BPS $M2$-branes in $AdS_4 \times Q^{1,1,1}$ Dual to Loop Operators

Jun-Bao Wu♣∗ Meng-Qi Zhu♠†
♣Institute of High Energy Physics, and Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049, P.R. China
♠Department of Physics, and State Key Laboratory of Nuclear Physics and Technology, Peking University, 5 Yiheyuan Road, Beijing 100871, P.R. China

December 2013

Abstract

In this paper, we first compute the Killing spinors of $AdS_4 \times Q^{1,1,1}$ and its certain orbifolds. Based on this, two classes of $M2$-brane solutions are found. The first class of solutions includes $M2$-branes dual to Wilson loops in the fundamental representation as a special case. The second class includes the candidates of the holographic description of vortex loops in the dual field theories.

1 Introduction

Many examples about the AdS_4/CFT_3 correspondence were established since the seminal paper [1] which itself was inspired by [2, 3, 4, 5, 6]. In this correspondence, certain three-dimensional superconformal Chern-Simons-matter theories are proposed to be dual to M-theory on $AdS_4 \times X_7$. The three-dimensional theory has $\mathcal{N} = 1$ $(2,3)$ supersymmetry when X_7 is a weak G_2 (Sasaki-Einstein, 3-Sasaki) manifold. Loop operators play an important role in the studies of this AdS_4/CFT_3 duality, as they do in the case of the AdS_5/CFT_4 correspondence. 1/6-BPS Wilson loops in ABJM theory were first studied in detail in [7, 8, 9]. Later a highly non-trivial 1/2-BPS Wilson loop was constructed in [10]. An interesting explanation on the origin of these Wilson loops was given in [11] based on [12]. Some exact results for Wilson loops were obtained based on powerful tools of supersymmetric localization [13]. The Wilson loops with quite less supersymmetries were studied in [14, 15, 16].

It is certainly interesting to generalize these studies on loop operators to AdS_4/CFT_3 correspondences with less supersymmetries since now

∗E-mail: wujb@ihep.ac.cn
†E-mail: mqzfly@pku.edu.cn
the dynamics is less constrained by supersymmetries. In Chern-Simon-
matter theories with $N = 2$ supersymmetries, BPS Wilson loops can be
constructed when the loop is a straight line or a circle [17]. This point is
different from the four-dimensional $N = 1$ gauge theories, although they
have the same amount of supercharges. Half-BPS Wilson loops in generic
three-dimensional $N = 2$ Chern-Simons-matter theories were studied in
detail in [18]. The geometry of the matrix models obtained from localization
was connected to the geometry of $M2$-brane solutions in the holographic
description based on results from differential geometry. There also exists vortex loop, a kind of disordered operator, in these theories.
The holographic dual of the vortex loop in ABJM theory was studied in
[19]. The vortex loops in generic $N = 2$ Chern-Simons-matter theories
were studied using localization in [20, 21] based on [22, 23].

The aim of the current paper is to study BPS $M2$-branes in a concre-
t example, with duality to loop operators in mind. The first reason why
we picked up the Sasaki-Einstein manifold $Q^{1,1,1}$ is that the metric of
this manifold is very simple, though its isometry group is small. The
second, less obvious reason is that the Killing spinor equation is easy
to solve on this manifold [19]. We further discussed the Killing spinors
of certain orbifolds of $AdS_4 \times Q^{1,1,1}$ by using Lie-Lorentz derivation of
spinors with respect to Killing vectors [25, 26, 27]. Based on these results,
we found two classes of $M2$-branes. The worldvolumes of these $M2$-branes
all have the topology $AdS_2 \times S^1$. The AdS_2 factor is embedded to the
AdS_4 part of the background geometry, so these $M2$-branes are candidates
for the holographic duals of loop operators. In the first class, the S^1 is
embedded in $Q^{1,1,1}$. This class includes the $M2$-branes dual to Wilson
loops in the fundamental representation. We think that our study here is
complementary to the results in [18] based on more abstract mathematical
tools. In the second class of $M2$-branes, this S^1 has non-trivial profile in
both AdS_4 and $Q^{1,1,1}$. These $M2$-branes are similar to the $M2$-branes in
$AdS_4 \times S^7/\mathbb{Z}_k$ dual to vortex loops in ABJM theory [19].

We also noticed that there had been many researches about M-theory
on $AdS_4 \times Q^{1,1,1}$ and its various orbifolds. This is another reason why
we choose to study $M2$-branes in this background. Various field theory
duals were proposed and checked in [28, 29, 30, 31, 32] [2]. Localization
was performed to obtained a matrix model [34] for the field theory proposed
in [31, 32]. Superconformal indices were computed in [35, 36]. Some other
membranes and five-branes in this background were studied in [37, 38, 39].
Some spinning membranes dual to local operators were found in [40]. The
Penrose limit of $AdS_4 \times Q^{1,1,1}$ was studied in [41, 42]. Some supergravity
solutions related to $AdS_1 \times Q^{1,1,1}$ were discussed in [43].

In the next section, we will solve the Killing spinor equations on $AdS_4 \times
Q^{1,1,1}$. Two classes of BPS $M2$-brane solutions will be discussed in section
3.

1 Similar thing was noticed for the five-dimensional Sasaki-Einstein manifold $T^{1,1}$ [23].
2 An old proposal can be found in [33].
2 Killing spinors of $AdS_4 \times Q^{1,1,1}$

The metric on $AdS_4 \times Q^{1,1,1}$ is

$$ds^2 = R^2(ds_4^2 + ds_7^2),$$

$$ds_4^2 = \frac{1}{4}(\cosh^2 u(-\cosh^2 \rho dt^2 + d\rho^2) + du^2 + \sinh^2 u d\phi^2),$$

$$ds_7^2 = \sum_{i=1}^3 \frac{1}{8}(d\theta_i^2 + \sin^2 \theta_i d\phi_i^2) + \frac{1}{16}(d\psi + \sum_{i=1}^3 \cos \theta_i d\phi_i)^2,$$

with $\theta_i \in [0, \pi], \phi_i \in [0, 2\pi] (i = 1, 2, 3), \psi \in [0, 4\pi]$. The four-form field strength on this background is

$$H_4 = \frac{3R^3}{8} \cosh^2 u \sinh u \cosh \rho dt \wedge d\rho \wedge du \wedge d\phi.$$

Two kinds of Z_k orbifolds of $Q^{1,1,1}$ were considered in the literature. In the first case [28, 29], the orbifold is obtained via the identification $(\phi_1, \phi_2) \sim (\phi_1 + \frac{2\pi}{k}, \phi_2 + \frac{2\pi}{k})$. In the second case [30], the identification is $\phi_1 \sim \phi_1 + \frac{2\pi}{k}$. We will denote the first orbifold as $Q^{1,1,1}/Z_k$ and the second orbifold as $Q^{1,1,1}/Z_k'$ from now on. Flux quantization gives

$$R = \frac{2\pi l_p}{(6\text{vol}(Q^{1,1,1}/Z_k))^{1/6}},$$

$$= l_p \left(\frac{2\pi^2 kN}{3}\right)^{1/6},$$

where we have used

$$\text{vol}(Q^{1,1,1}/Z_k) = \frac{\pi^4}{8k}.$$

In order to find the Killing spinors, we find it very useful to introduce the following one-forms

$$\sigma^I_1 = d\theta_1,$$

$$\sigma^I_2 = \sin \theta_1 d\phi_1,$$

$$\sigma^I_3 = \cos \theta_1 d\phi_1,$$

with $I = 1, 2$ and

$$w^1 = -\cos \psi \sin \theta_3 d\phi_3 + \sin \psi d\theta_3,$$

$$w^2 = \sin \psi \sin \theta_3 d\phi_3 + \cos \psi d\theta_3,$$

$$w^3 = d\psi + \cos \theta_3 d\phi_3,$$

which satisfy

$$d\sigma^I_j + \frac{1}{2} \epsilon^{ijk} \sigma^I_j \wedge \sigma^I_k = 0,$$

$$dw^I + \frac{1}{2} \epsilon^{ijk} w^I \wedge w^k = 0.$$

3Such trick was used for $T^{1,1}$ in [24].
Using these one-forms, we can re-express the above metric on $Q^{1,1,1}$ as

$$ds^2 = \sum_{i=1}^{2} \frac{1}{8}[(\sigma_1^i)^2 + (\sigma_2^i)^2] + \frac{1}{8}(w^1)^2 + \frac{1}{8}(w^2)^2 + \frac{1}{16}(\sigma_1^3 + \sigma_2^3 + w^3)^2. \quad (16)$$

Now the vielbeins of the eleven-dimensional metric are

$$e^0 = \frac{R}{2} \cosh u \cosh \rho dt, \quad e^1 = \frac{R}{2} \sinh u d\phi, \quad e^2 = R \frac{1}{2\sqrt{2}} \sigma_1^1, \quad e^3 = \frac{R}{2\sqrt{2}} \sigma_2^1, \quad e^4 = \frac{R}{2\sqrt{2}} w^1, \quad e^5 = \frac{R}{2\sqrt{2}} w^2, \quad e^6 = \frac{R}{2\sqrt{2}} \sigma_3^1, \quad e^7 = \frac{R}{2\sqrt{2}} \sigma_3^2, \quad e^8 = \frac{R}{2\sqrt{2}} \sigma_3^3. \quad (17)$$

The spin connections with respect to these vielbeins are

$$\omega^{01} = \frac{2}{R} \tanh u \frac{1}{\cosh u}, \quad \omega^{02} = \frac{2}{R} \tanh u \frac{1}{\cosh u}, \quad \omega^{12} = \frac{2}{R} \tanh u \frac{1}{\cosh u}, \quad \omega^{23} = \frac{2}{R} \coth u \frac{1}{\cosh u}, \quad (23)$$

$$\omega^{45} = \frac{1}{R} (-2\sqrt{2} \cot \theta_1 e^2 + e^4), \quad \omega^{46} = \frac{1}{R} (-2\sqrt{2} \cot \theta_2 e^2 + e^4), \quad (25)$$

$$\omega^{89} = \frac{1}{R} (2\sqrt{2} \cot \theta_1 e^2 + 2\sqrt{2} \cot \theta_2 e^2 - 3e^4), \quad (26)$$

$$\omega^{4 \sharp} = \frac{1}{R} (-e^4), \quad \omega^{5 \sharp} = \frac{1}{R} (-e^5), \quad \omega^{6 \sharp} = \frac{1}{R} (-e^6), \quad \omega^{7 \sharp} = \frac{1}{R} (-e^7), \quad (27)$$

$$\omega^{8 \sharp} = \frac{1}{R} (-e^8), \quad \omega^{9 \sharp} = \frac{1}{R} (-e^9), \quad (28)$$

And H_4 can now be written as

$$H_4 = \frac{6}{R} e^0 \wedge e^1 \wedge e^2 \wedge e^3. \quad (30)$$

The Killing spinors of $AdS_4 \times Q^{1,1,1}$ satisfy the following equation

$$\nabla_m \eta + \frac{1}{576} (3\Gamma_{mnpq} \Gamma_{0n} - \Gamma_{mnpq} \Gamma_{0n}) H^{0pq} \eta = 0. \quad (31)$$

Our convention about the product of the eleven Γ matrices is

$$\Gamma_{0123456789} = 1. \quad (32)$$

Using the vielbeins and the spin connections given above, we find that the solution to the above equation is

$$\eta = e^{\sharp 0} e^{\sharp 1} e^{\sharp 2} e^{\sharp 3} e^{\sharp 4} e^{\sharp 5} e^{\sharp 6} e^{\sharp 7} e^{\sharp 8} e^{\sharp 9}, \quad (33)$$

And H_4 can now be written as

$$H_4 = \frac{6}{R} e^0 \wedge e^1 \wedge e^2 \wedge e^3. \quad (30)$$

The Killing spinors of $AdS_4 \times Q^{1,1,1}$ satisfy the following equation

$$\nabla_m \eta + \frac{1}{576} (3\Gamma_{mnpq} \Gamma_{0n} - \Gamma_{mnpq} \Gamma_{0n}) H^{0pq} \eta = 0. \quad (31)$$

Our convention about the product of the eleven Γ matrices is

$$\Gamma_{0123456789} = 1. \quad (32)$$

Using the vielbeins and the spin connections given above, we find that the solution to the above equation is

$$\eta = e^{\sharp 0} e^{\sharp 1} e^{\sharp 2} e^{\sharp 3} e^{\sharp 4} e^{\sharp 5} e^{\sharp 6} e^{\sharp 7} e^{\sharp 8} e^{\sharp 9}, \quad (33)$$
where η_0 is independent of all the coordinates and satisfies the projection conditions
\[\Gamma^{45}_0 = \Gamma^{67}_0 = \Gamma^{89}_0, \] (34)
and $\hat{\Gamma}$ is defined as
\[\hat{\Gamma} = \Gamma_{0123}. \] (35)
The Killing spinors of $Q^{1,1,1}$ were also studied in [44, 45]. The Killing spinors of AdS_4 were given in this coordinate system in [7, 19].

The above projection conditions show that the background on $AdS_4 \times Q^{1,1,1}$ is 1/4 BPS, i.e., 8 supercharges are preserved. These supercharges correspond to 4 super-Poincare charges and 4 superconformal charges in the dual three-dimensional superconformal field theory.

Now we turn to consider the Killing spinors of the orbifolds $AdS_4 \times Q^{1,1,1}/Z_k$ and $AdS_4 \times Q^{1,1,1}/Z'_k$. For this purpose, we compute the Lie-Lorentz derivative of the above Killing spinor η with respect to the Killing vector $K_i \equiv \partial / \partial \phi_i$ defined as
\[L_{K_i} \eta \equiv \left(\frac{\partial}{\partial \phi_i} \right)_m \nabla^m \eta + \frac{1}{4} \left(\nabla^m (K_i)_n \right) \Gamma^{mn}_0 \eta. \] (36)
After some calculations, we find
\[L_{K_i} \eta = 0, \] (37)
for each i. This result tells us that η is also the Killing spinor of $AdS_4 \times Q^{1,1,1}/Z_k$ and $AdS_4 \times Q^{1,1,1}/Z'_k$. In other words, the supersymmetries are not broken by these orbifolding.

3 Probe membrane solutions in $AdS_4 \times Q^{1,1,1}$

In this section, we will find two classes of probe M2-brane solutions in $AdS_4 \times Q^{1,1,1}$. The bosonic part of the M2-brane action is:
\[S_{M2} = T_2 \left(\int d^3 \xi \sqrt{-\text{det} g_{mn}} - \int P[C_3] \right), \] (38)
where g_{mn} is the induced metric on the membrane, T_2 is the tension of the M2-brane:
\[T_2 = \frac{1}{(2\pi)^2 l^2}, \] (39)
and $P[C_3]$ is the pullback of the bulk 3-form gauge potential to the world-volume of the membrane. The gauge choice for the background 3-form gauge potential C_3 in the case at hand is
\[C_3 = \frac{R^3}{8} \left(\cosh^3 u - 1 \right) \cosh \rho dt \wedge d\rho \wedge d\phi. \] (40)
From the variation of this action, the membrane equation of motion is
\[\frac{1}{\sqrt{-g}} \partial_m \left(\sqrt{-g} g^{mn} \partial_n X^N \right) G_{MN} + g^{mn} \partial_m X^N \partial_n X^P \Gamma^Q_{NP} G_{QM} = \frac{1}{3! \sqrt{-g}} e^{mpqr} (P[H_4])_{mnp}. \] (41)
We always use the indices from the beginning (middle) of the alphabet to refer to the frame (coordinate) indices, and the underlined indices to refer to the target space ones. And also notice that ϵ^{mnp} is a tensor density on the world-volume of the membrane.

We are mainly interested in BPS $M2$-branes. The supersymmetry projector equation reads

$$\Gamma_{M2} \eta = \eta,$$

with

$$\Gamma_{M2} = \frac{1}{\sqrt{-g}} \partial_{\mu} X^{\mu_1} \partial_{\xi} X^{\mu_2} \partial_{\psi} X^{\mu_3} \epsilon_{\mu_1}^{\mu_2} \epsilon_{\mu_2}^{\mu_3} \Gamma_{m_1 m_2 m_3},$$

where τ, ξ, σ are coordinates on the worldvolume of the $M2$-brane.

3.1 BPS $M2$-branes dual to Wilson loops revisited

In this class of solutions, the worldvolume of the $M2$-brane has the topology $AdS_2 \times S^1$ with $AdS_2 \in AdS_4$ and $S^1 \in M_7$. From now on, by M_7 we mean either $Q^{1,1,1}/Z_k$ or $Q^{1,1,1}/Z'_k$. This class includes $M2$-branes dual to BPS Wilson loops in gauge theories as a special case, and this case was studied in [18]. In that paper, the authors started with general discussions on BPS Wilson loops in the fundamental representation in $\mathcal{N} = 2$ Chern-Simons-matter theories and the dual $M2$-brane solutions. They also included $M2$-branes in $AdS_4 \times Q^{1,1,1}/Z_k$ as one of the explicit examples. They used a different coordinate system for the AdS_4 part and for the $Q^{1,1,1}/Z_k$ part they used some results in differential geometry which appeared in their general discussions. We will use the explicit results of Killing spinors obtained in the previous section.

The ansatz of these solutions is

$$t = \tau, \rho = \xi, \psi = \psi(\sigma), \phi_i = \phi_i(\sigma), i = 1, 2, 3,$$

with $u, \phi, \theta_i (i = 1, 2, 3)$ being constants. Here τ, ξ, σ are three coordinates on the worldvolume of the $M2$-brane. We consider the case that $\sigma \in [0, 2\pi]$ is a compact direction (i.e. we always identify $\sigma + 2\pi$ with σ).

The periodic conditions for the fields ψ, ϕ_i are

$$\psi(\sigma + 2\pi) = \psi(\sigma) + 2\pi n_\psi,$$

$$\phi_1(\sigma + 2\pi) = \phi_1(\sigma) + \frac{2\pi n_1}{k},$$

$$\phi_2(\sigma + 2\pi) = \phi_2(\sigma) + \frac{2\pi n_1}{k} + 2\pi n_2,$$

$$\phi_3(\sigma + 2\pi) = \phi_3(\sigma) + 2\pi n_3,$$

with $n_i \in \mathbb{Z}, i = 1, 2, 3$ when $M_7 = Q^{1,1,1}/Z_k$.

For the case that $M_7 = Q^{1,1,1}/Z'_k$, the corresponding conditions are

$$\psi(\sigma + 2\pi) = \psi(\sigma) + 2\pi n_\psi,$$

$$\phi_1(\sigma + 2\pi) = \phi_1(\sigma) + \frac{2\pi n_1}{k},$$

$$\phi_2(\sigma + 2\pi) = \phi_2(\sigma) + 2\pi n_2,$$

$$\phi_3(\sigma + 2\pi) = \phi_3(\sigma) + 2\pi n_3,$$
with \(n_i \in \mathbb{Z}, i = 1, 2, 3 \).

Now the M2-brane action is
\[
S_{M2} = \frac{T_{M2} R^3}{4} \int d^3 \sigma \cosh^2 u \cosh \rho \\
\times \left[\frac{1}{8} \sum_{i=1}^{3} \sin^2 \theta_i \phi_i'^2 + \frac{1}{16} (\psi' + \sum_{i=1}^{3} \cos \theta_i \phi_i')^2 \right]^{1/2},
\]
(53)
where \(\tau \) means \(\partial / \partial \sigma \). Equation of motion for \(u \) gives
\[
u = 0,
\]
(54)
while equation of motion from variation of \(\theta_i \) gives
\[
\sin \theta_i \phi_i' (\psi' + \sum_{j=1}^{3} \cos \theta_j \phi_j' - 2 \cos \theta_i \phi_i') = 0.
\]
(55)
Equations of motion for \(\psi, \phi_i \) can be solved by
\[
\psi = m_\psi \sigma, \phi_i = m_i \sigma.
\]
(56)
We also checked that the above three equations are equivalent to the results from the M2-brane equations of motion given in eq. (41).

To compute the on-shell action of the M2-brane whose boundary at infinite is an \(S^1 \), we switch to the Eclidean \(AdS_4 \) with the metric:
\[
ds_E^2 = \frac{1}{4} (\cosh^2 u (d \rho + \cosh^2 \rho d \psi^2) + d u^2 + \sinh^2 u d \phi^2).
\]
(57)
The on-shell action of the M2-brane, eq. (53), now becomes
\[
S_{M2} = \frac{T_{M2} R^3}{4} \int d \Omega_{EAdS_2} d \sigma \\
\times \left[\frac{1}{8} \sum_{i=1}^{3} \sin^2 \theta_i \phi_i'^2 + \frac{1}{16} (\psi' + \sum_{i=1}^{3} \cos \theta_i m_i)^2 \right]^{1/2},
\]
(58)
with
\[
\int d \Omega_{EAdS_2} = \int d \rho d \psi \cosh \rho.
\]
(59)
Using the fact that \(\sigma \in [0, 2\pi] \), \(T_{M2} = 1/(4\pi^2 l_p^3) \) and eq. (41), we get
\[
S_{M2} = \frac{1}{2} \sqrt{\frac{k N}{3}} \left(\frac{1}{8} \sum_{i=1}^{3} \sin^2 \theta_i m_i^2 + \frac{1}{16} (m_\psi + \sum_{i=1}^{3} \cos \theta_i m_i)^2 \right)
\times \int d \Omega_{EAdS_2}.
\]
(60)
After adding boundary terms as in [46], we get
\[
S_{M2} = -\pi \sqrt{\frac{k N}{3}} \left(\frac{1}{8} \sum_{i=1}^{3} \sin^2 \theta_i m_i^2 + \frac{1}{16} (m_\psi + \sum_{i=1}^{3} \cos \theta_i m_i)^2 \right).
\]
(61)
We now search for BPS M^2-brane in $AdS_4 \times Q^{1,1,1}$ among these solutions. Γ_{M^2} now becomes

$$\Gamma_{M^2} = \left(\frac{1}{16} (\psi' + \sum_{i=1}^{3} \cos \theta_i \phi_i')^2 + \frac{1}{8} \sum_{i=1}^{3} \sin^2 \theta_i \phi_i' \right)^{-1/2} \Gamma_{0\#}$$

$$\times \left(\frac{1}{4} (\psi' + \sum_{i=1}^{3} \cos \theta_i \phi_i') \Gamma_{\#} + \frac{1}{\sqrt{2}} \sin \theta_1 \phi_1' \Gamma_2 + \frac{1}{\sqrt{2}} \sin \theta_2 \phi_2' \Gamma_2 - \frac{1}{\sqrt{2}} \cos \psi \sin \theta_3 \phi_3' \Gamma_9 + \frac{1}{\sqrt{2}} \sin \psi \sin \theta_3 \phi_3' \Gamma_9 \right)$$

(62)

We need that the solutions of $\Gamma_{M^2} \eta = \eta$ also satisfy the projection conditions eq. (34). This leads to that for each i,

$$\sin \theta_i = 0,$$

(63)

or

$$\phi_i' = 0.$$ (64)

Now we get

$$\Gamma_{M^2} = \text{sign}(m_\psi + \sum_{i=1}^{3} \cos \theta_i m_i) \Gamma_{0\#}. $$

(65)

The BPS condition leads to

$$\Gamma_{0\#} \eta = \text{sign}(m_\psi + \sum_{i=1}^{3} \cos \theta_i m_i) \eta.$$ (66)

By using the fact that we have $u = 0$ on the worldvolume of this M^2-brane solution, it is not hard to see that the above condition is equivalent to the condition

$$\Gamma_{0\#} \eta_0 = \pm \eta_0,$$ (67)

on the M^2-brane worldvolume. This condition is compatible with the projection conditions eq. (34), and this BPS M^2-brane is half-BPS with respect to the background.

The M^2-brane in $AdS_4 \times Q^{1,1,1}/Z_k$ dual to half-BPS Wilson loop is a special solution of this class [18]. It is given by

$$m_\psi = 0, m_1 = m_2 = \frac{1}{k}, m_3 = 0, (\theta_1, \theta_2) = (0,0), (0,\pi), (\pi,0), (\pi,\pi).$$

(68)

The result for the on-shell action is

$$S_{M^2} = -2\pi \sqrt{\frac{N}{3k}},$$

(69)

when $(\theta_1, \theta_2) = (0,0), (\pi,\pi)$, while in the case that $(\theta_1, \theta_2) = (0,\pi), (\pi,0)$

$$S_{M^2} = 0.$$ (70)
The first two solutions give leading contribution to the vev of Wilson loops, which reads

\[\langle W \rangle \sim \exp(2\pi \sqrt{\frac{N}{3k}}), \tag{71} \]

in the leading order of large \(N \) expansion. As mentioned in [13], this is consistent with the result from the matrix model computations in [34].

Similarly, among the half-BPS M2-branes in \(\text{AdS}_4 \times Q^{1,1,1}/Z_k' \), the one with

\[m_\psi = 0, m_1 = \frac{1}{k}, m_2 = m_3 = 0, \theta_1 = 0, \pi \tag{72} \]

is dual to half-BPS Wilson loops. For the on-shell action

\[S_{M2} = -\pi \sqrt{\frac{N}{3k}}, \tag{73} \]

we get

\[\langle W \rangle \sim \exp(\pi \sqrt{\frac{N}{3k}}). \tag{74} \]

3.2 The second class of solutions

Now we consider the ansatz

\[t = \tau, \rho = \xi, \phi = \sigma, \tag{75} \]

\[\psi = \psi(\sigma), \phi_i = \phi_i(\sigma), \tag{76} \]

with \(u, \theta_i \) being constant. We also demand that \(u \) is nonzero. The M2-brane action is now

\[S_{M2} = \frac{T_{M2} R^3}{8} \int d^3 \sigma \cosh \rho \left[\cosh^2 u \sqrt{\sinh^2 u + c - \cosh^3 u + 1} \right], \tag{77} \]

with the definition of \(c \)

\[c \equiv \frac{1}{2} \sum_{i=1}^3 \sin^2 \theta_i \phi_i'^2 + \frac{1}{4} (\psi' + \sum_{i=1}^3 \cos \theta_i \phi'_i)^2. \tag{78} \]

Equation of motion for \(u \) gives

\[2 \cosh u \sinh u \sqrt{\sinh^2 u + c} + \cosh^3 u \sinh u \sqrt{\sinh^2 u + c} - 3 \sinh u \cosh^2 u = 0. \tag{79} \]

For non-zero \(u \), it has two solutions,

\[c = 1, \tag{80} \]

and

\[c = -\frac{3}{4} \cosh^2 u + 1. \tag{81} \]

From now on we will only consider the first solution which leads to

\[2 \sum_{i=1}^3 \sin^2 \theta_i \phi_i'^2 + (\psi' + \sum_{i=1}^3 \cos \theta_i \phi'_i)^2 = 4. \tag{82} \]
Similar to the solutions in the previous subsection, equation of motion for θ_i gives
\[
\sin \theta_i \phi'_i (\psi' + \sum_{j=1}^{3} \cos \theta_j \phi'_j - 2 \cos \theta_i \phi'_i) = 0.
\] (83)

And equations of motion for ψ, ϕ_i can be solved by
\[
\psi = m_\psi \sigma, \phi_i = m_i \sigma.
\] (84)

The above equations are equivalent to the results from the M_2-brane equations of motion given in eq. (41).

Now we turn to discuss the BPS condition for the M_2-branes in $AdS_4 \times Q^{1,1,1}$. Now Γ_{M_2} becomes
\[
\Gamma_{M_2} = \Gamma_{01} \begin{pmatrix} \sinh u & \cosh u & \pm 1 \\ \cosh u & \sinh u & +c \end{pmatrix}.
\] (85)

To have BPS branes, we also need that for each i we have
\[
\sin \theta_i = 0,
\] (86)

or
\[
\phi'_i = 0.
\] (87)

The fact $c = 1$ now leads to
\[
\psi' + \sum_{i=1}^{3} \cos \theta_i \phi'_i = \pm 2.
\] (88)

Using these results, we can get
\[
\Gamma_{M_2} = \Gamma_{01} \begin{pmatrix} \sinh u & \cosh u & \pm 1 \\ \cosh u & \sinh u & +1 \end{pmatrix}.
\] (89)

From eq. (83), we can get that
\[
\Gamma_{M_2} \eta = \eta,
\] (90)

is equivalent to
\[
\Gamma_{M_2} \eta_0 = \pm \eta_0.
\] (91)

So when for each $i = 1, 2, 3$ we have either $\sin \theta_i = 0$ or ϕ_i being constant on the worldvolume, the M_2-branes in this class is half-BPS. This is similar to the situation in the previous subsection. And after some calculations using the metric in eq. (57), we can get that the on-shell action of the M_2-brane is
\[
S_{M_2} = -2\pi \sqrt{\frac{\kappa N}{3}},
\] (92)

with the boundary term included.
4 Conclusions and Discussions

In this paper, we found some BPS M^2-branes in M-theory on $AdS_4 \times Q^{1,1,1}$ and its certain orbifolds. We reproduced the M^2-branes dual to BPS Wilson loops in the fundamental representation in the field theory side. We also studied a second class of the BPS M^2-branes which should include the M^2-branes dual to vortex loops in the field theory side. We also find the explicit solution to the Killing spinor equations in this background.

There are several further directions that are interesting for us. For the holographic dual to BPS Wilson loops in the (anti-)fundamental representation, one should search for suitable $D2$ ($D6$)-brane solutions in the IIA string background obtained from the S^5 reduction of the above M-theory background. On the other hand, one can try to find suitable M^2-branes (Kaluza-Klein monopoles) solution in the M-theory background directly. To correctly identify the dual brane solutions, we also need more precise understanding of the loop operators in the field theory side. We would also like to try to generalize our studies here to other Sasaki-Einstein 7-manifolds. We hope to report our progress in these directions in the near future.

Acknowledgments

The authors are grateful to Bin Chen, Jarah Evslin, Nakwoo Kim, De-Sheng Li, Wei Li, Feng-Li Lin, Zheng-Wen Liu, Jiang Long, Hong Lu, Jian-Feng Wu, Gang Yang, Jie Yang and Hossein Yavartanoo for various helpful discussions. JW would like to thank Lanzhou University for warm hospitality during ‘Workshop on String/M-theory, Gravity and Topological Field Theories’ and Ehwa Womans University for warm hospitality during ‘IEU Workshop on Solving AdS/CFT’. This work was supported in part by the National Natural Science Foundation of China under contract No. 11105154 (JW), No. 1122549 (JW), No. 10925522(MZ) and No. 11021092(MZ). JW gratefully acknowledges the support of K. C. Wong Education Foundation and Youth Innovation Promotion Association, CAS as well.

References

[1] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, “$\mathcal{N} = 6$ superconformal Chern-Simons-matter theories, M^2-branes and their gravity duals,” [arXiv:0806.1218] [hep-th].
[2] J. Bagger and N. Lambert, “Modeling multiple M^2’s”, Phys. Rev. D75, 045020(2007) [arXiv:hep-th/0611108].
[3] J. Bagger and N. Lambert, “Gauge Symmetry and Supersymmetry of Multiple M^2-Branes”, Phys. Rev. D77, 065008(2008) [arXiv:0711.0955].
[4] J. Bagger and N. Lambert, “Comments on Multiple M^2-branes”, JHEP 0802, 105(2008) [arXiv:0712.3738].
[5] A. Gustavsson, “Algebraic structures on parallel M2-branes”, arXiv:0709.1260.

[6] A. Gustavsson, “One-loop corrections to Bagger-Lambert theory”, arXiv:0805.4443.

[7] N. Drukker, J. Plefka and D. Young, “Wilson loops in 3-dimensional $\mathcal{N} = 6$ supersymmetric Chern-Simons Theory and their string theory duals,” JHEP 0811, 019 (2008) [arXiv:0809.2787 [hep-th]].

[8] B. Chen and J. -B. Wu, “Supersymmetric Wilson Loops in $\mathcal{N} = 6$ Super Chern-Simons-matter theory,” Nucl. Phys. B 825, 38 (2010) [arXiv:0809.2863 [hep-th]].

[9] S. -J. Rey, T. Suyama and S. Yamaguchi, “Wilson Loops in Superconformal Chern-Simons Theory and Fundamental Strings in Anti-de Sitter Supergravity Dual,” JHEP 0903, 127 (2009) [arXiv:0809.3786 [hep-th]].

[10] N. Drukker and D. Trancanelli, “A Supermatrix model for $\mathcal{N} = 6$ super Chern-Simons-matter theory,” JHEP 1002, 058 (2010) [arXiv:0912.3006 [hep-th]].

[11] K. -M. Lee and S. Lee, “1/2-BPS Wilson Loops and Vortices in ABJM Model,” JHEP 1009, 004 (2010) [arXiv:1006.5580 [hep-th]].

[12] D. Berenstein and D. Trancanelli, “Three-dimensional $\mathcal{N} = 6$ SCFT’s and their membrane dynamics,” Phys. Rev. D 78, 106009 (2008) [arXiv:0808.2903 [hep-th]].

[13] A. Kapustin, B. Willett and I. Yaakov, “Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter,” JHEP 1003, 089 (2010) [arXiv:0909.4559 [hep-th]].

[14] V. Cardinali, L. Griguolo, G. Martelloni and D. Seminara, “New supersymmetric Wilson loops in ABJ(M) theories,” Phys. Lett. B 718, 615 (2012) [arXiv:1209.4032 [hep-th]].

[15] N. Kim, “Supersymmetric Wilson loops with general contours in ABJM theory,” Mod. Phys. Lett. A 28, 1350150 (2013) [arXiv:1304.7660 [hep-th]].

[16] D. Marmiroli, “Notes on BPS Wilson Loops and the Cusp Anomalous Dimension in ABJM theory,” arXiv:1312.2972 [hep-th].

[17] D. Gaiotto and X. Yin, “Notes on superconformal Chern-Simons-Matter theories,” JHEP 0708, 056 (2007) [arXiv:0704.3740 [hep-th]].

[18] D. Farquet and J. Sparks, Wilson loops and the geometry of matrix models in AdS_4/CFT_3, arXiv:1304.0784 [hep-th].

[19] N. Drukker, J. Gomis and D. Young, “Vortex Loop Operators, M2-branes and Holography,” JHEP 0903, 004 (2009) [arXiv:0810.4344 [hep-th]].

[20] A. Kapustin, B. Willett and I. Yaakov, “Exact results for supersymmetric abelian vortex loops in 2 + 1 dimensions,” JHEP 1306, 099 (2013) [arXiv:1211.2861 [hep-th]].

[21] N. Drukker, T. Okuda and F. Passerini, “Exact results for vortex loop operators in 3d supersymmetric theories,” [arXiv:1211.3409 [hep-th]].
[22] D. L. Jafferis, “The Exact Superconformal R-Symmetry Extremizes Z,” JHEP 1205, 159 (2012) [arXiv:1012.3210 [hep-th]].

[23] N. Hama, K. Hosomichi and S. Lee, “Notes on SUSY Gauge Theories on Three-Sphere,” JHEP 1103, 127 (2011) [arXiv:1012.3512 [hep-th]].

[24] D. Arean, D. E. Crooks and A. V. Ramallo, “Supersymmetric probes on the conifold,” JHEP 0411, 035 (2004). [hep-th/0408210].

[25] Y. Kosmann, “A note on Lie-Lorentz derivatives,” Annali di Mat. Pura Appl. (IV) 91 (1972) 317.

[26] J. M. Figueroa-O’Farrill, “On the supersymmetries of Anti-de Sitter vacua,” Class. Quant. Grav. 16, 2043 (1999) [hep-th/9902066].

[27] T. Ortin, “A Note on Lie-Lorentz derivatives,” Class. Quant. Grav. 19, L143 (2002) [hep-th/0206159].

[28] S. Franco, A. Hanany, J. Park and D. Rodriguez-Gomez, Towards M_2-brane Theories for Generic Toric Singularities, JHEP 0812, 110(2008), arXiv: 0809.3237[hep-th].

[29] S. Franco, I. R. Klebanov and D. Rodriguez-Gomez, M_2-branes on Orbifolds of the Cone over $Q^{1,1,1}$, JHEP 0908, 033(2009), arXiv: 0903.3231[hep-th].

[30] M. Aganagic, A Stringy Origin of M_2 Brane Chern-Simons Theories, Nucl. Phys. B 835, 1 (2010). arXiv:0905.3415 [hep-th].

[31] F. Benini, C. Closset and S. Cremonesi, Chiral flavors and M_2-branes at toric CY4 singularities, JHEP 1002, 036, (2010), arXiv: 0911.4127[hep-th].

[32] D. L. Jafferis, Quantum corrections to $\mathcal{N} = 2$ Chern-Simons theories with flavor and their AdS_4 duals, JHEP 1308 046, (2013), arXiv: 0911.4324[hep-th].

[33] D. Fabbri, P. Fre’, L. Gualtieri, C. Reina, A. Tomasiello, A. Zaffaroni and A. Zampa, “3-D superconformal theories from Sasakian seven manifolds: New nontrivial evidences for AdS_4/CFT_3,” Nucl. Phys. B 577, 547 (2000) [hep-th/9907219].

[34] S. Cheon, H. Kim and N. Kim, “Calculating the partition function of $\mathcal{N} = 2$ Gauge theories on S^3 and AdS/CFT correspondence,” JHEP 1105, 134 (2011) [arXiv:1102.5565 [hep-th]].

[35] S. Cheon, D. Gang, S. Kim and J. Park, “Refined test of AdS_4/CFT_3 correspondence for $\mathcal{N} = 2, 3$ theories,” JHEP 1105, 027 (2011) [arXiv:1102.1273 [hep-th]].

[36] R. Eager and J. Schmude, “Superconformal Indices and M_2-Branes,” arXiv:1305.3547 [hep-th].

[37] I. R. Klebanov, S. S. Pufu and T. Tesileanu, “Membranes with Topological Charge and AdS_4/CFT_3 Correspondence,” Phys. Rev. D 81, 125011 (2010) [arXiv:1004.0413 [hep-th]].

[38] C. -h. Ahn, “$\mathcal{N} = 2$ SCFT and M theory on $AdS_4 \times Q^{1,1,1}$,” Phys. Lett. B 466, 171 (1999) [hep-th/9908162].
[39] N. Benishti, D. Rodriguez-Gomez and J. Sparks, “Baryonic symmetries and M5 branes in the AdS4/CFT3 correspondence,” JHEP 1007, 024 (2010) [arXiv:1004.2045 [hep-th]].

[40] N. Kim and J. H. Lee, “Multispin membrane solutions in AdS$^4 \times Q^{1,1,1},$” Int. J. Mod. Phys. A 26, 1019 (2011).

[41] U. Gursoy, C. Nunez and M. Schvellinger, “RG flows from spin(7), CY3 fold and HK manifolds to AdS, Penrose limits and pp waves,” JHEP 0206, 015 (2002) [hep-th/0203124].

[42] C. -h. Ahn, “More on Penrose limit of AdS$^4 \times Q^{1,1,1},$” Phys. Lett. B 539, 281 (2002) [hep-th/0205008].

[43] R. Hernandez and K. Sfetsos, “Branes with fluxes wrapped on spheres,” JHEP 0207 (2002) 045 [hep-th/0205099].

[44] P. Hoxha, R. R. Martinez-Acosta and C. N. Pope, Kaluza-Klein consistency, Killing vectors and Kahler spaces, Class. Quant. Grav. 17, 4207 (2000), [hep-th/0005172]

[45] A. Donos, and J. P. Gauntlett, Supersymmetric quantum criticality supported by baronic charges, JHEP 1210, 120(2012), arXiv: 1208.1494[hep-th].

[46] N. Drukker, D. J. Gross and H. Ooguri, “Wilson loops and minimal surfaces,” Phys. Rev. D 60, 125006 (1999) [hep-th/9904191].