Conceptual design of a new SF$_6$ abatement technology using a multi-bed series reactor for the production of valuable chemicals free of toxic wastes

Boreum Lee1,*, Sehwa Kim1,*, Jiseon Song1, Shin-Kun Ryi2 & Hankwon Lim1

1Department of Advanced Materials and Chemical Engineering, Catholic University of Daegu, 13-13 Hayang-ro, Hayang-eup, Gyeongsan, Gyeongbuk 38430, Korea
2Korea Institute of Energy Research, 102 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea

© 2018 The Authors. Energy Science & Engineering published by the Society of Chemical Industry and John Wiley & Sons Ltd.

Keywords
CaF$_2$, CaSO$_4$, conceptual design, multi-bed series reactor, perfluorinated compounds, SF$_6$

Correspondence
Shin-Kun Ryi, Korea Institute of Energy Research, 102 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea. E-mail: h2membrane@kier.re.kr
and
Hankwon Lim, Department of Advanced Materials and Chemical Engineering, Catholic University of Daegu, 13-13 Hayang-ro, Hayang-eup, Gyeongsan, Gyeongbuk 38430, Korea. E-mail: hklim@cu.ac.kr

Funding Information
Korea Ministry of Environment (MOE)
(Grant/Award Number: RE2015001690003)
& Korea Institute of Energy Technology Evaluation and Planning (KETEP)(Grant Number: 20174010201330)

Received: 18 August 2017; Accepted: 19 December 2017

Energy Science and Engineering 2018; 6(2): 73–82
doi: 10.1002/ese3.183

*Both authors contributed equally to this work.

Introduction

With strict environmental regulations and efforts to reduce global warming, perfluorinated compounds (PFCs) such as CF$_4$ [1–3], CHF$_3$ [4, 5], C$_2$F$_6$ [6, 7], C$_3$F$_8$ [8], and SF$_6$ [9–19], which are commonly used as etching and cleaning gases in the semiconductor manufacturing, have globally attracted significant attention because they are toxic chemicals and potential contributors to the global warming as greenhouse gases (GHGs) [2, 3, 9, 20, 21]. PFCs have relatively high global warming potential (GWP) ranging from 6,500 to 23,900 compared to conventional CO$_2$ with a GWP value of 1 [21–23] and among them, SF$_6$ with a GWP value of 23,900 has been identified as the strongest due to its intensive absorption of infrared radiation and long atmospheric lifetime [10–12, 19, 20, 24, 25]. Nowadays, many efforts have been paid to reducing these PFCs and various methods like alternative chemicals, capture/recovery/recycle systems, process optimization, and...
Conceptual Design of a New SF₆ Abatement Technology

B. Lee et al.

Abatement systems are being sought [3, 12, 26]. In particular, abatement technology in a catalytic reactor system using various catalysts is actively under development as the most practical PFCs reduction technology [2, 3, 12, 14, 18].

As for SF₆ reductions, there are four technologies under consideration; (1) decomposition using plasma, (2) adsorption with inorganic materials, (3) separation via gas hydrate formation, and (4) catalytic decomposition [13, 14]. Among them, SF₆ abatement technology employing catalytic decomposition is preferred because of high activity for SF₆ decomposition with some catalysts, high efficiency due to a lower energy requirement, and fewer corrosive and toxic byproducts [3, 13, 27]. A lot of studies for SF₆ abatement employing catalytic decomposition have been reported. Kashiwagi et al. [16] studied catalytic activity reporting that metal phosphates are more active for the hydrolysis of SF₆ and alkaline earth phosphates are less active. They also pointed out that the catalytic activity of metal fluorides is significantly lower than the one of metal phosphate such as AlPO₄ and CePO₄ suggesting that preventing the fluorination of catalysts is necessary to keep the catalytic activity. Park et al. [18] used AlPO₄/γ-alumina catalysts in order to decompose SF₆ and their catalytic activity was investigated and showed that the stability of the catalyst was enhanced using a phosphoric acid impregnated γ-alumina. Zhang et al. [19] found that kirschsteinite-dominant stainless steel slag (SSS) has higher activity than conventional pure metal oxides catalysts such as Fe₂O₃ and CaO and waste material SSS could be an effective abatement reagent of SF₆.

Figure 1A shows a schematic diagram of a conventional SF₆ abatement system consisting of a catalytic reactor for SF₆ hydrolysis (eq. 1) and a scrubber [28–30] for a post-treatment of the produced HF and SO₃. Because these
toxic chemicals are inevitably produced by hydrolysis, a post-treatment like a scrubber to securely treat toxic HF and SO$_3$ is required thus leading to additional capital and operating costs.

$$\text{SF}_6 + 3\text{H}_2\text{O} \rightleftharpoons \text{SO}_3 + 6\text{HF} \quad (1)$$

Moreover, frequent damage and replacement of a scrubber due to corrosive nature of HF result in unavoidable maintenance costs. To overcome these limitations that a conventional system currently has, a new reactor system of employing multi-bed series reactors containing a catalyst bed for hydrolysis reaction and an adsorbent bed using CaO to react with HF and produce CaF$_2$ (eq. 2) was proposed as a new CF$_4$ abatement technology [2, 3, 31] and this proposed system successfully eliminated the use of a scrubber thus saving capital and operating costs significantly.

$$\text{CaO} + 2\text{HF} \rightleftharpoons \text{CaF}_2 + \text{H}_2\text{O} \quad (2)$$

Moreover, produced CaF$_2$ exhibits excellent characteristics such as low reflectivity and high transparency and can be used in various applications such as lenses, window, prism, and electrochemical fields for solid electrolyte in galvanic cells [32–34]. The simultaneous removal of produced HF during reaction by adsorption with CaO resulted in improved product yields driven by equilibrium shift (Le Chatelier’s principle) [35–37] and it provided an additional benefit of lowered operating temperature for the same amount of CaF$_2$ production via sorption-enhanced hydrolysis leading to a reduced operating temperature [31, 38]. Therefore, a multi-bed series reactor proved a very useful concept for simultaneous CF$_4$ abatement and utilization method free of toxic wastes.

Even though HF is produced from hydrolysis of both CF$_4$ and SF$_6$, SO$_3$ is additionally obtained from SF$_6$ hydrolysis (eq. 1), whereas CO$_2$ is produced from CF$_4$ hydrolysis (CF$_4$ + 2H$_2$O \rightarrow CO$_2$ + 4HF). This produced SO$_3$, regarded as a pollutant, can be further converted to CaSO$_4$, a valuable chemical, by reacting with lime (CaO) as shown in equation (3).

$$\text{CaO} + \text{SO}_3 \rightleftharpoons \text{CaSO}_4 \quad (3)$$

Upon addition of water, CaSO$_4$ is transformed into CaSO$_4$$\cdot$$2\text{H}_2\text{O}$ called as gypsum and can be used for a wide variety of applications such as plaster, physical conditioner, and concrete industries [39–41]. By introducing CaO in SF$_6$ abatement technology, both CaF$_2$ and CaSO$_4$, valuable chemicals, can be obtained with the elimination of toxic wastes such as HF and SO$_3$. Therefore, with some aforementioned benefits, previously reported multi-bed series reactors concept employing sorption-enhanced reaction due to equilibrium shift by Le Chatelier’s principle [2, 3, 31] was extended for SF$_6$ in this paper as a simultaneous SF$_6$ abatement and utilization process with no toxic wastes produced as shown in Figure 1B. To investigate the effect of number of beds in multi-bed series reactors, a single-bed reactor (SR-1), a two-bed series reactor (SR-2), and a three-bed series reactor (SR-3) were considered and process simulation studies using Aspen HYSYS® were carried out to assess the feasibility of employing this new concept for a new SF$_6$ abatement technology in terms of CaF$_2$ and CaSO$_4$ production, operating temperature, natural gas usage, and CO$_2$ emissions.

Methods

Process simulation using Aspen HYSYS®

Commercial process simulators such as Aspen HYSYS® (Aspen Technology, Inc., Bedford, MA, USA) [2, 3, 42–47], Aspen Plus® (Aspen Technology, Inc., Bedford, MA, USA) [48–50], UniSim® Design Suite (Honeywell International Inc., Morris Plains, NJ, USA) [51, 52], and CHEMCAD (Chemstations, Inc., Houston, TX, USA) [53, 54] have been widely used to simulate the proposed processes of interest and obtain the useful process design guidelines and optimized conditions based on material and energy balances of the overall systems. Among them, Aspen HYSYS® was chosen for this study as the most suitable process simulator for the proposed processes to simulate based on experimental data for SF$_6$ hydrolysis over alumina-based catalysts as presented in Figure 2. Brunauer, Emmett, and Teller (BET) surface area of the alumina-catalyst was 175 m2 g$^{-1}$ and a catalyst amount of 30 mL was used in the experiment with a gas hourly space velocity (GHSV) of 2000 h$^{-1}$. In addition, the Peng–Robinson fluid property package was opted as an appropriate equation of state and a steady-state condition was assumed. Since thermodynamic properties of

![Figure 2. Experimental data for SF$_6$ conversion by hydrolysis.](image-url)
some components (SF$_6$, SO$_3$, CaO, CaF$_2$, and CaSO$_4$) are not in the component library of Aspen HYSYS$^\text{®}$, hypothetical components were created using some important thermodynamic properties of each component like molecular weight, normal boiling point, and ideal liquid density [44–46, 55, 56]. In particular, thermodynamic properties for the utilized adsorbent, CaO with molecular weight of 56.08 g mol$^{-1}$, normal boiling point of 3123 K, and ideal liquid density of 3,340 kg m$^{-3}$ were used in this study.

Single-bed reactor (SR-1)

Figure 3 presents a process flow diagram (PFD) for a SR-1 using Aspen HYSYS$^\text{®}$ consisting of conversion reactors modeled for SF$_6$ hydrolysis (Reaction 1), HF conversion to CaF$_2$ (Reaction 2), and SO$_3$ conversion to CaSO$_4$ (Reaction 3). For SF$_6$ hydrolysis (Reaction 1), experimental conversion data obtained from Korea Institute of Energy Research (KIER) were used for this simulation. For conceptual studies of employing adsorbent (CaO) to convert HF to CaF$_2$ and SO$_3$ to CaSO$_4$, complete conversions were assumed for both reactions (Reactions 2 and 3). Use of conversion reactors in this study can be considered enough to obtain some preliminary results as conceptual design, but kinetics should be sought to fully represent various reactions involved. A mixture stream containing 5 sccm of SF$_6$ with a SF$_6$-H$_2$O molar ratio of 1:19.5 and air as balance was used as a feed and sent to a conversion reactor (Conv.1) for SF$_6$ hydrolysis at 873-973 K. The operating pressure was 1 atm. Next, a produced HF was converted to CaF$_2$ in a conversion reactor denoted as Conv.2 and a produced SO$_3$ was changed into CaSO$_4$ in a conversion reactor denoted as Conv.3. A heat was required for SR-1 because reactions involved are endothermic and it was assumed that a required heat was supplied by burning a natural gas boiler with an excess O$_2$ of 20%.

Two-bed series reactor (SR-2) and three-bed series reactor (SR-3)

Sorption-enhanced hydrolysis to improve product yields and lower operating temperature simultaneously [2, 3, 31] was applied for SF$_6$ abatement by introducing multi-bed series reactors (SR-2 and SR-3). Figure 4 shows PFDs for a SR-2 and a SR-3 showing multiple conversion reactors connected in series and all reaction conditions were same as the ones used for SR-1.
Figure 4. Process flow diagram for (A) a two-bed series reactor (SR-2) and (B) a three-bed series reactor (SR-3).
Results and Discussion

Comparative studies for SR-1, SR-2, and SR-3

As a new simultaneous SF$_6$ abatement and utilization technology, SR-1, SR-2, and SR-3 were proposed and elimination of a postscrubber was possible from the introduction of these SR-1, SR-2, and SR-3 leading to savings in capital and operating costs. In addition, a continuous removal of HF from SF$_6$ hydrolysis through reactions with CaO to be converted to CaF$_2$ and CaSO$_4$ can result in improved product yields and reduced operating temperature possibly due to sorption-enhanced hydrolysis.

Figure 5A shows the amount of CaF$_2$ produced from SR-1, SR-2, and SR-3 at operating temperatures from 823 to 973 K. First, the highest amount of CaF$_2$ production was obtained from SR-3 followed by SR-2 and SR-1 clearly demonstrating the positive effect of using multi-bed series reactors. This trend was applied to all temperatures studied and the effect was dominant at lower operating temperatures with slight at higher operating temperatures. As for CaSO$_4$, similar trends of improved CaSO$_4$ production in multi-bed reactors (SR-3 > SR-2 > SR-1) at all temperatures studied were observed as shown in Figure 5B. For both CaF$_2$ and CaSO$_4$, it is believed that sorption-enhanced hydrolysis shifts reaction equilibrium via continuous removal of the produced HF and SO$_3$ and thus results in improved production by Le Chatelier’s principle [31, 38]. These improved CaF$_2$ and CaSO$_4$ production in multi-bed series reactors compared to a SR-1 also provides additional benefit of lowered operating temperatures for the same amount of CaF$_2$ and CaSO$_4$ production. For CaF$_2$ production of 6.60 × 10$^{-4}$ mol min$^{-1}$ and CaSO$_4$ production of 2.20 × 10$^{-4}$ mol min$^{-1}$ at 973 K in SR-1, respective operating temperatures of 916 and 888 K were obtained in SR-2 and SR-3 clearly indicating the positive effect of multi-bed series reactors.

Further analysis to investigate the effect of multi-bed series reactors was performed for SR-1 at 923 and 873 K
as shown in Table 1. Similarly, for the same amount of CaF₂ and CaSO₄ production, reduced operating temperatures were observed in SR-2 and SR-3 also confirming the benefit of multi-bed series reactors compared to a SR-1. In addition, more significant reductions in operating temperatures were found in multi-bed series reactor for higher operating temperatures in SR-1 with the highest reduction of 85 K observed in SR-3 for an operating temperature in SR-1 of 973 K.

Natural gas amount required in a boiler and CO₂ emissions from a boiler were obtained from process simulation studies and multi-bed series reactors were proved to be positive for reductions in them. The calculation of reductions in natural gas amount and CO₂ emissions for SR-2 and SR-3 compared to SR-1 revealed more reductions in SR-3 than SR-2 and interestingly more reductions were obtained at higher SR-1 temperature. Based on process simulation results obtained here, comprehensive techno-economic analysis (TEA) can be very meaningful in future research to evaluate the feasibility of using a multi-bed series reactor for SF₆ abatement technology in both technical and economic aspects when this conceptual design is implemented more in detail [47].

Comparative studies of $T_{\text{Reduction}}$ for SR-1, SR-2, and SR-3

To investigate the trend of reduced operating temperatures in multi-bed series reactors, $T_{\text{Reduction}} = \frac{T_{\text{SR1}} - T_{\text{SR2,3}}}{T_{\text{SR1}}} \times 100$ (%) was introduced as a measure to present temperature reductions in SR-2 and SR-3 compared to SR-1. As depicted in Figure 6A and B, a clear trend of increased $T_{\text{Reduction}}$ with increased CaF₂ or CaSO₄ production was observed for both SR-2 and SR-3. In evaluating the effect of number of catalysts and adsorbent beds, it was found that SR-3 with higher $T_{\text{Reduction}}$ performed better than SR-2 for the same amount of CaF₂ or CaSO₄ production.

Conclusively, it is recommended that employing multi-bed series reactors is beneficial in terms of higher CaF₂ or CaSO₄ production and reduced operating temperature with better performance in SR-3 than SR-2.

Conclusions

Conceptual design studies have been carried out to assess the feasibility of using multi-bed series reactors as a simultaneous SF₆ abatement and utilization technology. Multi-bed series reactors are composed of a series of alumina-based catalysts and CaO adsorbent beds and valuable chemicals such as CaF₂ and CaSO₄ were produced from this new technology in addition to successful reduction in SF₆, a greenhouse gas with high global warming potential (GWP).

From process simulation works using Aspen HYSYS®, the performance of multi-bed series reactors (a two-bed series reactor, SR-2 and a three-bed series reactor, SR-3) was compared to that of a single-bed reactor (SR-1) in terms of CaF₂ and CaSO₄ production and operating temperature. It was found that more CaF₂ and CaSO₄ were produced in multi-bed series reactors compared to a SR-1 (SR-3 > SR-2 > SR-1) because of sorption-enhanced hydrolysis confirming the positive effect of

Figure 6. Comparison of temperature reduction ($T_{\text{Reduction}}$) with the same amount of (A) CaF₂ and (B) CaSO₄ for a two-bed series reactor (SR-2) and a three-bed series reactor (SR-3) compared to a single-bed reactor (SR-1).
using multi-bed series reactors. Moreover, the effect was more significant at lower operating temperatures.

To produce the same amount of CaF$_2$ and CaSO$_4$ production, lower operating temperatures were obtained in multi-bed series reactors ($T_{SR1} > T_{SR2} > T_{SR3}$) leading to reduction in natural gas amount required (4.5–9.3%) and CO$_2$ emissions (3.9–8.9%) compared to a SR-1. Conclusively, employing multi-bed series reactors as a new SF$_6$ abatement technology proved a cost-effective concept to both produce more CaF$_2$ and CaSO$_4$ and abate SF$_6$ effectively.

Acknowledgments

This project is supported by the “R&D Center for reduction of Non-CO$_2$ Greenhouse gases (RE2015001690003)” funded by Korea Ministry of Environment (MOE) as “Global Top Environment R&D Program” and “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No. 20174010201330).

Conflict of Interest

None declared.

Nomenclature

- PFCs: Perfluorinated compounds
- GHGs: Greenhouse gases
- GWP: Global warming potential
- SSS: Stainless steel slag
- SR-1: Single-bed reactor
- SR-2: Two-bed series reactor
- SR-3: Three-bed series reactor
- BET: Brunauer, Emmett, and Teller
- GHSV: Gas hourly space velocity
- PDF: Process flow diagram
- KIER: Korea Institute of Energy Research
- NG: Natural gas
- TEA: Techno-economic analysis

References

1. Song, J. Y., S. H. Chung, M. S. Kim, M. G. Seo, Y. H. Lee, K. Y. Lee et al. 2013. The catalytic decomposition of CF$_4$ over Ce/Al$_2$O$_3$ modified by a cerium sulfate precursor. J. Mol. Catal. A: Chem. 370:50–55.
2. Lee, B., S. Lee, H. Y. Jung, S. K. Ryi, and H. Lim. 2016. Process simulation and economic analysis of reactor systems for perfluorinated compounds abatement without HF effluent. Front. Chem. Sci. Eng. 10:526–533.
3. Lee, B., S. Jeong, S. Lee, H. Y. Jung, S. K. Ryi, and H. Lim. 2017. Preliminary techno-economic analysis of a multi-bed series reactor as a simultaneous CF$_4$ abatement and utilization process. Greenh. Gases 7:542–549.
4. Onoda, H., T. Ohta, J. Tamaki, and K. Kojima. 2005. Decomposition of trifluoromethane over nickel pyrophosphate catalysts containing metal cation. Appl. Catal. A-Gen. 288:98–103.
5. Han, W., Y. Li, H. Tang, and H. Liu. 2012. Treatment of the potent greenhouse gas, CHF$_3$: An overview. J. Fluorine Chem. 140:7–16.
6. Vitale, S. A., and H. H. Sawin. 2000. Abatement of C$_2$F$_6$ in rf and microwave plasma reactors. J. Vac. Sci. Technol. A 18:2217–2223.
7. Chang, M. B., and S. J. Yu. 2001. An atmospheric-pressure plasma process for C$_2$F$_6$ removal. Environ. Sci. Technol. 35:1587–1592.
8. Lin, B. Y., M. B. Chang, H. L. Chen, H. M. Lee, S. J. Yu, and S. N. Li. 2011. Removal of C$_2$F$_6$ via the combination of non-thermal plasma, adsorption and catalysis. Plasma Chem. Plasma Process. 31:585–594.
9. Tsai, C. H., and J. M. Shao. 2008. Formation of fluorine for abating sulfur hexafluoride in an atmospheric-pressure plasma environment. J. Hazard. Mater. 157:201–206.
10. Tsai, W. T. 2007. The decomposition products of sulfur hexafluoride (SF$_6$): reviews of environmental and health risk analysis. J. Fluorine Chem. 128:1345–1352.
11. Fang, X., X. Hu, G. Janssens-Maenhout, J. Wu, J. Han, S. Su et al. 2013. Sulfur hexafluoride (SF$_6$) emission estimates for China: an inventory for 1990-2010 and a projection to 2020. Environ. Sci. Technol. 47:3848–3855.
12. Lee, H. M., M. B. Chang, and K. Y. Wu. 2004. Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas. J. Air Waste Manage. Assoc. 54:960–970.
13. Zhang, J., J. Z. Zhou, Q. Liu, G. Qian, and Z. P. Xu. 2013. Efficient removal of sulfur hexafluoride (SF$_6$) through reacting with recycled electroplating sludge. Environ. Sci. Technol. 47:6493–6499.
14. Zhuang, Q., B. Clements, A. McFarlan, and Y. Fasoyinu. 2014. Decomposition of the most potent greenhouse gas (GHG) sulphur hexafluoride (SF$_6$) using a dielectric barrier discharge (DBD) plasma. Can. J. Chem. Eng. 92:32–35.
15. Shih, M., W. J. Lee, and C. Y. Chen. 2003. Decomposition of SF$_6$ and H$_2$S mixture in radio frequency plasma environment. Ind. Eng. Chem. Res. 42:2906–2912.
16. Kashiwagi, D., A. Takai, T. Takubo, K. Nagaoka, T. Inoue, and Y. Takita. 2009. Metal phosphate catalysts effective for degradation of sulfur hexafluoride. Ind. Eng. Chem. Res. 48:632–640.

17. Chou, C. Y., C. P. Huang, N. C. Shang, and Y. H. Yu. 2009. Treatment of local scrubber wastewater for semiconductor by using photo-catalytic ozonation. Water Sci. Technol. 59:2281–2286.

18. Park, N. K., H. G. Park, T. J. Lee, W. C. Chang, and W. T. Kwon. 2012. Hydrolysis and oxidation on supported phosphate catalyst for decomposition of SF$_6$. Catal. Today 185:247–252.

19. Zhang, J., J. Z. Zhou, Z. P. Xu, Y. Li, T. Cao, J. Zhao et al. 2014. Decomposition of potent greenhouse gas sulfur hexafluoride (SF$_6$) by kirschsteinite-dominant stainless steel slag. Environ. Sci. Technol. 48:599–606.

20. Zhu, X. M., B. Sun, C. Huo, and H. D. Xie. 2012. Advances in abatement of perfluorocarbons (PFCs) with microwave plasma. Adv. Mat. Res. 518–523:2315–2318.

21. Chang, M. B., and J. S. Chang. 2006. Abatement of PFCs from semiconductor manufacturing processes by nonthermal plasma technologies: a critical review. Ind. Eng. Chem. Res. 45:4101–4109.

22. Dubois, J. L. 2005. Selective oxidation of hydrocarbons and the global warming problem. Catal. Today 99:5–14.

23. Ravishankara, A. R., S. Solomon, A. A. Turnipseed, and R. F. Warren. 1993. Atmospheric lifetimes of long-lived halogenated species. Science 259:194–199.

24. Hong, Y., T. Lho, D. Shin, and H. S. Uhm. 2010. Removal of fluorinated compound gases by an enhanced methane microwave plasma burner. Jpn. J. Appl. Phys. 49:017101.

25. Dervos, C. T., and P. Vassiliou. 2000. Sulfur hexafluoride (SF$_6$): global environmental effects and toxic byproduct formation. J. Air & Waste Manage. Assoc. 50:137–141.

26. Hyman, R. C., J. M. Reilly, M. H. Babiker, A. De Masin, and H. D. Jacoby. 2003. Modeling non-CO$_2$ greenhouse gas abatement. Environ. Model. Assess. 8:175–186.

27. Brown, R. S., J. A. Rossin, and C. J. Thomas. 2001. Catalytic process for control of PFC emissions. Semiconduct. Int. 24:209–213.

28. Mohindra, V., H. Chae, H. H. Sawin, and M. T. Mocella. 1997. Abatement of perfluoroccompounds (PFCs) in a microwave tubular reactor using O$_2$ as additive gas. IEEE Trans. Semicond. Manuf. 10:399–411.

29. Kuroki, T., J. Mine, S. Odahara, M. Okubo, T. Yamamoto, and N. Saeki. 2005. CF$_4$ decomposition of flue gas from semiconductor process using inductively coupled plasma. IEEE Trans. Ind. Appl. 41:221–228.

30. Koo, J., J. Hong, H. Lee, and S. Shin. 2010. Effects of the particle residence time and the spray droplet size on the particle removal efficiencies in a wet scrubber. Heat Mass Transf. 46:649–656.

31. Han, J. Y., C. H. Kim, B. Lee, S. C. Nam, H. Y. Jung, H. Lim et al. 2017. Sorption enhanced catalytic CF$_4$ hydrolysis with a three-stage catalyst-adsorbent reactor. Front. Chem. Sci. Eng. 11:537–544.

32. Yadav, R. P., R. K. Pandey, A. K. Mittal, S. Dwivedi, and A. C. Pandey. 2013. Multifractal analysis of sputtered CaF$_2$ thin films. Surf. Interface Anal. 45:1775–1780.

33. Giessibl, F. J., and M. Reichling. 2005. Investigating atomic details of the CaF$_2$ (111) surface with a qPlus sensor. Nanotechnology 16:S118–S124.

34. Samuel, P., H. Ishizawa, Y. Ezura, K. I. Ueda, and S. M. Babu. 2011. Spectroscopic analysis of Eu doped transparent CaF$_2$ ceramics at different concentration. Opt. Mater. 33:735–737.

35. Lim, H., Y. Gu, and S. T. Oyama. 2010. Reaction of primary and secondary products in a membrane reactor: studies of ethanol steam reforming with a silica-alumina composite membrane. J. Membr. Sci. 351:149–159.

36. Lim, H., Y. Gu, and S. T. Oyama. 2012. Studies of the effect of pressure and hydrogen permeance on the ethanol steam reforming reaction with palladium-and silica-based membranes. J. Membr. Sci. 396:119–127.

37. Roses, L., F. Gallucci, G. Manzolini, and M. van Sint Annaland. 2013. Experimental study of steam methane reforming in a Pd-based fluidized bed membrane reactor. Chem. Eng. J. 222:307–320.

38. Barelli, L., G. Bidini, F. Gallorini, and S. Servili. 2008. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review. Energy 33:554–570.

39. Singh, N. B., and B. Middendorf. 2007. Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Prog. Cryst. Growth Charact. Mater. 53:57–77.

40. Zhao, Y. Q. 2006. Involvement of gypsum (CaSO$_4$·2H$_2$O) in water treatment sludge dewatering: a potential benefit in disposal and reuse. Sep. Sci. Technol. 41:2785–2794.

41. Charola, A. E., J. Pühringer, and M. Steiger. 2007. Gypsum: a review of its role in the deterioration of building materials. Environ. Geol. 52:339–352.

42. Roy, P. S., and M. R. Amin. 2011. Aspen-HYSYS simulation of natural gas processing plant. J. Chem. Eng. 26:62–65.

43. Sunny, A., P. A. Solomon, and K. Aparna. 2016. Syngas production from regasified liquefied natural gas and its simulation using Aspen HYSYS. J. Nat. Gas Sci. Eng. 30:176–181.

44. Elkanzi, E. M. 2009. Simulation of the process of biological removal of hydrogen sulfide from gas. Proceedings of the 1st Annual Gas Processing Symposium 1–10.
45. Kazemi, A., M. Malayeri, and A. Shariati. 2014. Feasibility study, simulation and economical evaluation of natural gas sweetening processes - Part 1: a case study on a low capacity plant in Iran. J. Nat. Gas Sci. Eng. 20:16–22.
46. Eckert, E., T. Vaněk, Z. Bělohlav, and P. Zámostný. 2012. Effective characterization of petroleum C₇₊ fractions. Fuel 102:545–553.
47. Jeong, S., S. Kim, B. Lee, S. K. Ryi, and H. Lim. 2017. Techno-economic analysis: ethane steam reforming in a membrane reactor with H₂ selectivity effect and profitability analysis. Int. J. Hydrogen Energy DOI: 10.1016/j.ijhydene.2017.07.202 https://doi.org/10.1016/j.ijhydene.2017.07.202.
48. Abdelouahed, L., O. Authier, G. Mauviel, J. P. Corriou, G. Verdier, and A. Dufour. 2012. Detailed modeling of biomass gasification in dual fluidized bed reactors under Aspen Plus. Energy Fuels 26:3840–3855.
49. Doherty, W., A. Reynolds, and D. Kennedy. 2009. The effect of air preheating in a biomass CFB gasifier using ASPEN Plus simulation. Biomass Bioenerg. 33:1158–1167.
50. Gopaul, S. G., and A. Dutta. 2015. Dry reforming of multiple biogas types for syngas production simulated using Aspen Plus: the use of partial oxidation and hydrogen combustion to achieve thermo-neutrality. Int. J. Hydrogen Energy 40:6307–6318.
51. Chen, W., L. van der Ham, A. Nijmeijer, and L. Winnubst. 2015. Membrane-integrated oxy-fuel combustion of coal: process design and simulation. J. Membr. Sci. 492:461–470.
52. Ploegmakers, J., A. R. T. Jelsma, A. G. J. van der Ham, and K. Nijmeijer. 2013. Economic evaluation of membrane potential for ethylene/ethane separation in a retrofitted hybrid membrane-distillation plant using unisim design. Ind. Eng. Chem. Res. 52:6524–6539.
53. Leonzio, G. 2016. Process analysis of biological Sabatier reaction for bio-methane production. Chem. Eng. J. 290:490–498.
54. Molino, A., M. Migliori, Y. Ding, B. Bikson, G. Giordano, and G. Braccio. 2013. Biogas upgrading via membrane process: modelling of pilot plant scale and the end uses for the grid injection. Fuel 107:585–592.
55. Voldsund, M., I. S. Ertesvag, W. He, and S. Kjelstrup. 2013. Exergy analysis of the oil and gas processing on a North Sea oil platform a real production day. Energy 55:716–727.
56. Zhang, Y., M. T. Munir, W. Yu, and B. R. Young. 2014. Development of hypothetical components for milk process simulation using a commercial process simulator. Int. J. Food Eng. 121:87–93.