Numerical method for deriving sharp inclusion of the Sobolev embedding constant on bounded convex domain

Kazuaki Tanaka1,*, Kouta Sekine2, Makoto Mizuguchi1, Shin’ichi Oishi2,3

1Graduate School of Fundamental Science and Engineering, Waseda University,
2Faculty of Science and Engineering, Waseda University,
3CREST, JST

Abstract. In this paper we proposed a verified numerical method for deriving a sharp inclusion of the Sobolev embedding constant from $H^1_0(\Omega)$ to $L^p(\Omega)$ on bounded convex domain in \mathbb{R}^2. We estimated the embedding constant by computing the corresponding extremal function using verified numerical computation. Some concrete numerical inclusions of the constant on a square domain were presented.

Key words: embedding constant; Sobolev inequality; verifying positiveness; verified numerical computation

1 Introduction

We are concerned with the best constant $C_p(\Omega)$ in the Sobolev type inequality satisfying

$$
\|u\|_{L^p(\Omega)} \leq C_p(\Omega) \|u\|_{H^1_0(\Omega)}, \quad \forall u \in H^1_0(\Omega),
$$

where $\Omega \subset \mathbb{R}^n$ ($n = 2, 3, \cdots$) and $1 < p < \infty$ if $n = 2$, $1 < p < (n + 2)/(n - 2)$ if $n \geq 3$. Since Sobolev type inequalities are important in studies on partial differential equations, there have been a lot of works on such inequalities and their applications, e.g., [1, 2, 3, 4, 5, 10, 13, 18, 21, 20, 23]. The classical Sobolev embedding theorem has been well known. Moreover, a formula giving the best constant in the classical Sobolev inequality on \mathbb{R}^n was independently shown by Aubin [1] and Talenti [23] in 1976 (see Theorem A.1). Since all elements in $H^1_0(\Omega)$ can be regarded as those in $H^1(\Omega)$ by zero extension outside Ω, we can obtain a rough upper bound of $C_p(\Omega)$ for a general domain $\Omega \subset \mathbb{R}^n$ using the formula (see Corollary A.1). One can find another estimation formula in [18] (see Theorem A.2).

In this paper we will propose a numerical method for deriving a verified sharp inclusion of the best constant $C_p(\Omega)$ satisfying (1) for bounded convex domain $\Omega \subset \mathbb{R}^2$, e.g., we proved the following proposition by our method:

Proposition 1.1. The smallest values of $C_p(\Omega)$ ($p = 3, 4, 5$) satisfying (1) are enclosed as follows:

$$
C_3(\Omega) \in [0.25712475017617, 0.25712766496560],
C_4(\Omega) \in [0.28524446071925, 0.28524446071939],
C_5(\Omega) \in [0.31058015094169, 0.31067136032829],
$$

where $\Omega = (0, 1)^2$.

Hereafter, we replace the notation $C_p(\Omega)$ with $C_{p+1}(\Omega)$ for notational convenience. The smallest value of $C_{p+1}(\Omega)$ can be written by

$$
C_{p+1}(\Omega) = \sup_{u \in H^1_0(\Omega)} \Phi(u),
$$

E-mail address: *imahazimari@fuji.waseda.jp
where $\Phi (u) = \|u\|_{L^{p+1}(\Omega)} / \|u\|_{H^1_0(\Omega)}$. It is well known that $C_{p+1}(\Omega)$ in (5) is finite and realized by an extremal function $u^* \in H^1_0(\Omega)$ (see, e.g., [6]). The critical point problem for Φ is reduced to finding weak solutions to the following problem:

$$
\begin{cases}
-\Delta u = u^p & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega.
\end{cases}
$$

(6)

This problem has only one solution if $\Omega \subset \mathbb{R}^2$ is bounded and convex [11]; therefore, in this case, we can derive an inclusion of $C_{p+1}(\Omega) = \|u^*\|_{L^{p+1}(\Omega)} / \|u^*\|_{H^1_0(\Omega)}$ by computing the solution to (6) with verification.

There is a number of numerical methods for verifying solution to semilinear elliptic boundary value problems (e.g., in [14, 17, 18, 22]) and related works, e.g., [15, 24]. These methods enable us to obtain a concrete ball in the senses of $\|\nabla \cdot \|_{L^2(\Omega)}$ and $\|\cdot\|_{L^\infty(\Omega)}$ containing exact solution and can be applied to the problem:

$$
\begin{cases}
-\Delta u = |u|^{p-1}u & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega.
\end{cases}
$$

(7)

However, positiveness of the solution to (7) should be proven to derive a verified solution to (6). One of the main contributions of this paper is to propose how to verify the positiveness.

This paper consists of the following sections: In Section 2 and 3, we propose a method for proving positiveness of a solution to (7) and a method for estimating the embedding constant $C_{p+1}(\Omega)$, respectively. In Section 4, some numerical examples are also presented, which lead Proposition 1.1.

2 Verification method for positiveness

In this section, we propose a sufficient condition for positiveness of the solution to (7), which will be summarized in Theorem 2.1. This theorem enables us to numerically check the positiveness.

Let us first introduce the following notation to be used throughout this paper:

- define $\mathbb{N} := \{1, 2, 3, \cdots \}$;
- let $B(x, r ; \| \cdot \|)$ be an open ball whose center is x and whose radius is $r \geq 0$ in the sense of the norm $\| \cdot \|$;
- denote its closure by $\overline{B}(x, r ; \| \cdot \|)$;
- let $L^\infty(\Omega)$ be the functional space of Lebesgue integrable functions over Ω, s.t., $|u(x)| < \infty$ (a.e. $x \in \Omega$) with the norm $\|u\|_{L^\infty(\Omega)} := \text{ess sup}\{|u(x)| \mid x \in \Omega\}$;
- let $H^1(\Omega)$ be the first order L^2 Sobolev space on Ω;
- let $H^1_0(\Omega) := \{u \in H^1(\Omega) : u = 0 \text{ on } \partial \Omega \text{ in the trace sense}\}$ which endowed with the norm $\|\cdot\|_{H^1_0(\Omega)} := \|\nabla \cdot\|_{L^2(\Omega)}$.

Let us remark that, for Lebesgue integrable functions, we omit the expression “almost everywhere” for simplicity, e.g., we denote $u > 0$ in the place of $u(x) > 0$ a.e. $x \in \Omega$ for $u \in H^1_0(\Omega)$.

Let us introduce the following lemma for proving Theorem 2.1.

Lemma 2.1. Let Ω be a bounded domain in \mathbb{R}^n. All weak solutions $u \in H^1_0(\Omega)$ to (6) satisfies $\text{ess sup}\{u(x)^{p-1} \mid x \in \Omega\} \geq \lambda_1$, where $\lambda_1 > 0$ is the first eigenvalue of the following problem:

$$
(\nabla u, \nabla v)_{L^2(\Omega)} = \lambda (u, v)_{L^2(\Omega)}, \quad \forall v \in H^1_0(\Omega).
$$

(8)
Proof. Let $\phi_1 \geq 0$ ($\phi_1 \neq 0$) be the first eigenfunction corresponding to λ_1, which satisfies

$$\int_{\Omega} u^p (x) \phi_1 (x) \, dx = \lambda_1 \int_{\Omega} u (x) \phi_1 (x) \, dx.$$

We have

$$\int_{\Omega} u^p (x) \phi_1 (x) \, dx = \int_{\Omega} \{u (x)\}^{p-1} \{u (x) \phi_1 (x)\} \, dx$$

$$\leq M_u \int_{\Omega} u (x) \phi_1 (x) \, dx$$

$$= \lambda_1^{-1} M_u \int_{\Omega} u^p (x) \phi_1 (x) \, dx,$$

where $M_u := \text{ess sup} \{u (x)^{p-1} \mid x \in \Omega\}$. Positiveness of $\int_{\Omega} u^p (x) \phi_1 (x) \, dx$ implies $M_u \geq \lambda_1$. □

Using lemma 2.1, we are able to prove the following theorem, which gives a sufficient condition for positiveness of the solution to (7).

Theorem 2.1. Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain. If a solution $u \in C^2 (\Omega)$ to (7) is positive in a subdomain $\Omega' \subset \Omega$ and if $\sup\{u^- (x)^{p-1} \mid x \in \Omega\} < \lambda_1 (\Omega)$, then $u > 0$ in the original domain Ω, where $\lambda_1 (\Omega) > 0$ is the first eigenvalue of the problem (8) and u^- is defined by

$$u^- (x) := \begin{cases} -u (x), & u (x) < 0, \\ 0, & u (x) \geq 0. \end{cases}$$

Namely, u is also a weak solution to (6).

Proof. Assume that u is not a positive solution in Ω, which ensures there exists a domain $\Omega'' \subset \Omega \setminus \Omega'$ such that $u < 0$ in Ω'' and $u = 0$ on $\partial \Omega''$. Hopf’s lemma makes it impossible for a subdomain $\Omega_0 \subset \Omega$ such that $u \equiv 0$ in Ω_0 to exist. Therefore, the restricted function $v := -u|_{\Omega''}$ can be regarded as a solution to

$$\begin{cases} -\Delta v = v^p & \text{in } \Omega'', \\ v > 0 & \text{in } \Omega'', \\ v = 0 & \text{on } \partial \Omega''. \end{cases}$$

From Lemma 2.1, we have

$$\sup_{x \in \Omega} u^- (x)^{p-1} \geq \sup_{x \in \Omega''} v (x)^{p-1} \geq \lambda_1 (\Omega'').$$

Since $\Omega'' \subset \Omega$, we have $\lambda_1 (\Omega'') \geq \lambda_1 (\Omega)$. Hence, u is a solution to (6) if $\sup\{u^- (x)^{p-1} \mid x \in \Omega\} < \lambda_1 (\Omega)$.

Remark 2.1.

i) Since Hopf’s lemma requires the regularity $u \in C^2 (\Omega)$, we also need this regularity to prove Theorem 2.1. A weak solution $u \in H^1_0 (\Omega)$ to (7) is in $C^2 (\Omega)$, e.g., when Ω is a bounded convex domain with piecewise C^2 boundary (see, e.g., [7]).

ii) The first eigenvalue of the problem (8) can be numerically estimated by, e.g., the method in [12], which enables us to concretely evaluate the eigenvalues of (8) on polygonal domains in \mathbb{R}^2.

3
3 Estimation method for embedding constant

In this section, we propose a method for estimating the embedding constant \(C_{p+1}(\Omega) \) defined in (5). The following theorem gives concrete estimation of the embedding constant from a verified solution to (6).

Theorem 3.1. Let \(\Omega \subset \mathbb{R}^2 \) be a bounded convex domain. If there exists the solution to (6) in a closed ball \(B(\hat{u}, r ; \| \cdot \|_{H^1_0(\Omega)}) \) with \(\hat{u} \in H^1_0(\Omega) \) satisfying \(\| \hat{u} \|_{H^1_0(\Omega)} > 2r \), then the embedding constant \(C_{p+1}(\Omega) \) defined in (5) is estimated as

\[
\frac{\| \hat{u} \|_{L^{p+1}(\Omega)}}{\| \hat{u} \|_{H^0_0(\Omega)}} \leq C_{p+1}(\Omega) \leq \frac{\| \hat{u} \|_{L^{p+1}(\Omega)}}{\| \hat{u} \|_{H^0_0(\Omega)} - 2r}.
\]

Proof. It is obvious that \(\| \hat{u} \|_{L^{p+1}(\Omega)} / \| \hat{u} \|_{H^0_0(\Omega)} \) is a lower bound of \(C_{p+1}(\Omega) \). The solution to (6) is unique when \(\Omega \subset \mathbb{R}^2 \) is bounded and convex [11]; therefore, the ratio \(\| u \|_{L^{p+1}(\Omega)} / \| u \|_{H^0_0(\Omega)} \) is maximized by the solution \(u \) to (6). Let us write the solution to (6) as \(\hat{u} + rv \) with \(v \in H^0_0(\Omega) \), \(\| v \|_{H^0_0(\Omega)} = 1 \). Then, we have

\[
C_{p+1}(\Omega) = \frac{\| \hat{u} + rv \|_{L^{p+1}(\Omega)}}{\| \hat{u} + rv \|_{H^0_0(\Omega)}} \leq \frac{\| \hat{u} \|_{L^{p+1}(\Omega)} + rC_{p+1}(\Omega)}{\| \hat{u} \|_{H^0_0(\Omega)} - r},
\]

that is,

\[
\left(\| \hat{u} \|_{H^0_0(\Omega)} - 2r \right) C_{p+1}(\Omega) \leq \| \hat{u} \|_{L^{p+1}(\Omega)}.
\]

Hence, when \(\| \hat{u} \|_{H^0_0(\Omega)} > 2r \), \(\| \hat{u} \|_{L^{p+1}(\Omega)} / (\| \hat{u} \|_{H^0_0(\Omega)} - 2r) \) becomes an upper bound of \(C_{p+1}(\Omega) \).

Remark 3.1. Theorem 3.1 can be naturally applied to the case that \(n \geq 3 \). For example, if \(\Omega \) is a convex symmetric domain in \(\mathbb{R}^n \) (\(n \geq 3 \)) and \(1 < p < (n + 2)/(n - 2) \), (6) has only one solution [8, 16].

4 Numerical example

In this section, we present some numerical examples of proving positiveness of a solution to (7) and estimating the corresponding embedding constant, which will lead Proposition 1.1.

All computations were carried out on a computer with Intel Xeon E5-2687W 3.10 GHz, 512 GB RAM, CentOS 6.3, and MATLAB 2012a. All rounding errors were strictly estimated using toolboxes for verified numerical computations: INTLAB version 6 [19] and KV library version 0.4.16 [9]. Therefore, the accuracy of all results is mathematically guaranteed.

We first treated the case that \(p = 3 \) and \(\Omega = (0, 1)^2 \), which corresponds to the critical point problem for the embedding constant \(C_4(\Omega) \). In this case, (7) has an infinite number of solution, while it has only one positive solution [11]. We computed an approximate solution to (7) with the Fourier basis \(\phi_{ij} := a_{ij} \sin(\pi ix) \sin(\pi jy) \), \(1 \leq i, j \leq N \), \(a_{ij} \in \mathbb{R} \). Moreover, we proved existence of the solution to (7) in a \(H^0_0(\Omega) \)-ball and \(L^\infty \)-ball whose center is the approximation using the method in [17] with the method in [24]. Figure 1 shows an approximate solution \(\hat{u} \) to (7) such that existence of the positive solution to (7) in a neighbourhood of \(\hat{u} \) was proven. Table 1 shows verification results in this case: The first eigenvalue \(\lambda_1(\Omega) \) of (8) is \(2\pi \); therefore,
\[\sup \{ u_\lambda (x)^{p-1} \mid x \in \Omega \} < \lambda_1 (\Omega) \] holds, this means positiveness of the solution to (7) is proved, in all cases in the table. Moreover, the last row shows intervals containing \(C_4 (\Omega) \), e.g., \(1.23783 \) represents the interval \([1.23456, 1.23789]\); the case that \(N = 34 \) corresponds to (3).

We also treated the cases that \(p = 2, 4 \) on the same domain \(\Omega \). Remark that the maximum principal guarantees positiveness of all solutions to (7) with even \(p > 1 \) except for the trivial solution. We derived the estimation results (2) and (4) by computation with bases of \(N = 140 \) and \(N = 20 \), respectively.

In Table 2, one can find a comparison between lower and upper bounds by our method, upper bounds by Plum’s formula [18] (Theorem A.2), and the classical bounds by Corollary A.1.

\[
\begin{align*}
\text{Table 1: Verification result of the case that } p = 3. \\
N & H_0^1\text{-error} & L^\infty\text{-error} & \sup \{ u_{\lambda} (x)^2 \mid x \in \Omega \} & C_4 (\Omega) \\
10 & 2.449623e-02 & 3.223795e-02 & 3.458360e-03 & 0.2871011044062756445768010 \\
20 & 1.531402e-06 & 1.973787e-06 & 7.071145e-04 & 0.28524445117578346071925 \\
30 & 6.227678e-11 & 8.015445e-11 & 7.070096e-04 & 0.2852444607122331925 \\
34 & 2.284208e-12 & 2.939286e-12 & 7.070096e-04 & 0.28524446071925 \\
\end{align*}
\]

![Figure 1: An approximate solution to (7) in the case that \(p = 3 \).](image)

\[
\begin{align*}
\text{Table 2: Upper bounds of the embedding constant by our method, by Corollary A.1, and by Theorem A.2.} \\
C_p (\Omega) & \text{Our method} & \text{Corollary A.1} & \text{Theorem A.2} \\
C_3 (\Omega) & 0.25712775664986560475107617 & 0.27991104681667 & 0.32964899322075 \\
C_4 (\Omega) & 0.285244460719253992 & 0.31830988618379 & 0.3989228040144 \\
C_5 (\Omega) & 0.32186713603282958015094169 & 0.35780388458050 & 0.4890903972535 \\
\end{align*}
\]
5 Conclusion

In this paper we proposed a numerical method for deriving a sharp inclusion of the best constant in the Sobolev inequality (1). We derived inclusions of the constants by computing the solution to problem (6) with verification. The positiveness of a verified solution to (7) was proved using the method proposed in Section 2. The accuracy of all results, e.g., those in Proposition 1.1, is mathematically guaranteed using toolboxes for verified numerical computations [19, 9].

A Simple bounds for the embedding constant

The following theorem gives the best constant in the classical Sobolev inequality.

Theorem A.1 (T. Aubin, 1976 [1] and G. Talenti, 1976 [23]). Let \(u \) be a function in \(H^1(\mathbb{R}^n) \) (\(n = 2, 3, \cdots \)). Moreover, let \(q \) be a real number such that \(1 < q < n \), and set \(p = nq/(n-q) \). Then,

\[
\|u\|_{L^p(\mathbb{R}^n)} \leq T_p \|\nabla u\|_{L^q(\mathbb{R}^n)}
\]

holds for

\[
T_p = \pi^{-\frac{1}{2}} n^{-\frac{q}{2}} \left(\frac{q-1}{n-q} \right)^{1-\frac{q}{n}} \left\{ \frac{\Gamma \left(1 + \frac{n}{2}\right) \Gamma (n)}{\Gamma \left(\frac{n}{2}\right) \Gamma \left(1 + n - \frac{n}{q}\right)} \right\}^{\frac{1}{p}}
\]

with the Gamma function \(\Gamma \).

The following corollary, which comes from Theorem A.1, gives simple bounds for the embedding constant from \(H^1_0(\Omega) \) to \(L^p(\Omega) \) for a bounded domain \(\Omega \).

Corollary A.1. Let \(\Omega \subset \mathbb{R}^n(n = 2, 3, \cdots) \) be a bounded domain. Let \(p \) be a real number such that \(p \in (n/(n-1), 2n/(n-2)) \) if \(n \geq 3 \) and \(p \in (n/(n-1), \infty) \) if \(n = 2 \). Moreover, set \(q = np/(n+p) \). Then, (1) holds for

\[
C_p(\Omega) = |\Omega|^\frac{2-n}{2q} T_p,
\]

where \(T_p \) is the constant in (9).

Proof. By zero extension outside \(\Omega \), we may regard \(u \in H^1_0(\Omega) \) as a element \(u \in H^1_0(\mathbb{R}^n) \). Therefore, from Theorem A.1,

\[
\|u\|_{L^p(\Omega)} \leq T_p \|\nabla u\|_{L^q(\mathbb{R}^n)}.
\]

Hölder’s inequality gives

\[
\|\nabla u\|_{L^q(\Omega)}^q \leq \left(\int_{\Omega} |\nabla u(x)|^q u^2 dx \right)^{\frac{q}{2}} \left(\int_{\Omega} |1|^\frac{2-q}{2} dx \right)^{\frac{2-q}{2}}
\]

\[
= |\Omega|^{\frac{2-n}{2q}} \left(\int_{\Omega} |\nabla u(x)|^2 dx \right)^{\frac{q}{2}},
\]

that is,

\[
\|\nabla u\|_{L^q(\Omega)} \leq |\Omega|^{\frac{2-n}{2q}} \|\nabla u\|_{L^2(\Omega)}.
\]

(11)

where \(|\Omega| \) is the measure of \(\Omega \). From (10) and (11), it follows that

\[
\|u\|_{L^p(\Omega)} \leq |\Omega|^{\frac{2-n}{2q}} T_p \|\nabla u\|_{L^2(\Omega)}.
\]

\[\square\]
Using the following theorem, one can also obtain an upper bound of the embedding constant when the minimal point of the spectrum of $-\Delta$ on $H^1_0(\Omega)$ is concretely computed or estimated.

Theorem A.2 (M. Plum, 2008 [18]). Let $\rho \in [0, \infty)$ denote the minimal point of the spectrum of $-\Delta$ on $H^1_0(\Omega)$ for a domain $\Omega \subset \mathbb{R}^n$.

a) Let $n = 2$ and $p \in [2, \infty)$. With the largest integer ν satisfying $\nu \leq p/2$, (1) holds for

$$C_p(\Omega) = \left(\frac{1}{2}\right)^{\frac{1}{2} + \frac{2\nu - 3}{p}} \left[\frac{p}{2} \left(\frac{p}{2} - 1\right) \cdots \left(\frac{p}{2} - \nu + 2\right)\right]^{\frac{2}{p}} \rho^{-\frac{n}{2}},$$

where $\frac{p}{2} \left(\frac{p}{2} - 1\right) \cdots \left(\frac{p}{2} - \nu + 2\right) = 1$ if $\nu = 1$.

b) Let $n \geq 3$ and $p \in [2, 2n/(n-2)]$. With $s := n(p^{-1} - 2^{-1} + n^{-1}) \in [0, 1]$, (1) holds for

$$C_p(\Omega) = \left(\frac{n-1}{\sqrt{n(n-2)}}\right)^{1-s} \rho^{-\frac{n}{2}}.$$

References

[1] Thierry Aubin, *Problèmes isopérimétriques et espaces de Sobolev*, Journal of Differential Geometry 11 (1976), no. 4, 573–598.

[2] William Beckner, *Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality*, Annals of Mathematics 138 (1993), no. 1, 213–242.

[3] Julián Fernández Bonder, Nicolas Saintier, and Analía Silva, *On the Sobolev embedding theorem for variable exponent spaces in the critical range*, Journal of Differential Equations 253 (2012), no. 5, 1604 – 1620.

[4] Haim Brezis and Louis Nirenberg, *Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents*, Communications on Pure and Applied Mathematics 36 (1983), no. 4, 437–477.

[5] Alberto P Calderón, *Lebesgue spaces of differentiable functions and distributions*, Proc. Sympos. Pure Math, vol. 4, 1961, pp. 33–49.

[6] David Gilbarg and Neil S Trudinger, *Elliptic partial differential equations of second order*, vol. 224, Springer Science & Business Media, 2001.

[7] Pierre Grisvard, *Elliptic problems in nonsmooth domains*, vol. 69, SIAM, 2011.

[8] Massimo Grossi et al., *A uniqueness result for a semilinear elliptic equation in symmetric domains*, Advances in Differential Equations 5 (2000), no. 1-3, 193–212.

[9] M. Kashiwagi, *KV library*, 2014, http://verifiedby.me/kv/.

[10] Elliott H Lieb, *Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities*, Annals of Mathematics (1983), 349–374.

[11] Chang-Shou Lin, *Uniqueness of least energy solutions to a semilinear elliptic equation in \mathbb{R}^2*, manuscripta mathematica 84 (1994), no. 1, 13–19.

[12] Xuefeng Liu and Shin’ichi Oishi, *Verified eigenvalue evaluation for the laplacian over polygonal domains of arbitrary shape*, SIAM Journal on Numerical Analysis 51 (2013), no. 3, 1634–1654.
[13] PJ McKenna, F Pacella, M Plum, and D Roth, A uniqueness result for a semilinear elliptic problem: A computer-assisted proof, Journal of Differential Equations 247 (2009), no. 7, 2140–2162.

[14] Mitsuhiro T Nakao, Numerical verification methods for solutions of ordinary and partial differential equations, Numerical Functional Analysis and Optimization 22 (2001), no. 3-4, 321–356.

[15] Mitsuhiro T Nakao, Kouji Hashimoto, and Yoshitaka Watanabe, A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems, Computing 75 (2005), no. 1, 1–14.

[16] Filomena Pacella, Uniqueness of positive solutions of semilinear elliptic equations and related eigenvalue problems, Milan Journal of Mathematics 73 (2005), no. 1, 221–236.

[17] Michael Plum, Computer-assisted enclosure methods for elliptic differential equations, Linear Algebra and its Applications 324 (2001), no. 1, 147–187.

[18] , Existence and multiplicity proofs for semilinear elliptic boundary value problems by computer assistance, Jahresbericht der Deutschen Mathematiker Vereinigung 110 (2008), no. 1, 19–54.

[19] S.M. Rump, INTLAB - INTerval LABoratory, Developments in Reliable Computing (Tibor Csendes, ed.), Kluwer Academic Publishers, Dordrecht, 1999, http://www.ti3.tuhh.de/rump/, pp. 77–104.

[20] Jiabao Su and Zhi-Qiang Wang, Sobolev type embedding and quasilinear elliptic equations with radial potentials, Journal of Differential Equations 250 (2011), no. 1, 223–242.

[21] Jiabao Su, Zhi-Qiang Wang, and Michel Willem, Weighted Sobolev embedding with unbounded and decaying radial potentials, Journal of Differential Equations 238 (2007), no. 1, 201–219.

[22] Akitoshi Takayasu, Xuefeng Liu, and Shin’ichi Oishi, Remarks on computable a priori error estimates for finite element solutions of elliptic problems, Nonlinear Theory and Its Applications, IEICE 5 (2014), no. 1, 53–63.

[23] Giorgio Talenti, Best constant in Sobolev inequality, Annali di Matematica pura ed Applicata 110 (1976), no. 1, 353–372.

[24] Kazuaki Tanaka, Akitoshi Takayasu, Xuefeng Liu, and Shin’ichi Oishi, Verified norm estimation for the inverse of linear elliptic operators using eigenvalue evaluation, Japan Journal of Industrial and Applied Mathematics 31 (2014), no. 3, 665–679.