Successful early management of the severely burned patient is contingent on effective fluid resuscitation. Burned skin causes a substantial loss of plasma proteins and fluid from the intravascular space. As a result, there can be marked edema, hypotension, and multiple organ dysfunction.1–4 Free radicals also play an important role during the post-burn hypermetabolic response.5,6 Oxygen free radicals, such as superoxide, peroxide, and hydroxyl, may cause or exacerbate vascular permeability.7 Crystalloid solutions are aggressively given to correct hypovolemia and to restore tissue perfusion, and cellular respiration.1,8,9 High-volume crystalloid resuscitation may, however, worsen outcomes.9–12 Administration of vitamin C, a free radical scavenger, may improve microvascular permeability and negative interstitial pressure and reduce the overall volume of fluid necessary during burn resuscitation.3,4,13,14 These benefits seem to be supported by recent animal studies and a randomized controlled trial, and because of this, many patients in the burn community have started using more high-dose vitamin C during complicated burn resuscitations.3,6,8,15,16 Here, we present 2 patients with complicated burn resuscitations during which high-dose vitamin C was utilized as rescue therapy. Both patients ultimately died after developing acute kidney injury (AKI) and were found to have calcium oxalate crystals within their renal tubules at autopsy.

CASE REPORTS

The first patient was a 31-year-old Caucasian woman admitted to our facility after sustaining 65% TBSA thermal injuries in a residential fire. Admission
bronchoscopy showed grade I inhalation injury. The patient received Lactated Ringers during initial resuscitation titrated to a combined endpoint of urine output and tissue perfusion according to clinical judgment supported by a computer-based clinical decision support system. Her resuscitation was complicated by vasopressor dependent hypotension and increasing crystalloid requirements. Given circumferential burns and decreased pulses, escharotomies were performed on her right upper extremity and bilateral lower extremities. Albumin was started at 8 hours post-burn at 0.4 ml/kg/%TBSA/24 hours when she was transiently hypotensive (mean arterial pressure [MAP] 40–50 for 30 minutes). Vitamin C at 66 mg/kg/hr was initiated 11 hours post-burn as a rescue therapy to reduce oxidative stress and overall fluid requirements. She received a total of 101 g of ascorbic acid in 18 hours (Table 1). She developed AKI with lactic acidosis, and continuous venovenous hemofiltration was planned. Before it could be initiated, she became progressively hypotensive and developed heart block leading to pulseless electrical activity. Despite cardio-pulmonary resuscitative efforts, the patient died on hospital day 2. At autopsy, there was mild cerebral edema, and birefringent calcium oxalate crystals were identified in her intratubular spaces in both kidneys.

The second patient was a 20-year-old man with 67% TBSA thermal injuries sustained from a reported industrial accident at a steel plant. On arrival, he was awake with a Glasgow coma scale of 15. He was intubated given the extent of his burns. Admission bronchoscopy was negative for inhalation injury. He required aggressive fluid resuscitation and 4 vasopressors to maintain MAPs of 50 seconds. Vitamin C infusion at 66 mg/kg/hr was initiated at 8 hours post-burn to help reduce oxidative stress and total resuscitative volume. Ultimately, he received 224 g during 20 hours (Table 1). In addition, he received an additional 200 mg of ascorbic acid in his total parenteral nutrition. His hospital course was complicated by bilateral lower extremity and right upper extremity escharotomies for circumferential burns. He then developed primary metabolic acidosis, refractory shock, and AKI requiring continuous venovenous hemofiltration. He ultimately required a left above-the-knee amputation for progressively necrotic tissue. With worsening lactic acidosis and fever despite broad spectrum antibiotics (started 24 hours post-burn), an exploratory laparotomy was performed to identify necrotic bowel, and none was identified. On hospital day 3, his pupils were fixed and dilated with brain imaging showing cerebral edema and tonsillar herniation. Autopsy showed evidence of early cerebellar herniation with ischemic necrosis of the brainstem, cerebellum, and upper cervical spinal cord. Calcium oxalate crystals were identified in the intratubular space in both kidneys (Figure 1).

DISCUSSION

Preclinical studies have demonstrated the role of free radicals in the development of edema and increased vascular permeability after thermal injury. Other mediators of vascular permeability in burn patients include histamine, prostaglandins, catecholamines, and thromboxane. These factors are responsible for both the local and the systemic inflammatory response. Histamine released from mast cells in injured tissue results in upregulation of xanthine oxidase activity and free radical formation. Local antioxidant activity is altered in the injured tissue and damaged neutrophils contribute to the formation of more free radicals. For this reason, antioxidants, such as ascorbic acid, were investigated to decrease the amount of resuscitative volumes and secondary injury caused by free radicals. Ascorbic acid was shown to have free radical scavenging effects and helped to regulate collagen denaturation. More recent studies have shown high-dose vitamin C infusions to reduce post-burn lipid peroxidation, vascular permeability, edema, and fluid resuscitative volumes.

Animal studies were performed to analyze the effect of high-dose vitamin C on resuscitative volume and edema formation. The water content of the burned skin in the vitamin C group was markedly decreased, suggesting reduced post-burn capillary permeability. Another animal study was performed to test the hypothesis that there is evidence of increased negative interstitial hydrostatic pressure in burn injured tissue. This is suggested as a major pathophysiological mechanism necessary to cause such a rapid and massive edema formation after thermal injury. Tanaka et al. investigated high-dose vitamin C and its effect on counteracting the increased negativity of interstitial pressure in rats. They showed a marked attenuation of post-burn interstitial pressure by high-dose vitamin C with moderate decrease in the total body weight. In sheep, there was a significant decrease in the resuscitative volume in those sustaining a 40% TBSA after infusion of high-dose vitamin C. Even in delayed initiation of high-dose vitamin C (2 and 6 hours post-burn), there was still a decrease in the fluid volume required in thermally injured guinea pigs. Despite the delayed initiation of high-dose vitamin C and decrease in resuscitation volume, they found that the 24-hour fluid requirement to be reduced to 32.5% of the Parkland formula.
Table 1. Patient demographics and vitamin C dosages

Hours Post-Burn	Crystalloid (ml)	Colloid (ml)	Vitamin C (ml)	Other (ml)	Total Fluid (ml)	UOP (ml)	Cr (mg/dl)	CVVH	HCT	ScvO2	Lactate (mmol/l)
0	620	0	0	20	640	0	0.9	–	–	–	36.6
6	3720	450	448	630	3840	306	0.81	–	79.5	6.88	46.9
12	8340	1792	1073	3136	9841	663	0.86	–	41.4	6.89	34.4
18	9730	1530	2040	1637	13,585	1164	1.4	–	64	5.62	26.3
24 (total)	11,330	3136	1637	17,633	1596	0.98	–	–	14.43	–	14.43

Pt 1: TBSA, 65.5%; Wt, 85 kg

Hours Post-Burn	Crystalloid (ml)	Colloid (ml)	Vitamin C (ml)	Other (ml)	Total Fluid (ml)	UOP (ml)	Cr (mg/dl)	CVVH	HCT	ScvO2	Lactate (mmol/l)
0	900	0	0	0	900	10	Hemolyzed	–	53	–	5.97
6	7000	100	0	450	7550	64	1.65	–	57.5	–	7.51
12	12,970	2040	1086	16,796	821	1.87	–	54	56.4	10.22	7.12
18	15,440	4499	1875	23,114	2102	2.29	–	49.9	79.1	11.89	11.89
24 (total)	19,640	6953	2480	30,973	3881	2.37	Started	–	90	9.45	9.94

Pt 2: TBSA, 67%; Wt, 170 kg

Pt, patient; Cr, creatinine; Wt, weight; UOP, urine output; HCT, hematocrit; ScvO2, central venous oxygen saturation; CVVH, continuous venovenous hemofiltration.
Vitamin C supplementation, both high and low doses, contributing to renal failure secondary to calcium oxalate deposits has been reported in the literature. In addition to being part of a daily multivitamin, vitamin C is also being used as an alternative medicine in cancer, amyloidosis, and nephropathy.32,33 Ascorbic acid can induce oxalate nephropathy, worsen renal injury, and delay kidney recovery.24 Oxalate nephropathy, or AKI as a result of calcium oxalate accumulation, can occur in both primary and secondary hyperoxaluria.32 Primary hyperoxaluria is because of a group of autosomal recessive inheritance, whereas secondary hyperoxaluria is because of increased oxalate intake, increased absorption of oxalate, or increased production of oxalate.32,34 Increased production of oxalate is typically because of increased ingestion of oxalate precursors, such as ethylene glycol, and more rarely, vitamin C.32,34

Two patients identified in the literature were given 45 and 60 g intravenously of ascorbic acid as an alternative therapy in amyloidosis and cancer, respectively.32,35 Both patients subsequently developed acute renal failure and showed birefringent crystals on polarized light microscopy consistent with calcium oxalate nephropathy. These patients had normal native renal function before the administration of vitamin C.32,33,35

Oxalate nephropathy has been described in nonburn patients even at low doses. Of note, these patients received anywhere from 500 mg to 6.5 g orally. All of the patients reported taking the dosages of vitamin C for months and had normal renal function prior.32,36,37 Review of the literature identified one other case report of vitamin C-associated nephropathy in a burn patient.34 The patient sustained 40% TBSA and was given vitamin C supplementation of 1 g/d intravenously. He developed AKI requiring dialysis. He remained anuric and dialysis-dependent for more than 2 months. Renal biopsy showed extensive calcium oxalate deposits within his tubules. Only after decreasing the vitamin C dosage to 0.2 g/day and increasing the dialyzate flow, he has renal improvement. The author proposed that the AKI was initially caused by volume loss from his burn injury and potentially exacerbated by amikacin. He argues that the vitamin C supplementation either potentiated his renal injury or delayed its resolution.34 Overall, this shows oxalate nephropathy, and calcium oxalate crystals can form in the presence of normal renal function and by taking low doses.32,34,36

The finding of calcium oxalate crystals in renal tubules of burn patients has not been previously reported. This has been described in other patient populations receiving vitamin C therapy. Others have
reported patients developing AKI following vitamin C infusion for adjuvant treatment of amyloidosis and cancer and subsequently found calcium oxalate nephropathy on renal biopsy.32–35,37 All of these patients had normal renal function before the start of vitamin C. In these patients, calcium oxalate nephropathy was described as a clinically significant morbidity.

Our patients differ from those described in the literature. First, our patients had a delay of high-dose vitamin C infusion. Second, our patients had significant burns and were at risk for renal failure. In regard to its delayed initiation, both Tanaka et al27 and Sakurai et al16 described a beneficial effect of high-dose vitamin C in guinea pigs, even after its infusion was postponed by 6 hours. In addition, in these studies, no lab abnormalities were noted despite their high-dose vitamin C infusion delay. For this reason, we used high-dose vitamin C as a rescue therapy to help attenuate the total volume of resuscitation and possible reduce the systemic inflammatory response.38 Of note, the initial studies in utilizing vitamin C were in accordance with the Parkland formula. However, in 1991, Matsuda et al5 showed that with high-dose vitamin C the total 24-hour resuscitation was able to be reduced from 4 to 1 ml/kg/%TBSA. In the article by Sakurai et al,16 they resuscitated with lactated Ringer’s solution according to the Parkland formula for only the first 6 hours, and then reduced the volume by 25% of the Parkland formula once the high-dose vitamin C was initiated. Tanaka et al initiated resuscitation with the Parkland formula for 0.5 to 2 hours post-injury and then reduced the volume to 25% of the Parkland formula. Despite the delayed initiation of high-dose vitamin C and decrease in resuscitation volume, they found the 24-hour fluid requirement to be reduced to 32.5% of the Parkland formula. However, a known complication of vitamin C is osmotic diuresis. Although our patients did receive a lower volume of resuscitation compared to the Parkland formula (Table 1), they did not have profound diuresis, and their laboratory findings did not show evidence of hemococoncentration after the initiation of vitamin C (Table 1). Our resuscitation practices are guided by a computerized clinical decision support system with initial crystalloid rate and assistance in this study. We thank SAMMC Pathology Department for their help and assistance in this study.

CONCLUSION

This report identifies a known complication of vitamin C therapy in 2 patients receiving high-dose vitamin C as a rescue therapy in complicated burn resuscitations. Currently, there is much enthusiasm in the burn community about high-dose vitamin C infusions, and there are data supporting its use as an adjunct to complicated burn resuscitations. In other patient populations, ascorbic acid can cause calcium oxalate nephropathy and contribute to clinical AKI. Before high-dose vitamin C becomes a standard of care in burn units, further prospective research is necessary to determine the prevalence of adverse-effects, the optimal dose, timing, and the appropriate patient population for this therapy.

ACKNOWLEDGMENTS

We thank SAMMC Pathology Department for their help and assistance in this study.
REFERENCES

1. Kremer T, Harenberg P, Hernkamp F, et al. High-dose vitamin C treatment reduces capillary leakage after burn plasma transfer in rats. J Burn Care Res 2010;31:470–9.

2. Lund T, Onarheim H, Reed KK. Pathogenesis of edema formation in burn injuries. World J Surg 1992;16:2–9.

3. Matsuda T, Tanaka H, Williams S, Hanumadass M, Abcarian H, Reyes-H. Reduced fluid volume requirements for resuscitation of third-degree burns with high-dose vitamin C. J Burn Care Rehabil 1991;12:525–32.

4. Tanaka H, Lund T, Wiig H, et al. High dose vitamin C counteracts the negative interstitial fluid hydrostatic pressure and early edema generation in thermally injured rats. Burns 1999;25:569–74.

5. Horton JW. Free radicals and lipid peroxidation mediate injury in burn trauma: the role of antioxidant therapy. Toxicology 2003;189:75–88.

6. Tanaka H, Matsuda T, Miyagantani Y, Yukioka T, Matsuda H, Shimazaki S. Reduction of resuscitation fluid volumes in severely burned patients using ascorbic acid administration: a randomized, prospective study. Arch Surg 2000;135:326–31.

7. Kramer GC, Lund T, Herndon DN. Pathophysiology of burn shock and burn edema. In: D. Herndon, editor. Total burn care. Philadelphia: Saunders; 2002. p. 78–87.

8. Dubick MA, Williams C, Elgjo GI, Kramer GC. High-dose vitamin C infusion reduces fluid requirements in the resuscitation of burn-injured sheep. Shock 2005;24:139–44.

9. Chung KK, Wolf SE, Cancio LC, et al. Resuscitation of severely burned patients using ascorbic acid. Shock 2009;73:24–7.

10. Alvarado R, Chung KK, Mann EA, et al. The effects of high-dose vitamin C therapy on postburn lipid peroxidation. J Burn Care Rehabil 1993;14:624–9.

11. Warden GD, D. Herndon, editor. 2002, Saunders: Total Burn Care. Philadelphia. p. 87–97.

12. Pruitt BA Jr. Protection from excessive resuscitation: “pushing the pendulum back.” J Trauma 2000;49:567–8.

13. Kahn SA, Beers RJ, Lentz CW. Resuscitation after severe burn injury using high-dose ascorbic acid: a retrospective review. J Burn Care Res 2011;32:110–7.

14. Nishikimi M. Oxidation of ascorbic acid with superoxide anion generated by the xanthine-xanthine oxidase system. Biochem Biophys Res Commun 1975;63:462–8.

15. Matsuda T, Tanaka H, Yukioka T, et al. Antioxidant therapy using high dose vitamin C: reduction of postburn resuscitation fluid volume requirements. World J Surg 1995;19:287–91.

16. Sakurai M, Tanaka H, Matsuda T, Yaya H, Shimazaki S, Matsuda T. Reduced resuscitation fluid volume for second-degree burn injuries with delayed initiation of vitamin C therapy: (beginning 6h after injury). J Surg Res 1997;73:24–7.

17. Salinas J, Chung KK, Mann EA, et al. Computerized decision support system improves fluid resuscitation following severe burns: an original study. Crit Care Med 2011;39:2031–8.

18. Till GO, Guilds LS, Mahrougui M, Friedli HP, Trenz O, Ward PA. Role of xanthine oxidase in thermal injury of skin. Am J Pathol 1989;135:195–202.

19. Ward PA, Till GO. Pathophysiologic events related to thermal injury of skin. J Trauma 1990;30(12 Suppl):S75–9.

20. Edgar DW, Fish JS, Gomez M, Wood FM. Local and systemic treatments for acute edema after burn injury: a systematic review of the literature. J Burn Care Res 2011;32:334–47.

21. Kahn SA, Lentz CW. Fictitious hyperglycemia: point-of-care glucose measurement is inaccurate during high-dose vitamin C infusion for burn shock resuscitation. J Burn Care Res, 2015;36:e67–71.

22. Bielski BH, Richter HW, Chan PC. Some properties of the ascorbate free radical. Ann N Y Acad Sci 1975;258:231–7.

23. Niki E. Interaction of ascorbate and alpha-tocopherol. Ann N Y Acad Sci 1987;498:186–99.

24. Johnston CS, Retrum KR, Sriralakshmi JC. Antithiamine effects and complications of supplemental vitamin C. J Am Diet Assoc 1992;92:988–9.

25. Murad S, Grove D, Lindberg KA, Reynolds G, Sivarajah A, Pinnell SR. Regulation of collagen synthesis by ascorbic acid. Proc Natl Acad Sci U S A 1981;78:2879–82.

26. Matsuda T, Tanaka H, Yusa H, et al. The effects of high-dose vitamin C therapy on postburn lipid peroxidation. J Burn Care Rehabil 1993;14:624–9.

27. Tanaka H, Matsuda T, Shimazaki S, Hanumadass M, Matsuda T. Reduced resuscitation fluid volume for second-degree burns with delayed initiation of ascorbic acid therapy. Arch Surg 1997;132:158–61.

28. Dylewski DF, Froman DM. Vitamin C supplementation in the patient with burns and renal failure. J Burn Care Rehabil 1992;13:378–80.

29. Gottschlich MM, Warden GD. Vitamin supplementation in the patient with burns. J Burn Care Rehabil 1990;11:275–9.

30. Food and Nutrition Board. Dietary reference intakes: applications in dietary assessment. Washington, DC: National Academy Press; 2000. p. 284–9.

31. Department of Surgical Education, O.R.M.C., Ascorbic Acid Administration: a randomized, prospective study. Arch Surg 1992;127:518–24.

32. Warden GD, D. Herndon, editor. 2002, Saunders: Total Burn Care. Philadelphia. p. 87–97.

33. Warden GD. Fluid resuscitation and early management. In Total Burn Care, D. Herndon, editor. 2002, Saunders: Philadelphia. p. 87–97.

34. Johnston CS, Retrum KR, Sriralakshmi JC. Antithiamine effects and complications of supplemental vitamin C. J Am Diet Assoc 1992;92:988–9.

35. Department of Surgical Education, O.R.M.C., Ascorbic Acid Administration: a randomized, prospective study. Arch Surg 1992;127:518–24.

36. Layntz R, Nair R, Pegoero A, Courville C, Vitamin C-induced oxalate nephropathy. Int J Nephrol 2011;2011:146927.

37. Wong K, Thompson C, Bailey RR, McDiarmid S, Gardner J. Acute oxalate nephropathy after a massive intravenous dose of vitamin C. Aust N Z J Med 1994;24:410–1.

38. Alkhunaizi AM, Chan L. Secondary oxalosis: a cause of delayed recovery of renal function in the setting of acute renal failure. J Am Soc Nephrol 1996;7:2320–6.

39. Lawton JM, Conway LA, Crosson JT, Smith CL, Abraham PA. Acute oxalate nephropathy after massive ascorbic acid administration. Arch Intern Med 1985;145:950–1.

40. Gurr H, Sheta MA, Nivera N, Tunkel A. Vitamin C-induced oxalate nephropathy: a case report. J Community Hosp Intern Med Perspect 2012;2.

41. Mashour S, Turner JF Jr, Merrell R. Acute renal failure, oxalosis, and vitamin C supplementation: a case report and review of the literature. Chest 2000;118:561–3.

42. Dubick MA. A review of the use of high dose vitamin C for the treatment of burns. Recent Res Dev Nutr 2000;3:141–56.

43. Chuang KK, Salinas J, Renz EM, et al. Simple derivation of the initial fluid rate for the resuscitation of severely burned adult combat casualties: in silico validation of the rule of 10. J Trauma 2010;69 (Suppl 1):S49–54.