Full Length Research Paper

Assessment of fuel resource diversity and utilization pattern in Nargu Wildlife Sanctuary of Himachal Pradesh, NW Himalaya

Pankaj Sharma1* and S. S. Samant2

1National Bureau of Plant Genetic Resources, Regional Station, Phagli, Shimla (HP) - 171 004, India.
2G. B. Pant Institute of Himalayan Environment and Development, Himachal Unit, Mohal-Kullu-175 126, H.P., India.

Accepted 11 November, 2013

Dearth in the studies related to the fuelwood collection trends, conservation and management has prompted the present work. Nargu Wildlife Sanctuary of Himachal Pradesh was assessed for the fuel resources because the region was not evaluated earlier and dependency of the stakeholders on the forest resources was soaring. In the twenty three villages studied, forty five species (33 trees and 12 shrubs) belonging to 23 families of fuel resource were recorded. In the three different altitudinal ranges of the area probability of use (PU) and resource use pattern (RUI) was studied and it was highest for Quercus leucotrichophora A. Camus (1879.30 kg household-1 year-1), followed by Rhododendron arboreum Sm. (433.57 kg household-1 year-1), Cedrus deodara (Roxb. ex D. Don) G. Don (425.22 kg household-1 year-1), Myrica esculenta Buch.-Ham. ex Don (385.05 kg household-1 year-1) and Persea duthiei (King. ex Hk.f.) Kostern. (370.96 kg household-1 year-1). Among the surveyed villages, maximum total collection (7992 kg/hh/year) was done in Mandra followed by Seri (7524 kg/hh/year) and Drun (7476 kg/hh/year) villages. Of the total, 33 species were native to the Himalayan Region, 06 species native to the Himalayan region and neighboring countries and remaining species were non-natives. Major thrust of the study is to comprehensively manage the species highly-preferred for fuel, diversification of choice of species from natives to non-natives, and their large scale propagation.

Key words: Conservation, endemic, fuelwood, Indian Himalayan Region (IHR), native.

INTRODUCTION

Fuel resources in India continue to be the primary sources of domestic energy in the rural areas. In rural India, fuel wood is the major source of energy for the domestic use. Fuel wood demand in India ranged from 96 to 157 million tons annually including a rural demand of 80 to 128 million tones. This means annual consumption of 148 to 242 million tons per capita (Bhattacharaya and Nanda, 1992). In Himachal Pradesh, a Himalayan state, more than ninety percent of the population resides in rural areas. Here, alternative source of fuel are very limited in the villages so their dependence on the forests is inevitable. Unfortunately these resources are continuously being degraded (Shah, 1982; Khoshoo, 1987) with an alarming rate. However, extraction activities of the plant resources are limited in the protected areas but as far as fuel wood is concerned stakeholders have the rights to avail these resources to some limited extent. Continued unrecorded exploitation has been a threat to the sustenance of this resource even in the protected areas and study for such trends are urgently required. Few earlier studies have already recorded the fuel extraction trends in different parts of the Himalaya (Samant et al., 2000; Dhar et al.,

*Corresponding author. E-mail: pankajsharmasnr@gmail.com. Tel: 9459517152.
1998) and suggested the suitable conservation strategies. Nargu Wildlife Sanctuary (hereafter, NWLS) of Himachal Pradesh has large human population and is one of the biggest protected areas of the state, so dependence of the stakeholders upon forest resources is massive. Fuel resources in the region have not yet been assessed extensively. So the present work was done in the area with the following objectives. 1) diversity and extraction trend of the fuel resource, 2) annual quantity collected in the area, 3) species preference, 4) probability of use and resource use index, 5) nativity of the species, 6) dominant elements in the forest communities where fuel resource is present, 7) utilization pattern of the fuel resource and 8) to suggest a management strategy for conservation.

MATERIALS AND METHODS

Study area
The NWLS (31°04′N to 32°05′N Latitudes and 76°50′ to 77°04′ E Longitudes) is located in Mandi district of Himachal Pradesh (Figure 1). The Sanctuary was notified in 1972. It covers an area of over 278 Km² with an altitudinal range, 970 to 4000 m amsl. Temperature ranges between -10 to 35°C and mean annual rainfall is 1400 mm. It represents sub-tropical, temperate, sub-alpine and alpine vegetation. The Sanctuary is rich in biodiversity including a large number of mammals and birds. The livelihoods of the local villagers and graziers of 190 villages with 30,000 human population and 50,000 cattle population are dependent on the sanctuary. The inhabitants residing in the periphery are dependent on the Sanctuary for minor forest products (including medicinal and wild edible plants), fuel, fodder, timber, livestock grazing and various other purposes.

Trends of fuel collection
The sanctuary area is having diverse habitats and mostly the inhabitants of the sanctuary are dependent on forest produce for their sustenance. We surveyed 23 villages during 2008 to 2012 for extraction trend of fuel resource in three different altitudinal ranges of the sanctuary (that is, seven villages <1500 m, six villages 1500 to 1800 m and 10 villages >1800 m). In survey of the sanctuary, we found that the natives of the area start collecting fuel wood from end of November to end of February months. So we assume that the inhabitants collect fuel for about 90 days and considered these as total collection days (TCD). The dry fuel wood is stored in lots and used subsequently.

Data analysis
The information was gathered through semi structured questionnaires from the different surveyed villages and pooled together. For each species, mean collection collected (Kg sample⁻¹ day⁻¹; kg household⁻¹ year⁻¹), probability of use (PU) and resource use index (RUI) were calculated as follows:

Mean collection (Kg) of the species, \(A = \frac{T}{N} \)
Where \(T \) = Total collection in all samples, and \(N= \) number of samples;

\[
\text{Mean collection sample}^{-1} \text{day}^{-1}, \text{Cs}= \frac{\sum A \text{TPR}_i}{n=6}
\]

\[
\text{Mean collection household}^{-1} \text{day}^{-1}, \text{Cd} = 2 \text{Cs}
\]

Where \(A = \) mean collection of the species, and \(\text{TPR}_i = \) Total population responsible for collection in the \(i^{th} \) village;

Where 90 was the total collection days per year;

\[
\text{Probability of use, PU} = \frac{\sum F_P}{\sum P}
\]

Where \(F_i = \) frequency of collection of a species in the \(i^{th} \) village; \(P_i = \) population of the \(i^{th} \) village

\[
\text{Resource Use Index, RUI} = CyPu
\]

Where \(Cy = \) mean collection household\(^{-1} \text{year}^{-1}\)

RESULTS

Diversity and extraction trends of fuel resources

Among the 23 surveyed villages, total 45 species (33 trees and 12 shrubs) belonging to 23 families were used as fuel by the inhabitants. Rosaceae and Pinaceae were the dominant families (5 spp. each); followed by Moraceae (4 spp.); Fagaceae, Lauraceae and Meliaceae (3 spp. each). *Quercus leucotrichophora, Rhododendron arboreum, Neolitsea pallens, Pinus wallichiana, Berberis lyicum, Sorbaria tomentosa, Alnus nitida and Desmodium elegans* were contributed most to collections as fuel (Table 1). Among the surveyed villages, maximum total collection (7992 kg/hh/year) was done in Mandra followed by Seri (7524 kg/hh/year) and Drun (7476 kg/hh/year) villages (Table 2 and Figure 2).

Mean collection was highest for *Q. leucotrichophora* (1879.30 kg household\(^{-1} \text{year}^{-1}\)), followed by *R. arboreum* (433.57 kg household\(^{-1} \text{year}^{-1}\)), *Cedrus deodara* (425.22 kg household\(^{-1} \text{year}^{-1}\)), *M. esculenta* (385.05 kg household\(^{-1} \text{year}^{-1}\)) and *Persea duthiei* (370.96 kg household\(^{-1} \text{year}^{-1}\)). The remaining species showed relatively low values (Table 1). Similar was the use of preference for the species in the entire area of the sanctuary. Species diversity, preference of use, their distribution in different communities, dominant elements of communities, altitude range, and utilization pattern of fuel resource for the entire area is shown in Table 3.

Village wise altitudinal mean fuel collection was more in villages which were below 1500 m and above 1800 m that is, 6672 and 7065 kg household\(^{-1} \text{year}^{-1}\) respectively. It was lesser in 1500 to 1800 m zone (6254 Kg household\(^{-1} \text{year}^{-1}\)). Same trend was shown for mean number of species collected in these altitudinal zones. It was 14, 12.7 and 10 in >1800 m, <1500 m and 1500 to 1800 m respectively (Figure 3).

Probability of use (PU) and resource use indices (RUI)

PU was highest for *Q. leucotrichophora* (0.95), followed by *R. arboreum* (0.55), *P. duthiei* (0.14), *C. deodara* and *M. esculenta* (0.12 each) indicating high pressure on these species. The remaining species showed <0.1 PU and reflected their low preference or low availability in the wild. RUI ranged from 0.31 to 945.62. It was highest for *Q. leucotrichophora* (945.62), followed by *R. arboreum* (138.85), *C. deodara* (102.55) and *P. duthiei* (96.86) suggesting their great acceptability as fuel and high anthropogenic pressure on these species. The remaining species showed <96 RUI showing less use value (Table 1 and Figure 4).

Status and distribution of native and endemic species preferred

Of the total recorded (45 species), 33 species were native to the Himalayan Region, 06 species native to the Himalayan region and neighboring countries, and remaining species were non-natives. None of the species was found to be endemic to the Indian Himalayan Region (IHR) but there were 15 near endemic species few of these were *Abies pindrow, Cedrus deodara, Rhododendron campanulatum, Rhus wallichii, Indigofera heterantha and Aesculus indica* etc. (Table 1).

DISCUSSION

In the present study fuelwood resources and their consumption patterns have been studied in 23 villages of NWLS of Himachal Pradesh. The villages were located in three different altitudinal zones of the Sanctuary namely, <1500 m; 1500 to 1800 m and >1800 m. Number of species and mean collection (Kg household\(^{-1} \text{year}^{-1}\)) of the fuel wood species was more in the lower (<1500 m) and higher (>1800 m) altitude zones. This may be due to the abundance of forests and easily accessible resources in the vicinities of these zones.

The Sanctuary area is mostly dominated by evergreen broad leaved (*Quercus floribunda, Q. leucotrichophora, Quercus semecarpifolia* etc.) and evergreen coniferous (*Abies pindrow, C. deodara, P. wallichiana* etc.) communities. High probability of use (PU) and resource use index (RUI) of *Q. leucotrichophora, R. arboreum, P. duthiei, N. pallens, D. elegans* and *M. esculenta* etc. indicated...
Table 1. Mean collection, probability of use (PU) and resource use index (RUI) of fuel resource in the NWLS.

Taxa	Family	Local name	Nativity	Mean collection (Kg/hh/year)	PU	RUI
Abies pindrow Royle*	Pinaceae	Tosh	Reg Himal	26.09	0.01	1.90
Aesculus indica	Hippocastanaceae	Khanor	Reg Himal	46.43	0.02	7.12
Albizia lebbek Benth.	Mimosaceae	Sirish	As Trop et Subtrop	109.57	0.03	29.43
Alnus nitida (Spach) Endl.*	Betulaceae	Kolsh	Reg Himal	231.65	0.09	43.41
Thamnocalamus spathiflorus (Trin.) Munro*	Poaceae	Ringar	Reg Himal	22.43	0.01	1.54
Berberis lyceum Royle*	Berberidaceae	Kharik	Europe, Aust, Ind Or	64.70	0.03	10.80
Buddleja crispa Benth.	Loganiaceae	Sandhiyara	Reg Himal	36	0.05	5.4
Cedrus deodara (Roxb. ex D. Don) G. Don*	Pinaceae	Dyar	Reg Himal	425.22	0.12	102.55
Celtis australis L.	Ulmaceae	Kharik	Reg Himal	64.17	0.02	5.74
Cinnamomum tamala Nees & Ebern*	Lauraceae	Tejpatta	Reg Himal	13.04	0.00	1.30
Debregeasia salicifolia (Don) Rendl.*	Urticaceae	Saryahu	As et Afr Trop	284.35	0.07	51.73
Desmodium elegans DC.	Fabaceae	Safedkathi	China	297.39	0.08	51.76
Ficus palmate Forsk.	Moraceae	Fegra	Afr Trop, Arab, Ind Or	48.52	0.02	3.91
Ficus roxburghii Wall.	Moraceae	Triambal	Reg Himal, Burma	21.39	0.01	1.90
Ficus nemoralis Wall. ex Mir*	Moraceae	Dudhla	Reg Himal	18.26	0.01	1.64
Grewia oppositifolia Buch. ex D. Don	Tiliaceae	Beul	Reg Himal	116.35	0.04	25.49
Indigofera heterantha Wall. ex Brand.	Fabaceae	Kali Kathi	Reg Hial	187.83	0.07	28.88
Jugulans regia L.*	Juglandaceae	Khor	As Occ, Reg Himal	6.78	0.00	0.34
Lyonia ovalifolia (Wall.) Drude	Ericaceae	Bheral	China	184.17	0.07	20.69
Melia azadirach L.	Meliaceae	Drek	Reg Himal	37.57	0.01	3.76
Morus serrata Roxb.	Moraceae	Chimmu	Reg Himal	31.83	0.01	5.03
Myrica esculenta Buch. - Ham. ex Don	Myricaceae	Kafal	As Trop et Subtrop	385.05	0.12	72.42
Neolitsea pallens (D. Don) Momi. & Hara ex Hara	Lauraceae	Chhinchiri	Reg Himal	163.30	0.06	30.29
Persea duthiei (King. ex Hk.f.) Kostern.*	Lauraceae	Dodru	Reg Himal	370.96	0.14	96.86
Picea smithiana (Wall.) Boiss.*	Pinaceae	Rai	Reg Himal	130.43	0.04	15.47
Pinus roxburghii Sarg.	Pinaceae	Chil	Reg Himal	221.74	0.06	50.37
Pinus wallichiana A.B. Jack.	Pinaceae	Kail	Reg Himal	110.09	0.03	10.64
Pistacia integerrima Stew.	Anacardiaceae	Kakare	Aegypt Persia, Reg Himal	9.39	0.00	0.47
Prunus armeniaca L.	Rosaceae	Bhekhal	Reg Himal	25.04	0.02	5.74
Pyrus pashia Buch. - Ham. ex D. Don*	Rosaceae	Paja	Reg Himal	103.30	0.04	28.80
Quercus floribunda Lindl.*	Fagaceae	Moharu	Reg Himal	107.7	0.05	9.7
Table 1 Contd.

Species	Family	Location	MC	PU	RUI	Aegypt	Am	As	Austr	Bor	et	Ind	Japon	LN	MC	Occ	Or	RegHimal	Subtrop	Trop	*
Quercus leucotrichophora A.Camus	Fagaceae	Ban	Reg Himal	1879.30	0.95	945.62															
Quercus semecarpifolia Sm.	Fagaceae	Kharshu	Reg Himal	39.6	0.01	2															
Rhamnus purpureus Edgew	Rhamnaceae	Kubbal	Reg Himal	27.6	0.03	2.7															
Rhododendron arboreum Sm.	Ericaceae	Burah	Ind Or Reg Himal Zeylan	433.57	0.55	138.85															
Rhus javanica L.	Anacardiaceae	Titri	Reg Himal	79.30	0.08	12.05															
Salix semecarpifolia	Salicaceae	Bashal	Reg Himal	30.6	0.03	1.8															
Sorbaria tomentosa (Lindl.) Rehder	Rosaceae	Kushti	Reg Himal As Bor	84.00	0.02	11.92															
Rhamnus purpureus	Rhamnaceae	Kubbal	Reg Himal	27.6	0.03	2.7															
Rhus javanica L.	Anacardiaceae	Titri	Reg Himal	79.30	0.08	12.05															
Salix semecarpifolia	Salicaceae	Bashal	Reg Himal	30.6	0.03	1.8															
Sorbaria tomentosa	Rosaceae	Kushti	Reg Himal As Bor	84.00	0.02	11.92															

Kg/hh/yr = Kilogram/household/year; PU = Probability of use; RUI = Resource use index; Aegypt = Egypt; Am = America; As = Asia; Austr. = Australia; Bor = Borealis; et = And; Ind = India; Japon = Japan; LN = Local name; MC = Mean collection; Occ = Occidentalis; Or = Oriental; RegHimal = Himalayan region; Subtrop=Sub Tropical; Trop = Tropical;* = Near endemic.

Table 2. Village wise fuel collection in NWLS.

Village	Altitude (m)	Number of House holds	Population responsible for collection	Number of species collected	Total collection (Kg/h/year)
Rihagari	1140	33	66	8	6684
Malwara	1313	30	60	14	6804
Balh	1335	32	64	13	6972
Tikker	1370	45	90	18	7296
Kutahar	1394	37	74	9	5484
Arang	1437	34	68	14	6432
Ropa	1452	59	118	13	7032
Dharmed	1628	48	96	6	6120
Drun	1658	68	136	16	7476
Hurang	1693	66	132	7	6120
Kashala	1708	26	52	11	5124
Badaun	1728	30	60	12	7092
Swar	1738	28	56	6	5592
Mandra	1806	34	68	17	7992
Seri	1830	51	102	15	7524
Bulang	1837	64	128	14	6804
Dhar	1845	28	56	10	6348
Sudhar	1890	20	40	14	7092
Kampan	1894	31	62	14	6468
Jagtang	1900	30	60	12	7308
Graman	1909	68	136	15	7152
ShilhBadhani	2004	28	56	13	7188
Kungar	2066	29	58	14	6780
Figure 2. Fuel wood collection in NWLS; a) weighing up fuel wood, and b) Stakeholder carrying fuel wood resource.

Table 3. Preferences (1 indicates most preferred), altitudinal range and uses of the fuel species in NWLS.

Taxa	Preference	Altitudinal range	Communities	Utilization pattern	Dominant species
Quercus leucotrichophora	1	1000 - 2600	Q. leucotrichophora, Q. leucotrichophora-C. deodara mixed, Q. leucotrichophora-M. esculenta mixed, Q. leucotrichophora-N. pallens mixed	M, Fd, At	R. arboreum, Q. leucotrichophora, M. esculenta, Sarcococa saligna
Rhododendron arboreum	2	1000 - 2300	R. arboreum, R. arboreum-A. nitida mixed, R. arboreum-L. ovalifolia mixed, R. arboreum-Q. leucotrichophora mixed	M, Ed	R. arboreum, Q. leucotrichophora, Indigofera heterantha
Cedrus deodara	3	1600 - 2500	C. deodara, C. deodara-P. wallichiana mixed, C. deodara-Q. leucotrichophora mixed	M, Ti, At, Misc	C. deodara, S. saligna, Arundinaria spathiflora
Persea duthiei	4	1000 - 2200	R. arboreum-A. nitida mixed, Q. leucotrichophora-M. esculenta mixed, A. indica-Persea duthiei mixed	Fd, Misc	R. arboreum, A. nitida, Q. leucotrichophora, S. saligna
Myrica esculenta	5	1200 - 2000	M. esculenta, M. esculenta-A. nitida mixed	M, Ed	M. esculenta, A. nitida, A.spathiflora
Species	No.	Height Range	Dominant Herbaceous Layer	Pollen Source	
-------------------------	-----	--------------	--	------------------------	
Desmodium elegans	6	1500 - 2800	C. deodara-P. wallichiana mixed, R. arboreum-L. ovalifolia mixed	Fd	
Debregeasia salicifolia	7	1000 - 1700	R. arboreum-A. nitida mixed, Q. leucotrichophora	M, Fd	
Pinus roxburghii	8	1000 - 1600	P. roxburghii, Q. leucotrichophora-M. esculenta mixed, Q. leucotrichophora-N. pallens mixed	Ti, At, Misc	
Alnus nitida	9	1300 - 2600	A. nitida, A. nitida-Q. leucotrichophora mixed, M. esculenta-A. nitida mixed, Q. leucotrichophora	M, Misc	
Pyrus pashia	10	1000 - 2600	Q. leucotrichophora-M. esculenta mixed, R. arboreum-Alnus nitida mixed	Ed, Misc	
Neolitsea pallens	11	1500 - 2700	Q. leucotrichophora-N. pallens mixed, A. indica-N. pallens mixed	Fd, Misc	
Albizzia lebbek	12	1000 - 1500	R. arboreum-A. nitida mixed, Q. leucotrichophora	Misc	
Indigofera heterantha	13	1500 - 3500	Q. leucotrichophora, Q. leucotrichophora-C. deodara mixed, Q. leucotrichophora-M. esculenta mixed	Fd	
Prunus cerasoides	14	1200 - 1600	R. arboreum-A. nitida mixed, Q. leucotrichophora, A. nitida-Q. leucotrichophora mixed	Rel, Misc	
Grewia oppositifolia	15	1000 - 1400	Q. leucotrichophora-M. esculenta mixed, Q. leucotrichophora	Fi, Fd	
Lyonia ovalifolia	16	1200 - 2700	M. esculenta-A. nitida mixed, R. arboreum-L. ovalifolia mixed	M	
Picea smithiana	17	2200 - 3300	P. smithiana, P. smithiana-R. arboreum mixed	Ti, At	
Rhus javanica	18	1200 - 2500	Q. leucotrichophora, Q. leucotrichophora-C. deodara mixed	M, Fd, Ed	
Species	No.	Size (m)	Notes	Community Notes	
----------------------	-----	----------	--	--	
Sorbaria tomentosa	19	1700-2800	Q. leucotrichophora-N. pallens mixed, A. indica-N. pallens mixed	Misc	
Berberis lycium	20	1000-2700	Q. leucotrichophora-M. esculenta mixed, R. arboreum-Alnus nitida mixed	M, At Q. leucotrichophora, M. esculenta, R. arboreum	
Pinus wallichiana	21	1600-2500	P. wallichiana, A. nitida-Q. leucotrichophora mixed,	Ti, At Misc P. wallichiana, A. nitida, Berberis lycceum, S. saligna	
Quercus floribunda	22	2100-2700	C. deodara-Q. leucotrichophora mixed, P. smithiana-R. arboreum mixed	Fl, Fd C. deodara, Q. leucotrichophora, A. spathiflora	
Symplocos chinensis	23	1200-2600	M. esculenta-A. nitida mixed, R. arboreum-L. ovalifolia mixed	M, Fd At M. esculenta, A. nitida	
Aesculus indica	24	1500-2800	A. indica, A. indica-N. pallens mixed, A. indica-P. duthiei mixed, R. arboreum-A. nitida mixed, Q. leucotrichophora	M, Fd Ed A. indica, N. pallens, A. indica, P. duthiei	
Celtis australis	25	1500-2500	Q. leucotrichophora-M. esculenta mixed, Q. leucotrichophora	Fd M. esculenta, Q. leucotrichophora	
Prinsepia utilis	26	1000-2900	M. esculenta-A. nitida mixed, R. arboreum-L. ovalifolia mixed	Rel, Misc M. esculenta, R. arboreum	
Buddleja crispa	27	1200-3200	C. deodara-P. wallichiana	Misc P. wallichiana, Q. leucotrichophora, A. spathiflora	
Ulmus villosa	28	1600-3500	C. deodara-P. wallichiana, A. pindrow	Fd, Rel, At C. deodara-P. wallichiana, A. pindrow	
Morus serrata	29	1500-2300	Q. leucotrichophora-M. esculenta mixed, Q. leucotrichophora	Fd, Ed Q. leucotrichophora-M. esculenta, Q. leucotrichophora	
Ficus palmata	30	1000-1400	M. esculenta-A. nitida mixed, R. arboreum-L. ovalifolia mixed	Ed, M M. esculenta, A. nitida, J. regia	
Melia azadiarach	31	1000-1500	M. esculenta-A. nitida mixed, J. regia, R. arboreum-L. ovalifolia mixed	M, Misc M. esculenta, A. nitida, J. regia, R. arboreum, L. ovalifolia	
Rhamnus purpureus	32	1300-3000	Q. leucotrichophora-M. esculenta, C. deodara-P. wallichiana, A. pindrow	Fd, Misc Q. leucotrichophora, C. deodara, P. wallichiana	

Table 3. Contd.
Table 3. Contd.

Species	Usage	Scientific Name	At, Ed, Misc
Viburnum mullah	33	1800 - 3000	*Q. leucotrichophora-M. esculenta, C. deodara-P. wallichiana*
Prunus armeniaca	34	1000 - 2200	*M. esculenta-A. nitida mixed, R. arboreum-L. ovalifolia mixed*
Quercus semecarpifolia	35	2400 - 3600	*P. wallichiana, A. pindrow*
Abies pindrow	36	2600 - 3600	*Q. leucotrichophora-M. esculenta mixed, Q. leucotrichophora*
Ficus roxburghii	37	900 - 1400	*Q. leucotrichophora-M. esculenta mixed, Q. leucotrichophora*
Salix wallichiana	38	1500 - 3600	*Q. leucotrichophora, P. wallichiana*
Ficus nemoralis	39	1000 - 2000	*R. arboreum-A. nitida mixed, Q. leucotrichophora*
Thamnocalamus spathiflorus	40	1000 - 3300	*Q. leucotrichophora, Q. leucotrichophora-C. deodara mixed*
Cinnamomum tamala	41	1000 - 1500	*Q. leucotrichophora, Q. leucotrichophora-M. esculenta mixed*
Pistacia integerrima	42	1000 - 2200	*Q. leucotrichophora, Q. leucotrichophora-C. deodara mixed*
Juglans regia	43	1700 - 3300	*J. regia, M. esculenta-A. nitida mixed*
Toona ciliata	44	1000 - 1500	*Q. leucotrichophora, R. arboreum-Q. leucotrichophora mixed*
Toona serrata	45	1700 - 2400	*Q. leucotrichophora, R. arboreum-Q. leucotrichophora mixed*

At = Agricultural Tools; Ed = Edible; Fd = Fodder; Fl = Fiber; Fl = Fuel; M = Medicinal; Misc = Miscellaneous; Rel = Religious; Ti = Timber.

Frequent use, high preference and high anthropogenic pressure on these species. Degree of endemism for an area is important for prioritization of species for conservation (Myers et al., 2000). Endemic or native species may be competitively inferior to other widespread species (Kessler, 2001). Presence of 33 natives and 15 near endemic add to the significance of the area and also in compliance with the earlier works of the region.

Decrease in abundance of species used as sources of fuel suggests that more detailed information is urgently required on species-level trends and their conservation. A very few studies on the similar patterns and outcomes have been carried out so far in India (Samant et al., 2000; 2006; Singh and Sundriyal, 2009; Rawat et al., 2009; Bhattarai et al., 2009). Studies on development of conventional and in-vitro protocols for the mass scale propagation of these species and their establishment and maintenance in the in-situ and
Figure 3. Village wise altitudinal mean fuel collection and number of species.

Figure 4. Total collections PU and RUI of the Preferred Fuel Species. QL = *Quercus leucotrichophora*, RA = *Rhododendron arboreum*, CD = *Cedrus deodara*, PD = *Persea duthiei*, ME = *Myrica esculenta*, DE = *Desmodium elegans*, DS = *Debregeasia salicifolia*, PR = *Pinus roxburghii*, AN = *Alnus nitida*, PP = *Pyrus pashia*.
ex-situ conditions are essentially required. Major thrust of the study is to comprehensively manage the species highly-preferred for fuel, diversification of choice of species from natives to non-natives, and their large scale propagation. Addition to this plantation of preferred species in the marginal and degraded lands through stakeholder’s participation should promote conservation and management of fuel resources in the sanctuary.

Conservation perspectives

For the conservation and management of fuel resource of NWLS the following measures seem appropriate;

1. Annual extensive surveys to prepare a comprehensive database of fuel resources of NWLS for statistics on annual quantum of collection, species preference, probability of use, resource use index, multiple utility of fuel species.
2. Indigenous knowledge of fuel species of NWLS and their uses to improve planning and implementation of sustainable forest management in the sanctuary.
3. Promote highly preferred fuel species via means of ex-situ and in-situ conservation.
4. Awareness through training and extension programmes by means of various government and non-government agencies.

REFERENCES

Bhattacharaya B, Nanda SK (1992). Building Fuelwood demand-supply scenario. J. Rural Develop. 11(6):773-787.

Bhattarai S, Chaudhary RP, Taylor RSL (2009). The use of plants for fencing and fuelwood in Mustang District, Trans-Himalayas, Nepal. Scientific World 7 (7):59-63.

Dhar U, Rawal RS, Samant SS (1998). Wild plant resources and inhabitants in Askot Wildlife Sanctuary of Kumaun in Indian Himalaya: conservation issues. In *Biodiversity Conservation in Managed and Protected Areas*, ed. P.C. Kotwal and S. Banerjee, Bikaner: Agro Botanica, India. pp.128-142.

Kessler M (2001). Maximum plant community endemism at intermediate intensities of anthropogenic disturbance in Bolivian montane forest. Cons. Biol. 15:634-641.

Khoshoo TN (1987). Strategies for meeting the fire woods needs in the hills. In: Himalayan Energy Systems. Dhar TN and Sharma PN (ed.), Nainital, Gyanodya prakashan. pp.11-19.

Myers N, Mittermeir RA, Mittermeir CG, Fonseca GAB, Kent J (2000). Biodiversity hotspots for conservation priorities. Nature 403:853-858.

Rawat YS, Vishvakarma SCR, Todaria NP (2009). Fuel wood consumption pattern of tribal communities in cold desert of the Lahaul valley, North-Western Himalaya, India. Biomass Bioenergy. 33:1547–1557.

Samant SS, Dhar U, Rawal RS (2000). Assessment of Fuel resource diversity and Utilization Patterns in Askot Wildlife Sanctuary in Kumaon Himalaya, India, for conservation and management. Environ. Cons. 27(1):5-13.

Samant SS, Rawal RS, Dhar U (2006). Diversity, extraction, and status of fodder species in Askot Wildlife Sanctuary, West Himalaya, India. Int. J. Biod. Sci. Manag. 2:29-42.

Shah SL (1982). Ecological degradation and future of Agriculture in the Himalaya. Ind J. Agr. Econ. 37(1):1-22.

Singh N, Sundriyal RC (2009). Fuelwood, Fodder Consumption and Deficit Pattern in Central Himalayan Village, Nature and Science 7(4):85-88.