Species composition and carbon stock estimation in Pulau Sembilan secondary mangrove forests, North Sumatra, Indonesia

M Basyuni1,2* and E O Simanjutak1

1 Department of Forestry, Faculty of Forestry, Universitas Sumatera Utara, Jl. Tri Dharma Ujung No. 1 Medan, North Sumatera 20155, Indonesia
2 Center of Excellence for Mangrove, Universitas Sumatera Utara, Medan, North Sumatera 20155, Indonesia

*E-mail: m.basyuni@usu.ac.id

Abstract. This study aimed to identify the species composition and measure the carbon stock estimation from the secondary mangrove forest. Analysis of vegetation (tree, sapling, and seedling) was carried out at Pulau Sembilan, Langkat, North Sumatra, Indonesia. The development of the seedlings, saplings, and trees was determined from four transect lines. Each transect had 100 m length. Each measured plot of total four transects contained 30 plots. The result showed that Rhizophora apiculata predominated vegetation types of seedlings, saplings, and trees in the mangrove forest, with the highest importance value index (116.13%). On the other hand, Bruguiera parviflora had the highest IVI (71.37%) of saplings, while at seedlings and tree levels were dominated by R. apiculata with IVI, 65.30%, and 75.48%, respectively. The diversity index of Shannon-Weiner ranged 1.11-1.49 at the secondary mangrove forest. In secondary mangrove forests had total biomass of trees at 51,589.83 kg/ha with a carbon potential of 23.73 tons/ha. This study provided a basis for rehabilitation, mangrove management and enrichment information in secondary mangrove forests.

1. Introduction

Indonesia has the most extensive mangroves in the world. Mangroves, as a component of coastal ecosystems, play an important role in maintaining the productivity of coastal waters and supporting the lives of residents in the region [1-2]. For coastal areas, mangrove forests, especially as a green belt along the coast/river estuary, is fundamental to supply firewood, fish, and shrimp [3-4]. Furthermore, to maintain the quality of the agricultural, fisheries, and settlement ecosystems behind them from abrasion, instrumentation, and sea wind disturbances [5-6].

Damage to mangrove ecosystems due to massive deforestation to be converted into several forms of economic use such as aquaculture, agriculture, industry, settlement, tourism, mining, and fishing [7-8]. This fact is a general condition in the coastal regions of North Sumatra. The reduction in fish and shrimp in this area means reducing the income of small fishermen who usually operate around the coast, shrimp fishermen, crab seekers, and fishers [9-10]. On the east coast of North Sumatra, the reduction in fish catch has caused some fishermen to switch professions as loggers in the mangrove forest or cut down the wood to become an alternative activity during the off-season season [11]. Therefore, research on species diversity and estimation of carbon stocks stored in secondary forests and ponds in Pulau Sembilan village, Langkat, North Sumatra are significant. This research produces data and information about the flora of secondary mangrove forests in Pulau Sembilan, North Sumatra.
2. Materials and Method

2.1. Sampling site and vegetation analysis
Analysis of vegetation stage (tree, sapling, and seedling) was carried out at Pulau Sembilan Village, Langkat, North Sumatra Indonesia. The sampling sites consisted of secondary mangrove forests, which located at 4˚ 10’ 26” N, 98˚ 15’ 58” E. Sample plots are made in the form of transects starting from the edge of the sea to the mainland, with the following observation steps in the sample plots: subplot 10 example x 10 m for tree-level (diameter ≥ 10 cm), subplot example 5 m x 5 m for sapling level (5-10 cm in diameter), and sample subplot 2 m x 2 m for seedling level. Each measured plot of total four transects contained 30 plots. The data measured includes the height of the tree, sapling, and seedling, the diameter of the tree at breast height (dbh), and records the names of all species of vegetation. Data obtained from the results of measurements in the field are calculated to determine the following variables [3]. These data were used to analyze the importance value index (IVI) and the diversity index (H’) of mangrove species.

2.2. Carbon stock estimation
Measurement of mangrove vegetation’s biomass in the mangrove forest of Pulau Sembilan village was performed by making observation sample plots with a sampling intensity of 10% with an area of 1 ha of secondary mangrove forests. The initial determination of sample plots was done by purposive random sampling. Sample plots were taken in areas with mangrove growth potential and relatively uniform plant species, for further sub-sample plots were made, which were part of sample plots in the field. Biomass data obtained from the measurement of mangrove vegetation > 5 cm in diameter was calculated using an allometric approach using a formula that was introduced by [12]. The final estimate of the amount of carbon (C) stored is calculated by the formula: C = Total biomass (kg ha-1) x 0.46.

3. Results and Discussion

3.1. Species diversity and density
The analysis of vegetation shows the level of diversity and density of mangrove vegetation from secondary forests based on the level of growth found in 22 sample plots. In the secondary forest, location recorded five species of vegetation found at all levels of growth, namely at the seedling level, sapling level, and tree-level can be seen in Table 1. Dominant species are found in R. apiculata species at each growth, while the lowest are in A. marina at seedling and sapling growth rates, and the lowest tree growth rates are in A. marina and L. racemosa species.

```
| Species          | Family        | Individual stage |
|------------------|---------------|------------------|
| Avicennia marina | Acanthaceae   | 2                |
| Lumnitzera racemosa | Combretaceae  | 3                |
| Excoecaria agallocha | Euphorbiaceae | 4                |
| Rhizophora apiculata | Rhizophoraceae | 8                |
| Sonneratia alba  | Sonneratiaceae| 3                |
| **Total**        |               | **20**           |
```

The dominance of the R. apiculata species is also due to the ease with which the propagules grow and are supported by a particular life cycle of the mangrove species. The propagules can germinate in the parent so that they are very supportive of the broad distribution process of the species [13-14]. At the tree level, the species that dominates is the mangrove plant. The number of dominating mangrove
broodstock can be a producer of seed distribution in large quantities so that the spread of seeds is enough to produce a wide distribution of seedlings and broad saplings of that species.

Another thing that the dominant factor why *R. apiculata* was so dominant was the existence of rehabilitation activities on the coastal forest land in Pulau Sembilan Village in the 1990s forest had been cut down by residents for daily needs such as firewood. Data obtained from residents that replanting that was held in that year used *R. apiculata* with plant spacing arranged so that the coastal forest in Pulau Sembilan Village was included in forests that were of the same age with high and canopy densities. This rehabilitation activity is also why other species have a low dominance compared to *R. apiculata* [15].

Furthermore, this rehabilitation efforts can be seen with the growth in height and diameter of each mangrove species, which is relatively the same in each plot. *R. apiculata* is mostly found is at the level of tree growth, while vegetation with seedling growth rates is very little found [16]. Mangroves cause this at the level of trees around the area, not all of them can produce fruit so that the spread is relatively low. This result is caused by the condition where the majority of growth is inundated by water, so the spread is classified as higher compared to those in the mangrove forest location [17].

Table 2. Diversity index

Species	Diversity Index		
	Seedling	Sapling	Tree
Avicennia marina	0.23	0.23	0.18
Lumnitzera racemosa	0.29	0.24	0.18
Excoecaria agallocha	0.32	0.30	0.26
Rhizophora apiculata	0.37	0.35	0.28
Sonneratia alba	0.28	0.27	0.20
Total	**1.49**	**1.38**	**1.11**

The results of species diversity measurement (H') that have been carried out from secondary forest location at 22 sample plots at both research sites for seedling, sapling, and tree-level growth, displayed in Table 2. The composition of vegetation in a forest type is essential to know; the intended composition includes vegetation in the canopy layer at the top (trees) and vegetation at the bottom layer (forest floor). The high level of biodiversity in mangrove forests is influenced by many factors, including the conditions under which the mangroves grow [18-19]. The diversity index used in this study is the Shanon-wiener diversity index. Criteria for species diversity index values based on Shanon-wiener (H') ranged from 0 to 3 with the following criteria: if H' (0 < 2) is classified as low, H' (2-3) is classified as moderate, H' (> 3) or more high [3]. So that it can be seen from Table 2, the biodiversity contained in each of these study sites is classified as low (H ' = 0 < 2).

High species diversity is an indicator of the stability or stability of a growth environment. High stability indicates a high level of complexity. This is due to the high interaction also so that it will have a higher ability to deal with interference with its components [20-21].

Table 3 showed the dominant species at the tree level are found in *R. apiculata* (IVI = 116.13%), and the lowest is in *A. marina* (IVI = 41.71). At the sapling level, the dominant species were still found in the type of *R. apiculata* (IVI = 88.67%), and the lowest was also in the type *A. marina* (IVI = 21.80%). Likewise, at the seedling level, the dominant species were found in the *R. apiculata* species (IVI = 82.11%), and the lowest was also in the *A. marina* (IVI = 19.75%) as depicted in Table 3.
Table 3. Important value index (VI) in the site

Species	IVI Stage (%)		
	Seedling	Sapling	Tree
Avicennia marina	19.75	21.80	41.71
Lumnitzera racemosa	31.18	24.12	44.97
Excoecaria agallocha	41.06	36.34	50.32
Rhizophora apiculata	82.11	88.67	116.13
Sonneratia alba	25.90	29.07	46.88
Total	200	200	300

Whether or not the growth of mangroves in a community can be seen from the analysis of the condition of the vegetation, which shows the size of the role of a type of existing community. This situation can be seen in the critical value index, which is owned by a mangrove species [22]. A high IVI illustrates that these types can compete with their environment and are called dominant types or dominate the community's space. This is because the species has suitable suitability for growing and has a good endurance compared to other species in the community. Conversely, the low IVI in certain types indicates that this type is less able to compete with the surrounding environment and other types. The low resistance to natural phenomena and a large amount of exploitation can reduce these types from year to year.

3.2. Carbon stock estimation

Table 4 shows that the *L. racemosa* had the highest biomass potential with the amount of biomass 35,944.45 kg/ha, and the lowest is in *A. marina* with the amount of biomass 2,421.07 kg/ha. The measurement results on the sample plot of the study at the secondary mangrove forest location had total biomass of mangrove stands of 51,589.83 kg/ha with a carbon potential of 23.73 tons/ha.

Table 4. Total biomass and carbon

Species	Total biomass
Avicennia marina	2,421.07
Lumnitzera racemosa	35,944.45
Excoecaria agallocha	6,827.31
Rhizophora apiculata	3,251.54
Sonneratia alba	3,145.46
Total	51,589.83 kg ha

According to [23-24] biomass is the result of photosynthesis in the form of cellulose, lignin, sugar along with fat, starch, protein, resin, phenol, and various other compounds as well as nutrients, nitrogen, phosphorus, potassium and various other elements that plants need through rooting. In nature, the most significant proportion of carbon storage is generally found in the tree stand or biomass component.

The difference in the amount of carbon stock in study location to other locations is due to differences in plant density. The type of vegetation also influences carbon reserves in a land-use system [25]. A land-use system that consists of trees with species that have high wood density values, the biomass will be higher when compared to land that has species with low wood density values [26]. The high and low number of species in mangrove forest is influenced not only by habitat conditions.
and environmental factors but also by the level of disturbance both from animals and mainly due to human activities [4, 27-28]. Given the increasing amount of carbon at this time must be balanced with the amount of absorption by plants to avoid global warming. Thus it can be predicted how much vegetation must be planted on a field to compensate for the amount of carbon trade [29-30]. The stored carbon value states how much carbon can be absorbed by plants in the form of biomass. The amount of carbon that is increasing at this time must be balanced with the amount of absorption by plants to avoid global warming. Thus it can be predicted how many plants must be planted on land to compensate for the amount of carbon trade.

4. Conclusions
The present study provided a basis and reference for (a) rehabilitation of damaged mangroves, (b) mangrove management for the present and future, and (c) as well enrich data and knowledge about secondary mangrove forests.

Acknowledgment
This study was supported by Program Pengembangan Desa Mitra (PPDM) 2019 from the Directorate for Research and Community Service, Ministry of Research, Technology and Higher Education, Republic of Indonesia.

References
[1] Spalding MD, Ruffo S, Lacambra C, Meliane I, Hale LZ, Shepard CC, Beck MW 2014 The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards Ocean Coast Manage 90: 50–57.
[2] Lee SY, Primavera JH, Dahdouh-Guebas F, McKee K, Bosire JO, Cannicci S, Mendelsohn I 2014 Ecological role and services of tropical mangrove ecosystems: a reassessment Glob Ecol Biogeogr 23: 726–743.
[3] Fitri A, Basyuni M, Wati R, Sulistiyono N, Slamet B, Harahap ZA, Bakte T, Bunting P 2018 Management of mangrove ecosystems for increasing fisheries production in Lubuk Kertang village, North Sumatra, Indonesia AACL Bioflux 11: 1252–1264.
[4] Basyuni M, Putri LAP, Murni MB 2015 Implication of land-use and land-cover change into carbon dioxide emissions in Karang Gading and Langkat Timur wildlife reserve, North Sumatra, Indonesia J Man Hut Trop 21: 25–35.
[5] Zhang, K, Liu H, Li Y, Xu H, Shen J, Rhome J, Smith III TJ 2012 The role of mangroves in attenuating storm surges Estuar Coast Shelf Sci 102: 11-23.
[6] Carugati L, Gatto B, Rastelli E, Martire ML, Coral C, Greco S, Danovaro R 2018 Impact of mangrove forests degradation on biodiversity and ecosystem functioning Sci Rep 8: 1–11.
[7] Islam SN 2014 An analysis of the damages of Chakoria Sundarban mangrove wetlands and consequences on community livelihoods in south east coast of Bangladesh Int J Environ Sustain Dev 13: 153–171.
[8] Chowdhury RR, Uchida E, Chen L, Osorio V, Yoder L 2017 Anthropogenic drivers of mangrove loss: geographic patterns and implications for livelihoods. In Mangrove ecosystems: A global biogeographic perspective 275-300 Springer, Cham.
[9] Epstein G, Andrews E, Armitage D, Foley P, Pittman J, Brushett R 2018 Human dimensions of ecosystem-based management: Lessons in managing trade-offs from the Northern Shrimp Fishery in Northern Peninsula, Newfoundland Mar Policy 97: 10–17.
[10] Mozumder, M. M. H., Shamsuzzaman, M., Rashed-Un-Nabi, M., & Harun-Al-Rashid, A. (2018). Socio-Economic Characteristics and Fishing Operation Activities of the Artisanal Fishers in the Sundarbans Mangrove Forest, Bangladesh. Turkish Journal of Fisheries and Aquatic Sciences. –
[11] Basyuni M, Harahap MA, Wati R, Slamet B, Thoha AS, Nuryawan A, Putri LAP, Yusriani, E. 2018 Evaluation of mangrove reforestation and the impact to socioeconomic-cultural of
community in Lubuk Kertang village, North Sumatra IOP Confer. Ser.: Earth Environ. Sci. 126: 012113.

[12] Komiyama A, Ong JE, Pongparn S 2008 Allometry, biomass, and productivity of mangrove forests: A review Aquat Bot 89: 128–137.

[13] Toné N, Beeckman H, Robert EM, Koedam N 2017 Towards an unknown fate: The floating behaviour of recently abscised propagules from wide ranging Rhizophoraceae mangrove species Aquat Bot 140: 23–33.

[14] Krauss KW, Ball MC 2013 On the halophytic nature of mangroves Trees 27: 7–11.

[15] Krauss KW, Ball MC 2013 On the halophytic nature of mangroves Trees 27: 7–11.

[16] Basyuni M, Harahap MA, Wati R, Slamet B, Thoha AS, Nuryawan A, Putri LAP, Yusriani, E. 2018 Evaluation of mangrove reforestation and the impact to socioeconomic-cultural of community in Lubuk Kertang village, North Sumatra IOP Confr Ser: Earth Environ. Sci 126: 012113.

[17] Basyuni M, Sumardi 2017 Bioinformatics approach of salt tolerance gene in mangrove plant Rhizophora stylosa J Phys: Conf Ser 801: 012012.

[18] Basyuni M, Nainggolan B, Sihaloho PE 2014 Growth and biomass in response to salinity and subsequent freshwater in mangrove seedlings Avicennia marina and Rhizophora stylosa J Man Hut Trop 20: 17–25.

[19] Jia M, Wang Z, Zhang Y, Ren C, Song K 2014 Landsat-based estimation of mangrove forest loss and restoration in Guangxi province, China, influenced by human and natural factors. IEEE J Sel Top Appl Earth Obs Remote Sens 8: 311–323.

[20] Abdullah MM, Lee SY 2016 Meiofauna and crabs in mangroves and adjoining sandflats: is the interaction physical or trophic? J Exp Mar Biol Ecol 479: 69–75.

[21] Kibria AS, Costanza R, Groves C, Behie AM 2018 The interactions between livelihood capitals and access of local communities to the forest provisioning services of the Sundarbans Mangrove Forest, Bangladesh. Ecosystems 32: 41–49.

[22] Datta D, Chattopadhyay RN, Guha P 2012 Community based mangrove management: a review on status and sustainability J Environ Manage 107: 84–95.

[23] Menon V, Rao M 2012 Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog in Energ Combust Sci 38: 522–550.

[24] Xiong Y, Cakir R, Phan SM, Ola A, Krauss KW, Lovelock CE 2019 Global patterns of tree stem growth and stand aboveground wood production in mangrove forests Forest Ecol Manag 444: 382–392.

[25] Inafuku M, Basyuni M, Oku H 2018 Triterpenoid modulates the salt tolerance of lanosterol synthase deficient Saccharomyces cerevisiae, GIL77 Saudi J Biol Sci 25: 1–9.

[26] Basyuni M, Wasilah M, Hasibuan PAZ, Sulistiyono N, Sumardi, Binantara Y, Hayati R, Sagami H, Oku H 2019 Salinity and subsequent freshwater influences on the growth, biomass, and polyisoprenoids distribution of Rhizophora apiculata seedlings Biodiversitas 20: 388–395

[27] Erfteemeijer PL, Rieg B, Hoeksema BW, Todd PA 2012 Environmental impacts of dredging and other sediment disturbances on corals: a review Mar Poll Bull 64: 1737–1765.

[28] Geist SJ, Nordhaus I, Hinrichs S 2012 Occurrence of species-rich crab fauna in a human-impacted mangrove forest questions the application of community analysis as an environmental assessment tool Estuar Coast Shelf Sci 96: 69–80.

[29] Locatelli T, Binet T, Kairo JG, King L, Madden S, Patenaude G, Huxham M 2014 Turning the tide: how blue carbon and payments for ecosystem services (PES) might help save mangrove forests Ambio 43: 981–995.