Avian leukosis virus subgroup J and reticuloendotheliosis virus coinfection induced TRIM62 regulation of the actin cytoskeleton

Ling Li 1,†, Pingping Zhuang 1,†, Ziqiang Cheng 1, Jie Yang 1, Jianmin Bi 2, Guihua Wang 1,*

1Department of Fundamental Veterinary, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
2China Animal Husbandry Industry Co. Ltd., Beijing 10070, China

ABSTRACT

Background: Coinfection with avian leukosis virus subgroup J (ALV-J) and reticuloendotheliosis virus (REV) is common in chickens, and the molecular mechanism of the synergistic pathogenic effects of the coinfection is not clear. Exosomes have been identified as new players in the pathogenesis of retroviruses. The different functions of exosomes depend on their cargo components.

Objectives: The aim of this study was to investigate the function of co-regulation differentially expressed proteins in exosomes on coinfection of ALV-J and REV.

Methods: Here, viral replication in CEF cells infected with ALV-J, REV or both was detected by immunofluorescence microscopy. Then, we analyzed the exosomes isolated from supernatants of chicken embryo fibroblast (CEF) cells single infected and coinfected with ALV-J and REV by mass spectrometry. KEGG pathway enrichment analyzed the co-regulation differentially expressed proteins in exosomes. Next, we silenced and overexpressed tripartite motif containing 62 (TRIM62) to evaluate the effects of TRIM62 on viral replication and the expression levels of NCK-associated proteins 1 (NCKAP1) and actin-related 2/3 complex subunit 5 (ARPC5) determined by quantitative reverse transcription polymerase chain reaction.

Results: The results showed that coinfection of ALV-J and REV promoted the replication of each other. Thirty proteins, including TRIM62, NCK-associated proteins 1 (NCKAPI), also known as Nap125, and Arp2/3-5, ARPC5, were identified. NCKAPI and ARPC5 were involved in the actin cytoskeleton pathway. TRIM62 negatively regulated viral replication and that the inhibition of REV was more significant than that on ALV-J in CEF cells coinfected with TRIM62. In addition, TRIM62 decreased the expression of NCKAP1 and increased the expression of ARPC5 in coinfected CEF cells.

Conclusions: Collectively, our results indicated that coinfection with ALV-J and REV competitively promoted each other’s replication, the actin cytoskeleton played an important role in the coinfection mechanism, and TRIM62 regulated the actin cytoskeleton.

Keywords: Avian leukosis virus subgroup J; reticuloendotheliosis virus; coinfection; TRIM62; actin cytoskeleton
INTRODUCTION

Avian leukosis virus subgroup J (ALV-J) and reticuloendotheliosis virus (REV) are 2 oncogenic avian retroviruses that mainly cause myelocytomas and reticuloendotheliosis, respectively [1-3]. Coinfection with ALV-J and REV is common in chickens and induces more serious pathogenic effects, such as immunosuppression, growth retardation, accelerated neoplasia progression, and causes serious losses to the poultry industry [4-6]. The molecular mechanism of the synergistic effects of this coinfection is not clear.

Exosomes are endosome-derived nanovesicles involved in intercellular crosstalk through the transfer of proteins and genetic material. It has been reported that exosomes play an important role in the immune suppression associated with the identified gene expression and miRNA signatures in exosomes [7]. Several recent publications have identified exosomes as new players in the pathogenesis of human immunodeficiency virus (HIV) infection [8]. Our previous study also demonstrated that exosomes play an important role in ALV-J infection [9]. ALV-J and REV synergistically increased the accumulation of exosomal miRNAs, which shed light on the synergistic molecular mechanism of ALV-J and REV [10].

In addition to miRNAs, exosomes carry proteins, but the roles of exosomal proteins in ALV-J and REV coinfection are unclear. Proteins do not function independently in organisms. Instead, different proteins coordinate to perform a series of biochemical or biological functions. In the present study, to further reveal the roles of proteins in coinfection with ALV-J and REV, exosomal proteins were extracted from chicken embryo fibroblast (CEF) cells infected with ALV-J, REV or both at the optimal coinfection time for analysis by mass spectrometry (MS). The key proteins obtained from MS were validated to be present in exosomes by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, we evaluated the protein-protein interactions related to the synergistic effects of ALV-J and REV coinfection.

MATERIALS AND METHODS

Cells culture and viral infection
CEF cells were maintained in DMEM supplemented with 10% fetal bovine serum, 0.1 mg/mL streptomycin and 100 U/mL penicillin at 37°C in a 5% CO₂ atmosphere. Cells were used in subsequent assays when they were in the logarithmic growth phase. The stock SNV strains of ALV-J (Chinese strain NX0101) and REV (Chinese strain JX0927) were maintained in our laboratory. We performed a single infection of ALV-J or REV or a coinfection of ALV-J and REV at a multiplicity of infection of 0.1.

Immunofluorescence microscopy
CEF cells were collected at different times after infection (24 h, 48 h, 72 h and 96 h) and then fixed with cold acetone:ethanol solution (3:2). The monoclonal antibodies (prepared by our lab) against gp85 of ALV-J and env of REV were used as primary antibodies. A FITC-labeled goat anti-mouse IgG antibody (or Cy3-labeled goat anti-mouse IgG) was used as a secondary antibody. The infected cells were stained with DAPI staining solution and observed by immunofluorescence microscopy (Leica SP8; Leica, Germany).

Isolation and identification of exosomes
At 72 h after infection, CEF cell supernatants were collected, and debris was removed. Exosomes
were separated and purified from the supernatants according to the manufacturer's protocol for total exosomes isolation (from cell culture media) kits (Invitrogen, USA). The exosomal proteins concentration was measured with BCA Protein Assay Kit (Thermo Fisher Scientific, USA). The morphology of isolated exosomes was observed under transmission electron microscopy (TEM) [9]. The isolated exosomes were examined for exosomal and contamination markers by western blot (WB).

Proteomic analysis of exosomes
In this study, a high-resolution mass spectrometer Q Exactive (Thermo Fisher Scientific) was used for quantitative proteomic analysis. MS analysis was performed according to a previously reported protocol [9] for the detection of polypeptide sequence of proteins in isolated exosomes. Proteins were identified using Protein Prospector [11] against the Gallus chicken database, ALV database, and REV database. The proteins with a fold change of expression > 1.2 (up/downregulation) and a p value < 0.05 were regarded as differentially expressed proteins. Quantitative sequence information for the proteins was extracted from the UniProtKB database (version number 201602).

Bioinformatics analysis of differentially expressed proteins
In a previous study, our laboratory identified 5 upregulated miRNAs (miRNA-184-3p, miRNA-146a-3p, miRNA-146a-5p, miRNA-3538 and miRNA-155) in exosomes from CEF cells coinfected with ALV-J and REV [10]. According to the obtained miRNA sequences and how they aligned to Gallus and virus genomes, target gene prediction was conducted using miRanda [12].

To investigate the biological function of the differentially expressed proteins and miRNA target genes, KEGG pathway enrichment analyses were performed using the DAVID tool (https://david.ncifcrf.gov/). False discovery rate < 0.05 and p value < 0.05 were considered statistically significant. The key proteins, miRNAs, and common pathways were identified. The expression levels of key exosomal proteins were verified by Real-Time qRT-PCR.

TRIM62 plasmid and short hairpin RNA (shRNA) lentiviral vector construction
TRIM62 plays an important role in antiviral processes and we have confirmed that TRIM62 inhibit ALV-J replication [13]. TRIM62 was identified from the differentially expressed proteins. To confirm the role of TRIM62 in the coinfection of ALV-J and REV and the regulation of other identified proteins or signaling pathways, overexpression and knockdown of TRIM62 were performed. The full-length chicken TRIM62 (XM_015297235.2) was cloned into the lentiviral vector GV492 (JikaiGene Technology, Inc., China). The lentiviral empty vector was used as a control. ShRNA targeting TRIM62 (shTRIM62) for knockdown (sequence: GCAGTACACC ATCTG GAAGTC) and one nonspecific scramble shRNA as a negative control were cloned into the lentiviral vector GV493 (JikaiGene Technology, Inc.). Then, the pGV492-TRIM62/pGV493-shTRIM62 plasmid was cotransfected with packaging plasmids into 293T cells to produce a lentivirus. After 48 h of transfection, viral supernatants were collected and further used to infect CEF cells for transfection. All constructs were identified through sequencing.

TRIM62 and shRNA transfection
CEF cells were seeded on 6-well plates for 12 h and then transfected with TRIM62 for 12 h or shTRIM62 for 24 h using a lentiviral vector. The pTRIM62, shTRIM62 and empty vector were purchased from JikaiGene Technology, Inc. After stably expressing pTRIM62/shTRIM62, CEF
cells were infected with ALV-J, REV or both. After 72 h of infection, the RNA expression levels of virus and identified proteins were detected by qRT-PCR.

qRT-PCR

The isolated exosomes and transfected CEF cells were collected. Exosomes RNA was isolated using total exosomes RNA and protein isolation kit (Invitrogen). Total cellular RNA isolation, reverse transcription to cDNA, and quantitative PCR were performed according to a previously described protocol [14, 15]. Glyceraldehyde 3-phosphate dehydrogenase was used as a control for basal RNA levels. The specific primer sequences of the virus and identified proteins are described in Table 1. Three independent experiments were conducted for statistical analysis.

WB

Equivalents of exosomes (20 μg) were separated on 12% sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Exosomes from infected DF-1 cells with ALV-J and REV single infection or co-infection were analysis by WB with anti-glucose-regulated protein 78 (GRP78) and anti-Hsp70 primary antibodies (Bioss, China) at both 1:200.

Statistical analysis

Data were expressed as the mean ± SD of results from 3 independent replicates. The significance of variability was determined by t-test and 2-way analysis of variance using SPSS 19.0 statistical software (IBM Corp., USA). A p value less than 0.05 was considered statistically significant.

RESULTS

Coinfection with ALV-J and REV enhanced virus replication

To investigate the effects of ALV-J and REV coinfection on each other’s replication, we detected the transcriptional levels of virus in coinfected and single infected cells by qRT-PCR. The mRNA expression of ALV-J in co-infected cells was significantly higher than that in single infected cells before 72 h of infection (Fig. 1A, p < 0.01). However, after infected 96 h, the

Gene target	Primer sequence	Fragment size (bp)
ALV-J (env)	Forward: TGCGTGCGGTTTTATTATTC	144
	Reverse: AATGGTAGACGCTTGACTGT	
REV (env)	Forward: TTGTGAAAGCAAGAT CATCAG	330
	Reverse: GAGGATACGCTCGGCCCTTT	
TRIM62	Forward: TACTGGGAGGTGGTGTTGTC	246
	Reverse: CGTCGCGGTTTGAGAAGATG	
ITGα1	Forward: TAAGTTTCAGACGACGGACCC	125
	Reverse: TCAGACACGCCCATCC	
NCKAP1	Forward: TTGTCTTTCGGCCGTTGG	126
	Reverse: TGGCCACCTTCATGTCAGT	
ARPC5	Forward: TGAGCAGGACTCGACGAA	254
	Reverse: TGAGACCTTCACGA	
GAPDH	Forward: GAAACATCATCACCACGCTCA	132
	Reverse: GAGGATAGACGCTCGCCCTTT	

qRT-PCR, quantitative reverse transcription polymerase chain reaction; ALV-J, avian leukosis virus subgroup J; REV, reticuloendotheliosis virus; TRIM62, tripartite motif containing 62; ITGα1, integrin α1; NCKAP1, NCK-association proteins 1; ARPC5, actin-related 2/3 complex subunit 5; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
replication of ALV-J in co-infected cells decreased significantly. The mRNA level of REV in co-infected cells was significantly higher than that in single infected cells (Fig. 1B, \(p < 0.01 \)).

Furthermore, immunofluorescence microscopy was used to monitor the distribution of the fluorescence signal of the virus. As shown in Fig. 2, we found that the green fluorescence signal of ALV-J in coinfected cells was stronger than that in ALV-J only-infected cells at 48 h after infection. The red fluorescence of REV was also found at 48 h after infection in the coinfection group and earlier than that in the REV infection group (72 h). These results indicated that ALV-J and REV coinfection synergistically promoted the viral protein expression of the other virus. Our result was consistent with a previous report using qRT-PCR and WB [10].

Fig. 1. The transcriptional levels of ALV-J and REV in infected cells at different times. (A) The transcriptional level of ALV-J in co-infected and single infected cells. (B) The transcriptional level of REV in co-infected and single infected cells. ALV-J, avian leukosis virus subgroup J; REV, reticuloendotheliosis virus. Statistically significant changes were calculated using Kruskal-Wallis with Dunn’s multiple comparison test: * \(p < 0.05 \); ** \(p < 0.01 \).

ALV-J, avian leukosis virus subgroup J; REV, reticuloendotheliosis virus; CEF, chicken embryo fibroblast.

Fig. 2. ALV-J and REV coinfection competitively promoted viral replication in CEF cells. ALV-J and REV staining was observed in CEF cells at 24 h, 48 h, 72 h, and 96 h post infection by immunofluorescence microscopy. ALV-J, avian leukosis virus subgroup J; REV, reticuloendotheliosis virus; CEF, chicken embryo fibroblast.
Proteomic analysis of exosomes

The morphology and size of purified exosomes were assessed by TEM. As shown by the TEM results in Fig. 3A, exosomes were typically cup-shaped with an average diameter ranging from 80 to 120 nm. Exosomes contain several proteins that serve as exosomes markers, such as Hsp70, CD9, CD63, and CD81 [16]. To further characterize the exosomes purified in our experimental conditions, we evaluated the expression of Hsp70. As shown in Fig. 3B, Hsp70 was detected in exosomes and cell lysates. In addition, GRP78 was only detected in cell lysates. GRP78 is a signal protein of endoplasmic reticulum stress. Our results indicated that the purified exosomes were not contaminated by organelles originating from the endoplasmic reticulum.

We further analyzed the protein composition of exosomes and found that exosomes from infected cells carried key components of viruses. As shown in Table 2, exosomes from coinfected cells (Exo-RJ) carried components both of ALV-J and REV. Furthermore, compared with both Exo-J and Exo-R, there were 30 differentially expressed proteins identified with 16 upregulated and 14 downregulated in Exo-RJ (Table 3) [17]. The differentially expressed proteins in exosomes may be related to the synergistic effect of REV and ALV-J coinfection.

KEGG annotation of identified proteins and miRNA target genes

To further explore the role of differentially expressed proteins in the synergistic effect of REV and ALV-J coinfection, we annotated the 30 identified proteins and the target genes of 5 miRNAs (miRNA-184-3p, miRNA-146a-3p, miRNA-146a-5p, miRNA-3538, and miRNA-155) using the KEGG database. According to the results of the predicted miRNA target genes, integrinα1 (ITGα1) is one target gene of miRNA-155 [10]. The upregulation of miRNA-155

Table 2. Exosomes from co-infection cells carrying the structural proteins both of ALV-J and REV

Virus	Protein	Accession	Description
ALV-J	Gag	Q64996	Gag proteins OS = avian leukosis virus HPRS103
ALV-J	Env	Q64997	Envelope protein subgroup J OS = avian leukosis virus HPRS103 GN = env
REV	Gag	C7FGW7	Gag polypeptide OS = avian reticuloendotheliosis virus GN = gag
REV	Pol	Q462Q9	Polymerase (fragment) OS = avian reticuloendotheliosis virus GN = pol
REV	Env	Q462Q8	Envelope glycoprotein OS = avian reticuloendotheliosis virus GN = env

ALV-J, avian leukosis virus subgroup J; REV, reticuloendotheliosis virus; OS, organism species; GN, gene name.
induced the downregulation of ITGα1. After classification, the 2 proteins NCK-association proteins 1 (NCKAP1, also known as Nap125) and actin-related 2/3 complex subunit 5 (ARPC5) and one miRNA target gene (ITGα1) were shown to be involved in the regulation of the actin cytoskeleton signaling pathway (Fig. 4). Coinfection with ALV-J and REV may achieve a synergistic effect via regulation of the actin cytoskeleton.

Validation of exosomal protein expression
Of the 30 identified proteins in Exo-RJ, we focused on TRIM62 and the 2 proteins involved in the actin cytoskeleton. To validate the MS results, 4 proteins, ITGα1, NCKAP1, ARPC5, and TRIM62, were analyzed by qRT-PCR with the primers listed in Table 3. We found that ITGα1 and ARPC5 RNA expression in Exo-RJ was significantly lower than that in Exo-J and Exo-R (p < 0.05), while NCKAP1 and TRIM62 RNA expression in Exo-RJ was significantly higher than that in Exo-J and Exo-R (p < 0.05). The decreased RNA expression of ITGα1 matched the upregulation in miRNA-155 expression [10]. The results demonstrated that the RNA expression of these 4 proteins in exosomes was consistent with the proteomic analysis data and deep sequencing data [10], which indicated that the RNA expression of the 4 identified proteins reflected the protein expression.

TRIM62 negatively regulated viral replication
TRIM62 is a member of the TRIM family of proteins, also known as DEAR1 (ductal epithelium-associated RING chromosome) [18]. Based on the presence of a RING domain,
TRIM62 has also been defined as an E3 ubiquitin ligase [19]. RING domain E3 ubiquitin ligase has been associated with the antiviral activity of the TRIM protein [20,21]. However, the role of TRIM62 in regulating coinfection with ALV-J and REV is not clear.

To explore the role of TRIM62 effect on the synergistic effect of ALV-J and REV coinfection, we overexpressed or silenced TRIM62 in CEF cells and further detected viral replication in coinfectected cells compared with mono-infected cells at 72 h post infection. We found that TRIM62 overexpression decreased the expression of ALV-J and REV in CEF cells both with single infection and coinfection (Fig. 6A and B). In addition, compared with that in the single infection group, overexpression of TRIM62 enhanced the expressional upregulation of ALV-J in the coinfection group (Fig. 6A) and decreased that of REV (Fig. 6B). On the other hand, knockdown of TRIM62 with specific shRNA increased the expression of both ALV-J and REV in CEF cells both with single infection and coinfection (Fig. 6C and D). Furthermore, we found that silencing TRIM62 reduced the expressional upregulation of ALV-J in the coinfection group (Fig. 6C) and increased that of REV (Fig. 6D).
Our results demonstrated that TRIM62 negatively regulated viral replication in CEF cells, and the inhibition on REV was more significant than that on ALV-J in coinfected CEF cells. These results indicated the presence of a competitive effect between the 2 viruses in the context of coinfection.

TRIM62 regulated actin cytoskeletal dynamics

To evaluate the effect of TRIM62 on actin cytoskeletal dynamics, we used qRT-PCR to detect the regulation of the expression of the 3 identified proteins involved in the actin cytoskeletal pathway by TRIM62. Compared with the empty vector group, in CEF cells with ALV-J and REV single infection or coinfection, overexpression of TRIM62 decreased NCKAP1 expression (Fig. 7B) and increased ARPC5 expression (Fig. 7C) but did not affect ITGα1 (Fig. 7A).

However, compared with the empty vector, shTRIM62 significantly decreased ITGα1 expression both in the ALV-J single infection and coinfection groups, and compared with that in the single infection groups, the expression of ITGα1 was significantly decreased in the coinfection group (Fig. 7D). Importantly, compared with the empty vector, shTRIM62 significantly increased NCKAP1 expression (Fig. 7E) and decreased ARPC5 expression.
which was observed only in the coinfection group. In addition, compared with expression in the single infection groups, the expression of NCKAP1 (Fig. 7E) was significantly increased and that of ARPC5 was decreased (Fig. 7F) in the coinfection group. Collectively, these results indicated that TRIM62 was modified and affected actin cytoskeletal dynamics by inhibiting NCKAP1 expression and promoting ARPC5 expression to negatively regulate virus replication in the context of coinfection.

DISCUSSION

The results described here showed that ALV-J and REV coinfection synergistically promoted the replication of each virus. Compared with single infection, ALV-J replication was increased more significantly than that of REV before 72 h post infection, while REV replication was upregulated more significantly than that of ALV-J after 96 h post infection. The results indicate that 72 h post infection is an important time point in CEF cells coinfectected with ALV-J and REV, which is consistent with the previous study [10]. Both ALV-J and REV can cause immunosuppression, which promotes the replication of other viruses. It is not clear why there was predominance (Fig. 7F), which was observed only in the coinfection group. In addition, compared with expression in the single infection groups, the expression of NCKAP1 (Fig. 7E) was significantly increased and that of ARPC5 was decreased (Fig. 7F) in the coinfection group.
of ALV-J replication over REV replication. In addition, viral RNA expression in TRIM62-overexpressing or silenced CEF cells was detected after 72 h of infection, and our results showed that TRIM62 affected REV more significantly than ALV-J. The effects of TRIM62 on viral replication demonstrated the presence of a competitive effect between the 2 viruses in the process of coinfection. These results indicate that the 2 viruses synergistically promote each other but also display a competitive relationship in the process of coinfection.

Exosomes are rich in endosome-associated proteins but also carry different molecules in their lumen, including proteins, RNA (i.e., miRNA), and pathogen-derived cargo. The different biological functions of exosomes depend on their cargo components [8]. Furthermore, our data show that coinfection with ALV-J and REV induced changes in the exosomal proteins and miRNAs. Thus, exosomes may provide microenvironmental conditions for ALV-J and REV infection and play an important role in their synergistic effects. In addition to viral components (Table 2), we focused on TRIM62, NCKAP1 and ARPC5 of the 30 identified proteins. TRIM62 is an innate immune regulator [22]. We previously confirmed
that TRIM62 restricts ALV-J replication [13]. KEGG annotation of the identified proteins and miRNA target genes [10] demonstrated that 2 of the identified proteins (NCKAP1 and ARPC5) and 1 target gene of miRNA-155 (ITGα1) were involved in the actin cytoskeleton signaling pathway. We hypothesize that TRIM62 and the actin cytoskeleton play important roles in ALV-J and REV coinfection.

To reveal the role of TRIM62 regulation on the synergistic effect of ALV-J and REV coinfection, we then carried out TRIM62 overexpression and silencing to modulate its effect on the actin cytoskeleton. We found that TRIM62 inhibited the expression of NCKAP1 and promoted the expression of ARPC5 in coinfected CEF cells. The results further indicated that TRIM62 may affect ALV-J and REV coinfection by regulating the actin cytoskeleton. Our study provides a possible new antiviral strategy targeting this novel regulator. It has been reported that retroviruses HIV and Moloney murine leukemia virus utilize the cell cytoskeleton to expedite their assembly and budding [23]. Further research is needed on how ALV-J and REV utilize the cytoskeleton synergistically to promote the replication of each other.

Furthermore, it is usually considered that ALV-J and REV induced tumor by insertional mutagenesis of host DNA [24]. It has been reported that ALV-J carried complete v-fps oncogene [25]. NCKAP1 (Nap125) has been associated with prognosis in hepatocellular carcinoma as a target gene of the tumor promoting miRNA-34c-3p [26]. ARPC5 is one subunit of the Arp2/3 complex [27]. The Arp2/3 complex plays a pivotal role in actin filament formation [28]. Plk4 promotes cancer invasion and metastasis through regulation of Arp2/3 complex-mediated actin cytoskeletal rearrangement [29]. These results demonstrate that the actin cytoskeleton is closely related to cancer. Human TRIM62 acts as a tumor suppressor and is involved in lung cancer [30], breast cancer [18], acute myeloid leukemia [31], and cervical cancer [32]. Therefore, TRIM62, NCKAP1, and ARPC5 may be related to the tumor formation induced by coinfection with ALV-J and REV.

REFERENCES

1. Payne LN, Brown SR, Bumstead N, Howes K, Frazier JA, Thouless ME. A novel subgroup of exogenous avian leukosis virus in chickens. J Gen Virol. 1991;72(Pt 4):801-807. [PUBMED] [CROSSREF]

2. Witter RL, Glass SE. Reticuloendotheliosis in breeder turkeys. Avian Dis. 1984;28(3):742-750. [PUBMED] [CROSSREF]

3. Zavala G, Cheng S, Barbosa T, Haefele H. Enzootic reticuloendotheliosis in the endangered Attwater’s and greater prairie chickens. Avian Dis. 2006;50(4):520-525. [PUBMED] [CROSSREF]

4. Cui Z, Sun S, Zhang Z, Meng S. Simultaneous endemic infections with subgroup J avian leukosis virus and reticuloendotheliosis virus in commercial and local breeds of chickens. Avian Pathol. 2009;38(6):443-448. [PUBMED] [CROSSREF]

5. Dong X, Ju S, Zhao P, Li Y, Meng F, Sun P, Cui Z. Synergetic effects of subgroup J avian leukosis virus and reticuloendotheliosis virus co-infection on growth retardation and immunosuppression in SPF chickens. Vet Microbiol. 2014;172(3-4):425-431. [PUBMED] [CROSSREF]

6. Dong X, Zhao P, Chang S, Ju S, Li Y, Meng F, Sun P, Cui Z. Synergistic pathogenic effects of co-infection of subgroup J avian leukosis virus and reticuloendotheliosis virus in broiler chickens. Avian Pathol. 2015;44(1):43-49. [PUBMED] [CROSSREF]

7. Huber V, Vallacchi V, Di Guardo L, Cova A, Canevari S, Santinami M, Bollati V, Rodolfo M, Rivoltini L. Role of exosomes in immune suppression. Eur J Cancer. 2015;51(Supplement 1):S13. [PUBMED] [CROSSREF]
8. Poveda E, Freeman ML. Hot news: exosomes as new players in HIV pathogenesis - New data from the IAS 2017. AIDS Rev. 2017;19(3):173-175.

9. Wang G, Wang Z, Zhuang B, Zhao X, Cheng Z. Exosomes carrying gag/env of ALV-J possess negative effect on immunocytes. Microspatag. 2017;112:142-147.

10. Zhou D, Xue J, He S, Du X, Zhou J, Li C, Huang L, Nair V, Yao Y, Cheng Z. Reticuloendotheliosis virus and avian leukemia virus subgroup J synergistically increase the accumulation of exosomal miRNAs. Retrovirology. 2018;15(1):45-56.

11. Cherujoyt C, Patake Z, Williams R, Ramratnam B, Li M. SILAC based proteomic characterization of exosomes from HIV-1 infected cells. J Vis Exp. 2017;13(12):e54799.

12. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expression. Nucleic Acids Res. 2008;36(Database issue):D149-D153.

13. Li L, Feng W, Cheng Z, Yang J, Bi J, Wang X, Wang G. TRIM62-mediated restriction of avian leukemia virus subgroup J replication is dependent on the SPRY domain. Poult Sci. 2019;98(11):6019-6025.

14. Dai M, Feng M, Liu D, Cao W, Liao M. Development and application of SYBR Green I real-time PCR assay for the separate detection of subgroup J avian leukemia virus and multiplex detection of avian leukemia virus subgroups A and B. Virol J. 2015;12:52.

15. Luan H, Wang Y, Li Y, Cui Z, Chang S, Zhao P. Development of a real-time quantitative RT-PCR to detect REV contamination in live vaccine. Poult Sci. 2016;95(9):2023-2029.

16. Kumar D, Gupta D, Shankar S, Srivastava RK. Biomolecular characterization of exosomes released from cancer stem cells: possible implications for biomarker and treatment of cancer. Oncotarget. 2015;6(5):3280-3291.

17. Li L, Zhuang PP, Wang XM, Zhou DF, Xue JW, Cheng ZQ, Wang GH. Effects of miRNA-455 on the cytoskeletal pathways in REV and ALV-J co-infection. Chin J Cell Biol. 2018;40(10):1706-1718.

18. Lott ST, Chen N, Chandler DS, Yang Q, Wang L, Rodriguez M, Xie H, Balasenthil S, Buchholz TA, Sahin AA, Chaung K, Zhang B, Olufemi SE, Chen J, Adams H, Band V, El-Naggar AK, Frazier ML, Keyomarsi K, Hunt KK, Sen S, Haffty B, Hewitt SM, Krailo AM, DEAR1 is a dominant regulator of acinar morphogenesis and an independent predictor of local recurrence-free survival in early-onset breast cancer. PLoS Med. 2009;6(5):e1000068.

19. Huang F, Xiao H, Sun BL, Yang RG. Characterization of TRIM62 as a RING finger E3 ubiquitin ligase and its subcellular localization. Biochem Biophys Res Commun. 2013;432(2):208-213.

20. Fridell RA, Harding LS, Bogerd HP, Cullen BR. Identification of a novel human zinc finger protein that specifically interacts with the activation domain of lentiviral Tat proteins. Virology. 1995;209(2):347-357.

21. Barr SD, Smiley JR, Bushman FD. The interferon response inhibits HIV particle production by induction of TRIM22. PLoS Pathog. 2008;4(2):e1000007.

22. Uchil PD, Quinlan BD, Chan WT, Luna JM, Mothes W. TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLoS Pathog. 2008;4(2):e16.

23. Gladnikoff M, Shimotoh M, Gov NS, Roussou I. Retroviral assembly and budding occur through an actin-driven mechanism. Biophys J. 2009;97(9):2419-2428.

24. Justice J 4th, Malhotra S, Ruano M, Li Y, Zavala G, Lee N, Morgan R, Beemon K. The MET gene is a common integration target in avian leukemia virus subgroup J-induced chicken hemangiomas. J Virol. 2015;89(9):4712-4719.

25. Wang Y, Li J, Li Y, Fang L, Sun X, Chang S, Zhao P, Cui Z. Identification of ALV-J associated acutely transforming virus Fu-J carrying complete v-fps oncogene. Virus Genes. 2016;52(3):365-371.
26. Xiao CZ, Wei W, Guo ZX, Zhang MY, Zhang YF, Wang JH, Shi M, Wang HY, Guo RP. MicroRNA-34c-3p promotes cell proliferation and invasion in hepatocellular carcinoma by regulation of NCKAP1 expression. J Cancer Res Clin Oncol. 2017;143(2):263-273.

PUBMED | CROSSREF

27. Vartiainen MK, Machesky LM. The WASP-Arp2/3 pathway: genetic insights. Curr Opin Cell Biol. 2004;16(2):174-181.

PUBMED | CROSSREF

28. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003;112(4):453-465.

PUBMED | CROSSREF

29. Kazazian K, Go C, Wu H, Brashavitskaya O, Xu R, Dennis JW, Gingras AC, Swallow CJ. Plk4 promotes cancer invasion and metastasis through Arp2/3 complex regulation of the actin cytoskeleton. Cancer Res. 2017;77(2):434-447.

PUBMED | CROSSREF

30. Quintás-Cardama A, Post SM, Solis LM, Xiong S, Yang P, Chen N, Wistuba II, Killary AM, Lozano G. Loss of the novel tumour suppressor and polarity gene Trim62 (Dear1) synergizes with oncogenic Ras in invasive lung cancer. J Pathol. 2014;234(1):108-119.

PUBMED | CROSSREF

31. Quintás-Cardama A, Zhang N, Qiu YH, Post S, Creighton CJ, Cortes J, Coombes KR, Kornblau SM. Loss of TRIM62 expression is an independent adverse prognostic factor in acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2015;15(2):115-127.e15.

PUBMED | CROSSREF

32. Liu TY, Chen J, Shang CL, Shen HW, Huang JM, Liang YC, Wang W, Zhao YH, Liu D, Shu M, Guo LY, Hu Z, Yao SZ. Tripartite motif containing 62 is a novel prognostic marker and suppresses tumor metastasis via c-Jun/Slug signaling-mediated epithelial-mesenchymal transition in cervical cancer. J Exp Clin Cancer Res. 2016;35(1):170.

PUBMED | CROSSREF