REAL AND COMPLEX RANK FOR REAL SYMMETRIC TENSORS WITH LOW RANKS

EDOARDO BALLICO, ALESSANDRA BERNARDI

Abstract. We study the case of a real homogeneous polynomial P whose minimal real and complex decompositions in terms of powers of linear forms are different. We prove that, if the sum of the complex and the real ranks of P is at most $3 \deg(P) - 1$, then the difference of the two decompositions is completely determined either on a line or on a conic or two disjoint lines.

Introduction

The problem of decomposing a tensor into a minimal sum of rank-1 terms, is raising interest and attention from many applied areas as signal processing for telecommunications [15], independent component analysis [11], complexity of matrix multiplication [20], complexity problem of P versus NP [21], quantum physics [16, 5] and phylogenetic [1]. The particular instance in which the tensor is symmetric and hence representable by a homogeneous polynomial, is one of the most studied and developed ones (cfr. [17] and references therein). In this last case we say that the rank of a homogeneous polynomial P of degree d is the minimum integer r needed to write it as a linear combination of pure powers of linear forms L_1, \ldots, L_r:

$$P = c_1 L_1^d + \cdots + c_d L_r^d.$$

(1)

with $c_i \neq 0$. Most of the papers concerning the abstract theory of the symmetric tensor rank, require that the base field is algebraically closed. In this case we may take $c_i = 1$ for all i without loss of generality. However, for the applications, it is very important to consider the case of real polynomials and look at their real decomposition. Namely, one can study separately the case in which the linear forms appearing in P are complex or reals. In the real case we may take $c_i = 1$ for all i if d is odd, while we take $c_i \in \{-1, 1\}$ if d is even. When we look for a minimal complex (resp. real) decomposition as in (1) we say that we are computing the complex symmetric rank (resp. real symmetric rank) of P and we will indicate it $r_C(P)$ (resp. $r_R(P)$). Obviously

$$r_C(P) \leq r_R(P),$$

and in many cases such an equality is strict.

1991 Mathematics Subject Classification. 14N05; 15A69.

Key words and phrases. symmetric tensor rank; Veronese embedding; real symmetric tensor rank.

The authors were partially supported by CIRM of FBK Trento (Italy), Project Galaad of INRIA Sophia Antipolis Méditerranée (France), Institut Mittag-Leffler (Sweden), Marie Curie: Promoting science (FP7-PEOPLE-2009-IEF), MIUR and GNSAGA of INdAM (Italy).
In [12] P. Comon and G. Ottaviani studied the real case for bivariate symmetric tensors. Even in this case there are many open conjectures and, up to now, few cases are completely settled ([12], [9], [2], [7]).

In this paper we want to study the relation among $r_C(P)$ and $r_R(P)$ in the special circumstance in which $r_C(P) < r_R(P)$. In particular we will show that, in a certain range (say, $r_C(P) + r_R(P) \leq 3 \deg(P) - 1$), all homogeneous polynomials P of that degree with $r_R(P) \neq r_C(P)$ are characterized by the existence of a curve with the property that the sets evincing the real and the complex ranks coincide out of it (see Theorem 1 for the precise statement). More precisely: let $P \in S_d^m \mathbb{R}^{m+1}$ be a real homogeneous polynomial of degree d in $m+1$ variables such that $r_C(P) < r_R(P)$ and $r_C(P) + r_R(P) \leq 3 \deg(P) - 1$; therefore its real and complex decomposition are

$$P = a_1 L_1^d + \cdots + a_k L_k^d + c_1 M_1^d + \cdots + c_s M_s^d,$$

respectively, with $k > h$, $a_i \in \{-1, 1\}$, $c_j \in \{-1, 1\}$, $M_1, \ldots, M_s \in S^1 \mathbb{R}^{m+1}$, $h + k > d + 2$. Moreover there exists a curve $C' \subset \mathbb{P}^m$ such that $[L_1], \ldots, [L_k], [N_1], \ldots, [N_h]$ “depends only from the variables of C” and C' is either a line or a reduced conic or a disjoint union of two lines. If C' is a line (item in Theorem 1) then both the L_i’s and the N_i’s are linear forms in the same two “variables”. If C' is a conic, then L_i’s and N_i’s depend on 3 “variables” and their projectivizations lie on C'. See item (c) of Theorem 1 for the geometric interpretation of the reduction of L_1, \ldots, L_k and N_1, \ldots, N_h to bivariate forms involved with C' when $C' = l \cup r$ is a disjoint union of two lines l and r (we have two sets of bivariant forms, one for the variables of l and one for the variables of r).

1. Notation and statements

Before giving the precise statement of Theorem 1 we need to introduce the main algebraic geometric tools that we will use all along the paper.

Let $\nu_d : \mathbb{P}^m \rightarrow \mathbb{P}^N$, $N : = \binom{m+d}{d} - 1$, denote the degree d Veronese embedding of \mathbb{P}^m (say, defined over \mathbb{C}). Set $X_{m,d} := \nu_d(\mathbb{P}^m)$. For any $P \in \mathbb{P}^N$, the symmetric rank or symmetric tensor rank or, just, the rank $r_C(P)$ of P is the minimal cardinality of a finite set $S \subset \mathbb{P}^m(\mathbb{C})$ such that $P \in \langle \nu_d(S) \rangle$, where $\langle \cdot \rangle$ denote the linear span (here the linear span is with respect to complex coefficients), and we will say that P evinces $r_C(P)$. Notice that the Veronese embedding ν_d is defined over \mathbb{R}, i.e. $\nu_d(\mathbb{P}^m(\mathbb{R})) \subset \mathbb{P}^N(\mathbb{R})$. For each $P \in \mathbb{P}^N(\mathbb{R})$ the real symmetric rank $r_R(P)$ of P is the minimal cardinality of a finite set $S \subset \mathbb{P}^m(\mathbb{R})$ such that $P \in \langle \nu_d(S) \rangle_\mathbb{R}$, where $\langle \cdot \rangle_\mathbb{R}$ means the linear span with real coefficients, and we will say that P evinces $r_R(P)$. The integer $r_R(P)$ is well-defined, because $\nu_d(\mathbb{P}^m(\mathbb{R}))$ spans $\mathbb{P}^N(\mathbb{R})$.

Let us fix some notation: If $C \subset \mathbb{P}^m$ is either a curve or a subspace and $S \subset \mathbb{P}^m$ is a finite set, we will use the following abbreviations:

$$S_C := S \cap C,$$

$$S_\mathbb{C} := S \setminus (S \cap C).$$

Theorem 1. Let $P \in \mathbb{P}^N(\mathbb{R})$ be such that $r_C(P) + r_R(P) \leq 3d - 1$ and $r_C(P) \neq r_R(P)$. Fix any set $S_C \subset \mathbb{P}^m(\mathbb{C})$ and $S_\mathbb{R} \subset \mathbb{P}^m(\mathbb{R})$ evincing $r_C(P)$ and $r_R(P)$ respectively. Then one of the following cases (a), (b), (c) occurs:

(a) There is a line $l \subset \mathbb{P}^m$ defined over \mathbb{R} and with the following properties:
(i) S_C and S_R coincide out of the line l in a set S_l:
\[
S_C \setminus S_C \cap l = S_R \setminus S_R \cap l =: S_l;
\]
(ii) there is a point $P_l \in \langle \nu_d(S_C) \rangle \cap \langle \nu_d(S_R) \rangle$ such that $S_{C,l}$ evinces $r_C(P_l)$
and $S_{R,l}$ evinces $r_R(P_l)$;
(iii) $\sharp(S_{C,l} \cup S_{R,l}) \geq d + 2$ and $\sharp(S_{C,l}) < \sharp(S_{R,l})$.

(b) There is a conic $C \subset \mathbb{P}^m$ defined over \mathbb{R} and with the following properties:
(i) S_C and S_R coincide out of the conic C in a set S_C:
\[
S_C \setminus S_C \cap C = S_R \setminus S_R \cap C =: S_C;
\]
(ii) there is a point $P_C \in \langle \nu_d(S_C) \rangle \cap \langle \nu_d(S_R) \rangle$ such that $S_{C,C}$ evinces $r_C(P_C)$
and $S_{C,R}$ evinces $r_R(P_C)$;
(iii) $\sharp(S_{C,R} \cup S_{R,R}) \geq 2d + 2$ and $\sharp(S_{C,R}) < \sharp(S_{R,R})$;
(iv) if C is reducible, say $C = l_1 \cup l_2$ with $Q = l_1 \cap l_2$, then $\sharp((S_C \cup S_R) \cap (l_1 \setminus Q)) \geq d + 1$ for $d \in \{1, 2\}$.

(c) $m \geq 3$ and there are 2 disjoint lines $l, r \subset \mathbb{P}^m$ defined over \mathbb{R} with the following properties:
(i) S_C and S_R coincide out of the union $\Gamma := l \cup r$ in a set S_Γ:
\[
S_C \setminus S_C \cap (l \cup r) = S_R \setminus S_R \cap (l \cup r) =: S_\Gamma;
\]
(ii) $\sharp(S_{C,l} \cup S_{R,l}) \geq d + 2$ and $\sharp(S_{C,r} \cup S_{R,r}) \geq d + 2$;
(iii) the set $\langle \nu_d(S_\Gamma) \rangle \cap \langle \nu_d(\Gamma) \rangle$ is a single point, $O_\Gamma \in \mathbb{P}^N(\mathbb{R})$;
$S_{C,\Gamma}$ evinces $r_C(O_\Gamma)$ and $S_{R,\Gamma}$ evinces O_Γ;
(iv) the set $\langle \{O_l \cup \nu_d(l)\} \cap \langle \nu_d(l) \rangle \rangle$ (resp. $\langle \{O_r \cup \nu_d(r)\} \cap \langle \nu_d(r) \rangle \rangle$)
is formed by a unique point $O_l \in \mathbb{P}^N(\mathbb{R})$ (resp. $O_r \in \mathbb{P}^N(\mathbb{R})$);
$S_{C,l}$ (resp. $S_{C,r}$) evinces $r_C(O_l)$ (resp. $r_C(O_r)$);
$S_{R,l}$ (resp. $S_{R,r}$) evinces $r_R(O_l)$ (resp. $r_R(O_r)$).

2. The proof

Remark 1. Let $S \subset \mathbb{P}^N(\mathbb{R})$. It will be noteworthy in the sequel that S can be
used to span both a real space $(S)_R \subset \mathbb{P}^N(\mathbb{R})$ and a complex space $(S)_C \subset \mathbb{P}^N(\mathbb{C})$
of the same dimension and $(S)_C \cap \mathbb{P}^N(\mathbb{R}) = (S)_R$. In the following we will always
use $\langle \rangle$ to denote $\langle \rangle_C$.

Remark 2. Fix $P \in \mathbb{P}^N$ and a finite set $S \subset \mathbb{P}^N$ such that S evinces $r_C(P)$. Fix
any $E \subset S$. Then the set $\langle \{P\} \cup E \rangle \cap \langle S \setminus E \rangle$ is a single point (call it P_1) and $S \setminus E$
evices $r_C(P_1)$. Now assume $P \in \mathbb{P}^N(\mathbb{R})$ and $S \subset \mathbb{P}^N(\mathbb{R})$. Then $P_1 \in \mathbb{P}^N(\mathbb{R})$. If S
evices $r_R(P)$, then $S \setminus E$ evinces $r_R(P_1)$.

Lemma 1. Let $C \subset \mathbb{P}^m$ be a reduced curve of degree t with $t = 1, 2$. Fix finite sets
$A, B \subset \mathbb{P}^m$. Fix an integer $d > t$ such that:
\[
h^1(\mathcal{I}_{(A \cup B)}(d-t)) = 0.
\]
Assume the existence of $P \in \langle \nu_d(A) \rangle \cap \langle \nu_d(B) \rangle$ and $P \notin \langle \nu_d(S') \rangle$ for any $S' \subset A$
and any $S' \subset B$. Then
\[
A_C = B_C.
\]

Proof. The case $t = 1$ is [4 Lemma 8]. If $t = 2$, then either C is a conic or $m \geq 3$ and
C is a disjoint union of 2 lines. In both cases we have $h^0(\mathcal{I}_C(t)) > 0$ and the
linear system $|\mathcal{I}_C(t)|$ has no base points outside C. Since $A \cup B$ is a finite set, there
is $M \in |I_C(t)|$ such that $M \cap (A \cup B) = C \cap (A \cup B)$. Look at the residual exact sequence (also called the Castelnuovo’s exact sequence):

\[(2) \quad 0 \to I_{(A \cup B)\cap C}(d-t) \to I_{A \cup B}(d) \to I_{(A \cup B)\cap M,M}(d) \to 0\]

We can now repeat the same proof of [3, Lemma 8] but starting with (2) instead of the exact sequence used there (cfr. first displayed formula in the proof of [4, Lemma 8]).

We will therefore get $A_M = B_M$. Now, since $M \cap (A \cup B) = C \cap (A \cup B)$, we are done. \hfill \Box

We are now going to prove Theorem [1]

Proof of Theorem [1]

Fix $P \in \mathbb{P}^N(\mathbb{R})$ such that $r_C(P) + r_{\mathbb{R}}(P) \leq 3d - 1$ and $r_C(P) \neq r_{\mathbb{R}}(P)$.

Fix any set $S_C \subset \mathbb{P}^m(\mathbb{C})$ evincing $r_C(P)$ and any $S_{\mathbb{R}} \subset \mathbb{P}^m(\mathbb{R})$ evincing $r_{\mathbb{R}}(P)$.

By applying [3], Lemma 1, we immediately get that

\[h^1(\mathbb{I}_{S_C \cup S_{\mathbb{R}}}(d)) > 0.\]

Since $\sharp(S_C) + \sharp(S_{\mathbb{R}}) \leq 3d - 1$, either there is a line $l \subset \mathbb{P}^m$ such that $\sharp(S_{C,l} \cup S_{\mathbb{R},l}) \geq d+2$ or there is a conic C such that $\sharp(S_{C,C} \cup S_{\mathbb{R},C}) \geq 2d + 2$ ([4], Theorem 3.8).

We are going to study separately these two cases in items (1) and (2) below.

(1) In this step we assume the existence of a line $l \subset \mathbb{P}^m$ such that

\[\sharp(S_{C,l} \cup S_{\mathbb{R},l}) \geq d+2.\]

This hypothesis, together with $r_{\mathbb{R}}(P) \neq r_C(P)$, immediately implies property (a11) of the statement of the theorem.

We are now going to distinguish the case $h^1(\mathbb{I}_{S_C \cup S_{\mathbb{R}}}(d-1)) = 0$ (item (1.1) below) from the case $h^1(\mathbb{I}_{S_C \cup S_{\mathbb{R}}}(d-1)) > 0$ (item (1.2) below).

(1.1) Assume $h^1(\mathbb{I}_{S_C \cup S_{\mathbb{R}}}(d-1)) = 0$.

First of all, observe that the line $l \subset \mathbb{P}^m$ is well defined over \mathbb{R} since it contains at least 2 points of $S_{\mathbb{R}}$ (Remark [1]). Then, by Lemma [1] we have that S_C and $S_{\mathbb{R}}$ have to coincide out of the line l:

\[S_C \setminus S_{C,l} = S_{\mathbb{R}} \setminus S_{\mathbb{R},l} := S_l,\]

and this proves (a11) of the statement of the theorem in this case (1.1).

The fact that $\sharp(S_C) = \sharp(S_{\mathbb{R}})$ implies that $\sharp(S_{\mathbb{R},l}) = (d+2)/2$ and $\sharp(S_l) \leq d$, hence $h^1(\mathbb{I}_{S_{C,l}}(d)) = 0$.

Therefore we have that $\dim(\langle \nu_d(S_l \cup \{P\}) \rangle) = \sharp(S_l) + d + 1$, $\dim(\langle \nu_d(S_l) \rangle) = \sharp(S_l) - 1$ and $\dim(\langle \nu_d(l) \rangle) = d + 1$, and Grassmann’s formula gives $\langle \nu_d(S_l) \rangle \cap \langle \nu_d(l) \rangle = \emptyset$.

Since $P \in \langle \nu_d(S_l \cup S_C) \rangle$ and $S_{C,l} \subset l$, the set $\langle \nu_d(S_l) \rangle \cup \{P\} \cap \langle \nu_d(l) \rangle$ is a single point, $P_l \in \mathbb{P}^N(\mathbb{R})$.

Since $P \in \langle \nu_d(S_C) \rangle$ and $P \notin \langle \nu_d(S_{C,l}^\prime) \rangle$ for any $S_{C,l} \subset S_C$, the set $\langle \nu_d(S_l) \rangle \cup \{P\} \cap \langle \nu_d(S_{C,l}) \rangle$ is a single point, P_C (Remark [2]).

Then obviously:

\[P_C = P_l \in \mathbb{P}^N(\mathbb{R}).\]

Since S_C evinces $r_C(P)$, then $S_{C,l}$ evinces P_l (Remark [2]). In the same way we see that $\langle \nu_d(S_l) \rangle \cap \langle \nu_d(S_{C,l}) \rangle = \{P_l\}$ and that $S_{\mathbb{R},l}$ evinces $r_{\mathbb{R}}(P_l)$. This proves (null) of Theorem [1] in this case (1.1).
(1.2) Assume \(h^1(I_{S_C \cup S_R}(d-1)) > 0 \).

First of all, observe that there exists a line \(r \subset \mathbb{P}^m \) such that \(\sharp(r \cap (S_C \cup S_R)) \geq d + 1 \), because \(\sharp(S_C \cup S_R) \geq 3d - 1 - d - 2 \leq 2(d - 1) + 1 \).

By the same reason, if we write: \(C := l \cup r \), we get that \(\sharp(S_C \cup S_R) \leq 3d - 1 - d - 2 \leq d - 2 \) and hence \(h^1(I_{(S_C \cup S_R)_C}(d-2)) = 0 \) (e.g. by [14], Lemma 34, or by [14], Theorem 3.8). Lemma [1] gives:

\[
S_{C,\hat{C}} = S_{R,\hat{C}}.
\]

- Assume for the moment \(l \cap r \neq \emptyset \). In this case, Remark [2] indicates that we can consider case [b] of the statement of the theorem. Therefore (3) proves (bi) in the case that the conic \(C \) was finite, there is a smooth quadric surface \(S \). In this case, Remark [2] indicates that we can reduce our study to the case \((1.2) \) Assume \(h^1(I_{S_C \cup S_R}(d-1)) > 0 \).

Consider case (b) of the statement of the theorem. Therefore (3) proves (bi) in the case that the conic \(C \) was finite, there is a smooth quadric surface \(S \). In this case, Remark [2] indicates that we can reduce our study to the case \((1.2) \) Assume \(h^1(I_{S_C \cup S_R}(d-1)) > 0 \).

Therefore:

\[
S_{C,\hat{C}} = S_{R,\hat{C}}.
\]

and the set \(\{\{P\} \cup \nu_d(S_{C,\hat{C}})\} \cap \langle \nu_d(\Gamma) \rangle \) is a single real point:

\[
O := \{\{P\} \cup \nu_d(S_{C,\hat{C}})\} \cap \langle \nu_d(\Gamma) \rangle \in \mathbb{P}^N(\mathbb{R}),
\]

\(S_{C,\hat{C}} \) evinces \(r_C(O) \) and \(S_{R,\hat{C}} \) evinces \(r_R(O) \). Now, (1) implies that if we are either in case [a] or in case [b] of the theorem, we can simply study what happens at \(S_{C,\hat{C}} \) and at \(S_{R,\hat{C}} \), which means that we can reduce our study to the case \(m = 3 \), since \(\langle \rangle = \mathbb{P}^3 \).

- Until step (2) below, we will assume \(m = 3 \).

The linear system \(I_{\{2\}}(\hat{\Gamma}) \) on \(\langle \Gamma \rangle \) has no base points outside \(\Gamma \) itself. Since \(S_C \cup S_R \) is finite, there is a smooth quadric surface \(W \) containing \(\Gamma \) such that

\[
S_{C,W} \cup S_{R,W} = S_{C,\hat{C}} \cup S_{R,\hat{C}}.
\]

Moreover, such a \(W \) can be found among the real smooth quadrics, since \(l \) and \(r \) are real lines.

Since \(\sharp(S_{C,\hat{C}} \cup S_{R,\hat{C}})_W \leq d - 1 \), we have \(h^1(I_{S_C \cup S_R}(d-2)) = 0 \). Hence Lemma [1] applied to the point \(O \) defined in (5), gives:

\[
\langle O \rangle \cup \nu_d(S_{C,\hat{C}})_W \cap \langle \nu_d(W) \rangle \text{ is a single real point}
\]

\[
O' = \langle O \rangle \cup \nu_d(S_{C,\hat{C}})_W \cap \langle \nu_d(W) \rangle \in \mathbb{P}^N(\mathbb{R}),
\]

and \(S_{C,W} \) evinces \(r_C(O') \). If \((O', S_{C,W}, S_{R,W}) \) is either as in case [a] or in case [b] of the statement of the theorem, then \((O, S_{C,\hat{C}}, S_{R,\hat{C}}) \) is in the same case. Consider the system \(\langle (1,0) \rangle \) of lines on the smooth quadric surface \(W \) containing \(\Gamma \). We have
that \(h^1(W, \mathcal{O}_W(d - 2, d)) = 0 \), and hence the restriction map \(H^0(W, \mathcal{O}_W(d)) \rightarrow H^0(\Gamma, \mathcal{O}_\Gamma(d)) \) is surjective. Therefore

\[
h^1(W, I_{W \cap (S_{C} \cup S_{R})}(d)) = h^1(I, I_{(S_{C} \cup S_{R})_{\Gamma}}(d)) + h^1(r, I_{((S_{C} \cup S_{R})_{\Gamma}}(d))
\]

Now, this last equality, together with the facts that \(\nu_d(S_{C_r, W}) \) and \(\nu_d(S_{R_r, W}) \) are linearly independent and \((S_{C} \cup S_{R})_{W} \subset \Gamma \), gives:

\[
\dim((\nu_d(S_{C, W})) \cap (\nu_d(S_{R, W}))) = (S_{C} \cap S_{R})_{W} + (S_{C} \cap S_{R})_{r} +
\]

(7)

\[
h^1(I, I_{(S_{C} \cup S_{R})_{\Gamma}}(d)) + h^1(r, I_{((S_{C} \cup S_{R})_{\Gamma}}(d))
\]

(1.2.1) Observe that (7) implies that the case \(\sharp(S_{C} \cup S_{R})_{r} = (S_{C} \cup S_{R})_{W} = d + 1 \) cannot happen because there is no contribution from \(h^1(I, I_{(S_{C} \cup S_{R})_{\Gamma}}(d)) + h^1(r, I_{((S_{C} \cup S_{R})_{\Gamma}}(d)) \) since both terms, in this case, are equal to 0. So, we can assume that at least \(\sharp(S_{C} \cup S_{R})_{r} > d + 1 \).

(1.2.2) Assume \(\sharp(S_{C} \cup S_{R})_{r} = d + 1 \) and \(\sharp(S_{C} \cup S_{R})_{W} > d + 1 \).

To prove that we are in case (iii) with respect to \(l \) it is sufficient to prove \(S_{C_r, r} = S_{R_r, r} \). We have \(\dim((\nu_d(S_{C} \cup S_{R})) = \sharp(S_{C} \cup S_{R}) - 1 - h^1(I_{(S_{C} \cup S_{R})_{\Gamma}}(d)) \). Since \(\nu_d(S_{C}) \) and \(\nu_d(S_{R}) \) are linearly independent, \(\sharp(S_{C} \cup S_{R}) = \sharp(S_{C}) + \sharp(S_{R}) - \sharp(S_{C} \cap S_{R}) \). \(\sharp(S_{C} \cup S_{R}) = \sharp(S_{C_r, r}) + \sharp(S_{C_r, r} \cup S_{R_r, r}) \) and \(h^1(I_{(S_{C} \cup S_{R})_{\Gamma}}(d)) = h^1(I, I_{(S_{C} \cup S_{R})_{\Gamma}}(d)) \). Grassmann’s formula gives that \((\nu_d(S_{C})) \cap (\nu_d(S_{R})) \) is generated by \((\nu_d(S_{C})) \cap (\nu_d(S_{R})) \). Since \(P \notin (\nu_d(S')) \) for any \(S' \subset S_{C_r, r} \), we get \(S_{C} = S_{C_r, r} \cup (S_{R} \cap S_{C_r, r}), i.e. S_{r} = S_{R} \setminus S_{C_r, r} \). Hence we can consider case (iii), and (iii) proves property (ii) also for the case (1.2) that we are treating. The point \(P \) that we need to get (a(ii) can be identified with the point \(O' \) defined in (6) while (a(iii) comes from our hypotheses.

This gives all cases (ii) of Theorem 4

(1.2.3) Assume that both \(\sharp(S_{C} \cup S_{R})_{r} \geq d + 2 \) and \(\sharp(S_{C} \cup S_{R})_{W} \geq d + 2 \).

We need to prove that we are in case (iv). Recall that \(S_{C_r, r} = S_{R_r, r} \) and that \(h^1(I_{(S_{C_r, r} \cup S_{R_r, r})_{\Gamma}}(d)) = 0 \). The latter equality implies, as in Remark 2 that \(\{P \cup \nu_d(S_{C_r, r}) \cap (\nu_d(\Gamma)) \) is a single real point \(O_1 \), that \(S_{C_r, r} \) evinces \(r_{C}(O_1) \) and that \(S_{R_r, r} \) evinces \(O_1 \). Now \(O_1 \) plays the role of \(O_1 \) of case (iii) in Theorem 4.

Since \((\nu_d(l)) \cap (\nu_d(r)) = \emptyset \) and \(O_1 \in (\nu_d(\Gamma)) \), the sets \(\{O_1 \cup (\nu_d(l)) \cap (\nu_d(l)) \) are formed by a unique point \(O_2 \) (resp. \(O_3 \)). Remark 2 gives that \(O_1 \in \mathbb{P}^N(\mathbb{R}) \), \(i = 1, 2, S_{C_r, r} \) evinces \(r_{C}(O_2) \), \(S_{R_r, r} \) evinces \(r_{R}(O_3) \). The hypotheses of the case (1.2.3) coincide with (iv) of the statement of the theorem, while (iii) gives also property (ii). Moreover \(O_2 \) and \(O_3 \) defined above coincide with \(O_1 \) and \(O_{r} \) in (iv) of Theorem 4 therefore we have also proved case (iv) of Theorem 4.

(2) Now assume the existence of a conic \(C \subset \mathbb{P}^m \) such that

\[
\deg(S_{C} \cup S_{R})_C \geq 2d + 2.
\]

Since \(\sharp(S_{C} \cup S_{R})_C \leq 3d - 1 - 2d - 2 \leq d - 1 \), we have \(h^1(I_{(S_{C} \cup S_{R})_C}(d - 2)) = 0 \). By Lemma 4 we have

\[
S_{C, C} = S_{R, C},
\]

the set \(\{P \cup \nu_d(S_{C, C}) \cap (\nu_d(\Gamma)) \) is a single point:

(10)

\[
P' := (\{P \cup \nu_d(S_{C, C}) \cap (\nu_d(\Gamma))
\]

and \(S_{C, C} \) evinces \(r_{C}(P') \). Moreover, if \(C \) is defined over \(\mathbb{R} \), then \(P' \in \mathbb{P}^N(\mathbb{R}) \) and \(S_{R, C} \) evinces \(r_{R}(P') \). Hence \(\sharp(S_{C, C}) < \sharp(S_{C} \cup S_{R}) \).
(2.1) Assume that C is smooth. Therefore [9] proves [11] of the statement of the theorem in the case where C is smooth. Since the reduced case is proved above (immediately after the displayed formula [3]), we have concluded the proof of [11].

Moreover the hypothesis [10] coincides with [11] of the statement of the theorem since $\sharp(S_{C,C})$ is obviously strictly smaller than $\sharp(S_{R,C})$. This concludes [11].

The fact that $\sharp(S_{C,C}) < \sharp(S_{R,C})$ also implies that $\sharp(S_{R,C}) \geq 5$. Since each point of S_{R} is real, C is real. Remark [2] gives that $\nu_{d}(S_{R,C})$ evinces $r_{R}(P')$. Since $S_{R,C} \subset C$, $S_{R,C}$ also evinces the real symmetric tensor rank of P' with respect to the degree 2d rational normal curve $\nu_{d}(C)$. The point P' defined in (10) plays the role of the point P_{C} appearing in [11] of the statement of the theorem. Therefore, we have just proved [11] of Theorem [1].

We treat the case (2.2) below for sake of completeness, but we can observe that this concludes the proof of Theorem [1].

(2.2) Assume that C is reducible, say $C = L_{1} \cup L_{2}$ with L_{1} and L_{2} lines and $\sharp((S_{C} \cup S_{R})_{L_{1}}) \geq \sharp((S_{C} \cap S_{R})_{L_{1}})$. If $\sharp((S_{C} \cup S_{R}) \cap (L_{2} \setminus L_{1} \cap L_{1})) \leq d$, then we proved in step (1) that we are in case (11) with respect to the line L_{1}. Hence we may assume $\sharp((S_{C} \cup S_{R}) \cap (L_{2} \setminus L_{1} \cap L_{1})) \geq d + 1$. Thus even condition (biii) is satisfied as already remarked above after the displayed formula [3].

References

[1] E. S. Allman and J. A. Rhodes, Phylogenetic ideals and varieties for the general Markov model, Adv. in Appl. Math. 40 (2008), no. 2, 127–148.
[2] E. Ballico, On the typical rank of real bivariate polynomials, [arXiv:1204.3161] [math.AG].
[3] E. Ballico and A. Bernardi, Decomposition of homogeneous polynomials with low rank, Math. Z. 271 (2012), 1141–1149.
[4] E. Ballico and A. Bernardi, A partial stratification of secant varieties of Veronese varieties via curvilinear subschemes, Sarajevo Journal of Mathematics. 8 (2011), no. 1, 34–53.
[5] A. Bernardi and I. Carusotto, Algebraic geometry tools for the study of entanglement: an application to spin squeezed states, J. Phys. A: Math. Theor. 45 (2012) 105304 (13pp). DOI 10.1088/1751-8113/45/10/105304.
[6] A. Bernardi, A. Gimigliano and M. Idà, Computing symmetric rank for symmetric tensors, J. Symbolic Comput. 46 (2011), no. 1, 34–53.
[7] G. Blekherman, Typical real ranks of binary forms, [arXiv:1205.3257] [math.AG].
[8] J. Brachat, P. Comon, B. Mourrain and E. P. Tsigaridas, Symmetric tensor decomposition, Linear Algebra Appl. 433 (2010), no. 11–12, 1851–1872.
[9] A. Causa and R. Re, On the maximum rank of a real binary form, Ann. Mat. Pura Appl. 4 (2011), 55–59.
[10] G. Comas and M. Seiguer, On the rank of a binary form, Found. Comp. Math. 11 (2011), no. 1, 65–78.
[11] P. Comon, Independent Component Analysis, Higher Order Statistics, Elsevier, J-L. Lacombe, Amsterdam, London, (1992), 29–38.
[12] P. Comon and G. Ottaviani, On the typical rank of real binary forms, Linear Multilinear Algebra 60 (2012), no. 6, 657–667.
[13] P. Comon, G. H. Golub, L.-H. Lim and B. Mourrain, Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. 30 (2008) 1254–1279.
[14] A. Couvreur, The dual minimum distance of arbitrary dimensional algebraic-geometric codes, J. Algebra 350 (2012), no. 1, 84–107.
[15] L. de Lathauwer and J. Castaing, Tensor-Based Techniques for the Blind Separation of DS-CDMA Signals, Signal Processing, 87 (2007), 322–336.
[16] J. Eisert and D. Gross, Multiparticle entanglement, Bruß, Dagmar (ed.) et al., Lectures on quantum information. Weinheim: Wiley-VCH, Physics Textbook, 237–252 (2007), (2007).
[17] J. M. Landsberg, Tensors: Geometry and Applications, Graduate Studies in Mathematics, Vol. 128, Amer. Math. Soc. Providence, 2012.
[18] J. M. Landsberg and Z. Teitler, On the ranks and border ranks of symmetric tensors, Found. Comput. Math. 10 (2010), no. 3, 339–366.
[19] L.-H. Lim and V. de Silva, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl. 30 (2008), no. 3, 1084–1127.
[20] V. Strassen, Rank and Optimal Computation of Generic Tensors, Linear Algebra Appl., (1983), 645–685.
[21] L. G. Valiant, Quantum computers that can be simulated classically in polynomial time, Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, 114–123 (electronic), ACM, New York, (2001).

University of Trento, Dept. of Mathematics, 38123 Povo (TN), Italy
University of Torino, Dept. of Mathematics “Giuseppe Peano”, 10123 Torino, Italy
E-mail address: ballico@science.unitn.it, alessandra.bernardi@unito.it