Evaluation of Base Station CORS UDIP and CSEM for monitoring Ground Deformation Sayung Demak Indonesia

B. D. Yuwono*, M. Awaluddin, Kun F H and Lutfi E R
Geodesy Department, Faculty of Engineering, Diponegoro University, Tembalang-Semarang, 50277, Indonesia
bdyuwono92@gmail.com

Abstract. Sayung is a subdistrict in Demak Regency which is located on the north coast is very vulnerable to natural disasters such as rob flood, abrasion and deformation of land subsidence. The condition is suspected, among others, by several factors, among others, geological structure as a large area dominated by young alluvium layers are still experiencing compression, loading and retrieval of ground water. It is necessary to do research related to ground deformation. The geodetic method used for monitoring ground deformation by satellite surveys with GNSS. The research was conducted to observe GPS survey in 2015 and 2016. GNSS data would be processed with scientific processing GAMIT 10.6. Strategic of GPS data processing is the important to reach a better accuracy. The purpose of this research is to evaluate the result of calculation of coordinate value and spatial deformation obtained by both base station that is CORS UDIP and CORS CSEM for monitoring ground deformation.

Keywords: Vulnerable, GNSS, CORS, Deformation

1. Introduction
Ground deformation is a change in ground level in the vertical direction to the bottom of a height reference plane which is geometrically represented by height collection point on the ground surface [1]. The speed of ground deformation especially land subsidence is slow (mm) in a relatively long period of time. The phenomena are often found not only in big cities in Indonesia such as Jakarta, Semarang, and Bandung [2] but also in several major cities in the world including in the United States [3], Venezuela [4], Choshuichi - Taiwan [5] and Iran [6].

Demak is a district located in the north of Java Island. Historically, most of the areas of Demak regency, especially on the northern coast, have unstable soil structures, since they were originally swamps. Geographically Demak is highly vulnerable due to enviromental stress, such as abrasion, tidal, land subsidence, and coastal flooding in the rainy season the northern coast of Demak is often flooded and during the dry season the characteristics of the soil are cracked because it comes from the muddy ground structure. The condition is suspected, among others, by several factors, among others, geological structure as a large area dominated by young alluvium layers are still experiencing compression, loading and retrieval of ground water. So it is necessary to do research related to ground deformation. There are several reasearch for Preliminaery study in monitoring landsubsidence. using geodetic method [7] [9]
[11]. It important to know about strategic data processing for having a good accuracy and precision. Comparing method would give description which it suitable processing method due to enhance accuracy.

Administratively, the area of Demak Regency is 89,743 ha divided into 14 districts, 243 villages and 6 kelurahan. Most of Demak Regency is wetland area reaching 51,799 ha (57.72%) and the rest is dry land. 13.77% used for tegalan / garden, 0.05% while not used and 11.16% used for ponds [14].

Demak is one of the districts in Central Java geographically located at coordinates 6 degrees 43 "26" - 7 degrees 09 "43" south latitude and 110 degrees 27 "58" - 110 degrees 48 "47" east longitude. The farthest distance from west to east 49 km and from north to south along 41 km, with an area of 89,743 Ha. lies in 14 villages of Sriwulan, Bedono, Timbulsloko and Surodadi (Sayung sub district), then Tambakbulusan Village, Karangtengah Subdistrict, Morodemak Village, Purworejo and Betahwalang Village (Bonang Subdistrict), Wedung, Berahankulon, Berahanwetan, Wedung and Babalan (Wedung District). The farthest distance from west to east 49 km and from north to south along 41 km, with an area of 89,743 Ha [13] shown in figure 1.

2. Data and Method
2.1. Data Acquisition
Data Observation of deformation of coastal land in Demak Regency has been done by 2015 and 2016. Location Bench Mark separate at 6 Villages / kelurahan all of which are in the District Sayung. 2 Observation marks are in Bedono Village in 2015. GPS measurements made at 7 geodetic monuments. The GPS observation was conducted at May-June 2015 and April-May 2016. Bench Mark for monitoring deformation were located in Sidodadi, Gemah, Tugu, Purwosari, Bedono and Timbulsloko.

Distribution of GPS Survey shown at figure 2. GPS survey were conducted in May – June 15, and the second observation in April - May 2016. GPS survey done using dual frequency geodetic-type GPS receivers Hiper II and Hiper Gb.

![Figure 1. Studi Area of Sayung Demak Regency [13]](image-url)
2.2. Method

This research conducted with two method of GPS data processing as base station. First using GNSS CORS UDIP and station IGS namely, BAKO, CNMR, COCO, DARW, IISC, KAT1, PIMO, SOLO, XMIS and CORS Udip second using CSEM as Base Station. CORS CSEM as the reference station was located on the roof of Telkom Building Kalibanteng, Semarang. GNSS CORS UDIP was located in the top of building B Geodetic Departement, Engineering Faculty Diponegoro University. In the GPS measurements, each epoch has 5 until 6 hour observation. Flowchart can be seen in figure 3. The GPS Data Processing would done using GAMIT 10.6 scientific GPS [Herring, 2010] Data Processing.

![Image of figure 2 showing GPS survey distribution 2016](image)

Figure 2. Distribution on GPS Survey 2016

![Image of flowchart showing overall methods used in this study](flowchart)

Figure 3. Flowchart showing the overall methods used in this study
To test whether there is any deformation in each bench mark then t test is done. The t test (also called Student’s T Test) compares two averages and will describe they are different from each other. The t test shown differences could have happened by chance. Reference [9] Height change defined as \(\Delta dh_{ij} \) and its rate \(\nu \Delta dh_{ij} \) at each station are derived using the following relation

\[
\Delta dh_{ij} = dh(t_j) - dh(t_i) \quad .
\]

\[
\nu \Delta dh_{ij} = \frac{\Delta dh_{ij}}{(t_j - t_i)}
\]

Null hypothesis \(H_0 : dh_{ij} = 0 \)

Alternative hypothesis \(\Delta dh_{ij} \neq 0 \)

Test statistic is

\[
t = \frac{\Delta dh_{ij}}{\sigma(dh_{ij})}
\]

Which has the customary Student t-distribution if \(H_0 \) is true. The null hypothesis is rejected if.

\[|t| > t_{df, \alpha/2}\]

At a confidence level of 99% (i.e. \(\alpha = 1\% \)), the critical value is \(t_{0.005} = 2.576 \)

F-test is one of statistical test in which the test statistic has an F-distribution. It is most often used to compare two variances, in order to identify the model that best fits the population from which the data were sampled. The test compares the ratio of two variances. If found that the variance is equal, the ratio of the variances will equal 1. The population variances are equal when running an F Test, and assumed that the variances area equal to 4.

The null hypothesis will always be that the variance is equal.

\[
F = \frac{s_1^2}{s_2^2} \quad \text{or} \quad F = \frac{s_2^2}{s_1^2} \quad F = \frac{\text{large sample variance}}{\text{smaller sample variance}}
\]

Table F Distributions

\[
F_{\alpha/2, v_1, v_2} = \frac{1}{F_{1-\alpha, v_2, v_1}}
\]

The null hypothesis used in this statistical test is the method of processing there is no significant difference so that:

\[
H_0 \quad H_0 : dV = 0
\]

\[
H_1 \quad H_0 : dV \neq 0
\]
3. Results and Discussion

3.1. Data Quality Control
GPS observation data in advance is checked to know the quality of data from each point of observation by using TEQC program. GPS observation data have good quality whether or not seen from the value of MP1 and MP2. MP1 and MP2 are moving averaging values, i.e. RMS values from a combination of multipath data recorded.

Year	Station	MP1	MP2	GPS Type	DOY
2015	WNSR	0.570400	0.623026	Topcon Hiper II	122
2015	PDSR	0.078153	0.126307	Astech Promark800	122
2015	TMBL	0.111019	0.217499	Astech Promark800	122
2015	SURO	0.480724	0.494162	Topcon Hiper II	124
2015	DADI	0.089762	0.160813	Astech Promark800	124
2015	PRWS	0.071471	0.163779	Astech Promark800	124
2015	SIDO	0.669758	0.736448	Topcon Hiper II	126
2015	GEMA	0.070251	0.124984	Astech Promark800	126
2015	TUGU	0.142555	0.201344	Topcon Hiper GB	126
2016	WNSR	0.300293	0.314016	Topcon Hiper GB	114
2016	PRWS	0.518471	0.544309	Topcon Hiper GB	114
2016	SIDO	0.481011	0.48126	Topcon Hiper II	114
2016	GEMA	0.311381	0.305413	Topcon Hiper II	115
2016	TUGU	0.343395	0.357062	Topcon Hiper GB	115
2016	TMBL	0.681992	0.571695	Topcon Hiper GB	115
2016	SURO	0.353386	0.338689	Topcon Hiper GB	116
2016	DADI	0.621246	0.583523	Topcon Hiper GB	116

In 2015 shows that the moving average value of MP1 and MP2 has value less than 0.5, it means that there are no significant multipath as long as GPS observation. A considerable in 2016 multipath effect occurs at three points WNSR, TMBL and DADI. The poor quality of data is influenced by several factors that occur in the field, such as rain, the environment around the observation point that many obstruction and trees as well as the factors of equipment that is quite influential.

3.2. Result of Data GPS Processing using CSEM
The results of processing using Base Station CSEM can be seen in Table 2. The result shows that the standard value of deviation in the direction X 0.0039 – 0.0045, Y 0.0047 – 0.0049 and Z 0.0035 – 0.0047 Z.
The results of processing using Base Station is not significant enough, so the statistical test shows no high change in the direction high change in question is smaller than 1.96. The high change in question is the decline that occurs in 7 points, although the SURO point has decreased, but the decline at that point is not significant enough, so the statistical test shows no high change.

Table 2. Coordinate 3D Cartesian Network CSEM Method

Station	Year	X	Y	Z	std X	std Y	std Z	h
PRWS	2015	-2217365,724	5930844,540	-765128,9478	0.0039	0.0047	0.0035	28.52408
WNSR	2015	-2215939,663	5931507,728	-764119,404	0.0040	0.0048	0.0037	27.78359
SIDO	2015	-2219010,166	5930248,619	-764969,655	0.0040	0.0047	0.0037	27.09083
GEMA	2015	-2219058,490	5930468,196	-763140,325	0.0039	0.0047	0.0037	27.44666
TUGU	2015	-2219848,755	5930322,289	-761984,428	0.0039	0.0047	0.0047	27.64855
TMBL	2015	-2218703,448	5930946,940	-760463,879	0.0042	0.0048	0.0038	27.26408
SURO	2015	-2219836,606	5930737,920	-758794,972	0.0040	0.0048	0.0037	27.07961
DADI	2015	-2220521,107	5930610,887	-757795,196	0.0043	0.0049	0.0040	27.56375
PRWS	2016	-2217365,728	5930844,529	-765128,940	0.0041	0.0048	0.0037	28.51381
WNSR	2016	-2215939,630	5931507,682	-764119,408	0.0043	0.0048	0.0040	27.72983
SIDO	2016	-2219010,166	5930248,619	-764969,655	0.0040	0.0047	0.0037	27.09083
GEMA	2016	-2219058,486	5930468,138	-763140,329	0.0043	0.0048	0.0039	27.39212
TUGU	2016	-2219848,742	5930322,234	-761984,421	0.0044	0.0049	0.0041	27.5924
TMBL	2016	-2218703,413	5930946,903	-760463,894	0.0045	0.0049	0.0043	27.21941
SURO	2016	-2219836,564	5930737,933	-758794,970	0.0044	0.0049	0.0041	27.07694
DADI	2016	-2220521,158	5930610,882	-757795,195	0.0045	0.0049	0.0042	27.57672

Almost all GPS-derived ellipsoidal height changes indicated that they passed the statistical testing, and it could be concluded that with 99% confidence level, there were significant ellipsoidal changes at all the stations during the period between May-June 2015 and April-May 2016. In table 3, shows that most stations experience a high change marked by the value of T > count of T table and the SURO point does not change high, because the result of T count is smaller than 1.96. The high change in question is the decline that occurs in 7 points, although the SURO point has decreased, but the decline at that point is not significant enough, so the statistical test shows no high change.

Table 3. T test

Station	Dh12 cm	s(σdh12) (mm)	ttes	Deformation
PRWS	1.027	4.90	2.095918	Yes
WNSR	5.376	4.94	10.88259	Yes
SIDO	2.487	4.92	5.054878	Yes
GEMA	5.454	4.91	11.10794	Yes
TUGU	5.615	4.94	11.3664	Yes
TMBL	4.467	4.96	9.006048	Yes
SURO	0.267	4.93	0.541582	No
DADI	1.297	4.95	2.620202	Yes

3.3. Result of Data GPS Processing using UDIP and IGS

The results of processing using Base Station UDIP and IGS can be seen in table 4. The result shows that the standard value of deviation in the direction X 0.0042 – 0.0047, Y 0.0047 – 0.0049 and Z 0.0033 – 0.0045 Z.
Table 4. Coordinate 3D Cartesian Network UDIP and IGS

Station	Year	X (m)	Y (m)	Z (m)	std X	std Y	std Z	h (m)
PRWS	2015	-2217365,806	5930844,518	-765128,990	0,0042	0,0048	0,0033	28.5374
WNSR	2015	-2215939,747	5931507,711	-764119,445	0,0042	0,0048	0,0036	27.8019
SIDO	2015	2219010,242	5930248,600	-764969,695	0,0040	0,0047	0,0035	27.1043
GEMA	2015	-2219058,563	5930468,172	-763140,365	0,0042	0,0048	0,0034	27.4548
TUGU	2015	-2219848,835	5930322,227	-761984,456	0,0038	0,0047	0,0032	27.6221
TMBL	2015	-2218703,520	5930946,922	-760463,917	0,0042	0,0048	0,0037	27.2767
SURO	2015	-2219836,657	5930737,849	-758795,002	0,0038	0,0047	0,0032	27.0352
DADI	2015	2220521,173	5930610,792	-757795,221	0,0044	0,0049	0,0039	27.5014
PRWS	2016	2217365,830	5930844,464	-765128,993	0,0041	0,0048	0,0036	28.496
WNSR	2016	2215939,745	5931507,623	-764119,461	0,0044	0,0049	0,0040	27.721
SIDO	2016	2219010,226	5930248,477	-764969,709	0,0045	0,0048	0,0040	26.986
GEMA	2016	2219058,579	5930468,035	-763140,357	0,0043	0,0048	0,0039	27.332
TUGU	2016	2219848,861	5930322,148	-761984,449	0,0047	0,0049	0,0045	27.557
TMBL	2016	2218703,509	5930946,799	-760463,925	0,0046	0,0049	0,0045	27.159
SURO	2016	2219836,666	5930737,847	-758795,020	0,0043	0,0048	0,0039	27.038
DADI	2016	2220521,270	5930610,781	-757795,241	0,0046	0,0049	0,0043	27.528

Result of T test indicates that almost all GPS-derived ellipsoidal height changes passed the statistical testing. It could be stated that with 99% confidence level, there were significant ellipsoidal changes at all the stations during the period between May-June 2015 and April-May 2016 except Suro the station. In table 5. The high subsidence level that occurs in 7 points, although the SURO point has decreased, but the subsidence level at that point is not significant enough, so the statistical test shows no high change.

Table 5. T test Network GNSS UDIP and IGS as Reference Base Station

Station	h 2015 (m)	h 2016 (m)	Dh12 cm	s(σdh12) (mm)	t-test	Deformation
WNSR	27.8	27.72	-8.1	5	-16.3	Yes
SIDO	27.1	26.99	-11.9	4.9	-24.1	Yes
GEMA	27.45	27.33	-12.3	4.9	-24.9	Yes
TUGU	27.62	27.56	-6.5	5	-13.1	Yes
TMBL	27.28	27.16	-11.7	5	-23.6	Yes
SURO	27.04	27.04	0.3	4.9	0.7	No
WNSR	27.8	27.72	-8.1	5	-16.3	Yes

3.4. Spatial and geometry analysis

Differences Base Station using to station CSEM and UDIP can be seen from the coordinate value and standard deviation, can be seen in table 6. The highest difference value on the x-axis is located at WNSR of 11.5 cm while for the Y component of 14.2 cm is located, for the Z direction of 5.4 cm in SIDO. The maximum difference for ellipsoid height reach 10.48 cm at SIDO.
Table 5. Coordinates Difference between UDIP and CSEM as Base Station

Station	Year	\(\Delta X (m) \)	\(\Delta Y (m) \)	\(\Delta Z (m) \)	\(\Delta \text{Std } X \) (m)	\(\Delta \text{Std } Y \) (m)	\(\Delta \text{Std } Z \) (m)	\(\Delta h \) (cm)
PRWS	2015	0.082	0.022	0.042	0.0004	0.0001	-0.0002	-1.33
WNSR	2015	0.084	0.017	0.041	0.0001	0.0000	-0.0001	-1.83
SIDO	2015	0.076	0.019	0.040	0.0000	0.0000	-0.0002	-1.35
GEMA	2015	0.073	0.024	0.040	0.0003	0.0001	-0.0002	-0.81
TUGU	2015	0.080	0.062	0.028	-0.0001	0.0000	-0.0015	2.65
TMBL	2015	0.072	0.018	0.038	0.0000	0.0000	-0.0002	-1.26
SURO	2015	0.051	0.071	0.030	-0.0002	0.0000	-0.0005	4.44
DADI	2015	0.066	0.095	0.025	0.0000	0.0000	0.0000	6.23
PRWS	2016	0.102	0.065	0.053	0.0000	0.0000	-0.0001	1.78
WNSR	2016	**0.115**	0.059	0.053	0.0001	0.0000	0.0000	0.88
SIDO	2016	0.060	**0.142**	**0.054**	0.0006	0.0001	0.0003	10.48
GEMA	2016	0.093	0.103	0.028	0.0000	0.0000	0.0000	6.01
TUGU	2016	0.119	0.086	0.028	0.0003	0.0001	0.0004	3.54
TMBL	2016	0.096	0.104	0.031	0.0001	0.0000	0.0002	6.04
SURO	2016	0.102	0.086	0.050	-0.0001	0.0000	-0.0002	3.89
DADI	2016	0.112	0.101	0.046	0.0001	0.0000	0.0000	4.87

F statistical test is used to determine whether there is difference in the measurement results by processing 2 methods from two years observation. This test is done by comparing the variance of the two processing gps data methods. The result of f test using gps data in 2015 and 2016 gets smaller values than the F table, \((F_{\text{tes}} < F_{\text{table}}) \), so the null hypothesis is accepted all. The conclusions were the GPS data processing using the GAMIT scientific software with the CSEM or UDIP as base station is not significantly different. Shown on table 5.

Table 6. F test

Method	Year	Variance	\(F_{\text{tes}} \)	\(F_{\text{table}} \)
CSEM	2015	0.000134941	0.483	6.61
UDIP + IGS	2015	0.00062255	6.61	
CSEM	2016	0.000042055	0.461	6.61
UDIP + IGS	2016	0.000087028	6.61	

3.5. Deformation Map

Due limitation GPS data observation not covering of whole of area study cause the contour map doest not good enough. Shown at the figure 4 dan 5, pattern of typical subsidence have not look similar because of the type of interpolation. figure 4 using IDW interpolation form result of CSEM Base Station and figure 5 using Kriggig interpolation UDIP IGS Network.
4. Conclusions

The statistical t test shown that each method has similarity result that station SURO has a test smaller than 1.96, it means there was not have deformation in vertical direction. Root Mean Square Error (RMSE) CSEM as base station shows a relatively small value compared to the RMSE UDIP IGS Network. because the distance baseline CSEM is shorter than UDIP IGS Network. With limitation of time occupation about five – six hours, CSEM base station is more better than UDIP IGS Network. For increasing accuracy, UDIP IGS network can be done with extend time of occupation to have better accuracy.

References

[1] Yuwono B D, Abidin H Z, Gumilar I, Andreas H, M Awaluddin, Haqqi K F, Khoirunisa R 2015 “ Preliminary Survey and Performance of Landsubsidence in North Semarang Demak “, The5 International Symposium on Earth-hazard and Disaster Mitigation ITB Bandung, Date : 19 Oktober 2015; 5th International Symposium on Earth-hazard and Disaster Mitigation ITB Bandung, Date : 19 Oktober 2015.

[2] Abidin H Z, H Andreas, R Djaja, M. Gamal, T Deguchi, Y Maruyama 2008 Penurunan Tanah di Wilayah Jakarta : Karakteristik, Penyebab dan Dampaknya, Jurnal DKP 2008.

[3] Galloway D, Jones R.D.Ingebritsen S.E 1999 Landsubsidence in The United State US Geological Survey.

[4] Chrzanowski A & Y Q Chen 1991 Use of the Global Positioning System (GPS) for Ground Subsidence Measurements in Western Venezuela Oil Fields

[5] Rong-Kang Shang, Yi-Shiang Shiu, Kuo-Chen Ma 2011 Using geographical weighted regression to explore the spatially varying relationship between land subsidence and groundwater level variations: A case study in the Choshuichi alluvial fan, Taiwan. 978-1-4244-8351-8 /11/$26.00 ©2011 IEEE.

[6] Motagh M 2007 Land Subsidence in Mashhad Valey, Northeast Iran; Result from InSar, Levelling and GPS. Geophysical J. Int (2007) 168, 518-526

[7] Haqqi, M.K. Fariqul 2015 Survei Pendahuluan Deformasi Muka Tanah dengan Pengamatan GPS
di Kabupaten Demak. *Skripsi* Teknik Geodesi Universitas Diponegoro.

[8] Herring T A dkk 2010 *Introduction to GAMIT/GLOBK*, Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology

[9] Lutfi E R, 2016, Survei Pemantauan Deformasi Muka Tanah Kawasan Pesisir Menggunakan Metode Pengukuran Gps Di Kabupaten Demak Tahun 2016 (Studi Kasus : Pesisir Kecamatan Sayung, Demak), Skripsi Teknik Geodesi Universitas Diponegoro.

[10] Leick A 2004 *GPS Satellite Surveying*. Third edition. John Wiley & Sons. New York, USA.

[11] Yuwono B D, H Z Abidin, H Andreas, I.Gumilar, M Awaluddin, Najib 2017 “Development of Static Differential Method GNSS CORS UDIP For Monitoring Land Subsidence In Semarang Demak,

[12] Leick, A 2004 *GPS Satellite Surveying*. Third edition. John Wiley & Sons. New York, USA.

[13] http://demakkab.go.id/profil/geografi-dan-kependudukan/ Diakses 3 April 2017