Flavonoids of the Caryophyllaceae

Katarzyna Jakimiuk · Michael Wink · Michał Tomczyk

Received: 1 December 2020 / Accepted: 9 April 2021 / Published online: 17 April 2021
© The Author(s) 2021

Abstract The plant family Caryophyllaceae, commonly known as the pink family, is divided into 3 subfamilies and contains over 80 genera with more than 2600 species that are widely distributed in temperate climate zones. Plants belonging to this family produce a variety of secondary metabolites important in an ecological context; however, some of these metabolites also show health-promoting activities. The most important classes of phytochemicals include saponins, phytoecdysteroids, other sterols, flavonoids, lignans, other polyphenols, essential oils, and N-containing compounds such as vitamins, alkaloids or cyclopeptides. Flavonoids are polyphenolic compounds that remain one of the most extensively studied constituents of the Caryophyllaceae family. Numerous structurally diverse aglycones, including flavones, flavonols, flavonones (dihydroflavones), flavonols, isoflavones, and their O- or C-glycosides, exhibit multiple interesting biological and pharmacological activities, such as antioxidant, anti-inflammatory, anti-oedemic, antimicrobial, and immunomodulatory effects. Thus, this review analysed the flavonoid composition of 26 different genera and more than 120 species of Caryophyllaceae for the first time.

Keywords Caryophyllaceae · Phytochemistry · Flavonoids · Secondary metabolites

Introduction

The Caryophyllaceae family, commonly known as the pink family, contains over 80 genera with more than 2600 species. The pink family is divided into 3 subfamilies, Paronychioideae, Alsinoideae, and Caryophylloideae, according to the presence or absence of stipules as well as the type of calyx and corolla. Plants of the Caryophyllaceae family are erect, prostrate, annual or perennial herbs or shrubs with simple cross-opposite leaves and swollen nodes. Tetramerous or pentamerous flowers are frequently gathered in panicle, raceme, or capitulum inflorescences (Hegnauer 1964; Kubitzki 1993; Schweingruber 2007).
The subfamily Paronychoideae, containing the genera *Spergula* L., *Spergularia* Presl., *Polycarpon* L. *Herniaria* L., and *Paronychia* Mill., occurs mostly in warm and tropical parts of the world. The characteristic attributes of these plants are leaves with stipules and visible separation of calyx from the corolla. The lack of stipules and the unique corolla are typical for members of the subfamily Alsinoideae: The genera *Scleranthus* L., *Arenaria* L., *Sagina* L., *Cerastium* L., *Minuartia* L., *Stellaria* L., and *Colobanthus* Bartl. are widespread on all continents and are even present in Antarctica. Several species of the subfamily Caryophylloideae are field weeds that inhabit northern temperate climate regions. The specific structures of this subfamily are long calyx tubes that occur in *Agrostemma* L., *Maleandrium* Roehl., *Silene* Mill., *Gypsophila* L., and *Dianthus* L. (the largest genus). A great number of Caryophyllaceae species are grown as decorative landscape plants. Furthermore, many members of this family produce secondary metabolites with medicinal properties (Brockington et al. 2011; Volodin and Volodina 2015).

Diversity of phytochemicals in Caryophyllaceae

Caryophyllaceae are known to be a rich source of pharmacologically active secondary metabolites spanning several structural chemical classes. Secondary metabolites are important for plants as protective chemicals against herbivores (insects, molluscs, vertebrates) and microbial pathogens (fungi, bacteria, viruses), UV light, and other plants competing for light, water, and nutrients. In addition, many secondary metabolites serve as signalling compounds to attract pollinating and seed-dispersing animals and provide communication signals among plants and symbiotic microbes (Wink 2011).

The main secondary metabolites of Caryophyllaceae are saponins, phytocadysteroids, other sterols, flavonoids, lignans, other polyphenols, essential oils, and N-containing compounds such as vitamins, alkaloids and cyclic peptides.

Methodology

The search strategy helps to define appropriate search string and identify the relevant thematic databases to collect the relevant scientific literature. The search databases for this review were SCOPUS, PubMed/MEDLINE, Web of Science (SCI-EXPANDED), Wiley Online Library, Taylor & Francis Online, Google Scholar, REAXYS Database, Science Direct/ELSEVIER, and EBSCO Discovery Service (EDS). They have been searched systematically for articles published from 1950 until 2020. The following syntax was used: TITLE-ABS-KEY as additional search engine in combinations of the above keywords like “Caryophyllaceae”, OR “genus” (each genus from the Caryophyllaceae family was introduced), OR “phenolic compounds”, OR “flavonoids”, OR “flavones”, OR “flavonols”, OR “flavonones”, OR “isoflavones”, OR C-flavonoids”, OR “Caryophyllaceae”, OR “saponins”, OR “phytoecdysteroids”, OR “essential oils”, OR “volatile compounds”, OR “sterols”, OR “N-containing compounds”, OR “alkaloids”, OR “cyclic peptides”, OR “vitamins”, OR “lignans”, OR “bioavailability”, OR “metabolism”, OR “biological activity”. Search terms had run in separate or with limited combinations that considered the requirements, or limitations, of the database used. Additionally, based on USDA Plant Database and Kew Science (Royal Botanic Gardens), we have been ascertimation the genera belonging to the Caryophyllaceae family (USDA Plant Database 2020; Kew Science 2020).

Triterpene saponins

Triterpene saponins constitute the greatest proportion of all phytochemicals known to be present in Caryophyllaceae. The structure of Caryophyllaceae saponins may vary with respect to genera within a family, as well as to plant organs. Oleanane-type saponins, such as gypsogenin, gypsogenic acid, quillaic acid (Fig. 1), 16α-hydroxygypsogenic acid or their derivatives, constitutes the main group of saponins in these plants (Hegnauer 1989; Vincken et al. 2007; Böttger et al. 2011; Cheikh-Ali et al. 2019). For example, this class of compounds is synthesized in *Gypsophila altissima* (Chen et al. 2010a, b), *Gypsophila glomerata* (Gevrenova et al.
Gypsophila capillaris (Elgamal et al. 1995), Saponaria officinalis (Koike et al. 1999), Silene vulgaris (Kim et al. 2015), Vaccaria segetalis (Koike et al. 1998), Dianthus versicolor (Ma et al. 2009), Silene cucubalus (Larhsini et al. 2003), Paronychia chionaea (Avunduk et al. 2007) and many other species (Hegnauer 1964; Böttger and Melzig 2011). Moreover, among triterpene saponins from Caryophyllaceae, ursane-type, hopane-type, and lupane-type saponins have also been reported (Vincken et al. 2007). For instance, succulentoside A (Fig. 1) and B, which are hopane-type saponins, were isolated from Polycarpon succulentum (Meselhy and Aboutalib 1997). Gypsophilin (Fig. 1), its glucosyl ester gypsophilinoside and sulfated lupane triterpenes were detected in Gypsophila repens (Elbandy et al. 2007).

Phytoecdysteroids

Phytoecdysteroids, structural analogues of the insect moulting hormone ecdysone, are another group of compounds commonly found in Caryophyllaceae. Several Silene Mill. species, e.g., S. guntensis (Mamadalieva et al. 2011), S. antirrhina, S. chlorifolia, S. cretica, S. disticha, S. echinata, S. italicca, S. portensis, S. pseudotites, S. radicosa, S. regia (Meng et al. 2001), S. viridiflora, S. linicola (Mamadalieva et al. 2004), S. nutans, S. otites, and S. tatarica (Bathori et al. 1990), are rich sources of 20-hydroxyecdysone (Fig. 2). Along with 20-hydroxyecdysone, in the genus Silene Mill., a notably large number of structurally various phytoecdysteroids have been observed (Mamadalieva et al. 2014). Furthermore, plants of the genus Coronaria L. are potential producers of ecdysteroid compounds such as viticosterone E, α-ecdysone, taxisterone (Fig. 2), polypodine B, 20,26-dihydroxyecdysone, 2-deoxyecdysone, and 20-hydroxyecdysone (Mamadalieva et al. 2008). Several ecdysteroids were also established in Silene flos-cuculi (syn. Lychnis flos-cuculi) (Báthori et al. 2001; Dinan et al. 2020). Based on TLC and HPLC analyses, the biotechnological regenerated shoots and roots of L. flos-cuculi, reveals the ability to accumulate 20-hydroxyecdysone and polypodine B (Thiem et al. 2016; Maliński et al. 2019).
Essential oils and volatile compounds

Essential oils are widely distributed in the plant kingdom. This finding suggests that essential oils are also produced in flowering parts of taxa in the pink family. As essential oils are isolated by distillation, they contain a variety of volatile molecules—terpenes and terpenoids, phenol-derived aromatic components, and aliphatic constituents. Components of volatile oils isolated from *Dianthus acicularis* are chiefly 2-pentadecanone (Fig. 3) and 2-tridecanone, which are presumed to be responsible for the insect repellent activity of this plant (Kirillov et al. 2017). According to analyses of the major constituents of *Dianthus calocephalus* and *Dianthus carmelitarum* essential oils, the presence of heneicosane, docosane, tetraicosane, phytol, 4,4-dimethyl-2-pentene, pentacosane, and hexahydrofarnesyl acetone (Yu¨ celi and Yaylı 2018). Additionally, floral fragrance compounds were also established in other *Dianthus* L. species and *Saponaria officinalis* with the largest amounts of benzenoids, phenyl propanoids, and isoprenoids (Jürgens et al. 2003). Gas chromatography and gas chromatography combined with mass spectrometry (GLC-MS) examinations of aerial parts of *Silene morganae* revealed the presence of over 30 compounds with the highest content of monoterpenic hydrocarbons being of terpenoids (Azadi and Sohrabi 2014). Furthermore, benzenoids followed by FADs seems to be the dominating compound classes of aromatic compounds in night-blooming or moth-pollinated flowers of *Silene* Mill. species (Jürgens et al. 2002; Jürgens 2004). Essential oils and their volatile components were also observed in *Minuartia recurva* (Jovanović et al. 2009), *Dianthus caryophyllus* (Nerio et al. 2010), *Dianthus cruentus* (Radulović et al. 2018), some *Silene* species (Dötterl and Jürgens 2005; Mamadalieva et al. 2014; Mihaylova et al. 2018), *Gypsophila bicolor* (Shafaghat and Shafaghatlonbar 2011), and two hermaphroditic *Schiedea* species (Powers et al. 2020).

Sterols

Sterols seem to be useful chemotaxonomic markers at the species level within families of the order Caryophyllales. Atypical for higher plants but predominant in the pink family, the sterol-type class of compounds 7-sterols represented by 22-dihydrospinasterol (Fig. 4) occur in *Gypsophila perfoliata* (Schmidt et al. 1996), *Gypsophila paniculata*, *Silene cucubalus*, *Arenaria serpyllifolia*, *Cerastium vulgarum*, *Cerastium arvense*, *Myosoton aquaticum*, *Minuartia caroliniana*, *Spergula arvensis*, *Saponaria officinalis*, *Dianthus armeria*, *Lychnis alba*, *Paronychia virginica* and *Scleranthus annuus* (Salt and Adler 1986). Recent research revealed the presence of the x-spinasterol 3-O-β-D-glucoside in the roots of *Psammosielen tunicoides* (Zhou et al. 2013) and the roots/rhizomes of *Silene tatarinowii* (Liang et al. 2019).
Cyclic peptides

Cyclic peptides, consisting of a maximum of 14 amino acid residues, are typical N-containing secondary metabolites from Caryophyllaceae (Ma et al. 2006). Genera containing cyclopeptides as major phytochemicals among all plants from this family seem to be Dianthus L., Gypsophila L., Stellaria L., and Vaccaria Mill. For example, the cyclic peptides gypsophins A–F were isolated from the roots of Gypsophila oldhamiana (Wang et al. 2013); the hexapeptides dianthins E, G, and H were found in the aerial parts of Dianthus superbus (Tong et al. 2012); and diandrines A–D (Fig. 5) and drymarins A–B occur in Drymaria diandra (Hsieh et al. 2004a, b; Ding et al. 2000). According to available data, seeds of Vaccaria segetalis are a valuable source of the penta- and hexapeptides segetalin B and segetalin A, respectively (Itokawa et al. 1995; Wang et al. 2011). It is worth mentioning that this group of compounds is present in taxa of the subfamily Alsinoidae, which grow in Antarctica (Jia et al. 2004).

Alkaloids

Another group of nitrogen-containing secondary metabolites are alkaloids, which also occur in Caryophyllaceae to some degree. In particular, alkaloids belonging to the β-carboline group have been described (Dai et al. 2018). For instance, siliendines A–D were isolated from the aerial parts of Silene seoulensis (Seo et al. 2020), drymaritin from the whole plant material of Drymaria diandra (Hsieh et al. 2004a, b), oldhamianines A and B from the roots of Gypsophila oldhamiana (Zhang et al. 2015), and...
arenarines A-D from *Arenaria kansuensis* (Wu et al. 1989; Bracher and Puzik 2004). Phytochemical investigation of the roots of *Stellaria dichotoma* led to the isolation of 23 various \(\beta\)-carboline-type alkaloids, including stellarines A-B, dichotomides I-XIV, dichotomines A, B, E (Fig. 6), and K, L, glucodichotomine B and 1-acetyl-3-methoxycarbonyl-\(\beta\)-carboline (Chen et al. 2010a, b; Luo et al. 2012). *Brachystemma calycinum* also produces alkaloids: Brachystemidines A-E were isolated from the roots of this plant (Cheng et al. 2002). Superbusines A and B, which are quinolone alkaloids, were detected in *Dianthus superbus* (Sun et al. 2019).

Vitamins

Analysis of plant-derived vitamins showed the presence of four tocopherols (\(\alpha\), \(\beta\), \(\gamma\), \(\delta\)) with a different number of methyl substitutions in *Silene vulgaris* as well as vitamin C and phylloquinone, known as vitamin K1 (Fig. 7). Upon examination of *S. vulgaris*, the presence of the antioxidant \(\beta\)-carotene, a provitamin of vitamin A, was also reported (Vardavas et al. 2006; Morales et al. 2012; Mamadalieva et al. 2014). Moreover, \(\beta\)-carotene was reported in other Caryophyllaceae plants, e.g., in *Stellaria media* whose seeds contain vitamin B2 (riboflavin), vitamin B3 (niacin) and vitamin E (Slavokhotova et al. 2011; Taskin and Bitis 2013).

Phenolic compounds

Phenolic compounds constitute a large proportion of secondary metabolites in Caryophyllaceae plants. Phenolic acids are the main polyphenols produced by plants. However, only a few publications report on phenolic compound isolation and identification in Caryophyllaceae. For instance, caffeic acid was obtained from aerial parts of *Silene* (syn. *Lychnis*) *flos-cuculi* (Tomczyk 2008), \(p\)-coumaric acid, dihydroferulic acid, and syringic acid were identified in the ground roots, stems, leaves, and flowers of *Gypsophila paniculata* (Chou et al. 2008); and *Dianthus* species are a source of gentisic acid, a commonly reported aromatic acid in green plants (Griffiths 1959). Fractionation of a *Gypsophila sphaerocephala* extract resulted in the isolation of 3,4-dihydroxybenzoic acid, syringic acid, \(p\)-hydroxybenzoic acid, and rosmarinic acid (Fig. 8) from the methanol extract and rosmarinic acid and syringic acid from the water extract (Altay et al. 2018). Additionally, the *Silene* Mill. genus is also known as a source of phenolic acids (Mamadalieva et al. 2014). Derivatives of cinnamic acid or benzoic acid and aromatic amino acids (anthranilic acid), so-called anthranilamides with phytoalexin-related activity, are commonly found in parts of *Dianthus caryophyllus* infected by pathogens (Niemann 1993). Catechins (flavanol derivatives) are similar in structure to flavonols, except for the lack of a carbonyl group.

![Fig. 7 The chemical structures of vitamins present in Caryophyllaceae plants. Vitamin B2 (a), vitamin B3 (b), vitamin E (c)](fig7.jpg)

![Fig. 6 The chemical structures of alkaloids in Caryophyllaceae plants. Dichotomine A (a), dichotomine B (b), dichotomine E (c)](fig6.jpg)
group in the pyran ring (Heim et al. 2002). Plants of the
Caryophyllaceae family were also screened for fla-
vanols, but only a few species, including
Herniaria fontanessii (Mbark et al. 1999) and
Arenaria kansuensis (Liu et al. 2018), contained this group of
compounds. The major flavanols, catechin, and epi-
catechin, act as strong antioxidant agents similar to
other polyphenols (Iacopini et al. 2008).

Lignans, insoluble elements of certain cell walls,
are rather uncommon phytochemicals in Caryophyl-
laceae, except for *Pteranthus dichotomus*, which
contains 8-oxo-pinoresinol (Allaoua et al. 2016).

Unlike the many taxa of the order Caryophyllales
that produce betalains as coloured flower pigments,
Caryophyllaceae produce anthocyanins: cyanidin gly-
coside derivatives were identified in *Silene dioica*
(Kamsteeg et al. 1976; Kamsreeo et al. 1980) and *S. armeria* (Mamadalieva et al. 2014). Cyclic malyl
anthocyanins were isolated from deep pink and red–
purple *Dianthus caryophyllus* flower petals
(Nakayama et al. 2000). Moreover, the genus *Lychnis*
is a source of the anthocyanin aglycones named
anthocyanidins, such as cyanidin, peonidin, and
pelargonidin (Fig. 9), as well as their glycoside
derivatives (Kuwayama et al. 2005).

Among the many polyphenolic phytoconstituents
 occurring in this family, tannins are also present and
have physiological activity against herbivores. Tan-
nins were detected in some *Minuartia* species (Zay-
chenko and Zernov 2017), *Stellaria laeta* (Jung et al.
1979), *Polycarpacea corymbosa* (Balamurugan et al.
2013), *Drymaria cordata* (Baruah et al. 2009), *Silene vulgaris* (Kim et al. 2015), *Silene compacta* (Bakroglu
et al. 2014), and *Spergula fallax* (Aldhebiani and
Mufarah 2017).

However, flavonoid compounds remain one of the
most extensive groups of polyphenols in Caryophyll-
laceae, and novel compounds are yet to be identified.
The aglycones and their glycosides are probably
present in almost all plants.

**Flavonoids of the Caryophyllaceae and their main
biological activities**

Flavonoids are low-molecular-weight secondary plant
metabolites composed of two benzene rings and one
heterocyclic pyran ring that are chemically divided
into groups according to their chemical substitutions.
Flavonoid moieties can be modified by glycosylation,
hydrogenation, hydroxylation, and methylation as
well as malonylation and sulfatation. The chemical
and biological activities of flavonoids and their
derivatives are connected with their structure and the
position of various substitutions on the molecule. The
general activity of polyphenols concerns the reactivity
of their phenolic OH groups. The hydroxyl groups can
dissociate under physiological conditions to nega-
tively charged phenolate ions. Thus, polyphenols can
interact with proteins by forming hydrogen bridges
and, more importantly, ionic bonds with positively
charged amino groups. As a consequence, the

![Fig. 8](image1.png) The chemical structures of phenolic acids in plants of
The Caryophyllaceae family. Rosmarinic acid (a), 3,4-dihydroxy-
benzoic acid (b) syringic acid (c), p-hydroxybenzoic acid (d)

![Fig. 9](image2.png) The chemical structures of the anthocyanins in Caryophyllaceae. Cyanidin (a), peonidin (b) pelargonidin (c)
bioactivity of proteins can be directly changed when a polyphenol binds to a receptor side or active centre of an enzyme. Polyphenols, especially those with several phenolic OH groups (such as rosmarinic acid or tannins), can change the 3D structure of proteins and impair their bioactivity. Because of these interactions, polyphenols affect many proteins in the human body and in microbes that are medicinally relevant. This is the mechanism by which plant polyphenols are medicinally active (Wink 2015; van Wyk and Wink 2017).

The biological activities of flavonoids may be also connected with their metabolites, which are produced in vivo. The gastrointestinal tract reveals primary role in the absorption, distribution, metabolism and excretion of flavonoids, which are substrates for conjugating and hydrolyzing enzymes in the small intestine, liver, and colon to O-glucuronides, O-methyl and sulfate esters. Firstly, metabolism of flavonoids take place in the small intestine followed by the liver where they are transformed and then produced glucuronides and sulfate derivatives. Flavonoid compounds that reach the colon are catabolized to low molecular weight phenolic acids by the intestinal microflora (Thilakarathna and Rupasinghe 2013). An anaerobic bacteria found in human gastrointestinal tract (e.g. Eubacterium ramulus) splits the ring structures of several flavonoids and flavones leading to the formation of aglycones and common phenolics intermediates consisting of hydroxyphenylacetic, hydroxyphenylpropionic, acetate, and butyrate acids with varying degrees of hydroxylation (Blaut et al. 2003; Serra et al. 2012; Pei et al. 2020). The amount of urinary excretion demonstrates that the colonic catabolites are absorbed into the portal vein and this way run over the body in the circulatory system (Crozier et al. 2010). The flavonoid glucuronides and sulfate derivatives facilitate their excretion through urine and bile (Thilakarathna and Rupasinghe 2013). Urinary excretion of < 1.0% confirms that C-flavones are poorly absorbed, and 10–88% recovery from feces indicates that they may be resistant to degradation by gut bacteria in rats (Ma et al. 2010). As with flavone O-glycosides, the C-glycosides are less bioavailable in humans than in rats. Nevertheless, it is known that the absorption of dietary flavonoids may be affected by the food matrix, the metabolic processes mediated by the liver, intestine, kidneys, as well as colon microbiota (Hollman 2004; Viskupičová et al. 2008; Hostetler et al. 2017; Cosme et al. 2020; Di Lorenzo et al. 2021).

To the best of our knowledge, apigenin, found in 28 species, is the major flavone in Caryophyllaceae plants. The apigenin exhibits cancer chemopreventive activity such as antiproliferative effects on human breast cancer cells, inhibition of cell growth by apoptosis in cervical carcinoma, or selective apoptotic effects in monocytes and lymphocytic leukaemias (Shukla and Gupta 2010; Imran et al. 2020). A similar number of species contain another widely distributed aglycone—luteolin. As with many other polyphenols, luteolin is a powerful antioxidant that can prevent inflammation and allergies and suppress the expression of cancer-promoting proteins (Imran et al. 2019a, b). Other important flavones are the luteolin 8-C-glucoside and apigenin 8-C-glucoside, orientin and vitexin, respectively. Plants rich in orientin are often used in traditional medicine for the treatment of respiratory disorders, pharyngitis, skin disorders, common cold, and mild anxiety (Grundmann et al. 2008; Lam et al. 2016). In addition, luteolin 8-C-glucoside acts as an antioxidant, antiaging, anti-inflammatory, cardioprotective, radioprotective, and neuroprotective agent (Uma Devi et al. 2000; Praveena et al. 2014; Lam et al. 2016). Vitexin, successfully isolated from Caryophyllaceae, exhibits various medicinal properties, such as fat reduction, improved glucose metabolism, hepatoprotection, neuroprotection, cardioprotection, and even anticancer activity (Ganesan and Xu 2017; Peng et al. 2020).

Kaempferol exhibits multiple biological effects, such as antioxidant, anti-inflammatory, anti-diabetic, antiaging, and antimicrobial effects, and is being applied in the chemotherapy of skin, liver, and colon tumours (Zhu et al. 2018; Cho and Park 2013; Imran et al. 2019a, b). Furthermore, kaempferol can be used in the treatment of cardiovascular diseases, degenerative disorders, diabetes, and microbial contamination diseases (Imran et al. 2018, 2019a). The flavonol aglycone, quercetin can function as an antioxidant as well as a blood pressure-lowering and anticancer agent (Kukongviriyapan et al. 2012; Egert et al. 2009). Moreover, quercetin can decrease the levels of proinflammatory cytokines, e.g., interleukin 6, 8, 1β, and TNFα (Wang et al. 2016). Rutin, a 3-O-rutinoside derivative of quercetin established in 18 different species of the Caryophyllaceae, is also often used in studies due to its extensive therapeutic properties: The
health-promoting effects of rutin are linked with antioxidant, cytoprotective, neuroprotective, vasoprotective, and cardioprotective activities (Kim et al. 2009; Ganeshpurkar and Saluja 2017). The results from some studies also indicated a positive effect of rutin on Parkinson’s and Alzheimer’s diseases (Gullón et al. 2017). The main strategies for a neurodegenerative disease therapy involves the reduction of reactive oxygen species and amyloid beta-protein production, and the activation of mechanisms of neuronal death (de Andrade Teles et al. 2018).

The main biological activities of hesperidin isolated from *Herniaria hemistemon* (Elhagali et al. 2019) are chemotherapeutic, antiallergic, anti-inflammatory, endocrine, cardiovascular, and organ-protective effects (Kumar et al. 2008; Zanotti et al. 2013; Ganeshpurkar and Saluja 2019). The aglycone naringenin exhibited multiple therapeutic effects associated with its free radical-scavenging properties. Depending on the concentration and method of administration, naringenin can be useful in the treatment of viral, bacterial, and inflammatory diseases and obesity (Ke et al. 2016; Kozłowska et al. 2017; Salehi et al. 2019).

In addition, naringenin was tested for its potential anticancer activity and as a cardioprotective agent (Salehi et al. 2019). A wide range of therapeutic properties of naringin, a 7-hesperidoside derivative of naringenin, include the treatment of metabolic syndrome, oxidative stress, and conditions of the central nervous system (Sachdeva et al. 2014; Dhanya et al. 2015; Chen et al. 2016).

A medically useful group of flavonoids are isoflavones, which are also known as phytoestrogens (Heim et al. 2002). These compounds can bind to receptors of oestrogen and oestrogen hormone binding protein and inhibit an important enzyme of angiogenesis and tumour formation, tyrosinase (Wink 2015). It was concluded that plants rich in isoflavones are effective in treating cardiovascular and osteoporosis disorders as well as in reducing postmenopausal symptoms (Clarkson 2002; Atkinson et al. 2004; Vitale et al. 2013). To date, the distribution of genistein and daidzein is common in several legumes of the Fabaceae family, such as soybean (Bustamante-Rangel et al. 2018). However, there are reports of the presence of genistein in a species of the Caryophyllaceae family, e.g., *Stellaria dichotoma* or *Stellaria holostea* (Mikšátková et al. 2014).

Our approach included screening for flavonoid aglycones and their highly glycosylated derivatives within Caryophyllaceae family (Cook and Samman 1996). The flavonoid aglycone and glycoside group remains one of the most extensive groups of polyphenols in Caryophyllaceae. Most of these compounds occur in *Silene L.*, *Dianthus L.* (Obmann et al. 2011a, b; Boguslavskaya et al. 1983), *Gypsophila L.* (Zhang et al. 2011a, b; Zheleva-Dimitrova et al. 2018), *Stellaria L.* (Mikšátková et al. 2014), *Spergularia Presl.* (Ferrereres et al. 2011) and *Herniaria L.* (Elhagali et al. 2019; El Mabruki et al. 2014). Nevertheless, flavonoid compounds are probably present in almost all plants. We assembled information regarding their presence in 26 genera and over 120 species of the Caryophyllaceae family (see Table 1).

Flavones

One of the most pharmacologically valuable flavonoid classes present is that comprising flavones, which can be synthesized by various pathways, depending on whether they contain C- or O-glycosylation, O-methylation acylation, and hydroxylated B-ring. These compounds undergo characteristic reactions ascribed to three functional structures—hydroxyl and carbonyl groups and a double bond (Singh et al. 2014; Panche et al. 2016). Their natural distribution is demonstrated for almost all plant tissues (Figs. 10, 11, 12).

Flavonols

An additional class of flavonoids commonly found in Caryophyllaceae is that comprising flavonols, including kaempferol, quercetin and its glycoside rutin (quercetin 3-O-rutinoside). Flavonols, compared to flavones, carry an additional hydroxyl group in the pyran ring (Panche et al. 2016) (Fig. 13).

Flavonones (dihydroflavones)

Flavonones (dihydroflavones) differ from flavones by the lack of a double bond in the pyran ring. Hesperidin, naringenin, and its glycoside naringin (naringenin 7-hesperidoside) are commonly found in citrus fruits (Panche et al. 2016), but they can also be found in certain species of the pink family.
Genus	Compounds	References
Agrostemma githago	luteolin 8-C-β-D-glucoside (orientin) (2)	Richardson (1978)
	luteolin 6-C-β-D-glucoside (isoorientin) (18)	
Alsinidendron trinerve	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	apigenin 8-C-β-D-glucoside (vitexin) (49)	
Arenaria kansuensis	apigenin (48)	Liu et al. (2018)
	luteolin 3’-methyl ether (chrysoeriol) (128)	
	luteolin 7-O-β-D-glucoside (cynaroside) (37)	
	tricin 7-O-β-D-glucoside (160)	
	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	apigenin 8-C-β-D-glucoside (vitexin) (49)	
	chrysoeriol 8-C-β-D-glucoside (scoparin) (129)	Liu et al. (2018), Cui et al. (2017b)
	luteolin (1)	Liu et al. (2018), Tong et al. (2014)
	homoeriodictyol (217)	
	kaempferol (172)	
	quercetin (189)	
	tricin (159)	Wu et al. (1990), Liu et al. (2018), Cui et al. (2017a), Cui et al. (2017b), Cui et al. (2018)
	chrysoeriol 6-C-β-D-glucoside (isoscoparin) (141)	
	tricin 4’-O-(C-veratroylglycol) ether (151)	Cui et al. (2019)
Arenaria saxatilis	apigenin 6-C-β-D-glucoside (isovitexin) (77)	Darmograi (1979)
A. serpyllifolia	apigenin 8-C-β-D-glucoside (vitexin) (49)	
A. stenophyla	luteolin 6-C-β-D-glucoside (isoorientin) (18)	
A. juncea	luteolin 8-C-β-D-glucoside (orientin) (2)	
A. lychnidea	luteolin 8-C-β-D-glucoside (orientin) (2)	
Table 1 continued

Genus	Compounds	References
Arenaria longifolia	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	apigenin 8-C-β-D-glucoside (vitexin) (49)	
	chrysoeriol 6-C-β-D-glucoside (isoscoparin) (141)	
	luteolin 6-C-β-D-glucoside (isoorientin) (18)	
	luteolin 8-C-β-D-glucoside (orientin) (2)	
Cerastium anomalum	apigenin (48)	
C. biebersteinii	luteolin (1)	
C. falcatum	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
C. perfoliatum	apigenin 8-C-β-D-glucoside (vitexin) (49)	
C. grandiflorum	luteolin 6-C-β-D-glucoside (isoorientin) (18)	
C. cerastoides		
C. imbricatum	apigenin	
C. pilosum	luteolin	
C. dahuricum	apigenin	
C. fontanum	luteolin	
C. trigynum	apigenin	
Cerastium arvense	acetin 6,8-di-C-β-D-galactoside (152)	Dubois et al. (1984)
	acetin 6,8-di-C-β-D-glucoside (157)	
	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	apigenin 6-C-β-D-glucosyl-8-C-β-D-galactoside (50)	
	apigenin 6,8-di-C-β-D-glucoside (vicenin-2) (53)	
	apigenin 8-C-β-D-glucoside (vitexin) (49)	
	apigenin 6-C-arabinoside (isomollupentin) (81)	Dubois et al. (1985)
	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	apigenin 6-C-xyloside (cerarvensin) (82)	
	apigenin 6-C-xylosyl-8-C-arabinoside (51)	
	apigenin 6-C-β-glucosyl-8-C-arabinoside (schaftoside) (52)	
	cerarvensin 7-O-glucoside (101)	
	chrysoeriol 6-C-β-D-glucoside (isoscoparin) (141)	
	isomollupentin 2'-glucoside (98)	
	isomollupentin 4'-glucoside (120)	
	isoorientin 2''-feruloyl-4'-glucoside (28)	
	isovitexin 2''-O-arabinoside (83)	
	isovitexin 2''-feruloside (84)	
	isovitexin 2''-feruloyl-4'-glucoside (121)	
	isovitexin 2''-O-glucoside (meloside A) (85)	
	isovitexin 2''-xyloside (86)	
	isovitexin 7-O-glucoside-2''-O-arabinoside (122)	
	isovitexin 7-glucoside-2''-O-glucoside (123)	
	isovitexin 7-O-β-D-glucoside (saponarin) (105)	
	apigenin 6-C-galactosyl-8-C-arabinoside (isocorymboside) (54)	Dubois et al. (1982), Dubois et al. (1985)
	apigenin 6-C-arabinosyl-8-C-xyloside (100)	
Table 1 continued

Genus	Compounds	References
	isomollupentin 7,2”-di-O-glucoside (102)	Dubois et al. (1983)
	isomollupentin 7-O-glucoside-2”-O-arabinoside (103)	Dubois et al. (1985)
	isomollupentin 7-O-glucoside-2”-O-xiloside (104)	Boguslavskaya et al. (1983)
	iso-vitexin 7-O-glucoside-2”-O-arabinoside (122)	
Dianthus acieularis	luteolin 6-C-β-D-glucoside (isoorientin) (18)	
	apigenin 6-C-anti-z-D-glucoside (isoneoavroside) (79)	Richardson (1978)
	apigenin 6-C-syn-z-D-glucoside (neoavroside) (80)	
Dianthus anatoficus	kaempferol (172)	
	luteolin 6-C-β-D-glucoside (isoorientin) (18)	
	luteolin 8-C-β-D-glucoside (orientin) (2)	
Dianthus japonicus	isovitexin 7-O-β-D-glucoside (saponarin) (105)	Nakano et al. (2011)
	saponarin 2”-O-z-L-rhamnose-6”-O-7,8-dihydroferrulate (106)	
Dianthus hoeltzeri	apigenin 6-C-anti-z-D-glucoside (isoneoavroside) (79)	Boguslavskaya et al. (1983), Obmann et al. (2011a, b)
	apigenin 6-C-syn-z-D-glucoside (neoavroside) (80)	
	chrysoeriol 6-C-syn-z-D-glucoside (142)	
Dianthus dicolor	isovitexin 4’-O-β-D-glucoside (isosaponarin) (124)	Boguslavskaya et al. (1983)
Dianthus squarrosus	luteolin 6-C-β-D-glucoside (isoorientin) (18)	Seraya et al. (1978), Obmann et al. (2011a, b)
Dianthus superbus	luteolin 8-C-β-D-glucoside (orientin) (2)	
	kaempferol 3-O-(β-D-glucosyl-β-D-glucoside) (173)	Boguslavskaya (1976), Obmann et al. (2011a, b)
Dianthus platycodon	quercetin 3-O-z-L-rutinoside (rutin) (190)	
Dianthus ramosissimus	chrysoeriol 6-C-anti-z-D-glucoside (143)	Obmann et al. (2011a, b)
Dianthus pseudosquarrosus	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	apigenin 8-C-β-D-glucoside (vitexin) (49)	
	iso-vitexin 4’-O-β-D-glucoside (isosaponarin) (124)	
	luteolin 5-O-glucoside (36)	
	luteolin 7-O-diglucoside (38)	
	luteolin 7-O-β-D-glucoside (cynaroside) (37)	
Genus	Compounds	References
---------------------	---	--
Dianthus versicolor	apigenin (48)	Obmann et al. (2011a, b), Obmann et al. (2012)
	apigenin 4'-methyl ether (acacetin) (151)	
	luteolin (1)	
	luteolin 3'-methyl ether (chrysoeriol) (128)	
	luteolin 4'-methyl ether (diosmetin) (154)	
	isoorientin 7-O-galactoside (22)	
	isoorientin 7-O-rhamnosyl-glactoside (23)	
	isoorientin 7-O-rutinoside (24)	
	isoscorparin 7-O-galactoside (147)	
	isoscorparin 7-O-rhamnosyl-galactoside (148)	
	isoscorparin 7-O-rutinoside (149)	
	isovitexin 7-O-β-D-glucoside (saponarin) (105)	
	isovitexin 7-O-rhamnosyl-galactoside (107)	
	isovitexin 7-O-rutinoside (109)	
	apigenin C-hexosyl-O-hexoside malyl ester (110)	
	luteolin C-hexosyl-O-hexoside malyl ester (39)	
	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	apigenin 7-O-β-D-glucoside (cosmosiin) (111)	
	isovitexin 2''-O-rhamnoside (99)	
	luteolin 7-O-β-D-glucoside (cynaroside) (37)	
Dianthus caryophyllus	kaempferide 3-O-β-D-glucosyl(1 → 2)-O-[z-L-rhamnosyl(1 → 6)]-β-D-glucoside (188)	Curir et al. (2001), Obmann et al. (2011a, b)
	kaempferide 3-O-[2G-β-D-glucosyl]-β-rutinoside (187)	Curir et al. (2005), Obmann et al. (2011a, b)
	quercetin 3-[6-O-(z-L-arabinosyl)-β-D-glucoside] (peltatoside) (194)	Curir et al. (2003), Obmann et al. (2011a, b) Al-Snafi (2017)
	apigenin 6-C-glucosyl-7-O-(6-malyl-glucoside) (112)	Fukui et al. (2003), Obmann et al. (2011a, b)
	kaempferol 3-O-[6''-rhamnosyl-2''-6-malyl-glucosyl]]-glucoside (174)	
	kaempferol 3-O-(6''-rhamnosyl-2''-glucosyl)-glucoside (175)	
	kaempferol 3-O-(β-D-glucosyl-β-D-glucoside) (173)	Ogata et al. (2004), Obmann et al. (2011a, b), Stich et al. (1992)
	apigenin 6,8-di-C-β-D-glucoside (vicenin-2) (53)	Galeotti et al. (2008a, b), Obmann et al. (2011a, b)
	kaempferol 3-O-β-D-rutinoside (nicotiflorin) (176)	
	kaempferol 3-O-β-D-glucosyl-(1'' → 2'')-O-[z-L-rhamnosyl-(1'' → 6'')]-β-D-glucoside (178)	Galeotti et al. (2008a, b), Galeotti et al. (2008a), Obmann et al. (2011a, b), Iwashina et al. (2010), Al-Snafi (2017)
	kaempferol 3-O-β-D-glucosyl-(1'' → 2'')-O-[z-L-rhamnosyl-(1'' → 6'')]-β-D-glucoside (177)	Galeotti et al. (2008a), Obmann et al. (2011a, b)
	kaempferol (172)	Stich et al. (1992)
	naringenin (220)	
	kaempferol 4'-methyl ether (kaempferide) (186)	Martineti et al. (2010)
	kaempferol 3-O-neohesperidoside (179)	Iwashina et al. (2010)
	kaempferol 3-O-sophoroside (sophoraflavonoloside) (185)	
Genus	Compounds	References
------------------	---	---
Dianthus deltoides	luteolin (1)	Obmann et al. (2011a, b)
	apigenin 6-C-anti-α-D-glcoside (isoneovroside) (79)	
	apigenin 6-C-syn-α-D-glcoside (neovroside) (80)	
	chrysoeriol 4′-O-β-D-glcoside (150)	
	luteolin 3′-methyl ether (chrysoeriol) (128)	
	luteolin 4′-O-β-D-glcoside (40)	
Dianthus arenarius	apigenin 4′-O-glcoside (125)	Boguslavskaya et al. (1983)
D. crinitus	apigenin 6-C-β-D-glcoside (isovitexin) (77)	
D. tetralepsis	apigenin 8-C-β-D-glcoside (vitetin) (49)	
	luteolin 4′-O-β-D-glcoside (40)	
	luteolin 6-C-β-D-glcoside (isoorientin) (18)	
	luteolin 8-C-β-D-glcoside (orientin) (2)	
Dianthus grandiflora	kaempferol (172)	Richardson (1978)
Drymaria diandra	drymariatin A (164)	Ding et al. (1999), Brahmchari and Gorai (2006)
	drymariatin B (165)	Ding et al. (2005)
	drymariatin C (166)	
	drymariatin D (167)	
	6-trans-{2′-O-(rhamnosyl)}-ethenyl-5,7,4′-trihydroxyflavone (170)	
	5,4′-dihydroxy-7-methoxyflavone-6-C-(2′-O-z-L-rhamnosyl)-β-D-glcoside (87)	
	5,7,3′,4′-tetrahydroxyflavone-6-C-(2′-O-z-L-rhamnosyl)-β-D-glcoside (45)	
Drypis spinosa	naringenin (220)	Kremer et al. (2021)
	quercetin (189)	
Gymnocarpos decander	isorhamnetin 3-O-[2′″-O-acetyl – β-D-xylsosyl-(1 → 6)-β-D-	Bechlem et al. (2017)
	apiofuransyl-(1 → 2)]-β-D-glcoside (212)	
	isorhamnetin 3-O-2″-O-acetyl – β-D-xylsosyl-(1 → 6)-β-D-glcoside (213)	
	quercetin 3-O-(2″-O-acetyl – β-D-xylsosyl)-(1 → 6)-β-D-glcoside (198)	
	apigenin (48)	Zitouni (2017)
	kaempferol (172)	
	luteolin (1)	
	myricetin 3′-O-methyl ether (laricitrin) (214)	
	naringenin (220)	
	kaempferol 3-O-β-D-rutinoside (nicotiflorin) (176)	
	luteolin 7-O-β-D-glcoside (cynaroside) (37)	
	quercetin 3-O-β-D-galactoside (hyperoside) (191)	
	quercetin 3-O-α-L-rutinoside (rutin) (190)	
Table 1 continued

Genus	Compounds	References
Gypsophila altissima	apigenin 8-C-β-D-glucoside (vitexin) (49)	El-Hawary et al. (2020)
	quercetin (189)	Zitouni (2017), Mubarek (2019), El-Hawary et al. (2020)
	apigenin 6-C-β-D-glucoside (isovitexin) (77)	Mubarek (2019)
	quercetin 3-O-β-D-glucoside (isoquercitrin) (192)	Zitouni (2017), Mubarek (2019)
	apigenin 7-O-β-D-glucoside (saponarin) (105)	Zdraveva et al. (2015)
	Gypsophila arrosti	
	quercetin 3-O-α-L-rutinoside (rutin) (190)	Altay et al. (2019)
	naringenin (220)	Altay (2018)
	Gypsophila acheri	
	luteolin 7-O-α-L-arabinosyl-6-C-β-glucoside (25)	Elbandy et al. (2007)
	Gypsophila repens	
	isoorientin 2'-O-arabinoside (19)	Zhang et al. (2011a, b), Huang et al. (2012), Lin et al. (2016)
	luteolin 6-C-β-D-glucoside (isoorientin) (18)	Lin et al. (2015), Tu et al. (2019)
	isovitexin 7-O-β-D-glucoside (saponarin) (105)	Zhang et al. (2011a, b), Zdraveva et al. (2015)
	apigenin 6-C-[β-D-xylosyl-(1'-2'0')-β-D-galactoside]-7-O-β-D-glucoside (113)	Zhang et al. (2011a, b)
	apigenin 7-O-sophoroside (114)	
	apigenin 8-C-β-D-glucoside (vitexin) (49)	
	isovitexin 2'-O-glucoside (meloside A) (85)	
	Gypsophila elegans	
	quercetin 3-O-α-L-rutinoside (rutin) (190)	Altay et al. (2019)
	Gypsophila eriocalyx	
	isovitexin 7-O-β-D-glucoside (saponarin) (105)	Vitcheva et al. (2011), Simeonova et al. (2014), Zheleva-Dimitrova et al. (2018)
	quercetin 3-O-β-D-galactoside (hyperoside) (191)	Krasteva et al. (2008)
	apigenin 8-C-β-D-glucoside (vitexin) (49)	Krasteva et al. (2008), Zheleva-Dimitrova et al. (2018)
	luteolin 6-C-β-D-glucoside (isoorientin) (18)	
	luteolin 8-C-β-D-glucoside (orientin) (2)	
	apigenin (48)	
	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	isorhamnetin 3-O-β-D-glucoside (205)	
	luteolin 2'-O-pentosyl-6-C-hexoside (29)	
	luteolin 4'-methyl ether (diosmetin) (154)	
	luteolin 7-O-β-D-glucoside (cynaroside) (37)	
Table 1 continued

Genus	Compounds	References
Gypsophila glomerata	apigenin (48)	Zheleva-Dimitrova et al. (2018)
	apigenin 2"-O-acetylpentosyl-6-C-hexoside (88)	
	apigenin 2"-O-diacetylpentosyl-6-C-hexoside (89)	
	apigenin 2"-O-pentosyl-6-C-hexoside (90)	
	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	apigenin 8-C-β-D-glucoside (vitexin) (49)	
	diosmetin 2"-O-acetylpentosyl-6-C-hexoside (155)	
	isorhamnetin 3-O-β-D-glucoside (205)	
	isovitexin 7-O-β-D-glucoside (saponarin) (105)	
	kaempferol 3-O-β-D-glucoside (astragalin) (180)	
	kaempferol 3-O-β-D-rutinoside (nicotiflorin) (176)	
	luteolin 2"-O-pentosyl-6-C-hexoside (29)	
	luteolin 4'-methyl ether (diosmetin) (154)	
	luteolin 6-C-β-D-glucoside (isoorientin) (18)	
	luteolin 7-O-β-D-glucoside (cynaroside) (37)	
	luteolin 8-C-β-D-glucoside (orientin) (2)	
	luteolin methyl-2"-O-pentosyl-6-C-hexoside (30)	
Gypsophila tuberculosa	quercetin 3-O-α-L-rutinoside (rutin) (190)	Altay et al. (2019)
Gypsophila sphaerocephala	isovitexin 7-O-β-D-glucoside (saponarin) (105)	Altay et al. (2018)
Gypsophila paniculata	apigenin (48)	
Gypsophila perfoliata	apigenin 2"-O-hexosyl-6-C-hexoside (91)	Zheleva-Dimitrova et al. (2018)
	apigenin 2"-O-pentosyl-6-C-hexoside (90)	
	apigenin 6,8-di-C-β-D-glucoside (vicenin-2) (53)	
	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	apigenin 6-C-hexosyl-8-C-pentoside (56)	
	apigenin 8-C-β-D-glucoside (vitexin) (49)	
	diosmetin 6-C-hexosyl-8-C-pentoside (156)	
	isorhamnetin 3-O-β-D-glucoside (205)	
	isovitexin 4'-O-β-D-glucoside (isosaponarin) (124)	
	luteolin 2"-O-hexosyl-6-C-hexoside (31)	
	luteolin 4'-methyl ether (diosmetin) (154)	
	luteolin 6-C-hexosyl-8-C-pentoside (32)	
	luteolin 7-O-β-D-glucoside (saponarin) (18)	
	luteolin 8-C-β-D-glucoside (orientin) (2)	
Genus	Compounds	References
---------------	---	---------------------------------
Herniaria		
hirsuta	quercetin (189)	Richardson (1978)
	isorhamnetin 3-O-rutinoside (narcassin) (206)	
	quercetin 3-O-(2''-O-α-L-rhamnosyl)-β-D-glucuronoside (195)	
	quercetin 3-O-α-L-rutinoside (rutin) (190)	
Herniaria		
fontanessii	apigenin (48)	Tili et al. (2019)
	kaempferol (172)	
	naringenin (220)	
	quercetin (189)	
	isorhamnetin 3-O-β-D-galactoside (hyperoside) (191)	
	quercetin 3-O-α-L-rutinoside (rutin) (190)	
	isorhamnetin 3-O-robinobioside (207)	Mbark et al. (1999)
	isorhamnetin 3''-feruloyl-3-O-robinobioside (208)	
Hernia		
glabra	apigenin (48)	El Mabruki et al. (2014)
	quercetin 3-O-β-D-galactoside (hyperoside) (191)	
	luteolin (1)	Maleš et al. (2013)
	isorhamnetin 3-O-rutinoside (narcassin) (206)	Kozachok et al. (2018)
	kaempferol 3-O-β-D-rutinoside (nicotiflorin) (176)	
	quercetin 3-O-[D-apio-β-D-furanosyl-(1 → 2)-O-[-α-L-rhamnosyl-(1 → 6)]- β-D-glucoside (apiorutin) (200)	
	quercetin (189)	
	quercetin 3-O-β-D-glucoside (isoquercitrin) (192)	Kulevanova et al. (2003), El Mabruki et al. (2014)
Genus	Compounds	References
-----------------	---	---
Herniaria hemistemon	quercetin 3-O-α-L-rutinoside (rutin) (190)	Maleš et al. (2013), Kozachok et al. (2018), El Mabruki et al. (2014) Elhagali et al. (2019)
	apigenin (48)	
	kaempferol (172)	
	naringenin (220)	
	quercetin (189)	
	apigenin 4’-methyl ether (acacetin) (151)	
	apigenin 6-C-x-L-arabinosyl-8-C-β-D-galactoside (57)	
	apigenin 6-C-glucosyl-8-C-rhamnoside (58)	
	apigenin 6-rhamnosyl-8-glucoside (59)	
	apigenin 7-O-β-D-glucoside (cosmosiin) (111)	
	apigenin 7-O-neohesperidoside (rhoifolin) (115)	
	apigenin 8-C-β-D-glucoside (vexin) (49)	
	cyanidanon 4’-methyl ether (hesperetin) (218)	
	hesperetin 7-O-α-L-rutinoside (hesperidin) (219)	
	kaempferol 3,7-dirhamnoside (kaempferitin) (181)	
	kaempferol 3-O-glucoside-2”-p-coumaroyl (182)	
	kaempferol 4’-methyl ether (kaempferide) (186)	
	kaempferol 7-O-hesperidoside (183)	
	luteolin 6-C-arabinosyl-8-C-glucoside (3)	
	luteolin 6-C-glucosyl-8-C-arabinoside (21)	
	naringenin 7-O-α-L-hesperidoside (naringin) (221)	
	quercetin 3-O-glucoside-7-O-rhamnoside (201)	
	quercetin 3-O-β-D-glucoside (isoquercitrin) (192)	
	quercetin 3-O-z-L-hesperidoside (quercetin) (192)	
	quercetin 3-O-z-L-rutinoside (rutin) (190)	
	quercetin 7-methyl ether (rhamnetin) (202)	
Herniaria polygama	quercetin 3-O-z-L-rutinoside (rutin) (190)	Boguslavskaya et al. (1985a, b)
Herniaria ciliolata	isorhamnetin 3-O-rutinoside (narcissin) (206)	Królikowska et al. (1983)
	quercetin 3-O-β-D-glucoside (isoquercitrin) (192)	
	quercetin 3-O-z-L-rutinoside (rutin) (190)	
	rhamnazin 3-O-glucoside (209)	
	rhamnazin 3-O-rutinoside (polygalacin) (210)	
	rhamnetin 3-O-glucoside (193)	
Genus	Compounds	References
-----------------------	---	---
Herniaria mauritanica	kaempferol 3-O-β-D-glucoside (astragalin) (180)	Cheriti and Sekkoum (1996)
Illecebrum verticillatum	luteolin 8-C-β-D-glucoside (orientin) (2)	Richardson (1978)
Lychnis senno	chrysoeriol 6-C-β-D-glucoside (isoscoparin) (141)	Shinjiro et al. (2009), Devkota et al. (2013); Maliński et al. (2014)
	isoorientin 2''-O-rhamnoside (20)	
	isovitexin 2''-O-rhamnoside (99)	
	isovitexin 5-O-acetyl-2'-x-rhamnoside (92)	
Lychnis coronaria	chrysoeriol 6-C-β-D-glucoside (isoscoparin) (141)	Bahar et al. (2008), Maliński et al. (2014)
	tricin 7-O-β-D-glucoside (160)	
Lychnis chalcedonica	apigenin 6,8-di-C-β-D-glucoside (vicenin-2) (53)	Smolyakova et al. (2010), Amosova et al. (2019)
Minuartia rossi	apigenin 6-C-arabinosyl-diglucoside (93)	Wolf et al. (1979)
M. elegans	apigenin 6-C-glucoside (isovitexin) (77)	
M. austromontana	apigenin 6-C-triglucoside (94)	
	kaempferol 3-O-β-D-sophoroside (sophoraflavonoloside) (185)	
	kaempferol 3-O-glucoside-2''-p-coumaroyl (182)	
	quercetin 3-O-β-D-glucoside (isoquercitrin) (192)	
	quercetin 3-O-β-D-glucosyl-O-galactoside (196)	
	quercetin 3-O-β-D-sophoroside (197)	
Paronychia argentea	isorhamnetin 3-O-β-D-glucoside (205)	Braca et al. (2008)
	nepetin (163)	
	quercetin 3-O-[2''-acyl]-β-D-glucosyl]-(1 → 6)-β-D-galactoside (199)	Braca et al. (2008), Sait et al. (2015)
	quercetin 3-O-β-D-galactoside (hyperoside) (191)	
	quercetin 3-O-β-D-glucosyl-(1 → 6)-β-D-galactoside	
	7-(β-D-glucosyl)-4',5-dihydroxy-3',6-dimethoxyflavone (jaccoside) (146)	
	isorhamnetin 3-O-dihexoside (211)	Sait et al. (2015)
	quercetin 3-O-β-D-glucoside (isoquercitrin) (192)	
	quercetin 3'-methyl ether (isorhamnetin) (204)	Rizk (1986), Sait et al. (2015), Adjadj et al. (2015)
	luteolin (1)	
	quercetin (189)	
Petrhoragia velutina	isoorientin 2''-O-rhamnoside (20)	Pacifico et al. (2010)
	luteolin 6-C-[2''-O-α-L-rhamnosyl-(1'' → 2'')]-α-L-arabinoside (33)	
	luteolin 6-C-[2''-O-α-L-rhamnosyl-(1'' → 2'')]-β-D-xyloside (34)	
	luteolin 6-C-β-D-glucoside (isorientin) (18)	
	naringenin 8-C-α-L-arabinosyl-7-O-β-D-glucoside (223)	
	scoparin 2''-O-rhamnoside (140)	
Genus	Compounds	References
----------------------------	---	-----------------------------
Petrorhagia glumacea	apigenin 6-C-β-D-glucoside (isovitexin) (77)	Richardson (1978)
	apigenin 8-C-β-D-glucoside (vitisin) (49)	
P. nanteuilli	luteolin 6-C-β-D-glucoside (isoorientin) (18)	
	luteolin 8-C-β-D-glucoside (orientin) (2)	
P. prolifera	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	apigenin 8-C-β-D-glucoside (vitisin) (49)	
P. velutina	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	apigenin 8-C-β-D-glucoside (vitisin) (49)	
Petrorhagia saxifrage	luteolin 6-C-β-D-glucoside (isoorientin) (18)	
	luteolin 8-C-β-D-glucoside (orientin) (2)	
Polycarpon tetraphyllum	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	apigenin 8-C-β-D-glucoside (vitisin) (49)	
Psammosilene tunicoides	tectorigenin 7-O-β-D-glucoside (tectoridin) (228)	Liu et al. (2007)
Petranthus dichotomus	apigenin (47)	Allaoua et al. (2016)
	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	kaempferol (172)	Atta et al. (2013)
	luteolin (1)	
	kaempferol 3-O-rhamnoside-7-O-glucuronic acid (184)	
	luteolin 6-C-β-D-glucoside (isoorientin) (18)	
	luteolin 6-C-rhamnosyl-(1’’ → 4’’)-O-rhamnoside (35)	
	myricetin 3-O-glucoside (215)	
	orientin 7-methyl ether (4)	
	quercetin 7-O-β-D-glucoside (203)	
	quercetin (189)	
		Atta et al. (2013), Allaoua et al. (2016)
Scleranthus uncinatus	5,7,4’-trihydroxy-3’-methoxyflavone-8-C-β-D-xylosyl-2’’-O-glucoside (138)	
	5,7-dihydroxy-3’-methoxy-4’-acetoxyflavone-8-C-β-D-xyloside-2’’-O-glucoside (139)	
Scleranthus annuus	kaempferol (172)	Zdraveva et al. (2004)
	luteolin (1)	
	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	luteolin 6-C-β-D-glucoside (isoorientin) (18)	
	quercetin 3-O-β-D-glucoside (isouercitrin) (192)	
	quercetin 3-O-α-L-rutinoside (rutin) (190)	
	vitexin 4’-O-α-L-rhamnoside (61)	
Scleranthus perennis	5,7-dihydroxy-3’-methoxy-4’-acetoxyflavone-8-C-β-D-xylosyl-2’’-O-glucoside (139)	Jakimiuk et al. (2020)
Sagina japonica	apigenin 6,8-di-C-β-D-glucoside (vicenin-2) (53)	Zhuang (1983)
	apigenin 6-C-β-D-arabinosyl-8-C-β-D-glucoside (vicenin1) (62)	
	apigenin 6-C,β-D-(O-rhamnosyl)-glucoside (95)	
Saponaria ocyoides	quercetin (189)	Richardson (1978)
Saponaria vaccaria	quercetin (189)	Kumar and Khanna (1994)
	kaempferol (172)	
	apigenin 6-C-[α-L-arabinosyl-(1’’ → 2’’)-β-D-glucosyl]-7-O-β-D-glucoside (126)	Balsevich et al. (2011)
Genus	Compounds	References
-----------------------	---	---
Saponaria officinalis	apigenin 6-C-β-D-glucoside (isovitexin) (77)	Cambie (1959)
	apigenin 8-C-β-D-glucoside (vitexin) (49)	
Silene alba	apigenin 6-C-β-D-glucoside (isovitexin) (77)	Heinsbroek et al., (1980), Mamadalieva et al. (2014)
	apigenin 8-C-β-D-glucoside (vitexin) (49)	
	isovitexin 2"-O-glucoside (meloside A) (85)	
	vitexin 2"-O-glucoside (63)	
Silene brachuica	apigenin 6-C-β-D-glucoside (isovitexin) (77)	Mamadalieva et al. (2014)
	apigenin 8-C-β-D-glucoside (vitexin) (49)	
Silene armeria	luteolin 8-C-β-D-glucoside (orientin) (2)	Richardson (1978), Darmograi (1977), Mamadalieva et al. (2014)
	luteolin 6-C-β-D-glucoside (isoorientin) (18)	
	luteolin 8-C-(2"-O-xylosyl)-β-D-glucoside (adonivernite) (10)	
	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	apigenin 8-C-β-D-glucoside (vitexin) (49)	
	luteolin 6-C-(2"-O-xylosyl)-β-D-glucoside (homoadonivernite) (26)	
	isovitexin 4’-O-β-D-glucoside (isosaponarin) (124)	
Silene boissieri	apigenin 6,8-di-C-β-D-glucoside (vicenin-2) (53)	
	apigenin 6-C-β-D-arabinosyl-8-C-β-D-glucoside (vicenin-1) (62)	
	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	apigenin 8-C-β-D-glucoside (vitexin) (49)	
	luteolin 8-C-β-D-glucoside (orientin) (2)	
	luteolin 6-C-β-D-glucoside (isoorientin) (18)	
Silene bupleuroides	luteolin 8-C-(2"-O-xylosyl)-β-D-glucoside (adonivernite) (10)	
S. chlorifolia	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
S. compacta	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
S. cretacea	luteolin 6-C-(2"-O-xylosyl)-β-D-glucoside (homoadonivernite) (26)	
S. cubanensis	isovitexin 4’-O-β-D-glucoside (isosaponarin) (124)	
S. polaris	luteolin 8-C-β-D-glucoside (orientin) (2)	
	luteolin 6-C-β-D-glucoside (isoorientin) (18)	
Silene chlorantha	apigenin 6,8-di-C-β-D-glucoside (vicenin-2) (53)	
S. commutate	apigenin 6-C-β-D-arabinosyl-8-C-β-D-glucoside (vicenin-1) (62)	
S. cyri	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
S. foliosa	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
S. graminifolia	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
S. italica	apigenin-8-C-β-D-glucoside (vitexin) (49)	
S. jennisensis	luteolin 6-C-glucoside (isoorientin) (18)	
S. macrostyla	luteolin 8-C-β-D-glucoside (orientin) (2)	
S. nutans		
S. wolgensis		
Table 1 continued

Genus	Compounds	References
Silene conoidea	orientin 4′-methoxy-4′-α-L-rhamnoside (9)	Ali et al. (1999), Mamadalieva et al. (2014), Ullah et al. (2019)
	vitexin 4′-O-rhamnoside (65)	
	diosmetin 8-C-(4′-O-α-L-rhamnosyl)-β-D-glucoside (153)	Ahmad et al. (1998), Mamadalieva et al. (2014), Ullah et al. (2019)
Silene diclinis	kaempferol (172)	Richardson (1978), Mamadalieva et al. (2014)
	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	apigenin 8-C-β-D-glucoside (vitexin) (49)	
Silene flos-cuculi (syn. *Lychnis flos-cuculi*)	apigenin (47)	Tomczyk (2008)
	luteolin (1)	
	apigenin 8-C-β-D-glucoside (vitexin) (49)	
	luteolin 8-C-β-D-glucoside (orientin) (2)	
Silene dioica	apigenin 6-C-β-D-glucoside (isovitexin) (77)	Mamadalieva et al. (2014)
Silene rubella	apigenin (47)	Hussein et al. (2019)
	luteolin (1)	
	luteolin 4′-methyl ether (diosmetin) (154)	
	kaempferol (172)	Richardson (1978)
	quercetin (189)	Richardson (1978), del Valle et al. (2015)
	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	apigenin 6,8-di-C-β-D-glucoside (vicenin-2) (53)	del Valle et al. (2015)
	quercetin 3-O-α-L-rutinoside (rutin) (190)	
	naringenin 7-O-α-L-hesperidoside (naringin) (221)	
Silene littorea	kaempferol (172)	Richardson (1978)
	luteolin 6-C-β-D-glucoside (isoorientin) (18)	Richardson (1978), del Valle et al. (2015)
Silene macrostyla	apigenin (47)	del Valle et al. (2015)
	luteolin (1)	
	quercetin (189)	
	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	quercetin 3-O-α-L-rutinoside (rutin) (190)	
Silene montbretiana	kaempferol 6,8-dihydroxy-3-O-α-L-	Kılıç et al. (2019)
	rhamnoside	
Silene pratensis	apigenin 6-C-β-D-glucoside (isovitexin) (77)	van Brederode et al. (1982)
	isovitexin 7-O-galactoside-6″-O-arabinoside (108)	Niemann (1984)
Silene saxatilis	apigenin (46)	Zemtsova et al. (1976), Mamadalieva et al. (2014)
	apigenin 6,8-di-C-β-D-glucoside (vicenin-2) (53)	
	apigenin 8-C-β-D-glucoside (vitexin) (49)	
	luteolin 6-C-β-D-glucoside (isoorientin) (18)	
	luteolin 8-C-β-D-glucoside (orientin) (2)	
Silene schafta	apigenin 6-C-β-D-glucosyl-8-C-α-L-arabinoside (shaftoside)	Chopin et al. (1974), Mamadalieva et al. (2014)
Silene multifida	apigenin 6-C-β-D-glucoside (isovitexin) (77)	Darmograi (1977), Mamadalieva et al. (2014)
S. supina	apigenin 8-C-β-D-glucoside (vitexin) (49)	
S. turgida	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
Genus	Compounds	References
---------------------	---	--
Silene viscariopsis	luteolin 6-C-β-D-glucoside (isoorientin) (18)	Richardson (1978)
	luteolin 8-C-β-D-glucoside (orientin) (2)	Richardson (1978), Mamadalieva et al. (2014)
Silene vulgaris	luteolin 6-C-β-D-glucoside (isoorientin) (18)	
	apigenin 6,8-di-C-β-D-glucoside (vicenin-2) (53)	Olennikov (2020)
	apigenin 6-C-β-D-glucosyl-8-C-β-D-xyloside (vicenin-3) (64)	
	apigenin 6-C-β-D-glucoside (isovitexin) (77)	
	apigenin 6-C-β-glucosyl-8-C-α-arabinoside (schaftoside) (52)	
	luteolin 6-C-β-glucosyl-8-C-arabinoside (carlinside, lucenin-5) (21)	
	chrysoeriol 6-C-β-D-glucoside (isocarparin) (141)	
	genkwanin 6,8-di-C-glucoside (46)	
	genkwanin 6-C-glucosyl-8-C-arabinoside (47)	
	isomollupentin 7-O-glucoside-2"-O-arabinoside (103)	
	isoorientin 2"-O-arabinoside (19)	
	apigenin 6-C-α-arabinosyl-8-C-β-glucoside (isoschaftoside) (66)	
	isovitexin 2"-O-arabinoside (83)	
	isovitexin 2"-O-glucoside (meloside A) (85)	
	isovitexin 2"-O-xyloside (86)	
	isovitexin 7-O-β-D-glucoside (saponarin) (105)	
	luteolin 3'-O-arabinosyl-6-C-glucoside (lucenin-3) (44)	
	luteolin 6-C-β-glucoside (isoorientin) (18)	
	swertisin 2"-O-arabinoside (96)	
	swertisin 2"-O-glucoside (spinosin) (97)	
	isoorientin 7,3'-dimethyl ether (27)	
	silenerepin (171)	
Silene schimperiana	apigenin (48)	Hussein et al. (2020)
	luteolin (1)	
	luteolin 4'-methyl ether (diosmetin) (154)	
	kaempferol (172)	
	quercetin (189)	
	cyanidanon 4'-methyl ether (hesperetin) (218)	
	hesperetin 7-O-α-L-rutinoside (hesperidin) (219)	
	kaempferol 3-O-β-D-rutinoside (nicotiflorin) (176)	
	quercetin 3-O-α-L-rutinoside (rutin) (190)	
Spergularia diandra	tricin (159)	El-Dien et al. (2013)
Genus	Compounds	References
-----------	--	--------------------------------
Spergularia marina	apigenin 6-C-β-D-(2"-O-feruloyl)glucosyl-8-C-β-D-glucoside (70)	Cho et al. (2016)
	apigenin 6-C-β-D-glucosyl-8-C-β-D-(2"-O-feruloyl)glucoside (67)	
	luteolin 6-C-β-D-(2"-O-feruloyl)glucosyl-8-C-β-D-glucoside (8)	
	luteolin 6-C-β-D-glucosyl-8-C-β-D-(2-O"-feruloyl)glucoside (11)	
Spergularia rubra	apigenin 6,8-di-C-β-D-glucoside (vicenin-2) (53)	Zoll et al. (1974), Bouillant et al. (1979), Ferreres et al. (2011)
	apigenin 6-C-arabinoside (isomollupentin) (81)	Bouillant et al. (1979)
	apigenin 6-C-β-glucosyl-8-C-α-arabinoside (schaftoside) (52)	Bouillant et al. (1979), Ferreres et al. (2011)
	chrysoeriol 6,8-di-C-glucoside (stellarin-2) (130)	Zoll and Nouvel (1974)
Spergularia salina	apigenin 6,8-di-C-(6"-malonyl, feruloyl)glucoside (68)	
	apigenin 6,8-di-C-(6"-malonyl, sinapoyl)glucoside (69)	
	apigenin 6-C-(2"-feruloyl)glucosyl-8-C-glucoside (70)	
	apigenin 6-C-(4"-malonyl)glucosyl-8-C-glucoside (71)	
	apigenin 6-C-glucosyl-8-C-(2"-feruloyl)glucoside (67)	
	apigenin 6-C-glucosyl-8-C-(2"-sinapoyl)glucoside (72)	
	chrysoeriol 6,8-di-C-(6"-malonyl, sinapoyl)glucoside (135)	
	chrysoeriol 6,8-di-C-(6"-malonyl, feruloyl)glucoside (136)	
	chrysoeriol 6,8-di-C-glucoside (stellarin-2) (130)	
	chrysoeriol 6-C-(4"-malonyl)glucosyl-8-C-glucoside (137)	
	chrysoeriol 6-C-arabinosyl-8-C-glucoside (131)	
	chrysoeriol 6-C-glucosyl-8-C-(2"-feruloyl)glucoside (133)	
	chrysoeriol 6-C-glucosyl-8-C-(2"-sinapoyl)glucoside (134)	
	chrysoeriol 6-C-glucosyl-8-C-arabinoside (132)	
	chrysoeriol 7-O-glucosyl-6-C-(2"-malonyl)-arabinosyl-8-C-arabinoside (144)	
	chrysoeriol 7-O-glucosyl-6-C-arabinosyl-8-C-(6"-malonyl)arabinoside (145)	
	luteolin 6,8-di-C-(2"-malonyl, feruloyl)glucoside (12)	
	luteolin 6,8-di-C-glucoside (lucenin-2) (5)	
	luteolin 6-C-(2"-feruloyl)glucosyl-8-C-glucoside (8)	
	luteolin 6-C-(6"-acetyl)glucosyl-8-C-glucoside (6)	
	luteolin 6-C-(6"-malonyl)glucosyl-8-C-glucoside (7)	
	luteolin 6-C-glucosyl-8-C-(4"-malonyl)glucoside (13)	
	luteolin 6-C-glucosyl-8-C-(2"-dihydroferuloyl)glucoside (14)	
	luteolin 6-C-glucosyl-8-C-(2"-feruloyl)glucoside (15)	
	luteolin 6-C-glucosyl-8-C-(2"-p-coumaroyl)glucoside (16)	
	luteolin 6-C-glucosyl-8-C-(2"-sinapoyl)glucoside (17)	
	luteolin 6-C-glucosyl-8-C-arabinoside (21)	
Genus	Compounds	References
---------------------	---	---
Stellaria dichotoma	luteolin 7-O-glucosyl-6-C-glucosyl-8-C-(2"'-feruloyl)glucoside (41)	Ferreres et al. (2011), Vinholes et al. (2011)
	luteolin 7-O-glucosyl-6,8-C-diglucoside (42)	
	luteolin 7-O-glucosyl-6-C-glucosyl-8-C-(2"'-sinapoyl)glucoside (43)	
	apigenin (48)	Mikšátková et al. (2014)
	formononetin (224)	
	genistein (229)	
	glycine (227)	
	isoformononetin (226)	
	kaempferol (172)	
	luteolin (1)	
	naringenin (220)	
	quercetin (189)	
	tectorigenin 7-O-β-D-glucoside (tectoridin) (228)	
	apigenin 7-O-β-D-glucoside (cosmosiin) (111)	
	formononetin 7-O-β-D-glucoside (ononin) (225)	
	genistein 7-O-β-D-glucoside (genistin) (230)	
	luteolin 7-O-β-D-glucoside (cynaroside) (37)	
	naringenin 7-O-β-D-glucoside (prunin) (222)	
	quercetin 3-O-α-L-rutinoside (rutin) (190)	
	apigenin 6,8-di-C-β-D-glucoside (vicenin-2) (53)	Yasukawa et al. (1981), Sharma and Arora (2012)
	isoscultellarein 6-C-galactoside (78)	
Stellaria graminea	luteolin 6-C-β-D-glucoside (isoorientin) (18)	Richardson (1978)
	luteolin 8-C-β-D-glucoside (orientin) (2)	
Stellaria holostea	apigenin (48)	Mikšátková et al. (2014)
	genistein (229)	
	kaempferol (172)	
	luteolin (1)	
	naringenin (220)	
	quercetin (189)	
	apigenin 7-O-β-D-glucoside (cosmosiin) (111)	
	daidzein 7-O-β-D-glucoside (daidzin) (231)	
	formononetin 7-O-β-D-glucoside (ononin) (225)	
	genistein 7-O-β-D-glucoside (genistin) (230)	
	luteolin 7-O-β-D-glucoside (cynaroside) (37)	
	naringenin 7-O-β-D-glucoside (prunin) (222)	
	quercetin 3-O-α-L-rutinoside (rutin) (190)	
	apigenin 6-C-β-glucosyl-8-C-α-arabinoside (schaftoside) (52)	Ancheeva et al. (2015)
	diosmetin 6-C-β-glucoside (158)	
	3,5,7-trihydroxy-3',5'-dimethoxyflavone (216)	
Genus	Compounds	References
-----------	---	---
	apigenin 6,8-di-C-\(\beta\)-D-glucoside (vicenin-2) (53)	Sharma and Arora (2012)
	chrysoeriol 6,8-di-C-glucoside (stellarin-2) (130)	
	luteolin 8-C-\(\beta\)-D-glucoside (orientin) (2)	Richardson (1978), Boguslavskaya et al. (1985a, b), Ancheeva et al. (2015)
	luteolin 6-C-\(\beta\)-D-glucoside (isoorientin) (18)	
Stellaria	apigenin (48)	Kitanov (1992), Sharma and Arora (2012), Mikšíťková et al. (2014), Rogowska et al. (2017); Melnyk et al. (2018)
media	luteolin (1)	
	quercetin 3-O-\(\alpha\)-L-rutinoside (rutin) (190)	
	genistein (229)	
	apigenin 6,8-di-C-\(\beta\)-D-glucoside (vicenin-2) (53)	
	apigenin 6-C-\(\alpha\)-L-arabinosyl-8-C-\(\beta\)-D-galactoside (57)	
	apigenin 6-C-\(\beta\)-D-galactosyl-8-C-\(\alpha\)-L-arabinoside (74)	
	apigenin 6-C-\(\beta\)-D-galactosyl-8-C-\(\beta\)-L-arabinoside (75)	
	apigenin 6,8-di-C-\(\alpha\)-L-arabinoside (73)	
	luteolin 8-C-\(\beta\)-D-glucoside (orientin) (2)	Richardson (1978)
	luteolin 6-C-\(\beta\)-D-glucoside (isoorientin) (18)	
	quercetin 3-O-\(\beta\)-D-glucoside (isoquercitrin) (192)	
S. nemorum	formononetin (224)	Dong et al. (2007), Mikšíťková et al. (2014)
	glycine (227)	
	kaempferol (172)	
	naringenin (220)	
	quercetin (189)	
	apigenin 7-O-\(\beta\)-D-glucoside (cosmosin) (111)	
	formononetin 7-O-\(\beta\)-D-glucoside (ononin) (225)	
	genistein 7-O-\(\beta\)-D-glucoside (genistin) (230)	
	luteolin 7-O-\(\beta\)-D-glucoside (cynaroside) (37)	
	naringenin 7-O-\(\beta\)-D-glucoside (prunin) (222)	
Isoflavones

Phytoestrogens are non-steroidal polyphenolic compounds occurring in plants and can be chemically divided into two main groups: flavonoids (isoflavones) and non-flavonoids (lignans). The structure of isoflavone aglycone consists of a 3-phenylchroman ring that is substituted with hydroxyl groups in the positions C4 and C7 (Bustamante-Rangel et al. 2018; Krížová et al. 2019) (Fig. 14).

Because flavonoids are widely distributed in the plant kingdom and their presence in Caryophyllaceae plants has not been published until now, the authors of the article summarized the phytochemistry of 26 flavonoid-producing genera and relevant species. The flavonoid compounds occurring in Caryophyllaceae, the corresponding species and the literature references are summarized in Table 1.

Conclusions

The Caryophyllaceae family contains a large number of genera and species that are widely distributed over different climate zones. It is evident that the plants from this family produce a wide range of

Table 1 continued

Genus	Compounds	References
Stellaria nemorum	apigenin 6-C-[α-arabinosyl](1″ → 2″)-O-β-xylloside]	Mikšátková et al. (2014), Ancheeva et al. (2015)
	apigenin 6-C-[α-arabinosyl](1″ → 2″)-O-β-glucoside]	
	apigenin 6-C-β-galactosyl-8-C-β-glucoside	
	apigenin 6-C-β-glucosyl-8-C-α-arabinoside (schaftoside) (52)	
	apigenin 6-C-β-glucosyl-8-C-β-xylloside (55)	
Telephium imperati	apigenin (48)	Richardson (1978)
	apigenin 6-C-β-D-glucoside (isovitexin) (77)	Baeva et al. (1975)
Vaccaria segetalis	apigenin 6-C-β-D-glucoside (isovitexin) (116)	Sang et al. (2000), Qi et al. (2013), Qi et al. (2014), Zhou et al. (2016)
	apigenin 6-C-β-glucosyl-8-C-β-glucoside	
	apigenin 6-C-β-glucosyl-8-C-β-arabinoside	
	isovitexin 4′-O-β-D-glucoside (isosaponarin) (124)	Litvinenko et al. (1967)
	isovitexin 6-C-[α-1-arabinopyranosyl](1″ → 2″)-β-D-glucopyranosyl]-7-O-β-D-glucoside (vaccarin) (126)	Zhang et al. (2011a, b), Zhang (2012), Zhou et al. (2016), Zhou et al. (2017)
Vaccaria pyramidata	apigenin 6-C-[α-1-arabinosyl](1″ → 2″)-β-D-glucosyl]-7-O-β-D-glucoside (vaccarin) (118)	Said et al. (2019)
	apigenin 6-C-β-D-glucosyl-7-O-(6″-O-dihydroferuloyl)-β-D-glucoside (vaccarin-E) (119)	
	isovitexin 7-O-β-D-glucoside (saponarin) (105)	
	isovitexin 2″-O-arabinoside (83)	
	isovitexin 4′-O-β-D-glucoside (isosaponarin) (124)	Zhang et al. (2011a, b), Zhou et al. (2016), Zhou et al. (2017)
	isovitexin 2″-O-α-1-arabinosyl-4″-O-(6″-O-dihydroferuloyl)-β-D-glucoside (vaccarin-H) (127)	Zhang et al. (2011a, b), Zhang (2012), Zhou et al. (2016)
Vaccaria pyramidata	apigenin 6-C-β-D-glucosyl-7-O-(6″-O-dihydroferuloyl)-β-D-glucoside (vaccarin-F) (119)	
	isovitexin 7-O-β-D-glucoside (saponarin) (105)	
	isovitexin 2″-O-arabinoside (83)	
	apigenin 6-β-D-glucosyl-7-O-(6″-O-dihydroferuloyl)-β-D-glucoside (vaccarin-E) (119)	
	apigenin 6-β-D-glucosyl-7-O-(6″-O-dihydroferuloyl)-β-D-glucoside (vaccarin-F) (119)	
	apigenin 6-β-D-glucosyl-7-O-(6″-O-dihydroferuloyl)-β-D-glucoside (vaccarin-H) (127)	
pharmaceutically promising, interesting, and valuable flavonoids and other secondary metabolites. Phytochemical data of flavonoids in plants of this family have not been published until now. Despite the dominant proportion of triterpene saponins among all phytoconstituents, polyphenols, including flavonoid compounds, remain a large group of compounds with health-related activity, such as antioxidant, anti-inflammatory, antimicrobial, organ-protective, and even anticancer effects (van Wyk and Wink 2017; Imran et al. 2019a; Ganeshpurkar and Saluja 2019). Our approach involved screening

![Fig. 10](image_url)
Fig. 10 The chemical structures of the luteolin and its derivatives identified in species of Caryophyllaceae family
Fig. 11 The chemical structures of the apigenin and its derivatives identified in species of Caryophyllaceae family.
flavonoid-containing species, including those containing aglycones and their glycoside derivatives, which could be identified in 26 genera and more than 120 species within the Caryophyllaceae. To the best of our knowledge, apigenin is the most common aglycone in this family and can be found in 28 different species, such as *Vaccaria segetalis* (Baeva et al. 1975), *Stellaria media* (Melnyk et al. 2018), *Silene saxatilis* (Zemtsova et al. 1975), *Pteranthus dichotomus* (Allaoua et al. 2016), *Silene* (*Lychnis*) *flos-cuculi* (Tomczyk 2008), *Herniaria glabra* (El Mabruki et al. 2014) and others. Furthermore, the C-bonded apigenin glucoside isovitexin has been isolated from more than 70 plants, making it the predominant flavonoid within this family. On the basis of the data collected in Table 1, it was concluded that the highly glycosylated C- and O-flavonoids (apigenin, luteolin, chrysoeriol, kaempferol, quercetin, formononetin, genistein, myricetin, tectorigenin) with either one, two or three sugar moieties, as presented in

![Fig. 12](image-url)
this review, are commonly found in the Caryophyl-
laceae family. The genera Silene Mill., Dianthus L.,
Stellaria L., Hernia L., Spergularia Presl., Gyp-
sophila L. and Cerastium L. appear to contain high
abundances of flavonoid compounds.

In summary, the structural diversity of flavonoids
established in the Caryophyllaceae family makes them
an interesting object of phytochemical and pharma-
cological investigations.

Fig. 13 The chemical structures of the flavonols identified in Caryophyllaceae. Kaempferol and its derivatives (a), quercetin and its
derivatives (b), myricetin and its derivatives (c) identified in species of Caryophyllaceae family.
Authors’ contributions Conceptualization and Methodology, K.J., M.T.; Formal Analysis, K.J.; Investigation, K.J.; Writing – Original Draft Preparation, K.J.; Writing – Review and Editing, M.T., M.W.; Supervision, M.T.; Project Administration, M.T.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adjadj M, Baghiani A, Boumerfeg S, Noureddine C, Khennouf S, Arrar L, Mubarak MS (2015) Protective effect of Paronychia argentea L. on acetic acid induced ulcerative colitis in mice by regulating antioxidant parameters and inflammatory markers. Wulfenia J 22:148–172

Ahmad V, Ali Z, Ali M, Zahid M (1998) Chemical constituents of Silene conoidea. Fitoterapia 69:406–408

Aldhebiani AY, Mufarah N (2017) Phytochemical screening of some wild plants from Wadi Yalmlam, Saudi Arabia. IOSR J Pharm Biol Sci 12:25–27

Ali Z, Ahmad VU, Ali MS, Iqbal F, Zahid M, Alam N (1999) Two new C-glycosylflavones from Silene conoidea. Nat Prod Lett 13:121–129

Allaoua Z, Benkhaled M, Dibi A, Long C, Aberkane MC, Bouzidi S, Haba H (2016) Chemical composition, antioxidant and antibacterial properties of Pteranthus dichotomus from Algerian Sahara. Nat Prod Res 30:700–704

Al-Snafi AE (2017) Chemical contents and medical importance of Dianthus caryophyllus—a review. ISOR J Pharm 7:61–71

Altay A (2018) HPLC Analysis of phenolic compounds from Gypsophila aucheri Boiss. and investigation of antioxidant and cytotoxic activity of Gypsophila aucheri Boiss. extracts. J Sci Technol 11:168–181

Altay A, Degirmenci S, Korkmaz M, Cankaya M, Koksal E (2018) In vitro evaluation of antioxidant and anti-proliferative activities of Gypsophila sphaerocephala (Caryophyllaceae) extracts together with their phenolic profiles. J Food Meas Charact 12:2936–2945

Altay A, Tohma H, Durmaz L, Taslimi P, Korkmaz M, Gulcin I, Koksal E (2019) Preliminary phytochemical analysis and evaluation of in vitro antioxidant, anti-proliferative, antidiabetic, and anticholinergic effects of endemic Gypsophila taxa from Turkey. J Food Biochem 43:1–11

Amosova EN, Zueva EP, Lopatina KA, Salono VA, Razina TG, Rybalkina OY, Zibareva LN (2019) Influence of Lychnis chalcedonica L. flavonoids on transplanted tumor development and cytostatic therapy effectiveness in mice. Pharm Chem J 53:454–457

Ancheeva E, Daletos G, Muharini R, Lin WH, Teslov L, Proksch P (2015) Flavonoids from Stellaria nemorum and Stellaria holostea. Nat Prod Commun 10:437–440

Atkinson C, Compston JE, Day NE, Dowsett M, Bingham SA (2004) The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr 79:326–333

Atta EM, Nassar AA, Hasan NM, Haza AR (2013) New flavonoid glycoside and pharmacological activities of Pteranthes dichotomus forsk. Rec Nat Prod 7:69–79

Avunduk S, Lacaille-Dubois MA, Miyamoto T, Bedir E, Şenol SG, Çalık'an ÖA (2007) Chionaeosides A-D, triterpene
isolation of analogue antioxidant compound from Arenaria kansuensis. J Chromatogr B 1046:81–86

Cui Y, Tao Y, Wang S (2018) Anthypoxic activities of constituents from Arenaria kansuensis. Phytomedicine 38:175–182

Cui Y, Shao Y, Wang Q, Mei L, Tao Y (2019) Purification of flavonolignan diastereoisomers from Arenaria kansuensis by two-dimensional liquid chromatography combined with solid-phase extraction. J Chromatogr Sci 57:1–8

Curir P, Dolci M, Lanzotti V, Taglialetela-Scafati O (2001) Kaempferide triglycoside: A possible factor of resistance of carnation (Dianthus caryophyllus) to Fusarium oxysporum f. sp. dianthi. Phytochemistry 56:717–721

Curir P, Lanzotti V, Dolci M, Dolci P, Pasini C, Tollin G (2003) Purification and properties of a new S-adenosyl-L-methionine: flavonoid 4′-O-methyltransferase from carnation (Dianthus caryophyllus L.). Eur J Biochem 270:3422–3431

Curir P, Dolci M, Galeotti F (2005) A phytoalexin-like flavonol involved in the carnation (Dianthus caryophyllus)—Fusarium oxysporum f. sp. dianthi pathosystem. J Phytopathol 153:65–67

Dai J, Dan W, Schneider U, Wang J (2018) β-Carboline alkaloid monomers and dimers: occurrence, structural diversity, and biological activities. Eur J Med Chem 157:622–656

Darmograi VN (1977) Flavonoids of plants of the genera Silene and Oites adans, family Caryophyllaceae. Chem Nat Compd 13:102–103

Darmograi VN (1979) Flavonoids of some species of the genera Arenaria and Cerastium. Khim Prir Soedin 1:93255

de Andrade Teles RB, Diniz TC, Pinto TCC, de Oliveira Júnior RG, Silva MG, de Lavor EM, Fernandes AWC, de Oliveira AP, de Almeida Ribeiro FPR, da Silva AAM, Cavalcante TCF, Quintans Júnior LJ, da Silva Almeida JRG (2018) Flavonoids as therapeutic agents in Alzheimer’s and Parkinson’s diseases: a systematic review of preclinical evidences. Oxid Med Cell Longev 21:1–21

del Valle JC, Buide ML, Casimiro-Soriguer I, Whittall JB, TCF, Quintans Júnior LJ, da Silva Almeida JRG, Silva MG, de Lavor EM, Fernandes AWC, de Oliveira

El Mabruk K, Klemper AV, Kaukhova IE, Sorokin VV (2014) Establishment of rupturworet (Herniaria glabra) herb identity characteristics and quality indices. Pharmacia 6:21–24

Elbandy M, Miyamoto T, Lacaille-Dubois MA (2007) Sulfated lupane triterpene derivatives and a flavone C-glycoside from Gysophila repens. Chem Pharm Bull 55:808–811

El-Dien OG, Shawky E, Aly AH, Abdallah RM, Abdel-Salam NA (2013) A validated high-performance thin-layer chromatography (HPTLC) method for the quantitative determination of tricin in two Spergularia Species. Am J Anal Chem 4:668–673

Elgaml MHA, Soliman HSM, Karawya MS, Mikhova B, Duddeck H (1995) Isolation of triterpene saponins from Gysophila capillaris. Phytochemistry 38:1481–1485

Elhagali G, Abozeed A, Abdelnaser K, Youssif Y (2019) Investigation of bioactive constituents and biological activities of different fractions from Herniaria hemsitemon. J Gay Al-Azhar Bull Sci 30:67–80

El-Hawary SS, Mubarek MM, Lotfy AR, Hassan AR, Sobeh M, Okba MM (2020) Validation of antidiabetic potential of Gymnocarpos decandrus Forssk. Nat Prod Res 13:1–6

Ferreiras F, Gil-Izquierdo A, Vinholes J, Grosso C, Valentão P, Andrade PB (2011) Approach to the study of C-glycosyl flavones acylated with aliphatic and aromatic acids from Spergularia rubra by high-performance liquid chromatography-photodiode array detection/electrospray ionization multi-stage mass spectrometry. Rapid Commun Mass Spectrom 25:700–712

Fukui Y, Tanaka Y, Kusumi T, Iwasita T, Nomoto K (2003) A rationale for the shift in colour towards blue in transgenic
carnation flowers expressing the flavonoid 3',5'-hydroxy-lase gene. Phytochemistry 63:15–23

Galeotti F, Barile E, Curir P, Dolci M, Lanzotti V (2008a) Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochem Lett 1:44–48

Galeotti F, Barile E, Lanzotti V, Dolci M, Curir P (2008b) Quantification of major flavonoids in carnation tissues (Dianthus caryophyllus) as a tool for cultivar discrimination. Z Naturforsch 63C:161–168

Ganesan K, Xu BJ (2017) Molecular targets of vitexin and isovitexin in cancer therapy: a critical review. Ann N Y Acad Sci 1401:102–113

Ganeshpurkar A, Saluja AK (2017) The pharmacological potential of rutin. Saudi Pharm J 25:149–164

Ganeshpurkar A, Saluja A (2019) The pharmacological potential of hesperidin. Indian J Biochem Biophys 56:287–300

Gevenrova R, Bardarov, Bouguet-Bonnet S, Voinikov Y, Balabanova V, Zheleva-Dimitrova D, Henry M (2018) A new liquid chromatography-high resolution orbitrap mass spectrometry-based strategy to characterize glucuronide oleane-type triterpenoid carboxylic acid 3, 28-O-bidesmosides (GOTCAB) saponins. A case study of Gypsophila glomerata Pall ex M. B. (Caryophyllaceae). J Pharm Biomed Anal 159:567–581

Griffiths LA (1959) On the distribution of gentisic acid in green plants. J Exp Bot 10:437–442

Grundmann O, Wang J, McGregor GP, Butterweck V (2008) Anxiolitic activity of a phytochemically characterized Passiflora incarnata extract is mediated via the GABAergic system. Planta Med 74:1769–1773

Gullón B, Lú-Chau TA, Moreira MT, Lema JM, Eibes G (2017) Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci Technol 67:220–235

Hegnauer R (1964) Chemotaxonomy of plants, vol 18. Springer Basel AG, Basel, p 379

Hegnauer R (1989) Caryophyllaceae. Chemotaxonomy of Plants, vol 30. Springer Basel AG, Basel, pp 215–220

Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584

Heinsbroek R, van Brederode J, van Nigtevecht G, Maas J, Heinsbroek R, van Brederode J, van Nigtevecht G, Maas J, Juergens A (2004) Flower scent composition in diurnal species (Caryophyllaceae): phylogenetic constraints or adaption to flower visitors? Biochem Syst Ecol 32:841–859

Huang QF, Zhang SJ, Zheng L, Liao M, He M, Huang RB, Lin X (2012) Protective effect of isoorientin-2'-O-α-L-arabinopyranosyl isolated from Gypsophila elegans on alcohol induced hepatic fibrosis in rats. Food Chem Toxicol 50:1992–2001

Hussein IA, Srivedavasasri R, El-Hela AA, Mohammad AI, Ross S (2019) Antimicrobial secondary metabolites from Silene rubella growing in Egypt. J Biomed Pharm Res 8:81–84

Hussein IA, Srivedavasasri R, El-Hela AA, Mohammad AI, Ross S (2020) Chemical constituents from Silene schimpertiana Boiss. belonging to Caryophyllaceae and their chemotaxonomic significance. Biochem Syst Ecol 92:1–4

Iacopini P, Baldì M, Storchi P, Sebastiani L (2008) Catechin, epicatechin, quercitin, rutin and resveratrol in red grape: content, in vitro antioxidant activity and interactions. J Food Compos Anal 21:589–598

Imran M, Rauf A, Shah ZA, Saeed F, Imran A, Arshad MU, Mubarak MS (2018) Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: a comprehensive review. Phytother Res 2018:1–13

Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA, Mubarak MS (2019a) Luteolin, a flavonoid, as an anticancer agent: a review. Biomed Pharmacother 112:108612

Imran M, Salehi B, Sharifi-rad J, Gondal TA, Saeed F, Imran A, Estevinho LM (2019b) Kaempferol: A key emphasis to its anicancer potential. Molecules 24:1–16

Imran M, Aslam GT, Afif M, Shahbaz M, Batool QT, Hafiz MM, Sharifi-Rad J (2020) Apigenin as an anticancer agent. Phytother Res 26:1–17

Itokawa H, Yun Y, Morita H, Takeya K, Yamada K (1995) Estrogen-like activity of cyclic peptides from Vaccaria segetalis extracts. Planta Med 61:561–562

Iwashina T, Yamaguchi MA, Nakayama M, Onozaki T, Yoshida H, Kawanobu S, Okamura M (2010) Kaempferol glycosides in the flowers of carnation and their contribution to the creamy white flower color. Nat Prod Commun 5:1903–1906

Jakimiuk K, Strawa JW, Granica S, Tomczyk M (2020) Flavonoids from the aerial parts of Sceletium perennis. T20 PSE Conference Liverpool 2020, "Contemporary Natural Products Discovery Research"., 6:03.2020, Liverpool, United Kingdom, p. 57

Jia AQ, Tan NH, Yang YP, Wu SG, Wang LQ, Zhou J (2004) Cyclopentolides from three arctic Caryophyllaceae plants, chemotaxonomy and distribution significance of Caryophyllaceae cyclopentolides. Acta Bot Sin 46:625–630

Jovanović O, Radulović N, Palic R, Zlatković B (2009) Volatile compounds of Minuartia recurva (All.) Schinz et Thell. subsp. recurva (Caryophyllaceae) from Serbia. J Essent Oil Res 21:429–432

Jung HJG, Batzl GO, Seigler DS (1979) Patterns in the phytochemistry of arctic plants. Biochem Syst Ecol 7:203–209

Jürgens A (2004) Flower scent composition in diurnal Silene species (Caryophyllaceae): phylogenetic constraints or adaption to flower visitors? Biochem Syst Ecol 32:841–859

Jürgens A, Witt T, Gottesberger G (2002) Flower scent composition in night-flowering Silene species (Caryophyllaceae). Biochem Syst Ecol 30:383–397
glycosides from *Petrohragia velutina*. J Nat Prod 73:1973–1978

Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:1–15

Pei R, Liu X, Bolling B (2020) Flavonoids and gut health. Curr Opin Biotechnol 61:153–159

Peng Y, Gan R, Li H, Yang M, Mcclements DJ (2020) Absorption, metabolism, and bioactivity of vitexin: recent advances in understanding the efficacy of an important nutraceutical. Critical Reviews in Food Science and Nutrition 1–16

Plant Database (2020) United States Department of Agriculture, United States of America. https://plants.sc.egov.usda.gov. Accessed 27 Nov 2020

Powers JM, Seco R, Faiola CL, Sakai AK, Weller SG, Campbell DR, Guenther A (2020) Floral scent composition and fine-scale timing in two moth-pollinated Hawaiian *Schiedea* (Caryophyllaceae). Front Plant Sci 11:1–16

Praveena R, Sadasivam K, Deepa V, Sivakumar R (2014) Antioxidant potential of orientin: a combined experimental and DFT approach. J Mol Struct 1061:114–123

Qi P, Li Z, Chen M, Sun Z, Huang C (2013) Metabolism and tissue distribution study of *Vaccaria* seeds (Wang-Bu-Liu-Xing) in benign prostatic hyperplasia model rat: toward an in-depth study for its bioactive components. J Pharm Biomed Anal 85:218–230

Qi P, Zhang F, Xue R, Li Z, Chen M, Sun Z, Huang C (2014) Identification of multiple constituents from seed of *Vaccaria segetalis* with an adsorbent-separation strategy based on liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 28:1243–1257

Radulovic´ NS, Ristic´ MN, Ristic´ NR, Dekic´ VS, Dekic´ BR, Mladenovic´ MZ (2018) The floral scent of *Schizanthus* (Caryophyllaceae). Fac Univ Ser Phys Chem 28:1243–1257

Richardson M (1978) Flavonols and *Lychnis chalcedonica* Z. Naturforsch 51C:897–899

Schweingruber FH (2007) Stem anatomy of Caryophyllaceae. Flora - Morphology, Distribution, Functional Ecology of Plants 202:281–292

Seo C, Shin HS, Lee JE, Jung YW, Kim JK, Kwon JG, Hong SS (2020) Isolation and structure elucidation of siliendines A-D, new β-carboline alkaloids from *Silene seoulensis*. Phytochem Lett 36:58–62

Seraya L, Birke K, Khimenko SV, Boguslavskaya L (1978) Flavonoid compounds of *Dianthus superbus*. Khim Prir Soedin 6:802–803

Serra A, Macia A, Romero MP, Reguant J, Ortega N, Moliga MJ (2012) Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chem 130:383–393

Shafaghat A, Shafaghatlonbar M (2011) Antimicrobial activity and chemical constituents of the essential oils from flower, leaf and stem of *Gypsophila bicolar* from Iran. Nat Prod Commun 6:275–276

Sharma A, Arora D (2012) Phytochemical and pharmacological potential of genus *Stellaria*: A review. J Pharm Res 5:3591–3596

Shinjyo O, Junko M, Godo T, Kato Y (2009) Possibility for selective accumulation of polyphenolics in tissue cultures of *Senno* (*Lychnis senno* Siebold et Zucc.). Nat Prod Commun 4:377–380

Shukla S, Gupta S (2010) *Apigenin*: a promising molecule for cancer prevention. Pharm Res 27:962–978

Simeonova R, Kondeva-Burdina M, Vitcheva V, Krasteva I, Simeonov V, Manov V, Mitcheva M (2014) Protective effects of the apigenin-OC-diglucoside saponarin from *Gypsophila trichotoma* on carbone tetrachloride-induced hepatotoxicity *in vitro*/*in vivo* in rats. Phytomedicine 21:148–154

Singh M, Kaur M, Silakari O (2014) Flavones: an important scaffold for medicinal chemistry. Eur J Med Chem 84:206–239

Slavokhotova AA, Odintsova TI, Rogozhin EA, Musolyamov AK, Andreev YA, Grishin EV, Egorov TA (2011) Isolation, molecular cloning and antimicrobial activity of novel defensins from common chickweed (*Stellaria media* L., Vill.) ethanolic and aqueous extracts. Ind Crops Prod 97:448–454

Sachdeva AK, Kuhad A, Chopra K (2014) Naringin ameliorates memory deficits in experimental paradigm of Alzheimer’s disease by attenuating mitochondrial dysfunction. Pharmacol Biochem Behav 127:101–110

Said RB, Hamed AI, Masullo M, Al-Ayed AS, Moustafa MFM, Mahahel UA, Piacente S (2019) Flavone C-glycosides from *Vaccaria pyramidata*; structure elucidation by spectroscopy and theoretical calculations. Phytochem Lett 29:119–124

Sait S, Hamri-Zeghichi S, Boulekbache-Makhlof L, Madani K, Rigou P, Brighenti V, Pellati F (2015) HPLC-UV/DAD and ESI-MS_n analysis of flavonoids and antioxidant activity of an Algerian medicinal plant: *Paronychia argentea* Lam. J Pharm Biomed Anal 111:231–240

Salehi B, Fokou PVT, Sharifirad M, Zucca P, Pezzani R, Martins N, Sharifirad J (2019) The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals 12:1–18

Salt TA, Adler JH (1986) Dominance of Δ7-sterols in the family Caryophyllaceae. Lipids 21:754–758

Sang SM, Xia ZH, Mao SL, Lao A, Chen ZL (2000) Studies on the flavonol glycosides from the seeds of *Vaccaria segetalis*. China J Chin Mater Med 25:221–222

Sang S, Xia Z, Lao A, Cao L, Chen Z, Uzawa J, Fujimoto Y (2003b) Studies on the constituents of the seeds of *Vaccaria segetalis*. Heterocycles 59:811–821

Sang S, Lao A, Chen Z, Uzawa J, Fujimoto Y (2003) In: Ho CT (ed.) Oriental foods and herbs. Oxford University Press, Washington, Schmidt J, Bohme F, Adam G (1996) 24-Epibrassinolide from *Gypsophila perfoliata*. Z Naturforsch 51C:897–899

Springer
using flower extracts of Dianthus caryophyllus L. (carnation). Planta 187:103–108
Sun J, Yu JH, Song JL, Jiang CS, Yuan T, Zhang H (2019) Two new quinolone alkaloids from Dianthus superbus var. superbus. Tetrahedron Lett 60:161–163
Taskin T, Bittis L (2013) Antioxidant activity of Silene alba subsp. divaricata and Stellaria media subsp. media from Caryophyllaceae. Spatula DD 3:1–5
Thiem B, Kikowska M, Malinski MP, Kruszka D, Napierała M, Florek E (2016) Ecdysteroids: production in plant in vitro cultures. Phytochem Rev 16:603–622
Thilakaratna SH, Rupasinghe HPV (2013) Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 5:3367–3387
Tlihi H, Hanen N, Arfa AB, Neftati M, Boubakri A, Buonocore D, Doria E (2019) Biochemical profile and in vitro biological activities of extracts from seven folk medicinal plants growing wild in southern Tunisia. PLoS ONE 14:1–18
Tomczyk M (2008) Preliminary phytochemical investigation of Lychinis flos-cuculi herbs. J Nat Med 62:473–475
Tong Y, Luo JG, Wang R, Wang XB, Kong LY (2012) New cyclic peptides with osteoblastic proliferative activity from Dianthus superbus, Bioorg Med Chem Lett 22:1908–1911
Tong H, Sun BG, Chang Tao W, Sun XT, Xue Z (2014) Study on surfactant-assisted extraction process and preliminary structural analysis of total flavonoids from Arenaria kansuensis Maxim. Food Res Dev 35:14–18
Tu Y, Zhu S, Wang J, Burstein E, Jia D (2019) Natural compounds in the chemoprevention of alcoholic liver disease. Phytother Res 33:2192–2212
Ullah F, Ayaz A, Saqib S, Zaman W, Butt MA, Ullah A (2019) Silene conoidea L.: A review on its systematic, ethnobotany and phytochemical profile. Plant Sci Today 6:373–382
Um Devi P, Ganasoundari A, Vrinda B, Srinivasan KK, Unnikrishnan MK (2000) Radiation protection by the Ocimum flavonoids orientin and vicenin: mechanisms of action. Radiat Res 154:455–460
Van Wyk BE, Wink M (2017) Medicinal plants of the World. Briza Publications, Pretoria
Van Brederode J, van Genderen HH, van Genderen HH, Berendsen W (1982) Van Brederode J, van Genderen HH, van Genderen HH, Berendsen W (1982) Van Wyk BE, Wink M (2015) Biochemistry of Plant Secondary Metabolism, 2nd edn. Wiley-Blackwell, Chichester
Van Wyk BE, Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Medicines 2:251–286
Wolf SJ, Denford KE, Packer JG (1979) A study of the flavonoids of the Minuartia rossii complex. Can J Bot 57:2374–2377
Wu FE, Koike K, Nakaido T, Sakamoto Y, Ohmoto T, Ikeda K (1989) New β-Carboline alkaloids from a Chinese medicinal plant, Arenaria kansuensis. Structures of arenarines A, B, C, D. Chem Pharm Bull 37:1808–1809
Wu FE, Koike K, Nakaido T, Ishii K, Ohmoto T, Ikeda K (1990) Terpenoids and flavonoids from Arenaria kansuensis. Chem Pharm Bull 38:2281–2282
Yasukawa K, Yamanouchi S, Takido M (1981) Studies on the flavonoids of the Mimosa hamitana. Phytochemistry 68:275–297
Yayli N, Baltaci C, Genc H, Terzioglu S (2002) Phenolic and anthocyanidin contents of Ocimum basilicum L. var. lanceolata BGE. Yakugaku Zasshi 101:64–66
Yayli N, Seymen H, Baltaci C (2001) Flavon C-glycosides from Scleranthus uncinatus. Phytochemistry 58:607–610
Yayli N, Baltaci C, Genç H, Terzioglu S (2002) Phenolic and flavone C-glycosides from Scleranthus uncinatus. Pharmacol Biol 40:369–373
Yoshida H, Itoh Y, Ozeki Y, Iwashina T, Yamaguchi MA (2004) Variation in chalcononaringenin 2′-O-glucoside content in the petals of carnations (Dianthus caryophyllus) bearing yellow flowers. Sci Hortic 99:175–186
Yücel TB, Yayli N (2018) GC/MS analysis and antimicrobial activity of the volatile compounds from Dianthus carmellitarum Reut. ex Boiss and Dianthus calephalus Boiss. grown in Turkey. J Agric Food Ege Univ 55:89–94
Zanotti SD, de Abreu Ribeiro GK, Zeppone LC, Borges CT (2013) Orange juice and hesperidin promote differential innate immune response in macrophages ex vivo. Int J Vitam Nutr Res 83:162–167
Zaychenko SG, Zernov AS (2017) Structural features of the seed coat in Caucasian representatives of Minuartia (Caryophyllaceae). Wulfenia J 24:205–220
