Phytosociological and ethnomedicinal studies of sacred groves in konjikuppam village, cuddalore district, Tamil Nadu

J. Nithyadevi*, R. Sivakumar

Department of Botany, Annamalai University, Aannamalai Nagar, Tamil Nadu, India

*E-mail address: herbnith@gmail.com

ABSTRACT

The konjikuppam village lies on the state highway linking panruti (5 km south) and Neyveli (10 km north). The sacred grove of konjikuppam is also situated on the main road and is proximate to the village. A large bond of about 3 ha. Size lies behind the temple complex and cannel bringing strong water from the neighboring shallow ferralitic terrain runs into it. An extensive floristic survey of carried out in the sacred groves at monthly intervals between December 2011 and October 2012. Specimen flowering plants were collected and identified taxonomically with the help of different floras. Nine plots were established in three different disturbance areas within the sacred groves and it is divided into three site I. Disturbances, II. Moderately disturbance III. Undisturbance. Present study revealed that a total number of 110 plants belonging to 96 genera and 45 families were recorded from three sites (I. Disturbed, II. Moderately Disturbed, III. Undisturbed) of konjikuppam sacred groves Cuddalore district. The present study revealed that more number of species found in undisturbed site III and least number and density in disturbed site I. a total of 24 plants used in herbal preparations. The local health traditions provide immediate and cheaper remedy or relief to the poor and down trodden inhabiting the villages. The devastation of species diversity in the study area there is an urgent need for regeneration of the species for conservation of species and biodiversity.

Keywords: Phytosocialogical; Sacred groves; Ethnomedicine; Biodiversity

1. INTRODUCTION

Biodiversity studies have been carried out in different plant communities from plains to the hilltops. There are various plant communities that exist as sacred groves distributed throughout India, which are seen as relict of the ancient vegetation, generally rich in plant diversity (Harikrishnan Nair et al., 1997) the protected refugia of the natural ecosystem in a given region have exited as sacred groves in many societies all over the world. The groves are small patches of vegetation types that were traditionally protected and managed by the local communities, through a wide range of management practices (Gadgil and Vartak, 1976).

In India 13,720 sacred groves have been identified in various parts of India the sacred groves are the representative of climax vegetation and exhibit the diversity of species such as trees, climbers, epiphytes and other shade loving herbs (Bhandary and Chandrasekar, 2003).many people have described sacred groves in different ways. However, thare is an evident fact that wherever sacred groves exited, because of indigenous traditional societies has spiritual relationship with the exiting physical environment. The role of sacred groves in the conservation of biodiversity has long been recognized (Gadgil and Vartak, 1976; Osambi, 1962; Haridasan and Rao, 1985; Khan et al, 199; Ramanujam and Kadamban, 2001;
Folk medical practitioners are called Nattu Vaidhyans in South India, or Vaidu or Amchi in others. A social dimension also has emerged. Nowadays, people look forward to a long term cure without side effects rather than a short term relief accompanied by lots of ill-effects. Traditional medical systems may be a slow science but the west is gradually turning towards the natural systems of cure and care. The present study enlists the species composition of three sacred groves and importance of traditional medicinal plants in Konjikuppam Village, Cuddalore District.

2. MATERIAL AND METHODS

Konjikuppam village lies on the state highway linking Panruti (5 km south) and Neyveli (10 km North). There are 125 households with a population of ca. 500 people. The sacred grove of Konjikuppam is also situated on the main road and is proximate to the village. It measures 4.5 ha. The terrain is gently undulating and the temple complex is situated on the south-east corner down the slope. A large bond of about 3 ha.

An extensive floristic survey was carried out in the sacred groves at monthly intervals between December 2011 and October 2012. The sacred groves and it is divided into three sites 1. Disturbed, 2. Moderately disturbed, 3. Undisturbed. In each forest type three 50m x 50m plots were randomly setup. Each plot was subdivided into four 25m x 25m quadrates for easy sampling.
2. 1. Vegetation analysis

The vegetation data were analyzed for relative frequency, relative density, and relative dominance. The sum of relative frequency, relative density and relative dominance represented the Importance Value Index (IVI) for various species (Curtis, 1959).

Frequency: Frequency is the number of sampling units (as %) which a particular species occurs. Thus frequency of each species calculated as follows:

\[
\text{Frequency} = \frac{\text{Number of sampling units in which the species occurred}}{\text{Total number of sampling units studied}} \times 100
\]

Density: Density represents the numerical strength of a species in the community. The number of individuals of the species in any unit area is its density. Density gives an idea of degree of competition. It is calculated as follows:

\[
\text{Density} = \frac{\text{Number of individuals of the species in all sampling units}}{\text{Number of sampling units studied}}
\]

The value thus obtained is then expressed as number of individuals per unit area.

Abundance: This is the number of individuals of any species per sampling unit of occurrence. It is calculated as follows:

\[
\text{Abundance} = \frac{\text{Number of individuals of the species in all sampling units}}{\text{Number of sampling units in which the species occurred}}
\]

Since most of the stems are cylindrical, the basal area was calculated by using the formula:

\[
\text{Basal area} = \pi r^2
\]

Where,

\[
\pi = 3.14 \text{ and } 'r' \text{ is the radius of the stem at the point of emergence.}
\]

Relative frequency: The dispersion of species in relation to that of all the species is termed as relative frequency of a species.

\[
\text{Relative frequency} = \frac{\text{Frequency of the species in a quadrat}}{\text{Sum of the frequencies for all species in the same quadrat}} \times 100
\]

Relative density: The proportion of density of a species to that of stand as a whole is referred to as relative density.

\[
\text{Relative density} = \frac{\text{Number of individuals of a species}}{\text{Number of individuals of all species}} \times 100
\]
Relative abundance:

Relative abundance = \(\frac{\text{Abundance of a species}}{\text{Total abundance of all species}} \times 100 \)

Importance value Index (IVI) is the sum of quantities of relative frequency, relative density and relative dominance expressed per 300.

Relative Importance value index = \(\frac{\text{IVI of the species}}{3} \)

Species diversity: Species diversity is the ratio between the number of species and importance value or number or biomass or productivity and it was calculated using the formula given by Margalef (1968);

\[H' = -\frac{1}{N} \sum (n_i/N) \ln (n_i/N) \]

Where, \(H' \) = Shannon index of general diversity;
\(n_i \) = importance value index of species i;
\(N \) = importance value index of the community.

Dominance index: the dominants are the plants by virtue of their abundance, growth performance and dry matter production and become conspicuous in a community concentration of dominance (C) was calculated by Simpson’s index (Simpson, 1949).

\[C = \frac{1}{N} \sum (n_i/N)^2 \]

Where, \(C \) = index of dominance \(n_i \) and \(N \) being same as in the Shannon index of general diversity.

Species richness: Species richness is an indicator of the relative wealth of species in a community (Peet, 1974) and it can be represented by the total number of species in a given community or the number of species per unit area. Species richness was calculated by following formula by (Menhinick, 1964).

\[SR = \frac{S}{\log 10 S} \]

Species evenness: species evenness represents distribution of individuals among the species. It sometimes defined as the ratio of observed diversity to maximum diversity (Margalef, 1958). The evenness of equitability was calculated by the formula suggested by the Pielou (1966) as

\[SR = \frac{S}{\sqrt{n}} \]

Where \(S \) = number of species, \(n \) = number of individuals

Index of similarity: The interspecific association can be evaluated by association index and also by calculating index of similarity. The index of similarity is utilized to compare two coexisting groups was calculated following Odum (1971) as
\[
S = \frac{2c}{a+b}
\]

Where \(a\) = number of species in the sample A;
\(b\) = number of species in the sample B and
\(c\) = number of species common to both samples.

2. 2. Ethnomedicinal studies

The work was carried out adopting the methodology of Jain (1989 and 1995). The surveys were spread across seasons so as to get maximum information and also to cross check the information provided by the local informants during the earlier visits. Structured questionnaires, interviews, and participatory observations were used to illicit information from the resource persons using standard methods [Martin, 1995].

3. RESULT AND DISCUSSION

Floristic analyses were carried out in disturbed moderately disturbed, and undisturbed of study area. Through there a grove is located in the main road and is proximate to the village, a major portion of the groves remains undisturbed. Theses groves inhabit 110 plant species belonging to 96 genera and 48 families (Table 1).

Tree species richness varied according to the disturbance gradient in the different stands. Consolidated data of phytosociological studies are given in (Table- 5). Tree species richness (number of species) was higher in site III (26 species) followed by Site II (17 species) and Site I (9 species). Site III stand was found to have greater density (83 no/ha), diversity index (0.254), basal area (13.311 m\(^2\)/ha) and species richness (1.566). However, dominance index (0.267) and evenness index (2.154) were recorded in site I stand. Number of species (species), basal area (4.565 m\(^2\)/ha), density (19 no/ha), species richness (0.863) and diversity index (1.103) were found to be least in site I stand. The highest tree species diversity was recorded in the sites III, II stands and lowest in site I stand.

Dominance calculated as the IVI of different species varied greatly indifferent stands. The IVI of trees in the study area is given in (Table - 4) Greater number of tree species (26) was recorded in site I stand followed by site II stand (17), whereas least number of species (9) was seen in site I stand. *Albizia amara* in site I, II and III stands and *Mimusops elengi* and *Madhuca longifolia* in site I stand and *Lepisanthes tetraphylla* and *Tricalysia apiocarpa* in site III were found as the dominant tree species, whereas *Ficus racemosa* in site I stand were the least dominant in terms of IVI.

3. 1. Seedlings

In seedling population higher in number of species (22), species diversity index (2.209) was observed in site III stand. Evenness index (2.247) in site II stand and dominance index (0.324) in site I stand was found to be greater. However, density (630/ha) basal area (1.301 m\(^2\)/ha), diversity index (1.048), and evenness index (2.021) in site I stand were least.
Greater number of seedling species (22) was recorded in site III stand was followed by site II and I. Seedlings of *Albizia amara, Chloroxylon swietenia* were seen in three sites whereas the seedlings of *Diospyros montana, Tricalysia apiocarpa, Premna tomentosa* were found in single sites.

3. 2. Saplings

Among the sapling populations number of species (11), basal area ($8.050m^2/ha$), diversity index (2.150) and species richness (2.157) in site III stand were found to be greater. However, the density (190), and evenness index (2.183) in site II stand and dominance index (0.430) in site I stand were greater. Number of species (2) in site I stand was the least. Density (120/ha), basal area (2.356m^2/ha) and species richness (0.800), diversity index (0.958) and evenness index (2.007) in site I stand, and dominance index (0.104) in site III, were the least (Table -5). Compared with IVI, *Lepisanthes tetraphylla* shows greater (51.42) and least in *Ficus racemosa* (1.75).

3. 3. Shrubs

Among the shrub populations number of species (18), diversity index (2.307), species richness (1.336), evenness index (2.250) in site III stand were greater. However, the dominance index (0.159) in site I stand and basal area (2.213m^2/ha)) were found to be higher. In site I stand basal area (1.057 m2/ha) were found to be least (Table-5). Higher number of shrubs species (18) was recorded in site III and followed by I and II stands. Least number of shrubs species (6) was found in site I stand. *Cassia auriculata, Clausena dentata, Glycosmis mauritiana, Memecylon umbellatum, Mimosa intsia* were found in all study sites, whereas *Catunaregam spinosa, Grewia hirsuta, Opuntia dilleni, and Tragia plukeneti* were found in single sites. Compared with IVI, *Glycosmis mauritiana* shows greater (52.32) and least in *Cissus quadrangularis* (0.38) (Table-2).

3. 4. Herbs

Number of species (43), diversity index (2.033), evenness index (2.104) and species richness (1.897) in site III stand were greater. However the density (140/ha), basal area (1.314m^2/ha) in site II and dominance index (0.141) in site I were greater. Least number of species (12), density (4250 ha, basal area (0.063m^2/ha),diversity index (1.637) and evenness index (1.839) in site I and species richness (0.913) and dominance index (0.127) in site III stands were recorded least (Table-5). The density of Acanthaceae, Rutaceae, and Capparidaceae in site III stand were higher, whereas the density of Cactaceae and Lythraceae in site I stand, Nyctaginaceae in site II stand and Solanaceae and Violaceae in site III stand were having least density. Compared with IVI, *Ageratum conyzoides* shows greater (16.65) and least in *Vernonia cinerea* (0.55) (Table-3).
Table 1. List of species encountered at three sites of konjikuppam sacred groves.

S.No	FAMILY	BOTANICAL NAME
1.	Boraginaceae	Cormona retusa (Vahl) Masam
2.	Cactaceae	Opuntia dillenii (Ker-Gawler) Haw.
3.	Caesalpiniaceae	Senna auriculata (L.) Roxb.
4.	Capparidaceae	Cadaba fruticoso (L.) Druce
5.	Capparidaceae	Capparis divaricata Lam.
6.	Capparidaceae	Capparis rotundifolia Rottl.
7.	Capparidaceae	Capparis sepiaaria Linn.
8.	Euphorbiaceae	Jatropha gossypifolia L.
9.	Euphorbiaceae	Tragia plukneti R.Smith
10.	Flacourtiaceae	Flacourtia indica (Burm.f) Merr
11.	Linaceae	Hugonia mystax L.
12.	Melostomaceae	Memecylon umbellatum Burm.f.
13.	Mimosaceae	Mimos caesia L.
14.	Ochnaceae	Ochna obtusata DC.
15.	Rhamnaceae	Zizyphus oenoplia (L.) Merr.
16.	Rubiaceae	Canthium coronandelianum (Burm.f) Alston
17.	Rubiaceae	Catunaregam spinosa (Thunb.) Triveng
18.	Rubiaceae	Ixora pavetta Andrews
19.	Rubiaceae	Tarenna asiatica (L.) Kuntze ex K. Schum
20.	Rutaceae	Clausena dentata (Will.d.) M. Roem
21.	Rutaceae	Glycosmis mauritiana (Lam.) Yuich.Tanaka
22.	Sapindaceae	Dodonaea angustifolia L.f.
23.	Tiliaceae	Grewia hirsuta Vahl
24.	Acanthaceae	Andrographis paniculata (Burm.f) Wall.ex Nees
25.	Acanthaceae	Asystasia gangetica (L.) T.Ander
26.	Acanthaceae	Barleria cuspidata Heyne ex Nees
27.	Acanthaceae	Barleria prionitis L.
28.	Acanthaceae	Blepharis molluginifolia Pers.
29.	Acanthaceae	Echolium ligustrinum (Vahl) Volleson
30.	Acanthaceae	Elytraria acaulis (L.f.) Lindau
31.	Acanthaceae	Hygrophila auriculata (Schum.) Heine
32.	Acanthaceae	Lepidagathis cristata Nees
33.	Acanthaceae	Achyranthes aspera L.
34.	Acanthaceae	Allmania nodiflora (L.) R.Br. ex Wight
35.	Acanthaceae	Alternanthera sessilis (L.) R.Br. ex DC
36.	Asteraceae	Acanthospermum hispidum DC.
37.	Asteraceae	Ageratum cnyzoides L.
38.	Asteraceae	Eclipta prostrata (L.) L.
39.	Asteraceae	Sonchus oleraceus L.
40.	Asteraceae	Sphaeranthus indicus L.
41.	Asteraceae	Vernonia cinerea L.
42.	Boraginaceae	Coldenia procumbens L.
43.	Cactaceae	Cereus trigonus Lem.
44.	Caesalpiniaceae	Senna tora (L.) Roxb.
45.	Capparidaceae	Cleome aspera Koenig Ex DC.
46.	Capparidaceae	Cleome monophylla L.
47.	Capparidaceae	Cleome viscosa L.
48.	Commelinae	Commelina bengalensis L.
49.	Commelinae	Commelina erecta L.
50.	Fabaceae	Alysicarpus monilifer (L.) DC.
51.	Fabaceae	Desmodium triflorum (L.) DC.
Page	Family	Species
------	--------------	---
52	Fabaceae	Indigofera aspalathoides Vahl. ex DC.
53	Fabaceae	Zornia triphylla (L.) Pers.
54	Lamiaceae	Leucas aspera (Willd.) Link
55	Lamiaceae	Ocimum canum Sims
56	Lythraceae	Ammania baccifera L.
57	Malvaceae	Sida cordifolia L.
58	Molluginaceae	Mollugo nudicaulis Lam.
59	Nyctaginaceae	Boerhaavia diffusa L.
60	Poaceae	Cenchrus ciliaris L.
61	Poaceae	Chloris barbata Sw.
62	Poaceae	Chrysopogon aciculatus (Retz.) Trin.
63	Poaceae	Cynodon dactylon (L.) Pers.
64	Poaceae	Dactyloctenium aegyptium (L.) Willd.
65	Poaceae	Dichanthium annulatum (Forssk.) Stapf.
66	Poaceae	Diplachne fusca (L.) Beauv. ex Roem. et Sch.
67	Poaceae	Perotis indica (L.) Kuntze
68	Rubiaceae	Oldenlandia herbacea (L.) Roxb.
69	Rubiaceae	Oldenlandia umbellata L.
70	Scrophulariaceae	Scoparia dulcis L.
71	Solanaceae	Physalis minima L.
72	Solanaceae	Solanum nigrum L.
73	Tiliaceae	Corchorus aestuans L.
74	Tiliaceae	Triumfetta rhamboidea Jacq.
75	Verbenaceae	Phyla nodiflora (L.) Greene
76	Verbenaceae	Stachytarpha jamaicensis (L.) Vahl
77	Violaceae	Hybanthus enneaspermus (L.) F.Muell.
78	Zygophyllaceae	Tribulus terrestris L.
79	Alangiaceae	Cassia fistula L.
80	Anacardiaceae	Lannea coromandelica (Houtt.) Merr.
81	Boragineae	Cordia monoica Roxb.
82	Boragineae	Cordia obliqua Willd.
83	Scrophulariaceae	Scoparia dulcis L.
84	Celastraceae	Cassine glauca (Rottb.) Kuntze
85	Ebenaceae	Diospyros meloxylon Roxb.
86	Ebenaceae	Diospyros montana Roxb.
87	Meliaceae	Azadirachta indica A.Juss
88	Meliaceae	Walsura trifoliata (A.Juss) Harms
89	Mimosaceae	Acacia nilotica ssp.indica (Benth.) Brenan
90	Mimosaceae	Acacia auriculiformis A.Cunn. ex.Benth.
91	Mimosaceae	Albizia amara (Roxb.) Boivin
92	Mimosaceae	Albizia lebbeck (L.) Benth.
93	Mimosaceae	Dichrostachys cinerea (L.) Wt. & Arn.
94	Mimosaceae	Mimosa intisia L.
95	Moraceae	Ficus ampullissima Smith
96	Moraceae	Ficus racemosa L.
97	Moraceae	Ficus religiosa L.
98	Moraceae	Streblus asper Lour.
99	Rubiaceae	Canthium dicoccum (Gaertn.) Teijsm & Binn.
100	Rubiaceae	Morinda pubescens Sm.
101	Rubiaceae	Tricalysia apiocarpa (Dalz.) Gamble
102	Rutaceae	Atalantia monophylla (L.) Corr.Ser.
103	Rutaceae	Chloroxylon sweitenian DC.
104	Rutaceae	Pamburus missionis (Wt.) Swingle
105	Sapindaceae	Lepisanthes tetraphylla (Vahl) Radlk
Table 2. Phytosociological analysis of Shrubs in Konjikuppam sacred grove.

Botanical Name	Indls.	RD	RF	BA	RBA	IVI
Cadaba fruticosa	16	13.94	0.20	0.048	0.11	0.45
Canthium coromandelianum	12	3.35	3.46	8.010	1.37	9.13
Capparis divaricata	6	16.62	11.63	0.64	1.44	40.68
Capparis rotundifolia	8	0.40	10.20	0.01	0.44	2.26
Capparis sepiaria	3	0.13	13.87	0.04	2.74	3.11
Catunaregam spinosa	9	0.40	0.20	1.43	1.52	45.04
Clausena dentata	35	8.57	0.37	4.18	0.41	14.02
Cormona retusa	27	0.13	0.61	0.44	0.32	1.25
Dodonaea angustifolia	12	0.40	4.48	2.79	0.44	12.07
Flacourtia indica	6	3.75	3.67	0.37	0.74	14.02
Glycosmis mauritiana	90	42.86	13.79	0.05	0.87	52.32
Grewia carpinifolia	6	2.43	0.20	0.03	0.11	0.36
Grewia hirsuta	4	0.80	1.22	0.11	0.46	1.16
Hugonia mystax	21	3.36	4.69	1.52	0.21	22.28
Ixora pavetta	5	2.58	0.20	0.65	0.27	1.11
Jatropha gossypifolia	2	0.13	0.61	0.06	0.30	0.83
Memecylon umbellatum	10	4.76	3.45	0.10	1.71	9.92
Mimosa intisia	237	36.92	9.43	0.03	0.25	46.53
Ochna obtusata	2	0.26	0.20	0.22	0.12	0.45
Opuntia dillenii	5	0.40	0.40	0.05	0.02	0.38
Senna auriculata	27	0.13	1.02	1.84	0.36	8.05
Tarenna asiatica	11	0.27	0.20	0.97	0.41	3.11
Tragia plukeneti	8	0.13	0.02	0.14	0.02	0.83
Zizyphus oenoplia	3	0.26	3.46	0.75	0.64	1.37
Table 3. Phytosociological analysis of Herbs in Konjikuppam sacred grove.

Botanical Name	Indls.	RD	RF	BA	RBA	IVI
Acanthospermum hispidum	12	2.26	1.66	1.06	3.42	4.78
Achyranthes aspera	25	1.02	0.96	0.48	2.67	2.12
Ageratum conyzoides	17	1.53	1.39	0.72	2.77	16.65
Allmania nodiflora	9	0.34	0.59	0.16	1.45	1.13
Alternanthera sessilis	12	0.51	1.01	0.24	1.26	1.79
Alysicarpus monilifer	13	0.45	0.21	0.21	5.25	0.69
Ammania baccifera	8	0.60	0.85	0.28	1.75	1.51
Andrographis paniculata	9	1.36	1.07	0.64	3.20	13.01
Asystasia gangetica	14	0.26	0.32	0.12	2.00	0.85
Barleria capsidate	4	1.83	2.03	0.86	2.26	4.56
Barleria prionitis	5	0.32	0.37	0.15	2.14	0.73
Blepharis molluginifolia	8	0.60	0.43	0.28	3.50	1.10
Boerhavia diffusa	22	0.45	0.32	0.21	3.50	0.81
Chenchrus ciliaris	40	0.51	0.69	0.24	1.85	1.24
Ceratis trigonoidis	3	2.26	2.08	1.06	2.72	7.25
Chloris barbata	42	1.45	1.66	0.68	2.19	5.32
Chrysopogon aciculatus	28	1.30	1.60	0.61	2.03	5.06
Cleome aspera	12	2.58	2.78	1.21	2.33	8.98
Cleome monophylla	9	0.38	0.37	0.18	2.57	0.99
Cleome viscosa	18	2.88	2.19	1.35	3.29	5.26
Coldenia procumbens	4	0.36	0.27	0.17	3.40	0.71
Commelina bengalensis	16	0.45	0.59	0.21	1.91	1.78
Commelina erecta	8	0.28	0.32	0.13	2.17	1.02
Corchorus asalaeus	11	0.26	0.27	0.12	2.40	0.88
Cynodon dactylon	28	6.20	5.34	2.91	2.91	12.60
Dactyloctenium aegyptium	19	0.47	0.69	0.22	1.69	1.28
Desmodium triflorum	21	0.17	0.21	0.08	2.00	1.46
Dichanthium annulatum	15	0.28	0.32	0.13	2.17	0.62
Diplocyne fusca	11	0.45	0.43	0.21	2.63	1.35
Echium liguistrinum	4	1.45	1.01	0.68	3.58	2.78
Eclipta prostrata	29	1.79	2.19	0.84	2.05	4.06
Elytraria acaulis	5	0.68	0.85	0.32	2.00	2.26
Heliotropium indicum	3	0.60	0.59	0.28	2.55	1.21
Hybanthus enneaspermus	8	0.38	0.32	0.18	3.00	0.73
Hygrophiha auriculata	13	2.69	2.99	1.26	2.25	6.39
Indigofera aspalathoides	18	0.40	0.43	0.19	2.38	1.68
Lepadogathis cristata	15	0.30	0.37	0.14	2.00	0.72
Leucas aspera	56	1.04	1.60	0.49	1.63	3.65
Mollugo nudicaulis	88	0.51	0.32	0.24	4.00	4.10
Ocimum canum	22	0.26	0.21	0.12	3.00	0.74
Oldenlandia herbaacea	36	2.64	2.24	1.24	2.95	5.90
Oldenlandia umbellata	43	0.34	0.43	0.16	2.00	1.13
Peltatis indica	13	1.83	1.12	0.86	4.10	3.19
Phyll nodiflora	25	0.45	0.43	0.21	2.63	0.97
Physalis minima	6	2.30	3.26	1.08	1.77	5.71
Scoparia dulcis	9	1.68	1.55	0.79	2.72	4.68
Senna tora	34	1.36	1.17	0.64	2.91	3.59
Sida cordifolia	88	0.38	0.48	0.18	2.00	1.09
Solanum nigrum	16	0.45	0.64	0.21	1.75	1.43
Sonchus oleraceus	20	2.79	3.36	1.31	2.08	8.05
Table 4. Phytosociological analysis of Trees in Konjikuppam sacred grove.

Botanical Name	Indls.	RD	RF	BA	RBA	IVI	BV
Sphaeranthus indicus	15	6.84	5.34	3.21	3.21	13.34	
Stachytarpheta jamaicensis	56	6.35	5.34	2.98	2.98	13.06	
Tribulus terrestris	41	0.60	0.75	0.28	0.28	2.00	1.37
Triumfetta rhomboidea	13	0.66	1.12	0.31	1.48	1.84	
Vernonia cinerea	27	0.28	0.21	0.13	3.25	0.58	
Zornia triphylla	6	1.79	1.66	0.84	2.71	3.83	

International Letters of Natural Sciences Vol. 32 87
Table 5. Consolidate Details of Phytosocialological Analysis of the Sacred Groves in Konjikuppam Village Cuddalore District.

Sl. No.	Criteria	Disturbed Site I	Moderately disturbed Site II	Undisturbed Site III
1.	Number of species			
	Trees	9	17	26
	Saplings	2	7	11
	Seedlings	3	6	22
	Shrubs	6	13	18
	Herbs	12	29	43
2.	Density(no/ha)			
	Trees	19	57	83
	Saplings	120	190	160
	Seedlings	630	710	830
	Shrubs	120	420	313
	Herbs	4250	9200	11280
3.	Basal area(m2/ha)			
	Trees	4.565	8.383	13.311
	Saplings	2.356	4.515	8.050
	Seedlings	0.301	0.458	0.519
	Shrubs	1.057	2.213	2.057
	Herbs	0.063	0.087	0.272
4.	Diversity index			
	Trees	1.103	1.572	2.054
	Saplings	0.958	1.856	2.169
	Seedlings	1.048	1.571	2.209
	Shrubs	1.247	2.053	2.307
	Herbs	1.637	2.002	2.056
5.	Dominance index			
	Trees	0.267	0.150	0.125
	Saplings	0.430	0.168	0.104
	Seedlings	0.324	0.164	0.096
	Shrubs	0.159	0.120	0.095
	Herbs	0.194	0.135	0.127
6.	Species richness			
	Trees	0.863	1.042	1.566
	Saplings	0.500	1.299	2.157
	Seedlings	0.378	0.548	1.185
	Shrubs	1.223	0.976	1.336
	Herbs	1.211	0.913	1.175
7.	Evenness index			
	Trees	2.154	2.073	2.097
	Saplings	2.007	2.183	2.128
	Seedlings	2.021	2.247	2.132
	Shrubs	2.081	2.239	2.250
	Herbs	1.839	2.158	2.880
S.No	Botanical name	Diseases/Disorders	Parts used	Mode of application
------	---	--------------------	------------	---
1.	*Albizia lebbeck* (L.) Benth.	Snake bite	Flower	The powder prepared from 5gm of flower is taken orally along with hot water three times a day for three days
2.	*Aristolochia indica* L.	Snake bite	Root	Dried roots are powdered and about 10g powder is given with 100 ml of human urine as an antidote for snake bite.
3.	*Asystasia gangetica* (L.) T.Anderson	Wounds	Leaves	Leaf powder is mixed with coconut oil and applied topically to heal wounds (burns).
4.	*Barleria prionitis* L.	Whooping cough	Whole plant	About 20 ml of plant juice is used for 3-4 days twice daily, with a pinch of salt to treat whooping cough
5.	*Blepharis molluginifolia* Pers.	Bone fracture	Leaves	Leaf paste is mixed with the powdered black gram, crushed onion and white yolk of one egg and the mixture is applied topically over the fractured bones.
6.	*Capparis brevispina* L.	Migraine	Shoot	Decoction of young branches is taken to cure migraine.
7.	*Capparis zeylanica* L.	Syphilis	Roots	Roots are ground together with 21 black peppers and the powder is taken with water daily for getting relief in syphilis.
8.	*Cassia auriculata* L.	Leucorrhoea	Leaf, seed	Leaves and seeds are ground into paste and made into pills. Three pills are given orally with lime water for 3 days.
9.	*Cissampelos pariera* L.	Fever, Headache	Shoot	5-10 ml juice of aerial part is taken orally twice a day before meals.
10.	*Clausena dentata* (Willd.) M.Roem	Wounds	Leaves	Paste of leaves is applied over the affected area.
11.	*Cleome viscosa* L.	Ear ache	Root	Root is pounded with garlic, mixed with castor oil, boiled and juice is squeezed; about 3 drops applied in the ear to treat ear ache.
12.	*Chloroxylon swietenia* DC.	Diabetes	Gum	About 100 ml gum powder mixed with water is given for about one month for the treatment of diabetes.
13.	*Coccinia grandis* (L.) Voigt	Excess bleeding	Whole plant	2-3 tablespoons of fresh plant juice is recommended for 2-3 days to check bleeding during pregnancy
14.	*Coldenia procumbens* L.	White discharge	Leaves	Juice of leaf is taken orally to prevent white discharge in women.
15.	*Diospyros montana* Roxb.	Diabetes	Leaves	2-3 teaspoonfuls extract of fresh stem bark taken in stomachache.
16.	*Ficus racemosa* L.	Diarrhea and Dysentery	Leaves	About 5 teaspoonful of decoction of stem bark is given twice a day for about 2 days to treat diarrhea and dysentery.
17.	*Hygrophila auriculata* (Schum) Heine	Jaundice	Leaves, seeds	Leaves and seeds are ground into paste and made into pills, 2 pills per day taken for 5 days. Diet: Buttermilk and food, salt restricted.
18.	*Madhuca longifolia* (Koenig) J.Macbr.	Asthma	Flower(s)	Five flowers are boiled in a glass of water until it is reduced to half and is administered orally once a day.
19.	*Mimusops elengi* L.	Fever	Bark	Bark powder mixed with red sugar in applied on jaw in toothache.

Table 6. Particulars regarding the Ethnomedicinal plants in the sacred grove, Konjikuppam, Cuddalore District, Tamil Nadu.
20. **Mukia maderapatana** (L.) M.Roem
Cold and cough
Leaves
Leaf powder is mixed with boiled rice and taken orally to treat cold and cough

21. **Phyla nodiflora** (L.) Greene
Tooth ache
Leaves
Leaves ground with Allium sativum and made into pills kept between teeth to check toothache

22. **Sphaeranthus indicus** Linn.
Blood dysentery
Root
Dried powdered root with 5 black pepper (Piper nigrum). Powdered drug given 3g per dose twice a day

23. **Stachyurapheta jamaicensis** (L.) Vahl
Dysentery
Stem, Root
Paste of stem and root bark is applied topically to treat dysentery

24. **Tiliacora acuminata** (Lamk.) Miers ex Hook.f.& Thomps.
Constipatio n
Stem
About 100g pieces of stem are powdered and one teaspoonful is given with warm water twice a day after meals for two weeks to treat constipation

4. CONCLUSIONS

There are about 24 species used by local communities of Konjikuppam recorded by using structured questionnaire. Although the same species used to treat the same ailment in various parts of Tamilnadu but the mode of preparation and administration is vary. (Table.6) during each field survey, they consented orally to document and publish the results for the study of society. After initial reconnaissance survey of the area in and discussions with the local people, a total of 15 resource persons, comprising of 10 males and 5 females were identified. These are locally referred to as vaidyas and perform the duties of medicinal practitioner. Information on the habitat of the plant, local name of plant, plant part used for curing, method of dosage and administration were recorded.

The Konjikuppam (4.5 ha species) representing 96 genera and 48 families there were 32 trees species, 24 shrubs, 56 hers. The konji plant Glycosmis mauritiana was the dominant species followed by Albizia amara and Tricalysia sphaerocarpa. the Shannon index was 1.72 and evenness of 0.65 heavy undergrowth separately interrupted by trees characterizes the vegetation. The study has confirmed the existence of ecological and medical traditions and documented untapped, useful and valuable information from a tiny tot on the Coromandel ocast of India dominated by a communities. A treasure trove of knowledge awaits the feature researchers as there are 4635 ethnic communities spread over India landscape.

On the otherhand, eventhough the plants somewhat disappeared and also affected due to the Thanae cyclone hitted especially in Cuddalore district on December 30. Due to the devastation of species diversity in the study area there is an urgent need for regeneration of the species for conservation of species and their biodiversity.

References

[1] Bhandary, M.J. and K.R Chandrasekar. 2003. Sacred groves of Dakhina Kanada and Udupi districts of Karnataka. *Curr.Sci.* 85:1655-1656.

[2] Curtis, J.T. 1959. The vegetation of Wisconsin. An ordination of plant communities, Madison-Winconsin.

[3] Gadgil, M. and Vartak, V.D. 1975. Sacred groves of India: a plea for continued conservation. *J. Bombay Nat. Hist. Soc.*, 72: 314-320.

[4] Haridasan .K. and P.R. Rao. 1985. Forest Flora of Mehalaya, Vol.1, Bishen Singh and Mhendrapal Singh, Dhera Dun, India.
[5] Haridasan Nair., G. Gopikumar, K., Pramod, G., Krishnan and Sunil Kumar K.K. 1997. Sacred groves of India vanishing greenery. *Current Science.* 72: (10) 697-699.

[6] Jain, S.K., 1989. Methods and Approaches in Ethnobotany, Society of Ethnobotanist, Lucknow.

[7] Khan, M. K., S. Mohan and K.S. Bawa. 1997. Effectiveness of The Protected Area Network in Biodiversity Conservation: a case study of Mehalaya State. *Biodiv. Conserve.* 6:853-868.

[8] Margalef, R. 1958. Perspectives in Ecological theory. Univ. of Chicago Press, pp.111.

[9] Martin, G. 1995. Ethnobotany – A Method Manual. Chapman and Hall, London.

[10] Menhinck, E.F. 1964. A comparison of some species diversity indices applied to samples of field insects. *Ecology,* 45:859-861.

[11] Nadanakunjidam, S. and G. Kamashi. 2003. Traditional medicinal knowledge of a few plants of Pondicherry and Karaikal region, Pondicherry. *Adv. Plant Sci.* 16:405-412.

[12] Nadanakunjidam, S. and S. Abirmi. 2005. Comparative study of traditional medicinal knowledge of Pondicherry and Karaikal region in Union Territory of Pondicherry. *Ethnobotany* 17: 112-117.

[13] Nadanakunjidam, S. 2006. Some interesting medicament from traditional medicinal practitioners of Karaikal region, Pondicherry. *J. Eco. Taxon. Bot.* 30: 449-452.

[14] Odum, E.P. 1971. Fundamentals of Ecology. 3rd edn. W.B. Saunders Co. Philadelphia.

[15] Osambi, D.D. 1962. Myth and Reality, popular press, Bombay, India.

[16] Peet, R.K. 1974. Patterns of species diversity. *Ann Rev. Ecol. Syst.*, 285-307.

[17] Pielou, E.C. 1966. The measurement of diversity in different types of biological collections. *J. Theor. Biol.*, 13:131-144.

[18] Ramanujam, M.P. and D. Kadamban. 2001. Plant biodiversity of two tropical dry evergreen forest in the Pondicherry region of south India and the role of belief system in their conservation. *Biodiv. Conserve.* 10: 1203-1217.

[19] Ramanujam, M.P. and K. Pravin Kumar Cyril. 2003. Woody species diversity of four sacred groves in the Pondicherry region of South India. *Biodiv. Conserve.* 12: 289-299.

[20] Simpson, E.H. 1949. Measurement of Biodiversity. *Nature* (London) 163:688.

[21] Vertak V.D. and Gadgil, Dev Rahati. 1973. An ethnobotanical study of the forest preserved on grounds of religious belief. *Proc. Indian Sci. Cong.* 60: 341.

(Received 24 December 2014; accepted 10 January 2015)