Muckenhoupt’s (A_p) condition and the existence of the optimal martingale measure

Dmitry Kramkov* and Kim Weston,
Carnegie Mellon University,
Department of Mathematical Sciences,
5000 Forbes Avenue, Pittsburgh, PA, 15213-3890, US

July 22, 2015

Abstract

In the problem of optimal investment with utility function defined on $(0, \infty)$, we formulate sufficient conditions for the dual optimizer to be a uniformly integrable martingale. Our key requirement consists of the existence of a martingale measure whose density process satisfies the probabilistic Muckenhoupt (A_p) condition for the power $p = 1/(1 - a)$, where $a \in (0, 1)$ is a lower bound on the relative risk-aversion of the utility function. We construct a counterexample showing that this (A_p) condition is sharp.

Keywords: utility maximization, optimal martingale measure, BMO martingales, (A_p) condition.

AMS Subject Classification (2010): 60G44, 91G10.

1 Introduction

An unpleasant qualitative feature of the general theory of optimal investment with a utility function defined on $(0, \infty)$ is that the dual optimizer \hat{Y} may not be a uniformly integrable martingale. In the presence of jumps, it may even fail to be a local martingale. The corresponding counterexamples can be found in [12]. In this paper, we seek to provide conditions under

*The author also holds a part-time position at the University of Oxford. This research was supported in part by the Oxford-Man Institute for Quantitative Finance at the University of Oxford.
which the uniform martingale property for \(\hat{Y} \) holds and thus, \(\hat{Y} / \hat{Y}_0 \) defines the density process of the optimal martingale measure \(\hat{Q} \).

The question of whether \(\hat{Y} \) is a uniformly integrable martingale is of longstanding interest in mathematical finance and can be traced back to [8] and [10]. This problem naturally arises in situations involving utility-based arguments. For instance, it is relevant for pricing in incomplete markets, where according to [9] the existence of \(\hat{Q} \) is equivalent to the uniqueness of marginal utility-based prices for every bounded contingent claim.

Our key requirement consists of the existence of a dual supermartingale \(Z \), which satisfies the probabilistic Muckenhoupt (\(A_p \)) condition for the power \(p > 1 \) such that

\[
(1.1) \quad p = \frac{1}{1 - a}.
\]

Here \(a \in (0, 1) \) is a lower bound on the relative risk-aversion of the utility function. As we prove in Theorem 5.1, this condition, along with the existence of an upper bound for the relative risk-aversion, yields (\(A_{p'} \)) for \(\hat{Y} \) for some \(p' > 1 \). This property in turn implies that the dual minimizer \(\hat{Y} \) is of class (\(D \)), that is, the family of its values evaluated at all stopping times is uniformly integrable. In Proposition 6.1, we construct a counterexample showing that the bound (1.1) is the best possible for \(\hat{Y} \) to be of class (\(D \)) even in the case of power utilities and continuous stock prices.

A similar idea of passing regularity from some dual element to the optimal one has been employed in [6], [7] and [2] for respectively, quadratic, power and exponential utility functions defined on the whole real line. These papers use appropriate versions of the Reverse Hölder (\(R_q \)) inequality which is dual to (\(A_p \)). Note that contrary to (\(A_p \)), the uniform integrability property is not implied but rather required by (\(R_q \)). While this requirement is not a problem for real-line utilities, where the optimal martingale measures always exist, it is clearly an issue for utility functions defined on \((0, \infty)\).

Even if the dual minimizer \(\hat{Y} \) is of class (\(D \)), it may not be a martingale, due to the lack of the local martingale property; see the single-period example for logarithmic utility in [12, Example 5.1']. In Proposition 4.2 we prove that every maximal dual supermartingale (in particular, \(\hat{Y} \)) is a local martingale if the ratio of any two positive wealth processes is \(\sigma \)-bounded.

Our main results, Theorems 5.1 and 5.3, are stated in Section 5. They are accompanied by Corollaries 5.5 and 5.6, which exploit well known connections between the (\(A_p \)) condition and BMO martingales.
2 Setup

We use the same framework as in [12, 13] and refer to these papers for more details. There is a financial market with a bank account paying zero interest and \(d\) stocks. The process of stocks’ prices \(S = (S^t)\) is a semimartingale with values in \(\mathbb{R}^d\) on a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\in[0,T]}, \mathbb{P})\). Here \(T\) is a finite maturity and \(\mathcal{F} = \mathcal{F}_T\), but we remark that our results also hold for the case of infinite maturity.

A (self-financing) portfolio is defined by an initial capital \(x \in \mathbb{R}\) and a predictable \(S\)-integrable process \(H = (H^i)\) with values in \(\mathbb{R}^d\) of the number of stocks. Its corresponding wealth process \(X\) evolves as

\[
X_t = x + \int_0^t H_u dS_u, \quad t \in [0, T].
\]

We denote by \(\mathcal{X}\) the family of non-negative wealth processes:

\[
\mathcal{X} \triangleq \{X \geq 0 : X \text{ is a wealth process}\}
\]

and by \(\mathcal{Q}\) the family of equivalent local martingale measures for \(\mathcal{X}\):

\[
\mathcal{Q} \triangleq \{Q \sim \mathbb{P} : \text{every } X \in \mathcal{X} \text{ is a local martingale under } Q\}.
\]

We assume that

\[(2.1) \quad \mathcal{Q} \neq \emptyset,\]

which is equivalent to the absence of arbitrage; see [3, 5].

There is an economic agent whose preferences over terminal wealth are modeled by a utility function \(U\) defined on \((0, \infty)\). We assume that \(U\) is of Inada type, that is, it is strictly concave, strictly increasing, continuously differentiable on \((0, \infty)\), and

\[
U'(0) = \lim_{x \to 0} U'(x) = \infty, \quad U'(\infty) = \lim_{x \to \infty} U'(x) = 0.
\]

For a given initial capital \(x > 0\), the goal of the agent is to maximize the expected utility of terminal wealth. The value function of this problem is denoted by

\[(2.2) \quad u(x) = \sup_{X \in \mathcal{X}, X_0 = x} \mathbb{E}[U(X_T)].\]

Following [12], we define the dual optimization problem to (2.2) as

\[(2.3) \quad v(y) = \inf_{Y \in \mathcal{Y}, Y_0 = y} \mathbb{E}[V(Y_T)], \quad y > 0,\]

3
where V is the convex conjugate to U:

$$V(y) = \sup_{x > 0} \{ U(x) - xy \}, \quad y > 0,$$

and \mathcal{Y} is the family of “dual” supermartingales to \mathcal{X}:

$$\mathcal{Y} = \{ Y \geq 0 : XY \text{ is a supermartingale for every } X \in \mathcal{X} \}.$$

Note that the set \mathcal{Y} contains the density processes of all $Q \in \mathcal{Q}$ and that, as $1 \in \mathcal{X}$, every element of \mathcal{Y} is a supermartingale.

It is known, see [13, Theorem 2], that under (2.1) and (2.4)

$$v(y) < \infty, \quad y > 0,$$

the value functions u and $-v$ are of Inada type, v is the convex conjugate to u, and

$$v(y) = \inf_{Q \in \mathcal{Q}} \mathbb{E} \left[V \left(y \frac{dQ}{dP} \right) \right], \quad y > 0.$$

The solutions $X(x)$ to (2.2) and $Y(y)$ to (2.3) exist. If $y = u'(x)$ or, equivalently, $x = -v'(y)$, then

$$U'(X_T(x)) = Y_T(y),$$

and the product $X(x)Y(y)$ is a uniformly integrable martingale.

The last two properties actually characterize optimal $X(x)$ and $Y(y)$. For convenience of future references, we recall this “verification” result.

Lemma 2.1. Let $\hat{X} \in \mathcal{X}$ and $\hat{Y} \in \mathcal{Y}$ be such that

$$U'(\hat{X}_T) = \hat{Y}_T, \quad \mathbb{E} \left[V(\hat{Y}_T) \right] < \infty, \quad \mathbb{E} \left[\hat{X}_T\hat{Y}_T \right] = \hat{X}_0\hat{Y}_0.$$

Then \hat{X} solves (2.2) for $x = \hat{X}_0$ and \hat{Y} solves (2.5) for $y = \hat{Y}_0$.

Proof. The result follows immediately from the identity

$$U(\hat{X}_T) = V(\hat{Y}_T) + \hat{X}_T\hat{Y}_T$$

and the inequalities

$$U(X_T) \leq V(\hat{Y}_T) + X_T\hat{Y}_T, \quad X \in \mathcal{X},$$

$$U(\hat{X}_T) \leq V(Y_T) + \hat{X}_TY_T, \quad Y \in \mathcal{Y},$$

after we recall that XY is a supermartingale for all $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$. \qed
The goal of the paper is to find sufficient conditions for the lower bound in (2.5) to be attained at some \(Q(y) \in Q \) called the \textit{optimal martingale measure} or, equivalently, for the dual minimizer \(Y(y) \) to be a \textit{uniformly integrable martingale}; in this case,

\[
Y_T(y) = y \frac{dQ(y)}{dP}.
\]

Our criteria are stated in Theorem 5.1 below, where a key role is played by the probabilistic version of the classical Muckenhoupt \((A_p)\) condition.

3 \((A_p)\) condition for the dual minimizer

Following [11, Section 2.3], we recall the probabilistic \((A_p)\) condition.

\textbf{Definition 3.1.} Let \(p > 1 \). An optional process \(R \geq 0 \) satisfies \((A_p)\) if \(R_T > 0 \) and there is a constant \(C > 0 \) such that for every stopping time \(\tau \)

\[
\mathbb{E} \left[\left(\frac{R_\tau}{R_T} \right)^{\frac{1}{p-1}} \mid \mathcal{F}_\tau \right] \leq C.
\]

Observe that if \(R \) satisfies \((A_p)\), then \(R \) satisfies \((A_{p'})\) for every \(p' \geq p \).

An important consequence of the \((A_p)\) condition is a uniform integrability property. For continuous local martingales this fact is well known and can be found e.g., in [11, Section 2.3].

\textbf{Lemma 3.2.} If an optional process \(R \geq 0 \) satisfies \((A_p)\) for some \(p > 1 \) and \(\mathbb{E} [R_T] < \infty \), then \(R \) is of class \((D)\):

\[
\{ R_\tau : \tau \text{ is a stopping time} \} \text{ is uniformly integrable.}
\]

\textit{Proof.} Let \(\tau \) be a stopping time. As \(p > 1 \), the function \(x \mapsto x^{-\frac{1}{p-1}} \) is convex. Hence, by Jensen’s inequality,

\[
\mathbb{E} \left[\left(\frac{R_\tau}{R_T} \right)^{\frac{1}{p-1}} \mid \mathcal{F}_\tau \right] = R_\tau^{\frac{1}{p-1}} \mathbb{E} \left[\left(\frac{1}{R_T^{\frac{1}{p-1}}} \mid \mathcal{F}_\tau \right) \right] \geq R_\tau^{\frac{1}{p-1}} \left(\mathbb{E} [R_T \mid \mathcal{F}_\tau] \right)^{-\frac{1}{p-1}}.
\]

Using the constant \(C > 0 \) from \((A_p)\), we obtain that

\[
R_\tau \leq C^{p-1} \mathbb{E} [R_T \mid \mathcal{F}_\tau],
\]

and the result follows. \(\square \)
To motivate the use of the \((A_p)\) condition in the study of the dual mini-
mimizers \(Y(y), y > 0\), we first consider the case of power utility with a positive
power.

Proposition 3.3. Let \((2.1)\) hold. Assume that

\[
U(x) = \frac{x^{1-a}}{1-a}, \quad x > 0,
\]

with the relative risk-aversion \(a \in (0, 1)\) and denote \(p \triangleq \frac{1}{1-a} > 1\). Then for
\(y > 0\), the solution \(Y(y)\) to the dual problem \((2.3)\) exists if and only if

\[
E \left[Y_T^{-\frac{1}{p-1}} \right] < \infty \quad \text{for some} \quad Y \in \mathcal{Y}
\]

and, in this case, for every \(Y \in \mathcal{Y}, Y > 0\) and every stopping time \(\tau\),

\[
E \left[\left(\frac{Y_{\tau}(y)}{Y_T(y)} \right)^{\frac{1}{p-1}} \right| \mathcal{F}_\tau] \leq E \left[\left(\frac{Y_T}{Y} \right)^{\frac{1}{p-1}} \right| \mathcal{F}_\tau].
\]

In particular, \(Y(y)\) satisfies \((A_p)\) if and only if there is \(Y \in \mathcal{Y}\) satisfying
\((A_p)\).

Proof. Observe that the convex conjugate to \(U\) is given by

\[
V(y) = \frac{a}{1-a} y^{-\frac{1-a}{1-a}} = (p-1)y^{-\frac{1}{p-1}}, \quad y > 0.
\]

Then \((3.1)\) is equivalent to \((2.4)\), which, in turn, is equivalent to the existence
of the optimal \(Y(y), y > 0\). Denote \(\tilde{Y} \triangleq Y(1)\). Clearly, \(Y(y) = y\tilde{Y}\).

Let a stopping time \(\tau\) and a process \(Y \in \mathcal{Y}, Y > 0\), be such that

\[
E \left[\left(\frac{Y_{\tau}}{Y_T} \right)^{\frac{1}{p-1}} \right| \mathcal{F}_\tau] < \infty.
\]

We have to show that

\[
\xi \triangleq E \left[\left(\frac{\tilde{Y}_\tau}{Y_T} \right)^{\frac{1}{p-1}} \right| \mathcal{F}_\tau] - E \left[\left(\frac{Y_T}{Y} \right)^{\frac{1}{p-1}} \right| \mathcal{F}_\tau] \leq 0.
\]

For a set \(A \in \mathcal{F}_\tau\), the process

\[
Z_t \triangleq \tilde{Y}_\tau 1_{\{t \leq \tau\}} + \tilde{Y}_\tau \left(\frac{Y_{t}}{Y_T} 1_A + \frac{\tilde{Y}_\tau}{Y_T}(1 - 1_A) \right) 1_{\{t > \tau\}}, \quad t \in [0, T],
\]

6
belongs to \mathcal{Y} and is such that $Z_0 = 1$ and $Z_\tau = \hat{Y}_\tau$. We obtain that

$$
\mathbb{E}\left[\left(\frac{Z_\tau}{Z_T} \right)^{\frac{1}{p-1}} \left| \mathcal{F}_\tau \right. \right] = \mathbb{E}\left[\left(\frac{Y_\tau}{Y_T} \right)^{\frac{1}{p-1}} \left| \mathcal{F}_\tau \right. \right] \mathbf{1}_A + \mathbb{E}\left[\left(\frac{\hat{Y}_\tau}{\hat{Y}_T} \right)^{\frac{1}{p-1}} \left| \mathcal{F}_\tau \right. \right] (1 - \mathbf{1}_A)
$$

$$
= \mathbb{E}\left[\left(\frac{\hat{Y}_\tau}{\hat{Y}_T} \right)^{\frac{1}{p-1}} \left| \mathcal{F}_\tau \right. \right] - \mathbb{E}\left[\left(\frac{1}{\hat{Y}_T} \right)^{\frac{1}{p-1}} \max(\xi, 0) \right].
$$

Dividing both sides by $Z_T^{\frac{1}{p-1}} = \hat{Y}_T^{\frac{1}{p-1}}$ and choosing $A = \{ \xi \geq 0 \}$, we deduce that

$$
\mathbb{E}\left[\left(\frac{1}{Z_T} \right)^{\frac{1}{p-1}} \right] = \mathbb{E}\left[\left(\frac{1}{Y_T} \right)^{\frac{1}{p-1}} \right] - \mathbb{E}\left[\left(\frac{1}{\hat{Y}_T} \right)^{\frac{1}{p-1}} \max(\xi, 0) \right].
$$

However, the optimality of $\hat{Y} = Y(1)$ implies that

$$
\mathbb{E}\left[\left(\frac{1}{Y_T} \right)^{\frac{1}{p-1}} \right] \leq \mathbb{E}\left[\left(\frac{1}{Z_T} \right)^{\frac{1}{p-1}} \right].
$$

Hence $\xi \leq 0$. \hfill \square

We now state the main result of the section.

Theorem 3.4. Let (2.1) hold. Suppose that there are constants $0 < a < 1$, $b \geq a$ and $C > 0$ such that

$$
\frac{1}{C} \left(\frac{y}{x} \right)^a \leq \frac{U'(x)}{U'(y)} \leq C \left(\frac{y}{x} \right)^b, \quad x \leq y,
$$

and there is a supermartingale $Z \in \mathcal{Y}$ satisfying (A_p) with

$$
p = \frac{1}{1-a}.
$$

Then for every $y > 0$, the solution $Y(y)$ to (2.3) exists and satisfies $(A_{p'})$ with

$$
p' = 1 + \frac{b}{1-a}.
$$

Remark 3.5. Notice that if the relative risk-aversion of U is well-defined and bounded away from 0 and ∞, then in (3.2) we can take $C = 1$ and choose a and b as lower and upper bounds:

$$
0 < a \leq -\frac{xU''(x)}{U'(x)} \leq b < \infty, \quad x > 0.
$$
In particular, if
\[1 \leq - \frac{xU''(x)}{U'(x)} \leq b, \quad x > 0, \]
then choosing \(a \in (0, 1) \) sufficiently close to 1 we fulfill the conditions of Theorem 3.4 if there exists a supermartingale \(Z \in \mathcal{Y} \) satisfying \((A_p)\) for some \(p > 1 \).

Observe also that for the positive power utility function \(U \) with relative risk-aversion \(a \in (0, 1) \) we can select \(b = a \) and then obtain same estimate as in Proposition 3.3:
\[p' = 1 + \frac{a}{1 - a} = \frac{1}{1 - a} = p. \]

The proof of Theorem 3.4 relies on the following lemma.

Lemma 3.6. Assume (2.1) and suppose that there are constants \(0 < a < 1 \) and \(C_1 > 0 \) such that
\[\frac{1}{C_1} \left(\frac{y}{x} \right)^a \leq \frac{U'(x)}{U'(y)}, \quad x \leq y, \]
and there is a supermartingale \(Z \in \mathcal{Y} \) satisfying \((A_p)\) with
\[p = \frac{1}{1 - a}. \]
Then for every \(y > 0 \) the solution \(Y(y) \) to (2.3) exists, and there is a constant \(C_2 > 0 \) such that for every stopping time \(\tau \) and every \(y > 0 \),
\[\mathbb{E} [I(Y_T(y))Y_T(y)|\mathcal{F}_\tau] \leq C_2 I(Y_\tau(y))Y_\tau(y), \]
where \(I = -V' \).

Remark 3.7. Recall that for \(x = -v'(y) \) the optimal wealth process \(X(x) \) has the terminal value
\[X_T(x) = -V'(Y_T(y)) = I(Y_T(y)) \]
and the product \(X(x)Y(y) \) is a uniformly integrable martingale. It follows that for every stopping time \(\tau \)
\[X_\tau(x) = \frac{1}{Y_\tau(y)} \mathbb{E} [I(Y_T(y))Y_T(y)|\mathcal{F}_\tau] \]
and therefore, inequality (3.4) is equivalent to
\[X_\tau(x) \leq C_2 I(Y_\tau(y)). \]
Proof of Lemma 3.6. To show the existence of $Y(y)$ we need to verify (2.4). As $I = -V'$ is the inverse function to U, condition (3.3) is equivalent to

$$(3.5) \quad \frac{I(x)}{I(y)} \leq C_3 \left(\frac{y}{x} \right)^{1/a}, \quad x \leq y,$$

where $C_3 = C_{1}^{1/a}$. From (3.5) we deduce that for $y \leq 1$

$$V(y) = V(1) + \int_0^1 I(t)dt \leq V(1) + C_3 I(1) \int_y^1 t^{-1/a}dt$$

$$= V(1) + C_3 I(1) \frac{a}{1-a} (y^{-1/a} - 1)$$

$$= V(1) + C_3 I(1) (p-1)(y^{-1/p} - 1).$$

Hence, there is a constant $C_4 > 0$ such that

$$V(y) \leq C_4(1 + y^{-1/p}), \quad y > 0.$$

As Z satisfies (A_p), we have

$$\mathbb{E} \left[Z_T^{-\frac{1}{p-1}} \right] < \infty.$$

It follows that

$$v(y) \leq \mathbb{E} \left[V(yZ_T/Z_0) \right] < \infty, \quad y > 0,$$

which completes the proof of the existence of $Y(y)$.

Let τ be a stopping time and let $y > 0$. We set $\hat{Y} \triangleq Y(y)$ and define the process

$$Y_t \triangleq \hat{Y}_t 1_{\{t \leq \tau\}} + \hat{Y}_\tau Z_t 1_{\{t > \tau\}}, \quad t \in [0, T].$$

Clearly, $Y \in \mathcal{Y}$ and $Y_0 = \hat{Y}_0 = y$. We represent

$$I(\hat{Y}_T)\hat{Y}_T = \xi_1 + \xi_2 + \xi_3,$$

by multiplying the left-side on the elements of the unity decomposition:

$$1 = 1_{\{\hat{Y}_\tau \leq \hat{Y}_T\}} + 1_{\{\hat{Y}_\tau \leq \hat{Y}_T < \hat{Y}_r\}} + 1_{\{\hat{Y}_\tau < \hat{Y}_T, \hat{Y}_T < \hat{Y}_r\}}.$$

For the first term, since $I = -V'$ is a decreasing function, we have that

$$\xi_1 = I(\hat{Y}_T)\hat{Y}_T 1_{\{\hat{Y}_\tau \leq \hat{Y}_T\}} \leq I(\hat{Y}_\tau)\hat{Y}_T.$$

9
Using the supermartingale property of \hat{Y}, we obtain that
\[
\mathbb{E} \left[\xi_1 | \mathcal{F}_\tau \right] \leq I(\hat{Y}_\tau)\hat{Y}_\tau.
\]

For the second term, we deduce from (3.5) that
\[
\xi_2 = I(\hat{Y}_T)\hat{Y}_T 1\{Y_T \leq \hat{Y}_T < \bar{Y}_T\} = I(\hat{Y}_T)\hat{Y}_T^{1-a} 1\{Y_T \leq \hat{Y}_T < \bar{Y}_T\}
\]
\[
\leq C_3 I(\hat{Y}_T)\hat{Y}_T^{1-a} Y_T^{1-a} = C_3 I(\hat{Y}_T)\hat{Y}_T \left(\frac{Z_\tau}{Z_T} \right)^{1-a} = C_3 I(\hat{Y}_T)\hat{Y}_T \left(\frac{Z_\tau}{Z_T} \right)^{\frac{1}{p-1}}
\]
and the (A_p) condition for Z yields the existence of a constant $C_5 > 0$ such that
\[
\mathbb{E} \left[\xi_2 | \mathcal{F}_\tau \right] \leq C_5 I(\hat{Y}_T)\hat{Y}_T.
\]

For the third term, we deduce from (3.5) that
\[
\xi_3 = I(\hat{Y}_T)\hat{Y}_T 1\{\hat{Y}_T < Y_T, \hat{Y}_T < \bar{Y}_T\} \leq I(\hat{Y}_T)\hat{Y}_T 1\{\hat{Y}_T < Y_T\}
\]
\[
= I(\hat{Y}_T)^a \hat{Y}_T I(\hat{Y}_T)^{1-a} 1\{\hat{Y}_T < Y_T\} \leq C_1 I(Y_T)^a Y_T I(\hat{Y}_T)^{1-a}
\]
\[
= C_1 (I(Y_T)Y_T)^a (I(\hat{Y}_T)Y_T)^{1-a}
\]
and then from Hölder’s inequality that
\[
\mathbb{E} \left[\xi_3 | \mathcal{F}_\tau \right] \leq C_1 (\mathbb{E} \left[I(Y_T)Y_T | \mathcal{F}_\tau \right])^a \left(\mathbb{E} \left[I(\hat{Y}_T)Y_T | \mathcal{F}_\tau \right] \right)^{1-a}.
\]

We recall that the terminal wealth of the optimal investment strategy with $\hat{X}_0 = -\nu'(y)$ is given by
\[
I(\hat{Y}_T) = \hat{X}_T.
\]

It follows that
\[
\mathbb{E} \left[I(\hat{Y}_T)Y_T | \mathcal{F}_\tau \right] = \mathbb{E} \left[\hat{X}_TY_T | \mathcal{F}_\tau \right] \leq \hat{X}_T Y_T = \hat{X}_T \hat{Y}_T
\]
\[
= \mathbb{E} \left[\hat{X}_T \hat{Y}_T | \mathcal{F}_\tau \right] = \mathbb{E} \left[I(\hat{Y}_T)\hat{Y}_T | \mathcal{F}_\tau \right].
\]

To estimate $\mathbb{E} \left[I(Y_T)Y_T | \mathcal{F}_\tau \right]$ we decompose
\[
I(Y_T)Y_T = I(Y_T)Y_T 1\{\hat{Y}_T \leq Y_T\} + I(Y_T)Y_T 1\{\hat{Y}_T > Y_T\}.
\]

Since I is decreasing, we have that
\[
I(Y_T)Y_T 1\{\hat{Y}_T \leq Y_T\} \leq I(\hat{Y}_T)Y_T.
\]
As Y is a supermartingale and $Y_\tau = \hat{Y}_\tau$, we obtain that
\[
\mathbb{E}\left[I(Y_T)Y_T 1\{\hat{Y}_\tau \leq Y_\tau \} \bigg| \mathcal{F}_\tau \right] \leq I(\hat{Y}_\tau)Y_\tau = I(\hat{Y}_\tau)\hat{Y}_\tau.
\]

For the second term, using (3.5) we deduce that
\[
I(Y_T)Y_T 1\{\hat{Y}_\tau > Y_\tau \} = I(Y_T)\frac{1}{T} Y_T^{-\frac{1-a}{a}} 1\{\hat{Y}_\tau > Y_\tau \} \leq C_3 I(\hat{Y}_\tau)\hat{Y}_\tau^{-\frac{1-a}{a}}
\]
\[
= C_3 I(\hat{Y}_\tau)\hat{Y}_\tau \left(\frac{\hat{Y}_\tau}{Y_T} \right)^{\frac{1-a}{a}} = C_3 I(\hat{Y}_\tau)\hat{Y}_\tau \left(\frac{Z_\tau}{Z_T} \right)^{\frac{1}{1-a}}
\]

and the (A_p) condition for Z implies that
\[
\mathbb{E}\left[I(Y_T)Y_T 1\{\hat{Y}_\tau > Y_\tau \} \bigg| \mathcal{F}_\tau \right] \leq C_5 I(\hat{Y}_\tau)\hat{Y}_\tau.
\]

Thus we have
\[
\mathbb{E}\left[I(Y_T)Y_T 1\{\hat{Y}_\tau \leq Y_\tau \} \bigg| \mathcal{F}_\tau \right] \leq C_5 I(\hat{Y}_\tau)\hat{Y}_\tau.
\]

Adding together the estimates for $\mathbb{E}\left[\xi_i \big| \mathcal{F}_\tau \right]$ we obtain that
\[
\mathbb{E}\left[I(\hat{Y}_T)\hat{Y}_T \bigg| \mathcal{F}_\tau \right] \leq \eta + C_1 \eta^a \left(\mathbb{E}\left[I(\hat{Y}_T)\hat{Y}_T \bigg| \mathcal{F}_\tau \right] \right)^{1-a}.
\]

It follows that
\[
\mathbb{E}\left[I(\hat{Y}_T)\hat{Y}_T \bigg| \mathcal{F}_\tau \right] \leq x^* \eta = x^* (1 + C_5) I(\hat{Y}_\tau)\hat{Y}_\tau,
\]

where x^* is the root of
\[
x = 1 + C_1 x^{1-a}, \quad x > 0.
\]

We thus have proved inequality (3.4) with $C_2 = (1 + C_5)x^*$. \hfill \square

Proof of Theorem 3.4. Fix $y > 0$. In view of Lemma 3.6, we only have to verify that $\hat{Y} \equiv Y(y)$ satisfies $(A_{p'})$.

Denote $\tilde{X} \equiv X(-v'(y))$ and recall that by Lemma 3.6 and Remark 3.7, there is $C_2 > 0$ such that, for every stopping time τ,
\[
\tilde{X}_\tau \leq C_2 I(\hat{Y}_\tau).
\]
Observe also that as $I = -V'$ is the inverse function to U', the second inequality in (3.2) is equivalent to

$$\frac{y}{x} \leq C \left(\frac{I(x)}{I(y)} \right)^b, \quad x \leq y.$$

We fix a stopping time τ. Since $I(\hat{Y}_T) = \hat{X}_T$, we deduce from the inequalities above that

$$\left(\frac{\hat{Y}_\tau}{\hat{Y}_T} \right)^{1/b} \leq \max \left(1, C^{1/b} \frac{I(\hat{Y}_T)}{I(\hat{Y}_\tau)} \right) \leq \max \left(1, C_3 \frac{\hat{X}_T}{\hat{X}_\tau} \right),$$

where $C_3 = C^{1/b} C_2$. It follows that

$$\left(\frac{\hat{Y}_\tau}{\hat{Y}_T} \right)^{\frac{1-a}{b}} = \left(\frac{\hat{Y}_\tau}{\hat{Y}_T} \right)^{1-a} \leq \max \left(1, C_3^{1-a} \left(\frac{\hat{X}_T}{\hat{X}_\tau} \right) \right) \leq 1 + C_3^{1-a} \left(\frac{\hat{X}_T \hat{Z}_T}{\hat{X}_\tau \hat{Z}_\tau} \right)^{1-a} \left(\frac{Z_\tau}{Z_T} \right)^{1-a}.$$

Denoting by $C_1 > 0$ the constant in the (A_p) condition for Z, we deduce from Hölder’s inequality and the supermartingale property of $\hat{X}Z$ that

$$\mathbb{E} \left[\left(\frac{\hat{Y}_\tau}{\hat{Y}_T} \right)^{\frac{1-a}{b}} \bigg| \mathcal{F}_\tau \right] \leq 1 + C_3^{1-a} \left(\mathbb{E} \left[\frac{\hat{X}_T \hat{Z}_T}{\hat{X}_\tau \hat{Z}_\tau} \bigg| \mathcal{F}_\tau \right] \right)^{1-a} \left(\mathbb{E} \left[\left(\frac{Z_\tau}{Z_T} \right)^{\frac{1-a}{b}} \bigg| \mathcal{F}_\tau \right] \right)^a \leq 1 + C_3^{1-a} C_1^{a}.$$

Hence, \hat{Y} satisfies $(A_{p'})$. \hfill \Box

4 Local martingale property for maximal elements of \mathcal{Y}

Even if the dual minimizer $Y(y)$ is uniformly integrable, it may not be a martingale, due to the lack of the local martingale property; see the single-period example for logarithmic utility in [12, Example 5.1]. Proposition 4.2 below yields sufficient conditions for every maximal element of \mathcal{Y} (in particular, for $Y(y)$) to be a local martingale.

A semimartingale R is called σ-bounded if there is a predictable process $h > 0$ such that the stochastic integral $\int h dR$ is bounded. Following [14], we make the following assumption.

12
Assumption 4.1. For all X and X' in \mathcal{X} such that $X > 0$, the process X'/X is σ-bounded.

Assumption 4.1 holds easily if stock price S is continuous. Theorem 3 in Appendix of [14] provides a sufficient condition in the presence of jumps. It states that every semimartingale R is σ-bounded if there is a finite-dimensional local martingale M such that every bounded purely discontinuous martingale N is a stochastic integral with respect to M.

Proposition 4.2. Suppose that Assumption 4.1 holds. Let $Y \in \mathcal{Y}$ be such that YX' is a local martingale for some $X' \in \mathcal{X}$, $X' > 0$. Then YX is a local martingale for every $X \in \mathcal{X}$. In particular, Y is a local martingale.

Proof. We assume first that $X' = Y = 1$. Let $X \in \mathcal{X}$. As X is σ-bounded, there is a predictable $h > 0$ such that

$$\left| \int h dX \right| \leq 1.$$

Since the bounded non-negative processes $1 \pm \int h dX$ belong to \mathcal{X}, they are supermartingales, which is only possible if $\int h dX$ is a martingale. It follows that X is a non-negative stochastic integral with respect to a martingale:

$$X = X_0 + \int \frac{1}{h} d(\int h dX) \geq 0.$$

Therefore, X is a local martingale, see [1]. Under the condition $X' = Y = 1$, the proof is obtained.

We now consider the general case. Without loss of generality, we can assume that $X_0' = Y_0 = 1$. By localization, we can also assume that the local martingale YX' is uniformly integrable and then define a probability measure Q with the density

$$\frac{dQ}{dP} = X'_T Y_T.$$

Let $X \in \mathcal{X}$. We have that XY' is a local martingale under P if and only if X/X' is a local martingale under Q.

By Assumption 4.1, the process X/X' is σ-bounded. Elementary computations show that X/X' is a wealth process in the financial market with stock price

$$S' = \left(\frac{1}{X'}, \frac{S}{X'} \right);$$

see [4]. The result now follows by applying the previous argument to the S'-market whose reference probability measure is given by Q. \hfill \square
5 Existence of the optimal martingale measure

Recall that $X(x)$ denotes the optimal wealth process for the primal problem (2.2), while $Y(y)$ stands for the minimizer to the dual problem (2.3). As usual, the density process of a probability measure $\mathbb{R} \ll \mathbb{P}$ is a uniformly integrable martingale (under \mathbb{P}) with the terminal value $\frac{d\mathbb{R}}{d\mathbb{P}}$.

The following is the main result of the paper.

Theorem 5.1. Let Assumption 4.1 hold. Suppose that there are constants $0 < a < 1$, $b \geq a$ and $C > 0$ such that

\[
\frac{1}{C} \left(\frac{y}{x} \right)^a \leq \frac{U'(x)}{U'(y)} \leq C \left(\frac{y}{x} \right)^b, \quad x \leq y,
\]

and there is a martingale measure $\mathbb{Q} \in \mathcal{Q}$ whose density process Z satisfies (A_p) with

\[
p = \frac{1}{1 - a}.
\]

Then for every $y > 0$ the optimal martingale measure $\mathbb{Q}(y)$ exists and its density process $Y(y)/y$ satisfies $(A_{p'})$ with

\[
p' = 1 + \frac{b}{1 - a}.
\]

Proof. From Theorem 3.4 we obtain that the dual minimizer $Y(y)$ exists and satisfies $(A_{p'})$ and then from Lemma 3.2 that it is of class (D). The local martingale property of $Y(y)$ follows from Proposition 4.2, if we account for Assumption 4.1 and the martingale property of $X(-v'(y))Y(y)$. Thus, $Y(y)$ is a uniformly integrable martingale and hence, $Y(y)/y$ is the density process of the optimal martingale measure $\mathbb{Q}(y)$. \qed

We refer the reader to Remark 3.5 for a discussion of the conditions of Theorem 5.1.

Example 5.2. In a typical situation, the role of the “testing” martingale measure \mathbb{Q} is played by the minimal martingale measure, that is, by the optimal martingale measure for logarithmic utility. For a model of stock prices driven by a Brownian motion, its density process Z has the form:

\[
Z_t = \mathcal{E} (-\lambda \cdot B)_t := \exp \left(-\int_0^t \lambda dB - \frac{1}{2} \int_0^t |\lambda_s|^2 ds \right), \quad t \in [0, T],
\]
where B is an N-dimensional Brownian motion and λ is a predictable N-dimensional process of the market price of risk. We readily deduce that Z satisfies (A_p) for all $p > 1$ if both λ and the maturity T are bounded. This fact implies the assertions of Theorem 5.1, provided that inequalities (5.1) hold for some $a \in (0, 1)$, $b \geq a$ and $C > 0$ or, in particular, if the relative risk-aversion of U is bounded away from 0 and ∞.

The following result shows that the key bound (5.2) is the best possible.

Theorem 5.3. Let constants a and p be such that

\[0 < a < 1 \quad \text{and} \quad p > \frac{1}{1-a}. \]

Then there exists a financial market with a continuous stock price S such that

1. There is a $Q \in \mathcal{Q}$ whose density process Z satisfies (A_p).

2. In the optimal investment problem with the power utility function

\[U(x) = x^{1-a} \quad \text{for} \quad x > 0, \]

the dual minimizers $Y(y) = y\hat{Y}$, $y > 0$, are well-defined, but are not uniformly integrable martingales. In particular, the optimal martingale measure $\hat{Q} = Q(y)$ does not exist.

The proof of Theorem 5.3 follows from Proposition 6.1 below, which contains an exact counterexample.

We conclude the section with a couple of corollaries of Theorem 5.1 which exploit connections between the (A_p) condition and BMO martingales. Hereafter, we shall refer to [11] and therefore, restrict ourselves to the continuous case.

Assumption 5.4. All local martingales on the filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P})$ are continuous.

From Assumption 5.4 we deduce that the density process of every $Q \in \mathcal{Q}$ is a continuous uniformly integrable martingale and that the dual minimizer $Y(y)$ is a continuous local martingale.

We recall that a continuous local martingale M with $M_0 = 0$ belongs to BMO if there is a constant $C > 0$ such that

\[\mathbb{E} [\langle M \rangle_T - \langle M \rangle_\tau | \mathcal{F}_\tau] \leq C \]

for every stopping time τ.

15
where $\langle M \rangle$ is the quadratic variation process for M. It is known that BMO is a Banach space with the norm
\[
\|M\|_{\text{BMO}} \triangleq \inf \left\{ \sqrt{C} > 0 : (5.3) \text{ holds for } C > 0 \right\}.
\]
We also recall that for a continuous local martingale M with $M_0 = 0$,

(i) The stochastic exponential \(E(M) \triangleq e^{M - \langle M \rangle / 2} \) satisfies \((A_p)\) for some \(p > 1 \) if and only if \(M \in \text{BMO} \); see Theorem 2.4 in [11].

(ii) The stochastic exponentials \(E(M) \) and \(E(-M) \) satisfy \((A_p)\) for all \(p > 1 \) if and only the martingale
\[
q(M)_t \triangleq \mathbb{E} \left[\langle M \rangle_T | \mathcal{F}_t \right] - \mathbb{E} \left[\langle M \rangle_T \right], \quad t \in [0, T],
\]
is well-defined and belongs to the closure in \(\|\cdot\|_{\text{BMO}} \) of the space of bounded martingales; see Theorem 3.12 in [11].

Corollary 5.5. Let Assumption 5.4 hold. Suppose that there are constants \(b \geq 1 \) and \(C > 0 \) such that
\[
\frac{1}{C} \left(\frac{y}{x} \right)^{a} \leq \frac{U'(x)}{U'(y)} \leq C \left(\frac{y}{x} \right)^{b}, \quad x \leq y,
\]
and there is a martingale measure \(Q \in Q \) with density process \(Z = E(M) \) with \(M \in \text{BMO} \). Then for every \(y > 0 \) the optimal martingale measure \(Q(y) \) exists and its density process is given by \(Y(y)/y = E(M(y)) \) with \(M(y) \in \text{BMO} \).

Proof. From (i) we deduce that \(Z \) satisfies \((A_p)\) for some \(p > 1 \). Clearly, \((5.5)\) implies \((5.1)\) for every \(a \in (0, 1) \) and in particularly for \(a \) satisfying \((5.2)\). Theorem 5.1 then implies that \(Y(y)/y \) satisfies \((A_{p'})\) for some \(p' > 1 \) and another application of (i) yields the result.

We notice that by (i) and Theorem 5.3 the power 1 in the first inequality of \((5.5)\) cannot be replaced with any \(a \in (0, 1) \), in order to guarantee that the optimal martingale measure \(Q(y) \) exists.

Corollary 5.6. Let Assumption 5.4 hold and let inequality \((5.1)\) be satisfied for some constants \(0 < a < 1, b \geq a \) and \(C > 0 \). Suppose also that there is a martingale measure \(Q \in Q \) whose density process \(Z = E(M) \) is such that the martingale \(q(M) \) in \((5.4)\) is well-defined and belongs to the closure in \(\|\cdot\|_{\text{BMO}} \) of the space of bounded martingales. Then for every \(y > 0 \) the optimal martingale measure \(Q(y) \) exists and its density process is given by \(Y(y)/y = E(M(y)) \) with \(M(y) \in \text{BMO} \).

Proof. The result follows directly from (ii) and Theorem 5.1.
6 Counterexample

In this section we construct an example of financial market satisfying the conditions of Theorem 5.3. For a semimartingale R, we denote by $\mathcal{E}(R)$ its stochastic exponential, that is, the solution of the linear equation:

$$d\mathcal{E}(R) = \mathcal{E}(R) - dR, \quad \mathcal{E}(R)_0 = 1.$$

We start with an auxiliary filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{Q})$, which supports a Brownian motion $B = (B_t)$ and a counting process $N = (N_t)$ with the stochastic intensity $\lambda = (\lambda_t)$ given in (6.3) below; $B_0 = N_0 = 0$. We define the process

$$S_t \triangleq \mathcal{E}(B)_t = e^{B_t - t/2}, \quad t \geq 0,$$

and the stopping times

$$T_1 \triangleq \inf \{t \geq 0 : S_t = 2\},$$
$$T_2 \triangleq \inf \{t \geq 0 : N_t = 1\},$$
$$T \triangleq T_1 \wedge T_2 = \min(T_1, T_2).$$

We fix constants a and p such that

$$0 < a < 1 \quad \text{and} \quad p > \frac{1}{1 - a}$$

and choose a constant b such that

$$a < b < \frac{1}{q} \quad \text{and} \quad \gamma \leq \frac{1}{2} \delta (1 - \delta),$$

where

$$q \triangleq \frac{p}{p - 1} < \frac{1}{a},$$
$$\delta \triangleq b - a > 0,$$
$$\gamma \triangleq \frac{b}{2}(1 - qb) > 0.$$

With this notation, we define the stochastic intensity $\lambda = (\lambda_t)$ as

$$\lambda_t \triangleq \frac{\gamma}{1 - (S_t/2)^q} 1_{\{t < T_1\}} + \gamma 1_{\{t \geq T_1\}}, \quad t \geq 0.$$

Recall that $N - \int \lambda dt$ is a local martingale under \mathbb{Q}.

17
Finally, we introduce a probability measure $\mathbb{P} \ll \mathbb{Q}$ with the density
\[
\frac{d\mathbb{P}}{d\mathbb{Q}} = \frac{1}{\mathbb{E}^\mathbb{Q}[S_T^b]} S_T^b.
\]
Notice that
\[
\{ \frac{d\mathbb{P}}{d\mathbb{Q}} = 0 \} = \{ S_T = 0 \} = \{ \mathcal{E}(B)_T = 0 \} = \{ T = \infty \}
\]
and therefore, the stopping time T is finite under \mathbb{P}:
\[
\mathbb{P}(T < \infty) = 1.
\]

Proposition 6.1. Assume (6.1) and (6.2) and consider the financial market with the price process S and the maturity T defined on the filtered probability space $(\Omega, \mathcal{F}_T, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P})$. Then

1. The probability measure \mathbb{Q} belongs to \mathcal{Q} and the density process Z of \mathbb{Q} with respect to \mathbb{P} satisfies (A_p).

2. In the optimal investment problem with the power utility function
\[
U(x) = x^{1-a} \quad x > 0,
\]
the dual minimizers $Y(y) = y\hat{Y}$, $y > 0$, are well-defined but are not uniformly integrable martingales. In particular, the optimal martingale measure $\hat{\mathbb{Q}} = \mathbb{Q}(y)$ does not exist.

The proof is divided into a series of lemmas.

Lemma 6.2. The stopping time T is finite under \mathbb{Q} and the probability measures \mathbb{P} and \mathbb{Q} are equivalent.

Proof. In view of (6.4), we only have to show that
\[
\mathbb{Q}(T < \infty) = 1.
\]
Indeed, by (6.3), the intensity λ is bounded below by $\gamma > 0$ and hence,
\[
\mathbb{Q}(T > t) \leq \mathbb{Q}(T_2 > t) \leq e^{-\gamma t} \to 0, \quad t \to \infty.
\]
\[\square\]
From the construction of the model and Lemma 6.2 we deduce that \(\mathbb{Q} \in \mathcal{Q} \). To show that the density process \(Z \) of \(\mathbb{Q} \) with respect to \(\mathbb{P} \) satisfies \((A_p)\) we need the following estimate.

Lemma 6.3. Let \(0 < \epsilon < 1 \) be a constant and \(\tau \) be a stopping time. Then

\[
\mathbb{E}^\mathbb{Q}[S^\epsilon_T | \mathcal{F}_\tau] \leq S^\epsilon_\tau \leq \left(1 + \frac{\epsilon(1 - \epsilon)}{2\gamma} \right) \mathbb{E}^\mathbb{Q}[S^\epsilon_T | \mathcal{F}_\tau].
\]

Proof. We denote

\[
\theta = \frac{1}{2}\epsilon(1 - \epsilon)
\]

and deduce that

\[
S^\epsilon_t = \mathcal{E}(B)^\epsilon_t = \mathcal{E}(\epsilon B)_t e^{-\theta t}, \quad t \in [0, T].
\]

In particular, \(S^\epsilon \) is a \(\mathbb{Q} \)-supermartingale, and the first inequality in the statement of the lemma follows.

To verify the second inequality, we define local martingales \(L \) and \(M \) under \(\mathbb{Q} \) as

\[
L_t = \int_0^t \frac{\theta}{\lambda r} (dN_r - \lambda_r d\tau),
\]

\[
M_t = \mathcal{E}(\epsilon B)_t \mathcal{E}(L)_t,
\]

and observe that

\[
M_t = S^\epsilon_t, \quad t \leq T, \quad t < T_2,
\]

\[
M_T = \left(1 + \frac{\theta}{\lambda_T} \right) S^\epsilon_T, \quad T = T_2.
\]

Since \(\lambda \geq \gamma \), we obtain that

\[
S^\epsilon_t \leq M_t \leq \left(1 + \frac{\theta}{\gamma} \right) S^\epsilon_T, \quad t \in [0, T].
\]

As \(S \leq 2 \), we deduce that \(M \) is a bounded \(\mathbb{Q} \)-martingale and the result readily follows.

Lemma 6.4. The density process \(Z \) of \(\mathbb{Q} \) with respect to \(\mathbb{P} \) satisfies \((A_p)\).
Proof. Fix a stopping time τ. As $Q \sim P$, we have
\[
E \left[\left(\frac{Z_\tau}{Z_T} \right)^{1-p} \big| F_\tau \right] = E^Q \left[\left(\frac{Z_\tau}{Z_T} \right)^{1-p} \big| F_\tau \right] = E^Q \left[\left(\frac{Z_\tau}{Z_T} \right)^{1-p} \big| F_\tau \right] = E^Q \left[\left(\frac{Z_\tau}{Z_T} \right)^{1-p} \big| F_\tau \right],
\]
where $\tilde{Z} = 1/Z$ is the density process of P with respect to Q.

Recall that
\[
\tilde{Z}_T = CS^b_t,
\]
for some constant $C > 0$. Since $0 < b < bq < 1$, Lemma 6.3 yields that
\[
E^Q \left[\tilde{Z}_\tau \big| F_\tau \right] = C \int_0^\tau \gamma \lambda_r dr - dN_r, \quad t \in [0, T].
\]
which implies the result.

We now turn our attention to the second item of Proposition 6.1. Of course, our financial market has been specially constructed in such a way that the solutions $X(x)$ and $Y(y)$ to the primal and dual problems are quite explicit.

Lemma 6.5. In the optimal investment problem with the utility function U from (6.5), it is optimal to buy and hold stocks:
\[
X(x) = xS, \quad x > 0.
\]
The dual minimizers have the form $Y(y) = y\tilde{Y}$, $y > 0$, with
\[
\tilde{Y} = \mathcal{E}(L)Z,
\]
where Z is the density process of Q with respect to P and
\[
L_t = \int_0^t \gamma \lambda_r (\lambda_r dr - dN_r), \quad t \in [0, T].
\]
Proof. We verify the conditions of Lemma 2.1. For the stochastic exponential $\mathcal{E}(L)$ we obtain that
\[
\mathcal{E}(L)_t = e^{\gamma t}, \quad t < T,
\]
and, as $S_{T_1} = 2$, that
\[\mathcal{E}(L)_T = e^{\gamma T} \left(1_{\{T=T_1\}} + \left(1 - \frac{\gamma}{\lambda_T} \right) 1_{\{T=T_2\}} \right) \]
\[= e^{\gamma T} \left(1_{\{T=T_1\}} + \left(\frac{S_T}{2} \right)^{\delta} 1_{\{T=T_2\}} \right) \]
\[= e^{\gamma T} \left(\frac{S_T}{2} \right)^{\delta}. \]

Hence for \hat{Y} defined by (6.6) we have
\[\hat{Y}_T = \mathcal{E}(L)_T Z_T = CS_T^{-a} = CU'(S_T), \]
for some constant $C > 0$.

Let $X \in \mathcal{X}$. Under Q, the product $X \mathcal{E}(L)$ is a local martingale, because X is a stochastic integral with respect to the Brownian motion B and $\mathcal{E}(L)$ is a purely discontinuous local martingale. It follows that $X\hat{Y} = X \mathcal{E}(L)Z$ is a non-negative local martingale (hence, a supermartingale) under \mathbb{P}. Thus, $\hat{Y} \in \mathcal{Y}$.

Observe that the convex conjugate to U is given by
\[V(y) = \frac{a}{1 - a} y^{\frac{1-a}{a}}, \quad y > 0. \]

It follows that
\[V(y\hat{Y}_T) = V(y)\hat{Y}_T^{\frac{1}{a}} = V(y)C^{-\frac{1}{a}}\hat{Y}_T S_T \]
and therefore,
\[\mathbb{E} \left[V(y\hat{Y}_T) \right] \leq V(y)C^{-\frac{1}{a}} < \infty, \quad y > 0. \]

To conclude the proof we only have to show that the local martingale $S\hat{Y} = SE(L)Z$ under \mathbb{P} is of class (D) or, equivalently, that the local martingale $SE(L)$ under Q is of class (D). Actually, we have a stronger property:
\[\{ S_{\tau} \mathcal{E}(L)_{\tau} : \tau \text{ is a stopping time} \} \text{ is bounded in } L^p(Q). \]

Indeed,
\[S_t \mathcal{E}(L)_t \leq S_t e^{\gamma t} \leq 2^{1-b} S_t^b e^{\gamma t}, \quad t \in [0, T], \]
and then for a stopping time τ,
\[
\mathbb{E}_Q^\mathbb{Q} \left[(S_{\tau} \mathcal{E}(L)_{\tau})^q \right] \leq 2^{q(1-b)} \mathbb{E}_Q^\mathbb{Q} \left[(S_{\tau}^b e^{\gamma \tau})^q \right] = 2^{q(1-b)} \mathbb{E}_Q^\mathbb{Q} \left[\mathcal{E}(B)^{qb} e^{q\gamma \tau} \right] \\
= 2^{q(1-b)} \mathbb{E}_Q^\mathbb{Q} \left[\mathcal{E}(qbB)_{\tau} \right] \leq 2^{q(1-b)}.
\]

The following lemma completes the proof of the proposition.

Lemma 6.6. For the dual minimizer \hat{Y} constructed in Lemma 6.5 we have
\[
\mathbb{E} \left[\hat{Y}_T \right] < 1.
\]
Thus, \hat{Y} is not a uniformly integrable martingale.

Proof. Recall from the proof of Lemma 6.5 that for the local martingale L defined in (6.7),
\[
\mathcal{E}(L)_T = e^{\gamma T} \left(\frac{S_T}{2} \right)^{\delta}.
\]
Using (6.2), we deduce that
\[
\mathcal{E}(L)_T = \frac{1}{2^\delta} e^{\gamma T} (\mathcal{E}(B)_T)^{\delta} = \frac{1}{2^\delta} e^{\gamma T} \mathcal{E}(\delta B)_T e^{-\frac{1}{2} \delta (1-\delta) T} \leq \frac{1}{2^\delta} \mathcal{E}(\delta B)_T.
\]
It follows that
\[
\mathbb{E} \left[\hat{Y}_T \right] = \mathbb{E} \left[\mathcal{E}(L)_T Z_T \right] = \mathbb{E}_Q^\mathbb{Q} \left[\mathcal{E}(L)_T \right] \leq \frac{1}{2^\delta} \mathbb{E}_Q^\mathbb{Q} \left[\mathcal{E}(\delta B)_T \right] \leq \frac{1}{2^\delta}.
\]

References

[1] Jean-Pascal Ansel and Christophe Stricker. Couverture des actifs contingents et prix maximum. *Ann. Inst. H. Poincaré Probab. Statist.*, 30 (2):303–315, 1994. ISSN 0246-0203.

[2] F. Delbaen, P. Grandits, T. Rheinlander, D. Samperi, M. Schweizer, and C. Stricker. Exponential hedging and entropic penalties. *Mathematical Finance*, 12(2):99–123, 2002.

[3] Freddy Delbaen and Walter Schachermayer. A general version of the fundamental theorem of asset pricing. *Math. Ann.*, 300(3):463–520, 1994. ISSN 0025-5831.
[4] Freddy Delbaen and Walter Schachermayer. The no-arbitrage property under a change of numéraire. *Stochastics Stochastics Rep.*, 53(3-4):213–226, 1995. ISSN 1045-1129.

[5] Freddy Delbaen and Walter Schachermayer. The fundamental theorem of asset pricing for unbounded stochastic processes. *Math. Ann.*, 312(2):215–250, 1998. ISSN 0025-5831.

[6] Freddy Delbaen, Pascale Monat, Walter Schachermayer, Martin Schweizer, and Christophe Stricker. Weighted norm inequalities and hedging in incomplete markets. *Finance and Stochastics*, 1(3):181–227, 1997. ISSN 0949-2984. doi: 10.1007/s007800050021. URL http://dx.doi.org/10.1007/s007800050021.

[7] Peter Grandits and Leszek Krawczyk. Closedness of some spaces of stochastic integrals. In *Séminaire de Probabilités, XXXII*, volume 1686 of *Lecture Notes in Math.*, pages 73–85. Springer, Berlin, 1998. doi: 10.1007/BFb0101752. URL http://dx.doi.org/10.1007/BFb0101752.

[8] Hua He and Neil D. Pearson. Consumption and portfolio policies with incomplete markets and short-sale constraints: the infinite-dimensional case. *J. Econom. Theory*, 54(2):259–304, 1991. ISSN 0022-0531.

[9] Julien Hugonnier, Dmitry Kramkov, and Walter Schachermayer. On utility-based pricing of contingent claims in incomplete markets. *Math. Finance*, 15(2):203–212, 2005. ISSN 0960-1627.

[10] Ioannis Karatzas, John P. Lehoczky, Steven E. Shreve, and Gan-Lin Xu. Martingale and duality methods for utility maximization in an incomplete market. *SIAM J. Control Optim.*, 29(3):702–730, 1991. ISSN 0363-0129.

[11] Norihiko Kazamaki. *Continuous exponential martingales and BMO*, volume 1579 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 1994. ISBN 3-540-58042-5.

[12] D. Kramkov and W. Schachermayer. The asymptotic elasticity of utility functions and optimal investment in incomplete markets. *Ann. Appl. Probab.*, 9(3):904–950, 1999. ISSN 1050-5164.

[13] D. Kramkov and W. Schachermayer. Necessary and sufficient conditions in the problem of optimal investment in incomplete markets. *Ann. Appl. Probab.*, 13(4):1504–1516, 2003. ISSN 1050-5164.
[14] Dmitry Kramkov and Mihai Sirbu. On the two-times differentiability of the value functions in the problem of optimal investment in incomplete markets. *Ann. Appl. Probab.*, 16(3):1352–1384, 2006. ISSN 1050-5164.