Pis'ma v ZhETF

Superconducting energy gap distribution in c-axis oriented MgB$_2$ thin film from point contact study

Yu. G. Naidyuk$^{1)}$, I. K. Yanson, L. V. Tyutrina, N. L. Bobrov, P. N. Chubov, W. N. Kang*, Hyeong-Jin Kim*, Eun-Mi Choi*, and Sung-Ik Lee*

B.Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., 61103, Kharkiv, Ukraine

*National Creative Research Initiative Center for Superconductivity, Department of Physics, Pohang University of Science and Technology, Pohang 790-784, South Korea

Submitted 15 January 2002

We have analyzed about hundred voltage-dependent differential resistance $dV/dI(V)$ curves of metallic point contacts between c-axis oriented MgB$_2$ thin film and Ag, which exhibit clear Andreev reflection features connected with the superconducting gap. About one half of the curves show the presence of a second larger gap. The histogram of the double gap distribution reveals distinct maxima at 2.4 and 7 meV, while curves with a single-gap features result in more broad maximum at 3.5 meV. The double-gap distribution is in qualitative agreement with the distribution of gap values over the Fermi surface calculated by H. J. Choi et al. (cond-mat/0111183). The data unequivocally show the presence of two gaps $\Delta_S = 2.45 \pm 0.15$ meV and $\Delta_L = 7.0 \pm 0.45$ meV in MgB$_2$ with gap ratio $\Delta_L/\Delta_S = 2.85 \pm 0.15$. Our observations prove further a widely discussed multigap scenario for MgB$_2$, when two distinct gaps are seen in the clean limit, where a single averaged gap is present in the dirty one.

PACS: 73.40.Jn, 74.76Db, 74.80.Fp

Introduction. Direct spectroscopic investigations of the superconducting order parameter in recently discovered superconductor MgB$_2$ with $T_c \approx 40$ K by tunneling [2, 3, 4, 5, 6, 7, 8, 9, 10] and point-contact spectroscopy [11, 12, 13, 14, 15, 16, 17] show unambiguously an energy gap Δ in the quasiparticle density of states (DOS). However, the experimental results are controversial as to the gap width Δ, whose variation from 1.5 to 8 meV (see, e. g., review [18]) is unexpectedly large, pointing to the possibility of multiphase or nonhomogeneous samples, degraded surface, or anisotropic energy gap. Another way to solve this puzzle is to consider two superconducting gaps in MgB$_2$, as proposed by Liu et al. [19], accounting complex electronic structure of MgB$_2$ with both quasi-2D and 3D Fermi surface [20]. Indeed, several papers [8, 16, 17] have reported double gap structure in the differential conductance (resistance) with the smaller gap being far below weak-coupling BCS value $\Delta = 1.76k_BT_c \approx 6$ meV and the larger gap slightly above the standard BCS one, in accordance with theory [19].

Therefore, one of the intriguing key issues of superconducting state of MgB$_2$ is whether the double gap state is intrinsic or the spread of the gap values is a result of anisotropy, nonhomogeneity, surface effect, etc. In other words, before macroscopic high quality single crystals will be available for thorough investigations, the sample imperfection may raise doubts about the final conclusion. However, in our mind, good reproducibility of the double-gap values given by different authors [2, 3, 4, 5, 6, 7, 8, 10] by different, in their physical background, methods such as tunneling and point-contact spectroscopy carried out on different samples such as pellets, films, grains, all this with a great degree of probability supports intrinsic nature of the double gap in MgB$_2$.

In this paper we will give further confirmation of double gap scenario in MgB$_2$ based on analysis of about hundred point-contact spectra of c-axis oriented thin films.

Experimental and calculation details. We have measured the high-quality c-axis oriented 0.4 μm thick MgB$_2$ film [21] grown by a PLD technique on Al$_2$O$_3$ substrate. The resistivity of the film exhibits a sharp transition at 39 K with a width of ≈ 0.2 K from 90% to 10% of the normal state resistivity [21]. The residual resistivity ρ_0 at 40 K is $\approx 6 \mu\Omega$cm [7] and RRR=2.3.

Different point contacts (PCs) were established in situ directly in liquid 4He by touching as-prepared surface (sometimes etched by 1% HCl solution in ethanol) of the MgB$_2$ film by a sharpened edge of an Ag counter-electrode, which were cleaned by chemical polishing in...
Yu. G. Naidyuk, I. K. Yanson, L. V. Tyutrina et al.

The geometry corresponds to the current flowing preferably along the c axis. A number of contacts were measured by touching of the film edge after breaking Al2O3 substrate. By this means, the current flows preferably along the ab plane. The differential resistance dV/dI vs V was recorded using a standard lock-in technique. The normal resistance R_N (at $V \gg \Delta$) of investigated contacts ranged mainly between 10 and 1000 Ω at 4.2 K.

The important characteristic of PC is their size or diameter d, which can be determined from the simple formula derived by Wexler [22] for contact resistance:

$$R_{PC}(T) \approx \frac{16\rho l}{3\pi d^2} + \frac{\rho(T)}{d},$$

where two terms represent ballistic Sharvin [1] and diffusive Maxwell resistance, correspondingly. Here $\rho = p_F/n e^2$, where p_F is the Fermi momentum and n is the density of charge carriers. The latter for MgB$_2$ is estimated at $n \simeq 6.7 \times 10^{22}$ [23], which results in $\rho l \simeq 2 \times 10^{-12} \Omega \cdot cm^2$ using $v_F \simeq 5 \times 10^7 cm/s$ [20]. Hence, the upper limit for elastic mean free path $l = \rho l / \rho_0$ for our film is about 3 nm. In this case, according to Eq. (1), the condition $d < l$ is fulfilled for PC with $R > 40 \Omega$ or for lower resistance supposing multiple contacts in parallel.

We have utilized generally used Blonder-Tinkham-Klapwijk equations [24] describing $I − V$ characteristic of ballistic N-c-S metallic junctions (here N is normal metal, c is constriction and S is superconductor) by accounting for the processes of Andreev reflection. At finite barrier strength at the N-S interface characterized by parameter $Z \neq 0$ and $T \ll T_c$, the theory gives the dV/dI curves with minima at $V \simeq \pm \Delta/e$. To get the correct Δ, the fit of the measured curves to the theory should be done. The additional smearing of dV/dI curves due to, e. g., broadening of the quasiparticle DOS in the superconductor can be taken into account by including parameter Γ [25].

In the case of curves with double gap structure we calculated, according to the theory [24], the sum of two differential conductances dI/dV with the weight w for the larger gap and, correspondingly, with $(1 − w)$ for the smaller one. After this, we have transformed dI/dV into dV/dI to compare with the measured dependences. The best fit was achieved, as a rule, by using its own values of Z and Γ for large and small gap. It is acceptable if we suppose that we have a number of microconstrictions with various Z in the region of mechanical touch.

It is worthy to note that, with increasing of weight factor, the difference between Z and Γ values for large and small gap becomes smaller or even vanishes for some PCs.

Results and discussion. Approximately one half (44 of total 91) of analyzed raw dV/dI curves vs. V curves show visible two-gap structure, although, in most cases with shallow features corresponding to a larger gap. The samples of some dV/dI curves taken at 4.2 K $\ll T_c$ with double-gap structure, along with calculated curves, are shown in Fig. 1. In spite of a number of fitting parameters (Δ, Γ, Z, w) for curves with pronounced (or at least visible as shown in Fig. 1) double gap features determined Δ_L and Δ_S are robust as to fitting procedure.

It turns out that histogram of gaps distribution built on the basis of fitting of 44 spectra (see Fig. 2a) has two well-separated and quite narrow (especially for the small gap) maxima.

The double-gap distribution is in qualitative agreement with the distribution of gap values over the Fermi surface recently calculated in [23] (see Fig. 2c). The main difference is that theoretical distribution for lower gap is wider and has a dominant maxima around 1.6 meV. This discrepancy can be resolved when we draw attention that we have measured curves with double gap structure for contacts that is predominantly along the c-axis. In this case, according to [26], gap values along c-axis spreads between 2 and 3 meV. The c-axis directionality of our measurements is, apparently, the main reason of a shallow large gap structure in dV/dI, because large gap dominates in the "a-b" plane [24].

It should be mentioned that two very different order parameters exist only in the clean limit $l \gg 2\pi\xi$. Since in our case l has upper limit in 3 nm and the coherence length $\xi \sim 5 \text{ nm}$ [27], the observation of two gaps is in line with our supposition that in the PC area there are small grains with a much larger mean free path. Indeed, SEM image of MgB$_2$ films [10] shows that the film is granular with 100-500 nm large grains. Therefore, in the area of mechanical contact there are some amount of small metallic bridges, perhaps, with slightly different crystallographic orientation being in parallel.

The single gap Δ is seen for the dirty limit [1] and is average of small and large gaps with some weights. If we assume that this weight has some relation to the weight w used in the fitting procedure, then, admittily, $\Delta \simeq w \Delta_L + (1 − w)\Delta_S = 3.4 \text{ meV}$ by using upper limit $w \simeq 0.2$ (see Fig. 3). This agrees with the position of the maximum of single-gap distribution at 3.5 meV.

3) In the case of interface scattering Sharvin resistance should be multiple by factor $(1+Z^2)$ [24].

4) On dV/dI of "edge" contacts (a total of 11 curves) only single gap structure was observed, probably due to the deterioration of the film edge after breaking.
Superconducting energy gap distribution in MgB$_2$ (see, Fig. 2b). By the way, according to the calculation in [28], a large amount of impurity scattering will cause the gaps to converge to $\Delta \approx 4.1$ meV.

Therefore the superconducting properties of this compound can be strongly influenced by nonmagnetic defects and impurities, which seem to have a great impact also on the scattering of gap value(s) given by different authors.

As to w factor it is hardly to see in Fig. 3 its dependence on R_N or PC size, which one would expect if small gap reflects a degraded surface or large gap is a result of surface states [29].

Table II shows double gap values given by different authors. A quite good correspondence between our results and data of other authors carried out on different types of MgB$_2$ samples is evident. In our case averaged over 44 curves, the ratio of the larger gap to the lower one 2.85 ± 0.15 is close to the theoretical value $3:1$ [19].

In conclusion. We have analyzed dV/dI point-contact spectra of MgB$_2$ with clear single- and double-gap structure. The observed distinct maxima in the double gap distribution which is consistent with theoretical calculations [20] ruled out surface or multiphase origin of gap structure and testify about intrinsic superconducting double-gap state in MgB$_2$. The averaged gap value ratio turned out to be in accordance with the theoretically predicted ratio 1:3 [19].

Acknowledgments The work in Ukraine was supported by the State Foundation of Fundamental Research, Grant Ф7/528-2001. The work at Postech was supported by the Ministry of Science and Technology of Korea through the Creative Research Initiative Program. IKY is grateful to Forschungszentrum Karlsruhe for hospitality.

1. J. Nagamatsu, N. Nakagawa, T. Muranaka et al., Nature 410 63 (2001).
2. G. Karapetrov, M. Iavarone, W. K. Kwok et al., Phys. Rev. Lett. 86 4374 (2001).
3. G. Rubio-Bollinger, H. Suderow, S. Vieira, Phys. Rev. Lett. 86 5582 (2001).
4. A. Sharoni, I. Felner, D. Millo, Phys. Rev. B 63 220508R (2001).
5. P. Seneor, C.-T. Chen, N.-C. Yeh et al., Phys. Rev. B 65 012505 (2002).
6. F. Giubileo, D. Roditchev, W. Sachs et al., cond-mat/0105146.
7. F. Giubileo, D. Roditchev, W. Sacks et al., Phys. Rev. Lett. 87 177008 (2001).
8. Mohamed H. Badr, Mario Freemat, Yuri Sushko, and K.-W. Ng, cond-mat/0104021.
9. Y. Zhang, D. Kinion, J. Chen et al., cond-mat/0107478.
10. H. Schmidt, J. F. Zasadzinski, K. E. Gray et al., Phys. Rev. B 63 220504(R) (2001).
11. A. Kohen and G. Deutscher, Phys. Rev. B 64 060506(R) (2001).
12. A. Plecenik, Š. Beňačka, P. Kúš et al., Physica C, 368 251 (2002).
13. F. Laube, G. Golli, J. Hagel et al., Europhysics Lett. 56 296 (2001).
14. R. S. Gonnelli, A. Calzolari, D. Daghero et al., cond-mat/0107234.
15. P. Szabó, P. Samuely, J. Kacmarčík et al., Phys. Rev. Lett. 87 137005 (2001).
16. Y. Bugslovsky, Y. Miyoshi, G. K. Perkins et al., cond-mat/0110296.
17. N. L. Bobrov, P. N. Chubov, Yu. G. Naidyuk et al., cond-mat/0110006.
18. C. Buzea and T. Yamashita, Superconductors, Science & Technology, 14 N11, R115-R146, (2001).
19. A. Y. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. 87 087005 (2001).
20. J. Kortus, I. I. Mazin, K. D. Belashchenko et al., Phys. Rev. Lett. 86 4656 (2001).
21. W. N. Kang, Hyeong-Jin Kim, Eun-Mi Choi et al., Phys. Rev. Lett. 87 087002 (2001).
22. A. Wexler, Proc. Phys. Soc. 89 927 (1966).
23. P. C. Canfield, D. K. Finnemore, S. L. Bud’ko et al., Phys. Rev. Lett. 86 2423 (2001).
24. G. E. Blonder, M. Tinkham, T. M. Klapwijk, Phys. Rev. B 25 4515 (1982).
25. R. C. Dynes, V. Narayanamurti and J. P. Garno, Phys. Rev. Lett. 41 1509 (1978).
26. Hyoung Joon Choi, David Roundy, Hong Sun et al., cond-mat/0111183.
27. D. K. Finnemore, J. E. Ostenson, S. L. Bud’ko et al., Phys. Rev. Lett. 86 2420 (2001).
28. A. Brinkman, A. A. Golubov, H. Rogalla et al., cond-mat/0111112.
29. V. D. P. Servicio, S.-L. Drechsler, T. Mishonov, cond-mat/0110143.
Figure 1.
Reduced differential resistance $R_N^{-1}dV/dI$ vs. V measured at $T = 4.2$ K for four MgB$_2$-Ag contacts with double gap structure (symbols). Thin lines are theoretical dependences calculated with parameters given in Table I. The curves (1-3) are vertically offset for clarity. Vertical dashed lines show approximately position of large Δ_L and small Δ_S gaps. Experimental curves are taken nominally in c-directions.

Table 1. Fitting parameters for curves presented in Fig. 1.

Parameters	Curve 1	Curve 2	Curve 3	Curve 4
R_N, Ω	47	35	20	34
Δ_L, meV	7.4	6.25	7.35	7.3
Δ_S, meV	2.6	2.54	2.4	2.6
w-factor	0.11	0.08	0.07	0.06
Z_L	0.7	0.71	0.63	0.21
Z_S	0.75	0.55	0.56	0.76
Γ_L, meV	0.4	0.1	0.55	0
Γ_S, meV	0.5	0.54	0.38	0.3

Table 2. Gap values in MgB$_2$ measured by point-contact (PCS) or tunneling spectroscopy (TS).

Method	Sample	Δ_S, meV	Δ_L, meV	Refs.
PCS	Film	2.45 ± 0.15	7.0 ± 0.4	This pap.
PCS	Film	2.3 ± 0.3	6.2 ± 0.7	[16]
PCS	Grain	2.8	7	[15]
TS	Granular	3.9	7.5	[1]
TS	50µ crys.	3.8	7.8	[2]
TS	polycrys.	1.75	8.2	[3]

Figure 2.
The superconducting energy-gap distribution in c-axis-oriented MgB$_2$ thin film in the case: (a) double gap and (b) single gap. Thin lines show Gaussian fit with maxima at (a) 2.45 and 7 meV and (b) 3.5 meV. The histogram window of 0.25 meV for (a) and 0.5 meV for (b) is chosen to get the most close to normal (Gaussian) distribution. (c) Distribution of gap values over the Fermi surface calculated in [26].

Figure 3.
Dependence of the weight factor w on the point-contact resistance.