CASE REPORT

Calcified amorphous tumor located on a severely calcified mitral annulus in a patient with normal renal function

Ryohei Ushioda1,2, Tomonori Shirasaka2,*, Shinsuke Kikuchi3, Hiroyuki Kamiya2 and Taro Kanamori1

1Department of Cardiovascular Surgery, Kawaguchi Cardiovascular and Respiratory Hospital, Saitama, Japan, 2Department of Cardiac Surgery, Asahikawa Medical University, Asahikawa, Japan and 3Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan

*Correspondence address. Department of Cardiac Surgery, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa 078-8510, Japan. Tel: +81-166-68-2490; Fax: +81-166-68-2499; E-mail: hkamiya88@yahoo.co.jp

Abstract
A calcified amorphous tumor (CAT) of the heart is a rare, nonneoplastic, intracavitary cardiac mass. Histological examination shows that it contains calcified and amorphous fibrous material with underlying chronic inflammation. Surgical excision is generally recommended to avoid future embolism. The risk of embolism has been reported to be especially high in mitral-annular-calcification-related CAT, which constitutes a subgroup of CAT that is often associated with end-stage renal disease. A case of a CAT attached to the anterior annulus of the mitral valve that was easily removed with a light touch of the forceps through aortotomy is reported.

INTRODUCTION
A cardiac calcified amorphous tumor (CAT) is a nonneoplastic, cardiac mass composed of calcified nodules in an amorphous background of fibrin with degeneration and focal chronic inflammation [1, 2]. Since CAT can cause fatal embolism, early surgical treatment is generally recommended [4]. However, the best surgical approach, with or without simultaneous valvular intervention, has remained unclear due to its rarity and limited reports.

CASE REPORT
An 86-year-old woman with a history of hypertension and hyperlipidemia presented to our hospital with episodes of syncope lasting several minutes. On admission, her consciousness was clear, and there were no significant neurological findings on physical examination. Electrocardiography showed sinus rhythm at 79 bpm. Laboratory findings showed no abnormalities in electrolytes or anemia that could cause syncope. The coronary angiogram showed 90% stenosis of the right coronary artery (RCA). Transthoracic echocardiography (TTE) and transesophageal echocardiography (TEE) both showed a mobile mass with a maximum diameter of 12 mm on the anterior annulus of the mitral valve (Figs 1 and 2). TTE showed normal left ventricle (LV) function with an ejection fraction of 60%, LV wall motion was within the normal range and no significant valvular disease was detected. Preoperative chest computed tomography showed severe mitral annular calcification (MAC) (Fig. 3).

Received: September 14, 2021. Accepted: December 15, 2021
Published by Oxford University Press and JSCR Publishing Ltd. © The Author(s) 2022.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Figure 1: Transthoracic echocardiogram. A well-defined densely calcified mass noted on the anterior mitral leaflet in the apical four-chamber view.

Figure 2: TEE in the left ventricular outflow tract view shows an echo-dense mass measuring ~12.8 mm × 12.9 mm arising from mitral annular calcification.

Figure 3: Cardiac computed tomography showing a cardiac mass in the mitral annulus with heavy mitral annular calcification.

Figure 4: Gross appearance of the resected tumor.

Figure 5: Histopathological appearance of the tumor; fine deposits of calcium surrounding the central part of the tumor, which consists of an eosinophilic muddy substance (Hematoxylin and eosin staining, ×10).

With a median sternotomy approach, cardiopulmonary bypass was established with aortic and right atrial cannulations, and cardiac arrest was induced with antegrade cold-blood cardioplegia. The tumor was easily removed with only a light touch of the forceps through aortotomy (Fig. 4). In addition, coronary artery bypass grafting (CABG) from the aorta to the posterior descending artery of the RCA with a great saphenous vein graft was also performed. The removed cardiac mass was diagnosed as a CAT on pathological examination (Fig. 5). TTE on postoperative Day 7 showed no residual lesions. On postoperative Day 10, the patient was discharged home without any complications. This patient has been followed for 1 year, and the latest postoperative TTE showed no residual tumor lesion on the mitral valve.

DISCUSSION

Cardiac CAT was first reported by Reynolds et al. [1] in 1997 as a nonneoplastic, intra-cardiac mass composed of calcified deposition and amorphous fibrous tissue. Histologically, it is characterized by nodular calcium deposits over a matrix of fibrin and/or amorphous fibrin-like material, hyalinization, inflammatory cells and degenerated hematological elements. It has been linked to organized thrombi, but its precise etiology is unknown [2]. In the present case, pathological findings showed a CAT with deposits of calcium surrounding the central part of the tumor, which consisted of an eosinophilic muddy substance.

This tumor can originate in any of the four cardiac chambers, but the most common site is the mitral annulus [3]. de Hemptinne Q et al. analyzed 42 cases of CAT and reported that CAT was detected in all cardiac chambers, but predominated on the mitral valve or annulus (36%), followed by the right atrium (21%) and the right ventricle (17%). Patients with CAT frequently present with dyspnea and syncope [3]. In the present case, the patient’s chief complaint was loss of consciousness. It is well known that the risk of embolization in patients with intracardiac CAT is very high, because the CAT is normally weakly attached to surrounding tissues [4]. Therefore, most of the time these symptoms are related to embolization or obstruction, depending on its size and location. Moreover, CAT was associated with end-stage renal disease (ESRD) in 21% of patients and MAC was found in 14% [3]. Furthermore, MAC-related CAT is usually seen in ESRD.
Report	Case No	Age	Gender	Location of tumor	Access	Size (mm)	Surgical method	Follow-up term	Recurrence
Habib et al. (2010) [9]	1	58	M	LV, PM, MA, MV	N/A	Diffuse infiltration	resection	N/A	N/A
Kubota et al. (2010) [4]	2	64	F	LV, MA, AML	N/A	3 x 27	resection+AVR+MVR	3 years	-
Greaney et al. (2011) [10]	3	44	M	LV, PM, PML	N/A	6 x 27	resection	3 years	-
Ananthakrishna et al. (2011) [8]	4	69	F	LV, AML	aortotomy	20	resection	3 months	-
Lin et al. (2011) [11]	5	45	F	LV, PML	left atriotomy	40 x 35 x 20	resection+AVR+MVR	4 months	-
Fujiwara et al. (2012) [12]	6	74	F	atrial septum	N/A	14 x 27	resection	20 day	-
Nazli et al. (2013) [13]	7	58	M	LV, MA, AML, and septal region of the LV	N/A	7 x 2	resection	1 year	-
Yamamoto et al. (2013) [14]	8	65	M	LV, MA, AML, and septal region of the LV	N/A	38 x 25	resection	N/A	N/A
Kawata et al. (2013) [15]	9	54	F	LV, MA, AML, and septal region of the LV	N/A	37 x 4	MVR	N/A	N/A
Mohamedali et al. (2014) [5]	10	82	F	posterior MA (P3 position)	aortotomy	28 x 6	resection	N/A	N/A
Suh et al. (2014) [16]	11	59	M	anterior MA	N/A	20	resection	8 days	-
Tanaka A et al. (2015) [17]	12	69	F	anterior MA	aortotomy	50	resection	14 months	-
de Hemptinne Q et al. (2015) [3]	13	70	F	interatrial septum	N/A	50	resection	20 days	-
Nakashima Y et al. (2015) [18]	14	66	F	posterior wall of the LA	N/A	10	resection	1 year	-
Kinoshita M et al. (2015) [19]	15	67	M	LV, MA, AML, and antero-venous region	N/A	7 x 2	resection	N/A	N/A
Masuda S et al. (2015) [20]	16	68	M	LA side of MAC	N/A	13 x 14	resection	N/A	N/A
Abbasi Teshnizi M et al. (2017) [21]	17	70	M	TV, AML	N/A	diffuse infiltration	resection+MVR+TAP	N/A	N/A
Kyaw K et al. (2017) [22]	18	69	F	PML (P2 and P3)	N/A	19 x 8	resection+MVP	38 months	-
Chowdhary A et al. (2017) [23]	19	37	F	LA, AML	N/A	12 x 12	resection	6 months	-
Nakamaru R et al. (2017) [24]	20	68	F	ventricular aspect of LA	N/A	5 x 5	resection and MVP	4 days	-
Nakamaru R et al. (2017) [24]	21	73	M	RA + LA	N/A	50 x 50,15 x 15	resection	7 months	-
Nakamaru R et al. (2017) [24]	22	70	M	PML (P2 region)	N/A	8 x 6	resection	6 months	-
Nakamaru R et al. (2017) [24]	23	64	F	PML (P2 region)	N/A	15	resection	N/A	N/A

Continued
Case No.	Age (y)	Gender	Location of tumor	Access	Surgical method	Follow-up term	Recurrence
24	75	F	PML	N/A	resection	N/A	N/A
25	54	M	LV, PM	N/A	resection	8 months	N/A
26	38	M	AML	N/A	resection	10 months	N/A
27	56	F	LA, PML	N/A	resection	24 months	N/A
28	43	M	LA, atrial side of the anterior mitral leaflet	N/A	resection	7 days	N/A
29	77	M	MA, posterior site of the mitral valve	N/A	resection	16 × 5	N/A
30	59	M	LA, LV	N/A	valve replacement	50 × 13	N/A

Patients [4, 5]. MAC-related CAT with normal renal function, as in the present case, is very rare, and there have been only a few reported cases [3, 6].

A systematic search of PubMed was performed to identify articles reporting cases of CAT in the English language literature. All articles published since the first report (1 May 1997) up to 31 August 2021 were included. The titles and abstracts of the identified articles were screened to determine if they met inclusion criteria. Full-text articles were then retrieved and reviewed. Reference lists of the retrieved articles were searched for relevant literature. The review yielded 31 cases from 28 reports. Surgical resection of CAT is usually easy when adequate exposure of the tumor is achieved. The case reports were reviewed in relation to the surgical resection of CAT, and it was found that it seems possible to access the LV cavity and resect it all through the aortic valve with aortotomy. Therefore, no special approach is required, and valve replacement should be performed only if the CAT is very large causing valve obstruction, or if there is pre-existing valve disease [7, 8]. In the present case, the CAT was easily removed just by a light touch of the forceps, meaning that the risk of embolism would be extremely high if left untreated. Regarding the approach between aortotomy and left atriotomy, from the experience in the present case, aortotomy could be a better choice for CAT if it is on the left ventricular aspect of the anterior mitral leaflet. In addition, as mentioned above, MAC-related CAT is associated with impaired renal function, so shortening the hypoperfusion time of the kidneys is important to prevent further deterioration of kidney function. When there is renal dysfunction or the patient is elderly, simple procedures such as aortotomy could be a better choice.

Recurrence of CAT seems quite rare. There were no reported CAT recurrences during a mean follow-up of 13.5 months among the 31 reviewed cases (Table 1). In addition, only a single case [2] reported recurrence of a right atrial CAT 3 years after surgery (not shown in Table 1). Therefore, in our institution, follow-up is performed once a year just in case.

CONCLUSIONS

A case of MAC-related CAT in a patient with normal renal function was presented. Because CAT arising from MAC has been reported to be associated with a high risk of embolism, and surgical removal is normally easy without need for valve replacement, as in the present case, early surgical treatment would be recommended.

CONFLICT OF INTEREST STATEMENT

None declared.

REFERENCES

1. Reynolds C, Tazelaar HD, Edwards WD. Calcified amorphous tumor of the heart (cardiac CAT). Hum Pathol 1997; 28:601–6.
2. Fealey ME, Edwards WD, Reynolds CA, Pellikka PA, Dearani JA. Recurrent cardiac calcific amorphous tumor: the CAT had a kitten. Cardiovasc Pathol 2007; 16:115–8.
3. de Hemptinne Q, de Canniere D, Vandenbossche J-L, Unger P. Cardiac calcified amorphous tumor: a systematic review of the literature. Int J Cardiol Hear Vasc 2015; 7:1–5.
4. Kubota H, Fujioka Y, Yoshino H, Koji H, Yosihara K, Tonari K. Cardiac swinging calcified amorphous tumors in end-stage renal failure patients. Ann Thorac Surg 2010; 90:1692–4.
5. Mohamadeli B, Tatooles A, Zelinger A. Calcified amorphous tumor of the left ventricular outflow tract. Ann Thorac Surg 2014;97:1053–5.

6. Nishigawa K, Takiuchi H, Kubo Y, Masaki H, K. Tanemoto calcified amorphous tumor: three-dimensional transesophageal echocardiography. Asian Cardiovasc Thorac Ann 2012;20:355.

7. Vlasseros I, Katsi V, Tousoulis D, Tsiachriss D, Bousiotou A, Souretis G, et al. Visual loss due to cardiac calcified amorphous tumor: a case report and brief review of the literature. Int J Cardiol 2011;152:e56–7.

8. Ananthakrishna R, Nanjappa MC, Kamalapurkar G, Bhat P, Pannacevelam A, Chander N, et al. Cardiac tumour in a patient with rheumatic heart disease. BMJ Case Rep 2011;2011:bcr0220113882.

9. Habib A, Friedman PA, Cooper LT, Suleiman M, Asirvatham SJ. Cardiac calcified amorphous tumor in a patient presenting for ventricular tachycardia ablation: intracardiac echocardiogram diagnosis and management. J Interv Card Electrophysiol 2010;29:175–8.

10. Greaney L, Chaubey S, Pomplun S, St Joseph E, Monaghan M, Wendler O. Calcified amorphous tumour of the heart: presentation of a rare case operated using minimal access cardiac surgery. BMJ Case Rep 2011:bcr0220113882.

11. Lin YC, Tsai YT, Tsai CS. Calcified amorphous tumor of left atrium. J Thorac Cardiovasc Surg 2011;142:1575–6.

12. Fujiwara M, Watanabe H, Iino T, Kobukai Y, Ishibashi K, Yamamoto H, et al. Two cases of calcified amorphous tumor mimicking mitral valve vegetation. Circulation 2012;125:e432–4.

13. Nazli Y, Colak N, Apar IA, Alpay MF, Haltas H, Eryonucu B, et al. Sudden unilateral vision loss arising from calcified amorphous tumor of the left ventricle. Tex Heart Inst J 2013;40:453–8.

14. Yamamoto M, Nishimori H, Warissi S, Fukutomi T, Kond N, Kihara K, et al. Cardiac calcified amorphous tumor stuck in the aortic valve that mimicked a chameleon’s tongue: report of a case. Surg Today 2014;44:1751–3.

15. Kawata T, Konishi H, Amano A, Daida H. Wavering calcified amorphous tumor: a case report. J Med Case Reports 2017;69:349–50.

16. Nakamaru R, Oh E, Iwakura K, Masai T, Fujii K. Calcified amorphous tumor of the heart with mitral annular calcification: a case report. J Med Case Reports 2017;11:195.

17. Yoshimura S, Kawano H, Minami T, Tsuneto A, Nakata T, Koga S, et al. Cardiac calcified amorphous tumors in a patient with Henodialysis for diabetic nephropathy. Intern Med 2017;56:3557–60.

18. Toyokawa N, Okura H, Saito Y. From mitral annular calcification to calcified amorphous tumor. Intern Med 2018;57:443.

19. Shah AC, Marcoff L, Talati S, Donahue J, Ureysky S, Magovern C, et al. A rare beast: cardiac calcified amorphous tumor. Case (Phil) 2018;2:139–41.

20. Aizawa Y, Nakai T, Saito Y, Monno K, Morikawa T, Kogawa R, et al. Calcified amorphous tumor-induced acute cerebral infarction. Intern J Heart 2018;59:240–2.

21. Eroğlu M, Bozgüney M, Eroğlu T, Açığöz B. Surgical treatment of a calcified amorphous tumor originating from left atrium. Turk Gogus Kalp Damar Cerrahisi Der 2019;27:224–6.

22. Alimardani A, Mombeni H, Hosseini S, Sanati HR. Mitral annular calcification-related calcified amorphous tumor in a patient with normal renal function: a case report. Turk Kardiyol Dern Ars 2019;47:695–7, English.

23. Chetrit M, Hassan OA, Ho N, Collier P, Rodriguez L. The “MAC” attack: when mitral annular calcification goes rogue! A case series of mobile mitral annular calcifications. CASE (Phil) 2020;4:467–72.

24. Suzuki T, Sawayama Y, Suzuki T, Nakagawa Y. A rapidly growing cardiac calcified amorphous tumour diagnosed after coronary artery bypass graft surgery: a case report. Eur Heart J Case Rep 2021;5:ytab243.