LIFTS OF C_∞ AND L_∞-MORPHISMS TO G_∞-MORPHISMS

GRÉGORY GINOT(a), GILLES HALBOUT(b)

(a) Laboratoire Analyse Géométrie et Applications, Université Paris 13 et Ecole Normale Supérieure de Cachan, France
(b) Institut de Recherche Mathématique Avancée, Université Louis Pasteur et CNRS, Strasbourg, France

Abstract. Let g_2 be the Hochschild complex of cochains on $C^\infty(\mathbb{R}^n)$ and g_1 be the space of multivector fields on \mathbb{R}^n. In this paper we prove that given any G_∞-structure (i.e. Gerstenhaber algebra up to homotopy structure) on g_2, and any C_∞-morphism φ (i.e. morphism of commutative, associative algebra up to homotopy) between g_1 and g_2, there exists a G_∞-morphism Φ between g_1 and g_2 that restricts to φ. We also show that any L_∞-morphism (i.e. morphism of Lie algebra up to homotopy), in particular the one constructed by Kontsevich, can be deformed into a G_∞-morphism, using Tamarkin’s method for any G_∞-structure on g_2. We also show that any two of such G_∞-morphisms are homotopic.

0-Introduction

Let M be a differential manifold and $g_2 = (C^\bullet(A,A), b)$ be the Hochschild cochain complex on $A = C^\infty(M)$. The classical Hochschild-Kostant-Rosenberg theorem states that the cohomology of g_2 is the graded Lie algebra $g_1 = \Gamma(M, \wedge \cdot TM)$ of multivector fields on M. There is also a graded Lie algebra structure on g_2 given by the Gerstenhaber bracket. In particular g_1 and g_2 are also Lie algebras up to homotopy (L_∞-algebra for short). In the case $M = \mathbb{R}^n$, using different methods, Kontsevich ([Ko1] and [Ko2]) and Tamarkin ([Ta]) have proved the existence of Lie homomorphisms “up to homotopy” (L_∞-morphisms) from g_1 to g_2. Kontsevich’s proof uses graph complex and is related to multizeta functions whereas Tamarkin’s construction uses the existence of Drinfeld’s associators. In fact Tamarkin’s L_∞-morphism comes from the restriction of a Gerstenhaber algebra up to homotopy homomorphism (G_∞-morphism) from g_1 to g_2. The G_∞-algebra structure on g_1 is induced by its classical Gerstenhaber algebra structure and a far less trivial G_∞-structure on g_2 was proved to exist by Tamarkin [Ta] and relies on a Drinfeld’s associator. Tamarkin’s G_∞-morphism also restricts into a commutative, associative up to homotopy morphism (C_∞-morphism for short). The C_∞-structure on g_2 (given by

\textbf{Keywords} : Deformation quantization, star-product, homotopy formulas, homological methods.

\textbf{AMS Classification} : Primary 16E40, 53D55, Secondary 18D50, 16S80.
restriction of the G_∞-one) highly depends on Drinfeld’s associator, and any two choices of a Drinfeld associator yields a priori different C_∞-structures. When M is a Poisson manifold, Kontsevich and Tamarkin homomorphisms imply the existence of a star-product (see [BFFLS1] and [BFFLS2] for a definition). A connection between the two approaches has been given in [KS] but the morphisms given by Kontsevich and Tamarkin are not the same. The aim of this paper is to show that, given any G_∞-structure on g_1 and any C_∞-morphism φ between g_1 and g_2, there exists a G_∞-morphism Φ between g_1 and g_2 that restricts to φ. We also show that any L_∞-morphism can be deformed into a G_∞-one.

In the first section, we fix notation and recall the definitions of L_∞ and G_∞-structures. In the second section we state and prove the main theorem. In the last section we show that any two G_∞-morphisms given by Tamarkin’s method are homotopic.

Remark: In the sequel, unless otherwise is stated, the manifold M is supposed to be \mathbb{R}^n for some $n \geq 1$. Most results could be generalized to other manifolds using techniques of Kontsevich [Ko1] (also see [TS], [CFT]).

1-C_∞, L_∞ and G_∞-structures

For any graded vector space g, we choose the following degree on $\wedge^\bullet g$: if X_1, \ldots, X_k are homogeneous elements of respective degree $|X_1|, \ldots, |X_k|$, then

$$|X_1 \wedge \cdots \wedge X_k| = |X_1| + \cdots + |X_k| - k.$$

In particular the component $g = \wedge^1 g \subset \wedge^\bullet g$ is the same as the space g with degree shifted by one. The space $\wedge^\bullet g$ with the deconcatenation cobracket is the cofree cocommutative coalgebra on g with degree shifted by one (see [LS], Section 2). Any degree one map $d^k : \wedge^k g \to g$ ($k \geq 1$) extends into a derivation $d^k : \wedge^\bullet g \to \wedge^\bullet g$ of the coalgebra $\wedge^\bullet g$ by cofreeness property.

Definition 1.1. A vector space g is endowed with a L_∞-algebra (Lie algebras “up to homotopy”) structure if there are degree one linear maps m^1, \ldots, m^k given by Kontsevich and Tamarkin that restricts to C_∞-morphisms given by Kontsevich [Ko1] (also see [KS], Section 2). Any degree one map $d^1 : \wedge^1 g \to g$ extends into a derivation $d^1 : \wedge^\bullet g \to \wedge^\bullet g$ of the coalgebra $\wedge^\bullet g$ by cofreeness property.

For more details on L_∞-structures, see [LS]. It follows from the definition that a L_∞-algebra is a differential coalgebra structure on $\wedge^\bullet g$ and that the map $m^1 : g \to g$ is a differential. If $m^1, \ldots, m^k : \wedge^k g \to g$ are 0 for $k \geq 3$, we get the usual definition of a $(\wedge$-algebra. If $m^1, \ldots, m^k : \wedge^k g \to g$ are 0 for $k \geq 3$, we get the usual definition of a $(\wedge$-algebra.

For any graded vector space g, we denote $g^{\otimes n}$ the quotient of $g^{\otimes n}$ by the image of all shuffles of length n (see [GK] or [GH] for details). The graded vector space $\oplus_{n \geq 0} g^{\otimes n}$ is a quotient coalgebra of the tensor coalgebra $\oplus_{n \geq 0} g^{\otimes n}$. It is well known that this coalgebra is the cofree Lie coalgebra on the vector space g (with degree shifted by minus one).

Definition 1.2. A C_∞-algebra (commutative and associative “up to homotopy” algebra) structure on a vector space g is given by a collection of degree one linear maps $m^k : g^{\otimes k} \to g$ such that if we extend them to maps $\oplus g^{\otimes k} \to \oplus g^{\otimes k}$, then $d \circ d = 0$ where d is the derivation $d = m^1 + m^2 + m^3 + \cdots$.

In particular a C_∞-algebra is an A_∞-algebra.
For any space g, we denote $\wedge^\bullet g^{\otimes \bullet}$ the graded space

$$\wedge^\bullet g^{\otimes \bullet} = \bigoplus_{m \geq 1} g^{\otimes p_1} \wedge \cdots \wedge g^{\otimes p_n}.$$

We use the following grading on $\wedge^\bullet g^{\otimes \bullet}$: for $x_1^1, \ldots, x_n^p \in g$, we define

$$|x_1^1 \otimes \cdots \otimes x_n^p \wedge \cdots \wedge x_1^1 \otimes \cdots \otimes x_n^p| = \sum_{i_1}^p |x_1^{i_1}| + \cdots + \sum_{i_n}^p |x_n^{i_n}| - n.$$

Notice that the induced grading on $\wedge^\bullet g \subset \wedge^\bullet g^{\otimes \bullet}$ is the same than the one introduced above. The cobracket on $\bigoplus g^{\otimes \bullet}$ and the coproduct on $\wedge^\bullet g$ extend to a cobracket and a coproduct on $\wedge^\bullet g^{\otimes \bullet}$ which yield a Gerstenhaber coalgebra structure on $\wedge^\bullet g^{\otimes \bullet}$. It is well known that this coalgebra structure is cofree (see [Gi], Section 3 for example).

Definition 1.3. A G_∞-algebra (Gerstenhaber algebra “up to homotopy”) structure on a graded vector space g is given by a collection of degree one maps

$$m^{p_1,\ldots,p_n} : g^{\otimes p_1} \wedge \cdots \wedge g^{\otimes p_n} \to g$$

indexed by $p_1,\ldots,p_n \geq 1$ such that their canonical extension: $\wedge^\bullet g^{\otimes \bullet} \to \wedge^\bullet g^{\otimes \bullet}$ satisfies $d \circ d = 0$ where

$$d = \sum_{m \geq 1, \ p_1+\cdots+p_n=m} m^{p_1,\ldots,p_n}.$$

Again, as the coalgebra structure of $\wedge^\bullet g \subset \wedge^\bullet g^{\otimes \bullet}$ is cofree, the map d makes $\wedge^\bullet g^{\otimes \bullet}$ into a differential coalgebra. If the maps m^{p_1,\ldots,p_n} are 0 for $(p_1,p_2,\ldots) \neq (1,0,\ldots), (1,1,0,\ldots)$ or $(2,0,\ldots)$, we get the usual definition of (differential if $m^1 \neq 0$) Gerstenhaber algebra.

The space of multivector fields g_1 is endowed with a graded Lie bracket $[\cdot,\cdot]_S$ called the Schouten bracket (see [Kos]). This Lie algebra can be extended into a Gerstenhaber algebra, with commutative structure given by the exterior product: $(\alpha, \beta) \mapsto \alpha \wedge \beta$.

Setting $d_1 = m_1^{1,1} + m_1^2$, where $m_1^{1,1} : \wedge^2 g_1 \to g_1$, and $m_2^2 : g_1^{\otimes 2} \to g_1$ are the extension of the Schouten bracket and the exterior product, we find that (g_1, d_1) is a G_∞-algebra.

In the same way, one can define a differential Lie algebra structure on the vector space $g_2 = C(A,A) = \bigoplus_{k \geq 0} C^k(A,A)$, the space of Hochschild cochains (generated by differential k-linear maps from A^k to A), where $A = C_\infty(M)$ is the algebra of smooth differential functions over M. Its bracket $[-,-]_G$, called the Gerstenhaber bracket, is defined for $D, E \in g_2$, by

$$[D,E]_G = \{D|E\} - (-1)^{|E||D|}\{E|D\},$$

where

$$\{D|E\}(x_1, \ldots, x_{d+e-1}) = \sum_{i \geq 0} (-1)^{|E|-i} D(x_1, \ldots, x_i, E(x_{i+1}, \ldots, x_{i+e}), \ldots).$$

The space g_2 has a grading defined by $|D| = k \Leftrightarrow D \in C^{k+1}(A,A)$ and its differential is $b = [m, -]_G$, where $m \in C^2(A,A)$ is the commutative multiplication on A.

LIFT OF C_∞ AND L_∞ MORPHISMS TO G_∞ MORPHISMS
Tamarkin (see [Ta] or also [GH]) stated the existence of a G_∞-structure on \mathfrak{g}_2 (depending on a choice of a Drinfeld associator) given by a differential $d_2 = m_2^{1,1} + m_2^{2} + \cdots + m_2^{p_1,\ldots,p_n} + \cdots$, on $\wedge^2 \mathfrak{g} \otimes \mathfrak{g}$ satisfying $d_2 \circ d_2 = 0$. Although this structure is non-explicit, it satisfies the following three properties:

\begin{enumerate}[(a)]
 \item m_2^{1} is the extension of the differential b
 \item $m_2^{1,1}$ is the extension of the Gerstenhaber bracket $[-,-]_G$
 and $m_2^{1,\ldots,1} = 0$
 \item m_2^2 induces the exterior product in cohomology and the collection of the $(m^k)_{k \geq 1}$ defines a C_∞-structure on \mathfrak{g}_2.
\end{enumerate}

\begin{definition}
A L_∞-morphism between two L_∞-algebras $(\mathfrak{g}_1, d_1 = m_1^1 + \ldots)$ and $(\mathfrak{g}_2, d_2 = m_2^1 + \ldots)$ is a morphism of differential coalgebras

$$\varphi : (\wedge^\bullet \mathfrak{g}_1, d_1) \to (\wedge^\bullet \mathfrak{g}_2, d_2).$$

\end{definition}

Such a map φ is uniquely determined by a collection of maps $\varphi^n : \wedge^n \mathfrak{g}_1 \to \mathfrak{g}_2$ (again by cofreeness properties). In the case \mathfrak{g}_1 and \mathfrak{g}_2 are respectively the graded Lie algebra $(\Gamma(M, \wedge TM), [-,-]_S)$ and the differential graded Lie algebra $(C(A,A), [-,-]_G)$, the formality theorems of Kontsevich and Tamarkin state the existence of a L_∞-morphism between \mathfrak{g}_1 and \mathfrak{g}_2 such that φ^1 is the Hochschild-Kostant-Rosenberg quasi-isomorphism.

\begin{definition}
A morphism of C_∞-algebras between two C_∞-algebras (\mathfrak{g}_1, d_1) and (\mathfrak{g}_2, d_2) is a map $\phi : (\oplus \mathfrak{g}_1^{\otimes k}, d_1) \to (\oplus \mathfrak{g}_2^{\otimes k}, d_2)$ of codifferential coalgebras.

A C_∞-morphism is in particular a morphism of A_∞-algebras and is uniquely determined by maps $\partial^k : \mathfrak{g}^{\otimes k} \to \mathfrak{g}$.

\end{definition}

\begin{definition}
A morphism of G_∞-algebras between two G_∞-algebras (\mathfrak{g}_1, d_1) and (\mathfrak{g}_2, d_2) is a map $\phi : (\wedge \mathfrak{g}_1^{\otimes k}, d_1) \to (\wedge \mathfrak{g}_2^{\otimes k}, d_2)$ of codifferential coalgebras.

There are coalgebras inclusions $\wedge \mathfrak{g} \to \wedge \mathfrak{g}^{\otimes \bullet}, \oplus \mathfrak{g}^{\otimes \bullet} \to \wedge \mathfrak{g}^{\otimes \bullet}$ and it is easy to check that any G_∞-morphism between two G_∞-algebras $(\mathfrak{g}, \sum m^{p_1,\ldots,p_n}), (\mathfrak{g}', \sum m'^{p_1,\ldots,p_n})$ restricts to a L_∞-morphism $(\wedge \mathfrak{g}, \sum m^{1,\ldots,1}) \to (\wedge \mathfrak{g}', \sum m'^{1,\ldots,1})$ and a C_∞-morphism $(\oplus \mathfrak{g}^{\otimes \bullet}, \sum m^k) \to (\oplus \mathfrak{g}^{\otimes \bullet}, \sum m'^k)$. In the case \mathfrak{g}_1 and \mathfrak{g}_2 are as above, Tamarkin’s theorem states that there exists a G_∞-morphism between the two G_∞ algebras \mathfrak{g}_1 and \mathfrak{g}_2 (with the G_∞ structure he built) that restricts to a C_∞ and a L_∞-morphism.

\section{Main theorem}

We keep the notations of the previous section, in particular \mathfrak{g}_2 is the Hochschild complex of cochains on $C^\infty(M)$ and \mathfrak{g}_1 its cohomology. Here is our main theorem.
Theorem 2.1. Given any G_∞-structure d_2 on \mathfrak{g}_2 satisfying the three properties of (1.1), and any C_∞-morphism φ between \mathfrak{g}_1 and \mathfrak{g}_2 such that φ^1 is the Hochschild-Kostant-Rosenberg map, there exists a G_∞-morphism $\Phi : (\mathfrak{g}_1, d_1) \to (\mathfrak{g}_2, d_2)$ that restricts to φ.

Also, given any L_∞-morphism γ between \mathfrak{g}_1 and \mathfrak{g}_2 such that γ^1 is the Hochschild-Kostant-Rosenberg map, there exists a G_∞-structure (\mathfrak{g}_1, d'_1) on \mathfrak{g}_1 and G_∞-morphism $\Gamma : (\mathfrak{g}_1, d'_1) \to (\mathfrak{g}_2, d_2)$ that restricts to γ. Moreover there exists a G_∞-morphism $\Gamma' : (\mathfrak{g}_1, d'_1) \to (\mathfrak{g}_1, d_1)$.

In particular, Theorem 2.1 applies to the formality map of Kontsevich and also to any C_∞-map derived (see [Ta], [GH]) from any B_∞-structure on \mathfrak{g}_2 lifting the Gerstenhaber structure of \mathfrak{g}_1.

Let us first recall the proof of Tamarkin’s formality theorem (see [GH] for more details):

1. First one proves there exists a G_∞-structure on \mathfrak{g}_2, with differential d_2, as in (1.1).
2. Then, one constructs a G_∞-structure on \mathfrak{g}_1 given by a differential d'_1 together with a G_∞-morphism Φ between (\mathfrak{g}_1, d'_1) and (\mathfrak{g}_2, d_2).
3. Finally, one constructs a G_∞-morphism Φ' between (\mathfrak{g}_1, d_1) and (\mathfrak{g}_1, d'_1).

The composition $\Phi \circ \Phi'$ is then a G_∞-morphism between (\mathfrak{g}_1, d_1) and (\mathfrak{g}_2, d_2), thus restricts to a L_∞-morphism between the differential graded Lie algebras \mathfrak{g}_1 and \mathfrak{g}_2.

We suppose now that, in the first step, we take any G_∞-structure on \mathfrak{g}_2 given by a differential d_2 and we suppose we are given a C_∞-morphism φ and a L_∞-morphism γ between \mathfrak{g}_1 and \mathfrak{g}_2 satisfying $\gamma^1 = \varphi^1 = \varphi_{\text{HKR}}$ the Hochschild-Kostant-Rosenberg quasi-isomorphism.

Proof of Theorem 2.1:

The Theorem will follow if we prove that steps 2 and 3 of Tamarkin’s construction are still true with the extra conditions that the restriction of the G_∞-morphism Φ (resp. Φ') on the C_∞-structures is the C_∞-morphism $\varphi : \mathfrak{g}_1 \to \mathfrak{g}_2$ (resp. id).

Let us recall (see [GH]) that the constructions of Φ and d'_1 can be made by induction. For $i = 1, 2$ and $n \geq 0$, let us set

$$V_i^{[n]} = \bigoplus_{p_1 + \cdots + p_k = n} \mathfrak{g}_i^{\otimes p_1} \wedge \cdots \wedge \mathfrak{g}_i^{\otimes p_k}$$

and $V_i^{[\leq n]} = \sum_{k \leq n} V_i^{[k]}$. Let $d_2^{[n]}$ and $d_2^{[\leq n]}$ be the sums

$$d_2^{[n]} = \sum_{p_1 + \cdots + p_k = n} d_2^{p_1, \ldots, p_k} \quad \text{and} \quad d_2^{[\leq n]} = \sum_{p \leq n} d_2^{[p]}.$$

Clearly, $d_2 = \sum_{n \geq 1} d_2^{[n]}$. In the same way, we denote $d'_1 = \sum_{n \geq 1} d'_1^{[n]}$ with

$$d'_1^{[n]} = \sum_{p_1 + \cdots + p_k = n} d'_1^{p_1, \ldots, p_k} \quad \text{and} \quad d'_1^{[\leq n]} = \sum_{1 \leq k \leq n} d'_1^{[k]}.$$

We know from Section 1 that a morphism $\Phi : (\wedge \mathfrak{g}_1^{\otimes p_1}, d'_1) \to (\wedge \mathfrak{g}_2^{\otimes p_1}, d_2)$ is uniquely determined by its components $\Phi^{p_1, \ldots, p_k} : \mathfrak{g}_1^{\otimes p_1} \wedge \cdots \wedge \mathfrak{g}_1^{\otimes p_k} \to \mathfrak{g}_2$. Again, we have $\Phi = \sum_{n \geq 1} \Phi^{[n]}$ with

$$\Phi^{[n]} = \sum_{p_1 + \cdots + p_k = n} \Phi^{p_1, \ldots, p_k} \quad \text{and} \quad \Phi^{[\leq n]} = \sum_{1 \leq k \leq n} \Phi^{[k]}.$$
We want to construct the maps $d'_{1}^{[n]}$ and $\Phi^{[n]}$ by induction with the initial condition
\[
d'_{1}^{[1]} = 0 \quad \text{and} \quad \Phi^{[1]} = \varphi_{\text{HKR}},
\]
where $\varphi_{\text{HKR}} : (g_1, 0) \to (g_2, b)$ is the Hochschild-Kostant-Rosenberg quasi-isomorphism (see [HKR]) defined, for $\alpha \in g_1$, $f_1, \cdots, f_n \in A$, by
\[
\varphi_{\text{HKR}} : \alpha \mapsto ((f_1, \ldots, f_n) \mapsto (\alpha, df_1 \land \cdots \land df_n)).
\]

Moreover, we want the following extra conditions to be true:
\[
\Phi^{k \geq 2} = \varphi^k, \quad d'_{1}^{2} = d'_{1}^{2}, \quad d'_{1}^{k \geq 3} = 0. \quad (2.3)
\]

Now suppose the construction is done for $n-1$ ($n \geq 2$), i.e., we have built maps $(d'_{1}^{[i]})_{i \leq n-1}$ and $(\Phi^{[i]})_{i \leq n-1}$ satisfying conditions (2.3) and
\[
\Phi^{[\leq n-1]} \circ d'_{1}^{[\leq n-1]} = d'_{2}^{[\leq n-1]} \circ \Phi^{[\leq n-1]} \quad \text{on } V_{1}^{[\leq n-1]} \quad \text{and} \quad d'_{1}^{[\leq n-1]} \circ d'_{1}^{[\leq n-1]} = 0 \quad \text{on } V_{1}^{[\leq n]}.
\]

In [GH], we prove that for any such $(d'_{1}^{[i]})_{i \leq n-1}$ and $(\Phi^{[i]})_{i \leq n-1}$, one can construct $d'_{1}^{[n]}$ and $\Phi^{[n]}$ such that condition (2.4) is true for n instead of $n-1$. To complete the proof of Theorem 2.1 (step 2), we have to show that $d'_{1}^{[n]}$ and $\Phi^{[n]}$ can be chosen to satisfy conditions (2.3). In the equation 2.4, the terms d'^{k}_{1} and Φ^{k} only act on V_{1}^{k}. So one can replace Φ^{n} with φ^{n}, d'_{2}^{2} with d'_{2}^{2} (or $d'_{1}^{i}, i \geq 3$ with 0) provided conditions (2.4) are still satisfied on V_{1}^{n}. The other terms acting on V_{1}^{n} in the equation (2.4) only involve terms $\Phi^{m} = \varphi^{m}$ and d'_{1}^{m}. Then conditions (2.4) on $V_{1}^{[\ldots, 1]}$ are the equations that should be satisfied by a C_{∞}-morphisms between the C_{∞}-algebras $(g_1, d'_{1}^{1,1})$ and $(g_2, \sum_{k \geq 1} d'_{2}^{k})$ restricted to V_{1}^{n}. Hence by hypothesis on φ the conditions hold.

Similarly, the construction of Φ' can be made by induction. Let us recall the proof given in [GH]. Again a morphism $\Phi' : (\land_{\mathbf{g}_1 \otimes \mathbf{g}_2}^*, d_1) \to (\land_{\mathbf{g}_1 \otimes \mathbf{g}_2}^*, d_1)$ is uniquely determined by its components $\Phi'^{p_{1}, \cdots, p_{k}} : \mathbf{g}_{1}^{\otimes p_{1}} \land \cdots \land \mathbf{g}_{1}^{\otimes p_{k}} \to \mathbf{g}_{1}$. We write $\Phi' = \sum_{n \geq 1} \Phi'^{[n]}$ with
\[
\Phi'^{[n]} = \sum_{p_{1} + \cdots + p_{k} = n} \Phi'^{p_{1}, \cdots, p_{k}} \quad \text{and} \quad \Phi'^{[\leq n]} = \sum_{1 \leq k \leq n} \Phi'^{[k]}.
\]

We construct the maps $\Phi'^{[n]}$ by induction with the initial condition $\Phi'^{[1]} = \text{id}$. Moreover, we want the following extra conditions to be true:
\[
\Phi'^{n} = 0 \quad \text{for } n \geq 2. \quad (2.5)
\]

Now suppose the construction is done for $n-1$ ($n \geq 2$), i.e., we have built maps $(\Phi'^{[i]})_{i \leq n-1}$ satisfying conditions (2.5) and
\[
\Phi'^{[\leq n-1]} d'_{1}^{[\leq n]} = d'_{1}^{[\leq n]} \Phi'^{[\leq n-1]} \quad \text{on } V_{1}^{[\leq n]}.
\]
In [GH], we prove that for any such \((\Phi^{[i]}_r)_{i \leq n-1}\), one can construct \(\Phi'^{[n]}_r\) such that condition (2.6) is true for \(n\) instead of \(n-1\) in the following way: making the equation \(\Phi' d_1 = d'_1 \Phi'\) on \(V_1^{[n+1]}\) explicit, we get
\[
\Phi'^{[\leq n]}_r d_1^{[\leq n+1]} = d'_1^{[\leq n+1]} \Phi'^{[\leq n]}_r.
\] (2.7)

If we now take into account that \(d_1^{[i]} = 0\) for \(i \neq 2\), \(d'_1^{[1]} = 0\) and that on \(V_1^{[n+1]}\) we have \(\Phi'^{[k]}_r d_1^{[i]} = d'_1^{[\leq k]} \Phi'^{[i]}_r = 0\) for \(k + l > n + 2\), the identity (2.7) becomes
\[
\Phi'^{[\leq n]}_r d_1^{[2]} = \sum_{k=2}^{n+1} d'_1^{[k]} \Phi'^{[\leq n-k+2]}_r.
\]

As \(d'_1^{[2]} = d_1^{[2]}\), (2.7) is equivalent to
\[
d_1^{[2]} \Phi'^{[\leq n]}_r - \Phi'^{[\leq n]}_r d_1^{[2]} = \left[d_1^{[2]}, \Phi'^{[\leq n]}_r \right] = - \sum_{k=3}^{n+1} d'_1^{[k]} \Phi'^{[\leq n-k+2]}_r.
\]

Notice that \(d_1^{[2]} = m_1^{1,1} + m_1^{2,1}\). Then the construction will be possible when the term \(\sum_{k=3}^{n+1} d'_1^{[k]} \Phi'^{[\leq n-k+2]}_r\) is a coboundary in the subcomplex of \((\text{End}(\bigwedge g_1^{\otimes \bullet}), [d_1^{[2]}, -])\) consisting of maps which restrict to zero on \(\oplus_{n \geq 2} g_1^{\otimes n}\). It is always a cocycle by straightforward computation (see [GH]) and the subcomplex is acyclic because both \((\text{End}(\bigwedge g_1^{\otimes \bullet}), [d_1^{[2]}, -])\) and the Harrison cohomology of \(g_1\) are trivial according to Tamarkin [Ta] (see also [GH] Proposition 5.1 and [Hi] 5.4).

In the case of the \(L_\infty\)-morphism \(\gamma\), the first step is similar: the fact that \(\gamma\) is a \(L_\infty\)-map enables us to build a \(G_\infty\)-structure \((g_1, d'_1)\) on \(g_1\) and a \(G_\infty\)-morphism \(\Gamma : (g_1, d'_1) \rightarrow (g_2, d_2)\) such that:
\[
\Gamma^{1, \ldots, 1} = \gamma^{1, \ldots, 1}, \quad d'^{1,1}_1 = d^{1,1}_1, \quad d'^{1,1, \ldots, 1}_1 = 0.
\] (2.8)

For the second step, we have to build a map \(\Gamma'\) satisfying the equation
\[
d_1^{[2]} \Gamma'^{[\leq n]}_r - \Gamma'^{[\leq n]}_r d_1^{[2]} = \left[d_1^{[2]}, \Gamma'^{[\leq n]}_r \right] = - \sum_{k=3}^{n+1} d'_1^{[k]} \Gamma'^{[\leq n-k+2]}_r
\]
on \(V_1^{[n+1]}\) for any \(n \geq 1\). Again, because Tamarkin has proved that the complex \((\text{End}(\bigwedge g_1^{\otimes \bullet}), [d_1^{[2]}, -])\) is acyclic (we are in the case \(M = \mathbb{R}^n\)), the result follows from the fact that \(\sum_{k=3}^{n+1} d'_1^{[k]} \Gamma'^{[\leq n-k+2]}_r\) is a cocycle. The difference with the \(C_\infty\)-case is that the \(\Gamma^{1, \ldots, 1}\) could be non zero.

3-The difference between two \(G_\infty\)-maps

In this section we investigate the difference between two different \(G_\infty\)-formality maps. We fix once for all a \(G_\infty\)-structure on \(g_2\) (given by a differential \(d_2\)) satisfying the conditions (1.1) and a morphism of \(G_\infty\)-algebras \(T : (g_1, d_1) \rightarrow (g_2, d_2)\) such that \(T^1 : g_1 \rightarrow g_2\) is \(\varphi_{\text{HKR}}\). Let \(K : (g_1, d_1) \rightarrow (g_2, d_2)\) be any other \(G_\infty\)-morphism with \(K^1 = \varphi_{\text{HKR}}\) (for example any lift of a Kontsevich formality map or any \(G_\infty\)-maps lifting another \(C_\infty\)-morphism).
\textbf{Theorem 3.1.} There exists a map $h : \wedge^* g_1 \to \wedge^* g_2$ such that
\[T - K = h \circ d_1 + d_2 \circ h.\]

In other words the formality G_∞-morphisms K and T are homotopic.

The maps T and K are elements of the cochain complex $\left(\text{Hom}(\wedge^* g_1, \wedge^* g_2), \delta\right)$ with differential given, for all $f \in \text{Hom}(\wedge^* g_1, \wedge^* g_2)$, $|f| = k$, by
\[\delta(f) = d_2 \circ f - (-1)^k f \circ d_1.\]

We first compare this cochain complex with the complexes $\left(\text{End}(\wedge^* g_1), [d_1; -]\right)$ and $\left(\text{End}(\wedge^* g_2), [d_2; -]\right)$ (where $[-; -]$ is the graded commutator of morphisms). There are morphisms
\[T_* : \text{End}(\wedge^* g_1) \to \text{Hom}(\wedge^* g_1, \wedge^* g_2), \quad T^* : \text{End}(\wedge^* g_2) \to \text{Hom}(\wedge^* g_1, \wedge^* g_2)\]
defined, for $f \in \text{End}(\wedge^* g_2)$ and $g \in \text{Hom}(\wedge^* g_1, \wedge^* g_2)$, by
\[T_*(f) = T \circ f, \quad T^*(g) = g \circ T.\]

\textbf{Lemma 3.2.} The morphisms
\[T_* : \left(\text{End}(\wedge^* g_1), [d_1; -]\right) \to \left(\text{Hom}(\wedge^* g_1, \wedge^* g_2), \delta\right) \leftrightarrow \left(\text{End}(\wedge^* g_2), [d_2; -]\right) : T^*\]
of cochain complexes are quasi-isomorphisms.

Remark: This lemma holds for every manifold M and any G_∞-morphism $T : (g_1, d_1) \to (g_2, d_2)$.

\textit{Proof}. First we show that T_* is a morphism of complexes. Let $f \in \text{End}(\wedge^* g_2)$ with $|f| = k$, then
\[T_*([d_1; f]) = T \circ d_1 \circ f - (-1)^k T \circ f \circ d_1 = d_2 \circ (T \circ f) - (-1)^k (T \circ f) \circ d_1 = \delta(T_*(f)).\]

Let us prove now that T_* is a quasi-isomorphism. For any graded vector space g, the space $\wedge^* g$ has the structure of a filtered space where the m-level of the filtration is $F^m(\wedge^* g) = \bigoplus_{p_1 + \ldots + p_n = m} g^{p_1} \wedge \ldots \wedge g^{p_n}$. Clearly the differential d_1 and d_2 are compatible with the filtrations on $\wedge^* g_1$ and $\wedge^* g_2$, hence $\text{End}(\wedge^* g_1)$ and $\text{Hom}(\wedge^* g_1, \wedge^* g_2)$ are filtered cochain complex. This yields two spectral sequences (lying in the first quadrant) $E^{*,*}$ and $\tilde{E}^{*,*}$ which converge respectively toward the cohomology $H^*(\text{End}(\wedge^* g_1))$ and $H^*(\text{Hom}(\wedge^* g_1, \wedge^* g_2))$. By standard spectral sequence techniques it is enough to
prove that the map \(T^0_* : E_0^\bullet \to \tilde{E}_0^\bullet \) induced by \(T_* \) on the associated graded is a quasi-isomorphism.

The induced differentials on \(E_0^\bullet \) and \(\tilde{E}_0^\bullet \) are respectively \([d_1^1, -] = 0 \) and \(d_1^2 \circ (-) - (-) \circ d_1^1 = b \circ (-) \) where \(b \) is the Hochschild coboundary. By cofreeness property we have the following two isomorphisms

\[
E_0^\bullet \cong \text{End}(g_1), \quad \tilde{E}_0^\bullet \cong \text{Hom}(g_1, g_2).
\]

The map \(T^0_* : E_0^\bullet \to \tilde{E}_0^\bullet \) induced by \(T_* \) is \(\varphi_{HKR} \circ (-) \). Let \(p : g_2 \to g_1 \) be the projection onto the cohomology, i.e. \(p \circ \varphi_{HKR} = \text{id} \). Let \(u : g_1 \to g_2 \) be any map satisfying \(b(u) = 0 \) and set \(v = p \circ u \in \text{End}(g_1) \). One can choose a map \(w : g_1 \to g_2 \) which satisfies for any \(x \in g_1 \) the following identity

\[
\varphi_{HKR} \circ p \circ u(x) - u(x) = b \circ w(x).
\]

It follows that \(\varphi_{HKR}(v) \) has the same class of homology as \(u \) which proves the surjectivity of \(T^0_* \) in cohomology. The identity \(p \circ \varphi_{HKR} = \text{id} \) implies easily that \(T^0_* \) is also injective in cohomology which finish the proof of the lemma for \(T_* \).

The proof that \(T^* \) is also a quasi-isomorphism is analogous.

Proof of Theorem 3.1:

It is easy to check that \(T - K \) is a cocycle in \(\text{Hom}(\wedge g_1^\bullet, \wedge g_2^\bullet, \delta) \). The complex of cochain \(\text{End}(\wedge g_1^\bullet, [d_1, -]) \cong \text{Hom}(\wedge g_1^\bullet, g_1, [d_1, -]) \) is trigraded with \(||1 \) being the degree coming from the graduation of \(g_1 \) and any element \(x \) lying in \(g_1^{p_1} \wedge \cdots \wedge g_2^{p_q} \) satisfies \(|x|_2 = q - 1, |x|_3 = p_1 + \cdots p_q - q \). In the case \(M = \mathbb{R}^n \), the cohomology \(H^\bullet \left(\text{End}(\wedge g_1^\bullet), [d_1, -] \right) \) is concentrated in bidegree \((|1|_2, |1|_3) = (0, 0) \) (see [Ta], [Hi]). By Lemma 3.2, this is also the case for the cochain complex \(\text{Hom}(\wedge g_1^\bullet, \wedge g_2^\bullet, \delta) \). Thus, its cohomology classes are determined by complex morphisms \((g_1, 0) \to (g_2, d_2^1)\) and it is enough to prove that \(T \) and \(K \) determine the same complex morphism \((g_1, 0) \to (g_2, d_2^1 = b)\) which is clear because \(T^1 \) and \(K^1 \) are both equal to the Hochschild-Kostant-Rosenberg map.

Remark. It is possible to have an explicit formula for the map \(h \) in Theorem 3.1. In fact the quasi-isomorphism coming from Lemma 3.2 can be made explicit using explicit homotopy formulae for the Hochschild-Kostant-Rosenberg map (see [Ha] for example) and deformation retract techniques (instead of spectral sequences) as in [Ka]. The same techniques also apply to give explicit formulae for the quasi-isomorphism giving the acyclicity of \(\text{End}(\wedge g_1^\bullet, [d_1; -]) \) in the proof of theorem 3.1 (see [GH] for example).
References

[BFFLS1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Quantum mechanics as a deformation of classical mechanics, Lett. Math. Phys. 1 (1975), 521–530.

[BFFLS2] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and quantization, I and II, Ann. Phys. 111 (1977), 61–151.

[CFT] A. S. Cattaneo, G. Felder, L. Tomassini, From local to global deformation quantization of Poisson manifolds, Duke Math. J. 115 (2002), 329–352.

[Gi] G. Ginot, Homologie et modèle minimal des algèbres de Gerstenhaber, Ann. Math. Blaise Pascal 11 (2004), 91–127.

[GH] G. Ginot, G. Halbout, A formality theorem for Poisson manifold, Lett. Math. Phys. 66 (2003), 37–64.

[GK] V. Ginzburg, M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), 203–272.

[Ha] G. Halbout, Formule d'homotopie entre les complexes de Hochschild et de de Rham, Compositio Math. 126 (2001), 123–145.

[Hi] V. Hinich, Tamarkin’s proof of Kontsevich’s formality theorem, Forum Math. 15 (2003), 591–614.

[HKR] G. Hochschild, B. Kostant and A. Rosenberg, Differential forms on regular affine algebras, Transactions AMS 102 (1962), 383-408.

[Ka] C. Kassel, Homologie cyclique, caractère de Chern et lemme de perturbation, J. Reine Angew. Math. 408 (1990), 159–180.

[Ko1] M. Kontsevich, Formality conjecture. Deformation theory and symplectic geometry, Math. Phys. Stud. 20 (1996), 139–156.

[Ko2] M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), 157–216.

[KS] M. Kontsevich, Y. Soibelman, Deformations of algebras over operads and the Deligne conjecture, Math. Phys. Stud. 21 (2000), 255–307.

[Kos] J. L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie in “Elie Cartan et les mathématiques d’aujourd’hui”, Astérisque (1985), 257-271.

[LS] T. Lada, J. D. Stasheff, Introduction to SH Lie algebras for physicists, Internat. J. Theoret. Phys. 32 (1993), 1087-1103.

[Ta] D. Tamarkin, Another proof of M. Kontsevich’s formality theorem, math. QA/9803025.

[TS] D. Tamarkin, B Tsygan, Noncommutative differential calculus, homotopy BV algebras and formality conjectures, Methods Funct. Anal. Topology 6 (2000), 85–97.

(a) Laboratoire Analyse Géométrie et Applications, Université Paris 13, Centre des Mathématiques et de leurs Applications, ENS Cachan, 61, av. du Président Wilson, 94230 Cachan, France
E-mail: ginot@cmla.ens-cachan.fr

(b) Institut de Recherche Mathématique Avancée, Université Louis Pasteur et CNRS 7, rue René Descartes, 67084 Strasbourg, France
E-mail: halbout@math.u-strasbg.fr