Tannakian Categories attached to abelian Varieties

Rainer Weissauer

February 1, 2008

Let k be an algebraically closed field k, where k is either the algebraic closure of a finite field or a field of characteristic zero. Let l be a prime different from the characteristic of k.

Notations. For a variety X over k let $D^b_c(X, \mathbb{Q}_l)$ denote the triangulated category of complexes of etale \mathbb{Q}_l-sheaves on X in the sense of [5]. For a complex $K \in D^b_c(X, \mathbb{Q}_l)$ let $D(K)$ denote its Verdier dual, and $H^\nu(K)$ denote its etale cohomology \mathbb{Q}_l-sheaves with respect to the standard t-structure. The abelian subcategory $\text{Perv}(X)$ of middle perverse sheaves is the full subcategory of all $K \in D^b_c(X, \mathbb{Q}_l)$, for which K and its Verdier dual $D(K)$ are contained in the full subcategory $\mathcal{D}^{\leq 0}(X)$ of semi-perverse sheaves, where $L \in D^b_c(X, \mathbb{Q}_l)$ is semi-perverse if and only if $\dim(S_\nu) \leq \nu$ holds for all integers $\nu \in \mathbb{Z}$, where S_ν denotes the support of the cohomology sheaf $H^{-\nu}(L)$ of L.

If k is the algebraic closure of a finite field κ, then a complex K of etale \mathbb{Q}_l-Weil sheaves is mixed of weight $\leq w$, if all its cohomology sheaves $H^\nu(K)$ are mixed etale \mathbb{Q}_l-sheaves with upper weights $w(H^\nu(K)) - \nu \leq w$ for all integers ν. It is called pure of weight w, if K and its Verdier dual $D(K)$ are mixed of weight $\leq w$. Concerning base fields of characteristic zero, we assume mixed sheaves to be sheaves of geometric origin in the sense of the last chapter of [1], so we still dispose over the notion of the weight filtration and purity and Gabber’s decomposition theorem in this case. In this sense let $\text{Perv}_m(X)$ denote the abelian category of mixed perverse sheaves on X. The full subcategory $P(X)$ of $\text{Perv}_m(X)$ of pure perverse sheaves is a semisimple abelian category.
Abelian varieties. Let X be an abelian variety X of dimension g over an algebraically closed field k. The addition law of the abelian variety $a : X \times X \to X$ defines the convolution product $K \ast L \in D_c^b(X, \mathbb{Q}_l)$ of two complexes K and L in $D_c^b(X, \mathbb{Q}_l)$ by the direct image

$$K \ast L = R_a(K \boxtimes L).$$

For the skyscraper sheaf δ_0 concentrated at the zero element 0 notice $K \ast \delta_0 = K$.

Translation-invariant sheaf complexes. More generally $K \ast \delta_x = T_x^*(K)$, where x is a closed k-valued point in X, δ_x the skyscraper sheaf with support in $\{x\}$ and where $T_x(y) = y + x$ denotes the translation $T_x : X \to X$ by x. In fact $T_y^*(K \ast L) \cong K \ast T_y^*(L)$ holds for all $y \in X(k)$. For $K \in D_c^b(X, \mathbb{Q}_l)$ let $Aut(K)$ be the abstract group of all closed k-valued points x of X, for which $T_x^*(K) \cong K$ holds. A complex K is called translation-invariant, provided $Aut(K) = X(k)$. If $f : X \to Y$ is a surjective homomorphism between abelian varieties, then the direct image $Rf_*(K)$ of a translation-invariant complex is translation-invariant. As a consequence of the formulas above, the convolution of an arbitrary $K \in D_c^b(X, \mathbb{Q}_l)$ with a translation-invariant complex on X is a translation-invariant complex. A translation-invariant perverse sheaf K on X is of the form $K = E[1]$, for an ordinary etale translation-invariant \mathbb{Q}_l-sheaf E. For a translation-invariant complex $K \in D_c^b(X, \mathbb{Q}_l)$ the irreducible constituents of the perverse cohomology sheaves $^pH^\nu(K)$ are translation-invariant.

Multipliers. The subcategory $T(X)$ of $Perv(X)$ of all perverse sheaves, whose irreducible perverse constituents are translation-invariant, is a Serre subcategory of the abelian category $Perv(X)$. Let denote $\overline{Perv}(X)$ its abelian quotient category and $\overline{P}(X)$ the image of $P(X)$, which is a full subcategory of semisimple objects. The full subcategory of $D_c^b(X, \mathbb{Q}_l)$ of all K, for which $^pH^\nu(K) \in T(X)$, is a thick subcategory of the triangulated category $D_c^b(X, \mathbb{Q}_l)$. Let

$$\mathcal{D}_c^b(X, \mathbb{Q}_l)$$

be the corresponding triangulated quotient category, which contains $\overline{Perv}(X)$. Then the convolution product

$$* : \mathcal{D}_c^b(X, \mathbb{Q}_l) \times \mathcal{D}_c^b(X, \mathbb{Q}_l) \to \mathcal{D}_c^b(X, \mathbb{Q}_l)$$

still is well defined, by reasons indicated above.
Definition. A perverse sheaf \(K \) on \(X \) is called a multiplier, if the convolution induced by \(K \)

\[*K : D^b_c(X, \mathbb{Q}_l) \to D^b_c(X, \mathbb{Q}_l) \]

preserves the abelian subcategory \(\text{Perv}(X) \).

Obvious from this definition are the following properties of multipliers: If \(K \) and \(L \) are multipliers, so are the product \(K \ast L \) and the direct sum \(K \oplus L \). Direct summands of multipliers are multipliers. If \(K \) is a multiplier, then the Verdier dual \(D(K) \) is a multiplier and also the dual

\[K^\vee = (-id_X)^*(D(K)) \].

Examples: 1) Skyscraper sheaves are multipliers 2) If \(i : C \hookrightarrow X \) is a projective curve, which generates the abelian variety \(X \), and \(E \) is an etale \(\mathbb{Q}_l \)-sheaf on \(C \) with finite monodromy, then the intersection cohomology sheaf attached to \((C, E) \) is a multiplier. 3) If \(j : Y \hookrightarrow X \) is a smooth ample divisor, then the intersection cohomology sheaf of \(Y \) is a multiplier.

The proofs. 1) is obvious. For 2) we gave in [7] a proof by reduction mod \(p \) using the Cebotarev density theorem and counting of points. Concerning 3) the morphism \(j : U = X \setminus Y \hookrightarrow X \) is affine for ample divisors \(Y \). Hence \(\lambda_U = Rj_! \mathcal{Q}_l[g] \) and \(\lambda_Y = i_* \mathcal{Q}_l,Y[g-1] \) are perverse sheaves, which coincide in \(\text{Perv}(X) \). The morphism \(\pi = a \circ (j \times id_X) \) is affine. Indeed \(W = \pi^{-1}(V) \) is affine for affine subsets \(V \) of \(X \), \(W \) being isomorphic under the isomorphism \((u, v) \mapsto (u, u + v)\) of \(X^2 \) to \(\text{affine product } U \times V \). By the affine vanishing theorem of Artin: For perverse sheaves \(L \in \text{Perv}(X) \) we get \(\lambda_U \boxtimes L \in \text{Perv}(X^2) \) and \(p^H(\pi_!(\lambda_U \boxtimes L)) = 0 \) for all \(\nu < 0 \). The distinguished triangle \((Ra_!(\lambda_Y \boxtimes L), Ra_!(\lambda_U \boxtimes L), Ra_!(\delta_X \boxtimes L)) \) for \(\delta_X = \mathcal{Q}_l,X[g] \) and the corresponding long exact perverse cohomology sequence gives isomorphisms \(p^H(\delta_X \boxtimes L) \cong p^H(\lambda_Y \boxtimes L) \) for the integers \(\nu < 0 \). Since \(Ra_!(\delta_X \boxtimes L) = \delta_X \ast L \) is a direct sum of translates of constant perverse sheaves \(\delta_X \), we conclude \(p^H(\lambda_Y \ast L) \) for \(\nu < 0 \) to be zero in \(\text{Perv}(X) \). For smooth \(Y \) the intersection cohomology sheaf is \(\lambda_Y = i_* \mathcal{Q}_l,Y[g-1] \), and it is self dual. Hence by Verdier duality \(i_* \mathcal{Q}_l,Y[g-1] \ast L \) has image in \(\text{Perv}(X) \). Thus \(i_* \mathcal{Q}_l,Y[g-1] \) is a multiplier. \(\square \)

Let \(M(X) \subseteq P(X) \) denote the full category of semisimple multipliers. Let \(\overline{M}(X) \) denote its image in the quotient category \(\overline{P}(X) \) of \(P(X) \). Then, by the
definition of multipliers, the convolution product preserves \(\mathcal{M}(X) \)

\[
* : \mathcal{M}(X) \times \mathcal{M}(X) \to \mathcal{M}(X).
\]

Theorem. With respect to this convolution product the category \(\mathcal{M}(X) \) is a semisimple super-Tannakian \(\overline{\mathbb{Q}}_l \)-linear tensor category, hence as a tensor category \(\mathcal{M}(X) \) is equivalent to the category of representations \(\text{Rep}(G, \varepsilon) \) of a projective limit

\[
G = G(X)
\]

of supergroups.

Outline of proof. The convolution product obviously satisfies the usual commutativity and associativity constraints compatible with unit objects. See [7] 2.1. By [7], corollary 3 furthermore one has functorial isomorphisms

\[
\text{Hom}_{\mathcal{M}(X)}(K, L) \cong \Gamma_{\{0\}}(X, \mathcal{H}^0(K \ast L^\vee))^* ,
\]

where \(\mathcal{H}^0 \) denotes the degree zero cohomology sheaf and \(\Gamma_{\{0\}}(X, -) \) sections with support in the neutral element. Let \(L = K \) be simple and nonzero. Then the left side becomes \(\text{End}_{\mathcal{M}(X)}(K) \cong \overline{\mathbb{Q}}_l \). On the other hand \(K \ast L^\vee \) is a direct sum of a perverse sheaf \(P \) and translates of translation-invariant perverse sheaves. Hence \(\mathcal{H}^0(K \ast L^\vee) \) is the direct sum of a skyscraper sheaf \(S \) and translation-invariant etale sheaves. Therefore \(\Gamma_{\{0\}}(X, \mathcal{H}^0(K \ast L^\vee)^\vee) = \Gamma_{\{0\}}(X, S) \). By a comparison of both sides therefore \(S = \delta_0 \). Notice \(\delta_0 \) is the unit element 1 of the convolution product. Using the formula above we not only get

\[
\text{Hom}_{\mathcal{M}(X)}(K, L) \cong \text{Hom}_{\mathcal{M}(X)}(K \ast L^\vee, 1) ,
\]

but also find a nontrivial morphism

\[
ev_K : K \ast K^\vee \to 1 .
\]

By semisimplicity \(\delta_0 \) is a direct summand of the complex \(K \ast K^\vee \). In particular the Künneth formula implies, that the etale cohomology groups do not all vanish identically

\[
H^\bullet(X, K) \neq 0 .
\]

Therefore the arguments of [7] 2.6 show, that the simple perverse sheaf \(K \) is dualizable. Hence \(\mathcal{M}(X) \) is a rigid \(\overline{\mathbb{Q}}_l \)-linear tensor category. Let \(T \) be a finitely
⊗-generated tensor subcategory with generator say A. To show T is super-Tannakian, by [4] it is enough to show for all n

$$\text{length}_T(A^n) \leq N^n,$$

where N is a suitable constant. For any $B \in \mathcal{M}(X)$ let B, by abuse of notation, also denote the perverse semisimple representative in $\text{Perv}(X)$ without translation invariant summand. Put $h(B, t) = \sum_{\nu} \dim_{\overline{Q}_l}(H^\nu(X, B))t^\nu$. Then $\text{length}_T(B) \leq h(B, 1)$, since every summand of B is a multiplier and therefore has nonvanishing cohomology. For $B = A^n$ the K¨unneth formula gives $h(B, 1) = h(A, 1)^n$. Therefore the estimate above holds for $N = h(A, 1)$. This completes the outline for the proof of the theorem. □

Principally polarized abelian varieties. Suppose Y is a divisor in X defining a principal polarization. Suppose the intersection cohomology sheaf δ_Y of Y is a multiplier. Then a suitable translate of Y is symmetric, and again a multiplier. So we may assume $Y = -Y$ is symmetric. Let $\mathcal{M}(X, Y)$ denote the super-Tannakian subcategory of $\mathcal{M}(X)$ generated by δ_Y. The corresponding super-group $G(X, Y)$ attached to $\mathcal{M}(X, Y)$ acts on the super-space $W = \omega(\delta_Y)$ defined by the underlying super-fiber functor ω of $\mathcal{M}(X)$. By assumption δ_Y is self dual in the sense, that there exists an isomorphism $\varphi : \delta_Y^\vee \cong \delta_Y$. Obviously $\varphi^\vee = \pm \varphi$. This defines a nondegenerate pairing on W, and the action of $G(X, Y)$ on W respects this pairing.

Curves. If X is the Jacobian of smooth projective curve C of genus g over k, X carries a natural principal polarization $Y = W_{g-1}$. If we replace this divisor by a symmetric translate, then Y is a multiplier. The corresponding group $G(X, Y)$ is the semisimple algebraic group $G = Sp(2g-2, \overline{Q}_l)/\mu_{g-1}[2]$ or $G = Sl(2g-2, \overline{Q}_l)/\mu_{g-1}$ depending on whether the curve C is hyperelliptic or not. The representation W of $G(X, Y)$ defined by δ_Y as above is the unique irreducible \overline{Q}_l-representation of $G(X, Y)$ of highest weight, which occurs in the $(g-1)$-th exterior power of the $(2g-2)$-dimensional standard representation of G. See [7], section 7.6.

Conjecture. One could expect, that a principal polarized abelian variety (X, Y) of dimension g is isomorphic to a Jacobian variety $(\text{Jac}(C), W_{g-1})$ of a smooth projective curve C (up to translates of the divisor Y in X as explained above) if and only if Y is a multiplier with corresponding super-Tannakian group $G(X, Y)$ equal to one of the two groups

$$Sp(2g-2, \overline{Q}_l)/\mu_{g-1}[2] \text{ or } Sl(2g-2, \overline{Q}_l)/\mu_{g-1}.$$
References

[1] Beilinson A., Bernstein J., Deligne P., Faisceaux pervers, Asterisque 100 (1982)

[2] Deligne P., Milne J.S., Tannakian categories, in Lecture Notes in Math 900, p.101 –228

[3] Deligne P., Categories tannakiennes, The Grothendieck Festschrift, vol II, Progr. Math, vol. 87, Birkhäuser (1990), 111 – 195

[4] Deligne P., Categories tensorielles, Moscow Math. Journal 2 (2002) no.2, 227 – 248

[5] Kiehl R., Weissauer R., Weil conjectures, perverse sheaves and l-adic Fourier transform, Ergebnisse der Mathematik und ihrer Grenzgebiete 42, Springer (2001)

[6] Weissauer R., Torelli’s theorem from the topological point of view, arXiv math.AG/0610460

[7] Weissauer R., Brill-Noether Sheaves, arXiv math.AG/0610923