Research Paper

The Effect of Periodic Exercise and Resveratrol Supplementation on the Expression of Pparg Coactivator-1 Alpha and Pyruvate Dehydrogenase Kinase Genes in Gastrocnemius Muscle of Old Rats With Type 2 Diabetes

Ali Salehi1, *Hajar Abbaszadeh1, Parvin Farzanegi1

1. Department of Exercise Physiology, Sari Branch, Islamic Azad University, Sari, Iran.

Abstract

Type 2 diabetes is the result of complex interactions between genetic and environmental factors that affect fat and glucose metabolism. The purpose of this study was to determine the effect of periodic exercise and resveratrol supplement on the expression levels of Pparg Coactivator 1-Alpha (PGC-1α) and Pyruvate Dehydrogenase Kinase (PDK4) genes in gastrocnemius muscle of old rats with type 2 diabetes.

Methods & Materials

42 male rats (mean age= 40-50 weeks; mean body weight= 250-300 g) were randomly divided into 6 groups: healthy-control, diabetic-control, Diabetic+Periodic Exercise, Diabetic+Supplement, Diabetic+Periodic Exercise+Supplement and Saline. The type 2 diabetes was induced by intraperitoneal injection of Streptozotocin (50 mg/kg body weight). The exercise protocol consisted of 10 sets of 1-min activities at 50% intensity and a 2-min rest period between sets, and each week the speed was increased by 2 meters per minute. The exercises were performed for eight weeks. Resveratrol supplement was injected intraperitoneally daily at a dose of 20 mg/kg body weight. The expressions of PDK4 and PGC-1α in the gastrocnemius muscle were measured by real time Polymerase Chain Reaction (PCR) method.

Findings: highest expression level of PDK4 and PGC-1α genes in gastrocnemius muscle was observed in the diabetic group received both periodic exercise and Resveratrol supplement and the lowest level was reported in the diabetic-control and saline groups.

Conclusion: The combination of resveratrol supplementation and periodic exercise can have beneficial effects on PDK4 and PGC-1α expression levels in the gastrocnemius muscle of old rats with type 2 diabetes and reduce the risks of diabetes-related complications.

Key words: Periodic exercise, Resveratrol, PDK4, PGC-1α, Type II diabetes

Extended Abstract

1. Introduction

Diabetes mellitus is the most common metabolic disease [2]. In diabetic patients, metabolic flexibility is impaired. Today, in addition to various sports exercises, other non-pharmacological solutions of plant origin have been considered for the management of diabetes [13, 14]. Wang et al. [12] found that those who did not exercise had a 2.2-fold increase in the expression of Pyruvate Dehydrogenase Kinase (PDK4) following resistance exercise and symmetric endurance exercise compared to single-mode endurance exercise. Sin et al. [19], by reviewing the anti-glycemic mechanism of Resveratrol in skeletal muscle of aged and diabetic patients, confirmed the changes in the expression of
PDK4 through the Pparg Coactivator-1 Alpha (PGC-1α) pathway following Resveratrol consumption. The aim of present study was to examine the effect of periodic exercise and resveratrol supplementation on the expression of PDK4 and PGC-1α genes in gastrocnemius muscle of old rats with type 2 diabetes.

2. Methods and Materials

This is an experimental study conducted in 2018 in the research center of Islamic Azad University of Sari branch. 42 male rats (mean age = 40-50 weeks; mean body weight = 250-300 g) were randomly divided into 6 groups: healthy-control, diabetic-control, Diabetic+Periodic Exercise, Diabetic+Supplement, Diabetic+Periodic Exercise+Supplement, and Saline. The type 2 diabetes was induced by intraperitoneal injection of Streptozotocin (50 mg/kg body weight).

The exercise protocol consisted of 10 sets of 1-min activities at 50% intensity and a 2-min rest period between sets, and each week the speed was increased by 2 meters per minute. The exercises were performed for eight weeks. Resveratrol supplement was injected intraperitoneally daily at a dose of 20 mg/kg body weight. The expressions of PDK4 and PGC-1α in the gastrocnemius muscle were measured by real time Polymerase Chain Reaction (PCR) method. After quantification, gene expression values were analyzed using 2-ΔΔCt formula.

3. Results

According to the results shown in Figure 1, the highest expression level of PDK4 gene in gastrocnemius muscle was observed in the diabetic group received both periodic exercise and Resveratrol supplement and the lowest level was reported in the diabetic-control and saline groups. The increase in PDK4 level in the rats treated with a combination of resveratrol and periodic exercise was significantly higher than that of those received resveratrol and periodic exercise alone (P<0.001). The results also show that the highest expression of PGC-1α gene was in the diabetic group received both periodic exercise and Resveratrol supplement and its lowest levels in the diabetic-control group (Figure 2). The increase in PGC-1α level in the rats treated with a combination of resveratrol and periodic exercise was significantly higher than that of those received resveratrol and periodic exercise alone (P <0.001).

4. Discussion

A number of previous studies have shown that diabetes is associated with an increase in the concentration of PDK4, a decrease in its gene expression, and its poor function [9, 11, 24]. In the present study, we found that the expression of the PDK4 gene in diabetic rats increased after administration of resveratrol to the gastrocnemius muscle tissue. Similarly, previous studies have shown that resveratrol supplementation can improve the complications of muscle aging and insulin resistance [13, 19].

Table 1. Primer sequences used to match PDK4 and PGC-1α genes

Gene	Forward Primer 5’-3’	Reverse Primer 5’-3’
GAPDH	AAGTTCAACGGCACTAAGG	CATACTCAACAGCATCACC
PDK4	GAGTTGTGTAGGTGAAGTG	AAATGAAAGAGGTGTGGTG
PGC-1α	CGGAATCATATCCACAGAT	TGGAGAGCCTAGCAAGTTGC

GAPDH = Glyceraldehyde 3-phosphate dehydrogenase

Table 2. Kruskal-Wallis test results for PGC-1α and PDK4 gene expressions in the gastrocnemius muscle

Variables	Chi-Square	df	P
PDK4 expression	37.782	7	0.001*
PGC-1α expression	35.503	7	0.001*
Resveratrol supplementation can also increase the transactivation of PDK4 in response to decreased protein content of PDK4 [19]. In the present study, it was also observed that mRNA expression of PDK4 was higher in the resveratrol supplementation + periodic exercise group than in diabetic and saline groups. Wang et al. showed that after exercise, mRNAs associated with PGC-1α and PDK4 increased 5-8 times in both types of muscle fibers [12].

In the present study, changes in PGC-1α gene expression were consistent with the results of PDK4 gene. We suggest that a combination of resveratrol and periodic exercise be further studied as an effective way to improve glucose uptake in gastrocnemius muscles of older rats with type 2 diabetes.

5. Conclusion

The combination of resveratrol supplementation and periodic exercise can have beneficial effects on PDK4 and PGC-1α expression levels in the gastrocnemius muscle of old rats with type 2 diabetes and reduce the risks of diabetes-related complications.
Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Animal Care and Use Committee of Islamic Azad University of Sari branch (Ethical Code: IR.IAU.SARI.REC.1397.011). All ethical principles governing animal experiments were fully met.

Funding

The present paper was extracted from the PhD dissertation of the first author, Department of Exercise Physiology, Sari Branch, Islamic Azad University, Sari.

Authors' contributions

Conceptualization, investigation, writing – review & editing, supervision: All Authors; Methodology, writing – original draft, resources: Ali Salehi, Hajar Abbaspazadeh; Funding acquisition: Ali Salehi.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors would like to thank the animal laboratory staff of Islamic Azad University of Sari branch for their valuable cooperation.
اثر تمرین تناوبی و رزوراترول بر بیان ژن‌های PGC-1α و PDK4 مسن مبتلا به دیابت نوع ۲

پژوهش حاضر تعیین اثر تمرین تناوبی و رزوراترول بر بیان ژن‌های PGC-1α و PDK4 در عضله دوقلوی موش های مسن مبتلا به دیابت نوع ۲ نشان می دهد که بیشترین بیان ژن‌ها در گروه کنترل ـ دیابتی و سالین وجود دارد. در عضله PGC-1α و PDK4 نتایج نشان داد که ترکیبی از رزوراترول و تمرین تناوبی می تواند اثرات مفیدی بر بیان ژن‌ها را داشته و در نتیجه خطرات ناشی از عوارض دیابت را کاهش دهد.

کلیدواژه‌ها: تمرین تناوبی، PDK4، رزوراترول، PGC-1α، گروه فیزیولوژی ورزشی، واحد ساری، کلینیک گروه فیزیولوژی ورزشی، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران

1. پروین فرزانگی
2. دکتر هاجر عباس زاده
3. علی صالحی

مقدمه
اگرچه پیری یک بیماری نیست، ولی عامل خطر برای اکثر بیماری‌های مزمن در نظر گرفته می‌شود [1]. تغییرات مرتبط با سن و تحرک و تغییرات در ترکیب پنی، مول مناسب بیماری‌های متابولیکی است. بیماری‌های شایع در بیماران متابولیکی است [2]. این بیماری یک مشکل بیماری‌زا در سراسر جهان است که حدود یک تا دو درصد افراد جهانی بیمار می‌باشد و سبب ازکارگیری‌ها و مرگ‌ها و افراد می‌شود [3]. در این بیماری، الگوهای بین‌فازی یک عامل کلیدی در آن دیده می‌شود که به طور قابل توجهی در عضله و کبد به وفور پیدا می‌شود [4]. پژوهش‌های مختلف نشان داده است که PPARα، یک هدف شناخته شده در کنترل مصرف سوخت، یک مولکول متصل به فعالیت ورزشی می‌شود [5]. PPARα، یک مولکول متصل به ورزش، می‌تواند در افزایش دسترسی به منابع انرژی (عمدتاً گلوکز و اسیدهای چرب) و بهبود عملکرد دیگر آنزیم‌های عملکردی می‌باشد [6]. به طور قابل توجهی، این پژوهش بررسی می‌کند که تمرین تناوبی و رزوراترول بهترین روش برای تقویت عملکرد این آنزیمهای است [7].

متن

در کنترل مصرف سوخترها در گروه است و باعث تقویت PPARα می‌شود [8]. پژوهش‌های مختلف نشان داده که تمرین تناوبی در کنترل مصرف سوخترها و بهبود عملکرد دیگر آنزیم‌های عملکردی می‌باشد [9]. به طور قابل توجهی، این پژوهش بررسی می‌کند که تمرین تناوبی و رزوراترول بهترین روش برای تقویت عملکرد این آنزیمهای است [10].

1. Metabolic Flexibility
2. Pyruvate dehydrogenase kinase 4 (PDK4)

1. پروین فرزانگی
2. دکتر هاجر عباس زاده
3. علی صالحی

مرجع

1. پروین فرزانگی
2. دکتر هاجر عباس زاده
3. علی صالحی

پست الکترونیک: h.abaszade61@gmail.com
از جمله این مواد زرواترول، است که در گل‌های بیشتر و
قرمز‌گیری به‌خود خورشید و در بوته‌های قرمز و خاک‌هایی که جای دارد [16] زرواترول یک ترکیب بی‌پلن‌فل دست و در پاسخ به
حالت پایین‌شناخته و در انسداد و دارویی در غلبه تولید می‌شود [17] است. این ماده کیفیت‌گذاری‌های طبیعی است که در گل‌های مصرفی به‌کار می‌رود و به‌طور گسترده‌ای در دندان‌پرستی، لیپومسک و... مصرف شده است. این ماده در بهبود افتراقیات سرطان، و کاهش سطح فشار خون می‌تواند کارکرد این ترکیب به‌عنوان یک ترکیب ضد التهابی و آنتیکلسترولیتی و... شناخته شود.

لتیرک و روستا

با توجه به کنترل یکی از روی آزمون‌های های جراحی که در مراحل مختلف در زنبوری‌های گیاهی به‌کار می‌رود، به‌طور علمی و/یا توضیح‌برنگی در مرجان‌ها و در شرکت‌های تولید درمان‌های دیابتی و امراض قلبی مصرف می‌شود. این ماده در پلاک‌های قلبی، مصرف می‌شود.

مواد و روش‌ها

با توجه به کنترل یکی از روی آزمون‌های های جراحی که در مراحل مختلف در زنبوری‌های گیاهی به‌کار می‌رود، به‌طور علمی و/یا توضیح‌برنگی در مرجان‌ها و در شرکت‌های تولید درمان‌های دیابتی و امراض قلبی مصرف می‌شود. این ماده در پلاک‌های قلبی، مصرف می‌شود.

تعیین ویژگی‌های بیولوژیکی و روش‌های تحقیقاتی

می‌تواند با استفاده از این ماده در پلاک‌های قلبی، مصرف می‌شود. این ماده در پلاک‌های قلبی، مصرف می‌شود.
پژوهش اثر تمرین تناوبی و رزوراترول بر بیان‌های ژن‌ها در موس

نتایج

آزمون کروسکال والیس به‌منظور بررسی تغییرات بین گروه‌ها استفاده شد و سطح معناداری در نظر گرفته شد. بررسی تجدیدواری واریانس همچنین برای بررسی تغییرات بین گروه‌های یافته‌ها به‌کار گرفته شد. برای بررسی صحت برابری داده‌ها، آزمون شاپیرو ویلک و SPSS نیز استفاده شد. در نتیجه، احتمال ناگهانی در بین گروه‌های مختلف در بافت عضله دوقلو در موش‌های مسن مبتلا مشاهده شد. ارزش کای اسکوئر محاسبه شده (جدول شماره 1) نشان داده شده است. بیشترین بیان ژن PGCA-1α و معنادار بودن آن در سطح P=0/05 نشان داد. بیان ژن PDK4 و در بیان‌های مکمل و کم مکمل + تمرین، روزهای بعد از تزریق می‌زین به صورت از گروه کنترل + دیابت نمود. در میان گروه‌های تمرین تناوبی و کنترل + دیابت، اختلاف معناداری مشاهده شد. در این نتایج، بیان‌های مکمل و کمکنار + تمرین با پژوهش P=0/01 استفاده نموده شد. این نتایج به‌منظور استفاده در پژوهش‌های آتی‌پی انجام شد.

جدول شماره 1

Reverse primer	Forward primer	GAPDH
CATACAGGGACACGAGTACACC	AAGTTCAAGGGCAAGCTTCAAGG	
AAATAGAGAGGTGGTGAGTGTTGGA	GAGTTGTGAGTTAGGTGTTGG	PDK4
TGAGGCCCTGCAAAGGTTGCC	CGGAAATATCATTACCAACAGAT	PGC-1α

نتایج

نتایج این پژوهش این محور اعضا می‌باشند: بررسی روابط معناداری بین ژن‌ها در بیان‌های ژن‌ها در موش‌های مسن مبتلا. با توجه به نتایج آزمون کروسکال والیس، بیان‌های مکمل و کمکنار + تمرین با پژوهش P=0/01 استفاده نموده شد. این نتایج به‌منظور استفاده در پژوهش‌های آتی‌پی انجام شد.

طبقه‌بندی داده‌ها

برای بررسی تغییرات بین گروه‌ها، آزمون کروسکال والیس به‌کار گرفته شد.

آزمون لوین

برای بررسی تجدیدواری واریانس، آزمون لوین به‌کار گرفته شد.

آزمون شاپیرو ویلک

برای بررسی صحت برابری داده‌ها، آزمون شاپیرو ویلک به‌کار گرفته شد.

SPSS

برای بررسی صحت برابری داده‌ها، SPSS به‌کار گرفته شد.

این پژوهش به‌منظور استفاده در پژوهش‌های آتی‌پی انجام شد.
علی صالحی و همکاران. اثر تمرین تناوبی و رزوراترول بر بیان تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقلو که به وسیله Real time PCR مشخص شد. نتایج نشان می‌دهد که تفاوت معنی‌داری در سطح میانگین mRNA بیان‌زبان PGC-1α و PDK4 در عضله دوقتو
پیام‌های طبیعی در اکثر برگزاری‌های بروتوپتین‌هایYo بر می‌خورد با طول عمر و قابلیت تغییر تفاوت می‌شود و علاوه بر تأثیرات مستمر آن بر فرازده‌گی آنزیم‌ها می‌تواند باینجایی Pes موجب افزایش رطوبه می‌شود.

در یکی از مطالعات قبلی، دانشمندان نشان دادند که افزایش سطوح آن در گروه بیمار و سالین مشاهده شده است. البته به دلیل نوع کمک‌های آماده‌اند که این تحقیقات سطوح آن در فرازده‌گی Pes موجب افزایش می‌شود.

شماره 26

و بدون تفاوت گزارش شده که تمرین با شدت بالا، موجب افزایش فراوانی سطوح آن در گروه بیمار و سالین مشاهده شد. برخی تحقیقات عضله نعلی و دوقلو در گروه رژوتراول + تمرین تناوبی و کمترین در هر دو نوع تار، پنج تا هشت برابر افزایش بیوکمپوسیت+cns و گلگرک استاترکنت و در تمرین تنوع با کمک سطح فشار خون می‌گذرد.

مطالعه‌های قبلی گزارش کرده که مکمل رژوتراول می‌تواند موجب افزایش غلظت PDK4 در همخوانی شود. حسینی در پژوهش خود، نشان داد که در ماکروسکوپی، می‌تواند اثرات منفی رژوتراول و کمترین در هر دو نوع تار را داشته باشد.

درمان‌های در تاریکی از رژوتراول و اینها به طور مناسب با پرتو گلگرکی بالاتر از مشابه‌های ویژه که فقط رژوتراول و این آزمایش‌ها می‌پذیرد.

مطالعه‌های قبلی از مربوط به متابولیسم گلوکز عضله در افراد مسن دیابتی چندین مطالعه اثرات مثبت رژوتراول را در تمرینات متفاوت به ترتیب در افراد مسن دیابتی نشان داده است. SIRT1 و PDCD4 نشان دادکنند که کاهش فعالیت کمپلکس پیروات دهیدروژناژ (PDK4) در موش‌های مسن بیمار کاهش ۱۲ می‌شود.

با توجه به این نتایج، تماماً یک استراتژی درمانی بالقوه است. در مطالعه حاضر، احتمالاً که استاترکنت، دیابت نوع ۲ و سالخوردن، برای حفظ و تقویت عملکرد عضله مفید بوده و در سطح عضله کاهش قند خون می‌کند. گزارش شده است که مکمل رژوتراول، و این را در گروه بیمار و سالین مشاهده نشده است.

11. Pyruvate Dehydrogenase Complex (PDC)
12. Pyruvate dehydrogenase
13. Pyruvate dehydrogenase phosphatase
در فاصله ۳ ماهی ۲۳۷۸ تا ۲۰۰۷، در پژوهشگرانی P38 MAPK را مورد بررسی قرار دادند.

تحقیق‌های متعددی نشان داد که P38 MAPK به صورت مستقیم در تعداد زیادی از مطالعات تحقیقاتی و در ارتباط با متابولیسم چربی و متابولیسم اکسیداتیو فعالیت دارد. این پروبی می‌تواند به عنوان یک نگاه بهبودی بهتری بین نوع

تمارین و تنها تنها در بیماران دیابتی یافته‌ها چنین در م млн دانشگاه آزاد اسلامی واحد ساری، دانشکده علوم انسانی با کد R.IAU.SARI.REC.1397.8 در میان معتدلان (PDC) به حساب می‌آورند. این تمرین ممکن است بیان نشانگی ایفا می‌کند که درمان ترکیبی با مکمل PDK4 موجب افزایش انتقال / PDC به عنوان یک چکستگی انسولین در عضله، که دارای اثرات ضد هیپرگلیسمی شامل تحریک جذب گلوکز و افزایش دهد. رزوراترول، یک پلی فنول طبیعی در انگور قرمز است که تعدادی از عوارض دیابت را کاهش می‌دهد و در نتیجه خطرات ناشی از عوارض دیابت را کاهش می‌دهد.

نتایج مطالعه آن‌ها نشان داد که فعالیت PDK4 متعلق به تکراری برای بوتولن مثبت عملکرد تنظیم می‌شود. این امر به این ترتیب می‌شود که درمان ترکیبی با مکمل PDK4 به عنوان یک چکستگی انسولین در عضله، که دارای اثرات ضد هیپرگلیسمی شامل تحریک جذب گلوکز و افزایش دهد. رزوراترول، یک پلی فنول طبیعی در انگور قرمز است که تعدادی از عوارض دیابت را کاهش می‌دهد و در نتیجه خطرات ناشی از عوارض دیابت را کاهش می‌دهد.

نتایج مطالعه آن‌ها نشان داد که فعالیت PDK4 متعلق به تکراری برای بوتولن مثبت عملکرد تنظیم می‌شود. این امر به این ترتیب می‌شود که درمان ترکیبی با مکمل PDK4 به عنوان یک چکستگی انسولین در عضله، که دارای اثرات ضد هیپرگلیسمی شامل تحریک جذب گلوکز و افزایش دهد. رزوراترول، یک پلی فنول طبیعی در انگور قرمز است که تعدادی از عوارض دیابت را کاهش می‌دهد و در نتیجه خطرات ناشی از عوارض دیابت را کاهش می‌دهد.

نتایج مطالعه آن‌ها نشان داد که فعالیت PDK4 متعلق به تکراری برای بوتولن مثبت عملکرد تنظیم می‌شود. این امر به این ترتیب می‌شود که درمان ترکیبی با مکمل PDK4 به عنوان یک چکستگی انسولین در عضله، که دارای اثرات ضد هیپرگلیسمی شامل تحریک جذب گلوکز و افزایش دهد. رزوراترول، یک پلی فنول طبیعی در انگور قرمز است که تعدادی از عوارض دیابت را کاهش می‌دهد و در نتیجه خطرات ناشی از عوارض دیابت را کاهش می‌دهد.

نتایج مطالعه آن‌ها نشان داد که فعالیت PDK4 متعلق به تکراری برای بوتولن مثبت عملکرد تنظیم می‌شود. این امر به این ترتیب می‌شود که درمان ترکیبی با مکمل PDK4 به عنوان یک چکستگی انسولین در عضله، که دارای اثرات ضد هیپرگلیسمی شامل تحریک جذب گلوکز و افزایش دهد. رزوراترول، یک پلی فنول طبیعی در انگور قرمز است که تعدادی از عوارض دیابت را کاهش می‌دهد و در نتیجه خطرات ناشی از عوارض دیابت را کاهش می‌دهد.

نتایج مطالعه آن‌ها نشان داد که فعالیت PDK4 متعلق به تکراری برای بوتولن مثبت عملکرد تنظیم می‌شود. این امر به این ترتیب می‌شود که درمان ترکیبی با مکمل PDK4 به عنوان یک چکستگی انسولین در عضله، که دارای اثرات ضد هیپرگلیسمی شامل تحریک جذب گلوکز و افزایش D}

نتایج مطالعه آن‌ها نشان داد که فعالیت PDK4 متعلق به تکراری برای بوتولن مثبت عملکرد تنظیم می‌شود. این امر به این ترتیب می‌شود که درمان ترکیبی با مکمل PDK4 به عنوان یک چکستگی انسولین در عضله، که دارای اثرات ضد هیپرگلیسمی شامل تحریک جذب گلوکز و افزایش دهد. رزوراترول، یک پلی فنول طبیعی در انگور قرمز است که تعدادی از عوارض D

نتایج مطالعه آن‌ها نشان داد که فعالیت PDK4 متعلق به تکراری برای بوتولن مثبت عملکرد تنظیم M

نتایج مطالعه آن‌ها نشان D

نتایج مطالعه آن‌ها N

نتایج M

نتایج M

نتایج M

نتایج M

نتایج M
مشارکت‌نویسندگان

اجرای پروتکل: علی صالحی و هاجر عباس‌زاده؛ بازبینی نهایی مقاله: همه نویسندگان؛ اجرای مطالعه و تدوین هستووتشته: پروین فرمانی.

تعارض منافع

بنابر اظهار نویسندگان این مقاله هیچ گونه تعارض منافعی ندارد.

تشکر و قدردانی

بدین وسیله نویسندگان مقاله، از مسئولان آزمایشگاه حیوانی دانشگاه آزاد اسلامی واحد ساری به دلیل همکاری‌هایشان سپاسگزاری می‌کنند.
Lee IK. The role of pyruvate dehydrogenase kinase in diabetes and obesity. Nutrition. 2019; 156:17-24. [PMID] [PMCID]

Zhang Sh, Hulver MW, McMillan RP, Cline MA, Gilbert ER. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutrition & Metabolism. 2014; 11:10. [DOI:10.1186/1743-7075-11-10] [PMID] [PMCID]

Wilde AR, Huss JM, Schaeffer PJ, Giguere V, Kelly DP. PGC-1α coactivator-activated receptor-γ coactivator-1α mRNA in type I and type II fibres of human skeletal muscle. Acta Physiologica. 2012; 204(4):525-32. [DOI:10.1111/j.1748-1716.2011.02354.x] [PMID]

Zhang Sh, Halverson MM, Davis WJ, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal. 1998; 329(Pt 1):191-6. [DOI:10.1042/bj3290191] [PMID] [PMCID]

Biensø RS, Olesen J, Gliemann L, Schmidt JF, Matzen MS, Wojtaszek J, Niklas P, Li W, Jens W, Michail T, Kent S. Mitochondrial gene expression for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal. 1998; 329(Pt 1):191-6. [DOI:10.1042/bj3290191] [PMID] [PMCID]

Zhang Sh, Halverson MM, Davis WJ, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal. 1998; 329(Pt 1):191-6. [DOI:10.1042/bj3290191] [PMID] [PMCID]

Zhang Sh, Halverson MM, Davis WJ, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal. 1998; 329(Pt 1):191-6. [DOI:10.1042/bj3290191] [PMID] [PMCID]

Zhang Sh, Halverson MM, Davis WJ, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal. 1998; 329(Pt 1):191-6. [DOI:10.1042/bj3290191] [PMID] [PMCID]

Zhang Sh, Halverson MM, Davis WJ, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal. 1998; 329(Pt 1):191-6. [DOI:10.1042/bj3290191] [PMID] [PMCID]

Zhang Sh, Halverson MM, Davis WJ, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal. 1998; 329(Pt 1):191-6. [DOI:10.1042/bj3290191] [PMID] [PMCID]

Zhang Sh, Halverson MM, Davis WJ, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal. 1998; 329(Pt 1):191-6. [DOI:10.1042/bj3290191] [PMID] [PMCID]

Zhang Sh, Halverson MM, Davis WJ, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal. 1998; 329(Pt 1):191-6. [DOI:10.1042/bj3290191] [PMID] [PMCID]

Zhang Sh, Halverson MM, Davis WJ, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal. 1998; 329(Pt 1):191-6. [DOI:10.1042/bj3290191] [PMID] [PMCID]

Zhang Sh, Halverson MM, Davis WJ, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal. 1998; 329(Pt 1):191-6. [DOI:10.1042/bj3290191] [PMID] [PMCID]

Zhang Sh, Halverson MM, Davis WJ, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal. 1998; 329(Pt 1):191-6. [DOI:10.1042/bj3290191] [PMID] [PMCID]

Zhang Sh, Halverson MM, Davis WJ, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal. 1998; 329(Pt 1):191-6. [DOI:10.1042/bj3290191] [PMID] [PMCID]

Zhang Sh, Halverson MM, Davis WJ, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal. 1998; 329(Pt 1):191-6. [DOI:10.1042/bj3290191] [PMID] [PMCID]

Zhang Sh, Halverson MM, Davis WJ, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal. 1998; 329(Pt 1):191-6. [DOI:10.1042/bj3290191] [PMID] [PMCID]

Zhang Sh, Halverson MM, Davis WJ, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal. 1998; 329(Pt 1):191-6. [DOI:10.1042/bj3290191] [PMID] [PMCID]

Zhang Sh, Halverson MM, Davis WJ, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal. 1998; 329(Pt 1):191-6. [DOI:10.1042/bj3290191] [PMID] [PMCID]
skeletal muscle. The Journal of Physiology. 2010; 588(Pt 10):1779-90. [DOI:10.1113/jphysiol.2010.188011] [PMID] [PMCID]

[28] Nordsborg NB, Lundby C, Leick L, Pilegaard H. Relative workload determines exercise-induced increases in PGC-1α mRNA. Medicine & Science in Sports & Exercise. 2010; 42(8):1477-84. [DOI:10.1249/MSS.0b013e3181d2d21c] [PMID]

[29] Connaughton S, Chowdhury F, Attia RR, Song S, Zhang Y, Elam MB, et al. Regulation of Pyruvate Dehydrogenase Kinase isoform 4 (PDK4) gene expression by glucocorticoids and insulin. Molecular and Cellular Endocrinology. 2010; 315(1-2):159-67. [DOI:10.1016/j.mce.2009.08.011] [PMID] [PMCID]

[30] Sugden MC, Holness MJ. Interactive regulation of the pyruvate dehydrogenase complex and the carnitine palmitoyltransferase system. The FASEB Journal. 1994; 8(1):54-61. [DOI:10.1096/fasebj.8.1.8299890] [PMID]

[31] Roche TE, Baker JC, Yan X, Hiromasa Y, Gong X, Peng T, et al. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Progress in Nucleic Acid Research and Molecular Biology. 2001; 70:33-54, IN1, IN2, 55-75. [DOI:10.1016/S0079-6603(01)70013-X]

[32] Minakawa M, Kawano A, Miura Y, Yagasaki K. Hypoglycemic effect of resveratrol in type 2 diabetic model db/db mice and its actions in cultured L6 myotubes and RIN-5F pancreatic β-cells. Journal of Clinical Biochemistry and Nutrition. 2011; 48(3):237-44. [DOI:10.3164/jcbn.10-119] [PMID] [PMCID]

[33] Goh KP, Lee HY, Lau DP, Supaat W, Chan YH, Koh AF. Effects of resveratrol in patients with type 2 diabetes mellitus on skeletal muscle SIRT1 expression and energy expenditure. International Journal of Sport Nutrition and Exercise Metabolism. 2014; 24(1):2-13. [DOI:10.1123/ijsnem.2013-0045] [PMID]

[34] Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PloS One. 2008; 3(6):e2264. [DOI:10.1371/journal.pone.0002264] [PMID] [PMCID]