Interplay between carbon dioxide enrichment and zinc oxide promotion of copper catalysts in methanol synthesis

Remco Dalebout, Nienke L. Visser, C.E. Lisette Pompe, Krijn P. de Jong, Petra E. de Jongh*

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands

ABSTRACT

Methanol synthesis over Cu/ZnO/Al2O3 is a key industrial reaction. Typically, a ZnOx promoter and CO2 enrichment of the feed are applied to maximize the syngas conversion. However, understanding the effects of these additives on the performance of the Cu catalysts is obscured by the strong interaction between the ZnOx promoter and oxidic supports. Here, we use Cu nanoparticles on graphitic support to study the interplay between CO2 concentration and ZnOx promotion. CO2 enrichment enhanced the activity with an optimum at 3 vol% in the feed, but only if the ZnOx promoter was present, demonstrating the intricate interaction between the two. Interestingly, not only the activity but also the methanol selectivity was enhanced by CO2 enrichment, and even further by the addition of ZnOx. Understanding not only the role of the individual components, but also the interaction between them, is important to design catalysts for processes with more flexible feed compositions.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Methanol is a key chemical building block for the production of a wide range of chemicals including formaldehyde, olefins, acetic acid, and dimethyl ether [1,2]. The annual methanol production is around 100 million tons and the demand increases with about 4–5% per year [1,3]. Typically, a CO2-enriched synthesis gas feed (H2/CO/CO2) is passed over a Cu/ZnO/Al2O3 catalyst at elevated temperatures (473–573 K) and pressures (40–100 bar) [4,5]. Cu is the main active component in this catalyst, which is promoted by ZnOx whereas Al2O3 mainly serves for structural stability [6–10]. Other catalyst formulations such as Cu nanoparticles supported on ZrO2 [11], GaOx [9], CeOx [12] or in the presence of Al, Ga, Mg, Mn, and/or Zr [13–15], NiGa2/SiO2 [16,17], GaPd2/SiO2 [18] and In2O3/ZrO2 [19] have also been investigated.

Small amounts of CO2 (2–6%) are generally added to the syngas mixture to increase the conversion of Cu-based methanol synthesis catalysts [20–23]. Although CO can be directly hydrogenated to methanol [21,23–27], it has been clearly documented that in CO2-enriched feed streams the vast majority of the methanol molecules originates from the hydrogenation of CO2 molecules [11,22,27,28]. The water formed in this process drives the water-gas shift (WGS) reaction (CO + H2O → CO2 + H2) [28,29] by reacting with CO in the feed over a Cu surface. In this way constant but low concentrations of water and CO2 are sustained in the reaction atmosphere. Due to energy storage considerations it could be desirable to operate the process with high concentrations of CO2 in the feed, or even with a pure H2/CO2 feed. However, hydrogenation of pure CO2 results in relatively high water concentrations, which give rise to a poor catalyst stability [30]. Even though the redistribution of the ZnOx promoter can also play a role, deactivation is mostly due to Cu particle growth, as investigated in detail in our lab [31–33] and by others [34–37]. Although the fact that slight CO2 enrichment increases the catalyst activity and decreases its stability, it is not yet known how and if the promoter plays a role in this.

Likewise, the influence of ZnOx on methanol synthesis is well known with a standard concentration of CO2 in the feed [6,11,20–22,38,39], but little is understood about its influence in different CO2 concentrations or while hydrogenating pure CO. Martin et al. [29] showed that for a Cu/Al2O3 catalyst the methanol formation rate increased by one order of magnitude upon ZnOx in the absence of CO2 in the feed, while Nielsen et al. [25] reported no significant change in the activity between 50 wt % Cu/Al2O3 and Cu/ZnO/Al2O3 catalysts, whereas Stoldt et al. [27] and Zander et al. [40] even reported a poisoning effect by ZnOx on the activity of a 86 wt% Cu/MgO catalyst. It hence seems that the effect of ZnOx also depends on the type of oxidic support used. ZnOx is known to have a relatively strong interaction with oxidic...
supports, which also depends on the reaction conditions [41–43]. As a result, a large fraction of the ZnO$_x$ might not be in the form of zinc oxide, but rather present as for instance zinc aluminates or silicates. Hence, oxidative supports might hinder the understanding of the intrinsic influence of ZnO$_x$ on the performance of Cu catalysts. Graphite-like materials as a non-oxidic support may limit Fischer-Tropsch synthesis [45] and bimetallic CuNi in dimethyl carbonate synthesis [46].

A decisive factor in catalysis is the selectivity. Methanol synthesis from CO$_2$-containing syngas delivers a high selectivity, typically more than 98% [14,21,34,44,47–49]. This remarkably high selectivity is typically attributed to the limited effectiveness of Cu to disociate CO$_2$, thereby limiting the production of the thermodynamically more stable hydrocarbons. Even though the methanol selectivity is generally high, it is still very relevant to investigate the nature of the side products, and how the product distribution is influenced by the ZnO$_x$ promoter and the CO$_2$ concentration.

Here, we study the combined effect of different amounts of CO$_2$ (including its absence) to the syngas feed and ZnO$_x$ promotion on the methanol selectivity and formation rate on carbon-supported Cu/ZnO$_x$ model catalysts, to obtain insights into how these factors affect the performance of methanol synthesis catalysts. We use graphitic carbon as a model support for Cu/ZnO$_x$ nanoparticles as this avoids strong metal-support interactions [42] and hence is expected to limit spectator species such as zinc mixed metal oxides.

2. Experimental

2.1. Chemicals

Copper nitrate (Cu(NO$_3$)$_2$·3H$_2$O, Acros Organics, 99%), zinc nitrate (Zn(NO$_3$)$_2$·6H$_2$O, Sigma Aldrich, ≥99%), high surface area graphite (TIMREX E-HSAG500 AF-246 B78, TIMCAL, Graphite & Carbon) and nitric acid (HNO$_3$, Merck, 65%) were used as received. Reference was a commercial Cu/ZnO$_x$/Al$_2$O$_3$/MgO catalyst from Alfa Aesar, containing a Cu/Zn/Mg ratio of 63.8/24.8/10.1/1.3 wt%. Silicon carbide (Sigma-Aldrich, ≥98.8%, 46 grit) was sieved in a 212–425 µm fraction, calcined at 1073 K for 10 h, subsequently washed with 65% HNO$_3$, and rinsed with water until pH 7 was reached, and finally dried at 393 K overnight before use.

2.2. Catalyst synthesis

Typically, ca. 2.3 g of carbonaceous support (high surface area graphite, Bruenauer-Emmett-Teller (BET) surface area 509 m2 g$^{-1}$) was dried at approximately 443 K under dynamic vacuum for 1.5 h to remove water from the pores. After cooling down to room temperature the fine carbon powder was (co-)impregnated to incipient wetness [50], defined as 95% of the total pore volume by N$_2$ physisorption, with a 0.1 M HNO$_3$ solution containing copper (and zinc) nitrates. The concentration of copper (and zinc) nitrates were chosen such to obtain the desired weight loading. The impregnated support was dried at room temperature under dynamic vacuum overnight, and reduced at 503 K (ramp 2 K min$^{-1}$) in a 100 mL min$^{-1}$ flow of 20% H$_2$/N$_2$ for 2.5 h. To be able to store and handle the catalyst in the oxidized state, it was exposed to a flow of 100 mL min$^{-1}$ flow of 5% O$_2$/N$_2$ for 1 h, heated to 473 K with a ramp of 1 K min$^{-1}$ and oxidized at 473 K in 15% O$_2$/N$_2$ for 1 h. The obtained X-Cu/C and X-CuZnO$_x$/C catalysts, in which X represents the surface-averaged CuO size in the fresh catalyst, had a theoretical Cu weight loading of ca. 8.1 ± 0.3 wt% and a ZnO loading of 0.1 or 5.3 wt%.

2.3. Catalyst characterization

2.3.1. N$_2$ physisorption

Physisorption was measured on a Micromeritics TriStar II Plus apparatus at 77 K. Prior to analysis the sample was dried at 443 K under a N$_2$ flow overnight. The BET surface area was determined according to the IUPAC procedure [51]. Pore size distributions were established via a Barrett-Joyner-Halenda (BJH) analysis, using a carbon black reference thickness curve with a Faas correction. The total pore volume V_{tot} was derived from the amount of N$_2$ adsorbed at $p/p_0 = 0.995$. The micropore volume V_{micro} was obtained via the t-plot method using a carbon black reference thickness curve ($t = 2.98 + 6.45(p/p_0) + 0.88 (p/p_0)^2$) fitted in the linear N$_2$ monolayer adsorption regime. Finally, the mesopore volume V_{meso} was derived from integration of the adsorption-based BJH curve between 2 and 50 nm. Finally, the macro pore volume V_{macro} was defined as the difference between the total pore volume and the sum of the t-plot micropore volume and BJH-derived mesopore volume.

2.3.2. EM imaging and EDX mapping

Catalysts were imaged by transmission electron microscopy (TEM) on a Thermo Scientific Talos F200X apparatus, operating at 200 kV and equipped with a high-brightness field emission gun (X-FEG) and Super-X™ energy-dispersive X-ray (EDX) detectors. To this end, holey carbon film-coated Cu or Au grids (Agar, 300 mesh) were dry-loaded with finely ground sample (<25 µm). Number-averaged CuO particle sizes (d_k) were determined by measuring at least 350 individual particles at different locations within the sample. These sizes were translated into surface-averaged (d_s) and volume-averaged (d_v) particle sizes, including the standard deviations in the width of the particle size distribution, via $d_s = \frac{\sqrt[3]{N}}{\sum_i=1^N d_i}$ and $d_v = \frac{1}{\sum_i=1^N (d_i^n)}$, in which d_i represents the diameter of the i-th particle and N represents the total number of measured particles.

Qualitative, chemical compositions were mapped by EDX spectroscopy, while imaging in high-angle, annular, dark-field, scanning transmission electron microscopy (HAADF-STEM) mode. The elemental maps were acquired using Velox™ analytical imaging software. The acquisition time per EDX map was at least 15 min, and the probe current was around 700 pA.

2.3.3. XRD analysis

Powder X-ray diffractograms were recorded at a Bruker AXS D2 Phaser (second generation) diffractometer at room temperature. Samples were irradiated by Co Kα radiation ($\lambda = 1.790$ Å) at 30 kV and 10 mA. Used catalysts were slowly passivated in static air at room temperature prior to analysis.

Rietveld refinement was performed using Bruker DIFFRAC. SUITE TOPAS software by fitting CuO (monoclinic, C2/c) and ZnO (hexagonal, P6$_3$/mc) crystallographic data as Lorentzian functions between ca. 36° and 48° 2θ. No crystal strain or preferred orientation in the lattice planes were incorporated. The background was fitted as a first order Chebyshev polynomial, thereby taking the complete diffractogram into account. The y-coordinate of the O atom in CuO and the z-coordinate of the O atom in ZnO were refined. Crystallite sizes were obtained after the fitting converged to a minimum goodness-of-fit (GOF) value.
2.3.4. H$_2$-TPR profiling

Temperature-programmed reduction (TPR) by H$_2$ was performed on a Micromeritics AutoChem II 2920 apparatus. Prior to the reduction the sample (50 mg, <75 µm granulites) was dried at 393 K under an Ar flow of 50 mL min$^{-1}$ for 30 min and cooled down to room temperature. Reduction profiles were recorded with a thermal conductivity detector (TCD) when the samples were exposed to a 5% H$_2$/Ar flow of 50 mL min$^{-1}$ up to 873 K with a ramp of 2 K min$^{-1}$. H$_2$O was captured with a dry ice/isopropanol cold trap.

2.4. Catalytic performance measurements

Catalysts were evaluated in a 16-reactor setup (Flowrence, Avantium) for 160 h, operating at 40 bar(g) and 533 K using a H$_2$/ (CO + CO$_2$) molar ratio of 2. The catalysts powders were pelletized under a maximum pressure of 1 ton and sieved in granulites between 75 and 150 µm. The stainless steel reactors (inner diameter of 2.6 mm) were loaded with 178 mg 10-Cu/C, 51 mg 6-CuZnOx/C or 6 mg commercial Cu/ZnO/Al$_2$O$_3$/MgO catalysts and diluted with inert SiC (sieve fraction of 212–425 µm). This resulted in an in situ reduction by SiC between 25 and 92 vol%, thereby minimizing the error by dilution to a maximum of ca. 3% [52]. The different sizes of the sieved fractions between the catalysts and diluted facilitated post-analysis by EM and X-ray diffraction (XRD).

First, an in situ reduction was performed in 2.8 mL min$^{-1}$ of 5% H$_2$/N$_2$ at 523 K for 3 h. The temperature was lowered to 393 K before the reactors were flushed with syngas (H$_2$/CO/He = 60/30/10 vol%) at a GHSV of 400, 1,400 or 24000 h$^{-1}$ for 1 h for the 10-Cu/C, 6-CuZnOx/C and commercial catalysts, respectively. A tri-phase carbonyl trap (active carbon, γ-Al$_2$O$_3$, ZnO) was located upstream the CO feed to remove metal carbonyls and sulfur species. The flows and catalyst loadings were adjusted to compensate for differences in Cu loading (8% [53]) and packing densities of the sieved catalysts (0.52 vs 1.09 g mL$^{-1}$) to achieve conversions in the same range.

Next, the reactors were pressurized to 40 bar(g) and heated to the reaction temperature of 533 K with a ramp of 2 K min$^{-1}$. After obtaining catalytic data for 40 h in a H$_2$/CO/He gas atmosphere, the catalyst bed was cooled to 393 K before the reactors were flushed with syngas (H$_2$/CO/He = 60/30/10 vol%) and cooled down to room temperature. Reduction profiles were recorded with a thermal conductivity detector (TCD) when the samples were exposed to a 5% H$_2$/Ar flow of 50 mL min$^{-1}$ up to 873 K with a ramp of 2 K min$^{-1}$. H$_2$O was captured with a dry ice/isopropanol cold trap.

3. Results and discussion

3.1. Structural properties of the catalysts

First we discuss the particle size and elemental distribution in the catalysts as studied by electron microscopy and energy-dispersive X-ray (EDX) spectroscopy (Table 1). Fig. 1 shows electron micrographs of two selected carbon-supported CuO catalysts, either promoted with ZnO or not [53]. In bright-field transmission electron microscopy (BF-TEM) (frames C and A) particles of respectively ca. 5.5 nm and 9.3 nm (dark dots) are uniformly distributed over the support surface (light grey). Similarly sized and well-distributed nanoparticles were consistently found throughout these catalysts (more examples in Fig. S1). Elemental mapping (frame E) shows that the ZnO$_x$ in the as-synthesized 6-CuZnOx/C catalyst was evenly dispersed over the support surface and that the observed particles in BF-TEM (frames A and C) were hence mostly consisting of CuO. However, the elemental distribution after high-pressure methanol synthesis (frame F) is probably more representative of the catalyst during action, and demonstrates a close intimacy between the Cu and Zn species. The high surface area carbon support consisted of stacked graphitic sheets and exhibited a surface area of 509 m2 g$^{-1}$ and a mesopore volume of 0.36 mL g$^{-1}$, while after Cu and Zn deposition 297 m2 g$^{-1}$ and 0.23 mL g$^{-1}$ were obtained (Section S2). The high surface area of the carbon support clearly allowed a uniform distribution of nanoparticles over the support [46,54–56].

Frames B and D show that the CuO particle sizes were distributed in a lognormal fashion for the fresh 10-Cu/C and 6-CuZnOx/C catalysts. Based on the histograms the particle size distribution was also translated into a surface-averaged size, which is relevant for catalysis, and a volume-averaged size, which can be directly compared to X-ray diffraction (XRD) [57,58] (Table 1). A few agglomerates were present in the used catalysts (Fig. S7) but not taken into account in the corresponding particle size averages obtained from BF-TEM. The preparation and characterization of 10-CuZnOx/C catalysts containing 0.1 wt% ZnO was reproduced three times (Fig. S2). For all three 10-CuZnOx/C catalysts similar number-averaged particle sizes (7.6 ± 1.1 nm) and distributions were obtained, proving that the catalyst synthesis was reproducible. All three carbon-supported catalysts shown in Table 1 had a similar Cu loading (8.1 ± 0.3 wt%), which was confirmed by temperature-programmed reduction with H$_2$ (7.7 ± 1.4 wt%, Fig. 53). These results show that the presence of sufficient ZnO$_x$, as in the 6-CuZnOx/C catalyst, limited the growth of CuO nanoparticles during catalyst synthesis.

Powder X-ray diffraction patterns of the as-synthesized 10-Cu/C and 6-CuZnOx/C catalysts (Fig. 2, frame A) showed, next to the graphite diffraction lines at 30.7° and 50.4° 2θ, only diffractions attributed to CuO crystallites at 37.9°, 41.4°, 45.2° and 57.1° 2θ. The crystallite sizes were relatively ca. 16 and 6 nm and corresponded to the volume-averaged CuO particle sizes, derived from the BF-TEM particle size histograms, of 10.4 ± 3.5 nm and 6.2 ± 2.0 nm, respectively. No diffraction peaks due to ZnO were observed for the fresh 6-CuZnOx/C catalyst, which is in line with the high ZnO dispersion observed in the fresh catalyst with elemental mapping (Fig. 1, frame E), after catalysis the ZnO (partly) crystallized (Fig. 2, frame B), showing crystallites of 12 nm. This observation was in agreement with the fact that in the used 6-CuZnOx/C catalyst also some larger particles were found in the sample (Fig. S7). In both used 10-Cu/C and 6-CuZnOx/C catalysts (frame B) the diffractions at 50.6° and 59.1° 2θ are attributed to 13 and 12 nm CuO crystallites, respectively. Please note that these CuO sizes are slightly smaller than the CuO sizes in the fresh catalysts (Table 1), but this difference may be explained by the fact that not all Cu is in the metallic phase. Due to passivation of the samples after catalysis different phases of copper oxide were present.

As a reference also a commercial Cu/ZnO/Al$_2$O$_3$/MgO methanol synthesis catalyst (com cat) prepared by co-precipitation [5,10,34,35,44,59] was included (Table 1, Fig. 2, Figs. S4–S5). XRD analysis in Fig. 2 (frame A) shows diffractions at 35°, 38° and 42° 2θ attributed to ZnO and with a width corresponding to an approximate crystallite size of 4 nm. The catalyst typically contained ca. 10 nm-sized CuO particles [10] and 58 wt% Cu with a Zn/ (Cu + Zn) molar fraction of 0.28, which was similar to our 10-CuZnOx/C catalyst (0.35). The commercial catalyst is known to have a close intimacy of Cu and Zn species (Fig. S4), whereas Al$_2$O$_3$ mainly acts as a spacer [7–9].

3.2. Influence of ZnO$_x$ on activity and selectivity during CO hydrogenation

First we tested methanol synthesis with only CO and H$_2$ in the feed (hence, without CO$_2$). Fig. 3 (frame A) shows the CO conver-
Table 1
Overview of structural properties of selected catalysts.

Catalyst	Loading (wt%)	TEM CuO particle size [A] (nm)	XRD CuO crystallite size [B] (nm)	
10-Cu/C (fresh)	8.1	9.9 ± 3.3	10.4 ± 3.5	15.9 ± 0.5
10-Cu/C (used)	12.6 ± 5.8		14.4 ± 6.5	13±1
10-CuZnO/C (fresh)	8.4	9.6 ± 4.3	10.7 ± 4.7	–
6-CuZnO/C (fresh)	7.7	5.8 ± 1.9	6.2 ± 2.0	5.8 ± 0.5
6-CuZnO/C (used)	8.8 ± 3.1		9.4 ± 3.3	12±1
Cu/ZnO/Al2O3/MgO (com cat) (fresh)	58.4	28.4	ca. 10	5.8 ± 0.1

[A] Average CuO sizes with width of the particle size distribution.
[B] Error indicates fitting error by Rietveld refinement of CuO.
[C] CuO crystallite size estimated from Scherrer equation at 59° 2θ, excluding CuOx.

Fig. 1. (A, C) Representative BF-TEM images and (B, D) corresponding particle size distributions of (A, B) the fresh 10-Cu/C catalyst (8.1 wt%) and (C, D) the fresh 6-CuZnO/C catalyst (7.7 wt% Cu, 5.3 wt% ZnO). Surface-averaged CuO particle sizes were 9.9 ± 3.3 nm and 5.8 ± 1.9 nm, respectively. Elemental distribution of Cu and Zn in (E) the fresh 6-CuZnO/C catalyst in the same area of frame C and (F) the used 6-CuZnO/C catalyst.

Fig. 2. Powder X-ray diffractograms of (A) selected fresh catalysts and (B) used catalysts after 160 h of catalysis and subsequent passivation. The diffractograms are vertically offset for clarity. The blue dotted lines represent Rietveld fittings and the dashed lines describe the corresponding backgrounds. The peaks below 35° 2θ in the com cat were due to mixed metal oxides, based on Al and/or Mg.
sion as a function of time for two selected catalysts, 10-Cu/C and 6-CuZnOx/C, as well as for the commercial Cu/ZnO/Al2O3/MgO catalyst to put our catalysts into perspective. The commercial catalyst was stable from the start, probably because it had already been exposed to temperatures >573 K [10,44], although the stabilizing effect by Al and/or Mg species could also play a role [5]. For both carbon-supported catalysts an activation period of ca. 20 h was observed, which can be explained by the fact that this was the first time that they were subjected to 533 K and high pressure. The hollow symbols represent a duplicate test from the same catalyst batch, proving that the catalytic testing was reproducible. All these conversion levels are well below the thermodynamic equilibrium of 35.7% [see Table S3 for further details] [60,61].

Table 2 shows the CO conversion, also normalized to the Cu mass in the reactor, as well as the turnover frequencies based on the particle sizes in the fresh and used catalysts. Note that these different activities are not directly reflected in Fig. 3 (frame A) as for these tests the flows and catalyst loadings were adjusted to compensate for differences in Cu loading and packing densities, in order to achieve conversion levels in the same range. By comparing the activities of the 10-Cu/C and 6-CuZnOx/C catalysts it is clear that the ZnOx addition led to an activity increase of about one order of magnitude. After 40 h on stream our 6-CuZnOx/C catalyst had a methanol turnover frequency of 2.7 10^{-3} s$^{-1}$, which was similar to the commercial Cu/ZnO/Al2O3/MgO catalyst with an activity of ca. 2.4 10^{-3} s$^{-1}$. The turnover frequency of the 6-CuZnOx/C catalyst may be even higher as a few agglomerates were found in this catalyst, but not taken into account in the particle size average (Fig. S7). As mentioned earlier in the introduction, only a few and somewhat contradictory studies are available regarding the effect of ZnOx while hydrogenating pure CO, which might be induced by the use of (different) oxidic supports. Therefore, we studied the effect of ZnOx addition during CO hydrogenation while using an inert graphitic support [42].

Fig. 3 (frame B) presents the evolution of the methanol formation rate over time. After the activation period all catalysts showed a stable methanol production. However, the methanol formation rate (and selectivity from Table 2) was surprisingly low (<8 μmol g$_{Cu}$ s$^{-1}$), even for the commercial catalyst, compared to what is typically reported for CO$_2$-enriched syngas conversion [44,47]. This might be induced by a slight deficiency in hydrogen [61] and the slightly high reaction temperature. Although there are few old studies available on Cu/ZnO/Al$_2$O$_3$ catalysts [21,23,24], as far as we are aware this is the first time that the methanol formation rates are reported for carbon-supported Cu particles in the presence and absence of ZnOx during pure CO hydrogenation.

Fig. 4 displays the evolution of the other products formed over the 10-Cu/C and 6-CuZnOx/C catalysts, averaged over at least four separate measurement runs. In both cases CO$_2$ was the main side product, but also hydrocarbons, ethanol and, in the case of the 6-CuZnOx/C catalyst, dimethyl ether (DME) were detected. The hydrocarbon formation rates were ca. 4 orders of magnitude lower than typically found in iron-based Fischer-Tropsch synthesis [62]. DME was probably formed by dehydration of methanol (2CH$_3$OH \rightarrow (CH$_3$)$_2$O + H$_2$O) [63] on the acidic oxygen vacancy sites on the ZnO$_x$ surface [64,65]. Interestingly, CO$_2$ was produced from CO, while no water or oxygen was present in the feed. Other oxygen sources such as ZnOx or contaminations in the feed, SiC diluent and/or carbonyl trap were excluded (Section S4). This CO$_2$ production could be explained by the co-formation of hydrocarbons, ethanol and DME. The total formation rate of these compounds for the 10-Cu/C catalyst ($5.1 \pm 1.1 \times 10^{-8}$ mol g$_{Cu}$ s$^{-1}$) was similar to the rate

Catalyst	GHSV (h$^{-1}$)	CO conversion (%)	CO conversion rate (µmol g$_{Cu}$ s$^{-1}$)	Total turnover frequency (10$^{-3}$ s$^{-1}$)	MeOH selectivity (%)				
	0 h	40 h							
10-Cu/C	400	8.8	1.3 ± 0.1	2.1	0.4	1.6 ± 0.6	0.3 ± 0.1	0	63 ± 5
6-CuZnOx/C	1,400	15.1	5.7 ± 0.1	21.5	6.5	6.1 ± 2.0	3.5 ± 1.2	48	75 ± 1
com cat	24,600	6.8	6.2	8.7	7.7	3.0$^{[a]}$	2.7$^{[a]}$	89	88

$^{[a]}$ The error in the TOF reflects the width in the CuO particle size distribution from BF-TEM.

$^{[b]}$ The CuO crystallite size (from XRD) in the fresh catalyst was used in the calculation.
of produced CO₂ after 40 h of catalysis (6.9 ± 3.1·10⁻⁸ mol g⁻¹ Cu s⁻¹). An analogous observation was made for the 6-CuZnOₓ/C catalyst (6.3 ± 1.7·10⁻⁷ vs 7.2 ± 1.8·10⁻⁷ mol g⁻¹ Cu s⁻¹). Hence, the following reaction plausibly occurred (next to direct CO hydrogenation to methanol [10,21,23–27,63]): 2xCO + (x + 1)H₂ → xCO₂ + xH₂O → 1 + 1)

H₂O was generated during the reaction. To our knowledge this is the first time that these relatively low methanol selectivities in a pure H₂/CO feed have been reported and tentatively explained.

3.3. Combined influence of CO₂ and ZnOₓ

In industrial methanol production a CO₂-enriched syngas feed is typically used [20]. Fig. 5 (frame A) shows the effect of CO₂ concentration in the syngas feed on the CO + CO₂ conversion for carbon-supported Cu catalysts with and without ZnOₓ as well as for the commercial catalyst. Please note that this is the net conversion, as we cannot determine the extent of (reverse) WGS taking place in the reactor. The conversion is taken after at least 30 h on stream in a specific gas composition (for the time evolution see Fig. S6). Even 1 vol% CO₂ in the feed (obtained by replacing 3% of the CO with CO₂) increased the CO + CO₂ conversion for the 6-CuZnOₓ/C catalyst from 5.7% to 11.9% and with 3 vol% CO₂ in the feed the maximum CO + CO₂ conversion was reached, while with even higher CO₂ content the conversion level again decreased, down to 6.8% with 7 vol% CO₂ in the total feed. An effect of CO₂ in syngas on the conversion has been observed earlier [6,11,20–23,38,39]. A similar conversion increase was observed for the commercial catalyst for low and increasing CO₂ concentrations, but the decline at higher concentrations was much less pronounced.

The decrease in the conversion level for the 6-CuZnOₓ/C catalyst at higher CO₂ concentrations in the feed (frame A) could be explained by a combination of Cu particle growth, ZnOₓ promotion loss and/or Cu surface oxidation. TEM analysis (Table 1) showed only a minor CuOx particle growth to 8.8 ± 3.1 nm in the used 6-CuZnOₓ/C catalyst, although probably a significant amount of the Cu atoms were located in several larger particles, but contributing little to the active surface area (Fig. S7). XRD analysis of the used catalyst (Fig. 2, frame B) indicated a significant ZnO crystallization to approximately 12 nm, even though a close interaction between ZnOₓ and Cu was preserved (Fig. 1, frame F, Fig. S7). Another possible consequence of the higher CO₂ concentration (and the additional H₂O formation), and hence a more oxidizing atmosphere, could be a higher oxygen coverage of the Cu surface, which is reported to render the catalyst less active [6,22,27].

The influence of CO₂ in the syngas feed on the activity of unpromoted supported Cu particles was so far not clear, as reported results varied depending on the type of oxidic support used [25,27]. Furthermore, as we also found (Fig. S8), Cu-based catalysts can show a relatively long activation period and performance might be influenced on the activation protocol, which is a topic of further study. However, based on carbon-supported model catalysts we clearly show that for unpromoted Cu nanoparticles, in the absence of any oxidic phase, the syngas conversion level (Fig. 5, frame A) is not significantly influenced by the CO₂ content. Hence, synergy between Cu nanoparticles and ZnOₓ (or another appropriate oxidic promoter) is clearly needed for effective CO₂ hydrogenation, which plays such an important role in the industrial methanol synthesis process [27,66]. Fig. 5 (frame B) presents the methanol selectivity of the catalysts in different syngas compositions, thereby not taking CO₂ in account as a possible product in the product distribution, as a function of the CO₂ content in the feed (for the time evolution see Fig. S6). Interestingly, a modest addition of CO₂ boosted the methanol selectivity by ca. 8% for the 6-CuZnOₓ/C and 10-Cu/C catalysts. In CO₂-enriched syngas feeds the commercial catalyst reached a methanol selectivity of >99%, which was also reported by our group at similar CO + CO₂ conversion levels [47,67]. The lower selectivity for the 10-Cu/C catalyst (89% Cu) was also observed for a Cu/SiO₂ catalyst (92% Cu) and might be caused by its low conversion level [68]. It has to be noted that the hydrocarbon formation rate was similar in all syngas atmospheres (2.7·10⁻⁷ mol g⁻¹ Cu s⁻¹ or 1.5·10⁻⁴ s⁻¹ for the 6-CuZnOₓ/C catalyst), showing that the methanol selectivity increase was governed by an increased methanol formation rate (see also Table S2). This remarkable improvement with the addition of a small amount of CO₂ can be understood for the 6-CuZnOₓ/C catalyst by the DME suppression, as sufficient H₂O was generated via the CO₂ hydrogenation to methanol. Additionally, the higher H₂O content seems to play a role in lowering of the C=O bond dissociation activity with respect to the methanol formation rate, as discussed in detail in Section 3.2.

Fig. 5 (frame C) illustrates the methanol turnover frequency (TOFₘₑₒ₉), serving as a combination of the CO + CO₂ conversion (frame A) and the CO₂-free methanol selectivity (frame B). For the ZnOₓ-promoted catalysts, the trends in the TOFₘₑₒ₉ reflect those of the CO + CO₂ conversion. Also, our 6-CuZnOₓ/C catalyst performed in the same order of magnitude as the commercial catalyst, hence illustrating the relevance of our model catalyst study.
4. Conclusions

We prepared a series of carbon-supported CuZnOx catalysts with a uniform distribution of Cu nanoparticles and, when present, ZnOx in close contact with Cu during catalysis. While hydrogenating pure CO ZnOx promoted the activity by about one order of magnitude and led next to methanol to the production of dimethyl ether. A maximum activity of the promoted catalyst was obtained with 3 vol% CO2 enrichment of the syngas, whereas the methanol formation rate over unPromoted Cu was not influenced by CO2 addition. Interestingly, alternative products (>10%C) such as CO2 and hydrocarbons were formed for all catalysts in the absence of CO2 in the feed. The methanol selectivity of all catalysts was very high when CO2 was present in the feed.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

Rolf Beerthuis and Jan Willem de Rijk are thanked for input during catalytic testing. This project has received funding from the European Research Council (ERC), ERC-2014-CoG, project number 648991.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jcat.2020.10.006.

References

[1] J. Sehested, Industrial and scientific directions of methanol catalyst development, J. Catal. 371 (2019) 368–375, https://doi.org/10.1016/j.jcat.2019.02.002.
[2] G.A. Olah, Beyond oil and gas: The methanol economy, Angew. Chem. Int. Ed. 44 (18) (2005) 2636–2639, https://doi.org/10.1002/anie.200462121.
[3] Methanol Institute, Methanol price and supply/demand, 2020. https://www.methanol.org/methanol-price-supply-demand/ (accessed June 15, 2020).
[4] M. Alvarado, The changing face of the global methanol market, IHS, Chem. Bull. (2016) 1–2.
[5] Almusateer K.A., Al-Hadhrami A., Abed O., Biausque G., Al-Amer A., Catalysts and methods for methanol synthesis from direct hydrogenation of syngas and/or carbon dioxide, US20190076828A1 (2019).
[6] K.C. Waugh, Methanol synthesis, Catal. Today 15 (1) (1992) 51–75, https://doi.org/10.1016/0920-5861(92)80122-4.
[7] F. Zhang, Y. Liu, X. Xu, P. Yang, P. Miao, Y. Zhang, Q. Sun, Effect of Al-containing precursors on CuZnO/Al2O3 catalyst for methanol production, Fuel Process. Technol. 178 (2018) 148–155, https://doi.org/10.1016/j.fuproc.2018.04.021.
[8] G. Prieto, P.E. de Jong, P.E. de Jongh, Towards ‘greener’ catalyst manufacture: Reduction of wastewater from the preparation of CuZnO/Al2O3 methanol synthesis catalysts, Catal. Today 215 (2013) 142–151, https://doi.org/10.1016/j.cattod.2013.03.033.
[9] R. Guti-López, N. Mata, J. Llorente, E. Millán, B. Pawelec, R. García, J.L.G. Fierro, R.M. Navarro, Structure and activity of CuZnO2 catalysts co-modified with aluminium and gallium for methanol synthesis, Catal. Today (2019), https://doi.org/10.1016/j.cattod.2019.03.034.
[10] M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgisides, P. Kurr, B.-L. Kniep, M. Tovar, R.W. Fischer, J.K. Nørskov, R. Schlögl, The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts, Science 336 (6083) (2012) 893–897, https://doi.org/10.1126/science.1219831.
[11] I. Abbas, H. Kim, S.-H. Shin, S. Yoon, K.-D. Jung, Differences in bifunctionality of ZnO and ZrO2 in Cu/ZnO/Al2O3 catalysts in hydrogenation of carbon oxides for methanol synthesis, Appl. Catal. B 258 (2019) 117971, https://doi.org/10.1016/j.apcatb.2019.117971.
[12] C. Shi, H. Ban, K. Chen, X. Wang, R. Cao, Q. Yi, Z. Qin, L. Shi, Z. Li, W. Cai, C. Li, Insight into the positive effect of Cu/Cu* ratio on the stability of Cu-ZnO/Co2 catalyst for syngas hydrogenation, Appl. Catal. A 594 (2020) 117466, https://doi.org/10.1016/j.apcata.2020.117466.
[36] K. Chen, J. Yu, B. Liu, C. Li, H. Ban, W. Cai, C. Li, Z. Li, K. Fujimoto, Simple strategy synthesizing stable CuZn/SiO2 methanol synthesis catalyst, J. Catal. 372 (2019) 163–173. https://doi.org/10.1016/j.jcat.2019.02.031.

[37] D.B. Rainousness, T.W. Janssens, B. Tenem, T. Bigaard, B. Hinnemann, S. Helvex, J. Sehested, The energies of formation and mobilities of Cu surface species on Cu and ZnO in methanol and water gas shift atmospheres studied by DFT, J. Catal. 293 (2012) 205–214. https://doi.org/10.1016/j.jcat.2012.07.001.

[38] Y. Choi, K. Futagami, T. Fujishita, J. Nakamura, The difference in the active sites for CO2 and CO hydrogenations on CuZn-based methanol synthesis catalysts, Lett. 73 (2001) 27–31. https://doi.org/10.1016/S0022-1956(01)00871-0.

[39] J. Schumann, M. Eichelbaum, T. Lunkenbein, N. Thomas, M.C. Álvarez Galván, R. Schlägl, M. Behrens, Promoting strong metal support interaction: Doping ZnO for enhanced activity of CuZnO/M (M = Al, Ga, Mg) catalysts, ACS Catal. 5 (6) (2015) 3260–3270. https://doi.org/10.1021/acscatal.5b00818.

[40] W.J. Lee, A. Bordoloi, J. Patel, T. Bhateia, The effect of metal additives in Cu/ZnO/Al2O3 as a catalyst for low-pressure methanol synthesis in an oil-cooled annular reactor, Catal. Today 343 (2020) 178–188. https://doi.org/10.1016/j.cattod.2019.09.025.

[41] G. Wang, Y. Zuo, M. Han, J. Wang, Copper crystallite size and methanol synthesis catalytic property of Cu-based catalysts promoted by Al, Zr and Mn, Kinet. Int. Catal. M. 101 (2) (2010) 443–454. https://doi.org/10.1016/j.kinint.2010.07.011.

[42] G. Wang, Y. Zuo, M. Han, J. Wang, Copper crystallite size and methanol synthesis catalytic property of Cu-based catalysts promoted by Al, Zr and Mn, Kinet. Int. Catal. M. 101 (2) (2010) 443–454. https://doi.org/10.1016/j.kinint.2010.07.011.

[43] G. Wang, Y. Zuo, M. Han, J. Wang, Copper crystallite size and methanol synthesis catalytic property of Cu-based catalysts promoted by Al, Zr and Mn, Kinet. Int. Catal. M. 101 (2) (2010) 443–454. https://doi.org/10.1016/j.kinint.2010.07.011.
T. Lunkenbein, J. Schumann, M. Behrens, R. Schlögl, M.G. Willinger, Formation of a ZnO overlayer in industrial Cu/ZnO/Al₂O₃ catalysts induced by strong metal-support interactions, Angew. Chem. Int. Ed. 54 (15) (2015) 4544–4548, https://doi.org/10.1002/anie.201411581.

Roine A., Lamberg P., Mansikka-aho J., Björklund P., Kentala J.-P., Talonen T., Kotiranta T., Ahlberg R., Gröhn L., Saarinen O., Myyri J., Sipilä J., Vartiainen A., Outotec’s HSC Chemistry software, version 7, (2011).

V. Dieterich, A. Buttler, A. Hanel, H. Spliethoff, S. Fendt, Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch-fuels: A review, Energy Environ. Sci. 13 (10) (2020) 3207–3252, https://doi.org/10.1039/d0ee01187h.

J. Xie, H.M. Torres Galvis, A.C.J. Koeken, A. Kirilin, A. Iulian Dugulan, M. Ruitenbeek, K.P. de Jong, Size and promoter effects on stability of carbon-nanofiber-supported iron-based Fischer–Tropsch catalysts, ACS Catal. 6 (6) (2016) 4017–4024, https://doi.org/10.1021/acscatal.6b00321.

M.S. Spencer, The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water-gas shift reaction, Top. Catal. 8 (1999) 259–266, https://doi.org/10.1023/A:1019181715731.

C. Wöll, The chemistry and physics of zinc oxide surfaces, Prog. Surf. Sci. 82 (2-3) (2007) 55–120, https://doi.org/10.1016/j.progsurf.2006.12.002.

O.V. Larina, P.I. Kyriienko, D.Y. Balakin, M. Vorokhta, I. Khalakhan, Y.M. Nychiporuk, V. Matolin, S.O. Soloviev, S.M. Orlyk, Effect of ZnO on acid–base properties and catalytic performances of ZnO/ZrO₂–SiO₂ catalysts in 1,3-butadiene production from ethanol–water mixture, Catal. Sci. Technol. 9 (15) (2019) 3964–3978, https://doi.org/10.1039/c9cy00991d.

M. Kurtz, J. Strunk, O. Hinrichsen, M. Muhler, K. Fink, B. Meyer, C. Wöll, Active sites on oxide surfaces: ZnO-catalyzed synthesis of methanol from CO and H₂, Angew. Chem. Int. Ed. 44 (18) (2005) 2790–2794, https://doi.org/10.1002/anie.200462374.

G. Prieto, M. Shakeri, K.P. de Jong, P.E. de Jongh, Quantitative relationship between support porosity and the stability of pore-confined metal nanoparticles studied on CuZnO/SiO₂ methanol synthesis catalysts, ACS Nano 8 (3) (2014) 2522–2531, https://doi.org/10.1021/nn406119j.

C.E. Pompe, D.L. van Uunen, L.I. van der Wal, J.E.S. van der Hoeven, K.P. de Jong, P.E. de Jongh, Stability of mesocellular foam supported copper catalysts for methanol synthesis, Catal. Today 334 (2019) 79–89, https://doi.org/10.1016/j.cattod.2019.01.053.