Measurements of resonant scattering in the Perseus cluster core with Hitomi SX5

Hitomi Collaboration, Felix AHARONIAN1,2,3, Hiroki AKAMATSU4, Fumie AKIMOTO5, Steven W. ALLEN6,7,8, Lorella ANGELINI9, Marc AUDARD10, Hisamitsu AWAKI11, Magnus AXELSSON12, Aya BAMBA13,14, Marshall W. BAUTZ15, Roger BLANDFORD6,7,8, Laura W. BRENNEMAN16, Gregory V. BROWN17, Esra BULBUL15, Edward M. CACKETT18, Maria CHERNYAKOVA1, Meng P. CHIAO9, Paolo S. COPPI19,20, Elisa COSTANTINI4, Jelle DE PLAAT4, Cor P. DE VRIES4, Jan-Willem DEN HERDER1, Chris DONE21, Tadayasu DOTANI22, Ken EBISAWA22, Megan E. ECKART9, Teruaki ENOTO23,24, Yuichiro EZOE25, Andrew C. FABIAN26, Carlo FERRIGNO10, Adam R. FOSTER16, Ryuichi FUJIMOTO27, Yasushi FUKAZAWA28, Akihiro FURUZAWA29, Massimiliano GALEAZZI30, Luigi C. GALLO31, Poshak GANDHI32, Margherita GIUSTINI1, Andrea GOLDWURM33,34, Liyi GU4, Matteo GUAINAZZI35, Yoshito HABA36, Kouichi HAGINO37, Kenji HAMAGUCHI9,38, Ilana M. HARRUS9,38, Isamu HATSUKADE39, Katsuhiro HAYASHI22,40, Takayuki HAYASHI40, Kiyoji HAYASHIDA41, Junko S. HIRAGA12, Ann HORNSCHEMEIER9, Akio HOSHINO43, John P. HUGHES44, Yuto ICHINOHE25, Ryotoku INOUE22, Hajime INOUE45, Yoshiyuki INOUE22, Manabu ISHIDA22, Kumi ISHIKAWA22, Yoshitaka ISHISAKI25, Masachika IWA22, Jelle KAASTRA4,46, Tim KALLMAN9, Tsuneyoshi KAMAE13, Jun KATAOKA47, Satoru KATSUDA48, Nobuyuki KAWAI49, Richard L. KELLEY9, Caroline A. KILBOURNE9, Takao KITAGUCHI28, Shunji KITAMOTO43, Tetsu KITAYAMA50, Takayoshi KOHMURA37, Motohide KOKUBUN22, Katsuki KOYAMA51, Shu KOYAMA22, Peter KRETSCHEMAR52, Hans A. KRIMM53,34, Aya KUBOTA55, Hideyo KUNIEDA40, Philippe LAURENT33,34, Shiu-Hang LEE23, Maurice A. LEUTENEGGER9, Olivier O. LIMOUSIN34, Michael LOEWENSTEIN9,56, Knox S. LONG57, David LUMB35, Greg MADEJSKI6, Yoshitomo MAEDA22, Daniel MAIER33,34, Kazuo MAKISHIMA58, Maxim MARKEVITCH9, Hironori MATSUMOTO41, Kyoko MATSUSHITA59, Dan MCCAMMON60, Brian R. McNAMARA61, Missagh MEHDIPOUR4, Eric D. MILLER15, Jon M. MILLER62, Shin MINESHIGE23, Kazuhisa MITSUDA22, Ikuyuki MITSUI60, Takuya MIYAZAWA63, Tsunefumi MIZUNO28,64, Hideyuki MORI9, Koji MORI39, Koji MUKAI9,38, Hiroshi MURAKAMI65, Richard F. MUSHOTZKY56, Takao NAKAGAWA22, Hiroshi NAKAJIMA41, Takeshi NAKAMORI66, Shinya NAKASHIMA58, Kazuhiro NAKAZAWA13,14, Kumiko K. NOBUKAWA67, Masayoshi NOBUKAWA68, Hirofumi NODA69,70, Hirokazu ODACA6, Takaya OHASHI25, Masanori OHNO28, Takashi OKAJIMA9, Naomi OTA67, Masanobu OZAKI22, Frits PAERELS71, Stéphane PALTANI10, Robert PETRE9, Ciro
PINTO26, Frederick S. PORTER9, Katja POTTSCHEIDT9,38, Christopher S. REYNOLDS56, Samar SAFI-HARB72, Shinya SAITO43, Kazuhiro SAKAI9, Toru SASAKI59, Goro SATO22, Kosuke SATO59,77, Rie SATO22, Makoto SAWADA73, Norbert SCHARTEL52, Peter J. SERLEMTSOS9, Hiromi SETA25, Megumi SHIDATSU58, Aurora SIMIONESCU22, Randall K. SMITH16, Yang SOONG9, Łukasz STAWARZ74, Yasuharu SUGAWARA22, Satoshi SUGITA49, Andrew SZYMKOWIAK20, Hiroyasu TAJIMA5, Hiromitsu TAKAHASHI28, Tadayuki TAKAHASHI22, Shinichiro TAKEDA63, Yoh TAKEI22, Toru TAMAGAWA75, Takayuki TAMURA22, Takaaki TANAKA51, Yasuo TANAKA76,22, Yasuyuki TANAKA28, Makoto S. TASHIRO77, Yuzuru TAWARA40, Yukikatsu TERADA77, Yuichi TERASHIMA11, Francesco TOMBESI9,78,79, Hiroshi TOMIDA22, YohkoTSUBOI48, Masahiro TSUJIMOTO22, Hiroshi TSUNEMI41, Takeshi Go TSURU51, Hiroyuki UCHIDA51, Hideki UCHIYAMA40, Yasunobu UCHIYAMA43, ShutarouUEDA22, YoshhiroUEDA23, Shinichiro UNO81, C. Megan URRY20, EugenioURSINO30, Shin WATANABE22, Norbert WERNER82,83,28, Dan R. WILKINS6, Brian J. WILLIAMS57, Shinya YAMADA25, Hiroya YAMAGUCHI9,56, Kazutaka YAMAOKA5,40, Noriko Y. YAMASAKI22, Makoto YAMAUCHI39, Shigeo YAMAUCHI67, Tahir YAQOOB9,38, Yoichi YATSU49, Daisuke YONETOKU27, IrinaZHURAVLEVA6,7, Abderahmen ZOGHBI62, Maki FURUKAWA59, Anna OGORZALEK6,7

1Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland
2Max-Planck-Institut für Kernphysik, P.O. Box 103980, 69029 Heidelberg, Germany
3Gran Sasso Science Institute, viale Francesco Crispi, 7 67100 L’Aquila (AQ), Italy
4SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands
5Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601
6Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305, USA
7Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA
8SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
9NASA, Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA
10Department of Astronomy, University of Geneva, ch. d’Écogia 16, CH-1290 Versoix, Switzerland
11Department of Physics, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577
12Department of Physics and Oskar Klein Center, Stockholm University, 106 91 Stockholm, Sweden
13Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
14Research Center for the Early Universe, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
15Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
16Smithsonian Astrophysical Observatory, 60 Garden St., MS-4. Cambridge, MA 02138, USA
17Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
18Department of Physics and Astronomy, Wayne State University, 666 W. Hancock St, Detroit, MI 48201, USA
19Department of Astronomy, Yale University, New Haven, CT 06520-8101, USA
20Department of Physics, Yale University, New Haven, CT 06520-8120, USA
Centre for Extragalactic Astronomy, Department of Physics, University of Durham, South Road, Durham, DH1 3LE, UK

Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210

Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502

The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302

Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397

Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK

Faculty of Mathematics and Physics, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192

Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502

Faculty of Mathematics and Physics, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192

School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526

Fujita Health University, Toyoake, Aichi 470-1192

Physics Department, University of Miami, 1320 Campo Sano Dr., Coral Gables, FL 33146, USA

Department of Astronomy and Physics, Saint Mary's University, 923 Robie Street, Halifax, NS, B3H 3C3, Canada

Department of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ, UK

Department of Physics, Tottori University, 1036-1 Kagoshima, Tottori, Tottori 689-1193

Department of Physics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA

Department of Applied Physics and Electronic Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki, 889-2192

Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602

Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043

Department of Physics, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337

Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501

Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854, USA

Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506

Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands

Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555

Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551

Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550

Department of Physics, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510

Department of Physics, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo, Kyoto 606-8502

European Space Astronomy Center, Camino Bajo del Castillo, s/n., 28692 Villanueva de la
Cañada, Madrid, Spain
53 Universities Space Research Association, 7178 Columbia Gateway Drive, Columbia, MD 21046, USA
54 National Science Foundation, 4201 Wilson Blvd, Arlington, VA 22230, USA
55 Department of Electronic Information Systems, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, Saitama 337-8570
56 Department of Astronomy, University of Maryland, College Park, MD 20742, USA
57 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
58 Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198
59 Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601
60 Department of Physics, University of Wisconsin, Madison, WI 53706, USA
61 Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
62 Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109, USA
63 Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son Okinawa, 904-0495
64 Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526
65 Faculty of Liberal Arts, Tohoku Gakuin University, 2-1-1 Tenjinzawa, Izumi-ku, Sendai, Miyagi 981-3193
66 Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560
67 Department of Physics, Nara Women’s University, Kitaouyanishi-machi, Nara, Nara 630-8506
68 Department of Teacher Training and School Education, Nara University of Education, Takabatake-cho, Nara, Nara 630-8528
69 Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-azaoba, Aoba-ku, Sendai, Miyagi 980-8578
70 Astronomical Institute, Tohoku University, 6-3 Aramaki-azaoba, Aoba-ku, Sendai, Miyagi 980-8578
71 Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027, USA
72 Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
73 Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258
74 Astronomical Observatory of Jagiellonian University, ul. Orla 171, 30-244 Kraków, Poland
75 RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198
76 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany
77 Department of Physics, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570
78 Department of Physics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
79 Department of Physics, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Rome, Italy
80 Faculty of Education, Shizuoka University, 836 Ohy, Suruga-ku, Shizuoka 422-8529
81 Faculty of Health Sciences, Nihon Fukushi University, 26-2 Higashi Haemi-cho, Handa, Aichi 475-0012
Abstract

Thanks to its high spectral resolution (~ 5 eV at 6 keV), the Soft X-ray Spectrometer (SXS) on board Hitomi enables us to measure the detailed structure of spatially resolved emission lines from highly ionized ions in galaxy clusters for the first time. In this series of papers, using the SXS we have measured the velocities of gas motions, metallicities and the multi-temperature structure of the gas in the core of the Perseus cluster. Here, we show that when inferring physical properties from line emissivities in systems like Perseus, the resonant scattering effect should be taken into account. In the Hitomi waveband, resonant scattering mostly affects the FeXXV He$^\alpha$ line - the strongest line in the spectrum. The flux measured by Hitomi in this line is suppressed by a factor ~ 1.3 in the inner ~ 30 kpc, compared to predictions for an optically thin plasma; the suppression decreases with the distance from the center. The w line also appears slightly broader than other lines from the same ion. The observed distortions of the w line flux, shape and distance dependence are all consistent with the expected effect of the resonant scattering in the Perseus core. By measuring the ratio of fluxes in optically thick (w) and thin (FeXXV forbidden, Heβ, Lyα) lines, and comparing these ratios with predictions from Monte Carlo radiative transfer simulations, the velocities of gas motions have been obtained. The results are consistent with the direct measurements of gas velocities from line broadening described elsewhere in this series, although the systematic and statistical uncertainties remain significant. Further improvements in the predictions of line emissivities in plasma models, and deeper observations with future X-ray missions offering similar or better capabilities to the Hitomi SXS will enable resonant scattering measurements to provide powerful constraints on the amplitude and anisotropy of clusters gas motions.

Key words: galaxies: clusters: individual (the Perseus cluster) – X-rays: galaxies: clusters – galaxies: clusters: intracluster medium

1 Introduction

The hot ($10^7 - 10^8$ K) gas in the intra-cluster medium (ICM) is optically thin to the continuum X-ray radiation, meaning that galaxy clusters are transparent to their own X-ray continuum photons. However, Gilfanov et al. (1987) showed that the strongest X-ray resonance lines can have significant optical depths, of order unity or larger. Line photons can therefore undergo resonant scattering (hereafter RS), that is, they can be absorbed by ions and be almost instantaneously re-emitted in a different direction. As a result of this scattering, the emission line intensity is reduced in the direction of the center of the cluster (generally the region of largest optical depth along our line of sight), and enhanced towards the outskirts (e.g. see review by Churazov et al. 2010). Even if the RS effect is not strong, it will affect the spatially resolved measurement of elemental abundances in the ICM (e.g. Böhringer et al. 2001; Sanders et al. 2004), distort the profiles of X-ray surface brightness (e.g. Gilfanov et al. 1987; Shigeyama 1998), and can lead to up to tens of percent polarization of the line radiation (Sazonov et al. 2002; Zhuravleva et al. 2010).

There have been numerous attempts to detect the RS effect in X-ray spectra of the Perseus Cluster (e.g. Molendi et al. 1998; Ezawa et al. 2001; Churazov et al. 2004) and other clusters (e.g. Kaasstra et al. 1999; Akimoto et al. 2000; Mathews et al. 2001; Sakelliou et al. 2002; Sanders & Fabian 2006). However, the results remain somewhat controversial. More recently it was shown for the Perseus Cluster that the energy resolutions of the CCD-type spectrometers on XMM-Newton and Chandra are not sufficient to uniquely and robustly distinguish between
spectral distortions due to RS, different metal abundance profiles, and/or levels of gas turbulence (Zhuravleva et al. 2013).

Here we present Hitomi observations of the RS effect in the core of the Perseus Cluster. Due to the superb energy resolution (FWHM \(\approx 5\) eV at 6 keV) of the non-dispersive Soft X-ray Spectrometer (SXS) on-board Hitomi, individual spectral lines are resolved (Hitomi Collaboration et al. 2016), allowing us to measure the suppression of the flux in the He-like \(Fe\) \(n = 1 \rightarrow 2\) resonance line at 6.7 keV for the first time. As we discuss below, this suppression is likely due to photons having been scattered out of the line of sight.

Given that the optical depth at the center of a line depends on the turbulent Doppler broadening, the comparison of fluxes for optically thick and thin lines can be used to measure the characteristic amplitude of gas velocities in the ICM, complementing direct velocity measurements via Doppler broadening and centroid shifts. The RS technique has previously been successfully applied to high-resolution spectra from the cool \((kT \approx 1\) keV), dense cores of massive elliptical galaxies and galaxy groups, using deep XMM-Newton observations with the Reflection Grating Spectrometer (RGS). Detailed study of those data showed that the \(Fe\) \(XVII\) resonance line at 15.01 Å is suppressed in the dense galaxy cores, but not in the surrounding regions, while the line at 17.05 Å from the same ion is optically thin and is not suppressed (e.g. Xu et al. 2002; Kahn et al. 2003; Hayashi et al. 2009; Pinto et al. 2016; Ahoranta et al. 2016). Performing modeling of the RS effect, accounting for different levels of turbulence, revealed random gas velocities of order \(\sim 100\) km s\(^{-1}\) in many elliptical galaxies and groups (e.g. Werner et al. 2009; de Plaa et al. 2012; Ogorzalek et al. 2017).

Doppler spectroscopy and the RS technique provide complementary, non-redundant constraints on the velocity field. A measurement of the Doppler broadening along a given line of sight depends on the line-of-sight integral of the velocity field weighted by the square of the density. In contrast, the RS effect probes the integral of the velocity field along photon trajectories, weighted by the density itself. Even more striking, if turbulence is isotropic, the measurements of the Doppler effect and RS should provide the same results. If the measured velocities differ, this may indicate that the velocity field is anisotropic. Namely, if motions are radial (tangential) the scattering efficiency is reduced (increased) compared to the isotropic case (Zhuravleva et al. 2011). It is also important to note that the RS technique is mostly sensitive to small-scale motions (Zhuravleva et al. 2011). The comparison between the two measurements of the velocity field can also reveal large scale deviations from spherical symmetry, and density inhomogeneities.

Hitomi Collaboration et al. (2016) mentioned the presence of the RS effect in the Perseus core. The measured ratio of the \(Fe\) \(XXV\) \(He\alpha\) resonance to forbidden line fluxes, \(2.48 \pm 0.16\) with 90% statistical uncertainties, is smaller than the predicted ratio in optically thin plasma with mean gas temperature of 3.8 keV. Hitomi Collaboration et al. (2016) also reports velocity dispersions of \(187 \pm 13\) and \(164 \pm 10\) km s\(^{-1}\) in the core and outer regions, respectively. Theoretical studies of the RS effect predict that the resonance line flux should be still suppressed if gas is moving with such velocities in the Perseus Cluster. In this paper, we measure spatial variations of line ratios and widths using the improved calibration data and taking systematic uncertainties into account. We confirm the presence of the RS effect and, using numerical simulations of radiative transfer in the Perseus Cluster, infer the velocities of gas motions. We refer the reader to Hitomi collaboration et al. (2017e, 2017d, 2017b, 2017c) papers for the most complete analysis of spectroscopic velocity measurements, details of the plasma modeling and detailed measurements of the temperature structure\(^1\). The ICM parameters present in this paper are consistent with the measurements in these papers; small variations of specific parameters do not affect our conclusions.

The structure of our paper is as follows. In section 2, we describe the observations and data reduction. In section 3, we demonstrate that the complex coupled spectral and spatial behavior of the emission line intensities in the \(Fe\) \(XXV\) \(He\alpha\) spectrum are qualitatively consistent with the presence of RS. In section 4, we measure line intensity ratios that are sensitive to RS, as a function of position in the cluster. In section 5, we describe the radiative transfer simulations performed. We used two independent simulation codes: one based on the software packages \(Geant4\) tool kit\(^2\) and HEAsim\(^3\), and one custom-written by one of us (IZ) based on Sazonov et al. (2002); we will refer to this latter code as the ICM Monte Carlo code or ‘ICMMC code’. In section 6, we compare the results of simulations with the measured line ratios, and derive constraints on the turbulent velocity field. In section 7, we discuss the uncertainties associated with the atomic excitation rates, and possible presence of additional excitation processes such as charge exchange. The results are summarized and discussed in section 8.

Throughout this paper we adopt AtomDB version 3.0.8 \(^4\) and the plasma emission models in APEC \(^5\). All data analysis software tasks refer to the HEAsoft package \(^6\). We adopt a Galactic hydrogen column density of \(N_H = 1.38 \times 10^{21}\) cm\(^{-2}\) (Kalberla et al. 2005) in the direction of the Perseus Cluster, and use the solar abundance table provided by Lodders & Palme (2009). Unless noted otherwise, the errors are the 68% \((1\sigma)\) confidence limits for a single parameter of interest.

\(^1\) We will refer these papers as the “Atomic” or “A”, the “Velocity” or “V”, the “Temperature” or “T”, and the “Abundance” or “Z” papers, respectively.

\(^2\) http://geant4.cern.ch

\(^3\) https://heasarc.gsfc.nasa.gov/tools/caldb/help/heasim.html

\(^4\) http://www.atomdb.org

\(^5\) Astrophysical Plasma Emission Code; http://www.atomdb.org

\(^6\) https://heasarc.nasa.gov/lheasoft
2 Observation & data reduction

Hitomi carried out a series of 4 overlapping pointed observations of the Perseus Cluster core during its commissioning phase in 2016 February and March, with a total of 340 ks exposure time (Table 1). The Hitomi SXS is a system that combines an X-ray micro-calorimeter spectrometer with a Soft X-ray Telescope (SXT) to cover a 3×3 arcmin field of view (FOV) with an angular resolution of 1.2 arcmin (half power diameter). The micro-calorimeter spectrometer provided a spectral energy resolution of $\Delta E \sim 5$ eV at 6 keV (Kelley et al. 2016). It is operated inside a dewar, in which a multi-stage cooling system maintains a stable environment at 50 mK; temperature stability is important to give such a high energy resolution. The SXS was originally expected to cover the energy range between 0.3 and 12 keV, but only data in the $E > 2$ keV band were available during the Perseus observations because the gate valve on the SXS dewar, which consists of a Be window and its support structure, was still closed at the time of observation. The other instruments on Hitomi are described in Takahashi et al. (2017). In this paper, we use only the SXS data for investigating RS in the Perseus cluster core.

The Perseus Cluster was observed four times with Hitomi over a ten day period, but the SXS dewar had not yet achieved thermal equilibrium during the first two observations. A drift in temperature of the detector implies a drift in the photon energy to signal conversion (the so-called ‘gain’). For the observations during which the gain drift was significant, the photon energy scale was determined using data processing routine sxspers in HEAsoft, which corrects the gain scale via an extrapolation of the relationship between the relative gain changes on the array and on the continuously illuminated calibration pixel from the Perseus observation to the later full-array calibration in the official data pipeline processing. Observations 1 and 2 in table 1 were affected by this gain drift; observations 3 and 4 were obtained under thermal equilibrium in the SXS dewar. A difference in gain between obs. 2, and the sum of obs. 3 and 4 (full FOV) of ~ 2 eV can still be seen (Eckart et al. 2017). It is most clearly seen around the Fe XXV Heα line complex in the official data pipeline processing (Angelini et al. 2016). Not surprisingly, obs. 1 has a much larger energy scale uncertainty (Porter et al. 2016). All pixels in the micro-calorimeter array are independent, and in principle each has its own energy scale, and energy scale variations.

In our spectral analysis of the central region in section 4 we have to take the contribution of non-thermal emission from the central AGN in the Perseus Cluster, NGC 1275, explicitly into account. Following the T paper, we applied the “sxsextend” task to register event energies above 16 keV, so that we can construct the spectrum up to ~ 20 keV. This is crucial to discriminate the AGN and cluster gas components spectrally, as the former dominates the spectrum in the extended energy band. This method is same as that in the “T” paper (Hitomi collaboration et al. 2017b). After having added the high energy events, and having applied the extra screenings, we adopted two extra gain corrections, similar to the procedures described in the “A” paper (Hitomi collaboration et al. 2017e), but used the different reference redshift of 0.017284 according to the “V” paper (Hitomi collaboration et al. 2017d). The detailed correction parameters were shown in the appendix in the “T” paper (Hitomi collaboration et al. 2017b). The first of these corrections is referred to as the “z-correction”, which adjusts the absolute energy scale of each pixel in each data set such that the redshift of the Fe XXV Heα resonance line is aligned to the redshift of NGC 1275 at $z = 0.017284$. The second is referred to as the “quadratic-curve-correction”, which applies a second-order correction, centered on Fe XXV Heα, to take out a small apparent offsets in the observed energies of the strongest emission lines across the 1.8–9 keV band. The intent of the “z-correction” is to allow the spectra from different pixels and different pointings to be added with minimal broadening of the lines from variation in the bulk velocity across the Perseus cluster within the SXS FOV. For the RS analysis we need to measure the ratios of line fluxes, thus we use the full available data set to reduce statistical uncertainties on measured line ratios, presuming variations across the data set are sufficiently small to warrant this approach. The uncertainties in the RS analysis associated with the energy scale corrections are discussed in section 4.

After applying all these corrections, the spectra were extracted with the Xselect package in HEAsoft for each region as shown in figure 2. We used only high primary grade event data to generate the spectra. In order to subtract the non-X-ray background (NXB), we employed the day and dark Earth
database using the “ssxnxbgen” Ftools task. We generated a redistribution matrix file (RMF) including the escape peak and electron loss continuum effects with the “whichrmf=x” option in the “ssxmrkf” task to represent the spectral shape in the lower and higher energy band. Because the spatial distributions of the ICM and AGN components are different, we also made two kinds of Ancillary Response Files (ARFs) for the spectrum of each region, A^ρ and A^C. The response A^C assumed point-like source emission from NGC 1275 centered on (RA, Dec.) = ($3^h19^m48^s1, +41^\circ30'42''$); while A^C is appropriate to the diffuse emission from the ICM, and is based on the X-ray image observed with Chandra in the 1.8–9.0 keV energy band, with a region of radius 10 arcseconds centered on the AGN replaced with the average surrounding brightness by the “aharfgen” task in HEAsoft. At the time operations ceased, a full in-orbit calibration of the spatial response and effective area had not yet been performed well. In this paper, we therefore use ARFs generated based on the ground calibration of SXT. A ‘fudge factor’ was derived from the ground measurements, to adjust the calibration to in-flight performance; however this fudge factor has large uncertainties as shown in Tsujimoto et al. (2017); Hitomi collaboration et al. (2017b), and the spectral fits with these “fudged” ARFs produced artificial residual features. We also examined an adjustment of “Crab ratio” using the Crab observation with Hitomi SXS (Tsujimoto et al. 2017), however this adjustment also introduced systematic residuals around the Au and Hg edges around 12 keV as shown in the “T” paper (Hitomi collaboration et al. 2017b). We therefore decided not to apply such corrections and use the standard ground calibration-based response. Finally, in all spectral fits, the spectra are grouped with 1 eV bin$^{-1}$, and 1 count per bin at least, allowing the C-statistics method to be used.

We extracted spectra from three regions, obs23_cen and obs23_out from obs. 2 and 3, and obs1_whole from obs. 1, with the region boundaries coinciding with detector pixel boundaries as shown in figure 1, in order to avoid having to redistribute photons between pixels. The pointing directions of obs. 2 and 3 are slightly different (offset by ~ 0.1 arcmin), however, this offset is much smaller than the size of the SXS point spread function. The obs23_cen, obs23_out, and obs1_whole are located on the central 9 pixels around the AGN, the outer 26 pixels of obs. 2 and 3, and the whole region of obs. 1, respectively, see figure 1. The observed spectra in the 6.1–7.9 keV band are shown in figure 3. We demonstrate that the Perseus Hitomi data show evidence for both of these effects.

3 Observational indications for resonant scattering

Theoretical studies of the RS effect in the Perseus Cluster predict that, in the absence of gas motions the degree of flux suppression in the resonance line of He-like Fe should vary with the projected distance from the cluster center: the line flux will be most suppressed in the innermost region, with the suppression decreasing with projected distance out to a radius ~ 100 kpc. At larger radii, the line flux is slightly increased relative to the value for the optically thin case (e.g. Churazov et al. 2004). Also, as the result of scattering, the wings of the line become slightly stronger (see e.g. Zhuravleva et al. 2013). Below we demonstrate that the Perseus Hitomi data show evidence for both of these effects.

3.1 Flux suppression in the Fe XXV Heα resonance line

We first consider the spectrum of the He-like FeXXV triplet from the innermost region (obs23_cen in figure 1), where the suppression of the resonance (w) line is expected to be the strongest. A single-temperature $bapec$ model for an optically thin plasma can approximately model the resonance line flux, but will then underestimate the fluxes of the neighboring forbidden (z) and intercombination (y) lines (see bottom left panel in figure 3 and supplementary material in Hitomi Collaboration et al. (2016)). Exclusion of the resonance line from the modeling provides a better fit for x, y and z and other weaker lines, but clearly overestimates the w flux (top left panel in figure 3). We then add a Gaussian component to the model with the energy of the w line and normalization that is allowed to be negative. The best-fitting result of this model is shown in the top right

Table 1. Hitomi Observations of the Perseus Cluster

Region ID	Seq. No.	Obs. date	(RA, Dec)*	Exp.†
obs. 1	100040010	2016-02-24T02:19:41	($3^h19^m29^s8, +41^\circ29'1''9$)	48.7
obs. 2	100040020	2016-02-25T02:14:13	($3^h19^m43^s6, +41^\circ31'9''8$)	97.4
obs. 3	100040030/100040040/100040050	2016-03-04T02:17:32	($3^h19^m43^s8, +41^\circ31'12''5$)	146.1
obs. 4	100040060	2016-03-06T22:56:20	($3^h19^m48^s2, +41^\circ30'44''1$)	45.8

* Average pointing direction of the Hitomi SXS, as recorded in the RA_NOM and DEC_NOM keywords of the event FITS files.

† After screening on rise time cut and for events that occur near in time to other events.
Fig. 2. The observed Hitomi spectra extracted from the obs23\textsubscript{cen}, obs23\textsubscript{out} and obs1\textsubscript{whole} regions shown in figure 1, and binned for display purposes. Top panels show the resultant spectral fits in 6.1–7.9 keV band, while the second, third and fourth rows show the energy range of the He\textsc{x} complex, and He\textsc{i}, and Ly\textsc{a} lines in 6.4–6.7, 7.5–7.8, and 6.7–7 keV, respectively. The spectra obtained with the Hitomi SXS are shown in black; light gray lines show the emission from the AGN. Orange lines indicate the "modified" \texttt{bpevpec} model, in which the strongest lines have been deleted. The Fe\textsc{xxv} He\textsc{a} forbidden and resonance, He\textsc{i} \textsc{b}, and Fe\textsc{xxvi} Ly\textsc{a} \textsc{i}, \textsc{ii} are shown in magenta, red, green, light green, blue and cyan lines, respectively. The lower panels show the fit residuals in units of ratio.

Panel in figure 3. The best-fitting normalization of the Gaussian component is indeed negative and the model provides a statistically better fit to the data than a pure \texttt{bpevpec} model5. The ratio of the best-fitting models shown in the top panels shows a sup-

5 For all three modeling steps we use the same gas temperature, which is taken from the best-fitting model to the data without the w line.
Fig. 3. Flux suppression in the strongest line of He-like Fe XXV (w) in the Perseus Cluster observed in the obs23_cen region. Black points show the Hitomi data; red lines in the corresponding panels show the best-fitting models. **Top left**: the spectrum is fitted with the *bapec* model, excluding the w line from the data; **top right**: the same spectrum is fitted with the *bapec* model and a Gaussian component centered at the energy of the w line, the normalization of the Gaussian model is allowed to be negative; **bottom left**: the same spectrum fitted with the *bapec* model. The comparison of the models from the top left (solid) and right (dashed) panels is shown in the **bottom right** panel. The suppression of the w line indicates the presence of the resonant scattering effect in the Perseus Cluster. See Section 3.1 for details.

Fig. 4. The same as the bottom right panel in figure 3, but for the spectra observed in obs23_out (left) and obs1_whole (right) regions. See Section 3.1 for details.
pression of the resonance line by a factor of \(\sim 1.28 \), indicating the presence of RS.

The same modeling procedure is applied to spectra from the regions at larger distances from the cluster center (obs23_out and obs1 whole, see figure 1). When fitting the obs23_out spectrum, the bapec-negative Gaussian model provides a statistically better fit than the pure bapec model. The \(w \) flux in the obs23_out region is suppressed by factor of \(\sim 1.28 \) (left panel in figure 4). In the most distant from the cluster center region, obs1 whole, the bapec-negative Gaussian model does not provide a statistically better fit of the data than a bapec model. The measured line suppression is small, less than 1.15 (right panel in figure 4). These simple experiments illustrate the possible presence of the RS effect in the Perseus core.

3.2 The broadening of the \(\text{Fe}_{226} \) resonance line

In addition to flux suppression in the resonance line, the RS broadens the wings of the line. Even though the effect is significantly smaller than the line suppression, we have checked for indications of line broadening in the \(w \) line compared to other lines in the triplet. We fit the observed data excluding the \(w \) line with a single-temperature bapec model, from which the \(w \) line has been removed. Freezing the best-fitting parameters of this model, we fit the whole triplet, with the \(w \) line restored, adding an additional Gaussian component with the central energy of the \(w \) line. Such modeling allows us to measure the broadening of the \(w \) line independently from the broadening of other lines in the triplet. Accounting for statistical uncertainties, the turbulent broadening of the \(w \) line varies between 171–183 km s\(^{-1}\), while the broadening of the \(x, y \) and \(z \) lines are smaller, 145–165 km s\(^{-1}\). A similar difference is observed in the obs23_out region. Namely, the \(w \) line turbulent broadening in this region is 159–167 km s\(^{-1}\), while in all other lines it is 136–150 km s\(^{-1}\).

4 Observed line ratios

We fitted the spectra with a combination of emission models representing the AGN and the ICM, each with its own response, in Xspec. The AGN is represented by a power-law with redshifted absorption, with additional (redshifted) Fe K\(_{\alpha} \), fluorescent emission lines; the ICM is modeled with a redshifted collisional ionization equilibrium plasma, with adjustable elemental abundances, and additional Gaussian emission lines if necessary. The two components share a common foreground neutral Galactic absorption. Formally, we have AGN model: \(T B_{\text{AGN}} \times (\text{pegpwrlwAGN} + \text{zgaussAGN}, \text{FeK}\alpha + \text{zgaussAGN}, \text{Fe K}\beta) \), and ICM model: \(T B_{\text{ICM}} \times (\text{bvvapcICM} + \text{zgaussFe lines}) \). The AGN parameters are fixed at the numbers in the NGC 1275 paper (Hitomi collaboration et al. 2017a). In this paper, we modify the bvvapc model, setting the emissivities of the strong Fe lines to zero.

Firstly, we derived the ICM temperature, Fe abundance, turbulent velocity, and normalizations from the spectral fits in 1.8–20.0 keV with a single temperature model for each region. In the broad band fit, to determine those parameters, we adopted the modified bvvapc model, from which the Fe XXV He\(\alpha \) resonance line is excluded, and the corresponding Gaussian model is added. The resultant parameters and C-statistics from the spectral fits for each region are shown in table 2. The “projected” temperature increases slightly with radius, while the Fe abundance drops by \(\sim 0.1 \) solar from the center to the obs1 whole region. The measured temperature and Fe abundance gradients agree with the results from the “T” and “Z” papers (Hitomi collaboration et al. 2017b, 2017c). As for the turbulent velocity, the derived values are almost constant with radius. These \(\sigma_v \) in the previous Hitomi paper (Hitomi Collaboration et al. 2016) and “V” paper (Hitomi collaboration et al. 2017d) are slightly different. We note that the data reduction, calibrations and plasma codes are more improved than the previous Hitomi paper.

And, the numbers shown in table 4 for PSF uncorrected in the “V” paper from their narrow band fits in 6.4–6.7 keV are slightly smaller than those from the broadband fits shown in table 2 in this paper. The difference comes from the broader line width of the Ly\(\alpha \) lines (see table 2 and the “V” paper).

Fixing the ICM temperature, Fe abundance, and \(\sigma_v \) at the values from the broad band fits, we exclude the Fe XXV He\(\alpha \) forbidden (\(z \) and resonance (\(w \)), the He\(\beta \) and the Fe XXVI Ly\(\alpha \) lines from the bvvapc model and include Gaussian line models instead with the central energies of these lines. The best-fitting normalizations of the Gaussian components give total fluxes of these lines. Here, the line widths of Ly\(\alpha_2 \) and He\(\beta_2 \) are linked to Ly\(\alpha_1 \) and He\(\beta_1 \) lines, respectively, and other parameters except for the redshift are varied in the spectral fits. This fitting model is very useful since bvvapc describes the weak satellite lines, while the added Gaussian lines allow us to measure the fluxes of the strongest emission lines in a model independent way, taking blending with weaker emission lines into account.

The observed spectra are well-described by the model, except around the 6.55 keV feature, as shown in figure 2. The resulting line ratios and widths (thermal and turbulent broadenings, \(\sigma_{v+\text{th}} \)) are summarized in table 2 and figure 5. The Ly\(\alpha_1 \) and Ly\(\alpha_2 \) lines are clearly resolved in obs23 cen and obs23 out regions, while the He\(\beta \) lines are not, due to their close central energies. Note that the emission lines are represented well by the corresponding Gaussian models, as confirmed by the study of possible non-Gaussianity in the “V” paper. The derived radial profile of the \(w/z \) ratio increases with the distance from the
center, while the \(\frac{w}{He\beta} \) ratio is almost the same everywhere. The measured \(w \) line widths in the obs23_cen and obs23_out regions are broader than the \(z \) ones at the \(\sim 2 \sigma \) level. The comparison of the measured line ratios and line broadening with the results of numerical simulations of the RS effect is discussed in section 5.

Systematic uncertainties, such as (a) the ICM modeling of a single or two temperature structure, (b) gain correction, (c) the point spread function (PSF) deblending, and (d) plasma codes (AtomDB version 3.0.8 or 3.0.9) should be considered in the spectral analysis. Estimates of their effects are examined below. As a result, these uncertainties almost do not affect our results and conclusions.

As for the ICM modeling, the Fe lines in 6–8 keV are well modeled with a single temperature model with the exception of the resonance (\(w \)) line shown in figure 2 and table 2. On the other hand, as described in the “T” paper, a two temperature (2T) model improves the spectral fits when AtomDB version is 3.0.9. The \(w/z \) ratios measured from the 1T and 2T models agree within the statistical error with either AtomDB version 3.0.8 or 3.0.9. In this paper, since we examined the spectral fits for the observations and simulations in the same manner, i.e., the same model formula, as described in section 5.3 and compare the resultant fit parameters for each other, the choice of the 1T or 2T models does not affect our conclusions, as long as the continuum spectra are well-represented by the models. Note that the gas temperature measured from the line ratios obtained from the 2T model in the “T” paper agree well with the deprojected temperature profile from the Chandra data.

We repeated the spectral analysis using gain-uncorrected Hitomi data to estimate the uncertainty. Figure 6 shows comparison plots of the resultant fits for the \(w/z \) and \(z/He\beta \) line ratios and line widths, \(\sigma_{v+th} \), of the \(w \) and \(z \) lines between the gain corrected and uncorrected data. The line ratios from both data sets are consistent within the statistical errors. At the same time, the width of the \(w \) line in obs23_cen decreases, as expected, by about 5% when the gain correction is applied. We did not correct the spectral fit for the PSF effects. The azimuth-averaged values in regions 1–4 for the PSF uncorrected numbers in the “V” paper which roughly correspond to the obs23 out region are almost consistent with our results within statistical errors. The PSF effect is accounted for in the simulations in this paper described in section 5. The residuals around 6.55 keV in the obs23 out region are likely associated with uncertainties in the plasma model for the Fe XXIV Li-like line (see also figure 8 in “Atomic” paper). These come from the underestimation of the Li-like lines in AtomDB version 3.0.8. The updated version 3.0.9 are corrected for the problem as shown in Appendix 1. This feature has negligible impact on our results for line ratios and widths, however, since the Li-like lines are separated from the \(w \) and \(z \) lines.

Table 2. Summary of the best-fit properties of temperatures, Fe abundance, turbulent velocity (\(\sigma_v \)), C-statistics, line ratios, and line widths (\(\sigma_{v+th} \)).

Region ID	\(kT^* \) (keV)	Fe* (solar)	\(\sigma_v \) (km s\(^{-1}\))	C-stat/d.o.f* (1.8–20 keV)	C-stat/d.o.f† (6.1–7.9 keV)
obs23_cen	3.92 ± 0.03	0.65 ± 0.01	155 ± 7	10609/11151	1793/1784
obs23_out	4.05 ± 0.01	0.65 ± 0.01	141 ± 5	14559/11744	1964/1784
obs1whole	5.06 ± 0.07	0.53 ± 0.02	159 ± 17	6333/6930	1283/1494

Region ID	\(w/z \)†	\(w/He\beta \)†	\(w/Lyα_1 \)†	\(w/Lyα_2 \)†	\(z/He\beta \)†	\(z/Lyα_1 \)†	\(z/Lyα_2 \)†
obs23_cen	2.45 ± 0.11	5.98 ± 0.57	9.79 ± 0.98	18.17 ± 2.76	2.45 ± 0.25	4.00 ± 0.42	7.42 ± 0.36
obs23_out	2.59 ± 0.08	6.23 ± 0.57	9.36 ± 0.57	15.41 ± 1.24	2.40 ± 0.23	3.61 ± 0.24	5.95 ± 0.20
obs1whole	3.27 ± 0.34	6.35 ± 0.95	6.87 ± 1.11	9.80 ± 1.96	1.94 ± 0.33	2.10 ± 0.38	3.00 ± 0.35

Region ID	\(w \)†	\(z \)†	\(Lyα_1 \)†	\(Heβ \)†
obs23_cen	4.49 ± 0.11	3.57 ± 0.21	5.29 ± 0.55	3.45 ± 0.50
obs23_out	4.20 ± 0.08	3.54 ± 0.15	3.46 ± 0.25	4.24 ± 0.42
obs1whole	4.43 ± 0.24	3.58 ± 0.50	6.09 ± 0.89	4.81 ± 0.80

* Fits in the broad 1.8–20.0 keV band with the AGN and modified bvvapec models, from which the resonance line is excluded and a Gaussian component is added instead. \(\sigma_v \) is a turbulent velocity in bvvapec model without the resonance line. The numbers in this table are slightly smaller than those in the “V” paper (Hitomi collaboration et al. 2017d), see section 4 for the details.
† Fits in the narrow, 6.1–7.9 keV, band with the AGN and modified bvvapec models, from which we exclude the He-\(\alpha \) resonance and forbidden, He-\(\beta \)1&2, and Ly-\(\alpha \)1&2 lines.
Fig. 5. (a)–(e): Comparisons of the observed and predicted ratios of the Fe Hα resonance (w), Heα forbidden (z), Heβ, and Lyα lines. Observations are shown as magenta crosses and the simulations with RS as black diamonds and the same without RS as gray diamonds for the assumption of the constant σ_v of 150 km s^{-1} (case 1). (f)–(g): Comparisons of the widths of the resonance (w) and forbidden (z) lines between observation (magenta crosses) and simulations with RS (black diamonds) and without RS (gray diamonds). (h): Comparisons of the derived turbulent velocities from the spectral fits between observation (magenta cross) in broad band fits and the simulations.

5 Radiative transfer simulations

The line suppression due to the RS effect is sensitive to the velocity of gas motions: the larger the velocity of gas motions the lower the probability of scattering and the closer the line ratios to those for an optically thin plasma. In order to interpret the observed line suppression and infer the velocity of gas motions, we performed radiative transfer Monte Carlo (MC) simulations of the RS in the Perseus Cluster. We followed two independent approaches: (i) using the Geant4 and HEAsim tools and assuming a velocity field consistent with the direct velocity measurements as presented in the “V” paper (Hitomi collaboration et al. 2017d), and (ii) using a proprietary code written specifically for MC simulations of radiative transfer in the cluster ICM (ICMMC). Both approaches are based on the emission models for an optically thin plasma taken from AtomDB version 3.0.8, and take into account projection effects (gas density, temperature, abundance of heavy elements) and the spatial response of the telescope. The latter is treated differently in both approaches. The results based on both simulations broadly agree. Details of the two approaches are discussed below.

5.1 Model of the Perseus Cluster

For the MC simulations, we adopt a spherically symmetric model of the Perseus Cluster. We used archival Chandra data to measure the profiles of gas density, temperature and abundance of heavy elements. Excluding point sources and the central AGN, projected spectra are obtained in radial annuli, centered on the central galaxy, NGC 1275. These are deprojected...
following the procedure described by Churazov et al. (2003). The spectra are fitted with an *apec* model in a broad energy band, 0.5–8.5 keV, accounting for Galactic foreground absorption by a column density of $N_H = 1.38 \times 10^{21}$ cm$^{-2}$, and treating the abundance of heavy elements as a free parameter, using the solar abundance table by Lodders & Palme (2009). The Chandra deprojected profile within ~ 150 kpc is shown in figure 7. There is a density drop in the innermost region (the first point from the center) likely associated with the bubbles of relativistic plasma that push up the X-ray gas. Due to this density drop and the presence of multi-temperature plasma, the deprojected temperature and the heavy element abundances are not determined reliably in this region. Therefore, we assume constant temperature and abundance profiles in the inner ~10 kpc region. The Chandra deprojected profile is then merged with the Suzaku deprojected data (Urban et al. 2014) at large radii, $r > 150$ kpc. As for the abundances in $r = 150–1000$ kpc, since the observed abundances (~ 0.3 solar) from Suzaku in Urban et al. (2014); Werner et al. (2013) are relatively smaller than those (~ 0.5 solar) from XMM in Matsushita et al. (2013), we adopted the averaged number of ~ 0.4 solar as the input parameter. Figure 7 shows the combined radial profiles.

5.2 Optical depth

Using the equations shown in Zhuravleva et al. (2013), the optical depth is calculated from the center of the cluster out to a radius corresponding to an angular size on the sky of $40' \sim 830$ kpc, corresponding to 2/3 times r_{500} (Urban et al. 2014). The left panel of figure 8 shows the optical depth for each line (see also table 3) for the case of zero σ_v calculated using the cluster model described in section 5.1. RS is expected to be important in the central regions of the Perseus Cluster, where the optical depth is larger than 1. The Fe XXV Heαw has the largest optical depth ~ 2.3, while the Fe XXV Heαz line is essentially optically thin and not affected by the RS.

The optical depth is inversely proportional to the Doppler line width, which depends on the thermal broadening and turbulent gas motions. Therefore, the stronger the turbulence, the smaller the optical depth (see figure 8, right panel). However, even if the gas is moving with a characteristic velocity as large as $\sim 150–200$ km s$^{-1}$, as measured directly through the line broadening, we still expect RS to affect the w line (the optical depth is ~ 1). All other lines considered in this work are effectively optically thin.

5.3 Monte Carlo simulations with Geant4

The RS simulation was performed with the main reaction processes shown in Zhuravleva et al. (2013), using the input Perseus model shown in figure 7. Assuming spherical symmetry, we calculated multiple scatterings of photons in the Perseus core; the Geant4 tool kit produces a list of simulated photons incident on the Hitomi SXS. In the Geant4 frame work, we
assume 400 spherical shells in a $r = 0 - 40'$ region, and scaled to be 1 kpc=1 cm to preserve the scattering probability under the low density environment in the ICM. The seed photons in the simulator are generated according to the thermal emissivity associated with our adopted spatial distributions of density, temperature, and abundance, and we assume the photons are emitted isotropically. Scattering probabilities are calculated using the mean free path of each photon in each shell, assuming thermally and turbulently broadened Fe line absorption, as well as Thomson scattering, including a proper energy transfer and scattering direction of the incident photons after RS in the cluster and ion velocity field, which are uniquely implemented in Geant4. The Fe line emissivity and oscillator strength are taken from AtomDB version 3.0.8. In the simulation, we include scattering by the set of the Fe XXIV, XXV, XXVI lines shown in table 3. Other ions were neglected since their optical depths are negligibly small. To run the simulation, we adopted an input spectral model of optically thin plasma generated with bapc. The emission model includes all emission lines, including the weak satellite lines.

We examined three assumptions for the velocity (σ_v) field based on the line-of-sight velocity dispersion shown in "V" paper: a uniform σ_v of 150 km s$^{-1}$ (case 1) as a reference for comparison with the simulations shown in Zhuravleva et al. (2013), a peak σ_v toward the AGN and a nearly flat field elsewhere (cases 2–4), and a case in which the σ_v rises outside of the field observed by Hitomi (case 5). The parameters for each simulation are listed in table 4. Figure 9 (left panel) shows the
Table 4. Assumed velocity field of the one-component velocity (σ_v) in our simulation with Geant4.

case ID	σ_v (km s$^{-1}$)					
	$r < 0.5'$	$0.5' < r < 1'$	$1' < r < 2'$	$2' < r < 5'$	$r > 5'$	Temp. model*
case 1	150	150	150	150	150	nominal
case 1a	150	150	150	150	150	nominal+10%
case 2	200	200	150	150	100	nominal
case 3	200	200	150	100	100	nominal
case 4	200	150	150	150	150	nominal
case 5	200	200	150	100	300	nominal

* Assumed “nominal” temperature model as shown in figure 7. We estimate the temperature uncertainties changing the temperature by +10% which is corresponding to the azimuthal dependence of the temperature profile from Chandra and XMM.

Fig. 9. Left: Photon lists generated by the Geant4 simulator assuming a uniform σ_v profile of 150 km s$^{-1}$ (case 1) for the inner, 0.5' radius, region in Perseus (top panel). Red and black lines correspond to simulations with and without RS, respectively. Right: mock spectra for the obs23_cen region with the HEAsim tool with the photon lists generated by the Geant4 simulator. Small panels show a zoom-in around the Fe XXV Heα complex. The suppression of the w line in the simulated spectra is consistent with the previous results by Zhuravleva et al. (2013).

After generating the projected photon lists with the Geant4 simulator, we processed them with the HEAsim software in Ftools to make mock event files for the Hitomi SXS FOV, taking into account the Hitomi responses. The HEAsim software calculates the redistribution of the input photons, including the Hitomi mirror and detector responses such as the effective area, the PSF, and the energy resolution. Here, we used the responses in the HEAsim tools and normalized the flux to the observed value, taking into account events out of the SXS FOV. We assumed a 1 Ms exposure time for each simulation. Black and red spectra in the right panel of figure 9 show the mock spectra for obs23_cen with and without RS, respectively, for the 150 km s$^{-1}$ uniform σ_v (case 1) model. One can clearly see the flux suppression in the w line when RS is taken into account. As shown in the bottom panels in figure 9, the resonance line shape are clearly distorted by the line broadening as well as the line suppression in the mock spectrum. Note that the mock spectra have finite numbers of photons since the mock spectra are normalized to a given, finite flux.

To estimate the potential impact of systematic uncertainties in the input model, we also performed simulations with the temperature and abundance profiles of the input model changed by +10% (case 1a), and \pm10%, respectively. Also, we explored the effects of the moving core within 1', with 150 km s$^{-1}$ in redshift relatively against the surrounding gas, as pointed out in “V” paper (Hitomi collaboration et al. 2017d).
5.4 Monte Carlo simulations with the ICMMC code

In order to interpret the observed resonance line suppression and infer velocities of gas motions, we also applied a different approach, based on Monte Carlo simulations of radiative transfer in hot gas described in Zhuravleva et al. (2010) (see also Sazonov et al. 2002; Churazov et al. 2004). Here, instead of simulating the whole spectrum and fitting it with plasma models to obtain line ratios, we performed calculations in specific lines. Such simulations directly provide fluxes in the considered lines for models with and without RS; their ratios, corrected for the PSF, are then compared with the observed values. This approach has been successfully applied to the analysis of RS and velocity measurements in massive elliptical galaxies and galaxy groups (Werner et al. 2009; de Plaa et al. 2012; Ogorzalek et al. 2017). In these previous works the detailed treatment of individual interactions in the simulations is described.

Since the Hitomi measurements of line broadening and variations of line centroids do not show strong radial velocity gradients in the Perseus Cluster, and the properties of the velocity field outside the inner ~ 100 kpc are unknown, we conservatively assume that the velocity of gas motions is approximately the same within the considered regions. The simulations are done for a grid of characteristic velocity amplitudes, the results of which are then compared with the observed line ratios (see section 6.2).

6 Comparisons of the observed line ratios and the simulations

6.1 GEANT4 simulations

We compared the spatial distribution of the observed line ratios with the simulations described in section 5.3. In order to compare the line ratios and widths, we fitted the simulated spectra with the same spectral model and responses for the ICM discussed in section 4, i.e. the “modified” bvw apex (bvw apex with the strongest lines deleted) plus Gaussian models. The mock spectra are well represented by this model. To understand the impact of limited photon statistics in the modeling, we divided the simulated event list into ten 100 ks parts, each of which had similar statistics in Fe XXV He α to the observed Hitomi data.

Figure 5 shows comparisons of the observed and predicted line ratios and widths, and σv, for case 1 (flat σv field), with and without RS. The observed ratios of the Fe XXV He α w/z are consistent with those from simulation with RS. The simulated ratios without RS, shown by light gray diamonds, are clearly far away from the observed ones in the inner regions. Figure 10 shows the comparisons for all models listed assuming a plausible velocity field based on the “V” paper (Hitomi collaboration et al. 2017d) in table 4. For all the regions, simulations of the w/z ratio for all the cases are broadly consistent with the observations as shown in figures 5 and 10. The observed widths of the w and z lines for the central region obs23 cen and the obs1 whole are well represented by the simulation with RS for cases 1, 4, and 5. The simulation for case 4 which is close to the line-of-sight velocity dispersion field in the “V” paper agrees well with the observed line ratios and widths. The simulated line widths with RS for case 2 look slightly broader than the observed one, while simulations with lower σv (< 100 km s⁻¹) in r > 2′, such as case 3, are poorly described in the outer regions. Consequently, our simulation assuming plausible velocity field based on the “V” paper is consistent with the observation, while the constant distribution and the relatively large σv of ~ 300 km s⁻¹ at large radius would not be rejected from our simulation. The simulations show that the predicted line ratios and widths are affected by the assumed velocity field rather than the RS effects. For the obs23 out region which includes the north-west ‘ghost’ bubble as shown in the “V” paper, the line widths from simulations are broader than observations due to the azimuthal dependence.

As for the w/He β, w/Ly α1, and w/Ly α2 lines, the simulated ratios with the RS effects also broadly agree with the observed ones within the statistical errors, except for w/Ly α1 in the obs23 out and obs1 whole regions. The Ly α line ratios are sensitive to the azimuthal dependence and hotter component of projected temperature. On the other hand, the observed z/He β ratios, whose lines have low optical depth than the other lines as shown in figure 8, are also consistent with the simulated ratios.

The temperatures derived from the simulated spectra are lower than the observed ones for all the regions. It should be noted that the w/z line ratio does not change much even if the temperature and σv+th change. In fact, changing the temperature in simulations by +10% for case 1a, which corresponds to the azimuthal scattering, does not change the results within the observed statistical errors. The derived σv for cases 1, 4 and 5 agree well with the observations in the innermost region, while those in the obs23 out region are lower than the simulated ones. We also estimated the uncertainties by changing the Fe abundance by ±10%. The resultant line ratios do not change by more than ~ 3%.

In this simulation, we assumed spherical symmetry in the cluster core. If bulk motion existed along the line of sight in the cluster core, the line widths should be broader along line of sight. The “V” paper (Hitomi collaboration et al. 2017d) actually shows a large scale bulk velocity gradient of ~ 100 km s⁻¹. As shown in section 4, we adopted the gain correction, which gave ~ 5% broader line widths than the uncorrected data, but the “V” paper did not. In order to estimate the uncertainties, we performed simulations with the assumption of the core moving within 0.5’ radius with 150 km s⁻¹ relative to the surrounding gas based on case 1. The resultant w/z line ratios in obs23 cen did not change within the statistical errors for case 1. Therefore, we confirmed that the RS effect is not very sensitive to bulk mo-
tion in the Perseus cluster core as was earlier shown as well by Zhuravleva et al. (2011). On the other hand, the derived w and z line widths are broader by 2 and 1% than those from case 1, and also 4 and 3% wider than the observation. These discrepancies are smaller than the difference between the gain-corrected and uncorrected data as shown in figure 6.

6.2 ICMMC simulations

Using the thermodynamic model of the Perseus Cluster shown in figure 7 and the APEC (based on AtomDB version 3.0.8) plasma model, we calculated the line ratios (w/z, $w/(\text{He} \beta_1 + \text{He} \beta_2)$, $w/\text{Ly} \alpha_1$ and $w/\text{Ly} \alpha_2$) as a function of projected distance from the cluster center, assuming different levels of isotropic turbulence and accounting for RS. The results of simulations are then combined with the 2D PSF maps of Hitomi provided by the “V” paper (Hitomi collaboration et al. 2017d). Results for the w/z ratio are shown in the top left panel in figure 11. The uncertainties on the line ratios are a result of series of simulations, in which we vary the assumed temperature, density, and abundance profiles within the uncertainties for the cluster model shown in figure 7. These flux ratios are integrated over the observed regions (obs23cen, obs23out, and obs1whole, see figure 1) and compared with the observed line ratios. The rest of panels in figure 11 show the w/z ratio spatially integrated within the observed regions as a function of the one-component (1D) velocity. As expected, the larger the velocity, the closer the line ratio to the optically thin case. The observed line ratios are plotted in red. The overlap between the observed and theoretical line ratios allows us to constrain the velocity of gas motions. Note that the RS effect is the smallest in the obs1whole region. Also, the statistical uncertainty on the measured w/z ratio is the largest in this region. Therefore, a longer Hitomi-like observation will be required for a positive velocity measurement using the RS effect for the region obs1whole.
For each line ratio, the results of the simulations (blue regions in figure 11) are then combined with the measured error distributions in the observed line ratios (red regions), and probability distributions for turbulent velocities are obtained, as shown in figure 12 (see Ogorzalek et al. 2017, for the method). Assuming that the maximum Mach number, $M_{\text{max}} = \sqrt{3}V_{\text{los}}/c_s$, of gas motions is unity, 1σ confidence intervals on the velocity measurements are obtained (blue regions in figure 12). The velocity distributions obtained from the w/z line ratio are peaked, and the confidence intervals are relatively insensitive to the choice of M_{max} in both obs23$_{\text{cen}}$ and obs23$_{\text{out}}$ regions. The measured turbulent velocities are 150^{+80}_{-56} km s$^{-1}$ and 162^{+78}_{-50} km s$^{-1}$ in these regions, respectively, consistent with the direct velocity measurements through line broadening (Hitomi Collaboration et al. 2016). In contrast the velocity distributions inferred from the $w/(We\beta_1 + He\beta_2)$ (hereafter, $w/He\beta$) line ratio is quite uncertain and depends on the assumed maximal Mach number. Longer, Hitomi-like observations will improve the results for this ratio. The ratios $w/Ly\alpha_1$ and $w/Ly\alpha_2$ provide velocities 220^{+260}_{-113} km s$^{-1}$ and 144^{+127}_{-50} km s$^{-1}$, respectively, in the obs23$_{\text{cen}}$ region. In the outer region, $w/Ly\alpha_2$ gives velocity 97^{+193}_{-97} km s$^{-1}$, consistent with the direct velocity measurements, while the $w/Ly\alpha_1$ ratio gives 2 σ lower limit 178 km s$^{-1}$. The latter result is very sensitive to the choice of M_{max}. Note that the $Ly\alpha$ lines of He-like Fe have the peaks of their emissivity times iononic fraction at gas temperatures ~ 10 keV, while the same quantity for the w line of He-like Fe peaks around ~ 5 keV. Since our thermodynamic model for Perseus is calculated using the 0.5 – 8.5 keV band spectra, the contribution of high-temperature gas could be underestimated in our fiducial cluster model, which would affect the emissivity of the $Ly\alpha$ lines. Therefore, the $w/Ly\alpha$ line ratios are the least reliable of the ratios considered here. The bottom panel in figure 12 shows the velocity distributions measured in obs1$_{\text{whole}}$ region, for which the constraints are weak (see also figure 11).

Our interpretation of the observed line suppressions due to RS relies on the assumption of spherical symmetry and the choice of the reference emissivity model for an optically thin plasma. Below, we check how these assumptions affect the result as well as the effect of the Hitomi PSF.

Hitomi PSF. For correct interpretation of the observed line ratios, it is important to take the Hitomi PSF into account. The sensitivity of the results to the PSF is shown in the top panels in figures 13 and 14, where the PSF-corrected (default) and PSF-uncorrected results are shown in gray and red, respectively. The peaks of the distributions for the w/z ratio change by a factor of ~ 2 and by $\sim 20\%$ in the central and outer regions, correspondingly. Results for the $w/He\beta$ ratio are almost unaffected by the PSF in contrast to $w/Ly\alpha$ ratios. The PSF correction always brings the peak velocity closer to the directly-measured value (Hitomi collaboration et al. 2017d).

Model for the optically thin plasma. Our simulations are based on the APEC model for an optically thin plasma. However, the line emissivities are slightly different in the SPEX plasma model (Kaastra et al. 1996), as discussed in the “A” paper (Hitomi collaboration et al. 2017c). Though such differences have little affect on the overall parameters of the best-fitting spectral models, they might be significant for more subtle plasma diagnostics such as the RS. We have therefore implemented the SPEX v3.03.00 model in our simulations and redid the analysis. Following the “A” paper, the ionization balance is set to Urdampilleta et al. (2017) instead of the default one by Bryans et al. (2009). The Urdampilleta et al. (2017) calculations provide inner-subshells ionization contributions to the spectrum, which are compatible with the SPEX code.

Results based on both plasma models are consistent within the uncertainties as shown in figures 13 and 14 (middle panels). The measured w/z line ratio velocity shifts from 150^{+80}_{-56} km/s (162^{+78}_{-50} km/s) with APEC to 125^{+55}_{-48} km/s (119^{+46}_{-56} km/s) with SPEX in obs23$_{\text{cen}}$ (obs23$_{\text{out}}$), see figure 13.

Spherical symmetry. Our Perseus model is calculated assuming spherical symmetry, which will not be correct in detail given the complex structure of the cluster core. To test this assumption, we re-measured the thermodynamic properties of the cluster from the Chandra data, limiting the analysis to a sector that contains Hitomi pointings and repeated the analysis described above for this model. The results for the w/z ratio are essentially unaffected, as shown in figure 13, bottom panels. The peak of the velocity distribution inferred from the $w/Ly\alpha_2$ line ratio decreases by a factor of ~ 2 in the outer region, although the results remain consistent within uncertainties (figure 14, bottom right panel). In all other cases the peak velocity changes by even smaller factor, typically by less than 10%.

Improvements in the results from the w/z line ratio will require refinements of the details of the plasma models for these lines. SPEX plasma model predicts a stronger RS effect in the cluster core than APEC. The $w/He\beta$ results, in contrast, are limited by statistical uncertainties and can easily be improved with longer, Hitomi-like observations. Further improvements for the $w/Ly\alpha_1$ and $w/Ly\alpha_2$ line ratios will require a more detailed model of the Perseus Cluster, especially the contribution of the gas component with $T > 5$ keV.

7 Uncertainties in the atomic excitation rates

In this section, systematic uncertainties in the observed line ratios arising from uncertainties in calculated atomic parameters are discussed. The focus will be on parameters that most directly affect the manifestation of RS, i.e., the optical depth of the resonance line, w, and the intensity ratio w/z.

The optical depth at line center is proportional to a line’s
absorption oscillator strength (Zhuravleva et al. 2013), which depends on the upper level’s radiative rate, and in turn, is directly related to the natural line width. Hence, as an estimate of the uncertainty of the oscillator strength, we compare the natural line width, ΔE_{Nat}^w, of line w in APEC (AtomDB 3.0.8) and SPEX 3.03 (which are based on different atomic structure calculations) to the measured line width from laboratory measurements by Rudolph et al. (2013). The agreement between the measured values and those found in SPEX and APEC is good: $\Delta E_{\text{SPEX}}^w = 0.301$ eV, APEC: $\Delta E_{\text{APEC}}^w = 0.308$ eV, $\Delta E_{\text{Meas}}^w = 0.311 \pm 0.01$ eV (Rudolph et al. 2013). Based on this comparison, the systematic error in the oscillator strength is estimated to be $< 5\%$.

The error associated with the optically thin intensity ratio w/z is more complex. It includes errors in the total collisional excitation cross sections, errors associated with unresolved satellites, and contributions from charge exchange recombination. The dominant excitation mechanism for populating the upper state of line w in a thermal plasma is electron impact excitation (EIE) from the ground state. The total effective EIE cross sections have been measured (Wong et al. 1995; Hell 2017) at a few single electron impact energies using an electron beam ion trap. These measurements do not include contributions from dielectronic satellites. While it is not possible to compare the results of the measurements directly to the output of SPEX and APEC (because neither model provides cross sections as a function of electron impact energy, but rather produces electron temperature dependent, unitless collision strengths) it is possible to compare the measurement results to the EIE cross sections calculated using the same theoretical method used to produce the collision strengths in APEC and SPEX, i.e., the methods of Aggarwal & Keenan (2013) and of Zhang & Sampson (1990), respectively. This comparison shows good agreement, i.e., well within the $\sim 10\%$ error of the measurement (Hell 2017). Given this agreement, and the agreement among calculations, the error on the total electron impact exci-
Fig. 12. Velocity probability distributions from the convolution of the observed line ratios and those predicted from numerical simulations of radiative transfer in Perseus combined with the Hitomi PSF. The three considered regions are shown in the top left, top right and bottom panels. Confidence intervals, measured under the assumption that the maximum Mach number is unity, are shown in blue. See the legend for different line ratios.

The forbidden line z has a significantly more complicated excitation structure. As detailed in the “Atomic” paper (Hitomi collaboration et al. 2017e), the upper level of line z is populated by a variety of mechanisms, including direct excitation from the ground state, excitation from cascades, and from innershell ionization of Li-like Fe XXIV. As a result, the uncertainty in the emissivity of line z is coupled to detailed population kinetics, in addition to the plasma model. The excitation cross section has been measured (Wong et al. 1995) using an electron beam ion trap and the agreement with theory is good. However, this is insufficient to estimate the total error in the line strength for a 4 keV thermal plasma.

To estimate the errors associated with w/z for a 4 keV thermal, optically thin plasma directly, the values predicted by AtomDB and SPEX are compared to results of laboratory measurement from plasmas with Maxwellian electron temperatures at coronal densities. Here, the calculations are compared to measurement using the Maxwellian simulator mode (Savin et al. 2000, 2008) employed at the LLNL EBIT-I electron beam ion trap facility. Using this mode, the spectrum of the Heα complex of Fe XXV including satellites has been measured (Gu et al. 2012). Caveats of the measurement include the fact that the average charge balance produced using the Maxwellian simulator is underionized (and thus the charge balance is not representative of a true Maxwellian) and the fact that line emission produced in an EBIT is, in general, polarized, hence, when comparing to line ratios measured form celestial sources, polarization effects must be taken into account. The amount of polarization depends on the electron impact energy. Hence, the line emission measured using EBIT-I’s Maxwellian mode, where the electron beam energy is swept across a large range, may have a range of polarization values. The calculated polarization of line w ranges from 0.6 to 0.4 between the threshold for excitation and an electron impact energy of 24 keV. The polarization of line z is ~ -0.08 near threshold and -0.22 above threshold for population by cascades (Hakel et al. 2007). The agreement with theory is good although the uncertainty in the measurements remains relatively large, i.e., on the order of 20–30% (Beiersdorfer et al. 1996; Hakel et al. 2007).

Here, polarization effects are taken into account by setting the polarization of line w to $P = 0.5$ and of line z to $P = -0.22$. No energy dependence is included because the correction factor to the w/z line ratio across the entire range of polarization only varies by $\sim 5\%$, and because the true polarization of lines z and w is not known due to depolarization effects (Gu et al. 1999). The difference between the polarization corrected ratio and uncorrected ratio is 11\%, i.e., the polarization-corrected w/z ratio is 2.92 ± 0.2 and the uncorrected ratio is 3.25 ± 0.07. The errors in these ratios include the uncertainty in the polarization, the spectrometer response, and statistics.
The measured ratio is also systematically lower than the ratio for a true Maxwellian because the large amount of Li-like FeXXIV present in the EBIT results in a larger contribution to z from innershell ionization. The measured ratio has to be corrected based on a comparison of the ionization balance in the EBIT in its Maxwellian simulator mode with the true thermal ionization balance in a 4 keV plasma, and the fraction of the emissivity in z due to innershell ionization. However, according to calculations, for a 4 keV plasma, the contribution from inner shell ionization is only a $\sim 10\%$ enhancement of line z in the EBIT case. While the measured value at EBIT is therefore $w/z = 2.92 \pm 0.2$, the corrected ratio may be as high as $\approx 1.1 \times 2.92 = 3.21 \pm 0.2$. This value is fully consistent with the ratio at $kT = 4$ keV in APEC of $w/z = 2.98$ and SPEX v3.03 of $w/z = 3.11$ (see figure 15). It should be noted that the FeXXV He\textalpha complex, as well as other He-like systems, have been measured in tokamak plasmas where no polarization effects are present (Bitter et al. 2008); however, those measurements are at lower temperatures. Comparison of the lower temperature data with the predictions from SPEX and APEC would be useful.

In a 4 keV plasma, unresolved dielectronic recombination (DR) satellites contribute to the flux of line w and line z, and uncertainties in their contributions to w and z should be estimated. In the case of line w, the emission from high-n DR ($n \geq 3$) satellites blends with line w. These satellite intensities have been measured in detail by Beiersdorfer et al. (1992a) and also by Watanabe et al. (2001). The agreement between theory and experiment is good (Watanabe et al. 2001). We can get a rough estimate of the uncertainty in the intensity of w due to uncertainties in the intensities of the unresolved satellites as follows. In the “Atomic” paper, calculated satellite intensities are listed in Table 11, where calculations from three separate plasma models are compared, assuming collisional equilibrium at $kT = 4$ keV. Four $n = 3$ satellites have a summed intensity of 0.065 of the intensity of w. The dispersion between the models has a standard deviation of about 10% of this relative intensity. Likewise, three $n = 4$ satellites have a summed intensity relative to w of 0.018, with a standard deviation of about 10% of this value. The dispersion between the models compares well to the intensity measurement error of about 10% quoted by Watanabe et al. (2001). From these data we estimate that the uncertainty
Fig. 14. Same as Figure 13 for the rest of considered line ratios. Results in the obs23 cen (obs23 out) are shown on the top (bottom) panels.
in the intensity of w due to uncertainties in the unresolved satellites is of order 1–2% (allowing for the presence of weaker $n > 4$ satellites).

In the case of line z, the most significant contribution is from the DR channel of the $1s^22p^2 2D_{5/2} \rightarrow 1s^22p^2 2P_{3/2}$ transition, known as line j (Gabriel 1972), which, although it is ~ 8 eV away from line z, is still only marginally separated in the Perseus spectrum. In addition, there is also emission from the $1s^22p^2 2D_{3/2} \rightarrow 1s^22p^2 2P_{3/2}$, known as line l (Gabriel 1972), which is only about 1.5 eV above z, but its strength is only about 1/10 of the strength of line j. The strengths of both line j and line l have been measured (Beiersdorfer et al. 1992b), with an estimated accuracy of about $\lesssim 20\%$. The agreement with theoretical calculations is better than 15%. In collisional equilibrium at $kT = 4$ keV, the intensities of j and l relative to z are approximately 0.33 and 0.025, respectively. The uncertainty in the intensities of j and l, if completely unresolved from z, therefore translates into an uncertainty of about 6.5% in the estimated intensity of z; in practice, the dominant contributor, j, is partially resolved from z in our data, so the uncertainty due to the contribution of the satellites is significantly smaller than 6.5%. If we assign an uncertainty of 3% to z due to the uncertainty in the satellite contribution, and 2% to w, the ratio w/z has an uncertainty of about 4% due to possible errors in the satellite contribution.

Finally, our model for the emissivity of Fe XXV does not contain excitation by charge exchange of neutral H with Fe XXVI. The core region of the cluster does contain neutral H in close contact with the hot ICM, as is evident from the filamentary Hα emission from the core (Salome et al. 2011). Charge exchange contributes to the intensity of both the w and the z lines, but it contributes more strongly to z than to w, and the effect therefore would tend to reduce the ratio w/z from its pure CIE value. In the “Atomic” paper, an explicit model for the charge exchange emission is fitted along with a CIE model. Based on the best-fit parameters for the charge exchange (which are constrained mainly by the charge-exchange predicted intensities of higher-order series members), we estimate that the process could contribute 8% of the observed flux in z, and 2% of the observed flux in w. That would lower the ratio w/z by 6% from its value in CIE in the central region of the cluster, which is significantly less than the suppression we observe. Moreover, charge exchange is not likely to contribute much to the emission we observe in the 1–2 arcmin range, where w/z is also significantly suppressed with respect to its value in CIE.

To summarize, when we compare the measured w/z ratios to the ratios predicted by the best-fitting CIE model without radiative transfer, we see a significant suppression in the innermost regions of the cluster. In the innermost region, the measured ratio is $w/z = 2.43$, while the predicted ratio is 2.98 (AtomDB 3.0.8) or 3.11 (SPEX 3.03), and the ratio measured at EBIT, corrected for systematic errors, is at least 2.92 ± 0.2. Errors in the model fluxes of unresolved satellite lines to w and z cannot account for more than a few percent of this suppression. Charge exchange excitation could account for a suppression of 6%, but only in the innermost ($r < 1$ arcmin) bin. As is expected if the suppression is due to resonance scattering of w photons, w/z tends to the ‘optically thin’ CIE value in the outer regions of the field, and this would not be the case if the optically thin, CIE only, value we use were simply incorrect.

Comparing the results of the measured w/z ratio from obs23 given in table 2 with the values predicted for an optically thin plasma, and taking into account known uncertainties in the predicted values, there is very good evidence for RS in line w.

8 Conclusions

We have showed evidence for the resonance scattering in the core of the Perseus Cluster observed with Hitomi. Namely, we observe: i) the characteristic suppression of the flux of the resonance line in the Fe XXV Heα complex seen towards the center of the cluster; ii) the expected decrease of this suppression with distance from the cluster center; and iii) an additional broadening of the resonance line compared to other lines from the same ion. Fitting the spectra with a combination of an emission model for optically thin plasma supplemented with individual Gaussian emission lines, we measure the ratios of the resonance line flux to the fluxes in the forbidden line in the Fe XXV Heα complex, two Fe XXV Heβ lines, and the Fe XXVI Lyα lines. To interpret the observed results, we perform radiative transfer Monte Carlo simulations, assuming a spherically symmetric model for the cluster and plausible velocity fields based on direct velocity measurements (Hitomi collaboration et al. 2017d) including an isotropic field. Comparing the observed line ratios and the simulated values, we infer velocities of gas motions that are consistent with direct velocity measurements from line...
broadening. We investigate systematic uncertainties in the analysis, including the assumption of spherical symmetry, the modeling of the ICM properties, the uncertainties in line emissivities, and the contribution of charge exchange excitation.

Future, non-dispersive high resolution spectroscopy such as the Hitomi SXS observations will allow us to explore the effect of RS in even more detail, which, in combination with the direct velocity measurements, will provide us with a unique tool to probe the anisotropy and spatial scales of gas motions. It is important to take the RS effect into account when measuring plasma properties from high resolution X-ray spectra of galaxy clusters. The effect can be even stronger in lower-energy lines in cooler, gas-rich systems, such as galaxy groups and large elliptical galaxies.

Hitomi’s lifetime was unfortunately short. However, the micro-calorimeter at the heart of the SXS has already provided new insights with its high energy resolution. Future X-ray missions with micro-calorimeters, XARM and Athena, will be indispensable in the investigation of cluster physics.

Author contributions

K. Sato is the sub leader of the Perseus RS team, led the data analysis, numerical simulations and prepared the manuscript. He also contributed to the SXS hardware development, integration tests, launch campaign, in-orbit operation, and calibration. I. Zhuravleva is the sub leader of the RS team and led the data analysis, numerical simulations and prepared the manuscript. F. Paerels is the leader of the RS team, led the study of uncertainties in the atomic excitation rate and prepared the manuscript. M. Furukawa, M. Ohno, K. Matsushita, and Y. Fukazawa performed numerical simulations with Geant4 and participated in discussions. M. Ohno, Y. Fukazawa, and A. Furuzawa contributed the Hitomi hardware and in-orbit operation. A. Gorgoalek performed numerical simulations with the ICMMC code and studied the uncertainties of the plasma codes. G. Brown, A. Foster, L. Gu, and M. Leutenegger studied the uncertainties of the atomic excitation rates and codes. M. Eckart, C. Kilbourne, and M. Leutenegger contributed to the SXS hardware design, development, integration tests, launch campaign, and calibration. S. Nakashima, T. Sasaki and H. Yamaguchi helped with the modeling of the ICM structure in data analysis. S. Allen, C. Kilbourne, C. Pinto, M. Tsujimoto, M. Ozaki, and A. Simionescu helped to improve the manuscript.

Acknowledgments

We thank the support from the JSPS Core-to-Core Program. We acknowledge all the JAXA members who have contributed to the ASTRO-H (Hitomi) project. All U.S. members gratefully acknowledge support through the NASA Science Mission Directorate. SLAC members acknowledge support via DoE contract to SLAC National Accelerator Laboratory DE-AC03-76SF00515. Part of this work was performed under the auspices of the U.S. DoE by LLNL under Contract DE-AC52-07NA27344. Support from the European Space Agency is gratefully acknowledged. French members acknowledge support from CNES, the Centre National d’Etudes Spatiales. SRON is supported by NWO, the Netherlands Organization for Scientific Research. Swiss team acknowledges support of the Swiss Secretariat for Education, Research and Innovation (SERI). The Canadian Space Agency is acknowledged for the support of Canadian members. We acknowledge support from JSPS/MEXT KAKENHI grant numbers 15H02737, 15H00773, 15H00795, 15H00290, 15H03639, 15H05383, 15K05107, 15K05494, 15K05295, 16K05296, 16K05300, 16K13787, 16K17672, 16K17673, 21652922, 23340055, 23340071, 23540280, 24105007, 24244014, 24540232, 25105516, 25109004, 25247028, 25287042, 25400236, 25800119, 26109506, 26220703, 26400228, 26610047, 26800102, JP15H02070, JP15H03641, JP15H03642, JP15H06896, JP16H03983, JP16K05296, JP16K05309, JP16K17676, and JP16K05296. The following NASA grants are acknowledged: NNX15AC76G, NNX15AE16G, NNX15AK71G, NNX15AU54G, NNX15AW94G, and NNG15PP48P to Eureka Scientific. H. Akamatsu acknowledges support of NWO via Veni grant. C. Done acknowledges STFC funding under grant ST/L000755X/1. A. Fabian and C. Pinto acknowledge ERC Advanced Grant 340442. P. Gandhi acknowledges JAXA International Top Young Fellowship and UK Science and Technology Funding Council (STFC) grant ST/J003697/2. Y. Ichihohe, K. Nobukawa, and H. Seta are supported by the Research Fellow of JSPS for Young Scientists. N. Kawai is supported by the Grant-in-Aid for Scientific Research on Innovative Areas “New Developments in Astrophysics Through Multi-Messenger Observations of Gravitational Wave Sources”. S. Kitamoto is partially supported by the MEXT Supported Program for the Strategic Research Foundation at Private Universities, 2014-2018. B. McNamara and S. Safi-Harb acknowledge support from NSERC. T. Dotani, T. Takahashi, T. Tamagawa, M. Tsujimoto and Y. Uchiyama acknowledge support from the Grant-in-Aid for Scientific Research on Innovative Areas “Nuclear Matter in Neutron Stars Investigated by Experiments and Astronomical Observations”. N. Werner is supported by the Lund University LP2016-11 grant from the Hungarian Academy of Sciences. D. Wilkins is supported by NASA through Einstein Fellowship grant number PF6-170160, awarded by the Chandra X-ray Center, operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060.

We thank contributions by many companies, including in particular, NEC, Mitsubishi Heavy Industries, Sumitomo Heavy Industries, and Japan Aviation Electronics Industry. Finally, we acknowledge strong support from the following engineers. JAXA/IAS: Chris Baluta, Nobutaka Bando, Atsushi Harayama, Kazuyuki Hirose, Kosei Ishimura, Naoko Iwata, Taro Kawano, Shigee Kawasaki, Kenji Minesugi, Chikara Natsukari, Hiroyuki Ogawa, Mina Ogawa, Masayuki Ota, Tsuyoshi Okazaki, Shin-ichiro Sakai, Yasuko Shibano, Maki Shida, Takano Shima, Atsushi Wada, Takahiro Yamada; JAXA/TKSC: Atsushi Okamoto, Yoichi Sato, Keisuke Shinozaki, Hiroyuki Sugita; Chubu U: Yoshiharu Namba; Ehime U: Keiji Ogi; Kochi U of Technology: Tatsuro Kosaka; Miyazaki U: Yusuke Nishioka; Nagoya U: Housei Nagano; NASA/GSFC: Thomas Bialas, Kevin Boyle, Edgar Canavan, Michael DiPirro, Mark Kimball, Candace Masters, Daniel McGuinness, Tatsuro Kosaka; Miyazaki U: Yusuke Nishioka; Nagoya U: Housei Nagano; NASA/GSFC: Thomas Bialas, Kevin Boyle, Edgar Canavan, Michael DiPirro, Mark Kimball, Candace Masters, Daniel McGuinness, Michael Fabian, Theodore Muench, James Pontius, Peter Shirron, Cynthia Simmons, Gary Sniderman, Tomomi Watanabe; ADNET Systems: Michael Winthoeft, Kristin Rutkowski, Robert S. Hill, Joseph Eggen; Wyle Information Systems: Andrew Sargent, Michael Dutka; Noqs Aerospace Ltd: John Doty; Stanford UK/PAC: Makoto Asai, Kirk Gilmore; ESA (Netherlands): Chris Jewell; SRON: Daniel Haas, Martin Fiericks, Philippe Laubert, Paul Lowes; U of Geneva: Philippe Azzarello; ESA (Netherlands): Chris Jewell; SRON: Daniel Haas, Martin Fiericks, Philippe Laubert, Paul Lowes; U of Geneva: Philippe Azzarello; CEA: Alex Kowalev, Franco Moro.

References

Aggarwal, K. M., & Keenan, F. P. 2013, Phys. Scr., 87, 055302
and forbidden lines, these are also negligible for our simulations and conclusions.
Fig. 16. Same as figure 2 but with AtomDB version 3.0.9.
Table 5. Same as table 2 but with AtomDB version 3.0.9

Region ID	kT^*	Fe$^+$	σ_v^+	C-stat/d.o.f*	C-stat/d.o.fT
	keV	solar	km sec$^{-1}$	1.8–20 keV	6.1–7.9 keV
obs23_cen	3.85 ± 0.03	0.73 ± 0.01	161 ± 7	10600/11151	1797/1784
obs23_out	3.98 ± 0.01	0.73 ± 0.01	147 ± 5	14518/11744	1930/1784
obs1_whole	4.99 ± 0.09	0.57 ± 0.03	163 ± 18	6324/6930	1277/1494

Region ID	w/z^T	$w/\text{He}\beta^T$	$w/L\gamma_1$	$w/L\gamma_2$	$z/\text{He}\beta^T$	$z/L\gamma_1$	$z/L\gamma_2$
obs23_cen	2.34 ± 0.10	5.80 ± 0.55	9.62 ± 0.95	17.74 ± 2.04	2.48 ± 0.25	4.10 ± 0.42	7.57 ± 0.30
obs23_out	2.50 ± 0.08	6.06 ± 0.56	9.26 ± 0.57	15.16 ± 1.22	2.43 ± 0.23	3.70 ± 0.24	6.07 ± 0.21
obs1_whole	3.18 ± 0.33	6.21 ± 0.92	6.86 ± 1.12	9.74 ± 1.95	1.95 ± 0.33	2.16 ± 0.39	3.07 ± 0.36

* Fits in the broad band of 1.8–20.0 keV with the AGN and modified bvvapec models which exclude only the resonance line and add the line with the Gaussian model. σ_v is a turbulent velocity in bvvapec model without the resonance line. The numbers in this table are slightly smaller than those in V paper (Hitomi collaboration et al. 2017d) which are from the difference of the energy band in the spectral fits.

T Fits in the narrow band of 6.1–7.9 keV with the AGN and modified bvvapec models which exclude the He-α resonance and forbidden, He-β1&2, and Ly-α1&2 lines.

![Graph](image-url)

Fig. 17. Same as figure 8 but with AtomDB version 3.0.9.
Table 6. Same as table 3 with AtomDB 3.0.9.

Ion	Energy (eV)	Lower Level*	Upper Level*	Oscillator strength	Optical depth $\tau_{\sigma_v = 0 \text{ km sec}^{-1}}$	Comments*
Fe XXIV	6616.73	$1s^22s_{1/2}^2S_{1/2}$	$1s_1/22s_{1/2}2p_{1/2}^2P_{3/2}$	1.63×10^{-2}	1.45×10^{-2}	u
Fe XXV	6636.58	$1s^21S_0$	$1s2s^3S_1$	3.03×10^{-7}	6.75×10^{-3}	Heα, z
Fe XXIV	6653.30	$1s^22s_{1/2}^2S_{1/2}$	$1s_1/22s_{1/2}2p_{1/2}^2P_{3/2}$	1.57×10^{-1}	8.04×10^{-2}	r
Fe XXV	6661.88	$1s^22s_{1/2}^2S_{1/2}$	$1s_1/22s_{1/2}2p_{3/2}^2P_{3/2}$	4.89×10^{-1}	2.39×10^{-1}	q
Fe XXV	6677.55	$1s^21S_0$	$1s_1/22p_{1/2}^3P_{1}$	5.79×10^{-2}	1.92×10^{-1}	Heα, y
Fe XXV	6676.59	$1s^22s_{1/2}^2S_{1/2}$	$1s_1/22s_{1/2}2p_{3/2}^2P_{1/2}$	9.62×10^{-2}	5.18×10^{-2}	t
Fe XXV	6682.30	$1s^21S_0$	$1s_1/22p_{3/2}^3P_{2}$	1.70×10^{-5}	7.26×10^{-3}	Heα, x
Fe XXV	6700.40	$1s^21S_0$	$1s_1/22p_{3/2}^3P_{1}$	7.19×10^{-1}	2.27	Heα, w
Fe XXVI	6951.86	$1s$	$2p_{1/2}$	1.36×10^{-1}	8.81×10^{-2}	Lyα_2
Fe XXVI	6973.07	$1s$	$2p_{3/2}$	2.73×10^{-1}	1.69×10^{-1}	Lyα_1
Fe XXV	7872.01	$1s^21S_0$	$1s3p^3P_{1}$	1.18×10^{-2}	3.87×10^{-2}	Heβ_2, intercomb.
Fe XXV	7881.52	$1s^21S_0$	$1s3p^1P_{1}$	1.37×10^{-1}	3.73×10^{-1}	Heβ_1, resonance

* Letter designations for the transitions as per Gabriel (1972)