Injectivity of non-singular planar maps with disconnecting curves in the eigenvalues space

M. Sabatini *

February 14, 2022

Abstract

Fessler and Gutierrez [8, 10] proved that if a non-singular planar map has Jacobian matrix without eigenvalues in $(0, +\infty)$, then it is injective. We prove that the same holds replacing $(0, +\infty)$ with any unbounded curve disconnecting the upper (lower) complex half-plane. Additionally we prove that a Jacobian map (P, Q) is injective if $P_x + Q_y$ is not a surjective function.

Keywords: Jacobian Conjecture, global injectivity, eigenvalue continuity

1 Introduction

Let us consider a map $F = (P, Q) \in C^1(\mathbb{R}^2, \mathbb{R}^2)$. Let

$$J_F(x, y) = \begin{pmatrix} P_x(x, y) & P_y(x, y) \\ Q_x(x, y) & Q_y(x, y) \end{pmatrix}$$

be the jacobian matrix of F at (x, y). We denote by $T(x, y)$ the trace of $J_F(x, y)$, i.e. the divergence of the vector field $F(x, y)$, by $D(x, y)$ its

*Università di Trento, Dipartimento di Matematica, Via Sommarive 14, I-38121, Povo, Trento - Italy. Email: marco.sabatini@unitn.it. This work has been partially supported by GNAMPA. MSC: 14R15
determinant and by $\Delta(x, y) = T(x, y)^2 - 4D(x, y)$ the discriminant of the eigenvalues equation. We say that $F(x, y)$ is a non-singular map if $D(x, y) \neq 0$ on all of \mathbb{R}^2, and that it is a Jacobian map if $D(x, y)$ is a non-zero constant on all of \mathbb{R}^2. We denote by $\Sigma_F(x, y)$ the spectrum of $J_F(x, y)$, i.e. the set of its eigenvalues. We set $\Sigma_F = \bigcup \{ \Sigma_F(x, y) : (x, y) \in \mathbb{R}^2 \}$.

The implicit function theorem gives the injectivity of a map in a neighbourhood of a point $(x^*, y^*) \in \mathbb{R}^2$ such that $D(x^*, y^*) \neq 0$. On the other hand, even if $D(x, y) \neq 0$ on all of \mathbb{R}^2 the map can be non-injective, as the exponential map $(e^y \cos x, e^y \sin x)$. The search for additional conditions ensuring the global injectivity of a locally invertible map is a classical problem. A fundamental result is Hadamard global inverse function theorem, which gives the global invertibility of a proper non-singular map $F \in C^1(\mathbb{R}^n, \mathbb{R}^n)$. In this field some old problems still resist the attempts to find a solution. The celebrated Jacobian Conjecture is concerned with polynomial maps $F : \mathbb{C}^n \to \mathbb{C}^n$ [13]. According to such a conjecture, a polynomial map with non-zero constant jacobian determinant is invertible, with polynomial inverse. Such a statement and its variants were studied in different settings, even replacing \mathbb{C}^n with \mathbb{R}^n or other fields, and several partial results were proved, but it is not yet proved or disproved even for $n = 2$ [11 16]. Another famous problem, known as the Global Asymptotic Stability Jacobian conjecture [14] was proved in the planar case to be equivalent to a global injectivity one. Such a conjecture was proved to be true in dimension 2 [8 9 10], false in higher dimensions [6].

In [8 10] the injectivity of a map with $D(x, y) > 0$ was proved under the additional assumption that for $(x, y) \notin K$, K compact, the eigenvalues of $J_F(x, y)$ do not belong to $(0, +\infty)$. Such a result was extended in [7 11 12 15]. Other results proving injectivity with different additional conditions were obtained in [2 3 4 5].

In this paper we propose an approach based on the eigenvalues continuity. We prove that the injectivity can be proved by replacing the half-line $(0, +\infty)$ by any unbounded curve δ in the complex plane, provided δ disconnects the upper (lower) half-plane. This allows to prove the injectivity as a consequence of some suitable inequalities. Moreover we prove that a Jacobian map is injective if there exists $z \in (-\infty) \cup S^1 \cup (0, +\infty)$ such that z is not an eigenvalue of $J_F(x, y)$, for $(x, y) \in \mathbb{R}^2$. As a consequence, if the function $T(x, y)$ is not surjective, then $F(x, y)$ is injective. We do not require $F(x, y)$
to be polynomial.

2 Results

We report next Lemma without proof, since it is a standard statement in finite dimensional spectral theory. We denote by \(Re(\lambda) \), \(Im(\lambda) \), resp. the real and imaginary part of the complex number \(\lambda \).

Lemma 1. Let \(F \in C^1(\mathbb{R}^2, \mathbb{R}^2) \). Then there exist functions \(\lambda_1, \lambda_2 \in C^0(\mathbb{R}^2, \mathbb{R}^2) \), such that for all \((x, y) \in \mathbb{R}^2 \) \(\lambda_1(x, y) \) and \(\lambda_2(x, y) \) are the eigenvalues of \(J_F(x, y) \). Such functions can be taken such that \(Re(\lambda_1(x, y)) \geq 0 \) and \(Re(\lambda_2(x, y)) \leq 0 \).

Either such eigenvalues are real or complex conjugate. This implies that the set \(\lambda_1(\mathbb{R}^2) \cup \lambda_2(\mathbb{R}^2) \) is symmetric with respect to the x axis. For the reader’s convenience we report the main theorem proved in [8, 10], that will be applied in the following.

Theorem 1. (Fessler - Gutierrez) Let \(F \in C^1(\mathbb{R}^2, \mathbb{R}^2) \) with \(D(x, y) > 0 \) for all \((x, y) \in \mathbb{R}^2 \). Assume there exists a compact set \(K \subset \mathbb{R}^2 \) such that for all \((x, y) \not\in K \) the eigenvalues of \(J_F(x, y) \) are not in \((0, +\infty)\). Then \(F \) is injective [8, 10].

When convenient, in the following we sometimes identify \(\mathbb{C} \) with the real plane \(\mathbb{R}^2 \). Let us set \(\mathbb{C}^+ = \{u + iv : v \geq 0\} \). We say that an unbounded curve \(\delta \in C^0([0, +\infty), \mathbb{C}^+) \) disconnects the half-plane \(\mathbb{C}^+ \) if \(\delta(0) = 0 + 0 \cdot i \equiv (0, 0) \), \(\delta \) has no other points on the real axis and there exist two connected subsets \(A, B \), such that \(\mathbb{C}^+ = A \cup B \), \(\partial A = \delta = \partial B \). We do not require \(A \) and \(B \) to be disjoint. Such a definition implies that the open real half-axes \((0, +\infty)\) and \((-\infty, 0)\) are not both contained in \(A \) or in \(B \).

We write \(K^c \) for the set-theoretical complement of a set \(K \).

Theorem 2. Let \(F \in C^1(\mathbb{R}^2, \mathbb{R}^2) \) with \(D(x, y) > 0 \) for all \((x, y) \in \mathbb{R}^2 \). Assume there exists a compact set \(K \subset \mathbb{R}^2 \) and a curve \(\delta \in C^0([0, +\infty), \mathbb{C}^+) \) disconnecting \(\mathbb{C}^+ \) and such that for all \((x, y) \not\in K \) the eigenvalues of \(J_F(x, y) \) are not on \(\delta \). Then \(F \) is injective.
Proof. We prove that the hypotheses of theorem 1 either hold for $F(x, y)$ or for $-F(x, y)$. By absurd, assume that neither $F(x, y)$ nor $-F(x, y)$ satisfy them. Hence for every compact $K \subset \mathbb{R}^2$ there exist both $(x^+_K, y^+_K) \not\in K$, $(x^-_K, y^-_K) \not\in K$ and two eigenvalues $\lambda(x^+_K, y^+_K) \in (0, +\infty)$ and $\lambda(x^-_K, y^-_K) \in (-\infty, 0)$. This implies that also $\frac{D(x^+_K, y^+_K)}{\lambda(x^+_K, y^+_K)} \in (0, +\infty)$ and $\frac{D(x^-_K, y^-_K)}{\lambda(x^-_K, y^-_K)} \in (-\infty, 0)$ are eigenvalues. Hence one has $\lambda_i(x^+_K, y^+_K) \in (0, +\infty)$ and $\lambda_i(x^-_K, y^-_K) \in (-\infty, 0)$, $i = 1, 2$. By the compactness of K there exists a curve $\gamma \in C^0([-1, 1], \mathbb{R}^2)$ with no points in K and connecting (x^+_K, y^+_K) to (x^-_K, y^-_K): $\gamma(-1) = (x^-_K, y^-_K)$, $\gamma(1) = (x^+_K, y^+_K)$.

Let us consider the eigenvalue function $\lambda_1(x, y)$ with $\Re(\lambda_1(x, y)) \geq 0$, as in Lemma 1. Let us consider the curve $\lambda_1(\gamma(t))$. One has $\lambda_1(\gamma(-1)) \in (-\infty, 0)$, $\lambda_1(\gamma(1)) \in (0, +\infty)$. By hypothesis both points are not on δ, and since $\delta(0) = (0, 0)$ one of them belongs to the set A, the other one to B. The curve $\lambda_1(\gamma(t))$ connects them, hence it has to cross the common boundary of A and B, which is δ. This contradicts the hypothesis that no eigenvalues are on δ.

Curves disconnecting \mathbb{C}^+ may be very complex. In order to deduce simple conditions for injectivity we consider a simple class of separating curves δ, i.e. the graphs of the functions $v = au^b$, $a, b > 0$, $u \geq 0$, or $v = a(-u)^b$, $a, b > 0 \geq u$.

Corollary 1. Let $F \in C^1(\mathbb{R}^2, \mathbb{R}^2)$ with $D(x, y) > 0$ for all $(x, y) \in \mathbb{R}^2$. Assume there exists a compact set $K \subset \mathbb{R}^2$ and $a, b \in \mathbb{R}$, $a, b > 0$, such that for all $(x, y) \not\in K$ one of the following condition holds:

i) if $T \geq 0$ then $\sqrt{|\Delta|} \neq aT^b$;

ii) if $T \leq 0$ then $\sqrt{|\Delta|} \neq a(-T)^b$;

then $F(x, y)$ is injective.

Proof. We prove only i), the statement ii) can be proved similarly.

Since $a, b > 0$, the curve δ of equation $v = au^b$, $u \geq 0$, starts at the origin and separates \mathbb{C}^+. Such a curve has no points on the x axis, except the
origin, hence if an eigenvalue λ belongs to δ its imaginary part is not zero. This implies that $\Delta = T^2 - 4D < 0$, hence $|\Delta| = 4D - T^2$. An eigenvalue λ belongs to δ if and only if $\text{Re}(\lambda) > 0$ and

$$\text{Im}(\lambda) = a \text{Re}(\lambda)^b \iff \sqrt{|\Delta|} = \sqrt{4D - T^2} = aT^b. \quad (1)$$

By hypothesis this does not occur, hence the thesis.

We emphasize that corollary 1 contains two independent statements. Statement i) is not concerned with points where $T(x, y) < 0$; statement ii) is not concerned with points where $T(x, y) > 0$.

In next corollary we prove the injectivity under a suitable assumption on the ratio $\frac{T^2}{D}$.

Corollary 2. Let $F \in C^1(\mathbb{R}^2, \mathbb{R}^2)$ with $D(x, y) > 0$ for all $(x, y) \in \mathbb{R}^2$. Assume there exists a compact set $K \subset \mathbb{R}^2$ and $c \in [0, 4]$ such that for all $(x, y) \notin K$ one has:

$$\frac{T^2}{D} \neq c,$$

then $F(x, y)$ is injective.

Proof. If $c = 0$, then $T(x, y)$ does not vanish, has constant sign and one can apply the theorems about the Global Asymptotic Stability Jacobian Conjecture [8, 9, 10].

If $c \in (0, 4)$, we take as δ the line of equation $\sqrt{4 - c} u - \sqrt{c} v = 0$. Assume by absurd that an eigenvalue λ belongs to δ. Then one has $\Delta < 0$ and

$$0 = \sqrt{4 - c} T - \sqrt{c} \sqrt{4D - T^2},$$

$$(4 - c)T^2 = 4cD - cT^2,$$

which implies $T^2 = cD$, contradiction.

If $c = 4$, then either $\Delta < 0$ on all of K^c, or $\Delta > 0$ on all of K^c. In the former case the eigenvalues are not real, hence theorem 1 applies. In the latter they are real and one can take the imaginary axis as δ.

5
The situation is much simpler when dealing with real Jacobian maps. We can always reduce to the case \(D(x, y) \equiv 1 \), by possibly multiplying one component by a suitable non-zero constant. If \(D(x, y) \equiv 1 \), the eigenvalues are contained in the set

\[
\mathbb{G} = (-\infty, 0) \cup S^1 \cup (0, +\infty),
\]

where \(S^1 \) is the unit circle in \(\mathbb{C} \). Such eigenvalues appear in couples \(\lambda, \frac{1}{\lambda} \), if real, or \(u \pm iv \), if non-real. The set \(\Sigma_F(x, y) \) is symmetric w. r. t. the real axis, i.e. it coincides with its conjugate \(\Sigma_F(x, y) \). Disconnecting \(\mathbb{G} \) requires at most a couple of points. This is used in next statements in order to prove injectivity. For the reader’s convenience we report the main theorem proved in [15], that will be applied in the following.

Theorem 3. (Rabanal) Let \(F \in C^1(\mathbb{R}^2, \mathbb{R}^2) \). If there exists \(\varepsilon > 0 \) such that \(J_F(x, y) \) has no eigenvalues in \([0, \varepsilon)\), then \(F \) is injective.

Theorem 4. Let \(F \in C^1(\mathbb{R}^2, \mathbb{R}^2) \) with \(D(x, y) \equiv 1 \) on all of \(\mathbb{R}^2 \). If one of the following conditions holds, then \(F \) is injective:

i) there exists a compact set \(K \subset \mathbb{R}^2 \) and \(z \in S^1 \) such that for all \((x, y) \notin K \) one has \(z \notin \Sigma_F(x, y) \).

ii) there exists \(z \in \mathbb{R} \setminus \{-1, 0, 1\} \) such that for all \((x, y) \in \mathbb{R}^2 \) one has \(z \notin \Sigma_F(x, y) \).

Proof.

i) Let \(\Omega_K \) be a closed disk large enough to have \(K \subset \Omega_K \). For all \((x, y) \notin \Omega_K \) one has \(z \notin \Sigma_F(x, y) \). The continuous maps \(\lambda_i, i = 1, 2 \), map the connected set \(\Omega^c_K \) into connected subsets \(\lambda_i(\Omega^c_K), i = 1, 2 \), of \(\mathbb{G} \). We consider three cases.

i.1) If \(z = u + iv \in S^1, z \neq \pm 1 \), is not an eigenvalue, then also \(\overline{z} = u - iv \in S^1 \) is not an eigenvalue. The couple \(u \pm iv \) disconnects \(\mathbb{G} \). One has

\[
\mathbb{G} \setminus \{u - iv, u + iv\} = \mathbb{G}_- \cup \mathbb{G}_+,
\]
where G_- and G_+ are connected and $(-\infty, 0) \subset G_-$, $(0, +\infty) \subset G_+$. If $\lambda_1(\Omega_K^c) \subset G_-$, then also $\lambda_2(\Omega_K^c) \subset G_-$, hence $J_F(x, y)$ has no eigenvalues in $(0, +\infty)$ for $(x, y) \notin \Omega_K$, thus proving the injectivity of F. Similarly, if $\lambda_1(\Omega_K^c) \subset G_+$, then also $\lambda_2(\Omega_K^c) \subset G_+$ and $J_F(x, y)$ has no eigenvalues in $(-\infty, 0)$ for $(x, y) \notin \Omega_K$, thus proving the injectivity of $-F$, hence that one of F.

i.2) $z = \frac{1}{z} = 1$. Then the number 1 disconnects G and one can write

$$G \setminus \{1\} = G_+ \cup (0, 1) \cup (1, +\infty),$$

where we have set $G_+ = \left\{(x, y) \subset (0, +\infty) \cup \left((0, \frac{1}{z}) \cup S^1\right) \setminus \{1\}. \right\}$ If for some $(x, y) \in \Omega_K^c$ the matrix $J_F(x, y)$ has a positive eigenvalue, then both eigenvalues are positive and by the connectedness of $\lambda_i(\Omega_K^c), i = 1, 2$, one has

$$\lambda_1(\Omega_K^c) \cup \lambda_2(\Omega_K^c) \subset (0, 1) \cup (1, +\infty).$$

As a consequence $(-\infty, 0)$ contains no eigenvalues, so that $-F$ is injective.

On the other hand, if for some $(x, y) \in \Omega_K^c$ the matrix $J_F(x, y)$ has an eigenvalue in G_-, than both eigenvalues are in G_- and by connectedness

$$\lambda_1(\Omega_K^c) \cup \lambda_2(\Omega_K^c) \subset G_.$$

Hence there are no eigenvalues in $(0, +\infty)$ and theorem 1 gives the injectivity of F.

i.3) $z = \frac{1}{z} = -1$. Similar to i.2).

ii) If $z \in \mathbb{R} \setminus \{-1, 0, 1\}$ is not an eigenvalue, then the numbers z and $\frac{1}{z}$ have the same sign and disconnect the set G into three connected sets. For instance, if $z \in (0, 1)$ we can write

$$G = (0, z) \cup \left(\frac{1}{z}, +\infty\right) \cup \left((z, \frac{1}{z}) \cup S^1\right).$$

Similarly, exchanging z and $\frac{1}{z}$, if $z \in (1, +\infty)$. As in case i.2) at least one component is free of eigenvalues for $(x, y) \notin \Omega_K$. If $(0, z)$ does not contain eigenvalues, then one can apply theorem 3 with $\varepsilon = z$ in order to get
injectivity. Similarly if \(\left(\frac{1}{z}, +\infty \right) \) does not contain eigenvalues; such a case is equivalent to \((0, z)\) not containing eigenvalues. If \(\left(z, \frac{1}{z} \right) \cup S^1 \) does not contain eigenvalues, then \((-\infty, 0)\) is free of eigenvalues and applying either theorem 1 or theorem 3 to \(-F\) one proves the injectivity of \(F\).

\[\Box \]

We can deduce a simple corollary from theorem 4.

Corollary 3. Let \(F \in C^1(\mathbb{R}^2, \mathbb{R}^2) \) with \(D(x, y) \equiv 1 \) on all of \(\mathbb{R}^2 \). If there exists \(z \in (-\infty) \cup S^1 \cup (0, +\infty) \) which is not an eigenvalue of \(J_F(x, y) \), for any \((x, y) \in \mathbb{R}^2\), then \(F(x, y) \) is injective.

Proof. Under the above hypothesis either i) or ii) of theorem 3 hold on all of \(\mathbb{R}^2 \).

\[\Box \]

The condition on the eigenvalues can be deduced from suitable conditions on \(T(x, y) \).

Corollary 4. Let \(F \in C^1(\mathbb{R}^2, \mathbb{R}^2) \) with \(D(x, y) \equiv 1 \) on all of \(\mathbb{R}^2 \). If one of the following conditions holds, then \(F \) is injective:

i) there exists a compact set \(K \subset \mathbb{R}^2 \) and \(h \in [-2, 2] \) such that for all \((x, y) \notin K\) one has \(T(x, y) \neq h \).

ii) there exists \(h \in (-\infty, -2) \cup (2, +\infty) \) such that for all \((x, y) \in \mathbb{R}^2\), \(T(x, y) \neq h \).

Proof. i) \(\lambda \neq 0 \) is an eigenvalue if and only if for some \((x, y)\) one has

\[\lambda^2 - T(x, y)\lambda + 1 = 0, \]

hence

\[\lambda = \frac{T(x, y) \pm \sqrt{T(x, y)^2 - 4}}{2} \]

If there exists \(h \in \mathbb{R} \) such that \(T(x, y) \neq h \), then \(z_{1,2} = \frac{h \pm \sqrt{h^2 - 4}}{2} \) are not eigenvalues of \(J_F \). In case i) one has \(z_{1,2} \in S^1 \) and point i) of theorem 3 applies.

8
In case ii) one has \(z_{1,2} \in \mathbb{G} \setminus S^1 \) and point ii) of theorem \(\square \) applies.

As a consequence we have the following corollary.

Corollary 5. Let \(F \in C^1(\mathbb{R}^2, \mathbb{R}^2) \) with \(D(x, y) \equiv 1 \) on all of \(\mathbb{R}^2 \). If \(T(x, y) \) is not surjective, then \(F(x, y) \) is injective.

Proof. If \(T(x, y) \) is not surjective, then either i) or ii) of corollary \(\square \) hold on all of \(\mathbb{R}^2 \).

The hypotheses of corollary \(\square \) do not apply to even-degree polynomial maps. In fact, if \(F(x, y) \) is an even-degree polynomial map, then \(T(x, y) \) is an odd-degree polynomial, hence it is surjective. On the other hand, odd-degree Jacobian maps with non-surjective \(T(x, y) \) do exist. An example of polynomial Jacobian map with non-surjective \(T(x, y) \) is given by \(F(x, y) = (x + y^3, y - x^3 - 3x^2y^3 - 3xy^6 - y^9) \). In this case one has \(T(x, y) = 2 - 9y^2(x + y^3)^2 \) which does not assume values greater than 2.

References

[1] H. Bass, E. H. Connell, D. Wright, *The Jacobian Conjecture, reduction of degree and formal expansion of the inverse*, Bull. Amer. Math. Soc. (N.S.) 7 (1982) no. 2, 287–330.

[2] F. Braun, J. Giné, J. Llibre, *A sufficient condition in order that the real Jacobian conjecture in \(\mathbb{R}^2 \) holds*, J. Differential Equations 260 (2016), 5250–5258.

[3] F. Braun, J R dos Santos Filho, *The real Jacobian Conjecture on \(\mathbb{R}^2 \) is true when one of the components has degree 3*, Disc. Cont. Dyn. Syst. 26, 1 (2010), 75–87.

[4] F. Braun, B. Orefice-Okamoto, *On polynomial submersions of degree 4 and the real Jacobian conjecture in \(\mathbb{R}^2 \)*, J. Math. Anal. Appl. 443, 2 (2016), 688–706.
[5] M. Chamberland, *A Diffeomorphic real-analytic maps and the Jacobian Conjecture*, Math. Comp. Mod. 32 (2000) 727–732.

[6] A. Cima, A. van den Essen, A. Gasull, E. Hubbers, J. Llibre, *A polynomial counterexample to the Markus-Yamabe conjecture*, Adv. Math. 131 (1997) no. 2, 453–457.

[7] M. Cobo, C. Gutierrez, J. Llibre, *On the Injectivity of C^1 Maps of the Real Plane*, Canad. J. Math. 54 (2002) no. 6, 1187–1201.

[8] R. Fessler, *A proof of the two-dimensional Markus-Yamabe stability conjecture and a generalization*, Ann. Pol. Math. 62 (1995) no. 1, 45-74.

[9] A. A. Glutsyuk, *Complete solution of the Jacobian problem for planar vector fields (Russian)*, Uspekhi Mat. Nauk 49 (1994) no. 3, 179–180, translation in Russian Math. Surveys 49, 3 (1994)185–186.

[10] C. Gutierrez, *A solution to the bidimensional global asymptotic stability conjecture*, Ann. Inst. H. Poincaré Anal. Non Lineaire 12 (1995) no. 6 627–671.

[11] C. Gutierrez, A. Sarmiento, *Injectivity of C^1 maps $\mathbb{R}^2 \to \mathbb{R}^2$ at infinity and planar vector fields*, Astérisque 287, xviii (2003) 89–102.

[12] C. Gutierrez, N. Van Chau, *A remark on an eigenvalue condition for the global injectivity of differentiable maps of \mathbb{R}^2*, Discr. Contin. Dyn. Syst. 17 (2007) no. 2, 397–402.

[13] O. H. Keller, *Ganze Cremona-Transformationen*, Monats. Math. Physik. 47 (1939) 299–306.

[14] L. Markus, H. Yamabe, *Global stability criteria for differential systems*, Osaka Math. J. 12 (1960) 305–317.

[15] R. Rabanal, *An eigenvalue condition for the injectivity and asymptotic stability at infinity*, Qual. Th. Dyn. Syst. 6 (2005) no. 2, 233–250.

[16] A. van den Essen, *Polynomial automorphisms and the Jacobian conjecture*, Progress in Mathematics, vol. 190, Birkhäuser Verlag, Basel, 2000.