Draft genome sequence for virulent and avirulent strains of *Xanthomonas arboricola* isolated from *Prunus* spp. in Spain

Jerson Garita-Cambronero¹, Ana Palacio-Bielsa², María M. López³ and Jaime Cubero¹*

Abstract

Xanthomonas arboricola is a species in genus *Xanthomonas* which is mainly comprised of plant pathogens. Among the members of this taxon, *X. arboricola* pv. pruni, the causal agent of bacterial spot disease of stone fruits and almond, is distributed worldwide although it is considered a quarantine pathogen in the European Union. Herein, we report the draft genome sequence, the classification, the annotation and the sequence analyses of a virulent strain, IVIA 2626.1, and an avirulent strain, CITA 44, of *X. arboricola* associated with *Prunus* spp. The draft genome sequence of IVIA 2626.1 consists of 5,027,671 bp, 4,720 protein coding genes and 50 RNA encoding genes. The draft genome sequence of strain CITA 44 consists of 4,760,482 bp, 4,250 protein coding genes and 56 RNA coding genes. Initial comparative analyses reveals differences in the presence of structural and regulatory components of the type IV pilus, the type III secretion system, the type III effectors as well as variations in the number of the type IV secretion systems. The genome sequence data for these strains will facilitate the development of molecular diagnostics protocols that differentiate virulent and avirulent strains. In addition, comparative genome analysis will provide insights into the plant-pathogen interaction during the bacterial spot disease process.

Keywords: *Xanthomonas arboricola*, *Prunus* spp., Stone fruits, Bacterial spot disease, Plant pathogenic bacteria

Introduction

Xanthomonas arboricola [1] are plant associated bacteria in nine pathovars with a diverse range of biotic relationships [2, 3]. Within this taxon, plant pathogenic strains with non-pathogenic strains have been described. Bacterial spot of *Prunus* spp. (*X. arboricola* pv. pruni), bacterial blight of *Juglans* spp. (*X. arboricola* pv. juglandis) and *Corylus* spp. (*X. arboricola* pv. corylina) are among the most harmful diseases of these tree hosts. These bacterial diseases are distributed worldwide and the causal bacteria are regulated in several countries including the European Union, where *X. arboricola* pv. pruni is a quarantine pathogen [4, 5].

Within the pathovars, *X. arboricola* pv. pruni is a major threat to cultivated, exotic and ornamental *Prunus* species. This bacterium has been identified as a pathogen of *P. armeniaca*, *P. avium*, *P. buergeriana*, *P. cerasus*, *P. crassipes*, *P. davidiana*, *P. domesticia*, *P. donarium*, *P. dulcis*, *P. laurocerasus*, *P. mume*, *P. persica* and *P. salicina* [6]. During the last decade, some local outbreaks of bacterial spot in Spain have been reported on almond, peach, nectarine and plum [7]. For initial characterization of the bacterial strains isolated from Spanish outbreaks of bacterial spot, we performed a polyphasic study based on a multilocus sequence analysis, as well as some phenotypic characters [8]. After the characterization that showed the presence of different molecular and phenotypic variants, selected strains were analysed to assess the differences at the whole genome level.

Genome sequencing of *X. arboricola* strains has been completed for five strains isolated from peach, three from plum, two from *Musa* sp., one from almond [9], one from barley [10] and one from Turkish hazel [11]. Genome sequencing includes the plasmid pXap41 [12], present in the *X. arboricola* pv. pruni strains. All these sequences have been deposited in the NCBI database.
Four genome sequences are available for pathogenic strains from *Prunus*, identified as *X. arboricola* pv. pruni. However, with the exception of the strain CITA 33 isolated from almond (*P. amygdalus*, syn. *P. dulcis*) in Spain [9], no detailed information about features of those genomes have been published. In the same way, there are no sequenced strains isolated from Japanese plum (*P. salicina*) or cherry rootstock (*P. mahaleb*). In addition, no avirulent strain of *X. arboricola* from *Prunus* spp. has been analysed at the whole-genome level. The occurrence of avirulent strains is of particular importance for a quarantine pathogen like *X. arboricola* pv. pruni with respect to accurate diagnosis of virulent strains.

Herein we present draft genome sequences for two *X. arboricola* strains: an avirulent strain, CITA 44, isolated from *P. mahaleb*, and *X. arboricola* pv. pruni strain, IVIA 2626.1, isolated from *P. salicina* cv. Fortuna, which differs from other sequenced strains in phenotypical features and virulence on several hosts [9]. The genome analysis of these two strains as well as comparison with other related strains should provide insight into the genetics of the pathogenesis process in *X. arboricola* strains associated with the bacterial spot disease of stone fruits and almond.

Organism information

Classification and features

Strain CITA 44 was isolated in 2009 from asymptomatic leaves of Santa Lucia SL-64 cherry rootstock (*P. mahaleb*) in a nursery located in the north-eastern Spanish region of Aragón. This strain showed flagella associated swimming and twitching motility on 0.5 % agar PYM plates and 0.3 % agar MMA plates, respectively. Additionally, strain CITA 44 showed type IV pili associated twitching motility in the interstitial surface between 1 % agar PYM layer and the plastic plate surface. According to the atomized oil assay [13], this strain produced surfactant compounds on 1.5 % agar LB plates and 0.3 % agar MMA plates, respectively. Strains CITA 44 and IVIA 2626.1 grew in the nursery located in the north-eastern Spanish region of Aragón. This strain showed flagella associated swimming, twitching type motility as well as production of surfactant compounds in the same culture conditions described above for strain CITA 44. In addition, according to the detached leaf assay described previously, strain IVIA 2626.1 was able to produce bacterial spot symptoms on almond, peach and European plum but not on apricot after 28 dpi.

Classification of the strains was performed using an MLSA approach based on the partial sequences of the housekeeping genes *atpD*, *dnaK*, *efp*, *fyuA*, *glnA*, *gyrB* and *rpoD* of the strains CITA 44 and IVIA 2626.1 as well as related strains of *X. arboricola* [3]. Nucleotide sequences were aligned with Clustal W and both ends of each alignment were trimmed (*atpD* 750 bp, *dnaK* 759 bp, *efP* 339 bp, *fyuA* 753 bp, *glnA* 675 bp, *gyrB* 735 bp and *rpoD* 756 bp) and concatenated to a total length sequence of 4,620 nucleotide positions. The phylogenetic tree was constructed using the maximum likelihood method implemented in MEGA 6.0 [14] using 1,000 bootstrap re-samplings. According to the phylogenetic analysis, strain CITA 44 belongs to the species *X. arboricola*, nevertheless, this strain could not be associated to any of the pathovars of this species. The concatenated sequence similarity among this strain and the other *X. arboricola* strains analysed varied from 97.08 % to 98.79 %. In contrast, strain IVIA 2626.1 was clustered in a group with the pathotype strain *X. arboricola* pv. pruni CFBP 2535, isolated from *P. salicina* in New Zealand, with a sequence similarity of 100 %.

X. arboricola CITA 44 and *X. arboricola* pv. pruni IVIA 2626.1 strains are Gram-negative, non-sporulating, rod-shaped, motile cells with a single polar flagellum. Rod-shaped cells of CITA 44 are approximately 0.6 μm in width and 1.4–2.5 μm in length. Rod-shaped cells of IVIA 2626.1 are approximately 0.7 μm in width and 1.7–2.5 μm in length. These strains formed 2.0–3.0 mm colonies within 48 h at 27 °C on YPGA 1.5 % agar plates [15]. Both strains formed mucoid, circular, yellow colonies with a convex elevation and an entire margin (Fig. 1). Strains CITA 44 and IVIA 2626.1 grew in the nutritive culture media PYM [16] and LB [17], as well as in the minimal medium A [18]. According to the Biolog GN2 system, both strains metabolized α-D-glucose, α-keto glutamic acid, bromosuccinic acid, D-cellobiose, D-fructose, D-mannose, D-psicose, D-threitolase, glycyl-L-glutamic acid, L-glutamic acid, L-serine, pyruvic acid methyl ester, succinic acid, succinic acid mono-methyl-ester, sucrose and Tween 40. The carbon compound D-saccharic acid was only utilized by strain CITA 44. Dextrin and L-proline were only metabolized by strain IVIA 2626.1. In addition to this analysis, strain CITA 44 hydrolysed casein and starch, while strain IVIA 2626.1 did not (Table 1).

Minimum information about genome sequence [19] of *X. arboricola* strain CITA 44 and *X. arboricola* pv. pruni strain IVIA 2626.1, as well as their phylogenetic position, are provided in Table 1 and Fig. 2.
Genome sequencing information

Genome project history

X. arboricola strain CITA 44 and *X. arboricola* pv. pruni strain IVIA 2626.1 were selected for comparative whole sequencing analysis as *X. arboricola* strains isolated from *Prunus* spp. with several different phenotypic characters including virulence. Comparative genomics among the avirulent strain CITA 44 and the available *Prunus*-pathogenic strains including IVIA 2626.1 should be useful for identifying the molecular determinants associated with pathogenesis as well as those associated with host resistance and for diagnostic characterization of *X. arboricola* strains causing bacterial spot of *Prunus* spp. Whole Genome Shotgun Projects have been deposited at DDBJ/EMBL/GenBank under the accession numbers LJGM00000000 and LJGN00000000. The versions described in this paper are versions LJGM01000000 and LJGN01000000. Table 2 summarizes the project information and its association with MIGS.

Growth conditions and genomic DNA preparation

X. arboricola strain CITA 44 and *X. arboricola* pv. pruni strain IVIA 2626.1 are deposited and available at the bacterial collections of the Instituto Valenciano de Investigaciones Agrarias (IVIA, Valencia, Spain) and the Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA, Zaragoza, Spain). Both strains were streaked on 1.5 % agar LB plates and were grown for 48 h at 27 °C. A single colony of each strain was inoculated separately in 30 ml of LB broth and grown on an orbital shaker for 24 h at 27 °C. DNA from pure bacterial cultures was extracted using a QIAamp DNA miniKit (Qiagen, Barcelona, Spain) according to the manufacturer instructions. DNA quality and quantity were determined by 1 % agarose gel electrophoresis, as well as using the Qubit fluorometer (Invitrogen) according to the Quant-it dsDNA BR Assay Kit (Invitrogen) manufacturer instructions, and by a spectrophotometry (NanoDrop 2000 spectrophotometer, Thermo Scientific). A 2.0 μg/μl aliquot of 200 ng/μl sample was submitted for the sequencing.

Genome sequencing and assembly

The draft genome sequences for strains CITA 44 and IVIA 2626.1 were generated at the STAB VIDA Next Generation Sequencing Laboratory (Caparica, Portugal) using the Ion Torrent sequencing technology. Draft genome assembly of strain CITA 44 was based on 3,060,638 usable reads with a total base number of 948,933,067. The mean read length was 361.70 ± 93.50 and the mode read length was 385 bp. The draft genome assembly of IVIA 2626.1 was based on 2,317,319 reads, with a total base number of 461,361,072. The mean read length and
the mode read length for this strain were 201.80 ± 85.30 bp and 241 bp, respectively. Genomic assemblies were constructed using MIRA 4.0 [20]. From the total of contigs generated, only those with a contig size above 500 bp and an average coverage above 99 in the case of CITA 44, and 40, in the case of IVIA 2626.1 were considered significant. Finally, 71 contigs (N50 = 120,981 bp; largest contig = 352,479 bp; average coverage = 198X) were generated for strain CITA 44 and for strain IVIA 2626.1, 214 contigs (N50 = 47,650; largest contig = 115,385; average coverage = 92X) were generated.

Genome annotation

The assembled draft genome for both strains was annotated using the RAST platform and the gene-caller GLIMMER 3.02 [21, 22]. RNAmer version 1.2 [23]

Table 1 Classification and general features of two *Xanthomonas arboricola* strains according to the MIGS recommendation [19] published by the Genomic Standards Consortium [53]

MIGS ID	Property	Term	Evidence code*
Classification	Domain: Bacteria	TAS [54]	
	Phylum: Proteobacteria	TAS [55]	
	Class: Gammaproteobacteria	TAS [56–58]	
	Order: Lysobacterales	TAS [57, 59, 60]	
	Family: Lysobacteraceae	TAS [57, 58, 60]	
	Genus: Xanthomonas	TAS [1]	
	Species: Xanthomonas arboricola	IDA	
	Strain: CITA 44, IVA 2626.1	IDA	
Gram stain	Negative	TAS [61]	
Cell shape	Rod-shaped	IDA	
Motility	Motile	IDA	
Sporulation	Non-sporulating	IDA	
Temperature range	4-37 °C	TAS [1]	
Optimum temperature	27 °C	IDA	
pH range; Optimum	7.5-8.5	TAS [61]	
Carbon source	α-D-glucose, α-keto glutaric acid, bromosuccinic acid, D-celllobiose, D-fructose, D-mannose, D-psicose, D-saccharic acid (only strain CITA 44), D-threose, Dextrin (only strain IVA 2626.1), glycyl-L-glutamic acid, L-glutamic acid, L-proline (only strain IVA 2626.1), L-serine, pyruvic acid methyl ester, succinic acid, succinic acid mono-methyl ester, Sucrose, tween 40	IDA	
Energy metabolism	Chemoorganotrophic	TAS [1]	
MIGS-6	Habitat	Plants	IDA, TAS [1]
MIGS-6.3	Salinity	0-6.0 % NaCl	TAS [1]
MIGS-10	Extrachromosomal elements	None in CITA 44, one in IVA 2626.1	IDA, TAS [12]
MIGS-22	Oxygen requirement	Aerobic	IDA
MIGS-15	Biotic relationship	Epiphyte and endophyte	TAS [1]
MIGS-14	Pathogenicity	CITA 44 is avirulent; IVA 2626.1 is virulent on almond, peach and European plum	IDA
Host	Mahaleb cherry (P. mahaleb) (CITA 44) and plum (P. salicina) (IVA 2626.1)	IDA	
Host taxa ID	129217 (CITA 44) and 88123 (IVA 2626.1)	IDA	
Isolation source	Leaf	IDA	
MIGS-4	Geographic location	Spain	IDA
MIGS-5	Sample collection	2002 (IVA 2626.1) and 2009 (CITA 44)	IDA
MIGS-4.1	Latitude	Unknown	NAS
MIGS-4.2	Longitude	Unknown	NAS
MIGS-4.4	Altitude	Unknown	NAS

*aEvidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [62]
and tRNAscan-SE version 1.21 [24] were used to predict rRNAs and tRNAs, respectively. Signal peptides and transmembrane domains were determined using the SignalP 4.1 server [25] and the TMHMM server version 2.0 [26], respectively. Assignment of genes to the COG database [27] and Pfam domains [28] was performed with the NCBI conserved domain database using an expected value threshold of 0.001 [29]. Major structural components associated with the flagellum [30, 31], the type IV pilus [32], the type III secretory system [33, 34] and the type III effectors [35, 36], as well as the type IV secretory system and effectors [37–39], were identified in the draft genome sequence for each strain. Initially, the query of those genes was based on the coding sequence regions automatically annotated by RAST, and were confirmed using the BLASTn and BLASTx tools available at NCBI. Those components which were not automatically annotated were found in the genome sequence using the progressive Mauve alignment method [40]. Nucleotide sequences of the genes used for

![Phylogenetic tree](image)

Fig. 2 Phylogenetic tree highlighting the position of two *X. arboricola* strains (shown in bold) relative to the pathotype strains (PT) of *X. arboricola*. *X. citri* subsp. *citri* str. 306 [64, 65] was used as an outgroup. The tree was built based on the comparison of concatenated nucleotide sequences of seven housekeeping genes (*atpD*, *dnaK*, *efP*, *fsuA*, *glnA*, *gyrB* and *rpoD*) [3]. Sequences were first aligned and concatenated. The phylogenetic tree was constructed by using MEGA 6.0 software [13] with Maximum Likelihood method based on Tamura-Nei model. Bootstrap values (1,000 replicates) are shown at the branch points. GenBank accession number of *X. citri* subsp. *citri* str. 306 genome sequence is shown in parenthesis; accession numbers associated to the housekeeping loci of the pathotype strains can be found in a previous study [3].
these alignments were obtained from other xanthomonads in the NCBI gene database. Finally, the nucleotide sequence of the aligned regions was analysed using the BLAST approaches mentioned above. Those sequences with query coverage and identity percentage higher than 90 % were annotated. Additionally, the core components of the T3SS and T4SS were searched using the T346Hunter application [41]. T3Es and T4Es genes were predicted using the Effective database [42] after selection of the “gram-” parameter as organism type and the “plant set” parameter as classification module, and the SecReT4 tool [43], respectively. All the predicted genes were corroborated and annotated according to the BLAST parameters mentioned above.

Genome properties

The draft genome sequence of *X. arboricola* strain CITA 44 was 4,760,482 bp in length with an average GC content of 65.8 %, which is similar to that for other genomes of this species (65.4 to 66.0 %) reported in the NCBI

Attribute	Strain	Value	% of total	Value	% of total	
Genome size (bp)	CITA 44	4,760,482	100.00	IVA 2626.1	5,027,671	100.00
DNA coding (bp)		3,992,937	87.50		4,295,592	87.50
DNA G+C (bp)		3,134,520	66.00		3,288,794	66.00
Total genes		4306	100.00		4770	100.00
Protein coding genes		4250	98.62		4720	98.62
RNA genes		56	1.38		50	1.05
Pseudo genes		0	0.00		0	0.00
Genes with function prediction		3330	71.73		3265	71.73
Genes assigned to COGs		3137	73.81		3237	73.81
Genes with Pfam domains		3337	71.73		3433	71.73
Genes with signal peptides		526	12.37		545	12.37
Genes with transmembrane helices		1121	26.37		1221	26.37
CRISPR repeats		1	-		1	-

Fig. 3 Graphical circular representation of the draft genome of *X. arboricola* CITA 44 and *X. arboricola* pv. pruni IVA 2626.1. The contigs of both strains were ordered by Mauve [66] using the genome sequence of *X. campestris* pv. campestris ATCC 33913 [45, 46] as the reference. COG categories were assigned to genes by NCBI’s conserved domain database [29]. The circular map was constructed using CGView [67]. From outside to center: Genes on forward strand (colored by COG categories); genes on reverse strand (colored by COG categories); GC content; GC skew.
genome database. For this strain, 4,306 genes were predicted and 4,250 were determined as protein coding genes. From these protein coding genes, 3,330 genes were assigned to a putative function and the remaining 920 were designated as hypothetical proteins. This strain presented 3 rRNA and 53 tRNA genes. In the case of the *X. arboricola* pv. *pruni* strain IVIA 2626.1, the draft genome sequence was 5,027,671 bp in length with an average GC content of 65.4 %, which is the same as for other strains of *X. arboricola* pv. *pruni* according to the NCBI database. A total of 4,770 genes were predicted and, among them, 4,720 were predicted as protein coding genes with 69.17 % assigned to a function and 30.83 % designated as hypothetical proteins. 50 RNA genes (3 rRNA and 47 tRNA genes) were predicted for this strain. The properties and characteristics associated with these genomes are presented in Table 3. The classification of the predicted protein coding genes into COG functional categories [44] is summarized in Fig. 3 and Table 4.

Insights from the genome sequence

Based on the phenotypic differences between CITA 44 and IVIA 2626.1 strains, selected genes associated with motility and pathogenicity were analysed (Table 5). No differences were observed for the structural components associated with bacterial flagella. A total of 30 out of the 31 components described for this organelle were identified [31], but neither of the two strains contained a homolog of the *flhE* gene. Regarding the 27 components associated with type IV pilus biogenesis and regulation in *Xanthomonas* [32, 45, 46], *fimX, pilD, pilE, pilL* and

Code	Strain	Value	% age	Value	% age	Description
J	CITA 44	218	5.13	217	6.70	Translation, ribosomal structure and biogenesis
A	CITA 44	1	0.02	2	0.06	RNA processing and modification
K	CITA 44	193	4.54	199	6.15	Transcription
L	CITA 44	111	2.61	127	3.92	Replication, recombination and repair
B	CITA 44	1	0.02	1	0.03	Chromatin structure and dynamics
D	CITA 44	35	0.82	40	1.23	Cell cycle control, cell division, chromosome partitioning
V	CITA 44	63	1.48	68	2.10	Defense mechanisms
T	CITA 44	211	4.96	208	6.42	Signal transduction mechanisms
M	CITA 44	225	5.29	235	7.26	Cell wall/membrane biogenesis
N	CITA 44	114	2.68	119	3.67	Cell motility
Z	CITA 44	2	0.05	2	0.06	Cytoskeleton
W	CITA 44	2	0.05	2	0.06	Extracellular structures
U	CITA 44	69	1.62	81	2.50	Intracellular trafficking and secretion
O	CITA 44	160	3.76	171	5.28	Posttranslational modification, protein turnover, chaperones
C	CITA 44	184	4.33	173	5.34	Energy production and conversion
G	CITA 44	220	5.18	215	6.64	Carbohydrate transport and metabolism
E	CITA 44	225	5.29	239	7.38	Amino acid transport and metabolism
F	CITA 44	76	1.79	76	2.35	Nucleotide transport and metabolism
H	CITA 44	153	3.60	144	4.45	Coenzyme transport and metabolism
I	CITA 44	156	3.67	156	4.82	Lipid transport and metabolism
P	CITA 44	218	5.13	212	6.55	Inorganic ion transport and metabolism
Q	CITA 44	57	1.34	63	1.95	Secondary metabolites biosynthesis, transport and catabolism
R	CITA 44	223	5.25	223	6.89	General function prediction only
S	CITA 44	213	5.01	223	6.89	Function unknown
X	CITA 44	7	0.16	41	1.27	Mobilome: prophages, transposons
-	CITA 44	1113	26.19	1483	31.42	Not in COGs

The total is based on the total number of protein coding genes in the annotated genome.
pitW genes were absent in strain CITA 44, whereas strain IVIA 2626.1 sequence did not contain homologs for fimX and pilL homologs.

In the genus Xanthomonas, 24 structural and regulatory components of the T3SS have been determined. They are present in the hrp gene cluster which is regulated by the master regulons HrpG and HrpX [47]. Strain CITA 44 did not contain any of the 24 components of this gene cluster except two coding sequences which correspond to hrpG and hrpX homologs. The absence of T3SS has also been reported for another X. arboricola strain isolated from barley as well as for X. cannabis [10, 48]. The absence of the genes hrcC, hrcJ, hrcN, hrcR, hrcS, hrcT, hrcU, hrcV, hrcP, hrcB1, hrcD5 and hrcF was corroborated by conventional PCR as previously described [36]. In the case of strain IVIA 2626.1, 22 out of the 24 components, as well as homologs for the two master regulons were present, but no homologs for hpaF and HrpB5 were found. Homologs for these two genes were also absent in all the genome sequences of X. arboricola publicly available. Sixty T3Es described in genus Xanthomonas were absent in strain CITA 44 and absence of 21 of them, identified in X. arboricola pv. pruni, was corroborated by conventional PCR using specific primers [36]. On the other hand, strain IVIA 2626.1 contained 22 T3Es, 21 of them were described previously in other X. arboricola pv. pruni strains [36]. In addition to these effectors, a homolog of xopAQ was found. Both strains contained all 12 components associated with Agrobacterium tumefaciens [46, 49] VirB/VirD4 T4SS [36]. Additionally, strain IVIA 2626.1 harbored a gene cluster homologous to the type four conjugation cluster (tfc). This cluster is composed by 24 genes associated with the expression of a conjugative pilus which is involved in the propagation of genomic islands [50]. In strain IVIA 2626.1, 17 out of the 24 genes associated with the T4SS were found and, within them, tfc2, tfc4, tfc12, tfc14, tfc16, tfc22 and tfc23 were identified as the core components required for the functioning of this T4SS [50].

An additional feature of the X. arboricola pv. pruni sequence is the presence of the plasmid pXap41 (41,102 Kbp) [12]. This plasmid is exclusively in X. arboricola pv. pruni strains and is associated with virulence because it contains some T3Es such as XopE3. Genome alignment of the plasmid pXap41 nucleotide sequence and the draft genome sequence for strain IVIA 2626.1 showed a region of 41.1 Kbp which was 99.90 % similar to the pXap41 plasmid of X. arboricola pv. pruni strain CFBP 5530. Conversely, no sequence region in the strain CITA 44 draft genome was similar to this plasmid. Negative results in the amplification of the genes repA1, repA2 and mobC associated with pXap41 [12] confirmed the absence of this plasmid in strain CITA 44.

Conclusions

Here we report and describe the draft genome sequence for two X. arboricola strains, CITA 44 and IVIA 2626.1, isolated from Prunus in Spain and associated with bacterial spot of stone fruits and almond by PCR protocols for identification of this pathovar [51, 52]. The phenotype of these two strains varied for motility and virulence. Initial genomic analysis identified several

Molecular components putatively involved in motility and pathogenesis	Shared by CITA 44 and IVIA 2626.1	Absent in CITA 44 and IVIA 2626.1	Unique in IVIA 2626.1
Flagella	fliB, fliC, fliD, fliE, fliF, fliG, fliH, fliJ, fliK, fliL, fliM, fliN, fliO, fliP, fliQ, fliR, fliT, fliU, fliV, fliW,	hflE	-
Type IV pilus	fimT, pilA, pilB, pilC, pilF, pilG, pilH, pilI, pilJ, pilK, pilL, pilM, pilN, pilO, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilY, pilZ	fimX, pilL	pilD, pilE, pilW
Type III Secretion System	hpaF, hpaX		
Type III effectors	-	avrB1, avrB3, xopA8, xopB8, xopC8, xopD8, xopE3, xopP1, xopR, xopS, xopT, xopU, xopV, xopW, xopY, xopZ	
Type IV secretion System	virB1, virB2, virB3, virB4, virB5, virB6, virB7, virB8, virB9, virB10, virB11, virD4	tfc1, tfc7, tfc11, tfc17, tfc18, tfc20, tfc21	tfc2, tfc3, tfc4, tfc5, tfc6, tfc8, tfc9, tfc10, tfc12, tfc13, tfc14, tfc15, tfc16, tfc19, tfc22, tfc23, tfc24

* CITa 44 did not present any unique component putatively involved in the analysed features.
differences associated with motility (Type IV pilus) and virulence (T3SS, T3Es and T4SS), including the presence of the putative virulence plasmid pXap41 only in X. arboricola pv. pruni IVIA 2626.1 and the absence of the T3SS, T3Es and the plasmid pXap41 in the avirulent strain CITA 44. All these features make the avirulent strain a candidate for comparative studies to elucidate the molecular processes associated with the plant host interaction and virulence for strains of X. arboricola on Prunus species. Likewise, comparative genomic studies with related strains could provide target sequences for design of molecular diagnostics for the different pathovars of X. arboricola, as well as to differentiate between virulent and avirulent strains. Further functional studies will also provide insights into the pathogenesis process for X. arboricola strains associated with bacterial spot of stone fruits and almond.

Abbreviations
Cv: cultivar; pv: pathovar; var: variety.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JGC performed the experiments, the annotation and the sequence analysis and homology searches. JCD and JGC conceived and designed the experiments. APB and MML participate in the study design, coordination and helped to draft the manuscript. JGC, APB, MML and JCD wrote this manuscript. All the authors read and approved the final manuscript.

Acknowledgements
This work was supported by the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) grants projects RTA2011-00140-C03-02, RTA2014-00018-C02-01 and XAP/DIAG EUPHRESCO II project. JGC held a PhD fellowship from the Spanish Government (Ministerio de Educación, Cultura y Deporte fellowship FPU12/01000). We like to express our gratitude to Dr. James Graham from the University of Florida, Citrus Research and Education Center (CREC), for the scientific and English revision of this manuscript.

Author details
1Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain. 2Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain. 3Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain.

Received: 8 October 2015 Accepted: 1 December 2015

References
1. Vauterin L, Hoste B, Kerstens K, Swings J. Reclassification of Xanthomonas. Int J Syst Bacteriol. 1995;45:472–89.
2. Bull CT, De Boer SH, Denny TP, Firrao G, Fischer-Le Saux M, Saddler GS, et al. Comprehensive list of names of plant pathogenic bacteria, 1980–2007. Eur J Plant Pathol. 2010;129:551–92.
3. Fischer-Le Saux M, Bonneau S, Essaki S, Manceau C, Jacques MA. Aggressive emerging pathovars of Xanthomonas arboricola represent widespread epidemical clones that are distinct from poorly pathogenic strains, as revealed by multilocus sequence typing. Appl Environ Microbiol. 2015;81:4651–68.
4. Scotchini M, Rossi MP, Marchesi U. Genetic, phenotypic and pathogenic diversity of Xanthomonas arboricola pv. corylina strains question the representative nature of the type strain. Plant Pathol. 2002;51:374–81.
5. Lamichhane JR. Xanthomonas arboricola diseases of stone fruit, almond, and walnut trees: Progress toward understanding and management. Plant Dis. 2014;98:1600–10.
6. Elsif P.H. Panel (EPFA Panel on Plant Health). Scientific opinion on pest categorisation of Xanthomonas arboricola pv. pruni (Smitt) Dye. EPFA. Journal. 2014;12:3857.
7. Palacio-Bielà A, Cambra M, Cubero J, Garita-Cambronero J, Roselló M, López MM. La mancha bacteriana de los frutos de hueso y del almendro (Xanthomonas arboricola pv. pruni) una grave enfermedad emergente en España. Fytotema-España. 2014;25:96–42.
8. Garita-Cambronero J, Sena M, Sabugillo P, Blanco MI, Ferragud E, Redondo C, et al. Early steps in the infection process in two Xanthomonas spp. models: Chemotaxis and biofilm formation. Acta Phytopathol Sin. 2013;43 Suppl:1:419.
9. Garita-Cambronero J, Sena-Vélez M, Palacio-Bielà A, Cubero J. Draft genome sequence of Xanthomonas arboricola pv. pruni strain Xap33, causal agent of bacterial spot disease on almond. Genome Announc. 2014;2:e00440–14.
10. Ignatov AN, Kyrova EV, Vinogradova SV, Kamionskaya AM, Schaad NW, Luster DG. Draft genome sequence of Xanthomonas arboricola strain 3004, a causal agent of bacterial disease on barley. Genome Announc. 2015;3:e01572–14.
11. Ibarra-Caballero J, Zerillo MM, Snelling J, Boucher C, Tisserat N. Genome sequence of Xanthomonas arboricola pv. corylina, isolated from Turkish Filbert in Colorado. Genome Announc. 2013;1:e00246–13.
12. Pothier JF, Vorhöfler FI, Blom J, Goessmann A, Pühler A, Smits TH, et al. The ubiquitous plasmid pXap41 in the invasive phytopathogen Xanthomonas arboricola pv. pruni: Complete sequence and comparative genomic analysis. FEMS Microbiol Lett. 2011;325:52–60.
13. Burch AJ, Shimada BK, Browne PJ, Lindow SE. Novel high-throughput detection method to assess bacterial surfactant production. Applied Environ Microbiol. 2010;76:3563–72.
14. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol and Evol. 2013;30:2725–9.
15. Trébaol G, Manceau C, Tirilly Y, Boury S. Assessment of the genetic giversity among strains of Xanthomonas cynarae by randomly amplified polymorphic DNA analysis and development of specific characterized amplified regions for the rapid identification of X. cynarae. Appl Environ Microbiol. 2001;67:3379–84.
16. Sicilliano F, Torres P, Sendín L, Bermejo C, Filipponi P, Vellone G, et al. Analysis of the molecular basis of Xanthomonas axonopodis pv. citri pathogenesis in Citrus limon. Electron J Biotechn. 2006;9.
17. MacWilliams, Maria P. and Liao, Min K. Luria Broth (LB) and Luria Agar (LA) Media and Their Uses Protocol. Accessed 23 Sept 2015.
18. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene finding with improved homology detection using GLIMMER. Nucleic Acids Res. 1999;27:4636–41.
19. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST server: rapid annotations using subsystems technology. BMC genomics. 2008;9:541–7.
20. Chevreux B, Wetter T, Suhai S. Genome sequence assembly using trace signals and additional sequence information. In: Wingender E, editor. Proceedings of the German Conference on Bioinformatics: 4–6 October 1999; Hannover. Braunschweig: GFB-Braunschweig, 1999. p. 45–56.
21. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST server: rapid annotations using subsystems technology. BMC genomics. 2008;9:1–15.
22. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999;37:4636–41.
23. Lagesen K, Hallin P, Redland EA, Staerfeldt HH, Rogens T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–8.
24. Schmittner P, Brooks AN, Lowe TM. The rINAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2009;37:Suppl 2:W686–89.
25. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat Meth. 2011;8:785–6.
26. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes. J Mol Biol. 2001;305:567–80.
27. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–6.

28. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: The protein families database. Nucleic Acids Res. 2014;42:D222–30.

29. Marchlew-Bauer A, Derbyshire MK, Gonzales NR, Liu S, Chitsaz F, Geer LY, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2014;43:D22–26.

30. Blocker A, Komonya K, Aizawa SI. Type III secretion systems and bacterial flagella: Insights into their function from structural similarities. Proc Natl Acad Sci USA. 2003;100:3027–30.

31. Chevance FPV, Hughes KT. Coordinating assembly of a bacterial macromolecular machine. Nat Rev Micro. 2008;6:65–65.

32. Dunger G, Guzzo CR, Andrade MO, Jones JB, Farah CS. Xanthomonas citri subsp. citri Type IV pili is required for twitching motility, biofilm development, and adherence. MPMI. 2014;27:1132–47.

33. Böttner D, Bonas U. Regulation and secretion of Xanthomonas virulence factors. FEMS Microb Res. 2010;54:107–33.

34. Abbey SS, Rocha EPC. Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res. 2014;42:715–27.

35. Waksmann G, Orlova EV. Structural organisation of the type IV secretion system. Curr Opin Microbiol. 2014;17:24–31.

36. Christensen P, Cook FD. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol. 1978;28:367–93.

37. Gabriel DW, Kingsley MT, Hunter JE, Gottwald T. Reinstatement of classis nov., with the type order Acidithiobacillales, and emended description of the class Gammaproteobacteria. Int J Syst Evol Microb. 2013;63:2901–6.

38. Williams KP, Kelly DP. Proposal for a new class within the phylum Proteobacteria, Acidithiobacillales classis nov., with the type order Acidithiobacillales, and emended description of the class Gammaproteobacteria. Int J Syst Evol Microb. 2013;63:2901–6.

39. Chistensen P, Cook FD. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol. 1978;28:367–93.

40. Naushad S, Adeolu M, Wong S, Souli M, Schellhorn H, Gupta R. A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Alphaproteobacteria and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodobacteraeaceae fam. nov. containing the genus Rhodobacter and its closest relatives. A van Leeu J Microb. 2015:107:467–85.

41. Van den Moooter M, Swings J. Numerical analysis of 295 phenotypic features of 266 Xanthomonas strains and related strains and an improved taxonomy of the genus. Int J Syst Bacteriol. 1990;40:348–69.

42. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: Tool for the unification of biology. Nat Genet. 2000;25:25–9.

43. Kaiselburg J, Alet AI, Tondol ML, Peteroil C, Daurello LD, Monzón J, et al. A LOV protein modulates the physiological attributes of Xanthomonas axonopodis pv. citri relevant for host plant colonization. PLoS ONE. 2012;7:e8226.

44. Williams KP, Kelly DP. Proposal for a new class within the phylum Proteobacteria, Acidithiobacillales classis nov., with the type order Acidithiobacillales, and emended description of the class Gammaproteobacteria. Int J Syst Evol Microb. 2013;63:2901–6.

45. List Editor. Validation list no. 115. List of new names and new combinations previously effectively published outside the IJSEM. Int J Syst Evol Microb. 2010;60:2628–30.

46. Williams KP, Kelly DP. Proposal for a new class within the phylum Proteobacteria, Acidithiobacillales classis nov., with the type order Acidithiobacillales, and emended description of the class Gammaproteobacteria. Int J Syst Evol Microb. 2013;63:2901–6.

47. Skerman VBD, McGowan V, Sneath PHA. Approved Lists of bacterial names. The Genomic Standards Consortium. PLoS Biol. 2011;9:e1001088.