Mycobacterium avium subspecies *paratuberculosis* in pooled faeces and dust from the housing environment of herds infected with Johne’s disease

Elvira Ramovic,1 Dermot Yearsley,1 Eadaoin NiGhallchoir,1 Emma Quinless,1 Aoife Galligan,1 Bryan Markey,2 Alan Johnson,3 Ian Hogan,3 John Egan1

Mycobacterium avium subspecies *paratuberculosis* (MAP) is the causative agent of Johne’s disease (JD) in ruminants characterised by a long incubation period where infected animals progressively excrete MAP in their faeces with some animals, ‘super shedders’, dispersing large quantities of the organism into their environment where it can survive for long periods.1,2 Control programmes for the disease primarily focus on the early detection and removal of shedding animals from herds, appropriate calf management practices, good herd biosecurity and hygiene practices together with measures preventing spread of infection within or between herds.3 Environmental contamination with MAP and its role as a source of infection is well recognised.4–6 More recently concerns have been raised that MAP persisting in dust in cow barns and in areas from which it is difficult to remove7 may become airborne and a source of infection for animals through respiratory uptake.8–9

A JD pilot control programme was initiated in Ireland in 2013 and follows international best practices.10 This study aims to support these best practices and examines the dispersion of MAP in the environment of infected dairy herds with special focus on its recovery from dust in barns and milking parlours.

Five herds (A–E), confirmed as heavily infected in the preceding 4 to 10 years before sampling, were selected. The herds applied different control measures but the data collected over the years indicated that at least 10 per cent of animals in these herds were confirmed to be shedding MAP at some point with some ‘super shedders’ also present. Culturing of faecal samples in the months before environmental sampling showed that 45/115 of the animals sampled in herd A, 9/345 in herd B, 1/65 in herd C, 0/28 in herd D and 11/213 in herd E were shedding MAP with one high shedder present in herd A, one moderate shedder present in both herds B and E, and one low shedding animal in herd C. Herd D had no shedders recorded at the time of environmental sampling.

All the farms were visited between October 2017 and March 2018. Pooled environmental faecal samples were also collected using individual spoons from high traffic area of the farm including passageways in sheds and the milking parlour collecting yards. Settled dust samples were collected from indoor locations including walls/ridges/ledges in barns and milking parlours, overhanging support bars for milking equipment or feeding troughs where present using a whirl pak hydrated speci-sponge (Nasco, USA).

Faecal samples were cultured using the Cornell double incubation decontamination method.11 Following manufacturer’s instructions they were also tested by direct qPCR as described elsewhere,11 targeting the IS900 sequence using the LSI VetMAX kit (LSI, Lissieu, France) and the spin column Qiagen DNA mini kit (Qiagen, Manchester, UK). Dust samples were stomached in sterile DNA/RNA-free water and the supernatant transferred to a sterile tube and allowed to settle for 30 minutes followed by culture and direct qPCR testing. In addition, all the dust liquid culture
media were subjected to direct qPCR and F57 qPCR screening after their culture period was completed, using the extraction as described above.

Culture confirmed MAP in four herds; the organism cultured from 45.3 per cent (n=24) of the pooled faecal samples while direct faecal qPCR gave positive MAP signals in 43.4 per cent (n=23) of the same samples (Table 1).

The number of positive samples varied between herds, being highest in herd A where the highest number of shedding animals (n=45) was recorded at the time of environmental sampling. The absence of MAP from the pooled environmental faecal samples in herd D was not surprising as this herd had made extensive efforts in recent years, through a combination of testing and improved herd management practice, to remove all positive or suspect animals from the herd. Test agreement for culture and qPCR for pooled faecal samples had a kappa value of 0.65 (95 per cent CI 45.2 to 86.0) and the overall test agreement was calculated at 83 per cent.

Of the 51 dust environmental samples collected, 17 (33.3 per cent) samples from three herds (A, B, E) were positive on direct qPCR but none were positive for MAP on culture. The most common sources for qPCR-positive dust environmental samples were the surfaces of support bars (80 per cent) in milking parlours and sheds, and the feeding bins in herd A (Table 2).

Direct qPCR on the culture media showed that 11 (21.6 per cent) samples gave positive signals on IS900 qPCR but none on the F57 qPCR. Of these, eight (72.7 per cent) samples gave positive signals on IS900 qPCR and F57 qPCR confirmation assay most likely indicate the presence of mycobacterial DNA but not viable cells. Positive IS900 PCR results in the absence of MAP culture confirmed in herds Animals in herd, n

Herd	Years since first MAP infection confirmed in herds	Animals in herd, n	Pooled faeces	Dust samples
			No positive/no samples (%)	No positive/no samples (%)
A	4	251	10/10 (100)	0/10 (0)
B	4	340	9/13 (69.2)	7/13 (53.8)
C	6	90	1/10 (10)	1/10 (10)
D	7	62	0/10 (0)	0/10 (0)
E	10	464	4/10 (40)	6/10 (60)

Table 1 Culture and qPCR results from environmental pooled faeces and dust samples collected from five herds infected with Johne’s disease. MAP, Mycobacterium avium subspecies paratuberculosis.

Table 2 Results of MAP culture and PCR testing of dust and of PCR on the post culture media from the samples collected from various housing sites from five farms. MAP, Mycobacterium avium subspecies paratuberculosis.

Sample location	Dust samples collected, n	Pooled faeces IS900 qPCR (%)	Culture (%)	Pooled faeces F57 qPCR (%)	Culture (%)
Support bars	10	8 (80)	0 (0.0)	4 (40)	0 (0.0)
Feeders/feeding traps	4	3 (75)	0 (0.0)	1 (25.0)	0 (0.0)
Barn walls/ledges	37	6 (16.2)	0 (0.0)	6 (16.2)	0 (0.0)
Total	51	17 (33.3)	0 (0.0)	11 (21.6)	0 (0.0)
References

1. Whittington RJ, Marshall DJ, Nicholls PJ, et al. Survival and dormancy of Mycobacterium avium subsp. paratuberculosis in the environment. Appl Environ Microbiol 2004;70:2989–3004.

2. Moravkova M, Babak V, Kralova A, et al. Culture- and quantitative IS900 real-time PCR-based analysis of the persistence of Mycobacterium avium subsp. paratuberculosis in a controlled dairy cow farm environment. Appl Environ Microbiol 2012;78:6608–14.

3. McKenna SLB, Keefe GP, Tiwari A, et al. Johne’s disease in Canada part II: disease impacts, risk factors, and control programs for dairy producers. Can Vet Journal La Rev vétérinaire Can 2006;47:1089–99.

4. Lombard JE, Wagner BA, Smith RL, et al. Evaluation of environmental sampling and culture to determine Mycobacterium avium subspecies paratuberculosis distribution and herd infection status on US dairy operations. J Dairy Sci 2006;89:4163–71.

5. Eisenberg SW, Nielen M, Hoeboer J, et al. Environmental contamination with Mycobacterium avium subspecies paratuberculosis within and around a dairy barn under experimental conditions. J Dairy Sci 2012;95:6477–82.

6. Smith RL, Schakken YH, Pradhan AK, et al. Environmental contamination with Mycobacterium avium subspecies paratuberculosis in endemically infected dairy herds. Prev Vet Med 2011;102:1–9.

7. Eisenberg SW, Koets AP, Hoeboer J, et al. Presence of Mycobacterium avium subspecies paratuberculosis in environmental samples collected on commercial Dutch dairy farms. Appl Environ Microbiol 2010;76:6310–2.

8. Eisenberg SW, Nielen M, Santema W, et al. Detection of spatial and temporal spread of Mycobacterium avium subsp. paratuberculosis in the environment of a cattle farm through bio-aerosols. Vet Microbiol 2010;143:284–92.

9. Eisenberg SW, Koets AP, Nielen M, et al. Intestinal infection following aerosol challenge of calves with Mycobacterium avium subspecies paratuberculosis. Vet Res 2011;42:117.

10. Animal Health Ireland. http://animalhealthireland.ie/wp-content/uploads/2015/08/20170825-ID_FACTSHEET_JULY_FINAL.pdf (accessed 1 May 2018).

11. Kim SG, Shim SJ, Jacobson RH, et al. Development and application of quantitative polymerase chain reaction assay based on the ABI 7700 system (TaqMan) for detection and quantification of Mycobacterium avium subsp. paratuberculosis. J Vet Diag Invest 2002;14:126–31.

12. Tasara T, Hoeflle LE, Stephan R. Development and evaluation of a Mycobacterium avium subspecies paratuberculosis (MAP) specific multiplex PCR assay. Int J Food Microbiol 2005;104:279–87.

13. Collins MT. Diagnosis of paratuberculosis. Vet Clin North Am Food Anim Pract 1996;12:357–71.

14. Johansen KA, Hugen EE, Payeur JB. Growth of Mycobacterium avium subsp. paratuberculosis in the presence of hexadecylpyridinium chloride, nattamycin, and vancomycin. J Food Prot 2006;69:878–83.

15. Sweeney RW, Collins MT, Koets AP, et al. Paratuberculosis (Johne’s disease) in cattle and other susceptible species. J Vet Intern Med 2012;26:1239–50.

16. Semnet M, Turenne CY, Behr MA. Insertion sequence IS900 revisited. J Clin Microbiol 2006;44:1081–3.

17. Englund S, Bilske G, Johansson KE. An IS900-like sequence found in a Mycobacterium sp. other than Mycobacterium avium subsp. paratuberculosis. FEMS Microbiol Lett 2002;209:267–71.

18. Tasara T, Stephan R. Development of an F57 sequence-based real-time PCR assay for detection of Mycobacterium avium subsp. paratuberculosis in milk. Appl Environ Microbiol 2005;71:5957–68.