Characterization of a Distinct Population of Circulating Human Non-Adherent Endothelial Forming Cells and Their Recruitment via Intercellular Adhesion Molecule-3

Sarah L. Appleby1,2,9, Michaelia P. Cockshell1,2,9, Jyotsna B. Pippal1,2,9, Emma J. Thompson1,2, Jeffrey M. Barrett1,2, Katie Tooley1,2, Shaundeeep Sen3, Wai Yan Sun1,2,3, Randall Grose2,4, Ian Nicholson2,4, Vitalina Levina2,5, Ira Cooke2,5, Gert Talbo2,5, Angel F. Lopez1,2,3, Claudine S. Bonder1,2,3	

Abstract

Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis.

Introduction

The identification of progenitor cells in adult peripheral blood has significant clinical implications for the treatment of multiple diseases. Particular emphasis has been placed on the research and development of vascular progenitor cells with pro-angiogenic potential for wound healing [1], limb ischemia [2], myocardial ischemia [3,4] as well as the increased vascularisation associated with tumor development, sensitivity to chemotherapy and cancer progression [5,6,7,8]. In addition, the balance between normal and pathological states for cardiovascular disease and diabetes has been linked to the number of circulating endothelial progenitor cells (EPCs) [9,10,11,12]. Despite the exact contribution of EPCs in vasculogenesis still being under intense debate [10,13,14,15,16], the ability of human EPCs to rescue diminished blood flow in preclinical animal models [17,18] provided rationales to initiate clinical trials. The results of these studies have found infusion of CD34+ and CD133+ EPCs to be safe and beneficial in certain circumstances, though the effects in humans have been less robust and much more variable than in preclinical rodent studies [10]. With continued promise of modulating both overzealous and suboptimal vasculogenesis in disease, clearly these cells warrant further investigation.

Citation: Appleby SL, Cockshell MP, Pippal JB, Thompson EJ, Barrett JM, et al. (2012) Characterization of a Distinct Population of Circulating Human Non-Adherent Endothelial Forming Cells and Their Recruitment via Intercellular Adhesion Molecule-3. PLoS ONE 7(11): e46996. doi:10.1371/journal.pone.0046996

Editor: David S. Milstone, Brigham and Women's Hospital, United States of America

Received December 7, 2011; Accepted September 11, 2012; Published November 7, 2012

Copyright: © 2012 Appleby et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by funding from the National Health and Medical Research Council (NHMRC) of Australia, Co-operative Research Centre for Biomarker Translation (Transbio Limited), La Trobe University, Melbourne, Victoria, Australia and the Cancer Council of South Australia. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: TransBio Limited is the management company of an Australian Government grant under the Co-operative Research Centre (CRC) Research funding program. SLA, JBP, MPC, EJT, KT, JMB, SS, WYS, RG, IN, VL, IC, GT, AFL and CSB have no commercial associations which might create a conflict of interest in connection with the submitted manuscript. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: claudine.bonder@health.sa.gov.au

† These authors contributed equally to this work.
Despite the absence of a definitive EPC marker and the ambiguous terminology used to define EPCs, the functional distinction between different groups of EPCs (eg ‘early EPCs’ and ‘late outgrowth EPCs’ (also known as endothelial colony forming cells (ECFCs)) is becoming clearer and has been extensively discussed in recent reviews by Yoder, Ingram [15], Dimmeler [19] and Hagensen [20]. Briefly, it is becoming increasingly evident that simple phenotyping for the surface expression of CD34 and VEGFR2 as well as uptake of acetylated-low density lipoprotein (Ac-LDL) and lectin binding are not adequate descriptors of ‘true’ EPCs rather it is the capacity to incorporate into an endothelial lining and conduct endothelial cell functions which are the strict criteria required and can not be obtained outside the living organism [15,19,21,22]. The inclusion of CD133 as a marker of EPCs by Peichev and colleagues provided the first opportunity to distinguish EPCs from CD34+/VEGFR2+ ECs [23]. Interestingly, our current understanding of EPC biology has been largely restricted to ECFCs which are derived from ~3 week in vitro cell culture and do not express CD133 which suggests a more mature phenotype likely compromised by extensive cell culture [15,24]. This is critical, as it was the immature EPCs which first demonstrated an ability to contribute to the formation of arteries, capillaries and veins [25] and it is the non-adherent cells in circulation that would be the first responders to a site of vascular injury. To this end, Asahara’s laboratory recently demonstrated in an EPC clonogenic assay that a single human umbilical cord blood (HUCB) derived CD133+ cell can develop into a colony forming EPC as well as a hematopoietic progenitor cell [26]. It is our contention that isolating and extensively characterising cells which meet the essential criteria of (i) surface expression of progenitor cell and endothelial cell markers and (ii) functional assays which validate that postnatal endothelial differentiation capacity in vitro and in vivo; will be an essential prerequisite to discovering meaningful surface biomarkers with which the clinical promise of vasculogenesis may ultimately be realised.

Herein, we have isolated cells from HUCB-derived non-adherent CD133+ progenitor cell population, enriched for EPCs over 4 days and compared their genomic and proteomic profile against donor matched human umbilical vein endothelial cells (HUVEC). Flow cytometry confirmed an EPC phenotype with surface expression of CD133, CD117, CD34, VEGFR2 and CD31 (PECAM-1) but not lymphocyte, myeloid and platelet surface markers (CD3, CD4, CD8, CD11b, CD14, CD19, CD20 and CD41a). Functional studies also supported an endothelial phenotype as these cells demonstrated binding to Ulex europaeus lectin (UEA-1), uptake of acetylated-low density lipoprotein (Ac-LDL), enhancement of 3-dimensional tubes, tubule branching and loops in vitro and upregulation of vascular cellular adhesion molecule (VCAM-1) following tumor necrosis factor-α (TNFα) stimulation.

Although most studies suggest that the cells gained by the short-term culture assays (eg ‘early’ EPCs) predominantly enhance vessel formation via a paracrine mechanism rather than directly contributing to tube formation [27,28] we demonstrate in vivo that our cells display the postnatal vasculogenic capability of maturation into an endothelial cell and lining of tubule structure in vivo. Moreover, with an intention to increase the clarity and rigour of the use of the name ‘EPC’, we have coined the term ‘non-adherent endothelial forming cells’ (naEFCs) to define these cells as it highlights their capabilities (endothelial forming) as well as their physical properties (non-adherent).

Genomic profiling identified the increased expression of intercellular cell adhesion molecule (ICAM)-3 on naEFCs when compared to donor matched HUVEC. Tandem mass spectrometry using a periodate oxidation-hydrazide resin capture approach for N-glycosylated surface proteins and flow cytometry confirmed the surface expression of ICAM-3 on the naEFCs but not HUVEC. Importantly, flow cytometry also confirmed the surface expression of ICAM-3 on freshly isolated peripheral blood derived CD133+CD117+ progenitor cells. Functional analysis demonstrated that ICAM-3 mediated naEFC rolling and adhesion events under shear stress in vitro. Collectively, our studies recognise ICAM-3 as a new adhesive molecule by which circulating naEFCs may contribute to the aberrant vasculogenesis during disease.

Materials and Methods

Ethics statement

The collection of primary human umbilical vein endothelial cells (HUVEC) and peripheral blood mononuclear cells (PBMC) for use in this study was given ethical clearance from the Royal Adelaide Hospital (RAH), Adelaide, South Australia. The collection of primary human umbilical cord blood (HUCB) for use in this study was given ethical clearance from the Human Research Ethics Committee of the Children, Youth and Women’s Health Service (CYSWHS), North Adelaide, South Australia and informed written consent was obtained from all subjects in accordance with the ‘Declaration of Helsinki’. Animal experiments (detailed below) were approved by the Animal Ethics Committee of SA Pathology and conform to the guidelines established by the ‘Australian Code of Practice for the Care and Use of Animals for Scientific Purposes’.

Isolation and culture of HUCB CD133+ non-adherent endothelial forming cells (naEFCs) and early EPCs

HUCB (20–130 ml) was collected from healthy pregnant women undergoing elective caesarean section into MacoPharma cord blood collection bags (MSC1201DU; MacoPharma, Mouxvaux, France) prior to dilution 1:1 with sterile phosphate buffered saline (PBS) and mononuclear cells (MNCs) isolated via Lymphoprep™ (Axis-Shield, Oslo, Norway). MNCs were incubated with 100 µl of human FcR blocking reagent (Miltenyi Biotec, Bergisch Gladbach, Germany) and 100 µl of CD133+ microbeads (MACS, Miltenyi Biotec) for 30 minutes at 4°C prior to isolation using the AutoMacsPro (Miltenyi Biotec) as per manufacturer’s instructions. CD133+ cells were resuspended at a concentration of 0.5–1 × 10⁶ cells/ml in endothelial growth media (EGM-2, Lonza, Basel, Switzerland) complete with Bullet kit and supplemented with 10% FCS, VEGF (5 ng/ml, Sigma, St Louis, MO, USA), insulin-like growth factor-1 (IGF-1; 0.005 ng/ml; Gibco Invitrogen), basic fibroblast growth factor (bFGF; 1 ng/ml; R&D, Minneapolis, MN, USA) and ascorbic acid (0.1 mM; Sigma). Cells were seeded onto pre-coated fibronectin (50 µg/ml, Roche, IN, USA) wells in a falcon 24-well plates (BD Biosciences) and incubated at 37°C and 5% CO₂ in a Hera Cell incubator (Thermo Scientific, Waltham, MA, USA). Whilst in culture the non-adherent cells were transferred to a new pre-coated fibronectin well with fresh EGM-2 media (plus supplements) every 48–72 h. Unless otherwise stated, naEFCs were cultured for 4–5 days prior to harvesting for further analysis.

As comparator cells, ‘early EPCs’ were obtained by HUCB-derived MNC CD133+ isolation using magnetic beads and cultured, as above, on fibronectin in EGM-2 for 5 days as an adherent population of cells which adopted a spindle-shaped cluster similar to the first morphological description of ‘early EPCs’ [22].
Peripheral blood MNCs and human umbilical vein endothelial cells (HUVEC)

Peripheral blood MNCs (PBMCs) were isolated from healthy individuals collected in lithium heparin coated Vacutette tubes (Greiner Bio-One, Kremsmuenster, Austria). Primary HUVEC were extracted from human umbilical veins by collagenase digestion and cultured in HUVE media (Media 199 (Sigma); containing 20% FCS (Hyclone, Utah, USA), endothelial growth factor supplement (BD BioSciences, North Ryde, NSW, Aust.), 1.5% sodium bicarbonate, 2% HEPES buffer solution, Penicillin Streptomycin, sodium pyruvate (Gibco Invitrogen, Gaithersburg, MD, USA), heparin and non-essential amino acids (Sigma) as previously described [29,30] and were used no later than two passages.

Flow cytometric analysis of cell surface protein expression

Cells (naEFCs, early EPCs, freshly isolated CD133\(^+\) cells, HUVEC and PBMCs) were analysed for cell surface expression of various markers by flow cytometry. Where indicated, cells were treated with 5\(\text{ng/ml TNF}_\alpha\) (R&D Systems) for 24 hours prior to harvest. Cells were treated with 10\(\mu\text{l}\) Human FcR block diluted in 30\(\mu\text{l}\) HUVE wash (Media 199 (Sigma), 2% FCS, 1% M HEPEs and 1% penicillin streptomycin solution (Gibco) prior to addition of primary antibodies. Cells were incubated in 100\(\mu\text{l}\) HUVE wash with either mouse anti-human VEGFR2 (1\(\mu\text{g, Santa Cruz Biotechnology, Inc, Santa Cruz, CA, USA), mouse anti-human vascular cell adhesion molecule-1 (VCAM-1, 2\(\mu\text{g, Santa Cruz Biotechnology, Inc, Santa Cruz, CA, USA), mouse anti-human ICAM-3 (BD Biosciences) or relevant isotype control (1\(\mu\text{g, BD Biosciences) followed by 1\(\mu\text{g biotinylated goat anti-mouse Ig in 100\(\mu\text{l}\) HUVE wash. Cells were blocked with 5\(\mu\text{g normal mouse mouse serum (SA Pathology, Adelaide, Australia,} \)then immediately incubated with conjugated streptavidin (PE, APC or PE-Cy7) (BD Biosciences) added at 0.2\(\mu\text{g per test} \)along with panels of mouse anti-human conjugated antibodies; anti-CD117-APC or PerCP-Cy5.5, anti-CD11b-pacific blue, anti-CD14-APC, anti-CD144-FTTC or PE, anti-CD31-PE or V450, anti-CD34-Perpcy5.5, anti-CD45-FTTC or Amcyan, anti-CD44a-FTTC, anti-CD3-FTTC, anti-CD4-PE, anti-CD8-FTTC, anti-CD19-APC, anti-CD20-PE, anti-CD10-APC, anti-CD90-APC, anti-CD38-PE-Cy7 or FTTC (all BD Biosciences) and anti-CD133-PE (Miltenyi Biotec) used as per manufacturer's instructions for flow cytometry in a final volume of 80\(\mu\text{l}\) of HUVE wash. Cells were resuspended in FACS fix (1% formaldeyde, 20 \text{g/L glucose, 5 \text{mM sodium azide in PBS}) prior to analysis using a FACS Aria II (BD Biosciences) with FACS DIVA (BD Biosciences). Further analysis was performed using FCS Express 4 Flow Cytometry: Research Edition (De Novo Software, CA, USA).

Incorporation of Acetylated-low density lipoprotein (Ac-LDL) with Ulex europeaus lectin (UEA-I) binding

Cells were incubated at 37\(^\circ\text{C}\) for 4 hours with 10\(\mu\text{g/mL 1',1'-diolaetadecyl-3,3',3'-tetramethylinidocarboxayencine (Di} \text{ perchlorate-Ac-LDL (Di-Ac-LDL, Biomedical Technologies, Stoughton, MA, USA) and 10 \text{pg/mL UEA-1-FTTC (Sigma). The percentage of cells within each population that incorporated Di-Ac-LDL and bound UEA-1-FTTC was assessed using flow cytometry.}

Matrigel tube formation assay – in vitro

In vitro tube formation of HUVEC and naEFCs was assessed using a Matrigel matrix. HUVEC were stained with 10\(\mu\text{g/ml Di-Ac-LDL (Biomedical Technologies, Stoughton, MA, USA) for 4 hours at 37\(^\circ\text{C, 5\% CO}_2\), washed once and incubated overnight at 37\(^\circ\text{C, 5\% CO}_2\) naEFCs were stained with 0.5 \text{mM CFDA-SE (CFSE, Invitrogen) in 0.1\% FCS in PBS for 10 minutes prior to} \text{washing. The next day, 12 \mu\text{L Matrigel (BD Biosciences) was added to wells in a pre-warmed ibiTreat Angiogenesis \mu-l} \text{slide (Ibidi, Martinsried, Germany) and incubated at 37\(^\circ\text{C for 20\text{ minutes. Labelled HUVEC and naEFCs were seeded together in Matrigel at a cell density of 1.7\times10^4 HUVEC alone or with 0.7\times10^4 naEFCs per well, in duplicate. Tube formation was monitored regularly and 10-15 overlapping phase contrast images were captured using an inverted IX70 microscope 4\times0.13NA obj, an S15 F view camera and Analysis Life Sciences software (Olympus) after 6 hours. These overlapping images were \text{stitched} together using PTGui Pro software (New House Internet Services B.V., Rotterdam, The Netherlands) and tube, branch and loop numbers were quantified from each entire well using the WimTube algorithm (Wimasis GmbH, Munich, Germany) [31]. Fluorescent and phase contrast images were also captured using an IX61 microscope (Olympus) with 10\times0.4NA obj and a Hamamatsu Orca-ER camera. Fluorescence images were acquired using CellIR software (Olympus Soft Imaging System).}

Matrigel plug assay – in vivo

Female NOD/SCID mice (Animal Resources Centre, Western Australia) were used between 6-8 weeks of age and housed in specific pathogen-free conditions in the SA Pathology Animal Care Facility. naEFCs were stained with 0.5\(\mu\text{M CFSE in 0.2\% FCS in PBS for 7 minutes prior to 5\times10^5 naEFCs being mixed in 500 \mu\text{l Matrigel with 2\mu/ml basic fibroblast growth factor (bFGF, R&D) and 50 units/ml heparin (Sigma-Aldrich) and injected subcutaneously into one flank. Each mouse also received a control plug of 500 \mu\text{l Matrigel with bFGF and heparin without cells in the alternate flank. Mice were humanely killed by cervical dislocation 7 days post Matrigel injection. Plugs were removed, washed in PBS and frozen in O.C.T. compound (Tissue-Tech, Tokyo, Japan) prior to 10 \mu\text{M sections being cut, acetone fixed and stained for CD144 (1:500, Sigma) for 2 hours at RT prior to being washed and incubated with Alexa594-conjugated anti-goat (1:500 dilution, Invitrogen) for 30 min on ice and mounted with Prolong Gold antifade reagent with DAPI (Invitrogen). Negative controls were secondary antibody alone. Images were produced using Nikon C1-Z Confocal Microscope at the Detmold Imaging Core Facility, SA Pathology where the C1-Z was equipped with three solid lasers, (Sapphire 488 nm, Compass 532 nm, and Compass 405 nm near UV) and an inverted Nikon E-2000 Fluorescence Microscope. The objective used was a Nikon Plan Apo-chrome 60\times water (NA = 1.2) and the triple labelled samples were imaged with three separate channels (PMT tubes).}

To determine functionality of tubes formed in Matrigel plugs mice were injected i.v. with 200\(\mu\text{g of tetramethylrhodamine isothiocyanate (TRITC)-labeled lectin (Ulex europeaus, Sigma) 7 days post Matrigel injection. After 20 min of circulation, mice were heart-perfused with PBS followed by 4\% paraformaldehyde (PFA) in PBS. Plugs were removed, washed in PBS and frozen in O.C.T. compound. Four \mu\text{m frozen sections were analyzed for 2-photon microscopy a LSM 710 NSO microscope (Carl Zeiss Pty Ltd, Jena, Germany) with plan-Neofluar objective 20\times (\sim3 \times digital magnification) and laser lines of 488 nm wavelength for CFSE, 555 nm wavelength for TRITC-lectin and 405 nm wavelength for DAPI detection was used. Images were processed by Zen system 2011 (Carl Zeiss) and PHOTOSHOP CS4 (Adobe Systems, San Jose, CA).}
Dispase digestion of Matrigel plugs

Using the aforementioned protocol of Matrigel plug assay, plugs were harvested from NOD/SCID mice 7 days post CFSE-naEFC and Matrigel injection and washed in PBS. Plugs were macerated and incubated in 3 ml of Dispase (BD Biosciences) for 2 hours at RT to isolate the cells within the excised plug. The mixture was then pipetted repetitively to disperse the cells and 0.01M EDTA/PBS was added to stop the Dispase activity. Cells were put through a 70 μm cell strainer (BD Biosciences) to remove debris before flow cytometry staining as described above in ‘Flow cytometric analysis of cell surface protein expression’.

Hematopoietic colony formation assay

Freshly isolated CD133+, CD133− cells as well as naEFCs were plated in methylcellulose with a 10× cell solution (200 μl, IMDM with 2% FCS) mixed with 2 ml of MethoCult (Stem Cell Technologies) containing erythropoietin (EPO; 3 U/ml), granulocyte macrophage colony-stimulating factor (GM-CSF; 20 ng/ml), stem cell factor (SCF; 50 ng/ml) and interleukin 3 (IL-3, 10 ng/ml). The cell/MethoCult mix (0.37 ml) was added to 24 well plate and incubated at 37°C, 5% CO2 and hematopoietic colonies were scored after 14 days. Cytospins were prepared from hematopoietic colonies and stained by May Grunwald/Giemsa stain (both BDH).

Cytokine and Adhesion bead assays

The secretion of cytokines and adhesion molecules by naEFCs into day 4 culture supernatant was assessed using the FlowCytomix Human Th1/Th2 11 plex Kit and the FlowCytomix Human Adhesion 6 plex Kit (both Bender MedSystems, GmbH Campus, Vienna, Austria) as per the manufacturer’s instructions and analysed using the FC500 (Beckman Coulter) and FlowCytomix Pro (Bender MedSystems).

Protein expression analysis by mass spectrometry

naEFCs and adherent HUVEC were oxidized by adding 1 mM of sodium periodate (Sigma) in PBS at 4°C for 10 minutes. After removal of sodium periodate with PBS the cells were lysed for 15 minutes (100 mM CH3COONa, pH 5.5, 1% Glucoside, 1% Triton X100) and the oxidised glycoproteins were conjugated to the hydrazide-linked beads at room temperature for at least 24 hours. Non specifically bound proteins were removed by several washes with 6 M guanidine HCl in 50 mM Tris pH 8.0. Proteins coupled to the beads were reduced with 0.01 M DTT in 4 M urea and diluted with 5 times molar excess of Iodoacetamide for 30 minutes in the dark at room temperature. After several washes the proteins were digested for 2 hours with 1 μg of trypsin in 60 μl of 30 mM Tris pH 8.0. Proteins were eluted with a gradient of 1% increment/minute of buffer B (80% (v/v) ACN in 0.03% TFA(aq)) for 12 minutes followed by 1.5% increment/minute of buffer B for 25 minutes. The column elute was spotted onto an Anchorchip 800/384 plate (Bruker Daltonics, Germany) with a sheath flow of CCA (2-mercapto-1-hydroxy-cyclic acid) matrix using Proteiniser fc fraction collector (Bruker Daltonics) with 10 seconds for each spotted fraction. Each spot was analysed using a UltraflexIII MALDI-tol/tol-MS/MS (Bruker Daltonics) under control of Bruker’s proprietary software, WARP-LC.

For LC-MicroTOF-Q-MS, tryptic peptides were separated by RP-HPLC (RSLCnano system, Dionex, USA) using a nano column (Acclaim Pepmap RSLC, 2 μm C18 75 μm×150 mm) following trapping on a trap column (Acclaim Pepmap 100 nanotrap C18 100 μm×20 mm) prior to injection into the MicroTOF-Q MS instrument. The MS-instrument was setup for the highest sensitivity and the data collected were analyses by Bruker Data Analysis software package. All MS and MS/MS data were searched using three search engines: Mascot (Matrixscience.co.uk), XTandem (The Global Proteome Machine) and OMMSSA (NCBI). Initial search results from all three search engines were then statistically analysed at the peptide level using Peptide Prophet [32]. Peptide Prophet results were then analysed using iProphet [33], which combines evidence from multiple identifications of the same peptide across multiple search engines and spectra, and finally with Protein Prophet [34] to assess confidence in identifications at the protein level. Only identifications satisfying a 1% false discovery rate were accepted.

Isolation of total RNA from naEFCs and HUVEC

Total RNA was isolated from naEFCs and HUVEC using RNEasy micro plus or RNEasy mini kits (QIAGEN, Hilden, Germany). RNA integrity and quantity was determined using Agilent 2100 bioanalyzer.

Gene expression analysis by microarray

150 ng of RNA from naEFCs or donor matched HUVEC was amplified and labelled using ApplauseTM WT-AmpST/WT-Amp Plus ST Systems. (NuGen Technologies Inc., San Carlos, CA, USA). The labelled and amplified RNA was hybridized to Genechip Affymetrix Human Exon 1.0ST arrays as per the manufacturer’s protocol (Affymetrix, Santa Clara, CA, USA) in the microarray facility at Mater Adult Hospital, Brisbane, Australia. Human Affymetrix exon arrays were scanned with a Gene chip 3000 7G scanner. Robust multi-array analysis (RMA) was applied for normalizing and summarizing probe level intensity measurements from Affymetrix gene chips. Hybridization quality for each array was assessed using box plots and principal component analysis (PCA) of probe-level data. A parametric Welch’s t-test (where variances were not assumed equal) was performed on 19524 probes for naEFCs with a p-value cut off of 0.05 and a fold change cut off of 1.5. Multiple significant probes for the same were removed and the probe with the highest fold change retained for further analysis. Multiple testing correction (Benjamini and Hochberg False Discovery Rate) was then applied to genes that had passed the parametric Welch’s t-test based on the total detected probe-set of 14246 probes to reduce false positives. Significantly upregulated genes were grouped according to their potential relevant functions in progenitor cells. Functional categorization of genes was performed using a combination of Agilent technologies gene ontology classifications and Ingenuity Pathway Analysis (IPA). The data discussed in this manuscript have been deposited in the NCBI gene expression omnibus (GEO Accession number: GSE25979).
Quantitative Polymerase Chain Reaction (qPCR)

Quantification of mRNA levels was carried out using qPCR. Primers designed for human ICAM-3 (F-5’AGTGACGCGG-GACGCAGC3’, R-5’GGGATGGCTCGGTCAAT3’) using Primer Blast (NHGRI, MD, USA), and purchased from Qiagen SA (Hindmarsh, SA, Aust.). Where possible, primers were designed to span an intron/exon boundary to ensure no genomic DNA amplification. qPCR amplification was performed using Quantitect SYBR Green master mix (QIAGEN) on a Rotorgene thermocycler (Corbett Research, Mortlake, NSW, Australia) with the following parameters: 15 minutes at 95°C, then cycling of 10 seconds 95°C, 20 seconds 55°C and 30 seconds 72°C; for 45 cycles followed by a melt phase. Data obtained was analysed using Rotorgene Analysis Software version 6 (Corbett Research). Relative gene expression levels were calculated using standard curves generated by serial dilutions of cDNAs normalised to the human house-keeping gene cyclophilin A (CycA; F-5’GGCAAATGCTGGACCCCAAGCTAA-3’, R-5’CTAGG-CATGGGAGGGAACAGGA3’).

Parallel Plate Flow Chamber Assay

HUVEC were cultured until confluent on Young 0.4 chambers (Ibidi) and treated with or without 5 ng/ml TNFα for 5 hours. naEFCs or heparinized whole blood at 1:10 dilution with Hanks’ Balanced Salt Solution (HBSS, Sigma) were treated with or without antibodies to ICAM-3 (1 μg, BD Biosciences) or isotype control (1 μg, IgG2b, BD Biosciences) 30 minutes prior to cell perfusion at 0.8–1×10⁶ cells/ml across substratum by syringe pump (NE-1000, New Era Pump System, Inc, Wartagh, NY, USA) at constant rate of 2 dynes/cm² for 5 minutes followed by HBSS wash. Notably, due to the low proportion of naEFCs in HUCB (<3% of cells) [35], the number of cells (0.5–2×10⁶ cells at day 4) available was limited so donors were pooled immediately prior to the experiments. Cells were visualised using 10×/0.3 NA objectives and phase-contrast microscopy on an inverted microscope and images recorded using a digital camera (Olympus IX70 and SIS F-view, Olympus, Mount Waverly, Vic, Australia). Five random areas per slide were recorded for analysis using AnalySIS Life Sciences software (Olympus). Adherent cells were defined as those remaining stationary for at least 10 seconds.

Statistical Analysis

Results were expressed as mean ± standard error of the mean (SEM) from at least 3 experiments. Unless otherwise stated, an unpaired Student T-test or 2-way ANOVA for multiple comparisons was performed to determine statistical significance between groups with p values <0.05 considered significant.

Results

Enrichment of a non-adherent CD133+ with an endothelial progenitor cell phenotype

MNCs were isolated from HUCB by lymphoprep density gradient centrifugation prior to enrichment for the progenitor cell marker CD133 cells using magnetic sorting. CD133 enriched MNCs were cultured in EPC specific growth media on fibronectin-coated wells at a concentration of 0.5–1×10⁶ cells/ml. At day 2 of culture, the majority of cells remained non-adherent and were replated into a new fibronectin-coated well with fresh media for continued culture.

Phenotyping of cell surface markers on the HUCB-derived naEFC population was performed after 4 days of culture by flow cytometry and compared to mature ECs (HUVEC) isolated from the same donor. Investigation of the hematopoietic progenitor cell markers CD133, CD117 and CD34 profile [15] on the naEFCs suggests that the percentage of cells expressing CD133 is sustained at approximately 69±5% at day 4 of culture (Figure 1A). Also shown in Figure 1A, CD117 was expressed on 80±5% of the naEFCs at day 4 of culture. The third progenitor marker, CD34 demonstrated a similar profile with approximately 78±4% of the naEFCs expressing CD34 at day 4 of cell culture (Figure 1A). As expected, CD133 and CD117 expression was significantly lower on HUVEC (2±1% and 10±5%, respectively) while CD34 exhibited robust expression of 82±9% on these cells (Figure 1A). We next investigated the mature endothelial cell markers of VEGFR2, CD31, and CD144. Also shown in Figure 1A, CD31 was expressed on 86±2% of the 4 day cultured naEFCs and was similar to the 98±1% expression by HUVEC. The number of naive EFCs expressing VEGFR2 was uniformly lower in the naive EFCs at 15±2% when compared to the HUVEC population at 45±10%. Notably, the need for a commercially available antibody to VEGFR2 is still missing [36] and as such the data presented herein may under represent the true levels of VEGFR2 expressed by these cells. CD144 was not detected by flow cytometry on the naive EFCs, but was expressed at high levels on 99±2% of the HUVEC population (Figure 1A). These data suggest that 4 days of culture allows for enrichment of a non-adherent EPC population which expresses both hematopoietic progenitor cell and endothelial cell markers are the subject of further investigation in this study.

As circulating EPCs can be subdivided into two main categories, hematopoietic lineage and non-hematopoietic lineage [15,28,37], we investigated the naive EFCs for the surface expression of CD45, CD11b, and CD14. Flow cytometric analysis suggested that CD45 was expressed by a majority of the naive EFCs with little to no CD45 expression observed on the HUVEC population (Figure 1B). Notably, the ratio of mean fluorescence intensity (MFI) of CD45 expression over isotype control staining on the naive EFCs was significantly lower than that expressed by CD14+ monocytes from freshly isolated PBMCs (ratio MFI naive EFCs 21±6 versus monocytes 48±2, n = 3). Also shown in Figure 1B, we were unable to detect both CD11b and CD14 on both the naive EFCs and HUVEC. This is in contrast to the 100% expression by the monocyte population gated by forward and side scatter profile from PBMCs (not shown).

To investigate whether the culture conditions may have contributed to the naive EFC phenotype we compared these cells to freshly isolated CD133+ cells. As shown in Figure S1, CD133+ isolated cells which have not been subjected to a 4 day enrichment process exhibit a mostly uniform expression of CD133, CD117 and CD31, but a heterogeneous expression of CD34, CD144, CD45, CD11b and CD14. These data support previous reports of CD133 being expressed on a variety of cell types [38]. To confirm that the naive EFCs are different from other ‘early EPCs’ we compared the non-adherent naive EFCs to the established protocol of adherent CD133+ cells cultured in EGM-2 for 5 days [15,19,22]. As shown in Figure S1, the ‘early EPCs’ expressed a very different surface antigen profile with little to no CD117, CD34 and CD144 but a homogeneous expression of CD31, CD45, CD11b and CD14. Taken together, these data suggest that we have enriched for a non-adherent EPC-like cell within 4 days of CD133+ cell isolation and that these cells differ from both the heterogeneous population of freshly isolated CD133+ cells as well as ‘early EPCs’ [15,19].

A recent study by Prokopi et al suggested that MNCs may acquire ‘endothelial’ characteristics of CD31 expression by taking up platelet microparticles [39]. To confirm that expression of CD31 is not platelet microparticle derived, we investigated the
surface expression of the platelet-specific marker CD41a on naEFCs. As shown in Figure S2A, the CD133+CD117+ double positive cells (left panel) did not express CD41a at the cell surface (right panel) and as such are not platelet microparticle derived.

As CD45 is considered to be a pan-leukocyte marker typically expressed by hematopoietic cells, its moderate expression on the naEFCs warranted investigation of additional lineage markers. As shown in Figure S2B, the naEFCs did not express CD3, CD4, CD8, CD20, they showed low expression of CD19 (8±4% positive) and significant expression of CD90 (63±5% positive) and CD38 (84±3% positive). Taken together, these results suggest that the heterogeneous nature of CD133+ HUCB derived MNCs enriches into an ‘EPC-like’ progenitor population by day 4 of culture.

Functional characterization of naEFCs

The naEFCs were next scrutinized for their functional capabilities. First, we examined their capability to take up acetylated low-density lipoprotein (Ac-LDL) and bind *Ulex europaeus* lectin (UEA-1). As shown in Figure 2A, flow cytometric analysis suggests that the progenitors take up Ac-LDL and bind UEA-1 with the single cluster supporting a homogeneous population. Importantly, the number of these cells double positive for Ac-LDL uptake and lectin binding is statistically lower than donor matched HUVEC, this is indicative of an immature vascular phenotype [26,40].

To begin to explore a pro-angiogenic potential of the naEFCs we investigated their secretion of cytokines and soluble adhesion molecules. Using the Human Th1/Th2 11 plex and Human Adhesion 6 plex FlowCytomix bead arrays we detected high levels of interleukin (IL)-8 (1008±380 pg/ml from 10⁶ cells) and soluble...
CD31 (49±9 pg/ml from 10⁶ cells) in the culture supernatant of the untreated naEFCs when compared to media alone.

We next tested the naEFCs in endothelial tube formation assays using Matrigel; an extracellular matrix derived from murine sarcoma cells that supports vascular tube formation in vitro and thus mimics in vivo vasculogenesis. In an in vitro assay, while the naEFCs did not form tubules on their own (not shown), when co-cultured with HUVEC, naEFCs demonstrated an ability to migrate to each other as well as the HUVEC to interact and form a capillary-like network within 6 hours of seeding. This is shown in Figure 2B where Dil-Ac-LDL and CFSE were used in a dual labelling system to distinguish HUVEC and naEFCs, respectively. As shown in Figure 2C, quantification of the angiogenic effect of the naEFCs in vitro was executed using

Figure 2. Vascular properties of naEFCs. In (A), representative dot plots from one experiment show the incorporation of Dil-Ac-LDL and binding of UEA-1-FITC by naEFCs and HUVEC. The percentage of cells double positive for Dil-Ac-LDL uptake and binding of UEA-1-FITC was quantified. *p<0.05, versus naEFCs, n=3. In (B), representative image of a Matrigel assay at 6 hours post seeding of CFSE-labeled naEFCs (green) and Dil-Ac-LDL positive HUVEC (red). Results represent one experiment of n=5 with images captured by transmission and confocal microscopy. In (C), the number of tubules, branches and loops formed in the endothelial tube formation Matrigel assay in vitro with HUVEC alone or HUVEC co-cultured with naEFCs. #p=0.05 versus HUVEC alone, *p<0.05 versus HUVEC alone, n=5. In (D), a representative image of the tube formation of HUVEC alone (upper image) or HUVEC co-cultured with naEFCs (lower image) in vitro. Results represent one experiment of n=5 with images captured by transmission microscopy. In (E), representative histograms showing increased surface expression of VCAM-1 following TNFα administration for 24 hours on naEFCs (left panel) and HUVEC (right panel), n=4–6.

doi:10.1371/journal.pone.0046996.g002

Endothelial Progenitor Cell Adhesion via ICAM-3
Expression of the endothelial cell predominant adhesion molecule vascular cell adhesion molecule (VCAM-1) was assessed on naEFCs and HUVEC following stimulation with TNFα by flow cytometry. As expected, HUVEC exhibited increased levels of cell surface VCAM-1 following TNFα treatment for 5 hours. However, this was not observed on the naEFCs (not shown). Suarez et al performed a TNFα exposure time-course on HUVEC wherein VCAM-1 expression was significantly elevated at 24 hours compared to 3 hours [41]. We thus increased the TNFα exposure to 24 hours for both the naEFCs and HUVEC and observed that surface expression of VCAM-1 was significantly increased on both the naEFCs and HUVEC populations when compared to untreated controls (Figure 2E).

An in vivo Matrigel plug assay supports the generation of lumen containing vasculature lined by mature human ECs. As shown in Figure 3A, when 5×10^5 CFSE-labelled naEFCs were mixed with 500 µl Matrigel (without co-culture with HUVEC) and injected subcutaneously into the flank of NOD/SCID mice, within 7 days the green fluorescent naEFCs generated lumen, forming vasculature within the plug. This is shown using confocal microscopy with the naEFCs (green) and a counterstain for nuclei (blue) from frozen sections wherein nuclei can be identified within the circular structure formed by the CFSE-naEFCs (Figure 3A, arrows). Figure 3A also shows CD144 expression (red) on a cross-section of a CFSE-naEFC formed vessel (left image) as well as intercellular expression of CD144 on CFSE-naEFCs (right image). Although, the anti-CD144 antibody used here is cross-reactive with both human and mouse CD144, with the increased intensity of CD144 staining at the exact location of the green CFSE-naEFC it is tempting to speculate that the naEFCs have differentiated into a mature CD144+ EC in vivo, a marker which we could not readily detect on the in vitro cultured naEFCs (Figure 1B).

Further investigation of tube forming capabilities was undertaken by i.v. injection of with 200 µg of tetramethylrhodamine isothiocyanate (TRITC)-labeled UEA lectin and after 20 min of circulation, mice were heart-perfused with PBS followed by 4% paraformaldehyde (PFA) in PBS. Matrigel plugs were explanted, postfixed and sections analysed by 2-photon microscopy. As shown in Figure 3B, CFSE-naEFCs (green) formed a tubule structure within which the circulating TRITC-lectin bound (red) suggesting lumen formation by the human cells.

To determine the homogeneity of the naEFCs following 7 days in vivo, we executed flow cytometric analysis on dispase digested cells from the explanted Matrigel plugs. As shown in Figure 3C, mononuclear cells isolated from the naEFC containing plugs, but not the contra-lateral control plugs (which contained no naEFCs), held CFSE expressing cells. Gating on the CFSE positive cells and using human specific monoclonal antibodies revealed their high expression of CD133, CD34 and CD144, low expression of CD117 and VEGFR2, and no expression of CD31. As important, these cells were CD45 low and did not express CD4 (Figure 3C, right panel histograms). As expected, surface expression of the aforementioned human antigens was not detectable on the MNC gated cells digested out of the control plugs (Figure 3C, left panel histograms).

Multipotency of naEFCs

Asahara recently demonstrated that a single HUCB derived CD133+ cell could give rise to cells of either the hematopoietic or endothelial lineage [26]. Using a similar methylcellulose hematopoietic colony formation assay we executed a fate analysis of naEFCs. As shown in Figure 4, when the naEFCs were cultured with GM-CSF, SCF, IL-3 and EPO for 14 days a variety of cell types were detected including early progenitors of both erythrocyte and myeloid lineages (CFU-GEMM), the erythrocyte lineage (BFU-E), the granulocyte/monocyte progenitor lineages CFU-GM, CFU-G and CFU-M. May Grunwald/Giemsa-stained cytospin preparations of methylcellulose cultured cells confirmed the presence of hematopoietic cells, including those of the myeloid lineage (Figure 4). Also shown in Figure 4, a comparison of freshly isolated HUCB derived CD133+ and CD133- cell fractions alongside the naEFCs which suggests a similarity between the naEFCs and the CD133+ cells with respect to the number and type of colonies formed. These functional assays suggest that the naEFCs have multipotential lineage capabilities and that given the correct growth factor cocktail that a variety of lineages can be obtained.

Intercellular adhesion molecule (ICAM)-3 mRNA is upregulated in naEFCs

Gene expression profiling of naEFCs versus their donor matched HUVEC was performed using Genechip Affymetrix Human 1.0 ST Exon arrays (Figure 5A). Figure 5B illustrates the gene expression scatter profile after robust multi-array analysis (RMA) normalization and the complete microarray data set is available via the NCBI Gene Expression Omnibus (GEO) (Accession number GSE25979). Using a p-value cut-off of ≤0.05 (see methods for full statistical analysis) and a fold change cut-off of 1.5, a total of 977 had a significantly higher expression and 1128 genes had a significantly lower expression in naEFCs when compared to HUVEC. Notably, data analysis confirmed a higher expression of progenitor cell markers CD133, CD117, CD44 and chemokine (C-X-C motif) receptor 4 (CXCR4) in the naEFC population when compared to HUVEC (Table 1). Similarly, mRNA expression of the mature endothelial cell markers (CD31, CD144, CD62E and von Willebrand Factor) was significantly higher in HUVEC when compared to the naEFCs (Table 1).

We next investigated the potential relevant function of the genes upregulated in the naEFCs using a combination of Gene spring GX11 Gene Ontology classifications, ingenuity pathvay analysis (IPA) and Ace view search engines. The most significantly represented biological processes include cancer, cardiovascular diseases, cardiovascular system development and function, cell signaling, cellular growth and proliferation, haematological disease, cellular function and maintenance, lipid metabolism and metabolic disease. Importantly, all of these processes are known to be associated with or involved in vascular dysfunction [42].

Using the aforementioned search engines, we next mined the data for genes which may contribute to the functional activity of circulating naEFCs. Within this search, ICAM-3 was identified as a novel putative adhesion molecule for naEFCs, exhibiting a 4.3 fold increase in mRNA expression over their donor matched HUVEC (Table 1). To validate these results new biological replicates were examined by qRT-PCR with results demonstrating ~30-fold increase in mRNA expression of ICAM-3 in progenitors versus donor matched HUVEC (Figure 4C).

Mass spectrometry confirms ICAM-3 surface expression on naEFCs

Proteomic profiling using tandem mass spectrometry is an established technology for the detection of cell surface proteins. Protein glycosylation is a common post-transcriptional modification with N-linked glycosylation prevalent in proteins destined for
Figure 3. naEFCs express mature EC markers and form perfused tubes in vivo. In (A), CFSE-labelled naEFCs mixed with Matrigel prior to injection into the flank of NOD/SCID mice, after 7 days the plugs were removed, processed and sections counterstained for nuclei with DAPI prior to imaging by confocal microscopy. The upper left image shows the cross section of a CFSE-naEFC generated tube-like structure (green) within which the nuclei of cells can be seen (blue) at 60× mag (arrows). The upper right image is the control plug in which no naEFCs were added. Images represent one experiment of $n=3$. Similar sections were stained for CD144 and images captured by confocal microscopy with CFSE-naEFCs (green) exhibiting CD144 (red) as a cross section of a tube (lower left image) and CD144 staining in the junctions of the CFSE-naEFCs (lower right panel). Images are a representative of $n=3$. In (B), similar experiments were executed and at day 7 post-implant the mice were injected i.v. with TRITC-lectin.
the extracellular environments [43]. Herein we enriched for surface glycoproteins on the naEFCs and donor matched HUVEC by selective capture of N-glycosylated membrane proteins onto beads using hydrazone chemistry followed by enzymatic release of the peptides and subsequent MALDI-tof/tof-MS and MicroTOF-Q-MS/MS tandem mass spectrometry. Protein hit lists were generated by searching Swissprot database. The integrity of the hits was ensured by the inclusion of N-glycosylations sites as well as an increment of the mass of 1 Da due to the change of Asn to Asp. Multiple MS runs using up to 3 biological replicates identified over 750 glycoproteins from the naEFC preparations with recognition of CD133, CD117 and CD44 on these cells but not HUVEC (Table 2); CD31 was detected on both cell types and CD144 was detected on HUVEC but not the naEFCs. Within this list, ICAM-3 was repeatedly detected on the naEFCs but not observed in the HUVEC glycoprotein preparations. As shown in Figures 5D and 5E, flow cytometric analysis confirmed the surface expression of ICAM-3 on the naEFCs and not on HUVEC. Confirmation of ICAM-3 expression on bona fide circulating progenitor cells was obtained using flow cytometry which repeatedly demonstrated its expression on freshly isolated CD133+/CD117+ progenitor cells circulating in the peripheral blood (Figure 5F).

ICAM-3 mediates naEFC cell rolling and adhesion events under shear stress

To investigate the potential use of ICAM-3 by naEFCs, a parallel plate flow chamber assay was performed. As shown in Figure 6A–C and Video S1, when naEFCs were perfused over untreated HUVEC at a rate of 2 dynes/cm², negligible naEFC rolling or adhesion was observed. By contrast, when the HUVEC were stimulated with TNFα for 5 hours a significant increase in naEFC rolling and adhesion was observed (Figures 6A–C and Video S1). When naEFCs were pre-treated with a blocking antibody to ICAM-3 prior to perfusion over TNFα-activated HUVEC a significant decrease in the number of rolling and adherent naEFCs was observed when compared to both isotype control and untreated cells (Figure 6A–C and Video S1).

Interestingly, studies investigating the role of ICAM-3 in whole blood rolling and adhesion on TNFα-treated HUVEC suggested a different role for this adhesion molecule. As shown in Figures 6D–E, when compared to an isotype control antibody, the administration of a blocking antibody to ICAM-3 did not affect the rolling of whole blood cells on the endothelium but demonstrated a significant attenuation in cell adhesion.

Based on these results we returned to the Matrigel assay and investigated the role of ICAM-3 in tubule formation using progenitor cell co-culture experiments with HUVEC. In repeated experiments we were unable to demonstrate that administration of a blocking antibody to ICAM-3 altered tubule formation (not shown).

Discussion

Regulation of blood vessel homeostasis and turnover is essential for the function of all organs and tissues during embryonic development and in adulthood. Thus, there is great interest in understanding the mechanisms that regulate endothelial cells in different vessels as well as identifying possible sources for their replacement when vascular complications occur. A seminal article identified EPCs as cells that circulate in peripheral blood and express CD34 and VEGFR2 [17], however mature EC and hematopoietic cells also express these cellular markers and they can be mobilised to sites of neovascularisation. A decade and a half later, a definitive delineation of EPCs and protocols to unambiguously isolate these cells in vivo remains elusive. In fact, a human EPC clonogenic assay recently developed by Asahara’s laboratory demonstrated that a single HUCB derived CD133+ cell can develop into a colony forming EPC as well as a hematopoietic colony-forming unit (CFU)-GEMM, -GM, -G and -M colonies in methylcellulose. Colony formation was photographed and quantified after 14 days and compared between naEFCs and freshly isolated CD133+ and CD133- cells (mean ± sem, n = 3).

doi:10.1371/journal.pone.0046996.g003

doi:10.1371/journal.pone.0046996.g004

Figure 4. Hematopoietic properties of naEFCs. naEFCs were seeded in MethoCult and growth factors GM-CSF, IL-3, SCF and EPO for 14 days prior to colony counting and staining with May Grunwald/Giemsa to assess cellular morphology. naEFCs formed blast-forming unit-erythroid (BFU-E), colony-forming units (CFU)-GEMM, -GM, -G and -M colonies in methylcellulose. Colony formation was photographed and quantified after 14 days and compared between naEFCs and freshly isolated CD133+ and CD133- cells (mean ± sem, n = 3).

doi:10.1371/journal.pone.0046996.g004
progenitor cell. This is congruent with the identification of a CD133+/CD34+/CD45+/CD38+ common progenitor for endothelial, myeloid and lymphoid precursors in HUCB [44] and multipotent progenitor cells in human peripheral blood [45]. An important role for CD133 on EC precursors was recently demonstrated by Janic et al who showed that HUCB-derived CD133+ cells in culture contained mainly EPCs and that long term in vitro conditions facilitated the maintenance of these cells in the state of commitment towards endothelial lineage [46].

In this study we have extensively characterized a tube-forming non-adherent population of EPCs (naEFCs) and executed a genomic and proteomic comparison between these cells and donor matched HUVEC. Herein we demonstrate that HUCB derived CD133+ non-adherent progenitor cells cultured for 4 days in vascular cell supportive media expressed CD133, CD117, CD34, CD31, VEGFR2, CD45, CD90 and CD38 at the cell surface but not CD3, CD4, CD8, CD10, CD11b, CD14, CD19, CD20 or CD41a. These progenitor cells demonstrated multipotent pro-angiogenic potential with colony formation in Methocult, indicative of hematopoietic cell growth, as well as features of endothelial cells with (i) incorporation of Ac-LDL and binding of UEA-1, (ii) the release the pro-angiogenic cytokine IL-8 and soluble adhesion molecule CD31, (iii) upregulation of VCAM-1 when stimulated with TNFα, (iv) when seeded together with HUVEC in Matrigel in an in vitro assay the progenitor cells exhibited vascular potential by aligning with tubular structures, increasing tube number, vascular branching from the tubes as well as loops and (v) a capability to contribute to lumen containing tubule structures in vivo which express CD144. A genomic and proteomic profile comparison between the naEFCs and HUVEC
Gene expression profiling of human EPCs is not new, with nearly a dozen published reports currently available. However, our investigation of non-adherent CD133+ human naEFCs in short-term culture is novel with the most closely reported studies including those of Igreja and colleagues, who investigated day 0 and 13 cultured CD133+CD117+VEGFR2+ adherent and non-adherent cells derived from HUCB [47] and Jaatinen and coworkers who compared HUCB derived freshly isolated CD133+ sorted versus CD133– cells [48]. A close comparison of their published gene expression profiles with that of our study supports the identification of the adhesion molecule ICAM-3 on freshly isolated and short-term cultured EPCs [47] and as such supports our contention of ICAM-3 as an adhesion molecule for circulating progenitors with vasculogenic potential. Importantly, we have taken the next critical step by using glycoproteomics by mass spectrometry together with flow cytometry to confirm the presence of ICAM-3 on circulating endothelial progenitor cells.

Table 1. Fold change values of well-established markers in the naEFCs when compared with HUVEC.

Gene Symbol	Gene Name	naEFCs
CD133	prominin-1	8.8 ↑
CD117	proto-oncogene c-Kit	5.9 ↑
CD44	CD44	5.7 ↑
CXCR4	Chemokine (C-X-C motif) receptor 4	6.2 ↑
CD31	PECAM-1	2.1 ↓
CDH5	VE-cadherin	25.0 ↓
CD62E	E-selectin	20.7 ↓
vWF	von Willebrand Factor	16.0 ↓
CD34	CD34	No change
eNOS	nitric oxide synthase 3	1.4 ↓
VEGFR2	vascular endothelial growth factor receptor 2	12.9 ↓
ICAM-3	intercellular adhesion molecule 3	4.4 ↑

1 denotes significantly higher mRNA expression; 2 denotes significantly lower mRNA expression.

doi:10.1371/journal.pone.0046996.t001

Identified ICAM-3 as a previously undescribed biomarker of naEFCs. Functional analysis using adhesion assays under shear flow, identified ICAM-3 as new adhesion molecule for circulating naEFCs.

Table 2. MALDI-tof/tof-MS of N-glycosylated naEFC membrane proteins using hydrazide-bead capture.

Gene symbol	Protein name	Sequences of identified glycopeptides
PROM1_HUMAN	Prominin-1 (CD133)	VNSIGSDIDNVTQI
KIT_HUMAN	Proto-oncogene c-kit (CD117)	SLYKEKDNTLVYR
CD44_HUMAN	CD44-antigen (CD44)	AFNSTLPTMAQMEK
PECAM1_HUMAN	Platelet endothelial cell adhesion molecule (CD31)	LNLS5PAPPANFTIQK
CDH5_HUMAN	Vascular endothelial cadherin (CD144)	NTSLPHHVGKQK
ICAM3_HUMAN	Intercellular adhesion molecule-3 (ICAM-3)	EIVCNVTLLGGER

1 The consensus motif for N-linked glycosylation is highlighted in bold.

doi:10.1371/journal.pone.0046996.t002
properties of this molecule in vivo. In mouse and rat genomes, remnants of the \textit{Icam3} gene are detectable; however, in these species it has been inactivated during rodent evolution with numerous mutations such as base substitutions, small indels and retrotransposon insertions identified [65].

\section*{Conclusions}

Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed both hematopoietic progenitor cell markers and mature endothelial cell markers. Non-adherent EFCs demonstrated functional capabilities expected of EPCs in vitro and are distinguished from ‘early EPCs’.
as they did not express the myeloid markers CD11b or CD14 and demonstrated vessel formation in vivo. Extensive genomic and proteomic analyses of naEFCs showed that ICAM-3 is expressed on their cell surface which may act as an adhesion molecule to mediate their rolling and adhesive events to the vasculature under shear stress. The mechanisms and factors controlling progenitor cell recruitment are not well known and are loosely based on the leukocyte recruitment cascade of events which includes the selectin family (ie P-, E- and L-selectin) for transient interactions to initiate tethering and rolling of circulating cells along the endothelium, integrin binding to vascular and intercellular adhesion molecules (eg VCAM-1) [66,67]. The percentage of EPCs is ~0.01% of the circulating white blood cells, their recruitment to sites for vascularisation must therefore be governed by specific profile of adhesion molecules. With our identification of ICAM-3 on the surface of freshly isolated, and importantly not cultured, circulating CD133+CD117+ progenitor cells it is our contention that ICAM-3 may contribute to the neovascularisation and warrants further investigation as a new opportunity for diagnostic and/or therapeutic potential.

Supporting Information
Figure S1 Surface expression profiling of early EPCs.
Early EPCs were phenotyped for hematopoietic progenitor cell (CD117, CD34), endothelial cell (CD31, CD144) and leukocyte cell (CD45, CD11b, CD14) markers by flow cytometry. In the histograms, the light dotted lines represent unstained cells and the dark lines represent stained cells of one representative experiment from n=3.

(TIF)

Figure S2 Surface expression profiling of naEFCs and PBMCNs. In (A), a representative dot plot of CD133+CD117+
double positive naEFCs were examined for CD41a surface expression by flow cytometry. The light dotted line represents the unstained control and the dark line represents cells stained for CD41a. One representative experiment is shown from n=5. In (B), naEFCs and PBMCNs were assessed for the expression of lineage markers CD3, CD4, CD8, CD20, CD19 or CD90. Light dotted line represents the unstained control and the dark line represents cells stained for the surface antigen. One representative experiment is shown from n=3.

(TIF)

Video S1 Parallel plate flow chamber video of HUVEC pre-treated without or with TNFα (5 ng/ml, 5 hours) prior to perfusion of naEFCs pre-treated with an isotype control (iso control) antibody or an ICAM-3 blocking antibody (1 μg, 30 min) at 2 dynes/cm² for 5 minutes. Playback speed is 1 x.

(MP4)

Acknowledgments
We thank Samantha Escarbe for preparing the vascular progenitor cells and endothelial cells; Gareth Price for executing the microarrays; Sarah To and Michael Papadimitriou for flow cytometric assistance; Kate Pilkington for cytokine bead array assistance; Dr Rosalie Grivell, the staff and consenting donors at Women’s and Children’s Hospital and Burnside Memorial Hospital for collection of the umbilical cord blood and cords.

Author Contributions
Conceived and designed the experiments: SLA JBP MPC EJT KT SS WYS GT CSB IN IC. Performed the experiments: SIA MJP EJT JMB KT SS WYS VG LT GT CSB. Analyzed the data: SLA JBP MPC EJT KT SS WYS GT CSB IN IC. Wrote the paper: SLA JBP MPC GT AFL CSB.

References
1. Cho HJ, Kim HS, Lee MM, Kim DH, Yang HJ, et al. (2003) Mobilized endothelial progenitor cells by granulocyte-macrophage colony-stimulating factor accelerate reendothelialization and reduce vascular inflammation after intravascular radiation. Circulation 108: 2918–2925.
2. Laing AJ, Dillon JP, Condon ET, Street JT, Wang JH, et al. (2007) Mobilization of endothelial precursor cells: systemic vascular response to musculoskeletal trauma. J Orthop Res 25: 44–50.
3. Kawamoto A, Gwun HC, Iwaguro H, Yamauchi JI, Uchida S, et al. (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103: 634–637.
4. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkoff D, et al. (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7: 430–436.
5. Lyden D, Hattori K, Dias S, Costa C, Blakie P, et al. (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7: 1194–1201.
6. Patenauze A, Parker J, Karsan A (2010) Involvement of endothelial progenitor cells in tumor vascularization. Microwave Res.
7. Nolan DJ, Giarroccoli A, Mellick AS, Jaggi JS, Bambino K, et al. (2007) Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev 21: 1546–1558.
8. Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, et al. (2008) Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319: 195–198.
9. Hoering MR, Bianchi C, Rosenzweig A, Selke FW (2008) Decreased vascular repair and neovascularization with aging: mechanisms and clinical relevance with an emphasis on hypoxia-inducible factor-1. Curr Mol Med 8: 734–767.
10. Sen S, McDonald SP, Coates PT, Bonder CS (2011) Endothelial progenitor cells: novel biomarker and promising cell therapy for cardiovascular disease. Clin Sci (Lond) 120: 283–286.
11. Tepper OM, Galano RD, Galapa JM, Kalka C, Gagne PJ, et al. (2002) Human endothelial progenitor cells from type II diabetes exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106: 2781–2786.
12. Loomans C, van Haperen R, Duijts JM, Verheyden C, de Crom R, et al. (2009) Differentiation of bone marrow-derived endothelial progenitor cells is shifted into a proinflammatory phenotype by hyperglycemia. Mol Med 15: 152–159.
13. Carmeliet P, Jam KK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473: 290–307.
14. Pacilli A, Faggioni G, Stella A, Pasquinielli G (2010) An update on therapeutic angiogenesis for peripheral vascular disease. Ann Vasc Surg 24: 259–266.
15. Timmermans F, Plum J, Yoder MC, Ingram DA, Vanekerckhove B, et al. (2009) Endothelial progenitor cells: identity defined? J Cell Mol Med 13: 107–119.
16. Asahara T, Kawamoto A, Masuda H (2011) Circulating Endothelial Progenitor Cells for Vascular Medicine. Stem Cells.
17. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, et al. (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85: 221–228.
18. Cho HJ, Lee N, Lee JY, Choi YJ, Bae M, et al. (2007) Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. J Exp Med 204: 3257–3269.
19. Fadini GP, Losordo D, Dimmeler S (2012) Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 110: 624–637.
20. Hagens MK, Vanhouette PM, Bennett JF (2012) Arterial endothelial cells: still the craftsmen of regenerated endothelium. Cardiovasc Res 95: 281–289.
21. Yoder MC (2010) Is endothelium the origin of endothelial progenitor cells? Arterioscler Thromb Vasc Biol 30: 1094–1103.
22. Asahara T, Murakara T, Sullivan A, Pastore C, Silver M, et al. (1999) Isolation of putative progenitor endothelial cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Nature 399: 624–637.
23. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, et al. (2000) Expression of VEGFR-2 and AC133 by circulating human CD34+(MP4) cells identifies a
Endothelial Progenitor Cell Adhesion via ICAM-3

26. Masuda H, Alev C, Aikama H, Ito R, Shirano T, et al. (2011) Methodological development of a donor-recipient assay to determine endothelial progenitor cell potential. Circ Res 109: 20–37.
27. Urbich C, Aicher A, Heschgen C, Dernbach E, Hofmann WK, et al. (2006) Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol 39: 733–742.
28. Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107: 1164–1169.
29. Litsyn S, Clark K, Noack I, Farze J, Berndt M, et al. (1997) Novel cytokine-independent induction of endothelial adhesion molecules regulated by platelet/endothelial cell adhesion molecule (CD31). J Cell Biol 139: 219–226.
30. Wall RT, Harker LA, Quadracci LJ, Striker GE (1978) Factors influencing endothelial cell proliferation in vitro. J Cell Physiol 96: 203–213.
31. Scarfe J, Mockel M, Grose S, Datwyler SA, Qadir F, et al. (2011) Heparin strongly induces soluble fms-like tyrosine kinase 1 release in vivo and in vitro. Brief report. Arterioscler Thromb Vasc Biol 31: 2972–2974.
32. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74: 5383–5392.
33. Sheyzenberg D, Deucht EW, Lam H, Eng JK, Sun Z, et al. (2011) iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol Cell Proteomics 10: M111 007600.
34. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75: 4646–4658.
35. Hristov M, Edel W, Weber PC (2003) Endothelial progenitor cells isolation and characterization. Trends Cardiovasc Med 13: 201–206.
36. Estes ML, Mund JA, Ingram DA, Case J (2010) Identification of endothelial cells and progenitor cell subsets in human peripheral blood. Curr Protoc Cytom Chapter 9: Unit 9 33 31–11.
37. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, et al. (2007) Yoder, et al. Revising endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109: 1801–1809.
38. Mirzak D, Brittan M, Alison MR (2000) CD133: molecule of the moment. J Pathol 214: 3–9.
39. Prokop M, Pula G, Mayr U, Deville C, Gallacher J, et al. (2009) Protopin analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood 114: 723–732.
40. Bourder CC, Sun WW, Matthews T, Cassano C, Li X, et al. (2009) Phosphoglycerate kinase regulates the rate of endothelial progenitor cell differentiation. Blood 113: 2108–2117.
41. Suarez V, Shepheard B, Rao D, Poher J (2007) Alloimmunity to human endothelial cells derived from cord blood progenitors. J Immunol 179: 7480–7496.
42. Han KA, Patel Y, Lefie AA, Chisholm R, Mather KJ (2011) Contributions of dysglycaemia, obesity, and insulin resistance to impaired endothelium-dependent vasodilatation in humans. Diabetes Metab Res Rev 27: 354–361.
43. Roth J (2002) Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem Rev 102: 285–303.
44. Rames AL, Darabi R, Akbari N, Borges L, Catanese J, et al. (2010) Clonal analysis reveals a common progenitor for endothelial, myeloid, and lymphoid characteristics after long term in vitro expansion. PLoS One 5: e9173.
45. Igreja C, Fragoso R, Caiado F, Clode N, Henrique A, et al. (2006) Detailed characterization of cord blood-derived endothelial progenitors. Exp Hematol 36: 195–203.
46. Jaatinen T, Hemmaraanta H, Hautoinen S, Niemi J, Nioriini D, et al. (2006) Global gene expression profile of cord blood-derived CD133+ cells. Stem Cells 24: 631–641.
47. Szczepanski M, Kamionkowski M, Kamionkowski G (2012) Effects of fluorides on apoptotic and activation of human umbilical vein endothelial cells. Oral Dis 18: 210–216.
48. Dousias-Anagnostopoulou I, Kakmakian I, Cordell J, Jones M, Turley H, et al. (1993) ICAM-3 expression on endotheliun in lymphoid malignancy. Am J Pathol 143: 1049–1043.
49. Cordell JL, Pulford K, Turley H, Jones M, McKid K, et al. (1994) Cellular distribution of human leucocyte adhesion molecule ICAM-3. J Clin Pathol 47: 145–147.
50. Fox SB, Turner GD, Gatter KC, Harris AL (1995) The increased expression of adhesion molecules ICAM-3, E- and P-selectins on breast cancer endothelium. J Pathol 170: 369–376.
51. Patel N, Vazeux R, Canioni D, Potter T, Gallatin WM, et al. (1996) Interacellular adhesion molecule-3 on endothelial cells. Expression in tumors but not in inflammatory responses. Am J Pathol 148: 463–472.
52. Terol MJ, Cid MC, Lopez-Guillermo A, Juan M, Yague J, et al. (1996) Expression of intercellular adhesion molecule-3 (ICAM-3) in malignant lymphoproliferative disorders and solid tumors. Tissu Antigens 48: 271–277.
53. Verkarre V, Patay-Mariaud de Serre N, Vazeux R, Teillac-Hamel D, Chretien-Marquet R, et al. (1999) ICAM-3 and E-selectin endothelial cell expression differentiates two phases of angiogenesis in infantile hemangiommas. J Cutan Pathol 26: 17–24.
54. Szekaczewicz Z, Haines GK, Lin TR, Harlow LA, Goerdh S, et al. (1994) Differential distribution of intercellular adhesion molecules (ICAM-1, ICAM-2, and ICAM-3) and the MS-1 antigen in normal and diseased human synovia. Their possible pathogenetic and clinical significance in rheumatoid arthritis. Arthritis Rheum 37: 221–231.
55. van Buul JD, Mul FP, van der Schoot CE, Hondjik PL (2004) ICAM-3 activation modulates cell-cell contacts of human bone marrow endothelial cells. J Vasc Res 41: 28–37.
56. Favett CJ, Holness CL, Needham LA, Turley H, Gatter KC, et al. (1992) Molecular cloning of ICAM-3, a third ligand for LFA-1, constitutively expressed on resting leucocytes. Nature 360: 481–484.
57. Geijtenbeek TB, Torensma R, van Vier Stj, van Duijnhoven GC, Adema GJ, et al. (2000) Identification of DC-SIGN, a novel dendritic cell-specific ICAM receptor that supports primary immune responses. Cell 100: 575–585.
58. Munimud S, Catano G, Lam I, Hsizzle A, Telles V, et al. (2001) Extensive repertoire of membrane-bound and soluble dendritic cell-specific ICAM-3-grabbing nonintegrin 1 (DC-SIGN1) and DC-SIGN2 isoforms. Interspecies variation in expression of DC-SIGN transcripts. J Biol Chem 276: 33196–33122.
59. Oostenendorp RA, Spitzer E, Reibach G, Dormer P (1997) Antibodies to the beta 1-integrin chain, CD14, or ICAM-3 stimulate adhesion of blast colony-forming cells and may inhibit their growth. Exp Hematol 25: 345–349.
60. Sun WY, Pinson SM, Boudier CS (2010) Tumor necrosis factor-induced neutrophil adhesion occurs via sphingosine kinase-1-dependent activation of endothelial alpha[5]beta[1] integrin. Am J Pathol 177: 436–446.
61. Kim I, Kim JH, Ryu YS, Liu M, Kohn GY (2000) Tumor necrosis factor-alpha upregulates angiotensin-2 in human umbilical vein endothelial cells. Biochem Biophys Res Commun 269: 361–365.
62. Taverna D, Hynes RO (2001) Reduced blood vessel formation and tumor growth in alpha3beta1-integrin-negative teratocarcinomas and embryoid bodies. Cancer Res 61: 5255–5261.
63. Leeb T, Muller M (2004) Comparative human-mouse-rat sequence analysis of the ICAM gene cluster on HSA 19p13.2 and a 183-kb porcine region from SSC 2q. Gene 345: 239–244.
64. Verboop RE, Koobijk P, van Zonneveld AJ, van Himbergh JW (2009) Protoplasts and receptors in the recruitment of endothelial progenitor cells in neovascularization. Eur Cytokine Netw 20: 207–219.
65. Zey K, Laudanna C, Cymbalsky M, Noursaghir S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7: 676–689.