Characterization and expression analysis of the WRKY gene family in moso bamboo

Long Li1,2, Shaohua Mu1, Zhanchoa Cheng1, Yuanwen Cheng1, Ying Zhang1, Ying Miao1, Chenglin Hou4, Xueping Li3 & Jian Gao1

The WRKY family of transcription factors (TFs) is one of the ten largest families of TFs in higher plants and has been implicated in multiple biological processes. Here, we identified 121 WRKY TFs in moso bamboo, including five novel members that were not annotated in the *Phyllostachys edulis* genomic database. Estimation of the divergence time of paralogous gene pairs revealed an important role of the recent whole-genome duplication in the expansion of the WRKY family. Expression analysis based on quantitative reverse-transcription polymerase chain reaction (qRT-PCR) data revealed that a large number of *PheWRKY* genes varied significantly under cold or drought stress treatments, which could be defined as abiotic stress-responsive genes. The overexpression of *PheWRKY72-2* in *Arabidopsis* resulted in a decreased sensitivity to drought stress during early seedling growth. *PheWRKY72-2* may enhance plant tolerance to stress by functioning as a positive regulator of stoma closure. Our study provides a theoretical foundation and some experimental evidence for further functional verification of the PheWRKY family of TFs.

Moso bamboo (*Phyllostachys edulis*) is a large, woody bamboo with the highest ecological, economic, and cultural value of all bamboo types and accounts for 70% of the total cultivated bamboo worldwide. Moso bamboo belongs to the monophyletic Bambusoideae, Ehrhartioideae, Pooidae (BEP) clade of the grass family (Poaceae). Moso bamboo is a perennial plant characterized by its woody culm and a prolonged vegetative phase that lasts for decades before flowering. It is one of the most important non-timber forest resources in south-eastern China because of its striking shoot growth rate. Indeed, the shoot can grow as long as 1 m within 24 hrs and reaches a final height of 5–20 m in 45 to 60 days. Interestingly, multiple moso bamboo plants often flower and die after flowering simultaneously. Moreover, the plants rarely flower in a natural setting. Transcriptomic studies in *P. edulis* provide an excellent opportunity to investigate genes that could be useful for improving plant growth. RNA sequencing studies suggest that drought stress may be related to flowering in bamboo. *P. edulis* has a tetraploid origin that underwent whole-genome duplication approximately 7–12 million years ago (mya). Collinearity analysis of *Oryza sativa* and bamboo revealed that a large number of genes were lost at the same time.

The WRKY family is one of the ten largest transcription factor (TF) families in higher plants. The first cDNA encoding a WRKY protein to be cloned was *SPF1* from *Pachyrhizus erosus*. Since then, several WRKY family member proteins have been identified from various plant species, all of which play key roles in the response to ever-changing internal and external stimuli. The WRKY TFs are named after the WRKY domain, which consists of approximately 60 amino acids. These TFs play vital regulatory roles in developmental and physiological processes, such as seed dormancy, embryo morphogenesis, plant growth, senescence, and metabolism. Furthermore, WRKY TFs are involved in responses to various abiotic and biotic stresses, such as bacteria, fungi, nematodes, wounding, heat, drought, salinity and cold. Most WRKY family members contain highly conserved heptapeptides (WRKYQSK) at their N-terminals and a C,H,C zinc-finger motif at their C-terminals. However, some have altered motifs, including WRKYGEK and WRKYGK. WRKY
ID	WRKY group	Zinc-finger type	Conserved heptapeptide	Zinc-finger type	m	n
PheWRKY1-1	group2b	WRKY type	WRKYGQK	C2H2	5	23
PheWRKY1-2	group2b	WRKY type	WRKYGQK	C2H2	5	23
PheWRKY2	group2c	WRKY type	WRKYGQK	C2H2	5	23
PheWRKY3-1	group2c	WRKY type	WRKYGQK	C2H2	4	23
PheWRKY3-2	group2c	WRKY type	WRKYGQK	C2H2	4	23
PheWRKY4	group3	WRKY type	WRKYGQK/WRKYGQK	C2H2	4/4	22/23
PheWRKY5-1	group2b	WRKY type	WRKYGQK	C2H2	5	23
PheWRKY5-2	/	WRKY type	/	/	/	/
PheWRKY7	group2c	WRKY type	WRKYGKK	C2H2	4	23
PheWRKY8	group2c	WRKY type	WRKYGQK	C2H2	4	23
PheWRKY9-1	group2b	WRKY type	WRKYGQK	C2H2	5	88
PheWRKY9-2	group2b	WRKY type	WRKYGQK	C2H2	5	23
PheWRKY10	group2c	WRKY type	WRKYGQK	C2H2	4	23
PheWRKY11-1	group2c	WRKY type	WRKYGQK	C2H2	4	23
PheWRKY11-2	group2c	WRKY type	WRKYGQK	C2H2	4	23
PheWRKY11-3	group2c	WRKY type	WKKYGQK	C2H2	4	24
PheWRKY12	group2e	WRKY type	WRKYGQK	C2H2	5	23
PheWRKY13-1	group2e	WRKY type	WRKYGQK	C2H2	5	23
PheWRKY13-2	group2e	WRKY type	WRKYGQK	C2H2	5	23
PheWRKY13-3	group2e	WRKY type	WRKYGQK	C2H2	5	23
PheWRKY14	group2e	WRKY type	WRKYGQK	C2H2	5	23
PheWRKY15-1	group3	WRKY type	WRKYGQK	C2HC	7	23
PheWRKY15-2	group3	WRKY type	WRKYGQK	C2HC	7	23
PheWRKY16	group2c	WRKY type	WRKYGQK	C2H2	4	23
PheWRKY17-1	group2c	WRKY type	WRKYGQK	C2H2	4	23
PheWRKY17-2	group2c	WRKY type	WRKYGQK	C2H2	4	23
PheWRKY17-3	/	WRKY type	/	/	/	/
PheWRKY19-1	group3	WRKY type	WRKYGQK	C2HC	7	23
PheWRKY19-2	group3	WRKY type	WRKYGQK	C2HC	7	23
PheWRKY19-3	group3	WRKY type	WRKYGQK	C2HC	7	23
PheWRKY21	group3	WRKY type	WRKYGQK	C2HC	6	23
PheWRKY22-1	group3	WRKY type	WRKYGQK	C2HC	7	24
PheWRKY22-2	group3	WRKY type	WRKYGQK	C2HC	7	24
PheWRKY24-1	group1	WRKY type	WRKYGQK/WRKYGQK	C2H2	4/4	22/23
PheWRKY24-2	group1	WRKY type	WRKYGQK/WRKYGQK	C2H2	4/4	22/23
PheWRKY25	/	WRKY type	/	/	/	/
PheWRKY26-1	group2c	WRKY type	WRKYGKK	C2H2	4	23
PheWRKY26-2	group2c	WRKY type	WRKYGKK	C2H2	4	23
PheWRKY28	group2a	WRKY type	WRKYGQK	C2H2	5	23
PheWRKY29-1	group2c	WRKY type	WRKYGQK	C2H2	4	23
PheWRKY29-2	group2c	WRKY type	WRKYGQK	C2H2	4	23
PheWRKY29-3	group2c	WRKY type	WRKYGQK	C2H2	4	23
PheWRKY29-4	group2c	WRKY type	WRKYGQK	C2H2	4	23
PheWRKY34-1	/	WRKY type	/	/	/	/
PheWRKY34-2	group2c	WRKY type	WRKYGQK	C2H2	4	23
PheWRKY35-1	group1	WRKY type	WRKYGQK/WRKYGQK	C2H2	4/4	22/23
PheWRKY35-2*	group1	WRKY type	WRKYGQK/WRKYGQK	C2H2	4	22
PheWRKY36	group2c	WRKY type	WRKYGQK	C2H2	4	23
PheWRKY39-1	group2e	WRKY type	WRKYGQK	C2H2	5	23
PheWRKY39-2	group2e	WRKY type	WRKYGQK	C2H2	5	23
PheWRKY39-3	group2e	WRKY type	WRKYGQK	C2H2	5	23
PheWRKY42	group2d	WRKY type	WRKYGQK	C2H2	5	23
PheWRKY43	group2b	WRKY type	WRKYGQK	C2H2	5	23
PheWRKY44	group3	WRKY type	WRKYGQK	C2HC	7	23
PheWRKY45-1	group3	WRKY type	WRKYGQK	C2HC	7	23

Continued
ID	WRKY group	Zinc-finger type	Conserved heptapeptide	Zinc-finger type	m	n
PheWRKY45-2-2	/	/	C2HC	7	23	
PheWRKY46-1	group3	WRKYGEK	C2HC	7	23	
PheWRKY46-2	group3	WRKYGEK	C2HC	7	24	
PheWRKY48-1	group3	WRKYGQK	C2HC	7	23	
PheWRKY48-2	group3	WRKYGQK	C2H2	5	23	
PheWRKY49	group2c	WRKYGQK	C2H2	4	23	
PheWRKY51-2	group2d	WRKYGQK	C2H2	5	23	
PheWRKY51-1	group2d	WRKYGQK	C2H2	5	23	
PheWRKY65-1	group3	WRKYGQK	C2HC	7	29	
PheWRKY65-2	group3	WRKYGQK	C2HC	7	30	
PheWRKY53-1	group1	WRKYGQK/WRKYGQK	C2H2	4	23/23	
PheWRKY53-2	group1	WRKYGQK/WRKYGQK	C2H2	4	23/23	
PheWRKY55	group3	WRKYGEK	C2HC	7	24	
PheWRKY62	group2a	WRKYGQK	C2H2	5	23	
PheWRKY66	group2e	WRKYGQK	C2H2	5	23	
PheWRKY67-1	group2c	WRKYGKK	C2H2	4	23	
PheWRKY67-2	group2c	WRKYGKK	C2H2	4	23	
PheWRKY68-1	group2d	WRKYGQK	C2H2	5	23	
PheWRKY68-2	/	WRKYGQK	/	/	/	
PheWRKY69-1	group3	WRKYGQK	C2HC	7	23	
PheWRKY69-2	group3	WRKYGQK	C2HC	7	23	
PheWRKY70-1	group1	WRKYGQK/WRKYGQK	C2H2	4	22/23	
PheWRKY70-2	group1	WRKYGQK/WRKYGQK	C2H2	4	22/23	
PheWRKY71-1	group2a	WRKYGQK	C2H2	5	23	
PheWRKY71-2	group2a	WRKYGQK	C2H2	5	23	
PheWRKY72-1	group2c	WRKYGQK	C2H2	4	23	
PheWRKY72-2	group2c	WRKYGQK	C2H2	4	23	
PheWRKY72-3	group2c	WRKYGQK	C2H2	4	23	
PheWRKY73-1	group2b	WRKYGQK	C2H2	5	23	
PheWRKY73-2	group2b	WRKYGQK	C2H2	5	23	
PheWRKY74-1	group3	WRKYGQK	C2HC	7	23	
PheWRKY74-2	group3	WRKYGQK	C2H2	7	23	
PheWRKY75	group3	WRKYGQK	C2HC	7	23	
PheWRKY76	group2a	WRKYGQK	C2H2	5	23	
PheWRKY77-1	group2c	WRKYGQK	C2H2	4	23	
PheWRKY77-2	group2c	WRKYGQK	C2H2	4	23	
PheWRKY78	group1	WRKYGQK/WRKYGQK	C2H2	4	22/23	
PheWRKY79-2	/	WRKYGQK	/	/	/	
PheWRKY79-1	/	WRKYGQK	/	/	/	
PheWRKY80-1	group1	CRKYGQA/WRKYGQK	C2H2	4	23/22	
PheWRKY80-2	group1	WRKYGQQ/WRKYGQK	C2H2	4	22/23	
PheWRKY80-3	group1	WRKYGQK/WRKYGQK	C2H2	4	22/23	
PheWRKY82	group1	WRKYGQK/WRKYGQK	C2H2	4	22/23	
PheWRKY83-1	group2d	WRKYGQK	C2H2	5	23	
PheWRKY83-2	/	WRKYGQK	/	/	/	
PheWRKY83-3	group2d	WRKYGQK	C2H2	5	23	
PheWRKY85-1*	group1	WRKYGQK/WRKYGQK	C2H2	4	22	
PheWRKY85-2	group1	WRKYGQK/WRKYGQK	C2H2	4	22/22	
PheWRKY88-1	group2e	WRKYGQK	C2H2	5	23	
PheWRKY88-2	/	/	C2H2	5	23	
PheWRKY89	group2d	WRKYGQK	C2H2	5	23	
PheWRKY93	group3	WRKYGQK	C2HC	7	23	
PheWRKY95	/	WRKYGQK	/	/	/	
PheWRKY96-1*	group1	WRKYGQK/WRKYGQK	C2H2	4	22	

Continued
Table 1. The WRKY genes in *P. edulis*. Note: * indicates the amino acid sequences in group 1 have only one integrity WRKY domain and the structure of second WRKY domain delete zinc-finger motif; ‘m’ and ‘n’ refer to the number of residues present in the consensus zinc finger motif C–Xm–C–Xn–HXH/C.

ID	WRKY group	Zinc-finger type	Conserved heptapeptide	Zinc-finger type	m	n
PheWRKY96-2	group1	WRKYGQK	C2H2	4	22	
PheWRKY96-3	group1	WRKYGQK	C2H2	4	22	
PheWRKY97-1	group2b	WRKYGQK	C2H2	5	23	
PheWRKY97-2	group2b	WRKYGQK	C2H2	5	23	
PheWRKY100	group3	WRKYGQK	C2HC	7	27	
PheWRKY109	group2b	WRKYGQK	C2H2	4	23	
PheWRKY111	group2e	WRKYGQK	C2H2	5	23	
PheWRKY114-1	group3	WRKYGQK	C2HC	7	24	
PheWRKY114-2	group3	WRKYGQK	C2HC	7	23	
PheWRKY116	group3	WRKYGQK	C2HC	7	24	
PheWRKY119	group2c	WRKYGQK	C2H2	4	23	
PheWRKY125	group1	WRKYGQK	C2HC	4/4	23/23	

proteins are categorized into three distinct groups based on both the number of WRKY domains and the features of their zinc-finger-like motifs. The WRKY TFs with two WRKY domains containing C2H2 zinc-finger motifs belong to group 1. Group 2 TFs have a single WRKY domain that includes a C2H2 zinc-finger motif and are further divided into five subgroups based on their phylogenetic relationships. Group 3 TFs contain a single WRKY domain with a C2HC zinc-finger motif.

Gao et al. (2013) identified a *P. edulis* WRKY family gene, PheWRKY67-2 (GenBank accession number: FP101056.1), involved in the defence of *P. edulis* against the pathogens *Ceratocystis fagacearum* and *Arthrinium phaeospermum*. However, to date, no studies have addressed the WRKY gene family and its function in the organ growth and development of *P. edulis*. Here, for the first time, we performed a detailed analysis of the subgroup classification, gene structure and conserved motif composition of 121 WRKY TFs in the *P. edulis* genome. We analysed the expression patterns of PheWRKYS from floral expression profiles and fast-growing shoot expression profiles to determine whether the expression patterns of PheWRKYS were related to fast-growing shoots and flower development in *P. edulis*. We further studied changes in expression of the PheWRKY genes in response to abiotic stress (drought or cold) in *P. edulis* seedlings. Furthermore, a drought stress and cold stress-inducible gene, PheWRKY72-2, was characterized in transgenic *Arabidopsis* to comprehensively understand its role in the response to abiotic stress. Our study provided a theoretical foundation and some experimental evidence for further functional verification of PheWRKYS.

Results
Identification of the WRKY family of TFs. We identified 121 WRKY members in the *P. edulis* genomic database (alternative splicing variants were not considered; Table 1), including five novel members that were not annotated in the *P. edulis* genomic database (Table S1). Because all the proteins and CDS sequences obtained from moso bamboo genome database were annotated by their putative orthologous sequences of *O. sativa*, we renamed each moso bamboo WRKY sequences based on the individual similarity with rice WRKY proteins by blast method, and the different proteins of moso bamboo which corresponded to the same sequences in rice were suffixed with ‘−1’, ‘−2’, ‘−3’, ‘−4’ depending on levels of sequences similarity (Table S2). The polypeptides encoded by the PheWRKY genes ranged from 159 to 1,168 amino acids in length, with predicted pI values ranging from 4.7 to 10.1 and molecular weights ranging from 19.77 to 131.06 kD (Table S3).

Structure and classification of PheWRKYS. According to the zinc-finger structure (Table 1), sequence alignment (Figure S1), conserved motif (Fig. 1 and Figure S2) and gene structure (Figure S3), the PheWRKYS can be classified into three main groups. Twenty PheWRKY proteins that contained two WRKY domains were assigned to group 1. Fifty of these contained two intact WRKY domains. However, the other five members of group 1 (PheWRKY35-2, 85-1, 96-1, 96-2 and 96-3) had only one complete WRKY domain in their N-terminals, and their C-terminal domains lacked a zinc-finger. PheWRKY125, which should have been placed in group 3 because of its C2HC type zinc-finger, was assigned to group 1 because it contained two WRKY domains. Except for PheWRKY125, the zinc-finger structures of the PheWRKY proteins in group 1 were of C2H2 type with a C-Xm–C–Xn–H–X1–H motif (Table 1). Sixty-three PheWRKY proteins had a single WRKY domain, but in 62 members, the motif was C-Xm–4–C–Xn–22–H–X1–H; one member had the motif C–Xm–4–C–Xn–22–H–X1–H (PheWRKY9-1). All 62 members were assigned to group 2 and were further classified into five subgroups based on their conserved motif, their gene structure, and phylogenetic analysis. The subgroups included the following: group 2a (5 members), group 2b (11 members), group 2c (28 members), group 2d (7 members), and group 2e (12 members). The zinc-finger structure of group 3 was C–X5–C–X28–C–X30–H–X2–C (Table 1). Eleven proteins contained only partial WRKY domains and did not fit in any group. Most group 2c members shared motif 2 with most group 1 protein sequences, which also primarily harboured motifs 7 and 16. Motif 13
appeared only in group 2a, whereas motifs 8, 9 and 10 were found exclusively in group 2b. Group 2d harboured motifs 5, 6 and 11 (Fig. 1b).

Structural analysis of the genes revealed that, consistent with previous report [30], gene family members within the same group shared similar gene structures in terms of their intron numbers and intron phases (Figure S3). The intron phases of most sequences in group 1 were 0 at the first two introns and 2 at the last two introns. Except for PheWRKY97-1, the intron phases of all other members from groups 2a and 2b were 0. For groups 2c, 2d, 2e and 3, most introns phases were 2. Group 2b had more introns (average: 4.375) than the other groups. In contrast, almost all members of groups 2a, 2c, 2d, and 2e had only two introns. Generally, the motif and gene structure
analysis revealed that members from different species assigned to the same group always shared similar motifs, intron numbers, and phases (Fig. 1b, Figure S3).

Although the WRKY motif was highly conserved, we found several sequence variations in P. edulis WRKY proteins, most of which belonged to groups 3 and 2c (Table S4). We identified WRKYGKK as the most common variant in six domains, whereas WRKYGEK was common to five domains. The other four variants—WRKYGQQ, WRKFGQK, and WRKYGFQK—were found in a single WRKY domain in PheWRKY7-3, PheWRKY80-1 (N-terminal), PheWRKY80-2 (N-terminal), and PheWRKY61 (C-terminal), respectively.

Figure 3. Rooted phylogenetic tree of the WRKY TF families. A. thaliana, O. sativa, B. distachyon, and P. patens. 'Group 1 N' and 'Group 1 C' indicate N-terminal or C-terminal WRKY domains, respectively, in group 1. P. edulis, A. thaliana, O. sativa, B. distachyon, and P. patens proteins are indicated by black, green, purple, red, and blue dots, respectively.

Figure 2. (a) Structure of the PheWRKY9-1 gene. The sequence obtained from the P. edulis CDS database is indicated on top, and the sequence obtained by sequencing verification is shown below the sequence. (b) Sequence alignment of the PheWRKY9-1 sequence obtained from the P. edulis CDS database and the sequence obtained by sequencing verification.
To confirm the specific zinc-finger structure of PheWRKY9-1 (C-X₅₋₇-C-X₈₋₁Ⅲ-H-X₁₋₃-H), we designed a pair of primers at the 5′-UTR and 3′-UTR of PheWRKY9-1. Different RNA samples isolated from different tissues, including one-year-old leaves, two-year-old leaves, flowers, one-year-old culms, shoots, seeds, roots, and seedlings under various abiotic stress, were used as clone templates. Although we did not obtain the CDS sequence

Figure 4. Expression profiles of the PheWRKY genes based on transcriptome data. The colour scale represents log₂-transformed reads per kilobase per million (RPKM) values. Green indicates low expression, and red indicates high expression. (a) Dynamic expression profiles of four floral stages. F1, F2, F3, and F4 represent four different flowering developmental stages: the floral bud formation, inflorescence growing, blooming and embryo formation stages, respectively. (b) Expression profiles of the fast-growing shoot and culm.
of PheWRKY9-1, which is annotated in the moso bamboo CDS database, from any of the tissues, we did identify a gene with a normal zinc-finger structure (C-X$_5$-C-X$_{23}$-H-X$_1$-H). Compared with the annotated PheWRKY9-1 sequence from the moso bamboo CDS database, this gene lacked two exons (Fig. 2a and b), as revealed by sequencing studies. In addition, whether the specific zinc-finger exists or is merely a mis-annotation could not be determined.

Figure 5. Expression profiles of WRKY genes under cold and drought stress. The expression results were obtained by qRT-PCR, and the relative expression levels of PheWRKY genes under various treatments compared to the controls were used for hierarchical cluster analysis with Cluster 3.0. qRT-PCR analysis was based on three biological replicates of each sample and three technical replicates of each biological replicate.
Phylogenetic relationships. To examine the phylogenetic relationship among WRKY proteins in *P. edulis*, *A. thaliana*, *O. sativa*, and *Brachypodium distachyon*, we performed phylogenetic analyses of the WRKY domain sequences from all four species based on a neighbour-joining method using Mega 6 software. Because the N-terminal and C-terminal domains form distinct clusters, we designated the two domains as 1 N and 1 C, respectively (Fig. 3). The phylogenetic tree indicated a divergence between monocotyledons and dicotyledons. *PheWRKY* clearly shared more sequence similarity with *OsWRKY* and *BdWRKY* than with *AtWRKY*. We then used the bidirectional best hit (BBH) method, which is restricted to a 1:1 ratio of orthologues, to arrange possible orthologues for *PheWRKY* from the three sequenced species mentioned above. Of the 121 sequences, we identified orthologues for 62 *PheWRKY* genes from at least one of the three plant species. The highest number of orthologues (52 members) was identified in *O. sativa*, whereas the lowest number (10 members) was detected in *A. thaliana* (Table S2).

These putative paralogous pairs accounted for 59.5%, 54.2%, 53.6% and 52.7% of the entire WRKY family in *P. edulis*, *O. sativa*, *B. distachyon* and *A. thaliana*, respectively. The median values of the divergence time for *P. edulis*, *O. sativa*, *B. distachyon* and *A. thaliana* were 13.9, 38.26, 42.84 and 23.25 mya, respectively. The divergence for most *PheWRKY* gene pairs (22 of 36) was approximately 6 to 15 mya, similar to the *P. edulis* whole-genome duplication event (7-12 mya) and much later than those of *O. sativa*, *B. distachyon* and *A. thaliana* (Table S5).

Expression patterns of *PheWRKY* genes in different seedling tissues. We detected the expression of 81 *PheWRKY* genes in different tissues of three-month-old seedlings by RT-PCR. These selected genes covered all subgroups and included both up-regulated genes and down-regulated genes in flower development and shoot...
Among them, PheWRKY11-2, 22-2, 45-1, 77-2, 83-1 and 83-3 showed high expression levels in roots; 3-2, 13-3 and 19-1 showed high expression levels in stems; and 26, 67-1 and 71-2 were highly expressed in leaves (Figure S4).

Expression analysis of the PheWRKY genes’ roles in flower development and shoot growth.

We divided the PheWRKY genes into two groups (Fig. 4b) based on their expression in shoot and one-year-old culm. The expression levels of genes from cluster 1 were more abundant in the culm than in the shoot. In contrast, the expression of cluster 2 was significantly elevated in the shoot growth stage than in the one-year-old culm (CK). The genes PheWRKY28, 29-3, and 62 were significantly up-regulated during the shoot growth stage, suggesting that they play roles in the rapid elongation of the bamboo shoot (Table S6).

The expression profiles from the floral digital gene expression (DGE) data were divided into three cluster groups. Cluster 1 had genes with high expressions at stage F4. Cluster 2 genes exhibited steady expression with little fluctuation from stage F1 to F4. The genes from cluster 3 were initially up-regulated, reached their peak expression at stage F2 or F3, and declined thereafter. Compared with CK (leaf), PheWRKY48-1 appeared to be preferentially expressed throughout the flowering process (Fig. 4a and Table S6). To validate the reliability of RNA-Seq and DGE data, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assays were randomly performed on four selected genes (Figure S5). As expected, in most cases, the expression trends of the selected genes corresponded to the presented data, indicating that the DGE and RNA-seq data were highly reliable (Figure S5).

A co-expression network was constructed to analyse the PheWRKY interactions in different biological processes. Of the top ten hub genes (degree ≥ 9) in the network, six genes, including PheWRKY19-2, 39-1, 39-2, 62, 65-1 and 114-1, were up-regulated in flower development (Figure S6).

Expression profiles of PheWRKY genes under abiotic stress conditions.

We detected the expression of 81 PheWRKY genes under drought and cold stress by qRT-PCR. Of these, 32 genes showed different degrees of up-regulation with at least one stress treatment, including 28 genes responding to cold treatment and 22 genes responding to drought treatment (Fig. 5). Interestingly, the most up-regulated genes in drought treatment (17 of the 22) were always up-regulated in response to cold treatment. The expression levels of PheWRKY4, 26-2, 48-2, 49, 62, 69–1, 72–3 and 96–1 increased gradually and peaked at 12 h in response to cold treatment, whereas those of PheWRKY11–2, 111, 34–2, 45–1, 114–1, 69–2, 70–2 and 76 rapidly accumulated at 1 h and then decreased to low levels. For drought treatment, PheWRKY45–1, 62, 69–1, 88–1, 96–1, 96–2 peaked at 1 h, and PheWRKY4, 5–1, 26–2, 15–2, 19–2, 44, 49, 55, 65–1, 71–2, 72–3 peaked at 24 h. The expression profiles of PheWRKY1, 36, 69–2 and 74–2 under drought treatment displayed parabolic trends and peaked at 12 h (Fig. 5 and Table S6).
Our expression analysis revealed that 54 genes were significantly induced by at least one abiotic stress (cold stress or drought stress) or physiological process (flower development or shoot growth). Of these WRKY genes, 7, 4, 17 and 3 were regulated by only cold stress, drought stress, flower development, and shoot growth, respectively (Figure S7).

Overexpression of PheWRKY72–2 in Arabidopsis. Subcellular location analysis indicated that green fluorescent protein (GFP)-tagged PheWRKY72–2 was located in the nucleus, in accordance with its function as a TF (Fig. 6).

To further investigate the potential role of PheWRKY72–2, which was up-regulated under both drought and cold stress, PheWRKY72–2 was transformed into Arabidopsis (wild type [WT]). Following qRT-PCR analysis of PheWRKY72–2 in WT and transgenic lines confirmed that PheWRKY72–2 performed high expression level in transgenic lines but no expression could be detected in WT (Fig. 7). Under cold stress treatment, no significant differences could be found between the WT and transgenic plants (data not shown). For simulated drought stress, transgenic Arabidopsis seeds were surface sterilized and germinated on Murashige and Skoog (MS) agar medium containing 10% and 20% polyethylene glycol (PEG) (Fig. 7b and e). The overexpression of PheWRKY72–2 (T3 generation) resulted in significantly longer roots than those of WT plants on medium supplemented with 10% PEG (Fig. 7b and c). We investigated the root hairs further but found no visible difference between those of the WT and transgenic lines (Fig. 7d). However, when the PEG concentration reached 20%, the WT line began to exhibit etiolation symptoms, unlike the transgenic lines (Fig. 7e).

We then compared the stomatal apertures under drought treatment because water loss mainly depends on stomatal regulation. To this end, we measured the stomatal apertures of WT and transgenic plants under control and drought treatments (3 h). The length and width of the stomata were measured, and the length/width ratio was used to reflect the degree of stomatal closure. Under normal growth conditions, no significant differences were detected (Fig. 8b). Under drought stress, the PheWRKY72–2ox lines showed a higher length/width ratio of stomata than the WT plants (Fig. 8a and b). These results suggest that stomatal closure in PheWRKY72–2ox plants is more sensitive to drought stress than that in WT plants. Under the drought treatment, OE-PheWRKY72–2 suppressed the expression of AtABI2, AtABI5 and AtABA2 and significantly increased the expression of AtABI4, AtAREB and AtLEA (Fig. 8c).

Discussion

Characterization of the P. edulis WRKY gene family. To facilitate the analysis of P. edulis WRKY gene evolution in group 1, we further classified P. edulis group 1 WRKY genes into two subgroups based on their zinc-finger motifs32. Except for PheWRKY61, whose zinc-finger motif of C3HC-C3HC was assigned to group 1b, all the other members of group 1 could be allocated to group 1a. PheWRKY61 probably evolved through an intra-molecular duplication event of a group 3 WRKY domain that had already evolved to have the C2HC type zinc-finger. PheWRKY35, 85–1, 96–1, 96–2 and 96–3 all contained two WRKY domains but lacked a complete C2HC-C2HC type zinc-finger. Despite this, 11 of the 13 OsWRKY domains with significantly higher expression in response to at least one abiotic stress using real-time PCR, indicating that, in P. edulis, the PheWRKY genes function in the abiotic stress response. The overexpression of PheWRKY72–2 enhanced plant tolerance to drought stress in Arabidopsis. AtWRKY75 and AtWRKY70 enhance plant tolerance to osmotic stress by regulating the size of the stomatal aperture37. Various environmental stresses result in the rapid accumulation of ABA, leading to stomatal closure, which reduces water loss by transpiration38. Recent reports showed that AtWRKY46 participated in the feedforward inhibition of lateral root inhibition via regulation of ABA signaling and auxin homeostasis under osmotic/salt stress treatment39, 40. Besides, WRKY46 is regulated by light and modulates starch metabolism and ROS levels to inhibit stomatal closing under osmotic stress treatment by another independent way. Unlike the overexpression line of AtWRKY46 whose stomatal closing is impaired under osmotic stress, PheWRKY72–2ox lines showed better tolerance to osmotic stress (Fig. 7b and e). The overexpression of PheWRKY72–2 (T3 generation) resulted in significantly longer roots than those of WT plants on medium supplemented with 10% PEG (Fig. 7b and c). We investigated the root hairs further but found no visible difference between those of the WT and transgenic lines (Fig. 7d). However, when the PEG concentration reached 20%, the WT line began to exhibit etiolation symptoms, unlike the transgenic lines (Fig. 7e).
stress treatment40, the transgenic lines of \textit{PheWRKY72-2} showed enhanced stomatal closure under drought stress by comparing with the WT line. ABA controls stomatal movement via a dual mechanism. Regulation can occur via the biochemical effects of ABA on guard cells38. Salt stress is often accompanied by drought stress, and both cause water deprivation through ABA-dependent and ABA-independent pathways41. Our results showed that \textit{OE-PheWRKY72-2} significantly promoted the expression of \textit{AtLEA}, \textit{AtAREB} and \textit{AtABI4} and repressed the expression of \textit{AtABI2}, \textit{AtABI5} and \textit{AtABA2}. Plants with up-regulated \textit{ABI1/2} expression exhibited decreased stress tolerance, whereas plants with down-regulated \textit{ABI1/2} expression exhibited increased stress tolerance42. Reactive oxygen species (ROS), such as superoxide, hydrogen peroxide and hydroxyl radicals, play a dual role in plants: They act as necessary signalling molecules but can cause damage to plant cells when overproduced under stress conditions43. The constitutive expression of \textit{AtAREB1} in \textit{Arabidopsis} modulates ROS accumulation and endogenous ABA levels to improve drought tolerance44. In plants, the presence of late embryogenesis abundant (LEA) proteins has been associated with cellular tolerance to dehydration, which may be induced by freezing, saline conditions, or drying45. Thus, up-regulating \textit{AtLEA} might improve stress tolerance in transgenic plants.

Compared with their expression in nonflowering moso bamboo leaves (CK), the significant up-regulation of \textit{PheWRKY19-1}, 19-2, 35-2, 48-1 and 65-1 during flower development indicated their potential roles in morphogenesis and organ development. \textit{WRKY} TFs associated with senescence46-47 and stress responses48 were significantly up-regulated in the panicles of \textit{P. edulis}. Under normal circumstances, \textit{P. edulis} rarely flowers, and the plants often flower concurrently and die collectively after flowering. However, collective death after flowering in a large area is usually associated with external environmental changes, such as climatic variation or the over-exploitation of bamboo1. The overexpression of \textit{AtWRKY75} or \textit{OsWRKY72} causes early flowering in \textit{Arabidopsis}22, and the overexpression of \textit{GsWRKY20} accelerates plant flowering by regulating flowering-related genes (i.e., flowering locus T [FT] and \textit{CONSTANS [CO]} and floral meristem identity genes (i.e., activator protein 1 [AP1], \textit{SEPALLATA 3 [SEP3] and AGAMOUS [AG]}49). The involvement of \textit{WRKY} factors in floral induction may be induced by signalling hormones, such as salicylic acid50, jasmonic acid45, 46 or gibberellic acid10. We found that \textit{PheWRKY 28}, 29-3, 49, 62, 80-3 and 111 have significant expression levels in growing shoots but not in culms. \textit{OsWRKY78} has positive effects on stem elongation and cell length, as determined by transgenic studies51. The up-regulation of several \textit{WRKY} genes in shoot growth and development indicate that many \textit{WRKY} genes function in the rapid growth and elongation of \textit{P. edulis} shoots. In summary, \textit{PheWRKY} genes play varied roles in different biological processes in \textit{P. edulis}.

The functional conservative and divergence of orthologous genes.

We further analysed the correlations of orthologous pairs under various processes. In \textit{Arabidopsis}, the expression pattern of \textit{AtWRKY53} was identified as a leaf senescence signal44. Constitutively overexpressing \textit{AtWRKY53} under the control of the CaMV35S promoter accelerated the senescence symptoms, whereas \textit{WRKY53} RNAi and knock-out lines exhibited delayed development and senescence41. The orthologues, \textit{PheWRKY15-1} (4E-039) and \textit{PheWRKY74-1} (2E-31), were always found in high abundance in leaves collected from flowering plants (flowering implies senescence and death in \textit{P. edulis}) compared to their abundance in leaves collected from other growth stages (Figure S8), indicating that there are conserved roles between \textit{WRKY} homologues in leaf senescence. Moreover, we compared the expression trends of \textit{PheWRKY} genes with those of their possible orthologues from \textit{A. thaliana}, \textit{O. sativa}44, and \textit{B. distachyon}46 under cold and drought stress. Although the sample times and experimental conditions were different, our data revealed that some \textit{P. edulis} homologues in other model plants showed an entirely opposite expression trend. \textit{PheWRKY85-1} shares 87% sequence similarity with \textit{OsWRKY85}; however, \textit{OsWRKY85} is up-regulated under drought stress, whereas \textit{PheWRKY85-1} is down-regulated. The function of these segregated duplicated genes (\textit{PheWRKY85-1} and \textit{OsWRKY85}) may have been altered during evolution44.

Conclusions

In this study, a total of 121 \textit{WRKY} genes were identified in \textit{P. edulis}. The expression profiles derived from DGE, RNA-seq and qRT-PCR analyses indicated that \textit{PheWRKY} involved in various abiotic stress. The overexpression of \textit{PheWRKY72-2} in \textit{Arabidopsis} increased drought tolerance by functioning as a positive regulator of stomatal closure. Better understanding this gene family and its potential involvement in growth, development and stress responses will facilitate further research on the evolutionary history and biological functions of the \textit{PheWRKY} gene family.

Materials and Methods

Plant materials, growth conditions, and treatments.

Samples of \textit{P. edulis} culms were harvested in Huoshan County (116° 10’; 31° 12’), Anhui province from spring to autumn of 2014. Flowering plant samples from different developmental stages of the flowering process (F1-floral bud formation, F2-inflorescence development, F3-anthesis, and F4-embryo formation) were collected in Guilin (110° 17’; 25° 048’), Guangxi Zhuang Autonomous Region, from April to August in 2014. Plants were sampled from sites suitable for bamboo growth for 1 week and then transferred into four seed pots containing approximately 0.5 kg of vermiculite. The seedlings were grown in an artificial climate chamber with long-day conditions (16-hrs light, 8-hrs dark) at 26°C in the light and 18°C in the dark. Drought stress was created by irrigating the plants with media containing 18% (v/v) PEG. Cold stress was created by placing plants in a 4°C lighted growth chamber; the other conditions were the same as described above. The leaves from three seedlings were harvested at 0, 0.5, 1, 3, 6, 12 and 24 hrs after abiotic stress treatment, rapidly frozen in liquid nitrogen and stored at –80°C prior to use.
RNA isolation, reverse transcription and gene expression analysis. Total RNA was extracted using Trizol (Invitrogen, USA). First-strand cDNA synthesis was conducted with approximately 1 μg of RNA using the reverse transcriptase AMV (Promega, Madison, Wisconsin, USA). qRT-PCR was performed using the fluorescent intercalating dye Light Cycler 480 SYBR Green I Master Mix (Roche, Mannheim, Germany) on a Light Cycler 480 (Roche, Rotkreuz, Switzerland). Primers were designed using Primer 3 software and Oligo dT7 (Table S7). According to the manufacturer's instructions, the 20-μL reaction mixture contained 0.4 μL (10 nM) of each primer, 1.5 μL (30 ng) of cDNA and 10 μL of SYBR Green I Master Mix. TIP41 (tonoplastic intrinsic protein 41)² and β-tubulin were selected as internal controls. All reactions—technical and biological—were performed in triplicate. The ΔCT and ΔΔCT values were calculated by the formulae ΔCT = CT target − CT reference and ΔΔCT = ΔCT treated sample − ΔCT untreated sample, respectively.

Gene sequence verification. A full-length fragment of PheWRKY9-1 was cloned from P. edulis cDNA by RT-PCR using the following primer pair: 5'-ATGGAGCCGCTATCGGCGGT-3' and 5'-TTAGATCGATCTGCGAGGTGCGGTC-3'.

Database searches. The annotated WRKY genes of A. thaliana, O. sativa, and B. distachyon were obtained from The Arabidopsis Information Resource (TAIR; http://www.arabidopsis.org/), the rice genome annotation project (http://rice.plantbiology.msu.edu/index.html), and the B. distachyon WRKY database (http://www.igece.org/WRKY/BrachyWRKY/BrachyWRKYIndex.html). All annotated WRKY genes of P. edulis were downloaded from the National Center for Gene Research (http://202.127.18.221/bamboo/down.php). To avoid missing potential members of the WRKY family, we created a local blast database using the CDS sequence that we obtained from the National Center for Gene Research (http://www.genoscope. ensam.inra.fr/platform/BrachyWRKY/BrachyWRKYIndex.html). All annotated WRKY genes of P. edulis were downloaded and used as queries in blastn searches against the CDS database, and sequences were selected as candidate genes if their E-value was ≤ −10. The Pfam (http://pfam.sanger.ac.uk/search) and Smart (http://smart.embl-heidelberg.de/) databases were used to confirm each predicted WRKY sequence. The pl and molecular weight were estimated using the Compute pi/Mw tool from ExPA SY (http://web.expasy.org/compute_pi).

Multiple sequence alignment and phylogenetic tree construction. Multiple alignments of the amino acid sequences were performed using the ClustalX 2.1 program with default settings. A phylogenetic tree based on sequence alignment was generated using MEGA 6.0 (http://www.megasoftware.net/) by the neighbour-joining method. In addition, the BBH method was used to arrange possible orthologues and paralogues.

Gene structure and conserved motif analysis. The gene structure based on full-length CDS alignments with relevant genomic sequences was investigated using the online service of the Gene Structure Display Server. MEME was used to identify motifs in the PheWRKY sequences.

Estimation of the duplication time in paralogous pairs. The Ks and Ka values of the paralogous genes were computed by the DNASP program. The synonymous substitution rate (Ks) was considered as a proxy for time to estimate the dates of the segmental duplication events. The formula T = Ks/2λ was used to calculate the approximate date of the duplication event and the λ in formula represented for clock-like rates of synonymous substitution. The estimated clock-like rate for P. edulis, O. sativa and B. distachyon were 6.5 × 10⁻⁸ substitutions/synonymous site/year and that for A. thaliana was 1.5 × 10⁻⁸ substitutions/synonymous site/year.

DGE data, transcriptome data analysis, and co-expression network generation. The DGE data of four different developmental stages of flowering (floral bud formation, inflorescence growing, blooming and embryo formation) and the transcriptomic data of fast-growing shoots at two developmental stages (shoots mixed by six unearthed heights [10, 50, 100, 300, 600, and 900 cm] and mature culm) were sequenced in our previous study. The expression levels of PheWRKY genes at different growth stages were hierarchically clustered based on Euclidean distance with complete linkage found in Cluster 3.0. A gene was considered up-regulated if it had a false discovery rate (FDR) ≤ 0.05 and |log₂ fold change| ≥ 2.

The microarray data and RNA-seq data were used for coexpression analysis via the WGCNA package. The co-expression correlation was then calculated using Pearson's correlation with R² ≥ 0.95. The network picture was created using Cytoscape.

Overexpression of PheWRKY72-2. The complete open reading frame (ORF) of the PheWRKY72-2 (FP101056.1) gene cloned by Chen in our previous work was inserted into the pGEM-T Easy plasmid vector using the following primers: forward, 5'-TGCTCTAGAATGGGAGGCGCTATCGGCGGT-3'; reverse, 5'-CCGGAATTTCTACGGGACCGGCCAGAC-3'. TIANGEN DNA Polymerase (TIANGEN biological company, China) was used to amplify the PheWRKY72-2 gene. The PCR parameters were 94°C for 5 min, followed by 28 cycles of 94°C for 30 s, 62°C for 1 min and 72°C for 1 min. The PCR products was digested with BamH I and Xba I and then cloned into pGEM-T Easy (Promega, USA) after gel extraction. The coding region of the PheWRKY72-2 cDNA was cloned into the pCAMBIA 2300 vector under the control of the CaMV 35S promoter.
and CAMV terminator. The constructed plasmid was named pCAMBIA2300-PheWRKY72-2 and confirmed by the chain-termination method on an ABI 3100 automated sequencer (USA).

The construct vector was introduced into WT Arabidopsis plants (Columbia-0) by Agrobacterium-mediated transformation. Transgenic plants were selected on kanamycin and the first generation of transgenic plants was examined in terms of their phenotypes. At least 10 independent transgenic plants exhibiting severe phenotypes were selected, subjected to phenotypic characterization and screened for the transgene. Transgenic Arabidopsis seeds (T3 generation) and WT seeds were cultured with 10% and 20% PEG solution on MS agar medium. One-week-old seedlings were used to observe the phenotype. Three-week-old transgenic plants and WT which growth in normal growth condition were treated with PEG solution for 3 h and further used for RT-PCR experiment and stomatal closure observation.

Subcellular localization. The subcellular localization of PheWRKY72-2 was performed by transfecting GFP-tagged PheWRKY72-2 into Arabidopsis sheath protoplasts. The full-length cDNA of PheWRKY72-2 was fused in frame with the GFP cDNA and ligated between the CaMV 35 S promoter and the nopaline synthase terminator. The fluorescence signals in transfected protoplasts were examined by a confocal laser scanning microscope (Leica Microsystems).

Availability of supporting data. All sequencing data were deposited in the Short Read Archive at NCBI under accession number SRR961047, SRR1187864 and SRR1185317.

References
1. Gao, J. et al. Characterization of the floral transcriptome of P. edulis (Phyllostachys edulis) at different flowering developmental stages by RNA-seq and digital gene expression analysis. PLoS ONE 9, e89180 (2013).
2. Peng, X. H. et al. Genome-wide characterization of the biggest grass, bamboo, based on 10, 608 putative full length cDNA sequences. BMC Plant Biol. 10, 116 (2010).
3. Peng, Z. H. et al. Transcriptome sequencing and analysis of the fast growing shoots of P. edulis (Phyllostachys edulis). PLoS ONE 8, 87944 (2013).
4. Peng, Z. H. et al. The draft genome of the fast-growing non-timber forest species P. edulis (Phyllostachys heterocylca). Nat. Genet. 45, 456–461 (2013).
5. Ulker, B. & Somssich, I. E. WRKY transcription factors: from DNA binding towards biological function. Curr. Opin. Plant. Biol. 7, 491–498 (2004).
6. Ishiguro, S. & Nakamura, K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Mol. Gen. Genet. 244, 563–571 (1994).
7. Rushton, P. J., Macdonald, H., Huttly, A. K., Lazarus, C. M. & Hooley, R. Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of alpha-Amy2 genes. Plant Mol. Biol. 29, 691–702 (1995).
8. Rushton, P. J., Somssich, I. E., Ringer, P. & Shen, Q. J. WRKY transcription factors. Trends Plant Sci. 15, 247–258 (2010).
9. Liu, J. J. & Ekramoddoullah, A. K. M. Identification and characterization of the WRKY transcription factor family in Pinus monticola. Genome 52, 77–88 (2009).
10. Zhang, Y. J. & Wang, L. J. The WRKY transcription factor super family: its origin in eukaryotes and expansion in plants. BMC Evol. Biol. 5, 1 (2005).
11. Jiang, Y. Z. et al. Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. J. Exp. Bot. 65, 6629–6644 (2014).
12. Pandey, S. P., Roccaro, M., Schön, M., Logemann, E. & Somssich, I. E. Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J. 64, 912–923 (2010).
13. Alexandrova, K. S. & Conger, B. V. Isolation of two somatic embryogenesis-related genes from orchardgrass (Dactylis glomerata). Plant Sci. 162, 301–307 (2002).
14. Chen, C. H. & Chen, Z. X. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen induced Arabidopsis transcription factor. Plant Physiol. 129, 706–712 (2006).
15. Maren, P., Silke, S., Stefan, B. & Ulrike, Z. Senescence Networking: WRKY18 is an Upstream Regulator, a Downstream Target Gene, and a Protein Interaction Partner of WRKY53. J. Plant Growth Regul. 33, 106–118 (2014).
16. Hinderhofer, K. & Zentgraf, U. Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta 213, 469–473 (2001).
17. Sun, C. et al. A novel WRKY transcription factor, SUSI2A2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15, 2076–2092 (2003).
18. Johnson, C. S., Kolesvski, B. & Smyth, D. R. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14, 1539–1575 (2002).
19. Deslandes, L. et al. Resistance to Ralstonia solanacearum in P. edulis is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. PNAS 99, 2404–2409 (2002).
20. Della, A. et al. A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovora subsp atroseptica and Phytophthora infestans and is coregulated with class 1 endochitinase expression. Mol. Plant Microbe. Interact. 13, 1092–1101 (2002).
21. Chen, W. et al. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14, 559–574 (2002).
22. Higashi, K. et al. Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana. Mol. Gen. Genet. 279, 303–312 (2008).
23. Eulgem, T. & Somssich, I. E. Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant. Biol. 10, 366–371 (2007).
24. Ciolkowski, L., Wanke, D., Birkenbihl, R. P. & Somssich, I. E. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol. Biol. 68, 81–92 (2008).
25. Dong, J. X., Chen, C. H. & Chen, Z. X. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol. Biol. 51, 21–37 (2003).
26. Zhou, Q. Y. et al. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol. J. 6, 486–503 (2008).
27. Eulgem, T., Rushton, P. J., Robatzek, S. & Somssich, I. E. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5, 199–206 (2000).

SCIeNTIfIC RepoRts | 7: 6675 | DOI:10.1038/s41598-017-06701-2
28. Cui, X. W. et al. Overexpression of a P. edulis (Phyllostachys edulis) transcription factor gene PheWRKY1 enhances disease resistance in transgenic Arabidopsis thaliana. *Botany* 91, 486–494 (2013).

29. Rice WRKY Working Group. Nomenclature report on rice WRKY’s – Conflict regarding gene names and its solution. *Rice. 5*, 3 (2012).

30. Xie, Z. et al. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. *Plant Physiol* 137, 176–189 (2005).

31. Chen, F., Mackey, A. J., Vermunt, J. K. & Roos, I. D. Assessing performance of orthology detection strategies applied to eukaryotic genomes. *PloS ONE 2*, e383 (2007).

32. Xie, Z. et al. Interactions of two abscisic acid-induced WRKY genes in repressing gibberellin signaling in aleurone cells. *Plant J.* 6, 231–242 (2006).

33. Rosberg, M. et al. Comparative sequence analysis reveals extensive microcolinearity in the lateral suppressor regions of the tomato, *Arabidopsis*, and *Capsella* genomes. *Plant Cell 17*, 979–988 (2001).

34. Ramamoorthy, R. et al. A comprehensive transcriptional profiling of the WRKY gene family in *O. sativa* under various abiotic and phytohormone treatments. *Plant Cell Physiol.* 49, 865–879 (2008).

35. Ling, J. et al. Genome-wide analysis of WRKY gene family in *Cucumis sativus*. *BMC Genomics* 12, 471 (2011).

36. Guo, C. L. et al. Evolution and expression analysis of the grape (*Vitis vinifera L.*) WRKY gene family. *J. EXP. BOT.* 65, 1513–1528 (2014).

37. Zhu, J. K. Salt and drought stress signal transduction in plants. *Annu. Rev. Plant Biol.* 53, 247–273 (2002).

38. Krásensky, I. & Jonák, C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. *J. Exp. Bot.* 63, 1593–1608 (2012).

39. Ding, Z. J. et al. Transcription factor WRKY46 modulates the development of *Arabidopsis* lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis. *Plant J.* 84, 56–69 (2015).

40. Ding, Z. J. et al. Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in *Arabidopsis*. *Plant J.* 79, 13–27 (2014).

41. Ramon, M., Rolland, F., Thevelein, J. M., Van, D. P. & Leyman, B. ABI4 mediates the effects of exogenous trehalose on *Arabidopsis* growth and starch breakdown. *Plant, Mol. Biol.* 63, 195–206 (2007).

42. Seo, Y. J. et al. Overexpression of the ethylene-responsive factor gene BrERF4 from *Brassica rapa* increases tolerance to salt and drought in *Arabidopsis* plants. *Mol. Cells* 30, 271–277 (2010).

43. Li, X. Y. et al. Overexpression of *Arachis hypogaea* AREB1 gene enhances drought tolerance by modulating ROS scavenging and maintaining endogenous ABA content. *Int. J. Mol. Sci.* 14, 12827–12842 (2013).

44. Michaela, H. & Dirk, K. H. LEA (Late Embryogenesis Abundant) proteins and their encoding genes in *Arabidopsis thaliana*. *BMC genomics* 9, 118 (2008).

45. Miao, Y., Laun, T., Zimmermann, P. & Zentgraf, U. Targets of the WRKY53 transcription factor and its role during leaf senescence in *Arabidopsis*. *Plant Mol. Biol.* 53, 853–867 (2004).

46. Wen, F. et al. Genome-Wide Evolutionary characterization and expression analyses of WRKY Family genes in *Brachypodium distachyon*. *DNA Research* 13, 1–13 (2014).

47. Robatzek, S. & Somssich, I. E. A new member of the *Arabidopsis* WRKY transcription factor family, *AtWRKY6*, is associated with both senescence and defence related processes. *Plant J.* 28, 123–133 (2001).

48. Luo, X. et al. Ectopic expression of a WRKY homolog from *Glycine soja* alters flowering time in *Arabidopsis*. *PloS ONE* 8, e73295 (2013).

49. Yu, S., Li, G. C., Zhang, L. & Yu, D. Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of *Arabidopsis*. *J. Biosci* 35, 459–471 (2010).

50. Yang, P. Z., Chenm, C. H., Wang, Z. P., Fan, B. F. & Chen, Z. X. A pathogen- and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter. *Plant J.* 18, 141–149 (1999).

51. Zhang, C. Q. et al. The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in *O. sativa*. *Planta* 234, 541–554 (2011).

52. Fan, C. J., Ma, J. M., Guo, Q. R., Li, X. T. & Wang, H. Selection of reference genes for quantitative real-time PCR in bamboo (*Phyllostachys edulis*). *PloS ONE* 8, e56573 (2013).

53. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. *Bioinformatics* 23, 2947–2948 (2007).

54. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. *Mol. Biol. Evol.* 30, 2725–2729 (2007).

55. Guo, A. Y., Zhu, Q. H., Chen, X. & Luo, J. C. GSDS: a gene structure display server. *PLoS ONE 7*, 7639 (2006).

56. Bailey, T. L., Williams, N., Miseh, C. & Li, W. W. MEME: discovering and analyzing DNA and protein sequence motifs. *Nucleic Acids Res.* 34, W369–373 (2006).

57. Cao, J., Huang, J. L., Yang, Y. P. & Hu, X. Y. Analyses of the oligopeptide transporter gene family in poplar and grape. *BMC Genomics* 12, 463 (2011).

58. Zhang, Y. J., Ma, P. F. & Li, D. Z. High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (*Poaceae: Bambusoideae*). *PloS ONE 6*, e20596 (2011).

59. Chen, Y. W. The physiological response and research of *Phelwky2* from *P. edulis* under phosphorus stress. *Dissertation, Chinese academy of forestry sciences* (2012).

Acknowledgements

This project was supported by the National Keypoint Research and Invention Program in 13th Five-Year [grant No. 2016YFD060090102] and Fundamental Research Funds of ICBR [grant No.162015009].

Author Contributions

L.L. performed the bioinformatic analyses, stress experiments, real-time PCR and drafted the manuscript. SHM helped in stress experiments and sample collection. Y.Z. contributed to RNA extraction and RT-PCR, ZCC assisted in gene cloning and plasmid construction. Y.M. and C.L.H. contributed to revisions of the manuscript. X.P.L. and J.G. designed the experiments and conceived the project, provided overall supervision of the study and revising the manuscript. All authors read and approved the final manuscript.

Additional Information

Supplementary information accompanies this paper at doi:10.1038/s41598-017-06701-2

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
