Atoroidal Manifolds in Small Covers

Lisu Wu

Abstract

We show that a 3-dimensional small cover is atorodal if and only if there is no 4-belt in the corresponding simple polytope.

1 Introduction

Small covers are a class of closed manifolds which admit locally standard \mathbb{Z}_n^2-actions, such that the orbit spaces are some simple convex polytope in an Euclidean space. Or defined equivalently, an n-dimensional small cover consists of 2^n copies of a simple convex polytope whose faces are guled according to the colorings in \mathbb{Z}_n^2. In general, the topological properties of a small cover are closely related to the combinatorics of the orbit polytope and the colorings on its facets (codimension-1 faces). For instance, the cohomology ring of a small cover with \mathbb{Z}_2 coefficients is isomorphic to $\mathbb{Z}_2/I + J$, where \mathbb{Z}_2/I is the Stanley-Reisner ring of the orbit polytope, and J depends on the colorings on its facets [5, Theorem 4.14]; and a small cover is orientable if and only if the sum of entries of the coloring on each face is odd [11, Theorem 1.7].

Let P be an n-dimensional simple convex polytope in \mathbb{R}^n, and $\pi : M \rightarrow P$ be a small cover over P. We denote the set of all facets of P by $\mathcal{F}(P)$, then there is a characteristic map $\lambda : \mathcal{F}(P) \rightarrow \mathbb{Z}_2^n$ with the coloring of each facet identical with $\lambda(F)$, where \mathbb{Z}_2^n is taken as a multiplicative group. For any proper face f of P, we define

$$G_f \triangleq \text{the subgroup of } \mathbb{Z}_2^n \text{ generated by the set}\{\lambda(F) \mid f \subset F\}.$$ and $G_P \triangleq \{1\} \subset \mathbb{Z}_2^n$. Then M is homeomorphic to the quotient space

$$P \times \mathbb{Z}_2^n / \sim$$

where $(p, g) \sim (q, h)$ if and only if $p = q$ and $g^{-1}h \in G_{f(p)}$, and $f(p)$ is the unique face of P that contains p in its relative interior. The right-angled Coxeter group of P is defined by:

$$W_P \triangleq \langle s_{F}, F \in \mathcal{F}(P) \mid s_F^2 = 1, \forall F; (s_F s_{F'})^2 = 1, \forall F \cap F' \neq \emptyset \rangle.$$ By giving the Borel construction $M_{\mathbb{Z}_2^n} = E\mathbb{Z}_2^n \times\mathbb{Z}_2 M$ of M, Davis and Januszkiewicz [5, Corollary 4.5] proved that the fundamental group of a small cover, denoted as $\pi_1(M)$, is isomorphic to the kernel of a homomorphism from W_P to \mathbb{Z}_2^n, which is induced by the characteristic map over $\mathcal{F}(P)$. Actually, there is a short right split group sequence

$$1 \rightarrow \pi_1(M) \rightarrow W_P \overset{\phi}{\rightarrow} \mathbb{Z}_2^n \rightarrow 1$$
where $\phi(s_F) = \lambda(F)$ for each facet F of P. Wu and Yu [14] described this relation more explicitly based on the presentation of fundamental groups they calculated. Furthermore, they showed that a facial submanifold of a small cover is π_1-injective if and only if there is no 3-belt conclude the corresponding face [14, Theorem 3.3].

Let P be a 3-dimensional simple polytope. A k-circuit in P is a simple loop on the boundary of P which intersects transversely the interior of exactly k distinct edges, and a k-circuit c is called prismatic if the endpoints of all edges which c intersects are distinct. A k-belt in P is a set of k distinct faces F_1, \ldots, F_k of P such that $F_i \cap F_{i+1} \neq \emptyset$ for $1 \leq i \leq k-1$, $F_k \cap F_1 \neq \emptyset$, and any three face in the belt have no common intersection. It is clear that each k-belt determines a prismatic k-circuit. Furthermore, a prismatic 3-circuit can determines a 3-belt; and if there is no prismatic 3-circuit, then a prismatic 4-circuit determines a 4-belt. It is clearly that the cross section surrounded by a 4-circuit c determined by a 4-belt is a square, we denote this cross section by F. If c is prismatic, then $\pi^{-1}(F)$ is torus or Klein bottle in M, denoted by M_{F}. And a closed 3-manifold is atoroidal if it contains no essential torus, otherwise it is toroidal.

In this paper, we consider the π_1-injectivity of the sectional submanifold M_{F} which is determined by a 4-belt in simple polytope P. According to the following diagram,

$$
\begin{array}{cccccc}
1 & \to & \pi_1(M_{F}) & \xrightarrow{\psi_F} & W_{F} & \xrightarrow{\phi_F} & \mathbb{Z}_2^3 \\
& & i_* & & j_* & & \\
1 & \to & \pi_1(M) & \xrightarrow{\psi} & W_{P} & \xrightarrow{\phi} & \mathbb{Z}_2^3 \\
\end{array}
$$

where i_* and j_* are induced by inclusion map of sectional submanifold M_{F}, we show that each 4-belt in P gives a π_1-injective torus or Klein bottle for M, i.e. M is toroidal in this case. Furthermore, we give a topological proof for Andreev’s Theorem in the right-angled case. The main result of this paper is the following theorem.

Theorem Let M be a 3-dimensional small cover over a simple polytope P, then M is atoroidal if and only if there is no 4-belt in P.

The paper is organized as follows. In section 2, we construct a presentation of the fundamental group of the sectional submanifold which is determined by a 4-belt. Using this presentation, we give a group homomorphism from $\pi_1(M_{F})$ to the Coxeter group W_{F}. In section 3, we show that sectional submanifold M_{F} is π_1-injective. In section 4, we prove Andreev’s Theorem in the right-angled case by the result in section 3.
2 Presentations of $\pi_1(M_F)$

Let P be a 3-dimensional simple polytope, and $\pi : M \rightarrow P$ be a small cover over P. If c is a prismatic 4-circuit in P determined by a 4-belt F_1, F_2, F_3, F_4, where $F_1 \cap F_2 = F_2 \cap F_4 = \emptyset$. Then c intersects exactly 4 edges and 4 faces of P. Thus c encloses a square in P, denoted by F. And four faces bounded F are F_1, F_2, F_3, F_4 respectively, the edge of F denoted by $f_i = F_1 \cap F_i$, for $i = 1, 2, 3, 4$. Then the Coxeter group of F is

$$W_F \cong \langle s_1, s_2, s_3, s_4 | s_1^2 = s_2^2 = s_3^2 = s_4^2 = 1; (s_1s_2)^2 = (s_2s_3)^2 = (s_3s_4)^2 = (s_4s_1)^2 = 1 \rangle$$

(5)

There are, essentially, 5 cases of colorings on $F = \{f_1, f_2, f_3, f_4\}$ which is induced by characteristic map $\lambda : F(P) \rightarrow \mathbb{Z}_2^3$. We define the induced characteristic map of F:

$$\lambda_F : F \rightarrow \mathbb{Z}_2^3$$

(6)

where $\lambda_F(F) = \lambda_F(f_1, f_2, f_3, f_4) \in \{(e_1, e_2, e_1, e_2), (e_1, e_2, e_1, e_1e_2), (e_1, e_2, e_3, e_2), (e_1, e_2, e_3, e_1e_2), (e_1, e_2, e_3, e_1e_2), (e_1, e_2, e_3, e_1e_2)\}$, and e_1, e_2, e_3 are basis of \mathbb{Z}_2^3.

Then the sectional submanifold $M_F \cong \pi^{-1}(F)$ determined by F is

$$M_F = F \times \mathbb{Z}_2^3 / \sim$$

(7)

where $(f_i, g) \sim (f_j, h)$ if and only if $i = j$ and $g^{-1}h = \langle \lambda_F(f_i) \rangle$. Thus sectional submanifolds determined by above 5 colorings are double tori, double Klein bottles, torus, Klein bottle, torus, respectively.

According to the construction of M_F, we consider the following two cases:

Case 1: $\lambda_F(F) = (e_1, e_2, e_1, e_2)$ or (e_1, e_2, e_1, e_1e_2).

In this case, $\text{Im}(\lambda_F)$ generates the subgroup \mathbb{Z}_2^2 of \mathbb{Z}_2^3. The sectional submanifold is a disjoint union of two tori or two Klein bottles, one of which we denote by M_F. Then M_F is glued by 4 copies of F, we choose a vertex $p_0 = f_1 \cap f_2$ of F as the base point of $\pi_1(M_F)$, and glue $\{(F, g) | g \in \mathbb{Z}_2^2\}$ along its faces $\{(f_i, g) | i = 1, 2, g \in \mathbb{Z}_2^2\}$. For each face $(f_i, g) \subset (F, g)$, we choose a simple closed circles $\beta_{i,g}$, which crosses p_0 and (f_i, g) in M_F, as a generator of $\pi_1(M_F)$.

Then

$$\pi_1(M_F, p_0) = \langle \beta_{i,g}, i = 1, 2, 3, 4 | \beta_{i,g} \beta_{j,g} \lambda_F(f_i) = \beta_{j,g} \beta_{i,g} \lambda_F(f_i), \forall f_i \cap f_j \neq \emptyset, \forall g; \beta_{i,g} = 1, i = 1, 2, \forall g \rangle$$

And consider the following short group sequence

$$1 \longrightarrow \pi_1(M_F, p_0) \xrightarrow{\psi_F} W_F \xrightarrow{\phi_F} \mathbb{Z}_2^2 \longrightarrow 1$$

(8)

where $\gamma_F : \mathbb{Z}_2^2 \rightarrow W_F$ is defined by $\gamma_F(e_1) = s_1, \gamma_F(e_2) = s_2$. And define

$$\psi_F : \pi_1(M_F, p_0) \rightarrow W$$

$$\beta_{i,g} \mapsto \gamma_F(g \cdot \lambda_F(f_i))s_i(g) \cong S_i,g$$

It is easy to check that both γ_F and ψ_F are well-defined. We have the following lemma.
Lemma 1 The sequence \(\{8\} \) is right split and exact.

Proof. cf. [13, Lemma 2.9]

Case 2: \(\lambda_F(F) \in \{(e_1, e_2, e_3, e_2), (e_1, e_2, e_3, e_1 e_2 e_3), (e_1, e_2, e_3, e_1 e_2 e_3)\} \).

In this case, \(\text{Im}(\lambda_F) \) generates \(\mathbb{Z}_2^3 \). The sectional submanifold \(M_F \) is glued by 8 copies of \(F \). Similarly, we choose a vertex \(p_0 = f_1 \cap f_2 \) of \(F \), and glue \(\{(F, g) \} (g \in \mathbb{Z}_2^3) \) along along its faces \(\{(f_i, g)\} \) for \(i = 1, 2, g \notin \langle e_1, e_2 \rangle \) or \(i = 3, g \notin \langle e_1 \rangle \). We shrink the faces \(\{f_2, g\}, g \notin \langle e_1 \rangle \) to a point, which is also denoted as \(p_0 \) and taken as the base point of \(\pi_1(M) \). And for each pair \((f_i, g) \subset (F, g) \), we choose a simple closed circles \(\beta_{i,g} \), which crosses \(p_0 \) and \((f_i, g) \) in \(M_F \), as a generator of \(\pi_1(M_F) \). Then

\[
\pi_1(M_F) = \langle \beta_{i,g}, i = 1, 2, 3, 4; g \in \mathbb{Z}_2^3 | \beta_{i,g} \beta_{i,g} \lambda_F(f_i) = 1, \forall g; \\
\beta_{i,g} \beta_{j,g} \lambda_F(f_j) = \beta_{j,g} \beta_{i,g} \lambda_F(f_j), \forall f_i \cap f_j \neq \emptyset; \forall g; \\
\beta_{i,g} = 1, i = 1, 2; \forall g \text{ or } i = 3, \forall \gamma \in G \rangle
\]

(9)

where \(G = \{e_1, e_1 e_2, e_1 e_3, e_1 e_2 e_3\} \). And consider the following short group sequence

\[
1 \longrightarrow \pi_1(M_F, p_0) \xrightarrow{\psi_F} W_F \xrightarrow{\phi_F \gamma_F} \mathbb{Z}_2^3 \longrightarrow 1 \tag{10}
\]

where \(\gamma_F : \mathbb{Z}_2^3 \longrightarrow W_F \) is defined by \(\gamma_F(e_1) = s_1, \gamma_F(e_2) = s_2, \gamma_F(e_3) = s_1 s_3 s_1 \).

And

\[
\psi_F : \pi_1(M_F, p_0) \longrightarrow W \\
\beta_{i,g} \longmapsto \gamma_F(g \cdot \lambda_F(f_i)) s_i \gamma(g) \triangleq S_{i,g}
\]

And both \(\gamma_F \) and \(\psi_F \) are well-defined. Then the similar lemma follows as above.

Lemma 2 The sequence \(\{10\} \) is right split and exact.

Proof. \(\phi_F \circ \gamma_F = id_{\mathbb{Z}_2^3} \) implies the right splitting of \(\{10\} \). We just need to prove \(\pi_1(M_F, p_0) \cong \text{ker}(\phi_F) \). \(\phi_F \circ \psi_F(\beta_{i,g}) = \phi_F(\gamma_F(g s_i \gamma(g) \lambda_F(f_i))) = \phi_F(\gamma_F(g) \cdot \phi_F(s_i) \cdot \phi_F(\gamma(g \lambda_F(f_i)))) = g \cdot \lambda_F(f_i) \cdot g \lambda_F(f_i) = 1, \) thus \(\text{im}(\psi_F) \subseteq \text{ker}(\phi_F) \).

Since \(\text{im}(\psi_F) \) is a normal group of \(W_F \), and

\[
W_F = \langle s_1, s_2, s_3, s_4 | s_i^2 = s_i^3 = s_i^4 = 1; \\
(s_1 s_2)^2 = (s_2 s_3)^2 = (s_3 s_4)^2 = (s_4 s_1)^2 = 1 \rangle
\]

(11)

thus \(W_F / \text{im}(\psi_F) \cong \mathbb{Z}_2^3 \) implies that \(\text{im}(\psi_F) \cong \text{ker}(\phi_F) \). Hence the sequence \(\{10\} \) is exact.
3 \(\pi_1\)-injectivity of \(M_F\)

In this section, we take \(v = F_0 \cap F_1 \cap F_2\) as the base point, then the fundamental group of \(M\) [14, Proposition 2.1]

\[
\pi_1(M, v) = \langle \alpha_{F,g}, \forall F \in \mathcal{F}(P); \forall g \in \mathbb{Z}_3^2 | \alpha_{F,g} \alpha_{F,g} \lambda(F) = 1, \forall g; \alpha_{F,g} \alpha_{F',g} \lambda(F') = 1, \forall F \cap F' \neq \emptyset; \forall g \rangle
\]

and the Coxeter group of \(P\)

\[
W_P = \langle t_F, F \in \mathcal{F}(P) \mid t_F^2 = 1, \forall F; (t_F t_{F'})^2 = 1, \text{for } F \cap F' \neq \emptyset \rangle
\]

Consider the following diagram

\[
\begin{array}{ccc}
\pi_1(M) & \xrightarrow{\psi} & W_P \\
\downarrow i_* & & \downarrow j_* \\
\pi_1(M_F) & \xrightarrow{\psi_F} & W_F \\
\end{array}
\]

where \(\psi\) is defined at [14, Lemma 2.9], and \(s_0\) represents the generator in \(W_P\) determined by the face \(F_0\). \(W_P \rightarrow W_P/\langle s_0 \rangle\) is a quotient map. \(i_*\) and \(j_*\) are induced by inclusion map.

\[j_* : W_F \rightarrow W_P\]

\[s_i \mapsto t_{F_i}\]

and in Case 1, we define

\[i_* : \pi_1(M_F, p_0) \rightarrow \pi_1(M, v)\]

\[\beta_{i,g} \mapsto \alpha_{F_i,g}, \ g \in \langle e_1, e_2 \rangle\]

in Case 2, we define

\[i_* : \pi_1(M_F, p_0) \rightarrow \pi_1(M, v)\]

\[\beta_{i,g} \mapsto \alpha_{F_i,g}, \ \text{for } i = 1, 2, 4;\]

\[\beta_{3,g} \mapsto \alpha_{F_3,g} \lambda(F_3) \lambda(F_1) \alpha_{F_3,g} = \alpha_{F_3,g} e_1 e_2 \alpha_{F_3,g}\]

where \(g \in \mathbb{Z}_3^2\). It can be check that the diagram [14] is communicate both in Case 1 & 2.

Lemma 3 Both \(i_*\) and \(j_*\) are injective.

Proof. The injectivity of \(j_*\) is showed in [14, Theorem 3.3], and the injectivity of \(i_*\) can be proved by the injectivity of \(j_*\) and the commutativity of diagram [14]. \(\square\)
A simple polytope is flag if any pairwise intersecting faces have a common intersection. Davis [4, Corollary 5.4] proved that a small cover is aspherical if and only if the orbit polytope is flag. And there are at most 3 faces intersecting at one point in a 3-dimensional simple polytope other than Δ^3, So we have the proposition as following.

Proposition 1 Let $P \neq \Delta^3$ be a simple polytope of dimension 3, then P is flag if and only if there is no prismatic 3-circuit in P.

Theorem 1 Let M be a 3-dimensional small cover over a simple polytope P, then M is atoroidal if and only if there is no 4-belt in P.

Proof. The Elliptization and Hyperbolization Theorems together imply that every atoroidal closed 3-manifold is either spherical or hyperbolic, i.e. $\pi_1(M)$ is finite or infinite without subgroup $\cong \mathbb{Z}^2$. If there exists a 4-belt in P, then according to Lemma 3, there is a π_1-injective torus or Klein bottle in M, which implies that there is a subgroup $\cong \mathbb{Z}^2$ in $\pi_1(M)$. This is a contradiction.

Conversely, we show that M toroidal implies a 4-belt in P. If M toroidal, then there is a subgroup \mathbb{Z}^2 in $\pi_1(M)$. And $\pi_1(M)$ embeds in W_P, thus the subgroup \mathbb{Z}^2 embeds in W_P. In other words, there are two free commutable elements in W_P, written as x, y. We assume that $x = s_1 s_2 \cdots s_m$ and $y = t_1 t_2 \cdots t_n$ are shortest expressions of x and y, where s_i, t_j are generators of W_P, and $m, n \geq 2$. Then $xy = yx$ implies $s_i t_j = t_j s_i, \forall i, j$, i.e. $F_{s_i} \cap F_{t_j} \neq \emptyset, \forall i, j$. Since x is free, there exist s, s' such that $F_s \cap F_{s'} = \emptyset$. And because y is free, there also exist t, t' such that $F_t \cap F_{t'} = \emptyset$ and t, t', s, s' are four distinct generators. Otherwise, we have $(t, t') = (s, s')$ or $(t, t') = (s', s)$, now there must exist another two generators in x or y such that the intersection of the corresponding two faces is empty set. Otherwise, the only two non-commutable generators in x and y is s and s', which implies that x^2 and y^2 is one of $(ss')^2$ and $(s's)^2$. Thus $x^2 = y^2$ or $x^2 = y^{-2}$, which contradict to x, y generating \mathbb{Z}^2. Hence there exists a 4-belt. □
4 Andreev’s Theorem in the right-angled case

Andreev[1971] (see also [12]) gives a complete characterization of compact hyperbolic polyhedra in dimension 3 with nonobtuse dihedral angles. In the right-angled case, we have

Theorem 2 (Andreev’s Theorem in the right-angled case)

A simple polytope $P \neq \Delta^3$ has a geometric realization in \mathbb{H}^3 as a right-angled hyperbolic polytope if and only if there is no prismatic 3 or 4-circuit in P. Furthermore, such geometric realization is unique up to isometry.

Now, we give a topological proof for the above theorem. For any 3-dimensional simple polytope P, there exists a small cover M over P by the 4-Colors Theorem. Conversely, The group \mathbb{Z}_2^3 that acts on a hyperbolic small cover of dimension 3 produces a simple orbit polytope with all dihedral angles right-angled. Thus, we just need to prove that M is hyperbolic if and only if there is no prismatic 3 or 4-circuit in P.

Proof of the necessity part. If M is hyperbolic, then P can not be a 3-simplex. If not, there is a element of order 2 in $\pi_1(M)$, then $\pi_1(M)$ is not torsion-free, which is a contradiction. And other cases can be shown by Gauss-Bonnet theorem.

Proof of the sufficiency part. If there is no prismatic 3-circuit, then M is aspherical according to Proposition[1]. Furthermore, If there is no prismatic 3-circuit, then there is no prismatic 4-circuit if and only if there is no 4-belt in P. Thus M is atoroidal by Theorem[1] if there is no prismatic 3 and 4-circuit. Hence M is hyperbolic by Thurston’s Hyperbolization Theorem and such hyperbolic structure is unique up to isometry, thus P has a unique geometric realization in \mathbb{H}^3, and now its all dihedral angles are right angle. □

Acknowledgments

The author want to thank Yuxiu Lu, Hao Li and Jingfang Lian for their helpful comments.

References

[1] M. Aschenbrenner, S. Friedl and H. Wilton, 3-manifold groups, Mathematics (2013), 1-149

[2] V.M. Buchstaber and T.E. Panov, Torus actions and their applications in topology and combinatorics, University Lecture Series, 24. American Mathematical Society, Providence, RI, (2002)

[3] M.W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. (2) 117 (1983), 293-325.

[4] M.W. Davis, Exotic aspherical manifolds, Topology of high-dimensional manifolds. (Trieste, 2001), 371-404.
[5] M.W. Davis and T. Januszkiewicz, Convex polytopes, coxeter orbifolds and torus actions, *Duke Math. J.* 62 (1991), 417-451.

[6] M.W. Davis, T. Januszkiewicz, and R. Scott, Nonpositive curvature of blow-ups, *Selecta Math. (N.S.)* 4 (1998), 491-547.

[7] M.W. Davis, T. Januszkiewicz, and R. Scott, Fundamental groups of blow-ups, *Adv. Math.* 177 (2003), 115-179.

[8] F.T. Farrell, The Borel conjecture, *Topology of high-dimensional manifolds.* (Trieste, 2001), 225-298.

[9] A. Hatcher, Spaces of incompressible surfaces, *Mathematics.* (1999).

[10] J. Hempel, 3-manifolds, *Annals of Mathematics studies.* 86 (1978).

[11] H. Nakayama and Y. Nishimura, The orientability of small covers and coloring simple polytopes, *Osaka J. Math.* 42(2005):243256.

[12] R.K. Roeder, J.H. Hubbard and W.D. Dunbar, Andreev’s Theorem on hyperbolic polyhedra, *Ann. Inst. Fourier(Grenoble).* 57:3(2007): 825-882.

[13] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, *Ann. of Math.* (2)87 (1968), 56-88.

[14] L-S. Wu and L. Yu, Fundamental groups of small covers revisited, https://arxiv.org/abs/1712.00698 (2018)

[15] L. Yu, Crystallographic groups with cubic normal fundamental domain, *RIMS Kkyroku Bessatsu, B39, Res. Inst. Math. Sci. (RIMS), Kyoto.* (2013), 233-244

School of Mathematical Sciences, Fudan University, Shanghai, 200433, P.R.China.

E-mail address: wulisuwulisu@qq.com