The algebraic Bethe ansatz for open $A_{2n}^{(2)}$ vertex model

Guang-Liang Lia, Kang-Jie Shib and Rui-Hong Yueb

a Department of Applied Physics, Xi’an Jiaotong University, Xi’an, 710049, P.R.China
b Institute of Modern Physics, Northwest University, Xi’an, 710069, P.R.China

email address: leegl@mail.xjtu.edu.cn

June 8, 2021

ABSTRACT: We solve the $A_{2n}^{(2)}$ vertex model with all kinds of diagonal reflecting matrices by using the algebraic Bethe ansatz, which includes constructing the multi-particle states and achieving the eigenvalue of the transfer matrix and corresponding Bethe ansatz equations. When the model is $U_q(B_n)$ quantum invariant, our conclusion agrees with that obtained by analytic Bethe ansatz method.

KEYWORDS: algebraic Bethe ansatz; open boundary
1 Introduction

In solving integrable models, one of powerful tools is the analytical Bethe ansatz method which was proposed by Reshetikhin for close chains [1], and was generalized into quantum-algebra-invariant open chains [2]. Then it was employed to solve a family of both quantum-algebra-invariant and non-quantum-algebra-invariant open chains [3]-[5]. For the result is far from rigorous, one more satisfactory approach would be the algebraic Bethe ansatz (ABA), by which the Bethe ansatz equations and the eigenstates can be obtained.

Recently, the algebraic Bethe ansatz [6]-[8] has been developed by Martins [9]-[11] for a large family of vertex models with periodic boundary. Its generalizations have been applied into the vertex models with open boundary conditions in Refs.[12]-[15] and Refs.[16]-[18]. All of these show that the ABA could be suit for the system with higher rank algebra symmetry. Although some open boundary vertex models, such as \(A_{2n}^{(2)} \) model [19, 20], have been solved by the analytical Bethe ansatz or other methods, it is still worthy to reconsider those by ABA. Here we will formulate the algebraic Bethe ansatz solution for the \(A_{2n}^{(2)} \) vertex model with diagonal reflecting matrices.

The \(A_{2n}^{(2)} \) model at the case of \(n = 1 \) is also called Izergin-Korepin model [21] which, under the open boundary conditions, can be related to the loop models [5] and flexible self-avoiding polymer chain [22]. When \(n > 1 \), the model with trivial reflecting matrices was solved by the analytical Bethe ansatz. However, for non-trivial reflecting matrix, the exact solutions remain unknown. In this paper, we expect to solve the model with all kinds of diagonal reflecting matrices by using the algebraic Bethe ansatz, which includes constructing the multi-particle states and achieving the eigenvalue of the transfer matrix.
and corresponding Bethe ansatz equations. When the model is $U_q(B_n)$ quantum invariant, our conclusion agrees with that obtained by analytic Bethe ansatz method [3].

The present paper is organized as following. In section 2 we introduce $A^{(2)}_{2n}$ vertex model and list all diagonal K_\pm matrices governing the boundary terms in the Hamiltonian. Section 3 devotes to construct m-particle eigenfunctions and to derive out the eigenvalue and the Bethe ansatz equations. A brief summary and discussion about our main result are included in section 4. Some necessary calculations and coefficients are given as the Appendix.

2 The vertex model and integrable boundary conditions

The R matrix for the $A^{(2)}_{2n}$ model used here is [3]

\[
R^{(n)}(u) = a_n(u) \sum_{i \neq \bar{i}} E_{ii} \otimes E_{ii} + b_n(u) \sum_{i \neq j, j \neq \bar{i}} E_{ii} \otimes E_{jj} + \left(\sum_{i < \bar{i}} c_n(u, i) + \sum_{i > \bar{i}} \bar{c}_n(u, i) \right) E_{ii} \otimes E_{ii} \\
+ \left(\sum_{i < j, j \neq \bar{i}} d_n(u, i, j) + \sum_{i > j, j \neq \bar{i}} \bar{d}_n(u, i, j) \right) E_{ij} \otimes E_{ij} + e_n(u) \sum_{i \neq \bar{i}} E_{ii} \otimes E_{ii} \\
+ f_n(u) E_{n+1,n+1} \otimes E_{n+1,n+1} + \left(g_n(u) \sum_{i < j, j \neq \bar{i}} + \bar{g}_n(u) \sum_{i > j, j \neq \bar{i}} \right) E_{ij} \otimes E_{ji},
\]

where

\[
a_n(u) = 2 \sinh(\frac{u}{2} - 2\eta) \cosh(\frac{u}{2} - (2n + 1)\eta),
\]
\[
b_n(u) = 2 \sinh(\frac{u}{2}) \cosh(\frac{u}{2} - (2n + 1)\eta),
\]
\[
c_n(u, i) = 2e^{-u+2i\eta} \sinh((2i - (2n + 1))\eta) \sinh(2\eta) - 2e^{(2i-(2n+1))\eta} \sinh(2\eta) \cosh(2\eta),
\]
\[
\bar{c}_n(u, i) = 2e^{u-2i\eta} \sinh((2(2n + 1) - 2i)\eta) \sinh(2\eta) - 2e^{(2(2n+1)-2i)\eta} \sinh(2\eta) \cosh(2\eta),
\]
\[
d_n(u, i, j) = -2e^{-\frac{\eta}{2} + (2n+1+2(i-j))\eta} \sinh(2\eta) \sinh(\frac{u}{2}),
\]
\[
\bar{d}_n(u, i, j) = 2e^{\frac{\eta}{2} + (2(i-j)-2n-1)\eta} \sinh(2\eta) \sinh(\frac{u}{2}),
\]
\[
e_n(u) = 2 \sinh(\frac{u}{2}) \cosh(\frac{u}{2} - (2n - 1)\eta),
\]
\[
f_n(u) = b_n(u) - 2 \sinh(2\eta) \cosh((2n + 1)\eta),
\]
\[
g_n(u) = -2e^{-\frac{\eta}{2}} \sinh(2\eta) \cosh(\frac{u}{2} - (2n + 1)\eta),
\]
\[
\bar{g}_n(u) = -2e^{\frac{\eta}{2}} \sinh(2\eta) \cosh(\frac{u}{2} - (2n + 1)\eta),
\]
\[
i + \bar{i} = 2n + 2, \quad \bar{i} = \begin{cases} \frac{i + 1}{2}, & 1 \leq i < n + 1 \\ i, & i = n + 1 \\ \frac{i - 1}{2}, & n + 1 < i \leq 2n + 1 \end{cases}
\]
This R matrix satisfies the following properties

regularity : \(R^{(n)}_{12}(0) = \rho_n(0)^\dagger \mathcal{P}_{12} \),

unitarity : \(R^{(n)}_{12}(u) R^{(n)}_{21}(-u) = \rho_n(u) \),

\(PT - symmetry \) : \(\mathcal{P}_{12} R^{(n)}_{12}(u) \mathcal{P}_{12} = [R^{(n)}_{13}]^{t_{12}}(u) \),

crossing – unitarity : \(M_1 R^{(n)}_{12}(u) t^{M_1} M^{-1} R^{(n)}_{12}(-u - 2\xi_n) t^{M_1} = \rho_n(u + \xi_n) \),

with \(\rho_n(u) = a_n(u)a_n(-u) \), \(\xi_n = -\sqrt{-1}\pi - 2(2n + 1)\eta \), \(M_j^i = \delta_{ij}e^{4(\eta + 1 - \eta)i} \). The exchange operator \(\mathcal{P} \) is given by \(\mathcal{P}^{ij}_{kl} = \delta_{il}\delta_{jk} \), and \(t_i \) denotes the transposition in \(i \)-th space. It also satisfies the Yang-Baxter equation (YBE) [6]

\[
R^{(n)}_{12}(u-v)R^{(n)}_{13}(u)R^{(n)}_{23}(v) = R^{(n)}_{23}(v)R^{(n)}_{13}(u)R^{(n)}_{12}(u-v),
\]

(4)

\(R^{(n)}_{12}(u) = R^{(n)}(u) \otimes 1 \), \(R^{(n)}_{23}(u) = 1 \otimes R^{(n)}(u) \) etc. \(R^{(n)}_{21} = \mathcal{P}_{12} R^{(n)}_{12} \mathcal{P}_{12} \). Define the following reflection equations

\[
R^{(n)}_{12}(u-v) \frac{1}{2} K_-(u) R^{(n)}_{21}(u+v) \frac{1}{2} K_-(v) = \frac{1}{2} K_-(v) R^{(n)}_{12}(u+v) \frac{1}{2} K_-(u) R^{(n)}_{21}(u-v),
\]

(5)

\[
R^{(n)}_{12}(-u+v) \frac{1}{2} t^{M_1} R^{(n)}_{21}(-u-v - 2\xi_n) \frac{1}{2} t^{M_1} R^{(n)}_{12}(u+v) \frac{1}{2} t^{M_1} R^{(n)}_{21}(-u-v),
\]

(6)

where \(\frac{1}{2} K_{\pm}(u) = K_{\pm}(u) \otimes 1 \), \(\frac{2}{2} K_{\pm}(u) = 1 \otimes K_{\pm}(u) \). Then the transfer matrix defined as

\[
t(u) = \text{tr} K_{\pm}(u) U(u)
\]

(7)

constitutes an one-parameter commutative family, i.e. \([t(u), t(v)] = 0 \). Here

\[
U(u) = T(u) K_-(u) T^{-1}(-u),
\]

(8)

\[
T(u) = R^{(n)}_{01}(u) R^{(n)}_{02} \cdots R^{(n)}_{0N}(u).
\]

(9)

The corresponding integrable open chain Hamiltonian takes the form

\[
H = \sum_{k=1}^{N-1} H_{k,k+1} + \frac{1}{2} \frac{1}{K_-(0)} + \frac{\text{tr} K_+(0) H_{N,0}}{\text{tr} K_+(0)},
\]

(10)

with \(H_{k,k+1} = \mathcal{P}_{k,k+1} R'_{k,k+1}(u)|_{u=0} \). The general solutions of Eq.(5) have been obtained in Ref.[23]. The trivial and nontrivial diagonal reflecting matrices take the form

\[
K_{-}^{(1)}(u, n)_i = 1, \quad i = 1, 2, \cdots, 2n + 1
\]

(11)

\[
K_{-}^{(2)}(u, n, p_-)_i = \begin{cases} e^{-u} [c_- \cosh(u) + \sinh(u - 2(2p_- - n)\eta)] & (1 \leq i \leq p_-) \\ c_- \cosh(u + \eta) - \sinh(2(2p_- - n)\eta) & (p_- + 1 \leq i \leq 2n + 1 - p_-) \\ e^u [c_- \cosh(u + \eta) + \sinh(u - 2(2p_- - n)\eta)] & (2n + p_- + 2 \leq i \leq 2n + 1) \end{cases}
\]

(12)
\[K^{(1)}_+(u, n)_i = e^{4(n+1-i)\eta}, \quad i = 1, 2, \ldots, 2n + 1 \]

\[K^{(2)}_+(u, n, p_+)_i = \begin{cases}
 e^{4(n+1-i)\eta + u - 2(2n+1)\eta} \left[c_+ \cosh(\eta) + \sinh(u - 2(3n - 2p_+ + 1)\eta) \right], \\
 (1 \leq i \leq p_+) \\
 e^{4(n+1-i)\eta} \left[c_+ \cosh(u - (4n + 3)\eta) + \sinh(2(p_+ - n)\eta) \right], \\
 (p_+ + 1 \leq i \leq 2n + 1 - p_+) \\
 e^{4(n+1-i)\eta - u + 2(2n+1)\eta} \left[c_+ \cosh(\eta) + \sinh(u - 2(3n - 2p_+ + 1)\eta) \right], \\
 (2n + p_+ + 2 \leq i \leq 2n + 1)
\end{cases} \]

where \(c_+^2 = c_-^2 = -1 \), \(p_+ \) are integer numbers varying from 1 to \(n \).

3 The algebraical Bethe ansatz

In this section, we will present the main procedure of solving open \(A^{(2)}_{2n} \) model by using the nested Bethe ansatz. We begin with introducing the vacuum state.

3.1 The vacuum state

Firstly, we write the double-monodromy matrix (8) as

\[U(u) = \begin{pmatrix}
A(u) & B_1(u) & B_2(u) & \cdots & B_{2n-1} & F(u) \\
D_1(u) & A_{11}(u) & A_{12}(u) & \cdots & A_{12n-1}(u) & E_1(u) \\
D_2(u) & A_{21}(u) & A_{22}(u) & \cdots & A_{22n-1}(u) & E_2(u) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
D_{2n-1}(u) & A_{2n-11}(u) & A_{2n-12}(u) & \cdots & A_{2n-12n-1}(u) & E_{2n-1}(u) \\
G(u) & C_1(u) & C_2(u) & \cdots & C_{2n-1}(u) & A_2(u)
\end{pmatrix}. \]

With the help of Eqs.(4,5), we can prove that \(U(u) \) in eq.(15) satisfy the following equation

\[R^{(n)}_{12}(u - v) \frac{1}{2} \tilde{U}(u) R^{(n)}_{21}(u + v) \frac{2}{2} \tilde{U}(v) = \tilde{U}(v) R_{12}^{(n)}(u + v) \frac{1}{2} \tilde{U}(u) R_{21}^{(n)}(u - v). \]

Applying the double-row monodromy matrix eq.(15) on the vacuum state \(|0\rangle = \prod_{i=1}^{N-1} |1, 0, \ldots, 0\rangle^t \), we can find

\[D_a(u)|0\rangle = 0, \quad C_a(u)|0\rangle = 0, \quad G(u)|0\rangle = 0, \]
\[B_a(u)|0\rangle \neq 0, \quad E_a(u)|0\rangle \neq 0, \quad F(u)|0\rangle \neq 0, \]
\[A_{aa}(u)|0\rangle \neq 0, \quad A_{ab}(u)|0\rangle = 0 \quad (a \neq b), \]
\[A(u)|0\rangle \neq 0, \quad A_2(u)|0\rangle \neq 0 \quad (a = 1, 2, \ldots, 2n - 1) \]

From Eq.(17), we can see that \(D_a, C_a \) and \(B_a, E_a, F \) play the role of annihilation operators and creation operators on the vacuum state, respectively. The \(A, A_{aa}, A_2 \) are diagonal
operators on the vacuum state. Introducing two new operators (a not very long calculation
is omitted here)
\[\tilde{A}_{ab}(u) = A_{ab}(u) - \tilde{f}_1(u)A(u)\delta_{ab}, \quad (18) \]
\[\tilde{A}_2(u) = A_2(u) - \tilde{f}_3(u)A(u) - \tilde{f}_2(u) \sum_{a=1}^{2n-1} e^{4(n-\tilde{a})}\eta \tilde{A}_{aa}(u), \quad (19) \]
where
\[\tilde{f}_1(u) = \frac{\tilde{g}_n(2u)}{a_n(2u)}, \quad \tilde{f}_3(u) = \frac{\tilde{c}_n(2u, 2n + 1)}{a_n(2u)}, \quad \tilde{f}_2(u) = -\frac{e^{a-4n}\sinh(2\eta)}{\sinh(u - 4n\eta)}, \]
\[\tilde{a} = \begin{cases}
 a + \frac{1}{2}, & 1 \leq a < n \\
 a, & a = n \\
 a - \frac{1}{2}, & n + 1 < a \leq 2n - 1
\end{cases} \quad (20) \]
we have
\[A(u)|0\rangle = K_-(u)_1[a_n(u)]^{2N}\rho_n(u)^{-N}|0\rangle = \omega_1(u)|0\rangle, \quad (21) \]
\[\tilde{A}_{aa}(u)|0\rangle = (K_-(u)_{a+1} - \tilde{f}_1(u)K_-(u)_1)[b_n(u)]^{2N}\rho_n(u)^{-N}|0\rangle = k^- (u)_a\omega(u)|0\rangle, \quad (22) \]
\[\tilde{A}_2(u)|0\rangle = \left\{K_-(u)_{2n+1} - \tilde{f}_2(u) \sum_{a=1}^{2n-1} e^{4(n-\tilde{a})}\eta \left(K_-(u)_{a+1} - \tilde{f}_1(u)K_-(u)_1\right)\right\}[e_n](u)^{2N}\rho_n(u)^{-N}|0\rangle = \omega_{2n+1}(u)|0\rangle. \quad (23) \]
In terms of new operators, the transfer matrix (7) can be rewritten as
\[t(u) = w_1(u)A(u) + \sum_{a=1}^{2n-1} w(u)k^+_a(u)\tilde{A}_{aa}(u) + w_{2n+1}(u)\tilde{A}_2(u) \quad (24) \]
with
\[w_1(u) = K_+(u)_1 + \tilde{f}_3(u)K_+(u)_{2n+1} + \tilde{f}_1(u) \sum_{a=1}^{2n-1} K_+(u)_{a+1}, \]
\[w(u)k^+_a(u) = K_+(u)_{a+1} + e^{4(n-\tilde{a})}\eta \tilde{f}_2(u)K_+(u)_{2n+1}, \quad w_{2n+1}(u) = K_+(u)_{2n+1}. \quad (25) \]
The explicit expression of coefficient functions \(\omega \)'s and \(w \)'s can be seen at the case \(j = 0 \) in Appendix B, \(k^+(u) = \mathcal{K}^{(1)}(\tilde{u}, n - 1) \) or \(\mathcal{K}^{(2)}(\tilde{u}, n - 1, p_{\bar{\tau}} - 1) \) depend on the choice of boundary, \(\tilde{u} = u - 2\eta \).

3.2 The Fundamental commutation relations

In order to construct the general m-particle state, we need to find the commutation relations between the creation, diagonal and annihilation fields. Here we only provide
some important commutation relations. Taking some components of eq.(16), we can obtain the following fundamental commutation relations

$$B_a(u)B_b(v) + \delta_{ab}g_1(u, v, a)F(u)A(v) + g_2(u, v, a)F(u)\tilde{A}_{ab}(v)
= \tilde{r}(u)\delta_{ab}^f u_{ab}B_a(v)B_c(u) + \delta_{ab}g_1(v, u, d)F(v)A(u) + g_2(v, u, d)F(v)\tilde{A}_{dc}(u),$$

$$A(u)B_a(v) = a_1^a(u, v)B_a(v)A(u) + a_2^a(u, v)B_a(u)A(v) + a_3^a(u, v)B_d(u)\tilde{A}_{da}(v)
+ a_4^a(u, v, \bar{a})F(u)D_a(v) + a_5^a(u, v)C_a(v) + a_6^a(u, v, \bar{a})F(v)D_a(u),$$

$$\tilde{A}_{ab}(u)B_c(v) = \tilde{r}(u)\delta_{ab}^f u_{ab}B_c(v)\tilde{A}_{dc}(u) + R_1^d(u, v, v)\tilde{A}_{df}(u)A(v)
+ R_2^d(u, v, v)\tilde{A}_{df}(u)\tilde{A}_{dc}(u) + \delta_{bc}R_3^d(u, v, \bar{b})E_a(u)A(v)
+ R_4^d(u, v, v)\tilde{A}_{df}(u)C_a(v) + R_5^d(u, v, v)\tilde{A}_{df}(u)F(v)D_f(v)
+ \delta_{ab}R_6^d(u, v)F(u)C_c(v) + R_7^d(u, v, v)\tilde{A}_{df}(u)F(v)D_f(u)
+ R_8^d(u, v, v)\tilde{A}_{df}(u)F(v)C_f(u),$$

$$\tilde{A}_{2}(u)B_a(v) = a_1^3(u, v)B_a(v)\tilde{A}_{2}(u) + a_2^3(u, v)B_a(u)A(v) + a_3^3(u, v)B_d(u)\tilde{A}_{da}(v)
+ a_4^3(u, v, a)E_a(u)A(v) + a_5^3(u, v, \bar{d})E_d(u)\tilde{A}_{da}(v) + a_6^3(u, v, \bar{a})F(u)D_a(v)
+ a_7^3(u, v)F(u)C_a(v) + a_8^3(u, v, \bar{a})F(v)D_a(u) + a_9^3(u, v)F(v)C_a(u),$$

$$A(u)F(v) = b_1^1(u, v)F(v)A(u) + b_2^1(u, v)F(v)A(v) + b_3^1(u, v, d)F(u)\tilde{A}_{da}(v)
+ b_4^1(u, v)F(u)\tilde{A}_{2}(u) + b_5^1(u, v, d)B_d(u)\tilde{A}_{da}(v) + b_6^1(u, v)B_d(u)E_d(v),$$

$$\tilde{A}_{ab}(u)F(v) = b_1^2(u, v)F(v)\tilde{A}_{ab}(u) + \delta_{ab}b_2^2(u, v)F(u)A(v) + R_1^f(u, v, v)\tilde{A}_{df}(u)\tilde{A}_{dc}(v)
+ \delta_{ab}b_3^2(u, v)F(u)\tilde{A}_{2}(u) + R_2^f(u, v, v)\tilde{A}_{df}(u)B_c(v) + R_3^f(u, v, v)\tilde{A}_{df}(u)E_d(v)
+ b_4^2(u, v)E_a(u)B_d(v) + b_5^2(u, v, \bar{b})E_a(u)E_b(v),$$

$$\tilde{A}_{2}(u)F(v) = b_1^3(u, v)F(v)\tilde{A}_{2}(u) + b_2^3(u, v)F(u)\tilde{A}_{2}(u) + b_3^3(u, v, d)F(u)\tilde{A}_{da}(v)
+ b_4^3(u, v)F(u)\tilde{A}_{2}(u) + b_5^3(u, v, d)B_d(u)\tilde{A}_{da}(v) + b_6^3(u, v)B_d(u)E_d(v)
+ b_7^3(u, v)E_a(u)B_d(v) + b_8^3(u, v, d)E_a(u)E_d(v).$$

Besides the above fundamental commutation relations, we also need the following necessary commutation relations

$$D_a(u)B_b(v) = R_1^p(u, v)\tilde{A}_{pb}(v)D_a(u) + c_1^1(u, v, \bar{a})B_a(v)C_b(v) + \delta_{ab}c_2^1(u, v)F(v)G(u)
+ c_3^1(u, v)B_a(u)C_b(v) + c_4^1(u, v)E_a(u)C_b(v) + \delta_{ab}c_5^1(u, v)A(v)A(u)
+ c_6^1(u, v)A(v)\tilde{A}_{ab}(u) + \delta_{ab}c_7^1(u, v)A(u)A(v) + c_8^1(u, v)A(u)\tilde{A}_{ab}(u)
+ c_9^1(u, v)\tilde{A}_{ab}(u)A(v) + c_1^1(u, v, \bar{a})\tilde{A}_{ad}(u)\tilde{A}_{db}(v),$$

$$C_a(u)B_b(v) = R_1^c(u, v)\tilde{A}_{pb}(v)C_a(u) + R_2^c(u, v)\tilde{A}_{pb}(v)D_a(u) + \delta_{ab}c_2^2(u, v, \bar{a})F(v)G(u)
+ c_3^2(u, v)B_a(u)C_b(v) + c_4^2(u, v, \bar{a})E_a(u)C_b(v) + \delta_{ab}c_5^2(u, v, \bar{a})A(v)A(u)
+ R_3^c(u, v)\tilde{A}_{db}(u)A(v)\tilde{A}_{dc}(u) + \delta_{ab}c_4^2(u, v, \bar{a})A(v)\tilde{A}_{dc}(u)
+ \delta_{ab}c_5^2(u, v, \bar{a})A(v)\tilde{A}_{dc}(u) + c_7^2(u, v, \bar{a})A(v)\tilde{A}_{dc}(u)
+ R_4^c(u, v)\tilde{A}_{db}(u)A(v) + R_5^c(u, v)\tilde{A}_{db}(u)\tilde{A}_{dc}(u)\tilde{A}_{db}(v).$$
Inferred from the commutation relation Eq. (26), we can construct the general m-particle state:

$$B_a(u)E_b(v) = R_{be}^m(u,v)\hat{c}_b u, v, \bar{a})\tilde{A}_2(u)A(v) + c_b^2(u,v,\bar{a})\tilde{A}_2(u)\tilde{A}_{ab}(v),$$

(34)

where all the repeated indices sum over 1 to $2n - 1$, $u_\pm = u \pm v$ and

$$g_1(u,v,a) = -\frac{d_n(u_-,1,\bar{a})b_n(2v)}{e_n(u_-)a_n(2v)}, \quad g_2(u,v,a) = \frac{d_n(u_+,1,\bar{a})}{b_n(u_+)} \quad a + \bar{a} = 2n.$$

(36)

The $\hat{r}(u), \tilde{r}(u)$ and $\bar{r}(u)$ are given by

$$\hat{r}(u) = \frac{1}{e_n(u)}R^{(n-1)}(u), \quad \tilde{r}(u) = \frac{1}{a_n(u)}R^{(n-1)}(u - 4\eta), \quad \bar{r}(u) = \frac{1}{e_n(u)}R^{(n-1)}(u),$$

respectively. The other coefficients are not presented here for their long and tedious expressions.

3.3 The m-particle state

Inferred from the commutation relation Eq. (26), we can construct the general m-particle state as follow. Let

$$\Phi_m^{b_1\cdots b_m}(v_1, \ldots, v_m) = B_{b_l}(v_1)\Phi_{m-1}^{b_2\cdots b_m}(v_2, \ldots, v_m) + F(v_1)\sum_{i=2}^m \Phi_{m-2}^{d_1\cdots d_m}(v_2, \ldots, \tilde{v}_i, \ldots, v_m)S_{b_2\cdots b_m}^{d_1\cdots d_m}(v_1; \{\tilde{v}_1, \tilde{v}_i\}) \times \Lambda_1^{-m-2}(v_i; \{\tilde{v}_1, \tilde{v}_i\})g_1(v_1, v_i, b_1)A(v_i)\delta_{b_1 d_2}$$

$$+ F(v_1)\sum_{i=2}^m \Phi_{m-2}^{d_1\cdots d_m}(v_2, \ldots, \tilde{v}_i, \ldots, v_m)[\tilde{T}^{m-2}(v_i; \{\tilde{v}_1, \tilde{v}_i\})]_{d_1\cdots d_m}^{c_2\cdots c_m}b_1c_2$$

$$\times S_{b_2\cdots b_m}^{c_2\cdots c_m}(v_1; \{\tilde{v}_1, \tilde{v}_i\})g_2(v_1, v_i, b_1),$$

(37)

where

$$S_{b_1\cdots b_m}^{d_1\cdots d_m}(v_1; \{\tilde{v}_1\}) \equiv \hat{r}_{c_2b_1}^{d_1}(v_1 - v_i)\hat{r}_{c_3b_2}^{d_2}(v_2 - v_i)\cdots \hat{r}_{b_{i-1}b_i}^{d_{i-1}}(v_{i-1} - v_i)\prod_{j=i+1}^m \delta_{d_j b_j}$$

$$[\tilde{T}^m(u; \{v_m\})]_{d_1\cdots d_m}^{c_1\cdots c_m} = \hat{r}_{h_1g_1}^{d_1}(u + v_1)\hat{r}_{h_2g_2}^{d_2}(u + v_2)\cdots \hat{r}_{h_{m-1}g_m}^{d_{m-1}}(u + v_m)\tilde{A}_{hm}f_m(u)$$

$$\times \hat{r}_{c_{m-1}f_{m-1}}^{g_{m-1}f_{m-1}}(u - v_m)\hat{r}_{c_mf_m}^{g_{m-1}f_{m-1}}(u - v_{m-1})\cdots \hat{r}_{c_2f_2}^{g_1f_1}(u - v_1)$$

(38)

with

$$S_{b_1\cdots b_m}^{d_1\cdots d_m}(v_1; v_2, \ldots, v_m) = \prod_{i=1}^m \delta_{d_i b_i} [\tilde{T}^0(u)]_{ab} = \tilde{A}_{ab}(u), \Lambda_i^m(u; v_1, v_2, \ldots, v_m) = \prod_{i=1}^m a_i^l(u, v_i),$$

$l = 1, 3$, $\Phi_0 = 1, \Phi_1^{b_1}(v_1) = B_{b_1}(v_1)$. The \tilde{v}_i means missing of v_i in the sequence.

Then the general m-particle state is defined by

$$|\Upsilon_m(v_1, \ldots, v_m)\rangle = \Phi_m^{b_1\cdots b_m}(v_1, \ldots, v_m)F^{b_1\cdots b_m}|0\rangle,$$

(39)
which enjoys the property
\[\Phi_{b_1 \ldots b_{i+1} \ldots b_m}(v_1, \ldots, v_i, v_{i+1}, \ldots, v_m) F^{b_1 \ldots b_m}|0\rangle = \Phi_{a_1 \ldots a_{i+1} \ldots a_m}(v_1, \ldots, v_i, v_{i+1}, \ldots, v_m) \tilde{r}_{b_{i+1}}^{a_{i+1}}(v_i - v_{i+1}) F^{b_1 \ldots b_m}|0\rangle. \] (40)

It is easy to verify Eq.(40) excepting \(i = 1 \). But, the proof for the case \(i = 1 \) becomes very involved and are omitted here.

3.4 The eigenvalue and Bethe equations

We can apply the operators \(A \)'s on the eigenstate ansatz and obtain (see Appendix A)

\[x(u)|\Upsilon_m(v_1, \ldots, v_m)\rangle = |\bar{\Psi}_x(u, \{v_m\})\rangle + \sum_{i=1}^{m} h_x^{A_i}(u, v_i, d_1)|\bar{\Psi}^{(1)}_{m-1}(u, v_i; \{v_m\})d_1\rangle + \sum_{i=1}^{m} h_x^{A_i}(u, v_i, d_2)|\bar{\Psi}^{(2)}_{m-1}(u, v_i; \{v_m\})dd\rangle + \sum_{i=1}^{m} h_x^{A_i}(u, v_i, \tilde{\alpha}_x)|\bar{\Psi}^{(3)}_{m-1}(u, v_i; \{v_m\})\alpha_x\alpha_x\rangle + \sum_{i=1}^{m} h_x^{A_i}(u, v_i, \tilde{\alpha}_x)|\bar{\Psi}^{(4)}_{m-1}(u, v_i; \{v_m\})\alpha_x\alpha_x\rangle + \sum_{i=1}^{m} \sum_{j=i+1}^{m} \bar{H}^{A_1}_{1,d_1}(u, v_i, v_j)|\bar{\Psi}^{(5)}_{m-2}(u, v_i, v_j; \{v_m\})d_1\rangle + \sum_{i=1}^{m} \sum_{j=i+1}^{m} \bar{H}^{A_2}_{2,d_1}(u, v_i, v_j)|\bar{\Psi}^{(6)}_{m-2}(u, v_i, v_j; \{v_m\})d_1\rangle + \sum_{i=1}^{m} \sum_{j=i+1}^{m} \bar{H}^{A_3}_{3,d_1}(u, v_i, v_j)|\bar{\Psi}^{(7)}_{m-2}(u, v_i, v_j; \{v_m\})d_1\rangle + \sum_{i=1}^{m} \sum_{j=i+1}^{m} \bar{H}^{A_4}_{4,d_1}(u, v_i, v_j)|\bar{\Psi}^{(8)}_{m-2}(u, v_i, v_j; \{v_m\})d_1\rangle, \] (41)

where the expression of \(|\bar{\Psi}\)'s and coefficients \(\bar{H}^{A}_{j,d_1} (j = 1, 2, 3, 4) \) are given in Appendix A, \(x = A, \tilde{A}_{aa}, \tilde{A}_2 \). Using eq.(24), we then get

\[t(u)|\Upsilon_m(v_1, \ldots, v_m)\rangle = w_1(u)\omega_1(u)\Lambda^m_1(u; v_1, \ldots, v_m)|\Upsilon_m(v_1, \ldots, v_m)\rangle + w(u)\omega(u)\Lambda^m_2(u; v_1, \ldots, v_m)|\Upsilon_m(v_1, \ldots, v_m)\rangle + w_{2n+1}(u)\omega_{2n+1}(u)\Lambda^m_3(u; v_1, \ldots, v_m)|\Upsilon_m(v_1, \ldots, v_m)\rangle + u.t., \] (42)

where \(u.t. \) denotes the unwanted terms,

\[\tau_1(\bar{u}; \{\tilde{v}_m\})d_{1} \ldots d_{m} = \]

9
\[k^+(u) a L(\tilde{u}, \tilde{v})^{d_1} L(\tilde{u}, \tilde{v})^{d_2} \cdots L(\tilde{u}, \tilde{v})^{h_m} L(\tilde{u}, \tilde{v})^{h_{m-1} d_m} k^-(u) h_m \]
\[\times L^{-1}(\tilde{u}, \tilde{v})^{h_m} L^{-1}(\tilde{u}, \tilde{v})^{h_{m-1}} L^{-1}(\tilde{u}, \tilde{v})^{h_{m-2}} \cdots L^{-1}(\tilde{u}, \tilde{v})^{f_{g_1}} \quad (43) \]

with \(\tilde{v}_i = v_i - 2\eta \), and

\[L(\tilde{u}, \tilde{v})^{a b} = R^{(n-1)}(\tilde{u} + \tilde{v})^{a b}_{c d}, \]
\[L^{-1}(\tilde{u}, \tilde{v})^{a b} = \frac{R^{(n-1)}(\tilde{u} - \tilde{v})^{b a}}{\rho_{n-1}(\tilde{u} - \tilde{v})}. \quad (44) \]

Thus, we get the conclusion that \(|\Psi_m(v_1, \ldots, v_m)\rangle \) is the eigenstate of \(t(u) \), i.e.

\[t(u) |\Psi_m(v_1, \ldots, v_m)\rangle = \{ w_1(u) \omega_1(u) \Lambda_1^{m-1}(u; v_1, \ldots, v_m) \]
\[+ w(u) \omega(u) \Lambda_2^{m-1}(u; v_1, \ldots, v_m) \Gamma_1(\tilde{v}_i) \}
\[+ w_{2n+1}(u) \omega_{2n+1}(u) \Lambda_3^{m-1}(u; v_1, \ldots, v_m) \} \]
\[= \Gamma(u; \{ v_m \}) |\Psi_m(v_1, \ldots, v_m)\rangle, \quad (45) \]

if the parameters satisfy

\[\tau_1(\tilde{u}; \{ v_m \}) \Gamma_1(\tilde{v}_i) = \Gamma(\tilde{u}; \{ v_m \}) \Gamma_1(\tilde{v}_i), \quad (46) \]

\[\Gamma_1(\tilde{v}_i; \{ v_m \}) = -\rho_{n-1}(0) \frac{\omega_1(v_i) \Lambda_1^{m-1}(v_i; \{ \tilde{v}_i \})}{\omega(v_i) \Lambda_2^{m-1}(v_i; \{ \tilde{v}_i \})} \beta_1(v_i), \quad (47) \]

where

\[\beta_1(v_i) = \begin{cases} -\frac{2 e^{2\eta} \sinh(v_i) \sinh(v_i - 4n\eta) \cosh(v_i - (2n - 1)\eta)}{\sinh(v_i - 2\eta)}, & \text{for the eq.}(13) \\ -\frac{2 e^{\nu_1} \sinh(v_i) \sinh(v_i - 4n\eta)}{\sinh(v_i - 2\eta)} [\sinh(2\eta) + c_+ \cosh(v_i - (2n + 1)\eta)] \\
\times [\cosh((4p_+ - 4n - 1)\eta) - c_+ \sinh(v_i - 2(n + 1)\eta)], & \text{for the eq.}(14) \end{cases} \quad (48) \]

All unwanted terms cancel out by the following three kinds of identities:

\[\beta_1(v_i) = T^{(d_1)}(v_i) \]
\[w_1(u) a_1^{d_1}(u, v_i) + \sum_{d=1}^{2n-1} w_{d+1}(u) R_1^{d_1} a_1^{d_1}(u, v_i) + w_{2n+1}(u) a_1^{d_1}(u, v_i), \quad (49) \]
\[\beta_1(v_i) = T^{(d_1)}(v_i) \]
\[w_{d_1+1}(u) R_1^{d_1} a_1^{d_1}(u, d_1) + w_{2n+1}(u) a_1^{d_1}(u, d_1), \quad (50) \]
\[\sum_{l=1}^{2n+1} w_l(u) \tilde{H}_{1,d_1} (u, v_i, v_j) - \sum_{l=1}^{2n+1} w_l(u) \tilde{H}_{2,d_1} (u, v_i, v_j) \beta_1(v_i) \]
\[- \sum_{l=1}^{2n+1} w_l(u) \tilde{H}_{3,d_1} (u, v_i, v_j) \beta_1(v_j) + \sum_{l=1}^{2n+1} w_l(u) \tilde{H}_{4,d_1} (u, v_i, v_j) \beta_1(v_i) \beta_1(v_j) = 0 \quad (51) \]

with \(x_1 = A, x_{2n+1} = \tilde{A}_2, d_1 = 1, 2, \ldots, 2n - 1 \).
From eqs. (43), (45) and (46), we can see that the diagonalization of \(\tau(u) \) is reduced to finding the eigenvalue of \(\tau_1(u; \{ \tilde{v}_m \}) \) which is just the transfer matrix of \(A^{(2)}_{2(n-1)} \) vertex model with open boundary conditions. Repeating the procedure \(j \) times, we can obtain the \(\Gamma_j(u^{(j)}; \{ \tilde{v}_{m_{j-1}} \}; \{ v_{m_j} \}) \) corresponding to the eigenvalue of open boundary \(A^{(2)}_{2(n-j)} \) vertex model.

\[
\Gamma_j(u^{(j)}; \{ \tilde{v}_{m_{j-1}} \}; \{ v_{m_j} \}) = w_j^{(j)}(u^{(j)})\omega_j^{(j)}(u^{(j)}; \{ \tilde{v}_{m_{j-1}} \})\Lambda_j^{m_j}(u^{(j)}; \{ v_{m_j} \}) + w_j^{(j)}(u^{(j)})\omega_j^{(j)}(u^{(j)}; \{ \tilde{v}_{m_{j-1}} \})\Lambda_j^{m_j}(u^{(j)}; \{ v_{m_j} \})\Gamma_{j+1}(u^{(j+1)}; \{ \tilde{v}_{m_{j+1}} \}; \{ v_{m_{j+1}} \}) + w_{2(n-j+1)}^{(j)}(u^{(j)})\omega_{2(n-j+1)}^{(j)}(u^{(j)}; \{ \tilde{v}_{m_{j-1}} \})\Lambda_3^{m_j}(u^{(j)}; \{ v_{m_j} \}),
\]

(52)

with \(u^{(j)} = u - 2j\eta, \tilde{v}_k^{(j)} = u_k^{(j)} - 2\eta, \{ v_{m_j} \} = \{ v_{m_0} \}, \{ v_{m_0} \} = \{ \tilde{v}_{m_0} \} = \{ \tilde{v}_{m_{-1}} \} = \{ 0 \}, m_{-1} = N, m_0 = m \). Replacing the \(m, u, \{ v_m \}, n \) in the \(\Lambda_i^{m_j}(u^{(j)}; \{ v_{m_j} \}) \) \((i = 1, 2, 3)\) by \(m_j, u^{(j)}, \{ v_{m_j} \}, n-j \) respectively, we have \(\Lambda_i^{m_j}(u^{(j)}; \{ v_{m_j} \}) \). The Bethe equations are

\[
\Gamma_{j+1}(\tilde{v}_i^{(j)}; \{ \tilde{v}_{m_j} \}; \{ v_{m_{j+1}} \}) = -\rho_{n-j-1}(0)\frac{\omega_j^{(j)}(v_{i}^{(j)}; \{ \tilde{v}_{m_{j-1}} \})\Lambda_j^{m_j-1}(v_{i}^{(j)}; \{ \tilde{v}_{m_{j-1}} \})}{\omega_j^{(j)}(v_{i}^{(j)}; \{ \tilde{v}_{m_{j-1}} \})\Lambda_j^{m_j-1}(v_{i}^{(j)}; \{ \tilde{v}_{m_{j-1}} \})} - \beta_{j+1}(v_i^{(j)}). (i = 1, \cdots, m_j)
\]

(53)

The coefficients \(w, \omega, \beta \) and the following \(\bar{\omega}, \xi \) are expressed in Appendix B. We can rewrite the eigenvalue in detail, which is

\[
\Gamma(u) = \Gamma_0(u) = w_0^{(0)}(u^{(0)})\omega_1^{(0)}(u^{(0)})\xi_1^{(0)}(u^{(0)}; \{ \tilde{v}_{m_{-1}} \})A^{(mo)}(u) + w_{2(n+1)}^{(0)}(u^{(0)})\omega_{2(n+1)}^{(0)}(u^{(0)})\xi_3^{(0)}(u^{(0)}; \{ \tilde{v}_{m_{-1}} \})B^{(mo)}(u) + \sum_{j=0}^{n-2} \mu_j(u^{(j)})\nu_j(u^{(j)})w_1^{(j+1)}(u^{(j+1)})\omega_1^{(j+1)}(u^{(j+1)})\xi_2^{(0)}(u^{(0)}; \{ \tilde{v}_{m_{-1}} \})B^{(m_{j+1}m_{j+1})}(u) + \mu_n(u^{(n-1)})\nu_{n-1}(u^{(n-1)})\xi_2^{(0)}(u^{(0)}; \{ \tilde{v}_{m_{-1}} \})B^{(n-1)}(u),
\]

(54)

where

\[
\mu_j(u^{(j)}) = \prod_{i=0}^{j} \bar{\omega}_i(u^{(i)}), \quad \nu_j(u^{(j)}) = \prod_{i=0}^{j} w_i(u^{(i)}),
\]

(55)

\[
A^{(mo)}(u) = \prod_{k=1}^{m_0} \frac{\sinh(\frac{1}{2}(\tilde{u}_k^{(0)} + \tilde{v}_k^{(0)})) + 2\eta) \sinh(\frac{1}{2}(\tilde{u}_k^{(0)} + \tilde{v}_k^{(0)}))}{\sinh(\frac{1}{2}(\tilde{u}_k^{(0)} + \tilde{v}_k^{(0)})) \sinh(\frac{1}{2}(\tilde{u}_k^{(0)} + \tilde{v}_k^{(0)}))},
\]

11
\[C^{(m_0)}(u) = \prod_{k=1}^{m_0} \frac{\cosh(\frac{1}{2}(\tilde{u}(0) + \tilde{v}_k(0)) - (2n + 1)\eta) \cosh(\frac{1}{2}(\tilde{u}(0) - \tilde{v}_k(0)) - (2n + 1)\eta)}{\cosh(\frac{1}{2}(\tilde{u}(0) + \tilde{v}_k(0)) - (2n - 1)\eta) \cosh(\frac{1}{2}(\tilde{u}(0) - \tilde{v}_k(0)) - (2n - 1)\eta)}, \]

\[B^{(m_j, m_j+1)}(u) = \prod_{k=1}^{m_j} \frac{\sinh(\frac{1}{2}(\tilde{u}(j) + \tilde{v}_k(j)) - 2\eta) \sinh(\frac{1}{2}(\tilde{u}(j) - \tilde{v}_k(j)) - 2\eta)}{\sinh(\frac{1}{2}(\tilde{u}(j) + \tilde{v}_k(j))) \sinh(\frac{1}{2}(\tilde{u}(j) - \tilde{v}_k(j)))}, \]

\[\times \prod_{l=1}^{m_j+1} \frac{\sinh(\frac{1}{2}(\tilde{u}(j+1) + \tilde{v}_l(j+1)) + 2\eta) \sinh(\frac{1}{2}(\tilde{u}(j+1) - \tilde{v}_l(j+1)) + 2\eta)}{\sinh(\frac{1}{2}(\tilde{u}(j+1) + \tilde{v}_l(j+1))) \sinh(\frac{1}{2}(\tilde{u}(j+1) - \tilde{v}_l(j+1)))}, \]

\[B^{(m_j, m_j+1)}(u) = \prod_{k=1}^{m_j} \frac{\cosh(\frac{1}{2}(\tilde{u}(j) + \tilde{v}_k(j)) - (2n - 2j - 3)\eta) \cosh(\frac{1}{2}(\tilde{u}(j) - \tilde{v}_k(j)) - (2n - 2j - 3)\eta)}{\cosh(\frac{1}{2}(\tilde{u}(j) + \tilde{v}_k(j)) - (2n - 2j - 1)\eta) \cosh(\frac{1}{2}(\tilde{u}(j) - \tilde{v}_k(j)) - (2n - 2j - 1)\eta)} \]

\[\times \prod_{l=1}^{m_j+1} \frac{\cosh(\frac{1}{2}(\tilde{u}(j+1) + \tilde{v}_l(j+1)) - (2n - 2j - 3)\eta) \cosh(\frac{1}{2}(\tilde{u}(j+1) - \tilde{v}_l(j+1)) - (2n - 2j - 3)\eta)}{\cosh(\frac{1}{2}(\tilde{u}(j+1) + \tilde{v}_l(j+1)) - (2n - 2j - 1)\eta) \cosh(\frac{1}{2}(\tilde{u}(j+1) - \tilde{v}_l(j+1)) - (2n - 2j - 1)\eta)}, \]

\[(j = 0, 1, 2, \ldots, n - 2) \]

\[B^{(m_{n-1})}(u) = \prod_{k=1}^{m_{n-1}} \frac{\sinh(\frac{1}{2}(\tilde{u}(n-1) + \tilde{v}_k(n-1)) - 2\eta) \sinh(\frac{1}{2}(\tilde{u}(n-1) - \tilde{v}_k(n-1)) - 2\eta)}{\sinh(\frac{1}{2}(\tilde{u}(n-1) + \tilde{v}_k(n-1))) \sinh(\frac{1}{2}(\tilde{u}(n-1) - \tilde{v}_k(n-1)))} \]

\[\times \frac{\cosh(\frac{1}{2}(\tilde{u}(n-1) + \tilde{v}_k(n-1)) + \eta) \cosh(\frac{1}{2}(\tilde{u}(n-1) - \tilde{v}_k(n-1)) + \eta)}{\cosh(\frac{1}{2}(\tilde{u}(n-1) + \tilde{v}_k(n-1)) - \eta) \cosh(\frac{1}{2}(\tilde{u}(n-1) - \tilde{v}_k(n-1)) - \eta)}. \]

The explicit expression of Bethe equations eq.(53) is

\[\prod_{k=1}^{m_{j-1}} \frac{\sinh(\frac{1}{2}(\tilde{v}_i(j) + \tilde{v}_k(j-1)) - \eta) \sinh(\frac{1}{2}(\tilde{v}_i(j) - \tilde{v}_k(j-1)) + \eta)}{\sinh(\frac{1}{2}(\tilde{v}_i(j) + \tilde{v}_k(j-1)) + \eta) \sinh(\frac{1}{2}(\tilde{v}_i(j) - \tilde{v}_k(j-1)) - \eta)}, \]

\[\times \prod_{l=1}^{m_{j-1}} \frac{\sinh(\frac{1}{2}(\tilde{v}_i(j) + \tilde{v}_l(j)) - \eta) \sinh(\frac{1}{2}(\tilde{v}_i(j) - \tilde{v}_l(j)) + \eta)}{\sinh(\frac{1}{2}(\tilde{v}_i(j) + \tilde{v}_l(j)) + \eta) \sinh(\frac{1}{2}(\tilde{v}_i(j) - \tilde{v}_l(j)) - \eta)}, \]

\[\times \prod_{s=1}^{m_{j}} \frac{\sinh(\frac{1}{2}(\tilde{v}_i(j) + \tilde{v}_s(j)) + 2\eta) \sinh(\frac{1}{2}(\tilde{v}_i(j) + \tilde{v}_s(j)) - 2\eta)}{\sinh(\frac{1}{2}(\tilde{v}_i(j) + \tilde{v}_s(j)) - \eta) \sinh(\frac{1}{2}(\tilde{v}_i(j) + \tilde{v}_s(j)) + \eta)}, \]

\[= W^{(j)}(\tilde{v}_i(j)) \Omega^{(j)}(\tilde{v}_i(j)), \quad (i = 1, \ldots, m_{j}; j \neq n - 1) \]

\[\prod_{k=1}^{m_{n-2}} \frac{\sinh(\frac{1}{2}(\tilde{v}_i(n-1) + \tilde{v}_k(n-2)) - \eta) \sinh(\frac{1}{2}(\tilde{v}_i(n-1) - \tilde{v}_k(n-2)) - \eta)}{\sinh(\frac{1}{2}(\tilde{v}_i(n-1) + \tilde{v}_k(n-2)) + \eta) \sinh(\frac{1}{2}(\tilde{v}_i(n-1) - \tilde{v}_k(n-2)) + \eta)}, \]

\[\prod_{l=1}^{m_{n-1}} \frac{\cosh(\frac{1}{2}(\tilde{v}_i(n-1) + \tilde{v}_l(n-1)) - \eta) \cosh(\frac{1}{2}(\tilde{v}_i(n-1) - \tilde{v}_l(n-1)) - \eta)}{\cosh(\frac{1}{2}(\tilde{v}_i(n-1) + \tilde{v}_l(n-1)) + \eta) \cosh(\frac{1}{2}(\tilde{v}_i(n-1) - \tilde{v}_l(n-1)) + \eta)}, \]

\[\times \frac{\sinh(\frac{1}{2}(\tilde{v}_i(n-1) + \tilde{v}_l(n-1)) + 2\eta) \sinh(\frac{1}{2}(\tilde{v}_i(n-1) + \tilde{v}_l(n-1)) + 2\eta)}{\sinh(\frac{1}{2}(\tilde{v}_i(n-1) + \tilde{v}_l(n-1)) - \eta) \sinh(\frac{1}{2}(\tilde{v}_i(n-1) + \tilde{v}_l(n-1)) - \eta)}, \]

\[= W^{(n-1)}(\tilde{v}_i(n-1)) \Omega^{(n-1)}(\tilde{v}_i(n-1)), \quad (i = 1, \ldots, m_{n-1}) \]
with

\[
W^{(j)}(\tilde{v}^{(j)}_i) = \begin{cases}
- \frac{w^{(j+1)}(\tilde{v}^{(j)}_i) a_{n-j-1}(2\tilde{v}^{(j)}_i)}{\beta_{j+1}(v^{(j)}_i)}, & j \neq n-1 \\
\frac{1}{\beta_n(v^{(n-1)}_i)}, & j = n-1
\end{cases} \tag{59}
\]

\[
\Omega^{(j)}(\tilde{v}^{(j)}_i) = \begin{cases}
\bar{\omega}^{(j)}(v^{(j)}_i) \bar{\omega}_1^{(j+1)}(\tilde{v}^{(j)}_i), & j \neq n-1 \\
\bar{\omega}_1^{(j)}(v^{(n-1)}_i), & j = n-1
\end{cases} \tag{60}
\]

Up to now, we have gotten the whole eigenvalues and the Bethe equations of transfer matrix for the $A_{2n}^{(2)}$ vertex model with open boundary condition.

4 Conclusions

In the framework of algebraic Bethe ansatz, we solve the $A_{2n}^{(2)}$ vertex model with general diagonal reflecting matrices. When the model is $U_q(B_n)$ quantum invariant, we find that our conclusion agrees with that obtained by analytic Bethe ansatz method [3]. It seems that other models, such as $A_{2n-1}^{(2)}$, $B_n^{(1)}$ and $C_n^{(1)}$ vertex models can also be treated in this way. Additionally, we notice that algebraic Bethe ansatz has been generalized to the spin chain with non-diagonal reflecting matrices[24]-[27]. It is interesting to apply the method to other higher rank algebras.

Acknowledgements

This work is supported by NNSFC under Grant No.10175050 and No.90403019, and Program for NCET under Grant No. NCET-04-0929.

A Some detail derivations

Acting the diagonal operators $x(u) = A(u), \tilde{A}_{aa}(u), \tilde{A}_2(u)$ on the m-particle state and having carried out a very involved analysis similar to that in Ref.[16], we can obtain the following expression

\[
x(u)|\Upsilon_m(v_1, \ldots, v_m)\rangle = |\Psi_x(u, \{v_m\})\rangle \\
+ \sum_{i=1}^{m} h_1^{(1)}(u, v_i, d_1)|\Psi_{m-1}^{(1)}(u, v_i; \{v_m\})_{d_1d_1}\rangle \\
+ \sum_{i=1}^{m} h_2^{(2)}(u, v_i, d)|\Psi_{m-1}^{(2)}(u, v_i; \{v_m\})_{dd}\rangle
\]
\[
+ \sum_{i=1}^{m} h_2^2(u, v, \bar{\alpha}_x) |\Psi_{m-1}^{(3)}(u, v; \{v_m\})_{\alpha_x \bar{\alpha}_x}\rangle \\
+ \sum_{i=1}^{m} h_3^2(u, v, \bar{\alpha}_x) |\Psi_{m-1}^{(4)}(u, v; \{v_m\})_{\alpha_x \bar{\alpha}_x}\rangle \\
+ \sum_{i=1}^{m-1} \sum_{j=1}^{m} \delta_{d_1 \epsilon_2} H_{1,d_1}^{x}(u, v, v_j) |\Psi_{m-2}^{(5)}(u, v, v_j; \{v_m\})_{d_1 \epsilon_2}\rangle \\
+ \sum_{i=1}^{m-1} \sum_{j=1}^{m} H_{2,d_1}^{x}(u, v, v_j) |\Psi_{m-2}^{(6)}(u, v, v_j; \{v_m\})_{d_1 \epsilon_2}\rangle \\
+ \sum_{i=1}^{m-1} \sum_{j=1}^{m} H_{3,d_1}^{x}(u, v, v_j) |\Psi_{m-2}^{(7)}(u, v, v_j; \{v_m\})_{d_1 \epsilon_2}\rangle \\
+ \sum_{i=1}^{m-1} \sum_{j=1}^{m} H_{4,d_1}^{x}(u, v, v_j) |\Psi_{m-2}^{(8)}(u, v, v_j; \{v_m\})_{d_1 \epsilon_2}\rangle, \quad (A.1)
\]

where when \(x = A, \tilde{A}_{aa}, \tilde{A}_2, \)

\[
h_1(u, v, d_1) = a_1^1(u, v), R_1^A(u, v)_{d_1 \epsilon_2}, a_2^3(u, v),
\]

\[
h_2(u, v, d) = a_3^1(u, v), R_2^A(u, v)_{d_1 \epsilon_2}, a_3^3(u, v),
\]

\[
h_3(u, v, \bar{\alpha}_x) = 0, R_3^A(u, v, \bar{a}), a_3^3(u, v, \bar{d}),
\]

\[
h_4(u, v, \bar{\alpha}_x) = 0, R_4^A(u, v, \bar{a}), a_3^3(u, v, \bar{d}),
\]

\[
\alpha_x = 0, a, d,
\]

\[
|\Psi_x(u, \{v_m\})\rangle = \left\{ \begin{array}{l}
\omega_1(u) \Lambda_1^y(u; v_1, \cdots, v_m)|\Upsilon_m(v_1, \cdots, v_m)\rangle \\
+ \Phi_m^{d_1 \cdots d_m}(v_1, \cdots, v_m)|\tilde{T}_m(u; \{v_m\})_{d_1 \cdots d_m}^m|\bar{a}\rangle F_{b_1 \cdots b_m}^m|0\rangle,
\end{array} \right. \quad (A.2)
\]

respectively, and we denote

\[
|\Psi_{m-1}^{(1)}(u, v; \{v_m\})_{d_1 \epsilon_2}\rangle = B_f(u) |\Phi_m^{d_1 \cdots d_m}(v_1, \cdots, \bar{v}_i, \cdots, v_m)\rangle \\
\times S_{b_1 \cdots b_m}^{d_1 \cdots d_m}(v_i; \{\bar{v}_i\}) \Lambda_{m-1}^y(v_i; \{\bar{v}_i\}) \omega_1(v_i) F_{b_1 \cdots b_m}^m|0\rangle, \quad (A.3)
\]

\[
|\Psi_{m-1}^{(2)}(u, v; \{v_m\})_{d_1 \epsilon_2}\rangle = B_f(u) |\Phi_m^{d_1 \cdots d_m}(v_1, \cdots, \bar{v}_i, \cdots, v_m)\rangle \\
\times |\tilde{T}_m^{-1}(v_i; \{\bar{v}_i\})_{d_1 \cdots d_m}^{d_1 \cdots d_m}(v_i; \{\bar{v}_i\}) F_{b_1 \cdots b_m}^m|0\rangle, \quad (A.4)
\]

\[
|\Psi_{m-1}^{(3)}(u, v; \{v_m\})_{d_1 \epsilon_2}\rangle = E_a(u) |\Phi_m^{d_1 \cdots d_m}(v_1, \cdots, \bar{v}_i, \cdots, v_m)\rangle \\
\times |\tilde{T}_m^{-1}(v_i; \{\bar{v}_i\})_{d_1 \cdots d_m}^{d_1 \cdots d_m}(v_i; \{\bar{v}_i\}) F_{b_1 \cdots b_m}^m|0\rangle, \quad (A.5)
\]

\[
|\Psi_{m-1}^{(4)}(u, v; \{v_m\})_{d_1 \epsilon_2}\rangle = E_a(u) |\Phi_m^{d_1 \cdots d_m}(v_1, \cdots, \bar{v}_i, \cdots, v_m)\rangle \\
\times |\tilde{T}_m^{-1}(v_i; \{\bar{v}_i\})_{d_1 \cdots d_m}^{d_1 \cdots d_m}(v_i; \{\bar{v}_i\}) F_{b_1 \cdots b_m}^m|0\rangle, \quad (A.6)
\]

\[
|\Psi_{m-2}^{(5)}(u, v, v_j; \{v_m\})_{d_1 \epsilon_2}\rangle = F(u) |\Phi_m^{d_1 \cdots d_m}(v_1, \cdots, \bar{v}_i, \cdots, v_m)\rangle
\]

\[
\times |\tilde{T}_m^{-1}(v_i; \{\bar{v}_i\})_{d_1 \cdots d_m}^{d_1 \cdots d_m}(v_i; \{\bar{v}_i\}) F_{b_1 \cdots b_m}^m|0\rangle.
\]
\[
\begin{align*}
&\times S_{e_{2,\ldots,m}}^{a_{2,\ldots,m}}(v_j; \{\tilde{v}_i, \tilde{v}_j\}) S_{b_{2,\ldots,m}}^{d_{2,\ldots,m}}(v_i; \{\tilde{v}_i\}) \Lambda_1^{m-2}(v_i; \{\tilde{v}_i, \tilde{v}_j\}) \\
&\times \Lambda_1^{m-2}(v_j; \{\tilde{v}_i, \tilde{v}_j\}) A(v_i) A(v_j) F_{b_{1,\ldots,m}}[0],
\end{align*}
\]
(A.7)

\[
|\Psi^{(6)}_{m-2}(u, v_i, v_j; \{v_m\})|_{f_d}^{f_{e_d}} = F(u) \Phi_{m-2}^{e_{2,\ldots,m}}(v_1, \ldots, \tilde{v}_i, \ldots, \tilde{v}_j, \ldots, v_m) \\
\times [\tilde{T}^{m-2}(v_i; \{\tilde{v}_i, \tilde{v}_j\})^{e_{2,\ldots,m}}]_{f_{e_d}} S_{e_{2,\ldots,m}}^{a_{2,\ldots,m}}(v_j; \{\tilde{v}_i, \tilde{v}_j\}) S_{b_{1,\ldots,m}}^{d_{2,\ldots,m}}(v_i; \{\tilde{v}_i\}) \\
\times \Lambda_1^{m-2}(v_j; \{\tilde{v}_i, \tilde{v}_j\}) A(v_j) F_{b_{1,\ldots,m}}[0],
\]
(A.8)

\[
|\Psi^{(7)}_{m-2}(u, v_i, v_j; \{v_m\})|_{f_d}^{f_{e_d}} = F(u) \Phi_{m-2}^{e_{2,\ldots,m}}(v_1, \ldots, \tilde{v}_i, \ldots, \tilde{v}_j, \ldots, v_m) \\
\times [\tilde{T}^{m-2}(v_i; \{\tilde{v}_i, \tilde{v}_j\})^{e_{2,\ldots,m}}]_{f_{e_d}} S_{e_{2,\ldots,m}}^{a_{2,\ldots,m}}(v_j; \{\tilde{v}_i, \tilde{v}_j\}) S_{b_{1,\ldots,m}}^{d_{2,\ldots,m}}(v_i; \{\tilde{v}_i\}) \\
\times \Lambda_1^{m-2}(v_j; \{\tilde{v}_i, \tilde{v}_j\}) A(v_i) F_{b_{1,\ldots,m}}[0],
\]
(A.9)

\[
|\Psi^{(8)}_{m-2}(u, v_i, v_j; \{v_m\})|_{f_d}^{f_{e_d}} = F(u) \Phi_{m-2}^{e_{2,\ldots,m}}(v_1, \ldots, \tilde{v}_i, \ldots, \tilde{v}_j, \ldots, v_m) \\
\times [\tilde{T}^{m-2}(v_i; \{\tilde{v}_i, \tilde{v}_j\})^{e_{2,\ldots,m}}]_{f_{e_d}} [\tilde{T}^{m-2}(v_j; \{\tilde{v}_i, \tilde{v}_j\})^{e_{2,\ldots,m}}]_{f_{e_d}} \\
\times S_{e_{2,\ldots,m}}^{a_{2,\ldots,m}}(v_j; \{\tilde{v}_i, \tilde{v}_j\}) S_{b_{1,\ldots,m}}^{d_{2,\ldots,m}}(v_i; \{\tilde{v}_i\}) F_{b_{1,\ldots,m}}[0].
\]
(A.10)

The explicit expressions of \(H_{l,d_1}^x (u, v_i, v_j) \), \(l = 1, 2, 3, 4 \) are listed as below

\[
\begin{align*}
H_{1,d_1}^A (u, v_i, v_j) &= a_1^A(u, v_i, \bar{d}_1)(c_1^A(v_i, v_j) + c_1^A(v_i, v_j)) \\
&+ a_1^A(u, v_i)a_2^A(u, v_j)g_1(u, v, d)\tilde{r}(v - u)_{d_1d_1}^{dd},
\end{align*}
\]
(A.11)

\[
\begin{align*}
H_{2,d_1}^A (u, v_i, v_j) &= a_1^A(u, v_i, \bar{d}_1)(c_1^A(v_i, v_j) + c_1^A(v_i, v_j))\delta_{d_1f} \\
&+ a_1^A(u, v_i)R_3^C(v_j)_{f_{d_1}} + R_1^A(v_j)_{f_{d_1}} \\
&+ b_1^A(u, v_i)g_1(u, v, d_1)\delta_{d_1d_2} + a_1^A(u, v_i)a_1^A(u, v_j)g_2(u, v, f)\tilde{r}(v - u)_{d_2d_1}^{dd},
\end{align*}
\]
(A.12)

\[
\begin{align*}
H_{3,d_1}^A (u, v_i, v_j) &= a_1^A(u, v_i, \bar{d}_1)c_1^A(v_i, v_j) + a_1^A(u, v_i)c_1^A(v_i, v_j) \\
&+ b_1^A(u, v_i)g_2(v_i, v_j, d_1) + a_1^A(u, v_i)a_3^A(u, v_j)g_1(u, v, d)\tilde{r}(v - u)_{d_1d_1}^{dd},
\end{align*}
\]
(A.13)

\[
\begin{align*}
H_{4,d_1}^A (u, v_i, v_j) &= a_1^A(u, v_i, \bar{d}_1)c_1^A(v_i, v_j) + a_1^A(u, v_i)c_1^A(v_i, v_j) \\
&+ b_1^A(u, v_i)g_2(v_i, v_j, d_1) + a_1^A(u, v_i)a_3^A(u, v_j)g_1(u, v, d)\tilde{r}(v - u)_{d_1d_1}^{dd},
\end{align*}
\]
(A.14)

\[
\begin{align*}
H_{1,d_1}^{\bar{A}} (u, v_i, v_j) &= R_3^{\bar{A}}(u, v_i)_{d_{1,1}}(c_1^A(v_i, v_j) + c_1^A(v_i, v_j)) + b_2^A(u, v_i)g_1(v_i, v_j, d_1) \\
&+ R_6^{\bar{A}}(u, v_i)(c_1^A(v_i, v_j) + c_1^A(v_i, v_j)) + \tilde{r}(u + v_i)_{d_{3,1}}R_3^{\bar{A}}(u, v_i, \bar{d}_1)c_1^A(v_i, v, d) \\
&+ \tilde{r}(u + v_i)_{d_{3,1}}R_3^{\bar{A}}(u, v_i, \bar{d}_1)c_1^A(v_i, v, d)
\end{align*}
\]
(A.15)

\[
\begin{align*}
H_{2,d_1}^{\bar{A}} (u, v_i, v_j) &= R_3^{\bar{A}}(u, v_i)_{d_{1,1}}(c_1^A(v_i, v_j) + c_1^A(v_i, v_j))\delta_{d_1f} \\
&+ R_6^{\bar{A}}(u, v_i)(R_3^C(v_j)_{d_{1,1}} + R_1^A(v_j)_{d_{1,1}}) + R_6^F(u, v_i)_{f_{d_{1,1}}}g_1(v_i, v_j, d_1)\delta_{d_1d_2} \\
&+ \tilde{r}(u + v_i)_{d_{3,1}}R_3^{\bar{A}}(u, v_i, \bar{d}_1)c_2^A R_3^{\bar{A}}(u, v_i, \bar{d}_1)c_1^A(v_i, v, d)
\end{align*}
\]
(A.16)

\[
\begin{align*}
H_{3,d_1}^{\bar{A}} (u, v_i, v_j) &= R_3^{\bar{A}}(u, v_i)_{d_{1,1}}c_1^A(v_i, v_j) + R_6^{\bar{A}}(u, v_i)c_1^A(v_i, v_j)
\end{align*}
\]
\[+ b_2^2(u, v_1)g_2(v_i, v_j, d_1) + \tilde{r}(u + v_i)^{ad}_{da} \tilde{r}(u - v_i)^{ad}_{da} R_4^A(u, v_j, \bar{d}_1) c_1^1(v_i, u, d) \\
+ \tilde{r}(u + v_i)^{af}_{d_1a} \tilde{r}(u - v_i)^{gf}_{d_1a} R_4^A(u, v_j, \bar{d}_1) c_1^1(v_i, u, d) \]
\[H_{4, d_1}^A(u, v_i, v_j)^{d_1f}_{d_1} = R_5^A(u, v_i)^{d_1c_1}_{d_1} c_{10}^1(v_i, v_j) \delta_{d_1 d} + R_6^A(u, v_i)^{d_1c_1}_{d_1} R_5^C(v_i, v_j)^{d_1c_1}_{d_1} \\
+ R_1^F(u, v_i)^{d_1c_1}_{d_1} g_2(v_i, v_j, d_1) \delta_{d_1 d} + \tilde{r}(u + v_i)^{ac}_{d_1a} \tilde{r}(u - v_i)^{gf}_{d_1a} R_4^A(u, v_j, f) R_3^R(v_i, u)^{d_1c_1}_{d_1} \\
+ \tilde{r}(u + v_i)^{ac}_{d_1a} \tilde{r}(u - v_i)^{gh}_{d_1a} g_2(v_i, v_j, d_1) R_2^A(u, v_j)^{d_1f}_{d_1} \tilde{r}(v_i - u)^{d_1c_1}_{d_1}. \]

\[H_{3, d_1}^A(u, v_i, v_j)^{d_1e}_{d_1} = a_0^3(u, v_i, \bar{d}_1)(c_1^1(v_i, v_j) + c_1^3(v_i, v_j)) \delta_{d_1 f} \\
+ a_0^3(u, v_i)(R_3^C(v_i, v_j)^{d_1e}_{d_2} + R_5^C(v_i, v_j)^{d_1e}_{d_1}) \\
+ b_3^2(u, v_i)g_1(v_i, v_j, d_1) \delta_{d_1 e} + a_0^3(u, v_i)(c_1^3(v_i, v_j) + c_1^5(v_i, v_j, \bar{d}_1)) + a_0^3(u, v_i)a_0^3(u, v_j, \bar{d}_1) c_1^1(v_i, u, d_1) \\
+ a_0^3(u, v_i)a_0^3(u, v_j)g_2(u, v_i, f) \tilde{r}(v_i - u)^{d_1e}_{d_1}. \]

\[H_{2, d_1}^A(u, v_i, v_j)^{d_1e}_{d_1} = a_0^3(u, v_i, \bar{d}_1)(c_1^1(v_i, v_j) + c_1^3(v_i, v_j)) \delta_{d_1 f} \\
+ a_0^3(u, v_i)(R_3^C(v_i, v_j)^{d_1e}_{d_2} + R_5^C(v_i, v_j)^{d_1e}_{d_1}) \\
+ b_3^2(u, v_i)g_1(v_i, v_j, d_1) \delta_{d_1 e} + a_0^3(u, v_i)(c_1^3(v_i, v_j) + c_1^5(v_i, v_j, \bar{d}_1)) + a_0^3(u, v_i)a_0^3(u, v_j, \bar{d}_1) c_1^1(v_i, u, d_1) \\
+ a_0^3(u, v_i)a_0^3(u, v_j)g_2(u, v_i, f) \tilde{r}(v_i - u)^{d_1e}_{d_1}. \]

\[H_{4, d_1}^A(u, v_i, v_j)^{d_1e}_{d_1} = a_0^3(u, v_i, \bar{d}_1)(c_1^1(v_i, v_j) + c_1^3(v_i, v_j)) \delta_{d_1 d} + a_0^4(u, v_i)(R_5^C(v_i, v_j)^{d_1e}_{d_1}) \\
+ b_3^2(u, v_i)g_1(v_i, v_j, d_1) \delta_{d_1 f} + a_0^3(u, v_i)a_0^3(u, v_j, \bar{d}_1) c_1^1(v_i, u, d_1) \\
+ a_0^3(u, v_i)a_0^3(u, v_j)g_2(u, v_i, d) \tilde{r}(v_i - u)^{d_1e}_{d_1}. \]

All the repeated indices sum over 1 to 2n - 1 except for a, d1 and we have checked that

\[\frac{H_{2, b}^A(u, v_i, v_j)^{d_1a}_{d_1}}{R^{n-1}((v_i - v_j)_b)^{d_1a}_{d_1}} = \frac{H_{2, d_1}^A(u, v_i, v_j)^{d_1a}_{d_1}}{R^{n-1}((v_i - v_j)_d)^{d_1a}_{d_1}} \]

\[\frac{H_{4, b}^A(u, v_i, v_j)^{d_1a}_{d_1}}{R^{n-1}((v_i + v_j)_b)^{d_1a}_{d_1}} = \frac{H_{4, d_1}^A(u, v_i, v_j)^{d_1a}_{d_1}}{R^{n-1}((v_i + v_j)_d)^{d_1a}_{d_1}}. \]

We conclude that Eq. (A.1) can be verified directly by using mathematical induction, although it is a rather hard work. Similar to the assumption of algebraic Bethe ansatz, we might assume that “quasi” m-particle states such as B\(\Phi_{m-1}|0\rangle\), E\(\Phi_{m-1}|1\rangle\), BB\(\Phi_{m-2}|0\rangle\), BE\(\Phi_{m-2}|1\rangle\), EBE\(\Phi_{m-2}|2\rangle\), F\(\Phi_{m-2}|0\rangle\), FBE\(\Phi_{m-2}|1\rangle\), etc are linearly independent. Here all the indices are omitted and all the spectrum parameters in the “quasi” n-particle state keep the order \(\{v_{i_1}, v_{i_2}, \ldots, v_{i_k}\}\) with \(i_1 < i_2 < \ldots < i_k\). For example, \(B_1(v_1)B_2(v_2)\Phi_{m-2}^{3\ldots b_m}(v_3, \ldots, v_m)F_{11\ldots b_m}^{12\ldots b_m}|0\rangle\) and \(B_1(v_1)B_2(v_2)\Phi_{m-2}^{3\ldots b_m}(v_3, \ldots, v_m)F_{11\ldots b_m}^{12\ldots b_m}|0\rangle\) are thought to be
linearly independent. Then, by using the assumption, the property of Eq.(40) and some necessary relations, we can prove the conclusions Eq.(A.1) as done in Ref.[16].

In order to obtain the eigenvalue and the corresponding Beh evolutionary equations, we need to carry out the following procedure. Denote

\[
[T^m(u; \{v_m\})_{b_1 \cdots b_m}]_{ab} F^{b_1 \cdots b_m} |0\rangle = \omega(u) \Lambda^m_2 (u; \{v_m\}) [T^m(u; \{v_m\})_{b_1 \cdots b_m}]_{ab} F^{b_1 \cdots b_m} |0\rangle
\]

\[
\Lambda^m_2 (u; \{v_m\}) = \prod_{i=1}^{m} \rho_{n-1} (u - v_i) \tilde{\rho}(u, v_i), \quad (A.25)
\]

\[
\rho_{n-1} (u) = a_{n-1} (u) a_{n-1} (u) \tilde{\rho}(u, v) = \frac{1}{a_n (u + v) e_n (u - v)}, \quad (A.26)
\]

\[
[T^m(u; \{v_m\})_{d_1 \cdots d_m}]_{ab} = L(\tilde{u}, \tilde{v}_1)_{ad_1} \chi_{d_1}^{h_{1g1}} L(\tilde{u}, \tilde{v}_2)_{h_{2g2}} \cdots L(\tilde{u}, \tilde{v}_m)_{h_{m-1g_{m-1}}} \tilde{\rho}(u, \tilde{v}_{m-1})_{f_{m-2g_{m-2}}} \cdots \tilde{\rho}(u, \tilde{v}_1)_{bc_1} \chi_{bc_1}^{f_{g1}} \cdot (A.27)
\]

Before deducing the Eq.(41), we present the following four relations (the proofs are omitted here)

\[
S_{(\bar{c}_1 \cdots c_{m})}^{d_1 \cdots d_m} (v_1; \{v_i\}) \tau_1 (\tilde{v}_i; \{\tilde{v}_m\})_{b_1 \cdots b_m} =
\]

\[
(\frac{1}{\rho_{n-1} (u)})^{-1} T(d_1) (v_i) [T^{m-1}(v_i; \{\tilde{v}_i\}; \{\tilde{v}_m\})_{\bar{c}_1 \cdots \bar{c}_m}]_{d_1 \cdots d_m} S_{\bar{c}_1 \cdots \bar{c}_m}^{d_1 \cdots d_m} (v_1; \{\tilde{v}_i\}), \quad (A.28)
\]

\[
R^{(n-1)}(\tilde{v}_i - \tilde{v}_j) a_{c_i} \chi_{c_i}^{a_{i1}} \chi_{b_1}^{d_{i1}} T^{(c_1 \cdots c_{m})} (\tilde{v}_i; \{\tilde{v}_i\}; \{\tilde{v}_m\}) \tau_1 (\tilde{v}_i; \{\tilde{v}_m\})_{b_1 \cdots b_m} = \frac{\rho_{n-1} (\tilde{v}_i - \tilde{v}_j) \rho_{n-1} (0) R^{(n-1)}(\tilde{v}_i - \tilde{v}_j) a_{c_i} \chi_{c_i}^{a_{i1}} \chi_{b_1}^{d_{i1}}}{\rho_{n-1} (\tilde{v}_i + \tilde{v}_j) T^{(c_1 \cdots c_{m})} (\tilde{v}_j)} \quad (A.29)
\]

\[
[T^{m-2} (v_j; \{v_1, \tilde{v}_i\}; \{v_1, \tilde{v}_j\}) a_{c_1} \chi_{c_1}^{a_{i1}} \chi_{b_1}^{d_{i1}} S_{d_1 \cdots d_m}^{c_1 \cdots c_{m}} (v_j; \{\tilde{v}_i\}; \{\tilde{v}_m\}) S_{d_1 \cdots d_m}^{c_1 \cdots c_{m}} (v_j; \{\tilde{v}_i\}; \{\tilde{v}_m\})]_{d_1 \cdots d_m} = \frac{\rho_{n-1} (\tilde{v}_i - \tilde{v}_j) a_{c_i} \chi_{c_i}^{a_{i1}} \chi_{b_1}^{d_{i1}} R^{(n-1)}(\tilde{v}_i - \tilde{v}_j) a_{c_1} \chi_{c_1}^{a_{i1}} \chi_{b_1}^{d_{i1}}}{\rho_{n-1} (\tilde{v}_i + \tilde{v}_j) T^{(c_1 \cdots c_{m})} (\tilde{v}_j)} \quad (A.30)
\]

\[
R^{(n-1)}(\tilde{v}_j + \tilde{v}_i) a_{c_i} \chi_{c_i}^{a_{i1}} \chi_{b_1}^{d_{i1}} S_{d_1 \cdots d_m}^{c_1 \cdots c_{m}} (v_j; \{\tilde{v}_i\}; \{\tilde{v}_m\}) S_{d_1 \cdots d_m}^{c_1 \cdots c_{m}} (v_j; \{\tilde{v}_i\}; \{\tilde{v}_m\}) = \frac{\rho_{n-1} (\tilde{v}_i - \tilde{v}_j) \rho_{n-1} (0)}{\rho_{n-1} (\tilde{v}_i + \tilde{v}_j) T^{(c_1 \cdots c_{m})} (\tilde{v}_j)} \quad (A.31)
\]

where

\[
T^{(d_1)} (v_i) = k_+^{d_1} (v_i) R^{(n-1)} (2v_i - 4n) d_{d_1}^{d_1} \quad (A.32)
\]
and one should note that all the repeated indices in eqs. (A.29, A.30, A.31) sum over 1 to $2n - 1$ except for c_1 or a_1. We now denote

$$|	ilde{\Psi}_{m-1}^{(2)}(u,v_i; \{v_m\})_{fd}\rangle = \frac{\rho^{\dagger}_{n-1}(0)\omega(v_i)}{T(d)(v_i)}\Lambda_{d_1}^{m-1}(v_i; \{\tilde{v}_i\})B_f(u)\Phi^{e_2\cdots e_m}_{m-1}(v_1,\ldots, \tilde{v}_i,\ldots, v_m)$$

$$\times S_{d_1}\cdots d_m(v_i; \{\tilde{v}_i\})\tau_1(v_i; \{\tilde{v}_m\})_{b_1}\cdots b_m F^{b_1\cdots b_m}|0\rangle,$$

(A.33)

$$|\tilde{\Psi}_{m-1}^{(4)}(u,v_i; \{v_m\})_{ab}\rangle = \frac{\rho^{\dagger}_{n-1}(0)\omega(v_i)}{T(b)(v_i)}\Lambda_{d_1}^{m-1}(v_i; \{\tilde{v}_i\})\tilde{E}_a(u)\Phi^{e_2\cdots e_m}_{n-1}(v_1,\ldots, \tilde{v}_i,\ldots, v_m)$$

$$\times S_{d_1}\cdots d_m(v_i; \{\tilde{v}_i\})\tau_1(v_i; \{\tilde{v}_m\})_{b_1}\cdots b_m F^{b_1\cdots b_m}|0\rangle,$$

(A.34)

$$|\tilde{\Psi}_{m-2}^{(5)}(u,v_i; v_j; \{v_m\})_{d_1}\rangle = F(u)\Phi^{e_2\cdots e_m}_{m-2}(v_1,\ldots, \tilde{v}_i,\ldots, v_j,\ldots, v_m)$$

$$\times S_{d_2}\cdots d_m(v_j; \{\tilde{v}_j\})\tilde{S}_{\tilde{d_1}}(v_i; \{\tilde{v}_i\})\Lambda_{d_1}^{m-1}(v_j; \{\tilde{v}_j\})\omega_1(v_j)\omega_1(v_j)F^{b_1\cdots b_m}|0\rangle,$$

(A.35)

$$|\tilde{\Psi}_{m-2}^{(6)}(u,v_i; v_j; \{v_m\})_{d_1}\rangle = F(u)\Phi^{e_2\cdots e_m}_{m-2}(v_1,\ldots, \tilde{v}_i,\ldots, v_j,\ldots, v_m)$$

$$\times S_{d_2}\cdots d_m(v_j; \{\tilde{v}_j\})\tilde{S}_{\tilde{d_1}}(v_i; \{\tilde{v}_i\})\Lambda_{d_1}^{m-1}(v_j; \{\tilde{v}_j\})\omega_1(v_j)\omega_1(v_j)F^{b_1\cdots b_m}|0\rangle,$$

(A.36)

$$|\tilde{\Psi}_{m-2}^{(7)}(u,v_i; v_j; \{v_m\})_{d_1}\rangle = F(u)\Phi^{e_2\cdots e_m}_{m-2}(v_1,\ldots, \tilde{v}_i,\ldots, v_j,\ldots, v_m)$$

$$\times S_{d_2}\cdots d_m(v_j; \{\tilde{v}_j\})\tilde{S}_{\tilde{d_1}}(v_i; \{\tilde{v}_i\})\Lambda_{d_1}^{m-1}(v_j; \{\tilde{v}_j\})\omega_1(v_j)\omega_1(v_j)F^{b_1\cdots b_m}|0\rangle,$$

(A.37)

$$|\tilde{\Psi}_{m-2}^{(8)}(u,v_i; v_j; \{v_m\})_{d_1}\rangle = F(u)\Phi^{e_2\cdots e_m}_{m-2}(v_1,\ldots, \tilde{v}_i,\ldots, v_j,\ldots, v_m)$$

$$\times S_{d_2}\cdots d_m(v_j; \{\tilde{v}_j\})\tilde{S}_{\tilde{d_1}}(v_i; \{\tilde{v}_i\})\Lambda_{d_1}^{m-1}(v_j; \{\tilde{v}_j\})\omega_1(v_j)\omega_1(v_j)F^{b_1\cdots b_m}|0\rangle,$$

(A.38)

With the help of relation Eq. (A.28), we can easily change the $|\tilde{\Psi}_{m-1}^{(2)}(u,v_i; \{v_m\})_{fd}\rangle$ and $|\tilde{\Psi}_{m-1}^{(4)}(u,v_i; \{v_m\})_{ab}\rangle$ into $|\tilde{\Psi}_{m-2}^{(5)}(u,v_i; v_j; \{v_m\})_{d_1}\rangle$ and $|\tilde{\Psi}_{m-2}^{(4)}(u,v_i; v_j; \{v_m\})_{ab}\rangle$, respectively. It is easy to get

$$\delta_{d_1\epsilon_2} H_{1,d_1}^{\epsilon}(u,v_i,v_j)|\tilde{\Psi}_{m-1}^{(5)}(u,v_i,v_j; \{v_m\})_{d_1}\rangle_{d_1\epsilon_2} = H_{1,d_1}^{\epsilon}(u,v_i,v_j)|\tilde{\Psi}_{m-1}^{(5)}(u,v_i,v_j; \{v_m\})_{d_1}\rangle$$

(A.39)

with

$$H_{1,d_1}^{\epsilon}(u,v_i,v_j) = \frac{H_{1,d_1}^{\epsilon}(u,v_i,v_j)}{a_1^{\epsilon}(v_i,v_j)a_1^{\epsilon}(v_i,v_i)}.$$

(A.40)

Using Eq. (A.29) and Eq. (A.23), Eq. (A.30), Eq. (A.31) and Eq. (A.24), we can rewrite

$$H_{2,d_1}^{\epsilon}(u,v_i,v_j)|\tilde{\Psi}_{m-2}^{(5)}(u,v_i,v_j; \{v_m\})^{\epsilon}_{d_1}\rangle_{d_1\epsilon_2} =$$
respectively. Where

\begin{align}
\tilde{H}^x_{2,d_1}(u, v_i, v_j) &= \frac{1}{\tilde{\rho}(v_i, v_j)\Lambda_1(v_i, v_j)} H^x_d(u, v_i, v_j) \frac{R^{(n-1)}(-\tilde{v}_i - \tilde{v}_j)_{dd}}{\tilde{\rho}(-\tilde{v}_j + \tilde{v}_i)T^{(d_1)}(v_i)}, \\
\tilde{H}^x_{3,d_1}(u, v_i, v_j) &= \frac{H^x_d(u, v_i, v_j)R^{(n-1)}(-\tilde{v}_i - \tilde{v}_j)_{dd} R^{(n-1)}(\tilde{v}_j - \tilde{v}_i)_{de}}{\tilde{\rho}(v_i, v_j)\Lambda_1(v_i, v_j)\tilde{\rho}(-\tilde{v}_j + \tilde{v}_i)T^{(d_1)}(v_i)} \\
\tilde{H}^x_{4,d_1}(u, v_i, v_j) &= \frac{1}{\tilde{\rho}(v_i, v_j)\tilde{\rho}(v_i, v_j)\rho_{n-1}(\tilde{v}_j - \tilde{v}_i)\rho_{n-1}(\tilde{v}_j - \tilde{v}_i)} \frac{R^{(n-1)}(-\tilde{v}_j - \tilde{v}_i)_{dd}}{R^{(n-1)}(\tilde{v}_j - \tilde{v}_i)_{dd}} T^{(d_1)}(v_i)T^{(d_1)}(v_j).
\end{align}

After making the notation

\begin{align}
|\Psi_x(u, \{v_m\})| = \begin{cases}
|\Psi_x(u, \{v_m\})|, x = A, \tilde{A}_2 \\
\omega(u)\Lambda_2^{m_1}(u; \{v_m\})\Phi_d^{m_1 \ldots m_n}(v_1, \ldots, v_m)[T^{m_1}(u; \{v_m\})]_{d_1 \ldots d_m} F^{b_1 \ldots b_m} |0\rangle, x = \tilde{A}_{aa}
\end{cases}
\end{align}

we arrive at the final result Eq.(41).

B Necessary coefficients

\begin{align}
\omega_1^{(j)}(u^{(j)}; \{\tilde{v}^{(j-1)}_{m_j-1}\}) &= \tilde{\omega}_1^{(j)}(u^{(j)}; \{\tilde{v}^{(j-1)}_{m_j-1}\}), \\
\omega_2^{(j)}(u^{(j)}; \{\tilde{v}^{(j-1)}_{m_j-1}\}) &= \tilde{\omega}_2^{(j)}(u^{(j)}; \{\tilde{v}^{(j-1)}_{m_j-1}\}), \\
\omega_3^{(j)}(u^{(j)}; \{\tilde{v}^{(j-1)}_{m_j-1}\}) &= \tilde{\omega}_3^{(j)}(u^{(j)}; \{\tilde{v}^{(j-1)}_{m_j-1}\})
\end{align}

with

\begin{align}
\xi_1^{(j)}(u^{(j)}; \{\tilde{v}^{(j-1)}_{m_j-1}\}) &= \prod_{i=1}^{m_j-1} \frac{a_{n-j}(u^{(j)} + \tilde{v}^{(j-1)}_{i})a_{n-j}(u^{(j)} - \tilde{v}^{(j-1)}_{i})}{a_{n-j}(u^{(j)} - \tilde{v}^{(j-1)}_{i})a_{n-j}(\tilde{v}^{(j-1)}_{i} - u^{(j)})}, \\
\xi_2^{(j)}(u^{(j)}; \{\tilde{v}^{(j-1)}_{m_j-1}\}) &= \prod_{i=1}^{m_j-1} \frac{b_{n-j}(u^{(j)} + \tilde{v}^{(j-1)}_{i})b_{n-j}(u^{(j)} - \tilde{v}^{(j-1)}_{i})}{a_{n-j}(\tilde{v}^{(j-1)}_{i} - u^{(j)})}, \\
\xi_3^{(j)}(u^{(j)}; \{\tilde{v}^{(j-1)}_{m_j-1}\}) &= \prod_{i=1}^{m_j-1} \frac{e_{n-j}(u^{(j)} + \tilde{v}^{(j-1)}_{i})e_{n-j}(u^{(j)} - \tilde{v}^{(j-1)}_{i})}{a_{n-j}(\tilde{v}^{(j-1)}_{i} - u^{(j)})}.
\end{align}
For the case of Eq.(11), we have

\[
\tilde{w}_1^{(j)}(u^{(j)}) = 1, \quad \tilde{w}_2^{(j)}(u^{(j)}) = \frac{e^{2\eta} \sinh(u^{(j)})}{\sinh(u^{(j)} - 2\eta)},
\]

\[
\tilde{w}_2^{(j)}(u^{(j)}) = e^{2(2(n-j)-1)\eta} \frac{\sinh(u^{(j)}) \cosh((2-n-j)\eta) \cosh(u^{(j)} - (2-n-j+1)\eta)}{\sinh(u^{(j)} - 4(n-j)\eta) \cosh(u^{(j)} - (2-n-j+1)\eta)}.
\]

(B.3)

while for the case of Eq.(12), if \(p_- = n \)

\[
\tilde{w}_1^{(j)}(u^{(j)}) = e^{-u^{(j)}}[c_- \cosh(\eta) + \sinh(u^{(j)} - 2(n-j)\eta)],
\]

\[
\tilde{w}_2^{(n-j)+1}(u^{(j)}) = \frac{e^{u^{(j)}-4\eta} \sinh(u^{(j)})[c_- \sinh(2\eta) + \cosh(u^{(j)} - (2(n-j) + 1)\eta)]}{\sinh(u^{(j)} - 4(n-j)\eta) \cosh(u^{(j)} - (2(n-j) + 1)\eta)}
\]

\[
\times [c_- \cosh(\eta) + \sinh(u^{(j)} - 2(n-j)\eta)],
\]

\[
\tilde{w}^{(j)}(u^{(j)}) = \frac{\sinh(u^{(j)})}{\sinh(u^{(j)} - 2\eta)} \times \begin{cases}
1, & (j \neq n - 1) \\
 c_- \cosh(u^{(j)} - \eta). & (j = n - 1)
\end{cases}
\]

(B.4)

If \(p_- \neq n \),

\[
\tilde{w}_1^{(j)}(u^{(j)}) = e^{-u^{(j)}}[c_- \cosh(\eta) + \sinh(u^{(j)} - 2(2p_- - (n+1))\eta)],
\]

\[
\tilde{w}_2^{(n-j)+1}(u^{(j)}) = \frac{e^{u^{(j)}-4\eta} \sinh(u^{(j)})[c_- \sinh(2\eta) + \cosh(u^{(j)} - (2(n-j) + 1)\eta)]}{\sinh(u^{(j)} - 4(n-j)\eta) \cosh(u^{(j)} - (2(n-j) + 1)\eta)}
\]

\[
\times [c_- \cosh((4p_- - 4(n-j) - 1)\eta) + \sinh(u^{(j)} - 2(n-j)\eta)],
\]

\[
\tilde{w}^{(j)}(u^{(j)}) = \frac{\sinh(u^{(j)})}{\sinh(u^{(j)} - 2\eta)}
\]

and

\[
\tilde{w}_1^{(j)}(u^{(j)}) = [c_- \cosh(u^{(j)} - 2p_- - 2j - 1)\eta) + \sinh(2(n-p_-)\eta)],
\]

\[
\tilde{w}_2^{(n-j)+1}(u^{(j)}) = \frac{e^{2(2(n-j)-1)\eta} \sinh(u^{(j)}) \cosh((2-n-j)\eta) \cosh(u^{(j)} - (2-n-j+1)\eta)}{\sinh(u^{(j)} - 4(n-j)\eta) \cosh(u^{(j)} - (2(n-j) + 1)\eta)}
\]

\[
\times [c_- \cosh(u^{(j)} - 2p_- - 2j - 1)\eta) + \sinh(2(n-p_-)\eta)],
\]

\[
\tilde{w}^{(j)}(u^{(j)}) = \frac{e^{2\eta} \sinh(u^{(j)})}{\sinh(u^{(j)} - 2\eta)} \times \begin{cases}
1, & (j \neq n - 1) \\
 [c_- \cosh(u^{(j)} - 2p_- - 2j - 1)\eta) + \sinh(2(n-p_-)\eta)] & (j = n - 1)
\end{cases}
\]

(B.6)

for \(j < p_- \) and \(p_- \leq j \leq n - 1 \), respectively. For the case of Eq.(13), we have

\[
w_1^{(j)}(u^{(j)}) = \frac{\sinh(u^{(j)} - 2(2(n-j) + 1)\eta) \cosh(u^{(j)} - (2(n-j) - 1)\eta)}{\sinh(u^{(j)} - 2\eta) \cosh(u^{(j)} - (2(n-j) + 1)\eta)},
\]

\[
w^{(j)}(u^{(j)}) = \frac{e^{-2\eta} \sinh(u^{(j)} - 2(2(n-j) + 1)\eta)}{\sinh(u^{(j)} - 4(n-j)\eta)},
\]

\[
w_2^{(n-j)+1}(u^{(j)}) = e^{-2(2(n-j)-1)}.
\]

(B.7)
\[\beta_{j+1}(v_i^{(j)}) = \begin{cases} -\frac{2e^{2\eta} \sinh(v_i^{(j)}) \sinh(v_i^{(j)} - 4(n - j)\eta) \cosh(v_i^{(j)} - (2n - 2j - 1)\eta)}{\sinh(v_i^{(j)} - 2\eta)}, & j \leq n - 2 \\ -\frac{e^{2\eta} \sinh(v_i^{(n-1)})}{\sinh(v_i^{(n-1)} - 2\eta)}, & j = n - 1 \end{cases} \] (B.8)

while for the case of Eq. (14), if \(p_+ = n \)

\[w_j^{(j)}(u^{(j)}) = \frac{e^{u^{(j)}} \sinh(u^{(j)} - 2(2n - j) + 1)\eta)}{\sinh(u^{(j)} - 2\eta) \cosh(u^{(j)} - (2n - 2j + 1)\eta)}[\sinh(2\eta) + c_+ \cosh(u^{(j)} - (2n - j) + 1)\eta] \]
\times [\cosh(\eta) - c_+ \sinh(u^{(j)} - 2((n - j) + 1)\eta)],

\[w_{2(n-j)+1}^{(j)}(u^{(j)}) = K_+^{(2)}(u^{(j)}, n - j, n - j)_{2(n-j)+1}, \]

\[w_j^{(j)}(u^{(j)}) = \frac{\sinh(u^{(j)} - 2(2n - j) + 1)\eta)}{\sinh(u^{(j)} - 4(n - j)\eta)} \times \begin{cases} 1, & (j \neq n - 1) \\ c_+ \cosh(u^{(j)} - 5\eta). & (j = n - 1) \end{cases} \] (B.9)

If \(p_+ \neq n \),

\[w_1^{(j)}(u^{(j)}) = \frac{e^{u^{(j)}} \sinh(u^{(j)} - 2(2n - j) + 1)\eta)}{\sinh(u^{(j)} - 2\eta) \cosh(u^{(j)} - (2n - 2j + 1)\eta)}[\sinh(2\eta) + c_+ \cosh(u^{(j)} - (2n - j) + 1)\eta] \]
\times [\cosh((4p_+ - 4n - 1)\eta) - c_+ \sinh(u^{(j)} - 2((n - j) + 1)\eta)],

\[w_{2(n-j)+1}^{(j)}(u^{(j)}) = K_+^{(2)}(u^{(j)}, n - j, p_+ - j)_{2(n-j)+1}, \quad w_j^{(j)}(u^{(j)}) = \frac{\sinh(u^{(j)} - 2(2n - j) + 1)\eta)}{\sinh(u^{(j)} - 4(n - j)\eta)} \] (B.10)

and

\[w_1^{(j)}(u^{(j)}) = \frac{\sinh(u^{(j)} - 2(2n - j) + 1)\eta) \cosh(u^{(j)} - (2n - j - 1)\eta)}{\sinh(u^{(j)} - 2\eta) \cosh(u^{(j)} - (2n - j) + 1)\eta)} \]
\times [c_+ \cosh(u^{(j)} - (4n - 2p_+ - 2j + 3)\eta) - \sinh(2(n - p_+)\eta)],

\[w_{2(n-j)+1}^{(j)}(u^{(j)}) = e^{-4(n-j-\frac{\eta}{2})}[c_+ \cosh(u^{(j)} - (4n - 2p_+ - 2j + 3)\eta) - \sinh(2(n - p_+)\eta)], \]

\[w_j^{(j)}(u^{(j)}) = \frac{e^{-2n} \sinh(u^{(j)} - 2(2n - j) + 1)\eta)}{\sinh(u^{(j)} - 4(n - j)\eta)} \]
\times \begin{cases} 1, & (j \neq n - 1) \\ [c_+ \cosh(u^{(j)} - (4n - 2p_+ - 2j + 3)\eta) - \sinh(2(n - p_+)\eta)] & (j = n - 1) \end{cases} \] (B.11)
for $j < p_+$ and $p_+ \leq j \leq n - 1$, respectively,

\[
\beta_{j+1}(v^{(j)}_i) = \begin{cases}
- \frac{2e^{i(j)} \sinh(v^{(j)}_i) \sinh(v^{(j)}_i - 4(n - j)\eta)}{\sinh(v^{(j)}_i - 2\eta)} \left[\sinh(2\eta) + c_+ \cosh(v^{(j)}_i - (2n - 2j + 1)\eta) \right] \\
\times \left[\cosh((4p_+ - 4n - 1)\eta) - c_+ \sinh(v^{(j)}_i - 2(n - j + 1)\eta) \right], & (j < p_+, p_+ \neq n) \\
- \frac{e^{i(n-1)} \sinh(v^{(n-1)}_i)}{\sinh(v^{(n-1)}_i - 2\eta)} \left[\cosh(\eta) - c_+ \sinh(v^{(n-1)}_i - 2\eta) \right], & (p_+ = n, j = n - 1) \\
- \frac{2e^{2n} \sinh(v^{(j)}_i) \sinh(v^{(j)}_i - 4(n - j)\eta)}{\sinh(v^{(j)}_i - 2\eta)} \left[\cosh(v^{(j)}_i - 2(n - 2j - 1)\eta) \right] \\
\times \left[c_+ \cosh(v^{(j)}_i - (4n - 2p_+ - 2j + 3)\eta) - \sinh(2(n - p_+)\eta) \right], & (p_+ \leq j < n - 1) \\
- \frac{e^{2n} \sinh(v^{(n-1)}_i)}{\sinh(v^{(n-1)}_i - 2\eta)}, & (p_+ \leq j = n - 1)
\end{cases}
\]

(B.12)

References

[1] N.Yu.Reshetikhin, *The Spectrum of the transfer matrices connected with Kac-Moody algebras*, Lett. Math.Phys. 14 (1987) 235.

[2] L.Mezei and R.I. Nepomechie, *Analytical Bethe Ansatz for Quantum-Algebra-Invariant Spin Chains*, Nucl. Phys. B 372 (1992) 597 [hep-th/9110050].

[3] S.Artz, L.Mezei and R.I. Nepomechie, *Spectrum of transfer matrix for $U_q(B_n)$-invariant $A^{(2)}_{2n}$ open spin chain*, Int. J. Mod.Phys. A 10 (1995) 1937 [hep-th/9409130].

[4] S.Artz, L.Mezei and R.I. Nepomechie, *Analytical Bethe Ansatz for $A^{(2)}_{2n-1}, B^{(1)}_n, C^{(1)}_n, D^{(1)}_n$ quantum-algebra-invariant open spin chains*, J. Phys. A 28 (1995)5131 [hep-th/9504085].

[5] C.M.Yung and M.T.Batchelor, *Integrable vertex and loop models on the square lattice with open boundaries via reflection matrices*, Nucl. Phys. B 435 (1995) 430 [hep-th/9410042]

[6] R.J.Baxter, *Exactly Solved Models in Statistical Mechanics*, Academic Press, London 1982.

[7] V.E.Korepin, N.M.Bogoliubov and A.G.Izergin *Quantum Inverse Scattering Method and Correlation Function*, Cambridge University Press. Cambridge 1993.

[8] E. K.Sklyanin, *Boundary conditions for integrable quantum systems*, J. Phys. A 21(1988) 2375.
[9] P.B.Ramos and M.J.Martins, *One parameter family of an integrable spl(2|1) vertex model : Algebraic Bethe ansatz approach and ground state structure*, Nucl. Phys. B 474 (1996) 678 [hep-th/9604072].

[10] M.J.Martins and P.B.Ramos, *The algebraic Bethe ansatz for rational braid-monoid lattice models*, Nucl. Phys. B 500 (1997) 579 [hep-th/9703023].

[11] M.J.Martins and P.B.Ramos, *The Quantum Inverse Scattering Method for Hubbard-like Models*, Nucl. Phys. B 522 (1998) 413 [solv-int/9712014].

[12] H.Fan, *Bethe ansatz for the Izergin-Korepin model*, Nucl. Phys. B 488 (1997) 409.

[13] X.W. Guan, *Algebraic Bethe ansatz for the one-dimensional Hubbard model with open boundaries*, J. Phys. A 33 (2000) 5391.

[14] A.Foerster, X.W.Guan, J.Links, I.Roditi and H.Q.Zhou, *Exact solution for the Bariev model with boundary fields*, Nucl. Phys. B 596 (2001) 525.

[15] X.W.Guan, A.Foerster, U.Grimm, R.A.Römer and M.Schreiber, *A supersymmetric U_q[osp(2|2)]-extended Hubbard model with boundary fields*, Nucl. Phys. B 618 (2001) 650.

[16] G.L.Li, K.J.Shi and R.H.Yue, *The algebraic Bethe ansatz for the Izergin-Korepin model with open boundary conditions*, Nucl. Phys. B 670 (2003) 401.

[17] G.L.Li, K.J.Shi and R.H.Yue, *The algebraic Bethe ansatz for the Osp(2|2) model with open boundary conditions*, Nucl. Phys. B 687 (2004) 220; *Netsed Bethe ansatz for the B_N model with open boundary conditions*, Nucl. Phys. B 696 (2004) 381.

[18] V. Kurak, A. Lima-Santos, *Algebraic Bethe Ansatz for the Zamolodchikov-Fateev and Izergin-Korepin models with open boundary conditions*, Nucl. Phys. B 699 (2004) 595 [nlin.SI/0406050]; *Algebraic Bethe Ansatz solutions for the sl(2|1)^{(2)} and osp(2|1) models with boundary terms*, J. Phys. A 38 (2005) 2359 [nlin.SI/0407006].

[19] V.V.Bazhanov, *Trigonometric solutions of triangle equations and classical Lie algebras*, Phys. Lett. B 519 (1985) 321; *Integrable quantum systems and classical Lie algebras*, Commun. Math. Phys. 113 (1987) 471.

[20] M.Jimbo, *Quantum R matrix for generalized Toda system*, Commun. Math. Phys. 102 (1986) 537.

[21] A.G.Izergin and V.E.Korepin, *The inverse scattering method approach to the quantum Shabat-Mikhailov Model*, Commun. Math. Phys. 79 (1981) 303.

[22] M.T.Batchelor and C.M.Yung, *Exact Results for the Adsorption of a Flexible Self-Avoiding Polymer Chain in Two Dimensions*, Phys. Rev. Lett. 74 (1995) 2026 [hep-th/9410082].
[23] A.Lima-santos, $B_n^{(1)}$ and $A_{2n}^{(2)}$ reflection K-matrices, Nucl.Phys. B 654 (2003) 466 [nlin.SI/0210046]; A.Lima-santos and R. Malara R, $C_n^{(1)}$, $D_n^{(1)}$ and $A_{2n-1}^{(2)}$ reflection K-matrices, Nucl.Phys. B 675 (2003) 661 [nlin.SI/0307046].

[24] J.P.Cao, H.Q.Lin, K.J.Shi and Y.P.Wang, Exact solution of XXZ spin chain with unparallel boundary fields, Nucl.Phys. B 663 (2003) 487.

[25] W.Galleas and M.J.Martins, Solution of SU(N) vertex model with non-diagonal open boundaries, nlin.SI/0407027.

[26] C.S.Melo, G.A.P.Ribeiro and M.J.Martins, Bethe ansatz for the XXX-S chain with non-diagonal open boundaries, Nucl. Phys. B 711 (2005) 565.

[27] W.L. Yang and Y.Z. Zhang, Exact solution of the $A_{n-1}^{(1)}$ trigonometric vertex model with non-diagonal open boundaries, J. High Energy Phys. 0501 (2005) 021 [hep-th/0411190].