Metabolic alterations in a Drosophila model of Parkinson’s disease based on DJ-1 deficiency

Cristina Solana-Manrique1,2,5, Francisco José Sanz1,2,5, Isabel Torregrosa1,2, Martina Palomino-Schätzlein3,4, Carolina Hernández-Oliver3,4, Antonio Pineda3,4 and Nuria Paricio1,2,*

1Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain
2Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
3Structural Biochemistry Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
4Joint Research Unit in Clinical Metabolomics CIPF/IIS La Fe, Drug Discovery Unit, IIS La Fe, 46026 Valencia, Spain
5These authors contributed equally

*Corresponding author:
Nuria Paricio
Departamento de Genética, Facultad de CC Biológicas, Universidad de Valencia
Dr. Moliner 50
E-46100 Burjassot, Spain
Phone: +34-96 354 3005
Fax: +34-96 354 3029
E-mail: nuria.paricio@uv.es

Abbreviations: Aco, Aconitase; Arg, Arginase; ArgL, Arginosuccinate lyase; BCAA, branched-chain amino acid; DA, dopaminergic; ETC, electron transport chain; fPD, familial Parkinson’s disease; iPD, idiopathic Parkinson’s disease; ND, neurodegenerative disease; NO, nitric oxide; OPLS-DA, Orthogonal Partial Least Squares Discriminant Analysis; OS, oxidative stress; PCA, Principal Component Analysis; PD, Parkinson’s disease; ROS, reactive oxygen species; SDH, Succinate dehydrogenase; SNpc, substantia nigra pars compacta; TCA, tricarboxylic acid; TSP, (Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium; UC, urea cycle
ABSTRACT

Parkinson’s disease (PD) is the second most common neurodegenerative disorder whose physiopathology is still unclear. Besides, it is urgent to discover new biomarkers and therapeutic targets to facilitate its diagnosis and treatment. Previous studies performed in PD models and samples from PD patients already demonstrated that metabolic alterations were associated with this disease. In this context, the aim of this study is to give a better understanding of metabolic disturbances underlying PD pathogenesis. To achieve this goal, we used a Drosophila PD model based on inactivation of the DJ-1β gene (ortholog of human DJ-1). Metabolomic analyses were performed in 1-day-old and 15-day-old DJ-1β mutants and control flies using 1H nuclear magnetic resonance spectroscopy, combined with expression and enzymatic activity assays of proteins implicated in altered pathways. Our results showed that PD model flies exhibit protein metabolism alterations, a shift from tricarboxylic acid cycle to glycolytic pathway to obtain ATP, together with an increase in the expression of some urea cycle enzymes. Thus, these metabolic changes could be contributing to PD pathogenesis and might constitute possible therapeutic targets and/or biomarkers for this disease.

Keywords: Drosophila; DJ-1; Parkinson’s disease; metabolomics; NMR spectroscopy
INTRODUCTION

In the last 25 years, neurodegenerative diseases (NDs) have become an important challenge for general health, especially in older population groups, and are expected to grow in the future due to an increase in life expectancy [1]. Among them, Parkinson’s disease (PD) is the most common motor disorder, affecting more than 1% of the population over 60 years. PD is caused by the selective and progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc), which results in striatal dopamine deficiency and leads to disturbances in motor, autonomic and psychiatric functions [2–4]. DA neuron loss is accompanied, in some cases, by the presence of α-synuclein aggregates in the surviving neurons, known as Lewy bodies [2,4]. The exact mechanism behind DA neurodegeneration in PD is still unclear, being probably a combination of genetic predisposition and environmental factors [2,5]. Indeed, multiple pathways and mechanisms seem to participate in PD pathogenesis like accumulation of misfolded protein aggregates, mitochondrial dysfunction, increased oxidative stress (OS), energy failure, neuroinflammation, and genetic mutations [6]. Interestingly, recent studies have shown that bioenergetic alterations may play a key role in PD neuropathology. Concretely, an increase in the glycolytic rate has been observed in PD models, suggesting that there is a link between glucose metabolism, cellular bioenergetics, redox homeostasis and neuronal death [7,8].

Most PD cases are idiopathic (iPD), whose aetiology is multifactorial. However, 5-10% of PD patients suffer from monogenic forms of the disease caused by highly penetrant mutations that are family-linked [2,5]. In the last years, mutations in several genes have been associated with these familial forms of PD (fPD), allowing to discover different mechanisms underlying PD pathogenesis [5,9]. Indeed, some of the proteins encoded by these genes are involved in a set of molecular pathways that upon perturbation trigger a neuropathology that resembles to, or is clinically indistinguishable from iPD, except for the age at onset [10]. Among them, DJ-1 is a causative gene for fPD [11] that was initially described as an oncogene. Nevertheless, other functions have been ascribed to the DJ-1 protein such as transcriptional regulation, chaperone and protease activity, scavenger of reactive oxygen species (ROS) or mitochondrial homeostasis [12–14]. Remarkably, an over-oxidized and inactive form of the DJ-1 protein has also been found in brains of iPD individuals suggesting that it may play a central role in the development of the disease [15]. Therefore, results obtained in PD models with impaired DJ-1 function could be also applicable to human iPD forms.
Currently, PD diagnosis is limited and based on the detection of classic motor symptoms that appear when about 60-80% of SNpc DA neurons are lost, after many years of ongoing disease [16]. Thus, it is urgent to find simple, useful and low-cost biomarkers that allow an early PD diagnosis to address its progression in the initial stages of the disease [17]. Biomarkers are also needed for distinguishing different PD types, predicting the course of the disease, or monitoring the effect of disease-modifying therapies [18,19]. Metabolomic technologies allow the analysis of a great amount of low-molecular-weight molecules, offering an overview of the molecular complexity of a biological system and the metabolic pathways that can be altered in a pathological state [20,21]. Therefore, metabolomic studies are being carried out to identify new biomarkers in PD and other NDs [22,23] as well as therapeutic targets and metabolic alterations implicated in PD pathogenesis [23].

Drosophila melanogaster has emerged as an important model organism in the study of PD physiopathology. In this scenario, several genetic-based and chemically-induced PD models have been developed in *Drosophila* [24,25]. Among them, flies harboring mutations in *DJ-1β* (ortholog of *DJ-1* human gene) present typical PD phenotypes, like motor impairment, and increased levels of OS markers [26–28]. In addition, *DJ-1β* mutants exhibit increased activity of key glycolytic enzymes [7]. Given the great complexity and heterogeneity in the metabolome of human samples as well as their limited availability and obtaining, simple models such as *Drosophila* to study PD-associated metabolome-wide alterations are becoming very useful [29–31]. In fact, metabolomic studies have been performed in different *Drosophila* models of NDs. For instance, a metabolomic analysis in a *Drosophila* model of Charcot-Marie-Tooth disease based on *GDAP1* deficiency allowed to identify the involvement of insulin signaling in the characteristic neuromuscular degeneration of this disease [32]. Regarding PD, Shukla et al [21] performed a metabolomic analysis in a paraquat-induced *Drosophila* model of iPD, in which altered levels of amino acids, lipids and carbohydrates were identified [21]. In such a scenario, we aimed to find new pathways underlying PD pathogenesis and/or new potential biomarkers by carrying out a metabolomic analysis in *DJ-1β* mutant flies at different ages. Changes in metabolite levels in *DJ-1β* mutants allowed us to identify metabolic alterations in PD model flies, such as changes in amino acids metabolism, a switch from tricarboxylic acid (TCA) cycle to glycolysis and other pathways affected like the urea cycle (UC). To our knowledge, this is the first metabolomic study carried out so far in a *Drosophila* fPD model.
MATERIALS AND METHODS

Drosophila strains
All stocks and crosses were cultured on standard Drosophila food at 25°C. For this work, DJ-1βex54 flies (hereafter called DJ-1β mutant) were used as PD model flies [33] and y1,w1118 were used as controls.

Metabolite extraction
Metabolite extraction was performed as previously described in [32]. Twelve samples of 1-day-old and 15-day-old individuals were prepared for each batch of DJ-1β mutant and controls, containing fifteen female flies each. They were frozen in a microtube by immersion in liquid nitrogen. Then, 240 µl of ice-cold methanol and 48 µl of ice-cold Milli-Q water were added to each vial. After 5 min, flies were homogenized with a small mortar for 60 s. Samples were vortexed and 120 µl of ice-cold CHCl₃ and 120 µl of ice-cold Milli-Q water added and vortexed again. After 15 min at 4°C, samples were centrifuged at 10000 g during 15 min at 4°C. The resulting two phases (upper phase: polar metabolites, lower phase: non-polar metabolites) were separated. Solvents from the polar phase were eliminated by freeze-thawing and samples were stored at -80°C until measurement.

NMR analysis
Metabolite extracts were allowed to thaw during 5 min at 4°C and dissolved in 550 µl of NMR buffer [0.1 M phosphate buffer pH 7.4 in D2O, with 0.1 mM 3-(Trimethylsilyl)propionic-2,2,3,3-d₄ acid sodium salt (TSP) as internal standard] for the polar phase. Polar samples were analyzed on a 600 MHz Bruker NMR spectrometer equipped with a cryoprobe using a 1D noesy experiment including presaturation for water signal suppression and a 50 ms mixing delay. Spectra were acquired with 512 scans, a relaxation delay of 4 s and a spectral width of 18028 Hz and processed with an exponential line broadening factor of 0.5. For metabolite identification, 2D TOCSY and HSQC experiments were acquired for selected samples. All experiments were acquired at 37°C.

Metabolite assignment and quantification
NMR spectra were processed and analyzed with NmrProcflow [34]. Baseline correction was performed with local level 5 and spectra alignment with the option “least square”. Bucketing was applied manually with a SNR of 3, resulting in 310 buckets. The signals corresponding to
methanol, chloroform, TSP and H2O were excluded. Data were exported from NMRProcFlow tool and integration values were normalized to total intensity (CSN) to minimize variability. For the statistical analysis, a multivariate data analysis was performed using SIMCAP 12.0 Software (Umetrics, Sweden) with the normalized integral values. First, spectra were normalized with Probabilistic Quotient Normalization. Principal component analysis (PCA) was performed for a first overview to evaluate clustering trends between samples and to identify outliers. Secondly, Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) was performed for discrimination analysis between groups. Furthermore, the analysis of S-plots allowed to define metabolites that were essential for the discrimination between groups. OPLS-DA models were validated by permutation. In a second step, a pathway analysis was applied using the web-based software for metabolomics, MetaboAnalyst 5.0 Software (https://metaboanalyst.ca/).

Measurement of ATP levels

ATP levels were measured using the ATP Determination Kit (Invitrogen) following manufacturer’s instructions. Briefly, groups of five 15-day-old DJ-1β and control female flies were homogenized in 200 µl of reaction buffer (supplied by the commercial kit). Then, fly extracts were boiled 4 min and centrifuged at 18,500 g for 10 min at 4ºC in order to discard debris. Subsequently, 5 µl of fly extracts were added to 100 µl of the standard reaction solution in a white 96-well plate and luminescence was measured using an Infinite 200 PRO reader (Tecan). All experiments were performed in triplicate and results are expressed as relative luminescence intensity per mg of protein normalized to control flies.

Enzymatic activity assays

Protein extracts were obtained from groups of 20 DJ-1β mutants and control female flies as described in [7]. Aconitase (Aco; EC 4.2.1.3) activity was measured with the Aconitase Activity Assay Kit (#MAK051; Sigma-Aldrich), following manufacturer’s instructions and assays were performed in triplicate. Succinate dehydrogenase (SDH; EC 1.3.5.1) activity was measured using a protocol adapted from [35]. First, mitochondrial extracts were obtained from groups of 30 female DJ-1β mutants and control flies as described in [36]. Then, 50 µl of mitochondrial extracts were added to 50 µl of assay buffer [4 mM sodium azide, 50 µM 2,6-dichlorophenolindophenol and 2 µg/ml rotenone] and transferred to a 96-well plate. The reaction was started by adding succinate to a final concentration of 10 mM. Absorbance was measured at 600 nm using an Infinite 200 PRO reader (Tecan) every 30 s for 20 min at 25ºC.
Sample absorbance levels were measured, subtracting their corresponding blanks. Assays were performed in triplicate.

RT-qPCR analyses

Total RNA from groups of ten 15-day-old *DJ-1β* mutants or control female flies was extracted and reverse transcribed as described in [7]. RT-qPCR reactions were performed as [7] and the following pairs of primers were used: *tubulin* direct primer (5’-GATTACCGCCTCTCTGCGAT-3’); *tubulin* reverse primer (5’-ACCAGAGGAAGTGAATACGTG-3’); *arg* direct primer (5’-AGCTTTGACATCGACGCCTT-3’); *arg* reverse primer (5’-CTCCACGATGCTGATTCCCT-3’); *argL* direct primer (5’-CGCATCACATTATCGGTCGC-3’); *argL* reverse primer (5’-TCTCCACGCGCAATCAG-3’).

Statistical analysis and data representation

Data are expressed as means ± standard deviation (s.d.). The significance of differences between means was assessed using t-test except for NMR analysis where a different statistical analysis was performed (see section NMR analysis). Differences were considered significant when *P* < 0.05. Data representations were performed using GraphPad Prims 6.0 Software (GraphPad Software, Inc., Chicago, IL, USA).

RESULTS

Impact of *DJ-1β* loss on the general metabolic profile

Previous studies showed that lack of *DJ-1* function leads to several metabolic alterations [7,37–39]. Indeed, we have recently demonstrated that *DJ-1β* mutant flies and *DJ-1*-deficient human neuroblastoma cells show an increase of the glycolytic pathway [7]. In order to identify additional metabolic changes caused by loss of *DJ-1β* function that could be contributing to PD pathophysiology, we undertook metabolomic analyses in *DJ-1β* mutants and control flies by NMR spectroscopy. They were performed in 1-day-old and 15-day-old flies, to detect early alterations that may constitute promising biomarkers for PD diagnosis as well as later ones that could help to evaluate disease progression.
Firstly, spectral peaks were obtained in all four experimental groups followed by the metabolite assignment of peaks that were statistically relevant. After this, the relative abundance of each metabolite in \textit{DJ-1}\textbeta\textit{β} mutants and control flies at both ages was established to evaluate the differences between these groups. A multivariable statistical analysis was performed to find the most significant changes found in the metabolomic analysis, which are shown in Tables S1-S3. Metabolic alterations were characterized PCA to identify outliers and to evaluate the existence of any trend or aggregation due to another variable. As shown in Figure 1 all samples grouped according to the phenotype and the specific age, especially \textit{DJ-1}\textbeta\textit{β} mutant flies for which both ages are distinctly separated. This evaluation was followed by an OPLS-DA to establish the models that allow differentiating metabolic changes of all four experimental groups. In all comparisons, optimal models were obtained with R² values close to 1 and reasonable predictive values (Q²) (data not shown).

To identify relevant pathways that could be perturbed in \textit{DJ-1}\textbeta\textit{β} mutants at different ages, we used the MetaboAnalyst 5.0 software to examine metabolites showing significant alterations in such flies compared to controls (Tables S4-S6). As shown in Figures 2A-B and Tables 1-2, the most relevant changes with a considerable impact power between \textit{DJ-1}\textbeta\textit{β} mutant and control flies at both ages belonged to several amino acid metabolism pathways, the TCA cycle (impact=0.24), pyruvate metabolism (impact=0.28) and glycolysis/gluconeogenesis pathways (impact=0.13). In addition, comparisons between 1-day-old and 15-day-old \textit{DJ-1}\textbeta\textit{β} mutant flies showed possible alterations in alanine, aspartate, and glutamine metabolism (impact=0.19), phenylalanine, tyrosine, and tryptophan biosynthesis (impact=0.50), phenylalanine metabolism (impact=0.38) and TCA cycle pathway (impact=0.24) (Figure 2C, Table 3). In summary, the most significant metabolic changes found in \textit{DJ-1}\textbeta\textit{β} mutants compared to control flies point to alterations in amino acid levels and their corresponding metabolism as well as in carbohydrate metabolism. Thus, components of these pathways may constitute therapeutic targets and/or potential biomarkers in PD. These findings constitute an initial step to further investigate genes, enzymes, or metabolites implicated in these pathways that could be contributing to PD physiopathology.

Alterations in amino acid content in \textit{DJ-1}\textbeta\textit{β} mutant flies

In Figure 3A, a detailed overview of the differences in amino acids found between 1-day-old \textit{DJ-1}\textbeta\textit{β} mutants and control flies is shown. There is a consistent reduction in the amounts of all
the amino acids detected in the metabolomic analysis but β-alanine, acetyl-aspartate, N-acetyl-aspartate, asparagine, and glutamine, which are increased in 1-day-old DJ-1β mutants when compared to control flies. Similar results are found when comparing the amino acid profile of 15-day-old DJ-1β mutants and control flies with exception of glutamine, which showed no significant differences between both genotypes (Figure 3B). Among the amino acids whose levels are reduced in PD model flies we found the three branched-chain amino acids (BCAAs) (leucine, isoleucine and valine), which promote protein synthesis in the muscle [40], and essential amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine). Interestingly, a reduction of both BCAAs and essential amino acids has been associated with an increase in the clinical severity of PD patients [41]. It is also noteworthy that there is a decrease in tryptophan levels in 1-day-old and 15-day-old DJ-1β mutant flies when compared to controls of the same age (Figures 3A-B). Tryptophan is an essential amino acid that participates in the kynurenine pathway to produce NAD⁺ and whose metabolism is altered in PD [42]. A further evaluation of the amino acid content led us to observe an increase in alanine, asparagine, glycine, isoleucine, leucine, phenylalanine and valine levels and a decrease in acetyl-aspartate in 15-day-old compared to 1-day-old DJ-1β mutant flies (Figure 3C). These results are consistent with those found in the amino acid profile in serum from patients with early or late PD, where alterations in alanine, arginine, phenylalanine and threonine were detected [43]. Therefore, these amino acids could be relevant in early PD diagnosis.

DJ-1β deficiency leads to changes in carbohydrate metabolism

As mentioned above, DJ-1β mutant flies show alterations in the TCA cycle, pyruvate metabolism and glycolytic/gluconeogenesis pathways (Figure 2). These results support previous studies in which we demonstrated that PD model flies present an enhancement of glycolysis [7]. Therefore, we decided to delve into the study of carbohydrates metabolism, since several investigations have emphasized the importance of glucose usage in PD [44,45].

Regarding soluble sugars detected in the metabolic profiles, we found that 1-day-old DJ-1β mutants exhibit a decrease in glucose and pyruvate levels, and an increase in fructose and trehalose when compared to control flies of the same age (Figure 4A). An increase in trehalose is also observed in 15-day-old PD model flies, but changes in other sugars are not detected at that age, despite that a decrease trend in glucose and pyruvate levels is observed
(Figure 4B). When comparing soluble sugar levels between 1-day-old and 15-day-old DJ-1β mutant flies, a reduction in fructose and an increase in glucose levels are observed in 15-day-old flies (Figure 4C), which could imply that glucose metabolism is reduced at late stages of PD. Taken together, our results from metabolomic analyses suggest that there is a modification in the usage of soluble sugars as an energy source to produce ATP.

Switch from TCA cycle to glycolysis in DJ-1β mutant flies

Glycolysis converts glucose to pyruvate, which constitutes an important bridge between this pathway and mitochondrial TCA cycle to produce high amounts of ATP through the electron transport chain (ETC) [46]. In this scenario, NADH/NAD⁺ plays a crucial role in metabolism and highlights the main route to obtain ATP in cells [47]. As shown in Figures 4D-E, both 1-day-old and 15-day-old PD model flies show increased NADH/NAD⁺ ratio when compared to control flies of the same age. This increase is higher in 1-day-old DJ-1β mutants (Figure 4F). These results, together with other studies conducted by our group [7], suggest that there is a switch from TCA cycle to glycolysis to obtain ATP. According to this, we observed changes in the NMR signals of TCA cycle intermediates between PD model and control flies (Figures 4G-I). Specifically, 1-day-old and 15-day-old DJ-1β mutant flies show an increase in citrate and fumarate and a decrease in malate levels when compared to control flies of the same age (Figures 4G-H). The increase in fumarate levels is higher in 15-day-old DJ-1β mutants (Figure 4I). In addition, 15-day-old PD model flies have decreased succinate levels when compared to controls (Figure 4H).

As changes in TCA cycle metabolites were more evident in 15-day-old DJ-1β mutants, we decided to focus our studies on this experimental group. We hypothesized that mitochondria become less efficient producing ATP in 15-day-old PD model flies, which was confirmed by measuring ATP levels. As expected, they were reduced in DJ-1β mutants when compared to control flies (Figure 5A). This could be explained by an alteration in the TCA cycle. On one hand, citrate is an essential TCA cycle intermediate that acts as a substrate of the Aco enzyme. Aco catalyses the stereospecific isomerization of citrate to isocitrate, and acts as a biosensor of ROS and iron [48]. We observed a decrease in Aco activity in 15-day-old DJ-1β mutants compared to control flies (Figure 5B), which may explain the reduction of citrate levels obtained in the metabolomic analysis (Figure 4G-H). On the other hand, increased fumarate, and decreased succinate levels in 15-day-old DJ-1β mutants compared to controls
could be explained by changes in SDH activity in PD model flies. Mitochondrial SDH oxidizes succinate to fumarate in TCA cycle and reduces ubiquinone in ETC linking both routes [49,50]. Thus, we analysed SDH activity in 15-day-old DJ-1β mutants and found that it was decreased when compared to control flies (Figure 5B), therefore suggesting that fumarate must be produced by other ways. In sum, we demonstrated that PD model flies show a shift in metabolic pathway selection to glycolysis due to impairment in TCA cycle.

Another possibility to explain the increase in fumarate levels found in 15-day-old DJ-1β mutants compared to controls could be an alteration in the UC. Fumarate constitutes a bridge between the TCA cycle and the UC. It is one of the final products of UC, and is transported into the mitochondria where it can be used as a substrate of the TCA cycle (Figure 6A) [51,52]. Our metabolomic analyses showed an increase in fumarate levels but also a reduction of arginine levels in 15-day-old DJ-1β mutants. To determine whether these results could be reflecting the existence of changes in the UC in 15-day-old PD model flies, we analysed the expression of the genes encoding the enzymes arginase (arg, EC 3.5.3.1) and argininosuccinate lyase (Argl, EC 4.3.2.1) (Figure 6A). Arg is a metalloenzyme that catalyses the synthesis of L-ornithine from L-arginine, generating urea [52], while Argl catalyses the reversible conversion of argininosuccinate in L-arginine and fumarate [53]. RT-qPCR analyses revealed an increase in the expression of both genes (arg and Argl) in DJ-1β mutants compared to control flies (Figure 6B). These results are in agreement with changes in fumarate and arginine levels observed in PD model flies and suggest that alterations in the UC could be relevant for PD physiopathology. Further experiments will be required to confirm this assumption.

DISCUSSION

PD is an incurable and complex disease in which mechanisms causing DA neuronal death are not clear yet [2,5]. Some authors have described a link between redox imbalance, energy failure and metabolic disturbances in PD, leading to the idea that it might be considered a metabolic disease [7,8]. In this study, we used NMR spectroscopy for metabolomic profiling in DJ-1β mutant and control flies. The aim of this study was to detect metabolic alterations that might be relevant in PD physiopathology as well as to identify potential therapeutic targets and biomarkers. To date, several metabolomic analyses have been performed in plasm, cerebrospinal fluid or blood of PD patients [43,54–59]. However, human samples are limited to specific tissues and do not allow to get a complete vision of the disease [29–31]. To
circumvent this limitation, we have analysed metabolites in the whole body of PD model flies. This experimental approach allows to obtain a complete panorama of PD-associated metabolic defects, which are not restricted to the brain and can influence the physiology of the entire fly [60]. To our knowledge, this is the first metabolomic analysis performed in a Drosophila model of fPD. Our results confirm that several metabolic pathways, like amino acid catabolism/anabolism, glycolysis, the TCA cycle, or the UC cycle, might be altered in PD.

Neurons require high levels of energy, which is mainly produced by mitochondria. However, mitochondria become less efficient with age and in several NDs, such as PD, thus leading to a reduction in ATP levels while ROS production increases [46]. In this scenario, amino acids play an important role in the brain, since some of them can be metabolized to fuel cellular energetics when there is insufficient energy [52]. The amino acid profile observed in 1-day-old and 15-day-old DJ-1β mutants is consistent with amino acid anabolism/catabolism imbalance in PD model flies, especially in younger flies (Figure 3). Interestingly, an increase of amino acid catabolism, through transformation to pyruvate and acetyl-CoA or other TCA cycle intermediates to produce energy [61], could compensate ATP deficit due to impaired mitochondrial function. Besides, the reduction in amino acid levels could be also consistent with impairment in protein synthesis in muscles that can exacerbate motor symptoms in PD patients [40].

Among the amino acids whose levels are altered in PD model flies compared to controls, we found BCAAs. BCAAs metabolism/degradation is closely related to carbon metabolism, in particular to glycolysis and the TCA cycle, since they can be transformed to succinyl-CoA that fuels TCA cycle [61]. PD model flies exhibit decreased levels of BCAAs probably due to its degradation to produce energy. A similar situation was found in a metabolomic analysis performed in sebum samples of PD patients [62], thus supporting the validity of the results obtained in our Drosophila PD model. Interestingly, a clinical trial (NCT01662414) was performed in PD patients to investigate the effect of Whey protein supplementation, an important source of BCAAs. Results showed that it was able to increase BCAAs and essential amino acid levels, as well as reduced glutathione levels, a key antioxidant that prevents the oxidative damage of DA neurons [41]. In relation to this, a recent study showed that Whey protein supplementation improved motor symptoms in PD patients due to an increase in muscle regeneration [63]. Our results indicate that BCAAs metabolism seems to be decreased in 15-day-old compared to 1-day-old DJ-1β mutant flies. A decrease in BCAAs metabolism,
especially in aged flies, could enhance PD-related phenotypes as shown in iPD patients [55].

Therefore, BCAAs metabolism could constitute a possible therapeutic target to investigate new PD treatments. Levels of other proteinogenic amino acids are also reduced in DJ-1β mutant flies. For example, they present decreased tryptophan levels whose metabolism has been related to neurodegeneration in PD patients at early stages [42,61,64]. Another proteinogenic amino acid affected in DJ-1β mutants is glycine, a small amino acid with neuroprotective effects in neuroinflammation, ROS-related damage, and synaptic dysfunction through JNK signalling inactivation [65]. It is likely that a decrease in glycine levels in DJ-1β mutants could be contributing to PD pathology. Moreover, there is a significant change in glycine levels when comparing metabolomes of 1-day-old to 15-day-old mutant flies, thus suggesting that this amino acid could be a possible biomarker of PD progression.

PD model flies also exhibit significant increased levels of some non-proteinogenic amino acids compared to controls such as β-alanine. This result could indicate an increase of pyrimidine degradation, as β-alanine is the final product of this pathway. Similar results have been found in pink1 mutant flies, another Drosophila fPD model [66]. Besides, an increase in β-alanine levels causes taurine depletion, which has been related to nerve degeneration [67]. Therefore, alterations in β-alanine metabolism and related pathways could be contributing to PD physiopathology. On the other hand, N-acetyl-aspartate is the most abundant non-proteinogenic amino acid in the central nervous system and a marker of neuronal integrity. It is synthetized in the mitochondria from aspartate and acetyl-CoA, and is then transported to the cytosol, where it is metabolized into aspartate and acetate. Its synthesis is increased in absence of ATP, due to the use of acetate as source of energy [68]. We have found that PD model flies show an important increase in N-acetyl-aspartate (Figure 3) which can be reflecting a deficiency in its metabolism since acetate levels are also decreased in 15-day-old DJ-1β mutants compared to control flies of the same age (Table S2).

Alterations in energy metabolism and glucose uptake are associated with physiopathology of several NDs including PD [7,8,52]. Glucose is the main source of energy in the brain and regulation of its metabolism is critical for brain physiology [46]. This is consistent with the observation that DJ-1β mutants show dysregulation of carbohydrates metabolism (Figure 4). Supporting this, a decrease of glucose levels in iPSC-derived DA neurons mutant for PARK2 has been previously observed [69]. In fact, glucose is the sole substrate that can supply the rapid energy demand of neuronal cells through glycolysis [52,70]. Therefore, an increase in glucose consumption through this pathway to restore ATP levels could explain its reduction.
in our PD model flies [7,71]. Glycolysis is an ATP-producing pathway that could provide considerable amounts of ATP in a less efficient manner than oxidative phosphorylation to support the acute energy demands in neurons [70,72]. DJ-1 has been described to participate in the activity of complex I of ETC binding and stabilizing it [14]. Accordingly, TCA cycle reduction and higher NADH/NAD⁺ ratio in PD model flies suggest the existence of an alteration of this complex and mitochondrial dysfunction, which was also observed in a MPTP-induced PD cell model [73]. Thus, our results show that a shift from TCA cycle to glycolysis is produced in PD model flies [7,37,74]. In addition, it was reported that a reduction of Aco activity causes neurotoxicity in mesencephalic rat cultures, due to the loss of its activity as ROS and iron biosensor [48,75]. Besides, Aco mutant flies exhibited reduced locomotor activity, shortened lifespan, and increased cell death in the developing brain, as well as glycolysis and TCA cycle disturbances that led to decreased ATP levels [48]. Some of the phenotypes are similar to those observed in DJ-1β mutant flies [7,27]. On the other hand, reduction of SDH activity could be contributing to lipid accumulation in neurons observed in several NDs, and to produce excitotoxicity, therefore participating in PD pathogenesis and development [76,77]. Thus, our results and these observations suggest that a decrease in the activity of both enzymes might be relevant to PD pathogenesis.

Although TCA cycle activity is decreased in DJ-1β mutant flies, there is an increase in some pathway intermediates such as fumarate (Figure 4G-H). TCA cycle metabolites can be produced by other pathways, as could be happening with fumarate and the UC [51]. UC is responsible for the excretion of the nitrogen that cannot be used in amino acid metabolism, and is related to the TCA cycle by fumarate, which is transported into the mitochondria where it can be used as a substrate of Krebs cycle [51,52]. The enhanced expression of arg and Arg1 in PD model flies could lead to a general increase of UC activity and to higher fumarate levels, as observed in the metabolomic analysis (Figure 4G-H). Supporting these results, an increase of ArgL activity was observed in a zebrafish PD model based on DJ-1 deficiency [78]. Changes in arg expression levels were also reported to have implications in brain, although its role in this tissue is not known yet [79]. In addition, an enhancement of UC could serve to remove the excess of ammonia caused by the increased amino acid catabolism observed in DJ-1β mutant flies, as previously reported in Alzheimer’s disease [79].

In summary, we demonstrate that loss of DJ-1 function leads to several metabolic alterations, such as amino acid metabolism, carbohydrate metabolism, glycolysis, TCA cycle and UC activity. All of them may be contributing to PD physiopathology and could constitute
possible therapeutic targets for this incurable disease. In addition, disturbances in amino acid levels could be potential biomarkers for both early and later stages of PD. Further studies in other preclinical models of fPD and iPD would be required to confirm the results obtained in DJ-1β mutant flies.

ACKNOWLEDGMENTS

We are grateful to Dr. Jongkyeong Chung, the Bloomington Drosophila Stock Center and the Vienna Drosophila Research Center for providing fly stocks.

FUNDING

This work was funded by the University of Valencia [grant numbers UV-INV-AE17-702300 and 08-BIOPARK-PARICIO-PINEDA-2017-A].

CONFLICT OF INTEREST

The authors declare no conflict of interest.
References

1. Castillo, X.; Castro-Obregón, S.; Gutiérrez-Becker, B.; Gutiérrez-Ospina, G.; Karalis, N.; Khalil, A.A.; Lopez-Noguerola, J.S.; Rodríguez, L.L.; Martínez-Martínez, E.; Perez-Cruz, C.; et al. Re-thinking the etiological framework of neurodegeneration. *Front. Neurosci.* 2019, 13, 728, doi:10.3389/fnins.2019.00728.

2. Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. *Lancet* 2021, 397, 2284–2303, doi:10.1016/S0140-6736(21)00218-X.

3. Tolosa, E.; Garrido, A.; Scholz, S.W.; Poewe, W. Challenges in the diagnosis of Parkinson’s disease. *Lancet Neurol.* 2021, 20, 385–397, doi:10.1016/S1474-4422(21)00030-2.

4. Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkman, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. *Nat. Rev. Dis. Prim.* 2017, 3, 17013, doi:10.1038/nrdp.2017.13.

5. Panicker, N.; Ge, P.; Dawson, V.L.; Dawson, T.M. The cell biology of Parkinson’s disease. *J. Cell Biol.* 2021, 220, e202012095, doi:10.1083/jcb.202012095.

6. Maiiti, P.; Manna, J.; Dunbar, G.L. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. *Transl. Neurodegener.* 2017, 6, 28.

7. Solana-Manrique, C.; Sanz, F.J.; Ripollés, E.; Bañó, M.C.; Torres, J.; Muñoz-Soriano, V.; Paricio, N. Enhanced activity of glycolytic enzymes in Drosophila and human cell models of Parkinson’s disease based on DJ-1 deficiency. *Free Radic. Biol. Med.* 2020, 158, 137–148, doi:10.1016/j.freeradbiomed.2020.06.036.

8. Anandhan, A.; Jacome, M.S.; Lei, S.; Hernandez-Franco, P.; Pappa, A.; Panayiotidis, M.I.; Powers, R.; Franco, R. Metabolic dysfunction in Parkinson’s disease: Bioenergetics, redox homeostasis and central carbon metabolism. *Brain Res. Bull.* 2017, 133, 12–30, doi:10.1016/j.brainresbull.2017.03.009.

9. Weissbach, A.; Wittke, C.; Kasten, M.; Klein, C. “Atypical” Parkinson’s disease - genetic. *Int. Rev. Neurobiol.* 2019, 149, 207–235, doi:10.1016/bs.im.2019.10.011.

10. Niemann, N.; Jankovic, J. Juvenile parkinsonism: Differential diagnosis, genetics, and treatment. *Parkinsonism Relat. Disord.* 2019, 67, 74–89.

11. Bonifati, V.; Rizzu, P.; van Baren, M.J.; Schaap, O.; Breedveld, G.J.; Krieger, E.; Dekker, M.C.J.; Squitieri, F.; Ibanez, P.; Joosse, M.; et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. *Science (80-.).* 2003, 299, 256–259, doi:10.1126/science.1077209.

12. Biosa, A.; Sanchez-Martinez, A.; Filograna, R.; Terriente-Felix, A.; Alam, S.M.; Beltramini, M.; Bubacco, L.; Bisaglia, M.; Whitworth, A.J. Superoxide dismutating molecules rescue the toxic effects of PINK1 and parkin loss. *Hum. Mol. Genet.* 2018, 27, 1618–1629, doi:10.1093/hmg/ddy069.

13. van der Vlag, M.; Havekes, R.; Heckman, P.R.A. The contribution of Parkin, PINK1 and DJ-1 genes to selective neuronal degeneration in Parkinson’s disease. *Eur. J. Neurosci.* 2020, 52, 3256–3268, doi:10.1111/ejn.14689.
14. Ariga, H.; Takahashi-Niki, K.; Kato, I.; Maita, H.; Niki, T.; Iguchi-Ariga, S.M.M. Neuroprotective function of DJ-1 in Parkinson’s disease. *Oxid. Med. Cell. Longev.* 2013, 2013, 683920, doi:10.1155/2013/683920.

15. Repici, M.; Giorgini, F. DJ-1 in Parkinson’s disease: Clinical insights and therapeutic perspectives. *J. Clin. Med.* 2019, 8, doi:10.3390/jcm8091377.

16. Kalia, L. V.; Lang, A.E. Parkinson’s disease. *Lancet* 2015, 386, 896–912, doi:10.1016/S0140-6736(14)61393-3.

17. Lotankar, S.; Prabhavalkar, K.S.; Bhatt, L.K. Biomarkers for Parkinson’s disease: Recent advancement. *Neurosci. Bull.* 2017, 33, 585–597, doi:10.1007/s12264-017-0183-5.

18. Havelund, J.F.; Heegaard, N.H.H.; Færgeman, N.J.K.; Gramsbergen, J.B. Biomarker research in Parkinson’s disease using metabolite profiling. *Metabolites* 2017, 7, 42, doi:10.3390/metabo7030042.

19. Binder, T.; Hobert, M.A.; Pfrommer, T.; Leks, E.; Granert, O.; Weigl, B.; Ethofer, T.; Erb, M.; Wilke, M.; Maetzler, W.; et al. Increased functional connectivity in a population at risk of developing Parkinson’s disease. *Parkinsonism Relat. Disord.* 2021, 92, 1–6, doi:10.1016/j.parkreldis.2021.09.026.

20. Li, X.; Fan, X.; Yang, H.; Liu, Y. Review of metabolomics-based biomarker research for Parkinson’s disease. *Mol. Neurobiol.* 2021, Nov, 1–17, doi:10.1007/s12035-021-02657-7.

21. Shukla, A.K.; Ratnasekhar, C.; Pragya, P.; Chaouhan, H.S.; Patel, D.K.; Chowdhuri, D.K.; Mudiam, M.K.R. Metabolic analysis provides insights on paraquat-induced Parkinson-like symptoms in Drosophila melanogaster. *Mol. Neurobiol.* 2016, 53, 254–269, doi:10.1007/s12035-014-9003-3.

22. Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. *Nat. Rev. Mol. Cell Biol.* 2016, 17, 451–459, doi:10.1038/nrm.2016.25.

23. Bhinderwala, F.; Lei, S.; Woods, J.; Rose, J.; Marshall, D.D.; Riekeberg, E.; Leite, A.D.L.; Morton, M.; Dodds, E.D.; Franco, R.; et al. Metabolomics Analyses from Tissues in Parkinson’s Disease. *Methods Mol. Biol.* 2019, 1996, 217–257, doi:10.1007/978-1-4939-9488-5_19.

24. Solana-Manrique, C.; Moltó, M.D.; Calap-Quintana, P.; Sanz, F.J.; Llorens, J.V.; Paricio, N. Drosophila as a model system for the identification of pharmacological therapies in neurodegenerative diseases. In *Insights into human neurodegeneration: Lessons learnt from Drosophila*; Mutsuddi, M., Mukrherjee, A., Eds.; Springer Nature: Singapore Pte Ltd, 2019; pp. 433–467.

25. Aryal, B.; Lee, Y. Disease model organism for Parkinson disease: Drosophila melanogaster. *BMB Rep.* 2019, 52, 250–258, doi:10.5483/BMBRep.2019.52.4.204.

26. Lavara-Culebras, E.; Muñoz-Soriano, V.; Gómez-Pastor, R.; Matallana, E.; Paricio, N. Effects of pharmacological agents on the lifespan phenotype of Drosophila DJ-1beta mutants. *Gene* 2010, 462, 26–33, doi:10.1016/j.gene.2010.04.009.
27. Lavara-Culebras, E.; Paricio, N. Drosophila DJ-1 mutants are sensitive to oxidative stress and show reduced lifespan and motor deficits. *Gene* 2007, **400**, 158–165, doi:10.1016/j.gene.2007.06.013.

28. Casani, S.; Gómez-Pastor, R.; Matallana, E.; Paricio, N. Antioxidant compound supplementation prevents oxidative damage in a Drosophila model of Parkinson’s disease. *Free Radic. Biol. Med.* 2013, **61**, 151–60, doi:10.1016/j.freeradbiomed.2013.03.021.

29. Zhou, S.; Morgante, F.; Geisz, M.S.; Ma, J.; Anholt, R.R.H.; Mackay, T.F.C. Systems genetics of the Drosophila metabolome. *Genome Res.* 2020, **30**, 392–405, doi:10.1101/gr.243030.118.

30. Yon, M.; Decoville, M.; Sarou-Kanian, V.; Fayon, F.; Birman, S. Spatially-resolved metabolic profiling of living Drosophila in neurodegenerative conditions using 1H magic angle spinning NMR. *Sci. Rep.* 2020, **10**, 9516, doi:10.1038/s41598-020-66218-z.

31. Yakhine-Diop, S.M.S.; Morales-García, J.A.; Niso-Santano, M.; González-Polo, R.A.; Uribe-Carretero, E.; Martínez-Chacon, G.; Durand, S.; Mauiri, M.C.; Aiastui, A.; Zulaica, M.; et al. Metabolic alterations in plasma from patients with familial and idiopathic Parkinson’s disease. *Aging (Albany. NY)*. 2020, **12**, 16690–16708, doi:10.18632/aging.103992.

32. López Del Amo, V.; Palomino-Schätzlein, M.; Seco-Cervera, M.; García-Giménez, J.L.; Pallardó, F.V.; Pineda-Lucena, A.; Galindo, M.I. A Drosophila model of GDAP1 function reveals the involvement of insulin signalling in the mitochondria-dependent neuromuscular degeneration. *Biochim. Biophys. acta. Mol. basis Dis.* 2017, **1863**, 801–809, doi:10.1016/j.bbadis.2017.01.003.

33. Park, J.; Kim, S.Y.; Cha, G.-H.; Lee, S.B.; Kim, S.; Chung, J. Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. *Gene* 2005, **361**, 133–9, doi:10.1016/j.gene.2005.06.040.

34. Jacob, D.; Deborde, C.; Lefebvre, M.; Maucourt, M.; Moing, A. NMRProcFlow: a graphical and interactive tool dedicated to 1D spectra processing for NMR-based metabolomics. *Metabolomics* 2017, **13**, 36, doi:10.1007/s11306-017-1178-y.

35. Hollywood, K.A.; Shadi, I.T.; Goodacre, R. Monitoring the succinate dehydrogenase activity isolated from mitochondria by surface enhanced Raman scattering. *J. Phys. Chem. C* 2010, **114**, 7308–7313, doi:10.1021/jp908950x.

36. Villa-Cuesta, E.; Rand, D.M. Preparation of Mitochondrial Enriched Fractions for Metabolic Analysis in Drosophila. *J. Vis. Exp.* 2015, **Sep**, 53149, doi:10.3791/53149.

37. Messaoudi, N.; Gautier, V.; Dairou, J.; Mihoub, M.; Lelandais, G.; Bouloc, P.; Landoulsi, A.; Richarme, G. Fermentation and alternative respiration compensate for NADH dehydrogenase deficiency in a prokaryotic model of DJ-1-associated Parkinsonism. *Microbiology* 2015, **161**, 2220–2231, doi:10.1099/mic.0.000181.

38. Meiser, J.; Delcambre, S.; Wegner, A.; Jäger, C.; Ghelfi, J.; D’Herouel, A.F.; Dong, X.; Weindl, D.; Stautner, C.; Nonnenmacher, Y.; et al. Loss of DJ-1 impairs antioxidant response by altered glutamine and serine metabolism. *Neurobiol. Dis.*
39. Requejo-Aguilar, R.; Bolaños, J.P. Mitochondrial control of cell bioenergetics in Parkinson’s disease. *Free Radic. Biol. Med.* **2016**, *100*, 123–137.

40. Neinast, M.; Murashige, D.; Arany, Z. Branched chain amino acids. *Annu. Rev. Physiol.* **2019**, *81*, 139–164, doi:10.1146/annurev-physiol-020518-114455.

41. Tosukhowong, P.; Boonla, C.; Dissayabutra, T.; Kaewwilai, L.; Muensri, S.; Chotipanich, C.; Joutsa, J.; Rinne, J.; Bhidayasiri, R. Biochemical and clinical effects of Whey protein supplementation in Parkinson’s disease: A pilot study. *J. Neurol. Sci.* **2016**, *367*, 162–170, doi:10.1016/j.jns.2016.05.056.

42. Szabó, N.; Kincses, Z.T.; Toldi, J.; Vécsei, L. Altered tryptophan metabolism in Parkinson’s disease: a possible novel therapeutic approach. *J. Neurol. Sci.* **2011**, *310*, 256–260, doi:10.1016/j.jns.2011.07.021.

43. Figura, M.; Kusmierska, K.; Bucior, E.; Szlufik, S.; Koziorowski, D.; Jamrozik, Z.; Janik, P. Serum amino acid profile in patients with Parkinson’s disease. *PLoS One* **2018**, *13*, e0191670, doi:10.1371/journal.pone.0191670.

44. Dunn, L.; Allen, G.F.; Mamais, A.; Ling, H.; Li, A.; Duberley, K.E.; Hargreaves, I.P.; Pope, S.; Holton, J.L.; Lees, A.; et al. Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. *Neurobiol. Aging* **2014**, *35*, 1111–1115, doi:10.1016/j.neurobiolaging.2013.11.001.

45. Borghammer, P.; Hansen, S.B.; Eggers, C.; Chakravarty, M.; Vang, K.; Aanerud, J.; Hilker, R.; Heiss, W.-D.; Rodell, A.; Munk, O.L.; et al. Glucose metabolism in small subcortical structures in Parkinson’s disease. *Acta Neurol. Scand.* **2012**, *125*, 303–310, doi:10.1111/j.1600-0404.2011.01556.x.

46. Murali Mahadevan, H.; Hashemiaghdam, A.; Ashrafi, G.; Harbauer, A.B. Mitochondria in neuronal health: From energy metabolism to Parkinson’s disease. *Adv. Biol.* **2021**, *5*, e2100663, doi:10.1002/abdi.202100663.

47. Wu, J.; Jin, Z.; Zheng, H.; Yan, L.-J. Sources and implications of NADH/NAD(+) redox imbalance in diabetes and its complications. *Diabetes. Metab. Syndr. Obes.* **2016**, *9*, 145–153, doi:10.2147/DMSO.S106087.

48. Cheng, Z.; Tsuda, M.; Kishita, Y.; Sato, Y.; Aigaki, T. Impaired energy metabolism in a Drosophila model of mitochondrial aconitase deficiency. *Biochem. Biophys. Res. Commun.* **2013**, *433*, 145–150, doi:10.1016/j.bbrc.2013.02.040.

49. Cecchini, G. Function and structure of complex II of the respiratory chain. *Annu. Rev. Biochem.* **2003**, *72*, 77–109, doi:10.1146/annurev.biochem.72.121801.161700.

50. Quinlan, C.L.; Orr, A.L.; Perevoshchikova, I. V; Treberg, J.R.; Ackrell, B.A.; Brand, M.D. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. *J. Biol. Chem.* **2012**, *287*, 27255–27264, doi:10.1074/jbc.M112.374629.

51. Pesi, R.; Balestri, F.; Ipata, P.L. Metabolic interaction between urea cycle and citric acid cycle shunt: A guided approach. *Biochem. Mol. Biol. Educ.* **2018**, *46*, 182–185, doi:10.1002/bmb.21099.
52. Garabadu, D.; Agrawal, N.; Sharma, A.; Sharma, S. Mitochondrial metabolism: a common link between neuroinflammation and neurodegeneration. Behav. Pharmacol. 2019, 30, 642–652, doi:10.1097/FBP.0000000000000505.

53. Bhaumik, P.; Koski, M.K.; Bergmann, U.; Wierenga, R.K. Structure determination and refinement at 2.44 Å resolution of argininosuccinate lyase from Escherichia coli. Acta Crystallogr. D. Biol. Crystallogr. 2004, 60, 1964–1970, doi:10.1107/S0907444904021912.

54. Andersen, A.D.; Binzer, M.; Stenager, E.; Gramsbergen, J.B. Cerebrospinal fluid biomarkers for Parkinson’s disease - a systematic review. Acta Neurol. Scand. 2017, 135, 34–56, doi:10.1111/ane.12590.

55. Kumari, S.; Kumaran, S.S.; Goyal, V.; Sharma, R.K.; Sinha, N.; Dwivedi, S.N.; Srivastava, A.K.; Jagannathan, N.R. Identification of potential urine biomarkers in idiopathic Parkinson’s disease using NMR. Clin. Chim. Acta. 2020, 510, 442–449, doi:10.1016/j.cca.2020.08.005.

56. Kumari, S.; Kumaran, S.S.; Goyal, V.; Bose, S.; Jain, S.; Dwivedi, S.N.; Srivastava, A.K.; Jagannathan, N.R. Metabolomic analysis of serum using proton NMR in 6-OHDA experimental PD model and patients with PD. Neurochem. Int. 2020, 134, 104670, doi:10.1016/j.neuint.2020.104670.

57. LeWitt, P. Recent advances in CSF biomarkers for Parkinson’s disease. Parkinsonism Relat. Disord. 2012, 18, S49-51, doi:10.1016/S1353-8020(11)70017-7.

58. LeWitt, P.A.; Li, J.; Lu, M.; Guo, L.; Auinger, P.; Parkinson Study Group–DATATOP Investigators Metabolomic biomarkers as strong correlates of Parkinson disease progression. Neurology 2017, 88, 862–869, doi:10.1212/WNL.0000000000003663.

59. Trezzi, J.-P.; Galozzi, S.; Jaeger, C.; Barkovits, K.; Brockmann, K.; Maetzler, W.; Berg, D.; Marcus, K.; Betsou, F.; Hiller, K.; et al. Distinct metabolomic signature in cerebrospinal fluid in early parkinson’s disease. Mov. Disord. 2017, 32, 1401–1408, doi:10.1002/mds.27132.

60. Bertrand, M.; Decoville, M.; Meudal, H.; Birman, S.; Landon, C. Metabolomic nuclear magnetic resonance studies at presymptomatic and symptomatic stages of Huntington’s disease on a Drosophila model. J. Proteome Res. 2020, 19, 4034–4045, doi:10.1021/acs.jproteome.0c00335.

61. Shao, Y.; Le, W. Recent advances and perspectives of metabolomics-based investigations in Parkinson’s disease. Mol. Neurodegener. 2019, 14, 3, doi:10.1186/s13024-018-0304-2.

62. Sinclair, E.; Trivedi, D.K.; Sarkar, D.; Walton-Doyle, C.; Milne, J.; Kunath, T.; Rijs, A.M.; de Bie, R.M.A.; Goodacre, R.; Silverdale, M.; et al. Metabolomics of sebum reveals lipid dysregulation in Parkinson’s disease. Nat. Commun. 2021, 12, 1592, doi:10.1038/s41467-021-21669-4.

63. Barichella, M.; Cereda, E.; Pinelli, G.; Iorio, L.; Caroli, D.; Masiero, I.; Ferri, V.; Cassani, E.; Bolliri, C.; Caronni, S.; et al. Muscle-targeted nutritional support for rehabilitation in patients with parkinsonian syndrome. Neurology 2019, 93, e485–e496, doi:10.1212/WNL.000000000007858.
64. Gonzalez-Riano, C.; Saiz, J.; Barbas, C.; Bergareche, A.; Huerta, J.M.; Ardanaz, E.; Konjevod, M.; Mondragon, E.; Erro, M.E.; Chirlaque, M.D.; et al. Prognostic biomarkers of Parkinson’s disease in the Spanish EPIC cohort: a multiplatform metabolomics approach. *NPJ Park. Dis.* 2021, 7, 73, doi:10.1038/s41531-021-00216-4.

65. Ullah, R.; Jo, M.H.; Riaz, M.; Alam, S.I.; Saeed, K.; Ali, W.; Rehman, I.U.; Ikram, M.; Kim, M.O. Glycine, the smallest amino acid, confers neuroprotection against D-galactose-induced neurodegeneration and memory impairment by regulating c-Jun N-terminal kinase in the mouse brain. *J. Neuroinflammation* 2020, 17, 303, doi:10.1186/s12974-020-01989-w.

66. Tufi, R.; Gandhi, S.; de Castro, I.P.; Lehmann, S.; Angelova, P.R.; Dinsdale, D.; Deas, E.; Plun-Favreau, H.; Nicotera, P.; Abramov, A.Y.; et al. Enhancing nucleotide metabolism protects against mitochondrial dysfunction and neurodegeneration in a PINK1 model of Parkinson’s disease. *Nat. Cell Biol.* 2014, 16, 157–166, doi:10.1038/ncb2901.

67. García-Ayuso, D.; Di Pierdomenico, J.; Valiente-Soriano, F.J.; Martínez-Vacas, A.; Agudo-Barriuso, M.; Vidal-Sanz, M.; Picaud, S.; Villegas-Pérez, M.P. β-alanine supplementation induces taurine depletion and causes alterations of the retinal nerve fiber layer and axonal transport by retinal ganglion cells. *Exp. Eye Res.* 2019, 188, 107781, doi:10.1016/j.exer.2019.107781.

68. Kirov, I.I.; Sollberger, M.; Davitz, M.S.; Glodzik, L.; Soher, B.J.; Babb, J.S.; Monsch, A.U.; Gass, A.; Gonen, O. Global brain volume and N-acetyl-aspartate decline over seven decades of normal aging. *Neurobiol. Aging* 2021, 98, 42–51, doi:10.1016/j.neurobiolaging.2020.10.024.

69. Okarmus, J.; Havelund, J.F.; Ryding, M.; Schmidt, S.I.; Bogetofte, H.; Heon-Roberts, R.; Wade-Martins, R.; Cowley, S.A.; Ryan, B.J.; Færgeman, N.J.; et al. Identification of bioactive metabolites in human iPSC-derived dopaminergic neurons with PARK2 mutation: Altered mitochondrial and energy metabolism. *Stem cell reports* 2021, 16, 1510–1526, doi:10.1016/j.stemcr.2021.04.022.

70. Zilberter, Y.; Zilberter, M. The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of metabolic correction. *J. Neurosci. Res.* 2017, 95, 2217–2235, doi:10.1002/jnr.24064.

71. Hong, C.T.; Chau, K.-Y.; Schapira, A.H. V. Meclizine-induced enhanced glycolysis is neuroprotective in Parkinson disease cell models. *Sci. Rep.* 2016, 6, 25344.

72. Díaz-García, C.M.; Yellen, G. Neurons rely on glucose rather than astrocytic lactate during stimulation. *J. Neurosci. Res.* 2019, 97, 883–889, doi:10.1002/jnr.24374.

73. Chakraborty, S.; Nian, F.-S.; Tsai, J.-W.; Karmenyan, A.; Chiou, A. Quantification of the metabolic state in cell-model of Parkinson’s disease by fluorescence lifetime imaging microscopy. *Sci. Rep.* 2016, 6, 19145, doi:10.1038/srep19145.

74. Tapias, V.; McCoy, J.L.; Greenamyre, J.T. Phenothiazine normalizes the NADH/NAD+ ratio, maintains mitochondrial integrity and protects the nigrostriatal dopamine system in a chronic rotenone model of Parkinson’s disease. *Redox Biol.* 2019, 24, 101164, doi:10.1016/j.redox.2019.101164.
75. Cantu, D.; Schaack, J.; Patel, M. Oxidative inactivation of mitochondrial aconitase results in iron and H2O2-mediated neurotoxicity in rat primary mesencephalic cultures. *PLoS One* **2009**, *4*, e7095, doi:10.1371/journal.pone.0007095.

76. Jodeiri Farshbaf, M.; Kiani-Esfahani, A. Succinate dehydrogenase: Prospect for neurodegenerative diseases. *Mitochondrion* **2018**, *42*, 77–83, doi:10.1016/j.mito.2017.12.002.

77. Ikenaka, K.; Suzuki, M.; Mochizuki, H.; Nagai, Y. Lipids as trans-acting effectors for α-synuclein in the pathogenesis of Parkinson’s disease. *Front. Neurosci.* **2019**, *13*, 693, doi:10.3389/fnins.2019.00693.

78. Edson, A.J.; Hushagen, H.A.; Frøyset, A.K.; Elda, I.; Khan, E.A.; Di Stefano, A.; Fladmark, K.E. Dysregulation in the brain protein profile of zebrafish lacking the Parkinson’s disease-related protein DJ-1. *Mol. Neurobiol.* **2019**, *56*, 8306–8322, doi:10.1007/s12035-019-01667-w.

79. Griffin, J.W.D.; Bradshaw, P.C. Amino acid catabolism in Alzheimer’s disease brain: Friend or foe? *Oxid. Med. Cell. Longev.* **2017**, *2017*, 5472792, doi:10.1155/2017/5472792.
Figure legends

Figure 1. Metabolic profile of DJ-1β mutant flies compared to control. PCA-X score plot comparing all four experimental models: 1-day-old control flies (blue), 1-day-old DJ-1β mutant flies (green), 15-day-old control flies (yellow) and 15-day-old DJ-1β mutant flies (red).

Figure 2. Pathway analysis reveals metabolic alterations in DJ-1β mutant flies. (A) Pathway enrichment analysis of differentially expressed metabolites between 1-day-old DJ-1β mutants and control flies. (B) Pathway enrichment analysis of differentially expressed metabolites between 15-day-old DJ-1β mutant and control flies. (C) Pathway enrichment analysis of differentially expressed metabolites between 1-day-old 15-day-old DJ-1β mutant flies.

Figure 3. Alterations in amino acid content in PD model flies. (A) Relative NMR signals of amino acids comparing 1-day-old DJ-1β mutants and control flies. (B) Relative NMR signals of amino acids comparing 15-day-old DJ-1β mutants and control flies. (C) Relative NMR signals of amino acids comparing 1-day-old and 15-day-old DJ-1β mutant flies.

Figure 4. Alterations in carbohydrate content in DJ-1β mutant flies. (A) Relative NMR signals of selected carbohydrates in 1-day-old DJ-1β mutant and control flies. (B) Relative NMR signals of selected carbohydrates in 15-day-old DJ-1β mutant and control flies. (C) Relative NMR signals of selected carbohydrates in 1-day-old and 15-day-old DJ-1β mutant flies. (D) Relative NADH/NAD+ ratio in 1-day-old DJ-1β mutants and control flies as an indication of glycolytic pathway activation. (E) Relative NADH/NAD+ ratio in 15-day-old DJ-1β mutants and control flies. (F) Relative NADH/NAD+ ratio in 1-day-old and 15-day-old DJ-1β mutant flies. (G) Relative NMR signals of TCA cycle intermediates comparing 1-day-old DJ-1β mutants and control flies. (H) Relative NMR signals of TCA cycle intermediates comparing 15-day-old DJ-1β mutants and control flies. (I) Relative NMR signals of TCA cycle intermediates comparing 1-day-old and 15-day-old DJ-1β mutant flies.

Figure 5. Metabolic switch to glycolysis in 15-day-old DJ-1β mutant flies. (A) Relative ATP levels in 15-day-old DJ-1β mutant flies compared to controls of the same age. (B) Relative enzymatic activity of aconitase (Aco) and succinate dehydrogenase (SDH) from the TCA cycle in 15-day-old DJ-1β mutant flies compared to controls.

Figure 6. Alterations in the urea cycle in 15-day-old DJ-1β mutant flies. (A) Schematic diagram of the urea cycle. Fumarate is a final metabolite that can enter the TCA cycle. (B)
Expression levels of selected enzymes of the urea cycle, arginase (Arg) and argininosuccinate lyase ($ArgL$).

Table 1. Selected results from the pathway enrichment analyses in 1-day-old $DJ-1\beta$ mutants and control flies.

Table 2. Selected results from the pathway enrichment analyses in 15-day-old $DJ-1\beta$ mutants and control flies.

Table 3. Selected results from the pathway enrichment analyses in 1-day-old and 15-day-old $DJ-1\beta$ mutant flies.

Table S1. NMR data of selected metabolites from extracts of 1-day-old $DJ-1\beta$ mutant and control flies.

Table S2. NMR data of selected metabolites from extracts of 15-day-old $DJ-1\beta$ mutant and control flies.

Table S3. NMR data of selected metabolites from extracts of 1-day-old and 15-day-old $DJ-1\beta$ mutant flies

Table S4. Results from the pathway enrichment analysis between 1-day-old $DJ-1\beta$ mutants and control flies.

Table S5. Selected results from the pathway enrichment analyses in 15-day-old $DJ-1\beta$ mutants and control flies.

Table S6. Results from the pathway enrichment analyses in 1-day-old and 15-day-old $DJ-1\beta$ mutant flies.
Figure 5

A

![Relative ATP levels (a.u.)]

- **Control**
- **DJ-1β**

B

![Relative enzymatic activity (a.u.)]

- **Aco**
- **SDH**

15-day-old control
15-day-old DJ-1β
A

Diagram of the Urea cycle:
- Fumarate
- Arg
- L-Arginine
- Argininosuccinate
- L-Ornithine
- Citruline

B

Bar graph comparing relative mRNA expression (a.u.) between 15-day-old control and 15-day-old *DJ-1β*.

- *arg*
- *ArgL*

15-day-old control
15-day-old *DJ-1β*
Table 1. Selected results from the pathway enrichment analyses in 1-day-old DJ-1β mutants and control flies.

Pathway	Number of differential metabolites/total	Raw p-value	p-value FDR corrected	Impact
beta-Alanine metabolism	2/14	4.21E-15	1.43E-13	0.28
Histidine metabolism	2/9	7.51E-13	8.51E-12	0.40
Alanine, aspartate and glutamate metabolism	6/23	2.20E-12	1.87E-11	0.19
Glyoxylate and dicarboxylate metabolism	6/24	4.07E-10	1.54E-09	0.17
Phenylalanine, tyrosine and tryptophan biosynthesis	1/4	1.61E-09	4.98E-09	0.50
Phenylalanine metabolism	1/7	1.61E-09	4.98E-09	0.38
Glutathione metabolism	1/26	3.84E-09	9.33E-09	0.09
Glycine, serine and threonine metabolism	3/30	1.35E-08	2.90E-08	0.33
Pyruvate metabolism	4/22	1.36E-08	2.90E-08	0.28
Glycerophospholipid metabolism	2/32	1.73E-08	3.36E-08	0.11
Citrate cycle (TCA cycle)	5/20	9.20E-07	1.56E-06	0.24
Glycolysis/Gluconeogenesis	4/26	3.25E-05	4.81E-05	0.13
Arginine biosynthesis	3/12	7.25E-05	1.03E-04	0.40
Cysteine and methionine metabolism	2/32	2.29E-04	3.11E-04	0.14
Taurine and hypotaurine metabolism	1/7	4.72E-03	5.48E-03	0.20
Arginine and proline metabolism	2/31	4.84E-03	5.48E-03	0.17

Note: This table presents the most relevant pathways with a considerable impact power between 1-day-old DJ-1β mutant and control flies. In particular, number of differential metabolites/total indicates matched number of metabolites in the total number of compounds in the pathway; raw p-value is the original p-value calculated from the enrichment analysis; p-value FDR corrected is the p-value adjusted using False Discovery Rate; the impact is the pathway impact value calculated from pathway topology analysis. Significant differences (p-value FDR corrected<0.05) are highlighted in blue.
Table 2. Selected results from the pathway enrichment analyses in 15-day-old *DJ-1β* mutants and control flies.

Pathway	Number of differential metabolites/total	Raw p-value	p-value FDR corrected	Impact
Glyoxylate and dicarboxylate metabolism	6/24	1.03E-11	3.50E-10	0.17
beta-Alanine metabolism	2/14	8.98E-11	1.53E-09	0.28
Glycerophospholipid metabolism	2/32	4.74E-10	4.15E-09	0.11
Citrate cycle (TCA cycle)	5/20	4.89E-10	4.15E-09	0.24
Taurine and hypotaurine metabolism	1/7	5.08E-09	2.88E-08	0.20
Histidine metabolism	2/9	2.79E-08	1.36E-07	0.40
Pyruvate metabolism	4/22	1.88E-07	7.09E-07	0.28
Alanine, aspartate and glutamate metabolism	6/23	1.33E-05	2.66E-05	0.19
Glycine, serine and threonine metabolism	3/30	3.65E-05	6.20E-05	0.33
Arginine biosynthesis	3/12	2.89E-04	4.67E-04	0.40
Nicotinate and nicotinamide metabolism	1/9	4.03E-04	6.23E-04	0.37
Tyrosine metabolism	2/33	2.52E-03	3.72E-03	0.04
Purine metabolism	3/63	7.64E-03	9.98E-03	0.02
Glycolysis/Gluconeogenesis	4/26	1.76E-02	2.21E-02	0.13

Note: This table presents the most relevant pathways with a considerable impact power between 15-day-old *DJ-1β* mutant and control flies. In particular, number of differential metabolites/total indicates matched number of metabolites in the total number of compounds in the pathway; raw p-value is the original p-value calculated from the enrichment analysis; p-value FDR corrected is the p-value adjusted using False Discovery Rate; the impact is the pathway impact value calculated from pathway topology analysis. Significant differences (p-value FDR corrected<0.05) are highlighted in blue.
Table 3. Selected results from the pathway enrichment analyses in 1-day-old and 15-day-old DJ-1β mutant flies.

Pathway	Number of differential metabolites/total	Raw p-value	p-value FDR corrected	Impact
Glycerophospholipid metabolism	2/32	1.85E-05	6.29E-04	0.11
Alanine, aspartate and glutamate	6/23	1.98E-04	3.36E-03	0.19
Citrate cycle (TCA cycle)	5/20	4.54E-03	2.57E-02	0.24
Phenylalanine, tyrosine and tryptophan biosynthesis	1/4	7.60E-03	2.87E-02	0.50
Phenylalanine metabolism	1/7	7.60E-03	2.87E-02	0.38

Note: This table presents the most relevant pathways with a considerable impact power between 1-day-old and 15-day-old DJ-1β mutant flies. In particular, **number of differential metabolites/total** indicates matched number of metabolites in the total number of compounds in the pathway; **raw p-value** is the original p-value calculated from the enrichment analysis; **p-value FDR corrected** is the p-value adjusted using False Discovery Rate; the **impact** is the pathway impact value calculated from pathway topology analysis. Significant differences (p-value FDR corrected<0.05) are highlighted in blue.