Identification students’ misconception using four-tier diagnostic test on Newton Law subject

C Sundaygara, L A R P Gusi, H Y Pratiwi, H D Ayu, A Jufriadi and M N Hudha*

Physics Education Study Program, Universitas PGRI Kanjuruhan Malang, Indonesia

*muhammadnurhudha@unikama.ac.id

Abstract. Misconception is something that causes students fail to understand physics concept intensively. The research aims to identify the students’ misconception on Newton Law concept using four-tier diagnostic test. Method used in the research was descriptive method. Data of students’ misconception was collected using test and interview. The subjects of the research were students of X MIPA 5 in State Senior High 10 Malang in 2019/2020 academic year and they were 32 students. The result of the research shows that the level of students’ misconception of X MIPA 5 in State Senior High 10 Malang is 54% which belongs to medium category. The research found that the misconception which happened to most students was on Newton II Law which is 63%. It also revealed that misconception in students occur because of experiences or events experiences by students in everyday life, students’ initial concepts and teacher teaching methods.

1. Introduction
Misconception is something that causes students fail to understand physics concept intensively [1]. Many students experience misconceptions in physics [2]. It often happens not because the students’ understanding is not correct, but because the pre-conception appears to be error during the learning process that it influences into the class. Misconception may appear in students’ daily activity when they make contact with their surroundings. The error physics-concept will then become their base because the understanding formed before is wrong and it will be hard to get it right [3].

Misconception which happens in physics learning process may obstruct the students, so that it causes error and difficulty in learning physics because it is hard for them to understand and to relate to the lesson gained before [4]. Misconception which happens in physics learning must be identified soon because it may obstruct the students in understanding knowledge [5]. Students’ daily activity which relates to their surroundings can be the trigger that causes misconception. Every student must have experienced physics phenomenon; such as falling objects, electric current, collision, and so on before they receive the lesson of physics concept [3].

Misconception may be influenced by students who direct their thought on something which appears in certain situation or incident [6]. They only pay attention to certain parts in many problems [7]. This error physics-concept will become a base because the understanding which has been formed before is wrong and it will be hard to get it right [3]. Therefore, it is necessary to identify misconceptions in physics concepts using diagnostic test so that the misconceptions that students have do not last long in students. Four-Tier diagnostic test is a method which can be used to identify the students’
misconception. It is applied both in the beginning and at the end of the lesson to identify the students’ misconception on learned-subject [8].

There have been many analyzes of students’ misconceptions using several tools, including third-level diagnostic tests on thermodynamic law material [9] and rotational dynamics [10], test questions on equilibrium material [11], fourth-level diagnostic tests on Newton's law material about gravity [12] and using the FCI and CRI tests [13]. However, the identification of students' misconceptions using four-tier diagnostic tests on Newton's law I, II, and III has never been done, so it needs to be done.

2. Methods
Method used in the research was descriptive method. The research flow of 3 stages namely (1) the preparation stage is the stage of making a physics question instrument on Newton material in the form of a four-tier diagnostic test, (2) the implementation stage, namely the stage of giving a four-tier diagnostic test on Newton's Law material to students of class X MIPA 5 with a total of 32 students, and (3) the data analysis stage which analyzed and analyzed students' answers using the student misconceptions rubric in table 1.

The research sample was selected by using cluster random sampling technique. Data collected by giving four-tier diagnostic test on Newton Law to 32 students of X MIPA 5 class in the form of computer-based isomorphic test which was used to diagnose the misconception [1]. Data of diagnostic test which has been identified was then analyzed based on high, medium, and low criteria. Four-tier diagnostic test [10] is presented on Table 1.

Table 1. Students’ concept category based on the answer of four-tier diagnostic test.

No.	Category	Combination of Answer	Conviction level for answer	Student’s reason	Conviction level for student’s reason
1	Misconception (M)	Wrong	Sure	Wrong	Sure
2	Correct	Sure	Wrong	Sure	
3	Correct	Not sure	Wrong	Sure	
4	Wrong	Not sure	Wrong	Sure	
5	Concept Understanding (P)	Correct	Sure	Correct	Sure
6	Not Understanding (TPK)	Correct	Sure	Correct	Not sure
7	Correct	Sure	Correct	Not sure	
8	Correct	Not sure	Correct	Not sure	
9	Correct	Not sure	Correct	Not sure	
10	Correct	Not sure	Wrong	Not sure	
11	Wrong	Sure	Correct	Not sure	
12	Wrong	Sure	Wrong	Not sure	
13	Wrong	Not sure	Correct	Not sure	
14	Wrong	Not sure	Correct	Not sure	
15	Error (E)	Wrong	Sure	Correct	Sure
16	Wrong	Not sure	Correct	Sure	

Besides the test, data was collected by giving interview. Interviewing the students is used to deeply understand the students’ misconception.

3. Results and discussion
The result data of identifying students’ misconception is presented on Figure 1.
Figure 1. Entire students misconception of X MIPA class.

Figure 1 shows the entire result of the students’ answers after given four-tier diagnostic test to identify the misconception and it shows 54% for misconception, 21% understanding concept, 16% for not understanding the concept, and 9% for error. The result shows that students who have misconception are more than half of the class. It means the misconception belongs to medium category. It is the same result with the previous research in which students had misconception in Newton Law [12].

Misconception happens because the students have not mastered the concept taught yet; it is because the students’ initial concept is not good enough [13] and the teachers use monotone teaching method, which is giving speech so that the teachers do not urge their students to gain knowledge like a scientist [14].

Supported by the interview result to 9 students who have the highest misconception, the researcher found that the students’ misconception happens because of the students’ previous skill, not good enough competence or concept understanding, and the teachers’ teaching method which does not involve the students’ being active or is giving speech only. The students’ condition, the situation, and the learning method are the main cause which leads to students’ misconception [13].

The percentage data of misconception on each problem is presented on Figure 2. The percentage data of students’ misconception will show the representation of misconception scale on each problem indicator on Newton Law.

Figure 2 shows that the students have high, medium, and low misconception levels. High misconception level has range between $100\% < N < 60\%$, medium misconception level has range between $30\% < N < 60\%$, and low misconception level has range between $0\% < N < 30\%$. High misconception level is on problems number 2, 4, 6, 7, 10, 12, 19, and 20. The highest percentage is on problem number 2 with 78%. Medium misconception level is on problems number 1, 3, 5, 8, 11, 13, 14, 16, 17, and 18. Low misconception level is on problems number 9 and 15. High misconception happens on problems related
with Newton III Law Subject. It is the same result with the previous research which found that the highest misconception appeared on problems related to Newton III Law [12]. The example for problem and student’s answer which has high misconception level is presented on Figure 3.

![Figure 3](https://example.com/figure3.png)

Figure 3. Problem number 2 and student’s answer.

Based on the student’s answer on Figure 3, it can be seen that he/she chose the wrong answer and reason, but he/she was sure with his/her answer. If it is identified according to Table 1, then this student belongs to misconception category.

In this case, mostly students answered that to preserve a force of an object, then it needs another force. It obviously shows the student’s mistake. In fact, if an object moves in constant velocity, it does not need any additional force to preserve its motion. Or in other words, it does not need any force to preserve the motion of an object. Thus, according to the problem, the tennis ball keeps moving in constant velocity because it does not need external force to preserve its motion. This concept is based on Newton I Law which states that

\[
\sum F = 0
\]

The physics formula above means if there is no external force, then a still object will keep being still; while a moving object will keep moving in constant velocity [15,16]. So, the correct answer for when the tennis ball moves from B to C is it will keep moving in constant velocity because it does not need any force to preserve its motion. The correct reason for problem number 2 is It does not need external force to preserve an object which moves in constant motion.

Problem number 2 belongs to subchapter on Newton I Law, the influence of the force to a constant-velocity object; there were 22 students having misconception in solving the problem. After identifying all the answers for problem number 2, the researcher found that there are two criteria for students’ misconception; they are 1) wrong answer, sure about the answer, wrong reason, sure about the reason; and 2) correct answer, sure about the answer, wrong reason, sure about the reason. Based on the interview result, the students’ misconception on problem number 2 is caused by the students’ daily activity.
4. Conclusion

Based on the result of the research, it can be concluded that the students have misconception on Newton Law subject with the percentage of 54% which belongs to medium misconception level. From the entire 20 problems, there are 8 problems with high misconception level, 10 problems with medium misconception level, and 2 problems with low misconception level. Students’ misconception happens because of their daily activity or experience, their previous skill, and the teachers’ teaching method.

References

[1] Nadhiif M A, Diantoro M and Sutopo S 2015 Tes Isomorfik Berbasis Komputer untuk Diagnostik Miskonsepsi Diri pada Materi Gaya dan Hukum Newton J. Pendidik Sains 3 58–67
[2] Puspita W I, Sutopo S and Yuliati L 2019 Identifikasi penguasaan konsep fluida statis pada siswa Momentum Phys. Educ. J. 53–7
[3] Tayubi Y R 2005 Identifikasi miskonsepsi pada konsep-konsep fisika menggunakan Certainty of Response Index (CRI) Mimb. Pendidik. 3 4–9
[4] Yolanda Y 2017 Remediasi miskonsepsi kinematika gerak lurus dengan pendekatan STAD SPEJ (Science Physic Educ. Journal) 1 39–48
[5] Oliver J 2013 Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change J. Chem. Inf. Model 53 1689–1699
[6] Dahar R W 2011 Teori-teori belajar dan pembelajaran Jakarta: Erlangga 136 141
[7] Zulvita R and Halim A 2017 Identifikasi dan remediasi miskonsepsi konsep hukum newton dengan menggunakan metode eksperimen di man darussalam J. Ilm. Mhs. Pendidik. Fis. 2 128–34
[8] Lin S-W 2004 Development and application of a two-tier diagnostic test for high school students’ understanding of flowering plant growth and development Int. J. Sci. Math. Educ. 2 175–99
[9] Caleon I S and Subramaniam R 2010 Do students know what they know and what they don’t know? Using a four-tier diagnostic test to assess the nature of students’ alternative conceptions Res. Sci. Educ. 40 313–37
[10] Fariyani Q and Rusilowati A 2015 Pengembangan Four-Tier Diagnostic Test Untuk Mengungkap Miskonsepsi Fisika Siswa SMA Kelas X J. Innov. Sci. Educ. 4
[11] Jubaedah D S, Kaniawati I, Suyana I, Samsudin A and Suhendi E 2017 Pengembangan tes diagnostik berformat four-tier untuk mengidentifikasi miskonsepsi siswa pada topik usaha dan energi Prosiding Seminar Nasional Fisika (E-Journal) vol 6 pp SNF2017-RND
[12] Shalihah A, Mulhayatiah D and Alatas F 2016 Identifikasi Miskonsepsi Menggunakan Tes Diagnostik Three-tier Pada Hukum Newton Dan Penerapannya J. Teach. Learn. Phys. 1 24–33
[13] Suparno P 2013 Miskonsepsi dan Perubahan Konsep Dalam Pembelajaran Fisika Jakarta PT. Grasindo Anggota Ikapi
[14] Bilal E and Erol M 2009 Investigating students’ conceptions of some electricity concepts Latin-American J. Phys. Educ. 3 1
[15] Jewet S 2004 Physics for Scientists and Engineers (Thomson Brooks)
[16] Giancoli D C 2005 Physics Principles with Aplications (New Jersey: Pearson Education)