A new cryptic species of *Nagiella* Munroe from China revealed by DNA barcodes and morphological evidence (Lepidoptera, Crambidae, Spilomelinae)

Misbah Ullah¹*, Zhaofu Yang¹*, Pingping Qiao¹, Yalin Zhang¹

1 Key laboratory of Plant Protection Resources and Pest Management, Ministry of Education; Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China

Corresponding author: Yalin Zhang (yalinzh@nwsuaf.edu.cn)

Academic editor: Colin Plant | Received 27 January 2017 | Accepted 5 May 2017 | Published 8 June 2017

Citation: Ullah M, Yang Z, Qiao P, Zhang Y (2017) A new cryptic species of *Nagiella* Munroe from China revealed by DNA barcodes and morphological evidence (Lepidoptera, Crambidae, Spilomelinae). ZooKeys 679: 65–76. https://doi.org/10.3897/zookeys.679.11960

Abstract

Nagiella occultalis Misbah & Yang, sp. n. from China is described and illustrated. This new species is very similar to *N. quadrimaculalis* (Kollar, 1844) in general morphological characters of forewing and male genitalia. Molecular evidence shows that these two species diverge in COI barcode region by more than 3.2%. Sequence divergence among the two species is congruent with subtle morphological differences. Wing venation and male genitalia of the two species are compared and illustrated.

Keywords

COI gene, genitalia, *Scopula quadrimaculalis*, taxonomy

Introduction

The subfamily Spilomelinae (Crambidae) is the largest subfamily of pyraloid moths including about 3300 species in more than 300 genera having worldwide distribution (Munroe and Solis 1999). The genus *Nagiella* Munroe, 1976 is one of the less speciose genera of Spilomelinae (Munroe 1976). Compared to other genera of this subfamily and despite its small size, *Nagiella* has been little studied and no comprehensive stud-
ies have been made on the taxonomy of its constituent species. The only taxonomic efforts were made by Munroe in 1976. This genus was originally described as Nagia by Walker in 1866 based on the type species Nagia desmialis Walker, 1866. Munroe (1976) recognized that Nagia Walker, 1866 is a junior homonym of Nagia Walker, 1858 (Lepidoptera: Noctuidae) and replaced it with the new name Nagiella Munroe, 1976. This genus is widely distributed in Malaysia (Borneo and Sarawak), Burma, China, and Japan (Munroe 1976; Inoue 1982; Wang 1980). The genus comprises three described species: Nagiella inferior (Hampson, 1898), Nagiella quadrimaculalis (Kollar, 1844) with two junior subjective synonyms, desmialis Walker, 1866 and incomitata Swinhoe, 1894, and Nagiella hortulatoides Munroe, 1976 distributed in northeastern Burma. The generic characters as defined by Munroe (1976) are: uncus truncate, short and wide; gnathos ribbon-like; subscaphium elongate; valva broader with stout setae subapically, sella digitiform, elongate and sharp; cornutus absent. This provides the baseline description of the genus on which the present study is based.

Recently the integration of DNA barcoding and morphological approaches opened the field for researchers in accelerating species identification and assisted in detecting previously undetected cryptic species (Sutrisno 2005; Mutanen et al. 2012; Haines et al. 2012; Yang et al. 2012; Rajaieish et al. 2013; Yang et al. 2016; Mally et al. 2016). The taxonomic placement of N. occultalis sp. n. has been unclear; therefore, an integrative approach was designed to study the generic differences (Munroe 1976). In the present integrative taxonomic study, N. occultalis sp. n. collected from Shaanxi and Hubei Province, China, is described.

Materials and methods

Taxon sampling

Three specimens of N. occultalis sp. n. were collected from Taibai Mountain, Shaanxi and Wufeng, Hubei in China and 15 specimens of N. quadrimaculalis were collected from various localities (Table 1). Genitalia preparation mainly follows Landry (2007) and Yang et al. (2012) and terminology follows Kristensen (2003). The images of adults and genitalia were captured with a Canon Power Shot SX60 digital camera and (ZEISS Discovery V20) stereomicroscope equipped with an AxioCam ICc5 camera, respectively and measurement was taken in mm by scale bar equipped in stereomicroscope. Type material of the new species is deposited in the Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China (NWAFU).

DNA extraction, PCR amplification, and sequencing

Genomic DNA was extracted from insect legs by following the method of Ivanova et al. (2006). PCR amplifications were conducted to amplify a full-length (658 bp)
A new cryptic species of *Nagiella* Munroe from China revealed by DNA barcodes...

Identification	BIN	Process ID	Sample ID	Length of sequence (bp)	GenBank Accession	Province	Genitalia slide number
N. occultalis sp. n.	BOLD:AAD8179	CNPYB439-16	NAFU Pyr002290	658	KY080696	Shaanxi	
N. occultalis sp. n.	BOLD:AAD8179	CNPYB407-16	NAFU Pyr002397	658	KY080703	Shaanxi	
N. quadrimaculalis	BOLD:AAD8179	CNPYD699-10	Pyr000499	658	HM908668	Shandong	
N. quadrimaculalis	CNPYA401-10	NAFU Pyr000401	0		Yunnan		
N. quadrimaculalis	CNPYA402-10	NAFU Pyr000402	0		Sichuan		
N. quadrimaculalis	CNPYA403-10	NAFU Pyr000403	0		Yunnan		
N. quadrimaculalis	CNPYA404-10	NAFU Pyr000404	0		Yunnan		
N. quadrimaculalis	CNPYB409-16	NAFU Pyr002070	0		Shaanxi		
N. quadrimaculalis	CNPYB410-16	NAFU Pyr002261	0		Shaanxi		
N. quadrimaculalis	CNPYB411-16	NAFU Pyr002262	0		Shaanxi		
N. quadrimaculalis	BOLD:AAD8178	CNPYB412-16	NAFU Pyr002263	658	KY080700	Shaanxi	
N. quadrimaculalis	BOLD:AAD8178	CNPYB413-16	NAFU Pyr002264	658	KY080702	Shaanxi	
N. quadrimaculalis	BOLD:AAD8178	CNPYB414-16	NAFU Pyr002265	658	KY080704	Shaanxi	
N. quadrimaculalis	BOLD:AAD8178	CNPYB415-16	NAFU Pyr002266	658	KY080698	Shaanxi	
N. quadrimaculalis	BOLD:AAD8178	CNPYB416-16	NAFU Pyr002267	658	KY080694	Shaanxi	
N. quadrimaculalis	BOLD:AAD8178	CNPYB417-16	NAFU Pyr002268	658	KY080705	Shaanxi	
N. quadrimaculalis	BOLD:AAD8178	CNPYB418-16	NAFU Pyr002269	658	KY080697	Shaanxi	
N. quadrimaculalis	CNPYB419-16	NAFU Pyr002270	0		Shaanxi		
N. quadrimaculalis	CNPYB420-16	NAFU Pyr002271	0		Shaanxi		
N. quadrimaculalis	CNPYB421-16	NAFU Pyr002272	0		Henan	NAFU Pyr002272	
N. quadrimaculalis	CNPYB422-16	NAFU Pyr002273	0		Henan	NAFU Pyr002273	
N. quadrimaculalis	CNPYB423-16	NAFU Pyr002274	0		Hunan		
N. quadrimaculalis	CNPYB424-16	NAFU Pyr002275	0		Hunan		
N. quadrimaculalis	CNPYB425-16	NAFU Pyr002276	0		Hunan		
N. quadrimaculalis	CNPYB426-16	NAFU Pyr002277	0		Hunan		
N. quadrimaculalis	CNPYB427-16	NAFU Pyr002278	0		Fujian		
N. quadrimaculalis	CNPYB428-16	NAFU Pyr002279	0		Hainan		
N. quadrimaculalis	CNPYB429-16	NAFU Pyr002280	0		Hainan		
Identification	BIN	Process ID	Sample ID	Length of sequence (bp)	GenBank Accession	Province	Genitalia slide number
----------------	----------------------	------------	----------------	-------------------------	------------------	-----------	------------------------
N. quadrimaculalis	CNPYB430-16	NAFU Pyr002281	0				
N. quadrimaculalis	CNPYB431-16	NAFU Pyr002282	0				
N. quadrimaculalis	CNPYB432-16	NAFU Pyr002283	0				
N. quadrimaculalis	CNPYB433-16	NAFU Pyr002284	0				
N. quadrimaculalis	CNPYB434-16	NAFU Pyr002285	0				
N. quadrimaculalis	CNPYB435-16	NAFU Pyr002286	0				
N. quadrimaculalis	CNPYB436-16	NAFU Pyr002287	0				
N. quadrimaculalis	CNPYB437-16	NAFU Pyr002288	0				
N. quadrimaculalis	BOLD:AAD8178	CNPYB438-16	NAFU Pyr002289	658	KY080695	Shaanxi	NAFU Pyr002284
N. quadrimaculalis	BOLD:AAD8178	CNPYB440-16	NAFU Pyr002291	658	KY080701	Shaanxi	NAFU Pyr002291
N. quadrimaculalis	BOLD:AAD8178	CNPYB441-16	NAFU Pyr002292	658	KY080699	Shaanxi	
N. quadrimaculalis	BOLD:AAD8178	CNPYB408-16	NAFU Pyr002398	0		Shaanxi	
N. quadrimaculalis	BOLD:AAD8178	CNPYD497-10	Pyr000497	622	HM908666	Hubei	
N. quadrimaculalis	BOLD:AAD8178	CNPYD498-10	Pyr000498	658	HM908667	Hubei	
N. quadrimaculalis	CNPYD500-10	Pyr000500	0			Hubei	
N. quadrimaculalis	CNPYD501-10	Pyr000501	0			Hubei	
N. quadrimaculalis	CNPYD502-10	Pyr000502	0			Hubei	
N. quadrimaculalis	BOLD:AAD8178	CNPYD503-10	Pyr000503	658	HM908669	Hubei	
N. quadrimaculalis	BOLD:AAD8178	CNPYD504-10	Pyr000504	658	HM908670	Sichuan	
N. quadrimaculalis	BOLD:AAD8178	CNPYD505-10	Pyr000505	658	HM908671	Sichuan	
A new cryptic species of Nagiella Munroe from China revealed by DNA barcodes...

Barcode region of the mitochondrial COI gene by the primers pairs, LepF1 and LepR1 (Hajibabaei et al. 2006). After the PCR products were checked with 1% agarose gel, sequencing was performed at Sangon Biotechnology Co., Ltd. (Shanghai, China) using the same primers as in PCR.

Data analysis

Sequence alignment was carried out by using MUSCLE algorithm implemented in MEGA 6.0 (Tamura et al. 2013). MEGA 6.0 was also used to perform genetic distances under the Kimura 2-parameter model of base substitution, to produce the Neighbor-Joining (NJ) tree, and to perform bootstrap analysis (1000 replicates) (Kimura 1980). In the present study, we included four sequences of *Nagiella inferior* and selected *Patania ruralis* (Scopoli, 1763) as the primary out-group to build the tree which is most closely related genus. Sequences obtained from the current study were deposited in GenBank, in addition to being available in the BOLD dataset DS-PLEQUA.

Results

DNA sequence analysis

A total of 18 COI gene sequences of *N. occultalis* sp. n. and *N. quadrimaculalis* were obtained. The lengths were from 622–658 bp (mean 656 bp). The genetic distances within and between these two species of *Nagiella* are given in Table 2. Intraspecific genetic divergences ranged from 0.00–0.16 % (mean 0.078 %), whereas interspecific genetic divergence ranged from 3.12–3.28 % (mean 3.21 %). The neighbor-joining (NJ) tree (Fig. 1) showed two distinct barcode clusters that correspond to morphological differences between these two species.

	Nagiella occultalis sp. n.	*Nagiella quadrimaculalis*	*Nagiella inferior*	*Patania ruralis* (outgroup)
Nagiella occultalis sp. n.	**0.0000000**	0.0072358	0.0086344	
Nagiella quadrimaculalis	0.0320975	**0.000787822**	0.0101216	
Nagiella inferior	0.0475427	0.0598071	**0.000761036**	
Patania ruralis (outgroup)	0.1156349	0.1165689	0.1134248	**0.009202714**

The diagonal row of values (in bold) indicates intra specific distances, the values below the diagonal indicates mean interspecific distances and values above the diagonal indicates SE estimates obtained by bootstrap procedure (1000 replicates) as implemented in MEGA 6.0. The three species were defined using the 2.0% divergence.
Figure 1. Neighbor-joining tree (K2P) based on the 22 COI sequences of the three Nagiella species from China, rooted with Patania ruralis as outgroup. Bootstrap values <75 are not shown.

Taxonomy

Nagiella occultalis Misbah & Yang, sp. n.
http://zoobank.org/C252DFC4-FA47-4A75-85CE-3D7E99E25177

Etymology. The specific epithet refers to “cryptic”, as this previously undetected species stood within the N. quadrimaculalis complex.

Diagnosis. This species can be distinguished from N. quadrimaculalis by the width and length of the uncus, the proportions of the valva and transtilla, and size of the forewing, as described in Table 3.

Description (Figs 2A, 3). Body yellowish brown to black with white patches on wings. Length of forewing 15–16 mm. Head with frons shiny white, labial palpus bent over top of head. Patagium shiny black. Forewing dark brown, with small bean-shaped white spot of varying size near middle of reniform stigma in the base of discal cell; rectangular subdiscal white spot proportionally narrower or elongate. R₁ arising from cell at about apical third and almost parallel to Sc, R₂ parallel to R₁ but close to R₃₄, R₃ and R₄ long stalked and reached apical margin. M₁ and M₃ closer to each other at base than M₁ (almost of the same length) but all median veins on equal distance on outer margin. Vein Cu₂ originating from 2/3 of the cell. Anal vein A₁₂ prominent and complete while A₃ diminished before mid-length of wing. Hind wing with bean-shaped white spots near outer margin of medial line at terminal part of discal cell; Sc, radial and M₁ on same stalk, anal vein A₃ incomplete.
A new cryptic species of Nagiella Munroe from China revealed by DNA barcodes...

Figure 2. Adults, dorsal aspect A N. occultalis sp. n. B N. quadrimaculalis.

Figure 3. Wing venation of N. occultalis sp. n.
Male genitalia (Fig. 4A, B). Uncus subtrapezoid in outline, posterolateral angles rounded, distal margin slightly notched medially. Gnathos with proximal arms extended transversely from teguminal margin and joined mesially into subclavate distal projection extended almost to level of apex of uncus. Subscaphium very elongate, apex extended beyond apex of valvae. Transtilla triangular, broad basally and apically narrower. Valva relatively short and broad with several thickened setae on posterior margin. Sella elongate, digitiform, straight laterally, apex rounded. Saccus roundly conical. Phallus cylindrical, terminal end somewhat tapered, cornutus absent.

Table 3. Morphological differences between *Nagiella occultalis* sp. n. and *N. quadrimaculalis*.

Characteristics	*N. occultalis* sp. n.	*N. quadrimaculalis*
Forewing length	15–16 mm (Fig. 2A)	18–20 mm (Fig. 2B)
Small subdiscal spot on forewing	Proportionally narrower or elongate	Sub-quadrat
Uncus width and length	0.4 × 0.6 mm (Fig. 4A)	0.3 × 0.68 mm (Fig. 4C)
Posterior margin of uncus	Slightly notched medially	Evenly rounded
Valva	Broader, W/L 0.91 × 3.09 mm	Slender, W/L 0.7 mm × 2.08 mm
Sella with ventral edge	Straight	Slightly incurved
Subscaphium	Elongate, conical sclerotized	Unsclerotized
Size of transtilla	Narrower, 0.28 × 0.8 mm	Broadly triangular 0.3 × 0.9 mm
Phallus	Phallus L/valva L ratio 1.19 (Fig. 4B)	Phallus L/valva L ratio 1.7 (Fig. 4D)

Figure 4. Male genitalia **A, B** *N. occultalis* sp. n., genitalia slide NAFU PYR 002397 **C, D** *N. quadrimaculalis*, genitalia slide NAFU PYR 002069.
Female. Unknown

Distribution. China (Taibai Mountain, Shaanxi; Wufeng, Hubei).

Type material. Holotype. ♂: China: Shaanxi, Taibai Mountain, 1051 m, 25 July 2014, Zhou Lin (NWAFU), Specimen ID: NAFU PYR002397. Genitalia slide number: NAFU PYR002397. Paratypes. 1 ♂, same data as the holotype except 24 July 2014; 1 ♂, China, Hubei, Wufeng, Changleping town, 14 July 2008, Zhao Lu.

Remarks. The genus Nagiella, formerly comprised of three recognized species widespread in Burma, China, Japan and Malaysia (Borneo and Sarawak), is now increased to four with N. occultalis sp. n.

Discussion

Munroe (1976) indicated that Nagiella differs from Pleuroptya Meyrick, 1890 in several genital characters, i.e. short, wide uncus, gnathos developed, cornutus absent, valva broader with stout setae subapically, as well as in type of wing maculation. This taxonomic treatment was followed by Kirti and Sodhi (2001) and Rose (2002). However, members of the genus Nagiella have been placed in various genera, namely Pleuroptya Meyrick, 1890, Syllepte Hübner, 1823, Patania Moore, 1888 (Inoue, 1982; Wang, 1980; Li et al. 2009; Xu 2015; Irungbam et al. 2016; Kirti et al. 2016). Leraut (1997) also listed Nagiella as a junior synonym of Pleuroptya. Kirti and Gill (2007) synonymized Pleuroptya Meyrick, 1890 under Patania on the basis of shared characters such as the lack of gnathos, the valvae leaf-like and without setae, and the presence of distinct cornuti present in the phallus. In Nagiella the gnathos is present, the valvae are broader and bear stout subapical setae, and the cornuti are absent. Based on this morphological evidence and online Lepindex (Beccaloni et al. 2003), we consider that Nagiella warrants distinct generic status and we re-instate it as valid.

Acknowledgements

The authors are sincerely thankful to Dr. Jean-François Landry, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada for assistance with genitalia description and comments on the manuscript. Special thanks are extended to Dr. Christopher H. Dietrich, University of Illinois at Urbana Champaign, USA and Dr. Murray Fletcher, Orange Agricultural Institute, Orange NSW Australia, for reviewing and improving the manuscript. This study was supported by the National Natural Science Foundation of China (31201733), Natural Science Foundation of Shaanxi Province (2016JM3026), The Chinese Universities Scientific Fund (2452015012), The National Key Research and Development Program (2016YFC0501502) and The Ministry of Science and Technology of the People’s Republic of China (2005DKA21402, 2011FY120200).
References

Beccaloni G, Scoble M, Kitching I, Simonsen T, Robinson G, Pitkin B, Hine A, Lyal C (2003) The Global Lepidoptera Names Index (LepIndex). http://www.nhm.ac.uk/research-creation/research/projects/lepindex/ [accessed April 8, 2017]

Haines PW, Rubinoff D (2012) Molecular phylogenetic of the moth genus Omioodes Guenée (Crambidae: Spilmelinae), and the origins of the Hawaiian lineage. Molecular Phylogenetics and Evolution 65: 305–316. https://doi.org/10.1016/j.ympev.2012.06.021

Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America 4(103): 968–971.

Hampson GF (1898) A revision of the moths of the subfamily Pyraustinae and family Pyralidae. Proceedings of the Zoological Society of London 1898(4): 712–725.

Inoue H (1982) Pyralidae. In: Inoue H, Sugi K, Kuroko H, Moriuti S, Kawabe A (Eds) Moths of Japan (Vols 1, 2). Kodansha, Tokyo, 1: 307–404; 2: 223–254; 36–48, 228: 296–314.

Irungbarn JS, Chib MS, Wangdi K (2016) Taxonomic review of the superfamily Pyraloidea in Bhutan (Lepidoptera). Journal of Asia-Pacific Biodiversity 9: 355–382. https://doi.org/10.1016/j.japb.2016.06.004

Ivanova NV, Dewaard, JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes 6(4): 998–1002. https://doi.org/10.1111/j.1471-8286.2006.01428.x

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16(2): 111–120. https://doi.org/10.1007/BF01731581

Kirti JS, Gill NS (2007) Revival of genus Patania Moore and reporting of a new species menoni (Pyraustinae: Pyralidae: Lepidoptera). Journal of Entomological Research 31(3): 265–275.

Kirti JS, Singh N, Singh H (2016) Inventory of subfamily Pyraustinae (Crambidae: Lepidoptera) from Sikkim. Journal of Entomology and Zoology Studies 4(6): 700–705

Kirti JS, Sodhi JS (2001) A systematic list of Pyraustinae of northeastern India (Pyralidae: Lepidoptera). Zoos’ Print Journal 16(10): 607–614. https://doi.org/10.11609/JoTT.ZPJ.16.10.607-14

Kollar V, Redtenbacher L (1844) Aufzählung und Beschreibung der von Freiherrn Carl v. Hügel auf seiner Reisedurch Kaschmir und das Himaleyagebirge gesammelten Insecten In Hügel, Carl von Kaschmir und das Reich der Siek. Hallbergersche Verlagshandlung, Stuttgart 4: 395–564.

Kristensen NP (2003) Skeleton and muscles: adults. Handbook of Zoology 4: 39–132. https://doi.org/10.1515/9783110893724.39

Landry JF (2007) Taxonomic review of the leek moth genus Acrolepiopsis (Lepidoptera: Acrolepiidae) in North America. The Canadian Entomologist 139: 319–353. https://doi.org/10.4039/n06-098

Leraut PJA (1997) Liste systématique et synonymique des Lépidoptères de France, Belgique et Corse (2 edn). Alexanor, Supplément 7: 1–526.
A new cryptic species of Nagiella Munroe from China revealed by DNA barcodes...

Li HH, Ren YD, Zhang DD, Du XC, Li WC, You P (2009) Insect fauna of Henan: Lepidoptera: Pyraloidea. Science Press, Beijing, 440 pp.

Mally R, Segrer HA, Nuss M (2016) Udea ruckdescheli sp. n. from Crete and its phylogenetic relationships (Pyraloidea, Crambidae, Spilomelinae). Nota Lepidopterologica 39(2): 123–135. https://doi.org/10.3897/nl.39.9090

Moore F (1888) Descriptions of new Indian lepidopterous insects from the collection of the late Mr. WS Atkinson. Heterocera (continued) (Pyralidae, Crambidae, Geometridae, Tortricidae, Tineidae). In: Hewitson WC, Moore F (Eds) Descriptions of new Indian lepidopterous Insects from the collection of the late Mr. WS Atkinson. Asiatic Society of Bengal Taylor & Francis, Calcutta London, 199–299.

Munroe EG (1976) Pyraloidea: Pyralidae comprising the subfamily Pyraustinae tribe Pyraustini (part). Dominick RB, Dominick T, Ferguson DC (Eds) The Moths of America North of Mexico 13.2A. EW Classey Ltd. and The Wedge Entomological Research Foundation, London, 1–78. [pls 1–4, A–H]

Munroe EG, Solis MA (1999) Pyraloidea. In: Kristensen NP (Ed.) Lepidoptera, Moths and Butterflies, Evolution, Systematics and Biogeography. Walterde Gruyter, Berlin, 233–256.

Mutanen M, Aarvik L, Huemer P, Kaila L, Karsholt O, Tuck K (2012) DNA barcodes reveal that the widespread European tortricid moth Phalonidia manniana (Lepidoptera: Tortricidae) is a mixture of two species. Zootaxa 3262: 1–21.

Rajaesh H, Struwe JF, Raupach MJ, Ahrens D, Wägele JW (2013) Integration of cytochrome c oxidase I barcodes and geometric morphometrics to delimit species in the genus Gnapharma (Lepidoptera: Geometridae, Ennominae). Zoological Journal of the Linnean Society 169: 70–83. https://doi.org/10.1111/zoj.12053

Regier JC, Mitter C, Solis MA, Hayden JE, Landry B, Nuss M, Simonsen TJ, Yen SH, Zwick A, Cummings MP (2012) A molecular phylogeny for the pyraloid moths (Lepidoptera: Pyraloidea) and its implications for higher-level classification. Systematic Entomology 37(4): 635–656. https://doi.org/10.1111/j.1365-3113.2012.00641.x

Rose HS (2002) An inventory of the moth fauna (Lepidoptera) of Jatinga, Assam, India. Zoos’ Print Journal 17(2): 707–721. https://doi.org/10.11609/JoTT.ZPJ.17.2.707-21

Scopoli JA (1763) Entomologia Carniolica exhibens insecta Carnioliae indigena et distributa in ordines, genera, species, varietates, method Linneana. Joannis Thomae Trattner, Vienna, 420 pp. https://doi.org/10.5962/bhl.title.119976

Sutrisnño H (2005) Molecular phylogeny of Agrioglypta Meyrick and Talanga Moore (Lepidoptera: Crambidae; Spilomelinae) inferred from nuclear EF-1α Gene, Hayati Journal of Biosciences 12(2): 45–49. https://doi.org/10.1016/s1978-3019(16)30323-0

Swinhoe C (1894) New Pyrales from the Khasia Hills. Annals and Magazine of Natural History, including Zoology, Botany and Geology, London 14: 197–210.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30(12): 2725–2729. https://doi.org/10.1093/molbev/msr197

Walker F (1866) Supplement 4. List of the Specimens of Lepidopterous Insects in the Collection of the British Museum London 34: 1121–1533.
Wang PY (1980) Lepidoptera: Pyralidae. Economic insect fauna of China suppl. 21: 1–229.
Warren W (1896) New species of Pyralidae from Khasia Hills. Annals and Magazine of Natural History, including Zoology, Botany and Geology 18(6): 107–232.
Wilson JJ, Landry JF, Janzen DH, Hallwachs W, Nazari V, Hajibabaei M, Hebert PDN (2010) Identity of the ailanthus webworm moth (Lepidoptera, Yponomeutidae), a complex of two species: evidence from DNA barcoding, morphology and ecology ZooKeys 46: 41–60. https://doi.org/10.3897/zookeys.46.406
Xu D (2016) The Molecular Phylogenetic Study of the genus *Patania* from China. Master’s thesis, Southwest University, Chongqing, China.
Xu LJ (2015) Taxonomic Study on *Patania* Moore, 1888 and *Syllepte* Hubner, 1823 from China (Lepidoptera: Pyraloidea: Spilomelinae). Master’s thesis, Southwest University, Chongqing, China.
Yang ZF, Landry JF, Handfield L, Zhang YL, Solis MA, Handfield D, Scholtens BG, Mutanen M, Nuss M, Hebert PDN (2012) DNA barcoding and morphology reveal three cryptic species of *Anania* (Lepidoptera: Crambidae: Pyraustinae) in North America, all distinct from their European counterpart. Systematic Entomology 37(4): 686–705. https://doi.org/10.1111/j.1365-3113.2012.00637.x
Yang ZF, Landry JF, Hebert PDN (2016) A DNA Barcode Library for North American Pyraustinae (Lepidoptera: Pyraloidea: Crambidae). PLoS ONE 11(10): 1–15. https://doi.org/10.1371/journal.pone.0161449