POLYNOMIAL GRAPHS WITH APPLICATIONS
TO GRAPHICAL GAMES, EXTENSIVE-FORM GAMES,
AND GAMES WITH EMERGENT NODE TREE STRUCTURES

RUCHIRA S. DATTA

ABSTRACT. We prove a theorem computing the number of solutions to a system of
equations which is generic subject to the sparsity conditions embodied in a graph.
We apply this theorem to games obeying graphical models and to extensive-form
games. We define emergent-node tree structures as additional structures which normal
form games may have. We apply our theorem to games having such structures. We
briefly discuss how emergent node tree structures relate to cooperative games.

The set of Nash equilibria for a game with generic payoff functions is finite [2].
This implies that the set of totally mixed Nash equilibria for a game with generic
payoff functions is also finite. These are the real solutions to a system of polynomial
equations and inequalities. The complex solutions to the system of equations are
called quasiequilibria. Thus, the set of totally mixed Nash equilibria is a subset of
the set of quasiequilibria. In fact, the set of quasiequilibria is also finite in the most
generic case, and its cardinality can be computed as a function of the numbers of
pure strategies of the players. Thus, this is an upper bound on the number of totally
mixed Nash equilibria. Even in a nongeneric case, as long as the set of quasiequilibria
is finite, its cardinality will be bounded above by the number in the generic case.

For the main theorem of this article, Theorem 1, we hypothesize a set of technical
conditions that a system of polynomial equations may satisfy, which are encoded in
an associated graph, the polynomial graph, and we prove a formula describing the
number of solutions in this case. We then show how to associate such a graph to
three special classes of games. The first two are graphical games and extensive-form
games. The last is games with emergent node tree structure, a new model for games
in which the players can be hierarchically decomposed into groups. Usually such
hierarchical decomposition is modelled by cooperative games, and we briefly discuss
how our model is related to, yet differs from, the cooperative framework.

1. GENERIC NUMBER OF ROOTS OF A SPARSE POLYNOMIAL SYSTEM

The following theorem tells us the number of 0-dimensional complex roots (none
of whose components are zero) of a system of polynomial equations which obeys
certain sparsity conditions and is otherwise generic. Our formulation of this theo-
rem is motivated by the applications to game theory which follow, although such
polynomial systems may arise in other contexts.

Theorem 1. Suppose that $0 < d \in \mathbb{N}$ and that we are given a partition $\{1, \ldots, d\} = \bigsqcup_{i=1}^{N} T_i$
of $\{1, \ldots, d\}$. Write $d_i = |T_i|$. Suppose further that we are given a directed graph G, the

Date: December 15, 2006.

Key words and phrases. Nash equilibrium, Bernstein number, normal form game, graphical game, ex-
tensive form game, emergent node tree structure.
polynomial graph, on d vertices, denoted v_1, \ldots, v_d, without self-loops and with the property that for any v_j and T_i, if there is some $k \in T_i$ such that there is an edge from v_j to v_k in G, then for every $k \in T_i$ there is an edge from v_j to v_k in G. Let

$$
\begin{align*}
 f_1(\sigma_1, \ldots, \sigma_d) &= 0, \\
 f_2(\sigma_1, \ldots, \sigma_d) &= 0, \\
 \vdots \\
 f_d(\sigma_1, \ldots, \sigma_d) &= 0
\end{align*}
$$

be a system (1) of d polynomial equations in d variables $\sigma_1, \ldots, \sigma_d$ with the following properties:

1. All monomials occurring in the f_i's are squarefree.
2. If $\sigma_j, \sigma_k \in T_i$ with $j \neq k$ then σ_j and σ_k do not both occur in any monomial of any of the f_i's.
3. If there is no edge from v_j to v_k in G then the variable σ_k does not occur in f_j.

Thus, the equations are multilinear, and they are linear over the variables from each T_i. Construct a $d \times d$ matrix M as follows: If variable σ_k occurs in the polynomial f_j, with T_i the subset containing v_k, then

$$
M_{jk} = \frac{1}{(d-k)!/d!},
$$

otherwise $M_{jk} = 0$. If the system (1) is 0-dimensional, then the number of its solutions in $(\mathbb{C}^*)^d$ (i.e. such that $\sigma_k \neq 0$ for all k) is bounded above by the permanent of M, and is equal to the permanent of M for generic coefficients.

Proof. Without loss of generality, assume

$$
T_i = \left\{ 1 + \sum_{l=1}^{i-1} d_l, 2 + \sum_{l=1}^{i-1} d_l, \ldots, d_i + \sum_{l=1}^{i-1} d_l \right\},
$$

that is, that the T_i's are contiguous.

Let $a_{ij} = 1$ if there is an edge in G from v_j to v_k for $k \in T_i$, and $a_{ij} = 0$ otherwise. Then the Newton polytope P_j of f_j is the Cartesian product $P_{1j} \times P_{2j} \times \cdots \times P_{Nj}$, where P_j is the convex hull of the scaled coordinate vectors $\left\{ a_{ij} c_k \mid k \in T_i \right\}$ and the origin. For i with $a_{ij} = 1$, P_j is the d_i-dimensional unit simplex, and for i with $a_{ij} = 0$, P_j degenerates to the d_i-dimensional origin (which is a 0-dimensional simplex). By the Bernstein-Kouchnirenko Theorem [1] [4], it suffices to show that the mixed volume of the polytopes P_1, \ldots, P_j is given by the permanent of M.

Let $Q_j = \lambda_1 P_1 + \cdots + \lambda_j P_j$, where $+$ denotes Minkowski addition and the scale factors $\lambda_1, \ldots, \lambda_j$ are parameters. We show by induction on j that $Q_j = Q_{1j} \times Q_{2j} \times \cdots \times Q_{Nj}$, where Q_{ij} is the convex hull of

$$
\left\{ (a_{i1} \lambda_1 + a_{i2} \lambda_2 + \cdots + a_{ij} \lambda_j) c_k \mid k \in T_i \right\}
$$

and the origin. (If $a_{i1} \lambda_1 + a_{i2} \lambda_2 + \cdots + a_{ij} \lambda_j = 0$ then Q_{ij} degenerates to the origin.) The base case follows from our characterization of P_j above. Now consider the Minkowski sum of $Q_j = Q_{1j} \times \cdots \times Q_{Nj}$ and $\lambda_{j+1} P_{j+1} = (\lambda_{j+1} P_{(j+1)}) \times \cdots \times (\lambda_{j+1} P_{N(j+1)})$. It follows from the definition of Minkowski sum that this is $(Q_{1j} +
\(\lambda_{j+1} P_{j+1} (j_{j+1}) \times \cdots \times (Q_{Nj} + \lambda_{j+1} P_{N(j+1)}) \), and (using the induction hypothesis) that each factor \(Q_{i} + \lambda_{j+1} P_{i(j+1)} \) is equal to the convex hull of

\[
\left\{ (a_{11} \lambda_{1} + a_{12} \lambda_{2} + \cdots + a_{ij} \lambda_{j} + a_{i(j+1)} e_{j+1}) e_{k} \mid k \in T_{i} \right\}
\]

and the origin.

The \(d_{i} \)-dimensional volume of the \(d_{i} \)-dimensional unit simplex scaled by \(\lambda \) in each dimension is

\[
\frac{\lambda^{d_{i}}}{(d_{i})!}.
\]

We are interested in the \(d \)-dimensional volume of \(Q_{d} \). If \(a_{11} = a_{i2} = \cdots = a_{id} = 0 \) for some \(i \), then this volume vanishes, and hence the mixed volume also vanishes. In this case the \(k \)-th column of the matrix \(M \) will be all zeroes for any \(k \in T_{i} \), so the permanent of \(M \) also vanishes, and the theorem holds. So assume that for each \(i \), there is some \(j \) with \(a_{ij} = 1 \). Then the volume of \(Q_{d} \) is

\[
\prod_{i=1}^{N} (a_{11} \lambda_{1} + \cdots + a_{id} \lambda_{d})^{d_{i}} / d_{i}!
\]

Let \((g_{jk}) \) be the adjacency matrix of \(G \), that is, \(g_{jk} = 1 \) if there is an edge in \(G \) from \(v_{j} \) to \(v_{k} \) and \(g_{jk} = 0 \) otherwise. Then \(a_{ij} = g_{jk} \) for all \(k \in T_{i} \). So the volume of \(Q_{d} \) is

\[
\prod_{k=1}^{d} (g_{1k} \lambda_{1} + \cdots + g_{dk} \lambda_{d}) / \prod_{i=1}^{N} d_{i}!
\]

The mixed volume of \(P_{1}, \ldots, P_{d} \) is the coefficient of \(\lambda_{1} \lambda_{2} \cdots \lambda_{d} \) in the above expression, which is the permanent of \((g_{jk}) \) divided by \(\prod_{i=1}^{N} d_{i}! \).

It remains to show that the permanent of \(M \) is the permanent of \((g_{jk}) \) divided by \(\prod_{i=1}^{N} d_{i}! \). Note that \(M_{jk} \neq 0 \) exactly when \(g_{jk} \neq 0 \). We induct on \(N \). For the base case, \(d_{1} = d \), and each nonzero entry of \(M \) is \((1/d!)^{1/d} \). A term in the permanent of \(M \) is the product of \(d \) entries from \(M \), so if it is nonzero it is \(1/d! \). Thus the permanent of \(M \) is \(1/d! \times \) the permanent of \((g_{jk}) \), as required. Now partition the matrix \(M \) and the matrix \((g_{jk}) \) into two vertical bands corresponding to the subsets \(\cup_{i=1}^{N-1} T_{i} \) and \(T_{N} \). The permanent can be computed as the sum of a term for each choice of \(d_{N} \) rows \(1 \leq j_{1} < \cdots < j_{d_{N}} \leq d \): compute the \((d - d_{N}) \times (d - d_{N}) \) subpermanent of the left band obtained by crossing out those rows, compute the \(d_{N} \times d_{N} \) subpermanent of the right band corresponding to those rows, and multiply them together. By the inductive hypothesis, the left subpermanent of \(M \) is the left subpermanent of \((g_{jk}) \) divided by \(\prod_{i=1}^{N-1} d_{i}! \). For the right subpermanent, every row is either all nonzero or all zero. If any row is all zero, both right subpermanents vanish. If every entry is nonzero, then all the entries are the same: \(g_{jk} = 1 \) and

\[
M_{jk} = (1/d_{N})^{1/d_{N}}.
\]

The right subpermanent of \(M \) is \(d_{N}! \left((1/d_{N})^{1/d_{N}} \right)^{d_{N}} = 1 \), and the right subpermanent of \((g_{jk}) \) is \(d_{N}! \). So the whole term for \(M \) is the whole term for \((g_{jk}) \) divided by \(\prod_{i=1}^{N} d_{i}! \). \(\Box \)

We note that if the coefficients are generic subject to the conditions given in Theorem 1, all the solutions to the system will lie in the torus \((\mathbb{C}^{*})^{d}\). In what follows we will refer to “the number of solutions in the torus \((\mathbb{C}^{*})^{d}\)” as “the number of solutions” by abuse of language.
Corollary 2. Convert the directed graph G of Theorem 1 into a bipartite graph on $2d$ vertices, with the source of every edge on the left side and the target of every edge on the right side. If the system in Theorem 1 is 0-dimensional with generic coefficients, then it has a solution if and only if this bipartite graph has a perfect matching.

Proof. From the proof of Theorem 1, we see that the number of solutions is nonzero if and only if the permanent of the adjacency matrix is nonzero. It is a well-known fact that this is equivalent to the existence of a perfect matching: any permutation π which contributes a nonvanishing term $\prod_{j=1}^d g_j \pi(j)$ to the permanent corresponds to a perfect matching, where vertex j on the left is matched to vertex $\pi(j)$ on the right.

In fact, we could have used the bipartite graph in Theorem 1. However, we defined the polynomial graph to be the directed graph to remain consistent with the usual definition of graphical models of games.

Corollary 3. If the system in Theorem 1 is 0-dimensional and has a solution, then every node in the graph G lies on a directed cycle.

Proof. As in the proof of the previous corollary, a permutation π must exist such that j has an edge to $\pi(j)$ for every $j = 1, \ldots, d$. This permutation can be expressed as a product of disjoint cycles. Each node lies in one of these cycles, and a cycle of the permutation corresponds to a directed cycle in the graph.

We should note carefully that the Bernstein-Kouchnirenko theorem gives the number of solutions to a 0-dimensional polynomial system. So when the number given by that theorem—in particular, the permanent of the matrix in Theorem 1—vanishes, either the polynomial system has no solution, or its solution set has positive dimension.

Note that the conditions on G imply that the matrix M has a $d_i \times d_i$ block of zeroes along its diagonal for $i = 1, \ldots, N$. This is because G has no self-loops, and if it had an edge from an element v_j of T_i to any other element v_k of T_i, then there would have to be an edge from v_j to every element of T_i including itself.

2. Finite Games

In the remainder of this article, we apply Theorem 1 to game theory in a few different contexts. We now introduce the notation we will need from game theory. The concepts we describe in this section can be found in a standard game theory text such as [8]. However, in some cases we use simplified notation for the restricted situations we will consider.

Game theory is the study of strategic interaction. Such interaction takes place between multiple agents in a single setting, or environment. An agent is an entity which can receive information about the state of the environment (including itself and other agents), take actions which may alter that state, and express preferences among the various possible states. These preferences are encoded for each agent by a utility function, a mapping from the set of all states to \mathbb{R}. Its value for a particular state is the utility of that state for the agent. The agent prefers one state to another if its utility is greater, and is indifferent between them if their utilities are equal.\footnote{Instead of specifying the utility of each state for each agent, one might specify the change in utility, or marginal utility, which accrues to each agent upon each transition between states. Clearly any utility function induces a marginal utility function, but unless one imposes additional conditions a marginal utility function may not induce a utility function. Such a marginal utility function, which one might call intransitive, could} Changes
in the state of the environment may also occur spontaneously (i.e., not due to the actions of any of the agents). A strategy is a (possibly stochastic) rule for an agent to choose an action at every point when the agent may act, given the available information. A rational agent is one whose strategy maximizes its expected utility under the circumstances.

We will restrict attention to games which take place in a finite number of time steps between a finite number of agents, each of which has a finite number of possible actions. The agents are called players, and whenever they take an action they are said to move. A spontaneous change in the state of the environment is called a move by nature. The game is over when no player (including nature) has any possible actions. The state of the environment at such a terminal stage is called an outcome. Generally preferences are specified only over outcomes, not at intermediate stages of the game.

The first type of game we will consider is the normal-form game. In a normal-form game, there is only one time step, at which all the players move simultaneously. We denote the set of players by \(I = \{1, \ldots, N\} \). The actions a player can take are called pure strategies. We associate to the players finite disjoint sets of pure strategies \(S_1, \ldots, S_N \). For each \(i \) let \(d_i = |S_i| - 1 \). We write the set \(S_i \) as \(\{s_{i0}, \ldots, s_{id_i}\} \). We write \(S = \prod_{i \in I} S_i \). Game play consists of the collective choice of an element of \(S \) by the players: each player \(i \) moves by choosing an element of \(S_i \). We identify \(S \) as the set of possible outcomes. We denote by \(u_i(s) \) the utility for player \(i \) of the outcome \(s \in S \). Thus, the game is completely specified by the number \(N \) of players, the sets \(S_i \) of pure strategies, and the utility functions (or payoff functions) \(u_i : S \to \mathbb{R} \).

A player may move stochastically rather than deterministically. In that case the player is said to execute a mixed strategy. The mixed strategy specifies the probability with which the player chooses each possible action. The set \(\Sigma_i \) of mixed strategies of player \(i \) is the set of all functions \(\sigma_i : S_i \to [0,1] \) with \(\sum_{s_{ij} \in S_i} \sigma_i(s_{ij}) = 1 \). That is, it is the \(d_i \)-dimensional probability simplex. We write \(\Sigma = \prod_{i \in I} \Sigma_i \). An element \(\sigma \) of \(\Sigma \), which specifies the strategies executed by all the players, is called a strategy profile. If the players execute the strategy profile \(\sigma \), then the probability of outcome \(s \) is \(\sigma(s) = \prod_{i=1}^{N} \sigma_i(s_i) \). The expected utility for player \(i \) of the strategy profile \(\sigma \) is given by multilinearity as \(u_i(\sigma) = \sum_{s \in S} u_i(s) \sigma(s) \).

When considering how agent \(i \) should behave, it will be convenient to separate out \(i \)'s own strategy, over which \(i \) has control, from the strategies of all the other players. We write \(\Sigma_{-i} = \prod_{j \in I - \{i\}} \Sigma_j \), and we write \(\sigma_{-i} \) for the image of \(\sigma \in \Sigma \) under the projection \(\pi_{-i} \) from \(\Sigma \) onto \(\Sigma_{-i} \). By abuse of notation, we write \(u_i(\tau_i, \sigma_{-i}) \) for the \(i \)th player's expected payoff from the strategy \(\sigma \) whose \(i \)th component is \(\tau_i \) and whose other components are defined by \(\pi_{-i}(\sigma) = \sigma_{-i} \).

We assume perfect information: each player knows the complete specification of the game, knows that every player knows, knows that every player knows, ad infinitum. That is, the specification of the game is common knowledge. Under these circumstances, what is rational behavior? In his landmark paper [7], John Nash answered this question in terms of what is now called best response. A best response of player \(i \) to the strategy profile \(\sigma \) is a mixed strategy \(\sigma_i^* \) such that \(u_i(\sigma_i^*, \sigma_{-i}) \geq u_i(\sigma'_i, \sigma_{-i}) \) for any other mixed strategy \(\sigma'_i \) of player \(i \). That is, given that all the other players execute the strategy profile \(\sigma_{-i} \), the mixed strategy \(\sigma_i^* \) still be a useful model of reality. For example, one wouldn’t necessarily feel the same about being laid off and then immediately rehired if one had simply continued in the same position. However, we will not consider such intransitive marginal utility functions any further.
maximizes player i’s expected utility. A Nash equilibrium is a strategy profile which is a best response to itself for all the players. That is, it is a strategy profile σ^* such that for each player i, we have $u_i(\sigma^*) \geq u_i(\sigma'_i, \sigma^*_{-i})$ for every other mixed strategy σ'_i of player i. Nash proved that such an equilibrium always exists.

How can we compute the Nash equilibria of a given game? We need to search the set Σ of strategy profiles, which is a polytope: the product of probability simplices. We can decompose the problem by stratifying this polytope: first we look for Nash equilibria in its interior, then in the interiors of its facets, then in the interiors of the facets of those facets, and so forth, until finally we look for Nash equilibria at the vertices of the polytope (that is, pure strategy Nash equilibria). A strategy profile σ lies in the interior of this polytope if $\sigma_i(s_{ij}) > 0$ for every $s_{ij} \in S_i$, for every i. Such a strategy profile is called totally mixed. Note that a totally mixed Nash equilibrium need not exist.

So we concentrate our attention on the totally mixed Nash equilibria. We observe that for a totally mixed strategy profile σ to be a Nash equilibrium, it is necessary and sufficient that for each player i we have $u_i(s_{ij}, \sigma_{-i}) = u_i(s_{ik}, \sigma_{-i})$ for any pure strategies $s_{ij}, s_{ik} \in \Sigma_i$. These equations are called the indifference equations for player i. The sufficiency is clear. For the necessity, suppose to the contrary that $u_i(s_{ij}, \sigma_{-i}) > u_i(s_{ik}, \sigma_{-i})$. Define σ'_i by

$$\sigma'_i(s_{ij}) = \begin{cases} \sigma_i(s_{ij}) + \sigma_i(s_{ik}), & \text{if } l = j \\ 0, & \text{if } l = k \\ \sigma_i(s_{ij}), & \text{otherwise} \end{cases}$$

Then since $\sigma_i(s_{ik}) > 0$, we have

$$u_i(\sigma'_i, \sigma_{-i}) = u_i(\sigma) + \sigma_i(s_{ik}) \left[u_i(s_{ij}, \sigma_{-i}) - u_i(s_{ik}, \sigma_{-i}) \right] > u_i(\sigma),$$

a contradiction.

So we have a system of $\sum_{i=1}^N d_i$ equations, $u_i(s_{ij}, \sigma_{-i}) = u_i(s_{ik}, \sigma_{-i})$ for $j = 1, \ldots, d_i$, for $i = 1, \ldots, N$, in $\sum_{i=1}^N d_i$ unknowns $\sigma_i(s_{ij})$ for $j = 1, \ldots, d_i$, for $i = 1, \ldots, N$. (Here we have dehomogenized, that is, we have eliminated $\sigma_i(s_{ij})$ by substituting $1 - \sum_{j=1}^{d_i} \sigma_i(s_{ij})$). What we are equating are the expressions $u_i(s_{ij}, \sigma_{-i}) = \sum_{s_{ik} \in S_i} u_i(s_{ij}, s_{-i}) \sigma_1(s_1) \cdots \sigma_{i-1}(s_{i-1}) \sigma_{i+1}(s_{i+1}) \cdots \sigma_N(s_N)$, which are multilinear polynomials whose coefficients are the real numbers $u_i(s)$. The (possibly complex) roots of this system are called quasi-equilibria, and those roots which are totally mixed strategy profiles (that is, which are real with $\sigma_i(s_{ij}) > 0$ and $\sum_{j=1}^{d_i} \sigma_i(s_{ij}) < 1$) are the totally mixed Nash equilibria.

Now we see how Theorem 1 applies to normal-form games. In this case, each T_i corresponds to the set of strategies of player i. The blocks of zeroes along the diagonal imply that a player’s expected payoffs from their own pure strategies do not depend on the probabilities they have assigned to their own pure strategies, so these polynomial systems do indeed correspond to the equations for totally mixed Nash equilibria of games.

Corollary 4. Consider a normal form game between players $I = \{1, \ldots, N\}$ with pure strategy sets S_i for each i and generic utility functions $u_i: \prod_{i \in I} S_i \to \mathbb{R}$. Construct a graph G with nodes $\prod_{i \in I} (S_i - \{s_{ij}\})$ such that there is an edge from s_{ik} to s_{jl} in G if and only if $i \neq j$. Let the variable corresponding to s_{ik} be $\sigma_i(s_{ik})$ and the equation corresponding to s_{ik} be the indifference equation $u_i(s_{ik}, \sigma_{-i}) = u_i(s_{ij}, \sigma_{-i})$. Then this system of equations obeys the conditions of Theorem 1, so the number of solutions in the generic case is given by that theorem.
This special case was proved as Theorem 2 in [6], so our Theorem 1 is a generalization of that theorem.

3. Graphical Games

Kearns, Littman, and Singh [3] defined the concept of \textit{graphical games}, or games obeying \textit{graphical models}. (That paper considers undirected graphs, but the extension to directed graphs which we will use is straightforward.) A game between players 1, \ldots, \textit{N} obeys a directed graphical model, if the payoffs to player \textit{i} only depend on the actions of those players \textit{i} \neq \textit{i} for which there is an edge from \textit{i} to \textit{i} in the graphical model.

Our theorem applies in particular to graphical games. As in Corollary 4, we take the pure strategy sets \textit{S_i} to be the sets \textit{T_i} of Theorem 1. Given a polynomial graph \textit{G} as in Theorem 1, we draw an edge from \textit{i} to \textit{j} in the graphical model if there is any \textit{j} \in \textit{T_i} with edges to the vertices in \textit{T_j} in the polynomial graph \textit{G}. The polynomial graph \textit{G} may not represent the most generic case of the graphical model, however. If we are given a graphical model, then to construct its polynomial graph \textit{G}, for any edge from \textit{i} to \textit{j}, we draw edges in \textit{G} from every vertex \textit{j} \in \textit{T_i} to every vertex in \textit{T_j}.

Corollary 5. Suppose a normal form game between players \textit{I} = 1, \ldots, \textit{N} with pure strategy sets \textit{S_i} for each \textit{i} and utility functions \textit{u_i}: \prod_{\textit{i} \in \textit{I}} \textit{S_i} \rightarrow \mathbb{R} obeys a directed graphical model \textit{G} with nodes 1, \ldots, \textit{N}. Construct a graph \textit{G} with nodes \prod_{\textit{i} \in \textit{I}} \textit{S_i} such that there is an edge from \textit{s_i} to \textit{s_j} in \textit{G} if and only if there is an edge from \textit{i} to \textit{j} in \textit{G}. Then the system of equations defining the quasiequilibria of \textit{G} satisfies the hypotheses of Theorem 1, so the number of such quasiequilibria in the generic case is given by the permanental formula.

For example, consider a game with 4 players, each with 3 pure strategies. Generically, such a game has

\[
\begin{pmatrix}
0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0
\end{pmatrix}
\]

\[
\text{per} = 297
\]

quasiequilibria.

But suppose now that game obeys a graphical model as in Figure 3.1. The nodes in the graphical model refer to the players, and the edges specify that the payoff to the source player depends on the actions of the target player. For brevity, write \(a = \sigma_1(s_{11})\), \(b = \sigma_2(s_{12})\), \(c = \sigma_2(s_{21})\), \(d = \sigma_2(s_{22})\), \(e = \sigma_3(s_{31})\), \(f = \sigma_3(s_{32})\), \(g = \sigma_4(s_{41})\), and \(h = \sigma_4(s_{42})\). Since the payoff to player 1 depends only on the actions of player 2, equating the payoff to player 1 from pure strategies \(s_{10}\) and \(s_{11}\) gives

\[
u_1(s_{10}, s_{20}, \bullet) \sigma_2(s_{20}) + u_1(s_{10}, s_{21}, \bullet) \sigma_2(s_{21}) + u_1(s_{10}, s_{22}, \bullet) \sigma_2(s_{22})
\]

\[
= u_1(s_{11}, s_{20}, \bullet) \sigma_2(s_{20}) + u_1(s_{11}, s_{21}, \bullet) \sigma_2(s_{21}) + u_1(s_{11}, s_{22}, \bullet) \sigma_2(s_{22})
\]
Thus for player 1 we have two equations of the form
\[\bullet e + \bullet d + \bullet = 0, \]
for player 2 we have two equations of the form
\[\bullet e + \bullet f + \bullet = 0, \]
for player 3 we have two equations of the form
\[\bullet g + \bullet h + \bullet = 0, \]
and for player 4 we have two equations of the form
\[\bullet a + \bullet b + \bullet = 0. \]

Then the associated polynomial graph is depicted in Figure 3. The equation associated with the node labelled 1a equates the payoffs to player 1 from choosing \(s_{11} \) (which 1 does with probability \(a \)) or choosing \(s_{10} \). The game has

\[
\begin{pmatrix}
0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

quasiequilibrium. Indeed, this will always be the case for a graphical model which is a directed cycle, where each player has the same number of pure strategies. The reason is that the indifference equations in this case are \textit{linear}, as we saw in this example.
The polynomial graph G as defined in Theorem 1 contains more refined information than the graphical model. The partition into the T_i’s also can be more refined than the partition of the set of all pure strategies into the sets of pure strategies for each player. Next we will see an example of such a refinement when considering the reduction of extensive-form games to normal-form, where actions correspond to branches of the game tree.

4. EXTENSIVE-FORM GAMES

Now we consider finite horizon extensive-form games. (See for example [8], Chapter 6.) Such a game takes place in a finite number of time steps, at each of which only a single player (possibly nature) may move. (Which player moves, and what actions the player is allowed to take, may depend on what moves were made previously.) Such a game is completely specified as follows. We specify a set of players $I = \{1, \ldots, N\}$, and we specify a game tree T: a finitely branching tree of finite depth in which each non-leaf node is labelled by a number in $0, \ldots, N$, each leaf is labelled by an N-tuple of real numbers, and each branch emanating from a (non-leaf) node labelled 0 is assigned a positive real weight, so that the total weight emanating from such a node is 1. (We consider the branches of this tree to be directed away from the root.)

Game play proceeds as follows. Each node of the tree represents a state of the environment. At each time step, if we are at a non-leaf node labelled by i in $1, \ldots, N$, then player i acts by choosing one of the branches emanating from that node. Then
the environment undergoes the transition to the node at the end of that branch, and
we advance to the next time step. If we are at a non-leaf node labelled by 0, then the
environment instead makes a random transition along one of the branches emanating
from that node; the probability of each branch is given by its weight. If we are at a
leaf node \(\lambda \) labelled by \((u_1(\lambda), \ldots, u_N(\lambda))\), then the game is over, and each player \(i\)
accrues utility \(u_i(\lambda)\). Thus, the leaf nodes are the outcomes of the game.

Unless otherwise specified, we will assume perfect information. Not only do all
players have common knowledge of the specification of the game, but whenever a
player is about to move, that player knows what moves have been made by all the
other players (including nature) up to that point.

Every extensive-form game is equivalent to a normal-form game. For each node
\(v\) of the game tree, we write \(E(v)\) for the set of edges emanating from \(v\). Then the
set of pure strategies of player \(i\) is

\[
S_i = \prod_{e \in T, \text{ label}(e) = i} E(v).
\]

Given a pure strategy profile \(s \in S = \prod_{i \in I} S_i\), we can compute the probability of each
leaf node \(\lambda\) of the game tree. A unique path \(v_0 v_1 \ldots v_m = \lambda\) leads from the root \(v_0\) of
\(T\) to \(\lambda\). Then \(\Pr[\lambda|s] = \prod_{j=0}^{m-1} \Pr[v_j \to v_{j+1}|s]\), where

\[
\Pr[v_j \to v_{j+1}|s] = \begin{cases}
1, & \text{if } v_j \text{ is labelled by } i \in I \text{ and } s_{iv_j} = (v_j \to v_{j+1}) \\
0, & \text{if } v_j \text{ is labelled by } i \in I \text{ and } s_{iv_j} \neq (v_j \to v_{j+1}) \\
\text{wt}(v_j \to v_{j+1}), & \text{if } v_j \text{ is labelled by } 0
\end{cases}
\]

and so the utility functions of the normal-form game are given by

\[
u_i(s) = \sum_{\lambda \in S} u_i(\lambda) \Pr[\lambda|s].\]

We note that the game specification implies certain equalities among the numbers
\(u_i(s)\). If we consider the set of normal-form games with a fixed set of players \(I\) and
outcomes \(S\) to be a linear space with basis \(\{u_i(s) : s \in S\}\), then the extensive-form
games with the same set of players \(I\) and a fixed game tree having \(S\) as the set of
outcomes lie in a linear subspace of this space, given by these equalities. Let \(A\) be the
set of non-leaf nodes of the tree which are not labelled by 0. Then we can identify \(S\)
with \(\prod_{v \in A} E(v)\). For any \(s \in S\) and \(v \in A\), we write \(s_v = s_{iv}\), where \(i\) is the label of
\(v\). Suppose \(v \in A\) is an ancestor of \(\mu \in A\). Then \(v\) has a unique child \(\alpha\) that is also
an ancestor of \(\mu\) (possibly \(\mu\) itself). Let \(\beta\) be any other child of \(v\). If \(s, s' \in A\) with
\(s_v = (v \to \beta)\) and

\[
s'_v = \begin{cases}
eq, & v = \mu \\
\neq, & \text{otherwise}
\end{cases}
\]

for some edge \(e \in E(\mu)\), then \(u_i(s) = u_i(s')\). This is because \(\Pr[\lambda|s] = \Pr[\lambda|s'] = 0\)
unless \(\lambda\) is a descendant of \(\beta\) or \(\lambda\) is not a descendant of \(v\), and in either case \(\lambda\)
cannot be a descendant of \(\mu\). In short, the node \(\mu\) is never reached, so it doesn’t
matter which action is chosen there.

If different players act at \(v\) and \(\mu\), then there is no way to eliminate this redundancy,
but when the same player \(i\) acts at \(v\) and \(\mu\), we can do so. In this case we replace
all the pure strategies which are forced to be equal by a single pure strategy, called a
reduced pure strategy. See for example [8], p. 94.
We note that after iterated elimination of strictly dominated pure strategies, for any node all of whose children are leaves, the payoffs to the player who acts at that node must be equal at all these child leaves. If nature acts at such a node whose children are leaves, then we can replace \(v \) by a leaf with utilities \(u_i(v) = \sum_{i=1}^k \text{wt}(v \to \lambda_i) u_i(\lambda_i) \) for each \(i \in I \). So we assume nature never acts at such nodes.

For extensive-form games, the equilibrium concept can be refined. Each subtree of the game tree induces a new extensive-form game, called a subgame. Each pure strategy of the original game induces a pure strategy of each subgame by restriction to that subtree, and thus each strategy profile of the original game induces a strategy profile of each subgame. A strategy profile is a subgame perfect Nash equilibrium of an extensive-form game if it induces a Nash equilibrium of each subgame.

We can find a subgame perfect pure strategy Nash equilibrium by backwards induction. We construct the pure strategy profile as follows. We perform iterated elimination of strictly dominated strategies. Then at each node all of whose children are leaves, we choose one leaf (recall that the payoffs of all leaves for the player who acts at that node will be the same). We assign this branch to the corresponding component of the pure strategy profile, replace this node by this leaf, and repeat the procedure on the resulting subtree.

We begin our analysis of totally mixed Nash equilibria of extensive form games by noting the following:

Theorem 6. All totally mixed Nash equilibria of an extensive form game are subgame perfect.

Proof. Let \(\sigma \) be a totally mixed Nash equilibrium of an extensive form game with \(N \) players defined by game tree \(T \). Note that the strategy profile induced by \(\sigma \) on every subgame is also totally mixed. Let \(v \) be a non-leaf node of \(T \). Let \(\tilde{\sigma} \) be the strategy profile induced by \(\sigma \) in the subgame induced by \(v \). Let \(\tilde{s}_j \) and \(\tilde{t}_j \) be pure strategies of player \(j \) in this subgame. Choose an action for \(j \) at each node \(\mu \) that is not a descendant of \(v \) where \(j \) acts, such that if \(\mu \) is an ancestor of \(v \) then \(j \) chooses the branch leading towards \(v \), and use this choice to extend \(\tilde{s}_j \) and \(\tilde{t}_j \) to pure strategies \(s_j \) and \(t_j \) of player \(j \) in the original game. (So, \(s_j \) and \(t_j \) specify the same actions outside the subtree.) Let \(v_0 \ldots v_m = v \) be the unique path from the root \(v_0 \) of \(T \) to \(v \). We have \(u_j(s_j, \sigma_{-j}) = u_j(t_j, \sigma_{-j}) \). Let \(L \) be the set of all leaves of \(T \) under \(v \) and \(L' \) be the set of all other leaves. Then

\[
u_j(s_j, \sigma_{-j}) = \sum_{\lambda \in L} u_j(\lambda) \Pr[\lambda|s_j, \sigma_{-j}] + \sum_{\lambda \in L'} u_j(\lambda) \Pr[\lambda|s_j, \sigma_{-j}]
\]

\[
= \sum_{\lambda \in L} u_j(\lambda) \Pr[\lambda|s_j, \sigma_{-j}] + \sum_{\lambda \in L'} u_j(\lambda) \Pr[\lambda|t_j, \sigma_{-j}]
\]

since \(s_j \) and \(t_j \) choose the same actions outside the subtree. Thus

\[
\sum_{\lambda \in L} u_j(\lambda) \Pr[\lambda|s_j, \sigma_{-j}] = \sum_{\lambda \in L} u_j(\lambda) \Pr[\lambda|t_j, \sigma_{-j}].
\]

Furthermore, for any \(\lambda \in L \), we have

\[
\Pr[\lambda|s_j, \sigma_{-j}] = \Pr[\lambda|\tilde{s}_j, \tilde{\sigma}_{-j}] \prod_{k=0}^{m-1} \Pr[v_k \to v_{k+1}|s_j, \sigma_{-j}]
\]

\[
= \Pr[\lambda|\tilde{s}_j, \tilde{\sigma}_{-j}] \prod_{k=0}^{m-1} \Pr[v_k \to v_{k+1}|t_j, \sigma_{-j}].
\]
Noting that the common factor $\prod_{k=0}^{n-1} \Pr[v_k \to v_{k+1}[(t_j, \sigma_{-j})]]$ in equation (1) is positive by our choice of s_j, t_j and because σ is totally mixed, we have that

$$u_j(\tilde{s}_j, \tilde{\sigma}_{-j}) = \sum_{\lambda \in L} u_j(\lambda) \Pr[\lambda](\tilde{s}_j, \tilde{\sigma}_{-j})$$

$$= \sum_{\lambda \in L} u_j(\lambda) \Pr[\lambda](\tilde{t}_j, \tilde{\sigma}_{-j})$$

$$= u_j(\tilde{t}_j, \tilde{\sigma}_{-j}).$$

Thus $\tilde{\sigma}$ is a (totally mixed) Nash equilibrium of the subgame induced by v. \qed

In light of this observation, the divide-and-conquer approach to finding all Nash equilibria of a normal form game can be modified in the spirit of backwards induction to finding all subgame perfect equilibria (including mixed ones) of an extensive form game. Recall that in a normal form game, we would consider subproblems in which one pure strategy of one player i was removed. Now we instead consider subproblems in which, for some edge $v \rightarrow \mu$ where i acts at v, we delete that edge and the entire subtree below μ. We compute the normal form for the game described by this pruned tree and recursively find all its subgame perfect equilibria. Each such equilibrium σ induces an equilibrium $\tilde{\sigma}$ in the subgame under v in the pruned tree. To check whether σ is an equilibrium of the original game, we recursively compute all the equilibria of the subgame under μ (where i does not act), and check that for each such equilibrium τ, we have $u_i(\tilde{\sigma}) \geq u_i(\tau)$.

We saw during the above proof that for a totally mixed strategy profile σ, the equations $u_j(s_j, \sigma_{-j}) = u_j(t_j, \sigma_{-j})$ for all pure strategies s_j, t_j of j imply the corresponding equations for each subtree. The converse implication also clearly holds.

We will now associate a polynomial graph to a system of equations for the quasiequilibria of an extensive-form game, so that we can apply Theorem 1. For each node in the game tree where a player acts, we will have a variable for every edge emanating from that node except one distinguished edge. This is because the sum of the probabilities of choosing each of those edges must be 1, so we eliminate one variable. Thus, we compare the payoffs between choosing the distinguished edge and choosing any other edge. The equations will be indifference equations for subgames of the extensive-form game.

Theorem 7. The set of quasiequilibria of a generic extensive-form game is either empty or has positive dimension.

Proof. Consider an extensive form game with players $I = 1, \ldots, N$ and game tree T. Let A be the set of non-leaf nodes in T not labelled by 0. For each $v \in A$, let $E(v)$ be the set of edges emanating from v. For each $v \in A$, let i be the player which acts at v and pick an element $e_v \in E(v)$. Let $d = \sum_{v \in A} |E(v) - 1|$ and partition d as $\bigcup_{v \in A} (E(v) - \{e_v\})$. Define a directed graph G on a set of d vertices

$$\bigcup_{v \in A} \{n_e \mid e \in E(v) - \{e_v\}\}$$

as follows: there is an edge from n_e with $e \in E(v) - \{e_v\}$ to $n_{e'}$ with $e' \in E(\mu) - \{e_{j\mu}\}$ if $i \neq j$, v is an ancestor of μ, either e or e_v lies on the path from v to μ, and if i acts at some node k between v and μ, then the edge e_{ik} lies on the path from v to μ. We will define a system of equations equivalent to the equations defining totally mixed Nash equilibria of the extensive form game and satisfying conditions 1 to 3 of Theorem 1. The polynomial graph G is acyclic, so Corollary 3 implies our assertion.
First we must state what the equations are. Fix a node \(v \in A \) and let \(i \) be the player which acts at \(v \). Then \(|E(v)| - 1 \) equations refer to the subgame induced by this node. For each \(e \in E(v) \), define the pure strategy \(s_{ie} \) of \(i \) in this subgame by
\[
s_{ij}(v) = e \quad \text{and} \quad s_{ie}(\mu) = e_{ij} \quad \text{for any node} \ \mu \ \text{below} \ v \ \text{where} \ i \ \text{acts.}
\]
Writing \(\bar{\sigma} \) for the strategy profile induced by \(\sigma \) in the subgame under \(v \), the \(|E(v)| - 1 \) equations are the equations \(u_i(s_e, \bar{\sigma}_{-i}) = u_i(s_{ie}, \bar{\sigma}_{-i}) \) for \(e \in E(v) - \{e_{iv}\} \). In these equations \(\sigma_{ij} \) for every \(\mu \) below \(v \) where \(i \) does not act, by substituting
\[
1 - \sum_{e \in \bar{E}(\mu) - \{e_{ij}\}} \sigma_j(e) \quad \text{for} \quad \sigma_j(e_{ij}).
\]
These are some of the indifference equations for the subtree below \(v \), which as we saw in the previous theorem are implied by the indifference equations for the whole tree. We show by induction that these equations also imply all the indifference equations for the subtree below \(v \). (Thus we will have the indifference equations for every subtree, and hence the whole tree, i.e., the original game.) Firstly, \(i \) is indifferent between all \(i \)'s pure strategies in the subgame below \(v \), because although we fixed \(i \)'s pure strategies at nodes \(\mu \) below \(v \) where \(i \) acts to be \(e_{ij} \), we also have that \(i \) is indifferent between \(i \)'s pure strategies in the subgame below \(\mu \) by the induction hypothesis. Secondly, consider any other player \(j \). Let \(\mu_1, \ldots, \mu_m \) be the nodes below \(v \) where \(j \) acts, such that \(j \) does not act at any node between \(v \) and \(\mu_k \) for any \(k \). Let \(\bar{s}_j, \bar{t}_j \) be pure strategies of \(j \) in the subgame below \(v \), and write \(\bar{s}_{jk}, \bar{t}_{jk} \) for the respective induced pure strategies of \(j \) in the subgame below \(\mu_k \). So \(\bar{s}_j = (\bar{s}_{j1}, \ldots, \bar{s}_{jm}) \) and \(\bar{t}_j = (\bar{t}_{j1}, \ldots, \bar{t}_{jm}) \). Write the set \(L \) of leaves below \(v \) as
\[
L = L_0 \cup \bigcup_{k=1}^m L_k,
\]
where \(L_0 \) is the set of leaves \(\lambda \) such that \(j \) does not act between \(v \) and \(\lambda \) and \(L_k \) is the set of leaves below \(\mu_k \) for \(k = 1, \ldots, m \). Then
\[
u_j(\bar{s}_j, \bar{\sigma}_{-j}) = \sum_{\lambda \in L} u_j(\lambda | \bar{s}_j, \bar{\sigma}_{-j})
\]
\[
= \sum_{\lambda \in L_0} u_j(\lambda | \bar{\sigma}_{-j}) + \sum_{k=1}^m \sum_{\lambda \in L_k} u_j(\lambda | \bar{s}_{jk}, \bar{\sigma}_{-j})
\]
\[
= \sum_{\lambda \in L_0} u_j(\lambda | \bar{\sigma}_{-j}) + \sum_{k=1}^m \sum_{\lambda \in L_k} u_j(\lambda | \bar{t}_{jk}, \bar{\sigma}_{-j})
\]
\[
= u_j(\bar{t}_j, \bar{\sigma}_{-j})
\]
since for each \(k \), \(\sum_{\lambda \in L_k} u_j(\lambda | \bar{s}_{jk}, \bar{\sigma}_{-j}) = \sum_{\lambda \in L_k} u_j(\lambda | \bar{t}_{jk}, \bar{\sigma}_{-j}) \) by the induction hypothesis.

We can already see that the set of solutions to these equations, if nonempty, is positive-dimensional. If player \(i \) acts at the root \(v \), then for any edge \(e \) emerging from \(v \), \(\sigma_i(e) \) does not appear in any of the equations.

All the monomials occurring in these equations are squarefree. For each leaf \(\lambda \) under \(v \), let the path from \(v \) to \(\lambda \) be \(v = v_1 \ldots v_k = \lambda \). Then for any player \(j \) with pure strategy \(\bar{s}_j \), we have
\[
\Pr[\lambda | \bar{s}_j, \bar{\sigma}_{-j}] = \prod_{k=1}^n \Pr[\lambda_{v_k} \rightarrow v_{k+1} | \bar{s}_j, \bar{\sigma}_{-j}],
\]
and each nonconstant term in the product is \(\sigma_n(v_i \rightarrow v_{i+1}) \) for some player \(n \neq j \). So for any edge \(e \) where \(n \) acts, the variable \(\sigma_n(e) \) occurs at most once in such a product. In fact \(\sigma_n(e) \) occurs in such a product for at most one \(e \in E(v) \). (That is, if \(e, e' \in E(v) \) then \(\sigma_n(e) \) and \(\sigma_n(e') \) do not both occur in this monomial. So condition 2 of Theorem 1 holds.)

When we eliminate \(\sigma_n(e_{iv}) \), we replace it by an affine expression, so this remains true. Thus condition 1 of Theorem 1 holds.

The equations corresponding to \(E(v) - \{e_{iv}\} \) concern only the subgame below \(v \), so \(\sigma_j(\mu \rightarrow \kappa) \) occurs in these equations only if \(v \) is an ancestor of \(\mu \). Furthermore, if
i acts at \(\kappa \) below \(v \), then \(\sigma_i(e) \) does not occur for any edge \(e \in E(\kappa) - \{e_\kappa\} \), since we fix that \(i \) chooses \(e_\kappa \). For the same reason \(\sigma_j(e) \) does not occur for \(e \in E(\mu) - \{e_\mu\} \) for any \(\mu \) that lies below \(\kappa \) but not below \(e_\kappa \). Thus condition 3 holds.

Our result does not contradict Harsanyi’s generic finiteness theorem [2], because generically, iterated elimination of weakly dominated strategies/backward induction will lead to a unique subgame perfect equilibrium (and so indeed there will be no totally mixed Nash equilibria). On the other hand, another way to look at our result is that in every interesting extensive-form game—one which is not completely solved by backward induction, giving a unique equilibrium—the set of totally mixed Nash equilibria is also interesting; it has positive dimension.

In particular, if \(v \) is a node all of whose children are leaves, the equations corresponding to \(v \) will be equations between constants, stating that for the player \(i \) who acts at \(v \), the utilities \(u_i(\lambda) \) at all the leaves \(\lambda \) below \(v \) must be equal. This is true if iterated elimination of strictly dominated pure strategies has already been performed on this game.

It is clear that the system of equations we obtained is not canonical, since we have made arbitrary choices of the edges \(e_v \) and the subtrees below each possible choice are different. Choosing a different system may make it easier to compute the set of quasiequilibria.

We now present an example where the set of totally mixed Nash equilibria is a positive-dimensional semialgebraic variety. Consider the extensive form game specified in Figure 4. The polynomial graph associated with this game tree is depicted in Figure 3.4. For brevity, we write for example \(\sigma_1(C) \) for \(\sigma_1(A \rightarrow C) \). The quasiequilibria obey a system of 4 equations as in Theorem 7. The equation associated with the edge \(E \rightarrow G \) equates the payoff to player 3 from choosing this edge with that from choosing the edge \(E \rightarrow F \), i.e., \(u_3(F) = u_3(G) \). No variables occur in this equation, that is, it is an equation between constants. Similarly, the equation associated with the edge \(E \rightarrow H \) is \(u_3(F) = u_3(H) \). The equation associated with the edge \(C \rightarrow E \) is \(u_2(D) = u_2(E) \), where we have written \(u_2(E) \) for the expected payoff \(u_2(E, \sigma_{-2}) \) to player 2 for choosing the edge \(C \rightarrow E \), given the strategy profile of the other players. In this case \(u_2(E) = u_2(F) \sigma_3(F) + u_2(G) \sigma_3(G) + u_2(H) \sigma_3(H) \), so

\[
u_3(D) = u_2(F) + (u_2(G) - u_2(F)) \sigma_3(G) + (u_2(H) - u_2(F)) \sigma_3(H).
\]

Finally, the equation associated to the edge \(A \rightarrow C \) is

\[
u_1(B) = u_1(C)
\]

\[
= u_1(D) (1 - \sigma_2(E)) + u_1(F) \sigma_2(E) (1 - \sigma_3(G) - \sigma_3(H)) + u_1(G) \sigma_2(E) \sigma_3(G) + u_1(H) \sigma_2(E) \sigma_3(H).
\]

Looking at the specific payoffs in Figure 4, we see that the payoffs to player 3 for choosing \(F \), \(G \), or \(H \) are equal, as required. Equating the payoffs to player 2 for choosing \(D \) or \(E \), we get \(6 \sigma_3(H) = 2 \), or \(\sigma_3(H) = \frac{1}{3} \). This leaves \(\sigma_3(G) \) free to vary such that \(0 < \sigma_3(G) < \frac{2}{3} \). Finally, we must equate the payoffs to player 1 for choosing \(B \) or \(C \). This gives

\[
2(1 - \sigma_2(E)) + \sigma_2(E) (\sigma_3(G) + 1) = \frac{3}{2}
\]

or

\[
\sigma_2(E) (1 - \sigma_3(G)) = \frac{1}{2}.
\]
Thus the points $\sigma_3(G)$ and $\sigma_2(E)$ lie on a hyperbola. This hyperbola intersects the interior of the product of simplices. For instance, the point $\sigma_3(G) = \frac{5}{12}$ (so $\sigma_3(F) = \frac{1}{3}$) and $\sigma_2(E) = \frac{5}{9}$ lies in this intersection. So the set of quasiequilibria is a portion of a hyperbolic cylinder, the product of a segment of a hyperbola with a line segment (since $\sigma_1(B)$ varies freely with $0 < \sigma_1(B) < 1$).

We can analyze this game a little further. Player 3 would like player 1 to sometimes choose B, but cannot force player 1 always to choose B, since if player 2 always chooses D then both player 1 and player 2 are better off with player 1 choosing C. The best player 3 can do is make the payoffs to player 1 from choosing B and C equal. Now if player 3 made player 2 get a greater payoff from choosing D than E, then player 2 would always choose D, player 1 would always choose B, and player 3 would get nothing. So player 3 must make $u_2(D) \leq u_2(E)$. We analyzed the case $u_2(D) = u_2(E)$ above. If player 3 makes $\sigma_3(H) > \frac{1}{3}$, then $u_2(D) < u_2(E)$ and player 2 will always choose E. Then the payoff to player 1 from choosing C is $\sigma_3(G) + 3 \sigma_3(H)$. Thus we have $\sigma_3(G) + 3 \sigma_3(H) = \frac{1}{3}$ with $\frac{1}{9} < \sigma_3(H) \leq \frac{1}{9}$ (this makes $0 \leq \sigma_3(G) < \frac{1}{3}$ and $\frac{1}{9} < \sigma_3(F) \leq \frac{1}{3}$). Then $\sigma_1(C)$ varies freely with $0 \leq \sigma_1(C) \leq 1$, so we have a rectangle of partially mixed equilibria. Player 3 is better off choosing these, since then the outcome D where player 3 gets zero payoff is never reached. Along the line $\sigma_3(G) + 3 \sigma_3(H) = \frac{1}{2}$, equilibria with greater $\sigma_3(H)$
Figure 4. Associated Polynomial Graph For An Extensive Form Game

Pareto dominate those with smaller $\sigma_3(H)$, i.e., they make some player better off and no player worse off. Specifically, the payoff to player 2 increases, the payoff to player 1 is always $\frac{3}{2}$, and the payoff to player 3 stays the same at $2(1 - \sigma_1(C)) + \sigma_1(C) = 2 - \sigma_1(C)$. Thus the Pareto dominant equilibrium among those on this line is that player 3 has $\sigma_3(F) = \frac{1}{2}$, $\sigma_3(G) = 0$, and $\sigma_3(H) = \frac{1}{2}$. On the other hand, at the pure strategy equilibrium where player 3 always chooses H, we have that player 1 always chooses C, and the payoff to player 3 falls from $2 - \sigma_1(C)$ to 1. Thus player 3 does not prefer this equilibrium, and instead mixes F and H equally to have some chance of a higher payoff. As $\sigma_1(C)$ increases, the payoff to player 3 decreases and the payoff to player 2 increases, so the equilibria along this line do not Pareto dominate each other. Thus without introducing other issues (such as risk-aversion) there is no criterion for predicting which of the equilibria along the line $0 < \sigma_1(C) < 1$, $\sigma_2(E) = 1$, $\sigma_3(F) = \sigma_3(H) = \frac{1}{2}$ should be chosen.

5. Games With Emergent Node Tree Structure

So far we have been discussing normal form games with finite numbers of players, each with a finite number of pure strategies. Such a game is defined by giving a set of players $I = \{1, \ldots, N\}$, for each player i a finite set of pure strategies S_i, and for each pure strategy profile σ (element of the product $S = \prod_{i \in I} S_i$) and each player i
the utility $u_i(\sigma)$ received by that player when that strategy profile is played. Now we will introduce a particular kind of structure that a normal form game may have.

We now define an emergent node tree structure on a normal form game. This is a new model for games in which the players can be hierarchically decomposed into groups. Usually such hierarchical decomposition is discussed in the framework of cooperative game theory. Instead, we define certain conditions on the payoff functions in a noncooperative game such that a given hierarchical decomposition “makes sense”, in a way that we will define precisely. At the end of this section we briefly describe how our framework relates to that of cooperative game theory.

Definition. An emergent node tree structure on a normal form game with player $I = \{1, \ldots, N\}$, pure strategy sets S_i for $i \in I$, and utility functions $u_i : \prod_{i \in I} S_i \to \mathbb{R}$ to consist of:

- A tree T with N leaves. The leaves are in bijection with the players $I = \{1, \ldots, N\}$. Write C_v for the set of children of a node $v \in T$, B_v for the set of its siblings, and $f(v)$ for its parent.
- For each non-leaf, non-root node v of the tree (which we call an emergent player), a set S_v of pure strategies, with $|S_v| \leq \prod_{w \in C_v} |S_w|$.
- For each non-leaf, non-root node v, for each element s_{C_v} of the product $S_{C_v} = \prod_{w \in C_v} S_w$ of the pure strategies of its children and each element s_v of S_v, a number $p_v(k, s_{C_v})$ signifying the probability that the (emergent) strategy of the emergent player v is s_v when the strategies of its children are given by s_{C_v}. So if v has K pure strategies, then $\sum_{k=1}^{K} p_v(k, s_{C_v}) = 1$. If the children of v execute a mixed strategy, then the emergent mixed strategy of v is given by multilinearity. Thus we have defined a linear map from the strategy space of the children to the strategy space of the parent. We require that this map have full rank.
- For each non-root node v (including the leaf nodes), real numbers γ_{vw} for each non-root ancestor w of v and real numbers $U_v(s)$ for each element $s \in S_v \times \prod_{w \in B_v} S_w$. From these we define a utility function u_v, which is a sum of two terms: $U_v(\sigma_{v, B_v})$, a multilinear function of the strategies executed by v and its siblings in B_v, and $\sum_{\text{nonroot ancestors } w} \gamma_{vw} u_w$. We require that the utility function u_v at a leaf node v be equal to the utility function u_i of the player i corresponding to the leaf node v.

We will refer to an emergent node tree structure as an ENT for short. Note that for a given normal form game, we can always define a class of ENTs by defining a tree with a single emergent node (the root node), so that all the leaf nodes are siblings. We call such an ENT trivial. For any given normal form game, there need be no nontrivial ENT, or there may be many distinct possible ENTs.

The behavior of the emergent players is completely determined by the behavior of the actual players (the leaf nodes). The emergent strategy σ_v executed by the emergent player v when the actual players execute strategy profile σ is defined recursively by multilinearity:

$$\sigma_v(s_{vk}) = \sum_{i \in S_{C_v}} p_v(k, s) \prod_{w \in C_v} \sigma_w(s_w).$$

So we compute the emergent strategies from the bottom up.
From the above definition, we see that at a non-root node w of the tree, the utility function is

$$u_w(\sigma) = U_w(\sigma_w) + \sum_{\text{nonroot ancestor } v} \gamma_{wv} u_v(\sigma)$$

$$= \sum_{s \in S_w} U_w(s) \prod_{x \in B_w} \sigma_x(s_x) + \sum_{\text{nonroot ancestor } v} \gamma_{wv} u_v(\sigma).$$

So we compute the utility from the top down.

We see that the utilities of each actual player (the leaf nodes) may depend on the strategies executed by every other actual player. So, the graphical model of the actual game may be the complete graph. Imposing an emergent node tree structure, corresponds to deleting some of these edges and adding more nodes, and edges connected to those nodes, to the graph, so that the new graph has a nontrivial structure. With the addition of the new variables $\sigma_v(s_{vk})$, we get more information about the sparsity of our multilinear equations.

In our definition, we did not require that the numbers $\gamma_{v,w}$ have the same sign for all descendants v of a node w. Thus, our definition does not require that the emergence of a node represent a common interest among its descendant nodes (although of course it does cover that situation).

For example, consider a normal form game with the ENT in Figure 5 where the leaf nodes correspond to

1. An American citizen

2. Soviet saboteur

3. Soviet citizen

4. American saboteur

5. America

6. Soviet Union

7. World

Figure 5. Emergent Node Structure For The Saboteur Game
A Soviet saboteur living in America
A Soviet citizen
An American saboteur living in the USSR

The parent of nodes 1 and 2 is node 5, corresponding to America, the parent of nodes 3 and 4 is node 6, corresponding to the USSR, and the the root is node 7, corresponding to the world. Then while \(\gamma_{15} > 0 \) and \(\gamma_{36} > 0 \), we have \(\gamma_{25} < 0 \) and \(\gamma_{46} < 0 \).

We now define a natural refinement of the equilibrium concept for games with an ENTs.

Definition. If a normal form game has an ENT as defined above, then a Nash equilibrium \(\sigma \) of that game is **hierarchically perfect** with respect to this ENT if for every emergent node \(v \), given the strategies induced on the siblings of \(v \) by \(\sigma \), the payoff \(u(v) \) at \(v \) cannot be increased by changing only \(\sigma(v) \).

Note that since our definition requires the linear map from the strategy space of the children of \(v \) to the strategy space of \(v \) to be full-rank, any strategy \(\sigma'(v) \) deviating from \(\sigma(v) \) which could result in a higher payoff \(u(v) \) would be achievable by some strategy profile of the descendants of \(v \).

We will also need the following definition:

Definition. A strategy profile of a normal form game with an ENT is **totally mixed with respect to this ENT** if it is totally mixed in the usual sense and the emergent strategies at each emergent node are also totally mixed.

Theorem 8. For a generic game with an ENT as above, construct a directed graphical model \(G \) whose nodes are the nodes of the tree except the root, with edges as follows: the children in \(T \) of a node \(v \) form a directed clique in \(G \), and each such child also has a directed edge from \(v \) and each ancestor of \(v \) except the root, and from each of their siblings. Then the Bernstein number we obtain by applying Theorem 5 to this directed graphical model is an upper bound on the number of totally mixed Nash equilibria of this game which are hierarchically perfect and totally mixed with respect to this ENT.

Proof. This is the graphical model we would obtain if all the emergent players were actual players. That is, we have ignored the equations

\[
\sigma_v(s_{vk}) = \sum_{s \in S_{Cr}} p_v(k, s) \prod_{w \in C_v} \sigma_w(s_w).
\]

So the set of totally mixed Nash equilibria of our game which are hierarchically perfect with respect to this ENT is a subset of the set of totally mixed Nash equilibria of the game with this graphical model.

Generically, there may be no hierarchically perfect totally mixed Nash equilibria. If the system of equations defining the quasiequilibria of the game with the directed graphical model is 0-dimensional, then none of the finitely many solutions to this system may satisfy the additional equations

\[
\sigma_v(s_{vk}) = \sum_{s \in S_{Cr}} p_v(k, s) \prod_{w \in C_v} \sigma_w(s_w).
\]

For example, consider a game as in Figure 5 in which each actual player has two pure strategies and each emergent player also has two pure strategies. Generically, a
game with 4 players, each with 2 pure strategies, would have

\[
\text{per} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} = 9
\]

quasiequilibria. On the other hand, if the game has an ENT as in Figure 5, then the directed graphical model given by the theorem is as in Figure 5. Thus there is no more than

\[
\text{per} \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} = 1
\]

quasiequilibrium which is hierarchically perfect and totally mixed with respect to this ENT. Indeed this would hold whenever the ENT is a binary tree, that is, each non-leaf node has two children, and all siblings have the same number of pure strategies.

For example, say that if players 1 and 2 either both choose their 0th pure strategy or both choose their 1st pure strategy, then the emergent strategy of node 5 is \(s_{51} \), otherwise it is \(s_{50} \). Similarly, if players 3 and 4 either both choose their 0th pure strategy or both choose their 1st pure strategy, then the emergent strategy of node 6 is \(s_{61} \), otherwise it is \(s_{60} \). Let \(U_5 \) and \(U_6 \) be given by

\[
\begin{pmatrix} s_{60} & s_{61} \\ s_{50} & s_{51} \end{pmatrix} = \begin{pmatrix} 0, 0 & 7, 0 \\ 0, -1 & -5, 1 \end{pmatrix}
\]
(where the (i, j)th entry is the pair \(U_5(s_{1i}, s_{2j}) \), \(U_6(s_{3i}, s_{4j}) \)). Let \(\gamma_1 = \gamma_3 = 1 \) and \(\gamma_2 = \gamma_4 = -1 \). Let \(U_1 \) and \(U_2 \) be given by

\[
\begin{pmatrix}
 s_{20} & s_{21} \\
 s_{10} & \quad 0, \quad 0, \quad -1 \\
 s_{11} & \quad 1, \quad 0, \quad -4, \quad 1 \\
\end{pmatrix}
\]

\[(3)\]

and let \(U_3 \) and \(U_4 \) be given by

\[
\begin{pmatrix}
 s_{40} & s_{41} \\
 s_{30} & \quad 0, \quad 0, \quad -1 \\
 s_{31} & \quad 1, \quad 0, \quad -3, \quad 2 \\
\end{pmatrix}
\]

\[(4)\]

We abbreviate \(\sigma_i(s_{1i}) \) as \(\sigma_i \) by abuse of notation. At a totally mixed Nash equilibrium \(\sigma \) which is hierarchically perfect and totally mixed with respect to the ENT of Figure 5, we have

\[0 = U_5(s_{10}, \sigma_6) = U_5(s_{11}, \sigma_6) = 7(1 - \sigma_6) - 5 \sigma_6 = 7 - 12 \sigma_6, \text{ so } \sigma_6 = \frac{7}{12}.
\]

Similarly we have \(0 = -1 - \sigma_5 + 2 \sigma_5 = 2 \sigma_5 - 1 \) so \(\sigma_5 = \frac{1}{2} \).

We also have \(u_1(s_{10}, \sigma_2, \sigma_5, \sigma_6) = U_1(s_{10}, \sigma_2) + u_5(\sigma_5, \sigma_6), \) which we must equate to \(u_1(s_{11}, \sigma_2, \sigma_5, \sigma_6) = U_1(s_{11}, \sigma_2) + u_5(\sigma_5, \sigma_6), \) for hierarchical perfection (here we are ignoring the fact that \(\sigma_5 \) is a function of \(\sigma_1 \) and \(\sigma_2 \)). This gives us that

\[0 = U_1(s_{10}, \sigma_2) = U_1(s_{11}, \sigma_2) = (1 - \sigma_2) - 4 \sigma_2 = 1 - 5 \sigma_2, \text{ so } \sigma_2 = \frac{1}{5}.
\]

Similarly we have \(u_2(s_{20}, \sigma_1, \sigma_5, \sigma_6) = U_2(s_{20}, \sigma_1) - u_5(\sigma_5, \sigma_6), \) which we must equate to \(u_2(s_{21}, \sigma_1, \sigma_5, \sigma_6) = U_2(s_{21}, \sigma_1) - u_5(\sigma_5, \sigma_6), \) so \(U_2(s_{20}, \sigma_1) = U_2(s_{21}, \sigma_1) \). This gives \(0 = -(1 - \sigma_1) + 2 \sigma_1 - 1, \text{ so } \sigma_1 = \frac{1}{2}. \) We also have \(0 = (1 - \sigma_4) - 3 \sigma_4 = 1 - 4 \sigma_4, \text{ so } \sigma_4 = \frac{1}{4}, \) and \(0 = -(1 - \sigma_3) + 2 \sigma_3 = 3 \sigma_3 - 1, \text{ so } \sigma_3 = \frac{1}{2}. \)

Finally, we check that \(\sigma_1 \sigma_2 + (1 - \sigma_1)(1 - \sigma_2) = \frac{1}{10} + \frac{4}{10} = \frac{1}{2} = \sigma_3, \) and \(\sigma_3 \sigma_4 + (1 - \sigma_3)(1 - \sigma_4) = \frac{1}{12} + \frac{6}{12} = \frac{7}{12} = \sigma_6. \) Now given \(\sigma = 1 \), player 1 cannot increase either \(U_1 \) or \(U_5 \) by changing only \(\sigma_1 \), so player 1 cannot increase \(\sigma_1 \). Similarly, player 2 cannot increase \(U_1 \) or decrease \(U_5 \) by changing only \(\sigma_2 \), so player 2 cannot increase \(U_2 \). In this way, we see that \(\sigma \) is a Nash equilibrium of the actual game.

A strategy profile of the actual players is a point in the product of probability simplices corresponding to their actual strategy spaces. When we pass to an emergent player one level up, we project the product of simplices for the actual players below that emergent player to a smaller dimensional simplex, the space of emergent mixed strategies of this emergent player. That we are able to do this means that the payoffs to other actual players, not below this emergent player, depend only on the choice of a point in the smaller dimensional simplex by these actual players.

We can use ENTs to analyze certain cooperative games. We consider each coalition to be an emergent player. An actual player’s pure strategies specify the highest level of coalition to join. So the number of its pure strategies is the number of its ancestors in the tree (including itself). Each coalition forms if all its descendants agree to join it, otherwise it doesn’t form. The number of pure strategies of a coalition is one more than the number of its ancestors (including itself). Its pure strategies correspond either to the highest level of coalition containing this coalition which its members have agreed to form, or to not forming this coalition itself. The function \(\nu \) for each coalition \(\nu \) is zero if the coalition forms and is equal to the value of the coalition if it does form; it does not depend on the actions of \(\nu \)’s siblings. The number \(\nu \) represents \(\nu \)’s share of the gain from the larger coalition \(\nu \), if it forms.

Note that a given ENT does not allow all possible subsets of players to form coalitions, but only certain ones. We could extend the definition to all possible
subsets by positing that for any partition of a coalition into subcoalitions not in the
tree, the subcoalitions receives the same utility by joining or not joining the coalition.
Thus not all cooperative games correspond to ENTs. Those that do, however, may
often occur in modeling real situations.

REFERENCES
[1] D. N. Bernstein. The number of roots of a system of equations. Functional Analysis and Applications, 9(2):183–185, 1975.
[2] J. Harsanyi. Oddness of the number of equilibrium points: a new proof. International Journal of Game Theory, 2:235–250, 1973.
[3] M. Kearns, M. L. Littman, and S. Singh. Graphical models for game theory. Uncertainty in artificial intelligence: proceedings of the seventeenth conference, pages 253–260, 2001.
[4] A. G. Kouchmirenko. Newton polytopes and the Bezout theorem. Functional Analysis and Applications, 10:233–235, 1976.
[5] R. McKelvey and A. McLennan. The maximal number of regular totally mixed Nash equilibria. Journal of Economic Theory, 72:411–425, 1997.
[6] A. McLennan. The maximum number of real roots of a multihomogeneous system of polynomial equations. Beiträge zur Algebra und Geometrie, 40(2):343–350, 1999.
[7] J. Nash. Equilibrium points in N-person games. Proceedings of the National Academy of Sciences of the United States of America, 36:48–49, 1950.
[8] M. J. Osborne and A. Rubinstein. A Course In Game Theory. MIT Press, 1994.
E-mail address: datta@math.berkeley.edu
URL: http://math.berkeley.edu/~datta