Fluid–Structure Interaction-Based Biomechanical Perception Model for Tactile Sensing

Zheng Wang*
Institute of Automation, Chinese Academy of Sciences, Beijing, China

Abstract

The reproduced tactile sensation of haptic interfaces usually selectively reproduces a certain object attribute, such as the object’s material reflected by vibration and its surface shape by a pneumatic nozzle array. Tactile biomechanics investigates the relation between responses to an external load stimulus and tactile perception and guides the design of haptic interface devices via a tactile mechanism. Focusing on the pneumatic haptic interface, we established a fluid–structure interaction-based biomechanical model of responses to static and dynamic loads and conducted numerical simulation and experiments. This model provides a theoretical basis for designing haptic interfaces and reproducing tactile textures.

Introduction

By electrophysiological experiments Johnson has revealed that the mechanical receptor neurons mainly include Merkel, Meissner, Ruffini and Pacinian, embedded into different depth of tissue and sensitive to different stimulation. According to reception area size these neurons mainly include class-I and class-II, at the same time, according to adaptability to stimulation these neurons mainly include SA neurons sensitive to static load and RA neurons sensitive to dynamic load. In the shallow-layer, Merkel and Ruffini belong to SA and RA, respectively. In the deep-layer, Meissner and Pacinian belong to SA and RA, respectively [1].

Tactile biomechanics focuses on the changes in the distribution of mechanical parameters when fingers are stimulated by a load. Thus, a finger model should be established to solve the problem. Two major models of finger tactile biomechanics exist: continuous models and structural models. Continuous models are based on continuum mechanics theory, whereas structural models are finite element models. Structural models are classified into linear and nonlinear models according to their mechanical characteristics. Different loads stimulate corresponding tactile neurons to transfer different nerve signals and form various tactile sensations. Loads can be divided into static and dynamic. Static loads include concentrated force, line, and surface uniform loads, and dynamic loads primarily consist of sinusoidal loads.

This paper consists of seven sections. Section of Related works presents an overview of research on tactile biomechanics models. Section of Our method describes the used method. Sections of Simulation settings and Experimentation settings describe the simulation and testing, respectively, of the method and models. Section of Comparison and analysis of results analyzes the data and results, and section of Conclusion provides a summary.

Related Works

Based on the theory of continuum mechanics, Phillips established the elastic half-space model, which simplifies the fingers as a continuous, even, isotropic, and incompressible medium under small deformation, obeys Hooke’s law, and is infinite in space [2]. Srinivasan modified the model developed by Phillips [3], simplifying fingers as thin membranes attached to incompressible fluid; the resulting model is called the “water bed” model [4]. However, when stressed by a linear load, the surface deformation profile of this model is inconsistent with the actual situation. Later studies have acquired the finger contour with central composite design and used it to establish a set of finite element models, which cover the epidermis, dermis, phalanx, skin layers, phalanx fat layers, and fiber matrix. These models predict SA-I neuron responses to contact with complicated objects and thus confirm that strain energy density distribution and tactile physiological signals correspond to each other. Four different structural models formed by elastic media are set up according to finger geometry by studying the function of the mechanical response of fingers during tactile information coding. Results indicate that geometry significantly affects load distribution, finger stress field, and strain field under a given load [5]. Serina established a linear axisymmetric film finger model, which considers the non-uniformity and geometry of a given material, and proposes that the finger consists of oval film skin that expands because of initial internal pressure and incompressible subcutaneous tissues. Results indicate that displacement is significant under small load and that stiffness nonlinearly grows with increasing displacement. However, this model is limited only to a specific load [6]. The finite element linear model established by Maeno includes epidermal ridges and middle ridges, obtaining skin layer properties through the relation between contact width, contact force, and displacement by experiments [7][8]. Similarly, Gerling
considered the influence of fine structure on internal finger response, pointing out that the simplified model demonstrates consistent response under similar load, and thus cannot distinguish between similar loads. Therefore, two finite element models were set up: one exhibits a fine structure, that is, bump ridges in the shape of sine waves nested on each other at the junction of the epidermis and dermis, and another that does not exhibit a fine structure. The two models perfectly explain the fine structure’s influence on the distribution of strain energy density around neurons, indicating that fine structure increases tactile sensitivity [9].

Nonlinear skin layer tissues significantly affect the transfer of tactile information. Pawluk obtained the dynamic response of fingers through experiments and established a nonlinear continuous model based on experimental data. The experiment reveals that transient elastic response increases with time in the form of an exponential function, whereas the relaxation function is a third-order damped exponential [11] [12]. Wu started from a 2D model and constructed a composite finger model with skin layer, subcutaneous tissue, nails, and phalanges. The skin layer exhibits superelasticity and viscoelasticity, whereas the subcutaneous tissues consist of two-phase materials: a super-elastic structure and a nonviscous flow of liquid. This model demonstrates linearity, but it considers the epidermis and dermis as one layer (i.e., does not distinguish between the two) [13][14][15][16]. This model was expanded to 3D, with internal skin and subcutaneous tissues integrated into a nonlinear viscoelastic model and external skin into a linear elastic model to study the mechanical response of fingers under static and dynamic loads [17] [18].

Phillips predicted finger stress and strain through probes, showing that finger response also linearly increases with increasing linear load and that the maximum compressive strain is connected with SA neuron response [2]. Wu used wedge as linear load to stress fingers and found surface deformation to be consistent with experimental data. Wu also presented the tactile distinguishing threshold value was between 2 and 3 mm [15]. Gerling studied fingers with two special pressure heads, measured strain concentrated right below the border, and found local stress concentration around neurons, indicating that fine structure increases tactile sensitivity [9]. However, results obtained under static load only manifest final stable states but cannot explain variation during the whole process. Tactile sensation is the feeling experienced by fingers that actively contact the surface of objects. Tactile sensation is a dynamic perception, that is, the load is dynamic during actual perceptual processes.

By controlling the motion displacement and speed of a wedge, Srinivasan acquired the deformation of finger surface under different dynamic load displacements [19]. Maeno obtained transient finger response through the dynamic contact of rigid plate and vertebrate/invertebrate fingers and studied the influence of epidermal ridges on the distribution of strain energy density around neurons [7][8]. Results show that epidermal ridges increase tactile sensitivity. Wu investigated finger responses to vibration loads at different amplitude and frequency angles [13][14][20]. To replace data gloves, Christopher et al. designed eight wearable sensors and studied kinetic models of different finger postures, showing that the program satisfies the interaction of 26 degrees of freedom [21].

Our Method

Based on finger geometry and material properties, we established 3D linear and nonlinear finger models, adopted fluid–structure interaction, and determined different interaction controlling strategies according to different loading ways on the basis of the reaction between gas and fingers.
Finger model

A finger can be divided into five layers, namely, the nail, epidermis, dermis, subcutaneous tissue, and phalanges, all of which have varying mechanical properties. The physical structure and mechanical properties of tissue layers affect the transfer of tactile information. Tactile neurons are embedded in the soft tissues of the fingers and are vital to tactile sensation. Figure 1 shows the anatomy of the soft tissues of a finger. There are four known types of mechanoreceptors whose only function is to perceive indentions and vibrations of the skin: Merkel’s disks, Meissner’s corpuscles, Ruffini’s corpuscles, and Pacinian corpuscles. The most sensitive mechanoreceptors, Merkel’s disks and Meissner’s corpuscles, are found in the very top layers of the dermis and epidermis. Located deeper in the dermis and along joints, tendons, and muscles are Ruffini’s corpuscles and Pacinian corpuscles. When tactile sensation is produced, the epidermis becomes superelastic, whereas the dermis and subcutaneous tissue are linearly viscoelastic. The strain \(\sigma \) of the dermis and subcutaneous tissue equals the sum of the elastic response of stress \(\sigma_0 \) and the viscous stress response \(\sigma_v \):

\[
\sigma(t) = \sigma_0(t) + \sigma_v(t) = \sigma_0(t) + \frac{t}{\tau} \frac{dG(t)}{dt} \sigma_0(t - \tau)dt,
\]

where \(\tau \) is the time constant and \(G(t) \) is the stress relaxation function, which is expressed in Prony exponential form as follows:

\[
G(t) = 1 - \sum_{i=1}^{N_n} g_i [1 - e^{-t/\tau_i}],
\]

where \(g_i \) and \(\tau_i (i = 1, 2 \ldots, N_n) \) are the stress relaxation parameters and \(N_n \) is the index number of terms of the stress relaxation function.

The elastic strain of the epidermis, dermis, and subcutaneous tissue can be taken as a nonlinear elastic deformation with mechanical superelastic behavior. Subcutaneous tissues consist of solid–liquid tissues and can be expressed by super elastic structure and non-viscous liquid. Under small loading, the subcutaneous tissue slightly deforms. In determining soft tissue deformation and the stimulus intensity of tactile neurons in skin, the liquid component can be omitted. Therefore, the superelastic deformation of the soft tissue can be simulated by volume density function \(Q \). Instantaneous elastic stress response can be obtained by deriving \(Q \):

\[
\sigma_{\text{rel},ij} = 2 \frac{Y_{ij}}{C_{ij}} \frac{\delta Q}{\delta Y_{ij}} Y_{ij}^T, \quad i,j,r,s = 1,2,3,
\]

where \(Y \) is the deformation gradient tensor and \(C_{ij} \) is the Cauchy–Green deformation tensor.

Soft tissues are expressed by Ogden’s nonlinear elastic deformation energy density:
where \(W \) is the strain energy density, \(l_p \sim J \{ l \} \), \(l_p \) is the Cauchy–Green main stretching tensor, \(J \) is the elastic deformation gradient determinant, and \(N, \mu_p, \sigma_p, \) and \(d_p \) are the material constants.

Based on the constitutive equation, we built 3D linear and nonlinear FEMs for the finger. In the linear model, the epidermis, dermis, and subcutaneous tissue are linearly elastic, and their corresponding proportional relations with the modulus of elasticity are 8:5:2. The material property parameters of these layers are listed in Table 1. In the nonlinear model, the epidermis is superelastic, whereas the dermis and subcutaneous tissue are viscoelastic. The material property parameters of these layers are shown in Table 2 [12] [22] [23].

We employed ANSYS to establish a finger finite element model. The first (epidermis) and second layers (dermis) are 1 mm thick each, and the remaining soft tissues are subcutaneous tissues. Appropriate unit types and real constants are selected, and the previous linear and nonlinear model parameters are distributed to the geometric models, as shown by Figure 2(a). The geometric models undergo mesh division, deriving the finite element model in Figure 2(b). The upper surface of the model denotes skin tissues attached to the phalanges. All nodal degrees of freedom on this surface are displacement-constrained and then solved. MpCCI is adopted to calculate the fluid–structure interaction, and the interaction plane is set to be the surface directly constraining the fluid; this surface is the external surface of the finger epidermis. The interaction plane significantly influences the exchange of data during interaction. This plane enables the pressure load from the fluid model to be accepted and the structure node displacement to be transferred to the fluid. Thus, the fluid model updates mesh and achieves coupling.

Flow field
The single gas nozzle haptic interface we designed is shown in Figure 3. Hole A is the air intake, and hole B is the air vent. Hole B is processed through the hole, and one of its ends is sealed by a transparent resin plate to ensure that gas is ejected only from the other end. When the haptic interface works, a certain distance away from the fingers (i.e., the distance between the interface and contact surface or the contact height) is maintained. The fluid area

\[
W = \sum_{i=1}^{N} \frac{\mu_p}{\lambda_i} (\lambda_i^2 + \lambda_i^2 + \lambda_i^2 - 3) + \sum_{i=1}^{N} \frac{1}{d_i} (J - 1)^{\lambda_i}, \quad (4)
\]
is simplified and shown in Figure 4. The medium of the fluid is gas. As density and pressure meet the ideal gas state, the pressure loss of gravity and gas along the pipe can be omitted.

Mesh division to fluid is shown in Figure 5. The whole area is divided into four sub-areas, namely, cylinder A, cylinder B, cuboid C, and the remaining part D. Cylinder B and cuboid C, which have larger barometric gradients, have denser grids, whereas the meshes of the middle and edge areas of division D are distant. The total unit of the fluid model is 116,778. Cylinder A adopts the hexahedral mesh, whereas the others are tetrahedral meshes; these meshes can adjust well to the actual flow situation. The interaction plane shown in Figure 4 is set to have a couple face and be of wall type. The couple plane is the direct contact between the fluid and fingers, being the stress area of the fluid-structure interaction.

Gaseous medium flows in a subsonic compressible manner inside the nozzle; thus, an implicit solver based on pressure is adopted. When gas is ejected from the nozzle and flows along the finger, the flow line significantly bends, consistent with the renormalization group (RNG) turbulence model. Figure 4 shows that the entrance boundary is set to be the pressure inlet, and the total inlet pressure is denoted as \(P_{\text{total}} \) and static pressure as \(P_{\text{static}} \):

\[
P_{\text{total}} = P_{\text{static}} (1 + \frac{k - 1}{2} M^2)^{1/(k - 1)},
\]

where \(M \) is the Mach number and \(k \) is the specific heat ratio. Inlet turbulence is defined by the intensity of turbulence and the hydraulic diameter. The outlet boundary condition is set as the pressure outlet, the outlet pressure is assigned as the external atmospheric pressure, and outlet turbulence is defined as the entrance turbulence. Nozzle flow can be considered the isentropic flow of an ideal compressible gas flow. This flow obeys the following mass, momentum, and energy conservation laws [Eq. (8)] and the equation of state:

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0,
\]

\[
\frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) = -\nabla p + \nabla \cdot \mathbf{T} + \mathbf{f}.
\]

\[
[p(e + \frac{u_i u_i}{2})]^{\partial} + \frac{\partial}{\partial x_j} [u_j [p(e + \frac{u_i u_i}{2}) + p)] = \frac{\partial}{\partial x_j} (k \frac{\partial T}{x_j} + u_j \tau_j),
\]

\[
p = \rho RT.
\]

In the RNG \(k-\epsilon \) model, the transfer equation of \(k \) and \(\epsilon \) is

\[
\frac{\partial (\rho k)}{\partial t} + \nabla \cdot (\rho \mathbf{u} k) = \frac{\partial}{\partial x_j} \left(\frac{\epsilon}{\sigma_k} \frac{\partial k}{\partial x_j} \right) + G_k + \rho e,
\]

\[
\frac{\partial (\rho \epsilon)}{\partial t} + \nabla \cdot (\rho \mathbf{u} \epsilon) = \frac{\partial}{\partial x_j} \left(\frac{\epsilon}{\sigma_\epsilon} \frac{\partial \epsilon}{\partial x_j} \right) + C_{\epsilon \gamma} \frac{k}{\epsilon} G_k - C_{\epsilon \gamma} \frac{\rho e^2}{k}.
\]

where \(\rho \) is the density; \(p \) is the pressure; \(\epsilon \) is the coefficient of heat transfer; \(k \) is the internal energy per unit mass; \(\mu_{\text{eff}} = \mu + \mu_t \), and

Figure 6. Contour of static and dynamic pressure distribution in YZ plane. (a) Static. (b) Dynamic. doi:10.1371/journal.pone.0079472.g006

Figure 7. Contour of static and dynamic pressure distribution of Y axis. doi:10.1371/journal.pone.0079472.g007
Simulation Settings

The established finger and fluid models are numerically simulated on the fluid–structure interaction and at a nozzle inlet pressure of 1 atm, a diameter of 1 mm, and a contact height of 1 mm (marked as H1D1P1). The pressure distribution of the flow field, finger response, and tactile sensation parameters are analyzed.

Flow simulation

In the inlet of the nozzle, gas is ejected to the couple plane at high speed and then diffuses outward. Considering that the model is symmetrical, the symmetrical YZ plane (x = 0) is analyzed. The static pressure distribution is shown in Figure 6(a). Compared with
the flow field area in Figure 5, the area of the couple plane directly stressed by nozzle air flow is significantly deformed. This structural deformation affects the flow field distribution. Gas then diffuses with the couple plane, with the velocity direction changing and the value decreasing and static pressure similarly decreasing. Dynamic pressure distribution is shown in Figure 6(b), which indicates that air flow has high velocity and dynamic pressure when ejected by the nozzle. As air flow slows, it changes direction and exhibits lower dynamic pressure after stressing the couple plane.

The intersection of the symmetry plane YZ (\(x = 0\)) and couple plane (\(z = 0\)) (i.e., the pressure distribution in the Y axis, and the static and dynamic pressure distribution) is shown in Figure 7, indicating that the pressure distribution is symmetrical. At the point of \(x = 0\) mm of the positive Y axis, velocity is 0 because of the maximum static pressure in the stress area of the middle nozzle; thus, dynamic pressure is 0. Within [0 mm, 1 mm], static pressure is high but tends to decrease. Within [1 mm, 6 mm], the static pressure is negative and thus significantly increases air velocity. According to the air state equation, low static pressure leads to a maximum. Increasing the flow field reduces dynamic pressure significantly rises with flow field velocity increasing from 0 to its maximum. Increasing the flow field reduces dynamic pressure within [1 mm, 10 mm] until it matches the external pressure.

Finger response

Pressure load causes the fingers to deform. Figure 8 shows the overall deformation, and Figure 9 shows the finger deformation profile corresponding to the Y axis of the fluid couple plane. The finger most significantly deforms within [−1 mm, 1 mm]. However, the deformation is negative in [−5 mm, −2 mm] and [2 mm, 5 mm], demonstrating that deformation in these areas is inversely proportional to suction-like stress of the nozzle airflow. In this range, the pressure is negative.

The signal generated by a single SA-I tactile neuron is related to the internal strain energy density of the finger. The algebraic addition of work of \(\varepsilon_1\), \(\varepsilon_2\) and \(\varepsilon_3\), which are the strains in the three primary stresses \(\sigma_1\), \(\sigma_2\), and \(\sigma_3\) in their own directions, is marked as the strain energy density:

\[
u = \frac{1}{2} (\sigma_1 \varepsilon_1 + \sigma_2 \varepsilon_2 + \sigma_3 \varepsilon_3).
\]

(12)

Based on a generalized Hooke’s law, \(\sigma_1\), \(\sigma_2\), and \(\sigma_3\) replace the primary strains \(\varepsilon_1\), \(\varepsilon_2\), and \(\varepsilon_3\) in Eq. (12):

\[
u = \frac{1}{2E} [\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - 2\mu (\sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_3 \sigma_1)],
\]

(13)

where \(E\) is the elastic modulus and \(\mu\) is Poisson’s ratio.

SA-I tactile neurons are mainly distributed 0.7 mm away from the finger skin surface. Strain energy density at 0.7 mm is analyzed to contribute to the amount of tactile signals, further revealing a tactile difference. The static pressure distribution in Figure 7 and the deformation in Figure 9 show that finger response is concentrated within [−5 mm, 5 mm]. Figure 10 shows the strain energy density distribution of \(Z\) at the 0.7 mm positive offset of the Y axis (the depth of SA-I tactile neurons) under H1D1P1. The two-point distinguishing threshold (TPDT) of the finger is 2 mm. Assuming that, within TPDT, neuron signals converge to one point and transfer to the brain, the amount and intensity of signals affect tactile sensation. Therefore, TPDT internal strain energy density reflects the amount of nerve signals generated by neurons and the extent of brain stimulation.

The shear strain rate can distinguish the surface curvature by the ratio of the sum of the TPDT shear strain energy density to the total strain energy density. This curvature is crucial to the simulation of point load reproduction. When primary stresses \(\sigma_1\), \(\sigma_2\), and \(\sigma_3\) are different, the three-direction primary strains \(\varepsilon_1\), \(\varepsilon_2\), and \(\varepsilon_3\) are also different according to the generalized Hooke’s law.

Unit body changes in volume and shape, and the total strain energy density equals the sum of the volume strain energy density \(\nu_v\) and shape strain energy density \(\nu_s\).

\[
u = \nu_v + \nu_s.
\]

(14)

Volume strain energy density equals the work sum of the mean stress in three coordinate axes \(\sigma_m = \frac{1}{3} (\sigma_1 + \sigma_2 + \sigma_3)\) and the strain \(\varepsilon_m\) in different stress directions:

\[
u_v = \frac{3}{2} \sigma_m \varepsilon_m = \frac{3}{2} \sigma_m \frac{1}{E} [\sigma_m - \mu(\sigma_m + \sigma_m)] = \frac{1 - 2\mu}{6E} (\sigma_1 + \sigma_2 + \sigma_3)^2.
\]

(15)

Shape strain energy density is described as

\[
u_s = u - \nu_v = \frac{1 + \mu}{6E} [(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2].
\]

(16)

Figure 10 shows that tactile neurons, with cd as the boundary, easily identify signals above cd, but vaguely identify signals below cd. Thus, strain energy density can be divided into two parts: the upper part is an effective identification signal, whereas the lower part is an ineffective one. Effective identification in internal [\(a, b\)] is defined as the effective tactile width. We took half of the maximum signal as the threshold of the effective identification signal. At the maximum effective tactile width, the effective stress area of the point load is large.

Experimentation Settings

Given the limitations in measuring the means and accuracy of internal mechanic finger responses, we verified the feasibility of the
numerical simulation and the accuracy of results in terms of the stress placed on the finger from the nozzle and finger deformation.

Force measurement

We designed an experiment for the force measurement. The air passes through the decompression valve in order, and the required pressure is obtained by adjusting the precise decompression valve. The valve is opened through a rotating manual valve to allow the air to be ejected from the nozzle and stress the fingers. A long resin box with a similar size to that of the finger is attached to an electronic balance under a certain pressure and at a certain height to measure the overall force stressed on the finger. When measuring the force on the fingers at different pressure conditions, the precise decompression valve is adjusted; when measuring different diameters, nozzles of various diameters are changed; when measuring different contact height, a height gauge is used to adjust the distance between the nozzle and the long box.

Deformation measurement

Another experiment for finger deformation was also designed. The nozzle is made of transparent resin to ensure that the light of the laser displacement sensor reaches the surface of the finger skin. The nozzle is fixed to an altimeter and can be up or down-regulated. The gas is ejected to the finger through the nozzle orifice and thus causes finger deformation. The laser displacement sensor is fixed to the X–Y working plane, which is shifted by a step motor, which drives the fixed sensor to emit light spots and allow them to pass through the nozzle orifice and transparent resin.

Discussion

The results obtained by previous force and deformation measuring systems are compared with the numerical results, including the force stressed on the finger by the nozzle under different conditions, the finger deformation of static load, and the time history response of finger deformation under dynamic load.

Force applied to finger

At various pressure, diameters, and height, the force on the fingers by numerical simulation is contrasted to the experimental data (Figure 11 and 12). The force on the fingers grows as pressure increases, and varies in the same manner as at different diameters and contact height. Changing the diameter varies the force on the finger from small to great and then back to small. At a contact pressure of 1 atm, height only slightly influences finger force because small contact height forms a negative pressure on the surface of the finger. Changing the contact height changes the force on the fingers within 0 mm to 2.8 mm from large to small then back to large because of the neutralization of force in the nozzle ejecting area and the force formed by the surrounding negative pressure. The same situation occurs at different pressure and diameters.

Finger deformation under static load

Finger deformation under different inlet pressure, contact height, and nozzle diameters is compared with the numerical simulation results. Given the symmetrical structure of the finger and nozzle, finger deformation is concentrated within a circle with a diameter of around 4 mm, and the deformation measurement...
can be limited to half of the deformation area (i.e., 4 mm outwardly extended from the stress center of the finger by the nozzle). The actual measurement under different conditions, the nonlinear deformation curve, and the linear model deformation curve are shown in Figure 13 and 14. The deformation measured in the experiments is greater than the simulated value primarily because of the wedge-like fingertip. The incompressible muscle easily flows to the wedge tip, whereas the finger model surface in simulation is usually a long box plane. A comparison between the nonlinear and linear models also indicates that the nonlinear model better fits the actual situation of the finger.

Finger deformation under dynamic load

The response interval of SA-I tactile neurons lies in [1,5]Hz, so we can emphatically research its responses with 3 Hz, 5 Hz, 7 Hz under the initial pressure of 0.8 atm and amplitude of 0.4 atm. Figure 15 shows the time-varying strain energy density with different frequencies, that is, the signals received by SA-I tactile neurons have same frequency and positive proportional relationship with that of dynamic load.

Figure 16 and 17 compare the numerical simulation and finger deformation changes at an initial pressure of 0.8 atm, an amplitude of 0.4 atm, and frequencies of 3, 5, and 7 Hz over time. The experimental deformation and numerically simulated deformation are periodic and consistent with the load cycle. Increasing load frequency increases the frequency of finger skin deformation. At low frequency, such as 3 Hz, experimental deformation is consistent with the numerical simulation of deformation. At a slightly high frequency, experimental deformation is consistent with the numerical simulation of deformation. For a slightly high frequency, experimental deformation significantly reduces the amplitude compared with numerical simulation because of the pressure loss of air in the pipe. The skin tissues also display viscoelasticity; thus, changing the load causes the finger responses to be hysteretic.
Conclusion

With finger force and deformation, the time history response of finger deformation under different loads is analyzed. Although both the linear and nonlinear models exhibit considerable similarity to real fingers, the nonlinear model has closer deformation to the experimental value. The nonlinear model also obtains more reasonable results in the analysis of time history response than the linear model. In the analysis of loads with high-frequency variation, the established model obtains values with certain deviation to the real situation, although the variation behavior is consistent. Numerical simulation is also feasible for analyzing the established finger models and adopting the fluid–structure interaction method.

Acknowledgments

We acknowledge the reviewers and editors for their suggestions on improving the paper.

Author Contributions

Conceived and designed the experiments: ZW. Performed the experiments: ZW. Analyzed the data: ZW. Contributed reagents/materials/analysis tools: ZW. Wrote the paper: ZW.

References

1. Johnson KO, Yoshioka T, Vega-Bermudez F (2000) Tactile functions of mechanoreceptive afferents innervating the hand. Journal of Clinical Neurophysiology 17(6):339–545.
2. Phillips JR, Johnson KO (1981) A continuum mechanics model of skin predicting mechanoreceptor responses to bars, edges, and gratings. Journal of Neurophysiology 46(6): 1204–1225.
3. Srinivasan MA, Dandekar K (1996) An investigation of the mechanics of tactile sense using two-dimensional models of the primate fingertip. Mechanical Engineers Journal of Bioengineering Transactions–American Society of Engineering, 118: 48–55.
4. Dandekar K, Raju BI, Srinivasan MA (2003) 3D finite-element models of human and monkey fingertips to investigate the mechanics of tactile sense. Journal of biomechanical engineering 125(6):499.
5. Zhou L, Raju BI, Srinivasan MA (2006) Relevant Stimuli and their Relationships to Primate SA-I Mechanoreceptive Responses under Static Smooshol Indentation. The International Conference on Modeling, Simulation & Visualization Methods, CSREA Press, USA: 67–73.
6. Serina ER, Mockensturm E, Most CD Jr, Rempel D (1998) A structural model of the forced compression of the fingertip pulp. Journal of biomechanics 31(7): 639–646.
7. Masso T, Kobayashi K, Yamazaki N (1998) Relationship between the structure of human finger tissue and the location of tactile receptors. JSME International Journal-Series C-Dynamics Control Robotics Design and Manufacturing 41(1): 94–100.
8. Masso T, Kobayashi K (1996) FE analysis of the dynamic characteristics of the human finger pad in contact with objects with/without surface roughness. Proceedings of the ASME, dynamic systems and Control division 64: 279–286.
9. Gerling GJ, Thomas GW (2005) The effect of fingertip microstructures on tactile edge perception. Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems: 63–72.
10. Gerling GJ (2006) The sampling position within, not the undulating geometry of fingertip skin microstructure may amplify the sensation of edges. Haptic Interfaces for Virtual Environment and Teleoperator Systems:141–145.
11. Pavluk D, Howe RD (1999) Dynamic contact of the human fingerpad against a flat surface. Journal of biomechanical engineering 121: 605–611.
12. Pavluk DTV, Howe RD (1999) Dynamic lumped element response of the human fingerpad. Journal of biomechanical engineering 121: 178–183.
13. Wu JZ, Dong RC, Smutz WP (2003) Modeling of time–dependent force response of fingertip to dynamic loading. Journal of biomechanics 36(3): 383–392.
14. Wu JZ, Dong RC, Schopper AW (2003) Analysis of skin deformation profiles during sinusoidal vibration of fingerpad. Annals of biomedical Engineering 31(7): 867–876.
15. Wu JZ, Dong RC, Rakerja S (2004) A structural fingertip model for simulating the biomechanics of tactile sensation. Medical Engineering & physics 26(2): 146–175.
16. Hu J, Xin D, Wang R (2007) Dependence of tactile sensation on deformations within soft tissues of fingertip. World Journal of Modeling and Simulation 3(1):73–78.
17. Wu JZ, Welcome DE, Dong RG (2006) Three-dimensional finite element simulations of the mechanical response of the fingertip to static and dynamic compressions. Computer methods in biomechanics and biomedical engineering 9(1): 53–63.
18. Wu JZ, Krajnak K, Welcome DE (2008) Three-Dimensional Finite Element Simulations of the Dynamic Response of a Fingertip to Vibration. Journal of Biomechanical Engineering 130: 054501-1–054501-8.
19. Srinivasan MA (1989) Surface deflection of primate fingertip under line load. Journal of Biomechanics 22(4): 343–349.
20. Wu JZ, Krajnak K, Welcome DE (2006) Analysis of the dynamic strains in a fingertip exposed to vibrations: Correlation to the mechanical stimuli on mechanoreceptors. Journal of biomechanics 39(13): 2445–2456.
21. Hrabia C-E, Wolf K, Wilhelm M (2013) Whole Finger Modeling using 8 Wearable Sensors: Biomechanics for Finger Pose Prediction. 4th Augmented Human International Conference: 21–28
22. Pan L, Zan L, Foster F (1998) Ultrasonic and viscoelastic properties of skin under transverse mechanical stress in vitro. Ultrasound Medical Biology 24(7): 995–1007.
23. Zheng YP, Mak AF (1996) An ultrasound indentation system for biomechanical properties assessment of soft tissues in-vivo. IEEE Trans Biomedical Engineering 43(9): 912–918.