Australian Group on Antimicrobial Resistance (AGAR) Australian Gram-negative Sepsis Outcome Programme (GNSOP) Annual Report 2018

Jan M Bell, Thomas Gottlieb, Denise A Daley, Geoffrey W Coombs
Annual report

Australian Group on Antimicrobial Resistance (AGAR) Australian Gram-negative Sepsis Outcome Programme (GNSOP) Annual Report 2018

Jan M Bell, Thomas Gottlieb, Denise A Daley, Geoffrey W Coombs

Abstract

The Australian Group on Antimicrobial Resistance (AGAR) performs regular period-prevalence studies to monitor changes in antimicrobial resistance in selected enteric gram-negative pathogens. The 2018 survey was the sixth year to focus on bloodstream infections, and included Enterobacterales, Pseudomonas aeruginosa and Acinetobacter species.

Eight thousand three hundred and fifty isolates, comprising Enterobacterales (7,512, 90.0%), P. aeruginosa (743, 8.9%) and Acinetobacter species (95, 1.1%), were tested using commercial automated methods. The results were analysed using Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints (January 2019). Of the key resistances, resistance to the third-generation cephalosporin, ceftriaxone, was found in 13.4%/13.4% of Escherichia coli (CLSI/EUCAST criteria), and 9.4%/9.4% of Klebsiella pneumoniae. Resistance rates to ciprofloxacin were 15.2%/15.2% for E. coli, 11.3%/11.3% for K. pneumoniae, 7.4%/7.4% for Enterobacter cloacae complex, and 3.6%/7.7% for P. aeruginosa. Resistance rates to piperacillin-tazobactam were 3.0%/6.0%, 4.3%/7.9%, 18.2%/22.0%, and 5.1%/11.1% for the same five species respectively. Thirty-one isolates from 27 patients were shown to harbour a carbapenemase gene: 14 bla\text{IMP-4} (11 patients), including one with bla\text{IMP-4+OXA-23}, four bla\text{KPC} (three patients), three bla\text{OXA-48}, three bla\text{NDM}, three bla\text{GES}, two bla\text{OXA-18}, and two bla\text{OXA-23}.

Keywords: Australian Group on Antimicrobial Resistance (AGAR); antibiotic resistance; bacteraemia; gram-negative; Escherichia coli; Enterobacter; Klebsiella

Introduction

Emerging resistance in common pathogenic members of the Enterobacterales is a world-wide phenomenon and presents therapeutic problems for practitioners, both in the community and in hospital practice. The Australian Group on Antimicrobial Resistance (AGAR) commenced surveillance of the key gram-negative pathogens, Escherichia coli and Klebsiella species, in 1992. Surveys have been conducted biennially until 2008 when annual surveys commenced, alternating between community- and hospital-onset infections. In 2004, another genus of gram-negative pathogens in which resistance can be of clinical importance, Enterobacter, was added. E. coli is the most common cause of community-onset urinary tract infection; Klebsiella species are less common but are known to harbour important resistances. Enterobacter species are less common in the community, but of high importance due to intrinsic resistance to first-line antimicrobials in the community. Taken together, the three groups of species surveyed are considered to be valuable sentinels for multi-resistance and emerging resistance in enteric gram-negative bacilli. In 2013 AGAR com-
menced the Enterobacteriaceae Sepsis Outcome Programme (EnSOP) which focused on the collection of resistance and some demographic data on all isolates prospectively from patients with bacteraemia. In 2015, *Pseudomonas aeruginosa* and *Acinetobacter* species were added, and the program has subsequently been identified as the Gram-negative Sepsis Outcome Program (GNSOP).

Resistances of particular interest include resistance to β-lactams due to β-lactamases, especially extended-spectrum β-lactamases, which inactivate the third-generation cephalosporins that are normally considered reserve antimicrobials. Other resistances of interest are to agents important for treatment of these serious infections, such as gentamicin; and resistance to reserve agents such as ciprofloxacin, meropenem and colistin.

The objectives of the 2018 surveillance program were to:

- Monitor resistance in Enterobacterales, *P. aeruginosa* and *Acinetobacter* species isolated from blood cultures taken from patients presenting to the hospital or already in hospital;
- Examine the extent of co-resistance and multidrug resistance in the major species;
- Detect emerging resistance to newer last-line agents such as carbapenems and colistin; and
- Examine the molecular basis of resistance to third-generation cephalosporins, quinolones and carbapenems.

Methods

Study design

From 1 January to 31 December 2018, a total of 36 institutions across Australia collected either all or up to 200 isolates from different patient episodes of bacteraemia.

Species identification

Isolates were identified using the routine method for each institution: Vitek®, Phoenix™ automated microbiology systems, or where available matrix assisted laser desorption/ionisation – time of flight (MALDI-ToF) mass spectrometry.

Susceptibility testing

Testing was performed by two commercial semi-automated methods, Vitek 2 (BioMérieux, France) or Phoenix (Becton Dickinson, USA), which are calibrated to the ISO reference standard method of broth microdilution. Commercially available Vitek AST-N246 and AST-N247, or Phoenix NMIC-404 and NMIC-422 cards were utilised by all participants throughout the survey period. The CLSI M100 and EUCAST v9.0 breakpoints from January 2019 have been employed in the analysis. For analysis of ceftazolin, breakpoints of ≤ 4 mg/L for susceptible, ≥ 8 mg/L for resistant were applied due to the restricted minimum inhibitory concentration (MIC) range available on the commercial cards, recognising that the January 2019 breakpoint is actually susceptible ≤ 2 mg/L.

Multidrug resistance

The definitions defined by Magiorakos et al. were applied in this survey, where multidrug resistance was defined as resistance to one or more agent in three or more antimicrobial categories. For each species, antimicrobials were excluded from the count if they were affected by natural resistance mechanisms.

Confirmation of resistances

E. coli, *Klebsiella* spp., *Proteus* spp. and *Salmonella* spp. with ceftazidime or ceftriaxone MIC > 1 mg/L, or cefoxitin MIC > 8 mg/L; any other Enterobacterales with cefepime MIC > 1 mg/L; all isolates with ciprofloxacin MIC > 0.25 mg/L; all isolates with meropenem MIC > 0.25 mg/L; all isolates with amikacin MIC > 32 mg/L, and all isolates with colistin MIC > 2 mg/L were referred to a central laboratory (University of Adelaide) for confirmation of resistance.
All referred isolates were screened using real-time polymerase chain reaction (PCR) platform (LC-480) and published primers for the presence of bla\textsubscript{TEM} and bla\textsubscript{SHV}, CTX-M-type genes (groups 1, 2, 9, 8/25), plasmid-borne AmpC (bla\textsubscript{GTT}, bla\textsubscript{DHA}, bla\textsubscript{ABC}, bla\textsubscript{ACC}, bla\textsubscript{FOX}, bla\textsubscript{MOX}), and carbapenemases genes (bla\textsubscript{IMP}, bla\textsubscript{NDM}, bla\textsubscript{MPC}, bla\textsubscript{OXA-48}-like, bla\textsubscript{VIM}, bla\textsubscript{GEO}, bla\textsubscript{SMR}, bla\textsubscript{IMI}).

The RT-PCR technique was also used to detect plasmid-mediated quinolone resistance mechanisms (qnr, efflux [qepA, oqxAB] and aac (6’)-lb-cr), aminoglycoside ribosomal methyltransferases (armA, rmtB, rmtC, rmtF), and mobile colistin resistance genes (mcr-1, mcr-2, mcr-3).

All referred E. coli were examined for membership of the O25b-ST131 clone. All isolates with demonstrated carbapenemase activity and any amikacin resistant isolates were also screened for OXA-23-like, -24, and -58 carbapenemases.

All isolates with carbapenemase activity were subjected to whole genome sequencing using the Illumina NextSeq 500 platform. Data were analysed using a modification of the Nullarbor bioinformatic pipeline. The pipeline was used to identify the multi-locus sequence type and the resistome.

Results

The species isolated, and the numbers of each, are listed in Table 1. Enterobacterales accounted for 90.0%, followed by P. aeruginosa (8.9%) and Acinetobacter species (1.1%). Of the Enterobacterales, three genera—Escherichia (61.0%), Klebsiella (20.4%) and Enterobacter (5.6%)—contributed 87.0% of all isolates. Major resistances and non-susceptibilities for the top six ranked species are listed in Table 2. Non-susceptibility (which includes both intermediate and resistant isolates) has been included for some agents because these figures provide information about important emerging acquired resistances. Multiple acquired resistances by species are shown in Table 3. Multi-resistance was detected in 26.9% of E. coli isolates, 12.2% of K. pneumoniae, and 8.2% of E. cloacae complex. A more detailed breakdown of resistances and non-susceptibilities by state and territory is provided in the online AGAR report.

Escherichia coli

Moderately high levels of resistance to ampicillin (and therefore amoxicillin) were maintained (54.7%/56.8%, CLSI/EUCAST criteria), with lower rates for amoxicillin-clavulanic acid (13.6%--intermediate, 8.8%--resistant). Non-susceptibility to third generation cephalosporins was low (ceftriaxone 13.5%/13.5%, ceftazidime 6.6%/12.7%).

Table 1. Number and proportion of species isolated, blood cultures, 2018

Species	Percentage (n)
Escherichia coli	54.8 (4,577)
Klebsiella pneumoniae	13.3 (1,107)
Pseudomonas aeruginosa	8.9 (743)
Enterobacter cloacae complex	5.0 (420)
Proteus mirabilis	3.1 (261)
Klebsiella oxytoca	2.8 (230)
Serratia marcescens	2.4 (199)
Klebsiella aerogenes	1.5 (125)
Salmonella species (non-typhoidal)	1.3 (107)
Citrobacter freundii complex	1.1 (91)
Morganella morganii	1.0 (81)
Klebsiella variicola	0.8 (65)
Acinetobacter baumannii complex	0.8 (63)
Citrobacter koseri	0.8 (63)
Salmonella species (typhoidal)	0.6 (46)
Raoultella ornithinolytica	0.3 (22)
Providencia rettgeri	0.2 (17)
Acinetobacter species	0.2 (13)
Raoultella planticola	0.1 (11)
Hafnia alvei	0.1 (10)
Pantoea species	0.1 (10)
Proteus vulgaris	0.1 (10)
Other species (total n = 27)	0.9 (79)
Total	**8,350**
Table 2. Non-susceptibility and resistance rates for the top six ranked species tested, 2018

Antimicrobial	Category	CLSI (%)	EUCAST (%)												
Ampicillin	R	54.7	56.8	b	b	na	na	b	17.1	18.2	b	b			
Amoxicillin-clavulanic acid (2:1)	I	13.6	na	6.3	–	na	na	b	b	5.8	–	3.5	–		
Piperacillin-tazobactam	R	3.0	6.0	4.3	7.9	5.1	11.1	18.2	22.0	0.0	0.8	9.6	10.5		
Cefazolin	R	24.8	24.8	14.5	14.5	na	na	b	b	18.7	18.7	62.1	62.1		
Cefoxitin	R	4.1	/	5.6	/	na	na	b	b	0.8	/	0.4	/		
Ceftaxone	NS	13.5	13.5	9.6	9.6	na	na	25.6	25.6	2.0	2.0	8.7	8.7		
Ceftazidime	NS	6.6	12.7	7.4	10.4	8.1	8.1	22.2	24.6	1.6	2.0	0.4	0.8		
Cefepime	NS	4.6	10.5	4.5	8.0	5.6	5.6	8.6	13.4	0.8	1.6	0.0	0.4		
Meropenem	NS	0.1	0.1	1.0	1.0	7.7	7.7	3.1	2.7	0.4	0.0	0.0	0.0		
Ciprofloxacin	NS	19.1	19.1	12.7	12.7	7.7	7.7	8.4	8.4	2.7	2.7	0.8	0.8		
Gentamicin	R	8.2	8.4	4.3	4.4	0.7	2.2	6.0	6.9	1.2	1.9	0.0	0.4		
Trimethoprim–sulfamethoxazole	R	32.1	32.0	20.5	19.6	na	na	17.2	17.2	14.3	14.3	3.0	3.0		
Nitrofurantoin	R	0.9	0.0	35.8	/	na	na	17.3	/	b	b	1.8	/		

a R = resistant, I = intermediate, NS = non-susceptible (intermediate + resistant), using criteria as published by the CLSI [2019] and EUCAST [2019].

b Considered largely intrinsically resistant due to natural β-lactamases; – no intermediate category; / no breakpoints defined; na = not applicable (testing not recommended)

c For EUCAST interpretation, the clavulanate is fixed at 2 mg/L, rather than a 2:1 ratio used in CLSI guidelines. As all susceptibility test cards used have a 2:1 ratio of clavulanate no EUCAST category has been applied.
Table 3. Multiple acquired resistances by species, 2018

Species	Total	0	1	2	3	4	5	6	7	8	9	10	Cumulative %
Escherichia coli	4,508	1,746	763	786	321	315	309	159	69	27	10	3	26.9
%	38.7	16.9	17.5	73.1	7.1	7.0	6.9	3.5	1.5	0.6	0.2	0.1	
Klebsiella pneumoniae	1,088	768	137	50	27	21	36	20	16	6	7	na	12.2
%	70.6	12.6	4.6	87.8	2.5	1.9	3.3	1.8	1.5	0.6	0.6	0.1	
Enterobacter cloacae complex	402	251	52	66	8	9	11	5	na	na	na	na	8.2
%	62.4	12.9	16.4	91.8	2.2	1.9	3.6	1.8	1.5	0.6	0.1	0.0	
Proteus mirabilis	257	179	32	23	17	2	0	2	2	0	0	0	8.9
%	69.6	12.5	8.9	91.1	6.6	0.8	0.0	0.8	0.8	0.0	0.0	0.0	
Klebsiella oxytoca	226	82	115	6	5	16	2	0	0	0	0	na	10.2
%	36.3	50.9	2.7	89.8	2.2	1.9	0.9	0.0	0.0	0.0	0.0	0.0	
Salmonella species (non-typhoidal)	100	86	11	0	1	1	1	0	0	0	0	na	3.0
%	86.0	11.0	0.0	97.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	
Serratia marcescens	165	45	104	11	3	2	0	0	0	na	na	na	3.0
%	27.3	63.0	6.7	97.0	1.8	1.2	0.0	0.0	0.0	0.0	0.0	0.0	
Klebsiella aerogenes	123	76	10	27	6	3	1	0	na	na	na	na	8.1
%	61.8	8.1	22.0	91.9	4.9	2.4	0.8	0.0	0.0	0.0	0.0	0.0	

Notes:

- **a** Antimicrobial categories (agents) included: aminoglycosides (gentamicin or tobramycin or amikacin), antipseudomonal penicillins + β-lactamase inhibitor (piperacillin–tazobactam), carbapenems (meropenem), non-extended cephalosporins (cefazolin), extended-spectrum cephalosporins (ceftriaxone or ceftazidime or cefepime), cephamycins (cefoxitin), fluoroquinolones (ciprofloxacin), folate pathway inhibitors (trimethoprim–sulfamethoxazole), penicillins (ampicillin), and penicillins + β-lactamase inhibitor (amoxicillin–clavulanic acid, CLSI), na = not applicable
- **b** Antimicrobial categories excluded: penicillins
- **c** Antimicrobial categories excluded: penicillins, non-extended cephalosporins, cephamycins, penicillins + β-lactamase inhibitor
- **d** Antimicrobial categories excluded: aminoglycosides
- **e** Antimicrobial categories excluded: penicillins, non-extended cephalosporins, penicillins + β-lactamase inhibitor
Moderate levels of resistance were detected to cefazolin (24.8%/24.8%) and trimethoprim–sulfamethoxazole (32.1%/32.0%). Ciprofloxacin non-susceptibility was found in 19.2%/19.2% of E. coli isolates. Resistance to gentamicin (8.2%/8.4%), piperacillin-tazobactam (3.0%/6.0%) and cefepime (2.9%/3.7%) was low. Nine isolates (0.2%) had elevated meropenem MICs (≥ 0.5 mg/L). For the strains with extended-spectrum β-lactamase (ESBL) phenotype, ciprofloxacin and gentamicin resistance was found in 58.4%/58.4% and 30.4%/30.7% respectively.

Most of the E. coli strains with ESBL genes harboured genes of the CTX-M type (525/609 = 86%). Fifty-one percent of E. coli with CTX-M group 1 types were found to belong to sequence type 131 (O25b-ST131). ST131 accounted for 63% of E. coli ESBL phenotypes that were ciprofloxacin resistant (MIC > 1 mg/L), and only 4% of ciprofloxacin-susceptible ESBL phenotypes.

Klebsiella pneumoniae

K. pneumoniae showed slightly higher levels of resistance to cefazidime and piperacillin-tazobactam than did E. coli, but lower rates of resistance to amoxicillin-clavulanic acid, cefazolin, ceftiraxone, ciprofloxacin, gentamicin, and trimethoprim-sulfamethoxazole. Fourteen (1.3%) K. pneumoniae isolates had elevated meropenem MICs (see below). ESBLs were present in 108 of 120 (90%) presumptively ESBL-positive isolates of K. pneumoniae, 89 (82%) of which were confirmed to be of the CTX-M type.

Enterobacter cloacae complex

Acquired resistance was common to piperacillin-tazobactam (18.5%/22.0%) ceftiraxone (25.1%/25.1%), cefazidime (21.7%/22.2%) and trimethoprim–sulfamethoxazole (17.2%/17.2%) among E. cloacae complex isolates. Cefepime, ciprofloxacin and gentamicin resistance were all less than 10%. Twenty-seven E. cloacae complex strains (6.5%) had elevated meropenem MICs.

Carbapenemase resistance

Overall, 31 isolates (27 patients) in sixteen institutions from six states/territories were found to harbour a carbapenemase gene. bla\textsubscript{IMP-4} was detected in 14 isolates from 11 patients: E. cloacae (eight from five patients), K. pneumoniae (two), K. aerogenes (one), K. variicola (one), C. freundii (one), and one A. radioresistens which also harboured bla\textsubscript{OXA-23}, bla\textsubscript{OXA-48} was detected in two E. coli and one K. pneumoniae; bla\textsubscript{OXA-181} was detected in two K. pneumoniae. bla\textsubscript{NDM-5} was detected in two E. coli and bla\textsubscript{OXA-48} in one K. pneumoniae; bla\textsubscript{KPC-2} was detected in two K. pneumoniae and bla\textsubscript{KPC-3} in two K. pneumoniae from one patient. bla\textsubscript{GES-5} was detected in three P. aeruginosa; and bla\textsubscript{OXA-23} was detected in one A. baumannii and one A. pittii.

Discussion

AGAR has been tracking resistance in sentinel enteric gram-negative bacteria since 1992. From 2008, surveillance was segregated into hospital-versus community-onset infections. The last year of hospital-onset only surveillance was 2011.16 In 2013, the first survey of antimicrobial resistance among Enterobacterales isolates from bacteraemic patients through Australia was conducted using an approach similar to that conducted by the European EARS-Net program. 2018 was the sixth survey of antimicrobial resistance among Enterobacterales, and the fourth for P. aeruginosa and Acinetobacter spp. from bacteraemic patients through Australia.

CTX-M-producing E. coli and Klebsiella species and gentamicin- and ciprofloxacin-resistant E. coli continued to be a problem in patients with bacteraemia. Of concern is the high proportion of E. coli that belong to the O25b-ST131 clone. Carbapenem resistance attributable to acquired carbapenemases is still uncommon in patients with bacteraemia in Australia, although six different types (IMP, KPC, NDM, OXA-48-like, OXA-23, and GES) were detected from sixteen of the participating institutions. Compared with many other countries in our region, resistance
rates in Australian gram-negative bacteria are still relatively low, but similar to those observed in 2018 in many Western European countries.

Multi-resistance is being increasingly observed, especially in *E. coli*, with multi-resistance rates above 25%. This is likely to drive more broad-spectrum antibiotic use, and increase the resistance selection pressure for important reserve classes, especially the carbapenemases.

Acknowledgments

This study was funded by a grant from the Australian Commission on Safety and Quality in Health care.

AGAR acknowledges the Antimicrobial Resistance Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, for performing whole genome sequencing on carbapenemase-producing isolates.

Members of the AGAR in 2018 were:

Australian Capital Territory

Peter Collignon and Susan Bradbury, Canberra Hospital

New South Wales

Thomas Gottlieb and Steven Siarakis, Concord Hospital

Rodney Givney and Kimberly Ross, John Hunter Hospital

James Branley and Linda Douglass, Nepean Hospital

Peter Huntington, Royal North Shore Hospital

Sebastiaan van Hal and Alicia Beukers, Royal Prince Alfred Hospital

Jock Harkness and David Lorenz, St Vincent’s Hospital Sydney

Jon Iredell and Andrew Ginn, Westmead Hospital

Peter Newton and Melissa Hoddle, Wollongong Hospital

Northern Territory

James McLeod, Alice Springs Hospital

Rob Baird and Jann Hennessy, Royal Darwin Hospital

Queensland

Enzo Binotto and Bronwyn Thomsett, Pathology Queensland Cairns Base Hospital

Graeme Nimmo and Narelle George, Pathology Queensland Central Laboratory, Royal Brisbane and Women’s Hospital

Clare Nourse Pathology Queensland Lady Cilento Children’s Hospital

Petra Derrington and Cheryl Curtis, Pathology Queensland Gold Coast Hospital

Robert Horvath and Laura Martin, Pathology Queensland Prince Charles Hospital

Naomi Runnegar and Joel Douglas, Pathology Queensland Princess Alexandra Hospital

Jennifer Robson and Georgia Peachey, Sullivan Nicolaides Pathology

South Australia

Kelly Papanoium and Xiao Ming Chen, SA Pathology, Flinders Medical Centre

Morgyn Warner and Kija Smith, SA Pathology, Royal Adelaide Hospital and Women’s and Children’s Hospital
Tasmania

Pankaja Kalukottege and Kathy Wilcox, Launceston General Hospital

Louise Cooley and David Jones, Royal Hobart Hospital

Victoria

Denis Spelman and Chris Lee, Alfred Hospital

Marcel Leroi and Elizabeth Grabsch, Austin Health

Tony Korman and Despina Kotsanas, Monash Health, Monash Medical Centre and Monash Children’s Hospital

Andrew Daley and Gena Gonis, Royal Women’s and Children’s Hospital

Mary Jo Waters and Lisa Brenton, St Vincent’s Hospital

Western Australia

Shalinie Perera and Ian Meyer, Western Diagnostic Pathology, Joondalup Hospital

David McGechie and Denise Daley, PathWest Laboratory Medicine WA, Fiona Stanley Hospital

Chris Blyth, PathWest Laboratory Medicine WA, Perth Children’s Hospital

Ronan Murray and Jacinta Bowman, PathWest Laboratory Medicine WA, Sir Charles Gairdner Hospital

Michael Leung, PathWest Laboratory Medicine WA, Northwest WA

Owen Robinson and Geoffrey Coombs, PathWest Laboratory Medicine WA, Royal Perth Hospital

Sudha Pottumarthy-Boddu and Fay Kappler, Australian Clinical Laboratories, St John of God Hospital Murdoch
Author details

Ms Jan M Bell
A/Prof Thomas Gottlieb
Ms Denise A Daley
Prof Geoffrey W Coombs

1. University of Adelaide, Adelaide, South Australia, Australia
2. Concord Hospital, Concord, New South Wales, Australia
3. Australian Group on Antimicrobial Resistance, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
4. Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
5. Department of Microbiology, PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Murdoch, Western Australia, Australia

Corresponding author

A/Prof Thomas Gottlieb

Department of Microbiology & Infectious Diseases, Concord Repatriation General Hospital, Hospital Road, Concord NSW 2139, Australia

Telephone: (02) 9767 7533
Email: thomas.gottlieb@health.nsw.gov.au

References

1. Clinical and Laboratory Standards Institute (CLSI). *Performance Standards for Antimicrobial Susceptibility Testing*. 29th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania, USA; 2019.

2. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0, January 2019. [Accessed on 1 January 2019.] Available at: http://www.eucast.org/clinical_breakpoints/.

3. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. *Clin Microbiol Infect*. 2012;18(3):268–81.

4. Ellington MJ, Findlay J, Hopkins KL, Meunier D, Alvarez-Buylla A, Horner C et al. Multi-centre evaluation of a real-time PCR assay to detect genes encoding clinically relevant carbapenemases in cultured bacteria. *Int J Antimicrob Agents*. 2016;47(2):151–4.

5. Roschanski N, Fischer J, Guerra B, Roesler U. Development of a multiplex real-time PCR for the rapid detection of the predominant beta-lactamase genes CTX-M, SHV, TEM and CIT-type AmpCs in Enterobacteriaceae. *PLoS One*. 2014;9(7):e100956.

6. Swayne R, Ellington MJ, Curran MD, Woodford N, Aliyu SH. Utility of a novel multiplex TaqMan PCR assay for metallo-β-lactamase genes plus other TaqMan assays in detecting genes encoding serine carbapenemases and clinically significant extended-spectrum β-lactamases. *Int J Antimicrob Agents*. 2013;42(4):352–6.

7. Ciesielczuk H, Hornsey M, Choi V, Woodford N, Wareham DW. Development and evalu-
ation of a multiplex PCR for eight plasmid-mediated quinolone-resistance determinants. J Med Microbiol. 2013;62(Pt 12):1823–7.

8. Corrêa LL, Montezzi LF, Bonelli RR, Moreira BM, Picão RC. Revised and updated multiplex PCR targeting acquired 16S rRNA methyltransferases. Int J Antimicrob Agents. 2014;43(5):479–81.

9. Doi Y, Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis. 2007;45(1):88–94.

10. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–8.

11. Mendes RE, Kiyota KA, Monteiro J, Castanheira M, Andrade SS, Gales AC et al. Rapid detection and identification of metallo-beta-lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis. J Clin Microbiol. 2007;45(2):544–7.

12. Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z et al. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. mBio. 2017;8(3). doi: https://doi.org/10.1128/mBio.00543-17.

13. Dhanji H, Doumith M, Clermont O, Denamur E, Hope R, Livermore DM et al. Real-time PCR for detection of the O25b-ST131 clone of Escherichia coli and its CTX-M-15-like extended-spectrum beta-lactamases. Int J Antimicrob Agents. 2010;36(7):355–8.

14. Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents. 2006;27(4):351–3.

15. Seemann T, Goncalves da Silva A, Bulach DM, Schultz MB, Kwong JC, Howden BP. Nullarbor. San Francisco; Github. Available from: https://github.com/tseemann/nullarbor.

16. Turnidge J, Gottlieb T, Mitchell D, Pearson J, Bell J, for the Australian Group for Antimicrobial Resistance. Gram-negative Survey 2011 Antimicrobial Susceptibility Report. Adelaide; 2011. Available from: http://www.agargroup.org/files/AGAR20GNB0820Report20FINAL.pdf.

17. Sheng WH, Badal RE, Hsueh PR, SMART Program. Distribution of extended-spectrum β-lactamases, AmpC β-lactamases, and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal infections in the Asia-Pacific region: results of the study for Monitoring Antimicrobial Resistance Trends (SMART). Antimicrob Agents Chemother. 2013;57(7):2981–8.

18. European Centre for Disease Prevention and Control (ECDC). Surveillance of antimicrobial resistance in Europe 2018. Solna: ECDC; 18 Nov 2019. Available from: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2018.