29Si nuclear spins as a resource for donor spin qubits in silicon

Gary Wolfowicz1,2, Pierre-André Mortemousque3, Roland Guichard4, Stephanie Simmons5, Mike L W Thewalt6, Kohei M Itoh7 and John J L Morton1,2

1 London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
2 Department of Materials, Oxford University, Oxford OX1 3PH, UK
3 School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
4 Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
5 Centre for Quantum Computation and Communication Technology, The University of New South Wales, Sydney, NSW 2052, Australia
6 Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
7 Department of Electronic & Electrical Engineering, University College London, London WC1E 7JE, UK

E-mail: gary.wolfowicz@materials.ox.ac.uk and jjl.morton@ucl.ac.uk

Keywords: nuclear spins, decoherence, quantum error correction, donors in silicon

Abstract

Nuclear spin registers in the vicinity of electron spins in solid state systems offer a powerful resource to address the challenge of scalability in quantum architectures. We investigate here the properties of 29Si nuclear spins surrounding donor atoms in silicon, and consider the use of such spins, combined with the donor nuclear spin, as a quantum register coupled to the donor electron spin. We find the coherence of the nearby 29Si nuclear spins is effectively protected by the presence of the donor electron spin, leading to coherence times in the second timescale—over two orders of magnitude greater than the coherence times in bulk silicon. We theoretically investigate the use of such a register for quantum error correction (QEC), including methods to protect nuclear spins from the ionisation/neuralisation of the donor, which is necessary for the re-initialisation of the ancilla qubits. This provides a route for multi-round QEC using donors in silicon.

1. Introduction

Modular ‘quantum network’ architectures consisting of multiple quantum registers connected by interaction channels have emerged as a flexible, robust and scalable model for quantum computation. Such models typically assume high-fidelity operations which can be performed locally within the quantum registers (in contrast to potentially lossy channels between them), allowing operations such as local quantum error correction (QEC) [1–3], entanglement purification [4], and even enhanced quantum sensing [5, 6]. This approach is well suited to spins of defects in the solid state, such as vacancies in diamond [7] or silicon carbide [8], rare-Earth dopants in various crystals [9] and donors in silicon [10]. Each of these offers a (sparse) environment of nuclear spins, in the vicinity of the defect spin, possessing potentially long coherence times. This has been explored recently using nitrogen-vacancies in diamond, first through the control of remote 13C nuclear spins [11–13] and later realising a single round of QEC [2, 3].

Naturally occurring silicon (natSi) has three stable isotopes: 28Si (92.2 %), 29Si (4.7 %) and 30Si (3.1 %), where only 29Si has a non-zero spin (I = 1/2) and could form part of a quantum register. In silicon, much recent focus has been on isotopically enriched 29Si to remove the 29Si spins [14], leading to donor electron spin coherence times up to 3 seconds [15] and donor nuclear spin coherence times from minutes to hours [16, 17]. The disadvantage of such 29Si material is that the only additional resource for the donor electron spin is the nuclear spin of the donor itself.

Our focus here is on natSi, and in particular the 29Si nuclear spins around the donor. Nuclear spin coherence times of 29Si have been studied in the absence of the donor electron (i.e. in bulk NMR [18], or using a single 29Si atom coupled to a nano-device [19])—in such cases the nuclear spins can freely flip-flop and the Hahn echo T2n is limited to around 5 ms. However, the presence of the donor electron spin is known to form a ‘frozen core’
of nuclear spins around the donor, changing the bath dynamics by detuning nuclear spins from their neighbours as a result of the spatially varying hyperfine coupling. For these reasons, one could expect the T_2^n of ^{29}Si in the vicinity of the donor to be significantly longer—an indication of this is in the T_2^n of the donor nuclear spin itself (strongly detuned from any of the neighbouring ^{29}Si) which was reported to be about 1 second in natSi.

Here, we consider the potential of both the donor nuclear spin and local ^{29}Si spins as a register of qubits in silicon, characterising their coherence times and examining their use for local QEC. For QEC we consider both single-donor approaches (based on single-donor spin measurement devices [19, 23, 24]) and donor ensemble approaches (which could form part of hybrid architectures with superconducting resonators and qubits [25, 26]). In addition to long coherence times, requirements for multi-round QEC include qubit manipulation and in particular the re-initialisation of ancilla qubits. Initialisation schemes (e.g. by single-spin measurement or optical hyperpolarisation [23, 27]) involve the ionisation of the donor, and thus we conclude by examining how to ensure a nuclear spin data qubit can be made robust to this process.

2. Materials and methods

We used a float-zone ^{30}Si sample ($1.5 \times 1.5 \times 10$ mm) bulk doped with ^{31}P at a concentration of 6×10^{15} cm$^{-3}$. All the experiments are spin ensemble measurements. The temperature was set at 4.5 K to obtain an electron T_1 (> 5 s) sufficiently long compared to all other experimental timescales. Pulsed electron spin resonance (ESR) and electron-nuclear double resonance (ENDOR) experiments were realised using a Bruker X-band Elexsys system (≈ 0.3 T, 9.7 GHz). The magnetic field was set parallel to the [001] Si crystal axis, where the electron spin coherence time T_2^e is maximised (≈ 0.5 ms [28]). The orientation dependence is due to the anisotropy of the dipolar interaction between ^{29}Si nuclear spin pairs in the bath and the orientation of nearest-neighbours in the silicon lattice. Dynamical decoupling (DD) sequences applied to the nuclear spins were synthesised directly from an arbitrary waveform generator (Agilent 81180).

3. Nuclear spin spectra

We begin by characterising the ^{31}P and ^{29}Si nuclear spins through Davies ENDOR spectroscopy [30, 31] as shown in figure 1. The ^{31}P donor nuclear spin has a well-known gyromagnetic ratio of 17.23 MHz T$^{-1}$ and a hyperfine interaction value with the donor electron spin of 117.53 MHz [32]. ^{29}Si spins in the bath have a gyromagnetic ratio of ≈ 8.46 MHz T$^{-1}$ and hyperfine coupling to the donor electron spin of up to 6 MHz. An in-depth study of all couplings and related sites can be found in [33]. Spectral overlapping makes weakly coupled
Figure 2. Nuclear spin coherence times of 31P and 29Si. (a) Left: energy diagram for the donor electron spin coupled to a spin-1/2 nuclear spin. Right: nuclear spin coherence measurement sequence taken from [10]. The blocks defined by the dashed brackets move together when τ is varied. (b) 31P nuclear spin coherence decay. The signal shown is the magnitude of the ESR in-phase and quadrature detection, hence the fit (red) is constrained to decay to zero as the noise is always positive. (c) Coherence decay for a 29Si nuclear spin with $A = 4.03$ MHz.

29Si more difficult to distinguish experimentally—for these, the hyperfine interactions can be simulated using the Kohn–Luttinger model of the electron wavefunction (see supplementary material S1).

4. Coherence measurements

We then measure the coherence times ($T_2\mathrm{m}$) for these various nuclear spins, based on the approach of coherent state transfer from the donor electron spins to the nuclear spin, and back again at some later time, as shown in figure 2(a) [10]. Microwave pulses on the ESR transitions must be selective on a particular nuclear spin state, and thus have a bandwidth significantly less than the relevant hyperfine coupling. For 29Si spins, this required microwave pulse lengths of 0.5 μs. Figure 2(b) shows the nuclear spin coherence decay is observed for 31P with a resulting decay time $T_2\mathrm{m} = 1.1 \pm 0.1$ s. A comparable coherence time of 1.22 ± 0.03 s was measured for a 29Si nuclear spin with hyperfine coupling $A = 4.03$ MHz (figure 2(c)), notably over 200 times longer than in bulk natural silicon. In both cases, the decay followed a stretched exponential function $\exp\left(-\left(\tau/T_2\mathrm{m}\right)^\alpha\right)$ with stretch factor α around 2, typical of decoherence from spectral diffusion in natSi [34].

The 29Si nuclear spin coherence time was found to depend strongly on the hyperfine coupling to the donor electron spin, as shown in figure 3(a). For the strongest hyperfine coupling ($A \sim 3–6$ MHz), the coherence time saturates at ≈ 1.3 s, and then decreases with weaker coupling, towards the bulk NMR value of 5 ms [18].

Two classes of decoherence mechanism for a measured 29Si nuclear spin can be considered in this case: (1) indirect flip-flops due to the Ising (ZZ) interaction with a separate flip-flopping pair of 29Si nuclear spins, and (2) direct flip-flops (state exchange) between the measured spin and another 29Si nuclear spin. For (1), the indirect flip-flops could arise from two distinct types of 29Si spin pair. The first type is a 29Si spin pair very far from the donor, and thus far from the measured 29Si spin. The distant 29Si spin pairs have negligible hyperfine interaction with the donor electron spin and are therefore not significantly detuned from one another, allowing for flip-flops [35]. Their small coupling with the measured nuclear spin is compensated by the very large number of pairs involved in the process ($\approx 10^6$ [36]). The second type of 29Si spin pair, recently identified in [36], consists of the few spin pairs that are much closer to the donor and are located at lattice sites that are equivalent by symmetry. Because such pairs have equal coupling to the electron spin they can also freely flip-flop. For (2), direct flip-flops can arise between the measured 29Si spins and their own equivalent pairs (as they are not detuned), however the number of such equivalent sites is low and this would be a weak process. Indeed, a first evidence against direct flip-flops can be found in figure 3(a) where the four most strongly coupled 29Si are from different lattice sites and...
5. Spin initialisation and protection

The long coherence times measured above demonstrate that nuclear spins near the donor could be used as a quantum register, however, applications such as QEC require the ability to repetitively initialise the state of ancilla qubits. Even at low temperatures (< 100 mK) and high magnetic fields (> 1 T), the nuclear spins are in a fairly mixed state in thermal equilibrium, however, the polarisation of the donor electron spin can be transferred to the nuclear spins, following the same methods used in the ENDOR experiments above. Two methods to polarise donor electron spins quickly and on-demand include (i) the use of spin-selective donor ionisation through the use of the bound-exciton IR transition (applicable in both ensembles and single spins) [27, 43, 44]; and (ii) the measurement of a single donor spin coupled to a single electron transistor (SET) [45]. In the first case, laser excitation (around 1078 nm for 31P) causes only donors of a defined spin orientation to be ionised, which is followed by a subsequent capture of an electron in a random spin state. This can achieve full donor electron polarisation donor electron spins quickly and on-demand include (i) the use of spin-selective donor ionisation through the use of the bound-exciton IR transition (applicable in both ensembles and single spins) [27, 43, 44]; and (ii) the measurement of a single donor spin coupled to a single electron transistor (SET) [45]. In the first case, laser excitation (around 1078 nm for 31P) causes only donors of a defined spin orientation to be ionised, which is followed by a subsequent capture of an electron in a random spin state. This can achieve full donor electron polarisation.

Figure 3. 29Si coherence time as a function of hyperfine coupling and dynamical decoupling (DD). (a) The 29Si coherence times, T_{2n}, vary with the strength of the hyperfine coupling to the donor electron (and thus, indirectly, as a function of the distance between the two). The line in black is only a guide to the eye, limited at low coupling to the bulk NMR value (5 ms) and at large coupling to \approx1.3 s. (b) Measured T_{2n} times under various DD sequences for a specific 29Si site with coupling $A = 2.23 MHz$. CPMG, π-WAHUHA, and XY-4 all offer identical protection of the nuclear spin coherence (in proportion to the number of refocusing pulses), showing that indirect flip-flops in the environment of the measured 29Si spin are responsible for decoherence.

DD has been used extensively in different contexts ranging from extending coherence times [16, 17] and performing spectroscopy [13, 37] to probing quantum interactions [38, 39]. In figure 3(b), 29Si nuclear spins at a specific site ($A = 2.23 MHz$) are subject to different types of DD sequence: CPMG [40], XY-4 [41] and a modified version of WAHUHA [42]. CPMG consists of a train of π pulses that refocuses ZZ interactions between spins. Our experiments show that under CPMG T_{2n} increases linearly with the number of π pulses, up to 3.7 ± 0.2 s (for eight π pulses). This improvement provides an additional evidence that indirect flip-flops are the likely source of decoherence. This can be further tested using the WAHUHA sequence: $Y_z X_z Y_z X_z (-Y_y) Y_z Z X_z Y_z X_z$, modified here (called π-WAHUHA) to also include π pulses to allow for refocusing of inhomogeneous broadening ($T_2^* \approx$). By alternating the rotation axis of the $\frac{\pi}{2}$ pulses, this refocuses the dipolar interaction between the measured nuclear spin and any equivalent pair. By comparison with the results from CPMG, it can be seen that this sequence does not improve the nuclear spin coherence beyond what would be expected from its T_2 value, limited at low coupling to the bulk NMR value (5 ms) and at large coupling to \approx1.3 s. In the second case, the nuclear spins are in a fairly mixed state in thermal equilibrium, however, the polarisation of the donor electron spin can be transferred to the nuclear spins, following the same methods used in the ENDOR experiments above. Two methods to polarise donor electron spins quickly and on-demand include (i) the use of spin-selective donor ionisation through the use of the bound-exciton IR transition (applicable in both ensembles and single spins) [27, 43, 44]; and (ii) the measurement of a single donor spin coupled to a single electron transistor (SET) [45]. In the first case, laser excitation (around 1078 nm for 31P) causes only donors of a defined spin orientation to be ionised, which is followed by a subsequent capture of an electron in a random spin state. This can achieve full donor electron polarisation.

DD has been used extensively in different contexts ranging from extending coherence times [16, 17] and performing spectroscopy [13, 37] to probing quantum interactions [38, 39]. In figure 3(b), 29Si nuclear spins at a specific site ($A = 2.23 MHz$) are subject to different types of DD sequence: CPMG [40], XY-4 [41] and a modified version of WAHUHA [42]. CPMG consists of a train of π pulses that refocuses ZZ interactions between spins. Our experiments show that under CPMG T_{2n} increases linearly with the number of π pulses, up to 3.7 ± 0.2 s (for eight π pulses). This improvement provides an additional evidence that indirect flip-flops are the likely source of decoherence. This can be further tested using the WAHUHA sequence: $Y_z X_z Y_z X_z (-Y_y) Y_z Z X_z Y_z X_z$, modified here (called π-WAHUHA) to also include π pulses to allow for refocusing of inhomogeneous broadening ($T_2^* \approx$). By alternating the rotation axis of the $\frac{\pi}{2}$ pulses, this refocuses the dipolar interaction between the measured nuclear spin and any equivalent pair. By comparison with the results from CPMG, it can be seen that this sequence does not improve the nuclear spin coherence beyond what would be expected from its T_2 value, limited at low coupling to the bulk NMR value (5 ms) and at large coupling to \approx1.3 s. In the second case, the nuclear spins are in a fairly mixed state in thermal equilibrium, however, the polarisation of the donor electron spin can be transferred to the nuclear spins, following the same methods used in the ENDOR experiments above. Two methods to polarise donor electron spins quickly and on-demand include (i) the use of spin-selective donor ionisation through the use of the bound-exciton IR transition (applicable in both ensembles and single spins) [27, 43, 44]; and (ii) the measurement of a single donor spin coupled to a single electron transistor (SET) [45]. In the first case, laser excitation (around 1078 nm for 31P) causes only donors of a defined spin orientation to be ionised, which is followed by a subsequent capture of an electron in a random spin state. This can achieve full donor electron polarisation.

DD has been used extensively in different contexts ranging from extending coherence times [16, 17] and performing spectroscopy [13, 37] to probing quantum interactions [38, 39]. In figure 3(b), 29Si nuclear spins at a specific site ($A = 2.23 MHz$) are subject to different types of DD sequence: CPMG [40], XY-4 [41] and a modified version of WAHUHA [42]. CPMG consists of a train of π pulses that refocuses ZZ interactions between spins. Our experiments show that under CPMG T_{2n} increases linearly with the number of π pulses, up to 3.7 ± 0.2 s (for eight π pulses). This improvement provides an additional evidence that indirect flip-flops are the likely source of decoherence. This can be further tested using the WAHUHA sequence: $Y_z X_z Y_z X_z (-Y_y) Y_z Z X_z Y_z X_z$, modified here (called π-WAHUHA) to also include π pulses to allow for refocusing of inhomogeneous broadening ($T_2^* \approx$). By alternating the rotation axis of the $\frac{\pi}{2}$ pulses, this refocuses the dipolar interaction between the measured nuclear spin and any equivalent pair. By comparison with the results from CPMG, it can be seen that this sequence does not improve the nuclear spin coherence beyond what would be expected from its T_2 value, limited at low coupling to the bulk NMR value (5 ms) and at large coupling to \approx1.3 s. In the second case, the nuclear spins are in a fairly mixed state in thermal equilibrium, however, the polarisation of the donor electron spin can be transferred to the nuclear spins, following the same methods used in the ENDOR experiments above. Two methods to polarise donor electron spins quickly and on-demand include (i) the use of spin-selective donor ionisation through the use of the bound-exciton IR transition (applicable in both ensembles and single spins) [27, 43, 44]; and (ii) the measurement of a single donor spin coupled to a single electron transistor (SET) [45]. In the first case, laser excitation (around 1078 nm for 31P) causes only donors of a defined spin orientation to be ionised, which is followed by a subsequent capture of an electron in a random spin state. This can achieve full donor electron polarisation.

DD has been used extensively in different contexts ranging from extending coherence times [16, 17] and performing spectroscopy [13, 37] to probing quantum interactions [38, 39]. In figure 3(b), 29Si nuclear spins at a specific site ($A = 2.23 MHz$) are subject to different types of DD sequence: CPMG [40], XY-4 [41] and a modified version of WAHUHA [42]. CPMG consists of a train of π pulses that refocuses ZZ interactions between spins. Our experiments show that under CPMG T_{2n} increases linearly with the number of π pulses, up to 3.7 ± 0.2 s (for eight π pulses). This improvement provides an additional evidence that indirect flip-flops are the likely source of decoherence. This can be further tested using the WAHUHA sequence: $Y_z X_z Y_z X_z (-Y_y) Y_z Z X_z Y_z X_z$, modified here (called π-WAHUHA) to also include π pulses to allow for refocusing of inhomogeneous broadening ($T_2^* \approx$). By alternating the rotation axis of the $\frac{\pi}{2}$ pulses, this refocuses the dipolar interaction between the measured nuclear spin and any equivalent pair. By comparison with the results from CPMG, it can be seen that this sequence does not improve the nuclear spin coherence beyond what would be expected from its T_2 value, limited at low coupling to the bulk NMR value (5 ms) and at large coupling to \approx1.3 s. In the second case, the nuclear spins are in a fairly mixed state in thermal equilibrium, however, the polarisation of the donor electron spin can be transferred to the nuclear spins, following the same methods used in the ENDOR experiments above. Two methods to polarise donor electron spins quickly and on-demand include (i) the use of spin-selective donor ionisation through the use of the bound-exciton IR transition (applicable in both ensembles and single spins) [27, 43, 44]; and (ii) the measurement of a single donor spin coupled to a single electron transistor (SET) [45]. In the first case, laser excitation (around 1078 nm for 31P) causes only donors of a defined spin orientation to be ionised, which is followed by a subsequent capture of an electron in a random spin state. This can achieve full donor electron polarisation.
spin polarisation on the tens of millisecond timescale (depending on laser power). Although the strain caused by the isotopic variation in natural silicon leads to a broadening of the donor-bound exciton linewidth, the electron spin can still be resolved at modest fields (see figure 4(a)). In the second case, the timescales are set by tunnelling rates between the donor and the SET, which give a measure/reset time of order 1 ms.

Both of these spin initialisation methods rely on ionisation of the donor, which impacts the coherence of any coupled nuclear spins in two distinct ways. First, while the donor is ionised there is no longer a ‘frozen core’ of protected nuclear spins and so the flip-flops in the nuclear spin bath limit T_1N to the 5 ms timescale [18]. During such periods, DD sequences similar to WAHUHA can be applied to suppress the dipolar interaction between the spins, as was already demonstrated using NMR in [46] where the 29Si nuclear spin coherence was extended up to 20 s. A second issue arises from the inherent uncertainty in the precise timing of the ionisation/neutralisation of the donor, as this imparts a random phase on the nuclear spin related to the strength of its hyperfine coupling to the donor electron. If the nuclear spin state is an eigenstate, it is rather insensitive to the donor ionisation, as evidenced by both optical and electrical ionisation experiments [16, 24], however while it is in a superposition state one can expect the random timings of the donor electron removal/re-capture to lead to decoherence. Notably, this decoherence process is also observed in nuclear spins near NV centres in diamond where prolonged measurement of the NV centre can cause it to randomly change its charge state [7].

One solution is to use nuclear spins whose coupling to the donor electron spin is much weaker than the inverse of the ionisation time uncertainty, but this would require using 29Si with hyperfine values $\ll 1$ kHz, which in turn have short coherence times and whose conditional operations through the donor electron spin
would be slow. We hence suggest protecting the nuclear spin coherence by applying DD on the electron spin, at times when ionisation/neutralisation of the donor is expected. The hyperfine interaction can thus be effectively turned off on-demand, assuming that the pulses are applied at a repetition rate much faster than the hyperfine coupling strength (see supplementary material S2 for derivation). Critically, the hyperpolarisation control (in the form of laser or voltage pulses) must be synchronised with the DD pulses in order to work effectively, as illustrated in figure 4(b). Following this protocol, the electron spin state can be reinitialised while the coherence of (weakly coupled) nuclear spins remains unperturbed (see figure 4(c)). Finally, this DD method could have further applications, such as protecting the nuclear spins from T_1 relaxation of the electron spin (similar to [47]).

Further considerations (see supplementary material S3–4) for the implementation of a quantum register based on 29Si weakly coupled to the donor include (i) the effect of anisotropy in the hyperfine coupling, and (ii) shot-to-shot fluctuations in the state of the nuclear spin bath (manifest as a ESR linewidth of ≈ 8 MHz [23]). The former could lead to undesired nuclear spin flips as a result of DD applied to the donor electron spin, and can be mitigated by increasing the magnetic field strength. The latter shifts the ESR frequency over time, prohibiting an electron spin rotation conditional on a (weakly coupled) nuclear spin state, however, strategies to overcome such effects exist [3].

6. Conclusions

In conclusion, we have considered the suitability of 29Si nuclear spins around a donor electron spin as a quantum register, and measured their coherence times to be in the seconds timescale and a function of their hyperfine coupling to the donor. These could be harnessed to perform, for example, a three-qubit QEC protocol using the donor nuclear spin and one strongly coupled 29Si as ancillae, and one weakly coupled 29Si for the data qubit. Combined with recent measurements which show that bismuth donor electron spin coherence times can reach a second in natural silicon [48], these results indicate that isotopically enriched 28Si may not be a panacea for silicon-based qubits, and the more abundant and easily accessible variant may bring benefits for some applications. Although more technically complex, there may also be merits in incorporating 29Si in the vicinity of the donor (e.g. through co-implantation), in material which is otherwise isotopically enriched.

Acknowledgments

We thank C C Lo, S Balian, T Monteiro, P Ross and A M Tyryshkin for valuable discussions and assistance with experiments. This research is supported by the EPSRC through the Materials World Network (EP/1035536/1) and a DTA, as well as by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement no 279781. The work at Keio has been supported by the Grant-in-Aid for Scientific Research by MEXT and JSPS Core-to-Core Program. JILM is supported by the Royal Society.

References

[1] Moussa O, Baugh J, Ryan C and Laffamme R 2011 Phys. Rev. Lett. 107 160501
[2] Waldherr G et al 2014 Nature 506 204–7
[3] Taminiou T H, Cramer J, van der Sar T, Dobrovitski V V and Hanson T 2014 Nat. Nanotechnol. 9 171–6
[4] Nickerson N H, Li Y and Benjamin S C 2013 Nat. Commun. 4 1756
[5] Schaffrty M, Gaugher E M, Morton J J L and Benjamin S C 2011 Phys. Rev. Lett. 107 207210
[6] Ajoy A, Bisboort U, Lukin M D, Walsworth R L and Cappellaro P 2015 Phys. Rev. X 5 011001
[7] Dutt M V G, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A S, Hammer P R and Lukin M D 2007 Science 316 1312–6
[8] Widmann M et al 2015 Nat. Mater. 14 164–8
[9] Wolfovitz G, Maier-Flaig H, Marino R, Ferrier A, Vezin H, Morton J J L and Goldner P 2015 Phys. Rev. Lett. 114 170503
[10] Morton J J L, Tyryshkin A M, Brown J M, Shankar S, Lovett B W, Ardavan A, Schenkel T, Haller E E, Ager J W and Lyon S A 2008 Nature 455 1085–8
[11] Koikovitzone S, Unterheimmiker Q P, Bennett S D and Lukin M D 2012 Phys. Rev. Lett. 109 137601
[12] Zhao N et al 2012 Nat. Nanotechnol. 7 657–62
[13] Taminiou T H, Wagenaar J J T, van der Sar T, Jelezko F, Dobrovitski V V and Hanson R 2012 Phys. Rev. Lett. 109 137602
[14] Itoh K M and Watanabe H 2014 NRS Commun. 4 143–57
[15] Wolfovitz G, Tyryshkin A M, George R E, Riemann H, Abrosimov N V, Becker P, Pohl H J, Thewalt M L W, Lyon S A and Morton J J L 2013 Nat. Nanotechnol. 8 561–4
[16] Saeedi K, Simmons S, Salvai J Z, Dluby P, Riemann H, Abrosimov N V, Becker P, Pohl H J, Morton J J L and Thewalt M L W 2013 Science 342 830–3
[17] Muñozen J T, Dehollain J P, Laucht A, Hudson F E, Sekiguchi T, Itoh K M, Jamieson D N, McCallum J C, Dzurak A S and Morello A 2014 Nat. Nanotechnol. 9 986–91
[18] Dementyev A E, Li D, MacLean K and Barrett S E 2003 Phys. Rev. B 68 153302
[19] Pla J J, Mohiyaddin F A, Tan K K Y, Dehollain J P, Rahman R, Klimeck G, Jamieson D N, Dzurak A S and Morello A 2014 Phys. Rev. Lett. 113 246801
[20] Wald L L, Hahn E I and Lukac M 1992 J. Opt. Soc. Am. B 9 789
[21] Bloembergen N 1949 Physica 15 386–426
[22] Petersen E S, Tyryshkin A M, Morton J J L, Itoh K M, Thewalt M L W and Lyon S A 2013 Decoherence of Neutral 31P Donor Nuclear Spins by 29Si APS Meeting Abstracts p 26004
[23] Pla J J, Tan K Y, Dehollain J P, Lim W H, Morton J J L, Jamieson D N, Dzurak A S and Morello A 2012 Nature 489 541–5
[24] Pla J J, Tan K Y, Dehollain J P, Lim W H, Morton J J L, Zwanenburg F A, Jamieson D N, Dzurak A S and Morello A 2013 Nature 496 234–8
[25] Kubo Y, Diniz I, Dewes A, Jacques V, Dréau A, Roch J F, Auffeves A, Vion D, Esteve D and Bertet P 2012 Phys. Rev. A 85 012333
[26] Wesenberg J H, Ardavan A, Briggs G A D, Morton J J L, Schoelkopf R J, Schuster D I and Mølmer K 2009 Phys. Rev. Lett. 103 070502
[27] Steger M et al 2011 J. Appl. Phys. 109 102411
[28] Tyryshkin A M, Morton J J L, Benjamin S C, Ardavan A, Briggs G A D, Ager J W and Lyon S A 2006 J. Phys.: Condens. Matter 18 S783–94
[29] Sekiguchi T et al 2014 Phys. Rev. B 90 121203
[30] Davies E 1974 Phys. Lett. A 47 1–2
[31] Tyryshkin A M, Morton J J L, Ardavan A and Lyon S A 2006 J. Chem. Phys. 124 234508
[32] Feher G 1959 Phys. Rev. 114 1219–44
[33] Hale E B and Mieher R L 1969 Phys. Rev. 184 739–50
[34] Abe E et al 2010 Phys. Rev. B 82 121201
[35] Hayashi H, Itoh K M and Vlasenko L S 2008 Phys. Rev. B 78 153201
[36] Guichard R, Balian S J, Wolfovitz G, Mortemousque P A and Monteiro T S 2013 Phys. Rev. B 91 214303
[37] Bylander J, Gustavsson S, Yan F, Yoshihara F, Harrabi K, Fitch G, Cory D G, Nakamura Y, Tsai J S and Oliver W D 2011 Nat. Phys. 7 565–70
[38] Zhao N, Wang Z Y and Liu R B 2011 Phys. Rev. Lett. 106 217205
[39] Zhao N, Wolfovitz G, Li S s, Morton J J L and Liu B 2014 Nat. Commun. 5 4822
[40] Melboom S and Gill D 1958 Rev. Sci. Instrum. 29 688
[41] Gullion T, Baker D B and Conradi M S 1990 J. Magn. Reson. 89 479–84
[42] Haebeler U and Waugh J S 1968 Phys. Rev. 175 453–67
[43] Yang A et al 2006 Phys. Rev. Lett. 97 227401
[44] Lo C C, Urdampilleta M, Ross P, Gonzalez-Zalba M F, Mansir J, Lyon S A, Thewalt M L W and Morton J J L 2015 Nat. Mater. 14 490–4
[45] Morello A et al 2010 Nature 467 887–91
[46] Ladd T D, Maryenko D, Yamamoto Y, Abe E and Itoh K M 2005 Phys. Rev. B 71 014401
[47] Maurer P C et al 2012 Science 336 1283–6
[48] Ma W L, Wolfovitz G, Li S s, Morton J J L and Liu R 2015 Phys. Rev. B 92 161403