ЖУРНАЛ ЖАУ АПТЫ ХАТШЫ
Оразова С.Б. – б. г. к., аға оқытушы (Қазақстан)

ЖУРАЛ МАТЕРИАЛДАРЫНА АУҚЫМДЫ БІОЛОГІЯЛЫҚ МАССЕЛЕРІ ҚАРАСТЫРЫЛДА – ҒЫЛЫМНЫШ ШОЛУ, ТЕОРИЯЛЫҚ ЖӘНЕ ЕКСПЕРИМЕНТАЛДЫҚ ЗЕРТТЕУЛЕРДІҢ НӘТИЖЕЛЕРІ.

МАҚАЛАЛАР БІОЛОГІЯЛЫҚ КЕЛЕСІ БӨЛІМДЕРІ БОЙЫНША ЖАРАЙЫЛДА: БОТANIКА, БІОТЕХНОЛОГИЯ, БІОХИМИЯ, ӨСІМДІКТЕР ФИЗИОЛОГІЯСЫ, ГЕНЕТИКА ЖӘНЕ МОЛЕКУЛАЛЫҚ БІОЛОГІЯ, КЛЕТКАЛЫҚ БІОЛОГІЯ, БІОФІЗИКА, АДАМ ЖӘНЕ ЖАНАУАРЛАР ФИЗИОЛОГІЯСЫ, ЗООЛОГІЯ ЖӘНЕ ИНФЕКЦИЯЛОГІЯ, ЦИТОЛОГІЯ ЖӘНЕ ГИСТОЛОГІЯ, МІКРОБІОЛОГІЯ ЖӘНЕ ВІРУСЛОГІЯ.
3-бөлім
МОЛЕКУЛАЛЬЫҚ
БИОЛОГИЯ ЖәНЕ ГЕНЕТИКА

Раздел 3
МОЛЕКУЛЯРНАЯ
БИОЛОГИЯ И ГЕНЕТИКА

Section 3
MOLECULAR
BIOLOGY AND GENETICS
The development of micro- and biotechnological processes for fossil energy utilization has received increasing attention in recent years. There are abundant coal resources in Kazakhstan; in particular, low-rank coal resources of lignite and leonardite. These coal types are not exploited commercially due to their low energetic power. However, they are considered as a rich source of humic substances (HS). The HS in the soil play an important role in physical and chemical quality, carbon capture and stabilization and in the inactivation of pesticides, heavy metals, as well as other polluting agents. Bioprocessing of lignite also involves the production of clean energy.

Research on coal microbes is essential for microbial ecology and applied microbiology with regard to the sustainable utilization of coal resources. Nevertheless, the inability of culturing vast amount (around 99%) of microorganisms in vitro counteract the research procedures. Currently, there is tremendous advances in using non-culturing techniques based on omics to the examination of microbial diversity of environmental compartments, such as soil, sediment, minerals, etc. Different omics tools, including FISH, SIP, next generation sequencing (NGS), microarray, mass spectrometry, etc., evolve instant results to provide comprehensive insight of the coal microbiome.

This paper discusses the findings and challenges in the study of Kazakhstan coal microbes, highlighting Illumina NGS platform. Based on the results of the metagenomic analysis of coal samples (Oikaragai, Lenger, Karaganda, Yekibastuz), 10 taxonomic groups of bacteria belonging to Proteobacteria, Tenericutes, Actinobacteria, Firmicutes, Bacteroidetes, Nitrospirae, Chloroflexi, Gemmatimonadetes, Acidobacteriaand Fusobacteria were identified and analyzed.

Key words: lignite, leonardite, microbial diversity, microbial community, metagenomics, Illumina Miseq sequencing
Акимбеков Н.Ш. 1, Цюо Сюхуэй 2, Тастамбек К.Т. 3, Диgel Л. 4, Абдиева Г.Ж. 5, Уалиева П.С. 6, Бердикулов Б.Т. 7, Жубанова А.А. 8

1 PhD, доцент м.а., e-mail: nuraly99@mail.ru
2 Ph.D-докторантура студент, e-mail: qiaoxiaohui1988@126.com
3 Ph.D-докторантура студент, e-mail: tastambeku@gmail.com
4 бакалавриат студент, e-mail: leoniddigel@gmail.com
5 биология докторант, профессор, e-mail: Azhar_1941@mail.ru
6 биология докторант, профессор, e-mail: nuraly99@mail.ru
7 биология докторант, профессор, e-mail: qiaoxiaohui1988@126.com
8 биология докторант, профессор, e-mail: tastambeku@gmail.com

Таким образом, компания в области биотехнологии может быть использована для реализации новых технологий в области энергетики. Использование нового поколения технологий, таких как Illumina, позволяет проводить более точные и надежные анализы. В результате, можно получить более точные и надежные результаты, что позволяет более эффективно использовать угольные ресурсы.

Инновационные технологии, такие как Illumina, позволяют проводить более точные и надежные анализы. В результате, можно получить более точные и надежные результаты, что позволяет более эффективно использовать угольные ресурсы.

Метагеномный анализ микробного сообщества в образцах казахстанского угля с использованием технологии секвенирования нового поколения Illumina

В последние годы все большее внимание уделяется разработке биотехнологических процессов для утилизации ископаемых энергоресурсов. Как известно, в Казахстане достаточно угольных ресурсов, в том числе, низкокачественных бурых и окисленных бурых углей. Бурные угли (лигниты) не находят широкого применения в промышленности из-за их низкой энергетической ценности. В то же время, они являются наиболее богатыми источниками гуминовых веществ (ГВ),
Introduction

Due to the limited oil and gas resources worldwide, coal will become the most important energy source. With the consumption of 2007, in terms of volume, coal reserves will be maintained for 146 years, while oil will be exhausted within 50 years and natural gas within 63 years. After depleting oil and gas reserves, the coal will monopolize the entire fossil energy market. Obviously, coal, especially lignite (brown coal), which accounts for 47.3% of the world’s coal reserves, will become an important research issue (Yong et al., 1995: 437-47).

At present, 96.4% of the world’s brown coal output is obtained by burning electricity and heat energy. It is a serious environmental pollution. The harmful substances released by the combustion of lignite are mainly sulfur oxides (SOx) and nitrogen oxides (NOx), carbon dioxide, and some trace elements. Statistical results for 2005 show that in Canada 25% of sulfur oxides, 10% of nitrogen oxides and 17.2% of carbon dioxide present in atmosphere. All come from the combustion of lignite; in China, 87% of sulfur oxides, 67% of nitrogen oxides and 71% of carbon dioxide is derived from the burning of lignite (Xu et al., 2000: 153-160). Therefore, in terms of environmental protection, combustion is not a suitable technique, currently; chemical methods are mainly used for gasification, liquefaction as fuel or chemicals instead of oil substances to achieve lignite. The conversion is not effective, as it is carried out under high temperature and high-pressure conditions, high-energy consumption, harsh reaction conditions, and cost.

Due to the fact, new conversion technologies are urgently needed to achieve the clean utilization of lignite. Bioconversion technology uses microbes to transform solid lignite into clean, cost-effective products and energy. In contrast, microorganisms have mild conditions of action, simple methods, low equipment, and, more importantly, are environmentally friendly.

At the same time, the complex structure of lignite also indicates that the implementation of this method can encounter greater difficulties. Lignite biotransformation has opened up a new way for efficient and clean use of coal, and it has become a research subject. Most lignite have high ash (about 30%), high moisture (20-50%), low ash melting point, poor thermal stability, and susceptibility to spontaneous combustion, etc. (Yuan et al., 2002: 13 – 17; Dai et al., 1998: 4-7; Nakagawa et al., 2004: 719-725), meanwhile, it is considered a humic substance (HS) rich source.

HSs are polyelectrolytic macromolecules which play a crucial role in global C and N cycling and in the regulation of the plant nutrients mobility and environmental contaminants (Weber: 1988: 165–78; Murphy et al., 1995: 103-24; Christl et al., 2000: 617-25). The HS are important for physical and chemical quality of soil, carbon capture and its stabilization (Piccolo et al., 2004: 329-343), and in the neutralization of pesticides, heavy metals, and other polluting agents (Bandiera et al., 2009: 78-91). HSs also stimulate plant growth (Badis et al., 2009: 997-1007), as they induce root proliferation, and stimulate root system (Barros et al., 2010: 3681-3688). It was reported that some microbes couldgrow on coal and modify it with both non-enzymatic and enzymatic processes by producing humic acid and water-soluble humic material.
including fulvic acids (Fakoussa, 1981: 634-642; Cohen et al., 1982: 437–47).

Research on biological processes for the utilization of fossil energy has received increasing attention in recent years. Microbial treatment has been considered as an economically effective and environmentally safe way of processing low-rank coals via degradation of the macromolecular network into simpler molecular products (Fakoussa et al., 1999: 25-40; Gupta et al., 2000: 103-5; Helena et al., 2002: 17-23). Thus, one of the advantages of biotechnological processing of coals is to detect, identify and enumerate the microbiota, potential for bioconversion of lignite and leonardite.

There are abundant lignite and leonardite resources in Kazakhstan and coal with low calorific value and high ash content is piled up as rubbish causing a serious waste of resources as well as environmental pollution. Kazakhstan needs to acquire new technologies for coal processing, especially green-based approaches. Certainly, the micro- and biotechnological means of coal processing has a number of advantages, which dictates the need to study microbial diversity of coal as an essential source of environmentally friendly energy and products (Crowford et al., 1991: 577-80; Polman et al., 1995: 249-55; Yong et al., 1995: 437-47; Davison et al., 1990: 447-56).

Relatively little studies have been conducted to evaluate microbiota of Kazakhstan coal. However, no research has addressed the microbial community diversity and structure using novel culture-free molecular techniques, especially Illumina MiSeq sequencing. The present work is intended to generate an inventory of the microbial diversity, particularly differences in the distribution of specific taxonomic bacterial groups in coal samples by means of Illumina MiSeq approaches.

Materials and Methods

Coal samples. The lignite and leonarditesamples were collected in four points of Kazakhstan coal deposits. The top layer of 1.5-2.0 cm coal removed with a sterile knife and 500-600 gams of lignite samples gathered with sterile spatula to the depths of 30 cm. The leonardite samples were placed in a sterile container and transported to the laboratory. Each sample was labeled indicating the date and sample number. During transportation and storage of coal samples the rules have been followed in order to prevent the possibility of secondary pollution. The coal sampling points are shown in Fig.1.

1. Extraction of genome DNA. Total genome DNA from samples was extracted using CTAB/SDS method. DNA concentration and purity was monitored on 1% agarose gels. According to the concentration, DNA was diluted to 1ng/μL using sterile water (Hess et al., 2011: 463-467; Avershina et al., 2013: 211-216).

2. Amplicon Generation. 16S rRNA genes of distinct regions (16SV4 were amplified used specific primer (e.g.16S V4: 515F-806R) with barcode. All PCR reactions were carried out with Phusion® High-Fidelity PCR Master Mix (New England Biolabs, England).

3. PCR Products quantification and qualification. The same volume of 1X loading buffer (contained SYB green) with PCR products were mixed and detected on 2% agarose gel electrophoresis. Samples with bright main strip between 400-450 bp were chosen for further experiments.

4. PCR Products cleanup and purification. PCR products were mixed in equidensity ratios. Then, mixture PCR products was purified with Qiagen Gel Extraction Kit (Qiagen, Germany).

5. Library preparation and sequencing. Sequencing libraries were generated using TruSeq® DNA PCR-Free Sample Preparation Kit (Illumina, USA) following manufacturer’s recommendations and index codes were added. The library quality was assessed on the Qubit@ 2.0 Fluorometer (Thermo Scientific) and Agilent Bioanalyzer 2100 system. Finally, the library was sequenced on an Illumina HiSeq2500 platform and 250 bp paired-end reads were generated.

Data analysis

1. Paired-end reads assembly and quality control

1.1 Data split. Paired-end reads was assigned to samples based on their unique barcode and truncated by cutting off the barcode and primer sequence.

1.2 Sequence assembly. Paired-end reads were merged using FLASH (V1.2.7,http://ccb.jhu.edu/software/FLASH/) (Caporaso et al., 2011: 4516-4522), a very fast and accurate analysis tool, which was designed to merge paired-end reads when at least some of the reads overlap the read generated from the opposite end of the same DNA fragment, and the splicing sequences were called raw tags.
1.3 Data filtration. Quality filtering on the raw tags were performed under specific filtering conditions to obtain the high-quality clean tags (Youssef et al., 2009: 5227-5236) according to the QIIME(V1.7.0, http://qiime.org/index.html) (Hess et al., 2011: 463-467) quality controlled process.

1.4 Chimera removal. The tags were compared with the reference database (Gold database, http://drive5.com/uchime/uchime_download.html) using UCHIME algorithm (UCHIME Algorithm, http://www.drive5.com/usearch/manual/uchime_alго.html) (Asnicar et al., 2015: 1029) to detect chimera sequences, and then the chimera sequences were removed (DeSantis et al., 2006: 394-399). Then the Effective Tags finally obtained.

2. OTU cluster and Species annotation

2.1 OTU Production. Sequences analysis were performed by Uparse software (Uparse v7.0.1001) (Ondov et al., 2011: 385). Sequences with ≥97% similarity were assigned to the same OTUs. Representative sequence for each OTU was screened for further annotation.

2.2 Species annotation. For each representative sequence, the GreenGene Database (http://greengenes.lbl.gov/cgi-bin/nph-index.cgi) (Bulgarelli et al., 2015: 392-403) was used based on RDP classifier (Version 2.2, http://sourceforge.net/projects/rdp-classifier/) (Liet al., 2013: 4207-4216) algorithm to annotate taxonomic information.

2.3 Phylogenetic relationship Construction. In order to study phylogenetic relationship of different OTUs, and the difference of the dominant species in different samples (groups), multiple sequence alignment were conducted using the MUSCLE software (Version 3.8.31, http://www.drive5.com/muscle/) (Lundberget al., 2013: 999-1002).

2.4 Data normalization. OTUs abundance information were normalized using a standard of sequence number corresponding to the sample with the least sequences. Subsequent analysis of alpha diversity and beta diversity were all performed basing on this output normalized data.

3. Beta Diversity.

Beta diversity analysis was used to evaluate differences of samples in species complexity, Beta diversity on both weighted and unweighted unifrac were calculated by QIIME software (Version 1.7.0). Cluster analysis was preceded by principal component analysis (PCA), which was applied to reduce the dimension of the original variables using the FactoMineR package and ggplot2 package in R software (Version 2.15.3). Principal Coordinate Analysis (PCoA) was performed to get principal coordinates and visualize from complex, multidimensional data. A distance matrix of

Figure 1 – The location and number of coal (lignite and leonardite) sampling points
weighted or unweighted unifrac among samples obtained before it was transformed to a new set of orthogonal axes, by which the maximum variation factor is demonstrated by first principal coordinate, and the second maximum one by the second principal coordinate, and so on. PCoA analysis was displayed by WGCNA package, stat packages and ggplot2 package in R software (Version 2.15.3). Unweighted Pair-group Method with Arithmetic Means(UPGMA) Clustering was performed as a type of hierarchical clustering method to interpret the distance matrix using average linkage and was conducted by QIIME software (Version 1.7.0).

Results and Discussion

Currently the challenge in isolating the whole microbial biodiversity is not conditional with traditional methods of cultivation, but this approach allows the clearest and most detailed study of the microbial structure and stepwise characteristics, particularly the functional groups of microorganisms.

Figure 2 – The statistical amount of sequences of each coal sample at various classification level (Y-axis: the tags number of each classification level, X-axis: the samples name)

In our study, in general, 75777, 86518, 84434, 76929, 80420, 73629 and 73857 sequences were obtained from the seven coal samples, indicated as KLE, KLI, LLI, LLE, OLE, OLI and YLI. As a result, the abundance of bacterial species sequences (BSS) was considerably higher in samples of KLI, LLI and OLE; while lower BBS was observed in OLI and YLI samples (Fig.2.)

(Total Tags number (red) indicates the splicing sequence number. The taxon tags (blue) indicates the number of Tags for building OTUs. Unclassified Tags (green) refers to the building OTUs but without classified information access. Unique Tags (yellow) refers to the frequency is 1, but cannot be clustering to the OTUs. Number of OTUs (purple) refers to the Number of OTUs finally received) (Fig.3.).

It is known that operational taxonomic units (OTUs) can be constructed by clustering sequences *de novo*, essentially based on their similarity, which is computationally much more intensive. Here, in order to study the species composition of each sample, the Effective Tags of all the samples were clustered into OTUs with 97% identity, and species annotations were then performed on the representative sequences of OTUs.

Of those sequences, total 77015, 87037, 84761, 78590, 81889, 73885 and 78690 Tags, and 1019, 709, 628, 1212, 682, 551 and 799 OTUs were found in KLE, KLI, LLI, LLE, OLE, OLI and YLI, respectively.
Metagenomic analysis of microbial community in coal samples from Kazakhstan using Illumina NGS Technology

Figure 3 – Tags and OTUs number statistics of coal samples

Figure 4 – Hierarchical cluster analysis of coal microbial community
In order to study the resemblance between different coal samples, clustering analysis are used to build a clustering tree. In environmental microbiology, UPGMA (Unweighted Pair-group Method with Arithmetic Mean) is a more commonly adapted cluster technique, which was first used to solve the classification puzzle. This method was used to visualize the interrelationship of test samples. The distance matrices were detected through Unifrac analyses (Fig.4).

Top ten bacterial genera abundance in phylum level of seven samples were also compared (Fig.5.). In general, top 10 bacterial phyla were identified in coal samples, with Proteobacteria, Tenericutes and Actinobacteria mainly being dominant among samples. The relative abundance of Proteobacteria, the greatest plentiful phylum in the samples, ranged from 20.3% to 95.5% of the total bacterial 16S rDNA gene sequences. Actinobacteria was the second abundant phylum in the samples of KLE, LLE and YLI with a relative abundance of 25.3 – 43.0%. The relative abundance of Tenericutes was rich in OLE, showing 65.4%. The relative abundance of Firmicutes and Bacteroidetes were around 3.2-45%, Nitrospirae phylum showed 20% abundance only in LLP. Chloroflexi, Gemmatimonadetes, Acidobacteria and Fusobacteria were not significant in all samples.

Moreover, some previous studies also found that Proteobacteria, Actinobacteria and Firmicutes were also among the most abundant phyla in the wastewater from coal-mining industry analyzed by Illumina high-throughput sequencing (Lozupone et al., 2005: 8228-8235).

A total of 100 bacterial genera were identified via taxonomic summary. Among the all coal samples, the relative abundance of Phyllobacterium, Pseudarthrobacter and Leptospirillum were observed, while Candidatus Bacilloplasma showed maximum level in OLE. (Fig.6-8.).

A large majority of Phyllobacterium are plant-associated nitrogen-fixing bacteria and occupy diverse ecological niches (Avershina et al., 2013: 211-216). Their great variety of habitats suggests that these genera have evolved essential adaptive properties to the environment. Additionally, their nonpathogenic status and their ability to promote plant growth has made them attractive.
Metagenomic analysis of microbial community in coal samples from Kazakhstan using Illumina NGS Technology

Figure 6 – Major phyla/genera of each coal samples

Figure 7 – Relative abundance of bacterial genera in coal samples
Conclusion

Currently, there is a steady trend towards a transition to systemic biology, which is strongly pronounced in the field of ecology of microbial communities. Recognition of the impossibility of considering an integral system from the point of view of the properties of its individual components allowed a completely different look at the approaches used in biological research.

The main advantage of the metagenomic approach is its comprehensive framework – it allows to study not only the functions of individual components of the microbiome, but also the integral roles of the microbial community as a whole, treating it as a set of interacting microorganisms. The conducted in-depth work in this field revealed several fundamentally and crucial features of microbiota in Kazakhstan coal samples.

References

Yong W., Petersen J.N., Kaufman E.N. Modeling the biological solubilization of coal in a Liquid Fluidized-Bed Reactor // Appl Biochem Biotechnol. – 1995. – Vol. 51, No. 52. – P. 437-447.
Xu X.H., Chen C.H., Qi H.Y. Development of coal combustion pollution control for SO_2 and NOx in China // Fuel Processing Technol. – 2000. – Vol. 62, No. 2/3. – P. 153-160.
Yuan H., Yang J., Wang F. et al. The prospect of microbial sustainable utilization of lignite // World Science-Technology research and Development. – 2002. – Vol. 24, No. 3. – P. 13-17.
Dai H., Xiek U. Lignite utilization technology. – BeiJing: Coal industry press, 1998. -P. 4-7.
Metagenomic analysis of microbial community in coal samples from Kazakhstan using Illumina NGS Technology

Nakagawa H., Namba A., Böhm H., Miura K. Hydrothermal dewatering of brown coal and catalytic hydrothermal gasification of the organics compounds dissolving in the water using anovel Ni-catalyst // Fuel. – 2004. -Vol.83, No. 6. – P. 719-725.
Weber J.H. Binding and transport of metals by humic material. In: Frimmel F.H., Christman R.F., editors. Humic substances and their role in the environment. – Chichester: John Wiley and Sons, 1988. P. 165-178.
Murphy E.M., Zachara J.M. The role of sorbed humic substances on the distribution of organic and inorganic contaminants in groundwater // Geoderma. – 1995. – Vol. 67. – P. 103–124.
Christ I., Knicker H., Kogel I.K., Kretzschmar R. Chemical heterogeneity of humic substances: Characterization of size fraction obtained by hollow-fibre ultrafiltration // Eur J Soil Sci. – 2000. – Vol. 510. – P. 617–625.
Piccolo A., Spaccini R., Rieder N. Resequencing of a biologically labile organic carbon in soils by humified organic matter // Climatic Change. – 2004. – Vol. 67, No. 2-3. – P. 329-343.
Bandeira M., Mosca G., Vamerali T. Humic acids affect root characteristics of fodder radish (Raphanussativus L. var.oleiformis Pers.) in metal-polluted waste. // Desalination. – 2009. – Vol. 246, No. 1-3. – P. 78-91.
Badis A., Ferradji F.Z., Boucherit A., Fodil D., Boutoumi H. Characterization and biodegradation of soil humic acids and preliminary identification of decolorizing actinomycetes at Mitidja plain soil (Algeria) // Microbiol Res. – 2009. – Vol. 3, No. 13. – P. 997-1007.
Barros L., Canellas L.P., Lopes F., Oliveira N., Lazaro E., Piccolo A. Bioactivity of chemically transformed humic material from vermicompost on plant root growth // Agric Food Chem. – 2010. – Vol. 58, No. 6. – P. 3681-3688.
Fakoussa R.M. Investigation with microbial conversion of national coals. – PhD thesis, University Bonn, 1981. – P. 634-642.
Cohen M.S., Gabriele P.D. Degradation of coal by the fungi Polyporus versicolor and Poramnicota // Appl Environ Microbiol. – 1982. – Vol. 51. – P. 437-447.
Fakoussa RM, Hoefrichter M. Biotechnology and microbiology of coal degradation // Appl. Microbiol. Biotechnol., – 1999. – Vol. 52. – P. 25-40.
Gupta A., Arena K. Biogasification of coal using different sources of microorganisms // Fuel. – 2000. -Vol. 79. – P. 103–105.
Helena M., Kamila P., Anna P. Microbial degradation of low rank coals // Fuel Process Technol. – 2002. – Vol. 77/78. – P. 17–23.
Crowford D.L., Gupta R.K. Characterization of extracellular bacterial enzymes which depolymerize a soluble lignite coal polymer // Fuel – 1991. – Vol. 70. – P. 577-580.
Pompan J.K., Breckheinridge C.R., Stoner D.L. Biologically derived value-added products from coal // Appl Biochem Biotechnol. – 1995. – Vol. 54. – P. 249-255.
Davison B.H., Nicklaus D.M., Misra A., Lewis S.N., Faison BD. Utilization of microbially solubilized coal // Appl Biochem Biotechnol. – 1990. -Vol. 24, No. 25. – P. 447-56.
Hess M., et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen // Science. – 2011. – Vol. 331, No. 6016. – P. 463-467.
Avershina E., Trine F., Knut R. De novo Semi-alignment of 16S rRNA gene sequences for deep phylogenetic characterization of next generation sequencing data // Microbes and Environments. – 2013. – Vol. 28, No. 2. – P. 211-216.
Caporaso J.G., et al. Global patterns of 16S rRNA diversity at a depth of millions of period per sample // Proceedings of the National Academy of Sciences. – 2011. – Vol. 108. – P. 4516-4522.
Yousef N., et al. Comparison of species richness estimates using nearly-fully fragments and simulated pyrosequencing-fusion fragments in 16S rRNA gene based-environmental surveys // Applied and environmental microbiology. – 2009. – Vol. 75, No. 16. – P. 5227-5236.
Asnicar F., Weingart G., Tickle T.L., et al. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. // PeerJ, 2015. – P. 1029.
DeSantis T.Z., et al. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes // Nucleic acids research. – 2006. – Vol. 34., Suppl. 2. – P. 394-399.
Brian O.D., Bergman N.H., Phillippy A.P. Interactive metagenomic visualization in a Web browser // BMC bioinformatics. – 2011. – Vol. 12, No. 1. – P. 385.
Bulgarelli D., Garrido-Otero R., Münch P.C., et al. Structure and function of the bacterial root microbiota in wild and domesticated barley // Cell host & microbe. – 2015. – Vol.17, No. 3. – P.392-403.
Li B., et al. Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis // Water research. – 2013. – Vol. 47, No. 13. – P. 4207-4216.
Lundberg D.S., et al. Practical innovations for high-throughput amplicon sequencing // Nature methods. – 2013. – Vol. 10, No. 10. – P. 999-1002.
Lozupone C., Rob K. UniFrac: a new phylogenetic method for comparison microbial communities // Applied and environmental microbiology. – 2005. – Vol. 71, No. 12. – P. 8228-8235.

References
Avershina E., Trine F., and Knut R. (2013) De novo Semi-alignment of 16S rRNA Gene Sequences for Deep Phylogenetic Characterization of Next Generation Sequencing Data. Microbes and Environments vol. 28 no. 2, pp. 211-216.
Asnicar F, Weingart G, Tickle T.L., et al. (2015) Compact graphical representation of phylogenetic data and metadata with GraPhlAn [J]. PeerJ, p. 1029.
Bandeira M., Mosca G., Vamerali T. (2009) Humic acids affect root characteristics of fodder radish (Raphanussativus L. var. oleiformis Pers.) in metal-polluted wastes. Desalinat, vol. 246, no. 1-3, pp. 78-91.

38

Хабарычы. Биология сериясы. №3 (76). 2018
Badis A., Ferradji F.Z., Boucherit A., Fodil D., Boutoumi H. (2009) Characterization and biodegradation of soil humic acids and preliminary identification of decolorizing actinomycetes at Mitidja plain soil (Algeria). Microbiol Res., vol. 3, no. 13, pp. 997-1007.

Barros L., Canellas L.P., Lopes F., Oliveira N., Lazaro E., Piccolo A. (2010) Bioactivity of chemically transformed humic matter from vermicompost on plant root growth. Agric FoodChem., vol. 58, no. 6, pp. 3681-3688.

Bulgarelli D., Garrido-Oter R, Münch P C, et al. (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley [J]. Cell host & microbe, vol. 17, no. 3, pp. 392-403.

Caporaso J., Gregory, et al. (2011) Global patterns of 16S rRNA diversity at a depth of millions of period per sample. Proceedings of the National Academy of Sciences 108. Suk 1, pp. 4516-4522.

Christl I., Knicker H., Kogel I.K., Kretzschmar R. (2000) Chemical heterogeneity of humic substances: Characterization of size fractionsobtained by hollow-fibre ultrafiltration. Eur J Soil Sci., vol. 510, pp. 617–25.

Cohen M.S., Gabriele P.D. (1982) Degradation of coal by the fungi Polyporus versicolor and Poriamonticola. Appl Environ Microbiol., vol. 51, pp. 437–47.

Crawford DL., Gupta R.K. (1991) Characterization of extracellular bacterial enzymes which depolymerize a soluble lignite coal polymer. Fuel., vol. 70, pp. 677–80.

DeSantis, T.Z., et al. (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic acids research 34. Suppl 2, W394-W399.

Dai H., Xie U. (1998) Lignite utilization technology. BeiJing. Coal industry press. vol. 23 pp. 4-7.

Davison B.H., Nicklaous D.M., Misra A., Lewis S.N., Faison B.D. (1990) Utilization of microbially solubilized coal. Appl Biochem Biotechnol., vol. 24, no 25, pp. 447–56.

Fakoussa R.M. (1981) Investigation with microbial conversion of national coals. PhD thesis, University Bonn. vol. 20, no. 4, pp. 634-642.

Fakoussa R.M, Hofrichter M. (1999) Biotechnology and microbiology of coal degradation. ApplMicrobiolBiotechnol., vol. 52, pp. 25–40.

Gupta A., Birenda K. (2000) Biogasification of coal using different sources of micro-organisms. Fuel., vol. 79, pp. 103–5.

Nakagawa H., Namba A., Böhlmann M., Miura K. (2004) Hydrothermal dewatering of brown coal and catalytic hydrothermal gasification of the organic compounds dissolving in the water using anovel Ni/carbon catalyst. Fuel., vol. 83, no. 6, pp. 719-725.

Weber J.H. Binding and transport of metals by humic material. In: Frimmel F.H., Christman R.F., editors. (1988) Humic substances and their role in the environment. Chichester: John Wiley and Sons. pp. 165–78.

Murphy E.M., Zachara J.M. (1995) The role of sorbed humic substances on the distribution of organic and inorganic contaminants in groundwater. Geoderma., vol. 67, pp. 103–24.

Piccolo A., Spaccini R., Nieder R. (2004) Sequestration of a biologically labile organic carbon in soils by humified organic matter. Climatic Change., vol. 67, no. 2-3, pp. 329-343.

Helena M., Kamila P., Anna P. (2002) Microbial degradation of low rank coals. Fuel Process Technol. vol. 77/78, pp. 17–23.

Hess M., et al. (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science. vol. 331, no. 6016, pp. 463-467.

Yong W., Petersen J.N., Kaufman E.N. (1995) Modeling the biological solubilization of coal in a Liquid Fluidized-Bed Reactor. ApplBiochemBiotechnol., vol. 51, no. 52, pp. 437–47.

Lundberg D.S., et al. (2013) Practical innovations for high-throughput amplicon sequencing. Nature methods vol. 10, no. 10, pp. 999-1002.

Lozupone, Catherine, and Rob Knight. (2015) UniFrac: a new phylogenetic method for comparison microbial communities. Applied and environmental microbiology vol. 71, no. 12, pp. 8228-8235.

Brian O.D., Bergman N.H., Phillippy A.P. (2011) Interactive metagenomic visualization in a Web browser. BMC bioinformatics vol. 12, no. 1, p. 385.

Polman J.K., Brechkenridge C.R., Stoner D.L. (1995). Biologically derived value-added products from coal. Appl Biochem Biotechnol., vol. 54, pp. 249–55.

Xu X.H., Chen C.H., Qi H.Y. (2000) Development of coal combustion pollution control for SO₂ and NOx in China. Fuel Processing Technol., vol. 62/2, pp. 153–160.

Youssef N., et al. (2009) Comparison of species richness estimates using nearly orthologous fragments and simulated pyrosequencing-fusion fragments in 16S rRNA gene-based environmental surveys. Applied and environmental microbiology. vol. 75, no. 16, pp. 5227-5236.

Yuan H., Yang J., Wang F. et al. (2002) The prospect of microbial sustainable utilization of lignite. World Science-Technology research and Development., vol. 24 no. 3, pp. 13 – 17.

Li B., et al. (2013) Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis. Water research, vol. 47, no. 13, pp. 4207-4216.
Болім	Раздел	Материалахасы	Материалахасы
1-бөлім	Раздел 1	Ботаника	Ботаника
Айпеисова С.А.	Анализ рода Astragalus L. Актюбинского флористического округа	4	
2-бөлім	Раздел 2	Зоология	Зоология
Склярова О.Н., Крайнюк В.Н., Смирнова Д.А.	Фауна ручейников (Trichoptera, Insecta) Центрального и Северного Казахстана	14	
3-бөлім	Раздел 3	Молекулярная биология и генетика	Молекулярная биология и генетика
Akimbekov N.Sh., Qiao Xiaohui, Tastambek K.T., Digel L., Abdieva G.Zh., Ulieva P.S., Berdikulov B., Zhubanova A.A.	Metagenomic analysis of microbial community in coal samples from Kazakhstan using Illumina NGS Technology	28	
Akimniyazova A.N., Niyazova R.E., Atambayeva Sh.A., Ivashchenko A.T.	Characteristics of miRNA interaction with mRNA in 5'UTR, CDS and 3'UTR of candidate genes of esophageal and stomach cancer	40	
Baizhigitova D., Atambayeva Sh.A., Niyazova R.E., Ivashchenko A.T.	Characteristics of miRNA interaction with 5'UTR, CDS and 3'UTR mRNA candidate genes of myocardial infarction and ischemic heart disease	62	
Niyazova R.E., Mamirova A., Atambayeva Sh.A., Ivashchenko A.T.	Characteristics of miRNA interaction with mRNA of candidate genes of the non-small cell lung cancer	83	
Рысбекова А.Б., Дюсибаева Э.Н., Жирнова И.А., Есенбекова Г.Т., Жакенова А.Е.	Биохимический скрининг отечественной и мировой коллекции проса на содержание амилозы в зерне	97	
4-бөлім	Раздел 4	Физиология и биохимия человека и животных	Физиология и биохимия человека и животных
Султамбекова Г.К., Ашабаева Ж.Е., Джангалиева Р.Н., Қошқарова K.A., Кошкимбаева Г.Д., Калимагамбетов А.М.	Урьык дамуында ақауларына биохимиялық скринингтің нәтижелері	120	
5-бөлім	Раздел 5	Физиология и биохимия растений	Физиология и биохимия растений
Терлецкая Н.В., Зорбекова А.Н., Алтаева Н.А., Бари Г.Т., Ырежетова У.	Влияние засухи на ростовые параметры и пигментный комплекс линий пшеницы, полученных от межвидовых скрещиваний	130	
6-бөлім	Раздел 6	Биотехнология	Биотехнология
Фазеев Д.Г., Касымбеков Б.К., Фазеев Е.Г., Мугулланов Ж.Ж., Болусаев К.К.	Разработка технологии культивирования растений тау-сагыз (Scorzonera tau-saghyz Lipsch. et Bosse) с использованием почвенной микрофлоры: 4. Микоризация в условиях лабораторного эксперимента	142	
CONTENTS

Section 1
Botany

Aipeissova S.A.
Analysis of the genus Astragalus l. of Aktobe flora region...4

Section 2
Zoology

Sklyarova O.N., Krainyuk V.N., Smirnova D. A.
Caddis flies fauna (Trichoptera, Insecta) of Central and North Kazakhstan..14

Section 3
Molecular Biology and Genetics

Akimbekov N.Sh., Qiao Xiaohui, Tastambek K.T., Digel L., Abdieva G.Zh., Ualieva P.S., Berdikulov B., Zhubanova A.A.
Metagenomic analysis of microbial community in coal samples from Kazakhstan using Illumina NGS Technology.............28

Akimnyazova A.N., Niyazova R.E., Atambayeva Sh.A., Ivashchenko A.T.
Characteristics of miRNA interaction with mRNA in 5'UTR, CDS and 3'UTR of candidate genes of esophageal and stomach cancer..40

Baizhitova D., Atambayeva Sh.A., Niyazova R.E., Ivashchenko A.T.
Characteristics of miRNA interaction with 5'UTR, CDS and 3'UTR mRNA candidate genes of myocardial infarction and ischemic heart disease...62

Niyazova R.E., Mamirov A., Atambayeva Sh.A., Ivashchenko A.T.
Characteristics of miRNA interaction with mRNA of candidate genes of the non-small cell lung cancer83

Rysbekova A.B., Dusibaeva E.N., Zhirmova I.A., Esenbekova G.T., Seytkhazhaev A.I., Zhakenova A.Ye.
Biochemical screening of the domestic and world prosa millet collection on the content of amilose in grain......................97

Smeknov I.T., Ayupov T.I., Bakhtambayeva M.K., Rakhmatullah G.T., Baisakova S.M., Bissembaev A.K.
Cloning and expression of wheat Rht-D1a cDNA in E.coli ..107

Section 4
Human and Animal Physiology and Biochemistry

Saltambekova G.K., Ashabaeva Zh.E., Dzhangalieva R.N., Koshykova K.A., Koshykimbaeva G.D., Kalimagambetov A.M.
Results of biochemical screening of fetal malformations...120

Section 5
Plants Physiology and Biochemistry

Terletskaya N.V., Zorbeev A.N., Altayeva N.A., Bari G.T., Erezhetova U.
Effect of drought for growth parameters and pigment complex of wheat lines obtained from interspecific crosses.............130

Section 5
Biotechnology

Faleev D.G., Kasymbekov B.K., Faleev E.G., Myrzagaliev Zh.Z., Bogushev K.K.
Development of technology plant cultivation tau-sagyz (Scorzonera tau-saghyz Lipsch. et Bosse) using soil microflora:
4. Mycorrhization in a laboratory experiment..142