Regional Credit Environment Evaluation Based on Analytic Hierarchy Process (AHP) Method and Fuzzy Comprehensive Evaluation (FCE)

Hengxin Xie¹*, Jun Ma², Xiaoran Fu¹ and Yuanjun Tian³
¹School of Statistics, Shandong University of Finance and Economics, Jinan, China
²School of Accounting, Shandong University of Finance and Economics, Jinan, China
³Luoyuan Subbranch of ICBC, Jinan, China

*Corresponding author email: 446454532@qq.com

Abstract. Taking the data of the sixteen prefecture-level cities in Shandong Province as an example, this paper attempts to construct regional credit environment indicators and quantify these indicators. The Analytic Hierarchy Process (AHP) method and Fuzzy Comprehensive Evaluation (FCE) have been used to empower the indicators. Meanwhile, this paper has obtained the AHP score through calculation. The corresponding credit ranking has been given using the factor analysis. The research result shows that the credit environment evaluation scores of Shandong eastern coastal cities centered on Qingdao and neighboring cities centered on provincial capital Jinan are often higher than those of inland cities such as southwestern Shandong and northwestern Shandong. The construction of regional credit environment should be based on economy, culture and government. Three aspects go hand in hand. On this basis, this paper puts forward the feasible countermeasures and suggestions for constructing regional credit environment from the perspective of policy.

Keywords: Credit indicator system; Fuzzy comprehensive evaluation; AHP-Factor analysis.

1. Introduction
With the rapid development of today's society, "credit", as a bridge between people's daily communication, is becoming prominent. In recent years, the CPC Central Committee has proposed to strengthen the construction of government, business, and social integrity, as well as the construction of judicial credibility; and the Third Plenary Session of the 18th CPC Central Committee has proposed to establish and improve the social credit system, encourage and reward the credibility principle, and warn and punish dishonesty. To this end, the State Council issued the Notice of the State Council on the Outline of the Plan for the Construction of the Social Credit System(2014-2020) on June 27, 2014. The Notice proposed that by the end of the second decade of the 21st century, we will basically establish the basic laws and regulations of social credit and the standard system of social credit supervision, the credit system based on the sharing of credit information resources and covering the whole society. Moreover, we will perfect and improve the credit supervision system, the credit service market system. We will endeavor to make the integrity incentive and dishonesty punishment system take effect. Thus, the establishment of social credit system is the inevitable requirement of national development and progress. And the perfection of regional credit environment as the foundation of social credit environment should not be ignored. This paper discusses the establishment of the regional credit environment evaluation index system and uses the relevant mathematical and statistical models to evaluate the regional credit environment in all directions.
2. Build a Regional Credit Environment Evaluation Index System

The social credit system covers a wide range, and the regional credit environment as the basis of social credit, it should include individuals, enterprises and governments. From the economic environment perspective, all three are the creators of benefits. So this paper is intended to take the three as a starting point to build a regional credit environment index system covering personal credit indicators, enterprise credit indicators and government credit indicators.

Through a large number of literature research, and arguments of the credit department of People's Bank of China, credit department of commercial bank and university professors and other relevant experts and scholars, Table 1 is designed to show the regional credit environmental evaluation indicators:

Table 1. Credit environmental evaluation indicators and Determining weigh in Shandong Province.

Destination layer	Standard layer	Index layer	The direction of the indicator	Determining weigh
		Average wage / GDP per capital	Positive	0.08
		Consumer consumption / GDP per capital	Positive	0.08
		Number of / regional motor vehicles / number of resident population (cars / 10,000 people)	Positive	0.03
		Number of civil litigation agents / resident population (pieces / 10,000 / people)	Negative	0.04
		Regional Crime Cases / Resident Population (pieces / 10,000 / people)	Negative	0.08
		Number of local listed companies(A shares) /total number of listed companies	Positive	0.03
		The value-added ratio of total annual fixed asset investment in the region	Positive	0.09
		The value-added ratio of output of industrial enterprises of annual scale in the region	Positive	0.09
		Average asset-liability ratio of locally listed companies	Negative	0.09
		Number of registered trademarks / total number of enterprises of industrial enterprises of regional scale	Positive	0.05
		Local Government Liabilities / Local Government Revenue	Negative	0.10
		Engel’s coefficient	Negative	0.06
		Number of university students / total resident population	Positive	0.03
		Crimes committed by government officials/total number of cases of law-breaking	Negative	0.10
		Total number of motor vehicles/number of public transport operations	Positive	0.04
SUM				1

Explanation of regional credit environment indicators.
2.1. Personal Credit

As an individual in society, the individual is closely related to the society, and the individual's credit status will directly affect the regional credit environment. At the same time, economic conditions, cultural level, the overall quality of residents and so on have become important factors affecting personal credit. To evaluate personal credit more comprehensively, this paper builds the following five indicators: (a) Average wage / GDP per capital. Wage levels directly reflect the income status of the population, and the per capital GDP of a region reflects the level of economic development in the region, which is directly related to the level of personal credit. The higher the ratio, the higher the personal credit; and conversely, the lower the credit level. (b) Household consumption / GDP per capital. The level of consumption of residents in a fixed region is a true reflection of their life quality, economic development and the creation of GDP cannot be separated from personal consumption. The higher the ratio, the higher the quality of residents, the better the personal credit, and otherwise, the worse the personal credit. (c) Number of motor vehicles / number of residents in the area. The level of development of a region cannot be separated from the transportation equipment around, and personal travel relies more on the cars. Automobile as a typical daily consumer goods, also reflects the level of people's consumption, the more individuals own cars on average, the higher the level of personal consumption, and then the higher the credit, and otherwise, the lower the credit. (d) Number of civil litigation agents / resident population. The civil litigation cases in a region represent whether the region's people is harmony. The more the civil litigation cases means more disputes among people, which further reflects the poor personal credit status; otherwise, people will have higher credit level. (e) Number of crime cases / resident population in the region . The security status in a region is directly reflected by the number of criminal cases. And the level of personal credit is negatively related to it - if the number of cases is greater, personal credit level is lower.

2.2. Corporate Credit

In the regional credit environment evaluation, the corporate credit occupies the irreplaceable position. It is a platform for people to engage in production activities, and the corporate is credit reflected in its financial situation, culture, credibility and other aspects, for this reason we selected the following indicators to its credit evaluation. (a) Number of listed companies in a region (A-shares) / total number of listed companies . The stock market is a barometer of the market economy. If a company can list on the exchange, that means all its aspects have reached a high standard; Generally speaking, the number of listed companies is positively related to the regional credit level - the more the number of listed companies, the higher the credit level of a region, and otherwise the lower. (b) The value-added ratio of total fixed asset investment. Fixed asset investment is a more comprehensive indicator, which is performed in the form of money. It is the amount of work that an enterprise builds and buys fixed assets over a period of time, and the related cost changes, including immobility, buildings, machinery, means of transport, and other fixed asset investment that the enterprises use in capital construction, renovation, and major repairs. It can be seen that the indicator reflects the production and operation status of enterprises in a certain period of time, from which we can see the credit status of enterprises. In general, the higher the value-added ratio of the enterprise's annual fixed asset investment, the better the credit status of enterprises, and otherwise, the worse. (c) The value-added ratio of output of large-scale industrial enterprises. The level of enterprise's production capacity is closely related to the enterprise's operation, the value added of the enterprise's output directly represents the business situation of the enterprise. And the business condition of the enterprise is directly related to the enterprise's credit. The better the business condition of the enterprise, the better its credit status, and otherwise the worse. (d) Average asset-liability ratio of listed companies. It is also an important index directly reflected in the business situation of enterprises. The higher asset-liability ratio indicates that the more debt a company has, the lower its credit level will be, and otherwise it will be higher. (e) Number of registered trademarks / total number of enterprises of industrial enterprises of regional scale. In terms of industrial enterprises in regional unit scale, the more the registered trademarks, the higher the enterprises’ popularity, which will have a positive impact on credit. The higher the value of the indicator, the higher the credit level of the enterprise, and the two changes are in the same direction.
2.3. Government Credit
Government credit is a comprehensive evaluation of the ability and behavior of the public to keep the "promise" of the government, it is a kind of agency-commissioned relationship in some kind of environment, in which the government is the subject, while the corresponding people become the object. People's evaluation of government credit depends on the decisions made by the government organs and functional departments as the main body in the management of the social economy, and whether the government's actions are beneficial to improve people's living standards and social economy. When evaluating the regional credit environment, we must attach importance to government credit, and the evaluation index of government credit in this paper is constructed as follows: (a) Local government liabilities / fiscal revenue. As an indicator of the evaluation of the local economy, in addition to GDP, the government's debt and income is also a side reflection. The ratio is inversely proportional to the credit level of the local government. (b) Engel’s coefficient. To evaluate the wealth status of a region, the Engel’s coefficient is the most convincing and direct manifestation. The richer the regional population, the lower the Engel’s coefficient, the higher the government credit, and otherwise the lower the government credit. (c) Number of university students / total resident population. Government credit is also reflected in the cultural environment. The government’s culture construction cannot be separated from higher education. The more college students in the unit residents, the higher the proportion of residents in higher education, which to some extent reflects the higher the government credit, otherwise the lower the government credit. (d) Crimes committed by government officials/total number of cases of law-breaking. Irregularities and corruption of public officials are the most direct reflection of the government's ability to keep faith. The more such cases, the lower the level of government credit, and otherwise the higher the level of government credit. (e) Total number of motor vehicles/number of public transport operations. The transportation facilities in a region can reflect the government's investment in urban infrastructure, and the status of infrastructure in a city also reflects the government's competence. So the more the public transport, the higher the credibility of the government, and otherwise the lower.

In this paper, the data of regional credit environment evaluation index are taken from the Statistical Yearbook of Shandong Province, The Financial Yearbook of Shandong Province, the Traffic Yearbook of Shandong Province, the Yearbook of The Prosecutor of Shandong Province, and the report of the government of various cities in Shandong Province and the statistical yearbook. In view of some regional changes and the continuity of the data, this paper selects data for 2014-2016 in Shandong Province and 16 cities in Shandong Province. We chose the expert rating method for weighing AHP credit indicator.

The data selected in this paper is not convenient to compare because of the different degrees, so in order to eliminate the effect of scale, this paper adopts the X_i efficacy factor method:

For a negative indicator (it’s better when the corresponding value of the indicator is smaller):

$$Y_i = \frac{X_{i}^i - X_i}{X_{max}^i - X_{min}^i}$$ \hspace{1cm} (1)

For a positive indicator (it’s better when the corresponding value of the indicator is bigger):

$$Y_i = \frac{X_i - X_{i}^i}{X_{max}^i - X_{min}^i}$$ \hspace{1cm} (2)

3. Model and Analysis

3.1. Analytic Hierarchy Process (AHP) and Credit Score
Analytic Hierarchy Process (AHP) is a method proposed by Saaty, an American operations researcher, in the 1970s to evaluate an issue using weight decision analysis. He decomposes elements or factors related to participation in decision-making, i.e. layers like the destination layer, the criterion (standard) layer, the indicator layer (alternatives), and provides quantitative and qualitative analysis of the
various layers on this basis. This method is simpler and more flexible and is now widely used in systems engineering theory and multi-objective evaluation models. The basic principle of this approach is to break down the problem into different grouping factors according to the basic attributes of the problem and the goals to be achieved, and at the same time, to develop a differentiated clustering combination based on the mutual influence and affiliation of different factors, and to form a multi-layered analytical structure model that ultimately complicates. The problem boils down to determining the relatively important weights, that is, determining the relatively important weights of the lowest levels, such as scenarios, measures, or arranging the relatively good or bad order relative to the target at the highest level.

It includes the following steps:

(a) Build a hierarchical model.

The first step in hierarchical analysis is to sort out the problem and build a hierarchical model that follows the relationship between the two. The three layers are: the highest level, the middle layer, the bottom layer, that is, the corresponding target layer, the criterion layer, and the indicator (alternatives) layer. Usually we don't limit the number of levels, but each layer contains preferably fewer than or equal to nine elements.

(b) Construct a judgment matrix.

In determining the weighting between the sub-factors (indicators), Saaty et al. used the case of a consistency matrix to replace all factors together to comparison. Hierarchical analysis requires the construction of a judgment matrix, where the scale of the judgment matrix is defined as Table 2 (general scale is 1-9).

Table 2. AHP judgement matrix scale and the connotation.

Scale	Connotation
1	The two indicators (factors) are of the same importance when compared to each other.
3	When two indicators (factors) are compared, one indicator is slightly more important than the other.
5	When two indicators (factors) are compared, one indicator is more important than the other.
7	When two indicators (factors) are compared, one indicator is more important than the other.
9	When two indicators (factors) are compared, one indicator is more important than the other.
2 4 6 8	Represents the important degree of the two indicators is between the adjacent median values of the above judgment.

The indicator here, indicators \(i \) and \(j \) are compared, and a judgment matrix is formed, \(a_{ij} = \frac{1}{a_{ji}} \).

(c) Hierarchical single ordering and consistency testing.

The so-called hierarchical single ordering refers to the column vector \(W \) formed by the maximum feature value of the judging matrix \(\lambda_{\text{max}} \) corresponding to normalization, and the normalized value represents the sort weight of the hierarchy relative to the importance of the indicator at the next level. In determining whether the judgment matrix is a consistency matrix, the judgment matrix needs to be tested, and the indicators of consistency are:

\[
CI = \frac{\lambda_{\text{max}} - n}{n - 1}
\]

The standard values for the average random consistency indicator are shown in Table 3.
Table 3. Average standard values for random consistency indicators.

n	RI	1	2	3	5	6	7	8	9	10
		0	0	0.58	1.12	1.24	1.32	1.41	1.45	1.49

Finally, the consistency ratio is calculated:

\[CR = \frac{CI}{RI} \]

When \(CR \) is less than 0.1, the judgment matrix is considered to be consistent, otherwise there is no consistency.

(d) Total hierarchy ordering and consistency testing.

A weight value represents a general order of layers, and this weight value measures the relative importance of all metrics at a level to the highest level (total goal). This process is carried out from the highest to the lowest levels.

In this article, the metric weights obtained from the AHP method are listed in Table 4. Excel calculates that the consistency ratio of the above judgment matrix \(CR \) is less than 0.1, which indicates that the consistency test of the judgment matrix passed.

After reviewing the data related to the calculation, the AHP score for 16 cities in Shandong Province is concluded as shown in Table 5 below.

Table 4. AHP score and ranking of the credit environment of 16 cities in Shandong Province.

City serial No.	Name	AHP score
1	Weihai	0.77
2	Yantai	0.70
3	Qingdao	0.52
4	Jinan	0.52
5	Jining	0.50
6	Weifang	0.50
7	Rizhao	0.49
8	Linyi	0.49
9	Taian	0.48
10	Dongying	0.47
11	Dezhou	0.46
12	Zibo	0.45
13	Binzhou	0.44
14	Zaozhuang	0.41
15	Heze	0.40
16	Liaocheng	0.39

3.2. Factor Analysis and Credit Score

Factor analysis refers to the use of a few factors or variables to describe the interrelation among multiple variables or indicators. Specifically, factor analysis classifies several variables with higher correlations into the same categories, and each class of variables becomes a common factor; finally, a small number of common factors reflect a large amount of information in the original event. Its core idea is to reduce the dimensionality in order to solve the problem of collinearity in complex primitive events.

3.2.1. The main process of factor analysis.

(a) Evaluation of the effectiveness of the indicator data.

The premise of factor analysis is that the indicator data can be analyzed by factor analysis. In view of this, we first have to test the data, and the following data analysis and processing all take SPSS 22.0. First, we conducted correlation analysis of multi-dimensional data. As can be seen, from the KMO and
Bartlett’s test results (Table 6), the KMO index reaches 0.569 and the P value does not exceed 0.01, rejecting the original assumption that there is no correlation between variables, indicating a strong correlation between variables. Therefore, the indicator data meets the conditions of using factor analysis to reduce the dimensional processing of variables.

Table 5. KMO and Bartlett’s Test.

	Take the right number of samples for the Kaiser-Meyer-Olkin test.	.569
Chi-Square	231.953	
df	105	
Significance	.000	

(b) Analysis of the main components of the raw data.
Second, we analyzed the main component of the original data, and the results showed in Table 7 that the cumulative variance contribution rate of the first four variables reached 80.03%, so we extracted the first four factors as common factors. After that, we rotate the resulting common factors and analyze them specifically.

Table 6. Cumulative variance of raw data.

Indicators	Initial Eigenvalues	quadratic sum of the extract and load data	quadratic sum of the extract and rotation data						
	Sum	Variance percentage	CPV	Sum	Variance percentage	CPV	Sum	Variance percentage	CPV
\(x_1\)	5.139	34.259	34.259 5.139	34.259 34.259	4.315 28.765 28.765				
\(x_2\)	3.081	20.540	54.799 3.081	20.540 54.799	3.442 22.944 51.709				
\(x_3\)	2.247	14.978	69.777 2.247	14.978 69.777	2.403 16.021 67.731				
\(x_4\)	1.538	10.256	80.033 1.538	10.256 80.033	1.845 12.302 80.033				
\(x_5\)	.947	6.312	86.345 .947	6.312 86.345					
\(x_6\)	.741	4.940	91.286 .741	4.940 91.286					
\(x_7\)	.432	2.883	94.169 .432	2.883 94.169					
\(x_8\)	.387	2.580	96.748 .387	2.580 96.748					
\(x_9\)	.191	1.272	98.020 .191	1.272 98.020					
\(x_{10}\)	.126	.840	98.861 .126	.840 98.861					
\(x_{11}\)	.092	.613	99.474 .092	.613 99.474					
\(x_{12}\)	.051	.337	99.811 .051	.337 99.811					
\(x_{13}\)	.018	.117	99.928 .018	.117 99.928					
\(x_{14}\)	.010	.066	99.993 .010	.066 99.993					
\(x_{15}\)	.001	.007	100.000 .001	.007 100.000					

Extraction method: Analysis of the main components

(c) Factor rotation and factor naming.
With SPSS22.0, we get a factor rotation matrix shown in Table 8, and then we name the four selected common factors.
The first common F_1 includes 5 indicators $X_1, X_2, X_7, X_8, X_{11}$, and they are named economic and business environment indicators.

The second common factor F_2 includes 4 indicators $X_6, X_{10}, X_{11}, X_{14}$, and they are named cultural and educational environment and enterprise innovation indicators.

The third common factor F_3 includes 4 indicators X_3, X_4, X_5, X_9, and they are named personal credit and business indicators.

The fourth common factor F_4 includes 2 indicators X_{12}, X_{15}, and they are named the government governance capacity indicators.

Indicators	Common factors			
	1	2	3	4
x_1	.919	-.090	-.096	.079
x_2	.890	-.147	-.164	.207
x_3	-.449	.077	.725	-.077
x_4	-.232	.235	.550	-.591
x_5	.093	.171	.889	-.076
x_6	-.417	.654	-.383	-.026
x_7	.461	.430	-.363	.111
x_8	.878	-.051	.001	-.298
x_9	.016	.349	-.643	-.158
x_{10}	-.153	.885	.137	.024
x_{11}	.867	-.409	.016	.060
x_{12}	.348	-.525	-.026	.634
x_{13}	-.256	.878	.123	.133
x_{14}	-.515	-.682	.138	.366
x_{15}	-.171	.350	.055	.866

Extraction method: Main component analysis method.
Rotation method: Kaiser Varimax Orthogonal Rotation
a. Rotation converges after 6 iterations.

(d) Factor scores.
Finally, through the table 9 factor score coefficient matrix, we can get the final mathematical expression of the factor scores.

\[
\begin{align*}
F_1 &= 0.23X_1 + 0.213X_2 + \ldots + (-0.175)X_{14} + 0.001X_{15} \\
F_2 &= 0.047X_1 + 0.32X_2 + \ldots + (-0.231)X_{14} + 0.16X_{15} \\
F_3 &= 0.04X_1 + 0.014X_2 + \ldots + 0.015X_{14} + 0.098X_{15} \\
F_4 &= 0.044X_1 + 0.107X_2 + \ldots + 0.166X_{14} + 0.518X_{15}
\end{align*}
\]

The factor composite score is calculated as follows:
The score factor matrix is shown in Table 9 below.

Table 8. Factor Scores coefficient Matrix

Indicators	Common factor			
	1	2	3	4
x1	.230	.047	.040	.044
x2	.213	.032	.014	.107
x3	-.050	.018	.289	.015
x4	-.003	.043	.193	-.278
x5	.116	.101	.416	.043
x6	-.091	.157	-.182	-.008
x7	.127	.167	-.095	.069
x8	.225	.035	.051	-.160
x9	-.026	.073	-.289	-.119
x10	.044	.282	.093	.083
x11	.199	-.056	.069	.020
x12	.056	-.099	.046	.328
x13	.017	.278	.087	.141
x14	-.175	-.231	.015	.166
x15	.001	.160	.098	.518

Extraction Method: Main Ingredient Analysis.
Rotation method: Kaiser Varimax Orthogonal Rotation

By calculating the factor composite score and the cities’ ranking according the common factors F_1, F_2, F_3, F_4 is shown in Table 10: From the score ranking of the first common factor F_1, we can see that Jinan and Qingdao are in the top two, with obvious advantages. It is further confirmed that the two major cities, which are the pillars of Shandong’s economy, play a benchmark role in the economic and enterprise environment. Jinan, Qingdao, as the capital of the province and Shandong’s largest port city, has a unique position advantage in the economic and corporate credit environment. The relatively backward cities are located in the northwest and southwest regions of Shandong province, and the main reason for this result is that social consumption and per capita income account for a large proportion in the economic environment, which in turn becomes the key to affect the economic credit environment score. Inland areas are inferior in income levels and consumption capacity than provincial capitals and coastal cities, so stimulating consumption capacity and expanding local domestic demand are top priorities. In the enterprise environment, increasing fixed asset investment and improving the output capacity of enterprises, also cannot be ignored. Especially at this stage, the state and many departments increase support for small and medium-sized enterprises and promote private economy. How to scientifically and effectively put the preferential treatment of small and medium-sized enterprises into practice to solve its financing difficulties in its development, is a major challenge facing the government.

In the second common factor F_2 score ranking, the top two are still Jinan and Qingdao. As far as the cultural environment, Jinan, as the capital city of Shandong Province, has the largest number of colleges and universities in the province, and Qingdao is closely followed, which is the most direct
embodiment of the cultural environment. While the southwestern cities such as Heze, Zaozhuang, etc. with large population base are much inferior in this respect. Therefore, improving the cultural level of the resident population, increasing the talent introduction will be a focus of government work. In addition, the government needs to optimize the allocation of educational resources and increase investment in educational assets.

Table 9. Factors Composite Score and Ranking.

City	Public Factor 1 \(F_1 \) Score	Ranking	City	Public Factor 2 \(F_2 \) Score	Ranking	City	Public Factor 3 \(F_3 \) Score	Ranking
Jinan	0.249	1	Jinan	3.414	1	Jinan	1.093	1
Qingdao	0.112	2	Qingdao	1.196	2	Weihai	0.400	2
Weihai	0.103	3	Zibo	0.879	3	Zibo	0.396	3
Rizhao	0.102	4	Yantai	0.847	4	Binzhou	0.364	4
Yantai	0.098	5	Weihai	0.846	5	Laiwu	0.339	5
Zibo	0.094	6	Rizhao	0.738	6	Yantai	0.328	6
Taian	0.085	7	Weifang	0.611	7	Taian	0.202	7
Weifang	0.083	8	Binzhou	0.498	8	Zaozhuang	0.182	8
Heze	0.083	9	Liaoche ng	0.470	9	Dongying	0.181	9
Binzhou	0.081	10	Dongying	0.468	10	Binzhou	0.156	10
Liaoche ng	0.079	11	Jining	0.446	11	Weifang	0.134	11
Zaozhuang	0.075	12	Dezhou	0.388	12	Linyi	0.095	12
Dezhou	0.075	13	Laiwu	0.370	13	Liaoche ng	0.087	13
Linyi	0.073	14	Zaozhuang	0.292	14	Dezhou	0.079	14
Jining	0.072	15	Linyi	0.284	15	Heze	0.064	15
Dongying	0.063	16	Heze	0.240	16	Jining	0.040	16

In the environment of enterprise innovation, the city of southwest of Shandong is relatively backward and needs to be promoted from the aspects of consciousness and action: Improving the awareness of enterprise innovation, so as to actively seek innovation by increasing the guidance of "mass entrepreneurship and innovation". Optimize the internal structure of enterprises, promote technological innovation, strengthen the combination of industry, science and research, so that the slogan of innovation and creation will be in practice.

In the third common factor \(F_3 \) score ranking, Jinan, Weihai, Qingdao rank the top three, from the point of scores, in addition to the provincial capital Jinan, other cities have less differences. This reflects the province's personal credit and business environment are in a more balanced development. However, the relevant departments also need to pay attention to the cities with more backward ranking such as Liaocheng, Dezhou, Heze. As far as personal credit environment, civil disputes and criminal cases are still prominent, and they are also an intuitive embodiment of regional governance and security. To improve personal credit, it is necessary for relevant departments to improve the capacity of civil mediation and build a harmonious social ecological environment; At the same time, it is
necessary for the government to strengthen the supervision of illegal and criminal incidents, keep "zero tolerance" for violations of the law, and to improve social equity and justice. In the business environment, the asset-liability ratio is the most direct embodiment of enterprise management. Therefore, the government should pay attention to improving the profitability of enterprises and maximizing the benefits of enterprises.

In the ranking of the fourth common factor F_4, the top three cities are Jinan, Zibo and Qingdao, and the score is significantly better than other cities. There is not necessarily a strong relationship between government governance ability and geographical location, economic development and cultural environment.

Improving the government's ability to govern and transparency, strengthening the training and education of Party and government cadres, adopting strict supervision over corruption and increasing penalties are the top priorities of every local government. Similarly, in the process of development, we should attach importance to infrastructure construction and ecological environment construction, give full play to the "multiplier effect" of infrastructure on the long-term and stable development of the economy, and protect the beautiful ecology.

3.3. AHP-Factor Analysis Composite Ranking

In this paper, the following methods are used to rank the comprehensive credit environment scores of cities in Shandong Province:

$$ S = \alpha AHP + \beta F $$

(4)

Note: $\alpha = \beta = 0.5$

The final comprehensive ranking is shown in Table 11 below:

Cities	Comprehensive score	Final ranking
Jinan	1.059	1
Weihai	0.583	2
Qingdao	0.559	3
Yantai	0.548	4
Zibo	0.472	5
Rizhao	0.436	6
Weifang	0.397	7
Taian	0.396	8
Binzhou	0.361	9
Jining	0.353	10
Dongying	0.347	11
Dezhou	0.342	12
Linyi	0.332	13
Liaocheng	0.325	14
Zaozhuang	0.307	15
Heze	0.267	16

4. Conclusion Analysis and Policy Recommendations

4.1. The Current Shortcomings of the Social Credit Environment in Shandong Province

(a) Development imbalance in East-West region. Looking at the credit environment ranking of Shandong Province, we can find that the gap between the eastern coastal cities and the cities of
southwest and northwest Shandong province is larger. Qingdao, Weihai and Yantai are at the first in terms of the credit environment of coastal cities and the credit environment of these three cities is better. Jinan is posited in the center place in inland cities, its surrounding cities endeavor to develop in pursuing the provincial capital city, but the cities like Heze, Zaozhuang, Dongying far away from the capital city are slightly backward. How to make backward cities to improve the level of credit environment is the issue that we need to pay attention to right now.

(b) There is room for improvement in social governance and local government governance. The fundamental measure of social development in a region lies in the governance ability of local governments. In all regions of Shandong Province, the government's governance has certain problems, and even some problems have not been exposed. How to make up for the shortcomings, find out the missing, will be a serious challenge for local governments, and this is related to the construction of the regional credit environment.

(c) Cultural construction cannot be ignored. Culture is the soul of a country and a nation, and cultural construction is related to the personal credit environment. The cultural construction gap in various regions of Shandong Province is large, taking Jinan and Qingdao as examples, they have good educational resource advantages and perfect personnel training measures, which makes their overall credit environment higher than other regions. Therefore, how to improve the cultural construction of the region in economic construction, this will be the local government in improving the level of credit environment, facing difficulties.

4.2. The Feasible Countermeasure to Optimize the Construction of Social Credit Environment in Shandong Province

(a) Integrated and coordinated economic development. Among many factors restricting the development of regional credit, economy is the basic factor. In view of this, the first step in improving regional credit is to create favorable conditions for economic development. By vigorously promoting science and technology, we will inject new impetus into economic development, improve the quality of economic development, and promote the economy to develop well and sound. Co-ordinate the development of the East-West region. For the relatively backward southwest and the northwest region of Shandong province, we can make full use of the development ideas of the eastern coastal and provincial capital cities, actively introduce high-tech and high-end equipment in the developed areas of the east, and give full play to our own advantages to provide labor force for the eastern region.

(b) Improve the level of local government governance. On the one hand, as far as the regional environment of various regions in Shandong Province, the western and northern regions are inland, and the information is more encapsulated. On the other hand, the layout of cities throughout the province can effectively make up for this problem. Take Jinan, the capital city as the center of Shandong province and it is located in the middle of Shandong Province, so, its government's ruling philosophy and ruling efficiency can affect the surrounding cities, and it will provide reference for surrounding cities. Take the coastal city Qingdao as the center, it is located in the east of Shandong Province, and its advanced development ideas can provide more ideas for the development of surrounding cities. At the same time, the cities’ support for local business development cannot be ignored.

(c) Develop regional cultural education vigorously. Education is the foundation of national revitalization and national development, and it is also the key to regional and individual development. The uneven distribution of educational resources leads to great cultural differences among different regions. The education in underdeveloped regions is poor, if the excellent educational resources of the developed regions can be passed on and shared to the underdeveloped regions, it can effectively make up for its short board. First of all, introduce excellent teachers, promote education in underdeveloped areas relying on the development of human resources; Secondly, we should ensure the scientific supply of educational infrastructure and improve the current situation of insufficient educational infrastructure in underdeveloped regions. Over time, the basic quality of the population in cities all over Shandong Province, especially in backward areas, will be greatly improved; Correspondingly, the social credit environment will be optimized and enhanced.
Acknowledgements
This paper was supported by the Key R&D plan of Shandong Province (soft science project, project No. 2020RZB01098).

References
[1] Dore R 1987 Taking Japan Seriously (Stanford University: Stanford)
[2] Xue D and Jiaming L 2012 Research on Computation Methods of AHP Wight Vector and Its Applications Vol 42 (MATHEMATICS IN PRACTICE AND THEORY) pp 93-100
[3] Jinyu G 2008 Study and Applications of Analytic Hierarchy Process Vol 18 (China Safety Science Journal) pp 148-153
[4] Rong H and Wei G 2014 The Exploration and Reflection on the Evaluation Index System of Regional Credit Environment (Western Finance) pp 77-80
[5] Song H and Xiaojun L 2018 A review of China's enterprise credit research under the background of big data (Financial theory and Practice) pp 107-113
[6] Xinxiu J and Bangchang X 2014 Evaluation and demonstration of regional financial ecological environment (Statistics and Decision) pp 160-162
[7] The CEI Research Group 2012 Commercial Credit Environment Index of Chinese Cities (Finance and Trade Economics) pp 89-97
[8] Wangyang L Zhenqiang X and Qilin M 2018 Architecture of intelligent credit governance system based on big data involved in panoramic fiduciary field (Telecommunication Science) pp 99-106
[9] Nengsheng L and Xiaoyu W 2016 Spatial Econometrics Analysis of Regional Differences and Affecting Factors of China Social Credit (Finance and Economics) pp 101-112
[10] Xinwei N 2016 Government Credit Local Debt Risk and the Suggestion of Constructing the Government Credit Index System (Public Finance Research) pp 15-26
[11] Zhenqiang Q 2006 Regional credit environment evaluation and related issues (Fujian Finance) ppn 4-8
[12] Jian S 2006 The Empirical Study on Establishing Regional Credit Evaluation System based on AHP and Factor Analysis (China Soft Science) pp 111-119
[13] Yanzhi T Chao W and Guofeng L 2014 Economic Performance and Influencing Factors of the Credit Environment (Economic Survey) pp 145-149
[14] Xuedong W Fangfang J Yang Z and Hui X 2013 Application of Fuzzy Comprehensive Evaluation Method in Net Trade Credit Index Measure (Journal of Modern Information) pp 10-14
[15] Laicheng W and Hongfang L 2016 Construction and Application of Chinese Local Government Credit Rating System (Journal of Central University of Finance and Economics) pp 11-19
[16] Junfeng X Jiajie W Kelei Z Puhan Z and Yufei M 2018 Credit index measurement method for Android application security based on AHP (Journal of Tsinghua University) pp 131-136
[17] Yanqiu X and Meiqin P 2016 Application of Analytic Hierarchy Process and Support Vector Machine in Personal Credit Evaluation (Chinese Journal of Management Science) pp 106-112
[18] Xiaoyu Y Xincen Z and Kai Y 2013 The Evaluation of the Operating Environment of China’s Credit System: Based on Provincial Statistics from 2006-2010 (The Theory and Practice of Finance and Economics) pp 12-18
[19] Weiying Z and Rongzhu K 2002 Trust in China: A Cross-Regional Analysis (Economic Research Journal) pp 59-70