Research article

Fekete-Szegö problem for Bi-Bazilevič functions related to Shell-like curves

Halit Orhan¹, Nanjundan Magesh² and Chinnasamy Abirami³

¹ Department of Mathematics, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
² Post-Graduate and Research Department of Mathematics, Government Arts College for Men, Krishnagiri 635001, Tamilnadu, India
³ Faculty of Engineering and Technology, SRM University, Kattankulathur-603203, Tamilnadu, India

* Correspondence: E-mail: orhanhalit607@gmail.com.

Abstract: In the present investigation, we define a subclass of bi-univalent functions related to shell-like curves connected with Fibonacci numbers to find the estimates of second, third Taylor-Maclaurin coefficients and Fekete-Szegö inequalities. Further, certain special cases are also discussed.

Keywords: univalent functions; bi-univalent functions; shell-like function; Bazilevič function; Fibonacci number; Fekete-Szegö inequality

Mathematics Subject Classification: 30C45, 30C50

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk $\mathbb{D} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. Further, by S we shall denote the class of all functions in \mathcal{A} which are univalent in \mathbb{D}.

For analytic functions f and g in \mathbb{D}, f is said to be subordinate to g if there exists an analytic function w such that

$$w(0) = 0, \quad |w(z)| < 1 \quad \text{and} \quad f(z) = g(w(z)), \quad z \in \mathbb{D}.$$

This subordination will be denoted here by

$$f \prec g, \quad z \in \mathbb{D}.$$
or, conventionally, by
\[f(z) < g(z), \quad z \in \mathbb{D}. \]

In particular, when \(g \) is univalent in \(\mathbb{D} \),
\[f < g \quad (z \in \mathbb{D}) \iff f(0) = g(0) \quad \text{and} \quad f(\mathbb{D}) \subset g(\mathbb{D}). \]

Let \(\mathcal{P} \) denote the class of functions of the form
\[p(z) = 1 + p_1z + p_2z^2 + p_3z^3 + \cdots, \quad z \in \mathbb{D} \tag{1.2} \]
which are analytic with \(\Re \{ p(z) \} > 0 \). Here \(p(z) \) is called as Caratheodory functions [1]. It is well known that the following correspondence between the class \(\mathcal{P} \) and the class of Schwarz functions \(w \) exists: \(p \in \mathcal{P} \) if and only if \(p(z) = 1 + w(z)/1 - w(z) \). Let \(\mathcal{P}(\beta), 0 \leq \beta < 1 \), denote the class of analytic functions \(p \) in \(\mathbb{D} \) with \(p(0) = 1 \) and \(\Re \{ p(z) \} > \beta \).

Recently, Sokół [2] and Dziok et al. [3] studied the classes \(\mathcal{SL}(\overline{p}) \) and \(\mathcal{KSL}(\overline{p}) \) of shell-like functions and convex shell-like functions which are characterized by \(z f''/f^\prime(z) < \overline{p}(z) \) or \(1 + z^2 f''/f^\prime(z) < \overline{p}(z) \), where \(\overline{p}(z) = (1 + \tau^2z^2)/(1 - \tau^2 - \tau^2z^2) \), \(\tau = (1 - \sqrt{5})/2 \approx -0.618 \) [4, 5] and the function \(\overline{p} \) is not univalent in \(\mathbb{D} \), but it is univalent in the disc \(|z| < (3 - \sqrt{5})/2 \approx 0.38 \). For example, \(\overline{p}(0) = \overline{p}(-1/2\tau) = 1 \) and \(\overline{p}(e^{\pi} \arccos(1/4)) = 1/\sqrt{5} \) and it may also be noticed that \(1/|\tau| = |\tau|/1 - |\tau| \) which shows that the number \(|\tau| \) divides \(0, 1 \) such that it fulfills the golden section. The image of the unit circle \(|z| = 1 \) under \(\overline{p} \) is a curve described by the equation given by
\[(10x - \sqrt{5})^2 = (\sqrt{5} - 2x)(\sqrt{5}x - 1)^2, \]
which is translated and revolved trisectrix of Maclaurin. The curve \(\overline{p}(re^{it}) \) is a closed curve without any loops for \(0 < r \leq r_0 = (3 - \sqrt{5})/2 \approx 0.38 \). For \(r_0 < r < 1 \), it has a loop and for \(r = 1 \), it has a vertical asymptote. Since \(\tau \) satisfies the equation \(\tau^2 = 1 + \tau \), this expression can be used to obtain higher powers \(\tau^n \) as a linear function of lower powers, which in turn can be decomposed all the way down to a linear combination of \(\tau \) and 1. The resulting recurrence relationships yield Fibonacci numbers \(u_n \) as
\[\tau^n = u_n\tau + u_{n-1}. \]

Also, Raina and Sokol [5] proved that
\[
\overline{p}(z) = \frac{1 + \tau^2z^2}{1 - \tau^2 - \tau^2z^2} = \left(t + \frac{1}{t} \right) \frac{t}{1 - t - t^2} = \frac{1}{\sqrt{5}} \left(t + \frac{1}{t} \right) \left(\frac{1}{1 - (1 - \tau)t} - \frac{1}{1 - \tau t} \right) = \left(t + \frac{1}{t} \right) \sum_{n=2}^{\infty} \frac{(1 - \tau)^n - \tau^n}{\sqrt{5}} t^n = \left(t + \frac{1}{t} \right) \sum_{n=2}^{\infty} u_n t^n
\]
\[
= 1 + \sum_{n=2}^{\infty} (u_{n-1} + u_{n+1}) \tau^n z^n,
\]

where
\[
u_n = \frac{(1 - \tau)n - \tau^n}{\sqrt{5}}, \quad \tau = \frac{1 - \sqrt{5}}{2}, \quad n = 1, 2, \ldots.
\]

This shows that the relevant connection of \(\tilde{p}\) with the sequence of Fibonacci numbers \(u_n\), such that
\[
u_0 = 0, \quad \nu_1 = 1, \quad \nu_{n+2} = \nu_n + \nu_{n+1}, \quad n = 0, 1, 2, 3, \ldots.
\]

Hence
\[
\tilde{p}(z) = 1 + \sum_{n=1}^{\infty} p_n z^n
\]
\[
= 1 + (u_0 + u_2) \tau z + (u_1 + u_3) \tau^2 z^2 + \sum_{n=3}^{\infty} (u_{n-3} + u_{n-2} + u_{n-1} + u_n) \tau^n z^n
\]
\[
= 1 + \tau z + 3\tau^2 z^2 + 4\tau^3 z^3 + 7\tau^4 z^4 + 11\tau^5 z^5 + \cdots
\]

(1.3)

We note that the function \(\tilde{p}\) belongs to the class \(P(\beta)\) with \(\beta = \frac{\sqrt{5}}{10} \approx 0.2236\) [5].

It is well known that every function \(f \in S\) has an inverse \(f^{-1}\), defined by
\[
(f^{-1}(f(z))) = z, \quad z \in \mathbb{D}
\]

and
\[
f(f^{-1}(w)) = w, \quad |w| < r_0(f); \quad r_0(f) \geq \frac{1}{4},
\]

where
\[
f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots
\]

(1.4)

A function \(f \in A\) is said to be bi-univalent in \(\mathbb{D}\) if both \(f(z)\) and \(f^{-1}(z)\) are univalent in \(\mathbb{D}\). Let \(\Sigma\) denote the class of bi-univalent functions in \(\mathbb{D}\) given by (1.1) for more details one can refer [6–13] and references therein. Also the various subclasses of bi-univalent functions related to shell-like curves were studied in [14–16].

Recently, the initial coefficient estimates are found for functions in the class of bi-univalent functions defined through certain polynomials like the Faber polynomial, the Lucas polynomial, the Chebyshev polynomial, the Gegenbauer polynomial and the Meixner-Pollaczek polynomial. Motivated in this line, in the present work, we introduce the following new subclass of bi-univalent function, as follows:

Definition 1.1. A function \(f \in \Sigma\) of the form (1.1) belongs to the class \(BSL^\mu_{\Sigma} \lambda (\tilde{p})\), \(\mu \geq 0, \lambda \geq 1, \delta \geq 0\), if the following conditions are satisfied:
\[
(1 - \lambda) \left(\frac{f(z)}{z}\right)^\mu + \lambda f'(z) \left(\frac{f(z)}{z}\right)^{\mu-1} + \xi z f''(z) < \tilde{p}(z) = \frac{1 + \tau^2 z^2}{1 - \tau^2 z - \tau^2 z^2}, \quad z \in \mathbb{D}
\]
and for \(g(w) = f^{-1}(w) \)

\[
(1 - \lambda) \left(\frac{g(w)}{w} \right)^\mu + \lambda g'(w) \left(\frac{g(w)}{w} \right)^{\mu-1} + \xi \delta g''(w) < \tilde{p}(w) = \frac{1 + \tau^2 w^2}{1 - \tau w - \tau^2 w^2}, \quad w \in \mathbb{D},
\]

where \(\tau = \frac{1 - \sqrt{5}}{2} \approx -0.618 \) and \(\xi = \frac{2 + \mu}{2 + \tau}. \)

By suitably specializing the values of \(\mu, \lambda \) and \(\delta \), the class \(\mathcal{B} \mathcal{S} \mathcal{L}_\Sigma^{\mu, \delta, \lambda}(\tilde{p}) \) reduces to various new subclasses, we illustrate the following subclasses:

1. For \(\delta = 0, \) we get the class \(\mathcal{B} \mathcal{S} \mathcal{L}_\Sigma^{\mu, 0, \lambda}(\tilde{p}) \equiv \mathcal{N} \mathcal{S} \mathcal{L}_\Sigma^{\mu, \lambda}(\tilde{p}) \). A function \(f \in \Sigma \) of the form (1.1) is said to be in \(\mathcal{N} \mathcal{S} \mathcal{L}_\Sigma^{\mu, \lambda}(\tilde{p}(z)), \) if the following conditions

\[
(1 - \lambda) \left(\frac{f(z)}{z} \right)^\mu + \lambda f'(z) \left(\frac{f(z)}{z} \right)^{\mu-1} < \tilde{p}(z) = \frac{1 + \tau^2 z^2}{1 - \tau z - \tau^2 z^2}, \quad z \in \mathbb{D}
\]

and for \(g(w) = f^{-1}(w) \)

\[
(1 - \lambda) \left(\frac{g(w)}{w} \right)^\mu + \lambda g'(w) \left(\frac{g(w)}{w} \right)^{\mu-1} < \tilde{p}(w) = \frac{1 + \tau^2 w^2}{1 - \tau w - \tau^2 w^2}, \quad w \in \mathbb{D},
\]

hold, where \(\tau = \frac{1 - \sqrt{5}}{2} \approx -0.618. \)

2. For \(\lambda = 1 \) and \(\delta = 0, \) we get the class \(\mathcal{B} \mathcal{S} \mathcal{L}_\Sigma^{1, 0, \lambda}(\tilde{p}) \equiv \mathcal{R} \mathcal{S} \mathcal{L}_\Sigma^{\mu, \lambda}(\tilde{p}) \). A function \(f \in \Sigma \) of the form (1.1) is said to be in \(\mathcal{R} \mathcal{S} \mathcal{L}_\Sigma^{\mu, \lambda}(\tilde{p}), \) if the following conditions

\[
f''(z) \left(\frac{f(z)}{z} \right)^{\mu-1} < \tilde{p}(z) = \frac{1 + \tau^2 z^2}{1 - \tau z - \tau^2 z^2}, \quad z \in \mathbb{D}
\]

and for \(g(w) = f^{-1}(w) \)

\[
g'(w) \left(\frac{g(w)}{w} \right)^{\mu-1} < \tilde{p}(w) = \frac{1 + \tau^2 w^2}{1 - \tau w - \tau^2 w^2}, \quad w \in \mathbb{D},
\]

hold, where \(\tau = \frac{1 - \sqrt{5}}{2} \approx -0.618. \)

3. For \(\mu = 1, \) we get the class \(\mathcal{B} \mathcal{S} \mathcal{L}_\Sigma^{1, \delta, \lambda}(\tilde{p}) \equiv \mathcal{W} \mathcal{S} \mathcal{L}_\Sigma^{\delta, \lambda}(\tilde{p}) \). A function \(f \in \Sigma \) of the form (1.1) is said to be in \(\mathcal{W} \mathcal{S} \mathcal{L}_\Sigma^{\delta, \lambda}(\tilde{p}), \) if the following conditions

\[
(1 - \lambda) \frac{f(z)}{z} + \lambda f'(z) + \delta z f''(z) < \tilde{p}(z) = \frac{1 + \tau^2 z^2}{1 - \tau z - \tau^2 z^2}, \quad z \in \mathbb{D}
\]

and for \(g(w) = f^{-1}(w) \)

\[
(1 - \lambda) \frac{g(w)}{w} + \lambda g'(w) + \delta w g''(w) < \tilde{p}(w) = \frac{1 + \tau^2 w^2}{1 - \tau w - \tau^2 w^2}, \quad w \in \mathbb{D},
\]

hold, where \(\tau = \frac{1 - \sqrt{5}}{2} \approx -0.618. \)
4. For \(\lambda = \mu = 1 \), we get the class \(BSL_{\Sigma}^{1,1,1}(\overline{p}) \equiv FSL_{\Sigma}(\delta, \overline{p}) \). A function \(f \in \Sigma \) of the form (1.1) is said to be in \(FSL_{\Sigma}(\delta, \overline{p}) \), if the following conditions

\[
f'(z) + \delta zf''(z) < \overline{p}(z) = \frac{1 + \tau^2 z^2}{1 - \tau z - \tau^2 z^2}, \quad z \in \mathbb{D}
\]

and for \(g(w) = f^{-1}(w) \)

\[
g'(w) + \delta wg''(w) < \overline{p}(w) = \frac{1 + \tau^2 w^2}{1 - \tau w - \tau^2 w^2}, \quad w \in \mathbb{D},
\]

hold, where \(\tau = \frac{1 - \sqrt{5}}{2} \approx -0.618 \).

5. For \(\mu = 1 \) and \(\delta = 0 \), we obtain the class \(BSL_{\Sigma}^{1,0,1}(\overline{p}) \equiv BSL_{\Sigma}(\lambda, \overline{p}) \). A function \(f \in \Sigma \) of the form (1.1) is said to be in \(BSL_{\Sigma}(\lambda, \overline{p}(z)) \), if the following conditions

\[
(1 - \lambda)f(z) + \lambda f'(z) < \overline{p}(z) = \frac{1 + \tau^2 z^2}{1 - \tau z - \tau^2 z^2}, \quad z \in \mathbb{D}
\]

and for \(g(w) = f^{-1}(w) \)

\[
(1 - \lambda)g(w) + \lambda g'(w) < \overline{p}(w) = \frac{1 + \tau^2 w^2}{1 - \tau w - \tau^2 w^2}, \quad w \in \mathbb{D},
\]

hold, where \(\tau = \frac{1 - \sqrt{5}}{2} \approx -0.618 \).

6. For \(\lambda = 1, \mu = 1 \) and \(\delta = 0 \), we have the class \(BSL_{\Sigma}^{1,0,0}(\overline{p}) \equiv HSL_{\Sigma}(\overline{p}) \). A function \(f \in \Sigma \) of the form (1.1) is said to be in \(HSL_{\Sigma}(\overline{p}) \), if the following conditions

\[
f'(z) < \overline{p}(z) = \frac{1 + \tau^2 z^2}{1 - \tau z - \tau^2 z^2}, \quad z \in \mathbb{D}
\]

and for \(g(w) = f^{-1}(w) \)

\[
g'(w) < \overline{p}(w) = \frac{1 + \tau^2 w^2}{1 - \tau w - \tau^2 w^2}, \quad w \in \mathbb{D},
\]

hold, where \(\tau = \frac{1 - \sqrt{5}}{2} \approx -0.618 \).

In order to prove our results for the functions in the class \(BSL_{\Sigma}^{\mu,\delta,\lambda}(\overline{p}) \), we need the following lemma.

Lemma 1.1. [10] If \(p \in \mathcal{P} \), then \(|p_i| \leq 2 \) for each \(i \), where \(\mathcal{P} \) is the family of all functions \(p \), analytic in \(\mathbb{D} \), for which

\[
\Re(p(z)) > 0 \quad (z \in \mathbb{D}),
\]

where

\[
p(z) = 1 + p_1 z + p_2 z^2 + \cdots \quad (z \in \mathbb{D}).
\]

In this investigation, we find the estimates for the coefficients \(|a_2| \) and \(|a_3| \) for functions in the class \(BSL_{\Sigma}^{\mu,\delta,\lambda}(\overline{p}) \) and its special cases. Also, Fekete-Szegö inequality for functions in this subclass.
2. Coefficient estimates and Fekete-Szegő inequality

In the following theorem, we discuss coefficient estimates and Fekete-Szegő inequality for functions in the class $f \in \mathcal{BSL}_\Sigma^{\mu, \delta, \lambda} (\tilde{p})$.

Theorem 2.1. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be in the class $\mathcal{BSL}_\Sigma^{\mu, \delta, \lambda} (\tilde{p})$. Then

$$|a_2| \leq |\tau| \frac{2}{M}, \quad |a_3| \leq \frac{(2\lambda + \mu - 1) \tau + 2(1-3\tau)(\lambda + \mu + 2\xi \delta)^2}{M(2\lambda + \mu + 6\xi \delta)} |\tau|$$

and for $\nu \in \mathbb{R}$,

$$|a_3 - \nu a_2^2| \leq \begin{cases} \frac{|\tau|}{2\lambda + \mu + 6\xi \delta} : 0 \leq |\nu - 1| \leq \frac{M}{2(2\lambda + \mu + 6\xi \delta)|\tau|} \\ \frac{M}{2(2\lambda + \mu + 6\xi \delta)|\tau|} : |\nu - 1| \geq \frac{M}{2(2\lambda + \mu + 6\xi \delta)|\tau|} \end{cases}$$

where

$$M = \left[\tau [(2\lambda + \mu)(\mu + 1) + 12\xi \delta] + 2(1-3\tau)(\lambda + \mu + 2\xi \delta)^2 \right].$$

Proof. Since $f \in \mathcal{BSL}_\Sigma^{\mu, \delta, \lambda} (\tilde{p})$, from the Definition 1.1, we have

$$\left(1 - \lambda \right) \left(\frac{f(z)}{z} \right)^\mu + \lambda f'(z) \left(\frac{f(z)}{z} \right)^{\mu-1} + \xi \delta z f''(z) = \tilde{p}(p(z)) \quad (2.1)$$

and for $g = f^{-1}$

$$\left(1 - \lambda \right) \left(\frac{g(w)}{w} \right)^\mu + \lambda g'(w) \left(\frac{g(w)}{w} \right)^{\mu-1} + \xi \delta w g''(w) = \tilde{p}(q(w)), \quad (2.2)$$

where $z, w \in \mathbb{D}$. Using the fact the function p of the form (1.2) and $p < \tilde{p}$. Then there exists an analytic function p such that $|p(z)| < 1$ in \mathbb{D} and $p(z) = \tilde{p}(p(z))$. Therefore, define the function

$$h(z) = \frac{1 + p(z)}{1 - p(z)} = 1 + p_1 z + p_2 z^2 + \cdots$$

is in the class \mathcal{P}. It follows that

$$p(z) = \frac{h(z) - 1}{h(z) + 1} = \frac{p_1}{2} z + \left(p_2 - \frac{p_1^2}{2} \right) \frac{z^2}{2} + \left(p_3 - p_1 p_2 + \frac{p_1^3}{4} \right) \frac{z^3}{2} + \cdots$$

and

$$\tilde{p}(p(z)) = 1 + \tilde{p}_1 \left(\frac{p_1}{2} z + \left(p_2 - \frac{p_1^2}{2} \right) \frac{z^2}{2} + \left(p_3 - p_1 p_2 + \frac{p_1^3}{4} \right) \frac{z^3}{2} + \cdots \right)$$

$$+ \tilde{p}_2 \left(\frac{p_1}{2} z + \left(p_2 - \frac{p_1^2}{2} \right) \frac{z^2}{2} + \left(p_3 - p_1 p_2 + \frac{p_1^3}{4} \right) \frac{z^3}{2} + \cdots \right)^2$$

AIMS Mathematics Volume 5, Issue 5, 4412–4423.
\[+ \bar{p}_3 \left(\frac{p_1}{2} z + \left(p_2 - \frac{p_1^2}{2} \right) \frac{z^2}{2} + \left(p_3 - p_1 p_2 + \frac{p_1^3}{4} \right) \frac{z^3}{2} + \cdots \right)^3 + \cdots \]
\[= 1 + \frac{\bar{p}_1 p_1}{2} z + \left(\frac{1}{2} \left(p_2 - \frac{p_1^2}{2} \right) \bar{p}_1 + \frac{p_1^2}{4} \bar{p}_2 \right) z^2 \]
\[+ \left(\frac{1}{2} \left(p_3 - p_1 p_2 + \frac{p_1^3}{4} \right) \bar{p}_1 + \frac{1}{2} p_1 \left(p_2 - \frac{p_1^2}{2} \right) \bar{p}_2 + \frac{p_1^3}{8} \bar{p}_3 \right) z^3 + \cdots . \] (2.3)

Similarly, there exists an analytic function \(v \) such that \(|q(w)| < 1 \) in \(\mathbb{D} \) and \(p(w) = \bar{p}(q(w)) \). Therefore, the function
\[k(w) = \frac{1 + q(w)}{1 - q(w)} = 1 + q_1 w + q_2 w^2 + \cdots \]
is in the class \(\mathcal{P} \). It follows that
\[q(w) = \frac{k(w) - 1}{k(w) + 1} = \frac{q_1}{2} w + \left(q_2 - \frac{q_1^2}{2} \right) \frac{w^2}{2} + \left(q_3 - q_1 q_2 + \frac{q_1^3}{4} \right) \frac{w^3}{2} + \cdots \]
and
\[\bar{p}(q(w)) = 1 + \bar{p}_1 \left(\frac{q_1}{2} w + \left(q_2 - \frac{q_1^2}{2} \right) \frac{w^2}{2} + \left(q_3 - q_1 q_2 + \frac{q_1^3}{4} \right) \frac{w^3}{2} + \cdots \right) \]
\[+ \bar{p}_2 \left(\frac{q_2}{2} w + \left(q_3 - q_1 q_2 + \frac{q_1^3}{4} \right) \frac{w^3}{2} + \cdots \right)^2 \]
\[+ \bar{p}_3 \left(\frac{q_3}{2} w + \left(q_3 - q_1 q_2 + \frac{q_1^3}{4} \right) \frac{w^3}{2} + \cdots \right)^3 + \cdots \]
\[= 1 + \frac{\bar{p}_1 q_1}{2} w + \left(\frac{1}{2} \left(q_2 - \frac{q_1^2}{2} \right) \bar{p}_1 + \frac{q_1^3}{4} \bar{p}_2 \right) w^2 \]
\[+ \left(\frac{1}{2} \left(q_3 - q_1 q_2 + \frac{q_1^3}{4} \right) \bar{p}_1 + \frac{1}{2} q_1 \left(q_2 - \frac{q_1^2}{2} \right) \bar{p}_2 + \frac{q_1^3}{8} \bar{p}_3 \right) w^3 + \cdots . \] (2.4)

By virtue of (2.1), (2.2), (2.3) and (2.4), we have

\[(\lambda + \mu + 2\xi \delta) a_2 = \frac{p_1 t}{2}, \] (2.5)

\[(2\lambda + \mu) \left[\left(\frac{\mu - 1}{2} \right) a_2^2 + \left(1 + \frac{6\delta \xi}{2\lambda + \mu} \right) a_3 \right] = \frac{1}{2} \left(p_2 - \frac{p_1^2}{2} \right) \tau + \frac{3p_1^2}{4} \tau^2, \] (2.6)

\[- (\lambda + \mu + 2\xi \delta) a_2 = \frac{q_1 t}{2}, \] (2.7)

and

\[(2\lambda + \mu) \left[\left(\frac{\mu + 3}{2} + \frac{12\delta \xi}{2\lambda + \mu} \right) a_2^2 - \left(1 + \frac{6\delta \xi}{2\lambda + \mu} \right) a_3 \right] = \frac{1}{2} \left(q_2 - \frac{q_1^2}{2} \right) \tau + \frac{3q_1^2}{4} \tau^2. \] (2.8)

From (2.5) and (2.7), we obtain

\[p_1 = -q_1. \]
and

\[2(\lambda + \mu + 2\xi \delta)^2 a^2_2 = \frac{(p_1^2 + q_1^2)\tau^2}{4}, \]
\[a^2_2 = \frac{(p_1^2 + q_1^2)\tau^2}{8(\lambda + \mu + 2\xi \delta)^2}. \]
(2.9)

By adding (2.6) and (2.8), we have

\[[(2\lambda + \mu)(\mu + 1) + 12\xi \delta]a^2_2 = \frac{1}{2}(p_2 + q_2)\tau - \frac{1}{4}(p_1^2 + q_1^2)\tau + \frac{3}{4}(p_1^2 + q_1^2)\tau^2. \]
(2.10)

By substituting (2.9) in (2.10), we reduce that

\[a^2_2 = \frac{(p_2 + q_2)\tau^2}{2\tau [(2\lambda + \mu)(\mu + 1) + 12\xi \delta] + 2(1 - 3\tau)(\lambda + \mu + 2\xi \delta)^2}. \]
(2.11)

Now, applying Lemma 1.1, we obtain

\[|a_2| \leq \sqrt{2|\tau|}. \]
(2.12)

By subtracting (2.8) from (2.6), we obtain

\[a^3 = \frac{(p_2 - q_2)\tau}{4(2\lambda + \mu + 6\xi \delta)} + a^2_2. \]
(2.13)

Hence by Lemma 1.1, we have

\[|a_3| \leq \frac{(|p_2| + |q_2|)|\tau|}{4(2\lambda + \mu + 6\xi \delta)} + |a_2|^2 \leq \frac{|\tau|}{2\lambda + \mu + 6\xi \delta} + |a_2|^2. \]

Then in view of (2.12), we obtain

\[|a_3| \leq \frac{|\tau|(2\lambda + \mu)(\mu - 1)\tau + 2(1 - 3\tau)(\lambda + \mu + 2\xi \delta)^2)}{(2\lambda + \mu + 6\delta \xi)[(2\lambda + \mu)(\mu + 1) + 12\delta \xi] + 2(1 - 3\tau)(2\delta \xi + \lambda + \mu)} \]

From (2.13), we have

\[a_3 - \nu a^2_2 = \frac{(p_2 - q_2)\tau}{4(2\lambda + \mu + 6\xi \delta)} + (1 - \nu) a^2_2. \]
(2.14)

By substituting (2.11) in (2.14), we have

\[a_3 - \nu a^2_2 = \frac{(p_2 - q_2)\tau}{4(2\lambda + \mu + 6\xi \delta)} + \frac{(1 - \nu)(p_2 + q_2)\tau^2}{2\tau [(2\lambda + \mu)(\mu + 1) + 12\xi \delta] + 2(1 - 3\tau)(\lambda + \mu + 2\xi \delta)^2}] \]
\[= \left(h(\nu) + \frac{|\tau|}{4(2\lambda + \mu + 6\xi \delta)} \right) p_2 + \left(h(\nu) - \frac{|\tau|}{4(2\lambda + \mu + 6\xi \delta)} \right) q_2. \]
(2.15)
where
\[h(\nu) = \frac{(1 - \nu) \tau^2}{2 \left[\tau \left((2\lambda + \mu)(\mu + 1) + 12\xi\delta \right) + 2(1 - 3\tau)(\lambda + \mu + 2\xi\delta)^2 \right]}. \]

Thus by taking modulus of (2.15), we conclude that
\[
|a_3 - \nu a_2^2| \leq \begin{cases}
\left| \frac{\tau}{2 \lambda + \mu + 6\xi\delta} \right| & 0 \leq |h(\nu)| \leq \frac{|\tau|}{4 (2\lambda + \mu + 6\xi\delta)} \\
\left| \frac{2 |1 - \nu| \tau^2}{4 |h(\nu)|} \right| & |h(\nu)| \geq \frac{|\tau|}{4 (2\lambda + \mu + 6\xi\delta)}.
\end{cases}
\]

3. Corollaries and consequences

In this section, we give coefficient estimates and Fekete-Szegő inequalities for the subclasses of \(BSL^\mu,\delta,\lambda \{\tilde{p}\} \).

Corollary 3.1. Let \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \) be in the class \(NSL^\mu,\lambda \{\tilde{p}\} \). Then
\[
|a_2| \leq |\tau| \sqrt{\frac{2}{M_1}}, \quad |a_3| \leq \frac{|\tau| \left\{ (2\lambda + \mu)(\mu - 1) \tau + 2(1 - 3\tau)(\lambda + \mu)^2 \right\}}{M_1 (2\lambda + \mu)}
\]
and for \(\nu \in \mathbb{R} \),
\[
|a_3 - \nu a_2^2| \leq \begin{cases}
\left| \frac{\tau}{2 \lambda + \mu} \right| & 0 \leq |\nu - 1| \leq \frac{M_1}{2 (2\lambda + \mu)|\tau|} \\
\left| \frac{2 |1 - \nu| \tau^2}{M_1} \right| & |\nu - 1| \geq \frac{2 (2\lambda + \mu)|\tau|}{M_1}
\end{cases}
\]
where
\[
M_1 = \tau(2\lambda + \mu)(\mu + 1) + 2(1 - 3\tau)(\lambda + \mu)^2.
\]

Corollary 3.2. Let \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \) be in the class \(RSL^\mu \{\tilde{p}\} \). Then
\[
|a_2| \leq |\tau| \sqrt{\frac{2}{M_2}}, \quad |a_3| \leq \frac{|\tau| \left\{ (\mu + 2)(\mu - 1) \tau + 2(1 - 3\tau)(1 + \mu)^2 \right\}}{M_2 (\mu + 2)}
\]
and for \(\nu \in \mathbb{R} \),
\[
|a_3 - \nu a_2^2| \leq \begin{cases}
\left| \frac{\tau}{2 + \mu} \right| & 0 \leq |\nu - 1| \leq \frac{M_2}{2 (2 + \mu)|\tau|} \\
\left| \frac{2 |1 - \nu| \tau^2}{M_2} \right| & |\nu - 1| \geq \frac{2 (2 + \mu)|\tau|}{M_2}
\end{cases}
\]
where
\[
M_2 = 2(1 + \mu)^2 - (1 + \mu)(4 + 5\mu)\tau.
\]
Remark 3.1. For $\mu = 1$, results discussed in Corollaries 3.2 is coincides with bounds obtained in [14, Corollary 1, p.78].

Corollary 3.3. Let $f(z) = z + \sum_{n=2}^\infty a_nz^n$ be in the class $\mathcal{WSL}_\delta^{\pm,\lambda}(\tilde{p})$. Then

$$|a_2| \leq \frac{|\tau|}{\sqrt{M_3}}, \quad |a_3| \leq \frac{2|\tau|(1 - 3\tau)(1 + \lambda + 2\delta)^2}{2M_3(1 + 2\lambda + 6\delta)}$$

and for $\nu \in \mathbb{R}$,

$$|a_3 - \nu a_2^2| \leq \begin{cases} \frac{|\tau|}{1 + 2\lambda + 6\delta} & ; 0 \leq |\nu| - 1 \leq \frac{M_3}{(1 + 2\lambda + 6\delta)|\tau|} \\ \frac{|\tau|}{M_3} & ; |h(\nu)| \geq \frac{M_3}{(1 + 2\lambda + 6\delta)|\tau|}, \end{cases}$$

where

$$M_3 = \tau(1 + 2\lambda + 6\delta) + (1 - 3\tau)(1 + \lambda + 2\delta)^2.$$

Corollary 3.4. Let $f(z) = z + \sum_{n=2}^\infty a_nz^n$ be in the class $\mathcal{FSL}_\Sigma(\delta, \tilde{p})$. Then

$$|a_2| \leq \frac{|\tau|}{\sqrt{M_4}}, \quad |a_3| \leq \frac{8|\tau|(1 - 3\tau)(1 + \delta)^2}{6M_4(1 + 2\delta)}$$

and for $\nu \in \mathbb{R}$,

$$|a_3 - \nu a_2^2| \leq \begin{cases} \frac{|\tau|}{3 + 6\delta} & ; 0 \leq |\nu| - 1 \leq \frac{M_4}{(3 + 6\delta)|\tau|} \\ \frac{|\tau|}{M_4} & ; |\nu| - 1 \geq \frac{M_4}{(3 + 6\delta)|\tau|}, \end{cases}$$

where

$$M_4 = 3\tau(1 + 2\delta) + 4(1 - 3\tau)(1 + \delta)^2.$$

Corollary 3.5. Let $f(z) = z + \sum_{n=2}^\infty a_nz^n$ be in the class $\mathcal{BSL}_\lambda^{\pm,\lambda}(\tilde{p})$. Then

$$|a_2| \leq \frac{|\tau|}{\sqrt{M_5}}, \quad |a_3| \leq \frac{|\tau|(1 - 3\tau)(1 + \lambda)^2}{(1 + 2\lambda)M_5}$$

and for $\nu \in \mathbb{R}$,

$$|a_3 - \nu a_2^2| \leq \begin{cases} \frac{|\tau|}{1 + 2\lambda} & ; 0 \leq |\nu| - 1 \leq \frac{M_5}{(1 + 2\lambda)|\tau|} \\ \frac{|\tau|}{M_5} & ; |\nu| - 1 \geq \frac{M_5}{(1 + 2\lambda)|\tau|}, \end{cases}$$

where

$$M_5 = \tau(1 + 2\lambda) + (1 - 3\tau)(1 + \lambda)^2.$$
Corollary 3.6. Let \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \) be in the class \(\mathcal{HSL}_\Sigma(\tilde{p}) \). Then

\[
|a_2| \leq \frac{|\tau|}{\sqrt{4 - 9\tau}}, \quad |a_3| \leq \frac{|\tau|(4 - 12\tau)}{3(4 - 9\tau)}
\]

and for \(\nu \in \mathbb{R} \),

\[
|a_3 - \nu a_2^2| \leq \begin{cases}
\frac{|\tau|}{3} ; 0 \leq |\nu - 1| \leq \frac{4 - 9\tau}{3 |\tau|} \\
\frac{|1 - \nu|\tau^2}{4 - 9\tau} ; |\nu - 1| \geq \frac{4 - 9\tau}{3 |\tau|}.
\end{cases}
\]

4. Conclusions

In this investigation, we obtain upper bounds for the coefficients \(|a_2| \), \(|a_3| \) and Fekete-Szegő inequality \(|a_3 - \nu a_2^2| \) for functions in the class \(\mathcal{BSL}_\Sigma^{\mu, \delta, \lambda}(\tilde{p}) \). Also, certain special cases are also discussed.

Acknowledgments

The authors are grateful to the referees for their valuable suggestions.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. P. L. Duren, *Univalent functions*, Grundlehren der Mathematischen Wissenschaften Series, 259, Springer Verlag, New York, 1983.
2. J. Sokół, *On starlike functions connected with Fibonacci numbers*, Folia Scient. Univ. Tech. Resoviensis, 175 (1999), 111–116.
3. J. Dziok, R. K. Raina, J. Sokół, *Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers*, Comp. Math. Appl., 61 (2011), 2605–2613.
4. J. Dziok, R. K. Raina, J. Sokół, *On \(\alpha \)-convex functions related to a shell-like curve connected with Fibonacci numbers*, Appl. Math. Comput., 218 (2011), 996–1002.
5. R. K. Raina, J. Sokół, *Fekete-Szegő problem for some starlike functions related to shell-like curves*, Math. Slovaca, 66 (2016), 135–140.
6. R. M. Ali, S. K. Lee, V. Ravichandran, et al. *Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions*, Appl. Math. Lett., 25 (2012), 344–351.
7. M. Çağlar, H. Orhan, N. Yaşmur, *Coefficient bounds for new subclasses of bi-univalent functions*, Filomat, 27 (2013), 1165–1171.
8. J. M. Jahangiri, S. G. Hamidi, S. Abd. Halim, *Coefficients of bi-univalent functions with positive real part derivatives*, Bull. Malays. Math. Sci. Soc., 37 (2014), 633–640.

9. H. Orhan, N. Magesh, V. K. Balaji, *Fekete-Szegö problem for certain classes of Ma-Minda bi-univalent functions*, Afr. Mat., 27 (2016), 889–897.

10. C. Pommerenke, *Univalent functions*, Vandenhoeck Ruprecht, Göttingen, 1975.

11. H. M. Srivastava, S. Bulut, M. Çağlar, et al. *Coefficient estimates for a general subclass of analytic and bi-univalent functions*, Filomat, 27 (2013), 831–842.

12. H. M. Srivastava, A. K. Mishra, P. Gochhayat, *Certain subclasses of analytic and bi-univalent functions*, Appl. Math. Lett., 23 (2010), 1188–1192.

13. F. Yousef, S. Alroud, M. Illafe, *New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems*, 2018. Available from: https://arxiv.org/abs/1808.06514.

14. H. Ö. Günsel, G. Murugusundaramoorthy, J. Sokół, *Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers*, Acta Univ. Sapientiae, Math., 10 (2018), 70–84.

15. N. Magesh, V. K. Balaji, C. Abirami, *Certain classes of bi-univalent functions related to shell-like curves connected with Fibonacci numbers*, 2018. Available from: https://arxiv.org/abs/1810.06216.

16. G. Singh, G. Singh, G. Singh, *A subclass of bi-univalent functions defined by generalized Sălăgean operator related to shell-like curves connected with Fibonacci numbers*, Int. J. Math. Math. Sci., 2019 (2019), 1–7.