B-box containing protein 1 from *Malus domestica* (MdBBX1) is involved in the abiotic stress response

Yaqing Dai¹,*, Ying Lu¹-²,*, Zhou Zhou¹, Xiaoyun Wang¹, Hongjuan Ge³ and Qinghua Sun¹

¹ College of Life Science, Shandong Agricultural University, Taian, Shandong, China
² Institute of Shandong River Wetlands, Jinan, Shandong, China
³ Qingdao Academy of Agricultural Science, Qingdao, Shandong, China

* These authors contributed equally to this work.

ABSTRACT

B-box proteins (BBXs), which act as transcription factors, mainly regulate photomorphogenesis. However, the molecular functions underlying the activity of plant BBXs in response to abiotic stress remain largely unclear. In this investigation, we found that a BBX from *Malus domestica* (MdBBX1) was involved in the response to various abiotic stresses. The expression of MdBBX1 was significantly upregulated in response to abiotic stresses and abscisic acid (ABA). Recombinant MdBBX1 increased stress tolerance in *Escherichia coli* cells. In addition, overexpression of MdBBX1 in *Arabidopsis* decreased sensitivity to exogenous ABA, resulting in a germination rate and root length that were greater and longer, respectively, than those of wild-type (WT) plants. Moreover, the expression of ABI5 was decreased in MdBBX1-overexpressing lines under ABA treatment. After salt and drought treatments, compared with the WT plants, the MdBBX1 transgenic plants displayed enhanced tolerance and had a higher survival rate. Furthermore, under salt stress, increased proline (PRO) contents, decreased levels of malondialdehyde (MDA), increased activity of antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX)) and decreased accumulation of reactive oxygen species (ROS) were observed in the MdBBX1-overexpressing plants. Overall, our results provide evidence that MdBBX1 might play a critical role in the regulation of abiotic stress tolerance by reducing the generation of ROS.

INTRODUCTION

B-box containing proteins (BBXs) are typical zinc finger transcription factors with 1 or 2 zinc-binding B-box domain(s) at the N-terminus of protein sequence and occasionally with a CCT domain (for CONSTANS, CONSTANS-like, TOC1) at the C-terminus (*Gangappa & Botto, 2014; Khanna et al., 2009*). There are 32 family members of BBX in *Arabidopsis thaliana* and they are divided into five subfamilies according to their amino acid sequences. BBXs in group I-III contain a CCT domain that participates in the
regulation of the transcription or nuclear import. Groups I, II, and IV contain two B-box motifs, while groups III and V harbor only one B-box motif (Gangappa & Botto, 2014; Khanna et al., 2009). BBX members in different groups have been identified to function in regulating anthocyanin accumulation, flowering, shade avoidance and photomorphogenesis, as well as responses to stress (An et al., 2019; An et al., 2020; Chang et al., 2008; Crocco et al., 2011; Crocco et al., 2015; Datta et al., 2007; Datta et al., 2008; Fang et al., 2019; Gangappa et al., 2013; Heng et al., 2019a; Heng et al., 2019b; Sarmiento, 2013; Wang et al., 2013; Wei et al., 2016; Yadav et al., 2019; Zhang et al., 2017).

In the BBX family of Arabidopsis, the members in the same group may have different functions. For example, both BBX21 and BBX24 belong to the same structural group, group IV (whose members have two B-box motifs and no CCT domain), but their functions in regulating photomorphogenesis are opposite. BBX21 is a positive regulator of photomorphogenesis, whereas BBX24 is a negative regulator (Xu et al., 2016). Despite the opposite functions of BBX21 and BBX24, the antagonistic modulating ability of both depends on HY5 (Job et al., 2018), which is a central downstream regulator of light-mediated developmental processes and can bind to the promoter of the ABI5 gene to activate its expression (Chen et al., 2008). To illustrate the molecular mechanism for underlying the contrasting functions of BBX21 and BBX24 (Job et al., 2018), the protein sequences of these two genes were compared, and the results revealed that their functional differences were mainly determined by different sequences of the C-terminal region. In support of this notion, the researchers constructed two vectors that expressed BBX24 and BBX21 proteins fused to each other’s C-terminal sequences; the fusion proteins were subsequently named “BB24C21” and “BB21C24”, respectively. The results showed that, similar to the overexpression of BBX21, the overexpression of BB24C21 could transcriptionally upregulate the expression of HY5, whereas over-expression of BB21C24 did not have any effect on the mRNA levels of HY5 (Job et al., 2018). Furthermore, the researchers found that BBX21 could mediate HY5 post transcriptionally. In contrast, BBX24 could prevent HY5 from binding to the promoter of the target gene, probably by heterodimerizing with HY5 and inhibiting its ability to bind to DNA. In conclusion, closely related BBXs may perform opposite functions.

BBXs are also involved in the stress response (Gangappa & Botto, 2014). As a kind of salt tolerance-related protein, BBX24 can negatively regulate the expression of many stress-related genes (Nagaoka & Takano, 2003). AtBBX24 transgenic plants were shown to be more salt tolerant than wild-type (WT) plants under salt stress. BBX5, a group I member, contains two B-box domains and one CCT domain, and is involved in the response to abiotic stress through the abscisic acid (ABA)-dependent signaling pathway. Overexpressing BBX5 can notably improve the plant resistance to abiotic stresses (Min et al., 2015). Overexpression of a BBX protein in banana obviously improved its tolerance to biotic and abiotic stresses, such as pathogen infection and chilling (Chen et al., 2012). Similarly, overexpression of OsBBX25 in Arabidopsis thaliana can increase plant tolerance to abiotic stresses (Liu et al., 2012). Heterologous expression of AtBBX21 enhances the photosynthesis rate and alleviates photoinhibition in Solanum tuberosum (Crocco et al., 2018). In addition, some tomato BBX genes can also be induced in response to heat,
drought and phytohormones (Chu et al., 2016). Overall, BBX proteins play vital roles in regulating various stress responses.

Our previous study reported that there are 64 BBXs in the apple genome, which can be divided into five groups, similar to the Arabidopsis BBX family. Some MdBBX genes are induced in response to different abiotic stresses, indicating that MdBBXs may participate in abiotic stress responses (Liu et al., 2018). A recent study found that MdBBX10 from apple could promote tolerance to drought and salt stresses in Arabidopsis (Liu et al., 2019a). MdBBX10 belongs to group V, and contains one B-box domain, but no CCT domain. Overexpression of MdBBX10 in Arabidopsis dramatically improved the tolerance to abiotic stress and increased sensitivity to ABA during the seed germination and seedling stages (Liu et al., 2019a). Here, we demonstrated that a BBX member of group I, MdBBX1, which contains two B-box domains and a CCT domain (Fig. S1), also responds to abiotic stress, but causes insensitivity to exogenous ABA when overexpression in Arabidopsis, which is opposite to the response of MdBBX10 to ABA.

MATERIALS AND METHODS

Plant growth conditions and treatments

For organ-specific expression analyses, different apple organs, including roots, stems, leaves, flowers and fruits, were sampled from 6-year-old apple trees growing at the experimental station of Shandong Agricultural University (Tai’an, Shandong, China).

Apple (golden delicious) seedlings were cultivated under greenhouse conditions (relative humidity of 60–75%) at 22 ± 1 °C with a 16 h light/8 h dark photoperiod for approximately 1 year. Then, the uniformly growing seedlings were selected for stress treatments. For salt and drought stress treatments, the apple seedlings were watered with solutions of 250 mM NaCl or 25% (w/v) polyethylene glycol-6000 (PEG-6000), and control seedling received the same amount of water only. For ABA treatment, 100 µM ABA solutions were directly sprayed on the seedlings. For cold stress, the apple seedlings were subjected to 4 °C condition, while seedlings growing at room temperature (25 °C) were used as the controls. Samples were collected from three different kinds of seedlings at 0, 3, 6, 9 and 12 h after treatment, as was done in a previous study (Yuan et al., 2013). Then, the collected samples were immediately frozen in liquid nitrogen and stored at −70 °C till used. Subsequently, the total RNA was extracted from the collected samples using an improved cetyl-trimethylammonium bromide (CTAB) procedure (Gasic, Hernandez & Korban, 2004).

The seeds of WT (Col-0) and transgenic Arabidopsis were disinfected and sown on 1/2 Murashige and Skoog (MS) media. After culturing at 4 °C for 3 days to undergo vernalization, the seedlings were transferred to a greenhouse condition, which included a 22 ± 1 °C temperature with a 16 h light/8 h photoperiod. Then, 3-week-old WT and transgenic plants were treated with 250 mM NaCl or 25% (w/v) PEG-6000 as described by Liu et al. (2019a), and the control seedlings were treated with water only. Plant growth status was observed and the survival rates were determined daily. Each treatment was performed at least three times.
Quantitative real-time PCR (qRT-PCR) analysis
QRT-PCR is a commonly used approach for the quantitative detection of gene expression in real time (Deepak et al., 2007). All the primers used in this investigation were designed according to the target gene sequences via the Beacon Designers software and were shown in Table S1. qRT-PCR was carried out using a SYBR® PrimeScript™ RT-PCR Kit (TaKaRa, Dalian, China) and run on a CFX96TM Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). The Arabidopsis Actin8 and apple actin genes were used as reference genes (Wang et al., 2016). The thermal cycling parameters were as follows: 40 cycles of 95 °C denaturation for 15 s, 55 °C annealing for 20 s and 70 °C extension for 15 s. The qRT-PCR data were analyzed by the $2^{-\Delta\Delta C_{t}}$ method (Livak & Schmittgen, 2001). The relative expression of MdBBX1 in the treated samples was compared with that in the nontreated samples at each treatment time point with significant differences ($P < 0.05$) determined based on Tukey’s multiple test.

Subcellular localization of MdBBX1
The full-length coding sequence of MdBBX1 was amplified from apple and inserted into the pROKII vector containing a GFP gene and the CaMV35S promoter. Cells of Agrobacterium tumefaciens GV3101 with the recombinant plasmid were cultured overnight, resuspended in osmotic solution (10 mM, Mole MgCl$_2$, 10 mM 2-[N-morpholino] ethanesulfonic acid (MES) and 150 mM acetosyringone), and then injected into the leaves of 1-month-old Nicotiana benthamiana plants. The fluorescent signal of MdBBX1-GFP was detected via a confocal microscope (LSM 510 META, Carl Zeiss, Jena, Germany) after 2–3 days. The nuclei were subsequently stained with 100 g/mL 4′,6-diamidino-2-phenylindole (DAPI) (Solarbio, Beijing, China) for 10 min. Leaves overexpressing 35S-GFP were used as controls (Wang et al., 2018).

Construction of expression plasmids
The cDNA sequence of MdBBX1 was inserted into the polyclonal sites of pET-30a (+) (Novagen), which contained His-tagged sequences. Then, the recombinant vector was transformed into Escherichia coli BL21 cells. The recombinant sequences in the plasmids were sequenced by Sangon Biotechnology Company (Shanghai, China).

Survival test of Escherichia under different abiotic stresses
Survival analysis of Escherichia coli under salt and drought stress was conducted as described by Du et al. (2014). The cells were cultured in Luria-Bertani (LB) liquid media until the OD$_{600}$ reached 0.4–0.6, and then the expression of the recombinant protein was induced for 2 h using isopropyl β-D-1-thiogalactopyranoside (IPTG) at 37 °C. All the bacterial cultures were first diluted to an OD$_{600}$ of 0.6 and then diluted 10$^{-3}$, 10$^{-4}$ and 10$^{-5}$ times. For the survival test on solid media, 10 µL cultures of each dilution were spotted onto solid LB media that included 500 mM KCl, 500 mM NaCl or 600 mM mannitol and incubated for 12 h at 37 °C. Then, the colony numbers in each dish for the culture diluted to 10$^{-5}$ were counted. Each experiment was performed at least three times.
For the survival test in liquid media, the cultures were first diluted to an OD$_{600}$ of 0.6, after which 200 µL of the cultures were put into 20 mL of LB solution that included 500 mM NaCl, 500 mM KCl or 600 mM mannitol and incubated at 37 °C on a rotary shaker (150 rpm). Then, the bacterial suspension was collected every 2 h for 24 h, after which the OD$_{600}$ of the culture was measured. Each experiment was repeated at least 3 times.

Generation of transgenic plants

The pROKII-MdBBX1 recombinant plasmids were transformed into *Arabidopsis* in accordance with the floral-dip method *via* Agrobacterium tumefaciens (GV3101)-mediated transformation. Subsequently, the MdBBX1 overexpression seedlings were screened on MS agar media supplemented with 50 µg/mL kanamycin and were further identified *via* PCR using MdBBX1 and GFP primers. The specific primers used are shown in the Table S1.

Analysis of germination status under different abiotic stresses

Fifty seeds of WT or overexpression (OE) lines were sown onto 1/2-strength MS agar media supplemented with different concentrations of mannitol (300 or 400 mM), NaCl (150 or 200 mM) or ABA (0.2 or 0.6 µM). Seed germination was observed and measured every 12 h. For root length analysis, the seeds were grown vertically on 1/2-strength MS media as described above. The root length of 20 seedlings was measured after 10 days, and each treatment was performed at least three times.

Measurements of proline (PRO), malondialdehyde (MDA), and reactive oxygen species (ROS) contents and antioxidant enzyme activity

For physiological index measurements, the free PRO content was measured using a spectrophotometric PRO kit (Solarbio Life Sciences, Beijing, China). The MDA content was measured using a thiobarbituric acid reactive substances assay (*Aguilar Díaz de León & Borges, 2020; Hodges, Delong & Prange, 1999*) and the contents of hydrogen peroxide (H$_2$O$_2$) and superoxide anions (O$_2^-$) were measured using O$_2^-$ and H$_2$O$_2$ kits, respectively (Nanjing Jiancheng Bioengineering Institute, China). Similarly, the total protein contents were determined using a BCA Protein Assay Kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, China), and the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were measured based on the protocols of the corresponding kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China) (*Bai et al., 2020; Li et al., 2019; Ma et al., 2019*).

Statistical analysis

All experiments were conducted at least three times. The data presented are the means ± standard deviations of three replications. Statistical significance was analyzed using SPSS software (version 17.0), and Turkey’s multiple range comparison tests were performed to determine the significance of differences between samples (P < 0.05 or P < 0.01).
RESULTS

Organ-specific expression pattern analysis and subcellular localization of MdBBX1

The organ-specific expression pattern of *MdBBX1* was analyzed via qRT-PCR. The results revealed that the transcript level of *MdBBX1* was obviously higher in the leaves than in other organs (Fig. 1A). To identify the subcellular localization of MdBBX1, an MdBBX1-GFP construct and empty GFP plasmid were introduced into epidermal cells of tobacco leaves, after which the nuclei were stained by DAPI. The fluorescence signal and DAPI staining were predominantly distributed in the nucleus (Fig. 1B), which indicated that MdBBX1 was localized there.
The *MdBBX1* promoter contains elements related to the abiotic stress response

Some BBX members were found to respond positively to abiotic stresses in a previous study ([An et al., 2020; Crocco & Botto, 2013; Liu et al., 2018; Shalmani et al., 2018]). To explore the potential functions of *MdBBX1* in response to a variety of abiotic stresses, the DNA sequence within 2000 bp upstream of *MdBBX1* (the promoter sequence) was scanned via PlantCARE software (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/). The results showed that many cis-acting elements that may be involved in responses to abiotic stress, light and other signals were present in the *MdBBX1* promoter region (Table 1). For instance, MBS (MYB-binding site) elements are involved in the response to drought stress, and ABA-responsive elements (ABREs) function in response to exogenous ABA. LTRs are found to participate in low-temperature responsiveness. In addition, some cis-acting elements such as TC-rich repeats and TCA elements are involved in responses to defense and stress or to salicylic acid. Taken together, these results indicated that *MdBBX1* may participate in the response to abiotic stress.

To further investigate whether *MdBBX1* is expressed in response to abiotic stress, apple seedlings were treated with solutions of 100 µM ABA, 25% polyethylene glycol (PEG), or 250 mM NaCl or 4 ºC for different durations. As shown in Fig. 2, the transcript levels of *MdBBX1* were upregulated in both the leaves and the roots under exogenous ABA, salt and PEG treatment, *MdBBX1* expression was maximized after 6 h of stimulation by ABA, PEG or NaCl compared with the control in the roots and increased by approximately 120-, 4- and 2-fold, respectively. In addition, the transcript levels of *MdBBX1* were upregulated by 12-, 20- and 10-fold after treatment with ABA, PEG or NaCl in the leaves. Notably, the expression of *MdBBX1* was significantly upregulated under cold conditions only in the roots. Taken together, the above results showed that the expression of *MdBBX1* was induced in response to different abiotic stresses, which suggested that *MdBBX1* may be involved in the response to abiotic stress.

Cis-element	Position	Sequence(5'→3')	Function
ABRE	−1331	ACGTG	cis-acting element involved in the abscisic acid responsiveness
CGTCA-motif	−1794	CGTCA	cis-acting regulatory element involved in the MeJA-responsiveness
G-Box	−1330	CACGTT	cis-acting regulatory element involved in light responsiveness
GT1-motif	−1523	GGTTAAT	light responsive element
LTR	−1992	CGGAAA	cis-acting element involved in low-temperature responsiveness
MBS	−577	CAACTG	MYB binding site involved in drought-inducibility
P-box	−1778	CCTTTTG	gibberellin-responsive element
TC-rich repeats	−941	ATTCTCTAAC	cis-acting element involved in defense and stress responsiveness
TCA-element	−1242	CCATCTTTTT	cis-acting element involved in salicylic acid responsiveness
Figure 2. The expression pattern of *MdBBX1* in (A) roots and (B) leaves under various abiotic stresses. Each column represents the mean values of three biological replicates and vertical bars indicate the standard error of the mean. The letters above the columns represent significant differences (*P* < 0.05) based on Tukey’s multiple test.

Full-size DOI: 10.7717/peerj.12852/fig-2
Ectopic expression of *MdBBX1* in *Escherichia* improved cell tolerance to abiotic stress

To determine the stress resistance function of *MdBBX1*, heterogeneous expression of *MdBBX1* was induced in *Escherichia coli* growing on solid media under different stress conditions. Survival tests of *Escherichia coli* cells were carried out, with empty vectors used as controls. As shown in Figs. 3A–3B, the growth of the cells in nonstress media showed slight significant difference between those harboring *MdBBX1* and those harboring the empty vector. However, when the same concentration of cultures was inoculated onto plates with stress media, the number of *Escherichia coli* colonies expressing *MdBBX1* was significantly higher than that of the control colonies harboring the empty vector.

To further confirm the function of *MdBBX1*, a growth curve of *Escherichia coli* in liquid media was constructed. As shown in Fig. 3C, under nonstress conditions, few differences were observed among the growth curves of cells with and without *MdBBX1* expression. However, under different stress conditions, the growth rate of *Escherichia coli* expressing *MdBBX1* was significantly faster than that of the control cells carrying the empty vector. The results suggested that *MdBBX1* provided strong abiotic stress tolerance.

Overexpression of *MdBBX1* increased resistance to abiotic stress in *Arabidopsis*

To determine the role of *MdBBX1* in abiotic stress resistance in plants, three transgenic lines (OE1, OE2 and OE3) with similar expression levels of *MdBBX1* were obtained and subjected to salt and drought treatment (Fig. S1). As shown in Fig. 4A, on normal media, the germination rate and growth status of seedlings exhibited no obvious differences between the WT and transgenic lines. However, under salt stress, the OE seeds presented a significantly higher germination rate than did the WT seeds. On the stress media that included 200 mM NaCl, the germination rate of the OE seeds reached 60% compared with 20% for WT seeds after treatment for 48 h. In addition, the root length of OE lines was obviously longer than that of the WT plants on 150 mM NaCl media (Fig. 4B). When the 3-week-old seedlings were watered with 250 mM NaCl for 10 days, the leaves of WT began to turn yellow, but few yellow leaves were observed on the OE seedlings. After treatment for 15 days, more wilted and chlorotic leaves were observed on the WT than in the OE lines. After treatment with salt for 20 days, the OE plants presented a significantly higher survival rate (approximately 90%) than did the WT plants (approximately 40%) (Fig. 5A). In addition, under salt stress, the PRO accumulation in the OE plants was obviously higher than that in the WT (Fig. 5B), while the levels of MDA were obviously lower in the OE lines than in the WT (Fig. 5C).

Similarly, after mannitol treatment, the OE lines also displayed significantly higher germination rates and longer root lengths than did the WT line (Figs. 6A–6B). Moreover, the transgenic plants presented a higher survival rate than did the WT plants when treated with 25% PEG-6000 (Fig. 6C). When treated for 25 days, nearly 60% of WT plants wilted and died, while the leaves of OE plants yellowed slightly. The survival rate of the OE plants was approximately 90%, which was significantly higher than the survival rate of the WT plants. Taken together, these results indicated that overexpression of...
Figure 3 Survival test of E. coli cells carrying MdBBX1 or empty vector under various stress conditions. (A) A total of 10 µL cultures induced by 1 mM IPTG for 2 h (OD600 about 0.5) were diluted from 10^{-3} to 10^{-5} and were spotted on solid medium containing NaCl, KCl or mannitol. Each experiment was carried out in three biological replicates. (B) The colony numbers appearing on above
MdBBX1 enhanced the abiotic stress resistance of the transgenic plants during germination and vegetative stage.

Overexpression of MdBBX1 in Arabidopsis decreased sensitivity to ABA

ABA plays a critical role in the physiological regulation of plant development in seed germination and in abiotic stress responses (Vishwakarma et al., 2017). To determine the potential function of MdBBX1 in response to ABA, seeds of the OE and WT lines were plated on MS media either without or with ABA. Under MS media without ABA, the WT and OE lines displayed similar germination rates. However, under ABA treatment, the germination rates of the OE lines were significantly higher than those of the WT (Fig. 7A). Moreover, after the seedlings grew on MS media with ABA for 10 days, the primary root length of the OE seedlings was obviously greater than that of the WT seedlings (Fig. 7B). To determine the effect on root growth, the seeds of WT and OE were sown on MS media for 2 days first and then transferred to plates with media that included 0.6 µM ABA. The root length of the OE seedlings was still longer than that of the WT seedlings (Fig. S2). The above results suggested that overexpression of MdBBX1 decreased ABA sensitivity in Arabidopsis during the germination and seedling stages.

In the ABA signaling pathway, HY5 and ABI5 are crucial for seed germination and seedling development (Chen & Xiong, 2008; Finkelstein, Gampala & Rock, 2002; Finkelstein & Lynch, 2000b). To determine whether the development of MdBBX1-overexpressing seedlings under abiotic stresses was related to HY5 or ABI5, the transcript levels of ABI5 and HY5 were measured after ABA treatment. The results revealed that the expression of ABI5 was markedly reduced in the OE plants compared with the WT plants, while HY5 changed only slightly (Fig. 7C). Another OE line overexpressing a different MdBBX family member (MdBBX10), which is ABA sensitive, was also evaluated under the same treatment (Liu et al., 2018). As shown in Fig. 7C, the changes in ABI5 expression levels were opposite between MdBBX1 and MdBBX10, which was reasonably expected in terms of a response to ABA treatment.

Overexpression of MdBBX1 reduced ROS accumulation in transgenic plants

Various abiotic stresses often lead to the accumulation of excessive amounts of ROS, particularly H$_2$O$_2$ and O$_2^-$, which has an important impact on plant growth and development (Mittler et al., 2004). To analyze whether MdBBX1 responds to abiotic stress
Figure 4 Germination and root length phenotypes of *MdBBX1* overexpression plants under salt tolerance. (A) Germination phenotype of the WT and *MdBBX1* -overexpressed (OE) lines on 1/2 MS medium containing NaCl (0, 150 and 200 mM). Three independent experiments were conducted and each phenotype included 50 seeds. The mean expression value was calculated from three independent replicates. Vertical bars indicate the standard error of mean, \(^{**}P < 0.01\) and \(^{*}P < 0.05\) compared with WT. (B) The root length of WT and *MdBBX1*-transgenic lines in 1/2 MS medium containing 150 mM NaCl. Root growth was measured after NaCl treatment for 14 days. The letters above the columns represent significant differences \((P < 0.05)\) based on Tukey’s multiple test.
through the regulation of ROS levels, the accumulation of O_2^{-} in WT and OE plants was assessed via nitro blue tetrazolium (NBT) staining. No obvious difference was found between the WT and OE lines. However, under NaCl and PEG conditions, the OE lines accumulated lower levels of O_2^{-} than the WT did (Fig. 8A). Furthermore, the contents of H_2O_2 and O_2^{-} were measured, and the results showed that their contents in the OE lines were significantly lower than those in the WT (Figs. 8B, 8C). Similarly, under
Figure 6 The phenotype of WT and MdBBX1 transgenic plants in response to drought stress. (A) The seed germination of WT and the MdBBX1 transgenic plants on 1/2 MS medium containing mannitol (0, 300, or 400 mM). Three independent experiments were conducted and each phenotype included 50 seeds. Vertical bars indicate the standard error of mean, ** and * indicate significant differences in comparison to WT. (B) Root length of WT and MdBBX1 transgenic plants under control and 300 mM mannitol conditions. (C) Survival rate of WT and MdBBX1 transgenic plants under 25% PEG 10 d and 25% PEG 25 d conditions.
normal conditions, the activities of SOD, POD and APX were not notably different between the OE and WT lines. However, after salt treatment, the activities of SOD, POD and APX in the OE lines significantly increased compared with those in the WT lines (Fig. 9). Together, these results suggested that overexpression of MdBBX1 could decrease the accumulation of ROS in transgenic plants by mediating the activities of ROS-scavenging enzymes.

DISCUSSION

Many BBXs are involved in the response to abiotic stresses in plants. For example, AtBBX5 and AtBBX24 are positive regulators that modulate the drought and salt stress resistance in Arabidopsis (Min et al., 2015; Nagaoka & Takano, 2003). Overexpression of OsBBX25 in Arabidopsis increased the tolerance to abiotic stresses (Liu et al., 2012). Similarly, heterologous, constitutive expression of CmBBX22 in Arabidopsis reduced seed germination and seedling growth under exogenous ABA, but improved plant drought tolerance (Liu et al., 2019b). A recent study found that overexpression of MdBBX10 in Arabidopsis can promote the salt and drought tolerance, and the transgenic seedlings were shown to hypersensitive to exogenous ABA (Liu et al., 2019a). In this investigation, overexpression of MdBBX1 also enhanced tolerance to abiotic stresses. However, the phenotype of MdBBX1 overexpression plants was different from that of MdBBX10 transgenic plants under exogenous ABA treatment. MdBBX10 overexpressing plants were hypersensitive to exogenous ABA, while the MdBBX1 transgenic plants were insensitive to ABA.

As a pivotal phytohormone, ABA is extensively involved in the regulation of plant growth and development (Wang et al., 2019), especially in response to various abiotic stresses and seed germination (Finkelstein, Gampala & Rock, 2002). During the initial stages of germination, the endogenous ABA content in seeds decreases rapidly and markedly after imbibition (Ali-Rachedi et al., 2004; Gubler, Millar & Jacobsen, 2005; Jacobsen et al., 2002). When exogenous ABA is added, seed germination and seedling growth can be repressed (Finkelstein, Gampala & Rock, 2002; Finkelstein & Lynch, 2000a). ABA-insensitive genes (ABIs), especially ABI5, play a vital role in ABA signaling and photomorphogenesis. ABI5 is mainly expressed in dry seeds, and is involved in ABA-dependent growth arrest when seed dormancy is broken (Finkelstein, Gampala & Rock, 2002; Finkelstein & Lynch, 2000b). The efficiency of the ABA-dependent growth arrest is directly dependent on ABI5 levels (Brocard, Lynch & Finkelstein, 2002;
Figure 7 Germination phenotype of WT and transgenic plants in response to ABA. (A) Seed germination of WT and OE lines on 1/2 MS medium containing different ABA concentrations (0, 0.2 or 0.6 µM). Three independent experiments were conducted and each phenotype included 50 seeds. Vertical bars indicate the standard error of mean, ** indicate significant differences in comparison with WT.
Lopez-Molina, Mongrand & Chua, 2001). ABI5 markedly decreases after germination but can be induced by exogenous ABA (Finkelstein & Lynch, 2000b; Lopez-Molina, Mongrand & Chua, 2001). Moreover, the expression of ABI5 can be activated by HY5 through direct binding to its promoter in Arabidopsis (Chen et al., 2008). BBX family members also regulate the expression of ABI5. For example, BBX19 from Arabidopsis suppresses seed germination by inducing expression of ABI5 (Bai et al., 2019). However, in this investigation, the transcript level of ABI5 significantly decreased in the MdBBX1 OE plants compared with the WT plants, whereas it was significantly increased in the MdBBX10 overexpression plants (Fig. 7C). Moreover, the transcript levels of HY5 did not obviously change in the MdBBX1 OE seedlings compared with the WT seedlings, but they were obliviously lower than those in the MdBBX10 OE seedlings. These results are
consistent with the phenotypes during seed germination after ABA treatment. In addition, the results of multiple sequence alignment revealed 17%, 36%, and 16% homology between HY5 and BBX1, BBX5, and BBX21, respectively (Fig. S3), which suggested that overexpression of *MdBBX1* may have little effect on the expression of endogenous genes. Taken together, these results suggested that *MdBBX1* may interfere with the expression of *ABI5* and *HY5* to promote seed germination and seedling growth in transgenic plants.

Abiotic stress can disrupt the normal homeostasis of plants, leading to the production of ROS, mainly comprises of H$_2$O$_2$ and O$_2^-$ (Miller et al., 2010). Low concentrations of ROS act as critical signaling molecules that are beneficial to plant growth and development, especially when plants are exposed to extreme environmental conditions (Schippers et al., 2012). However, the accumulation of excessive amounts of ROS leads to very serious oxidative damage to plant cells and represses the normal growth of plants (Mullineaux & Baker, 2010). To alleviate oxidative damage, plant cells immediately employ a series of response mechanisms to suppress ROS production, such as the activation of ROS-scavenging enzymes (SOD, POD, CAT and APX) (Miller et al., 2010). Abiotic stress
often increases the accumulation of ROS, thus causing membrane damage with lipid peroxidation, generating MDA. Our results suggested that the ROS and MDA contents were no significant different between the OE and WT lines under normal conditions. However, under salt treatment, compared with the WT line, the MdBBX1 transgenic lines displayed a greater ROS-scavenging ability and antioxidant enzyme activities (Fig. 9), and a lower ROS accumulation (Fig. 8) and MDA levels (Fig. 5). Regulation of antioxidant capacity through improving the ROS-scavenging system might be a common mechanism to increase salt tolerance. Similar to our study, a previous study reported that overexpression of ThSOS3 from Tamarix hispida improved the salt tolerance of transgenic plants by alleviating the accumulation of ROS, decreasing the accumulation of MDA accumulation and increasing the activity of antioxidant enzymes (Liu et al., 2020). In addition, overexpression of apple MdMIPS1 also enhanced salt tolerance by increasing the activities of SOD, POD, and decreasing ROS and MDA contents in transgenic apple under salt stress (Hu et al., 2020). Taken together, these results indicated that MdBBX1 provides salt stress resistance by enhancing ROS-scavenging system and alleviating oxidative stress.

CONCLUSIONS

The transcript level of MdBBX1 increased in response to various stresses. Overexpressing MdBBX1 in Arabidopsis improved abiotic stress tolerance by regulating ABA signaling and the production of ROS. However, the detailed molecular mechanisms underlying these phenomena still need to be tested in future experiments.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Natural Science Foundation of China (No. 31872042 and 31972358), the Natural Science Foundation of Shandong Province, China (No. ZR2019MC040 and ZR2018MC022), and the Shandong Provincial Key Research and Development Project (No. 2019JZZY010727). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 31872042 and 31972358.
Natural Science Foundation of Shandong Province, China: ZR2019MC040 and ZR2018MC022.
Shandong Provincial Key Research and Development Project: 2019JZZY010727.

Competing Interests
The authors declare that they have no competing interests.
Author Contributions

- Yaqing Dai conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, and approved the final draft.
- Ying Lu conceived and designed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
- Zhou Zhou performed the experiments, analyzed the data, prepared figures and/or tables, and approved the final draft.
- Xiaoyun Wang conceived and designed the experiments, authored or reviewed drafts of the paper, and approved the final draft.
- Hongjuan Ge analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.
- Qinghua Sun conceived and designed the experiments, analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.

Data Availability

The following information was supplied regarding data availability:

The data is available at figshare: zhou, zhou (2022): MdBBX1 raw data. figshare. Dataset. https://doi.org/10.6084/m9.figshare.16575233.v1.

Supplemental Information

Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.12852#supplemental-information.

REFERENCES

Aguilar Díaz de León J, Borges CR. 2020. Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay. Journal of Visualized Experiments 12(159):e61122 DOI 10.3791/61122.

Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P, Jullien M. 2004. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219(3):479–488 DOI 10.1007/s00425-004-1251-4.

An JP, Wang XF, Zhang XW, Bi SQ, You CX, Hao YJ. 2019. MdBBX22 regulates UV-B-induced anthocyanin biosynthesis through regulating the function of MdHY5 and is targeted by MdBT2 for 26S proteasome-mediated degradation. Plant Biotechnology Journal 17(12):2231–2233 DOI 10.1111/pbi.13196.

An JP, Wang XF, Espley RV, Lin-Wang K, Bi SQ, You CX, Hao YJ. 2020. An apple B-Box protein MdBBX37 modulates anthocyanin biosynthesis and hypocotyl elongation synergistically with MdMYBs and MdHY5. Plant and Cell Physiology 61(1):130–143 DOI 10.1093/pcp/pcz185.

Bai M, Sun J, Liu J, Ren H, Wang K, Wang Y, Wang C, Dehesh K. 2019. The B-box protein BBX19 suppresses seed germination via induction of ABI5. Plant Journal 99(6):1192–1202 DOI 10.1111/tpj.14415.

Bai Y, Xiao S, Zhang Z, Zhang Y, Sun H, Zhang K, Wang X, Bai Z, Li C, Liu L. 2020. Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat. PeerJ 8(1):e9450 DOI 10.7717/peerj.9450.
Brocard IM, Lynch TJ, Finkelstein RR. 2002. Regulation and role of the *Arabidopsis* abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response. *Plant Physiology* 129(4):1533–1543 DOI 10.1104/pp.005793.

Chang CS, Li YH, Chen LT, Chen WC, Hsieh WP, Shin J, Jane WN, Chou SJ, Choi G, Hu JM, Somerville S, Wu SH. 2008. LZF1, a HY5-regulated transcriptional factor, functions in *Arabidopsis* de-etiolation. *Plant Journal* 54(2):205–219 DOI 10.1111/j.1365-313X.2008.03401.x.

Chen H, Xiong L. 2008. Role of HY5 in abscisic acid response in seeds and seedlings. *Plant Signaling & Behavior* 3(11):986–988 DOI 10.4161/psb.6185.

Chen H, Zhang J, Neff MM, Hong SW, Zhang H, Deng XW, Xiong L. 2008. Integration of light and abscisic acid signaling during seed germination and early seedling development. *Proceedings of the National Academy of Sciences of the United States of America* 105(11):4495–4500 DOI 10.1073/pnas.0710778105.

Chen J, Chen JY, Wang JN, Kuang JF, Shan W, Lu WJ. 2012. Molecular characterization and expression profiles of MaCOL1, a CONSTANS-like gene in banana fruit. *Gene* 496(2):110–117 DOI 10.1016/j.gene.2012.01.008.

Chu Z, Wang X, Li Y, Yu H, Li J, Lu Y, Li H, Ouyang B. 2016. Genomic organization, phylogenetic and expression analysis of the B-BOX gene family in tomato. *Frontiers in Plant Science* 7:1552–1567 DOI 10.3389/fpls.2016.01552.

Crocco CD, Botto JF. 2013. BBX proteins in green plants: Insights into their evolution, structure, feature and functional diversification. *Gene* 531(1):44–52 DOI 10.1016/j.gene.2013.08.037.

Crocco CD, Holm M, Yanovsky MJ, Botto JF. 2011. Function of B-BOX under shade. *Plant Signaling & Behavior* 6(1):101–104 DOI 10.4161/psb.6.1.14185.

Crocco CD, Locascio A, Escudero CM, Alabadi D, Blazquez MA, Botto JF. 2015. The transcriptional regulator BBX24 impairs DELLA activity to promote shade avoidance in *Arabidopsis thaliana*. *Nature Communications* 6(1):6202–6212 DOI 10.1038/ncomms7202.

Crocco CD, Ocampo GG, Ploschuk EL, Mantese A, Botto JF. 2018. Heterologous Expression of AtBBX21 enhances the rate of photosynthesis and alleviates photoinhibition in *Solanum tuberosum*. *Plant Physiology* 177(1):369–380 DOI 10.1104/pp.17.01417.

Datta S, Hettiarachchi C, Johansson H, Holm M. 2007. SALT TOLERANCE HOMOLOG2, a B-box protein in *Arabidopsis* that activates transcription and positively regulates light-mediated development. *Plant Cell* 19(10):3242–3255 DOI 10.1105/tpec.107.054791.

Fang H, Dong Y, Yue X, Hu J, Jiang S, Xu H, Wang Y, Su M, Zhang J, Zhang Z, Wang N, Chen X. 2019. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. *Plant Cell and Environment* 42(7):2090–2104 DOI 10.1111/pce.13552.

Dai et al. (2022), *PeerJ*, DOI 10.7717/peerj.12852
Finkelstein RR, Lynch TJ. 2000a. Abscisic acid inhibition of radicle emergence but not seedling growth is suppressed by sugars. *Plant Physiology* 122(4):1179–1186 DOI 10.1104/pp.122.4.1179.

Finkelstein RR, Lynch TJ. 2000b. The *Arabidopsis* abscisic acid response gene *ABI5* encodes a basic leucine zipper transcription factor. *Plant Cell* 12(4):599–609 DOI 10.2307/3871072.

Gangappa SN, Botto JF. 2014. The *Arabidopsis* abscisic acid response gene *ABI5* encodes a basic leucine zipper transcription factor. *Plant Cell* 12(4):599–609 DOI 10.2307/3871072.

Gangappa SN, Crocco CD, Johansson H, Datta S, Hettiarachchi C, Holm M, Botto JF. 2013. The *Arabidopsis* B-BOX protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis. *Plant Cell* 25(4):1243–1257 DOI 10.1105/tpc.113.109751.

Gasic K, Hernandez A, Korban SSJMBR. 2004. RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. *Plant Molecular Biology Reporter* 22(4):437–438 DOI 10.1007/BF02772687.

Gubler F, Millar AA, Jacobsen JV. 2005. Dormancy release, ABA and pre-harvest sprouting. *Current Opinion in Plant Biology* 8(2):183–187 DOI 10.1016/j.pbi.2005.01.011.

Heng Y, Jiang Y, Zhao X, Zhou H, Wang X, Deng XW, Xu D. 2019a. BBX4, a phyB-interacting and modulated regulator, directly interacts with PIF3 to fine tune red light-mediated photomorphogenesis. *Proceedings of the National Academy of Sciences of the United States of America* 116(51):26049–26056 DOI 10.1073/pnas.1915149116.

Heng Y, Lin F, Jiang Y, Ding M, Yan T, Lan H, Zhou H, Zhao X, Xu D, Deng XW. 2019b. B-Box containing proteins BBX30 and BBX31, acting downstream of HY5, negatively regulate photomorphogenesis in *Arabidopsis*. *Plant Physiology* 180:497–508 DOI 10.1104/pp.18.01244.

Hodges DM, Delong JM, Prange F. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. *Planta* 207(4):604–611 DOI 10.1007/s004250050524.

Hu L, Zhou K, Liu Y, Yang S, Zhang J, Gong X, Ma F. 2020. Overexpression of *MdMIPS1* enhances salt tolerance by improving osmosis, ion balance, and antioxidant activity in transgenic apple. *Plant Science* 301:110654–110663 DOI 10.1016/j.plantsci.2020.110654.

Jacobsen JV, Pearce DW, Poole AT, Pharis RP, Mander LN. 2002. Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley. *Physiologia Plantarum* 115(3):428–441 DOI 10.1034/j.1399-3054.2002.1150313.x.

Job N, Yadukrishnan P, Bursch K, Datta S, Johansson H. 2018. Two B-Box proteins regulate photomorphogenesis by oppositely modulating HY5 through their diverse C-terminal domains. *Plant Physiology* 176(4):2963–2976 DOI 10.1104/pp.17.00856.

Khanna R, Kronmiller B, Maszle DR, Coupland G, Holm M, Mizuno T, Wu SH. 2009. The *Arabidopsis* B-box zinc finger family. *Plant Cell* 21(11):3416–3420 DOI 10.1105/tpc.109.09088.

Li PT, Rashid MHO, Chen TT, Lu QW, Ge Q, Gong WK, Liu AY, Gong JW, Shang HH, Deng XY, Li JW, Li SQ, Xiao XH, Liu RX, Zhang Q, Duan L, Zou XY, Zhang Z, Jiang X, Zhang Y, Peng RH, Shi YZ, Yuan YL. 2019. Transcriptomic and biochemical analysis of upland cotton (*Gossypium hirsutum*) and a chromosome segment substitution line from *G. hirsutum* x *G. barbadense* in response to *Verticillium dahliae* infection. *BMC Plant Biology* 19(1):19–43 DOI 10.1186/s12870-018-1619-4.

Liu X, Li R, Dai Y, Chen X, Wang X. 2018. Genome-wide identification and expression analysis of the B-box gene family in the Apple (*Malus domestica Borkh.*) genome. *Molecular Genetics and Genomics* 293(2):303–315 DOI 10.1007/s00438-017-1386-1.
Liu X, Li R, Dai Y, Yuan L, Sun Q, Zhang S, Wang X. 2019a. A B-box zinc finger protein, MdBBX10, enhanced salt and drought stresses tolerance in Arabidopsis. Plant Molecular Biology 99(4–5):437–447 DOI 10.1007/s11103-019-00828-8.

Liu Y, Chen H, Ping Q, Zhang Z, Guan Z, Fang W, Chen S, Chen F, Jiang J, Zhang F. 2019b. The heterologous expression of CmBBX22 delays leaf senescence and improves drought tolerance in Arabidopsis. Plant Cell Reports 38(1):15–24 DOI 10.1007/s00299-018-2345-y.

Liu Y, Xing L, Li J, Dai S. 2012. Rice B-box zinc finger protein OsBBX25 is involved in the abiotic response. Zhiwu Xuebao 47(4):366–378 DOI 10.3724/SP.J.1259.2012.00366.

Liu Z, Xie Q, Tang F, Wu J, Dong W, Wang C, Gao C. 2020. The ThSOS3 Gene improves the salt tolerance of transgenic Tamarix hispida and Arabidopsis thaliana. Frontiers of Plant Science 11:597480–597493 DOI 10.3389/fpls.2020.597480.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2^(-ΔΔCT) Method. Methods 25(4):402–408 DOI 10.1006/meth.2001.1262.

Lopez-Molina L, Mongrand S, Chua NH. 2001. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 98(8):4782–4787 DOI 10.1073/pnas.081594298.

Ma Y, Wang P, Wang M, Sun M, Gu Z, Yang R. 2019. GABA mediates phenolic compounds accumulation and the antioxidant system enhancement in germinated hulless barley under NaCl stress. Food Chemistry 270(11):593–601 DOI 10.1016/j.foodchem.2018.07.092.

Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell and Environment 33(4):453–467 DOI 10.1111/j.1365-3040.2009.02041.x.

Min JH, Chung JS, Lee KH, Kim CS. 2015. The CONSTANS-like 4 transcription factor, AtCOL4, positively regulates abiotic stress tolerance through an abscisic acid-dependent manner in Arabidopsis. Journal of Integrative Plant Biology 57(3):313–324 DOI 10.1111/jipb.12246.

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9(10):490–498 DOI 10.1016/j.tplants.2004.08.009.

Mullineaux PM, Baker NR. 2010. Oxidative stress: antagonistic signaling for acclimation or cell death? Plant Physiology 154(2):521–525 DOI 10.1104/pp.110.161406.

Nagaoka S, Takano T. 2003. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. Journal of Experimental Botany 54(391):2231–2237 DOI 10.1093/jxb/erg241.

Nagaoka S, Takano T. 2003. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. Journal of Experimental Botany 54(391):2231–2237 DOI 10.1093/jxb/erg241.

Sarmiento F. 2013. The BBX subfamily IV: additional cogs and sprockets to fine-tune light-dependent development. Plant Signaling & Behavior 8(4):e23831 DOI 10.4161/psb.23831.

Schippers JH, Nguyen HM, Lu D, Schmidt R, Mueller-Roeber B. 2012. ROS homeostasis during development: an evolutionary conserved strategy. Cellular and Molecular Life Sciences 69(19):3245–3257 DOI 10.1007/s00018-012-1092-4.

Shalmani A, Fan S, Jia P, Li G, Muhammad I, Li Y, Sharif R, Dong F, Zuo X, Li K, Chen KM, Han M. 2018. Genome identification of B-BOX gene family members in seven Rosaceae species and their expression qnalysis in response to flower induction in Malus domestica. Molecules 23(7):1763–1788 DOI 10.3390/molecules23071763.

Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S. 2017. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Frontiers in Plant Science 8(120):161–173 DOI 10.3389/fpls.2017.00161.
Wang C, He X, Li Y, Wang L, Guo X, Guo X. 2018. The cotton MAPK kinase GhMPK20 negatively regulates resistance to *Fusarium oxysporum* by mediating the M KK4-M PK20-W RKY40 cascade. *Molecular Plant Pathology* 19(7):1624–1638 DOI 10.1111/mpp.12635.

Wang H, Zhang Z, Li H, Zhao X, Liu X, Ortiz M, Lin C, Liu B. 2013. CONSTANS-LIKE7 regulates branching and shade avoidance response in *Arabidopsis*. *Journal of Experimental Botany* 64(4):1017–1024 DOI 10.1093/jxb/ers376.

Wang Y, Yang L, Chen X, Ye T, Zhong B, Liu R, Wu Y, Chan Z. 2016. Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in *Arabidopsis thaliana*. *Journal of Experimental Botany* 67(1):421–434 DOI 10.1093/jxb/erv477.

Wang YY, Xiong F, Ren QP, Wang XL. 2019. Regulation of flowering transition by alternative splicing: the role of the U2 auxiliary factor. *Journal of Experimental Botany* 71(3):751–758 DOI 10.1093/jxb/erz416.

Wei CQ, Chien CW, Ai LF, Zhao J, Zhang Z, Li KH, Burlingame AL, Sun Y, Wang ZY. 2016. The *Arabidopsis* B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesis. *Journal of Genetics and Genomics* 43(9):555–563 DOI 10.1016/j.jgg.2016.05.007.

Xu D, Jiang Y, Li J, Lin F, Holm M, Deng XW. 2016. BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. *Proceedings of the National Academy of Sciences of the United States of America* 113(27):7655–7660 DOI 10.1073/pnas.1607687113.

Yadav A, Bakshi S, Yadukrishnan P, Lingwan M, Dolde U, Wenkel S, Masakapalli SK, Datta S. 2019. The B-Box-Containing microprotein miP1a/BBX31 regulates photomorphogenesis and UV-B protection. *Plant Physiology* 179(4):1876–1892 DOI 10.1104/pp.18.01258.

Yuan H, Zhao K, Lei H, Shen X, Liu Y, Liao X, Li T. 2013. Genome-wide analysis of the GH3 family in apple (*Malus x domestica*). *BMC Genomics* 14(1):297–311 DOI 10.1186/1471-2164-14-297.

Zhang X, Huai J, Shang F, Xu G, Tang W, Jing Y, Lin R. 2017. A PIF1/PIF3-HY5-BBX23 transcription factor cascade affects photomorphogenesis. *Plant Physiology* 174(4):2487–2500 DOI 10.1104/pp.17.00418.