Multi-Functional Loader Steering Hydraulic System model construction and simulation Based on Power Bond Graphs

Gong youpinga, Bian xiangjuanb, Chen guojina
a School of Mechanical Engineering Hangzhou Dianzi University, Hangzhou, China
b School of Computer Science, Zhejiang International Studies University, Hangzhou, China

Abstract

Hydraulic steering system has been extensively applied in small type of loader and other engineering vehicles due to its special superiority, how to forecast its dynamic behavior in design stage is most important problem. This paper firstly analyse a typical steering hydraulic system of multi-functional loader, and construct its powder bond graphs, then deduce its state equations. With these equations, some hydraulic component have been encapsulated in soft Mworks, at last, a simplified steering hydraulic dynamic simulation model was constructed by these components, and some characteristic curves of system can be easily obtained.

© 2011 Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
Selection and/or peer-review under responsibility of [CEIS 2011]

Keywords: Hydraulic steering system; Multi-functional Loader; Power bond graphs; Dynamatic simulation

Nomenclature	Description
I_m	Loading inertia
R_f	Loader resistance force
R_{cv1}, R_{cv2}, R_{cv3}, R_{cv4}	The four hydraulic resistance of control valve
C_1, C_2	The two capacitis of control valve
P_{cv1} \sim P_{cv17}	The pressure in power bond graph of control valve
Q_{cv1} \sim Q_{cv17}	The flux in power bond graph of control valve
P_{cl1} \sim P_{cl17}	The pressure in power bond graph of cylinder
Q_{cl1} \sim Q_{cl17}	The flux in power bond graph of cylinder
v_{cv1} \sim v_{cv24}	The velocity of power bond graph of control valve
v_{cl1} \sim v_{cl24}	The velocity of power bond graph of cylinder

Open access under CC BY-NC-ND license.
The force of power bond graph of cylinder

The force of power bond graph of control valve Structure

Loading momentum

The pressure of tank

The pressure of pump

0. Introduction

Multi-functional loader is a kind of engineering mechanism in digging cubic metre of earth and stone, which was widely used in architecture, road, mining area and other fields [1]. The steering of loader is its important device and effect loader’s production coefficient and economical efficiency, so rational designing operator system has remarkable meaning. Power bond graph is used to setup dynamic mathematic model at the view of energy flow because the limitation of traditional method, this tool is effective method in hydraulic dynamic analysis, it can express the power flow process, including the power flow direction, allocation, energy transformation etc under kinds conditions of system[2][3][4]. It is necessary process to make these power flow process as graph before constructing simulation of system, there are two advantages, in one side, power bond graph can visualized describe corresponding relationship between modular structure and system every parts physic structure and dynamic factors; in other side, power bond graph keep strictly concordance with system state equations, so system mathematic model can be induced by power bond graph. This paper includes following steps: 1) analysing a typical steering hydraulic system of multi-functional loader; 2) constructing its powder bond graphs; 3) deducing its state equations. With these equations, some hydraulic component have been encapsulated in soft Mworks, 4) a simplified steering hydraulic dynamic simulation model was constructed by these components, and some characteristic curves of system can be easily obtained.

1. Analysis of multi-functional loader’s hydraulic steering system

The research object in this paper is a type of hinged multi-functional loader, it consists two parts of carriages, and the two parts were joined by hinge pin shaft, which can keep or change carriage and back carriage walking as relative angle in different curved conduits. The steering system of this loader consists: steering device; controlling valve, and steering oil cylinder etc. The movement of execution element flows the track of controlling component. The working principle of multi-functional loader steering system is showing Fig 1.

\[F_{c1} \sim F_{c2} \]

\[F_{cv1} \sim F_{cv2} \]

\[P_{20} \]

\[S_e \]

\[S_f \]
with proportion by converter, there are some errors which germinated by position signal x_0 and execution position signal, these errors breek the mid-position statement of spool in body of valve (steering controlling valve), these errors also changed original valve port size, and supply the pressure oil to steering oil cylinder, and the cylinder rod now is moving, the movement is output to carriage wheel and make a turing of loader. The steering hydraulic system is simplified as fig 2.

![Fig 2 Simplified hydraulic steering system of multi-functional loader](image)

The oil cylinder is working by pressure which offered by pump, the flux of pump is controlled by steering controlling valve, and redundant oil flow back to tank through overflow valve. The loading of whole steering system is simplified driving inertia I_m, friction resistance damp R_f, when power bond graph is constructing, the main factor need to be took consideration is steering controlling valve’s effects to whole system. The spool displacement x_v is system input signal, it was converted from steering wheel, there are 4 hydraulic resistance orifices when there are relative displacement between spool and valve pocket. When the value of x_v is zero, the value of 4 hydraulic resistance is infinite, when the value of x_v is changing, the value of 4 hydraulic resistance is also changing with x_v.

2. Power bond graph and state equation derivation of steering hydraulic system

After analysing the principle of steering hydraulic system, the power bond graph is showing as Fig 3. The power bond graph don’t take consideration of resistance and volume of valve to cylinder, and make following assumption: the flux of pump is constant, and overflow valve isn’t working when deducing equation, the focal point is paying attention to the alteration of controlling valve C_1, C_2, because when the cylinder is moving, the alteration of C_1, C_2 will make important influent to whole system. There are 3 power storage components, so the state equations of system is 3 orders, the state variables are: two volumes of controlling valve C_1, C_2 and loading momentum P_{20}.
1) The relationship between dependent variables and state variables in power storage components can be expressed eq (1)- eq (3):

\[V_{cl20} = \frac{P_{20}}{I_m} \]

\[P_{cv16} = \frac{v_{cv16}}{C_1} \]

\[P_{cv23} = \frac{v_{cv23}}{C_2} \]

2) According to rules of power bond graph and logic relationships of variables, here give the deducing process of state variables first order derivative:

\[\dot{V}_{cv16} = Q_{cv16} = Q_{cv15} - Q_{cv17} \]

\[Q_{cv15} = Q_{cv4} - Q_{cv5} \]

\[Q_{cv4} = Q_{cv2} = \left(\frac{S_f}{P_{cv1}} \right) \]

\[Q_{cv5} = Q_{cv7} \]

\[Q_{cv17} = A_1 \cdot v_{cl18} = A_1 \cdot v_{cl20} \]

So after substitute \(Q_{cv15} \) and \(Q_{cv17} \) to equation(4), we can obtain the \(\dot{V}_{cv16} \) first order derivative like eq (5):

\[\dot{V}_{cv16} = \left(\frac{S_f}{P_{cv1}} \right) - Q_{cv7} - A_1 \cdot \frac{P_{20}}{I_m} \]

\[\dot{V}_{cv23} = Q_{cv23} = Q_{cv22} - Q_{cv24} \]

\[Q_{cv22} = v_{cl21} \cdot A_2 = v_{cl20} \cdot A_2 = \frac{P_{20}}{I_m} \cdot A_2 \]

\[Q_{cv24} = Q_{cv11} = Q_{cv9} \]

So after substitute \(Q_{cv22}, Q_{cv24} \) to equation(4), we can obtain the \(\dot{V}_{cv23} \) first order derivative like eq (7):
\[\dot{v}_{cv23} = \frac{P_{20}}{I_m} \cdot A_2 - Q_{cv9} \]
(7)

\[F_{20} = \dot{P}_{20} = F_{c1l8} - F_{c1l9} - F_{c2l1} \]
(8)

\[F_{c1l8} = \frac{P_{c1l7}}{A_1} = \frac{P_{c1l6}}{A_1} = \frac{v_{16}}{C_1 \cdot A_1} \]

\[F_{c1l9} = R_f \]

\[F_{c2l1} = \frac{P_{c2l2}}{A_2} = \frac{v_{c2l3}}{C_2 \cdot A_2} \]

So after substitute \(F_{c1l8}, F_{c1l9}, F_{c2l1} \) to equation(8),we can obtain the \(P_{20} \) first order derivative like eq (9):

\[F_{20} = \frac{v_{c1l6}}{C_1 A_1} - R_f - \frac{v_{c2l3}}{C_2 A_2} \]
(9)

\[Q_{cv7} + Q_{cv9} = Q_{cv8} = S_e \]

here suppose \(Q_{cv7} = Q_{cv9} \), so we can obtain the whole system state equation (1):

\[
\begin{align*}
V_{16} & = \left(\frac{S_f}{P_{cv1}} \right) - S_e - A_1 \cdot \frac{P_{20}}{I_m} \\
\dot{v}_{cv23} & = \frac{P_{20}}{I_m} \cdot A_2 - S_e \\
F_{20} & = \frac{v_{c1l6}}{C_1 A_1} - R_f - \frac{v_{c2l3}}{C_2 A_2}
\end{align*}
\]

(10)

3. Hydraulic component packaging and simulation analysis

To construct simulation model easily, based on the modular analysis of power bond graph, some steering hydraulic components are packaged, and constructs a hydraulic library, Then builds completed steering system model. All works were finished by Mworks soft which developed by Tongyuan company. Fig 4 is showing the controlling valve packaged model, Fig 5 is showing the oil cylinder packaged model, Fig 6 is showing the overflow valve packaged model, and a completed simulation of steering hydraulic system model is showing with Fig 7.

![a) The controlling valve power bond graph](image1)

![b) The packaged controlling valve model](image2)

Fig 4 controlling valve packaged model
After finishing steering hydraulic system model, there are virtual simulation test in steering working process. The simulation initial condition is listing in table 1, and some simulaiton results have been obtained. The initial condition is: the flux of pump, 1.0×10^{-3} m3/s, the leakage coefficient, 5.0×10^{-12} m3/s, the overflow valve, closed if dp smaller: 190 bar, open if dp higher: 205 bar, conductance of leakage of closed valve, 1.111×10^{-12} m3(s.Pa). The conductance of wide open overflow valve, 1.666×10^{-9} m3(s.Pa). Steering controlling valve’s nominal flow rate, 8.333×10^{-4} m3/s, pressure drop at q_{nom}: 15 bar, diameter of equivalent orifice to model leakage of closed valve is 0.05 m, natural frequency of spool is 500 rad/s, damping coefficient of spool is 0.7, overlap relative to max displacement is 0.1, half of hysteresis width is 0.05, max spool velocity 100/s. Then, we can obtain following simulation curves like fig 9 - fig 14. Fig 8 a is showing controlling signal- square wave curves, and Fig 9 is showing exit pressure curve of pump, Fig 10 is the flux of pump, Fig 11 is the displacement of steering oil cylinder, Fig 12 is the velocity of steering spool, Fig 13 is the force of steering spool A part.
4. Conclusion

After analysing the steering hydraulic system, according to actual parameters of a multi-functional loader, the paper successfully constructs an integrated simulation model, and simulates its typical working state. The results agree with actual system circuit pressure and flux characteristics, the model can gain any points pressure and flux conditions. At the same time, through modifying model parameters and system components, can easily know the influence of special elements.

Acknowledgements

The paper was supported by the National Natural Science Foundation of China “multi-fields uniform simulation model construction and optimism oriented complexed production” (60873106), Zhejiang Province Important industry project “Commodity circulation equipment multi-fields optimism designing method and platform development” (2009C11162), The paper was also supported by Key Discipline of The Ocean Mechatronic Equipments Technology.

References

[1] Wang shiyi, Fang yong, man zhongwei. Present situation of hydraulic energy-saving technology of construction machinery and its development trend. Engineering Machinery.41(9).2010:51-56
[2] CAI Tinwen, WANG Xing, XU Xin. Research on Power Bond Graph Model of Hydraulic Steering System. Journal of Jiangsu University of Science and Technology. 21(1), 2007:66–69.
[3] Jin baode. Shift hydraulic system modeling and simulation base on power bond graph. 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, CMCE 2010, v 5, p 111-114, 2010
[4] Wang, Lin-Na. Li, Qiang; Liang, Xiao-Juan, Modeling and dynamic simulation of electric power steering system of automobile using bond graph technique. 3rd International Symposium on Intelligent Information Technology and Security Informatics, IITSI 2010, p 744-747, 2010