Fate of Carbon Passing Through the Glucose Pool of Rumen Digesta

D. J. WALKER and P. R. MONK
Division of Nutritional Biochemistry, CSIRO, Adelaide, South Australia, 5000, Australia

Received for publication 13 July 1971

The metabolism of the free glucose pool in rumen digesta from sheep fed roughage rations was studied by adding an insignificant quantity of glucose as uniformly labeled 14C-glucose of high specific activity to in vitro incubation systems. In all experiments wherein only trace quantities of glucose were added to digesta, most of the 14C-glucose entered acetate. This was true whether label was presented either as a single dose or by continuous addition over a period of 2 hr. Digesta collected at all times after feeding either once daily or at hourly intervals gave similar glucose dissimilation patterns. If, however, a relatively large quantity of carrier glucose was added together with the tracer, the 14C-acetate:14C-propionate ratio was reduced by a factor of about 10. Physical removal of most of the protozoa from digesta generally had little effect on the dissimilation of 14C-glucose added in tracer amounts, but in one experiment there was a decreased turnover of the free glucose pool and a marked reduction in 14C entering butyrate. The paucity of 14C entering propionate when only trace amounts of glucose were added to digesta suggests that this acid was largely formed from substrates whose carbon did not equilibrate with that in free glucose or with that in intermediates of free glucose metabolism.

A number of studies have been published concerning the utilization of soluble carbohydrates by the mixed populations of organisms from the rumen (1, 2, 5, 11-16, 20). Without exception, however, massive amounts of carbohydrate were added to the system in comparison to the size of the carbohydrate pool which normally occurs within the rumen. Since, under these conditions, the fermentations become abnormal in that, for instance, lactic acid accumulation frequently occurs, it seems that the results of previous work may not reflect the fate of carbon arising from the degradation of complex plant polysaccharides and passing through the free carbohydrate pools within the rumen of normally fed animals. This report concerns the utilization of carbon passing through the free glucose pool in rumen contents from hay-fed sheep.

MATERIALS AND METHODS

**Bacteriological.** Incubations were done in vitro with samples of rumen digesta obtained from a mature sheep fed a daily ration of 750 g of wheaten hay chaff plus 250 g of lucerne hay chaff given as a single feed. In one experiment, digesta samples were obtained from a sheep fed the same ration, but provided to the animal in equal portions hourly throughout the day. Water was freely available at all times. Digesta sampling was as described by Walker and Forrest (18), and about 10 times the amount required for in vitro incubation was withdrawn from the rumen. This was thoroughly mixed and subsampled, and the excess was returned to the rumen.

To 15 g of digesta was added 1 μCi of glucose-U-14C (300 μCi/μmole) in 1 ml of solution. The air space above the reaction mixture was briefly flushed out with nitrogen, the vessel was sealed with a rubber stopper, and incubation was carried out at 39 C for 1 hr except where otherwise stated. Solids were removed from the digesta by squeezing through terylene voile, and 5 ml of the liquid was centrifuged at 20,000 × g for 10 min. The clear supernatant fluid was retained for determination of 14C in volatile fatty acids (VFA) and glucose and for determination of total and individual VFA. The packed cells were resuspended in 5 ml of water and 1 ml of 2 N H$_2$SO$_4$ was added. After centrifuging, the cell debris was washed twice with 0.5 N H$_2$SO$_4$ and finally suspended in 5 ml of water for determination of 14C in cell constituents and of deoxyribonucleic acid (DNA) concentration.

Chemical determinations. DNA was determined on duplicate 1-ml samples of cell suspension by the method of Burton (3).

Concentrations of individual VFA species in rumen fluid were determined after separation of the acids on a column of Dowex AG50W × 12 (200 to 400 mesh, H form) by elution with water (6) and titration of the effluent with a Radiometer automatic titrator.

Glucose was determined by using glucose oxidase (Glucostat, Worthington Biochemical Corp.).
Radiochemical. All radioactivity determinations were done by liquid scintillation counting with a Triton-diphenyl oxazole-p-bis[2-(5-phenyloxazolyl)] benzene phosphor (10). Uniformly labeled 14C-toluene was used as internal standard.

Glucose-U-14C of high specific activity was obtained from the Radiochemical Centre, Amersham, England.

Glucose and VFA in 1 ml of rumen fluid were separated on ion-exchange resin as described above, collecting 1.3- to 1.4-ml fractions. A 1-ml portion of each fraction was used for determination of radioactivity.

14C in cell debris was determined by mixing 1 ml of the washed debris suspension with 5 ml of Triton-phosphor. Virtually all of the solid material in the suspension was solubilized by the phosphor.

14C in protein and polysaccharide was determined after hydrolysis of cells from 2 ml of debris suspension in 0.4 ml of 30% KOH for 3 hr at 100°C. After cooling, 0.4 ml water and 2.4 ml of absolute ethanol were added to precipitate polysaccharide which was removed by centrifuging. The precipitated polysaccharide was washed three times with 70% ethanol, dissolved in hot water, and quantitatively transferred to counting vials for 14C determination. A sample of the supernatant fluid remaining after precipitation of polysaccharide was neutralized with perchloric acid and allowed to stand for several days at 4°C before before removing the precipitated KClO4 by centrifuging. By using the cysteine-sulfuric acid method of Dische (4), it was found that the amino acid-containing supernatant fluid contained carbohydrate. Therefore, the neutral supernatant fluid was placed on a column of Amberlite CG 120 exchange resin (Na+ form, 350 to 400 mesh) measuring 10 cm long by 0.5 cm diameter and equilibrated with 0.2 N sodium citrate buffer (pH 2.0). The columns were then washed with three bed volumes of citrate buffer (pH 2.0) and the washings were dried, redissolved in 1 ml of water, and counted. Qualitative tests with ninhydrin showed a virtual absence of amino acids in this fraction and the radioactivity present was included with that for the precipitated polysaccharide. The amino acids were eluted from the ion-exchange resin with three bed volumes of 2 N NH4OH and the eluates were dried, redissolved in 1 ml of water, neutralized with 0.4 N H2SO4, and counted. Radioactivity in this fraction was assumed to have arisen from cell protein.

RESULTS

Effect of glucose concentration on distribution of glucose carbon in VFA. Since preliminary results with 14C-glucose added in amounts such that the glucose added did not materially affect the size of the glucose pool had shown that most of the label recovered in VFA was present in acetate, whereas previous reports (2, 11, 20) indicated substantial conversion to propionate, the effect of normal and high glucose concentration was studied. Digesta (15 g) were incubated for 1 hr with 1 μCi (0.6 μg) of glucose-U-14C and with

Table 1. Effect of glucose concentration on distribution of glucose carbon in individual VFA

Carbon source	Dpm recovered with various amounts of glucose added per 15 g of digesta	
	20 mg^a	0.6 μg^a
Glucose	645,400	14,600
Acetate	191,600	1,034,100
Propionate	79,200	42,500
Butyrate	47,600	14,800

* Percentage distribution of acetate, propionate, and butyrate, respectively, at 20 mg of glucose: 60.2, 24.9, 14.9; at 0.6 μg of glucose, 94.6, 3.9, 1.5.

1 μCi of glucose-U-14C plus 20 mg of 14C-glucose. The distribution of radioactivity between the individual VFA species is shown in Table 1.

In the presence of carrier glucose, the recovered 14C in acetate and propionate was 60.2 and 24.9% of label in the VFA, whereas in the absence of carrier the corresponding values were 94.6 and 3.9%.

Diurnal variation in distribution of glucose carbon in VFA and cell material. Walker and Nader (19) have shown considerable variation in intraruminal metabolism of energy-yielding substrates during the day in sheep fed once daily. Such variations might be expected to be mirrored in the metabolism of carbon passing through the rumen pool. Accordingly, digesta samples were removed at intervals of 2 hr from a sheep fed once daily and allowed 4 hr to consume its ration. In all incubations, glucose-U-14C was added without carrier. Figure 1 shows the distribution of recovered label between the VFA, CO2 (+ methane), and cell material. CO2 (+ methane) was calculated as being half of the total label entering acetic and butyric acids since both must arise by decarboxylation of pyruvate formed from the uniformly labeled glucose pool. Mean recovery of label was 87.5 ± 6.4%, which was considered adequate since no attempt was made to assess radioactivity associated with the organisms left with the solids in the digesta after removal of the fluid. The proportion of 14C appearing in propionate rose, and that in acetate fell during feeding but readjusted rapidly after cessation of feeding. At all times, by far the largest portion of the 14C derived from the glucose pool appeared in acetate. The proportion of label appearing in butyrate did not alter appreciably. The molar proportions of VFA in the rumen contents used were 68:19:13 and 69:20:11 for acetate, propionate, butyrate at 2 and 20 hr after feeding. The labeling of cell material rose proportionately
were removed just prior to delivery of a portion of feed to an animal fed hourly by an automatic dispensing device. Three such samples were taken followed by one 15 min after the consumption of a 1/24th portion of the daily feed, and all were incubated with glucose-U-\(^{14}\)C without added carrier. Table 2 shows that a fairly constant proportion of the label appeared in the VFA and that, compared to the sheep fed once daily, rather less appeared in acetate and more in the cell material. Again, of the radioactivity incorporated into cell material, most was in the carbohydrate fraction (mean of 7.7% of recovered activity), a lesser amount being in protein (mean of 3.2% of recovered activity).

Effect of removal of protozoa. The conversion of the bulk of the glucose carbon in acetate was recognized as corresponding to the reported activities of the rumen protozoa metabolizing soluble sugars (1, 8). Consequently, experiments were done to assess the effect of removal of protozoa from rumen digesta. Protozoa were removed by squeezing digesta collected 20 hr after feeding through terylene voile and centrifuging the fluid at about 500 \(\times \) g for a few seconds. The solids were gently washed twice with clarified rumen fluid from the same animal, and the washings were discarded. The supernatant fluid from the centrifuged fluid was then added back to the solids, and the reconstituted digesta were thoroughly mixed and divided into two equal portions. Half of the protozoa from the centrifuged fluid were then added to one portion and an equal volume of clarified rumen fluid was added to the other. This procedure has been shown to remove about 90% of the protozoa and less than 10% of the bacteria in rumen fluid (unpublished data).

Three such treatments were done on separate occasions. Incubations were as described above except that a shorter incubation period was used in two of the experiments. Results are given in Table 3. In the first experiment, glucose pool turnover was unusually slow when protozoa had been removed and was accompanied by a decrease in \(^{14}\)C appearing in butyrate. However, the second and third experiments showed no significant effect of protozoal removal on distribution of \(^{14}\)C. A parallel determination of rate of total VFA production, done in conjunction with experiment 3, disclosed an 8% fall due to removal of protozoa.

Two control experiments were done to compare untreated rumen contents with contents fully reconstituted after undergoing all steps of the protozoa removal treatment. There were no differences in distribution of \(^{14}\)C between the VFA species, or in rate of total VFA production,

![Figure 1](http://aem.asm.org/)

Fig. 1. Distribution of radioactivity from \(^{14}\)C-glucose incubated with digesta from a sheep fed once daily. \(^{14}\)C-glucose was added as a single dose without carrier and incubations were done in vitro for 1 hr.

![Figure 2](http://aem.asm.org/)

Fig. 2. Distribution between cell protein and cell carbohydrate of radioactivity derived from \(^{14}\)C-glucose incubated with digesta from a sheep fed once daily. Conditions as given in legend to Fig. 1.
indicates that the treatment used to remove protozoa had no deleterious effect on any of the organisms present.

Continuous infusion of glucose-$U^{-14}C$ in vitro. Since one particular organism or group of organisms may have contributed substantially to the metabolism of the glucose pool labeled by a single dose of ^{14}C and since turnover of the pool appeared to be relatively rapid, there existed the possibility that the added glucose did not equilibrate with all of the free intracellular pools available. Therefore, an experiment was done with 200 g of digesta (collected 20 hr postfeeding) to which a priming dose of 2 μCi of carrier-free glucose-$U^{-14}C$ was added. Further ^{14}C was infused at a rate of 12 μCi (in 12 ml) per hr while stirring the reaction mixture rapidly. To assist in keeping pH relatively constant during incubation, sodium bicarbonate at a concentration of 0.2 mmoles/ml was included in the glucose solution infused. Samples (5 ml) of rumen fluid were withdrawn at 30-min intervals for 2 hr and promptly acidified with 1 ml of 1 N perchloric acid. After 2 hr, a 20-ml sample of fluid was obtained; 10 ml was treated with 2 ml of 1 N HC10, and 10 ml was placed in an ice-cold tube and centrifuged at 0 C. This last sample was used to attempt the estimation of specific activities of the total free glucose pool and the extracellular pool.

Rate of total VFA production was linear over the 2-hr period, being 7.5 μmoles per hr per ml of rumen fluid. Radioactivity in the total glucose pool rose over the first 60 min and remained constant thereafter. Accumulation of radioactivity in individual VFA species was linear (Table 4), and all of these factors show that steady-state conditions were established. Distribution of ^{14}C in the individual VFA species again showed that most of the glucose carbon was converted to acetate carbon. In addition, there was five times as much activity in butyrate as there was in propionate (Table 4). Specific activities of glucose in the total and extracellular pools appeared to be the same, being 2,370 and 2,450 dpm/μg, respectively. However, no significant difference in total and extracellular pool sizes was observed, so the question of equilibration of all available pools with the added glucose remains unresolved. A repeat of the continuous infusion experiment gave substantially the same results (Table 4).

Since attempts to demonstrate equilibration between intra- and extracellular glucose pools directly were not successful, it was decided to try to assess the rate at which glucose entered the microbial cells and was converted to products. Rumen fluid and ^{14}C-glucose without added carrier were pumped into a mixing cell and magnetically stirred together, and the effluent was led through a length of plastic capillary tubing marked at points corresponding to known times.
Table 4. Distribution of recovered 14C during continuous infusion of 14C-glucose into rumen contents*

Time (min)	Glucose	Acetate	Propionate	Butyrate				
	Expt 1	Expt 2	Expt 1	Expt 2	Expt 1	Expt 2		
30	6.85	9.25	33.07	44.65	0.84	1.09	3.52	4.75
60	8.98	12.12	59.39	80.17	1.47	1.98	7.13	9.63
90	9.16	12.37	88.14	118.95	2.10	2.83	10.60	14.31
120	9.03	12.19	118.40	159.83	2.71	3.66	13.99	18.89

* Mean percentage distribution of 14C in volatile fatty acids: acetate, 87.6; propionate, 2.1; butyrate, 10.3.

discussion

Previous investigators of the metabolism of carbohydrate by the mixed microbial population of the rumen have used very large quantities of carbohydrate substrate in comparison to the sizes of the free pools normally existing in rumen digesta (1, 2, 5, 11-14, 17, 19). Even when isotopically labeled substrates have been used, the concentrations of substrate were quite high. For instance, Pazur et al. (11) used 14C-xylene at a concentration of 100 μmoles per ml with washed rumen organisms and incubated for 12 hr; Wallnöfer et al. (20) used 14C-glucose at a final concentration of 1.4 μmoles per ml with a 2-hr incubation period. The 14C-glucose concentration used by Baldwin et al. (2) was 28 μmoles per ml. These concentrations are to be compared with values of 0.02 to 0.09 μmoles of glucose per ml of rumen fluid determined by specific enzyme assay in this laboratory and the highest reported value obtained for a brief period in the rumen of a sheep immediately after feeding of 0.44 μmoles per ml (15). The results reported in this paper clearly demonstrate a very large effect of substrate concentration on the distribution of glucose carbon among the VFA end products of fermentation. When only a trace amount of glucose was added to rumen contents (about 1/100th the pool size), glucose carbon appeared in acetate and propionate in the ratio 24:1. On the other hand, when glucose was added in sufficient quantity to increase the glucose pool size by about 300-fold, glucose carbon appeared in acetate and propionate in the ratio 2.4:1. No doubt, a high concentration of glucose leads to the rapid generation of large amounts of reducing power, the disposal of which is reflected in greater propionate production. In addition, relatively large concentrations of lactate transitortily accumulate when high concentrations of glucose are used and this substrate may preferentially give rise to propionate (17, 20). The value of 2.4:1 for the ratio of radioactivity in acetate and propionate in the presence of excess glucose is close to other values obtained by using excess glucose-14C and organisms from roughage-fed cattle of 3.1:1 (2) and 5.2:1 (20).

In pure culture, Selenomonas ruminantium has been shown to yield differing ratios of fermentation end products over a range of glucose concentrations between 50 and 5,000 μg per ml (7). However, in this case, decreasing glucose concentration resulted in an increase in the proportion of propionate relative to acetate, and lactate was always found in large quantity.

The fate of carbon derived from the free glucose pool does not alter greatly during the day whether the animal is fed once or 24 times daily. During feeding in the animal fed once daily, the proportion of glucose carbon reaching acetate falls by some 10%, whereas that reaching propionate rises slightly. Presumably, the presence of soluble carbohydrates in the feed raised
the concentration in the free sugar pools in the rumen (15), and this is the nearest approach under natural conditions to the concentrations used in previous investigations on carbohydrate metabolism. It is apparent, however, that the small change in distribution of glucose carbon to individual VFA species occurring during feeding is quickly reversed upon cessation of feed intake.

A rather more marked change observed during feeding once daily is the greatly increased incorporation of glucose carbon into reserve and possibly structural carbohydrate within the microbial cells. This phenomenon has previously been studied in this laboratory (17, 19) by using chemical determinations and is confirmed by using isotopes.

Carbon derived from the glucose pool appearing in microbial protein accounted for about 3% of the glucose metabolized when feed was offered hourly. Accepting Hungate's (8) estimate of a cell yield of 10% of the substrate fermented, 65% of this being protein, it would seem that, of the microbial growth associated with glucose fermentation, about half of the carbon entering cell proteins is derived from glucose itself.

In one experiment where physical removal of protozoa showed a distinct effect, a relatively large amount of 14C was left in free glucose after 1 hr. In addition there was a lowered incorporation of 14C into butyrate when protozoa were removed, an observation in keeping with studies showing acetate and butyrate as the chief products of protozoal carbohydrate metabolism (1, 8) and consistent with the finding of lowered butyrate concentrations in the VFA species in the defaunated sheep rumen (9). Since, however, two other experiments demonstrated no difference in 14C distribution due to removal of protozoa, it is not yet resolved whether the protozoa play a major role in the metabolism of free glucose.

Intracellular glucose pool size appears to be too small to be measurable by taking the difference between extracellular and total pool sizes, so it has not been possible to determine whether equilibration of the added 14C-glucose with all available glucose pools was achieved. Nonetheless, the distribution of 14C among the VFA end products was the same whether label was added as a single dose or by continuous infusion over a 2-hr period, indicating that all pools available for equilibration with added glucose were being reached.

Appearance of 14C in acetate was very rapid, again indicating fast transport of extracellular glucose into the cells and prompt metabolism. Rapid appearance of label in a compound which is probably lactate as well as in acetate suggests that intracellular glucose concentration would be very low under the normal rumen conditions of low extracellular glucose pool size.

Overall, it seems reasonable to suppose that the metabolism of the added 14C-glucose was similar to that of glucose arising from feed component breakdown. The mean results of 15 experiments on distribution of 14C from the labeled glucose pool indicate the following equation for ruminal glucose utilization in roughage-fed animals: 1.0 glucose → 1.76 acetate + 0.04 propionate + 0.10 butyrate + 1.95 CO2 + 3.48 (2H). The major feature of this equation is the relative paucity of propionate compared to that proportion normally present in the rumen. This suggests that most of the propionate formed arises from sources whose carbon does not equilibrate with that in the free glucose pool or with that of intermediates of free glucose metabolism. A further apparent anomaly is the excess of reducing power available. However, in terms of the total rumen fermentation, the excess of reducing power would be quite small since unpublished preliminary estimates based upon pool size and turnover rates suggest that less than 10% of the VFA produced, in experiments so far completed, arises from the free glucose pool.

Further studies are in progress to evaluate the contribution of free glucose to the VFA produced at various times after feeding.

LITERATURE CITED
1. Abou Akkada, A. R., and B. H. Howard. 1960. The biochemistry of rumen protozoa. 3. The carbohydrate metabolism of Entodinium. Biochem. J. 76:445–451.
2. Baldwin, R. L., W. A. Wood, and R. S. Emery. 1963. Conversion of glucose-C14 to propionate by the rumen microorganism. J. Bacteriol. 85:1346–1349.
3. Burton, K. 1952. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 52:315–332.
4. Dische, Z. 1955. New colour reactions for determination of sugars in polysaccharides. Methods Biochem. Anal. 2:313–358.
5. Eldridge, S. R. 1945. The fermentation of carbohydrates in the rumen of the sheep. J. Exp. Biol. 22:51–62.
6. Harlow, G. A., and D. H. Mormann. 1964. Automatic ion exclusion partition chromatography of acids. Anal. Chem. 36:2438–2442.
7. Hishinuma, F., S. Kanegasaki, and H. Takahashi. 1968. Ruminal fermentation and sugar concentrations. A model experiment with Sulenanonas ruminantium. Agr. Biol. Chem. 32:1325–1330.
8. Hungate, R. E. 1966. The rumen and its microbes. Academic Press Inc., New York.
9. Mole, J. R., and D. B. Purser. 1970. Relationship between rumen ammonia levels and microbial population and volatile fatty acid proportions in faunated and defaunated sheep. Appl. Microbiol. 19:485–490.
10. Patterson, M. S., and R. C. Greene. 1965. Measurement of low energy beta-emitters in aqueous solution by liquid scintillation counting of emulsions. Anal. Chem. 37:854–857.
11. Pazur, J. H., E. W. Shuey, and C. E. Georgi. 1958. The con-
version of D-xylose to volatile organic acids by rumen bacteria. Arch. Biochem. Biophys. 77:387-394.

12. Phillipson, A. T., and R. A. McAnally. 1942. Studies on the fate of carbohydrates in the rumen of the sheep. J. Exp. Biol. 19:199-214.

13. Sutton, J. D. 1968. The fermentation of soluble carbohydrates in rumen contents of cows fed diets containing a large proportion of hay. Brit. J. Nutr. 22:689-712.

14. Sutton, J. D. 1969. The fermentation of soluble carbohydrates in rumen contents of cows given diets containing a large proportion of flaked maize. Brit. J. Nutr. 23:567-583.

15. Takahashi, R., and K. Nakamura. 1969. Concentrations of free sugars in sheep rumen fluid. Agr. Biol. Chem. (Japan) 33:619-621.

16. Thomas, G. J. 1960. Metabolism of the soluble carbohydrates of grasses in the rumen of sheep. J. Agr. Sci. 54:360-372.

17. Walker, D. J. 1968. Energy utilization for polysaccharide synthesis by mixed rumen organisms fermenting soluble carbohydrates. Appl. Microbiol. 16:1672-1677.

18. Walker, D. J., and W. W. Forrest. 1964. The application of calorimetry to the study of the rumen fermentation in vitro. Aust. J. Agr. Res. 15:299-315.

19. Walker, D. J., and C. J. Nader. 1970. Rumen microbial protein synthesis in relation to energy supply: diurnal variation with once-daily feeding. Aust. J. Agr. Res. 21:747-754.

20. Wallnöfer, P., R. L. Baldwin, and E. Stagno. 1966. Conversion of C14-labelled substrates to volatile fatty acids by the rumen microbiota. Appl. Microbiol. 14:1004-1010.