Hard X-ray Cataclysmic Variables

Maurizio Falanga
International Space Science Institute (ISSI), Bern, CH

Collaborators:

D. de Martino, F. Bernardini, K. Mukai, N. Masetti

12th INTEGRAL Conference and 1st AHEAD Gamma-ray workshop; 12 February, 2019
CV sub-types \~ 1430 CVs known to date

Magnetic Cataclysmic Variables	Non MCVs
\~20 % of all CVs	\~80 % of all CVs

Polars	Intermediate Polars	Classical/Dwarf Novae
(Prototype AM Her)		
Synchronous Rotation		
$B_{\text{WD}} \sim 1 \, \text{–} \, 230 \times 10^6 \, \text{G}$	$P_{\text{spin}} = P_{\text{orb}} \, (\text{hrs})$	$B \ll 10^5 \text{–} 10^6 \, \text{G}$
$P_{\text{spin}} (\text{mins}) \ll P_{\text{orb}} (\text{hrs})$	$P_{\text{orb}} (P) < P_{\text{orb}} \, (\text{IP})$	Energy Sources:
\~ 130 systems	\~ 74 systems +30 candidates	CN: nuclear burning
Bright in soft X-rays		DN: through gravity
ROSAT era		(For a review see B. Warner 1995)
Bright in hard X-rays		
INTEGRAL/SWIFT era		
Polars
Bright in soft X-rays
ROSAT era

Intermediate Polars
Bright in hard X-rays
INTEGRAL/SWIFT era

Bremsstrahlung

Multi temperature post-shock spectrum

Cyclotron cooling suppress the bremsstahlung high temperature emission

(Revnivtsev et al. 2008)

(Suleimanov et al. 2008)
What Cooling mechanism?

Radiative losses by **Cyclotron** & **Bremsstrahlung** for B>1MG

\[
\text{Frad} \approx \rho^a \text{T}_e^b
\]

One-fluid plasma in low B and high flow rates
(Fisher & Beuermann 2001; Beuermann 2003)

Bremsstrahlung is primary & **Cyclotron** is secondary

Systems with moderately low field and high dm/dt can be hard X-ray sources

\[
\begin{align*}
\text{B}=30 \text{ MG; dm/dt}=100,10,1,0.1 \text{ g/cm}^2\text{s} \\
\text{B}=100 \text{ MG; dm/dt}=1 \text{ g/cm}^2\text{s}
\end{align*}
\]

From Fisher & Beuerman 2001
The model based on Cropper et al (1999)

- Mass continuity equation

\[\rho \frac{d}{dz}(\rho v^2 + P) = -\frac{GM_{wd}}{R_{wd}} \rho \]

- The momentum equation

\[v \frac{dP}{dz} + \gamma P \frac{dv}{dz} = -(\gamma - 1) \Lambda \]

- The energy equation

\[P = \frac{\rho kT}{\mu m_p} \]

- Ideal-gas law

- The cooling rate

\[\Lambda = \left(\frac{\rho}{\mu m_p}\right)^2 \Lambda_N(T) \]

- The cooling function \(\Lambda_N(T) \) from Sutherland & Dopita (1993)
The Hard X-ray Surveys

- INTEGRAL/IBIS and SWIFT/BAT changed our view of X-ray sky
- ~ 25 % of Galactic X-ray sources are CVs
- Efficient only for some CV types

Bird et al. 2016; Krivonos et al. 2012; Cusumano et al. 2014; Oh et al. 2018
What type of hard CVs

- Novalike CVs include magnetics – many disputed to be mCVs
- IPs doubled in number with INTEGRAL/SWIFT detections!
- Still unidentified hard X-ray mCV candidates from optical spectroscopy

![Bar chart showing the distribution of CVs across different types and surveys.](chart.png)
Galactic faint X-ray source populations

• **Galactic Center:** Chandra 1Ms survey
 (Muno et al. 2004; Ruiter et al. 2006; Hong et al. 2012, 2014):
 - Thousands faint sources resolved:
 - Hard Spectra: Power law $\Gamma < 1 – 1.5$ (or $K_T \sim 25$keV) & Fe line (6.7keV) in a few
 - $L_x \sim 10^{30} - 10^{33}$ erg/s (1-8kpc)
 - Variability: Periodic ($\approx 1.3 – 3.4$hr)

• **Galactic Ridge X-ray Emission (GRXE):**
 RXTE, Chandra, INTEGRAL, Suzaku, NuSTAR, XMM-Newton
 (Revnivtsev et al. 2006, 2009; Sazonov 2006; Yuasa et al. 2012
 Warwick et al. 2014; Perez et al. 2015; Haley et al. 2016)
 - $\sim 80\%$ of diffuse X-ray emission @ 6.7keV resolved in
 discrete sources
 - $L_x \sim 10^{32} – 10^{35}$ erg/s \rightarrow CVs most magnetic
 - $L_x < 10^{32}$ erg/s \rightarrow coronally active binaries, non-mCVs?

MCVs purported as dominant hard low-Lx population
Is there a relation between the two types?

Polars

- ~130 systems
- Bright in soft X-rays
- Polarized in optical/nIR
- ROSAT era

Intermediate Polars

- ~74 systems +30 candidates
- Bright in hard X-rays
- Unpolarized or weakly polarized
- INTEGRAL/SWIFT era

- ➢ Different B-fields?
- ➢ Same B but evolutionary link?
Orbital Period Distribution

Binaries evolve towards short P_{orb}

Angular Momentum Losses via:

- Magnetic Braking above CV 2-3h “gap”
- Gravitational Radiation below “gap”

- Most IPs are above gap
- Most Polars are below gap

IPs may evolve into Polars if similar B-fields

Ritter & Kolb CV Cat. 7.24v
INTEGRAL/XMM-Newton Programme

29 CV Candidates: 23 IPs confirmed + 1 LMXB + 3 NL + 2 Polars

• X-ray Power Spectra of mCVs:
 - Accretion mode diagnostic: $\omega \approx \Omega \rightarrow \text{Polars}$
 - $\omega \rightarrow \text{Disc-fed IP}$
 - $\omega - \Omega \rightarrow \text{Stream-fed IP}$
 - ω and $\omega - \Omega \rightarrow \text{Disc-overflow (Hybrid)}$

• Energy dependent X-Ray/UV/Optical pulses:
 - Geometry and B-field complexity
 - Sites of Primary & Reprocessed radiation
 - Absorption effects

• X-Ray spectra:
 - Accretion region: Pre-Shock, Post-Shock, bulge at disc rim
 - WD irradiation and WD mass
Hard X-ray view of MCVs

IPs dominate hard X-ray detected CVs

Using Anzolin+08,09, Brunschweiger09 Tomsick 16, Hayley+16; Suleimanov+16, Bernardini+12,+13,15,17; Shaw+18, Wada+18

Do hard IPs host massive WDs?

\[kT_{\text{shock}} = \frac{3}{8} G \frac{M_{\text{WD}}}{R_{\text{WD}}} \mu m_H \]

\[<M_{\text{IPs}}> = 0.83 \pm 0.19 \, M_\odot \]

\[<M_{\text{Fid}}> = 0.82 \pm 0.15 \, M_\odot \]

\[<M_{\text{CVs}}> = 0.82 \pm 0.24 \, M_\odot \]

K-S test give probability of 98.1% that distributions are from the same parent population
Hard X-ray Luminosities using Gaia DR2

Hard X-ray sample [14 – 195keV]

\[F_x > 7.3 \times 10^{-12} \text{ erg/cm}^2/\text{s} \]

IPs:
- \(\langle L_x \rangle \sim 1.3 \times 10^{33} \text{ erg/s} \) up to \(\sim 1.8 \text{kpc} \)
- High \(L_x \) IPs at \(d > 300 \text{pc} \)
- 4 IPs at \(L_x < 1 \times 10^{32} \text{ erg/s} \) within \(\sim 200 \text{ pc} \) with 3 below the 2-3h gap

Bimodality

Polars:
- \(\langle L_x \rangle \ 8 \times 10^{31} \text{ erg/s} \) up to \(\sim 520 \text{ pc} \)
- Low \(L_x \): Polars, short Porb IPs
 (see Reis et al. 2013; Pretorius & Mukai 2014)
What we still need:

Near Future:
- Census of hard X-ray CVs: population study – space density
 - Ongoing XMM-Newton identification programme
 - Searches of new systems in 3XMM (Extras project funded by EU)
- Polarimetric surveys of mCVs

Bit Far Future:
- iXPE to probe accretion geometry through X-ray polarization
- Theseus will allow monitor of large sample of CVs over a broad range
- e-ROSITA will find thousands of hard X-ray CVs: follow-ups
- eXTP will study faint mCVs over a broad-band range
- ATHENA will trace post-shock plasma (Oxygen, Fe, Si, Mg, S); warm and cool absorbers;
 WD mass via Grav. Redshift of 6.4keV fluorescent line