Optical Fizeau Experiment with Moving Water is Explained without Fresnel’s Hypothesis and Contradicts Special Relativity

Gennadiy S* and Vitali S

Independent Researcher, Sverdlovsk Oblast, Yekaterinburg, 620062, Russia

Abstract

Fizeau experiment actually proves not partial, as the special relativity asserts, but complete dragging of the light by moving medium. The decrease of the fringe shift in the Fizeau's two-beam interferometer is explained not with wrong Fresnel's aether drag hypothesis but with the phase deviations arising in the interfering beams because of Doppler shift of the frequencies. Fizeau experiment does not prove but, on the contrary, refutes Einstein’s theory of relativity.

Keywords: Fresnel; Doppler; Interferometer

Introduction

200 years ago, Fresnel, trying to explain results of the optical Arago's experiments by the aether wave hypothesis, suggested that a moving at speed \(V \) medium drags the light only partially and the speed of the light changes by drag coefficient \(\nu \left(1 - \frac{1}{n^2} \right) \). To test this hypothesis, in 1851 Fizeau carried out interference experiment with moving water.

At the speed of the water \(V = 7.059 \) m/s, the length of pipe \(L = 2.974 \) m, the length of light wave \(\lambda_0 = 526 \cdot 10^{-9} \) m and refraction index \(n = 1.33 \),

He expected to receive the fringe shift 0.47099 in the case if the light was completely dragging by moving water. However, the shift in the experiment was less and equal to 0.23, that is it differed almost by \(1 - \frac{1}{n^2} = 0.4346 \) [1,2]. Although that time Doppler has already showed that the light changes its frequency when enters moving medium, Fizeau did not try to explain it due to phase deviations differently and decided that he confirmed Fresnel’s aether drag hypothesis about partial dragging of the light by moving medium.

In 1886 Michelson and Morley repeated Fizeau experiment and with higher accuracy confirmed the decrease of the fringe shift in moving medium. Taking into account the dispersion of the medium, Lorentz derived a formula for the drag coefficient. To confirm this formula, Zeeman in experiments with moving water and Harres in the experiment with the linearly moving quartz cylinder determined drag coefficients for the red and green light. However, as we know, in the calculation of the interferometer with moving water, nobody investigated and nobody considered the change of the frequency and the phase deviations, arising in interfering beams when they enter into moving water [3].

The erroneous explanation of Fizeau’s experiment, a significant role of which in the creation of the special relativity was repeatedly emphasized by Einstein, is still considered as one of the most important confirmation of the special relativity [1].

As shown below, the beams in Fizeau interferometer travel at speeds \(\left(\frac{C}{n} + V \right) \) and \(\left(\frac{C}{n} - V \right) \) that is complete but not partial dragging takes place. The fringe shift is less than 0.47099 not because of Fresnel’s hypothesis about “partial dragging” but because of phase deviations arising in interfering beams in moving water and therefore Fizeau experiment does not confirm but, on the contrary, disproves special relativity.

The Conventional Calculation of the Fizeau Interferometer

In Fizeau interferometer, the beam 1 travels in direction of moving water and the beam 2 travels toward moving water. Instead real scheme of Fizeau interferometer in which the beams travel in the same pipe and pass the same distance \(L \) in opposite directions, we consider more simple equivalent scheme explained in Figure 1, where the beams 1 and 2 pass identical distances \(\frac{C}{n} \) in two pipes in which water moves at speed \(V \) in opposite directions. Just as in the experiment Fizeau, photons exit from moving water at the same distance from the screen, as in immovable water. At the moment \(t = 0 \), the photons of the frequency \(v_0 \) with identical initial phase equal to zero simultaneously enter in both pipes. If water is at rest, photons travel with identical frequency \(v_0 \) and speed \(\frac{C}{n} \), pass the distances \(L \). For identical time \(t = \frac{L}{C} \) and interference fringes are in initial position.

\[t = 1.319386093428674579932276479684 \cdot 8 \]

When water moves at speed \(V \), the speeds of the photons and their frequencies change.

In the beam 1, photons move at speed \(\frac{C}{n} \) relative to water and at

\[\delta \]

Figure 1: Movement of photons at C/n relative speed.

*Corresponding author: Gennadiy S, Independent Researcher, Sverdlovsk Oblast, Yekaterinburg, 620062, Russia, Tel: 24956484; E-mail: sokolovg@yahoo.com, viti@sokolovrealty.com

Received July 04, 2016; Accepted December 30, 2016; Published January 05, 2017

Citation: Gennadiy S, Vitali S (2017) Optical Fizeau Experiment with Moving Water is Explained without Fresnel’s Hypothesis and Contradicts Special Relativity. J Phys Math 8: 207. doi: 10.4172/2090-0902.1000207

Copyright: © 2017 Gennadiy S et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
C + V relative to pipe. They pass the distance \(L \) for the time \(t_1 = \frac{L}{C + V} \) less than \(t_o \).

\[
\left(\frac{C}{n} + V \right) = 225407870.216894736842105263135789 \\
t_o = 1.319386052110035077861729804249e-8
\]

For the time \(t_o \), every photon passes relative to water the distance

\[
L_i = \frac{C}{n} t_o = \frac{LC}{n(C + V)} <= L.
\]

\[
L_2 = 2.97399996864538581552593505374
\]

In the beam 2, photons move at speed \(\frac{C}{n} \) relative to water and at \(\left(\frac{C}{n} - V \right) \) relative to pipe. They pass the distance \(L \) for the time

\[
t_i = \frac{L}{\frac{C}{n} - V} > t_o
\]

\[
\left(\frac{C}{n} - V \right) = 22507856.098894736842105263135789 \\
t_i = 1.3193861347473162399940564872283e-8
\]

For the time \(t_i \) every photon passes relative to water the distance

\[
L_2 = \frac{C}{n} t_i = \frac{LC}{n(C - V)} > L.
\]

\[
L_2 = 2.97400009313546725181300533811804
\]

Photons of the beam 1 come to the screen earlier than photons of the beam 2 and the fringes shift in interferometer.

In usual two-beam interferometers, the interfering beams pass the distances with identical frequency \(\nu_0 \) and the fringe shift is determined simply by the difference of the times: \(\Delta t = t_i - t_o \).

\[
\delta \nu = \frac{C\Delta t}{\lambda_0} = \frac{\lambda_0}{C} \left(\frac{C}{n} - V \right) = \frac{2LV}{C}\lambda_0 \quad (1)
\]

If \(L = 2.974 \text{ m}, C = 299792 458 \text{ m/s}, V = 7.059 \text{ m/s}, \lambda_0 = 526.10^{-9} \text{ m} \) and \(n = 1.33 \), the expression (1) gives a value of the fringe shift \(\delta \nu = 0.471 \).

\[
\Delta t_0 = 0.0000000826372807322078835068034 \\
\delta \nu = 0.4709892301771229093466669294582087
\]

Such fringe shift, according to the Fizeau, should be in his interferometer. But in experiment the fringe shift was less than 0.471 and equal to 0.23.

The Change of the Frequencies in Moving Water

In Fizeau interferometer, the light is completely dragged by moving water. But because the beams enter the moving water from immovable light source, in accordance with Doppler effect, their frequencies change and an observer moving together with water will see different frequency. Additional phase deviations arise in interfering beams. Because of these deviations, the resulting fringe shift in the interferometer with moving water cannot be determined by the expression (1) and is less than \(\delta \nu = 0.471 \). Photons of the beam 1 entering moving water with a speed \(V \) change the frequency from \(\nu_o \) to

\[
\nu_i = \nu_o \left(1 - \frac{V}{C} \right)
\]

and with speed \(\frac{C}{n} \) and frequency \(\nu_i < \nu_o \) pass relative to water the distance \(L_i \).

At the moment \(t_o \) they exit from moving water changing the frequency from \(\nu_i \) to

\[
\nu_1 = \nu_i \left(1 - \frac{V}{C} \right) = \nu_o \left(1 - \frac{V}{C} \right) = \nu_o \left(1 - \frac{V}{C} \right)^2
\]

Photons travel in air to the screen with the speed \(C \) and frequency

\[
\nu = \nu_o \left(1 - \frac{V^2}{C^2} \right)
\]

and interfere with photons of the beam 2.

Photons of the beam 2 entering moving water change the frequency from \(\nu_i \) to

\[
\nu_2 = \nu_i \left(1 + \frac{V}{C} \right) = \nu_o \left(1 + \frac{V}{C} \right) = \nu_o \left(1 + \frac{V^2}{C^2} \right)
\]

In the air photons travel to the screen with the speed \(C \) and frequency

\[
\nu = \nu_o \left(1 - \frac{V^2}{C^2} \right)
\]

and interfere with photons of the beam 1.

The Change of the Distances between the Wave Fronts

Besides the fact that photons change their frequency in moving water, the distances between the wave fronts change too, which leads to an additional change of resultant fringe shift.

When photons enter the pipe with immovable water Figure 2a, they do not change frequency and travel with frequency \(\nu_o \) and wavelength

\[
\frac{\lambda_0}{C} = \frac{C}{n} \quad (2)
\]

Photons also do not change frequency if to suppose that the source \(S \) moves in interferometer together with water (Figure 2b). Moving with water, the observer will see the same frequency \(\nu_o \) and wavelength

\[
\frac{\lambda_0}{C} = \frac{C}{n} \quad (3)
\]

In the case when the source \(S \) is at rest relative to pipe Figure 2c frequencies of the photons change but the same time the distances between the wave fronts change too. Moving with water, the observer will see the frequency \(\nu_o \) and wavelength

\[
\frac{\lambda_0}{C} = \frac{C}{n} \quad (4)
\]

In all situations, photons travel relative water at speed \(\frac{C}{n} \) and for the time

\[
T_o = \frac{L}{V} \quad (5)
\]

each wave front passes the distance in water \(\frac{C}{n} T_o \).

\[\text{Figure 2: Illustrating the Movement of Photons at a travel speed } \frac{C}{n} + V.\]
both pipes with moving water as shown in Figure 2b and 2c, photons are dragged completely and travel at speed $C_n + V$. For each period T_0, they are ahead at identical distances VT_0 relative to photons in pipe with immovable water.

In the pipe Figure 2b where the source moves together with water, photons travel with frequency v_1 and the distances between the wave fronts are equal to wavelength $\lambda_0 = \frac{C}{n} T_0$.

In the pipe Figure 2c photons change frequency and travel in water with frequency v_0 less than v_1. For the time T_0, each wavefront passes relative to water the distance $\frac{C}{n} T_0$. Because water moves at speed V, at the moment t_0 when next wave front enters water, previous wavefront is at the same distance $\left(\frac{C}{n} + V\right) T_0$ as the wave front in Figure 2b. Though photons travel with frequency v_1, the distance between the wave fronts is $\left(\frac{C}{n} + V\right) T_0$ but not $\left(\frac{C}{n} + V\right) T_0$. The distances are the same as in Figure 2b where photons travel with frequency v_0. As shown below, because of the “stretching” or “contraction” additional phase shift arises and resulting fringe shift in interferometer changes.

Additional Fringe Shifts

Imagine that in the Fizeau interferometer, as well as in Figure 2, there is an additional pipe with immovable water, and consider propagation of photons in the pipes 1 and 2. The introduction of additional pipe simplifies analysis of the interferometer, as it allows to consider the motion of photons in each pipe separately, comparing the positions of the photons in the pipe with moving water with positions of the photons in the pipe with immovable water.

In usual two-beam interferometer, synchronous photons pass different distances with the same speed or the same distance with different speeds and therefore the fringe shift arises. Since synchronous photons travel with the same frequency and come to the screen with the same phase, the fringe shift can be determined by the difference $\Delta t = t_2 - t_1$ and is $\delta_0 = \frac{C \Delta t}{\lambda_0}$.

In interferometer with moving water, because wave lengths and distances between wavefronts change, the fringe shift change and is less than δ_0.

The decrease of the fringe shift because of the wavelengths change

In Fizeau interferometer, the beam 1 and 2 travel with frequencies $v_1 = v_0 \left(1 - \frac{V}{C}\right)$ and $v_2 = v_0 \left(1 + \frac{V}{C}\right)$ and with different wavelengths. During the time while the beams travel in water, a phase deviation arises and because of it the fringe shift decreases.

In Figure 3, for example beam 1, it is shown the phase shift in the case when photons travel with different frequencies v_0 and v_1 and different wavelengths $\frac{C}{n} T_0 = \frac{\lambda_0}{n}$ and λ_0 in pipes with immovable water conditionally pipes are shown in dashed lines).

For one period $T_1 = \frac{1}{v_1}$ photons v_1 of the same phase as photons v_0 are behind at distance in water $\Delta \lambda_1 = \lambda_1 - \frac{\lambda_0}{n}$. Photons travel in both pipes with identical speed $\frac{C}{n}$. To the moment t_1 when they pass relative water the same distance L_1, at the same time exit from water, between photons of identical phase the shift $\Delta \lambda_1 N_1$ accumulates, where $N_1 = \frac{T_1}{\lambda_0} = \frac{L_1 (C - V)}{\lambda_0}$ is the number of oscillations in photons v_1 for the time t_1. That is, at the moment t_1 when synchronous photons exit from water, photon v_0 equivalent to photon v_1 is behind in water at distance $\Delta \lambda_1 N_1$. In Fizeau interferometer, photons v_0 also enter in imaginary pipe with immovable water. When water in the pipe 1 is at rest, photons exit from both pipes with identical frequency v_0 and create interference fringes. When the water moves at speed V and photons travel with frequency v_1 in pipe 1, the fringe shift is measured relative to these fringes. Interferometer works with frequency v_0. It “does not know” that frequency changes in moving water and reacts with equivalent photon v_0 which is behind in water at $\Delta \lambda_1 N_1$. During the time Δt_1 = $\Delta \lambda_1 N_1 \frac{n}{\lambda_0}$ while equivalent photon passes in water the distance $\Delta \lambda_1 N_1$, synchronous photons exit from additional pipe and pass in air the distance $\Delta \lambda_1 N_1 n$. During the time Δt_1 interference fringes shift by:

$$\Delta \delta_1 = \frac{\Delta \lambda_1 N_1 n}{\lambda_0}$$

The fringes shift in interferometer as if photons pass the distance L_1 at a speed less than $\frac{C}{n}$.

The increase of the fringe shift because of the periods oscillations change

In Figure 4, also for example beam 1, a movement of the photons v_1 in pipe 1 is compared with the movement of the photons v_0 in pipe with immovable water. At the same time as the fringe shift decreases by $\Delta \delta_{11} = \frac{\Delta \lambda_1 N_1 n}{\lambda_0}$, it increases by $\Delta \rho_{11}$ because the distances between wave fronts v_1 change and become less than wavelength $\lambda_0 = \frac{C}{n} T_0$. Photons enter both pipes with identical phase which we assume to be zero. In pipe with immovable water, during the time T_0 photons pass the distance $\frac{C}{n} T_0$ equal to wavelength λ_0 and their phase changes by 2π. That is, wave fronts, whose phases differ by 2π travel at a distance $\frac{C}{n} T_0$ from one another which is equal to wavelength λ_0. In pipe 1 photons travel at speed $\frac{C}{n} + V$, frequency $v_1 = v_0 \left(1 - \frac{V}{C}\right)$ and period of oscillations $T_0 < T_1$. During the time T_1 they pass the distance $\frac{C}{n} T_0$.
accumulates where

\[\delta V - \text{the fringe shift because of change of the periods } T. \]

The same as above, we consider separately the movements of the photons in pipes 1 and 2 comparing them with the movement of the photons in pipe with immovable water and determine the fringe shifts and \(\delta_1 = \delta_{\lambda_1} - \delta_{\lambda_2} + \delta_{\lambda_1} \) arising in the interfering beams.

Propagation of the Photons of the Beam 1 and the Fringe Shift \(\delta_1 \)

a) Photons of the beam 1 are completely dragged by moving water, travel at speed \(\left(\frac{C}{n} + V \right) \) and come to the exit from water at the moment \(t_1 \) by \(\Delta T_0 = L_1 - N_1 \), by \(\Delta T_1 = L_1 \) earlier than in additional pipe.

\[\Delta t_1 = \frac{L}{C + V} \]

b) Photons of the beam 1 travel in moving water with frequency \(\nu_1 = \nu_0 \left(1 - \frac{V}{C} \right) \) and with wavelength \(\lambda_1 = \frac{C}{n} T_1 \), which are ahead of the photons in immovable water. During each period \(T_1 \), equivalent photons \(\nu_1 \) are behind from photons \(\nu_0 \) by \(\Delta T = \frac{L}{m(C - V)} \) more than wavelength \(\lambda_1 \) in immovable water. The moment \(t_i \), the delay \(\Delta T_i N_i \) accumulates where \(N_i = \frac{t_i}{C} = \frac{L(C - V)}{m(C - V)} \lambda_0 \).

\[\Delta T_i N_i \]

the number of the oscillations in photons \(\nu_i \) during the time \(t_i \).
shift decreases as if photons of the beam 1 travel relative to water with the speed less than \(C \),
\[\delta_1 = 0.177 063 614 863 968 453 411 836 408 815 25 \]
c) During each period \(T_1 \), wave front \(v_1 \) instantly shifts relative to moving water at distance \(\left(\frac{C}{n} + V \right)(T_1 - T_2) \). During the time \(t_1 \), the shift \(\Delta \tau_1 = N \left(\frac{C}{n} + V \right)(T_1 - T_2) \) accumulates and, because of this shift, wave fronts \(v_1 \) are ahead by \((n-1)\Delta \tau_1 \), relative to the wave fronts traveling in pipe with immovable water. Additional fringe shift \(\delta_1 \) arises:
\[\delta_1 = (n-1)\Delta \tau_1 \]
\[(5) \]
\[\Delta \tau_1 = 0.070 026 664 913 631 679 332 414 918 917 2 \times 10^{-6} \text{m} \]
\[\delta_1 = 0.043 933 078 748 095 922 884 635 014 99 \times 10^{-6} \text{m} \]
Thus, photons of the beam 1 are completely dragged by moving water and interference fringes shift by
\[\delta_1 = \delta_1 - \delta_2 + \delta_2 = 0.235 494 622 518 842 891 629 220 766 574 8 \times 10^{-6} \text{m} \]
\[\delta_1 = 0.102 364 08 \times 10^{-6} \text{m} \]

Propagating the Photons of the Beam 2 and the Fringe Shift \(\delta_2 \)

a) Photons of the beam 2 are completely dragged by moving water, travel at speed \(\left(\frac{C}{n} - V \right) \) and come to the exit from water at the moment \(t_2 \), by
\[\Delta \tau_2 = t_2 - t_0 = \frac{L}{\frac{C}{n} - V} \]
elater than in additional pipe.
\[\Delta \tau_2 = 0.000 000 041 318 641 660 016 828 395 299 9 \times 10^{-6} \text{m} \]

Because of time difference \(\Delta \tau_2 \), interference fringes have to shift by
\[\delta_2 = \frac{\Delta \tau_2}{\lambda_0} \]
\[\delta_2 = 0.235 494 622 518 842 891 629 220 766 574 8 \times 10^{-6} \text{m} \]
\[\delta_2 = 0.043 933 078 748 095 922 884 635 014 99 \times 10^{-6} \text{m} \]
Thus, photons of the beam 2 are completely dragged by moving water and interference fringes shift by
\[\delta_2 = \delta_1 - \delta_2 + \delta_2 = 0.235 494 622 518 842 891 629 220 766 574 8 \times 10^{-6} \text{m} \]
\[\delta_2 = 0.102 364 08 \times 10^{-6} \text{m} \]

Resulting Fringe Shift \(\delta \)

Resulting fringe shift \(\delta \) is equal to sum of the fringe shifts \(\delta_1 \) and \(\delta_2 \)
\[\delta = \delta_1 + \delta_2 = 0.102 366 408 \times 10^{-6} + 0.204 728 08 \times 10^{-6} \text{m} \]
and is practically equal to the fringe shift which Fizeau received in his experiment in 1851.

Conclusion

The fringe shift in the interferometer with moving water is less than fringe shift in usual two-beam interferometers because of the change of the frequencies and additional phase deviations arising in interfering beams. Fresnel’s explanation of the fringe shift decrease by hypothesis that the light is dragged partially by nonexistent aether is wrong and cannot be considered as confirmation of Einstein’s special relativity.

References

1. Frankfurt UI (1968) Special and General Relativity. Nauka, Moscow 1968.
2. Fizeau AH (1860) On the Effect of the Motion of a Body upon the Velocity with which it is Traversed by Light. Philosophical Magazine and Journal of Science 19: 245-260.
3. Sokolov G, Sokolov V (2007) The Fizeau Experiment with Moving Water: A New Explanation. Galilean Electrodynamics.