On Fixed Points of Order K of RSA

Shaohua Zhang1,2

1 School of Mathematics, Shandong University,
Jinan, Shandong, 250100, China
2 The key lab of cryptography technology and information security,
Ministry of Education, Shandong University,
Jinan, Shandong, 250100, China
E-mail: shaohuazhang@mail.sdu.edu.cn

Abstract

In this paper, we gave a preliminary dynamical analysis on the RSA cryptosystem and obtained a computational formulae of the number of the fixed points of \(k \) order of the RSA. Thus, the problem in [8, 9] has been solved.

Keywords: RSA; fixed point; fixed points of order \(k \); fixed points attack; dynamical analysis

2000 MR Subject Classification: 11A25; 11T71; 37A45

1 Introduction

Shortly after Diffie and Hellman [1] introduced the idea of public key cryptography, Rivest, Shamir and Adleman (RSA) [2] proposed such a cryptosystem. A simplified version of RSA is the following:

Let \(n = pq \) be the product of two large primes of the same size. Let \(e, d \) be two integers satisfying \(ed \equiv 1 \pmod{\varphi(n)} \). Call \(n \) the RSA modulus, \(e \) the encryption exponent, and \(d \) the decryption exponent. Let \(e \) and \(n \) be public keys, and let \(d \) be the corresponding secret key. A message is an integer \(m \in \mathbb{Z}_n \). To encrypt \(m \), one computes \(m^e \equiv c \pmod{n} \). To decrypt the ciphertext \(c \), the receiver computes \(m \equiv m^{ed} \equiv c^d \pmod{n} \). Denote such a cryptosystem by \(RSA(n, e) \). We call \(m \) a fixed point of \(RSA(n, e) \) if \(m^e \equiv m \pmod{n} \). And call \(m \) a fixed point of order \(k \) if \(k \) is the smallest positive integer such that \(m^{ek} \equiv m \pmod{n} \). Clearly, \(f : x \rightarrow x^e \pmod{n} \) is a dynamical system. Thus, \(k \) is exactly the period of \(m \). For more details on the arithmetic of dynamical systems, see [7].
In 1979, Blakley and Borosh [3] first pointed out that there were at least 9 fixed points in \(RSA(n, e) \). For more references on fixed points, also see [4]-[6]. Denoted the set of all fixed points of order \(k \) of \(RSA(n, e) \) by \(E_{n,e,k} \) and the cardinality of the set \(S \) by \(|S| \). In [8, 9], Yu considered the general case of fixed points of order \(k \) and gave geometric mean value of \(|T_{n,e,k}| \) and pointed out that it was difficult to give a quantitative description of \(|T_{n,e,k}| \), where \(k \) is a given positive integer and

\[
T_{n,e,k} = \{x \mid \forall m < k, m \in \mathbb{N}, x \in \mathbb{Z}_n^*, x^{e^k} \equiv x \pmod{n}, x^{e^m} \neq x \pmod{n}\}.
\]

In this essay, we preliminarily consider this question and obtain the following results:

Theorem 1 \(|T_{n,e,k}| = \sum_{d|k} \mu(k/d)(e^d - 1, p - 1)(e^d - 1, q - 1) \), where \(\mu(\cdot) \) is the Möbius function.

Based on this result, we get Theorem 2.

Theorem 2 \(|E_{n,e,k}| = \sum_{d|k} \mu(k/d)((e^d - 1, p - 1) + 1)((e^d - 1, q - 1) + 1) \).

2 Proof of Main Theorems

We denote the set of positive integers by \(\mathbb{N} \). For given positive integers \(a \) and \(b \), we write \(a|b \) if \(a \) divides \(b \). And denote the greatest common divisor of \(a \) and \(b \) by \((a, b) \). Denote a complete set of residues modulo \(n \) by \(\mathbb{Z}_n \), where \(1 < n \in \mathbb{N} \), and a reduced set of residues modulo \(n \) is denoted by \(\mathbb{Z}_n^* \). Let \(a \) be an integer relatively prime to \(n \). The order of \(a \) modulo \(n \), denoted by \(\text{ord}_n(a) \), which is the smallest positive integer \(d \) such that \(a^d \equiv 1 \pmod{n} \).

Lemma 1[8] For \(1 < n \in \mathbb{N}, r \in \mathbb{N}, \) let the canonical factorization of \(n \) be \(\prod_{i=1}^{m} p_i^{a_i} \) and \(T_{n,r} = \{x \mid x^r \equiv 1 \pmod{n}, 1 \leq x < n\} \), then \(|T_{n,r}| = \prod_{i=1}^{m} (r, \varphi(p_i^{a_i})) \).

Lemma 2 For \(1 < n \in \mathbb{N}, a, m, k \in \mathbb{N}, e \in \mathbb{Z}_n^* \), if \(a^{e^k} \equiv a \pmod{n} \) and \(k|m \), then \(a^{e^m} \equiv a \pmod{n} \).

Proof Let \(m = tk \). When \(t = 1 \), clearly \(a^{e^k} \equiv a^{e^m} \equiv a \pmod{n} \). Suppose that \(a^{e^m} \equiv a \pmod{n} \) when \(t = l \). And when \(t = l + 1 \), we have \(a^{e^m} \equiv a^{e^{lk}e^k} \equiv a^{e^k} \equiv a \pmod{n} \). It immediately shows that Lemma 2 is true by induction.

Lemma 3 For \(1 < n \in \mathbb{N}, a, m, k \in \mathbb{N}, e \in \mathbb{Z}_n^* \), if \(a^{e^m} \equiv a \pmod{n} \) and \(a \in E_{n,e,k} \), then \(k|m \).
Proof Let \(m = kt + r, \ t \in \mathbb{N}, \ 0 \leq r < k \). We have \(a^e^m \equiv a^{ekt} \equiv a^{kr} \equiv a(\mod n) \) by Lemma 2. Since \(a \in E_{n,e,k} \), hence \(r = 0 \), and Lemma 3 is true.

Proof of Theorem 1 By Lemma 1 and Lemma 3, it is easy to deduce
\[
\sum_{d|k} |T_{n,e,d}| = \prod_{i=1}^{m} (e^k - 1, \varphi(p_i^{a_i})).
\]
By Möbius inversion, it immediately shows that Theorem 1 is true.

Proof of Theorem 2 By Lemma 2 and Lemma 3, analogously, using Chinese Remainder Theorem and the method of proof of Theorem 1, it is easy to deduce that Theorem 2 is true.

Corollary 1 Let \(1 < n \in \mathbb{N}, \ r \in \mathbb{N} \), and let the canonical factorization of \(n \) be \(\prod_{i=1}^{m} p_i^{a_i} \). Then \(|\{ x | \text{ord}_n(x) = r, 1 \leq x \in \mathbb{Z}^*_n \}| = \sum_{d|r} (\mu(r/d) \prod_{i=1}^{m} (d, \varphi(p_i^{a_i}))) \).

Corollary 2 Let \(1 < n \in \mathbb{N}, \ r \in \mathbb{N} \), let the canonical factorization of \(n \) be \(\prod_{i=1}^{m} p_i^{a_i} \), and let \(F_{n,r} = \{ x | \forall k < r, k \in \mathbb{N}, 1 \leq x \leq n, x^r \equiv x(\mod n), x^k \neq x(\mod n) \} \). Then \(|F_{n,r}| = \sum_{d|r} (\mu(r/d) \prod_{i=1}^{m} (1 + (d - 1, \varphi(p_i^{a_i}))) \).

3 Conclusion

Clearly, if the factorization of \(n \) is known, then computing the number of the fixed points of order \(k \) of the RSA cryptosystem is simple and convenient by the presented formulae. This is useful to pick the encryption exponent, which is necessary to ensure the resulting RSA safe from fixed points attack. Maybe we are not afraid of a fixed point. However, the following problem should be further considered: Is there a polynomial-time algorithm for finding a fixed point \(m \), where \(m \neq 0, \pm 1 \)? This problem and Factoring the RSA modulus perhaps are equivalent.

Remark: This paper is the revision of paper [10] in the proceedings of China Crypt’2006, whose Chinese version has been accepted by Journal of Mathematics (Wuhan, China).

4 Acknowledgements

I am thankful to the referees for their suggestions improving the presentation of the paper and also to my supervisor Professor Wang Xiaoyun for her valuable help and encouragement. Thank Institute for Advanced Study in Tsinghua University for providing us with excellent conditions. This work was partially supported by the National Basic Research Program (973) of China (No. 2007CB807902) and the Natural Science Foundation of Shandong Province (No. Y2008G23).
References

[1] Diffie W. and Hellman M., New directions in cryptography, *IEEE Transactions on Information Theory*, 1976, IT-22: 644-654.

[2] Rivest R. L., Shamir A. and Adleman L., A method for obtaining digital signatures and public key cryptosystems, *Communications of the ACM*, 1978, 21: 120-126.

[3] Blakley G.R. and Borosh I., Rivest-Shamir-Adleman public key cryptosystems do not always conceal messages, *Comp. & Maths. with Appl.*, 1979, 5:169-178.

[4] Blakley Bob and Blakley G.R., Security of number theoretic public key cryptosystems against random attack, *Cryptologia*, 1978, 2(4): 306-321.

[5] Blakley Bob and Blakley G.R., Security of number theoretic public key cryptosystems against random attack, *Cryptologia*, 1979, 3(1): 29-42.

[6] Blakley Bob and Blakley G.R., Security of number theoretic public key cryptosystems against random attack, *Cryptologia*, 1979, 3(2): 105-118.

[7] Silverman J.H., *The arithmetic of dynamical systems*, GTM 241, Springer-Verlag, 2007.

[8] Yu X.Y., A note on fixed points of an RSA system, *Chinese Journal of Computers*, 2001, 24(9): 998-1001.

[9] Yu X.Y., A note on the RSA fixed points, *Chinese Journal of Computers*, 2002, 25(5): 497-500.

[10] Zhang S.H., On Fixed Points of Order k of RSA, China Crypt’2006, Science Press, 2006, 265-267. Accepted by *Journal of Mathematics*, in press.