, Vinyuvat S. Immunostaining of cytologic preparations: A review of technical problems. Appl Immunohistochem 1999;7:214-20.
20. Fowler LJ, Lachar WA. Application of immunohistochemistry to cytology. Arch Pathol Lab Med 2008;132:573-83.
21. Fetsch PA, Abati A. Overview of the clinical immunohistochemistry laboratory: Regulations and troubleshooting guidelines. In: Javios LC, editor. Methods in Molecular Biology. Vol. 115: Immunocytochemical methods and protocols. Totowa, NJ: Humana Press, Inc.; 1999. p. 405-14.
22. Sahebali S, Depuydt CE, Boulet GA, Arbyn M, Moeneclaey LM, Vereecken AJ, et al. Immunocytochemistry in liquid-based cervical cytology: Analysis of clinical use following a cross-sectional study. Int J Cancer 2006;118:1254-60.
23. Sahebali S, Depuydt CE, Segers K, Vereecken AJ, Van Marck E, Bogers JJ. Ki-67 immunocytochemistry in liquid based cervical cytology: Useful as an adjunctive tool? J Clin Pathol 2003;56:681-6.

24. Kitazume H, Kitamura K, Mukai K, Inayama Y, Kawano N, Nakamura N, et al. Cytologic differential diagnosis among reactive mesothelial cells, malignant mesothelioma, and adenocarcinoma: Utility of combined E-cadherin and calretinin immunostaining. Cancer 2000;90:55-60.

25. Mao WU, Zhimin S, Yinghua M, Huijin L, Meiping LE. The value of immunocytochemistry in the cytological diagnosis of serous effusions. Laboratory Medicine 2007;22:58-9.

New features on the journal’s website

Optimized content for mobile and hand-held devices
HTML pages have been optimized of mobile and other hand-held devices (such as iPad, Kindle, iPod) for faster browsing speed.
Click on [Mobile Full text] from Table of Contents page.
This is simple HTML version for faster download on mobiles (if viewed on desktop, it will be automatically redirected to full HTML version)

E-Pub for hand-held devices
EPUB is an open e-book standard recommended by The International Digital Publishing Forum which is designed for reflowable content i.e. the text display can be optimized for a particular display device.
Click on [EPub] from Table of Contents page.
There are various e-Pub readers such as for Windows: Digital Editions, OS X: Calibre/Bookworm, iPhone/iPod Touch/iPad: Stanza, and Linux: Calibre/Bookworm.

E-Book for desktop
One can also see the entire issue as printed here in a ‘flip book’ version on desktops.
Links are available from Current Issue as well as Archives pages.
Click on View as eBook