Bettin, S.; Drappeau, S.
Modularity and value distribution of quantum invariants of hyperbolic knots. (English)
Math. Ann. 382, No. 3-4, 1631-1679 (2022)

Summary: We obtain an exact modularity relation for the \(q \)-Pochhammer symbol. Using this formula, we show that Zagier’s modularity conjecture for a knot \(K \) essentially reduces to the arithmeticity conjecture for \(K \). In particular, we show that Zagier’s conjecture holds for hyperbolic knots \(K \neq T_2 \) with at most seven crossings. For \(K = 4_1 \), we also prove a complementary reciprocity formula which allows us to prove a law of large numbers for the values of the colored Jones polynomials at roots of unity. We conjecture a similar formula holds for all knots and we show that this is the case if one assumes a suitable version of Zagier’s conjecture.

MSC:

57K16 Finite-type and quantum invariants, topological quantum field theories (TQFT)
11B65 Binomial coefficients; factorials; \(q \)-identities
11F03 Modular and automorphic functions
11F23 Relations with algebraic geometry and topology
60F05 Central limit and other weak theorems

Full Text: DOI arXiv

References:

[1] Abel, N.H.: Œuvres complètes. Tome I. Éditions Jacques Gabay, Sceaux, 1992. Edited and with a preface by L. Sylow and S. Lie, Reprint of the second (1881) edition
[2] Andersen, J.E; Hansen, S.K, Asymptotics of the quantum invariants for surgeries on the figure 8 knot, J. Knot Theory Ramif., 15, 4, 479-548 (2006) · Zbl 1102.57007 · doi:10.1142/S021821650600455
[3] Báez-Duarte, L., A strengthening of the Nyman-Beurling criterion for the Riemann hypothesis, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 14, 1, 5-11 (2003) · Zbl 1097.11041
[4] Báez-Duarte, L.; Balazard, M.; Landreau, B.; Saias, É., Étude de l’autocorrélation multiplicative de la fonction ‘partie fractionnaire’, Ramanujan J., 9, 1-2, 137-146 (2005) · Zbl 1173.11343 · doi:10.1007/s11139-005-0834-4
[5] Bagchi, B., On Nyman, Beurling and Baez-Duarte’s Hilbert space reformulation of the Riemann hypothesis, Proc. Indian Acad. Sci. Math. Sci., 111, 2, 137-146 (2006) · Zbl 1125.11049 · doi:10.1007/BF02829783
[6] Baladi, V.; Vallée, B., Euclidean algorithms are Gaussian, J. Number Theory, 110, 2, 331-386 (2005) · Zbl 1114.11092 · doi:10.1016/j.jnt.2004.08.008
[7] Berndt, B.C.: What is a \((q) \)-series? In: Ramanujan rediscovered, Ramanujan Mathematical Society of Lecture Notes Series, vol.14 , pp. 31-51. Ramanujan Mathematical Society, Mysore (2010)
[8] Bettin, S., On the distribution of a cotangent sum, Int. Math. Res. Not. IMRN, 21, 11419-11432 (2015) · Zbl 1370.11098 · doi:10.1093/imrn/rnv036
[9] Bettin, S.; Conrey, J.B, A reciprocity formula for a cotangent sum, Int. Math. Res. Not. IMRN, 24, 5709-5726 (2013) · Zbl 1293.30078 · doi:10.1093/imrn/rnt211
[10] Bettin, S., Drappeau, S.: Limit laws for rational continued fractions and value distribution of quantum modular forms. Preprint arXiv:1903.00457v1
[11] Bettin, S., Drappeau, S., Partial sums of the cotangent function, J. Théor. Nombres Bordeaux, 32, 1, 217-230 (2020) · Zbl 1477.11142 · doi:10.5802/jtnb.1119
[12] Calegari, F., Garoufalidis, S., Zagier, D.: Bloch groups, algebraic K-theory, units, and Nahm’s conjecture. Ann. Sci. Ec. Normal. Sup. (to appear)
[13] Callahan, P.J; Dean, J.C; Weeks, J.R, The simplest hyperbolic knots, J. Knot Theory Ramif., 8, 3, 279-297 (1999) · Zbl 0933.57010 · doi:10.1142/S0218216599000195
[14] Champanerkar, A., Dasbach, O., Kalfagianni, E.; Kofman, I., Neumann, W., Stoltzfus, N. (eds.): Interactions Between Hyperbolic Geometry, Quantum Topology and Number Theory. Contemporary Mathematics, vol. 541. American Mathematical Society, Providence, RI (2011)
[15] Dimofte, T.; Garoufalidis, S., Quantum modularity and complex Chern-Simons theory, Commun. Number Theory Phys., 12,
Ohtsuki, T.; Takata, Toshie, On the Kashaev invariant and the twisted Reidemeister torsion of two-bridge knots, doi:10.1017/S0305004117000494

Flajolet, P.; Sedgewick, R., Analytic Combinatorics (2009), Cambridge: Cambridge University Press, Cambridge doi:10.4310/CNTP.2009.v3.n2.a4

Murakami, H.; Yokota, Y., Volume Conjecture for Knots (2018), Singapore: Springer, Singapore

Iwaniec, H., Topics in Classical Automorphic Forms. Graduate Studies in Mathematics (1997), Providence: American Mathematical Society, Providence. Zbl 0905.11023

Gradshteyn, I.S; Ryzhik, I.M, Table of Integrals, Series, and Products (2007), Amsterdam: Elsevier/Academic Press, Amsterdam · Zbl 1208.65001

Olver, F.W.J.: Asymptotics and special functions. AKP Classics. A K Peters, Ltd., Wellesley, MA, 1997. Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)]

Plana, G., Sur une nouvelle expression analytique des nombre Bernoulliens, Memorie della Reale accademia delle scienze di Torino, 25, 403-418 (1820)

Samorodnitsky, G.; Taqqu, MS, Stable Non-Gaussian Random Processes. Stochastic Modeling (1994), New York: Chapman & Hall, New York · Zbl 0925.60027

Tenenbaum, G., Introduction to Analytic and Probabilistic Number Theory Graduate Studies in Mathematics (2006), Providence: American Mathematical Society, Providence- doi:10.1090/gsm/163

Vasyunin, VI, On a biorthogonal system associated with the Riemann hypothesis, Algebra i Analiz, 7, 3, 118-135 (1995) · Zbl 0851.11051

Witten, E.: Quantum field theory and the Jones polynomial. In: Braid Group, Knot Theory and Statistical Mechanics, II, Advanced Series in Mathematical Physics, vol. 17, pp. 361-451. World Sci. Publ., River Edge (1994)

Yokota, Y.: From the Jones polynomial to the \((A^-)\)-polynomial of hyperbolic knots. In: Proceedings of the Winter Workshop of Topology/Workshop of Topology and Computer (Sendai, 2002/Nara, 2001), vol. 9, pp. 11-21 (2003)

Yokota, Y., On the complex volume of hyperbolic knots, J. Knot Theory Ramif., 20, 7, 955-976 (2011) · Zbl 1226.57025 · doi:10.1142/S021821651100908X

Garoufalidis, S.: Quantum knot invariants. Res. Math. Sci., 5(1):Paper No. 11, 17 (2018)

Garoufalidis, S., Zagier, D.: Quantum modularity of the Kashaev invariant. In preparation

Yokota, Y.: From the Jones polynomial to the \((A^-)\)-polynomial of hyperbolic knots. In: Proceedings of the Winter Workshop of Topology/Workshop of Topology and Computer (Sendai, 2002/Nara, 2001), vol. 9, pp. 11-21 (2003)

Yokota, Y., On the complex volume of hyperbolic knots, J. Knot Theory Ramif., 20, 7, 955-976 (2011) · Zbl 1226.57025 · doi:10.1142/S021821651100908X

Gradshteyn, I.S; Ryzhik, I.M, Table of Integrals, Series, and Products (2007), Amsterdam: Elsevier/Academic Press, Amsterdam · Zbl 1208.65001

Olver, F.W.J.: Asymptotics and special functions. AKP Classics. A K Peters, Ltd., Wellesley, MA, 1997. Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)]

Plana, G., Sur une nouvelle expression analytique des nombre Bernoulliens, Memorie della Reale accademia delle scienze di Torino, 25, 403-418 (1820)

Samorodnitsky, G.; Taqqu, MS, Stable Non-Gaussian Random Processes. Stochastic Modeling (1994), New York: Chapman & Hall, New York · Zbl 0925.60027

Tenenbaum, G., Introduction to Analytic and Probabilistic Number Theory Graduate Studies in Mathematics (2006), Providence: American Mathematical Society, Providence- doi:10.1090/gsm/163

Vasyunin, VI, On a biorthogonal system associated with the Riemann hypothesis, Algebra i Analiz, 7, 3, 118-135 (1995) · Zbl 0851.11051

Witten, E.: Quantum field theory and the Jones polynomial. In: Braid Group, Knot Theory and Statistical Mechanics, II, Advanced Series in Mathematical Physics, vol. 17, pp.361-451. World Sci. Publ., River Edge (1994)

Yokota, Y.: From the Jones polynomial to the \((A^-)\)-polynomial of hyperbolic knots. In: Proceedings of the Winter Workshop of Topology/Workshop of Topology and Computer (Sendai, 2002/Nara, 2001), vol. 9, pp. 11-21 (2003)

Yokota, Y., On the complex volume of hyperbolic knots, J. Knot Theory Ramif., 20, 7, 955-976 (2011) · Zbl 1226.57025 · doi:10.1142/S021821651100908X

Gradshteyn, I.S; Ryzhik, I.M, Table of Integrals, Series, and Products (2007), Amsterdam: Elsevier/Academic Press, Amsterdam · Zbl 1208.65001

Olver, F.W.J.: Asymptotics and special functions. AKP Classics. A K Peters, Ltd., Wellesley, MA, 1997. Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)]

Plana, G., Sur une nouvelle expression analytique des nombre Bernoulliens, Memorie della Reale accademia delle scienze di Torino, 25, 403-418 (1820)

Samorodnitsky, G.; Taqqu, MS, Stable Non-Gaussian Random Processes. Stochastic Modeling (1994), New York: Chapman & Hall, New York · Zbl 0925.60027

Tenenbaum, G., Introduction to Analytic and Probabilistic Number Theory Graduate Studies in Mathematics (2006), Providence: American Mathematical Society, Providence- doi:10.1090/gsm/163

Vasyunin, VI, On a biorthogonal system associated with the Riemann hypothesis, Algebra i Analiz, 7, 3, 118-135 (1995) · Zbl 0851.11051

Witten, E.: Quantum field theory and the Jones polynomial. In: Braid Group, Knot Theory and Statistical Mechanics, II, Advanced Series in Mathematical Physics, vol. 17, pp.361-451. World Sci. Publ., River Edge (1994)

Yokota, Y.: From the Jones polynomial to the \((A^-)\)-polynomial of hyperbolic knots. In: Proceedings of the Winter Workshop of Topology/Workshop of Topology and Computer (Sendai, 2002/Nara, 2001), vol. 9, pp. 11-21 (2003)

Yokota, Y., On the complex volume of hyperbolic knots, J. Knot Theory Ramif., 20, 7, 955-976 (2011) · Zbl 1226.57025 · doi:10.1142/S021821651100908X
[47] Zagier, D.: Quantum modular forms. In: Quanta of Maths, Clay Mathematical Proceedings, vol. 11, pp. 659-675. American Mathematical Society, Providence (2010)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.