Matter and Dark Matter from False Vacuum Decay

PLB 693 (2010) 421
In Collaboration with W. Buchmuller and K. Schmitz
Motivation

Obs: ∃ B Asymmetry of the Universe

\[\eta_B^{\text{obs}} \equiv \frac{n_B}{n_\gamma} \simeq 6 \times 10^{-10} \quad \Rightarrow \quad \eta_B^{\text{sym}} \simeq 10^{-18} \]

Q? How to generate B dynamically?
Motivation

Obs: $\exists B$ Asymmetry of the Universe

\[\eta_B^{\text{obs}} = \frac{n_B}{n_{\gamma}} \simeq 6 \times 10^{-10} \quad \Rightarrow \quad \eta_B^{\text{sym}} \simeq 10^{-18} \]

Q? How to generate B dynamically?

Prop: Use the seesaw N_R: (Baryogenesis through leptogenesis) \cite{Fukugida, Yanagida 97}:

- decay to LH pairs: generation of L asymmetry
- no SM gauge interaction: out-of-equilibrium
- generation of CP asymmetry
- L asymmetry converted to B through sphalerons

Baryon Asymmetry:

\[\eta_B = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} = n_{N}^{\text{eq}} \epsilon_{CP} + \epsilon_{sph} \]
Motivation

Obs: ∃ B Asymmetry of the Universe

\[\eta_B^{\text{obs}} \equiv \frac{n_B}{n_\gamma} \simeq 6 \times 10^{-10} \implies \eta_B^{\text{sym}} \simeq 10^{-18} \]

Q? How to generate B dynamically?

Prop: Use the seesaw \(N_R \): (Baryogenesis through leptogenesis) [Fukugida, Yanagida 97]:

- decay to LH pairs: generation of \(L \) asymmetry
- no SM gauge interaction: out-of-equilibrium
- generation of CP asymmetry
- \(L \) asymmetry converted to B through sphalerons

Baryon Asymmetry:

\[\eta_B \equiv \frac{n_B - n\bar{B}}{n_\gamma} = n_N^{eq} \epsilon_{CP} \kappa \epsilon_{sph} \]

Hierarchical \(N_R \) → \(M_1 \gtrsim 10^{10} \text{ GeV} \) Thermal \(N_R \) production → \(T_L \gtrsim 10^{10} \text{ GeV} \)
Leptogenesis vs. SUSY

Tension: unstable gravitinos: BBN constraint [Kawasaki, Kohri, Moroi 05]

\[T_R \leq 10^5 \text{ GeV} \]
Leptogenesis vs. SUSY

Virtue: stable gravitinos as DM: Thermal production [Bolz et al. 01; Pradler & Steffen 06]:

\[
\Omega_G h^2 = 0.27 \left(\frac{T_R}{10^{10} \, \text{GeV}} \right) \left(\frac{100 \, \text{GeV}}{m_G} \right) \left(\frac{m_{\tilde{\tau}}}{1 \, \text{TeV}} \right)^2
\]

→ \(\Omega_G h^2 \approx \Omega_{DM}^{obs} h^2 \) for typical supergravity and leptogenesis parameters

Tension: unstable gravitinos:

BBN constraint [Kawasaki, Kohri, Moroi 05]

\(T_R \leq 10^5 \, \text{GeV} \)
Leptogenesis vs. SUSY

Virtue: stable gravitinos as DM: Thermal production [Bolz et al. 01; Pradler & Steffen 06]:

\[
\Omega_G h^2 = 0.27 \left(\frac{T_R}{10^{10} \text{ GeV}} \right) \left(\frac{100 \text{ GeV}}{m_G} \right) \left(\frac{m_\tilde{g}}{1 \text{ TeV}} \right)^2
\]

\[\Rightarrow \Omega_G h^2 \approx \Omega_{DM}^\text{obs} h^2\] for typical supergravity and leptogenesis parameters

Tension: unstable gravitinos: BBN constraint [Kawasaki, Kohri, Moroi 05]:

\[T_R \leq 10^5 \text{ GeV}\]

Q? Why \(T_L\) and \(T_R\) have the same order of magnitude?
Thermal leptogenesis: typical parameters

- Heavy Majorana neutrino mass: $M_1 \sim 10^{10} \text{ GeV}$
- Effective neutrino mass: $\tilde{m}_1 \equiv \frac{(m_D^\dagger m_D)_{11}}{M_1} \sim 10^{-2} \text{ eV}$

→ Heavy Majorana neutrino has a width of: $\Gamma_{N_1}^0 = \frac{\tilde{m}_1}{8\pi} \left(\frac{M_1}{v_{EW}} \right)^2 \sim 10^3 \text{ GeV}$
Observation

Thermal leptogenesis: typical parameters

- Heavy Majorana neutrino mass \(M_1 \sim 10^{10} \text{ GeV} \)
- Effective neutrino mass
 \[\tilde{m}_1 \equiv \frac{(m_D^\dagger m_D)_{11}}{M_1} \sim 10^{-2} \text{ eV} \]

→ Heavy Majorana neutrino has a width of
 \[\Gamma_{N_1}^0 = \frac{\tilde{m}_1}{8\pi} \left(\frac{M_1}{v_{EW}} \right)^2 \sim 10^3 \text{ GeV} \]

Reheating: through particle decays with \(\Gamma \) width

\[T_R = \left(\frac{90}{8\pi^3 g_\ast} \right)^{1/4} \sqrt{\Gamma M_P} \]
Observation

Thermal leptogenesis: typical parameters

- Heavy Majorana neutrino mass \(M_1 \sim 10^{10} \text{ GeV} \)
- Effective neutrino mass \(\tilde{m}_1 \equiv \frac{(m_D^\dagger m_D)_{11}}{M_1} \sim 10^{-2} \text{ eV} \)

→ Heavy Majorana neutrino has a width of \(\Gamma_{N_1}^0 = \frac{\tilde{m}_1}{8\pi} \left(\frac{M_1}{v_{\text{EW}}} \right)^2 \sim 10^3 \text{ GeV} \)

Reheating: through particle decays with \(\Gamma \) width

\[
T_R = \left(\frac{90}{8\pi^3 g_*} \right)^{1/4} \sqrt{\Gamma M_P}
\]

Assume: \(N_1 \) neutrino decays responsible for reheating

→ \(T_R \sim 10^{10} \text{ GeV} \) i.e. temperature to produce \(\tilde{G} \) Dark Matter!
Observation

Thermal leptogenesis: typical parameters

- Heavy Majorana neutrino mass \(M_1 \sim 10^{10} \text{ GeV} \)
- Effective neutrino mass \(\tilde{m}_1 \equiv \frac{(m_D^\dagger m_D)_{11}}{M_1} \sim 10^{-2} \text{ eV} \)

→ Heavy Majorana neutrino has a width of \(\Gamma_{N_1}^0 = \frac{\tilde{m}_1}{8\pi} \left(\frac{M_1}{v_{EW}} \right)^2 \sim 10^3 \text{ GeV} \)

Reheating: through particle decays with \(\Gamma \) width

\[
T_R = \left(\frac{90}{8\pi^3 g_*} \right)^{1/4} \sqrt{\Gamma M_P}
\]

Assume: \(N_1 \) neutrino decays responsible for reheating

→ \(T_R \sim 10^{10} \text{ GeV} \) i.e. temperature to produce \(\tilde{\zeta} \) Dark Matter!

Q? Could B asymmetry and \(\tilde{\zeta} \) Dark Matter be both generated out of the thermal bath produced by \(N_1 \) decays?
Flavour Model

Superpotential: \[W_M = h_{i j}^{u} 10_i 10_j H_u + h_{i j}^{d} 5^* 10_j H_d + h_{i j}^{\nu} 5_i^* n_j^c H_u + h_i^{n} n_i^c n_i^c S \]

Symmetry breaking fields \[\langle H_u \rangle = v_u , \quad \langle H_d \rangle = v_d , \quad \langle S \rangle = v_{B-L} \]
Flavour Model

Superpotential:
\[W_M = h_{ij}^u \mathbf{10}_i \mathbf{10}_j H_u + h_{ij}^d \mathbf{5}^* \mathbf{10}_j H_d + h_{ij}^\nu \mathbf{5}^* n^c_j H_u + h_i^n n^c_i n^c_i S \]

Symmetry breaking fields
\[\langle H_u \rangle = v_u, \quad \langle H_d \rangle = v_d, \quad \langle S \rangle = v_{B-L} \]

Yukawa couplings: Froggatt-Nielsen U(1) flavour symmetry \([\text{Buchmuller & Yanagida 97}]\)

Yukawas from non-renorm. U(1)\(_{\text{FN}}\) -inv. higher-dim. operators

\[h_{ij} \propto \eta^{Q_i + Q_j} \quad \eta \equiv v_{\text{FN}} / \Lambda \approx 1 / \sqrt{300} \]

with \(Q_i \) charges and \(\eta \) determined by quark & lepton mass hierarchies
Flavour Model

Superpotential: \[W_M = h_{ij}^u 10_i 10_j H_u + h_{ij}^d 5^* 10_j H_d + h_{ij}^\nu 5^*_i n_j^c H_u + h_i^d n_i^c n_i^c S \]

Symmetry breaking fields \[\langle H_u \rangle = v_u , \quad \langle H_d \rangle = v_d , \quad \langle S \rangle = v_{B-L} \]

Yukawa couplings: Froggatt-Nielsen U(1) flavour symmetry [Buchmuller & Yanagida 97]

Yukawas from non-renorm. U(1)\textsubscript{FN} -inv. higher-dim. operators

\[h_{ij} \propto \eta^{Q_i + Q_j} \]

\[\eta \equiv v_{FN}/\Lambda \simeq 1/\sqrt{300} \]

with \[Q_i \] charges and \[\eta \] determined by quark & lepton mass hierarchies

\(\psi_i \)	10_3	10_2	10_1	5_3^*	5_2^*	5_1^*	n_3^c	n_2^c	n_1^c
\(Q_i \)	0	1	2	a	a	a+1	b	c	d
Flavour Model

Superpotential: \[W_M = h_{ij}^u \mathbf{10}_i \mathbf{10}_j H_u + h_{ij}^d 5^* \mathbf{10}_j H_d + h_{ij}^\nu 5^* n_j^c H_u + h_i^n n_i^c n_i^c S \]

Symmetry breaking fields \(\langle H_u \rangle = v_u \), \(\langle H_d \rangle = v_d \), \(\langle S \rangle = v_{B-L} \)

Yukawa couplings: Froggatt-Nielsen U(1) flavour symmetry [Buchmuller & Yanagida 97]

Yukawas from non-renorm. U(1)_FN-inv. higher-dim. operators

\[h_{ij} \propto \eta^{Q_i + Q_j} \quad \eta \equiv v_{FN}/\Lambda \sim 1/\sqrt{300} \]

with \(Q_i \) charges and \(\eta \) determined by quark & lepton mass hierarchies

\(\psi_i \)	\(10_3 \)	\(10_2 \)	\(10_1 \)	\(5_3^* \)	\(5_2^* \)	\(5_1^* \)	\(n_3^c \)	\(n_2^c \)	\(n_1^c \)
\(Q_i \)	0	1	2	a	a	a+1	b	c	d

Specific Example: \(a=1, d=1 \)

- Requirement: \(M_1 \ll M_{2,3} = m_S \) \(\rightarrow \) \(b = c = d-1 = 0 \)
- \(v_{B-L} \sim 3 \times 10^{12} \text{ GeV} \quad M_1 \sim 10^{10} \text{ GeV} \quad M_{2,3} = m_S \sim v_{B-L} \)
Cosmological Scenario

False vacuum decay after Hybrid inflation:
If $B-L$ symmetry breaking field couple to the inflaton, Then
1. responsible for SSB and generation of Neutrino masses
2. responsible for the sudden end of the inflationary era

$V(\phi, S)$

ϕ

s
Cosmological Scenario

False vacuum decay after Hybrid inflation:
If B-L symmetry breaking field couple to the inflaton, Then
1. responsible for SSB and generation of Neutrino masses
2. responsible for the sudden end of the inflationary era

Dynamics of symmetry breaking:
Tachyonic instability in the S potential for $\phi < \phi_{\text{crit.}}$ causes spinodial growth of long-wavelength S modes: **Tachyonic preheating** [Felder et al. 2001]
Cosmological Scenario

False vacuum decay after Hybrid inflation:
If \(B-L \) symmetry breaking field couple to the inflaton, Then
1. responsible for SSB and generation of Neutrino masses
2. responsible for the sudden end of the inflationary era

Dynamics of symmetry breaking:
Tachyonic instability in the S potential for \(\phi < \phi_{\text{crit.}} \) causes spinodial growth of long-wavelength S modes: Tachyonic preheating [Felder et al. 2001]

False vacuum energy \(\rho_0 = \frac{1}{4} \lambda v_{B-L}^4 \)
- nonrelativistic gas of S bosons
- heavy neutrinos \(N_i \)

For the considered flavor model:
\(\rho_{N_1}/\rho_0 = \mathcal{O}(\eta^4) \), \(\rho_{N_{2,3}}/\rho_0 \approx 10^{-3} \)

\[
\rho_s \approx \rho_0 \\
\rho_{N_i}/\rho_0 \approx 1.5 \times 10^{-3} g_N f(h_i^n/\sqrt{\lambda}, 0.8)
\]

GDR10 Matter & DM from False Vacuum Decay G. Vertongen
Cosmological Scenario: Initial State

False vacuum decay

- B-L breaking
- Tachyonic preheating

Higgs bosons S

Neutrinos $N_{2,3}$

\[N_{2,3} \rightarrow LH, \overline{LH} \]

Radiation R

B-L asymmetry

Initial State

- Neutrinos $N_{2,3}$
- Radiation R

- Higgs bosons S

Non-perturbative

Out of kinetic equil.

In kinetic equil.

Non-relativistic

Relativistic
Cosmological Scenario: Non Thermal N₁

- False vaccum decay
 - B-L breaking
 - Tachyonic preheating

 Higgs bosons S
 \[S \rightarrow N₁ N₁ \]

 Neutrinos N₂₃
 \[N₂₃ \rightarrow LH, \overline{LH} \]

 Non-thermal neutrinos N₁
 \[N₁ \leftrightarrow LH, \overline{LH} \]

 B-L asymmetry

- Radiation R
 \[N₁ \leftrightarrow LH, \overline{LH} \]

- Gravitinos \(\tilde{G} \)
 \[SUSY\text{ QCD }2 \rightarrow 2 \]
Cosmological Scenario: Thermal N_1

- False vacumm decay
 - B-L breaking
 - Tachyonic preheating
- Higgs bosons S
 - $S \rightarrow N_1 N_1$
- Neutrinos $N_{2,3}$
 - $N_{2,3} \rightarrow LH, \bar{LH}$
 - $N_{2,3} \rightarrow LH, \bar{LH}$
- Non-thermal neutrinos N_1
 - $N_1 \leftrightarrow LH, \bar{LH}$
- Thermal neutrinos N_1
 - $N_1 \leftrightarrow LH, \bar{LH}$
- Radiation R
 - SUSY QCD $2 \rightarrow 2$
- Gravitinos \tilde{G}

- Non-perturbative
- Out of kinetic equil.
- In kinetic equil.
- Non-relativistic
- Relativistic
Cosmological Evolution

Evolution of the comobile densities $N_i \equiv a^3 n_i$ with the scale factor a

- $M_1 = 10^{10}$ GeV
- $M_{2,3} = 3 \times 10^{12}$ GeV
- $\tilde{m}_1 = 10^{-3}$ eV
- $\epsilon_1 = 10^{-6}$
- $\epsilon_{2,3} = -3 \times 10^{-4}$
- $M_{\tilde{G}} = 100$ GeV
- $M_{\tilde{g}} = 800$ GeV

![Graph showing cosmological evolution with scale factor a on the x-axis and $\log_{10} \text{abs} N_i(a)$ on the y-axis.]
Cosmological Evolution

Evolution of the comobile densities $N_i \equiv a^3 n_i$ with the scale factor a

- $M_1 = 10^{10}$ GeV
- $M_{2,3} = 3 \times 10^{12}$ GeV
- $\tilde{m}_1 = 10^{-3}$ eV
- $\epsilon_1 = 10^{-6}$
- $\epsilon_{2,3} = -3 \times 10^{-4}$
- $M_{\tilde{G}} = 100$ GeV
- $M_{\tilde{g}} = 800$ GeV

$\eta_B = 1.6 \times 10^{-7} > \eta_B^{\text{obs}} = 6.2 \times 10^{-10}$

$\Omega_{\tilde{G}} h^2 = 0.11 = \Omega_{\text{DM}} h^2$
Cosmological Evolution

Reheating temperature:

\[T_R \simeq 5 \times 10^9 \text{GeV} \]

in agreement with the estimate

\[T_R = \left(\frac{90}{8\pi^3 g_*} \right)^{1/4} \sqrt{\Gamma_M} \approx 8 \times 10^9 \text{GeV} \]
Cosmological Evolution

Reheating temperature:

\[T_R \simeq 5 \times 10^9 \text{GeV} \]

in agreement with the estimate

\[T_R = \left(\frac{90}{8\pi^3 g_*} \right)^{1/4} \sqrt{\frac{\Gamma M_P}{c_s}} \simeq 8 \times 10^9 \text{GeV} \]

Extreme cases:

\[\eta_B = 1.6 \times 10^{-7} \]

- thermal leptogenesis:

\[\eta_{\text{thermal}} = \frac{3}{4} \frac{g_*^0}{g_*} c_{\text{sph}} \epsilon_1 \kappa_f (\tilde{m}_1) \simeq 5 \times 10^{-10} \]

- rapid nonrelativistic \(N_1 \) conversion

\[\eta_{\text{rapid}} = 7 \frac{3}{4} c_{\text{sph}} \epsilon_1 \frac{T_L}{M_1} \simeq 9 \times 10^{-7} \]

\[(M_1, \tilde{m}_1) \] drives the interpolation between thermal and nonthermal leptogenesis.
Summary

Ingredient: Seesaw extension of the SM
- Heavy Majorana neutrinos N_i
- B-L symmetry breaking field S

Recipe: Reheating of universe through N_1 decays
- Non-thermal N_1 production from S decays after false vacuum decay
- Tachyonic preheating after hybrid inflation

In the end: A common origin of Matter and Dark Matter
- Combination of thermal and non-thermal leptogenesis
- Thermal production of gravitinos
- Link between SUGRA and neutrino mass: $\tilde{m}_1 \leftrightarrow m_{\tilde{G}}$
Backup
Matter & DM Backup

- Boltzmann equations
- SUSY Dependance
- Baryon Asymmetry
- Reheating Temperature
\[\hat{L}[f_S(t,p)] = - \frac{m_S}{E_S} \Gamma^0_S f_S(t,p) \]

\[\hat{L}[f^S_{N_1}(t,p)] = - \frac{M_1}{E_{N_1}} \Gamma^0_{N_1} f^S_{N_1}(t,p) + \frac{2\pi^2 n_S \Gamma^0_S}{E^2_{N_1}} \left[1 - \left(\frac{2M_1}{m_S}\right)^2 \right]^{-1/2} \delta (E_{N_1} - m_S/2) \]

\[aH \frac{d}{da} N^T_{N_1} = - \Gamma_{N_1} (N^T_{N_1} - N^{eq}_{N_1}) \]

\[aH \frac{d}{da} N_{B-L} = \epsilon_1 \Gamma_{N_1} (N^T_{N_1} - N^{eq}_{N_1}) - \frac{N^{eq}_{N_1}}{2N^L_{eq}} \Gamma_{N_1} N_{B-L} + \epsilon_1 \Gamma^0_{N_1} \tilde{N}^S_{N_1} \]

\[aH \frac{d}{da} N_{\tilde{G}} = a^3 C_{\tilde{G}}(T) \]

\[0 = \frac{d}{dt} (\rho_R + \rho^T_{N_1} + \rho_S + \rho^S_{N_1}) + 3H (\rho_R + \rho^T_{N_1} + \rho_S + \rho^S_{N_1} + p_R + p^T_{N_1} + p^S_{N_1}) \]

with

\[N_X(t) = a^3 \frac{g_X}{(2\pi)^3} \int d^3 p \, f_X(t,p) \]

\[C_{\tilde{G}}(T) = \left(1 + \frac{m_g^2}{3m_{\tilde{G}}^2} \right) \frac{54 \zeta(3) g_s^2(T)}{\pi^2 M_P} T^6 \left[\ln \left(\frac{T^2}{m_g^2(T)} \right) + 0.8846 \right] \]
Baryon Asymmetry

$\eta_B(\bar{m}_1, M_1)$

$\nu_{B-L} = 5.8 \times 10^{13} \text{ GeV}$

$\eta_B < \eta_B^{\text{obs}}$

$\eta_B^S > \eta_B^{\text{obs}}$

$\eta_B^T > \eta_B^{\text{obs}}$

$\eta_B^S = \eta_B^T$

GDR10

Matter & DM from False Vacuum Decay

G. Vertongen
SUSY Dependance

M_1 [GeV] s.t. $\Omega_C h^2 = 0.11$ and $\eta_B(\tilde{m}_1, M_1)$

$\eta_B(\tilde{m}_1, M_1)$

10^{-6.5}
10^{-7}
10^{-7.5}
10^{-8}
10^{-8.5}
10^{-9}

$\nu_{B-L} = 5.8 \times 10^{13}$ GeV ; $m_{\tilde{g}} = 800$ GeV

GDR10 Matter & DM from False Vacuum Decay G. Vertongen
Reheating Temperature

$T_R(\tilde{m}_1, M_1)$ [GeV]

\tilde{m}_1 [eV]

M_1 [GeV]

$\nu_{\tilde{R}, i} = 5.8 \times 10^{13}$ GeV

Legend:
- Naive estimate
- Time dilatation included
- Assumption $\rho_{\text{tot}} \approx \rho_R$ dropped
- Exact result from the BEqns.