Data Article

Genomic sequence data and single nucleotide polymorphism genotyping of *Bacillus anthracis* strains isolated from animal anthrax outbreaks in Northern Cape Province, South Africa

Kgaugelo Edward Lekota a,b, *, Ayesha Hassim a, Henriette van Heerden a

a University of Pretoria, Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, Onderstepoort, 0110, South Africa
b College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Florida, 1710, South Africa

Abstract

This report presents genomic data on sequence reads and draft genomes of *Bacillus anthracis* isolates from anthrax outbreaks in animals in an endemic region of South Africa as well as genotyping of the strains using canonical single nucleotide polymorphisms (canSNPs). It is derived from an article entitled “Phylogenomic structure of *B. anthracis* strains in the Northern Cape Province, South Africa revealed novel single nucleotide polymorphisms”. Whole genome sequencing (WGS) of twenty-three *B. anthracis* strains isolated during 1998 and 2009 anthrax outbreaks in the Northern Cape Province (NCP), as well as a strain from Botswana (6102_6B) and one from Namibia-South Africa transfrontier conservation area (Sendlingsdrift, 6461_SP2) were obtained using both the HiSeq 2500 and MiSeq Illumina platforms. Mismatch amplification mutation assay (melt-MAMA) qPCR were used to identify the canSNP genotypes within the global population of *B. anthracis*. DNA sequencing data is available at NCBI Sequence Read Archive and GenBank database under accession N0. PRJNA580142

* Corresponding author. University of Pretoria, Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, Onderstepoort, 0110, South Africa.

E-mail address: lekotke@unisa.ac.za (K.E. Lekota).

https://doi.org/10.1016/j.dib.2019.105040

2352-3409/© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
We present the genomic data and analysis of whole genome sequences of *B. anthracis* strains isolated from animals anthrax outbreaks in Northern Cape Province. Sequence reads (in fastq format) and assembled genomes (in fasta format) were deposited at NCBI SRA and GenBank database under project accession No. PRJNA580142 and PRJNA510736 respectively. The information on the sample collection with accession numbers, SNP genotyping and genome assemblies is represented in Tables 1–3 respectively. Isolates were also grouped using canonical SNPs (Table 4) typing scheme [2] used for phylogenetic branches (Fig. 1).
Strain name	Host	Collection date	Location	Accession number	Sequence coverage									
2949_1D	Ovine	10-May-2009	South Africa: Northern Cape Province	RXZW00000000	145									
2991_1B	Ovine	10-May-2009	South Africa: Northern Cape Province	RXZV00000000	199									
3008_1B	Bovine	10-May-2009	South Africa: Northern Cape Province	RXZU00000000	155									
3122_2B	Oryx gazella	10-May-2009	South Africa: Northern Cape Province	RXZT00000000	168									
3132_1B	Tragelaphus strepsiceros	10-May-2009	South Africa: Northern Cape Province	RXZS00000000	201									
3275_2D	Oryx gazella	10-May-2009	South Africa: Northern Cape Province	RXZR00000000	267									
3517_1C	Tragelaphus strepsiceros	10-May-2009	South Africa: Northern Cape Province	RXZQ00000000	166									
3517_2C	Tragelaphus strepsiceros	10-May-2009	South Africa: Northern Cape Province	RXZP00000000	137									
3631_4C	Tragelaphus strepsiceros	10-May-2009	South Africa: Northern Cape Province	RXZO00000000	187									
3631_3D	Tragelaphus strepsiceros	10-May-2009	South Africa: Northern Cape Province	RXZN00000000	189									
3631_8D	Tragelaphus strepsiceros	10-May-2009	South Africa: Northern Cape Province	RXZM00000000	300									
2110	Ovis aries	1998	South Africa: Northern Cape Province	RXZL00000000	38									
JB10	Equus burchelli quagga	2009	South Africa: Northern Cape Province	RXZK00000000	60									
JB25	Tragelaphus strepsiceros	2009	South Africa: Northern Cape Province	SDEP00000000	80									
3618_2D	Tragelaphus strepsiceros	10-May-2009	South Africa: Northern Cape Province	RXZJ00000000	178									
6461_SP2	Capra aegagrus	2009	South Africa: Northern Cape Province	SRP227303; SAMN13151840; SRR10357978	20									
6102_6B	Loxodonta	2009	Botswana	SRP227303; SAMN13151841; SRR10357979	21									
3631_7C	Soil	2009	South Africa: Northern Cape Province	SRP227303; SAMN13151842; SRR10357981	24									
5838	Alcelaphus busefalus	1998	South Africa: Northern Cape Province	SRP227303; SAMN13151843; SRR10357980	17									
2991_2B	Ovine	2009	South Africa: Northern Cape Province	SRP227303; SAMN13151844; SRR10357985	19									
3080_3B	Bovine	2009	South Africa: Northern Cape Province	SRP227303; SAMN13151845; SRR10357983	17									
3079_1C	Oryx gazella	2009	South Africa: Northern Cape Province	SRP227303; SAMN13151846; SRR10357984	25									
3080_5A	Bovine	2009	South Africa: Northern Cape Province	SRP227303; SAMN13151847; SRR10357982	26									
3080_1B	Bovine	2009	South Africa: Northern Cape Province	SRP227303; SAMN13151848; SRR10357977	12									
3090_1B	Unknown	2009	South Africa: Northern Cape Province	SRP227303; SAMN10614343; SRR10390628	26									
R. anthracis Strains	SNP-branch	A.Br.006	A.Br.007	A.Br.008	A.Br.005	A.Br.004	A.Br.003	A.Br.002	A.Br.001	A.Br.009	A.Br.011	A.Br.014	A.Br.013	
---------------------	------------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	
Ancestral Template SNP	C	A	A	A	T	T	T	C	A	G	T	A		
Derived Template SNP	A	A	A	G	C	C	T	C	T	A	G	C	G	
Ancestral ancestor	A.Br.001 (Ames)	A	A	A	G	C	C	T	A	G	T	A		
Sterne	A.Br.002 (Sterne)	A	A	A	A	G	C	C	T	T	A	G	T	
3080_5A	A.Br.002 (Sterne)	A	A	A	A	G	C	C	T	T	A	G	T	
3080_1B	A.Br.002 (Sterne)	A	A	A	A	G	C	C	T	T	A	G	T	
6102_6B	A.Br.005/006 (Ancient A)	A	A	A	A	G	C	C	T	T	A	G	T	
6461_SP2	A.Br.005/006 (Ancient A)	A	A	A	A	A	T	T	C	T	A	G	T	
2110	A.Br.003/004 (A.Br.101)	A	A	A	A	G	C	C	T	A	G	C	A	
5638	A.Br.003/004 (A.Br.101)	A	A	A	A	A	G	C	C	T	A	G	C	
3631_1C	A.Br.003/004 (A.Br.101)	A	A	A	A	G	C	C	T	A	G	C	A	
3080_5B	A.Br.003/004 (A.Br.101)	A	A	A	A	A	G	C	C	T	A	G	C	
3079_1C	A.Br.003/004 (A.Br.101)	A	A	A	A	A	G	C	C	T	A	G	C	
3090_1B	A.Br.003/004 (A.Br.101)	A	A	A	A	A	G	C	C	T	A	G	C	
JB10/NC14	A.Br.003/004 (A.Br.101)	A	A	A	A	G	C	C	T	A	G	C	A	
JB25/NC_29	A.Br.003/004 (A.Br.101)	A	A	A	A	A	G	C	C	T	A	G	C	A
2991_2B	A.Br.003/004 (A.Br.101)	A	A	A	A	A	G	C	C	T	A	G	C	A
3618_2D	A.Br.003/004 (A.Br.101)	A	A	A	A	A	G	C	C	T	A	G	C	A
3517_1C	A.Br.003/004 (A.Br.101)	A	A	A	A	A	G	C	C	T	A	G	C	A
3631_4C	A.Br.003/004 (A.Br.101)	A	A	A	A	A	G	C	C	T	A	G	C	A
3631_7C	A.Br.003/004 (A.Br.101)	A	A	A	A	A	G	C	C	T	A	G	C	A
3275_2D	A.Br.003/004 (A.Br.101)	A	A	A	A	A	G	C	C	T	A	G	C	A
3122_2B	A.Br.003/004 (A.Br.101)	A	A	A	A	G	C	C	T	A	G	C	A	
3008_1B	A.Br.003/004 (A.Br.101)	A	A	A	A	G	C	C	T	A	G	C	A	
2949_1D	A.Br.003/004 (A.Br.101)	A	A	A	A	G	C	C	T	A	G	C	A	
2991_1B	A.Br.003/004 (A.Br.101)	A	A	A	A	A	G	C	C	T	A	G	C	A
3517_2C	A.Br.003/004 (A.Br.101)	A	A	A	A	A	G	C	C	T	A	G	C	A
3132_1B	A.Br.003/004 (A.Br.101)	A	A	A	A	A	G	C	C	T	A	G	C	A
3631_3D	A.Br.003/004 (A.Br.101)	A	A	A	A	A	G	C	C	T	A	G	C	A
3631_8D	A.Br.003/004 (A.Br.101)	A	A	A	A	A	G	C	C	T	A	G	C	A
Aust94	A.Br.003/004 (Aust94)	A	A	A	A	A	G	C	C	T	A	G	C	A
Vollum	A.Br.007 (Vollum)	A	G	A	G	T	T	C	T	A	G	T	A	
2. Experimental design, materials, and methods

2.1. Diagnostic real-time PCR for chromosomal and plasmids markers of *B. anthracis*

The identification of *B. anthracis* isolates was performed as described by WHO [3]. The 20 μl PCR reaction consisted of 10 μl of FastStart Essential master mix (Roche Applied Science), 0.5 μM of each primer, 0.2 μM of probe for each chromosomal and plasmid target pairs with fluorescein on the one and LCRed640 on the other (Tib MolBiol GmbH, Germany) and 2.5 μl of template DNA. The PCR conditions on a LightCycler™ Nano (Roche Applied Science) were used as described in WHO [3]. The PCR conditions on a LightCycler™ Nano (Roche Applied Science) consisted of an initial cycle at 95 °C for 10 minutes, slope at 20 °C/second, followed by 40 cycles of 95 °C for 10 seconds; 57 °C for 20 seconds; 72 °C for 30 seconds, slope 20 °C/second with one single signal acquisition at the end of annealing cycle. Denaturation at 95 °C for 3 seconds with a slope 20 °C/second; 40 °C for 30 seconds, slope 20 °C/second; 80 °C for 3 seconds at a slope of 0.1 °C/second with continuous acquisition of the signal. Cooling to 40 °C for 30 seconds, slope 20 °C/second.

2.2. Genotyping of *B. anthracis* strains using Melt-MAMA assays

Melt-MAMA assays of the canSNP markers were used to amplify the DNA of the NCP *B. anthracis* strains. The panel included 12 canSNPs that were used for the grouping of the *B. anthracis* strains (n = 26) using existing Melt-MAMA primers (Table 4) derived and ancestral controls were created as described by Birdsell et al. [2]. The reaction included 2.5 μl DNA diluted in 1 x FastStart DNA Green Master (Roche Applied Science) with an ancestral forward and a derived forward SNP target primer (GC-clamp: no-GC-clamp) and a common reverse primer (Inqaba Biotec™) (Table 2) with a starting concentration of 0.2 μM depending on the ratio indicated which allowed for separation of melt peaks by at least 5 °C. Thermocycling parameters on the LightCycler™ Nano (Roche Applied Science) were 95 °C for 10 minutes, followed by 35 cycles at 95 °C for 15 seconds and 55 °C-60 °C (oligonucleotide dependent for 1 minute) for 35 cycles. End-point PCR amplicons were subjected to melt analysis using a dissociation protocol comprising of 95 °C for 15 seconds, followed by incremental temperature ramping (0.1 °C) from 60 °C to 95 °C. SYBR Green fluorescence intensity was measured at 530 nm at each ramp interval and plotted against temperature and observed as the separate melt peaks for each SNP. Controls included in every run were DNA from *B. anthracis* Ames, Vollum and Sterne 34F2 strains. Phylogenetic relationships between 26 *B. anthracis* strains were determined in the MEGA version 7 [4].

Table 3

Strain name	Sequence coverage	Number of contigs	N50	Minimum contig size (bp)	Maximum contig size (bp)	GC content	Genome Size	Total coding sequences (CDSs)	Total number of RNAs
2949_1D	145	441	28406	423	125 072	35.1	5 147 319	5 764	65
2991_1B	199	378	38 630	316	185 192	35.1	5 395 612	5 736	54
3008_1B	155	442	34 402	406	150 026	35.1	5 418 987	5 763	63
3122_2B	168	431	34 419	361	175 020	35.1	5 401 847	5 740	54
3132_1B	201	170	74 712	146	335 422	35.1	5 350 330	5 611	97
3275_2D	267	751	14 738	509	89 998	35.1	5 352 180	5 463	59
3517_1C	166	121	203 477	354	343 375	35.1	5 416 293	5 692	68
3517_2C	137	1194	9 613	352	55 932	35.1	5 265 628	5 869	37
3631_4C	187	385	35 768	418	177 852	35.1	5 402 081	5 718	68
3631_3D	189	513	22 221	415	108 007	35.1	4 654 382	5 766	52
3631_8D	300	882	14 279	401	98 835	35.1	5 252 949	5 717	68
2110	38	856	7 046	517	77 020	35.0	3 843 425	5 906	74
JB10	60	1856	6 403	153	50 634	35.1	5 180 338	5 861	34
JB25	80	136	9 967	519	646 630	35.1	5 422 668	5 695	88
3618_2D	176	72	154 041	2803	489 427	35.1	5 417 973	5 674	62
Assay name	'Reference genome position	Derived MAMA 5'-3'	Ancestral MAMA 5'-3'	Common reverse 5'-3'	Annealing Temperature (°C)				
------------	-----------------------------	-------------------	-----------------------	----------------------	---------------------------				
A.Br.001	182 106	cggggcggggcggggcgggc	GGAGCAAGTATGTATAGGTTTcGC	ACCTAAATCGATAACCGACTGC	55				
A.Br.002	947 760	cggggcggggcggggcgggc	GGAGCAAGTATGTATAGGTTTcGC	ACCTAAATCGATAACCGACTGC	55				
A.Br.003	1 493 280	cggggcggggcggggcgggc	AATTGAAATTTCCGTGCGAATATcGC	TGTATAAAAAACCTTTTTTCTACTCAA	55				
A.Br.004	3 600 786	cggggcggggcggggcgggc	CCGCTCATACCTTGGAGGAcGT	GAATTTGCTGAGCTATGGAAGGATTA	60				
A.Br.005	3 842 864	cggggcggggcggggcgggc	GAAAGATATATAAAAATGTTTTTcGC	GCTGCTTTTATTATGCAAATTC	55				
A.Br.006	162 509	cggggcggggcggggcgggc	TATGTTTTGTACATCCTGTGcTA	TACGCTTTTATTAACATCATACCGATTC	55				
A.Br.007	266439	cggggcggggcggggcgggc	AATTTAGGTTCTAGTGACCTGcTA	CGAGACGATATGAATATACCATTCtT	62.5				
A.Br.008	3947375	cggggcggggcggggcgggc	AATGGTTACAAATACGTTTTACAACAGcGA	CTACGCTTTACATGTATATGGAAGATATTC	55				
A.Br.009	2589947	cggggcggggcggggcgggc	GCCACTGTGTGTTGACCGCTcTA	TTTTATTGATATATACCTGCGGATATGC	60				
A.Br.011	1455402	cggggcggggcggggcgggc	CATAAAAAGAATCGTCAACAATAGAcAA	TCGGATATGATACGGATATCTTATAC	55				
A.Br.014	5078168	cggggcggggcggggcgggc	AATGTTAAATATGTTAGTGAGGTTcT	TTTTACTAAAAATAATTCTTTTTTGAAA	57				
A.Br.013	2465446	cggggcggggcggggcgggc	TTGGAAAAATCTTATGCAATCACATcT	TTATCCACCTTCTATATTTATTAATCTAT	57				

GC-clamp (cggggcggggcggggcgggc).
* Bacillus anthracis Ames ancestor reference genome (NC_007530.2).
using the maximum likelihood method based on the Tamura three-parameter model. The tree was generated with a bootstrap replication value of 500.

2.3. High-throughput sequencing and bioinformatics analysis

The DNA samples that were extracted from *B. anthracis* were subjected to library preparation by using the Nextera XT DNA Sample Prep kit (Illumina-compatible, Epicentre Biotechnology). Different sequence reads of *B. anthracis* genomes were generated on HiSeq 2500 and MiSeq instruments platforms. Clusters were generated on the flow cell using HiSeq Paired-End Cluster Generation kit (Illumina, USA) for the HiSeq 2500 platform. Sequencing of paired end libraries were performed on the Illumina MiSeq and HiSeq 2500 sequencer using the 200-cycle SBS (sequencing by synthesis) sequencing v3 kit (Illumina, USA) and HiSeq Sequencing Kit (200 cycles) (Illumina, USA) respectively. Quality of the genome sequenced reads were assessed using FastQC software 0.10.1 [5]. Trimomatic version 0.33 [6] was used to remove the sequenced adapter, and ambiguous nucleotide reads. De novo assemblies of the paired end reads were performed using CLC Genomics Workbench version 11.1 (CLC, Denmark). The
Assembled contigs were ordered by Mauve tool version 2.3.1 [7] using *B. anthracis* Ames ancestor (GenBank accession numbers NC_007530.2, NC_007322.2 and NC_007323.3) in order to assess the accuracy and efficiency of the contigs. All trimmed sequence reads were also mapped to the reference using Burrows-Wheeler Aligner (BWA) version 0.7.12 [8] to determine *B. anthracis* replicons i.e. chromosome and the two plasmids. Assembled genomes were annotated using the NCBI Prokaryotic Genome Annotation pipeline. Sequenced reads were deposited to NCBI under Sequence Reads Archive (SRA), and assembled genomes to GenBank.

Acknowledgments

The authors would like to thank the farmers of the Northern Cape for their wholehearted participation in the study of anthrax in the region. We also wish to extend our appreciation to the Northern Cape Provincial government and State Veterinary Services for allowing us to conduct this study and improve our understanding of this zoonotic pathogen. We would like to thank the Institute of Tropical Medicine (ITM), Belgium, National Research Foundation and AgriSETA (Agriculture Sector Education Training Authority) in South Africa for funding.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.105040.

References

[1] K.E. Lekota, O.K.I. Bezuidt, J. Mafofo, J. Rees, F.C. Muchayeyi, E. Madoroba, H. van Heerden, Whole genome sequencing and identification of *Bacillus endophyticus* and *B. anthracis* isolated from anthrax outbreaks in South Africa, BMC Microbiol. 18 (2018) 67.

[2] D.N. Birdsell, T. Pearson, E.P. Price, H.M. Hornstra, R.D. Nera, N. Stone, J. Gruendike, E.L. Kaufman, A.H. Pettus, A.N. Hurbon, J. L. Buchhagen, N.J. Harms, G. Chanturia, M. Gyuranecz, D.M. Wagner, P.S. Keim, Melt analysis of mismatch amplification mutation assays (Melt-MAMA): a functional study of a cost-effective SNP genotyping assay in bacterial models, PLoS One 7 (2012), e32866.

[3] World Health Organization (WHO), Anthrax in Humans and Animals, 4th edition, World Health Organization, 2008.

[4] S. Kumar, G. Stecher, K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol. 33 (2016) 1870–1874.

[5] S. Andrews, FastQC: a Quality Control Tool for High Throughput Sequence Data, 2010.

[6] A.M. Bolger, M. Lohse, B. Usadel, Trimmmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics 30 (2014) 2114–2120.

[7] A.C. Darling, B. Mau, F.R. Blattner, N.T. Perna, Mauve: multiple alignment of conserved genomic sequence with rearrangements, Genome Res. 14 (2004) 1394–1403.

[8] H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics 25 (2009) 1754–1760.