Differences in platelet endothelial cell adhesion molecule-1 expression between peripheral circulation and pancreatic microcirculation in cerulein-induced acute edematous pancreatitis

Hong-Kai Gao, Zong-Guang Zhou, Fang-Hai Han, You-Qin Chen, Wen-Wei Yan, Tao He, Cun Wang, Zhao Wang

Abstract

AIM: To investigate the changes of platelet endothelial cell adhesion molecule-1 (PECAM-1) expression on polymorphonuclear leukocytes (PMNs) in peripheral circulation and pancreatic microcirculation in cerulein-induced acute edematous pancreatitis (AEP).

METHODS: Fifty Wistar rats were randomly divided into control group \((n = 10) \) and AEP group \((n = 40) \). A model of AEP was established by subcutaneous injection of cerulein \(5.5 \) and \(7.5 \) \(\mu \)g/kg at 0 and 1 h after the beginning of experiment respectively. PECAM-1 expression on PMNs from splenic vein and inferior vena cava was determined by RT-PCR at mRNA level and determined by flow cytometry at protein level.

RESULTS: In experimental rats, an increased PECAM-1 mRNA expression was seen from 4 to 8 h of AEP in peripheral circulation \((0.77 \pm 0.25\%, \ 0.76 \pm 0.28\%, \ 0.89 \pm 0.30\%, \ 1.00 \pm 0.21\%) \), while in pancreatic microcirculation, expression decreased from 2 h and reached the lowest level at 6 h of AEP \((0.78 \pm 0.29\%, \ 0.75 \pm 0.26\%, \ 0.62 \pm 0.28\%, \ 0.66 \pm 0.20\%) \). There were significant differences at 8-h time point of AEP between peripheral circulation and pancreatic microcirculation \((1.00 \pm 0.21\% \ vs \ 0.66 \pm 0.20\%, \ P<0.05) \). Meanwhile, the difference at protein level was also found.

CONCLUSION: A reverse expression of PECAM-1 on PMNs was found between peripheral circulation and pancreatic microcirculation, suggesting that inhibition of PECAM-1 expression may improve the pathological change of AEP.

INTRODUCTION

Acute pancreatitis (AP) is a potentially lethal disease and characterized by acinar cell necrosis, extensive interstitial edema, and migration of neutrophils to the damaged gland. However, the development and etiology of AP remain poorly understood.

Cerulein-induced acute edematous pancreatitis (AEP) is a widely used model in investigating the pathophysiological events of the disease. In this regard, rapid induction of mild disease with a highly reproducible course and easily detected changes of acute interstitial pancreatitis have made this secretagogue-induced model favorable for the investigation of the pathogenesis of the disease.

Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) is a cell adhesion molecule that belongs to the Ig superfamily expressed on endothelial cells as well as circulating leukocytes including neutrophils with endothelial PECAM-1 is very important to neutrophil and monocyte transendothelial migration as demonstrated in studies in several different laboratories[5-9]. The interaction may be mediated by interdigitating PECAM-1 molecules from neutrophils or monocytes and endothelial cells, forming a zipper which promotes their adhesion[10-12].

Recently, several studies have demonstrated that AP is frequently associated with sequestration of inflammatory cells, particularly leukocytes[13-15]. However, the expression of PECAM-1 on leukocytes and the role of PECAM-1 in pancreatic injury in AP are not very clear. Therefore, we conducted this study to investigate the expression of PECAM-1 on PMNs and the role of PECAM-1 in microcirculatory injury in AEP.

MATERIALS AND METHODS

Animals

Male Wistar rats \((250-350 \ g) \) were provided by the Center of Experimental Animals, Sichuan University (Chengdu, China). All animals were fasted for 12 h before the experiments but had free access to water. They were treated in accordance with the protocols approved by the local Animal Use and Care Committee and executed according to the National Animal Welfare Law.

Induction of acute pancreatitis

All experimental rats were given subcutaneous injection of cerulein (Sigma Co, USA) \(5.5 \) and \(7.5 \) \(\mu \)g/kg at 0 and 1 h after the
beginning of experiment respectively, while control rats were
given subcutaneous injection of 0.9% saline solution.

Experimental protocols
The rats were randomly assigned into control group (n = 10)
and AEP group (n = 40). Rats in AEP group were sacrificed at 2
(n = 10), 4 (n = 10), 6 (n = 10) and 8 h (n = 10) after induction
of AEP.

Collection of samples
At different time points (2, 4, 6, and 8 h) after induction of AEP,
the experimental animals underwent laparotomy under
anesthesia by intraperitoneal injection of 50 mg/kg sodium
pentobarbital (Sanofi, Libourne, France). Blood samples were
immediately obtained from splenic vein by retrograde
catheterization from portal vein and inferior vena cava and
samples of pancreatic head were taken immediately after the
animals were killed. Control animals underwent laparotomy
and were sampled in the same fashion as animals with AEP.

Amylase measurement
Serum amylase levels were measured at 37 °C by an enzymatic
assay with a spectrophotometer according to the manufacturer’s
instructions. All serum samples were assayed in duplicate, and
the results were averaged at the end of the experiment.

Edema assessment
Pancreatic edema was evaluated by measuring the wet-to-dry
weight ratio. A segment of the pancreas was trimmed of fat and
weighed. The water content was determined by calculating the
wet-to-dry weight ratio from the initial weight (wet weight) and
its weight after incubation at 160 °C for 24 h (dry weight).

Reverse transcriptase-polymerase chain reaction
Total RNA was isolated from blood using TRIzol® reagent kits
(Gibco BRL, USA). RT-PCR was performed with the Access
RT-PCR kit (Takara, Japan) according to the manufacturer’s
protocol. The primer for rat PECAM-1 was constructed based on
published human and mouse PECAM-1 nucleotide sequences
and synthesized by Life Technology (Hong Kong, China). We
obtained two different bands from RT-PCR corresponding to
the splice variants. The band densities of the two splice variants
obtained two different bands from RT-PCR corresponding to
its weight after incubation at 160 °C.

Neutrophils preparation
Blood was immediately mixed with heparin (50 U/mL) and
centrifuged in a discontinuous Percoll gradient to yield a fraction
of approximately 97% purity. Rat PMNs were isolated by a
modification of the technique. Cell viabilities, as assessed by
trypan blue exclusion, were above 96% under all experimental
conditions.

Flow cytometry
To determine PECAM-1 protein expression, rat PMNs were
incubated with phycoerythrin (PE)-anti-PECAM-1 monoclonal
antibody (BD PharMingen, USA) at 4 °C in the dark for 20 min.
After washing with PBS and fixed in 0.5% paraformaldehyde in
phosphate-buffered saline, cells were resuspended and mean
fluorescence intensity was measured by flow cytometry (ELITE
ESP, Coulter, USA).

Statistical analysis
The results were expressed as mean±SE, individual comparisons
of group means were performed with one-way ANOVA, P<0.05
was considered statistically significant.

RESULTS

Serum amylase
After induction of acute pancreatitis by subcutaneous injection
of cerulein as shown in Table 2, serum amylase increased
sharply and reached the peak at 4-h time point, then dropped
slightly at 8-h time point. Compared to control rats, all AEP rats
demonstrated hyperamylasemia (P<0.05).

Wet-to-dry weight ratio
As shown in Table 3, subcutaneous injection of cerulein resulted
in an increase in the wet/dry weight ratio in AEP rats. Compared
to control rats, all AEP rats had a significant increase in the
wet/dry weight ratio (P<0.05).

RT-PCR demonstration of PECAM-1 expression on PMNs
To determine the role of PECAM-1 in AEP, we evaluated the
PECAM-1 mRNA expression on PMNs by RT-PCR. As shown
in Figure 1, in experimental rats, the PECAM-1 mRNA expression
slightly increased from 4 to 8-h time points of AEP in peripheral
circulation, while in pancreatic microcirculation, the expression
decreased from 2 h and reached the lowest level at 6-h time
point of AEP and the PECAM-1 mRNA expression difference
became significant between peripheral circulation and pancreatic
microcirculation at 8-h time point of AEP (P<0.05).

Flow cytometry demonstration of PECAM-1 expression on PMNs
At protein level, we analyzed the PECAM-1 expression on the
surface of PMNs by flow cytometry. As shown in Figure 2, in
experimental rats, the expression of PECAM-1 on PMNs had
no significant difference between peripheral circulation and
pancreatic microcirculation at 2 and 4-h time points of AEP.
Then from 4 to 8-h time points, the expression of PECAM-1
became significant between peripheral circulation and pancreatic
microcirculation at 8-h time point of AEP (P<0.05).

Table 1 Primer list of RT-PCR

mRNA	Upper primer	Lower primer	Fragment size
β-actin	5’-GATGGTGGGTATCGGTAGGA-3’	5’-CTAGGGAGCCAGGCAATTC-3’	346 bp
PECAM-1	5’-AGGGCTCATTTGGTGGTGTCAT-3	5’-TAAGGGAGCCCTCCCGTCTAGAGT-3	348, 404 bp

PECAM-1: platelet endothelial cell adhesion molecule-1.
PECAM-1 gene activation is in good correlation with its protein microcirculation, especially in the late stage of AEP. Moreover, up-regulated, while it is down-regulated in pancreatic microcirculation is in a reverse pattern in cerulein-induced AEP. This study demonstrates that PECAM-1 mRNA expression on PMNs between peripheral circulation and pancreatic circulation; (A) peripheral circulation values. (B) pancreatic microcirculation. (C) Values of the density of PECAM-1 RT-PCR product normalized to that of ß-actin in the same RNA sample. Symbols are: (□) peripheral circulation; (■) pancreatic microcirculation. *P<0.05, by one-way ANOVA.

Since the concept of autodigestion is accepted generally, considerable progress has been made in the understanding of pathogenesis of AEP. In recent years, basic researches on the morphology of pancreatic microcirculation have revealed that intralobular arterioles could be considered as ‘end-arteries’. Furthermore, they have no anastomosis with adjacent intralobular arterioles and their branches. This anatomic feature makes pancreas susceptible to the pancreatic microcirculatory impairment. However, the key factors for local microcirculatory disturbance remain obscure.

Several lines of evidence have shown that PECAM-1 is required for leukocyte transmigration through endothelial cell monolayer and PMNs play an important role in microcirculatory injury during inflammation. But these researches mainly focused on the expression of PECAM-1 on leukocytes in peripheral circulation and rarely investigated its expression in microcirculation. Moreover, the expression of PECAM-1 and its role in pancreatic injury in vivo have been ambiguous. Therefore, we examined the PECAM-1 expression on PMNs in pancreatic microcirculation and peripheral circulation during AEP.

PECAM-1, expressed on the surface of most leukocytes and endothelial cells, can up-regulate leukocyte integrin affinity by homophillic engagement of PECAM-1 molecules between circulating leukocytes and the underlying endothelial cell monolayer, facilitating leukocyte transmigration subsequently. Neutralized antibodies to PECAM-1 could inhibit neutrophil and monocyte transendothelial migration by 80% in vitro and in vivo. The anti-PECAM-1 antibodies could inhibit tissue recruitment of neutrophils and monocytes in vivo by inhibiting the transmigration of neutrophils and monocytes between endothelial cells. Studies using intravital videomicroscopy have demonstrated that anti-PECAM-1 antibodies do not inhibit other steps in neutrophil or monocyte recruitment such as rolling on endothelium or activation-dependent adhesion to endothelium. In our experiments, we found that PECAM-1 expression on PMNs in pancreatic microcirculation was significantly down-regulated, in comparison with its expression in peripheral circulation in AEP. In addition, the more the serum amylase and wet/dry weight ratio increased, the more the PECAM-1 expression decreased on PMNs in pancreatic microcirculation, suggesting that PECAM-1 expression on PMNs in pancreatic microcirculation is correlated with the development of AEP. It is possible that the up-regulation of PECAM-1 may prepare PMNs for transmigrating through the monolayer of endothelial cells in microvessels, and down-regulation of PECAM-1 may reflect the activation of PMNs. While the activated PMNs go through pancreas, they can swim from the...
microvessel lumen, across the endothelium, to the inflammatory tissue more easily, causing the deterioration of pancreatic injury. Thus we hypothesize that inhibition of PECAM-1 expression on PMNs may block the interaction between endothelial cells and PMNs, thereby preventing PMNs’ transmigration.

In conclusion, our study is the first to investigate the expression of PECAM-1 mRNA and protein on PMNs in pancreatic microcirculation and peripheral circulation. PECAM-1 expression of PECAM-1 mRNA and protein on PMNs, thereby preventing PMNs’ transmigration. Thus we hypothesize that inhibition of PECAM-1 expression on tissue more easily, causing the deterioration of pancreatic injury.

In conclusion, our study is the first to investigate the expression of PECAM-1 mRNA and protein on PMNs in pancreatic microcirculation and peripheral circulation. PECAM-1 expression of PECAM-1 mRNA and protein on PMNs, thereby preventing PMNs’ transmigration.

REFERENCES
1 Wakayama T, Hamada K, Yamamoto M, Suda T, Iseki S. The expression of platelet endothelial cell adhesion molecule-1 in mouse primordial germ cells during their migration and early gonadal formation. Histochim Cell Biol 2003; 119: 355-362
2 Mamdouh Z, Chen X, Pierini LM, Maxfield FR, Muller WA. Targeted recycling of PECAM from endothelial surface-connected compartments during diapedesis. Nature 2003; 421: 748-753
3 Pu FR, Williams RL, Markkula TK, Hunt JA. Expression of leukocyte-endothelial cell adhesion molecules on monocyte adhesion to human endothelial cells on plasma treated PET and PTFE in vitro. Biomaterials 2002; 23: 4705-4718
4 Kawabata K, Nakai S, Miwa M, Sugiyama T, Otsuka Y, Shinzato T, Hiki N, Tomimatsu I, Ushida Y, Hosono F, Maeda K. CD31 expression on leukocytes is downregulated in vivo during hemodilatation. Nephron 2001; 89: 153-160
5 Zaremba J, Losy J. sPECAM-1 in serum and CSF of acute ischemic stroke patients. Acta Neurol Scand 2002; 106: 292-298
6 Lusczynska FW, Ma S, Nusrat A, Parkos CA, Shaw SK. Leukocyte transendothelial migration: a junctional affair. Semin Immunol 2002; 14: 105-113
7 Radi ZA, Kehrli ME, Ackermann MR. Cell adhesion molecules, leukocyte trafficking, and strategies to reduce leukocyte infiltration. J Vet Intern Med 2001; 15: 516-529
8 Neubauer K, Ritzel A, Saile B, Ramadori G. Decrease of platelet-endothelial cell adhesion molecule-1-gene-expression in inflammatory cells and in endothelial cells in the rat liver following CCl(4)-administration and in vitro after treatment with TNFalpha. Immunol Lett 2000; 74: 153-164
9 Neubauer K, Willfing T, Ritzel A, Ramadori G. Platelet-endothelial cell adhesion molecule-1 gene expression in liver sinusoidal endothelial cells during liver injury and repair. J Hepatol 2000; 32: 921-932
10 Lefer AM. Role of the beta2-integrins and immunoglobulin superfamily members in myocardial ischemia-reperfusion. Ann Thorac Surg 1999; 68: 1920-1923
11 Nakata MD, Amin K, Christofidou-Solomidou M, O’Brien CD, Sun J, Gurubhagavatula I, Heavner GA, Taylor AH, Paddock C, Sun QH, Zehnder JL, Newman PJ, Alбедa SM, DeLisser HM. Antibodies against the first Ig-like domain of human platelet-endothelial cell adhesion molecule-1 (PECAM-1) that inhibit PECAM-1-dependent homophilic adhesion block in vivo neutrophil recruitment. J Immunol 2000; 164: 452-462
12 Muller WA, Randolph GJ. Migration of leukocytes across endothelium and beyond: molecules involved in the transmigration and fate of monocytes. J Leukoc Biol 1999; 66: 698-704
13 de Dios I, Perez M, de La Mano A, Sevillano S, Orfao A, Ramudo L, Manzo MA. Contribution of circulating leukocytes to cytokine production in pancreatic duct obstruction-induced acute pancreatitis in rats. Cytokine 2002; 20: 295-303
14 Bhatnagar A, Wig JD, Majumdar S. Immunological findings in acute and chronic pancreatitis. ANZ J Surg 2003; 73: 59-64
15 Mann DV, Kalu P, Foulds S, Edwards R, Glazer G. Neutrophil activation and hyperamylasemia after endoscopic retrograde cholangiopancreatography: potential role for the leukocyte in the pathogenesis of acute pancreatitis. Endoscopy 2001; 33: 448-453
16 Solowiej A, Biswas P, Graesser D, Madri JA. Lack of platelet endothelial cell adhesion molecule-1 attenuates foreign body inflammation because of decreased angiogenesis. Am J Pathol 2003; 162: 953-962
17 O’Brien CD, Lim P, Sun J, Alбедa SM. PECAM-1-dependent neutrophil transmigration is independent of monolayer PECAM-1 signaling or localization. Blood 2003; 101: 2816-2825
18 Thompson RD, Noble KE, Larbi KY, Dewar A, Duncan GS, Mak TW, Nourshargh S. Platelet-endothelial cell adhesion molecule-1 (PECAM-1)-deficient mice demonstrate a transient and cytokine-specific role for PECAM-1 in leukocyte migration through the perivascular basement membrane. Blood 2001; 97: 1854-1860
19 Dangerfield J, Larbi KY, Huang MT, Dewar A, Nourshargh S. PECAM-1 (CD31) homophilic interaction up-regulates alphabeta1 on transmigrated neutrophils in vivo and plays a functional role in the ability of alphabeta1 integrins to mediate leukocyte migration through the perivascular basement membrane. J Exp Med 2002; 196: 1201-1211
20 Okouchi M, Okayama N, Shimizu M, Omi H, Fukutomi T, Itoh M. High insulin exacerbates neutrophil-endothelial cell adhesion through endothelial surface expression of intercellular adhesion molecule-1 via activation of protein kinase C and mitogen-activated protein kinase. Diabetesologia 2002; 45: 556-559
21 Thompson RD, Wakelin MW, Larbi KY, Dewar A, Asimakopoulos G, Horton MA, Nakata MD, Nourshargh S. Divergent effects of platelet-endothelial cell adhesion molecule-1 and beta 3 integrin blockade on leukocyte transmigration in vivo. J Immunol 2000; 165: 426-434
22 Cid MC, Cebrian M, Font C, Coll-Vinent B, Hernandez-Rodriguez J, Esparza J, Urbano-Marquez A, Grau JM. Cell adhesion molecules in the development of inflammatory infiltrates in giant cell arteritis: inflammation-induced angiogenesis as the preferential site of leukocyte-endothelial cell interactions. Arthritis Rheum 2000; 43: 184-194
23 Su WH, Chen HI, Jen CJ. Differential movements of VE-cadherin and PECAM-1 during transmigration of polymorphonuclear leukocytes through human umbilical vein endothelium. Blood 2002; 100: 3597-3603
24 Sun Z, Wang X, Lasson A, Bojesson A, Annborn M, Andersson R. Effects of inhibition of PAF, ICAM-1 and PECAM-1 on gut barrier failure caused by intestinal ischemia and reperfusion. Scand J Gastroenterol 2001; 36: 55-65

Edited by Wang XL and Zhu LH