Actinobase: Database on molecular diversity, phylogeny and biocatalytic potential of salt tolerant alkaliphilic actinomycetes

Amit K Sharma, Sangeeta Gohel & Satya P Singh*

Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India-360 005; Satya P Singh – Email: satyapsingh@yahoo.com; Phone: + 91 281 2586419; *Corresponding author

Received May 31, 2012; Accepted June 08, 2012; Published June 16, 2012

Abstract:
Actinobase is a relational database of molecular diversity, phylogeny and biocatalytic potential of haloalkaliphilic actinomycetes. The main objective of this data base is to provide easy access to range of information, data storage, comparison and analysis apart from reduced data redundancy, data entry, storage, retrieval costs and improve data security. Information related to habitat, cell morphology, Gram reaction, biochemical characterization and molecular features would allow researchers in understanding identification and stress adaptation of the existing and new candidates belonging to salt tolerant alkaliphilic actinomycetes. The PHP front end helps to add nucleotides and protein sequence of reported entries which directly help researchers to obtain the required details. Analysis of the genus wise status of the salt tolerant alkaliphilic actinomycetes indicated 6 different genera among the 40 classified entries of the salt tolerant alkaliphilic actinomycetes. The results represented wide spread occurrence of salt tolerant alkaliphilic actinomycetes belonging to diverse taxonomic positions. Entries and information related to actinomycetes in the database are publicly accessible at http://www.actinobase.in. On clustalW/X multiple sequence alignment of the alkaline protease gene sequences, different clusters emerged among the groups. The narrow search and limit options of the constructed database provided comparable information. The user friendly access to PHP front end facilitates would facilitate addition of sequences of reported entries.

Availability: http://www.actinobase.in.

Keywords: Alkaliphilic actinomycetes, Database, Actinobase

Background:
The actinomycetes are a group of morphologically and phylogenetically diverse gram-positive bacteria with high G+C contents (>55 mol %) in their DNA. This indicates marked chemical and morphological diversity, with a distinct evolutionary line. They are widely distributed in nature occupying varied habitats including antarctic soil [1], desert regions [2, 3], hot springs [4], highly saline areas [5] and moderately saline habitats [6-9].
Bioinformatics based analysis and prediction has played pivotal role in understanding and in-depth knowledge of biological molecules with reference to proteomics and genomics. Although, despite significant advancement, there have been limited efforts on the compilation of relevant information for a specific field of interest. With this realization, in the present report, we focused on the wide spread data and information related to the phylogeny and biocatalytic potential of salt-tolerant alkaliphilic actinomycetes. The information and detailed account on these specific actinomycetes are quite limited and scattered in scientific journals and other reports. Detailed information from the literature were retrieved, systematically compiled and analyzed. This followed the creation of a data base in the form of ‘Actinobase’ that reflect the diversity and functional analysis of salt tolerant alkaliphilic actinomycetes.

Methodology:

Actinobase contains information regarding salt tolerant alkaliphilic actinomycetes with respect to habitat, taxonomy, genus, Gram reaction, biochemical tests, sugar utilization, antibiotic resistance, phylogenetic relatedness, salt, pH, temperature profile and 16S r RNA gene sequence analysis. Back hand database of Actinobase was created in MS Excel and front end in PHP. Hypertext Preprocessor provided easy web access to database for data entry, retrieval and analysis. Data was collected and extracted from original research publications and public databases, i.e. NCBI, DDBJ and EMBL.

Data Input:

In Actinobase, we selected 40 salt-tolerant alkaliphilic actinomycetes and integrated detailed information comprising multiple fields: taxonomy, genus, site of isolation, habitat, sample detail, Gram reaction, media characteristics, biochemical properties, sugar utilization, antibiotic resistance, phylogeny, salt, pH, temperature profile and 16S r RNA gene sequence.

Data Retrieval:

Actinobase is a freely accessed web database constructed using PHP on windows platform. “Actinobase” is the database which provides user friendly search criteria and easy access and retrieval with secure administrator and users. PHP is an HTML-embedded scripting language to dynamically generate pages. PHP is a server side scripting language used on the internet to create dynamic web pages. It’s freely available, easy to learn and can run on Windows and UNIX operating systems. It offers effective security mechanisms and easy connectivity, which makes it a popular choice for modular programming.

Discussion:

Actinobase Creation

The Actinobase database (Figure 1A) was constructed primarily in Excel 2007 as back hand and exported to PHP as front hand with My SQL for the easy access and portability. The efforts have added to the field of environmental biotechnology with reference to salt tolerant alkaliphilic actinomycetes [14, 19-21].

The analysis of the genus wise status of the salt tolerant alkaliphilic actinomycetes indicated the presence of 6 different genera among the 40 classified entries of salt tolerant alkaliphilic actinomycetes. The results represented wide spread occurrence of salt tolerant alkaliphilic actinomycetes from the diverse taxonomic positions. The database contains the collection of 16S rRNA and protein sequences of the reported salt tolerant alkaliphilic actinomycetes. Multiple sequence alignment analysis was carried our and phylograms created for the available sequences of actinomycetes. With reference to some actinomycetes, there was direct correlation between the genus and the cluster, which related to their geographical occurrence, protein sequences and physiological requirement under hyper saline or saline conditions. On the other hand, some members were not organized in clusters. Few strains of different genera have closer phylogenetic distances and the clustering reflected on their geographical location, similarity in sequences as well as requirement of salt and pH for growth. Thus, the patterns suggested that halophilic and alkaliphilic nature was not confined to a specific group of the actinomycetes. Adaptation to hyper saline and hyper pH conditions can be acquired by wide range of the actinomycetes from different taxonomic groups [26].

Overall, the work highlighted on the biocatalytic potential and diversity of the salt tolerant actinomycetes with respect to colony morphology, Gram reaction, antibiotic profile, sugar utilization, media characterization and biochemical properties. The outcome highlighted on the versatility of the organisms with respect to these features. Additional properties, such as extra cellular enzyme secretion, growth at different salt and pH have added wider perspective to the study. The molecular phylogeny based on 16S rRNA and protease gene sequences is revealed in the data base. The information obtained on the halo...
tolerant, alkali tolerant and alkaliphilic actinomycetes would provide valuable platforms to research in this field.

Figure 1: (A) Web home page of the ‘Actinobase’, where users can view data and contains the details clicking on the particular link available on the home page; (B) the Snap Shot for the Data browsing of the ‘Actinobase’, which contains information related to the names of the isolates, taxonomy, genus, sites of isolation and the habitats; (C) reflects Data browsing of the ‘Actinobase’ for the individual organism which contains the detail information of the particular organism.

Acknowledgement:
We gratefully acknowledge the financial and other logistic support from UGC, New Delhi and Saurashtra University, Rajkot, India.

References:
[1] Schumann P et al. Int J Syst Bacterial. 1997 42: 278
[2] Dobrovolskaya TG et al. Microbiologica. 1994 63: 188
[3] Zenova GM et al. Microbiologica. 1996 65: 616
[4] Carreto L et al. Int J Syst Bacterial. 1996 46: 460
[5] Onishi H & Kamekura M, Int J Syst Bacterial. 1972 22: 233
[6] Thumar JT et al. World J Microbiol Biotechnol. 2010 26: 2081
[7] Vasavada SH et al. Curr Sci. 2006 91: 1393
[8] Mehta VJ et al. Bioresour Technol. 2005 97: 1650 [PMID: 16203132]
[9] Thumar JT & Singh SP, Braz J Microbiol. 2007a 38: 1
[10] Taber WA, Can J Microbiol. 1960 6: 534
[11] Evtushenko LI et al. Int J Syst Microbiol. 2000 50:73 [PMID:10826789]
[12] Yum DY et al. Biosci Biotechnol Biochem. 1994 58: 470 [PMID: 7764689]
[13] Mikami Y et al. Actinomycetes.1986 19: 176
[14] Hozzein WN et al. Int J Syst Evol Microbiol. 2004 54: 247 [PMID: 14742488]
[15] Growth I et al. Int J Syst Bacteriol.1997 47: 788[PMID: 9226911]
[16] Miyashita K et al. Int J Syst Bacteriol. 1984 34: 405
[17] Larsen H,FEMS Microbial Rev. 1986 39: 3
[18] Tresener H D et al. J Appl Microbiol. 1968 16: 1134
[19] Tai AM & Ruan J S, Int J Syst Bacteriol. 1994
[20] Kim SB & Goodfellow M, Int J Syst Evol Microbiol. 2002 52: 1225 [PMID: 12148632]
[21] Ara I et al. African Journal of Biotechnolog. 2012 11: 16
[22] Thumar J & Singh SP, J Chromatogr B Analyt Technol Biomed Life Sc. 2007 854: 198 [PMID: 17499566]
[23] Thumar JT & Singh SP, Biotech Bioproc Eng. 2011 16: 1180
[24] Gohel SD & Singh SP, J Chromatogr B Analyt Technol Biomed Life Sci. 2012 889-890: 61 [PMID: 22377407]
[25] Gohel SD & Singh SP, Int J Biol Macromol. 2012 50: 664 [PMID: 22327111]
[26] Li W et al. Int J Syst Evol Microbiol. 2004 54: 1805 [PMID: 15388747]

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited.

Edited by P Kanguane

Citation: Sharma et al. Bioinformation 8(11): 535-538 (2012)