Effects of the analysed variable set composition on the results of distance-based morphometric surveys

Bálint Bánó · Péter Takács

Abstract Distance-based morphometry is still widely used in ichthyology. Beside others, this methodology is often used to characterise species or to compare intraspecific group (i.e. population level) differences. However, scarce information is available about: (a) which are the most widely used variables for these purposes, (b) how certain variables are selected for the morphometric analyses, and (c) how variable set compositions and the number of variables affect the results. To answer these questions, a literature review was compiled and our own three datasets were analysed. The results showed that although a high number of variables can be used, previous authors have measured “common” ones most often, regardless of the taxonomic position of the studied group and the goal of the survey. Additionally, our review showed that authors rarely made a variable selection and often did not standardise their datasets; these are methodical problems that make the accuracy and usability of the results questionable. Analyses of our own three datasets showed that the number of variables and the variable set compositions in most cases strongly influenced stock subdivision and the percentage of correctly classified individuals. It was also shown that the most useable variable sets for morphometric purposes can differ considerably depending on the taxa and goal of the survey.

Keywords Fish · Variable number reduction · Separability · Methodology · Effort

Introduction

Morphometry is a scientific methodology which gives a qualitative description, analysis, and interpretation of shape and shape variation in biology (Rohlf, 1990). Morphometric methods are employed in many fields of science, from clinical diagnostics (Azaria et al., 2003) to palaeontology (Ball et al., 2016; Zhao et al., 2020). These methods have also been widely used in ichthyology to isolate stocks or species (González-Castro et al., 2012), to reveal ontogenetic changes (Biolé et al., 2019), to solve taxonomic problems (Golubtsov et al., 2012), and to answer certain ecological (Sibbing & Nagelkerke, 2001), evolutionary
Morphometric methods have changed significantly in the last decades. The introduction of the truss base system (Strauss & Bookstein, 1982) and image analyses (Cadrin & Friedland, 1999) has increased the accuracy of the traditional distance-based method. Moreover, the field of geometric morphometrics, which was devised in the mid-1990s (Rohlf & Marcus, 1993), has proven to be more accurate, less costly, and more time effective (Parsons et al., 2003; Maderbacher et al., 2008; Viscosi et al., 2009) than traditional distance measurements. These improvements, together with the newly developed statistical background (see: Zelditch et al., 2004) and the widespread use of personal computers, which can be used to perform more complex statistical calculations, have revolutionised this long-used research methodology (Adams et al., 2004). Thus, the number of morphometric-themed ichthyological articles, also using distance-based methods, has considerably increased in recent times (Fig. 1).

Like most research methods, morphometry has its own characteristics and limitations. Although several methodological articles dealing with the applicability, usability, and sensitivity of morphometric methods have been published recently (Cadrin, 2000; Kocovsky et al., 2009; Baur & Leuenberger, 2011; Petrtýl et al., 2014; Takács et al., 2016; Takács et al., 2018), a number of issues relating to the execution of the measurements have still not been clarified. For example, although we can find reports summarising the usable/recommended variables for morphometric measurements (Cadrin, 2000; Armbruster, 2012), to our knowledge there is not a generally used protocol for distance-based fish morphometry. Nonetheless, for the sake of comparability, there were attempts to determine the variables to be measured on a taxonomic basis (Pravdin, 1966). Nowadays, however, it seems that the authors’ choice mostly relies on previous literature on a similar topic to determine the variables to be measured (Tulli et al., 2009; Sirakov et al., 2012). Similarly, it is still unclear what the optimal number of variables is, if any, to show differences at a population level. In some special cases, a few well-chosen variables may be sufficient to distinguish groups (Franklin et al., 2012). Conversely, some authors have often analysed as many variables as possible and the number of variables has sometimes exceeded thirty (e.g. Elliott et al., 1995). At the same time, the acquisition of morphometric data is a time- and energy-consuming process, and not all variables are equally informative in terms of group differentiation. Indeed, the employment of less changing variables may make it more difficult to separate groups. Additionally, there are variables that are more difficult to record, so their data are more frequently burdened with measurement errors (Yezerinac et al., 1992) which can make group segregation more difficult. Therefore, it can be rightly assumed that by including different morphometric variables in the analysis and by changing the number of variables used, the degree of group separation may also change considerably. Furthermore, the multivariate statistical methods commonly used in morphometry (e.g. canonical variance analysis) do not allow the number of variables measured to be greater than the number of investigated individuals (Zelditch et al., 2004).
Indeed, in order to increase the number of analysed variables, the number of samples per group must also be increased. Additionally, to obtain a stable outcome from Principal Component and Discriminant Function analyses (PCA, DFA) three to eight times more individuals than the number of variables planned to be measured should be included in the analyses (Kocovsky et al., 2009). However, the examination of a larger number of individuals is not feasible in many cases (e.g. comparison of small populations of protected species). Thus, in terms of both time savings and the requirements of statistical analyses, there is a necessity to consider which variables are most worthy of being measured to define the optimal number of variables, if it can be established at all, for morphometric studies.

In our present work, we provide an overview of the number and kinds of variables that are most frequently used in distance-based morphometric analyses and how the variable number and variable set composition are affected by the goal of the surveys (i.e. intra- or interspecific group differences revealed). Using our own morphometric datasets we investigate if there are any generally used variables for intraspecific (population level) morphometric studies. We also reveal how the level of group differences changes depending on the number of variables analysed.

Materials and methods

Literature review

In the literature review, the data of 70 scientific articles employing classic distance-based morphometric methods were examined, in which the term “morphometry” and/or “morphology” was included in the title and/or keywords. Then, we distinguished the reviewed studies by topic into “interspecific” and “intraspecific” groups. Namely, we separated the articles where the morphometric method was used for the general characterisation of a species and/or to reveal interspecies differences, from those in which group/population level differences were revealed. The number of morphometric variables studied per article and the frequency of the variables used in these works were then recorded. Moreover, we revealed if the goal of the survey (to reveal inter- or intraspecific differences) had any effect on the number of variables and/or the variable set composition. Additionally, we recorded if the authors performed a data standardisation and variable selection.

Own data processing and analyses

To test the effect of variable composition on the results of the morphometric studies, we used our own datasets of two cyprinid taxa: the European gudgeon (*Gobio gobio* complex, Takács, 2018)—hereafter gudgeon, Petényi barbel (*Barbus petenyi*, Heckel, 1852)—hereafter barbel and the centrachid pumpkinseed sunfish *Lepomis gibbosus* (Linnaeus, 1758)—hereafter sunfish. We collected samples from five populations for each taxon using an electric fishing gear (permission numbers: PE-KTF/659-15/2017, ANPA Agentia Nationala pentru Pescuit si Acvicultura: 08/21.03.2016). The geographical position, numbering of sampled waterbodies, locations, and other important information are shown in Table 1 and Fig. 2. The captured individuals were placed flat on a polystyrol surface and their left sides were photographed from a perpendicular angle using a tripod-mounted Nikon D5300 digital camera with a fixed zoom range. The measurement of 35 morphometric variables was performed on these digital photos using the ImageJ software (Rasband, 2012). We recorded the shortest distances between the designated 25 landmark points (Fig. 3). To eliminate interobserver variability (Takács et al., 2016), all measurements were made by the same person. The name, abbreviations, and start and end points of the measured variables are shown in Table 2. The measurement data were standardised by the standard length (SL) using the formula of Elliott et al. (1995):

\[
M_{\text{adj}} = M \frac{L_0}{L_s}^b,
\]

where \(M_{\text{adj}}\) is the value of the standardised variable, \(M\) is the value of the originally measured variable, \(L_s\) is the average of the standard body lengths of the subjects, \(L_0\) is the standard body length of the subject, and parameter “\(b\)” is the slope of the logarithmic values of the given variable and the linear regression line of the log-transformed standard body lengths. Spearman rank correlation analyses were performed between the standardised variables and the standard body lengths to check the elimination of size effects from the datasets.
Table 1 Details of sampled populations, name of sampled waterbodies, locality, date of sampling, and number of individuals caught per taxon

No.	Taxon	Waterbody	River system	Sample site	Coordinates	Date	Number of individuals
1.	Gudgeon	Tolcsva stream	Tisza	Erdőhorváti	N48.31088, E21.43026	2017.03.24	20
2.		Csernely stream	Tisza	Uppony	N48.21437, E20.44003	2017.03.24	19
3.		Kemence stream	Middle-Danube	Bernecebaráti	N48.04741, E18.91824	2017.03.25	20
4.		Eger-víz stream	Middle-Danube	Gyulakeszi	N46.87300, E17.47000	2017.05.02	20
5.		Tapolca stream	Middle-Danube	Raposka	N46.85051, E17.42178	2017.03.31	24
6.	Barbel	Argyas river	Lower-Danube	Rotunda	N45.26800, E24.65600	2016.09.07	20
7.		Ilosva river	Lower-Danube	Curcubeu	N44.75500, E26.13899	2016.09.08	20
8.		Moldova river	Szeret	Praxia	N47.38399, E26.33099	2016.09.08	20
9.		Olt river	Lower-Danube	Csíkszereda	N46.31900, E25.82799	2016.09.09	20
10.		Kis-Küküllő river	Tisza	Kibéd	N46.53900, E24.98299	2016.09.09	20
11.	Sunfish	Lake Balaton	Middle-Danube	Balatonfenyves	N46.71494, E17.47538	2018.09.07	20
12.		Lake Balaton	Middle-Danube	Siófok	N46.91020, E18.04501	2018.09.10	20
13.		Lake Balaton	Middle-Danube	Balatonakali	N46.88238, E17.76592	2018.09.19	20
14.		Lake Balaton	Middle-Danube	Balatonkenese	N47.02986, E18.10952	2018.09.10	20
15.		Lake Balaton	Middle-Danube	Keszthely	N46.75353, E17.24760	2018.09.07	20

For more details see Fig. 2

Fig. 2 Geographical distribution of sampling sites (A) gudgeon (1–5) and barbel (6–10). The sunfish sampling sites on littoral region of Lake Balaton (11–16) are shown in insert B. Different shapes show the sampling sites of different species, circle: gudgeon, triangle: barbel, and rectangle: sunfish. The geographical position of the sampled area in Europe is shown in insert C. For more details see Table 1
The importance of each variable in group separation was determined by their F-values (Pope and Webster, 1972), which is the ratio of the sum of squares amongst and within groups. The variable with a higher F-value tends to have a greater importance in group separation. We applied a backward stepwise variable selection to reveal the effect of variable number on group differentiation (Cadrin, 2000). We used the F-values of the variables to determine the order in which they were omitted from the analyses. Altogether 33 canonical variance analyses (CVA) had decreasing (34, 33, 32...2) variable numbers. Initially, all variables were included in the variance analysis; then the variable with the lowest F-value was omitted from the dataset and then the next and so on, until we performed the CVA using the two variables characterised by the highest F-values. To characterise the level of group separation, three features of CVA—the squared Mahalanobis distances of the group centroids, the percentage of correctly classified individuals, and the percentage of significant pairwise group differentiations—were used, assigning the pairwise Bonferroni-corrected Hotelling’s to $P<0.05$ (Zelditch et al., 2004). The datasets of squared pairwise Mahalanobis distances and the percentage of correctly classified cases were visualised using LOESS smoothing (Cleveland, 1979). Statistical analyses were performed using PAST 2.17 (Hammer et al., 2001).

Results

Literature review

Out of the 70 articles reviewed (listed in Supplementary Table 1), the morphometry was used to characterise interspecific differences in 39 scientific works. Intraspecific differences (e.g. population level) were revealed in the other 31 articles. The overall evaluation—including the data from all reviewed articles—showed that a total of 137 different morphometric variables were recorded. The average (\pm SD) number of recorded variables per scientific paper was 15.23 ± 9.34 (range 1–37). No single variable was found which was used in all reviewed articles. The most frequently recorded variables were the standard length (SL) and head length (HL) and both occurred in 86.6% of the reviewed articles. A further six variables were detected in more than the half of the reviewed works (Fig. 4). Only 37 variables had more than a 10% frequency of occurrence and about half of the morphometric variables (68) were recorded in only one case. Data standardisation was performed in 55 out of the 70 (78.6%) reviewed articles, whilst a variable selection was conducted in two cases (2.8%) only. Comparing the articles on different topics, we found that although more variables were used in interspecific works than in intraspecific studies (107
13 of the 15 most frequently used variables were the same in the two groups (Supplementary Table 2). On average, less variables were analysed in intraspecific (mean ± SD = 13.71 ± 8.6) than in interspecific studies (mean ± SD = 16.43 ± 98), but these differences were not significant (Mann–Whitney U test: \(T = 505, p_{(same)} = 0.2411 \)).

The most informative morphometric variables

Raw datasets of the three studied species used for the morphometric analyses are available in the public depository of Mendeley (https://data.mendeley.com/datasets/c8856zg4hj/1). No significant correlations (Spearman’s D, \(P < 0.05 \)) were evident between either

No.	Name of morphometric variable	Code	Start-endpoint
1.	Distance between the origin of dorsal fin and origin of anal fin	DA	2–3
2.	Distance between the origin of anal fin the lower lobe origin of caudal fin	DALC	3–16
3.	Distance between the origin of anal fin and the upper lobe origin of caudal fin	DAUC	3–15
4.	Distance between the origin of dorsal fin and the lower lobe origin of caudal fin	DLC	2–16
5.	Distance between the occiput and the origin of dorsal fin	DOD	2–9
6.	Distance between the occiput and the origin of pelvic fin	DOPL	4–9
7.	Distance between the origin of dorsal fin and origin of pectoral fin	DPC	2–5
8.	Distance between the origin of dorsal fin and origin of pelvic fin	DPL	2–4
9.	Distance between the tip of snout and occiput	DSO	1–9
10.	Distance between the tip of snout and ventral end of opercle	DSV	1–6
11.	Distance between the origin of dorsal fin and the upper lobe origin of caudal fin	DUC	2–15
12.	Distance between the ventral end of opercle and the origin of pelvic fin	DVPL	4–6
13.	Horizontal eye diameter	EH	10–11
14.	Vertical eye diameter	EV	12–13
15.	Fork length	FL	1–24
16.	Distance between ventral end of opercle and the origin of first dorsal fin ray	HD	2–6
17.	Height of head	HH	1–9
18.	Head length	HL	1–8
19.	Maximum body depth	Hmax	2–17
20.	Height of caudal peduncle	Hmin	15–16
21.	Length of anal fin	LA	3–19
22.	Length of dorsal fin base	LBD	2–23
23.	Length of first dorsal fin ray	LD	2–14
24.	Length of lower lobe of caudal fin	LLC	16–20
25.	Length of pectoral fin	LPEC	5–22
26.	Length of pelvic fin	LPL	4–18
27.	Length of upper lobe of caudal fin	LUC	15–21
28.	Mouth size	Mo	1–7
29.	Preanal length	PA	1–3
30.	Predorsal length	PD	1–2
31.	Postorbital distance	POO	8–11
32.	Prepectoral distance	PPEC	1–5
33.	Prepelvic distance	PPL	1–4
34.	Preorbital distance	PRE	1–10
35.	Standard length	SL	1–25

Variables are sorted in alphabetical order. For more details see Fig. 2.
of the standardised variables and the SL. Thus, the size effect was removed, and therefore all morphometric characters could be used for the further analyses. The standardised morphometric variables were set in descending order according to their F-values in the case of each of the studied species (Table 3). The results of F statistics showed that in the case of the two cyprinid species, almost half of the 15 most important variables (DPC, DVPL, EH, HL, Hh, Hmax, PPEC) were shared, and four variables (EH, HL, Hh, PPEC) were common amongst the three studied taxa. However the importance (rank) of these variables differed greatly amongst the taxa. The 15 morphometric variables which were most important in discriminating amongst the populations of each studied taxa are shown in Fig. 5.

Effects of variable number reduction on the results of CVA

The squared Mahalanobis distances of the compared populations varied between 0.05–29.65, 0.11–57.09, and 0.03–41.04 for the gudgeon, barbel, and sunfish, respectively. The percentage of correctly classified individuals ranged from 26 to 100%, 25 to 100%, and 20 to 100% for the gudgeon, barbel, and sunfish populations, respectively. The percentage of significant ($P<0.05$) pairwise differences ranged from 0 to 90% for the gudgeon and barbel populations and between 0 and 60% for the sunfish population (see: Supplementary Table 3). The changes of the three CVA parameters in the function of the analysed variable numbers are presented in Fig. 6 (for the whole dataset see: Supplementary Table 3).

Discussion

Analysis of literature notes

The literature review showed that many authors have used a great variety of morphometric features. The total of 137 morphometric variables contained in the reviewed studies considerably exceeds the variable numbers listed in summary works (Pravdin, 1966; Winans, 1987; Armbruster, 2012). At the same time, the number of recorded variables showed a considerable deviation in the reviewed articles. The highest
Table 3 Results of the F statistics of the three studied species

No.	Gudgeon	Barbel	Sunfish									
	Variable code	Amongst group ssq	Within-group ssq	F ratio	Variable code	Amongst group ssq	Within-group ssq	F ratio	Variable code	Amongst group ssq	Within-group ssq	F ratio
1.	Hmax 12.8 0.76 16.85	Hl* 51.2 0.69 37.82	EH* 4.5 0.32 14.199									
2.	DPC 11.5 0.74 15.62	PA 25.94 1.26 36.53	LUC 19.85 1.85 10.703									
3.	DPL 9.43 0.61 15.35	DSO 45.9 0.34 36.53	LPL 7.69 0.79 9.682									
4.	HD 12.38 0.88 14.13	PPEC 41.98 1.26 29.99	DSO 16.97 1.99 8.537									
5.	DAUC 11.51 1.30 8.84	DPL 26.36 1.24 25.35	EV 2.34 0.31 7.515									
6.	DVPL 14.32 1.71 8.38	DSV 32.04 1.45 22.11	Hl* 9.46 1.28 7.37									
7.	DOD 5.72 0.78 7.38	PD 21.97 0.92 17.48	DOD 16.06 2.19 7.344									
8.	PPEC 4.29 0.71 6.07	DPC 25.84 1.50 17.25	PPEC 6.56 0.98 6.728									
9.	Hl* 2.87 0.54 5.29	EH* 1.37 0.08 17.05	LD 8.76 1.31 6.686									
10.	LD 5.28 1.00 5.28	Hmax 28.00 1.67 16.80	DSV 8.74 1.4 6.231									
11.	Hmin 1.21 0.23 5.24	Mo 7.53 0.45 16.69	LLC 10.98 1.83 6.007									
12.	DOPL 7.81 1.58 4.95	DVPL 28.42 2.21 12.86	PRE 2.97 0.55 5.423									
13.	LUC 6.59 1.43 4.60	DA 19.45 1.61 12.06	Hh 8.03 1.59 5.035									
14.	EH* 0.64 0.15 4.28	Hh 4.36 0.39 11.06	DLC 11.57 2.3 5.035									
15.	Hh 1.08 0.26 4.14	EV 1.28 0.15 8.40	DAUC 12.83 2.67 4.808									
16.	PD 1.14 0.31 3.70	PPL 14.65 1.85 7.92	PPL 2.87 0.7 4.114									
17.	LPL 4.50 1.27 3.54	LA 22.11 3.02 7.31	LA 7.82 1.92 4.081									
18.	POO 0.91 0.26 3.46	DOPL 12.56 1.73 7.25	DA 9.53 2.4 3.976									
19.	DSV 3.55 1.04 3.43	Hmin 1.81 0.27 6.80	DPC 5.85 1.66 3.512									
20.	LPEC 8.33 2.73 3.05	LPL 5.13 0.88 5.85	DUC 8.72 2.49 3.497									
21.	DA 2.54 0.86 2.95	DAUC 8.71 1.50 5.82	Hmin 1.63 0.49 3.356									
22.	EV 0.40 0.14 2.82	LPEC 4.04 0.75 5.35	Mo 2.04 0.62 3.299									
23.	LLC 4.07 1.46 2.79	HD 6.62 1.27 5.22	FL 9.04 3.3 2.737									
24.	DSO 2.04 0.74 2.76	DUC 11.21 2.24 5.00	DALC 5.47 2.06 2.655									
25.	LA 3.17 1.24 2.55	LLC 9.20 1.88 4.90	HD 4.39 1.84 2.386									
26.	DLC 2.82 1.12 2.52	FL 4.42 0.95 4.66	DPL 5.6 2.4 2.337									
27.	LBD 1.38 0.57 2.42	LD 6.75 1.45 4.65	PA 3.37 1.69 1.999									
28.	PA 3.37 1.61 2.10	LUC 7.61 1.76 4.33	LBD 5.64 2.85 1.981									
29.	PD 1.42 0.72 1.98	POO 1.40 0.34 4.12	DVPL 12.98 7.03 1.847									
30.	FL 2.45 1.33 1.84	DOD 5.69 1.43 3.99	Hmax 4.47 2.54 1.761									
31.	DUC 1.96 1.21 1.63	DLC 6.20 1.76 3.52	DOPL 8.24 4.94 1.668									
The number of variables (37) was used to describe the morphology of a pikeperch hybrid (Specziár et al., 2009). Thus, there are articles in which the term “morphometry” is not used properly in the title, because only the standard length was measured amongst the studied individuals (Pulgar et al., 2011).

Assessing the literature notes by topic, it turned out that although more kinds of variables are used in the interspecific than in the intraspecific works, no relevant differences can be found neither in the measured variable number, nor in the variable set compositions. It also appears that 9–10 out of the average 15 generally recorded morphometric variables are commonly used, independently of the topic of the article. Beside these “common” variables, authors have often recorded specific ones that are supposed to be characteristic of the studied group. This could explain why almost half of the detected variables were used in only one study.

Comparing the results of the literature overview and our own analyses, we found considerable differences between the most frequently used and the most informative variables. In the reviewed literature, apart from the SL, which is generally only used for data standardisation (Elliott et al., 1995), only two variables—the head length (HL) and the horizontal eye diameter (EH)—were common with the 15 most informative variables (i.e. the ones with the highest F-values) in our analyses (Fig. 4, Table 3). These results indicate that the key morphometric variables change considerably from taxon to taxon. At the same time, several similar variables can be found amongst closely related species. Moreover, the common feature of these variables is that they are situated mainly toward the anterior part of the species’ body (Fig. 5).

The results of the literature review also showed that almost a quarter of the authors did not perform any data standardisation processes, and only two publications were found in which a variable selection was made. These findings suggest that the published results may be burdened by methodological errors. Indeed, it can be assumed that an incorrectly compiled variable set (compiled by including non-separating variables in it) may produce an inadequate/underestimated group separation. The lack of standardisation is also a considerable problem (Zelditch et al., 2004), since the differences between groups can be significantly overestimated because the effect of body size is not taken into account.
Effects of variable number reduction on the CVA results

The analyses of our own three datasets showed that the variable number reduction considerably influenced the results of morphometric studies. The squared Mahalanobis distance values of the group centroids showed a continuous decrease for all studied taxa (Fig. 6A–C) with the reduction of the variable number. The percentage of correctly classified individuals showed a decrease as well, but these values initially showed only slight changes. If the number of variables included in the analysis was reduced from 34 to 17, the percentage of the correctly classified individuals decreased from 100 to 92% for the barbel, and from 92 to 83% for the gudgeon and sunfish. However, the decline accelerated below this variable number in all three cases (Fig. 6D–F). No significant group differences were evident above 25, 29, and 28 analysed variables for the gudgeon, barbel, and sunfish populations, respectively. The percentage of the significant pairwise group differences showed considerable increases up to 90% for the two cyprinid taxa. The proportion of significant group differences decreased with a further reduction of the number of variables analysed (Fig. 6G–I). In the case of the sunfish, after the initial rise, the curve plateaued at the 50% pairwise group difference level, with a single 60% peak at ten analysed variables (Fig. 6).

Therefore, these three characteristics showed a similar trend for all studied taxa. Solely in the case of the sunfish, the percentage of significant group separations showed lower values than the two cyprinid species. This difference on the one hand can be explained by the lower spatial scale of the sampling. Namely, we collected all the studied sunfish
assemblages from the artificial, boulder-covered littoral region (rip-raps) of the Lake Balaton, whereas the sampled populations of the two cyprinid taxa were obtained from remote drainage systems (Fig. 2, Table 1). Moreover, this non-indigenous species first appeared in the lake just over a century ago (Vutskits, 1912). Therefore, it is likely that the invasion of the sunfish reduced its genetic diversity (Grapputo et al., 2006) and may have had an impact on its morphology as well (Hauser et al., 1995).

Our results showed that the number of significant group separations can be maximised with an analysis of 5–10 variables. At the same time, the percentage of correctly classified cases and the distance of the group centroids showed the highest values when all 34 variables were included in the analysis. Grey dots on A–F subfigures are the individual data, whilst trend lines (red) were generated using LOESS smoothing, with 95% confidence bands (blue dashed lines) for the curve based on 999 random replicates.

Fig. 6 Changes in the squared pairwise Mahalanobis distances of group centroids (A–C), the correctly classified cases (D–F), and the proportion of significant pairwise group differences (G–I) in the function of morphometric variables included in the analysis. Grey dots on A–F subfigures are the individual data, whilst trend lines (red) were generated using LOESS smoothing, with 95% confidence bands (blue dashed lines) for the curve based on 999 random replicates.
Conclusion

The literature review showed that although previous authors could choose from a large number of variables, they commonly measured a limited number and mainly selected commonly used morphometric variables. Indeed, it appears that the topic of the survey (intra- or interspecific) did not affect the variable number nor the variable set composition. This fact, together with the lack of a variable selection and data standardisation, can easily cause a misestimation of morphometric differences amongst the studied groups. The results of our analyses partly reinforced the assumption that there is no universally usable variable set. At the same time, the most informative variables can be measured on the anterior part of the body of each of the studied species. For related taxa, the best set of variables to use to isolate their stocks may be more similar. Nonetheless, our results suggest that for the best performance of the distance-based morphometric method, it may be worthwhile recording as many variables as possible. The more variables are recorded, the more efficiently the individuals can be classified into their source populations. This process also allows the variable set, which is the most appropriate to be selected, in order to reach the highest level of significance of group separation. However, it is nonetheless worth determining the number of variables to be measured according to the specific goals of the morphometric study because different purposes require a different number of variables. Indeed, more variables must be recorded to determine the source population of an individual than to reveal differences at the population level.

Acknowledgements We would like to thank Árpád Ferincz, András Attila Nagy, István Imecs, Gábor Maász, Zita Zrínyi, Bálint Preiszner, Tibor Erős, István Czeglédi, Nóra Boross, and Zoltán Vitál for their help in the sample collections. We are grateful to Andrew Hamer who corrected the grammar of the manuscript. We would like to thank Pauliina Louhi Associate editor and two anonymous reviewers for their helpful comments and discussion.

Author contributions The study was designed by PT, and BB made measurements. PT and BB made the statistical analyses and wrote the manuscript. Both authors read and approved the final manuscript.

Funding Open access funding provided by Balaton Limnological Research Institute. Bálint Bánó was supported by the UNKP-21-3 New National Excellence Programme of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund and by the EFOP-3.6.3-VEKOP-16-2017-00008 of the European Union and the European Social Fund. Péter Takács was supported by the OTKA FK140902 Grant and the Bolyai Fellowship of the Hungarian Academy of Sciences. The research presented in this article was carried out with the support of the NKFIH–872–3/2020 project.

Data availability The raw morphometric datasets are available in the public depository of Mendeley: https://data.mendeley.com/datasets/c8856zg4hj/1. All other data are available in the text or in the supplementary material.

Code availability Not applicable.

Declarations

Conflict of interest The authors declare that they have no competing interests.

Consent to participate Not applicable.

Consent for publication Not applicable.

Ethical approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adams, D. C., F. J. Rohlf & D. E. Slice, 2004. Geometric morphometrics: Ten years of progress following the ‘revolution.’ Italian Journal of Zoology 71: 5–16.

Armbruster, J. W., 2012. Standardized measurements, landmarks, and meristic counts for cypriniform fishes. Zootaxa 3586: 8–16.

Azaria, R., N. Adler, R. Silfen, D. Regev & D. J. Hauben, 2003. Morphometry of the adult human earlobe: A study of 547 subjects and clinical application. Plastic and Reconstructive Surgery 111: 2398–2402.

Ball, T. B., A. L. Davis, R. R. Evett, J. L. Ladwig, M. Tromp, W. A. Out & M. Portillo, 2016. Morphometric analysis of phytoliths: Recommendations towards standardization.
from the International Committee for Phytolith Morphometrics. Journal of Archaeological Science Elsevier Ltd 68: 106–111.

Barluenga, M., K. N. Stölling, W. Salzburger, M. Muschick & A. Meyer, 2006. Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439: 719–723.

Baur, H. & C. Leuenberger, 2011. Analysis of ratios in multivariate morphometry. Systematic Biology 60(6): 813–825.

Biolé, F. G., R. C. Fortunato, G. A. Thompson & A. V. Volpedo, 2019. Application of otolith morphology for the study of ontogenetic variations of Odontesthes argentinensis. Environmental Biology of Fishes 102(10): 1301–1310.

Bookstein, F. L., B. Chernoff, R. L. Elder, J. M. Humphries, G. R. Smith, & R. E. Strauss, 1985. Morphometrics in evolutionary biology, the geometry of size and shape change with examples from fishes. Acad. Nat. Sci. Philadelphia Spec. Pub. 15.

Cadrin, S. X., 2000. Advances in morphometric identification of fishery stocks. Reviews in Fish Biology and Fisheries 10: 91–112.

Cadrin, S. X. & K. D. Friedland, 1999. The utility of image processing techniques for morphometric analysis and stock identification. Fisheries Research 43: 129–139.

Cleveland, W. S., 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74: 829–836.

Elliott, N. G., K. Haskard & J. A. Koslow, 1995. Morphometric analysis of orange roughy (Hoplostethus atlanticus) off the continental slope of southern Australia. Journal of Fish Biology 46: 202–220.

Franklin, D., A. Cardini, A. Flavel & A. Kulikas, 2012. The application of traditional and geometric morphometric analyses for forensic quantification of sexual dimorphism: Preliminary investigations in a Western Australian population. International Journal of Legal Medicine 126: 549–558.

Golubtsov, A. S., S. E. Cherenkov & F. Tefera, 2012. High morphological diversity of the genus Garra in the Sore River (the White Nile Basin, Ethiopia): One more cyprinid species flock? Journal of Ichthyology 52: 817–820.

González-Castro, M., A. L. Ibáñez, S. Heras, M. I. Roldán & M. B. Cousseau, 2012. Assessment of lineal versus landmark-based morphometry for discriminating species of Mugilidae (Actinopterygii). Zoological Studies 51: 1515–1528.

Grapputo, A., A. Bisazza & A. Pilastro, 2006. Invasion success despite reduction of genetic diversity in the European populations of eastern mosquitofish (Gambusia holbrooki). Italian Journal of Zoology 73: 67–73.

Hammer, Ø., D. A. Harper & P. D. Ryan, 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeoentologia Electronica 4: 9.

Hauser, L., G. R. Carvalho & T. J. Pitcher, 1995. Morphological and genetic differentiation of the African clupeid Limnothrissa miodon 34 years after its introduction to Lake Kivu. Journal of Fish Biology 47: 127–144.

Kocovsky, P. M., J. V. Adams & C. R. Bronte, 2009. The Effect of Sample Size on the Stability of Principal Components Analysis of Truss-Based Fish Morphometrics. Transactions of the American Fisheries Society 138: 487–496.

Maderbacher, M., C. Bauer, J. Herler, L. Postl, L. Makasa & C. Sturmbauer, 2008. Assessment of traditional versus geometric morphometrics for discriminating populations of the Trophus moorii species complex (Teleostei: Cichlidae), a Lake Tanganyika model for allomorphic speciation. Journal of Zoological Systematics and Evolutionary Research 46: 153–161.

Parsons, K. J., B. W. Robinson & T. Hrbek, 2003. Getting into shape: an empirical comparison of traditional truss-based morphometric methods with a newer geometric method applied to New World cichlids. Environmental Biology of Fishes 67: 417–431.

Pettrýl, M., L. Kalous & D. Memiš, 2014. Comparison of manual measurements and computer-assisted image analysis in fish morphometry. Turkish Journal of Veterinary and Animal Sciences 38: 88–94.

Pope, P. T. & J. T. Webster, 1972. The use of an F-statistic in stepwise regression procedures. Technometrics 14: 327–340.

Praždín, I. F., 1966. Manual on study of fishes. Pischevaya propishlennost Moscow, 376. Moscow.

Pulgar, J., M. Alvarez, J. Morales, M. García-Huidobro, M. Aldana, F. P. Ojeda & V. M. Pulgar, 2011. Impact of oceanic upwelling on morphometric and molecular indices of an intertidal fish scartichthys viridis (Blenniidae). Marine and Freshwater Behaviour and Physiology 44: 33–42.

Rasband, W. S., 2012. ImageJ: Image processing and analysis in Java. ascl, ascl-1206.

Rohlf, F. J., 1990. Morphometrics. Annual Review of Ecology and Systematics 21: 299–316.

Rohlf, F. J. & L. F. Marcus, 1993. A revolution morphometrics. Trends in Ecology & Evolution 8: 129–132.

Sibbing, F. A., & L. A. Nagelkerke, 2001. Resource partitioning by Lake Tana barbs predicted from fish morphometrics and prey characteristics. Reviews in Fish biology and Fisheries.

Sirakov, I., Y. Staykov, E. Ivancheva, G. Nikolov & A. Atanasov, 2012. Morphometric characteristic of European perch (Perca fluviatilis) related to sex dimorphism. Agricultural Science and Technology 4: 203–207.

Specziár, A., M. Bercsényi & T. Müller, 2009. Morphological characteristics of hybrid pikeperch (Sander lucioperca × Sander volgensis) (Osteichthyes, Percidae). Acta Zoologica Academiae Scientiarum Hungaricae 55: 39–54.

Strauss, R. E. & F. L. Bookstein, 1982. The Truss: Body Form Reconstructions in Morphometrics. Systematic Zoology 31: 113–135.

Takács, P., 2018. Megjegyzések a Magyarországon előforduló, Gobio genusha tartozó küllők taxonómiai helyzetével és névhasználatával kapcsolatban = Notes on the taxonomic position and naming problems of the Hungarian stream dwelling gudgeons (Gobio). Pisces Hungarici 12: 63–66.

Takács, P., Z. Vitál, Á. Ferincz & Á. Staszy, 2016. Repeatability, reproducibility, separative power and subjectivity of different fish morphometric analysis methods. PLoS ONE 11: 1–16.

Takács, P., A. Ferincz, Á. Staszy & Z. Vitál, 2018. Effect of body-side-specific data processing on the results of fish morphometric studies. Fundamental and Applied Limnology 192: 137–144.
Tulli, F., I. Balenovic, M. Messina & E. Tibaldi, 2009. Biom- etry traits and geometric morphometrics in sea bass (Dicentrarchus labrax) from different farming systems. Italian Journal of Animal Science 8: 881–883.

Viscosi, V., O. Lepais, S. Gerber & P. Fortini, 2009. Leaf morphological analyses in four European oak species (Quercus) and their hybrids: A comparison of traditional and geometric morphometric methods. Plant Biosystems 143: 564–574.

Vutskits, G., 1912. Az amerikai származású naphal meghonosodása a Balatonban. Természettudományi Közlöny 44: 467–468.

Winans, G. A., 1987. Using morphometrics and meristic characters for identifying stocks of fish. In H.E. Kumpf, R.N. Vaught, C.B. Grimes, A.G. Johnson, and E.L. Nakamura (editors), Proceedings of the Stock Identification Workshop, Panama City Beach, Florida, 5–7 November 1985.

Yezerinac, S. M., S. C. Lougheed & P. Handford, 1992. Measurement error and morphometric studies: statistical power and observer experience. Systematic Biology 41: 471–482.

Zelditch, M. L., D. L. Swiderski, H. D. Sheets & W. L. Fink, 2004. Geometric morphometrics for biologists: a primer, Elsevier Academic Press, San Diego:

Zhao, W., J. Liu & R. D. C. Bicknell, 2020. Geometric morphometric assessment of guanshan trilobites (Yunnan province, China) reveals a limited diversity of palaeolenid taxa. Palaeontologia Electronica. https://doi.org/10.26879/1062.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.