Notes on *Parotis baldersalis* Walker (Lepidoptera: Crambidae) as edible caterpillar occurring on *Tabernaemontana crassa* Plum. ex L. (Apocynaceae) at Plateaux Bateke, in Gabon

Poligui René Noel, Tchankou Leudeu Bertille Carine and Apinda Legnouo Emelie Arlette

DOI: https://doi.org/10.22271/j.ento.2022.v10.i5c.9058

Abstract

Observations on the occurrence of a pyraloid leafroller species on *Tabernaemontana crassa*. Plum. ex L. (Apocynaceae) were carried out from edge bosquet forests near Leconi, Edjouangoulo, Odjouma and Ossouélé villages, in Plateaux Bateke on November 2021, in Gabon. A first part of the study was focused on field assessment of this insect prevalence on wild host plant, and it use by local residents. The second part aimed to rear some larvae at the Crop Protection Laboratory, University of Sciences and Technologies of Masuku (INSAB/USTM), Franceville, Gabon.

Results revealed that the insect is locally named *Onkukaidé*, and 100% of local people recognized to eat and appreciate caterpillar and chrysalis stages of this insect each year. All the surveyed trees (100%) were recorded with infestation characterized by global defoliation on both high and small plants. Incidence occurred from larval feeding behaviour consisting in rolling dorsally leaf edge, gnawing paracythma and turning foliage to a brown appearance followed often by wilting and leaf dropping. One to three young larvae could be observed per leaf at early attack stage, but a single one for Final larval instars. Attacks were limited on leaves burning, so that host plants refoliation was observed some weeks later. Laboratory rearing allowed emergence of female and male adults of *Parotis baldersalis* Walker (Lepidoptera: Crambidae), and one relate Ichneumonid parasitoid belonging to a genus *Latibuculus* Gistel (Hymenoptera: Ichneumonidae). Further studies are to be conducted in order to assess both the insect life cycle within this environment, and its nutritional value.

Keywords: Occurrence, *Parotis baldersalis*, *Tabernaemontana crassa*, defoliation, edible insect, Plateaux Bateke

1. Introduction

The *Tabernaemontana* genus (Apocynaceae), comprising 110 species is originating from pantropical regions [1], and within 18 species naturally growing in Africa, some are commonly reported to be used both in traditional medicine and bensistry, as *T. crassa*, *T. africana*, *T. stenosiphon*, and *T. eglandulosa* [1, 2]. In some central African countries like Gabon and Congo, particularly in the Plateaux Bateke areas, *Tabernaemontana crassa* is a spontaneous tree commonly growing in gallery forests, bosquets, forest regrowth and swamp forest [2]. The wood is locally used for domestic carpentry, mainly cassava crushing board, or mortar [1, 3]. In other ways, as some tropical trees like *Ricinodendron heudotii* Baill. Perre ex Heckel (Euphorbiaceae), *Tabernaemontana crassa* is a caduceous tree and an ecological indicator for local Bateke populations, so that it natural leaf dropping occurred in dry season, and renewing foliage stage correspond to the raining season coming [3]. In Plateaux Bateke areas, each *T. crassa* refoliation in end of September is indicating both environmental change and upcoming hatching of edible caterpillars on this tree from October to November. This specific plant-environmental-insect relation is well known by local residents of Plateaux Bateke in Gabon, but no scientific report has never been provided [3]. Due to this lack, our work aimed first to appreciate local knowledge and importance of the insect, by a social survey in four localities placed from Leconi to Ossouélé. In a second time, we studied the insect in this...
environment, by monitoring host plants on edges of bosquet forests, and some caterpillars collected from rolled leaves were brought in to the laboratory for the further observations allowing the insect identification.

2. Material and Methods
The present search was carried out to monitor the occurrence of an unidentified edible insect (Lepidoptera) on spontaneous populations of Tabernaemontana crassa Plum. ex L. (Apocynaceae) at Plateaux Bateke, from Gabon. The monitoring and surveys were performed at four localities all along a transect of 100km from Leconi to Ossouélé. From these localities, 25 sampling sites (spots) were prospected respectively as represented in table 1 bellow.

Spot rank	1	2	3	4	5	6	7
Leconi (6)	1°30'05''S	1°30'14''S	1°30'23''S	1°30'23''S	1°30'05''S	1°29'35''S	1°29'34''S
	14°26'26''E	14°26'21''E	14°25'21''E	14°25'19''E	14°25'19''E	14°25'21''E	14°25'20''E
	542m	538m	526m	525m	519m	512m	511m
Edjoua-engoulou (6)	1°15'50''S	1°15'55''S	1°15'55''S	1°15'55''S	1°15'55''S	1°15'50''S	1°15'53''S
	14°26'21''E	14°26'26''E	14°26'26''E	14°26'26''E	14°26'26''E	14°26'26''E	14°26'00''E
	542m	548m	542m	542m	514m	513m	525m
Odjouma (6)	1°04'57''S	1°04'57''S	1°04'57''S	1°04'57''S	1°04'41''S	1°04'42''S	1°04'47''S
	14°23'19''E	14°23'15''E	14°22'10''E	14°22'08''E	14°21'58''E	14°21'54''E	14°21'22''E
	576m	578m	556m	555m	551m	535m	540m
Ossouélé (7)	1°04'57''S	1°04'57''S	1°04'57''S	1°04'57''S	1°04'41''S	1°04'42''S	1°04'47''S
	14°23'19''E	14°23'15''E	14°22'10''E	14°22'08''E	14°21'58''E	14°21'54''E	14°21'22''E
	576m	578m	556m	555m	551m	535m	540m

A global sampling of 110 peoples were interviewed, according to their willingness, respectively 50 individuals at Leconi (20 men and 30 women), 15 individuals at Edjoua-engoulou (5 men and 10 women), 15 individuals at Odjouma (5 men and 10 women), and 30 individuals at Ossouélé (10 men and 20 women). Local knowledges were collected from a social survey [4] based on four questions: (1) Do you know this insect and this Apocynaceae host plant (if yes, what is the name, and other knowledge) ? (2) Where and when does the insect occurrence take place ? (3) Do you consum and appreciate the insect ? (4) What is your collecting and cooking methods for this insect ? Answers related from first to third questions were limited to ‘yes’ and ‘no’, whereas the fourth had to provide the appropriate method.

The field monitoring and laboratory observations allowed to provide the prevalence and injuries on host plants, the behaviour, the identification and description of the insect. Following field methods usually used to evaluate the risk related to the presence of insect pests and diseases [5, 6, 7], each visible tree was counted and its height evaluated. Trees with wilting specific appearence corresponding to the lepidopteran larvae attacks were recorded and the relate occurrence calculated. Leaves with new attacks were checked to find and collect the infesting insects. The larval and chrysalis samples were collected from only one locality at road boundary and brought to the laboratory for further rearing and observations. This work constituted preliminary investigation on this edible insect and relate food plant in Gabon, and Central Africa. The collected larvae were reared in plastic rearing boxes covered with muslin cloth under the laboratory conditions, renewing fresh leaves feed after each every three days. Due to the fact that the insect field outbreaks time occurred before current investigations, larvae were rare in almost trees, and few samples were obtained. Only three host plants allowed to collect five mature larvae and three chrysalids. Specific duration of each single insect individual was followed, from prenymphal to chrysalid, and adult hatching. The d-day adults were pinned and dried according to standard procedures, identified and stored at the Crop Protection Laboratory of University of Sciences and Technologies of Masuku (INSAB/USTM). The insect species and relate food plant were identified using recommended systematic papers [8, 9, 10] and the online taxonomic rational database Afromoths (www.afromoths.net).

3. Results and Discussion
3.1. Consumption and local knowledges
The insect consumption was recognized by all the interviewed people (100%), and both (100%) men and women declared the insect larvae to be tastefully appreciated. According to collecting and cooking methods, 100% of interviewed people reported to pick the later larval stage and chrysalids, under the attacked trees, within joined leaves. The insects are boiled with water and eaten directly in the household, because the harvested quantity is generally small and can not be sold. Once again, theses results are to confirm the entomophagy practises among Bateke people [12].

3.2 Occurrence and local knowledges
The insect occurrence was reported (100%) to take place regularly each year during the edible insects outbreak season, from october to november. This knowledge highlighted the Bateke people long tradition about insect and plant relationship [12, 13]. The insect and it host plant names were well known by all interviewed population (100%) so that the caterpillar stage is locally called Onkunkátu or Onkátu, whereas it feeding tree is named Onbiina (for Tabernaemontana crassa). This larva is so well known that people had to use a proverb on it, saying: Onkátu ngía katsyémé nèk kasuruga ma oṣia, that means Onkátu is so clean that it uses silk to fall from the tree. Current report is to confirm a newly former study [13] in which identification of the host plant was performed still the genus Tabernaemontana (Apocynaceae), whereas the insect (larva) was determined as Psara sp. (Lepidoptera: Crambidae). This insect misdentification was obviously due to the larval morphology strongly closer to Psara genus one.

3.3. Prevalence and injuries on host plants
Field investigation allowed to observe 70 host plant individuals of Tabernaemontana crassa attacked by the leafroller crambid (Table 1). The insect infestation was observed on all (100%) the accessible plants of the sampling sites located along the road and the forest edge, as small (< 1m), midle (1-3m) and taller (6-12m).
The injuries on all trees were characterized by global defoliation on plants of all size. Symptoms of attacked leaves consisted on a brown blight leaf appearance (Fig.1). From early to mature larval stages, caterpillars roll leaf dorsally with silk and make a cell to stay and feed inside starting to eat from the apex of the leaf. On newly attacked leaves, injuries are not usually severe. When the leaf is infested by several larvae, or mature individuals, damage are obviously remarkable, consisting on leaf rolling, with severely attacked leaves becoming crumpled, followed often by a general browning and leaf falling off. Larval feeding damage caused by *P. balseralis* are similar to those of several other spilomelina pyraloids, particularly species of *Parotis* [14].

3.4. Behaviour observations

The leafroller larvae of *P. baldersalis* occurs on *T. crassa* from October to November, throughout all the Plateaux Bateke area, but we have seen same attacks on *Voacanga africana* at south of Franceville (1°46’50”S; 13°47’24”E 436m), near Onkoua village. Another plant species belonging to the same Apocynaceae family, namely *Rauvolfia vomitoria* was observed with closer attacks at Ossouélé village (1°04’55”S;14°21’22”E) presumably caused by a likely spilomelinae species (with orange head: *Parotis marginata* (Hampson) ?). At early attack stage, first, second and third larval instars can co-exist with one to two individuals per stage, inside the silky tied cell, whereas only a single fully mature larval instars is observed per leaf. First larval instars generally used one half of leaf, whereas fully grown enrolled the entire leaf, wrapping all the leaf pararchyma that leads to blight. The immature caterpillars are pale green (Fig.2a, b), but brown yellowish at prenymphal instars (Fig.2c), before pupation (Fig.2d, e). When the larval is about to transform to chrysalid, it falls down the tree toward a slender silky wire, and makes shelter cell tied with silk, joining leaves of underwood plants, namely leaves of *Milletia laurentii* (Fabaceae), *Markhamia tomentosa* (Benth.) K. Schum.ex Engl. (Bignoniacae), *Ryttignia senegalensis* Blum (Rubiacae), *Sapium corruatum* Pax (Euphorbiaceae), *Afromomum stipulatum* (Gagnep.) K.Schum (Zingiberaceae) and *Caloncoba welwitschii* (Oliv.) Glg (Flacourtiaecae). Some black ants, *Crematogaster* sp were seen to co-habit on same twigs, but mutualism was not observed. Sometimes, dead larvae are eating by ants (Fig.2 h).

Localities	Sampling spots	Host plant height range	Global prevalence				
		<1m	1-3m	3-6m	6-12m	n	%
Leconi	6	3	4	4	6	17	100
Edjouangoulou	6	1	2	6	4	12	100
Odjouma	6	0	4	5	3	12	100
Ossouélé	7	2	7	9	15	33	100
Mean	6.25 ± 0.5	1.5 ± 1.3	4.25 ± 2.1	6 ± 2.2	7 ± 5.5	18.5 ± 9.9	100
Total	25	6	17	24	28	70	100

The injuries on all trees were characterized by global defoliation on plants of all size. Symptoms of attacked leaves consisted on a brown blight leaf appearance (Fig.1). From early to mature larval stages, caterpillars roll leaf dorsally with silk and make a cell to stay and feed inside starting to eat from the apex of the leaf. On newly attacked leaves, injuries are not usually severe. When the leaf is infested by several larvae, or mature individuals, damage are obviously remarkable, consisting on leaf rolling, with severely attacked leaves becoming crumpled, followed often by a general browning and leaf falling off. Larval feeding damage caused by *P. balseralis* are similar to those of several other spilomelina pyraloids, particularly species of *Parotis* [14].

Table 2: Prevalence on host plants

3.4. Identification and description

Six larvae brought to laboratory were kept in rearing boxes covered with gauze tissue, until pupation and adult emergence. Five chrysalids were formed, and only four adults emerged with characteristics that allow to identify the specimens as individuals of *Parotis baldersalis* Walker (Lepidoptera: Crambidae: spilomelinae). The larva of *P. baldersalis* is pale green, with a black head bearing a white reverse Y (Fig.2a, b). The body is characterized by a first thoracic segment (T1) bearing a black capsule longitudinally subdivided with a large body color spatch and the presence of four dorsal spots on most of segments (Fig.2c). On the second and third thoracic segment, spots are transversally oriented: but from the fourth to the eighth (abdominal segment) spots are dorso-longitudinally oriented. The ninth segment has a single large black spot, and the tenth a pale anal shield (fig.2c). Larvae assessment from field to laboratory allowed to record size of the five larval instars (Length: L; breadth: d), as L1 (L= 5 mm, d=0,5 mm), L2 (L=10mm, d=1mm), L3 (L=20-25mm, d=1,5mm), L4 (L=30-35mm, d=2mm), and L5 (L=40mm, d=3mm), respectively first, second, third, fourth and fifth instar larvae. Pupa has the region of the labial palpi elongated and bearing a black capsule longitudinally s.

Fig 1: Symptoms of Parotis baldersalis occurrence on the tree

[Image of symptoms on tree]
abdominal extremity (Fig.2g). Antennae are brown, two third length of the forewings. The edge of the forewings, the palae, and the brush of anterior tibia are brown. Observation in laboratory of a former collected chrysalid of *P. baldersalis* allowed hatching of a wasp parasitoid belonging to genus *Latibulus* Gistel (Hymenoptera: Ichneumonidae) [15] (fig.2i).

Fig 2: The insect instars of *P. baldersalis* and relate predaceous.

4. **Conclusion**

The moth, *Parotis baldersalis* Walker (Lepidoptera: Crambidae) is the first time reported causing injury on leaves of *Tabernaemontana crassa* (Apocynaceae) in the Plateaux Bateke region, eastern Gabon. The insect species is well known by local population as edible caterpillar called *Onkuida*. The insect damage is only due to larval leaf consumption, turning to the foliage burning appearance, and dropping. *Voacanga africana* was observed to be an accessory feeding plant. The main stages were observed, and the adult hatching in laboratory allowed to the make scientific identification. These results provided a better comprehensive behavior and ecological role of this insect in Gabon, with occurrence restricted to spontaneous host plants. Further studies are to be focused on the insect nutritional value and life cycle traits with purpose of rearing and producing this insect as human resource food and animal feed.

5. **Acknowledgements**

Authors are grateful and very thankful to Populations of localities of Leconi, Edjoua-engoulou, Odjouna, and Ossouélé, for their precious collaboration and valuable time to share local knowledge according this insect occurring in their environment.

References

1. Maiura FS, Schmelzer GH. *Tabernaemontana crassa* Benth. [Internet] Record from PROTA4U. Schmelzer, G.H. & Gurib-Fakim, A. (Editors). PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands. 2006. <http://www.prota4u.org/search.asp>. Accessed 03 May 2022.

2. Burkill HM. The Useful Plants of West Tropical Africa. Royal Botanic Gardens, Kew, United Kingdom. Families A-D, 2nd Edition. 1985:1-960.

3. Latham P, Konda KU, Mbuta A. Useful Plants of Kongo Central Province, Democratic Republic of Congo. 2014:2,513.

4. Ebenebe CI, Amobi MI, Udengha C, Ufele AN, Nweze BO. Survey of edible insect consumption in south-eastern Nigeria. Journal of Insects as Food and Feed. 2017;3(4):241-252.

5. OILB/SROP. Contrôles, seuils, et indications pour la lutte (Pomnier III). ACTA-lutte intégrée, 1977, 10-13.

6. MacHardy W E. Current status of IPM in apple orchards. In XIVth International Plant Protection Congress, Crop Protection. 2000;19(8-10):801-806.

7. Poligui RN, Haubrue E, Francis F. Monitoring of the entomological diversity in a pesticide free orchard: investigation of the Gembloux Agricultural University Conservatory. Communication on Applied Biology and Sciences. 2009;74:375-386.

8. Meunier Q, Doucet JL, Moubougou C. Les Arbres Utiles Du Gabon. Presses Agronomiques, Gembloux, Belgium. 2015.

9. The Lepidopterists’ society of Africa. African butterfly news. Edition: abn. 2019:3:50.

10. Prevost MF. Arrêts méristématicques chez *Tabernaemontana crassa* Benth. Office de la recherche scientifique et technique outre-mer. Centre d’adioponoumé. Cote d’Ivoire. 1969, 60.

11. Pinhey ECG. Moths of Southern Africa. Descriptions and colour illustrations of 1183 species. Tafelberg, Cape Town. 1975:1(4):1-273.

12. Detilleux L, Poligui RN, Iannello L, Dogot T, Francis F, Caparros Megido R. Entomophagy in Gabon across the African context. Journal of Insects as Food and Feed. 2021;8(7):711-720. https://doi.org/10.3920/JIFF2021.0064.

13. Walters G. The land chief’s embers: ethnobotany of Bateke fire regimes, savanna vegetation and resource use in Gabon. PhD-thesis, University College of London, London, UK. 2010.

14. Eckard D. Defoliation by the large emerald pearl, *Notodera* sericea (Lepidoptera: pyralidae) Metamorphosis. 1998;9(2):86-89.

15. Oh SH, An SL, Lee JW. Review of Korean *Latibulus* (Hymenoptera: Ichneumonidae: Cryptinae) and a key to the world species. The Canadian Entomologist. 2012;144:509-525.