Slant helices in Euclidean 4-space \mathbb{E}^4

Ahmad T. Ali
Mathematics Department
Faculty of Science, Al-Azhar University
Nasr City, 11448, Cairo, Egypt
email: atali71@yahoo.com

Rafael López*
Departamento de Geometría y Topología
Universidad de Granada
18071 Granada, Spain
email: rcamino@ugr.es

Abstract

We consider a unit speed curve α in Euclidean four-dimensional space \mathbb{E}^4 and denote the Frenet frame by $\{T, N, B_1, B_2\}$. We say that α is a slant helix if its principal normal vector N makes a constant angle with a fixed direction U. In this work we give different characterizations of such curves in terms of their curvatures.

MSC: 53C40, 53C50

Keywords: Euclidean 4-space; Frenet equations; slant helices.

*Partially supported by MEC-FEDER grant no. MTM2007-61775.
1 Introduction and statement of results

A helix in Euclidean 3-space E^3 is a curve whose tangent lines make a constant angle with a fixed direction. A helix curve is characterized by the fact that the ratio τ/κ is constant along the curve, where τ and κ denote the torsion and the curvature, respectively. Helices are well known curves in classical differential geometry of space curves [10] and we refer to the reader for recent works on this type of curves [5, 14]. Recently, Izumiya and Takeuchi have introduced the concept of slant helix by saying that the normal lines make a constant angle with a fixed direction [6]. They characterize a slant helix if and only if the function $\frac{\kappa^2}{(\kappa^2 + \tau^2)^{3/2}} \left(\frac{\tau}{\kappa}\right)'$ is constant. This article motivated generalizations in a twofold sense: first, by increasing the dimension of Euclidean space [8, 12]; second, by considering analogous problems in other ambient spaces, mainly, in Minkowski space E^n_{1} [1, 2, 3, 4, 7, 13].

In this work we consider the generalization of the concept of slant helix in Euclidean 4-space E^4. Let $\alpha : I \subset \mathbb{R} \rightarrow E^4$ be an arbitrary curve in E^4. Recall that the curve α is said to be of unit speed (or parameterized by arclength function s) if $\langle \alpha'(s), \alpha'(s) \rangle = 1$, where \langle , \rangle is the standard scalar product in the Euclidean space E^4 given by $\langle X, Y \rangle = x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4$, for each $X = (x_1, x_2, x_3, x_4), Y = (y_1, y_2, y_3, y_4) \in E^4$.

Let $\{T(s), N(s), B_1(s), B_2(s)\}$ be the moving frame along α, where T, N, B_1 and B_2 denote the tangent, the principal normal, the first binormal and second binormal vector fields, respectively. Here $T(s), N(s), B_1(s)$ and $B_2(s)$ are mutually orthogonal vectors satisfying

$\langle T, T \rangle = \langle N, N \rangle = \langle B_1, B_1 \rangle = \langle B_2, B_2 \rangle = 1$.

The Frenet equations for α are given by

$$
\begin{bmatrix}
T' \\
N' \\
B_1' \\
B_2'
\end{bmatrix} =
\begin{bmatrix}
0 & \kappa_1 & 0 & 0 \\
-\kappa_1 & 0 & \kappa_2 & 0 \\
0 & -\kappa_2 & 0 & \kappa_3 \\
0 & 0 & -\kappa_3 & 0
\end{bmatrix}
\begin{bmatrix}
T \\
N \\
B_1 \\
B_2
\end{bmatrix}.
$$

(1)

Recall the functions $\kappa_1(s), \kappa_2(s)$ and $\kappa_3(s)$ are called respectively, the first, the second and the third curvatures of α. If $\kappa_3(s) = 0$ for any $s \in I$, then $B_2(s)$ is
a constant vector B and the curve α lies in a three-dimensional affine subspace orthogonal to B, which is isometric to the Euclidean 3-space E^3.

We will assume throughout this work that all the three curvatures satisfy $\kappa_i(s) \neq 0$ for any $s \in I$, $1 \leq i \leq 3$.

Definition 1.1. A unit speed curve $\alpha : I \to E^4$ is said to be a generalized helix if there exists a non-zero constant vector field U and a vector field $X \in \{ T, N, B_1, B_2 \}$ such that the function

$$ s \mapsto \langle X(s), U \rangle, \quad s \in I $$

is constant.

Among the possibilities to choose the vector field X we have:

1. If X is the unit tangent vector field T, α is called a cylindrical helix. It is known that $\alpha(s)$ is a cylindrical helix if and only if the function

$$ \frac{\kappa_1^2}{\kappa_2^2} + \left[\frac{1}{\kappa_3} \left(\frac{\kappa_1}{\kappa_2} \right) \right]^2 $$

is constant. See [9, 11].

2. If X is the vector field B_2, then the curve is called a B_2-slant curve. Moreover α is a such curve if and only if the function

$$ \frac{\kappa_3^2}{\kappa_2^2} + \left[\frac{1}{\kappa_1} \left(\frac{\kappa_3}{\kappa_2} \right) \right]^2 $$

is constant. See [12].

Definition 1.2. A unit speed curve $\alpha : I \to E^4$ is called slant helix if its unit principal normal vector N makes a constant angle with a fixed direction U.

Our main result in this work is the following characterization of slant helices.

Theorem 1.3. Let $\alpha : I \to E^4$ be a unit speed curve in E^4. Then α is a slant helix if and only if the function

$$ \left(\int \kappa_1(s) ds \right)^2 + \left[\frac{1}{\kappa_3} \left(\frac{\kappa_1}{\kappa_2} \int \kappa_1 ds \right)' + \frac{\kappa_2}{\kappa_3} \right]^2 + \left(\frac{\kappa_1}{\kappa_2} \int \kappa_1 ds \right)^2 $$

is constant. Moreover, this constant agrees with $\tan^2 \theta$, being θ the angle that makes N with the fixed direction U that determines α.

3
2 Proof of Theorem 1.3

Let α be a unit speed curve in E^4. Assume that α is a slant curve. Let U be the direction with which N makes a constant angle θ (suppose that $\langle U, U \rangle = 1$). Consider the differentiable functions a_i, $1 \leq i \leq 4$,

$$U = a_1(s)T(s) + a_2(s)N(s) + a_3(s)B_1(s) + a_4(s)B_2(s), \quad s \in I,$$

that is,

$$a_1 = \langle T, U \rangle, \quad a_2 = \langle N, U \rangle, \quad a_3 = \langle B_1, U \rangle, \quad a_4 = \langle B_2, U \rangle.$$

Because the vector field U is constant, a differentiation in (2) together (1) gives the following ordinary differential equation system

$$\begin{align*}
 a'_1 - \kappa_1 a_2 &= 0, \\
 a'_2 + \kappa_1 a_1 - \kappa_2 a_3 &= 0, \\
 a'_3 + \kappa_2 a_2 - \kappa_3 a_4 &= 0, \\
 a'_4 + \kappa_3 a_3 &= 0.
\end{align*}$$

Then the function $a_2(s) = \langle N(s), U \rangle$ is constant, and it agrees with $\cos \theta$. Then (3) gives

$$\begin{align*}
 a'_1 - \kappa_1 a_2 &= 0, \\
 \kappa_1 a_1 - \kappa_2 a_3 &= 0, \\
 a'_3 + \kappa_2 a_2 - \kappa_3 a_4 &= 0, \\
 a'_4 + \kappa_3 a_3 &= 0.
\end{align*}$$

The first third equations in (4) lead to

$$\begin{align*}
 a_1 &= a_2 \int \kappa_1 ds, \\
 a_3 &= a_2 \kappa_1 \int \kappa_1 ds, \\
 a_4 &= a_2 \left[\frac{1}{\kappa_3} \left(\frac{\kappa_1}{\kappa_2} \int \kappa_1 ds \right)' + \frac{\kappa_2}{\kappa_3} \right].
\end{align*}$$

We do the change of variables:

$$t(s) = \int^s \kappa_3(u)du, \quad \frac{dt}{ds} = \kappa_3(s).$$

In particular, and from (4), we have

$$a'_3(t) = a_4 - a_2 \frac{\kappa_2}{\kappa_3}. $$
As a consequence, if α is a slant helix, the last equation of (4) yields

$$a_4''(t) + a_4(t) - a_2 \frac{\kappa_2(t)}{\kappa_3(t)} = 0.$$ \hspace{1cm} (6)

The general solution of this equation is

$$a_4(t) = a_2 \left[\left(A - \int \frac{\kappa_2(t)}{\kappa_3(t)} \sin t \, dt \right) \cos t + \left(B + \int \frac{\kappa_2(t)}{\kappa_3(t)} \cos t \, dt \right) \sin t \right],$$ \hspace{1cm} (7)

where A and B are arbitrary constants. Then (7) takes the following form

$$a_4(s) = a_2 \left[\left(A - \int \kappa_2(s) \sin \int \kappa_3(s) \, ds \right) \cos \int \kappa_3(s) \, ds \right. \left. + \left(B + \int \kappa_2(s) \cos \int \kappa_3(s) \, ds \right) \sin \int \kappa_3(s) \, ds \right].$$ \hspace{1cm} (8)

From (4), the function a_3 is given by

$$a_3(s) = a_2 \left[\left(A - \int \kappa_2(s) \sin \int \kappa_3(s) \, ds \right) \sin \int \kappa_3(s) \, ds \right. \left. - \left(B + \int \kappa_2(s) \cos \int \kappa_3(s) \, ds \right) \cos \int \kappa_3(s) \, ds \right].$$ \hspace{1cm} (9)

From (8), (9) and (5) we have the following two conditions:

$$\frac{1}{\kappa_3} \left(\frac{\kappa_1}{\kappa_2} \int \kappa_1 \, ds \right)' + \frac{\kappa_2}{\kappa_3} = \left(A - \int \kappa_2(s) \sin \int \kappa_3(s) \, ds \right) \cos \int \kappa_3(s) \, ds$$

$$+ \left(B + \int \kappa_2(s) \cos \int \kappa_3(s) \, ds \right) \sin \int \kappa_3(s) \, ds.$$ \hspace{1cm} (10)

and

$$\frac{\kappa_2}{\kappa_3} \int \kappa_1 \, ds = \left(A - \int \kappa_2(s) \sin \int \kappa_3(s) \, ds \right) \sin \int \kappa_3(s) \, ds$$

$$- \left(B + \int \kappa_2(s) \cos \int \kappa_3(s) \, ds \right) \cos \int \kappa_3(s) \, ds.$$ \hspace{1cm} (11)

The condition (11) can be written as follows:

$$\kappa_1(s) \int \kappa_1(s) \, ds = \left(A - \int \kappa_2(s) \sin \int \kappa_3(s) \, ds \right) \kappa_2(s) \sin \int \kappa_3(s) \, ds$$

$$- \left(B + \int \kappa_2(s) \cos \int \kappa_3(s) \, ds \right) \kappa_2(s) \cos \int \kappa_3(s) \, ds.$$ \hspace{1cm} (12)

If we integrate the above equation we have

$$\left(\int \kappa_1(s) \, ds \right)^2 = C - \left(A - \int \kappa_2(s) \sin \int \kappa_3(s) \, ds \right)^2$$

$$- \left(B + \int \kappa_2(s) \cos \int \kappa_3(s) \, ds \right)^2.$$
where C is a constant of integration. From Equations (10) and (11), we get
\[
\left[\frac{1}{\kappa_3} \left(\frac{\kappa_1}{\kappa_2} \int \kappa_1 ds \right) + \frac{\kappa_2}{\kappa_3} \right]^2 + \left(\frac{\kappa_1}{\kappa_2} \int \kappa_1 ds \right)^2 = \left(A - \int \left[\kappa_2(s) \sin \int \kappa_3(s) ds \right] ds \right)^2
+ \left(B + \int \left[\kappa_2(s) \cos \int \kappa_3(s) ds \right] ds \right)^2.
\]

Now Equations (12) and (13) give
\[
\left(\int \kappa_1(s) ds \right)^2 + \left[\frac{1}{\kappa_3} \left(\frac{\kappa_1}{\kappa_2} \int \kappa_1 ds \right) + \frac{\kappa_2}{\kappa_3} \right]^2 + \left(\frac{\kappa_1}{\kappa_2} \int \kappa_1 ds \right)^2 = C.
\]

Moreover this constant C calculates as follows. From (14), together the three equations (5) we have
\[
C = \frac{a_1^2 + a_2^2 + a_3^2}{a_2^2} = 1 - \frac{a_2^2}{a_2^2} = \tan^2 \theta,
\]
where we have used (2) and the fact that U is a unit vector field.

We do the converse of the proof. Assume that the condition (14) is satisfied for a curve α. Let $\theta \in \mathbb{R}$ be so that $C = \tan^2 \theta$. Define the unit vector U by
\[
U = \cos \theta \left[\int \kappa_1 ds \mathbf{T} + \mathbf{N} + \frac{\kappa_1}{\kappa_2} \int \kappa_1 ds \mathbf{B}_1 + \left[\frac{1}{\kappa_3} \left(\frac{\kappa_1}{\kappa_2} \int \kappa_1 ds \right) + \frac{\kappa_2}{\kappa_3} \right] \mathbf{B}_2 \right].
\]

By taking account (14), a differentiation of U gives that $\frac{dU}{ds} = 0$, which it means that U is a constant vector. On the other hand, the scalar product between the unit principal normal vector field \mathbf{N} with U is
\[
\langle \mathbf{N}(s), U \rangle = \cos \theta.
\]

Thus α is a slant curve. This finishes with the proof of Theorem 1.3.

3 Further characterizations of slant helices

In this section we present two new characterizations of slant helices. The first one is a consequence of Theorem 1.3.

Theorem 3.1. Let $\alpha : I \subset R \rightarrow \mathbb{E}^4$ be a unit speed curve in Euclidean space \mathbb{E}^4. Then α is a slant helix if and only if there exists a C^2-function f such that
\[
\kappa_3 f(s) = \left(\frac{\kappa_1}{\kappa_2} \int \kappa_1 ds \right) + \kappa_2, \quad \frac{d}{ds} f(s) = -\frac{\kappa_3 \kappa_1}{\kappa_2} \int \kappa_1 ds.
\]
Proof. Let now assume that α is a slant helix. A differentiation of (14) gives

$$
\left(\int \kappa_1(s)ds \right) \left(\int \kappa_1(s)ds \right)' + \left(\frac{\kappa_1}{\kappa_2} \int \kappa_1(s)ds \right) \left(\frac{\kappa_1}{\kappa_2} \int \kappa_1(s)ds \right)' + \frac{1}{\kappa_3} \left[\frac{1}{\kappa_2} \int \kappa_1(s)ds \right]' + \frac{\kappa_2}{\kappa_3} \left[\frac{1}{\kappa_2} \int \kappa_1(s)ds \right]' = 0.
$$

(17)

After some manipulations, the equation (17) takes the following form

$$
\frac{\kappa_1 \kappa_3}{\kappa_2} \int \kappa_1(s)ds + \frac{1}{\kappa_3} \left[\frac{1}{\kappa_2} \int \kappa_1(s)ds \right]' + \frac{\kappa_2}{\kappa_3} \left[\frac{1}{\kappa_2} \int \kappa_1(s)ds \right]' = 0.
$$

(18)

If we define $f = f(s)$ by

$$
\kappa_3 f(s) = \left(\frac{\kappa_1}{\kappa_2} \int \kappa_1(s)ds \right)' + \kappa_2.
$$

Then Equation (18) writes as

$$
\frac{df}{ds} = -\frac{\kappa_3 \kappa_1}{\kappa_2} \int \kappa_1(s)ds.
$$

Conversely, if (16) holds, we define a unit constant vector U by

$$
U = \cos \theta \left[\int \kappa_1(s)ds \mathbf{T} + \mathbf{N} + \frac{\kappa_1}{\kappa_2} \int \kappa_1(s)ds \mathbf{B}_1 + f(s) \mathbf{B}_2 \right].
$$

We have that $\langle \mathbf{N}(s), U \rangle = \cos \theta$ is constant, that is, α is a slant helix.

We end giving an integral characterization of a slant helix.

Theorem 3.2. Let $\alpha : I \subset R \to \mathbf{E}^4$ be a unit speed curve in Euclidean space \mathbf{E}^4. Then α is a slant helix if and only if the following condition is satisfied

$$
\frac{\kappa_1}{\kappa_2} \int \kappa_1(s)ds = \left(A - \int \kappa_2(s) \sin \int \kappa_3(s)ds \right) \sin \int \kappa_3(s)ds - \left(B + \int \kappa_2(s) \cos \int \kappa_3(s)ds \right) \cos \int \kappa_3(s)ds,
$$

(19)

for some constants A and B.

Proof. Suppose that α is a slant helix. By using Theorem 3.1, let define $m(s)$ and $n(s)$ by

$$
\phi = \phi(s) = \int^s \kappa_3(u)du,
$$

(20)
\[
m(s) = f(s) \cos \phi + \left(\frac{\kappa_1}{\kappa_2} \int \kappa_1 ds \right) \sin \phi + \int \left[\kappa_2 \sin \phi \right] ds,
\]

\[
n(s) = f(s) \sin \phi - \left(\frac{\kappa_1}{\kappa_2} \int \kappa_1 ds \right) \cos \phi - \int \left[\kappa_2 \cos \phi \right] ds.
\]

(21)

If we differentiate Equations (21) with respect to \(s\) and taking into account of (20) and (16), we obtain \(\frac{dn}{ds} = 0\) and \(\frac{dm}{ds} = 0\). Therefore, there exist constants \(A\) and \(B\) such that \(m(s) = A\) and \(n(s) = B\). By substituting into (21) and solving the resulting equations for \(\frac{\kappa_1}{\kappa_2} \int \kappa_1 ds\), we get

\[
\frac{\kappa_1}{\kappa_2} \int \kappa_1 ds = \left(A - \int \left[\kappa_2(s) \sin \phi \right] ds \right) \sin \phi - \left(B + \int \left[\kappa_2(s) \cos \phi \right] ds \right) \cos \phi.
\]

Conversely, suppose that (19) holds. In order to apply Theorem 3.1, we define \(f = f(s)\) by

\[
f(s) = \left(A - \int \left[\kappa_2(s) \sin \phi \right] ds \right) \cos \phi + \left(B + \int \left[\kappa_2(s) \cos \phi \right] ds \right) \sin \phi,
\]

with \(\phi(s) = \int \kappa_3(u)du\). A direct differentiation of (19) gives

\[
\left(\frac{\kappa_1}{\kappa_2} \int \kappa_1 ds \right)' = \kappa_3 f(s) - \kappa_2.
\]

This shows the left condition in (16). Moreover, a straightforward computation leads to \(f'(s) = -\frac{\kappa_3 \kappa_1}{\kappa_2} \int \kappa_1 ds\), which finishes the proof.

References

[1] A. Ali, R. López, Timelike \(B_2\)-slant helices in Minkowski space \(E_4^1\), preprint 2008: arXiv:0810.1460v1 [math.DG].

[2] A. Ali, R. López, Slant helices in Minkowski space \(E_3^3\), preprint 2008: arXiv:0810.1464v1 [math.DG].

[3] M. Barros, General helices and a theorem of Lancret, Proc. Amer. Math. Soc. 125 (1997), 1503–1509.

[4] M. Erdoğan, G. Yılmaz, Null generalized and slant helices in 4-dimensional Lorentz-Minkowski space, Int. J. Contemp. Math. Sci, 3 (2008), 1113–1120.
[5] H. Gluck, Higher curvatures of curves in Euclidean space, Amer. Math. Monthly, 73 (1996), 699–704.

[6] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turk. J. Math. 28 (2004), 531–537.

[7] H. Kocayiğit, M. Önder, Timelike curves of constant slope in Minkowski space E^4_1. BU/JST 1 (2007), 311–318.

[8] L. Kula, Y. Yayli, On slant helix and its spherical indicatrix, Appl. Math. Comp. 169 (2005), 600–607.

[9] A. Mağden, On the curves of constant slope, YYÜ Fen Bilimleri Dergisi, 4 (1993), 103–109.

[10] R. S. Milman, G. D. Parker, Elements of Differential Geometry, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1977.

[11] E. Özdamar, H. H. Hacisalihoğlu, A characterization of inclined curves in Euclidean n-space, Comm Fac Sci Univ Ankara, series A1, 24A (1975), 15–23.

[12] M. Önder, M. Kazaz, H. Kocayiğit, O. Kilic, B_2-slant helix in Euclidean 4-space E^4, Int. J. Cont. Math. Sci. vol. 3, no. 29 (2008), 1433–1440.

[13] M. Petrovic-Torgasev, E. Sucurovic, W-curves in Minkowski spacetime, Novi. Sad. J. Math. 32 (2002), 55–65.

[14] P. D. Scofield, Curves of constant precession, Amer. Math. Monthly, 102 (1995), 531–537.