GIANT METREWAVE RADIO TELESCOPE DETECTION OF TWO NEW H\textsc{i} 21 cm ABSORBERS AT $z \approx 2$

N. Kanekar

National Centre for Radio Astrophysics, TIFR, Ganeshkhind, Pune 411007, India; nkanekar@nrcra.tifr.res.in

Received 2014 November 5; accepted 2014 November 17; published 2014 December 3

ABSTRACT

I report the detection of H\textsc{i} 21 cm absorption in two high column density damped Ly\text{\tiny{\alpha}} absorbers (DLAs) at $z \approx 2$ using new wide-band 250–500 MHz receivers on board the Giant Metrewave Radio Telescope. The integrated H\textsc{i} 21 cm optical depths are $0.85 \pm 0.16 \text{ km s}^{-1}$ (TXS1755+578) and $2.95 \pm 0.15 \text{ km s}^{-1}$ (TXS1850+402). For the $z = 1.9698$ DLA toward TXS1755+578, the difference in H\textsc{i} 21 cm and C\textsc{i} profiles and the weakness of the radio core suggest that the H\textsc{i} 21 cm absorption arises toward radio components in the jet, and that the optical and radio sightlines are not the same. This precludes an estimate of the DLA spin temperature. For the $z = 1.9888$ DLA toward TXS1850+402, the absorber covering factor is likely to be close to unity, as the background source is extremely compact, with the entire 5 GHz emission arising from a region of $\lesssim 1.4 \text{ mas}$ in size. This yields a DLA spin temperature of $T_s = (372 \pm 18) \times (f/1.0) \text{ K}$, lower than typical T_s values in high-z DLAs. This low spin temperature and the relatively high metallicity of the $z = 1.9888$ DLA ($[\text{Zn}/\text{H}] = (−0.68 \pm 0.04)$) are consistent with the anti-correlation between metallicity and spin temperature that has been found earlier in damped Ly\text{\tiny{\alpha}} systems.

Key words: atomic processes – galaxies: high-redshift – quasars: absorption lines

Online-only material: color figure

1. INTRODUCTION

H\textsc{i} 21 cm absorption studies have long been used to study neutral hydrogen (H\textsc{i}) in both galaxies fortuitously located along the line of sight to background radio-loud quasars and gas associated with active galactic nuclei. In the case of absorption-selected galaxies at high redshifts, the damped Ly\text{\tiny{\alpha}} absorbers (DLAs; Wolfe et al. 2005), the H\textsc{i} 21 cm optical depth can be combined with the H\textsc{i} column density (inferred from the Ly\text{\tiny{\alpha}} absorption profile) to yield the spin temperature of the neutral gas along the sightline (e.g., Kanekar & Briggs 2004). H\textsc{i} 21 cm absorption studies thus provide one of the few direct probes of physical conditions in the neutral gas in high-redshift DLAs (e.g., Carilli et al. 1996; Chengalur & Kanekar 2000; Kanekar & Chengalur 2003), complementing optical and ultraviolet estimates of elemental abundances, molecular fractions, dust depletions, kinematic widths, etc, from observations of low-ionization metal and molecular hydrogen lines (e.g., Pettini et al. 1994; Prochaska et al. 2003; Noterdaeme et al. 2008; Rafelski et al. 2012).

Early H\textsc{i} 21 cm absorption studies of high-redshift DLAs suggested that conditions in the neutral interstellar medium in these galaxies were different from those in the Milky Way. The few high-z DLAs with H\textsc{i} 21 cm absorption studies were found to have relatively high spin temperatures ($T_s \gtrsim 1000 \text{ K}$), nearly five times higher than typical values in the Milky Way (e.g., Dickey et al. 1978; Wolfe & Davis 1979; Wolfe et al. 1982, 1985; Braun & Walterbos 1992; Carilli et al. 1996; de Bruyn et al. 1996; Briggs et al. 1997; Kanekar & Chengalur 1997). Unfortunately, the poor low-frequency coverage of radio telescopes meant that such studies were only possible in a handful of DLAs at $z \gtrsim 2$. To make matters worse, few DLAs were known at low redshifts, which resulted in hardly any T_s measurements in DLAs at $z < 1$.

The situation has changed significantly over the last decade, with the advent of the Green Bank Telescope (GBT) and the Giant Metrewave Radio Telescope (GMRT), which combine high sensitivity with excellent low-frequency radio coverage. There are now more than 50 DLAs at all redshifts with H\textsc{i} 21 cm absorption studies, nearly 40 of which have estimates of the spin temperature after correcting for the absorber covering factor (see Kanekar et al. 2014, and references therein). Targeted Ly\text{\tiny{\alpha}} spectroscopy of strong Mg\textsc{ii} λ2796 absorbers (Rao & Turnshek 2000; Rao et al. 2006) and radio-loud quasars (Ellison et al. 2001, 2008; Jorgenson et al. 2006) have yielded new samples of DLAs at all redshifts for follow-up H\textsc{i} 21 cm absorption studies. Conversely, more than 25 redshifted H\textsc{i} 21 cm absorbers at $z < 1.7$ have been identified from direct spectroscopy of strong Mg\textsc{ii} λ2796 absorbers (e.g., Lane et al. 1998; Lane & Briggs 2002; Kanekar et al. 2009b; Gupta et al. 2007, 2009, 2012). Follow-up Ly\text{\tiny{\alpha}} spectroscopy of some of these systems has provided estimates of the H\textsc{i} column density, and hence, of the absorber spin temperature (Ellison et al. 2012). Finally, high-resolution optical spectroscopy of systems with H\textsc{i} 21 cm absorption studies have been used to infer their gas-phase metallicities, dust depletions, etc, for comparison with the measured spin temperatures (e.g., Kanekar et al. 2009c, 2014; Srianand et al. 2012; Ellison et al. 2012).

Based on the above studies, it is now apparent that the spin temperature distribution in DLAs is significantly different from that in the Milky Way, with DLAs having typically higher spin temperatures (Kanekar & Chengalur 2003; Kanekar et al. 2014). The anti-correlation detected between spin temperatures and metallicities in DLAs indicates that their high T_s values arise due to larger fractions of the warm phase of neutral hydrogen in the absorbers, probably due to fewer radiative cooling routes at their typically low metallicities (Kanekar & Chengalur 2001; Kanekar et al. 2009c, 2014). DLAs show redshift evolution: absorbers at $z \gtrsim 2.4$ have both fewer detections of H\textsc{i} 21 cm absorption and higher spin temperatures than systems at $z \lesssim 2.4$, again due to their smaller cold gas fractions (Carilli et al. 1996; Chengalur & Kanekar 2000; Kanekar & Chengalur 2003; Kanekar et al. 2014).
Despite the recent progress in the field, an important lacuna remains the paucity of detections of H\textsc{i} 21 cm absorption at high redshifts, $z \gtrsim 2$. There are, at present, only seven detections of H\textsc{i} 21 cm absorption in DLAs at $z \gtrsim 2$ (Wolfe et al. 1982, 1985; Kanekar et al. 2006, 2007, 2013; York et al. 2007; Srianand et al. 2012). While H\textsc{i} 21 cm nondetections provide lower limits to T_s, which are useful in testing its redshift evolution, a detailed understanding of the evolution of the spin temperature and its relation with quantities like metallicity, dust depletion, and star formation rate, as well as modeling of local physical conditions in the gas, critically require detections of H\textsc{i} 21 cm absorption. H\textsc{i} 21 cm line detections at high redshifts are also needed to use the lines in conjunction with ultraviolet resonance lines to probe the possibility of fundamental constant evolution (Wolfe et al. 1982, 1985; Kanekar et al. 2006, 2007, 2013; York et al. 2007; Srianand et al. 2012). Until now, the GBT has been the only telescope providing wide frequency coverage below 1 GHz; unfortunately, the GBT is a single dish, which is replaceable by wide-band cone-dipole receivers covering ≈ 250–500 MHz and with higher sensitivity than that of the earlier P-band system (Bandari et al. 2013). The initial commissioning tests of the new receivers yielded tentative detections of redshifted H\textsc{i} 21 cm absorption at $z \approx 2$, the first results from new wide-band 250–500 MHz receivers that are currently being installed on the GMRT.

2. OBSERVATIONS, DATA ANALYSIS AND SPECTRA

The GMRT data were analyzed in “classic” AIPS, using standard procedures. After initial data editing and calibration of the antenna gains and bandpasses, about 50 channels on each target source were averaged into a “channel-0” data set. A standard self-calibration procedure was then used to obtain the antenna gains, with a few rounds of phase-only self-calibration and three-dimensional (3D) imaging, followed by amplitude- and phase self-calibration, 3D imaging, and data editing. This procedure was continued until the image did not improve on further self-calibration, and no evidence was found for bad data. In both cases, the target source was the strongest source in the field, with flux densities (measured using jmfit) of 377.4 \pm 1.3 mJy (TXS1755+578) and 650.3 \pm 3.2 mJy (TXS1850+402). Neither source showed evidence of extended emission in the GMRT images. The final image was then subtracted from the calibrated spectral-line visibilities using the task uvsub, and uvlin then used to subtract any residual emission via a linear fit to each visibility spectrum. Finally, cvel was used to shift the residual visibilities to the heliocentric frame. The data were then imaged and a spectrum obtained by taking a cut through the spectral cube at the location of the target sources.

The GMRT observations of the two $z \approx 2$ DLAs were carried out on 2013 July 31, using the 11 antennas equipped with the new cone-dipole receivers, and the GMRT Software Backend. Bandwidths of 1.04 MHz (TXS1850+402) and 4.17 MHz (TXS1755+578) were used for the observations, sub-divided into 512 channels, and centered at the redshifted H\textsc{i} 21 cm line frequency (478.28 MHz for TXS1755+578 and 475.24 MHz for TXS1850+402). Observations of 3C286 and 3C48 were used to calibrate the flux density scale, and of 3C380 to calibrate the antenna bandpasses and initial antenna gains. The total on-source time was 3.5 hr for each source.

Figure 1. GMRT H\textsc{i} absorption spectra from the $z = 1.9698$ DLA toward TXS1755+578 (left panel) and the $z = 1.9888$ DLA toward TXS1850+402 (right panel). In both panels, H\textsc{i} 21 cm optical depth ($100 \times t_21\text{cm}$) is plotted against heliocentric frequency in MHz. The top axis of both panels shows velocity, in km s$^{-1}$, relative to $z = 1.9698$ (left panel) and $z = 1.9888$ (right panel). In the case of TXS1755+578, the spectrum has been smoothed to, and resampled at, a velocity resolution of ≈ 31 km s$^{-1}$.

(A color version of this figure is available in the online journal.)

The GMRT spectra toward TXS1755+578 and TXS1850+402 are shown in the two panels of Figure 1, with optical depth plotted versus heliocentric frequency. The spectrum toward TXS1850+402 has been Hanning-smoothed and re-sampled, and has a velocity resolution of ≈ 2.5 km s$^{-1}$, while that toward TXS1755+578 has been further boxcar-smoothed.
by three channels and re-sampled, and has a velocity resolution of \(\approx 31 \text{ km s}^{-1}\). The root-mean-square (rms) optical depth noise values on the original Hanning-smoothed and re-sampled spectra are 0.011 per 4.1 kHz channel (TXS1755+578) and 0.0092 per 16.3 kHz channel (TXS1755+578); note that significantly more data were edited out for the latter source, due to intermittent radio frequency interference. Both spectra show evidence of H\(\alpha\) 21 cm absorption, with integrated H\(\alpha\) 21 cm optical depths of 2.95 \pm 0.14 \text{ km s}^{-1} (TXS1850+402) and 0.85 \pm 0.16 \text{ km s}^{-1} (TXS1755+578). Note that the H\(\alpha\) 21 cm absorption toward TXS1755+578 is relatively weak, and extends across only two independent 31 km s\(^{-1}\) channels. However, the feature has \(>\sigma\) significance and was detected in both observing runs, separated by many months. It is hence likely to be real.

3. RESULTS AND DISCUSSION

For H\(\alpha\) 21 cm absorption against a compact radio source, the H\(\alpha\) column density \(N_{\text{H}_2}\), the H\(\alpha\) 21 cm optical depth (\(\tau_{21\text{ cm}}\)), and the spin temperature \(T_s\) are related by the equation (e.g., Rohlfs & Wilson 2006)

\[
N_{\text{H}_2} = 1.823 \times 10^{18} \frac{f}{T_s} \int \tau_{21\text{ cm}} dV, \tag{1}
\]

where \(f\) is the absorber covering factor, giving the fraction of the background radio emission that is occulted by the foreground DLA. The covering factor can be estimated from very long baseline interferometry (VLBI) observations at or near the redshifted H\(\alpha\) 21 cm line frequency to determine the fraction of flux density in the compact radio core (e.g., Briggs & Wolfe 1983; Kanekar et al. 2009a, 2014). Note that a critical assumption in the above equation is that the H\(\alpha\) column density measured along the optical sightline is the same as that along the radio sightline. The H\(\alpha\) column densities of the DLAs toward TXS1755+578 and TXS1850+402 are \((2.51 \pm 0.15) \times 10^{21}\) and \((2.00 \pm 0.25) \times 10^{21}\), respectively. Equation (1) then yields \(T_s = (1612 \pm 305) \times f\) (TXS1755+578) and \(T_s = (372 \pm 18) \times f\) K (TXS1850+402). The above results are summarized in Table 1.

Unfortunately, there are at present no low-frequency VLBI observations of TXS1755+578 and TXS1850+402 from which one might directly measure the fraction of flux density in the radio core. However, the two sources have either inverted (TXS1755+578) or flat (TXS1850+402) spectra at low frequencies; such spectra typically arise due to synchrotron self-absorption, indicating that the radio emission is very compact. One would hence expect a relatively high core fraction in both sources. In the case of TXS1850+402, VLBI observations have found all the 5 GHz emission to arise from two components both lying in a region smaller than \(\approx 1.4\) mas (Henstock et al. 1995; Pollack et al. 2003). In combination with the flat spectrum of TXS1850+402, this suggests that the covering fraction is likely to be close to unity at low frequencies. Conversely, 5 GHz VLBI studies of TXS1755+578 have shown that the source has multiple components extended over 30 mas, with a core flux density of \(\approx 58\) mJy and a total flux density of \(\approx 396\) mJy in the VLBI image (Pollack et al. 2003; Helmboldt et al. 2007); this suggests a core fraction of \(\approx 0.15\). Including these in the spin temperature estimates yields \(T_s \approx (242 \pm 46) \times (f/0.15)\) K (TXS1755+578) and \(T_s \approx (372 \pm 18) \times (f/1.0)\) K (TXS1850+402), assuming that the H\(\alpha\) 21 cm absorption toward TXS1755+578 arises toward the radio core. Both absorbers thus appear to have relatively low \(T_s\) values, significantly lower than the typical spin temperatures of high-redshift DLAs (\(T_s \gtrsim 1000\) K; Kanekar et al. 2014). Low-frequency VLBI imaging of the two DLAs will be of much interest to directly estimate the core fraction close to the redshifted H\(\alpha\) 21 cm line frequencies.

It should be emphasized that it is possible that the detected H\(\alpha\) 21 cm absorption towards TXS1755+578 arises toward one of the four jet components, and not toward the radio core. This cannot be ruled out, given the weakness of the H\(\alpha\) 21 cm absorption as well as the relative weakness of the core compared to the jet components. Further, the core is likely to have a strongly inverted spectrum and is hence likely to be even weaker relatively to the jet components at low frequencies. It is hence plausible that the radio and optical sightlines are not the same for TXS1755+578 (see below). Caution should hence be exercised while interpreting the results towards this source, in the absence of VLBI observations in the redshifted H\(\alpha\) 21 cm line.

Both DLAs are known to show strong metal-line absorption in their optical spectra, with multiple absorption components (Prochaska & Wolfe 1998; Jorgenson et al. 2010). For TXS1850+402, the redshifts of the two strongest metal-line components are in reasonable agreement with the two H\(\alpha\) 21 cm absorption components. These components are likely to be arise in cold gas, which gives rise to the H\(\alpha\) 21 cm absorption; the other metal-line components are likely to originate in warmer gas. Conversely, in the case of TXS1755+578, Jorgenson et al. (2010) found eight C\(\text{ii}\) absorption components in their Keck–Hires spectrum, as well as Si\(\text{ii}\) absorption. Since C\(\text{ii}\) absorption is expected to arise in cold gas, it may be surprising that the H\(\alpha\) 21 cm absorption profile toward TXS1755+578 shows only a single absorption component, which is itself offset in velocity from the stronger C\(\text{ii}\) lines. This too suggests that radio core in TXS1755+578 may be extremely weak at low frequencies, with the H\(\alpha\) 21 cm absorption arising toward one of the components in the radio jet. As such, one should not

Table 1

QSO	\(z_{\text{QSO}}\)	\(z_{\text{DLA}}\)	\(N_{\text{H}_2}\) \((\times 10^{21} \text{ cm}^{-2})\)	\(S_f\) \((\text{mJy})\)	\(\int \tau_{21\text{ cm}} dV\) \((\text{km s}^{-1})\)	\(\Delta V_{90}\) \((\text{km s}^{-1})\)	\(f\)	\(T_s\) \((\text{K})\)
1755+578	2.110	1.9698	2.51 \pm 0.15	377.4 \pm 1.3	0.85 \pm 0.16	41	0.15	...
1850+402	2.120	1.9888	2.00 \pm 0.25	650.3 \pm 3.2	2.95 \pm 0.14	100	1.0	(372 \pm 18)

Notes.

\(a\) The values of \(z_{\text{QSO}}\), \(z_{\text{DLA}}\), and \(N_{\text{H}_2}\) are from Jorgenson et al. (2006).

\(b\) The flux density, \(S_f\), is at the redshifted H\(\alpha\) 21 cm observing frequency.

\(c\) \(\Delta V_{90}\) is the velocity range containing 90% of the integrated H\(\alpha\) 21 cm absorption.

\(d\) The covering factor, \(f\), has been estimated from high-frequency VLBI studies; see the main text for details.

\(e\) The DLA spin temperature, \(T_s\), is not listed for the \(z = 1.9698\) DLA toward TXS1755+578 as it appears plausible that the radio and optical sightlines are not the same for this source; see the main text for details.
use the H\textsc{i} column density determined towards the optical QSO with the H\textsc{i} 21 cm optical depth to estimate the absorber spin temperature.

Finally, the DLA toward TXS1850+402 has a relatively high metallicity, \([\text{Zn}/\text{H}] = -0.68 \pm 0.04\) (Prochaska & Wolfe 1998). Its low \(T_s\) value is thus consistent with the anti-correlation between metallicity and spin temperature that has been found in DLAs (Kanekar et al. 2009c; Ellison et al. 2012; Kanekar et al. 2014). The DLA toward TXS1755+578 has an even higher metallicity, \([\text{Zn}/\text{H}] = -0.25 \pm 0.19\) (Jorgenson et al. 2010; R. A. Jorgenson et al., in preparation). While this too is consistent with a large cold gas fraction and hence a low DLA spin temperature, the likely difference between the radio and optical sightlines in this absorber implies that one cannot test the anti-correlation between metallicity and spin temperature here.

In summary, I report the detection of redshifted H\textsc{i} 21 cm absorption in two DLAs at \(z \approx 2\) toward TXS1755+578 and TXS1850+402 with a new wide-band GMRT receiver that covers 250–500 MHz, with integrated H\textsc{i} 21 cm optical depths of \(\int \tau_{21cm}dV = (0.85 \pm 0.16) \text{ km s}^{-1} \) (TXS1755+578) and \(\int \tau_{21cm}dV = (2.95 \pm 0.14) \text{ km s}^{-1} \) (TXS1850+402). These are only the eighth and ninth detections of H\textsc{i} 21 cm absorption and our understanding of physical conditions in the neutral gas in high-\(z\) DLAs are likely to improve significantly in the next few years.

It is a pleasure to thank Hanumanth Rao Bandari, Jayaram Chenguil, Yashwant Gupta, Shilpa Dubal, Santaji Katore, Navnath Shinde, Rupsingh Vasave, Nilesh Raskar, Deepak Bhong, and Manisha Jangam for many discussions on the new GMRT receivers and much help with the observations. I also thank Regina Jorgenson for providing, in advance of publication, the metallicity of the DLA toward TXS1755+578, and Jayaram Chenguil, Maryam Arabzalmani, and an anonymous referee for comments on an earlier version of the manuscript. Finally, I thank the staff of the GMRT, who have made these observations possible. The GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research.

I acknowledge support from the Department of Science and Technology, India, via a Ramanujan Fellowship.

REFERENCES

Bandari, H. R., Sankarasubramanian, G., & Praveen Kumar, A. 2013, IOP Conf. Ser. Mater. Sci. Eng., 44, 012023
Braun, R., & Walterbos, R. 1992, ApJ, 386, 120
Briggs, F. H., Brinks, E., & Wolfe, A. M. 1997, AJ, 113, 467
Briggs, F. H., & Wolfe, A. M. 1983, ApJ, 268, 76
Carilli, C. L., Lane, W. M., de Bruyn, A. G., Braun, R., & Miley, G. K. 1996, AJ, 111, 1830
Chengalur, J. N., & Kanekar, N. 2000, MNRAS, 318, 303
de Bruyn, A. G., O’Dea, C. P., & Baum, S. A. 1996, A&A, 305, 450
Dickey, J. M., Terzian, Y., & Salpeter, E. E. 1978, ApJS, 36, 77
Ellison, S. L., Kanekar, N., Prochaska, J. X., Momjian, E., & Worseck, G. 2012, MNRAS, 424, 293
Ellison, S. L., Yan, L., Hook, I. M., et al. 2001, A&A, 379, 393
Ellison, S. L., York, B. A., Pettini, M., & Kanekar, N. 2008, MNRAS, 388, 1349
Gupta, N., Sriandal, R., Petitjean, P., et al. 2012, A&A, 544, 21
Gupta, N., Sriandal, R., Petitjean, P., Noterdaeme, P., & Saikia, D. J. 2009, MNRAS, 398, 201
Gupta, N., Sriandal, R., Petitjean, P., et al. 2007, ApJL, 654, L111
Helmholtz, J. F., Taylor, G. B., Tremblay, S., et al. 2007, ApJ, 658, 203
Henstock, D. R., Browne, I. W. A., Wilkinson, P. N., et al. 1995, ApJS, 100, 1
Jorgenson, R. A., Wolfe, A. M., & Prochaska, J. X. 2010, ApJ, 722, 460
Kanekar, N., Wolf, A. M., Prochaska, J. X., et al. 2006, ApJ, 646, 730
Kanekar, N., & Briggs, F. H. 2004, NewAR, 48, 1259
Kanekar, N., & Chengalur, J. N. 1997, MNRAS, 292, 831
Kanekar, N., & Chengalur, J. N. 2001, A&A, 369, 42
Kanekar, N., & Chengalur, J. N. 2003, A&A, 399, 857
Kanekar, N., Chengalur, J. N., & Lane, W. M. 2007, MNRAS, 375, 1528
Kanekar, N., Ellison, S. L., Momjian, E., York, B., & Pettini, M. 2013, MNRAS, 428, 532
Kanekar, N., Lane, W. M., Momjian, E., Briggs, F. H., & Chengalur, J. N. 2009a, MNRAS, 394, L61
Kanekar, N., Prochaska, J. X., Ellison, S. L., & Chengalur, J. N. 2009b, MNRAS, 396, 385
Kanekar, N., Prochaska, J. X., Ellison, S. L., & Chengalur, J. N. 2010, ApJL, 712, L148
Kanekar, N., Prochaska, J. X., Smette, A., et al. 2014, MNRAS, 438, 2131
Kanekar, N., Smette, A., Briggs, F. H., & Chengalur, J. N. 2009c, ApJL, 705, L40
Kanekar, N., Subrahmanyan, R., Ellison, S. L., Lane, W. M., & Chengalur, J. N. 2006, MNRAS, 370, L40
Lane, W. M., & Briggs, F. H. 2002, ApJL, 561, L27
Lane, W. M., Smette, A., Briggs, F., et al. 1998, AJ, 116, 26
Noterdaeme, P., Ledoux, C., Petitjean, P., & Sriandal, R. 2008, A&A, 481, 327
Pettini, M., Smith, L. J., Hunstead, R. W., & King, D. L. 1994, ApJ, 426, 79
Pollack, L. K., Taylor, G. B., & Zavala, R. T. 2003, ApJ, 589, 733
Prochaska, J. X., Gawiser, E., Wolfe, A. M., Castro, S., & Djorgovski, S. G. 2003, ApJL, 595, L9
Prochaska, J. X., & Wolfe, A. M. 1997, ApJ, 487, 73
Prochaska, J. X., & Wolfe, A. M. 1998, ApJ, 507, 113
Rafelski, M., Wolfe, A. M., Prochaska, J. X., Neelameg, M., & Mendez, A. J. 2012, ApJ, 755, 89
Rahmani, H., Sriandal, R., Gupta, N., et al. 2012, MNRAS, 425, 556
Rao, S. M., & Turnshek, D. A. 2000, ApJS, 130, 1
Rao, S. M., Turnshek, D. A., & Nester, D. B. 2006, ApJ, 656, 610
Rohlfs, K., & Wilson, T. L. 2006, Tools of Radio Astronomy (4th ed.; Berlin: Springer)
Sriandal, R., Gupta, N., Petitjean, P., et al. 2012, MNRAS, 421, 651
Wolfe, A. M., Briggs, F. H., & Davis, M. M. 1982, ApJ, 259, 495
Wolfe, A. M., Briggs, F. H., Turnshek, D. A., et al. 1985, ApJ, 294, L67
Wolfe, A. M., Brown, R. L., & Roberts, M. S. 1976, PhRvL., 37, 179
Wolfe, A. M., & Davis, M. M. 1979, AJ, 84, 699
Wolfe, A. M., Gawiser, E., & Prochaska, J. X. 2005, ARA&A, 43, 861
York, B. A., Kanekar, N., Ellison, S. L., & Pettini, M. 2007, MNRAS, 382, L53