Liver involvement in the drug reaction, eosinophilia, and systemic symptoms syndrome

Sylvia A Martinez-Cabriales, Neil H Shear, Emmanuel I Gonzalez-Moreno

Abstract
First described in 1996, the drug reaction, eosinophilia, and systemic symptoms syndrome (DReSS) is considered, along with Stevens-Johnson syndrome and toxic epidermal necrolysis, a severe cutaneous drug reaction. It is characterized by the presence of a maculopapular erythematous skin eruption, fever, lymphadenopathy, influenza-like symptoms, eosinophilia, and visceral involvement such as hepatitis, pneumonitis, myocarditis, pericarditis, nephritis, and colitis. The prognosis of patients with DReSS is related to the severity of visceral involvement. The mortality ranges from approximately 5% to 10%, and death is mainly due to liver failure, which is also the organ most commonly involved in this syndrome. Although it was previously hypothesized in 1994, DReSS syndrome can lead to reactivation of one or more human herpesvirus family members. Now being included as diagnostic criteria in a proposed diagnostic score system, this reactivation can be detected up to 2-3 wk after DReSS syndrome onset. Other causes of mortality in DReSS syndrome include myocardial or pulmonary lesions and hemophagocytosis. We reviewed the literature of previously reported case-series of DReSS and liver involvement, highlighting the pattern of liver damage, the treatment used, and the outcome.

Key words: Drug reaction, eosinophilia, and systemic symptoms syndrome; Severe
cutaneous drug reactions; Drug-induced hypersensitivity syndrome; Drug-induced liver injury; Acute liver failure

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Drug reaction, eosinophilia, and systemic symptoms syndrome (DReSS) is considered a severe cutaneous drug reaction. It can present with a broad spectrum of clinical manifestations making its diagnosis challenging. Factors associated with a poor prognosis include delayed diagnosis, viral reactivation, the presence of systemic inflammatory response syndrome, and severe organ involvement. Liver injury, presented in more than half of DReSS patients, ranges from mild transaminasemia to acute liver failure and is one of the most common causes of death in these patients. Prompt withdrawal of the culprit agent and a multidisciplinary approach in patients with internal organ affection are of utmost importance.

INTRODUCTION

Adverse drug reactions commonly involve the liver, the main organ in which drug metabolism occurs. It has been estimated that more than 600 medications have been related to significant liver injury[1]. Furthermore, herbal, complementary, and alternative medications, as well as illicit drugs such as anabolic steroids and amphetamines, have also been related to this problem[2]. Drug-induced liver injury (DILI) is one type of adverse drug reaction, which was ranked as one of the major causes of acute liver failure[3-5]. It is classified into two main types: intrinsic or idiosyncratic[6]. The former is all the predictable adverse drug reactions that are dose-dependent and manifested shortly after the drug was ingested[7]. In this case, the culprit is direct-chemical damage to the drug or its metabolite[8]. The idiosyncratic drug reaction, which is unpredictable, is characterized by a delayed onset of symptoms once the drug was taken[9]. It is subdivided into two categories: non-allergic and allergic reaction. In the non-allergic, the liver frequently is the only organ involved; however, in the allergic reaction, multisystemic organ involvement may be observed[10].

Drug reaction, eosinophilia, and systemic symptoms syndrome (DReSS), also widely known as drug-induced hypersensitivity syndrome (DiHS), corresponds to a hypersensitivity drug reaction[11]. This syndrome was recognized in 1981 when Spielberg and Shear identified drug hepatotoxicity along with fever and a rash, which they called anticonvulsant hypersensitivity syndrome[12]. Several diagnostic criteria have been proposed for DReSS/DiHS, which is characterized by the presence of a maculopapular erythematous skin eruption, fever, lymphadenopathy, eosinophilia, and visceral involvement such as hepatitis, pneumonitis, eosinophilia, and visceral involvement such as hepatitis, pneumonitis, myocarditis, pericarditis, nephritis, and colitis, and the liver is the most common organ involved[13]. Importantly, DReSS/DiHS might present with acute liver failure, which increases its mortality[14]. In this context, liver failure is usually classified in the group of drug-induced liver injuries[15]. This review focuses on the liver involvement present in DReSS/DiHS reported in the literature in case series.

LITERATURE REVIEW

We reviewed the literature and summarized all reported case-series of DReSS-associated with liver involvement obtained from MEDLINE and EMBASE between January 1990 and July 2018 using the following terms: “DReSS syndrome,” “drug reaction with eosinophilia and systemic symptoms,” “drug rash with eosinophilia and systemic symptoms,” “drug hypersensitivity and eosinophilia,” “drug-induced hypersensitivity syndrome”. The search was limited to the English language. After
gathering all articles, we described the number of patients included, those with liver involvement, type of presentation, blood work, drug involved, other associations, treatment received, mortality, and follow-up.

DEFINITIONS

In this review, we will use the acronym DReSS/DiHS instead of DRESS as a recent review highlighted the importance of clarifying that eosinophilia is not mandatory to confirm this syndrome[18]. In 1996, Bocquet et al[19] established three criteria needed for diagnosis of DReSS/DiHS syndrome: skin eruption, eosinophilia (≥ 1.5 × 10^9/μL), and visceral involvement (transaminase elevation ≥ 2 times upper normal limit, lymphadenopathy > 2 cm in diameter, nephritis, interstitial pneumonia, or carditis). In 2006, Shiohara et al[20] proposed to include as diagnostic criteria the presence of human herpes virus 6 (HHV-6) reactivation, as they documented HHV-6 IgG titers and DNA 2-3 wk after the onset of the rash. The group suggested this virus to be a cause of this hypersensitivity syndrome. Finally, in 2007 the RegiSCAR group developed a new scoring system. Hospital admission as a result of the suspected drug-related reaction and at least three of the following findings: acute skin rash, fever, lymphadenopathy of at least two sites, the involvement of at least one internal organ, lymphocytosis/lymphocytopenia, peripheral eosinophilia, and thrombocytopenia. According to this scoring system, patients were classified into definite, probable, possible, or no diagnosis of DReSS/DiHS (Table 1)[21].

With regard of DILI a previous definition set the following threshold for defining its diagnosis: elevation of AST and/or ALT or bilirubin or alkaline phosphatase > 2 upper limit of normal (ULN)[22,23]. Subsequently, given the adaptation or tolerance that may occur in up to 20% of drugs, the levels of transaminases elevations were modified to > 5 ULN without symptoms, or rise in alkaline phosphatase > 2 ULN, or rise in bilirubin > 2 ULN with any transaminases increasing. Alternatively, AST or ALT < 5 ULN with symptoms also defines DILI[24].

Patients with acute hepatitis and elevated prothrombin time or international normalized ratio levels without mental status changes are frequently labeled as having a severe acute liver injury[25].

EPIDEMIOLOGY

Although liver involvement is the most common visceral manifestation of patients with DReSS/DiHS, it presents mainly as hepatocellular injury, sometimes cholestasis, or both and rarely fulminant hepatitis and death[26]. Asymptomatic transaminasemia may occur in up to 20% of patients on drugs[27]. An estimation of a severe cutaneous drug reaction is about 1 of every 1000 hospitalized patients[28]. The DReSS/DiHS belongs to this category with an estimated incidence of one in 1000 to one in 10000 drug exposures[29,30] and mortality of approximately 5% to 10%[31]. Liver injury is the most common organ damage seen in cases of DReSS/DiHS with rates ranging from 51% to 87%[15,31-34]. Kardaun et al[35] reported that liver injury was the most common internal organ involvement seen in 75% (81/114) of DReSS/DiHS cases, in which 91% of the cases had visceral organ involvement. Shiohara[20] reported liver complications in up to 70% of drug-induced hypersensitivity syndrome patients. Cacoub et al[13] reported liver injury in 94% of DReSS/DiHS patients. One study reported β-lactams antibiotics, allopurinol, non-steroidal anti-inflammatory drugs, and sulfonamide as the most commonly associated drugs with DReSS/DiHS accompanied by liver dysfunction in 23 cases[36]. Another study reported sulfonamides (13/14; 92.9%), followed by antiepileptic drugs (19/22; 86.3%), and allopurinol (15/19; 78%) to have the highest risk of inducing liver injury in DReSS/DiHS[37]. To put DILI in context, Russo et al[38] reported that drug hepatotoxicity was the cause in 15% of liver transplantation as a result of acute liver failure from 2291 transplants in the United States between 1990 and 2002. Even though acetaminophen either as a single treatment or combined with another drug, was the principal drug related in 133/270 (49%) cases, idiosyncratic liver injury leading to 42% of liver transplants, was associated with four drugs: isoniazid, propylthiouracil, phenytoin, and valproate[39].

PATHOGENESIS

The pathogenesis of DReSS/DiHS is multifactorial including genetic polymorphisms and environmental factors. One hypothesis is based on the combination of a drug
Table 1 RegiSCAR scoring system for classifying drug reaction, eosinophilia, and systemic symptoms syndrome/drug-induced hypersensitivity syndrome

Clinical manifestations	SCORE	Range	Min	Max	
Fever	-1	0	-1	0	
Enlarged lymph nodes	No/U	Yes	0	1	
Eosinophilia	No/U	Yes	0	2	
Eosinophils	No/U	700-1499/μL	0	2	
Eosinophils, if leukocytes < 4000	No/U	(10%-19.9%)	0	2	
Atypical lymphocytes	No/U	Yes	0	1	
Skin involvement	No/U	> 50%	-2	2	
Skin rash suggesting DReSS	No	U	Yes	0	2
Biopsy suggesting DReSS	No	Yes/U	0	2	
Liver	No/U	Yes	0	2	
Kidney	No/U	Yes	0	2	
Lung	No/U	Yes	0	2	
Muscle/heart	No/U	Yes	0	2	
Pancreas	No/U	Yes	0	2	
Other organ(s)	No/U	Yes	0	2	
Resolution ≥ 15 d	No/U	Yes	-1	0	
Evaluation other potential causes: ANA; blood culture; serology for HVA/HVB/HVC/Chlamydia-/Mycoplasma pneumonia; other serology/PCR.	Yes	0	1		
If none positive and ≥ 3 of above negative	Yes	0	1		
Total score	-4	9			

Final score meaning: < 2: no case; 2-3 possible case; 4-5: probable case; and > 5: definite case

1After exclusion of other explanations: 1 = 1 organ, 2 = ≥ 2 organs. Adapted from Kardaun et al[21]. U: Unknown/unclassifiable; DReSS: Drug reaction, eosinophilia, and systemic symptoms syndrome; ANA: Antinuclear antibody; PCR: Polymerase chain reaction.

...covalently joined to a protein acting as a hapten, accompanied by a co-stimulatory trigger-virus infection or reactivation, bacterial infection, or inflammatory disorder in a genetically susceptible individual leading to T-cell responses to the antigen, which could be expressed on the hepatocytes surface[39]. Studies have shown the presence of drug-specific cytotoxic T cells in the serum and liver of DILI patients and the skin of DReSS/DiHS patients[40,41]. These cells, which release perforin, granzyme B, and Fas/Fas L-dependent cell death, are believed to induce cell death in both organs[40,42].

Another proposed mechanism involves the immune response to reactivation of latent viruses of the herpesvirus family[43,44], which is seen in DReSS/DiHS complicated cases. It is hypothesized that DReSS/DiHS triggers reactivation of latent viral infection, which may produce a viral exanthema of fevers and rash that may overlap with, or be difficult to distinguish from DReSS/DiHS. Tohyama et al[43] compared 100 patients with or without an increase of anti-HHV-6 IgG titers and reported that the flare-up of symptoms such as fever and hepatitis was closely related to HHV-6 reactivation. In Eshki et al[45] retrospective study, only seven patients were...
examined for an active HHV-6 infection. An active HHV-6 infection was found in six patients, including a patient with fulminant liver failure. Further tests confirmed that HHV-6 infection was a reactivation and not a primary infection. Furthermore, HHV-6 may also cause hepatitis, including fulminant liver failure that is rapidly reversed when antiviral treatment is promptly initiated. Liver damage in patients with DReSS/DiHS could be caused by eosinophilic infiltration driven by interleukin IL-5. Hypereosinophilia, if persistent, can be toxic to endothelial cells and contribute to organ damage such as interstitial nephritis, pneumonitis, myositis, eosinophilic carditis, pancreatitis, thyroiditis or encephalitis, and possibly hepatitis.

CLINICAL PRESENTATION

The liver may be the first organ involved in a hypersensitivity drug reaction. It could range from a mild increase of liver enzymes to acute fulminant hepatic failure with the cholestatic type as the most common. The cholestatic pattern is characterized by increased serum transaminases and alkaline phosphatase with prolonged jaundice after drug withdrawal. The hepatocellular pattern presents with increased serum transaminases, minimal serum alkaline phosphatase elevation, and variable jaundice. A mixed pattern has combined features of hepatocellular and cholestatic injury (Figure 1). Peyrière et al. reported liver involvement in more than 60% of 216 DReSS/DiHS cases with a hepatocellular necrosis more common than the cholestasis. Lin et al. reported that atypical lymphocytosis was seen more frequently in DReSS/DiHS cases with liver injury than cases without liver involvement (74.2% vs 30.0%, P = 0.010). One study reported that younger patients most commonly presented with a hepatocellular-type, and that the cholestatic-type was seen more often in older patients (P = 0.044).

Compared to other severe drug hypersensitivity reactions such as Stevens-Johnson syndrome, a study found a more severe hepatocellular pattern and a moderate to severe cholestatic-type liver injury along with longer liver recovery in DReSS/DiHS cases. They emphasized that the long duration of the liver involvement could last months after the rash resolved. Wang et al. reported a hyperbilirubinemia in 12 (31.58%) patients, aspartate aminotransferase (AST) elevation (> 100 IU/L) in 19 (50.50%) patients, and 9 (23.68%) patients developed hepatic failure. Several case reports have reported liver injury before skin eruption. Lin et al. noticed this clinical presentation in 9.7% of cases. Lee et al. reported that renal dysfunction was more common in patients with liver dysfunction (39% vs 1%, P = 0.001), and patients with liver dysfunction were more likely to have renal dysfunction (96% vs 34%, P = 0.001). Lymphadenopathy was also commonly seen in patients with liver involvement (23% vs 6%, P = 0.005). Mortality was significantly higher in patients with liver dysfunction (11% vs 1%, P = 0.018). Ichai et al. described the histological features on the liver from DReSS/DiHS cases. They reported acute hepatitis with cytotoxic phenotype. Eosinophils were found in five of seven cases. Kupffer cell hyperplasia with erythrophagocytosis was observed in six of seven cases. They also reported a diminished factor V level at admission (less than 40%), or a reduction at day 2 was predictive of death or liver transplant (Table 2).

SKIN BIOPSY

Lin et al. did not find any difference in the eosinophils in the dermis between patients with or without liver injury (64.5% vs 60%, P = 1). On the other hand, they reported that eosinophils in the dermis were present more frequently in patients with non-severe hypersensitivity hepatitis (88.9% vs 30.8%, P = 0.002), concluding that the extreme group cases might be more related to the immunoallergic attack to the hepatocytes. Walsh et al. reported that patients with clinical presentation of erythema multiforme-like were associated with higher elevations of AST (P = 0.01), concluding these patients have worse liver involvement.

TREATMENT

Although further studies are needed to evaluate the role of systemic corticosteroids in drug-induced systemic hypersensitivity and liver injury, it seems this therapy has a role in the treatment with DReSS/DiHS and liver involvement. A favorable outcome has been reported when fulminant hepatitis associated with DReSS/DiHS was treated.
The RegiSCAR criteria should be done to potential cases of DReSS for more accurate diagnosis and classification (see Table 1).

Organ involvement after exclusion of other explanations.

with intensive corticosteroid therapy (methylprednisolone 1 g/d) for 3 d (3750 mg prednisone within 30 d)[52]. On the other hand, the study by Lee et al [36] demonstrated that in patients with DReSS/DiHS associated with liver injury, the use of systemic corticosteroids did not confer additional benefits regarding disease duration and recovery of liver function.

Mortality

Concerning DReSS/DiHS, acute-stage mortality ranges from 5% to 10% and is mainly attributed to specific liver injury, myocardial or pulmonary lesions, and hemophagocytosis[19,26]. Fifteen percent of liver transplantation cases in the United States are caused by DILI[38]. The mortality of 10% in those patients with a combination of hepatocellular injury and jaundice, first described by Zimmerman, has been confirmed in several studies[53-55]. In their case-series Ichai et al[16] reported that 43.7% of patients (7/16) with DReSS/DiHS related acute liver injury/acute liver failure underwent transplantation (n = 5) or died (n = 2).

Conclusion

Although rare, DReSS/DiHS is considered a severe cutaneous drug reaction, which could potentially lead to death, especially in patients with delayed diagnosis, viral reactivation, the presence of systemic inflammatory response syndrome, and severe organ involvement. A better understanding of its pathophysiology is required to elucidate risk factors for severe visceral involvement, as it is demonstrated to be the main cause of mortality. Patients with ongoing deterioration of liver function must be tested for reactivation of latent viruses of the herpesvirus family. Furthermore, a multidisciplinary approach in patients with severe internal organ affection is of utmost importance.
Table 2. Liver involvement reported in drug reaction, eosinophilia, and systemic symptoms syndrome/drug-induced hypersensitivity syndrome case series

Ref.	N	Liver, n (%)	Presentatio n, n (%)	Blood work, n (%)	Drug, n (%)	Association s	Treatment	Mortality, n (%)	Follow-up, n (%)	
Chiou et al[32]	30 (M: 15; F: 15)	26 (86.6)	Jaundice 5 (16.6); Mild LI to FH; Toxic liver 6 (20)	Eos (> 1500/μL) 14 (48); Serology HHV-6: 7/11 (63); CMV, EBV, HSV IgM: all negative; HIV 3	Allopurinol 11 (37); CBZ 6 (20)	RI 16 (53.3); ATL 13 (45)	HC/PTN: 22 (76); TS + Anti-HLA-17 (23)	3 (10) (acute RF, sepsis, and GA bleeding)	DM type 1: 2 patients	
Mansur et al[56]	31 (M: 15; F: 16)	22 (71)	ALT: > 2 fold of UNP to 20 - fold of increase; Hepatitis 16 (51); Hepatomegaly 7 (22.6)	ALT: 2–5 fold increase 3 (10.0); ≥ 5 fold increase 4 (13.3); AST: 2–5 fold increase 1 (3.3); ≥ 5 fold increase 4 (13.3); GGT: 2–5 fold increase 6 (20.7); ≥ 5 fold increase 9 (31); Eos (> 350) 14/28 (64.3)	CBZ 11 (48); Phenytoin 11 (55.4); Lamotrigine 3 (9.6)	CI 2 (6.45)	MTP: 27; TS + anti-HLA-1 3	One TEN patient died of sepsis 6 (19.4)	3 patients	
Ben m’rad et al[34]	24 (M: 12; F: 12)	22 (91.6)	Cholangitis or non-lithiasis cholecystitis	ALT increased in 22 patients; ≥ 5N 13 (54); Eos (> 500 μ/L) 12 (50); Serology/PCR for HHV6, HHV8, CMV, and EBV were negative	Allopurinol 4; SE 3; SMX-TMP 3	RI 4 (17); Heart 5 (21); ATL 14	PDN: 11 (45)	0	No relapses occurred; Sequelae: myocarditis 1; Steroid dependent: 1	
Eshki et al[45]	15 (M: 5; F: 10)	9 (60)	HP of FH: massive hepatic necrosis + eosinophilic and lymphocytic inflammatory infiltrates	DNA PCR HHV-6: serum 6/7 patients; liver 1/7; CNS: 1/7; HHV-6-IgM and IgG1 patient with FH (reactivation); HIV+ 1 patient	Allopurinol 4; Minocycline 3; Antiepileptics 3	FH + HHV-6: 1; Hypertensive encephalitis (HHV-6 DNA CSF): 1 RI: 6	3 (20); MOF + DIC: 1	14 were admitted to the ICU where 3 died; 1 Flared twice when tapering of SS		
Picard et al[57]	40 (M: 19 F: 21)	39 (99)	Eos 32 (80); EBV react 16 (42); HHV-6 react 17 (45); HHV-7 react 12 (32)	Anticonvulsants 12 (30); Antibiotics 11 (27)	RF 10 (25); FH 2 (5)	LT: 1	3 (7.5); Endocarditis (1) septicemia (1) stroke (1, unrelated to DReSS)	17 (42) symptoms were still present at 180 d		
Chen et al[31]	60 (M: 26; F: 34)	48 (80)	LI > 2 UNL	Eos (> 700/μL) 31 (52) EBV and CMV IgG + 9 patients; HHV-6-IgG + 1 patient, but negative PCR (only patient tested)	Allopurinol 32); Phenytoin 18; Dapsone 17	RI 24 (40); RF 5 (8); HF 4; ATL 63	SS: 45 (75); + IVIG: 2; Non-AT: 6	6 (10) (1 MOF; 3 septic shock; 1 cardiogenic shock; 1 shock)	Hyperthyroidism	
Study (Ref)	Patients	Gender	Description	Liver Enzymes	Anticonvulsants	NSAIDs	Antibiotics	Non-AT	Sequelea	Follow-up
------------	----------	--------	-------------	---------------	----------------	--------	-------------	--------	----------	-----------
Ang et al [58]	27 (M: 12; F: 15)		Liver enzymes > 10 UNL: 13 (48); Eos 22 (%); Serology was not done							0 (32) flared while SS tapering; 17 completed SS treatment (7 to 160 d, mean of 50); Sequela: RI 3; AT 1, and myocarditis 1
Um et al [47]	38 (M: 18; F: 20)		ALT (mean 383.39 IU/L, range 26-3633); AST (mean 382.73 IU/L, range 28-2360); Eos (> 500/μL) 35 (91); Serology negative to CMV, EBV, or HSV		Anticonvulsants 18 (47); Antibiotics 7 (18); NSAIDs 5 (13)					1 (3) LF + opportunistic infection
Wongkitisophon et al [59]	27 (M: 14; F: 13)		ALT mean 188 IU/L (r 132–1708); AST 132 IU/L (r 89–857); TB 9 (33.3) mean 32.7 μmol/L (r 18.9-244.2 μmol/L); Eos (> 700/μL) 19 (70)							
Kardaun et al [35]	117 (M: 52; F 65)		Transiently disturbed; liver function tests; Hepatomegaly and coagulopathy		Anticonvulsants 41 (35); Antibiotics 21 (18); Sulfonamide 14 (12)					1 overlap with SJS/TEN and 1 overlap with AGEP
Walsh et al [51]	27 (M: 10; F: 17)		LI before rash 4 (14.8); Significant LI 20; Mild LI 7; Cholestatic pattern was associated with interface dermatitis (P = 0.036)		Anticonvulsants 12; Anti-infectious agents 10; Anti-rheumatics 5					3 (11) All had severe liver injury. Two after failed LT
Lee et al [36]	23 (M: 12; F: 11)		Significant LI 23 (100)		Beta-lactams 7 (54); Allopurinol 3 (13); Sulfonamide 2 (15)					4 (17.39) Duration of the disease in survivors on steroids: 25.3 ± 14.8 d
Uhara et al [60]	12 (M: 4; F: 8)		Peak of LI appeared 7 d after the rash (range 3-22); ALT mean 176 (range 91-311)		Beta-lactams 6; Salazosulfapyridine 4					0 All patients recovered; 7 to 37 d (median, 18) after withdrawal of the drug
Author(s)	Study Design	Sample Size	Liver Enzymes	Alcohol Use	Cholestasis	DI	Associated	Treatment	Outcome	
----------	--------------	-------------	---------------	-------------	-------------	----	------------	-----------	---------	
Sultan et al.	17 (M: 8 F: 9)	17 (100)	ALT (> 100 IU/L)	ALB > 100	Elevated ALT	Yes	LI defined as > 3 UNL	PDNL + IVIG: 1; NAC: 0	1 (6) died of liver failure	
Avancini et al.	27 (M: 17; F: 10)	23 (85.1)	ALT 569 ± 911.5 U/L	ALB > 100	Elevated ALT	Yes	LI defined as liver enzyme level > 3 UNL	PDNL + IVIG: 1; NAC: 0	1 (4) due to liver failure	
Funck-Brentano et al.	38 (M: 19; F: 19)	29 (76)	Eos (> 7.1-8.5) 8 (21); > 1.5 × 10^9/L 26 (68); PCR HHV-6 11/28 (39)	ALB > 100	Elevated ALT	Yes	Cytoysis 27 (71); Duration of 47 d (12-120); Cholestasis 26 (68); No HF was observed	PDNL + IVIG: 1; NAC: 0	1 (3); Hypovolemic shock few weeks post-discharged	
Lin et al.	72 (M: 34; F: 38)	62 (86.1)	Eos > 700/ml 49 (58.3); ALT values as high as 3806 U/L or ALP values > 2616 U/L	ALB > 100	Elevated ALT	Yes	LI before rash 6 (9.7); Pattern: Cholestasis 23 (37.1); Mixed 17 (27); Hepatocellular 12 (19.4); Unknown 10 (16.1)	PDNL + IVIG: 1; NAC: 0	0 (22) (35.5) recovered in 30 d; 40 (64.5) recovered after treatment	
Lee et al.	25 (M: 11; F: 14)	20 (80)	Eos 72 (69.2); > 0.7 × 10^9/L 7 (28); PCR HHV-6 tested in 1 patient: negative	ALB > 100	Elevated ALT	Yes	LI if liver enzymes > 2 UNL	PDNL + IVIG: 1; NAC: 0	1 (1); Hyperplasia: 1 patient	The remaining patients had fully recovered. No significant cutaneous sequelae
Wang et al.	104 (M: 38; F: 66)	94 (90.4)	Antibiotics 37 (35.6); CBZ 2 (5); Cytoskeletons 4 (4); HIV 1; Serology for HAV/HBV/HCV 18 (17.3)	ALB > 100	Elevated ALT	Yes	Jaundice 5 patients	PDNL + IVIG: 1; NAC: 0	103 were successfully discharged	
Ichai et al.	16 (M: 5 F: 11)	(100) TTC	ALB 1693 IU/L (1252-2256); PCR HHV6 5/6 (83); HAV > 4 (25)	ALB > 100	Elevated ALT	Yes	ALT 1693 IU/L; Hyperbilirubinemia 11 (64.7); Eos > 1.5 × 10^9/L 15 (88.2)	PDNL + IVIG: 1; NAC: 0	1 (103) liver survival: 60%; DReSS recurrence 75 ± 91 d after LT in 3/5 patients. LR was rule out. DReSS recurrence in 1 patient 2 months after spontaneous recovery	

Notes:
- LI: Liver involvement
- DI: Drug-induced liver injury
- PDNL: Prednisone
- IVIG: Intravenous immunoglobulin
- NAC: N-acetylcysteine
- CBZ: Carbamazepine
- HAV: Hepatitis A virus
- HBV: Hepatitis B virus
- HCV: Hepatitis C virus
- DReSS: Drug-related encephalopathy screening syndrome
- ALB: Albumin
- ALT: Alanine aminotransferase
- AST: Aspartate aminotransferase
- Eos: Eosinophils
- PCR: Polymerase chain reaction
- HHV: Human herpesvirus
- CBZ: Carbamazepine
- HIV: Human immunodeficiency virus
- DMT: Direct-acting antivirals
- DReSS: Drug-related encephalopathy screening syndrome
REFERENCES

1. **Navarro VJ**, Senior JR. Drug-related hepatotoxicity. *N Engl J Med* 2006; 354: 731-739 [PMID: 16481640 DOI: 10.1056/NEJMra052270]

2. **Watkins PB**, Seef L.B. Drug-induced liver injury: summary of a single topic clinical research conference. *Hepatology* 2006; 43: 618-631 [PMID: 16496329 DOI: 10.1002/hep.21095]

3. **Davern TJ**. Drug-induced liver disease. *Clin Liver Dis* 2012, 16: 231-245 [PMID: 22541690 DOI: 10.1016/j.cld.2012.03.002]

4. **Dressing M**, Sorne J. Drug-induced hepatic disorders. Incidence, management and avoidance. *Drug Saf* 1995; 9: 441-449 [PMID: 812864a]

5. **Ostapowicz G**, Fontana RJ, Schiadt FV, Larson A, Davern TJ, Han SH, McCashland TM, Shakil AO, Hay JE, Hynan L, Crippin JS, Blei AT, Lee WM. U. S. Acute Liver Failure Study Group. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. *Ann Intern Med* 2002, 137: 947-954 [PMID: 12348709 DOI: 10.1097/00000178-200202170-00007]

6. **Bakke OM**, Manocchia M, de Abajo F, Kaitin KI, Lassaga I, Kaitin KS, Hynan L, Crippin JS, Blei AT, Samuel G, Reisch J, Lee WM. Drug safety discontinuations in the United Kingdom, the United States, and Spain from 1974 through 1993: a regulatory perspective. *Clin Pharmacol Ther* 1995; 58: 108-117 [PMID: 7628177 DOI: 10.1001/0009-9236(95)90978-0]

7. **Gunawan BK**, Kaplowitz N. Mechanisms of drug-induced liver injury. *Clin Liver Dis* 2007; 11: 459-475 [PMID: 17723915 DOI: 10.1016/j.cld.2007.06.001]

8. **Hamilton LA**, Collins-Yoder A, Collins RE. Drug-Induced Liver Injury. *AACN Adv Crit Care* 2016; 27: 430-440 [PMID: 27959299 DOI: 10.4037/aacnacc2016953]

9. **Shehu AI**, Ma X, Venkataramanan R. Mechanisms of Drug-Induced Hepatotoxicity. *Clin Liver Dis* 2017; 21: 35-54 [PMID: 27842774 DOI: 10.1016/j.cld.2016.08.002]

10. **Chalasani NP**, Hayashi PH, Bonkovsky HL, Navarro VJ, Lee WM, Fontana RJ; Practice Parameters Committee of the American College of Gastroenterology. ACG Clinical Guideline: the diagnosis and management of idiosyncratic drug-induced liver injury. *Am J Gastroenterol* 2014; 109: 950-66, quiz 967 [PMID: 24935270 DOI: 10.1038/ajg.2014.131]

11. **Kaplowitz N**. Biochemical and cellular mechanisms of toxic liver injury. *Semin Liver Dis* 2002, 22: 137-144 [PMID: 12016545 DOI: 10.1056/NEJMoa025019]

12. **Kaplowitz N**. Idiosyncratic drug hepatotoxicity. *Nat Rev Drug Discov* 2005; 4: 489-499 [PMID: 15931258 DOI: 10.1038/nrd1750]

13. **Cacoub P**, Mussette P, Descamps V, Meyer O, Speirs C, Finzi L, Roujeau JC. The DRESS syndrome: a literature review. *Am J Med* 2011; 124: 588-597 [PMID: 21592435 DOI: 10.1016/j.amjmed.2011.01.017]

14. **Shear NH**, Spielberg SP. Anticonvulsant hypersensitivity syndrome. In vitro assessment of risk. *J Clin Invest* 1988, 82: 1826-1832 [PMID: 3198757 DOI: 10.1172/jci113798]

15. **Peyriére H**, Dureyre O, Breton H, Demoly P, Cociglio M, Blayac JP, Hillaire-Butys D; Network of the French Pharmacovigilance Centers. Variability in the clinical pattern of cutaneous side-effects of drugs with similar systemic symptoms: does a DRESS syndrome really exist? *Br J Dermatol* 2006, 155: 422-428 [PMID: 16882184 DOI: 10.1111/j.1365-2133.2006.07284.x]

16. **Ichai P**, Laurent-Bellue A, Saliba F, Moreau D, Besch C, Francoz C, Valeyrille-Allanore L, Lefebvre SR, Boudon M, Antonini TM, Artru F, Pittau G, Roux O, Azoulay D, Lassaga I, Samuel D. Acute Liver Failure/Injury Related to Drug Reaction With Eosinophilia and Systemic Symptoms: Outcomes and Prognostic Factors. *Trasplantation* 2017; 101: 1830-1837 [PMID: 28207633 DOI: 10.1097/TP.0000000000001655]

17. **Lee WM**, Squires RH, Nyberg SL, Doo E, Hoofnagle JH. Acute liver failure: Summary of a workshop. *Hepatology* 2008; 47: 1401-1415 [PMID: 18334440 DOI: 10.1002/hep.22177]

18. **Martinez-Cabriales SA**, Rodriguez-Bolatios F, Shear NH. Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS): How Far Have We Come?. *Am J Clin Dermatol* 2019 [PMID: 30632265 DOI: 10.1007/s40257-018-0406-4]

19. **Bocquet H**, Bagot M, Roujeau JC. Drug-induced pseudolymphoma and drug hypersensitivity syndrome (Drug Rash with Eosinophilia and Systemic Symptoms: DRESS). *Semin Cutan Med Surg* 1996, 15: 250-257 [PMID: 9065955 DOI: 10.1016/S1085-5629(96)00038-1]

20. **Shishkara T**, Inaoka M, Kano Y. Drug-induced hypersensitivity syndrome (DIDHS): a reaction induced by a complex interplay among herpesviruses and antiviral and antitubercular immune responses. *Allergol Int* 2006; 55: 1-8 [PMID: 17075280 DOI: 10.2332/allergolint.55.1]

21. **Kardaun SH**, Sidoroff A, Valeyrille-Allanore L, Halyes S, Davidovici BB, Mackenhoupt M, Roujeau JC.
Variability in the clinical pattern of cutaneous side-effects of drugs with systemic symptoms: does a DRESS syndrome really exist? Br J Dermatol 2007; 156: 609-611 [PMID: 17300272 DOI: 10.1111/j.1365-2133.2006.07074.x]

Bénichou C. Criteria of drug-induced liver disorders. Report of an international consensus meeting. J Hepatol 1990; 11: 272-276 [PMID: 2254635 DOI: 10.1016/0168-8278(90)90124-A]

Danan G, Bénichou C. Causality assessment of adverse reactions to drugs—I. A novel method based on the conclusions of international consensus meetings: application to drug-induced liver injuries. J Clin Epidemiol 1993; 46: 1323-1330 [PMID: 8229110]

Fontana RJ, Steef LJJ, Andrade RJ, Björnsson E, Day CP, Serrano J, Hoofnagle JH. Standardization of nomenclature and causality assessment in drug-induced liver injury: summary of a clinical research workshop. Hepatology 2010; 52: 730-742 [PMID: 20564754 DOI: 10.1002/hep.23606]

Hassan A, Fontana RJ. The diagnosis and management of idiosyncratic drug-induced liver injury. Liver Int 2010; 39: 34-41 [PMID: 20003672 DOI: 10.1111/liv.13951]

Duong TA, Valeyrine-Allanore L, Wolfelsen P, Chossidow O. Severe cutaneous adverse reactions to drugs. Lancet 2017; 390: 1996-2011 [PMID: 28476287 DOI: 10.1016/S0140-6736(16)30738-6]

Zimmerman HJ. Drug-induced liver disease. Drugs 1978; 16: 245-345 [PMID: 3352664 DOI: 10.1007/10003945-197816106-00002]

Roujeau JC, Stern RS. Severe adverse cutaneous reactions to drugs. N Engl J Med 1994; 331: 1272-1285 [PMID: 7794310 DOI: 10.1056/NEJM199411103311106]

Fiszenson-Albula F, Auzerie V, Mahe E, Farinotti R, Durand-Stocco C, Crickx B, Descamps V. A 6-month prospective survey of cutaneous drug reactions in a hospital setting. Br J Dermatol 2003; 149: 1018-1022 [PMID: 14602808 DOI: 10.1111/j.1365-2133.2003.05584.x]

Li LF, Ma C. Epidemiological study of severe cutaneous adverse drug reactions in a city district of China. Clin Exp Dermatol 2006; 31: 642-647 [PMID: 16901302 DOI: 10.1111/j.1365-2230.2006.02185.x]

Chou CC, Yang LC, Huang SL, Chang YC, Kuo TT, Ho HC, Hu S, Hong HS, Chung WH. Clinicopathological features and prognosis of drug rash with eosinophilia and systemic symptoms: a study of 30 cases in Taiwan. J Eur Acad Dermatol Venereol 2008; 22: 1044-1049 [PMID: 18627428 DOI: 10.1111/j.1468-3083.2008.02585.x]

Funck-Brentano E, Duong TA, Bouvresse S, Bagot M, Wolfelsen P, Roujeau JC, Chossidow O, Valeyrine-Allanore L. Therapeutic management of DRESS: a retrospective study of 38 cases. J Am Acad Dermatol 2015; 72: 246-252 [PMID: 25592341 DOI: 10.1016/j.jaad.2014.10.032]

Ben M’rad M, Leclerc-Mercier S, Blanche P, Franck N, Rozenberg F, Fulla Y, Guessmi M, Rollot F, Dehoux M, Guivelin L, Moachon L. Drug-induced hypersensitivity syndrome: clinical and biologic disease patterns in 24 patients. Medicine (Baltimore) 2009; 88: 151-160 [PMID: 19440161 DOI: 10.1097/MD.0b013e31814d41aa]

Kardaus SH, Sekula P, Valeyrine-Allanore L, Liss Y, Chu CY, Creamer D, Sideroff A, Naldí L, Mockenhaupt M, Roujeau JC; RegiSCAR study group. Drug reaction with eosinophilia and systemic symptoms (DRESS): an original multisystem adverse drug reaction. Results from the prospective RegiSCAR study. Br J Dermatol 2013; 169: 1071-1080 [PMID: 23855313 DOI: 10.1111/bjd.12501]

Lee T, Lee YS, Yoon SY, Kim S, Bae YJ, Kwon HS, Cho YS, Moon HB, Kim TB. Characteristics of liver injury in drug-induced systemic hypersensitivity reactions. J Am Acad Dermatol 2013; 69: 407-415 [PMID: 23632431 DOI: 10.1016/j.jaad.2013.03.024]

Lin IC, Yang HC, Strong C, Yang CW, Cho YT, Chen KL, Chu CY. Liver injury in patients with DRESS: A clinical study of 72 cases. J Am Acad Dermatol 2015; 72: 984-991 [PMID: 25901338 DOI: 10.1016/j.jaad.2015.02.1100]

Russo MW, Galanko JA, Shrestha R, Fried MW, Watkins P. Liver transplantation for acute liver failure from drug induced liver injury in the United States. Liver Transpl 2004; 10: 1018-1023 [PMID: 15390328 DOI: 10.1014/0168-8278(90)90124-A]

Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994; 12: 991-1045 [PMID: 8013101 DOI: 10.1146/annurev.immunol.12.040194.005015]

Holt MP, Ju C. Mechanisms of drug-induced liver injury. AAPS J 2006; 8: E48-E54 [PMID: 16584133 DOI: 10.1208/aapsj080106]

Pichler WJ, Yawalkar N, Brischghi M, Depta J, Strasser I, Schmid S, Kuechel P, Naishib D. Cellular and molecular pathophysiology of cutaneous drug reactions. Am J Clin Dermatol 2002; 3: 229-238 [PMID: 12010068 DOI: 10.2165/00128071-200203040-00001]

Posadas SJ, Paladí A, Torres MJ, Mayorga C, Leyva L, Sanchez E, Alvarez J, Romano A, Juarez C, Blanca M. Delayed reactions to drugs show levels of perforin, granzyme B, and Fas-L to be related to disease severity. J Allergy Clin Immunol 2002; 109: 155-161 [PMID: 11799383]

Tohyama M, Hashimoto K, Yasukawa M, Ikuma H, Horikawa T, Nakajima K, Urano Y, Matsumoto K, Iijima M, Shear NH. Association of human herpesvirus 6 reactivation with the flaring and severity of drug-induced hypersensitivity syndrome. Br J Dermatol 2007; 157: 934-940 [PMID: 17854362 DOI: 10.1111/j.1365-2133.2007.08167.x]

Tohyama M, Yahata Y, Yasukawa M, Inagi R, Urano Y, Yamannishi K, Hashimoto K. Severe hypersensitivity syndrome due to sulfasalazine associated with reactivation of human herpesvirus 6. Arch Dermatol 1998; 134: 1113-1117 [PMID: 9760204 DOI: 10.1001/archderm.134.9.1113]

Eshki M, Allanore L, Musette P, Milpied B, Grange A, Guillaume JC, Chossidow O, Guillet I, Paradis V, Joby P, Crickx B, Ranger-Roger S, Descamps V. Twelve-year analysis of severe cases of drug reaction with eosinophilia and systemic symptoms: a cause of unpredictable multiorgan failure. Arch Dermatol 2009; 145: 67-72 [PMID: 19153346 DOI: 10.1001/archderm.145.1.67]

Alexanian D, Birg A, Volpicelli N, Glass J, McCarthy D. Latent Hepatitis Virus Reactivation Due to Drug Reaction: DRESSed to Kill? Dig Dis Sci 2018; 63: 1143-1147 [PMID: 29594978 DOI: 10.1007/s10620-018-5028-1]

Um SJ, Lee SK, Kim YH, Kim KH, Son CH, Roh MS, Lee MK. Clinical features of drug-induced hypersensitivity syndrome in 38 patients. J Investig Allergol Clin Immunol 2010; 20: 556-562 [PMID: 21313995]

Roujeau JC. Clinical heterogeneity of drug hypersensitivity. Toxicology 2005; 209: 123-129 [PMID: 15767024 DOI: 10.1016/j.tox.2004.12.022]

Tas S, Simonet T. Drug rash with eosinophilia and systemic symptoms (DRESS syndrome). Acta Clin
Belg 1999; 54: 197-200 [PMID: 10544509 DOI: 10.1053/j.ajkd.2009.07.013]

50 Wang XQ, Lv B, Wang HF, Zhang X, Yu SY, Huang XS, Zhang JT, Tian CL, Lang SY. Lamotrigine induced DIHS/DRESS: Manifestations, treatment, and outcome in 57 patients. Clin Neurol Neurosurg 2015; 138: 1-7 [PMID: 26209753 DOI: 10.1016/j.clineuro.2015.07.008]

51 Walsh S, Diaz-Cano S, Higgins E, Morris-Jones R, Bashir S, Bernal W, Creamer D. Drug reaction with eosinophilia and systemic symptoms: is cutaneous phenotype a prognostic marker for outcome? A review of clinicopathological features of 27 cases. Br J Dermatol 2013; 168: 391-401 [PMID: 23054060 DOI: 10.1111/bjd.12081]

52 Descoux E, Argaud L, Dumortier J, Scocace JL, Boillot O, Robert D. Favourable issue of a fulminant hepatitis associated with sulfasalazine DRESS syndrome without liver transplantation. Intensive Care Med 2005; 31: 1727-1728 [PMID: 16283166 DOI: 10.1007/s00134-005-2846-3]

53 Björnsson E, Davidsdottir L. The long-term follow-up after idiosyncratic drug-induced liver injury with jaundice. J Hepatol 2009; 50: 511-517 [PMID: 19155082 DOI: 10.1016/j.jhep.2008.10.021]

55 Björnsson E, Olsson R. Outcome and prognostic markers in severe drug-induced liver disease. Hepatology 2005; 42: 481-489 [PMID: 16025496 DOI: 10.1002/hep.20800]

56 Mansur AT, Pekcan Yaşar S, Göktay F. Anticonvulsant hypersensitivity syndrome: clinical and laboratory features. Int J Dermatol 2008; 47: 1184-1189 [PMID: 18996457 DOI: 10.1111/j.1365-4632.2008.03827.x]

57 Picard D, Janela B, Descamps V, D'Incan M, Courville P, Jacquot S, Roget S, Mardivirin L, Moins-Teisserenc H, Toubert A, Benichou J, Joly P, Musette P. Drug reaction with eosinophilia and systemic symptoms (DRESS): a multiorgan antiviral T cell response. Sci Transl Med 2010; 2: 46ra62 [PMID: 20739682 DOI: 10.1126/scitranslmed.3001116]

58 Ang CC, Wang YS, Yoosuff EL, Tay YK. Retrospective analysis of drug-induced hypersensitivity syndrome: a study of 27 patients. J Am Acad Dermatol 2010; 63: 219-227 [PMID: 20605253 DOI: 10.1016/j.jaad.2009.08.050]

61 Sultan SJ, Sameem F, Ashraf M. Drug reaction with eosinophilia and systemic symptoms: manifestations, treatment, and outcome in 17 patients. Int J Dermatol 2015; 54: 537-542 [PMID: 24738653 DOI: 10.1111/ijd.12331]

64 Wang L, Mei XL. Drug Reaction with Eosinophilia and Systemic Symptoms: Retrospective Analysis of 104 Cases over One Decade. Chin Med J (Engl) 2018; 131: 943-949 [PMID: 28397724 DOI: 10.4103/0366-6999.204104]

65 Wu X, Yang F, Chen S, Xiong H, Zhu Q, Gao X, Xing Q, Luo X. Clinical, Viral and Genetic Characteristics of Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) in Shanghai, China. Acta Derm Venereol 2018; 98: 401-405 [PMID: 29242846 DOI: 10.2340/00015555-2607]
