Factors associated with mechanical restraint in the hospital environment: a cross-sectional study

Lívia Maria da Silva Souza1
Rosimere Ferreira Santana1
Cristiane da Silva Gabriel Capeletto1
Arianna Kassiadou Menezes1
Romulo Delvalle1

ABSTRACT

Objective: To estimate the prevalence of mechanical restraint in the hospital environment and the factors associated with its performance. Method: A cross-sectional, observational study with patients from a public hospital from the medical ward, surgical ward and intensive care unit evaluated by descriptive, univariate and multivariate analyses. Results: One hundred eleven (111) patients participated in the study. The prevalence of mechanical restraint was 51.4%; bilateral rails on the bed were used in 100% of the restraints, and bilateral wrist restraints were also observed in 29.8%. The most common justifications were the risk of falls (100.0%) and the risk of non-scheduled removal of invasive devices (57.9%). The restrained patients differ significantly from those not restrained by the following associated factors: male gender; age; stroke diagnosis; the hospitalization unit; ambulation capacity; the use of sedative medication; and the use of invasive devices. Conclusion: This study estimated a high mechanical restraint prevalence in the hospital environment and determined factors associated with the risk of a patient being restrained. A medical restraint evaluation team is recommended for an in-depth analysis of indication and therapy.

DESCRIPTORS

Restraint, Physical; Hospital Care; Nursing Care; Humanization of Assistance; Patient Safety.

Como citar este artigo:
Souza LMS, Santana RF, Capeletto CSG, Menezes AK, Delvalle R. Factors associated with mechanical restraint in the hospital environment: a cross-sectional study. Rev Esc Enferm USP. 2019;53:e03473. DOI: http://dx.doi.org/10.1590/S1980-220X2018007303473

Fatores associados à contenção mecânica no ambiente hospitalar: estudo transversal*

Factores asociados con la contención mecánica en el entorno hospitalario: estudio transversal

* Extraído da dissertação “Contenção mecânica no ambiente hospitalar: estudo transversal”, Mestrado Profissional em Enfermagem Assistencial, Universidade Federal Fluminense, 2018.

1 Universidade Federal Fluminense,
Escola de Enfermagem Aurora de Afonso Costa, Niterói, RJ, Brasil.

Recebido: 02/03/2018
Aprovado: 13/12/2018

Autor correspondente:
Rosimere Ferreira Santana
Rua Dr. Celestino, 74 – Centro
CEP 24020-091 – Niterói, RJ, Brasil
rosifes@gmail.com

Rev Esc Enferm USP - 2019;53:e03473
INTRODUÇÃO

A contenção mecânica é frequentemente utilizada nos serviços de saúde como meio de controle de pacientes agitados, confusos, desorientados, que apresentam um suposto risco de queda ou que tentam remover dispositivos biomédicos indicados em seu tratamento(1). Entretanto, existem controvérsias e críticas relevantes quanto a sua prática(2).

Neste estudo, optou-se por considerar a contenção mecânica como a utilização de dispositivos e equipamentos anexados ou adjacentes ao corpo do indivíduo, os quais limitam ou impedem o deslocamento, a movimentação livre para uma posição de escolha ou o acesso ao próprio corpo, e que não podem ser controlados ou removidos facilmente pelo próprio indivíduo(3).

Podem ser consideradas contenções mecânicas: a contenção de membros por meio da utilização de faixas ataduras ou dispositivos industrializados específicos; o uso de grades bilaterais no leito; os cinturões para restringir a mobilidade do tronco ou da pelve; os coletes utilizados para que um indivíduo permaneça atado ao leito ou cadeira; as mesas fixadas em cadeiras que impede a pessoa de se levantar. Importante distinguir que procedimentos utilizados durante manobras de mobilização e deslocamento em urgência e emergências ou necessários para a realização de exames complementares ou cirurgias não são considerados contenção mecânica. Portanto, a contenção não inclui, entre outros, os aparelhos de imobilização prescritos ortopedicamente ou as órteses utilizadas para a correção ou o apoio postural.

Da mesma forma, a contenção mecânica não se refere à possibilidade de segurar fisicamente um paciente em caráter temporário para viabilizar exames, procedimentos clínicos-cirúrgicos ou manobras motoras em situação de maior segurança(4). Essas ações implicam benefícios previstos para o paciente, facilitando as condições para a sua saúde e integridade, ao contrário do uso da contenção, praticado a partir do senso comum ou com a intenção de reduzir um risco hipotético ou não avaliado adequadamente.

A contenção mecânica tem sido usada historicamente nos serviços de saúde de forma indiscriminada e não reflexiva. Entretanto, a literatura evidencia que tal prática se associa tanto às complicações comuns à imobilização, tais como lesões por pressão, pneumonia ou trombose venosa profunda, quanto a eventos de maior gravidade diretamente relacionados à contenção, entre eles, o óbito por trauma grave ou sufocamento. A imobilização forçada também causa estresse psicológico e tem um impacto negativo nas habilidades cognitivas(5).

Em função dos possíveis eventos adversos relacionados ao uso da contenção mecânica, o Conselho Federal de Enfermagem (COFEN) publicou a Resolução n.º 427 em 2009 para normatizar os procedimentos de enfermagem no emprego da contenção mecânica de pacientes(5). Tal resolução corrobora o que preconiza a Joint Commission em seu Manual de Intervenção Não Violenta da Crise, publicado em 2009. Ambos orientam a utilização da contenção mecânica somente quando for clinicamente justificada e o único meio disponível para prevenir dano imediato ou iminente ao paciente ou aos demais(6); também recomendam a avaliação do paciente a cada 1 hora e o monitoramento clínico do nível de consciência, de dados vitais e de condições de pele e circulação nos locais e membros contidos do paciente, com destaque ao cuidado especial de idosos e crianças. Além disto, a Joint Commission destaca a necessidade de treinamento de pessoal para a realização da contenção mecânica, assim como alerta sobre a necessidade de notificação dos casos de morte que possam estar associados ao seu uso(5-8).

No Brasil é escassa a produção científica sobre a contenção mecânica, sua prevalência e fatores associados. Assim, o objetivo deste estudo é estimar a prevalência de contenção mecânica no ambiente hospitalar e os fatores associados à sua realização.

MÉTODO

DESENHO DO ESTUDO

Trata-se de uma pesquisa de abordagem quantitativa, do tipo transversal.

CENÁRIO

A população deste estudo foi de um Hospital público, financiado pelo Sistema Único de Saúde, de médio porte, localizado em um município da mesorregião da Baixada Litóarna, interior do estado do Rio de Janeiro, situado a 170 km da capital fluminense.

DEFINIÇÃO DA AMOSTRA

A amostra foi definida a partir do total de pacientes atendidos na instituição no período de 8 meses. De acordo com dados do Departamento de Informática do Sistema Único de Saúde (DATASUS), o hospital registrou 489 internações nos setores de internação de adultos nos meses de janeiro a agosto de 2016. Para a consecução dos resultados de interesse, foi retirada uma amostra desse universo pela impossibilidade de entrevistar toda a população. Como o objetivo principal do estudo foi estimar uma prevalência P, o tamanho mínimo da amostra (n), para uma margem de erro global máxima e, com correção pelo tamanho da população N, foi definido pela fórmula:

\[n = \frac{z_{\alpha/2}^2 N \hat{p} (1 - \hat{p})}{(N - 1) \epsilon^2 + z_{\alpha/2}^2 \hat{p} (1 - \hat{p})} \]

Aqui, \(z_{\alpha/2} \) refere-se ao valor da variável aleatória com distribuição normal padrão para o qual o valor da função de distribuição acumulada é igual a \(1 - \alpha/2 \) (\(\alpha = \) nível de confiança desejado). Sendo assim, o valor de \(z \) está intimamente ligado ao intervalo de confiança desejado para as proporções de interesse. No presente caso, usamos um intervalo de confiança de 95%, cujo valor correspondente a esta área na curva normal é de 1,96; \(\hat{p} \) é a estimativa preliminar da prevalência de interesse \(P \) e \(\epsilon \) refere-se à margem de erro global resultante (no caso, desejamos uma margem de
erro global máxima de 5% = 0,05). Devido à insuficiência preliminar de estimativa para P e para as demais proporções a serem estimadas no estudo, o produto p (1 − p) é substituído pelo seu valor máximo: 0,25.
Assim, o tamanho mínimo da amostra (n) de estudo estimada para este trabalho foi de 106 pacientes (contíduos e não contíduos).

CRITÉRIOS DE SELEÇÃO

Foram critérios de seleção: adultos e idosos, provenientes dos setores clínica médica, clínica cirúrgica e unidade de terapia intensiva. Critérios de exclusão: pacientes da emergência pelo pequeno número de leitos e distinção dos demais cenários.

COLETA DE DADOS

Os dados foram coletados no período de 28 de junho a 28 de novembro de 2017 de um total de 111 participantes. As visitas aconteceram três vezes por semana, em dias e horários alternados e foram realizadas por uma única pesquisadora. A coleta de dados aconteceu nos turnos da manhã e da tarde, cada visita durava cerca de 4 horas e foi conduzida a partir da avaliação do paciente e preenchimento do Instrumento de Observação do Uso de Contenção Mecânica, no qual foi possível obter informações de identificação de cada participante, se estava contido, qual tipo de contenção utilizado, data, unidade de internação, número de profissionais de enfermagem presentes. Além disso, também foram colhidos no prontuário os dados, como data de admissão, diagnóstico médico, uso de medicações, uso de ventilação mecânica e dispositivos invasivos. Os dados tempo de uso da contenção e motivos citados pela equipe para o uso da contenção foram coletados por meio da observação direta e descrição no prontuário. Quando não havia relatos em prontuário, buscou-se com o profissional de enfermagem por entrevista direta seguindo o formulário de observação. As escalas de Richmond de agitação e sedação(7), o Miniexame de Estado Mental(8), a Escala de atividades de vida diária de KATZ(9) e a presença e características de lesão por pressão foram feitas diretamente em entrevista com o paciente e família.

ANÁLISE E TRATAMENTO DOS DADOS

Os dados foram analisados segundo técnicas de estatística descritiva, uni e multivariada. Para a caracterização da amostra, na análise descritiva do comportamento das variáveis, os dados foram sintetizados por meio do cálculo de estatísticas descritivas (média, mediana, mínimo, máximo, desvio-padrão, coeficiente de variação, proporções de interesse), gráficos, distribuições de frequências simples e em tabelas cruzadas. Para verificar a associação entre a contenção mecânica e as variáveis estudadas, foi realizado o Teste Qui-Quadrado de associação e, quando este se mostrou inconclusivo e foi apropriado, o teste Exato de Fisher.

Na Análise Inferencial de Variáveis Quantitativas, a hipótese de normalidade da distribuição foi verificada pelos testes de Kolmogorov-Smirnov e de Shapiro-Wilk. Quando a hipótese de distribuição normal não foi rejeitada nos grupos, a comparação de dois grupos independentes por uma variável quantitativa foi feita pelo teste t de Student. A igualdade das variâncias, necessária para execução do teste t de Student sem correção, foi avaliada pelo teste de Levene. Quando, para algum dos grupos, a hipótese de normalidade da distribuição foi rejeitada, a comparação dos dois grupos foi feita pelo teste não-paramétrico de Mann-Whitney. Na comparação de mais de dois grupos independentes foi usada a ANOVA, se confirmada normalidade da distribuição ou teste Kruskal-Wallis. A análise post hoc se deu pelo teste de Student Newman Keuls. Todas as discussões foram realizadas considerando o nível de significância máximo de 5% (0,05), ou seja, foi adotada a seguinte regra de decisão nos testes: rejeição da hipótese nula sempre que o p-valor associado ao teste fosse menor que 0,05.

RESULTADOS

Dos 111 pacientes avaliados, 57 estavam com contenção mecânica. A partir destes dados, estima-se que a prevalência de contenção mecânica dos pacientes internados é de 51,4%. Entre os setores pesquisados, a prevalência de contenção foi de 93,3% na Unidade de Terapia Intensiva, 50,9% na clínica médica e de 3,8% na clínica cirúrgica. Também foi realizada a caracterização da contenção mecânica por meio das variáveis tipo de contenção e justificativa para a contenção, apresentadas na Tabela 1.

Tabela 1 – Distribuições das frequências de caracterização da contenção mecânica no ambiente hospitalar – Niterói, RJ, Brasil, 2017.

Características da Contenção	n (%)
Tipo de Contenção	
Grades laterais no leito	40 (70,2)
Grades laterais e pulsos	17 (29,8)
Justificativa para contenção	
Agitação	7 (19,3)
Uso de Dispositivos Invasivos	33 (57,9)
Risco de quedas	57 (100,0)
Outros Motivos	1 (1,8)

O tipo de contenção mecânica mais prevalente foram as grades laterais no leito (100,0% dos casos), e em 29,8% dos casos os pulsos dos pacientes também estavam contidos. A justificativa para a contenção mais comum foi o risco de quedas (100,0%) e o uso de dispositivos invasivos (57,9%). Este estudo também caracterizou os pacientes contidos e não contidos, a fim de determinar as variáveis que apresentavam associação com a contenção mecânica. Conforme mostra a Tabela 2, em análise global, o paciente no ambiente hospitalar apresentou faixa etária de 58 a 78 anos (54,0%), estava internado na clínica médica (49,5%), clínica cirúrgica (23,4%) ou unidade de terapia intensiva (27,0%), portava...
acesso venoso periférico (64,9%), cateter vesical de demora (33,3%) e fazia uso de medicação sedativa (35,1%).

Em relação ao sexo, nos pacientes contidos, houve predominio do sexo masculino (64,9%). Também foram significativamente distintos nos dois grupos os percentuais de pacientes nas unidades de internação: no grupo dos contidos o percentual de pacientes em UTI foi de 49,1%, assim como na clínica médica, e na clínica cirúrgica estavam internados 1,8% dos pacientes contidos. Assim, a contenção se apresentou significativamente associada ao local de internação.

Entre as comorbidades avaliadas, somente o acidente vascular enCEFálico (AVE) esteve significativamente associado à contenção. No grupo dos contidos, o percentual de pacientes com AVE foi significativamente maior (26,3%).

As condições dos pacientes, como capacidade de deambulação, uso de medicação sedativa e ventilação mecânica, foram significativamente distintas nos dois grupos (p-valores=0,000), ou seja, foram significativamente maiores no grupo de contidos. As frequências do uso dos dispositivos invasivos sonda nasoenteral (SNE), cateter vesical de demora (CVD), acesso venoso central (AVC) e tubo orotraqueal (TOT) foram significativamente distintas nos dois grupos.

Na Tabela 3 tem-se a distribuição da razão do número de profissionais por leito em cada grupo. Observa-se maior

Tabela 2 – Distribuição de frequências dos pacientes não contidos, contidos e no global – Niterói, RJ, Brasil, 2017.

Variável	Não Contidos	Contidos	Global				
	n=54	n=57	n=111				
	F	%	F	%	F	%	p-Valor
Sexo							
Feminino	33	61,1	20	35,1	53	47,7	0,006
Masculino	21	38,9	37	64,9	58	52,3	
Idade (anos)							
18 – 28	8	14,8	1	1,8	9	8,1	
28 – 38	10	18,5	1	1,8	11	9,9	
38 – 48	2	3,7	5	8,8	7	6,3	
48 – 58	4	7,4	5	8,8	9	8,1	
58 – 68	16	29,6	17	29,8	33	29,7	
68 – 78	9	16,7	18	31,6	27	24,3	
78 – 88	4	7,4	9	15,8	13	11,7	
88 – 98	1	1,9	1	1,8	2	1,8	
Unidade de Internação							
Unidade de Terapia Intensiva	2	3,7	28	49,1	30	27,0	0,000
Clínica Médica	27	50,0	28	49,1	55	49,5	
Clínica Cirúrgica	25	46,3	1	1,8	26	23,4	
Comorbididades							
Acidente Vascular EnCEFálico	3	5,6	15	26,3	18	16,2	0,003
Neoplasia	3	5,6	5	8,8	8	7,2	0,717
Doença Renal	4	7,4	10	17,5	14	12,6	0,108
Doença Respiratória	4	7,4	13	22,8	17	15,3	0,024
Cardiopatias	4	7,4	5	8,8	9	8,1	1,000
Demência Senil/Alzheimer	0	0,0	5	8,8	5	4,5	0,057
Diabetes Mellitus	4	7,4	3	5,3	7	6,3	0,712
Hipertensão Arterial Sistêmica	1	1,9	7	12,3	8	7,2	0,061
Condições do paciente							
Deambula	48	88,9	13	22,8	61	55,0	0,000
Medicação Sedativa	9	16,7	30	52,6	39	35,1	0,000
Ventilação Mecânica	0	0,0	15	26,3	15	13,5	0,000
Uso de Dispositivos Invasivos							
Acesso Venoso Periférico	39	72,2	33	57,9	72	64,9	0,114
Sonda Nasoenteral	0	0,0	6	10,5	6	5,4	0,027
Cateter Vesical de Demora	5	9,3	32	56,1	37	33,3	0,000
Acesso Venoso Central	1	1,9	18	31,6	19	17,1	0,000
Tubo Orotraqueal	0	0,0	12	21,1	12	10,8	0,000
Traqueostomia	1	1,9	5	8,8	6	5,4	0,207
Gastrostomia	0	0,0	3	5,3	3	2,7	0,244
Escala RAAS							
-4 – Combativo	0	0,0	1	1,8	1	0,9	
-3 – Sedado moderado	0	0,0	1	1,8	1	0,9	0,415
-1 – Torporoso	0	0,0	1	1,8	1	0,9	
0 – Alerta e Calmo	54	100,0	53	93,0	107	96,4	
1 – Inquieto	0	0,0	1	1,8	1	0,9	

(a) Teste de Mann Whitney (b) Teste Exato de Fisher
proporção de valores baixos da razão no grupo de não contidos e maior proporção de valores altos da razão no grupo de contidos. O teste qui-quadrado aponta diferença significativa entre os dois grupos (p-valor=0,000).

A Tabela 4 traz a análise dos fatores associados significativamente ao uso da contenção mecânica no ambiente hospitalar. São eles: sexo masculino, estar internado em UTI, ter sido acometido por AVE, não deambular, fazer uso de medicação antipsicótica ou sedativa, estar em ventilação mecânica e estar com dispositivos invasivos, como sonda nasoenteral, cateter vesical de demora, acesso venoso central e tubo orotraqueal.

A prevalência de contenção mecânica entre os homens é significativamente maior, 63,8%, a razão de chances (OR) é igual a 2,9 e é significativa, dado o seu intervalo de confiança (1,3; 6,3). Estima-se que, em ambiente hospitalar, a chance de um paciente do sexo masculino ficar contido é 2,9 vezes maior do que a chance de um paciente do sexo feminino.

Em pacientes de clínica médica e cirúrgica, a prevalência de contenção mecânica é de 36,6%, enquanto a prevalência na UTI é significativamente maior, 93,1%. A razão de chances (OR) é igual a 23,4 e é significativa, dado o seu intervalo de confiança (5,2;105,4). Estima-se que, em atendimento hospitalar, a chance de um paciente da UTI ficar contido é 23,4 vezes maior do que a chance de um paciente que não está na UTI.

O acometimento dos pacientes por AVE e a não deambulação está relacionada com a maior dependência para realizar as atividades de vida diária, e o uso de medicação sedativa também estão associados à contenção mecânica. As prevalências de contenção mecânica entre os pacientes que tiveram AVE, que não deambulam e que utilizam medicação antipsicótica ou sedativa são, respectivamente, 83,3%, 88,0% e 76,9%. Estima-se que a chance de um paciente que tem AVE ser contido seja de 6,1 vezes maior que a chance de um paciente que não tem AVE. O paciente que não deambula tem 27 vezes mais chance de ser contido e, para os que usam medicação antipsicótica ou sedativa essa chance aumenta 5,6 vezes.

Entre os pacientes que estão em ventilação mecânica, em uso de tubo orotraqueal e com sonda nasoenteral, a prevalência de contenção mecânica é de 100,0%. O uso de cateter vesical de demora e o acesso venoso central também foram significativamente associados, apresentando uma prevalência de 86,5% e 94,7%, respectivamente, entre os pacientes contidos.

Tabela 3 – Distribuição da razão do número de profissionais por leito em cada grupo – Niterói, RJ, Brasil, 2017.

Número de profissionais/leito	Não Contidos	Contidos	Global			
	F	%	F	%	F	%
0,25 = 1 profissional para cada 4 leitos	35	64,80	12	21,10	47	42,30
0,33 = 1 profissional para cada 3 leitos	14	25,90	15	26,30	29	26,10
0,42 = 5 profissionais para cada 12 leitos	3	5,60	2	3,50	5	4,50
0,5 = 1 profissional para cada 2 leitos	0	0,00	2	3,50	2	1,80
0,67 = 2 profissionais para 3 leitos	2	3,70	26	45,60	28	25,20

Tabela 4 – Fatores associados à contenção mecânica no ambiente hospitalar – Niterói, RJ, Brasil, 2017.

Fator	Prevalência de Contenção quando o fator NÃO está presente	Prevalência de Contenção quando o fator ESTÁ presente	p-valor do teste χ²	OR	IC da OR
Masculino	20/53 37,70	37/58 63,80	0,006	2,9	1,3-6,3
Unidade de Terapia Intensiva	30/82 36,60	27/29 93,10	0,00	23,4	5,2-105,4
Acidente Vascular Encefálico	42/93 45,20	15/18 83,30	0,003	6,1	1,7-22,4
Deambula	44/50 88,00	13/61 21,30	0,037	0,01-0,11	
Medicação Sedativa	27/72 37,50	30/39 76,90	0,00	5,6	2,3-13,5
Ventilação Mecânica	42/96 43,80	15/15 100,00	0,027**	nc	Nc
Sonda Nasoenteral	51/105 48,60	06/06 100,00	0,027**	nc	Nc
Cateter Vesical de Demora	25/74 33,80	32/37 86,50	0,00	12,5	4,4-36,2
Acesso Venoso Central	39/82 42,40	18/19 94,70	0,00	24,5	3,1-191,1
Tubo Orotroqueal	45/99 45,50	12/12 100,00	0,00	nc	Nc
DISCUSSÃO

No ambiente hospitalar investigado, a contenção mecânica esteve presente em metade dos pacientes avaliados, um dado que merece destaque e ações de intervenção de enfermagem e da equipe multiprofissional. Essa prevalência foi determinada pelo perfil de pacientes internados na clínica médica e UTI. Em estudos prévios, a prevalência de contenção mecânica variou de acordo com os setores de internação pesquisados, sendo de 0 a 31,3% em enfermarias de cuidados gerais e de 0 a 90% em unidades de cuidados intensivos(10), o que corrobora os achados desta pesquisa. Os setores de internação também se relacionaram à contenção mecânica com o uso das grades laterais. Estudos que consideraram exclusivamente as grades laterais no leito encontraram prevalência de até 65,7% dos pacientes adultos internados(13).

O uso de grades bilaterais no leito que não possam ser facilmente removidas pelo paciente deve ser indicado somente em circunstâncias excepcionais e específicas, tais como os procedimentos de transporte, os períodos de recuperação anestésica ou em situações onde há a sedação do paciente. Em princípio, o uso não deve ser indicado para pacientes que apresentam deficit cognitivo ou estado confusional, e que possam ter força e agilidade suficientes para escalar as grades ou se envolver em acidentes na tentativa de manusear estes dispositivos. Além disso, as grades não são indicadas para o paciente independente, que apresenta estado mental e cognitivo preservado e que não necessita do auxílio da grade como elemento de apoio para se movimentar no leito(12).

Quando as grades laterais são utilizadas de forma apropriada, atendendo ao modelo de design indicado e à circunstância precisa, podem tanto contribuir para a proteção e segurança do paciente quanto conferir conforto ou apoio para a realização de manobras de mobilização ou transferência. Nessas casas, as grades não são consideradas elementos de contenção mecânica. Porém, quando utilizadas de forma inadequada, as grades limitam e restringem a liberdade e a mobilidade do paciente, podendo gerar riscos adicionais à sua saúde e perda de sua autonomia.

Grades bilaterais não são apropriadas para pacientes com demência, estado de confusão mental ou agitação psicomotor(13). O paciente que está determinado a sair do leito nem sempre consegue avaliar os riscos envolvidos. Ele pode tentar ultrapassar a grade por cima, por frestas laterais ou localizadas na frente. Em princípio, o uso não deve ser indicado para pacientes que apresentam deficit cognitivo ou estado confusional, e que possam ter força e agilidade suficientes para escalar as grades ou se envolver em acidentes na tentativa de manusear estes dispositivos. Além disso, as grades não são indicadas para o paciente independente, que apresenta estado mental e cognitivo preservado e que não necessita do auxílio da grade como elemento de apoio para se movimentar no leito(12).

Outra justificativa comummente encontrada foi o uso de dispositivos invasivos, principalmente na unidade de terapia intensiva, na qual há maior uso destes para a manutenção e recuperação da saúde dos pacientes. A equipe realiza a contenção mecânica com a intenção de proteger o paciente, evitando a retirada abrupta de dispositivos invasivos, o que pode causar lesões e descontinuidade do tratamento. Além disso, segundo a literatura, há uma preocupação com os equipamentos e dispositivos que estão sendo utilizados no paciente, pois, ao serem danificados, aumentam os custos para a instituição(15). Porém, paradoxalmente, o uso da contenção mecânica aumenta o risco de lesão por pressão, lesão por fricção, agitação psicomotor, inimobilidade, agressividade, além dos preceitos éticos e jurídicos envolvidos(4,10,16-17).

Foi avaliada a razão de profissionais de enfermagem por paciente, que pode ser interpretada como fraca, pois, ao serem danificados, aumentam os custos para a instituição(15). Porém, paradoxalmente, o uso da contenção mecânica aumenta o risco de lesão por pressão, lesão por fricção, agitação psicomotor, inimobilidade, agressividade, além dos preceitos éticos e jurídicos envolvidos(4,10,16-17).

As principais justificativas da equipe de enfermagem para a realização da contenção identificadas nesta pesquisa se referem a uma percepção de risco de queda e ao uso de dispositivos invasivos. Um estudo de caso-controle relacionou o risco de queda com o perfil dos pacientes e o uso de medicação. Como resultado, identificou-se que a queda do leito, nos hospitais, tem etiologia multifatorial, sugerindo que as variações de estado de saúde clínica e saúde mental do paciente aumen
tem este risco. Entre os aspectos referidos, encontram-se: problemas de marcha ou falta de força nos membros inferiores; frequência das eliminações fisiológicas; incontinência urinária; confusão; e uso de medicação antipsicótica ou sedativa(14).

Portanto, as características do paciente contido identificadas nesta pesquisa, tais como a não deambulação e o uso de medicação sedativa possuem relação com o aumento do risco de queda e aparentemente justificariam o uso das grades laterais como medida de segurança. Entretanto, isso não encontra respaldo científico consistente até o momento na literatura.

A utilização da grade como uma medida de restrição à liberdade de movimentação acaba propiciando a inimobilidade e o isolamento, gerando consequências em cascata. Dessa forma, coloca-se em questionamento tanto a sua indicação clínica quanto a sua função enquanto equipamento de suporte assistencial ou de dispositivo preventivo. A assistência humana direta não pode ser substituída pelo uso da grade, tampouco a necessidade de monitoramento e cuidados do paciente, assim como de assistência em um programa de reabilitação. Sem a devida avaliação individualizada dos pacientes para a tomada de decisão quanto à indicação ou não do uso de grades bilaterais no leito hospitalar, essa pode ser uma atitude que, ao invés de caracterizar uma medida protetiva, acaba induzindo novos riscos de eventos adversos. Assim sendo, o seu uso, quando não indicado, se afasta dos preceitos que caracterizam uma ação preventiva, terapêutica ou de cuidados.

Outra justificativa comummente encontrada foi o uso de dispositivos invasivos, principalmente na unidade de terapia intensiva, na qual há maior uso destes para a manutenção e recuperação da saúde dos pacientes. A equipe realiza a contenção mecânica com a intenção de proteger o paciente, evitando a retirada abrupta de dispositivos invasivos, o que pode causar lesões e descontinuidade do tratamento. Além disso, segundo a literatura, há uma preocupação com os equipamentos e dispositivos que estão sendo utilizados no paciente, pois, ao serem danificados, aumentam os custos para a instituição(15). Porém, paradoxalmente, o uso da contenção mecânica aumenta o risco de lesão por pressão, lesão por fricção, agitação psicomotor, inimobilidade, agressividade, além dos preceitos éticos e jurídicos envolvidos(4,10,16-17).

Foi avaliada a razão de profissionais de enfermagem por leito, a qual foi maior entre os pacientes contidos. Este achado pode ter relação com o fato de que a equipe de enfermagem era significativamente maior na unidade de terapia intensiva, onde houve maior prevalência de pacientes contidos. As clínicas médica e cirúrgica contavam com quadro de profissionais reduzido, apesar de alta na clínica médica, foi baixa a prevalência na clínica cirúrgica. No entanto, durante as observações a enfermeira diarista reportou como chefe orientava que os pacientes deveriam andar precocemente, acompanhados pela equipe e família, que tinham permissão para acompanhá-los no pós-operatório, e em seguida abaxavam as grades. Portanto, pode-se afirmar que o número reduzido de profissionais na equipe não foi relacionado à maior frequência de realização da contenção mecânica, ratificando outro estudo, no qual uma menor proporção de enfermeiros por paciente internado não esteve associada à maior prevalência de contenção mecânica(16).
A idade acima de 58 anos foi um dos fatores associados ao uso de contenção mecânica. Esse resultado está relacionado ao número cada vez maior de idosos internados nos hospitais, principalmente em Unidade de Terapia Intensiva (UTI). O envelhecimento populacional aumenta a frequência de pacientes mais idosos com agravos à saúde que exigem tratamento em UTI, uma vez que a incidência de doenças crônicas degenerativas aumenta com o avanço da idade16,17.

Dentro do grupo de contidos, um destaque foi a maioria ser do sexo masculino, o que pode estar relacionado a evidências observadas em outras pesquisas realizadas no Brasil apontando que os homens procuram mais tardiamente o tratamento e são hospitalizados em condições mais graves de saúde18. Pode-se conjecturar que as internações masculinas são realizadas principalmente por transtornos mentais, lesões por causas externas e doenças circulatórias, com aumento de chances do uso de medicamentos e dispositivos invasivos utilizados para o tratamento, fatores que podem contribuir para a maior probabilidade de agitação psicomotora. E, ainda, pode-se inferir que os homens tenham um biótipo muscular e força que podem causar receio a uma equipe de enfermagem majoritariamente feminina, porém necessita-se de estudos com outros desenhos, possivelmente qualitativos, para o aprofundamento das relações de poder e gênero no uso da contenção mecânica em ambientes hospitalares.

Quanto ao tempo de internação dos pacientes, foi identificado que os pacientes contidos possuíam maior número de dias de internação quando comparado aos não contidos. O estado geral de saúde, a capacidade motora e cognitiva dos pacientes e o uso da contenção mecânica podem afetar significativamente o tempo de internação19. Concomitante aos efeitos adversos relacionados à contenção mecânica, tais como sensação de impotência, o comportamento agitado e a postergação da mobilização do paciente no leito podem também contribuir para o aumento do tempo de internação20.

Quanto à avaliação da evidência de agitação e sedação pela escala de Richmond, a contenção mecânica não apresentou associação significativa, pois quase todos os pacientes avaliados estavam alertas e calmos. Esse resultado se contrapõe a outros achados, nos quais o uso da contenção mecânica foi associado a pacientes em estado de delirium, coma, uso de medicação sedativa ou psicoativa e com inabilidade para se comunicar verbalmente21,20, uma constatação que merece uma reflexão mais particular, uma vez que aponta a possibilidade de um uso rotineiro e menos crítico da contenção mecânica.

Portanto, esta pesquisa ratifica que o principal motivo para a utilização da contenção mecânica em ambiente hospitalar se relaciona à intenção de prevenir as quedas ou a retirada de dispositivos biomédicos. Mediante esse resultado, e com apoio em documentos de natureza ética normativa e científica12,4,5,10 que colocam esta conduta em questionamento, a pergunta que surge é se de fato a contenção mecânica se caracteriza uma intervenção adequada para a prevenção desses riscos. O fato de a literatura apontar que a contenção agrava a confusão mental e a agitação do paciente e, por consequência, a vontade de autorretirar de dispositivos, de se movimentar livremente ou levantar, associa a contenção ao desencadeamento de danos diversos e de lesões que incluem o risco de eventos fatais22,4,10. Isto implica evento adverso associado à internação e à atitude profissional, e merece ser refletido. Outra ponderação é o fato de a contenção afetar o estado emocional do paciente, que pode se tornar atônico, apático, distímico e pouco resistente ao fato de permanecer 24 horas contido, revelando uma possível atitude de desistência ou resignação.

Logo, pode-se dizer que a contenção mecânica realizada de forma empírica e isenta de uma avaliação clínica pode ocasionar riscos. Ao realizar a contenção, os profissionais acreditam estar garantindo a segurança do paciente, porém, quando realizada de forma inadequada, pode resultar em consequências clínicas graves aos pacientes, como debilitação do estado cognitivo, agitação motora, lesões por pressão, aumento do tempo de internação e despersonalização do cuidado de enfermagem.

A realização da contenção mecânica deve-se caracterizar uma excepcionalidade, obedecendo a critérios técnicos e éticos rigorosos e, quando necessária, deve ser assistida, limitada ao controle de situações clínicas complexas, dialogada, descrita no prontuário, acompanhada, e suspensa assim que possível. Planejar e executar uma contenção mecânica no ambiente hospitalar necessita de investigação da causa da contenção, e, para isso, uma equipe de gestão da contenção pode ser idealizada, se especializando no atendimento e resolução dos casos complexos, com medidas para impedir um cenário de contenções ininterruptas e inapropriadas.

CONCLUSÃO

Este estudo estima uma alta prevalência da contenção mecânica no ambiente hospitalar estudado, com o uso de grades laterais no leito como a principal forma, associado aos pulsos dos pacientes também contidos. As principais justificativas para a contenção foram o risco de quedas e o uso de dispositivos invasivos. Foram identificados como fatores associados ao uso da contenção mecânica à idade do paciente, o sexo masculino, o setor de internação, a capacidade para deambulação, o uso de dispositivos invasivos e a medicação sedativa.
RESUMEN
Objetivo: Estimar la prevalencia de contención mecánica en el entorno hospitalario y los factores asociados con su realización. Método: Estudio transversal, observacional, con pacientes provenientes de un hospital público, de los sectores de clínica médica, clínica quirúrgica y unidad de cuidados intensivos, analizados de modo descriptivo, univariado y multivariado. Resultados: Participaron en el estudio 111 pacientes. La prevalencia de contención mecánica fue del 51,4%; en el 100% de los contenidos se utilizaron rejas bilaterales en el lecho, y en el 29,8% se observó también la contención bilateral de las extremidades. Las justificaciones más comunes fueron el riesgo de caídas (100,0%) y el riesgo de retiradas no programadas de dispositivos invasivos (57,9%). Los pacientes contenidos se diferencian significativamente de los no contenidos por los siguientes factores asociados: sexo masculino; edad; diagnóstico de Accidente Vascular Encefálico; a la unidad de estancia hospitalaria; a la capacidad de deambulación; al uso de medicación sedativa y al uso de dispositivos invasivos. Conclusión: Este estudio estimó una alta prevalencia de la contención mecánica en el entorno hospitalario y determinó los factores asociados con el riesgo de contenerse a un paciente. Se recomienda a un equipo de evaluación de la contención para análisis profundizado de la indicación y terapéutica.

REFERÉNCIAS

1. Potter PA, Perry AG. Fundamentos de enfermagem. 8ª ed. Rio de Janeiro: Elsevier; 2012.
2. Menezes AK, Santana RF, Cimador F. Práticas assistenciais restritivas e o paradigma da cultura de não contenção da pessoa idosa. In: Tratado de geriatria e gerontologia. 4ª ed. Rio de Janeiro: Guanabara Koogan; 2016. p. 6582-627.
3. Bleijlevens MH, Wagner LM, Capezuti E, Hamers JP. Physical restraints: consensus of a research definition using a modified Delphi Technique. J Am Geriatr Soc. 2016;64(11):2307-10. DOI: 10.1111/jgs.14435
4. Berzlanovich AM, Shöpfer J, Keil W. Deaths due to physical restraint. Dtsch Arztebl Int [Internet]. 2012 [cited 2017 Oct 28];109(3):27-32. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272587/
5. Conselho Federal de Enfermagem. Resolução n. 427, de 8 de maio de 2012. Normaliza os procedimentos da Enfermagem no emprego de contenção mecânica de pacientes [Internet]. Brasília; [cited 2017 out. 25]. Disponível em: http://www.cofen.gov.br/resolucao-cofen-n-4272012_9146.html
6. Joint Commission Standards on Restraint and Seclusion. Nonviolent Crisis Intervention®: training program [Internet]. Milwaukee; 2009 [cited 2017 Oct 25]. Available from: https://www.crisisprevention.com/CPI/media/Media/Resources/alignments/Joint-Commission-Restraint-Seclusion-Alignment-2011.pdf
7. Sessler CN, Gosnell M, Grap MJ, Brophy GT, O’neal PV, Keane KA. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care patients. Am J Respir Crit Care Med. 2002;166(10):1338-44. DOI: 10.1164/rccm.2107138
8. Lourenço RA, Veras RP. Mini-Mental State Examination: psychometric characteristics in elderly outpatients. Rev Saúde Pública [Internet]. 2006 [cited 2017 Nov 03];40(4):712-9. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-89102006000500023&lng=en&nrm=iso&tlng=en
9. Katz S, Ford AB, Moskowitz RW, Jackson BA, Jaffe MW. Studies of illness in the aged. The index of ADL: a standardized measure of biological and psychosocial function. JAMA. 1963;185:914-9. DOI: http://dx.doi.org/10.1001/jama.1963.03290200095002
10. Krüger C, Mayer H, Haastert B, Meyer G. Use of physical restraints in acute hospitals in Germany: a multi-centre cross-sectional study. Int J Nurs Stud. 2013;50(12):1599-606. DOI: http://dx.doi.org/10.1016/j.ijnurstu.2013.05.005.
11. Oearsakul B, Sirapo-Ngam Y, Strumpf NE, Malathum P. Physical restraint use among hospitalized elderly Thais. Pacific Rim Int J Nurs Res. 2011;15(2):125-36.
12. NHS Foundation Trust. Protocol for the safe effective use of bedrails [Internet]. London; 2017 [cited 2018 Jan 12]. Available from: https://www.nhft.nhs.uk/download.cfm?doc=docm93jijm4n1859.pdf&ver=9038
13. Healey F, Oliver D, Milne A, Connelly JB. The effect of bedrails on falls and injury: a systematic review of clinical studies. Age Ageing. 2011;40(4):368-78. DOI: http://dx.doi.org/10.1093/ageing/afn112.
14. Krauss MJ, Evanoff B, Heflin E, Ngugi KE, Dunagan WC, Fischer I, et al. A case-control study of patient, medication, and care-related risk factors for inpatient falls. J Gen Intern Med. 2005;20(2):116-22. DOI: http://dx.doi.org/10.1111/j.1525-1497.2005.40171.x
15. Minnick AF, Mion LC, Johnson ME, Catrambone C, Leipzig R. Prevalence and variation of physical restraint use in acute care settings in the US. J Nurs Scholarsh. 2007;39(1):30-7.
16. Heinze C, Dassen T, Gittiner U. Use of physical restraints in nursing homes and hospitals and related factors: a cross-sectional study. J Clin Nurs. 2012;21(7):1033-40. DOI: http://dx.doi.org/10.1111/j.1365-2702.2011.03931.x
17. Rodríguez AH, Bub MBC, Peña OF, Zandonadi G, Rodríguez MJH. Epidemiological characteristics and causes of deaths in hospitalized patients under intensive care. Rev Bras Enferm. 2016 [cited 2017 Nov 20];69(2):210-4. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-71672016000200229. DOI: http://dx.doi.org/10.1590/0034-7167.20166902040
18. Arruda GO, Melenia-Fernandes CA, Mathias TAF, Marcon SS. Hospital morbidity in a medium-sized city: differentials between men and women. Rev Latino Am Enfermagem [Internet]. 2014 [cited 2017 Nov 26];22(1):19-27. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-11692014000100019
19. Bai X, Kwok TCY, Ip IN, Woo J, Chui MYP, Ho FKY. Physical restraint use and older patients’ length of hospital stay. Health Psychol Behav Med. 2014;2(1):160-70. DOI: http://dx.doi.org/10.1080/21642850.2014.881258
20. Kooi AW, Peelen LM, Rajmakers RJ, Vroegop RL, Bakker DF, Tekati H, et al. Use of physical restraints in Dutch intensive care units: a prospective multicenter study. Am J Crit Care. 2013;24(6):488-95. DOI: http://dx.doi.org/10.4037/ajcc2013448