Analysis of the $C_2\ (d^3\Pi_g - a^3\Pi_u)$ Swan bands as a thermometric probe in CO$_2$ microwave plasmas

Emile Carbone, Federico D’Isa, Ante Hecimovic and Ursel Fantz

Max Planck Institute for Plasma Physics, Boltzmannstr. 2, D-85748, Garching, Germany

E-mail: emile.carbone@ipp.mpg.de

Received 21 November 2019, revised 23 January 2020
Accepted for publication 10 February 2020
Published 28 April 2020

Abstract
The optical emission spectra of high pressure CO$_2$ microwave plasmas are usually dominated by the C$_2$ Swan bands. In this paper, the use of the C$_2$ Swan bands for estimating the gas temperature in CO$_2$ microwave plasmas is assessed. State by state fitting is employed to check the correctness of assuming a Boltzmann distribution for the rotational and vibrational distribution functions and, within statistical and systematic uncertainties, the C$_2$ Swan band can be fitted accurately with a single temperature for rotational and vibrational levels. The processes leading to the production of the C$_2$ molecule and particularly its $d^3\Pi_g$ state are briefly reviewed as well as collisional relaxation times of the latter. It is concluded that its rotational temperature can be associated to the gas temperature of the CO$_2$ microwave plasma and the results are moreover cross-checked by adding a small amount of N$_2$ in the discharge and measuring the CN violet band system. The 2.45 GHz plasma source is analyzed in the pressure range 180–925 mbar, for input microwave powers ranging from 0.9 to 3 kW and with gas flow rates of 5–100 l min$^{-1}$. An intense C$_2$ Swan bands emission spectrum can be measured only when the plasma is operated in contracted regime. A unique temperature of about 6000 ± 500 K is obtained for all investigated conditions. A spectroscopic database is constructed using the recent compilation and calculations by Brooke $et al$ (2013 J. Quant. Spectrosc. Radiat. Transfer 124 11–20) of the line strengths and molecular constants for the C$_2\ (d^3\Pi_g - a^3\Pi_u)$ Swan bands system and made available as supplementary material in a format compatible with the open source MassiveOES software.

Supplementary material for this article is available online

Keywords: microwave plasma, optical emission spectroscopy, gas temperature, error analysis, collisional processes, C$_2$ Swan bands, CO$_2$ plasma

1. Introduction
Many strategies are being currently studied for the recycling and valorization of CO$_2$, a potent greenhouse gas in the atmosphere [2]. Production of liquid fuels from renewable energies is one of the pathways for re-utilization of CO$_2$. The first step for converting CO$_2$ into added value chemicals is its conversion into carbon monoxide CO [3, 4]. For practical applications, it is desirable to operate with high gas flows near atmospheric pressure (or above) in order to avoid bulky components, reduce costs and save energy for the compression steps [5]. Previous studies have indicated that non-equilibrium microwave plasmas are particularly suitable for high energy efficiencies η conversion of CO$_2$ into CO with $\eta \leq 80\%$ and can operate at high pressure and with high flow rates [6]. CO$_2$ based plasmas have applications in fields such as lasers [7], plasma polymers treatment [8] and also have potential in plasma medicine [9]. The proposed mechanism...
for explaining high energy efficiencies for CO₂ conversion into CO is via the so-called vibrational ladder climbing mechanism. Relatively low energy electrons excite preferentially the asymmetric vibrational modes of the CO₂ ground state CO₂(000) molecule and vibrational energy exchange between CO₂ molecules leads ultimately to their decomposition [10]. To favor this mechanism the key ingredient is to keep the plasma out of equilibrium with the gas temperature T_g much smaller than the effective electron temperature T_e [11–13]. Low gas temperatures (i.e. $T_e < 3000$ K) are required in order to avoid too many losses of CO₂(000) states by collisions with the background gas leading to gas heating by vibrational to translation relaxation processes [14, 15]. For high energy efficiencies, calculations also indicate that formed O atoms need to react with highly vibrationally excited CO₂ molecules and to produce another CO molecule and a O₂ molecule [16]. On the other hand, at high gas temperatures (i.e. $T_g \geq 3000$ K), thermal dissociation is the dominant mechanism for CO₂ dissociation with high conversion rates and is limited to energy efficiencies up to $\sim 50\%$ [17, 18].

For studying the mechanisms limiting the energy efficiency of the plasma, it is critical to have tools for assessing the degree of non-equilibrium in the plasma phase and notably its gas temperature. In high pressure (i.e. typically from 10 mbar up to atmospheric pressure) microwave CO₂ plasmas, one of the most dominant emission feature is the C₂ ($d^3Π_g$–$a^3Π_u$) Swan bands system. In figure 1 an overview spectrum of a pure CO₂ microwave plasma (see section 2 for details on the plasma setup) is shown. In addition to a weak continuum emission1 and typical atomic oxygen and carbon lines2, the C₂ Swan bands are the dominant molecular emission structure in the UV and visible range. Such spectrum is typical and has been measured by several authors [16, 21–28]. To obtain reliable and accurate information about the plasma, it is then critical to have tools for evaluating the emission spectrum of the C₂ molecule and assess the accuracy of the results. Usually an equivalence between the rotational temperature of emitting species and the gas temperature is assumed but this hypothesis needs to be assessed. Also, in certain cases non-Boltzmann distributed rotational distribution function are measured experimentally [29]. In combustion studies, it has been observed that the C₂ Swan band can exhibit overpopulation of the high vibrational levels. The latter emission spectrum is known as the ‘high-pressure bands’ of the C₂ system [30]. This makes the analysis of C₂ spectra more complicated and can induce systematic errors in the determination of the rotational temperature (T_{rot}) of the C₂ ($d^3Π_u$) state if the vibrational levels are assumed to take a Boltzmann distribution function. For CO₂ plasmas, an evaluation of potential deviations of C₂ Swan bands spectra from Boltzmann equilibrium and the assessment of T_{rot} as a measure of the gas temperature have not been reported in the literature yet.

In this paper we present the spectral fitting analysis of the C₂ Swan bands using a newly implemented spectroscopic database in the open source MassiveOES software [31, 32]. The database is constructed using the recent compilation and calculations by Brooke et al [1] of the line strengths and molecular constants for the C₂ ($d^3Π_g$–$a^3Π_u$) Swan bands system. C₂ Swan bands spectra measured on a 2.45 GHz CO₂ microwave plasma source are reported and carefully analyzed. By adding small amount of nitrogen in the plasma, the obtained temperatures from the C₂ Swan bands fitting are compared with the one obtained by fitting the CN violet band system. Uncertainties related to the method used for fitting the C₂ spectrum, potential deviations from a Boltzmann distribution for the rotational and vibrational distribution functions and the assumption of fitting the spectra with a single or two temperatures (i.e. rotational and vibrational temperatures) are discussed and compared with a state-by-state fitting of the experimental spectra. Finally, current knowledge about rotational and vibrational relaxation processes of the C₂ ($d^3Π_u$) state is presented in section 6 and the use of T_{rot} for measuring the gas temperature of CO₂ microwave plasmas is discussed.

2. Experimental setup

A microwave device which can ignite an atmospheric pressure plasma torch using only microwave power without the

1 This continuum emission which is the dominant emission feature in the effluent of the plasma and at its edges corresponds to chemiluminescence of CO₂*, formed by recombination of O+CO species [19, 20].

2 Carbon atom lines are only observed below 300 nm and above 900 nm and are not shown in figure 1.
use of additional igniters [33] is studied. A modified version of this device has been built so that it can be operated from low (∼10 mbar) up to atmospheric pressure in molecular gases such as N2 and CO2. Stable operation of the plasma is obtained both in continuous and pulsed regime in a large parameters range. The microwaves are coupled via a WR340 waveguide (TE01 mode) into a cylindrical cavity with low Q-factor where the plasma is sustained inside a quartz tube (see figure 2 for more details). The quartz tube has inner/outer diameters of 26/30 mm.

For the ignition of the plasma, a coaxial cavity made of a waveguide to cylindrical resonator with high Q-factor and an inner conductor with conical shape is integrated at the bottom of the quartz tube. The coaxial cavity serves also for the injection of the gases using a 4-inlets tangential gas injection system. The coaxial conical pin vertical position can be adjusted for selecting different modes and enhance the electric field at its tip to ignite the plasma. The plasma can be operated in the power range of 600 W–3 kW, with gas flow rates between 5–100 l min−1 and pressures from 10 up to 960 mbar.

The high resolution measurements were acquired using a Czerny-Turner 1 m focal length SPEX1000 spectrometer with an entrance slit of about 30 μm and a dispersion grating of 1800 g mm−1. An Andor iDus 420 CCD camera was used to record the spectra. The spectral resolution in first order is 20 pm at 550 nm. The wavelength calibration of the spectrometer was done using a mercury lamp. The light is collected using a system of two irises and a lens. The lens focuses the light into an optical fiber system that is used for coupling the light to the entrance slit of the spectrometer. The irises system acts as a collimator and a spatial resolution of 1 mm is obtained. The collecting optics, filters and the spectrometer have been absolute calibrated between 400 to 850 nm with an Ulbricht sphere to obtain the absolute photon flux from the plasma. A longpass filter at 400 nm (FEL0400 from Thorlabs) is used to suppress any contribution from second order emission overlapping with the Swan band emission. For the CN violet system measurements, a 280 nm longpass filter (FEL280 from Thorlabs) is used. Additional low-resolution survey spectra are acquired using an Ocean Optics S2000 spectrometer with 1.2 nm resolution.

3. Sources of C2 and of the C2 (d3Πg) state

The primary building blocks of C2 are C atoms and it is therefore of interest to look first at sources of C atoms. No direct production channel from the CO2 molecule is known by electron impact dissociation [34, 35]. Electron impact dissociation processes of CO2 lead to O and CO fragments either as neutral (ground or excited states). Electron dissociative attachment to CO2 peaks at low electron energies <10 eV and only produces CO [36] and O+ . Electron impact ionization of CO2 leading to formation of C+ has a threshold cross section of 27.8 eV (compared to 13.8 eV for CO2) according to Itikawa [37] and can therefore be considered as negligible while considering typical electron energy distribution function in CO2 plasmas [38]. Dissociative recombination of CO2 lead mostly to CO and O products and a small fraction of C atoms [39]. However, CO2 is lost by charge exchange and clustering reactions and is not a dominant ionic species in the plasma [40]. CO2 species cannot then be considered as a primary source of C atoms and CO can be regarded as its primary source.

Electron impact dissociation and recombination processes of CO and CO+ have been extensively reviewed (see for instance [39, 42]) and we will focus here on neutral processes leading to the formation of C atoms or even directly to C2 molecules. A reason for focusing on these processes is also the knowledge that, in high pressure discharges with a high degree of vibrational excitation, neutral processes are expected to play an important role for molecules dissociation [6]. Moreover, in section 7 are reported high gas temperatures for which thermal (i.e. neutral) processes dominates dissociation dynamics [18].

To understand the formation of the C2 d3Πg state, as it will be discussed in the following, not only source terms of C atoms but also of the C2O molecule should be considered. Vibrationally excited CO molecules lead to the formation of carbon atoms via thermal decomposition [43] or via the so-called Boudouard mechanism [44].

\[
\text{CO}(X^1Σ_g^+, v) + \text{CO}(X^1Σ_g^+, w) \rightarrow \text{CO}_2 + \text{C}, \quad (1)
\]

where v and w are vibrational quantum numbers \(^3\). This process is very efficient and researchers have reported that

Wherever a citation is necessary, the full reference is given in the text. See figure 2 for a schematic representation of the 2.45 GHz plasma source.
The C2 Swan bands can then potentially be used as markers for gas temperatures. This is the case in the present study with reported temperatures of 6000 K [46]. Brewer et al [53] proposed the following mechanism for the formation of the high pressure C2(d3Πg, v = 6) Swan band

C2(d3Πg, v = 6) + C2O(X3Σg−) + C(3P) → C2(d3Πg, v = 0) + CO(X3Σg+).

(5)

They argued that based on the correlation diagram for the reactants and products of the reaction C2O + C that the d3Πg state of C2 is correlated to the ground state of the reactants while the d3Πu state is not. We note that previously, because of the absence of observation of C2O by absorption, Kini and Savadatti [46] proposed the following mechanism for the formation of the high pressure band

C2(a3Πu) + C3(m) → C2(d3Πg, v = 6) + C3.

(6)

where the C3(m) molecule is a postulated metastable species with an energy of 3.7 eV. Little and Browne [55] argued against the possibility of the C3 molecule as an intermediate species for the formation of the high pressure Swan bands. Indeed, the C2 high pressure band is observed in a large range of experimental conditions where C3 formation is not favored and they also advanced a lack of evidence for a metastable state that should have an energy above the a3Πu state which has 3.1 eV internal energy and is responsible for the C3 comet band (a3Πu→X3Σg− transition). The C2 Swan bands can then potentially be used as marker for the recombinantion of ground state C atoms.

In high pressure discharges, a preferential emission of the C2(d3Πg, v = 6) state can be observed which is known as the 'C2 high pressure band'. C2O molecule was proposed by Kunz et al [49] for explaining the preferential emission of the C2(d3Πg, v = 6) state. The C2O molecule reacts with a C atom and forms an electronically excited C2 molecule [50]

C2O + C → C2* + CO.

(4)

Naegeli and Palmer proposed that the initial electronic state in reaction 4 is the C2(b3Σg−) state that crosses to the C2(d3Πg) state at v = 6 and leads to the high pressure band [51]. Through a kinetic study of a CO plasma afterglow, Gosse et al [52] supported the hypothesis that C2(d3Πg) state is formed via reaction 4. Brewer et al [53] stated that formation of the high pressure band from a predissociation mechanism is unlikely and suggested that a resonant transfer from another molecule happens. However, Cauvet and Dorthe [54] stated that C2O may also be a source of the d3Πg state via

C2O(X3Σg−) + C(3P) → C2(d3Πg, v = 0) + CO(X3Σg+).

(5)

Such processes are efficient only when significant vibrational excitation of CO molecules is present and/or high gas temperatures. This is the case in the present study with reported temperatures of 6000 K (see section 7) where CO2 is thermally dissociated, and production of C atoms happens in the gas phase [6].

The formation of the C2 molecule from the three lowest electronic configurations of the carbon atom which are the 2s22p3 (P1/2, D2, and S0) states, where the ground state is the P0 state, was discussed by Balik and Ramsay [48] while considering the potential energy curves of C2. In figure 3 are shown the lower triplet electronic levels of the C2 molecule. For a recent overview of the potential energy curves of the C2 molecule we refer to Martin [41]. The d3Πg state is formed via

C(3P) + C(3P) + M → C2(d3Πg) + M,

(3)

where M stands for a third body that stabilizes the transition state. They noted that there is an avoided crossing with the C2(d3Πg) state that dissociate into C(3P) + C(3D) and so that the C(3D) state does not recombine into the C2(d3Πg) state. The C2 Swan bands can then potentially be used as marker for the recombinantion of ground state C atoms.

In high pressure discharges, a preferential emission of the C2(d3Πg, v = 6) state can be observed which is known as the 'C2 high pressure band'. C2O molecule was proposed by Kunz et al [49] for explaining the preferential emission of the C2(d3Πg, v = 6) state. The C2O molecule reacts with a C atom and forms an electronically excited C2 molecule [50]

C2O + C → C2* + CO.

(4)

Naegeli and Palmer proposed that the initial electronic state in reaction 4 is the C2(b3Σg−) state that crosses to the C2(d3Πg) state at v = 6 and leads to the high pressure band [51]. Through a kinetic study of a CO plasma afterglow, Gosse et al [52] supported the hypothesis that C2(d3Πg) state is formed via reaction 4. Brewer et al [53] stated that formation of the high pressure band from a predissociation mechanism is unlikely and suggested that a resonant transfer from another molecule happens. However, Cauvet and Dorthe [54] stated that C2O may also be a source of the d3Πg state via

C2O(X3Σg−) + C(3P) → C2(d3Πg, v = 0) + CO(X3Σg+).

(5)

They argued that based on the correlation diagram for the reactants and products of the reaction C2O + C that the d3Πg state of C2 is correlated to the ground state of the reactants while the d3Πu state is not. We note that previously, because of the absence of observation of C2O by absorption, Kini and Savadatti [46] proposed the following mechanism for the formation of the high pressure C2(d3Πg, v = 6) Swan band

C2(a3Πu) + C3(m) → C2(d3Πg, v = 6) + C3.

(6)

where the C3(m) molecule is a postulated metastable species with an energy of 3.7 eV. Little and Browne [55] argued against the possibility of the C3 molecule as an intermediate species for the formation of the high pressure Swan bands. Indeed, the C2 high pressure band is observed in a large range of experimental conditions where C3 formation is not favored and they also advanced a lack of evidence for a metastable state that should have an energy above the a3Πu state which has 3.1 eV internal energy and is responsible for the C3 comet band (a3Πu→X3Σg− transition). Recent spectroscopic investigation and calculations of the energy levels of the C3 molecule indicate that the lowest triplet state C3(d3Πu) has an energy of about 2.1 eV and the b3Πu an energy of 2.9 eV [56, 57] which are well below the 3.7eV energy required for the process 6. The C3 molecule can therefore be ruled out as source of the C2 high pressure band.

Little and Browne [55] proposed a general mechanism for the formation of the high pressure Swan bands via the following three steps

C(3P) + C(3P) + M → C2(3Πg, v) + M

C2(3Πg, v) + M → C2(3Πg, v = 0) + M

(5)

Note that in addition to reaction 2, the C2O molecule can be formed from the recombinantion of a C atom with CO via

C + CO + M → C2O + M.

The formation of C2O in pulsed radiolysis of CO was shown first by Willis and Devillers [47] and they showed that adding CO2 did not affect the kinetics of C2O. Kinetics of this molecule discussed from kinetic analysis of pure CO discharges can then probably be extended to mixtures of CO/CO2.
C(2\Pi, \nu = 0) + M \rightarrow C(2^3\Pi, \nu = 6) + M,

where the quintet 2\Pi state is a metastable state for which a crossing exists between the \nu = 6 level of the 2^3\Pi state and the \nu = 0 level of the quintet state. Kirby and Liu calculated its energy to lies 3.85 ± 0.34 eV above the ground state of C2 [58] while Little and Brown estimated a value of 3.79 eV. Such mechanisms essentially allow us to explain previous observation that the high pressure band is rotationally colder than the ‘normal’ Swan bands emission that can be observed in the same discharge [59]. Also, high resolution analysis of the C2(2^3\Pi, \nu = 6) low rotation energy levels shows that both odd and even rotational numbers are perturbed with increase of intensity [60] which indicates that a \Sigma state is not involved in the perturbation but a state with \Lambda = 0 fills the lower rotational levels of the C2(2^3\Pi, \nu = 6) state [54]. A detailed analysis shows in fact that the b^3\Sigma_g state perturb the J = 19 and 21 of the \nu = 6 upper state of the Swan band but lead to a decrease of the intensity of these lines [55]. It can be concluded that the b^3\Sigma_g state is not at the origin of the high pressure band and that the quintet 2\Pi state is likely its source.

The proposal that C atoms recombine via the quintet 2\Pi state which then populate the C2(2^3\Pi, \nu = 6) state (i.e. to generate the C2 high pressure band) does not exclude the direct recombination of C atoms into the d^3\Pi state. One should see them as processes that happen simultaneously with dissociation limit two C atoms

\begin{equation}
\psi_s + \psi_s \rightarrow \psi_f + \psi_f + \nu \Delta \nu = \Delta\lambda
\end{equation}

Looking at the energy potential curves of the C2 molecules, one can see that the X^2\Pi_u + A^2\Pi_u, B^2\Delta_g, B^1\Sigma_g^+, C^1\Pi_u, a^2\Pi_u, b^3\Sigma_g^+, c^3\Sigma_u^+, d^3\Pi_u and \Sigma^1 state all have as dissociation limit two C(3P) atoms [41]. The branching ratios for the recombination into these different electronic states are however not known although it appears from experiments discussed before that the d^3\Pi_u and \Sigma^1 states are the ones first (and mainly) populated.

In conclusion, we can say that there are several concurring production mechanisms of the C2 (d^3\Pi_u) state either from recombination of C atoms or, in the case of CO containing plasmas, via the C2O molecule. The presence or absence of some of these mechanisms, for which branching can unfortunately hardly be estimated, will affect particularly the nascent population distribution of vibrational states of the C2 (d^3\Pi_u) state.

4. Molecular spectra calculations

In order to reproduce experimental spectra, it is necessary to first model the population distribution of states and, using molecular constants and transitions and probabilities, one can simulate a spectrum knowing the instrumental profile of the apparatus. The partition functions of rovibrational distributions under the assumption of a Maxwell–Boltzmann distribution used to generate so-called Boltzmann plots are given in section 4.1. The molecular constants used for calculating both the C2 Swan bands and the CN violet system are described in sections 4.2 and 4.3 and given in appendix A and B. They are implemented into MassiveOES and the input database for fitting spectra is available online at stacks.iop.org/PSST/29/055003/mmedia.

4.1. Thermal population distributions

The distribution of energy between the internal degrees of freedom of a diatomic molecule is described by the following partition function [61]

\begin{equation}
Q = \sum_{\nu_{\text{min}}}^{\nu_{\text{max}}} \sum_{J_{\text{max}}}^{J_{\text{min}}} \sum_{\Lambda_{\text{max}}}^{\Lambda_{\text{min}}} g_{\Lambda,J}(2S + 1)(2J + 1) \times \exp \left[-\frac{h \nu}{k_B T} \right],
\end{equation}

where \nu denotes electronic states with projection of orbital angular momentum quantum number \Lambda and total spin quantum number S, and \nu and J are the vibrational and rotational quantum numbers, respectively. g_{\Lambda,J} is the statistical weight factor related to \Lambda-doubling and the nuclear hyperfine structure. T, G(\nu) and F_s(J) represent the electronic, vibrational and rotational energies in wavenumber units. E_0 is the energy of the lowest state of the molecule (i.e. \nu = 0, J = \Lambda for the ground electronic state). T is the temperature of the heat’s bath in the case where all internal degrees of freedom of the molecular gas are thermalized.

Assuming that the internal degrees of freedom are independent, which is already implicitly assumed in the formalism used to derive equation (7), the partition function for rotational and vibrational states can be rewritten as

\begin{equation}
Q(\nu, J) \equiv Q_{\text{rot}}(J, T_{\text{rot}}) Q_{\text{vib}}(\nu, T_{\text{vib}}),
\end{equation}

where T_{\text{rot}} and T_{\text{vib}} are the temperature for the rotational and vibrational distribution functions in the case that they do not equilibrate with each other but obey Boltzmann distribution functions.

Using the Maxwell–Boltzmann distribution law, stating that the number of molecules dN/dE having an energy between E and E + dE is proportional to e^{(-E/\kappa_B T)dE} and using equations (7) and (8), the population density for rotational and vibrational levels can be defined as [62, 63]

\begin{equation}
N(\nu, J) = \frac{N(\nu)}{Q_{\text{rot}}} (2J + 1) \exp \left(-\frac{F_s(J)}{k_B T_{\text{rot}}} \right)
\end{equation}

\begin{equation}
N(\nu) = \frac{N(\nu)}{Q_{\text{vib}}} \exp \left(-\frac{G(\nu) hc}{k_B T_{\text{vib}}} \right),
\end{equation}

where N_{\nu} is the total density of the electronic state \nu and N(\nu) is the density of the \nu level summed up over its rotational distribution.

Assuming a Boltzmann distribution for the rotational and vibrational levels, the intensity of a line for a transition (\nu' \rightarrow \nu'', J' \rightarrow J'', \Omega' \rightarrow \Omega'') is given by

\begin{equation}
I(\lambda) = N(\nu) \psi(\nu, \nu', \lambda) \times A_{\nu'\nu''} J'\Omega'\gamma_{\text{eff}} \cdot \psi(\lambda, \lambda_0),
\end{equation}

where \psi(\nu - \lambda_0) is the convoluted line profile and instrumental profile of the spectrometer and \lambda_0 the central wavelength position of the line. $E(\nu) = G(\nu) hc$ and $E(J', \Omega') = E_s(J')$ where

\[6\] While defining the energy contributions of all internal degrees of freedom to a state defined by the quantum number \nu, S, J and \Lambda as additive, we make the assumption that those degree or freedom are independent [62].
the effect on energy level splitting due to \(\Lambda \)-doubling is expressed as a function of \(\Omega \) (see equation (11)). We use here the convention following Herzberg [63] that the rotational and vibrational quantum numbers of the upper level are defined by the index \(J', v' \) and the lower level is described by \(J'' \) and \(v'' \).

4.2. Swan band database: description, implementation, benchmark

\(C_2 \) is a homonuclear diatomic molecule and the Swan band is an electronically allowed dipole transition between two \(\Pi \) states due to change of symmetry of the wavefunction between the upper and lower state \(g \rightarrow u \). These are triplet states and for each rotational quantum number \(J \), there are sub-bands \(\Pi_0 \rightarrow \Pi_0, \Pi_1 \rightarrow \Pi_1 \) and \(\Pi_2 \rightarrow \Pi_2 \). The sub-bands are dominated by \(P \) and \(R \)-branches (corresponding to selection rule \(\Delta J = J' - J'' = -1 \) and +1, respectively). Only weak \(Q \)-branches (\(\Delta J = 0 \)) exist and none for the \(\Pi_0 \rightarrow \Pi_0 \) sub-band as only \(\Delta J = \pm 1 \) transitions occur for \(\Omega = 0 \) where \(\Omega \) is the total electronic angular momentum along the internuclear axis and is given by \(\Omega = \Lambda + \Sigma \). \(\Sigma \) is the projection of the spin quantum number \(S \) onto the internuclear axis. \(\Lambda \) is the quantum number for the component of the total angular momentum along the internuclear axis. It is the absolute value of the projected component of the angular momentum \(L \) on the internuclear axis \(M_\ell \) with \(\Lambda = |M_\ell| \) [64]. \(\Pi \) states have by definition \(\Lambda = 1 \) and for the Swan bands we have triplet states \(\Pi_0 \rightarrow \Pi_0, \Pi_1 \rightarrow \Pi_1 \) for which \(S = 1 \) and so \(\Sigma = M_\ell = -1, 0, +1 \). The coupling between the rotation of the nuclei and \(L \) additionally leads to a splitting into two components for each \(J \) value when \(\Lambda = 0 \). This is called \(\Lambda \)-doubling (see below). As the \(C_2 \) molecule is symmetric and the carbon atom has a zero nuclear spin, transition between symmetric and asymmetric wavefunctions are forbidden. The statistical weight due to nuclear spin \(I \) of the anti-symmetric rotational levels is given by \(I(I + 1) \) and as for \(C_2 \) we have \(I = 0 \), they are absent. However, for \(\Lambda = 1 \), we have symmetric and anti-symmetric combination of wave functions due to \(\Lambda \)-doubling and therefore both even and odd rotational numbers are present. In the \(P, Q \) and \(R \) branches, only one of the \(\Lambda \)-doubled levels are present alternatively which leads to the appearance that the even levels are displaced to one side and the odd levels to the other side of a mean position for a given branch progression. With each alternate line that is simply absent because of \(I = 0 \), this is often referred to as the ‘staggering’ effect. We note that the statistic weight \((g_{\Lambda, I, S}) \) in equation (7)) due to the nuclear spin for individual rotational levels induce an alternance of intensities for sub-bands of electronic transitions with \(\Lambda = 0 \). For more details on the rovibrational structure and lines positions of the \(C_2 \) Swan band system we refer to Herzberg [63] and Pellerin [65].

In figure 4, a high resolution spectrum from 450 nm up to 565 nm is presented where the main transition groups \(\Delta \nu \) and the position of the vibrational transition band heads are identified. Transitions between two electronic states can be ordered following the difference in vibrational quantum numbers during the radiative transition between the upper and lower state \(\Delta \nu = v' - v'' \). For instance, in figure 4 the transition group \(\Delta \nu = +1 \) corresponds to the rovibrational serie \(\Delta \nu_1 (v') - \Delta \nu_{0} (v' - 1) \). Note that the \(d \Pi_0 (v' = 0) \) level is therefore not part of this transition group. The \(\Delta \nu = -2, +2 \) transition groups can also be seen experimentally but are not shown here.

The spectroscopic database that we implemented into the fitting program of molecular emission spectra MassiveOES [31] is derived from the work of Brooke et al [1]. As initial input, MassiveOES requires rovibrationally resolved Einstein coefficients for the transitions between the upper and lower state that can be generally calculated using the following equation [66]:

\[
A_{\nu',J' \rightarrow \nu'',J''} = \frac{16\pi\nu^3\Delta_{J'}^3}{3\epsilon_0h^3(2J' + 1)} |\langle \nu,J'|R_e(r)|\nu,J'' \rangle|^2, \tag{12}
\]

where \(\Delta_{J'}^3 \) is the Hön–London factor and \(|\langle \nu,J'|R_e(r)|\nu,J'' \rangle|^2 \) is the transition dipole moment (TDM).

Brooke et al [1] used PGOPHER, a program developed by Colin Westerm, for calculating the Einstein \(A_{\nu',J' \rightarrow \nu'',J''} \) coefficients [67]. PGOPHER requires as input a set of molecular constants and the band strengths for each vibrational band \(\nu' \rightarrow \nu'' \). The purely vibrational transition dipole moments (TDMs) were calculated using the program LEVEL [68], a program that can solve the 1D Schrödinger equation for diatomic molecules when provided with a potential energy curve and the electronic TDM. The set of molecular constants for fitting RKR potential curves of the upper and lower electronic levels involved into the Swan bands transition are listed in [1]. With the output of LEVEL, PGOPHER is then able to calculate the rotational TDMs and the Hön–London factors required to

Figure 4. Experimental \(C_2 \) Swan bands emission between 450 and 567 nm. The spectrum was acquired in the center of the resonator for a power of 2.7 kW and a flow of 10 l min\(^{-1} \).
compute the numerical values of equation (12). The original simulations by Brooke et al. were extended to a maximum rotational quantum number J of 300 by running again PGOPHER with the same molecular constants. This allows to properly calculate the rotational partition function in MassiveOES for the high rotational temperatures encountered in the present study. It should however be noted that, while doing this, the calculated energy levels have increasing error for increasing J in energy and line positions. The molecular constants used for the C₂ Swan band are given in appendix A and the input database for fitting experimental spectra using MassiveOES is available as supplementary material to this paper.

Extensive comparison of calculated line positions versus experimental ones were already done in the literature (see Brooke et al. [1] and references therein). We additionally performed a cross-check with the high resolution degenerate four-wave mixing experiments of Lloyd and Stewart [69]. The difference between their measured line positions for the $\Delta \nu = 0$ transition group and our calculated ones are shown in figure 5. One can see that, except for two outliers, the line positions are calculated with an accuracy much better than ± 0.05 cm$^{-1}$. Experimental data for higher J numbers is however not available for performing further benchmark. Experimentally we have a line profile of 22 pm corresponding to about 0.8 cm$^{-1}$ which is much broader than the line position uncertainty $\lambda_{\text{exp}} < 1$ pm. Consequently, using calculated line positions for the fitting of the experimental spectra induces no additional error related to uncertainties in line position assignment. We note at this point that high resolution measurements of line positions were done up to $J = 80$ and only for some vibrational levels by Tanabashi et al. [70].

The database of lines and their transition probabilities is compiled in a SQL database, that is then read by MassiveOES. The database consists of three tables for listing the lines, the identity of rovibrational ‘upper’ and ‘lower’ states, respectively. Each element of the table corresponds to a single line in the spectrum for which energy of the transition, air wavelength, vacuum wavelength, Einstein coefficient, upper state identity and lower state identity are given. The ‘upper state’ tag (as well as the ‘lower state’ tag) links the line with the energy level from which is originated, that will be used to calculate the intensity of the line. The effect of molecular perturbations on the energy level and transition probability of the $d^3\Pi_g \nu = 4$ and 6 levels is included in the Einstein coefficient and energy of the transitions. The extra lines due to the perturbations for the $d^3\Pi_g$ state by the $b^3\Sigma_g^+(\nu = 16, 19)$ and Π_g states [1] are combined in the table as additional transitions from the upper state, such that, the rovibrational population distribution is calculated without extra energy levels.

4.3. CN violet system emission

The CN molecular violet system corresponds to the $B^2\Sigma^+ \rightarrow X^2\Sigma^+$ transition of CN which is an heteronuclear diatomic molecule. The required molecular constants have been taken from Ram et al. [71]. The transition probabilities between two vibrational states calculated by solving the integral of the vibrational wavefunctions of the upper and lower states and TDM $\int \psi_i(r) R_j(r) \psi_o(r)$ were extracted from LIFBASE [72]. The molecular constants for calculating the Rydberg–Keile–Rees (RKR) potential curves of the $X^2\Sigma^+$ and $B^2\Sigma^+$ states were taken from [73, 74]). For the TDMs $R_j(r)$, the values of Ito et al. [75] were taken. These molecular constants were then used as input for PGOPHER to calculate the Hön–London factors of the CN violet system with J number up to 180. For the CN violet system some perturbations also exist but those are not included in the calculations as they do not affect significantly the spectra. In appendix B all the constants used in the calculation are given, and the input database for fitting experimental spectra using MassiveOES is available as supplementary material to this paper. As sanity check, a one to one comparison between our PGOPHER calculations and LIFBASE was made and they yield the same results both for line positions and intensities.

5. Spectral analysis of the C₂ Swan band

5.1. Non-Boltzmann fitting of the Swan band

In non-equilibrium plasmas, rotational and vibrational distributions do not always thermalize because of competition between production and destruction processes and a molecular spectrum can then not be fitted using single rotational T_{rot} and vibrational T_{vib} temperatures [29]. As discussed in section 3, the C_2 ($^1\Pi_g$) state is well known for overpopulations in the density of its high vibrational levels and particularly the $\nu = 6$ level. In this section we investigate high resolution spectra of the C₂ Swan bands in order to assess possible deviations from thermal equilibrium of the rovibrational populations.

In figure 6, individual P and R lines from the $\nu = 0$ level are identified (the Q lines are too weak to be distinguished, see section 4.2) from the $\Delta \nu = 0$ transition group and their area fitted with a Voigt profile (with Gaussian and Lorentzian half-width of, respectively, $\sigma_G = 9.5$ pm and $\sigma_L = 4$ pm) to take into
account the apparatus profile determined from Hg lines using a low pressure Hg lamp. They were selected only when they can be separated from neighboring lines and clearly identified. Note that the fine structure of the rotational levels could not be resolved and so that the lines are weighted over the rotational fine structure (i.e. rotational sub-bands). The logarithm of the density of each individual rotational level is plotted as function of the rotational energy (i.e. Boltzmann plot). All levels fit quite well on a single line indicating no deviation from a thermal rotational distribution function. The lowest rotational levels are not shown because they are experimentally too much overlapped and the state by state fitting routine cannot converge (see below for a discussion of those). The highest rotational levels are widely scattered due to the very low signal to noise ratio. A rotational temperature $T_{\text{rot}} = 5500 \pm 500 \text{ K}$ is obtained from the fitting of figure 7. From this first fit, some systematic deviations are apparent. A closer inspection indicates the presence of some outliers points which have densities off by an order of magnitude or more without any systematic trend. Removing these outliers which have a non-negligible weight for the fitting of a linear slope in logarithmic plot, the statistical
The intensity of the measured and simulated spectra are the same as in spectra. (Note the logarithmic and linear scales used for presenting the bands: (a) Comparison between Boltzmann and state by state fitting. The rotational temperature was fixed to 6200 K following the analysis of the $\Delta \nu = 0$ transition group. For the $\Delta \nu = +1$ transition group, the density of each ν level is adjusted independently and the results are shown in figure 9. One can see that all vibrational levels fit perfectly on a single line with $T_{\text{vib}} = 6000 \pm 400$ K. The larger uncertainties in the case of the state by state fitting when all three transition groups $\Delta \nu = +1$, 0, -1 are taken into account stem from the lower signal to noise ratio for the $\Delta \nu = -1$ transition group. The result of the fit using a Boltzmann distribution is also shown in figure 7 (note the logscale) as well and one can see that the residues following a Boltzmann fitting or a state by state fitting are similar.

In figure 8(a), the state by state fitting analysis is extended to the $\Delta \nu = -1$ and $\Delta \nu = +1$ transition groups for the rotational and vibrational states of the $d^3 \Pi_g$ state. One can see that the rotational levels of the $\nu = 1$ and $\nu = 2$ levels also follow a Boltzmann distribution with the same slope as for the $\nu = 0$ level although the signal is more noisy. Also population densities of the lower rotational states can be analysis and no systematic deviations from a single slope can be found.

After integration over the rotational distribution, the density of the vibrational states can be obtained (see equation (9)). The resulting Boltzmann plot for the vibrational states is shown in figure 8(b). Their population distribution can be described by a single temperature of 7200 ± 1200 K. For comparison, we also performed a state by state fitting of the $\Delta \nu = +1$ transition group that is the most sensitive to the vibrational temperature (see section 5.2). The rotational temperature was fixed to 6200 K following the analysis of the $\Delta \nu = 0$ transition group. The $\Delta \nu = +1$ transition group, the density of each ν level is adjusted independently and the results are shown in figure 9. One can see that all vibrational levels fit perfectly on a single line with $T_{\text{vib}} = 6000 \pm 400$ K. The larger uncertainties in the case of the state by state fitting when all three transition groups $\Delta \nu = +1$, 0, -1 are taken into account stem from the lower signal to noise ratio for the $\Delta \nu = -1$ transition group. The result of the fit using a Boltzmann distribution is also shown in figure 7 (note the logscale) as well and one can see that the residues following a Boltzmann fitting or a state by state fitting are similar.

In figure 8(a), the state by state fitting analysis is extended to the $\Delta \nu = -1$ and $\Delta \nu = +1$ transition groups for the rotational and vibrational states of the $d^3 \Pi_g$ state. One can see that the rotational levels of the $\nu = 1$ and $\nu = 2$ levels also follow a Boltzmann distribution with the same slope as for the $\nu = 0$ level although the signal is more noisy. Also population densities of the lower rotational states can be analysis and no systematic deviations from a single slope can be found.

After integration over the rotational distribution, the density of the vibrational states can be obtained (see equation (9)). The resulting Boltzmann plot for the vibrational states is shown in figure 8(b). Their population distribution can be described by a single temperature of 7200 ± 1200 K. For comparison, we also performed a state by state fitting of the $\Delta \nu = +1$ transition group that is the most sensitive to the vibrational temperature (see section 5.2). The rotational temperature was fixed to 6200 K following the analysis of the $\Delta \nu = 0$ transition group. For the $\Delta \nu = +1$ transition group, the density of each ν level is adjusted independently and the results are shown in figure 9. One can see that all vibrational levels fit perfectly on a single line with $T_{\text{vib}} = 6000 \pm 400$ K. The larger uncertainties in the case of the state by state fitting when all three transition groups $\Delta \nu = +1$, 0, -1 are taken into account stem from the lower signal to noise ratio for the $\Delta \nu = -1$ transition group. The result of the fit using a Boltzmann distribution is also shown in figure 7 (note the logscale) as well and one can see that the residues following a Boltzmann fitting or a state by state fitting are similar.
rotational temperature was set using the T_{rot} obtained from the more sensitive $\Delta \nu = 0$ transition group.

From this analysis, it appears that for the present plasma conditions, the vibrational levels are completely thermalized and no overpopulation of the higher vibrational levels and particularly $v = 6$, occurs. Analysis of other spectra as the one discussed above yield the same results and no deviations from Boltzmann equilibrium could be found for the conditions of the present study (see section 7). Either the processes discussed in section 3 leading to the so-called C$_2$ high pressure bands are absent in the present discharge or the levels thermalize within the effective (radiative) lifetime of the state (see section 6 for a discussion). Different methods of fitting give similar results and no evidence of deviations from thermal distributions can be found within error margins. For the following, Boltzmann distributions are then assumed and an envelope fitting of the spectra is done. For measuring the rotational temperature, the $\Delta \nu = 0$ transition group is chosen while all three transition groups are used for the determination of the vibrational temperature. For more discussion on this, we refer to section 5.2.

5.2. T_{rot} and T_{vib} from the C$_2$ Swan band: sensitivity and uncertainty analysis

The convergence of a fit is usually assessed by looking at the value of the least mean square error and minimizing the root mean squared error (RMSE = $\sqrt{\sum (y_i - \bar{y})^2}$). It is possible to use the computed residua for assessing how sensitive is the minimization routine for given external parameters that are being fitted. Information can be extracted from a dataset (here an experimental spectrum) only when the variation of signal is statistically significant. It usually means that the correlation between a signal and the event we want to measure must be significantly larger that the statistical noise. Theoretical spectra can be computed for given fixed rotational and vibrational temperatures and compared with another theoretical spectrum in terms of their respective RMSEs [76]. In the case where the (thermal) white noise is the dominant source of uncertainty in the fitting of an experimental spectrum, the amplitude of the noise can be directly correlated to an iso-line inside which the ‘true value’ stands. Nassar [77] evaluated the errors induced by a white noise on T_{rot} determination while fitting the band head of the $\Delta \nu = 0$ transition group and obtained errors in the order of the signal to noise ratio or lower. This is however without considering systematic errors that are induced by performing mathematical operations on the data such a baseline correction or intensity calibration. These errors are additive and amplify the uncertainties on the values obtained through a fit. Also, one needs to take additionally into account the uncertainties in the molecular constants (Franck–Condon and Hönl–London factors).
In figure 10, such analysis is first made for the $\Delta \nu = 0$ transition group of the C_2 Swan band while fitting simultaneously the rotational and vibrational temperature of the $d^3\Pi_g$ state. The calculations are done against a theoretical spectrum using a Voigt profile of 20 pm (equal gaussian and lorentzian contributions) for $T_{\text{rot}} = T_{\text{vib}}$ fixed at several values of 1000, 3000, 5000, 6000, and 7500 K.

The minimization routine of MassiveOES is here used for determining one variable, the error will propagate to the other. The parametrization of the spectrum in terms of independent variables (T_{rot}, T_{vib}, instrumental profile, ...) in a feature space (i.e. a space made of independent variables that are combinations of the original variables) is not entirely successful and some of the new variables are not orthogonal. This is a well known issue in the field of Principal Components Analysis (PCA) [78]. In the present case, when the isolines are equidistant in the vertical and horizontal directions, one can say that the determination of T_{rot} and T_{vib} are statistically independent. Note that a fitting routine gives for any given fit a RMSE but its absolute value carries no intrinsic information. It has a meaning only in correlation with other RMSEs calculated around the (local) equilibrium point of the fit. The RMS error is then directly normalized to the equilibrium value.

While fitting an experimental spectrum using the assumption of Maxwell–Boltzmann distribution for the rotational and vibrational states of the radiating molecule, there are additional parameters that need to be fixed. They are listed in table 1. These parameters, excepted for the first three in the table are all experimental and depend on the spectrometer. A linear baseline is fitted with an offset value β_{base} and a slope α_{base} for subtracting contributions related to noise and continuum emission from the plasma. The instrumental profile of the spectrometer is taken into account via σ_L and σ_G while the wavelength calibration of the spectrum is adjusted with a quadratic fit (λ_{start}, $\Delta \lambda$ and $\Delta \lambda^2$ parameters) and the wavelength λ is defined as

$$\lambda = \lambda_{\text{start}} + \Delta \lambda \cdot i + \Delta \lambda^2 \cdot i,$$

where i is the pixel number. The density N of the upper excited state has no influence on the evaluation of the temperatures as it is related only to the integrated band intensity.

The parameters that have an influence on the determination of T_{rot} and T_{vib} are the line profile and the fitting of the baseline. By varying systematically these values and considering uncertainties on the Franck–Condon (FC) and Hön–London factors, we estimated conservative uncertainty margins of about ±500 K for the spectra fitted in the present study. This evaluation is confirmed by the analysis made in section 5.1 where statistical methods have been applied while using different analysis methods to evaluate the rovibrational distribution functions. The errors for the rotational temperature are in fact probably lower. Fitting of theoretical low resolution spectra generated using SPECAIR [79, 80] or from Fantz and Wünderlich [81] leads to difference in the order of 1% for the rotational temperature. For the vibrational temperature, we also performed a comparison using the transition dipole moments of Kokkin et al [82] and FC-factors obtained by Fantz and Wünderlich [81]. The main difference with the present values and those calculations are only in the absolute values of the FC-factors with a difference of about 20%. The latter difference is systematic and consequently only affects the determination of the density N of the upper electronic state (i.e. after summation over rotational and vibrational population densities). No significant difference for the determination of T_{vib} while using the two datasets were found.

In figure 11, the same analysis is made for an experimental spectrum. The minimization routine of MassiveOES is here...
used only for adjusting the area of the spectra (i.e. population density of the electronic state), baseline and linewidth. The spectra are calibrated in wavelength beforehand using the position of known lines and its contribution to spectra are calibrated in wavelength beforehand using the density of the electronic state.

Finally, in figure 12, the sensitivity of the $\Delta \nu = 0$ transition group for determining T_{rot} on assumed/fitted values of T_{vib} is assessed. An experimental spectrum for the $\Delta \nu = 0$ transition group is fitted while taking different values for T_{vib}. One can see that the fitted rotational temperature is almost independent of the vibrational temperature. This is due to the low transition probabilities for the $\Delta \nu = 0$ transitions for the $v = 1$, 2 levels while higher levels are even not visible at all. We note that the almost independence of the fitted rotational temperature to T_{vib} is true for the relatively high resolution of the present spectrum. Interdependence of T_{rot} and T_{vib} becomes larger for lower resolution spectra also for the $\Delta \nu = 0$ transition group. The $\Delta \nu = -1, \pm 2$ transition groups usually suffer from lower intensities because of their low transition probabilities. The resulting lower signal to noise ratios make these groups not prime candidates for temperatures determination. From figures 10 and 11 and the discussion before, it can be concluded that the C$_2$ Swan $\Delta \nu = 0$ transition group is the best candidate for the determination of T_{rot} while $\Delta \nu = \pm 1$ should be used for the determination of T_{vib}. We should however stress that the present ‘error’ calculations made here cannot be generalized to any C$_2$ Swan band fitted spectrum but the trends will remain similar.

6. Is C$_2$ Swan band emission a good thermometer?

Before presenting a detailed analysis of the gas temperature of the plasma torch, a comparative study of the temperatures of the C$_2$ Swan band and CN violet system is presented in section 6.1. The good agreement that is reported between these two species gives a hint that the temperatures measured are in equilibrium with their local environment and so correspond to the gas temperature T_{gas} with a value of about 6600 K. For a similar plasma source and operating conditions, Groen et al. [83] obtained similar values of 6600 K via 777 nm O line broadening. On the same device, den Harder et al. [17] estimated a gas temperature by Rayleigh scattering of 5000 K at 200 mbar. Interestingly, for a N$_2$ plasma, Gatti et al. [84] obtained by Raman scattering on N$_2$ gas temperatures of 7000 K near atmospheric pressure. At atmospheric pressure, we also measured the first negative and second positive system of N$_2$ while operating the present plasma torch in pure N$_2$ and obtained rotational and vibrational temperatures in the order of 6500 K [85]. The consistency in the obtained values (for high pressure, high power microwave plasmas) using different measurements methods are a first indication that the C$_2$ Swan bands may also be used for gas temperature determination.

As discussed in section 3, there are several pathways involving neutral species for the formation of the C$_2$(d3II$_g$) state. Depending of its formation mechanism, one can expect the nascent rovibrational distribution of an excited state formed by chemical reactions to follow a thermal distribution or to be strongly non-thermal (i.e. formation of the excited into specific rotational and or vibrational state(s)). In the latter case, for being able to predict its emission spectrum, it is necessary to take into account collisional relaxation processes [86]. The rotational and vibrational
temperatures do not then correspond to the gas temperature. In sections 6.2 and 6.3 are discussed the collisional relaxation kinetics of the $\text{P}_d^2 \text{C}_2^3$ state. These processes that lead to the thermalization of the $\text{C}_2 (d^3 \Pi_g)$ state rotational and vibrational distribution functions define the cases when the C_2 Swan band emission spectrum can still be used to measure the gas temperature independently of the formation mechanism of the $\text{C}_2 (d^3 \Pi_g)$ state.

6.1. Comparison with the CN violet system

By adding a small amount of nitrogen, one can observe a strong decrease of the Swan band emission intensity while the CN violet system increase drastically. Vacher, Lino da Silva et al [87, 88] studied also the effect of adding N_2 to a CO$_2$ inductively coupled atmospheric pressure plasma and observed similar trends. Such behavior was also seen by other authors in microwave plasmas at low and atmospheric pressure [89, 90]. This tendency can be explained by competing mechanisms for the formation of C_2 and CN that go in favor of the formation of CN with increasing N_2 addition and for which it was found that C atoms are the main precursor [91]. CN (B-X) violet system is often used as a molecular pyrometer for determination of gas temperature in N_2 plasma sources with hydrocarbons [29, 92–94]. In order to generate CN violet system emission, 0.3 l min^{-1} of N_2 was added to the plasma corresponding to 3% admixture. This is a small quantity that, in the case of a pure CO$_2$ plasma, does not perturb the electron properties and neutral particles energy balance of the plasma.

In an argon atmospheric pressure microwave plasma with nitrogen addition and CO$_2$ advection from ambient air, Ridenti and Amorim discussed the weak presence of the CN violet system that is strongly overlapping with nitrogen first negative and second positive systems [95]. The band head of the first negative system is well separated from the one of the CN violet system while N_2 second positive system has distinctive features that do not overlap either with the CN violet system. These two systems can therefore, using high resolution spectroscopy, easily be identified. Their presence was not detected in the present CO$_2$ microwave plasma with 3% N_2 addition. They are however observed in the present reactor while operated at atmospheric pressure with pure N_2 flow [85]. In figure 13, an example of CN spectrum and its resulting fitting are shown. A value of $T_{\text{rot}} = T_{\text{vib}} = 6000 \pm 500 \text{ K}$ is obtained which are the same as for the Swan band system. Also the residue of the fit shows that no deviation from rotational or vibrational Boltzmann distributions can be observed experimentally. A comparison for several pressures between the measured rotational and vibrational temperatures obtained by fitting the two molecular bands systems is presented in figure 14. One can see that, within error bars, there are no significant differences for the two molecular systems.

![Figure 12. Fitting of an experimental $\Delta \nu = 0$ transition group of the C_2 Swan bands system with fixed vibrational temperatures in the spectral range 480–516 nm. On top are superposed spectra normalized to the band head onto the experimental spectrum. On the bottom, are the fitted rotational temperatures while fixing the vibrational temperature. The experimental conditions are the same as in figure 6.](image-url)
and that the mean values agree between each other very well. Note that in the case of CN, also the rotational and vibrational temperatures were fitted independently (see method discussed in section 5.1). This confirms that the gas inside the plasma region where the light comes from is very hot with a temperature of about 6000 K both for rotational and vibrational internal degrees of freedom. The rovibrational distributions for those two systems can be essentially described with a single temperature.

6.2. Collisional relaxation of vibrational states

C2 Swan bands emission during pulsed laser irradiation of soot or graphite is often used for determination of gas temperature in (sub-)microsecond and even nanosecond time scales (see for instance [96, 97]). The spectral resolution of such spectra is however usually low (because of the relative low intensity of such discharges) and a detailed evaluation of the thermalization of rotational and vibrational states is difficult. UV pulsed photolysis experiments by Faust et al [59] showed that the formation of the high pressure band is occurring only on long time scales (\(t \gg 1 \mu s\)) while for time up to 1 \(\mu s\) the Swan band emission presented a normal vibrational distribution structure. They concluded that two different processes contribute to the formation of the C2 Swan bands and that vibrational relaxation of the \(v = 6\) level is inefficient for populating the \(v = 0\) level of the \(d^3\Pi_g\) state.

Bondybey [98] analyzed the C2 Swan bands fluorescence following two photon excitation in rare gas solids. He observed an erratic progression of lifetimes for different vibrational levels and concluded that the fast vibrational relaxation of the \(d^3\Pi_g, v = 3, 4\) states may occur through the \(b^3\Sigma_u^+\) state, following a suggestion by Frosch [99]. Xuechu and Nanquan [100] studied the vibrational relaxation of the C2 \(d^3\Pi_g\) state by observing the chemiluminescence spectrum of the reaction Na + CCl4 in a thermal bath of argon where the C2 \(d^3\Pi_g, v = 6\) state is formed preferentially. From their pressure dependence study, they concluded that the thermal relaxation of the C2 \(d^3\Pi_g\) state by argon takes only a few collisions with a rate of \(2.2 \times 10^7 \text{ Torr}^{-1} \text{s}^{-1}\) while they deduce even higher quenching rate by the sodium atoms.

Several experiments have shown that vibrational thermalization of the C2 \(d^3\Pi_g\) state is relatively slow and potentially as long if not longer than the lifetime of the state itself except for the rate reported above by Xuechu and Nanquan [100]. It may therefore be surprising to see that the vibrational distribution function follows closely a Maxwell-Boltzmann distribution in the experiments reported in this paper. However, the present measurements are done at high temperatures (i.e. \(T > 1000\) K) and one may expect that the nascent population distribution follows already closely a thermal distribution, partly because of the large translational motion of the reactants. A temperature of 6000 K corresponds to a kinetic energy of 0.5 eV which is more than the energy separation between individual vibrational levels.

Rich and Bergman [101] performed vibrational excitation of CO at room temperature using a CO laser and observed formation of the \(C^3\Pi_g\) and \(d^3\Pi_g\) states of C2. They claimed that the observation of the \(C^3\Pi_g\) state (at the origin of the \(C^3\Pi_g\) \(\rightarrow 1^3\Pi_g\), Deslandres-D’Azambuja system) was the indication that CO (v) states can electronically excite the C2 molecule. Indeed, the \(C^3\Pi_g\) state can be formed only via the association of two \(C\) (1D) states and in their experiment only C (3P) ground state atoms were produced. However, an analysis of the potential energy curves of C2 shows that the \(C^3\Pi_g\) has an avoided crossing with another \(\Pi_g\) state and consequently dissociates into two ground
state C(\(^3\)P) atoms [48]. Grigorian and Cenian [102] recently performed a similar experiment and reported also the formation of the \(e^3\Pi_u\) state (\(e^3\Pi_u\rightarrow e^3\Pi_g\), Fox–Herzberg system) which has for dissociation limit the C (\(^3\)P) and C(\(^3\)D) states [41]. Moreover, Wallaart \textit{et al} [50, 103] reported during a CO vibrational excitation experiment the formation of the D\(^3\Sigma^+_u\) state (D\(^3\Sigma^+_u\rightarrow\)X\(^3\Sigma^+_g\), Mulliken system) in addition to the aforementioned ones. The D\(^3\Sigma^+_u\) state has for dissociation limit the C (\(^4\)S)+C(\(^3\)D) states [41]. Although the initial experiments of Rich and Bergman did not allow to support their hypothesis of direct electronic excitation of C\(_2\) electronic states by CO(v), subsequent measurements confirm their proposal. These observations go in favor to the hypotheses that vibrationally excited CO molecules can directly populate C\(_2\) electronically excited states and that multiple vibrational excitation quanta may occur simultaneously. We note that Wallaart \textit{et al} reported also the observation of radiative transitions from electronically excited C atoms which could also be excited by CO(v). The presence of C\(_2\) (D\(^3\Sigma^+_u\)) and C\(_2\) (\(e^3\Pi_u\)) states in the aforementioned studies could therefore also be explained by the recombination of C atoms which are electronically excited by CO(v) after being formed by the Boudouard mechanism (see reaction 1). The relatively low density of C\(^+\) atoms compared to CO(v) states however makes it difficult to assess how important that channel is in reality. Hack and Langel [104] analysed the recombination of C(\(^3\)D) atoms and observed the production of C\(_2\) (e\(^3\Pi_u\), \(\Pi^3\Pi_u\)) electronic states but no recombination rate coefficient was reported in the literature yet. The usual observation of C\(_2\) electronic states formation in C/CO mixtures without detection of any electronically excited states of C atoms (at the exception of the work of Wallaart \textit{et al}) tends to support that efficient energy exchange mechanisms between CO(v) and C\(_2\) exist. Such processes will favor rapid thermalization of the vibrational states of the C\(_2\) molecule. Similarly, one can expect that the CO\(_2\) molecule also interact with C\(_2\) molecules in similar fashion due to its rich vibrational structure. Based on the present discussion, it can be concluded that either the formation mechanism of the C\(_2\) (d\(^1\Pi_g\)) state has already a nascent (nearly)-thermized vibrational distribution (which seems unlikely based on its formation mechanisms discussed in section 3) or that, not only collisional quenching processes, but also reactive energy exchanges leads to its (faster) thermalization. This would explain the invariant observation of thermalized vibrational distributions of the C\(_2\) (d\(^1\Pi_g\)) state in CO\(_2\) microwave plasmas.

6.3. Collisional relaxation of rotational states and gas temperature

Direct measurements of thermalization rates are usually difficult to obtain and indirect estimations are usually done. Using the assumption that the C\(_2\) molecule would be formed rotationally hot and that the pressure dependence of the C\(_2\) Swan band temperature can be used as estimate of the rotational relaxation/ equilibration with the thermal bath of molecules, Bleekrode determined a rotational relaxation time of 3\(\mu\)s in an oxyacetylene flame at low pressure (2–120 Torr) [105]. Using the same hypotheses, Kini and Savadatti [46] estimated a rotational relaxation time for the Swan band of 30\(\mu\)s in a CO discharge in a pressure range of 2–24 Torr. The underlying assumptions were particularly strong as no elementary process for the formation of rotationally hot C\(_2\) molecules was identified. However, Brockhine \textit{et al} [106] recently performed picosecond laser induced fluorescence measurements on the \(\Delta\nu = 0\) transition group of the C\(_2\) (d\(^1\Pi_g\)-\(\alpha^1\Pi_g\)) Swan bands. They managed to evaluate rotational energy transfer (RET) and vibrational energy transfer (VET) by monitoring the collisional transfer of single optically pumped rovibrational state of the d\(^1\Pi_g\) state to adjacent states by fluorescence. The measurements were performed in an oxyacetylene flame with a gas temperature of 2200 K. Such measurements allow to monitor individual state to state RET and VET collisional transfers and are therefore very precise. They obtained state-to-state collisional redistribution rates for RET in the order of \(k_{\text{RET}} \approx 4 \times 10^4\) s\(^{-1}\). Due to the high electronic quenching rate of the C\(_2\) d\(^1\Pi_g\) states they could not quantify the VET rate but assessed that it was slower than \(k_{\text{RET}}\) in agreement with aforementioned studies.

The temperatures obtained by fitting the C\(_2\) Swan band and the CN (B\(^3\Sigma^+\) –X\(^3\Sigma^+\)) violet system have been compared and match very well as seen in figure 14. Contrary to the C\(_2\) (d\(^1\Pi_g\)) state, the CN (B\(^3\Sigma^+\)) state does not have, to the best of our knowledge, known mechanisms leading to non-equilibrium rovibrational emission spectra [107]. Rotational relaxation times of the CN (B\(^3\Sigma^+\)) state are also considerably shorter than its radiative lifetime [108, 109]. For the CN violet system, the rotational and vibrational states distributions have time to thermalize before being observed by optical emission spectroscopy in continuous plasmas. The cross check between the rotational temperatures of the C\(_2\) Swan band and the CN violet system gives additional confidence that their rotational temperature may be associated to the gas temperature. The reactive formation of molecules can only lead to an over-population of the high rotational levels of a molecule (because of energy exchange during the formation process) or to a thermal distribution. In the case of non-Boltzmann distribution of rotational levels, the temperature of the lower rotational levels is then usually taken as a measure of the gas (i.e. translational) temperature of the plasma [29]. In the present study (see figure 8(a)), two-temperature rotational distribution function are not found. Observing thermal distributions of rotational states of the C\(_2\) (d\(^1\Pi_g\)) state and knowing that its RET relaxation time is much shorter than its radiative lifetime gives confidence that \(T_{\text{rot}}\) is a local measure of the translational temperature of the plasma. This is additionally supported by the equivalence between the rotational and vibrational temperatures both for the C\(_2\) Swan bands and for the CN violet system. For high pressure CO\(_2\) plasmas (i.e. typically 100 mbar and above), it can therefore be proposed to use the C\(_2\) Swan bands rotational temperature as an evaluation tool for the local gas temperature of the plasma. We note however, that for a CO\(_2\) plasma with a much lower gas temperature, similar analysis should be performed as in section 5.1.
7. Parametric analysis of the CO2 microwave plasma torch

Having assessed that C2 Swan bands can be used for measuring the gas temperature in a CO2 plasma, we report in this section a parametric study of C2, Trot and Tvib as a function of plasma parameters. Although both Trot and Tvib can be associated to the gas temperature, they are reported here independently. The measurements are taken in the pressure regime above 120 mbar where the C2 Swan band emission is the dominant feature in the plasma emission spectrum. Concomitantly, the plasma is contracted with a diameter of about 3–8 mm which depends mainly of the applied power. The emission is spatially discriminated using a system of two pin-holes and a lens coupled to a fiber and collected over a area of about 1 mm². The latter corresponds to the spatial resolution attainable in the present setup. Each data point corresponds to the light collected along the line of sight (radial direction) and over a plasma slab of 1 mm in the axial direction. Interestingly, in the contracted regime of the plasma torch (i.e. above a pressure of about 120 mbar), axial and radial measurements of the C2 rotational temperature show no variation for all studied plasma conditions. After subtraction of the continuous baseline, only a spatial variation of the overall intensity of the C2 Swan band is observed within signal to noise sensitivity. In the following, all data are consequently reported for measurements in the center of the resonator; i.e 20 mm above the bottom of the waveguide while looking across the axis of the quartz tube.

In figure 15, the effect of the input microwave power on the rotational and vibration temperatures of the C2 Swan bands are presented. The measurements are done near atmospheric pressure (925 mbar) for a gas flow of 10 l min⁻¹. One can see that both the rotational and vibrational temperatures of C2 remain constant and equal within error bars. The increase in power has only the consequence of increasing the intensity of the radiation from the C2(dΠg) state. This increase of intensity is correlated with an increase in plasma radius. Also, by imaging it is observed that the plasma becomes elongated in the effluent region with increasing power.

In order to cool down a high pressure plasma, one possible way is by increasing the gas flow. In figure 16, the variation of the C2 rotational temperature versus CO2 gas flow at a pressure of about 850 mbar is shown for an input power of 900 W. One can see that the temperature remains constant around 6000 ± 500 K. Such trend was also observed by Sun et al [27] and Spencer and Gallimore [24] but for lower flow rates variation. Similar lack of influence of the gas flow was also observed in the case of an atmospheric pressure microwave plasma torch in nitrogen [110]. Increasing the gas flow by more than ten-fold appears in the present setup (and also for other high pressure microwave sources) to be an inefficient way of tuning the gas temperature despite reducing the specific energy input per molecule by the same factor. Such result is rather surprising but may be due to an inefficient mixing between the hot and cold gas regions.

A typical method for enhancing the non-equilibrium of a plasma discharge (e.g. reducing the gas temperature while the electron temperature remains in the order of 1 eV or more) is to reduce the gas pressure. In figure 17, the pressure is varied from near atmospheric pressure down to 180 mbar where the C2 Swan band is still intense enough for getting a good signal to noise ratio. One can see that Tvib and Trot are equal to each other within absolute uncertainties. One should note that in pure CO2 microwave plasmas, lower temperatures have been measured but only at (much) lower pressures than in the current study and where C2 Swan band is not observed [89, 111]. On the other hand, den Harder et al [17] and Groen et al [83] measured gas temperature in the order of 5000–6000 K in the same pressure range as for the present study.

8. Conclusions and outlook

In this paper, the potential sources of C2 molecules in CO2 plasmas and the known pathways leading to non-equilibrium
vibrational distributions of the \((d^3\Pi_g)\) state are reviewed. A detailed analysis of high resolution spectra is performed in order to detect potential deviations of the rovibrational distribution functions from thermal equilibrium in a high pressure microwave plasma discharge. State of the art molecular constants were used in order to fit the spectra. It is found that Boltzmann distributions can be used both for rotational and vibrational states for all conditions in the present study. Consequently, potential sources of the \(C_2\) \((d^3\Pi_g)\) state in a CO2 plasma do not lead to any observed deviation from a Boltzmann vibrational distribution function. The sensitivity of different parts of the spectra for determining \(T_{\text{rot}}\) and \(T_{\text{vib}}\) is evaluated. For a fast and accurate determination of the rotational temperature of the \(C_2\) \((d^3\Pi_g)\) state, it is shown that the \(\Delta \nu = 0\) transition group is the most accurate part of the spectrum to be taken into account.

Due to fast thermalization of the rotational states of the \(C_2(d^3\Pi_g)\) state with the background gas, the measured \(T_{\text{rot}}\) can be used for assessing the gas temperature of the plasma. Furthermore, the vibrational states of the \(C_2(d^3\Pi_g)\) level are found to be thermalized indicating the possible presence of fast thermalization processes.

A parametric study is performed on a pure CO2 microwave plasma torch and both the vibrational and rotational temperatures are found to be insensitive to external plasma parameters such as gas flow and input power at pressures of 180 mbar and above and a value of 6000 ± 500 K is found. The latter can be associated to the gas temperature of the plasma. These results are in agreement with the hypothesis that chemical equilibrium of the species can be described by the gas temperature at which thermal dissociation play an important role. The only observable differences in the extended parameters range of the present study are in the radially integrated density of the \(C_2\) \((d^3\Pi_g)\) state. We note that similar values as the one presented in this study were reported before in a certain number of studies but no assessment of non-equilibrium distributions was done. Also, the rotational temperature of \(C_2\) Swan bands was implicitly assumed previously to be the one of the gas temperature and it is now shown that such approximation in high pressure CO2 microwave discharges appears to hold.

The \(C_2\) \((d^3\Pi_g)\) state emits only in a narrow region in the center of the plasma and only the gas temperature in the core of the plasma can be measured. The region inside the plasma reactor that can be probed is only where \(C\) atoms are present and react to form \(C_2\) (or CN when some N2 is present) molecules. It was observed that \(C\) atoms are not observed by optical emission spectroscopy at pressures lower than the ones where the \(C_2(d^3\Pi_g)\) state is measured. To form carbon atoms, large power densities (i.e. high \(T_{\text{vib}}\) and/or \(T_{\text{gas}}\)) are required as CO is the only species that can act as a primary source of carbon atoms. Interestingly, at the observed temperature of 6000 K, CO can already partially thermally dissociate [112]. This implies that observation of \(C\) and \(C_2\) species is linked to regions with high gas temperatures where CO2 molecules are readily dissociated.

The measurements reported in this paper show the presence of a hot core of gas but no insight in the temperature gradient at the edge of the plasma could be obtained as no radiative emitting molecular species can be observed at the edges of this hot core. High gas temperatures \(T \geq 3500\) K allow already to dissociate fully the CO2 and partially the CO molecules through thermal processes [6, 18]. In situ diagnostics techniques like Raman scattering and CARS [113, 114] would bring additional understanding in the gas dynamics at the boundary between the hot plasma core and the colder edge.

Acknowledgments

The authors would like to acknowledge Professor Christophe Laux (Ecole Centrale, Paris) for giving access to his program Specair. Fruitful discussion and collaboration with our colleagues from Uni. Stuttgart (Irina Kistner, Dr Andreas Schulz, Dr Sandra Gaiser, Dr Matthias Walker), DIFFER (Dr Tiny Verreysen, Dr Floran Peeters, Dr Waldo Bongers) and KIT (Lucas Silberer, Dr Sergey Soldatov) are also gratefully acknowledged.
Appendix A. Molecular constants for the calculations of the C₂ Swan band system

Table A1. Molecular constants (in cm⁻¹) for the $d^3Π_g$ electronic state used in the calculations performed by Brooke et al [1]. The uncertainties are given in parentheses (i.e. one standard deviation to the last significant digits of the constants). For the vibrational level $ν = 1$ the additional constant $H = 2.14(30) \times 10^{-11}$ is used.

$ν$	Origin	A	$A₀$	B_v	$10^6 \cdot D_v$	$λ$	o	p	q	
0	19	378.46749(51)	-14.00139(63)	0.0005068(83)	1.7455663(43)	6.8205(16)	0.03301(47)	0.61076(52)	0.003973(43)	-0.0007752(43)
1	21 132.14977(25)	-13.87513(49)	0.0005740(83)	1.7254062(53)	7.0194(77)	0.02972(38)	0.61713(36)	0.004133(44)	-0.0008171(43)	
2	22 848.3877(21)	-13.8205(23)	0.000600(43)	1.704516(21)	7.3082(22)	0.0253(41)	0.6208(32)	0.00624(38)	-0.000835(14)	
3	24 524.2201(19)	-13.5361(28)	0.000775(17)	1.681437(16)	7.4382(24)	0.0470(26)	0.5827(26)	0.00579(17)	-0.0008568(85)	
4	26 155.0448(29)	-13.3892(50)	0.001451(14)	1.656859(26)	7.6844(43)	0.0219(38)	0.6313(32)	0.00954(29)	-0.000923(21)	
5	27 735.6720(43)	-13.0324(66)	0.000723(37)	1.630205(23)	8.573(32)	0.0601(28)	0.6161(23)	0.00685(32)	-0.000912(15)	
6	29 259.3548(36)	-12.820(10)	0.001203(56)	1.599876(31)	8.9984(44)	0.0529(71)	0.5773(71)	0.00874(47)	-0.000986(22)	
7	30 717.9011(46)	-12.3458(71)	0.000814(41)	1.566047(32)	10.044(66)	0.0960(34)	0.5532(31)	0.00936(35)	-0.001175(17)	
8	32 102.6552(22)	-12.1072(22)	0.000766(fixed)	1.52675(31)	9.600(97)	0.095(fixed)	0.546(22)	0.0055(21)	-0.00088(21)	
9	33 406.230(22)	-11.698(39)	0.000766(fixed)	1.485755(96)	11.85(10)	0.172(26)	0.498(28)	0.0097(14)	-0.0002062(44)	
10	34 626.7860(94)	-11.297(15)	0.000766(fixed)	1.441138(72)	12.837(73)	0.115(16)	0.399(12)	0.00745(90)	-0.0000977(30)	
Table A2. Molecular constants (in cm\(^{-1}\)) for the \(a^3\Pi_u\) electronic state used in the calculations performed by Brooke et al [1]. The uncertainties are given in parentheses (i.e. one standard deviation to the last significant digits of the constants). For the vibrational level \(\nu = 0\) the additional constants \(H = 6.73(16) \cdot 10^{-11}\), \(\delta_3 = -6.68(114) \times 10^{-6}\) and \(q_3 = -6.61(41) \times 10^{-6}\) are used.

\(\nu\)	\(\lambda\)	\(\delta_3\)	\(q_3\)	\(H\)	\(\delta_1\)	\(\delta_2\)	\(\delta_3\)		
0	0	-15.269 86(43)	0.000 2634(71)	1.624 0452(44)	6.4506(19)	-0.154 50(36)	0.675 25(35)	0.002 537(42)	-0.000 5281(44)
1	1618.022 44(53)	-15.251 97(61)	0.000 226 6(73)	1.607 4266(44)	6.4439(21)	-0.153 73(51)	0.670 17(51)	0.002 705(44)	-0.000 5772(42)
2	3212.727 93(96)	-15.2328(15)	0.000 1996(94)	1.590 7513(61)	6.4527(44)	-0.1526(12)	0.6649(14)	0.003 132(77)	-0.000 6457(48)
3	4784.0688(31)	-15.1972(39)	0.000 186(42)	1.574 088(24)	6.455(24)	-0.1333(61)	0.6815(51)	0.004 88(42)	-0.000 618(17)
4	6332.1364(51)	-15.2043(65)	0.000 3183(36)	1.557 117(31)	6.338(39)	-0.1551(72)	0.6674(67)	0.006 32(36)	-0.000 894(16)
5	7856.8175(32)	-15.2096(35)	0.000 25(5fixed)	1.540 139(24)	6.312(35)	-0.1492(36)	0.6546(37)	0.007 34(25)	-0.001 246(12)
6	9358.1565(40)	-15.1646(60)	0.000 3553(33)	1.523 439(26)	6.034(38)	-0.1551(46)	0.6886(38)	0.005 04(32)	-0.000 676(16)
7	10 836.1430(92)	-15.085(11)	0.000 25(5fixed)	1.508 69(25)	3.51(92)	-0.1641(90)	0.704(14)	-0.0244(23)	0.006 32(49)
8	12 290.7997(29)	-15.1702(46)	0.000 25(5fixed)	1.488 684(28)	5.329(52)	-0.1665(36)	0.6742(30)	0.014 49(29)	-0.002 053(23)
9	13 722.0897(43)	-15.0980(61)	0.000 419(31)	1.472 818(24)	6.066(35)	-0.1584(27)	0.6926(23)	0.003 03(33)	-0.000 881(16)
Table A3. Vibrational transition probabilities (in s\(^{-1}\)) calculated by Brooke et al [1] for the \(a^3\Pi_g - \alpha^3\Pi_u\) transition. The transition probabilities are calculated as the sum of all the possible transition from a \(J' = 1\), \(\Omega' = 0\) energy level.

\(v'' - v'\)	0	1	2	3	4	5	6	7	8	9	10	
\(a^3\Pi_u\)	0	7.626 \times 10^{-6}	2.814 \times 10^{-6}	2.809 \times 10^{-5}	4.333 \times 10^{-5}	2.033 \times 10^{-2}						
	1	2.135 \times 10^{-5}	3.427 \times 10^{-5}	4.072 \times 10^{-5}	6.429 \times 10^{-5}	8.720 \times 10^{-5}						
	2	3.832 \times 10^{-5}	2.746 \times 10^{-5}	1.270 \times 10^{-5}	4.422 \times 10^{-6}	9.615 \times 10^{-5}						
	3	5.590 \times 10^{-5}	8.273 \times 10^{-5}	2.568 \times 10^{-5}	3.236 \times 10^{-5}	4.301 \times 10^{-5}						
	4	7.224 \times 10^{-5}	1.710 \times 10^{-5}	1.169 \times 10^{-5}	2.066 \times 10^{-6}	2.505 \times 10^{-6}						
	5	8.592 \times 10^{-5}	2.886 \times 10^{-5}	3.215 \times 10^{-5}	1.352 \times 10^{-5}	1.510 \times 10^{-5}						
	6	9.574 \times 10^{-5}	4.280 \times 10^{-5}	6.793 \times 10^{-5}	4.745 \times 10^{-5}	1.381 \times 10^{-5}						
	7	1.006 \times 10^{-4}	5.775 \times 10^{-5}	1.218 \times 10^{-4}	1.218 \times 10^{-5}	6.009 \times 10^{-5}						
	8	9.931 \times 10^{-5}	7.206 \times 10^{-5}	1.945 \times 10^{-5}	2.582 \times 10^{-5}	1.830 \times 10^{-5}						
	9	9.005 \times 10^{-5}	8.353 \times 10^{-5}	2.828 \times 10^{-5}	4.785 \times 10^{-5}	4.495 \times 10^{-5}	2.421 \times 10^{-5}	6.721 \times 10^{-5}	9.993 \times 10^{-5}	3.120 \times 10^{-5}	8.080 \times 10^{-4}	2.824 \times 10^{-4}
Appendix B. Molecular constants for the calculations of the CN violet system

Table B1. Molecular constants (in cm$^{-1}$) for the $X^2\Sigma^+$ used in the calculations (in cm$^{-1}$). The uncertainties are given in parentheses (i.e. one standard deviation to the last significant digits of the constants).

ν	Origin	B_ν	$10^6\cdot D_\nu$	$10^{-3}\cdot \gamma$
0	0.0	1.391 089 596(96)	6.397 26(64)	7.255 14(52)
1	2042.421 43(24)	1.873 665 288(90)	6.405 76(60)	7.173 76(74)
2	4058.549 33(29)	1.856 186 883(85)	6.416 72(60)	7.0850(12)
3	6048.343 29(35)	1.838 652 21(11)	6.427 31(56)	6.9814(12)
4	8011.766 37(42)	1.821 059 43(12)	6.441 21(73)	6.8631(14)
5	9948.775 54(56)	1.803 404 09(27)	6.4530(38)	6.7198(14)
6	11 859.327 21(61)	1.785 684 72(29)	6.4651(44)	6.5417(15)
7	13 743.374 42(66)	1.767 898 24(29)	6.4812(46)	6.3136(14)
8	15 600.868 84(71)	1.750 040 20(28)	6.4835(64)	6.0121(15)
9	17 431.754 10(77)	1.732 101 49(27)	6.5334(85)	5.6133(22)

Table B2. Molecular constants (in cm$^{-1}$) for the $B^2\Sigma^+$ used in the calculations (in cm$^{-1}$). The uncertainties are given in parentheses (i.e. one standard deviation to the last significant digits of the constants).

ν	Origin	B_ν	$10^6\cdot D_\nu$	$10^{-2}\cdot \gamma$
0	25 797.868 25(43)	1.958 7413(13)	0.660 855(81)	1.7154(52)
1	27 921.466 50(55)	1.938 0444(45)	0.673 24(29)	1.8162(82)
2	30 004.906 32(77)	1.916 503(10)	0.7021(27)	1.840(13)
3	32 045.946 78(73)	1.894 180(15)	0.7105(60)	2.453(16)
4	34 041.970 36(68)	1.870 4809(66)	0.7448(15)	2.1169(97)
5	35 990.090 70(21)	1.847 108(24)	0.9132(54)	0.431(83)
6	37 887.424 18(74)	1.819 3429(54)	0.8092(11)	2.5237(87)
7	39 730.534 01(80)	1.790 7851(12)	1.1054(58)	0.6126(58)
8	41 516.642 96(84)	1.762 1417(59)	0.9040(13)	3.4942(98)
Table B3. The table shows the transition probabilities extracted from LIFBASE for the CN (\(B^2\Sigma^+\rightarrow X^2\Sigma^+)\) transition.

\(\nu'' \rightarrow \nu'\)	0	1	2	3	4	5	6	7	8
\(X^2\Sigma^+\)									
0	4.11 \times 10^{-2}	3.80 \times 10^{-3}	4.02 \times 10^{-5}	1.06 \times 10^{-6}	4.39 \times 10^{-8}	2.27 \times 10^{-9}	1.16 \times 10^{-11}	1.22 \times 10^{-11}	2.94 \times 10^{-15}
1	3.67 \times 10^{-3}	3.36 \times 10^{-2}	6.50 \times 10^{-3}	7.83 \times 10^{-5}	5.17 \times 10^{-6}	1.39 \times 10^{-7}	1.58 \times 10^{-8}	2.11 \times 10^{-12}	5.35 \times 10^{-11}
2	2.47 \times 10^{-4}	6.04 \times 10^{-3}	2.80 \times 10^{-2}	8.38 \times 10^{-3}	9.43 \times 10^{-5}	1.49 \times 10^{-5}	2.34 \times 10^{-7}	5.98 \times 10^{-8}	2.31 \times 10^{-10}
3	1.21 \times 10^{-5}	6.17 \times 10^{-4}	7.50 \times 10^{-3}	2.37 \times 10^{-2}	9.64 \times 10^{-3}	8.28 \times 10^{-5}	3.27 \times 10^{-5}	2.32 \times 10^{-7}	1.74 \times 10^{-7}
4	3.21 \times 10^{-7}	4.14 \times 10^{-5}	1.03 \times 10^{-3}	8.32 \times 10^{-3}	2.04 \times 10^{-2}	1.04 \times 10^{-2}	5.08 \times 10^{-5}	6.02 \times 10^{-5}	7.89 \times 10^{-8}
5	1.91 \times 10^{-10}	1.50 \times 10^{-6}	8.81 \times 10^{-5}	1.43 \times 10^{-3}	8.68 \times 10^{-3}	1.80 \times 10^{-2}	1.08 \times 10^{-2}	1.54 \times 10^{-5}	9.67 \times 10^{-5}
6	1.66 \times 10^{-9}	4.00 \times 10^{-9}	4.15 \times 10^{-6}	1.50 \times 10^{-4}	1.79 \times 10^{-3}	8.72 \times 10^{-3}	1.62 \times 10^{-2}	1.08 \times 10^{-2}	1.80 \times 10^{-7}
7	5.40 \times 10^{-10}	7.21 \times 10^{-9}	2.72 \times 10^{-8}	8.79 \times 10^{-6}	2.22 \times 10^{-4}	2.09 \times 10^{-3}	8.57 \times 10^{-3}	1.48 \times 10^{-2}	1.05 \times 10^{-2}
8	7.23 \times 10^{-11}	2.89 \times 10^{-9}	1.72 \times 10^{-8}	1.12 \times 10^{-7}	1.57 \times 10^{-5}	3.01 \times 10^{-4}	2.32 \times 10^{-3}	8.26 \times 10^{-3}	1.38 \times 10^{-2}
9	2.76 \times 10^{-12}	4.39 \times 10^{-10}	8.65 \times 10^{-9}	2.75 \times 10^{-8}	3.23 \times 10^{-7}	2.53 \times 10^{-5}	3.82 \times 10^{-4}	2.50 \times 10^{-3}	7.85 \times 10^{-3}
References

[1] Brooke J S A, Bernath P F, Schmidt T W and Bacsckay G B 2013 Line strengths and updated molecular constants for the C2 Swan system J. Quant. Spectrosc. Radiat. Transfer 124 11–20

[2] de Queiroz F A O, de Medeiros J L and Alves R M B 2014 CO2 utilization: a process systems engineering vision CO2 Sequestration and Valorization (Rijeka: InTech) (https://doi.org/10.5772/57560)

[3] Lebouvier A, Iwarese S A, d’Argenlieu P, Ramjugernath D and Fulcheri L 2013 Assessment of carbon dioxide dissociation as a new route for syngas production: a comparative review and potential of plasma-based technologies Energy Fuels 27 2712–22

[4] Snoeckx R and Bogaerts A 2017 Plasma technology—a novel solution for CO2 conversion? Chem. Soc. Rev. 46 5805–63

[5] van Rooij G J, Akse H N, Bongers W A and van de Sanden M C M 2017 Plasma for electrification of chemical industry: a case study on CO2 reduction Plasma Phys. Control. Fusion 60 014019

[6] Friedman A 2008 Plasma Chemistry (Cambridge: Cambridge University Press)

[7] Sobolev N N and Sokovikov V V 1967 CO2 LASERS Sov. Phys. Usp. 10 153

[8] Favia P and d’Agostino R 1998 Plasma treatments and plasma deposition of polymers for biomedical applications Papers Presented at the 5th Int. Conf. on Plasma Surface Engineering: Surf. Coat. Technol. 98 1102–6

[9] Carbone E and Douat C 2018 Carbon monoxide in plasma medicine and agriculture: just a foe or a potential friend? Plasma Med. 8 93–120

[10] Rusanov V D, Fridman A A and Sholim G V 1981 The physics of a chemically active plasma with non-equilibrium vibrational excitation of molecules Sov. Phys. Usp. 24 447

[11] Kozák T and Bogaerts A 2015 Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model Plasma Sources Sci. Technol. 24 015024

[12] van Rooij G J, van den Bekerom D C M, den Harder N, Minea T, Berden G, Bongers W A, Engeln R, Graswinkel M F, Zoethout E and van de Sanden M C M 2015 Taming microwave plasma to beat thermodynamics in CO2 dissociation Faraday Discuss. 183 233–48

[13] Capitelli M, Colonna G, D’Ammando G and Pietanza L D 2017 Self-consistent time dependent vibrational and free electron kinetics for CO2 dissociation and ionization in cold plasmas Plasma Sources Sci. Technol. 26 055009

[14] Treanor C E, Rich J W and Rehm R G 1968 Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions J. Chem. Phys. 48 1798–807

[15] Azizov R I, Volkas A K, Zhivotov V K, Krotov M F, Zin’kov’iev O A, Potapkin B V, Rusanov A A, Rusanov V D and Fridman A A 1983 The nonequilibrium plaschemical process of decomposition of CO2 in a supersonic SHF discharge 28 567

[16] Bongers W et al 2017 Plasma-driven dissociation of CO2 for fuel synthesis Plasma Process. Polym. 14 1600126

[17] den Harder N et al 2017 Homogeneous CO2 conversion by microwave plasma: wave propagation and diagnostics Plasma Process. Polym. 14 1600120

[18] van den Bekerom D, Linares J M P, Verreycken T, Van Veldhuizen E M, Nijdam S, Bongers W, Van de Sanden R and Van Rooij J G J 2019 The importance of thermal dissociation in CO2 microwave discharges investigated by power pulsing and rotational Raman scattering Plasma Sources Sci. Technol. 28 055015

[19] Gupta S B, Bihari B P, Biruduganti M S, Sekar R R and Zigan J 2011 On use of CO2+ chemiluminescence for combustion metrics in natural gas fired reciprocating engines Proc. Combust. Inst. 33 3131–9

[20] Samaniego J-M, Egoﬁopoulou F N and Bowman C T 1995 CO2+ chemiluminescence in premixed ﬂames Combust. Sci. Technol. 109 183–203

[21] Babou Y, Rivière P, Perrin M-Y and Soufiani A 2008 Spectroscopic study of microwave plasmas of CO2 and CO2–N2 mixtures at atmospheric pressure Plasma Sources Sci. Technol. 17 045010

[22] Hong Y C, Shin D H, Lee S J, Kim Y J, Lee B J and Uhm H S 2011 Generation of high-power torch plasma by a 915 MHz microwave system IEEE Trans. Plasma Sci. 39 1958–62

[23] Le Quang D, Babou Y and Andre F 2012 Investigations of a microwave plasma source operating with air, N2, CO2 and argon gases IOP Conf. Ser.: Mater. Sci. Eng. 29 012009

[24] Spencer L F and Gallimore A D 2013 CO2 dissociation in an atmospheric pressure plasma/catalyst system: a study of efﬁciency Plasma Sources Sci. Technol. 22 015019

[25] Uhm H S, Kwak H S and Hong Y C 2016 Carbon dioxide elimination and regeneration of resources in a microwave plasma torch Environ. Pollut. 211 191–3

[26] Mitsingas C M, Rajasergar R, Hammad S, Do H and Lee T 2016 High energy efﬁciency plasma conversion of CO2 at atmospheric pressure using a direct coupled microwave plasma system IEEE Trans. Plasma Sci. 44 651–6

[27] Sun H, Lee J, Do H, Im S-K and Bak M S 2017 Experimental and numerical studies on carbon dioxide decomposition in atmospheric electroless microwave plasmas J. Appl. Phys. 122 033503

[28] Chun S M, Hong Y C and Choi D H 2017 Reforming of methane to syngas in a microwave plasma torch at atmospheric pressure J. CO2 Utilization 19 221–9

[29] Bruggeman P J, Sadeghi N, Schram D C and Linss V 2014 Gas temperature determination from rotational lines in non-equilibrium plasmas: a review Plasma Sources Sci. Technol. 23 023001

[30] Pearse R W B and Gaydon A G 1976 Identiﬁcation of Molecular Spectra (London: Chapman and Hall)

[31] Voráč J, Synék P, Potošíková L, Hnilička J and Kradile V 2015 Batch processing of overlapping molecular spectra as a tool for spatio-temporal diagnostics of power modulated microwave plasma jet Plasma Sources Sci. Technol. 26 025010

[32] Voráč J, Synék P, Procházková V and Hoder T 2017 State-by-state emission spectra ﬁtting for non-equilibrium plasmas: OH spectra of surface barrier discharge at argon/water interface J. Phys. D: Appl. Phys. 50 294002

[33] Leins M, Gaiser S, Schulz A, Walker M, Schumacher U and Hirth T 2015 How to ignite an atmospheric pressure microwave plasma torch without any additional ignitors J. Vis. Exp. 98 e52816

[34] McGonkey J W, Malone C P, Johnson P V, Winstead C, McKoy V and Kanik I 2008 Electron impact dissociation of oxygen-containing molecules—a critical review Phys. Rep. 466 1–103

[35] Grofułowicz M, Alves L L and Querard V 2016 Electron-neutral scattering cross sections for CO2: a complete and consistent set and an assessment of dissociation J. Phys. D: Appl. Phys. 49 395207

[36] Nag P and Nandi D 2015 Dissociation dynamics in the dissociative electron attachment to carbon dioxide Phys. Rev. A 91 052705
[37] Itikawa Y 2002 Cross sections for electron collisions with carbon dioxide J. Phys. Chem. Ref. Data 31 749–67
[38] Pietanza L D, Colonna G, Laporta V, Celiberto R, D’Ammando G, Laricchiuta A and Capitelli M 2016 Influence of electron molecule resonant vibrational collision over the symmetric mode and direct excitation-dissociation cross sections of CO₂ on the electron energy distribution function and dissociation mechanisms in cold pure CO₂ plasmas J. Phys. Chem. A 120 2614–28
[39] Florescu-Mitchell A I and Mitchell J B A 2006 Dissociative recombination Phys. Rep. 430 277–374
[40] Carbone E, Vialletto L, Bardou S, Koelman P, Hecimovic A, Funtz U and van Dijk J 2017 Investigation of the dynamics of CO₂ plasmas using kinetic modelling 23rd Int. Symp. on Plasma Chemistry (ISPC 2017)
[41] Martin M 1992 C₂, spectroscopy and kinetics J. Photochem. Photobiol. A 66 263–89
[42] Pietanza L D, Colonna G and Capitelli M 2017 Non-equilibrium plasma kinetics of reacting CO: an improved state to state approach Plasma Sources Sci. Technol. 26 125007
[43] Kustova E V, Aliat A and Chikhiaouli A 2001 Vibration-electronic and chemical kinetics of non-equilibrium radiative diatomic gas flows Chem. Phys. Lett. 344 638–46
[44] Serdyuchenko A, Mintusov E, Frederickson K, Lemert W R, Rich J W and Adamovich I V 2009 Isotope effect in CO₂ plasmas J. Phys. B: At. Mol. Phys. 42 115502
[45] Little C E and Browne P G 1987 Origin of the high-pressure bands of C₂ High-Pressure Bands J. Chem. Phys. 893 893–900
[46] Faust W L, Goldberg L S, Craig B B and Weiss R G 1981 Time-resolved C₂ Swan emission from short-pulse UV fragmentation of CO: evidence for two C₂ formation mechanisms Chem. Phys. Lett. 83 265–9
[47] Meinel H and Messerle G 1968 Investigation of the fine structure of the C₂ high-pressure bands Astrophys. J. 154 381
[48] Barklem P S and Collet R 2016 Partition functions and equilibrium constants for diatomic molecules and atoms of astrophysical interest Astron. Astrophys. 588 A96
[49] McCarthy D A 1973 Statistical Thermodynamics (New York: Harper and Row)
[50] Herzberg G 1950 Molecular Spectra and Molecular Structure. Vol. 1: Spectra of Diatomic Molecules 2nd edn (New York: Van Nostrand Reinhold)
[51] Svanberg S 2012 Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications (Berlin: Springer-Verlag)
[52] Pellerin S, Musiol K, Motret O, Pokrzywka B and Chelle J 1996 Application of the (0, 0) Swan band spectrum for temperature measurements J. Phys. D: Appl. Phys. 29 2850
[53] Bernath P F 2015 Spectra of Atoms and Molecules (Oxford: Oxford University Press)
[54] Western C M 2017 PGOPHER: a program for simulating rotational, vibrational and electronic spectra J. Quant. Spectrosc. Radiat. Transfer 186 221–42
[55] Le Roy R J 2017 LEVEL: A computer program for solving the radial Schrödinger equation for bound and quasibound levels Satellite Remote Sensing and Spectroscopy: Joint ACE-Odin Meeting (October 2015): J. Quant. Spectrosc. Radiat. Transfer 186 167–78
[56] Lloyd G M and Ewart P 1999 High resolution spectroscopy and spectral simulation of C₂ using degenerate four-wave mixing J. Chem. Phys. 110 385–92
[57] Tanabashi A, Hiroa T, Amano T and Bernath P F 2007 The Swan system of C₂: a global analysis of fourier transform emission spectra Astrophys. J. Suppl. Ser. 169 472
[58] Ram R S, Davis S P, Wallace L, Engleman R, Appado D R T and Bernath P F 2006 Fourier transform emission spectroscopy of the BΣ⁺(+X 2Σ⁺) system of CN J. Mol. Spectrosc. 237 225–31
[59] Luque J 1999 LIFBASE, database and spectral simulation for diatomic molecules SRI International Report 99 SRI International
[60] Cerny D, Bacis R, Guelachvili G and Roux F 1978 Extensive analysis of the red system of the CN molecule with a high resolution Fourier Spectrometer J. Mol. Spectrosc. 73 154–67
[61] Ito H, Ozaki Y, Suzuki K, Kondow T and Kuchitsu K 1988 Analysis of the B 2Σ⁺−A 2Π₁, perturbations in the CN(B 2Σ⁺−X 2Σ⁺) main band system: I. Molecular constants for B 2Σ⁺ and A 2Π₁, J. Mol. Spectrosc. 127 283–303
[62] Ito H, Suzuki K, Kondow T and Kuchitsu K 1991 Electronic transition moment for the B 2Σ⁺−X 2Σ⁺ emission of CN. Analysis of dependence on the internuclear distance J. Chem. Phys. 94 5535–9
[63] Stacey D, Farouk B, Gutsol A F and Fridman A A 2006 Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air Plasma Sources Sci. Technol. 15 818
[64] Nassar H 2014 C₂ Swan spectrum used as a molecular pyrometer in transferred arc and the influence noise to signal ratio on the temperature values J. Phys.: Conf. Ser. 511 012066
[65] Shlens J 2014 A tutorial on principal component analysis arXiv:1404.1100
[66] Laux C 2012 SPECAIR (Accessed: March 2018)
[67] Caillault L, Andreasson J, Risberg J and Laux C 2006 Modeling the spectral radiation of a methane/nitrogen plasma: Test case 4 2nd Int. Workshop on Radiation of High
Temperature Gases in Atmospheric Entry (6-8 September 2006, Rome, Italy) Vol. 629

[81] Fanz U and Wunderlich D 2011 Fundamental data of diatomic molecules relevant for fusion Atomic and Plasma-Material Interaction Data for Fusion vol 16 (Vienna: IAEA)

[82] Kokkin D L, Backway G B and Schmidt T W 2007 Oscillator strengths and radiative lifetimes for C2 Swan, Balilik-Ramsay, Phillips, and d [1]Pi – c[2]Sigma+ systems J. Chem. Phys. 126 084302

[83] Groen P W C, Wolf A J, Righart T W H, van de Sanden M C M, Peeters F J J and Bongers W A 2019 Numerical model for the determination of the reduced electric field in a CO2 microwave plasma derived by the principle of impedance matching Plasma Sources Sci. Technol. 28 075016

[84] Gatti N, Ponduriti S, Peeters F J J, van den Bekerom D C M, Minea T, Tosi P, van de Sanden M C M and van Rooij G J 2018 Preferential vibrational excitation in microwave nitrogen plasma assessed by Raman scattering Plasma Sources Sci. Technol. 27 055006

[85] Carbone E, D’Isa F, Hecimovic A and Fanz U 2018 Optical emission spectroscopy characterization of a kHz pulsed atmospheric pressure N2 microwave plasma APS Meeting Abstracts

[86] Brockhinke A, Krüger J, Heusing M and Letzgus M 2012 Measurement and simulation of rotationally-resolved chemiluminescence spectra in flames Appl. Phys. B 107 539–49

[87] Vacher D, Lino da Silva M, André P, Faure G and Dudeck M 2008 Radiation from an equilibrium CO2-N2 plasma in the 250–850 nm spectral region: I. Experimental Plasma Sources Sci. Technol. 17 035012

[88] Lino da Silva M, Vacher D, Dudeck M, André P and Faure G 2008 Radiation from an equilibrium CO2-N2 plasma in the 250–850 nm spectral region: II. Spectral modelling Plasma Sources Sci. Technol. 17 035013

[89] Timmermans E A H, Jonkers J, Rodero A, Quintero M C, Sola A, Gamero A, Schram D C and van der Mullen J A M 1999 The behavior of molecules in microwave-induce plasma studied by optical emission spectroscopy II: Plasmas at reduced pressure Spectrochim. Acta B 54 1085–98

[90] Timmermans E A H, Jonkers J, Thomas I A J, Rodero A, Quintero M C, Sola A, Gamero A and van der Mullen J A M 1998 The behavior of molecules in microwave-induced plasmas studied by optical emission spectroscopy: I. Plasmas at atmospheric pressure Spectrochim. Acta B 53 1555–66

[91] Dong M, Chan G C-Y, Mao X, Gonzalez J J, Lu J and Russo R E 2014 Elucidation of C2 and CN formation mechanisms in laser-induced plasmas through correlation analysis of carbon isotopic ratio Spectrochim. Acta B 100 62–9

[92] Nassar H 2012 CN violet system spectrum used as a molecular pyrometer and the influence noise to signal ratio values J. Phys.: Conf. Ser. 370 012050

[93] Moon S Y, Kim D B, Gwak J I and Choe W 2009 Temperature measurement of an atmospheric pressure arc discharge plasma jet using the diatomic CN (B 3Sigma+-X 2Sigma+, violet system) molecular spectra J. Appl. Phys. 105 053307

[94] Ricard A, St-Onge L, Malhos V, Gicquel A, Hubert J and Moisan M 1995 Torche à plasma à excitation micro-onde: de deux configurations complémentaires J. Phys. III 5 1269–85

[95] kokkin D L, Backway G B and Schmidt T W 2007 Oscillator strengths and radiative lifetimes for C2 Swan, Balilik-Ramsay, Phillips, and d [1]Pi – c[2]Sigma+ systems J. Chem. Phys. 126 084302

[96] Saito K, Sakka T and Ogata Y H 2003 Rotational spectra and temperature evaluation of C2 molecules produced by pulsed laser irradiation to a graphite-water interface J. Appl. Phys. 94 5530–6

[97] Goulay F, Nemes L, Schrader P E and Michelsen H A 2010 Spontaneous emission from C2 (d [1]Pi) and C3 (A [1]Pi) during laser irradiation of soot particles Mol. Phys. 108 891–911

[98] Bondyev Y E 1976 Sequential two photon excitation of the C2 Swan transitions and C2 relaxation dynamics in rare gas solids J. Chem. Phys. 65 2296–304

[99] Frosch R P 1971 C2 and C2-Spectra Produced by the X Irradiation of Acetylene in Rare-Gas Matrices J. Chem. Phys. 54 2660–6

[100] Xuechu L and Nanquan L 1980 The vibrational population inversion and relaxation kinetics of the C2 Swan, d [1]Pi – c[2]Sigma+ state and total rotational energy transfer rate constants for CN violet system spectrum used as a calibrating point J. Chem. Phys. Lett. 75 110–4

[101] Rich J W and Bergman R C 1979 C2 and CN formation by optical pumping of CO/Ar and CN/N2/Ar mixtures at room temperature Chem. Phys. 44 53–64

[102] Grigorian G and Cenain A 2009 Vibrational to electronic energy transfer from CO to C2 molecules Chem. Phys. Lett. 469 247–9

[103] Wallaart H L, Piir A, Perrin M-Y and Martin J-P 1995 Transfer of vibrational energy to electronic excited states and vibrational enhanced carbon production in optically excited Ve–Vpumped CO Chem. Phys. 196 149–69

[104] Hack W and Langel W 1981 Formation of C2(e [1]Pi, CAT) in the photolysis of CO(X 3Sigma+,v = 193 nm with an ArF laser Chem. Phys. Lett. 81 387–90

[105] Bleekrode R 1966 Pressure dependence of rotational intensity distribution in C2 Swan emission from low-pressure oxyacetylene flames J. Chem. Phys. 45 3153–4

[106] Brockhinke A, Letzgus M, Rinne S and Kohse-Höinghaus K 2006 Energy transfer in the d[1]Pi–a[1]Pi, (0–0) SW band of C2: Implications for quantitative measurements J. Phys. Chem. A 110 3028–35

[107] Grigorian G and Cenain A 2011 Formation and excitation of CN molecules in He-CO2-N2-O2 discharge plasmaas Plasma Chem. Plasma Process. 31 337–52

[108] Guo J, Sadowski C M, Gao Q and Morgan F J 2000 State-to-state and total rotational energy transfer rate constants for CN(B 3Sigma+,v = 0,0)+He and C2N2 J. Chem. Phys. 113 7276–85

[109] Brunet S M K, Guo J, Carrington T, Filseth S V and Sadowski C M 2002 State-to-state and total rotational energy transfer rate constants for CN(B 3Sigma+,v = 0,0)+H2, CN(X 3Sigma+,v = 2,3)+H2, D2, and CN(X 3Sigma+,v = 3,3)+NO J. Chem. Phys. 116 3617–25

[110] Chen C-J and Li S-Z 2015 Spectroscopic measurement of plasma gas temperature of the atmospheric-pressure microwave induced nitrogen plasma torch Plasma Sources Sci. Technol. 24 035017

[111] Silva T, Britton N, Goddridg T and Snyder R 2014 Optical characterization of a microwave pulsed discharge used for dissociation of CO2 Plasma Sources Sci. Technol. 23 025009

[112] Fairbairn A R and Gaydon A G 1969 The dissociation of carbon monoxide Proc. R. Soc. A 312 207–27

[113] Lemptz W R and Adamovich I V 2014 Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of non-equilibrium plasmas and flows J. Phys. D: Appl. Phys. 47 433001

[114] van den Bekerom D C M, Palomares Linares J M, van Veldhuizen E M, Nijdam S, van de Sanden M C M and van Rooij G J 2018 How the alternating degeneracy in rotational Raman spectra of CO2 and C2H2 reveals the vibrational temperature Appl. Opt. 57 5694–702