ON HERMITE HADAMARD INEQUALITIES FOR PRODUCT OF TWO log-ϕ-CONVEX FUNCTIONS

MEHMET ZEKI SARIKAYA

Abstract. In this paper, we introduce the notion of log-ϕ-convex functions and present some properties and representation of such functions. We obtain some results of the Hermite Hadamard inequalities for product log-ϕ-convex functions.

1. Introduction

The inequalities discovered by C. Hermite and J. Hadamard for convex functions are very important in the literature (see, e.g., [4], [8, p.137]). These inequalities state that if \(f : I \to \mathbb{R} \) is a convex function on the interval \(I \) of real numbers and \(a, b \in I \) with \(a < b \), then

\[
(1.1) \quad f \left(\frac{a + b}{2} \right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \leq \frac{f(a) + f(b)}{2}.
\]

The inequality (1.1) has evoked the interest of many mathematicians. Especially in the last three decades numerous generalizations, variants and extensions of this inequality have been obtained, to mention a few, see ([8]-[10]) and the references cited therein.

The function \(f : [a, b] \subset \mathbb{R} \to \mathbb{R} \), is said to be convex if the following inequality holds

\[
f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)
\]

for all \(x, y \in [a, b] \) and \(\lambda \in [0, 1] \). We say that \(f \) is concave if \((-f)\) is convex.

A function \(f : I \to [0, \infty) \) is said to be log-convex or multiplicatively convex if \(\log f \) is convex, or, equivalently, if for all \(x, y \in I \) and \(t \in [0, 1] \) one has the inequality:

\[
(1.2) \quad f(tx + (1-t)y) \leq [f(x)]^t [f(y)]^{1-t}.
\]

We note that if \(f \) and \(g \) are convex and \(g \) is increasing, then \(g \circ f \) is convex; moreover, since \(f = \exp(\log f) \), it follows that a log-convex function is convex, but the converse may not necessarily be true [7]. This follows directly from (1.2) because, by the arithmetic-geometric mean inequality, we have

\[
[f(x)]^t [f(y)]^{1-t} \leq tf(x) + (1-t)f(y)
\]

for all \(x, y \in I \) and \(t \in [0, 1] \).

For some results related to this classical results, (see [4], [5], [9], [10]) and the references therein. Dragomir and Mond [6] proved the following Hermite-Hadamard type inequalities for the log-convex functions:

\[2000 \text{ Mathematics Subject Classification.} \quad 26D10, 26A51,46C15.\]

\[\text{Key words and phrases.} \quad \text{Hermite-Hadamard’s inequalities, } \varphi\text{-convex functions, log-}\varphi\text{-convex functions.}\]
\begin{align}
(1.3) \quad f \left(\frac{a + b}{2} \right) & \leq \exp \left[\frac{1}{b - a} \int_a^b \ln [f(x)] \, dx \right] \\
& \leq \frac{1}{b - a} \int_a^b G(f(x), f(a + b - x)) \, dx \\
& \leq \frac{1}{b - a} \int_a^b f(x) \, dx \\
& \leq L(f(a), f(b)) \\
& \leq \frac{f(a) + f(b)}{2},
\end{align}

where $G(p, q) = \sqrt{pq}$ is the geometric mean and $L(p, q) = \frac{p - q}{\ln p - \ln q}$ ($p \neq q$) is the logarithmic mean of the positive real numbers p, q (for $p = q$, we put $L(p, q) = p$).

Let us consider a function $\varphi : [a, b] \to [a, b]$ where $[a, b] \subset \mathbb{R}$. Youness have defined the φ-convex functions in [11]:

Definition 1. A function $f : [a, b] \to \mathbb{R}$ is said to be φ-convex on $[a, b]$ if for every two points $x, y \in [a, b]$ and $t \in [0, 1]$ the following inequality holds:

$$f(t\varphi(x) + (1 - t)\varphi(y)) \leq tf(\varphi(x)) + (1 - t)f(\varphi(y)).$$

In [2], Cristescu proved the following results for the φ-convex functions

Lemma 1. For $f : [a, b] \to \mathbb{R}$, the following statements are equivalent:

(i) f is φ-convex functions on $[a, b]$,

(ii) for every $x, y \in [a, b]$, the mapping $g : [0, 1] \to \mathbb{R}$, $g(t) = f(t\varphi(x) + (1 - t)\varphi(y))$ is classically convex on $[0, 1]$.

Obviously, if function φ is the identity, then the classical convexity is obtained from the previous definition. Many properties of the φ-convex functions can be found, for instance, in [11], [2], [11].

In this paper, we introduce the notion of log-φ-convex functions and we obtain a representation of log-φ-convex. Finally, a version of Hermite–Hadamard-type inequalities for log-φ-convex functions is presented.

2. Main Results

Let us consider a $\varphi : [a, b] \to [a, b]$ where $[a, b] \subset \mathbb{R}$ and I stands for a convex subset of \mathbb{R}. We say that a function $f : I \to \mathbb{R}^+$ is a log-φ-convex if

\begin{align}
(2.1) \quad f(t\varphi(x) + (1 - t)\varphi(y)) & \leq [f(\varphi(x))]^t [f(\varphi(y))]^{1 - t}
\end{align}

for all $x, y \in I$ and $t \in [0, 1]$. We say that f is a log-φ-midconvex if 2.1 is assumed only for $t = \frac{1}{2}$, that is

$$f \left(\frac{\varphi(x) + \varphi(y)}{2} \right) \leq \sqrt{f(\varphi(x))f(\varphi(y))}, \text{ for } x, y \in I$$

Obviously, if function φ is the identity, then the classical logarithmic convexity is obtained from 2.1.
From the above definitions, we have

\[f(t \varphi(x) + (1 - t) \varphi(y)) \leq \left[f(\varphi(x)) \right]^t \left[f(\varphi(y)) \right]^{1-t} \leq tf(\varphi(x)) + (1 - t)f(\varphi(y)) \leq \max \{ f(\varphi(x)), f(\varphi(y)) \}. \]

Lemma 2. For \(f : [a, b] \to \mathbb{R}^+ \), the following statements are equivalent:

(i) \(f \) is log-\(\varphi \)-convex functions on \([a, b]\),

(ii) for every \(x, y \in [a, b] \), the mapping

\[g : [0, 1] \to \mathbb{R}^+, \quad g(t) = f(t \varphi(x) + (1 - t) \varphi(y)) \]

is classically log-convex on \([0, 1]\).

Proof. Let us consider two points \(x, y \in [a, b] \), \(\lambda \in [0, 1] \) and \(t_1, t_2 \in [0, 1] \). Then, we obtain

\[
\begin{align*}
g(\lambda t_1 + (1 - \lambda)t_2) &= f([\lambda t_1 + (1 - \lambda)t_2] \varphi(x) + [1 - \lambda t_1 - (1 - \lambda)t_2] \varphi(y)) \\
&= f(\lambda [t_1 \varphi(x) + (1 - t_1) \varphi(y)] + (1 - \lambda) [t_2 \varphi(x) + (1 - t_2) \varphi(y)]) \\
&\leq \left[f(t_1 \varphi(x) + (1 - t_1) \varphi(y)) \right]^{\lambda} \left[f(t_2 \varphi(x) + (1 - t_2) \varphi(y)) \right]^{1-\lambda} \\
&= \left[g(t_1) \right]^{\lambda} \left[g(t_2) \right]^{1-\lambda}
\end{align*}
\]

which gives that \(g \) is log-convex function.

Conversely, if \(g \) is log-convex function for \(x, y \in [a, b] \), \(\lambda \in [0, 1] \) and \(t_1 = 1, t_2 = 0 \), then we get

\[
\begin{align*}
f(\lambda \varphi(x) + (1 - \lambda) \varphi(y)) &= g(\lambda 1 + (1 - \lambda) 0)) \\
&\leq \left[g(1) \right]^{\lambda} \left[g(0) \right]^{1-\lambda} \\
&= \left[f(\varphi(x)) \right]^{\lambda} \left[f(\varphi(y)) \right]^{1-\lambda}
\end{align*}
\]

which shows that \(f \) is log-\(\varphi \)-convex. This completes to proof. \(\square \)

We give now a new Hermite–Hadamard-type inequalities for log-\(\varphi \)-convex functions:
Theorem 1. If \(f : [a, b] \to \mathbb{R}^+ \) is log-\(\varphi \)-convex for the continuous function \(\varphi : [a, b] \to [a, b] \), then

\[
(2.2) \quad f \left(\frac{\varphi(a) + \varphi(b)}{2} \right) \leq \frac{1}{\varphi(b) - \varphi(a)} \int_{\varphi(a)}^{\varphi(b)} G \left(f(x), f(\varphi(a) + \varphi(b) - x) \right) dx
\]

\[
\leq \frac{1}{\varphi(b) - \varphi(a)} \int f(x)dx
\]

\[
\leq \frac{f(\varphi(b)) - f(\varphi(a))}{\log f(\varphi(b)) - \log f(\varphi(a))} = L \left(f(\varphi(b)), f(\varphi(a)) \right)
\]

\[
\leq \frac{f(\varphi(a)) + f(\varphi(b))}{2}.
\]

Proof. Since \(f \) be log-\(\varphi \)-convex functions, we have that for all \(t \in [0, 1] \)

\[
f \left(\frac{\varphi(a) + \varphi(b)}{2} \right) = f \left(\frac{t\varphi(a) + (1-t)\varphi(b)}{2} \right) \leq \frac{1}{\varphi(b) - \varphi(a)} \int_{\varphi(a)}^{\varphi(b)} \sqrt{f(t\varphi(a) + (1-t)\varphi(b))} \sqrt{f((1-t)\varphi(a) + t\varphi(b))} dt
\]

Integrating the above inequality with respect to \(t \) over \([0, 1]\) and we also use the substitution \(x = (1-t)\varphi(a) + t\varphi(b) \), we obtain

\[
f \left(\frac{\varphi(a) + \varphi(b)}{2} \right)
\]

\[
\leq \int_{0}^{1} \sqrt{f(t\varphi(a) + (1-t)\varphi(b))} \sqrt{f((1-t)\varphi(a) + t\varphi(b))} dt
\]

\[
= \frac{1}{\varphi(b) - \varphi(a)} \int_{\varphi(a)}^{\varphi(b)} \sqrt{f(x)f(\varphi(a) + \varphi(b) - x)} dx
\]

\[
\leq \frac{1}{\varphi(b) - \varphi(a)} \int_{\varphi(a)}^{\varphi(b)} A \left(f(x), f(\varphi(a) + \varphi(b) - x) \right) dx
\]

and so for

\[
\int_{\varphi(a)}^{\varphi(b)} f(x)dx = \int_{\varphi(a)}^{\varphi(b)} f(\varphi(a) + \varphi(b) - x)dx
\]
From the log-φ-convexity of f, we have
\begin{equation}
\frac{1}{\varphi(b) - \varphi(a)} \int \varphi(b) f(x) dx \leq \frac{1}{\varphi(b) - \varphi(a)} \int \varphi(a) f(x) dx.
\end{equation}

Thus, from (2.3) and (2.4) we obtain required result (2.2). This completes to proof. \hfill \Box

\textbf{Theorem 2.} If $f, g : [a, b] \to \mathbb{R}^+$ is log-φ-convex for the continuous function $\varphi : [a, b] \to [a, b]$, then
\begin{equation}
\frac{1}{\varphi(b) - \varphi(a)} \int \varphi(b) f(x) g(x) dx \leq L (f(\varphi(b))g(\varphi(b)), f(\varphi(a))g(\varphi(a)))
\end{equation}

\begin{equation}
\leq \frac{1}{4} \left((|f(\varphi(b))| + |f(\varphi(a))|) L([f(\varphi(b))], |f(\varphi(a))|) \\
+ \frac{1}{4} \left((|g(\varphi(b))| + |g(\varphi(a))|) L([g(\varphi(b))], |g(\varphi(a))|) \right) \right).
\end{equation}
\textit{Proof.} Since \(f \) and \(g \) be log-\(\varphi \)-convex functions, we have that for all \(t \in [0, 1] \)
\[
f(t\varphi(a) + (1-t)\varphi(b)) \leq [f(\varphi(a))]^t [f(\varphi(b))]^{1-t}
\]
and
\[
g(t\varphi(a) + (1-t)\varphi(b)) \leq [g(\varphi(a))]^t [g(\varphi(b))]^{1-t}.
\]
Thus, it follows that
\[
\frac{1}{\varphi(b) - \varphi(a)} \int_{\varphi(a)}^{\varphi(b)} f(x)g(x) \, dx
\]
\[
\leq \int_0^1 \left[f(\varphi(a)) \right]^t \left[f(\varphi(b)) \right]^{1-t} \left[g(\varphi(a)) \right]^t \left[g(\varphi(b)) \right]^{1-t} \, dt
\]
\[
= f(\varphi(b))g(\varphi(b)) \int_0^1 \left[\frac{f(\varphi(a))g(\varphi(a))}{f(\varphi(b))g(\varphi(b))} \right]^t \, dt
\]
\[
= \frac{f(\varphi(b))g(\varphi(b))}{\log f(\varphi(b))g(\varphi(b)) - \log f(\varphi(a))g(\varphi(a))} \left[\frac{f(\varphi(a))g(\varphi(a))}{f(\varphi(b))g(\varphi(b))} - 1 \right]
\]
\[
= \frac{f(\varphi(b))g(\varphi(b)) - f(\varphi(a))g(\varphi(a))}{\log f(\varphi(b))g(\varphi(b)) - \log f(\varphi(a))g(\varphi(a))}
\]
\[
= L(f(\varphi(b))g(\varphi(b)), f(\varphi(a))g(\varphi(a)))
\]
\[
\leq \frac{1}{2} \int_0^1 \left(\left[f(t\varphi(a) + (1-t)\varphi(b)) \right]^2 + \left[g(t\varphi(a) + (1-t)\varphi(b)) \right]^2 \right) \, dt
\]
\[
\leq \frac{1}{2} \int_0^1 \left(\left[f(\varphi(a)) \right]^{2t} \left[f(\varphi(b)) \right]^{2-2t} + \left[g(\varphi(a)) \right]^{2t} \left[g(\varphi(b)) \right]^{2-2t} \right) \, dt
\]
\[
= \frac{1}{4} \left\{ \left[f(\varphi(b)) \right]^2 \int_0^1 \left[f(\varphi(a)) \right]^u \, du + \left[g(\varphi(b)) \right]^2 \int_0^1 \left[g(\varphi(a)) \right]^u \, du \right\}
\]
\[
= \frac{1}{4} \left\{ \left[f(\varphi(b)) \right]^2 - \left[f(\varphi(a)) \right]^2 \log f(\varphi(b)) - \log f(\varphi(a)) \right\} + \left[g(\varphi(b)) \right]^2 - \left[g(\varphi(a)) \right]^2 \log g(\varphi(b)) - \log g(\varphi(a)) \right\}
\]
\[
= \frac{1}{4} \left\{ \left([f(\varphi(b))] + [f(\varphi(a))] \right) L([f(\varphi(b))] , [f(\varphi(a))]) \right\}
\]
\[
+ \frac{1}{4} \left\{ \left([g(\varphi(b))] + [g(\varphi(a))] \right) L([g(\varphi(b))] , [g(\varphi(a))]) \right\}
\]
which is the required (2.5). This proves the theorem. \(\square \)
ON HERMITE HADAMARD INEQUALITIES 7

References

[1] G. Cristescu and L. Lupşa, Non-connected convexities and applications, Kluwer Academic Publishers, Dordrecht / Boston / London, 2002.
[2] G. Cristescu, Hadamard type inequalities for ϕ - convex functions, Annals of the University of Oradea, Fascicle of Management and Technological Engineering, CD-Rom Edition, III(XIII), 2004.
[3] M. K. Bakula and J. Pečarić, Note on some Hadamard-type inequalities, Journal of Inequalities in Pure and Applied Mathematics, vol. 5, no. 3, article 74, 2004.
[4] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
[5] S. S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. lett., 11(5) (1998), 91-95.
[6] S. S. Dragomir and B. Mond, Integral inequalities of Hadamard type for Hadamard type for log – convex functions, Demonstratio 31(1998),354-364.
[7] C.E.M. Pearce, J. Pecaric, V. Šimić, Stolarsky means and Hadamard’s inequality, J. Math. Anal. Appl. 220 (1998) 90–109.
[8] J.E. Pečarić, F. Proschan and Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
[9] E. Set, M. E. Özdemir, and S. S. Dragomir, On the Hermite-Hadamard inequality and other integral inequalities involving two functions, Journal of Inequalities and Applications, Article ID 148102, 9 pages, 2010.
[10] E. Set, M. E. Özdemir, and S. S. Dragomir, On Hadamard-Type inequalities involving several kinds of convexity, Journal of Inequalities and Applications, Article ID 286845, 12 pages, 2010.
[11] E. A. Youness, E - Convex Sets, E - Convex Functions and E - Convex Programming, Journal of Optimization Theory and Applications, 102, 2(1999), 439-450.

Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce-TURKEY
E-mail address: sarikayamz@gmail.com