Teacher Model Fingerprinting Attacks Against Transfer Learning

Yufei Chen1,2, Chao Shen1, Cong Wang2, Yang Zhang3

1Xi’an Jiaotong University
2City University of Hong Kong
3CISPA Helmholtz Center for Information Security
Huge Success of Deep Learning
Reality: A DL Model is Expensive 💰

Data Hungry
(ImageNet ~14M)

High Computational Cost
(~355 years on a single NVIDIA Tesla V100 GPU*)

Experts

GPT-3:
Parameters: 175B
Estimated Cost: $12M

*Source: https://lambdalabs.com/blog/demystifying-gpt-3/
Reality: A DL Model is Expensive 🤑

Data Hungry

High Computational Cost

Experts

GPT-3:
Parameters: 175B
Estimated Cost: $12M

Money

A DL Model is Expensive

Great question!
Transfer Learning -- An Affordable Solution

Google
Teacher

k components

Student

Dataset

Copy

Training

Pretrained components
Newly trained components
Fine-tuned components

Recommended by
IBM Google Microsoft
Meta TensorFlow
PyTorch Model Zoo
PaddleHub
k components

Student
k components

Student

API
Transfer Learning -- A SAFE Solution?

k components

Student

API
Transfer Learning -- A **SAFE** Solution?

![Diagram](image)
Transfer Learning -- A SAFE Solution?

API

k components

API

"VGG16 Pretrained Model, v1.00 by PyTorch"
Transfer Learning -- A **SAFE** Solution?

Most part of the black box is exposed! 😱

- Vulnerabilities exposure (from the teacher)
- Downstream attacks

- **VGG16 Pretrained Model, v1.00 by PyTorch**

Our proposed attack
Threat Model

① Black-box access:
- Unknown student architecture/parameters
- Only top-1 classification label returned

② Attacker’s knowledge/power:
- Candidate teacher models
- Public datasets (e.g., ImageNets, CIFAR10)
- Limited query budget

API
Overview: Teacher Fingerprinting Attack

Fingerprinting pairs \(T \) Model

\(x \) Probing Input
\(x' \) Synthetic Input

Attacker Side

\[\text{argmax}_i T'(x_i) : \text{"Airplane"} \]
\[\text{argmax}_i T'(x'_i) : \text{"Airplane"} \]

\[f(x) : \text{"Bird"} \]
\[f(x') : \text{"Bird"} \]

\[S(x) \approx S(x') \]

Insight:

Fingerprinting pairs
Similar latent representation
Same API responses

Victim Side

API
\[k \text{ components} \]
\[F_T(\cdot) \]

API
\[k \text{ components} \]
\[F'_T(\cdot) \]

Student Model \((S) \)
Attack Stage 1: Synthetic Input Generation

- Solving constrained optimization

 \[\text{Original problem (Constrained)} \]

 \[\begin{align*}
 \mathbf{x}' &= \arg\min_{\mathbf{\mathbf{x}}} \| \mathcal{F}_T(\mathbf{\bar{x}}) - \mathcal{F}_T(\mathbf{x}) \|_2 \\
 \text{s.t. } \mathbf{\bar{x}} &\in [0, 255]
 \end{align*} \]

 \[\tanh(w) = \frac{2\mathbf{x}}{255} - 1 \]

 \[\mathbf{w}' = \arg\min_{w} \left\| \mathcal{F}_T \left(255 \times \frac{1}{2} (\tanh(w) + 1) \right) - \mathcal{F}_T(\mathbf{x}_i) \right\|_2 \]

 \[\text{Converted problem (Unconstrained)} \]

 Adam optimizer

 Learning rate: 0.001

 \#Iterations: 30,000
Attack Stage 2: Teacher Model Inference

- Inference Metric
 - Matching proportion:

 \[
 \frac{\#\text{Matched Responses}}{\#\text{Fingerprinting Pairs}}
 \]

Actual teacher model	VGG19	AlexNet	AlexNet (PTCV)	DenseNet121	MobileNetV2	ResNet18	VGG16	VGG19
	0.08	0.08	0.14	0.07	0.07	0.24		0.91

Inference: VGG19

> Threshold?

Y

NULL

N
Effectiveness of Our Proposed Attack

- Basic setup

 # fingerprinting pairs:
 100 for each candidate

 # student models:
 6 datasets * 7 teacher models * 3 student FCN architectures
Effectiveness of Our Proposed Attack

• Basic Results

Correctly inferred	Inferred as "NULL"	
w/ known teacher model	w/ unknown teacher model	w/o transfer learning
100% (126/126)	72.2% (13/18)	86.1% (31/36)
Effectiveness of Our Proposed Attack

- **Impact of Query Budget**

 #Fingerprinting pairs for each candidate

100% inference accuracy
100% matching proportion

(False matching)
Towards More Robust Attack

• Supporting Set
 Remove the most frequently matched elements
Towards More Robust Attack

• Supporting Set
 Remove the most frequently matched elements
Towards More Robust Attack

- Supporting Set

Remove the most frequently matched elements

\[|\text{Supporting Set}| \geq \left\lfloor \log_2 \frac{1}{\alpha} \right\rfloor + \left\lfloor \frac{\log_2 \frac{1}{\alpha}}{c - 1} \right\rfloor \]
Towards More Robust Attack

Most inference results are indeed invalid when \# query is small

Query Budget	probing: VOCSegmentation	probing: MNIST	probing: CelebA	probing: Random Noise																		
	original	robust																				
1	39.68%	(50/126)	– (0/0)	0 (0/126)	42.06%	(53/126)	– (0/0)	0 (0/126)	45.24%	(57/126)	– (0/0)	0 (0/126)	19.84%	(25/126)	– (0/0)	0 (0/126)						
2	61.11%	(77/126)	– (0/0)	0 (0/126)	57.94%	(73/126)	– (0/0)	0 (0/126)	57.94%	(73/126)	– (0/0)	0 (0/126)	29.37%	(37/126)	– (0/0)	0 (0/126)						
5	84.13%	(106/126)	– (0/0)	0 (0/126)	69.84%	(88/126)	– (0/0)	0 (0/126)	80.95%	(102/126)	– (0/0)	0 (0/126)	42.06%	(53/126)	– (0/0)	0 (0/126)						
10	95.24%	(120/126)	100.00%	(32/32)	25.40%	(32/126)	80.95%	(102/126)	100.00%	(19/19)	15.08%	(19/126)	89.68%	(113/126)	100.00%	(3/3)	2.38%	(3/126)				
20	97.62%	(123/126)	100.00%	(97/97)	76.98%	(97/126)	(84.92%	(107/126)	100.00%	(52/52)	41.27%	(52/126)	96.83%	(122/126)	100.00%	(87/87)	69.05%	(87/126)				
50	100.00%	(126/126)	100.00%	(125/125)	99.21%	(125/126)	90.48%	(114/126)	100.00%	(96/96)	76.19%	(96/126)	99.21%	(125/126)	100.00%	(117/117)	92.86%	(117/126)				
100	100.00%	(126/126)	100.00%	(126/126)	100.00%	(126/126)	96.03%	(114/114)	100.00%	(114/126)	90.48%	(122/122)	100.00%	(122/122)	96.83%	(122/126)	65.08%	(82/126)	100.00%	(41/41)	32.54%	(41/126)
Enhanced Model Stealing Attack

Attack Dataset + "VGG16 Pretrained Model, v1.00 by PyTorch" → Surrogate Model
Enhanced Model Stealing Attack

- Best performance if starting from a matched teacher model
Feasible Countermeasures

• Input distortion
 - Perturb the patterns in synthetic inputs

• Injecting neuron distances [Wang et al. 2018]
 - Deviate the student model’s feature map from the teacher model’s
Conclusion

- We propose a simple and efficient attack to infer the teacher model used by transfer learning.

- Our attack can efficiently identify the teacher model.

- Our attack can help perform further advanced attacks.
Thanks!

Q&A

Yufei Chen
yufeichen8-c@my.cityu.edu.hk