Analyzing and Improving Fault Tolerance of Learning-Based Navigation Systems

Zishen Wan¹, Aqeel Anwar¹, Yu-Shun Hsiao², Tianyu Jia²
Vijay Janapa Reddi², Arijit Raychowdhury¹

¹Georgia Institute of Technology, Atlanta, GA, ²Harvard University, Cambridge, MA

zishenwan@gatech.edu

Dec. 5-9, 2021
San Francisco, CA, USA
Safety of Autonomous Navigation

- End-to-end learning-based autonomous navigation system
- Specialized hardware accelerator
- Hardware Fault
 - Transient fault
 - Permanent fault
- Traditional protection method
 - Hardware module redundancy
Safety of Autonomous Navigation

How is resilience of learning-based navigation system to hardware faults?
How do we detect and mitigate hardware faults?

- Transient fault
- Permanent fault
- Traditional protection method
- Hardware module redundancy
Related Work

A. Toschi et al., NPC’19
Y. Hsiao*, Z. Wan* et al., arXiv’21

[1] A. Toschi et al., NPC’19
[2] Y. Hsiao*, Z. Wan* et al., arXiv’21
Related Work

• Reliability of autonomous systems

[1] A. Toschi et al., NPC’19
[2] Y. Hsiao*, Z. Wan* et al., arXiv’21
Related Work

• Reliability of autonomous systems

• Fault characterization
 • Neural network in supervised learning: PytorchFI[3], Ares[4], SC’17[5]
 • End-to-end reinforcement learning-based (Our)

[1] A. Toschi et al., NPC’19
[2] Y. Hsiao*, Z. Wan* et al., arXiv’21
[3] A. Mahmoudetal al., DSN’20
[4] B. Reagen et al., DAC’18
[5] G. Li et al., SC’17
Related Work

• Reliability of autonomous systems

• Fault characterization
 • Neural network in supervised learning: PytorchFI[3], Ares[4], SC’17[5]
 • End-to-end reinforcement learning-based (Our)

• Fault mitigation
 • Hardware redundancy-based method: DMR, TMR
 • Application-aware method (Our)

[1] A. Toschi et al., NPC’19
[2] Y. Hsiao*, Z. Wan* et al., arXiv’21
[3] A. Mahmoudetal et al., DSN’20
[4] B. Reagen et al., DAC’18
[5] G. Li et al., SC’17
This work

Analyzing and Improving fault tolerance of learning-based navigation systems, that is:

- A fault injection tool-chain for learning-based systems
- Hardware fault study in learning-based systems
- Fault mitigation techniques for learning-based systems
This work

Analyzing and Improving fault tolerance of learning-based navigation systems, that is:

- A fault injection tool-chain for learning-based systems
- Hardware fault study in learning-based systems
- Fault mitigation techniques for learning-based systems
Fault Model and Fault Injection

- **Fault Type**
 - Transient fault
 - Random bit-flip
 - Permanent fault
 - Stuck-at-0
 - Stuck-at-1
Fault Model and Fault Injection

• Fault Type
 • Transient fault
 • Random bit-flip
 • Permanent fault
 • Stuck-at-0
 • Stuck-at-1

• Fault Location
 • Memory [1,2,3]

[1] B. Reagen et al., DAC’18
[2] G. Li et al., SC’17
[3] P. N. Whatmough et al., ISSCC’17
Fault Model and Fault Injection

- **Fault Type**
 - Transient fault
 - Random bit-flip
 - Permanent fault
 - Stuck-at-0
 - Stuck-at-1

- **Fault Location**
 - Memory [1,2,3]

- **Fault Injection**
 - Methodology
 - Static injection
 - Dynamic injection

[1] B. Reagen et al., DAC’18
[2] G. Li et al., SC’17
[3] P. N. Whatmough et al., ISSCC’17
Fault Model and Fault Injection

• Fault Type
 • Transient fault
 • Random bit-flip
 • Permanent fault
 • Stuck-at-0
 • Stuck-at-1

• Fault Location
 • Memory [1,2,3]

• Fault Injection
 • Methodology
 • Static injection
 • Dynamic injection
 • Phases
 • Training
 • Inference

[1] B. Reagen et al., DAC’18
[2] G. Li et al., SC’17
[3] P. N. Whatmough et al., ISSCC’17
This work

Analyzing and Improving fault tolerance of learning-based navigation systems, that is:

- A fault injection tool-chain for learning-based systems
- Hardware fault study in learning-based systems
- Fault mitigation techniques for learning-based systems
Grid-Based Navigation Problem

Low obstacle density Middle obstacle density High obstacle density

- agent
- obstacle
- goal
Grid-Based Navigation Problem

- Algorithm paradigm: NN-based method, Tabular-based method
- Evaluation metric: agent’s success rate
Faults in Grid World (Training)

NN-based method: (The darker, the worse)

Transients fault occurred in later episodes with high BER has higher impact.
Faults in Grid World (Training)

NN-based method: (The darker, the worse)

- Permanent fault stuck-at-0 has comparable impact as transient fault.

![Diagram showing success rate over training episodes for different numbers of faults and bit error rates for transient and permanent faults.](image-url)
Faults in Grid World (Training)

NN-based method: (The darker, the worse)

Permanent fault stuck-at-1 has much severer impact than stuck-at-0.
Faults in Grid World (Training)

NN-based method: (The darker, the worse)

Number of faults (Bit error rate)	Transient Fault Bit-Flip	Permanent Fault	Stuck-at-0	Stuck-at-1
32 (1.0%)	99 98 96 98 96 93 88 81	68 58	0	0
29 (0.9%)	98 97 97 99 97 95 89 83	71 63	0	0
26 (0.8%)	99 98 96 98 96 91 89 83	77 68	0	0
22 (0.7%)	97 98 98 97 97 92 87 86	79 74	89	0
19 (0.6%)	99 98 98 97 97 99 89 88	82 80	0	0
16 (0.5%)	98 98 97 96 97 95 91 88	87	99	0.1
13 (0.4%)	97 98 98 97 99 97 96 99	97 90	98	0.8
10 (0.3%)	96 97 98 98 97 98 99 97	95 93	97	0.9
6 (0.2%)	98 97 98 96 98 95 97 94	96 94	98	18
3 (0.1%)	98 97 98 98 98 99 95 95	95 95	98	39

Tabular-based method:

Number of faults (Bit error rate)	Transient Fault Bit-Flip	Permanent Fault	Stuck-at-0	Stuck-at-1
32 (1.0%)	99 98 96 98 96 93 88 81	68 58	0	0
29 (0.9%)	98 97 97 99 97 95 89 83	71 63	0	0
26 (0.8%)	99 98 96 98 96 91 89 83	77 68	0	0
22 (0.7%)	97 98 98 97 97 92 87 86	79 74	89	0
19 (0.6%)	99 98 98 97 97 99 89 88	82 80	0	0
16 (0.5%)	98 98 97 96 97 95 91 88	87	99	0.1
13 (0.4%)	97 98 98 97 97 99 97 96	97 90	98	0.8
10 (0.3%)	96 97 98 98 97 98 99 97	95 93	97	0.9
6 (0.2%)	98 97 98 96 98 95 97 94	96 94	98	18
3 (0.1%)	98 97 98 98 98 99 95 95	95 95	98	39

- NN-based policy exhibit higher resilience than Tabular-based policy (except stuck-at-1).
Faults in Grid World (Convergence)

- System can finally achieve convergence (>95% success rate) after transient faults injected.
Faults in Grid World (Convergence)

- System can finally achieve convergence (>95% success rate) after transient faults injected.
- Extra training time doesn’t bring obvious improvements under permanent faults.
Faults in Grid World (Convergence)

NN-based method

- **Transient fault**
 - Episodes to converge vs. Bit Error Rate
 - Success rate vs. Bit error rate

- **Permanent fault**

Tabular-based method

- **Transient fault**
 - Episodes to converge vs. Bit Error Rate

- **Permanent fault**
 - Success rate vs. Bit error rate
Faults in Grid World (Inference)

NN-based method:

- Transient fault: Transient-1 has a negligible effect compared to Transient-M.
- Permanent fault: Stuck-at-1 has a much severe impact on policy than Stuck-at-0.

Inference: Long-term decision-making process
- Transient-M: impact all steps
- Transient-1: impact single step
Faults in Grid World (Inference)

- Transient fault: Transient-1 has a negligible effect compared to Transient-M.
- Permanent fault: Stuck-at-1 has a much severe impact on policy than Stuck-at-0
Drone Autonomous Navigation Problem

Environments and demos:

(PEDRA: Powered by Unreal Engine and AirSim)

- Evaluation metric: drone safe flight distance (the longer, the better).
Faults in Drone Navigation (Training)

- Training method: offline training -> online fine-tuning using transfer learning
- Transient fault: occurred at latter episodes with higher BER impact flight quality more.

![Faults in Drone Navigation (Training)](image-url)
Faults in Drone Navigation (Training)

- **Training method:** offline training -> online fine-tuning using transfer learning
- **Transient fault:** occurred at latter episodes with higher BER impact flight quality more.
- **Permanent fault:** stuck-at-1 has much severe impact than stuck-at-0

Higher (lighter) is better
Faults in Drone Navigation (Inference)

Different data locations:
(the higher, the better)

- Weights are sensitive to transient faults while input buffer is resilient.
Faults in Drone Navigation (Inference)

- Weights are sensitive to transient faults while input buffer is resilient.
- Conv3: no followed pooling layer
- FC2: directly dictates the drone actions

Different data locations:
(the higher, the better)

Different NN layers:
(the higher, the better)
Faults in Drone Navigation (Inference)

Different data types:
(the higher, the better)

Data types should optimally capture the value range rather than pursuing an unnecessarily large range.
Faults in Drone Navigation (Inference)

Different data types: (the higher, the better)

Different bit locations in Q (1,4,11): (the higher, the better)

Data types should optimally capture the value range rather than pursuing an unnecessarily large range

Only sign and high-order integer bits are vulnerable
This work

Analyzing and Improving fault tolerance of learning-based navigation systems, that is:

- A fault injection tool-chain for learning-based systems
- Hardware fault study in learning-based systems
- Fault mitigation techniques for learning-based systems
Training: Adaptive Exploration Rate Adjustment

- Detection: change in cumulative reward
- Recovery: dynamically adjust exploration-to-exploitation ratio and speed
Training: Adaptive Exploration Rate Adjustment

- Detection: change in cumulative reward
- Recovery: dynamically adjust exploration-to-exploitation ratio and speed

Detection

- **Transient fault**: Reward drop exceeds x% within y continuous episodes
- **Permanent fault**: Reward is still low after going to steady-exploitation states
Training: Adaptive Exploration Rate Adjustment

- Detection: change in cumulative reward
- Recovery: dynamically adjust exploration-to-exploitation ratio and speed

Transient fault	Permanent fault
Detection	Recovery
Reward drop exceeds $x\%$ within y continuous episodes	Increase exploration rate (ER)
$f(r)$: reward drop	$f(t)$: fault occurrence time

$$ER_{new} = ER_{old} + \delta(ER) = ER_{old} + \alpha \times \min(f(r), f(r)f(t))$$

- Reward is still low after going to steady-exploitation states
- Revert the exploration rate to initial and slow down its decreasing speed by $2^n \times$
Training: Adaptive Exploration Rate Adjustment

- **Evaluation:**

 Before fault mitigation:

 After fault mitigation:

 - The impact of both transient fault and permanent fault during training can be relieved.
Inference: Value Range-Based Anomaly Detection

• Detection: statistically anomaly detection, \((a_i, b_i) \rightarrow (1.1a_i, 1.1b_i)\)
• Recovery: skip faulty operations
Inference: Value Range-Based Anomaly Detection

- Detection: statistically anomaly detection, \((a_i, b_i) \rightarrow (1.1a_i, 1.1b_i)\)
- Recovery: skip faulty operations
- Evaluation:
 - Grid World navigation
 - Drone autonomous navigation

- Grid World: agent’s success rate increase by 2x
- Drone autonomous navigation: safe flight distance increases by 39%
Drone Flight Trajectory Demo

No fault:

Start location
Drone Flight Trajectory Demo

No fault:

Fault injected:

Distance: 203.09

Distance: 45.56

Distance: 46.8

Distance: 8.4

Distance: 19.59

Start location
Drone Flight Trajectory Demo

No fault:

Fault injected:

Fault mitigated:
In this talk, “Analyzing and Improving Fault Tolerance of Learning-Based Navigation System”

The safety and reliability of end-to-end learning-based navigation systems is important, but not well understood.

A fault injection tool-chain that emulates hardware faults and enables rapid fault analysis of learning-based navigation systems.

Large-scale fault injection study in both training and inference stages of learning-based systems against permanent and transient faults.

Low-overhead fault detection and recovery techniques for both training and inference.
Thank you
Any Question?

Email: zishenwan@gatech.edu