LIMIT SHAPES FOR RANDOM SQUARE YOUNG TABLEAUX
AND PLANE PARTITIONS

BORIS PITTEL
Department of Mathematics
Ohio State University
Columbus, Ohio 43210
email: bgp@math.ohio-state.edu

Dan Romik
Department of Mathematics
The Weizmann Institute of Science
Rehovot 76100, Israel
email: romik@wisdom.weizmann.ac.il

Abstract. Our main result is a limit shape theorem for the two-dimensional surface defined by a uniform random $n \times n$ square Young tableau. The analysis leads to a calculus of variations minimization problem that resembles the minimization problems studied by Logan-Shepp, Vershik-Kerov, and Cohn-Larsen-Propp. Our solution involves methods from the theory of singular integral equations, and sheds light on the somewhat mysterious derivations in these works. An extension to rectangular diagrams, using the same ideas but involving some nontrivial computations, is also given.

We give several applications of the main result. First, we show that the location of a particular entry in the tableau is in the limit governed by a semicircle distribution.

Next, we derive a result on the length of the longest increasing subsequence in segments of a minimal Erdős-Szekeres permutation, namely a permutation of the numbers $1, 2, \ldots, n^2$ whose longest monotone subsequence is of length n (and hence minimal by the Erdős-Szekeres theorem).

Finally, we prove a limit shape theorem for the surface defined by a random plane partition of a very large integer over a large square (and more generally rectangular) diagram.

2000 Mathematics Subject Classifications: Primary 60C05; Secondary 05E10, 60F10.

1Supported in part by the NSF Grant DMS-0104104.
1 Introduction

1.1 Random square Young tableaux

In this paper, we study the large-scale asymptotic behavior of uniform random Young tableaux chosen from the set of tableaux of square shape. Recall that a \textit{Young diagram} is a graphical representation of a partition $\lambda : \lambda(1) \geq \lambda(2) \geq \ldots \geq \lambda(k)$ of $n = \sum \lambda_i$ as an array of \textit{cells}, where row i has λ_i cells. For a Young diagram λ (we will often identify a partition with its Young diagram), a \textit{Young tableau} of shape λ is a filling of the cells of λ with the numbers $1, 2, \ldots, n$ such that the numbers along every row and column are increasing.

A square Young tableau is a Young tableau whose shape is an $n \times n$ square Young diagram. The number of such tableaux is known by the hook formula of Frame-Thrall-Robinson (see (5) below) to be

$$\frac{(n^2)!}{[1 \cdot (2n-1)][2 \cdot (2n-2)]^2[3 \cdot (2n-3)]^3 \ldots [(n-1)(n+1)]^{n-1} n^n}.$$

A square tableau $T = (t_{i,j})_{i,j=1}^n$ can be depicted geometrically as a three-dimensional stack of cubes over the two-dimensional square $[0,n] \times [0,n]$, where $t_{i,j}$ cubes are stacked over the square $[i-1,i] \times [j-1,j] \times \{0\}$. Alternatively, the function $(i,j) \rightarrow t_{i,j}$ can be thought of as the graph of the (non-continuous) surface of the upper envelope of this stack. By rescaling the $n \times n$ square to a square of unit sides, and rescaling the heights of the columns of cubes so that they are all between 0 and 1, one may consider the family of square tableaux as $n \to \infty$. This raises the natural question, whether the shape of the stack for a \textit{random} $n \times n$ square tableau exhibits some asymptotic behavior as $n \to \infty$. The answer is given by the following theorem, and is illustrated in Figure 1.

\textbf{Theorem 1.} Let \mathcal{T}_n be the set of $n \times n$ square Young tableaux, and let \mathbb{P}_n be the uniform probability measure on \mathcal{T}_n. Then for the function $L : [0,1] \times [0,1] \to [0,1]$ defined below, we have:

(i) \textit{Uniform convergence to the limit shape:} for all $\epsilon > 0$,

$$\mathbb{P}_n \left(T \in \mathcal{T}_n : \max_{1 \leq i,j \leq n} \left| \frac{1}{n^2} t_{i,j} - L \left(\frac{i}{n}, \frac{j}{n} \right) \right| > \epsilon \right) \xrightarrow{n \to \infty} 0.$$

(ii) \textit{Rate of convergence in the interior of the square:} for all $\epsilon > 0$,

$$\mathbb{P}_n \left(T \in \mathcal{T}_n : \max_{1 \leq i,j \leq n} \left| \frac{1}{n^2} t_{i,j} - L \left(\frac{i}{n}, \frac{j}{n} \right) \right| > \frac{1}{n^{(1-\epsilon)/2}} \right) \xrightarrow{n \to \infty} 0.$$

3
Figure 1: A simulated 50×50 random tableau and the limit surface $L(x,y)$
Definition of L. We call the function L the limit surface of square Young tableaux. It is defined by the implicit equation
\[
 x + y = \frac{2}{\pi} (x - y) \tan^{-1} \left(\frac{(1 - 2L(x,y))(x - y)}{\sqrt{4L(x,y)(1 - L(x,y))} - (x - y)^2} \right) \\
+ \frac{2}{\pi} \tan^{-1} \left(\frac{\sqrt{4L(x,y)(1 - L(x,y))} - (x - y)^2}{1 - 2L(x,y)} \right)
\]
for $0 \leq y \leq 1 - x \leq 1$, together with the reflection property

$\displaystyle L(x,y) = 1 - L(1 - x, 1 - y)$

(where \tan^{-1} is the arctangent function). It is more natural to describe L in terms of its level curves $\{L(x,y) = \alpha\}$. First, introduce the rotated coordinate system

$u = \frac{x - y}{\sqrt{2}}, \quad v = \frac{x + y}{\sqrt{2}}. \tag{1}$

In the $u - v$ plane, the square $[0, 1] \times [0, 1]$ transforms into the rotated square $\diamondsuit = \{(u,v) \in \mathbb{R}^2 : |u| \leq \sqrt{2}/2, |v| \leq \sqrt{2} - |u|\}$.

Now define the one-parameter family of functions $(g_\alpha)_{0 \leq \alpha \leq 1}$ given by

$g_\alpha : [-\sqrt{2\alpha(1-\alpha)}, \sqrt{2\alpha(1-\alpha)}] \to \mathbb{R},
\]

$g_\alpha(u) = \begin{cases}
2\pi u \tan^{-1} \left(\frac{(1 - 2\alpha)u}{\sqrt{2\alpha(1-\alpha) - u^2}} \right) + \frac{2\pi}{\sqrt{2}} \tan^{-1} \left(\frac{\sqrt{2(2\alpha(1-\alpha) - u^2)}}{1 - 2\alpha} \right) & 0 \leq \alpha < \frac{1}{2}, \\
-\frac{2\pi}{\sqrt{2}} u \tan^{-1} \left(\frac{(1 - 2\alpha)u}{\sqrt{2\alpha(1-\alpha) - u^2}} \right) - \frac{2\pi}{\sqrt{2}} \tan^{-1} \left(\frac{\sqrt{2(2\alpha(1-\alpha) - u^2)}}{1 - 2\alpha} \right) + \sqrt{2} & \frac{1}{2} < \alpha \leq 1,
\end{cases} \tag{2}$

Then in the rotated coordinate system, the surface $\bar{L}(u,v) = L(x(u,v),y(u,v))$ can be described as the surface whose level curves $\{\bar{L}(u,v) = \alpha\}$ are exactly the curves $\{v = g_\alpha(u)\}$. That is,

$\{(u,v) \in \diamondsuit : \bar{L}(u,v) = \alpha\} = \{(u,v) \in \diamondsuit : |u| \leq \sqrt{2\alpha(1-\alpha)}, v = g_\alpha(u)\}.$

This is illustrated in Figure 2. It is straightforward to check that the curves $v = g_\alpha(u)$ do not intersect, and so define a surface 2.

2See equation (66) in section 3.4.
Figure 2: The curves $v = g_\alpha(u)$ for $\alpha = 0.05, 0.1, 0.15, 0.2, \ldots, 0.5$

Note some special values of $L(x, y)$ which can be computed explicitly:

\[
L(t, 0) = L(0, t) = \frac{1 - \sqrt{1 - t^2}}{2},
\]

\[
L(t, 1) = L(1, t) = \frac{1 + \sqrt{2t - t^2}}{2},
\]

\[
L(t, t) = \frac{1 - \cos(\pi t)}{2}.
\]

The approach in proving Theorem 1 is the variational approach. Namely, we identify the large-deviation rate functional of the level curves of the random surface defined by the tableau, then analyze the functional and find its minimizers. This will give Theorem 1(ii), with the rate of convergence following from classical norm estimates for some integral operators. The treatment of the boundary of the square, required for Theorem 1(i), turns out to be more delicate, and will require special arguments.

1.2 Location of particular entries

Theorem 1 identifies the approximate value of the entry of a typical square tableau in a given location in the square. A dual outlook is to ask where a given value k will appear in the square tableau, since all the values between 1 and n^2 appear exactly once. These questions are almost equivalent. Indeed, if k is approximately $\alpha \cdot n^2$, then Theorem 1 predicts that with high probability the entry k will appear in the vicinity of the level curve $\{L(x, y) = \alpha\}$ (the fact that this actually follows from Theorem 1 is a simple consequence of the monotonicity property of the tableau along rows and columns). However, one may
ask a more detailed question about the limiting distribution of the location of the entry
k on the level curve. It turns out that its u-coordinate has approximately the semicircle
distribution. This is made precise in the following theorem.

Theorem 2. For a tableau \(T \in \mathcal{T}_n \) and \(1 \leq k \leq n^2 \), denote by \((i(T, k), j(T, k))\) the location of the entry \(k \) in \(T \), and denote \(X(T, k) = i(T, k)/n, \ Y(T, k) = j(T, k)/n \). Let \(0 < \alpha < 1 \), let \(k_n \) be a sequence of integers such that \(k_n/n^2 \xrightarrow{n \to \infty} \alpha \), and for each \(n \) let \(T_n \) be a uniform random tableau in \(\mathcal{T}_n \). Then as \(n \to \infty \), the random vector \((X(T_n, k_n), Y(T_n, k_n))\) converges in distribution to the random vector

\[
(X_{\alpha}, Y_{\alpha}) := \left(\frac{V_{\alpha} + U_{\alpha}}{2}, \frac{V_{\alpha} - U_{\alpha}}{2} \right),
\]

where \(U_{\alpha} \) is a random variable with density function

\[
f_{U_{\alpha}}(u) = \frac{\sqrt{2\alpha(1-\alpha) - u^2}}{\pi \alpha (1-\alpha)} 1_{[-\sqrt{2\alpha(1-\alpha)}, \sqrt{2\alpha(1-\alpha)}]}(u) \tag{3}
\]

and \(V_{\alpha} = g_{\alpha}(U_{\alpha}) \).

Theorem 2 is one of several aspects of our work which shows a deep connection to
the work of Logan-Shepp and Vershik-Kerov on the limit shape of Plancherel-random
partitions - see section 8 for discussion.

1.3 Minimal Erdős-Szekeres permutations

The famous Erdős-Szekeres theorem states that a permutation of \(1, 2, \ldots, n^2 \) must have
either an increasing subsequence of length \(n \) or a decreasing subsequence of length \(n \). This
can be proved using the pigeon-hole principle, but also follows from the RSK correspon-
dence using the observation that a Young diagram of area \(n^2 \) must have either width or
height at least \(n \).

For the width and height of a Young diagram of area \(n^2 \) to be *exactly* \(n \), the diagram
must be a square. From the RSK correspondence it thus follows that to each permutation
of \(1, 2, \ldots, n^2 \) whose longest increasing subsequence and longest decreasing subsequence
have length exactly \(n \), there correspond a pair of square \(n \times n \) Young tableaux. Such a
permutation has the minimal possible length of a longest *monotone* subsequence, and it
seems appropriate to term such permutations *minimal Erdős-Szekeres permutations* (we
are not aware of any previous references to these permutations, aside from a brief mention
in [19], exercise 5.1.4.9).

As an application of our limit shape result, we will prove the following result on the
length of the longest increasing subsequence when just an initial segment of a random
minimal Erdős-Szekeres permutation is read.
Theorem 3. For each n, let π_n be a uniform random minimal Erdős-Szekeres permutation of $1, 2, \ldots, n^2$. For $1 \leq k \leq n^2$, let $l_{n,k}$ be the length of the longest increasing subsequence in the sequence $\pi_n(1), \pi_n(2), \ldots, \pi_n(k)$. Denote $\alpha = k/n^2$, and $\alpha_0 = n^{-2/3} + \epsilon$. Then for any $\epsilon > 0$, and $\omega(n) \to \infty$ however slowly,

$$\max_{\alpha_0 \leq k/n^2 \leq 1/2} \mathbb{P}(|l_{n,k} - 2\sqrt{\alpha(1 - \alpha)n}| > \alpha_0^{1/2} \omega(n)n) \overset{n \to \infty}{\longrightarrow} 0.$$

Thus the random fluctuations of $l_{n,k}$ around $2\sqrt{\alpha(1 - \alpha)n}$ are not likely to be of order substantially larger than $n^{2/3}$.

1.4 A limit surface for random square plane partitions

Another probability model which was studied in the context of limit shapes, is that of random plane partitions. If λ is a Young diagram, a plane partition of n of shape λ is an array of positive integers $(p_{i,j})$ indexed by the cells of λ, that sum to n and which are weakly decreasing along rows and columns, i.e., satisfy

$$p_{i,j} \geq p_{i,j+1}, \quad p_{i,j} \geq p_{i+1,j}.$$

Cerf and Kenyon [7] proved a limit shape result for random unrestricted plane partitions of an integer n. Cohn, Larsen and Propp [8] proved a limit shape result for random plane partitions whose three-dimensional graph is bounded inside a large box of given relative proportions.

We apply Theorem 1 to prove a limit shape result for random plane partitions of m defined over an $n \times n$ square Young diagram, when m is much greater than n^6. This can be related to square Young tableaux by the observation that when a plane partition does not contain repeated entries (which in the asymptotic regime described above happens with high probability), the order structure on the entries of the plane partition is a Young tableau. The precise result is the following.

Theorem 4. For integers $n, m > 0$, let $\mathcal{P}_{n,m}$ be the set of plane partitions of m of $n \times n$ square shape, and let $\mathbb{P}_{n,m}$ be the uniform probability measure on $\mathcal{P}_{n,m}$. If $\pi = (p_{i,j})_{i,j=1}^n$ is an element of $\mathcal{P}_{n,m}$, let its rescaled surface graph be the function $\tilde{S}_\pi : [0, 1] \times [0, 1] \to [0, \infty)$ defined by

$$\tilde{S}_\pi(x, y) = \frac{n^2}{m} p_{[nx]+1, [ny]+1}.$$

Suppose m and n are sequences of integers that tend to infinity in such a way that $m/n^6 \to \infty$. Then for all $\epsilon > 0$, $x, y \in [0, 1)$ we have

$$\mathbb{P}_{n,m}(\pi \in \mathcal{P}_{n,m} : |\tilde{S}_\pi(x, y) - M(x, y)| > \epsilon) \overset{n \to \infty}{\longrightarrow} 0.$$

8
where \(M : [0, 1] \times [0, 1] \to [0, \infty) \) is given by
\[
M(x, y) = -\log(L(x, y)).
\]

Theorem 4 may be related to a limiting case \(\gamma \to \infty \) in the limit shape result of Cohn-Larsen-Propp \[8\]. We have not attempted to check this.

1.5 Random rectangular Young tableaux and plane partitions

The methods which we will use to prove Theorems 1, 2, and 4 work equally well for rectangular Young tableaux and plane partitions, in the limit when the size of the rectangle grows and its relative proportions tend to a limiting value \(\theta > 0 \). For each possible value \(\theta \) of the ratio between the sides of the rectangle, there is a limiting surface \(L_\theta \) for random rectangular Young tableaux, and a limiting surface \(M_\theta \) for random rectangular plane partitions. Analogously to the square tableaux, the rectangular \(n_1 \times n_2 \) tableaux can be viewed as the result of applying the RSK algorithm to a permutation of \(\{1, \ldots, n_1n_2\} \) with the property that the lengths of the longest increasing and the longest decreasing subsequences are exactly equal \(n_1 \) and \(n_2 \) (by the Erdős-Szekeres theorem, the two lengths cannot be simultaneously below \(n_1 \) and \(n_2 \), respectively). The proofs, which we include at the end of the paper, require some nontrivial modifications, but the final results are unexpectedly as elegant as for the square case.

Let \(\theta > 0 \). We may assume that \(\theta \leq 1 \), otherwise exchange the two sides of the rectangle. Define \(L_\theta : [0, 1] \times [0, \theta] \to [0, 1] \), the limit surface of rectangular tableaux with side ratio \(\theta \), as follows. For each \(0 < \alpha < 1 \), the \(\alpha \)-level curve \(\{(x, y) : L_\theta(x, y) = \alpha\} \) is given in rotated \(u - v \) coordinates by
\[
\{(u, h_{\theta,\alpha}(u)) : -\beta_1 \leq u \leq \beta_2\},
\]
where
\[\beta = \sqrt{2\theta(1 - \alpha)}, \]
\[\beta_1 = \beta - \alpha(1 - \theta)\sqrt{2}/2, \quad \beta_2 = \beta + \alpha(1 - \theta)\sqrt{2}/2, \]
\[h_{\theta,\alpha}(u) = \theta\sqrt{2}/2 \pm (\beta_1 - \theta\sqrt{2}/2) + \frac{2\beta}{\pi} \left[\pm (-\xi - \gamma_1) \tan^{-1} \sqrt{1 - \xi} \right] \]
\[\pm \left(\frac{1}{2} \left(\sin^{-1} \xi + \frac{\pi}{2} \right) \pm \frac{\pi}{2} (\gamma_1 - 1) \right), \quad 0 < \alpha \leq \frac{1}{2}, \]
\[\pm = \left\{ \begin{array}{ll}
+ & 0 < \alpha \leq \theta/(1 + \theta), \\
- & \theta/(1 + \theta) < \alpha \leq 1/2,
\end{array} \right. \]
\[\xi = \frac{u - \alpha(1 - \theta)\sqrt{2}/2}{\beta}, \quad u \in [-\beta_1, \beta_2], \]
\[\gamma_1 = \frac{\alpha + \theta(1 - \alpha)}{\sqrt{2}\beta}, \quad \gamma_2 = \frac{\theta\alpha + 1 - \alpha}{\sqrt{2}\beta}, \]
\[h_{\theta,\alpha}(u) = (1 + \theta)\sqrt{2}/2 - h_{\theta,1-\alpha}((1 - \theta)\sqrt{2}/2 - u), \quad \frac{1}{2} < \alpha < 1, \]

see Figure 3. Set
\[M_\theta(x, y) = -\log(L_\theta(x, y)). \]

Theorem 5. For integers \(n, m > 0 \), let \(\mathcal{T}_{n,m} \) be the set of tableaux whose shape is an \(n \times m \) rectangular diagram, and let \(\mathbb{P}_{n,m} \) be the uniform probability measure on \(\mathbb{P}_{n,m} \). If \(T = (t_{i,j})_{i,j} \in \mathcal{T}_{n,m} \), define the rescaled tableau surface of \(T \) as the function \(\tilde{S}_T : [0, 1) \times [0, m/n] \to [0, 1] \) given by
\[\tilde{S}_T(x, y) = \frac{1}{nm} t_{\lfloor nx \rfloor + 1, \lfloor ny \rfloor + 1}. \]
Let \(0 < \theta \leq 1 \). If \(m_n \) is a sequence of integers such that \(m_n/n \to \theta \) as \(n \to \infty \), then for all \(\epsilon > 0 \), \(x \in [0, 1), y \in [0, \theta) \),
\[\mathbb{P}_{n,m_n}(T \in \mathcal{T}_{n,m_n} : |\tilde{S}_T(x, y) - L_\theta(x, y)| > \epsilon) \xrightarrow{n \to \infty} 0. \]

Theorem 6. For each \(\theta > 0 \), \(M_\theta \) is the limit surface of uniform random plane partitions of \(m_n \) over a rectangular diagram of sides \(n \) and \(k_n \), provided \(k_n/n \to \theta \) and \(m_n/n^6 \to \infty \) as \(n \to \infty \). (The precise statement is by analogy with Theorems 1, 4, and 5.)
Figure 3: The curves $h_{\theta, \alpha}$ for $\theta = 0.5$, $\alpha = k/9$, $k = 1, 2, \ldots, 8$.

1.6 Organization of the paper

The remainder of the paper is organized as follows: In the next section, we present the variational approach to the limit surface of random square Young tableaux, based on the hook formula of Frame-Thrall-Robinson. The level curves of L appear as minimizers of a certain functional. This leads to a proof of Theorem 1 in the interior of the square, except for the explicit identification of L. Section 3 is dedicated to the derivation of the explicit formula for the minimizer. Unlike the analogous results of Logan-Shepp, Vershik-Kerov and Cohn-Larsen-Propp, we will show that there is no need to guess the minimizer, by giving a technique for systematically deriving it using an inversion formula for Hilbert transforms on a finite interval. This may prove useful in similar problems.

In section 4, we complete the proof of Theorem 1, treating the more delicate case of the boundary of the square, and prove Theorem 3. In section 5, we discuss the hook walk of Greene-Nijenhuis-Wilf and the concept of the co-transition measure of a Young diagram. Using the explicit formulas for the co-transition measure derived in [30], we compute the co-transition measure of the level curves g_{α}, proving Theorem 2. In section 6, we prove Theorem 4. In section 7 we give the computations necessary for settling the rectangular case. In section 8, we discuss the connections of our results to the theory of
Plancherel-random partitions, and some open problems.

2 A variational problem for random square tableaux

2.1 A large-deviation principle

One may consider a tableau $T \in \mathcal{T}_n$ as a path in the Young graph of all Young diagrams, starting with the empty diagram, and leading up to the $n \times n$ square diagram, where each step is of adding one box to the diagram. Identify T with this sequence $\lambda^0_T \subset \lambda^1_T \subset \ldots \subset \lambda^n_T = \square_n$ of diagrams. (λ^k_T is simply the sub-diagram of the square comprised of those boxes where the value of the entry of T is $\leq k$.) Theorem 1 is then roughly equivalent, in a sense that will be made precise later, to the statement that for each $1 \leq k \leq n^2 - 1$, the rescaled shape of λ^k_T for a random $T \in \mathcal{T}_n$ resembles the sub-level set

$\{(x, y) \in [0, 1]^2 : L(x, y) \leq k/n^2\}$

of L, with probability $1 - o(1)$ as $n \to \infty$. It is this approach that leads to the large-deviation principle. Namely, we can estimate the probability that the sub-diagram λ^k_T has a given shape:

Lemma 1. For $T \in \mathcal{T}_n$, denote as before $\lambda^0_T \subset \ldots \subset \lambda^n_T$ the path in the Young graph defined by T, and for each $0 \leq k \leq n^2$, let $\lambda^k_T : \lambda^k_T(1) \geq \lambda^k_T(2) \geq \ldots \geq \lambda^k_T(n)$ be the lengths of the columns of λ^k_T (some of them may be 0). For any Young diagram $\lambda : \lambda(1) \geq \lambda(2) \geq \ldots \geq \lambda(n)$ whose graph lies within the $n \times n$ square, define the function $f_\lambda : [0, 1] \to [0, 1]$ by

$f_\lambda(x) = \frac{1}{n} \lambda(\lceil nx \rceil)$. \hspace{1cm} (4)

(Note that this depends implicitly on n.) Let $0 \leq k \leq n^2$, and let $\alpha = k/n^2$. Then for any given diagram $\lambda_0 \subseteq \square_n$ with area k, we have

$P_n (T \in \mathcal{T}_n : \lambda^k_T = \lambda_0) = \exp \left(- (1 + o(1)) n^2 (I(f_{\lambda_0}) + H(\alpha) + C) \right)$ \hspace{1cm} (5)
as $n \to \infty$, where

\[
C = \frac{3}{2} - 2 \log 2, \\
H(\alpha) = -\alpha \log(\alpha) - (1 - \alpha) \log(1 - \alpha), \\
I(g) = \int_0^1 \int_0^1 \log |g(x) - y + g^{-1}(y) - x|dy dx, \\
g^{-1}(y) = \inf\{x \in [0, 1] : g(x) \leq y\}.
\]

The $o(1)$ is uniform over all λ_0 and all $0 \leq k \leq n^2$.

Proof. For a Young diagram $\lambda : \lambda(1) \geq \lambda(2) \geq \ldots \geq \lambda(l)$ of area m, denote by $d(\lambda)$ the number of Young tableaux of shape λ (also known as the *dimension* of λ, as it is known to be equal to the dimension of a certain irreducible representation corresponding to λ of the symmetric group of order m). Recall the *hook formula* of Frame-Thrall-Robinson [11], which says that $d(\lambda)$ is given by

\[
d(\lambda) = \frac{m!}{\prod_{(i,j) \in \lambda} h_{i,j}}, \tag{6}
\]

where the product is over all boxes (i,j) in the diagram, and $h_{i,j}$ is the *hook number* of a box, given by

\[
h_{i,j} = \lambda(i) - j + \lambda'(j) - i + 1 \\
= 1 + \text{number of boxes either to the right of, or below } (i,j)
\]

(and where λ' is the conjugate partition to λ.) Then we have 3

\[
\mathbb{P}_{n} \left(T \in T_n : \lambda_{T}^k = \lambda_0 \right) = \frac{d(\lambda_0)d(\square_n \setminus \lambda_0)}{d(\square_n)}, \tag{7}
\]

where $d(\square_n \setminus \lambda_0)$ means the number of fillings of the numbers $1, \ldots, n^2 - k$ in the cells of the skew-Young diagram $\square_n \setminus \lambda_0$ that are monotonically *decreasing* along rows and columns. This is because $\square_n \setminus \lambda_0$ can be thought of as an ordinary diagram, when viewed from the opposite corner of the square. The number of square tableaux whose k-th subtableau has shape λ_0 is simply the number of tableaux of shape λ_0, times the number of fillings of the numbers $k+1, k+2, \ldots, n^2$ in the cells of $\square_n \setminus \lambda_0$ that are monotonically increasing along rows and columns – and these are of course isomorphic to tableaux of shape $\square_n \setminus \lambda_0$, by replacing each entry i with $n^2 + 1 - i$.

3Note to the reader: this is probably the most important formula in the paper!
A change of variables transforms this (check the definition of \(f \)). Note that

\[h \leq \text{get} \]

the first of these equations. Write which on summing and exponentiating would give the lemma. Let us prove, for example, the first of these equations. Write

\[
\begin{align*}
b &= \int_0^1 \int_0^{f_{\lambda_0}(x)} \log \left(f_{\lambda_0}(x) - y + f_{\lambda_0}^{-1}(y) - x \right) dy \, dx + \frac{k}{n^2} \log n + o(1), \\
c &= \int_0^1 \int_{f_{\lambda_0}(x)}^1 \log \left(y - f_{\lambda_0}(x) + x - f_{\lambda_0}^{-1}(y) \right) dy \, dx + \frac{n^2 - k}{n^2} \log n + o(1), \\
d &= \int_0^1 \int_0^1 \log(2 - x - y) dy \, dx + \log n + o(1) = C + \log n + o(1),
\end{align*}
\]

which on summing and exponentiating would give the lemma. Let us prove, for example, the first of these equations. Write

\[
\begin{align*}
b &= \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^{\lambda(i)} \log(\lambda(i) - j + \lambda'(j) - i + 1) \\
&= \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^{\lambda(i)} \log \left(\frac{\lambda(i) - j + \lambda'(j) - i + 1}{n} \right) + \frac{k}{n^2} \log n.
\end{align*}
\]

Fix \(1 \leq i \leq n \) and \(1 \leq j \leq \lambda(i) \). Denote \(h = (\lambda(i) - j + \lambda'(j) - i + 1)/n \). Approximate \(n^{-2} \log h \) in the above sum by the double integral

\[
Q := \int_{(i-1)/n}^{i/n} \int_{(j-1)/n}^{j/n} \log \left(f_{\lambda_0}(x) - y + f_{\lambda_0}^{-1}(y) - x \right) dy \, dx.
\]

A change of variables transforms this (check the definition of \(f_{\lambda_0} \)) into

\[
Q = \int_{-1/2n}^{1/2n} \int_{-1/2n}^{1/2n} \log(x + y + h) dx \, dy.
\]

Note that \(h \) may take the values \(1/n, 2/n, \ldots, (2n-1)/n \). If \(h = 1/n \), then integrating we get

\[
Q = -\frac{\log n}{n^2} + n^{-2} \int_0^1 \int_0^1 \log(u + v) du \, dv = \frac{\log h}{n^2} + O(n^{-2}).
\]
If \(h \geq 2/n \), by the integral mean value theorem, we have for some \(\eta \in [-1, 1] \):

\[
Q = \frac{\log(h + \eta n^{-1})}{n^2} = \frac{\log h}{n^2} + O((n^3 h^{-1})).
\]

Clearly then the last estimate holds for \(h = 1/n \) as well. The sum of the remainders over all \(1 \leq i \leq n, 1 \leq j \leq \lambda(i) \) is of order

\[
n^{-2} \sum_{(i,j) \in \lambda} \frac{1}{h_{i,j}} \leq n^{-2} \sum_{m=1}^{2n-1} \frac{a(m)}{m},
\]

where

\[
a(m) := \#\{(i, j) \in \lambda_0 : h_{i,j} = m\}.
\]

Clearly \(a(m) \leq n \), since each row \(i \) of \(\lambda_0 \) contains at most one cell \((i, j)\) with \(h_{i,j} = m \). This gives that the sum of the remainders is of order

\[
n^{-2} \sum_{m=1}^{2n-1} \frac{n}{m} = O\left(\frac{\log n}{n}\right),
\]

which is indeed \(o(1) \).

2.2 Two formulations of the variational problem

Lemma 1 says, roughly, that the exponential order of the probability that a random square tableau \(T \) has a given \(k \)-subtableau shape, where \(k \) is approximately \(\alpha \cdot n^2 \), is given by the value of the functional \(I \) on the boundary \(g \) of the shape, plus some terms depending only on \(\alpha \). Following the well-known methodology of large deviation theory, the natural next step is to identify the global minimum of \(I \) over the appropriate class of functions, or in other words to find the most likely shape for the \(\alpha \)-level set. If we can prove that there is a unique minimum, and identify it, that will be a major step towards proving Theorem 1. So we have arrived at the following variational problem.

Variational problem 1. For each \(0 < \alpha < 1 \), any weakly decreasing function \(f : [0, 1] \to [0, 1] \) such that \(\int_0^1 f(x)dx = \alpha \) is called \(\alpha \)-admissible. Find the unique \(\alpha \)-admissible function that minimizes the functional

\[
I(f) = \int_0^1 \int_0^1 \log |f(x) - y + f^{-1}(y) - x| dy dx.
\]

We now simplify the form of the functional \(I \), by first rotating the coordinate axes by 45 degrees, and then reparametrizing the square by the “hook coordinates” – an idea used
in [35], [36], [20]. Let u, v be the rotated coordinates as in (1). Given an α-admissible function $f : [0, 1] \to [0, 1]$, there corresponds to it a function $g : [-\sqrt{2}/2, \sqrt{2}/2] \to [0, \sqrt{2}]$, such that

$$y = f(x) \iff v = g(u)$$

(see Figure 4). The class of α-admissible functions translates to those functions $g : [-\sqrt{2}/2, \sqrt{2}/2] \to [0, \sqrt{2}]$ that are 1-Lipschitz, and satisfy $g(-\sqrt{2}/2) = g(\sqrt{2}/2) = \sqrt{2}/2$ and

$$\int_{-\sqrt{2}/2}^{\sqrt{2}/2} (g(u) - |u|) du = \alpha.$$

(8)

We continue to call such functions α-admissible. We call a function admissible if it is α-admissible for some $0 \leq \alpha \leq 1$.

![Figure 4: The rotated graph and the hook coordinates s, t](image)

To derive the new form of the functional, write

$$I(f) = I_1(f) + I_2(f) := \int_0^1 \int_0^{f(x)} \log(h_f(x, y)) dy \, dx + \int_0^1 \int_{f(x)}^{1} \log(h_f(x, y)) dy \, dx,$$

where $h_f(x, y)$ is the hook function of f,

$$h_f(x, y) = |f(x) - y + f^{-1}(y) - x|.$$

Now, set

$$J(g) = J_1(g) + J_2(g) := I_1(f) + I_2(f),$$
where f and g are rotated versions of the same graph as in Figure 4. Then

$$J_2(g) = \int_{-\sqrt{2}/2}^{\sqrt{2}/2} \int_{g(u)}^{\sqrt{2}-|u|} \log h_f(x, y) dv \ du.$$

Reparametrize this double integral by the hook coordinates s and t,

$$s = \frac{f^{-1}(y) - u}{\sqrt{2}}, \quad t = \frac{x - f(x)}{\sqrt{2}}$$

(see Figure 4). The Lipschitz property ensures that this transformation is one-to-one from the region

$$\{(u, v) : -\sqrt{2}/2 \leq u \leq \sqrt{2}/2, \ g(u) \leq v \leq \sqrt{2} - |u|\}$$

onto the region

$$\Delta = \{(s, t) : -\sqrt{2}/2 \leq s \leq t \leq \sqrt{2}/2\}.$$

Therefore the integral transforms as

$$J_2(f) = \int \int_{\Delta} \log \left(\sqrt{2}(t-s)\right) \left|\frac{\partial(u,v)}{\partial(s,t)}\right| ds \ dt.$$

It remains to compute the Jacobian $\partial(u,v)/\partial(s,t)$. An easy computation gives (see [35], [36], [20])

$$\frac{\partial(u,v)}{\partial(s,t)} = \frac{1}{2}(1 - g'(s))(1 + g'(t)).$$

(This can be viewed geometrically as follows: draw on the u-axis in Figure 4 the two intervals $[s, s+ds]$, $[t, t+dt]$. The set of points in the square for which the hook coordinates fall inside the two intervals is approximately a parallelogram whose area is clearly seen from the picture to be linear in $1 - g'(s)$ and in $1 + g'(t)$.) So

$$J_2(g) = \frac{1}{2} \int \int_{\Delta} \log \left(\sqrt{2}(t-s)\right) (1 - g'(s))(1 + g'(t)) ds \ dt.$$

A similar computation for J_1, using “lower” instead of “upper” hook coordinates, shows that

$$J_1(g) = \frac{1}{2} \int \int_{\Delta} \log \left(\sqrt{2}(t-s)\right) (1 + g'(s))(1 - g'(t)) ds \ dt.$$

This gives

$$J(g) = \frac{1}{2} \int \int_{\Delta} \log \left(\sqrt{2}(t-s)\right) \left[(1 - g'(s))(1 + g'(t)) + (1 + g'(s))(1 - g'(t))\right] ds \ dt$$

$$= \frac{1}{2} \int \int_{\Delta} \log \left(\sqrt{2}(t-s)\right) (2 - 2g'(s)g'(t)) ds \ dt$$

$$= -\frac{1}{2} \int_{-\sqrt{2}/2}^{\sqrt{2}/2} \int_{-\sqrt{2}/2}^{\sqrt{2}/2} \log |t-s| \cdot g'(s)g'(t) ds \ dt + \log 2 - \frac{3}{2}.$$

We can now state a reformulation of the original variational problem.
Variational problem 2. For each $0 < \alpha < 1$, a function $g : [-\sqrt{2}/2, \sqrt{2}/2] \to [0, \sqrt{2}]$ is called α-admissible if: $g(-\sqrt{2}/2) = g(\sqrt{2}/2) = \sqrt{2}/2$; g is 1-Lipschitz; and $\int_{-\sqrt{2}/2}^{\sqrt{2}/2} (g(u) - |u|) du = \alpha$. Find the unique α-admissible function that minimizes the functional

$$K(g) = -\frac{1}{2} \int_{-\sqrt{2}/2}^{\sqrt{2}/2} \int_{-\sqrt{2}/2}^{\sqrt{2}/2} g'(s) g'(t) \log |s - t| ds dt. \quad (9)$$

2.3 Deduction of Theorem 1(ii)

In the next section, we prove the following theorem.

Theorem 7. For each $0 < \alpha < 1$, let \tilde{g}_α be the unique extension of g_α (defined in (2)) to an α-admissible function, namely

$$\tilde{g}_\alpha(u) = \begin{cases}
 g_\alpha(u) & |u| \leq \sqrt{2} \alpha (1 - \alpha) \\
 |u| & \sqrt{2} \alpha (1 - \alpha) \leq |u| \leq \sqrt{2}/2
\end{cases}$$

for $0 < \alpha \leq 1/2$, and

$$\tilde{g}_\alpha(u) = \begin{cases}
 g_\alpha(u) & |u| \leq \sqrt{2} \alpha (1 - \alpha) \\
 \sqrt{2} - |u| & \sqrt{2} \alpha (1 - \alpha) \leq |u| \leq \sqrt{2}/2
\end{cases}$$

for $1/2 < \alpha < 1$. Then:

(i) \tilde{g}_α is the unique solution to Variational problem 2;

(ii) $K(\tilde{g}_\alpha) = -H(\alpha) + \log 2$;

(iii) For any α-admissible function g we have

$$K(g) \geq K(\tilde{g}_\alpha) + K(g - \tilde{g}_\alpha).$$

Assuming this as proven, our goal is now to prove Theorem 1. At the beginning of this section, we claimed that Theorem 1 was equivalent to the statement that the subtableau λ^k_n has shape approximately described by the region bounded under the graph of the level curve $\{L = k/n^2\}$ (which in rotated coordinates is given by the curve $v = \tilde{g}_\alpha(u)$, where $\alpha = k/n^2$). We shall now make precise the sense in which this is true, and see how this follows from the fact that \tilde{g}_α is the minimizer.

For a continuous function $p : [-\sqrt{2}/2, \sqrt{2}/2] \to \mathbb{R}$, define its supremum norm

$$||p||_\infty = \max_{u \in [-\sqrt{2}/2, \sqrt{2}/2]} |p(u)|.$$

Lemma 2. K is continuous in the supremum norm on the space of admissible functions.
Proof. Consider the symmetric bilinear form
\[
\langle g, h \rangle = -\frac{1}{2} \int_{-\sqrt{2}/2}^{\sqrt{2}/2} \int_{-\sqrt{2}/2}^{\sqrt{2}/2} g'(s) h'(t) \log |s - t| ds \, dt
\]
defined whenever \(g \) and \(h \) are almost everywhere differentiable functions on \([-\sqrt{2}/2, \sqrt{2}/2]\) with bounded derivative. We show that \(\langle \cdot, \cdot \rangle \) is continuous in the supremum norm with respect to any of its arguments, when restricted to the set of 1-Lipschitz functions; this will imply the lemma, since \(K(g) = \langle g, g \rangle \). Write (10) more carefully as
\[
\langle g, h \rangle = -\frac{1}{2} \int_{-\sqrt{2}/2}^{\sqrt{2}/2} g'(s) \cdot \lim_{\epsilon \downarrow 0} \left[\int_{s-\epsilon}^{s} h'(t) \log(s - t) dt + \int_{s+\epsilon}^{\sqrt{2}/2} h'(t) \log(t - s) dt \right] ds.
\]
For \(s \in (-\sqrt{2}/2, \sqrt{2}/2) \) which is a point of differentiability of \(h \), integration by parts gives
\[
\int_{s-\epsilon}^{s} h'(t) \log(s - t) dt + \int_{s+\epsilon}^{\sqrt{2}/2} h'(t) \log(t - s) dt =
\]
\[
= h(t) \log(s - t) \bigg|_{t = s-\epsilon}^{t = \sqrt{2}/2} - \int_{s-\epsilon}^{s} \frac{h(t)}{t-s} dt + h(t) \log(t - s) \bigg|_{t = s+\epsilon}^{t = \sqrt{2}/2} - \int_{s+\epsilon}^{\sqrt{2}/2} \frac{h(t)}{t-s} dt
\]
\[
= h \left(\frac{\sqrt{2}}{2} \right) \log \left(\frac{\sqrt{2}}{2} - s \right) - h \left(-\frac{\sqrt{2}}{2} \right) \log \left(\frac{\sqrt{2}}{2} + s \right) + (h(s - \epsilon) - h(s + \epsilon)) \log \epsilon - \int_{[-\sqrt{2}/2, s-\epsilon] \cup [s+\epsilon, \sqrt{2}/2]} \frac{h(t)}{t-s} dt
\]
\[
\xrightarrow[\epsilon \downarrow 0]{} h \left(\frac{\sqrt{2}}{2} \right) \log \left(\frac{\sqrt{2}}{2} - s \right) - h \left(-\frac{\sqrt{2}}{2} \right) \log \left(\frac{\sqrt{2}}{2} + s \right) - \pi \tilde{h}(s),
\]
where \(\tilde{h} \) is the Hilbert transform of \(h \), defined by the principal value integral
\[
\tilde{h}(s) = \frac{1}{\pi} \int_{\mathbb{R}} \frac{h(t)}{t-s} dt
\]
(think of \(h \) as a function on \(\mathbb{R} \) which is 0 outside \([-\sqrt{2}/2, \sqrt{2}/2]\).) Going back to (10), this gives
\[
\langle g, h \rangle = -\frac{1}{2} h \left(\frac{\sqrt{2}}{2} \right) \int_{-\sqrt{2}/2}^{\sqrt{2}/2} g'(s) \log \left(\frac{\sqrt{2}}{2} - s \right) ds
\]
\[
+ \frac{1}{2} h \left(-\frac{\sqrt{2}}{2} \right) \int_{-\sqrt{2}/2}^{\sqrt{2}/2} g'(s) \log \left(\frac{\sqrt{2}}{2} + s \right) ds
\]
\[
+ \frac{\pi}{2} \int_{-\sqrt{2}/2}^{\sqrt{2}/2} g'(s) \tilde{h}(s) ds.
\]
(11)
Now recalling that the Hilbert transform is an isometry on $L^2(\mathbb{R})$ (see [34], Theorem 90), and using the fact that
\[
\left| \int_{-\sqrt{2}/2}^{\sqrt{2}/2} \log \left(\frac{\sqrt{2}}{2} \pm s \right) ds \right| = \frac{2 - \log 2}{\sqrt{2}} < 1,
\]
this implies that for 1-Lipschitz functions g, h_1, h_2,
\[
\langle g, h_1 - h_2 \rangle \leq ||h_1 - h_2||_{\infty} + \frac{\pi}{2} \int_{-\sqrt{2}/2}^{\sqrt{2}/2} |\tilde{h}_1(s) - \tilde{h}_2(s)| ds
\]
\[
\leq ||h_1 - h_2||_{\infty} + 2^{1/4} \frac{\pi}{2} \left(\int_{-\sqrt{2}/2}^{\sqrt{2}/2} (\tilde{h}_1(s) - \tilde{h}_2(s))^2 ds \right)^{1/2}
\]
\[
\leq ||h_1 - h_2||_{\infty} + 2^{1/4} \frac{\pi}{2} \left(\int_{-\sqrt{2}/2}^{\sqrt{2}/2} (h_1(s) - h_2(s))^2 ds \right)^{1/2}
\]
\[= ||h_1 - h_2||_{\infty} + 2^{1/4} \frac{\pi}{2} \left(\int_{-\sqrt{2}/2}^{\sqrt{2}/2} (h_1(s) - h_2(s))^2 ds \right)^{1/2} \]
\[
\leq \left(1 + 2^{1/4} \frac{\pi}{2} \right) ||h_1 - h_2||_{\infty}. \quad \Box
\]

We have another use for (11). Let f be a Lipschitz function on $[-\sqrt{2}/2, \sqrt{2}/2]$ that satisfies $f(\pm \sqrt{2}/2) = 0$. Denote by
\[
F[f](x) = \int_{\mathbb{R}} f(t) e^{-i xt} dt
\]
the Fourier transform of a function f. Recall the well-known formulas
\[
F[\hat{f}](x) = i \cdot \text{sgn} x \cdot F[f](x),
\]
\[
F[f'](x) = i \cdot x \cdot F[f](x),
\]
\[
\int_{\mathbb{R}} f_1(t) \overline{f_2(t)} dt = \frac{1}{2\pi} \int_{\mathbb{R}} F[f_1](x) \overline{F[f_2](x)} dx.
\]

Then, by (11)
\[
K(f) = \langle f, f \rangle = \frac{\pi}{2} \int_{-\sqrt{2}/2}^{\sqrt{2}/2} f'(s) \hat{f}(s) ds
\]
\[
= \frac{1}{4} \int_{\mathbb{R}} \overline{F[f']}(x) F[f](x) dx = \frac{1}{4} \int_{\mathbb{R}} |x| \cdot |F[f](x)|^2 dx. \quad (12)
\]

We note as a lemma an important consequence of this identity which we shall need later on.
Lemma 3. If f is a Lipschitz function with $f(\pm \sqrt{2}/2) = 0$ as above, then $K(f) \geq 0$, and $K(f) = 0$ only if $f \equiv 0$.

Lemma 3 will be used in the next section to easily deduce uniqueness of the minimizer. In fact, Theorem 7 gives all the necessary information to prove a non-quantitative version of Theorem 1, i.e. without the rate-of-convergence estimates. However, we can do better, by noting that Theorem 7(iii), together with the representation (12), can be used to give quantitative estimates for the rate of convergence in Theorem 1. We prove the following strengthening of Lemma 3:

Lemma 4. For every $r \in (2, 3)$, there exists a constant $c = c(r) > 0$ such that for all 2-Lipschitz functions $f : [-\sqrt{2}/2, \sqrt{2}/2] \to \mathbb{R}$ that satisfy $f(\pm \sqrt{2}/2) = 0$, we have

$$K(f) \geq c ||f||_\infty^r.$$

Proof. Had the power of $|x|$ in (12) been equal to $1/2$, $K(f)$ would have been equal to $1/4$ times the squared L_2-norm of $xF[f](x) = F[f'](x)$. Having $|x|$ in (12) invites the conclusion that instead we are dealing with the squared L_2-norm of $f^{(1/2)}(x)$, the fractional derivative of f of order $1/2$.

To see that this is indeed the case, and to use the full power of such an interpretation of $K(f)$, let us recall the corresponding definitions. For $\alpha \in (0, 1)$, the fractional derivative $f^{(\alpha)}(x)$ of order α is defined by

$$f^{(\alpha)}(x) = \frac{\alpha}{\Gamma(1 - \alpha)} \int_0^\infty \frac{f(x) - f(x - t)}{t^{1+\alpha}} dt. \quad (13)$$

The integral exists as $f(x)$ is Lipschitz and bounded. Clearly $f^{(\alpha)}(x) \equiv 0$ for $x \leq -\sqrt{2}/2$. Then

$$F[f^{(\alpha)}](x) = \int_\mathbb{R} e^{-ixt} f^{(\alpha)}(t) dt = \frac{\alpha}{\Gamma(1 - \alpha)} \int_0^\infty \frac{1 - e^{-ix\tau}}{\tau^{1+\alpha}} d\tau \cdot F[f](x) = (ix)^\alpha F[f](x), \quad (14)$$

where

$$(ix)^\alpha := \begin{cases} |x|^{\alpha} \exp(i\alpha\pi/2), & x > 0, \\ |x|^{\alpha} \exp(-i\alpha\pi/2), & x < 0. \\ \end{cases}$$

Indeed, setting

$$z^{1+\alpha} = |z| \exp(i(1+\alpha)\theta)), \quad z = |z|e^{i\theta}, \quad \theta \in (-\pi, \pi),$$

then

$$\frac{1}{\Gamma(1+\alpha)} \int_0^\infty \frac{1 - e^{-ix\tau}}{\tau^{1+\alpha}} d\tau = \frac{1}{\Gamma(1+\alpha)} \int_0^\infty \frac{1 - e^{-ix\tau}}{\tau^{1+\alpha}} d\tau.$$

This completes the proof.
we have
\[\int_0^\infty \frac{1 - e^{-ix\tau}}{\tau^{1+\alpha}} d\tau = (ix)^\alpha \int_0^\infty \frac{1 - e^{-z}}{z^{1+\alpha}} dz = (ix)^\alpha \int_0^\infty \frac{1 - e^{-\tau}}{\tau^{1+\alpha}} d\tau. \]

In particular, for \(\alpha = 1/2 \), we get from (14) that
\[|F[f^{(1/2)}](x)|^2 = |x| \cdot |F[f](x)|^2, \]
whence, by (14) and isometry of the Fourier transform,
\[K(f) = \frac{1}{4} \int_{\mathbb{R}} |x| \cdot |F[f](x)|^2 dx = \frac{\pi}{2} |f^{(1/2)}(x)|^2. \tag{15} \]

The fractional integration operator, inverse to that in (13), is known to be given by
\[f(x) = (I_\alpha f^{(\alpha)})(x), \quad (I_\alpha h)(x) := \frac{1}{\Gamma(\alpha)} \int_{-\infty}^x (x-t)^{\alpha-1} h(t) dt. \tag{16} \]

As a check, the Fourier transform of the RHS is
\[\frac{1}{\Gamma(\alpha)} F[f^{(\alpha)}](x) \int_0^\infty \tau^{\alpha-1} e^{-ix\tau} d\tau = (ix)^{-\alpha} F[f^{(\alpha)}](x) = F[f](x). \]

By Theorem 383 in [13], for \(p > 1 \) and
\[0 < \alpha < \frac{1}{p}, \quad q = \frac{p}{1 - \alpha p}, \]
\(I_\alpha \) maps \(L_p \) into \(L_q \), and is bounded. That is, there exists a constant \(c(p) > 0 \) such that
\[||I_\alpha h||_q \leq c(p) ||h||_p. \tag{17} \]

Introduce \(\psi(x) = f^{(\alpha)}(x)1_{(-\sqrt{2}/2, \sqrt{2}/2)}(x) \), so that \(\psi \) is supported by \([-\sqrt{2}/2, \sqrt{2}/2] \). According to (10),
\[(I_\alpha \psi)(x) = f(x), \quad x \leq \sqrt{2}/2. \]

So, using (17) and monotonicity of the \(L_s \)-averages, we have
\[||f||_q \leq ||I_\alpha \psi||_q \leq c(p)||\psi||_p \leq c_1(p)||\psi||_2 \leq c_2(p)||f^{(\alpha)}||_2, \quad c_1(p) := (\sqrt{2})^{1-1/2} c(p). \]

In light of (16), for \(\alpha = 1/2 \) we obtain then
\[||f||_q^2 \leq c_2(p) K(f), \quad c_2(p) := \frac{2}{\pi} c_1(p)^2, \quad (p \in (1, 2), \quad q = \frac{p}{1 - p/2}). \tag{18} \]
Let \(x_0 \in (-\sqrt{2}/2, \sqrt{2}/2) \) be such that \(|f(x_0)| = \|f\|_\infty \). Since \(f \) is 2-Lipschitz,
\[
|f(x)| \geq \|f\|_\infty - 2|x - x_0|, \quad |x - x_0| \leq \frac{\|f\|_\infty}{2}.
\]
Then
\[
\|f\|_q^2 \geq \left(2 \int_0^{\|f\|_\infty/2} (\|f\|_\infty - 2y)^q\,dy \right)^{2/q} = \frac{\|f\|_\infty^{2(q+1)/q}}{(q+1)^2},
\]
so, using Lemma 1, we conclude that, for an absolute constant \(c^*(p, q) > 0 \),
\[
K(f) \geq c^*(p)\|f\|_\infty^{2(q+1)/q}.
\]

It remains to observe that
\[
\frac{2(q+1)}{q} = 1 + \frac{2}{p}
\]
can be made arbitrarily close to 2 from above by selecting \(p \) sufficiently close to 2 from below. This completes the proof. \(\blacksquare \)

Theorem 8. For a Young diagram \(\lambda \) whose graph lies within the \(n \times n \) square, let \(g_\lambda(u) \) be the rotated coordinate version of the function \(f_\lambda(x) \) defined in (4). Denote \(\alpha = k/n^2 \).

Then for all \(2 < r < 3 \), there are constants \(c = c(r) > 0, C = C(r) > 0 \) such that for any \(\epsilon > 0 \) and for any \(n \),
\[
P_n\left(T \in T_n : \max_{1 \leq k \leq n^2 - 1} \|g_{\lambda^k} - \tilde{g}_\alpha\|_\infty > \epsilon \right) \leq C \exp(3n - c\epsilon r n^2). \tag{19}
\]

Consequently, with probability subexponentially close to 1, for all \(k \) the supnorm distance between \(g_{\lambda^k} \) and \(\tilde{g}_\alpha, (\alpha = k/n^2) \), does not exceed \(n^{-1/2+\delta}, (\delta > 0) \).

Proof. Let \(p(m) \) be the number of partitions of an integer \(m \). It is known that for all \(m, p(m) \leq \exp(\pi \sqrt{2m/3}) \) (see [2], Theorem 14.5). Fix \(n, 1 \leq k \leq n^2 - 1, \epsilon > 0 \). Using Lemma 1,
\[
P_n\left(T \in T_n : \|g_{\lambda^k} - \tilde{g}_\alpha\|_\infty > \epsilon \right) = \sum_{\lambda_0 \subseteq \square_n \text{ of area } k} \sum_{\|g_{\lambda_0} - \tilde{g}_\alpha\|_\infty > \epsilon} \leq p(k) \sup_{\lambda_0 \subseteq \square_n \text{ of area } k, \|g_{\lambda_0} - \tilde{g}_\alpha\|_\infty > \epsilon} \exp \left(- (1 + o(1))n^2(K(g_{\lambda_0}) + H(\alpha) - \log 2) \right). \tag{20}
\]
Let \(\lambda_0 \) be a diagram contained in \(\square_n \) of area \(k \), such that \(||g_{\lambda_0} - \tilde{g}_\alpha||_\infty > \epsilon \). Since \(g_{\lambda_0} \) is \(\alpha \)-admissible, using Theorem 7 and Lemma 4 we have
\[
K(g_{\lambda_0}) + H(\alpha) - \log 2 \geq K(g_{\lambda_0} - \tilde{g}_\alpha) > c(r)||g_{\lambda_0} - \tilde{g}_\alpha||_\infty \geq c(r)\epsilon^r.
\]
Combining this with (20) and with the above remark on the number of partitions of an integer gives that for \(n \) larger than some absolute initial bound,
\[
\mathbb{P}_n \left(T \in \mathcal{T}_n : ||g_{\lambda_k^n} - \tilde{g}_\alpha||_\infty > \epsilon \right) \leq \exp(2.8\sqrt{\alpha n - cn^2\epsilon^r}).
\]
Taking the union bound over all \(1 \leq k \leq n^2 - 1 \) gives (19). \[\square\]

Lemma 5. For each \((x, y) \in (0, 1) \times (0, 1)\), let \((u, v)\) be their rotated coordinates as in (1). Let \(\alpha_0 = L(x, y) \), so that \(|u| < \sqrt{2\alpha_0(1 - \alpha_0)}\) and \(v = \tilde{g}_{\alpha_0}(u) \). There exist absolute constants \(c_1, c_2 > 0 \) such that if we set
\[
\sigma(x, y) = \min(xy, (1 - x)(1 - y)),
\]
\[
d(x, y) = c_1\sqrt{\sigma(x, y)}, \quad \Delta(x, y) = c_2\sigma^2(x, y),
\]
we will have that for all \(0 < \alpha < 1 \) and \(\delta < \Delta(x, y) \), if \(|\tilde{g}_\alpha(u) - \tilde{g}_{\alpha_0}(u)| < \delta \cdot d(x, y)\) then \(|\alpha - \alpha_0| < \delta\).

Proof. Since \(\tilde{g}_\alpha(u) \) increases with \(\alpha \), it suffices to prove existence of two absolute constants \(\gamma_1, \gamma_2 > 0 \) such that
\[
|\tilde{g}_\alpha(u) - \tilde{g}_{\alpha_0}(u)| \geq \gamma_1\sigma^{1/2}(x, y)|\alpha - \alpha_0|, \quad \text{if } |\alpha - \alpha_0| \leq \gamma_2\sigma(x, y).
\]
Because of the symmetry property \(\tilde{g}_{1-\alpha}(u) = \sqrt{2} - \tilde{g}_\alpha(u) \), we may assume that \(x + y \leq 1 \), or equivalently that \(\alpha_0 \leq 1/2 \).

To prove the above claim, we note the following inequalities. Notice first that
\[
\sqrt{2\alpha_0(1 - \alpha_0)} \geq v \implies \alpha_0 \geq \frac{1 - \sqrt{1 - 2v^2}}{2}.
\]
Likewise, \(\alpha^{(-)} \) that corresponds to the lowest point \((u, u)\) is given by
\[
\alpha^{(-)} = \frac{1 - \sqrt{1 - 2u^2}}{2},
\]
and we see that
\[
\alpha_0 - \alpha^{(-)} \geq \frac{\sqrt{1 - 2u^2} - \sqrt{1 - 2v^2}}{2} = \frac{v^2 - u^2}{\sqrt{1 - 2u^2} + \sqrt{1 - 2v^2}} \geq \frac{v^2 - u^2}{2} = xy. \quad (21)
\]
\textbf{(21)} says that decreasing α_0 by x_0y_0 gives us a feasible α, for which $(u, \tilde{g}_\alpha(u))$ lies between (u, v) and the lowest point (u, u), such that $u \leq \sqrt{2\alpha(1 - \alpha)}$.

Let us estimate from above $\tilde{g}_\alpha(u)$ for $\alpha \in [\alpha(-), \alpha_0]$. From \textbf{(66)} it follows that
\[
\frac{\partial \tilde{g}_\alpha(u)}{\partial \alpha} \frac{1}{\sqrt{\tilde{g}_\alpha(u)^2 - u^2}} \geq c
\]
for some absolute constant $c > 0$. (Indeed, $2\alpha(1 - \alpha) = \beta^2(\alpha) \geq \tilde{g}_\alpha(u)^2$. Integrating from $\alpha \in [\alpha(-), \alpha_0]$ and exponentiating, we obtain
\[
\frac{\tilde{g}_\alpha(u) + \sqrt{\tilde{g}_\alpha(u)^2 - u^2}}{\tilde{g}_\alpha(u) + \sqrt{\tilde{g}_\alpha(u)^2 - u^2}} \geq \exp(c(\alpha_0 - \alpha)),
\]
or equivalently
\[
\frac{\tilde{g}_\alpha(u) - \sqrt{\tilde{g}_\alpha(u)^2 - u^2}}{\tilde{g}_\alpha(u) - \sqrt{\tilde{g}_\alpha(u)^2 - u^2}} \geq \exp(c(\alpha_0 - \alpha)).
\]
Consequently
\[
\sqrt{\tilde{g}_\alpha(u)^2 - \tilde{g}_\alpha(u)^2}, \alpha \leq \cosh(c(\alpha_0 - \alpha)) \sqrt{\tilde{g}_\alpha(u)^2 - u^2} - \sinh(c(\alpha_0 - \alpha)) \tilde{g}_\alpha(u),
\]
or
\[
\tilde{g}_\alpha(u)^2 \leq \left[\cosh(c(\alpha_0 - \alpha)) \tilde{g}_\alpha(u) - \sinh(c(\alpha - \alpha)) \sqrt{\tilde{g}_\alpha(u)^2 - u^2} \right]^2,
\]
so that
\[
\tilde{g}_\alpha(u) \leq \cosh(c(\alpha_0 - \alpha)) \tilde{g}_\alpha(u) - \sinh(c(\alpha - \alpha)) \sqrt{\tilde{g}_\alpha(u)^2 - u^2}.
\]
Consequently, for some constants $c_i > 0$,
\[
\tilde{g}_\alpha(u) - \tilde{g}_\alpha(u) \leq -c_3(\alpha_0 - \alpha)[(v^2 - u^2)^{1/2} - c_4(\alpha_0 - \alpha)v] = -c_5(\alpha_0 - \alpha)[(xy)^{1/2} - c_6(\alpha_0 - \alpha)(x + y)] \leq -c_7(\alpha_0 - \alpha)(xy)^{1/2},
\]
provided that
\[
\alpha_0 - \alpha \leq c_8 \frac{(xy)^{1/2}}{x + y}.
\]
From \textbf{(21)} we know that we can go below α_0 by xy at least. Pick $\rho = \min(1, c_8/3)$; then the last inequality holds for $\alpha_0 - \alpha \leq \rho xy$, and we have
\[
\tilde{g}_\alpha(u) - \tilde{g}_\alpha(u) \leq -c_7(\alpha_0 - \alpha)(xy)^{1/2}, \quad \alpha \in [\alpha_0 - \rho xy, \alpha_0]. \tag{22}
\]
Now for $\alpha_0 \leq \alpha \leq 1/2$ we know that
\[
\frac{\partial \tilde{g}_\alpha(u)}{\partial \alpha} \geq c_9 \sqrt{v^2 - u^2} = c_{10}(xy)^{1/2},
\]
25
so that
\[\tilde{g}_\alpha(u) - \tilde{g}_{\alpha_0}(u) \geq c_{10}(xy)^{1/2}(\alpha - \alpha_0). \] (23)

By symmetry, for \(1/2 \leq \alpha \leq 1 - \alpha_0\),
\[\tilde{g}_\alpha(u) - \tilde{g}_{\alpha_0}(u) \leq -c_{10}((1 - \alpha_0) - \alpha)((1 - x)(1 - y))^{1/2}, \] (24)
and, for \(1 - \alpha_0 \leq \alpha \leq 1 - \alpha_0 + \rho(1 - x)(1 - y)\),
\[\tilde{g}_\alpha(u) - \tilde{g}_{\alpha_0}(u) \geq c_7(\alpha - (1 - \alpha_0))((1 - x)(1 - y))^{1/2}. \] (25)

The inequalities \(22, 23, 24, 25\) prove the claim with \(\gamma_1 = \min\{c_7, c_{10}\}\) and \(\gamma_2 = \rho\).

\[\blacksquare \]

Proof of Theorem 1(ii). We now prove Theorem 1(ii), the part of Theorem 1 that deals with the interior of the square. The treatment of the boundary of the square is more delicate and is deferred to section 4, being essentially equivalent to Theorem 3.

Fix \(1 \leq i, j \leq n\) such that
\[\min(ij, (n-i)(n-j)) > n^{3/2+\epsilon}. \] (26)

Let \((u, v)\) be the rotated coordinates corresponding to \((x, y) = (i/n, j/n)\). Let \(\alpha_0 = \lambda(i/n, j/n)\), so that \(v = \tilde{g}_{\alpha_0}(u)\) and \(|u| < \sqrt{2}\alpha_0(1 - \alpha_0)\). For each tableau \(T = (t_{i,j})_{1 \leq i, j \leq n} \in \mathcal{T}_n\) let \(k_T = t_{i,j}\), and let \(\beta_T = k_T/n^2\). Note that \(k_T\) is an integer representing the smallest \(s\) such that \(\lambda_T\) contains the box \((i, j)\). This implies that
\[v \leq g_{\lambda_T}^x(u) \leq v + \sqrt{\frac{2}{n}}, \]
or
\[\left| g_{\lambda_T}^x(u) - \tilde{g}_{\alpha_0}(u) \right| \leq \sqrt{\frac{2}{n}}. \] (27)

Apply Lemma 5 with \((x, y) = (i/n, j/n)\) and \(\delta = n^{-(1-\epsilon)/2}\). Note that because of (26), for \(n\) large we have \(\delta < \Delta(x, y)\) as required. Then, making use of Theorem 8 we get
\[
\mathbb{P}_n \left(T \in \mathcal{T}_n : \frac{1}{n^2} t_{i,j} - L \left(\frac{i}{n}, \frac{j}{n} \right) > \frac{1}{n^{(1-\epsilon)/2}} \right) \leq \mathbb{P}_n \left(T \in \mathcal{T}_n : |\beta_T - \alpha_0| > \frac{1}{n^{(1-\epsilon)/2}} \right)
\]
(by Lemma 5)
\[
\leq \mathbb{P}_n \left(T \in \mathcal{T}_n : |g_{\lambda_T}^x(u) - \tilde{g}_{\alpha_0}(u)| > \frac{d(i/n, j/n)}{n^{(1-\epsilon)/2}} \right)
\]
(by (27))
\[
\leq \mathbb{P}_n \left(T \in \mathcal{T}_n : g_{\lambda_T}^x(u) > \tilde{g}_{\alpha_0}(u) - \frac{d(i/n, j/n)}{n^{(1-\epsilon)/2}} + \sqrt{\frac{2}{n}} \right)
\]
(for \(n\) large enough, by (26))
\[
\leq C \exp \left(3n - cn^2 \left(\frac{d(i/n, j/n)}{2n^{(1-\epsilon)/2}} \right)^{2+\epsilon} \right)
\]
(by Theorem 8 with \(r = 2 + \epsilon\))
\[
\leq C' \exp(-c'n^{3/2}).
\]
Taking the union bound over all $1 \leq i, j \leq n$ satisfying (26) gives the result.

3 Solution of the variational problem

3.1 Preliminaries

In this section, we prove Theorem 7. We actually *derive* the explicit formula for the minimizer using methods of the calculus of variations and the theory of singular (Cauchy-type) integral equations. Our derivation makes only one a priori assumption (obtained by educated guesswork and later verified by computer simulations) on the graphical form that the minimizer would take, and so is in a sense more systematic than the analogous treatments in the fundamental papers [20], [35], [36], where the solutions are brilliantly guessed using the properties of the Hilbert transform. We believe that our technique may prove useful in the treatment of similar problems in the future.

First, observe that because of symmetry, we need only treat the case $\alpha \leq 1/2$; the mapping $g \mapsto \sqrt{2} - g$ takes the set of α-admissible functions bijectively onto the set of $(1 - \alpha)$-admissible functions, and has the property that $K(\sqrt{2} - g) = K(g)$.

Next, observe that for $\alpha = 1/2$ the assertion is immediate, because of Lemma 3.

We prove another fact that follows from general considerations, before turning to the derivation of the minimizer.

Lemma 6. For any $0 < \alpha < 1$, the functional K has a unique α-admissible minimizer.

Proof. The functional K is continuous on the space of α-admissible functions, and is bounded below by Lemma 3. By the Arzela-Ascoli theorem, the space of α-admissible functions is compact in the topology induced by the supremum norm (since the admissible functions are uniformly bounded and equicontinuous). Therefore K has a minimizer. To prove that the minimizer is unique, let h_1 and h_2 be two distinct α-admissible minimizers. Then $\tilde{h} = (h_1 + h_2)/2$ is also an α-admissible function, and $g = (h_1 - h_2)/2 \neq 0$, $g(\pm \sqrt{2}/2) = 0$. So, using the parallelogram identity and Lemma 3,

$$K(\tilde{h}) = \frac{1}{2} K(h_1) + \frac{1}{2} K(h_2) - K(g) < \min_{h \text{ is } \alpha\text{-admissible}} K(h),$$

a contradiction.
3.2 The derivation

We now proceed with the derivation of the minimizer, which we shall denote \(h = h_\alpha \). The dependence on \(\alpha \) will be suppressed except where it is required. For the rest of this section, \(\alpha \) will be a fixed value in \((0, 1/2)\), unless stated otherwise.

First, note that, under the condition \(h(\pm \sqrt{2}/2) = \sqrt{2}/2 \), the \(\alpha \)-condition \(\int_{-\sqrt{2}/2}^{\sqrt{2}/2}(h(u) - |u|)du = \alpha \) is equivalent to

\[
- \int_{-\sqrt{2}/2}^{\sqrt{2}/2} uh'(u)du = \alpha - \frac{1}{2}.
\]

(28)

We now formulate a sufficient condition for \(h \) to be a minimizer. It is based on a standard recipe of the calculus of variations, the Lagrange formalism. We form the Lagrange function

\[
L(h, \lambda) = K(h) - \lambda \int_{-\sqrt{2}/2}^{\sqrt{2}/2} uh'(u)du
\]

and require that, for some \(\lambda, h_\alpha \) be a local minimum point of \(L(h, \lambda) \) in the convex set of functions \(h \) subject to all the restrictions except the \(\alpha \)-condition (28). To be sure, we ought to include into the function a term \(\lambda' \) times the integral of \(h' \), since \(h \) must meet another constraint

\[
\int_{-\sqrt{2}/2}^{\sqrt{2}/2} h'(u)du = 0.
\]

(29)

We chose not to, since – in the square case – even without this constraint \(h'(u) \) will turn out to be odd anyway. Since \(L(h, \lambda) \) depends explicitly on \(h' \) alone, we get the equations for the sufficient condition in a simple-minded manner, by taking partial derivatives of \(L \) with respect to \(h'(s) \), \(s \in (-\sqrt{2}/2, \sqrt{2}/2) \), and paying attention only to the constraint \(-1 \leq h'(s) \leq 1 \). The resulting “complementary slackness” conditions are

\[
w(s) := - \int_{-\sqrt{2}/2}^{\sqrt{2}/2} h'(t) \log|s - t|dt - \lambda s \quad \text{is} \quad \begin{cases} = 0, & \text{if} \quad -1 < h'(s) < 1, \\ \geq 0, & \text{if} \quad h'(s) = -1, \\ \leq 0, & \text{if} \quad h'(s) = 1. \end{cases}
\]

(30)

Lemma 7. If \(h \) is an \(\alpha \)-admissible function that, for some \(\lambda \in \mathbb{R} \), satisfies (30) for all \(s \in (-\sqrt{2}/2, \sqrt{2}/2) \) for which \(h'(s) \) is defined, then \(h \) is a minimizer.

Proof. If \(g \) is a 1-Lipschitz function on \([-\sqrt{2}/2, \sqrt{2}/2]\), then (30) implies that \((g'(s) - h'(s))w(s) \geq 0\) for all \(s \) for which this is defined, so

\[
\int_{-\sqrt{2}/2}^{\sqrt{2}/2} g'(s)w(s)ds \geq \int_{-\sqrt{2}/2}^{\sqrt{2}/2} h'(s)w(s)ds.
\]
If \(g \) is \(\alpha \)-admissible, by (28) this can be written as
\[
2\langle h, g \rangle + \alpha - \frac{1}{2} = 2\langle h, g \rangle - \lambda \int_{-\sqrt{2}/2}^{\sqrt{2}/2} sg'(s)ds \\
\geq 2\langle h, h \rangle - \lambda \int_{-\sqrt{2}/2}^{\sqrt{2}/2} sh'(s)ds = 2\langle h, h \rangle + \alpha - \frac{1}{2},
\]
which shows that
\[
\langle h, g \rangle \geq \langle h, h \rangle.
\]
Therefore, by Lemma 3 applied to the function \(g - h \),
\[
\langle g, g \rangle = \langle h, h \rangle + 2\langle h, g - h \rangle + \langle g - h, g - h \rangle \geq \langle h, h \rangle,
\]
so \(h \) is a minimizer.

We are about to prove part (i) of Theorem 7, namely that \(h = \tilde{g}_\alpha \) is the minimizer. Assuming this, note that in the above proof we actually showed that
\[
\langle g, g \rangle \geq \langle \tilde{g}_\alpha, \tilde{g}_\alpha \rangle + \langle g - \tilde{g}_\alpha, g - \tilde{g}_\alpha \rangle,
\]
which is precisely the claim of part (iii) of Theorem 7. So it remains to prove parts (i) and (ii).

Our challenge now is to determine an admissible \(h \) that meets the conditions (30).
Now look at Figure 1(c) with your head tilted 45 degrees to the right. Based on the shape of the level curves, we make the following assumption: For some \(\beta = \beta(\alpha) \in (0, \sqrt{2}/2) \),
\[
h'(s) \begin{cases}
= -1, & \text{if } -\sqrt{2}/2 < s < -\beta, \\
\in (-1,1), & \text{if } -\beta < s < \beta, \\
= +1, & \text{if } \beta < s < \sqrt{2}/2.
\end{cases}
\]
(31)
Substituting this into (30) gives that for \(-\beta < s < \beta, \)
\[
- \int_{-\beta}^{\beta} h'(t) \log|s-t|dt = \lambda s - \int_{-\sqrt{2}/2}^{\sqrt{2}/2} \log(s-t)dt + \int_{\beta}^{\sqrt{2}/2} \log(t-s)dt \\
= \lambda s + (\sqrt{2}/2 - s) \log(\sqrt{2}/2 - s) - (\sqrt{2}/2 + s) \log(\sqrt{2}/2 + s) \\
+ (\beta + s) \log(\beta + s) - (\beta - s) \log(\beta - s) \\
(32)
\]
Assume that \(h'(s) \) is continuously differentiable on \((-\beta, \beta)\). Differentiate (32), to obtain
\[
- \int_{-\beta}^{\beta} h'(t) t dt = \lambda + \log \left(\frac{\beta^2 - s^2}{2 - s^2} \right), \\
(33)
\]
where the left-hand side is a principal value integral.

In the theory of integral equations this is known as an airfoil equation. Solving it is tantamount to inverting a Hilbert transform on a finite interval. Fortunately for us, it can be solved! The following theorem appears in [10], Section 3.2, p. 74. (See also [28], Section 9.5.2.)

Theorem 9. The general solution of the airfoil equation

$$
\frac{1}{\pi} \int_{-1}^{1} \frac{g(y)}{y-x} \, dx = f(x), \quad |x| < 1,
$$

with the integral understood in the principal value sense, and $f(x)$ satisfying a Hölder condition, is given by

$$
g(x) = \frac{1}{\pi \sqrt{1-x^2}} \int_{-1}^{1} \frac{\sqrt{1-y^2} f(y)}{x-y} \, dy + \frac{c}{\sqrt{1-x^2}}.
$$ \tag{34}

Applying Theorem 9 to (33), we get the equation

$$
h'_{\tau}(s) = \frac{1}{\pi^2 (\beta^2 - s^2)^{1/2}} \int_{-\beta}^{\beta} (\beta^2 - t^2)^{1/2} \left(\lambda + \log \frac{\beta^2 - t^2}{\frac{1}{2} - t^2} \right) \frac{dt}{s-t} + \frac{c}{(\beta^2 - s^2)^{1/2}}. \tag{35}
$$

Here the integral is again in the sense of principal value, and the equation must hold for some value of c.

We evaluate the integral in (35). Consider the contribution of the λ-term first. Substituting $t = \beta \sin x$ and later $u = \tan x/2$, we get

$$
\int_{-\beta}^{\beta} \frac{(\beta^2 - t^2)^{1/2}}{s-t} \, dt = \beta \int_{-\pi/2}^{\pi/2} \frac{\cos^2 x}{s/\beta - \sin x} \, dx
$$

$$
= \beta \int_{-\pi/2}^{\pi/2} \frac{(s/\beta + \sin x) \, dx + \beta (1 - (s/\beta)^2) \int_{-\pi/2}^{\pi/2} \frac{dx}{s/\beta - \sin x}}{s/\beta - \sin x}
$$

$$
= \pi s + 2\beta (1 - (s/\beta)^2) \int_{-1}^{1} \frac{du}{s/\beta - 2(\beta/s)u + 1}.
$$

For $|s| < \beta$, the denominator in the last integral has two real roots, $u_1 \in (-1, 1)$ and $u_2 \notin (-1, 1)$. A simple computation shows that the principal value of this integral at $u = u_1$ is zero. So

$$
\int_{-\beta}^{\beta} \frac{(\beta^2 - t^2)^{1/2}}{s-t} \, dt = \pi s, \quad s \in (-\beta, \beta). \tag{36}
$$

Turn to the log-part of the integral in (35). Substituting $t = \tau \beta$, $s = v_1 \beta$, $(2\beta^2)^{-1} = v_2^2$, we see that

$$
\int_{-\beta}^{\beta} \frac{(\beta^2 - t^2)^{1/2}}{s-t} \log \frac{\beta^2 - t^2}{\frac{1}{2} - t^2} \, dt = \beta[I(s/\beta, \sqrt{2}/(2\beta)) - I(-s/\beta, \sqrt{2}/(2\beta))], \tag{37}
$$

30
where
\[
I(\xi, \gamma) = \int_{-1}^{1} \frac{(1-\eta)^{1/2}}{\xi - \eta} \log \frac{1 + \eta}{\gamma + \eta} d\eta, \quad \xi \in [-1, 1], \gamma \geq 1,
\]
is evaluated in the following lemma.

Lemma 8.
\[
I(\xi, \gamma) = \pi \left[1 - \gamma + \sqrt{\gamma^2 - 1} - \xi \log \left(\gamma + \sqrt{\gamma^2 - 1} \right) - 2\sqrt{1 - \xi^2} \tan^{-1} \sqrt{\frac{(\gamma-1)(1-\xi)}{(\gamma+1)(1+\xi)}} \right].
\] (38)

Proof. Notice that \(I(\xi, 1) = 0\), and, for \(x > 1\),
\[
\frac{\partial I(\xi, x)}{\partial x} = -\int_{-1}^{1} \frac{(1-\eta)^{1/2}}{\xi - \eta} d\eta \\
= -\frac{1}{x + \xi} \left[\int_{-1}^{1} \frac{(1-\eta)^{1/2}}{\xi - \eta} d\eta + \int_{-1}^{1} \frac{(1-\eta)^{1/2}}{x + \eta} d\eta \right] \\
= -\frac{\pi \xi}{x + \xi} - \frac{1}{x + \xi} \int_{-1}^{1} \frac{(1-\eta)^{1/2}}{x + \eta} d\eta,
\] (39)
see (38). Substituting \(\eta = \sin t\), \((t \in [-\pi/2, \pi/2])\), and then \(t = 2\tan^{-1} u\), \((u \in [-1, 1])\), we evaluate
\[
\int_{-1}^{1} \frac{(1-\eta)^{1/2}}{x + \eta} d\eta = (xt + \cos t)^{\pi/2} + (1 - x^2) \int_{-\pi/2}^{\pi/2} \frac{dt}{x + \sin t} \\
= \pi x + 2(1 - x^2) \int_{-1}^{1} \frac{du}{x(1 + u^2) + 2u} = \\
= \pi x - 2(x^2 - 1)^{1/2} \left[\tan^{-1} \sqrt{\frac{x+1}{x-1}} + \tan^{-1} \sqrt{-\frac{x-1}{x+1}} \right] \\
= \pi(x - (x^2 - 1)^{1/2}).
\] (40)

Combining this with (38), we obtain
\[
\frac{\partial I(\xi, x)}{\partial x} = -\pi + \frac{\pi(x^2 - 1)^{1/2}}{x + \xi}.
\]

We integrate this equation from \(x = 1\) to \(x = \gamma > 1\), and use the substitutions \(x = \cosh t\), \(t \in [0, t_0]\), with
\[
t_0 = \arccosh \gamma = \log \left(\gamma + (\gamma^2 - 1)^{1/2} \right),
\]

31
and then \(u = e^t \), \(u \in [1, u_0] \), with
\[
u_0 = e^{t_0} = \gamma + (\gamma^2 - 1)^{1/2}.
\]

We have
\[
I(\xi, \gamma) = -\pi(\gamma - 1) + \pi \int_0^{t_0} \frac{\sinh^2 t}{\cosh t + \xi} dt
= -\pi(\gamma - 1) + \pi \left[\left. (\sinh t - \xi t) \right|_0^{t_0} + 2(\xi^2 - 1) \int_0^{u_0} \frac{du}{u^2 + 2\xi u + 1} \right].
\]

(41)

Here
\[
(\sinh t - \xi t)|_0^{t_0} = (\gamma^2 - 1)^{1/2} - \xi \log \left(\gamma + (\gamma^2 - 1)^{1/2} \right),
\]
and the last integral equals
\[
\frac{1}{\sqrt{1 - \xi^2}} \tan^{-1} \frac{u + \xi}{(1 - \xi^2)^{1/2}} \bigg|_{t_0}^{u_0} = \frac{1}{\sqrt{1 - \xi^2}} \tan^{-1} \frac{(u_0 - 1)(1 - \xi^2)^{1/2}}{1 - \xi^2 + (u_0 + \xi)(1 + \xi)}
= \frac{1}{\sqrt{1 - \xi^2}} \tan^{-1} \frac{u_0 - 1}{u_0 + 1} \frac{1 + \xi}{1 - \xi} = \frac{1}{\sqrt{1 - \xi^2}} \tan^{-1} \frac{(\gamma - 1)(1 - \xi)}{(\gamma + 1)(1 + \xi)}. \tag{43}
\]

Combining (41), (42), (43) gives (38).

Now from (36), (37) and (38) we get
\[
h'(s) = \frac{c}{(\beta^2 - s^2)^{1/2}} + \frac{s}{\pi(\beta^2 - s^2)^{1/2}} \left(\lambda - 2 \log \frac{1 + \sqrt{1 - 2\beta^2}}{\sqrt{2}\beta} \right)
+ \frac{2}{\pi} \left(\tan^{-1} \sqrt{\frac{(\gamma - 1)(1 + \xi)}{(\gamma + 1)(1 - \xi)}} - \tan^{-1} \sqrt{\frac{(\gamma - 1)(1 - \xi)}{(\gamma + 1)(1 + \xi)}} \right), \tag{44}
\]
with \(\xi = s/\beta \), \(\gamma = \sqrt{2}/(2\beta) \), or, after some simplification,
\[
h'(s) = \frac{c}{(\beta^2 - s^2)^{1/2}} + \frac{s}{\pi(\beta^2 - s^2)^{1/2}} \left(\lambda - 2 \log \frac{1 + \sqrt{1 - 2\beta^2}}{\sqrt{2}\beta} \right)
+ \frac{2}{\pi} \tan^{-1} \frac{(1 - 2\beta^2)^{1/2} s}{(\beta^2 - s^2)^{1/2}}.
\]

We now observe that the only values of \(c \) and \(\lambda \) for which the right-hand side is bounded as \(s \nearrow \beta \), \(s \searrow -\beta \), and therefore has a chance of being the derivative of an \(\alpha \)-admissible function, are
\[
c = 0, \quad \lambda = 2 \log \frac{1 + \sqrt{1 - 2\beta^2}}{\sqrt{2}\beta}. \tag{45}
\]
Therefore we get
\[h'(s) = \frac{2}{\pi} \tan^{-1} \left(\frac{1 - 2\beta^2 s^{1/2}}{(\beta^2 - s)^{1/2}} \right). \] (46)

Note that \(h'(s) \in (-1, 1) \). We have determined \(h'(s) \), except the value of \(\beta = \beta(\alpha) \) such that \(h \) is \(\alpha \)-admissible, i.e., satisfies (28). Rewrite (28) as
\[\int_{-\beta}^{\beta} s h'(s) ds = \alpha - \beta^2. \] (47)

Besides evaluating this last integral, to compute \(h(s) \) explicitly we will need \(\int_{-\beta}^{\beta} h'(u) du \).

To this end, integrating the first arctangent-of-radical function in (44) on the interval \([-1, \xi]\), \((\xi \in (-1, 1]) \), we get
\[
\int_{-1}^{\xi} \tan^{-1} \sqrt{\frac{(\gamma - 1)(1 + \eta)}{(\gamma + 1)(1 - \eta)}} d\eta
= \xi \tan^{-1} \sqrt{\frac{(\gamma - 1)(1 + \eta)}{(\gamma + 1)(1 - \eta)}} - \frac{\sqrt{\gamma^2 - 1}}{2} \int_{-1}^{\xi} \eta d\eta.
\] (48)

Substituting in the last integral \(\eta = \sin t \), and then \(u = \tan t \), we transform it into
\[
- t_0 - \frac{\pi}{2} + \gamma \int_{-\pi/2}^{\pi/2} \frac{dt}{\gamma - \sin t} \quad [t_0 = \sin^{-1} \xi] \\
= - t_0 - \frac{\pi}{2} + 2 \int_{-1}^{u_0} \frac{du}{1 + u^2 - 2u/\gamma} \quad [u_0 = \tan t_0/2] \\
= - t_0 - \frac{\pi}{2} + \frac{2\gamma}{\sqrt{\gamma^2 - 1}} \left(\tan^{-1} \frac{u_0 - \gamma^{-1}}{\sqrt{1 - \gamma^{-2}}} + \tan^{-1} \frac{1 + \gamma^{-1}}{\sqrt{1 - \gamma^{-2}}} \right) \\
= - t_0 - \frac{\pi}{2} + \frac{2\gamma}{\sqrt{\gamma^2 - 1}} \tan^{-1} \left(\frac{1 + u_0}{1 - u_0} \sqrt{\frac{\gamma - 1}{\gamma + 1}} \right); \] (49)

here
\[
\frac{1 + u_0}{1 - u_0} = \frac{1 + \tan t_0/2}{1 - \tan t_0/2} = \frac{1 + \sin t_0}{\cos t_0} = \frac{1 + \xi}{\sqrt{1 - \xi^2}} = \sqrt{\frac{1 + \xi}{1 - \xi}}.
\] (50)

From (48), (49), (50) we obtain
\[
\int_{-1}^{\xi} \tan^{-1} \sqrt{\frac{(\gamma - 1)(1 + \eta)}{(\gamma + 1)(1 - \eta)}} d\eta
= (\xi - \gamma) \tan^{-1} \sqrt{\frac{(\gamma - 1)(1 + \eta)}{(\gamma + 1)(1 - \eta)}} + \frac{\sqrt{\gamma^2 - 1}}{2} \left(\sin^{-1} \xi + \frac{\pi}{2} \right). \] (51)
In a similar fashion
\[
\int_{-1}^{1} \eta \tan^{-1} \sqrt{\frac{(1 + \eta)(\gamma - 1)}{(1 - \eta)(\gamma + 1)}} d\eta = \frac{\pi}{4} (1 - \gamma^2 + \gamma \sqrt{\gamma^2 - 1}),
\] (52)
and the integral in the negative arctangent in (44) is obviously given by (52) as well. Using (44) and (52), we see that the \(\alpha\)-condition (47) is equivalent to
\[
\beta^2 (\gamma^2 - \gamma \sqrt{\gamma^2 - 1}) = \alpha \iff 1 - 2\alpha = \sqrt{1 - 2\beta^2},
\]
the latter being possible only if \(\alpha < 1/2\). In that case
\[
\beta = \sqrt{2\alpha(1 - \alpha)}. \tag{53}
\]
Consequently, see (45),
\[
\lambda = \log \frac{1 - \alpha}{\alpha}, \tag{54}
\]
and, see (46),
\[
h'(s) = \frac{2}{\pi} \tan^{-1} \left(\frac{(1 - 2\alpha)s}{\sqrt{2\alpha(1 - \alpha) - s^2}} \right), \quad s \in (-\sqrt{2\alpha(1 - \alpha)}, \sqrt{2\alpha(1 - \alpha)}). \tag{55}
\]
Furthermore, denoting the integral in (51) by \(J(\xi, \gamma)\), we easily get
\[
h(s) = \beta + \int_{-\beta}^{s} h'(t) dt = \beta (1 + J(\xi, \gamma) + J(-\xi, \gamma) - J(1, \gamma))
\]
\[
= \frac{2}{\pi} s \tan^{-1} \left(\frac{(1 - 2\alpha)s}{\sqrt{2\alpha(1 - \alpha) - s^2}} \right) + \frac{\sqrt{2}}{\pi} \tan^{-1} \left(\frac{\sqrt{2}(2\alpha(1 - \alpha) - s^2)}{1 - 2\alpha} \right). \tag{56}
\]
We have derived a formula for a candidate minimizer, which we now recognize as the function \(\tilde{g}_\alpha\) that we defined in section 2. To be sure, this function was determined so as to meet the ramifications of some of the constraints. However, looking at (55), we see that \(-1 < h'(s) < 1\) for \(s \in (-\beta, \beta)\), so \(h\) is indeed 1-Lipschitz, even though so far we haven’t paid attention to this constraint! Furthermore, since \(h'(s)\) is odd, the constraint (29) is met automatically, and it is the reason why we were able to satisfy the boundary constraints \(h(-\sqrt{2}/2) = h(\sqrt{2}/2) = \sqrt{2}/2\). Also, we determined \(\beta\) from the requirement that \(h\) should satisfy (17), which under these boundary conditions is equivalent to the \(\alpha\)-condition. We conclude that, at the very least, \(\tilde{g}_\alpha\) meets all the constraints, thus is \(\alpha\)-admissible.

By Lemma 7, to prove that \(\tilde{g}_\alpha\) is the minimizer, it only remains to prove that \(\tilde{g}_\alpha\) satisfies the conditions (30). By (33), \(w'(s) = 0\) for \(|s| < \beta\). And \(w(0) = 0\) as \(h'(t)\) is odd.
So \(w(s) \equiv 0 \) for \(|s| < \beta \), hence the first condition in (30) is met. As for the remaining conditions, by (anti)symmetry, it suffices to check, say, the third condition, namely that

\[
F(s, \alpha) := - \int_{-\sqrt{2}/2}^{\sqrt{2}/2} \tilde{g}_\alpha'(t) \log |s-t| dt - \lambda(\alpha)s \leq 0, \quad \beta(\alpha) \leq s \leq \sqrt{2}/2.
\]

Fix \(0 < s \leq \sqrt{2}/2 \), and let \(\hat{\alpha} = (1 - \sqrt{1 - 2s^2})/2 \), so that \(\beta(\hat{\alpha}) = s \). Clearly, because of the first condition in (30), \(F(s, \hat{\alpha}) = 0 \). To finish the proof, we will now show that \(\partial F(s, \alpha)/\partial \alpha > 0 \) for \(0 < \alpha < \hat{\alpha} \). By (32),

\[
\frac{\partial F(s, \alpha)}{\partial \beta} = - \int_{-\beta}^{\beta} \frac{\partial \tilde{g}_\alpha'(t, \alpha)}{\partial \beta} \log |s-t| dt - s \frac{\partial \lambda}{\partial \beta}.
\]

Using (46) and simplifying gives

\[
\frac{\partial \tilde{g}_\alpha'(t)}{\partial \beta} = - \frac{2}{\pi \beta (1 - 2 \beta^2)^{1/2}} \cdot \frac{t}{(\beta^2 - t^2)^{1/2}}.
\]

Since \(\beta'(\alpha) = (1 - 2 \beta^2)^{1/2} / \beta \), (57) becomes

\[
\frac{\partial F(s, \alpha)}{\partial \alpha} = \frac{2}{\pi \beta^2} \int_{-\beta}^{\beta} \frac{t \log |s-t|}{(\beta^2 - t^2)^{1/2}} dt + \frac{s}{(1 - \alpha) \alpha}.
\]

Here the integral equals

\[
-(\beta^2 - t^2)^{1/2} - \log |s-t| \bigg|_{-\beta}^{\beta} - \int_{-\beta}^{\beta} \frac{(\beta^2 - t^2)^{1/2}}{s-t} dt = -\pi (s - (s^2 - \beta^2)^{1/2}),
\]

see (38). Therefore

\[
\frac{\partial F(s, \alpha)}{\partial \alpha} = - \frac{2}{\beta^2} \left(s - (s^2 - \beta^2)^{1/2} \right) + \frac{s}{(1 - \alpha) \alpha} = s \left(\frac{1}{(1 - \alpha) \alpha} - \frac{2}{\beta^2} \right) + \frac{2}{\beta^2} (s^2 - \beta^2)^{1/2} = \frac{2}{\beta^2} (s^2 - \beta^2)^{1/2} > 0.
\]

3.3 Direct computation of \(K(\tilde{g}_\alpha) \)

Our next goal in this section is to show that \(K(\tilde{g}_\alpha) = -H(\alpha) + \log 2 \). There are two ways to do this. First, looking at the proof of Theorem 8, we see that we may repeat the arguments of that proof (without assuming the value of \(K(\tilde{g}_\alpha) \) as in that proof) to deduce that the value \(M_\alpha \) of \(K(\tilde{g}_\alpha) + H(\alpha) - \log 2 \) must be 0. For, if it were greater than 0, then,
denoting \(k = \lfloor \alpha n^2 \rfloor \), we would have

\[
1 = \mathbb{P}_n \left(T \in T_n \right) = \sum_{\lambda_0 \text{ of area } k} \mathbb{P}_n \left(T \in T_n : \lambda_T^k = \lambda_0 \right) \leq p(n^2) \exp \left(-(1 + o(1))n^2 M_{k/n^2} \right) \xrightarrow{n \to \infty} 0
\]

(since \(M_\alpha \) is obviously continuous in \(\alpha \).) On the other hand, if \(M_\alpha < 0 \), then for some sufficiently large \(n \), we would have for some diagram \(\lambda_0 \) of area \(\lfloor \alpha n^2 \rfloor \) contained in \(\square_n \), that \(K(g_{\lambda_0}) + H(\alpha) - \log 2 < 0 \) (take a diagram for which \(g_{\lambda_0} \) approximates \(\tilde{g}_\alpha \), and use Lemma 2). But this again implies a contradiction:

\[
1 \geq \mathbb{P}_n \left(T \in T_n : \lambda_T^k = \lambda_0 \right) = \exp \left(-(1 + o(1))n^2 (K(g_{\lambda_0}) + H(\alpha) - \log 2) \right) > 1.
\]

These last remarks notwithstanding, we find it worthwhile to compute \(K(\tilde{g}_\alpha) \) directly, if only to thoroughly test our derivation of \(\tilde{g}_\alpha \), and to show that all the integrals involved can be evaluated explicitly.

For \(h = \tilde{g}_\alpha \), rewrite (28) as

\[
- \int_{\sqrt{2}/2}^{\sqrt{2}/2} u(h'(u) - \text{sgn } u)du = \alpha.
\]

Using this, multiply both sides of (30) by \((h'(s) - \text{sgn } s)\) and integrate, obtaining

\[
K(h) = -\frac{\lambda_0}{2} - \frac{1}{2} \int_{-\sqrt{2}/2}^{\sqrt{2}/2} h'(t) \left[2t \log |t| - (t + \sqrt{2}/2) \log |t + \sqrt{2}/2| \right. \\
\left. - (t - \sqrt{2}/2) \log |t - \sqrt{2}/2| \right] dt,
\]

(58)

where we found before that \(\lambda = \log((1 - \alpha)/\alpha) \). Denote

\[
S(t) = 2t \log |t| - (t + \sqrt{2}/2) \log |t + \sqrt{2}/2| - (t - \sqrt{2}/2) \log |t - \sqrt{2}/2|,
\]

and set

\[
K_1(h) = \int_{-\sqrt{2}/2}^{\sqrt{2}/2} h'(t)S(t)dt,
\]

so that \(K(h) = -\lambda_0/2 - K_1(h)/2 \). Just like (57),

\[
\frac{\partial K_1(h_\alpha)}{\partial \beta} = \int_{-\sqrt{2}/2}^{\sqrt{2}/2} \frac{\partial h'(t)}{\partial \beta}S(t)dt = \frac{2}{\pi \beta (1 - 2\beta^2)^{1/2}} \int_{-\beta}^{\beta} \frac{-t}{(\beta^2 - t^2)^{1/2}} S(t)dt
\]

\[
= \frac{2}{\pi \beta (1 - 2\beta^2)^{1/2}} \int_{-\beta}^{\beta} (\beta^2 - t^2)^{1/2} \left[2 \log |t| - \log |t + \sqrt{2}/2| - \log |t - \sqrt{2}/2| \right] dt.
\]

(59)
Denote
\[E(s, \beta) = \int_{-\beta}^{\beta} (\beta^2 - t^2)^{1/2} \log|t - s| \, dt, \]
so that
\[\frac{\partial K_1(h_\alpha)}{\partial \beta} = 2E(0, \beta) - E(-\sqrt{2}/2, \beta) - E(\sqrt{2}/2, \beta). \]

(60)

By (36) and (38),
\[\frac{\partial E(s, \beta)}{\partial s} = \int_{-\beta}^{\beta} \frac{(\beta^2 - t^2)^{1/2}}{s - t} \, dt \]
\[= \begin{cases} \pi s & |s| < \beta, \\ \pi (\text{sgn} s) (|s| - (s^2 - \beta^2)^{1/2}) & \beta < |s| < \sqrt{2}. \end{cases} \]

(61)

Therefore
\[2E(0, \beta) = E(\beta, \beta) + E(-\beta, \beta) + \pi \int_{-\beta}^{0} sds + \pi \int_{0}^{\beta} sds = E(\beta, \beta) + E(-\beta, \beta) - \pi \beta^2. \]

(62)

Likewise
\[E(-\sqrt{2}/2, \beta) + E(\sqrt{2}/2, \beta) = E(-\beta, \beta) + E(\beta, \beta) + 2\pi \int_{\beta}^{\sqrt{2}/2} \left(s - (s^2 - \beta^2)^{1/2} \right) ds, \]

(63)

where
\[\int_{\beta}^{\sqrt{2}/2} (s^2 - \beta^2)^{1/2} ds = \frac{1}{2} \left[s(s^2 - \beta^2)^{1/2} - \beta^2 \log(s + (s^2 - \beta^2)^{1/2}) \right]_{\beta}^{\sqrt{2}/2} \]
\[= \frac{1}{2} \left(\frac{1 - 2\alpha}{2} - \alpha(1 - \alpha) \log \frac{1 - \alpha}{\alpha} \right). \]

(64)

So, using \(\beta = (2\alpha(1 - \alpha))^{1/2} \),
\[E(-\sqrt{2}/2, \beta) + E(\sqrt{2}/2, \beta) = E(-\beta, \beta) + E(\beta, \beta) + \pi \left(-\beta^2 + \alpha + \alpha(1 - \alpha) \log \frac{1 - \alpha}{\alpha} \right), \]

and, combining this relation with (62), we simplify (60) to
\[\frac{\partial K_1(h_\alpha)}{\partial \beta} = -\pi \left(\alpha + \alpha(1 - \alpha) \log \frac{1 - \alpha}{\alpha} \right). \]

So, by (60)
\[\frac{\partial K_1(h_\alpha)}{\partial \alpha} = \frac{\partial K_1(h_\alpha)}{\partial \beta} \cdot \frac{(1 - 2\beta^2)^{1/2}}{\beta} = \frac{1}{1 - \alpha} + \log \frac{1 - \alpha}{\alpha}. \]
Since \(h'_\alpha \equiv 0 \) at \(\alpha = 1/2 \), we have \(K_1(h) = 0 \) at \(\alpha = 1/2 \). Hence
\[
K_1(h_\alpha) = \int_{1/2}^{\alpha} \left(\frac{1}{1-x} + \log \frac{1-x}{x} \right) dx = -\log(1-\alpha) - 2\log 2
- (1-\alpha)\log(1-\alpha) - \alpha \log \alpha,
\]
which gives finally for \(K(h_\alpha) \)
\[
K(h) = \alpha \log \alpha + (1-\alpha)\log(1-\alpha) + \log 2 = -H(\alpha) + \log 2.
\]
The proof of Theorem 7 is complete.

3.4 The parametric family \(\tilde{g}_\alpha \)

The minimality proof in section 3.2 relied on the possibility to consider simultaneously the whole family of variational problems, and thus to differentiate the minimizer \(\tilde{g}_\alpha \) with respect to \(\alpha \). Moreover, to reveal a little secret, we anticipated the formula (54) for the Lagrange multiplier \(\lambda \). According to a general (semiformal) recipe of the calculus of variations (more specifically, mathematical programming), we knew that this \(\lambda \), dual to the \(\alpha \)-condition, should be equal to \(dK(\tilde{g}_\alpha)/d\alpha \), which we have proved to be correct. The advantages of this approach of varying the parameter \(\alpha \) go even deeper than that. It will turn out that the partial derivative of the minimizer \(g_\alpha(\cdot) \) with respect to \(\alpha \) is the key to the distributional properties of the random tableau. Using the formula for the minimizer, we compute easily that
\[
\frac{\partial \tilde{g}_\alpha(u)}{\partial \alpha} = \begin{cases} 0 & \sqrt{2\alpha(1-\alpha)} < |u| \leq \sqrt{2}/2 \\
\frac{\sqrt{2\alpha(1-\alpha)-u^2}}{\pi \alpha(1-\alpha)} & |u| \leq \sqrt{2\alpha(1-\alpha)} \end{cases}
\]
(66)
For each \(\alpha \), direct integration reveals that \(\partial \tilde{g}_\alpha(u)/\partial \alpha \) is a probability density function, i.e.
\[
\int_{-\sqrt{2}/2}^{\sqrt{2}/2} \frac{\partial \tilde{g}_\alpha(u)}{\partial \alpha} du = 1.
\]
(In fact, it is the density of the semicircle distribution, and it will play a prominent role later. See sections 5, 8.1, 8.2.) This observation is in perfect harmony with the fact that \(\tilde{g}_\alpha \) satisfies the \(\alpha \)-condition, thus providing a partial check of our computations. Indeed
\[
\int_{-\sqrt{2}/2}^{\sqrt{2}/2} (\tilde{g}_\alpha(u) - |u|) du = \int_{-\sqrt{2}/2}^{\sqrt{2}/2} (\tilde{g}_\alpha(u) - \tilde{g}_0(u)) du
= \int_{-\sqrt{2}/2}^{\sqrt{2}/2} \left(\int_0^\alpha \frac{\partial \tilde{g}_\alpha(u)}{\partial s} ds \right) du = \int_0^\alpha \left(\int_{-\sqrt{2}/2}^{\sqrt{2}/2} \frac{\partial \tilde{g}_\alpha(u)}{\partial s} du \right) ds
= \int_0^\alpha 1 ds = \alpha.
\]
Had we been presented with the minimizer \tilde{g}_α “out of the blue”, this would have been the least computational way to prove its α-admissibility.

4 The boundary of the square

4.1 Proof of Theorem 3

In this section, we prove Theorem 3. As was remarked in section 1.3, the RSK correspondence induces a correspondence between minimal Erdős-Szekeres permutations π of $1, 2, \ldots, n^2$ and pairs $T_1, T_2 \in T_n$ of square tableaux. By the well known result of Schensted [31], in this correspondence the length $l_{n,k}$ of the longest increasing subsequence in $\pi(1), \pi(2), \ldots, \pi(k)$ is equal to the length $\lambda^k_{T_1}(1)$ of the first row of $\lambda^k_{T_1}$. So the distribution of $l_{n,k}$ under a uniform random choice of minimal Erdős-Szekeres permutation π is equal to the distribution of the length of the first row of λ^k_{T} in a uniform random square tableau $T \in T_n$. Denoting for the remainder of this section $\alpha = \alpha(k) = k/n^2$, we can therefore reformulate Theorem 3 as stating that

$$\max_{\alpha_0 \leq k/n^2 \leq 1/2} \mathbb{P}_n \left(T \in T_n : \left| \lambda^k_T(1) - 2\sqrt{\alpha(1-\alpha)}n \right| > \alpha_0^{1/2} \omega(n)n \right) \to 0. \quad (67)$$

Theorem 8 looks as if it might imply (67). In fact, it only implies a lower bound on $\lambda^k_T(1)$. The reason is that $g_{\lambda^k_T}$ can be very close in the supremum norm to \tilde{g}_α (as is known to happen with high probability by Theorem 8), while $n^{-1}\lambda^k_T(1)$ might still be much larger than $2\sqrt{\alpha(1-\alpha)}$ (see (69) below).

Lemma 9. Let $\alpha_0 = n^{-2/3+\varepsilon}$, $\delta = n^{-1/3(1-\varepsilon)}$, $\varepsilon \in (0, 2/3)$. Then

$$\mathbb{P}_n \left(T \in T_n : \min_{\alpha_0 \leq \alpha \leq 1/2} (\lambda^k_T(1) - 2\sqrt{\alpha(1-\alpha)}n) \leq -\delta n \right) = O(n^{-b}) \quad (68)$$

for every $b > 0$.

Proof. We use the notation of Theorem 8. The length of the first row $\lambda^k_T(1)$ can be extracted from the rotated coordinate graph $g_{\lambda^k_T}$ using the following relation:

$$\frac{1}{n}\lambda^k_T(1) = \sqrt{2} \inf \left\{ u \in [0, \sqrt{2}/2] : g_{\lambda^k_T}(u) = u \right\}. \quad (69)$$

It follows from (69) that, uniformly for $\alpha \in [\alpha_0, 1/2]$ and $|u| < \sqrt{2\alpha(1-\alpha)}$,

$$|\partial \tilde{g}_\alpha(u)/\partial u - 1| = \frac{2}{\pi} \tan^{-1} \frac{\sqrt{2\alpha(1-\alpha)} - u^2}{(1 - 2\alpha)|u|} \geq c(\sqrt{2\alpha(1-\alpha)} - |u|),$$

39
c > 0 being an absolute constant. Consequently, for \(\alpha \in [\alpha_0, 1/2] \),
\[
\delta \alpha (\sqrt{2 \alpha (1 - \alpha)} - \delta) - (\sqrt{2 \alpha (1 - \alpha)} - \delta) \geq c \delta^{3/2}.
\]
So if \(T \in \mathcal{T}_n \) has the property that, for some \(k \) in question,
\[
\lambda_T^k (1) - 2 \sqrt{\alpha (1 - \alpha) n} < - \delta n,
\]
then by (69),
\[
\| g_{\lambda_T^k} - \hat{g}_\alpha \|_\infty \geq \sup \{ |g_{\lambda_T^k} (u) - \hat{g}_\alpha (u)| : \sqrt{2 \alpha (1 - \alpha)} - \delta < u < \sqrt{2 \alpha (1 - \alpha)} \} = \sup \{ \hat{g}_\alpha (u) - u : \sqrt{2 \alpha (1 - \alpha)} - \delta < u < \sqrt{2 \alpha (1 - \alpha)} \} \geq c \delta^{3/2}.
\]
So, by Theorem 8 with \(\epsilon := c \delta^{3/2} \),
\[
\mathbb{P}_n \left(T \in \mathcal{T}_n : \min_{\alpha_0 \leq \alpha \leq 1/2} (\lambda_T^k (1) - 2 \sqrt{\alpha (1 - \alpha) n}) \leq - \delta n \right) \\
\leq \mathbb{P}_n \left(T \in \mathcal{T}_n : \max_{\alpha_0 \leq \alpha \leq 1/2} \| g_{\lambda_T^k} - \hat{g}_\alpha \|_\infty \geq c \delta^{3/2} \right) \\
\leq \exp (3 \delta n - c\delta n^{2} \delta^{3r/2}) \leq \exp (3 \delta n - c\delta n^{2} \delta^{3r/2}) \xrightarrow{n \to \infty} 0,
\]
provided that we choose a feasible \(r \), i.e. \(r \in (2, 3) \), such that \(r < 2 (1 - \epsilon)^{-1} \).

To prove the upper bound and thus conclude the proof of Theorem 3, it suffices to prove an upper bound for the expected value of \(\lambda_T^k \), namely that, for \(\alpha_0 \leq \alpha \leq 1/2 \),
\[
\mathbb{E}_n \left[\lambda_T^k (1) \right] \leq 2 \sqrt{\alpha (1 - \alpha) n} + O(\alpha_0^{1/2} n),
\] (70) where \(\mathbb{E}_n \) denotes expectation with respect to the probability measure \(\mathbb{P}_n \). Indeed, choosing \(\omega(n) \to \infty \) however slowly, we bound
\[
\mathbb{P}_n \left(T \in \mathcal{T}_n : \lambda_T^k (1) \geq 2 \sqrt{\alpha (1 - \alpha) n} + \alpha_0^{1/2} \omega(n) n \right) \\
(\text{by Markov's inequality}) \leq (\alpha_0^{1/2} \omega(n) n)^{-1} \mathbb{E}_n \left[\max(0, \lambda_T^k (1) - 2 \sqrt{\alpha (1 - \alpha) n}) \right] \\
(\text{by Lemma 9, for any } b > 0) \leq (\alpha_0^{1/2} \omega(n) n)^{-1} \mathbb{E}_n \left[\lambda_T^k (1) - 2 \sqrt{\alpha (1 - \alpha) n} + \delta n \right] + O(n^{1-b}) \\
= O((\alpha_0^{1/2} n + \delta n)/(\alpha_0^{1/2} \omega(n) n)) = O(\omega(n)^{-1}).
\]

Write
\[
\lambda_T^k (1) = \sum_{j=1}^{k} I_{n,j},
\]
where \(I_{n,j} = \lambda_T^j (1) - \lambda_T^{j-1} (1) \) = indicator of the event that \(\lambda_T^j \) is obtained from \(\lambda_T^{j-1} \) by adding a box to the first row. Let \(p_{n,j} = \mathbb{E}_n (I_{n,j}) \).
Lemma 10. In the notation of Lemma 9, as $n \to \infty$,

$$p_{n,j} \leq \frac{n^2 - 2j}{n\sqrt{j(n^2 - j)}} + O(\delta n(n^2 - 2j + 1)^{-1})$$

uniformly for $0 \leq j/n^2 \leq 1/2$.

Proof. Let $\mathcal{Y}_{n,j}$ be the set of Young diagrams of area j contained in the $n \times n$ square. For a diagram $\lambda \in \mathcal{Y}_{n,j}$, denote by next$(\lambda)$ the diagram obtained from λ by adding a box to the first row. Then, conditioning $I_{n,j}$ on the shape λ_{j-1}, we have

$$p_{n,j} = \mathbb{P}_n (\lambda_{j-1} = \text{next}(\lambda_{j-1})) = \sum_{\lambda \in \mathcal{Y}_{n,j-1}} \frac{d(\lambda)d(\square_n \setminus \text{next}(\lambda))}{d(\square_n)}$$

This is nearly an average over $\mathcal{Y}_{n,j}$ with respect to the measure (7); in fact, slightly less, since not any $\lambda' \in \mathcal{Y}_{n,j}$ is of the form next(λ) for some $\lambda \in \mathcal{Y}_{n,j-1}$. It follows from the convexity of the function $x \to x_2$ that

$$p_{n,j}^2 \leq \sum_{\lambda \in \mathcal{Y}_{n,j-1}} \frac{d(\text{next}(\lambda))d(\square_n \setminus \text{next}(\lambda))}{d(\square_n)} \cdot \left(\frac{d(\lambda)}{d(\text{next}(\lambda))}\right)^2$$

We now note the amusing identity

$$\frac{d(\lambda)d(\square_n \setminus \text{next}(\lambda))}{d(\text{next}(\lambda))d(\square_n \setminus \lambda)} = \frac{n^2 - \lambda(1)^2}{j(n^2 - j + 1)}, \quad (\lambda \in \mathcal{Y}_{n,j-1})$$

which follows from writing out the hook products for $d(\cdot)$ in (6) and observing cancellation of almost all the factors - see Figure 5. Here is a proof of (72). Clearly the only hook lengths influenced by this operation are of the cells in the first row and the $(\lambda(1) + 1)$-th column. In particular,

$$\frac{d(\lambda)}{d(\text{next}(\lambda))} = \frac{1}{j} \prod_{i=1}^{\lambda(1)} \frac{\lambda(1) - i + 1 + \lambda'(i)}{\lambda(1) - i + \lambda'(i)};$$

here $\lambda'(i)$ is the number of cells in the i-th column of λ. Clearly the fraction factors “telescope” on each subinterval of $[1, \lambda(1)]$ where $\lambda'(i)$ is constant. Let $[i_1, i_2]$ be such a (maximal) subinterval. Maximality implies that $(i_2, \lambda'(i_2))$ is a corner of λ, and that
\((\lambda'(i_1) + 1, i_1)\) is a corner of \(\square_n \setminus \text{next}(\lambda)\). Then
\[
\prod_{i=1}^{\lambda(1)} \frac{\lambda(1) - i + 1 + \lambda'(i)}{\lambda(1) - i + \lambda'(i)} = \frac{\lambda(1) - i_1 + 1 + \lambda'(i_1)}{\lambda(1) - i_2 + \lambda'(i_2)} = \frac{h_{\square_n \setminus \text{next}(\lambda)}(\lambda'(i_1) + 1, \lambda(1) + 1)}{h_{\lambda(1, u_2)}(1)}
\]
where, say, \(h_{\lambda}(u, v)\) denotes the hook length for a cell \((u, v) \in \lambda\). Multiplying these fractions for all such subintervals \([i_1, i_2]\), we get
\[
\frac{d(\lambda)}{d(\text{next}(\lambda))} = \frac{1}{j} \left(\prod_{(u, v) \in \text{corners}(\lambda)} f(u, v) \right)^{-1} \cdot \left(\prod_{(u, v) \in \text{corners}(\square_n \setminus \lambda)} g(u, v) \right). \tag{73}
\]
Here \(\text{corners}(\mu)\) is the corner set of a diagram \(\mu\): \(f(u, v)\) is the hook length of a cell in the first row of \(\lambda\) whose vertical leg ends at the corner \((u, v) \in \text{corners}(\lambda)\); \(g(u, v)\) is the hook length of a cell in \(\square_n \setminus \text{next}(\lambda)\) from the \((\lambda(1) + 1)\)-th column whose horizontal arm ends at the corner \((u, v) \in \text{corners}(\square_n \setminus \lambda)\). Next, considering separately the first row cells \((1, v), v > \lambda(1)\), the top \(\lambda'(1)\) cells in the \((\lambda(1) + 1)\)-th column, and finally the bottom \(n - \lambda'(1)\) cells in that column, we obtain
\[
\frac{d(\square_n \setminus \text{next}(\lambda))}{d(\square_n \setminus \lambda)} = \frac{n - \lambda(1)}{n^2 - j + 1} \prod_{k=2}^{\lambda'(1)} \frac{\lambda(1) - \lambda(k) + k}{\lambda(1) - \lambda(k) + k - 1} \cdot \frac{\lambda(1) + n}{\lambda(1) + \lambda'(1)}. \tag{74}
\]
Here, analogously to the \(d(\lambda)/d(\text{next}(\lambda))\) case,
\[
\frac{1}{\lambda(1) + \lambda'(1)} \prod_{k=2}^{\lambda'(1)} \frac{\lambda(1) - \lambda(k) + k}{\lambda(1) - \lambda(k) + k - 1}
\]
\[
= \left(\prod_{(u, v) \in \text{corners}(\lambda)} f(u, v) \right) \cdot \left(\prod_{(u, v) \in \text{corners}(\square_n \setminus \lambda)} g(u, v) \right)^{-1}. \tag{75}
\]
Putting \(\text{(73)}, \text{(74)}, \text{(75)}\) together gives \(\text{(72)}\).
Combining \(\text{(71)}\) and \(\text{(72)}\) gives that
\[
P_{n,j}^2 \leq \mathbb{E}_n \left[\frac{n^2 - \lambda_j^{-1}(1)^2}{j(n^2 - j + 1)} \right]. \tag{76}
\]
By Lemma 9, we may write
\[
\mathbb{E}_n(\lambda_j^{-1}(1)) \geq \frac{2\sqrt{j(n^2 - j)}}{n} - \delta n,
\]
\((\delta = n^{-(1-\epsilon)/3})\), for all \(j/n^2 \in [\alpha_0, 1/2]\). So, using \(\mathbb{E}_n^2[\lambda_j^{-1}(1)] \leq \mathbb{E}[(\lambda_j^{-1}(1))^2]\),
\[
P_{n,j}^2 \leq \frac{(n^2 - 2j)^2}{n^2 \cdot j(n^2 - j)} + \frac{4\delta}{\sqrt{j(n^2 - j)}}. \tag{42}
\]
Figure 5: Illustration of (72) for \(\lambda = (6, 6, 6, 6, 5, 5, 5, 3, 3, 2) \): The numbers in the cells are the hook lengths before and after the new cell is added.

or, using \((1 + z)^{1/2} \leq 1 + z/2\) for \(j < n^2/2\),

\[
p_{n,j} \leq \frac{n^2 - 2j}{n \sqrt{j(n^2 - j)}} + O(\delta n(n^2 - 2j + 1)^{-1}).
\]

The estimate holds for \(j = n^2/2 \) as well, since \(\delta^{1/2} n^2 \to \infty \).

Note that (70) implies in particular the rough bound

\[
p_{n,j} \leq \frac{n}{\sqrt{j(n^2 - j + 1)}},
\]

valid for all \(j \leq n^2 \). Now, to complete the proof of Theorem 3, we use this bound for \(j \leq \alpha_0 n^2 \) and Lemma 10 for \(j > \alpha_0 n^2 \). First

\[
E_n \left[\lambda_k^T(1) \right] = \sum_{j \leq \alpha_0 n^2} p_{n,j} + \sum_{\alpha_0 n^2 < j \leq k} p_{n,j} = \Sigma_1 + \Sigma_2.
\]

Here

\[
\Sigma_1 \leq 2 \sum_{j \leq \alpha_0 n^2} j^{-1/2} = O(n \alpha_0^{1/2}),
\]

43
and
\[\Sigma_2 \leq \sum_{\alpha_0 n^2 < j \leq k} \frac{n^2 - 2j}{n \sqrt{j(n^2 - j)}} + O(\delta n \log n). \]

The last sum is bounded above by
\[n \int_{\alpha_0 - n^{-2}}^{\alpha} \frac{1 - 2t}{\sqrt{t(1 - t)}} \, dt = 2n \sqrt{\alpha(1 - \alpha)} + O(n\alpha^{1/2}_0). \]

Therefore, since \(\alpha^{1/2}_0 \gg \delta \log n \),
\[E_n[|\lambda_T^k|] \leq 2n \sqrt{\alpha(1 - \alpha)} + O(n\alpha^{1/2}_0). \]
So (70) follows. Theorem 3 is proved. \(\blacksquare \)

4.2 Proof of Theorem 1(i)

With our enhanced understanding of the distribution of \(\lambda_T^k(1) \), we may now prove Theorem 1(i). First we show that for individual boundary points, the tableau approaches the limit surface. Fix \((x, y) \) on the boundary of the square. By symmetry, we may assume that \(y = 0 \), \(0 < x < 1 \). Let \(\epsilon > 0 \). Denote \(\alpha = L(x, 0) = \frac{1 - \sqrt{1 - x^2}}{2} \), so that \(x = 2\sqrt{\alpha(1 - \alpha)} \). For any tableau \(T \in T_n \), denote \(k_T = t_{[nx]+1,1} \), and let \(\beta_T = k_T/n^2 \). We want to show that with high probability, \(|\beta_T - \alpha| \) is small. Note that \(k_T \) is an integer representing the smallest \(j \) for which \(\lambda_j^k(1) > nx \). Therefore \(nx \leq \lambda_j^k(1) < nx + 1 \), or
\[\left| \lambda_j^k(1) - x \right| \leq \frac{1}{n} \quad (77) \]

The function \(f(t) := L(t, 0) = (1 - \sqrt{1 - t^2})/2 \) is monotonically increasing and uniformly continuous on \([0, 1]\). Choose a \(\delta > 0 \) such that \(|t - t'| < \delta \) implies \(|f(t) - f(t')| < \epsilon/3 \). Choose numbers \(0 = a_0 < a_1 < a_2 < \ldots < a_N = 1/2 \) such that \(a_{i+1} - a_i < \epsilon/3 \), \(i = 0, 1, 2, \ldots, N - 1 \). Denote \(x_i = f^{-1}(a_i) = 2\sqrt{a_i(1 - a_i)} \).

Let \(T \in T_n \) be a tableau that satisfies
\[\left| \frac{1}{n} \lambda_T^{\lfloor n^2 \cdot a_i \rfloor}(1) - x_i \right| < \frac{\delta}{2}, \quad (i = 1, 2, \ldots, N) \quad (78) \]
(this happens with high probability, by (67)). Let \(0 \leq i < N \) be such that \(a_i \leq \beta_T < a_{i+1} \). Then clearly
\[x_i - \frac{\delta}{2} < \frac{1}{n} \lambda_T^{\lfloor n^2 \cdot a_i \rfloor}(1) \leq \frac{1}{n} \lambda_T^{\lfloor n^2 \cdot a_i+1 \rfloor}(1) < x_{i+1} + \frac{\delta}{2} \quad (79) \]
Combining this with (77) we get, for $n > 2/\delta$,

$$x_i - \delta < x < x_{i+1} + \delta.$$

Therefore

$$a_i - \frac{\epsilon}{3} < \alpha = f(x) < a_{i+1} + \frac{\epsilon}{3},$$

and, since also $a_i \leq \beta_T < a_{i+1}$ and $a_{i+1} - a_i < \epsilon/3$, we get

$$|\beta_T - \alpha| < \epsilon.$$

Summarizing, we have shown that

$$\mathbb{P}_n (T \in \mathcal{T}_n : |\beta_T - \alpha| < \epsilon) \geq \mathbb{P}_n \left(T \in \mathcal{T}_n : \forall i = 1, 2, \ldots, N, \left| \frac{1}{n} \lambda_T^{\langle a_i, n^2 \rangle}(1) - x_i \right| < \frac{\delta}{2} \right) \xrightarrow{n \to \infty} 1. \tag{80}$$

Theorem 1(i) now follows easily. It is enough to say that, because of the monotonicity of the tableau $t_{i,j}$ as a function of i and j, and the monotonicity of the limit surface function L, given $\epsilon > 0$ we can find finitely many points $(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N) \in [0, 1] \times [0, 1] \setminus \{(0, 0), (1, 0), (0, 1), (1, 1)\}$ such that the event inclusion

$$\left\{ T \in \mathcal{T}_n : \max_{1 \leq i \leq n} \left| \frac{1}{n^2} t_{i,j} - L \left(\frac{i}{n}, \frac{j}{n} \right) \right| > \epsilon \right\} \subseteq \bigcup_{i=1}^{N} \left\{ T \in \mathcal{T}_n : \left| \frac{1}{n^2} t_{\lfloor nx_i \rfloor + 1, \lfloor ny_i \rfloor + 1} - L(x_i, y_i) \right| > \frac{\epsilon}{10} \right\} \tag{81}$$

holds. But now, the \mathbb{P}_n-probability of each of the individual events in this union tends to 0 as $n \to \infty$ – because of Theorem 1(ii) for the points (x_i, y_i) in the interior of the square (using the continuity of the function L), and because of (80) for the points on the boundary.

5 The hook walk and the cotransition measure of a diagram

In this section, we study the location of the k-th entry in the random tableau $T \in \mathcal{T}_n$, when $k \approx \alpha \cdot n^2$. The idea is to condition the distribution of the location of the k-th entry on the shape λ_T^k of the k-th subtableau of T. Given the shape λ_T^k, the distribution of the location of the k-th entry is exactly the so-called cotransition measure of λ_T^k (see...
below). We know from Theorem 8 that with high probability, the rescaled shape of λ_T^k is approximately described in rotated coordinates by the level curve $v = \tilde{g}_n(u)$. Romik [30] showed that the cotransition measure is a continuous functional on the space of continual Young diagrams, and derived an explicit formula for the probability density of its u-coordinate. By substituting the level curve \tilde{g}_n in the formula from [30], we will get exactly the semicircle density [3], proving Theorem 2.

Let $\lambda : \lambda(1) \geq \lambda(2) \geq \ldots \geq \lambda(m) > 0$ be a Young diagram with $k = |\lambda| = \sum_i \lambda(i)$ cells. A cell $c = (i, j) \in \lambda$ $(1 \leq i \leq m, 1 \leq j \leq \lambda(i))$ is called a corner cell if removing it leaves a Young diagram $\lambda \setminus c$, or in other words if $j = \lambda(i)$ and $(i = m$ or $\lambda(i) > \lambda(i + 1))$. If T is a Young tableau of shape λ, let $c_{\text{max}}(T)$ be the cell containing the maximal entry k in T. Obviously $c_{\text{max}}(T)$ is a corner cell of λ.

The cotransition measure of λ is the probability measure μ_λ on corner cells of λ, which assigns to a corner cell c measure

$$\mu_\lambda(c) = \frac{d(\lambda \setminus c)}{d(\lambda)}$$

(with $d(\lambda)$ as in [3]). This is a probability measure, since one may divide up the $d(\lambda)$ tableaux of shape λ according to the value of $c_{\text{max}}(T)$; for any corner cell c, there are precisely $d(\lambda \setminus c)$ tableaux for which $c_{\text{max}}(T) = c$. In other words μ_λ describes the distribution of $c_{\text{max}}(T)$, for a uniform random choice of a tableau T of shape λ.

It is fascinating that there exists a simple algorithm to sample from μ_λ. This is known as the hook walk algorithm of Greene-Nijenhuis-Wilf, and it can be described as follows: Choose a cell $c = (i, j) \in \lambda$ uniformly among all k cells. Now execute a random walk, replacing at each step the cell c with a new cell c', where c' is chosen uniformly among all cells which lie either to the right of, or (exclusive or) below c. The walk terminates when a corner cell is reached, and it can be shown [13] that the probability of reaching c is given by μ_λ. Figure 6 shows a Young diagram, its corner cells and a sample hook walk path.

Now consider a sequence $\lambda_n : \lambda_n(1) \geq \lambda_n(2) \geq \lambda_n(3) \geq \ldots$ of Young diagrams for which, under suitable scaling, the shape converges to some limiting shape described by a continuous function. More precisely, let $f_{\lambda_n}(x)$ be as in [4], and let g_{λ_n} be its rotated coordinate version. Let $f_\infty : [0, \infty) \to [0, \infty)$ be a weakly decreasing function, and let g_∞ be its rotated coordinate version, a 1-Lipschitz function. In this more general setting, think of g_{λ_n} and g_∞ as functions defined on all \mathbb{R}. Assume that: there exists an $M > 0$ such that $f_\infty(x) = 0$ for $x \geq M$, and on $[0, M]$ f is twice continuously differentiable, and its derivative is bounded away from 0 and ∞ (equivalently, for some $K < 0 < K'$, $g_\infty(u) = |u|$ for $u \notin (K, K')$, and g is twice continuously differentiable in $[K, K']$ with derivative bounded away from -1 and 1). Finally, assume that

$$||g_{\lambda_n} - g_\infty||_\infty \xrightarrow{n \to \infty} 0.$$
Figure 6: A Young diagram, its corners and a hook walk path

For any n, let (I_n, J_n) be a μ_{λ_n}-distributed random vector. Let $X_n = I_n/n, Y_n = J_n/n$. We paraphrase results from [30].

Theorem 10. (Romik [30], Theorems 1(b), 6) As $n \to \infty$, (X_n, Y_n) converges in distribution to the random vector

$$(X, Y) := \left(\frac{V + U}{2}, \frac{V - U}{2} \right),$$

where $V = g_\infty(U)$ and U is a random variable on $[K, K']$ with density function

$$
\phi_U(x) = \frac{2}{\pi A} \cos \left(\frac{\pi g'_\infty(x)}{2} \right) \sqrt{(x - K)(K' - x)} \exp \left(\frac{1}{2} \int_{K}^{K'} \frac{g'_\infty(u)}{x - u} du \right), \tag{83}
$$

with

$$
A = \int_{0}^{M} f_\infty(x) dx = \int_{K}^{K'} (g_\infty(u) - |u|) du
$$

and the integral in the exponential being a principal value integral.

Proof of Theorem 2. We may assume that $0 < \alpha < 1/2$. The proof of Theorem 2 now consists of an observation, a remark, and a computation.

The observation is that the distribution of the location of the k_n-th entry in a random tableau $T \in T_n$ is the distribution of the maximal entry in the shape $\lambda_{k_n}^{T}$ of the k_n-th subtableau of T. Because by Theorem 8, this shape (suitably rescaled and rotated) converges in probability to $\tilde{g_\alpha}$ (Theorem 2 assumes $k_n/n^2 \to \alpha$), we may apply Theorem 10 and conclude that Theorem 2 is true with a density for U_α given by taking $g_\infty = \tilde{g_\alpha}, A = \alpha, -K = K' = \sqrt{2\alpha(1-\alpha)}$ in (83).
The remark is that the above is not quite true, since \(\tilde{g}_\alpha \) does not satisfy the assumptions of Theorem 10! The problem is that

\[
- \lim_{\epsilon \to 0} \tilde{g}_\alpha'(-\sqrt{2\alpha(1-\alpha)} + \epsilon) = \lim_{\epsilon \to 0} \tilde{g}_\alpha'(-\sqrt{2\alpha(1-\alpha)} - \epsilon) = 1,
\]

so the derivative is not bounded away from -1 and 1. However, since this only happens near the two boundary points, going over the computations in [30] shows that this is not a problem, and the formula (83) is still valid in this case.

The computation is the verification that (83) gives the semicircle distribution (3) under the above substitutions. We compute, using (33) and the identity \(\cos(tan^{-1} v) = (1 + v^2)^{-1/2} \):

\[
\begin{align*}
\frac{2}{\pi A} &= \frac{2}{\pi \alpha}, \\
\sqrt{(x-K)(K'-x)} &= \sqrt{2\alpha(1-\alpha) - x^2}, \\
\exp\left(\frac{1}{2} \int_{K'}^{K-1} \frac{\tilde{g}_\alpha(u)}{x-u} du\right) &= \sqrt{\frac{\alpha}{1-\alpha}} \cdot \sqrt{\frac{\frac{1}{2} - x^2}{2\alpha(1-\alpha) - x^2}}, \\
\cos\left(\frac{\pi \tilde{g}_\alpha'(x)}{2}\right) &= \cos\left(\tan^{-1}\frac{(1-2\alpha)x}{\sqrt{2\alpha(1-\alpha) - x^2}}\right) \\
&= \left(1 + \frac{(1-4\alpha(1-\alpha))x^2}{2\alpha(1-\alpha) - x^2}\right)^{-1/2} = \frac{\sqrt{2\alpha(1-\alpha) - x^2}}{2\alpha(1-\alpha)\sqrt{\frac{1}{2} - x^2}}
\end{align*}
\]

Multiplying the above expressions gives

\[
\phi_U(x) = \frac{1}{\pi \alpha(1-\alpha)} \sqrt{2\alpha(1-\alpha) - x^2}, \quad |x| \leq \sqrt{2\alpha(1-\alpha)},
\]

as claimed.

\[\blacksquare\]

6 Plane partitions

We prove Theorem 4 on the limit shape of plane partitions of an integer \(m \) over an \(n \times n \) square diagram, when \(n^6 = o(m) \). The basic observation relating this to Young tableaux is that in this asymptotic regime, almost all plane partitions have distinct parts. A plane partition with distinct parts can be completely described by separately giving the order
structure on its parts – a square Young tableau – and an unordered list of the parts, which is simply a linear partition of \(m \) into \(n^2 \) distinct parts. The structure of these linear partitions is described by a limit shape theorem due to Vershik and Yakubovich [37], [38]. Combining these results will give us our proof of Theorem 4.

We will use a result of Erdös and Lehner on partitions into a fixed number of summands.

Theorem 11. (Erdős-Lehner [9]) Let \(p(m,k) \) denote the number of partitions of \(m \) into \(k \) parts. Let \(q(n,k) \) denote the number of partitions of \(m \) into \(k \) distinct parts. If \(m \) and \(k \) are sequences of integers that tend to infinity in such a way that \(k^3 = o(m) \), then

\[
\frac{q(m,k)}{p(m,k)} \longrightarrow 1.
\]

In words, if \(k^3 = o(m) \), almost all partitions of \(m \) into \(k \) parts have no repeated parts.

Proof. This is a combination of Corollary 4.3 and Lemma 4.4 in [9].

For a Young diagram \(\lambda \), denote by \(p_\lambda(m) \) the number of plane partitions of \(m \) of shape \(\lambda \). Denote by \(q_\lambda(m) \) the number of plane partitions of \(m \) of shape \(\lambda \) with all parts distinct.

Lemma 11. Let \(\lambda_m \) be a sequence of Young diagrams. Let \(k_m = |\lambda_m| \). If \(k_m^3 = o(m) \) as \(m \to \infty \), then

\[
\frac{q_{\lambda_m}(m)}{p_{\lambda_m}(m)} \longrightarrow 1.
\]

In words, if \(k_m^3 = o(m) \), almost all plane partitions of shape \(\lambda_m \) have no repeated parts.

Proof. If \(\lambda \) is a Young diagram of size \(k = |\lambda| \), a plane partition of \(m \) of shape \(\lambda \) is described by the order structure on its parts, and the unordered set of the parts. This gives the equation

\[
q_\lambda(m) = d(\lambda)q(m,k).
\]

We claim that

\[
p_\lambda(m) \leq d(\lambda)p(m,k). \tag{84}
\]

This will prove the claim, since then we will have

\[
\frac{q(m,k_m)}{p(m,k_m)} \leq \frac{q_{\lambda_m}(m)}{p_{\lambda_m}(m)} \leq 1,
\]

and the Lemma will follow from Theorem 11. To prove (84), we define a mapping that assigns injectively to each plane partition \(\pi = (p_{i,j})_{(i,j) \in \lambda} \) a pair \((T,\mu)\), where
$T = (t_{i,j})_{(i,j) \in \lambda}$ is a Young tableau of shape λ, and $\mu : \mu(1) \geq \mu(2) \geq \ldots \geq \mu(k)$ is a partition of m into k parts. The mapping is defined as follows. Define a linear order "\preceq" on the cells (i,j) of λ, by stipulating that

$$(i,j) \preceq (i',j') \iff p_{i,j} > p_{i',j'} \text{ or } [p_{i,j} = p_{i',j'} \text{ and } (i < i' \text{ or } (i = i' \text{ and } j < j'))].$$

Let $(i_1,j_1) \prec (i_2,j_2) \prec \ldots \prec (i_k,j_k)$ be the cells of λ sorted in this linear ordering, and set $t_{i_l,j_l} = l$ and $\mu(l) = p_{i_l,j_l}$, $l = 1, 2, \ldots, k$.

It is easy to verify that the mapping is injective and has the required range. See Figure 7 for an illustration.

\[\pi = \begin{array}{cccc}
7 & 7 & 6 & 5 \\
7 & 6 & 5 & 5 \\
7 & 5 & 2 \\
6
\end{array} \quad \rightarrow \quad \begin{array}{cccc}
1 & 2 & 5 & 8 & 12 \\
3 & 6 & 9 & 10 \\
4 & 11 & 13 \\
7
\end{array} \]

\[T = \begin{array}{cccc}
7 & 7 & 6 & 5 & 2 \\
3 & 6 & 9 & 10 \\
4 & 11 & 13 \\
7
\end{array} \]

\[\mu = 7, 7, 7, 6, 6, 5, 5, 2, 2. \]

Figure 7: Illustration of the proof of Lemma 11

Next, we recall the Vershik-Yakubovich limit shape theorem for partitions of m into k distinct summands, when $k = o(\sqrt{m})$.

Theorem 12. (Vershik-Yakubovich [37], [38]) Let $m = m_n$ and $k = k_n$ grow to infinity as a function of some parameter n, in such a way that $k = o(\sqrt{m})$. Let $\lambda_n : \lambda_n(1) > \lambda_n(2) > \ldots > \lambda_n(k)$ be a sequence of uniform random partitions of m into k distinct parts. Then for any $t \geq 0$, $\epsilon > 0$,

\[P\left(\frac{1}{k}\#\{1 \leq l \leq k : \lambda_n(l) > \frac{m}{k} t \} - e^{-t} \right) > \epsilon \xrightarrow{n \to \infty} 0. \]

In words, the graph of the Young diagram of a uniform random partition of m into k distinct parts, when $k = o(\sqrt{m})$, will with high probability resemble the limit shape e^{-t}.\(^5\)

\(^5\)Actually, it is more correct to say that this is the graph of the conjugate partition λ'.
Proof of Theorem 4. Let \(\pi = (p_{i,j})_{i,j=1}^{n^2} \) be the random plane partition of \(m \) over the square diagram \(\square_n \). Since \(n^6 = o(m) \) and \(|\square_n| = n^2 \), by Lemma 11 we may assume that \(\pi \) was chosen uniformly among all plane partitions of \(m \) of shape \(\square_n \) with all parts distinct, since this is a set of probability close to 1 in \(\mathcal{P}_{n,m} \). Equivalently, by the remarks at the beginning of this section, we may assume that \(\pi \) is selected by choosing independently a random Young tableau \(T \in \mathcal{T}_n \) and a random partition \(\mu : \mu(1) > \mu(2) > \ldots > \mu(n^2) \) of \(m \) into \(n^2 \) distinct parts, then setting \(p_{i,j} = \mu(t_{i,j}) \).

Fix \(0 \leq x, y < 1 \). Let \(\alpha = L(x,y) \). Let \(i = \lfloor nx \rfloor + 1, j = \lfloor ny \rfloor + 1 \), and \(\beta = t_{i,j}/n^2 \).

We need to show that \(\tilde{S}_\alpha(x,y) = (n^2/m)p_{i,j} \) is with high probability very close to \(-\log \alpha \). Let \(\epsilon > 0 \) be small. From Theorem 1(i), we know that with (asymptotically) high probability

\[
|\beta - \alpha| < \epsilon. \tag{85}
\]

Now, apply Theorem 12 for the random partition \(\mu \) with \(t = -\log(\alpha - 2\epsilon) \). This gives that with high probability

\[
\left| \frac{1}{n^2} \# \left\{ 1 \leq l \leq n^2 : \mu(l) > \frac{m}{n^2}(-\log(\alpha - 2\epsilon)) \right\} - (\alpha - 2\epsilon) \right| < \epsilon,
\]

or equivalently, since \(\mu(1) > \mu(2) > \ldots > \mu(n^2) \),

\[
\left| \frac{1}{n^2} \max \left\{ 1 \leq l \leq n^2 : \mu(l) > \frac{m}{n^2}(-\log(\alpha - 2\epsilon)) \right\} - (\alpha - 2\epsilon) \right| < \epsilon.
\]

This implies in particular that

\[
\max \left\{ 1 \leq l \leq n^2 : \mu(l) > \frac{m}{n^2}(-\log(\alpha - 2\epsilon)) \right\} < n^2(\alpha - 2\epsilon + \epsilon) = (\alpha - \epsilon)n^2,
\]

hence, since by (85), \(t_{i,j} > (\alpha - \epsilon)n^2 \),

\[
p_{i,j} = \mu(t_{i,j}) \leq \frac{m}{n^2}(-\log(\alpha - 2\epsilon)).
\]

Apply Theorem 12 again with \(t = -\log(\alpha + 2\epsilon) \). This gives that with high probability

\[
\left| \frac{1}{n^2} \# \left\{ 1 \leq l \leq n^2 : \mu(l) > \frac{m}{n^2}(-\log(\alpha + 2\epsilon)) \right\} - (\alpha + 2\epsilon) \right| < \epsilon,
\]

or equivalently

\[
\left| \frac{1}{n^2} \max \left\{ 1 \leq l \leq n^2 : \mu(l) > \frac{m}{n^2}(-\log(\alpha + 2\epsilon)) \right\} - (\alpha + 2\epsilon) \right| < \epsilon.
\]

In particular this gives that

\[
\max \left\{ 1 \leq l \leq n^2 : \mu(l) > \frac{m}{n^2}(-\log(\alpha + 2\epsilon)) \right\} > n^2(\alpha + 2\epsilon - \epsilon) = (\alpha + \epsilon)n^2,
\]
hence, since by (85),
\[t_{i,j} < (\alpha + \epsilon)n^2, \]
\[p_{i,j} = \mu(t_{i,j}) > \frac{m}{n^2}(-\log(\alpha + 2\epsilon)) . \]
We have shown that the event
\[-\log(\alpha + 2\epsilon) < \frac{n^2}{m}p_{i,j} \leq -\log(\alpha - 2\epsilon) \]
holds with asymptotically high probability. Since \(\epsilon \) was arbitrary the result follows.

7 Computations for the rectangular case

The proof of Theorem 5 involves exactly the same ideas as the proof of Theorem 1, with some more computations, which we include here for completeness. The proof that Theorem 6 follows from Theorem 5 is completely identical to the proof in section 6 that Theorem 4 follows from Theorem 1.

Fix \(0 < \theta \leq 1 \) and \(0 < \alpha < 1 \). Our starting point is the rotated-coordinate formulation of the variational problem whose solution will yield the \(\alpha \)-level curve of the limit surface \(L_{\theta} \). The computations leading to this variational problem are obvious generalizations of the corresponding computations for the square case \(\theta = 1 \), and are omitted.

Variational problem - the rectangular case. A function \(h : [-\theta \sqrt{2}/2, \sqrt{2}/2] \to [0, \infty) \) is called \(\alpha \)-admissible if \(h \) is 1-Lipschitz, and satisfies
\[h(-\theta \sqrt{2}/2) = \theta \sqrt{2}/2, \]
\[h(\sqrt{2}/2) = \sqrt{2}/2, \]
\[\int_{-\theta \sqrt{2}/2}^{\sqrt{2}/2} (h(u) - |u|) du = \alpha \theta. \]
Find the unique \(\alpha \)-admissible \(h \) that minimizes
\[J(h) = -\frac{1}{2} \int_{-\theta \sqrt{2}/2}^{\sqrt{2}/2} \int_{-\theta \sqrt{2}/2}^{\sqrt{2}/2} h'(s)h'(t) \log |s - t| ds dt. \]

To derive the minimizer, first consider the case when \(\alpha \) is small. In that case, we make an assumption on the form of the minimizer similar to (31), but with a non-symmetric interval \([-\beta_1(\alpha), \beta_2(\alpha)] \), where \(\beta_1 \in (0, \theta \sqrt{2}/2) \), \(\beta_2 \in (0, \sqrt{2}/2) \). That is, we assume that \(h' \) has the form
\[h'(s) = \begin{cases}
-1, & \text{if } -\theta \sqrt{2}/2 < s < -\beta_1, \\
\in (-1, 1), & \text{if } -\beta_1 < s < \beta_2, \\
+1, & \text{if } \beta_2 < s < \sqrt{2}/2.
\end{cases} \]
Replace the conditions (86), (87), (88) with the equivalent set of conditions

\[
\begin{align*}
\int_{-\theta\sqrt{2}/2}^{\sqrt{2}/2} h'(u) du &= (1 - \theta)\sqrt{2}/2, \\
\int_{-\theta\sqrt{2}/2}^{\sqrt{2}/2} u h'(u) du + \frac{1 + \theta^2}{4} &= \theta \alpha.
\end{align*}
\]

(In the square case \(\theta = 1 \) we did not impose the restriction (91) on \(h \) to be even, i.e. \(h' \) to be odd, so that the condition (91) would be met automatically. Not anymore in the rectangular case!) Then the counterpart to (32) is: for \(s \in (-\beta_1, \beta_2) \),

\[
- \int_{-\beta_1}^{\beta_2} h'(t) \log |s - t| dt = \lambda s - \mu + (s + \theta \sqrt{2}/2) \log |s + \theta \sqrt{2}/2| + (s - \theta \sqrt{2}/2) \log |s - \theta \sqrt{2}/2| \\
- (s + \beta_1) \log |s + \beta_1| - (s - \beta_2) \log |s - \beta_2| \\
+ \beta_1 - \beta_2 + (1 - \theta)\sqrt{2}/2 = 0.
\]

Here \(\lambda, \mu \) are the Lagrangian multipliers dual to the constraints (92) and (91) respectively. Differentiating (93) with respect to \(s \) gives

\[
- \int_{-\beta_1}^{\beta_2} h'(t) \log \frac{s + \beta_1}{s + \theta \sqrt{2}/2} + \log \frac{\beta_2 - s}{\sqrt{2}/2 - s} \quad s \in (-\beta_1, \beta_2).
\]

Introduce \(a = (\beta_1 + \beta_2)/2, b = (\beta_2 - \beta_1)/2 \), and substitute \(s = a \xi + b, t = a \eta + b \). The above equation becomes

\[
- \int_{-1}^{1} h'(a \xi + b) \log \frac{\xi - \eta}{\xi + \eta} d\eta = \lambda + \log \frac{1 + \xi}{\gamma_1 + \xi} + \log \frac{1 - \xi}{\gamma_2 - \xi},
\]

here

\[
\gamma_1 = \frac{\beta_2 - \beta_1 + \theta \sqrt{2}}{\beta_1 + \beta_2}, \quad \gamma_2 = \frac{\beta_1 - \beta_2 + \sqrt{2}}{\beta_1 + \beta_2},
\]

and it is easy to check that \(\gamma_1, \gamma_2 > 1 \). Applying Theorem 9 to (95) and using Lemma 8, we obtain

\[
h'(a \xi + b) = \frac{1}{\pi^2 (1 - \xi^2)^{1/2}} (\pi \lambda \xi + I(\xi, \gamma_1) - I(-\xi, \gamma_2)) + \frac{c'}{(1 - \xi^2)^{1/2}}
\]

\[
= \frac{\xi}{\pi (1 - \xi^2)^{1/2}} \left(\lambda - \log \frac{\gamma_1 + \sqrt{\gamma_1^2 - 1}}{\gamma_2 + \sqrt{\gamma_2^2 - 1}} \right)
\]

\[
+ \frac{2}{\pi} \left[\tan^{-1} \frac{(1 + \xi)(\gamma_2 - 1)}{(1 - \xi)(\gamma_2 + 1)} - \tan^{-1} \frac{(1 - \xi)(\gamma_1 - 1)}{(1 + \xi)(\gamma_1 + 1)} \right] + c(1 - \xi^2)^{-1/2},
\]

53
\[c', c \text{ being arbitrary constants. As in the symmetric case, if } h'(s) \text{ is to be bounded for } s \in (-\beta_1, \beta_2) \text{ (i.e. for } \xi \in (-1, 1)), \text{ necessarily} \]

\[c = 0, \quad \lambda = \log\left(\gamma_1 + \sqrt{\gamma_1^2 - 1}\right) + \log\left(\gamma_2 + \sqrt{\gamma_2^2 - 1}\right). \quad (98) \]

So we have

\[h'(a\xi + b) = \frac{2}{\pi} \left[\tan^{-1} \sqrt{\frac{1 + \xi(\gamma_2 - 1)}{1 - \xi(\gamma_2 + 1)}} - \tan^{-1} \sqrt{\frac{1 - \xi(\gamma_1 - 1)}{1 + \xi(\gamma_1 + 1)}} \right], \quad (99) \]

for which indeed \(|h'(a\xi + b)| \leq 1\) holds.

We still need to find \(\beta_1\) and \(\beta_2\). Using (89), rewrite (91) and (92) as, respectively,

\[\int_{-\beta_1}^{\beta_2} h'(t) dt = \beta_2 - \beta_1, \quad (100) \]

\[\int_{-\beta_1}^{\beta_2} th'(t) dt + \frac{1}{2}(\beta_1^2 + \beta_2^2) = \theta\alpha. \quad (101) \]

Now evaluating these integrals using (99), this gives the equations

\[a \left[\left(\sqrt{\gamma_2^2 - 1} - \gamma_2\right) - \left(\sqrt{\gamma_1^2 - 1} - \gamma_1\right) \right] = \beta_2 - \beta_1, \]

\[-\frac{a^2}{2} \sum_{i=1}^{2} \left[1 - \gamma_i^2 + \gamma_i \sqrt{\gamma_i^2 - 1} \right] - b(\beta_2 - \beta_1) + \frac{1}{2}(\beta_1^2 + \beta_2^2) = \theta\alpha, \]

\((a = (\beta_1 + \beta_2)/2, b = (\beta_2 - \beta_1)/2)\). Excluding \(\beta_1, \beta_2\) via (96), we obtain two equations for \(\gamma_1, \gamma_2\), namely

\[\gamma_1 - \theta\gamma_2 = \frac{1 + \theta}{2} \left[((\gamma_2^2 - 1)^{1/2} - \gamma_2) - ((\gamma_1^2 - 1)^{1/2} - \gamma_1) \right], \quad (102) \]

\[\theta\alpha = \frac{(1 + \theta)^2 - (\gamma_1 - \theta\gamma_2)}{2(\gamma_1 + \gamma_2)^2} - \frac{(1 + \theta)^2}{4(\gamma_1 + \gamma_2)^2} \sum_{i=1}^{2} \left[1 - \gamma_i^2 + \gamma_i \sqrt{\gamma_i^2 - 1} \right]. \quad (103) \]

It seems a minor miracle that these equations can be solved explicitly. Here is how. Isolating the difference of the radicals in the first equation, multiplying both sides of the resulting equation by the sum of radicals and cancelling the common factor \(\gamma_1 + \gamma_2\), we obtain

\[\sqrt{\gamma_1^2 - 1} + \sqrt{\gamma_2^2 - 1} = \frac{1 + \theta}{1 - \theta} (\gamma_2 - \gamma_1). \]

(In particular, \(\gamma_2 > \gamma_1\).) Combining this with the initial equation, we express the radicals as linear combinations of \(\gamma_1, \gamma_2\):

\[\sqrt{\gamma_1^2 - 1} = -\frac{1 + \theta^2}{1 - \theta^2} \gamma_1 + \frac{2\theta}{1 - \theta^2} \gamma_2, \quad (104) \]

\[\sqrt{\gamma_2^2 - 1} = -\frac{2\theta}{1 - \theta^2} \gamma_1 + \frac{1 + \theta^2}{1 - \theta^2} \gamma_2. \quad (105) \]
Plugging these expressions for the radicals into (103), after collecting like terms, we obtain a quadratic equation for $x = \gamma_2 / \gamma_1$:

\[
x^2(\theta(1 - \alpha) + \alpha) - x(1 - \theta)(1 - 2\alpha) - (1 - \alpha + \theta \alpha) = 0.
\]

Consequently

\[
\frac{\gamma_2}{\gamma_1} = x = \frac{\theta \alpha + 1 - \alpha}{\alpha + \theta(1 - \alpha)},
\]

which, for $\alpha < 1/2$, exceeds 1. Squaring both sides of (104) and substituting $\gamma_2 = x \gamma_1$, we solve for γ_1 to obtain

\[
\gamma_1 = \frac{\alpha + \theta(1 - \alpha)}{2\sqrt{\theta \alpha(1 - \alpha)}}, \quad \gamma_2 = \frac{\theta \alpha + 1 - \alpha}{2\sqrt{\theta \alpha(1 - \alpha)}}.
\]

(106)

Direct checking reveals that these γ_1, γ_2 satisfy the equations (104), (105) themselves as long as

\[
\alpha \leq \alpha^* := \frac{\theta}{1 + \theta}.
\]

(107)

For $\alpha > \alpha^*$, the gammas do not satisfy (104). More precisely, γ_1, γ_2 would have satisfied this equation, had we considered the negative value of $\sqrt{\gamma_1^2 - 1}$. However, we need the positive value only. The source of the trouble here is that $\gamma_1 = 1$ for $\alpha = \alpha^*$. Tellingly, the boundary point $(-\beta_1, h(-\beta_1))$ reaches the corner $(-\theta \sqrt{2}/2, \theta \sqrt{2}/2)$ of the rotated rectangle at $\alpha = \alpha^*$. Using (106), we obtain: for $\alpha \leq \alpha^*$,

\[
\beta_1 = \sqrt{2\theta \alpha(1 - \alpha)} - \alpha(1 - \theta)\sqrt{2}/2,
\]

\[
\beta_2 = \sqrt{2\theta \alpha(1 - \alpha)} + \alpha(1 - \theta)\sqrt{2}/2.
\]

(108)

Using (106) and (108), we simplify (99) to

\[
h'(t) = \frac{2}{\pi} \tan^{-1} \left[\frac{(1 - \theta)\sqrt{\alpha(1 - \alpha)} + \xi \sqrt{\theta(1 - 2\alpha)}}{\sqrt{\theta(1 - \xi^2)}} \right],
\]

(109)

where

\[
\xi = \frac{t - b}{a} = \frac{t - \alpha(1 - \theta)\sqrt{2}/2}{\sqrt{2\theta \alpha(1 - \alpha)}}, \quad t \in [-\beta_1, \beta_2].
\]

Furthermore, using

\[
h(s) = \beta_1 + \int_{-\beta_1}^{s} h'(t) dt = \beta_1 + a \int_{-1}^{\xi} h'(a \eta + b) d\eta,
\]

55
we obtain
\[
h(s) = h(a\xi + b) = \beta_1 \\
+ \frac{2a}{\pi} \left[- (\xi + \gamma_1) \tan^{-1} \sqrt{\frac{(1-\xi)(\gamma_1 - 1)}{(1+\xi)(\gamma_1 + 1)}} + (\xi - \gamma_2) \tan^{-1} \sqrt{\frac{(1+\xi)(\gamma_2 - 1)}{(1-\xi)(\gamma_2 + 1)}} \\
+ \frac{1}{2} \left(\sin^{-1} \xi + \frac{\pi}{2} \right) \left(\sqrt{\gamma_2^2 - 1} - \sqrt{\gamma_1^2 - 1} \right) + \frac{\pi}{2}(\gamma_1 - 1) \right].
\] (110)

Finally, combining (98) and (106), we compute
\[
\lambda = \log \frac{\theta(1-\alpha)}{\sqrt{\theta\alpha(1-\alpha)}} + \log \frac{(1-\alpha)}{\sqrt{\theta\alpha(1-\alpha)}} = \log \frac{1-\alpha}{\alpha},
\] (111)
the same value as in the square case!

It remains to consider the range \(\alpha^* < \alpha \leq 1/2 \). In this case, it turns out that the formulas for the parameters \(\beta_1, \beta_2 \) remain the same, while the formula for the corresponding \(h' \) changes slightly. What is different is that now \(h'(s) = 1 \) for \(s \in [-\theta \sqrt{2}/2, -\beta_1] \) and
\[
h(-\beta_1) = \theta \sqrt{2} - \beta_1.
\]
The latter condition means that now the boundary point \([-\beta_1, h(-\beta_1)]\) lies on the longer side of the rectangle. The starting point now is a modification of (94), stemming from \(h'(s) \equiv 1 \), rather than \(-1\), for \(s \in [-\theta \sqrt{2}/2, -\beta_1] \), namely
\[
- \int_{-1}^{1} \frac{h'(a\eta + b)}{\xi - \eta} d\eta = \lambda - \log \frac{1+\xi}{\gamma_1 + \xi} + \log \frac{1-\xi}{\gamma_2 - \xi}.
\]
This leads to
\[
h'(a\xi + b) = \frac{1}{\pi^2(1-\xi^2)^{1/2}} (\pi \lambda \xi - I(\xi, \gamma_1) - I(-\xi, \gamma_2)) + \frac{c'}{(1-\xi^2)^{1/2}},
\]
\((c' \) being a constant), compare with the first line in (97), whence to
\[
\lambda = \log \left(\gamma_2 + \sqrt{\gamma_2^2 - 1} \right) - \log \left(\gamma_1 + \sqrt{\gamma_1^2 - 1} \right),
\]
compare with (98), and
\[
h'(a\xi + b) = \frac{2}{\pi} \left[\tan^{-1} \sqrt{\frac{(1-\xi)(\gamma_1 - 1)}{(1+\xi)(\gamma_1 + 1)}} + \tan^{-1} \sqrt{\frac{(1+\xi)(\gamma_2 - 1)}{(1-\xi)(\gamma_2 + 1)}} \right],
\]
Hence \(\partial h \) where \(\beta \). Then, using Theorem 9 and (36),

Here we have to set \(c \).

We add that, despite the difference between the two formulas for \(\lambda \) – the one above for \(\alpha \geq \alpha^* \) and \(\text{[38]} \) for \(\alpha \leq \alpha^* \) – the eventual expression is still that in \(\text{[111]} \). The “secret” is that

\[
\sqrt{\gamma_1^2 - 1} = \frac{\sqrt{\alpha} - \sqrt{\theta(1-\alpha)}}{2\sqrt{\theta}\alpha(1-\alpha)},
\]

with \(\sqrt{\alpha} - \sqrt{\theta(1-\alpha)} \) changing its sign at \(\alpha^* \).

It remains to prove that \(h \) is indeed a minimizer. Let \(\alpha < \alpha^* \). Consider \(s \in [-\theta \sqrt{2}/2, -\beta_1] \). Since \(h'(s) = -1 \), we need to show that \(F(s, \alpha) \geq 0 \), where \(F(s, \alpha) \) is the left-hand side expression in \(\text{[38]} \). The above computations show that \(F(s, \alpha) \equiv 0 \) for \(s \in (-\beta_1, \beta_2) \). As in the square case, for fixed \(s \in [-\theta \sqrt{2}/2, \beta_1] \) let \(\hat{\alpha} \in (\alpha, \alpha^*) \) be defined by \(s = -\beta_1(\hat{\alpha}) \). Then \(F(s, \hat{\alpha}) = 0 \), and we will prove \(F(s, \alpha) \geq 0 \) if we show that \(\partial F(s, x)/\partial x < 0 \) for all \(x \in [\alpha, \hat{\alpha}] \). Since \(0 \in (-\beta_1(x), \beta_2(x)) \), \(F(0, x) = 0 \), and we use the latter equation to exclude the Lagrangian multiplier \(\mu \) in the expression for \(F(s, x) \).

Then, an easy computation shows that

\[
\frac{\partial F(s, x)}{\partial x} = -\int_{-\beta_1}^{\beta_2} \frac{\partial h_x(t)}{\partial x} \left(s - t \right) dt + \int_{-\beta_1}^{\beta_2} \frac{\partial h_x(t)}{\partial x} \log |t| dt - s \frac{d\lambda}{dx},
\]

where \(\beta_1 = \beta_1(x), \lambda = \lambda(x) \) are given by \(\text{[108]} \) and \(\text{[111]} \). Let us evaluate \(\partial h_x(s)/\partial x \) for \(s \in (-\beta_1, \beta_2) \). Differentiating \(\text{[39]} \) with respect to \(s \) we obtain

\[
-\int_{-\beta_1}^{\beta_2} \frac{\partial h_x(t)}{\partial x} \frac{d\lambda}{dx} = -\frac{1}{x(1-x)}.
\]

Then, using Theorem 9 and \(\text{[38]} \),

\[
\frac{\partial h_x(s)}{\partial x} = -\frac{\xi}{\pi x(1-x)(1-\xi^2)^{1/2}} + \frac{c}{(1-\xi^2)^{1/2}}.
\]

Here we have to set \(c = 0 \), as the equation \(\text{[100]} \) – upon differentiation with respect to \(x \) – leads to

\[
\int_{-1}^{1} \frac{\partial h_x(t)}{\partial x} dt = 0.
\]

Hence

\[
\frac{\partial h_x(s)}{\partial x} = -\frac{\xi}{\pi x(1-x)(1-\xi^2)^{1/2}}.
\]
Plugging this expression into (113), integrating by parts, and using (40), we transform (113) into
\[
\frac{\partial F(s,x)}{\partial x} = -\frac{\sqrt{(s-b)^2-a^2}}{x(1-x)} < 0.
\] (117)

Let \(\alpha \in (\alpha^*, 1/2] \), and \(s < -\beta_1(\alpha) \) again. Since now \(h'(s) = 1 \), we need to show that \(F(s,\alpha) \leq 0 \). Let \(\tilde{\alpha} \in (\alpha^*, \alpha) \) be defined by \(-s = \beta_1(\tilde{\alpha}) \). (\(\tilde{\alpha} \) exists, uniquely, because \(\beta_1(x) \) is decreasing on \((\alpha, \alpha^*) \) and \(-s < \beta_1(\alpha) \).) Then \(F(s, \tilde{\alpha}) = 0 \), and so again we need to show that \(\partial F(s,x)/\partial x < 0 \). The formula (114) continues to hold, and so does (115), since now we have
\[
\int_{-\beta_1}^{\beta_2} h'(t)dt = \beta_2 + \beta_1 - \theta \sqrt{2}/2,
\]
and \(h'(-\beta_1) = 1 \). Therefore (116) remains valid, which implies (117).

Analogously, \(F(s, \alpha) \leq 0 \) for \(s \geq \beta_2(\alpha) \) and \(\alpha \in (0, 1/2] \). This finishes the proof that \(h \) is the minimizer, the claim which forms the core of the proof of Theorem 5.

8 Discussion

8.1 Plancherel measure

Let \(Y_k \) denote the set of Young diagrams of area \(k \). The Plancherel measures are the family of probability measures \(\mu_k \) on \(Y_k \), defined by
\[
\mu_k(\lambda) = \frac{d(\lambda)^2}{k!}, \quad (\lambda \in Y_k).
\] (118)

Alternatively, \(\mu_k \) is sometimes defined as a measure on all Young tableaux of size \(k \), where
\[
\mu_k(T) = \frac{d(\text{shape}(T))}{k!}.
\]

The measure on diagrams is then the projection of the measure on tableaux under the mapping that assigns to each tableau its shape. The measures \(\mu_k \) are a projective family of measures, in the following sense: If \(T \) is a \(\mu_k \)-random tableau, then the tableau \(T' \) of size \(k - 1 \) obtained by deleting the \(k \)-th entry from \(T \) is a \(\mu_{k-1} \)-random tableau. Therefore, all the \(\mu_k \)'s can be encompassed by a single object \(\mathbb{P} \), the infinite Plancherel measure, which is a measure on infinite tableaux – i.e. fillings of the squares in the positive quadrant of the plane with the positive integers that are increasing along rows and columns – for which the marginal distribution of the shape of the \(k \)-th subtableau (the set of squares where the entry of the infinite tableau is \(\leq k \)) is given by (118). In other words, \(\mathbb{P} \) can be thought of as a measure on all sequences \(\emptyset = \lambda_0 \subset \lambda_1 \subset \lambda_2 \subset \ldots \) of Young diagrams,
where λ_k has size k and is obtained from λ_{k-1} by the addition of a box. So P is simply a natural Markovian coupling of the measures (118), known sometimes as the \textit{Plancherel growth process}.

Much is known about Plancherel measure. It arises naturally in representation theory, as a natural measure on the irreducible representations of the symmetric group, and in combinatorics, as the distribution of the output of the RSK algorithm applied to a uniform random permutation in S_k. In particular, the length of the first row $\lambda_k(1)$ of a μ_k-random Young diagram has the same distribution as the length $l_n(\pi)$ of the longest increasing subsequence of a uniform random permutation π in S_k, an important permutation statistic.

Logan-Shepp [20] and Vershik-Kerov [35], [36] proved that the graph of a μ_k-random Young diagram, when rescaled by a factor of \sqrt{k} along each axis and drawn in rotated coordinates, with high probability resembles the limit shape

$$\Omega(u) = \left\{ \begin{array}{ll}
\frac{2}{\sqrt{2}}(u \sin^{-1}(u/\sqrt{2}) + \sqrt{2 - u^2}) & |u| \leq \sqrt{2}, \\
|u| & |u| > \sqrt{2},
\end{array} \right.$$

see Figure 8.

![Figure 8: The limit shape $v = \Omega(u)$](image)

Gribov [14] noted that this can be reinterpreted as a theorem on the limit \textit{surface} of the Plancherel-random tableau, much in the same spirit as Theorem 1. If T is a μ_k-random Young tableau, then after rescaling the graph of T is approximately described in rotated coordinates by the surface $\Sigma : D \to [0,1]$, where

$$D = \{(u,v) : |u| \leq \sqrt{2}, \ |u| \leq v \leq \Omega(u)\}$$

is the two dimensional domain bounded between the graphs $|u|$ and $\Omega(u)$, and for each
0 < \alpha < 1$, the α-level curve of Σ is
\[
\{(u,v) \in D : |u| \leq \sqrt{2\alpha}, \ v = \sqrt{\alpha}\Omega(u/\sqrt{\alpha})\},
\]
a shrunken copy of Ω.

The approach in the papers of Logan-Shepp and Vershik-Kerov was the variational approach, of analyzing the limiting integral functional arising from 118. Kerov 18 considered the following more dynamical approach: Assume that we have selected the μ_k-random diagram λ_k. Since under P, the sequence $\lambda_1 \subset \lambda_2 \subset ...$ is a (nonhomogeneous) Markov chain with values in the Young graph, there is a measure ν on the exterior corners of λ_k (the boxes in the complement of λ_k that can be added to λ_k to form a Young diagram of size $k+1$), such that if we choose a ν-random corner of λ_k and add the new box there, the resulting diagram λ_{k+1} will have distribution μ_{k+1}. In other words, ν is the probability transition measure of the Markov chain (λ_k). It is known as the transition measure of the diagram λ_k, and is in a sense dual to the co-transition measure discussed in section 5.

Kerov showed that in the limit when the graph of the diagram λ_k becomes a smooth curve, the transition measure converges to a limit. Imagine that in the limit, instead of attaching a new box at a ν-random corner, one attaches a ν-fraction of a box at each corner. So the curve grows in the “tangent” direction given by ν. Thus, the Plancherel growth process can be described in the limit as a smooth flow on the (infinite-dimensional) space of shapes. Kerov showed that $\Omega(u)$ is the unique shape which, after rescaling, is invariant under this flow, and that this fixed point is an attractor of the flow; this explains, in a way, (though does not formally prove) its appearance as the limit shape for Plancherel-random diagrams. Remarkably, the transition measure of Ω (the limiting direction of the flow) is the semicircle distribution.

Another interesting direction stemming from the study of Plancherel measure is the connection to longest increasing subsequences of random permutations. The limit shape result of Logan-Shepp and Vershik-Kerov implies that the length $l_n(\pi)$ of the longest increasing subsequence of a random permutation $\pi \in S_n$ is with high probability at least $(1 - o(1))2\sqrt{n}$. Using additional arguments (which were an inspiration for our proof of Theorem 3), Vershik and Kerov showed also that $l_n(\pi)$ is with high probability at most $(1 + o(1))2\sqrt{n}$, solving the so-called Ulam’s problem. More recently, Baik, Deift and Johansson 3 showed that the fluctuation of $l_n(\pi)$ around its asymptotic value $2\sqrt{n}$ has a limiting distribution. More precisely,
\[
\frac{l_n(\pi) - 2\sqrt{n}}{n^{1/6}} \xrightarrow{\text{in distribution}} \frac{n \rightarrow \infty}{F},
\]
Here F is the Tracy-Widom distribution from random matrix theory, defined as
\[
F(t) = \exp\left(-\int_t^\infty (x-t)u(x)^2dx\right),
\]
\[60\]
where \(u(x) \) is the solution of the Painlevé II equation \(u''(x) = 2u(x)^3 + xu(x) \) that is asymptotic to the Airy function \(\text{Ai}(x) \) as \(x \to \infty \). Other results along those lines can be found in [1], [6], [17], [24]; see also the survey [1]

The distribution \(F \) appears in random matrix theory as the limiting distribution of the maximal eigenvalue of a GUE random matrix. Following the Baik-Deift-Johansson result, it was found that there are many striking parallels between Plancherel measure and random matrix ensembles, see [6], [23], [16]. In particular, the transition measure of the Plancherel-random diagram converges to the semicircle law, which is also the limiting distribution of the empirical eigenvalue distribution in the GUE and GOE random matrix ensembles. Ivanov and Olshanski [16] showed that this similarity is no mere coincidence, but in fact appears also in the finer fluctuations of the transition measure and eigenvalue distribution measure around the semicircle distribution.

8.2 The random square tableau as a deformation of Plancherel measure

The reader familiar with the works of Logan-Shepp and Vershik-Kerov will undoubtedly have noticed the similarity between these results and our analysis of the square tableau model. Define for each positive integer \(n \) and each \(1 \leq k \leq n^2 \), the probability measure \(\nu_{n,k} \) on \(\mathcal{Y}_k \), by

\[
\nu_{n,k}(\lambda) = \frac{d(\lambda)d(\square_n \setminus \lambda)}{d(\square_n)}, \quad (\lambda \in \mathcal{Y}_k),
\]

(119)

where \(d(\square_n \setminus \lambda) \) is taken as 0 if \(\lambda \not\subseteq \square_n \). The measure \(\nu_{n,k} \) is the distribution of the \(k \)-th subtableau of a random \(n \times n \) square tableau, and our entire approach revolved around the analysis of its properties. It is remarkable how many of the ideas used in the study of Plancherel measure we have found useful in our study of square tableaux; first, and most obviously, the variational problem that arises from (119) resembles the variational problem studied by Logan-Shepp and Vershik-Kerov. Although our approach in solving the variational problem relied on the more methodical use of the inversion formula for Hilbert transforms (an approach that could be applied the Plancherel case as well!), we were greatly inspired by the methods used in the Plancherel case. Secondly, our proof of Theorem 3 and the treatment of the boundary of the square also follows closely the ideas of Vershik and Kerov (with the notable difference, that our proof of the upper bound uses the lower bound!). Finally, our Theorem 2 on the location of particular entries, was inspired by Kerov’s differential model [18] for Plancherel growth. By postulating the existence of an analogous differential growth model for the \(k \)-subtableaux of the square tableau, we were able to guess Theorem 2 from the formula (66). This was later verified by a different method, using the result from [30].
Take another look at (119) and (118). The defining equations for μ_k and $\nu_{n,k}$ seem superficially similar at best. In fact, they are closely related, and when k is very small these measures are quite close. To make this precise, we first note the following curious identity. Define the falling power $a^{\downarrow b}$ of a as $a^{\downarrow b} = a(a-1)(a-2)\ldots(a-b+1)$. Then:

Lemma 12. If $\lambda \in \mathcal{Y}_k$, $\lambda \subset \square_n$, then

$$\frac{\nu_{n,k}(\lambda)}{\mu_k(\lambda)} = \frac{\prod_{j=1}^{\lambda(1)} (n+j-1)^{ij} \cdot \prod_{j=1}^{\lambda(1)} (n+j-1)^{ij}}{(n^2)^{ik}}$$

Proof. Use the hook formula (6). A computation similar to the one in the proof of (72) shows that many of the terms cancel. We omit the relatively simple details. \blacksquare

It follows using elementary estimates, which we again omit for the sake of brevity, that

Theorem 13. If $n \to \infty$ and $k = k(n)$ is such that $k = o(n^{2/3})$, then

$$\frac{\nu_{n,k}(\lambda)}{\mu_k(\lambda)} \xrightarrow{n \to \infty} 1$$

uniformly on the support $\mathcal{Y}_{n,k}$ of $\nu_{n,k}$ (the set of diagrams of size k contained in \square_n). In particular, the total variation distance

$$||\nu_{n,k} - \mu_k||_1 \equiv \sum_{\lambda \in \mathcal{Y}_k} |\nu_{n,k}(\lambda) - \mu_k(\lambda)| \xrightarrow{n \to \infty} 0.$$ \blacksquare

So in fact, when k is small, $\nu_{n,k}$ is a kind of deformation of the Plancherel measure μ_k. In particular, for k fixed and n going to infinity, this implies the not-entirely-trivial fact that μ_k is a probability measure. We remark that other deformations of Plancherel measure have been used as a means to study Plancherel measure itself – see, e.g., [17].

The phenomenon that a small subtableau of a large random tableau has approximately the Plancherel distribution was observed also in [22] (see also [32] for related results) for a random tableau chosen uniformly among all tableaux of size k. Recently, it was shown [26] that the footprint of the k tallest stacks in a random unrestricted plane partition of high volume also has in the limit the Plancherel distribution.

Another related observation is the easily checked fact that

$$\sqrt{\alpha(1-\alpha)} \cdot \tilde{g}_\alpha \left(\frac{u}{\sqrt{\alpha(1-\alpha)}} \right) \xrightarrow{\alpha \searrow 0} \Omega(u),$$

i.e. the shape of the level curves of our limit surface L converges after rescaling to the Plancherel limit curve Ω, as one approaches the corner of the square. This is consistent
with Theorem 13, although is not formally implied by it, as here k is a small constant times n^2. It seems likely that in the regime when k grows like $o(n^2)$, but much faster than $n^{2/3}$, $\nu_{n,k}$ and μ_k become mutually singular, even though the limit shapes coincide.

8.3 The probability of a square plane partition to have all parts distinct

Denote by $M_{n,N}$ the total number of $n \times n$ square plane partitions of N. Let $M_{n,N}$ be the total number of those partitions with all parts distinct. From Lemma 11 it follows that if

$$\lim_{n,N \to \infty} \frac{n^6}{N} = 0,$$

then

$$\lim_{n,N \to \infty} \frac{M_{n,N}}{M_{n,N}} = 1.$$

Our goal is to show that (120) is essentially necessary for (121). To motivate the statement, notice that the k-th largest part in a partition of N into n^2 distinct parts is $n^2 - k + 1$, at least. So $M_{n,N} = 0$ unless $N \geq n^2(n^2 + 1)/2$.

Theorem 14. Suppose that $n^4/N \to 0$. (i) If $\lim n^6/N = \infty$, then

$$\lim_{n,N \to \infty} \frac{M_{n,N}}{M_{n,N}} = 0.$$

(ii) If $\lim n^6/N = \alpha \in (0, \infty)$ then

$$\lim_{n,N \to \infty} \frac{M_{n,N}}{M_{n,N}} = e^{-\alpha/4}.$$

Note. Thus the reduction to the plane partitions with distinct parts used in the proof of Theorem 4 is valid if and only if $n^6 = o(m)$.

Proof sketch of Theorem 14. We prove (122), (123) by determining the asymptotic expressions of $M_{n,N}$ and $M_{n,N}$.

Part 1. Begin with $M_{n,N}$. As in the proof of Lemma 10, we notice that – given a linear partition of N into n^2 distinct parts – the number of the $n \times n$ square (descending) arrangements of these parts equals the total number of $n \times n$ square Young tableaux. So, denoting by $p_{n,N}$ the total number of all such linear partitions, and by $d(\square_n)$ the number of all such tableaux, we obtain

$$M_{n,N} = p_{n,N} \cdot d(\square_n).$$

63
Using the hook formula \(4\), Euler’s summation formula for \(\sum_{s=1}^{n-1} (n - s) \log(n - s)\), and two identities for the Gamma function (see Bateman \(5\), Section 1.9)

\[
\sum_{s=1}^{n} s \log s = \int_{1}^{n} \log \Gamma(x) \, dx + \frac{n(n+1)}{2} + \frac{n}{2} \log 2\pi,
\]

\[
\log \Gamma(x) = \left(x - \frac{1}{2} \right) \log x - x + \frac{1}{2} \log 2\pi
+ \int_{0}^{\infty} \left[(e^t - 1)^{-1} - t^{-1} + \frac{1}{2} \right] t^{-1} e^{-tx} \, dt, \quad x > 0.
\]

we obtain

\[
d(\square_n) \sim n^{11/12} \sqrt{2 \pi} \exp \left(n^2 \log n + n^2 (-2 \log 2 + 1/2) - \frac{1}{6} + \frac{\log 2}{12} - C \right),
\]

(125)

where

\[
C := \int_{0}^{\infty} \left[(e^t - 1)^{-1} - t^{-1} + \frac{1}{2} - \frac{t}{12} \right] t^{-2} e^{-t} \, dt.
\]

(126)

(A cruder formula

\[
d(\square_n) \sim \exp(n^2 \log n + n^2 (-2 \log 2 + 1/2) + O(n \log n))
\]

was obtained, implicitly, in the proof of Lemma 1.)

As for \(p_{nN}\), the total number of partitions of \(N\) into \(n^2\) distinct parts, it is given by

\[
p_{nN} = [q^N t^{n^2}] \prod_{t=1}^{\infty} (1 + q^t t).
\]

(127)

From a more general theorem of Vershik and Yakubovich \(37\), based on \(12\), Fristedt’s conditioning defice \(12\), and an attendant local limit theorem result, it follows that

\[
p_{nN} \sim \frac{1}{2\pi N} \exp \left(n^2 \log \frac{N}{n^3} + 2n^2 - \frac{n^6}{4N} (1 + O(n^4/N)) \right).
\]

(128)

Combining (125) and (128), we arrive at

\[
\mathcal{M}_{nN} \sim \frac{n^{11/12}}{\sqrt{2\pi N}} \exp(n^2 \log(N/n^3) + n^2 (-2 \log 2 + 5/2)
- (n^6/4N) (1 + O(n^4/N)) + C^*),
\]

\[
C^* := -\frac{1}{6} + \frac{\log 2}{12} - C,
\]

(129)

with \(C\) defined in \(120\).
Part 2. Turn now to $M_{n,N}$, the number of all square $n \times n$ plane partitions of N. By the MacMahon formula for the number of plane partitions with at most n rows and n columns,

$$M_{n,N} = [q^{N-n^2}] \prod_{\ell=1}^{n} (1 - q^\ell - \ell) \cdot \prod_{\ell>n} (1 - q^\ell)^{2(\ell-n)} \cdot \prod_{\ell>2n} (1 - q^\ell)^{2n-\ell}. \quad (130)$$

(Alternatively, this formula follows from the hook expression for the generating functions of plane partitions with a given shape discovered by Stanley [33].) We will use the techniques from [26] inspired by Freiman’s derivation of the main part of Hardy-Ramanujan formula for the (linear) partition function, see Postnikov [29].

Let us take a close look at the generating function in (130), which we denote $p_n(q)$. Set $q = e^{-u}$, Re $u > 0$. Taking logarithms, using

$$\log(1 - e^{-mu})^{-1} = \sum_{j \geq 1} \frac{e^{-mj u}}{j}, \quad (131)$$

and changing the summation order, we obtain

$$\log p_n(e^{-u}) = u \sum_{j \geq 1} \frac{1}{uj} \frac{e^{uj}}{(e^{uj} - 1)^2} (1 - e^{-uj})^2$$

$$= n^2 \sum_{j=1}^{\infty} \frac{e^{-uj}}{j} + un^3 \sum_{j=1}^{\infty} \frac{\psi(unj)}{(unj)^3}$$

$$- \frac{1}{12} \sum_{j=1}^{\infty} \frac{e^{-uj}}{j} (1 - e^{-uj})^2 + u \sum_{j=1}^{\infty} \phi(uj)(1 - e^{-uj})^2;$$

$$\phi(z) := \frac{e^z}{z(e^z - 1)^2} - \frac{1}{z^3} + \frac{e^{-z}}{12z};$$

$$\psi(z) := (1 - e^{-z})^2 - z^2 e^{-z}. \quad (132)$$

Using (131), read backward, for the first and the third sums, and Euler’s summation formula, with $m = 1$, for the second and the fourth sum, we obtain from (132): if $|u|^2 n^4 \to 0$, then

$$p_n(e^{-u}) \sim \frac{\exp(n^2(3/2 - 2 \log 2) + (\log 2)/12 + D)}{n^{1/12}} \cdot (1 - e^{-nu})^{-n^2};$$

$$D := \int_0^\infty \phi(x) \, dx. \quad (133)$$

(According to Maple the integral of $\psi(x)$ equals $3/2 - 2 \log 2$.) Now, by (130), and the Cauchy formula

$$M_{n,N} = [q^{N-n^2}] p_n(q) = \frac{1}{2\pi i} \oint_{|z|=\rho} \frac{p_n(z)}{z^{N-n^2+1}} \, dz,$$
where $\rho \in (0, 1)$. In light of the last two equations, we set $\rho = e^{-u_0}$, and select u_0 that minimizes $-n^2 \log (1 - e^{-nu}) + (N - n^2)u$, that is

$$u_0 = n^{-1} \log \left(1 + \frac{n^3}{N - n^2}\right) \sim \frac{n^2}{N}.$$

Clearly $u_0^2 n^4 \to 0$. Consider $|\theta| \leq \theta_n = n^{-2} \epsilon_n$, $\epsilon_n = (n^4/N)^{1/2}$, so that $|\theta|^2 n^4 \to 0$ as well. It can be shown without much difficulty that

$$\frac{1}{2\pi i} \int_{|\theta| \leq \theta_n} \frac{dz}{(1 - e^{-nu})^{n^2} z^{n-1}} = \frac{1}{2\pi i} \int_{u_0 - i\theta_n}^{u_0 + i\theta_n} \frac{e^{v(N-n^2)}}{(1 - e^{-nv})^{n^2}} dv = \frac{1}{n^{n^2}} \cdot \frac{N^{n^2-1}}{(n^2 - 1)!} (1 + O(n^4/N)) \sim \frac{n}{\sqrt{2\pi N}} \left(\frac{eN}{n^3}\right)^{n^2}. \quad (134)$$

(The last integral, extended to the closed contour obtained by connecting the points $u_0 \pm i\theta_n$ with a circular arc centered at the origin, is exactly

$$\frac{1}{n^{n^2}} |n^{n^2-1}| (1 - nt)^{-((N-n^2+n+2)/n)} = n^{-n^2} \left(-n^{-1}(N - n^2 + n + 2)\right) (-n)^{n^2-1},$$

and the supplementary integral is less than this quantity by a factor $(u_0/\theta_n)^{n^2} \sim (n^4/N)^{n^2/2}$.) So, using (133), (134),

$$\frac{1}{2\pi i} \oint_{\theta \in (-\theta_n, \theta_n)} \frac{p_n(z)}{z^{n-1}} \, dz \sim \frac{n^{11/12}}{\sqrt{2\pi N}} \exp \left(n^2 \log \frac{N}{n^3} + n^2 \left(5/2 - 2 \log 2\right) + (\log 2)/12 + D + o(1)\right). \quad (135)$$

The proof that the contribution of $\theta \notin [-\theta_n, \theta_n]$ is negligible compared with the last expression is based on cruder estimates, not unlike those in [26], and we omit it. Therefore

$$M_{nN} \sim \frac{n^{11/12}}{\sqrt{2\pi N}} \exp \left(n^2 \log \frac{N}{n^3} + n^2 \left(5/2 - 2 \log 2\right) + (\log 2)/12 + D\right). \quad (136)$$

Comparing (136) and (129), we see that

$$\frac{M_{nN}}{M_{nN}} = \exp \left(-(n^6/4N)(1 + O(n^4/N)) + A\right), \quad (137)$$
where, recalling the definition of C and D,

\[
A = \frac{1}{6} - C - D
= \frac{1}{6} - \int_0^\infty \left[\left(\frac{1}{e^t - 1} - \frac{1}{t} + \frac{1}{2} \right) t^{-2} e^{-t} + \frac{e^t}{t(e^t - 1)^2} - \frac{1}{t^3} \right] dt
= \frac{1}{6} - \int_0^\infty \frac{d}{dt} \left(-\frac{1}{t(e^t - 1)} + \frac{1}{2t^2} + \frac{e^{-t}}{2t^2} \right) dt
= \frac{1}{6} + \lim_{t \downarrow 0} \left(-\frac{1}{t(e^t - 1)} + \frac{1}{2t^2} + \frac{e^{-t}}{2t^2} \right)
= 0.
\]

Thus we have \(\mathcal{M}_{nN} / M_{nN} = \exp \left(-(n^6/4N)(1 + O(n^4/N)) \right) \),

which proves Theorem 14(i),(ii).

\section*{8.4 Open problems}

We conclude with some open problems.

- **Gaussian fluctuations.** Prove a central limit theorem for the fluctuations of \(g_{\lambda, \lfloor \alpha n^2 \rfloor} \) around \(\tilde{g}_\alpha \), and for the fluctuations of the cotransition measure of \(\lambda_{\lfloor \alpha n^2 \rfloor} \) around the semicircle distribution, in the spirit of [16].

- **Limiting distribution of \(l_{n,k}(\pi) \).** Find a scaling sequence \(a_n \) and a distribution function \(F \) such that, in the notation of Theorem 3,

\[
l_{n,\lfloor \alpha n^2 \rfloor} - 2 \sqrt{\alpha(1-\alpha)n} \quad \text{in distribution} \quad n \to \infty \to F.
\]

- **Limit surface for random Young tableaux of given shape.** Prove a limit surface theorem for random Young tableaux of other shapes. In general, one can consider any decreasing function \(f : [0, \infty) \to [0, \infty) \) such that \(\int_0^\infty f(x) dx = 1 \) as a *continual Young diagram*, i.e. as a limit of the rescaled graphs of a sequence of Young diagrams of increasing sizes. We conjecture that for each such continual diagram \(f \), there should exist a limit surface \(L_f \), defined on the domain

\[
D_f := \{(x,y) : x \geq 0, \ 0 \leq y \leq f(x)\}
\]

bounded between the \(x \)-axis and the graph of \(f \), that describes the asymptotic behavior of almost all random Young tableaux of shape approximated by \(f \).
Acknowledgements

We thank Nati Linial for his suggestion that we work together, which eventually led to the conception of this paper.

References

[1] D. Aldous, P. Diaconis, Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem. *Bull. Amer. Math. Soc.* 36 (1999), 413–432.

[2] T. M. Apostol, Introduction to Analytic Number Theory. Springer, 1976.

[3] J. Baik, P. Deift, K. Johansson, On the distribution of the length of the longest increasing subsequence of random permutations. *J. Amer. Math. Soc.* 12 (1999), 1119–1178.

[4] J. Baik, P. Deift, K. Johansson, On the distribution of the length of the second row of a Young diagram under Plancherel measure. *Geom. Funct. Anal* 10 (2000), 1606–1607.

[5] H. Bateman, A. Erdélyi, Higher Transcendental Functions, vol. 1. McGraw-Hill, New York, 1953.

[6] A. Borodin, A. Okounkov, G. Olshanski, Asymptotics of Plancherel measures for symmetric groups. *J. Amer. Math. Soc.* 13 (2000), 481–515.

[7] R. Cerf, R. Kenyon, The low-temperature expansion of the Wulff crystal in the 3D Ising model. *Comm. Math. Phys* 222 (2001), 147–179.

[8] H. Cohn, M. Larsen, J. Propp, The shape of a typical boxed plane partition. *New York J. Math.* 4 (1998), 137–165.

[9] P. Erdös, J. Lehner, The distribution of the number of summands in the partitions of a positive integer. *Duke J. Math.* 8 (1941), 335–345.

[10] R. Estrada, R. P. Kanwal, Singular Integral Equations. Birkhäuser, 2000.

[11] J. S. Frame, G. de B. Robinson, R. M. Thrall, The hook graphs of the symmetric groups. *Canadian J. Math.* 6 (1954), 316–324.

[12] B. Fristedt, The structure of random partitions of large integers, *Trans. Amer. Math. Soc.* 337 (1993), 703–735.

[13] C. Greene, A. Nijenhuis, H. Wilf, A probabilistic proof of a formula for the number of Young tableaux of a given shape. *Adv. Math.* 31 (1979), 104–109.
[14] A. B. Gribov, The limit Young tableau with respect to the Plancherel measure. (Russian) Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1986, vyp. 2, 100–102, 131.

[15] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, 2nd ed. Cambridge University Press, Cambridge, 1952.

[16] V. Ivanov, G. Olshanski, Kerov’s central limit theorem for the Plancherel measure on Young diagrams. In: Symmetric Functions 2001: Surveys of Developments and Perspectives. Proc. NATO Advanced Study Institute, ed. S. Fomin, Kluwer, 2002.

[17] K. Johansson, Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. of Math. 153 (2001), 259–296.

[18] S. V. Kerov, A differential model of growth of Young diagrams. (Russian) Proceedings of the St. Petersburg Mathematical Society, vol. IV, 111–130; translation in Amer. Math. Soc. Transl. Ser. 2, 188, Amer. Math. Soc., Providence, RI.

[19] D. E. Knuth, The Art of Computer Programming, vol. 3: Sorting and Searching, 2nd ed. Addison-Wesley, 1998.

[20] B. F. Logan, L. A. Shepp, A variational problem for random Young tableaux. Adv. Math. 26 (1977), 206–222.

[21] N. Lulov, B. Pittel, On the random Young diagrams and their cores. J. Combin. Theory Ser. A. 86 (1999), 245–280.

[22] B. D. McKay, J. Morse, H. Wilf, The distributions of the entries of Young tableaux. J. Combin. Theory Ser. A 97 (2002), 117–128.

[23] N. O’Connell, A path-transformation for random walks and the Robinson-Schensted correspondence. Trans. Amer. Math. Soc. 355 (2003), 3669–3697.

[24] A. Okounkov, Random matrices and random permutations. Internat. Math. Res. Notices 2000:20 (2000), 1043–1095.

[25] B. Pittel, On a likely shape of the random Ferrers diagram. Adv. Appl. Math. 18 (1997), 432–488.

[26] B. Pittel, On dimensions of a random solid diagram. preprint.

[27] B. Pittel, On the distribution of the number of Young tableaux for a uniformly random diagram. Adv. Appl. Math. 29 (2002), 184–214.

[28] D. Porter, D. S. G. Stirling, Integral Equations. Cambridge University Press, Cambridge, 1990.
[29] A. G. Postnikov, Introduction to Analytic Number Theory, Translations of Mathematical Monographs 68, American Mathematical Society, Providence, RI, 1988.

[30] D. Romik, Explicit formulas for hook walks on continual Young diagrams. *Adv. Appl. Math.* 32 (2004), 625–654.

[31] C. Schensted, Longest increasing and decreasing subsequences. *Canadian J. Math.* 13 (1961), 179–191.

[32] R. P. Stanley, On the enumeration of skew Young tableaux. *Adv. Appl. Math.* 30 (2003), 283–294.

[33] R. P. Stanley, Theory and application of plane partitions, II. *Studies in Appl. Math* 50 (1971), 259–279.

[34] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals. Oxford University Press, Oxford, 1937.

[35] A. M. Vershik, S. V. Kerov, Asymptotics of the Plancherel measure of the symmetric group and the limiting shape of Young tableaux. *Soviet Math. Dokl.* 18 (1977), 527–531.

[36] A. M. Vershik, S. V. Kerov, The asymptotics of maximal and typical dimensions of irreducible representations of the symmetric group. *Funct. Anal. Appl.* 19 (1985), 21–31.

[37] A. M. Vershik, Yu. Yakubovich, The limit shape and fluctuations of random partitions of naturals with fixed number of summands. *Mosc. Math. J.* 1 (2001), 457–468, 472.

[38] A. M. Vershik, Yu. Yakubovich, Asymptotics of the uniform measures on simplices and random compositions and partitions. *Funct. Anal. Appl.* 37 (2003), 273–280.

70