Physicochemical characteristics of PM$_{2.5}$ particles during high particulate event (HPE) in school area

N A Ramli1, S Shith2, N F F Md Yusof*, K Z Zarkasi3 and A Suroto1

1School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia.
2Civil Engineering Technology, Faculty of Engineering, Lincoln University College, Malaysia
3Microbial Ecology and Bacteriology Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
*Corresponding author: noorfaizah@usm.my

Abstract. Observations of fine particulate matter (PM$_{2.5}$) and meteorological parameter (temperature, relative humidity and wind speed) fluctuations during a high particulate event (HPE) in Sekolah Kebangsaan Bayan Lepas, Malaysia have been conducted for three days (48 hrs). Selected sample spot of collected PM$_{2.5}$ particles with high concentration was chosen to investigate the physicochemical characteristics using Field Emission Scanning Electron Microscope coupled with Energy Dispersive X-ray (FESEM-EDX). The results show that the 24 h average concentration ± standard deviation of PM$_{2.5}$ (81.87 µg m$^{-3}$ ± 31.83) exceeded the limit suggested by Malaysia Ambient Air Quality Standard (MAAQS-2020) and United State Environmental Protection Agency (USEPA) which is 35 µg m$^{-3}$. The diurnal variations of PM$_{2.5}$ concentration fluctuated significantly during HPE. Results from Pearson correlation shows that relative humidity gives the most significant influence towards PM$_{2.5}$ concentration ($r=0.410; p < 0.01$) followed by wind direction ($r=-0.306, p < 0.01$), temperature ($r=-0.262, p<0.01$) and wind speed ($r=-0.206; p < 0.01$). From a morphological and elemental analysis, it shows that PM$_{2.5}$ particles collected on a filter consist of two possible sources, natural and anthropogenic sources. The element components found in the natural particles were C, O, Na, Al, Si, K and Fe. The major components were C, O, Al, and Si with weight percentages were 18%, 39%, 9%, and 22%. Dominant elements in anthropogenic particles were C (41%) and a significant amount of K (3%) are found which considered as biomass burning soot. Besides that, the particles also consist of O, Na, Al, Si, and Cl. In summary, particles from natural and anthropogenic sources are dominant in the ambient PM$_{2.5}$ during HPE.

1. Introduction

Haze is not a new phenomenon in Malaysia, as it was first recorded in 1982 when biomass burning regional haze disrupted everyday life in Malaysia [1-2]. Previously, the adverse impacts of the June 2013 haze on the air quality level and reduction in visibility of countries along the Strait of Malacca (i.e. Malaysia, Singapore and Indonesia) have been reported in many studies in terms of primary interpretations during the event [3] and direct effects on ecosystems and environment [4]. Due to that event, about 600 schools in southern Peninsular Malaysia were closed (API more than 300 which is a hazardous point) [5-6]. In September 2019, haze occurred again and 2549 schools in a few states (Selangor, Wilayah Persekutuan Putrajaya, Kuala Lumpur, Pulau Pinang, Kedah, Perak, Negeri Sembilan and Sarawak) were closed because of the haze that blanketed the atmosphere [7]. According to Awang et al. [8], a high particulate event (HPE) is defined as the condition wherein the readings of an air pollution index (API) consecutively exceeds 100 for a 72-h period or longer [9].

PM$_{2.5}$ (particles with an aerodynamic diameter of less than 2.5 µm) is defined as fine particles containing carbon and absorbing various chemical compounds such as metals, organic compounds and salts and biological groups such as pollen and toxins which can lead to severe impacts on human health [10-11]. PM$_{2.5}$ is tiny enough to penetrate even the lowest airways into the lungs [12] plus it is...
also classified as the most harmful to human health among all noxious pollution in the air [13].
Children are the most affected group having health problems, who inhale higher airborne particles if
compared to adults due to their lung capacity and higher breathing rates for physical activities [14-15].
School becomes the priority to investigate the particle pollution as the children spend most of their
time hereafter the home [16-17]. Few researchers have been focusing on investigating indoor, and
outdoor relationships in primary schools found that the variability of indoor PM concentration is
determined by the outdoor contaminants.

Morphology and elemental characterization of individual atmospheric particles are very important
due to their effect on chemical properties [18] and also provide useful information about their origins,
history of the atmosphere, reactivity, formation and removal of chemical species in the atmosphere
[19-21]. The presence of trace metals in most airborne PM fractions of each aerosol volume contains
Cadmium (Cd), arsenic (As), chromium (Cr), copper (Cu), cobalt (Co), iron (Fe), nickel (Ni), lead
(Pb), manganese (Mn), strontium (Sr), titanium (Ti), zinc (Zn) and vanadium (V) were reported to be
widespread in PM$_{2.5}$ [22-23].

Single-particle analysis can provide direct evidence of the composition and morphology of aerosol
particles [24-25]. Based on Satsangi and Yadav [21], Pipal et al. [26] and Salma et al. [27], Field
Emission Scanning Electron Microscope coupled with Energy Dispersive X-ray (FESEM-EDX) is a
beneficial approach in distinguishing the particles originating from a variety of sources regarding on
information about the elemental components, size and shape of particulate matter. Thus, the purpose
of this research is to investigate the levels of PM$_{2.5}$ concentration and characterize the morphological
and elemental components in the school environment at Sekolah Kebangsaan Bayan Lepas, Pulau
Pinang during HPE. During the monitoring campaign, the school was closed due to the worsening
haze.

2. Materials and Methods

2.1. Study area and sampling site
Monitoring was conducted continuously for 24 hours on 19th September 2019 until 20th September
2019 (48 h) which started from 12.00 a.m until 12.00 a.m next day at one sampling point located at
Sekolah Kebangsaan Bayan Lepas (5° 17’ 48.029”N, 100° 15’ 38.163”E) located in Pulau Pinang,
Malaysia. This school was selected because it was affected by the recent high particulate event (HPE)
with the API more than 200 (unhealthy status) that happened across Peninsular Malaysia during
September 2019 [7, 28]. The location of the study area is shown in Figure 1. The school located near
to the main road and residential area. In addition, during the monitoring campaign, this school was
closed and no presence of school children and teachers except only five administration staff.
The instrument was set up at one point beside the main gate of the school as shown in Figure 1 with the
distance of 15.81 m from the main road.

2.2. Measurement on variations and collection of PM$_{2.5}$ samples
The PM$_{2.5}$ concentration and 48 samples were collected on fiberglass filter tape with pore size 2 µm by
using a portable environmental beta-attenuation monitor (E-BAM) (Met One Instrument Inc., Oregon)
at a flow rate of 16.7 L min$^{-1}$. Besides that, E-BAM also measures meteorological parameters such as
wind speed (m/s), ambient temperature (°C) and relative humidity (%) continuously at 1 minute time
interval. The particles are accumulated on 11 mm diameter spots. The tapes advanced automatically
every hour forming 24 spots for each hour. PM$_{2.5}$ samples were collected 24 h continuously (1 h - 24
h). The samples then were immediately transferred into a petri dish and stored in a refrigerator (<4 °C)
[29] until further analysis by using Field Emission Scanning Electron Microscopy coupled with
Energy Dispersive X-ray (FESEM-EDX).
2.3. Physicochemical characteristics analysis of ambient PM$_{2.5}$

The PM$_{2.5}$ collected on the fiberglass filters tape were then examined using high-resolution FESEM-EDX (Quanta FEG 650, Oxford Instrument) for morphology, size and elemental compositions of individual particles. Selected different samples were chosen and analyzed. Samples are punched using a 12 mm diameter steel puncher from the glass fibre filter tape, then half of the sample was cut using a disposable scalpel as the other half filtered samples will be used for further analysis. A stub with a carbon tape was used for sample mounting and proceed to be coated with a thin sheet of gold using coater (Quorum 150T) [27]. The coated samples were examined manually using FESEM-EDX at magnifications 35000x in order to obtain the morphological characteristics and elemental composition of particles. Energy dispersive X-ray (EDX) is a technique used to identify the elemental compositions of the samples. The EDX analysis will generate data that consists of spectra showing peaks corresponding to the elements that make up the sample's true composition and the results also reveal the content of elemental composition in form of weight percentage.

3. Results

3.1. Variations of PM$_{2.5}$ concentrations and meteorological parameter

Table 1 shows the variations of PM$_{2.5}$ concentrations and meteorological parameters recorded during HPE. PM$_{2.5}$ concentration range was between 20.0 µg m$^{-3}$ and 125.0 µg m$^{-3}$. The result shows that the 24 h mean concentration ± standard deviation of PM$_{2.5}$ (81.87 µg m$^{-3}$ ± 31.83) is exceeded the limit as suggested by MAAQS-2020 [30] and USEPA [31] of 35 µg m$^{-3}$. The maximum PM$_{2.5}$ concentration was recorded at 7.00 am. Meanwhile, the mean temperature, relative humidity and wind speed were in the range of 28.4 °C, 72.19% and 0.82 m/s, respectively. Based on Table 2, Pearson Correlation was used to investigate the correlations between atmospheric pollutants and meteorological parameters at the sampling station. The most significant correlation is between PM$_{2.5}$ and temperature (r=-0.262, $p<0.01$), PM$_{2.5}$ and relative humidity (r=0.410, $p<0.01$) followed by PM$_{2.5}$ and wind speed (r=-0.206, $p<0.01$) and PM$_{2.5}$ and wind direction (r=-0.306, $p<0.01$). Based on Dominick et al. [32], the range of correlation coefficient is between -1.0 and +1.0. The positive sign indicates the correlation is directly proportioning between the independent parameter and the dependent parameter. For indirect proportion, the correlation between dependent and independent parameters is indicated by a negative sign.
Table 1. Variations of PM$_{2.5}$ concentrations and meteorological parameters recorded during HPE (48 hours).

Parameter	Mean	Standard Deviation	Min	Median	Max
PM$_{2.5}$ Concentration (µgm$^{-3}$)	81.87	31.83	20	95.5	125.0
Temperature (°C)	28.40	1.92	23.7	28.3	32.9
Relative Humidity (%)	72.19	8.01	54.0	73.0	89.0
Wind Speed (ms$^{-1}$)	0.82	0.70	0.30	0.60	4.8
Number of samples (n = 2880)					

Table 2. Correlation of PM$_{2.5}$ and meteorological parameters at Sekolah Kebangsaan Bayan Lepas, Pulau Pinang.

PM$_{2.5}$	Temperature	Relative Humidity	Wind Speed	Wind Direction	
PM$_{2.5}$	1				
Temperature	-0.262**				
Relative Humidity	0.410**	-0.943**	1		
Wind Speed	-0.206**	0.517**	-0.545**	1	
Wind Direction	-0.306**	0.276**	-0.306**	0.208**	1

*Correlation is significant at the 0.01 level (2-tailed).

Diurnal variations of PM$_{2.5}$ concentration along with meteorological parameters are presented in Figure 2. It shows that there was one peak during this HPE i.e. at 07:00 h. Normally, the peaks’ time during normal days (non-HPE) was categorized as a rush hour morning (7.00 am - 8.00 am), afternoon (1.00 pm - 2.00 pm) and evening (5.00 pm – 6.00 pm) [33], induced by vehicles emissions as found by [34-35]. However, in this study, the peaks occurred at different time because concentration increased due to HPE rather than the traffic density when there was absence of student. In addition, at 12:00 h to 14:00 h, wind speed and temperature reached their highest levels with 4.8 m s$^{-1}$ and 32.9°C, respectively. However, the concentration of PM$_{2.5}$ started to rise again at 6.00 pm as the wind speed lessen. This also supported by correlation between PM$_{2.5}$ and wind speed, an indirect proportion which mean when the wind speed increase, PM$_{2.5}$ decreased. This is due to the condition which wind speed dilute the concentration as it carries away the particles. The correlation between PM$_{2.5}$ and relative humidity indicates a strong positive correlation when the value of PM$_{2.5}$ increases as the relative humidity rises which has been recorded in the diurnal plot.

![Figure 2. Diurnal variations of PM$_{2.5}$ concentration and meteorological parameter.](image-url)
3.2. Morphological of selected PM$_{2.5}$ particles

Based on the characteristic of different elemental and morphology, two main particle categories were observed, which are particle from natural sources (soil dust or minerals) and anthropogenic sources (metals, fly-ash, soot and organic particles). From Figure 3, it shows the irregular shapes of particles in the electron images. Studies by Prospero et al. [36] and Philip et al. [37] have classified the sources of natural particles into three general categories: normally windblown mineral dust from the dry desert regions, anthropogenic windblown dust from human-disturbed soils due to changes in land use rehearses, and agriculture and deforestation, mostly emitted from high-temperature combustion processes. The element components found in the particles were C, O, Na, Al, Si, S, K and Fe. The major components were C, O, Al, and Si with weight percentages were 18%, 39%, 9%, and 22%. This finding is in line with Latif et al. [15], biomass burning process that occurred with high scale conditions could cause the occurrences of HPE, regional haze pollution and also transboundary air pollution (TAP).

Occasionally, soot is an agglomeration of many fine spherical primary particles [36]. This kind of particle is shown in Figure 4. It has an irregular morphology of various shapes. The major components in these particles were C (41%) and a significant amount of K (3%) are found which considered as biomass burning soot comes from agriculture activities [38]. Besides that, the particles also consist of O, Na, Al, Si, and Cl. Reid et al. [39] reported that a high amount of K in biomass burning particles was emitted by the burning of K-rich plant materials. Kim et al. [40] found a similar image during the Asian dust storm event in Kwangju, Korea that shows soot particles stuck to a mineral dust particle collected on a polycarbonate Nuclepore filter.

Based on the characteristic of different elemental and morphology, two main particle categories were observed, which are particles from natural sources (soil dust or minerals) and anthropogenic sources (metals, fly-ash, soot and organic particles). Soil dust and minerals mainly come from construction activities, re-suspended from the road (vehicles movement), and natural dust. The result may be affected by the mobile sources since the school is located near to the roadside and do not influence by the existence of school children and teachers since during the sampling and monitoring performed, there was no teaching and learning session because the school was closed.
4. Conclusions

In a school environment, whether it is indoor and outdoor, air quality is a major concern. PM is a dominant pollutant that is usually measured with higher concentrations during HPE compared to non-HPE. The result shows that the 24 h mean average concentration ± standard deviation of PM$_{2.5}$ (81.87 µg m$^{-3}$ ± 31.83) exceeded the limit suggested by MAAQS-2020 and USEPA that is 35 µg m$^{-3}$. Two main particle categories were observed, which are particles from natural sources (soil dust or minerals) and anthropogenic sources (metals, fly-ash, soot and organic particles). The element components found in the natural particles were C, O, Na, Al, Si, S, K and Fe. The major components were C, O, Al, and Si with weight percentages were 18%, 39%, 9%, and 22%. Meanwhile, the elements in anthropogenic particles were C, K, O, Na, Al, Si, and Cl. The compositions of PM$_{2.5}$ are very important in determining the possible sources during HPE as it gives a health impact on human beings and also environments. Therefore, this research has proved that PM$_{2.5}$ concentration during HPE was influenced not only by the biomass combustion but aggravated by existing anthropogenic sources.

5. References

[1] Sham S 1984 Suspended particulate air pollution over Petaling Jaya during the September 1982 Haze Ilmu Alam 12 83–90
[2] Mohd Shahwahid H O and Othman J 1999 Malaysia Glover D, Jessup T (Eds.), Indonesia's Fires and Haze: The Cost of Catastrophe (Singapore: Institute of Southeast Asian Studies) chapter 3 pp 22-50
[3] Othman J, Sahani M, Mahmud M and Sheikh Ahmad M K 2014 Transboundary smoke haze pollution in Malaysia: inpatient health impacts and economic valuation Environ. Pol. 189 194–201
[4] Velasco E and Rastan S 2015 Air quality in Singapore during the 2013 smoke-haze episode over the Strait of Malacca: Lessons learned Sustain. Cities Society 17 122–131
[5] Department of Environment Malaysia 2013 Malaysia environmental quality report 2013 (Malaysia: Department of Environment, Technology and the Environment Malaysia).
[6] Rahman H A 2013 Haze phenomenon in Malaysia: domestic or transboundary factor Proc. 3rd Int. J. Confer. on Chem. Eng. and its App.(ICCEA’13) Phuket (Thailand) pp 597–599
[7] BH Online 2019 2,459 sekolah ditutup akibat jerebu mulai esok Retrieved on October 1, 2019 from https://www.bharian.com.my/berita/nasional/2019/09/608397/2459-sekolah-ditutup-akibat-jerebu-mulai-esok

[8] Awang N R, Ramli N A, Shith S, Zainordin N S and Manogaran H 2018 Transformational characteristics of ground-level ozone during high particulate events in urban area of Malaysia Air Qual. Atmos. Health. 11 715–727

[9] McNaught A D and Wilkinson A 1997 Compendium of chemical terminology, 2nd edn. (Oxford: Blackwell Science)

[10] Spurny K R 1996 Chemical mixtures in atmospheric pollutants and their correlation to lung diseases and lung cancer occurrence in the general population Toxicol. Lett. 88 271–277

[11] Zhang H H, Li Z, Liu Y, Xing P, Cui X Y, Ye H, Hu B L and Lou L P 2018 Physical and chemical characteristics of PM2.5 and its toxicity to human bronchial cells BEAS-2B in the winter and summer J. Zhejiang Univ Sci B. 19 317–326

[12] Shi Y, Ji Y, Sun H, Hui F, Hu J, Wu Y, Fang J, Lin H, Wang J, Duan H and Lanza M 2015 Nanoscale characterization of PM2.5 airborne pollutants reveals high adhesiveness and aggregation capability of soot particles Sci. Rep. 5 181–183

[13] Marshall J 2013 PM 2.5 Proc. Natl. Acad. Sci. U. S. A. 110(22) 8756–8756

[14] Bateson T F and Schwartz J 2010 Children’s response to air pollutants J. Toxicol. Environ. Health 71 238–43

[15] Latif M T, Othman M, Idris, N, Juneng L. Abdullah A M, Hamzah W P, Khan M F, Sulaiman N M N, Jewarattnam J, Aghamohammadi N and Sahani M 2018 Impact of regional haze towards air quality in Malaysia: A review Atmos. Environ. 177 28–44

[16] Silvers A, Florence B T, Rourke D L and Lorimor R J 1994 How children spend their time–A sample survey for use in exposure and risk assessment Risk Anal. 14 931–944

[17] Klepeis N E, Nelson W C, Ott W R, Robinson J P, Tsang A M, Switzer P, Behar J V, Hern S C and Engelmann W H 2001 The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants J. Expo. Anal. Environ. Epidemiol. 11 231–252

[18] Pipal A S and Satsangi P G 2015 Study of carbonaceous species, morphology and sources of fine (PM2.5) and coarse (PM10) particles along with their climatic nature in India Atmos. Res. 154 103–115

[19] Lu S L, Shao L Y, Wu M H and Jiao Z 2006 Mineralogical characterization of airborne individual particulates in Beijing J. Environ. Sci. 18 90–95

[20] Lee B K and Hieu N H 2013 Seasonal ion characteristics of fine and coarse particles from an urban residential area in a typical industrial city Atmos. Res. 122 362–377

[21] Satsangi P G and Yadav S 2014 Characterization of PM2.5 by X-ray diffraction and scanning electron microscopy–energy dispersive spectrometer: its relation with different pollution sources Int. J. Environ. Sci. Te. 11 217–232

[22] Samara C and Voutsa D 2005 Size distribution of airborne particulate matter and associated heavy metals in the roadside environment Chemosphere 59 1197-1206

[23] Wang J, Li S, Li H, Qian X, Li X, Liu X, Hao L, Wang C and Sun Y 2017 Trace metals and magnetic particles in PM2.5: Magnetic identification and its implications Sci. Rep. 7 9865

[24] Ro C U, Hwang H, Kim H, Chun Y and Grijeken R V 2005 Single-particle characterization of four “Asian dust” samples collected in Korea, Using low-Z particle electron probe X-ray microanalysis Environ. Sci. Technol. 39 1409–1419

[25] Geng H, Kang H, Jung J, Choel M, Kim H and Ro C U 2010 Characterization of individual submicrometer aerosol particles collected in Incheon, Korea, by quantitative transmission electron microscopy energy dispersive X-ray spectrometry J. Geophys. Res. 115 D15

[26] Pipal A S, Kulshrestha A and Taneja A 2011 Characterization and morphological analysis of airborne PM2.5 and PM10 in Agra located in north central India Atmos. Environ. 45 3621–3630
[27] Salma I, Maenhaut W, Zemplén-Papp E and Záray G 2001 Comprehensive characterisation of atmospheric aerosols in Budapest, Hungary: Physicochemical properties of inorganic species Atmos. Environ. 35 4367–4378

[28] Ministry of Education Malaysia 2019 Kenyataan Media Prosedur Operasi Standard Penutupan Sekolah Berikut Kejadian Jerebu Retrieved on December 10, 2019 from https://www.moe.gov.my/images/KPM/UKK/2019/09_Sep/MEDIA_-_SOP_TERKINI.pdf

[29] Bandpi A M, Eslami A, Shahsavani A, Khodagholi A, Aliaghaei A and Alinejad A 2017 Water-soluble and organic extracts of ambient PM$_{2.5}$ in Tehran air: assessment of genotoxic effects on human lung epithelial cells (A549) by the Comet assay Toxin Rev. 36 116-124

[30] Department of Environment Malaysia 2015 New Malaysian Ambient Air Quality Standard. Department of Environment, Technology and the Environment, Malaysia. Retrieved on September 16, 2019 from http://www.doe.gov.my/portalv1/wp-content/uploads/2013/01/Air-Quality-Standard-BI.pdf

[31] U.S. Environmental Protection Agency 2015 U.S. Environmental Protection Agency National Ambient Air Quality Standards (NAAQS) Retrieved on October 1, 2019 from https://www.epa.gov/criteria-air-pollutants/naaqs-table

[32] Dominick D, Latif M T, Juahir H, Aris A Z and Zain S M 2012 An assessment of influence of meteorological factors on PM$_{10}$ and NO$_2$ at selected stations in Malaysia Sustainable Environmental Research. 22 305 – 312

[33] Zakaria M F, Ezani E, Hassan N, Ramli N A and Wahab M I A 2019 January Traffic-related Air Pollution (TRAP), Air Quality Perception and Respiratory Health Symptoms of Active Commuters in a University Outdoor Environment IOP Conf. Ser.: Earth Environ. Sci. 228 012-017

[34] Razali N Y Y, Latif M T, Dominick D, Mohamad N, Sulaiman F R and Srithawirat T 2015 Concentration of particulate matter, CO and CO$_2$ in selected schools in Malaysia Build. Environ. 87 108-116

[35] Shith S 2019 Multivariate Analysis on Trace Elements of Fine Particulate Matter (PM$_{2.5}$) in Industrial and Sub-Urban Area Int. J. Integr. Eng. 11(2)

[36] Prospero J M, Ginoux P, Torres O, Nicholson S E and Gill T E 2002 Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product Rev. Geophys. 40 1002

[37] Philip S, Martin R V, Snider G, Weagle C L, van Donkelaar A, Brauer M, Henze D K, Klimont Z, Venkataraman C, Guttikunda S K and Zhang Q 2017 Anthropogenic fugitive, combustion and industrial dust is a significant, underrepresented fine particulate matter source in global atmospheric models Environ. Res. Lett. 12

[38] Li W, Shao L, Zhang D, Ro C U, Hu M, Bi X, Geng H, Matsuki A, Niu H and Chen J 2016 A review of single aerosol particle studies in the atmosphere of East Asia: morphology, mixing state, source, and heterogeneous reactions J. Clean. Prod. 112 1330-1349

[39] Reid J S, Koppmann R, Eck T F and Eleuterio D P 2005 A review of biomass burning emissions part II: intensive physical properties of biomass burning particles Atmos. Chem. Phys. 5 799-825

[40] Kim E, Hopke P K and Edgerton E S 2004 Improving Source Identification of Atlanta Aerosol Using Temperature Resolved Carbon Fractions in Positive Matrix Factorization Atmos. Environ. 38 3349–3362

Acknowledgements
The authors would like to acknowledge the Ministry of High Education, Malaysia (203/PAWAM/6071360) and Universiti Sains Malaysia (1001/PAWAM/8014106) for research funding throughout this research.