Supplemental Figure S1: Experiment Mapping. This figure shows the effect of perturbing each single experiment based on the experimental error. A) Mean base pair probability RMSD, averaged between +/- 3 σ perturbations of the experimental values. The x-axis, which is shared with subplot B, shows the experiment number. This shows how perturbing a single experiment and then propagating the perturbation through the nearest neighbor parameters values alters the predicted base pairing probabilities. B) The impact of changing an individual experimental value by - 3 σ on the parameter values. Independent parameters are along the y-axis, organized by motif type, and the experiment number is shown on the x-axis. This shows how perturbing each experiment perturbs the nearest neighbor parameters. C) Mean base pair probability RMSD, averaged between +/- 3 σ perturbations of the parameter values. Parameter indices are along the y-axis, grouped by parameter type and shared with subplot B. An interactive version of this figure is available at http://rna.urmc.rochester.edu/publications.html.
Supplemental Figure S2: Average parameter values and observed parameter standard deviations. Randomly perturbed experiment values were used to generate 100,000 parameter sets. A) The difference between the average values of the parameters across all 100,000 parameter sets and the values calculated using unmodified experiment values is plotted against parameter index. B) The difference between the errors calculated by the propagation of uncertainties and the observed standard deviations for each free parameter is plotted against parameter index.
Supplemental Figure S3: Score distributions for perturbed parameter sets. The average sensitivity and positive predictive value was calculated for each perturbed parameter set compared against predictions made with an unperturbed parameter set. Parameter sets were generated by either randomly perturbing every free parameter value independently or by randomly perturbing every experiment value within experimental uncertainty. 1,000 parameter sets were evaluated for both classes.
Supplemental Figure S4: Base pair probability RMSD distributions for perturbed parameter sets. Parameter sets were generated by either randomly perturbing every free parameter value independently or by randomly perturbing every experimental value within experimental uncertainty. A) The mean base pair probability RMSD across 1650 sequences was calculated for each parameter set compared against predictions made with an unperturbed parameter set. B) The mean base pair probability length-corrected RMSD across 1650 sequences was calculated for each parameter set compared against predictions made with an unperturbed parameter set. 1,000 parameter sets were evaluated for both classes.
Supplemental Figure S5: Convergence of mean RMSD calculations. The cumulative mean average RMSD is plotted as the number of parameter sets is increased. The convergence of the values for both data tables generated by simultaneously perturbing all free nearest neighbor parameter values and data tables generated by perturbing all experiment values within experimental uncertainty demonstrates that sufficient numbers of data table sets have been sampled for both types.
Supplemental Figure S6: Accuracy distributions for randomly perturbed parameter sets. 1000 parameter sets were generated by randomly perturbing optical melting values within experimental uncertainty. The parameter sets were then benchmarked by predicting secondary structures for 1,450 sequences of known structure. The average positive predictive value (PPV) and sensitivity scores across the RNA families are plotted (A and B respectively). The red line indicates the score for the unperturbed parameter set and the blue line indicates the score of the “average” parameter set.
Supplemental Figure S7: Accuracy scores for randomly perturbed parameter sets. 1000 parameter sets were generated by randomly perturbing optical melting values within experimental uncertainty. The parameter sets were then benchmarked by predicting secondary structures for 1,450 sequences of known structure. The sensitivities are plotted against PPVs, where the predicted structures are scored against the known structures. Each data point represents the scores for a single parameter set, with the red data point illustrating the performance of the unperturbed parameter set and the blue dot representing the scores for the “average” parameter set.
Supplemental Figure S8: RMSD difference between positive and negative ΔG perturbations. Experiment indices are along the x-axis, organized by structure type. Difference in Mean base pair probability RMSD for the entire sequence archive except randomized sequences for +3 and -3 σ perturbations. The details of each experiment are available in the Supplemental Tables S1-S8.
Supplementary Table 1: Helical Duplex Experiment List
Note: The top strand is shown 5’ to 3’. The bottom strand is shown 3’ to 5’.

Index	ID#	Duplex	Folding Free Energy Change (kcal/mol)	Reference	
1	R1	UCAUGA GUACU	-4.30 (1)		
2	R3	CAAAAAAAG GUUUUUUC	-4.10 (2)		
3	R4	CAAAAAAAG GUUUUUUUC	-5.00 (2)		
4	R5	CGGG GGCC	-4.55 (3)		
5	R6	ACCGGU UGGCCA	-8.48 (3)		
6	R8	GGCC CGGG	-5.37 (4)		
7	R9	GGCC CGGG	-5.90 (4)		
8	R12	GGCC CGGG	-5.32 (5)		
9	R14	AGGCCU UCCGGA	-8.50 (5)		
10	R15	CGGCCG GCCGGC	-9.90 (5)		
11	R18	GCCGGC CGGGCG	-11.22 (5)		
12	R19	UCCGGA AGGCCU	-7.86 (5)		
13	R20	GCCG CGCG	-4.63 (6)		
14	R21	GCGCGC CGCGCG	-10.60 (6)		
15	R22	CGCGCG CGCGCG	-9.06 (6)		
16	R24	AUGCGU UGCGUA	-4.22 (7)		
17	R25	AUGCGCGU UGCGCGUA	-9.31 (7)		
----	---	----	----	----	
18	R26	AUGCGUAU	-5.27	(7)	
19	R27	AUGUGCAU	-6.17	(7)	
20	R28	GCUGGC	-6.47	(7)	
21	R29	GGGCU	-4.67	(7)	
22	R30	CUGCGG	-4.31	(7)	
23	R31	CGGCUG	-5.55	(7)	
24	R32	AUGCAU	-4.73	(7)	
25	R33	AUGCGCAU	-10.19	(7)	
26	R34	AUACGUAU	-6.57	(7)	
27	R35	AUGUACAU	-6.49	(7)	
28	R36	GCUAGC	-7.89	(7)	
29	R37	GACGUC	-7.24	(7)	
30	R38	CUGCAG	-7.11	(7)	
31	R39	CAGCUG	-6.72	(7)	
32	R40	UGGCGG	-8.56	(8)	
33	R41	UCCGGG	-7.44	(8)	
34	R42	GCCGGU	-9.17	(8)	
35	R43	GGGCU	-8.42	(8)	
36	R44	GCAUGC	-7.34	(9)	
37	R45	GUGCAC	-7.65	(9)	
38	R46	GUCUAGAC	-10.09	(9)	
---	---	---	---	---	
39	R47	GAUAUAUC	CUUAUAUAG	-6.05	(9)
40	R48	GUAUAUAC	CAUAUAUG	-5.99	(9)
41	R49	GAGAGA	CUACU	-6.86	(9)
42	R50	AGAGAGAG	UCUCUCUC	-11.14	(9)
43	R51	AAUGCAUU	UUACGUAA	-7.17	(9)
44	R52	UAUGCAUA	UAACGUAA	-7.22	(9)
45	R53	GAUGCAUC	CUACGUAG	-10.18	(9)
46	R54	CAUGCAUG	GUACGUAC	-9.72	(9)
47	R55	AGAUAUCU	UCUAUAGA	-6.50	(10)
48	R56	AUCUAGAU	UAGAUCUA	-7.17	(10)
49	R57	AACUAGUU	UUGAUCAA	-7.15	(10)
50	R58	AGUUAACU	UCAAUUGA	-6.19	(10)
51	R59	ACUUAAGU	UGAAUUCA	-6.26	(10)
52	R60	GAACGUUC	CUUGCAAG	-9.39	(10)
53	R61	GUUCGAAC	CAAGCUUG	-8.76	(10)
54	R62	UCUAUAGA	AGUUAACU	-6.89	(10)
55	R63	UAGAUCUA	AUCUAGAU	-7.06	(10)
56	R64	GUACGUAC	UGUCAUG	-7.08	(10)
57	R65	ACUAUAGU	UGUAUACU	-7.09	(10)
58	R66	UGAUCA	ACUAU	-5.00	(10)
59	R68	UCAUGA	AGUACU	-3.82	(10)
---	---	---	---	---	
60	R70	UGCGCA ACGCGU	-8.17	(11)	
61	R71	AGCGCU UCGCGA	-8.01	(11)	
62	R72	GGCGCC CGGCGG	-11.31	(11)	
63	R73	UGCgCA ACGCGU	-8.12	(12)	
64	R74	GAUGCAUU UUACGUGA	-6.82	(13)	
65	R75	UAUGCAUG GUACGUAAU	-6.44	(13)	
66	R76	GCGGCC CGGCCG	-10.43	(14)	
67	R78	AUGGUCAU UACUGGGU	-5.42	(15)	
68	R79	CCUGUAGG GGAUGUCC	-6.81	(15)	
69	R80	CGGUGCGG GCUCGGGG	-11.18	(15)	
70	R81	CGUUGACG GCAGUUGC	-6.94	(15)	
71	R82	CUGGUCAG GACUGGUC	-7.11	(15)	
72	R83	GGAUGUCC CCUUGAGG	-6.45	(15)	
73	R84	GGAUGUCC CCUUGAGG	-8.36	(15)	
74	R85	GCGGUGCC CGGUCGGG	-9.23	(15)	
75	R86	GUGGUGAC CAGUGGUG	-6.05	(15)	
76	R87	GAGUUGAG CUCGGCUC	-8.21	(15)	
77	R88	AGGCUU UUCGGA	-4.04	(15)	
78	R89	AGUCGAUU UUAGCUGA	-5.97	(15)	
79	R90	CGGAUUUC GCUUAGGC	-6.54	(15)	
80	R91	CCUAGG GGAUCC	-7.86	(15)	
---	---	---	---	---	
81	R93	GGAUCC CCUAGG	-7.46	(15)	
82	R94	CACAG GUGUC	-4.41	(16)	
83	R95	UGACCUCA ACUGGAGU	-12.34	(17)	
84	R96	GAGCUC CUCGAG	-7.73	(18)	
85	R97	GCCUGGC CGUGCG	-5.11	(18)	
86	R98	GAGGUCUC CUCUGGAG	-8.77	(19)	
87	R99	GAGCUC CUCGAG	-7.93	(19)	
88	R100	GGUACC CCAUGG	-7.32	(19)	
89	R101	GAGUGCUC CUCUGGAG	-9.17	(20)	
90	R102	GGUUGACC CCAUGG	-8.30	(20)	
91	R103	GCCUGGCC CCGUCGG	-13.26	(20)	
92	R106	CCAUGUGG GGUJUACC	-7.82	(21)	
93	R107	CCAGUUGG GGUUGACC	-5.71	(21)	
94	R108	CCAUGG GGUJUACC	-7.39	(21)	
95	R109	GAGGAG CUCUCUC	-8.50	(22)	
96	R110	GAGUGGAG CUCUGUC	-9.69	(22)	
97	R112	GAGUGGAG CUCUCUC	-7.62	(22)	
98	R113	CGCG GCUC	-3.66	(1)	
99	R114	ACGCA UGCGU	-4.96	(1)	
100	R115	AGCGA UGCGU	-5.06	(1)	
101	R116	GCACG CUGGC	-6.17	(1)	
---	---	---	---	---	
102	R117	GCUCG			
		CGAGC		-6.13	(1)
103	R118	CACGUG			
		GUGCAC		-6.58	(1)
104	R119	CCGCGG			
		GGCGCC		-9.83	(1)
105	R120	GCAACG			
		CGUUGC		-6.99	(1)
106	R121	GCAUUG			
		CGUAGC		-7.26	(1)
107	R122	GCCGCG			
		CGCGGC		-10.87	(1)
108	R123	GCCGCCG			
		CGCGGC		-10.92	(1)
109	R124	GCGCGG			
		CGCGCC		-11.39	(1)
110	R125	GCGUCG			
		CGCAGC		-8.77	(1)
111	R126	GCUACG			
		CGAUGC		-7.56	(1)
112	R127	GCCGCG			
		CCGCCG		-10.77	(1)
113	R128	GUGGUG			
		CACCAC		-7.68	(1)
114	R129	GUGUCG			
		CACAGC		-7.18	(1)
115	R130	UCGCGA			
		AGGCUC		-6.85	(1)
116	R131	UCUAGA			
		AGAUCU		-4.96	(1)
117	R132	AAGGAGG			
		UCCUCC		-9.53	(1)
118	R133	ACUGUCA			
		UGACAGU		-7.92	(1)
119	R134	AGUCUGA			
		UACAGAC		-7.50	(1)
120	R135	GACUCAG			
		CUGAGUC		-9.06	(1)
121	R136	GAGUGAG			
		CUCACUC		-9.70	(1)
122	R137	GUCACUG			
		CAGUGAC		-8.62	(1)
\#	R	Sequence	Score	ID	
-----	-------	------------------------------	--------	----	
123	R138	ACCUUUGC UGGAACG	-10.64	(1)	
124	R139	CGACGCAUG GCUGCGUC	-12.32	(1)	
125	R140	CUCGCACA GAGCGGUGU	-12.10	(1)	
126	R141	GGCUUCAA CGGAGUU	-10.20	(1)	
127	R142	UCCUUGCA AGGAACGU	-11.09	(1)	
128	R143	UUCCGGAA AAGGCUUU	-10.80	(1)	
129	R144	UUGCACGAA AACGCGU	-10.19	(1)	
130	R145	UUGGCCCAA AACCGGCU	-11.02	(1)	
131	R146	UUGUACAA AACAUGUU	-6.71	(1)	
132	R147	AAGGUUGGAA UUCCACCUU	-12.69	(1)	
133	R148	CAUGC GUCACG	-7.01	(1)	
134	R150	GCUGGAG CGACUC	-7.71	(1)	
135	R151	GUGCAG CAGCUC	-7.68	(1)	
136	R156	UCCGCGCA AGGCGCGU	-14.59	(1)	
137	R157	GCGGCG CGCCCCG	-10.91	(23)	
138	R158	GCGGCG CGCGCG	-10.82	(23)	
139	R159	AAGGCCGCAA UUCCGGCCUU	-18.15	(24)	
140	R160	CCUCUGGUGA GGAGACCGCU	-15.31	(24)	
141	R161	AGGCGGCA UCCGGCCU	-15.26	(24)	
142	R162	GAGCCGAC CUCGGGCU	-13.76	(24)	
143	R163	UCACCUGA AGUGGACU	-10.84	(24)	
---	---	---	---	---	
144	R166	CUGGUC GACCAG	-8.05	(25)	
145	R168	GAGUUGAC CUCAACUG	-10.60	(26)	
146	R169	GAGUGAG CUCGCUC	-7.81	(23)	
147	R170	AUCUAGGU UGGAUCUA	-5.90	Unpublished	
148	R171	GUCUAGAU UAGAUUCUG	-7.66	Unpublished	
Supplementary Table 2: Dangling End Duplex Experiment List

Note: The top strand is shown 5’ to 3’. The bottom strand is shown 3’ to 5’. Unpaired nucleotides are in lower case.

Index	ID#	Duplex	Folding Free Energy Change (kcal/mol)	Reference
149	D1	UGCGCAa aACGCGU	-9.60 (12)	(12)
150	D2	UGCGCAc cACGCGU	-9.11 (12)	(12)
151	D3	UGCGCAg gACGCGU	-9.79 (12)	(12)
152	D4	UGCGCAu uACGCGU	-9.27 (12)	(12)
153	D5	AUGCAUa aUACGUA	-6.06 (12)	(12)
154	D6	AUGCAUc cUACGUA	-4.98 (12)	(12)
155	D7	AUGCAUg gUACGUA	-6.06 (12)	(12)
156	D8	AUGCAUu uUACGUA	-4.91 (12)	(12)
157	D9	CCGGa aGGCC	-6.85 (3)	(3)
158	D10	CCGGa aGGCC	-6.84 (3)	(3)
159	D11	CCGGc cGGCC	-5.25 (4)	(4)
160	D12	CCGGg gGGCC	-7.05 (4)	(4)
161	D13	CCGGu uGGCC	-5.81 (4)	(4)
162	D14	CCGGu uGGCC	-5.76 (3)	(3)
163	D15	GCGCa aCGCG	-7.92 (11)	(11)
164	D16	GGCCa aCCGG	-9.01 (4)	(4)
165	D17	GCGCc cCGCG	-6.16 (11)	(11)
166	D18	GGGCc cCCGG	-6.96 (4)	(4)
---	---	---	---	---
167	D19	GCGCg		
gCGCG	-7.70	(11)		
168	D20	GGCCg		
gCCGG	-8.88	(4)		
169	D21	GGCCu		
uCCGG	-8.16	(5)		
170	D22	GCGu		
uCGCG	-6.93	(11)		
171	D23	GGCu		
uCGG	-7.98	(4)		
172	D24	aUGCGCA		
ACGCUa	-8.72	(12)		
173	D25	cUCAUGA		
AGUACUc	-4.09	Unpublished		
174	D26	aAUGCAU		
UACGUa	-5.38	(12)		
175	D27	cAUGCAU		
UACGUac	-5.23	(12)		
176	D28	gAUGCAU		
UACGUag	-5.44	(12)		
177	D29	uAUGCAU		
UACGUau	-5.11	(12)		
178	D30	aCCGG		
GGCCa	-5.60	(3)		
179	D31	cCCGG		
GGCCc	-5.27	Unpublished		
180	D32	gCCGG		
GGCCg	-4.90	(5)		
181	D33	uCCGG		
GGCCu	-4.84	(5)		
182	D34	aGGCC		
CGCGa	-5.81	(5)		
183	D35	cGGCC		
CGCGc	-5.79	(5)		
184	D36	cGCGC		
CGCGc	-5.27	(11)		
185	D37	gGC GC		
CGCGg	-4.55	(11)		
186	D38	uGGCC		
CGCGu	-5.17	(5)		
187	D39	uGCGC		
CGCGu	-5.08	(11)		
---	---	---	---	---
188	D40	GCCCc cCCGG	-7.22	(4)
189	D41	GCCGGGUa aUGGCCG	-11.37	(8)
190	D42	GCCGCGa aCGCCGC	-14.63	(14)
191	D43	GCCCGCa aCUGGCG	-12.17	(14)
192	D44	GCCGCGp pGCGCCGA	-8.73	(27)
193	D45	GCCGGGAg gAGGCCG	-8.44	(27)
Supplementary Table 3: Terminal Mismatch Duplex Experiment List

Note: The top strand is shown 5’ to 3’. The bottom strand is shown 3’ to 5’. Unpaired nucleotides are in lower case.

Index	ID#	Duplex	Folding Free Energy Change (kcal/mol)	Reference
194	T1	aUGCGCAa aACGCGUa	-9.68 (13)	
195	T2	aUGCGCAc cACGCGUa	-9.42 (13)	
196	T3	aUGCGCAg gACGCGUa	-9.77 (13)	
197	T4	aGCgCa aCGCGa	-7.64 (28)	
198	T5	cGCgCc aCCGGc	-8.30 (28)	
199	T6	gGCCGa aCGCGg	-7.52 (28)	
200	T7	uGGCCc cCCGGu	-6.90 (28)	
201	T8	gGCgGg gGCgGg	-7.71 (28)	
202	T9	cGCgCu uCCGGc	-8.09 (28)	
203	T10	uGCgCu uCGGu	-7.01 (8)	
204	T11	aCCGGa aGGCCa	-6.73 (29)	
205	T12	gCGGGa aGGCCg	-7.03 (8)	
206	T13	aCCGGc cGGCCa	-6.72 (29)	
207	T14	aCGGg gGGCCa	-7.71 (29)	
208	T15	gCGGGg gGGCCg	-7.48 (8)	
209	T16	aUCCGGGa aGGCCUa	-7.94 (30)	
210	T17	aUGCCCgG gCCCgGUA	-9.72 (30)	
211	T18	uUGCCGGu uGCGGUu	-9.70 (31)	
---	---	---	---	
212	T19	aAUGCAUa aUACGUAa	-6.61 (13)	
213	T20	cAUGCAUa aUACGUAc	-6.25 (13)	
214	T21	gAUGCAUa aUACGUAg	-6.93 (13)	
215	T22	aAUGCAUc cUACGUAa	-6.17 (13)	
216	T23	cAUGCAUc cUACGUAc	-5.90 (13)	
217	T24	uAUGCAUc cUACGUAu	-5.66 (13)	
218	T25	aAUGCAUg gUACGUAa	-6.96 (13)	
219	T26	gAUGCAUg gUACGUAg	-7.02 (13)	
220	T27	cAUGCAUu uUACGUAu	-5.91 (13)	
221	T28	uAUGCAUu uUACGUAu	-5.75 (13)	
222	T29	aGCGUa aUGCGa	-3.97 (30)	
223	T30	aGGCGCUg gUCGCGGa	-9.38 (30)	
224	T31	gGCCGGUg gUGGCCGg	-10.79 (30)	
225	T32	uGCCGGUu uUGGCCGu	-9.97 (31)	
226	T33	aGCGCg gCGCGa	-7.47 (27)	
Supplementary Table 4: Hairpin Loop Experiment List

Note: The sequence is shown 5’ to 3’. Unpaired nucleotides are in lower case.

Index	ID#	Duplex	Folding Free Energy Change (kcal/mol)	Reference
227	H1	GGAauaUCC	0.64	(32)
228	H2	GGAGaaaUUCC	-0.93	(30)
229	H3	GGCauaGCC	-0.96	(32)
230	H4	GGGaaaUCC	0.33	(30)
231	H5	GGGauaCCC	-0.21	(32)
232	H6	GGGAUACaaaGUAUCCA	-6.30	(33)
233	H7	GGGAUACcccGUAUCCA	-4.64	(33)
234	H8	GGGAUACuuuGUAUCCA	-7.03	(33)
235	H9	GGUauaACC	0.58	(32)
236	H10	GGUauaGCC	0.87	(30)
237	H11	GCGauuaUGC	-0.32	(30)
238	H12	GCGGauuaUCGC	-1.41	(30)
239	H13	GGAauuaUCC	-0.06	(32)
240	H14	GCauuaGCC	-2.52	(32)
241	H15	GGaccaUCC	-1.81	(30)
242	H16	GGauuACC	-1.28	(32)
243	H17	GGGAUACaaaGUAUCCA	-7.60	(33)
244	H18	GGGAUACcccGUAUCCA	-4.30	(33)
245	H19	GGGAUACuuuGUAUCCA	-8.16	(33)
246	H20	GGUauuaACC	-1.79	(32)
247	H21	GGUauuaGCC	0.17	(30)
248	H22	GGUgcaaaGCC	-1.44	(30)
249	H23	GGCgagaGCC	-3.31	(31)
250	H24	GGCgcgaGCC	-3.50	(31)
251	H25	GCCgggaGCC	-3.23	(31)
----	---	----------------	---	---
252	H26	GGCgugaGCC	-3.16	(31)
253	H27	GGCgaaGCC	-3.19	(31)
254	H28	GGCgcaaaGCC	-3.35	(31)
255	H29	GGCggaGCC	-3.23	(31)
256	H30	GGCguaaGCC	-3.53	(31)
257	H31	GCCACuuuuGUCC	-4.20	(34)
258	H32	GGAGuucgCUCC	-4.05	(34)
259	H33	GGACguuuGUCC	-4.43	(34)
260	H34	GCGgaagaUGC	-0.28	(30)
261	H35	GAaauuuUACC	0.42	(32)
262	H36	GCauauaGCC	-2.38	(32)
263	H37	GCauuuuGCC	-2.66	(32)
264	H38	GGauuuuGCC	-1.70	(32)
265	H39	GGauuuuGCC	-0.70	(30)
266	H40	GGauuuuUCC	-7.72	(33)
267	H41	GGGAUACaaaaaGUAUCCA	-4.10	(33)
268	H42	GGGAUACccccccGUAUCCA	-8.13	(33)
269	H43	GGGAUACuuuuuGUUCCA	0.25	(32)
270	H44	GGauuuuACC	-0.57	(30)
271	H45	GGauuuuGCC	1.60	(28)
272	H46	ACCgacacaGGU	-3.35	(35)
273	H47	AGGauauuaUCC	-2.38	(35)
274	H48	AGGUauuaaGCU	-2.21	(35)
275	H49	CGGuuaauuCCG	-1.95	(28)
276	H50	CUCUacaccaAGAG	-1.78	(28)
277	H51	GCGgugaaUAGC	-0.69	(30)
278	H52	GGuuaauuUAGC	0.35	(30)
279	H53	GGuuaauuUAGC	-0.73	(35)
280	H54	GGuuaauuUAGC	-1.72	(28)
----	---	------------------	-----	-----
281	H55	GGCauaaauaGCC	-2.76	(35)
282	H56	GGCauaaucGCC	-2.56	(28)
283	H57	GGCauaaugGCC	-3.11	(28)
284	H58	GGCcuauaaGCC	-2.15	(28)
285	H59	GGCcuauaucGCC	-2.38	(28)
286	H60	GGCcuauauGCC	-1.82	(28)
287	H61	GGCguauaaGCC	-3.47	(35)
288	H62	GGCguauaugGCC	-3.85	(28)
289	H63	GGCuuaauaGCC	-2.89	(28)
290	H64	GGCuuaauuGCC	-6.23	(28)
291	H65	GGGauaaauUCC	-1.42	(35)
292	H66	GGUuauaaACC	-0.34	(35)
293	H67	GGUuauaaGCC	-0.47	(35)
294	H68	GGUugauauaACC	-1.54	(28)
295	H69	GGUugauaaGCC	-1.85	(28)
296	H70	GGUugauaugACC	-1.04	(28)
297	H71	GGUugauaugGCC	-1.29	(30)
298	H72	GUGguauaaCAC	-1.08	(28)
299	H73	GUGguauaaUAC	0.94	(28)
300	H74	GGAuuaauuUCC	-1.29	(31)
301	H75	GGUuuaauuACC	-0.83	(31)
302	H76	GGUuuaauuGCC	-0.53	(31)
303	H77	GCGguauaugCGC	-2.54	(31)
304	H78	GGAguaaugUCC	-1.16	(31)
305	H80	GCGguauaugUGC	-0.80	(31)
306	H81	GCGAauaaauaUCGC	-2.41	(32)
307	H82	GGCauaaauaGCC	-2.11	(32)
308	H83	GGGacggacaUCC	-1.03	(30)
309	H84	GGGauaaauaCCC	-2.12	(32)
---	---	---	---	---
310	H85	GGGauaaauaUCC	-0.22	(30)
311	H86	GGGAUACaaaaaaGUAUCCA	-7.19	(33)
312	H87	GGGAUACcccccccGUAUCCA	-2.91	(33)
313	H88	GGGAUACuuuuuuuGUAUCCA	-7.38	(33)
314	H89	GGUauaaaauaACC	-0.41	(32)
315	H90	GGUauaaaauaGCC	0.56	(30)
316	H91	GGUguaaaaaGCC	-0.66	(30)
317	H92	GCGaauucauaUGC	-0.65	(30)
318	H93	GCGgauggaagaGCG	-1.28	(30)
319	H94	G6AauaaauaUCC	-2.19	(32)
320	H95	GGCauaaaauaGCG	-2.16	(32)
321	H96	GGGauaaaauaCCC	-2.35	(32)
322	H97	GGGauaaaauaUCC	-1.65	(30)
323	H98	GGUauucauaGCG	-0.08	(30)
324	H99	GGUauaaaauaACC	0.51	(32)
325	H100	GGUauaaaauaGCC	0.03	(30)
326	H101	GCGAauaaauaUCGC	-2.23	(32)
327	H102	GCGUauaaaauaACGC	-1.08	(32)
328	H103	GGAauaaaauaUCC	0.25	(32)
329	H104	GGCauaaaauaGCG	-2.14	(32)
330	H105	GGGauaaaauaCCC	-2.09	(32)
331	H106	GGGAUACaaaaaaGUAUCCA	-5.55	(33)
332	H107	GGGAUACcccccccGUAUCCA	-2.10	(33)
333	H108	GGGAUACuuuuuuuuuGUAUCCA	-8.05	(33)
334	H126	G6ACaacGUCC	-1.32	(36)
335	H127	G6AGuuaCUCC	-0.92	(36)
336	H132	GGCuacgGCC	-3.22	(31)
337	H133	GGCucccgGCC	-3.95	(31)
338	H134	GGCuucgGCC	-4.09	(31)
---	---	---	---	
339	H135	GAAGAcaguguUCUUC	-5.52	(37)
340	H136	GAAGAcagugcUCUUC	-5.44	(37)
341	H137	GAAGAcaguacUCUUC	-4.44	(37)
342	H138	GGAcagugcUCC	-1.02	(31)
343	H139	GGAcagugaUCC	-1.59	(31)
344	H141	GGACuuugGUCC	-3.79	(38)
345	H148	GGACuucgGUCC	-6.31	(34)
346	H149	GGACuuugGUCC	-4.30	(34)
347	H150	GGACuacgGUCC	-5.68	(34)
348	H152	GGACcaagGUCC	-4.02	(39)
349	H153	GGACccagGUCC	-3.83	(39)
350	H154	GGACcgcagGUCC	-3.67	(39)
351	H155	GGACcuagGUCC	-3.64	(39)
352	H156	GGACcacgGUCC	-3.56	(39)
353	H158	GGACcgacGUCC	-3.67	(39)
354	H159	GGACcuacGUCC	-4.77	(39)
355	H160	GGACuaacGUCC	-3.61	(39)
356	H161	GGACuacgGUCC	-3.61	(39)
357	H163	GGACuaagGUCC	-3.76	(39)
358	H164	GGACuacgGUCC	-4.88	(39)
359	H165	GGACuaccGUCC	-4.45	(39)
360	H166	GGACuacgGUCC	-4.42	(39)
361	H167	GGACuuacGUCC	-4.78	(39)
362	H170	GGACcaacGUCC	-1.77	(39)
Supplementary Table 5: Internal Loop Duplex Experiment List

Note: The top strand is shown 5’ to 3’. The bottom strand is shown 3’ to 5’. Unpaired nucleotides are in lower case. The underscore character (_) does not represent a nucleotide. It is used to maintain alignment between the top and bottom strands.

Index	ID#	Duplex	Folding Free Energy Change (kcal/mol)	Reference	
363	I1	GAGcGAG	-5.63	(23)	
364	I2	GAGaGAG	-5.32	(23)	
365	I3	GAGcGAG	-5.22	(23)	
366	I4	GAGuGAG	-5.24	(23)	
367	I5	GAGaGAG	-4.95	(23)	
368	I6	GAGaGAG	-4.85	(23)	
369	I7	GAGcGAG	-4.75	(23)	
370	I8	GAGuGAG	-4.75	(23)	
371	I9	GCCuCGG	-8.23	(23)	
372	I10	GCCuCGG	-7.90	(23)	
373	I11	GCCuCGG	-7.79	(23)	
374	I12	GCCuCGG	-8.15	(23)	
375	I13	GCCuCGG	-6.31	(23)	
376	I14	GCCuUCG	-5.99	(23)	
377	I15	GUGuUCG	-3.80	(23)	
378	I16	GCCuUCG	-4.98	(23)	
379	I17	GCAuUCG	-4.55	(23)	
----	---	--	----	----	----
380	I18	GCUuACG GCauUGC	-4.47	(23)	
381	I19	CGCaGCG GCaCGC	-6.08	(17)	
382	I20	GCGaCCG CGCaGGC	-6.67	(23)	
383	I21	GGCaGCC CGaCCG	-7.83	(23)	
384	I22	GgCUGAG CgGACUC	-6.87	(23)	
385	I23	CGgCAUG GCgGUAC	-6.07	(23)	
386	I24	GUGgCAG CACgGUC	-6.66	(23)	
387	I25	GCGgCGC CCGgGCg	-9.28	(23)	
388	I26	CGCgGCg CGGgGCG	-8.14	(23)	
389	I27	UGAcCUCA ACUGaGAG	-7.94	(17)	
390	I28	GAGaGGAG CUCgUCUC	-5.83	(22)	
391	I29	GAGuGGAG CUCuUCUC	-6.26	(22)	
392	I30	GAGaGGAG CUCaUCUC	-5.27	(22)	
393	I31	GAGgUGAG CUCaGCUC	-4.97	(22)	
394	I32	GAGuUGAG CUCgGCUC	-4.67	(22)	
395	I33	GAGuUGAG CUCuGCUC	-4.69	(22)	
396	I34	GAGaUGAG CUCaGCUC	-4.36	(22)	
397	I35	GAGUaGAG CUCgGCUC	-6.11	(22)	
398	I36	GAGUgGAG CUCGaCU	-6.09	(22)	
399	I37	GAGUuGAG CUCguCU	-6.24	(22)	
400	I38	GAGUCGAG CUCGcCU	-5.56	(22)	
		GAGUcGAG CUCGaCUC	-6.00	(22)	
---	---	-------------------	-------	-----	
401	I39	GAGUaGAG CUCGaCUC	-5.15	(22)	
402	I40	GAGGaGAG CUCUGcUC	-6.56	(22)	
403	I41	GAGGuGAG CUCUuCUC	-5.21	(22)	
404	I42	GAGGcGAG CUCUaCUC	-5.39	(22)	
405	I43	GAGGaGAG CUCUaCUC	-5.74	(22)	
406	I44	GAGGcGAG CUCUaCUC	-5.83	(22)	
407	I45	GAGGaGAG CUCUaCUC	-5.42	(22)	
408	I46	UGACa_CUC ACUGaaGAGU	-6.43	(17)	
409	I47	UGACa_CUC ACUGaaGAGU	-6.80	(40)	
410	I48	UGAGa_GUCA ACUCaaCAGU	-6.60	(17)	
411	I49	UGACa_CUC ACUGagGAGU	-8.32	(40)	
412	I50	UGACa_CUC ACUGagGAGU	-6.44	(24)	
413	I51	UGACa_CUC ACUGaaGAGU	-7.42	(40)	
414	I52	UGACa_CUC ACUGaaGAGU	-8.01	(40)	
415	I53	UGAGaGUCA ACUCgaCAGU	-6.98	(40)	
416	I54	UGACc_CUC ACUGaaGAGU	-7.40	(40)	
417	I55	UGACc_CUC ACUGaaGAGU	-6.60	(40)	
418	I56	UGACc_CUC ACUGccGAGU	-6.62	(40)	
419	I57	UGACc_CUC ACUGccGAGU	-7.16	(40)	
420	I58	UGACc_CUC ACUGccGAGU	-7.35	(40)	
421	I59	UGACc_CUC ACUGagGAGU	-7.92	(40)	
---	---	---	---	---	
422	I60	UGACg_CUCA ACUggaGAGU	-8.32	(40)	
423	I61	UGACu_CUCA ACUGccGAGU	-6.85	(40)	
424	I62	UCACu_CUGA AGUGcuGACU	-5.91	(24)	
425	I63	UGACu_CUCA ACUGucGAGU	-7.54	(40)	
426	I64	UGACu_CUCA ACUGuuGAGU	-7.90	(40)	
427	I65	AGGCu_CGGA UCCGuuGCCU	-10.43	(24)	
428	I66	GCGagCGC CGGaGCG	-8.46	(18)	
429	I67	GCGuuCGC CGCuuGCG	-7.66	(19)	
430	I68	CGGcaCCG GCCacGGC	-5.49	(19)	
431	I69	CUgcucGAG UACucGUC	-2.32	(19)	
432	I70	CGGcuCCG GCCucGCG	-5.57	(19)	
433	I71	GCGacCGC CGCaGCG	-6.23	(19)	
434	I72	GCGaaCGC CGCaGCG	-5.66	(19)	
435	I73	GGCagGCC CCGgaCGG	-9.44	Unpublished	
436	I74	CGCagCGC GCGGaCGC	-7.76	(41)	
437	I75	CGCuuCGC GCGuuCGC	-7.18	(42)	
438	I76	UGCggGCA ACGggCGU	-5.02	(42)	
439	I77	CGCaCGC GCGacCGC	-5.69	(42)	
440	I78	CGCcucGCG GCGCuGCG	-5.45	(42)	
441	I79	CGCucCGG GCGCuCGC	-5.38	(42)	
442	I80	CGCccCGG GCGccCGC	-5.13	(42)	
		Sequence	Area (kcal/Mole)	References	
---	---	----------------	-----------------	------------	
443	I81	GGCacGCC	-6.97	42	
444	I82	CGCaGCG	-5.44	17	
445	I83	GCUGaAGC	-5.88	18	
446	I84	GCUuAGC	-5.50	19	
447	I85	GGUcaACC	-4.14	19	
448	I86	GGUcuACC	-3.86	19	
449	I87	GGUucACC	-3.21	19	
450	I88	GCUaaAGC	-3.82	19	
451	I89	GGAgaUCC	-6.41	18	
452	I90	GCAgaUGC	-5.61	18	
453	I91	GCAuuUGC	-5.61	19	
454	I92	GACcaUCC	-4.01	19	
455	I93	GGAacUCC	-3.89	19	
456	I94	GCAaaUCC	-3.52	19	
457	I95	GGCgaGCC	-9.69	41	
458	I96	GAGgaGAG	-6.91	22	
459	I97	GAGaaGAG	-5.74	22	
460	I98	GAGuaGAG	-4.26	22	
461	I99	GAGaaGAG	-4.61	22	
462	I100	UGAGaaGUC	-7.04	17	
463	I101	GAGaaGAG	-5.39	22	
---	---	---	---	---	
464	I102	GAGagGAG CUCgaCUC	-5.92	(22)	
465	I103	GAGugGAG CUCuaCUC	-4.37	(22)	
466	I104	GAGcgGAG CUCaaCUC	-5.99	(22)	
467	I105	GAGagGAG CUCcaCUC	-6.19	(22)	
468	I106	GAGagGAG CUCaaCUC	-5.23	(22)	
469	I107	GAGguGAG CUCauCUC	-4.77	(22)	
470	I108	GAGauGAG CUCguCUC	-3.88	(22)	
471	I109	GAGuuGAG CUCuuCUC	-5.88	(22)	
472	I110	GAGauGAG CUCcuCUC	-4.96	(22)	
473	I111	GAGauGAG CUCauCUC	-3.85	(22)	
474	I112	GAGaaGAG CUCgcCUC	-4.49	(22)	
475	I113	GAGuaGAG CUCucCUC	-5.41	(22)	
476	I114	GAGuuGAG CUCucCUC	-5.10	(22)	
477	I115	GAGacGAG CUCguCUC	-4.69	(22)	
478	I116	GAGgcGAG CUCacCUC	-4.47	(22)	
479	I117	GAGacGAG CUCgcCUC	-4.53	(22)	
480	I118	GAGucGAG CUCucCUC	-5.31	(22)	
481	I119	GAGacGAG CUCccCUC	-3.34	(22)	
482	I120	GAGacGAG CUCacCUC	-3.03	(22)	
483	I121	GAGgcGAG CUCaaCUC	-5.14	(22)	
484	I122	GAGacGAG CUCgaCUC	-4.81	(22)	
---	---	---	---	---	
485	I123	GAGucGAG	CUCuaCUC	-5.24	(22)
486	I124	GAGacGAG	CUCcaCUC	-4.14	(22)
487	I125	GAGacGAG	CUCaaCUC	-4.58	(22)
488	I126	GAGgaGAG	CUCaaCUC	-5.55	(22)
489	I127	GAGaaGAG	CUCgaCUC	-4.90	(22)
490	I128	GAGuaGAG	CUCuaCUC	-3.77	(22)
491	I129	GAGaaGAG	CUCaaCUC	-4.71	(22)
492	I130	GGAagUCC	CCUgaAGG	-4.64	(43)
493	I131	GGUagACC	CCagaUGG	-5.13	(43)
494	I132	GCAggUGC	CGUggACG	-4.43	(25)
495	I133	GCUggAGC	CGAggUCG	-4.26	(25)
496	I134	GUGgcGUG	CACguCAC	-5.30	(25)
497	I135	GAGcgGAG	CUCugCUC	-5.69	(25)
498	I136	GAGcgGAG	CUCagCUC	-5.70	(25)
499	I137	GAGgcGAG	CUCguCUC	-5.66	(25)
500	I138	CUGgaGUC	GACggCAG	-5.00	(25)
501	I139	GAGgcGAG	CUCgaCUC	-5.57	(25)
502	I140	CUGagGUC	GACggCAG	-5.11	(25)
503	I141	GUGgaGUG	CACgaCAC	-4.63	(25)
504	I142	GUGagGUG	CACagCAC	-4.49	(25)
505	I143	GAGguGAG	CUCgcCUC	-5.02	(25)
---	---	---	---	---	---
506	I144	GAGugGAG CUCcgCUC	-4.98	(25)	
507	I145	GAGguGAG CUCguCUC	-4.56	(25)	
508	I146	GAGugGAG CUCugCUC	-3.86	(25)	
509	I147	GAGuuuGAG CUCccCUC	-3.54	(22)	
510	I148	GAGcgGAG CUCcaCUC	-5.92	(22)	
511	I149	GAGcaGAG CUCagCUC	-5.60	(22)	
512	I150	CGCaaGCG GCGaaCGC	-5.44	(17)	
513	I151	CCACg__CUCC GGUgaaaGAGG	-9.65	(24)	
514	I152	CGACg__GCAG GCUgaaCGUC	-8.34	(24)	
515	I153	UCAGc__GUGA AGUCcauCACU	-5.73	(24)	
516	I154	CGACa__GCAG GCUgaaCGUC	-8.01	(24)	
517	I155	CCACa__CUCC GGUgaaaGAGG	-9.18	(24)	
518	I156	UCCGa__CGCA AGGCaaGCGU	-9.02	(24)	
519	I157	GGCu__CGG CGGuuuGCC	-6.03	(24)	
520	I158	UGACu__CUCA ACUGcuuGAGU	-6.77	(24)	
521	I159	UCACu__CUGA AGUCcuuGACU	-5.30	(24)	
522	I160	UGACa__CUCA ACUGaacGAGU	-6.59	(24)	
523	I161	UGAGa__GUCA ACUCcgaCAGU	-6.55	(24)	
524	I162	UGACa__CUCA ACUGaaGAGU	-6.55	(17)	
525	I163	UGACc__CUCA ACUGcuuGAGU	-6.34	(24)	
526	I164	AGGCu__CGGA UCCguuuGCCU	-9.25	(24)	
527	I165	UGAGa__GUCA			
 | | ACUCaaaCAGU | -6.16 | (17) |
| 528 | I166 | UCCGa__CGCA
 | | AGGCggaACGU | -8.13 | (24) |
| 529 | I167 | AAGGCu__CGGAA
 | | UUCCGuuuGCCUU | -11.60 | (24) |
| 530 | I168 | UCCUg__UGCA
 | | AGGAgagACGU | -6.99 | (24) |
| 531 | I169 | UCCUa__UGCA
 | | AGGAgagACGU | -6.63 | (24) |
| 532 | I170 | UCCUa__UGCA
 | | AGGGaagaACGU | -6.56 | (24) |
| 533 | I171 | AAGGUc__UGGA
 | | UUCCAuuuACCUU | -7.87 | (24) |
| 534 | I172 | UCCUg__UGCA
 | | AGGGaagaACGU | -6.17 | (24) |
| 535 | I173 | UCCUa__UGCA
 | | AGGGaagaACGU | -6.18 | (24) |
| 536 | I174 | UCCUa__UGCA
 | | AGGAgaaACGU | -6.09 | (24) |
| 537 | I175 | UCCUa__UGCA
 | | AGGAgaaACGU | -6.09 | (24) |
| 538 | I176 | ACCUc__UGGC
 | | UGGAacaAACG | -5.02 | (24) |
| 539 | I177 | CCUCUc__GUUGA
 | | GGAGAaaaCCGCU | -9.86 | (24) |
| 540 | I178 | GAGUg__UGAC
 | | CUCGaagGCUG | -5.07 | (43) |
| 541 | I179 | GAGCga__CGAC
 | | CUCGaagGCUG | -10.51 | (24) |
| 542 | I180 | CCACgg__CUUG
 | | GGUGagaGAGG | -9.84 | (24) |
| 543 | I181 | GAGCaa__CGAC
 | | CUCGaagGCUG | -9.23 | (24) |
| 544 | I182 | CGACga__CGAG
 | | CUCGgaaCGUC | -8.44 | (24) |
| 545 | I183 | CCUCUgc__GUUGA
 | | GGAGAaaaCCGCU | -11.57 | (24) |
| 546 | I184 | UGACuu__CUCA
 | | ACUGuuuGAGU | -7.36 | (24) |
| 547 | I185 | GAGCag__CGAC
 | | CUCGgaaGCUG | -8.80 | (24) |
	Codon	Sequence	ΔG (kcal/mol)	Ref	
548	I186	GAGG_ga.CGAC	-8.77	24	
549	I187	CCAG_gg.CUCC	-9.22	24	
550	I188	GAGCaa.CGAC	-8.61	24	
551	I189	UGACuu.CUCA	-6.99	24	
552	I190	GAGCag.CGAC	-8.50	24	
553	I191	UCACuu.CUGA	-5.34	24	
554	I192	ACCUgc.UUGC	-7.33	24	
555	I193	UCAGcc.GUGA	-5.11	24	
556	I194	UGAGaa.GUCA	-6.59	17	
557	I195	UGAGaa.GUCA	-6.58	24	
558	I196	GAGCag.CGAC	-8.14	24	
559	I197	CUGUgg.AC_	-5.45	24	
560	I198	GAGCaa.CGAC	-7.99	24	
561	I199	GAGUaa.CGAC	-7.96	43	
562	I200	GAGUga.UGAC	-6.99	43	
563	I201	GAGCaa.UGAC	-7.48	43	
564	I202	CUGUau.GACG	-6.58	43	
565	I203	GAGUaa.CGAC	-6.62	43	
566	I204	GAGUaa.UGAC	-5.68	43	
567	I205	GAGUga.UGAC	-5.52	43	
568	I206	GAGCaa.UGAC	-6.23	43	
---	---	---	---	---	---
569	I207	GAGUag_UGAC CUCGaaaGCUG	-4.79	(43)	
570	I208	GAGUaa_UGAC CUCGaaaGCUG	-4.70	(43)	
571	I209	UGACuuCUCA ACU GCCucuGAGU	-6.31	(24)	
572	I210	CGACga_GCA GCUG aagCGUC	-9.77	(44)	
573	I211	UGACA_a_CUCA ACUGaaaGAGU	-6.12	(17)	
574	I212	UGAGa__GUCA ACUCaaaGAGU	-5.56	(17)	
575	I213	UGAGaaaGUCA ACUCaaaGAGU	-6.67	(17)	
576	I214	UGACaa__CUCA ACUGaaaGAGU	-6.07	(17)	
577	I215	UGAGaa__GUCA ACUCaaaGAGU	-6.00	(17)	
578	I216	UGACa_____CUCA ACUGaaaGAGU	-5.71	(17)	
579	I217	UGAGa____GUCA ACUCaaaGAGU	-5.30	(17)	
580	I218	UGACcaaaCUCA ACUGaaaGAGU	-7.14	(17)	
581	I219	UGACaaaCUCA ACUGaacGAGU	-7.17	(17)	
582	I220	CGCaaaGCCGGa a CGC	-4.88	(17)	
583	I221	CGGaaaCCCG GCCaaaaGCC	-4.64	(17)	
584	I222	GCGaaaCGCG GCCaaaaGCC	-4.27	(26)	
585	I223	CGCaaaGCCCGa a GCC	-5.85	(26)	
586	I224	CGGaaaCGCG GCCaaaaGCC	-5.00	(26)	
587	I225	CGCauaGGCG GCCa uGCGa uGCG	-6.05	(26)	
588	I226	CGCauaGGCG GCCaaaGCC	-6.14	(26)	
589	I227	GAGUgaaUGAC CUCAagaGCUG	-7.01	(26)	
		Sequence	Intron	Stability	(nt)
---	---	---------------------------	--------	-----------	------
590	I228	GAGCagaCGAC	CUCGagaGCUG	-8.36	(26)
591	I229	CGCagaGGC	GCGaugCCG	-6.33	(26)
592	I230	GAGCguaCGAC	CUCGauaGCUG	-8.48	(26)
593	I231	CGCaaaGGC	GCGauaCCG	-6.56	(26)
594	I232	GAGCagaCGAC	CUCGauaGCUG	-8.78	(26)
595	I233	GAGCagaCGAC	CUCGauaGCUG	-8.73	(26)
596	I234	CGGcacCCG	GCCcacGGC	-4.70	(26)
597	I235	GAGCggaCGAC	CUCGauaGCUG	-8.89	(26)
598	I236	CGCaaaGGC	GCGaaaCCG	-6.78	(26)
599	I237	GCNgaaUGC	GUuagACG	-4.58	(26)
600	I238	CGCucuGGC	GCGucuCCG	-6.90	(26)
601	I239	GAGCaaacCGAC	CUCGauaGCUG	-9.12	(26)
602	I240	CGCaaacGGC	GCGaacCCG	-6.98	(26)
603	I241	GAGCcgacAGAC	CUCGagaGCUG	-9.13	(26)
604	I242	CGACgcaCGAC	GCUuaaaCGUC	-8.43	(26)
605	I243	CGGaacaCCG	GCGacaGGC	-5.07	(26)
606	I244	GAGCugCCGAC	CUCGuauGCUG	-9.26	(26)
607	I245	GAGCgaCGAC	CUCGauaGCUG	-9.23	(26)
608	I246	GAGCgaaCGAC	CUCGaaaGCUG	-9.32	(26)
609	I247	GCUuaaaAGC	CAAagUCG	-5.13	(26)
610	I248	GAGCgaaCGAC	CUCGauaGCUG	-9.34	(26)
		DNA Sequence	RNA Sequence	ΔG (kcal/mole)	Ref.
----	----	------------------------------	------------------------------	---------------	------
611	I249	GAGCgagCGAC CUCGauaGCUG	-9.45 (26)		
612	I250	GCCgaaGCC CGGaagCGG	-7.74 (26)		
613	I251	CGGaagCGC GCCguaaGCG	-6.33 (26)		
614	I252	GAGCgagCGAC CUCGaaGCU	-9.60 (26)		
615	I253	GAGCgagCGAC CUCGaagGCUG	-9.64 (26)		
616	I254	CGCgaaGCC GCGaccCCG	-7.48 (26)		
617	I255	GAGCuuguCGAC CUCGuauGCUG	-9.72 (26)		
618	I256	CGCgaaGCC GCGaaaCCG	-7.67 (26)		
619	I257	CGGaagCGC GCCgaaGCG	-6.60 (26)		
620	I258	GCGuuuGC CCGuucuGGC	-6.46 (26)		
621	I259	CGCucuGGC GCGuuuCGC	-7.83 (26)		
622	I260	CGACgcaGCAG CUGaagCGUC	-9.22 (26)		
623	I261	CGCuuuGGC GCGucuCCG	-7.85 (26)		
624	I262	CGCaagGCC GCGgaaGC	-6.02 (26)		
625	I263	GCGgaaCGG CGCaugGCC	-6.65 (26)		
626	I264	CGCuuuGGC GCGuuuCGC	-7.84 (26)		
627	I265	CGCgaaGCC GCGaugCCG	-7.97 (26)		
628	I266	GAGCgagCGAC CUCGagaGCUG	-10.12 (26)		
629	I267	CGCauaGCC GCGaagCCG	-7.98 (26)		
630	I268	GCGgaaCGC CGCaagGCC	-6.75 (26)		
631	I269	GCGguaCGG CGCaugGCC	-7.73 (26)		
#	Gene	Sequence	Score	Ref	
-----	--------	---------------------------	--------	-------	
632	I270	CGCaaaGGC	-8.26	(26)	
633	I271	GAGCgaaCGAC	-10.55	(26)	
634	I272	CGCgaaGGC	-8.41	(26)	
635	I273	GAGCgaaCGAC	-10.75	(26)	
636	I274	CGCgaaGGC	-8.65	(26)	
637	I275	GAGCagaCGAC	-10.98	(26)	
638	I276	GAGCcgaCGAC	-11.02	(26)	
639	I277	CGCagaGGC	-9.01	(26)	
640	I278	CGACcgaGCAG	-10.55	(26)	
641	I279	GAGCggaCGAC	-11.32	(26)	
642	I280	CGCgaaGGC	-10.28	(26)	
643	I281	GAGCggaCGAC	-12.48	(26)	
644	I282	GCgagCGG	-6.68	(41)	
645	I283	GCaaaCGG	-4.20	(41)	
646	I284	GCagGCGG	-6.33	(41)	
647	I285	GCgagCGG	-4.01	(41)	
648	I286	GCgagGCA	-6.78	(41)	
649	I287	GCgagGCU	-5.84	(41)	
650	I288	CAGgaCUG	-6.13	(18)	
651	I289	GAGgaCUC	-7.00	(18)	
652	I290	GCgacCGG	-9.66	(18)	
ID	Amino Acid	Nucleotide Sequence	Stability	Ref.	
-----	-------------	---------------------------	-----------	------	
653	I291	GCUGaGGC CGGagUGC	-6.70	(18)	
654	I292	GCGgaUGC CGUagGCG	-4.63	(18)	
655	I293	GCUaaGGC CGGaaUCG	-4.71	(19)	
656	I295	UGACu_CUC ACUGcuGAGU	-9.50	(40)	
657	I296	UGAGa_GUCA ACUCagCAGU	-8.74	(40)	
658	I297	UGAGa_GUCA ACUCggCAGU	-8.64	(40)	
659	I301	CUGUgaUGAC GACGagGCUG	-8.45	(43)	
660	I302	GAGUaaCGAC CUCGaaGCUG	-7.87	(43)	
661	I303	GAGUgaUGAC CUCGaaGCUG	-6.72	(43)	
662	I304	GCGaugUGC CGUgaGCg	-3.84	(43)	
663	I305	GAGCaUGAC CUCGaaGCUG	-7.12	(43)	
664	I306	CUGUagGCAG GACGgaUGUC	-5.50	(43)	
665	I307	GAGUagUGAC CUCGaaGCUG	-5.18	(43)	
666	I308	GAGUaaUGAC CUCGaaGCUG	-5.22	(43)	
Supplementary Table 6: Multibranch Loop Duplex Experiment List

Note: The top strand is shown 5’ to 3’. The bottom strand is shown 5’ to 3’. Unpaired nucleotides are in lower case. The underscore character (_) is used to delimit parts of the sequence that form different helices without intervening unpaired nucleotides.

Index	ID#	Duplex	Folding Free Energy Change (kcal/mol)	Reference											
667	M1	GGAG_CGGCuucgGCC_GACG CGUCaaCUCC	-5.42 (45)												
668	M2	GGAGaCGGCuucgGCC_GACG CGUCauaCUCC	-4.05 (45)												
669	M3	GGAGaCGGCuucgGCC_GCAG CUGCaauaCUCC	-5.85 (45)												
670	M4	GGAGgCGCuucgGCCuGACG CGUCcauaCUCC	-6.01 (45)												
671	M5	GGAGaCGCuucgGCCGcGACG CGUCauaCUCC	-4.78 (45)												
672	M6	GGAGgCGCuucgGCCGuGACG CGUCauaCUCC	-6.17 (45)												
673	M7	GGAG_CGGCuucgGCC_GACG CGUC_CUCC	-5.71 (45)												
674	M8	GGAGaCGCuucgGCCGcGACG CGUCccuaCUCC	-4.59 (45)												
675	M9	GGAG_CGGCuucgGCC_GACG CGUCauaCUCC	-5.43 (45)												
676	M10	GGAG_CGGCuucgGCC_GACG CGUccauaCUCC	-5.92 (45)												
677	M11	GGAGaCGCuucgGCCGcGACG CGUccauaCUCC	-5.25 (45)												
678	M12	GGAGaCGCuucgGCCGaGACG CGUccauaCUCC	-5.91 (45)												
679	M13	GGCAG_CGGCuucgGCCG_GGAG GCUCC_CUGCC	-8.38 (46)												
680	M14	GGCAG_CGGCuucgGCCG_GGAG GCUCCaaCUCC	-10.41 (46)												
681	M15	GGCAG_CGGCuucgGCCG_GGAG GCUCCaaCUCC	-11.51 (46)												
682	M16	GGCAG_CGGCuucgGCCG_GGAG CCUCaaCUCC	-11.48 (46)												
683	M17	GGCAG_CGGCuucgGCCG_GGAG CCUCauaCUCC	-12.88 (46)												
684	M18	GGCAG_CGGCuucgGCCG_GGAG CCUCaaCUCC	-12.47 (46)												
685	M19	GGCAG_CGGCuucgGCCG_GGAG CCUC_CUGCC	-8.80 (46)												
686	M20	GGCAG_CGGCuucgGCCG_GGAG CCUC_CUGCC	-10.54 (46)												
687	M21	GGCAG_CGGCuucgGCCG_GGAG CCUCaaCUCC	-11.13 (46)												
----	----	---	---	---	---	---	---	---	---	---	---	---	---	---	
688	M22	GGCAGaGCGCuucgGCGC_GGAGG CCUCaaaCUGGCC	-10.69	(46)											
689	M23	GGCAGaGCGCuucgGCGC_GGAGG CCUCauaCUGGCC	-11.35	(46)											
690	M24	GGCAGaGCGCuucgGCGC_GGAGG CCUCaaaCUUGCC	-10.98	(46)											
691	M25	GGCAGaGCGCuucgGCGC_GGAGG CCUC_CUUGCC	-9.72	(46)											
692	M26	GGCAGaGCGCuucgGCGC_GGAGG CCUCCaCUGGCC	-11.59	(46)											
693	M27	GGCAGaGCGCuucgGCGC_GGAGG CCUCaaCUUGCC	-11.86	(46)											
694	M28	GGCAGaGCGCuucgGCGC_GGAGG CCUCaCUUGCC	-11.26	(46)											
695	M29	GGCAGaGCGCuucgGCGC_GGAGG CCUCauaCUGGCC	-11.48	(46)											
696	M30	GGCAGaGCGCuucgGCGC_GGAGG CCUCaaCUUGCC	-10.97	(46)											
697	M31	GGCAGaGCGCuucgGCGCaGGAGG CCUC_CUUGCC	-11.66	(46)											
698	M32	GGCAGaGCGCuucgGCGCaGGAGG CCUCCaCUUGCC	-12.89	(46)											
699	M33	GGCAGaGCGCuucgGCGCaGGAGG CCUCaaCUUGCC	-13.05	(46)											
700	M34	GGCAGaGCGCuucgGCGCaGGAGG CCUCaaCUUGCC	-13.15	(46)											
701	M35	GGCAGaGCGCuucgGCGCaGGAGG CCUCauaCUGGCC	-12.93	(46)											
702	M36	GGCAGaGCGCuucgGCGCaGGAGG CCUCaaCUUGCC	-12.37	(46)											
703	M37	GGCAGaGCGCuucgGCGCaGGAGG CCUC_CUUGCC	-12.50	(46)											
704	M38	GGCAGaGCGCuucgGCGCaGGAGG CCUCCaCUUGCC	-13.15	(46)											
705	M39	GGCAGaGCGCuucgGCGCaGGAGG CCUCaaCUUGCC	-12.88	(46)											
706	M40	GGCAGaGCGCuucgGCGCaGGAGG CCUCaaCUUGCC	-12.64	(46)											
707	M41	GGCAGaGCGCuucgGCGCaGGAGG CCUCauaCUGGCC	-13.23	(46)											
708	M42	GGCAGaGCGCuucgGCGCaGGAGG CCUCaaCUUGCC	-12.95	(46)											
709	M43	GGCAG_UCGcuucgGCGA_GGAGG CCUC_CUUGCC	-9.15	(46)											
710	M49	GGCAGaUCGcuucgGCGA_GGAGG CCUC_CUUGCC	-9.84	(46)											
711	M50	GGCAGaUCGcuucgGCGA_GGAGG CCUCCaCUUGCC	-11.79	(46)											
712	M51	GGCAGaUCGcuucgGCGA_GGAGG CCUCaaCUUGCC	-12.38	(46)											
713	M52	GGCAGaUCGcuucgGCGA_GGAGG	-12.00	(46)											
----	----	----	----												
714	M53	GCCGaugCCGcuucgGCCG_A_GAGG	-12.06 (46)												
715	M54	GCCGaugCCGcuucgGCCG_A_GAGG	-11.91 (46)												
716	M55	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-16.48 (46)												
717	M56	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-13.90 (46)												
718	M57	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-12.40 (46)												
719	M58	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-11.19 (46)												
720	M59	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-10.46 (46)												
721	M60	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-13.12 (46)												
722	M61	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-15.40 (46)												
723	M62	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-13.52 (46)												
724	M63	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-11.86 (46)												
725	M64	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-12.31 (46)												
726	M65	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-11.18 (46)												
727	M66	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-13.58 (46)												
728	M67	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-13.36 (46)												
729	M68	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-14.76 (46)												
730	M69	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-13.01 (46)												
731	M70	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-12.59 (46)												
732	M71	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-12.66 (46)												
733	M72	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-11.77 (46)												
734	M73	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-12.65 (46)												
735	M74	GCCG_CGGCcuucgGGCG_CGCGgcaaaGCGC_GGAGG	-12.77 (46)												
Supplementary Table 7: Bulge Loop Duplex Experiment List

Note: The top strand is shown 5’ to 3’. The bottom strand is shown 3’ to 5’. Lower case letters in the top strand indicate unpaired nucleotides. Lower case letters in the bottom strand indicate nucleotides that can base pair with multiple possible nucleotides in the top strand. The underscore character (_) is used to maintain alignment between the top and bottom strands.

Index	ID#	Duplex	Folding Free Energy Change (kcal/mol)	Reference	
736	B1	GCGaGCG CGC_CGC	-6.76	(14)	
737	B2	GCGuGCG CGC_CGC	-6.51	(14)	
738	B3	CGCaCGC GCG_GCG	-6.85	(14)	
739	B4	GCGaaGCG CGC___CGC	-5.17	(14)	
740	B5	GCGuuGCG CGC___CGC	-5.01	(14)	
741	B6	CGCaGGCG GCG__GCG	-5.33	(14)	
742	B7	GCGaaaGCG CGC___CGC	-4.76	(14)	
743	B8	GCGuuuGCG CGC___CGC	-4.85	(14)	
744	B9	CGCaGGCG GCG__GCG	-6.63	(14)	
745	B12	GCGaaGGCa aCGC__CGC	-6.64	(14)	
746	B13	CGCaGGCa aCGC__GCG	-7.16	(14)	
747	B14	GCGaaaGCGa aCGC___CGC	-5.39	(14)	
748	B15	CGCaGGCa aCGC___GCG	-7.38	(14)	
749	B18	GCGaaGUCa aCGC___CAG	-6.60	(14)	
750	B19	GCGaaGUCa aCGC___CAG	-5.07	(14)	
751	B20	CCACaCUACC GGUAA_GAUUGG	-9.76	(47)	
752	B21	GCAaGAGG CGUG_CUCC	-9.07	(47)	
---	---	---	---	---	---
753	B22	GACCaUGUC	CUGG_ACAG	-8.16	(47)
754	B23	UGAGaGUCA	ACUC_CAGU	-7.82	(47)
755	B24	UGACaCUCA	ACUG_GAGU	-7.17	(47)
756	B25	GACUaUGUC	CUGA_ACAG	-6.06	(47)
757	B26	CAUGUgACUAC	GUACA__UGAUG	-8.89	(47)
758	B27	UGACgCUCA	ACUG_GAGU	-7.57	(47)
759	B28	GACUgUGUC	CUGA_ACAG	-7.40	(47)
760	B29	GACAgAGUC	CUGU_UCAG	-6.63	(47)
761	B30	GCACuGAGG	CGUG_CUCC	-9.63	(47)
762	B31	ACUGuGAGU	UGAC_CUCA	-8.06	(47)
763	B32	UGACuCUCA	ACUG_GAGU	-7.79	(47)
764	B33	GACAuAGUC	CUGU_UCAG	-6.48	(47)
765	B34	CAUGAcGCUAC	GUACU_CGAUG	-10.58	(47)
766	B35	CAUGUcACUAC	GUACA__UGAUG	-8.61	(47)
767	B36	UGAgcGUCA	ACUC_CAGU	-8.41	(47)
768	B37	GACUcUGUC	CUGA_ACAG	-7.29	(47)
769	B38	UCCUcGAAC	AGGA_CUUG	-6.69	(47)
770	B39	GACAcAGUC	CUGU_UCAG	-5.93	(47)
771	B40	GACCaaGUC	CUGG_uCAG	-9.40	(47)
772	B41	GACGaGUC	CUGC_uCAG	-8.24	(47)
773	B42	GACaaaGUC	CUG_uuCAG	-6.87	(47)
Supplementary Table 8: Coaxial Stacking Experiment List

Note: The top strand is shown 5’ to 3’. The bottom strand is shown 3’ to 5’. Unpaired nucleotides are in lower case. The top strand forms a hairpin loop whose stem can coaxially stack with the stem formed by base pairing with the bottom strand.

Index	ID#	Duplex	Folding Free Energy Change (kcal/mol)	Reference
785	X1	GGACGCAGUGGCaaaaaGCCACUGCCUGA	-7.79	(48)
786	X2	GGACGCAGUGGCaaaaaGCCACUGCCUG	-6.28	(48)
787	X3	GGACGCAGUGGCgcaaGCCACUCCUGA	-7.41	(48)
788	X4	GGACGCAGUGGCgcaaGCCACUCCUG	-5.87	(48)
789	X5	GGACGCAGUGGCgcaaGCCACGA	-5.69	(48)
790	X6	GGACGCAGUGGCgcaaGCCACGA	-6.67	(48)
791	X7	GGACACAGUGGCaaaaaGCCACUGCCUGG	-7.79	(48)
792	X8	GGACCCAGUGGCaaaaaGCCACUGCCUC	-5.64	(48)
793	X9	GGACCAGUGGCaaaaaGCCACUGCCUGC	-6.41	(48)
794	X10	GGACGCAGUGGCaaaaaGCCACUGpCCUGAa	-6.34	(48)
795	X11	GGACGCAGUGGCaaaaasGCCACUGaCCUGA	-6.18	(48)
796	X12	GGACGCAGUGGCaaaaaGCCACUGpCCUGA	-6.50	(48)
797	X13	GGACGCAGUGGCaaaaaGCCACUGaCCUGp	-5.64	(48)
798	X14	GGACGCAGUGGCaaaaaGCCACUGAgCCUG	-5.43	(48)
799	X15	GGACGCAGUGGCgcaaGCCACUaCCUGA	-6.08	(48)
800	X16	GGACGCAGUGGCgcaaGCCACUGpCCUGAa	-6.22	(48)
801	X17	GGAGCCAGUGGCaaaaaGCCACUGaCCUCa	-5.12	(48)
References:

1. Xia, T., SantaLucia, J., Jr., Burkard, M.E., Kierzek, R., Schroeder, S.J., Jiao, X., Cox, C. and Turner, D.H. (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. *Biochemistry, 37*, 14719-14735.

2. Nelson, J.W., Martin, F.H. and Tinoco, I., Jr. (1981) DNA and RNA oligomer thermodynamics: the effect of mismatched bases on double-helix stability. *Biopolymers, 20*, 2509-2531.

3. Petersheim, M. and Turner, D.H. (1983) Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGYP. *Biochemistry, 22*, 256-263.

4. Freier, S.M., Petersheim, M., Hickey, D.R. and Turner, D.H. (1984) Thermodynamic studies of RNA stability. *J Biomol Struct Dyn, 1*, 1229-1242.

5. Freier, S.M., Alkema, D., Sinclair, A., Neilson, T. and Turner, D.H. (1985) Contributions of dangling end stacking and terminal base-pair formation to the stabilities of XGGCCp, XCCGGp, XGGCCyp, and XCCGGYp helices. *Biochemistry, 24*, 4533-4539.

6. Freier, S.M., Sinclair, A., Neilson, T. and Turner, D.H. (1985) Improved free energies for G.C base-pairs. *J Mol Biol, 185*, 645-647.

7. Sugimoto, N., Kierzek, R., Freier, S.M. and Turner, D.H. (1986) Energetics of internal GU mismatches in ribooligonucleotide helices. *Biochemistry, 25*, 5755-5759.

8. Freier, S.M., Kierzek, R., Caruthers, M.H., Neilson, T. and Turner, D.H. (1986) Free energy contributions of G.U and other terminal mismatches to helix stability. *Biochemistry, 25*, 3209-3213.

9. Freier, S.M., Kierzek, R., Jaeger, J.A., Sugimoto, N., Caruthers, M.H., Neilson, T. and Turner, D.H. (1986) Improved free-energy parameters for predictions of RNA duplex stability. *Proc Natl Acad Sci U S A, 83*, 9373-9377.

10. Kierzek, R., Caruthers, M.H., Longfellow, C.E., Swinton, D., Turner, D.H. and Freier, S.M. (1986) Polymer-supported RNA synthesis and its application to test the nearest-neighbor model for duplex stability. *Biochemistry, 25*, 7840-7846.

11. Freier, S.M., Sugimoto, N., Sinclair, A., Alkema, D., Neilson, T., Kierzek, R., Caruthers, M.H. and Turner, D.H. (1986) Stability of XGGCCp, GCGCyP, and XGGCCYP helices: an empirical estimate of the energetics of hydrogen bonds in nucleic acids. *Biochemistry, 25*, 3214-3219.

12. Sugimoto, N., Kierzek, R. and Turner, D.H. (1987) Sequence dependence for the energetics of dangling ends and terminal base pairs in ribonucleic acid. *Biochemistry, 26*, 4554-4558.

13. Sugimoto, N., Kierzek, R. and Turner, D.H. (1987) Sequence dependence for the energetics of terminal mismatches in ribooligonucleotides. *Biochemistry, 26*, 4559-4562.

14. Longfellow, C.E., Kierzek, R. and Turner, D.H. (1990) Thermodynamic and spectroscopic study of bulge loops in oligoribonucleotides. *Biochemistry, 29*, 278-285.

15. He, L., Kierzek, R., SantaLucia, J., Jr., Walter, A.E. and Turner, D.H. (1991) Nearest-neighbor parameters for G.U mismatches: [formula; see text] is destabilizing in the contexts [formula; see text] and [formula; see text] but stabilizing in [formula; see text]. *Biochemistry, 30*, 11124-11132.
16. Hall, K.B. and McLaughlin, L.W. (1991) Thermodynamic and structural properties of pentamer DNA.DNA, RNA.RNA, and DNA.RNA duplexes of identical sequence. *Biochemistry, 30*, 10606-10613.

17. Peritz, A.E., Kierzek, R., Sugimoto, N. and Turner, D.H. (1991) Thermodynamic study of internal loops in oligoribonucleotides: symmetric loops are more stable than asymmetric loops. *Biochemistry, 30*, 6428-6436.

18. Walter, A.E., Wu, M. and Turner, D.H. (1994) The stability and structure of tandem GA mismatches in RNA depend on closing base pairs. *Biochemistry, 33*, 11349-11354.

19. Wu, M., McDowell, J.A. and Turner, D.H. (1995) A periodic table of symmetric tandem mismatches in RNA. *Biochemistry, 34*, 3204-3211.

20. McDowell, J.A. and Turner, D.H. (1996) Investigation of the structural basis for thermodynamic stabilities of tandem GU mismatches: solution structure of (rGAGGUCUC)2 by two-dimensional NMR and simulated annealing. *Biochemistry, 35*, 14077-14089.

21. McDowell, J.A., He, L., Chen, X. and Turner, D.H. (1997) Investigation of the structural basis for thermodynamic stabilities of tandem GU wobble pairs: NMR structures of (rGGAGUCC)2 and (rGGAUGUCC)2. *Biochemistry, 36*, 8030-8038.

22. Xia, T., McDowell, J.A. and Turner, D.H. (1997) Thermodynamics of nonsymmetric tandem mismatches adjacent to G.C base pairs in RNA. *Biochemistry, 36*, 12486-12497.

23. Kierzek, R., Burkard, M.E. and Turner, D.H. (1999) Thermodynamics of single mismatches in RNA duplexes. *Biochemistry, 38*, 14214-14223.

24. Schroeder, S.J. and Turner, D.H. (2000) Factors affecting the thermodynamic stability of small asymmetric internal loops in RNA. *Biochemistry, 39*, 9257-9274.

25. Burkard, M.E., Xia, T. and Turner, D.H. (2001) Thermodynamics of RNA internal loops with a guanosine-guanosine pair adjacent to another noncanonical pair. *Biochemistry, 40*, 2478-2483.

26. Chen, G., Znosko, B.M., Jiao, X. and Turner, D.H. (2004) Factors affecting thermodynamic stabilities of RNA 3 x 3 internal loops. *Biochemistry, 43*, 12865-12876.

27. Santalucia, J., Kierzek, R. and Turner, D.H. (1991) Functional-Group Substitutions as Probes of Hydrogen-Bonding between Ga Mismatches in RNA Internal Loops. *J Am Chem Soc, 113*, 4313-4322.

28. Serra, M.J., Axenson, T.J. and Turner, D.H. (1994) A model for the stabilities of RNA hairpins based on a study of the sequence dependence of stability for hairpins of six nucleotides. *Biochemistry, 33*, 14289-14296.

29. Hickey, D.R. and Turner, D.H. (1985) Effects of terminal mismatches on RNA stability: thermodynamics of duplex formation for ACCGGGp, ACCGGAp, and ACCGGCp. *Biochemistry, 24*, 3987-3991.

30. Giese, M.R., Betschart, K., Dale, T., Riley, C.K., Rowan, C., Sprouse, K.J. and Serra, M.J. (1998) Stability of RNA hairpins closed by wobble base pairs. *Biochemistry, 37*, 1094-1100.

31. Dale, T., Smith, R. and Serra, M.J. (2000) A test of the model to predict unusually stable RNA hairpin loop stability. *RNA, 6*, 608-615.

32. Serra, M.J., Barnes, T.W., Betschart, K., Gutierrez, M.J., Sprouse, K.J., Riley, C.K., Stewart, L. and Temel, R.E. (1997) Improved parameters for the prediction of RNA hairpin stability. *Biochemistry, 36*, 4844-4851.

33. Groebe, D.R. and Uhlenbeck, O.C. (1988) Characterization of RNA hairpin loop stability. *Nucleic Acids Res, 16*, 11725-11735.

34. Antao, V.P. and Tinoco, I., Jr. (1992) Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. *Nucleic Acids Res, 20*, 819-824.

35. Serra, M.J., Lyttle, M.H., Axenson, T.J., Schadt, C.A. and Turner, D.H. (1993) RNA hairpin loop stability depends on closing base pair. *Nucleic Acids Res, 21*, 3845-3849.
36. Shu, Z. and Bevilacqua, P.C. (1999) Isolation and characterization of thermodynamically stable and unstable RNA hairpins from a triloop combinatorial library. *Biochemistry, 38*, 15369-15379.

37. Laing, L.G. and Hall, K.B. (1996) A model of the iron responsive element RNA hairpin loop structure determined from NMR and thermodynamic data. *Biochemistry, 35*, 13586-13596.

38. Antao, V.P., Lai, S.Y. and Tinoco, I., Jr. (1991) A thermodynamic study of unusually stable RNA and DNA hairpins. *Nucleic Acids Res, 19*, 5901-5905.

39. Proctor, D.J., Schaad, J.E., Bevilacqua, J.M., Falzone, C.J. and Bevilacqua, P.C. (2002) Isolation and characterization of a family of stable RNA tetraloops with the motif YNMG that participate in tertiary interactions. *Biochemistry, 41*, 12062-12075.

40. Schroeder, S., Kim, J. and Turner, D.H. (1996) G.A and U.U mismatches can stabilize RNA internal loops of three nucleotides. *Biochemistry, 35*, 16105-16109.

41. SantaLucia, J., Jr., Kierzek, R. and Turner, D.H. (1990) Effects of GA mismatches on the structure and thermodynamics of RNA internal loops. *Biochemistry, 29*, 8813-8819.

42. SantaLucia, J., Jr., Kierzek, R. and Turner, D.H. (1991) Stabilities of consecutive A.C, C.C, G.G, U.C, and U.U mismatches in RNA internal loops: Evidence for stable hydrogen-bonded U.U and C.C. + pairs. *Biochemistry, 30*, 8242-8251.

43. Schroeder, S.J. and Turner, D.H. (2001) Thermodynamic stabilities of internal loops with GU closing pairs in RNA. *Biochemistry, 40*, 11509-11517.

44. Schroeder, S.J., Fountain, M.A., Kennedy, S.D., Lukavsky, P.J., Puglisi, J.D., Krugh, T.R. and Turner, D.H. (2003) Thermodynamic stability and structural features of the J4/S loop in a Pneumocystis carinii group I intron. *Biochemistry, 42*, 14184-14196.

45. Diamond, J.M., Turner, D.H. and Mathews, D.H. (2001) Thermodynamics of three-way multibranch loops in RNA. *Biochemistry, 40*, 6971-6981.

46. Mathews, D.H. and Turner, D.H. (2002) Experimentally derived nearest-neighbor parameters for the stability of RNA three- and four-way multibranch loops. *Biochemistry, 41*, 869-880.

47. Znosko, B.M., Silvestri, S.B., Volkman, H., Boswell, B. and Serra, M.J. (2002) Thermodynamic parameters for an expanded nearest-neighbor model for the formation of RNA duplexes with single nucleotide bulges. *Biochemistry, 41*, 10406-10417.

48. Kim, J., Walter, A.E. and Turner, D.H. (1996) Thermodynamics of coaxially stacked helixes with GA and CC mismatches. *Biochemistry, 35*, 13753-13761.