Keratinocyte differentiation and proteolytic pathways in skin (patho)physiology

ELENI ZINGKOU, GEORGIOS PAMPALAKIS and GEORGIA SOTIROPOULOU

ACCEPTED MANUSCRIPT

The International Journal of Developmental Biology publishes an “Accepted” manuscript format as a free service to authors in order to expedite the dissemination of scientific findings to the research community as soon as possible after acceptance following peer review and corresponding modification (where appropriate).

An “Accepted” manuscript is published online prior to copyediting, formatting for publication and author proofing, but is nonetheless, fully citable through its Digital Object Identifier (DOI). Nevertheless, this “Accepted” version is NOT the final version of the manuscript.

When the final version of this paper is published within a definitive issue of the journal with copyediting, full pagination, etc. the new final version will be accessible through the same doi and this "Accepted" version of the paper will disappear.
Keratinocyte differentiation and proteolytic pathways in skin (patho)physiology

Eleni Zingkou¹*, Georgios Pampalakis², Georgia Sotiropoulou¹*

¹Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras 265 04; ²Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece

Running title:
Keratinocyte differentiation in disease

Keywords
Epidermis; Keratinocytes; Corneocytes; Desmosomal proteins; Proteolysis

Abbreviations
CDSN, corneodesmosin; CE, cornified cell envelop; DSC1, desmocollin 1; DSG1, desmoglein 1; H/E, haematoxylin/eosin; IHC, immunohistochemistry; KLK, kallikrein-related peptidase; NS, Netherton syndrome; PSD, peeling skin disease; SB, stratum basale; SC, stratum corneum; SD, seborrheic dermatitis; SG, stratum granulosum; SEM, scanning electron microscopy; SS, stratum spinosum; TEM, transmission electron microscopy

*Corresponding authors: zingkou@upatras.gr; gdsotiro@upatras.gr
Tel: +302610962315
Web page: http://www.pharmacy.upatras.gr/index.php/el/research/labs/61
Abstract

Epidermis is a stratified epithelium that forms the barrier between the organism and its environment. It is mainly composed of keratinocytes at different stages of differentiation. Stratum corneum is the outermost layer of the epidermis and is formed of multiple layers of anucleated keratinocytes called corneocytes. We aim to highlight the roles of epidermal differentiation and proteolysis in skin diseases. Skin biopsies isolated from Spink5^{-/-} mice, the established model of Netherton syndrome (NS), and from patients with NS, seborrheic dermatitis (SD) and psoriasis, as well as healthy controls, were analyzed by histology and immunohistochemistry. Our results showed that NS, SD, and psoriasis are all characterized by abnormal epidermal differentiation, manifested by hyperplasia, hyperkeratosis, and parakeratosis. At the molecular level, abnormal differentiation is accompanied by increased expression of involucrin and decreased expression of loricrin in NS and psoriasis. Increased epidermal proteolysis associated with increased kallikrein-related peptidases (KLK) expression is also observed in both NS and psoriatic epidermis. Further, reduced expression of desmosomal proteins is observed in NS but increased in psoriasis. Since desmosomal protein are proteolytic substrates and control keratinocyte differentiation, their altered expression directly links epidermal proteolysis to differentiation. In conclusion, abnormal cellular differentiation and proteolysis are interconnected and underlie the pathology of NS, SD and psoriasis.

Introduction

Skin is the largest organ of the human body and a stratified epithelium with three distinct layers: the epidermis, dermis, and underlying hypodermis. The epidermis constitutes the physical, chemical, and microbial barrier towards the environment; it controls body temperature and water loss and protects against mechanical insults. It is composed of the following four layers defined from the deeper to the outermost surface layer as: stratum basale (SB), stratum spinosum (SS), stratum granulosum (SG) and stratum corneum (SC). Each layer is formed by keratinocytes, while the less differentiated keratinocytes are found in SB and terminally differentiated keratinocytes in the SC, known as “mummified” keratinocytes or corneocytes. An additional layer between the SC and the SG is found in soles and palms, where the skin is thick, and is known as stratum lucidum. During terminal differentiation, the plasma membrane of keratinocytes is replaced by the cornified cell envelope (CE) that is a complex protein-lipid composite, about 70% composed of loricrin, to form the corneocytes which are held together
by special intercellular junctions called corneodesmosomes, multiprotein complexes containing desmoglein 1 (DSG1), desmocollin 1 (DSC1) and corneodesmosin (CDSN) (Simpson et al. 2011; Sotiropoulou et al. 2021).

Terminally differentiated keratinocytes are constantly replenished by differentiating keratinocytes moving from the inner skin layers. Physiological shedding of corneocytes (desquamation) is enabled by tightly regulated proteolysis of (corneo)desmosomal proteins via a proteolytic cascade, in which enzymes from the kallikrein-related peptidase (KLK) family play dominant roles (Borgoño et al. 2007; Ovaere et al. 2009; Sotiropoulou and Pampalakis 2012; Bisyris et al. 2021). Aberrantly elevated epidermal proteolysis, as for example is observed in Netherton syndrome and other skin diseases, results in dissociation of the SC from the SG, leading to severe impairment of the skin barrier, which is linked with abnormal differentiation.

The development of the epidermis in mouse and human embryo is a very similar process, as schematically depicted in Figure 1. In the implanted human blastocyst, the “epidermis” is first defined on days 7 to 8. At this stage, the primordial epidermis is composed of a single layer of cells and is referred to as indifferent ectoderm. These cells are loosely integrated along basal lamina and form the basal cells. During the first embryonic month, the stratification process is initiated in the epidermis to yield the periderm that will transiently cover the skin until the epidermal differentiation process is complete. During the end of the third month of embryonic development, basal cells will proliferate and generate multiple layers that form the stratum intermedium that will eventually form the SS. Stratum granulosum and stratum corneum form on month six (Holbrock, 1979). In the mouse embryo, the series of events are alike, as depicted in Figure 1, but significantly faster and lead to the development of a mature epidermis by day 18.5 (Du et al. 2018).

Proper keratinocyte differentiation is essential for normal epidermal development and barrier function, while abnormal differentiation is a feature in various common and rare skin diseases, such as atopic dermatitis, psoriasis, Netherton syndrome, etc. Here, epidermal keratinocyte differentiation is examined in relation to skin inflammatory disorders.
Results and Discussion

Homozygous or compound heterozygous inactivating mutations in the **SPINK5** gene encoding the multidomain protease inhibitor LEKTI lead to the rare skin ichthyosis, Netherton syndrome (NS) (OMIM 256500). NS is a devasting, often lethal in neonates, skin syndrome for which there is no specific treatment available. Hallmark clinical manifestations of NS include erythroderma, allergies, generalized skin inflammation, epidermal overdesquamation, and a pathognomonic hair structure, known as bamboo hair. The **Spink5**^{−/−} mouse model recapitulates NS and is widely used to unravel the molecular mechanisms underlying NS and to aid the development of NS-specific therapeutic approaches. **Spink5**^{−/−} mice show a highly compromised integrity of the epidermal barrier already on embryonic day 18.5 (E18.5), when development of the epidermis is already completed (Descargues et al. 2005).

Epidermal KLKs, mainly KLK5, KLK7 and KLK14, are secreted by keratinocytes as inactive proenzymes (zymogens) in the SG. There, KLK5 can autoactivate and then, activate other KLK zymogens. LEKTI is produced by the keratinocytes in the SG as a macromolecular precursor that is proteolytically cleaved by furin to yield the processed fragments with inhibitory effect. Then, the processed LEKTI fragments are secreted in the SG and inhibit the activity of KLKs by forming an enzyme-inhibitor complex. As the KLK-LEKTI complexes diffuse towards the outer skin surface, where the pH is acidic due to the acid mantle, dissociation of LEKTI from the complex takes place and KLKs are spatially activated in the outermost layers of the SC. This allows for, controlled corneocyte shedding only of the outer corneocyte layers. In NS, LEKTI deficiency results in unopposed activities of KLKs causing aberrantly enhanced cleavage of the (corneo)desmosomal proteins (DSG1, DSC1, CDSN) at the SG-SC junction leading to severe/pathological epidermal desquamation (Sotiropoulou and Pampalakis 2012).

The **Spink5**^{R820X/R820X} mouse model used here carries the R820X mutation that introduces a stop codon (Hewett et al. 2005). This mutation mimics the E827X mutation identified in NS patients. **Spink5**^{R820X/R820X} mice do not express **Spink5** mRNA probably due to nonsense mediated decay, therefore, they are homologous knockout, *i.e.*, **Spink5**^{−/−} (Figure 2A). Thus, they are referred to as **Spink5**^{−/−}.

Macroscopically, **Spink5**^{−/−} mice are easily distinguished from wild type (wt) littermates, based on their generalized overdesquamation, redness of the skin that is linked to constitutive skin inflammation, and low body weight, because of dehydration due to severe defect of the epidermal barrier, which uniformly leads to neonatal lethality within 5 hours from birth (Figure
To shed light on the structural basis of these macroscopic changes, H/E staining was performed on skin tissue sections. Histologically, Spink5^{−/−} mice show thickening of the SC, which is loosely attached to the underlying SG (Figure 2C). Scanning electron microscopy (SEM) performed on the facial area of newborn mice confirmed the extensive detachment of the SC that is compatible with their severe barrier defect (Figure 2D). The expression of differentiation markers was studied by immunohistochemistry (IHC). Reduced loricrin and increased involucrin immunostaining was observed in Spink5^{−/−} skin indicative of abnormal keratinocyte differentiation (Figure 2E), a fact that is also supported by the increased expression of keratin 5 in Spink5^{−/−} skin (Figure 2E). The (corneo)desmosomal proteins DSG1, DSC1, and CDSN, that are major protein targets for proteolysis by KLKs, showed reduced staining intensities in Spink5^{−/−} epidermis (Figure 2F) which is in accordance with the increased proteolytic activities in the epidermis.

The desmosomal protein DSG1 is directly linked with differentiation. Expression of DSG1 occurs when the undifferentiated keratinocytes stop dividing and start to differentiate and form the suprabasal layers. The cytoplasmic domain of DSG1 binds to Erbin that enhances Erbin-SHOC2 interaction, thus diminishes formation of SHOC2-Ras complexes. This results in absence of Erk phosphorylation and induction of keratinocyte differentiation. Consequently, decreased DSG1 leads to reduced expression of differentiation markers (Harmon et al. 2013). Further, DSG1 inhibits EGFR signaling that is required for maintaining keratinocytes in an undifferentiated stage. Thus, DSG1 links epidermal integrity to differentiation and suprabasal morphogenesis (Getsios et al. 2009; Short 2009). Increased DSG1 expression is accompanied by increased corneodesmosomes, in number and length, which confers increased mechanical resistance (Pampalakis et al. 2019).

CDSN, encoding corneodesmosin that is reduced in the epidermis of the Spink5^{−/−} mouse, is localized on human chromosome 6, particularly in PSORS1, which is the major locus for psoriasis susceptibility. CDSN is a key molecule for preservation of corneocyte-corneocyte cohesion and its proteolytic cleavage occurs during the desquamation process (Simon et al. 2001). In lesional psoriatic skin, an almost full-length form of corneodesmosin is present along with reduced degradation of (corneo)desmosomal proteins (Simon et al. 2008).

NS shares many common symptoms with severe dermatitis, multiple allergies and metabolic wasting syndrome (SAM) (Samuelov et al. 2013) and with peeling skin disease (PSD or peeling skin syndrome type B) (Mazereeuw-Hautier et al. 2011) such as food allergies, constitutive skin
inflammation, overdesquamation and hypotrichosis. This highlights a “phenotype linkage” between NS-PSD-SAM underlined by LEKTI deficiency in NS leading to unopposed activities of epidermal KLKs and deficiency of the KLK substrates corneodesmosin in PSD and DSG1 in SAM.

The changes observed in skin microstructure of the pre-clinical model of NS, i.e., in Spink5−/− mice as well as the aberrant expression of differentiation markers and (corneo)desmosomal proteins, were, then, investigated by histological staining in skin tissue biopsies obtained from NS, SD, and psoriasis patients (Figure 3). The NS sample showed similarly to Spink5−/− hyperkeratosis, acanthosis, and SC detachment.

Psoriasis is also an inflammatory skin condition with erythematous scaling patches. As shown in Figure 3, epidermal hyperplasia and hyperkeratosis were detected that could be a consequence of hyperproliferative epidermis, as illustrated previously by abnormal expression of integrin, which is not confined to the basal layer but extends to the suprabasal layers (Watt, 2002).

On the other hand, SD is a chronic skin disease characterized by recurring inflammation and visible signs of erythematous scaling patches and itching. The affected areas include the face, scalp, upper chest, and other parts of the body that are mainly areas rich in sebaceous glands (Borda et al. 2018). Dandruff is a milder disease that does not involve inflammation and is restricted to the scalp. Histopathological findings in SD include epidermal hyperplasia and hyperkeratosis (Figure 3). These are likely a result of increased proteolytic activities in the epidermis (Zingkou et al. 2019).

All diseases shown here are characterized by epidermal hyperplasia and hyperkeratosis that are signs of abnormal differentiation. In addition, all three diseases are inflammatory and chronic inflammation is known to be causative for hyperkeratosis and acanthosis (https://www.ncbi.nlm.nih.gov/books/NBK562206/). In Figure 3, parakeratosis, namely retention of nuclei at the corneocytes, another sign of abnormal differentiation, is also observed in NS and psoriatic skin.

In addition, all diseases shown here are characterized by aberrantly elevated epidermal proteolysis. Increased levels of cathepsin S have been reported in SD patients and potentially the expression levels correlate with disease severity and itching (Viodé et al. 2014). In accordance, it was previously shown that cathepsin S provokes a scratching response in mice by activating MrgprC11 (Schnöenefuß et al. 2009). Moreover, in SD, high epidermal serine
protease activity was found (Zingkou et al. 2019). However, deletion of Klk5 seems to exacerbate the symptoms of dandruff (Zingkou et al. 2020). MMP2 or gelatinase A, a type IV collagenase, and its inhibitor TIMP2 have been found highly elevated in psoriatic skin and the active form of MMP2 was abnormally increased in psoriatic skin, as detected by gelatin zymography (Fleischmajer et al. 2000). KLK6, KLK10 and KLK13 proteases were found elevated in the SC of lesional and nonlesional psoriatic skin (Komatsu et al. 2005, 2007). Interestingly, KLK6 can activate the proMMP2 (Pampalakis et al. 2017), thus, overexpression of KLK6 in psoriasis could cause MMP2 overactivation. Using in vivo models, it was demonstrated that KLK6 is a causative protease for psoriasis and inflammatory joint disease and down-regulation of KLK6 expression represses the psoriatic symptoms, e.g., it reverted hyperplasia, etc (Billi et al. 2020). Imiquimod application in mice results in a psoriasiform phenotype, while Klk6−/− mice show less pronounced symptoms (Iinuma et al. 2017). Proteomics analysis in the skin of KC-Tie2 mice, a pre-clinical model for psoriasis, showed that KLK6, SERPINB and CSTA are increased in skin lesions and these data were validated in human samples (Lundberg et al. 2015). Taken together these data, it appears that KLK6 is an important regulator of psoriatic phenotype.

Keratinocyte-keratinocyte interactions are crucial to maintain skin integrity and skin barrier function, and the expression of (corneo)desmosomal proteins is essential for a normal skin microstructure and function. Even moderate alterations in the expression of the protein components of (corneo)desmosomes compromise skin barrier function dramatically. Aberrantly enhanced degradation of (corneo)desmosomal proteins has been reported in NS, as a result of KLK5 hyperactivation leading to severe exfoliation. Transmission electron microscopy (TEM) imaging of NS epidermis revealed several ultrastructure alterations, including decreased numbers of corneodesmosomes with reduced size and presence of numerous lipid droplets in their cytoplasm, thicker plasma membrane in the SG, indicative of premature maturation of the cornified envelope and abnormal ultrastructure of desmosomes (Descargues et al. 2006). Reduced degradation of (corneo)desmosomal cadherins was observed in psoriasis (Simon et al. 2008), although TEM showed reduced number of desmosomes and increased intercellular space between adjacent keratinocytes which could be causative for loose keratinocyte-keratinocyte cohesions (Fleischmajer et al. 2000). To our knowledge, expression of (corneo)desmosomal proteins and differentiations markers has not been investigated in SD but only in dandruff, in which retention of corneodesmosomes was found (Singh et al. 2014).
Immunohistochemical analysis of differentiation markers in skin from NS patients revealed moderately increased expression of involucrin, an early differentiation marker during keratinization, and increased expression of loricrin, a late marker of cornification leading to premature cornification of keratinocytes (Descargues et al. 2006). Expression of involucrin is elevated in psoriasis, while loricrin is reduced (Hohl, 1993).

In summary, dysregulated epidermal differentiation process and perturbed epidermal proteolytic activities are present in NS, AD and psoriasis. Collectively these diseases pinpoint that strictly controlled epidermal differentiation process and epidermal proteolytic activities are pivotal for normal skin microstructure and even moderate alterations affect dramatically skin structure and skin barrier function. Further, we verified that Spink5−/−mice is a reliable preclinical mouse model for tracing the untackled facets of NS. It should be noted that Spink5−/− mice are also an ideal model for atopic dermatitis (AD), since NS patients exhibit severe atopic symptoms that are largely mediated by the KLK5 activity (Furio et al. 2015). In this direction, polymorphisms in the SPINK5 gene have been identified in AD patients (Li et al. 2020). Thus, the study of Spink5−/− mice provides important insights into the mechanisms that drive not only NS but also AD pathogenesis with important implications for the development of new treatments. Further, the Tg-KLK5 mouse is alternative model for NS that survives to adulthood (12 months), thus, allowing the testing of potential pharmacological agents (Furio et al. 2014). Tg-KLK5 mouse recapitulates the major cutaneous hallmarks of NS and displays increased epidermal proteolytic activity, overdesquamation, and skin inflammation. However, it does not exhibit signs of abnormal epidermal terminal differentiation. Epidermal application of the borocyclic compound GSK951 that inhibits KLK5 with an IC50 250 pM in Tg-KLK5 mice reduced epidermal proteolysis and proinflammatory cytokine expression (Liddle et al. 2021). GSK951 has good epidermal permeability and is expected to be used in NS patients as the first disease-specific treatment.

Materials & Methods

Ethics statement. All patients and healthy donors provided written informed consent for use of the materials for research purposes, before obtaining biopsies. All experiments with mice were performed in accordance with the relevant National and EU laws and institutional guidelines. The protocol was approved by the local committee (Department of Regional Units of Achaia, Region of Western Greece).
Reagents and antibodies. All chemical reagents were obtained from Sigma-Aldrich. The antibodies were as follow: anti-oricrin (Abcam, ab24722), working dilution for immunohistochemistry (IHC) 1/1000; anti-involucrin (Santa Cruz, sc-15230), working dilution for IHC 1/1000; anti-cytokeratin 5 (Abcam, ab24647), working dilution for IHC 1/1000; anti-desmoglein 1 (Santa Cruz, sc-20114), working dilution for IHC 1/300; anti-desmocollin 1 (Santa Cruz, sc18115), working dilution for IHC 1/250; anti-corneodesmosin (CusAb, CSBPA0051241A01HU), working dilution for IHC 1/500.

Real-time PCR. RNA was isolated from neonatal skin tissue using the NucleoSpin RNA Kit (Macherey-Nagel), and 1 µg was transcribed to cDNA with First-Strand cDNA Synthesis Kit (Invitrogen) according to the manufacturers’ instructions. Relative expression analyses were performed using SYBR green (Applied biosystems) and the reactions were conducted using the Step One and Step One Plus Real-Time PCR Systems (Applied biosystems). The primers used were as follows: \textit{Spink5}-Forward: 5’-GTCAGACTAATAACGCA-3’, \textit{Spink5}-Reverse: 5’-GCAGGCAGGTTCAGAATCG-3’; \textit{Hprt1}-Forward: 5’-CTGGTTAAGCAGTACAGCCCA-3’, \textit{Hprt1}-Reverse: 5’-CGAGAGGTCTCTTTTCACCCAGC-3’.

Histology. Skin biopsies were fixed in 3.7% formaldehyde in PBS for 24 h and then embedded in paraffin blocks. 5 µm sections were cut with a microtome. Alternatively, sections were embedded in OCT and stored at -80°C. 5 µm cryosections were cut with a cryotome. To investigate the morphology of tissues sections were stained with haematoxylin/eosin (H/E) and observed under a light microscope using Zeiss Zen microscope software.

Immunohistochemistry. Skin cryosections of 5 µm were warmed to room temperature for 10 min, fixed in acetone for 10 min, air-dried for 5 min and hydrated in PBS for 5 min, before blocking of endogenous peroxidase activity in 3% H$_2$O$_2$/PBS for 10 min. Slides were then rinsed in PBS, blocked in 0.3% BSA/PBS-0.1% Triton-100x for 5 min and then, incubated in 0.3% BSA/PBS containing the diluted primary antibody. Afterwards, slides were washed twice with 0.3% BSA/PBS and incubated for 30 min in 0.3% BSA/PBS containing the secondary HRP-conjugated antibody following by 2 washes in 0.3% BSA/PBS and 1 wash in PBS. Finally, antibody staining was revealed by application of the 1x DAB substrate, and then sections were rinsed in PBS and stained with hematoxylin before mounted with Eukitt and observed under light microscope using Zeiss Zen microscope software.
Scanning Electron Microscopy. For SEM, neonates were sacrificed, and their heads were fixed in 4% paraformaldehyde/PBS overnight, dehydrated in ethanol solutions (50, 75, 90 and 100%) for 10 min in each step and then, dehydrated by incubation in 100% acetone twice for 20 min each and finally air-dried overnight before coated with a gold layer of 10 nm and analyzed using a field emission SEM microscope (JOEL, 6300).

Acknowledgements
We would like to thank Dr. Manthoula Valari, MD, PhD (Aghia Sofia Children’s Hospital, Athens, Greece) for providing the NS and SD biopsies and Professor Maria Melachrinou (Department of Pathology, School of Medicine, University of Patras, Rion-Patras, Greece) for the psoriatic skin biopsy. We would also like to thank Professor Andrew McKenzie (MRC Laboratory of Molecular Biology, Cambridge, UK) for kindly providing the Spink5−/− mice, and Dr. Andreas Seferlis (Laboratory of Electron Microscopy and Microanalysis, University of Patras, Greece) for technical assistance with scanning electron microscopy.

References
BILLI AC, LUNDWIG JE, FRITZ R, SWINDELL WR TSOI LC, GRUZSKA D, ABDOLLAHI-ROODSAZ S, XING X, DIACONU D, UPPALA R, CAMHI MI, KLENOTIC PA, SARKAR MK, HUSNI ME, SCHER JU, McDONALD C, KAHLENBERG JM, MIDURA RJ, GUDJONSSON JE, WARD NL (2020). KLK6 expression in skin induces PAR1-mediated psoriasiform dermatitis and inflammatory joint disease. J Clin Invest 130: 3151-3157.

BISYRIS E, ZINGKOU E, KORDOPATI GG, MATSOUKAS M MAGRIOTIS PA, PAMPALAKIS G, SOTIROPOULOU G (2021). A novel theranostic activity-based probe targeting kallikrein 7 for the diagnosis and treatment of skin diseases. Chem Commun 57: 6507-6510.

BORDA LJ, PERPER M, KERI JE (2018). Treatment of seborrheic dermatitis: a comprehensive review. J Dermatol Treat 30: 158-169.

BORGOÑO CA, MICHAEL IP, KOMATSU N, JAYAKUMAR A, KAPADIA R, CLAYMAN GL, SOTIROPOULOU G, DIAMANDIS EP (2007). A potential role for
multiple tissue kallikrein serine proteases in epidermal desquamation. *J Biol Chem* 282: 3640-3652.

CHAVANAS S, BODEMER C, ROCHAT A, HAMEL-TEILLAC D, ALI M, IRVINE AD, BONAFÉ JL, WILKINSON J, TAÏEB A, BARRANDON Y, HARPER JI, DE PROST Y, HOVNANIAN A (2000). Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. *Nat Genet* 25: 141-142.

DERSCARGUES P, DERAISON C, PROST C, FRAITAG S, MAZEREEUW-HAUTIER J, D’ALESSIO M, ISHIDA-YAMAMOTO A, BODEMER C, ZAMBRUNO G, HOVNANIAN A (2006). Corneodesmosomal cadherins are preferential targets of stratum corneum trypsin- and Chymotrypsin-like hyperactivity in Netherton syndrome. *J Invest Dermatol* 126: 1622-1632.

DESCARGUES P, DERAISON C, BONNART C, KREFT M, KISHIBE M, ISHIDA-YAMAMOTO A, ELIAS P, BARRANDON Y, ZAMBRUNO G, SONNENBERG A, HOVNANIAN A (2005). Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. *Nat Genet* 37: 56-65.

DU H, WANG Y, HAENSEL D, LEE B, DAI X, NIE Q (2018). Multiscale modeling of layer formation in epidermis. *PLOS Comput Biol* 14: e1006006.

FLEISCHMAJER R, KURODA K, HAZAN R, GORDON RE, LEBWOHL MG, SAPADIN AN, UNDA F, IEHARA N, YAMADA Y (2000). Basement membrane alterations in psoriasis are accompanied by epidermal overexpression of MMP-2 and its inhibitor TIMP-2. *J Invest Dermatol* 115: 771-777.

FURIO L, PAMPALAKIS G, MICHAEL IP, NAGY A, SOTIROPOLLOU G, HOVNANIAN A (2015). KLK5 inactivation reverses cutaneous hallmarks of Netherton syndrome. *PLoS Genet* 21: e1005389.

FURIO L, DE VEER S, JAILLET M, BRIOT A, ROBIN A, DERAISON C, HOVNANIAN A (2014). Transgenic kallikrein 5 mice reproduce major cutaneous and systemic hallmarks of Netherton syndrome. *J Exp Med* 211: 499-513.

FORTUGNO P, FURIO L, TESON M, BERRETTI M, EL HACHEM M, ZAMBRUNO G, HOVNANIAN A, D’ALESSIO M (2012). The 420K LEKTI variant alters LEKTI proteolytic
activation and results in protease deregulation: implications for atopic dermatitis. *Hum Mol Genet* 21: 4187-4200.

GETSIOS S, SIMPSON CL, KOJIMA SI, HARMON R, SHEU LJ, DUSEK RL, CORNWELL M, GREEN KJ (2009). Desmoglein 1-dependent suppression of EGFR signaling promotes epidermal differentiation and morphogenesis. *J Cell Biol* 185: 1243-1258.

HARMON RH, SIMPSON CL, JOHNSON JL, KOETSIER JL, DUBASH AD, NAJOR NA, SARIG O, SPRECHER E, GREEN KJ (2013). Desmoglein-1/Erbin interaction suppresses ERK activation to support epidermal differentiation. *J Clin Invest* 123: 1556-1570.

HEWETT DR, SIMONS AL, MANGAN NE, JOLIN HE, GREEN SM, FALLON PG, McKENZIE ANJ (2005). Lethal, neonatal ichthyosis with increased proteolytic processing of filaggrin in a mouse model of Netherton syndrome. *Hum Mol Genet* 14: 335-346.

HOHL D (1993). Expression patterns of loricrin in dermatological disorders. *Am J Dermatopathol* 15: 20-27.

HOLBROCK KA (1979). Human epidermal embryogenesis. *Int J Dermatol* 18: 329-356.

IINUMA S, KISHIBE M, SAITO N, IGAWA S, HONMA M, BANO Y, YOSHIDA S, ISHIDA-YAMAMOTO A (2017). Kallikrein-related peptidase 6 promotes psoriasiform skin inflammation through a protease-activated receptor 2-independent mechanism. *Exp Dermatol* 26: 289-291.

KOMATSU N, SAJOH K, TOYAMA T, OHKA R, OTSUKI N, HUSSACK G, TAKEHARA K, DIAMANDIS EP (2005). Multiple tissue kallikrein mRNA and protein expression in normal skin and skin disease. *Br J Dermatol* 153: 274-281.

KOMATSU N, SAJOH K, KUK C, SHIRASAKI F, TAKEHARA K, DIAMANDIS EP (2007). Aberrant human tissue kallikrein levels in the stratum corneum and serum of patients with psoriasis: dependence on phenotype, severity and therapy. *Br J Dermatol* 156: 875-883.

LI Y, GUO X, ZHOU S, ZHENG H (2020). Genetic polymorphisms in serine protease inhibitor Kazal-type 5 and risk of atopic dermatitis: A meta-analysis. *Medicines (Baltimore)* 99: e21256.

LIDDLE J, BENETON V, BENSON M, BINGHMA R, BOUILLOT A, BOULLAY AB, BROOK E, CRYAN J, DENIS A, EDGAR E, FERRIE A, FOUCHET MH, GRILLOT D, HOLMES D, HOWES A, KRYSA G, LAROZE A, LENNON M, McCLURE F, MOQUETTE
A, NICODEME E, SANTIAGO B, SANTOS L, SMITH KJ, THORPE JH, THRIPP G, TROTTER L, WALKER AL, WARD S, WANG Y, WILSON S, PEARCE AC, HOVANANIAN A (in press). A potent and selective kallikrein-5 inhibitor delivers high pharmacological activity in skin from patients with Netherton syndrome. *J Invest Dermatol* DOI: 10.1016/j.jid.2021.01.029.

LUNDBERG KC, FRITZ Y, JOHNSTON A, FOSTER AM, BALIWAG J, GUDJONSSON JE, SCHLATZER D, GOKULRANGAN G, TS McCORMICK, CHANCE MR, WARD NL (2015). Proteomics of skin proteins in psoriasis: from discovery and verification in a mouse model to confirmation in humans. *Mol Cell Proteomics* 14: 109-119.

MAZEREEUW-HAUTIER J, LECLERC EA, SIMON M, SERRE N, JONCA N (2011). A novel mutation in CDSN causes peeling skin disease in a patient from Morocco. *Br J Dermatol* 165: 1152-1155.

OVAERE P, LIPPENS S, VANDENABEELE P, DECLERCQ W (2009). The emerging roles of serine protease cascades in the epidermis. *Trends Biochem Sci* 34: 453-463.

PAMPALAKIS G, ZINGKOU E, KAKLAMANIS L, SPELLA M, STATHOPOULOS GT, SOTIROPOULOU G (2019). Elimination of KLK5 inhibits early skin tumorigenesis by reducing epidermal proteolysis and reinforcing epidermal microstructure. *BiochimBiophysActa Mol Basis Dis* 1865: 165520.

SAMUELOV L, SARIG O, HARMON RM, RAPAPORT D, ISHIDA-YAMAMOTO A, ISAKOV O, KOETSIER JL, GAT A, GOLDBERG I, BERGMAN R, SPIEGEL R, EYTAN O, GELLER S, PELEG S, SHOMRON N, GOH CSM, WILSON NJ, SMITH FJD, POHLER E, SIMPSON MA, McLEAN WHI, IRVINE AD, HOROWITZ M, McGrATH J, GREEN KJ, SPRECHER E (2013). Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting. *Nat Genet* 45: 1244-1248.

SCHNÖNEFUß A, WENDT W, SCHATTLING B, SCHULTENL R, HOFFMANN K, STUECKER M, TIGGES C, LÜBBERT H, STICHE C (2010). Upregulation of cathepsin S in psoriatic keratinocytes. *Exp Dermatol* 19: e80-88.

SHORT B (2009). Desmoglein directs differentiation. *J Cell Biol* 185: 1130.
SIMON M, TAZI-AHNINI R, JONCA N, CAUBET C, CORK MJ, SERRE G (2008). Alterations in the desquamation-related proteolytic cleavage of corneodesmosin and other corneodesmosomal proteins in psoriatic lesional epidermis. Br J Dermatol 159: 77-85.

SIMON M, JONCA N, GUERRIN M, HAFTEK M, BERNARD D, CAUBET C, EGELRUD T, SCHMIDT R, SERRE G (2001). Refined characterization of corneodesmosin proteolysis during terminal differentiation of human epidermis and its relationship to desquamation. J Biol Chem 276: 20292-20299.

SIMPSON CL, PATEL DM, GREEN KJ (2011). Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol 12: 565-580.

SINGH B, HAFTEK M, HARDING CR (2014). Retention of corneodesmosomes and increased expression of protease inhibitors in dandruff. Br J Dermatol 171: 760-770.

SOTIROPOULOU G, ZINGKOU E, PAMPALAKIS G (2021). Redirecting drug repositioning to discover innovative cosmeceuticals. Exp Dermatol 30: 628-644.

SOTIROPOULOU G, PAMPALAKIS G (2012). Targeting the kallikrein-related peptidases for drug development. Trends Pharmacol Sci 33: 623-634.

VEMURI BR, SHUOHAO S, AZIMI E, ELMARIAH SB, DONG X, LERNER EA (2015). Redefining the concept of protease-activated receptors: cathepsin S evokes itch via activation of Mrgprs. Nat Commun 6: 7864.

VIODÉ C, LEJEUNE O, TURLIER V, ROUQUIER A, CASAS C, MENGEAUD V, REDOULÉS D, SCHMITT AM (2014). Cathepsin S, a new pruritus biomarker in clinical dandruff/seborrhoeic dermatitis evaluation. Exp Dermatol 23: 272-293.

WATT FM (2002). Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J 21: 3919-3926.

ZINGKOU E, PAMPALAKIS G, KIRITSI D, VALARI M, JONCA N, SOTIROPOULOU G (2019). Activography reveals aberrant proteolysis in desquamating diseases of differing backgrounds. Exp Dermatol 28: 86-89.

ZINGKOU E, PAMPALAKIS G, SOTIROPOULOU G (2020). Exacerbated dandruff in the absence of kallikrein-related peptidase 5 protease. J Dermatol 47: 311-313.
Figure 1. A. Schematic representation of human and mouse epidermis development. Skin tissue rises from the ectoderm, a single layer of progenitor cells of keratinocytes. At the end of the 4th week of life the development of human epidermis begins and by the end of the 5th week the periderm has been developed lying on the basal layer. Differentiation processes initiate around week 11 and by the 20th week all epidermal layers have been formed. Development of murine epidermis initiates around E8.5 from ectodermal keratinocytes which express keratin 8 and 18. On E10.5 stratification process initiates and keratinocytes express keratin 5 and 14 and subsequently stratum spinosum is formed. On E15.5, keratinocyte early differentiation initiates to form stratum granulosum. On E16.5 keratinocytes are leading to cornification and finally by E18.5 stratum corneum is formed. B. Architecture of human and mouse skin. Human and mouse skin share common histological characteristics consisting of 3 distinct layers, the epidermis, the dermis underneath, and the hypodermis. A major difference between human and murine skin is the thickness of the tissue being more than 100 μm and less than 25 μm in human and mouse, respectively.
Figure 2. Skin abnormalities in Spink5^{−/−} mouse model. A. The bar graph shows the relative expression of Spink5 quantified by real-time PCR in wild type (wt) and Spink5^{−/−} skin. Spink5 is significantly undetectable in the skin of Spink5^{−/−} mice compared to wt counterparts. The bars represent the mean ± SEM of 4 different mice in each group; *** p ≤ 0.001; expression was normalized using the Hprt1 housekeeping gene. B. Macroscopic appearance of wt and the Spink5^{−/−} mouse model for Netherton syndrome (NS). C-D. H/E staining and scanning electron microscopy (SEM) of skin from wt and Spink5^{−/−} neonates revealed that skin microstructure is abnormal in Spink5^{−/−} mice. Hyperkeratosis and marked disruption of the SC from the deeper epidermal layers were observed in the Spink5^{−/−} compared to the control. E. IHC analysis showed changes in expression of differentiation marker including loricrin and involucrin in Spink5^{−/−} mice compared to the wt counterpart. F. IHC analysis showed that expression of (corneo)desmosomal proteins is reduced in Spink5^{−/−}.
Figure 3. Histological analysis of NS, SD and psoriatic skin. A. Human healthy and disease tissue sections were stained with H/E followed by microscopic examination. Epidermal hyperplasia and hyperkeratosis were found in all diseased skin. Parakeratosis was observed in NS and psoriatic skin. B. Summary of the expression of epidermal proteases, endogenous protease inhibitors, the (corneo)desmosomal proteins, and the markers of epidermal differentiation in NS, SD or psoriasis.