Synthesis of Silver Sulfide Quantum Dots Via the Liquid–Liquid Interface Reaction in a Rotating Packed Bed Reactor

Qing Liu1,2 · Yuan Pu1,2 · Zhijian Zhao1,2 · Jiexin Wang1,2 · Dan Wang1,2

Received: 16 November 2019 / Revised: 3 December 2019 / Accepted: 6 December 2019 © The Author(s) 2019

Abstract
We developed the high-gravity coupled liquid–liquid interface reaction technique on the basis of the rotating packed bed (RPB) reactor for the continuous and ultrafast synthesis of silver sulfide (Ag2S) quantum dots (QDs) with near-infrared (NIR) luminescence. The formation of Ag2S QDs occurs at the interface of microdroplets, and the average size of Ag2S QDs was 4.5 nm with a narrow size distribution. Ag2S QDs can disperse well in various organic solvents and exhibit NIR luminescence with a peak wavelength at 1270 nm under 980-nm laser excitation. The mechanism of the process intensification was revealed by both the computational fluid dynamics simulation and fluorescence imaging, and the mechanism is attributed to the small and uniform droplet formation in the RPB reactor. This study provides a novel approach for the continuous and ultrafast synthesis of NIR Ag2S QDs for potential scale-up.

Keywords Ag2S quantum dots · Near-infrared luminescence · Rotating packed bed · Liquid–liquid interface reaction · Process intensification

Introduction
In the last decades, quantum dots (QDs) have been used in biomedical imaging [1], television displays [2] and photovoltaic devices [3]. Among various QDs, Ag2S QDs with a tunable emission from visible light to near-infrared light have attracted considerable attention [4–9]. Up to now, different methods have been developed to synthesize Ag2S nanocrystals (NCs). For example, using Ag(DDTC) [(C2H5)2NCS2Ag] as a single source of silver and sulfur, Du and co-workers pioneered the preparation of Ag2S QDs with a fluorescence emission peak of 1058 nm at 200 °C [8]. Jiang et al. [10] have reported water-soluble Ag2S QDs terminated with a carboxylic acid group and used AgNO3 and 3-mercaptopropionic acid (3-MPA) as silver and sulfur sources, respectively. However, the abovementioned methods have some inherent disadvantages for scale-up such as harsh reaction conditions, high toxicity of the reagents, complicated reaction environment and difficulty in amplifying the yield [11]. Therefore, there has been a trend of future development to develop continuous synthesis methods and to realize industrialized production of ultrafine Ag2S QDs with a uniform size distribution [12].

As one of the cutting-edge process intensification technologies, the high-gravity technology on the basis of a rotating packed bed (RPB) has been proven to be an effective platform for the preparation of various inorganic and organic nanoparticles with ultrasmall sizes and uniform distribution [13–19]. The large shear force generated in RPB reactors can break the fluids into nanoscale or microscale membranes, wires and droplets, which results in the large and rapidly updated interface, which increases the mass transfer efficiency of the liquids by 10–1000 times compared with that in a conventional stirred tank reactor (STR) [15, 20]. In addition, as a type of continuous reactor, the reactants pumped into the RPB are continuously added, followed by the continuous flow of products. The quality of the products is more stable than that obtained in batch reactors [21]. Therefore, high-gravity RPB reactors are promising candidates for the continuous production of high-quality QDs [22].
The liquid–liquid interfacial reaction technique has been intensively investigated for the synthesis of QDs [23–25]. Researches have shown that the droplets formed in the two-phase emulsified solution can significantly increase the two interphase contact areas to increase the specific surface area, which accelerates the reaction rate [26]. In general, the size of nanoparticles is indirectly controlled by the size of droplets. In this study, by combining the advantages of micro-chemical technology and high-gravity technology, we developed a high-gravity coupled liquid–liquid interface reaction technique on the basis of RPB reactors for the continuous and ultrafast synthesis of NIR Ag2S QDs. The entire reaction process can be carried out at room temperature and protective gas. The effects of high-gravity levels, liquid flow rates and circulation time were investigated in detail to determine the proper technological conditions, and then, the synthesized products were compared with those synthesized by the STR route. The mechanism of the process intensification was revealed by both the computational fluid dynamics (CFD) simulation and fluorescence imaging.

Experimental Section

Materials

Silver acetate (AgAc, 99.5%), sodium sulfide nonahydrate (Na2S·9H2O), Tween 20, oleic acid (OAc, 85%), oleyl amine (OAm, 85%), 1-octadecene (ODE, 90%) and hexane were purchased from Aladdin Biochemical Reagent Co. Ltd. All chemicals were used without any additional purification unless otherwise mentioned. Deionized water prepared by a Hitech Laboratory Water Purification System DW100 (Shanghai Hitech Instruments Co., Ltd.) was used for all experiments.

Synthesis of Ag2S QDs by the Conventional STR Route

For the synthesis of Ag2S QDs in the conventional STR, 168 mg (20 mmol/L, 50 mL) of silver acetate was added into the mixed solution containing 40 mL of octadecene, 5 mL of oleyl amine and 5 mL of oleic acid, and then, the mixture was stirred at room temperature to achieve homogeneous mixing (25 °C). The resulting solution was in a colorless clarified state and formed a silver precursor solution (solution A). The sulfur precursor solution (solution B) with 120 mg of Na2S·9H2O (10 mmol/L, 50 mL) in 50 mL of deionized water and 2 wt% Tween-20 was prepared by the ultrasonic treatment. By adding solution B to solution A under stirring, the two phases were mixed to form a turbid brown solution. After stirring at room temperature for 5 min, the reaction solution was transferred to a centrifuge tube, and a certain amount of ethanol was added before centrifugation. Then, the Ag2S nanodispersion was obtained by redispersing the pastes in organic solvents (e.g., chloroform, toluene, cyclohexane and hexane) under the ultrasonic treatment. For the synthesis of Ag2S QDs in a conventional STR, the total amount of 1 mmol Ag+ and 0.5 mmol S2− were used in one experiment, and approximately 30–50 mg of Ag2S was obtained, which corresponds to the product yield of 25%–40%.

Synthesis of Ag2S QDs by the RPB Route

The preparation of solutions A and B was the same as mentioned above. For the synthesis of Ag2S QDs in the RPB reactors, both solutions A and B were pumped into the reactor via two liquid inlets. The reactants were immediately collected after the reactions were performed in the RPB for several seconds [27]. The post-treatment processes of the solutions obtained by the RPB route were similar to those produced by the STR route. The yield of the products obtained by the RPB was similar to that by the STR route. The loss of products during the centrifugal purification stage is the main reason for the low and fluctuating yield. In our experiment, the effects of different high-gravity levels, liquid flow rate and circulation time on the product morphology and dispersion were investigated. The high-gravity level β of the RPB reactor is determined by $\beta = \frac{\omega^2 r}{g}$, where ω is the angular velocity of the RPB reactor; r is the geometric average radius of the rotator; and g represents the speed of gravity acceleration (i.e., 9.8 m/s²). The core component of the RPB reactor is a rotator with a 2.5-cm thick stainless packing. The detailed setup information on the RPB reactor can be found in our previous study [28].

Characterization

The crystallization phase of the sample was analyzed by X-ray diffraction (XRD) using a Shimadzu XRD-6000 diffractometer with a Cu-Kα radiation. The scanning range was 5°–90°, and the scanning rate was 5°/min. The mixture of the Ag2S QD powder and KBr was compressed at 10 MPa, and the PerkinElmer GX FTIR spectroscopy system was used to collect the FTIR spectra within the range of 400–4000 cm⁻¹. A Hitachi H-7700 transmission electron microscopy (TEM) instrument was used to investigate the morphology of the samples, and 100 particles in the TEM image were measured to obtain the average particle size of the sample. High-resolution transmission electron microscopy (HRTEM) images were obtained by a Tecnai G² F20 S-Twin HRTEM at an accelerating voltage of 200 kV. The valence states of silver and sulfur were confirmed by X-ray photoelectron spectroscopy (XPS, ESCALAB 250). The photoluminescence (PL) emission spectrum of the sample was measured using the
Horiba FLS980 spectrometer with a 980-nm wavelength laser as the excitation light. The absorption of the Ag$_2$S QD dispersion at different wavelengths was characterized by a PerkinElmer Lambda 950 UV/VIS spectrometer. The size and morphology of droplets were observed by a LEICA SP8 confocal laser scanning microscope.

CFD Model

The volume of fluid (VOF) model proposed by Hirt and Nichols [29] was used to simulate the multiphase flow in RPB. Because this model is generally used to compute a time-dependent solution, our simulation was calculated using the time-dependent formulation. In addition, the processes were assumed to be at a steady temperature; therefore, the energy equation was not considered. The equation of mass conservation for the volume fraction function can be written as:

$$\frac{\partial \rho_{q} \alpha_{q}}{\partial t} + \frac{\partial \rho_{q} U_i \alpha_{q}}{\partial x_i} = S_m$$

where q represents the gas or liquid phase; and α_q is the volume fraction for the q phase. Because the simulation involves mass transfer between phases, the source S_m, which is the mass transfer from liquid to gas, is nonzero.

The use of the VOF model results in only a single momentum equation to be solved throughout the domain, and the resulting velocity field is shared between the two phases. The momentum equation in a steady zone can be expressed as:

$$\frac{\partial U_i}{\partial t} + \frac{\partial U_i U_j}{\partial x_j} = -\frac{\partial P}{\partial x_i} + \mu \frac{\partial^2 U_i}{\partial x_i \partial x_j} + \frac{\partial \left(-\rho u_i \bar{u}_j \right)}{\partial x_j} + \rho S_F$$

where the density ρ and viscosity μ can be calculated as:

$$\rho = \sum \alpha_q \rho_q$$

$$\mu = \sum \alpha_q \mu_q$$

Results and Discussion

The schematic diagram of the preparation of Ag$_2$S QDs by high-gravity coupled liquid–liquid interface reaction technique is shown in Fig. 1. Solutions A and B were pumped into the RPB reactor via two liquid inlets, and then, the two phases were rapidly emulsified to form many droplets after the impact. The hydrophilic ends of Ag$^+$ passivated by the coordination of oleic acid and oleyl amine were arranged to the aqueous phase side and then immediately reacted with S$^{2-}$ in the aqueous phase at the interface. The Ag$_2$S crystal nuclei were generated at the oil–water interface. The crystal nuclei further collided with the remaining precursors and continued to grow and eventually grew to form ligand-coated Ag$_2$S NCs. Here, it is noted that the mixing of the two-phase solution in the RPB reactor differs from the mechanical mixing in STR [30]. Normally, the mixing in STR is macromixing, while that in the RPB reactor is micromixing. These two types of mixing clearly affect the size and distribution of nanoparticles. The grown crystal nuclei in the environment with a uniform concentration distribution will have a uniform size distribution, which can only be achieved by strong microscopic mixing [30].

The changes in the particle size of Ag$_2$S QDs under different operating conditions by RPB route were studied. To our knowledge, the liquid flow rate (V_L) influences not only the relative velocity between liquid elements but the liquid
turbulence degree in the RPB reactor [31]. Figure 2 shows the TEM images of Ag$_2$S QDs prepared in the RPB reactor at different V_L. As can be seen from Fig. 2f, with an increase in V_L from 2 to 7 mL/s, the average particle size decreases from 6.8 to 4.7 nm and the particle size distribution becomes narrower. Thereafter, with a further increase in V_L, the particle size remains unchanged. The abovementioned results indicate that within limits, with an increase in V_L, the liquid injection speed is accelerated and the collision reaction between the two phases is more intense, and at the same time, with an increase in the feed flow, the number of material cut by packing increases. The droplets continue to gather and disperse rapidly, which enhances the microscopic mixing in the RPB reactor and is conducive to the formation of smaller nanoparticles. However, when V_L is below 2 mL/s, the nanoparticles agglomerate, and the morphology becomes irregular. This occurs because V_L is smaller than that of the two phases that pack without collision and mixing to form droplets; the two phases will react during the processes of cutting and stirring. The reaction process will not be controllable to cause agglomeration. Therefore, V_L needs to remain within an appropriate range.

The high-gravity level (β) directly affects the microscopic mixing of reactants in the RPB reactor. The TEM images of Ag$_2$S QDs prepared at different high-gravity levels are shown in Fig. 3. When the high-gravity level is increased from 5 to 25, the average particle size of the nanoparticles decreased from 6.9 to 5.0 nm. Then, with a further increase in the high-gravity level, the particle size did not considerably change. Because the higher the high-gravity level is, the greater the shear force is in the RPB reactor. The fluid in the porous packing will be split into smaller droplets and thinner films. The final particle size of the product is determined by the volume of microdroplets. Therefore, smaller and more uniform nanoparticles can be obtained with an increase in the high-gravity level of RPB. However, when the high-gravity level increases to a certain degree, its influence on particle size is small. Therefore, the optimal process condition is chosen at the high-gravity level of 25 for reducing loss and saving cost.

Figure 4 shows the morphology and size of nanoparticles obtained at different circulation times. As can be seen from the images, the size of nanoparticles remained at approximately 5.2 nm, and the decrease in circulation time did not change the morphology and average size of the particles. Therefore, it can be concluded that the reaction rate in the RPB reactor was extremely fast. The nucleation and growth of crystals finished within seconds and then reached a stable state. The primary reason is the formation of many ultrafine droplets in the emulsification process of the RPB reactor and the continuous renewal of the phase interface during the reaction process, which increases the specific surface area and the mass transfer capacity of droplets [26].

On the basis of the abovementioned results, when the molar ratio of Ag/S was controlled at 2:1, the technological conditions for the preparation of Ag$_2$S QDs with a minimum
The particle size by the RPB reactor are summarized in Table 1. Furthermore, we compared the products prepared in the STR route with those by the RPB route under the same conditions. Figure 5 shows the TEM images of Ag₂S QDs prepared in the STR and RPB reactors, as well as the photoluminescence emission spectra. Figure 5a shows that when the reaction time is shortened to 1 s, the product prepared in the RPB reactor has good dispersion, and the particle size is approximately 4.5 nm. For comparison, the counterpart of Ag₂S QDs prepared in STR reactor after a few seconds is shown in Fig. 5b, and the product is agglomerated into large areas without distinct particles. Because the uniformity of the concentration distribution is not obtained, and the local concentration is too high, the reaction process is uncontrollable in STR reactor within a short period of time. As shown in Fig. 5c, when the reaction time increases to 5 min in STR reactor, the product has uniform particles with particle sizes of approximately 7.5 nm, which is an increase of approximately 40% compared with that in the

Table 1 Technological conditions for the preparation of Ag₂S QDs by the RPB route

Precursor concentration (mmol/L)	Ag/S Liquid flow rate (mL/s)	High-gravity level	Reaction time (min)	Temperature (°C)
(Ag⁺) = 20	2	1	5	25
(S²⁻) = 10	2	10	0	25
	5	25		
	7	75	5	
	10	150		
RPB reactor. To our knowledge, large particle size is not conducive to the stability of nanoparticles in solvents and to the application as biomarkers. The photoluminescence emission spectra (Fig. 5d) show that, compared to STR, the smaller particle size prepared by the RPB reactor results in a clear blue shift in emission spectra, which confirms the results shown in Fig. 5a, c.

Figure 6 shows the morphology and structure of Ag$_2$S QDs prepared in the RPB reactor under the optimal operating conditions. The TEM image in Fig. 6a illustrates that the product is composed of monodispersed spherical nanoparticles, and the average particle size of the product is 4.5 nm. The HRTEM image in Fig. 6b indicates the distinct atomic planes with a d-spacing of 0.23 nm, which is assigned to the (−103) facets of monoclinic α-Ag$_2$S.
The diffraction peaks in the XRD spectrum in Fig. 6c match well with those of monoclinic α-Ag₂S (JCPDS 14-0072), which indicates that the prepared product is actually Ag₂S nanocrystals. Figure 6d shows the ultraviolet–visible–near-infrared (UV–VIS–NIR) absorption and photoluminescence emission spectra of Ag₂S QDs under the 980 nm laser excitation. The sample exhibits a broad absorption spectrum from the UV–VIS to NIR region [32]. The photoluminescence emission spectrum shows an emission peak at 1270 nm under 980 nm laser excitation, which is promising for the use as luminescent agents for deep imaging.

Surface binding molecules of Ag₂S QDs were determined by FTIR. In Fig. 7a, the FTIR spectrum of Ag₂S QDs shows two distinct absorption peaks located at 2921 cm⁻¹ and 2854 cm⁻¹, which are caused by the asymmetric and symmetric stretching vibrations of C–H. The peaks at 1560 cm⁻¹ and 1460 cm⁻¹ correspond to the C=O stretching mode of the carboxylic acid group. The wide peak at 1050 cm⁻¹ is attributed to the stretching vibration of the C–N bond. The XPS spectrum was used to characterize the composition of elements in nanocrystals. As shown in Fig. 7b, the survey spectrum shows that Ag₂S QDs are mainly composed of Ag and S. In the high-resolution spectrum of Ag 3d shown in Fig. 7c, there are two distinct peaks at the binding energies of 373.9 eV and 367.9 eV, which correspond to the characteristic signal peaks of Ag 3d₃/₂ and Ag 3d₅/₂, respectively. On the basis of previous literature, the peak shift of Ag 3d₅/₂ from Ag⁰ (368.2 eV) confirms that silver ions with unit valence exist in Ag₂S QDs. As shown in Fig. 7d, the S-band can be decomposed into two Gauss peaks, which correspond to Ag–S (161.2 eV) and S–H (163.5 eV), respectively [33]. These analytical results indicated that Ag₂S QDs can be successfully synthesized by the high-gravity liquid–liquid interface reaction technique.

To better understand the advantages of the RPB reactor for the rapid preparation of QDs with small particle sizes, the CFD simulation of the reaction process was carried out. The simulation result (e.g., volume fraction of liquid in packing) is used to confirm the credibility of our work based on the reported insight observation [34]. Figure 8a shows the distribution morphology of the liquid in the RPB reactor under different gravity levels simulated by CFD. The color area is closer to red when a smaller amount of liquid is present. Figure 8b shows the distribution of turbulent kinetic energy of the reactants at different high-gravity levels, for which the surface of liquid drops continuously changes owing to the turbulence of RPB. As the high-gravity level increases from 5 to 25, the number of droplets and turbulent kinetic energy considerably increases, especially near the packing; then, the high-gravity level further increases, and the change becomes smaller. Clearly, the higher the high-gravity level is, the greater the turbulent kinetic energy is, and the smaller the liquid is cut, which provides additional opportunities for the reactants [35].

The size and size distribution of the droplets in the emulsion affect the nanoparticles and reaction rate in the droplets. Therefore, we compared the morphology and size of the emulsion droplets prepared in RPB and STR reactors. As shown in Fig. 9a, we use an ordinary optical microscope...
to characterize the morphology and size of the droplets obtained in the STR reactor. Figure 9a shows that the droplets are spherical, with an uneven size distribution, and the size is on the micron level. The size of the droplets obtained in the RPB reactor is small. To better characterize the droplet size, we used a confocal laser scanning microscope. Nile red, an oleophilic fluorescent dye, is used to label the droplets. When Nile red is combined with lipids, it exhibits a strong orange fluorescence at the excitation wavelength of 543 nm, while for nonlipids (water phase), it appears black. Thus, the emulsion in Fig. 9b is water-in-oil (O/W) type. The size distribution of emulsion droplets obtained in the RPB reactor is uniform, and the size is approximately 650 nm.

For the liquid–liquid interface reactions, the droplets of smaller size prepared in the RPB reactor have a larger specific surface area, which makes the reaction rate faster and produces many products in a short period of time [26]. In theory, the particle size distribution mainly depends on the nucleation process, and the nucleation rate depends on the size of supersaturation and the uniformity of its distribution on the spatial molecular scale [30]. The larger the supersaturation is, the higher the nucleation number is and the
smaller the final particles are. The degree of supersaturation considerably depends on the reaction rate, while the distribution uniformity of spatial molecular scale depends on the molecular mixing rate. Therefore, the RPB reactor has considerable advantages for the rapid preparation of nanoparticles with small particle sizes and narrow particle size distribution.

Conclusion

We explored a simple and rapid strategy for the synthesis of NIR Ag$_2$S QDs via the liquid–liquid interface reaction in a high-gravity RPB reactor. Under optimized experimental conditions (i.e., when the molar ratio of Ag/S was controlled at 2:1), the high-gravity level was 25, the liquid flow rate was 7 mL/s, and the average particle size of the product was 4.5 nm. The structure of Ag$_2$S QDs was monoclinic, and the morphological characteristics were monodisperse spherical with NIR emission at 1270 nm under 980-nm laser excitation. The prepared Ag$_2$S QDs can be perfectly dispersed in organic solvents such as n-hexane, toluene and chloroform. The CFD simulation of the droplets confirmed the unique advantages of RPB for the rapid preparation of small and uniform nanoparticles. This work provides a new approach and a theoretical basis for the low-cost and scaled-up preparation of Ag$_2$S QDs and can be used in the future commercial production of QDs.

Acknowledgements The work was supported by the National Natural Science Foundation of China (No. 21808009) and the Beijing Natural Science Foundation (No. 2182051).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Cheng Z, Yan XF, Sun XL et al (2016) Tumor molecular imaging with nanoparticles. Engineering 2(1):132–140
2. Dai XL, Zhang ZX, Jin YZ et al (2014) Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515(7525):96–99
3. Kagan CR, Lifshitz E, Sargent EH et al (2016) Building devices from colloidal quantum dots. Science 353(6302):aae5523
4. Gao JH, Chen K, Xie RG et al (2010) In vivo tumor-targeted fluorescence imaging using near-infrared non-cadmium quantum dots. Bioconjugate Chem 21(4):604–609
5. Badawi A (2019) Effect of the non-toxic Ag$_2$S quantum dots size on their optical properties for environment-friendly applications. Phys E 109:107–113
6. Cassette E, Helle M, Bezdetnaya L et al (2013) Design of new quantum dot materials for deep tissue infrared imaging. Adv Drug Deliv Rev 65(5):719–731
7. Zhang Y, Zhang YJ, Hong GS et al (2013) Biodistribution, pharmacokinetics and toxicology of Ag$_2$S near-infrared quantum dots in mice. Biomaterials 34(14):3629–3646
8. Du YP, Xu B, Fu T et al (2010) Near-infrared photoluminescent Ag$_2$S quantum dots from a single source precursor. J Am Chem Soc 132(5):1470–1471
9. Sahu A, Qi LJ, Kang MS et al (2011) Facile synthesis of silver chalcogenide (Ag$_2$E; E = Se, S, Te) semiconductor nanocrystals. J Am Chem Soc 133(17):6509–6512. https://doi.org/10.1021/ja201012e
10. Jiang P, Zhu CN, Zhang ZL et al (2012) Water-soluble Ag$_2$S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials 33(20):5130–5135
11. Gui RJ, Jin H, Wang ZH et al (2015) Recent advances in synthetic methods and applications of colloidal silver chalcogenide quantum dots. Coord Chem Rev 296:91–124
12. Gu YP, Cui R, Zhang ZL et al (2012) Ultrasmall near-infrared Ag$_2$Se quantum dots with tunable fluorescence for in vivo imaging. J Am Chem Soc 134(1):79–82
13. He XL, Tang RJ, Pu Y et al (2019) High-gravity-hydrosynthesis approach to transparent nanozirconia/silicone encapsulation materials of light emitting diodes devices for healthy lighting. Nano Energy 62:1–10
14. Liu XZ, Jin JS, Chen YL et al (2020) Controllable polymerization of n-butyl cyanoacrylate using a high-gravity rotating packed bed. Chem Eng J 379:122400
15. Guo J, Jiao WZ, Qi GS et al (2019) Applications of high-gravity technologies in gas purifications: a review. Chin J Chem Eng 27(6):1361–1373
16. Shen S, Gao F, Zhao YB et al (2016) Preparation of high-quality graphene using high gravity technology. Chem Eng Process Intensif 106:59–66
17. Shen HY, Liu YZ (2018) One-step synthesis of hydrophobic magnesium hydroxide nanoparticles and their application in flame-retardant polypropylene composites. Chin J Chem Eng 26(10):2199–2205
18. Lv BY, Zhao LS, Pu Y et al (2017) Facile preparation of controllable-aspect-ratio hydroxyapatite nanorods with high-gravity technology for bone tissue engineering. Ind Eng Chem Res 56(11):2976–2983
19. Leng JN, Chen JY, Wang D et al (2017) Scalable preparation of Gd$_2$O$_3$: Yb$^{3+}$/Er$^{3+}$ upconversion nanophosphors in a high-gravity rotating packed bed reactor for transparent upconversion luminescence films. Ind Eng Chem Res 56(28):7977–7983
20. Wei CL, Di ZC, Zhang DH et al (2016) Synthesis of modified CeO$_2$ nanoparticles highly stabilized in organic solvent using higee technology. Chem Eng J 506:120–125
21. Li Y, Mei RA, Yang ZQ (2017) A facile method for preparation of emulsion using the high gravity technique. J Colloid Interface Sci 506:120–125
22. Pu Y, Cai FH, Wang D et al (2018) Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review. Ind Eng Chem Res 57(6):1790–1802
23. Huang YW, Zhang WG, Zhai HY et al (2015) Alkylsilane-functionalized perylenediimide derivatives with differential gas sensing properties. J Mater Chem C 3(2):466–472
24. Huang CL, Cui MM, Sun ZW et al (2017) Self-regulated nanoparticle assembly at liquid/liquid interfaces: a route to adaptive structuring of liquids. Langmuir 33(32):7994–8001
25. Shi SW, Russell TP (2018) Nanoparticle assembly at liquid–liquid interfaces: from the nanoscale to mesoscale. Adv Mater 30(44):1800714
26. Piradashvili K, Alexandrino EM, Wurm FR et al (2016) Reactions and polymerizations at the liquid–liquid interface. Chem Rev 116(4):2141–2169
27. Mao ZS, Yang C (2017) Micro-mixing in chemical reactors: a perspective. Chin J Chem Eng 25(4):381–390. https://doi.org/10.1016/j.cjche.2016.09.012
28. Chen JF, Zhou MY, Shao L et al (2004) Feasibility of preparing nanodrugs by high-gravity reactive precipitation. Int J Pharm 269(1):267–274
29. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225
30. Chen JF, Wang YH, Guo F et al (2000) Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation. Ind Eng Chem Res 39(4):948–954. https://doi.org/10.1021/ie990549a
31. Dong K, Yang Y, Luo Y et al (2018) Synthesis of nano-Ni by liquid reduction method in a combined reactor of rotating packed bed and stirred tank reactor. Ind Eng Chem Res 57(11):3908–3913. https://doi.org/10.1021/acs.iecr.7b04875
32. Xue J, Li HL, Liu JX et al (2019) Facile synthesis of silver sulfide quantum dots by one pot reverse microemulsion under ambient temperature. Mater Lett 242:143–146. https://doi.org/10.1016/j.matlet.2019.01.121
33. Wu Q, Zhou M, Shi J et al (2017) Synthesis of water-soluble AgS quantum dots with fluorescence in the second near-infrared window for turn-on detection of Zn(II) and Cd(II). Anal Chem 89(12):6616–6623. https://doi.org/10.1021/acs.analchem.7b00777
34. Gao XY, Chu GW, Ouyang Y et al (2017) Gas flow characteristics in a rotating packed bed by particle image velocimetry measurement. Ind Eng Chem Res 56(48):14350–14361. https://doi.org/10.1021/acs.iecr.7b03286
35. Wang ZY, Shi J, Wang D et al (2019) Metal-free catalytic oxidation of benzylic alcohols for benzaldehyde. React Chem Eng 4(3):507–515. https://doi.org/10.1039/c8re00265g

Dr. Dan Wang is now a Professor at the State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering in Beijing University of Chemical Technology, Beijing, China. His research interests focus on process intensification (especially high-gravity technology, rotating packed bed reactor technology), optical nanomaterials and devices. Dr. Wang has been honored as Distinguished Young Investigator of China Frontiers of Engineering from Chinese Academy of Engineering (2018). He has authored over 70 peer-reviewed articles in Engineering, Angew Chem Int Ed, AIChE J, etc., and serves as the associate editor of Applied Nanoscience, editorial board member of Transactions of Tianjin University, member of international cooperation committee at Chemical Industry and Engineering Society of China (CIESC) and senior member of American Institute of Chemical Engineers (AIChe).