THE FUNDAMENTAL SOLUTION OF AN ELLIPTIC EQUATION WITH SINGULAR DRIFT

VLADIMIR MAZ’YA AND ROBERT MCOWEN

Abstract. For $n \geq 3$, we study the existence and asymptotic properties of the fundamental solution for elliptic operators in nondivergence form, $\mathcal{L}(x, \partial_x) = a_{ij}(x) \partial_i \partial_j u + b_k(x) \partial_k u$, where the a_{ij} have modulus of continuity $\omega(r)$ satisfying the square-Dini condition and the b_k are allowed mild singularities of order $r^{-1} \omega(r)$. A singular integral is introduced that controls the existence of the fundamental solution. We give examples that show the singular drift $b_k \partial_k$ may act as a perturbation that does not dramatically change the fundamental solution of $\mathcal{L}^0 = a_{ij} \partial_i \partial_j$, or it could change an operator \mathcal{L}^0 that does not have a fundamental solution to one that does.

0. Introduction

Consider a 2nd-order operator in nondivergence form with a 1st-order term

$$\mathcal{L}(x, \partial_x)u = a_{ij}(x) \partial_i \partial_j u + b_k(x) \partial_k u, \quad x \in U,$n

where the coefficients $a_{ij} = a_{ji}$ and b_k are measurable, real-valued functions in an open set $U \subset \mathbb{R}^n$, $n \geq 3$; here and throughout the paper we use the summation convention for repeated indices. We assume $\mathcal{L}(x, \partial_x)$ is pointwise elliptic, i.e. the matrix $a_{ij}(x)$ is positive definite for each $x \in U$. Our objective is to study the existence and asymptotics of its fundamental solution, i.e. a function $F(x, y)$ satisfying $F(x, \cdot) \in L^1_{\text{loc}}(U)$ for each $x \in U$ and

$$- \mathcal{L}(x, \partial_x)F(x, y) = \delta(x - y) \quad \text{for} \ x, y \in U,$n

in a distributional sense that needs to be made clear. In the classical case that the coefficients are sufficiently smooth (e.g. Hölder continuous), the existence of a fundamental solution and its asymptotic properties are well-known: cf. Miranda [17].

In [11] we studied this problem for $\mathcal{L}^0(x, \partial_x) = a_{ij}(x) \partial_i \partial_j$ when the modulus of continuity $\omega(r)$ for the a_{ij} satisfies the square-Dini condition

$$\int_0^1 \frac{\omega^2(r)}{r} \, dr < \infty.$n

Notice that this assumption is weaker than λ-Hölder continuity since $[3]$ is satisfied by $\omega(r) = r^\lambda$ for $0 < \lambda < 1$; $[3]$ is also weaker than the Dini-condition, $\int_0^1 r^{-1} \omega(r) \, dr < \infty$. The hypotheses and conclusions of [11] are most easily stated if we fix $y = 0$ and let $U = B_\varepsilon = \{ x \in \mathbb{R}^n : |x| < \varepsilon \}$ for ε sufficiently small. By an affine change of coordinates, we may arrange $a_{ij}(0) = \delta_{ij}$, so we may assume

$$\sup_{|x| = r} |a_{ij}(x) - \delta_{ij}| \leq \omega(r) \quad \text{for} \ 0 < r < \varepsilon.$$n

Date: August 31, 2022.

2020 Mathematics Subject Classification. 35A08 (Primary), 35B40, 35J15 (Secondary).

Key words and phrases. Elliptic equations, nondivergence form, square-Dini condition, singular drift, fundamental solution, asymptotics.
It was found in [11] that the existence of a solution of
\begin{equation}
- \mathcal{L}^\alpha(x, \partial_x)F(x) = \delta(x) \quad \text{in } B_\varepsilon,
\end{equation}
for \(\varepsilon \) sufficiently small depends on the behavior of the integral
\begin{equation}
I^\alpha(r) = \frac{1}{|S^{n-1}|} \int_{r<|z|<\varepsilon} \left(\text{tr}(A_z) - \nu \frac{\langle A_z z, z \rangle}{|z|^2} \right) \frac{dz}{|z|^n}
\end{equation}
as \(r \to 0 \); here \(A_x \) denotes the matrix \((a_{ij}) \) and \(\langle A_z z, z \rangle = a_{ij}(z)z_iz_j \). If \(I^\alpha(0) = \lim_{r \to 0} I^\alpha(r) \) exists and is finite, then we showed there is a solution of (5). However, if \(I^\alpha(r) \to -\infty \) as \(r \to 0 \), then we found a solution \(F(x) \) of
\begin{equation}
\mathcal{L}^\alpha(x, \partial_x)F(x) = 0 \quad \text{in } B_\varepsilon,
\end{equation}
which has a singularity at \(x = 0 \), but \(F(x) = o(|x|^{2-n}) \) as \(|x| \to 0 \) and \(F(x) \) is not a solution of (5); this violates the “extended maximum principle” of [5].

In the present paper, we generalize the results of [11] by including the 1st-order term \(b_k \partial_k \), which is called a drift term: cf. [2], [11]. If the \(b_k \) are bounded in \(U \), they will not effect the existence of the fundamental solution, so we will allow the drift to be singular at \(x = 0 \), but satisfy the condition:
\begin{equation}
\sup_{|x|=r} |b_k(x)| \leq c \omega(r) \quad \text{for } 0 < r < \varepsilon.
\end{equation}
(Here and throughout this paper, \(c \) denotes a generic constant.) We again construct an unbounded solution \(Z(x) \) of
\begin{equation}
\mathcal{L}(x, \partial_x)Z(x) = 0 \quad \text{for } x \in B_\varepsilon \setminus \{0\},
\end{equation}
and then check to see whether \(Z \) has the appropriate singular behavior as \(|x| \to 0 \) so that, in a distributional sense,
\begin{equation}
- \mathcal{L}(x, \partial_x)Z(x) = C_0 \delta(x) \quad \text{for some constant } C_0.
\end{equation}
If so, then setting \(F(x) := C_0^{-1} Z(x) \) defines a solution of
\begin{equation}
- \mathcal{L}(x, \partial_x)F(x) = \delta(x) \quad \text{for } x \in B_\varepsilon.
\end{equation}

To determine whether this can be done, the quantity (6) is generalized to
\begin{equation}
I(r) = \frac{1}{|S^{n-1}|} \int_{r<|z|<\varepsilon} \left(\text{tr}(A_z) - \nu \frac{\langle A_z z, z \rangle}{|z|^2} + \langle B_z, z \rangle \right) \frac{dz}{|z|^n},
\end{equation}
where \(B_z \) denotes the vector with components \(b_k(z) \) and \(\langle B_z, z \rangle = b_k(z)z_k \). In general, \(I(r) \) may have a singularity at \(r = 0 \), but it is weaker than logarithmic: for any \(\lambda > 0 \) there exists \(c_\lambda > 0 \) such that
\begin{equation}
|I(r)| \leq \lambda |\log r| + c_\lambda \quad \text{for } 0 < r < \varepsilon.
\end{equation}

Before stating the main results of this paper, we need some notation and an additional assumption. For an open set \(U \), \(1 < p < \infty \), and integer \(m = 0, 1, 2 \), let \(W^{m,p}_{\text{loc}}(U) \) denote the Sobolev space of functions whose derivatives up to order \(m \) are locally \(L^p \)-integrable in \(U \). The \(L^p \)-mean of \(w \in L^p_{\text{loc}}(\mathbb{R}^n \setminus \{0\}) \) on the annulus \(A_r := \{ x : r < |x| < 2r \} \) is defined by
\begin{equation}
M_p(w, r) := \left(\int_{A_r} |w(x)|^p \, dx \right)^{1/p}.
\end{equation}
Similarly, we define
\begin{equation}
M_{1,p}(w, r) = r M_p(Dw, r) + M_p(w, r) \quad \text{for } w \in W^{1,p}_{\text{loc}}(\mathbb{R}^n \setminus \{0\}),
\end{equation}
For $p = \infty$ we can analogously define $M_\infty(w, r)$, $M_{1, \infty}(w, r)$ and $M_{2, \infty}(w, r)$. The L^p-mean over annuli centered at $y \neq 0$ will be denoted by $M_p(w, r; y)$ and similarly for $M_{1,p}(w, r; y)$ and $M_{2,p}(w, r; y)$. We also define

$$M_{2,p}(w, r) = r^2 M_p(D^2 w, r) + M_{1,p}(w, r) \quad \text{for } w \in W^{2,p}_\text{loc}(\mathbb{R}^n \setminus \{0\}).$$

Under the assumptions of Theorem 1 and Theorem 2.

\[(14c) \]

where ω_m over annuli centered at $y = 0$ will be denoted by $M_p(w, r; y)$ and similarly for $M_{1,p}(w, r; y)$ and $M_{2,p}(w, r; y)$. We also define

$$\sigma(r) = \int_0^r \omega^2(\rho) \frac{d\rho}{\rho},$$

which satisfies $\sigma(r) \rightarrow 0$ as $r \rightarrow 0$ because of (3). Finally, as a modulus of continuity we want $\omega(r)$ to be nondecreasing for $0 < r < 1$, but we also assume for some $\kappa \in (0, 1)$ that

$$\omega(r) r^{-1+\kappa} \quad \text{is nonincreasing on } 0 < r < 1.$$

This is natural since we are interested in moduli of continuity that vanish slower than $r \rightarrow 0$.

Our first result generalizes Theorem 1 in [11], which only applied to $L^\infty(x, \partial_x)$. Theorem 1. For $n \geq 3$ and $p \in (1, \infty)$, assume $a_{ij} = a_{ji}$ satisfy (1) while the b_k satisfy (8). Then for $\varepsilon > 0$ sufficiently small, there is a solution of (3) in the form

\[(17a) \]

where $I(r)$ is given by (12), $\zeta(r)$ satisfies

$$M_{2,p}(\zeta, r) \leq c \max(\omega(r), \sigma(r)),$$

and $v(x)$ satisfies

$$M_{2,p}(v, r) \leq cr^{-2-n}e^{I(r)}\omega(r).$$

Moreover, for any $u \in W^{2,p}_\text{loc}((B_\varepsilon \setminus \{0\}))$ that is a strong solution of $\mathcal{L}(x, \partial_x)u = 0$ in $B_\varepsilon \setminus \{0\}$ subject to the growth condition

$$M_{2,p}(u, r) \leq cr^{1-n+\varepsilon_0} \text{ where } \varepsilon_0 > 0,$$

there exist constants c_0, c_1 (depending on u) such that

$$u(x) = c_0 Z(x) + c_1 + w(x),$$

where $M_{2,p}(w, r) \leq cr^{1-\varepsilon_1}$ for any $\varepsilon_1 > 0$.

We will prove this result in Section II but let us here observe that $I(r)$ satisfies $|I'(r)| \leq cr^{-1} \omega(r)$, so we may integrate by parts and take $p > n$ to conclude

$$Z(x) = \frac{|x|^{2-n}e^{I(|x|)}}{n-2} (1 + \xi(x)),$$

where $M_{1,\infty}(\xi, r) \leq c \max(\omega(r), \sigma(r))$. This shows that $I(r)$ controls how closely Z adheres to the fundamental solution of the Laplacian.

Our second result generalizes Theorem 2 in [11] and shows that the existence and finiteness of the limit $I(0) = \lim_{r \rightarrow 0} I(r)$ determines whether Z solves (10) for some constant C_0.

Theorem 2. Under the assumptions of Theorem 1 and $\varepsilon > 0$ sufficiently small:

(i) If $I(0) = \lim_{r \rightarrow 0} I(r)$ exists and is finite, then we can solve (10) in B_ε with $C_0 = |S^{n-1}| e^{I(0)}$.

(ii) If $I(r) \rightarrow -\infty$ as $r \rightarrow 0$, then solving (10) in B_ε yields $C_0 = 0$, and so Z solves $-\mathcal{L}(x, \partial_x)Z(x) = 0$ in B_ε, despite its singularity at $x = 0$.
We will prove this result in Section 2 but let us observe that in case (i) we have found a solution of (11) of the form

$$F(x) = \frac{|x|^2 - n}{(n - 2)|S^{n-1}|} (1 + o(|x|)) \quad \text{as } |x| \to 0,$$

so the comparison with the fundamental solution of the Laplacian is even more explicit. On the other hand, if $I(r) \to +\infty$ as $r \to 0$, then the singular solution $Z(x)$ grows more rapidly as $|x| \to 0$ than the fundamental solution for the Laplacian, and we are not able to solve (10).

Let us consider a simple example to illustrate the effect of the drift term on the fundamental solution.

Example 1. Let $a_{ij} = \delta_{ij}$ so that our operator (11) becomes

$$\mathcal{L}(x, \partial_x) = \Delta + b_k(x) \partial_x,$$

and the quantity $I(r)$ in (12) reduces to

$$I(r) = \frac{1}{|S^{n-1}|} \int_{r < |x| < \varepsilon} \frac{\langle B_z, z \rangle}{|z|^n} \, dz.$$

If $\omega(r)$ satisfies the Dini condition, then from condition (3) we easily conclude that $I(0)$ exists and is finite; but this finite limit may exist without the Dini condition: e.g. we could take $b_k(x) = x_k \sin(|x|^{-1}) \omega(|x|)/|x|^2$. In any case, provided $I(0)$ is finite, we have a solution $F(x)$ of (10) that is comparable to the fundamental solution of the Laplacian.

In [2], Cranston and Zhao consider operators of the form $\mathcal{L} = \frac{1}{2} \Delta + b \cdot \nabla$ with vector field b. Assuming U is a bounded Lipschitz domain and $b(x)$ satisfies the conditions

$$\limsup_{r \to 0} \sup_{x \in U} \int_{|x - y| < r} \frac{|b(y)|^2}{|x - y|^{n-2}} \, dy = 0 \quad \text{and} \quad \limsup_{r \to 0} \sup_{x \in U} \int_{|x - y| < r} \frac{|b(y)|}{|x - y|^{n-1}} \, dy,$$

they conclude that the Green’s function $G(x, y)$ for \mathcal{L} in U exists and is comparable to the Green’s function $G_0(x, y)$ for $\mathcal{L}_0 = \frac{1}{2} \Delta$, i.e.

$$c^{-1} G_0(x, y) \leq G(x, y) \leq c G_0(x, y) \quad \text{for } x, y \in U, \quad x \neq y.$$

If U contains the origin, then setting $F(x) := G(x, 0)$ defines a solution of (11), so let us compare our hypotheses and conclusions with those of [2]. If b has a singularity at $x = 0$ of the form $|b(x)| = |x|^{-1} \omega(|x|)$, the conditions in (24a) require

$$\int_0^r \frac{\omega^2(\rho)}{\rho} \, d\rho < \infty \quad \text{and} \quad \int_0^r \frac{\omega(\rho)}{\rho} \, d\rho < \infty.$$

The first of these is the square-Dini condition (3) that we have required, while the second is the Dini condition that we have not required: to conclude that the fundamental solution exists at $x = 0$, we only require the function $I(r)$ given in (23) to have a finite limit $I(0) = \lim_{r \to 0} I(r)$. Moreover, (20) is a sharper estimate than (24b).

In Example 1, the drift term plays the role of a perturbation which, if not too large, does not affect the existence of the fundamental solution. We now consider an example where singular drift can convert an operator \mathcal{L}^o that does not have a fundamental solution to one for which a fundamental solution exists!

Example 2. Consider $\mathcal{L}^o = a_{ij} \partial_i \partial_j$ with coefficients

$$a_{ij}(x) = \delta_{ij} + g(r) \frac{x_i x_j}{|x|^2},$$

where
where \(|g(r)| \leq \omega(r)|\) with \(\omega\) satisfying (3). Coefficients of the form \(\frac{1}{r}\) were first considered by Gilbarg & Serrin \([5]\), and have proven useful in both nondivergence and divergence form equations (cf. \([11]\), \([12]\), \([13]\)). We can use (6) to calculate

\[(26)\]
\[I^o(r) = (1 - n) \int_r^1 g(\rho) \frac{d\rho}{\rho}.\]

Note that \(I^o(0) = \lim_{r \to 0} I^o(r)\) exists and is finite when \(\omega\) satisfies the Dini condition, but this finite limit may exist without Dini continuity: e.g. \(g(r) = \sin(r^{-1})\omega(r)\).

Now let us assume \(g(r) > 0\) and \(\omega\) does not satisfy the Dini condition. Then \(I^o(r) \to -\infty\) as \(r \to 0\), so the fundamental solution for \(\mathcal{L}^o\) does not exist at \(y = 0\). However, if we add the first-order coefficients

\[(27)\]
\[b_k(x) = (n - 1) \frac{x_k}{|x|^2} [g(|x|) + g^2(|x|)]\]

to obtain \(\mathcal{L}\) as in (1), then we can use (12) to calculate

\[(28)\]
\[I(r) = (n - 1) \int_r^1 \frac{g^2(\rho)}{\rho} d\rho.\]

Since \(g^2(r) \leq \omega^2(r)\) and \(\omega\) satisfies (3), we see that \(I(r)\) has a finite limit as \(r \to 0\), and so we can solve (10) to conclude the fundamental solution exists at \(y = 0\).

As previously stated, we will prove Theorem 1 in Section 1 and Theorem 2 in Section 2, but in those sections we will also state and prove Corollaries 1 and 2 respectively, which show how the formulas for the singular solution \(Z\) change when \(y \neq 0\) and \(a_{ij}(y) \neq \delta_{ij}\). To formulate these results, we need to generalize (11): for a given \(y \in U\), choose \(\varepsilon\) so that \(0 < \varepsilon < \text{dist}(y, \partial U)\) and assume

\[(29)\]
\[\sup_{|x - y| = r} \|A_x - A_y\| \leq \omega(r)\quad \text{for } 0 < r < \varepsilon.\]

We continue to assume the \(b_k\) are only singular at \(x = 0\) and satisfy (8). We also generalize the function \(I(r)\) in (12) as

\[(30a)\]
\[I_y(r) = \frac{1}{|S^{n-1}|} \int_{r < |z - y| < \varepsilon} H(z, y) \frac{dz}{|z - y|^n},\]

where the integrand \(H(z, y)\) is

\[(30b)\]
\[\text{tr}(A_z A_y^{-1}) - n \frac{\langle A_z A_y^{-1/2} (z - y), A_y^{-1/2} (z - y) \rangle}{|z - y|^2} + \langle B_z A_y^{-1/2}, (z - y) \rangle,\]

with \(A_y^{-1}\) denoting the inverse matrix. If \(y = 0\) and \(A_0 = I\), then (30) coincides with (12); if \(y \neq 0\) and we also stipulate \(0 < \varepsilon < |y|\), then \(B_z\) is bounded on \(|z - y| < \varepsilon\), so the last term in (30b) will not play a role in whether the limit \(I_y(0)\) exists and is finite. Now we state the main result of this paper.

Theorem 3. Suppose \(\mathcal{L}(x, \partial_x)\) as in (1) is an elliptic operator in a bounded open set \(U \subset \mathbb{R}^n\), \(n \geq 3\), where the coefficients \(a_{ij} = a_{ji}\) are continuous functions with modulus of continuity \(\omega(r)\) satisfying (3). Suppose \(U\) contains the origin and the \(b_i\) satisfy (8) but otherwise are bounded in \(U\). For each \(y \in U\) assume that the limit \(I_y(0) = \lim_{r \to 0} I_y(r)\) exists and is finite. Then \(\mathcal{L}(x, \partial_x)\) has a fundamental solution \(F(x, y)\) in \(U\) and it has the asymptotic behavior

\[(31)\]
\[F(x, y) = \frac{\langle A_y^{-1}(x - y), (x - y)^2 \rangle}{(n - 2)|S^{n-1}| \sqrt{\det A_y}} (1 + o(1))\quad \text{as } x \to y.\]
This is proved in Section 3. Note that the leading asymptotic in (31) is familiar as the “Levi function” that occurs in the classical case (cf. [17]). As a consequence of Theorem 3, we see that the singular drift may affect the existence of the fundamental solution but does not play a role in its asymptotic behavior as \(x \to y \).

Many of the arguments in this paper also appear in [11], but we have repeated them here for the convenience of the reader. From a more general perspective, the asymptotic analysis used here is related to that developed in [9].

Let us compare our results (in [11] and this paper) with recent work estimating the singularity of the Green’s function for \(L_0(x, \partial_x) = a_{ij}(x) \partial_i \partial_j \) when the coefficients \(a_{ij} \) satisfy the Dini mean oscillation (DMO) condition: cf. [7], [8], [4]. If \(U \) is a bounded \(C^{1,1} \)-domain and the \(a_{ij} = a_{ji} \) are continuous functions on \(\overline{U} \), then it is well-known that the Green’s function \(G(x, y) \) exists. If the \(a_{ij} \) satisfy the DMO condition in \(U \), then [4] shows that, for any \(x_0 \in U \), the following limit holds:

\[
(32) \lim_{x \to x_0} \frac{|x - x_0|^{2-n}}{2} |G(x, x_0) - G_{x_0}(x, x_0)| = 0,
\]

where \(G_{x_0} \) denotes that Green’s function for the constant coefficient operator \(L_0(x, \partial_x) \) in \(U \). Since the Green’s function is a particular fundamental solution and since (32) is equivalent to (31), it is natural to compare the hypotheses of the two results. As shown in [3], there are coefficients that are DMO but do not satisfy our square-Dini condition (3). On the other hand, there are coefficients of the form (25) which satisfy (3) but are not DMO. In fact, as shown in [13], with

\[
(33) g(r) = \sin(|\log r|) |\log r|^{-\gamma},
\]

the coefficients in (25) are DMO only for \(\gamma > 1 \), but they satisfy (3) for \(\gamma > 1/2 \) and the limit \(I(0) \) exists and is finite for all \(\gamma > 0 \). This example with \(1/2 < \delta \leq 1 \) shows that the results of [4] do not cover our results for \(L_0(x, \partial_x) \), let alone the operator (1) with singular drift.

1. Construction of the singular solution \(Z \)

In this section, we will not only prove Theorem 1, but we will state and prove Corollary 1, which shows how the formulas change when we no longer assume \(y = 0 \) and \(a_{ij}(y) = \delta_{ij} \). Instead of constructing \(Z(x) \) in a small ball, we replace the condition that \(\omega(\rho) \) satisfies (3) with

\[
(34) \sigma(1) = \int_0^1 \omega^2(\rho) \frac{d\rho}{\rho} < \mu^2
\]

where \(\mu > 0 \) is sufficiently small, and then show existence in the unit ball \(B_1 \). In fact, with \(\kappa \in (0, 1) \) as in (16), this also implies

\[
(35) \omega(r) < c_\kappa \mu \quad \text{for} \quad 0 < r \leq 1,
\]

since

\[
\mu^2 > \int_0^r \omega^2(\rho) \frac{d\rho}{\rho} \geq \omega^2(r) r^{-2+2\kappa} \int_0^r \rho^{1-2\kappa} d\rho = \frac{\omega^2(r)}{2(1 - \kappa)}.
\]

Moreover, it will be useful to consider \(L \) on all of \(\mathbb{R}^n \), so we assume

\[
(36) a_{ij}(x) = \delta_{ij} \quad \text{and} \quad b_k(x) = 0 \quad \text{for} \quad |x| > 1,
\]

and construct a solution of \(LZ = 0 \) on \(\mathbb{R}^n \setminus \{0\} \).

Proof of Theorem 1. As in [11], we use spherical means: for a function \(f(x) \) we denote its mean value over the sphere \(|x| = r \) by \(\overline{f}(r) \):

\[
\overline{f}(r) = \int_{S^{n-1}} f(r\theta) \, d\theta,
\]
Z(x) = h(|x|) + v(x), where h(r) := Z(r),
so that
\(\nabla(r) = 0. \)
If we take the spherical mean of the equation \(\mathcal{L}(h + v) = 0, \) we obtain
\[
(38a) \quad \alpha(r) h'' + \left[\frac{\alpha_n(r) - \alpha(r) + \beta(r)}{r} \right] h' + \overline{\mathcal{L}v}(r) = 0,
\]
where
\[
(38b) \quad \alpha(r) := \int_{S^{n-1}} a_{ij}(r \theta) \partial_i \partial_j \theta \, d\theta, \quad \alpha_n(r) := \int_{S^{n-1}} a_{ii}(r \theta) \, d\theta,
\]
and
\[
(38c) \quad \beta(r) := r \int_{S^{n-1}} b_k(r \theta) \partial_k \, d\theta.
\]
In terms of these, instead of (12) we can write
\[
(39) \quad I(r) = \int_r^1 (\alpha_n(s) - n \alpha(s) + \beta(s)) \frac{ds}{s}.
\]
Using (11), we see that
\[
(40a) \quad \alpha(r) = 1 + O(\omega(r)) \quad \text{and} \quad \alpha_n(r) = n + O(\omega(r)) \quad \text{as } r \to 0,
\]
and using (8) we see that
\[
(40b) \quad |\beta(r)| \leq \omega(r).
\]
Hence the integrand in (39) is bounded by \(c \omega(s) s^{-1}. \) Since \(\omega(r) \) need not satisfy the Dini condition, we do not know whether \(I(r) \) has a finite limit as \(r \to 0; \) this is, of course, the significance of Theorem 2.

Turning to the \(\overline{\mathcal{L}v}(r) \) term, if we write
\[
a_{ij} \partial_i \partial_j v = \bar{a}_{ij} \partial_i \partial_j v + \Delta v\]
where \(\bar{a}_{ij} := (a_{ij} - \delta_{ij}) \) and use \(\Delta v = \Delta \nabla = 0, \) we see that
\[
\overline{\mathcal{L}v}(r) = \frac{a_{ij} \partial_i \partial_j v(r) + b_k \partial_k v(r)}.\]
Notice that \(|\overline{\mathcal{L}v}(r)| \leq c \omega(r) \left(|D^2v| + r^{-1} |Dv| \right) \) for \(0 < r < 1 \) and \(\overline{\mathcal{L}v}(r) = 0 \) for \(r > 1. \) Since \(\alpha(r) \to 1 \) as \(r \to 0 \) and \(\alpha(r) = 1 \) for \(r > 1, \) we may assume \(\alpha(r) \geq \delta > 0 \) for \(0 < r < \infty. \) Hence we may divide (38a) by \(\alpha(r) \) and replace \(h' \) by \(g \) to obtain
\[
(41a) \quad g' + \left[\frac{n - 1 + R(r)}{r} \right] g = B[v](r),
\]
where
\[
(41b) \quad R(r) = \frac{\alpha_n(r) + \beta(r)}{\alpha(r)} - n
\]
satisfies \(|R(r)| \leq c \omega(r) \) as \(r \to 0 \) and \(R(r) = 0 \) for \(r > 1, \) and \(B[v](r) \) satisfies
\[
(41c) \quad |B[v](r)| \leq c \omega(r) \left(|D^2v(r)| + r^{-1} |Dv(r)| \right) \quad \text{for } 0 < r < 1\]
and \(B[v](r) = 0 \) for \(r > 1. \) Moreover, the monotonicity of \(\omega(r) \) and (10) imply
\[
(41d) \quad \sup_{r < \rho < 2r} \omega(\rho) \leq c \omega(r),
\]
where \(S^{n-1} \) is the unit sphere, the slashed integral denotes mean value, \(r = |x|, \theta = x/|x| \in S^{n-1}, \) and \(d\theta \) denotes standard surface measure on \(S^{n-1}. \) Let us write
\[
(37a) \quad Z(x) = h(|x|) + v(x), \quad \text{where } h(r) := Z(r),
\]
so that
\[
(37b) \quad \nabla(r) = 0.
\]
so we consequently obtain

\[(41c)\quad r^2 M_p(B[v],r) \leq c \omega(r) M_{2p}(v,r).\]

Solving (41a) involves the integrating factor $r^{n-1}E_-(r)$, where we introduce

\[(42)\quad E_\pm(r) = \exp\left[\pm \int_r^\infty R(s) \frac{ds}{s} \right] = \exp\left[\pm \int_r^1 R(s) \frac{ds}{s} \right] = \frac{1}{E_\mp(r)}.\]

Notice that $E_-(r)E_+(\rho) = \exp(\int_\rho^r R(s) s^{-1} ds)$ so by (35) we have

\[(43a)\quad \left(\frac{\rho}{r} \right)^{c_\omega \mu} \leq \exp\left(\pm \int_\rho^r R(s) \frac{ds}{s} \right) \leq \left(\frac{r}{\rho} \right)^{c_\omega \mu} \quad \text{for } 0 < \rho < r \leq 1.\]

In particular, we have

\[(43b)\quad c_1 E_\pm(r) \leq E_\pm(\rho) \leq c_2 E_\pm(r) \quad \text{for } r < \rho < 2r,\]

and for any $f \in L^p_\text{loc}(\mathbb{R}^n \setminus \{0\})$ and $\nu \in \mathbb{R}$ we have

\[(43c)\quad M_p(|x|^\nu E_\pm(|x|) f(x),r) \leq c r^{\nu} E_\pm(r) M_p(f,r).\]

While $E_+(r)$ is used to solve (41a), we observe that it is equivalent to $e^{I(r)}$. In fact,

\[(44a)\quad E_+(r) = A e^{I(r)} (1 + \tau(r))\]

where $|R(s)(1 - \alpha(s))| \leq c \omega^2(s)$ implies

\[(44b)\quad A = \exp\left[\int_0^1 R(s)(1 - \alpha(s)) s^{-1} ds \right] \quad \text{is finite and positive,}\]

and

\[(44c)\quad \tau(r) = \exp\left[- \int_0^r R(s)[1 - \alpha(s)] \frac{ds}{s} \right] - 1 \quad \text{satisfies } |\tau(r)| \leq c \sigma(r).\]

Hence, for some constants c_1, c_2 we have

\[(45)\quad c_1 E_+(r) \leq e^{I(r)} \leq c_2 E_+(r).\]

We consider (41a) as an ODE that depends on $v \in Y$, where Y is the Banach space of functions $v \in W^{2p}_\text{loc}(\mathbb{R}^n \setminus \{0\})$ for which

\[(46)\quad \|v\|_Y := \sup_{0<\rho<1} \frac{M_{2p}(v,r) r^{n-2}}{\omega(r) e^{I(r)}} + \sup_{r>1} \frac{M_{2p}(v,r) r^{n-1}}{\mu} < \infty.\]

If we let $\phi(r) = r^{n-1} E_-(r) g(r)$, then (41a) implies $\phi'(r) = r^{n-1} E_-(r) B[v](r)$. This can be integrated to find

\[(47)\quad \phi(r) = \phi(0) + \int_0^r \rho^{n-1} E_-(\rho) B[v](\rho) d\rho,\]

where $\phi(0)$ is an arbitrary constant. Of course, for (47) to be valid we need to know that $r^{n-1} E_-(r) B[v](r)$ is integrable at $r = 0$. In fact, we will show below that for $v \in Y$ we have

\[(48)\quad \int_0^r \rho^{n-1} E_-(\rho) |B[v](\rho)| d\rho \leq c \mu^2 \quad \text{for all } r > 0,\]

where c may be taken uniformly for all $v \in Y$ with $\|v\|_Y \leq 1$. Hence (47) is valid and we conclude

\[(49a)\quad g(r) = h'(r) = r^{1-n} E_+(r) \left[\phi(0) + \int_0^r \rho^{n-1} E_-(\rho) B[v](\rho) d\rho \right].\]
and
\[(49b) \quad h''(r) = \frac{1 - n - R(r)}{r^n} E_+(r) \left[\phi(0) + \int_0^r \rho^{n-1} E_-(\rho) B[v](\rho) \, d\rho \right] + B[v](r). \]

To verify (49), we observe that \(v \in Y \) implies \(M_{2,p}(v, r) \leq c \omega(r) r^{2-n} E_+(r) \), so we can use Proposition 1 in Appendix A.

(52)\[v \]

Then we obtain
\[\int_0^r \rho^{n-1} E_-(\rho) |B[v](\rho)| \, d\rho \leq c \int_0^r \rho^{n-1} \left(|D^2 v(\rho)| + \rho^{-1} |Dv(\rho)| \right) \, d\rho \]
\[\leq c E_-(r) \omega(r) \int_{r < |x| < 2r} (|D^2 v(x)| + |x|^{-1} |Dv(x)|) \, dx \]
\[\leq c E_-(r) \omega(r) r^{n-2} M_{2,p}(v, r) \leq c \omega^2(r). \]

Now if we write
\[\int_0^r \rho^{n-1} E_-(\rho) |B[v](\rho)| \, d\rho = \sum_{j=0}^{r} \int_{j/2j+1}^{r/2j+1} \rho^{n-1} E_-(\rho) |B[v](\rho)| \, d\rho, \]
then we obtain
\[\int_0^r \rho^{n-1} E_-(\rho) |B[v](\rho)| \, d\rho \leq c \sum_{j=0}^{r} \omega^2 \left(\frac{r}{j+1} \right) \]
\[\leq c \int_0^r \omega^2(\rho) \frac{d\rho}{\rho} = c \sigma(r) < c \mu^2. \]

This confirms (49) with \(c \) uniform for \(\|v\|_Y \leq 1 \).

We also have a PDE for \(v \) that depends upon \(h \). From \(\mathcal{L}Z - ZZ = 0 \) we find:
\[-\Delta v = \bar{a}_{ij} \partial_i \partial_j h - \bar{a}_{ij} \partial_i \partial_j v + \bar{a}_{ij} \partial_i \partial_j v - \bar{a}_{ij} \partial_i \partial_j v \]
\[+ b_k \partial_k h - b_k \partial_k h + + b_k \partial_k h - b_k \partial_k h. \]

For a given \(v \in Y \), we solve (41a) for \(h \) and use (49a) and (49b) to write
\[b_k \partial_k h = r^{-n} E_+(r) \left[\phi(0) + \int_0^r \rho^{n-1} E_-(\rho) B[v](\rho) \, d\rho \right] \psi_1 \]
and
\[\bar{a}_{ij} \partial_i \partial_j h = r^{-n} E_+(r) \left[\phi(0) + \int_0^r \rho^{n-1} E_-(\rho) B[v](\rho) \, d\rho \right] \psi_2 + B[v \bar{a}_{ij} \theta_i \theta_j], \]
where
\[\psi_1(r \theta) = r b_k(r \theta) \theta_k \quad \text{and} \quad \psi_2(r \theta) = \bar{a}_{ii}(r \theta) - (n + R(r)) \bar{a}_{ij}(r \theta) \theta_i \theta_j \]
also satisfy \(|\psi_i(r \theta)| \leq c \omega(r) \) for \(i = 1, 2 \). Plugging this into (51), we obtain an equation of the form \(-\Delta v = F[v]\). We want to apply \(K \), convolution by the fundamental solution of the Laplacian, to solve this, but there could be a problem: \(F[v] \) may not be integrable at \(x = 0 \). However, from (51) we see that \(F[v] = 0 \) and multiplying \(F[v](x) \) by \(|x| \) makes it integrable, so we can use Proposition 1 in Appendix A.

Applying \(K \) to both sides of (51), we obtain an equation for \(v \) alone:
\[v + S_1 v + S_2 v = \phi(0) w, \]
where
\[w(x) = K_{y \to x} \left(|y|^{-n} E_+(|y|) \left[\psi(y) - \bar{\psi}(|y|) \right] \right) \]
Hence $M_{(45)}$ to replace $M_{(55b)}$ and similarly (55a) ω in Appendix A to satisfy $10 \VLADIMIR\ MAZ'YA\ AND\ ROBERT\ MCOwen$

and we have let $\psi := \psi_1 + \psi_2$. To find $v \in Y$ satisfying (53) we need to show $w \in Y$ and $S_i : Y \to Y$ is small operator norm for $i = 1, 2$.

To show $w \in Y$, we must estimate $M_{2,p}(w, r)$ for $0 < r < 1$ and for $r > 1$. We apply Proposition 1 in Appendix A to $f(x) = |x|^{-n}E_+(|x|)(\psi(x) - \psi(|x|))$, which vanishes for $|x| > 1$, to conclude

$M_{2,p}(w, r) \leq c \left(r^{1-n} \int_0^r E_+(\rho)\omega(\rho) d\rho + r \int_r^1 E_+(\rho)\omega(\rho)r^{-n} d\rho \right)$ for $0 < r < 1$.

We can use (53a) and the monotonicity of $\omega(r)$ to estimate

(55a) $\int_0^r E_+(\rho)\omega(\rho) d\rho \leq E_+(r)\omega(r) r^{c_\mu} \int_0^r \rho^{-c_\mu} d\rho = crE_+(r)\omega(r)$

and similarly

(55b) $\int_r^1 E_+(\rho)\omega(\rho) \rho^{-n} d\rho \leq cr^{1-n}E_+(r)\omega(r)$.

Using these in (54), we obtain

$M_{2,p}(w, r)^{n-2} \leq c_\omega(r)E_+(r)$ for $0 < r < 1$, and we can invoke (53a) to replace $E_+(r)$ by $e^{r(r)}$ as required in the norm for Y. Meanwhile, for $r > 1$ we use (53a) and $E_+(\rho) \leq \rho^{-c_\mu}$ for $0 < \rho < 1$ to conclude

$M_{2,p}(w, r) \leq c_\mu r^{1-n}$.

Hence $M_{2,p}(w, r)^{n-1} \leq c_\mu$ for $r > 1$. These estimates confirm that $w \in Y$.

Next let us show that $S_1 : Y \to Y$ with small operator norm. We assume $\|v\|_Y \leq 1$ and we want to estimate $M_{2,p}(S_1 v, r)$ separately for $0 < r < 1$ and $r > 1$. Using (48) we see that the function

$f_1(y) = |y|^{-n}E_+(|y|) \int_0^{|y|} r^{n-1}E_-(\rho)B[v](\rho) d\rho (\psi(y) - \psi(|y|))$

satisfies $M_p(f_1, r) \leq c_\mu^2 E_+(r)\omega(r)r^{-n}$ for $0 < r < 1$ and $M_p(f_1, r) = 0$ for $r > 1$. Since $S_1v = -Kf_1$, we can apply Proposition 1 in Appendix 1 to obtain

$M_{2,p}(S_1 v, r) \leq c_\mu^2 \left(r^{1-n} \int_0^r E_+(\rho)\omega(\rho) d\rho + r \int_r^1 E_+(\rho)\omega(\rho)r^{-n} d\rho \right)$.

Using (55a) and (55b), we conclude $M_{2,p}(S_1 v, r)^{n-2} \leq c_\mu^2 \omega(r)E_+(r)$ for $0 < r < 1$. On the other hand, for $r > 1$, Proposition 1 in Appendix 1 implies

$M_{2,p}(S_1 v, r) \leq c_\mu^3 r^{1-n} \int_0^1 E_+(\rho)\omega(\rho) d\rho \leq c_\mu^3 r^{1-n}$,

so $M_{2,p}(S_1 v, r)^{n-1} \leq c_\mu^3$ for $r > 1$. Combining these estimates, we see that $S_1 : Y \to Y$ has small operator norm.

Finally, we show that $S_2 : Y \to Y$ with small operator norm. Again we assume $\|v\|_Y \leq 1$ and estimate $M_{2,p}(S_2 v, r)$ separately for $0 < r < 1$ and $r > 1$. Notice that the function

$f_2 = B[v] (\bar{a}_{ij}^\theta \theta_j - \tilde{a}_{ij}^\theta \theta_j)$

satisfies

$M_p(f_2, r) \leq \omega(r)M_p(B[v], r) \leq c_\omega^3(r)E_+(r)r^{-n}$ for $0 < r < 1$, and

$M_p(f_2, r) \leq c_\mu^3 E_+(r)r^{-n}$ for $r > 1$. Since $\omega(r) \leq \omega(1)$, we use (55a) to estimate

$M_{2,p}(f_2, r) \leq c_\mu^3 r^{1-n} \int_0^r E_+(\rho)\omega(\rho) d\rho \leq c_\mu^3 r^{1-n}$,

so $M_{2,p}(f_2, r)^{n-1} \leq c_\mu^3$ for $r > 1$. Combining these estimates, we see that $S_2 : Y \to Y$ has small operator norm.
where \(c \) is independent of \(v \), and \(M_p(f_2, r) = 0 \) for \(r > 1 \). Similarly, the function

\[
f_3 = \tilde{a}_{ij} \partial_i \partial_j v - a_{ij} \partial_i \partial_j v
\]

satisfies

\[
M_p(f_3, r) \leq \omega(r) M_p(D^2 v, r) \leq \omega^2(r) E_+(r) r^{-n}
\]

for \(0 < r < 1 \), and \(M_p(f_3, r) = 0 \) for \(r > 1 \). For \(0 < r < 1 \), we apply Proposition 1 in Appendix 1 to \(S_2 v = -K(f_2 + f_3) \) to conclude

\[
M_{2,p}(S_2 v, r) \leq \frac{c}{r^{1-n}} \int_0^r \omega^2(\rho) E_+(\rho) d\rho + \frac{r}{r} \int_0^1 \omega^2(\rho) E_+(\rho) \rho^{-n} d\rho.
\]

Using (55), (55a), and (55b), we conclude that \(M_{2,p}(S_2 v, r) r^{n-2} \leq c \mu \omega(r) E_+(r) \) for \(0 < r < 1 \). Meanwhile, for \(r > 1 \), we use (55) and (55a) to estimate

\[
M_{2,p}(S_2 v, r) \leq c r^{1-n} \int_0^1 \omega^2(\rho) E_+(\rho) d\rho \leq c \mu^2 r^{1-n} \int_0^1 \rho^{-c} \mu d\rho \leq c \mu^2 r^{-1-n}.
\]

Consequently, \(M_{2,p}(S_2 v, r) r^{n-1}/\mu \leq c \mu \). These estimates show that \(S_2 : Y \rightarrow Y \) has small operator norm.

Since \(S_1 + S_2 \) has small operator norm on \(Y \), we conclude that (55) has a unique solution \(v \in Y \), depending on the choice of the constant \(c_\star = \phi(0) \). But once \(c_\star \) and \(v \) are known, we find \(g(r) \) from (49a) and integrate to find \(h(r) \):

\[
h(r) = \int_r^\infty s^{1-n} E_+(s) \left[c_\star + \int_0^s \rho^{n-1} E_-(\rho) B[v](\rho) d\rho \right] ds + c_2
\]

where \(c_2 \) is an arbitrary constant. To show that the solution \(Z(x) = h(|x|) + v(x) \) is of the form (17), we choose \(c_\star \) to enable us to replace \(E_+(s) \) by \(e^{I(s)} \); recalling (44a) we see that we should take \(c_\star = A^{-1} \) and write \(h(r) = h_0(r) + h_1(r) + c \) where

\[
h_0(r) = \int_r^1 s^{1-n} e^{I(s)} ds
\]

and (recalling (44c))

\[
h_1(r) = \int_r^1 s^{1-n} e^{I(s)} \tau(s) ds + \int_r^1 s^{1-n} E_+(s) \int_0^s \rho^{n-1} E_-(\rho) B[v](\rho) d\rho ds.
\]

Integrating by parts and using \(|I'(s)| \leq c s^{-1} \omega(s) \) we can show

\[
\left| h_0(r) - \frac{r^{2-n}}{n-2} e^{I(r)} \right| \leq c r^{2-n} e^{I(r)} \omega(r).
\]

Using \(|\tau(s)| \leq c \sigma(s) \) and \(50 \), we can also estimate

\[
|h_1(r)| \leq c r^{2-n} e^{I(r)} \max(\omega(r), \sigma(r)) \quad \text{for} \quad 0 < r < 1.
\]

If we define

\[
\zeta(r) = \frac{h_1(r)}{h_0(r)} \quad \text{for} \quad 0 < r < 1,
\]

then we can easily estimate \(|\zeta(r)|, |r \zeta'(r)| \leq c \max(\omega(r), \sigma(r)) \). To estimate \(\zeta'' \), let us write \(h_0 \zeta'' = h_1'' - h_0'' \zeta - 2 h_0' \zeta' \) where

\[
h_0''(r) = (n - 1) r^{-n} e^{I(r)} - r^{1-n} e^{I(r)} I'(r)
\]
and
\[h''_1(r) = r^{-n}e^{I(r)}[(n-1)\tau(r) - rI'(r)\tau(r) - r\tau'(r)]\]
\[(59b) + r^{-n}E_+(r)(n-1 + R(r))\int_0^\rho n^{-1} R(\rho) B[v](\rho) d\rho - B[v](r).\]

We can estimate h''_1 and h'_0 pointwise, but h''_1 needs to be estimated in M_p. However, using (41c) and $v \in Y$, we may conclude $M_p(r^2\chi^u, r) \leq c \max(\omega(r), \sigma(r))$. Combining with the estimates of the lower-order derivatives, we have shown (17c). Since (17c) follows from $v \in Y$, we have proved the first part of Theorem 1.

Let us now turn to the second part of Theorem 1. Suppose $u \in W^{2,p}_{\delta_0}(B_1 \setminus \{0\})$ satisfies $Lu = 0$ in $B_1 \setminus \{0\}$ and $M_{2,p}(u, r) \leq cr^{1-n+\varepsilon_0}$ for some $\varepsilon_0 > 0$; we want to show u is of the form (19). We will use properties of the bounded linear map
\[(60) \mathcal{L} : W^{2,p}_{\delta_0, \delta_1}(\mathbb{R}^n_o) \rightarrow L^p_{\delta_0+2, \delta_1+2}(\mathbb{R}^n_o),\]
where $\mathbb{R}^n_o = \mathbb{R}^n \setminus \{0\}$ and $W^{2,p}_{\delta_0, \delta_1}(\mathbb{R}^n_o), L^p_{\delta_0+2, \delta_1+2}(\mathbb{R}^n_o)$ are the weighted Sobolev spaces that are defined in Appendix B. Since we are interested in the behavior of functions at the origin, we fix $\delta_1 \in (-n/p, -2+n/p')$ and allow δ_0 to vary. Note that (60) is a perturbation of (82), and the norm of the difference $\mathcal{L} - \Delta$ depends on the magnitude of
\[\sup_{|v|<1} (|a_{ij}(x) - \delta_{ij}| + |x| b_k(x)).\]

Thus, provided we take μ in (34) sufficiently small, we can arrange that (60) and (82) are not only Fredholm for exactly the same values of δ_0 and δ_1, but the nullity and deficiency of the two maps depend on the magnitude of
\[\sup_{|v|<1} (|a_{ij}(x) - \delta_{ij}| + |x| b_k(x)).\]

Introduce a cutoff function $\chi \in C^\infty_0(B_1)$ with $\chi = 1$ on $B_{1/2}$, then $M_{2,p}(\chi u, r) \leq cr^{1-n+\varepsilon_0}$ implies $\chi u \in W^{2,p}_{\delta_0}(B_1)$ provided $\delta_0 \geq 1$. Let us choose $\delta_0^* \in (-n/p + 1 + n/p')$ and let $f = \mathcal{L}(\chi u)$. Since $f = 0$ for $|x| < 1/2$ and for $|x| > 1$, we have $f \in L^p_{\delta_0+2, \delta_1+2}(\mathbb{R}^n_o)$ for all δ_0 so let us choose $\delta_0 \in (-n/p, -2+n/p')$. By (i) we can find $v = \mathcal{L}^{-1}f \in W^{2,p}_{\delta_0}(\mathbb{R}^n_o)$. Then $\chi u - v \in W^{2,p}_{\delta_0, \delta_1}(\mathbb{R}^n_o)$ satisfies $\mathcal{L}(\chi u - v) = 0$. By (ii), $\mathcal{L} : W^{2,p}_{\delta_0, \delta_1}(\mathbb{R}^n_o) \rightarrow L^p_{\delta_0+2, \delta_1+2}(\mathbb{R}^n_o)$ has nullity 1. Since $\mathcal{L} \neq 0$, the nullspace must be spanned by Z and so $\chi u - v = c_0 Z$ for some constant c_0.

It only remains to show that $v = c_1 + w$ where $M_{2,p}(w, r) \leq cr^{1-\varepsilon_1}$ for any $\varepsilon_1 > 0$. Let us pick $\delta_0^- \in (-1 - n/p, -n/p)$ so that (iii), the map
\[(61) \mathcal{L} : W^{2,p}_{\delta_0^-}(\mathbb{R}^n_o) \rightarrow L^p_{\delta_0^-+2, \delta_1+2}(\mathbb{R}^n_o),\]
is injective with deficiency 1. Let ζ be a linear functional on $L^p_{\delta_0^-+2, \delta_1+2}(\mathbb{R}^n_o)$ that vanishes on the image of (61). Note that $\mathcal{L} \chi = 0$ for $|x| < 1/2$ and for $|x| > 1$, so $\mathcal{L} \chi \in L^p_{\delta_0^-+2, \delta_1+2}(\mathbb{R}^n_o)$. But $\chi \not\in W^{2,p}_{\delta_0^-, \delta_1}(\mathbb{R}^n_o)$ since $\delta_0^- < -n/p$, so $\mathcal{L} \chi$ is not in the image of (61), and hence $\zeta[\mathcal{L}(\chi u)] \neq 0$. This enables us to find c_1 so that
\[\zeta[\mathcal{L}(\chi u - c_1 \chi)] = 0, \quad \text{i.e., } \mathcal{L}(\chi u - c_1 \chi) \in \text{image of (61)}, \quad \text{so } \mathcal{L} w = \mathcal{L}(\chi u - c_1 \chi) \text{ for some } w \in W^{2,p}_{\delta_0^-, \delta_1}(\mathbb{R}^n_o) \subset W^{2,p}_{\delta_0^-}(\mathbb{R}^n_o).\]

Since $\delta_0 \in (-n/p, -2+n/p')$, by the isomorphism (i) we have $w = \chi u - c_1 \chi$. In other words, for $|x| < 1/2$ we have $v = c_1 + w$, where $w \in W^{2,p}_{\delta_0^-}(\mathbb{R}^n_o)$.

For any $\varepsilon_1 \in (0, 1)$ we can let $\delta_0 = \varepsilon_1 - 1 - n/p$ and conclude $M_{2,p}(w, r) \leq cr^{1-\varepsilon_1}$, as stated in Theorem 1. This completes the proof. □

Now let us combine Theorem 1 with a change of variables to treat a general $y \in \mathbb{R}^n$ and we do not assume $a_{ij}(y) = \delta_{ij}$. We let $B_\varepsilon(y) = \{ x : |x - y| < \varepsilon \}$ and want to construct a singular solution of

$$L(x, \partial_x)Z_y(x) = 0 \quad \text{for } x \in B_\varepsilon(y) \setminus \{ y \},$$

provided ε is sufficiently small. Since A_y is symmetric and positive definite, we can define the symmetric matrix $A_y^{-1/2}$. This enables us to define the function $I_y(r)$ as in (60).

Corollary 1. For $n \geq 3$, $p \in (1, \infty)$, and fixed $y \in U$, assume that A_y is positive definite and the coefficients a_{ij} satisfy (29). If $y = 0$, we assume (3) but otherwise the b_k are bounded on U. Then, for ε sufficiently small, there exists a solution Z_y of (62) in the form

$$(63)\begin{align*}
Z_y(x) &= h_y(|A_y^{-1/2}(x - y)|) + v(x), \\
h_y(r) &= \int_r^\varepsilon s^{1-n}e^{I_y(s)}ds \left(1 + \zeta_y(r)\right)
\end{align*}$$

with $I_y(r)$ given by (60) and ζ_y satisfying

$$(63)\begin{align*}
M_{2,p}(\zeta_y, r) &\leq c \max(\omega(r), \sigma(r)), \\
v &\text{ satisfying } M_{2,p}(v, r; y) \leq c r^{2-n}e^{I_y(r)}\omega(r).
\end{align*}$$

Moreover, for any $u \in W^{2,p}_{\text{loc}}(\overline{B_\varepsilon(y)} \setminus \{ y \})$ that is a strong solution of $L(x, \partial_x)u = 0$ in $\overline{B_\varepsilon(y)} \setminus \{ y \}$ and subject to the growth condition

$$M_{2,p}(u, r; y) \leq cr^{1-n+\varepsilon_0} \quad \text{where } \varepsilon_0 > 0,$$

there exist constants c_0, c_1 such that

$$u(x) = c_0 Z_y(x) + c_1 + w(x),$$

where $M_{2,p}(u, r; y) \leq cr^{1-\varepsilon_1}$ for any $\varepsilon_1 > 0$.

If we use integration by parts, we can write the solution of Corollary 1 as

$$Z_y(x) = \frac{(A^{-1}_y(x - y), (x - y))^{2-n}}{(n-2)} e^{I_y(\sqrt{(A^{-1}_y(x - y), (x - y))})}(1 + \xi_y(x))$$

where $M_{1,\infty}(\xi_y, r; y) \leq c \max(\omega(r), \sigma(r))$ for $0 < r < \varepsilon$. This generalizes (20).

Proof of Corollary 1. First we consider $y = 0$. Since A_0 is positive definite, we can define a symmetric matrix by $J = A_0^{-1/2}$, so $JA_0J = I$. If we introduce a change of variables by $\tilde{x} = Jx$ and new coefficients $\tilde{a}_{ij}(\tilde{x})$ and $\tilde{b}_k(\tilde{x})$ by

$$\tilde{A}_x = JA_xJ \quad \text{and} \quad \tilde{B}_2 = B_xJ,$$

then $\tilde{A}_0 = I$ and

$$L(x, \partial_x) = a_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + b_k \frac{\partial}{\partial x_k} = \tilde{a}_{ij} \frac{\partial^2}{\partial \tilde{x}_i \partial \tilde{x}_j} + \tilde{b}_k \frac{\partial}{\partial \tilde{x}_k} = \tilde{L}(\tilde{x}, \partial_{\tilde{x}}).$$
Hence we may apply Theorem 1 in the variables \(\tilde{x} \) to conclude the existence of a solution \(\tilde{Z} \) of
\[
\mathcal{L}(\tilde{x}, \partial_{\tilde{x}}) \tilde{Z}(\tilde{x}) = 0 \quad \text{for} \quad 0 < |\tilde{x}| < \varepsilon \quad \text{in the form} \quad \tilde{Z}(\tilde{x}) + \tilde{h}(|\tilde{x}|) + \tilde{v}(\tilde{x})
\]
where
\[
\tilde{h}(r) = \int_r^\varepsilon s^{1-n} e^{I(s)} \, ds \quad (1 + \zeta(r))
\]
with \(M_{2,\rho}(\zeta, r) \leq c \max(\omega(r), \sigma(r)), \) \(M_{2,\rho}(\tilde{v}, r) \leq c r^{2-n} e^{I(r)} \omega(r), \) and
\[
I(r) = \frac{1}{|S^{n-1}|} \int_{r < |z| < \varepsilon} \left(\text{tr}(\tilde{A}_z) - n \frac{\langle \tilde{A}_z, z \rangle}{|z|^2} + \langle \tilde{B}_z, z \rangle \right) \, \frac{dz}{|z|^n}. \]

In terms of the original variables, we see that \(Z(x) = \tilde{h}(|Jx|) + \tilde{v}(Jx) \) satisfies \(\mathcal{L}(x, \partial_x)Z = 0 \) for
\(0 < |Jx| < \varepsilon, \) hence for \(0 < |x| < \varepsilon_1 \) with \(\varepsilon_1 \) sufficiently small.

Finally, if \(y \) is a general point in \(U, \) then we use the change of variables \(\tilde{x} = J(x - y) \) with
\[J = A_y^{1/2} \] and let \(\tilde{A}_\tilde{x} = (\partial_{ij}(\tilde{x})) = JA_xJ. \) Since \(\tilde{x} = 0 \) corresponds to \(x = y, \) we have \(\tilde{a}_{ij}(0) = \delta_{ij}, \)
so we can apply Theorem 1 to \(\mathcal{L}(\tilde{x}, \partial_{\tilde{x}}) = \mathcal{L}(x, \partial_x) \) to obtain the solution \(\tilde{h}(|\tilde{x}|) + \tilde{v}(\tilde{x}). \) We obtain the solution of (67) as
\[
Z_y(x) = \tilde{h}(|J(x - y)|) + \tilde{v}(J(x - y)),
\]
where \(\tilde{h}(r) \) involves the above \(I(r). \) To transform \(I(r) \) to the original variables, replace \(\tilde{A}_z \) by
\(A_z \) and every occurrence of \(\tilde{z} \) by \(x - y; \) we find \(I \) is of the desired form (69). Moreover, since
\(\tilde{v} \) satisfies \(M_{2,\rho}(\tilde{v}, r) \leq c r^{2-n} e^{I(r)} \omega(r), \) we find that \(v(x) = \tilde{v}(J(x - y)) \) satisfies \(M_{2,\rho}(v, r; y) \leq c r^{2-n} e^{I(r)} \omega(r), \) as desired. \(\square \)

2. Finding the constant \(C_y \) so that \(-\mathcal{L}Z(x) = C_y \delta(x - y)\)

In this section we first prove Theorem 2, then state and prove Corollary 2, which shows how the formulas change when we no longer assume \(y = 0 \) and \(a_{ij}(y) = \delta_{ij}. \) As in the proof of Theorem 1, we shall assume (34) holds for \(Z_x = 0 \) and only involve \(v \) by \(\delta(x), \) i.e. satisfy (65) for some constant \(C_0. \) This was done for \(\mathcal{L}_0 \) in (11), and many of the arguments here are the same, so we shall be brief; for more details, consult (11).

From Theorem 1, we obtain estimates on \(\partial Z \) and \(\partial^2 Z \) that show \(\mathcal{L}(x, \partial_x)Z(x) \) can be regularized at \(x = 0 \) as a distribution \(\mathcal{F}_0 \) on \(C^0_0(U), \) the Hölder continuous functions with compact support in \(U. \) So if we can define \(\mathcal{L}(x, \partial_x)Z(x) \) as a distribution \(\mathcal{F}, \) then it must be supported at \(x = 0 \) and only involve \(\delta(x), \) not derivatives of \(\delta(x), \) i.e. satisfy (65) for some constant \(C_0. \)

The difficulty in defining \(\mathcal{L}(x, \partial_x)Z(x) \) as a distribution comes from the lack of regularity of the coefficients, especially \(a_{ij}. \) In particular, there is no difficulty in defining 2nd-order distributional derivatives of \(Z \) by
\[
\langle \partial_i \partial_j Z, \phi \rangle = -\int_U \partial_i Z(x) \partial_j \phi(x) \, dx \quad \text{for} \quad \phi \in C^0_0(U),
\]
since the integral on the right converges. So let us try to define the distribution \(\mathcal{L}Z \) by
\[
\langle \mathcal{L}Z, \phi \rangle = \int_U \left((a_{ij} - \delta_{ij}) \partial_i \partial_j Z \phi - \partial_i Z \partial_j \phi + b_k \partial_k Z \phi \right) \, dx \quad \text{for} \quad \phi \in C^0_0(U).
\]
This is an improper integral due to the singularities in \(\partial_i \partial_j Z \) and \(b_k \partial_k Z \) at \(x = 0, \) but if the integral converges then we conclude (65) holds and we can compute \(C_0 \) from
\[
- C_0 = \lim_{\varepsilon \to 0} \int_U \left((a_{ij} - \delta_{ij}) \partial_i \partial_j Z \phi_x - \partial_i Z \partial_j \phi_x + b_k \partial_k Z \phi_x \right) \, dx,
\]
where $\phi_{\varepsilon}(|x|) = \chi(|x|/\varepsilon)$ with $\chi(r)$ being a smooth cutoff function that is 1 for $0 < r < 1/4$ and vanishes for $r > 1/2$. (We may assume $\phi(x) = \phi(|x|)$ since we can write $\phi(x) = \phi_0(|x|) + \phi_1(x)$ where $|\phi_1(x)| + |x| |\nabla \phi_1(x)| \leq c |x|$ for $|x| < 1$, which shows that $\langle L \mu, \phi_1 \rangle$ is well-defined as an integral and contributes nothing to C_0.)

Proof of Theorem 2. Recall from the proof of Theorem 1 the decomposition $Z(x) = h(|x|) + v(x)$ in (56). We first show that v makes no contribution to determining the value of C_0. Since $v \in Y$, we have $M_{2,p}(v, r) \leq c r^{2-n} \omega(r) e^{I(r)}$. But $I(r)$ is bounded above in both cases (i) and (ii), so we have

\begin{equation}
M_{2,p}(v, r) \leq c r^{2-n} \omega(r) \quad \text{for } 0 < r < 1.
\end{equation}

Then, as $\varepsilon \to 0$, we have\footnote{In the following, integrals involving $\int_{|x|<\varepsilon}$ should be interpreted as improper: $\lim_{\eta \to 0} \int_{\eta<|x|<\varepsilon}$.}

\[
\int_{|x|<\varepsilon} |(a_{ij} - \delta_{ij}) \partial_i \partial_j v \phi_{\varepsilon}| \, dx \leq c \int_0^\varepsilon \omega^2(r) \frac{dr}{r} = c \sigma(\varepsilon) \to 0,
\]

\[
\int_{|x|<\varepsilon} |\partial_i v \partial_i \phi_{\varepsilon}| \, dx \leq c \varepsilon^{-1} \int_0^\varepsilon \omega(r) \, dr \leq c \omega(\varepsilon) \to 0
\]

and

\[
\int_{|x|<\varepsilon} |b_k \partial_k v \phi_{\varepsilon}| \, dx \leq c \int_0^\varepsilon \omega^2(r) \frac{dr}{r} = c \sigma(\varepsilon) \to 0.
\]

So v makes no contribution to C_0.

Now we consider $h(r)$. In fact, from (56) we can write $h(r) = h_0(r) + h_1(r) + c$, where c is an arbitrary constant and

\[
h_0(r) = c_s \int_r^1 s^{1-n} E_+(s) \, ds,
\]

\[
h_1(r) = \int_r^1 s^{1-n} E_+(s) \int_0^s \rho^{n-1} E_-(\rho) B[v](\rho) \, d\rho \, ds,
\]

with E_+ defined in (42) and c_s chosen as in the proof of Theorem 1 so that $c_s E_+(0) = e^{I(0)}$. (Note that this decomposition of $h(r)$ is slightly different from (57).) Let us show that h_1 and c do not contribute to C_0. We compute

\[
\partial_t h_1 = -x_i r^{-n} E_+(r) \int_0^r \rho^{n-1} E_-(\rho) B[v](\rho) \, d\rho,
\]

\[
\partial_i \partial_j h_1 = -r^{-n} E_+(r) \left(\delta_{ij} - (n + R(r)) \frac{x_i x_j}{r^2} \right) \int_0^r \rho^{n-1} E_-(\rho) B[v](\rho) \, d\rho - \frac{x_i x_j}{r^2} B[v](r),
\]

and hence

\[
\int_{|x|<\varepsilon} [(a_{ij} - \delta_{ij}) \partial_i \partial_j h_1 \phi_{\varepsilon} + b_k \partial_k h_1 \phi_{\varepsilon} - \partial_t h_1 \partial_t \phi_{\varepsilon}] \, dx
\]

\[
= \int_0^\varepsilon \left[\frac{R(r)}{r} E_+(r) \chi \left(\frac{r}{\varepsilon} \right) + E_+ \frac{d}{dr} \chi \left(\frac{r}{\varepsilon} \right) \right] \int_0^r \rho^{n-1} E_-(\rho) B[v](\rho) \, d\rho \, dr
\]

\[
- \int_0^\varepsilon (\alpha(r) - 1) r^{n-1} B[v](r) \chi \left(\frac{r}{\varepsilon} \right) \, dr
\]

\[
+ \varepsilon^{-1} \int_0^\varepsilon E_+(r) \int_0^r \rho^{n-1} E_-(\rho) B[v](\rho) \, d\rho \chi \left(\frac{r}{\varepsilon} \right) \, dr.
\]
Let us denote these three terms $I_1(e), I_2(e), I_3(e)$ and estimate them separately. First,

$$I_1(e) = \int_0^e \frac{d}{dr} \left[E_+(r) \chi \left(\frac{r}{\varepsilon} \right) \int_0^{\rho^{-1} E_-(\rho) B(v)(\rho) \, d\rho \right) dr - \int_0^e r^{n-1} \chi \left(\frac{r}{\varepsilon} \right) B[v](r) \, dr.$$

$$= E_+(e) \int_0^e r^{n-1} E_-(r) B[v](r) \, dr - \int_0^e r^{n-1} B[v](r) \chi \left(\frac{r}{\varepsilon} \right) \, dr.$$

But recall from (50) that $\int_0^e r^{n-1} E_-(r) B[v](r) \, dr \leq c \sigma(e)$ and $I(r)$ is bounded implies $E_+(r)$ are bounded above and below by positive constants, so $|I_1(e)| \leq c \sigma(e) \to 0$ as $\varepsilon \to 0$. This also implies $|I_2(e)| \to 0$ as $\varepsilon \to 0$. As for $I_3(e)$, we also have

$$|I_3(e)| \leq c \varepsilon^{-1} \int_0^\varepsilon \chi(r) \, dr \leq c \sigma(e) \to 0 \text{ as } \varepsilon \to 0.$$

We conclude that h_1 does not contribute to C_0.

Finally, we consider h_0. We can calculate $\partial_1 h_0 = -c_r r^{-n} E_+(r) x_i$, and

$$\partial_1 \partial_j h_0 = -c_r r^{-n} E_+(r) \left(\delta_{ij} - n \frac{a_{ij} x_i x_j}{r^2} - \frac{x_i x_j}{r^2} R(r) \right).$$

It is easy to verify that

$$(a_{ij} - \delta_{ij}) \partial_i \partial_j h_0 = -c_r r^{-n} E_+(r) \left(a_{ii} - n \frac{a_{ij} x_i x_j}{r^2} - \left(\frac{a_{ij} x_i x_j}{r^2} - 1 \right) R(r) \right).$$

Notice that

$$\int_{|x|<\varepsilon} r^{-n} E_+(r) \left(a_{ii} - n \frac{a_{ij} x_i x_j}{r^2} - \left(\frac{a_{ij} x_i x_j}{r^2} - 1 \right) R(r) \right) \phi_e(|x|) \, dx$$

$$= |S^{n-1}| \int_0^\varepsilon E_+(r) \frac{\alpha_\alpha(r) - n \alpha(r) - (\alpha(r) - 1) R(r)}{r} \chi \left(\frac{r}{\varepsilon} \right) \, dr$$

$$= |S^{n-1}| \int_0^\varepsilon E_+(r) \frac{R(r) - \beta(r)}{r} \chi \left(\frac{r}{\varepsilon} \right) \, dr,$$

since $\alpha(r) R(r) = \alpha_\alpha(r) + \beta(r) - n \alpha(r)$. Similarly, we can verify

$$\int_{|x|<\varepsilon} b_k \partial_k h_0 \phi_e \, dx = -c_r |S^{n-1}| \int_0^\varepsilon E_+(r) \frac{\beta(r)}{r} \chi \left(\frac{r}{\varepsilon} \right) \, dr,$$

so

$$\langle L h_0, \phi_e \rangle = c_r |S^{n-1}| \int_0^\varepsilon \left(-E_+(r) \frac{R(r)}{r} \chi \left(\frac{r}{\varepsilon} \right) + E_+(r) \frac{\beta(r)}{r} \chi \left(\frac{r}{\varepsilon} \right) \right) \, dr.$$

Hence

$$\langle L h_0, \phi_e \rangle = -c_r |S^{n-1}| \int_0^\varepsilon \frac{d}{dr} \left[E_+(r) \chi \left(\frac{r}{\varepsilon} \right) \right] \, dr = c_r |S^{n-1}| E_+(0).$$

Letting $\varepsilon \to 0$, we conclude Z satisfies (65) with $C_0 = |S^{n-1}| e^{f(0)}$. \hfill \square

Now let us consider a general fixed $y \in U$ and try to solve

$$(71) \quad -\mathcal{L}(x, \partial_x) Z_y(x) = C_y \delta(x - y) \quad \text{for } x \in B_1(y)$$

for some constant C_y. We replace (66) with

$$(72) \quad \langle LZ_y, \phi \rangle = \int_U \left((a_{ij} - a_{ij}(y)) \partial_i \partial_j Z_y \phi - a_{ij}(y) \partial_i Z_y \partial_j \phi + b_k \partial_k Z_y \phi \right) \, dx.$$

Corollary 2. Suppose the conditions of Corollary 1 hold and Z_y is the singular solution found there with $I_y(r)$ given by (60a).
(i) If \(I_y(0) = \lim_{r \to 0} I_y(r) \) exists and is finite, then we can solve (21) in \(B_1(y) \) with \(C_y = |S^{n-1}| \sqrt{\det A_y} e^{I_y(0)} \).

(ii) If \(I_y(r) \to -\infty \) as \(r \to 0 \), then solving (10) in \(B_1(y) \) yields \(C_0 = 0 \), and so \(Z \) solves
\[-\mathcal{L}(x, \partial_x)Z(x) = 0 \]
in \(B_0(y) \), despite its singularity at \(x = y \).

If \(I_y(0) \) exists and is finite, we see from (64) that the solution \(F_y \) of
\[-\mathcal{L}(x, \partial_x)F_y(x) = \delta(x-y) \]
in \(B_0(y) \) has the asymptotic behavior

\[
F_y(x) = \frac{\langle A_y^{-1}(x-y), (x-y) \rangle^{2-n}}{(n-2)|S^{n-1}| \sqrt{\det A_y}} (1 + o(1)) \quad \text{as } x \to y.
\]

This generalizes (21) and establishes (31).

Proof of Corollary 2. We only need to show that

\[
\langle -\mathcal{L}Z_y, \phi \rangle = |S^{n-1}| \langle (\det A_y)^{-1/2} e^{I_y(0)} \phi \rangle
\]

for some \(\phi \in C_0^\infty(B_{\varepsilon_x}(y)) \). Let us recall the change of coordinates used in the proof of Theorem 1, namely \(\tilde{x} = J(x-y) \) where \(J = A_y^{-1/2} \), and let \(\tilde{\phi} = \phi(x) \). Then

\[
-\int \mathcal{L}(x, \partial_x)Z_y(x) \phi(x) \, dx = -(\det A_y)^{1/2} \int \tilde{\mathcal{L}}(\tilde{x}, \partial_{\tilde{x}}) \tilde{Z}_y(\tilde{x}) \tilde{\phi}(\tilde{x}) \, d\tilde{x}.
\]

But Theorem 2 implies \(-\langle \tilde{\mathcal{L}} \tilde{Z}_0, \tilde{\phi} \rangle = |S^{n-1}| e^{I_y(0)} \tilde{\phi}(0) \). Since \(\tilde{\phi}(0) = \phi(y) \), we obtain the desired result. \(\square \)

3. Constructing the fundamental solution

Proof of Theorem 3. For each \(y \in U \), denote the \(\varepsilon \) in Corollary 1 by \(\varepsilon_y \), and use Corollary 2 to calculate \(C_y \), which is positive since \(I_y(0) \) is finite. We conclude that
\[-\mathcal{L}(x, \partial_x)Z_y(x)/C_y = \delta(x-y) \]
for all \(x, y \in U \) with \(|x-y| < \varepsilon \). For fixed \(y \in U \), let \(\eta_y(r) \) be a smooth cutoff function satisfying \(\eta_y(r) = 1 \) for sufficiently small \(r \) and define

\[
F(x, y) = \eta_y(|x-y|)Z_y(x)/C_y + v(x, y),
\]

where \(v(x, y) \) is to be determined. But if we apply \(-\mathcal{L}(x, \partial_x) \) we obtain

\[
-\mathcal{L}(x, \partial_x)F(x, y) = \delta(x-y) + \psi(x, y) - \mathcal{L}(x, \partial_x)v(x, y),
\]

where \(\psi(\cdot, y) \in L^p(U) \) for \(1 < p < \infty \) and vanishes near \(y \). We may assume that \(U \) has a smooth boundary (else we can embed it in such a bounded domain and extend the coefficients, see [16]), so we may find \(v(x, y) \) by solving the Dirichlet problem (for fixed \(y \in U \)):

\[
-\mathcal{L}(x, \partial_x)v(x, y) = \psi(x, y) \quad \text{for } x \in U,
\]

\[
v(x, y) = 0 \quad \text{for } x \in \partial U.
\]

When \(b_k \in L^\infty(U) \), it is well-known (cf. Theorem 9.15 in [6]) that (75) has a unique solution \(v(\cdot, y) \in W^{2,p}(U) \cap W^{1,p}_0(U) \) for \(1 < p < \infty \); associated with this unique solvability is the à priori inequality \(\|v\|_{W^{2,p}(U)} \leq C \|v\|_{W^{1,p}_0(U)} \) for \(v \in W^{2,p}(U) \cap W^{1,p}_0(U) \). But our assumption [6] enables us to write \(\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_2 \), where \(\mathcal{L}_1 \) has bounded coefficients in \(U \) and \(\mathcal{L}_2 = \tilde{b}_k \partial_k \) has coefficients supported in a ball \(B_{\varepsilon} \). For any \(\varepsilon > 0 \), we can take \(\sigma \) sufficiently small that \(\sup_{x \in B_{\varepsilon}} |b_k(x)| \leq \varepsilon |x|^{-1} \). For \(1 < p < n \), by Hardy’s inequality we have \(\|\mathcal{L}_2 w\|_{L^p} \leq \varepsilon \|w\|_{W^{2,p}} \) for \(w \in W^{2,p} \) with support in \(B_{\varepsilon} \). If we take \(\varepsilon \) sufficiently small, we can arrange that the à priori inequality \(\|v\|_{W^{2,p}(U)} \leq C \|v\|_{W^{1,p}_0(U)} \) holds for \(v \in W^{2,p}(U) \cap W^{1,p}_0(U) \). We conclude that (75) admits a unique solution \(v(\cdot, y) \in W^{2,p}(U) \cap W^{1,p}_0(U) \) for \(1 < p < n \). Taking \(p \in (n/2, n) \), we see that \(v(x, y) \) is continuous in \(x \in U \).
To confirm that $F(x,y)$ satisfies (31), we know from (74) and (64) that
\[
F(x,y) = \frac{(A_n^{-1}(x-y), (x-y))_{L^2}}{(n-2)|S^{n-1} \sqrt{\det A_y}|} e^{t_y \sqrt{(A_n^{-1}(x-y), (x-y))}} - t_y(0)(1 + \epsilon_y(x))
\]
where $M_{1,\infty}(\xi_y, r; y) \leq c \max(\omega(r), \sigma(r))$ for $0 < r < \varepsilon$. Since the exponential term tends to 1 as $|x - y| \to 0$, we obtain (31). □

Appendix A. L^p-Mean Estimates for Convolutions

In [11], we proved L^p-mean estimates for distribution solutions of
\[
\Delta u = f \quad \text{in} \quad \mathbb{R}^n \setminus \{0\},
\]
when f has zero spherical mean, i.e. $\mathcal{F}(r) = 0$. Let K denote convolution by the fundamental solution Γ of the Laplacian. The following appears as Corollary 1 in Section 1 of [11].

Proposition 1. Suppose $n \geq 2$, $p \in (1, \infty)$, and $f \in L^p_{\text{loc}}(\mathbb{R}^n \setminus \{0\})$ satisfies
\[
\mathcal{F}(r) = 0 \quad \text{and} \quad \int_{|x|<1} |x| |f(x)| \, dx + \int_{|x|>1} |x|^{1-n} |f(x)| \, dx < \infty.
\]
Then $u = Kf = \Gamma * f$ is a distribution solution of (76) that satisfies
\[
M_{2,p}(Kf, r) \leq c \left(r^{1-n} \int_0^r M_p(r, \rho) \, d\rho + r \int_r^\infty M_p(f, \rho) \, d\rho \right).
\]

Appendix B. The Laplacian on Weighted Sobolev Spaces

Many authors have studied the mapping properties of elliptic operators such as the Laplacian on weighted Sobolev spaces on \mathbb{R}^n and other noncompact manifolds with conical or cylindrical ends: cf. [10], [14], [15]. We will recall some of these results for punctured Euclidean space $\mathbb{R}^n_0 := \mathbb{R}^n \setminus \{0\}$. Since we are mostly concerned in this paper with singularities at $x = 0$, let us first investigate the weighted L^p-norm on the punctured unit ball $B_0 := B_1 \setminus \{0\}$. For $\delta \in \mathbb{R}$ and $1 < p < \infty$, define the Banach space $L^p_\delta(B_0)$ by the norm
\[
\|u\|_{L^p_\delta(B_0)} := \int_{|x|<1} |x|^{\delta p} |u(x)|^p \, dx.
\]
For example, the constants are in $L^p_\delta(B_0)$ if and only if $\delta > -n/p$. To compare (79) with L^p-means, it is easy to see (cf. [11]) that $M(u, r) \leq c r^\varepsilon$ for $0 < r < 1$ implies that $u \in L^p_\delta(B_0)$ provided $\varepsilon + \delta > -n/p$, and conversely $u \in L^p_\delta(B_0)$ implies $M_p(u, r) \leq c_\varepsilon r^\varepsilon$ for $0 < r < 1$ if $\varepsilon = -\delta - n/p$.

Now we introduce the weighted L^p-norm for functions on \mathbb{R}^n_0 with separate weights at the origin and at infinity. For $\delta_0, \delta_1 \in \mathbb{R}$, define
\[
\|u\|_{L^p_{\delta_0,\delta_1}(\mathbb{R}^n_0)} := \int_{|x|<1} |x|^\delta |u(x)|^p \, dx + \int_{|x|>1} |x|^\delta |u(x)|^p \, dx.
\]
We then define the weighted Sobolev space $W^{2,p}_{\delta_0,\delta_1}(\mathbb{R}^n_0)$ to be functions $u \in W^{2,p}_{\text{loc}}(\mathbb{R}^n_0)$ for which
\[
\|u\|_{W^{2,p}_{\delta_0,\delta_1}(\mathbb{R}^n_0)} := \sum_{|\alpha| \leq 2} \| |x|^{\alpha} \partial^\alpha u \|_{L^p_{\delta_1,\delta_2}}
\]
is finite. It is clear that
\[
\Delta : W^{2,p}_{\delta_0,\delta_1}(\mathbb{R}^n_0) \to L^p_{\delta_0+2,\delta_1+2}(\mathbb{R}^n_0)
\]
is a bounded linear operator, and (using the analysis of [10], [14], [15], for example) it can be shown that (82) is an isomorphism for $-n/p < \delta_0, \delta_1 < -2 + n/p'$, where $p' = p/(p-1)$. (Since $n \geq 3$, such δ_0, δ_1 exist.) Moreover, provided δ_0, δ_1 do not take the values $-n/p - k$ or $-2 + n/p' + k$ where k is a nonnegative integer, then (82) is a Fredholm operator whose nullspace and cokernel are easily described in terms of harmonic polynomials. Since we are principally interested in the behavior of functions at the origin, we will fix

$$-n/p < \delta_1 < -2 + n/p'$$

and allow δ_0 to vary. We only require a small range of values for δ_0.

Proposition 2. Assume $1 < p < \infty$ and (83). Then the map (82) is

(a) an isomorphism for $-n/p < \delta_0 < -2 + n/p'$;
(b) surjective with nullspace spanned by $|x|^{2-n}$ if $-2 + n/p' < \delta_0 < -1 + n/p'$;
(c) injective with cokernel spanned by 1 if $-1 - n/p < \delta_0 < -n/p$.

Acknowledgement: This paper has been supported by the RUDN University Strategic Academic Leadership Program.

References

[1] R. Alvarado, D. Brigham, V. Maz’ya, M. Mitrea, E. Ziadé, *Sharp geometric maximum principles for semieliptic operators with singular drift*, Math. Res. Lett. **18** (2011), 10001-10007.

[2] M. Cranston, Z. Zhao, *Conditional transformation of drift formula and potential theory for $1/2 \Delta + b(\cdot) \cdot \nabla$*, Comm. Math. Phys. **112** (1987), 613-625.

[3] H. Dong, S. Kim, *On C1, C2, and weak type (1,1) estimates for linear elliptic operators*, Comm. Partial Differential Equations, **42** (2017), 417-435.

[4] H. Dong, S. Kim, S. Lee, *Note on Green’s functions of non-divergence elliptic operators with continuous coefficients*, arXiv:2201.03764.

[5] D. Gilbarg, J. Serrin, *On isolated singularities of solutions of second-order elliptic equations*, J. Analyse Math. **4** (1955/56), 309-340.

[6] D. Gilbarg, N. Trudinger, *Elliptic Partial Differential Equations of Second Order*, 2nd ed, Springer-Verlag, New York, 1983.

[7] S. Hwang, S. Kim, *Green’s function for second order elliptic equations in non-divergence form*, Potential Anal. **52** (2020), no. 1, 27–39.

[8] S. Kim, S. Lee, *Estimates for Green’s functions of elliptic equations in non-divergence form with continuous coefficients*, Ann. Appl. Math. **37** (2021), no. 2, 111–130.

[9] V.A. Kozlov, V.G. Maz’ya, *Differential Equations with Operator Coefficients*, Springer-Verlag, New York, 1999.

[10] R. Lockhart, R. McOwen, *Elliptic differential operators on noncompact manifolds*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) **12** (1985), 409-447.

[11] V.G. Maz’ya, R. McOwen, *On the fundamental solution of an elliptic equation in nondivergence form*, AMS Translations: special volume dedicated to Nina Uraltseva 229 (2010), 145-172.

[12] V.G. Maz’ya, R. McOwen, *Differentiability of solutions to second-order elliptic equations via dynamical systems*, J. Differential Equations, **250** (2010), 1137-1168.

[13] V.G. Maz’ya, R. McOwen, *Gilbarg-Serrin equation and Lipschitz regularity*, J. Differential Equations **312** (2022), 45-64.

[14] V. Maz’ya, B. Plamenevski, *Estimates in L_p and Hölder classes and the Miranda-Agmon maximum principle solutions of elliptic boundary problems in domains with singular points on the boundary* (Russian), Math. Nachr. **81** (1978), 25-82.

[15] R. McOwen, *The behavior of the Laplacian on weighted Sobolev spaces*, Comm. Pure Appl. Math. **32** (1979), 783-795.

[16] V. Mil’man, *Extension of functions that preserve the modulus of continuity*, Math. Notes **61** (1997), 193-200.

[17] C. Miranda, *Partial Differential Equations of Elliptic Type*, Springer-Verlag, Berlin, 1970.
