Serum- and glucocorticoid-inducible kinase 1 and the response to cell stress

Florian Lang1,*, Christos Stournaras2, Nefeli Zacharopoulou2, Jakob Voelkl3,4, Ioana Alesutan3,4,5

1 Department of Vegetative and Clinical Physiology, Eberhard-Karls-University, Tübingen, Germany.
2 Department of Biochemistry, University of Crete Medical School, Voutes, Heraklion, Greece.
3 Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Germany.
4 DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.
5 Berlin Institute of Health (BIH), Berlin, Germany.

* Corresponding Author:
Florian Lang, MD, Department of Physiology, University of Tübingen, Wilhelmstr. 56, 72076 Tübingen, Germany; Phone +49-7071 29 72194; Fax: +49-7071 29 5618; E-mail: florian.lang@uni-tuebingen.de

ABSTRACT Expression of the serum- and glucocorticoid-inducible kinase 1 (SGK1) is up-regulated by several types of cell stress, such as ischemia, radiation and hyposmotic shock. The SGK1 protein is activated by a signaling cascade involving phosphatidylinositol-3-kinase (PI3K), 3-phosphoinositide-dependent kinase 1 (PDK1) and mammalian target of rapamycin (mTOR). SGK1 up-regulates Na+/K+-ATPase, a variety of carriers including Na+-,K+-2Cl−-cotransporter (NKCC), NaCl cotransporter (NCC), Na+/H+ exchangers, diverse amino acid transporters and several glucose carriers such as Na+-coupled glucose transporter SGLT1. SGK1 further up-regulates a large number of ion channels including epithelial Na+ channel ENaC, voltage-gated Na+ channel SCN5A, Ca2+ release-activated Ca2+ channel (ORAI1) with its stimulator STIM1, epithelial Ca2+ channels TRPV5 and TRPV6 and diverse K+ channels. Furthermore, SGK1 influences transcription factors such as nuclear factor kappa B (NF-kB), p53 tumor suppressor protein, cAMP responsive element-binding protein (CREB), activator protein-1 (AP-1) and forkhead box O3 protein (FOXO3a). Thus, SGK1 supports cellular glucose uptake and glycolysis, angiogenesis, cell survival, cell migration, and wound healing. Presumably as last line of defense against tissue injury, SGK1 fosters tissue fibrosis and tissue calcification replacing energy consuming cells.

INTRODUCTION The ubiquitously expressed [1-4] serum- and glucocorticoid-inducible kinase 1 (SGK1) has originally been cloned as a gene up-regulated by serum and glucocorticoids in rat mammary tumor cells [1, 5]. The human SGK1 has been identified as a gene up-regulated by cell shrinkage [6].

SGK1 expression Expression of SGK1 is highly variable and subject to regulation by a wide variety of triggers including hyposmotic or isotonic cell shrinkage, dehydration, excessive glucose concentrations, mechanical stress, oxidative stress, heat shock, radiation, DNA damage, ischemia, neuronal injury and neuronal excitation [1, 3, 7-12]. SGK1 transcription is further up-regulated by several hormones and mediators including glucocorticoids, mineralocorticoids, gonadotropins, gestagens, 1,25(OH)2D3, erythropoietin, morphine, transforming growth factor β (TGFβ), interleukin-6, fibroblast and platelet-derived growth factor, thrombin, endothelin, advanced glycation end products (AGEs) and activation of peroxisome proliferator-activated receptor γ (PPARγ) [1]. Inhibitors of SGK1 expression include serum starvation, heparin, dietary iron, nucleosides and nephrilin [1]. Overall, SGK1 expression declines with age [13].

Signaling of transcriptional SGK1 regulation involves cytosolic Ca2+, cyclic AMP, stress-activated protein kinase-2 (SAPK2 or p38 MAPK kinase), protein kinase C (PKC), protein kinase RAF, big mitogen-activated protein kinase 1 (BMK1), also known as extracellular signal-regulated kinase
ERK5), extracellular signal-regulated kinase 1/2 (ERK1/2), 
phosphatidylinositol-3-kinase (PI3K), reactive oxygen spe-
cies, NADPH oxidases, nitric oxide and EWS/NOR1 (NR4A3)
fusion protein [1].

The SGK1 promoter binds receptors for glucocorticoids
(GR), mineralocorticoids (MR), progesterone (PR),
1,25(OH)₂D₃ (VDR), retinooids (RXR), farnesoids (FXR), sterol
regulatory element-binding protein (SREBP), PPARy, CAMP
response element-binding protein (CREB), p53 tumor sup-
pressor protein, Sp1 transcription factor, activator protein
1 (AP-1), activating transcription factor 6 (ATF6), heat
shock factor (HSF), reticulendotheliosis viral oncogene
homolog (c-Rel), nuclear factor kappa- B (NF-κB), signal
transducers and activators of transcription (STAT), TGFβ-
dependent transcription factors SMAD3 and SMAD4, fork-
head activin signal transducer (FAST) and the transcription
factor TonE binding protein (TonEBP or NFAT5) [1].

SGK1 translation is stimulated by PI3K and requires ac-
tin polymerization [14].

SGK1 activation and its degradation

Once expressed SGK1 requires activation. Stimulators of
SGK1 activity include insulin, IGF1, hepatic growth factor
(HGF), follicle stimulating hormone (FSH), thrombin and
corticosterone [1]. Signaling involving activation of SGK1
includes PI3K and 3-phosphoinositide (PIP3)-dependent
kinase PDK1 [6]. Interaction of SGK1 and PDK1 is supported
by the scaffold protein Na⁺/H⁺ exchanger regulating factor
2 (NHERF2) [3]. PIP3 is degraded and activation of SGK1
thus suppressed by the phosphatase and tensin homolog
PTEN [3]. SGK1 activation further involves WNK1 (lysine
deficient protein kinase 1) and mammalian target of ra-
pamycin mTOR complex-2 (mTORC2) composed of mTOR,
Rictor (rapamycin-insensitive companion of mTOR), Sin1
(stress-activated protein kinase-interacting protein 1),
mlST8 and Protor-1 [1, 15-27]. SGK1 is further up-
regulated by p38α MAPK, ERK5, cAMP, lithium, Ca²⁺-
sensitive calmodulin-dependent protein kinase (CaMKK),
G-protein Rac1, neuronal depolarization, oxidation,
hyperpolarization, and fibrosis [1, 3, 6, 28].

SGK1 degradation is triggered by ubiquitination involv-
ing NEDD4-2 (neuronal precursor cells expressed develop-
mentally down-regulated) [1, 3] and Rictor/Cullin-1 [1, 29-
31]. SGK1 degradation is inhibited by glucocorticoid-
induced leucine zipper protein-1 (GILZ) [32].

SGK1 kinase targets

The optimal consensus sequences for phosphorylation by
SGK1 are R-X-R-X-(S/T)-pHi and R-R-X-S/T (X = any amino
acid, R = arginine, S = serine, T = threonine, phi = hydro-
phobic amino acid) [3, 33]. Specific SGK1 targets are N-myc
down-regulated genes NDRG1 and NDRG2 [1, 3]. Other
SGK1 targets are shared by other kinases including SGK and
protein kinase B (PKB/Akt) isoforms [3].

SGK1 influences a variety of enzymes including ubiqui-
tin ligase NEDD4-2, inducible nitric oxide synthase
iNOS, phosphomannose mutant 2 (PMM2), phosphatidylinositol-
3-phosphate-5-kinase (PIKFyve), serine/threonine kinase
WNK4, ERK2 (MAPK1), mitogen-activated protein ki-
nase/ERK kinase 3 (MEKK3), stress-activated kinase
(SELK), B-Raf kinase, glycogen synthase kinase 3 (GSK-3),
p53-ubquitinating MDM2 and Notch1-IC protein degrada-
tion Fbw7 [1].

SGK1 up-regulates transcription factors such as CREB,
AP-1 and NF-κB [1, 34-37]. On the other hand, SGK1 phos-
phorylation and thus activates NDRG1, which in turn down-
regulates NF-κB signaling [1, 38]. Moreover, SGK1 down-
regulates transcription factor p53 and forkhead box O3
protein (FOXO3a) [1, 39, 40].

SGK1 is a powerful regulator of several ion channels [1,
3, 41], including epithelial Na⁺ channel ENaC, voltage-gated
Na⁺ channel SCN5A, renal outer medullary K⁺ channel
ROMK1, voltage-gated K⁺ channels KCNE1/KCNQ3, KCNQ4,
Kv1.3, Kv1.5, Kv7.2/3, Kv4.3 and hERG, the Ca²⁺-release-
activated Ca²⁺ channel ORA1 and its stimulator STIM1,
transient receptor potential channels TRPV4, TRPV5 and
TRPV6, kainate receptor GluR6, unselective cation channel
4F2/LAT, CF channels CiCκa/barttin, CiC2, CFTR (Cystic
fibrosis transmembrane conductance regulator) and VSOAC
(volume-sensitive osmolyte and anion channel) as well as
acid-sensing ion channel ASIC1 [1, 3].

SGK1 stimulates diverse carriers including Na⁺,K⁺-2Cl⁻
cotransporter NKCC2, NaCl cotransporter NCC, Na⁺/H⁺ ex-
changers NHE1 and NHE3, glucose carriers SGLT1, GLUT1
and GLUT4, amino acid transporters ASC2, SN1, B(Oj)AT1,
EAAT1, EAAT2, EAAT3, EAAT4 and EAAT5, peptide trans-
porters PepT, Na⁺,dicarboxylate cotransporter NaDC-1,
creatine transporter CreaT, Na⁺,myoinositol cotransporter
SMIT as well as phosphate carriers NaPiIIa and NaPiIIb
[1, 3]. Furthermore, SGK1 up-regulates the Na⁺/K⁺-ATPase and
albumin uptake [1, 3].

Further targets of SGK1 include nephrin, type A natri-
uretic peptide receptor (NPR-A), Ca²⁺-regulated heat-stable
protein of apparent molecular mass 24 kDa (CRHS24), the
adaptor precursor (APP) Fe65, NDRG1 and NDRG2, myosin-
Vc, filamin C, microtubule-associates protein tau, Cyclin-
dependent kinase inhibitor 1β (p27Kip1), and huntingtin
[1, 3, 40, 42-44].

The present review discusses the role of SGK1 in the
orchestration of cellular response to stress such as energy
deployment. The case is made that SGK1 supports cellular
energy supply by stimulation of glucose uptake and glycol-
ysis, as well as by stimulation of angiogenesis. SGK1 sup-
ports cell survival and cell migration, a prerequisite of tis-
ue repair. As last line of defense, SGK1 replaces energy
consuming cells with extracellular matrix by stimulation of
tissue fibrosis and tissue calcification. In order to limit the
number of citations some of the earlier original papers
have been replaced by reviews.

GLUCOSE UPTAKE AND GLYCOLYSIS

SGK1 stimulates cellular glucose uptake and thus enhances
the availability of glucose for glycolysis [3]. SGK1 further
stimulates the Na⁺/H⁺ ion exchanger [36] which generates
an alkaline cytosolic pH, a prerequisite for an increase of
glycolytic flux [1]. The up-regulation of SGK1 in ischemia
thus supports energy supply by glycolysis [2, 3, 10, 45].
ANGIOGENESIS
SGK1 is required for angiogenesis during embryonic development [46] and following ischemia in the adult [47]. In myocardial ischemia, lack of SGK1 blunts the phosphorylation of SGK1 target protein NDRG1 and compromises the up-regulation of transcription factor NF-κB and its target protein, VEGF-A (vascular endothelial growth factor A). Lack of SGK1 further impairs endothelial cell (ECs) migration and tube formation in vitro, and decreases in vivo angiogenesis after myocardial infarction [47].

CELL SURVIVAL
SGK1 supports cell survival and cell proliferation of both tumor cells and neurons [1, 3, 7, 10, 48-52]. SGK1 is highly expressed in several tumors [10], including non-small cell lung cancer [53], colon cancer [10], prostate cancer [54], ovarian tumors [1], myeloma [55], and medulloblastoma [1]. SGK1 confers resistance of breast cancer cells to chemotherapy [3, 10, 56], and inhibition of SGK1 sensitizes tumor cells to cytotoxic drugs or radiation [12]. SGK1 contributes to androgen-induced growth of prostate cancer cells [2]. SGK1 counteracts the pro-apoptotic effect of membrane androgen receptors (mAR) [1] in colon carcinoma cells [57-59]. Lack of SGK1 blunts the development of spontaneous tumors in APC-deficient mice [2] and chemically-induced colonic tumors in wild-type mice [1].

SGK1 stimulates cell proliferation and inhibits cell death in part by up-regulating channels and transporters, such as the store-operated Ca²⁺ entry (SOCE) accomplished by ORA1/STIM1 [1, 12, 34, 35, 60, 61]. SOCE maintains oscillations of cytosolic Ca²⁺ activity, which are required for depolymerization of the actin filament network, a prerequisite for cell proliferation [3, 10]. Ca²⁺ entry is driven by the cell membrane potential, which is generated by SGK1 sensitive K⁺ channels [3, 10]. The protective effect of SGK1 on neurons similarly involves, at least in part, up-regulation of ORA1/STIM1 [51].

SGK1 further inactivates the pro-apoptotic forkhead transcription factor FOXO3A/FKRHL1 [1], inhibits GSK-3 and up-regulates oncogenic β-catenin [3, 7], activates IKKβ with subsequent phosphorylation and degradation of the inhibitory protein IκB and translocation of NF-κB into the nucleus [10], activates the ubiquitin ligase MDM2 with subsequent MDM2-dependent ubiquitination and pro-apoptotic degradation of pro-apoptotic transcription factor p53 [1], disrupts binding of SEK1 to JNK1 and MEKK1 [3, 10] and up-regulates Ran binding protein (RanBP), an effect affecting microtubule network and blunting taxol sensitivity of cancer cells [52, 62].

CELL MIGRATION
SGK1 is part of the machinery stimulating cell migration [47, 57, 58, 63, 64]. As shown in vascular smooth muscle cells (VSMCs) [64], the stimulation of migration by platelet-derived growth factor PDGF is paralleled by up-regulation of both, SGK1 expression and SGK1 activity [65, 66]. Genetic knockout of SGK1 decreases migration [64]. SGK1 is effective, at least in part, by up-regulation of the store-operated Ca²⁺ entry (SOCE), which is accomplished by the Ca²⁺ channel ORA1 and its regulator STIM1. Expression of ORA1 and STIM1 is stimulated by NF-κB, a transcription factor up-regulated by SGK1 [1, 64]. In VSMCs, SGK1 triggers nuclear translocation of transcription factor NF-κB [64].

INFLAMMATION AND FIBROSIS
SGK1 contributes to the orchestration of inflammation [52, 67-70]. The kinase is required for the interleukin-23 (IL-23)-sensitive generation of interleukin-17 (IL-17)-producing CD4⁺ helper T cells (T诱导Ⅱ cells) [71]. T诱导Ⅱ cells up-regulate the pro-inflammatory cytokines GM-CSF, TNF-α and interleukin-2 (IL-2) [71].

SGK1 further contributes to fibrosis in several clinical conditions, including lung fibrosis, diabetic nephropathy, glomerulonephritis, experimental nephrotic syndrome, obstructive nephropathy, cardiac remodeling, liver cirrhosis, fibrosing pancreatitis, peritoneal fibrosis, Crohn’s disease and coeliac disease [1, 3, 72-75]. The expression of SGK1 is upregulated by TGFβ [3], a pivotal stimulator of fibrosis [69, 76-81]. Signaling of TGFβ includes activation of transcription factors SMAD2/3 [1], which are ubiquitinated and, thus, tagged for degradation by NEDD4L [1]. The ubiquitin ligase is inactivated by SGK1 which thus augments TGFβ action [1]. SGK1 supports inflammation and fibrosis further by activating NF-κB [3], a proinflammatory and profibrotic transcription factor [1, 82, 83]. NF-κB up-regulates connective tissue growth factor (CTGF), which in turn contributes to stimulation of cardiac remodeling and fibrosis [1, 3, 84-87], renal proteinuria and failure [88], skin aging [15], as well as fibronectin formation at hyperglycemia [1].

VASCULAR CALCIFICATION
SGK1 further participates in the orchestration of medial vascular calcification [84], which results mainly from osteo-/chondrogenic transdifferentiation of VSMCs [84]. Various triggers of VSMC osteo-/chondrogenic transdifferentiation induce a sharp increase of SGK1 expression [84]. Upregulation of SGK1 was also observed in the vasculature of rats with renal failure [89]. SGK1 increases the expression of the osteo-/chondrogenic transcription factors MSX2 and CBF1, which in turn stimulate the expression of alkaline phosphatase ALPL [84]. The enzyme fosters vascular calcification by degrading the endogenous calcification inhibitor pyrophosphate. The effect of SGK1 on osteo-/chondrogenic transdifferentiation depends on transcriptional activity of NF-κB, a decisive regulator of vascular calcification [90, 91]. NF-κB also reduces pyrophosphate release via tristetraprolin (TTP)-mediated destabilization of ankylosis protein homolog (ANKH) mRNA [90, 91].

THE ROLE OF SGK1 IN DISEASE – CLINICAL IMPLICATIONS
A wide variety of observations point to a role of SGK1 in human pathophysiology [12]. Excessive expression and activity of SGK1 participates in the pathophysiology of di
verse disorders, such as hypertension, obesity, diabetes, thrombosis, stroke, fibrosing disease, vascular calcification, infertility, autoimmune disease, and tumor growth [12,71,84]. A SGK1 gene variant (prevalence approx. 3-5% in Caucasians and approx. 10% in Africans) is associated with hypertension, stroke, obesity and type 2 diabetes [12]. Little is known about the clinical impact of SGK1 deficiency. In a SV129 genetic background, the phenotype of SGK1 knockout mice is mild and SGK1-dependent functions are apparently in large part maintained by other kinases [12]. In view of the putative role of SGK1 in neuronal survival [51], however, the possibility must be kept in mind that lack of SGK1 may accelerate the clinical course of neurodegeneration. Clearly, additional experimental and observational effort is required to define the pathophysiological impact of deranged SGK1 activity in human disease.

CONCLUSIONS
Expression of the serum- and glucocorticoid-inducible kinase SGK1 is steeply up-regulated following cell stress, such as ischemia, radiation and hyperosmotic shock. The SGK1 protein is activated by a signaling cascade involving phosphatidylinositol-3-kinase (PI3K), 3-phosphoinositide-dependent kinase 1 (PDK1) and mTOR. SGK1 is a powerful stimulator of transport across the cell membrane, such as Na⁺/K⁺-ATPase, Na⁺/H⁺ exchangers, cellular glucose uptake and ORAI1/STIM1-dependent store-operated Ca²⁺ entry (SOCE). SGK1 is further a powerful stimulator of transcription factors including nuclear factor κB (NF-κB; Figure 1). Upon cell stress such as energy depletion, SGK1 supports cellular glucose uptake and glycolysis, angiogenesis, cell survival, cell migration, and wound healing. If those functions fail to remove the cell stress, SGK1 initiates replacement of energy consuming cells by fibrotic and/or calcified tissue.

ACKNOWLEDGMENTS
The authors acknowledge the meticulous preparation of the manuscript by Lejla Subasic and the figure by Tanja Loch. Research in author’s laboratories was supported by the Deutsche Forschungsgemeinschaft.

CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

COPYRIGHT
© 2019 Lang et al. This is an open-access article released under the terms of the Creative Commons Attribution (CC
REFERENCES

1. Lang F, Stournaras C (2013). Serum and glucocorticoid inducible kinase, metabolic syndrome, inflammation, and tumor growth. Hormones 12(2): 160-171. doi: 10.4131/horm.2002.1401

2. Lang F, Gorlach A, Vallon V (2009). Targeting SGK1 in diabetes. Expert Opin Ther Targets 13(11): 1303-1311. doi: 10.1517/14728220903260807

3. Lang F, Bohmer C, Palmda M, Seebohm G, Strutz-Seebohm N, Vallon V (2006). (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 86(4): 1151-1178. doi: 10.1152/physrev.00050.2005

4. Salker M, Christian M, Steel JH, Nautyal J, Lavery S, Trew G, Webster Z, Al-Sabbagh M, Puchchalkaya G, Foller M, Landles C, Sharkey AM, Quenby S, Aplin JD, Regan L, Lang F, Brosens JJ (2011). Deregulation of the serum- and glucocorticoid-inducible kinase SGK1 in the endometrium causes reproductive failure. Nat Med 17(11): 1509-1513. doi: 10.1038/nm.2498

5. Firestone GL, Giampaolo JR, O'Keeffe BA (2004). Cloning and characterization of a putative human serine/threonine protein kinase with homology to the inducible kinase SGK1. J Biol Chem 279(20): 25162-25167. doi: 10.1074/jbc.M312788200

6. Waldegger S, Barth P, Raber G, Lang F (2004). Heterocyclic indazole derivatives as SGK1 inducible kinase SGK1 inhibitors. Cell Calcium 35: 187-193. doi: 10.1080/01678110310001616457

7. Lang F, Artunc F, Vallon V (2009). The physiological impact of the serum and glucocorticoid-inducible kinase SGK1. Curr Opin Nephrol Hypertens 18(5): 439-448. doi: 10.1097/MNH.0b013e32832f125e

8. Lang F, Gorlach A, Vallon V (2010). Heterocyclic indazole derivatives as SGK1 inhibitors, WO2008138478 A1. Exp Ther Med 2010(1): 129-135. doi: 10.1517/13543770903356209

9. Lang F, Huang DY, Vallon V (2010). SGK, renal function and hyper-tension. J Nephrol 23 (Suppl 16): S124-S129. PMID: 21170869

10. Lang F, Prerotti N, Stournaras C (2010). Colorectal carcinoma cells-regulation of survival and growth by SGK1. J Cell Biochem 111(10): 1571-1575. doi: 10.1002/jcb.20516

11. Lang F, Eynenstein A, Shumilina E (2012). Regulation of Orai1/STIM1 by the kinases SGK1 and AMPK. Cell Calcium 52(5): 347-354. doi: 10.1016/j.ceca.2012.05.005

12. Lang F, Voelkl J (2013). Therapeutic potential of serum and glucocorticoid inducible kinase inhibition. Expert Opin Investig Drugs 22(6): 701-714. doi: 10.1517/13543784.2013.778971

13. Harries LW, Fellows AD, Pilling LC, Hernandez D, Singleton A, Bandinelli S, Guralnik J, Powell J, Ferrucci L, Melzer D (2012). Advancing age is associated with gene expression changes resembling mTOR inhibition: evidence from two human populations. Mech Ageing Dev 133(8): 556-562. doi: 10.1016/j.mad.2012.07.003

14. Pelzl L, Tolios A, Schmidt EM, Alesutan I, Walker B, Munzer P, Borst O, Gawaw M, Lang F (2012). Translational regulation of the serum- and glucocorticoid-inducible kinase-1 (SGK1) in platelets. Biochem Biophys Res Commun 425(1): 1-5. doi: 10.1016/j.bbrc.2012.07.026

15. Tasl I, Parker WE, Orlova KA, Baybiss M, Chi AW, Berg BD, Birnbaum JF, Estevez J, Okouchi K, Sarnat HB, Flores-Sarnat L, Aronica E, Crino PB (2014). Fetal brain mTOR signaling activation in tuberous sclerosis complex. Cereb Cortex 24(2): 315-327. doi: 10.1093/cercor/bhs310

16. Biddle CC, Asara JM, Manning BD (2009). Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by SGK1. Mol Cell 29(21): 5657-5670. doi: 10.1016/j.mcb.00735-09

17. Fang Z, Zhang T, Dizeyi N, Chen S, Wang H, Swanson KD, Cal C, Balk SP, Yuan X (2012). Androgen Receptor Enhances p27 Degradation in Prostate Cancer Cells through Rapid and Selective TORC2 Activation. J Biol Chem 287(3): 2090-2098. doi: 10.1074/jbc.m111.323303

18. Hall BA, Kim TY, Skor MN, Conzen SD (2012). Serum and glucocorticoid-regulated kinase 1 (SGK1) activation in breast cancer: requirement for mTORC1 activity associates with ER-alpha expression. Breast Cancer Res Treat 135(2): 469-479. doi: 10.1007/s10549-012-2161-y

19. Heise CJ, Xu BE, Deaton SL, Cha SK, Chen CJ, Earnest S, Sengupta S, Juang YC, Stippec S, Xu Y, Zhao Y, Huang CL, Cobb MH (2010). Serum and glucocorticoid-induced kinase (SGK) 1 and the epithelial sodium channel are regulated by multiple with no lysine (WNK) family members. J Biol Chem 285(33): 25161-25167. doi: 10.1074/jbc.M110.110342

20. Lyo D, Xu L, Foster DA (2010). Phospholipase D stabilizes HDM2 through an mTORC2/SGK1 pathway. Biochem Biophys Res Commun 396(2): 562-565. doi: 10.1016/j.bbrc.2010.04.148

21. Pearce LR, Sommer EM, Sakamoto K, Wullschleger S, Alessi DR (2011). Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem J 436(1): 169-179. doi: 10.1042/bj20102103

22. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Lang SA, Kuehl WM, Gray NS, Sabatini DM (2009). DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137(5): 873-886. doi: 10.1016/j.cell.2009.03.046

23. Rosner M, Dolznic H, Fuchs C, Siegel N, Valla I, Hengstschlager M (2009). CDKs as therapeutic targets for the human genetic disease tuberous sclerosis? Eur J Clin Invest 39(12): 1033-1035. doi: 10.1111/j.1365-2362.2009.02213.x

24. Treins C, Warne PH, Magnuson MA, Pender M, Downward J (2010). Rictor is a novel target of p70 S6 kinase-1. Oncogene 29:1003-1016. doi: 10.1038/onc.2009.401

25. Thomanetz V, Angliker N, Clodet D, Lustenberger RM, Schwieghauser M, Oliveri F, Suzuki N, Ruegg MA (2013). Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology. J Cell Biol 201(2): 293-308. doi: 10.1083/jcb.201205030

26. Domhan S, Schwager C, Wei Q, Muschal S, Sommerer C, Morath C, Wick W, Maerckler C, Debus J, Zeier M, Huber PE, Abdollahi A (2014). Deciphering the systems biology of mTOR inhibition by integrative transcriptome analysis. Curr Pharm Des 20(1): 88-100. doi: 10.2174/138161282001140113125549

27. Na T, Wu G, Zhang W, Dong WJ, Peng JB (2013). Disease-causing R1185C mutation of WNK4 disrupts a regulatory mechanism involving calmodulin binding and SGK1 phosphorylation sites. Am J Physiol Renal Physiol 304(1): F8-F18. doi: 10.1152/ajprenal.00284.2012

Please cite this article as: Florian Lang, Christos Stournaras, Nefeli Zacharopoulou, Jakob Voelkl, Ioana Alesetur (2019). Serum- and glucocorticoid-inducible kinase 1 and the response to cell stress. Cell Stress 3(1): 1-8. doi: 10.15698/cst.2019.01.170
The cell survival kinase SGK1 and its targets FOXO3a and NDRG1 in 40. Sahin P, McCaig C, Jeevahan J, Murray JT, Hainsworth AH (2010). Regulation of ion channels by the serum- and glucocorticoid-inducible kinase SGK1. FASEB J 27(1): 3-12. doi: 10.1095/fj.12-218230

41. Lang F, Shumilina E (2013). Cell survival kinase SGK1 and its targets FOXO3a and NDRG1 in aged human brain. Neurophatol Appl Neurobiol 39(6): 623-633. doi: 10.1111/nan.12023

42. MaCaig C, Potter L, Abramczyk Q, Murray JT (2011). Phosphorylation of NDRG1 is temporally and spatially controlled during the cell cycle. Biochem Biophys Res Commun 411(2): 227-234. doi: 10.1016/j.bbrc.2011.06.092

43. Ohashi T, Uchida K, Uchida S, Sasaki S, Nitta K (2011). Dexamethasone increases the phosphorylation of nephrin in cultured podocytes. Clin Exp Nephrol 15(5): 688-693. doi: 10.1007/s10157-011-0479-0

44. Voelkli J, Castor T, Musculus K, Viereck R, Mia S, Feger M, Alesutan I, Lang F (2015). SGK1-Sensitive Regulation of Cyclin-Dependent Kinase Inhibitor 1B (p27) in Cardiomyocyte Hypertrophy. Cell Physiol Biochem 37(2): 603-614. doi: 10.1007/s00296-015-3249-4

45. Usami Y, Hosoi F, Izumi H, Maruyama Y, Ureshino H, Watari K, Kohno K, Kuwano M, Ono M (2003). Identification of sites subjected to degrada tion of Rictor at Thr1135 impairs the Rictor/Cullin-1 complex to ubiquitinate SGK1. Protein Cell 1(10): 881-885. doi: 10.1007/s10023-010-0123-x

46. Soudarayaraj R, Wang J, Melters D, Pearce D (2010). Glucocorticoid-induced Leucine zipper 1 stimulates the epithelial sodium channel by regulating serum- and glucocorticoid-induced kinase 1 stability and subcellular localization. J Biol Chem 285(51): 39505-39513. doi: 10.1074/jbc.m110.161133

47. Park J, Leong ML, Buse P, Malayar AC, Firestone GL, Hemmings BA (1999). Phosphorylation and glucocorticoid-inducible kinase (SGK1) is a target of the PI 3-kinase-stimulated signaling pathway. EMBO J 18(11): 3024-3033. doi: 10.1093/emboj/18.11.3024

48. Berst O, Schmidt EM, Munzer P, Schönberger T, Towhid ST, Elvers M, Leibrock C, Schmid E, Eyleinstein A, Kuhl D, May AE, Gawaz M, Lang F (2012). The serum- and glucocorticoid-inducible kinase 1 (SGK1) influences platelet calcium signaling and function by regulation of Orai1 expression in megakaryocytes. Blood 119(1): 251-261. doi: 10.1182/blood-2011-06-359976

49. Eyleinstein A, Schmidt S, Gu S, Yang W, Schmid E, Schmidt EM, Alesutan I, Szteyn K, Regel I, Shumilina E, Lang F (2012). Transcription factor NF-kappaB regulates expression of pore-forming Ca2+ channel unit, Orai1, and its activator, STIM1, to control Ca2+ entry and affect cellular functions. J Biol Chem 287(4): 2719-2730. doi: 10.1074/jbc.m111.275925

50. Rotte A, Pasham V, Eichenmuller M, Yang W, Bhandaru M, Lang F (2011). Inoue T, Koyama N, Yoshihara H, Watanabe T, Kano K, Kowano M, Ono M (2010). Identification of sites subjected to serine/threonine phosphorylation by SGK1 affecting N-myc downstream-regulated gene 1 (NDRG1) inhibition. Ablation of SGK1 impairs endothelial cell migration and tubule formation leading to decreased neo-angiogenesis following myocardial infarction. PloS One 8(11): e80268. doi: 10.1371/journal.pone.0080268

51. Towhid ST, Liu GL, Ackermann TF, Beier N, Scholz W, Fuchs T, Toulany M, Rodemann HP, Lang F (2013). Inhibition of colonic tumor growth by the selective SGK inhibitor EMDC38683. Cell Physiol Biochem 32(4): 838-848. doi: 10.1007/s00296-013-3548-4

52. Baskin R, Sayeski PP (2012). Angiotensin II mediates cell survival through upregulation and activation of the serum and glucocorticoid inducible kinase 1. Cell Signal 24(2): 435-442. doi: 10.1016/j.cellsig.2011.09.016

53. Pelzl L, Hauser S, Eibl B, Sukkar B, Sahu J, Singh Y, Hoffinger P, Bissinger R, Jemaa M, Stournaras C, Schols L, Lang F (2017). Lithium Sensitive IRA1 Expression, Store Operated Ca(2+)-Entry and Suicide Death of Neurons in Chorea-Acanthocytosis. Sci Rep 7(1): 6457. doi: 10.1038/s41598-017-06451-1

54. Lang F, Guelinckx I, Lemetsa G, Melander O (2017). Two Liters a Day Keep the Doctor Away? Considerations on the Pathophysiology of Suboptimal Fluid Intake in the Common Population. Kidney Blood Press Res 42(3): 483-494. doi: 10.1007/s00766-014-1766-8

55. Abbruzzese C, Mattarocci S, Pizzuti L, Mileo AM, Visca P, Antoniani B, Alessandrini G, Facciolo F, Amato R, D’Antona L, Rinaldi M, Felsani A, Perrotti N, Paggi MG (2012). Determination of SGK1 mRNA in non-small cell lung cancer samples underlines high expression in squamous cell carcinomas. J Exp Clin Cancer Res 31(1): 4. doi: 10.1186/1756-9966-31-4

56. Szwulewitz RZ, Chung E, Al-Ahmadi H, Daniel S, Kocherginsky M, Bavaria Z, Zagaja GP, Brendler CB, Stadler WM, Conzen SD (2012). Serum/glucocorticoid-regulated kinase 1 expression in primary human prostate cancers. Prostate 72(2): 157-164. doi: 10.1002/pros.21416
55. Fagerli UM, Ullrich K, Stuhmer T, Holten I, Kochert K, Holt RU, Bruland O, Chatterjeee M, Mogai H, Lenz G, Shaughnessy JD, Jr., Mathas S, Sundan A, Bargou RC, Dorken B, Borset M, Janz M (2011). Serum/glucocorticoid-regulated kinase 1 (SGK1) is a prominent target gene of the transcriptional response to cytokines in multiple myeloma and supports the growth of myeloma cells. Oncogene 30(28): 3198-3206. doi: 10.1038/onc.2011.79

56. Sommer EM, Dry H, Cross D, Guichard S, Davies BR, Alessi DR (2013). Elevated SGK1 predicts resistance of breast cancer cells to Akt inhibitors. Biochem J 452(3): 499-508. doi: 10.1042/bj20130342

57. Schmidt MD, Krumm B, BF, Borst M, Munzer P, Schmid E, Simonek J, Trinci A, Landling J, Seizer P, Kuhl D, Stournaras C, Lindemann S, Gawaz M, Lang F (2012). SGK1 sensitivity of platelet migration. Cell Physiol Biochem 30(1): 259-268. doi: 10.1159/000339062

58. Schmidt EM, Gu S, Anagnostopoulos V, Folla D, Lang F, Stournaras C (2012). Serum- and glucocorticoid-dependent kinase 1-induced cell migration is dependent on vinculin and regulated by membrane androgen receptors. FEBBS J 279(7): 1231-1242. doi: 10.1111/j.1742-4658.2012.08515.x

59. Gu S, Papadopoulou N, Nasir O, Foller M, Alevizopoulos K, Lang F, Stournaras C (2011). Activation of membrane androgen receptors in colon cancer inhibits the prosurvival signals Akt/bad in vitro and in vivo and blocks migration via vinculin/actin signaling. Mol Med 17(1-2): 48-58. doi: 10.2119/molmed.2010.00120

60. Eylenstein A, Gehring EM, Heise N, Shumilina E, Schmidt S, Szteyn K, Munzer P, Nurbaeva MK, Eichenmuller M, Tyan L, Regel I, Foller M, Kuhl D, Soboloff J, Penner R, Lang F (2011). Stimulation of Ca2+-channel Orai1/STIM1 by serum- and glucocorticoid-inducible kinase 1 (SGK1). FASEB J 25(6): 2012-2021. doi: 10.1096/fj.10-178210

61. Schmidt S, Schneider S, Yang W, Liu G, Schmidt EM, Schmid E, Mia S, Brucker S, Wallwiener D, Brosens JJ, Lang F (2014). Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496(744): 518-522. doi: 10.1038/nature12186

62. Amato R, Scumaci D, D’Antona L, Iuliano R, Menniti M, Di Sanzo M, Parodi S, Brucker S, Stournaras C, Wallwiener D, Brosens JJ, Lang F (2013). SGK1 enhances RANBP1 transcript levels and decreases taxol sensitivity in RKO colon carcinoma cells. Mol Hum Reprod 19(11): 1005-1016. doi: 10.1093/molehr/gat066

63. Amato R, Scumaci D, A’Dantona L, Iuliano R, Mennti M, Di Sanzo M, Fanelli MC, Colao E, Malatesta P, Zingone A, Agosti V, Costanzo FS, Mileo AM, Paggi MG, Lang F, Cuda G, Lavia P, Perrotti N (2013). Sgk1 enhances RANBP1 transcript levels and decreases taxol sensitivity in RKO colon carcinoma cells. Oncogene 32(38): 4572-4578. doi: 10.1038/onc.2012.470

64. Liu T, Yu T, Hu H, He K (2018). Knockdown of the long non-coding RNA HOTTIP inhibits colorectal cancer cell proliferation and migration and induces apoptosis by targeting SGK1. Biomed Pharmacother 98: 286-296. doi: 10.1016/j.biopha.2017.12.064

65. Walker-Allgaier B, Schaub M, Alesutan I, Voelkl J, Geue S, Munzer P, Rodriguez JM, Kuhl D, Lang F, Gawaz M, Borst O (2017). SGK1 up-regulates Orai1 expression and VSMC migration during neointima formation after arterial injury. Thromb Haemost 117(5): 1002-1005. doi: 10.1161/thh16-09-0090

66. Caglayan E, Vantler M, Leppanen O, Gerhardt F, Mustafiov L, Ten Freyhaus H, Kappert K, Odenthal M, Zimmermann WH, Tallquist MD, Rosenkranz S (2011). Disruption of platelet-derived growth factor-dependent phosphatidylinositol 3-kinase and phospholipase Cgamma 1 activity abolishes vascular smooth muscle cell proliferation and migration and attenuates neointima formation in vivo. J Am Coll Cardiol 57(25): 2527-2538. doi: 10.1016/j.jacc.2011.02.037

67. Zhong W, Oguljahan B, Xiao Y, Nelson J, Hernandez L, Garcia-Barrio M, Francis SC (2014). Serum and glucocorticoid-regulated kinase 1 promotes vascular smooth muscle cell proliferation via regulation of beta-catenin dynamics. Cell Signal 26(12): 2765-2772. doi: 10.1016/j.cellsig.2014.08.002

68. Lang F, Stournaras C, Alesutan I (2014). Regulation of transport across cell membranes by the serum- and glucocorticoid-inducible kinase SGK1. Mol Membr Biol 31(1): 29-36. doi: 10.3109/09687688.2013.874598

69. Fagerli UM, Ullrich K, Stuhmer T, Holten I, Kochert K, Holt RU, Bruland O, Chatterjeee M, Mogai H, Lenz G, Shaughnessy JD, Jr., Mathas S, Sundan A, Bargou RC, Dorken B, Borset M, Janz M (2011). Serum/glucocorticoid-regulated kinase 1 (SGK1) is a prominent target gene of the transcriptional response to cytokines in multiple myeloma and supports the growth of myeloma cells. Oncogene 30(28): 3198-3206. doi: 10.1038/onc.2011.79

70. Sommer EM, Dry H, Cross D, Guichard S, Davies BR, Alessi DR (2013). Increased SGK1 predicts resistance of breast cancer cells to Akt inhibitors. Biochem J 452(3): 499-508. doi: 10.1042/bj20130342

71. Schmidt MD, Krumm B, BF, Borst M, Munzer P, Schmid E, Simonek J, Trinci A, Landling J, Seizer P, Kuhl D, Stournaras C, Lindemann S, Gawaz M, Lang F (2012). SGK1 sensitivity of platelet migration. Cell Physiol Biochem 30(1): 259-268. doi: 10.1159/000339062

72. Amato R, Scumaci D, A’Dantona L, Iuliano R, Mennti M, Di Sanzo M, Fanelli MC, Colao E, Malatesta P, Zingone A, Agosti V, Costanzo FS, Mileo AM, Paggi MG, Lang F, Cuda G, Lavia P, Perrotti N (2013). Sgk1 enhances RANBP1 transcript levels and decreases taxol sensitivity in RKO colon carcinoma cells. Oncogene 32(38): 4572-4578. doi: 10.1038/onc.2012.470

73. Liu T, Yu T, Hu H, He K (2018). Knockdown of the long non-coding RNA HOTTIP inhibits colorectal cancer cell proliferation and migration and induces apoptosis by targeting SGK1. Biomed Pharmacother 98: 286-296. doi: 10.1016/j.biopha.2017.12.064

74. Walker-Allgaier B, Schaub M, Alesutan I, Voelkl J, Geue S, Munzer P, Rodriguez JM, Kuhl D, Lang F, Gawaz M, Borst O (2017). SGK1 up-regulates Orai1 expression and VSMC migration during neointima formation after arterial injury. Thromb Haemost 117(5): 1002-1005. doi: 10.1161/thh16-09-0090

75. Caglayan E, Vantler M, Leppanen O, Gerhardt F, Mustafiov L, Ten Freyhaus H, Kappert K, Odenthal M, Zimmermann WH, Tallquist MD, Rosenkranz S (2011). Disruption of platelet-derived growth factor-dependent phosphatidylinositol 3-kinase and phospholipase Cgamma 1 activity abolishes vascular smooth muscle cell proliferation and migration and attenuates neointima formation in vivo. J Am Coll Cardiol 57(25): 2527-2538. doi: 10.1016/j.jacc.2011.02.037

76. Zhong W, Oguljahan B, Xiao Y, Nelson J, Hernandez L, Garcia-Barrio M, Francis SC (2014). Serum and glucocorticoid-regulated kinase 1 promotes vascular smooth muscle cell proliferation via regulation of beta-catenin dynamics. Cell Signal 26(12): 2765-2772. doi: 10.1016/j.cellsig.2014.08.002

77. Li, X, Han, D, Tian, Z, Gao, B, Fan, M, Li, C, Li, X, Wang, Y, Ma, S, Cao, F (2016). Activation of Cannabinoid Receptor Type II by AM1214 Aleriates Myocardial Fibrosis via Nrf2-Mediated Inhibition of TGF-beta1/Smad3 Pathway in Myocardial Infarction Mice. Cell Physiol Biochem 39(4): 1521-1536. doi: 10.1007/s00249-015-3473-8
81. Feger M, Alesutan I, Castor T, Mia S, Musculus K, Voelkl J, Lang F (2015). Inhibitory effect of NH4Cl treatment on renal Tgfss1 signaling following unilateral ureteral obstruction. *Cell Physiol Biochem* 37(3): 955-964. doi: 10.1159/000430222

82. Shih VF, Tusi R, Caldwell A, Hoffmann A (2011). A single NFkappaB system for both canonical and non-canonical signaling. *Cell Res* 21(1): 86-102. doi: 10.1038/cr.2010.161

83. Stone KP, Kastin AJ, Pan W (2011). NFkB is an unexpected major mediator of interleukin-15 signaling in cerebral endothelia. *Cell Physiol Biochem* 28(1): 115-124. doi: 10.1159/000331720

84. Chilukoti RK, Mostertz J, Bukowska A, Aderkast C, Felix SB, Busch M, Volker U, Goette A, Wolke C, Hornuth G, Lendeckel U (2013). Effects of irbesartan on gene expression revealed by transcriptome analysis of left atrial tissue in a porcine model of acute rapid pacing in vivo. *Int J Cardiol* 168(3): 2100-2108. doi: 10.1016/j.ijcard.2013.01.007

85. Yang M, Zheng J, Miao Y, Wang Y, Cui W, Guo J, Qiu S, Han Y, Jia L, Li H, Cheng J, Du J (2012). Serum-glucocorticoid regulated kinase 1 regulates alternatively activated macrophage polarization contributing to angiotensin II-induced inflammation and cardiac fibrosis. *Arterioscler Thromb Vasc Biol* 32(7): 1675-1686. doi: 10.1161/atvbaha.112.248732

86. Das S, Alba T, Rosenberg M, Hessler K, Xiao C, Quintero PA, Ottaviano FG, Knight AC, Graham EL, Bostrom P, Morissette MR, del Monte F, Begley MJ, Cantley LC, Ellinor PT, Tomaselli GF, Rosenzweig A (2012). Pathological role of serum- and glucocorticoid-regulated kinase 1 in adverse ventricular remodeling. *Circulation* 126(18): 2208-2219. doi: 10.1161/circulationaha.112.115592

87. Voelkl J, Lin Y, Alesutan I, Ahmed MS, Pasham V, Mia S, Gu S, Feger M, Saxena A, Metzler B, Kuhl D, Pichler BJ, Lang F (2012). Sgk1 sensitivity of Na(+) /H(+) exchanger activity and cardiac remodeling following pressure overload. *Basic Res Cardiol* 107(2): 236. doi: 10.1007/s00395-011-0236-2

88. Artunc F, Amann K, Nasir O, Friedrich B, Sandulache D, Jahovic N, Risler T, Vallon V, Wulff P, Kuhl D, Lang F (2006). Blunted DOCA/high salt induced albuminuria and renal tubulointerstitial damage in gene-targeted mice lacking Sgk1. *J Mol Med* 84(9): 737-746. doi: 10.1007/s00109-006-0082-0

89. Tatsumoto N, Yamada S, Tokumoto M, Eriguchi M, Noguchi H, Torisu K, Tsuruya K, Kitazono T (2015). Spirolactone ameliorates arterial medial calcification in uremic rats: the role of mineralocorticoid receptor signaling in vascular calcification. *Am J Physiol Renal Physiol* 309(11): F967-F979. doi: 10.1152/ajprenal.00669.2014

90. Voelkl J, Tuffaha R, Luong TTD, Zickler D, Maysout J, Feger M, Verheyen N, Blaschke F, Kuro OM, Tomaschitz A, Pilz S, Asch A, Eckardt KU, Scherberich JE, Lang F, Pieske B, Alesutan I (2018). Zinc Inhibits Phosphate-Induced Vascular Calcification through TNFAIP3-Mediated Suppression of NF-kappaB. *J Am Soc Nephrol* 29(6): 1636-1648. doi: 10.1681/asn.2017050492

91. Zhao G, Xu MJ, Zhao MM, Dai XY, Kong W, Wilson GM, Guan Y, Wang CY, Wang X (2012). Activation of nuclear factor-kappa B accelerates vascular calcification by inhibiting ankylosis protein homolog expression. *Kidney Int* 82(1): 34-44. doi: 10.1038/ki.2012.40