Remodeling of the osteoimmune microenvironment after biomaterials implantation in murine tibia: Single-cell transcriptome analysis

Jia Li, Congrui Zhao, Yangbo Xu, Lu Song, Yanqi Chen, Yuzi Xu, Yang Ma, Siyuan Wang, Antian Xu*, Fuming He

Department of Prosthodontics, School of Stomatolog, Zhejiang University School of Medicine, Zhejiang Provincial Medical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China

ARTICLE INFO

Abstract

Osseointegration seems to be a foreign body reaction equilibrium due to the complicated interactions between the immune and skeletal systems. The heterogeneity of the osteoimmune microenvironment in the osseointegration of implant materials remains elusive. Here, a single-cell study involving 40043 cells is conducted, and a total of 10 distinct cell clusters are identified from five different groups. A preliminary description of the osteoimmune microenvironment revealed the diverse cellular heterogeneity and dynamic changes modulated by implant properties. The increased immature neutrophils, Ly6C + CCR2hi monocytes, and S100a8hi macrophages induce an aggressive inflammatory response and eventually lead to the formation of fibrous capsule around the stainless steel implant. The enrichment of mature neutrophils, FcgR1hi and differentiated immunomodulatory macrophages around the titanium implant indicates favorable osseointegration under moderate immune response. Neutrophil-depletion mice are conducted to explore the role of neutrophils in osseointegration. Neutrophils may improve bone formation by enhancing the recruitment of BMSCs via the CXCL12/CXCR3 signal axis. These findings contribute to a better knowledge of osteoimmunology and are valuable for the design and modification of ‘osteoimmune-smart’ biomaterials in the bone regeneration field.

ABSTRACT

1. Introduction

There is rapidly-growing demand for innovative clinical orthopedic implants for bone diseases, traditional orthopedic implants include but are not limited to prostheses and fixators are mainly made of inert stainless steel and titanium or its alloys [1]. In recent years, the concept of ‘osteoimmunology’ has been emphasized, and osseointegration seems to be a foreign body reaction (FBR) equilibrium due to its complicated mechanisms controlling the immune and skeletal systems [2]. The osteoimmune environment created by biomaterials determines the results of bone regeneration and the clinical outcomes of implants. However, there is still a lack of full comprehension of the osteoimmune responses induced by materials. Current understanding of heterogeneity and dynamic changes of immune cells is still limited to traditional definitions, such as macrophage polarization with classical M1/M2 macrophage nomenclature, and corresponding N1/N2 neutrophils typing [3–6]. This study aims at exploring the cellular heterogeneity and dynamics within the implant materials mediated-osteoimmune...
Bioactive Materials 22 (2023) 404–422

Bioactive Materials with appropriate modification strategies can induce an immune-mediated process that contributes to better osseointegration [7]. The characteristics of biomaterials (size, topography, roughness, hydrophilicity, iron release, etc.) play significant roles in guiding immune reactions and cell behaviors [8–10]. Most studies have focused on macrophages due to their remarkable plasticity and functional phenotype [11,12]. For instance, strontium (Sr) ions modification of titanium implants was recently reported to have an immunomodulatory effect on macrophages. SR implants enhanced osseointegration accompanied by more alternatively M2 polarization and less classically activated M1 infiltration via the ERK pathway [13]. Currently, increasing studies have indicated that the modification of biomaterial can also regulate other immunocytes. Sr-incorporated scaffolds promote neutrophils to N2 polarization, thus enhancing the resolution of inflamed tissue and orchestrating by diverse influencing factors. The microenvironment needs to be taken as a whole and analyzed jointly by multiple cells.

With the development of single-cell transcriptome (scRNA-seq), it enables to explore cell heterogeneity, cell function, and cell communication in vivo [17], providing a comprehensive understanding of bone immune response to implant materials. In this study, scRNA-seq was used to profile cells around implant materials with different osteogenic properties to unveil the immune microenvironment involved in biomaterial-mediated bone healing. Sandblasted, large grit and acid-etched (SLA), strontium incorporated SLA (SR), polished titanium (PT), and medical stainless steel (SS) were used to elucidate osteoimmune microenvironment and cellular heterogeneity in regulating bone regenerative process. To our knowledge, it is the first study mapping the overall osteoimmune microenvironment around bone-implant via scRNA-seq.

2. Materials and methods

2.1. Sample preparation

The medical stainless steel and commercially pure titanium slices were prepared by Zhejiang Guangci Medical Appliance Co., Ltd, Ningbo, China. The samples for in vivo study were rods shaped 1 mm in diameter and 2.5 mm in length, and in vitro cell culture were round slices with 28 mm in diameter and 1 mm in thickness. Titanium samples were prepared as previously reported [18]. Briefly, the samples were divided into four groups: (1) SS: the stainless steel samples were sequentially polished with 280-, 600-, 1200-grit silicon carbide papers (CarbiMet, Buehler). (2) PT: the titanium samples were sequentially polished as the SS sample. (3) SLA: the PT samples were treated with a solution of HF/HNO3 and HCl/H2SO4. (4) SR: the SLA samples were further hydrothermally treated with Sr(OH)2 (99.5% purity, Sigma-Aldrich) solution. Before the following procedures, all implants were sterilized by UV irradiation.

2.2. Surface characteristic

The surface morphology was observed by field-emission scanning electron microscope (FE-SEM, Nova Nano 450, Thermo FEI, USA). The roughness of samples was detected by a three-dimensional interference microscope (NT9100, Veeco, USA). The hydrophilicity of the samples was assessed by static contact angle via a Contact Angle Meter (Dropmeter 100P, HAISHU, China). The elemental compositions and mappings (Cr, Ni, Ti, and Sr) of the surfaces were determined by energy-dispersive X-ray spectrometry (EDS, Nova Nano 450, Thermo FEI, USA). The crystalline phase of samples was characterized by X-ray diffraction (XRD, D/MAX 2550/PC, RIGAKU Industrial Corporation, Japan). As for iron release, four kinds of round slices were immersed in 1 mL phosphate buffer (PBS) in a 37 °C incubator, and the leaching solution was collected at 1, 3, 7, 14, and 21 days. Ion concentrations were measured with an electronically coupled plasma mass spectrometer (ICP-MS, XSeries, Thermo Scientific, USA). At least three samples were used for detection of surface characteristic.

2.3. Implantation model

All the experiments were approved by the Institutional Animal Care and Use Committee of Zhejiang University, Hangzhou, China (ZJU20220152). C57BL/6 male mice at ages from 6 to 8 weeks (Zhejiang Academy of Medical Sciences) were used. The mice were housed under 25 °C with a 12 h light/dark cycle and were allowed free access to food and water. Mice received an intraperitoneal injection of 5% chloral hydrate (0.66 mL/100 g, C104202, Aladdin) and local injection of 2% lidocaine (Shiyao Yinhu Pharmaceutical Co., Ltd., China) before implantation. After shaving and disinfection of implantation areas, the skin above the proximal metaphysis of the tibiae was dissected longitudinally and the soft tissues were stripped to expose the underlying bone tissue. A hole was drilled with a 1 mL syringe needle, implants were inserted into the left and right tibias, and the SHAM group received no implant as a control. The periosteum and skin were sutured postoperatively. Penicillin (100,000 U/d) was injected intramuscularly into the mice instantly. After submerging healing, mice were sacrificed with a lethal dose of anesthetic. Tibiae were harvested after dissecting and cleaning of surrounding tissue.

2.4. Histomorphometric assessment

To evaluate the new bone formation, the proximal tibiae containing the implants were retrieved and fixed in 10% buffered formalin (Solarbio, China) for 3 days. Specimens were successively dehydrated with 75%, 85%, 95%, and 100% alcohol before being embedded with polymethyl-methacrylate (PMMA). After polymerization, slices of 200 μm thickness were prepared along the longitudinal axis of the implant and then polished sequentially with sandpapers to a final thickness of 40 μm. The non-decalcified sections were then stained with methylene blue and acid fuchsin. A bright-field microscope (DM4000; Leica, German) and an image analysis system (Image-Pro Plus 6.0) were used to capture the images and analyze the histological phenotypes. The bone-implant contact ratio (BIC %) was calculated as the linear percentage of direct bone-implant contact to the total implant interface in cancellous bone.

2.5. Immunohistochemistry

For immunohistochemical staining, the tibiae were fixed in 4% paraformaldehyde (PFA, Servicebio) for 24 h and decalcified with 10% ethylene diamine tetraacetic acid (EDTA, Servicebio) for 3 weeks. The decalcified bone blocks were dehydrated in graded series of ethanol, embedded in paraffin, and cut into 4 μm slices perpendicular to the long axis of the implants. Subsequently, bone slices were incubated with 3% hydrogen peroxide for 10 min and then placed in an autoclave at 121 °C for 15 min in sodium citrate buffer. The slices were incubated with BMP2 antibody (ab2843887, Abcam, 1:100) and RUNX2 antibody (ab236639, Abcam, 1:100). As for osteoclastogenesis detection, the sections were stained with a TRAP histochemical staining kit and photographed by microscopy. Five random fields of each section were included for analysis.
2.6. Specimen harvest for bulk RNA-seq and single cell RNA-seq

2.6.1. Cell harvesting and processing

After three days of implantation, tibiae (the proximal metaphysis, cylinder, 5 mm) with implants inside were harvested by cutting off the skin and removing soft tissues. Bone marrow cells were flushed with Hank’s balanced salt solution (HBSS, Sigma) containing 10% 0.1 μM EDTA. Implants were poked out and digested with enzymes mix containing 1 mg/mL dispase (17105041, Gibco), 1 mg/mL collagenase II (40508ES60, Yeasen), and 0.15 μM DNase I (EN0521, Thermo Fisher) in HBSS for 30 min at 37 °C. Then, dissociated cells from bone marrow and implant surfaces were filtered through a 70-μm filter, centrifuged at 1500 rpm for 5 min, and then resuspended in 5 mL of red blood cell lysis buffer for 5 min on ice. Neutralization was achieved with a 10 mL cell suspension medium. The cell suspension was centrifuged, gently washed twice by HBSS, and then filtered through a 40-μm filter and stored in an icebox. Lastly, the bulk RNA and 10x Genomics Single-Cell Protocol were carried out by Gene Denovo Biotechnology Co. (Guangzhou, China), respectively.

2.6.2. RNA-seq analysis

Total RNA was extracted from dissociated cells using a Trizol reagent kit (Invitrogen, USA) according to the manufacturer’s protocol. RNA quality was assessed on an Agilent 2100 Bioanalyzer (Agilent Technologies, USA) and checked using RNase-free agarose gel electrophoresis. After total RNA was extracted, eukaryotic mRNA was enriched by Oligo (dT) beads, while prokaryotic mRNA was enriched by removing RNA via Ribo-ZeroTM Magnetic Kit (Episcience, USA). Then, the enriched mRNA was fragmented into short fragments using fragmentation buffer and reverse transcribed into cDNA with random primers. Second-strand cDNA was synthesized by DNA polymerase I, RNase H, dNTP, and buffer. Then the cDNA fragments were purified with a QiaQuick PCR extraction kit (Qiagen, The Netherlands), end-repaired, poly(A) added, and ligated to Illumina sequencing adapters. The ligation products were size selected by agarose gel electrophoresis, PCR amplified and sequenced using Illumina HiSeq2500.

2.6.3. Single-cell RNA-seq

Bone marrow cells around implants were collected as previously described, single cells were encapsulated in water-in-oil emulsion along with gel beads coated with unique molecular barcodes using the 10X Genomics Chromium Single-Cell Platform. For single-cell RNA library generation, the sequencing was performed using an Illumina R1, a 16 nt 10x Barcode, a 10 nt Unique Molecular Identifier (UMI), and a poly-dT primer sequence. Incubation of the GEMs then produces barcoded, full-length cDNA from poly-adenylated mRNA. Full-length, barcoded cDNA is then amplified by PCR to generate sufficient mass for library construction.

After removing unwanted cells from the dataset, we employed a global-scaling normalization method “LogNormalize” that normalizes the gene expression measurements for each cell by the total expression, multiplies this by a scale factor (10000 by default), and log-transforms the results. ScaleData function of Seurat was used to normalize the data, so that the mean expression level of each gene in each cell was equal to 0 and the variance was equal to 1, and some highly expressed genes were excluded to play a leading role in downstream analysis. The raw counts were then used for a differential expression gene (DEG) analysis using edgeR (R version 3.1.2) with FDR < 0.05 and logFC > 0.25.

2.6.3.1. Functional enrichment analyses. Gene Ontology (GO) is an international standardized gene functional classification system that has three ontologies: molecular function (MF), cellular component (CC), and biological process (BP). To reveal the biological function of DEPs, all peak-related genes were mapped to GO terms in the Gene Ontology database (GO.db 3.8.2(2019-04-26)), gene numbers were calculated for every term, and significantly enriched GO terms in differentially expressed genes compared to the genome background were defined by hypergeometric test.

Genes usually interact with each other to play roles in certain biological functions. Pathway-based analysis helps to further understand genes’ biological functions. KEGG is the major public pathway-related database (Release 94). Pathway enrichment analysis identified significantly enriched metabolic pathways or signal transduction pathways in differentially expressed genes compared with the whole genome background.

2.6.3.2. Cell communication. We used CellPhoneDB, which contains ligand-receptor information, to analyze Expression abundance of ligand-receptor interactions between two cell types based on the expression of a receptor by one cell type and a ligand by another cell type. Based on the above analysis of the expression abundance of ligand-receptor, we obtained the number of ligand-receptor interactions between two cell types, which can make a preliminary assessment of the communication relationship between cells.

2.7. Flow cytometry

The dynamic change of main immune cells was observed by flow cytometry (FCM). Cells from bone marrow and implant surfaces were harvested as previously described and filtered through a 40 μm filter. Cells were resuspended in red blood cell lysis buffer for 5 min on ice, centrifuged, and gently washed twice with PBS. Then, the suspensions were pre-incubated with the anti-mouse CD16/32 (553140, BD Biosciences, 1 μg/mL) for 15 min on ice to block Fc receptors. After centrifuging at 550 g for 5 min at 4 °C, cell solutions were incubated with antibodies against F4/80 and CD86, CD4 and CD8, Ly6G and CD11b in the dark for 30 min at 4 °C, respectively (1 μg per 10^6 cells in 100 μL volume). All samples were centrifuged at 550g for 5 min at 4 °C and washed twice with BD wash buffer. FCM analysis was performed using a flow cytometer (CytoFLEX S, Beckman, USA) and FlowJo 10.5.0. The experiments were performed three times independently.

2.8. Neutrophil depletion

Antibodies were administered intraperitoneally according to the schedule described in Fig. S8b. The rat anti-mouse Ly6G (BE0075-1, BioX cell) antibody was administered at 200 μg per mouse two days before implantation, and every other day at 100 μg per mouse. The rat IgG2a (BE0089, BioX cell) antibody was injected as a control. Neutrophil depletion was confirmed in bone marrow by FCM (Fig. S8c).

2.8.1. μCT analysis

At designated time points, the tibiae were harvested and fixed by 4% PFA. Analysis was performed using a high-resolution μCT scanner (MI Labs, U-CT-XUHR, Netherlands). The resolution was set to 10 μm per pixel. Data reconstruction was completed using MI Labs Rec software, and data analysis was accomplished using Imalytics Preclinical software. Bone volume fraction (BV/TV) and trabecular thickness (Tb. Th) were measured via μCT data.

2.8.2. Immunohistochemistry

See 2.5. for detailed experimental procedures.

2.9. Cell culture

2.9.1. Neutrophil isolation

Male C57BL/6 mice aged 6–8 weeks were used and euthanized by cervical dislocation. The whole bone marrow of femurs and tibiae was isolated by flushing the intramedullary cavity with RPMI 1640 (Hyclone), supplemented with 10% fetal bovine serum (FBS, Bovogen)
and 100 U/mL of penicillin and streptomycin (p/s). The dissociated cells were filtered by a 40 μm filter, and erythrocytes were removed using a red blood cell lysing buffer. Then, neutrophils were isolated from the remaining cells by centrifugation using Histopaque 1077 and 1119 (Sigma-Aldrich, St Louis, MO). The isolated cells were resuspended for further experiments.

2.9.2. BMSCs isolation
BMSCs were obtained from the femora of 4-week-old male Sprague-Dawley (SD) rats. Bone marrow was flushed out and suspended in alpha-modified eagle medium (α-MEM, Hyclone) supplemented with 10% FBS and 100 U/mL p/s. The cells were incubated at 37 °C in a 95% humidified atmosphere with 5% CO₂. Passages three to five were used in the following experiments.

2.9.3. Elisa
After 24 h of neutrophils cultured on implant surfaces, the extracts were collected and stored at −80°C and were subsequently analyzed by using the commercially available CXCL12 (SDF-1α) ELISA kit (BIO00002, Raybiotech) to detect the secretion of CXCL12. The protein level of CXCL12 was calculated using the absorbance value of standard samples.

2.9.4. Transwell assay
Transwell assay was conducted in the 24-well transwell chambers of 8 μm nitrocellulose pore filters (Corning-Costar, Waltham, MA). A density of about 5 × 10³ of BMSCs was added in the upper chambers at a total of 200 μL DMEM with or without CXCR3 receptor antagonist (SCH546738, Gibco), then 500 μL different neutrophil extracts were respectively loaded in the lower chamber. Following incubation for 24 h, the cells that penetrated the membranes of the upper chambers were fixed with 4% PFA and stained with 1% crystal violet dye solution (Saichuang Technology, Wuhan, China) and photographed by a microscope. The migration was quantified by counting the stained areas in five randomly selected fields on each transwell membrane.

2.9.5. Immunofluorescent staining
To assess the effect of neutrophil extracts from different surfaces on CXCR3 expression of BMSCs. After 24 h, BMSCs were immobilized with 4% PFA, blocked in bovine serum albumin (BSA), and then incubated with primary rabbit anti-rat CXCR3 antibody (YT5277, ImmunoWay, 1:250) at 4 °C overnight. Alexa Fluor 488-conjugated goat anti-rabbit secondary antibody (ab150077, Abcam, 1:1000) was used for the detection. The nuclei and F-actin were labeled with 4′,6-diamidino-2-phenylindole (DAPI) and Rhodamine-phalloidin, respectively. The cells were observed with a laser confocal scanning microscope (LCSM, Nikon A1, Japan) and semi-quantified by calculating the mean fluorescence intensity of five randomly selected fields.

2.9.6. Immunoblot analysis
BMSCs were lysed with radio-immunoprecipitation (RIPA) lysis buffer and then collected after centrifuging at 12000 rpm, 15 min at 4 °C. Protein concentrations were determined by a BCA protein assay kit (FP0009, Beyotime Biotechnology). An equal amount of protein samples was loaded onto SDS-PAGE and transferred to PVDF membrane (Millipore Corp.). After blocking with 5% BSA and were incubated with the CXCR3 antibody at 4 °C overnight. Goat anti-rabbit secondary antibody was used for the detection. The immunoreactive bands were developed using an ECL chemiluminescence reagent (AlphaEaseFC, USA) and visualized using a chemiluminescence imager (Bio-Rad, USA).

3. Results

3.1. Evaluation of bone healing of implants with different osteogenic and immunomodulatory properties

Implant materials with different osteogenic properties were prepared including SR, SLA, PT, and SS as previously described [18]. The surface of SR presented a honeycomb structure with more dense micro/nano-sized particles and increased roughness than that of the SLA surface. SS and PT surfaces were smooth without pits (Fig. 1a, S1a). The contact angle of the freshly prepared SR surface was under 5°, indicating a superhydrophilic surface (Fig. 1b, S1b). As for the ion release, after immersing the SR implant in media, the measured release curve of Sr²⁺ in the leaching solution showed the release of Sr²⁺ gradually decreased until 21 days (Fig. 1c). Detailed physical characterizations were displayed in Fig. S1.

To evaluate the osteogenic capacity and immunomodulatory effect of different biomaterials, four types of implants were placed into the tibiae of mice, and the sham site as a control. The workflow was shown in Fig. 1d. The analysis of BIC% showed the highest osteogenic potential of SR implant, followed by SLA and PT implants, and the lowest was SS implants with little new bone formation (Fig. 1e and f). Histological sections showed inflammatory cells infiltration and fibrous connective tissue only around SS implants, with a large number of foreign body giant cells (FBGCs) adhered to SS surface and more trap-positive multinucleated cells (Fig. S2). The expression level of osteogenic-related proteins was lowest in the SS group, and was highest in SR group (Fig. 1g-j). In summary, the SR implant exhibited a rougher and superhydrophilic surface with increased new bone formation while the SS implant was surrounded by plentiful FBGCs and collagen fibers, which indicated fibrosis.

Bone tissue RNA-sequencing (RNA-seq) analysis for samples harvested 3 days (n = 3) after post-implantation. Sequence alignment was performed with 22298 genes of the genome (Ensembl,release100 version). Principal component analysis (PCA) revealed that the SR, SLA, and PT groups had similar gene expression profiles (Fig. 1k). GO analysis showed that the implantation of biomaterials induced the biological function associated with extracellular matrix organization, system development, multicellular organism development, etc. when compared with sham sites (Fig. S3a). SR implant induced the differentially expressed genes associated with extracellular matrix organization, immune process, and skeletal system development compared with the SS group (Fig. 1l, S3b). In more detail, SR group promoted the biological functions of collagen binding, ossification, osteoblast differentiation, and bone remodeling. Nevertheless, SS group induced stronger inflammation via activating immune response-related processes (Fig. 1m). Thus, the prognosis of implants depends on the degree of difference in foreign body reactions caused by biomaterials. SR implants facilitated osteogenesis by upregulating the process of osteogenic responses and leading an appropriate immune reaction to prevent the loss of foreign body equilibrium.

3.2. scRNA-seq of peri-implant cell heterogeneity during bone healing

A response to a foreign body is initiated due to the induction of innate and non-specific defense mechanisms of the body, usually lasting from a few hours to four days and having a continuous effect on biomaterial integration [19]. To decipher the microenvironment of bone substitution materials, we performed scRNA-seq on unsorted cells around SS, PT, SLA, and SR implants and in the SHAM site three days post-implantation (Fig. 2a).

3.3. Immunomodulatory properties
BMSCs were obtained from the femora of 4-week-old male Sprague-Dawley (SD) rats. The dissociated cells were loaded onto SDS-PAGE and transferred to PVDF membrane (Millipore Corp.). After blocking with 5% BSA and were incubated with the CXCR3 antibody at 4 °C overnight. Goat anti-rabbit secondary antibody was used for the detection. The immunoreactive bands were developed using an ECL chemiluminescence reagent (AlphaEaseFC, USA) and visualized using a chemiluminescence imager (Bio-Rad, USA). The dissociated cells were resuspended for further experiments.
Fig. 1. Evaluation of the osseointegration and immunomodulatory property of murine tibiae implanted with four types of implants.

a) Surface morphology of SS, PT, SLA, SR surfaces. Scale bar: 500 nm. b) Representative images of hydrophilicity measurement of the SS, PT, SLA, SR surfaces. c) Cumulative release profile of Ni$^{2+}$, Cr$^{2+}$, Ti$^{2+}$, and Sr$^{2+}$ ions from SS, PT, SLA and SR implants after incubation for 21 days. d) Workflow of evaluating bone healing of different implants in murine tibiae. e) Histological images of the implants (black) and peri-implant bone (pink) formed from 7 and 14 days after implantation. Scale bar: 500 μm. f) Quantitative analysis of bone-implant contact rate (BIC%). g,h) Immunohistochemistry staining of osteogenic-related proteins BMP2 and RUNX2 (brown) after 14 days post-implantation. Scale bar: 100 μm; 250 μm (insert). i,j) Semiquantitative analysis of the immunohistochemistry staining of BMP2 and RUNX2. k) Principal component analysis (PCA) plot showing the distribution of differentially expressed genes (DEGs) of the bone marrow of the SHAM, SS, PT, SLA, and SR groups ($n=3$). l) Gene ontology (GO) analysis showing the differentially expressed gene sets enriched in GO term of SR group compared with the SS group. Circle size denotes the gene number in each GO term. m) The up-regulated genes of SR group were enriched in osteogenesis-related biological processes, while the immune response-related functions were enhanced in the SS group.
Fig. 2. Overview of cell heterogeneity in bone marrow three days after implantation by scRNA-seq.

a) Schematic flow of bone marrow cell collection, cell isolation, capture by droplet-based device, and sequencing. b) Three-dimensional scatter diagram visualizing epigenomic profiles at the sample level. c) Circle diagram displaying the unsupervised hierarchical cell clusters. In total, 40,043 single-cell transcriptomes were collected and classified into 10 cell types. d) UMAP plot revealing cell heterogeneity with 10 distinct clusters after cells annotation. General identity and proportion of each cell cluster is defined on the right. e) Bar plot showing the proportion of each cell cluster among five groups. f) Heatmap of differentially expressed genes. Selected genes for each cluster were color-coded and shown on the right. g) Feature plots of expression distribution for cluster-specific genes. Expressed cells were color-coded and overlaid onto the t-SNE plots. Unexpressed cells were colored gray.
After standard data quality control and filtering (Fig. S4a), a total of 40043 cells were captured, including 7970 cells from the SHAM group, 13061 cells from SS group, 9325 cells from PT group, 6206 cells from SLA group, and 12203 cells from SR group (Table. S2). Based on the analysis of cell clusters classification, the t-SNE nonlinear clustering method was further used to visualize the classification results of single-cell subclusters (Fig. 2b, S4b, S4c). Unbiased clustering of the cells assigned to ten main clusters based on SingleR identification. Each cluster was identified via cell annotation (Fig. 2c, S4d): (1) monocytes (MC), (2) neutrophils (NEU), (3) macrophages (MAC), (4) B cells (BC), (5) T cells (TC), (6) dendritic cells (DC), (7) Erythroid cells (EC), (8) Basophils (BS), (9) Natural killer cells (NK), and (10) Hematopoietic stem progenitor cells (HSC) (Fig. 2d). The proportion of cell clusters among five groups was shown in the bar chart (Fig. 2e) and detailed data were listed in Table. S3. It exhibited an obvious increase in the proportion of neutrophils in SS group (35.02%) compared with SHAM.
group (23.57%), and there were similarities among other implant materials (min: 22.91%; max: 27.60%), which may indicate titanium-based implants do not induce neutrophil overreactions. The proportion of macrophages in SS group (15.53%) also slightly increased compared with other groups (min: 10.15%; max: 13.88%). On the contrary, there was a significant decrease in the proportion of monocytes and B cells in SS group (MC: 26.72%; BC: 11.13%) compared with other groups. Of note, the proportion of erythrocyt cells increased in SS group (5.35%) compared with SHAM group (2.47%), whereas the opposite decreased trend in other implant materials (min: 1.53%; max: 1.93%). Although the trauma caused by the implantation was the same, the subsequent platelet activation and coagulation reaction degree were different due to the difference in the material’s hemocompatibility. Differently expressed marker genes were shown in the form of a heatmap (Fig. 2f), t-SNE plots (Fig. 2g), and a Table S4.

3.3. SR implants were accompanied by more mature G3 and G4 neutrophils in the biomaterial-based osteoimmune microenvironment

To dissect neutrophil heterogeneity, unsupervised clustering was used and neutrophils were clustered into six subclusters, G0 through G5, according to the phase of cell cycle (Fig. 3a and b) [20–22]. G0 neutrophils typically expressed CD74, H2-Aa, and H2-Ab1 and are granulocyte monocyte progenitor (GMP) cells. G1 neutrophils highly expressed Cseg, Elane, and Mpo, presented in azurophil granules that were crucial in antimicrobial oxidizing, and correspond to neutrophil progenitor cells (proNeu). G2 neutrophils specifically expressed H2bc11, H3c11, and H2ac4 and are neutrophil precursor cells (preNeu). Further combination with GO analysis indicated that G1 to G2 subclusters underwent active proliferation and cell division (Fig. 3c). Cell cycle-related genes including Mdsi67, Cdk1, and Top2a were more highly expressed in earlier phases of neutrophil maturation (G0, G1, and G2), during cells progress from GMPs to mNeu (Fig. 3sa). The expression of azurophil, specific, gelatinase, and secondary granular genes was examined in neutrophil subclusters to help us judge the differentiation and function of neutrophils (Fig. 3d). And neutrophils in earlier phases participated in the inflammatory response (Fig. 3d). It was also noted that the proportion of G3 and G4 cells was significantly higher in SR group (69.25%) than that of SS group (57.99%), which was associated with the ability of mature neutrophils to phagocytose pathogens and recruit more cells to improve tissue repair. Thus, the biomaterial affects the differentiation process and functional status of neutrophils. SS group had the highest proportion of immature G1 cells, while SR group was surrounded by more mature G3 and G4 cells, and different phases of neutrophils play their respective roles in shaping the osteoimmune microenvironment.

3.4. Distinct macrophage phenotypes regulate bone tissue regeneration

After implantation, macrophages were recruited at the early stage of injury and differentiated into different types. Increasing evidence showed that diverse phenotypes of macrophages play indispensable roles in tissue repair, fibrosis, and regeneration [26]. Unsupervised analysis of gene-expression profiling identified five subclusters of macrophages (Fig. 4a). Macrophage subclusters were named S100a8hi, Fgcr1hi, Il1phi, H2-Aah1, and C1qa1hi according to their highly expressed genes (Fig. 4b) [27,28]. Traditionally, the role of macrophages in tissue regeneration is always accompanied by their polarization [29,30]. Conventional M1/M2 typing was not completely consistent with the subclusters in this study. Il1phi subcluster highly expressed inflammatory genes that were enriched in defense response and osteoclast differentiation, performing similar functions as pro-inflammatory macrophages (M1) (Fig. 4c, S5d) [31,32]. H2-Aah1 and C1qa1hi subclusters tend to be like anti-inflammatory macrophages (M2) with a higher transcriptional level of tissue repair and inflammation resolving-related genes (Fig. 4c) [29,33,34]. KEGG pathways of H2-Aa1hi subcluster enriched in regulating Th1/2 and Th17 cell differentiation and C1qa1hi subcluster were involved in activating leukocytes and producing cytokines. S100a8hi and Fgcr1hi subclusters did not conform to the phenotypic classification. S100a8hi subcluster played a role in the spliceosome and oxidative phosphorylation pathway, while Fgcr1hi subcluster participated in the NOD-like receptor signaling pathway and osteoclast differentiation (Fig. 5d).

It was shown that the SS group had the highest proportion of S100a8hi subcluster (57.8%) than other groups (min: 25.84%; max: 33.66%) (Fig. 4d). Conversely, an obvious increase in the proportion of Fgcr1hi subcluster among titanium-based groups (min: 45.65%; max: 51.83%) when compared with SS group (25.37%). Also, the proportion of Il1p1hi, H2-Aa1hi, and C1qa1hi in titanium-based groups (min:20.11%; max:22.33%) and SHAM group (22.00%) slightly increased, while SS group (16.82%) was lower. To further explore the continuum of phenotype switching in macrophage subclusters, the differentiation trajectory analysis was carried out. S100a8hi subcluster was broadly distributed at the start of the pseudo-time path on the left side of trajectory, while Fgcr1hi subcluster was dominantly gathered at the terminal trajectory (Fig. 4e). Functional heterogeneity among individual subclusters was further investigated, S100a8hi subcluster demonstrated essentially enriched in oxidative phosphorylation, IL-17 signaling pathway, and necroptosis. Meanwhile, the expression of related genes was increased in SS group compared to other groups (Fig. 4f). Genes involved in immunomodulatory functions, including chemokine signaling pathway, phagosome, and antigen process and presentation were activated in Fgcr1hi subcluster, which showed the lowest level in SS group (Fig. 4g).

In brief, SS group with more S100a8hi subcluster was considered an early responder to initiate and amplify the inflammatory response in the acute stage of implantation. Instead, titanium-based groups promoted macrophages to differentiate into Fgcr1hi subcluster and were accompanied by more differentiated macrophages that played an immunoregulatory role in alleviating inflammation and facilitating bone regeneration.

3.5. Monocytes and dendritic cells accelerated differentiation processes after implantation

In the titanium-based implants, monocytes were the largest cell cluster (min: 36.22%; max: 37.37%) and distinguished into two subclusters based on their expression of Ly6c and Ccr2. The Ly6c+CCR2hi and Ly6c+Ccr2low subclusters were equivalent to human classical/intermediate monocytes and non-classical monocytes, respectively (Fig. 5a and b) [35]. Under homeostasis, monocyte subclusters represented stages in a developmental sequence, with classical monocytes first differentiating into intermediate monocytes and then transforming into non-classical monocytes under Notch2 signaling [36,37]. After implantation, classical/intermediate monocytes (mean: 90.29%) were rapidly recruited to the implant site and exerted the immune regulation
effect such as defense response, immune system process, and response to external stimulus (Fig. 5c). Then, a small number of non-classical monocytes (mean: 9.71%) displayed a patrolling behavior to regulate metabolism and release cytokines [38].

KEGG analysis showed that the heterogeneity of monocyte clusters was closely related to the osteoclast differentiation pathway (Fig. 5d). Classical/intermediate monocytes up-regulated the osteoclastogenesis-related genes (Csf1, Fos, Nfatc1, Mmp9), while non-classical monocytes up-regulated some key factors (Cd47, Cd14, Il4) associated with FBGCs formation (Fig. 5b) [39]. The SR group had the lowest proportion of classical/intermediate mononuclear cells (78.79%) and the least TRAP-positive multinucleated cells (Fig. 5e). Meanwhile, it was
Fig. 5. Monocytes and DCs accelerated the differentiation process after implantation.

a Subclustering of monocytes further identified two distinct subclusters. Color-coded UMAP plot was shown and each monocyte subcluster was defined on the right. b Dot plot of specially expressed genes for monocyte subclusters. c, d Enriched gene sets of classical/intermediate and non-classical monocytes in top GO term (c) and top KEGG pathway (d). e Subclustering of DCs further identified three distinct subclusters with visualized UMAP plot. f Feature plots depicting single cell expression of identified genes in DCs. g Enriched gene sets of DCs in top KEGG pathway. h Top GO terms of DC subclusters. i Pseudo-temporal ordering of three subclusters of DCs along the trajectory.
noteworthy that the proportion of non-classical monocytes in SS group (11.41%) was significantly higher than that in PT group (3.59%), which was consistent with the number of FBGcs on the interface of implants. The above evidences suggested that monocyte subclusters were closely related to the differentiation of the two kinds of multinucleated cells and influenced by biomaterial properties.

DCs are a diverse group of specialized antigen-presenting cells with key roles in the initiation and regulation of innate and adaptive immune responses [40]. Recently, some studies reported that titanium-based implants with different surfaces could induce DCs into different immune states, influencing the early immune responses around implants and subsequent osteogenesis [41–43]. In this study, DCs were classified into three subpopulations (Fig. 5e) [44]. Those characterized by increased expression of Klf4, S100a4, and Stmn1 genes were named conventional DCs (cDCs). Another subcluster characterized by an elevated transcriptional level of Klk1b27x, Pep1b2, and Plip was assigned plasmacytoid DCs (pDCs) (Fig. 5f). According to the results of KEGG analysis (Fig. 5g), pDCs primarily played the function of antigen processing and presentation. And further analysis found that the highly expressed histocompatibility complex (MHC) molecules of pDCs are mainly related to positive regulation of antigen presentation and T cell-mediated cytotoxicity (CD74, B2m, H2-K1, and H2-D1) (Fig. 5f,b). The remaining subcluster with the least proportion resembled macrophages under inflammatory conditions, which were defined as macrophage-like DCs (macDC), with a high expression of Bank1, Efj1, and Fcer2a [43,45,46]. MacDCs effectively initiated leukocyte and lymphocyte activations and immune-related processes [47,48], which was consistent with our finding that macDCs highly expressed genes of B cell activation and IL-17 signaling pathway (Fig. 5h, S6b, S6c). The pseudo-time analysis revealed two terminally differentiated clusters (cDCs and macDCs) stemming from precursor cells (Fig. 5i, S6d). Notably, the proportion of macDCs increased in SS group (6.67%) compared with SHAM group (3.00%), whereas an opposite decreasing trend in SLA (0.93%) and SR (0.95%) groups, which may indicate that titanium-based implants created a relatively gentle immune environment, avoiding overzealous inflammatory responses.

3.6. Bone marrow is where B and T lymphocytes development takes place

B cells differentiate from HSCs in a highly coordinated but flexible pathway. Prominent transcriptional factors, including Tcf3, Ebf1, Foxo1, Pax5, and Ikaros, orchestrated the fate of B cell and directed the development of HSCs into common lymphoid progenitors (CLPs) (Fig. 5e) [49]. CLPs then differentiated into progenitor BC (preBC) (Mmnn1, Arpp21, Vpreb2) and precursor BC (preBC) (Rag1, Il2ra, Ael5c) (Fig. 6a and b) [50]. After assembling with the pre-B cell receptor (BCR), they became immature B cells (imBs) (Aspm, Cenbb2, Ccnb1) [51,52]. ImBs migrated out of bone marrow, becoming transitional B cells (TBs) (Hck, Srpk3, Pld4) and entering peripheral lymphoid organs. After reaching the spleen and developing into follicular B cells (FOBs) (Fce15, Nid1, Actn1), they regained circulation ability and arrived at the immunoregulation station to play a role in the immune system regulation, T cell activation, and biological process (Fig. 6c and d) [53]. Under the stimulation of implantation, re-recruited B cells differentiated into naïve B cells (NBs) (Ppap1, Gpr174, Gimap3) and terminally matured into immunoglobulin-secreting plasma B cells (PBs) (E2f8, Rm2, Esco2) (Fig. 6e), which rapidly proliferated and produced high affinitive antibodies to destroy pathogens [54]. In our study, there was no significant difference among B cell subclusters in different implant materials except PBs. The proportion of PBs was increased in SS group (25.71%) compared with other groups (mean: 11.42%), especially SHAM group (8.04%), which may indicate that SS group caused a strong humoral immune response.

The time of detection was 3 days after implantation, and only a few T cells were captured in the acute inflammatory response stage. Within the T cell clusters, which were differentiated by CLPs in the bone marrow and expressed specific genes (Cd3e, Cd3d, etc.) and were identified as γδ T, regulatory CD4- T (CD4- Treg), Naïve CD8- T, tissue-resident memory CD8- T (CD8- Trm), and mitotic T cells (Fig. 6f, S6) [50]. Among them (Fig. 6g), γδ T cells were defined according to the expression of Qrfp, Kbra7, Spry, and Cd244a, and were identified as a primary initiators of leukocyte and lymphocyte activation and IFN-γ production, which promoted the bone formation and facilitates bone fracture healing [55,56]. The main transcription factors that regulated CD4- Treg cells development were Cd4 and Foxp3 (Fig. 5f,g) [57]. CD4- Treg cells regulated immune tolerance and immune process, which produced IL-10 and TGF-β to remodel bone formation [58,59]. CD8- T cells were characterized by expressed Cd8a, then, naïve CD8- T cells and CD8- Trm cells were distinguished by the expression of Igfbp4, Dap11, Ccr7, Cd8b1, and Ifi1, Igf15, Ifi13, Gbp2, respectively. CD8- Trm cells were mainly involved in regulating the defense process, and they can secrete OPG, IFN-γ, and TNF-α which have dual effects on osteogenesis [60,61]. Combined with GO analysis (Fig. 6h), the biological process of mitotic T cells with high expression of Gda, Pclaf, Mmp8, and Ltf was correlated with the metabolic process. And mitotic T cells were located at the beginning of the pseudo-temporal ordering, indicating that they differentiated further under a highly ordered process (Fig. 6i) [62].

3.7. Cell communication reveals the potential interactions between hematopoietic stem cells and neutrophils

Bone regeneration relies on the coordination of cellular activities, which depend on cell-cell interactions across diverse cell types. Thus, elucidating the potential communications in the osteoimmune microenvironment will shed light on the mechanisms of FBR equilibrium and bone homeostasis after implantation. We used CellPhoneDB to analyze the cross-talk and possible mutual effects of different cell types [63]. Heatmap and the chord diagram showed the interactions and the number of ligand-receptor pairs between two cell types (Fig. 7a and b), suggesting that the communication among cells was complicated. Of these, the interactions between neutrophils, macrophages, B cells, and HSCs appeared to be the strongest.

Among the major cell clusters, HSCs had multipeotentialities because of their ability to self-renewal and produce daughter cells [64]. HSCs exist in the bone marrow and interact with cells that secrete or express cytokines and growth factors to facilitate their growth and differentiation [65]. It was demonstrated that the high expression of osteogenic genes in HSCs, indicated that they may further differentiate into osteogenic progenitors (Fig. 7a). Interactive plots for single-cell clusters hinted that HSCs interacted most strongly with neutrophils and macrophages (Fig. 7b). Then, the ligand-receptor pairs among immunocytes and HSCs were next explored. In brief, the top 25 ligand-receptor pairs acted on cell growth, cell adhesion/migration, proliferation/apoptosis, and angiogenesis, etc. (Fig. 7c). In combination with the dynamic changes of main immunocyte types with time, neutrophils were the most abundant cells in the early stage and peaked at 3 days (Fig. SB3). Thus, the top 25 ligand-receptor pairs acted on cell growth, cell adhesion/migration, proliferation/apoptosis, and angiogenesis, etc. (Fig. 7c). In combination with the dynamic changes of main immunocyte types with time, neutrophils were the most abundant cells in the early stage and peaked at 3 days (Fig. SB3). Thus, the top 25 ligand-receptor pairs acted on cell growth, cell adhesion/migration, proliferation/apoptosis, and angiogenesis, etc. (Fig. 7c).

3.8. Neutrophils play a promotive role in bone regenerative process and osseointegration

Neutrophils have pro-vascularization potential and can orchestrate tissue repair and ectopic bone formation [67,68]. We further assessed the correlation between the number of neutrophil clusters and the number of HSCs around implants in vivo. Among the five groups, both the number of G3 neutrophils and G4 neutrophils had a positive relationship with the number of HSCs (Fig. S7b). However, the role of
Fig. 6. B and T lymphocytes harbor various distinct types.
a Visualized UMAP plot of B cell subclusters and circle diagrams depicting the component of B cell subclusters in the SHAM, SS, PT, SLA, and SR groups. b Heatmap of marker genes transcription for each B subcluster. c,d Enriched gene sets of B cell subclusters in GO analysis (c) and KEGG pathway (d). e Pseudo-temporal ordering of seven B cell subclusters along the trajectory. f Visualized UMAP plot of T cell subclusters with circle diagrams depicting the composition of T cell subclusters. g Heatmap of marker gene transcription for each T subcluster. h GO enrichment analysis of the biological functions of each T subcluster. i Pseudo-temporal ordering of five T cell subclusters along the trajectory.
neutrophils in the osseointegration of implants is still unclear. Combining the result of flow cytometry with scRNA seq, it was hypothesized that neutrophils might play a major regulatory role in early osteogenesis. Previous studies demonstrated that Sr ions on the implant surfaces can promote the expression of CXCL12 [66], and current analysis showed that CXCL12-CXCR3 was the top 10 ligand-receptor pairs between neutrophils and HSCs (Fig. 7c). Further analyses were performed to examine the effect of Sr ions on the secretion of the CXCL12 from neutrophils. The release of CXCL12 from neutrophils cultured on the implant surfaces was evaluated by ELISA. Results revealed a significant increase of CXCL12 in cells cultured with SR surface compared with SS and control groups (Fig. 7f). Although there was no statistical difference among titanium-based implants, there was a slight increase in SR group when compared with PT and SLA groups.

Next, to confirm the role of CXCR3 receptor in BMSCs recruitment, extracts of neutrophil cultures on different surfaces were collected for transwell assay. More BMSCs migrated to the lower chamber loaded with SR extract (Fig. 7k). The number of migrated cells was consistent with the concentration of CXCL12 in extracts. Enhanced cell migration induced by neutrophil extracts was attenuated by the CXCR3 receptor antagonist (SCH546738) (Fig. 7l). In addition, it was observed that neutrophil extracts from SR implant increased the expression level of the CXCR3 in BMSCs by immunofluorescence staining and western blotting (Fig. 7m-p). In summary, neutrophils played a promotive role in osseointegration, possibly enhancing bone formation by secreting CXCL12 which promotes the recruitment of BMSCs via the CXCR3 receptor of BMSCs.

4. Discussion

Bone healing process is typically considered the phases of blood-material interaction, provisional matrix formation, acute inflammation, chronic inflammation, foreign body reaction, and fibrous capsule formation or osseointegration. Three days after implantation was a point of innate immune response. Implanted biomaterials indispensably induced an intensive immune response compared to sham sites, but ideal biomaterials such as titanium-based implants also promoted osteogenic response, while relatively poor materials followed severe defense reactions and inflammation. As the initial effector, neutrophils are rapidly recruited to the damage site and pre-regulated the local inflammatory state for recruiting and activating subsequent cells [69]. Ideal biomaterials, such as titanium implants, are surrounded by a certain proportion of neutrophils with highly differentiated phenotypes (G3, G4). Instead, the SS implant was infiltrated with excessive immature neutrophils (G0, G1, G2). More mature neutrophils such as G3 cells are more actively involved in the ROS biosynthetic process, which is a key biological mechanism regulating the survival, self-renewal, osteogenic differentiation, and matrix mineralization of MSCs [70]. Transient increases in ROS levels have been shown to induce G1/S phase transition, which plays a catalytic role in MSCs activation [71]. In osteogenic precursor cells, osteogenic induction upregulates BMP-2 signaling-mediated NAD(+) oxidase activation, thereby generating mild levels of ROS to promote osteoblast differentiation [72]. In addition, physiological levels of ROS can activate the expression of extracellular signal-related kinases ERK1/2 and OPN in osteoblasts, thus supporting the extracellular matrix mineralization process [73].

In fact, neutrophils play a two-sided role in bone biology. In rheumatoid arthritis (RA), activated neutrophils expressed RANKL stimulated bone resorption in the inflamed joint [74]. Infiltrating neutrophils release neutrophil extracellular traps (NETs) containing carbamylated proteins enhanced pathogenic immune responses and promoted osteoclastogenesis in CD14+ monocytes [75]. However, chemotactic neutrophils defects or neutropenia can rapidly induce inflammatory periodontal bone loss, and the extravasation ability of neutrophils appears to be essential for periodontal tissue homeostasis [76]. Neutrophils co-culture with MSCs can influence the differentiation of MSCs into osteoblasts by altering levels of IL-1α and TGF-β [77]. Thus, Neutrophils express and secrete cytokines or inflammatory mediators that can directly or indirectly affect bone homeostasis.

At the same time, neutrophils release MIP-1α, MIP-1β, and IFN-γ to induce more macrophages recruitment for phagocytosis [78]. The up-take of apoptotic neutrophils leads to M2-type in macrophages. However, the excessive production of MPO after NETs formation is phagocytosed by macrophages, leading to the release of ROS and more pro-inflammatory factors of macrophages, and then tends to M1 transformation [79,80]. Besides the traditional macrophage polarization, S100a8 is an endogenous TLR4 ligand involved in intercellular calcium homeostasis [81]. But when S100a8 is released slowly extracellular, its production exhibits strong pro-inflammatory properties that aggravate osteoarthritis pathology [82]. Therefore, the proportion of S100a8hi subcluster was positively correlated with the degree of the inflammatory response. FcgRIγ subcluster highly expressed FcgRI, which is the most important Fc receptor that promotes their role as scavenger cells that involve in phagocytosis and antigen presentation [83]. It follows that macrophages exhibit various heterogeneity under the regulation of different implant materials and play diverse roles in bone regeneration. An intriguing finding is that SR implant surface was mostly new bone contact, while SS implant-bone marrow interface was surrounded by numerous FBGCs, more osteoclasts, and collagen fibers. The buildup of osseointegration seems to be FBR equilibrium, and the failure to establish this balance may lead to peri-implant bone loss or fibrosis. A
Previous study found osteoclasts generated from classical/intermediate monocytes rather than non-classical monocytes in the presence of IL-17a in vitro [84]. The “non-classical” osteoclasts that shared numerous characterististics and physiological features (multinucleated and TRAP-positive) with osteoclasts but were unable to resorb bone, which generated from non-classical monocytes were considered to be FBGCs [85,86]. In this study, the expression of osteoclastogenic genes was increased in classical/intermediate monocytes, and the transcriptional level of FBGCs-related genes was higher in non-classical monocytes. Meanwhile, more non-classical monocytes formed in SS group, which was consistent with the number of FBGCs eventually formed. It was seen that biomaterials affect the differentiation trend of monocytes, and they are closely related to the multinucleated cell formation accompanied by biomaterials. After the inflammatory initiation at the implant site, more immune cells are recruited to involve in foreign body response and bone regenerative process. An unexpected cluster of macDCs exhibited a mature phenotype with poor immune tolerance, mostly in SS implant rather than titanium-based implants. Typical immature DCs have low immunogenicity and strong antigen-presenting capacity, which may induce mild inflammation [87]. In addition, DCs play a central role in connecting the innate and adaptive immune systems [88]. Although this was early in implantation, our analysis could not illuminate the effect of different implant materials on B cells and T cells differentiation. The role of adaptive cells in bone regeneration cannot be denied. B cells express and secrete factors that control the critical RANKL/RANK/OPG axis of the interaction between bone cells and immunocytes [89,90]. As for T cells, they also affect bone healing by regulating the balance between their subclusters (e.g., Th1/Th2 and Treg/Th17) and other immune cells (e.g., B cells) [91,92]. In a mouse periodontitis model, the poly nanofibrous spongy microspheres lead to Treg enrichment, expansion, and Treg-mediated immune response against bone loss [93]. Biomaterial scaffolds enhanced the development of a pro-regenerative immune environment by implicating Th2 cells [16]. A recent study discovered a phenomenon that titanium-based implants establish a local microenvironment via recruitment of myeloid cells to induce T cell exhaustion, and exhibit a chronic inflamed and immunosuppressive status [94]. Thus, the effect of biomaterial properties on adaptive cell typing needs to be further studied. Unlike previous literature, we sequenced all cells surrounding the implant without sorting, most of the cells were innate cells and adaptive cells, and only a cluster of HSCs with high expression of osteogenic genes and osteogenic differentiation potential was found (Fig. S7a). Hence, immunocytes play a critical role in pre-molding a biomaterial-based osteoimmun microenvironment, and the interactions between immune cells and HSCs are inseparable. It is believed that the essence of osteointegration is due to the effective homing and osteogenic differentiation of stem cells on the implant surface. Current results confirmed the promotive role of neutrophils in the new bone formation and the recruitment of BMSCs after implantation. Neutrophils have pro-vascularization potential and improve the engraftment of bioengineered tissues [67,68]. In ectopic endochondral ossification, IL-8-induced neutrophils are recruited to the implantation site and promote chemotaxis of BMSCs by secreting SDF-1α [95]. Furthermore, neutrophils are sensitive to the properties of biomaterial and exhibit differential inflammatory responses to titanium surfaces. Sr-incorporated scaffold-induced neutrophils play an immunomodulatory role in promoting angiogenesis and soft tissue regeneration by down-regulating the NF-κB pathway and increasing the phosphorylation of STAT3 [14]. Our previous study also found that Sr2+ enhanced the CXCL12/CXCR4 signaling pathway in vitro and in vivo, which promoted the migration and osteogenic differentiation of BMSCs [66]. Consistent with the above results, our findings showed that SR implant promoted the secretion of CXCL12 in neutrophils compared with the control group, whereas SS implant inhibited that. The top ligand-receptor pairs between neutrophils and stem cells indicated the potential role of the CXCL12/CXCR3 signal axis. CXCR3 presents similar transmembrane helices and different conformations of terminal regions as CXCR4 [96]. CXCR3 ligands also synergize with CXCL12 to induce cell migration that reflects a synergic relationship of the CXCL12/CXCR3 [97]. SR extracts activated the CXCR3 receptor in BMSCs, and the CXCR3 receptor antagonist attenuated Sr2+-induced increased BMSCs recruitment. Thus, the above evidence demonstrated that neutrophils play a promotive role in implant osseointegration, and one of the possible reasons is the enhanced recruitment of BMSCs via the CXCL12/CXCR3 axis. However, due to the complexity of the osteoimmun microenvironment, we also realized that SR promotes BMSCs recruitment not only by secreting more CXCL12 but also by other factors. Preliminary detection of cytokines contained in the supernatant released by neutrophils, and found some differentially expressed cytokines between SR and SS surfaces, such as IL-1β, IL-6, IFN-γ, IL-10, and MIP-3a (Fig. S9), which need further explored.

5. Conclusion

In conclusion, the network of communication between immunocytes and bone tissue surrounding the implant is complex and delicate. First, a preliminary description of the osteoimmun microenvironment revealed that both innate and adaptive cells influence osseointegration (Fig. 8a). Different implant materials affect immune cell differentiation and heterogeneity, resulting in long-term clinical function. Second, SS implants were accompanied by excessive neutrophils and S100a8/NAPI macrophages, leading to an aggressive immune response, inflammatory cell infiltration, and eventual fibrous capsule formation instead of osseointegration. Conversely, SR implants were surrounded by an appropriate amount of mature G3 neutrophils and highly differentiated macrophages, achieving the foreign body equilibrium and functional integration under moderate immune response (Fig. 8b). Finally, the promotive role of neutrophils in the osseointegration of implants is elucidated, which may improve bone formation by enhancing the recruitment of BMSCs via the CXCL12/CXCR3 signal axis.

Our findings contribute to a better knowledge of osteoimmunology and are valuable for the design and modification of ‘osteoimmune-smart’ biomaterials in the field of bone regeneration. However, one of the study’s limitations lies in the incomplete understanding of the effects of biomaterial modification on the differentiation and biological functions of adaptive immune cells. And, because the detection time point was short, the subtypes of osteogenic progenitors were not well characterized. We need to extend the postoperative time point and further analyze the effect of biomaterials on the differentiation and function of adaptive immune cells and osteogenic progenitors. In addition, another issue is a lack of sufficient disclosure about how neutrophils regulate bone regeneration. The close interactions among biomaterials, immunocytes, and bone tissue require further investigation.

Ethics approval statement

All the experiments were approved by the Institutional Animal Care and Use Committee of Zhejiang University, Hangzhou, China (ZJU20220152).

CRediT authorship contribution statement

Jia Li: Conceptualization, Writing – original draft, contributed to conception, design, and drafted the manuscript, Data curation, Funding acquisition, Formal analysis, contributed to the data acquisition and analysis, All authors have read and approved the final version of the manuscript. Congrui Zhao: Data curation, Funding acquisition, Formal analysis, contributed to the data acquisition and analysis, All authors have read and approved the final version of the manuscript. Yangbo Xu: Data curation, Funding acquisition, Formal analysis, contributed to the
Fig. 8. Cell mapping centered on the osteoimmune microenvironment after implantation. a Sc-RNA seq analysis of cell heterogeneity and temporal changes in the osteoimmune microenvironment after implantation. b Bone immune responses and prognosis of SS and SR implants. In this figure, major differences in innate immune cell subclusters were shown. Neutrophils may promote the effective homing of BMSCs through the CXCL12-CXCR3 signaling axis. OC: osteoclast; OB: osteoblast; FBGC: foreign body giant cell; BMSC: bone mesenchymal stem cell.

References

[1] J.L. Wang, J.K. Xu, C. Hopkins, D.H. Chow, L. Qin, Biodegradable magnesium-based implants in orthopedics-A general review and perspectives, Adv. Sci. 7 (2020), 1902443, https://doi.org/10.1002/advs.201902443.
[2] R. Trindade, T. Albrektsson, P. Tengvall, A. Wennerberg, Foreign body reaction to biomaterials: on mechanisms for buildup and breakdown of osteointegration, Clin. Implant Dent. Relat. Res. 18 (2016) 192–203, https://doi.org/10.1111/cid.12274.
[3] K. Ley, M1 means kill; M2 means heal, J. Immunol. 199 (2017) 2191–2193, https://doi.org/10.4049/jimmunol.1701135.
[4] Z.G. Fridlender, J. Sun, S. Kim, V. Kapoor, G. Cheng, L. Ling, G.S. Worthen, S. M. Albelda, Polarization of tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2’ TAN, Cancer Cell 16 (2009) 183–194, https://doi.org/10.1016/j.ccr.2009.06.017.
[5] E. Olmsted-Davis, J. Mejia, E. Salisbury, Z. Gugala, A.R. Davis, A population of M2 macrophages associated with bone formation, Front. Immunol. 12 (2021), 686769, https://doi.org/10.3389/fimmu.2021.686769.
[6] P. Zhou, D. Xia, Z. Ni, T. Ou, Y. Wang, H. Zhang, L. Mao, K. Lin, S. Xu, J. Liu, Calcium silicate bioactive ceramics induce osteogenesis through oncostatin M, Bioact. Mater. 6 (2021) 810–822, https://doi.org/10.1016/j.bioactmat.2020.09.018.
[7] M. Tsukasaki, H. Takayanagi, Osteoimmunology: evolving concepts in bone-immune interactions in health and disease, Nat. Rev. Immunol. 19 (2019) 626–642, https://doi.org/10.1038/s41577-019-0178-8.
[8] O. Veiseh, J.C. Doloff, M. Ma, A.J. Vegas, H.H. Tam, A.R. Bader, J. Li, E. Langan, J. Wyckoff, W.S. Loo, S. Jhunjhunwala, A. Chiu, S. Siebert, K. Tang, J. Hollister-Lock, S. Aresta-Dasilva, M. Bochenek, J. Mendoza-Elias, Y. Wang, M. Qi, D. J. Wyckoff, W.S. Loo, S. Jhunjhunwala, A. Chiu, S. Siebert, K. Tang, J. Hollister-Lock, S. Aresta-Dasilva, M. Bochenek, J. Mendoza-Elias, Y. Wang, M. Qi, D.
[9] S. Hosseinpour, L.J. Walsh, C. Xu, Modulating osteoimmune responses by mesoporous silica nanoparticles, ACS Biomater. Sci. Eng. (2021), https://doi.org/10.1021/acsbiomaterials.1c00899.
[10] W. Qiao, D. Pan, Y. Zheng, S. Wu, X. Liu, Z. Chen, M. Wan, S. Feng, K.M.C. Cheung, K.W.K. Yeung, X. Cao, Divalent metal cations stimulate skeleton interoception for new bone formation in mouse injury models, Nat. Commun. 13 (2022) 535, https://doi.org/10.1038/s41467-022-28203-0.
[11] T. Wang, J. Bai, M. Lu, C. Huang, D. Geng, G. Chen, L. Wang, J. Qi, W. Cui, L. Deng, Engineering immunomodulatory and osteoinductive implant surfaces via mussel adhesion-mediated ion coordinated and molecular clicking, Nat. Commun. 13 (2022) 160, https://doi.org/10.1038/s41467-021-27616-1.
[12] Y. Feng, Q. Li, D. Wu, Y. Niu, C. Yang, L. Dong, C. Wang, A macrophage-activating, injectable hydrogel to sequester endogenous growth factors for in situ angiogenesis, Biomaterials 134 (2017) 128–142, https://doi.org/10.1016/j.biomaterials.2017.04.042.
[13] A.T. Xu, Y.W. Xie, J.G. Xu, J. Li, H. Wang, F.M. He, Effects of strontium-incorporated micro/nano rough titanium surfaces on osseointegration via
J. Li et al.

Dendritic cell responsiveness to the constitutive chemokine stromal cell-derived factor 1 (SDF-1)/CXCL12, J. Exp. Med. 198 (2003) 823–830, https://doi.org/10.1084/jem.20020437.