There is always a need to measure and control the parameters of the output laser radiation: at the stage of production and testing, and during the operation of laser installations. Various sensor types are available for laser power measurement. The following article describes two systems that are suitable for high power measurements.

THE SENSOR DEFINES THE FUNCTIONALITY

Laser optical power measurement is performed by using a sensor to transform the optical power into a measurable current or voltage. The physical principles of the sensor will determine the functionality of the whole instrument. Two kinds of standard sensors are available to measure the power of laser radiation (see table).

THERMOPILE SENSORS

A thermopile is a sensor comprising an arrangement of many thermocouples. The individual thermocouples are connected thermally in parallel and electrically in series. For practical sensors, this arrangement is necessary as the thermal sensitivity (V/°C) of a single thermocouple is very low.

The detector surface is coated with a dull, deep black absorbent material. The purpose of the coating is to absorb as much incident laser beam power as possible, independent of the wavelength.

Considering these facts about the construction of a thermopile, certain characteristics are evident:

1. Thermopiles have a fairly low sensitivity to light.
2. Ambient heat sources will cause measurement error. Typical heat sources may be exhaust air from fan cooled instruments near by, or even a hand on the sensor head. This limits the practical measurable power at the low end to a few milliwatts. On the other hand, thermopiles are good at measuring high power, as long as the sensor surface is not damaged and the heat can be taken away by a fan or water cooling.
3. The absorbent material is crucial for the measurement. However, this coating fades over time, which leads to loss of calibration.
Types of sensors to measure the power of laser radiation

Type of Sensor	Physical Principle	Description
Photodiode	Electron-hole generation	The device is a semiconductor where photons are absorbed, generating electron-hole pairs. An external circuit is connected to allow current flow. The magnitude of the current is proportional to the optical power absorbed.
Thermopile	Seebeck effect	A device constructed using two different metals connected at two separate points. A voltage appears between these two points whenever there is a temperature difference between them. This leads to the name "thermocouple".

2. Thermopiles should be isolated from external sources of heat, which can introduce an error in the measurement. Typical external sources of heat may be: circulating air from the instrument, cooled by a ventilator, or even the hand of the operator, placed on the head of the sensor. This limits the lower power range to several milliwatts. On the other hand, thermopiles are an ideal tool for measuring high power, if the surface of the sensor is not damaged and heat can be removed by means of air or water cooling.

3. The material of the absorber is a determining factor for the accuracy of optical power measurements. However, it is necessary to remember that over time the coating wears away, which requires recalibration.

4. Thermopiles react very slowly as the measurement is based on heat flow. Typical response times vary from one to several seconds.

PHOTODIODE SENSORS

A photodiode is a semiconductor device designed in such a way that an electric potential gradient exists between its two electrodes (anode and cathode). These two electrodes are electrically contacted via thin filaments which are led out of the device by two pins. Since this structure is mechanically sensitive, the device is enclosed in a metal housing comprising a protective window through which light can enter.

The functional properties of the photodiode are apparent from its construction:

1. The photodiode is very sensitive to light, as a direct quantum transfer of photons to current takes place. Typically, the quantum efficiency can be close to 100%. This allows power measurements down to the femtowatt range. On the other hand, the maximum power is limited to a few milliwatts above which the photodiode goes into saturation: the current generated is no longer proportional to the irradiated power.

2. Silicon – the material of choice for visible range measurements – is abundant and cheap. However, germanium and InGaAs which are required for NIR photodiodes are expensive. The available sensors are thus greatly limited in their size.

3. Semiconductors have a high index of refraction which leads to a relatively high reflection of the incoming beam. Since the surface is very flat, the device acts as a mirror to some extent which...
maybe pose a safety hazard or be troublesome in a measurement setup.

4. The protective window acts as a weak etalon. This means that, depending on the angle and location of incidence of the light, the photodiode may show a different total sensitivity [3].

It would seem therefore, that a photodiode is not suitable for high power laser measurements, since the detector area is small (many high power lasers are at NIR wavelengths) and the device can only measure up to mW of power. Thus many practitioners just accept the compromise and use thermopile sensors.

But what if you want a higher resolution of measurement, wide dynamic range and high speed?

INTEGRATING SPHERES

The integrating sphere offers a remedy for the above-mentioned deficiencies of the naked photodiodes and the thermopiles. An integrating sphere is a passive component comprising a hollow sphere with openings ("ports") that allow the laser radiation to enter and escape.

The inner surface of the hollow sphere is made of a material with a high degree of reflection for the wavelength range to be measured. The surface is manufactured in such a way that the incident radiation is highly scattered. Consequently, such a structure allows an incident laser beam to be evenly distributed over the entire sphere surface via the multiple, strongly diffuse reflections.

Hollow spheres made from a special polymer are suitable for the wavelength range between 250 nm to 2.5 µm. Barium Sulphate (BaSO4) coated aluminium spheres are somewhat less expensive but they tend to tint yellow over time and are thus unsuitable for precise laser power measurement. For longer radiation in the wavelength range of 700 nm – 20 µm, a gold coating is used on a rough, metal surface. Many high power lasers fall into this spectral range and so solid copper or aluminium is suitable as a good heat-conducting substrate material.

A photodiode built into the wall of an integrating sphere sees only a part of the incident laser power entering into the sphere with the following important changes:

1. The power density is fully homogeneous.
2. The radiation is unpolarized, even if the input radiation was polarized.
3. The power incident upon the sensor is greatly weakened.

Рис.1. Детекторы лазерной мощности: a) – термопары; b) – термоэлементы [1]

Fig. 1. a) – Thermocouple; b) – Thermopile [1]
We see that the combination of an integrating sphere and a photodiode allows the design of a laser power sensor that responds as fast as a photodiode but can measure considerably more power. By selecting the size of the integrating sphere, the overall sensitivity of the system can be adjusted. In addition, the detector is now independent of the inhomogeneities of the power density and polarization. The detector is also independent of the location and angle of incidence of the laser radiation.

Интегрирующие сферы

Интегрирующая сфера – это измерительное средство, лишенное недостатков фотодиодов и термоэлементов, о которых сказано выше. Это пассивное метрологическое средство измерений, содержащее полый шар с отверстиями ("порты"), которые позволяют лазерному излучению проникать внутрь него и легко его покидать.

Внутренняя поверхность шара имеет покрытие, обладающее высоким коэффициентом отражения в измеряемом диапазоне длин волн. Внутри сферы происходит равномерное распределение падающего лазерного излучения по всей поверхности сферы с помощью многочисленных сильно рассеивающих отражателей.

Полые сферы, изготовленные из специального полимера, подходят для измерений в диапазоне длин волн от 250 нм до 2,5 мкм. Алюминиевые сферы, покрытые сульфатом бария (BaSO₄), несколько дешевле аналогов, но со временем
покрытие приобретает желтую окраску, и следова-
тельно, сферы становятся непригодными для высо-
коточных измерений мощности лазера. Для изме-
рения мощности излучения в диапазоне длин
волн 700 нм – 20 мкм используют сферы с шеро-
ховатой металлической поверхностью, покрытой
золотом. В этот спектральный диапазон попадает
излучение, генерируемое многими типами лазе-
ров высокой мощности. Поэтому твердая медь или
алюминий подходят в качестве хорошего материа-
ала теплопроводящей подложки интегрирующих
сфер.
В боковую стенку интегрирующей сферы
встроен фотодиод. Он регистрирует только
часть лазерной мощности, попадающей в сферу.
При этом характеристики падающего на датчик
света отличаются от характеристик того излуче-
ния, которое падает на сферу:
1. Плотность мощности излучения получается
полностью однородной.
2. Излучение не поляризовано, даже если вход-
ное излучение поляризовано,
3. Входная мощность сильно ослабляется.
Мы видим, что комбинация интегрирующей
сферы и фотодиода позволяет спроектировать
лазерный датчик мощности, обладающий пре-
имуществами и фотодиода, и интегрирующей
сферы. Подобный датчик может реагировать так
же быстро, как фотодиод, и проводить измерения в широком
диапазоне значений мощно-
сти, как интегрирующая сфера.
Меняя размер интегрирующей
сферы, можно изменять общую
чувствительность системы.
Кроме того, чувствительность
детектора теперь не зависит
от неоднородности плотности
мощности и от поляризации
излучения, генерируемого лазе-
ром. Детектор также не зависит
от взаимного расположения
падающего луча и поверхно-
сти приемной чувствительной
площадки детектора, а также
от угла падения на нее лазер-
ного излучения.
Интегрирующую сферу
можно использовать для измере-
ний пучков с сечениями отно-
сительно больших диаметров,
поскольку размер приемной
площадки фотодиода в этом слу-
чае быстро, как фотодиод, и проводить измерения в широком диапазоне значений мощности, как интегрирующая сфера. Меняя размер интегрирующей сферы, можно изменять общую чувствительность системы. Кроме того, чувствительность детектора теперь не зависит от неоднородности плотности мощности и от поляризации излучения, генерируемого лазером. Детектор также не зависит от взаимного расположения падающего луча и поверхности приемной чувствительной площадки детектора, а также от угла падения на нее лазерного излучения.
Интегрирующую сферу можно использовать для измерений пучков с сечениями относительно больших диаметров, поскольку размер приемной площадки фотодиода в этом случае быстро, как фотодиод, и проводить измерения в широком диапазоне значений мощности, как интегрирующая сфера. Меняя размер интегрирующей сферы, можно изменять общую чувствительность системы. Кроме того, чувствительность детектора теперь не зависит от неоднородности плотности мощности и от поляризации излучения, генерируемого лазером. Детектор также не зависит от взаимного расположения падающего луча и поверхности приемной чувствительной площадки детектора, а также от угла падения на нее лазерного излучения.
Интегрирующую сферу можно использовать для измерений пучков с сечениями относительно больших диаметров, поскольку размер приемной площадки фотодиода в этом случае.

The integrating sphere can be used for relatively large beam diameters as the size of the photodiode itself is not a limiting factor. The power density is also significantly less on the inner wall of the sphere than on an absorbent thermopile because the inner surface of the sphere is at least 20 times

The integrating sphere can be used for relatively large beam diameters as the size of the photodiode itself is not a limiting factor. The power density is also significantly less on the inner wall of the sphere than on an absorbent thermopile because the inner surface of the sphere is at least 20 times
чае не будет проявлять себя как ограничивающий фактор. Плотность мощности излучения, попадающего на внутреннюю стенку сферы, также значительно меньше той, что попадает на поглощающий термоэлемент. Причина в том, что общая площадь внутренней поверхности сферы, по меньшей мере, в 20 раз больше площади входной апертуры. Таким образом, материал стенки может выдерживать более высокую плотность мощности, и со временем это качество существенно не изменяется.

В боковой части сферы дополнительно могут быть расположены иные измерительные порты, что дает преимущества иного рода. Например, волоконно-оптический порт может использоваться для одновременного измерения спектрального состава излучения лазера.

ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ
В качестве примера использования интегрирующей сферы для измерений рассмотрим практику измерений флуктуаций мощности дискового лазера мощностью 5 кВт. Данный твердотельный лазер используется для обработки материалов. Измерительное устройство представляет собой интегрирующую сферу - медный шар диаметром 200 мм с золотым покрытием и с водяным охлаждением. Поскольку при таких высоких уровнях мощности происходит нагрев интегрирующей сферы, фотодиод требуется установить вне сферы – изменение температуры самого фотодиода может привести к снижению точности измерений мощности. Сфера была оснащена оптоволоконным портом SMA типа, который подключается к соответствующему порту измерителя мощности. Полная система (сфера-волокно-фотодиод) была предварительно откалибрована как единая измерительная установка измерения мощности.

При использовании измерительной установки было обнаружено, что мощность лазера обладает высокой стабильностью, вплоть до величин 2500 Вт. Однако когда мощность излучения возрастает до 5000 Вт, наблюдалась долговременная флуктуация около 1,5%.

Кроме того, в выходной мощности присутствуют колебания амплитуды, они составляют около 0,7%. Обращаем внимание, что эти более быстрые флуктуации зависят от временного мас-
SMA-fibre receptacle. The complete system (sphere-fibre-photodiode) was calibrated as a single unit to ensure accurate power measurement. The power meter is USB powered and controlled which limits the cabling required for the measurement (one USB cable and two water lines).

With this setup it was found that the laser power was very stable up to 2500W. However, when the power was increased to the full rating of the laser (5000W), a long term fluctuation of about 1.5% was seen.

In addition, a faster fluctuation of about 0.7% was seen in the output power. Note that this faster fluctuation is on a time scale which would not be measurable with a thermopile detector.

The integrating sphere combined with a photodiode represents a virtually perfect sensor for measuring laser power. For applications with high power lasers, this combination allows the operator to see fluctuations which are too fast for a thermopile detector to measure. This includes fluctuations during CW operation, transients and overshoot on starting the laser and short term power drop-outs during operation.

In addition, since the measurement is virtually independent of beam divergence, integrating spheres can be used for laser-based measurements such as transmission on refracting and scattering objects. For example, the integrating sphere can be used to measure the transmission of laser-weldable plastic materials to determine the optimum operating parameters of the welding laser.