Case Report

Solitary cerebral metastasis from transitional cell carcinoma after a 14-year remission of urinary bladder cancer treated with gemcitabine: Case report and literature review

J. Manuel Sarmiento, Matt S. Wi, Zhe Piao, Eric S. Stiner

UCLA David Geffen School of Medicine, Los Angeles, 1Department of Biochemistry and Molecular Biology, University of California, Riverside, Departments of 2Pathology, and 3Neurosurgery, Kaiser Fontana Medical Center, Fontana, CA, USA

E-mail: J. Manuel Sarmiento - Jsarmiento@mednet.ucla.edu; Matt S. Wi - mwi001@ucr.edu; Zhe Piao - Zhe.X.Piao@kp.org; *Eric S. Stiner - Eric.S.Stiner@kp.org

*Corresponding author

Received: 09 January 2012 Accepted: 17 February 2012 Published: 28 July 2012

This article may be cited as:
Sarmiento JM, Wi MS, Piao Z, Stiner ES. Solitary cerebral metastasis from transitional cell carcinoma after a 14-year remission of urinary bladder cancer treated with gemcitabine: Case report and literature review. Surg Neurol Int 2012;3:82.

Available FREE in open access from: http://www.surgicalneurologyint.com/text.asp?2012/3/1/82/99172

Copyright: © 2012 Sarmiento JM. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: Brain metastases are the most common adult brain tumors, frequently arising from primary tumors in the lung, breast, skin, kidneys, and colon. Transitional cell carcinoma (TCC), the most common type of urinary bladder cancer, is a rare cause of brain metastasis with an ominous prognosis.

Case Description: A 68-year-old female presented with right-sided paresis and focal motor seizures of her right upper and lower extremities 14 years after being diagnosed and treated for primary TCC of the urinary bladder with gemcitabine-based chemotherapy. MRI imaging revealed a 3.1 × 3.1 × 2.7 cm heterogeneously enhancing mass located along the posterior aspect of the left frontal convexity. The lesion was accessed using a transsulcal approach and was surgically debulked along the motor cortex with motor strip mapping, followed by adjuvant whole-brain radiation therapy. Pathological examination confirmed metastatic carcinoma with features of TCC, a rare entity among metastatic brain tumors.

Conclusion: Brain metastases may present several years later in patients with TCC of the urinary bladder who have been treated with surgery and chemotherapy. Chemotherapeutic agents that penetrate the blood–brain barrier, such as gemcitabine, may delay development of cerebral metastasis from primary TCC of the urinary bladder.

Key Words: Brain tumor, cerebral, intracranial, metastatic, transitional cell carcinoma, urinary bladder cancer

BACKGROUND

Brain metastases are the most common adult brain tumors and account for 13–39% of intracranial tumors.[34,61,100] The incidence rate of all forms of brain metastasis in the United States is approximately 170,000 per year.[32] It is estimated that 20–40% of all cancer patients develop some form of intracranial metastases.[14,68,36] The most
common adult primary tumors that metastasize to the brain, in decreasing order of frequency, are lung, breast, skin (melanoma), renal, and colon cancers.[49,61,100]

The estimated incidence of new urinary system cancer cases in 2009 is 131,010, of which 70,980 (54.2\%) stem from the urinary bladder, 57,760 (44.1\%) stem from the kidney and renal pelvis, and 2,270 (1.7\%) stem from the ureter and other urinary organs.[41] Transitional cell carcinoma (TCC) accounts for over 90\% of the reported urinary bladder cancers in the United States, while less than 5\% result from squamous cell carcinomas (SCC), and less than 2\% result from adenocarcinomas.[89] Urinary bladder cancer has great potential to metastasize, and sometimes the frequency of metastasis can be as high as 67\%.[48] A 2011 retrospective study of 392 patients with urinary bladder cancer reported the most common sites of metastasis to be the lymph nodes (104 patients, 69\%), followed by bone (71 patients, 47\%), lung (55 patients, 37\%), liver (39 patients, 26\%), and peritoneum (24 patients, 16\%).[84] It is rare for TCC of the urinary bladder to metastasize to the brain, and reported incidences in patients with urinary bladder cancer range anywhere from 0\% to 7\%.[17] The prognosis for patients with brain metastasis from urinary bladder cancer is ominous, regardless of treatment. Treated patients have a median survival of 2–4 months,[18,77] while untreated patients’ survival ranges from several days to 1.75 months.[11,23,45,58] We present an unusual case of a 68-year-old female with a history of urinary bladder cancer 14 years prior that was discovered to have a left frontal mass after presenting with seizures and right-sided paresis.

CASE DESCRIPTION

History

A 68-year-old, right-handed, Caucasian female nurse, with a past medical history of TCC of the urinary bladder, presented with a chief complaint of right-sided weakness and seizures. The patient was diagnosed with urinary bladder cancer in 1996. At that time, she was treated with forty-five cycles of gemcitabine, paclitaxel, and cisplatin chemotherapy. In 2005, she received local radiation therapy to the urinary bladder. In 2006, liver metastases were discovered, and the patient responded well to palliative chemotherapy with six additional cycles of cisplatin with gemcitabine. In 2008 she presented with hydronephrosis secondary to a large distal right ureteral recurrence of the TCC. The patient underwent a laparoscopic nephroureterectomy and cystectomy that year. The patient denied tobacco, alcohol, or drug abuse. At her latest admission in 2010, the patient reported a 2-week history of right arm and leg weakness and a 1-day history of uncontrollable shaking of her right upper and lower extremity. The shaking was brief and resolved spontaneously. The patient denied loss of consciousness, nausea, vomiting, dysarthria, headaches, visual changes, cognitive changes, or difficulty ambulating.

Neurologic exam and imaging

Neurologic examination revealed right-sided gait disturbance, as well as proximal more than distal paresis of muscle groups in her right upper and lower extremity (4 to 4+/5). The medical exam and the remainder of the neurologic exam were without focal deficits.

Initial imaging by the emergency room, noncontrast enhancing computed tomography (CT) of the brain, revealed an isodense lesion of the left frontal lobe with associated vasogenic edema [Figure 1]. Magnetic resonance imaging (MRI) of the brain showed a 3.1 × 3.1 × 2.7 cm heterogeneously enhancing mass located along the posterior aspect of the left frontal convexity [Figure 2]. The patient was placed on high-dose corticosteroids and antiepileptics. The metastatic evaluation, which included contrast-enhanced CT of the chest, abdomen, and pelvis, showed no evidence of local recurrence, lymphadenopathy, or metastatic disease. The patient elected for craniotomy and resection of the tumor with motor strip mapping.

Operation

The tumor was accessed via a left parietal craniotomy after the outline of the tumor was marked with the frameless stereotactic system (Germany). A transsulcal approach was used to access the tumor, which was located just anterior to the motor strip. Intraoperative findings consisted of an extra-axial left frontal–parietal tumor that was gray in color with a firm and rubbery consistency. There was a surgical plane around the tumor and we achieved a near complete resection. The posterior margin of the tumor was unresectable given motor strip mapping indicated motor cortex territory, so we left a small rim of tumor to avoid causing the patient further weakness.

Pathological findings

Pathological examination included a histologic analysis of three portions of firm tan-white tissue, measuring 1.0 × 1.0 × 0.2 cm in aggregate frozen section. A second brain biopsy, consisting of firm tan-white tissue measuring 3.5 × 2.5 × 0.7 cm in aggregate, was analyzed. The final pathological diagnosis of our left parietal brain tumor biopsy was metastatic carcinoma with features of TCC [Figure 3].

Postoperative course

On awakening, the patient showed mild expressive aphasia and weakness, both of which improved on discharge on postoperative day five. No significant complicating factors were noted on postoperative MRI scan [Figure 4]. She then underwent adjuvant whole-brain radiation therapy. At her 12-month follow-up, the patient had residual weakness of her right upper extremity, a condition that had improved only slightly since surgery. She evidenced no progression of metastatic disease, and there was no
increase in the size of the residual tumor.

DISCUSSION

The first case of TCC metastasis to the brain was reported by Lower and Watkins in 1924, where they presented a 48-year-old male patient without a history of tobacco use. Complaining of irritative urinary symptoms, he was found to have hematuria and proteinuria in a physical examination, which had been required for obtaining life insurance. Shortly after a cystectomy was performed, and after pathological examination confirmed malignant transitional epithelial cells, the patient developed difficulty with ambulation and dysarthria. He was referred to the eminent neurosurgeon, Dr. Walter E. Dandy, who extirpated a solitary metastatic tumor measuring 2 cm from the right internal capsule. The patient died 10 months later due to recurrence of brain metastases.\(^{[56]}\)

Historical incidences of TCC metastases have been low. In 1988, Graf reported four patients (1.7%) with brain metastases originating from urinary bladder cancer among the 230 cases of brain metastases taken from a sample of 15,000 autopsies between 1969 and 1984.\(^{[33]}\) Our review of the literature revealed 290 reported cases of TCC metastasis to the central nervous system [Table 1]. There are 54 case reports and small case series (up to three patients) reporting intracranial metastasis of TCC [Table 2]. Of these, the clinical presentation of central nervous system symptoms from intracranial metastasis preceded
Thus, MVAC [21] allows for systemic control of the disease, but leaves late metastatic foci in the inaccessible brain. [21] Thus, MVAC may increase the risk of metastatic disease in patients with prolonged remission.

Neurosurgeons may expect to see more cases of brain metastases from unusual sources as a result of increased survival rates from newer, more effective systemic chemotherapy regimens. With respect to the oncologic treatment of primary TCC, the MVAC chemotherapy regimen has conferred a survival advantage over the traditional single-agent cisplatin, reducing response rates, increasing duration of remission, and improving overall survival in patients with urinary bladder cancer. [44] In 1989, Sternberg et al. reported 121 patients with advanced TCC who were treated with the MVAC chemotherapy regimen. Nineteen of the 121 patients (16%) developed brain metastases. [91] Another 1998 study by Dhote et al. reviewed 50 patients with advanced TCC treated with the MVAC chemotherapy regimen and reported eight cases (16%) of intracranial metastases. [21] These data suggest that the advent of more effective chemotherapy regimens has increased the incidence of brain metastases as secondary recurrences in patients with controlled primary or systemic urinary bladder cancer, since patients who achieve local and systemic control of their cancer may be living long enough to develop cerebral metastasis.

We report a case involving subtotal resection of a solitary cerebral TCC metastasis along the motor cortex of a 68-year-old female patient with a history of urinary bladder cancer 14 years prior. To the best of our knowledge, this case represents the first patient reported to develop isolated brain parenchyma relapse after treatment with gemcitabine for primary urinary bladder cancer, and the longest time interval between primary urinary bladder cancer diagnosis and development of TCC brain metastasis. The high metastatic potential of TCC of the urinary bladder is exemplified by our patient, who suffered multiple recurrences in the 5 years prior to presentation with cerebral metastasis. Given the aggressive nature of this tumor, one plausible explanation for TCC cerebral metastasis is early invasion of brain
Table 3: Primary cancer treatment, time interval from primary cancer diagnosis to cerebral metastasis presentation, and metastasis treatment from transitional cell carcinoma of the urinary bladder

Author	Year	n	Gender	Single or multiple brain metastases	Primary bladder carcinoma treatment	Interval from diagnosis to mets presentation	Brain metastasis treatment	Survival after mets diagnosis
Steinfeld et al.	1987	2	Male: 2 Single	Case 1: surgery	Case 2: surgery + RT	6 wk	WBRT + steroids	8 wk
Bloch et al.	1987	2	Male: 2 Single	Case 1: surgery	Case 2: surgery + chemo (T)	1 wk	Surgery + WBRT	N/R
Kabalin et al.	1988	4	Male: 3 Single	Case 1: chemo (CMV) + RT	Case 2: surgery + chemo (CMV)	8 yr	Surgery + WBRT	1 yr
			Female: 1 Single	Case 3: surgery + RT + chemo (CMV)	Case 4: surgery	11 mo	No treatment	Several days
Anderson et al.	1992	9	Male: 6 Single: 7	Surg + RT: 5	Surg: 3	23 mo (mean)	Surgery + WBRT: 3 pts	15 mo
			Female: 3 Multiple: 2	RT: 1	9 mo (median)	WBRT: 5 pts	N/R	
				Synchronous presentation	2 wk–72 mo (range)	Steroids: 1 pt	7 wk (mean)	
Angulo et al.	1992	2	Male: 2 Single: 1	Case 1: no treatment	Case 2: no treatment	6 yr	Surgery + RT: 7 pts	9 wk
			Multiple: 1 Multiple: 1	Case 1: surgery + chemo (MVAC)	Case 2: surgery + chemo (MC)	2 yr	RT: 10 pts	1 mo
Eng et al.	1993	2	Male: 2 Multiple	Case 1: surgery + chemo (MVAC)	Case 2: surgery + chemo (MC)	N/R	Surgery: 1 pt	3 mo
Rosenstein et al.	1993	19	Male: 15 Single: 13	Chemo (MVAC)	Chemo (MVAC)	N/R	No treatment: 1 pt	N/R
			Female: 4 Multiple: 6					
Salvati et al.	1993	6	Male: 4 Single	Surgery + RT: 4	Surgery + RT + chemo (MC): 2	5.9 mo (mean)	Surgery + WBRT	5.5 mo (mean)
			Female: 2 Single	Chemo (MVAC)	Chemo (MVAC)	1–13 mo (range)	Surgery + RT: 3 pts	4.25 mo (range)
Dhote et al.	1998	8	Male: 44 Single: 6	Chemo (MVAC)	Chemo (MVAC)	21 mo (mean)	Surgery + RT: 3 pts	7 mo (mean)
			Female: 6 Multiple: 2		7–38 mo (range)	RT: 5 pts	2.8 mo (mean)	
Mahmoud-Ahmed et al.	2002	16	Male: 12 Single: 2	Chemo + RT + Surg: 5	Chemo + RT: 5	8 mo (median)	Surgery + WT: 2 pts	7.75 mo (median)
			Female: 4 Multiple: 14	Surgery + RT: 3	Chemo (CMV or MVAC): 1	0-69 mo (range)	Surgery: 1 pt	1.25 mo
				None: 2			SRS: 1 pt	12 mo
							No treatment: 1 pt	1.75 mo
Protzel et al.	2002	1	Male: 1 Multiple	Surgery	Surgery	2 yr	WBRT + chemo (G)	15 mo
Anderson et al.	2003	4	N/R	Single: 1	N/R	10 mo (median)	WBRT: 3 pts	1 mo (median)
			Multiple: 3		0–18 mo (range)	RT + Surgery: 13 pts	N/R	
Fokas et al.	2010	62	Male: 31 16 < 3 mets	N/R	N/R	35 < 16 mo	RT + Surgery: 13 pts	9.6 mo (median)
			Female: 31 46 > 3 mets			27 > 16 mo	RT: 49 pts	8.9 mo (median)

wk: weeks, mo: month(s), yr: year(s), Chem: Chemotherapy, RT: Radiation therapy, WBRT: Whole-brain radiation therapy, SRS: Stereotactic radiosurgery, ABX: Antibiotics, CMV: Cisplatin, methotrexate, vinblastine, MVAC: Methotrexate, vinblastine, adriamycin, cisplatin, MC: Methotrexate, cisplatin, G: Gemcitabine, M: Methotrexate, T: Thiopeta, mets: metastases, pt(s): patient(s), N/R: Not reported, 1 Two patients in this group were alive and disease-free at 60 months, 2 Describes three patients only. The 4th patient’s diagnosis of brain metastases preceded the discovery of the primary urinary bladder tumor.
Surgical Neurology International 2012, 3:82 http://www.surgicalneurologyint.com/content/3/1/82

Gemcitabine plus cisplatin (GC) has been used in solid tumors, including non-small-cell lung cancer, breast and ovarian cancer, pancreatic cancer, and urinary bladder cancer. Gemcitabine is a deoxycytidine analogue chemotherapy agent with a broad spectrum of activity against several solid tumors, including non-small-cell lung cancer, breast and ovarian cancer, pancreatic cancer, and urinary bladder cancer. Gemcitabine plus cisplatin (GC) has replaced MVAC as the standard of care for patients with locally advanced and metastatic TCC. A 2000 randomized control study demonstrated a comparable survival advantage between patients with TCC urinary bladder cancer who were treated with GC or MVAC; however, a better safety profile and tolerability was observed in the GC group. It is important to note that this trial excluded patients with TCC central nervous system metastases. We are unaware of any prospective or randomized studies showing the effectiveness of GC in patients with TCC brain metastases. Interestingly, Fokas’ 2010 retrospective analysis failed to show any overall survival benefits to chemotherapy in patients treated for TCC with cerebral metastases.

The type of chemotherapy regimen(s) used was not reported in the study. Gemcitabine has shown differential uptake in brain tumors in rat experiments, and it has been used in combination with radiation therapy for the treatment of TCC brain metastases with favorable results. Gemcitabine appears to be able to cross the BBB, ostensibly due to its low size and molecular weight, through the luminal membrane endothelial cells by the nucleoside transporter, ENT1. Treatment with GC for TCC of the urinary bladder may afford patients some protection against cerebral metastasis by reaching latent metastatic intracranial foci that have been otherwise unreachable, thus prolonging the time interval in which patients present with cerebral metastatic disease.

In light of the increasing incidences in brain metastases due to advances in chemotherapy potency, there may be a role in screening neuroimaging to detect asymptomatic brain metastases, but there is currently inconclusive evidence to support such efforts. Finally, the prudent surgeon should include intracranial TCC metastases in the differential diagnosis of patients presenting with neurologic symptoms and a history of primary urinary bladder cancer.

CONCLUSION

Brain metastases may present several years later in patients with TCC of the urinary bladder who have been treated with surgery and chemotherapy. Chemotherapeutic agents that penetrate the BBB, such as gemcitabine, may delay development of cerebral metastasis from primary TCC of the urinary bladder.

ACKNOWLEDGMENTS

We are grateful to Laurie A. Mena, M.S. for her helpful comments in the preparation of this manuscript.

REFERENCES

1. Anderson RS, El-Mahdi AM, Kuban DA, Higgins EM. Brain metastases from transitional cell carcinoma of the urinary bladder. Urology 1992;39:17-20.
2. Anderson TS, Regine WF, Kryscio R, Patchell RA. Neurologic complications of bladder carcinoma. Cancer 2003;97:2267-72.
3. Angulo JC, Lopez JI, Larrinaga JR, Flores N. Metastasising carcinoma of the urinary bladder presenting as a retro-orbital mess. Case report. Scand J Urol Nephrol 1991;25:83-4.
4. Angulo JC, Lopez JI, Unda-Urzain M, Flores N. Urinary bladder carcinoma initially manifested as brain metastases. Postgrad Med J 1992;68:150-1.
5. Apparaju SK, Gudelsky GA, Desai PB. Pharmacokinetics of gemcitabine in tumor and non-tumor extracellular fluid of brain: An in vivo assessment in rats employing intracerebral microdialysis. Cancer Chemother Pharmacol 2008;61:223-9.
6. Atta HR. Presumed metastatic transitional cell carcinoma of the choroids. Br J Ophthalmol 1983;67:830-3.
7. Babaian RJ, Johnson DE, Llamas L, Ayala AG. Metastases from transitional cell carcinoma of the urinary bladder. Cancers of the urinary tract and kidney. 1980;16:1-42.
8. Bishop JR, Moul JW, Maldonado L, McLeod DG. Transitional cell carcinoma of the kidney: a review. Cancer 1987;10(3):373-7.
9. Bloch JL, Nieh PT, Waltzak MP. Brain metastases from transitional cell carcinoma. J Urol 1987;137:97-9.
10. Boukhrishe Y, Boucarrara D, Cyna-Gorse F, Dehais C, Felce-Dashez M, Masson C. Sudden bilateral hearing loss disclosing meningeal carcinomatosis. Rev...
carcinoma of bladder and ureter: Case report. Nihon Hinyokika Gakkai Zasshi 2004;95:817-9.

61. Moes G, Vogel H, editors. Metastatic neoplasms of the central nervous system. In: Nervous system (Cambridge Illustrated Surgical Pathology). 1st ed. New York: Cambridge University Press; 2009. p. 309.

62. Moon K, Jung S, Lee K, Hwang EU, Kim I. Intracranial metastasis from primary transitional cell carcinoma of female urethra: Case report & review of the literature. BMC Cancer 2011;11:23.

63. Nabi G, Dadeya S, Dogra PN, Lal H. Eye metastasis from urothelial tumours. Int Urol Nephrol 2002;34:51-4.

64. Nakagawa S, Nakao M, Toyoda K, Nukui M, Takada H, Ebisu K. Complete remission of brain metastasis of bladder cancer treated by M-VAC therapy. Hinyokika Kyoho 1989;35:333-5.

65. Palmieri D, Chambers AE, Felling-Habermann B, Huang S, Steeg PS. The biology of metastasis to a sanctuary site. Clin Cancer Res 2007;13:1656-62.

66. Pe’er J, Zimmerman LE. Ocular metastases from transitional cell carcinoma of the urinary tract. Graefes Arch Clin Exp Ophthalmol 1984;221:137-41.

67. Perlmutter AE, Zaitoon A, Sparks SS, Zaslau S, Zaitoon M. Isolated cerebellar metastasis in a patient with organ-confined, lymph node negative bladder cancer. WV Med J 2006;102:14-5.

68. Posner J. Management of central nervous system metastases. Semin Oncol 1977;4:81-91.

69. Prats J, Bellmunt J, Calvo MA, Sarrias F, Toran N. Orbital metastasis, by transitional cell carcinoma of the bladder: Int Urol Nephrol 1989;21:389-92.

70. Proetz C, Zimmermann, Asse E, Kallwells G, Kleibang HJ. Ggemcitabine and radiotherapy in the treatment of brain metastases from transitional cell carcinoma of the bladder: A case report. J Neurol Oncol 2002;57:141-5.

71. Quinn CM, Thomas H, Prentice MB. Urinary bladder carcinoma initially manifested as brain metastases. Postgrad Med J 1992;68:689-91.

72. Rades D, Meyners T, Veninga T, Stalpers J-L, Schild SE. Hypofractionated whole-brain radiotherapy for multiple brain metastases from transitional cell carcinoma of the bladder. Int J Radiat Oncol Biol Phys 2010;78:404-8.

73. Raghavan D, Chye RW. Treatment of carcinomatous meningitis from transitional cell carcinoma of the bladder: Br J Urol 1991;67:438-40.

74. Rastogi R, Singh AK, Rastogi UC, Mohan C, Rastogi V. Neurological deficit as the first manifestation of vesical transitional cell carcinoma. Saudi J Kidney Dis Transpl 2011;22:1022-5.

75. Remon J, Guardiano R, Badia A, Cardona T, Picaza JM, Llanes P. Blindness in a bladder cancer patient. Clin Transl Oncol 2007;9:117-8.

76. Resnick MI, O’Conor VJ Jr, Grayhack JT. Metastases to the eye from transitional cell carcinoma of the bladder: J Urol 1975;114:722-4.

77. Rosenstein M, Wallner K, Scher H, Sternberg CN. Treatment of brain metastases from bladder cancer: J Urol 1993;149:480-3.

78. Sakuma S, Nakagawa Y, Imamura H, Takeda M, Isobe M, Ishii N, et al. Very rare autopsy of metastatic brain tumor originating from urethral cancer. No Shinkei Geka 1989;17:883-6.

79. Santarossa S, Vaccher E, Balestreri L, Volpe R, Tirelli U. Solitary meningeal metastases from bladder cancer. J Neurooncol 1993;16:217-20.

80. Scaravilli F, Balestreri L, Delfini R, Vitali P, Toffanin S. Solitary orbital metastasis from transitional cell carcinoma of the bladder. Acta Ophthalmol Scand 2000;78:404-8.

81. Scott JA, Williams R. Transitional cell carcinoma of the bladder metastatic to the orbit. Eye (Lond) 1995;9:664-6.

82. Shandias GJ, McLaren GD, Grimn T, Everson JK. Solitary cerebellar metastasis from transitional cell carcinoma of bladder: Urolgy 1992;49:50-3.

83. Shikishima K, Miyake A, Ikemoto I, Kawakami M. Metastasis to the orbit from transitional cell carcinoma of the bladder: Jpn J Ophthalmol 2006;50:469-73.

84. Shinagare AB, Ramaiya NH, Jagannathan JP, Fennessy FM, Taplin ME, Van den Abbeele AD. Metastatic Pattern of bladder cancer: Correlation with the characteristics of the primary tumor. AJR Am J Roentgenol 2011;196:117-22.

85. Smiley SS. An orbital metastasis from the urinary bladder. Arch Ophthalmol 1965;74:809-10.

86. Sofietti R, Ruda R, Mutani R. Management of brain metastases. J Neurol 2002;249:1357-69.

87. Souza Filho JP, Odashiro AN, Pereira PR, Al-Buloshi A, Codere F, Burnier MN Jr. Orbital metastasis of urinary bladder carcinoma: A clinicopathologic report and review of literature. Orbit 2005;24:269-71.

88. Steg RE, Frank AR, Lefkowitz DM. Complex partial status epilepticus in a patient with dural metastases. Neurology 1993;43:2389-92.

89. Steinberg GD, Katz MH, Sachdeva K, Curti B, Jana BR. Bladder cancer. Emedicine. Available from: http://emedicine.medscape.com/article/438262-overview. [Last Accessed 2011 Aug 17].

90. Steinfeld AD, Zelefsky MJ. Brain metastases from carcinoma of bladder. Urology 1989;29:375-6.

91. Sternberg BN, Yagoda A, Schar HI, Watson RC, Geller N, Herr HW, et al. Methotrexate, vinblastine, doxorubicin and cisplatin for advanced transitional cell carcinoma of the urethra. Cancer 1989;64:2448-58.

92. Tadepalli S, Coleman T, Hackett LA, Liles GB. Carcinomatous meningitis: The natural history of successfully treated metastatic bladder cancer. Case Rep Oncol 2011;4:406-12.

93. Thomas FC, RudrajuV, Taskar K, Lockman PR, Palmieri D, Steeg P, et al. Brain uptake of gemcitabine across the blood-brain barrier. AAPS Annual Meeting & Exposition; 2008 Nov 16-20; Atlanta, Georgia.

94. Toschi L, Finciochiaro G, Bartolini S, Giola V, Cappuzzo F. Role of gemcitabine in cancer therapy. Future Oncol 2005;1:7-17.

95. Turgut M, Akyuz O, Kacar F. Solitary cerebral metastasis from transitional cell carcinoma of the urinary tract. J Clin Neurosci 2007;14:1129-32.

96. Urcuio D, Arpaci F, Beyzaadeoglu M, Gural A, Surenkok S, Ozturk M, et al. Meningeal carcinomatosis: An extremely rare involvement of urinary bladder carcinoma. Tumori 2010;96:352-4.

97. Vinchon M, Rouchoux MM, Sueur JP, Assaker R, Christoens LA. Solitary brain metastasis as only recurrence of a carcinoma of the bladder: Clin Neuropathol 1994;13:338-40.

98. von der Maase H, Hansen SW, Roberts JT, Dogliotti L, Oliver T, Moore MJ, et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: Results of a large, randomized, multinational, multicenter, phase III study. J Clin Oncol 2000;18:3068-77.

99. Wakisaka S, Miyahara S, Nonaka A, Asani N, Kinoshita K, Kohriyama K. Brain metastasis from transitional cell carcinoma of the bladder. Neurourol Med Chir (Tokyo) 1990;30:188-90.

100. Walker MT, Kapoor V. Neuroimaging of parenchymal brain metastases. In: Raizer JJ, Abrey LE, editors. Brain metastasis. 1st ed. New York: Springer; 2007. p. 31-2.

101. Wang J, Nigan S, Dina R, Strickland N, Waxonman J. A very unusual presentation of metastatic transitional cell carcinoma of the bladder. Curr Urol 2007;1:50-2.

102. Wessch TR, Steele EA. Urothelial cell carcinoma of the bladder presenting as orbital metastasis. Arch Pathol Lab Med 2008;132:1224.

103. Yumura Y, Chiba K, Okada Y, Hirokawa M. Brain metastasis of bladder cancer after total cystectomy: A case report. Hinyokika Kyoho 2000;46:807-9.

104. Zennami K, Yamada Y, Nakamura K, Aoki S, Taki T, Honda N. Solitary brain metastasis from pT1, G3 bladder cancer. Int J Urol 2008;15:97-10.

105. Zigouris A, Pahetouridis D, Mnios E, Alexiou GA, Nesseris J, Zikou AK, et al. Orbital metastasis of urinary bladder carcinoma: A clinicopathologic report and review of literature. Acta Neurol Belg 2009;109:322-5.

106. Zwicker F, Herfarth K, Debus J. Palliative radiotherapy for a retrobulbar metastasis from transitional cell carcinoma of female urethra. Jpn J Ophthalmol 2006;109:322-5.