Review on: TiO$_2$ Thin Film as a Metal Oxide Gas Sensor

Jamal Malallah Rzaij a,*, Amina Mohsen Abass b

a Department of Physics, College of Science, University of Anbar, Ramadi, Iraq
b Department of Chemistry, College of Science, Al-Nahrain University, Al-Jadera, Baghdad, Iraq

Abstract:
Titanium dioxide is an important metal oxide semiconductor (MOSs) used in many electronic applications, the most famous of which are gas sensor applications. This review discusses the techniques used for preparing the TiO$_2$ thin films and the effect of the crystalline phases in which this compound forms, on the gas sensing properties. There are three phases to crystallize titanium dioxides, brookite, anatase, and rutile phase. Amongst these varied phases of crystal, the greatest steady main phase is rutile. The phase of anatase and brookite are usually more stable than the rutile phase as the surface energy of them is less than that of the rutile. Therefore, the applications of sensing by anatase TiO$_2$ and rutile TiO$_2$ were fully studied. TiO$_2$ characterizations were established on surface reactions using oxidizing or reducing gases, which, therefore, influences the conductivity of the film. Titanium dioxide gas sensors have healthier steadiness and sensitivity at high temperature compared with that of the other metal oxides. Surveys on titanium dioxide thin film applied in gas sensor devices used in a varied range of applications such as sensor devices, dye-sensitized solar cells, and catalysis. The gas sensor is a function of the crystal structure, particle size, morphology, and the method of synthesis. In this work, characteristic of the titanium dioxide films investigated using various techniques, as reported by many researchers. The aim of this study was to review previous studies through which the best properties can obtained to manufacture TiO$_2$ gas sensor thin films with high sensitivity.

DOI: 10.33945/SAMI/JCR.2020.2.4

Keywords: TiO$_2$, Metal oxide; Semiconductor; Thin films; Gas sensor

Graphical Abstract:

Biography:

Jamal Malallah Rzaij was born in Iraq, in 1972. He completed her BSc degree from University of Anbar in physics. He received his Master's in solid-state physics at the same university and PhD in solid-state physics/Nanostructures at the Tikrit university. He has published more than 15 papers. He is working lecturer as an Assistant Professor at University of Anbar, Iraq. His area of research interest is, Nanostructures, thin films and gas sensors.

*Corresponding author: Jamal M. Rzaij. Email: Jam72al@gmail.com
Amina Mohsen Abass was born in Iraq (Baghdad), in 1978. She completed her BSc degree from University of Baghdad in Chemistry. She is at the end of her Master’s Degree from University of Baghdad in Analytical Chemistry. She has published more than 18 papers. She is working lecturer as an Assistant Professor in Al-Nahrain University, College of Science, Baghdad. Here area of research interest is, Ion selective electrode, sensors and electrochemistry.

1. Introduction

It is very important to study the physical and chemical properties of the compounds involved in the formation of gas sensors to reach the best results in detecting multiple types of gases [1-4]. These sensors usually designed in the form of an electronic or electrical device that senses a sign and converts it to the alternative system [5-11]. Chemical gas sensors classify the gases by measuring the breakdown voltage, (the electric field at which the gas is ionized), which is definite gases [12-15]. The device gives a specific amount of current that can determine the gas concentration. These types of gas sensors are necessary with attention to the users that it is working below atmospheric conditions, ease of their use, flexibility connected to their production, and low cost [16-20].

The types of gas sensors that are widely used can be classified into; metal oxide gas sensors, acoustic wave gas sensors, capacitance gas sensors, optical gas sensors, and calorimetric gas sensors. Under the weather conditions and the widespread use of machines that emit the harmful gases in addition to gases emitted by factories and vehicle exhausts, the detection of these gases became necessary. Researchers were have paid attention to sensors that are flexible in production, low cost, simplicity of using, and a good detectable for many types of gases and their concentrations [21-23].

The present study was focused on metal oxide gas sensors (chemiresistors) such as CuO, NiO, ZnO, and TiO$_2$. Metal oxides were well-known as the probable sensitive resources [24, 25]. They were come to be to the marketplace by Taguchi [26] who originated the grate company of SMOXs sensors. The attainments of these devices are presented in Table 1.

Entry	Techniques	Properties	Ref.
1	Fee and implementation	Better fee– implementation ratio they are cheap(the range of value is a little euros for sensor)	[26]
2	Accessibility	Accessible (a direct connection through the resistance of sensor and the concentration of the aim gas)	[26]
3	Sensitivity	Exact sensitive (in general being capable to determine downward to a little percent ppb, or also a little ppm).	[26]
4	Stability	More stability (by way of described lifetime encompassing into decades).	[26]
5	Combination	Ease to combine in groups for extra aspiring analytical responsibilities.	[26]
6	Operating temperature	Sensibly a little power depletion when deposited in micro-machined thin films by using a varied temperature type (recognized by optimizing the better working).	[26]

There are two kinds of metal oxide including, transition -metal oxides (Fe$_2$O$_3$, NiO, and Cr$_2$O$_3$), and non-transition metal oxides, which contain metal oxides as pre-transition (Al$_2$O$_3$), and metal oxides as post-transition (ZnO, SnO$_2$). Metal oxides as pre-transition (MgO) are probable to be extremely inactive, for the reason that they have a great energy band gap, also, from the difficult to form the electrons and holes [24].

They are rarely nominated as gas sensor substances due to their complications in measurements of electrical conductivity. Transition metal oxides have different behavior due to the small difference in the energy between a cation (dn) configuration and the configuration of d$^{n+1}$ or d$^{n-1}$. They can variation formulae in some unlike types of oxides. Therefore, they are extra sensitive than metal oxides as pre-
transition to environment. On the other hand, instability of structure and non-optimality of extra factors imperative for limit of conductometric gas sensors and application. Just transition-metal oxides with d^{10} and d^0 electronic arrangements discover their actual gas sensor application. The d^0 arrangement is institute in dual transition-metal oxides [27].

2. Gas detection

The gas detection of SMOXs gas sensors based on the principle at 150 °C - 400 °C, is adsorbed the oxygen on the surface of the metal oxides by trapping electrons which are the greater number of charge carriers, then the sensor’s resistance will be increase (for n-type materials), or else reducing it (for p-type materials) [24]. The change in the sensor resistance is usually caused by the interaction between gas in the atmosphere and oxygen on the semiconductor surface, therefore the resistance changing will appear as a signal (sensor signs) [28]. The magnitude of this signal correlates on the gas concentration. Therefore, to obtain a highly sensitive sensor, two characteristics must be studied: the chemical reaction between the gas and the surface of the material and the transfer of this reaction to equivalent changes in the electric resistance of the sensor [29]. The mechanism of sensing for metal oxide is fabricated on the surface reaction, by the gas, through variations its conductivity and atmosphere. On the surface of the positive semiconductor of type (p-type) when exposed to oxidizing gas, Oxygen will be adsorbed by the following equations [24].

$$\text{O}_2^{(\text{gas})}+2e^{-} \leftrightarrow 2\text{O}^{(\text{ads})} \quad (\text{Eq.1})$$

$$\text{H}_2^{(\text{gas})} + \text{O}^{(\text{ads})} \leftrightarrow \text{H}_2\text{O}^{(\text{des})} + e^{-} \quad (\text{Eq.2})$$

The electrons are injected back to the conductive band, partly or totally. Thus, the semiconductor resistance may decrease, results in enhancing the electrical conductivity. A reverse process will occur when exposed to a reducing gas leading to an increase in its electrical resistance. If the semiconductor is of a negative type (n-type), the results will be exactly the opposite [30-33]. The researchers were demonstrated that the properties of the gas sensor depend on the surface morphology and the dopant concentrations added to TiO$_2$ films.

B. Comert [34] pointed out that the sensors fabricated from titanium dioxide thin film at high temperatures possess low sensitivity. This was due to the fact that, the grain size was not small enough to increase the surface area of the film's exposure to methane gas Joy Tan et al. [35] 100 nm of un-doped TiO$_2$ and doped with Au thin film were prepared, they were discovered that adding gold to titanium films led to a significantly increased sensitivitiy to carbon monoxide gas. The reason was that the added gold atoms played the catalyst role for the surfaces of the prepared films. Figure 1 shows the structure of TiO$_2$.

3. TiO$_2$ structure

TiO$_2$ primarily exists in three forms including, the brookite phase (orthorhombic), anatase phase (tetragonal), and rutile phase (tetragonal), as shown in Figure 1a-c, with energy gap equal to 2.96, 3.2, and 3.02 eV, respectively. In addition, the over declared three phases of crystal, there be a present added phase, TiO$_2$ (B) (monoclinic). Figure 1d illustrates the TiO$_2$ (B) layer configuration. Therefore, the exact capability is greater and the density is lower compared with that of the former phases. Among these varied phases of crystal, the greatest steady main phase is rutile, while for nanomaterials [36].

![Figure 1](image)

The phase of anatase and brookite are usually more stable than the rutile phase because the surface energy of them is less than that of the rutile. For practical applications, TiO$_2$ preparations films are prepared such as the annealing time, are usually artificial by the phases of crystal, which can be obtained by controlling the factors in which these construction of the structure growth, preparation temperature, and pH of the solution. Therefore, the applications of sensing by anatase TiO$_2$ and rutile TiO$_2$ are extremely studied [38]. TiO$_2$ material has grown excessive import appearing in the subject of gas sensing and several scientific sets are in a short time operational on this substantial specifically on its variety nanostructures. Its characterizationes are established on surface reactions using oxidizing or reducing gases, which, therefore, influences the conductivity of the film. In addition, absorption by ultraviolet photon, an electron-hole pair.
that can ease oxidation as well as reduction chemistry on the surface of the material is created in the film. Redox reactions lead to hygienic the surface by the way of breaking down organic pollutants to formula primarily H\textsubscript{2}O and CO\textsubscript{2} molecules. TiO\textsubscript{2} films, in addition, validate the capability to switch from hydrophobic to hydrophilic surfaces afterward irradiation with UV light, which, both with its properties of photocatalytic, has resulted in self-cleaning competences and validating antifogging [39]. TiO\textsubscript{2} was selected as a thin film for the reason that is electrically isolating with very height resistivity, however, the sub oxidized TiO\textsubscript{2} with an additional of titanium is an n-type semiconductor within unique characterizations, showing the fault instabillity and O/Ti stoichiometry take an imperative factor in the characterizations of electrical [40]. Some other properties of TiO\textsubscript{2} are shown in Table 2.

Table 2. Properties of titanium oxide.

Entry	Techniques	Properties	Ref.
1	Conductivity	With the performing of titanium dioxide as a semiconductor, when its temperature is increasing, fast increases of the conductivity.	[35]
2	Boiling and Melting points	The point of melting for titanium dioxide is associated with the cleanliness of the titanium dioxide. Just rutile TiO\textsubscript{2} has a boiling point and melting point, a melting point of 1850°C, the melting point in oxygen-rich is 1879°C.	[35]
3	Stable of Thermal	about 0.01% to 0.12%.the butter thermal stability of Titanium dioxide	[35]
4	Virtual density	In the normally was used white color, the minimum is the relative density of titanium dioxide.	[35]
5	Solubility	The solubility is relating to the solutes for titanium dioxide.	[35]
6	Permittivity	Titanium dioxide has excellent electrical characterization because it has the high dielectric constant. It is about only 48 lower permittivity for anatase titanium dioxide.	[35]

4. TiO\textsubscript{2} as a gas sensor

TiO\textsubscript{2} has a wide range of applications as gas sensors counting in a medical controller and particular environmental checking method and characteristic analysis. While specific sensors generally cannot achieve such tasks of complex, novel instruments, for instance, noses of electronic, have been fabricated, which characteristically use many sensors, wholly of which work within one of different probable signal transduction principles [41]. On the other hand, in more applications to such sensor selections are stayed not enough in their working, if associated with recognized instruments for analytical chemistry such as mass spectrometer couplings/gas chromatography (GC/MS). The major problematic results as of the detail that the specific sensors commonly indication drift, are not sensitive adequate, and notice just sure classes of molecules [20]. List of titanium metal oxides and their reply to dissimilar gaseous types and toxic vapors are presented in Table 3.

Table 3. Types of TiO\textsubscript{2} thin film.

TiO\textsubscript{2} with additives	Preparation Technique	Gas Sensing	Operat ing Temp.	Range of Detection Limit	Sensing Element Form	Response Time	Ref.
TiO\textsubscript{2}	Spin coating	NH\textsubscript{3} gas-sensing to measure gases: H\textsubscript{2}S NO, CH\textsubscript{3}OH and C\textsubscript{2}H\textsubscript{5}OH	200°C	20-100 ppm	Nanocrystalline titanium oxide thin films	-	[42]
TiO\textsubscript{2}	Sol-gel	MoO\textsubscript{3}-TiO\textsubscript{2} to measure gases: O\textsubscript{2}, CO, NO\textsubscript{2}	400°C	1.1-2.9 ppm for CO,NO\textsubscript{2}	MoO\textsubscript{3}-TiO\textsubscript{2} thin film	15 min	[43]
TiO\textsubscript{2}	Sol-gel	Petroleum Gas	-	-	Nanostructured Titania	240,248 sec	[44]
TiO₂	Method/Coating	TiO₂ – SnO₂ sensors to hydrogen	Temperature	Response Time			
---------------------	---	---------------------------------	-------------	---------------			
Sol-gel spin coating	Silver-Titanium Oxide to measure CO	300°C	-	5 min			
Assisted by UV illumination	NO₂ sensor to measure NO₂	100-500 ppm	TiO₂ thin film	-			
RF magnetron sputtering method	Carbon Monoxide for CO gas	230-320 °C	20-125 ppm	20 sec			
Synthesis of highly-ordered TiO₂ nanotubes for a hydrogen sensor	Anodic oxidation of a titanium foil in an aqueous solution for H₂ gas	20-150°C	20-1000 ppm	90 min			
Flame spray synthesis (FSS)	Hydrogen sensing	700°C	-	TiO₂-Based Nanomaterials			
ZnO doped TiO₂	Titanium Dioxide as Methane Gas Sensors	50-200°C	-	Thin Films			
Rf reactive sputtering from Ti:SnO₂ and Sn:TiO₂ targets	TiO₂–SnO₂ sensors to hydrogen	473-873 K.	100-6000 ppm	-			
RF Sputtering	Al/TiO₂/Al₂O₃/p-Si gas sensor for CO gas	27-177°C	10-60 ppm	Gas Sensor by Atomic Layer Deposition at low concentration			
Spray pyrolysis	TiO₂ films for acetone, ethanol, methane, and liquefied petroleum gas	270°C	-	Thin films			
Impedance spectroscopy analysis	TiO₂ thin film	200-450°C	-	Thin film			
Chemical spray pyrolysis	TiO₂ thin films for hydrogen gas	550°C	-	Nanocrystalline Pt-doped TiO₂ thin films			
Magnetron sputtering and subsequently annealed hydrothermal treatment for the detection of organic gases	TiO₂ thin films for hydrogen gas	250-450°C	300-10000 ppm	-			
Chemical spray pyrolysis	TiO₂ nanotubes for toluene	500°C	-	TiO₂ nanotubes			
5. Conclusion
In this review, the focus was on showing the effect of crystal structure, operating temperature, and the doping with semiconductor oxides effect on the sensor properties of TiO₂ thin films. The sensors fabricated from titanium dioxide thin film at high temperatures possess low sensitivity. Some characteristics of the titanium dioxide thin films such as operation temperature, range of detection, and response time at 50 °C -200 °C were discussed. The gas sensitivity of the film is generally determined by the resistance variation of films on gas experience, or else might possibly definite as the fraction of its resistance in the air to its stable formal importance in the occurrence of gas. As there were several sensor films at different operating temperatures, thus, at relatively low temperature, the sensitivity of the substance is therefore very lower. The dominant process becomes the adsorption of O₂, when the temperature increases, formerly, increases in sensitivity for the material. Time response was found to be based on the sensor properties such as electrode geometry, crystallite size, diffusion rates, additives, and electrode position. In addition, the response time at the lower value revealed a butter sensor.

Acknowledgment
The authors would like to thank department of Physics, College of Science, University of Anbar and Department of Chemistry, College of Science, Al-Nahrain University for their outstanding assistance to perform this research.

Disclosure statement
No potential conflict of interest was reported by the authors.

References
[1] Ruiz, A. M., Sakai, G., Cornet, A., Shimanoe, K., Morante, J. R., & Yamazoe, N. (2003). Cr-doped TiO₂ gas sensor for exhaust NO₂ monitoring. Sensors and Actuators B: Chemical, 93(1-3), 509-518.
[2] Kim, I., & Choi, W. Y. (2017). Hybrid gas sensor having TiO₂ nanotube arrays and SnO₂ nanoparticles. International Journal of Nanotechnology, 14(1-6), 155-165.
[3] Karunagaran, B., Uthirakumar, P., Chung, S. J., Velumani, S., & Suh, E. K. (2007). TiO² thin film gas sensor for monitoring ammonia. Materials Characterization, 58(8-9), 680-684.
[4] Kim, W. T., Kim, I. H., & Choi, W. Y. (2015). Fabrication of TiO₂ nanotube arrays and their application to a gas sensor. Journal of nanoscience and nanotechnology, 15(10), 8161-8165.
[5] Vinodhkumar, G., Ramya, R., Pothheher, L., & Cyrc Peter, A. (2018). Reduced graphene oxide based on simultaneous detection of neurotransmitters. Progress in Chemical and Biochemical Research, 1(1), pp. 1-59, 40-49.
[6] Gulati, K., Maher, S., Chandrasekaran, S., Findlay, D. M., & Losic, D. (2016). Conversion of titania (TiO₂) into conductive titanium (Ti) nanotube arrays for combined drug-delivery and electrical stimulation therapy. Journal of Materials Chemistry B, 4(3), 371-375.
[7] Alkherraz, A., Hashad, O., & Elsherif, K. (2019). Heavy metals contents in some commercially available coffee, tea, and cocoa samples in misurata City–Libya. Progress in Chemical and Biochemical Research, 2(3), 99-107.
[8] Eldefrawy, M., Gomaa, E. G. A., Salem, S., & Abdel Razik, F. (2018). Cyclic Voltammetric studies of calcium acetate salt with Methylene blue (MB) Using Gold Electrode. Progress in Chemical and Biochemical Research, 1(1), 11-18.
[9] Zad, Z. R., Davarani, S. S. H., Taheri, A., & Bide, Y. (2018). A yolk shell Fe3O4@ PA-Ni@ Pd/Chitosan nanocomposite-modified carbon ionic liquid electrode as a new sensor for the sensitive determination of fluconazole in pharmaceutical preparations and biological fluids. Journal of Molecular Liquids, 253, 233-240.
[10] Asif, M., & Mohd, I. (2019). Synthetic methods and pharmacological potential of some cinnamic acid analogues particularly against convulsions. Progress in Chemical and Biochemical Research, 2(4), 192-210.
[11] Babaei, A., & Taheri, A. (2012). Direct electrochemistry and electrocatalysis of myoglobin immobilized on a novel chitosan-nickel hydroxide nanoparticles-carbon nanotubes biocomposite modified glassy carbon electrode. Anal. Bioanal. Electrochem, 4(4), 342-356.
[12] Seekaew, Y., Wisitsoraat, A., Phokharutkul, D., & Wongchoosuk, C. (2019). Room temperature toluene gas sensor based on TiO₂ nanoparticles decorated 3D graphene-carbon nanotube nanostructures. Sensors and Actuators B: Chemical, 279, 69-78.
[13] Joo, S., Muto, I., & Haru, N. (2010). Hydrogen gas sensor using Pt-and Pd-added anodic TiO₂ nanotube films. Journal of the Electrochemical Society, 157(6), J221-J226.
[14] Moon, H. G., Shim, Y. S., Su, D., Park, H. H., Yoon, S. J., & Jang, H. W. (2011). Embossed TiO₂ thin films with tailored links between hollow hemispheres: synthesis and gas-sensing properties. The Journal of Physical Chemistry C, 115(20), 9993-9999.
[15] Lou, Z., Li, F., Deng, J., Wang, L., & Zhang, T. (2013). Branch-like hierarchical heterostructure
(2013). Electrical properties of amorphous titanium oxide thin films for bolometric application. *Advances in Condensed Matter Physics*, 2013.

[41] Taurino, A. M., Capone, S., Siciliano, P., Toccoli, T., Boschetti, A., Guerini, L., & Iannotta, S. (2003). Nanostructured TiO2 thin films prepared by supersonic beams and their application in a sensor array for the discrimination of VOC. *Sensors and Actuators B: Chemical*, 92(3), 292-302.

[42] Pawar, S. G., Patil, S. L., Chougule, M. A., Raut, B. T., Godase, P. R., Mulik, R. N., ... & Patil, V. B. (2011). New Method for Fabrication of CSA Doped PANi-SiOx Thin Film as a Metal Oxide Gas Sensor. *IEEE Sensors Journal*, 11(11), 2980-2985.

[43] Galatsis, K., Li, Y. X., Wlodarski, W., Comini, E., Faglia, G., & Sberveglieri, G. (2001). Semiconductor MoO3–TiO2 thin film gas sensors. *Sensors and Actuators B: Chemical*, 77(1-2), 472-477.

[44] Yadav, B. C., RadheeshyamSahajeet, S., & Sonker, R. K. (2018). sol gel formed grape like nanostructured titania based liquefied petroleum gas sensor. *Journal of Materials Science and Research*, 1(1), 290-312.

[45] Nataraj, J. R., Bagali, P. Y., Krishna, M., & Vijayakumar, M. N. (2018). Development of Silver Doped Titanium Oxide Thin films for Gas Sensor Applications. *Materials Today: Proceedings*, 5(4), 10670-10680.

[46] Xie, T., Sullivan, N., Steffens, K., Wen, B., Liu, G., Debnath, R., ... & Motayed, A. (2015). UV-assisted room-temperature chemiresistive NO2 sensor based on TiO2 thin film. *Journal of alloys and compounds*, 653, 255-259.

[47] Şennik, E., Çolak, Z., Kılınç, N., & Öztürk, Z. Z. (2010). Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor. *International Journal of Hydrogen Energy*, 35(9), 4420-4427.

[48] Zakrzewska, K., & Radecka, M. (2017). TiO2-based nanomaterials for gas sensing—fluence of anatase and rutile contributions. *Nanoscale research letters*, 12(1), 89.

[49] Wisitsoraat, A., Tuantranont, A., Comini, E., Sberveglieri, G., & Wlodarski, W. (2006, October). Gas-sensing characterization of TiO2-ZnO based thin film. In *SENSORS, 2006 IEEE* (pp. 964-967). IEEE.

[50] Radecka, M., Lysoń, B., Lubecka, M., Czapla, A., & Zakrzewska, K. (2010). Photocatalytical Decomposition of Contaminants on Thin Film Gas Sensors. *Acta Physica Polonica, A.*, 117(2).

[51] Comert, B., Akin, N., Donmez, M., Saglam, S., & Ozcelik, S. (2016). Titanium dioxide thin films as methane gas sensors. *IEEE Sensors Journal*, 16(24), 8890-8896.

[52] Demir, M., Barin, Ö., Karaduman, I., Yıldız, D. E., & Acar, S. (2014). Low concentration of CO gas sensor by atomic layer deposition. *Journal of Physical Science and Application*, 4(8), 488-492.

[53] Ittimie, N., Luca, D., Lacomi, F., Girtan, M., & Mardare, D. (2009). Gas sensing materials based on TiO2 thin films. *Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena*, 27(1), 538-541.

[54] Ponce, M. A., Parra, R., Savu, R., Joanni, E., Bueno, P. R., Cilense, M., ... & Castro, M. S. (2009). Impedance spectroscopy analysis of TiO2 thin film gas sensors obtained from water-based anatase colloids. *Sensors and Actuators B: Chemical*, 139(2), 447-452.

[55] Patil, L. A., Suryawanshi, D. N., Pathan, I. G., & Patil, D. G. (2014). Nanocrystalline Pt-doped TiO2 thin films prepared by spray pyrolysis for hydrogen gas detection. *Bulletin of Materials Science*, 37(3), 425-432.

[56] Haidry, A., Schlosser, P., Durina, P., Mikula, M., Tomasek, M., Plecenik, T., ... & Zahoran, M. (2011). Hydrogen gas sensors based on nanocrystalline TiO2 thin films. *Open Physics*, 9(5), 1351-1356.

[57] Seo, M. H., Yuasa, M., Kida, T., Huh, J. S., Yamazoe, N., & Shimanoe, K. (2009). Detection of organic gases using TiO2 nanotube-based gas sensors. *Procedia Chemistry*, 1(1), 192-195.

How to cite this manuscript: Jamal M. Rzaïj, Amina M. Abass, Review on: TiO2 Thin Film as a Metal Oxide Gas Sensor, *Journal of Chemical Reviews*, 2020, 2(2), 114-121.