Approximation of Fourier and its conjugate series by triple Euler product summability

Smita Sonker¹ and Paramjeet Sangwan²

Department of Mathematics, National Institute of Technology Kurukshetra (India)-136119

smita.sonker@gmail.com

Abstract. The paper is related to the concept of degree of approximation of Fourier and its conjugate series with the help of triple Euler product means. New theorems based on triple Euler product transform have been established and proved under general conditions.

1. Introduction

Fourier series has a great value in applied and theoretical mathematics. In the mid-eighteenth century, various physical problems like heat conduction patterns, vibrations and oscillations gave emphasis towards the study of Fourier series. Degree of approximation by single or double product summability methods have been studied by many researchers like Mohanty and Nanda [3], Mittal and Singh [10] established a result on T.C.1–summability of the Fourier series. Sahney and Goel [5], Qureshi [6], Chandra [7], Lal and Kushwaha [11], Sonker and Singh [12], Shukla, Srivastav and Rathore [17] worked on degree of approximation with the help of various conditions and different classes. Mittal and Prasad [8] determined the theorem on sequence of Fourier coefficients. Lal and Nigam [9] carried out his work on (N, p, q) summability. Nigam [14] worked on product summability of (C, 2) (E, 1). Saxena and Prabhakar [16] worked on double Euler summability. After doing literature survey it seems that nothing has been done still towards in triple Euler product means.

2. Definitions and Notations

Let a function (or signal) which is periodic with time period of 2π is denoted at point x by ‘g’ and integrable as Lebesgue for the limit (-π to π).

Fourier series given by

$$g(x) \sim \frac{a_0}{2} + \sum_{m=1}^{\infty} (a_m \cos mx) + \sum_{m=1}^{\infty} (b_m \sin mx) = \sum_{m=1}^{\infty} A_m(x) \quad (2.1)$$

The imaginary part of eqn (2.1) is the conjugate series and is given by

$$\bar{g}(x) \sim \sum_{m=1}^{\infty} (b_m \cos mx) - \sum_{m=1}^{\infty} (a_m \sin mx) = \sum_{m=1}^{\infty} B_m(x) \quad (2.2)$$
\[\phi(t) = g(x + t) + g(x - t) - 2g(t) \]
\[\psi(t) = \frac{1}{2} [g(x + t) - g(x - t)] \]
\[Z_m(t) = \frac{1}{\pi(2)^{m+1}} \sum_{h=0}^{m} \left(\frac{m}{h} \right) \frac{1}{(2)^h} \sum_{i=0}^{h} \left(\frac{1}{2^i} \right) \left(\sum_{j=0}^{i} \sin \left(\frac{j+\frac{1}{2}}{2^h} \right) t \right) \]
\[\overline{Z}_m(t) = \frac{1}{\pi(2)^{m+1}} \sum_{h=0}^{m} \left(\frac{m}{h} \right) \frac{1}{(2)^h} \sum_{i=0}^{h} \left(\frac{1}{2^i} \right) \left(\sum_{j=0}^{i} \cos \left(\frac{j+\frac{1}{2}}{2^h} \right) t \right) \]

Let \(\sum_{m=0}^{\infty} u_m \) is given infinite series and \(\{s_m\} \) is \(m \)th partial sum of series.

(I) If \(E^{1}_{m} = m E^{1} = \frac{1}{(2)^m} \sum_{h=0}^{m} \left(\frac{m}{h} \right) s_h \rightarrow s \) as \(m \rightarrow \infty \),
then \(\sum_{m=0}^{\infty} u_m \) known as summable using single Euler (E, 1) means to ‘s’ (throughout ‘s’ denotes a definite no).

(II) If \(E^{1}_{m} E^{1}_{h} = m E^{1,1} = \frac{1}{(2)^m} \sum_{h=0}^{m} \left(\frac{m}{h} \right) E^{1}_{h} \rightarrow s \) as \(m \rightarrow \infty \),
then \(\sum_{m=0}^{\infty} u_m \) known as summable using double Euler (E, 1) product means to ‘s’.

(III) If \(E^{1}_{m} E^{1}_{h} E^{1}_{i} = m E^{1,1,1} = \frac{1}{(2)^m} \sum_{h=0}^{m} \left(\frac{m}{h} \right) \frac{1}{(2)^h} \sum_{i=0}^{h} \left(\frac{h}{i} \right) E^{1}_{i} \rightarrow s \) as \(m \rightarrow \infty \)
\[= \frac{1}{(2)^m} \sum_{h=0}^{m} \left(\frac{m}{h} \right) \frac{1}{(2)^h} \sum_{i=0}^{h} \left(\frac{h}{i} \right) \frac{1}{(2)^i} \sum_{j=0}^{i} \left(\frac{j}{i} \right) \rightarrow s \) as \(m \rightarrow \infty \),
then \(\sum_{m=0}^{\infty} u_m \) known as summable using triple Euler (E, 1) product means.

3. Main Theorems

The aim of this study is to generalize the theorems of Saxena and Prabhakar [16] for triple Euler product means.

Theorem 3.1. Let \(\{p_{m}\} \) is +ive sequence which is monotonic and non-increasing with real constants
\[P_{m} = \sum_{w=0}^{m} p_{w} \rightarrow \infty, \; \text{as} \; m \rightarrow \infty. \]
If \(\phi \) satisfy the conditions as below
\[\phi(t) = \int_{0}^{t} \phi(u) du = o \left(\frac{t}{\beta(t)} P_{t} \right) \; \text{as} \; t \rightarrow +0 \] \hspace{1cm} (3.1)
provided \(\beta \) is +ive, non-increasing and monotonic function of \(t \).
\[\log m = O([\beta(m)].P_{m}), \; \text{as} \; m \rightarrow \infty \] \hspace{1cm} (3.2)
then approximation of the function at \(x = t \) using triple Euler product means is given by
\[|t_{m} E^{1,1,1} - g(x)| = O(1) \; \text{as} \; m \rightarrow \infty \]
where \(t_{m} E^{1,1,1} \) denotes (E, 1)(E, 1)(E, 1) transform of partial sums of the series (2.1).
Theorem 3.2: Let \(\{p_m\} \) be a sequence which is monotonic and non-increasing with real constants

\[
P_m = \sum_{w=0}^{m} p_w \to \infty \quad \text{as} \quad m \to \infty.
\]

If \(\psi \) satisfies the conditions as below

\[
\psi(t) = \int_0^t |\psi(u)| du = o\left(\frac{t}{\beta\left(\frac{t}{1}\right)} P_t\right) \quad \text{as} \quad t \to +0
\]

(3.3)

provided \(\beta \) is +ive, non-increasing and monotonic function

\[
\log m = O[\beta(m)]P_m \quad \text{as} \quad m \to \infty
\]

then eqn. (2.2) is summable to

\[
\tilde{g}(x) = -\frac{1}{2\pi} \int_0^{2\pi} \psi(t) \cot \left(\frac{t}{2}\right) dt
\]

at each point of the existence of this integral, then approximation of the function at \(x = t \) using triple Euler product means is given by

\[
|t_m^{E^1E^1E^1} - \tilde{g}(x)| = O(1) \quad \text{as} \quad m \to \infty,
\]

where \(t_m^{E^1E^1E^1} \) denotes \((E, 1)(E, 1)(E, 1)\) transform of partial sums of the series (2.2).

4. **Lemmas**

To prove the main theorems, the following lemmas are as given below:

Lemma 4.1: \(|Z_m(t)| = O(m) \), for \(0 \leq t \leq \frac{1}{m} \); \(\sin mt \leq m \sin mt \).

Proof:

\[
|Z_m(t)| \leq \frac{1}{\pi(2)^{m+1}} \left(\sum_{h=0}^{m} \sum_{l=0}^{h} \frac{(m)}{(2^h)^l j} \left(\sin \left(\frac{j+\frac{1}{2}}{2}\right) t \right) \right)
\]

\[
\leq \frac{1}{\pi(2)^{m+1}} \left(\sum_{h=0}^{m} \sum_{l=0}^{h} \frac{(m)}{(2^h)^l j} \left(\sin \left(\frac{2i+1}{2}\right) \right) \right)
\]

\[
= \frac{1}{\pi(2)^{m+1}} \left(\sum_{h=0}^{m} \sum_{l=0}^{h} \frac{(m)}{(2^h)^l j} \left(2h+1 \right) \right)
\]

\[
= \frac{1}{\pi(2)^{m+1}} \left(\sum_{h=0}^{m} \frac{(m)}{(2^h)^l j} \left(2h+1 \right) \right)
\]

\[
= \frac{1}{\pi(2)^{m+1}} \left(\sum_{h=0}^{m} \frac{(m)}{(2^h)^l j} \right) = \frac{1}{2\pi(2)^m} (2m+1) \sum_{h=0}^{m} \frac{(m)}{(h)} = O(m).
\]

Lemma 4.2: \(|Z_m(t)| = O\left(\frac{1}{t}\right) \), for \(\frac{1}{m} \leq t \leq \pi \), \(t \leq \pi \sin \left(\frac{t}{2}\right) \), and \(\sin(mt) \leq 1 \).

Proof:
\[|Z_m(t)| \leq \frac{1}{\pi(2)^{m+1}} \left| \sum_{h=0}^{m} \left(\begin{array}{c} m \\ h \\ \end{array} \right) \frac{1}{(2)^h} \sum_{i=0}^{h} \left(\begin{array}{c} h \\ i \\ \end{array} \right) \left(\frac{1}{(2)^i} \sum_{j=0}^{i} \frac{(j)}{\sin \left(\frac{t}{2} \right)} \right) \right| \]

\[\leq \frac{1}{\pi(2)^{m+1}} \left| \sum_{h=0}^{m} \left(\begin{array}{c} m \\ h \\ \end{array} \right) \frac{1}{(2)^h} \sum_{i=0}^{h} \left(\begin{array}{c} h \\ i \\ \end{array} \right) \left(\frac{1}{(2)^i} \sum_{j=0}^{i} \frac{(j)}{\pi} \right) \right| \]

\[= \frac{1}{t(2)^{m+1}} \left| \sum_{h=0}^{m} \left(\begin{array}{c} m \\ h \\ \end{array} \right) \frac{1}{(2)^h} \sum_{i=0}^{h} \left(\begin{array}{c} h \\ i \\ \end{array} \right) \left(\frac{1}{(2)^i} \sum_{j=0}^{i} (j) \right) \right| \]

\[\leq \frac{1}{t(2)^{m+1}} \left| \sum_{h=0}^{m} \left(\begin{array}{c} m \\ h \\ \end{array} \right) \frac{1}{(2)^h} \sum_{i=0}^{h} (i) \right| = \frac{1}{2t(2)^m} \sum_{h=0}^{m} \left(\begin{array}{c} m \\ h \\ \end{array} \right) = O \left(\frac{1}{t} \right). \]

Lemma 4.3: \(|Z_m(t)| = O \left(\frac{1}{t} \right), \) for \(0 \leq t \leq \frac{1}{m} \), \(t \leq \pi \sin \left(\frac{1}{2} \right) \) and \(|\cos(mt)| \leq 1. \)

Proof:

\[|Z_m(t)| \leq \frac{1}{\pi(2)^{m+1}} \left| \sum_{h=0}^{m} \left(\begin{array}{c} m \\ h \\ \end{array} \right) \frac{1}{(2)^h} \sum_{i=0}^{h} \left(\begin{array}{c} h \\ i \\ \end{array} \right) \left(\frac{1}{(2)^i} \sum_{j=0}^{i} \frac{(j)}{\sin \left(\frac{t}{2} \right)} \right) \right| \]

\[\leq \frac{1}{\pi(2)^{m+1}} \left| \sum_{h=0}^{m} \left(\begin{array}{c} m \\ h \\ \end{array} \right) \frac{1}{(2)^h} \sum_{i=0}^{h} \left(\begin{array}{c} h \\ i \\ \end{array} \right) \left(\frac{1}{(2)^i} \sum_{j=0}^{i} \frac{(j)}{\pi} \right) \right| \]

\[\leq \frac{1}{t(2)^{m+1}} \left| \sum_{h=0}^{m} \left(\begin{array}{c} m \\ h \\ \end{array} \right) \frac{1}{(2)^h} \sum_{i=0}^{h} (i) \right| = O \left(\frac{1}{t} \right). \]

Lemma 4.4: \(|\overline{Z_m}(t)| = O \left(\frac{1}{t} \right), \) for \(\frac{1}{m} \leq t \leq \pi, \) \(t \leq \pi \sin \left(\frac{1}{2} \right). \)

Proof:

\[|\overline{Z_m}(t)| \leq \frac{1}{\pi(2)^{m+1}} \left| \sum_{h=0}^{m} \left(\begin{array}{c} m \\ h \\ \end{array} \right) \frac{1}{(2)^h} \sum_{i=0}^{h} \left(\begin{array}{c} h \\ i \\ \end{array} \right) \left(\frac{1}{(2)^i} \sum_{j=0}^{i} \frac{(j)}{\sin \left(\frac{t}{2} \right)} \right) \right| \]

\[\leq \frac{1}{\pi(2)^{m+1}} \left| \sum_{h=0}^{m} \left(\begin{array}{c} m \\ h \\ \end{array} \right) \frac{1}{(2)^h} \sum_{i=0}^{h} \left(\begin{array}{c} h \\ i \\ \end{array} \right) \left(\frac{1}{(2)^i} \sum_{j=0}^{i} \frac{(j)}{\pi} \right) \right| \]

\[\leq \frac{1}{t(2)^{m+1}} \left| \sum_{h=0}^{m} \left(\begin{array}{c} m \\ h \\ \end{array} \right) \frac{1}{(2)^h} \sum_{i=0}^{h} (i) \right| = \frac{1}{2t(2)^m} \sum_{h=0}^{m} \left(\begin{array}{c} m \\ h \\ \end{array} \right) \left| e^{i(j+\frac{1}{2})t} \right| \right| = O \left(\frac{1}{t} \right). \]
\[\leq \frac{1}{t(2)^{m+1}} \left| \sum_{h=0}^{t-1} \left(\sum_{i=0}^{m} \left(\frac{h}{2^h} \sum_{i=0}^{m} \left(\frac{h}{2} \sum_{i=0}^{m} \left(\frac{i}{2} \sum_{i=0}^{m} \left(\frac{j}{2} \sum_{i=0}^{m} \phi \right) \right) \right) \right) \right| \]

Now,

\[|J_1| \leq \frac{1}{t(2)^{m+1}} \left| \sum_{h=0}^{t-1} \left(\sum_{i=0}^{m} \left(\frac{h}{2^h} \sum_{i=0}^{m} \left(\frac{i}{2} \sum_{i=0}^{m} \left(\frac{j}{2} \sum_{i=0}^{m} \phi \right) \right) \right) \right| \]

\[\leq \frac{1}{t(2)^{m+1}} \left| \sum_{h=0}^{t-1} \left(\sum_{i=0}^{m} \left(\frac{h}{2^h} \sum_{i=0}^{m} \left(\frac{i}{2} \sum_{i=0}^{m} \left(\frac{j}{2} \sum_{i=0}^{m} \phi \right) \right) \right) \right| \]

\[\leq \frac{1}{t(2)^{m+1}} \left| \sum_{h=0}^{t-1} \left(\sum_{i=0}^{m} \left(\frac{h}{2^h} \sum_{i=0}^{m} \left(\frac{i}{2} \sum_{i=0}^{m} \left(\frac{j}{2} \sum_{i=0}^{m} \phi \right) \right) \right) \right) \right| \]

Now,

\[|J_2| \leq \frac{1}{t(2)^{m+1}} \left| \sum_{h=0}^{t-1} \left(\sum_{i=0}^{m} \left(\frac{h}{2^h} \sum_{i=0}^{m} \left(\frac{i}{2} \sum_{i=0}^{m} \left(\frac{j}{2} \sum_{i=0}^{m} \phi \right) \right) \right) \right) \right| \]

\[\leq \frac{1}{t(2)^{m+1}} \left| \sum_{h=0}^{t-1} \left(\sum_{i=0}^{m} \left(\frac{h}{2^h} \sum_{i=0}^{m} \left(\frac{i}{2} \sum_{i=0}^{m} \left(\frac{j}{2} \sum_{i=0}^{m} \phi \right) \right) \right) \right) \right| \]

\[\leq \frac{1}{t(2)^{m+1}} \left| \sum_{h=0}^{t-1} \left(\sum_{i=0}^{m} \left(\frac{h}{2^h} \sum_{i=0}^{m} \left(\frac{i}{2} \sum_{i=0}^{m} \left(\frac{j}{2} \sum_{i=0}^{m} \phi \right) \right) \right) \right) \right| \]

5. Proof of Theorems

Proof of Theorem 3.1: According to Titchmarsh [1], let \(s_m(g;x) \) is partial sum of Fourier series (2.1).

\[|s_m(g;x) - g(x)| = \frac{1}{2\pi} \int_0^\pi \phi(t) \frac{\sin \left(\frac{m+1}{2} t \right)}{\sin \frac{t}{2}} \, dt. \]

The (E, 1) (E, 1) transform of \(s_m(g;x) \) is given by

\[|t_m^{E_1,E_1} - g(x)| = \frac{1}{\pi(2)^{m+1}} \left| \sum_{h=0}^{m} \left(\frac{h}{2^h} \sum_{i=0}^{m} \left(\frac{i}{2} \sum_{i=0}^{m} \phi \right) \right) \right| \]

\[\leq \frac{1}{\pi(2)^{m+1}} \left| \sum_{h=0}^{m} \left(\frac{h}{2^h} \sum_{i=0}^{m} \left(\frac{i}{2} \sum_{i=0}^{m} \phi \right) \right) \right| \]

By using the assumptions of theorem, it is to be shown that

\[\int_0^\pi |\phi(t)| |Z_m(t)| \, dt = O(1) \quad \text{as} \quad m \to \infty. \]

We set the limit of \(\gamma \) from 0 to \(\pi \).
Collecting equations (5.3), (5.4) and (5.5), we get

\[
|t_m^E x^1 \cdot E^1 - g(x)| = \int_0^\pi |\phi(t)| |Z_m(t)| dt = \left[\int_0^\pi |\phi(t)| + \int_1^m |\phi(t)| + \int_m^\pi |\phi(t)| \right] |Z_m(t)| dt
\]

\[= I_1 + I_2 + I_3 \quad \text{(say)}. \tag{5.2}\]

Throughout the paper, second mean value theorem is using for the second term integral. Using Lemma 4.1, equations (3.1) and (3.2), we have

\[
|I_1| \leq \int_0^\pi |\phi(t)||Z_m(t)| dt = O(m) \left[\int_0^m |\phi(t)| dt \right] = O(m) \left[o\left(\frac{1}{P_m \cdot m\beta(m)} \right) \right]
\]

\[= O\left(\frac{1}{P_m \cdot \beta(m)} \right) = O\left(\frac{1}{\log m} \right) = O(1) \quad \text{as } m \to \infty. \tag{5.3}\]

Using Lemma 4.2, equations (3.1) and (3.2), we have

\[
|I_2| \leq \int_0^\pi |\phi(t)||Z_m(t)| dt = O\left(\int_0^\gamma |\phi(t)| \left(\frac{1}{t} \right) dt \right) = O\left(\int_0^\gamma \frac{1}{t} |\phi(t)| dt \right) + \int_0^\gamma \frac{1}{t^2} |\phi(t)| dt
\]

\[= O\left(\frac{1}{P_m \cdot \beta(m)} \right) + \int_0^\gamma \frac{1}{P_m \cdot \beta(m)} + o\left(\frac{1}{P_m \cdot \beta(m)} \right) \int_\gamma^m 1. du
\]

\[= O\left(\frac{1}{\log m} \right) + O\left(\frac{1}{\log m} \right) = O(1) \quad \text{as } m \to \infty. \tag{5.4}\]

By considering summability regularity condition and taking Riemann-Lebesgue theorem

\[
|I_3| \leq \int_0^\pi |\phi(t)||Z_m(t)| dt = O(1) \quad \text{as } m \to \infty. \tag{5.5}\]

Collecting equations (5.3), (5.4) and (5.5), we get

\[
|t_m^E x^1 \cdot E^1 - g(x)| = O(1) \quad \text{as } m \to \infty.
\]

Proof of Theorem 3.2: On using Riemann-Lebesgue theorem and according to Lal [9], let \(\bar{s}_m (g; x) \) be partial sum of the series (2.2).

\[
|\bar{s}_m (g; x) - \bar{g}(x)| = \frac{1}{2\pi} \int_0^\pi \psi(t) \frac{\cos \left(\frac{m + \frac{1}{2}}{2} t \right)}{\sin \frac{t}{2}} dt.
\]

The \((E, 1)(E, 1)\) transform of \(\bar{s}_m (g; x) \) is given by

\[
|t_m^E x^1 \cdot E^1 - \bar{g}(x)| = \frac{1}{\pi(2)^{m+1}} \sum_{h=0}^{m} \left(\begin{array}{c} m \\ h \end{array} \right) \frac{1}{2} \sum_{i=0}^{h} \left(\begin{array}{c} h \\ i \end{array} \right) \frac{1}{2^i} \int_0^\pi \psi(t) \left[\sum_{j=0}^{i} \left(\cos \left(\frac{j}{2} + \frac{1}{2} \right) \right) \right] dt
\]
\[= \int_0^\pi |\psi(t)| |Z_m(t)| dt. \]

According to assumptions of theorem, it is to be shown that
\[\int_0^\pi |\psi(t)| |Z_m(t)| dt = O(1) \quad \text{as} \quad m \to \infty. \]

Using limit \(0 < \gamma < \pi \) and on taking \(\psi(t) \) as \(\psi \), we have
\[
|t_m^\gamma \hat{f}_1 \hat{f}_1 - \hat{g}(x)| = \int_0^\pi |\psi(t)| |Z_m(t)| dt = \left[\int_0^{\frac{\pi}{m}} |\psi(t)| + \int_{\frac{\pi}{m}}^\pi |\psi(t)| \right] |Z_m(t)| dt
\]
\[= L_i + L_2 + L_3 \quad \text{(say)}. \quad (5.6) \]

Consider Lemma 4.3, equations (3.2) and (3.3)
\[
|L_1| \leq \int_0^{\frac{\pi}{m}} |\psi(t)| |Z_m(t)| dt = O(m) \left[\int_0^{\frac{\pi}{m}} |t|^\gamma |\psi| dt \right] = O(m) \left[\int_0^{\frac{\pi}{m}} |\psi| dt \right]
\]
\[= O \left(\frac{1}{\log m} \right) = O(1) \quad \text{as} \quad m \to \infty. \quad (5.7) \]

Considering Lemma 4.4, equations (3.2) and (3.3)
\[
|L_2| \leq \int_0^\pi |\psi(t)| |Z_m(t)| dt = O \left[\int_0^\pi \frac{1}{|t|^\gamma} |\psi| dt \right] = O \left[\int_0^\pi \frac{1}{|t|} |\psi| dt \right]
\]
\[= O \left[\int_0^\pi \frac{1}{|t|^\gamma} \left(\frac{1}{|t|^\gamma} \right) dt \right] = O \left[\int_0^\pi \frac{1}{|t|^\gamma} \right] dt
\]
\[= O \left(\int_0^\frac{1}{\log m} \right) + O \left(\frac{1}{\log m} \right) = O(1) \quad \text{as} \quad m \to \infty. \quad (5.8) \]

Using regularity condition in method of summability and Riemann-Lebesgue theorem, we have
\[
|L_3| \leq \int_0^\pi |\psi(t)| |Z_m(t)| dt = O(1) \quad \text{as} \quad m \to \infty. \quad (5.9)
\]

Collecting equations (5.7), (5.8) and (5.9), we have
\[
|t_m^\gamma \hat{f}_1 \hat{f}_1 - \hat{g}(x)| = O(1) \quad \text{as} \quad m \to \infty.
\]
6. Corollary

Corollary 6.1. If \(\{p_n\} \) be positive sequence which is monotonic and non-increasing and conditions (3.1) and (3.2) are satisfied, then the series (2.1) reduces to \(E^1 \cdot E^1 \) product means [16] if we take one \(E^1_i = 1 \) in triple product and approximation of the function at \(x = t \) using \(E^1 \cdot E^1 \) product means is given by

\[
\left| t_m^E \cdot E^1 \cdot E^1 - g(x) \right| = O(1) \quad \text{as } m \to \infty.
\]

Corollary 6.2. If \(\{p_n\} \) be positive sequence which is monotonic and non-increasing and conditions (3.2) and (3.3) are satisfied, then the series (2.2) reduces to \(\overline{E^1} \cdot \overline{E^1} \) product means [16] if we take \(\overline{E^1_i} = 1 \) in triple product and approximation of the function at \(x = t \) using \(\overline{E^1} \cdot \overline{E^1} \) product means is given by

\[
\left| t_m^\overline{E^1} \cdot \overline{E^1} - \overline{g}(x) \right| = O(1) \quad \text{as } m \to \infty.
\]

7. Conclusion

This paper focuses on the approximation of functions with the help of \(E^1 \cdot E^1 \cdot E^1 \) product means of series (2.1) and (2.2). Through this research work, it has been concluded that the main theorem is a generalized form which can be reduced to familiar results. Various results related to \((E^1)^2 \cdot X \) and \(X \cdot (E^1)^2 \) product means of series (2.1) and (2.2) have been reviewed.

8. Acknowledgement

This work has been financially supported by Science and Engineering Research Board (SERB) through Project No.: EEQ/2018/000393. The authors offer their true thanks to the Science and Engineering Research Board for giving financial support.

References

[1] Titchmarsh E. C., Divergent Series, Oxford University Press (1939) pp. 402–403.
[2] Hardy G. H., The Theory of Functions, Oxford University (1949).
[3] Mohanty R. and Nanda M., On the behaviour of Fourier coefficients, Proc. AM. Math. Society 5 (1954) pp. 79-84.
[4] Zygmund A., Trigonometric Series 2, Cambridge University Press (1959).
[5] Sahney B. N. and Goel D. S., On the degree of approximation of continuous functions, Rachi Univ. Maths Jour. 4 (1973) pp. 50-53.
[6] Qureshi K., On the degree of approximation of a function belonging to weighted \(W(L_n, \xi(t)) \) class, Indian Journal of Pure and Applied Mathematics 13 (1982) pp. 471- 475.
[7] Chandra P., On the Degree of Approximation of a Class of Functions by Means of Fourier series, Acta. Math. Hung 52(3-4) (1988) pp. 199–205.
[8] Mittal M. L. and Prasad G., On a sequence of Fourier Coefficients, Ind. Jour. of pure and applied mathematics 25 (3) (1992) pp. 235–241.
[9] Lal S., Nigam H. K., On almost \((N, p, q) \) summability of conjugate Fourier series. Int. J. Math. Math. Sci. 25 (6) (2001) pp. 365-372.
[10] Mittal M. L. and Singh U., T. C1 summability of a sequence of Fourier coefficients, Applied Mathematics and computation 204 (2) (2008) pp. 702-706.
[11] Lal S. and Kushwaha J. K., Degree of Approximation of Lipschitz Function By Product Summability Method, Int. Mathematical Forum 4 (43) (2009) pp. 2101-2107.

[12] Sonker S. and Singh U., Degree of approximation of the conjugate of signals (functions) belonging to Lip (α, r) class by (C, 1) (E, q) means of conjugate trigonometric Fourier series, Journal of Inequalities and Applications 2012 (2012): 278.

[13] Nigam H. K., A Study on Approximation of Conjugate of Functions Belonging to Lipschitz Class and Generalized Lipschitz Class by Product Summability Means of Conjugate Series of Fourier Series, Thai Jour. of Mathematics vol.10 (2012) pp. 275–287.

[14] Nigam H. K., On (C, 2) (E, 1) Product means of Fourier series and its conjugate series, Electronic Jour. of Math. Analysis and Applications vol. 2 (2013) pp. 334–344.

[15] Krasniqi X. Z., On the Degree of Approximation of Functions belonging to the Lipschitz Class by (E, q) (C, α, β), Khayyam Journal of Mathematics 1(2) (2015) pp. 243–252.

[16] Saxena K. and Prabhakar M., A Study of Double Euler Summability Method of Fourier Series and its Conjugate Series, Int. Jour. of Scientific and Innovative Mathematical Research 4 (1) (2016) pp. 46–52.

[17] Shukla S., Shrivastav U. K. and Rathore C. S., On the Approximation of Function by Product Means in the Holder Metric, Int. Jour. of mathematics and its applications 5(1C) (2017) pp. 343–348.