Prevalence of Extended Spectrum Beta Lactamase (ESBL) Producing *Escherichia coli* and *Klebsiella pneumoniae* Isolated from Raw Milk Samples in Al Jazirah State, Sudan

Ali M Badri 1, Ibrahim T Ibrahim 2, Sameer G Mohamed 3, Mohamed I Garbi 2, Ahmed S Kabbashi 2 and Mohamed H Arbab 2

1Molecular Biology Research Lab, International University of Africa, Khartoum, Sudan
2Department of Microbiology, Faculty of Medical Laboratory Sciences, International University of Africa, Khartoum, Sudan
3Medical Laboratory Sciences, International University of Africa, Khartoum, Sudan

Corresponding author: Ali M Badri, Molecular Biology Research Lab, International University of Africa, P.O. Box 2469, Khartoum, Sudan, Tel: +249922233425, E-mail: ali.almhasi@gmail.com

Received date: November 28, 2017; Accepted date: December 15, 2017; Published date: December 22, 2017

Copyright: © 2017 Badri AM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Milk play a major role in human sources of nutrition and remain as the most important prominent in the Sudanese diet. *Escherichia coli* and *Klebsiella pneumoniae* are humans and animals opportunistic pathogens, responsible for a wide range of infections. The aim of this study was to evaluate the quality of the commercial available milk and to detect ESBL producing *E. coli* and *K. pneumoniae* from raw milk samples of cow in Al Jazirah state, Sudan. Seventy fresh row cow milk samples were collected and examined using standard microbiological methods, ESBL detection performed on all the isolates by Ceftazidime screening test, those shows positive results by screening method were subjected to ESBL confirmatory test using Double-Disk Synergy Test and Molecular base detection using conventional PCR. Out of the 70 collected samples, 58 (82.8%) showed positive isolating result, the highest prevalence of the isolates was *K. pneumoniae* 36 (62%) followed by *E. coli* 22 (38%). The most resistance antibiotics against isolates was Ampicillin (98%), ESBL production was detected among 17 out of the 22 isolated *E. coli* (29.3%) and 26 (44.8%) out of the 36 isolated *K. pneumoniae*. The ESBL gene encoding the ESBL isolates was CTX- M gene representing 61% fellows by SHV gene (23%) and TEM gene (10%). ESBL-producing bacteria may also be transferred via waste milk to calves, thus further spreading antibiotic resistance in the farm environment.

Keywords: *E. coli*, *K. pneumonia*, Raw milk; ESBL; Al Jazirah State; Sudan

Introduction

Milk is a major part of human food and plays a prominent role in the Sudanese diet. It's considered as nature's single most complete food; Moreover, its high nutritive value makes it an ideal medium for the rapid multiplication of bacteria, particularly under unhygienic production, production and storage at ambient temperatures [1,2]. Microorganism in raw milk can originate from different sources such as air, milking equipment, feed, soil and grass [3,4]. Largely depends on fecal contamination and the presence of pathogen in feces mainly originates from feed contamination. The presence of pathogenic bacteria in milk is of considerable public health concern, especially for those individuals who still drink raw milk [5]. Enterobacteriaceae are the significant causes of serious infection. *Escherichia coli* and *Klebsiella pneumoniae*, an opportunistic pathogen of humans and animals responsible for a wide range of infections, such as diarrhea, urinary tract infections, pneumoniae, wound infections, septicemia, hemolytic uremic syndrome and nosocomial infections especially meningitis in infants [6,7]. The appearance of ESBL stated in the 1980s and widely distributed in the world [8,9] and conferred increased resistance to beta lactams except carbapenems and cefepimycins [10,11]. ESBLs are plasmid mediated and the genes encoding these enzymes are easily transferable among different bacteria [12]. Most of these plasmids not only contain DNA encoding ESBLs but also carry genes conferring resistance to several non-β-lactam antibiotics [13]. ESBL can hydrolyse penicillins first, second and third-generation cephalosporins and aztreonam (but not cefepimycins or carbapenems). Resistance to beta lactam antibiotics is most commonly found in *E. coli* and *K. pneumoniae*, and today, this resistance mechanism is recognized globally, in the past few years, there has been an increase in the detection of ESBL-producing strains in the general community [14,15]. The antibiotic resistance leads to increased morbidity, mortality and the cost of treating infections, in particular, those caused by ESBL producing bacteria [16]. Microbiological assessments have an important role to play in the dairy industry to protect the public health and can reduce economic losses. The objective of this study was to isolate and identify *E. coli* and *K. pneumoniae* from raw milk samples of cow and to evaluate the antibiotic sensitivity pattern.

Materials and Methods

Study area and sampling

This was a health facility based cross-sectional study, performed from March to August 2017. A Total of 70 raw cow milk samples were collected from different villages in Al Jazirah State-Sudan, all samples were collected aseptically, transported to the laboratory under chilled conditions and processed for microbial analysis.
Isolation and identification of bacteria from raw milk samples

The samples were inoculated into MacConkey's broth tubes (HiMedia, Mumbai, India) and incubated at 370°C for 18-24 h. A loopful inoculum from MacConkey's broth was streaked onto Eosin Methyline Blue (EMB) agar (HiMedia, Mumbai, India) and MacConkey's agar; plates were incubated at 370°C for 18-24 h. After that separation of pure colonies were take place by seeding it onto sterile nutrient agar slants as pure culture and subjected for standard morphological and biochemical tests as well as PCR [17].

Antimicrobial susceptibility testing and ESBL detection

The antimicrobial susceptibility testing of all identified isolates were done according to the criteria of the Clinical and Laboratory Standards Institute method (CLSI). All isolates were screened for ESBL production by using Cefotaxime (CTX 30 μg).

Cefazidime (CAZ 30 μg) and Ceftriaxone (CRO 30 μg). Each isolates which showed resistant to one or more of these antibiotics were confirmed for ESBL production by Double Disk Synergy Test (DDST) recommended by the CLSI guidelines [18].

Molecular detection

DNA for molecular detection was extracted after bacterial lysis according to the extraction protocol prepared by the Community Reference Laboratory for Antimicrobial Resistance, 2009. Briefly, a few colonies taken from fresh culture medium and transferred to phosphate buffered saline (pH 7.3). The suspension was heated at 100°C for 30 min. Boiled suspension was transferred directly on ice. The suspension was then centrifuged at 12,000 rpm for 30 min and the supernatant containing DNA was transferred to new Eppendorf tubes. PCR method was used for resistance encoding genes detection (Table 1). PCR Master mix components, Dream Taq Green PCR Master Mix, Nuclease free water and DNA marker “Gene Ruler” were provided by Thermo Scientific (Lithuania). PCR protocol was described by Community Reference Laboratory for Antimicrobial Resistance, 2009.

Table 1: Primers used for PCR protocols.

Primer name	Sequence (50–30)	PCR product size (bp)
CTX-MF	ATGGCAGYACAGTAARGT	593
CTX-MR	TGGTRAARTGATSACCAGA	937
blaSHV-F	CAAACGCCGGTTATTC	596
blaSHV-R	TTACCGTGTGGCATGCT	857
blaTEM-F	GAGTATCCACATTTTCGT	857
blaTEM-R	ACCAATGCTAAATCCAGTA	857

Table 2: Prevalence of organism contaminating raw cow milk.

All isolated (n=58) were assessed to antibiotics sensitivity test against Ampicillin, Amikacin, Ciprofloxacin, Gentamycin, Cefepime, Imipenem, using Kirby-Bauer disc diffusion method. The most resistance antibiotics tested against isolated were Ampicillin (98%), Cefepime (95%), Ciprofloxacin (91%), followed by Gentamycin (67.5%), Amikacin (63.2%) and Imipenem (19.9%) as described on Table 3.

Table 3: Antibiotic resistance against isolated E. coli and K. pneumoniae.

Antibiotics	% Resistance among bacterial isolates
E. coli	K. pneumoniae
Ampicillin	98
Ciprofloxacin	91
Gentamycin	67.5
Amikacin	63.2
Cefepime	95
Imipenem	19.9

Table 4: Distribution of ESBL strains according to screening and confirmation test.

Discussion

In this study, we screened for ESBL-producing E. coli and K. pneumoniae from raw-cow-milk sample. The results highlighted that 52 isolates were positive for ESBL-producing. ESBL producing E. coli

Citation: Badri AM, Ibrahim IT, Mohamed SG, Garbi MI, Kabbashi AS, et al. (2017) Prevalence of Extended Spectrum Beta Lactamase (ESBL) Producing Escherichia coli and Klebsiella pneumoniae Isolated from Raw Milk Samples in Al Jazirah State, Sudan. Mol Biol 7: 201. doi: 10.4172/2168-9547.1000201
(90%) was the most frequent species; a combination of CTX-M gene representing 61% fellows by SHV gene (23%) and TEM gene (16%). High contamination of raw-cow-milk was also reported by [19-28]. E. coli is accepted as a fecal contamination indicator in foods because of its presence in the intestinal tract. The gastrointestinal tract and the hands of personnel were reported as principal reservoirs of Klebsiella spp. and E. coli [29]. Drug resistance in Enterobacteriaceae has increased dramatically worldwide. This increase is mainly the result of an increased prevalence of ESBL-producing Enterobacteriaceae and has increased the use of last resort antimicrobial drugs [30]. In this study, all of the E. coli and Klebsiella spp. isolates were resistant to ampicillin. Previous studies reported that ampicillin was the least effective among the antimicrobials tested against E. coli [31] and similar findings have been reported in a study of swine K. pneumoniae isolates in China, where 100% of all the isolates were resistant to ampicillin [32]. According to our results, most of the E. coli and Klebsiella spp. isolates were susceptible to imipenem. This result is consistent with those obtained in previous studies [33,34]. The observed resistance of E. coli and Klebsiella spp. isolates to ciprofloxacin was 91% and 89.2%, respectively. High prevalence of ciprofloxacin resistance (84%) has been reported in E. coli in Chinese [35,36]. As resistance to ciprofloxacin emerged, resistance to β lactam antibiotics became prominent. This resistance was largely a result of ESBLs, which mediate resistance to newer β-lactam agents, such as cefazidime, cefotaxime, cefotaxime and aztreonam, that have an oxyamo group [37]. In this study, all isolates were higher resistance than the study conducted in North America by Sader et al. [38]. The use of cephalosporins in food-producing animals could be a selective factor for the appearance of ESBL-producing and multiple-antimicrobial-resistant bacteria in such animals [39]. On the other hand, increasing resistance to third generation cephalosporins (for example, cefotaxime, cefazidime, ceftriaxone) has become a cause for concern about Enterobacteriaceae [40]. In recent years, ESBL-producing Enterobacteriaceae isolates have shifted from the hospital to the community and the environment [41]. ESBL-producing Enterobacteriaceae have been recovered from different sources in the community, including cattle, chickens, pigs, raw milk and lettuce [42-44]. Recent study from India reported that a substantial number of tap water samples were contaminated with carbapenemase blaNDM-1 producing organisms [45]. Most of the studies on this subject have been conducted in developed countries, but the major epicenters of ESBL expressing bacteria are located in Asia, Africa and the Middle East [46].

However, both milk and milk products the methods of production, handling, transportation and marketing of these products are entirely depend upon traditional system. Such system could pose favorable environment for bacterial contamination. The unclean hands of worker, poor quality of milk, unhygienic conditions of manufacturing unit, inferior quality of material used and water supplied for washing the utensils could be the source of accelerating the bacterial contamination of milk products and the post manufacturing contamination. [47-51]. However, there remains a need for continued surveillance and judicious use of these antibiotics. The increasing prevalence of resistance in the isolates from animal origin may have important therapeutic implications. Thus, monitoring of ESBL-producing enter bacteria should be continued at various level (animals, human and environment), should be reconsidered because it does not only contribute to the spread of pathogenic bacteria but also is a vehicle to spread antibiotic resistance. While investigating the factors that contribute to their selection and dissemination.

Conclusion

The results obtained in this study concluded that the milk available for consumer have a high bacterial contamination. Thus, the results of the present study warn the need for stricter preventive measures. For this, regular sterilization of dairy equipment, washing of utensils, milkers’ hands, udders, eradication of diseased animals, pasteurization/boiling of milk is required before collection and distribution for consumption and product making. The magnitude of the problem of bacterial contamination deserves more elaborative studies from the point of production of milk and milk products to the point of consumption and at all intermediary levels. Thus present study suggests isolating and characterizing the E. coli and Klebsiella spp. which may cause the pathogenicity in milk products.

Acknowledgement

We are grateful to prof. Kamal Mohamed Obeid, Dr Mohaned Altayb Albager and Department of Microbiology, Faculty of Medical Laboratory Sciences, International University of Africa, Khartoum, Sudan.

References

1. Kim H, Hardy J, Novuk G, Ramet JP, Weber F (1983) Off-tastes in raw and reconstituted milk. FAO Animal Production and Health 35: 2-5.

2. OECD (2005) Dairy policy reform and trade liberalization. Organization for economic co-operation and development (OECD publishing) 98.

3. Torkar KG, Teger SG (2008) The microbiological quality of raw milk after introducing the two day’s milk collecting system. Acta Agri Slovenia 92: 61-74.

4. Parekh TS, Subhash R (2008) Molecular and bacteriological examination of milk from different milch animals with special references to coliforms. Curr Res Bacterial 1: 56-63.

5. Riser ET (1998) Public health concerns. In: Edited by Marth EH and Steele JL. Applied Dairy Microbiology (Marcel Dekker, Inc) New York, pp: 263-403.

6. Struelens MJ, Denis O, Rodriguez VH (2004) Microbiology of nosocomial infections: Progress and challenges. Microbes Infect 6: 1043-1048.

7. Slama KB, Jouini A, Salmi RS, Somalo S, Saenz Y, et al. (2010) Prevalence of broad-spectrum cephalosporin-resistant Escherichia coli isolates in food samples Tunisia and characterization of integrons and antimicrobial resistance mechanisms implicated. Int J Food Microbiol 137: 281286.

8. Nkoth H, Shah P, Kcmerny V, Antal M, Mitsuhashi S (1983) Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 11: 315-317.

9. Bradford PA (2001) Extended-spectrum β-lactamases in the 21st century: Characterization, epidemiology and detection of this important resistance threat. Clin Microbiol Rev 14: 933-951.

10. Patterson JE (2001) Antibiotic utilization: Is there an effect on antimicrobial resistance? Chest 119: 426-430.

11. Masterton R, Drusano G, Paterson DL, Park G (2003) Appropriate antimicrobial treatment in nosocomial infections—the clinical challenges. J Hosp Infect 55: 1-12.

12. Todar K (2012) Bacterial resistance to antibiotics. The microbial world. Lectures in microbiology, University of Wisconsin-Madison.

13. Rankin DJ, Svara F (2011) The evolution of plasmid-carried antibiotic resistance. BMC Evol Biol 11: 1471-2148.

14. Jarlier V, Nicolas MH, Fournier G (1988) Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in...
Enterobacteriaceae: Hospital prevalence and susceptibility patterns. Rev Infect Dis 10: 867-878.

15. Mesa RJ, Blanc V, Blanch AR, Cortés P, González JJ, et al. (2006) Extended-spectrum β-lactamase-producing Enterobacteriaceae in different environments (humans, food, animal farms and sewage) Antimicrob Chemother 58: 211-215.

16. EFSA (2011) Scientific opinion on the public health risks of bacterial strains producing extended-spectrum-lactamases and/or Amp C-lactamases in food and food-producing animals. EFSA J 9: 3232-2417.

17. Crucickshank R, Duguid JP, Marmion BP, Swain RH (1975) Medical microbiology (12th edn.). Churchill, Livingstone Publication, Edinburgh.

18. Clinical and Laboratory Standards Institute (2015) Performance standards for antimicrobial disk susceptibility tests: Informational supplement.

19. Bradford PA, Petersen PJ, Fingerman IM, White DG (1999) Characterization of expanded-spectrum cephalosporin resistance in E. coli isolates associated with bovine calf diarrheal disease. J Antimicrob Chemother 44: 607-610.

20. Wittum TE, Mollenkopf DF, Cortes JC, Kornfield MS, Mathews JL, et al. (1972) Studies on the microflora and source of origin, Lyallpur.

21. Ahmed AM, Sallam SS (1991) Prevalence of E. coli serotypes in raw milk in Pakistan, Dairy Technology in Pakistan. PARC, Islamabad.

22. Hanjra SH, Khan BB (1989) Market quality of milk in Pakistan. J Dairy Res 25: 111-114.

23. Khurshid A, Saleem A, Samaan M (1989) Prevalence of enterobacteria in different environments (humans, food, animal farms and sewage)Antimicrob Chemother 58: 211-215.

24. Hanjra SH, Khan BB (1989) Market quality of milk in Pakistan. Dairy Technology in Pakistan. PARC, Islamabad.

25. Ahmed AM (1986) Antimicrobial resistance in developing countries. Part I: Recent trends and current status. Lancet Infect Dis 5: 481-93.

26. Ramchandani M, Manges AR, Debraay C, Smith SP, Johnson JR, et al. (2005) Possible animal origin of human-associated, multidrug-resistant, uropathogenic Escherichia coli. Clin Infect Dis 40: 251-257.

27. Jordan NJ, Garvey AW, Lloyd-Price J, de la Rua D, Lu F, et al. (2009) Escherichia coli isolates from broiler chicken meat, broiler chickens, pork and pig share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infection. Foodborne Pathog Dis 6: 537-47.

28. Vincent C, Boerlin P, Daignault D, Dozois CM, Dutil L, et al. (2010) Food reservoir for Escherichia coli causing urinary tract infections. Emerg Infect Dis 16: 88-95.

29. Walsh TR, Weeks J, Livermore DM, Toleman MA (2011) Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: An environmental point prevalence study. Lancet Infect Dis 11: 355-362.

30. Iham I (2012) Extended-spectrumbeta-lactamase producing enterobacteriaceae epidemiology, risk factors and duration of carriage.

31. Bhat JV, Sethna K, Fernandes F (1948) Chemical and microbiological studies on mawa. Indian J Dairy Sci 1: 49-58.

32. Marrier R (1973) An outbreak of enteropathogenic E. coli food borne disease traced to imported French cheese. Lancet, pp: 1376-1378.

33. Ramchandani M, Manges AR, Debraay C, Smith SP, Johnson JR, et al. (2005) Possible animal origin of human-associated, multidrug-resistant, uropathogenic Escherichia coli. Clin Infect Dis 40: 251-257.

34. Kuzucu C, Yigit F, Goktas D, Lirniyanli M, Porsbo LJ, et al. (2010) Escherichia coli isolates from broiler chicken meat, broiler chickens, pork and pig share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infection. Foodborne Pathog Dis 6: 537-47.

35. Correia AF, Andrade FA, dos Santos ES, Cabral RF, Silva RT, et al. (2011) Antimicrobial resistance in developing countries. Part I: Recent trends and current status. Lancet Infect Dis 5: 481-93.

36. Ramchandani M, Manges AR, Debraay C, Smith SP, Johnson JR, et al. (2005) Possible animal origin of human-associated, multidrug-resistant, uropathogenic Escherichia coli. Clin Infect Dis 40: 251-257.

37. Jordan NJ, Garvey AW, Lloyd-Price J, de la Rua D, Lu F, et al. (2009) Escherichia coli isolates from broiler chicken meat, broiler chickens, pork and pig share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infection. Emerg Infect Dis 16: 88-95.

38. Walsh TR, Weeks J, Livermore DM, Toleman MA (2011) Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: An environmental point prevalence study. Lancet Infect Dis 11: 355-362.

39. Iham I (2012) Extended-spectrumbeta-lactamase producing enterobacteriaceae epidemiology, risk factors and duration of carriage.

40. Bhat JV, Sethna K, Fernandes F (1948) Chemical and microbiological studies on mawa. Indian J Dairy Sci 1: 49-58.

41. Marrier R (1973) An outbreak of enteropathogenic E. coli food borne disease traced to imported French cheese. Lancet, pp: 1376-1378.

42. Masud T, Athar IH, Chishti MA (1988) Microbiological studies on indigenous dahi with special reference to public health. JAHP, pp: 8-13.