Objective: To evaluate serum biochemical parameters' evolution, especially venous blood gas (VBG), in anorexia nervosa (AN), correlating with clinical parameters.

Methods: Retrospective study including out-patient AN adolescents, between January 2014 and May 2017. Three evaluations were compared: t1) first consultation; t2) consultation with the lowest body mass index (BMI) z-score and t3) with the highest BMI z-score.

Results: A total of 24 adolescents (87.5% females) were included, mean age of presentation of 14.9±1.7 years, onset of symptoms 6.4±3.2 months before the first visit. In t1, BMI z-score of -1.91±1.11 kg/m² and ideal weight % of 84.3±9.2. Amenorrhea was present in 88%. In t2 the analytical alterations were: altered VBG in 100%, altered ferritin (72% elevated), altered thyroid function (53% with thyroxine decrease), dyslipidemia (31% elevation of high density lipoprotein, 25% hypercholesterolemia), elevation of urea (25%), elevation of alanine aminotransferase (14%), hypoglycemia (14%), anemia (9%). Respiratory acidosis was present in 91% in t1, 100% in t2 and 94% in t3. There was a significant decrease between t2 and t3 in mean pCO₂ (57.2 versus 53.6 mmHg; p=0.009) and mean HCO₃ (30.0 versus 28.8 mEq/L; p=0.023).

Conclusions: Respiratory acidosis and increased ferritin were common in this group. Respiratory acidosis was the most frequent abnormality with significant pCO₂ and HCO₃ variation in the recovery phase. VBG should be considered in AN evaluation, once it seems to be important in assessing the severity of the disease and its subsequent follow-up.

Keywords: Anorexia nervosa; Adolescent; Malnutrition; Blood gas analysis.

RESUMO

Objetivo: Avaliar a evolução laboratorial, particularmente da gasometria venosa, na anorexia nervosa (AN), correlacionando os achados com parâmetros clínicos.

Métodos: Estudo retrospetivo com adolescentes com AN seguidos em ambulatório, entre janeiro de 2014 e maio de 2017. Foram comparadas três avaliações: (t1) primeira consulta; (t2) consulta com escore Z de índice de massa corpórea (IMC) mais baixo; e (t3) consulta com escore Z de IMC mais elevado.

Resultados: Incluídos 24 adolescentes, 87,5% do sexo feminino, idade média de apresentação de 14,9±1,7 anos, início dos sintomas 6,4±3,2 meses antes da primeira consulta. Em t1, escore Z de IMC de -1,91±1,11 kg/m² e % de peso ideal de 84,3±9,2. Tinham amenorreia 88%. Em t2 as alterações laboratoriais encontradas foram: gasometria venosa alterada em 100%, ferritina alterada (72% elevada), função tiroideia alterada (53% com diminuição da tiroxima), dislipidemia (31% com elevação de lipoproteína de alta densidade, 25% com hipercolesterolemia), elevação da ureia (25%), elevação da alanina aminotransferase (14%), hipoglicemia (14%) e anemia (9%). A acidose respiratória esteve presente em 91% em t1, 100% em t2 e 94% em t3. Verificou-se diminuição significativa entre t2 e t3 na pressão parcial de CO₂ (pCO₂) média (57,2 versus 53,6 mmHg; p=0,009) e HCO₃ médio (30,0 versus 28,8 mEq/L; p=0,023).

Conclusões: A acidose respiratória e o aumento da ferritina foram comuns nesse grupo. Acidose respiratória foi a alteração mais frequente, com variação significativa de pCO2 e HCO₃ na fase de recuperação. A gasometria venosa deve ser considerada na avaliação laboratorial na AN, pois parece ser importante na avaliação da gravidade e monitorização da doença.

Palavras-chave: Anorexia nervosa; Adolescente; Desnutrição; Gasometria.
INTRODUÇÃO

A anorexia nervosa (AN) é um distúrbio do comportamento alimentar de etiologia multifatorial com uma prevalência de 0,5 a 2% na população geral. Tem uma frequência maior no sexo feminino e um pico de incidência para o início da doença entre os 13 e os 18 anos. A mortalidade associada à AN é de 5 a 6%, o que corresponde à maior taxa de mortalidade para uma doença psiquiátrica. Desde 2013 o diagnóstico é feito com base nos critérios do Diagnostic and Statistical Manual of Mental Disorder V (DSM-5), dividindo-se em subtipo restritivo e compulsivo/purgativo. Essa classificação permitiu diminuir a prevalência do diagnóstico de perturbação do comportamento alimentar sem outra especificação, em detrimento do aumento de casos de AN, permitindo maior acuidade terapêutica e prognóstica. A combinação entre a má nutrição implícita na AN e comportamentos potencialmente associados, tais como vômitos e uso de laxantes, pode ter implicações em vários órgãos e sistemas e estar associada a várias alterações laboratoriais. Entre as alterações laboratoriais mais comumente descritas estão os distúrbios eletrolíticos, tais como a hipocalemia, decorrentes dos vômitos e do uso de laxantes/diuréticos. A disfunção endócrina é relativamente frequente e inclui hipotireoidismo, hiper cortisolismo e distúrbios do eixo hipotálamo-hipófise, que se manifestam por hipogonadismo hipogonadotrófico e anovulação. A alteração mais comum é a síndrome eutireoidea (níveis baixos de tiroxina com tirotrófina normal), reversível com a realimentação. Os pacientes podem também apresentar alterações da função renal associadas à insuficiência renal aguda por vômitos ou restrição grave de fluidos. Estão ainda descritas alterações hematológicas, tais como anemia e leucopenia, com raros casos de trombocitopenia. É importante avaliar os níveis de ferro e de vitamina B12 em doentes anêmicos, pois em casos de deficiência está recomendada a suplementação. A elevação das transaminases é comum, normalmente assintomática e autolimitada, mas em casos raros pode estar associada à lesão hepática. A hipoglicemia leve é um achado comum na AN e é habitualmente bem tolerada. A albumina sérica é normal na maioria dos pacientes, mesmo nos casos graves. Vários estudos têm demonstrado elevações dos níveis de colesterol total (CT), lipoproteína de alta densidade (LDL) e lipoproteína de baixa densidade (HDL). A causa não está totalmente esclarecida, mas há estudos que relacionam tal achado com a redução do catabolismo e com a diminuição da tiroxina (T3). Existem estudos realizados em doentes hospitalizados que demonstram que a acidose respiratória é também um achado comum nos doentes com AN. No entanto, a gasometria não faz parte da avaliação laboratorial realizada na rotina da maioria dos centros, nomeadamente no acompanhamento ambulatorial dos pacientes. Vários parâmetros laboratoriais relacionados com o estado nutricional são avaliados de forma rotineira após o diagnóstico de AN. Na entanto, mesmo em situações de doença grave, a avaliação laboratorial pode não apresentar alterações. A explicação para esse fato pode residir na compensação dos efeitos da má nutrição, a qual preserva a maioria das funções fisiológicas por meio de mecanismos adaptativos, apesar de estarem presentes parâmetros clínicos de desnutrição. A maioria dos estudos longitudinais sobre as alterações laboratoriais em doentes com AN é realizada em doentes hospitalizados, em quem pode-se prever a existência de um desequilíbrio metabólico mais pronunciado. Há poucos estudos que analisam a evolução dos parâmetros laboratoriais nos doentes com AN seguidos em ambulatório e que permitam inferir sobre o seu papel na estratificação de risco e na monitorização clínica desses doentes. O estabelecimento de um parâmetro laboratorial que se correlate com a evolução/gravidade clínica é importante para a monitorização terapêutica e também para a conscientização dos doentes para a necessidade de tratamento. Assim, o objetivo deste estudo foi avaliar a evolução dos parâmetros laboratoriais, em particular da gasometria venosa, nos doentes com AN seguidos em ambulatório, correlacionando-os com parâmetros clínicos.

MÉTODO

Realizou-se um estudo transversal analítico com coleta retrospectiva de dados de uma amostra de conveniência. Foi feita a análise de dados dos prontuários clínicos dos adolescentes com AN, diagnosticada com base nos critérios do DSM-5 e seguidos na consulta de medicina do adolescente de um hospital nível II, entre janeiro de 2014 e maio de 2017. Consideraram-se três pontos para avaliação de parâmetros antropométricos e laboratoriais: (t1) primeira consulta; (t2) consulta com escore Z de índice de massa corporal (IMC) mais baixo; e (t3) consulta com escore Z de IMC mais elevado. Em alguns casos a consulta com escore Z de IMC mais baixo (t2) correspondeu à primeira consulta (t1). Em cada um desses pontos de avaliação foram analisados os seguintes dados antropométricos: peso, estatura, IMC, percentil de IMC, escure Z de IMC e % de peso ideal. O percentil e o escore Z de IMC foram calculados usando o calculador para IMC para crianças e adolescentes, disponível em https://zscore. research.chop.edu/index.php. Para determinar o peso ideal dos adolescentes, calculou-se o peso correspondente ao IMC no percentil 50 (P50) para a idade e sexo, utilizando a fórmula: peso
alvo (kg) = IMC no P50 (kg/m²) × estatura (metros). A % de peso ideal foi calculada utilizando a fórmula: peso real x 100/peso alvo.

Nos três pontos de avaliação foram também avaliadas a pressão arterial (PA) e a frequência cardíaca (FC). Considerou-se bradicardia quando FC<60 bpm e hipotensão quando PA sistólica<90 mmHg.

Os parâmetros laboratoriais analisados foram: hemoglobina (g/dL), sódio (mmol/L), potássio (mmol/L), magnésio (mmol/L), fosfato (mmol/L), cálcio, CT, triglicérides, LDL, HDL, creatinina quinase (CK) (U/L), albumina, creatinina (mg/dL), ureia (mmol/L), tirotrofina (TSH), T4 livre, proteínas totais (g/dL), glicose (mg/dL), aspartato aminotransferase (AST) (U/L), alanina aminotransferase (ALT) (U/L), desidrogenase láctica (LDH) (U/L), ferritina (ng/mL) e pH, pressão parcial de CO₂ (pCO₂) e HCO₃ (gasometria venosa). Tal como outros autores, neste estudo usamos os valores de referência da gasometria arterial para analisar os resultados da gasometria venosa. Alguns autores demonstraram um elevado grau de concordância entre os valores da gasometria arterial e venosa. Considerando a facilidade na obtenção de uma amostra de sangue venoso, não há uma razão teórica ou prática que justifique a necessidade de utilizar a gasometria arterial nos doentes com AN. Como valores de referência para as análises restantes, foram considerados valores internacionalmente aceitos na idade pediátrica, assim como os valores de referência para dislipidemia em idade pediátrica da Direção Geral da Saúde de Portugal. Foram também analisados dados como idade na primeira consulta, sexo, duração da doença, presença de amenorreia e gravidade da AN (leva; IMC≥17 kg/m²; moderada: IMC 16 a 16,9 kg/m²; grave: IMC 15 a 15,9 kg/m²; extrema: IMC<15 kg/m²).

Na análise comparativa, foi usado o teste de t de Student para amostras emparelhadas para comparação de médias, e o teste de McNemar para variáveis categóricas. Para investigar a existência de uma correlação entre variáveis quantitativas, recorreu-se ao coeficiente de Pearson (r) ou Spearman (rho), conforme a normalidade. O valor absoluto da correlação indica a intensidade da associação, considerando-se r/rho<0,19: correlação muito baixa; 0,2≤r/rho<0,39: correlação baixa; 0,4≤r/rho<0,69: correlação moderada; 0,7≤r/rho<0,89: correlação forte; 0,9≤r/rho: correlação muito forte. O tratamento estatístico foi realizado com o programa Statistical Package for the Social Sciences (SPSS) 22ª (IBM Corp. Armonk, NY, EUA). Foi definida significância estatística para valores de p<0,05.

O levantamento e a consulta dos prontuários clínicos foram feitos respeitando-se a confidencialidade dos adolescentes; e a coleta de dados respeitou os princípios da Declaração de Helsinki. O estudo teve a autorização do diretor de serviço, assim como da Comissão de Ética em Pesquisa do Hospital.

RESULTADOS

Obteve-se uma amostra de 24 adolescentes, sendo 21 do sexo feminino (87,5%). Três doentes foram observados apenas em uma consulta no período de realização do estudo e, por isso, contam com apenas a avaliação laboratorial, relativa ao t1.

Na primeira consulta de medicine do adolescente, os doentes apresentaram uma idade média de 14,9±1,7 anos e com início dos sintomas em média 6,4±3,2 meses antes.

A percentagem de peso ideal foi de 84,3±9,2%; o percentil de IMC, 13,2±16,4; e o escore Z de IMC, -1,9±1,1. Relativamente à gravidade da AN, 66,7% apresentavam AN leve a moderada, sem diferenças estatisticamente significativas considerando o sexo (p=0,526). A realçar que 4 doentes (16,7%) tinham IMC<15 kg/m², o que corresponde a um grau de extrema gravidade.

Das adolescentes do sexo feminino já com menarca (n=17), 88% tinham amenorreia secundária. Relativamente aos parâmetros vitais avaliados, 62,5% apresentavam bradicardia e 12,5%, hipotensão. Os doentes com AN grave e extrema apresentavam mais frequentemente bradicardia e hipotensão do que os doentes com AN leve a moderada (87,5% versus 50%; p=0,074; e 25% versus 6,3%; p=0,19; respectivamente). A Tabela 1 mostra a caracterização da amostra na primeira consulta.

Tabela 1 Caracterização da amostra na primeira consulta de medicina do adolescente (n=24).

Parâmetros	Primeira consulta
Iidade (anos)	14,9±1,7 (variação 11–18)
Sexo feminino/masculino (n)	21/3
Tempo desde o início dos sintomas (meses)	6,4±3,2 (variação 2–12)
% de peso ideal	84,3±9,2
Escore Z de IMC	-1,9±1,11
Gravidade	15 (88%)
Leve	9
Moderada	7
Grave	4
Extrema	4
Amenorreia (com menarca n=17)	15 (88%)
FC (bpm)	58,3±13,7
% bradicardia	62,5
PA sistólica (mmHg)	99,3±9,0
% hipotensão	12,5

IMC: índice de massa corpórea; FC: frequência cardíaca; DP: desvio padrão; PA: pressão arterial; American Psychiatric Association.ª
Entre t2 e t3, o aumento do escore Z de IMC foi acompanhado por um aumento significativo dos valores de FC (60,1±13,4 versus 70,8±14,6; p=0,022) e PA (97,3±10,1 versus 102,2±11,2; p=0,031), como representado na Tabela 2.

Os exames pedidos em cada avaliação laboratorial (t1, t2 e t3) variaram, sendo o hemograma e a glicose solicitados em todas as avaliações. Para além dessas, os exames mais frequentemente pedidos foram: ureia, creatinina, TSH, T4 livre, ionograma completo, perfil lipídico, transaminases e gasometria venosa, solicitados em mais de 75% dos casos. Os resultados da avaliação analítica estão apresentados na Tabela 3.

Considerando a avaliação laboratorial realizada com o menor IMC (t2), verificou-se que a maioria dos parâmetros laboratoriais estava normal. As alterações encontradas foram: na gasometria venosa (100% com elevação da pCO₂, 75% com elevação do HCO₃, 70% com acidose), na ferritina (72% elevada, 14% diminuída), na função tireoidiana (53% com diminuição da tiroxina, 6% com diminuição da tirotrofina), dislipidemia (31% com elevação de LDL, 25% com hipercolesterolemia), elevação da ureia (25%), elevação da ALT (14%), hipoglicemia (14%) e anemia (9%).

Considerando as médias dos parâmetros laboratoriais, a gasometria venosa e a ferritina (no sexo feminino) foram os únicos parâmetros alterados (Tabela 3). A ferritina apresentava valores elevados em t1 e t2 (163,2 e 191,6 mg/mL, respetivamente), considerando os valores de referência para o sexo feminino. Verificou-se uma diminuição do seu valor entre t2 e t3, sem significância estatística (p=0,196). Não se encontrou correlação significante entre os valores de ferritina e o escore Z de IMC. Apesar de os valores do perfil lipídico estarem dentro dos limites estabelecidos pelos valores de referência, houve uma diminuição de t2 para t3, sem significância estatística (p=0,031).

Os resultados relativos à gasometria venosa estão representados na Tabela 4. A acidose respiratória (compensada ou não) esteve presente em 20 doentes em t1 (91%), 20 doentes em t2 (100%) e 16 doentes em t3 (94%). Os parâmetros da gasometria na primeira consulta não mostraram correlação com a duração de doença nem com o escore Z em t1. Verificou-se uma diminuição do número de acidoses não compensadas de t2 para t3 (sem significado estatístico; p=0,453). Houve uma diminuição significativa entre t2 e t3 da pCO₂ média (57,2 versus 53,6 mmHg; p=0,009) e da HCO₃ médio (30,0 versus 28,8 mEq/L; p=0,023).

DISCUSSÃO

No presente estudo, a maioria dos parâmetros laboratoriais geralmente solicitados em doentes com anorexia nervosa apresentava médias dentro dos valores de referência, exceto os parâmetros da gasometria venosa e ferritina. No ponto de maior gravidade clínica (t2 – quando havia o menor IMC e mais frequentemente a presença de bradicardia e de hipotensão), as alterações laboratoriais mais frequentes foram encontradas na gasometria venosa. Também se demonstrou, por ordem de frequência, alterações da ferritina (72% com elevação), alteração da função tireoidea (53% com diminuição da tiroxina), dislipidemia (31% com elevação da LDL, 25% com hipercolesterolemia), elevação da ureia (25%), elevação da ALT (14%), hipoglicemia (14%) e anemia (9%).

Existe uma grande variabilidade nos resultados dos estudos que avaliam as alterações laboratoriais na AN, decorrente da heterogeneidade da metodologia utilizada (parâmetros laboratoriais analisados, doentes internados/ambulatório, comparação com valores de referência/grupos controle). Nova et al.14,15 analisaram doentes hospitalizados (e provavelmente mais descompensados), comparativamente a um grupo controle, e descrevem alterações laboratoriais frequentes, em especial no

Tabela 2 Caracterização dos parâmetros vitais e relação com o índice de massa corpórea.

Parâmetros	t1	t2	t3	p-valor*
Escore de IMC (média±DP)	-1,65±1,13	-2,41±1,31	-0,85±0,90	<0,001
FC (bpm)				
Média±DP	58,3±13,7	60,1±13,4	70,8±14,6	0,022
% bradicardia	62,5	60	23,8	
PA sistólica (mmHg)				
Média±DP	99,3±9,0	97,3±10,1	102,2±11,2	0,031
% hipotensão	12,5	20	10	

IMC: índice de massa corpórea; DP: desvio padrão; FC: frequência cardíaca; PA: pressão arterial; * teste t de Student para amostras emparelhadas (entre médias de t2 e t3).
Tabela 3	Parâmetros laboratoriais dos doentes com anorexia nervosa nos três pontos de avaliação analítica.				
	Valores de referência	t1 (n=24) (média±DP)	t2 (n=21) (média±DP)	t3 (n=21) (média±DP)	p-valoro
Hb (g/dL)	M (12,5–16,1) F (12–15)	13,6±1,5 88	13,4±1,6 86	13,1±1,2 81	0,395
Glicose (mg)	60–100	75,5±12,1 83	76,2±15,7 81	79,2±10,9 86	0,438
Proteínas totais (g/dL)	66-82	74,3±4,5 95	72,9±5,3 94	72,8±3,6 93	0,735
AST (U/L)	10–15A (10–40) 16–19A (15–45)	25,2±7,4 96	24,1±5,6 100	25,9±6,7 100	0,137
ALT (U/L)	5–45	26,3±11,7 92	27,5±12,9 86	32,7±21,7 85	0,366
LDH (U/L)	120–330	208,1±47,7 100	183,7±27,0 100	185,5±20,8 100	0,973
CK (U/L)	5–130	97,8±45,8 75	68,7±20,9 100%	72,4±26,8 100	0,715
Ureia (mmol/L)	2,5–6,4	6,2±3,9 75	5,3±1,4 75	6,4±4,2 76	0,224
Creatinina (mg/dL)	10–14A (0,31–0,88) 15–19A (0,5–1,06)	0,8±0,2 96	0,7±0,1 100	0,7±0,1 95	0,051
HDL (mg/dL)	>35	58,4±11,3 100	57,0±9,23 100	61,3±14,6 100	0,332
LDL (mg/dL)	<130	98,6±39,4 80	99,8±41,7 69	84,7±28,2 94	0,025
CT (mg/dL)	<200	165,5±53,2 70	165,0±45,4 75	151,2±47,0 89	0,026
TG (mg/dL)	<150	72,3±22,9 100	68,6±24,6 100	71,9±0,4 94%	0,999
TSH (uUI/mL)	0,5–4,5	1,8±0,8 95	1,5±0,8 94	1,7±0,7 100	0,173
T4L (pmol/L)	9–25,7	9,9±1,3 84	9,3±1,6 47	8,9±2,3 53	0,748
K (mmol/L)	3,3–4,6	4,3±0,3 96	4,0±0,3 100	4,1±0,3 90	0,257
Na (mmol/L)	134–145	139,3±1,6 100	140,0±1,6 100	139,7±2,7 100	0,419
Ca (mmol/L)	2,2–2,7	2,4±0,4 86	2,3±0,5 79	2,2±0,4 89%	0,924
Mg (mmol/L)	0,6–0,95	0,9±0,1 77%	0,9±0,1 88	0,8±0,1 94	0,401
Fosfato (mmol/L)	12–15A: 0,95–1,75; 16–19A: 0,9–1,5	1,3±0,2 100	1,3±0,2 100	1,3±0,2 100	0,975
Ferritina (ng/mL)	M: 10–300 F: 10–70	160,8±159,9 10 (F: 163,2±169,4)9	191,7±182,7 14 (F: 191,6±182,7)9	70,0±39,6 37 (F: 74,2±40,9)9	0,196 (F: 0,196)
pH venoso	7,35–7,45	7,34±0,03b 59	7,33±0,02b 30	7,34±0,02b 47	0,213
pCO₂ (mmHg)	<45	53,8±6,5b 5	56,6±5,1b 0	53,5±5,2b 6	0,009
HCO₃⁻ (mmHg)	22–29 (venoso) 21–28 (arterial)	28,9±2,0 36	29,9±1,6 25	28,7±2,5 47	0,023

DP: desvio padrão; Hb: hemoglobina; AST: aspartato aminotransferase; A: anos; ALT: alanina aminotransferase; LDH: lactato desidrogenase; CK: creatinina quinase; HDL: lipoproteína de alta densidade; LDL: lipoproteína de baixa densidade; CT: colesterol total; TG: triglicerídeos; TSH: tirotrofina; T4L: tiroxina livre; K: potássio; Na: sódio; Ca: cálcio; Mg: magnésio; pCO₂: pressão parcial de CO₂; HCO₃⁻: bicarbonato; F: feminino; M: masculino; *teste t de Student para amostras emparelhadas (entre média de t2 e t3); **médias alteradas relativamente aos valores de referência.
Avaliação laboratorial em ambulatório na anorexia nervosa

hemograma, glicemia, proteínas totais, transaminases, LDH, CK e ferritina. Nesses doentes recrutados durante a internação, a presença de dislipidemia foi menos frequente do que no presente estudo (hipercolesterolemia em 18% e elevação de LDL em 16%). Também comparativamente aos achados da presente pesquisa, em outros estudos efetuados em ambulatório10,17 a anemia foi mais frequente (38,6%), assim como as alterações hidroeletrolíticas (hiponatremia em 19,7% e hipocalemia em 19,7%), mas com valores similares de elevação de ALT (12,2%). Esses resultados demonstram que as alterações laboratoriais podem ser pouco frequentes, mesmo naqueles com doença grave. A “normalidade” laboratorial nessa doença, que clinicamente se apresenta com sinais físicos de descompensação, pode, por um lado, levar o clínico menos treinado a desvalorizar a gravidade da situação e, por outro, reforçar o comportamento do paciente, a quem é devolvida a informação de que laboratorialmente seus valores são adequados.

Como referido, nesta amostra, as alterações laboratoriais mais frequentes foram a gasometria venosa e a ferritina. Os dados na literatura são controversos em relação às alterações da gasometria em doentes com anorexia. Existem estudos que reportam valores normais,24,25 enquanto outros referem que as alterações da gasometria (venosa) são frequentes.11,12 Os diferentes resultados podem estar relacionados às diferentes metodologias, nomeadamente idade, fase da doença (descompensação versus “estável”) e uso de gasometria arterial versus venosa. Kerem et al.11 relataram que a acidoses respiratória leve é comum na gasometria venosa em adolescentes com diagnóstico recente de AN, hospitalizados para estabilização clínica (78% na admissão e 35% na alta hospitalar). Os dados aqui apresentados têm a particularidade de demonstrar que as alterações da gasometria venosa são também frequentes em adolescentes com seguimento em ambulatório e em diferentes fases da sua doença.

Apesar de não se ter encontrado uma correlação direta entre o escore Z de IMC e os parâmetros da gasometria venosa, verificou-se que na consulta com pior IMC (t2), todos os doentes apresentavam acidoses respiratória, o que está de acordo com os dados de Kerem et al.11 Houve uma diminuição do número de pacientes portadores de acidoses não compensadas de t2 para t3, associada a uma diminuição significativa entre t2 e t3 da pCO₂ média (57,2 versus 53,6 mmHg; p=0,009) e do HCO₃⁻ médio (30,0 versus 28,8 mEq/L; p=0,023). Esse dado parece indicar a gasometria como um instrumento útil na monitorização da doença, uma vez que a recuperação do IMC estavam associada a uma tendência à normalização dos valores da gasometria venosa. Vários mecanismos fisiológicos podem explicar a presença de acidoses respiratória nos doentes com AN: alteração da força muscular dos músculos implicados na respiração (particularmente o diafragma),25,26 anormalidades no controle respiratório (aumento do tônus vagal)24,26 e possíveis alterações na função pulmonar (alterações enfisema-like).27

Na amostra estudada, a ferritina apresentou igualmente valores alterados: elevados em t1 e t2 e com uma tendência à normalização em t3. Comparativamente às alterações da gasometria venosa, a elevação da ferritina foi menos frequente e a descida da ferritina não teve significância estatística (p=0,196). Apesar de esses resultados não serem consensuais em toda a literatura,17 vários autores têm reportado elevação dos valores de ferritina nos doentes com AN, com tendência à normalização associada à recuperação ponderal.15,16,28-30 A ferritina é frequentemente usada para avaliar as reservas de ferro, no entanto, pode estar elevada noutras situações, como lesão hepática, neoplasia, infecção e inflamação. Assim, a sua elevação nos doentes com AN é difícil de interpretar e, atualmente, o mecanismo fisiopatológico ainda não está esclarecido. Num estudo realizado por Papillard-Marechal et al.,28 a concentração de ferritina e hepcidina estava elevada nos doentes com AN, sem evidência de sobrecarga de ferro ou hemólise e com parâmetros

Tabela 4 Caracterização da gasometria venosa.

Gasometria venosa	t1 (n=22)	t2 (n=20)	t3 (n=17)	p-valor
pH	7,34±0,03	7,33±0,02	7,34±0,02	0,213
pCO₂ (mmHg)	53,8±6,5	56,6±5,1	53,5±5,2	0,009
HCO₃⁻ (mEq/L)	28,9±2,0	29,9±1,6	28,7±39,7	0,230
Acidoses respiratória	20 (91%)	20 (100%)	16 (95%)	NA
Acidoses respiratória	11 (50%)	7 (35%)	7 (41%)	NA
Acidoses respiratória não	9 (41%)	13 (65%)	9 (53%)	0,453

Nota: pCO₂: pressão parcial de CO₂; HCO₃⁻: bicarbonato; NA: não aplicável; *médias alteradas relativamente aos valores de referência; † teste t de Student para amostras emparelhadas (entre média de t2 e t3); ‡ teste McNemar (entre t2 e t3).
inflamatórios e testes hepáticos normais. Esses autores sugerem que a má nutrição aguda possa constituir uma fonte de estresse em nível dos hepatócitos, levando ao aumento da hepcidina e, consequentemente, de ferritina. Nova et al.15 defendem que a ferritina aumenta em resposta a um processo de adaptação à restrição alimentar, com normalização dos valores quando há recuperação ponderal.

O nosso estudo teve algumas limitações decorrentes do fato de se tratar de uma análise retrospectiva, com uma amostra de conveniência de tamanho reduzido e com poucos adolescentes do sexo masculino. Tendo em conta o período de estudo, em três casos a avaliação clínica e laboratorial foi feita apenas na primeira consulta, uma vez que as consultas subsequentes foram posteriores ao período de tempo considerado. Esses casos correspondem a duas adolescentes do sexo feminino e um do sexo masculino, o que não altera a representatividade global da amostra em termos de sexo, apesar de, no contexto de uma amostra de reduzidas dimensões, representar 12,5% do total. A avaliação laboratorial também não foi totalmente homogénea nos diferentes tempos considerados e não existiu um grupo controle. Não foram também consideradas outras informações clínicas relevantes, tais como a ingestão de laxantes, a quantificação de vômitos, a prática de exercício físico e o consumo de medicação ou drogas/alcool/tabaco. Seria também importante avaliar a frequência respiratória, pois poderia ajudar a perceber o mecanismo associado à acidose respiratória nesses doentes. Um estudo prospectivo e com maior poder amostral poderia avançar em relação a essas limitações. Seria também interessante incluir outras perturbações do comportamento alimentar.

Em conclusão, este estudo veio demonstrar que as alterações dos exames laboratoriais geralmente solicitados são pouco frequentes em adolescentes com AN em seguimento ambulatorial. Por outro lado, revelaram-se como parâmetros laboratoriais frequentemente alterados a gasometria venosa (na quase totalidade dos pacientes) e a ferritina (numa percentagem menor e com as prováveis limitações na sua interpretação). Considera-se, assim, que ambos os exames devam ser incluídos na avaliação laboratorial de doentes com AN. Especificamente a presença de aci-
dose respiratória na gasometria venosa dessas pacientes estabelece a sua gravidade clínica e pode ser um marcador precoce de descompensação. No futuro e mediante novos estudos, a gasometria venosa poderá ser assumida como clinicamente útil na estratificação de risco dos doentes com AN seguidos em ambulatório e na sua monitorização/recuperação.

Financiamento
Este estudo não recebeu financiamento.

Conflito de interesses
Os autores declaram não haver conflito de interesses.

REFERÊNCIAS

1. Rosen DS, American Academy of Pediatrics. Identification and management of eating disorders in children and adolescents. Pediatrics. 2010;126:1240-53. https://doi.org/10.1542/peds.2010-2821
2. Campbell K, Peebles R. Eating disorders in children and adolescents: state of the art review. Pediatrics. 2014;134:582-92. https://doi.org/10.1542/peds.2014-0194
3. Smink FR, Hoeken D, Oldehinkel AJ, Hoek HW. Prevalence and severity of DSM-5 eating disorders in a community cohort of adolescents. Int J Eat Disord. 2014;47:610-9. https://doi.org/10.1002/eat.22316
4. Moinho R, Dias I, Luz A, Moleiro P. Eating disorders in boys: what are the differences? Acta Pediatr Port. 2014;45:124-9.
5. Bacalhau S, Moleiro P. Eating disorders in adolescents – what to look for? Acta Med Port. 2010;23:777-84.
6. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington (DC): American Psychiatric Association; 2013.
7. Moinho R, Dias I, Luz A, Moleiro P. Feeding and eating disorders in a paediatric outpatient clinic: the impact of DMS-5. Acta Pediatr Port. 2016;47:3-10.
8. Winston AP. The clinical biochemistry of anorexia nervosa. Ann Clin Biochem. 2012;49:132-43. https://doi.org/10.1258/abc.2011.011185
9. Vale B, Brito S, Paulos L, Moleiro P. Menstruation disorders in adolescents with eating disorders-target body mass index percentiles for their resolution. Einstein (Sao Paulo). 2014;12:175-80. http://dx.doi.org/10.1590/S1679-45082014AO2942
10. Miller KK, Grinspoon SK, Ciampa J, Hier J, Herzog D, Klubanski A. Medical findings in outpatients with anorexia nervosa. Arch Intern Med. 2005;165:561-6. https://doi.org/10.1001/archinte.165.5.561
11. Kerem NC, Riskin A, Averin E, Srugo I, Kugelman A, Tov N. Respiratory acidosis in adolescents with anorexia nervosa hospitalized for medical stabilization: a retrospective study. Int J Eat Disord. 2012;45:125-30.
12. Kerem NC, Averin E, Riskin A, Toy N, Srugo I, Kugelman A. Respiratory functions in adolescents hospitalized for anorexia nervosa: a prospective study. Int J Eat Disord. 2012;45:415-22. https://doi.org/10.1002/eat.20960
13. Casanova T, Santos P, Figueiredo C, Silveira A. Anorexia nervosa: proposta de linhas orientadoras. Acta Pediatr Port. 2009;40:133-5.

14. Nova E, Lopez-Vidriero I, Varella P, Casas J, Marcos A. Evaluation of serum biochemical indicators in anorexia nervosa patients: a 1-year follow-up study. J Hum Nutr Diet. 2008;21:23-30. https://doi.org/10.1111/j.1365-277X.2007.00833.x

15. Nova E, Lopez-Vidriero I, Varella P, Toro O, Casas JJ, Marcos AA. Indicators of nutritional status in restricting-type anorexia nervosa patients: a 1-year follow-up study. Clin Nutr. 2004;23:1353-9. https://doi.org/10.1016/j.clnu.2004.05.004

16. Kennedy A, Kohn M, Lammi A, Clarke S. Iron status and haematological changes in adolescent female inpatients with anorexia nervosa. J Paediatr Child Health. 2004;40:430-2. https://doi.org/10.1111/j.1440-1754.2004.00432.x

17. Barron LJ, Barron RF, Johnson JC, Wagner I, Ward CJ, Ward SR, et al. A retrospective analysis of biochemical and haematological parameters in patients with eating disorders. J Eat Disord. 2017;5:32. https://doi.org/10.1186/s40337-017-0158-y

18. Yildizdas D, Yapicioğlu H, Yilmaz H, Sertdemir Y. Correlation of simultaneously obtained capillary venous, and arterial blood gases of patients in a paediatric intensive care unit. Arch Dis Child. 2004;89:176-80. https://doi.org/10.1136/adc.2002.016261

19. Malatesha G, Singh NK, Bharjia A, Rehani B, Goel A. Comparison of arterial and venous ph, bicarbonate, PCO2 and PO2 in initial emergency department assessment. Emerg Med J. 2007;24:569-71. https://doi.org/10.1136/emj.2007.046979

20. Kliegman RM, Stanton B, Geme JS, Schor NF, Behrman RE, editors. Nelson Textbook of Pediatrics. 19th ed. Philadelphia: WB Saunders Company; 2011.

21. Portugal. Serviço Nacional de Saúde (SNS). Documentos e Publicações. Programa Nacional de Saúde Infantil e Juvenil [homepage on the Internet]. Portugal; 2005 [cited 2017 Aug 14]. Available from: https://www.dgs.pt/documentos-e-publicacoes/programa-tipo-de-atauacao-em-saude-infantil-e-juvenil.aspx.

22. Bryman A, Cramer D. Quantitative data analysis for social scientists. London: Routledge; 1995.

23. Rigaud D, Tallonneau I, Vergès B. Hypercholesterolaemia in anorexia nervosa: frequency and changes during refeeding. Diabetes Metab. 2009;35:57-63. https://doi.org/10.1016/j.diabet.2008.08.004

24. Pieters T, Boland B, Beugn C, Verite C, Stanescu D, Frans A, et al. Lung function study and diffusion capacity in anorexia nervosa. J Intern Med. 2000;248:137-42.

25. Gonzalez-Moro JM, Miguel-Diez J, Paz-Gonzalez L, Buendia-Garcia MJ, Santacruz-Siminiani A, Lucas-Ramos P. Abnormalities of the respiratory function and control of ventilation in patients with anorexia nervosa. Respiratio. 2003;70:490-5. https://doi.org/10.1159/000074205

26. Gardenghi Gardenghi G, Boni E, Todisco P, Manara F, Borghesi A, Tantucci C. Respiratory function in patients with stable anorexia nervosa. Chest. 2009;136:1356-63. https://doi.org/10.1378/chest.08-3020

27. Coxson HO, Chan IH, Mayo JR, Hlynsky J, Nakano Y, Birmingham CL. Early emphysema in patients with anorexia nervosa. Am J Respir Crit Care Med. 2004;170:748-52. https://doi.org/10.1164/rccm.200405-651OC

28. Papillard-Marechal S, Szndjer M, Hurtado-Nedelec M, Alibay Y, Martin-Schmitt C, Dehoux M, et al. Iron metabolism in patients with anorexia nervosa: elevated serum hepcidin concentrations in the absence of inflammation. Am J Clin Nutr. 2012;95:548-54. https://doi.org/10.3945/ajcn.111.025817

29. Wany P, Berglund J, Brudin L, Hedberg D, Carlsson M. Increased ferritin levels in patients with anorexia nervosa: impact of weight gain. Eat Weight Disord. 2016;21:411-7. https://doi.org/10.1007/s40519-015-0246-4

30. Tran J, Story C, Moore D, Metz M. Unexpected increased ferritin concentration in patients with anorexia nervosa. Ann Clin Biochem. 2013;50:504-6. https://doi.org/10.1177/0004563213490289