THE FINITELY GENERATED HAUSDORFF SPECTRA OF A FAMILY OF PRO-p GROUPS

IKER DE LAS HERAS AND ANITHA THILLAISUNDARAM

Abstract. Recently the first example of a family of pro-p groups, for p a prime, with full normal Hausdorff spectrum was constructed. In this paper we further investigate this family by computing their finitely generated Hausdorff spectrum with respect to each of the five standard filtration series: the p-power series, the iterated p-power series, the lower p-series, the Frattini series and the dimension subgroup series. Here the finitely generated Hausdorff spectra of these groups consist of infinitely many rational numbers, and their computation requires a rather technical approach. This result also gives further evidence to the non-existence of a finitely generated pro-p group with uncountable finitely generated Hausdorff spectrum.

1. Introduction

Let Γ be a countably based infinite profinite group and consider a filtration series S of Γ, i.e. a descending chain $\Gamma = \Gamma_0 \geq \Gamma_1 \geq \cdots$ of open normal subgroups $\Gamma_i \unlhd \Gamma$ with $\bigcap_i \Gamma_i = 1$. These open normal subgroups yield a base of neighbourhoods of the identity and induce a translation-invariant metric on Γ which is given by $d_S(x,y) = \inf \{|\Gamma : \Gamma_i|^{-1} | x \equiv y \pmod{\Gamma_i}\}$, for $x,y \in \Gamma$. This gives, for a subset $U \subseteq \Gamma$, the Hausdorff dimension $hdim^S_\Gamma(U) \in [0,1]$ with respect to the filtration series S.

Recently there has been much interest concerning Hausdorff dimensions in profinite groups, starting with the pioneering work of Abercrombie [1] and of Barnea and Shalev [4]; see for example [2, 3, 5–9, 12, 13, 15–18, 21, 24]. Barnea and Shalev [4] proved the following group-theoretic formula of the Hausdorff dimension with respect to S of a closed subgroup H of Γ as a logarithmic density:

$$hdim^S_\Gamma(H) = \lim_{i \to \infty} \log |H^{\Gamma_i} : \Gamma^{\Gamma_i}|,$$

where $\lim_{i \to \infty} a_i$ is the lower limit of a sequence $(a_i)_{i \in \mathbb{N}}$ in \mathbb{R}.

As observed in [21], the Hausdorff dimension function depends on the choice of the filtration series S, hence for a pro-p group Γ, where p is a prime, it makes sense to restrict our attention to the five standard filtration series below:
• the \(p \)-power series \(P \) of \(\Gamma \), which is given by
 \[P: \Gamma^p = \langle x^p \mid x \in \Gamma \rangle, \quad i \geq 0; \]
• the \textit{iterated} \(p \)-power series \(I \) of \(\Gamma \), which is defined by
 \[I: I_0(\Gamma) = \Gamma, \quad I_i(\Gamma) = I_{i-1}(\Gamma)^p, \quad \text{for } i \geq 1; \]
• the \textit{lower} \(p \)-series \(L \) (or lower \(p \)-central series) of \(\Gamma \), which is given recursively by
 \[L: P_0(\Gamma) = \Gamma, \quad P_i(\Gamma) = P_{i-1}(\Gamma)^p [P_{i-1}(\Gamma), \Gamma] \quad \text{for } i \geq 1; \]
• the \textit{Frattini series} \(F \) of \(\Gamma \), which is given recursively by
 \[F: \Phi_0(\Gamma) = \Gamma, \quad \Phi_i(\Gamma) = \Phi_{i-1}(\Gamma)^p [\Phi_{i-1}(\Gamma), \Phi_{i-1}(\Gamma)] \quad \text{for } i \geq 1; \]
• the \textit{(modular) dimension subgroup series} \(D \) (or Jennings series or Zassenhaus series) of \(\Gamma \), which is defined recursively by
 \[D: D_0(\Gamma) = \Gamma, \quad D_i(\Gamma) = D_{\lceil i/p \rceil}(\Gamma)^p \prod_{0 \leq j < i} [D_j(\Gamma), D_{i-j}(\Gamma)] \quad \text{for } i \geq 1. \]

Recall for a pro-2 group \(\Gamma \), the iterated 2-power series coincides with the Frattini series.

It is often of interest to study the collection of Hausdorff dimensions in a given profinite group \(\Gamma \), which gives rise to the following definition: the \textit{Hausdorff spectrum} of \(\Gamma \), with respect to \(S \), is
\[\text{hspec}^S(\Gamma) = \{ \text{hdim}^S_H(\Gamma) \mid H \subseteq \Gamma \subseteq [0, 1] \}, \]
where \(H \) runs through all closed subgroups of \(\Gamma \). There are two well-known restricted Hausdorff spectra: the normal Hausdorff spectrum and the finitely generated Hausdorff spectrum. Here the \textit{normal Hausdorff spectrum} of \(\Gamma \) with respect to \(S \) is
\[\text{hspec}^S_{\text{normal}}(\Gamma) = \{ \text{hdim}^S_H(\Gamma) \mid H \subseteq \Gamma \}; \]
and the \textit{finitely generated Hausdorff spectrum} with respect to \(S \) is defined as
\[\text{hspec}^S_{\text{fg}}(\Gamma) = \{ \text{hdim}^S_H(\Gamma) \mid H \subseteq \Gamma \text{ and } H \text{ finitely generated} \}. \]

Over the past few years, the study of the normal Hausdorff spectra of finitely generated pro-\(p \) groups has received quite a bit of attention. Indeed, the first examples of finitely generated pro-\(p \) groups with infinite normal Hausdorff spectra, with respect to the series \(P, I, L, F, D \) were constructed in [20], and the first family of finitely generated pro-\(p \) groups \(\mathcal{G}(p) \) with full normal Hausdorff spectra \([0, 1]\) was constructed in [6] and [7].

Those pro-\(p \) groups \(\mathcal{G}(p) \) are 2-generated extensions of an elementary abelian pro-\(p \) group by the pro-\(p \) wreath product \(W = C_p \wr \mathbb{Z}_p = \varprojlim_{k \in \mathbb{N}} C_p \wr C_{p^k} \). In this paper, we further investigate the pro-\(p \) groups \(\mathcal{G}(p) \) by computing their finitely generated Hausdorff spectra. As with the normal Hausdorff spectra, computations of the finitely generated Hausdorff spectra have only recently appeared in the literature; see [14, 15, 20]. We prove the following:

\begin{theorem}
For \(p \) a prime, the pro-\(p \) group \(\mathcal{G}(p) \) satisfies
\[\text{hspec}^S_{\text{fg}}(\mathcal{G}(p)) = \{ d/p^l \mid l \in \mathbb{N}, 0 \leq d \leq p^l \} \]
for \(S \in \{ L, D, P, I, F, M \} \).
\end{theorem}
Here M denotes a natural filtration series that arises from the construction of $\mathcal{G}(p)$; see Section 2 for details.

We note that for $p = 2$ the construction of the pro-2 group $\mathcal{G}(2)$ (which was given in [7]) in the above family is different from the odd prime case (given in [6]); see Section 2 for precise details.

Now to prove Theorem 1.1 we will focus solely on the pro-2 group $\mathcal{G}(2)$. This is because a more delicate treatment is required for $\mathcal{G}(2)$, as opposed to the odd p case. We will see that the proof of Theorem 1.1 for the pro-2 group $\mathcal{G}(2)$ simplifies in a straightforward manner for the pro-p groups $\mathcal{G}(p)$ for odd p, except for the iterated p-power series I, which requires a separate treatment. This will be done in Section 5.

As seen below, the computation of the finitely generated Hausdorff spectra in general requires a greater level of technical machinery, as opposed to the computation of the normal Hausdorff spectra. In particular, precise information about the terms of the filtration series is required. As illustrated in the proof of Theorem 1.1, we introduce the idea of counting in what we call blocks.

In view of the main result of this paper and of other results concerning the finitely generated Hausdorff spectra, it is natural to ask the following:

Problem 1.2. Does there exist a finitely generated pro-p group with uncountable finitely generated Hausdorff spectra with respect to one or several of the five standard filtration series?

Organisation. In Section 2 we recall the construction of the pro-p groups $\mathcal{G}(p)$, for p a prime, and we recall several properties of $\mathcal{G}(2)$. In Section 3 we determine, as precisely as possible, the 2-power series and the Frattini series of $\mathcal{G}(2)$, before computing in Section 4 the finitely generated Hausdorff spectra of $\mathcal{G}(2)$ with respect to M, L, D, P and F. Finally in Section 5 we compute the finitely generated Hausdorff spectra of $\mathcal{G}(p)$, for odd primes p, with respect to the iterated p-power series I, which completes the proof of Theorem 1.1.

Notation. All subgroups of profinite groups are generally taken to be closed subgroups. We use the notation \leq_o and \leq_c to denote open and closed subgroups respectively. Throughout, we use left-normed commutators, for example, $[x, y, z] = [[x, y], z]$.

2. The Family of pro-p Groups $\mathcal{G}(p)$

Let p be any prime. For $k \in \mathbb{N}$, let $\langle \hat{x}_k \rangle \cong C_{p^k}$ and $\langle \hat{y}_k \rangle \cong C_p$. Define

$$W_k = \langle \hat{y}_k \rangle \lhd \langle \hat{x}_k \rangle \cong B_k \rtimes \langle \hat{x}_k \rangle$$

where

$$B_k = \prod_{i=0}^{p^k-1} \langle \hat{y}_k^{i^k} \rangle \cong C_{p^k}.$$

The structural results for the finite wreath products W_k transfer naturally to the inverse limit $W \cong \lim_{k} W_k$ which is the pro-p wreath product

$$W = \langle \hat{x}, \hat{y} \rangle = B \rtimes \langle \hat{x} \rangle \cong C_p \hat{\rtimes} \mathbb{Z}_p$$

with top group $\langle \hat{x} \rangle \cong \mathbb{Z}_p$ and base group $B = \prod_{i \in \mathbb{Z}} \langle \hat{y}_i^{i^k} \rangle \cong C_p^{\mathbb{Z}}$. We refer the reader to [20, §2.4] for further results concerning the groups W_k and W.

Let $F_2 = \langle a, b \rangle$ be the free pro-p group on two generators and let $k \in \mathbb{N}$. There exists a closed normal subgroup $R \leq F_2$, respectively $R_k \leq F_2$, such that

$$F_2/R \cong W, \quad \text{respectively} \quad F_2/R_k \cong W_k = C_p \lhd C_{p^k}.$$
with a corresponding to \hat{x}, respectively \hat{x}_k, and b corresponding to \hat{y}, respectively \hat{y}_k.

Let $Y \geq R$ be the closed normal subgroup of F_2 such that Y/R is the pre-image of B in F_2/R, and let $Y_k \geq R_k$ be the closed normal subgroup of F_2 such that Y_k/R_k is the pre-image of B_k in F_2/R_k.

As mentioned in the introduction, the definition of the pro-p groups $\mathfrak{G}(p)$, for p an odd prime, is slightly different from the case $p = 2$. For an odd prime p, the pro-p group $\mathfrak{G} := \mathfrak{G}(p)$ is defined as follows:

$$\mathfrak{G} = F_2/N \quad \text{where} \quad N = [R, Y]^{Y_p}.$$

For $k \in \mathbb{N}$ we set

$$\mathfrak{G}_k = F_2/N_k \quad \text{where} \quad N_k = [R_k, Y_k]^{Y_k} \langle a^{p_k} \rangle^{F_2}.$$

We denote by H and Z the closed normal subgroups of \mathfrak{G} corresponding to Y/N and R/N, and we denote by H_k and Z_k the closed normal subgroups of \mathfrak{G}_k corresponding to Y_k/N_k and R_k/N_k. We denote the images of a, b in \mathfrak{G}, respectively in \mathfrak{G}_k, by x, y, respectively x_k, y_k, so that $\mathfrak{G} = \langle x, y \rangle$ and $\mathfrak{G}_k = \langle x_k, y_k \rangle$.

The groups \mathfrak{G}_k are finite for all $k \in \mathbb{N}$ and they form an inverse system giving $\varprojlim k \mathfrak{G}_k = \mathfrak{G}$. Furthermore we have $[H, Z] = H^p = 1$, respectively $[H_k, Z_k] = H_k^p = 1$.

For the case $p = 2$, we set

$$N = [R, Y]^{R^2},$$

respectively

$$N_k = [R_k, Y_k]^{R_k^2} \langle a^{2^k} \rangle^{F_2},$$

and, for convenience we write $G := \mathfrak{G}(2)$, and define

$$G = F_2/N, \quad \text{respectively} \quad G_k = F_2/N_k.$$

As in the odd prime case, we denote by H and Z the closed normal subgroups of G corresponding to Y/N and R/N, and we denote by H_k and Z_k the closed normal subgroups of G_k corresponding to Y_k/N_k and R_k/N_k. Likewise, we denote the images of a, b in G, respectively in G_k, by x, y, respectively x_k, y_k, so that $G = \langle x, y \rangle$ and $G_k = \langle x_k, y_k \rangle$.

Similarly, we have that the groups G_k are finite for all $k \in \mathbb{N}$ and that $\varprojlim k G_k = G$. Here we have $[H, Z] = Z^2 = 1$, respectively $[H_k, Z_k] = Z_k^2 = 1$.

We recall the following definition from [20]: for a countably based infinite pro-p group Γ, equipped with a filtration series \mathfrak{S}: $\Gamma = \Gamma_0 \geq \Gamma_1 \geq \cdots$, and a closed subgroup $H \leq_\mathfrak{S} \Gamma$, we say that H has strong Hausdorff dimension in Γ with respect to \mathfrak{S} if

$$\text{hdim}^\mathfrak{S} \Gamma (H) = \lim_{i \to \infty} \frac{\log_p |H \Gamma_i : \Gamma_i|}{\log_p |\Gamma : \Gamma_i|}$$

is given by a proper limit.

From [6] and [7], we have that for these pro-p groups $\mathfrak{G}(p)$, for p a prime, the subgroup Z has strong Hausdorff dimension 1 with respect to the filtration series \mathcal{M}, \mathcal{L}, \mathcal{D}, \mathcal{P}, \mathcal{J}, and \mathcal{F}. Here we recall that $\mathcal{M} : M_0 \geq M_1 \geq \cdots$ stands for the natural filtration series of $\mathfrak{G}(p)$ where each M_i is the subgroup of $\mathfrak{G}(p)$ corresponding to N_i/N, and here $N_0 = F_2$.

Recall that for $p = 2$, we write $G = \mathfrak{G}(2)$. As observed above, owing to the fact that the subgroup H of G is not of exponent 2, a more delicate treatment is required for G, as opposed to the odd p case. Also, as mentioned in the introduction,
it turns out that the proof of the finitely generated Hausdorff spectra for the pro-2 group G, with respect to M, L, D, P, F, generalises immediately to the pro-p groups $\Gamma(p)$, for odd primes p. Therefore for the rest of this section and the next two, we focus solely on the pro-2 group G, and only in Section 5 do we explicitly consider the pro-p groups $\Gamma(p)$, for odd p, for computing the finitely generated Hausdorff spectrum of $\Gamma(p)$ with respect to the iterated p-power series \mathcal{F}.

2.1. Properties of G. Here we recall some properties of the pro-2 group G from [7, Sec. 3].

For $k \in \mathbb{N}$, the logarithmic order of G_k is

$$\log_2 |G_k| = k + 2^{k+1} + \left(\frac{2^k}{2}\right) = k + 2^{2k-1} + 2^{k+1} - 2^{k-1},$$

and the nilpotency class of G_k is $2^{k+1} - 1$. Also we have that $H_k^2 = Z_k$ and, consequently, that $H^2 = Z$. In particular, the exponent of H_k, and of H, is 4.

Further

$$\log_2 |Z : \gamma_i(G) \cap Z| = \begin{cases} \frac{i^2 - 1}{4} & \text{if } i \text{ is odd,} \\ \frac{i^2}{4} & \text{if } i \text{ is even.} \end{cases}$$

In the sequel, we need the following notation, which will be used frequently in the paper. We will denote $c_1 = y$ and $c_i = [y, x, \ldots, x]$ for $i \in \mathbb{N}_{\geq 2}$. For $k \in \mathbb{N}$, we will use the same notation for the corresponding elements in the group G_k. Thus, we will also write $c_1 = y_k$ and $c_i = [y_k, x_k, \ldots, x_k]$ for every $i \in \mathbb{N}_{\geq 2}$, when working in the groups G_k. It will be clear from the context whether we mean G or G_k.

We further write $z_{m,n} = [c_m, c_n]$ for every $m, n \in \mathbb{N}$, and we note the following descriptions for H and Z: $H = \langle c_i \mid i \in \mathbb{N} \rangle$, and $Z = \langle c_i^2, z_{m,n} \mid l, m, n \in \mathbb{N} \text{ with } n < m \rangle$; also for every $i \geq 2$,

$$\gamma_i(G) \cap Z = \langle c_i^2, z_{m,n} \mid l \geq i, 1 \leq n < m, m + n \geq i \rangle.$$

We recall a useful result from [7, Cor. 3.5]:

Lemma 2.1. In the group G, for $m, n \in \mathbb{N}$ we have

$$[z_{m,n}, x^{2k}] = z_{m+2^k,n}z_{m,n+2^k}z_{m+2^k,n+2^k} \quad \text{for every } k \in \mathbb{N}_0.$$

Lastly, we recall terms of the lower 2-series and the dimension subgroup series of G_k from [7 Prop. 3.10 and 3.11]: For $k \in \mathbb{N}$, the length of the lower 2-series of G_k is $2^{k+1} - 1$ and

$$P_0(G_k) = G_k,$$

$$P_1(G_k) = \langle x_k^2, y_k^2 \rangle \gamma_2(G_k),$$

and

$$P_i(G_k) = \begin{cases} \langle x_k^{2^i}, c_i^2 \rangle \gamma_{i+1}(G_k) & \text{for } 2 \leq i \leq 2^{k-1}, \\ \langle x_k^{2^i} \rangle \gamma_{i+1}(G_k) & \text{for } 2^{k-1} + 1 \leq i \leq 2^{k+1} - 1. \end{cases}$$

For $k \in \mathbb{N}$, the length of the dimension subgroup series of G_k is 2^{k+1} and

$$D_i(G_k) = \langle x_k^{2^{(i+1)}} \rangle \gamma_{(i+1)/2}(G_k)^2 \gamma_{i+1}(G_k) \quad \text{for } 0 \leq i \leq 2^{k+1} - 1,$$

where $l(i+1) = [\log_2(i + 1)]$.

3. THE 2-POWER SERIES AND THE FRATTINI SERIES OF G

Below we will precisely determine the terms $G^{2^k} \cap Z$ and $\Phi_k(G)$. For convenience, we recall the following standard commutator identities.

Lemma 3.1. Let $\Gamma = \langle a, b \rangle$ be a group, let p be any prime, and let $r \in \mathbb{N}$. For $u, v \in \Gamma$, let $K(u, v)$ denote the normal closure in Γ of (i) all commutators in $\{u, v\}$ of weight less than p^s and of weight at least 2 in v for $1 \leq s \leq r$. Then

$$(ab)^{p^s} \equiv K_{\langle a, b \rangle} a^{p^s} b^{p^s} [b, a]^{(p^s)^2} \cdots [b, a, p^{s-2}, a]^{(p^s)^{p-1}} [a, b, a^{-1}, a],$$

$${[a^{p^s}, b]} \equiv K_{\langle a, b \rangle} [a, b]^{p^s} [a, b, a]^{(p^s)^2} \cdots [a, b, a, p^{s-2}, a]^{(p^s)^{p-1}} [a, b, a^{-1}, a].$$

Next, for $i, j, k \in \mathbb{N}$, we define the elements

$$w_{i,j,k} = \left[z_{i+1, j, k} x, \cdots, x, z_{i+2, j, k} x, \cdots, x, z_{i+2^k - 2, j, k} x, \cdots, z_{i+2^k - 1, j, k} x, 2^k, \cdots, 1, x\right] z_{i+2^k - 1, j, k} x;$$

and it follows by routine commutator calculus that

$$[c_i, c_j, x, 2^k, \cdots, 1, x] = [c_i, x, 2^k, \cdots, 1, x] [c_j, x, 2^k, \cdots, 1, x] w_{i,j,k}. \quad (3.1)$$

For $k \in \mathbb{N}$, we define the normal subgroup

$$L_k = \langle w_{i,j,k}, z_{m,n} \mid i, j, n \in \mathbb{N}, m \geq 2^k \rangle^G.$$

The significance of this subgroup becomes clear in the next lemma, for which we need the following notation: for every $h \in H$, and referring to Lemma 3.1, we define $d_k(h) \in Z$ as

$$(xh)^{2^k} = x^{2^k} [h, x, 2^{k-1}, x] d_k(h).$$

Additionally, for all $k \in \mathbb{N}$ let

$$Q_k = \langle c_i^2 \mid l \geq 2^{k-1} \rangle.$$

Lemma 3.2. In the pro-2 group G, for $k \in \mathbb{N}$,

(i) for every $z \in Z$, we have

$$[z, x, 2^k, \cdots, 1, x] \in L_k Q_k;$$

(ii) for $h_1, h_2 \in H$, we have

$$[h_1 h_2, x, 2^k, \cdots, 1, x] \equiv [h_1, x, 2^k, \cdots, 1, x] [h_2, x, 2^k, \cdots, 1, x] \pmod{L_k};$$

(iii) for every $h_1, h_2 \in H$, we have

$$d_k(h_1 h_2) \equiv d_k(h_1) d_k(h_2) \pmod{L_k}.$$

Proof. (i) Take first $m, n \in \mathbb{N}$ with $m > n$. Since L_k is normal in G, we have $[w_{m-1,n,k}, x] \in L_k$. Note also that

$$[w_{m-1,n,k}, x] = [z_{m,n}, x, 2^k, \cdots, 1, x] w_{m,n+1,k} z_{m+2^k - 1,n,2^k - 1}^{-1}, \quad (3.2)$$

so we obtain $[z_{m,n}, x, 2^k, \cdots, 1, x] \in L_k$. From (3.1) we have

$$[c_i^2, x, 2^k, \cdots, 1, x] = [c_i, x, 2^k, \cdots, 1, x]^2 w_{i,i,k} \in L_k Q_k$$

for every $i \in \mathbb{N}$, so part (i) follows.
(ii) For every \(h_1, h_2 \in H \) write
\[
w(h_1, h_2) = \left[[h_1, x, h_2], x, 2^{k-1}, x \right] [h_1, x, x, [h_2, x]] \cdots [h_1, x, h_2, x, 2^{k-1}, x],
\]
so that \(w(c_i, c_j) = w_{i,j,k} \). It is easy to see that \(w \) is bilinear and that \(w(z, h) = w(h, z) = 1 \) for every \(h \in H \) and \(z \in Z \). Moreover, routine computations give
\[
[h_1, h_2, x, 2^{k-1}, x] = [h_1, x, 2^{k-1}, x][h_2, x, 2^{k-1}, x]w(h_1, h_2).
\]
Since every element in \(H \) can be written in the form \(c_{i_1} \cdots c_{i_n} z \) for some \(n \in \mathbb{N} \) and \(z \in Z \), the result follows.

(iii) From Lemma 3.1 we easily deduce that for every \(h \in H \) and \(z \in Z \) we have
\[
d_k(z) = 1 \quad \text{and} \quad d_k(hz) = d_k(h).
\]
Now, for \(h_1, h_2 \in H \), we have
\[
(xh_2h_1)^{2^k} = (xh_2)^{2^k} [h_1, x, h_2, x, 2^{k-1}, x]d_k(h_1)
\]
\[
= x^{2^k} [h_2, x, 2^{k-1}, x][h_1, x, h_2, x, 2^{k-1}, x]d_k(h_1)d_k(h_2).
\]
Here, the first equality holds since \(d_k(h_1) \) is the product of, on the one hand, the element \([h_1, x, 2^{k-1}, x]^2\), and, on the other hand, commutators of weight 2 in \(h_1 \), so writing \(xh_2 \) instead of \(x \) does not change the value of \(d_k(h_1) \). Routine computations give
\[
[h_1, xh_2, 2^{k-1}, x, xh_2] = [h_1, x, 2^{k-1}, x] \prod_{\ell=0}^{2^k-2} [h_1, x, \ell, x, h_2, x, 2^{k-2}-\ell, x].
\]
For \(h_1, h_2 \in H \) we write \(\zeta(h_1, h_2) = \prod_{\ell=0}^{2^k-2} [h_1, x, \ell, x, h_2, x, 2^{k-2}-\ell, x] \in Z \), so that
\[
(xh_2h_1)^{2^k} = x^{2^k} [h_2, x, 2^{k-1}, x][h_1, x, x, 2^{k-1}, x]d_k(h_1)d_k(h_2) \zeta(h_1, h_2).
\]
This shows, by part (ii), that \(d_k(h_1h_2) \equiv d_k(h_1)d_k(h_2) \zeta(h_1, h_2) \pmod{L_k} \), so
\[
\zeta(h_1, h_2) \equiv \zeta(h_2, h_1) \pmod{L_k}, \quad \text{and} \quad \zeta(h, h) \equiv 1 \pmod{L_k}
\]
for every \(h \in H \). Next, notice that
\[
[\zeta(c_i, c_j), x] = \prod_{\ell=0}^{2^k-2} [c_i^\ell, x, \ell, x, c_j, x, 2^{k-1}-\ell, x]
\]
\[
= [c_i^\ell, c_j, x, 2^{k-1}, x] \zeta(c_{i+1}, c_j) ([c_i^\ell, x, 2^{k-1}, x, c_j])^{-1}
\]
\[
\equiv \zeta(c_{i+1}, c_j) \pmod{L_k}.
\]
Since \(\zeta(c_i, c_i) \in L_k \) and \(\zeta(c_i, c_j) \equiv \zeta(c_j, c_i) \pmod{L_k} \), this shows that \(\zeta(c_i, c_j) \in L_k \) for every \(i, j \in \mathbb{N} \). This yields \(d_k(h_1h_2) \equiv d_k(h_1)d_k(h_2) \pmod{L_k} \).

\[\square\]

Proposition 3.3. For \(k \in \mathbb{N} \), the pro-2 group \(G \) satisfies
\[
G^{2^k} \cap Z = L_k Q_k.
\]

Proof. For \(r \in \mathbb{Z} \) and \(h \in H \), we will be considering the expansion of \((x^r h)^{2^k}\), always according to Lemma 3.1. Hence for conciseness, we will refrain from mentioning Lemma 3.1 for the rest of the proof.

From [7, Proof of Thm. 4.4] we know that \(Q_k \gamma_{2^k+1}(G) \leq G^{2^k} \). We now verify that \(L_k \leq G^{2^k} \). Indeed, first observe that, for \(m \geq 2^k \) and \(n \in \mathbb{N} \),
\[
x^{-2^k} (xc_m - 2^{k+1})^{2^k} \equiv c_m \pmod{Z}.
\]
As \(G^{2^k} \) is normal in \(G \), commuting with \(c_n \) yields that we have \(z_{m,n} \in G^{2^k} \). Then we note that
\[
L_k = \langle w_{i,i,k}, z_{m,n} \mid i, n \in \mathbb{N}, m \geq 2^k \rangle^G
\] (3.5)
since, \(w_{i,i+1,k} = 1 \) and, as in Lemma 2.1 we have
\[
[w_{i,j,k}, x] = w_{i+1,j,k} w_{i,j+1,k} w_{i+1,j+1,k}
\]
for every \(i, j \in \mathbb{N} \). Hence it suffices to show that \(w_{i,i,k} \in G^{2^k} \) for \(i \in \mathbb{N} \). From (3.1), we have
\[
x^{-2^k} (xc_i^2)^{2^k} = [c_i^2, x, 2^k^{-1}, x] = c_{2^k+i-1} w_{i,i,k},
\]
from which it follows that \(w_{i,i,k} \in G^{2^k} \), as required.

It remains to show that \(G^{2^k} \cap Z \leq L_k Q_k \). Let \(g = (x^r h)^{2^k} \), with \(r \in \mathbb{Z} \) and \(h \in H \). We first show that \(g \) is, modulo \(L_k Q_k \), a product of elements of the form \((x^{2^m} h)^{2^k}\) with \(m \in \mathbb{N}_0 \), \(s \in \mathbb{Z} \) and \(h^* \in H \). To do this, we show that actually every element of the form \((x^{2^m} h_1)^{t} h_2^{2^k} \), with \(h_1, h_2 \in H \), \(n \in \mathbb{N}_0 \) and \(t \) odd, can be written in that way modulo \(L_k Q_k \). Let \(N \in \mathbb{N} \) be such that \(h_2 \in \gamma_N(G) \). If \(N \geq 2^k \), then
\[
((x^{2^m} h_1)^{t} h_2^{2^k})^{2^k} = (x^{2^m} h_1)^{2^k} [h_2, x, 2^{k + n - 2^k + 1}, x, z],
\]
with \(z \in \gamma_{2^{k+1}}(G) \cap Z \leq L_k Q_k \). Write \(h^* = [h_2, x, 2^{k + n - 2^k + 1}, x] \). Since clearly \(d_k(h^*) \in \gamma_{2^{k+1}}(G) \cap Z \), we have
\[
[h_2, x, 2^{k + n - 2^k + 1}, x] = [h^*, x, 2^{k-1}, x] \equiv x^{-2^k} (x h^*)^{2^k} \pmod{L_k Q_k}.
\]
Suppose now that \(N < 2^k \) and that the assertion follows whenever \(h_2 \) lies in \(\gamma_{N+1}(G) \). Let \(t^* \) be such that \(tt^* \equiv 1 \pmod{4} \). Then,
\[
((x^{2^m} h_1)^{t} h_2^{2^k})^{2^k} = ((x^{2^m} h_1)^{t} (h_2^t)^{t})^{2^k} = ((x^{2^m} h_1 h_2^t)^{t})^{2^k},
\]
with \(h_3 \in \gamma_{N+1}(G) \), and the assertion follows by reverse induction.

Therefore, since \(G \) is the closure of the subgroup consisting of elements of the form \(x^r h \) with \(r \in \mathbb{Z} \) and \(h \in H \), then \(G^{2^k} \) is the closure of the subgroup generated by elements of the form
\[
g = (x h_1)^{t_1 2^k} \cdots (x h_n)^{t_n 2^k} (x^{2^m_1} h_1^*)^{t_{n+1} 2^k} \cdots (x^{2^m_n} h_n^*)^{t_{n+2^k} 2^k}
\]
with \(n, \nu \in \mathbb{N}_0 \), \(m_j \in \mathbb{N} \), \(h_i, h_i^* \in H \) and \(t_i \in \{-1, 1\} \). Now, working modulo \(L_k Q_k \) in the equivalences below, and noting that \(\gamma_{2^{k+1}}(G) \cap Z \leq L_k Q_k \), Lemma 3.2 gives
\[
g = \prod_{i=1}^{n} (x h_i)^{t_i 2^k} \prod_{i=1}^{\nu} (x^{2^m_i} h_i^*)^{t_{i+n+2^k}}
\]
\[
eq \prod_{i=1}^{n} (x^{2^k} [h_i, x, 2^k, 1, x] d_k(h_i))^{t_i} \prod_{i=1}^{\nu} (x^{2^k m_i} [h_i^*, x, 2^k - 2^m, x])^{t_{i+n+2^k}}
\]
\[
eq \prod_{i=1}^{n} x^{t_i 2^k} [h_i^*, x, 2^k, 1, x] d_k(h_i) \prod_{i=1}^{\nu} x^{t_{i+n+2^k m_i}} [h_i^*, x, 2^k - 2^m, x]^{t_{i+n+2^k}} \cdot [h, x, 2^k, 1, x]
\]
\[
eq x^{t 2^k} [hh^*, x, 2^k, 1, x] d_k(h) \pmod{L_k Q_k},
\]
with \(r \in \mathbb{Z} \), \(h \in H \) and \(hh^* \in \gamma_{2^k}(G) \). Since \(d_k(h) \in Z \), it follows that \(g \in Z \) if and only if \(r = 0 \) and \(hh^* \in Z \). Hence \(h \in \gamma_{2^k}(G) Z \), which implies that \(d_k(h) \in L_k \). Further, from Lemma 3.2(i), we have \([hh^*, x, 2^k, 1, x] \in L_k Q_k \). Therefore \(g \equiv 1 \pmod{L_k Q_k} \), as desired.
The next observation will be useful for the next section. Recall that for a filtration series $S : G = S_0 \supseteq S_1 \supseteq \cdots$ of G, we denote by $S \mid_z$ the restriction $S \cap Z : Z = S_0 \cap Z \supseteq S_1 \cap Z \supseteq \cdots$.

Corollary 3.4. For the pro-2 group G and $K \leq_c Z$, we have

$$\operatorname{hdim}_{Z}^{p|z}(K) = \operatorname{hdim}_{Z}^{M|z}(K).$$

Proof. For $k \in \mathbb{N}$, it follows from the construction of G_k that

$$M_k \cap Z = \langle c_{i}^{2}, z_{m,n} \mid l > 2^{k}, m > 2^{k}, n \in \mathbb{N} \rangle \leq G^{2k} \cap Z;$$

compare also [7, Lem. 3.3(ii)]. We claim that

$$L_k Q_k = \langle w_{i,j,k}, [z_{j+1,j,k}, x, z_{2k,n}, c_{i}^{2}, z_{2k,n}, c_{i}^{2}] \mid 1 \leq i \leq 2^{k-1}, 1 \leq j \leq 2^{k-1} - 1, 1 \leq n \leq 2^{k-1} \rangle (M_k \cap Z).$$

Indeed, recall from (3.5) that

$$L_k = \langle w_{i,j,k}, z_{m,n} \mid i, n \in \mathbb{N}, m \geq 2^k \rangle^G,$$

and moreover, as seen in (3.2) we have

$$[w_{i,j,k}, x] \equiv [z_{i+1,j,k}, x, z_{2k,n}, c_{i}^{2}, z_{2k,n}, c_{i}^{2}] \equiv (\text{mod } \gamma_{2^{k+1}}(G) \cap Z),$$

so the claim follows.

Now, by counting the number of generators, we have

$$\log_2 |L_k Q_k : M_k \cap Z| \leq 2^{k+1} + 2^{k-1}.$$

Hence, by Proposition 3.3

$$\lim_{k \to \infty} \frac{\log_2 |G^{2k} \cap Z : M_k \cap Z|}{\log_2 |Z : G^{2k} \cap Z|} \leq \lim_{k \to \infty} \frac{2^{k+1} + 2^{k-1}}{\log_2 |Z : G^{2k} \cap Z|} = 0,$$

where the equality follows from the fact that $\log_2 |Z : G^{2k} \cap Z| \geq 2^{2^{k-1}}$; cf. [7, Proof of Thm. 4.4]. The result now follows from [21, Lem. 2.2].

We now determine the Frattini series \mathcal{F} precisely. Recall that for $i, j, \ell \in \mathbb{N}$,

$$w_{i,j,\ell} = [z_{i+1,j+1}, x, z_{2k,n}, c_{j}^{2}, z_{2k,n}, c_{j}^{2}] \cdot [z_{i+2,j+1}, x, z_{2k,n}, c_{j}^{2}, z_{2k,n}, c_{j}^{2}] \cdot \cdots$$

For $j, \ell \in \mathbb{N}$, we write $w_{j,\ell} = w_{j,j,\ell}$. Then for $k \in \mathbb{N}$, we define

$$\Psi_{k} = \langle [w_{j,\ell,1}, x, z_{2\ell}, x^{2\ell+1}, \ldots, z_{2k-1}, x] \mid 2 \leq \ell \leq k, 2^{\ell-2} \leq j \leq 2^{\ell-1} - 1 \rangle \leq \gamma_{2^{k}}(G),$$

$$\Lambda_{k} = \langle [z_{m,n}, x^{2\ell}, x^{2\ell+1}, \ldots, z_{2k-1}, x] \mid 2 \leq \ell \leq k - 1, 2^{\ell-2} \leq n < m < 2^{\ell} \rangle \leq \gamma_{2^{k+1}}(G),$$

$$\Theta_{k} = \langle z_{m,n} \mid m, n \geq 2^{k-1}, m' \geq 2^{k}, n' \in \mathbb{N} \rangle \geq \gamma_{2^{k+2} \cdot 2^{k-1}}(G) \cap \langle z_{i,j} \mid i, j \in \mathbb{N} \rangle.$$

Note that the $z_{m,n}$ in the presentation of Θ_{k} are precisely the elements that we would obtain if we let $\ell = k$ in the presentation of Λ_{k}.

Proposition 3.5. For each $k \in \mathbb{N}$, we have

$$\Phi_{k}(G) = \langle x^{2k}, c_{j} \mid j \geq 2^k \rangle Q_{k} \Psi_{k} \Lambda_{k} \Theta_{k},$$

with $\log_2 |\Psi_{k}| \leq 2^{k-1} - 1$ and, for $k \geq 2$,

$$\log_2 |\Lambda_{k} \Theta_{k} : \Theta_{k}| = \sum_{\ell=2}^{k-1} (2^{\ell-1} - 1)2^{\ell-2} = \frac{2^{2k-3} + 1}{3} - 2^{k-2}.$$
Proof. We proceed by induction on k, with the result for $k = 1$ being trivial. Thus, assume the result true for $k - 1$. As $\Phi_k(G) = \Phi_{k-1}(G)^2$ and $[\Phi_{k-1}(G), \Phi_{k-1}(G)] \leq \Phi_{k-1}(G)^2$, it is clear that

$$\Phi_k(G) = \langle x^{2^k} \rangle Q_k[\Phi_{k-1}(G), \Phi_{k-1}(G)].$$

From [7] Proof of Thm. 4.5 we have

$$\langle c_j \mid j \geq 2^k \rangle \leq \Phi_k(G) \quad \text{and} \quad c_{2^{k-1}} \not\in \Phi_k(G),$$

and moreover, as $\Phi_k(G) \leq G$, it follows that $z_{m,n} \in \Phi_k(G)$ for all $m \geq 2^k$ and $n \in \mathbb{N}$. Also, since $c_i \in \Phi_{k-1}(G)$ for all $i \geq 2^{k-1}$, we have $z_{m,n} \in \Phi_k(G)$ for all $m, n \geq 2^{k-1}$. This shows that $\Theta_k \leq \Phi_k(G)$. Thus, noting that $\langle c_j \mid j \geq 2^k \rangle Q_k \Theta_k$ is normal in G, we claim that

$$[\Phi_{k-1}(G), \Phi_{k-1}(G)] \equiv \Psi_k \Lambda_k \pmod{\langle c_j \mid j \geq 2^k \rangle Q_k \Theta_k}. \quad (3.6)$$

Note that $[\Psi_k \Lambda_k, x^{2^{k-1}}] \leq \gamma_{2^{k-2}} G \cap \langle z_{i,j} \mid i, j \in \mathbb{N} \rangle \leq \Theta_k$, so $\Psi_k \Lambda_k$ is normal in $\Phi_{k-1}(G)$ modulo Θ_k. Here for a subgroup $A \leq G$, by $[A, x^{2^{k-1}}]$ we mean $\langle [a, x^{2^{k-1}}] \mid a \in A \rangle$. Thus, in order to prove (3.6), let us compute the commutators coming from $[Q_{k-1}, x^{2^{k-1}}], [\Psi_{k-1}, x^{2^{k-1}}], [\Lambda_{k-1}, x^{2^{k-1}}], [\Theta_{k-1}, x^{2^{k-1}}]$, and $[c_j, x^{2^{k-1}}]$ for $j \geq 2^k$.

It is routine to see that

$$[\Lambda_{k-1} \Theta_{k-1}, x^{2^{k-1}}] \equiv \Lambda_k \pmod{\Theta_k} \quad (3.7)$$

and that $[\Psi_{k-1}, x^{2^{k-1}}] \subseteq \Psi_k$. Observe also that for $j \geq 2^k$ we have $[c_j, x^{2^{k-1}}] = \gamma_{2^k+2^{k-1}}$ with $z \in \Theta_k$, $c_{j+2^{k-2}} \equiv c_j \pmod{c_i}$ and $c_{j+2^{k-1}} \in \langle c_i \mid i \geq 2^k \rangle$. Hence, it suffices to show that $\Psi_k \equiv [Q_{k-1} \Psi_{k-1}, x^{2^{k-1}}] \pmod{Q_k \Theta_k}$. For this purpose, as seen in the proof of Proposition [3.3] notice that $[c_j^2, x^{2^{k-1}}] \equiv c_{j+2^{k-1}} \pmod{Q_k}$, which lies in Ψ_k if $2^{k-1} \leq j < 2^{k-1} - 1$. Moreover, this gives us precisely the generators of Ψ_k that are not in $[\Psi_{k-1}, x^{2^{k-1}}]$, so the assertion follows.

Next, since $\Psi_k = [\Psi_{k-1}, x^{2^{k-1}}]\langle w_{j,k-1} \mid 2^k - 2 \leq j \leq 2^{k-1} - 1 \rangle$, the inductive hypothesis yields

$$|\Psi_k| \leq |\Psi_{k-1}| + 2^{k-2} \leq 2^{k-2} - 1 + 2^{k-2} = 2^{k-1} - 1,$$

as desired.

For the final statement, we show that the generators in the presentation of Λ_k generate it independently modulo Θ_k. Then, the result will follow just by counting the generators. In order to do so, define for every $s \in \mathbb{N}$ the subgroup

$$\Theta_{k,s} = \langle z_{m,n}, z_{m,n'} \mid m, n \geq s, m' \geq 2^k \rangle \Theta_k.$$

Clearly, $\Theta_{k,s} = \Theta_k$ for every $s \geq 2^k$. Note by Lemma [2.1] that the generators $[z_{m,n}, x^{2^f}, x^{2^{f+1}}, \ldots, x^{2^k}]$ lie in $\Theta_{k,s}$ for every $1 \leq s \leq m < n$ while

$$[z_{m,n}, x^{2^f}, x^{2^{f+1}}, \ldots, x^{2^k}] \equiv z_{m+2^f, \ldots, 2^k+n} \pmod{\Theta_{k,n+1}}. \quad (3.8)$$

Now, observe that $[z_{3,2}, x^{2^2}, x^{2^3}, \ldots, x^{2^k}]$ is the unique generator in the presentation of Λ_k with $n = 2$. This is, hence, the unique generator not lying in $\Theta_{k,3}$, and hence it is independent from all the others. By induction, suppose that for all $n < s$ with $s > 3$, the generators $[z_{m,n}, x^{2^f}, x^{2^{f+1}}, \ldots, x^{2^k}]$ of Λ_k are independent. Take then the generators with $n = s$ and note by (3.8) that they are all
independent modulo $\Theta_{k,s+1}$. They are hence also independent from all the other previously considered generators, and the assertion follows. \hfill \square

4. The finitely generated Hausdorff spectra of G

In this section, we prove the main result for the case $p = 2$. As the proof is quite technical, we outline the general approach here. First we perform three reduction steps. One, we observe that, for a closed subgroup K of G, the Hausdorff dimension of K in G is unchanged by adding or removing a finite number of generators in Z to K; see Lemma 4.3. Two, for a finitely generated closed subgroup K of G, we observe that $\text{hdim}^S_G(K) = \text{hdim}^S_Z(K \cap Z)$ and hence it suffices to work within the subgroup Z; see Corollary 4.3. Three, with the second observation, we make use of the fact that the restrictions to Z of the filtration series \mathcal{P} and \mathcal{M} are essentially the same (see Corollary 3.4), hence it suffices to consider the four filtration series \mathcal{L}, \mathcal{D}, \mathcal{M} and \mathcal{F}. As mentioned in the introduction, in the final part of the proof, which boils down to a counting argument, we introduce the idea of counting in blocks, which simplifies computations.

Lemma 4.1. Let L be a closed subgroup of G and $S \in \{\mathcal{L}, \mathcal{D}, \mathcal{P}, \mathcal{F}, \mathcal{M}\}$. Then, for every $n \in \mathbb{N}$ and $z_1, \ldots, z_n \in Z$, we have

$$\text{hdim}^S_G(L) = \text{hdim}^S_G(L(z_1, \ldots, z_n)^G).$$

Proof. Write $K = L(z_1, \ldots, z_n)^G$ and $A = (z_1, \ldots, z_n)^G$, and note that $K = LA$.

Now, recalling that we write $S : G = S_0 \geq S_1 \geq \cdots$ for a filtration series of G, we have

$$|LAS_i : S_i| \leq |LS_i : S_i| \cdot |AS_i : S_i|$$

and by [21] Lem. 5.3,

$$\text{hdim}^S_G(A) = \text{hdim}^S_G(Z) \cdot \text{hdim}^S_Z(A).$$

Thus, using the proof of [2] Lem. 2.3, it follows that $\text{hdim}^S_G(A) = 0$ has strong Hausdorff dimension. Therefore

$$\text{hdim}^S_G(K) = \text{hdim}^S_G(LA) \leq \text{hdim}^S_G(L) + \text{hdim}^S_G(A) \leq \text{hdim}^S_G(L),$$

and since $L \leq K$, equality follows. \hfill \square

Let $S : G = S_0 \geq S_1 \geq \cdots$ be a filtration series of G. For $k \in \mathbb{N}$, we define

$$n_k = \min \{ i \in \mathbb{N} \mid \gamma_i(G) \leq S_k \}.$$

From [7] we know that if $S \in \{\mathcal{L}, \mathcal{D}\}$ then $n_k = k + 1$, if $S = \mathcal{M}$ then $n_k = 2^k + 1$, if $S = \mathcal{P}$ then $n_k \leq 2^{k+1}$, and if $S = \mathcal{F}$ then $n_k \leq 2^k + 2^{k-1} - 1$. Further we have that

$$\lim_{k \to \infty} \frac{n_k}{\log_2 |Z : S_k \cap Z|} = 0 \quad (4.1)$$

for every $S \in \{\mathcal{L}, \mathcal{D}, \mathcal{P}, \mathcal{F}, \mathcal{M}\}$.

On the other hand, for every $k \in \mathbb{N}$ we also define

$$\alpha_k = \min \{ i \in \mathbb{N} \mid x^{2^i} \in S_k \}.$$

It is easy to see that if $S \in \{\mathcal{L}, \mathcal{P}, \mathcal{F}, \mathcal{M}\}$ then we have $\alpha_k = k$, and if $S = \mathcal{D}$ then $\alpha_k = \lceil \log_2(k+1) \rceil$.

This next lemma is key to obtaining the second reduction step mentioned above.
Lemma 4.2. Let $S \in \{L, D, P, M, F\}$ and let $K = \langle x^{2^i}h, h_1, \ldots, h_d \rangle$ be a finitely generated closed subgroup of G, for some $l, d \in \mathbb{N}_0$ and $h, h_1, \ldots, h_d \in H$. Then,

$$\lim_{i \to \infty} \frac{\log_2 |KS_i \cap Z : (K \cap Z)(S_i \cap Z)|}{\log_2 |Z : S_i \cap Z|} = 0.$$

Proof. For every $i \in \mathbb{N}$, let n_i and α_i be defined as above. For $S \in \{L, D, P, M, F\}$, it follows from the previous sections that $S_i = \langle x^{2^{\alpha_i}}h, S_{i,H} \rangle$ with $S_{i,H} = S_i \cap H$. Note also that $\alpha_i \xi \to \infty$. It suffices to show that for every i such that $\alpha_i \geq l$ we have

$$|KS_i \cap Z : (K \cap Z)(S_i \cap Z)| \leq 2^{(2d+2)n_i+1}.$$

Indeed, by (4.1) we then have

$$\lim_{i \to \infty} \frac{\log_2 |KS_i \cap Z : (K \cap Z)(S_i \cap Z)|}{\log_2 |Z : S_i \cap Z|} \leq \lim_{i \to \infty} \frac{(2d + 2)n_i + 1}{\log_2 |Z : S_i \cap Z|} = 0,$$

as desired.

So we fix such an i and write for simplicity $S_H = S_{i,H}$. In the following, we will be working modulo $(K \cap Z)(S_i \cap Z)$, hence for simplicity we set $(K \cap Z)(S_i \cap Z) = 1$. We have

$$KS_i = \langle x^{2^i}h, h_1, \ldots, h_d, x^{2^{\alpha_i}} \rangle S_H.$$

Observe, however, that

$$(x^{2^i}h, x^{2^{\alpha_i}}) = (x^{2^i}h, h_0),$$

where $h_0 = x^{2^{\alpha_i}}(x^{2^i}h)^{-2^{\alpha_i-i}} \in H$, and it can be seen, by Lemma 3.1 and since $\alpha_i - l \geq 0$, that $h_0 \in \gamma_{2^{\alpha_i}}(G)Z$. So

$$KS_i = \langle x^{2^i}h, h_0, h_1, \ldots, h_d \rangle S_H.$$

Now, for every $0 \leq n \leq d$ and every $m \in \mathbb{N}_0$ define $h_{n,m} = [h_n, x^{2^i}h, \ldots, x^{2^i}h]$, and let

$$K_H = \langle h_{n,m} \mid 0 \leq n \leq d, m \in \mathbb{N}_0 \rangle.$$

Clearly we have $KS_i = \langle x^{2^i}h \rangle K_H S_H$, and observe that K_H is normalised by $x^{2^i}h$. Therefore, as S_H is normal in G, every element g of KS_i can be written as

$$g = (x^{2^i}h)^\beta k_s$$

with $\beta \in \mathbb{Z}_2$, $k \in K_H$ and $s \in S_H$. Moreover, if $g \in KS_i \cap Z$ then we must have $\beta = 0$, so that $g = k_s$, which we will assume for the rest of the proof.

We proceed by considering two cases: when one of k, s is in Z, and when both $k, s \notin Z$. If $k \in Z$, then $s = k^{-1}g \in S_i \cap Z = 1$, and so $g = k \in K_H \cap Z$. Similarly, if $s \in Z$ then $s = 1$ and so $g = k \in K_H \cap Z$. We claim that

$$K_H \cap Z = \langle h_{0,m}^2, [h_{0,n}, h_{0,n}] \mid m \in \mathbb{N}_0, 1 \leq n \leq d \rangle.$$

First, observe that $c_{2^{\alpha_i+1}} \in S_iZ$. Indeed, this is clear for $S \in \{L, D\}$; for $S = P$ we have $\alpha_i = i$ and $(xy)^{2^i} \equiv x^{2^i}y^{2^i}c_{2^i} \pmod{Z}$, so in particular $c_{2^{\alpha_i+1}} \in S_iZ$, and, since $G^{2^i} \subseteq \Phi_i(G)$, we also have $c_{2^{\alpha_i+1}} \in S_iZ$ if $S = F$; and for $S = M$ this follows from [20] Prop. 2.6(1). In particular, this implies that $\gamma_{2^{\alpha_i+1}}(G) \leq S_iZ \cap H$.

Thus, since Lemma 3.1 yields $h_{0,m} \in \gamma_{2^{\alpha_i+1}}(G)Z$ for every $m \in \mathbb{N}$, it follows that

$$[h_{0,m}, H] \leq [\gamma_{2^{\alpha_i+1}}(G)Z, H] \subseteq [S_iZ \cap H, H] \leq S_i \cap Z = 1.$$

Note also that $[h_{n,m}, h_{r,s}] \in K \cap Z = 1$ for all $1 \leq n, r \leq d$ and $m, s \in \mathbb{N}_0$. Finally, we have $h_{n,m}^2 \in K \cap Z = 1$ for all $1 \leq n \leq d$ and $m \in \mathbb{N}_0$, so the claim follows.
Now, since $\gamma_{n_i}(G) \cap Z \leq S_i \cap Z = 1$, we have

$$|\langle h_{0,m}, [h_0, h_{n,m}] \rangle : m \in \mathbb{N}_0, 1 \leq n \leq d| \leq 2^{(d+1)n_i}.$$

Suppose now $k, s \not\in Z$. If there exists another element $t \in S_H$ such that $kt \in Z$, then

$$s^{-1}t = (ks)^{-1}kt \in S_i \cap Z = 1,$$

so $s = t$. Thus, for each $k \in K_H$ there exists at most one element z in Z such that $ks = z$ for some $s \in S_H$. In particular, this shows that there are at most $|K_H|$ elements $g = ks$ in Z such that $k, s \not\in Z$. Now, since the nilpotency class of K_H is 2, it is easy to see that $K_H \cap Z = \Phi(K_H)$, and so

$$|K_H| = |K_H : \Phi(K_H)||\Phi(K_H)| \leq 2^{(d+1)n_i}2^{(d+1)n_i} = 2^{(2d+2)n_i}.$$

Finally, summing up, we get that

$$|KS_i \cap Z| \leq 2^{(d+1)n_i} + 2^{(2d+2)n_i} \leq 2^{(2d+2)n_i+1},$$

as desired. \hfill \Box

Corollary 4.3. Let $S \in \{L, D, P, M, \mathcal{F}\}$ and let $K = \langle x^l h, h_1, \ldots, h_d \rangle$ be a finitely generated closed subgroup of G, for some $l, d \in \mathbb{N}_0$ and $h, h_1, \ldots, h_d \in H$. Then

$$\text{hdim}_G^S(K) = \text{hdim}_Z^S(K \cap Z).$$

Proof. Recall, from the proof of [20, Thm. 2.10], that KZ/Z has strong Hausdorff dimension in W. Hence, as Z has strong Hausdorff dimension in G, it follows from [20, Lem. 2.2] that

$$\text{hdim}_G^S(K) = \lim_{k \to \infty} \frac{\log_2 |KS_k \cap Z : S_k \cap Z|}{\log_2 |Z : S_k \cap Z|},$$

where S is given by $S: G = S_0 \geq S_1 \geq \cdots$. Moreover, by Lemma 4.2 we have

$$\lim_{k \to \infty} \frac{\log_2 |KS_k \cap Z : S_k \cap Z|}{\log_2 |Z : S_k \cap Z|} = \lim_{k \to \infty} \frac{\log_2 |KS_k \cap Z : (K \cap Z)(S_k \cap Z)|}{\log_2 |Z : S_k \cap Z|} + \lim_{k \to \infty} \frac{\log_2 |(K \cap Z)(S_k \cap Z) : S_k \cap Z|}{\log_2 |Z : S_k \cap Z|},$$

and thus $\text{hdim}_G^S(K) = \text{hdim}_Z^S(K \cap Z)$, as required. \hfill \Box

For a subgroup $G = \langle x^2 h, h_1, \ldots, h_d \rangle$ of G, and, in view of Corollary 4.3, for the purpose of computing $K \cap Z$, we will fix the notation used in the proof of Lemma 4.2. Thus, for every $1 \leq n \leq d$ and every $m \in \mathbb{N}_0$, we write $h_{n,m} = [h_n, x^2 h, \ldots, x^2 h]$. Suppose $i_1, \ldots, i_d \in \mathbb{N}$ are such that

$$h_1 \in \gamma_{i_1}(G)Z \backslash \gamma_{i_1+1}(G)Z, \ldots, h_d \in \gamma_{i_d}(G)Z \backslash \gamma_{i_d+1}(G)Z.$$

Notice by Lemma 3.1 that $h_{n,m} = c_{n+m^2} \pmod{\gamma_{n+m^2+1}(G)Z}$. Also, we set $I = \{i_n + m^2 \mid 1 \leq n \leq d, m \in \mathbb{N}_0\}$, and for every $j \in I$, we write $c_j = h_{n,m}$, where n, m are such that $j = i_n + m^2$. If $j \in \mathbb{N} \backslash I$, then we just write $c_j = c_j$.

Finally, for every $j, k \in \mathbb{N}$ define $z_{j,k}^i = [c_j, c_k]$ and consider the set

$$B_Z = \{[c_i^2, z_{j,k}^i] \mid i, j, k \in \mathbb{N}\}.$$
Thus, since $c_j \equiv c_j \pmod{\gamma_{j+1}(G)Z}$ for every $j \in \mathbb{N}$, it follows that

$$z_{j,k}^* \equiv z_{j,k} \pmod{\gamma_{j+k+1}(G) \cap (z_{m,n} \mid m \geq j, n \geq k)}.$$ \hspace{1cm} (4.3)

Hence, the set B_Z is a basis for Z.

Let now

$$K_Z = \langle (c_j^*)^2, z_{j,k}^* \mid i, j, k \in I \rangle.$$

It is clear that $K = \langle x^{2^j}h \rangle K_H$ where, as in Lemma 4.2,

$$K_H = \langle h_{n,m} \mid 1 \leq n \leq d, m \in \mathbb{N}_0 \rangle.$$

Since $x^{2^j}h$ normalises K_H, it follows that a general element $g \in K$ can be written as

$$g = (x^{2^j}h)^\alpha c_{j_1}^* \cdots c_{j_n}^* z,$$

with $\alpha \in \mathbb{Z}_2$, $n \in \mathbb{N}_0$, $j_r < j_{r+1}$ for every $1 \leq r \leq n - 1$ and $z \in K_Z$. Now, if $g \in Z$, then we must have $\alpha = 0$ and $n = 0$, and so $K \cap Z = K_Z$.

Now that we explicitly know the subgroup $K \cap Z$, the strategy that we will follow for computing its Hausdorff dimension in Z will be based on counting blocks. For a fixed $l \in \mathbb{N}_0$ and for every $r, s \in \mathbb{N}_0$ with $s \leq r$, we define a block in Z as

$$B_{r,s} = \langle z^*_{i+r2^j+j+k} \mid 1 \leq i, j \leq 2^l \rangle.$$

Lemma 4.4. Fix $l, d \in \mathbb{N}_0$, let $S \in \{\mathcal{L}, \mathcal{D}, \mathcal{M}, \mathcal{F}\}$ and let $K = \langle x^{2^j}h, h_1, \ldots, h_d \rangle$ be a subgroup of G as defined above. Write $m(k) = \min\{j \mid c_j^* \in S_k\}$ and let

$$\Delta_k = \begin{cases}
\langle B_{r,s} \mid B_{r,s} \cap S_k \neq 1 \rangle \langle (c_j^*)^2 \mid j \geq m(k) \rangle & \text{if } S \in \{\mathcal{L}, \mathcal{D}, \mathcal{M}\}, \\
\langle B_{r,s} \mid B_{r,s} \cap \Theta_k \neq 1 \rangle \langle (c_j^*)^2 \mid j \geq m(k) \rangle \Psi_k \Lambda_k & \text{if } S = \mathcal{F}.
\end{cases}$$

Then, for the filtration series $S_* : Z = \Delta_0 \geq \Delta_1 \geq \cdots$ of Z, we have

$$\text{hdim}_{Z}^{S}(K \cap Z) = \text{hdim}_{Z}^{S}(K \cap Z).$$

Proof. Note that

$$\Delta_k = \begin{cases}
\langle B_{r,s} \mid B_{r,s} \cap \gamma_{k+1}(G) \neq 1 \rangle \langle (c_j^*)^2 \mid j \geq k \rangle & \text{if } S = \mathcal{L}, \\
\langle B_{r,s} \mid B_{r,s} \cap \gamma_{k+1}(G) \neq 1 \rangle \langle (c_j^*)^2 \mid j \geq [(k+1)/2] \rangle & \text{if } S = \mathcal{D}, \\
\langle B_{r,s} \mid r \geq 2^k \langle (c_j^*)^2 \mid j \geq 2^k + 1 \rangle & \text{if } S = \mathcal{M},
\end{cases}$$

and B_Z being a basis for Z, we can express the generators of $\gamma_{k+1}(G) \cap Z$ and Θ_k in terms of the elements in B_Z. More precisely, one can easily see that

$$\gamma_{k+1}(G) \cap Z = \langle (c_l^*)^2, z^*_{m,n} \mid l \geq k+1, 1 \leq n < m, m + n \geq k + 1 \rangle $$ \hspace{1cm} (4.4)

and

$$\Theta_k = \langle z^*_{m,n}, z^*_{m,n'} \mid m, n \geq 2^{k-1}, m' \geq 2^k, n' \in \mathbb{N} \rangle.$$ \hspace{1cm} (4.5)

Therefore, we clearly have $S_k \cap Z \leq \Delta_k$. Consider now the following family of blocks:

$$\mathcal{B} = \begin{cases}
\{B_{r,s} \mid B_{r,s} \leq \Delta_k, B_{r,s} \not\subseteq S_k \text{ and } s \leq r \} & \text{if } S \in \{\mathcal{L}, \mathcal{D}, \mathcal{M}\}, \\
\{B_{r,s} \mid B_{r,s} \leq \Delta_k, B_{r,s} \not\subseteq \Theta_k \text{ and } s \leq r \} & \text{if } S = \mathcal{F}.
\end{cases}$$

If $S \in \{\mathcal{L}, \mathcal{D}\}$, then $B_{r,s} \in \mathcal{B}$ only if $(r+s)2^l \leq k - 2$ and $(r+s+2)2^l \geq k + 1$, so $|\mathcal{B}| \leq 2[(k+1)/2^{l+1}] + 1$. For $S = \mathcal{M}$, we have $|\mathcal{B}| = 0$ and for $S = \mathcal{F}$, we have $|\mathcal{B}| = 2^{k-l} - 1$.

Notice also that \(\log_2 |B_{r,s}| \leq 2^d \), hence, if \(S \in \{ \mathcal{L}, \mathcal{D}, \mathcal{M} \} \), then we have
\[
\lim_{k \to \infty} \frac{\log_2 |\Delta_k : S_k \cap Z|}{\log_2 |Z : \Delta_k|} \leq \lim_{k \to \infty} \frac{|B|2^{2^d}}{\log_2 |Z : \gamma_{k+1-2^d+1}(G) \cap Z|} = 0,
\]
while if \(S = \mathcal{F} \), we have
\[
\lim_{k \to \infty} \frac{\log_2 |\Delta_k : S_k \cap Z|}{\log_2 |Z : \Delta_k|} \leq \lim_{k \to \infty} \frac{|B|2^{2^d}}{\log_2 |Z : \gamma_{2^k-2^d+1}(G) \cap Z|} = 0
\]
by [7, Proof of Thm. 4.5].

Lemma 4.4, we have \(K \) images of the generators of \(G \) while if \(S \in \mathcal{D} \), then we may further assume that \(K \) has only one generator of the form \(x^d h \) with \(l \in \mathbb{N}_0 \) and \(h \in H \). In addition, by Lemma 4.1, we may further assume that
\[
K = \langle x^d h, h_1, \ldots, h_d \rangle
\]
for some \(d \in \mathbb{N}_0 \) and \(h_1, \ldots, h_d \in H \setminus Z \), and by Corollary 4.3 we have that \(\text{hdim}_G^S(K) = \text{hdim}_{Z}^S(K \cap Z) \). Also, following the notation introduced before Lemma 4.4, we have
\[
K \cap Z = \langle (c_i^d)^2, z_{j,k}^i \mid i, j, k \in I \rangle.
\]

Let \(i_1, \ldots, i_d \in \mathbb{N} \) be such that
\[
h_1 \in \gamma_{i_1}(G)Z \setminus \gamma_{i_1+1}(G)Z, \ldots, h_d \in \gamma_{i_d}(G)Z \setminus \gamma_{i_d+1}(G)Z,
\]
where, in the spirit of (1.2), we may assume that \(i_1 < \cdots < i_d \) and further that \(i_1, \ldots, i_d \) are pairwise non-equivalent modulo \(2^d \). Indeed, suppose without loss of generality that \(i_d \equiv i_r \mod 2^d \) for some \(1 \leq r \leq d - 1 \). As mentioned before, we have
\[
[h_n, x^d h, \ldots, x^d h] \equiv c_{n+m2^d} \mod \gamma_{i_n+m2^d+1}(G)Z
\]
for all \(n \in \{1, \ldots, d\} \) and \(m \in \mathbb{N}_0 \). In particular
\[
[h_r, x^d h, \ldots, x^d h] \equiv h_d \mod \gamma_{i_d+1}(G)Z
\]
for some \(m > 0 \), and so repeating the standard cancelling process as in (1.2), either, after several steps,

- the process stops if it gives a generator \(\tilde{h} \in Z \) (in this case, we can ignore this generator by Lemma 4.1);
- the process stops if it gives a generator \(\tilde{h} \in \gamma_j(G)Z \setminus \gamma_{j+1}(G)Z \) where \(j \neq i_1, \ldots, i_{d-1} \mod 2^d \); or
- at each cancelling step, the new generator \(\tilde{h} \in \gamma_j(G)Z \setminus \gamma_{j+1}(G)Z \) satisfies \(j \equiv i_r \mod 2^d \), for some \(r \in \{1, \ldots, d - 1\} \).

In the third case, we may ignore the generator \(\tilde{h} \), since each cancellation process replaces the generator \(\tilde{h} \in \gamma_j(G)Z \setminus \gamma_{j+1}(G)Z \) with a generator \(\hat{h} \in \gamma_{\nu}(G)Z \setminus \gamma_{\nu+1}(G)Z \), where \(\nu > j \). In other words, we can replace the generator \(\tilde{h} \) with a generator \(\hat{h} \) in \(\gamma_{\nu}(G)Z \), with \(\nu \) arbitrary large, hence in each finite quotient \(\frac{K \cap Z \langle S \rangle \cap Z}{S \cap Z} \), the images of the generators of \(K \cap Z \) that involve \(\tilde{h} \) can be assumed to be trivial.
Next, for \(r \in \mathbb{N} \) and setting \(Z_r = \langle z_{m,n} \mid m, n \geq r \rangle \), it can be proved, as done in [7, Sec. 4], that \(Z_r \) has strong Hausdorff dimension 1 in \(G \) with respect to \(S \). Thus, it is not difficult to see that we can also assume that \(i_d \leq 2^l \). Indeed, suppose that \(\lambda 2^l < i_d \leq (\lambda +1)2^l \) for some \(\lambda \in \mathbb{N} \). It turns out that the generators of \(K \cap Z \) of the form \((c_j)^2 \), for \(j \in \mathbb{N} \), are insignificant in the computation of \(\text{hdim}_{Z}^S(K \cap Z) \), hence a direct computation shows that \(\text{hdim}_{Z}^S(K \cap Z) = \text{hdim}_{Z}^S(K \cap Z(\lambda 2^l)) \). This then equals the Hausdorff dimension of \(K \cap Z(\lambda 2^l) \) in \(Z \). It turns out that the generators of \(\Lambda \) in \(\langle \theta \rangle \) approach infinity, \(\text{hdim}_{Z}^S(K \cap Z) = \text{hdim}_{Z}^S(K \cap Z) \). Define the following disjoint families of blocks:

\[
\begin{align*}
\mathcal{B}_1 &= \left\{ B_{r,s} \mid B_{r,s} \cap \Delta_k = 1 \text{ and } s < r \right\} & \text{if } S \in \{ \mathcal{L}, \mathcal{D}, \mathcal{M} \}, \\
& \quad \left\{ B_{r,s} \mid B_{r,s} \cap \Theta_k = 1 \text{ and } s < r \right\} & \text{if } S = \mathcal{F}, \\
& \quad \left\{ B_{r,s} \mid B_{r,s} \cap \Delta_k = 1 \text{ and } s = r \right\} & \text{if } S \in \{ \mathcal{L}, \mathcal{D}, \mathcal{M} \}, \\
& \quad \left\{ B_{r,s} \mid B_{r,s} \cap \Theta_k = 1 \text{ and } s = r \right\} & \text{if } S = \mathcal{F}.
\end{align*}
\]

For \(S \in \{ \mathcal{L}, \mathcal{D} \} \), it is routine to see that \(|\mathcal{B}_2| \leq \lfloor (k+1)/2^{l+1} \rfloor \) and that there exists \(q \in \mathbb{Q} \) such that \(\lim_{k \to \infty} |\mathcal{B}_1|/(k+1)^2 = q \). Similarly for \(S = \mathcal{M} \), we have \(|\mathcal{B}_2| = 2^{l-i} \), and there exists \(q \in \mathbb{Q} \) such that \(\lim_{k \to \infty} |\mathcal{B}_1|/2^{2k} = q \). For \(S = \mathcal{F} \), we have \(|\mathcal{B}_2| = 2^{l-i} - 1 \) and \(\lim_{k \to \infty} |\mathcal{B}_1|/2^{2k} = q \) for some \(q \in \mathbb{Q} \).

Note that if \(s < r \), then \(\log_2 |B_{r,s}| = 2^l \) and \(\log_2 |B_{r,s} \cap \Delta_k| = d^2 \), while otherwise, if \(s = r \), then \(\log_2 |B_{r,s}| = 2^l - 1 - 2^l - 1 \) and \(\log_2 |B_{r,s} \cap \Delta_k| := t \leq d^2 \). With this, we are now ready to compute the Hausdorff dimension of \(K \) with respect to \(S \). Let us focus first, however, on the case where \(S = \mathcal{F} \). From Proposition 3.5 we note that \(\frac{1}{2} \log_2 |\Psi_k| \) is negligible as \(k \) approaches infinity, hence we can ignore \(\Psi_k \). As done in the proof of Lemma 4.4, we can also express the generators of \(\Lambda_k \) in terms of the elements in \(B_Z \). More precisely, and referring to (4.7), we have \(\Lambda_k^\ast \Theta_k = \Lambda_k \Theta_k \), where

\[
\Lambda_k^\ast = \langle [z_{m,n}, x_{2^l}, x_{2^{l+1}}, \ldots, x_{2^{k-1}}] \mid 2 \leq i \leq k - 1, 2^{i-1} \leq n < m \leq 2^i \rangle. \tag{4.6}
\]

Observing that

\[
\Lambda_k^\ast \cap K \supseteq \langle [z_{m,n}, x_{2^l}, x_{2^{l+1}}, \ldots, x_{2^{k-1}}] \mid m, n \in I, l \leq i \leq k - 1, 2^{i-1} \leq n < m \leq 2^i \rangle
\]

(where in the above, we emphasise that \(i \geq l \)) and that for \(2 \leq i \leq k - 1 \) we have \([z_{m,n}, x_{2^l}, x_{2^{l+1}}, \ldots, x_{2^{k-1}}] \notin \Lambda_k \cap K \) if \(m \notin I \) or \(n \notin I \), it follows that

\[
\log_2 |\Lambda_k^\ast \cap K| = \langle [z_{m,n}, x_{2^l}, \ldots, x_{2^r}] \mid m, n \in I, l \leq i \leq k - 1, 2^{i-1} \leq n < m \leq 2^i \rangle
\]

approaches 0 as \(k \to \infty \). Writing

\[
U_1 := \log_2 |(\Lambda_k^\ast \cap K) \Theta_k : \Theta_k| \quad \text{and} \quad U_2 := \log_2 |\Lambda_k^\ast \Theta_k : \Theta_k|,
\]

and recalling from Proposition 3.3 that the generators in the presentation of \(\Lambda_k^\ast \) in (1.6) generate it independently modulo \(\Theta_k \), we see that \(U_1/U_2 \) approaches \(d^2/2^l \) as \(k \to \infty \).
Finally, removing the assumption that $S = F$, we obtain

\[
\text{hdim}_Z^S(K \cap Z) = \lim_{k \to \infty} \frac{\log_2 |(K \cap Z)\Delta_k : \Delta_k|}{\log_2 |Z : \Delta_k|}
\]

\[
= \lim_{k \to \infty} \frac{|\mathcal{B}_1|d^2 + |\mathcal{B}_2|t + \log_2 |(c_j^*)^2 | j < m(k)| - \delta_3 U_1}{|\mathcal{B}_1|2^{2l} + |\mathcal{B}_2|(2^{2l} - 2^{l-1}) + \log_2 |(c_j^*)^2 | j < m(k)| - \delta_3 U_2}
\]

\[
= \lim_{k \to \infty} \frac{|\mathcal{B}_1|d^2 - \delta_3 U_1}{|\mathcal{B}_1|2^{2l} - \delta_3 U_2}
\]

\[
= d^2/2^{2l}, \tag{4.7}
\]

for every $S \in \{L, D, M, F\}$, where

\[
\delta_3 = \begin{cases}
1 & \text{if } S = F; \\
0 & \text{otherwise.}
\end{cases}
\]

As K was arbitrary, it follows that

\[
\text{hspec}_S^Z(G) = \{d^2/2^{2l} | l \in \mathbb{N}, 0 \leq d \leq 2^l\}.
\]

\[
\square
\]

5. The pro-p groups $\mathfrak{G}(p)$ for odd primes

For convenience, we write $\mathfrak{G} = \mathfrak{G}(p)$, for an odd prime p. In this section we determine the terms of the six filtration series of \mathfrak{G}, or their respective intersections with Z. Then the proof of Theorem 1.1 will follow exactly in the same way as for $p = 2$.

As the terms of the filtration series L, D and M can be found in [9], it remains to settle the filtration series F and J.

We begin by clarifying the terms of the series $\mathfrak{G}^p \cap Z$. In principle, the analysis of the subgroups $\mathfrak{G}^p \cap Z$ is analogous to the $p = 2$ case, however certain differences arise, due to the fact that $c_i^2 \notin Z$ for $i \in \mathbb{N}$.

Using the same notation for the case $p = 2$, for $i, j, k \in \mathbb{N}$, we let

\[
w_{i,j,k} = [z_{i+1,j}, x, p_i^{k-2}, x][z_{i+2,j+1}, x, p_i^{k-3}, x] \cdots [z_{i+p_i^{k-2},j+p_i^{k-3},x}] z_{i+p_i^{k-1},j+p_i^{k-2},x},
\]

and for $k \in \mathbb{N}$,

\[
L_k = \langle w_{i,j,k}, d_k(y), z_{m,n} | i, j, n \in \mathbb{N}, m \geq p^k \rangle^e,
\]

where $d_k(h) \in Z$ is defined as before, that is,

\[
(xh)^p = x^{p^k}[h, x, p_i^{k-1}, x]d_k(h)
\]

for $h \in H$.

Lemma 5.1. In the pro-p group \mathfrak{G}, for $k \in \mathbb{N}$,

(i) for every $z \in Z$, we have

\[
[z, x, p_i^{k-1}, x] \in L_k;
\]

(ii) for $h_1, h_2 \in H$, we have

\[
[h_1h_2, x, p_i^{k-1}, x] \equiv [h_1, x, p_i^{k-1}, x][h_2, x, p_i^{k-1}, x] \pmod{L_k};
\]

(iii) for every $h \in H$, we have $d_k(h) \in L_k$.

Proof. (i) and (ii): This is just as in Lemma \[3.2\]

(iii) For \(h_1, h_2 \in H \), as before let \(\zeta(h_1, h_2) = \prod_{\ell=0}^{p^{k-2}} [h_1^{x, \ell}, x, h_2, x, \ell, x, h_2] \in Z \). Proceeding as in the \(p = 2 \) case, we obtain \(d_k(h_1, h_2) \approx d_k(h_1) d_k(h_2) \zeta(h_1, h_2) \mod L_k \), and \(\zeta(h_1, h_2) \equiv \zeta(h_2, h_1) \mod L_k \). Next, notice that for every \(i, j \in \mathbb{N} \) we have

\[
\zeta(c_i, c_j)^x = \zeta(c_i^x, c_j^x) = \zeta(c_i c_{i+1}, c_j c_{j+1}) = \zeta(c_i, c_j) \zeta(c_{i+1}, c_j) \zeta(c_i, c_{j+1}) \zeta(c_{i+1}, c_{j+1})
\]

and from the equivalence \([\zeta(c_i, c_j), x] \equiv \zeta(c_{i+1}, c_j) \mod L_k \) in (3.4), we obtain

\[
\zeta(c_i, c_{j+1}) \equiv \zeta(c_i, c_{j+1}) \mod L_k.
\]

Therefore, as \(\zeta(c_i, c_j) \in L_k \), it follows that \(\zeta(c_i, c_j) \in L_k \) whenever \((i, j) \neq (1, 1)\).

Now for \(h \in \gamma_2(\mathfrak{G}) \), we observe that

\[
\zeta(h, h) \equiv d_k(h^2) d_k(h)^{-2} \mod L_k,
\]

and as \(d_k(h^2) = d_k(h)^4 \), we conclude that \(d_k(h) \in L_k \). Since \(d(y) \in L_k \) by definition, the result follows.

With this, the corresponding statements for Proposition \[3.3\] and Corollary \[3.4\] are obtained:

Proposition 5.2. For \(k \in \mathbb{N} \), the pro-\(p \) group \(\mathfrak{G} \) satisfies

\[
\langle z_{m,n} \mid m \geq p^k, n \in \mathbb{N} \rangle \leq \mathfrak{G}^{p^k} \cap Z \leq L_k.
\]

Corollary 5.3. For the pro-\(p \) group \(\mathfrak{G} \) and \(K \leq_{c} Z \), we have

\[
\text{hdim}^p_{Z}(K) = \text{hdim}^{\mathfrak{G}}_{Z}(K).
\]

Next, in analogue to the even prime case, one can determine the Frattini series \(\mathcal{F} \) precisely, which we include here for completeness. Following the notation in [6], we write \([i]_p = \frac{p^i - 1}{p - 1}\) for \(i \in \mathbb{N}_0 \). For \(k \in \mathbb{N} \) we correspondingly have

\[
\Lambda_k = \langle [z_{m,n}, x^{p^r}, x^{p^r+1}, \ldots, x^{p^{k-1}}] \mid 2 \leq i \leq k - 1, m, n \geq 1 + [i]_p \rangle,
\]

\[
\Theta_k = \langle z_{m,n}, z_{m',n'} \mid m, n \geq 1 + [k - 1]_p, m' \geq 1 + [k]_p, n' \in \mathbb{N} \rangle.
\]

Observe that \(\Gamma_{1+2[k-1]_p+p^{k-1}}(\mathfrak{G}) \leq \Theta_k \).

Proposition 5.4. For each \(k \in \mathbb{N} \), we have

\[
\Phi_k(\mathfrak{G}) = \langle x^{p^k}, c_j \mid j \geq 1 + [k]_p \rangle \Lambda_k \Theta_k.
\]

Finally, we consider the iterated \(p \)-power series \(\mathcal{F} \) for \(\mathfrak{G} \). This involves a fusion of the techniques used for the \(p \)-power series and the Frattini series.

For \(i, j, k \in \mathbb{N} \) with \(i, j \geq p^{k-1} \), we define the elements

\[
\tilde{w}_{i,j,k} = [z_{i+1,j}, x, \ldots, x^{p^{k-1} - 2}, x^{p^{k-1} - 2}, x] \cdot \cdots \cdot [z_{i+p^k-p^{k-1},j}, x, \ldots, x^{p^{k-1} - 1}, x] \cdot [z_{i+p^k-p^{k-1},j+p^{k-1} - 1}, x, \ldots, x^{p^{k-1} - 1}, x]
\]

and for every \(h \in \gamma_{p^{k-1}}(\mathfrak{G}) \), we define \(\tilde{d}_k(h) \in Z \) as

\[
(x^{p^{k-1}})^h = x^{p^{k-1} - 2}, x^{p^{k-1} - 2}, x^{p^{k-1} - 2}, x \cdots \cdot x^{p^{k-1} - 2}, x^{p^{k-1} - 2}, x^{p^{k-1} - 2}, x \tilde{d}_k(h).
\]

Let thus

\[
\tilde{L}_k = \langle \tilde{w}_{i,j,k}, \tilde{d}_k(y) \mid i, j \geq p^{k-1} \rangle \mathfrak{G},
\]
and, for \(k \in \mathbb{N} \), we define

\[
\tilde{\Theta}_k = \langle z_{m,n} \mid m \geq p^k, n \in \mathbb{N} \rangle,
\]

\[
\tilde{\Lambda}_k = \langle [z_{m,n}, x^{p^{k-1}}, \ldots, x] \mid (p^{k-1} \leq m < p^k, m - \left\lfloor \frac{m}{p^k} \right\rfloor p^{-k} \leq n < p^{k-1}) \land (m \in \{2p^{k-1}, 3p^{k-1}, \ldots, (p - 2)p^{k-1}\}, n = p^{k-1}) \rangle,
\]

\[
\tilde{\Omega}_k = \langle [z, x^{p^{k-1}}, \ldots, x^{p^{k-1}}] \mid z \in \tilde{\Omega}_{k-1} \cup \tilde{\Lambda}_{k-1} \rangle,
\]

\[
\tilde{\Psi}_k = \langle [z, x^{p^{k-1}}, \ldots, x^{p^{k-1}}] \mid z \in \tilde{\Psi}_{k-1} \cup \tilde{L}_{k-1} \rangle,
\]

where \(\tilde{\Omega}_1 = \tilde{\Lambda}_1 \) and \(\tilde{\Psi}_1 = \tilde{L}_1 \). These definitions, together with the following lemma, will play the role that Lemma 3.2(i) had for the filtration series \(\mathcal{P} \).

Lemma 5.5. For \(k \in \mathbb{N} \), we have

\[
[\tilde{\Theta}_{k-1}, x^{p^{k-1}}, \ldots, x^{p^{k-1}}] \tilde{\Theta}_k = \tilde{\Lambda}_k \tilde{\Theta}_k.
\]

The proof of the above lemma, though not difficult, is a rather long combinatorial argument. Therefore we defer the proof to the appendix. Moreover, for the purpose of computing Hausdorff dimensions, the set of generators given in the presentation of \(\tilde{\Lambda}_k \) is close enough to a minimal generating set for \(\tilde{\Lambda}_k \) modulo \(\tilde{\Theta}_k \); see the appendix for further details.

Below we have the analogues of Lemma 3.2(ii) and (iii).

Lemma 5.6. In the pro-\(p \) group \(\mathfrak{G} \), for \(k \in \mathbb{N} \),

(i) for \(h_1, h_2 \in \gamma_{p^{k-1}}(\mathfrak{G}) \), we have

\[
[h_1h_2, x, x^{p^{k-1}}, x] \equiv [h_1, x, x^{p^{k-1}}, x] [h_2, x, x^{p^{k-1}}, x] \quad (\text{mod } \tilde{L}_k);
\]

(ii) for every \(h \in \gamma_{p^{k-1}}(\mathfrak{G}) \), we have \(\tilde{d}_k(h) \in \tilde{\Theta}_k \tilde{\Lambda}_k \tilde{L}_k \).

Proof. Part (i) follows as in Lemma 3.2. For part (ii), let \(d^*_k(h) \) and \(d^*_{k*}(h) \) be such that

\[
(x^{p^{k-1}} h)^p = x^{p^{k}} [h, x^{p^{k-1}}, \ldots, x^{p^{k-1}}] d^*_{k}(h)
\]

and

\[
[h, x^{p^{k-1}}, \ldots, x^{p^{k-1}}] = [h, x, x^{p^{k-1}}, x] d^*_{k*}(h),
\]

and note that \(\tilde{d}_k(h) = d^*_k(h) d^*_{k*}(h) \). Now, similar to (3.3), for \(h_1, h_2 \in \gamma_{p^{k-1}}(\mathfrak{G}) \) we have

\[
(x^{p^{k-1}} h_2 h_1)^p = (x^{p^{k-1}} h_2)^p [h_1, x^{p^{k-1}} h_2, \ldots, x^{p^{k-1}} h_2] d^*_{k}(h_1)
\]

\[
= x^{p^{k}} [h_2, x, x^{p^{k-1}}, x] [h_1, x^{p^{k-1}} h_2, \ldots, x^{p^{k-1}} h_2] d^*_{k}(h_1) \tilde{d}_k(h_2),
\]

and routine computations give

\[
[h_1, x^{p^{k-1}} h_2, \ldots, x^{p^{k-1}} h_2]
\]

\[
= [h_1, x, x^{p^{k-1}}, x] \prod_{\ell=0}^{p-2} [h_1^{x^{p^{k-1}}, x}, x, x^{p^{k-1}}, x, x^{p^{k-1}}, x] d^*_{k}(h_1).
\]

Writing \(\tilde{\zeta}(h_1, h_2) = \prod_{\ell=0}^{p-2} [h_1^{x^{p^{k-1}}, x}, x, x^{p^{k-1}}, x, x^{p^{k-1}}, x] \in Z \), we have

\[
(x^{p^{k-1}} h_2 h_1)^p = x^{p^{k}} [h_2, x, x^{p^{k-1}}, x] [h_1, x, x^{p^{k-1}}, x] \tilde{d}_k(h_1) \tilde{d}_k(h_2) \tilde{\zeta}(h_1, h_2).
\]

Everything now follows as in the proof of Lemma 5.1.
Proposition 5.7. For $k \in \mathbb{N}$, the pro-p group \mathfrak{G} satisfies

$$\Theta_k \Lambda_k \widetilde{\Omega}_k \leq I_k(\mathfrak{G}) \cap Z \leq \Theta_k \Lambda_k \widetilde{\Omega}_k \widetilde{L}_k \Psi_k.$$

Proof. Using Lemmata 5.5 and 5.6, we can adjust the proof of Proposition 3.3 to the filtration series J. The unique significant difference arises when, as done at the end of the aforementioned proof, we consider the element $[hh^*, x, p^k - p^{k-1}, x]$, where in our case $h \in \gamma_{p^{k-1}}(\mathfrak{G}) \cap I_{k-1}(\mathfrak{G})$, $h^* \in \gamma_{2p^{k-1}}(\mathfrak{G})$, and $hh^* \in Z$.

First note that $\gamma_{2p^{k-1}}(\mathfrak{G}) \leq I_{k-1}(\mathfrak{G})$ by [3] Prop. 3.4, and so

$$hh^* \in I_{k-1}(\mathfrak{G}) \cap Z \leq \Theta_{k-1} \Lambda_{k-1} \widetilde{\Omega}_{k-1} \widetilde{L}_{k-1} \Psi_{k-1}$$

by the inductive hypothesis. Now, by definition, we have $[\Lambda_{k-1} \widetilde{\Omega}_{k-1}, x, p^k - p^{k-1}, x] \leq \widetilde{\Omega}_k$ and $[\widetilde{L}_{k-1} \Psi_{k-1}, x, p^k - p^{k-1}, x] \leq \widetilde{\Psi}_k$. Also, Lemma 5.5 yields $[\Theta_{k-1}, x, p^k - p^{k-1}, x] \leq \Lambda_k \Theta_k$, so the result follows. □

Corollary 5.8. For the pro-p group \mathfrak{G} and $K \leq Z$, we have

$$\text{hdim}_Z^g(K) = h\text{dim}_Z^\mathfrak{G}(K),$$

where \mathfrak{G} is the filtration of \mathfrak{G} defined by the subgroups $\Theta_k \Lambda_k \widetilde{\Omega}_k$.

Finally, the proofs of Lemma 4.1, Lemma 4.2, Corollary 4.3 and Lemma 4.4, and the $p = 2$ proof of Theorem 1.1 work exactly in the same way for p odd and for $\mathcal{L}, \mathcal{D}, \mathcal{M}, \mathcal{P}, \mathcal{T}$ and \mathcal{F} (actually it is easier, as $H^p = 1$). Hence Theorem 1.1 follows.

APPENDIX A.

Proof of Lemma 5.3. Fix $k \in \mathbb{N}$, and consider the set $Z = \{z_{m,n} \mid p^{k-1} \leq m < p^k, n < m\}$. This set can be decomposed as

$$Z = \left(\bigcup_{1 \leq i \leq j \leq p-1} Z_{i,j} \right) \cup \left(\bigcup_{1 \leq i \leq p-1} \mathcal{V}_i \right),$$

where

$$Z_{i,j} = \{z_{m,n} \mid ip^{k-1} \leq m < (i+1)p^{k-1}, (j-1)p^{k-1} \leq n < jp^{k-1}\},$$

$$\mathcal{V}_i = \{z_{m,n} \mid ip^{k-1} \leq n < m < (i+1)p^{k-1}\}.$$

It is helpful to visualise the elements of Z as a grid where m determines the row and n the column, with $Z_{i,j}$ representing the $p^{k-1} \times p^{k-1}$ squares if $j > 1$ and the $p^{k-1} \times (p^{k-1} - 1)$ squares if $j = 1$, and with \mathcal{V}_i corresponding to the lower left triangles along the diagonal $m = n$.

Then, writing

$$U_{i,1} = \{z_{m,n} \in Z_{i,1} \mid n \geq m - ip^{k-1}\},$$

and

$$W_{i,j} = \{z_{ip^{k-1},(j-1)p^{k-1}} \} \quad \text{for } i \geq j > 1,$$

it suffices to show that

$$(\{z_{m,n} \mid x^{p^{k-1}, p\cdots, x^x^{p^{k-1}}} \mid p^{k-1} \leq m < p^k, n < m\} \Theta_k$$

$$= \langle [z, x^{p^{k-1}, p\cdots, x^{p^{k-1}}} \mid z \in \bigcup_{i=1}^{p-1} U_{i,1} \cup \bigcup_{i=2}^{p-2} W_{i,2} \rangle \Theta_k. \rangle$$

$$\Theta_k \Lambda_k \widetilde{\Omega}_k \leq I_k(\mathfrak{G}) \cap Z \leq \Theta_k \Lambda_k \widetilde{\Omega}_k \widetilde{L}_k \Psi_k.$$
Recall that, for \(m \geq p^{k-1} \),
\[
[z_{m,n}, x^{p^{k-1}}, p^{-1}, x^{p^{k-1}}] = \prod_{s=1}^{p-1} \left(\prod_{t=1}^{s} z_{m+(p-1)l}^{(p^k-1)(s/t)} \right) \pmod{\tilde{\Theta}_k};
\]
and similarly
\[
\langle [z, x^{p^{k-1}}, p^{-1}, x^{p^{k-1}}] \mid z \in \mathcal{Z}_{p^{-\ell}e+1} \cup \cdots \cup \mathcal{Z}_{p^{-\ell}p^{-\ell}} \rangle \leq \tilde{\Theta}_k.
\]

From the above it is clear that for \(\ell \leq \frac{p-1}{2} \),
\[
\langle [z, x^{p^{k-1}}, p^{-1}, x^{p^{k-1}}] \mid z \in \mathcal{V}_{p^{-\ell}} \rangle \leq \tilde{\Theta}_k.
\]

Now, set \(\tilde{\Theta}_{k,0} = \tilde{\Theta}_k \) and recursively define, for \(1 \leq \tau \leq p-2 \),
\[
\tilde{\Theta}_{k,\tau} = \langle [z, x^{p^{k-1}}, p^{-1}, x^{p^{k-1}}] \mid z \in \mathcal{U}_{p^{-\tau}1} \cup \mathcal{W}_{p^{-\tau}1,2} \rangle \tilde{\Theta}_{k,\tau-1},
\]
where \(\mathcal{W}_{1,2} = \emptyset \).

We claim that for \(1 \leq \tau \leq p-1 \),
\[
\langle [z, x^{p^{k-1}}, p^{-1}, x^{p^{k-1}}] \mid z \in \mathcal{Z}_{p^{-\ell}e+1, \tau} \leq \ell \leq \frac{p+\ell-1}{2} \rangle \tilde{\Theta}_{k,\tau-1}
= \langle [z, x^{p^{k-1}}, p^{-1}, x^{p^{k-1}}] \mid z \in \mathcal{U}_{p^{-\tau}1} \cup \mathcal{W}_{p^{-\tau}1,2} \rangle \tilde{\Theta}_{k,\tau-1}
= \langle \prod_{s=p^{-\tau}}^{p-1} \prod_{t=p^{-\tau}}^{s} z_{\mu+(p-1-l+p-\tau)p^{k-1}, \nu+(p-1-s+t)} \rangle \tilde{\Theta}_{k,\tau-1}.
\]

Indeed, for \(\tau = 1 \), the result is clear since
\[
[z_{p^{-\ell}p^{k-1}+\mu(p-1)p^{k-1}+\nu}, x^{p^{k-1}}, p^{-1}, x^{p^{k-1}}] \equiv \prod_{t=p^{-\ell}}^{p-1} z_{\mu+(p-1-l+p-\tau)p^{k-1}, \nu+(p-1-s+t)} \pmod{\tilde{\Theta}_k};
\]

Suppose now that the result holds for \(\tau-1 \). Recall that for \(z \in \mathcal{Z}_{i,j} \) we write \(m = ip^{k-1}+\mu \) and \(n = (j-1)p^{k-1}+\nu \) for \(0 \leq \mu, \nu \leq p^{k-1}-1 \). We first assume that \(\nu > 0 \), and we write \(\mathcal{Z}_{i,j}^* \) for all such \(z \) with \(\nu > 0 \). For \(z \in \mathcal{Z}_{p^{-\ell}e, \tau-1} \), with
\[\tau \leq \ell \leq \frac{p^{\tau-1}}{2}, \] we obtain

\[
\left[z_{(p-\ell)p^{k-1}+\mu,(\ell-\tau)p^{k-1}+\nu}, x^{p^{k-1}}, \cdots, x^{p^{k-1}} \right] \\
\equiv \prod_{s=p-\tau}^{p-1} \left(\prod_{t=p-\ell}^{s} \left[z_{\mu+(p-1-t+p-\ell)p^{k-1}+\nu+(\ell-\tau-1-s+t)p^{k-1}}, \cdots, x^{p^{k-1}} \right] \right) \pmod{\tilde{\Theta}_k} \\
\equiv \left(\prod_{t=p-\ell}^{p-2-(\ell-\tau)} \left[z_{\mu+(p-1-t+p-\ell)p^{k-1}+\nu+(\ell-\tau+1+t)p^{k-1}}, \cdots, x^{p^{k-1}} \right] \right) \pmod{\tilde{\Theta}_k}.
\]

We begin by establishing that

\[
\langle \left[z, x^{p^{k-1}}, \cdots, x^{p^{k-1}} \right] \mid z \in \mathbb{Z}_{p-\ell,\ell-\tau+1}, \tau \leq \ell \leq \frac{p^{\tau-1}}{2} \rangle \tilde{\Theta}_{k,\tau-1} = \langle \left[z, x^{p^{k-1}}, \cdots, x^{p^{k-1}} \right] \mid z \in \mathbb{Z}_{p-\tau,1} \rangle \tilde{\Theta}_{k,\tau-1} \tag{A.2}
\]

If \(\ell = \tau \), the result is clear, so we assume that \(\ell > \tau \). Multiplying the above element with \(\left[z_{(p-\ell-1)p^{k-1}+\mu,(\ell-\tau)p^{k-1}+\nu}, x^{p^{k-1}}, \cdots, x^{p^{k-1}} \right] \) yields, modulo \(\tilde{\Theta}_k \),

\[
\left(\prod_{t=p-\ell}^{p-1-(\ell-\tau)} \left[z_{\mu+(p-1-t+p-\ell)p^{k-1}+\nu+(\ell-\tau+1+t)p^{k-1}}, \cdots, x^{p^{k-1}} \right] \right) \pmod{\tilde{\Theta}_k} = \left[z_{(p-\ell+1)p^{k-1}+\mu,(\ell-\tau-1)p^{k-1}+\nu}, x^{p^{k-1}}, \cdots, x^{p^{k-1}} \right]^{-1} \pmod{\tilde{\Theta}_k} \tag{A.3}
\]

Therefore, as \(z_{(p-\ell+1)p^{k-1}+\mu,(\ell-\tau-1)p^{k-1}+\nu} \in \mathbb{Z}_{p-(\ell-1),(\ell-1)-(\tau-1)+1} \), repeating this process yields

\[
\left[z_{(p-\ell)p^{k-1}+\mu,(\ell-\tau)p^{k-1}+\nu}, x^{p^{k-1}}, \cdots, x^{p^{k-1}} \right] \equiv \left[z_{(p-\ell+1)p^{k-1}+\mu,(\ell-\tau-1)p^{k-1}+\nu}, x^{p^{k-1}}, \cdots, x^{p^{k-1}} \right]^{-1} \pmod{\tilde{\Theta}_{k,\tau-1}}
\]

...
In other words,
\[\langle [z, x^{p^k-1}, \ldots, x^{p^{k-1}}] \mid z \in \mathbb{Z}_{p^\tau-1,1} \rangle \tilde{\Theta}_{k, \tau-1} \]
\[= \langle [z, x^{p^k-1}, \ldots, x^{p^{k-1}}] \mid z \in \mathbb{Z}_{p^\tau-1,2}^* \rangle \tilde{\Theta}_{k, \tau-1} \]
\[\vdots \]
\[= \langle [z, x^{p^k-1}, \ldots, x^{p^{k-1}}] \mid z \in \mathbb{Z}_{[\frac{p^\tau}{2}+1], [\frac{p^\tau}{2}+1]}^* \rangle \tilde{\Theta}_{k, \tau-1}, \]
which yields (A.2).

We consider now the case \(\nu = 0 \), which only occurs for the squares \(\mathbb{Z}_{i,j} \) where \(j > 1 \). Further it suffices to consider such elements \(z \in \mathbb{Z}_{p^{\ell}, \ell-\tau+1} \) with \(2 < \tau < \ell \leq \frac{p^\tau-1}{2} \). Similarly one obtains
\[\langle [z, x^{p^k-1}, \ldots, x^{p^{k-1}}] \mid z \in \mathbb{Z}_{p^\tau-1,2}^* \rangle \tilde{\Theta}_{k, \tau-1} \]
\[\vdots \]
\[\langle [z, x^{p^k-1}, \ldots, x^{p^{k-1}}] \mid z \in \mathbb{Z}_{[\frac{p^\tau}{2}+1], [\frac{p^\tau}{2}+1]}^* \rangle \tilde{\Theta}_{k, \tau-1}, \]
where of course \(\mathbb{Z}_{i,j} = \emptyset \) if \(j > i \).

Hence we have the first step towards claim (A.4). It remains to show that
\[U_\tau := \langle [z, x^{p^k-1}, \ldots, x^{p^{k-1}}] \mid z \in \mathbb{Z}_{p^\tau-1,1} \rangle \tilde{\Theta}_{k, \tau-1} \]
\[= \langle [z, x^{p^k-1}, \ldots, x^{p^{k-1}}] \mid z \in \mathbb{U}_{p^\tau-1} \rangle \tilde{\Theta}_{k, \tau-1} \]
\[= \left(\prod_{s=p^\tau}^{p^\tau-1} \prod_{t=p^\tau}^{s} z_{\mu+(p-1-t+p^\tau)p^{k-1}, \nu+(p-1-s+t)p^{k-1}} \mid \nu \geq \mu \right) \tilde{\Theta}_{k, \tau-1} \]
(A.4)
and
\[\langle [z, x^{p^k-1}, \ldots, x^{p^{k-1}}] \mid z \in \mathbb{Z}_{p^\tau-1,2}^* \rangle U_\tau \]
\[= \langle [z, x^{p^k-1}, \ldots, x^{p^{k-1}}] \mid z \in \mathbb{W}_{p^\tau-1,2} \rangle U_\tau. \]
(A.5)

Suppose that \(0 < \nu < \mu \). Akin to (A.3), we have that
\[[z(p^\tau)p^{k-1}+\mu, x^{p^k-1}, \ldots, x^{p^{k-1}}] = [z \underbrace{[\ldots]}_{p^\tau} p^{k-1}+\mu, x^{p^k-1}, \ldots, x^{p^{k-1}}] + 1 \]
\[= [z \underbrace{[\ldots]}_{p^\tau} p^{k-1}+\mu, x^{p^k-1}, \ldots, x^{p^{k-1}}] + 1 \]
\[= [z(p^\tau)p^{k-1}+\mu, x^{p^k-1}, \ldots, x^{p^{k-1}}], \]
where \(\epsilon \in \{-1, 1\} \), depending on whether \(\tau \) is even or odd. This proves (A.4), and similarly for (A.5).

Finally, we consider \(V_i \), for \(1 \leq i \leq \frac{p^\tau}{2} \). In a similar manner, one can show that
\[\langle [z, x^{p^k-1}, \ldots, x^{p^{k-1}}] \mid z \in V_i \rangle \tilde{\Theta}_{k,p-2i} = \tilde{\Theta}_{k,p-2i}, \]
and the result follows. \(\square \)

We note that some of the generators in the presentation of \(\tilde{\Lambda}_k \) where \(\mu = \nu \) are trivial modulo \(\tilde{\Theta}_k \). The number of such generators is insignificant in relation to the minimum generating set of \(\tilde{\Lambda}_k \).
References

[1] A. G. Abercrombie, Subgroups and subrings of profinite rings, Math. Proc. Camb. Phil. Soc. 116 (2) (1994), 209–222.
[2] M. Abért and B. Virág, Dimension and randomness in groups acting on rooted trees, J. Amer. Math. Soc. 18 (2005), 157–192.
[3] Y. Barnea and B. Klopsch, Index-subgroups of the Nottingham group, Adv. Math. 180 (2003), 187–221.
[4] Y. Barnea and A. Shalev, Hausdorff dimension, pro-p groups, and Kac-Moody algebras, Trans. Amer. Math. Soc. 349 (1997), 5073–5091.
[5] Y. Barnea and M. Vannacci, Hereditarily just infinite profinite groups with complete Hausdorff dimension spectrum, J. Algebra Appl. 18 (11) (2019), 1950216.
[6] I. de las Heras and B. Klopsch, A pro-p group with full normal Hausdorff spectra, Math. Nachr., to appear.
[7] I. de las Heras and A. Thillaisundaram, A pro-2 group with full normal Hausdorff spectra, arXiv preprint: 2102.02117.
[8] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-p groups, 2nd edition, Cambridge University Press, 1999.
[9] M. Ershov, New just-infinite pro-p groups of finite width of the Nottingham group, J. Algebra 275 (2004), 419–449.
[10] M. Ershov, On the commensurator of the Nottingham group, Trans. Amer. Math. Soc. 362 (2010), 6663–6678.
[11] G. A. Fernández-Alcober, E. Giannelli, and J. González-Sánchez, Hausdorff dimension in R-analytic profinite groups, J. Group Theory 20 (2017), 579–587.
[12] G. A. Fernández-Alcober and A. Zugadi-Reizabal, Spinal groups: semidirect product decompositions and Hausdorff dimension, J. Group Theory 14 (2011), 491–519.
[13] G. A. Fernández-Alcober, A. Zugadi-Reizabal, GGS-groups: order of congruence quotients and Hausdorff dimension, Trans. Amer. Math. Soc. 366 (2014), 1993–2017.
[14] E. Fink, On the finitely generated Hausdorff spectrum of spinal groups, arXiv preprint (2013).
[15] O. Garaialde Ocaña, A. Garrido and B. Klopsch, Pro-p groups of positive rank gradient and Hausdorff dimension, J. London Math. Soc. 101 (3) (2020), 1008–1040.
[16] Y. Glasner, Strong approximation in random towers of graphs, Combinatorica 34 (2014), 139–172.
[17] J. González-Sánchez and A. Zozaya, Standard Hausdorff spectrum of compact F_p[t]-analytic groups, Monatsh. Math. 195 (3) (2021), 401–419.
[18] A. Jaikin-Zapirain and B. Klopsch, Analytic groups over general pro-p domains, J. London Math. Soc. 76 (2007), 365–383.
[19] B. Klopsch, Substitution Groups, Subgroup Growth and Other Topics, D.Phil. Thesis, University of Oxford, 1999.
[20] B. Klopsch and A. Thillaisundaram, A pro-p group with infinite normal Hausdorff spectra, Pacific J. Math. 303 (2) (2019), 569–603.
[21] B. Klopsch, A. Thillaisundaram, and A. Zugadi-Reizabal, Hausdorff dimensions in p-adic analytic groups, Israel J. Math. 231 (2019), 1–23.
[22] C. R. Leedham-Green and S. McKay, The structure of groups of prime power order, Oxford University Press, Oxford, 2002.
[23] A. Shalev, Lie methods in the theory of pro-p groups, in: New horizons in pro-p groups, Birkhäuser, Boston 2000.
[24] Z. Šunić, Hausdorff dimension in a family of self-similar groups, Geom. Dedicata 124 (2007), 213–236.
