Impact of alanyl-glutamine dipeptide on severe acute pancreatitis in early stage

Ping Xue, Li-Hui Deng, Qing Xia, Zhao-Da Zhang, Wei-Ming Hu, Xiao-Nan Yang, Bing Song, Zong-Wen Huang

Abstract

AIM: To evaluate the therapeutic effect of alanyl-glutamine dipeptide (AGD) in the treatment of severe acute pancreatitis (SAP) in early and advanced stage.

METHODS: Eighty patients with SAP were randomized and received 100 mL/d of 20% AGD intravenously for 10 d starting either on the day of (early treatment group) or 5 d after (late treatment group) admission. Groups had similar demographics, underlying diseases, Ranson score, Acute Physiology and Chronic Health Evaluation II (APACHE II) score, and Balthazar’s computed tomography (CT) score at the beginning of the study and underwent similar other medical and nutritional management.

RESULTS: The duration of acute respiratory distress syndrome (2.7 ± 3.3 d vs 12.7 ± 21.0 d, P < 0.01), renal failure (1.3 ± 0.5 d vs 5.3 ± 7.3 d, P < 0.01), acute hepatitis (3.2 ± 2.3 d vs 7.0 ± 7.1 d, P < 0.01), shock (1.7 ± 0.4 d vs 4.8 ± 3.1 d, P < 0.05), encephalopathy (2.3 ± 1.9 d vs 9.5 ± 11.0 d, P < 0.01) and enteroparalysis (2.2 ± 1.4 d vs 3.5 ± 2.2 d, P < 0.01) and hospital stay (28.8 ± 9.4 d vs 45.2 ± 27.1 d, P < 0.01) were shorter in the early treatment group than in the late treatment group. The 15-d APACHE II score was lower in the early treatment group than in the late treatment group (5.0 ± 2.4 d vs 8.6 ± 3.6 d, P < 0.01). The infection rate (7.9% vs 26.3%, P < 0.05), operation rate (13.2% vs 34.2%, P < 0.05) and mortality (5.3% vs 21.1%, P < 0.05) in the early treatment group were lower than in the late treatment group.

CONCLUSION: Early treatment with AGD achieved a better clinical outcome in SAP patients.

Key words: Severe acute pancreatitis; Alanyl-glutamine dipeptide; Clinical study

INTRODUCTION

Acute pancreatitis (AP) contributes to thousands of annual hospital admissions, of which severe acute pancreatitis (SAP) accounts for 10%-20%[1, 3]. Despite considerable improvement in the treatment, the mortality of SAP still ranges between 10%-15%[6].

The course of SAP tends to be prolonged and the patients usually are hypermetabolic and high protein catabolic due to systemic inflammatory response syndrome (SIRS) induced by acute local inflammatory process and subsequent vital-organ dysfunction[6]. Thus, if nutritive support is not appropriately administrated to match rapidly increased demand in the treatment of SAP, the patients consequently come down with metabolic disorder and nutrition deficiency, which is considered to increase mortality due to impaired immune function, increased risk of infections and intractable vital-organ failure.

In recent years, research showed a conditional deficiency of glutamine would be an independent predictive factor for a poor outcome and its correction improved survival by restoring cellular protective mechanisms, improving immune function and resistance of the gut barrier to hypoperfusion, metabolic stress and subsequent bacterial translocation, and decreasing the risk of infection in critical illness[5, 10]. Since free glutamine is unstable in solution, intravenous administration is limited[3]. Alanyl-glutamine...
peptide (AGD), however, can be taken via vein and hydrolyzed into alanine and glutamine in circulation as a substitute[3]. Presently AGD supplement in parenteral nutrition is a worth-trying approach and an evidence-based recommendation in the management of SAP[11], but there has been no study describing an optimal protocol of AGD administration. Our study aims to evaluate the favorable effects of early supplement with AGD in the treatment of SAP.

MATERIALS AND METHODS

Patient selection
In this study, the diagnostic criteria[12] formulated for SAP at the Bangkok World Congress of Gastroenterology 2002 in Thailand was employed. All of the patients, who had been diagnosed with SAP and admitted to our hospital within 72 h after onset of symptoms, were included. The patients who had histories of trauma, operation or prior treatment with AGD were excluded, and the patients who died within 5 d after admission were also rejected.

Methods
In this study, 80 identified SAP patients who were admitted to West China Hospital of Sichuan University from May 2004 to March 2005 were randomized and treated with 100 mL/d of 20% AGD intravenous infusion for 10 d (SSPC No. SF1505) starting either on the day of (early treatment group) or 5 d after (late treatment group) admission.

Upon admission, all of the patients were treated with intensive care, oxygen inhalation, intermittent gastrointestinal decompression, and fluid infusion. Prophylactic antibiotics were used for 7-14 d. H2 receptor antagonist or proton pump inhibitor agent was given for 7 d; the acid-base balance and the electrolyte balance were maintained. When patients developed respiratory failure, the respirator was employed to assist respiration. When hypoalbuminaemia occurred, 20% human serum albumin 50 mL was used daily until the serum albumin was recovered to normal, and fat emulsion was also given for 14 d.

The following parameters were measured: 24-h APACHE II score and initial Balthazar’s CT score, 15-d APACHE II score, incidence and duration of complications including acute respiratory distress syndrome (ARDS), renal failure, acute hepatitis, encephalopathy and enteroparalysis, infection rate, hospital stay, operation rate and mortality.

Hospital stay: Hospital stay was defined as the duration from hospital admission to discharge. The duration of hospital rehabilitation due to cholecystectomy was not taken into account in this study, although cholecystectomy was regarded as a promising treatment to prevent recurrent pancreatitis.

Operation rate: Surgical intervention was performed if infected pancreatic necrosis, or pancreatic abscess, or (per)pancreatic hemorrhage or (per)pancreatic pseudocyst was identified or if the patient did not respond to intensive care treatment.

Table 1 Baseline in the two groups

Baseline	Late treatment group (n = 38)	Early treatment group (n = 38)	
Sex (Male/Female)	21/17	22/16	
Age (mean ± SD, yr)	47.5 ± 12.6 (22-76)	46.9 ± 12.8 (27-74)	
Etiology, n (%)	Gallstones	20 (52.6)	16 (42.1)
Alcohol abuse	2 (5.3)	7 (18.7)	
Hyperlipidemia	7 (18.4)	9 (23.7)	
Idiopathic	9 (23.7)	6 (15.8)	
48-h Ranson score (mean ± SD)	4.5 ± 1.7	4.8 ± 1.6	
24-h APACHE II score (mean ± SD)	10.8 ± 3.5	10.2 ± 3.1	
CT score (mean ± SD)	5.8 ± 2.3	5.9 ± 2.4	

APACHE II: Acute Physiology and Chronic Health Evaluation II; CT: Computed Tomography.

Statistical analysis
Data were expressed as mean ± SD or percentage. Data in normal distribution was analyzed using t test; data in non-normal distribution was analyzed using Wilcoxon rank sum test. Categorical data was analyzed using Chi-square test. P < 0.05 was considered statistically significant.

The medical ethics committee of West China Hospital at Sichuan University approved this study. All patients gave their informed consent, and the study was conducted according to the recent principles of the Declaration of Helsinki (World Medical Association, 2000).

RESULTS

Four patients including 1 death within 24 h after admission and 1 death on the 5th day after admission in the early treatment group and 2 deaths within 24 h in the late treatment group withdrew from the study, which were not included in any of the analyses. Therefore, there were 38 patients in the early treatment group and 38 in the late treatment group.

Baseline
There were no statistical differences between the two groups in sex, age and etiology (P > 0.05, Table 1), and in the 48-h Ranson score, 24-h APACHE II score and CT score in the initial stage of hospitalization (P > 0.05, Table 1).

Complications
There were no statistical differences between the two groups in the incidences of ARDS, renal failure, shock, acute hepatitis, encephalopathy and enteroparalysis (P > 0.05), but the duration of ARDS, renal failure, acute hepatitis, encephalopathy and enteroparalysis was shorter in the early treatment group than in the late treatment group (P < 0.01), and the duration of shock was also shorter in the early treatment group (P < 0.05) (Table 2).

Prognosis
The 15-d APACHE II score was lower in the early treatment group than in the late treatment group (P < 0.01).
DISCUSSION

In the early stage of SAP, the patients tend to be hypermetabolic due to occurrence of SIRS and subsequent multiple organ dysfunction syndromes (MODS), resulting in the greatly increased demand for nutrition[13-15]. In the late stage, the demand for nutrition increases continuously due to infection, resulting from intestinal bacterial translocation and immunosuppression. Thus, insufficient nutritive support inevitably leads to nutrition deficiency in SAP patients[16].

When a nutritional deficiency arises in critical illness including SAP, glutamine, which is very abundant and readily synthesized under most situations, tends to be a factor for a poor outcome in critical illness[16].

AGD was shown to improve clinical outcome of SAP[11,16]. In this study, we treated SAP patients with 100 mL/d of 20% AGD infusions intravenously for 10 d to compare the effects of AGD between the two groups and study its optimal protocol. The baseline data showed no significant difference between the two groups (P > 0.05). APACHE II score, the parameter for predicting and monitoring the development of local and systemic complications of SAP, was evaluated on the 15th day after admission, which was lower in the early treatment group than in the late treatment group (P < 0.01). The duration of ARDS, renal failure, acute hepatitis, shock, encephalopathy and enteroparalysis were also shorter in the early treatment group than in the late treatment group, as was lower mortality (P < 0.05). These might result from a possible consequence of early suppression of inflammatory response and restoring cellular protective mechanisms by early AGD supplementation, which is associated with mediating anti-inflammatory/immunologic factors[17] and antioxidant/inducible nitric oxide synthase (iNOS)[20], decreasing the level of TNF-alpha and interleukin-8 in mononuclear cell[22,23] and C-reactive protein in serum[23]. In this study, the hospital stay was also shorter in the early treatment group (P < 0.05), which might be correlated to the shorter duration of complications.

COMMENTS

Background

Severe acute pancreatitis (SAP) is a hypermetabolic disease. Appropriate nutrition support is essential to the management of SAP. In recent years, the supplement of glutamine has been shown to improve survival rate. Presently, the supplement of alanyl-glutamine dipeptide, as a substitute of glutamate which is stable in circulation, is a promising and worth-trying approach.

Research frontiers

Besides nutritional management of SAP, restoring an optimized immune system plays a role in improving survival rate. Previous pilot studies of alanyl-glutamine dipeptide (AGD) supplementation in nutritive support have revealed good outcome by restoring cellular protective mechanisms, improving the immune function and lowering the infection rate. Although this treatment was recommended by evidence-based studies, this treatment principle has not yet been systematically applied and further study is still needed in this field.

Innovations and breakthroughs

The optimal protocol for the AGD treatment is not yet available in published
studies. Early AGD treatment in SAP is a breakthrough in this study, which reveals for the first time that early AGD treatment achieved a better clinical outcome in SAP patients.

Applications

As free glutamine is instable in solution, intravenous administration is limited. AGD, however, can be given via vein and hydrolyzed to alanine and glutamine in circulation as a substitute. This study showed that early treatment with AGD achieved a better clinical outcome in SAP patients. This treatment can be applied in the management of SAP patients.

Terminology

Severe acute pancreatitis is a common acute abdominal disorder, characterized by various degrees of necrosis of pancreatic parenchyma together with local and systemic complications, such as SIRS and multiple organ dysfunction syndromes. Alanyl-glutamine dipeptide is an important component of parenteral nutrition ingredients with its molecular formula ingredient as N(2)-L-alanyl-L-glutamine. SIRS is a clinical response to one of the nonspecific insults caused by ischemia, inflammation, trauma, infection, or a combination of several insults, which was defined by a journal in 1992 and described as occurrence of two or more clinical symptoms of fever or hypothermia, tachypnea, tachycardia, and leukocytosis.

Peer review

AGD supplementation has been shown to be effective by previous studies. In this pilot study, the authors focused on the clinical effects of early treatment with AGD comparing with late treatment, which shows early AGD treatment indicates a better clinical outcome. Further researches are needed to explore its mechanism.

REFERENCES

1. Mifkovic A, Pindak D, Daniel I, Pechan J. Septic complications of acute pancreatitis. Bratisl Lek Listy 2006; 107: 296-313
2. Liu XB, Jiang JM, Huang ZW, Tian BL, Hu WM, Xiao Q, Chen GY, Li QS, Yuan CX, Luo CX, Yan LN, Zhang ZD. Clinical study on the treatment of severe acute pancreatitis by integrated traditional Chinese medicine and Western medicine. Sichuan Daxue Xuebao Yi Xue Ban 2004; 35: 204-208
3. Mofidi R, Madhavan KK, Garden OJ, Parks RW. An audit of the management of patients with acute pancreatitis against national standards of practice. Br J Surg 2007; 94: 844-848
4. Beckingham JI, Bornman PC. ABC of diseases of liver, pancreas, and biliary system. Acute pancreatitis. BMJ 2001; 322: 595-598
5. Mann DV, Hershman MJ, Hittinger R, Glazer G. Multicentre audit of death from acute pancreatitis. Br J Surg 1994; 81: 890-893
6. Wiedeck H, Geldner G. Enteral nutrition in acute pancreatitis. Zentralbl Chir 2001; 126: 10-14
7. Zheng YM, Li F, Zhang MM, Wu XT. Glutamine dipeptide for parenteral nutrition in abdominal surgery: a meta-analysis of randomized controlled trials. World J Gastroenterol 2006; 12: 7537-7541
8. Peng YL, Gong QF, Wang ZQ. The prospective study on application of parenteral nutrition with alanyl-glutamine dipeptide in chemotherapy of gastrointestinal neoplasms patients. Ai Zhong 2006; 25: 1044-1047
9. Dechelotte P, Hasselmann M, Cynober L, Allauchoiche B, Coeffier M, Heckstewiler B, Merle V, Mazeres M, Samba D, Guillou YM, Petit J, Mansoor O, Colas G, Cohendy R, Barnoud D, Czemochow P, Bleicher G. N-L-alanyl-L-glutamine dipeptide-supplemented total parenteral nutrition reduces infectious complications and glucose intolerance in critically ill patients: the French controlled, randomized, double-blind, multicenter study. Crit Care Med 2006; 34: 598-604
10. Jiang ZM, Jiang H. The clinical efficacy of glutamine dipeptides on postoperative patients: an updated systematic review of randomized controlled trials from Europe and Asia (1997 - 2005). Zhonghua Yiye Za Zhi 2006; 86: 1610-1614
11. Nathens AB, Curtis JR, Beale RJ, Cook DJ, Moreno RP, Romand JA, Skerrett SJ, Stapleton RD, Ware LB, Waldmann CS. Management of the critically ill patient with severe acute pancreatitis. Crit Care Med 2004; 32: 2524-2536
12. Toulli J, Brooke-Smith M, Bassi C, Carr-Locke D, Telford J, Freey P, Imrie C, Tandon R. Guidelines for the management of acute pancreatitis. J Gastroenterol Hepatol 2002; 17 Suppl: S15-S39
13. De Campos T, Deree J, Coimbra R. From acute pancreatitis to end-organ injury: mechanisms of acute lung injury. Surg Infect (Larchmt) 2007; 8: 107-120
14. Shi C, Zhao X, Lagergren A, Sigvardsson M, Wang X, Andersson R. Immune status and inflammatory response differ locally and systemically in severe acute pancreatitis. Scand J Gastroenterol 2006; 41: 472-480
15. Bhatia M, Wong FL, Cao Y, Lau HY, Huang J, Puneet P, Chevali L. Pathophysiology of acute pancreatitis. Pancreatology 2005; 5: 132-144
16. Ockenga J, Borchert K, Rifai K, Manns MP, Bischoff SC. Effect of glutamine-enriched total parenteral nutrition in patients with acute pancreatitis. Clin Nutr 2002; 23: 409-416
17. Kozlov AV, Sobhian B, Duvigneau C, Gemeiner M, Nohl H, Redl H, Bahrami S. Organ specific formation of nitrosyl complexes under intestinal ischaemia/reperrfusion in rats involves NOS-independent mechanism(s). Shock 2001; 15: 366-371
18. Oudemans-van Straaten HM, Bosman RJ, Treskes M, van der Spoel HJ, Zandstra DF. Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med 2001; 27: 84-90
19. Clark EC, Patel SD, Chadwick PR, Warhurst G, Curry A, Carlson LG. Glutamine deprivation facilitates tumour necrosis factor induced bacterial translocation in Caco-2 cells by depletion of enterocyte fuel substrate. Gut 2003; 52: 224-230
20. Peng ZY, Hamiel CR, Banerjee A, Wischmeyer PE, Friese RS, Wischmeyer P. Glutamine attenuation of cell death and inducible nitric oxide synthease expression following inflammatory cytokine-induced injury is dependent on heat shock factor-1 expression. JPEN / Parenteral Enteral Nutr 2006; 30: 400-406; discussion 406-407
21. de Beaux AC, O'Riordain GM, Ross JA, Jodozi L, Carter DC, Fearon KC. Glutamine-supplemented total parenteral nutrition reduces blood mononuclear cell interleukin-8 release in severe acute pancreatitis. Nutrition 1998; 14: 261-265
22. Wischmeyer PE, Rishm J, Singleton KD, Ren H, Musch MW, Kahana M, Chang EB. Glutamine attenuates tumor necrosis factor-alpha release and enhances heat shock protein 72 in human peripheral blood mononuclear cells. Nutrition 2003; 19: 1-6
23. Cai GL, Yan J, Yu YH, Zhang ZC, Gong SJ, Dai HW, Chen J. Influence of glutamine and growth hormone intensified immunomodulatory support on immunomodulation in critically ill elderly patients. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2006; 18: 595-598
24. Rahman SH, Ammori BJ, Holmfield J, Larvin M, McMahon MJ. Intestinal hypoperfusion contributes to gut barrier failure in severe acute pancreatitis. J Gastrointest Surg 2003; 7: 26-35; discussion 35-36
25. Schwarz M, Thomsen J, Meyer H, Buchler MW, Beger HG. Frequency and time course of pancreatic and extrapancreatic bacterial infection in experimental acute pancreatitis in rats. Surgery 2000; 127: 427-432
26. van Minnen LP, Timmerman HM, Lutgendorff F, Verheem A, Harmesen W, Konstantinov SR, Smidt H, Visser MR, Rijkers GT, Goossen HG, Akkermans LM. Modification of intestinal flora with multispecies probiotics reduces bacterial translocation and improves clinical course in a rat model of acute pancreatitis. Surgery 2007; 141: 470-480
27. Werner J, Feuerbach S, Uhl W, Buchler MW. Management of acute pancreaticitis: from surgery to interventional intensive care. Gut 2005; 54: 426-436
28. Buchler MW, Gloor B, Muller CA, Friess H, Seiler CA, Uhl W. Acute necrotizing pancreatitis: treatment strategy according to the status of infection. Ann Surg 2000; 232: 619-626
29. Rau P, Pralle U, Mayer JM, Beger HG. Role of ultrasonographically guided fine-needle aspiration cytology in the diagnosis of infected pancreatic necrosis. Br J Surg 1998; 85: 179-184
30. Banks PA, Gerzof SG, Langevin RE, Silverman SG, Sica GT, Hughes MD. CT-guided aspiration of suspected pancreatic
infection: bacteriology and clinical outcome. Int J Pancreatol 1995; 18: 265-270
31 Gloor B, Muller CA, Worni M, Martignoni ME, Uhl W, Buchler MW. Late mortality in patients with severe acute pancreatitis. Br J Surg 2001; 88: 975-979
32 Schmid SW, Uhl W, Friess H, Malfertheiner P, Buchler MW. The role of infection in acute pancreatitis. Gut 1999; 45: 311-316
33 Wischmeyer PE, Kahana M, Wolfson R, Ren H, Musch MM, Chang EB. Glutamine induces heat shock protein and protects against endotoxin shock in the rat. J Appl Physiol 2001; 90: 2403-2410
34 Houdijk AP, Rijnsburger ER, Jansen J, Wesdorp RI, Weiss JK, McCormish MA, Teerlink T, Meuwissen SG, Haarman HJ, Thijs LG, van Leeuwen PA. Randomised trial of glutamine-enriched enteral nutrition on infectious morbidity in patients with multiple trauma. Lancet 1998; 352: 772-776
35 Exner R, Weingartmann G, Eliasen MM, Gerner C, Spittler A, Roth E, Oehler R. Glutamine deficiency renders human monocytic cells more susceptible to specific apoptosis triggers. Surgery 2002; 131: 75-80
36 McCauley R, Kong SE, Hall J. Glutamine and nucleotide metabolism within enterocytes. JPNEN J Parenter Enteral Nutr 1998; 22: 105-111
37 Young VR, Ajami AM. Glutamine: the emperor or his clothes? J Nutr 2001; 131: 2449S-2456S; discussion 2465S-2467S
38 Wischmeyer PE, Musch MW, Madonna MB, Thisted R, Chang EB. Glutamine protects intestinal epithelial cells: role of inducible HSP70. Am J Physiol 1997; 272: G879-G884
39 Ziegler TR, Bazargan N, Leader LM, Martindale RG. Glutamine and the gastrointestinal tract. Curr Opin Clin Nutr Metab Care 2000; 3: 355-362
40 Neu J, DeMarco V, Li N. Glutamine: clinical applications and mechanisms of action. Curr Opin Clin Nutr Metab Care 2002; 5: 69-75
41 Ikeda S, Kudsk KA, Le T, Zarzaur BL, Johnson CD. Glutamine improves impaired cellular exudation and polymorphonuclear neutrophil phagocytosis induced by total parenteral nutrition after glycogen-induced murine peritonitis. Shock 2003; 19: 50-54
42 Novak F, Heyland DK, Avenell A, Drover JW, Su X. Glutamine supplementation in serious illness: a systematic review of the evidence. Crit Care Med 2002; 30: 2022-2029

S- Editor Khandoga A L- Editor Ma JY E- Editor Liu Y