Breast cancer is the most frequently diagnosed malignant neoplasm in women and is considered a multifactorial disease of unknown etiology. One of the major risk factors is genetic alteration. Changes in CYP19A1 gene expression levels have been associated with increased risk and increased aggressiveness of breast cancer. Increased CYP19A1 gene expression and/or aromatase activity are among the major regulatory events for intratumoral production of estrogens in breast malignant tissues. This systematic review aimed to investigate the influence of CYP19A1 gene expression levels in women with breast cancer. The research was carried out using the PubMed, Scopus, and Web of Science databases. Searches were conducted between February 2 and May 15, 2019. Inclusion criteria were studies published between 2009 and 2019, English language publications, and human studies addressing the gene expression of CYP19A1 in breast cancer.

A total of 6,068 studies were identified through PubMed (n=773), Scopus (n=2,927), and the Web of Science (n=2,368). After selecting and applying the inclusion and exclusion criteria, six articles were included in this systematic review.

This systematic review provides evidence that increased or decreased levels of CYP19A1 gene expression may be related to pathological clinical factors of disease, MFS, OS, DFS, WATI, markers of metabolic function, concentrations of E1, FSH, and in the use of multiple exons 1 of the CYP19A1 gene in breast cancer.

KEYWORDS: Breast Cancer; Aromatase; CYP19A1; Estrogens; Gene Expression.

INTRODUCTION

Cancer is a serious global health problem, and its incidence and mortality are growing rapidly globally (1). Among women, breast cancer is the most frequently diagnosed malignant neoplasm in the vast majority of countries and is also the leading cause of death (2). In 2018, an estimated 2.1 million new cases of breast cancer were diagnosed worldwide (3). Geographic differences influence the incidence and mortality of breast cancer worldwide; the highest incidence rates occur in more developed regions (4).

Breast cancer is a multifactorial disease of unknown etiology. One of the main risk factors is genetic alteration (5,6). Genetic mutations of breast cancer, BRCA 1 and 2, are related to the increased risk of developing hereditary breast and ovarian cancer over time (7). However, the involvement of genes in breast cancer has not yet been fully elucidated (5,6,8). Some authors have described a significant association between the levels of gene expression of CYP19A1 and breast cancer; however there is a need for further elucidation of the association between these levels and increased risk of breast cancer, survival, and disease progression (9-11).

The CYP19A1 gene encodes the aromatase enzyme belonging to the cytochrome p450 superfamily. The enzyme is located in the endoplasmic reticulum of estrogen producing cells and is considered the key enzyme that catalyzes the final step in estrogen biosynthesis and promoting the aromatization of androgens in estrogens (12-14). Its activity is tightly controlled and it is present in a wide variety of human tissues including ovary, testis, placenta, bone, skin, brain, and adipose tissue (15,16). In premenopausal women, estrogens are synthesized by ovarian granulosa and corpus luteum cells, while in postmenopausal women, they are synthesized in many extra ovarian tissues, such as adipose tissue and bones (15). In addition, aromatase is present in both normal and cancer cells of the mesenchymal stroma and human mammary epithelium. However, higher levels of enzymatic activity and its gene expression are observed in cancer cells (13).

The CYP19A1 gene is located on chromosome 15, q21.1 band of the human genome, whose total length is 123 kb, of which 30 kb corresponds to the coding region and 93 kb...
comprises an untranslated region (17). The CYP19A1 gene consists of 10 untranslated exons “Is” (I.1, I.2, 2a, I.3, I.4, I.5, I.6, I.7, I.f, and III) and nine translated exons (II-X). The various Is exons are expressed in a manner specific to each tissue and each have their corresponding promoter localized upstream, which is regulated by different mechanisms, so the specific activity of the tissue aromatase is regulated by the alternative use of these exons (18,19). In normal human breast tissue, most transcripts of the CYP19A1 gene are derived from the I.4 distal promoter (20,21). However, in the presence of cancerous breast tissue, the transfer of the I.4 promoter to the I.3 promoter or PII occurs frequently (21,22). This results in a 3- to 4-times increase in transcripts of the CYP19A1 gene in patients with tumors than in patients without tumors (17,23).

Epidemiological and experimental evidence indicates that women with malignant tumors of the breast, endometrium, and ovary express high levels of mRNA of CYP19A1 and estrogen receptor (ER) alpha as well as elevated levels of estrogens (24). Increased CYP19A1 gene expression and/or aromatase activity are major regulatory events for the intra-tumoral production of estrogens in these malignant tissues. Thus, this enzyme is a molecular target for therapeutic approaches, including in postmenopausal women where estrogen derived from several sources is the major risk factor in the development and growth of hormone-induced malignancies (25-27).

Altered levels of CYP19A1 gene expression may be related to unfavorable outcomes and increased aggressiveness in breast cancer (20,28,29). However, there is a scarcity of studies on the subject in women with breast cancer. This motivated us to detail, in a systematic review, the studies available in several major databases that investigates the influence of levels of CYP19A1 gene expression in women with breast cancer.

MATERIALS AND METHODS

Data Sources

The research was carried out using the PubMed, Scopus, and Web of Science databases. Searches were conducted between February 2 and May 15, 2019. The search strategy included the crossing of the following descriptors: “breast cancer” OR “breast neoplasm” AND “CYP19A1” OR “aromatase” AND “gene”; “breast cancer” OR “breast neoplasm” AND “CYP19A1” OR “aromatase” AND “expression”; “breast cancer” OR “breast neoplasm” AND “CYP19A1” OR “aromatase” AND “mRNA”; “breast cancer” OR “breast neoplasm” AND “CYP19A1” OR “aromatase” AND “gene” AND “expression”.

Study selection and eligibility criteria

A collection of eligibility criteria was used to select articles from the literature. Inclusion criteria were studies published between 2009 and 2019, English language publications, and human studies addressing the gene expression of CYP19A1 in breast cancer. Exclusion criteria were duplicate articles, articles with only abstracts available, literature reviews, editorials, letters to the editor, conference proceedings, and articles related to breast cancer and CYP19A1 that did not quantitatively analyze levels of gene expression.

The titles and abstracts identified from the research were analyzed by two researchers (M.C.B.O and D.R.C.S). After a primary examination, all the complete studies retrieved were subjected to a more detailed evaluation, and compared and verified to ensure equivalence in the selection and analysis of articles. The selection process of the studies was mapped according to the Pferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines (30).

RESULTS

A total of 6,068 studies were identified through PubMed (n=773), Scopus (n=2,927), and the Web of Science (n=2,368). After selecting and applying the inclusion and exclusion criteria, six articles were included in this systematic review. The flow chart detailing the process of identification, selection, eligibility, and final inclusion of the studies is presented in Figure 1. The description of the selected studies and the primers used in quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis are shown in Tables 1 and 2, respectively.

Friesenhengst et al. (II) analyzed the expression of CYP19A1 mRNA in breast cancer tumors and showed that expression levels were significantly elevated in postmenopausal breast cancer patients with an initial diagnosis >50 years. These showed a decrease in metastasis-free survival (MFS), overall survival (OS), and disease-free survival (DFS). In addition, those that were ER positive progressed to metastasis and/or recurrent disease <8 years after diagnosis and all ER positive patients with high CYP19A1 mRNA expression developed pulmonary and bone metastases within 10 years after diagnosis.

Brown et al. (9) studied the effect of menopausal status on CYP19A1 mRNA expression in relation to body mass index (BMI), white adipose tissue inflammation (WATi), and systemic markers of metabolic dysfunction in women undergoing mastectomy for treatment or prevention of breast cancer. Significantly higher levels of CYP19A1 mRNA were observed in all women with high BMI. However, the postmenopausal group had the highest expression, as WATi and markers leptin, high sensitivity C-reactive protein (hsCRP), adiponectin, and cholesterol were also associated with increased mRNA CYP19A1 in the postmenopausal group only.

Tüzüner et al. (10) compared the expression of CYP19A1 mRNA intumoral, peritumoral, and normal mammary tissues among women with and without breast cancer, and reported a significant increase in the expression of CYP19A1 mRNA in peritumoral tissues. In addition, levels were also elevated in patients with axillary invasion, family history of cancer, and parity after 30 years. On the other hand, low levels of CYP19A1 mRNA were evident in patients with early menarche, null parity, and over 50 years of age. There were no significant associations between factors, such as BMI, smoking, and alcohol consumption.

Bollet et al. (31) analyzed the relationship between locoregional recurrence, clinical pathological factors, and intratumoral levels of gene expression of 17 proliferative genes, including the CYP19A1 gene, in women with premenopausal breast cancer. No correlation was observed between CYP19A1 gene expression and pathological clinical factors such as histologic subtype, BMI, and others. Nevertheless, decreased levels of expression were significantly associated with an increase in the rate of locoregional recurrence in these women.

Savolainen-Peltonen et al. (32) compared estrogen levels of adipose tissue (AT) and the expression of genes related to
estrogen metabolism, including the CYP19A1 gene, in women with and without premenopausal breast cancer. Estrone (E1) concentrations of AT correlated positively with CYP19A1 mRNA expression, as did high BMI. Serum follicle stimulating hormone (FSH) and follicular phase correlated negatively with CYP19A1 mRNA expression in women with breast cancer compared to controls.

Honma et al. (33) investigated the preference of using multiple exons 1 of the CYP19A1 gene in elderly and young women with and without breast cancer. Exon 1d of the CYP19A1 gene was used much more often in tissues of elderly women than in the control group, regardless of whether the tissue was cancerous or normal. Carcinomas of elderly women (EldCa) exhibited significantly higher levels of CYP19A1 mRNA than normal tissues of elderly women (EldNorm), there being no significant difference between carcinomas of controls (ContCa) and normal tissues of controls (ContNorm). EldCa showed significantly higher...
CYP19A1 mRNA levels than ContCa. In addition, increased levels of mRNA were observed in EldCa with mucinous carcinomas.

DISCUSSION

This systematic review was conducted with the prospect of investigating the potential influence of CYP19A1 gene expression levels in women with breast cancer. Most of the studies evaluated have shown controversial results related to the gene expression of CYP19A1 in women with breast cancer.

Postmenopausal women with ER positive breast cancer with high CYP19A1 gene expression had a significant reduction in MFS, OS, and DFS when compared to premenopausal women with ER negative breast cancer (11). These findings appear to be biologically justifiable since the CYP19A1 gene encodes the aromatase enzyme that is part of the biosynthesis of estrogens and exerts its effects of promoting breast cancer mainly through the ER (34-36). In addition, elevated levels of CYP19A1 mRNA were significantly associated with local recurrence and incidence of metastases, as well as death related to breast cancer (37). However, other studies did not reveal prognostic significance of CYP19A1 mRNA and aromatase enzyme activity in women with postmenopausal breast cancer (38-40) or ER positive (41).

Brown et al. (9) and Tüzün et al. (10) showed conflicting results concerning the levels of CYP19A1 mRNA expression related to BMI in postmenopausal patients. Although the more than half (55%) of the patients in the Tüzün et al. (10) study displayed high BMI, no association was observed with CYP19A1 mRNA expression. The small number of cases of breast cancer and postmenopausal women may have been one of the limitations of the study that led to this outcome. Brown et al. (9) showed that a BMI ≥ 25 kg/m² was associated with higher levels of CYP19A1 mRNA in postmenopausal women, which may be justified by weight gain during the menopausal transition that has been attributed to hormonal changes, decreased physical activity, and increased energy consumption, which would influence the levels of gene expression (42,43).

The high expression of the CYP19A1 gene was related to the increase in WATi and some markers of metabolic function.
in patients with postmenopausal breast cancer (9). Iyengar et al. (44) also described an increased association between CYP19A1 and WATi gene expression levels in postmenopausal women. These data suggest that WATi may contribute to increased local production of estrogen after menopause (9). The association of CYP19A1 gene expression levels with metabolic function markers in postmenopausal women has yet to be determined, as it is not known whether these effects occur due to differences in postmenopausal breast cell composition, number of cells adipose stromal, or greater sensitivity to these factors (9).

There was a significant increase in the levels of CYP19A1 gene expression in the peritumoral tissues of women with breast cancer (10), supporting findings in the literature that estrogens may diffuse particularly through AT of the breast and then enter the breast duct to stimulate the proliferation of epithelial cells (45). Thus, the activity of the aromatase enzyme is almost exclusively for immature adipocytes and fibroblasts related to mammary adipose tissue (46). The high expression of the CYP19A1 gene in patients with axillary invasion may be suggested as an additional parameter for the use of adjuvant chemotherapy (10). The positive association of CYP19A1 gene expression in peritumoral tissue with increased risk for breast cancer, as well as the development of strategies for prognosis and effective treatment, allowing better survival and reduction of disease progression.

ACKNOWLEDGMENTS

The authors thank the patients who participated in the current study and the Postgraduate Program of the Federal University of Piauí, Brazil.

AUTHOR CONTRIBUTIONS

Barros-Oliveira MC, Costa-Silva DR provided substantial contributions to the conception and acquisition of data. Pereira RO, dos Santos AR and Soares-Junior JM provided substantial contributions to data acquisition. Silva BB supervised and critically revised the manuscript. All of the authors agreed to be accountable for all aspects of the work and approved of the final version to be published.

REFERENCES

1. Limonta P, Moretti RM, Marzagalli M, Fontana F, Raimondi M, Montagnani Marelli M. Role of Endoplasmic Reticulum Stress in the Anti-cancer Activity of Natural Compounds. Int J Mol Sci. 2019;20(4):961. https://doi.org/10.3390/ijms20040961
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. https://doi.org/10.3322/caac.21492
3. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piéros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019(144)(8):1941-53. https://doi.org/10.1002/ijc.31937
4. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E309-86. https://doi.org/10.1002/ijc.29210
5. Costa-Silva DR, da Conceição Barros-Oliveira M, Borges RS, Campos-Verdes LM, da Silva-Sampaio JP, Escorcio-Dourado CS, et al. Insulin-like growth factor 1 gene polymorphism in women with breast cancer. Med Oncol. 2017;34(4):59. https://doi.org/10.1007/s12032-017-0915-4
6. Campos-Verdes LM, da Silva-Sampaio JP, Costa-Silva DR, de Oliveira VA, Junior AMC, Silva VC, et al. Genetic polymorphism of calcium-sensing
receptor in women with breast cancer. Med Oncol. 2018;35(3):23. https://doi.org/10.1007/s12032-018-1089-4

7. Mersch J, Jackson MA, Park M, Neben D, Peterson SK, Singletary C, et al. Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer. 2015;121(2):269-75. https://doi.org/10.1002/cncr.29041

8. Campos-Verdes LM, Costa-Silva DR, da Silva-Sampaio JP, Barros-Oliveira MDC, Escoceiro-Dourado CS, Martins LM, et al. Review of Polymorphisms in Calcitonin-Sensing Receptor Gene and Breast Cancer Risk. Cancer Invest. 2018;36(2):1-7. https://doi.org/10.1080/07357907.2018.1430817

9. Brown KA, Iyengar NM, Zhou XK, Gupcal A, Subbaramaiah K, Wang H, et al. Menopause Is Determinant of Breast Aromatase Expression and Its Associations With BMI, Inflammation, and Systemic Markers. J Clin Endocrinol Metab. 2017;102(5):1692-701. https://doi.org/10.1210/jc.2016-3606

10. Tüzünier MB, Öztürk T, Eronat AP, Seyhan F, Kısakeseñ HL, Calaz Y, et al. Evaluation of Local CYP19A1 and CYP19A1 Expression Levels as Prognostic Factors in Postmenopausal Invasive Ductal Breast Cancer Cases. Biochem Genet. 2016;54(6):784-802. https://doi.org/10.1007/s10528-016-9756-7

11. Friesenhengst A, Pribitzer-Winner T, Miedl H, Pröstling K, Schreiber M. Estrogen production and aromatase activity in normal breast tissues. Breast Cancer Res. 2009;11(4):R54. https://doi.org/10.1186/bcr2335

12. Holloway KR, Barbieri A, Malyarchuk S, Saxena M, Nedeljkovic-Kurepa C, Liu Z, et al. Regulation of Reproductive Hormones and Tubal Ovarian Function During Aging: Insights from a Japanese Population. J Hum Genet. 2009;54(2):78-85. https://doi.org/10.1038/jhg.2008.11

13. Chen DJ, Petrossian K, Chen S. Structural and functional characterization of an aromatase monoclonal antibody suitable for the assessment of intratumoral aromatase activity. PLoS One. 2009;4(11):e8050. https://doi.org/10.1371/journal.pone.0008050

14. Czajka-Oraniec I, Simpson ER. Aromatase research and its clinical significance. Clinical Endocrinology. Pathol Int. 2009;59(11):777-89. https://doi.org/10.1111/j.1440-1827.2009.02644.x

15. Manna PR, Molehin D, Ahmed AU. Dysregulation of Aromatase in breast cancer. Cancers. 2016;8(6):200. https://doi.org/10.3390/cancers8060200

16. Friesenhengst A, Pribitzer-Winner T, Miedl H, Pröstling K, Schreiber M. Estrogen biosynthesis in breast adipose tissue during menstrual cycle in women with and without breast cancer. Gynecol Endocrinol. 2018;34(12):1039-43. https://doi.org/10.1080/09513590.2018.1474868

17. Honma N, Takubo K, Sawabe M, Arii T, Akiyama F, Sakamoto G, et al. Alternative use of multiple exons of aromatase gene in various and normal breast tissues from women over the age of 80 years. Breast Cancer Res. 2009;11(4):R48. https://doi.org/10.1186/bcr2335

18. Patel S. Disruption of aromatase homeostasis as the cause of the multiplicity of ailments: a comprehensive review. J Steroid Biochem Mol Biol. 2017;168:19-25. https://doi.org/10.1016/j.jsbmb.2017.01.009

19. Kidokoro K, Ino K, Hirose K, Kajiyama H, Hoshino S, Suzuki T, et al. Association between CYP19A1 polymorphisms and sex hormones in postmenopausal Japanese women. J Steroid Biochem Mol Biol. 2009;115(4):278-85. https://doi.org/10.1016/j.jsbmb.2008.11

20. Germain D. Estrogen carcinogenesis in breast cancer. Endocrinol Clin North Am. 2011;40(3):473-84, vii. https://doi.org/10.1016/j.ecl.2011.05.009

21. Baldh M, Reed MJ, Al Saraki W, Jiang WG, Mokbel K. The role of aromatase and 17-beta-hydroxysteroid dehydrogenase type 1 mRNA expression in predicting the clinical outcome of human breast cancer. Breast Cancer Res Treat. 2006;99(2):155-62. https://doi.org/10.1007/s10528-006-9198-8

22. Miyoshi Y, Ando A, Hasegawa S, Ishibito M, Taguchi T, Tamaki Y, et al. High expression of steroid sulfatase mRNA predicts poor prognosis in patients with estrogen receptor-positive breast cancer. Clin Cancer Res. 2005;11(6):2288-93.

23. Zhang Z, Yamashita H, Toyama T, Onojo Y, Sugiura H, Hara Y, et al. Quantitative determination, by real-time reverse transcription polymerase chain reaction, of aromatase mRNA in invasive ductal carcinoma of the breast. Breast Cancer Res. 2003;5(6):R250-6. https://doi.org/10.1186/bcr657

24. Ljungkrona B, Sel besch U, Nordenskjold B, Wingren S. In situ levels of oestrogen producing enzymes and its prognostic significance in post-menopausal breast cancer patients. Breast Cancer Res Treat. 2008;112(1):1-15. https://doi.org/10.1007/s10528-007-9189-x

25. Girault I, Lerebours F, Tozlu S, Spyratos F, Tubiana-Hulin M, Liederer R, et al. Real-time PCR versus Western Blotting application to a well-defined series of post-menopausal breast carcinomas. J Steroid Biochem Mol Biol. 2002;82(4-5):323-32. https://doi.org/10.1016/S0960-0760(02)00190-5

26. Sutton-Tyrrell K, Zhao X, Santoro N, Lasley B, Sower M, Johnston J, et al. Reproductive hormones and obesity: 9 years of observation from the Study of Women’s Health Across the Nation. Am J Epidemiol. 2010;171(12):1203-13. https://doi.org/10.1093/aje/kwp494

27. Gibson CJ, Thurston RC, El Khoudary SR, Sutton-Tyrrell K, Matthews KA. Body mass index following natural menopause and hysterectomy with and without bilateral oophorectomy. Int J Obes (Lond). 2013;37(4):589-93. https://doi.org/10.1038/ije.2012.161

28. Ilyin AN, Morris PG, Zhou XK, Gupcal A, Giri D, Harbuz MS, et al. Menopause is a determinant of breast adipose inflammation. Cancer Prev Res (Phila). 2013;6(3):349-58. https://doi.org/10.1158/1940-6207.cpr-11-0095

29. Simpson ER, Brown KA. Obesity and breast cancer; role of inflammation and aromatase. J Mammary Gland Biol Neoplasia. 2015;20(3):151-9. https://doi.org/10.1007/s10911-015-0325-x

30. Sasano H, Miki Y, Nagasaki S, Suzuki T. In situ estrogen production and its regulation in human breast cancer: from endocrinology to intracellular signalling. Pathol Int. 2009;59(1):177-89. https://doi.org/10.1111/j.1440-1827.2009.02444.x

31. Surekha D, Sajilaj K, Rao DN, Padma T, Raghunadharam D, VishnuPriya S, et al. Association of CYP19 mRNA expression with breast cancer risk: a case-control study. J Nat Sci Biol Med. 2014;5(2):250-4. https://doi.org/10.1016/j.jsbmb.2017.01.009

32. Clemens M, Gost P. Estrogen and the risk of breast cancer. N Engl J Med. 2001;344(4):276-85. https://doi.org/10.1056/NEJM200102123440406
49. Russo J, Moral R, Balogh GA, Mailo D, Russo IH. The protective role of pregnancy in breast cancer. Breast Cancer Res. 2005;7(3):131-42. https://doi.org/10.1186/bcr1029
50. Britt K, Ashworth A, Smalley M. Pregnancy and the risk of breast cancer. Endocr Relat Cancer. 2007;14(4):907-33. https://doi.org/10.1677/ERC-07-0137
51. Yoshimura N, Harada N, Bukholm I, Kåresen R, Børresen-Dale AL, Kristensen VN. Intratumoural mRNA expression of genes from the oestradiol metabolic pathway and clinical and histopathological parameters of breast cancer. Breast Cancer Res. 2004;6(2):R46-55. https://doi.org/10.1186/bcr746
52. Stocco C. Aromatase expression in the ovary: hormonal and molecular regulation. Steroids. 2008;73(5):473-87. https://doi.org/10.1016/j.steroids.2008.01.017
53. Parakh TN, Hernandez JA, Grammer JC, Weck J, Hunzicker-Dunn M, Zeleznik AJ, et al. Follicle-stimulating hormone/cAMP regulation of aromatase gene expression requires beta-catenin. Proc Natl Acad Sci U S A. 2006;103(33):12435-40. https://doi.org/10.1073/pnas.0603006103
54. Takuwa H, Tsuji W, Yotsumoto F. Palliative surgery for giant mucinous carcinoma of the breast in an elderly patient: A rare case report. Mol Clin Oncol. 2017;7(4):609-14. https://doi.org/10.3892/mco.2017.1386
55. Bae SY, Choi MY, Cho DH, Lee JE, Nam SJ, Yang JH. Mucinous carcinoma of the breast in comparison with invasive ductal carcinoma: clinicopathologic characteristics and prognosis. J Breast Cancer. 2011;14(4):308-13. https://doi.org/10.4048/jbc.2011.14.4.308