Weak convergence of the intersection point process of Poisson hyperplanes.

Summary: This paper deals with the intersection point process of a stationary and isotropic Poisson hyperplane process in \mathbb{R}^d of intensity $t > 0$, where only hyperplanes that intersect a centred ball of radius $R > 0$ are considered. Taking $R = t^{-\frac{d}{d+1}}$ it is shown that this point process converges in distribution, as $t \to \infty$, to a Poisson point process on $\mathbb{R}^d \setminus \{0\}$ whose intensity measure has power-law density proportional to $\|x\|^{-(d+1)}$ with respect to the Lebesgue measure. A bound on the speed of convergence in terms of the Kantorovich-Rubinstein distance is provided as well. In the background is a general functional Poisson approximation theorem on abstract Poisson spaces. Implications on the weak convergence of the convex hull of the intersection point process and the convergence of its f-vector are also discussed, disproving and correcting thereby a conjecture of L. Devroye and G. Toussaint [J. Algorithms 14, No. 3, 381–394 (1993; Zbl 0778.68088)] in computational geometry.

MSC:
52A22 Random convex sets and integral geometry (aspects of convex geometry)
53C65 Integral geometry
60D05 Geometric probability and stochastic geometry
60F05 Central limit and other weak theorems
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
68Q25 Analysis of algorithms and problem complexity

Keywords:
convex hull; integral geometry; intersection point process; Poisson hyperplane process; Poisson point process approximation; rate of convergence; weak convergence

Full Text: DOI arXiv

References:
[1] M. J. Atallah. Computing the convex hull of line intersections. *J. Algorithms* 7 (2) (1986) 285-288. · Zbl 0605.68063 · doi:10.1016/0196-6774(86)90010-6
[2] S. Axler, P. Bourdon and W. Ramey. *Harmonic Function Theory*. Graduate Texts in Mathematics 137, xii+231. Springer-Verlag, New York, 1992. · Zbl 0959.31001 · doi:10.1007/b97238
[3] D. Berend and V. Braverman. Convex hull for intersections of random lines. In *2005 International Conference on Analysis of Algorithms* 39-47. · Zbl 1099.68753 · doi:10.1007/978-1-4419-2214-6
[4] G. Bonnet. Small cells in a Poisson hyperplane tessellation. *Adv. in Appl. Math.* 95 (2018) 31-52. · Zbl 1387.60018 · doi:10.1016/j.aam.2017.11.002
[5] G. Bonnet, P. Calka and M. Reitzner. Cells with many facets in a Poisson hyperplane tessellation. *Adv. Math.* 324 (2018) 203-240. · Zbl 1388.60041 · doi:10.1016/j.aim.2017.11.016
[6] Y. T. Ching and D.-T. Lee. Finding the diameter of a set of lines. *Pattern Recognit.* 18 (3-4) (1985) 249-255. · doi:10.1016/0031-3203(85)90050-0
[7] L. Decreusefond, M. Schulte and C. Thäle. Functional Poisson approximation in Kantorovich-Rubinstein distance with applications to U-statistics and stochastic geometry. *Ann. Probab.* 44 (3) (2016) 2147-2197. · Zbl 1347.60027 · doi:10.1214/15-AOP1020
[8] L. Devroye and G. Toussaint. Convex hulls for random lines. *J. Algorithms* 14 (3) (1993) 381-394. · Zbl 0778.68088 · doi:10.1006/jagm.1993.1020
[9] W. Feller. *An Introduction to Probability Theory and Its Applications. Vol. II*, 2nd edition. xxiv+669. John Wiley & Sons, New York, 1971.
[10] M. Golin, S. Langerman and W. Steiger. The convex hull for random lines in the plane. In *Discrete and Computational Geometry* 172-175. *Lecture Notes in Comput. Sci.* 2866. Springer, Berlin, 2003. · Zbl 1179.52009 · doi:10.1007/978-
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.