Interaction of Pten gene and AKT/mTOR pathway in endometrial adenocarcinoma proliferation

Dan Tang1,2, Ming-Rong Xi1,2, Xi Zeng1,2,*

1Department of Gynecology and Obstetrics, The West China Second University Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
2Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, 610041 Chengdu, Sichuan, China

*Correspondence: zengxi1003@scu.edu.cn (Xi Zeng)
Academic Editor: Enrique Hernandez
Submitted: 14 November 2021 Revised: 17 January 2022 Accepted: 19 January 2022 Published: 15 April 2022

Abstract

Objective: The Pten/AKT/mTOR pathway is one of the most critical pathways in tumor proliferation. The present research aimed to analyze the interaction between Pten gene and AKT/mTOR pathway in endometrial cancer cell lines. Methods: TCGA analysis was used to study the relationship between Pten expression and survival of endometrial cancer patients. Human endometrial cancer cell lines with low Pten expression (Ishikawa) and with high Pten expression (HEC-1-A) were selected. Plasmid transfection was used to regulate the Pten expression in the cell lines. QRT-PCR and Western Blot were adopted to detect Pten/AKT/mTOR expressions in tumor cells. Western blot of Ki-67 and CCK-8 were adopted to detect the activity of cells proliferation. A \(p < 0.05 \) was considered to be statistically significant. Results: The TCGA analysis showed the Pten expression was associated with survival of endometrial cancer patients significantly. Plasmid transfections elevated Pten expression in Ishikawa and decreased Pten expression in HEC-1-A cells. After the plasmid transfection, with overexpression of Pten in Ishikawa cell line, the Western Blot and QRT-PCR revealed the AKT/mTOR pathway is restrained, leading to decreased cell proliferation; with Pten decreased in HEC-1-A cells, the AKT/mTOR pathway is activated, leading to increased cell proliferation. Conclusions: A decreased expression of Pten gene in Ishikawa and HEC-1-A cell lines could activate AKT/mTOR pathway and promote tumor cells proliferation.

Keywords: Pten/AKT/mTOR pathway; endometrial cancer; tumor proliferation

1. Introduction

Endometrial cancer (EC) is one of the major gynecologic cancers, and 65,620 new cases were diagnosed in 2020 in the United States \cite{1}. Based on histopathology, EC can be classified into estrogen-dependent EC (type I), accounting for 80–90% and not estrogen-dependent (type II), accounting for 10–20% \cite{2,3}.

At the present, surgery is the main treatment method for this disease \cite{4}. But surgical treatment may not be possible for patients who cannot tolerate surgery, patients who desire fertility preservation, or patients with advanced-stage disease \cite{5}. Chemotherapy and hormonal therapy have limitations \cite{5}. Therefore, studying the mechanism of tumorigenesis may provide bio-therapeutic target for patients with EC.

The Pten gene was first discovered in 1997, located at 10q23.3, with 200kb in length, containing 9 exons and 8 introns \cite{6}. The Pten gene plays an important role in maintaining the normal physiological activities of cells by regulating multiple pathways, controlling the proliferation and migration of tumor cells, and apoptosis. Mutations of the Pten gene can be found in many types of cancers \cite{6}.

The phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin PI3K/AKT/mTOR) pathway is one of the downstream pathways of Pten, associated with tumor cell proliferation \cite{7}. Abnormal expression of the Pten/AKT/mTOR signaling pathway has been found in liver, gastrointestinal, breast, lung, leukemia and other malignant tumors, which changes metabolism and proliferation of tumor cells \cite{8–12}, and is associated with poor prognosis \cite{9,13}.

This research aimed to analyze the interaction of the Pten/AKT/mTOR pathway in EC cell lines.

2. Materials and methods

2.1 The Cancer Genome Atlas (TCGA) analysis

The TCGA database (https://portal.gdc.cancer.gov) is the most authoritative cancer gene database, including gene expression, miRNA data, copy number variation, methylation, and single nucleotide polymorphisms (SNP). We downloaded the original DNA expression data of EC and analyzed it.

2.2 Cell culture

The HEC-1-A and Ishikawa cell lines were purchased from the National Collection of Authenticated Cell Cultures, Shanghai, China. The Pten gene is highly expressed in HEC-1-A, while its expression in Ishikawa is low. Both cell lines are positive for estrogen receptor-alpha (ER-α). The HEC-1-A and Ishikawa cells were stored in liq-
uid nitrogen and maintained in dulbecco’s modified eagle medium (DMEM) before using.

2.3 Reagents and transfection

In each cell line, three groups of blank control (BC), negative control (NC), overexpression (OE) or knockdown (KD) were established. BC group was without lentivirus transfection; NC group was transfected by naked lentivirus; OE group was transfected by lentivirus with segment enhancing Pten expression; and KD group was transfected by lentivirus with segment silencing Pten expression. Human Pten (NM 000314.8) cDNA was cloned into pLVX-IRES-Zsgreen vector. Lipo2000 (Thermo Fisher, America, catalog 11668027, Carlsbad, California, USA) were used to transfect cells, according to manufacturer’s protocol. Fluorescence-based microscopy was used to observe the transfection effectiveness.

2.4 RNA extraction and quantitative real-time polymerase chain reaction (qRT-PCR)

Total RNA was isolated by TRizol (Invitrogen™, 15596018, Carlsbad, California, USA). RNA was transcribed to cDNA using PrimeScript™ RT reagent Kit (TaKaRa, RR047A, Ōtsu, Shiga, Japan), then cDNA was used as the template to perform qRT-PCR, using SYBR Green (Bio-Rad, 1725151, Hercules, California, USA) for molecular probes. Glyceraldehyde phosphate dehydrogenase (GAPDH) was detected as a control to normalize the threshold value. The primers information was followed (Table 1).

Gene name	Genetic code	
Pten	forward: 5′-TGGATTCGACTTAGACTTGACCT-3′ reverse: 5′-GGTGGGTTATGGTCTTCAAAAGG-3′	
AKT	forward: 5′-GGACAAACCGCCATCCAGACT-3′ reverse: 5′-GCCAGGGACACCTCCATCTC-3′	
Raptor	forward: 5′-CTAATTATTCGGTAACTGACTTGA-3′ reverse: 5′-ACAGTTCAGCCATCCTTGGAG-3′	
Rictor	forward: 5′-GCTAGGTGCATTGACATACAACA-3′ reverse: 5′-AGTGCTAGTTCACAGATAATGGC-3′	
GAPDH	forward: 5′-TCGGAGGCTAACGGATTTG-3′ reverse: 5′-TTCCCGTTCTCAGCCTTGAC-3′	

2.5 Protein extraction and western blotting tris buffered saline (TBS)

The total protein was extracted from cell lines in radioimmunoprecipitation assay (RIPA) lysis buffer (Thermo Scientific™, 89901, Carlsbad, California, USA). Samples were separated in 10% sodium dodecyl sulfate-polyacrylamide (SDS) polyacrylamide gels and transferred to nitrocellulose membranes. The protein was measured by enhanced chemiluminesence (ECL) blotting analysis system. The primary antibodies included anti-Pten (Abcam, ab267787, Cambridge, UK), anti-PISK (P85) (Abcam, ab182651, Cambridge, UK), anti-p-AKT(S473) (Abcam, ab81283, Cambridge, UK), anti-p-AKT(T308) (Abcam, ab38449, Cambridge, UK), anti-Raptor (Abcam, ab40768, Cambridge, UK), anti-Rictor (Abcam, ab70374, Cambridge, UK), anti-ER-a (Abcam, ab32063, Cambridge, UK), anti-Ki-67 (Abcam, ab16667, Cambridge, UK) and anti-GAPDH (Abcam, ab8245, Cambridge, UK).

2.6 Cell proliferation

Cell viability was measured by Ki-67 (Abcam, ab16667) and Cell Counting Kit-8 (CCK-8) (Abcam, ab228554).

2.7 Statistics

All experiments were repeated 3 times independently. Data were presented as mean ± standard deviation, and all statistical analyses were performed by SPSS (Version 22.0, IBM, USA). Statistical significance was analyzed by Stu-
3. Results

3.1 TCGA analysis

Data on 512 cases were available for analysis, including a normal group (n = 35) and a tumor group (n = 477). We did a survival analysis based on the high or low expression of the *Pten* gene, which proved that *Pten* expression was statistically significantly associated with survival ($p = 0.037$) (Fig. 1).

3.2 The expression of ER-alpha protein in cell lines

The western blot confirmed that Ishikawa and HEC-1-A were positive for ER-a (Fig. 2). After transfection of 48 hours, stable expressions of fluorescent signal were shown in each group under fluorescent microscope, indicating a successful transfection (Fig. 3).
3.3 The mRNA and protein expression of Pten/AKT/mTOR pathway in cell lines after transfection

In Ishikawa cells, the mRNA level of Pten in OE group increased significantly compared to the BC group; while the mRNA of AKT, Raptor, and Rictor decreased significantly (p < 0.05) (Fig. 4). In HEC-1-A cells, Pten mRNA in KD group decreased (p < 0.05), while the AKT, Raptor, and Rictor decreased significantly (p < 0.05) (Fig. 5).

The proteins of Pten/AKT/mTOR signaling pathway in Ishikawa (Fig. 6) and HEC-1-A cells (Fig. 7) were confirmed similar to the mRNA levels shown above.

3.4 The effect of the Pten/AKT/mTOR pathway on proliferation

After 48 hours of transfection, the expression of Ki-67 protein was detected by western blotting (Fig. 8A–D). In Ishikawa cells, compared with the BC group, the Ki-67 in OE group was significantly lower (p = 0.03) (Fig. 8A,B). In HEC-1-A cells the Ki-67 in KD group was significantly higher (p = 0.02), compared with the NC group (Fig. 8C,D).

In CCK-8, with transfection progress, the cell viability of Ishikawa cells with Pten overexpression gradually decreased; on the contrary, the cell viability of HEC-1-A cells with Pten knockdown gradually increased (Fig. 8E,F).

4. Discussion

Previous studies in lung, prostate, colon, and bladder cancer show that with tumor progression, the expression of the Pten gene tends to be lower [14–19]. A slight reduction in Pten expression in animal models could have a major impact on cancer susceptibility [20]. Mice with Pten ± heterozygous deletion (Pten ±) could develop endometrial atypical hyperplasia, and ab 20% even progressed to high differentiated cancer [21].

AKT/mTOR is a classic pathway for tumor cell proliferation [22–25]; and AKT regulates tumor-associated cell processes including cell growth, cell cycle progression, survival, migration, epithelial-mesenchymal transition and angiogenesis [26]. Loss of Pten induces abnormal activation of the AKT/mTOR pathway and promotes tumor cell growth, and proliferation [27]. Primary Pten mutation with activation of the AKT pathway is rare in EC, but the activation of the AKT pathway caused by other reasons often occurs in EC making the disease progress rapidly [26,28]. After knocking out Pten gene in mice, the AKT pathway was abnormally activated [29]. A similar effect can be obtained if Pten inhibitors were used [28,30].

In our study, after 48 hours of transfection, QRT-PCR suggested that when Pten mRNA was highly expressed, the AKT, Rictor, and Raptor of Pten downstream were decreased, and vice versa (p < 0.05). This is roughly consistent with the regulation of Pten/AKT/mTOR in other tumors.
In the Western blot, comparing with the BC group, p-AKT (T308), p-AKT (S473) and p-Raptor proteins in Ishikawa and HEC-1-A cell lines were regulated by the expression of Pten \((p < 0.05) \), which was consistent with the results of qRT-PCR \([31,32]\).

After the plasmid transfection, with overexpression of Pten in the Ishikawa cell line, cell proliferation decreased, while a decline in Pten expression in the HEC-1-A cell line resulted in increased cell proliferation. The above results suggest that the expression level of Pten in cell lines of EC is inversely related to the activity of tumor proliferation, which is consistent with the results of other studies, including renal cell carcinoma, glioblastoma and bladder cancers \([33–36]\).

5. Conclusions and limitations

In Ishikawa and HEC-1-A cell lines, the decreased expression of the Pten gene could activate AKT/mTOR pathway and promoting the proliferation activity of tumor cells, which is worthy of further investigation as a potential immunotherapy target. The HEC-1-A and Ishikawa cell lines were used for transfection experiments; as their Pten expression levels were opposite (HEC-1-A with high Pten expression, Ishikawa with low Pten expression), the experimental results are reliable. However, we did not perform animal experiments, which should be considered for future research.

Abbreviations

EC, Endometrial cancer; PI3K, phosphatidylinositol 3-kinase; AKT, protein kinase B; mTOR, mammalian target of rapamycin; ER-a, estrogen receptor-a; qPCR, quantitative real-time polymerase chain reaction; BC, blank control; NC, negative control; OE, overexpression; KD, knock-down; CCK-8, Cell Counting Kit-8.

Author contributions

DT—Project development, Performed the research, Data Collection and management, Statistical analysis, Manuscript writing. MRX—Obtaining funding, Critical revision of the manuscript, Supervision. XZ—Project development, Performed the research, Data Collection and management, Statistical analysis, Critical revision of the manuscript, Supervision, Obtaining funding. All authors contributed to editorial changes in the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Acknowledgment

We would like to express our gratitude to all those who helped us during the writing of this manuscript. Thanks to all the peer reviewers for their opinions and suggestions.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81572573) and New Bud Research Funding of West China Second Hospital (No. Kx246).

Conflict of interest

The authors declare no conflict of interest.

References

[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: a Cancer Journal for Clinicians. 2020; 70: 7–30.
[2] Saso S, Chatterjee J, Georgiou E, Ditiri AM, Smith JR, Ghaem-Maghami S. Endometrial cancer. British Medical Journal. 2011; 343: d3954.
[3] Bokhman JV. Two pathogenic types of endometrial carcinoma. Gynecologic Oncology. 1983; 15: 10–17.
[4] Colombo N, Preti E, Landoni F, Carinelli S, Colombo A, Marini C, et al. Endometrial cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology. 2011; 24 Suppl 6: v33–v38.
[5] Chaudhry P, Asselin E. Resistance to chemotherapy and hormone therapy in endometrial cancer. Endocrine-Related Cancer. 2009; 16: 363–380.
[6] Li J, Yen C, Liaw D, Podsypianina K, Bose S, Wang SJ, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997; 275: 1943–1947.
[7] Luongo F, Colonna F, Calapà F, Vitale S, Fiori ME, De Maria R. PTEN Tumor-Suppressor: the Dam of Stemness in Cancer. Cancers. 2019; 11: 1076.
[8] Khemlina G, Ikeda S, Kurzrock R. The biology of Hepatocellular carcinoma: implications for genomic and immune therapies. Molecular Cancer. 2018; 16: 149.
[9] Papadimitrapokoulou V, Adjei AA. The AKT/mTOR and mitogen-activated protein kinase pathways in lung cancer therapy. Journal of Thoracic Oncology. 2006; 1: 749–751.
[10] Cai C, Deng W, Liu S, Huang L, Li Y, Li G, et al. Anthrax toxin receptor 1/tumor endothelial marker 8 promotes gastric cancer progression through activation of the PI3K/AKT/mTOR signaling pathway. Cancer Science. 2020; 111: 1132–1145.
[11] du Rusquec P, Blonz C, Frenel JS, Campone M. Targeting the PI3K/AKT/mTOR pathway in estrogen-receptor positive her2 negative advanced breast cancer. Therapeutic Advances in Medical Oncology. 2020; 12: 175883592094093.
[12] Wu Y, Zhu H, Wu H. PTEN in Regulating Hematopoiesis and Leukemogenesis. Cold Spring Harbor Perspectives in Medicine. 2020; 10: a036244.
[13] Chen J, Zhao K, Li R, Shao R, Chen C. Activation of PI3K/AKT/mTOR pathway and dual inhibitors of PI3K and mTOR in endometrial cancer. Current Medicinal Chemistry. 2014; 21: 3070–3080.
[14] Gabriel K, Ingram A, Austin R, Kapoor A, Tang D, Majeed F, et al. Regulation of the tumor suppressor PTEN through exosomes: a diagnostic potential for prostate cancer. PLoS ONE. 2013; 8: e70047.
[15] Zeng X, Hu Z, Ke X, Tang H, Wu B, Wei X, et al. Long noncoding RNA DLX6-as1 promotes renal cell carcinoma progression via miR-26a/PTEN axis. Cell Cycle. 2017; 16: 2212–2219.
[16] Jamsaspidivili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, et al. Clinical implications of PTEN loss in prostate cancer. Nature Reviews. Urology. 2018; 15: 222–234.
[17] Osei-Amponsa V, Buckwalter JM, Shuman L, Zheng Z, Yang L, Li J, et al. Regulation of the tumor suppressor PTEN through exosomes: a diagnostic potential for prostate cancer. PLoS ONE. 2013; 8: e70047.
mashita H, Walter V, et al. Hypermethylation of FOXA1 and allelic loss of PTEN drive squamous differentiation and promote heterogeneity in bladder cancer. Oncogene. 2020; 39: 1302–1317.

Yu M, Trobridge P, Wang Y, Kanngurn S, Morris SM, Knoblaugh S, et al. Inactivation of TGF-β signaling and loss of PTEN cooperate to induce colon cancer in vivo. Oncogene. 2014; 33: 1538–1547.

Hsu Y, Hung J, Chang W, Jhan S, Lin Y, Pan Y, et al. Hypoxic Lung-Cancer-Dependent Extracellular Vesicle MicroRNA-103a Increases the Oncogenic Effects of Macrophages by Targeting PTEN. Molecular Therapy. 2018; 26: 568–581.

Sato N, Tsunoda H, Nishida M, Morishita Y, Takimoto Y, Kubo T, et al. Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary: possible sequence progression from benign endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the ovary. Cancer Research. 2000; 60: 7052–7056.

Podsypanina K, Lee RT, Politis C, Hennessy I, Crane A, Puc J, et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in PTEN+/- mice. Proceedings of the National Academy of Sciences of the United States of America. 2001; 98: 10320–10325.

Wang S, Zheng Y, He Z, Zhou W, Cheng Y, Zhang C. SH2B1 promotes NSCLC cell proliferation through PI3K/AKT/mTOR signaling cascade. Cancer Cell International. 2019; 18: 132.

Kurgan N, Tsakiridis E, Kouvelioti R, Moore J, Klentrou P, Tsiani E. Inhibition of Human Lung Cancer Cell Proliferation and Survival by Post-Exercise Serum is Associated with the Inhibition of AKT, mTOR, p70 S6K, and Erk1/2. Cancers. 2017; 9: 46.

Wu M, Yang G, Cheng P, Chu P, Li C. Molecular Targets in Hepatocarcinogenesis and Implications for Therapy. Journal of Clinical Medicine. 2018; 7: 213.

Mabuchi S, Kuroda H, Takahashi R, Sasano T. The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecologic Oncology. 2015; 137: 173–179.

Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV. The AKT/PKB pathway: molecular target for cancer drug discovery.