Observation of the $\gamma\gamma \rightarrow \tau\tau$ process in Pb+Pb collisions and constraints on the τ-lepton anomalous magnetic moment with the ATLAS detector

The ATLAS Collaboration

This Letter reports the observation of τ-lepton pair production in ultraperipheral lead–lead collisions, $\text{Pb}+\text{Pb} \rightarrow \text{Pb}(\gamma\gamma \rightarrow \tau\tau)\text{Pb}$, and constraints on the τ-lepton anomalous magnetic moment, a_τ. The dataset corresponds to an integrated luminosity of 1.44 nb$^{-1}$ of LHC Pb+Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV recorded by the ATLAS experiment in 2018. Selected events contain one muon from a τ-lepton decay, an electron or charged-particle track(s) from the other τ-lepton decay, little additional central-detector activity, and no forward neutrons. The $\gamma\gamma \rightarrow \tau\tau$ process is observed in Pb+Pb collisions with a significance exceeding 5 standard deviations, and a signal strength of $\mu_{\tau\tau} = 1.03^{+0.06}_{-0.05}$ assuming the Standard Model value for a_τ. To measure a_τ, a template fit to the muon transverse-momentum distribution from τ-lepton candidates is performed, using a dimuon ($\gamma\gamma \rightarrow \mu\mu$) control sample to constrain systematic uncertainties. The observed 95% confidence-level interval for a_τ is $-0.057 < a_\tau < 0.024$.
Measurements of the anomalous magnetic moment, \(a_\ell = \frac{1}{2}(g_\ell - 2) \), of charged leptons \(\ell \) (electrons, muons, and \(\tau \)-leptons) are cornerstone tests of the Standard Model (SM) with unique sensitivity to beyond-the-SM (BSM) phenomena. The leading contribution to \(a_\ell \) in the SM is the one-loop Schwinger term \(a_{\text{SM}} \approx 0.00116 \) [1, 2], where \(a_{\text{SM}} \) is the electromagnetic (EM) fine-structure constant. For the electron (muon), \(a_\ell \) (\(a_\mu \)) is tested to parts per \(10^{10} \) [3–8] (\(10^7 \) [9–11]) precision. Measurements of \(a_\mu \) report tensions with the SM expectation [12–16], which may suggest BSM dynamics. Specific BSM scenarios such as supersymmetry [17] predict enhancements that scale quadratically with lepton mass \(m_\ell \), i.e. \(\delta a_\ell \propto m_\ell^2 \), resulting in a \((m_\tau/m_\mu)^2 \approx 280 \) times larger effect for \(\tau \)-leptons. However, the short \(\tau \)-lepton lifetime precludes precise spin-precession measurements of \(a_\tau \) to test the SM prediction of \(a_\tau^{\text{SM}} = 0.001 177 21 \) (5) [18] and potential BSM contributions.

Photon-induced events arise from interactions between the EM fields surrounding the beam particles at colliders. Observing photon-induced \(\tau \)-lepton pairs \((\gamma\gamma \rightarrow \tau\tau) \) predicted to occur at the Large Hadron Collider (LHC) [19–26] would open the way to hadron-collider probes of \(a_\tau \). Currently, the most precise single-experiment measurement is \(a_\tau = -0.018 \) (17) by the DELPHI Collaboration [27, 28] using \(\gamma\gamma \rightarrow \tau\tau \) events at the Large Electron Positron (LEP) collider. The OPAL [29] and L3 [30] Collaborations also set constraints using radiative \(\tau \)-lepton decays [31]. At the LHC, photon-induced dilepton production has only been measured in the dielectron (ee) and dimuon (\(\mu\mu \)) channels, using proton–proton (\(pp \)) [32–37] and lead–lead (\(\text{Pb+Pb} \)) collisions [38–43]. The \(\tau\tau \) channel is challenging due to hadronic backgrounds and neutrinos in \(\tau \)-lepton decays diluting visible final-state kinematics. This renders triggering and reconstruction more difficult, especially in high-luminosity \(pp \) collisions. Strategies to overcome these experimental obstacles using heavy-ion collisions were proposed in Refs. [44–46].

This Letter presents the observation of the \(\text{Pb+Pb} \rightarrow \text{Pb}(\gamma\gamma \rightarrow \tau\tau)\text{Pb} \) process and measurement of \(a_\tau \) using 1.44 nb\(^{-1}\) of \(\sqrt{s_{\text{NN}}} = 5.02 \) TeV \(\text{Pb+Pb} \) data recorded by ATLAS in 2018. The EM fields accompanying the ions coherently create photons that interact to produce \(\tau \)-lepton pairs. The cross-section is enhanced by \(Z^4 \) relative to \(pp \) collisions, where \(Z \) is the atomic number (\(Z = 82 \) for lead). The ions can remain intact, enabling selection of low-multiplicity events with one muon originating from one of the \(\tau \)-leptons, while the other \(\tau \)-lepton decay is reconstructed as either an electron or one or three charged-particle tracks with low transverse momentum.

The ATLAS experiment [47–49] is a multipurpose particle detector with cylindrical geometry [50], comprising an inner detector (ID) tracker, EM and hadronic calorimeters, and a muon spectrometer (MS). The zero-degree calorimeters (ZDC) [51] are located at \(z = \pm 140 \) m from the interaction point, and detect neutral particles such as neutrons emitted from interacting nuclei. A two-level trigger system [52, 53] was used to select events containing one muon with \(p_T > 4 \) GeV, and at most 50 GeV (3 GeV) of transverse energy deposited in the whole (forward \(3.2 < |\eta| < 4.9 \)) calorimeter [54]. An extensive software suite [55] is used in the reconstruction and analysis of real and simulated data, in detector operations, and in the trigger and data acquisition systems. Standard data-quality requirements are imposed [56]. The average number of hadronic interactions per bunch crossing was 0.003.

Samples of simulated \(\gamma\gamma \rightarrow \tau\tau \) signal events were produced at leading order in QED using the STARLIGHT 2.0 [57] Monte Carlo (MC) generator, interfaced with Tauola [58, 59] for \(\tau \)-lepton decays. Final-state radiation (FSR) from the \(\tau \)-leptons and charged decay products of \(\tau \)-leptons was simulated using Pythia 8.245 [60] and Photos++ 3.61 [61], respectively. One of the dominant background sources is the \(\gamma\gamma \rightarrow \mu\mu \) process, and its contribution is estimated with the aid of MC samples generated using STARLIGHT; Pythia 8 was used to model EM FSR from the muons. The photon-flux distribution in simulated \(\gamma\gamma \rightarrow \tau\tau \) and \(\gamma\gamma \rightarrow \mu\mu \) events was reweighted to that of Superchic 3.05 [62], differentially in
dilepton invariant mass and dilepton rapidity. In the Starlight and Superchic simulations, no restriction on the Coulomb breakup of either nucleus was imposed. Dijet samples from photon-induced diquark production, $\gamma\gamma \rightarrow q\bar{q}$, were generated using Pythia 8. Nondiffractive photonuclear events ($\gamma A \rightarrow X$) were simulated with Starlight interfaced with Dpmjet-III [63]. All MC samples were passed through a detailed detector simulation based on Geant4 [64, 65].

Charged-particle tracks reconstructed in the ID must satisfy $p_T > 100$ MeV, $|\eta| < 2.5$, transverse impact parameter $|d_0| < 1.5$ mm, and the “Loose Primary” track selection criterion [66–68]. Electrons must satisfy $p_T > 4$ GeV, $|\eta| < 2.47$ (excluding the calorimeter transition region, i.e. $|\eta| \notin [1.37, 1.52]$), $|d_0| < 0.5$ mm, and “Loose” [69] likelihood-based identification criteria. Muons must satisfy $p_T > 4$ GeV, $|\eta| < 2.4$, $|d_0| < 0.3$ mm, and “LowPt” [70] identification criteria. Small corrections, derived using tag-and-probe methods similar to those in Refs. [40, 71, 72], are applied to simulated reconstruction and trigger efficiencies of electrons and muons. Clusters of topologically connected calorimeter cells called topoclusters [73] must satisfy $|\eta| < 4.9$, $p_T > 0.1$ GeV ($p_T > 1$ GeV) for $2.5 < |\eta| < 4.9$ ($|\eta| < 2.5$), and the cell significance criteria for measured energies outlined in Ref. [74]. Topoclusters from calorimeter regions with an abnormal noise distribution are removed using a data-driven procedure based on analyzing η–ϕ distributions of topocluster activity for each calorimeter layer. Reconstructed photons must satisfy $E_T > 1.5$ GeV, $|\eta| < 2.37 \notin [1.37, 1.52]$, and dedicated identification criteria defined in Ref. [72].

Selected events must contain exactly one muon, which targets a muonic decay of one of the τ-leptons while reducing backgrounds from $\gamma \gamma \rightarrow \mu\mu$ and $\gamma \gamma \rightarrow q\bar{q}$. Three signal regions (SR) then categorize events by the decay signature of the other τ-lepton. The $\mu\epsilon$-SR category additionally requires one electron, and no additional tracks separated from the muon (electron) by $\Delta R_{\mu(e),\text{trk}} > 0.1$, which targets fully leptonic decays of both τ-leptons. The different-flavor ($\mu\epsilon$) requirement suppresses same-flavor backgrounds dominated by $\gamma \gamma \rightarrow \mu\mu/ee$. The $\mu 1T$-SR ($\mu 3T$-SR) category requires exactly one track (three tracks) separated from the muon by $\Delta R_{\mu,\text{trk}} > 0.1$, which targets τ-lepton decays to one or three charged hadrons. The one-track requirement also captures leptonic τ-lepton decays that fail electron or muon reconstruction. The electric charges of the muon, electron, and tracks must sum to zero.

For both $\mu 1T$-SR and $\mu 3T$-SR, events must contain no additional muons satisfying looser criteria and no electrons to reject $\gamma \gamma \rightarrow \mu\mu/ee$ backgrounds. The looser requirements on muons comprise matched tracks in the ID and MS satisfying $p_T > 2$ GeV and $|\eta| < 2.5$. To suppress hadronic backgrounds such as photonuclear processes, there must be no topoclusters separated from the muon (track or three-track system [75]) by $\Delta R_{\text{clust},\mu} > 0.3$ ($\Delta R_{\text{clust},\text{trk(s)}} > 1.0$); this requirement is referred to as the topocluster veto. To further reduce photonuclear backgrounds, the acoplanarity between the muon and the track (three-track system) must satisfy $A_{\phi,\text{trk(s)}}^\mu = 1 - |\Delta \phi_{\mu,\text{trk(s)}}|/\pi < 0.4 (0.2)$. The signal has a narrower $A_{\phi,\text{trk(s)}}^\mu$ distribution in $\mu 3T$-SR than $\mu 1T$-SR, motivating the tighter requirement.

For $\mu 1T$-SR, the p_T of the muon–track pair must satisfy $p_T^{\mu,\text{trk}} > 1$ GeV to reject p_T-balanced backgrounds, such as $\gamma\gamma \rightarrow \mu\mu$. To further reduce the $\gamma\gamma \rightarrow \mu\mu$ background, the p_T of the muon, track, and photon (topocluster) system must fulfill $p_T^{\mu,\text{trk},\gamma_{\text{clust}}} > 1$ GeV for events containing a photon (topocluster) within $\Delta R_{\gamma_{\text{clust}},\text{trk}} = 1$ of the track. If there are multiple nearby photons (topoclusters), the highest-p_T photon (topocluster) is used. The topoclusters considered here must have $p_T > 2$ GeV and not be track-matched; these criteria avoid track-induced topoclusters from, e.g., charged-pion energy deposits. Topoclusters within $\Delta R_{\text{clust},\text{trk}} = 0.1$ of a track with $p_T > 0.7$ GeV extrapolated to the calorimeter are considered track-matched. Low-multiplicity events in minimum-bias data are used to correct for the bending due to the magnetic field, such that the $\Delta R_{\text{clust},\text{trk}}$ distribution of topoclusters associated with a track peaks at
The dominant sources of background after event selection are radiative dimuon (\(\gamma\gamma \rightarrow \mu\mu\gamma\)) and photonuclear events with low central-detector activity.

For \(\mu 3\)T-SR, the three-track system mass must fulfill \(m_{3\text{trk}} < 1.7\) GeV, assuming each track has the charged-pion mass of 140 MeV. This requirement retains three-prong hadronic \(\tau\)-lepton decays and suppresses background from exclusive \(\rho^0\) mesons (\(\gamma A \rightarrow \rho^0 \rightarrow \pi\pi\)) produced simultaneously with \(\gamma\gamma \rightarrow \mu\mu\) events. In this background process, neither muon is correlated with the \(\pi\pi\) system and \(m_{\pi\pi\mu}\) typically exceeds 1.7 GeV for a muon with \(p_T\) of several GeV.

To constrain the \(\gamma\gamma \rightarrow \mu\mu\) background, a control region (CR) of dimuon events called \(2\mu\)-CR is defined. It requires exactly two muons with invariant mass above 11 GeV to suppress quarkonia (\(Y(nS) \rightarrow \mu\mu\)) backgrounds and no additional tracks separated from the muons by \(\Delta R_{\mu,\text{trk}} > 0.1\).

Events must additionally not have ZDC energies satisfying \(E_{ZDC} > 1\) TeV on each side, mainly to suppress photonuclear backgrounds where ion dissociation typically occurs. This class of events with no forward neutrons detected (0n0n) corresponds to the absence of Coulomb breakup of either nucleus. Such breakup typically proceeds through the giant dipole resonance and induces the emission of one or more neutrons [40]. This requirement also fully suppresses lepton-pair production in which the initial photon emission results in the dissociation of one or both nuclei [40]. The SRs and \(2\mu\)-CR are all statistically independent. Since the extra forward neutron emissions are not simulated, the \(\gamma\gamma \rightarrow \mu\mu\) MC samples are corrected using data-driven probabilities for the 0n0n event topology, which are found to be between 0.4 and 0.7. These are extracted from \(2\mu\)-CR without the \(E_{ZDC}\) requirement, differentially in dilepton invariant mass and dilepton rapidity.

The dominant sources of background after event selection are radiative dimuon (\(\gamma\gamma \rightarrow \mu\mu\gamma\)) and photonuclear events with low central-detector activity.

The \(\gamma\gamma \rightarrow \mu\mu\gamma\) background is estimated with the aid of MC samples. This process enters \(\mu 1\)T-SR when FSR photons substantially modify the dimuon kinematics so as to mimic the signal kinematics, and enters \(\mu 3\)T-SR and \(\mu e\)-SR primarily when photons convert to \(e^+e^-\) in detector material. To improve the modeling of high-\(p_T\) (\(p_T^\gamma \gtrsim p_T^\mu\)) photon emissions for \(t\)- and \(u\)-channel \(\gamma\gamma \rightarrow \mu\mu\) processes, an additional \(\gamma\gamma \rightarrow \mu\mu\gamma\) MC sample generated using MadGraph5_AMC@NLO [76] with the photon flux reweighted to SuperChic is used instead of Starlight+Pythia 8 if a leading photon has \(p_T^\gamma > 2\) GeV. Comparing the \(\gamma\gamma \rightarrow \mu\mu(\gamma)\) simulated events with data in \(2\mu\)-CR shows reasonable data-to-MC agreement in differential distributions, and normalization to within 5%. The simulated \(\gamma\gamma \rightarrow \mu\mu(\gamma)\) event yield in \(2\mu\)-CR is 15% lower than data if Starlight photon-flux calculations are used due to known limitations of Starlight [40, 77]. Before the fit to data, this method estimates 70, 6.5, and 2.8 \(\gamma\gamma \rightarrow \mu\mu(\gamma)\) events enter \(\mu 1\)T-SR, \(\mu 3\)T-SR, and \(\mu e\)-SR, respectively.

Diffractive photonuclear backgrounds with low particle activity are estimated using fully data-driven methods. Dedicated CRs are introduced, called \(\mu 2\)T-CR (\(\mu 4\)T-CR), which apply the same selection as \(\mu 1\)T-SR (\(\mu 3\)T-SR), but require an additional track satisfying \(p_T < 0.5\) GeV. Furthermore, the \(E_{ZDC} < 1\) TeV requirement is removed on either side to enrich the sample with events from photonuclear processes. To suppress the \(\gamma\gamma \rightarrow \tau\tau\) signal contamination in \(\mu 2\)T-CR, the two-track system mass must fulfill \(m_{2\text{trk}} > 1\) GeV; if \(m_{2\text{trk}} < 1\) GeV, the acoplanarity of the muon and highest-\(p_T\) track is required to exceed 0.2. The event yields in CRs are extrapolated to SRs by loosening the veto on topoclusters not matched to the muon or tracks from \(n_{\text{TC}}^{\text{unmatch}} = 0\) to \(n_{\text{TC}}^{\text{unmatch}} < 8\), both in CRs and SRs. The \(\mu 2\)T-CR (\(\mu 4\)T-CR) templates for \(n_{\text{TC}}^{\text{unmatch}}\) distributions are normalized to the event yield in \(\mu 1\)T-SR (\(\mu 3\)T-SR) in the region \(4 \leq n_{\text{TC}}^{\text{unmatch}} \leq 8\). In this region, the signal and dimuon background contributions are found to be
negligible, and events exhibit properties that suggest nonexclusive diffractive production, such as a small
or no rapidity gap [78]. As the additional track in $\mu 2T$-CR and $\mu 4T$-CR is soft ($p_T < 0.5$ GeV), its possible
correlation with topocluster activity is very small. This method estimates that 13 (2.8) photonuclear
events enter $\mu 1T$-SR ($\mu 3T$-SR); photonuclear events are expected to be negligible in μe-SR.

Other sources of background are predicted to be negligible in the SRs. Nondiffractive photonuclear
interactions are estimated using the Starlight+Dpmjet-III sample and are found to be negligible in all
three SRs. The PYTHIA 8 simulation of $\gamma\gamma \rightarrow q\bar{q}$ estimates dijet backgrounds contribute less than 0.3
events in both $\mu 1T$-SR and $\mu 3T$-SR. Similarly, the contribution from resolved $\gamma\gamma$ interactions, as estimated
with PYTHIA 8 [79], is found to be negligible. Exclusive p^0-meson production with simultaneous $\gamma\gamma \rightarrow \mu\mu$
production in $\mu 3T$-SR is studied using a data-driven method. Template distributions for this process are
built from events with two muons and two additional charged-particle tracks. The acoplanarities of both
the muon pair and the track pair must be below 0.05. All events in these templates are found to have
$m_{3\text{trk}} > 1.7$ GeV, so this background is expected to be negligible in $\mu 3T$-SR.

Systematic uncertainties affecting the measurement arise from the reconstruction of leptons, photons,
charged-particle tracks and topoclusters, the signal and background modeling, and integrated luminosity.

Uncertainties in the muon momentum scale and resolution follow those in Ref. [80]. The analysis
includes uncertainties in the data-to-MC correction factors applied to simulated samples for the muon
trigger and reconstruction efficiencies. Uncertainties in the reconstruction, identification, and energy
calibration of electrons and photons are evaluated in accord with Ref. [72]. The uncertainty in the
inclusive track reconstruction efficiency is dominated by the uncertainty in the amount of ID material [67].
This uncertainty is applied in the simulation by randomly removing tracks with a p_T- and η-dependent
probability corresponding to the material uncertainty. Uncertainties in the topocluster reconstruction
efficiency and energy calibration are estimated using $\gamma\gamma \rightarrow e\bar{e}$ events where one of the electrons emits a
hard bremsstrahlung photon due to its interaction with detector material [72].

Uncertainties in the photonuclear background evaluation are estimated by repeating the procedure with
alternative requirements for CRs. These resemble the $\mu 1T$-SR ($\mu 3T$-SR) selection except that the track
(three-track system) has the same electric charge as the muon candidate. The difference between the
photonuclear background contribution evaluated with alternative and nominal CRs defines the uncertainties,
affecting both the normalization and differential distributions. Uncertainties in modeling the photon flux
are estimated by using the Starlight MC samples without reweighting to Superchic. This affects the
normalization and differential distributions of the signal and $\gamma\gamma \rightarrow \mu\mu$ background. Uncertainties in
modeling τ-lepton decays are estimated using PYTHIA 8 [81] as an alternative MC simulation to Tauola.
The effect of τ-lepton spin correlations in Tauola is implemented using helicity amplitudes from the
$\gamma' \rightarrow \tau\tau$ process. This modeling is therefore cross-checked by comparing signal events simulated using
two versions of PYTHIA 8: v8.245 uses helicity amplitudes from the $\gamma' \rightarrow \tau\tau$ process, whereas v8.305
uses the $\gamma\gamma \rightarrow \tau\tau$ elementary process. The difference between the two implementations is found to be
negligible, and no further systematic uncertainty is assigned.

The uncertainty in the integrated luminosity is 1.9%, obtained with the LUCID-2 detector [82] using
methods similar to Ref. [83] for the primary luminosity measurements.

After applying the event selection, a total of 532, 85, and 39 data events are observed, compared with
$84 \pm 19, 9 \pm 3$, and 2.8 ± 0.7 expected background events in $\mu 1T$-SR, $\mu 3T$-SR, and μe-SR, respectively.
The background-only hypothesis is rejected with significance exceeding 5σ, establishing the observation
of the $\gamma\gamma \rightarrow \tau\tau$ process at ATLAS. The signal significance is highest in $\mu 1T$-SR, while μe-SR has the
The pre-fit signal-plus-background hypothesis predicts 543 ± 111, 93 ± 20, and 35 ± 8 events in μ_1T-SR, μ_3T-SR, and μ_e-SR, respectively, which is compatible with the observed data. The signal strength $\mu_{\tau\tau}$, defined as the ratio of the observed signal yield to the SM expectation assuming the SM value for a_τ, is measured using a profile-likelihood fit \[84, 85\] to be $\mu_{\tau\tau} = 1.03^{+0.06}_{-0.05}$ (tot) = 1.03$^{+0.05}_{-0.05}$ (stat) $^{+0.03}_{-0.03}$ (syst). The fit uses the p_τ^μ distribution in the three SRs and 2μ-CR with $\mu_{\tau\tau}$ being the only parameter of interest.

Approximately 80 nuisance parameters representing the systematic uncertainties are included in the fit. Many systematic uncertainties are correlated between the SRs and 2μ-CR, so their impact on the measurement precision is minimized since they are constrained by 2μ-CR. The dominant pre-fit contribution is the photon-flux uncertainty, which mainly affects the signal yield (by approximately 20%), with a significantly smaller impact on the signal shape found upon decorrelation from the normalization component. After the fit, the photon-flux uncertainty becomes subdominant and luminosity uncertainty becomes negligible relative to other sources. The leading contributions to the total systematic uncertainty are the estimation of the muon trigger efficiency, τ-lepton decay modeling, and track reconstruction efficiency.

To measure a_τ, an alternative fit is performed where a_τ is the only free parameter using the p_τ^μ distribution in the three SRs and 2μ-CR; p_τ^μ is chosen because of its high sensitivity to a_τ \[46\]. Simulated signal samples with various a_τ values are employed. In the nominal sample, a_τ is set to its SM value. Signal templates for alternative a_τ hypotheses are obtained by reweighting the nominal sample in three dimensions, differentially in $\tau\tau$ invariant mass, $\tau\tau$ rapidity, and rapidity difference between the two τ-leptons, according to calculations from Ref. \[46\]. These calculations parameterize the $\tau\gamma$ coupling by $F_1(q^2)\gamma^\mu + F_2(q^2)\frac{1}{\sqrt{m}}\sigma^\mu\nu q_\nu$, where q_ν is the photon four-momentum, $\sigma^\mu\nu = i[\gamma^\mu, \gamma^\nu]/2$ the spin tensor, and the form factors satisfy $F_1(q^2 \to 0) = 1$ and $F_2(q^2 \to 0) = a_\tau$. A similar parameterization was used in previous LEP measurements \[27, 29, 30\], which exploits the near-zero virtuality of initial-state photons. A total of 14 templates for different a_τ values are created to model the dependence of the p_τ^μ distribution on a_τ in the three SRs.

Figure 1 shows the p_τ^μ distributions of the four analysis regions for the data and post-fit expectation. The fit describes the data well.

The best-fit value of a_τ is $a_\tau = -0.041$, with the corresponding 68% CL and 95% CL intervals being $(-0.050, -0.029)$ and $(-0.057, 0.024)$, respectively. The higher-than-expected observed yields lead to the highly asymmetric 95% CL interval. This arises from the nearly quadratic signal cross-section dependence on a_τ, caused by the interference of the SM and BSM amplitudes \[29, 30, 46\]. The expected 95% CL interval is $-0.039 < a_\tau < 0.020$. The impact of systematic uncertainties on the final results is small relative to statistical uncertainties. Figure 2 shows the a_τ measurement alongside previous results obtained at LEP. The precision of this measurement is similar to the most precise single-experiment measurement by the DELPHI Collaboration.
Figure 1: Muon transverse momentum distributions in the (top-left) μ_1T-SR, (top-right) μ_3T-SR, (bottom-left) μe-SR, and (bottom-right) 2μ-CR categories. Black markers denote data and stacked histograms indicate the different components contributing to the regions. Post-fit distributions are shown with the signal contribution corresponding to the best-fit α_τ value ($\alpha_\tau = -0.041$). For comparison, signal contributions with alternative α_τ values are shown as solid red ($\alpha_\tau = -0.06$) or dashed blue ($\alpha_\tau = 0.04$) lines. The bottom panel shows the ratio of the data to post-fit predictions. Vertical bars denote uncertainties from the finite number of data events. Hatched bands represent $\pm 1\sigma$ systematic uncertainties of the prediction with the constraints from the fit applied.
Figure 2: Measurements of a_τ from fits to individual signal regions (including the dimuon control region), and from the combined fit. These are compared with existing measurements from the OPAL [29], L3 [30] and DELPHI [27] experiments at LEP. A point denotes the best-fit a_τ value for each measurement if available, while thick black (thin magenta) lines show 68% CL (95% CL) intervals. The expected interval from the ATLAS combined fit is also shown.

In summary, τ-lepton pair production in ultraperipheral heavy-ion collisions, $\text{Pb}+\text{Pb} \to \text{Pb}(\gamma\gamma \to \tau\tau)\text{Pb}$, is observed by ATLAS with a significance exceeding 5σ in 1.44 nb$^{-1}$ of $\sqrt{s_{\text{NN}}} = 5.02$ TeV data at the LHC. The observed event yield is compatible with that expected from the SM prediction within uncertainties. The events are used to set constraints on the τ-lepton anomalous magnetic moment, corresponding to $-0.057 < a_\tau < 0.024$ at 95% CL. The measurement precision is limited by statistical uncertainties. This result introduces the use of hadron-collider data to test electromagnetic properties of the τ-lepton, and the results are competitive with existing lepton-collider constraints.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MEiN, Poland; FCT, Portugal; MNE/IFA, Romania; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TENMAK, Türkiye; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; PRIMUS 21/SCI/017 and UNCE SCI/013, Czech Republic; COST, ERC, ERDF, Horizon 2020 and Marie Skłodowska-Curie
Actions, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and MINERVA, Israel; Norwegian Financial Mechanism 2014-2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [86].

References

[1] J. Schwinger, On Quantum-Electrodynamics and the Magnetic Moment of the Electron, Phys. Rev. 73 (1948) 416.

[2] P. Kusch and H. M. Foley, The Magnetic Moment of the Electron, Phys. Rev. 74 (1948) 250.

[3] B. Odom, D. Hanneke, B. D’Urso, and G. Gabrielse, New Measurement of the Electron Magnetic Moment Using a One-Electron Quantum Cyclotron, Phys. Rev. Lett. 97 (2006) 030801.

[4] D. Hanneke, S. Fogwell Hoogerheide, and G. Gabrielse, Cavity control of a single-electron quantum cyclotron: Measuring the electron magnetic moment, Phys. Rev. A 83 (2011) 052122, arXiv: 1009.4831 [physics.atom-ph].

[5] R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, New Determination of the Fine Structure Constant and Test of the Quantum Electrodynamics, Phys. Rev. Lett. 106 (2011) 080801.

[6] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Tenth-Order QED Contribution to the Electron $g-2$ and an Improved Value of the Fine Structure Constant, Phys. Rev. Lett. 109 (2012) 111807, arXiv: 1205.5368 [hep-ph].

[7] R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller, Measurement of the fine-structure constant as a test of the Standard Model, Science 360 (2018) 191, arXiv: 1812.04130 [physics.atom-ph].

[8] L. Morel, Z. Yao, P. Cladé, and S. Guellati-Khélifa, Determination of the fine-structure constant with an accuracy of 81 parts per trillion, Nature 588 (2020) 61.

[9] G. W. Bennett et al., Final report of the E821 muon anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003, arXiv: hep-ex/0602035 [hep-ex].

[10] B. Abi et al., Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801, arXiv: 2104.03281 [hep-ex].

[11] T. Albahri et al., Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g−2 Experiment, Phys. Rev. D 103 (2021) 072002, arXiv: 2104.03247 [hep-ex].

[12] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Complete Tenth-Order QED Contribution to the Muon $g-2$, Phys. Rev. Lett. 109 (2012) 111808, arXiv: 1205.5370 [hep-ph].
[13] A. Keshavarzi, D. Nomura, and T. Teubner, *Muon $g - 2$ and $\alpha(M_Z^2)$: A new data-based analysis*, Phys. Rev. D 97 (2018) 114025, arXiv: 1802.02995 [hep-ph].

[14] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, *A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to $\alpha(m_Z^2)$*, Eur. Phys. J. C 80 (2020) 241, arXiv: 1908.00921 [hep-ph].

[15] T. Aoyama et al., *The anomalous magnetic moment of the muon in the Standard Model*, Phys. Rept. 887 (2020) 1, arXiv: 2006.04822 [hep-ph].

[16] Sz. Borsanyi et al., *Leading hadronic contribution to the muon magnetic moment from lattice QCD*, Nature 593 (2021) 51, arXiv: 2002.12347 [hep-lat].

[17] S. P. Martin and J. D. Wells, *Muon anomalous magnetic dipole moment in supersymmetric theories*, Phys. Rev. D 64 (2001) 035003, arXiv: hep-ph/0103067 [hep-ph].

[18] G. Breit and J. A. Wheeler, *Collision of Two Light Quanta*, Phys. Rev. 46 (1934) 1087.

[19] J. Schwinger, *On Gauge Invariance and Vacuum Polarization*, Phys. Rev. 82 (1951) 664.

[20] S. R. Klein and P. Steinberg, *Radiative tau lepton pair production as a probe of anomalous electromagnetic couplings of the tau*, Nucl. Phys. B 523 (1998) 439, arXiv: hep-ph/9712360 [hep-ph].
[32] ATLAS Collaboration, Measurement of exclusive $\gamma \gamma \rightarrow \ell^+ \ell^-$ production in proton–proton collisions at $\sqrt{s} = 7\text{ TeV}$ with the ATLAS detector, Phys. Lett. B 749 (2015) 242, arXiv: 1506.07098 [hep-ex].

[33] ATLAS Collaboration, Measurement of the exclusive $\gamma \gamma \rightarrow \mu^+ \mu^-$ process in proton–proton collisions at $\sqrt{s} = 13\text{ TeV}$ with the ATLAS detector, Phys. Lett. B 777 (2018) 303, arXiv: 1708.04053 [hep-ex].

[34] ATLAS Collaboration, Observation and Measurement of Forward Proton Scattering in Association with Lepton Pairs Produced via the Photon Fusion Mechanism at ATLAS, Phys. Rev. Lett. 125 (2020) 261801, arXiv: 2009.14537 [hep-ex].

[35] CMS Collaboration, Observation of proton-tagged, central (semi)exclusive production of high-mass lepton pairs in pp collisions at 13 TeV with the CMS-TOTEM precision proton spectrometer, JHEP 07 (2018) 153, arXiv: 1803.04496 [hep-ex].

[36] CMS Collaboration, Search for exclusive or semi-exclusive $\gamma \gamma$ production and observation of exclusive and semi-exclusive e^+e^- production in pp collisions at $\sqrt{s} = 7\text{ TeV}$, JHEP 11 (2012) 080, arXiv: 1209.1666 [hep-ex].

[37] CMS Collaboration, Exclusive $\gamma \gamma \rightarrow \mu^+ \mu^-$ production in proton–proton collisions at $\sqrt{s} = 7\text{ TeV}$, JHEP 01 (2012) 052, arXiv: 1111.5536 [hep-ex].

[38] ATLAS Collaboration, Observation of Centrality-Dependent Acoplanarity for Muon Pairs Produced via Two-Photon Scattering in Pb+Pb Collisions at $\sqrt{s_{NN}} = 5.02\text{ TeV}$ with the ATLAS Detector, Phys. Rev. Lett. 121 (2018) 212301, arXiv: 1806.08708 [hep-ex].

[39] ATLAS Collaboration, Observation of Light-by-Light Scattering in Ultraperipheral Pb+Pb Collisions with the ATLAS Detector, Phys. Rev. Lett. 123 (2019) 052001, arXiv: 1904.03536 [hep-ex].

[40] ATLAS Collaboration, Exclusive dimuon production in ultraperipheral Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02\text{ TeV}$ with ATLAS, Phys. Rev. C 104 (2020) 024906, arXiv: 2011.12211 [hep-ex].

[41] CMS Collaboration, Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at $\sqrt{s_{NN}} = 5.02\text{ TeV}$, Phys. Lett. B 797 (2019) 134826, arXiv: 1810.04602 [hep-ex].

[42] CMS Collaboration, Observation of Forward NeutronMultiplicity Dependence of Dimuon Acoplanarity in Ultraperipheral PbPb Collisions at $\sqrt{s_{NN}} = 5.02\text{ TeV}$, Phys. Rev. Lett. 127 (2020) 122001, arXiv: 2011.05239 [hep-ex].

[43] ALICE Collaboration, Charmonium and e^+e^- pair photoproduction at mid-rapidity in ultraperipheral Pb-Pb collisions at $\sqrt{s_{NN}}=2.76\text{ TeV}$, Eur. Phys. J. C 73 (2013) 2617, arXiv: 1305.1467 [nucl-ex].

[44] F. del Aguila, F. Cornet, and J. I. Illana, The possibility of using a large heavy-ion collider for measuring the electromagnetic properties of the tau lepton, Phys. Lett. B 271 (1991) 256.

[45] L. Beresford and J. Liu, New physics and tau $g-2$ using LHC heavy ion collisions, Phys. Rev. D 102 (2020) 113008, arXiv: 1908.05189 [hep-ph].

[46] M. Dyndal, M. Klusek-Gawenda, A. Szczurek, and M. Schott, Anomalous electromagnetic moments of τ lepton in $\gamma\gamma \rightarrow \tau^+\tau^-$ reaction in Pb+Pb collisions at the LHC, Phys. Lett. B 809 (2020) 135682, arXiv: 2002.05503 [hep-ph].
ATLAS Collaboration, *The ATLAS Experiment at the CERN Large Hadron Collider*, JINST 3 (2008) S08003.

ATLAS Collaboration, *ATLAS Insertable B-Layer Technical Design Report*, ATLAS-TDR-19; CERN-LHCC-2010-013, 2010. url: https://cds.cern.ch/record/1291633. Addendum: ATLAS-TDR-19-ADD-1; CERN-LHCC-2012-009, 2012, url: https://cds.cern.ch/record/1451888.

B. Abbott et al., *Production and integration of the ATLAS Insertable B-Layer*, JINST 13 (2018) T05008, arXiv: 1803.00844 [physics.ins-det].

ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the \(z \) axis along the beam pipe. The \(x \) axis points from the IP to the center of the LHC ring, and the \(y \) axis points upward. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi \) being the azimuthal angle around the \(z \) axis. The pseudorapidity is defined in terms of the polar angle \(\theta \) as \(\eta = -\ln \tan(\theta/2) \). The transverse momentum (energy) is denoted by \(p_T (E_T) \). Angular distances are measured in units of \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \). Rapidity is defined as \(y = \frac{1}{2} \ln[(E + p_z)/(E - p_z)] \), where \(E \) is the energy and \(p_z \) is the longitudinal component of the momentum of the particle.

ATLAS Collaboration, *Zero Degree Calorimeters for ATLAS*, CERN-LHCC-2007-001, 2007, url: https://cds.cern.ch/record/1009649.

ATLAS Collaboration, *Performance of the ATLAS trigger system in 2015*, Eur. Phys. J. C 77 (2017) 317, arXiv: 1611.09661 [hep-ex].

ATLAS Collaboration, *Operation of the ATLAS trigger system in Run 2*, JINST 15 (2020) P10004, arXiv: 2007.12539 [hep-ex].

ATLAS Collaboration, *Trigger menu in 2018*, ATL-DAQ-PUB-2019-001, 2019, url: https://cds.cern.ch/record/2693402.

ATLAS Collaboration, *The ATLAS Collaboration Software and Firmware*, ATL-SOFT-PUB-2021-001, 2021, url: https://cds.cern.ch/record/2767187.

ATLAS Collaboration, *ATLAS data quality operations and performance for 2015–2018 data-taking*, JINST 15 (2020) P04003, arXiv: 1911.04632 [physics.ins-det].

S. R. Klein, J. Nystrand, J. Seger, Y. Gorbunov, and J. Butterworth, *STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions*, Comput. Phys. Commun. 212 (2017) 258, arXiv: 1607.03838 [hep-ph].

S. Jadach, Z. Was, R. Decker, and J. H. Kühn, *The \(\tau \) decay library TAUOLA, version 2.4*, Comput. Phys. Commun. 76 (1993) 361.

N. Davidson, G. Nanava, T. Przedzinski, E. Richter-Was, and Z. Was, *Universal interface of TAUOLA: Technical and physics documentation*, Comput. Phys. Commun. 183 (2012) 821, arXiv: 1002.0543 [hep-ph].

T. Sjöstrand et al., *An introduction to PYTHIA 8.2*, Comput. Phys. Commun. 191 (2015) 159, arXiv: 1410.3012 [hep-ph].

N. Davidson, T. Przedzinski, and Z. Was, *PHOTOS interface in C++: Technical and physics documentation*, Comput. Phys. Commun. 199 (2016) 86, arXiv: 1011.0937 [hep-ph].

L. A. Harland-Lang, V. A. Khoze, and M. G. Ryskin, *Exclusive LHC physics with heavy ions: SuperChic 3*, Eur. Phys. J. C 79 (2019) 39, arXiv: 1810.06567 [hep-ph].
S. Roesler, R. Engel, and J. Ranft, “The Monte Carlo Event Generator DPMJET-III,” *International Conference on Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications (MC 2000)*, 2000 1033, arXiv: hep-ph/0012252.

S. Agostinelli et al., *GEANT4 – a simulation toolkit*, Nucl. Instrum. Meth. A **506** (2003) 250.

ATLAS Collaboration, *The ATLAS Simulation Infrastructure*, Eur. Phys. J. C **70** (2010) 823, arXiv: **1005.4568** [physics.ins-det].

ATLAS Collaboration, *Early Inner Detector Tracking Performance in the 2015 Data at √s = 13 TeV*, ATL-PHYS-PUB-2015-051, 2015, url: https://cds.cern.ch/record/2110140.

ATLAS Collaboration, *Study of the material of the ATLAS inner detector for Run 2 of the LHC*, JINST **12** (2017) P12009, arXiv: **1707.02826** [hep-ex].

ATLAS Collaboration, *Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2*, Eur. Phys. J. C **77** (2017) 673, arXiv: **1704.07983** [hep-ex].

ATLAS Collaboration, *Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton–proton collision data*, JINST **14** (2019) P12006, arXiv: **1908.00005** [hep-ex].

ATLAS Collaboration, *Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at √s = 13 TeV*, Eur. Phys. J. C **81** (2021) 578, arXiv: **2012.00578** [hep-ex].

ATLAS Collaboration, *Performance of the ATLAS muon triggers in Run 2*, JINST **15** (2020) P09015, arXiv: **2004.13447** [physics.ins-det].

ATLAS Collaboration, *Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb⁻¹ of Pb+Pb data with the ATLAS detector*, JHEP **03** (2021) 243, arXiv: **2008.05355** [hep-ex]. Erratum: JHEP **11** (2021) 050.

ATLAS Collaboration, *Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1*, Eur. Phys. J. C **77** (2017) 490, arXiv: **1603.02934** [hep-ex].

ATLAS Collaboration, *Rapidity gap cross sections measured with the ATLAS detector in pp collisions at √s = 7 TeV*, Eur. Phys. J. C **72** (2012) 1926, arXiv: **1201.2808** [hep-ex].

The momentum of the track system is defined as the vectorial sum of the momentum of each track considered: $p_{\text{sys}} = \sum_i p_i$.

J. Alwall et al., *The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations*, JHEP **07** (2014) 079, arXiv: **1405.0301** [hep-ph].

L. A. Harland-Lang, V. A. Khoze, and M. G. Ryskin, *Elastic photon-initiated production at the LHC: the role of hadron-hadron interactions*, SciPost Phys. **11** (2021) 064, arXiv: **2104.13392** [hep-ph].

Rapidity gaps are defined as regions in rapidity with few or no topoclusters or tracks.

I. Helenius, *Photon-photon and photon-hadron processes in Pythia 8*, CERN Proc. **1** (2018) 119, arXiv: **1708.09759** [hep-ph].

ATLAS Collaboration, *Muon reconstruction performance of the ATLAS detector in proton–proton collision data at √s = 13 TeV*, Eur. Phys. J. C **76** (2016) 292, arXiv: **1603.05598** [hep-ex].
[81] P. Ilten, *Pythia 8: Simulating Tau-Lepton Decays*, Nucl. Part. Phys. Proc. **260** (2015) 56.

[82] G. Avoni et al., *The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS*, JINST **13** (2018) P07017.

[83] ATLAS Collaboration, *Luminosity determination in pp collisions at $\sqrt{s} = 13$ TeV using the ATLAS detector at the LHC*, ATLAS-CONF-2019-021, 2019, url: https://cds.cern.ch/record/2677054.

[84] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, *Asymptotic formulae for likelihood-based tests of new physics*, Eur. Phys. J. C **71** (2011) 1554, arXiv: 1007.1727 [physics.data-an], Erratum: Eur. Phys. J. C **73** (2013) 2501.

[85] K. Cranmer, G. Lewis, L. Moneta, A. Shibata, and W. Verkerke, *HistFactory: A tool for creating statistical models for use with RooFit and RooStats*, tech. rep., New York U., 2012, url: https://cds.cern.ch/record/1456844.

[86] ATLAS Collaboration, *ATLAS Computing Acknowledgements*, ATL-SOFT-PUB-2023-001, 2023, url: https://cds.cern.ch/record/2869272.
The ATLAS Collaboration

G. Aad, B. Abbott, D.C. Abbott, K. Abeling, S.H. Abidi, A. Aboulhorma, H. Abramowicz, H. Abreu, Y. Abulati, A.C. Abusleme Hoffman, B.S. Acharya, B. Achkar, L. Adam, C. Adam Bourdarios, L. Adamczyk, L. Adamek, S.V. Addepalli, J. Adelman, A. Adiguzel, S. Adorni, T. Adye, A.A. Affolder, Y. Afik, M.N. Agarwal, J. Agarwal, A. Aggarwal, C. Agheorghiesei, J.A. Aguilar-Saavedra, A. Ahmad, F. Ahmadov, W.S. Ahmed, S. Ahuja, X. Ai, G. Aielli, I. Aizenberg, M. Akbiyik, T.P.A. Åkesson, A.V. Akimov, K. Al Khoury, G.L. Alberghi, J. Albert, P. Albiocco, M.J. Alconada Verzini, S. Aligianis, E. Alunno Camelia, M. Alvarez Estevez, M.G. Alviggi, A. Ambler, C. Amelung, C.G. Ames, D. Amidei, S.P. Amor Dos Santos, S. Amoroso, K.R. Amos, C.S. Amrouche, V. Ananiev, A. Anastasopoulos, N. Andari, T. Andeen, J.K. Anders, S.Y. Andreassen, A. Andreazza, S. Angelidakis, A. Angerami, A.V. Anisenkov, A. Anni, C. Antel, M.T. Anthony, E. Antipov, M. Antonelli, D.A. Antrim, F. Anulli, M. Aoki, T. Aoki, J.A. Aparisi Pozo, M.A. Aparo, L. Aperio Bella, C. Appelt, N. Aranzabal, V. Araujo Ferraz, C. Arcangeletti, A.T.H. Arce, E. Arena, J.F. Arguin, S. Arygropoulos, J.-H. Arling, A.J. Arnbruster, O. Arnaez, H. Arnold, Z.P. Arrubarrena Tame, G. Artoni, H. Asada, K. Asai, S. Asai, N.A. Asabha, E.M. Asimakopoulos, J. Assahl, K. Assamagan, R. Astalos, R.J. Atkin, M. Atkinson, N.B. Atlay, H. Atmang, P.A. Atmasiddha, K. Augsten, S. Auricchio, A.D. Auriol, V.A. Austrup, G. Avner, G. Avolio, M. Axiotis, M.K. Ayoub, G. Azuelos, D. Babal, H. Bachacou, K. Bachas, A. Bachiu, F. Backman, A. Badea, P. Bagnina, M. Bahmani, A.J. Bailey, V.R. Bailey, J.T. Baines, C. Bakalis, O.K. Baker, P.J. Bakker, E. Bakos, D. Bakshi Gupta, S. Balaji, R. Balasubramanian, E.M. Baldin, P. Balek, J. Ballabene, L. Ballard, F. Ballistero, L.M. Baltes, W.K. Balunas, J. Balz, E. Banas, M. Bandieramonte, A. Bandyopadhyay, S. Bansal, L. Barak, E.L. Barberio, D. Barberis, M. Barbero, G. Barbour, K.N. Barends, T. Barillari, M.-S. Barisits, J. Barkelo, T. Barklow, R.M. Barnett, P. Baron, D.A. Baron Moreno, A. Baroncelli, G. Barone, A.J. Barr, L. Barranco Navarro, F. Barreiro, J. Barreiro Guimarães da Costa, U. Barron, M.G. Barros Teixeira, S. Barsov, F. Bartels, R. Bartoldus, A.F. Barton, P. Bartos, A. Basalaev, A. Basan, M. Baselga, I. Bashta, A. Bassalat, M.J. Basso, C.R. Basson, R.L. Bates, S. Batlamous, J.R. Batley, B. Batool, M. Battaglia, M. Bauce, P. Bauer, A. Bayirli, J.B. Beacham, T. Beau, P.H. Beauchemin, F. Becherer, P. Bechtel, H.P. Beck, K. Becker, C. Becot, A.J. Beddall, V.A. Bednyakov, C.P. Bee, L.J. Beemster, T.A. Beermann, M. Begalli, M. Begel, A. Behera, J.K. Behr, C. Beirao Da Cruz, E. Silva, J.F. Beirer, F. Beisiegel, M. Belfki, G. Bella, L. Bellagamba, A. Bellerive, P. Bellos, K. Beloborodov.
J. Jovicic 15, X. Ju 17a, J.J. Junggeburth 36, A. Juste Rozas 13y, S. Kabana 136c, A. Kaczmarska 85, M. Kado 77a,74b, H. Kagan 118, M. Kagan 142, A. Kahn 41, A. Kahn 127, C. Kahra 49, T. Kaji 167, E. Kajomovitz 149, N. Kakati 168, C.W. Kalderon 29, A. Kamenshchikov 154, N.J. Kang 135, Y. Kano 110, D. Kar 133g, K. Karava 125, M.J. Kareem 155b, E. Karentzos 85, I. Karkanias 151, S.N. Karpov 138, Z.M. Karpova 138, V. Kartvelishvili 9, A.N. Karyukhin 137, E. Kasimi 151, C. Kato 162d, J. Katzy 148, S. Kaur 134, K. Kawade 139, K. Kawagoe 138, T. Kawaguchi 110, T. Kawamoto 134c, G. Kawamura 35, E.F. Kay 164, F.I. Kaya 137, S. Kazakos 13, V.F. Kazanian 137, Y. Ke 144, J.M. Keaveney 133a, R. Keeler 164, G.V. Kehris 61, J.S. Keller 134, A.S. Kelly 95, D. Kelsey 145, J.J. Kempter 120, J. Kendrick 20, K.E. Kennedy 41, O. Kepka 130, B.P. Kerridge 176, S. Kersten 119, B.P. Kerševan 92, L. Keszeghova 28a, S. Ketabchi Haghhighat 154, M. Khandoaga 126, A. Khanov 120, A.G. Kharlamov 137, T. Kharamelova 137, E.E. Khoda 137, T.J. Khoo 148, G. Khoriali 165, J. Khubua 148b, Y.A.R. Khwaira 86, M. Kiehn 136, A. Kilgallon 122, D.W. Kim 17a,47b, E. Kim 153, Y.K. Kim 49, N. Kimura 195, A. Kirchhoff 155, D. Kirchmeier 10, C. Kirfel 24, J. Kirt 133, A.E. Kiryunin 109, T. Kishimoto 152, D.P. Kisliuk 154, C. Kitsaki 10, O. Kivernyk 24, M. Klassen 63a, C. Klein 34, L. Klein 165, M.H. Klein 105, M. Klein 91, U. Klein 191, P. Klimek 36, A. Klimentov 199, F. Klimpel 110, T. Klingl 24, T. Kloutchnikova 136, F.F. Klitzner 108, P. Kluit 113, S. Kluth 109, E. Knerner 78, T.M. Knight 154, A. Knue 55, D. Kobayashi 88, R. Kobayashi 66, M. Kocian 142, T. Kodama 152, P. Kodyš 152, D.M. Koeck 145, P.T. Koenig 174, T. Koffas 34, N.M. Köhl 36, M. Kolb 134, I. Kolesneu 14, T. Komarek 121, K. König 54, A.Y. Kong 1, T. Kono 117, N. Konstantinidis 95, B. Konya 97, R. Kopelianski 67, S. Koperny 64a, K. Korcyl 35, K. Kordas 151, G. Korén 150, A. Korn 95, S. Korn 155, I. Kornolkov 13, N. Korotkova 137, B. Kortman 113, O. Kortner 109, S. Kortner 109, W.H. Kostecka 114, V.V. Kostyukhina 140, A. Kotsokechagia 156, A. Kottwal 151, A. Koulouris 136, A. Kourkoumelis-Charalampidi 172a,72b, C. Kourkoumelis 109, E. Kourliftis 86, O. Kovanda 145, R. Kowalewski 164, W. Kozanecki 134, A.S. Kozhin 137, V.A. Kramarenko 137, G. Kramberger 92, P. Kramer 79, M.W. Krasny 126, A. Krasznahorkay 36, J.A. Kremer 79, T. Kresse 150, J. Kretzschmar 101, K. Kreul 108, P. Krieger 154, F. Krieter 108, S. Krishnamurthy 102, A. Krishnan 138b, M. Krivos 132, K. Krixka 17a, K. Kroeninger 149, H. Kroha 109, J. Kroll 140, J. Kroll 127, S.P. Krowman 106, U. Kruchonak 138, H. Krüger 24, N. Krunnack 80, S. Kruse 51, J.A. Krzysiat 185, A. Kubota 153, O. Kuchinskaia 137, S. Kuday 34a, D. Kuechler 48, J.T. Kuechler 48, S. Kuehn 36, T. Kuhl 48, V. Kukhtin 86, Y. Kulchitsky 37a, S. Kulesskov 136a,136b, M. Kumar 33b, N. Kumari 101, M. Kuna 85, A. Kupco 130, T. Kupfer 49, A. Kupich 137, O. Kuprash 124, H. Kurashige 133, L.L. Kuchaninov 155a, Y.A. Kurochkin 137, A. Kurova 137, E.S. Kuwertz 156a, M. Kuze 153, A.K. Kvan 102, J. Kvita 121, T. Kwan 103, K.W. Kwok 164a, N.G. Kyriacou 135, L.O. Laatu 101, C. Lacasta 116, F. Lacava 174a,74b, H. Lacker 138, D. Lacour 128, N.N. Lad 195, E. Ladygin 24, B. Laforge 126, T. Lagouri 136e, S. Lai 35, I.K. Lakomiec 84a, N. Lalloue 100, J.E. Lambert 159, S. Lammers 157, W. Lampel 79, C. Lampoudis 151, A.N. Lancaster 114, E. Lançon 29, U. Landgraf 154, M.P.J. Landon 93, V.S. Lang 74, R.J. Langenberg 102, A.J. Lankford 159, F. Lanni 129, K. Lantzsch 154, A. Lanza 12a, A. Lapertos 157b,57a, J.F. Laporte 134, T. Lari 170a, F. Lasagni Manghi 23b, M. Lassnig 36, V. Latonova 130, T.S. Lau 64a, A. Laudrain 109, A. Laurier 34, S.D. Lawlor 94, Z. Lawrence 130, M. Lazزارoni 10a,70b, B. Le 100, B. Leban 102, A. Lebedev 158, M. LeBlanc 36, T. LeCompte 30, F. Ledroit-Guillon 80, A.C.A. Lee 85, G.R. Lee 156, L. Lee 161, S.C. Lee 147, S. Lee 47a,47b, T.F. Lee 191, L.L. Leeuw 133c, H.P. Lefebvre 194, M. Lefebvre 164, C. Leggett 17a, K. Lehmann 141, G. Lehmam Miotto 136, W.A. Leight 152, A. Leisos 151u, M.A.L. Leite 81c,
M. Villaplana Perez, E.M. Villhauer, E. Vilucchi, M.G. Vincter, G.S. Virdee, A. Vishwakarma, C. Vittori, I. Vivarelli, V. Vladimirov, E. Voevodina, F. Vogel, P. Vokac, J. Von Ahnen, E. Von Toerne, B. Vormwald, V. Vorobel, K. Vorobev, M. Vos, J.H. Vossebeld, M. Vozak, L. Vozdecky, N. Vranjes, M. Vranjes Milosavljevic, M. Vreeswijk, R. Vuillermet, O. Vujinovic, I. Vukotic, S. Wada, C. Wagner, W. Wagner, S. Wahdan, H. Wahlberg, R. Wakasa, M. Wakeda, V.M. Walbrecht, J. Walder, R. Walker, W. Walkowiak, A.M. Wang, A.Z. Wang, C. Wang, C. Wang, H. Wang, J. Wang, P. Wang, R.-J. Wang, R. Wang, S.M. Wang, S. Wang, T. Wang, T. Wang, W.T. Wang, W.X. Wang, X. Wang, X. Wang, Y. Wang, Y. Wang, Z. Wang, Z. Wang, Z. Wang, Z. Wang, A. Warburton, R.J. Ward, N. Warrack, A.T. Watson, M.F. Watson, G. Watts, B.M. Waugh, A.F. Webb, C. Weber, M.S. Weber, S.A. Weber, M. Weber, C. Wei, Y. Wei, A.R. Weidberg, J. Weinigarten, M. Weirich, C. Weiser, C.J. Wells, T. Wenaus, B. Wendland, T. Wenglzer, N.S. Wenneker, N. Wernmes, M. Wessels, K. Whalen, A.M. Wharton, A.S. White, A. White, M.J. White, D. Whiteside, L. Wickremasinghe, W. Wiedenmann, C. Wiel, M. Wielers, N. Wieseotte, C. Wiglesworth, L.A.M. Wijk-Fuchs, D.J. Wilbern, H.G. Wilkens, D.M. Williams, H.H. Williams, S. Williams, S. Willocq, P.J. Windischhofer, F. Winklmeier, B.T. Winter, M. Wittgen, M. Wobisch, A. Wolf, R. Wölk, J. Wollrath, M.W. Wolter, H. Wolters, 129a, 129c, W.V.S. Wong, A.F. Wongel, S.D. Worm, B.K. Wosiek, K.W. Woźniak, K. Wraith, J. Wu, J. Wu, M. Wu, M. Wu, S.L. Wu, X. Wu, Y. Wu, Z. Wu, Z. Wu, J. Wuerzinger, J. Wyatt, B.M. Wyne, S. Xella, L. Xia, M. Xia, J. Xiang, X. Xioa, X. Xioa, X. Xioa, J. Xiong, J. Xiong, I. Xidotis, D. Xu, H. Xu, H. Xu, L. Xu, L. Xu, L. Xu, Y. Xu, Y. Xu, Z. Xu, Z. Xu, B. Yabsley, S. Yacoob, S. Yacoob, N. Yamaguchi, Y. Yamaguchi, H. Yamauchi, T. Yamazaki, Y. Yamazaki, J. Yan, Z. Yan, Z. Yan, H.J. Yang, H.T. Yang, S. Yang, T. Yang, X. Yang, Y. Yang, Z. Yang, Z. Yang, T. Yao, W.-M. Yao, Y.C. Yap, H. Ye, J. Ye, J. Ye, S. Ye, S. Ye, Y. Ye, I. Yeletsikiv, M.R. Yexley, P. Yin, K. Yorita, C.J.S. Young, C. Young, M. Yuan, M. Yuan, R. Yuan, R. Yuan, L. Yue, L. Yue, L. Yue, M. Zaaouia, B. Zabinski, E. Zaid, T. Zakareishvili, N. Zakharchuk, S. Zambito, J.A. Zamora Saa, J. Zang, D. Zanzi, O. Zaplatilek, S.V. Zeißner, C. Zeitznitz, J.C. Zeng, D.T. Zenger Jr, O. Zenin, T. Ženiš, S. Zenz, S. Zerradi, D. Zerwas, B. Zhang, D.F. Zhang, G. Zhang, J. Zhang, K. Zhang, K. Zhang, L. Zhang, L. Zhang, P. Zhang, R. Zhang, S. Zhang, T. Zhang, Z. Zhang, X. Zhang, X. Zhang, X. Zhang, X. Zhang, X. Zhang, H. Zhao, P. Zhao, T. Zhao, Y. Zhao, Z. Zhao, A. Zhemchugov, Z. Zheng, D. Zhong, B. Zhou, C. Zhou, H. Zhou, N. Zhou, C. Zhou, C. Zhou, C. Zhou, C. Zhou, H.L. Zhu, H. Zhu, J. Zhu, J. Zhu, J. Zhu, Y. Zhu, N.I. Zimine, J. Zinsser, M. Ziolkowski, L. Živički, A. Zoccoli, K. Zoch, T.G. Zorbas, O. Zormpa, W. Zou, L. Zwalinski.
Economics and Technology, Ankara; Türkiye.

1LAPP, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy; France.
2APC, Université Paris Cité, CNRS/IN2P3, Paris; France.
3High Energy Physics Division, Argonne National Laboratory, Argonne IL; United States of America.
4Department of Physics, University of Arizona, Tucson AZ; United States of America.
5Department of Physics, University of Texas at Arlington, Arlington TX; United States of America.
6Physics Department, National and Kapodistrian University of Athens, Athens; Greece.
7Physics Department, National Technical University of Athens, Zografou; Greece.
8Department of Physics, University of Texas at Austin, Austin TX; United States of America.
9Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.
10Institut de Física d’Altes Energies (IAF), Barcelona Institute of Science and Technology, Barcelona; Spain.
11Physics Department, Chinese Academy of Sciences, Beijing; China.
12(\(a\))Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (\(b\))Physics Department, Tsinghua University, Beijing; (\(c\))Department of Physics, Nanjing University, Nanjing; (\(d\))University of Chinese Academy of Science (UCAS), Beijing; China.
13Institute of Physics, University of Belgrade, Belgrade; Serbia.
14Department for Physics and Technology, University of Bergen, Bergen; Norway.
15Physics Division, Lawrence Berkeley National Laboratory, Berkeley CA; (\(a\))University of California, Berkeley CA; United States of America.
16Institut für Physik, Humboldt Universität zu Berlin, Berlin; Germany.
17Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern; Switzerland.
18School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom.
19Department of Physics, Bogazici University, Istanbul; (\(a\))Department of Physics Engineering, Gaziantep University, Gaziantep; (\(c\))Department of Physics, Istanbul University, Istanbul; (\(d\))Istinye University, Sariyer, Istanbul; Türkiye.
20Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogotá; (\(b\))Departamento de Física, Universidad Nacional de Colombia, Bogotá; Colombia.
21Facoltà di Fisica e Astronomia A. Righi, Università di Bologna, Bologna; (\(a\))INFN Sezione di Bologna; Italy.
22Physikalisches Institut, Universität Bonn, Bonn; Germany.
23Department of Physics, Boston University, Boston MA; United States of America.
24Department of Physics, Brandeis University, Waltham MA; United States of America.
25Transilvania University of Brasov, Brasov; (\(b\))Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (\(c\))Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (\(d\))National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca; (\(e\))University Politehnica Bucharest, Bucharest; (\(f\))West University in Timisoara, Timisoara; (\(g\))Faculty of Physics, University of Bucharest, Bucharest; Romania.
26Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava; (\(b\))Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic.
27Physics Department, Brookhaven National Laboratory, Upton NY; United States of America.
28Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, y CONICET, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires; Argentina.
29California State University, CA; United States of America.
30Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom.
Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong;
Department of Physics, University of Hong Kong, Hong Kong;
Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; China.
Department of Physics, National Tsing Hua University, Hsinchu; Taiwan.
IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay; France.
Department of Physics, Indiana University, Bloomington IN; United States of America.

INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine;
ICTP, Trieste;
Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine; Italy.

INFN Sezione di Lecce;
Dipartimento di Matematica e Fisica, Università del Salento, Lecce; Italy.

INFN Sezione di Milano;
Dipartimento di Fisica, Università di Milano, Milano; Italy.

INFN Sezione di Napoli;
Dipartimento di Fisica, Università di Napoli, Napoli; Italy.

INFN Sezione di Pavia;
Dipartimento di Fisica, Università di Pavia, Pavia; Italy.

INFN Sezione di Pisa;
Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy.

INFN Sezione di Roma;
Dipartimento di Fisica, Sapienza Università di Roma, Roma; Italy.

INFN Sezione di Roma Tor Vergata;
Dipartimento di Fisica, Università di Roma Tor Vergata, Roma; Italy.

INFN Sezione di Roma Tre;
Dipartimento di Matematica e Fisica, Università Roma Tre, Roma; Italy.

INFN-TIFPA;
Università degli Studi di Trento, Trento; Italy.

Universität Innsbruck, Department of Astro and Particle Physics, Innsbruck; Austria.

University of Iowa, Iowa City IA; United States of America.

Department of Physics, University of Iowa, Iowa State University, Ames IA; United States of America.

Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora;
Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro;
Instituto de Física, Universidade de São Paulo, São Paulo;
Rio de Janeiro State University, Rio de Janeiro; Brazil.

KEK, High Energy Accelerator Research Organization, Tsukuba; Japan.

Faculty of Science, Kyoto University, Kyoto; Japan.

Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka; Japan.

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina.

Physics Department, Lancaster University, Lancaster; United Kingdom.

Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom.

Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana; Slovenia.

School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom.

Department of Physics, Royal Holloway University of London, Egham; United Kingdom.

Department of Physics and Astronomy, University College London, London; United Kingdom.

Louisiana Tech University, Ruston LA; United States of America.

Physikalisches Institut, Universität Mainz, Mainz; Germany.
134 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France.
135 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America.
136 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Millennium Institute for Subatomic physics at high energy frontier (SAPHIR), Santiago; (c) Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, y Departamento de Física, Universidad de La Serena; (d) Universidad Andres Bello, Department of Physics, Santiago; (e) Instituto de Alta Investigación, Universidad de Tarapacá, Arica; (f) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile.
137 Department of Physics, University of Washington, Seattle WA; United States of America.
138 Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.
139 Department of Physics, Shinsu University, Nagano; Japan.
140 Department Physik, Universität Siegen, Siegen; Germany.
141 Department of Physics, Simon Fraser University, Burnaby BC; Canada.
142 SLAC National Accelerator Laboratory, Stanford CA; United States of America.
143 Department of Physics, Royal Institute of Technology, Stockholm; Sweden.
144 Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of America.
145 Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom.
146 School of Physics, University of Sydney, Sydney; Australia.
147 Institute of Physics, Academia Sinica, Taipei; Taiwan.
148 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi; (c) University of Georgia, Tbilisi; Georgia.
149 Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel.
150 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel.
151 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece.
152 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan.
153 Department of Physics, Tokyo Institute of Technology, Tokyo; Japan.
154 Department of Physics, University of Toronto, Toronto ON; Canada.
155 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON; Canada.
156 Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan.
157 Department of Physics and Astronomy, Tufts University, Medford MA; United States of America.
158 United Arab Emirates University, Al Ain; United Arab Emirates.
159 Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of America.
160 Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden.
161 Department of Physics, University of Illinois, Urbana IL; United States of America.
162 Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain.
163 Department of Physics, University of British Columbia, Vancouver BC; Canada.
164 Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada.
165 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg; Germany.
166 Department of Physics, University of Warwick, Coventry; United Kingdom.
167 Waseda University, Tokyo; Japan.
Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot; Israel.
Department of Physics, University of Wisconsin, Madison WI; United States of America.
Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal; Germany.
Department of Physics, Yale University, New Haven CT; United States of America.
 also affiliated with an institute covered by a cooperation agreement with CERN.
 also at An-Najah National University, Nablus; Palestine.
 also at Borough of Manhattan Community College, City University of New York, New York NY; United States of America.
 also at Bruno Kessler Foundation, Trento; Italy.
 also at Center for High Energy Physics, Peking University; China.
 also at Centro Studi e Ricerche Enrico Fermi; Italy.
 also at CERN, Geneva; Switzerland.
 also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.
 also at Departament de Física de la Universitat Autònoma de Barcelona, Barcelona; Spain.
 also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece.
 also at Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.
 also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of America.
 also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva; Israel.
 also at Department of Physics, California State University, East Bay; United States of America.
 also at Department of Physics, California State University, Sacramento; United States of America.
 also at Department of Physics, King’s College London, London; United Kingdom.
 also at Department of Physics, Stanford University, Stanford CA; United States of America.
 also at Department of Physics, University of Fribourg, Fribourg; Switzerland.
 also at Department of Physics, University of Thessaly; Greece.
 also at Department of Physics, Westmont College, Santa Barbara; United States of America.
 also at Hellenic Open University, Patras; Greece.
 also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain.
 also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany.
 also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia; Bulgaria.
 also at Institute of Particle Physics (IPP); Canada.
 also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.
 also at Institute of Theoretical Physics, Ilia State University, Tbilisi; Georgia.
 also at L2IT, Université de Toulouse, CNRS/IN2P3, UPS, Toulouse; France.
 also at Lawrence Livermore National Laboratory, Livermore; United States of America.
 also at National Institute of Physics, University of the Philippines Diliman (Philippines); Philippines.
 also at Technical University of Munich, Munich; Germany.
 also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing; China.
 also at TRIUMF, Vancouver BC; Canada.
 also at Università di Napoli Parthenope, Napoli; Italy.
 also at University of Chinese Academy of Sciences (UCAS), Beijing; China.
af Also at University of Colorado Boulder, Department of Physics, Colorado; United States of America.
ak Also at Washington College, Maryland; United States of America.
al Also at Yeditepe University, Physics Department, Istanbul; Türkiye.
* Deceased