Role of insulin/insulin-like growth factor-1 signaling pathway genes on the lifespan of Caenorhabditis elegans

Siti Bazilah Zulkifli¹, Ahmad Nazrun Shuid², Goon Jo Aan*¹

¹Department of Biochemistry, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
²Pharmaco-Epidemiology Unit, Department of Pharmacology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia

Article History:
Received on: 09.08.2019
Revised on: 06.11.2019
Accepted on: 18.11.2019

Keywords:
C. elegans, DNA, IIS pathway, IGF pathway, lifespan, longevity, nematode, RNA

ABSTRACT
Aging process is influenced by the insulin/insulin-like growth factor-1 signaling (IIS) pathway or IGF-1 signaling pathway. Studies done on the genes of this pathway were found to affect longevity. However, no conclusive results have been drawn. The purpose of this systematic review is to summarize the function of genes involved in the IIS pathway of Caenorhabditis Elegans (C. elegans), a nematode commonly used as a model organism in molecular genetics and developmental biology. A literature search for relevant studies was done through PubMed and Scopus databases using MeSH keywords Caenorhabditis elegans, C. elegans, nematode, genes, RNA, DNA, IIS pathway, IGF pathway, lifespan, and longevity. The search was limited to studies that were published in the last ten years (2008-May 2018). After exclusion of duplicates, review papers, human, in vitro, and other organismal studies, a total of 76 research articles were selected for further assessments. Data relevant to the effects of IIS genes on the lifespan of C. elegans was independently extracted. Reduction of daf-2 and age-1 and overexpression of sir-2.1 were reported to promote increment of the lifespan of C. elegans. Furthermore, differentially expressed genes that were involved in the protection against oxidative stress, pathogen attack, and toxicity include ins-18, numr-1/-2, sgk-1, and rgs-1. The knockdown of daf-2, age-1, and overexpression of sir-2.1 genes prolonged the lifespan of C. elegans while knockdown of daf-16, hsf-1, sir-2.1 as well as skn-1 shorten the lifespan of C. elegans. In conclusion, the differential expression of genes in the IIS pathway prolongs the lifespan of C. elegans.

INTRODUCTION
Countless studies have used Caenorhabditis elegans (C. elegans) as a model organism to determine the role of signaling pathways involved in aging and longevity (Chalfie et al., 1994; Feinberg et al., 2008; Boulin et al., 2006). C. elegans have been widely used as a model organism because of its 83% homologous genome to human (Lai et al., 2000). Other than that, the nematodes also have similar functions of the neurons, skin, gut, muscles, and other tissues like humans (Ahringer, 2006). C. elegans have a rapid life cycle, which is around 3 to 4 weeks. This gives an advantage for plausible observation of life stages in the aging process of the organism. Three major
Table 1: Effect of differential genes expression on the mean lifespan of *C. elegans*.

No.	Author	No. of worms used	Culture conditions	Gene tested	Lifespan (days)
1	(Altintas et al., 2016)	No data	20°C *NGM* E. coli OP50	N2a Alg-1(gk214)b Alg-1;daf-2b Alg-1;daf-16b Alg-2(ok304)b Alg-2;daf-2b Alg-2;daf-16b Daf-2(e1370)b Daf-16(mu86)b	16.28±2.26 12.81±2.36 11.35±1.90 19.59±1.38 38.93±0.39 11.73±0.33 43.08±3.67 12.75±1.69
2	(Chen et al., 2018)	102-165	20°C Liquid E. coli OP50	N2a Daf-2(e1370)b Daf-16(mu86)b Eat-2(ad1116)b Hsf-1(sy441)b Mev-1(kn-1)b Sir-2.1(ok434)b	19.96±0.39 36.64±0.58 29.97±0.29 16.02±0.11 17.59±0.29

Pathways that have been shown to influence the lifespan of these nematodes are insulin/insulin-like growth factor (IIS or IGF-1), a target of rapamycin (TOR), and germline signaling pathways. Although these pathways involve different sets of transcription factors, there is partial overlapping of mechanisms involved in the aging process.

IIS pathway was the first established lifespan-regulating signaling pathway. The IIS pathway contains many conserved longevity-regulatory components that regulate aging in a DAF-16-dependent manner (Morris et al., 1996; Kimura et al., 1997). TOR is a mechanistic target of rapamycin, and a serine/threonine kinase that regulates cell growth, proliferation, motility and survival, protein synthesis, autophagy, and transcription. TOR is activated under nutrient- and energy-sufficient conditions, which in turn stimulates growth. Inhibition of TOR signaling was found to increase the lifespan of *C. elegans* in a DAF-16-dependent manner (Kapahi et al., 2010). Similar to the IIS pathway, DAF-16/FOXO is also required for the lifespan extension of germlineless animals (Arantes-Oliveira et al., 2002). Translocation of DAF-16/FOXO to the nucleus in intestinal cells promotes longevity through germline signaling (Kenyon, 2010).

Many studies have reported on the different roles of genes in the IIS pathway. The changes in expression of these genes affects the longevity of *C. elegans* differently depending on the species of nematode used and experimental conditions. The purpose of this review is to summarize the effect of IIS pathway genes to the lifespan of *C. elegans* systematically.

Materials and Methods

An electronic search of the PubMed and Scopus databases were carried out using the keywords: “Caenorhabditis elegans” OR “C. elegans” OR "nematode" AND "genes" OR "RNA" OR "DNA" AND "insulin/insulin-like pathway" OR "IIS pathway" OR "IGF pathway" AND "lifespan" AND "longevity." The search was limited to studies that were published in the last ten years (2008-May 2018). All titles and abstracts were screened after exclusion of duplicates, review papers, “human,” “in vitro” and other organismal studies and papers published in languages other than English. After the filtering process, a total of 84 research articles were used for this study. However, the full text of 8 articles were not retrievable due to unavailability, leaving only 76 articles included in this review (Figure 1). The studies were compiled for data extraction. Data relevant to the effects of IIS pathway genes on the lifespan of *C. elegans* were independently extracted (Tables 1, 2, 3, 4, 5, 6, 7 and 8).

RESULTS AND DISCUSSION

Multiple studies, along the years, have shown that lifespan expansion in *C. elegans* mostly correlated with daf-16 transcription via the IIS pathway. Single mutation of IIS genes such as daf-2, age-1, or daf-16 leads to inhibition of the IIS pathway and extension of lifespan (Uno and Nishida, 2016). In this review, most studies were found to be done on daf-2, daf-16, age-1, skn-1, hsf-1, and sir-2.1 genes, which are all
Table 2: (Continue from Table 1) Effect of differential genes expression on the mean lifespan of *C. elegans*.

No.	Author	No. of worms used	Culture conditions	Gene tested	Lifespan (days)
3	(Chaudhari and Kipreos, 2017)	No data	20°C Liquid E. coli OP50	N2a	28.0
				Candid-1b	↑35.0
				Lin-23b	↑38.0
				Spg-7b	↑31.0
				Candid-1;spg-7(ek25)b	↑31.0
				Ppgn-1b	↑34.0
				Ppgn-1;spg-7b	↑41.0
				Eat-3b	No effect
				Daf-2(e1370)b	↑70.0
				Daf-2;eat-3b	↑41.0
				Fzo-1b	↓22.0
				Daf-16(mu86)b	↓25.0
				Eat-2(ad1116)b	↑40.0
				Eat-2;eat-3b	↓21.0
				Glp-1b	↑45.0
				Glp-1;eat-3b	No effect
4	(Wu et al., 2017)	30	25°C NGM E. coli OP50	N2a	15.8±2.5
				Age-1(nr2017)b	↑18.8±2.8
				Age-1(hx546)b	↑32.1±8.9
				Age-1;rgs-1b	↑32.8±8.0
				Daf-16(mu86)b	↓6.6±0.7
				Daf-16;rgs-1b	↓6.5±0.8
5	(Zhao et al., 2017)	50	20°C NGM E. coli OP50	N2a	18.90±0.24
				Age-1(hx546)b	↑32.62±0.08
				Daf-2(e1370)b	↑29.79±0.14
				Daf-16(mgd50)b	↓16.73±0.20
				Sir-1(zu169)b	↓18.32±0.26
				Sir-2.1(ok434)b	↓13.90±0.06
6	(Mack et al., 2017)	40	20°C NGM E. coli OP50	N2a	20.56±0.4
				Daf-2b	↑49.40±1.2
				Mbk-1(pk1389)b	↓19.21±0.28
				Hpk-1(pk1393)b	↓15.37±0.28
7	(Kumar et al., 2016)	30-40	20°C NGM E. coli OP50	N2a	15.9±5.0
				Eat-2(ad1116)b	↑17.9±5.1
				isp-1(qm150)b	↑20.0±6.4
				Sir-2.1(ok434)c	↑17.0±3.7
				Daf-16(mu86)b	↓12.6±3.5
				Daf-2(e1370)b	↓35.4±8.9
				Rrf-3(pk1426)b	↓15.7±4.0
				Rict-1(mg360)b	↓12.1±2.6
				Hsf-1(sy441)b	↓11.5±1.9
				Age-1(hx546)b	↑20.7±6.4
				Age-1(am88)b	↑22.9±6.2

Continued on next page
Table 2 continued
8 (Akhoon et al., 2016)
20°C
*NGM
*NGM
Sgk-1(ok538)b
Daf-16(mgDf50)b
Skn-1(zu67)b
Hsf-1(sy441)b

| 9 (Zamberlan et al., 2016) |
20°C	90	N2a	12±1.15	
*NGM	E. coli	OP50	N2a	12±1.15
*NGM	E. coli	Daf-2b	22±1.75	
Daf-16b	10±0.57			
Hsf-1b	8±1.15			
Skn-1b	9±0.86			

| 10 (Khanna et al., 2016) |
21.5°C	60	N2a	13.9±0.4	
*NGM	E. coli K-12	OP50	N2a	13.9±0.4
Daf-2(e1370)b	26.4±0.9			
Daf-16(mu86)b	No numerical data			
Daf-16;daf-2b	12.7±0.3			
Age-1(hx546)b	12.6±0.4			
Sir-2.1(ok434)b	17.1±0.5			
Mek-1(ks54)b	17.4±0.5			
Skn-1(zu67)b	12.1±0.4			
Daf-2(el368)b	10.9±0.3			

| 11 (Im et al., 2016) |
15°C	40-50	N2a	14.2±0.3	
*NGM-Lite	E. coli	OP50	N2a	14.2±0.3
Daf-2(e1370)b	26.4±0.9			
Skn-1(zu67)b	No numerical data			
Daf-16(mu86)b	12.7±0.3			
Daf-16;daf-2b	12.6±0.4			
Mek-1(ks54)b	17.1±0.5			
Daf-2(el368)b	17.4±0.5			
Age-1(hx546)b	12.1±0.4			
Sir-2.1(ok434)b	10.9±0.3			

| 12 (Oláhová and Veal, 2015) |
15°C	15	N2a	24.74±0.55	
*NGM-Lite	E. coli	OP50	N2a	24.74±0.55
Daf-2(e1370)b	32.31±0.65			
Skg-1(gf15)b	21.83±1.01			
Hsf-1b	22.72±1.07			

| 13 (Mizunuma et al., 2014) |
23°C	100	N2a	14.4±0.1	
*NGM	E. coli HT115(DE3)	OP50	N2a	14.4±0.1
Shc-1(ok198)b	38%(8.9±0.1)			
Shc-1(ok198)c	42%			
Daf-16(mu86)b	15.4±0.4			
Shc-1;daf-16b	10.8±0.3			
Shc-1;fer-15(b26)b	10.5±0.2			
Fer-15b	14.0±0.2			
Daf-16(mgDf50);fer-15b	10.1±0.2			
Daf-16 shc-1;fer-15b	10.2±0.3			
Jnk-1(gk7)b	11.6±0.2			
Shc-1;Jnk-1b	10.9±0.1			

| 14 (Bansal et al., 2015) |
20°C	120	N2a	20.0±0
*NGM	E. coli OP50	N2a	20.0±0
Daf-2(e1370)b	43.0±0		
Ife-2(ok306)b	29.0±0.14		
Clk-1(qm30)b	25.0±0		
Eat-2(ad1113)b	26.5±2.1		

Continued on next page
No.	(Author et al., Year)	Temperature	Media	Strain 1	Strain 2	Strain 3	Strain 4	Strain 5	Strain 6
15	(Rathor et al., 2015)	20°C	N2a	Mev-1(kn-1)b	Daf-16(mgf50)b	Sir-2.1(ok434)c	Skn-1(zu135)b	Eat-2(ad1116)b	16.56±0.26
									↓12.42±0.3
									↑14.19±0.07
16	(Horikawa et al., 2015)	15°C	N2a	Daf-41(ok3052)b	Daf-2(e1370)b	Pges-2(ok3316)b	Gst-4&msp-38(ok2358)b	30.6±0.13	
									150 ± 0.8
									20°C
									22.6 ± 0.4
									↓20.9±0.4
									↑23.3±0.0
									↑41.5±0.7
									↓20.1±0.3
									↑23.6±0.5
17	(Seo et al., 2015)	20°C	N2a	Hel-1(gk148684)b	Daf-2(e1370)b	Hel-1:osm-5(p813)b	Vhl-(ok161)b	Hel-1:eat-2b	16.9±0.6
									↑17.0±0.4
									↑39.7±1.1
									↑27.0±0.9
18	(Golegaonkar et al., 2015)	20°C	N2a	Daf-18(E1375)b	Akt-1(Mg144)b	Jnk-1(Gk7)b	Jkk-1(Km2)b	Daf-16(mgDf50)b	22.78±0.23
									22.78±0.23
									↓18.60±0.26
									↓18.55±0.26
									↑39.52±0.61
									↑33.38±0.43
									↑29.18±0.40
									↑17.80±0.25
									No effect
									(22.78±0.23)
19	(Ewald et al., 2015)	20°C	N2a	Skn-1(zu67)b	Daf-2(e1370)b	GST-2(ad1111)b	Daf-2;skn-1b	23.4±0.3	
									↓16.9±0.2
									↑36.7±0.5
									↓17.1±0.2

Continued on next page
#	(Author, Year)	Temperature	E. coli	Gene Interaction	Value ± SD	Note
20	(Zheng et al., 2014)	20°C	*NGM	Daf-16(mu86)b Ins-7(ok1573)c	17.04±0.42	15.72±0.26
			E. coli OP50		19.08±0.29	
21	(Kim et al., 2014)	20°C	*NGM	Daf-2b Daf-16(mu86)b Nog-1b Nog-1;daf-2b Nog-1;daf-16b Nog-1;daf-2b Nog-1;daf-16b Nog-1;daf-2b	12.21±0.24	13.2±0.30
			E. coli OP50		12.9±0.25	
22	(Breibning et al., 2014)	20°C	*NGM	Daf-16(mu86)b Daf-16;daf-2b Nog-1b Nog-1;daf-2b Nog-1;daf-16b Nog-1;daf-2b Nog-1;daf-16b Nog-1;daf-2b Nog-1;daf-16b Nog-1;daf-2b Nog-1;daf-16b Nog-1;daf-2b	17.0±1.0	29.0±2.0
			E. coli OP50		30.0	
23	(Ferguson et al., 2013)	20°C	E. coli	Tatn-1(baf1)b Eak-7(3188)b Eak-7;tatn-1b Eak-2(gt33)b Tatn-1;ak-2b	21.0	14.0
			HB101 NGM-streptomycin		13.0	

Continued on next page
Table 2 continued
20°C
E. coli
HT115
NGM-streptomycin
Daf-16(mgDf47)b
Tatn-1;daf-16b
20°C
*NGM
E. coli
OP50
Daf-2(e1370)b
Daf-2;daf-12b
Daf-36b
Daf-36;daf-2b
Daf-9b
Daf-9;daf-2b
20°C
*NGM
E. coli
HT115
Daf-2(e1370)b
Daf-2;daf-12b
Daf-36b
Daf-36;daf-2b
Daf-9b
Daf-9;daf-2b
24 (Dumas et al., 2013)
25 (Wan et al., 2013)
26 (Guha et al., 2013)
27 (Lin et al., 2011)
20°C
N2a
Daf-2(e1370)b
Daf-12b
Eat-2(mu86)b
Daf-2(e1370)b
Eat-2(d11116)b
Daf-16(mgDf50)b
Daf-2(e1370)b
Daf-2(e1370)b
Age-1(hx546)b
Osr-1(rm1)b
Unc-43(n1186)b
Sek-1(ag1)b
Jnk-1(gk7)b
Sir-2.1(ok434)c
Par-4(it47)Vb
20°C
N2a
Daf-3(ok1744)b
Daf-1b
Daf-2b
Asm-3(ok1744)b
Asm-1b
Asm-2b
Asm-3;apf-1b
Asm-3;age-1b
Age-1(mg305)b
Aap-1(m889)b

Continued on next page
Table 2 continued

No.	Study (Reference Year)	Temperature (°C)	Treatment	Phenotypes	Effect	Effect	Effect	Effect	
28	(Matsunaga et al., 2012)	25°C	N2a	*NGM	Ins-18(tm339)c	17.0	by 3.1	by 2.7	by 4.8
				E. coli	Ins-18(tm339)b	No numerical data			
				OP50	Ins-18;ins-7(tm1907)b	↓by 7.0			
					Daf-2;ins-18b	↑by 7.0			
					Daf-2(e1370)b	↑by 9.0			
29	(Vaccaro et al., 2012)	20°C	N2a	*NGM	Daf-2(e1370)b	16.0	by 3.8	by 1.3	by 4.8
				E. coli	Daf-2(e1370)b	No numerical data			
				OP50	Tdp-1(ok803)b	↑by 2.0			
					Daf-2;tdp-1b	↑by 3.0			
					Daf-16;tdp-1b	↓by 1.2			
30	(Grompone et al., 2012)	No data	N2a	*NGM	Daf-16b	24.0	by 4.0	by 1.0	by 5.0
				E. coli	Daf-16b	No numerical data			
				OP50	Skn-1b	by 4.0			
31	(Barna et al., 2012)	20-30	N2a	*NGM	Hsf-1(sy441)b	20.0	by 3.0	by 1.3	
				E. coli	Hsf-1(sy441)b	No numerical data			
				OP50	Daf-7b	by 3.0			
32	(Hahm et al., 2011)	45-60	N2a	*NGM	Gpa-9(pk438)b	19.56±0.62	by 20.26±1.09		
				E. coli	Gpa-9(pk438)b	No effect			
				OP50	Gpa-9(pk438)b	(19.56±0.62)			
				(OD=0.18)	Gpa-9(XSc)	No effect			
				High Density Feeding (HDF)	Gpa-9(XSc)	(16.22±0.14)			
				E. coli	Gpa-9(pk438)b	↑by 20.08±0.18			
33	(Huang et al., 2011)	100	N2a	*NGM	Daf-2b	17.3±0.4	by 29.1±1.4		
				E. coli	Daf-2b	by 20.1±0.7			
				OP50	Daf-2b	↑by 36.7±1.7			
					Daf-16;sea-2;daf-2b	↓by 13.1±0.5			
34	(Cornils et al., 2011)	100	N2a	*NGM	Ins-6(tm2416)b	13.0±0.1			
				E. coli	Daf-28(tm2308)b	↑by 14.5±0.3			
				OP50	Daf-28(tm2308)b	↑by 13.9±0.2			
					Ins-1(nr2091)b	↓by 12.6±0.3			
					Ins-6;daf-28b	↑by 13.9±0.4			

Continued on next page
	(Kühlbrodt et al., 2011)	25-50	20°C	N2a	26.0
35	*NGM E. coli OP50			Atx-3(gk193)b	↑30.0
				Daf-2(e1370)b	↑40.0
				Cdc-48.2(tm659)b	↑28.0
				Cdc-48.2;atx-3b	↑28.0
				Cdc-48.1(tm544)b	↑30.0
				Cdc-48.1;atx-3b	↑43.0
				Cdc-48.1;daf-2;atx-3b	↑40.0
				Daf-16b	↓20.0
				Cdc-48.1;atx-3;daf-16b	↓18.0
				Pha-4b	↑27.0
				Cdc-48.1;atx-3;pha-4b	↑35.0
	(Yazaki et al., 2011)	100	20°C	N2a	31.5±6.4
36	*NGM E. coli OP50			Age-1(hx546)b	↑47.1±15.1
				Daf-16(mgdf50)b	↓19.2±2.8
	(Henis-Korenblit et al., 2010)	46	20°C	N2a	16.5
	*NGM E. coli OP50			Daf-2(e1370)b	↑42.0
				Ire-1(ok799);daf-2b	↑19.9
				Daf-2(e1368)b	↑32.8
				Daf-2;xbp-1b	↑23.6
				Ire-1(ok799);daf-2b	↓16.0
				Ire-1(ok799)b	↓13.2
				Daf-2;xbp-1b	↑36.6
				Xbp-1(zc12)b	↓16.2
	(Hashimoto et al., 2010)	15	20°C	N2a	34.0
38	*NGM E. coli OP50			Eat-2(ad1116)b	↑44.0
				Daf-16(mgDf50)b	↓24.0
	(Thyagarajan et al., 2010)	60	20°C	N2a	13.36±0.6
39	*NGM E. coli OP50			Ets-4(ok165)b	↑18.0±0.4
				Ets-4(uz1)b	↑18.2±0.4
				Daf-2b	↑22.4±1.4
	(Shen et al., 2010b)	30	20°C	N2a	13.1±0.3
40	*NGM E. coli OP50			Daf-16(mu86)b	↓10.7±0.7
				Daf-2(e1370)b	↑30.6±1.6
				Ttx-3(ks5)b	↓11.8±0.4
				Sra-11(ok630)b	↓13.0±0.5
				Ceh-10(ct78)b	↓7.9±0.5
				Ceh-23(ms23)b	↓12.8±0.4
	(Shen et al., 2010a)	30	20°C	N2a	13.1±0.3
41	*NGM E. coli OP50			Daf-16(mu86)b	↓10.7±0.7
				Daf-2(e1370)b	↑30.6±1.6
				Odr-7(ky4)b	↑16.6±0.6
				Odr-2(n2145)b	↑16.3±0.6
				Odr-3(n2150)b	↑16.6±0.6
	(Chuang et al., 2009)	60	20°C	N2a	24.0
42	*NGM E. coli OP50			Tir-1b	↑18%
				Daf-16b	↓25%
Table 2 continued					

43	(Hahm et al., 2009)	100	20°C	N2a	22.0
	*NGM			Gpa-3(pk35)b	↓20.0
	E. coli			Gpa-3(syls25)b	↑35.0
	OP50			Daf-11(m47)b	↑25.0
				N2a	16.5
	*NGM			Ced-3(n717)b	↓15.6
	E. coli			Daf-2b	↑30.1
44	(Jia et al., 2009)	No data	20°C	N2a	20.84±4.71
	*NGM			Eat-2(ad1113)b	↑25.90±4.51
	E. coli			Daf-2(e1370)b	↑48.36±12.70
	OP50			Daf-16(m26)b	↓12.84±2.11
45	(Zhang et al., 2009)	10	20°C	N2a	12.7±2.1
	liquid			Eat-2(ad1113)b	↑23.5±2.7
	E. coli			Daf-2(e1370)b	↑13.7±2.6
	OP50			Daf-2(e1370)b	↑12.9±1.9
				Sdf-9(ut187)b	↑12.9±2.0
				Sdf-9(mg337)b	↑12.9±1.9
				Eak-3(mg329)b	↑12.9±1.6
				Eak-3(mg344)b	↓12.6±2.6
				Eak-4(mg348)b	↑12.9±1.9
				Akt-1(mg306)b	↑13.0±2.1
				Akt-1(mg306)b	↑13.1±2.2
				Akt-1;sd-9(ut187)b	↑12.7±2.5
				Akt-1;sd-9(mg337)b	↑13.0±2.5
				Sdf-9(ut187)b	↑12.9±2.0
				Sdf-9(mg337)b	↑12.9±1.9
				Eak-6(mg329)b	↑12.9±1.6
				Eak-6(mg329)b	↑12.9±1.6
				Eak-6(mg344)b	↑12.9±1.6
				Eak-6(mg344)b	↑12.9±1.6
46	(Zhang et al., 2008)	101	20°C	N2a	32.1±4.2
	*NGM			Age-1(hx546)b	↑37.4±5.5
	E. coli			Daf-16(mgDf50)b	↓18.6±0.5
	OP50			Sod-2;daf-2	↑24±0.7
				Mev-1(kn1)b	↑21.8±2.1
				Eak-3(mg344)b	↑12.6±2.6
				Eak-4(mg348)b	↑12.9±1.9
				Akt-1(mg306)b	↑13.0±2.1
				Akt-1(mg306)b	↑13.1±2.2
				Akt-1;sd-9(ut187)b	↑12.7±2.5
				Akt-1;sd-9(mg337)b	↑13.0±2.5
				Sod-2;daf-2	↑24±0.7
				Sod-3;daf-2	↑24±0.7
				Sod-2;daf-2	↑24±0.7
				Sod-3;daf-2	↑24±0.7
				Sod-2;daf-2	↑24±0.7
47	(Banfield et al., 2008)	100	20°C	N2a	20.0
	*NGM			Age-1(hx546)b	↑37.4±5.5
	E. coli			Daf-16(mgDf50)b	↓18.6±0.5
	OP50			Sod-2;daf-2	↑24±0.7
				Mev-1(kn1)b	↑21.8±2.1
48	(Honda et al., 2008)	No data	25°C	N2a	15.0
	*NGM			Pcm-1(qa201)b	↑17±0.4
	E. coli			Daf-2(m41)b	↑24±0.7
	OP50			Daf-2(m41)b	↑24±0.7
				Daf-2(m41)b	↑24±0.7
				Daf-2(m41)b	↑24±0.7
49	(Honda et al., 2008)	No data	15°C	N2a	30.0
	*NGM			Sod-2(sj173)b	↓22.5±1.4
	E. coli			Sod-3(sj134)b	↓21.5±1.1
	OP50			Sod-2;sd-3b	↓20.4±2.3
				Sod-2;sd-3b	↓20.4±2.3
				Sod-2;sd-3b	↓20.4±2.3
				Sod-2;sd-3b	↓20.4±2.3
				Sod-2;sd-3b	↓20.4±2.3
				Sod-2;sd-3b	↓20.4±2.3
				Sod-2;sd-3b	↓20.4±2.3
				Sod-2;sd-3b	↓20.4±2.3
				Sod-2;sd-3b	↓20.4±2.3
				Sod-2;sd-3b	↓20.4±2.3
Table 3: *(Continue from Table 2)* Effect of differential genes expression on the mean lifespan of *C. elegans.*

No.	Author	No. of worms used	Culture conditions	Gene tested	Lifespan (days)
49(Continue)	*(Honda et al., 2008)*	No data	15°C	Daf-2; sod-3^c	$\uparrow 56.3 \pm 2.3$
			*NGM	Daf-2; mev-1^b	$\uparrow 46.1 \pm 0.3$
			E. coli OP50	Daf-7; sod-3^b	$\uparrow 23.2 \pm 3.9$
				Sod-2; daf-7; sod-3^b	$\downarrow 22.1 \pm 2.0$
				Sod-4(gk101)^b	$\downarrow 21.9 \pm 0.2$
				Daf-2; sod-4^b	$\uparrow 23.2$
				Sod-2; daf-7(e1372)	$\downarrow 24.3$
				Daf-7(e1372) Mev-1(kn-1)	$\downarrow 17.9$
50	*(Galbadage and Hartman, 2008)*	50	12°C	N2a	33.7 ± 6.4
			*NGM	Daf-16(m27)^b	$\downarrow 29.9 \pm 8.0$
			E. coli OP50	Clk-1(e2519)^b	$\uparrow 40.7 \pm 8.4$
				Eat-2(ad465)^b	$\uparrow 36.6 \pm 12.6$
				Daf-2(e1370)^b	$\uparrow 38.9 \pm 12.3$
				18.5°C	19.2 ± 4.7
			*NGM	N2a	$\downarrow 18.6 \pm 5.3$
			E. coli OP50	Daf-16(m27)^b	$\downarrow 18.6 \pm 5.3$
				Clk-1(e2519)^b	No numerical data
				Eat-2(ad465)^b	No numerical data
				Daf-2(e1370)^b	No numerical data
				25°C	12.6 ± 3.0
			*NGM	N2a	$\downarrow 9.5 \pm 1.3$
			E. coli OP50	Daf-16(m27)^b	$\downarrow 9.5 \pm 1.3$
				Clk-1(e2519)^b	$\uparrow 18.7 \pm 4.3$
				Eat-2(ad465)^b	$\uparrow 17.3 \pm 4.7$
				Daf-2(e1370)^b	$\uparrow 38.7 \pm 15.2$
51	*(Ghazi et al., 2009)*	90	20°C	N2a	20.7 ± 0.7
			*NGM	Daf-2(mu150)^b	$\uparrow 33.4 \pm 0.7$
			E. coli OP50	Daf-2(e1368)^b	$\uparrow 32.7 \pm 0.7$
				Daf-2(e1370)^b	$\uparrow 40.8 \pm 1.0$
				Glp-1(e2141ts)^b	$\uparrow 23.2 \pm 0.4$
				Eat-2(ad1116)^b	$\uparrow 27.3 \pm 0.6$
Table 4: Effect of differential genes expression on the mean and maximum lifespan of *C. elegans*.

No.	Author	No. of worms used	Culture conditions	Gene tested	Lifespan (days)	
					Mean	Maximum
1	(Araiz et al., 2008)	No data	20°C *NGM* E. coli OP50	N2a	18.9±0.1	28.0
				Ftt-1b	↓16.4±0.1	↑29.0
				Ftt-2b	↓15.6±0.1	↑31.0
				Daf-16(mgDf50)b	↓13.9±0.1	↑24.0
				Daf-16;fft-1b	↓14.0±0.3	↑29.0
				Daf-16;fft-2b	↓12.8±0.1	↑20.0
				Daf-2(e1365)b	↑31.3±0.7	↑42.0
				Daf-2;fft-1b	↑25.4±0.3	↑38.0
				Daf-2;fft-2b	↑23.4±0.4	↑38.0
		124	20°C *NGM* E. coli OP50	N2a	20.0	35.0
				Ftt-1b	↑25.0	↑43.0
				Daf-2(e1370)b	↑26.0	↑41.0
		121		Age-1(hx546)b	No data	↑41.0
				Fgt-1;daf-2b	↑29.0	↑47.0
				Fgt-1;age-1b	↑27.0	↑44.0
2	(Feng et al., 2013)	124	20°C *NGM* E. coli OP50	N2a	16.3	27.0
				Age-1(hx546)b	↑20.8	↑33.0
				Age-1;rme-1b	↓13.1	↓25.0
				Age-1;rme-6b	↑19.8	↑28.0
				Age-1;rme-8b	↑19.1	↑32.0
				Clk-1(e2519)b	↑17.9	↑29.0
				Clk-1;rme-1b	↑18.3	↑30.0
				Eat-2(ad465)b	↑18.2	↑30.0
				Eat-2;rme-1b	↑18.4	↑24.0
				Eat-2;rme6b	↑18.4	↑24.0
				Eat-2;rme-8b	↑19.8	↑30.0
				Rme-1b	↑17.6	↑28.0

NGM = Nematode Growth Medium
Table 5: Effect of differential genes expression on the maximum lifespan of *C. elegans.*

No.	Author	No. of worms used	Culture conditions	Gene tested	Lifespan (days)
1	(Lee et al., 2009)	36	20°C	N2a	32.0
			*NGM E. coli OP50	Daf-16b	↓22.0
				Hsf-1b	↓15.0
				Daf-2(e1370)b	↑80.0
				Daf-2(e1368)b	↑45.0
				Aqp-1b	↓30.0
2	(Honda et al., 2010)	No data	20°C	N2a	30.0
			*NGM E. coli OP50	Daf-2b	↑75.0
				Sod-2; daf-2b	↑65.0
				Sod-2; daf-2; Ex[sod-2]c	↑100.0
				Daf-2; sod-3b	↑100.0
				Daf-2; sod-3; Ex[sod-3]c	↑75.0
3	(Khare et al., 2011)	No data	25°C	N2a	17.0
			*NGM E. coli OP50	Transgenic strains:	↑25% (25.0)
				PL51c	
4	(Lehrbach et al., 2012)	40	25°C	N2a	15.0
			*NGM E. coli	Pash-1tsb	↓10.0
			HT115		
5	(Seo et al., 2013)	30	20°C	N2a	30.0
			*NGM E. coli OP50	Hsf-1(sy441)b	↓25.0
				Rsks-1(tm1714)b	↑40.0
				Daf-16(mu86)b	↓20.0
				Daf-2(e1370)b	↑58.0
6	(Johnson et al., 2014)	25	20°C Liquid	N2a	25.1±0.9
			E. coli HT115	Daf-2(e1370)b	↑60.5±2.4
				Daf-2; mxx-1(tm1530)b	↑83.9±3.3
				Daf-2; mxx-2(tm1516)b	↑43.2±3.3
				Daf-3(tm4940)b	↓22.0±1.9
				Eat-2(ad465)b	↑44.1±2.6
				Eat-2; mxx-1b	↑40.1±2.7
				Eat-2; mxx-2b	↓23.1±1.1
				Mdl-1(tm311)b	↑40.3±3.2
				Mml-1(ok849)b	↓22.4±1.5
				Mxl-1(tm1530)b	↑35.7±1.5
				Mxl-2(tm1516)b	↑21.2±1.3
				Mxl-3(ok1947)b	↑41.6±3.7
				Daf-16(mgDf47)b	↓22.8±2.4
7	(Singh et al., 2016)	No data	20°C	N2a	32.0
			*NGM E. coli OP50	Daf-16^a	↓20.0
				Pha-4^b	↓28.0
				Zfp-1(ok554)^b	↓30.0
				Gfl-1^b	↓28.0

^aNGM = Nematode Growth Medium
Table 6: (Continue from Table 5) Effect of differential genes expression on the maximum lifespan of *C. elegans*.

No.	Author	No. of worms	Culture conditions	Gene tested	Lifespan (days)
8	(Loucks *et al.*, 2016)	100	20°C *NGM* E. coli OP50	N2a, Perg-1(tm2597)b, Daf-16b, Perg-1;daf-16b, Daf-2b, Perg-1;daf-2b, Eat-2b, Pcrg-1;eat-2b	30.0 ↑28.0 ↓20.0 ↑55.0 ↑60.0 ↑50.0
9	(Li *et al.*, 2016)	100	20°C *NGM* E. coli OP50	N2a, Scav-3(qx193)b, Daf-2(e1370)b, Daf-2;scav-3b, Daf-16(mu86)b, Daf-16;daf-2b, Daf-16;daf-2;scav-3b, Scav-3(ok1286)b, Scav-3(tm3659)b	30.0 ↑22.0 ↑73.0 ↑63.0 ↓25.0 ↓20.0 ↓25.0
10	(Xu *et al.*, 2016)	50-100	20°C *NGM* E. coli OP50	N2a, Daf-2(e1370)b, Daf-16(mu86)b, Age-1(hx546)b, Daf-16bkob	30.0 ↑28.0 ↓26.0 ↑34.0 ↓23.0
11	(Prasanth *et al.*, 2016)	20	20°C *NGM* & liquid E. coli OP50	N2a, Daf-2(e1370)b	15 days on solid media 15 days on liquid media ↑42 days on liquid media ↑40 days on solid media
12	(Maklakov *et al.*, 2017)	50	20°C *NGM-*nystatin E. coli OP50	N2a, Age-1(hx546)b	24.0 ↑40.0

NGM= Nematode Growth Medium
Table 7: Effect of differential genes expression on the mean and median lifespan of *C. elegans*.

No.	Author	No. of worms used	Culture conditions	Gene tested	Lifespan (days)	Mean	Median
1	(Tvermoes et al., 2010)	50-65	20°C *E. coli* OP50	Numr-1(ok2239)b	↓ (No numerical data)	(No numerical data)	
				Numr-1(tm2775)b	↓ (No numerical data)	(No numerical data)	
				Transgenic strains:	↑ (No numerical data)	(No numerical data)	
				JF88(mtEx63)c		9	
				T[356(zis356)]{daf-16;rol-6}c	↑ (No numerical data)	(No numerical data)	
2	(Wang et al., 2010)	100	20°C *E. coli* OP50	N2a	22.64±0.2	23.0	
				Skn-1(zu135)b	↓20.29±0.2	↓20.0	
				Ile-2(eIF4F)b	↑24.86±0.4	↑25.0	
				Skn-1;iie-2b	↓21.11±0.4	↓19.0	
				Ifg-1(eIF4F)b	↑27.91±0.5	↑28.0	
				Skn-1;ifg-1b	↑26.21±0.5	↑25.0	
				Eif-1(PI)C	↑28.16±0.2	↑29.0	
				Skn-1;iie-1b	↓22.18±0.3	23.0	
				eIF-1A(PIC)	↑26.84±0.5	↑27.0	
				Skn-1;iel-1Ab	↓21.62±0.4	↓22.0	
				Skn-1(zu67)b	↓18.33±0.4	↓17.0	
				Skn-1;iie-2b	↓18.31±0.4	↓17.0	
				Skn-1;ifg-1b	↑25.88±0.6	↑26.0	
				Skn-1;iie-1b	↑20.42±0.4	↑19.0	
				Daf-16(mdF47)b	↓19.74±0.4	↓20.0	
				Daf-16;iie-2b	↓19.77±0.4	↓20.0	
				Daf-16;skn-1b	↓16.91±0.3	↓17.0	
				Daf-16;ifg-1b	↑23.61±0.4	↑25.0	
				Daf-16;skn-1 ifg-1b	↓18.72±0.4	↓18.0	
				Daf-16;eif-1b	↓20.91±0.3	↓21.0	
				Daf-16;skn-1;eif-1b	↓16.42±0.2	↓16.0	
3	(Masse et al., 2008)	30	20°C *E. coli* OP50	N2a	16.2±0.4	15.0	
				Smg-1(tm869)b	↑19.8±0.3	↑21.0	
				Rrf-3(pk1426)b	↑16.9±0.2	15.0	
				Daf-18(e1375);rfl-3b	↓12.7±0.2	↓12.0	
				Tax-4(p678);rfl-3b	↑22.6±0.5	↑24.0	
4	(Saul et al., 2009)	499	20°C *E. coli* OP50	N2a	16.91	16.13	
				Age-1(hx546)b	↓15.90	↓13.21	
				Akt-2(ok393)b	↑19.62	↑18.66	
				Daf-2(m577)b	↑18.53	↑16.03	
				Daf-12(m20)	↓10.53	↓9.42	
				Daf-16(mdF50)b	↓11.79	↓11.35	
				Skn-1(zu67)b	↓9.19	↓8.46	
5	(Xu and Kim, 2012)	246	20°C *E. coli* OP50	N2a	14.3	13	
				Daf-2(e1370)b	↑48.9	↑49.0	
				Egl-27(we3)b	↑27.8	↑28.0	
				Daf-2;daf-16(mu86)b	↑24.0	↑25.0	
				Daf-2;egl-27(we3)b	↑21.5	↑20.0	

NGM = Nematode Growth Medium
Table 8: Effect of differential genes expression on the median lifespan of *C. elegans*.

No.	Author	No. of worms used	Culture conditions	Gene tested	Median	
1	(Martorell et al., 2011)	300	20°C	N2a	15.0	
				Sir-2.1(ok434)b	No effect	
				Daf-16(mgDf50)b	No effect	
				Daf-2(e1370)b	↑20.0	
2	(Rahman et al., 2010)	85-125	20°C	N2a	15.9±3.6	
				Oga-1(ok1207)b	↑20.9±4.1	
				Ogt-1(ok1474)b	↓12.9±1.9	
				Daf-2(e1370)b	↑28.6±3.5	
				Daf-16(mu86)b	↓14.3±2.5	
				Age-1(hx546)b	↑25.6±4.1	
				Sgk-1(ok538)b	↑29.8±3.2	
				Pdk-1(mg142)b	↓14.8±1.7	
				Akt-1(mg144)b	↓11.5±2.1	
3	(Evans et al., 2008)	300	20°C	N2a	36.0	
				Akt-1(ok525)b	No effect	
				Akt-2(ok393)b	↑40.0	
				Sgk-1(ok538)b	↓35.0	
4	(Stout et al., 2013)	30	25°C	N2a	20.0	
				Daf-16(mu86)b	↓15.0	
				Aars-2b	↑22.0	
5	(Piazzesi et al., 2016)	No data	20°C	N2a	24±1.1	
				His-72(tm2066);his-71(ok2289)b	No effect (24±1.5)	
				His-72p::his-72::GFPb	↑25.4±1.4	
				Daf-2(e1370)b	↑44±4.4	
				Daf-2;his-72b	↑40±1.4	
				Daf-2;his-71b	↑32±5.9	
				Daf-16(mu86):daf-2b	↓15±0.3	
				Daf-16;daf-2;his-72;his-71b	↓15±0.7	
				No effect (24±0.7)	↑30±4.0	
				His-72p::hh3.3::ha;his-71p::hh3.3::mycb	↓19±1.5	
				Nuo-6(qm200)b	Nuo-6(qm200);his-72;his-71b	25°C
				N2a	16±0.7	
				Glp-1(bn18)b	↑26±0.5	
				Glp-1;his-72(tm2066);his-71(ok2289)b	↑19±1.3	
				Glp-1;his-72p::hH3.3::HA;his-71p::hH3.3::Mycb	↑23±1.2	
				Glp-1;his-72p::hH3.3::HA;his-71p::hH3.3::Mycb	↑22±1.2	
				Glp-1;his-72p::hH3.3::HA;his-71p::hH3.3::Mycb	↑25.0	
				Glp-1;his-72p::hH3.3::HA;his-71p::hH3.3::Mycb	↑25±0.3	

*NGM = Nematode Growth Medium
involved in the IIS pathway. Most of the studies found that knockdown of daf-2 and age-1 genes extended lifespan while knockdown of genes such as daf-16, skn-1, hsf-1, and sir-2.1 resulted in a shortened lifespan.

C. elegans is known to live between 25-30 days in normal conditions. A total of 51 studies have demonstrated that the lifespan of *C. elegans* was extended by 2-fold following depletion of daf-2 expression. The increased lifespan could be due to the fact that inhibition of DAF-2 causes decreased of its binding to the insulin receptor substrate (IRS)/IST-1 leading to dephosphorylation and deactivation of phosphoinositase-3 kinase (AGE-1) that encodes phosphatidylinositol-3-OH kinase (P13K) which responsible to convert phosphatidylinositol-3 (PIP₃) to phosphatidylinositol-2 (PIP₂) (Kenyon, 2010). Decreased PIP₃ level will dephosphorylate phosphoinositol-dependent kinase 1 (PDK-1), serine/threonine-specific protein kinase B (AKT-1/2) (Paradis and Ruvkun, 1998), and glucocorticoid-inducible kinase-1 (SGK-1) which will then activate DAF-16 (downstream transcription factor FOXO). Hence, enhanced cytoplasm-to-nucleus translocation will activate expressions of genes that lead to longevity (Altintas et al., 2016) such as heat shock proteins (HSPs) and antioxidants (Hu, 2007). Studies in this review showed an extended lifespan of daf-2 knockdown to be around 30 to 45 days. Most of the studies used daf-2(e1370) strain as daf-2 knockdown mutant because other daf-2 mutant strains such as daf-2(m41) is a class 1 allele of daf-2 mutant while daf-2(e1370) is a class 2 allele. Daf-2(m41) mutations trigger dauer formation at 25°C. Other than that, it is temperature-sensitive and less pleiotropic than alleles such as daf-2(e1370) (Gems et al., 1998). Therefore, daf-2(e1370) is considered to be the most ideal strain for studying daf-2 in influencing *C. elegans*’s lifespan. Lifespan extension of knockdown daf-2 mutants depends on transcription factors DAF-16 and DAF-12 (Ogg et al., 1997; Hsin and Kenyon, 1999; Matyash et al., 2004). Different daf-2 class mutants and corresponding phenotypic traits are believed to result in a common and different downstream unknown complex processes that influence regulation of daf-16 gene product (Gems et al., 1998; Nanji et al., 2005).

Furthermore, the results from 40 studies showed a decrement of *C. elegans*’s lifespan following daf-16 knockdown. The *C. elegans* IIS pathway connects nutrient levels to metabolism, growth, development, longevity, and behaviour (Holzenberger et al., 2003). This pathway is regulated by the binding of insulin-like peptide ligands (ILPs) to the insulin/IGF-1 trans-membrane receptor (IGFR) ortholog DAF-2, which then influences the activation of DAF-16 and transcriptional activity of a gene that prolong lifespan. Therefore, knockdown of daf-16 results in a shortened lifespan. Studies reported in this review found a reduction in the lifespan of daf-16 knockdown mutant when compared to wild-type. Based on the studies reviewed, daf-16 mutant *C. elegans* live approximately 8 to 20 days. A total of 21 studies used daf-16(mgDf50) strain as daf-16 mutant. Daf-16(mgDf50) strain is a mutant with complete elimination of the daf-16 coding region. This is considered to be the most ideal strain to be used to study the effect of daf-16 on the lifespan of *C. elegans*. Another optimal daf-16 mutant strain used is daf-16(mib86) mutant, which is a dauer defective worm. Dauer is a stage where the nematodes are on its defensive mode when unfavourable conditions are encountered. At the dauer stage, the nematode produces a cuticle that coats their body for protection and halts eating hence to suspend growth (Bargmann and Horvitz, 1991). This strain is commonly used to study the effect of environmental stressors on the worms’ lifespan because the dauer stage helps the nematodes to survive in unfavourable conditions (Erkut et al., 2013).

The knockdown of age-1 expression increases *C. elegans* lifespan, as reported by 13 studies. The inhibition of AGE-1 contributes to the extension of lifespan as it plays a vital role in the production of PIP₃. The decreased activity of AGE-1 will increase the activity of PTEN phosphatase (DAF-18) and decrease the activity of phosphoinositide-3 kinase, which converts PIP₃ to PIP₂ Kenyon (2010). Decreased PIP₃ levels lead to decreased activities of PDK-1 and AKT-1/2 as well as activation of DAF-16, which promotes longevity (Paradis and Ruvkun, 1998). Studies included in this review reported lifespan extension of age-1 knockdown mutants to be around 17 to 47 days. The age-1(hx546) strain was used in these studies mainly because age-1 mutants have a long life with normal fertility and good tolerance to stress and temperature changes (Friedman and Johnson, 1988).

SKN-1 function as cofactors of DAF-16. Similar to in daf-16, skn-1 is also needed for the extension of lifespan (Ewald et al., 2015). This is because SKN-1 plays a major role in various crucial processes needed for lifespan extension, such as protein synthesis in the endoplasmic reticulum (ER), metabolism, and maintaining protein homeostasis when under normal conditions and also when in response to stresses (Blackwell et al., 2015) SKN-1 also contributes to protection against pathogenic infection, which improves the survival of *C. ele-
The study was done by (Rathor et al., 2015), showed an increased in C. elegans’s lifespan following the skn-1 knockdown. However, seven other studies reported the opposite where knockdown of skn-1 is found to decrease the lifespan of C. elegans. SKN-1 is critical for oxidative stress resistance and promotes longevity under reduced IIS signaling, dietary restriction (DR), and normal conditions (Tullet et al., 2008).

One of the most important downstream transcription factors of IIS is heat shock transcription factor 1 (HSF-1). HSF plays essential and evolutionary conserved roles in the activation of heat shock-inducible gene expression. HSFs are recognized as regulators of stress-induced gene expression, besides contributing to more complex organismal physiological processes such as development, growth, aging, immunity, and reproduction. HSF-1 is also known to regulate protein folding and gene expression in response to heat stress. It modulates longevity by upregulating the chaperone network and enhancing the proper folding of proteins (Hsu et al., 2003; Morley and Morimoto, 2004; Douglas et al., 2015). Some studies reported that knockdown of hsf-1 gene decreases the lifespan of C. elegans by about 8% from wild-type. Heat shock protein-90 (HSP-90) is another chaperone protein which helps to repair misfolded proteins that accumulate during stress. This protein also has essential functions in protein synthesis, processing, and degradation, which are activated by an exertion of HSF-1 cytoplasm-to-nucleus translocation (Parsell and Lindquist, 1993; Young et al., 2004). HSF-1 acts in parallel with DAF-16 to provide pathogen resistance hence extending lifespan. A study done on HSF-1 showed that overexpression of hsf-1 significantly enhanced C. elegans resistance to P. aeruginosa infection. This indi-
licated that the chaperone system recognized and degraded bacterial virulence factors or functions by proper folding of effector molecules in the immune system (Singh and Aballay, 2006). Studies have shown that knockdown of hsf-1 drastically reduces the lifespan of *C. elegans*. Transcription factor HSF-1 guides DAF-16/FOXO activity and cooperatively induce transcription of a subset of target genes, including HSPs involved in proteostasis. Daf-16, hsf-1, and skn-1 mutants have been to be more sensitive to oxidative and thermal stress as compared to the wild-type nematodes (Hsu et al., 2003; Uno and Nishida, 2016).

SIR-2.1 is a sirtuin, member of the nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase. It is directly linked to cellular nutrient signaling through NAD⁺ (Guarente, 2008; Houtkooper et al., 2010). SIR-2.1 is responsive to metabolic changes in the cellular environment, including nutrient/energy availability and cellular stress (Lin et al., 2003). SIR-2.1 increases the lifespan of *C. elegans* through DAF-16 (Tissenbaum and Guarente, 2001). SIR-2.1 binds to DAF-16 in response to cellular stress and promotes DAF-16 activation that results in longevity. A total of ten studies determined the effect of *sir-2.1* gene on the lifespan of *C. elegans*. Most of these studies showed consistent effects of SIR-2.1 on the lifespan. A total of five studies found a reduction in lifespan when *sir-2.1* was knocked down, while four studies showed an increased in lifespan when *sir-2.1* was overexpressed. In contrast, a study done by (Martorell et al., 2011) found that *sir-2.1* had no effect on the lifespan of *C. elegans*. SIR2 is a positive regulator of lifespan in *Saccharomyces cerevisiae* and in *C. elegans* (Kaebelerlein et al., 1999). Overexpression of *sir-2.1*, the *C. elegans* homolog of SIR2, has been reported to extend lifespan in a DAF-16-dependent manner. SIR-2.1 binds to DAF-16 in response to cellular stress and promote DAF-16 activation, which leads to longevity. All of the studies in this review used *sir-2.1(ok434)* strain as *sir-2.1* mutant except for study done by (Wang et al., 2010), which used *sir-2.1(zu67)* strain. Studies in this review showed lifespan extension of *sir-2.1* overexpression to be around 13 to 28 days while *sir-2.1* knockout decreased lifespan to around 12 to 17 days.

Variations in the number of days of survival seen in the studies reported here were mostly due to the difference in the experimental conditions used. *C. elegans* survived well between 15°C - 25°C. The worms will enter a stage of dauer at temperatures beyond this range. Experiments carried out at 25°C observed a shorter lifespan of the nematode as compared to 20°C. Elsewhere studies performed at 15°C found the longer average lifespan of *C. elegans*. *Escherichia coli* strain OP50 (*E. coli* OP50) and Nematode Growth Medium (NGM) are standard laboratory *C. elegans* food and media as it has been used in *C. elegans* research for decades. Different strains of *E. coli* did not show any prominent effects on lifespan. However, a higher mean lifespan was observed in worms fed with live OP50 under low-density feeding (LDF) conditions (OD=0.18), whereas lower mean lifespan was seen under high-density feeding (HDF) conditions (OD=1.5). This shows that an increasing amount of food correlates with decreased lifespan in adult *C. elegans* as the worms obtain most of their energy from this microbe. *C. elegans* also have a longer lifespan in liquid media as compared to solid media. This is probably due to the lower restriction available in liquid media than in solid media. Besides, additional components such as streptomycin, ampicillin, and nystatin in NGM may help to prevent contamination of the media.

A few studies have reported on the effect of *ins-18*, *numr-1/-2*, *sgk-1*, and *rngs-1* genes on the lifespan of *C. elegans*, although these genes play vital roles in resistance. Results found by Matsunaga et al. (2012) indicated that at the adult stage, *ins-18* is needed for lifespan enhancement. According to his study, deletion of *ins-18* due to the relative dominance of agonist binding to DAF-2 reduced larval diapause. The overexpression of *ins-18* induced larval diapause, which is important for defence against pathogens. High levels of INS-18 will bind to DAF-2 and inhibit agonist binding, thus preventing the binding of other DAF-2 agonists. Based on the results, it was concluded that *ins-18* is required for longevity. The expression of *numr-1/-2* is associated with resistance to metal toxicity. Knockdown of *numr-1/-2* expression increased sensitivity to cadmium exposure while overexpression of *numr-1/-2* increases lifespan in the presence and absence of metal. However, under control conditions, lower expression of *numr-1/-2* does not significantly reduce wild-type lifespan, but in the presence of metals, lower lifespan is observed. This suggests that *numr-1/-2* contribution for longer lifespan needs to be accompanied with other genes. According to the result shown in the sequence analysis of *numr-1* and *numr-2*, the regulatory regions of *numr-1/-2* contain consensus binding sites for both SKN-1 and DAF-16. *Numr-1* and *numr-2* may perform the biological activities necessary to increase resistance and longevity that are mediated by the IIS pathway (Cui et al., 2007). Two of the studies from this review were done on *sgk-1*, which acts downstream of *daf-2* in the IIS pathway shows an increased in lifespan (Rahman et al., 2010; Akhoon...
et al., 2016). Serum-and glucocorticoid-regulated kinase gene (sgk-1) act similar to Akt-1 in lifespan control by phosphorylating and inhibiting the nuclear translocation of DAF-16/FOXO (Chen et al., 2013). The regulator of G protein signaling-1 (rgs-1) plays an important role in paraquat-induced oxidative stress (Wu et al., 2017). As compared to wild-type, rgs-1(nr2017) mutant displayed significant resistance to paraquat (PQ) toxicity, where a 20% increase in mean survival time was observed. Rgs-1 mutant results in a decrease in overall ROS levels compared to wild-type after PQ exposure. This suggests that RGS-1 modulates PQ resistance in a DAF-16-dependent manner. Both of the daf-16(mu86);rgs-1(nr2017) double mutant and daf-16(mu86) single mutant were sensitive to PQ. The effect of RGS-1 was completely suppressed by the daf-16 mutant, indicating that rgs-1 depends on daf-16 to modulate PQ resistance. Loss of rgs-1 promotes lifespan relying on age-1 and daf-16 as rgs-1 showed significant extension in mean lifespan. A shorter lifespan was seen in daf-16(mu86) than wild-type but had a similar lifespan to the daf-16(mu86);rgs-1(nr2017) suggesting that the long-lived phenotype associated with rgs-1 requires daf-16 (Lin et al., 2011).

Genes in the insulin/insulin-like signaling (IIS) pathway influences the lifespan of C. elegans by regulating vital pathways for the survival of the worm. Knockdown of genes, namely, daf-2 and age-1 and overexpression of hsf-1, daf-16, skn-1, and sir-2.1, have been unanimously reported to promote longevity. The roles of these genes have well been established previously. However, whether the modulation of expression of these genes also leads to improved healthspan of the worms is still unclear. The results of these studies renders future researchers to study the effect of the homologous genes in higher-order organismal such as mice, to establish the possibility of lifespan extension through modulation of genes expression and to elucidate the healthspan of organisms with a prolonged lifespan.

CONCLUSIONS

The documented evidence in this review suggests that IIS pathway genes influence the lifespan of C. elegans through various mechanisms. Since their roles are well conserved in C. elegans. These genes may be targets for future interventional studies aimed to enhance longevity.

Acknowledgement

This research was funded by the Ministry of Higher Education, grant number FRGS/1/2017/UKM.

REFERENCES

Ahringer, J. 2006. Reverse genetics The C. elegans Research Community.

Akhoon, B. A., Pandey, S., Tiwari, S., Pandey, R. 2016. Withanolide A offers neuroprotection, ameliorates stress resistance and prolongs the life expectancy of Caenorhabditis elegans. Experimental gerontology, 78:47–56.

Altintas, O., Park, S., Lee, S. J. 2016. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans, and D. melanogaster. BMB Rep, 49(2):81–92.

Araiz, C., Château, M. T., Galas, S. 2008. 14-3-3 regulates lifespan by both DAF-16-dependent and-independent mechanisms in Caenorhabditis elegans. Experimental gerontology, 43(6):505–519.

Arantes-Oliveira, N., Apfeld, J., Dillin, A., Kenyon, C. 2002. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science, 295(5554):502–505.

Banfield, K. L., Gomez, T. A., Lee, W., Clarke, S., Larsen, P. L. 2008. Protein-repair and hormone-signaling pathways specify dauer and adult longevity and dauer development in Caenorhabditis elegans. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 63(8):798–808.

Bansal, A., Zhu, L. J., Yen, K., Tissenbaum, H. A. 2015. Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants. Proceedings of the National Academy of Sciences, 112(3):277–286.

Bargmann, C. I., Horvitz, H. R. 1991. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science, 251(4998):1243–1246.

Barna, J., Princz, A., Kosztelnik, M., Hargitai, B., Takács-Vellai, K., Vellai, T. 2012. Heat shock factor-1 intertwines insulin/IGF-1, TGF-β and cGMP signaling to control development and aging. BMC developmental biology, 12(1):32–32.

Blackwell, T. K., Steinbaugh, M. J., Hourihan, J. M., Ewald, C. Y., Isik, M. 2015. SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radical Biology and Medicine, 88:290–301.

Boulin, T., Etchberger, J. F., Hobert, O. 2006. Reporter gene fusions. The C. elegans Research Community.

Brezinger, J., Nørgaard, S., Schøler, L., Morthorst, T. H., Jakobsen, H., Lithgow, G. J., Jensen, L. T., Olsen, A. 2014. Loss of NDG-4 extends lifespan and stress resistance in C. elegans. Aging cell,
Chalvié, M., Tu, Y., Euskirchen, G., Ward, W., Prasher, D. 1994. Green fluorescent protein as a marker for gene expression. *Science*, 263(5148):802–805.

Chaudhari, S. N., Kipreos, E. T. 2017. Increased mitochondrial fusion allows the survival of older animals in diverse *C. elegans* longevity pathways. *Nature communications*, 8(1):182–182.

Chen, A. T., Guo, C., Dumas, K. J., Ashrafi, K., Hu, P. J. 2013. Effects of Caenorhabditis elegans sgl-1 mutations on lifespan, stress resistance, and DAF-16/FoxO regulation. *Aging Cell*, 12(5):932–940.

Chen, W., Lin, C. M. H.-R., Wei, X. H., Luo, M. L., Sun, Z. Z., Yang, X. Y., Chen, H. B., Wang 2018. Echinacoside, a phenylethanoid glycoside from *Cistanche deserticola*, extends lifespan of Caenorhabditis elegans and protects from αβ-induced toxicity. *Biogerontology*, 19(1):47–65.

Chuang, M. H., Chiou, S. H., Huang, C. H., Yang, W. B., Wong, C. H. 2009. The lifespan-promoting effect of acetic acid and Reishi polysaccharide. *Bioorganic & medicinal chemistry*, 17(22):7831–7840.

Cornils, A., Gloeck, M., Chen, Z., Zhang, Y., Alcedo, J. 2011. Specific insulin-like peptides encode sensory information to regulate distinct developmental processes. *Development*, 138(6):1183–1193.

Cui, Y., Mcbride, S. J., Boyd, W. A., Alper, S., Freedman, J. H. 2007. Toxicogenic analysis of Caenorhabditis elegans reveals novel genes and pathways involved in the resistance to cadmium toxicity. *Genome Biology*, 8(6):R122.

Douglas, P. M., Baird, N. A., Simic, M. S., Uhlein, S., Mccormick, M. A., Wolff, S. C., Kennedy, B. K., Dilllin, A. 2015. Heterotypic Signals from Neural HSF-1 Separate Thermotolerance from Longevity. *Cell Rep.*, 12(7):1196–1204.

Dumas, K. J., Guo, C., Shih, H. J., Hu, P. J. 2013. Influence of steroid hormone signaling on life span control by Caenorhabditis elegans insulin-like signaling. *G3: Genes, Genomes, Genetics*, 3(5):841–850.

Evans, E. A., Chen, W. C., Tan, M. W. 2008. The DAF-2 insulin-like signaling pathway independently regulates aging and immunity in *C. elegans*. *Aging cell*, 7(6):879–893.

Ewald, C. Y, Landis, J. N., Abate, J. P., Murphy, C. T., Blackwell, T. K. 2015. Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity. *Nature*, 519(7541):97–97.

Feinberg, E. H., Vanhoven, M. K., Bendesky, A., Wang, G., Fetter, R. D., Shen, K., Bargmann, C. I. 2008. GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. *Neuron*, 57(3):353–363.

Feng, Y., Williams, B. G., Koumanov, F., Wolstenholme, A. J., Holman, G. D. 2013. FGT-1 is the major glucose transporter in *C. elegans* and is central to aging pathways. *Biochemical Journal*, 456(2):219–229.

Ferguson, A. A., Roy, S., Kormanik, K. N., Kim, Y., Dumas, K. J., Ritov, V. B., Matern, D., Hu, P. J., Fisher, A. L. 2013. TATN-1 mutations reveal a novel role for tyrosine as a metabolic signal that influences developmental decisions and longevity in Caenorhabditis elegans. *PLoS genetics*, 9(12):1004020–1004020.

Friedman, D. B., Johnson, T. E. 1988. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. *Genetics*, 118(1):75–86.

Galbadage, T., Hartman, P. S. 2008. Repeated temperature fluctuation extends the life span of Caenorhabditis elegans in a daf-16-dependent fashion. *Mechanisms of ageing and development*, 129(9):507–514.

Gems, D., Sutton, A. J., Sundermeyer, M. L., Albert, P. S., King, K. V., Edgley, M. L., Larsen, P. L., Riddle, D. L. 1998. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction, and longevity in Caenorhabditis elegans. *Genetics*, 150(1):129–155.

Ghazi, A., Henis-Korenblit, S., Kenyon, C. 2009. A transcription elongation factor that links signals from the reproductive system to lifespan extension in Caenorhabditis elegans. *PLoS genetics*, 5(9):1000639–1000639.

Golegaonkar, S., Tabrez, S. S., Pandit, A., Sethurathinam, S., Jagadeeshprasad, M. G., Bansode, S., Sampathkumar, S. G., Kulkarni, M. J., Mukhopadhyay, A. 2015. Rifampicin reduces advanced glycation end products and activates DAF-16 to increase lifespan in Caenorhabditis elegans. *Aging cell*, 14(3):463–473.

Grompone, G., Martorell, P., Llopis, S., González, N., Genovés, S., Mulet, A. P., Fernández-Calero, T., Tiscornia, I., Bollati-Fogolín, M., Chambaud, I. 2012. Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans. *Aging cell*, 7(12):52493–52493.
Guarente, L. 2008. Mitochondria-a nexus for aging, calorie restriction, and sirtuins? *Cell*, 132(2):171–176.

Guha, S., Cao, M., Kane, R. M., Savino, A. M., Zou, S., Dong, Y. 2013. The longevity effect of cranberry extract in Caenorhabditis elegans is modulated by daf-16 and osr-1. *Age*, 35(5):1559–1574.

Hahm, J. H., Kim, S., Paik, Y. K. 2009. Endogenous cGMP regulates adult longevity via the insulin signaling pathway in Caenorhabditis elegans. *Aging cell*, 8(4):473–483.

Hahm, J. H., Kim, S., Paik, Y. K. 2011. GPA-9 is a novel regulator of innate immunity against Escherichia coli foods in adult Caenorhabditis elegans. *Aging cell*, 10(2):208–219.

Hashimoto, T., Horikawa, M., Nomura, T., Sakamoto, K. 2010. Nicotinamide adenine dinucleotide extends the lifespan of Caenorhabditis elegans mediated by sir-2.1 and daf-16. *Biogerontology*, 11(1):31–31.

Henis-Korenblit, S., Zhang, P., Hansen, M., McCormick, M., Lee, S. J., Cary, M., Kenyon, C. 2010. Insulin/IGF-1 signaling mutants reprogram ER stress response regulators to promote longevity. *Proceedings of the National Academy of Sciences*, 107(21):9730–9735.

Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Geloen, A., Even, P. C., Cervera, P., Bouc, Y. L. 2003. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. *Nature*, 421(6919):182–187.

Honda, Y., Tanaka, M., Honda, S. 2008. Modulation of longevity and diapause by redox regulation mechanisms under the insulin-like signaling control in Caenorhabditis elegans. *Experimental gerontology*, 43(6):520–529.

Honda, Y., Tanaka, M., Honda, S. 2010. Trehalose extends longevity in the nematode Caenorhabditis elegans. *Aging cell*, 9(4):558–569.

Horikawa, M., Sural, S., Hsu, A. L., Antebi, A. 2015. Co-chaperone p23 regulates C. elegans lifespan in response to temperature. *PLoS genetics*, 11(4):1005023–1005023.

Houtkooper, R. H., Canto, C., Wanders, R. J., Auwerx, J. 2010. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. *Endocrine Reviews*, 31(2):194–223.

Hsin, H., Kenyon, C. 1999. Signals from the reproductive system regulate the lifespan of C. elegans. *Nature*, 399(6734):362–362.

Hsu, A. L., Murphy, C. T., Kenyon, C. 2003. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. *Science*, 300:1142–1145.

Hu, P. J. 2007. WormBook: the online review of. *C. elegans biology*, pages 1–19. Dauer.

Huang, X., Zhang, H., Zhang, H. 2011. The zinc-finger protein SEA-2 regulates larval developmental timing and adult lifespan in C. elegans. *Development*, 138(10):2059–2068.

Im, J. S., Lee, H. N., Oh, J. W., Yoon, Y. J., Park, J. S., Park, J. W., Kim, J. H., Kim, Y. S., Cha, D. S., Jeon, H. 2016. Moringa oleifera Prolongs Lifespan via DAF-16/FOXO Transcriptional Factor in Caenorhabditis elegans. *Natural Product Sciences*, 22(3):201–208.

Jia, K., Thomas, C., Akbar, M., Sun, Q., Adams-Huet, B., Gilpin, C., Levine, B. 2009. Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. *Proceedings of the National Academy of Sciences*, 106(34):14564–14569.

Johnson, D. W., Llop, J. R., Farrell, S. F., Yuan, J., Stolzenburg, L. R., Samuelson, A. V. 2014. The Caenorhabditis elegans Myc-Mondo/Mad complexes integrate diverse longevity signals. *PLoS genetics*, 10(4):1004278–1004278.

Kaeberlein, M., Mcvye, M., Guarente, L. 1999. The Sir2/3/4 complex and Sir2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. *Genes & Development*, 13:2570–2580.

Kapahi, P., Chen, D., Rogers, A. N., Katewa, S. D., Li, P. W., Thomas, E. L., Kockel, L. 2010. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. *Cell Metab*, 11(6):453–465.

Kenyon, C. 2010. A pathway that links reproductive status to lifespan in Caenorhabditis elegans. *Annals of the New York Academy of Sciences*, 1204(1):156–162.

Khanna, A., Kumar, J., Vargas, M. A., Barrett, L., Katewa, S., Li, P., Mccloskey, T., Sharma, A., Naudé, N., Nelson, C. 2016. A genome-wide screen of bacterial mutants that enhance dauer formation in C. elegans. *Scientific reports*, 6:38764–38764.

Khare, S., Linster, C. L., Clarke, S. G. 2011. The interplay between protein L-isoaspartyl methyltransferase activity and insulin-like signaling to extend lifespan in Caenorhabditis elegans. *PLoS one*, 6(6):20850–20850.

Kim, C. K., Park, S. K. 2017. RME-1 is required for lifespan extension and increased resistance to stresses associated with decreased insulin/IGF-1-like signaling in Caenorhabditis elegans. *ARCHIVES OF BIOLOGICAL SCIENCES*,
Kim, Y. I., Bandyopadhyay, J., Cho, I., Lee, J., Park, D. H., Cho, J. H. 2014. Nucleolar GTPase NOG-1 regulates development, fat storage, and longevity through insulin/IGF signaling in C. elegans. *Molecules and cells*, 37(1):51–51.

Kimura, K. D., Tissenbaum, H. A., Liu, Y., Ruvkun, G. 1997. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. *Science*, 277(5328):942–946.

Kuhlbrodt, K., Janiesch, P. C., Kevei, E., Segref, A., Kimura, K. D., Tissenbaum, H. A., Liu, Y., Ruvkun, G. 2003. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity, and disease. *Nature cell biology*, 13(3):273–273.

Kumar, S., Dietrich, N., Kornfeld, K. 2016. Angiotensin converting enzyme (ACE) inhibitor extends Caenorhabditis elegans life span. *PLoS genetics*, 12(2):1005866–1005866.

Lai, C. H., Chou, C. Y., Ch'apos;ang, L. Y., Liu, C. S., Lin, W. C. 2000. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. *Genome Research*, 10(5):703–713.

Lee, S. J., Murphy, C. T., Kenyon, C. 2009. Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. *Cell metabolism*, 10(5):379–391.

Lehrbach, N. J., Castro, C., Murfitt, K. J., Abreu-Googder, C., Griffin, J. L., Miska, E. A. 2012. Post-developmental microRNA expression is required for normal physiology, and regulates aging in parallel to insulin/IGF-1 signaling in C. elegans. *Rna*, 18(12):2220–2235.

Li, Y., Chen, B., Zou, W., Wang, X., Wu, Y., Zhao, D., Sun, Y., Liu, Y., Chen, L., Miao, L. 2016. The lysosomal membrane protein sCAV-3 maintains lysosome integrity and adult longevity. *Cell Biol*, 215(2):167–185.

Lin, S. J., L., Guarente 2003. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity, and disease. *Current opinion in cell biology*, 15(2):241–246.

Lin, Y. R., Kim, K., Yang, Y., Ivessa, A., Sadoshima, J., Park, Y. 2011. Regulation of longevity by the regulator of G-protein signaling protein. *Aging Cell*, 10(3):438–447.

Loucks, C. M., Bielas, N. J., Dekkers, M. P., Walker, D. S., Grundy, L. J., Li, C., Inglis, P. N., Kida, K., Schafer, W. R., Blacque, O. E. 2016. PACRG, a protein linked to ciliary motility, mediates cellular signaling. *Molecular biology of the cell*, 27(13):2133–2144.

Mack, H. I., Zhang, P., Fonslow, B. R., Yates, J. R., , I. 2017. The protein kinase MBK-1 contributes to lifespan extension in daf-2 mutant and germine-deficient Caenorhabditis elegans. *Aging (Albany NY)*, 9(5):1414–1414.

Makkalov, A. A., Carlsson, H., Denbaum, P., Lind, M. I., Mautz, B., Hinas, A., Inmiller, S. 2017. Antagonistically pleiotropic allele increases lifespan and late-life reproduction at the cost of early-life reproduction and individual fitness. *Proceedings of the Royal Society B: Biological Sciences*, 284:20170376–20170376.

Martorell, P., Forment, J. V., Llanos, R. D., Montón, F., Llopis, S., González, N., Genovés, S., Cienfuegos, E., Monzó, H., Ramón, D. 2011. Use of Saccharomyces cerevisiae and Caenorhabditis elegans as model organisms to study the effect of cocoa polyphenols in the resistance to oxidative stress. *Journal of Agricultural and Food Chemistry*, 59(5):2077–2085.

Masse, I., Molin, L., Mouchiroud, L., Vanhems, P., Paladino, F., Billaud, M., Solari, F. 2008. A novel role for the SMG-1 kinase in lifespan and oxidative stress resistance in Caenorhabditis elegans. *PLoS one*, 3(10):3354–3354.

Matsunaga, Y., Gengyo-Ando, K., Mitani, S., Iwasaki, T., Kawano, T. 2012. Physiological function, expression pattern, and transcriptional regulation of a Caenorhabditis elegans insulin-like peptide, INS-18. *Biochemical and biophysical research communications*, 423(3):478–483.

Matyash, V., Entchev, E. V., Mende, F., Wilsch-Bräuninger, M., Thiele, C., Schmidt, A. W., Knölker, H. J., Ward, S., Kurzchalia, T. V. 2004. Sterol-derived hormone(s) controls entry into diapause in Caenorhabditis elegans by consecutive activation of DAF-12 and DAF-16. *PLoS biology*, 2(10):280–280.

Mizunuma, M., Neumann-Haefelin, E., Moroz, N., Li, Y., Blackwell, T. K. 2014. m TORC 2-SGK-1 acts in two environmentally responsive pathways with opposing effects on longevity. *Aging cell*, 13(5):869–878.

Morley, J. F., Morimoto, R. I. 2004. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. *Mol Biol Cell*, 15(2):657–664.

Morris, J. Z., Tissenbaum, H. A., Ruvkun, G. 1996. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. *Nature*, 382(6591):536–539.

Nanji, M., Hopper, N. A., Gems, D. 2005. LET-60 RAS modulates effects of insulin/IGF-1 signaling
on development and aging in Caenorhabditis elegans. *Aging cell*, 4(5):235–245.

Ogg, S., Paradis, S., Gottlieb, S., Patterson, G. I., Lee, L., Tissenbaum, H. A., Ruvkun, G. 1997. The Forkhead transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. *Nature*, 389(6654):994–994.

Oláhová, M., Veal, E. A. 2015. A peroxiredoxin, PRDX-2, is required for insulin secretion and insulin/IGF-dependent regulation of stress resistance and longevity. *Aging cell*, 14(4):558–568.

Papp, D., Csermely, P., Sőti, C. 2012. A role for SKN-1/Nrf in pathogen resistance and immunosenescence in Caenorhabditis elegans. *PLoS pathogens*, 8(4):1002673–1002673.

Paradis, S., Ruvkun, G. 1998. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. *Genes Dev*, 12(16):2488–2498.

Parsell, D., Lindquist, S. 1993. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. *Annual review of genetics*, 27(1):437–496.

Piazzesi, A., Papić, D., Bertan, F., Salomoni, P., Nicotera, P., Bano, D. 2016. Replication-independent histone variant H3.3 controls animal lifespan through the regulation of pro-longevity transcriptional programs. *Cell reports*, 17(4):987–996.

Prasanth, M. I., Santoshram, G. S., Bhaskar, J. P., Balamurugan, K. 2016. Ultraviolet-A triggers photoaging in model nematode Caenorhabditis elegans in a DAF-16 dependent pathway. *Age*, 38(1):27–27.

Rahman, M. M., Stuchlick, O., El-Karim, E. G., Stuart, R., Kipreos, E. T., Wells, L. 2010. Intracellular protein glycosylation modulates insulin mediated lifespan in C. elegans. *Aging (Albany NY)*, 2(10):678–678.

Rathor, L., Akhoon, B. A., Pandey, S., Srivastava, S., Pandey, R. 2015. Folic acid supplementation at lower doses increases oxidative stress resistance and longevity in Caenorhabditis elegans. *Age*, 37(6):113–113.

Saul, N., Pietsch, K., Menzel, R., Stürzenbaum, S. R., Steinberg, C. E. 2009. Catechin induced longevity in C. elegans: from key regulator genes to disposable soma. *Mechanisms of Ageing and Development*, 130(8):477–486.

Seo, K., Choi, E., Lee, D., Jeong, D. E., Jang, S. K., Lee, S. J. 2013. Heat shock factor 1 mediates the longevity conferred by inhibition of TOR and insulin/IGF-1 signaling pathways in C. elegans. *Aging cell*, 12(6):1073–1081.

Seo, M., Seo, K., Hwang, W., Koo, H. J., Hahn, J. H., Yang, J. S., Han, S. K., Hwang, D., Kim, S., Jang, S. K. 2015. RNA helicase HEL-1 promotes longevity by specifically activating DAF-16/FOXO transcription factor signaling in Caenorhabditis elegans. *Proceedings of the National Academy of Sciences*, 112(31):4246–4255.

Shen, L., Hu, Y., Cai, T., Lin, X., Wang, D. 2010a. Regulation of longevity by genes required for the functions of AY interneuron in nematode Caenorhabditis elegans. *Mechanisms of ageing and development*, 131:732–738.

Shen, L. L., Du, M., Lin, X. F., Cai, T., Wang, D. Y. 2010b. Genes required for the functions of olfactory AWA neuron regulate the longevity of Caenorhabditis elegans in an insulin/IGF signaling-dependent fashion. *Neuroscience bulletin*, 26(2):91–103.

Singh, A., Kumar, N., Matali, L., Jain, V., Garg, A., Mukhopadhyay, A. 2016. A chromatin modifier integrates insulin/IGF-1 signalling and dietary restriction to regulate longevity. *Aging cell*, 15(4):694–705.

Singh, V., Aballay, A. 2006. Heat-shock transcription factor (HSF)-1 pathway required for immunity. *Proceedings of the National Academy of Sciences*, 103(35):13092–13097.

Stout, G. J., Sigler, E. C., Essers, P. B., Mulder, K. W., Koekman, A., Snijders, D. S., Den, N. J. V., Broek, M. C., Betist, H. C., Korswagen, A. W., Macinnes 2013. Insulin/IGF-1-mediated longevity is marked by reduced protein metabolism. *Molecular systems biology*, 9(1).

Tissenbaum, H. A., Guarente, L. 2001. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. *Nature*, 410(6825):227–227.

Tullet, J. M., Hertweck, M., An, J. H., Baker, J., Hwang, Y. J., Liu, S., Oliveira, R. P., Baumeister, R., Blackwell, T. K. 2008. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. *Cell*, 132(6):1025–1038.

Tvermoes, B. E., Boyd, W. A., Freedman, J. H. 2010. ETS-4 is a transcriptional regulator of life span in Caenorhabditis elegans. *PLoS genetics*, 6(9):1001125–1001125.

Uno, M., Nishida, E. 2016. Lifespan-regulating genes...
in C. elegans. *NPJ aging and mechanisms of disease*, 2:16010–16010.

Vaccaro, A., Tauffenberger, A., Ash, P. E., Carlomagno, Y., Petrucelli, L., Parker, J. A. 2012. TDP-1/TDP-43 regulates stress signaling and age-dependent proteotoxicity in Caenorhabditis elegans. *PLoS genetics*, 8(7):1002806–1002806.

Wan, Q. L., Zheng, S. Q., Wu, G. S., Luo, H. R. 2013. Aspirin extends the lifespan of Caenorhabditis elegans via AMPK and DAF-16/FOXO in dietary restriction pathway. *Experimental gerontology*, 48(5):499–506.

Wang, J., Robida-Stubbs, S., Tullet, J. M., Rual, J. F., Vidal, M., Blackwell, T. K. 2010. RNAi screening implicates a SKN-1-dependent transcriptional response in stress resistance and longevity deriving from translation inhibition. *PLoS genetics*, 6(8):1001048–1001048.

Wu, M., Kang, X., Wang, Q., Zhou, C., Mohan, C., Peng, A. 2017. Regulator of G protein signaling-1 modulates paraquat-induced oxidative stress and longevity via the insulin-like signaling pathway in Caenorhabditis elegans. *Toxicol Lett*, 273:97–105.

Xu, T., Li, P., Wu, S., Li, D., Wu, J., Raley-Susman, K. M., He, D. 2016. Chronic exposure to perfluorooctane sulfonate reduces lifespan of Caenorhabditis elegans through insulin/IGF-1 signaling. *Bulletin of environmental contamination and toxicology*, 97(1):119–123.

Xu, X., Kim, S. K. 2012. The GATA transcription factor egl-27 delays aging by promoting stress resistance in Caenorhabditis elegans. *PLoS genetics*, 8(12):1003108–1003108.

Yanase, S., Ishii, N. 2008. Hyperoxia exposure induced hormesis decreases mitochondrial superoxide radical levels via Ins/IGF-1 signaling pathway in a long-lived age-1 mutant of Caenorhabditis elegans. *Journal of radiation research*, 49(3):211–218.

Yazaki, K., Yoshikoshi, C., Oshiro, S., Yanase, S. 2011.

Young, J. C., Agashe, V. R., Siegers, K., Hartl, F. U. 2004. Pathways of chaperone-mediated protein folding in the cytosol. *Nature reviews Molecular cell biology*, 5(10):781–781.

Zamberlan, D., Amaral, G., Arantes, L., Machado, M., Mizdal, C., Campos, M., Soares, F. 2016. Rosmarinus officinalis L. increases Caenorhabditis elegans stress resistance and longevity in a DAF-16, HSF-1 and SKN-1-dependent manner. *Brazilian Journal of Medical and Biological Research*, 49(9).

Zhang, M., Poplawski, M., Yen, K., Cheng, H., Bloss, E., Zhu, X., Patel, H., Mobbs, C. V. 2009. Role of CBP and SATB-1 in aging, dietary restriction, and insulin-like signaling. *PLoS biology*, 7(11):1000245–1000245.

Zhao, X., Lu, L., Qi, Y., Li, M., Zhou, L. 2017. Emodin extends lifespan of Caenorhabditis elegans through insulin/IGF-1 signaling pathway depending on DAF-16 and SIR-2.1. *Bioscience, biotechnology, and biochemistry*, 81(10):1908–1916.

Zheng, S., Liao, S., Zou, Y., Qu, Z., Liu, F. 2014. ins-7 gene expression is partially regulated by the DAF-16/IIS signaling pathway in Caenorhabditis elegans under Celecoxib intervention. *PloS one*, 9(6):100320–100320.