Seedling leaves allocate lower fractions of nitrogen to photosynthetic apparatus in nitrogen fixing trees than in non-nitrogen fixing trees in subtropical China

Jingchao Tang1,2, Baodi Sun2, Ruimei Cheng1,3, Zuomin Shi1,3,4*, Da Luo1,5, Shirong Liu1, Mauro Centritto4

1 Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China, 2 School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao, China, 3 Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China, 4 Tree and Timber Institute, National Research Council of Italy Sesto, Fiorentino, Italy, 5 Research Institute of Economic Forestry, Xinjiang Academy of Forestry Science, Urumqi, China

* shizm@caf.ac.cn

Abstract

Photosynthetic-nitrogen use efficiency (PNUE) is a useful trait to characterize leaf physiology and survival strategy. PNUE can also be considered as part of ‘leaf economics spectrum’ interrelated with leaf nutrient concentrations, photosynthesis and respiration, leaf life-span and dry-mass investment. However, few studies have paid attention to PNUE of N-fixing tree seedlings in subtropical China. In this study, we investigated the differences in PNUE, leaf nitrogen (N) allocation, and mesophyll conductance (g_m) in Dalbergia odorifera and Erythrophleum fordii (N-fixing trees), and Betula alnoides and Castanopsis hystrix (non-N-fixing trees). PNUE of D. odorifera and E. fordii were significantly lower than those of B. alnoides and C. hystrix mainly because of their allocation of a lower fraction of leaf N to Rubisco (P_R) and bioenergetics (P_B). Mesophyll conductance had a significant positive correlation with PNUE in D. odorifera and E. fordii (N-fixing trees), and B. alnoides and C. hystrix (non-N-fixing trees). PNUE of D. odorifera and E. fordii were significantly lower than those of B. alnoides and C. hystrix mainly because of their allocation of a lower fraction of leaf N to Rubisco (P_R) and bioenergetics (P_B). Mesophyll conductance had a significant positive correlation with PNUE in D. odorifera, E. fordii, and B. alnoides, but the effect of g_m on PNUE was different between species. The fraction of leaf N to cell wall (P_{CW}) had a significant negative correlation with P_R in B. alnoides and C. hystrix seedling leaves, but no correlation in D. odorifera and E. fordii seedling leaves, which may indicate that B. alnoides and C. hystrix seedling leaves did not have enough N to satisfy the demand from both the cell wall and Rubisco. Our results indicate that B. alnoides and C. hystrix may have a higher competitive ability in natural ecosystems with fertile soil, and D. odorifera and E. fordii may grow well in N-poor soil. Mixing these non-N-fixing and N-fixing trees for afforestation is useful for improving soil N utilization efficiency in the tropical forests.
Nitrogen fixing tree allocate lower fraction of nitrogen to photosynthetic apparatus than non-nitrogen fixing

Introduction

Nitrogen (N) is very important for plants leaves, because main function of leaves–photosynthesis need a lot of N [1,2], and there was a positive correlation between photosynthetic capacity and N content in many species. However, there existed interspecific difference in the photosynthesis–N relationship [3]. Many researchers use photosynthetic-N use efficiency (PNUE, the ratio of light-saturated net CO₂ assimilation rate (A_{\text{max}}) to leaf N content per area (N_{\text{area}})) to show how efficiently N resources are used during photosynthesis, and studies have been conducted on a variety of species [3,5,6]. N-fixing species could convert N from the air through legume bacteria, and always have enough N in leaves [7–9]. Studies have shown that N-fixing trees had lower A_{\text{max}} and higher N_{\text{area}} which resulted in a lower PNUE [10, 11]. These contradicting results may imply that some N-fixing species use a different strategy to utilize N compared to non-N-fixing species.

Many factors could affect PNUE, and the most important factor is leaves photosynthetic N allocation [12]. Rubisco is the most abundant enzyme in C\textsubscript{3} plants [13], and it is the key factor in carbon assimilation [14]. Many researchers have found a positive correlation between leaf N fraction in Rubisco (P\textsubscript{R}) and PNUE in various plants [15–16]. Bioenergetics and the light-harvesting components could also influence PNUE in some plants [17]. Apart from photosynthetic, leaf cell walls, which could protect leave cell and influence leaf life-span also need a lot of N to synthesize [18]. Trade-offs may occur between N allocation to cell walls and Rubisco [18–20]. However, some studies have shown that these trade-offs only exist in individuals of the same species [16] or species lacking N in leaves [18, 21].

Carbon dioxide is an important raw material for photosynthesis [22], and CO₂ partial pressure is important for Rubisco activity; this is because O₂ is a competitive inhibitor of the C assimilatory reaction of Rubisco, promoting the Rubisco oxidation reaction [23]. A significant negative correlation between C\textsubscript{i} (intercellular CO₂ concentration)-C\textsubscript{o} (CO₂ concentration at carboxylation site) and PNUE was found in Populus cathayana [24]. Nitrogen is also involved in carbonic anhydrases and aquaporins [25]. These proteins play a role in mesophyll conductance (g\textsubscript{m}) by changing the nature of the diffusing molecule [26] and facilitating CO₂ diffusion through membranes [27]. Therefore, PNUE may be influenced by g\textsubscript{m} [25]. A significant positive correlation was found between mesophyll conductance (g\textsubscript{m}) and PNUE in six Populus genotypes [28].

What reason causes the low PNUE in N-fixing plants? One possible explanation is that the percentage of N in the photosynthetic apparatus is lower in the N-fixing trees [10, 11]. However, these studies neglect that g\textsubscript{m} and the fraction of leaf N to cell wall (P\textsubscript{CW}) could also influence PNUE [19, 20, 29]. We studied the factors that affect PNUE in both N-fixing and non-N-fixing large trees in a previous study and found P\textsubscript{R} and fraction of leaf N to bioenergetics (P\textsubscript{B}) to be the main factors; the effects of g\textsubscript{m} and P\textsubscript{CW} were relatively small [30], but the effects in N-fixing tree seedlings remained unclear.

Dalbergia odorifera, Erythrophleum fordii, Betula alnoides, and Castanopsis hystrix are suitable for forestation in southern subtropical China and have high economic values [31–34]. D. odorifera and E. fordii are both evergreen N-fixing trees, whereas B. alnoides and C. hystrix are both non-N-fixing, and deciduous and evergreen, respectively. The objectives of our study are as follows: 1) understand how PNUE varies among D. odorifera, E. fordii, B. alnoides, and C. hystrix seedlings; 2) quantify the relationship between PNUE related to leaf N allocation and diffusional conductances to CO₂ in seedlings.

Materials and methods

Study area and plant material

This study was carried out in Experimental Center of Tropical Forestry (22°7′19″–22°7′22″N, 106°44′40″–106°44′44″E) of the Chinese Academy of Forestry located in Guangxi Pingxiang.
China. The location has a subtropical monsoon climate with distinct dry and wet periods where the mean annual temperature is 21°C. The mean monthly minimum and maximum temperatures are 12.1°C and 26.3°C. The mean annual precipitation is 1400 mm, and it occurs mainly from April to September. Active accumulated temperature above 10°C is 6000–7600°C. The total annual sunshine duration is 1419 hours [35,36].

Seeds of *D. odorifera*, *E. fordii*, and *C. hystrix* were collected from a single tree for each species, and *B. alnoides* seedlings were somaclone. The seeds of *D. odorifera*, *E. fordii*, and *C. hystrix* were germinated in a seedbed in February 2014 and *B. alnoides* went through budding at the same time. When the seedlings were approximately 20 cm tall, 30 similarly sized seedlings per species were individually transplanted to pots (5.4 L, filled with washed river sand) and established in an open site at the Experimental Center of Tropical Forestry in March 2014. From April to June, each pot received the same nutrient solution (0.125 g N and 0.11 g P, Hyponex M. Scott & Sons, Marysville, OH, USA) once a week, and was watered every day to keep the soil moist. Natural light (100% of light in the field) was used for illumination.

Determination of gas exchange measurements

Gas exchange parameters were determined with a Li-6400 portable photosynthesis system (LI-COR, Lincoln, NE, USA) on sunny days from 8 am to 10 am in July and August 2014. Seven healthy and newly emerged leaves exposed to the sun in each tree species were chosen (one leaf per individual healthy tree). Photosynthetic response to photosynthetic photon flux density (PPFD) and intercellular CO₂ concentration (Cᵢ, μmol mol⁻¹) were determined for each leaf (seven repetitions in each species): Under 380 μmol mol⁻¹ of leaf chamber CO₂ concentration (the average air CO₂ concentration in the day time), the photosynthetic rates were measured under photon flux densities of 1500, 1200, 1000, 800, 600, 400, 200, 150, 100, 80, 50, 30, 20, 10 and 0 μmol m⁻² s⁻¹ [37]. Under a saturated PPFD, the photosynthetic rates were detected using the same leaf-under leaf chamber CO₂ concentrations of 380, 200, 150, 100, 80, 50, 380, 600, 800, 1000, 1200, 1500, 1800 and 2000 μmol mol⁻¹ [28]. Relative humidity of the air in the leaf chamber was maintained at 60–70%, and leaf temperature was set at 30°C. The net photosynthetic rate (Aᵦ, μmol m⁻² s⁻¹), stomatal conductance (gₛ, mol CO₂ m⁻² s⁻¹), and Cᵢ of each sampled leaf were recorded ten times after 200 s under each PPFD and CO₂ concentration. Then light-saturated net CO₂ assimilation rate (Aᵦ max, μmol m⁻² s⁻¹), light-saturated day respiration rate (Rᵥ, μmol m⁻² s⁻¹) and light- and CO₂-saturated net CO₂ assimilation rate (Aᵦ max, μmol m⁻² s⁻¹) were measured or calculated. For further details see Tang et al. [30].

Determination of chlorophyll fluorescence and mesophyll conductance

Fluorescence yield was measured with a Li–6400 leaf chamber fluorometer (6400–40, LI-COR, Lincoln, Nebraska, USA), using the same leaf with seven repetitions of each species. Chamber temperature was maintained at 28–32°C, and chamber air relative humidity was maintained at 60–70%. Chamber CO₂ concentration was set to 380 μmol mol⁻¹. PPFD was set to light saturation point. Constant values of fluorescence yield (ΔF/Φₘ) of each leaf sample were recorded 10 times after 200 s [38]. We used Loreto et al. [39] methods to calculate the photosynthetic electron transport rate (Jₑ, μmol m⁻² s⁻¹):

$$ Jₑ = PPFD \times \frac{ΔF}{Φₘ} \times Leafreflu \times PARDistPhotosys. $$ (1)

Leafreflu (leaf absorptance valued) and *PARDistPhotosys* (the fraction of quanta absorbed by photosystem II) were 0.85 [40] and 0.5 [39], respectively. We used the variable J method described by Harley et al. [41], which has been used in recent years [42–45] to calculate
mesophyll conductance (g_m, mol CO$_2$ m$^{-2}$ s$^{-1}$):

$$g_m = \frac{A_{\text{max}}'}{C_i - \left\{ \frac{1}{J_f} \ln \left[\frac{A_{\text{max}}'}{J_f (R_d + R_i)} \right] \right\}^{\frac{1}{J_f}}}$$

(2)

Where R_d, C_i, and A_{max}' were determined from gas exchange measurements. The CO$_2$ photo compensation point (I^*, μmol mol$^{-1}$) value was 54.76 at 30˚C according to Bernacchi et al [46].

Because the Harley method should calibrate the ETR using Chl fluorescence and gas exchange under low O$_2$, we used the experience value instead ($\text{Leafreflu} = 0.85$) [30]. We also used Ethier and Livingston [47] and the exhaustive dual optimization (EDO) method [48] to calculate g_m. We used software based on the Ethier and Livingston method developed by Sharkey et al. [49] to get g_m, and uploaded our data through a website (http://www.leafweb.org) to get g_m calculated by the EDO method.

Determination of V_{cmax} and J_{max}

The mean value of g_m, calculated from three methods was used to calculate CO$_2$ concentration in chloroplasts (C_c, μmolmol$^{-1}$):

$$C_c = C_i - \frac{A_{\text{max}}'}{g_m}$$

(3)

Then C_c was used to fit an A_n-C_c curve, followed by the maximum carboxylation rate (V_{cmax}, μmol m$^{-2}$ s$^{-1}$) calculated according to Farquhar et al. [14], and the maximum electron transport rate (J_{max}, μmol m$^{-2}$ s$^{-1}$) calculated according to Loustau et al. [50]. The fitting model used in vivo Rubisco kinetics parameters (K_o, K_c, and their activation energy) measured by Niinemets and Tenhunen [12].

Analysis of quantitative limitations of photosynthetic capacity

The relative controls on photosynthetic capacity imposed by stomatal conductance (l_s, %), mesophyll diffusion (l_m, %), and biochemical capacity (l_b, %) were calculated following the quantitative limitation analysis of Grassi and Magnani [51] as applied in Tomás et al [52], Peguero-Pina et al. [53, 54] and Nha et al. [55]. Different fractional limitations, l_s, l_m, and l_b ($l_s + l_m + l_b = 1$) were calculated as:

$$l_s = \frac{g_{\text{tot}}/g_s \times \partial A_n}/g_{\text{tot}}/\partial C_c$$

(4)

$$l_m = \frac{g_{\text{tot}}/g_m \times \partial A_n}/g_{\text{tot}}/\partial C_c$$

(5)

$$l_b = \frac{g_{\text{tot}}}{g_{\text{tot}} + \partial A_n}/\partial C_c$$

(6)

Where g_s and g_m were used in light-saturated and atmospheric CO$_2$ concentration was 380 μmol mol$^{-1}$, and g_m was the mean value of three methods. The g_{tot} is the total conductance to CO$_2$ from ambient air to chloroplasts (the sum of the inverse CO$_2$ serial conductances g_s and g_m). The $\partial A_n/\partial C_c$ was calculated as the slope of A_n-C_c response curves over a C_c range of 50–100 μmol mol$^{-1}$ [53, 54].
Determination of additional leaf traits

Leaf samples used for gas exchange measurements and leaves which size was similar to leaves used for determine photosynthesis was taken. Leaf areas were measured with a scanner (Perfection v700 Photo, Epson, Nagano-ken, Japan). Leaf dry weights were measured using an analytic balance after being oven-dried at 80˚C for 48 h, then leaf mass per area (LMA, g m\(^{-2}\)) was calculated.

Dried leaf samples were ground into a dry flour. Organic carbon (C) concentration was determined by the potassium dichromate-sulfuric acid oxidation method (C\(_{\text{mass}}\), mg g\(^{-1}\)). Nitrogen concentration was determined by a VELP automatic Kjeldahl N determination apparatus (UDK-139, Milano, Italy), and leaf N per mass (N\(_{\text{mass}}\), mg g\(^{-1}\)) and per area (N\(_{\text{area}}\), g m\(^{-2}\)) values were calculated [30]. The PNUE (μmol mol\(^{-1}\) s\(^{-1}\)) was then calculated by the formula:

\[
\text{PNUE} = \frac{A_{\text{max}}}{N_{\text{area}}} \times 14
\]

Where 14 is the atomic mass of nitrogen.

Chlorophylls were extracted by direct immersion: 0.2 g of frozen leaves were cut into small pieces which were 5–10 mg. Leaf pieces were placed into a volumetric flask and 25 mL of 95% (v/v) alcohol was added. The flask was kept in the dark for 24 h. The absorbance of the extracts was measured at 665 nm and 649 nm with a Shimadzu visible-ultraviolet spectrophotometer (UV 2250, Fukuoka, Japan). Cell wall N content was calculated according to Onoda et al. [19]: 1 g of leaves were powdered in liquid N and suspended in sodium phosphate buffer (pH 7.5), the homogenate was centrifuged at 2500 g for 5 min, and the supernatant was discarded. The pellet was washed with 3% (w/v) SDS, amyloglucosidase (35 U ml\(^{-1}\), Rhizopus mold, Sigma, St Louis, MO, USA), and 0.2 M KOH, then heated and centrifuged. The pellet was then washed with distilled water and ethanol, and oven dried (75˚C) for 2 days. Nitrogen in the final pellet was determined using an automatic Kjeldahl apparatus (VELP Scientifica, Usmate, Italy). The fraction of leaf N allocated to cell walls (P\(_{\text{CW}}\)) represents the ratio of cell wall N content to the total N content.

Calculation of N allocation in the photosynthetic apparatus

The fraction of leaf N allocated to Rubisco (P\(_R\)), bioenergetics (P\(_B\)), and the light-harvesting components (P\(_L\)) (g g\(^{-1}\)) were calculated from \(V_{\text{cmax}}\), \(J_{\text{max}}\) and chlorophyll contents using the method of Niinemets and Tenhunen [12], which has been widely used in recent years [15, 56–58]:

\[
P_R = \frac{V_{\text{cmax}}}{6.25 \times V_{\text{cr}} \times \text{LMA} \times N_{\text{mass}}} \tag{8}
\]

\[
P_B = \frac{J_{\text{max}}}{8.06 \times J_{\text{mc}} \times \text{LMA} \times N_{\text{mass}}} \tag{9}
\]

\[
P_L = \frac{C_{\text{Chl}}}{C_B \times N_{\text{mass}}} \tag{10}
\]

Where \(C_{\text{Chl}}\) is the chlorophyll concentration (mmol g\(^{-1}\)), \(V_{\text{cr}}\) is the specific activity of Rubisco (μmol CO\(_2\) g\(^{-1}\) Rubisco s\(^{-1}\)), \(J_{\text{mc}}\) is the potential rate of photosynthetic electron transport (μmol electrons μmol\(^{-1}\)Cyt f s\(^{-1}\)), and \(C_B\) is the ratio of leaf chlorophyll to leaf N during light-harvesting (mmol Chl (g N\(^{-1}\)). Where \(V_{\text{cr}}, J_{\text{mc}},\) and \(C_B\) were calculated according to
Ninemets and Tenhunen [12]. The fraction of leaf N allocated to the photosynthetic apparatus (P\textsubscript{NP}) was calculated as the sum of P\textsubscript{R}, P\textsubscript{B}, and P\textsubscript{L}.

Statistical analysis

Differences between the seedling leaves were analyzed using one-way analysis of variance (ANOVA), and a post hoc test (Tukey's test) was conducted if the differences were significant. The significance of the correlation between each pair of variables was tested with a Pearson correlation (two-tailed). All analyses were carried out using Statistical Product and Service Solutions 17.0 (SPSS17.0, Chicago, IL, USA).

Results

PNUE in four seedling leaves

There were significant differences in PNUE between the leaves of the four seedlings (P < 0.001, Table 1). The PNUE in B. alnoides and C. hystrix seedling leaves were higher than those in D. odorifera and E. fordistii, which was mainly attributed to their lower N\textsubscript{area} and N\textsubscript{mass} values. The highest PNUE in B. alnoides (120.54 μmol mol-1 s-1) was 2.6 times the lowest, found in E. fordistii (45.92 μmol mol-1 s-1). However, N\textsubscript{area} and N\textsubscript{mass} in B. alnoides were 48.75% and 45.21% lower than in E. fordistii, respectively (Table 1). There were no significant differences between B. alnoides, C. hystrix, and D. odorifera seedling leaves in A\textsubscript{max}' and the value in E. fordistii (6.60 μmol m-2 s-1) was the smallest (Table 1). The LMA of C. hystrix (100.13 g m-2) was the highest (Table 1). E. fordistii and B. alnoides seedling leaves had higher C\textsubscript{max} than D. odorifera and C. hystrix, but C/N was higher in B. alnoides and C. hystrix seedling leaves than D. odorifera and E. fordistii (Table 1).

Photosynthetic parameters in four seedling leaves

Analysis of the quantitative limitations of photosynthesis revealed that photosynthetic capacity was mainly limited by diffusional processes (l\textsubscript{r} and l\textsubscript{m}), whereas biochemical limitations (l\textsubscript{b}) were only between 0.33% and 0.45% of the total for all studied species (Table 2).

Photosynthetic parameters were shown in Table 3 and Table 4. The V\textsubscript{cmax} and J\textsubscript{max} in E. fordistii were higher than the other three species (Table 3) but the statistically significant values

Table 1. Light-saturated photosynthesis (A\textsubscript{max}), leaf N content per area (N\textsubscript{area}), leaf N content per mass (N\textsubscript{mass}), leaf C content per mass (C\textsubscript{mass}), C/N ratio, leaf mass per area (LMA), and photosynthetic-N use efficiency (PNUE) in seedling leaves of four species.

Leaf traits	D. alnoides	E. fordistii	B. alnoides	C. hystrix	F
A\textsubscript{max} (µmolm-2s-1)	8.04±0.46ab	6.60±0.50b	8.55±1.60a	8.16±0.18ab	3.441*
N\textsubscript{area} (g m-2)	2.19±0.13a	2.01±0.12a	1.03±0.25b	1.02±0.06b	36.314***
N\textsubscript{mass} (mg g-1)	31.70±0.76a	28.09±1.49b	15.36±1.04b	10.22±0.18c	106.219***
C\textsubscript{mass} (mg g-1)	449.50±8.66b	516.65±13.98a	493.63±5.40a	479.65±4.66b	9.713**
C/N (g g-1)	14.24±0.48a	18.70±1.05a	32.98±2.15b	47.02±1.09a	123.492***
LMA (g m-2)	68.97±3.90b	71.35±0.89b	67.60±5.45b	100.13±2.60a	18.272**
PNUE (µmolmol-1s-1)	52.64±3.78b	45.92±2.24b	120.54±5.18a	112.01±4.62a	30.833***

Mean values (± SD) were shown (n = 7).
Different letters indicated significant differences between species (Tukey’s test, P < 0.05).
Statistically significant F-ratios were denoted by
*P < 0.05
**P < 0.01
***P < 0.001.

https://doi.org/10.1371/journal.pone.0208971.t001
Different letters indicated significant differences between species (Tukey's test, F-ratios) were lower than PNUE (Table 1). Stomatal conductance (g_m, 0.100 mol CO$_2$ m$^{-2}$ s$^{-1}$) and C_i (292.88 µmol mol$^{-1}$) in B. alnoides seedling leaves were higher than the other three species (Table 4). Moreover, $g_{m-Harley}$ in B. alnoides (0.136 mol CO$_2$ m$^{-2}$ s$^{-1}$) was higher than the other three species but $g_{m-Either}$ (0.140 mol CO$_2$ m$^{-2}$ s$^{-1}$) and g_{m-Gu} (0.160 mol CO$_2$ m$^{-2}$ s$^{-1}$) was highest in D. odorifera (Table 4). The C_c in B. alnoides seedling leaves (all three methods) was higher than the other three species (Table 4).

Leaf N allocation in four species seedling leaves

There were significant differences in leaf N allocation between the four species ($P < 0.001$, Table 5). The P_p was higher than P_{CW} in four species seedling leaves (Table 5). The P_p was 3.9 times of the P_{CW} in D. odorifera, 5.4 times in E. fordii, 2.0 times in B. alnoides and 1.6 times in C. hystrix. Where $P_R > P_L > P_B$ in D. odorifera, E. fordii, and B. alnoides seedling leaves, and $P_R > P_L = P_B$ in C. hystrix seedling leaves.

The P_p in B. alnoides and C. hystrix seedling leaves (both were 0.44 g g$^{-1}$) were higher than D. odorifera and E. fordii (both were 0.27 g g$^{-1}$). The P_R and P_B in B. alnoides and C. hystrix seedling leaves were also higher than in D. odorifera and E. fordii. The P_L in B. alnoides was the highest (0.12 g g$^{-1}$), followed by D. odorifera (0.10 g g$^{-1}$), C. hystrix (0.07 g g$^{-1}$), and E. fordii (0.06 g g$^{-1}$).

Relationship between PNUE and affecting factors

There was a positive relationship between g_m and PNUE ($P < 0.05$), in D. odorifera, E. fordii, and B. alnoides, but not in C. hystrix (Fig 1). Both P_p, P_R, and P_B had a significant positive correlation with PNUE in these species ($P < 0.001$) (Fig 2).

Table 2. Relative stomatal (l_s), mesophyll (l_m) and biochemical (l_b) photosynthesis limitations in four species seedling leaves.

Leaf traits	D. odorifera	E. fordii	B. alnoides	C. hystrix	F
l_s (%)	68.09±1.35a	58.23±1.93b	56.84±1.67b	56.68±2.22b	9.001***
l_m (%)	31.54±1.35b	41.39±1.95a	42.82±1.64a	42.87±2.22a	8.957***
l_b (%)	0.36±0.05	0.37±0.07	0.33±0.04	0.45±0.03	0.964

Mean values (± SD) were shown (n = 7).

Different letters indicated significant differences between species (Tukey's test, $P < 0.05$).

Statistically significant F-ratios were denoted by

* $P < 0.05$
** $P < 0.01$
*** $P < 0.001$

https://doi.org/10.1371/journal.pone.0208971.t002

Table 3. Maximum carboxylation rate (V_{max}) and maximum electron transport rate (I_{max}) in four species seedling leaves.

Leaf traits	D. odorifera	E. fordii	B. alnoides	C. hystrix	F
V_{max} (µmol m$^{-2}$ s$^{-1}$)	78.13±4.59b	99.83±9.37a	72.98±1.51b	82.78±1.47ab	4.786**
I_{max} (µmol m$^{-2}$s$^{-1}$)	100.71±5.80bc	128.76±11.20a	98.38±5.37bc	109.27±4.05ab	3.822*

Mean values (± SD) were shown (n = 7).

Different letters indicated significant differences between species (Tukey's test, $P < 0.05$).

Statistically significant F-ratios were denoted by

* $P < 0.05$
** $P < 0.01$
*** $P < 0.001$

https://doi.org/10.1371/journal.pone.0208971.t003
Table 4. Stomatal conductance (g_s), mesophyll conductance (g_mm), intercellular CO₂ concentration (C_i), and CO₂ concentration at carboxylation site (C_c) in four species seedling leaves.

Leaf traits	D. odorifera	E. fordii	B. alnoides	C. hystrix	F
g_s (mol CO₂ m⁻² s⁻¹)	0.067±0.004bc	0.046±0.002c	0.100±0.013a	0.074±0.004b	11.106***
C_i (μmol mol⁻¹)	25.54±6.44	235.61±6.19	292.88±5.94	256.78±5.24	7.348**
E_m-Harley (mol CO₂ m⁻² s⁻¹)	0.11±0.013ab	0.068±0.007b	0.136±0.013a	0.109±0.006b	15.391***
E_m-Ethier (mol CO₂ m⁻² s⁻¹)	0.14±0.01a	0.06±0.01c	0.13±0.01ab	0.099±0.01bc	14.772***
E_m-Gn (mol CO₂ m⁻² s⁻¹)	0.16±0.01a	0.06±0.01b	0.13±0.02a	0.09±0.01b	19.390***
C_c-Harley (μmol mol⁻¹)	178.39±7.84a	136.80±5.18a	228.78±8.44a	172.17±6.10b	29.182***
C_c-Ethier (μmol mol⁻¹)	192.99±7.11b	133.56±7.95c	224.91±9.13a	173.93±3.73b	27.639***
C_c-Gn (μmol mol⁻¹)	200.92±6.72c	127.42±9.56b	225.58±12.27a	157.86±9.56b	20.268***

Data of CO₂ conductance was measured in light-saturated and atmospheric CO₂ concentration was 380 μmol mol⁻¹. Mean values (± SD) were shown (n = 7).

Different letters indicated significant differences between species (Tukey’s test, P < 0.05).

Statistically significant F-ratios were denoted by

* P < 0.05
** P < 0.01
*** P < 0.001.

The relationship between Pₖ and Pₐ in B. alnoides (P = 0.022) and C. hystrix (P = 0.011) seedling leaves were more significant than in D. odorifera (P = 0.409) and E. fordii (P = 0.637). Regression analysis of Pₖ with Pₐ in B. alnoides seedling leaves was within the shaded zone; C. hystrix was on the shaded zone; D. odorifera and E. fordii were under the shaded zone (Fig 3).

Discussion

The range of PNUE in these tree seedlings was 45.92–120.54 μmol mol⁻¹ s⁻¹ (Table 1) which was close to six Fagus sylvatica populations (68.74–122.22 μmol mol⁻¹ s⁻¹) [59] and four Quercus species (approximately 60–150 μmol mol⁻¹ s⁻¹) [20]; lower than P. cathayana (171.64–213.36 μmol mol⁻¹ s⁻¹) [17] and S. alterniflora (171.64–213.36 μmol mol⁻¹ s⁻¹) [15] under different N deposition. Wright et al. summed up PNUE in 710 species and the range was between 10 and 500 μmol mol⁻¹ s⁻¹ [60]; therefore, our results seem reasonable. Shrubs and trees

Table 5. Fraction of leaf N allocated to rubisco (P_R), bioenergetics (P_B), light-harvesting components (P_L), photosynthetic apparatus (P_P), cell wall (P_CW), and other parts (1-P_R-P_CW, P_Other) in four species seedling leaves.

Leaf traits	D. odorifera	E. fordii	B. alnoides	C. hystrix	F
P_R (g g⁻¹)	0.13±0.01b	0.16±0.01b	0.26±0.03a	0.30±0.01a	22.130***
P_B (g g⁻¹)	0.03±0.002b	0.04±0.003b	0.07±0.007a	0.07±0.003a	18.111***
P_L (g g⁻¹)	0.10±0.01ab	0.06±0.01c	0.12±0.01a	0.07±0.01b	8.488***
P_P (g g⁻¹)	0.27±0.02b	0.27±0.02b	0.44±0.04b	0.44±0.02a	14.796***
P_CW (g g⁻¹)	0.07±0.004c	0.05±0.002c	0.22±0.010b	0.27±0.011a	182.914***
P_Other (g g⁻¹)	0.66±0.02a	0.68±0.02a	0.34±0.04b	0.29±0.02b	63.830***

Mean values (± SD) were shown (n = 7).

Different letters indicated significant differences between species (Tukey’s test, P < 0.05).

Statistically significant F-ratios were denoted by

* P < 0.05
** P < 0.01
*** P < 0.001.

https://doi.org/10.1371/journal.pone.0208971.1004

https://doi.org/10.1371/journal.pone.0208971.1005
usually have a low PNUE and grasses usually have high value [60]. Fast growing herbaceous species may have a PNUE higher than 200 μmol mol⁻¹ s⁻¹, whereas values for evergreen woody species can be lower than 50 [1]. Our values are within the medium range.

The overall result highlights a substantial difference between N-fixing and non-N-fixing tree seedling leaves in PNUE (Table 1). The variation of PNUE may be attributable to plant evolution and natural selection [61]. Low PNUE species compensate for their low productivity with a long leaf life-span [20]; stress-tolerant species [62] and late successional species [63] usually have low PNUE values. Therefore, low PNUE in *D. odorifera* and *E. fordii* may lead to high stress-tolerance traits and increase competitiveness in poor soil [64]. Higher PNUE species such as *B. alnoides* and *C. hystrix* could grow faster [20] and have a stronger competitive ability in ecosystems with fertile soil [65]. The PNUE tended to be lower for species at the ‘slow-return’ end of the leaf economics spectrum [60], and according to the ‘leaf economics spectrum’, at the slow-return end are species with long leaf life-span, expensive high-LMA leaf construction, low nutrient concentrations, and low rates of photosynthesis and respiration [4], and therefore, it can be concluded that two N-fixing species were at the ‘slow-return’ end of the leaf economics [4, 60]. Because these species live in the same area, we believe that mix these non-N-fixing and N-fixing trees for afforestation is useful for improving soil N utilization efficiency in this place.
As PNUE is the ratio of A_{max} and N_{area}, changes of A_{max} and N_{area} affect PNUE. We found significant F-ratios in A_{max} between the four species’ seedling leaves was 3.441, lower than in N_{area} which was 36.314. Therefore, a change of N_{area} was the main reason affecting PNUE in these four species. We suspect that N-fixing species which could gain N from air by legume bacteria [7–9], may have both higher N_{area} and A_{max}, but our results did not support this speculation. Which reason limited A_{max} in two N-fixing species? firstly, relative stomatal (l_s), and mesophyll (l_m) were main reasons limited photosynthesis ability in these trees (Table 2), secondly, two N-fixing species didn’t show significant higher g_s, g_m, C_c, V_{cmax}, or J_{max} than non-N-fixing species (Tables 3 and 4). Therefore, we believe that a large proportion of N in the leaves of N-fixing plants did not used for photosynthesis.

N-fixing trees D. odorifera and E. fordii had significantly higher N_{area} than B. alnoides and C. hystrix (Table 1). Because $N_{\text{area}} = N_{\text{mass}} \times \text{LMA}$, N_{area} may also be affected by LMA besides N content N_{mass}. The difference of LMA between species was far lower than the difference of N_{mass} (Table 1). Therefore, the significantly higher N_{mass} caused the significantly higher N_{area} in D. odorifera and E. fordii. The low C/N ratio also showed high N in D. odorifera and E. fordii (Table 1). These results agreed with earlier studies [10, 11] and our study in five Fagaceae and five Leguminosae tree species [30]. However, one study reported that N-fixing trees had both

Fig 2. Regression analysis of the fraction of leaf N allocated to (a) Rubisco (P_R), (b) bioenergetics (P_B), (c) light-harvesting components (P_L), and (d) the photosynthetic apparatus (P_P) with photosynthetic-N use efficiency (PNUE) in four species seedling leaves. The determination coefficient (R^2) and P-value were also shown. Only one line was fitted for four species, because there was no significant difference ($P > 0.05$) according to the result of a one-way ANCOVA with PNUE as a dependent variable, tree species as fixed factors, and P_R, P_B, P_L or P_P as a covariate.

https://doi.org/10.1371/journal.pone.0208971.g002
higher N_{area} and A_{max}\cite{66}. The relationship of N_{area} and A_{max} varies in different species \cite{60}, because different species have their own N allocation patterns. The N allocation in photosynthesis was more important than the total leaf N for photosynthesis \cite{67}.

Lower P_{P}, P_{R}, and P_{B} were main reasons that led to lower PNUE in N-fixing tree species ($D.\ odorifera$ and $E.\ fordii$). These results agreed with previous studies \cite{10, 11, 51} and our study on five Fagaceae tree species and five Leguminosae big tree species \cite{30}. Rubisco catalyzes the limiting step for photosynthetic capacity \cite{14}. A positive correlation between A_{max} and Rubisco has been frequently reported \cite{16, 19}. An improved fraction of leaf N allocated to Rubisco could maximize the use of leaf N in photosynthesis. It should be noted that although there was a significant difference in N allocation proportion between N-fixing trees and non-N-fixing trees, there were smaller differences in N allocation quantity in Rubisco, bioenergetics, photosynthetic apparatus, cell wall, and other parts in the four species seedling leaves (mass and area, see S2 Table). The N_{mass} largely affected the N allocation to the photosynthetic apparatus and P_{CW}.

Fig 3. Regression analysis of the fraction of leaf N allocated to the cell wall (P_{CW}) with leaf N allocated to Rubisco (P_{R}) in four species seedling leaves. The determination coefficient (R^2) and P-value were also shown. The shaded zone was drawn according to this hypothesis: when P_{CW} was 0.300 g g$^{-1}$, the rest (0.700 g g$^{-1}$) were soluble and thylakoid protein, Rubisco represented one quarter to one-third of the N in soluble and thylakoid protein, P_{R} valued 0.175–0.233 g g$^{-1}$ (right side of shaded zone). When P_{CW} was valued 0.000 g g$^{-1}$ in limiting case (does not exist in reality), all the rest (1.000 g g$^{-1}$) were soluble and thylakoid protein, P_{R} valued 0.250–0.333 g g$^{-1}$ (left side of shaded zone). For more information see Harrison et al. \cite{21}. The lines fitted separately for four species were significantly different ($P < 0.05$) according to the result of a one-way ANCOVA with P_{R} as a dependent variable, tree species as fixed factors, and P_{CW} as a covariate.

https://doi.org/10.1371/journal.pone.0208971.g003
The g_m could also influence the variation in PNUE through N allocation [25]. There was a significant positive relationship between g_m and PNUE in *D. odorifera*, *E. fordii*, and *B. alnoides*, but the effect of g_m to PNUE was not consistent between species (Fig 1). Broeckx et al. [28] also found this relationship in six poplar (*Populus*) genotypes, and Nha et al. [55] found g_m does not contribute to greater PNUE in temperate forest. We also found g_m of ten Fabaceae and Leguminosae species big trees was not significantly related to the PNUE. The effect of g_m on PNUE may also age-related.

A significant negative correlation between P_{CW} and P_R in *B. alnoides* and *C. hystrix* ($P < 0.05$) suggested a trade-off between N allocation to Rubisco and cell walls, whereas no trade-off was detected in *D. odorifera* and *E. fordii* (Fig 3). A similar trade-off was found in *Polygonum cuspidatum* [19], *Quercus* species [20], *Mikania micrantha* and *Chromolaena odorata* [37]; but this relationship does not exist in some other trees [16]. Some researchers believed that the main influencing factors were whether leaf N could meet the needs of both cell wall N and Rubisco N [15, 21]. We used the method described by Harrison et al. [21] to determine whether leaf N could meet these two needs: the regression analysis of P_{CW} with P_R in *B. alnoides* seedling leaves was within the shaded zone (the shaded zone represents the distribution area of P_{CW} and P_R when a trade-off exists), *C. hystrix* was on the shaded zone which means that *B. alnoides* and *C. hystrix* had high P_{CW} and P_R and therefore leaf N could not meet both needs, these two factors may affect each other. We believe the high P_{Other} (Table 5, possibly composed of free amino acids [68] and inorganic N (NO$_3^-$, NH$_4^+$) [69]) weakens the correlation between Rubisco and cell wall N. It must be noted that *C. hystrix* showed a unique relationship between P_{CW} and P_R (on the shaded zone), which means higher P_{CW} and P_R than the results of Harrison et al. [21]. More trees need to be studied to determine the distribution area of P_{CW} and P_R when a trade-off exists.

Excessive storage of N in N-fixing tree species may reduce their PNUE but may be useful for future physiological processes such as reproduction [17]. Storage of N could buffer changes in other N pools such as cell wall N [19, 20, 37] (Fig 3). Evergreen tree leaves with low PNUE have multiple roles in nutrient conservation, nutrient storage, stress tolerance, herbivore deterrence, and photosynthesis [3]. We should consider that some Rubisco can also function as N storage and may not be involve in photosynthesis [70, 71]. This type of Rubisco might lead to greater rates of photosynthesis under suboptimal conditions [3]. Therefore, Rubisco N calculated by the model of Farquhar et al. [14] might be N in activated Rubisco. Using chemical methods to extract and determine Rubisco N content could be useful [20, 72].

We used to do experiment with *C. hystrix* big trees, and its PNUE was 74.34±8.54 μmol mol$^{-1}$ s$^{-1}$ [30], smaller than its seedlings (Table 1). *C. hystrix* big tree also had higher P_{CW} (0.46 g g$^{-1}$) than seedlings, but its P_P (0.26 g g$^{-1}$), P_R (0.20 g g$^{-1}$), P_{h} (0.041 g g$^{-1}$) and P_{l} (0.014 g g$^{-1}$) [30] were lower than seedlings (Table 1). Seedlings with high PNUE could grow fast, reach the canopy earlier and increased ability of competition for light [5]. Big trees with higher P_{CW} could better resist the environmental stress in canopy, such as typhoon, insect attack and diseases [19]. We suspect that trade-offs for N allocation to photosynthesis versus cell walls may also exist at different stages of a tree’s growth, in order to meet the N demand in different growth stages.

Although both the *B. alnoides* and *C. hystrix* are non-N-fixing broadleaf plants, and have some similar functional traits, there were significant differences showed in N_{mass}, LMA, g_m, C_v, and P_{CW} (Tables 1, 4 and 5). *B. alnoides* is a deciduous broad-leaved plant and *C. hystrix* is an evergreen broad-leaf plant. In order to contribute to a longer leaf life span, evergreen broad-leaf plants should improve leaf tolerance to environmental disturbance [73,74], reflected in higher LMA [60], and P_{CW} [16]. Higher defensive investment could also reduce N_{mass} [16]. Simultaneously, if higher LMA is a result of mesophyll cell wall thickening, it will reduce g_m.

Table 1.

Species	P_{CW} (g g$^{-1}$)	P_R (g g$^{-1}$)	P_{h} (g g$^{-1}$)	P_{l} (g g$^{-1}$)	N_{mass} (g g$^{-1}$)	LMA (g cm$^{-2}$)	g_m (mol m$^{-2}$ s$^{-1}$)	C_v (%)	P_{Leaf} (g g$^{-1}$)
and C_c [75, 76], and variations in LMA are often inversely correlated with g_m and C_c [77, 78], consistent with the results of those two species.

Conclusions
This study indicated that PNUE was significantly lower in two N-fixing trees ($D. odorifera$ and $E. fordii$) than that in two non-N-fixing trees ($B. alnoides$ and $C. hystrix$). This finding was mainly attributed to lower P_R and P_B. $B. alnoides$ and $C. hystrix$ optimized their leaf N allocation to photosynthesis. Although g_m had a significant positive correlation with PNUE in $D. odorifera$, $E. fordii$, and $B. alnoides$, the effect of g_m on PNUE was different between species. P_{CW} had a significant negative correlation with P_R in $B. alnoides$ and $C. hystrix$ seedling leaves, but there was no significant correlation between P_{CW} and P_R in $D. odorifera$ and $E. fordii$ seedling leaves, which may indicate that $B. alnoides$ and $C. hystrix$ seedling leaves did not have enough N to satisfy the demand from both the cell wall and Rubisco. $B. alnoides$ and $C. hystrix$ with higher PNUE may have a higher competitive ability in natural ecosystems with fertile soil. Our results indicate that mixing these non-N-fixing and N-fixing trees for afforestation is useful for improving soil N utilization efficiency in the tropical forests.

Supporting information
S1 Table. Chlorophyll contents (chlorophyll a, chlorophyll b, chlorophyll a+b and Chla/b) in four species seedling leaves. Mean values (± SD) were shown (n = 7). Different letters indicated significant differences between species (Tukey’s test, $P<0.05$). Statistically significant F-ratios were denoted by $^*P<0.05$, $^{**}P<0.01$, $^{***}P<0.001$.

S2 Table. Quantity of leaf N (per area and per mass) allocated to Rubisco (Q_{Rarea}, Q_{Rmass}), bioenergetics (Q_{Barea}, Q_{Bmass}), light-harvesting components (Q_{Larea}, Q_{Lmass}), photosynthetic apparatus (Q_{Parea}, Q_{Pmass}), cell wall (Q_{CWarea}, Q_{CWmass}), and other parts ($Q_{Other-area}$, $Q_{Other-mass}$) in four species seedling leaves. Mean values (± SD) were shown (n = 7). Different letters indicated significant differences between species (Tukey’s test, $P<0.05$). Statistically significant F-ratios were denoted by $^*P<0.05$, $^{**}P<0.01$, $^{***}P<0.001$.

Acknowledgments
The authors would like to thank the Experimental Center of Tropical Forestry, Chinese Academy of Forestry for providing experimental apparatus and help with measurements.

Author Contributions
Conceptualization: Jingchao Tang, Ruimei Cheng, Zuomin Shi, Shirong Liu.
Data curation: Baodi Sun, Zuomin Shi.
Formal analysis: Ruimei Cheng.
Funding acquisition: Zuomin Shi.
Investigation: Jingchao Tang, Baodi Sun.
Methodology: Jingchao Tang, Baodi Sun, Ruimei Cheng, Da Luo.
Project administration: Zuomin Shi, Shirong Liu.
Resources: Zuomin Shi.
Software: Jingchao Tang, Baodi Sun.

Supervision: Zuomin Shi, Da Luo, Shirong Liu, Mauro Centritto.

Validation: Ruimei Cheng, Da Luo, Mauro Centritto.

Visualization: Baodi Sun.

Writing – original draft: Jingchao Tang.

Writing – review & editing: Ruimei Cheng, Zuomin Shi, Shirong Liu, Mauro Centritto.

References

1. Field C, Mooney HA. The photosynthesis-nitrogen relationship in wild plants. In: Givnish TJ (eds) On the Economy of Plant Form and Function: Cambridge University Press, Cambridge. 1986; pp: 25–55.

2. Baloff S, Islam S, Kavoosi G, Kolhebarin B, Juhasz A, et al. How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels. Plos One. 2018; 13: e0190269. https://doi.org/10.1371/journal.pone.0190269 PMID: 29320529

3. Warren CR, Adams MA. Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. Plant Cell Environ. 2006; 29: 192–201. PMID: 17080635

4. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, et al. The worldwide leaf economics spectrum. Nature. 2004; 428: 821–827. https://doi.org/10.1038/nature02403 PMID: 15103368

5. Hikosaka K. Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance. J Plant Res. 2004; 117: 481–494. https://doi.org/10.1007/s10265-004-0174-2 PMID: 15583974

6. Hikosaka K. Mechanisms underlying interspecific variation in photosynthetic capacity across wild plant species. Plant Biotechnology. 2010; 27: 223–229.

7. Harris W, Baker MJ, Williams WM. Population dynamics and competition. White Clover Wallingford, UK: CAB International. 1987; 205–297.

8. Chen LY, Zhao J, Zhang RY, Wang SM. Effects of nitrogen and phosphorus fertilization on legumes in Potentilla fruticosa shrub in alpine meadow. Ecol Sci, 2012; 9: 273–281.

9. Novriyanti E, Watanabe M, Makoto K, Takeda T, Hashidoko Y, et al. Photosynthetic nitrogen and water use efficiency of acacia and eucalypt seedlings as afforestation species. Photosynthetica. 2012; 50: 94–95.

10. Zhu JT, Li XY, Zhang XM, Yu Q, Lin LS. Leaf nitrogen allocation and partitioning in three groundwater-dependent herbaceous species in a hyper-arid desert region of north-western China. Aus J Bot. 2012; 60: 61–67.

11. Niinemets Ü, Tenhunen JD. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ. 1997; 20: 845–866.

12. Evans JR. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia. 1989; 78: 9–19. https://doi.org/10.1007/BF00377192 PMID: 28311896

13. Farquhar GD, von Caemmerer S, Berry JA. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta. 1980; 154: 78–90. https://doi.org/10.1007/BF00386231 PMID: 24306196

14. Qing H, Cai Y, Xiao Y, Yao YH, An SQ. Leaf nitrogen partition between photosynthesis and structural defense in invasive and native tall form Spartina alterniflora populations: effects of nitrogen treatments. Biol Invasions. 2012; 14: 2039–2048.

15. Hikosaka K, Shigeno A. The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity. Oecologia. 2009; 160: 443–451. https://doi.org/10.1007/s00442-009-1315-z PMID: 19288136

16. Chen L, Dong T, Duan B. Sex-specific carbon and nitrogen partitioning under N deposition in Populus cathayana. Trees. 2014; 28: 793–806.
18. Onoda Y, Wright JR, Evans JR, Hikosaka K, Kitajima K, et al. Physiological and structural tradeoffs underlining the leaf economics spectrum. New Phytol. 2017; 214: 1447–1463. https://doi.org/10.1111/nph.14496 PMID: 28295374

19. Onoda Y, Hikosaka K, Hirose T. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Funct Ecol. 2004; 18: 419–425.

20. Takashima T, Hikosaka K, Hirose T. Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ. 2004; 27: 1047–1054.

21. Harrison MT, Edwards EJ, Farquhar GD, Nicotra, AB, et al. Nitrogen in cell walls of sclerophyllous leaves accounts for little of the variation in photosynthetic nitrogen-use efficiency. Plant Cell Environ. 2009; 32: 259–270. https://doi.org/10.1111/j.1365-3040.2008.01918.x PMID: 19054350

22. Niinemets Ü, Flexas J, Peñuelas J. Evergreens favored by higher responsiveness to increased CO$_2$. Trends Ecol Evol. 2011; 26: 136–142. https://doi.org/10.1016/j.tree.2010.12.012 PMID: 21277042

23. Li Y, Gao Y, Xu X, Shen Q, Guo S. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO$_2$ concentration. J Exp Bot. 2009; 60: 2351–2360. https://doi.org/10.1093/jxb/erp127 PMID: 19395387

24. Xu G, Huang TF, Zhang XL, Duan BL. Significance of mesophyll conductance for photosynthetic capacity and water-use efficiency in response to alkaline stress in Populus cathayana seedlings. Photosynthetica. 2013; 51: 438–444.

25. Buckley TN, Warren CR. The role of mesophyll conductance in the economics of nitrogen and water use in photosynthesis. Photosynth res. 2014; 119: 77–88. https://doi.org/10.1007/s11110-013-9825-2 PMID: 23609621

26. Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, et al. Mesophyll diffusion conductance to CO$_2$: an unappreciated central player in photosynthesis. Plant Sci. 2012; 193–194: 70–84. https://doi.org/10.1016/j.plantsci.2012.05.008 PMID: 22794920

27. Nakhoul NL, Davis BA, Romero MF, Boron WF. Effect of expressing the water channel aquaporin-1 on the CO$_2$ permeability of Xenopus oocytes. Am J Physiol. 1998; 274: C543–C548. PMID: 9486145

28. Broeckx LS, Fichot R, Verlinden MS, Ceulemans R. Seasonal variations in photosynthesis, intrinsic water-use efficiency and stable isotope composition of poplar leaves in a short-rotation plantation. Tree Physiol. 2014; 34: 701–715. https://doi.org/10.1093/treephys/tpu057 PMID: 25074859

29. Warren CR, Adams MA. Evergreen trees do not maximize instantaneous photosynthesis. Trends plant sci. 2004; 9: 270–274. https://doi.org/10.1016/j.tplants.2004.04.004 PMID: 15165557

30. Tang JC., Cheng RM, Shi ZM, Xu GX, Liu SR, et al. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China. Plos One. 2018: 13:e0192040. https://doi.org/10.1371/journal.pone.0192040 PMID: 29390007

31. Luo WY, Luo P, Liu YJ. Choice and development of the fine and valuable hardwood tree species in tropical and south subtropical regions of China. Chinese J Tropical Agriculture. 2010; 30: 15–21 (in Chinese).

32. Pang ZH. The study progress of Betula alnoides in China. China J Guangxi Academy Sci. 2011; 27: 243–250 (in Chinese).

33. Yang BG, Liu SL, Hao J, Pang SJ, Zhang P. Research advances on the rare tree of Erythrophleum fordii. Guangxi Forestry Sci. 2017; 46: 165–170 (in Chinese).

34. You Y, Huang X, Zhu H, Liu S, Liang H, et al. Positive interactions between Pinus massoniana and Castanopsis hystrix species in the uneven-aged mixed plantations can produce more ecosystem carbon in subtropical China. Forest Ecol Manag. https://doi.org/10.1016/j.foreco.2017.08.025

35. Wang WX, Shi ZM, Luo D, Liu SR, Lu LH. Characteristics of soil microbial biomass and community composition in three types of plantations in southern subtropical area of China. Chinese J Applied Ecol. 2013; 24: 1784–1792 (in Chinese).

36. Tang J, Shi ZM, Luo D, Liu SR. Photosynthetic nitrogen-use efficiency of Manglietia glauca seedling leaves under different shading levels. Acta Ecol Sinica. 2017; 37:7493–7502 (in Chinese).

37. Zhang L, Chen X, Wen D. Interactive effects of rising CO$_2$ and elevated nitrogen and phosphorus on nitrogen allocation in invasive weeds Mikania micrantha and Chromolaena odorata. Biol Invasions. 2016; 18: 1391–1407.

38. Feng QH, Cheng RM, Shi ZM, Liu SR, Wang WX, et al. Response of Rumex dentatus foliar nitrogen and its allocation to altitudinal gradients along Balang Mountain, Sichuan, China. Chinese J Plant Ecol. 2013; 37: 591–600 (in Chinese).

39. Loreto F, Di Marco G, Tricoli D, Sharkey TD. Measurements of mesophyll conductance, photosynthetic electron transport and alternative electron sinks of field grown wheat leaves. Photosynth Res. 1994; 41: 397–403. https://doi.org/10.1007/BF02183042 PMID: 24310154
40. Loreto F, Tsonev T, Centritto M. The impact of blue light on leaf mesophyll conductance. J Eep Bot. 2009; 112:1–8.

41. Harley PC, Loreto F, Di Marco G, Sharkey TD. Theoretical considerations when estimating the mesophyll conductance to CO$_2$ flux by analysis of the response of photosynthesis to CO$_2$. Plant Physiol. 1992; 98: 1429–1436. PMID: 16668811

42. Li Y, Ren BB, Ding L, Shen QR, Peng SB, Guo SW. Does chloroplast size influence photosynthetic nitrogen use efficiency?. PloS One. 2013; 8: e62036. https://doi.org/10.1371/journal.pone.0062036 PMID: 23620801

43. Sorrentino G, Haworth M, Wahbi S, Mahmood T, Zuomin S, Centritto M. Abscisic acid induces rapid reductions in mesophyll conductance to carbon dioxide. PloS One. 2016; 11: e0148554. https://doi.org/10.1371/journal.pone.0148554 PMID: 28682904

44. Momayyzei M, Guy RD. Blue light differentially represses mesophyll conductance in high vs low latitude genotypes of Populus trichocarpa. J Plant Physiol. 2017; 213: 122–128. https://doi.org/10.1016/j.jplph.2017.03.006 PMID: 28364640

45. Wang X, Du T, Huang J, Peng S, Xiong D. Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice (Oryza sativa). J Eep Bot. 2018; 69: 4033–4045.

46. Bernacchi CJ, Singsaas EL. Pimentel C, Portis JAR, Long SP. Improved temperature response functions for models of rubisco-limited photosynthesis. Plant Cell Environ. 2001; 24: 253–259.

47. Ethier GJ, Livingston NJ. On the need to incorporate sensitivity to CO$_2$ transfer conductance into the farquhar-von caemmerer-berry leaf photosynthesis model. Plant Cell Environ. 2004; 27: 137–153.

48. Gu LH, Pallardy SG, Tu K, Law BE, Wullschleger SD. Reliable estimation of biochemical parameters from C$_3$ leaf photosynthesis-intercellular carbon dioxide response curves. Plant Cell Environ. 2010; 33: 1852–1874. https://doi.org/10.1111/j.1365-3040.2010.02192.x PMID: 20561254

49. Sharkey TD, Bernacchi CJ. Farquhar GD, Singsaas EL. Fitting photosynthetic carbon dioxide response curves for C$_4$ leaves. Plant Cell Environ. 2007; 30: 1035–1040. https://doi.org/10.1111/j.1365-3040.2007.01710.x PMID: 17661745

50. Loustau D, Brahim MB, Gaudillère JP, Dreyer E. Photosynthetic responses to phosphorus nutrition in two-year-old maritime pine seedlings. Tree Physiol. 1999; 19: 707–715. PMID: 12651309

51. Grasai G, Magnani F. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ. 2005; 28: 834–849.

52. Tomás M, Flexas J, Copolovic I, Galmés J, Hallik L, et al. Importance of leaf anatomy in determining mesophyll diffusion conductance to CO$_2$ across species: quantitative limitations and scaling up by models. J Eep Bot. 2013; 64: 2269–2281.

53. Peguero-Pina JJ, Sisó S, Flexas J, Galmés J, Niinemets Ü, et al. Coordinated modifications in mesophyll conductance, photosynthetic potentials and leaf nitrogen contribute to explain the large variation in foliage net assimilation rates across Quercus ilex provenances. Tree Physiol. 2017; 37: 1084–1094. https://doi.org/10.1093/treephys/tpx057 PMID: 28541538

54. Peguero-Pina JJ., Sisó S, Flexas J, Galmés J, García-Nogales A, et al. Cell-level anatomical characteristics explain high mesophyll conductance and photosynthetic capacity in sclerophyllous Mediterranean oaks. New Phytol. 2017; 214: 1–12.

55. Nha B, Hayes L, Scafaro AP, Atkin OK, Evans JR. Mesophyll conductance does not contribute to greater photosynthetic rate per unit nitrogen in temperate compared with tropical evergreen wet-forest tree leaves. New Phytol. 2018; 218: 1–13.

56. Feng YL, Wang JF, Sang WG. Biomass allocation, morphology and photosynthesis of invasive and noninvasive exotic species grown at four irradiance levels. Acta Oecologica. 2007; 31: 40–47.

57. Bahar NH, Ishida FY, Weersinghe LK, Guerrieri R, O’Sullivan OS, et al. Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru. New Phytol. 2016; https://doi.org/10.1111/nph.14079 PMID: 27389684

58. Yao HS, Zhang YL, Yi XP, Zhang XJ, Fan DY, et al. Diaphloetic leaf movement enhances leaf photosynthetic capacity and photosynthetic use efficiency of light and photosynthetic nitrogen via optimizing nitrogen partitioning among photosynthetic components in cotton (Gossypium hirsutum L.). Plant Biol. 2018; 20: 213–222. https://doi.org/10.1111/jplb.12678 PMID: 29222927

59. Sánchez-Gómez D, Robson TM, Gascó A, Gil-Pelegrín E, Aranda I. Differences in the leaf functional traits of six beech (Fagus sylvatica, L.) populations are reflected in their response to water limitation. Environ Exp Bot. 2013; 87: 110–119.

60. Wright IJ, Reich PB, Cornelissen JH, Falster DS, Garnier E, et al. Assessing the generality of global leaf trait relationships. New phytol. 2005; 166: 485–496. https://doi.org/10.1111/j.1469-8137.2005.01349.x PMID: 15819912
61. Reich PB, Oleksyn J, Wright IJ. Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia. 2009; 160: 207–212. https://doi.org/10.1007/s00442-009-1291-3 PMID: 19212782

62. Hikosaka K, Hirose T. Photosynthetic nitrogen-use efficiency in evergreen broad-leaved woody species coexisting in a warm-temperate forest. Tree Physiol. 2000; 20: 1249–1254. PMID: 12651488

63. Ellsworth DS, Reich PB. Photosynthesis and leaf nitrogen in five Amazonian tree species during early secondary succession. Ecology. 1996; 77: 581–594.

64. Kikuzawa K. A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. Am Nat. 1991; 138: 1250–1263.

65. Robinson DE, Wagner RG, Bell FW, Swanton CJ. Photosynthesis, nitrogen-use efficiency, and water-use efficiency of jack pine seedlings in competition with four boreal forest plant species. Can J Forest Res. 2001; 31: 2014–2025.

66. Moon M, Kang KS, Park IK, Kim T, Kim HS. Effects of leaf nitrogen allocation on the photosynthetic nitrogen-use efficiency of seedlings of three tropical species in Indonesia. J Korean Soc Appl Bi. 2015; 58: 511–519.

67. Qin RM, Zheng YL, Valiente-Banuet A, Callaway RM, Barclay GF, et al. The evolution of increased competitive ability, innate competitive advantages, and novel biochemical weapons act in concert for a tropical invader. New Phytol. 2013; 197: 979–988. https://doi.org/10.1111/nph.12071 PMID: 23252450

68. Ruan J, Haerdter R, Gerendás J. Impact of nitrogen supply on carbon/nitrogen allocation: a case study on amino acids and catechins in green tea [Camellia sinensis (L.) O. Kuntze] plants. Plant Biology. 2010; 12: 724–734. https://doi.org/10.1111/j.1438-8677.2009.00288.x PMID: 20701695

69. Funk JL, Glenwinkel LA, Sack L. Differential allocation to photosynthetic and non-photosynthetic nitrogen fractions among native and invasive species. PloS one.2013; 8: e64502. https://doi.org/10.1371/journal.pone.0064502 PMID: 23700483

70. Stitt M., Schulze ED. Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology, Plant Cell Environ. 1994; 17: 465–487.

71. Warren CR, Adams MA. Distribution of N, Rubisco and photosynthesis in Pinus pinaster and acclimation to light. Plant Cell Environ. 2001; 24: 597–609.

72. Carmo-Silva E, Scales JC, Madgwick PJ, Parry MAJ. Optimizing Rubisco and its regulation for greater resource use efficiency. Plant Cell Environ. 2015; 38: 1817–1832. https://doi.org/10.1111/pea.12425 PMID: 25123951

73. Wright LJ, Cannon K. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Funct Ecol. 2001; 15: 351–359.

74. Onoda Y, Schieving F, Anten NP. Effects of light and nutrient availability on leaf mechanical properties of Plantago major: a conceptual approach. Ann Bot. 2008; 101: 727–736. https://doi.org/10.1093/aob/mcn013 PMID: 18272529

75. Warren CR. Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO\textsubscript{2} transfer. J Exp Bot. 2008; 59:1475–1487. https://doi.org/10.1093/jxb/erm245 PMID: 17975206

76. Scafaro AP, Von CS, Evans JR, Atwell BJ. Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness. Plant Cell Environ. 2011; 34: 1999–2008. https://doi.org/10.1111/j.1365-3040.2011.02398.x PMID: 21752031

77. Piel C, Frak E, Le Roux X, Genty B. Effect of local irradiance on CO\textsubscript{2} transfer conductance of mesophyll in walnut. J Exp Bot. 2002; 53: 2423–2430. PMID: 12432034

78. Tosens T, Niinemets U, Visslap V, Eichelmann H, Diez PC. Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function. Plant Cell Environ. 2012; 35: 839–856. https://doi.org/10.1111/j.1365-3040.2011.02457.x PMID: 22070625