Research Article

The p-Adic Valuations of Sums of Binomial Coefficients

Yong Zhang1 and Peisen Yuan2

1Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China
2College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China

Correspondence should be addressed to Peisen Yuan; peisenyuan@163.com

Received 30 June 2021; Accepted 28 July 2021; Published 16 August 2021

Academic Editor: Li Guo

Copyright © 2021 Yong Zhang and Peisen Yuan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we prove three supercongruences on sums of binomial coefficients conjectured by Z.-W. Sun. Let p be an odd prime and let $h \in \mathbb{Z}$ with $2h - 1 \equiv 0 \pmod{p}$. For $a \in \mathbb{Z}^+$ and $p^a > 3$, we show that

$$\sum_{k=0}^{p^a-1} \binom{h p^a - 1}{k} \left(\frac{2k}{p} \right) (-h/2)^k \equiv 0 \pmod{p^{a+1}}.$$

Also, for any $n \in \mathbb{Z}^+$, we have

$$\nu_p \left(\sum_{k=0}^{n-1} \binom{hn - 1}{k} \left(\frac{2k}{p} \right) (-h/2)^k \right) \geq \nu_p(n),$$

where $\nu_p(n)$ denotes the p-adic order of n. For any integer $m \equiv 0 \pmod{p}$ and positive integer n, we have

$$\left(\frac{1}{pn} \sum_{k=0}^{p^{r-1} - 1} \binom{pm - 1}{k} \left(\frac{2k}{p} \right) / (-m)^k \right) \equiv (m(m-4)/p) \sum_{k=0}^{p-1} \binom{n-1}{k} \left(\frac{2k}{p} \right) (-1)^k \mod Z_p,$$

where $(-)$ is the Legendre symbol and Z_p is the ring of p-adic integers.

1. Introduction

Let p be an odd prime. In 2006, Pan and Sun [1] proved the congruence

$$\sum_{k=0}^{p-1} \binom{2k}{k+d} \equiv \left(\frac{p-d}{3} \right) \pmod{p}, \quad \text{for } d = 0, \ldots, p-1 \tag{1}$$

via a curious combinatorial identity. For any positive integer a and prime $p \geq 5$, later Sun and Tauraso [2] established the following general result:

$$\sum_{k=0}^{p^a-1} \binom{2k}{k} \equiv \left(\frac{p^a}{3} \right) \pmod{p^a}. \tag{2}$$

Guo [3] conjectured a q-analogue of (2), which was confirmed by Liu and Petrov [4] using a q-analogue of Sun–Zhao congruence on harmonic sums and a q-series identity. Guo and Zudilin [5] also gave the q-generalizations of (2).

Let $A, B \in \mathbb{Z}$. The Lucas sequence $u_n = u_n(A, B)$ $(n \geq 0)$ is given by

$$u_0 = 0, \quad u_1 = 1, \quad u_{n+1} = Au_n - Bu_{n-1} \quad (n \geq 1). \tag{3}$$

If p is an odd prime not dividing B, then it is known that $p|u_{p-(\Delta/p)}$ (see, e.g., [6]). For a nonzero integer n and a prime p, let $\nu_p(n)$ denote the p-adic valuation of n, i.e., $\nu_p(n)$ is the largest integer such that $p^{\nu_p(n)}|n$, especially $\nu_p(0) = +\infty$ and we define $\nu_p(m/n) = \nu_p(m) - \nu_p(n)$ for rational number m/n. For more developments on p-adic valuation, we refer the reader to the papers [7–10].

In 2011, Sun [11] proved that for any nonzero integer m and odd prime p with pm, there holds

$$\sum_{k=0}^{p-1} \binom{2k}{k} \frac{1}{m^p} \equiv \left(\frac{\Delta}{p} \right) + u_{p-(\Delta/p)}(m-2, 1) \pmod{p^2}. \tag{4}$$

Let $A, B \in \mathbb{Z}$. The Lucas sequence $u_n = u_n(A, B)$ $(n \geq 0)$ is given by

$$u_0 = 0, \quad u_1 = 1, \quad u_{n+1} = Au_n - Bu_{n-1} \quad (n \geq 1). \tag{3}$$

If p is an odd prime not dividing B, then it is known that $p|u_{p-(\Delta/p)}$ (see, e.g., [6]). For a nonzero integer n and a prime p, let $\nu_p(n)$ denote the p-adic valuation of n, i.e., $\nu_p(n)$ is the largest integer such that $p^{\nu_p(n)}|n$, especially $\nu_p(0) = +\infty$ and we define $\nu_p(m/n) = \nu_p(m) - \nu_p(n)$ for rational number m/n. For more developments on p-adic valuation, we refer the reader to the papers [7–10].

In 2011, Sun [11] proved that for any nonzero integer m and odd prime p with pm, there holds

$$\sum_{k=0}^{p-1} \binom{2k}{k} \frac{1}{m^p} \equiv \left(\frac{\Delta}{p} \right) + u_{p-(\Delta/p)}(m-2, 1) \pmod{p^2}. \tag{4}$$
where \(\Delta = m(m - 4) \). As a common extension of (4), Sun [12] showed that
\[
\frac{1}{p^m} \left(\sum_{k=0}^{m-1} \binom{2k}{k} \frac{1}{m^k} - \left(\frac{\Delta}{p} \right) \sum_{k=0}^{m-1} \binom{2k}{k} \frac{1}{m^k} \right) \in \mathbb{Z}_p, \tag{5}
\]
and furthermore
\[
\frac{1}{n} \left(\sum_{k=0}^{m-1} \binom{2k}{k} \frac{1}{m^k} - \left(\frac{\Delta}{p} \right) \sum_{k=0}^{m-1} \binom{2k}{k} \frac{1}{m^k} \right)
= \frac{2n}{n} \equiv \frac{n}{2m^{m-1}} u_{p-(\Delta/p)} (m-2,1) (\mod p^2).
\tag{6}
\]

Let \(p \) be an odd prime and let \(m \) be an integer with \(p \nmid m \). One can easily get the following formula:
\[
\sum_{k=0}^{m-1} \binom{p-1}{k} (-1)^k \binom{2k}{k} \frac{1}{m^k} \equiv \sum_{k=0}^{m-1} \binom{2k}{k} \frac{1}{m^k} \pmod{p}, \tag{7}
\]
since for any \(k \in \{1, 2, \ldots, p - 1\} \), we get
\[
\binom{p-1}{k} \equiv (-1)^k \pmod{p}.
\]
It looks like the left-hand side of (7) has some connection with the right-hand side. Motivated by (4) and (7), Sun [13] determined the sum
\[
\left(\sum_{k=0}^{p-1} \binom{hp^a - 1}{k} \binom{2k}{k} / m^k \right) \pmod{p^2},
\]
modulo \(p^2 \), where \(h \) is a \(p \)-adic integer and \(m \in \mathbb{Z} \) with \(p \nmid m \). For example, if \(h \equiv 0 \pmod{p} \) and \((2h \equiv 1 \pmod{p}) \) or \(p^a > 3 \), then
\[
\sum_{k=0}^{p-1} \binom{hp^a - 1}{k} \binom{2k}{k} \frac{1}{m^k} \equiv \left(1 - 2h \frac{p^a}{p^a} \right) \left(1 + h \left(4 - \frac{2}{h} \right)^{p-1} - 1 \right) \pmod{p^2}.
\tag{8}
\]

It is interesting to consider whether there exists the supercongruence as (8) modulo the higher powers of \(p \) in the case \(2h - 1 \equiv 0 \pmod{p^2} \) and \(p^a > 3 \). Sun [13] managed to investigate the above case and made the following conjecture. The first aim of this paper is to prove the conjectured results.

Theorem 1. Let \(p \) be an odd prime and let \(h \in \mathbb{Z} \) with \(2h - 1 \equiv 0 \pmod{p} \). If \(a \in \mathbb{Z}^+ \) and \(p^a > 3 \), then
\[
\sum_{k=0}^{p^a-1} \binom{hp^a - 1}{k} \binom{2k}{k} \frac{1}{m^k} \equiv 0 \pmod{p^{a+1}}.
\tag{9}
\]

Also, for any \(n \in \mathbb{Z}^+ \), we have
\[
\gamma_p \left(\sum_{k=0}^{n-1} \binom{hn - 1}{k} \binom{2k}{k} \frac{1}{(-m^k)^2} \right) \geq \gamma_p(n). \tag{10}
\]

On the other hand, based on (5) and (7), Sun [12] conjectured the corresponding result with \(p^a \nmid m \). The second aim of this paper is to show the following result.

Theorem 2. Let \(p \) be an odd prime and let \(\Delta = m(m - 4) \). For any integer \(m \equiv 0 \pmod{p} \) and positive integer \(n \), we have
\[
\frac{1}{p^m} \left(\sum_{k=0}^{m-1} \binom{2k}{k} \frac{1}{(-m^k)^2} \right) \pmod{p^2}.
\tag{11}
\]

The remainder of the paper is organized as follows. In the next section, we give some lemmas. The proofs of Theorems 1 and 2 will be given in Section 3.

2. Some Lemmas

In the following section, for an assertion \(A \), we adopt the notation:
\[
[A] = \begin{cases}
1, & \text{if } A \text{ holds,} \\
0, & \text{otherwise.}
\end{cases} \tag{12}
\]

We know that \([m = n]\) coincides with the Kronecker symbol \(\delta_{mn} \).

Lemma 1. Let \(n, k, a \) be positive integers and \(p \) be a prime. Then,
\[
\binom{p^a n - 1}{k} = \binom{k}{p^a} \binom{k}{p} (-1)^{k-[kp]} \left(1 - np^a \sum_{j=1}^{k} \frac{1}{j} \right) \pmod{p^{a+2}}.
\tag{13}
\]

Proof. Note that
\[
\binom{p^a n - 1}{k} = \prod_{j=1}^{k} \frac{p^a n - j}{j} = \binom{k}{p^a} \binom{k}{p} (-1)^{k-[kp]} \left(1 - np^a \sum_{j=1}^{k} \frac{1}{j} \right) \pmod{p^{a+2}}.
\tag{14}
\]

\[
\binom{p^a n - 1}{k} = \binom{k}{p^a} \binom{k}{p} (-1)^{k-[kp]} \left(1 - \sum_{j=1}^{k} \frac{p^a n}{j} \right) \pmod{p^{a+2}}.
\tag{14}
\]
This proves (13). The congruence (13) is a result of Beukers [14, Lemma 2].

Lemma 2. Let \(p \) be an odd prime. Then, for any integers \(a, b \) and positive integers \(r, s \), we have

\[
\left(\frac{p^r a}{p^s b} \right) \equiv 1 \pmod{p^{rs + \min(r,s) - \delta_{p,1}}}.
\]

(15)

This lemma is a well-known congruence due to Osburn et al., see, e.g., [15, (19)].

The following curious result is due to Sun [16].

Lemma 3 (see [16, Theorem 1]). Let \(m \in \mathbb{Z} \) and \(n \in \mathbb{Z}^* \).
Suppose that \(p \) is an odd prime dividing \(m - 4 \). Then,

\[
\nu_p \left(\sum_{k=0}^{n-1} \binom{2k}{k} \frac{1}{m^k} \right) \geq \nu_p (n),
\]

(16)

Furthermore,

\[
\frac{1}{n} \sum_{k=0}^{n-1} \binom{2k}{k} \frac{1}{m^k} \equiv \frac{2n - 1}{4^{n-1}} + \delta_{p,3} [3|n] \frac{m - 4}{3} + \left(\frac{2n}{3^{\nu_3 (n)}} - 1 \right) (\mod p^{\nu_p (m-4)}),
\]

(17)

and also

\[
\frac{1}{n} \sum_{k=0}^{n-1} (-1)^k \frac{2k}{m^k} \equiv C_{n-1} \pmod{p^{\nu_p (m-4) - \delta_{p,1}}},
\]

(18)

where \(C_k \) denotes the Catalan number \(\frac{1}{(k+1) ! \binom{2k}{k}} = \binom{2k}{k} - \binom{2k}{k+1} \). Thus, for \(a \in \mathbb{Z}^* \), we have

\[
\frac{1}{p^a} \sum_{k=0}^{p^a-1} \binom{2k}{k} \frac{1}{m^k} \equiv 1 + \delta_{p,3} \frac{m - 4}{3} \equiv \frac{m - 1}{3} \pmod{p}.
\]

(19)

Lemma 4. Let \(p \) be an odd prime and let \(h \in \mathbb{Z} \) with \(2h - 1 \equiv 0 \pmod{p} \). Let \(l, \alpha \) be nonnegative integers. If \(p \geq 5 \), then we have

\[
\sum_{|k| p^a = l} \left(\frac{2k}{k} \right) \frac{1}{2l} \equiv \frac{p^a}{4} \left(\frac{2l}{l} \right) \pmod{p^{a+1}}.
\]

(20)

If \(p = 3 \), then

\[
\sum_{|k| p^a = l} \left(\frac{2k}{k} \right) \frac{h^k}{2} \equiv 0 \pmod{p^a}.
\]

(21)

If \(p = 3 \) and \(l \equiv 1 \pmod{3} \), then

\[
\sum_{|k| p^a = l} \left(\frac{2k}{k} \right) \frac{h^k}{2} \equiv \frac{p^a}{4} \left(\frac{2l}{l} \right) + 2[l \geq 1] p^{a-1} \frac{(1 - 2h)}{h} \left(\frac{2l}{l} \right) \pmod{p^{a+1}}.
\]

(22)

Proof. Observe that

\[
\sum_{|k| p^a = l} \left(\frac{2k}{k} \right) \frac{h^k}{2} = \sum_{k=0}^{p^a-1} \left(\frac{2k}{k} \right) \frac{h^k}{2} - \sum_{k=0}^{p^a-1} \binom{2k}{k} \frac{h^k}{2}.
\]

(23)

Since \((2/h) - 4 = 2(1 - 2h)/h \equiv 0 \pmod{p} \) and \(l \equiv 1 \pmod{3} \), by (17), we obtain that
\begin{equation}
\sum_{\lfloor k/p^\alpha \rfloor = l} \left(\begin{array}{c} 2k \\ k \end{array} \right) \left(\frac{h}{2} \right)^k \equiv (p^n l + p^n) \left(\frac{(2l + 2)p^n}{(l + 1)p^n + \frac{3}{4}l^2} + \delta_{p, l} \right) \frac{2(1 - 2h)}{3l + 1} \left(\frac{2(p^n l + p^n)}{3l + 1} - 1 \right) \left(\frac{2l}{3l + 1} - 1 \right) \left(\frac{2l}{3l + 1} - 1 \right) (\text{mod} p^{l+1}).
\end{equation}

If \(p \geq 5 \), by (15) and (24), we get

\begin{equation}
\sum_{\lfloor k/p^\alpha \rfloor = l} \left(\begin{array}{c} 2k \\ k \end{array} \right) \left(\frac{h}{2} \right)^k \equiv p^n (l + 1) \left(\frac{2l + 2}{4l^2} \right) - p^n l \left(\frac{l}{4l^2} - \frac{1}{4} \right) = p^n (2l + 1) \left(\frac{2l}{4l^2} - 2p^n l \left(\frac{l}{4l^2} - \frac{1}{4} \right) = p^n \left(\frac{2l}{4l^2} - \frac{l}{4l^2} \right) (\text{mod} p^{l+1}).
\end{equation}

Thus, (20) is proved. The congruence (21) is easily deduced from (24).

Finally, we will prove (22). The congruence (22) is trivial when \(\alpha = 0 \). Now we may assume \(\alpha \geq 1 \). With the help of (15), (17), and (24), for any nonnegative integer \(l \) with \(l \equiv 1 \text{(mod} 3) \), we have

\begin{equation}
\sum_{\lfloor k/3^\alpha \rfloor = l} \left(\begin{array}{c} 2k \\ k \end{array} \right) \left(\frac{h}{2} \right)^k \equiv 3^\alpha (l + 1) \left(\frac{2l + 2}{4l^2} + \frac{1}{3l + 1} \right) - 3^\alpha l \left(\frac{l}{4l^2} + \frac{1 - 2h}{3l + 1} \right) = 3^\alpha l \left(\frac{2l}{4l^2} - \frac{1}{4l^2} \right) (\text{mod} 3^{l+1}).
\end{equation}

This concludes the proof. \(\square \)
Lemma 5. Let \(p \) be an odd prime and \(l, s \) be nonnegative integers. Let \(\Delta = m(m - 4) \). For any integer \(m \equiv 0 \pmod{p} \), we have

\[
\sum_{k=p^l}^{p^{l+1}-1} \binom{2k}{k} \frac{1}{m^k} = \sum_{k=0}^{p^{l+1}-1} \binom{2k}{k} \frac{1}{m^k}
\]

Equation (27)

Substituting \(n = p^{l-1}(l + 1) \) and \(n = p^{l-1}l \) in (6), we obtain (27).

Proof. The proof is very similar to (20). Clearly,

\[
\sum_{k=p^l}^{p^{l+1}-1} \binom{2k}{k} \frac{1}{m^k} = \sum_{k=0}^{p^{l+1}-1} \binom{2k}{k} \frac{1}{m^k} - \sum_{k=0}^{p^{l-1}} \binom{2k}{k} \frac{1}{m^k}.
\]

(28)

Proof. Note that

\[
\frac{p^{l-1}}{j!} \sum_{j=1, p \nmid j}^{p^{l+1}-1} \frac{1}{j} \equiv \frac{p^{l+1}}{j!} \sum_{j=1, p \nmid j}^{p^{l-1}} \frac{1}{j} \equiv \frac{2}{p^{l-1}} \sum_{j=1}^{p^{l+1}-1} \frac{1}{j} \pmod{p},
\]

Equation (29)

With the help of Lucas’ theorem (cf. [17], p. 44), it follows that

\[
\sum_{k=0}^{p^{l-1}} \binom{2k}{k} \frac{1}{m^k} \equiv \sum_{x=0}^{p^{l-1}/2} \left(\frac{2s}{x} \right) \left(\frac{2t}{x} \right) \left(\frac{h}{x} \right)^{x^{st}} \sum_{x=1}^{1} \frac{1}{j}
\]

Equation (30)

\[+ \sum_{x=0}^{p^{l-1}/2} \left(\frac{2s+1}{x} \right) \left(\frac{2t-p}{x} \right) \left(\frac{h}{x} \right)^{x^{st}} \sum_{x=1}^{1} \frac{1}{j} \equiv \sum_{x=0}^{p^{l-1}/2} \left(\frac{2s}{x} \right) \left(\frac{h}{x} \right)^{x^{st} \pmod{p}}.
\]

Equation (31)

Since \((2/h) - 4 \equiv 0 \pmod{p} \), in view of (16), then

\[
\sum_{x=0}^{p^{l-1}/2} \left(\frac{2s}{x} \right) \left(\frac{h}{x} \right)^{x^{st}} \equiv 0 \pmod{p^{l+1}}.
\]

Equation (32)
The congruence (29) with \(a \geq 2 \) holds by (31) and (32). Now suppose that \(a = 1 \). In fact, for \(k = 0, \ldots, (p - 1)/2 \), we clearly have

\[
\binom{2k}{k} = \left(\frac{-1}{2} \right)^k \equiv \left(\frac{p - 1}{2} \right)^k \pmod{p}.
\]

(33)

Observing that \(2h \equiv 1 \pmod{p} \), we obtain

\[
\sum_{t=1}^{(p-1)/2} \binom{2t}{t} \ell \sum_{j=1}^{t} \frac{(-1)^j}{j} \equiv \sum_{t=1}^{(p-1)/2} \frac{(-1)^j}{j} \sum_{j=1}^{t} \frac{(-1)^j}{j}(t - j) \pmod{p}.
\]

(34)

Thus,

\[
\sum_{j=1}^{(p-1)/2} \frac{(-1)^j}{j} \sum_{t=j}^{(p-1)/2} \left(\frac{p - 1}{2} \right)_{t} \left(1 \pmod{p} \right).
\]

(36)

Therefore, (29) with \(a = 1 \) is proved by (31), (34), and (36).

By the above, we have completed the proof of Lemma 6. \(\square \)

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. We first prove (10). Let \(v_p(n) = a \). (10) is evidently trivial when \(a = 0 \). Next, we suppose that \(a \geq 1 \). With the help of (13), we have
\[
\sum_{k=0}^{n-1} \binom{hn - 1}{k} \left(\frac{2k}{k} \right) \left(\frac{-h}{2} \right)^k = \sum_{k=0}^{n-1} \sum_{\frac{k}{p}} \binom{\frac{h-1}{p}}{\frac{k}{p}} (-1)^{k-\lfloor k/p \rfloor} \left(\frac{2k}{k} \right) \left(\frac{-h}{2} \right)^k
\]
\[
= \sum_{l=0}^{(n/p)-1} \left(\frac{n}{p} h - 1 \right) \left(\frac{2k}{k} \right) \left(\frac{h}{2} \right)^k \equiv 0 \pmod{p^a}.
\]

By (20) and (21), for any odd prime \(p \), we get
\[
\sum_{\lfloor k/p \rfloor = 1} \left(\frac{2k}{k} \right) \left(\frac{h}{2} \right)^k \equiv 0 \pmod{p}.
\] (38)

Repeating the above process \(a - 1 \) times, we obtain that
\[
\sum_{\lfloor k/p \rfloor = 1} \left(\frac{2k}{k} \right) \left(\frac{h}{2} \right)^k \equiv 0 \pmod{p^a}.
\] (39)

Let us turn to (9). We assume that \(p \geq 5 \). In view of (13), we obtain
\[
\sum_{k=0}^{p^a-1} \left(\frac{hp^a - 1}{k} \right) \left(\frac{2k}{k} \right) \left(\frac{-h}{2} \right)^k
\]
\[
= \sum_{k=0}^{p^a-1} \left(\frac{hp^a - 1}{k} \right) \left(\frac{2k}{k} \right) \left(\frac{-h}{2} \right)^k
\]
\[
= \sum_{l=0}^{p^a-1} \left(\frac{h}{l} \right) \left(\frac{-h}{2} \right)^k \left(1 - hp^a \sum_{j=1,p\mid j} \frac{1}{j} \right)
\]
\[
+ \sum_{l=0}^{p^a-1} \sum_{\lfloor k/p \rfloor = 1} \left(\frac{2k}{k} \right) \left(\frac{h}{2} \right)^k \left(1 - hp^a \sum_{j=1,p\mid j} \frac{1}{j} \right) \pmod{p^{a+1}}.
\] (40)
For any positive integer \(a \), we have
\[
\left(h^{p^{a-1} - 1} l \right)(-1)^l \equiv 0 \pmod{p}.
\] (41)

Therefore,
\[
\sum_{k=0}^{p^{a-1}} \binom{h^{p^{a-1} - 1}}{k} \binom{2k}{k} \left(\frac{h}{2} \right)^k = \sum_{l=0}^{p^{a-1}-1} \binom{h^{p^{a-1} - 1}}{l} (-1)^l \sum_{\{l/p\}=l} \binom{2k}{k} \left(\frac{h}{2} \right)^k
\]

\[
= \sum_{l=0}^{p^{a-1}-1} \binom{h^{p^{a-1} - 1}}{l} (-1)^l \sum_{\{l/p\}=l} \binom{2k}{k} \left(\frac{h}{2} \right)^k
\]

\[
= \sum_{l=0}^{p^{a-1}-1} \binom{h^{p^{a-1} - 1}}{l} (-1)^l \sum_{\{l/p\}=l} \binom{2k}{k} \left(\frac{h}{2} \right)^k
\]

If \(a = 1 \), by (20), (29), and (42), then
\[
\sum_{k=0}^{p^{a-1}} \binom{h^{p^{a-1} - 1}}{k} \binom{2k}{k} \left(\frac{h}{2} \right)^k
\]

\[
= \sum_{k=0}^{p^{a-1}-1} \binom{2k}{k} \left(\frac{h}{2} \right)^k - 2hp \equiv p(1-2h) \equiv 0 \pmod{p^2}.
\] (44)

The congruence (9) holds with \(a = 1 \) and \(p \geq 5 \). If \(a \geq 2 \), combining (42) and (43), we have modulo \(p^{a+1} \),
\[
\sum_{l=0}^{p^{a+1}-1} \binom{h^{p^{a+1} - 1}}{l} (-1)^l \sum_{\{l/p\}=l} \binom{2k}{k} \left(\frac{h}{2} \right)^k
\]

Repeating this process \(s - 1 \) times, we have
\[
\sum_{l=0}^{p^{a-1}} \binom{h^{p^{a-1} - 1}}{l} (-1)^l \sum_{\{l/p\}=l} \binom{2k}{k} \left(\frac{h}{2} \right)^k
\]

\[
= \sum_{m=0}^{p^{s+1}-1} \binom{h^{p^{s+1} - 1}}{m} (-1)^m \sum_{\{l/p\}=m} \sum_{\{l/p\}=l} \binom{2k}{k} \left(\frac{h}{2} \right)^k
\]

\[
- h^{p^{s+1} - 1} \sum_{m=0}^{p^{s+1}-1} \sum_{\{l/p\}=m} \sum_{\{l/p\}=l} \frac{1}{j} \sum_{\{l/p\}=l} \binom{2k}{k} \left(\frac{h}{2} \right)^k.
\] (46)

By (20) and (29), we get
At last, we only need to think about the case \(s = a - 1 \).
From (45)–(47), we have
\[
\sum_{k=0}^{p^a-1} \left(h p^{a-1} - 1 \right) \binom{2k}{k} \left(-\frac{h}{2} \right)^k \equiv h p^a \sum_{l=1}^{p^a-1} \left(\frac{2l}{4} \right) \sum_{j=1, p|l} \frac{1}{j} \equiv h p^a \sum_{l=1}^{p^a-1} \left(\frac{2l}{4} \right) \sum_{j=1, p|l} \frac{1}{j}.
\]

\[\equiv (1 - 2h) p^a \equiv 0 \mod p^{a+1}.\]
(48)

\[
h_3^{a-s} \sum_{m=0}^{3^{a-s}-1} \sum_{j=1,3|j} \frac{1}{j} \sum_{l=0}^{3m-1} \left(\sum_{j=1,3|j} \frac{2k}{k} \left(\frac{h}{2} \right)^k \right) \]

\[= h_3^{a-s} \sum_{m=0}^{3^{a-s}-1} \sum_{j=1,3|j} \frac{1}{j} \sum_{l=3m}^{3m+2} \left(\sum_{j=1,3|j} \frac{2k}{k} \left(\frac{h}{2} \right)^k \mod 3^{a+1} \right),\]
(49)

From (22), we obtain
\[
\sum_{j=1,3|j} \frac{1}{j} = \sum_{j=1,3|j} \frac{1}{j} + \frac{1}{3m + 1} \equiv 1 \mod 3,
\]

\[
\sum_{j=1,3|j} \frac{1}{j} \equiv 1 + \frac{1}{2} \equiv 0 \mod 3.
\]

With the help of (22), we obtain
have any integer proof of (11) is very similar to (10). With the help of (13), for integer

\[
\text{Proof of Theorem 2. Let } n = p^{s-1}d \text{ with } p \nmid d \text{ and } a \geq 1. \text{ The proof of (11) is very similar to (10). With the help of (13), for any integer } s \in [0, a - 1] \text{ and nonnegative integer } k, \text{ now we have}
\]

\[
\left(-1\right)^k \left(\frac{p^{s-1}d - 1}{k}\right) - \left(-1\right)^{k/p} \left(\frac{k}{p}\right) \in p^{s-i}d\mathbb{Z}_p
\]

\[
\text{(55)}
\]

Therefore,
\[
\frac{1}{d} \left(\sum_{k=0}^{p^d-1} \binom{\frac{k}{l} d - 1}{k} \binom{2k}{k} \frac{1}{(-m)^k} \right) \left(\frac{\Delta}{p} \right) \sum_{k=0}^{p^d-1} \left(\frac{p^d - 1}{k} \binom{2k}{k} \frac{1}{(-m)^k} \right)
\]

\[
\equiv \frac{1}{d} \left(\sum_{k=0}^{p^d-1} \binom{p^d - 1}{l} \binom{2k}{k} \frac{1}{(-m)^k} \right) \left(\frac{\Delta}{p} \right) \left(\frac{2l}{l} \right) \quad \text{(mod } p^d) \]

(56)

In light of Lemma 5, we have

\[
\frac{1}{d} \left(\sum_{l=0}^{d-1} \binom{p^d - 1}{l} \binom{2k}{k} \frac{1}{(-m)^k} \right) \left(\frac{\Delta}{p} \right) \left(\frac{2l}{l} \right)
\]

\[
\equiv \frac{1}{d} \left(\sum_{l=0}^{d-1} \binom{p^d - 1}{l} \binom{2k}{k} \frac{1}{(-m)^k} \right) \left(\frac{\Delta}{p} \right) \left(\frac{2l}{l} \right) \quad \text{(mod } p^d) \]

(57)

\[
\frac{1}{d} \left(\sum_{l=0}^{d-1} \binom{p^d - 1}{l} \binom{2k}{k} \frac{1}{(-m)^k} \right) \left(\frac{\Delta}{p} \right) \left(\frac{2l}{l} \right)
\]

By Lemma 5 and (55), we get

\[
\frac{1}{d} \left(\sum_{l=0}^{d-1} \binom{p^d - 1}{l} \binom{2k}{k} \frac{1}{(-m)^k} \right) \left(\frac{\Delta}{p} \right) \left(\frac{2l}{l} \right)
\]

\[
\equiv \frac{1}{d} \left(\sum_{l=0}^{d-1} \binom{d - 1}{l} \binom{2k}{k} \frac{1}{(-m)^k} \right) \left(\frac{\Delta}{p} \right) \left(\frac{2l}{l} \right) \equiv 0 \quad \text{(mod } p^d) \]

(58)

where the last result comes from Lemma 5.

In view of the above, we have completed the Proof of Theorem 2.

\[\blacksquare\]

Data Availability

No data were used to support this study.
Disclosure

An earlier version of this article has been presented as preprint on arXiv which can be accessed from the following link: https://arxiv.org/abs/1911.00005.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported by the National Natural Science Foundation of China (grant nos. 11971222 and 12071208), Natural Science Foundation of Nanjing Institute of Technology (no. CKJB201807), and Special Program for Student Innovation and Entrepreneurship Training (S20190025).

References

[1] H. Pan and Z.-W. Sun, “A combinatorial identity with application to Catalan numbers,” Discrete Mathematics, vol. 306, no. 16, pp. 1921–1940, 2006.
[2] Z.-W. Sun and R. Tauraso, “On some new congruences for binomial coefficients,” International Journal of Number Theory, vol. 7, no. 3, pp. 645–662, 2011.
[3] V. J. W. Guo, “Proof of a q-congruence conjectured by Tauraso,” International Journal of Number Theory, vol. 15, no. 1, pp. 37–41, 2019.
[4] J.-C. Liu and F. Petrov, “Congruences on sums of q-binomial coefficients,” Advances in Applied Mathematics, vol. 116, p. 102003, 2020.
[5] V. J. W. Guo and W. Zudilin, “Dwork-type supercongruences through a creative q-microscope,” Journal of Combinatorial Theory-Series A, vol. 178, p. 105362, 2021.
[6] Z.-W. Sun, “Binomial coefficients and quadratic fields,” Proceedings of the American Mathematical Society, vol. 134, no. 8, pp. 2213–2222, 2006.
[7] S. F. Hong and M. Qiu, “On the p-adic properties of Stirling numbers of the first kind,” https://arxiv.org/pdf/1908.05594.
[8] P. Leonetti and C. Sanna, “On the p-adic valuation of stirling numbers of the first kind,” Acta Mathematica Hungarica, vol. 151, no. 1, pp. 217–231, 2017.
[9] H. Pan and Z.-W. Sun, “On 2-adic orders of some binomial sums,” Journal of Number Theory, vol. 130, no. 12, pp. 2701–2706, 2010.
[10] M. Qiu and S. Hong, “2-adic valuations of Stirling numbers of the first kind,” International Journal of Number Theory, vol. 15, no. 9, pp. 1827–1855, 2019.
[11] Z. Sun, “Binomial coefficients, Catalan numbers and Lucas quotients,” Science China Mathematics, vol. 53, no. 9, pp. 2473–2488, 2010.
[12] Z.-W. Sun, “Supercongruences involving Lucas sequences,” Monatshefte für Mathematik, pp. 1–30, 2021.
[13] Z.-W. Sun, “On sums of binomial coefficients modulo p^s,” Colloquium Mathematicum, vol. 127, no. 1, pp. 39–54, 2012.
[14] F. Beukers, “Some congruences for the Apery numbers,” Journal of Number Theory, vol. 21, no. 2, pp. 141–155, 1985.
[15] R. Osburn, B. Sahu, and A. Straub, “Supercongruences for sporadic sequences,” Proceedings of the Edinburgh Mathematical Society, vol. 59, no. 2, pp. 503–518, 2016.
[16] Z.-W. Sun, “p-adic valuations of some sums of multinomial coefficients,” Acta Arithmetica, vol. 148, no. 1, pp. 63–76, 2011.