Comparison of viability and antioxidant capacity between canine adipose-derived mesenchymal stem cells and heme oxygenase-1-overexpressed cells after freeze-thawing

Mijung KIM1,2, Yongsun KIM1,2, Seunghoon LEE1,2, Minyoung KUK1,2, Ah Young KIM2, Wanhee KIM2 and Oh-Kyong KWEON1,2*

1)BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
2)Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, 1, Gwanak-ro, Seoul, 151–742, Korea

(Received 5 July 2015/Accepted 7 December 2015/Published online in J-STAGE 27 December 2015)

ABSTRACT. Allogenic adipose-derived mesenchymal stem cells (Ad-MSCs) are an alternative source for cytotherapy owing to their antioxidant and anti-inflammatory effects. Frozen-thawed allogenic Ad-MSCs can be used instantly for this purpose. However, the viability and function of frozen-thawed Ad-MSCs have not been clearly evaluated. The purpose of this study was to compare the viability and function of Ad-MSCs and heme oxygenase-1 (HO-1)-overexpressed Ad-MSCs in vitro after freeze-thawing. The viability, proliferation, antioxidant capacity and mRNA gene expression of growth factors were evaluated. Frozen-thawed cells showed significantly lower viability than fresh cells (77% for Ad-MSCs and 71% for HO-1 Ad-MSCs, P<0.01). However, the proliferation rate of frozen-thawed Ad-MSCs increased and did not differ from that of fresh Ad-MSCs after 3 days of culture. In contrast, the proliferation rate of HO-1-overexpressed Ad-MSCs was lower than that of Ad-MSCs. The mRNA expression levels of TGF-β, HGF and VEGF did not differ between fresh and frozen-thawed Ad-MSCs, but COX-2 and IL-6 had significantly higher mRNA expression in frozen cells than fresh cells (P<0.05). Fresh Ad-MSCs exhibited higher HO-1 mRNA expression than frozen-thawed Ad-MSCs, and fresh HO-1-overexpressed Ad-MSCs exhibited higher than fresh Ad-MSCs (P<0.05). However, there was no significant difference between fresh and frozen HO-1-overexpressed Ad-MSCs. The antioxidant capacity of HO-1-overexpressed Ad-MSCs was significantly higher than that of Ad-MSCs. Cryopreservation of Ad-MSCs negatively affects viability and antioxidant capacity, and HO-1-overexpressed Ad-MSCs might be useful to maximize the effect of Ad-MSCs for cytotherapy.

KEY WORDS: canine, cryopreservation, heme oxygenase-1, mesenchymal stromal cell

doi: 10.1292/jvms.15-0361; J. Vet. Med. Sci. 78(4): 619–625, 2016

Mesenchymal stem cells (MSCs) are cyotherapeutic agents with great potential in the field of regenerative medicine to repair damaged tissue. Adipose-derived MSCs (Ad-MSCs) exhibit stable growth and proliferation during culture and potential differentiation to a variety of cells, including bone marrow stem cells [9, 40]. Ad-MSCs are used to promote bone regeneration as well as in the treatment of neurological disorders, such as spinal cord injury, stroke and multiple sclerosis [3, 16, 18, 25]. Rather than direct conversion into differentiated cells, the repair mechanism is thought to involve the secretion of growth factors and promotion of the endogenous regenerative process by decreasing cell death and promoting nerve regeneration and revascularization [4–6].

Although allogenic Ad-MSCs have an immunomodulatory effect, which is required for cytotherapy [1, 15, 24], they do not provide total immune evasion and thus the co-administration of immunosuppressive drugs needs to be considered [2, 11]. However, autologous Ad-MSCs may be able to completely evade a wide range of innate and adaptive immune systems. However, the time required to collect, expand and administer usable cells makes the application of Ad-MSCs difficult in patients with acute injuries. The key to successful clinical application of Ad-MSCs is to provide a sufficient quantity of Ad-MSCs in a timely manner. Frozen-thawed allogenic Ad-MSCs could serve as an alternative to overcome this limitation.

Heme oxygenase-1 (HO-1) is able to control the cell cycle and has cytoprotective, pro-angiogenic and anti-inflammatory properties [10, 27, 34, 35]. The catabolism of heme provides cytoprotection via the induction of ferritin, antioxidative action of biliverdin and bilirubin, and anti-inflammatory effects of carbon monoxide. Methylprednisolone sodium succinate (MPSS) is being widely used as a scavenging agent in clinical treatment of acute spinal cord injury (SCI). Recent retrospective cohort studies have demonstrated the lack of a statistically significant difference in clinical outcomes [12]. MSCs might be used as an alternative agent for the treatment of acute SCI. HO-1 overexpressed MSCs would be more potent for cell therapy. Frozen allogenic MSCs are more convenient to provide a sufficient quantity.
of Ad-MSCs in a timely manner until autologous MSCs are prepared. However, it was reported that cryopreservation attenuates activities of immunosuppression and binding and engraftment of MSCs as well as viability [7, 13].

This study was conducted to compare the viability, proliferation, antioxidant capacity and mRNA gene expression levels of growth factors between canine Ad-MSCs and HO-1-overexpressed Ad-MSCs in relation to freeze-thawing.

MATERIALS AND METHODS

Isolation and cultivation of canine Ad-MSCs: Canine Ad-MSCs were obtained according to the method described in our previous paper [28]. Briefly, adipose tissues were aseptically collected from gluteraldehyde subcutaneous fat of 2-year-old beagle dogs (4 females). All animal experimental procedures were approved by the Institutional Animal Care and Use Committee of Seoul National University (SNU-141210-1), Korea. Adipose tissues (approximately 1 g) were washed extensively with phosphate-buffered saline (PBS), finely cut and digested with collagenase type I (1 mg/ml; Sigma-Aldrich, St. Louis, MO, U.S.A.) for 2 hr at 37°C. The tissue samples were washed with PBS solution and then centrifuged at 300 × g for 10 min. The stromal vascular fraction pellets were resuspended, filtered through a 100 µm nylon mesh and incubated overnight in 10% fetal bovine serum (FBS, Gibco BRL, Grand Island, NY, U.S.A.) and Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco, Billings, MT, U.S.A.) at 37°C with 5% humidified CO₂. After 24 hr, unattached cells and residual non-adherent red blood cells were removed by washing with PBS solution. The medium was changed at 2-day intervals until the cells became confluent. After the cells reached 90% confluence, they were subcultured. At passage 3, half of the cells were immediately used for in vitro experiments, and the remaining half were stored in a −150°C ultra-low temperature freezer and used after 2 weeks for the evaluation of the frozen-thawed cells.

Generation of lentivirus containing canine HO-1 and transfection into Ad-MSCs: We cloned the canine HO-1 gene in the reference to the gene database in the PubMed. pPACK Packaging Plasmid Mix (System Biosciences, Mountain View, CA, U.S.A.) was used for lentiviral packaging. In brief, the gene encoding Flag-tagged HO-1 was amplified from cDNA of canine peripheral blood using Phusion DNA Polymerases (Thermo Scientific, Pittsburgh, PA, U.S.A.), and a canine HO-1-specific primer set (Table 1) was inserted into a pCDH-EF1-MCS-pA-PGK-copGFP-T2A-Puro vector, with EcoRI and BamHI restriction enzymes (System Biosciences). HEK293T cells (Thermo Scientific) were maintained in 10% fetal bovine serum and 1% penicillin/streptomycin in DMEM at 37°C and 5% CO₂. Twenty-four hours before transfection, 4 × 10⁶ HEK293 cells were seeded into a 100 mm dish. The following day, 20 µl of lentiviral packaging mix (System Biosciences) encoding viral proteins Gag-Pol, Rev and VSV-G and 2 µg lentiviral transgene plasmids were transfected into cells for lentivirus production using Turbofect (Thermo Scientific). Fourteen hours after transfection, the DNA reagent mixture was removed and replaced with 5% FBS in 14 ml of fresh DMEM. At 48 hr post-transfection, lentiviral supernatants were harvested and filtered with 0.45 µm filters. One volume of cold (4°C) PEG-it Virus Precipitation Solution (System Biosciences) was added to every 4 volumes of lentiviral particle-containing supernatant. The supernatant/PEG-it mixture was centrifuged at 1,500 × g for 30 min at 4°C. After the viral pellet was resuspended in 10 µl of cold (4°C) DMEM media, 100 µl of diluted viral particles (1 × 10⁶ TU/ml) was added to the Ad-MSCs for the transfection and incubated in a T75 flask for 72 hr at 37°C; 10 ml of DMEM (10% FBS and 1% penicillin-streptomycin) was added before culture for 48 hr, and the colonies of cells were selected with puromycin (3 µg/ml). After culturing to passage 3, half of the cells were immediately used for the cell evaluation experiments, and the other half were cryopreserved and thawed after 2 weeks for evaluation.

Cryopreservation and thawing: Cells in a T175 flask were separated using 0.05% trypsin-EDTA (Gibco) and neutralized with DMEM after incubation for 15 min at 37°C, 5% CO₂. After centrifuging for 5 min at 900 × g, the supernatant was removed, and 5 × 10⁶ cells in cryogenic medium [50% DMEM and 40% FBS containing 10% dimethyl sulfoxide

Target gene	Primer	Sequence	Size
Interleukin-6 (IL-6)	Forward	TCTGTGCACTGAGTGACCAAGATGCC	124 bp
	Reverse	TCCGCGACTGCAAGATGCC	
Cyclooxygenase-2 (COX-2)	Forward	ACATCTCGACCCAATTCGACAG	387 bp
	Reverse	CAGGCTCTCGCTTAATGCT	
Transforming growth factor beta (TGF-β)	Forward	CTC AGT GGC CAC TGT TCC TA	215 bp
	Reverse	GCC GTG GAG CTG AAG CAG TA	
Hepatocyte growth factor (HGF)	Forward	CCCGACAAGGGCTTGGTGA	873 bp
	Reverse	TCTGTTCTGGAGGGAAAACAT	
Vascular endothelial growth factor (VEGF)	Forward	CTACCTCCACCATGGCAA	785 bp
	Reverse	CATGGCCTCAATGACCCT	
Heme oxygenase-1 (HO-1)	Forward	GACAGCATGCCAGGAAGAT	879 bp
	Reverse	TCACAGCTTAAAGGGCCAGT	
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)	Forward	TACTGCGACTGCAAGATGCC	104 bp

Table 1. Primers used in the PCR to detect mRNA of the canine Ad-MSCs
(DMSO) were re-suspended. Since then, the cell suspensions were incubated at 4°C for 1 hr, at −20°C for 2 hr and at −80°C overnight [8]. And then, the cryogenic vials were moved to a −150°C ultra-low temperature freezer to store for 2 weeks. The cryopreserved cells were thawed at 37°C for 5 min for the recovery.

MTS assay: The cell viability and proliferation rate for fresh canine Ad-MSCs (MSCs), frozen-thawed canine Ad-MSCs (F-MSCs), fresh HO-1-overexpressed Ad-MSCs (HMSCs) and frozen-thawed HO-1-overexpressed Ad-MSCs (F-HMSCs) were compared by measuring 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium using a commercially available kit (CellTiter 96® Aqueous, Promega, Madison, WI, U.S.A.). When the cells reached 80% confluence, attached cells were harvested with trypsin-EDTA and then immersed in a 96-well plate at a density of 1 × 10^5 cells/100 µl per well, and incubated for 0, 24, 48 and 72 hr. CellTiter 96 Aqueous One Solution Reagent (20 µl) was dispensed, and the plate was cultured for 2 hr at 37°C in a humidified 5% CO₂ atmospheric environment. Plates were read on a 680 micro-plate reader (Olympus-ckx41, Tokyo, Japan), At passage three, 1 × 10^5 groups. Mann–Whitney tests were carried out for the post-hoc test. A P-value of less than 0.05 indicated a significant difference between the groups.

RESULTS

Viabilities of frozen-thawed Ad-MSCs: The absorbance of live MSCs was 0.43 ± 0.06, and that of F-MSCs was 0.33 ± 0.06 (n=29), indicating that the viability of F-MSCs was less than that of MSCs (77%, P<0.01). The absorbance of live HMSCs was 0.48 ± 0.11, and that of F-HMSCs was 0.34 ± 0.05 (n=19), indicating that the viability of F-HMSCs was less that of HMSCs (71%, P<0.01). Furthermore, there were no significant differences between MSCs and HMSCs or between F-MSCs and F-HMSCs (Fig. 1).

Proliferation rates after culture of frozen-thawed Ad-MSCs: The proliferation rate (Fig. 2) of F-MSCs was lower than that of MSCs until 48 hr, after which the rate of F-MSCs increased abruptly and did not differ from that of MSCs at 3 days after culture. The proliferation rates of HMSCs after 3 days of culture were significantly lower than those of MSCs (P<0.05).

Morphology of cells: The images taken 3 days after seeding (Fig. 3) showed approximately 60–70% confluency in MSCs and F-MSCs, with slim and spindle-shaped cells. Approximately 30–40% confluency was observed in HMSCs and 20–30% in F-HMSCs, showing delayed proliferation with more broad and spindle-shaped cells than were observed for MSCs.

mRNA expression levels of TGF-β, HGF, VEGF, COX-2, IL-6 and HO-1: The mRNA expression levels of TGF-β, HGF and VEGF did not show significant differences among MSCs, F-MSCs, HMSCs and F-HMSCs. However, significantly higher COX-2 and IL-6 mRNA expression levels were observed in frozen-thawed cells including F-MSCs.
and F-HMSCs than in fresh cells (P<0.05). HO-1 mRNA expression in MSCs was significantly higher than in F-MSCs (P<0.05). HO-1 mRNA expression in HMSCs was significantly higher than in MSCs (P<0.05), but not higher than F-HMSCs (Fig. 4).

Analysis of total antioxidant capacity: HMSCs had higher antioxidant capacity than MSCs (P<0.05). The total antioxidant capacities of F-HMSCs and F-MSCs were significantly lower than those of HMSCs and MSCs, respectively (85% for HMSCs; and 66% for MSCs, P<0.05). The antioxidant capacity of F-MSCs was significantly lower than that of F-HMSCs (44% for F-HMSC, P<0.05) (Fig. 5).

DISCUSSION

Viability differed between fresh and frozen-thawed cells immediately after thawing. Some studies have shown that freeze-thawing can reduce cell viability [26, 36]. However, other studies have concluded that cryopreservation does not affect viability, morphology or differentiation potency [19, 41]. It has been suggested that the conflicting results reflect the different methods used to measure cell viability. Our study evaluated viability by MTS assay, which measured biological activity, rather than by a simple assessment of cell status (i.e., live or dead). Our findings confirmed that the viability of frozen-thawed cells was about 70% relative to that of fresh cells.

The proliferation rates of fresh and frozen-thawed HO-1-overexpressed Ad-MSCs were lower than those of intact Ad-MSCs after 3 days of culture. HO-1 activity is associated with enhanced cell survival, proliferation and migration, and a reduced inflammatory response [20, 23, 33]. However, it was reported that overexpressed HO-1 activity in vascular smooth muscle cells results in a slower growth rate than that of wild-type vascular smooth muscle cells [42]. Ninety percent of human HO-1-transfected cells were in the growth-arrested phase of the cell cycle (G0/G1). Although reduced proliferation of overexpressed HO-1 Ad-MSCs in the present study was observed, the total antioxidant activity was significantly higher than that of fresh Ad-MSCs as well as frozen Ad-MSCs. If the benefits of Ad-MSC therapy involve indirect environmental modification via anti-oxidation, anti-
inflammation and anti-apoptosis effects rather than direct differentiation [29], frozen HO-1-overexpressed Ad-MSCs may be useful.

VEGF secreted by Ad-MSCs is involved in the control of nerve regeneration as well as the maintenance and survival of newly created blood vessels [17, 32]. In addition, VEGF, HGF and other various growth factors behave as neuroprotection for neurons [22, 31]. In this way, growth factors, such as HGF, TGF-β and VEGF, are important for healing damaged tissue.

In the present study, there was no detectable difference in the mRNA expression of growth factor genes between MSCs, F-MSCs, HMSCs and F-HMSCs. However, the inflammatory factors, COX-2 and IL-6, in frozen Ad-MSCs have increased expression. Heat stress during the freeze-thaw process promotes COX-2 expression [30] and can enhance the expression of IL-6 [14, 39]. Therefore, the inflammatory response is likely to occur when frozen-thawed cells are used.

HO-1 increases the survival of Ad-MSCs in acute myocardial infarction [37] and may control the differentiation of chondrocytes, neurons and osteoblast [21, 38]. In addition, HO-1 has an effect on blood flow recovery and nerve function recovery [34]. Our study showed that HO-1-overexpressed Ad-MSCs have higher antioxidant capacity than Ad-MSCs, regardless of cryopreservation. These results suggested that frozen-thawed HO-1-overexpressed Ad-MSCs are an alternative source for cytotherapy.

In clinical trials, the use of cryopreserved products immediately after thawing fails more often than the use of fresh Ad-MSCs. Challenges in the clinical application are the preservation of the stem cell and the functional impairment for homing [7, 13]. We need early usable and effective MSCs after thawing.

Freezing cells are more convenient, but thawing cells have some disadvantage. In the present study, frozen-thawed Ad-MSCs were limited as a therapeutic tool owing to reduced viability, lower HO-1 mRNA expression and lower total antioxidant activity relative to fresh cells. However, the meaningfulness of our research is that with the integration of cryopreservation and gene manipulation, we opened pos-
sibilities to make cells that can immediately be connected to clinical application.

ACKNOWLEDGMENT. This work was supported by the National Research Foundation of Korea (NRF-2013 R1A1A2004506).

REFERENCES

1. Amado, L. C., Saliaris, A. P., Schuieri, K. H., St John, M., Xie, J. S., Cattaneo, S., Durand, D. J., Fitton, T., Kuang, J. Q., Stewart, G., Lehrke, S., Baumgartner, W. W., Martin, B. J., Heldman, A. W. and Hare, J. M. 2005. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. *Proc. Natl. Acad. Sci. U.S.A.* **102**: 11474–11479. [Medline] [CrossRef]

2. Ankrum, J. A., Ong, J. F. and Karp, J. M. 2014. Mesenchymal stem cells: immune evasive, not immune privileged. *Nat. Biotechnol.* **32**: 252–260. [Medline] [CrossRef]

3. Buschmann, J., Härter, L., Gao, S., Hennmi, S., Welti, M., Hild, N., Schneider, O. D., Stark, W. J., Lindenblatt, N., Werner, C. M. L., Wanner, G. A. and Calcagnoi, M. 2012. Tissue engineered bone grafts based on biomimetic nanocomposite PLGA/amorphous calcium phosphate scaffold and human adipose-derived stem cells. *Injury* **43**: 1689–1697. [Medline] [CrossRef]

4. Chen, J., Li, Y., Katakowski, M., Chen, X., Wang, L., Lu, D., Lu, M., Gautam, S. C. and Chopp, M. 2003. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. *J. Neurosci. Res.* **73**: 778–786. [Medline] [CrossRef]

5. Chen, J., Zhang, Z. G., Li, Y., Wang, L., Xu, Y. X., Gautam, S. C., Lu, M., Zhu, Z. and Chopp, M. 2003. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. *Circ. Res.* **92**: 692–699. [Medline] [CrossRef]

6. Chen, X., Li, Y., Wang, L., Katakowski, M., Zhang, L., Chen, J., Xu, Y., Gautam, S. C. and Chopp, M. 2002. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. *Neuropathology* **22**: 275–279. [Medline] [CrossRef]

7. Chinnadurai, R., Garcia, M. A., Sakurai, Y., Lam, W. A., Kirk, A. D., Galipeau, J. and Copeland, I. B. 2014. Actin cytoskeletal disruption following cryopreservation alters the biodistribution of human mesenchymal stromal cells in vivo. *Stem Cell Rep.* **3**: 60–72. [Medline] [CrossRef]

8. Davies, O. G., Smith, A. J., Cooper, P. R., Shelton, R. M. and Scheven, B. A. 2014. The effects of cryopreservation on cells isolated from adipose, bone marrow and dental pulp tissues. *Cryobiology* **69**: 342–347. [Medline] [CrossRef]

9. Dicker, A., Le Blanc, K., Aström, G., van Harmelen, V., Götherström, C., Blomqvist, L., Arner, P. and Rydén, M. 2005. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. *Exp. Cell Res.* **308**: 283–290. [Medline] [CrossRef]

10. Eisenstein, R. S., Garcia-Mayol, D., Pettingell, W. and Munro, H. N. 1991. Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts by different forms of iron. *Proc. Natl. Acad. Sci. U.S.A.* **88**: 688–692. [Medline] [CrossRef]

11. Eliopoulos, N., Stagg, J., Lejeune, L., Pommeux, S. and Galipeau, J. 2005. Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. *Blood* **106**: 4057–4065. [Medline] [CrossRef]

12. Evaniew, N., Noonan, V. K., Fallah, N., Kwon, B. K., Rivers, C. S., Ahn, H., Bailey, C. S., Christie, S. D., Fourney, D. R., Hurlbert, R. J., Linassi, A. G., Fehlings, M. G. and Dvorak, M. F. 2015. The RHSCR Network. Methyldprednisolone for the treatment of patient with acute spinal cord injuries: A propensity score-matched cohort study from a Canadian multi-center spinal cord injury registry. *J. Neurotrauma* **32**: 1674–1683. [Medline] [CrossRef]

13. François, M., Copland, I. B., Yuan, S., Romieu-Mourre, R., Waller, E. K. and Galipeau, J. 2012. Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-γ licensing. *Cytotherapy* **14**: 147–152. [Medline] [CrossRef]

14. Hamzic, N., Blomqvist, A. and Nilsberth, C. 2013. Immune-induced expression of lipocalin-2 in brain endothelial cells: relationship with intereukin-6, cyclooxygenase-2 and the febrile response. *J. Neuroendocrinol.* **25**: 271–280. [Medline] [CrossRef]

15. Hare, J. M., Traverse, J. H., Henry, T. D., Dib, N., Strumpf, R. K., Schulman, S. P., Gerstenblith, G., DeVaria, A. N., Denkta, A. E., Gammmon, R. S., Hermiller, J. B. Jr., Reisman, M. A., Schaer, G. L. and Sherman, W. 2009. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. *J. Am. Coll. Cardiol.* **54**: 2277–2286. [Medline] [CrossRef]

16. Hintzen, R. Q. 2002. Stem cell transplantation in multiple sclerosis: multiple choices and multiple challenges. *Mult. Scler.* **8**: 155–160. [Medline] [CrossRef]

17. Jin, K., Zhu, Y., Sun, Y., Mao, X. O., Xie, L. and Greenberg, D. A. 2002. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. *Proc. Natl. Acad. Sci. U.S.A.* **99**: 11946–11950. [Medline] [CrossRef]

18. Jun, Y. J., Rhie, J. W., Choi, Y. S., Kim, Y. J., Kim, S. E., Lee, J. I. and Han, K. T. 2006. The effects of adipose derived stem cells on neurogenic differentiation and induction of nerve regeneration. *J. Korean Soc. Plast. Reconstr. Surg.* **33**: 205–212.

19. Kotobuki, N., Hikose, M., Machida, H., Katou, Y., Muraki, K., Takakura, Y. and Ohgushi, H. 2005. Viability and osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells. *Tissue Eng.* **11**: 663–673. [Medline] [CrossRef]

20. Kozakowska, M., Ciesla, M., Stefanska, A., Skrzypek, K., Was, H., Jazwa, A., Grochot-Przeczak, A., Kotlinowski, J., Szymula, A., Bartelik, A., Mazan, M., Yagensky, O., Florczyk, U., Lemke, K., Zebzda, A., Dyduck, G., Nowak, W., Szade, K., Stepniewski, J., Majka, M., Derlacz, R., Loboda, A., Dulak, J. and Jozkowicz, A. 2012. Heme oxygenase-1 inhibitors myoblast differentiation by targeting myomirs. *Antioxid. Redox Signal.* **16**: 113–127. [Medline] [CrossRef]

21. Kozakowska, M., Szade, K., Dulak, J. and Jozkowicz, A. 2014. Role of heme oxygenase-1 in postnatal differentiation of stem cells: a possible cross-talk with microRNAs. *Antioxid. Redox Signal.* **20**: 1827–1850. [Medline] [CrossRef]

22. Kim, H. J., Lee, J. H. and Kim, S. H. 2010. Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis. *J. Neurotrauma* **27**: 131–138. [Medline] [CrossRef]

23. Laumonier, T., Yang, S., Konig, S., Chauveau, C., Anegon, I., Hoffmeyer, P. and Menetrey, J. 2008. Lentivirus mediated targeting myomirs. *Stem Cell Rep.* **3**: 113–127. [Medline] [CrossRef]

24. Le Blanc, K., Frassoni, F., Ball, L., Locatelli, F., Roclofsi, H., Lewis, I., Lamino, E., Sundberg, B., Bernardo, M. E., Remberger, M., Dini, G., Egeler, R. M., Bacigalupo, A., Fieb, W., Ringdén
CRYOPRESERVATION EFFECT ON HO-1 MSCS

O., Developmental Committee of the European Group for Blood and Marrow Transplantation 2008. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371: 1579–1586. [Medline] [CrossRef]

25. Park, K. I. 2000. Transplantation of neural stem cells: cellular & gene therapy for hypoxic-ischemic brain injury. Yonsei Med. J. 41: 825–835. [Medline] [CrossRef]

26. Pal, R., Hanwate, M. and Totey, S. M. 2008. Effect of holding time, temperature and different parenteral solutions on viability and functionality of adult bone marrow-derived mesenchymal stem cells before transplantation. J. Tissue Eng. Regen. Med. 2: 436–444. [Medline] [CrossRef]

27. Ryter, S. W., Alam, J. and Choi, A. M. 2006. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev. 86: 583–650. [Medline] [CrossRef]

28. Ryu, H. H., Lim, J. H., Byeon, Y. E., Park, J. R., Seo, M. S., Lee, Y. W., Kim, W. H., Kang, K. S. and Kweon, O. K. 2009. Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury. J. Vet. Sci. 10: 273–284. [Medline] [CrossRef]

29. Ruff, C. A., Wilcox, J. T. and Fehlings, M. G. 2012. Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp. Neurol. 235: 78–90. [Medline] [CrossRef]

30. Rossi, A., Coccia, M., Trotta, E., Angelini, M. and Santoro, M. G. 2012. Regulation of cyclooxygenase-2 expression by heat: a novel aspect of heat shock factor 1 function in human cells. PLoS ONE 7: e31304. [Medline] [CrossRef]

31. Sasaki, M., Radtke, C., Tan, A. M., Zhao, P., Hamada, H., Houkin, K., Hommou, O. and Koosis, J. D. 2009. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J. Neurosci. 29: 14932–14941. [Medline] [CrossRef]

32. Schänzer, A., Wachs, F. P., Wilhelm, D., Acker, T., Cooper-Kuhn, C., Beck, H., Winkler, J., Aigner, L., Plate, K. H. and Kuhn, H. G. 2004. Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol. 14: 237–248. [Medline] [CrossRef]

33. Schipper, H. M., Song, W., Zukor, H., Hascalovici, J. R. and Zeligman, D. 2009. Heme oxygenase-1 and neurodegeneration: expanding frontiers of engagement. J. Neurochem. 110: 469–485. [Medline] [CrossRef]

34. Suzuki, M., Iso-o, N., Takeshita, S., Tsukamoto, K., Mori, I., Sato, T., Ohno, M., Nagai, R. and Ishizaka, N. 2003. Facilitated angiogenesis induced by heme oxygenase-1 gene transfer in a rat model of hindlimb ischemia. Biochem. Biophys. Res. Commun. 302: 138–143. [Medline] [CrossRef]

35. Song, R., Kubo, M., Morse, D., Zhou, Z., Zhang, X., Dauber, J. H., Fabisiak, J., Alber, S. M., Watkins, S. C., Zuckerbraun, B. S., Otterbein, L. E., Ning, W., Oury, T. D., Lee, P. J., McCurry, K. R. and Choi, A. M. K. 2003. Carbon monoxide induces cytoprotection in rat orthotopic lung transplantation via anti-inflammatory and anti-apoptotic effects. Am. J. Pathol. 163: 231–242. [Medline] [CrossRef]

36. Sohn, H. S., Heo, J. S., Kim, H. S., Choi, Y. and Kim, H. O. 2013. Duration of in vitro storage affects the key stem cell features of human bone marrow-derived mesenchymal stromal cells for clinical transplantation. Cytotherapy 15: 460–466. [Medline] [CrossRef]

37. Tang, Y. L., Tang, Y., Zhang, Y. C., Qian, K., Shen, L. and Phillips, M. I. 2005. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J. Am. Coll. Cardiol. 46: 1339–1350. [Medline] [CrossRef]

38. Vanella, L., Kim, D. H., Asprinio, D., Peterson, S. J., Barbagallo, I., Vanella, A., Goldstein, D., Ikehara, S., Kappas, A. and Abraham, N. G. 2010. HO-1 expression increases mesenchymal stem cell-derived osteoblasts but decreases adipocyte lineage. Bone 46: 236–243. [Medline] [CrossRef]

39. Venkataraman, M. 1994. Effects of cryopreservation on immune responses: VII. Freezing induced enhancement of IL-6 production in human peripheral blood mononuclear cells. Cryobiology 31: 468–477. [Medline] [CrossRef]

40. Vieira, N. M., Brandalise, V., Zucconi, E., Secco, M., Strauss, B. E. and Zatz, M. 2010. Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. Cell Transplant. 19: 279–289. [Medline] [CrossRef]

41. Xiang, Y., Zheng, Q., Jia, B., Huang, G., Xie, C., Pan, J. and An, W. 2002. Overexpression of heme oxygenase-1 protects smooth muscle cells against oxidative injury and inhibits cell proliferation. Cell Res. 12: 123–132. [Medline] [CrossRef]