The Effect of Adding CO₂ to Hypoxic Inspired Gas on Cerebral Blood Flow Velocity and Breathing during Incremental Exercise

Jui-Lin Fan¹,², Bengt Kayser¹*

¹ Institute of Sports Sciences and Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland, ² Lemanic Neuroscience Doctoral School, University of Lausanne, Lausanne, Switzerland

Abstract

Hypoxia increases the ventilatory response to exercise, which leads to hyperventilation-induced hypocapnia and subsequent reduction in cerebral blood flow (CBF). We studied the effects of adding CO₂ to a hypoxic inspired gas on CBF during heavy exercise in an altitude naïve population. We hypothesized that augmented inspired CO₂ and hypocapnia would exert synergistic effects on increasing CBF during exercise, which would improve exercise capacity compared to hypoxic hypoxia. We also examined the responsiveness of CO₂ and O₂ chemoreception on the regulation ventilation (VₚE) during incremental exercise. We measured middle cerebral artery velocity (MCAv; index of CBF), VₚE, end-tidal PCO₂, respiratory compensation threshold (RC) and ventilatory response to exercise (VₚE slope) in ten healthy men during incremental cycling to exhaustion in normoxia and hypoxia (FIO₂=0.10) with and without augmenting the fraction of inspired CO₂ (FICO₂).

During exercise in normoxia, augmenting FICO₂ elevated MCAv throughout exercise and lowered both RC onset and VₚE slope below RC (P<0.05). In hypoxia, MCAv and VₚE slope below RC during exercise were elevated, while the onset of RC occurred at lower exercise intensity (P<0.05). Augmenting FICO₂ in hypoxia increased VₚE at RC (P<0.05) but no difference was observed in RC onset, MCAv, or VₚE slope below RC (P>0.05). The VₚE slope above RC was unchanged with either hypoxia or augmented FICO₂ (P>0.05). We found augmenting FICO₂ increased CBF during sub-maximal exercise in normoxia, but not in hypoxia, indicating that the ‘normal’ cerebrovascular response to hypercapnia is blunted during exercise in hypoxia, possibly due to an exhaustion of cerebral vasodilatory reserve. This finding may explain the lack of improvement of exercise capacity in hypoxia with augmented CO₂. Our data further indicate that, during exercise below RC, chemoreception is responsive, while above RC the ventilatory response to CO₂ is blunted.

Introduction

At high intensities of exercise in normoxia, above the respiratory compensation threshold (RC), hyperventilation-induced hypocapnia constricts the cerebral vessels, thereby reducing cerebral blood flow (CBF) and lowering cerebral oxygen delivery [1–3]. In conditions of hypoxia, in spite of hypoxic vasodilation, the hypocapnia-induced limitation of CBF at high exercise intensities is further aggravated due to a greater ventilatory drive. Such a limitation of CBF might lead to inadequate cerebral O₂ delivery, triggering early motor drive withdrawal, thus limiting exercise performance in hypoxia [4,5]. In support, several studies found a relationship between performance and cerebral deoxygenation in hypoxia using various exercise modes such as repeated sprints [6], incremental exercise [7,8], and static maximal muscle contraction to exhaustion [9–12]. Similarly, under normoxic conditions, exacerbation of exercise induced cerebral deoxygenation, by administering a non-selective beta-blocker, is accompanied by impaired maximal exercise performance [13]. This has led to the hypothesis that an exaggerated hyperventilation-induced hypocapnia and subsequent reduction in CBF during heavy exercise might account, in part, for the impaired performance in hypoxia.

Recently, studies have assessed the effect of preventing the normal drop in end-tidal PCO₂ on CBF and exercise performance in normoxia [14] and hypoxia [15,16]. Subudhi et al., [15] reported impaired exercise capacity at 1,600 m and 4,875 m (hypobaric chamber) when they clamped end-tidal PCO₂ (PETCO₂) either: 1) at 50 mmHg throughout incremental exercise or 2): at 40 mmHg from ~75% maximal work rate until exhaustion. Siebenmann et al., [16] completed those observations by investigating, at a more moderate altitude (3,454 m), the impact of clamping PETCO₂ at 40 mmHg on performance. Both of these studies found clamping PETCO₂ increased MCAv and attenuated the decrease in cerebral oxygenation, but slightly decreased peak power output without affecting maximal oxygen uptake. Subudhi et al., [15] found ventilation (VₚE) was elevated (by ~50 L/min) during submaximal exercise intensities (37 and 75% of maximal hypoxic work rate) with PETCO₂ clamping,
compared to without added CO₂. As such, they attributed the reduced performance with CO₂ clamping to earlier functional limitation by the respiratory system associated with CO₂ breathing. Since these studies were carried out in subjects living at moderate altitude [15] and in low altitude residents following a day spent at high altitude[16], respectively, both conditions accompanied by enhanced cerebrovascular and ventilatory responsiveness to CO₂ [17,18], the acute effect of augmented FICO₂ and hypoxia on CBF during exercise in an altitude-naïve population remained unclear.

For climbing 8,000 m peaks, a strong ventilatory response at altitude is believed to be a factor for success [19], but increases the risk of brain damage because of excessive hyperventilation-induced cerebral hypoxemia [20]. By contrast, Bernardi et al., [21] found that acclimatized elite climbers with a smaller ventilatory response to hypoxia at 5,200 m were more successful compared to without added CO₂. As such, they attributed the reduced performance with CO₂ clamping to earlier functional limitation by the respiratory system associated with CO₂ breathing. Since these studies were carried out in subjects living at moderate altitude [15] and in low altitude residents following a day spent at high altitude[16], respectively, both conditions accompanied by enhanced cerebrovascular and ventilatory responsiveness to CO₂ [17,18], the acute effect of augmented FICO₂ and hypoxia on CBF during exercise in an altitude-naïve population remained unclear.

Therefore, the effect of augmenting FICO₂ on ventilation during exercise is of interest, particularly in the presence of enhanced ventilatory drive associated with hypoxia.

We tested the hypotheses that, in non-altitude acclimatized subjects, increasing PETCO₂ during incremental exercise in normobaric hypoxia would: i) further augment CBF during exercise in hypoxia and improve exercise capacity; and ii) exacerbate the increase in ventilation at sub-maximal exercise intensities but not at maximal effort.

Methods
Ethics
The study was approved by the Research Ethical Committee of the University Hospitals of Geneva and conformed to the standards set by the Declaration of Helsinki. All subjects were informed regarding the procedures of this study, and informed signed consent was given prior to participation.

Subjects
Ten healthy male subjects with a mean age of 24±3 yr (mean ± SD), a body mass index of 22.7±2.4 kg/m² and VO₂max of 58.3±10.5 ml/min/kg participated in this study. Subjects were non-smokers, had no previous history of cardiovascular, cerebrovascular, or respiratory disease and were not taking any medication. All the subjects were residents of Geneva, Switzerland (~400 m) and partook in regular exercise (3–6 h per week); none were acclimatized to altitude (i.e., they had not travelled to altitudes >1,000 m in the past 2 months).

Experimental design
The subjects visited the laboratory on five occasions. After a full familiarization with the experimental procedures outlined below (visit one), subjects underwent four experimental exercise trials in a randomized, single-blind and balanced fashion (to prevent order effects), with a 3-day washout period between each experimental session, consisting of the following conditions: i) control normoxia (ambient air, 389 m); ii) augmented FICO₂ in normoxia; iii) control hypoxia (normobaric simulated altitude, 5,000 m); and iv) augmented FICO₂ in hypoxia. Before each experimental session, the subjects were asked to abstain from caffeine for 12 h and heavy exercise, and from alcohol for 24 h. Each experimental testing session comprised 20 min instrumentation followed by a 4 min resting baseline collection with the subject breathing room-air and seated on an electronically braked cycle ergometer (Ergoselect 100, Ergoline GmbH, Bitz, Germany). During the hypoxia and augmented FICO₂ trials, the subjects were then switched to a gas mixing system (described below), breathing the respective gas mixtures for an additional 4 min resting baseline (condition baseline) prior to the incremental cycling test.

Exercise test
The subjects were instructed to begin cycling at 0 watts at a pedaling rate of 70 rpm. The work rate was increased by 0.5 watts every second (30 W/min) thereafter until the subject reached voluntary exhaustion. Throughout each experimental session, the subjects wore a nose-clip and breathed through a mouthpiece attached to a low resistance one-way non-rebreathing valve (Hans-Rudolph 2700, Kansas City, USA). The hypoxia and augmented FICO₂ were achieved using a modified gas mixing system (Altitrainer, SMTeC, Nyon, Switzerland), which has been previously described in detail [14]. In brief, additional CO₂ was bled into the inspired gas mixture under constant feedback of on-screen PETCO₂ and FICO₂ was constantly adapted as to keep PETCO₂ to a target value of approximately 43 mmHg during both normoxia and hypoxia. The FIO₂ was held constant at either 0.21 (normoxia, ambient air) or 0.10 (hypoxia). The subjects breathed through the same circuit in all four conditions and were kept unaware to what gas mixture they were breathing and were naïve to the rationale of the study. For each subject the experiments were carried out at the same time of day under consistent laboratory conditions (temperature 22.3±0.5°C, humidity 27±7%, barometric pressure 725±4 mmHg).

Measurements
Respiratory variables. Gas exchange was monitored on a breath-by-breath basis (Medgraphics CPX, Loma Linda, USA) measuring flow at the mouth with a Pitot tube and the fractions of inspired and expired O₂ and CO₂ with last responding gas analyzers (infrared and paramagnetic) integrated in the system. Ventilation (V'E) was derived from the flow signal and expressed in body temperature and pressure saturated (BTPS) and L/min, respectively. The partial pressure of end-tidal O₂ (PETO₂), CO₂ (PETCO₂), O₂ consumption (VO₂) and CO₂ production (VCO₂) were calculated by the gas analysis system. Prior to each experimental session the system was calibrated using a 3-L syringe (M9474, Medikro Oy, Finland) and precision gas mixtures of known O₂ and CO₂ concentrations.

Cerebrovascular and cardiovascular variables. Bilateral middle cerebral artery blood flow velocities (MCAv: as index of MCAv) were measured in the middle cerebral arteries using a 2-MHz pulsed Doppler ultrasound system (ST3, Spencer technology, Seattle, USA). The Doppler ultrasound probes were positioned over the temporal windows and held firmly in place with an adjustable headband (Marc 600 Headframe, Spencer technology, Seattle, USA). The signals were at depths ranging from 43 to 54 mm. Signal quality was optimized and an M-mode screen shot was recorded to facilitate subsequent probe placements. In our hands, day-to-day reproducibility of MCAv has a coefficient of variation of <10%. The bilateral MCAv were averaged to represent an index of global CBF during rest and exercise. Heart rate was measured using a thoracic belt and recorded directly onto a PC via a wireless receiver pod (PC-POD, Suunto, Vantaa, Finland). Peripheral O₂ saturation (SpO₂) was measured from the right ear lobe using pulse oximetry (Satlite, Datex, Helsinki, Finland, and ML320 Oximeter Pod, ADInstruments, Bella Vista, Australia). Blood pressure was measured with...
an automated arm sphygmomanometer (Ergosport 100, Ergoline GmbH, Bitz, Germany).

Perceived exertion. During exercise, the subjects were asked to score their perceived exercise exertion on the 0–10 Borg scale every minute [22].

Data and statistical analysis

Respiratory compensation threshold and ventilatory response to exercise. The respiratory compensation threshold (RC) was obtained using the V-slope method previously described by Beaver et al., [23]. The assessment of the ventilatory response to exercise (i.e., the slope of V/E rise during exercise: V/E-slope to power output) has been previously described [24,25]. In brief, breath-by-breath V/E points were plotted against mechanical power output and a least squares regression was used to determine the V/E-slope to exercise above and below RC.

Statistical analysis. Resting values were obtained by averaging the data obtained in the last two minutes of the four minutes resting periods just prior to exercise. For the incremental exercise, we took the last 20 sec of every 10% increase in exercise intensity until exhaustion (100%). We then averaged all of the 20 sec segments of the data to obtain a single mean value for each variable during all four experimental conditions. The effects of hypoxia and augmenting FICO2 on cardiorespiratory and cerebrovascular responses at rest were assessed using two-way repeated-measures ANOVA with a-1 level of P<0.05 (IBM SPSS Statistics version 21.0, IBM Corporation, Armonk, USA). Likewise, two-way repeated measures ANOVA was used to test the effects of hypoxia and augmenting FICO2, four pairwise comparisons (Bonferroni corrected) were performed to isolate the effect of hypoxia and augmenting FICO2 on the dependent measures within subjects with a-2 level of 0.0125, indicated where appropriate with the superscript B. Trends were considered when P<0.10. All data are reported as means ± SD.

Results

All ten subjects completed the experimental protocol. Due to poor gas exchange traces, one subject had to repeat the augmented FICO2 in hypoxia trial. Two subjects had to repeat their control normoxia trials, as they initially did not maintain a pedaling rate of 70 rpm during high intensity exercise. One subject reported respiratory dyspnea during exercise in augmented FICO2, in hypoxia, while another reported a mild headache lasting 20 min following the control hypoxia trial. No other subjects reported any side effects such as headache or dyspnea following the experiments. Due to poor blood pressure signals during exercise, we were unable to carry out repeated-measures ANOVA analysis on the MAP data during exercise.

Resting variables (Table 1)

MC4v: Hypoxia had no effect on resting MCAv (hypoxia: P = 0.790 vs. normoxia), while augmenting FICO2 elevated MCAv by 25±21% during both normoxic and hypoxic conditions (CO2: P = 0.001, interaction: P = 0.681).

Ventilatory variables. Resting PETCO2 was lower with hypoxia (hypoxia: P = 0.001), while it was higher with augmented FICO2 (CO2: P<0.001, interaction: P = 0.224). There was an interaction between the effects of hypoxia and augmenting FICO2 on resting PETCO2 (interaction: P = 0.004). Post-hoc analysis shows that PETCO2 was lowered with hypoxia during both control and augmented FICO2 conditions (P<0.001B vs. normoxia for both), while augmenting FICO2 elevated resting PETCO2 by a greater extent in normoxia (by 20±3 mm Hg, P<0.001B vs. control normoxia) compared to in hypoxia (by 10±4 mm Hg, P<0.001B vs. control hypoxia). Resting V/E was elevated by hypoxia (P = 0.008 vs. normoxia) and augmented FICO2 (CO2: P<0.001, interaction: P = 0.848). There was an interaction between the effect of hypoxia and augmenting FICO2 on VCO2 (interaction: P = 0.003). Post-hoc t-tests showed that hypoxia elevated FICO2 during control (P<0.001B vs. control normoxia) but not during augmented FICO2 (P = 0.832B vs. augmented FICO2 in normoxia). Accordingly, FICO2 appeared to be lower with augmented FICO2 in hypoxia (P<0.001B vs. control hypoxia) but not in normoxia (P = 0.131B vs. control normoxia). No differences were observed in VCO2 with either hypoxia or augmented FICO2 (main effects: P = 0.217 & P = 0.127, respectively, interaction: P = 0.575).

Cardiovascular variables. Hypoxia elevated resting HR (hypoxia: P<0.001 vs. normoxia); there was a slight but non-significant tendency for augmenting FICO2 to attenuate this increase in HR (CO2: P = 0.836, interaction: P = 0.059). The effect of hypoxia and augmented FICO2 on resting SpO2 interacted with each other (interaction: P = 0.004). Specifically, post-hoc analysis found SpO2 to be lower with hypoxia during both control and augmented FICO2 conditions (P<0.001B vs. normoxia for both). Meanwhile, augmenting FICO2 selectively elevated resting SpO2 in hypoxia (P<0.001B vs. control hypoxia), but not in normoxia (P = 0.615B vs. control normoxia). No changes were observed in resting MAP with either hypoxia or augmenting FICO2 (main effects: P = 0.809 and P = 0.123, respectively, interaction: P = 0.370).

Exercise

Performance. Hypoxia lowered maximal exercise capacity by 26% (251±15 W vs. 338±21 W, hypoxia vs. normoxia, hypoxia: P = 0.001), whereas there was a tendency for maximal exercise capacity to be lowered with augmented FICO2 (CO2: P = 0.091, interaction: P = 0.397). Specifically, maximal exercise capacity tended to be lower by 4% in normoxia (322±66 W vs. 345±66 W, augmented FICO2 vs. control, P = 0.052B), while no trend was observed in hypoxia (248±48 W vs. 256±48 W, P = 0.259B).

Ventilatory variables (Fig. 1A, 1B & 2A–D). During incremental exercise, the effect of augmenting FICO2 on PETCO2 was greater in hypoxia compared to normoxia (interaction: P<0.001). Post-hoc analysis revealed that throughout exercise, hypoxia lowered PETCO2 during control by a greater extent than during augmented FICO2 (10±3 mm Hg vs. 5±3 mm Hg, P<0.001B vs. normoxia for both). Meanwhile, augmenting FICO2 elevated PETCO2 by a lesser extent in normoxia compared to in hypoxia (8±3 mm Hg vs. 14±3 mm Hg, P<0.001B vs. control for both). In contrast, hypoxia blunted the effect of augmenting FICO2 on PETCO2 (interaction: P<0.001). Post-hoc comparisons found hypoxia lowered PETCO2 by 49±2 mm Hg during control and by 54±4 mm Hg during augmented FICO2 conditions (P<0.001B vs. normoxia for both). Furthermore, augmenting FICO2 increased PETCO2 by 15±3 mm Hg in normoxia and by 10±3 mm Hg in hypoxia (P<0.001B vs. control for both).

During incremental exercise, both hypoxia and augmenting FICO2 elevated V/E (main effect: P<0.001 for both, interaction: P = 0.183). At exhaustion, V/E reached 74±12% of estimated maximal voluntary ventilation (MVV) in normoxia and 69±11% in hypoxia [26].
MCav (Fig. 1C, 2E & 2F). During incremental exercise, there was a significant interaction between the effect of hypoxia and augmenting FICO₂ (interaction: P = 0.010). Post-hoc analysis revealed that hypoxia elevated MCav during control (P = 0.002° vs. control normoxia), but not during augmented FICO₂ condition (P = 0.429° vs. augmented FICO₂ in normoxia). Meanwhile, augmenting FICO₂ selectively elevated MCav during incremental exercise in normoxia (P < 0.001° vs. control normoxia), but not in hypoxia (P = 0.145° vs. control hypoxia).

Oxygen saturation (Fig. 1D, 2G & 2H). The effect of augmenting FICO₂ on SpO₂ during exercise was enhanced in hypoxia (interaction: P < 0.001). As such, post-hoc analysis showed that hypoxia lowered SpO₂ by 26.5% during control condition (P < 0.001° vs. control normoxia) and by 13% during augmented FICO₂ condition (P < 0.001° vs. augmented FICO₂ in normoxia). Meanwhile, augmenting FICO₂ elevated SpO₂ by 12% in hypoxia (P < 0.001° vs. control hypoxia), but not in normoxia (P = 0.615° vs. control normoxia).

Metabolism (Fig. 1E, 1F & 3A–D). Hypoxia lowered both VO₂ and VCO₂ throughout exercise (hypoxia: P < 0.001 vs. normoxia for both), while augmented FICO₂ had no effect on these variables (CO₂: P = 0.628 & P = 0.544, respectively, interaction: P = 0.954 & P = 0.304).

Cardiovascular variables (Fig. 1G, 3E & 3F). During exercise, the effect of hypoxia on HR was offset by the effect of augmenting FICO₂ (interaction: P = 0.003). Accordingly, post-hoc t-tests found HR to be higher with hypoxia during control (P = 0.001° vs. control normoxia), but not during the augmented FICO₂ (P = 0.360° vs. augmented FICO₂ in normoxia). There were trends for augmenting FICO₂ to elevate HR during exercise in normoxia (P = 0.075° vs. control normoxia) and lower HR in hypoxia (P = 0.019° vs. control hypoxia).

Rate of perceived exertion (Fig. 1H, 3G & 3H). There was an interaction between effects of hypoxia and augmenting FICO₂ on RPE (interaction: P = 0.043). As a result, a post-hoc t-tests found a tendency for RPE to be elevated with augmented FICO₂ in normoxia (P = 0.039° vs. control normoxia), but not in hypoxia (P = 0.509° vs. control hypoxia). Hypoxia had no effect on RPE during control or augmenting FICO₂ (P = 0.735° & P = 0.190° vs. normoxia, respectively).

RC and V/E-slope to exercise (Fig. 4 & 5). During exercise, the onset of RC occurred at lower power output in hypoxia compared to in normoxia (by 36±3.6 W, Hypoxia: P < 0.001). Likewise, the onset of RC occurred at lower power output with augmenting FICO₂ compared to control conditions (CO₂: P = 0.015; interaction: P = 0.176). Meanwhile, there was an interaction between the effect of hypoxia and augmenting FICO₂ on the V/E at RC (interaction: P = 0.021). Post-hoc analysis revealed that hypoxia tended to elevate V/E at RC under the augmented FICO₂ condition (P = 0.027° vs. augmented FICO₂ in normoxia), but not during the control condition (P = 0.112° vs. control normoxia). Augmenting FICO₂ selectively increased V/E at RC in hypoxia (by 23.95±21.70 L/min, P = 0.007° vs. control hypoxia), but not in normoxia (P = 0.847° vs. control normoxia). The effect of hypoxia and augmenting FICO₂ interacted with each other on the V/E-slope to exercise (the slope of V/E rise against power) below RC (interaction: P = 0.041). As such, hypoxia elevated the V/E slope to exercise below RC during both control (by 30±13%, P < 0.001° vs. control normoxia) and augmented FICO₂ condition (by 16±9%, P = 0.001° vs. augmented FICO₂ in normoxia). Augmenting FICO₂ lowered the V/E slope below RC during hypoxia (by 27±14%, P = 0.001° vs. control hypoxia), but not during hypoxia (P = 0.786° vs. control hypoxia). In contrast, no differences were observed in the V/E slope to exercise above RC with either hypoxia or augmenting FICO₂ (hypoxia: P = 0.256, CO₂: P = 0.155, interaction: P = 0.585).

Discussion

Augmenting FICO₂ elevated CBF during incremental exercise in normoxia, but, unexpectedly, it did not during hypoxia. Furthermore, we found no improvement in exercise capacity with

| Table 1. Effect of hypoxia and augmented FICO₂ on resting respiratory, cerebrovascular and cardiovascular variables. |
|-----------------|-----------------|-----------------|
| **Ventilatory** | **Control** | **Augmented FICO₂** |
| PETCO₂ (mmHg) | 36 ± 3 | 43 ± 2* |
| PETO₂ (mmHg) | 96 ± 4 | 116 ± 4* |
| V̇E (L/min) | 11.6 ± 1.8 | 24.1 ± 5.1* |
| V̇O₂ (ml/min) | 350 ± 64 | 394 ± 63 |
| V̇CO₂ (ml/min) | 320 ± 67 | 285 ± 51 |
| **Cerebrovascular** | 54 ± 10 | 67 ± 10* |
| MCAv (cm/s) | 54 ± 10 | 67 ± 10* |
| HR (b/min) | 70 ± 7 | 74 ± 13 |
| MAP (mmHg) | 90 ± 7 | 99 ± 11 |
| SpO₂ (%) | 97 ± 1 | 98 ± 1 |

Values are mean ± SD.
°different from control (P < 0.05);
°different from normoxia (P < 0.05).
N = 10 for all variables except VO₂ and VCO₂ where N = 9.
doi:10.1371/journal.pone.0081130.t001
augmented FICO2 during either normoxia or hypoxia. While the roles of hypercapnia and hypoxia in the regulation of CBF during rest have been extensively studied, their effects on cerebrovascular control during exercise are less well documented [see [27] for review]. During exercise, studies have found enhanced CBF response to hypercapnia [28], while the CBF response to hypocapnia remained unchanged [29].

During incremental exercise, we observed higher MCAv during both control hypoxia and augmented FICO2 in normoxia (Fig. 1C). However, in contrast to the findings by Subudhi et al., [15], we observed no further increase in MCAv with augmented FICO2 in hypoxia. The discrepancies between these findings could potentially be accounted for by the differences in the experimental setup and/or the level of hypercapnia achieved. In the study by Subudhi et al., [15],

Figure 1. Effect of hypoxia and augmented FICO2 on mean respiratory, cerebrovascular, metabolic and cardiac variables and perceived effort of exertion during incremental cycling to exhaustion. Values expressed as mean ± SD. * different from control (P<0.05); † different from normoxia (P<0.05); ‡ trend for a difference (P<0.10).

doi:10.1371/journal.pone.0081130.g001
Figure 2. Effect of hypoxia and augmented FICO₂ on group respiratory, cerebrovascular variables and peripheral O₂ saturation during incremental cycling to exhaustion. Left panels: group data in normoxia (mean ± SD); right panels: group data in hypoxia. Note: these graphs are only intended for visualizing the changes in physiological parameters during incremental cycling. Statistical analyses were carried out using the average variable during the exercise session (see Figure 1).
doi:10.1371/journal.pone.0081130.g002
Figure 3. Effect of hypoxia and augmented FICO₂ on metabolic variables, heart rate, and perceived effort of exertion during incremental cycling to exhaustion. Left panels: group data in normoxia (mean ± SD); right panels: group data in hypoxia. Note: these graphs are only intended for visualizing the changes in physiological parameters during incremental cycling. Statistical analyses were carried out using the average variable during the exercise session (see Figure 1).

doi:10.1371/journal.pone.0081130.g003
PETCO₂ was clamped at 50 mmHg throughout exercise, while our subjects’ PETCO₂ were on average, 46 and 43 mmHg in normoxia and hypoxia respectively (Fig. 1A), reaching 53 and 47 mmHg at maximal exercise intensity (Fig. 2A & 2B). Meanwhile, using our Altitrainer setup, Siebenmann et al., [16] were able to increase MCAv during incremental exercise in moderate hypobaric hypoxia (3,454 m) by clamping PETCO₂ at 40 mmHg in altitude sojourners. We deem it unlikely that differences in experimental setup are sufficient to account for these discrepant findings between the three studies. An alternative explanation is the potential influence of (partial) altitude acclimatization [30]. Subudhi et al., [15] examined the effect of CO₂ clamping on competitive cyclists living and training at 1,650 m, therefore already acclimatized to exercise at moderate altitude. Likewise, the subjects in Siebenmann et al., [16] had spent one night at altitude. In contrast, the subjects in our study had not been exposed to altitude >1000 m in the 2 months prior the study. Since acclimatization to altitude augments the cerebrovascular responsiveness to CO₂ [17], the increase in CBF observed by both Subudhi et al., [15] and Siebenmann et al., [16] may therefore be due to a partial state of acclimatization to altitude.

Cerebral O₂ delivery and performance in hypoxia

Contrary to our first hypothesis, augmenting FICO₂ during incremental exercise in normobaric hypoxia failed to improve aerobic exercise capacity. This finding corroborates recent findings in milder [hypobaric] hypoxic conditions [15,16]. The relationship between cerebral deoxygenation and exercise performance in normoxia [13] and hypoxia [6–12] is therefore unlikely to be causally related to the loss of aerobic capacity in hypoxia. However, it cannot be excluded that augmenting FICO₂ introduces limits that overrule the potential benefit of improved cerebral CO₂ delivery. Siebenmann et al., [16] argued that inspired CO₂ may exacerbate the metabolic acidosis associated with heavy exercise, shifting the oxyhemoglobin curve rightward, decreasing SaO₂, thus limiting peak VO₂. In agreement, our results show a reduction in average heart rate in hypoxia (Fig. 1G) and a tendency for maximal exercise capacity to be actually impaired with augmented FICO₂ (P = 0.091), as also reported elsewhere [15,16]. In agreement with Subudhi et al., [15], we found the participants’ RPE to increase more rapidly with augmented FICO₂ in normoxia (Fig. 3G), in parallel with the increase in ventilation (Fig. 2C). But contrary to Siebenmann et al., [16], our findings of higher SpO₂ with augmented FICO₂ in hypoxia throughout submaximal exercise intensities, and similar SpO₂ at exhaustion (Fig. 2H), which exclude a right-ward shift in the oxyhemoglobin curve would have limited pulmonary oxygen uptake.

Limits to cerebral vasodilation

While controversy remains, there is a large body of literature suggesting that nitric oxide, prostanoids and C-natriuretic peptide are involved in the cerebral vasodilatory responses to both hypercapnia and hypoxia through a number of intermediate interacting/co-activating pathways [31]. We speculate that if one chemical stimulus, such as hypoxia, is of sufficient magnitude to exhaust the cerebral vessels’ capacity to vasodilate, thereby reaching maximal diameter of the vessels, then any additional stimuli would have no further effect on cerebrovascular resistance. Our data indicate that the CBF response to hypoxia is enhanced during exercise compared to rest, while adding CO₂ to the inspired gas during exercise only elevates CBF during normoxia.
but not during severe hypoxia (Fig. 1C). The ‘normal’ cerebrovascular reactivity to hypercapnia thus appears to be abolished during exercise in severe hypoxia (Fig. 2F). In support, we found no difference between the MCAv values between augmented FICO\(_2\) in normoxia and control hypoxia (P = 0.193). Such exhaustion of the cerebral vessels’ vasodilatory reserve would account for the lack of change in MCAv with augmented FICO\(_2\) during sub-maximal exercise in hypoxia. Mardimae et al., [32] demonstrated a synergistic role of CO\(_2\) and hypoxia on the control of CBF at rest whereas our results would favor a negative effect, whereby the presence of severe hypoxia appears to attenuate the effect of hypercapnia on the cerebral vessels. Our data indicates that during incremental exercise in hypoxia, the role of hypercapnia in the regulation of cerebrovascular tone appears to be diminished – at least in an unacclimatized population. However, we cannot exclude the possibility that there might be regional differences in the cerebral vessel response to hypoxia and hypercapnia, which could display additive or synergistic interactions between the two chemical stimuli. Furthermore, the effect of combining hypoxia and hypercapnia on cerebral metabolism is unknown. Given the limited literature on this topic, further studies on the effect of hypoxia, hypercapnia and acclimatization status on regulation of cerebrovascular tone and therefore cerebral O\(_2\) delivery during exercise in altitude is certainly warranted.

Chemoreception and exercise hyperpnea

The regulation of exercise hyperpnea has been extensively studied during the past 10 years [see [33–37] for reviews]. Nevertheless, the role of chemoreception in the regulation of exercise hyperpnea, especially during heavy exercise remains controversial [38,39]. To date, only a handful of studies have examined the effect of chemoreceptor stimulation with CO\(_2\) alone [3,14,25,40,41] or the combined effects of hypoxia and hypercapnia on exercise hyperpnea [42]. Our second hypothesis stated that increasing PETCO\(_2\) and decreasing PETO\(_2\) would stimulate the chemoreceptors and lead to an increase in the ventilatory response to exercise. We found that hypoxia and augmented FICO\(_2\) had an additive effect on exercise hyperpnea below the RC threshold (Fig. 4C). As reported before in conditions of normoxia [14], adding CO\(_2\) to the inspirate during normoxic and hypoxic conditions indeed increased ventilation at rest and during incremental exercise (Table 1 & Fig. 5). However, at higher intensities, above the RC threshold, this effect progressively lessened, in spite of a progressive increase in PETCO\(_2\), again similarly to what we found before in normoxia [14]. Hypoxia per se augmented the ventilatory response to incremental exercise (the rate of ventilation increase during exercise) below the RC threshold, while augmented FICO\(_2\) attenuated this rate of increase (Fig. 5). Hypoxia shifted the RC threshold to lower exercise intensities, which is further exacerbated with augmented FICO\(_2\) (Fig. 4A & 4B). No differences were observed in the slope of the ventilatory response to exercise above the RC threshold between any of the conditions (Fig. 4D). We thus confirm that below the RC threshold both hypoxia and hypercapnia can modulate the rate of ventilatory response to increasing exercise, presumably through chemoreceptor stimulation. However, once above the ventilatory compensation threshold, the chemoafferent ventilatory responses are blunted.

Siebenmann et al., [16] suggested that, during heavy exercise in hypoxia, the hyperventilation-induced hypocapnia might attenuate ventilatory drive and limit the ventilatory response to exercise. They further speculated that the mechanical constraints associated with high intensity exercise ventilation may be reduced in hypobaric hypoxia, while at the same time hypocapnia would be more pronounced, so that a blunting effect of hypocapnia on VE would persist or become more pronounced. Since we performed our experiments in normobaric conditions our results were not influenced by differences in air density, neglecting the small increases in \(N_2\) and \(CO\(_2\) in exchange of \(O\(_2\) in our inspirates. In our young and active, but not-athletic subjects, mechanical limitation would seem unlikely since maximal ventilation only reached ~70% of estimated MVV with augmented FICO\(_2\) both in normoxia and hypoxia.

Methodological considerations

Although the present study provided the opportunity to examine the effects of augmented FICO\(_2\) on CBF response and exercise capacity during incremental exercise in hypoxia, an important limitation of the present study, as of many other studies, is the assumption that MCAv represents global CBF changes. Sato et al., [43] recently found that blood flow in the middle cerebral and internal carotid arteries declined from moderate (60% \(P_O\(_2\)max) to high intensity exercise (80% \(P_O\(_2\)max), whilst blood flow in the vertebral artery continued to increase at the higher intensities. This led Vogiatzis et al., [11] to suggest that vertebral artery blood flow may compensate for reductions of MCA blood flow during near-maximal or maximal exercise. However, since the relative contribution of the internal carotid artery (and

Figure 5. Effect of hypoxia and augmented FICO\(_2\) on respiratory compensation threshold and ventilatory response to exercise during incremental cycling to exhaustion. A: group data in normoxia (mean ± SD); B: group data in hypoxia. * different from control (P<0.05); † different from normoxia (P<0.05); § trend for a difference (P<0.10).

doi:10.1371/journal.pone.0081130.g005
therefore MCA) to global CBF remains relatively unchanged (~65%) at high intensity exercise [43], we contend that MCAv is a reasonable index of changes in global CBF during heavy exercise. Further consideration when interpreting our MCAv data is the potential influence of hypoxia and hypercapnia on the MCA diameter [44]. The cerebral vasodilatory area of the MCA was shown to remain relatively unchanged within a wide range of changes in PETCO2 [44–47] and during exposure to hypoxia similar to that used in the present study (5,300 m) [48]. However, since no studies have examined the effect of exercise on MCA diameter, nor when superimposed with hypoxia and hypercapnia, we cannot exclude the possibility MCA diameter might have increased in our study, leading to an underestimation of the effect of augmented FICO2 or hypoxia on CBF. In addition, since we did not measure cerebral tissue oxygenation, it is possible that we were unable to elevate cerebral O2 delivery with our experimental setup. However, in the present study, SpO2 was elevated with augmented FICO2 throughout exercise in hypoxia (Fig. 1D), while MCAv was comparable between the control and augmented FICO2 conditions (Fig. 1C). We would therefore expect cerebral O2 delivery, which is the product of arterial O2 saturation and CBF, to be elevated with augmented FICO2 in hypoxia, leading to increased cerebral tissue oxygenation.

Another limitation of the present study is that we increased end-tidal rather than arterial PCO2 during exercise, while it is known that the end-tidal-arterial PCO2 gradient [49] varies with exercise [50,51]. Using our setup, Siebenmann et al., [16] were successful in clamping both end-tidal and arterial PCO2 at around 40 mmHg during incremental exercise in hypoxia. Therefore, we believe it is likely that we were able to sufficiently elevate PaCO2.

Finally, in the present study, we used a linear ramp protocol to assess the effect of augmented FICO2 on the ventilatory response during incremental exercise. It should be acknowledged that during incremental exercise, lower peak VO2 and work output is obtained during ramp vs. step protocols [52], while the steepness of the ramp (i.e., 10 W/min, 30 W/min or 50 W/min), pedaling frequency and baseline workload can influence the onset of ventilatory threshold, peak VO2 and the VO2-workload relationship [53,54]. Therefore, our conclusions on the ventilatory response to exercise should only be limited to the specific ramp protocol (30 W/min) used in the present study. Furthermore, since all the aforementioned studies [15,16] only looked at aerobic capacity using incremental exercise tests until voluntary exhaustion, which have limited ecological validity [55], it remains to be investigated if increasing MCAv by augmenting FICO2 during steady-state sub-maximal endurance exercise such as a time trial could improve performance in hypoxia, as time trial exercise provide a more accurate simulation of physiological responses during actual competitions [56] and correlate well with actual race performance [57].

Conclusions

We report two novel findings. Firstly, augmenting FICO2 increases cerebral blood flow during sub-maximal exercise in normoxia, but not in hypoxia. This finding indicates that the ‘normal’ cerebrovascular response to hypercapnia is impaired during exercise in hypoxia, possibly due to an exhaustion of cerebral vasodilatory reserve. Second, above the ventilatory recruitment threshold, both in normoxia and hypoxia, the chemoreflex ventilatory responses are blunted.

Acknowledgments

The authors are thankful to Nicolas Place who kindly provided his technical assistance. We also like to extend our thanks to Frederic Stucky for his assistance with the experimental testing.

Author Contributions

Conceived and designed the experiments: BK. Performed the experiments: JF BK. Analyzed the data: JF. Wrote the paper: JF BK.

References

1. Madsen PL, Spiering BK, Warming T, Schmidt JF, Secher NH, et al. (1993) Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise. J Appl Physiol 74: 245–250.
2. Ide K, Horn A, Secher NH (1999) Cerebral metabolic response to submaximal exercise. J Appl Physiol 87: 1604–1608.
3. Olín JT, Dimmen AC, Subudhi AW, Roach RC (2011) Cerebral blood flow and oxygenation at maximal exercise: the effect of clamping carbon dioxide. Respir Physiol Neurobiol 175: 176–180. doi:10.1016/j.resp.2010.09.011.
4. Amann M, Kayser B (2009) Nervous system function during exercise in hypoxia. High Alt Med Biol 10: 149–164. doi:10.1089/ham.2008.1105.
5. Nybo L, Rasmussen P (2007) Inadequate cerebral oxygen delivery and central fatigue during strenuous exercise. Exerc Sport Sci Rev 35: 110–118. doi:10.1016/j.exss.2007.03.001.
6. Smith KJ, Bilsburt F (2010) Influence of cerebral and muscle oxygenation on repeated-sprint ability. Eur J Appl Physiol 109: 969–999. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=CitationList_uids&list_uids=20354718.
7. Subudhi AW, Dimmen AC, Roach RC (2007) Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. J Appl Physiol 103: 177–183. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=CitationList_uids&list_uids=17410302.
8. Peltonen JE, Paterson DH, Shoemaker JK, DeLorey DS, duManoir GR, et al. (2009) Cerebral and muscle oxygenation, hypoxic ventilatory chemosensitivity and cerebrovascular responsiveness during incremental exercise. Respir Physiol Neurobiol 169: 24–35. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=CitationList_uids&list_uids=19729079.
9. Rasmussen P, Dawson EA, Nybo L, van Lieshout JJ, Secher NH, et al. (2006) Capillary-oxygenation-level-dependent near-infrared spectrometry in frontal lobe of humans. J Cereb Blood Flow Metab 27: 1082–1093. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=CitationList_uids&list_uids=17077016.
10. Rupp T, Perrey S (2009) Effect of severe hypoxia on prefrontal cortex and muscle oxygenation responses at rest and during exhaustive exercise. Adv Exp Med Biol 645: 329–334. doi:10.1007/978-0-387-85499-9_49.
11. Vogiatzis I, Louvaris Z, Habazettl H, Athanassopoulos D, Andrianopoulos V, et al. (2011) Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes. J Physiol 589: 4027–4039. doi:10.1113/jphysiol.2011.210800.
12. Goodall S, Gonzalez-Alonso J, Ali I, Ross EZ, Romer LM (2012) Supraspinal fatigue after normoxic and hypoxic exercise in humans. J Physiol 590: 2767–2762. doi:10.1113/jphysiol.2012.226890.
13. Seifert T, Rasmussen P, Secher NH, Nielsen BH (2009) Cerebral oxygenation decreases during exercise in humans with beta-adrenergic blockade. Acta Physiologica 196: 295–302. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=CitationList_uids&list_uids=19053964.
14. Fan JL, Leiggener C, Rey F, Kayser B (2012) Effect of inspired CO2 on the ventilatory response to high intensity exercise. Respir Physiol Neurobiol 180: 283–286. doi:10.1016/j.resp.2011.12.004.
15. Subudhi AW, Olín JT, Dimmen AC, Polaner DM, Kayser B, et al. (2011) Does cerebral oxygen delivery limit incremental exercise performance? J Appl Physiol 111: 1727–1734. doi:10.1152/japplphysiol.00596.2011.
16. Siebenmann C, Sørensen H, Jacobs RA, Haider T, Rasmussen P, et al. (2013) Hypocapnia during hypoxic exercise and its impact on cerebral oxygenation, ventilation and maximal whole body O2 uptake. Respir Physiol Neurobiol 185: 461–467. doi:10.1016/j.resp.2012.08.012.
17. Fan JL, Burgess KR, Basnyat R, Thomas KN, Peebles KC, et al. (2010) Influence of high altitude on cerebrovascular and ventilatory responsiveness to CO2. J Appl Physiol 588: 539–549. doi:10.1152/japplphysiol.2009.104051.
18. Mathew L, Gopinath PM, Purkayastha SS, Gupta Sen J, Nayar HS (1983) Chemoreceptor sensitivity in adaptation to high altitude. Aviation, space, and environmental medicine 54: 121–126.
19. Schoene RB (1982) Control of ventilation in climbers to extreme altitude. J Appl Physiol 53: 896–899.
20. Hornbein TF, Townes BD, Schoene RB, Sutton JR, Houston CS (1989) The cost to the central nervous system of climbing to extremely high altitude. New England J Med 321: 1714–1719.
21. Bernardi L, Schneider A, Pomidori L, Paolucci E, Gogo A (2006) Hypoxic ventilatory response in successful extreme altitude climbers. Eur Respir J 27: 165–171.
22. Begg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sport Exerc 14: 377–381.
23. Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60: 2920–2927.
24. Babb TG (1997) Ventilatory and respiratory mechanics during exercise in younger subjects breathing CO2 or HeO2. Respir Physiol 109: 15–20.
25. Babb TG (1997) Ventilatory response to exercise in subjects breathing CO2 or HeO2. J Appl Physiol 82: 746–754.
26. Kory RC, Callahan R, Boren HG, Syner JC (1961) The Veterans Administration-Army cooperative study of pulmonary function. I. Clinical spirometry in normal men. Am J Med 30: 243–250.
27. Ogoh S, Ainslie PN (2009) Cerebral blood flow during exercise: mechanisms of regulation. J Appl Physiol 107: 1370–1380. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=CitationListUids&list_uids=19790591.
28. Rasmussen P, Stie H, Nielsen B, Nybo L (2005) Enhanced cerebral CO2 reactivity during strenuous exercise in man. Eur J Appl Physiol 96: 299–304. doi:10.1007/s00428-005-0079-3.
29. Ogoh S, Hazashi N, Inagaki M, Ainslie PN, Miyamoto T (2006) Interaction between the ventilatory and cerebrovascular responses to hypo- and hypercapnia at rest and during exercise. J Physiol 566: 4327–4338. doi:10.1113/jphysiol.2006.1157075.
30. Staab JE, Beidleman BA, Muza SR, Falco CS, Rock PB, et al. (2013) Efficacy of Residence at Moderate Versus Low Altitude on Reducing Acute Mountain Sickness in Men Following Rapid Ascent to 4300 m. High Alt Med Biol 14: 13–18. doi:10.1016/j.hab.2012.1005.
31. Ainslie PN, Ogoh S (2009) Regulation of cerebral blood flow in mammals during chronic hypoxia: a matter of balance. Exp Physiol 95: 251–262. doi:10.1113/expphysiol.2008.045575.
32. Mardhane A, Balaham DY, Machina MA, Han JS, Katsnelson R, et al. (2012) The interaction of carbon dioxide and hypoxia in the control of cerebral blood flow. Pflegers Arch - Eur J Physiol 464: 345–351. doi:10.1007/s00424-012-1148-1.
33. Mateika JH, Duffin JR (1995) A review of the control of breathing during exercise. J Appl Physiol Occup Physiol 71: 1–27.
34. Forster HV (2000) Exercise hyperpnea: where do we go from here? Exerc Sport Sci Rev 28: 133–137.
35. Ward SA (2000) Control of the exercise hyperpnea in humans: a modeling perspective. Respir Physiol 122: 149–166.
36. Peromnet F, Agulhallo B (2006) Lactic acid buffering, nonmetabolic CO2 and exercise hyperperventilation: a critical reappraisal. Respir Physiol Neurobiol 150: 4–18. doi:10.1016/j.resp.2005.04.003.
37. Poon CS, Tin G, Yu Y (2007) Homeostasis of exercise hyperpnea and optimal sensorimotor integration: the internal model paradigm. Respir Physiol Neurobiol 159: 19–13 discussion14–20. doi:10.1016/j.resp.2007.02.020.
38. Babb TG, Wood HE, Mitchell GS (2010) Short- and long-term modulation of the exercise ventilatory response. Med Sci Sport Exerc 42: 1681–1687. doi:10.1249/MSS.0b013e3181d76212.
39. Hopker JG, Johnson SA, Pandit J (2011) Controversies in the physiological basis of the “anaerobic threshold” and their implications for clinical cardipulmonary exercise testing. Anaesthesia 66: 111–123. doi:10.1111/j.1365-2044.2010.06604.x.
40. Babb TG, DeLorey DS, Wyrick BL (2003) Ventilatory response to exercise in aged runners breathing HeO2 or inspired CO2. J Appl Physiol 94: 685–693.
41. Clark JM, Sinclair RD, Leno JB (1986) Chemical and nonchemical components of ventilation during hypercapnic exercise in man. J Appl Physiol 68: 1065–1076. Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?idftfrom=pubmed&dopt=ref&cmd=prlinks.
42. Asmussen E, Nielsen M (1957) Ventilatory response to CO2 during work at normal and at low oxygen tensions. Acta physiologica Scandinavica 39: 27–35.
43. Sato K, OGOH S, Hirasawa A, Oue A, Sadamoto T (2011) The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans. J Physiol 589: 2847–2856. doi:10.1113/jphysiol.2010.204461.
44. Bradac RB, Simon RS, Heidieck CH (1976) Angiographically verified transient alteration of the intracranial arteries and veins in dependence of different CO2 tensions. Neuroradiology 10: 257–262.
45. Giller CA, Bowman G, Dyer H, Mootz L, Krippner W (1995) Cerebral arterial diameters during changes in blood pressure and carbon dioxide during cranialotomy. Neurosurgery 32: 737–741.
46. Possuva JM, Balzer JO, Vihlringe A, Vogl TJ, Kutter R, et al. (1997) Changes in blood flow velocity and diameter of the middle cerebral artery during hyperventilation: assessment with MR and transcranial Doppler sonography. Airsp Med 68: 1929–1934.
47. Serrador JM, Picot PA, Rutt BK, Shoremaker JK, Bondar RL (2000) MRI measures of middle cerebral arterial diameter in conscious humans during simulated orthostasis. Stroke 31: 1672–1678.
48. Wilson MH, Edsell MEG, Davagnanam I, Hirani SP, Martin DS, et al. (2011) Cerebral artery dilatation maintains cerebral oxygenation at extreme altitude and in acute hypoxia; an ultrasound and MRI study. J Cereb Blood Flow Metab 31: 2019–2029. Available: http://www.ncbi.nlm.nih.gov/pubmed/21654697.
49. Robbins PA, Conway J, Cunningham DA, Khamsei S, Patterson DJ (1990) A comparison of indirect methods for continuous estimation of arterial PCO2 in men. J Appl Physiol 68: 1727–1731.
50. Jones NL, Robertson DG, Kane JW (1979) Difference between end-tidal and arterial PCO2 in exercise. J Appl Physiol 47: 954–960.
51. Liu Z, Vargas F, Stansbury D, Sasse SA, Light RW (1995) Comparison of the end-tidal arterial PCO2 gradient during exercise in normal subjects and in patients with severe COPD. Chest 107: 1218–1224.
52. Zuniga JM, Housh TJ, Caiie CL, Bergrtomed HC, Traylor DA, et al. (2012) Metabolic parameters for ramp versus step incremental cycle ergometer tests. Appl Physiol Nutr Metab 37: 1110–1117. doi:10.1139/j12-098.
53. Weston SB, Gray AB, Schneider DA, Gas G (2002) Effect of ramp slope on ventilation thresholds and VO2peak in male cyclists. Int J Sports Med 23: 22–27. doi:10.1055/s-2002-12567.
54. Boone J, Bourgios J (2012) The oxygen uptake response to incremental ramp exercise: methodological and physiological issues. Sport Med 42: 511–526. doi:10.2165/11599690-000000000-00000.
55. Carrell K, Jeukendrup AE (2008) Validity, reliability and sensitivity of measures of sporting performance. Sport Med 38: 297–316.
56. Foster C, Green MA, Snyder AC, Thompson NN (1993) Physiological responses during simulated competition. Med Sci Sport Exerc 25: 877–882.
57. Palmer GS, Dennis SC, Noakes TD, Hawley JA (1996) Assessment of the reproducibility of performance testing on an air-braked cycle ergometer. Int J Sports Med 17: 293–298. doi:10.1055/s-2007-972949.