Comparison of the endoparasite fauna of *Hoplias malabaricus* and *Hoplerythrinus unitaeniatus* (Erythrinidae), sympatric hosts in the eastern Amazon region (Brazil)

M. S. B. OLIVEIRA, L. LIMA CORRÊA, L. PRESTES, L. R. NEVES, A. R. P. BRASILIENSE, D. O. FERREIRA, M. TAVARES-DIAS

1Postgraduate Program in Tropical Biodiversity - PPGBIO, Universidade Federal do Amapá - UNIFAP, Rod. Juscelino Kubitschek, KM-02, CEP 68.903-419, Jardim Marco Zero, Macapá, Amapá, Brazil, E-mail: marcosidney2012@hotmail.com; 2Universidade Federal do Oeste do Pará - UFOPA, Av. Mendonça Furtado, n° 2946, Fátima, CEP 68040-470, Instituto de Ciências e Tecnologia das Águas - ICTA, Santarém, Pará, Brazil, E-mail: lincorre@gmail.com; 3Postgraduate Program in Aquatic Ecology and Fisheries - PPGAP, Universidade Federal Rural da Amazônia - UFRA. Av. Presidente Tancredo Neves, n° 2501, Terra Firme, CEP 66077-830, Belém, Pará, Brazil and Universidade do Estado do Amapá - UEAP, Av. Presidente Vargas n° 100, CEP 66077-830, Central, Macapá, Brazil, E-mail: lupilrestes@gmail.com; 4Postgraduate Program in the Biodiversity and Biotechnology of the Legal Amazon - PPGBIONORTE - AP. Universidade Federal do Amapá - UNIFAP, Rod. Juscelino Kubitschek, KM-02, CEP 68.903-419, Jardim Marco Zero, Macapá, Amapá, Brazil. E-mail: liahrigor@hotmail.com; 5Embrapa Amapá, Rodovia Juscelino Kubitschek, Km 5, n° 2600, Universidade, CEP 68903-419, Macapá, Amapá, Brazil, E-mail: driellyferreira2015@outlook.com; marcos.tavares@embrapa.br

Article info

Received September 19, 2017
Accepted January 16, 2018

Summary

Hoplias malabaricus and *Hoplerythrinus unitaeniatus* are Erythrinidae family widely distributed in the Amazon River system of great value to both commercial and subsistence fishing for riverine populations. As such, the objective of the present study was to investigate the endoparasite communities of *H. malabaricus* and *H. unitaeniatus* of a tributary of the Amazon River in the north of Brazil. The endoparasite communities of *H. unitaeniatus* and *H. malabaricus* were taxonomically similar (85%) and consisted of *Clinostomum marginatum*, *Contracaecum* sp., *Guyanema seriei seriei*, *Procamalanus* (*Spirocamallanus* *inopinatus*, *Pseudoproleptus* sp. and *Gorytocephalus spectabilis*, although the dominant endoparasite was *C. marginatum*, which was the most prevalent and abundant. All the specimens of both *H. malabaricus* and *H. unitaeniatus* were parasitized, with a total of 1237 helminths collected in the former host and 1151 helminths collected in the latter. *Hoplerythrinus unitaeniatus* possessed greater parasite species richness. Both hosts had an aggregate dispersion of parasites, and the abundance of *C. marginatum*, *Contracaecum* sp. and *G. spectabilis* correlated positively with the weight and length of the hosts. The condition factor was not affected by parasitism, but the abundance of *C. marginatum* and *Contracaecum* sp. and *G. spectabilis* increased when the condition factor of the hosts decreased. This is the first report of *G. seriei seriei* for *H. malabaricus* and *Pseudoproleptus* sp. for *H. unitaeniatus*.

Keywords: Amazon; Vila Nova River; Erythrinidae; helminth parasites

Introduction

The state of Amapá has 34 hydrographic basins, including the Vila Nova River basin, which is one of the largest in the state (Zee, 1997; Silva et al., 2006), and covers the municipalities of Santana and Mazagão, flowing into the Amazon River near Santana. The Vila Nova is a white-water river with a pH of 5-7 (Cunha, 2003). Besides being important for navigation and water supply (Silva et al., 2006), it is home to several species of fish, including the Erythrinidae family (including *Hoplias malabaricus* Bloch, 1794 and *Hop-
lerythrinus unitaeniatus Spix & Agassiz, 1829), as it possesses an extensive flood plain area. Amazon floodplain lakes are complex environments, whose spatial heterogeneity spans such distinct habitats as flooded forests, macrophyte meadows and open water. These habitats provide areas which are used by several fish species for shelter, feeding, growth and reproduction during different phases of their life cycles. The seasonal component (rainy and dry seasons) adds additional complexity to the floodplain habitat by altering the availability of these habitats to fish over the course of the year (Siqueira-Souza et al., 2017).

Hoplias malabaricus and H. unitaeniatus are common Erythrinidae from the Amazon River system, and are important for commercial and subsistence fishing (Santos et al., 2006; Soares et al., 2011; Gonçalves et al., 2016). Both fish inhabit rivers, lakes and flooded forests (Mattox et al., 2006). The young of H. malabaricus and H. unitaeniatus feed on plankton such as microcrustaceans and insects, while adults feed mainly on fish and shrimp. They can tolerate low concentrations of dissolved oxygen in the water and take care of their offspring (Santos et al., 2006; Soares et al., 2011). The occurrence of H. malabaricus and H. unitaeniatus can be observed in various environments, and their carnivorous diet and elevated position in the food chain, makes them good host models in parasitic ecology (Alcântara & Tavares-Dias, 2015; Gonçalves et al., 2016).

In the Amazon region of South America, the parasite fauna of H. malabaricus and H. unitaeniatus consists of 17 species, of which seven are endoparasites of H. unitaeniatus and ten are endoparasites of H. malabaricus (Alcântara & Tavares-Dias, 2015; Gonçalves et al., 2016). The rainy and dry seasons create variations in the availability of food in Amazon habitats, leading to fluctuations in the infracommunities of the parasites of the two hosts (Gonçalves et al., 2016). However, the size of these two hosts has no relation to the abundance of parasites (Alcântara & Tavares-Dias, 2015; Gonçalves et al., 2016).

The relationship between parasites and hosts can be regulated by the host mortality induced by parasites. Abundant hosts generally tend to harbor richer parasite fauna, but if the host species are less numerous, their parasite fauna may become less rich (Morozińska-Gogol, 2015). As H. malabaricus and H. unitaeniatus are abundant hosts in the floodplain area of the Amazon River system and have a similar life history, will they present a similar community of endoparasites? Populations of hosts with a similar life history, will they present a similar community of endoparasites when they ingest similar quantities and types of prey. In this manner, overlapping in the same area of occurrence may have an important effect on endoparasite communities in phylogenetically related hosts (Alarcos & Timi, 2012; Alcântara & Tavares-Dias, 2015; Hoshino et al., 2016; Oliveira et al., 2016).

Parasites can regulate the growth of host fish populations, reducing fertility and affecting the swimming, feeding and behavior of these animals (Corrêa et al., 2014; Machado et al., 2013; Hoshino et al., 2016). Knowledge of the parasites of natural populations can be important for decision-making regarding the monitoring of fish stocks, as they generate information about the physical conditions of fish (Corrêa et al., 2013). As such, the objective of this study was to compare the endoparasites fauna of H. malabaricus and H. unitaeniatus in a floodplain area of the basin of the Vila Nova River, a tributary of the Amazon River, Northern Brazil.

Materials and Methods

Fish and collection location

In October 2015 (dry season), 30 specimens of H. unitaeniatus and 30 specimens of H. malabaricus were captured in the floodplain region of the Vila Nova River in the municipality of Mazagão, a tributary of the Amazon River, in the state of Amapá, Brazil (Fig. 1), for parasitological analysis. Gill nets were used to capture the fish (30 and 35 mm between knots). The fish were transported in boxes with ice to the Laboratory of Aquaculture and Fishery from Embrapa Amapá.

Fig. 1. Geographic location of collection site of Hoplias malabaricus and Hoplerythrinus unitaeniatus in the Vila Nova River basin, eastern Amazon region (Brazil).
The Vila Nova River and its floodplain areas are strongly influenced by tides through the Amazon River, and in the rainy season fish enter the floodplain areas in search of food. In dry seasons, however, these areas are reduced and have a low dissolved oxygen level (Silva et al., 2006).

Collection, fixation and identification procedures of parasites
After collection, the fish were euthanized by the spinal cord transection method and weighed (g) and measured for standard length (cm). The fish were then necropsied for parasitological analysis. This work was carried out in accordance with the principles adopted by the Colégio Brasileiro de Experimento Animal (Brazilian College of Animal Experimentation -Cobea) with the authorization from Ethics Committee in the Use of Animals of Embrapa Amapá (#:004 - CEUA/CPAFAP).

After necropsy, the gastrointestinal tract and viscera were analyzed using a stereomicroscope and a light microscope to collect endoparasites. The methodology used to fix, preserve, quantify and stain the parasites for identification was that recommended by Eiras et al. (2006). The parasites were identified in accordance with Petter (1975), Moravec (1998), Moravec & Santos (2009), Vincente & Pinto (1999), Thatcher (2006) and Caffara et al. (2011).

The ecological terms proposed by Rohde et al. (1995) and Bush et al. (1997) were used.

Data analysis
The Brillouin diversity index (HB), uniformity (E), Berger-Parker dominance index (d) and species richness of the parasites (Magurran, 2004) were calculated using the Past software (Hammer et al., 2001). Principal component analysis (PCA) was carried out to compare the ways in which body size and diversity influenced the parasite communities of H. unitaeniatus and H. malabaricus. These analysis was performed using the Past software (Hammer et al., 2001).

The total weight (g) and standard length (cm) of the fish were used to calculate the relative condition factor (Kn) of the hosts and the weight-length ratio using the equation W = a.L^b, where W is the total weight (g) and L is the standard length (cm), a and b are con-

Table 1. Helminth parasites of two Erythrinidae species from the Vila Nova River basin, eastern Amazon region (Brazil).

Fish species	Hoplerythrinus unitaeniatus (N = 30)	Hoplias malabaricus (N = 30)										
Parasites	P (%)	MI	MA	TNP	FD (%)	SI	P (%)	MI	MA	TNP	FD (%)	SI
Clinostomum marginatum (larvae)	76.7	29.6	21.7	651	0.566	Mesentery	83.3	25.8	21.5	645	0.521	Mesentery
Clinostomum marginatum (larvae)	-	-	-	-	-	-	3.3	2.0	0.07	2	0.002	Intestine
Clinostomum marginatum (larvae)	6.7	1.5	0.10	3	0.002	Musculature	-	-	-	-	-	-
Pseudoproleptus sp. (larvae)	33.3	4.9	1.63	49	0.042	Intestine	96.7	12.9	12.9	388	0.314	Mesentery
Pseudoproleptus sp. (larvae)	26.7	6.8	1.80	54	0.046	Liver	13.3	4.0	0.5	16	0.013	Intestine
Pseudoproleptus sp. (larvae)	13.3	1.8	0.23	7	0.006	Caecum	-	-	-	-	-	-
Pseudoproleptus sp. (larvae)	66.7	5.3	3.50	105	0.090	Mesentery	-	-	-	-	-	-
Contracecum sp. (larvae)	83.3	3.4	2.87	86	0.074	Mesentery	90.0	5.5	4.8	143	0.116	Mesentery
Contracecum sp. (larvae)	10.0	3.0	0.10	3	0.002	Cecum	3.3	1.0	0.03	1	0.001	Intestine
Contracecum sp. (larvae)	10.0	1.0	0.10	3	0.002	Liver	-	-	-	-	-	-
Contracecum sp. (larvae)	3.3	1.0	0.03	1	0.0009	Intestine	-	-	-	-	-	-
Procamallanus (S.) inopinatus	26.7	1.4	0.37	11	0.009	Caecum	-	-	-	-	-	-
Procamallanus (S.) inopinatus	63.3	3.8	2.43	73	0.063	Intestine	-	-	-	-	-	-
Guyanema seriei seriei	3.3	2.0	0.07	2	0.001	Mesentery	-	-	-	-	-	-
Gorytocephalus spectabilis	60.0	3.5	2.10	63	0.054	Intestine	23.3	8.4	1.4	35	0.028	Mesentery
Gorytocephalus spectabilis	3.3	4.0	0.13	4	0.003	Liver	-	-	-	-	-	-
Gorytocephalus spectabilis	30.0	3.6	1.07	32	0.027	Caecum	-	-	-	-	-	-
Gorytocephalus spectabilis	6.67	2.0	0.13	4	0.003	Mesentery	-	-	-	-	-	-
stants, estimated by the linear regression of the transformed equation: \(W = \log a + b \times \log C_p \). (Le-Cren, 1951). The t-test was used to compare the Kn of hosts with the standard value (Kn = 1.00). The Spearman coefficient \((rs)\) was used to determine the possible correlations between parasite abundance and host length, body weight and Kn, as well as to correlate host length with species richness and \(HB \). The Mann-Whitney \((U)\) test was used to compare the mean intensity, mean abundance, species richness, \(HB \), \(E \) and Berger-Parker dominance of both host species (Zar, 2010).

Ethical Approval and/or Informed Consent

This work was carried out in accordance with the principles adopted by the Brazilian College of Animal Experimentation (Cobea) with the authorization from Ethics Committee in the Use of Animals of Embrapa Amazônia Oriental \((#:004 - CEUA/CPAFAP)\).

Results

Thirty specimens of *H. unitaeniatus* measuring \(\bar{x} = 21.5 \pm 2.0 \) cm and \(\bar{x} = 245.3 \pm 65.6 \) g, and 30 specimens of *H. malabaricus* with \(\bar{x} = 24.9 \pm 7.7 \) cm and \(\bar{x} = 242.3 \pm 75.0 \) g were analyzed. Of the specimens of *H. unitaeniatus* and *H. malabaricus* examined, 100% were parasitized by one or more species of helminth. It was observed that there was similar dominance of the digenean *Clinostomum marginatum* Rudolphi, 1819, in *H. malabaricus* and...
H. unitaeniatus, followed by *Contracaecum* sp. for both hosts. A total of 1151 helminths were collected in *H. unitaeniatus* and 1237 in *H. malabaricus*, making a total of 2,388 helminths. These parasites were distributed among the following taxa: *Clinostomum marginatum* (Trematoda), *Guyanema seriei seriei* Petter, 1975, *Procamallanus* (*Spirocamallanus*) *inopinatus* Travassos, Artigas & Pereira, 1928, *Pseudoproleptus* Khera, 1955, *Contracaecum Railliet & Henry, 1912* (Nematoda) and *Gorytocephalus spectabilis* Machado, 1959 (Acanthocephala) (Table 1). These parasites presented aggregated dispersion, except *P. (S.) inopinatus* in the pyloric cecum of *H. unitaeniatus* that exhibited a random dispersion (Table 2).

Berger-Parker diversity index and evenness were similar for both fish species, but the Brillouin index (*H*B) and species richness of the parasites were higher for *H. unitaeniatus* (Table 3), and there was no difference between the abundance (*U* = 430.5, *p* = 0.309) and parasitic intensity (*U* = 430.5, *p* = 0.309) in the two fish species. In *H. malabaricus* there was a predominance of individuals harboring three species of helminths, whereas in *H. unitaeniatus* the predominance was four species of helminths (Fig. 2).

The *H. unitaeniatus* and *H. malabaricus* populations exhibited low parasite community similarity, as described by the Jaccard index (*J* = 0.66) and the Bray-Curtis index (*B* = 0.15). Multivariate analysis based on the parasite communities of *H. unitaeniatus* and *H. malabaricus* revealed a difference between these host populations, caused by *C. marginatum* and *Pseudoproleptus* sp. (Fig. 3). For *H. malabaricus*, the abundance of *C. marginatum* correlated positively with the length and negatively with the Kn of the hosts. In the same manner, the abundance of *Contracaecum* sp. correlated positively with host size and negatively with Kn. For *H. unitaeniatus*, there was a negative correlation between the abundance of *G. spectabilis* and host length, while the abundance of *C. marginatum* correlated positively with host length and body weight. The abundance of *Contracaecum* sp. also exhibited a positive correlation with host length (Table 4).

The condition factor of the parasitized *H. malabaricus* (Kn = 0.999 ± 0.063) did not differ (*t* = -0.062; *p* = 0.951) from the standard (Kn = 1.00), and the same was true for *H. unitaeniatus* (Kn = 1.00 ± 0.017) (*t* = 0.003, *p* = 0.997). The equation describing the growth of

Table 3. Diversity descriptors for infracommunities of parasitic helminths of two species of Erythrinidae from the Vila Nova River basin, eastern Amazon region (Brazil).

Mean indices of diversity	Hoplias malabaricus	Hoplerythrinus unitaeniatus	U	p
Species richness of parasites	3.1 ± 0.6 (2-4)	4.0 ± 0.6 (3-5)	161.5	0.0001
Brillouin (*H*)	0.72 ± 0.19 (0.24 – 1.0)	0.86 ± 0.19 (0.54 – 1.23)	277.0	0.0053
Evenness (*E*)	0.60 ± 0.15 (0.25 – 0.83)	0.57 ± 0.12 (0.32 – 0.77)	378.0	0.1436
Dominance of Berger-Parker (*d*)	0.64 ± 0.13 (0.37 – 0.89)	0.57 ± 0.15 (0.28 – 0.85)	365.5	0.0467

U = Mann-Whitney.
Table 4. Spearman correlation coefficient (rs) of abundance of parasites with standard length, body weight and Kn for the infracommunities of parasite helminths of two species of Erythrinidae from the Vila Nova River basin, eastern Amazon region (Brazil).

Hosts fish	Hoplias malabaricus	Hoploerythrinus unitaeniatus										
Parasites	Length	Weight	Kn	Length	Weight	Kn						
Pseudopropeptus sp.	0.284 rs	0.127 rs	0.293 rs	0.115 rs	-0.239 rs	0.202 rs	0.253 rs	0.177 rs	0.117 rs	0.537 rs	-0.130 rs	0.493 rs
Gorytocephalus spectabilis	-0.159 p	0.400 rs	-0.252 rs	0.177 rs	0.035 rs	0.851 rs	-0.432 rs	0.017 rs	-0.304 rs	0.101 rs	0.041 rs	0.826 rs
Clinostomum marginatum	0.467 rs	0.001 p	0.361 rs	0.049 rs	-0.593 rs	0.0005 rs	0.454 rs	0.011 rs	0.567 rs	0.001 rs	-0.186 rs	0.322 rs
Contracecum sp.	0.545 rs	0.001 p	0.539 rs	0.002 rs	-0.5137 rs	0.0037 rs	0.347 rs	0.059 rs	0.2314 rs	0.218 rs	0.033 rs	0.859 rs
Procamallanus (S.) inopinatus	- rs	-0.073 rs	0.700 rs	-0.0008 rs	0.996 rs	0.213 rs	0.257 rs					
Guyanema s. seriei	- rs	-0.253 rs	0.176 rs	-0.246 rs	0.188 rs	-0.032 rs	0.865 rs					

H. malabaricus was $W = 0.0891L^{2.5077}$; $r^2 = 0.898$, while for H. unitaeniatus it was $W = 0.0327L^{2.8978}$; $r^2 = 0.904$, which shows negative allometric type growth.

Discussion

The endoparasite fauna in H. malabaricus was composed by 1 species of Digenea, 4 Nematoda and 1 Acanthocephala, while in H. unitaeniatus it consisted of 1 species of Digenea, 2 Nematoda and 1 Acanthocephala. Thus, 66.6% of these taxa are known species for these hosts in the eastern Amazon region. The endoparasite communities of H. unitaeniatus and H. malabaricus were dissimilar (15%) and were mostly influenced by the amount of ingested prey. However, a certain degree of homogeneity can be expected in hosts living in the same environment that are phylogenetically related and have a similar ecology (Alarcos & Timi, 2012; Hoshino et al., 2016). The parasites of H. unitaeniatus and H. malabaricus presented aggregate dispersion, but H. unitaeniatus demonstrated greater species richness, a higher Brillouin index and lower Bergmann dominance. The greater species richness of endoparasites in H. unitaeniatus is an indication that their feeding is more heterogeneous and lower Bergmann dominance. The greater species richness of endoparasites in H. unitaeniatus can therefore result in a greater number of infected organs, thus causing a reduction in competition among endoparasites.

The parasite dispersion pattern in both H. malabaricus and H. unitaeniatus was aggregated, a pattern registered for other freshwater fish in Brazil (Luque et al., 2003, Guidelli et al., 2003; Tavares-Dias et al., 2014a,b; Oliveira et al., 2016, 2017). This pattern is mainly influenced by the breadth of the ecological niche dimension, environmental heterogeneity and host immunology (Anderson & Gordon, 1982; Guidelli et al., 2003; Tavares-Dias et al., 2013; Oliveira et al., 2016). However, the infection by P. (S.) inopinatus in the pyloric cecum of H. unitaeniatus had a random dispersion, similar to the infection of this nematode in the pyloric cecum of T. angulatus from the Amazon River system (Oliveira et al., 2016). The random dispersion pattern is common in larvae and species of parasites with a high degree of pathogenicity, and that have a reduced possibility of colonizing hosts (Guidelli et al., 2003). Therefore, such parasite dispersion patterns may vary depending on the colonization strategies of the parasite species.

The growth type of H. malabaricus and H. unitaeniatus was negative allometric, indicating a greater increase in length than in body mass. In both H. malabaricus and H. unitaeniatus, there was a positive correlation between the abundance of C. marginatum and Contracecum sp. and the size of the hosts. This is a strong indicator of the accumulation of these endoparasites throughout the life of these hosts, influenced mainly by the greater possibility of intermediate host ingestion, and a longer time of exposure to parasitic infections (Guidelli et al., 2003; Bicudo et al., 2005; Bellay et al., 2012). However, H. malabaricus and H. unitaeniatus, which are fish of sedentary habits (Santos et al., 2006, Soares et al., 2011), exhibited differences in the number of prey containing infective forms of the endoparasites found, thus demonstrating a relative overlap in the same environment investigated. The negative correlation between the abundance of C. marginatum and Contracecum sp. and the size of H. malabaricus and the condition factor, indicates that larger fish have lower body conditions despite feeding more, and thus support lower levels of endoparasitic infection (Oliveira et al., 2016). However, a high abundance of parasites can compromise the body conditions of natural populations (Lizama et al., 2007; Morozhinska-Gogol, 2015).

The digenean C. marginatum, a parasite with low parasitic specificity (Gonçalves et al., 2016) which occurred at similar levels of infection in H. malabaricus and H. unitaeniatus in the present study, was the dominant helminth in the community. The transmission of digenean species is directly related to the food habits of the host, since these endoparasites need more than one host to complete their biological cycle (Pinto et al., 2015; Oliveira et al., 2016, 2017). In Brazil, in general, metacercaria of Clinostomum spp. use Biomphalaria spp. mollusks as primary intermediate hosts (Dias et al., 2003; Pinto et al., 2015), and the H. malabaricus and H. unitaeniatus of the present study are the secondary intermediate hosts of this endoparasite, with piscivorous birds the definitive hosts (Dias et al., 2003; Pinto et al., 2015).
The acanthocephalan *G. spectabilis* was found in the intestine, liver, pyloric cecum and mesentery of *H. unitaeniatus*, as well as in the mesentry of *H. malabaricus*, with varying rates of prevalence. However, its greatest abundance occurred in *H. unitaeniatus*, which showed levels of infection similar to those described for this same host from another basin of the Amazon River system (Alcântara & Tavares-Dias, 2015; Gonçalves et al., 2016). The life cycle of acanthocephalans involves vertebrate species as definitive hosts and microcrustaceans (amphipods, copepods, isopods and ostracods) as intermediate hosts (Huys & Bodin, 1997). Fish become infected when they prey on microcrustaceans containing acanthella, which can reach the cystacanth and adult stages in *H. malabaricus* and *H. unitaeniatus* in the environment of this study, corroborating the results of Alcântara & Tavares-Dias (2015), for these same host species. Low levels of infection by *G. s. seriei* were found in *H. unitaeniatus*, indicating that this fish acts as definitive host for this nematode. This species of endoparasite was originally described from *H. unitaeniatus* from French Guiana (Petter, 1975), indicating that these nematodes have a restricted relationship with *H. unitaeniatus*, while *H. malabaricus* is parasitized by *Guyanema baudii* (Weiblen & Brandão, 1992). However, *G. s. seriei* and *G. baudii* use different species of fish as primary and secondary intermediate hosts. This study extends the distribution of *G. s. seriei* to the basin of the Vila Nova River. A high prevalence but low abundance of larvae of *Contracaecum* sp. was found in *H. unitaeniatus* and *H. malabaricus*, although the latter host was less parasitized. However, there was a higher level of *Contracaecum* sp. infection of *H. malabaricus* than *H. unitaeniatus* in another basin in the Amazon River system, due to a larger range of items present in the diet of *H. malabaricus* in the studied environment (Alcântara & Tavares-Dias, 2015; Gonçalves et al., 2016). In general, nematodes use microcrustacean species as primary intermediate hosts, while fish may be paratenic, secondary or definitive intermediate hosts (Moravec, 2009; Moreira et al., 2009). *Contracaecum* species use piscivororous birds as definitive hosts (Moravec, 2009; Tavares-Dias et al., 2014a). *Procamallanus* (S.) *inopinatus*, a nematode with no parasitic specificity and with wide distribution in Brazil, uses fish species as definitive hosts and species of chironomids as intermediate hosts (Moravec, 1998; Moreira et al., 2009; Tavares-Dias et al., 2014b; Oliveira et al., 2015; Oliveira et al., 2016). This nematode was found only in *H. unitaeniatus* and with lower infection levels than those reported for this same host from the Igarapé Fortaleza basin, a tributary of the Amazon River (Alcântara & Tavares-Dias, 2015; Gonçalves et al., 2016), a finding probably influenced by the lower availability of intermediate hosts in the environment. However, *H. unitaeniatus* and *H. malabaricus* are the definitive hosts for this endoparasite (Alcântara & Tavares-Dias, 2015). This study extends the distribution of *P. (S.) inopinatus* to the basin studied. A high prevalence of *Pseudopropeopus* sp. occurred in *H. unitaeniatus* and *H. malabaricus*, but the highest levels of infection were found in *H. malabaricus*. In the Eastern Amazon region, the larvae of *Pseudopropeopus* sp. were also reported in *Satanoperca jurupari* (Melo et al., 2011) and *Aequidens tetraemerus* (Tavares-Dias et al., 2014a), as cichlid species are possibly part of the diet of *H. malabaricus* and *H. unitaeniatus*, which makes the transmission and development of this nematode even more efficient. *Pseudopropeopus* sp. uses larvae of ephemeral insects and crustaceans as the first intermediate hosts (Moravec, 2007; Moravec & Santos, 2009) while some species of fish act as second intermediate hosts (Moravec and Santos, 2009, Melo et al., 2011, Tavares-Dias et al., 2014a) and even as a definitive host, such as *H. malabaricus* (Melo et al., 2011). This is the first record of *Pseudopropeopus* sp. for *H. unitaeniatus* and extends its geographic distribution to the basin of the Vila Nova River.

In summary, the endoparasites community of *H. malabaricus* and *H. unitaeniatus* was characterized by the predominance of larvae, indicating that these fish are intermediate hosts for most of the parasite species found here. Therefore, these two hosts occupy a central position in the food chain. Finally, the high similarity between the community of endoparasites of *H. malabaricus* and *H. unitaeniatus* indicate a high overlap in environment. There also does not appear to be interspecific competition between the parasites, as they occupy several sites in the host.

Conflict of Interest

Authors state no conflict of interest.

Acknowledgements

The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Coordination for the Improvement of Higher Level Education Personnel) (Capes) for the doctorate grant awarded to Oliveira, M.B.O and Neves, L.R. and master’s grant awarded to Brasiliense, A.R.P. and to the Conselho Nacional de Desenvolvimento Científico (the National Scientific Development Council) (CNPq) for the productivity grant awarded to Tavares-Dias, M., and to Mr. José C.C. Pinto for the availability of the area for collection and help in fishing.

References

Alarcos, A.J., Timi, J.T. (2012): Parasite communities in three sympatric flounder species (Pleuronectiformes: Paralichthyidae): similar ecological filters driving toward repeatable assemblages. Parasitol. Res., 110(6): 2155 – 2166. DOI: 10.1007/s00438-011-2741-5

Alcântara, N.M., Tavares-Dias, M. (2015): Structure of the parasites communities in two Erythrinidae fish from Amazon River system (Brazil). Braz. J. Vet. Parasitol., 24(2): 183 – 190. DOI: 10.1590/ S1984-296120150303

Anderson, R.M., Gordon, D.M. (1982): Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology, 85(2): 163.
