LYAPUNOV TYPE INEQUALITY FOR DISCRETE FRACTIONAL BOUNDARY VALUE PROBLEM

Narayan G. Abuj and Deepak B. Pachpatte

Department of mathematics,
Dr. Babasaheb Ambedkar Marathwada University,
Aurangabad-431004 (M.S.) India.
abujng@gmail.com and pachpatte@gmail.com

Abstract

In this paper we obtain Lyapunov type inequality for discrete fractional boundary value problem.

Mathematics Subject Classification : 26D15; 39A12; 34A08.
Keywords: Lyapunov type inequality; Fractional difference equation; discrete fractional boundary value problem.

1 Introduction

In 1907 Lyapunov proved that if the boundary value problem

\[\begin{cases} y''(t) + q(t)y(t) = 0, & a < t < b, \\ y(a) = y(b) = 0 \end{cases} \]

has a nontrivial solution, where \(q(t) \) is a continuous and real valued function on \([a, b]\), then

\[\int_a^b |q(u)|du > \frac{4}{b-a}. \]

Ferreira has generalize this result by replacing classical derivative \(y'' \) by a fractional order derivative \(D^\alpha \), in both Riemann-Liouville fractional derivative and Caputo fractional derivative sense. Also there are so many generalizations and extensions of the result exist in the literature.

Recently, the authors obtained Lyapunov type inequalities for fractional boundary value problem using generalized fractional differential and integral operators such as Prabhakar derivative, k-Prabhakar derivative, Prabhakar integral and k-Prabhakar integral.
In [14] Ferreira consider the following discrete fractional boundary value problem
\[(\triangle^\alpha y)_t = -q(t + \alpha - 1)y(t + \alpha - 1), \quad 1 < \alpha \leq 2, \quad (1.3)\]
coupled with one of the following boundary conditions
\[y(\alpha - 2) = y(t + \alpha - 1) = 0 \quad (1.4)\]
or\[y(\alpha - 2) = \triangle y(\alpha + b) = 0 \quad (1.5)\]
where \(b \in \mathbb{N}\) and obtained the discrete Lyapunov type inequalities for the above conjugate boundary value problem (1.3) and (1.4), and right focal boundary value problem (1.3) and (1.5).

Also, In [14] Chidouh and et al. proved generalization of the Lyapunov inequality of [3]. Motivated by the above results. In this paper we consider the following discrete boundary value problem of fractional difference equation of the form
\[- \triangle^\alpha y(t) = \lambda h(t + \alpha - 1)f(y(t + \alpha - 1)) \quad (1.6)\]
\[y(\alpha - 2) = 0, \quad \triangle y(\alpha - 2) = \triangle y(\alpha + b - 1) \quad (1.7)\]
where \(t \in [0, b]_{\mathbb{N}_0}, \ f : [0, \infty) \to [0, \infty)\) is continuous and nondecreasing, \(h : [\alpha - 1, \alpha + b]_{\mathbb{N}_0} \to [0, \infty), \ 1 < \alpha \leq 2, \ \lambda\) is a positive parameter and obtained the discrete Lyapunov type inequality for this problem.

2 Some Basic Definitions and preliminary results

Definition 2.1 [16, 15] The power function is defined as
\[t^\alpha = \frac{\Gamma(t + 1)}{\Gamma(t + 1 - \alpha)},\]
for any \(t\) and \(\alpha\) for which the right hand side is defined. We also appeal to convention that if \(t + 1 - \alpha\) is pole of the Gamma function and \(t + 1\) is not a pole, then \(t^\alpha = 0\).

Remark 2.1 Using the properties of the Gamma function it is clear that \(t^\alpha \geq 0, \ \text{for} \ t \geq \alpha \geq 0\).
Definition 2.2 [16, 17] The α-th order fractional sum of a function f defined on $\mathbb{N}_a := \{a, a+1, a+2, \ldots \}$, $a \in \mathbb{R}$ and for $\alpha > 0$, is defined as

$$\triangle^{-\alpha}_a f(t) = \frac{1}{\Gamma(\alpha)} \sum_{s=a}^{t-a} (t-s-1)^{\alpha-1} f(s), \quad \text{where } t \in \mathbb{N}_{a+\alpha}.$$

Definition 2.3 [16, 17] The α-th order fractional difference of the function $f : \mathbb{N}_a \to \mathbb{R}$, where $\mathbb{N}_a := \{a, a+1, a+2, \ldots \}$, $a \in \mathbb{R}$ and for $\alpha > 0$ ($N-1 \leq \alpha \leq N$, where $N \in \mathbb{N}$) is defined by

$$\triangle^{\alpha}_a f(t) = \triangle^n \triangle^{-(n-\alpha)} f(t), \quad t \in \mathbb{N}_{a+n-\alpha},$$

where \triangle^n is the standard forward difference of order n.

Lemma 2.1 [20, 15] Let t and α be any numbers for which t^α and $t^{\alpha-1}$ are defined. Then

$$\triangle t^\alpha = \alpha t^{\alpha-1}.$$

Lemma 2.2 [21] Assume $\alpha, \mu > 0$ and $f : \mathbb{N}_a \to \mathbb{R}$ be a real-valued function. Moreover, let $\alpha, \mu > 0$. Then we have

$$\triangle^{-\alpha} [\triangle^{-\mu} f(t)] = \triangle^{-\mu} [\triangle^{-\alpha} f(t)], \quad \text{where } t \in \mathbb{N}_{\mu-\alpha+a}.$$

Lemma 2.3 [20, 15] Let $0 \leq N-1 < \alpha \leq N$. Then

$$\triangle^{-\alpha} \triangle^\alpha y(t) = y(t) + C_1 t^{\alpha-1} + C_2 t^{\alpha-2} + \ldots + C_N t^{\alpha-N},$$

for some $C_i \in \mathbb{R}$, with $1 \leq i \leq N$.

Lemma 2.4 [18] Let $h : [\alpha - 1, \alpha + b]_{\mathbb{N}_{\alpha-1}} \to [0, \infty)$, be given. Then the unique solution of discrete fractional boundary value problem

$$-\triangle^\alpha y(t) = h(t+\alpha-1),$$

$$y(\alpha - 2) = 0, \triangle y(\alpha - 2) = \triangle y(\alpha + b - 1),$$

where, $t \in [0, b]_{\mathbb{N}_0}$, is

$$y(t) = -\frac{1}{\Gamma(\alpha)} \sum_{s=0}^{b} G(t, s) h(s + \alpha - 1), \quad (2.1)$$

where, $G : [\alpha - 2, \alpha + b]_{\mathbb{N}_{\alpha-2}} \times [0, b]_{\mathbb{N}_0} \to \mathbb{R}$ is defined as

$$G(t, s) = \begin{cases} \frac{t^{\alpha-1}(a+b-s-2)^{\alpha-2}}{\Gamma(\alpha-1)-(a+b-1)^{\alpha-2}} + (t-s-1)^{\alpha-1}, & 0 \leq s < t - \alpha \leq b \\ \frac{t^{\alpha-1}(a+b-s-2)^{\alpha-2}}{\Gamma(\alpha-1)-(a+b-1)^{\alpha-2}}, & 0 \leq t - \alpha < s \leq b. \end{cases}$$

(2.2)
Lemma 2.5 [13] Function \(y(t) \) is a solution to the boundary value problem (1.6) – (1.7) if and only if \(y(t) \) satisfies

\[
y(t) = -\frac{\lambda}{\Gamma(\alpha)} \sum_{s=0}^{b} G(t, s) h(s + \alpha - 1) f(y(s + \alpha - 1)),
\]

(2.3)

where

\[
G(t, s) = \begin{cases}
\frac{\gamma - (s + \alpha - 1)^{\gamma - 2}}{\Gamma(\gamma - (s + \alpha - 1)^{\gamma - 2})}, & 0 \leq s < t - \alpha < b \\
\frac{\gamma - (t - \alpha - 1)^{\gamma - 2}}{\Gamma(\gamma - (t - \alpha - 1)^{\gamma - 2})}, & 0 \leq t - \alpha < s \leq b.
\end{cases}
\]

Theorem 2.1 The Green’s function \(G(t,s) \) is given by (2.2) satisfies the following conditions:

1. \(G(t,s) > 0 \) for all \(t \in [\alpha - 2, \alpha + b] \) and \(s \in [0, b] \).
2. \(\max_{t \in [\alpha - 2, \alpha + b]} G(t,s) = G(s + \alpha - 2,s), \quad s \in [0, b], t \in [\alpha - 2, \alpha + b] \).

Proof. Similar to the one found in [3].

3 Main Results

Theorem 3.1 The function \(G(s + \alpha - 2,s) \) has a unique maximum given by

\[
\max_{s \in [0, b]} G(s + \alpha - 2, s) = \frac{\Gamma(b + \alpha - 1)\Gamma(b + 2)}{\Gamma(b)|\Gamma(\alpha - 1)\Gamma(b + 2) - \Gamma(\alpha + b)|}
\]

Proof. To find the maximum of \(G(s + \alpha - 2, s) \) over \(s \) we first apply the difference operator to \(G(s + \alpha - 2, s) \). Specifically:

\[
\begin{align*}
\Delta G(s + \alpha - 2, s) &= \Delta \left(\frac{(s + \alpha - 2)^{\alpha - 1}(\alpha + b - s - 2)^{\alpha - 2}}{\Gamma(\alpha - 1) - (\alpha + b - 1)^{\alpha - 2}} \right) \\
&= \frac{1}{\Gamma(\alpha - 1) - (\alpha + b - 1)^{\alpha - 2}} \Delta \left(\frac{(s + \alpha - 2)^{\alpha - 1}(\alpha + b - s - 2)^{\alpha - 2}}{\Gamma(s)} \right) \\
&= \frac{1}{\Gamma(\alpha - 1) - (\alpha + b - 1)^{\alpha - 2}} \Delta \left(\frac{\Gamma(s + \alpha - 1)\Gamma(s)\Gamma(\alpha + b - s - 1)}{\Gamma(b - s + 1)} \right) \\
&= \frac{1}{\Gamma(\alpha - 1) - (\alpha + b - 1)^{\alpha - 2}}
\end{align*}
\]

4
\[
\begin{align*}
&\times \left(\frac{\Gamma(s + \alpha) \Gamma(\alpha + b - s - 2)}{\Gamma(s + 1) \Gamma(b - s)} - \frac{\Gamma(s + \alpha - 1) \Gamma(\alpha + b - s - 1)}{\Gamma(s) \Gamma(b - s + 1)} \right) \\
&= \frac{1}{\Gamma(\alpha - 1) - (\alpha + b - 1)^{s - 2}} \times \left(\frac{\Gamma(s + \alpha) \Gamma(\alpha + b - s - 2)}{\Gamma(s + 1) \Gamma(b - s + 1)} (b - s) - \frac{s \Gamma(s + \alpha - 1) \Gamma(\alpha + b - s - 1)}{\Gamma(s) \Gamma(b - s + 1)} \right) \\
&= \frac{1}{\Gamma(\alpha - 1) - (\alpha + b - 1)^{s - 2}} \times \left(\frac{(b - s) \Gamma(s + \alpha) \Gamma(\alpha + b - s - 2)}{\Gamma(s + 1) \Gamma(b - s + 1)} - \frac{s \Gamma(s + \alpha - 1) \Gamma(\alpha + b - s - 1)}{\Gamma(s) \Gamma(b - s + 1)} \right) \\
&= \frac{1}{\Gamma(\alpha - 1) - (\alpha + b - 1)^{s - 2}} \times \left(\frac{(b - s)(s + \alpha - 1) \Gamma(s + \alpha - 1) \Gamma(\alpha + b - s - 2)}{\Gamma(s + 1) \Gamma(b - s + 1)} - \frac{s \Gamma(s + \alpha - 1) \Gamma(\alpha + b - s - 1)}{\Gamma(s) \Gamma(b - s + 1)} \right) \\
&= \frac{1}{\Gamma(\alpha - 1) - (\alpha + b - 1)^{s - 2}} \times \left(\frac{(b - s)(s + \alpha - 1) \Gamma(s + \alpha - 1) \Gamma(\alpha + b - s - 2)}{\Gamma(s + 1) \Gamma(b - s + 1)} - \frac{s(s + \alpha - 1) \Gamma(\alpha + b - s - 2)}{\Gamma(s) \Gamma(b - s + 1)} \right) \\
&= \frac{(b - s)(s + \alpha - 1) - s(s + \alpha - 1) \Gamma(\alpha + b - s - 2)}{\Gamma(\alpha - 1) - (\alpha + b - 1)^{s - 2}} \frac{\Gamma(s + \alpha - 1) \Gamma(\alpha + b - s - 2)}{\Gamma(s + 1) \Gamma(b - s + 1)} \\
&= \frac{(b - s)(s + \alpha - 1) - s(s + \alpha - 1) \Gamma(\alpha + b - s - 2)}{\Gamma(\alpha - 1) - (\alpha + b - 1)^{s - 2}} \frac{\Gamma(s + \alpha - 1) \Gamma(\alpha + b - s - 2)}{\Gamma(s + 1) \Gamma(b - s + 1)} \\
&= \frac{b(\alpha - 1) + s(3 - 2\alpha)}{\Gamma(s + \alpha - 1) \Gamma(\alpha + b - s - 2)} \\
&= \frac{\Gamma(s + \alpha - 1) \Gamma(\alpha + b - s - 2)}{\Gamma(s + 1) \Gamma(b - s + 1)} \\
&= \frac{\Gamma(\alpha - 1) \Gamma(b + 2) - \Gamma(\alpha + b)}{\Gamma(s + 1) \Gamma(b - s + 1)}.
\end{align*}
\]

Therefore
\(\Delta G(s+\alpha-2, s) = (b(\alpha-1)+s(3-2\alpha))f(s) \), with \(f(s) > 0 \) for all \(s \in [0, b]_{\mathbb{N}_0} \).

Now, if \(\alpha < \frac{3}{2} \) then \(q(s) = b(\alpha - 1) + s(3 - 2\alpha) \), is increasing and since \(q(0) = b(\alpha - 1) > 0 \), then we conclude that \(G(s+\alpha-2, s) \) is increasing. On the other hand, if \(\alpha \geq \frac{3}{2} \) then \(q \) is decreasing but nevertheless positive since \(q(b) = b(\alpha - 1) + b(3 - 2\alpha) = b(2 - \alpha) > 0 \). In conclusion, \(G(s+\alpha-2, s) \) is increasing for all \(s \). Therefore,

\[
\max_{s \in [0, b]_{\mathbb{N}_0}} G(s+\alpha-2, s) = G(b+\alpha-2, b) = \frac{\Gamma(b+\alpha-1)\Gamma(\alpha-1)\Gamma(b+2)}{\Gamma(b)[\Gamma(\alpha-1)\Gamma(b+2) - \Gamma(\alpha+b)]}
\]

Hence the theorem.

Theorem 3.2 Let \(h : [\alpha - 1, \alpha + b]_{\mathbb{N}_{\alpha-1}} \to [0, \infty) \) be a nontrivial function. Assume that \(f \in C(\mathbb{R}_+, \mathbb{R}_+) \) is a nondecreasing function. If the discrete fractional boundary value problem (1.6) – (1.7) has a nontrivial solution given by (2.3), then

\[
\sum_{s=0}^{b} |h(s+\alpha-1)| \geq \frac{\Gamma(\alpha)\Gamma(b)[\Gamma(\alpha-1)\Gamma(b+2) - \Gamma(\alpha+b)]\eta}{\Gamma(\alpha-1)\Gamma(b+2)\Gamma(b+\alpha-1)f(\eta)}
\]

where, \(\eta = \max_{[\alpha - 1, \alpha + b]_{\mathbb{N}_{\alpha-1}}} y(s+\alpha-1) \).

Proof. Since the discrete fractional boundary value problem () has a nontrivial solution as

\[
y(t) = -\frac{\lambda}{\Gamma(\alpha)} \sum_{s=0}^{b} G(t, s)h(s+\alpha-1)f(y(s+\alpha-1)),
\]

\[
\|y\| \leq \frac{\lambda}{\Gamma(\alpha)} \sum_{s=0}^{b} |G(t, s)||h(s+\alpha-1)||f(y(s+\alpha-1))|,
\]

\[
\|y\| \leq \frac{\lambda}{\Gamma(\alpha)} \sum_{s=0}^{b} G(s+\alpha-2, s)|h(s+\alpha-1)||f(y(s+\alpha-1))|,
\]

where \(\eta = \max_{[\alpha - 1, \alpha + b]_{\mathbb{N}_{\alpha-1}}} y(s+\alpha-1) \), Taking account that \(f \) is nondecreasing and we get

\[
\|y\| \leq \frac{\lambda}{\Gamma(\alpha)} \frac{\Gamma(b+\alpha-1)\Gamma(\alpha-1)\Gamma(b+2)}{\Gamma(\alpha-1)\Gamma(b+2) - \Gamma(\alpha+b)} \sum_{s=0}^{b} |h(s+\alpha-1)|f(\eta)
\]

\[
\sum_{s=0}^{b} |h(s+\alpha-1)| \geq \frac{\Gamma(\alpha)\Gamma(b)[\Gamma(\alpha-1)\Gamma(b+2) - \Gamma(\alpha+b)]\eta}{\Gamma(\alpha-1)\Gamma(b+2)\Gamma(b+\alpha-1)f(\eta)}
\]

Hence the result.
References

[1] A. Liapounoff, Problème général de la stabilité du mouvement, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 9 (1907), 203-474.

[2] R. Ferreira, A Lyapunov-type inequality for a fractional boundary value problem, Fract. Calc. Appl. Anal. 16(2013), 978-984.

[3] R. Ferreira, Some discrete fractional Lyapunov-type inequalities, Frct. Differ. Calc. 5(2015), 87-92.

[4] S. Cheng, A discrete analogue of the inequality of Lyapunov, Hokkaido Math. J. 12 (1983), 105-112.

[5] R. Brown, D. Hinton, Opial’s inequality and oscillation of 2nd order equations, Proc. Amer. Math. Soc. 125 (1997), 1123-1129.

[6] D. Cakmak, Lyapunov-type integral inequalities for certain higher order differential equations, Appl. Math. Comput. 216 (2010), 368-373.

[7] S. Cheng, Lyapunov type inequalities for differential and difference equations, Fasc. Math. 23 (1991), 25-41.

[8] B. Pachpatte, On Lyapunov-type inequalities for certain higher order differential equations, J. Math. Anal. Appl. 195 (1995), 527-536.

[9] C. Lee, C. Yeh, C. Hong, R. Agarwal Lyapunov and Wirtinger inequalities, Appl. Math. Lett. 17 (2004), 847-853.

[10] N. Parhi, S. Panigrahi, On Lyapunov-type inequality for third order differential equations, J. Math. Anal. Appl. 233 (1999), 445-460.

[11] A. Tiryaki, M. Unal, D. Cakmak, Lyapunov-type inequalities for nonlinear systems, Math. Anal. Appl. 332 (2007) 497-511.

[12] D. Pachpatte, N. Abuji and A. Khandagale, Lyapunov type inequality for hybrid fractional differential equation with Prabhakar derivative, Int. J. Pure Appl. Math. 113 (2017), 563-574.

[13] N. Abuji and D. Pachpatte, Lyapunov type inequality for fractional differential equation with k-Prabhakar derivative, Far East Journal of Mathematical Sciences, 102 (2017), 1381-1395.

[14] A. Chidouh and F. D. Torres, Existence of positive solutions to a discrete fractional boundary value problem and corresponding Lyapunov-type inequalities, arxiv: 1706.0564v1 [math.CA] 18 Jun 2017.
[15] F. Atici and P Eloe, *Two-point boundary value problem for finite fractional difference equations*, Journal of Difference Equations and Applications 4(2011), 445-456.

[16] C. Goodrich and A. Peterson, *Discrete Fractional Calculus*, Springer International publishing(2015)doi: 10.1007/978-3-319-25562-0.

[17] M. Holm, *Sum and difference compositions in discrete fractional calculus*, Cubo13, no.3 (2011), 153-184.

[18] J. Wang, H. Xiang, F. Chen, *Existence of positive solutions for a discrete fractional boundary value problem*, Advances in Difference Equations 2014, article 253 (2014).

[19] D. Pachpatte, A. Bagwan and A. Khandagale, *Existence of solutions to discrete boundary value problem of fractional difference equations*, arXiv:1712.07401 [math.CA].

[20] C. Goodrich, *Some new existence results for fractional difference equations*, International Journal of Dynamical Systems and Differential Equations 3 (2011), 145-162.

[21] F. Atici and P Eloe, *A transform method in discrete fractional calculus*, Int. J. Difference Equ., 2(2007). 165176.