Title: How accurately can we recall the timing of food intake? A comparison of food times from recall based survey questions and daily food records

Running title: Validation of recalled food timing questions

Authors: Siena C Gioia*, Mélanie Guirrette, Angela Chen, Chandler Tucker, Brianna E Gray, Céline Vetter, Marta Garaulet, Frank AJL Scheer, Richa Saxena, Hassan S Dashti

*Contributed equally

Affiliations:
1 Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
2 Friedman School of Nutrition Science and Policy at Tufts, Boston, MA, USA
3 Translational and Clinical Research Centers, Massachusetts General Hospital, Boston, MA, USA
4 Department of Integrative Physiology, University of Colorado, Boulder, CO
5 Broad Institute, Cambridge, MA, USA
6 Department of Physiology, University of Murcia, Murcia, Spain
7 IMIB-Arrixaca, Murcia, Spain
8 Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
9 Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA

The authors have no conflicts of interest relevant to this article to disclose. FAJLS received speaker fees from Bayer Healthcare, Sentara Healthcare, Philips, Kellogg Company, Vanda Pharmaceuticals, and Pfizer.
10 Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

Corresponding: Hassan S Dashti, PhD, RD; 185 Cambridge Street, CPZN 5; Boston MA 02114; hassan.dashti@mgh.harvard.edu; @hsdash

Funding: The study was funded by the NIH NIDDK grant R01DK105072. MG is supported by the Spanish Government of Investigation, Development, and Innovation (SAF2017-84135-R) including FEDER co-funding; Séneca Foundation (20795/PI/18) and NIDDK R01DK105072. HSD and RS are supported by NIH R01DK107859. RS and FAJLS are supported by NIH R01DK102696 and R01DK105072. CV is supported by R01DK105072. FAJLS is supported by R01DK099512, R01HL118601, and R01HL140574. RS is supported by Massachusetts General Hospital Research Scholars. HSD is supported by NHLBI K99HL153795. The study was also supported by NIH grant 1UL1TR002541-01. The funding sources had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Abbreviations: NHANES: National Health and Nutrition Examination Survey; SHIFT: Shift Work, Heredity, Insulin, and Food Timing; RD: Registered Dietitian

NDSR: Nutrition Data System for Research (NDSR)

Trial Registration: Shift Work, Heredity, Insulin, and Food Timing (SHIFT) Study (ClinicalTrials.gov: # NCT02997319).
Abstract

Background: There currently are no standard, low-cost, and validated methods to assess the timing of food intake.

Methods: The concordance between recall based survey questions and food times estimated from multiple daily food records in 249 generally healthy, free-living adults from the SHIFT Study (ClinicalTrials.gov #NCT02997319) was assessed. At baseline, participants were asked: “At what time do you first start and stop eating on weekdays/workdays and weekends/non-workdays?” and “At what time do you have your main meal on weekdays/workdays and weekends/non-workdays?” Participants were then asked to complete up to 14 days of food records noting the start time of each eating occasion. The timing of the first, last, and main (largest % calories) eating occasions, and the midpoint of energy intake were determined from food records. Wilcoxon matched pairs signed rank and Kendall’s coefficient of concordance were used to compare differences and determine agreements between the methods for 4 food timing parameters.

Results: Eating occasions on work and free days showed significant agreements between the two methods, except for the main eating occasion on free days. Significant agreements were generally modest and ranged from 0.16 (work days main eating occasion) to 0.45 (work days first eating occasion). Generally, times based on recall were later than those estimated from food records and the differences in estimated times were smaller on work days compared to free days and smaller for the first compared to the last eating occasion. Main eating occasions from food records
alternated between lunch and dinner times, contributing to low concordance with recalled times.

Conclusions: Modest agreements were found between food times derived from simple, recall based survey questions and food times estimated from multiple daily food records. Single administration of these questions can effectively characterize the overall timing of eating occasions within a population for chrononutrition research purposes.

Keywords: chrononutrition, food timing, intermittent fasting, food record, validation, dietary assessment

Summary: There currently are no standard and low-cost methods to assess the timing of food intake. This study validates simple, recall-based questions that can effectively characterize food timing in free-living populations.
Introduction

The timing of food intake, or chrononutrition, is an emerging aspect of nutritional science with a potentially profound impact on cardiometabolic health (1). Epidemiological studies suggest that later food timing is associated with higher odds of being overweight or obese (2), impedes the efficacy of weight-loss interventions (3), and increases risk for adverse cardiometabolic health (1). In addition, intermittent fasting has been shown to have numerous health benefits (4). For example, restricting daily caloric intake to an eating window of 8-12 hours has been shown to reduce body fat and blood pressure, and increase insulin sensitivity and body strength (5). However, additional human studies are needed to assess the long-term role of chrononutrition on a wider range of health outcomes and in a wider variety of cohorts and patient populations. A limiting factor in advancing chrononutrition research is the lack of standard food timing assessment tools.

There currently are no simple, low-cost, and validated methods to assess the timing of food intake (6). Traditional dietary assessment tools used in nutrition research, such as food frequency questionnaires, have primarily focused on dietary composition. To ascertain timing, previous studies have primarily relied on modifying traditional dietary assessment tools and picture-based smartphone applications. For example, in the 24-hour dietary recalls administered by the NHANES, participants were asked to recall the clock time of all eating episodes (7). In another study, traditional 7-day dietary records were amended to include a question on the time of day that each meal was eaten (8). Meanwhile, other studies have leveraged time stamps captured through picture-based smartphone applications used to record consumed items (9). In addition,
the Meal Pattern Questionnaire asks respondents to list usual times of food intake during a 24-hour period (10). It is believed that among the most pertinent aspects of chrononutrition to capture in a survey are the timings of the first eating occasion, last eating occasion, largest eating occasion, and main meals and snacks, however other domains such as the midpoint of energy intake and meal regularity, may also be relevant (11). Identifying scalable tools to assess food timing that are inexpensive to administer and that have low respondent and analytical burden is necessary.

In a secondary analysis of the Shift Work, Heredity, Insulin, and Food Timing (SHIFT) Study, we aimed to assess the concordance between food timing for 4 food timing parameters (first, last, and main eating occasion and midpoint of energy intake) derived from responses to 6 simple recall based survey questions and those estimated from up to 14 days of prospectively collected paper based food records. We also evaluated the influences of potential modifiers on agreement differences. These analyses are expected to indicate the utility of recalled food timing for future epidemiological research in free-living, healthy adults.

Methods

SHIFT Study

Participants are from the Shift Work, Heredity, Insulin, and Food Timing (SHIFT) Study (ClinicalTrials.gov: #NCT02997319). The SHIFT Study was a multicentered, observational, randomized crossover study aimed to determine the effect of concurrent food intake and melatonin on glucose tolerance, particularly in carriers of the MTNR1B genetic risk variant. Participants were enrolled for 2 consecutive weeks. Participants 1)
completed baseline surveys, 2) wore a wrist accelerometer (actigraph) while concurrently completing daily sleep and nutrition logs for up to 14 days, and 3) attended two clinical visits where they conducted a standard oral glucose tolerance test. All clinical visits took place at clinical research centers at an academic medical center (Massachusetts General Hospital (MGH), and Brigham and Women’s Hospital (BWH)) in Boston, MA, and were administered by trained study staff. All recruited participants provided written consent upon enrollment. Recruitment took place between 2017—2021. The protocol was approved by the Mass General Brigham (formerly Partners Healthcare) Institutional Review Board (#2016P000651).

Recruitment for the study was primarily conducted online through the Mass General Brigham clinical trials website (Rally), other websites (e.g., Craigslist), and physical flyers. Interested participants completed an online survey screener. Eligible participants were adults between 18 and 60 years old, of East Asian, South Asian or European ancestry (because of the interest in the MTNR1B genetic variant), residing in the New England area, full-time (≥30 hours per week) employees, working students, or unemployed adults at the time of their enrollment, and able and willing to give consent and comply with study procedures. Exclusionary criteria included: 1) participants with any known diabetes diagnosis or on medication for the treatment of diabetes or other medication known to influence glycemic parameters, including oral, mexiletine, propranolol, or verapamil, medications for sleep and circadian rhythm disorders such as lithium, ramelteon, or other stimulants such as Provigil, and sleep medication or hypnotics; 2) participants who were pregnant or nursing, have a history of bariatric surgery, and those who have been diagnosed with chronic renal failure, cancer,
blindness, or any eating disorder; and 3) participants on anticoagulant medication or blood thinners such as heparin, warfarin, or clopidogrel, which may preclude the use of intravenous catheters for blood draws. A total of 1,533 participants completed the online screener, of which 885 were eligible to join the study and 442 enrolled in the study.

Food timing via recall based survey questions

Following enrollment, participants were invited to complete baseline electronic surveys that included questions on habitual food timing. Specifically, participants were asked: “At what time do you **first start eating** on weekdays/workdays? (includes meals, snacks, and drink meals, but not calorie-free beverages)”, “At what time do you **stop eating** on weekdays/workdays? (includes meals, snacks, and drink meals, but not calorie-free beverages)”, and “At what time do you have your **main meal** on weekdays/workdays? (includes meals, snacks, and drink meals, but not calorie-free beverages).” Similar questions for “weekends/non-workdays” were also included. The response options provided no time reference period as study participants included both day and night shift workers.

Food timing via prospectively collected paper based food records

During the 2-week study period, participants were asked to complete up to 14 days of paper based food records noting food and beverage type, portion size or quantity, meal type, location, and clock time for the start of each eating or drinking occasion. Participants met with a trained research dietitian (RD) or research coordinator that provided instructions on how to complete the food records, an informational sheet on
estimating portion sizes, and an example of a completed food record entry. Following each of the two weeks, the 7 days of food records were collected and reviewed for clarity and detail with each participant by a trained registered dietitian. Data from the food records were entered by a trained RD or a trained diet technician and quality checked for accuracy and consistency by a trained RD. Data were then analyzed with the Nutrition Data System for Research (NDSR) software developed by the Nutrition Coordinating Center (University of Minnesota, Minneapolis, MN) to obtain the nutrient content information on each eating occasion.

Sleep assessment and other covariates

During the study period, participants were instructed to wear an actigraph (Actiwatch Spectrum PRO, Philips Respironics, US) on their non-dominant wrist to objectively monitor activity and sleep. Participants were asked to press the event marker button prior to falling asleep and upon first waking up. While wearing the device, participants were also instructed to complete a sleep log every morning and record bed and wake times and specify day type: weekday/workday (work day) or weekend/non-workday (free day). Data from the actigraph and sleep logs were scored with the Philips Actiware 6 version 6.0.9 software using the method detailed by Patel et al. and sleep duration was derived (12).

In addition, upon enrollment, height (m) and weight (kg) were measured by a trained RD per guidelines outlined in Lohman et al (13). Body mass index (BMI) was calculated using the formula: weight (kg) / height² (m²). Employment status was determined by asking participants the following question: “Do you currently have a job
or do any unpaid work outside your home?” with response options “yes” or “no.” Chronotype was assessed using the Morningness-Eveningness Questionnaire, a 19-item scale developed by Horne and Östberg, and a morningness-eveningness score was computed (higher score = more morningness) (14).

Statistical analysis

A total of 442 adult participants were enrolled, of which 366 completed the SHIFT Study. Participants 1) without at least 1 food record on a work and a free day, 2) with missing day type designation on all food records, 3) without responses to all food timing recall questions (questions were added to baseline surveys 1 year after study start), and 4) who have reported working night shifts were excluded. 249 adult participants from the SHIFT Study were finally included in the present analysis. For the remaining participants, food record data from days with clinical visits that required 8-hour fasting and food record data from days with missing day type designations were excluded from the analysis. In addition, a total of 2808 eating occasions in food records of less than 5 calories were removed from the analysis as the survey questions asked about times of meals, snacks, and drink meals, but not calorie-free beverages. Then, for each participant, the timing of the first, last, and main (based on largest % calories for that day – eating occasion with the largest energy contribution) eating occasions, and the midpoint of energy intake (the midway clock time between first and last eating occasions) were determined from the food records for each day. The timings for the first and last eating occasions and midpoint of energy intake were then averaged across all work days and free days separately, and the population data are presented as median
(interquartile range, IQR). The timing of the main eating occasion was instead designated as the median time across all work and free days separately. Food timing survey responses were reviewed, and 169 likely erroneous times (9.6% of all survey responses), primarily from noon/midnight misreporting, were corrected.

First, we used Wilcoxon matched pairs signed rank test to compare differences in the timing of the 4 food timing parameters on work and free days between the survey questions and daily food records. Agreements between food times using the two different methods were assessed using Kendall’s coefficient of concordance. Kendall’s coefficient of concordance (W) is a non-parametric ranked test statistic used to measure the degree of concordance among different tools/raters, where a value of 1.0 demonstrates complete concordance (perfect agreement) and a value of 0.0 shows no concordance at all (lack of agreement). We then used Bland-Altman plots to further visualize the agreement between the timing parameters. The mean difference represents the estimated concordance, and the standard deviation of the differences measures the random fluctuations around the mean.

To assess the potential role of factors on the calculated concordance, we used Wald tests to examine the interaction term for each potential modifier and food times. The following factors were considered because of previous reports of their links with food times (6): age (15), gender (15,16), BMI (3,15,17), employment status (15), morningness-eveningness scores (18), and sleep duration (6). Specifically, we ran linear regression models to regress food times from the recall questions onto food times estimated from food records. An interaction term for each potential modifier and food times from food records were included. An interaction term was considered significant at
the Bonferroni P value cut-off ($P < 0.0063$) accounting for the total number of factors tested. When significant, subgroup analyses were conducted. The overall population was stratified by the potential modifier and the Kendall's coefficient of concordance was recomputed. All statistical analyses were conducted using R (version 4.1.0).

Results

A total of 249 adult participants from the SHIFT Study were included in the present analysis (Figure 1). Participants were 74.7% female and had a mean age and BMI of 29.0 years (standard deviation (SD) =8.9) and 24.07 kg/m2 (SD =4.37), respectively (Table 1). Based on recall data, on work days, the times of the first, last, and main eating occasions and the midpoint of energy intake, presented throughout as median (interquartile range, IQR), were 8:00 (1:30), 21:00 (2:00), 17:30 (6:30), and 14:30 (1:12), respectively (Figure 2, Table 2). On free days, the times of the first, last, and main eating occasions and the midpoint of energy intake were 10:00 (1:30), 22:00 (2:00), 18:00 (5:00), and 15:30 (5:00), respectively. Prospective food times were calculated from an average of 7 and 4 daily food records on work and free days, respectively. Based on food records, on work days, the times of the first, last, and main eating occasions and the midpoint of energy intake were 8:12 (1:42), 20:12 (1:24), 17:12 (5:12), and 14:12 (1:18), respectively, while on free days, the times of the first, last, and main eating occasions and the midpoint of energy intake were 9:00 (2:18), 20:12 (1:36), 15:48 (4:48), and 14:36 (1:36), respectively.

Times based on recall and food records were significantly different for all eating occasions, except the first and main eating occasions on work days (Figure 2—4,
Table 2). Generally, times based on recall were later than those estimated from food records (Table 2). In addition, differences in times between the two approaches were smaller on work days compared to free days for all eating occasions, and smaller for first compared to last eating occasion.

Table 2 shows the agreement between eating occasion times obtained by recall and food records as evaluated by the Kendall W coefficient of concordance, which expresses the relatedness between different sets of rankings. All eating occasions showed significant values of agreement, except for the main eating occasion on free days. Significant agreements were generally modest and ranged from 0.15 (main eating occasion on work days) to 0.45 (first eating occasion on work days).

Concordance did not differ based on age, gender, BMI, employment status, and morningness-eveningness score (Table 3). However, a significant interaction was evident with sleep duration for the main eating occasion on free days. In analysis stratified by the population sleep duration median, concordance for the main eating occasion on free days was higher among long sleepers ($W =0.09, P$ value $=0.15$) than among short sleepers ($W = 0.006, P$ value $= 0.92$).

Discussion

In a cohort of generally healthy, free-living adults, we found modest agreement between food times for the first and last eating occasion of the day and midpoint of energy intake derived from simple, recall based survey questions and food times estimated from multiple daily paper based food records. Concordance was higher for the first eating occasion of the day, compared to the last, and for the timing of eating occasions on
work days, compared to free days. Generally, recalled times were later than times calculated from daily food records. Both methods showed similar trends in delayed times of eating occasions on free days compared to work days. Concordance for the main eating occasion was the lowest as a result of variability in the timing of the largest % calories eating occasion estimated from food records.

There currently are no simple, scalable dietary assessment tools that characterize food timing in large epidemiological cohorts. Questions on the timing of habitual behaviors, including bed and wake times for sleep assessment, have been validated against objective methods and are commonly used in research (19,20). Based on these questions, we derived recall based questions to derive 4 food timing parameters (the timing of first, last, and main eating occasions and midpoint of energy intake (midway clock time between first and last eating occasions)) and tested their agreement with multiple days of prospectively collected food records. We found modest agreement between the two methods. The concordance for food timing is comparable to correlations previously observed for individual nutrients estimated from food frequency questionnaires and multiple days of food records in adults (median correlations of individual nutrients =0.373) (21,22). Among the food timing parameters, concordance was highest for the timing of the first eating occasion of the day and the midpoint of energy intake. Concordance for the last eating occasion of the day was lower and might reflect differences in the ingestion duration of that last eating occasion. For example, while the recall question asks about the stop time of the last eating occasion, the time indicated on daily food records asks about the start time of that last eating occasion.
Concordance was the lowest for the main eating occasion of the day. Based on recall, the timing for main eating occasion showed a bimodal distribution, suggesting that both lunch and dinner are considered the predominant meals of the day, consistent with NHANES data (23). When based on largest % calories estimated from food records, the main eating occasion for some participants appeared to alternate between lunch and dinner. This variability in the timing led to averages that greatly differed from those times based on recall. However, when based on the median time of the largest % calories meal of the day, a bimodal distribution was observed, suggesting that although the main eating occasion based on largest % calories alternated between lunch and dinner, for some participants, often one of these two eating occasions constitute the primary meal. For participants with only a single day of food record, or with equal days of having lunch and dinner as the largest % calories, this artifact persisted. The lack of explicit definition of the term “main meal” as the meal with the largest % calories may have further contributed to the overall low concordance. Alternative definitions to a “main meal” may include those with the largest portion size or the longest duration to consume (11). Thus, survey questions should be explicit in their definition of what constitutes a main meal. In addition, considering the variability in the timing of the largest % calories meal, future assessment of both the timing of lunch and dinner timing, instead of a single main meal, may be necessary.

We observed that the level of concordance differed for the main eating occasion on free days by sleep duration. In subgroup analysis, we found that the concordance was lower in participants with shorter sleep duration. Studies indicate that adults with shorter sleep duration tend to have fewer main meals and more snacks, and it is
possible that having fewer meals contributes to more variable times for the main eating occasion (7). Sleep duration did not affect the agreements for other eating occasions. In addition, concordance did not appear to vary by age, gender, BMI, employment status, and morningness-eveningness scores.

When comparing times from work and free days, we found general shifts in the timing of eating occasions and differences in overall concordance. First and last eating occasions and midpoint of energy intake were generally later on free days. The delay on free days as compared to work days in the first and last eating occasions was on average 76 and 43 minutes based on recall, respectively, and 40 and 3 minutes based on food records, respectively. Previous investigations have reported later eating times on weekends, including a study that used a smartphone application to estimate food timing that observed ~1 hour delay in breakfast on weekends compared with weekdays (24). Whereas participants recalled later times for their main eating occasion, data from food records indicated earlier times for the largest % calories eating occasion on free days. An analysis of 11,646 adults from the NHANES also suggested earlier times of the largest % calories meal of the day on weekends compared to weekdays based on a 24-hour recall (25). Overall, these findings add to the growing literature on differences in eating habits on work and free days (25). Continued distinction of these day types provides opportunities to examine the health effects of nutritional jetlag, which are shifts in dietary timing based on day of the week (6). In addition, overall concordance was poorer for free day measures. It is possible that the structured environment of work days, such as fixed work schedules and more consistent bed and wake times, may have contributed to more accurate recalled times on free days. Future evaluation of the
location of eating occasions may further elucidate differences in the concordance between work and free days.

It remains unclear as to the timing of which eating occasion is most relevant for chrononutrition research (6). Studies have indicated that the first and last daily eating occasions are physiologically pertinent as those most likely coincide with the biological night (26). Others have focused on the midpoint of energy intake (3). However, the timing of other eating occasions may still be relevant, such as the timing of lunch (27). Furthermore, for populations deviating from a 3 meals per day eating pattern to a more grazing eating pattern, the timing of inter-meal snacks may be important (23). Our assessment of the times of first and last daily eating occasions allows the derivation of other chrononutrition-relevant metrics including midpoint of energy intake and nocturnal fasting duration, thus enabling research on intermittent fasting (3,11,28).

Prioritization of the most pertinent times will facilitate the development of refined assessment tools with the least participant burden.

Strengths of this study include the large sample size, the collection of multiple days of paper based food records reviewed by a trained dietitian, and the use of actigraphy to validate day type designations (e.g., work and free days) based on bed and wake times. There are also some important limitations to consider. Like other commonly used dietary assessment tools, such as 24-hour dietary recalls and food-frequency questionnaires, recall questions rely extensively on memory and therefore are prone to random error. And like other time-based survey questions, responses are susceptible to reporting and recall biases, imprecision due to time rounding (e.g., 7:00 instead of 7:04), and other response errors resulting from military time misreporting.
In addition, we did not collect information on the timing of the end of each eating occasion in the food records. Thus validation studies against objective devices, such as wearable cameras, that provide passive and more accurate data on dietary intake and can reliably capture start and end times of eating occasions, are needed (30,31). The questions asked in the survey may only capture current, short-term behavior, and multiple administrations of these questions are necessary to examine the long-term stability and reproducibility of the responses over time and across seasons (32). About 13% of participants had only one day data for each of work and free days, and therefore it was not possible to account for day-to-day variation for all participants. Our cohort of generally healthy adults in an urban setting limits the generalizability of findings to other populations, including patients with eating disorders (33). Lastly, the study only enrolled participants of East and South Asian and European ancestries because of the higher prevalence of the MTNR1B genetic variant (the primary exposure of interest). Future efforts in racially and ethnically diverse populations are necessary to allow generalizability of findings.

Optimal methods for ascertaining the timing of dietary intake remain to be determined. The validity of existing questionnaires, such as the Meal Pattern Questionnaire (10), and the affordability and scalability of time-stamped picture-based smartphone applications (24), is still unknown. Here, we provide simple, self-administered survey questions that can be widely disseminated across various surveys offering a new tool to advance future food timing research. Single administration of these questions can characterize the overall timing of the first and last eating occasions within a population for chrononutrition research purposes. In populations where the
largest % calories meal of the day alternates between two meals, for example lunch and dinner, assessment of both meal times instead of a single main meal may be necessary. As these recall based survey questions tend to be later than the actual timing of eating occasions, individual-level responses should be evaluated cautiously, and alternative approaches, such as real-time data collection using wearable cameras or smartphone applications, may be of better use at the clinical-level.

Acknowledgements: We thank the participants and research coordinators of the SHIFT Study for their contribution to this work. The study was designed by SCG, MG, MG, FS, RS and HSD; AC, CT, BEG, and HSD participated in acquisition and analysis of data. SCG, MG, AC, CT, CV, MG, FAJL, RS, and HSD participated in interpretation of data. SCG, MG, and HSD wrote the manuscript and all co-authors reviewed and edited the manuscript, before approving its submission. HSD is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Data Share Statement: Data described in the manuscript, code book, and analytic code will be made available upon request pending approval from the Mass General Brigham Human Research Office/ Institutional Review Boards (IRB) (contact located at https://www.massgeneralbrigham.org/researcher-support-and-resources/resources-collaborators-and-sponsors) for researchers who meet the criteria for access to confidential data.
References

1. Garaulet M, Gómez-Abellán P. Timing of food intake and obesity: a novel association. Physiol Behav [Internet]. 2014 [cited 2017 May 25];134:44–50. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0031938414000031

2. Wang JB, Patterson RE, Ang A, Emond JA, Shetty N, Arab L. Timing of energy intake during the day is associated with the risk of obesity in adults. J Hum Nutr Diet [Internet]. 2014 [cited 2017 May 25];27 Suppl 2:255–62. Available from: http://doi.wiley.com/10.1111/jhn.12141

3. Dashti HS, Gómez-Abellán P, Qian J, Esteban A, Morales E, Scheer FAJL, Garaulet M. Late eating is associated with cardiometabolic risk traits, obesogenic behaviors, and impaired weight loss. Am J Clin Nutr [Internet]. Oxford University Press; 2021 [cited 2021 Jul 2];113:154–61. Available from: https://pubmed.ncbi.nlm.nih.gov/33022698/

4. Longo V, Panda S. Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan. Cell Metab [Internet]. Cell Metab; 2016 [cited 2021 Sep 8];23:1048–59. Available from: https://pubmed.ncbi.nlm.nih.gov/27304506/

5. Chaix A, Manoogian ENC, Melkani GC, Panda S. Time-Restricted Eating to Prevent and Manage Chronic Metabolic Diseases [Internet]. Annual review of nutrition. NLM (Medline); 2019 [cited 2021 Feb 19]. p. 291–315. Available from: https://pubmed.ncbi.nlm.nih.gov/31180809/

6. Dashti HS, Scheer FAJL, Saxena R, Garaulet M. Timing of Food Intake: Identifying Contributing Factors to Design Effective Interventions. Adv Nutr [Internet]. 2019 [cited 2019 Oct 8];10:606–20. Available from:
7. Kant AK, Graubard BI. Association of self-reported sleep duration with eating behaviors of American adults: NHANES 2005-2010. Am J Clin Nutr [Internet]. American Society for Nutrition; 2014 [cited 2020 Nov 28];100:938–47. Available from: https://pubmed.ncbi.nlm.nih.gov/25057157/

8. Garaulet M, Vera B, Bonnet-Rubio G, Gómez-Abellán P, Lee Y-C, Ordovás JM. Lunch eating predicts weight-loss effectiveness in carriers of the common allele at PERILIPIN1: the ONTIME (Obesity, Nutrigenetics, Timing, Mediterranean) study. Am J Clin Nutr [Internet]. 2016 [cited 2018 Jul 22];104:1160–6. Available from: https://academic.oup.com/ajcn/article/104/4/1160/4557123

9. McHill AW, Phillips AJK, Czeisler CA, Keating L, Yee K, Barger LK, Garaulet M, Scheer FAJL, Klerman EB. Later circadian timing of food intake is associated with increased body fat. Am J Clin Nutr. American Society for Nutrition; 2017;106:1213–9.

10. Bertéus Forslund H, Lindroos AK, Sjöström L, Lissner L. Meal patterns and obesity in Swedish women—a simple instrument describing usual meal types, frequency and temporal distribution. Eur J Clin Nutr [Internet]. 2002 [cited 2017 May 25];56:740–7. Available from: http://www.nature.com/doifinder/10.1038/sj.ejcn.1601387

11. Phoi YY, Bonham MP, Rogers M, Dorrian J, Coates AM. Content Validation of a Chrononutrition Questionnaire for the General and Shift Work Populations: A Delphi Study. Nutr 2021, Vol 13, Page 4087 [Internet]. Multidisciplinary Digital Publishing Institute; 2021 [cited 2021 Nov 20];13:4087. Available from:
12. Patel SR, Weng J, Rueschman M, Dudley KA, Loredo JS, Mossavar-Rahmani Y, Ramirez M, Ramos AR, Reid K, Seiger AN, et al. Reproducibility of a Standardized Actigraphy Scoring Algorithm for Sleep in a US Hispanic/Latino Population. Sleep. Oxford University Press; 2015;38:1497–503.

13. Lohman, T., Roache, A., Martorell R. Anthropometric Standardization Reference Manual. Med Sci Sport Exerc. 1992;24:952.

14. Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol [Internet]. 1976 [cited 2019 Aug 27];4:97–110. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1027738

15. Kant AK, Graubard BI. Within-person comparison of eating behaviors, time of eating, and dietary intake on days with and without breakfast: NHANES 2005–2010. Am J Clin Nutr [Internet]. 2015 [cited 2018 Jul 21];102:661–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26178722

16. Sudo N, Sekiyama M, Ohtsuka R, Maharjan M. Gender differences in “luxury food intake” owing to temporal distribution of eating occasions among adults of Hindu communities in lowland Nepal. Asia Pac J Clin Nutr [Internet]. 2009 [cited 2018 Jul 21];18:441–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19786393

17. Muñoz JSG, Cañavate R, Hernández CM, Cara-Salmerón V, Morante JJH. The association among chronotype, timing of food intake and food preferences depends on body mass status. Eur J Clin Nutr [Internet]. 2017 [cited 2018 Apr
18. Baron KG, Reid KJ, Kern AS, Zee PC. Role of Sleep Timing in Caloric Intake and BMI. Obesity [Internet]. 2011 [cited 2018 Jul 21];19:1374–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21527892

19. Jackson CL, Patel SR, Jackson WB, Lutsey PL, Redline S. Agreement between self-reported and objectively measured sleep duration among white, black, Hispanic, and Chinese adults in the United States: Multi-ethnic study of atherosclerosis. Sleep. Oxford University Press; 2018;41.

20. Dashti HS, Redline S, Saxena R. Polygenic risk score identifies associations between sleep duration and diseases determined from an electronic medical record biobank. Sleep [Internet]. 2018 [cited 2019 Feb 1]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/30521049

21. Fallaize R, Forster H, Macready A, Walsh M, Mathers J, Brennan L, Gibney E, Gibney M, Lovegrove J. Online dietary intake estimation: reproducibility and validity of the Food4Me food frequency questionnaire against a 4-day weighed food record. J Med Internet Res [Internet]. J Med Internet Res; 2014 [cited 2021 Sep 22];16:e190. Available from: https://pubmed.ncbi.nlm.nih.gov/25113936/

22. Cui Q, Xia Y, Wu Q, Chang Q, Niu K, Zhao Z. Validity of the food frequency questionnaire for adults in nutritional epidemiological studies: A systematic review and meta-analysis. Crit Rev Food Sci Nutr [Internet]. Crit Rev Food Sci Nutr; 2021 [cited 2021 Sep 27];1–19. Available from: https://pubmed.ncbi.nlm.nih.gov/34520300/
23. Kant AK, Graubard BI. 40-year trends in meal and snack eating behaviors of American adults. J Acad Nutr Diet [Internet]. 2015 [cited 2017 Jul 11];115:50–63. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2212267214010235

24. Gill S, Panda S. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits. Cell Metab [Internet]. 2015 [cited 2018 Jul 21];22:789–98. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1550413115004623

25. Ruopeng A. Weekend-weekday differences in diet among U.S. adults, 2003–2012. Ann Epidemiol [Internet]. 2016 [cited 2018 Apr 25];26:57–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26559331

26. Garaulet M, Qian J, Florez JC, Arendt J, Saxena R, Scheer FAJL. Melatonin Effects on Glucose Metabolism: Time To Unlock the Controversy [Internet]. Trends in Endocrinology and Metabolism. Elsevier Inc.; 2020 [cited 2020 Mar 9]. p. 192–204. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31901302

27. Garaulet M, Gómez-Abellán P, Alburquerque-Béjar JJ, Lee Y-C, Ordovás JM, Scheer FAJL. Timing of food intake predicts weight loss effectiveness. Int J Obes (Lond) [Internet]. 2013 [cited 2017 May 25];37:604–11. Available from: http://www.nature.com/doifinder/10.1038/ijo.2012.229

28. McHill AW, Phillips AJ, Czeisler CA, Keating L, Yee K, Barger LK, Garaulet M, Scheer FA, Klerman EB. Later circadian timing of food intake is associated with increased body fat. Am J Clin Nutr [Internet]. 2017 [cited 2018 May 31];106:ajcn161588. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28877894
29. Dashti HS, Cade BE, Stutaite G, Saxena R, Redline S, Karlson EW. Sleep Health, Diseases, and Pain Syndromes: findings from an electronic health record biobank. Sleep [Internet]. Oxford University Press (OUP); 2020 [cited 2020 Oct 22]; Available from: https://pubmed.ncbi.nlm.nih.gov/32954408/

30. Gemming L, Rush E, Maddison R, Doherty A, Gant N, Utter J, Ni Mhurchu C. Wearable cameras can reduce dietary under-reporting: doubly labelled water validation of a camera-assisted 24 h recall. Br J Nutr [Internet]. Br J Nutr; 2015 [cited 2021 Nov 20];113:284–91. Available from: https://pubmed.ncbi.nlm.nih.gov/25430667/

31. Gemming L, Ni Mhurchu C. Dietary under-reporting: what foods and which meals are typically under-reported? Eur J Clin Nutr [Internet]. Eur J Clin Nutr; 2016 [cited 2021 Nov 20];70:640–1. Available from: https://pubmed.ncbi.nlm.nih.gov/26669571/

32. McHill A, Hilditch C, Fischer D, Czeisler C, Garaulet M, Scheer F, Klerman E. Stability of the timing of food intake at daily and monthly timescales in young adults. Sci Rep [Internet]. Sci Rep; 2020 [cited 2021 Sep 27];10. Available from: https://pubmed.ncbi.nlm.nih.gov/33257712/

33. Allison KC, Lundgren JD, O’Reardon JP, Martino NS, Sarwer DB, Wadden TA, Crosby RD, Engel SG, Stunkard AJ. The Night Eating Questionnaire (NEQ): psychometric properties of a measure of severity of the Night Eating Syndrome. Eat Behav [Internet]. 2008 [cited 2018 Jul 22];9:62–72. Available from: http://linkinghub.elsevier.com/retrieve/pii/S147101530700030X
Figure 1. Study flowchart of included participants from the SHIFT Study (n = 249).
Figure 2. Distributions of first, last, and main eating occasions and midpoint of energy intake on work and free days as determined by recall and food records in 249 participants.\(^1\)

\(^1\)The timings for the first and last eating occasions and midpoint of energy intake were averaged from multiple days of food records on work days and free days separately, whereas the timing of the main eating occasion was designated as the median time. For food records, the main eating occasion was based on the largest % calories of the day. For both recall and food records, the midpoint of energy intake was calculated as the midway clock time between first and last eating occasions.
Figure 3. Comparison of the timing of the first, last, and main eating occasions and midpoint of energy intake on work and free days as determined by recall and food records (average time) in 249 participants.\(^1\)

\(^1\) Diagonal 45-degree line indicates perfect agreement. The timings for the first and last eating occasions and midpoint of energy intake were averaged from multiple days of food records on work days and free days separately, whereas the timing of the main eating occasion was designated as the median time. For food records, the main eating occasion was based on the largest % calories of the day. For both recall and food records, the midpoint of energy intake was calculated as the midway clock time between first and last eating occasions.
Figure 4. Bland-Altman plots of included food timing parameters\(^1\).

\(^1\)The mean difference represents the estimated concordance, and the standard deviation of the differences measures the random fluctuations around the mean. The timings for the first and last eating
occasions and midpoint of energy intake were averaged from multiple days of food records on work days and free days separately, whereas the timing of the main eating occasion was designated as the median time. For food records, the main eating occasion was based on the largest % calories of the day. For both recall and food records, the midpoint of energy intake was calculated as the midway clock time between first and last eating occasions.
Table 1. General characteristics of SHIFT Study participants \((n = 249)\) included in the present analysis\(^1\).

Participants	
\(n\)	249
Gender, \(n\) (\%) female	186 (74.7)
Race, \(n\) (\%)	
Asian and Pacific Islander	55 (22.1)
European	187 (75.1)
South Asian	7 (2.8)
Hispanic, \(n\) (\%)	17 (6.8)
Age, years	29.0 (8.9)
BMI, kg/m\(^2\)	24.07 (4.37)
Employed, \(n\) (\%)	224 (89.9)
Sleep duration, hours	7.78 (0.72)
Morningness-eveningness score\(^2\)	52.81 (10.75)

\(^1\)Values are mean (standard deviation) or \(n\) (\%).

\(^2\)Morningness-eveningness score was based on responses to the Morningness-Eveningness Questionnaire. The scores can range from 16 to 86, with lower scores indicating evening preference and higher scores indicating morning preference. Scores of 41 and below indicate "evening types." Scores of 59 and above indicate "morning types." Scores between 42-58 indicate "intermediate types."
Table 2. Comparison of times for first, last, and main eating occasions and midpoint of energy intake in 249 participants

Parameter	Recall time	Food records time	Time Difference	Wilcoxon P value	Kendall W	Kendall P value
Work days						
First eating occasion	8:00 (1:30)	8:12 (1:42)	-0:02 (1:30)	0.24	0.45	<0.001
Last eating occasion	21:00 (2:00)	20:12 (1:24)	0:42 (1:18)	<0.001	0.39	<0.001
Main eating occasion	17:30 (6:30)	17:12 (5:12)	-0:12 (4:30)	0.09	0.15	<0.001
Midpoint of energy intake						
First eating occasion	10:00 (1:30)	9:00 (2:18)	0:24 (2:12)	<0.001	0.25	<0.001
Last eating occasion	22:00 (2:00)	20:12 (1:36)	1:30 (2:12)	<0.001	0.21	<0.001
Main eating occasion	18:00 (5:00)	15:48 (4:48)	1:00 (5:48)	0.001	0.05	0.21
Midpoint of energy intake						
First eating occasion	15:30 (5:00)	14:36 (1:36)	0:54 (1:36)	<0.001	0.29	<0.001

1Recall and food record times are medians (interquartile range). Kendall W reflects Kendall’s rank correlation. The timings for the first and last eating occasions and midpoint of energy intake were averaged from multiple days of food records on work days and free days separately, whereas the timing of the main eating occasion was designated as the median time. For food records, the main eating occasion was based on the largest % calories of the day. For both recall and food records, the midpoint of energy intake was calculated as the midway clock time between first and last eating occasions.
Table 3. Influence of potential moderators on estimated agreement between times estimated from recall and daily food records. Values are Wald test interaction P values1.

Parameter	Age	Gender	BMI	Emolyment	Morningness-eveningness score	Sleep duration
Work days						
First eating occasion	0.02	0.13	0.64	0.56	0.87	0.88
Last eating occasion	0.14	0.02	0.79	0.52	0.12	0.88
Main eating occasion	0.30	0.75	0.42	0.16	0.52	0.04
Midpoint of energy intake	0.61	0.20	0.11	0.51	0.68	0.10
Free days						
First eating occasion	0.18	0.25	0.79	0.19	0.27	0.12
Last eating occasion	0.42	0.35	0.34	0.16	0.44	0.17
Main eating occasion	0.01	0.40	0.31	0.04	0.01	0.002
Midpoint of energy intake	0.94	0.38	0.48	0.03	0.01	0.02

1Wald tests were used to assess the potential role of factors on the calculated concordance. The Wald test interaction term was considered significant at the Bonferroni P value cut-off ($P<0.0063$) accounting for the total number of factors tested.