The data provide information in support of the research article, “The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors” (Janek et al., 2016) [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS) and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Type of data Tables
How data was acquired Peptide mixtures obtained by cleavage of different substrate proteins with purified cocoa aspartic protease or pepsin were analyzed by liquid chromatography-MALDI-TOF/TOF-MS/MS using a 4700 proteomics Analyzer (Applied Biosystems, Framingham, MS) of-line coupled with a Ultimate HPLC system and Probot fractionation devise (both Dionex/Thermo, Idstein, Germany). Amino acid sequences of oligopeptides isolated from fermented cocoa beans were taken from the literature.

Data format Analyzed
Experimental factors Samples were prepared by partial digestion of different substrate proteins with purified cocoa aspartic protease or pepsin. Prior to LC-MALDI-MS/MS analyses, the peptide mixtures were modified by reduction and alkylation of cysteine residues with dithiotreitol and iodoacetamide.

Experimental features Generation of oligopeptide mixtures by digestion of substrate proteins with purified cocoa aspartic protease or pepsin, fractionation and sequencing of the peptides by LC-MALDI-TOF/TOF-MS/MS and subsequent identification of the cleavage sites. Data were compared with the cleavage sites predicted from the sequences of oligopeptides isolated from fermented cocoa beans and analyzed by liquid chromatography-tandem mass spectrometry. The abundance of the different amino acid residues in the P4-P4' positions around the cleavage sites were analyzed to get an insight into the particular cleavage specificity of the cocoa aspartic protease.

Data source location Berlin, Germany, and Jena, Germany
Data accessibility Data are within this article.

Value of the data

1. These data characterize the cleavage sites of the cocoa aspartic protease.
2. Characterization of the cleavage specificity of an endoprotease requires the comparative analysis of the amino acid sequences around many of its cleavage sites.
3. We provide a strategy enabling the discrimination between specific and unspecific cleavage sites of an endoprotease.
4. Our data demonstrate the limitation of the identification of protease cleavage sites by LC-MALDI-TOF/TOF-MS/MS versus ESI-MS/MS.
5. These data will contribute to our knowledge concerning the formation of the cocoa-specific aroma precursors.

1. Data

Three tables are presented. Table 1 contains the cleavage sites in different substrate proteins used by the cocoa aspartic protease and pepsin, respectively, identified by in-vitro proteolysis. Table 2 shows the putative cleavage sites of the cocoa aspartic protease used during commercial cocoa fermentation. Table 3 shows the abundance of the different amino acids in the P4 to P4' positions around the cleavage sites used by the cocoa aspartic protease during in-vitro proteolysis and cocoa fermentation, respectively.
Substrate	Cleavage sites specific for the cocoa protease	Common cleavage sites of cocoa protease and pepsin	Cleavage sites specific for pepsin
Myoglobin			
(SwissProt no. P68082)			
Myoglobin	EWQQVNLNV 7–14	DGEWQQVQL 5–12	GEWQQVQL 6–13
	WQQVNLNVV 8–15	QQVNLNVWG 9–16	VLNWVGKVE 11–18
	FDKFIKHLK 44–51	LNWVKGKE 12–19	NVWGKVEA 13–20
	LKTEIEMK 50–57	HGQEVJLR 25–32	GVKEAADIA 16–23
	EDLIIKHT 60–67	QGEVJLRFL 26–33	KVEADIAG 17–24
	AVIIHLHS 111–118	QEVJLRFL 27–34	VEADIAGH 18–25
	IHVLSH 113–120	LFLLFTGHL 30–37	AGHGOVEQ 23–30
	HLHLSH 114–121	TVVLJIALG 67–74	GHQVEQL 24–31
	VHLHSH 115–122	PIKYLEFI 101–108	EVLJLFT 28–35
	HPGDFGAD 120–127	KYLEFISD 103–110	PETLEKFD 38–45
	FRNDIAAK 139–146	YLEFISDA 104–111	HLKTEAEM 49–56
	AKYKIELGF 145–152	FISDIAIHH 107–114	KTEAEMKA 51–58
	YKELIGFQG 147–154	ISDAIIHV 108–115	EAEMKASE 53–60
		MTKAILFEL 132–139	GGILIKKKG 74–81
		ALELIRNDF 135–142	EAEKLPFA 84–91
		KYKELIGFQ 146–153	PDDFGADA 121–128
			QGAMITKAL 129–136
			GAMTIKALE 130–137
			TKAILELFR 133–140
			KALELRNF 134–141
			AAYKIEKFIA 144–151
			ELGFQQC 149–154
Cocoa 21-kDa seed protein			
(SwissProt no. P32765)			
GLAILGRA	GGLAILGRA 57–64	VANAANSP 23–30	GRATIGGSC 62–69
	GLAILGRAT 58–65	YYVUSIS 45–52	CPEIVVQR 69–76
	ATGQSCEP 64–71	EIVQQRS 71–78	VRVSTIDVN 98–105
	GKWVWTDD 132–139	VVQRRSD 72–79	NIEFIVPR 105–112
	GYKFPCP 163–170	PVIFSNAK 85–92	PIRDRLCS 110–117
	KRFICPSV 165–172	VIFSNADS 86–93	TSTWWRDL 118–125
		AGKWWVVT 131–138	AGVLUYMKF 159–166
		PNTLCSWF 147–154	SVCDSCFT 171–178
		TLCWSWFK 149–156	TSUWCIR 178–178
		LCSWKFIE 150–157	TSTWMODE 187–194
		CSWFIEKIE 151–158	IRLADSND 193–200
		QIRLALSD 192–199	RLALSDNE 194–201
		ASKTIIKQV 209–216	
Cocoa vicilin			
(TrEMBL no. A0A061EM85)			
NDYRLAMF	NDYRLAMF 50–57	PKRRISFQT 17–24	RSEEDEEQ 1–8
	ENKRESMNV 91–98	RRSFQTRF 19–26	PYYPFKRKR 13–20
	TYYVVSQD 111–118	EGNKFILQ 30–37	YYFPPKRRS 14–21
	GMFRKIkA 190–197	FKLQRFA 33–40	YFPKRIKSF 15–22
	KAKPEAQIR 194–201	LQRFANES 36–43	RSFQTRFR 20–27
	AKPEIRAQ 195–202	KGINIVYRL 47–54	FQTRFRIDE 22–29
	KPEQIRAI 196–203	GINDYRLA 48–55	QTRFRIDEE 23–30
	ERLAIINL 216–223	DRYLAMFEE 51–58	KILQRFAE 34–41
	FKLNNQGA 257–264	RLAMIFEEAN 53–60	ILQRPAEN 35–42
	VPHYINSKA 266–273	CDAEAIYF 70–77	NPNFTILP 60–67
	GYAMQMACP 284–291	EAIYFVTN 73–80	DAEAIYFV 71–78
	VTFIFA5D 343–350	TITFVTHE 84–91	AEAHYFVT 72–79
	LVNDNIFMN 395–402	TVSVPPAG 102–109	AAYFVTNG 74–81
		SVPAGSTV 105–112	GTIIFVT 83–90
		STVVVSQ 110–117	VTHEIKES 88–95
		TIAVLALP 124–131	KESNVQQR 93–100
		VLALPVS 127–134	ESYNVQQR 94–101
Table 1 (continued)

Substrate	Cleavage sites specific for the cocoa protease	Common cleavage sites of cocoa protease and pepsin	Cleavage sites specific for pepsin
	P4–P4 Position	P4–P4 Position	P4–P4 Position
KYEL/FFP	137–144	YNVQ/RGT	96–103
ELEF/PAGN	139–146	VRQG/TVVS	98–105
NKPE/SSYG	147–154	RGTV/VSVP	100–107
YGAS/SEYV	153–160	GTSV/SVPA	101–108
YEVE/LTFV	158–165	VSVP/PGS	103–110
REK/EELE	169–176	AGSTVVV	108–115
KLE/ELEE	171–178	GSTVVVS	109–116
EKE/EQKR	173–180	LTIAVLAL	123–130
QRAIS/SQ	199–206	IAVALPV	125–132
GEL/AINL	215–222	PKYIELF	135–142
AIN/LSQS	219–226	GKYEIIFP	136–143
NGR/FYAC	233–240	YELFPAG	138–145
AVSA/FKLN	253–260	PESY/YGAF	149–156
NQGA/IFVP	260–267	YYGAISY	152–159
KAD/VFV	272–279	GAFSYEVL	154–161
SGR/DRRE	302–309	AFSEYVE	155–162
GRQ/DRRQ	303–310	FSEYVE	156–163
RQDR/REQE	304–311	EVLETFVN	159–166
EEPROM/E	316–323	ETVF/NTQR	162–169
FGE/PQKV	319–326	QGCMFRK	188–195
GDVF/VAPA	332–339	LAIN/LSQ	218–225
AVTF/SFK	342–349	INLLSQS	220–227
AVA/FGLN	355–362	GRFFEACP	234–241
QRFI/LACK	366–373	FSQF/QMD	244–251
KKN/LVRQM	373–380	VSAFLK	254–261
EAK/ELSF	383–390	AFKLNQ	256–263
FSK/LVDN	392–399	GAIFVPH	262–269
ESYS/FMS	405–412	FVV/FVTD	275–282
		CPHEL/SRQS	290–297
		SRQ/SQS/SQ	294–301
		RQS/G/SQS	295–302
		SQG/SQ/SQR	297–304
		QGQ/QR/QG	298–305
		GQS/QR/GQ	299–306
		SQG/QRQR	300–307
		EEE/FGEF	315–322
		PGD/VP/VAP	331–338
		PLNA/AVFG	352–359
		NAVA/FGLN	354–361
		AFGLNAQ	357–364
		FGLNAQNN	358–365
		NNQRIFLA	364–371
		RIFL/AGKK	367–374
		IFLAGGKN	368–375
		FLAGIKKNL	369–376
		VRQM/IDEA	377–384
		RQM/DEAK	378–385
		QMD/SAKE	379–386
		MDSE/AKEL	380–387
		GVP/SILVD	390–397
		DNFIN/PND	397–404
		NNP/DIESY	401–408
		PDES/YFMS	403–410
		SQQR/QRG	412–419
		QQQR/QRGDE	413–420

* Octapeptide sequences around the cleavage sites for the cocoa aspartic protease and pepsin, respectively, detected by partial proteolysis of myoglobin, the cocoa 21-kDa seed protein, and the cocoa vicilin-class(7S) globulin. Data were separately listed for sites exclusively cleaved by the cocoa aspartic protease and pepsin, respectively, and those cleaved by both proteases (= unspecific cleavage sites).
Table 2
Putative cleavage sites of the cocoa aspartic protease predicted from oligopeptides isolated from fermented cocoa beans.

Substrate	Putative cleavage site	Position	N- or C-terminal localization of the cleavage site	Cleavage site also detected in vitro	References
Cocoa 21-kDa seed protein (SwissProt no. P32765)					
VANAANSP	23–30	N-terminal	yes		[1]
SPVLDTDG	29–36	C-terminal	no		[3]
YYVLSSIS	45–52	N-terminal	yes		[3]
SSISGAGG	49–56	N-terminal	no		[3]
GGLIALGR	56–63	C-terminal	no		[3]
IVVQRSD	72–79	N-terminal	yes		[3]
SDLINGTP	78–85	N-terminal	no		[3]
PVIFSNAD	85–92	N- and C-terminal	no		[3]
FSNADS	88–95	N-terminal	no		[3]
DVVRVSTD	96–103	N-terminal	no		[3]
TDVNLIEFV	102–109	N- and C-terminal	no		[3]
NIEFVIPR	105–112	C-terminal	no		[3]
CSTSTTVWR	116–123	N-terminal	no		[3]
STVWRLDN	119–126	N-terminal	no		[3]
WRLDNYDN	122–129	C-terminal	no		[3]
LALSIDNEW	195–202	N-terminal	no		[3]
AWMFIKKAS	203–210	C-terminal	no		[3]
Cocoa vicilin (TrEMBL no. A0A061EM85)					
EGQQRNNP	6–13	N- and C-terminal	no		[3,4]
GQQRNPPY	7–14	N-terminal	no		[3,4]
QQRNPPYY	8–15	N-terminal	no		[4]
QRNNPYYF	9–16	N-terminal	no		[4]
PYYFIPKR	13–20	C-terminal+CP	no		[4]
YFPKRRSF	15–22	N- and C-terminal	no		[3,4]
FKKRIRSFQ	16–23	N-terminal	no		[4]
RRSFPOTR	19–26	C-terminal	yes		[3,4]
RSPQCFR	20–27	N-terminal	no		[3]
TRFRDIEG	24–31	N-terminal	no		[3]
RDEEICNF	27–34	N- and C-terminal	no		[3,4]
EEENFKNL	29–36	N-terminal	no		[3]
ECNFIXLQ	30–37	N- and C-terminal	yes		[3,4]
FKILQRFA	33–40	C-terminal	yes		[3]
KILQRFAE	34–41	C-terminal	no		[4]
SPPLKGIN	43–50	N-terminal	no		[4]
KGIDRVR	47–54	C-terminal	yes		[4]
INDYIRAM	49–56	N-terminal	no		[4]
RLAMFEEAN	53–60	C-terminal+CP	yes		[4]
NPNIFILP	60–67	N-terminal	no		[4]
IILPHICDA	65–72	C-terminal	no		[4]
YFVTINGK	76–83	N-terminal	no		[3]
VTNKGTG	78–85	N-terminal	no		[4]
TTIFVFTH	84–91	C-terminal + CP	yes		[3,4]
THENKESY	89–95	N-terminal	no		[3]
YNQVRQGT	96–103	N- and C-terminal	no		[3,4]
TVVSVPAG	102–109	C-terminal	yes		[4]
VLAIVPNS	127–134	N-terminal	yes		[4]
LPVNSPGK	129–138	N-terminal	no		[4]
PGCYIEFF	135–142	C-terminal	no		[4]
FPAGNNK	142–149	N-terminal	no		[3]
AGNNK	144–151	N-terminal	no		[4]
NKPESSYY	147–154	C-terminal	no		[3]
KPESSSYY	148–155	N- and C-terminal	no		[3,4]
FSYEVLET	156–163	N-terminal	no		[3]
YEVLETCV	158–167	C-terminal	yes		[3]
EVLETVP	159–166	C-terminal	no		[3]
PRHRGRAY	209–217	N-terminal	no		[4]
Cocoa protease, the cocoa 21-kDa seed protein, and the cocoa vicilin-class (7S) globular storage protein were isolated from the acetone-dry powder of unfermented cocoa beans essentially as described.

Substrate	Putative cleavage site	Position	N- or C-terminal localization of the cleavage site	Cleavage site also detected in vitro [1]	References
ERLLINL	216–223	N-terminal	yes	[4]	
AINLISQS	219–226	C-terminal + CP	yes	[4]	
INLISQSP	220–227	C-terminal	no	[4]	
NLLSISQP	221–228	C-terminal	no	[4]	
VAVSAFKL	252–259	N-terminal	no	[4]	
AVSAFKLN	253–260	N-terminal	yes	[4]	
FKLNQGAIF	257–264	C-terminal + CP	yes	[4]	
LNOQGAIF	258–265	N- and C-terminal	no	[4]	
LNQGAI	259–266	N-terminal	no	[4]	
NQGAIFV	260–267	N- and C-terminal	yes	[4]	
QGAI	262–269	N-terminal	no	[4]	
GAIVPH	264–273	C-terminal + CP	yes	[4]	
VPHYN	266–274	C-terminal	no	[4]	
HYNSIKAT	268–275	C-terminal	no	[4]	
KATF	272–279	C-terminal + CP	yes	[4]	
SQSGIKQDR	300–307	N-terminal	no	[3]	
EQEEI	309–316	C-terminal	no	[3]	
GEFQIKQA	320–327	N-terminal	no	[4]	
QQYKAPLS	323–330	N-terminal	yes	[4]	
KAPLSPGD	326–333	N- and C-terminal	no	[3, 4]	
APLSIPDVF	327–334	N-terminal	no	[3]	
GDVFVAPA	332–339	N- and C-terminal	yes	[3, 4]	
VFVAI	334–341	N-terminal	no	[3]	
APAGHA	337–344	N-terminal	no	[4]	
AVTF	342–349	C-terminal	yes	[3, 4]	
VTFIASKD	343–350	N- and C-terminal	yes	[3, 4]	
FFSDKQP	345–352	N-terminal	no	[3]	
FASKDQPL	346–353	N-terminal	no	[4]	
AVAFGLNA	355–362	C-terminal + CP	yes	[3, 4]	
LNAQNNQR	360–367	N-terminal	no	[4]	
NAQNNQRI	361–368	N-terminal	no	[4]	
AQQNNQRF	362–369	N-terminal	no	[4]	
QNNQIRIF	363–370	N-terminal	no	[4]	
QRIFLAGK	366–373	C-terminal	no	[4]	
GKKNIVRQ	372–379	N-terminal	no	[4]	
NLVRQMDS	375–382	C-terminal	no	[4]	
AKELISF	384–391	N-terminal	no	[4]	
KELSFGVP	385–392	N-terminal	no	[4]	
PSKLVNDI	392–399	C-terminal + CP	no	[4]	
NPDIESYF	402–409	N-terminal	no	[4]	
ESYF	405–412	C-terminal	no	[4]	

* Octapeptide sequence ([P4–P4]) around the putative cleavage site.

* Position of the octapeptide in the amino acid sequence of the degraded seed protein.

* Localization of the cleavage site at the N-terminal or C-terminal end of the oligopeptide, from which the cleavage site was predicted. Since the peptides formed during cocoa fermentation are modified by a carboxypeptidase [2, 5], the N-terminal cleavage sites are more reliable than the C-terminal ones. In case of the C-terminal ends of the corresponding oligopeptide, a downstream localized cleavage site was predicted, whenever the resulting peptide fragment could be modified by the cocoa carboxypeptidase [6] to the finally detected oligopeptide (indicated by “+ CP”).

2. Experimental design, materials and methods

2.1. Determination of cleavage sites by in-vitro proteolysis

Cocoa protease, the cocoa 21-kDa seed protein, and the cocoa vicilin-class (7S) globular storage protein were isolated from the acetone-dry powder of unfermented cocoa beans essentially as described.
10 mg of horse myoglobin or of the individual cocoa seed proteins in 1 ml of 20 mM sodium acetate (pH 5.0) were partially digested with either 100 μg of purified cocoa aspartic protease or 50 μg of commercial porcine pepsin (Sigma-Aldrich Chemie, Taufkirchen, Germany). The obtained peptides were modified by reduction with dithiothreitol and subsequent alkylation of the cysteine residues with iodoacetamide before being analyzed by mass spectrometry.

Table 3
Abundance of different amino acid residues in the P4 to P4 -i positions of the predicted and experimentally detected cleavage sites of the cocoa aspartic protease.

	P4	P3	P2	P1						
	In-situ	In-vitro								
W	0.93	0.93	0.93	0.93	1.02	1.88	1.02	1.88	1.02	1.88
F	6.54	1.88	1.88	1.88	0.00	1.88	1.88	1.88	1.88	1.88
Y	7.14	6.54	11.32	5.54	6.12	6.54	6.12	6.54	21.24	20.56
L	7.14	5.54	8.41	5.54	11.32	5.54	11.32	5.54	21.24	20.56
I	0.00	0.93	0.93	0.93	1.02	0.00	1.02	0.00	1.02	0.00
M	7.14	5.54	8.16	10.29	16.32	11.32	16.32	11.32	21.24	20.56
V	10.28	7.14	9.34	3.06	3.06	3.76	3.06	3.76	9.18	5.54
A	7.14	11.20	4.08	5.54	12.24	4.67	13.26	2.80	6.12	10.28
D	0.00	1.88	4.08	4.67	2.04	2.80	2.04	2.80	6.12	3.76
H	0.00	2.80	4.08	4.67	2.04	1.88	2.04	1.88	6.12	3.76
R	0.00	3.74	7.14	4.67	10.24	9.34	10.24	9.34	6.12	3.76
K	7.14	9.34	5.10	9.34	4.08	11.32	4.08	11.32	9.18	5.54
P	7.14	3.74	11.22	2.80	5.10	2.80	1.02	0.93	6.12	3.76

a Amino acid positions around the cleavage sites.
b Predicted from the N-terminal and C-terminal ends of oligopeptides isolated from fermented cocoa beans [3,4].
c Detected by in vitro digestion of three different protein substrates with the cocoa aspartic protease (compare Table 1).
d Values are expressed in percent of all amino acids found in these positions. Values above 6% are marked in bold.
Liquid chromatography-MALDI-TOF/TOF-MS/MS analyses were performed on a 4700 proteomics Analyzer (ABSCIEX, Framingham, MS) off-line coupled with an Ultimate HPLC system and Probot fractionation device (both Dionex/Thermo, Idstein, Germany). LC separations were performed on an analytical column (PepMap C18, 3 μm, 150 mm × 75 μm; Dionex) at a flow rate of 200 nl/min. Mobile phase (A) was 2:98 (v/v) acetonitrile/water containing 0.05% (v/v) TFA and (B) was 80:20 (v/v) acetonitrile/water containing 0.045% (v/v) TFA. Gradients were 0–10% B in 4 min, 10-50% B in 30 min, 50–100% B in 2 min. Column effluent was continuously mixed with MALDI matrix (5 mg/ml α-cyano-4-hydroxycinnamic acid in 70:30 (v/v) acetonitrile/water containing 0.1% (v/v) TFA, 1 μl/min) and spotted at 10-s intervals on 26 × 12 spot arrays on MALDI steel targets (Applied Biosystems, Darmstadt, Germany).

Mass spectra were acquired in a data-dependent mode. The MS spectra were recorded in the mass range of m/z 800–4000 and with the accumulation of 2000 subspectra. MS/MS spectra were measured from the five most intensive precursor ions (S/N > 30). 5000–10,000 laser shots were accumulated. MS and MS/MS peak lists were generated by the “Peak to Mascot” tool of the 4000er Series Explorer v3.6. For MS/MS data analysis, MASCOT server (version 2.3, Matrixscience, London, UK) was used. Data base searches were performed using SwissProt (2015_03; 547964 protein sequences) and the following parameters: no enzyme, one missed cleavage, variable modifications: carbamidomethylation (C), oxidation (M), pyro-glu (Q), mass tolerances for MS and MS/MS: 100 ppm and 0.3 Da. Enzymatic peptides of horse myoglobin (SwissProt no. P68082), cocoa vicilin-class(7S) globulin (TrEMBL no. A0A061EM85), and the cocoa 21-kDa seed protein (SwissProt no. P32765) were accepted as identified if their MS/MS spectra provided a MASCOT score for identity with p < 0.05.

The different cleavage sites were determined by localization of the N- and C-terminal ends of the oligopeptides within the amino acid sequence of the corresponding substrate proteins. The octapeptide sequences around the cleavage sites and their positions in the corresponding substrate proteins are listed in Table 1. Three classes of cleavage sites were found and separately listed (Table 1):

(1) Those which were exclusively cleaved by the cocoa aspartic protease (=specific cleavage sites of the cocoa enzyme),
(2) those which were cleaved both by the cocoa aspartic protease and pepsin (=unspecific cleavage sites of the cocoa enzyme) and
(3) those which were exclusively cleaved by pepsin.

2.2. Determination of putative in-situ cleavage sites used during cocoa fermentation

Oligopeptides isolated from fermented cocoa beans and sequenced by ESI-MS/MS mass spectrometric analyses were taken from the literature [3,4] and used to identify the putative in-situ cleavage sites of the cocoa aspartic protease in the 21-kDa cocoa seed protein and in the vicilin-class(7S) globulin of the cocoa beans, respectively. The octapeptide sequences around the putative cleavage sites used in the formation of the oligopeptides isolated from fermented cocoa beans and their positions in the amino acid sequences of the 21-kDa cocoa seed protein and the cocoa vicilin-class(7S) globulin, respectively, are listed in Table 2. Since the oligopeptides generated during fermentation of the cocoa beans are more or less modified at their C-terminal ends due to the activity of a carboxypeptidase [5], prediction of the C-terminal cleavage sites is less reliable than the cleavage sites predicted from the N-terminal ends. Due to the known cleavage specificity of this particular carboxypeptidase [6], however, the putative cleavage sites corresponding to the C-terminal ends of the original cleavage products generated by the cocoa aspartic protease can be predicted with at least some reliability. When the predicted C-terminal cleavage site was assumed to be downstream from the C-terminal end of the isolated peptide, this was marked by “+CP”. Up to now, 87 different oligopeptides have been isolated from fermented cocoa beans and sequenced by mass spectrometry [3,4]. All these oligopeptides were derived from the 21-kDa seed protein and the cocoa vicilin-class (7S) globulin, respectively [3,4].
From the N- and C-terminal ends of these 87 oligopeptides, 98 putative cleavage sites of the cocoa aspartic protease have been predicted (Table 2), 23 of which being identical to cleavage sites detected by in-vitro proteolysis (Tables 1 and 2).

To get an insight into the cleavage specificity of the cocoa aspartic protease, the relative abundance of the different amino acid residues in the P4–P4’ positions around the cleavage sites have been determined (Table 3). This was done both for the cleavage sites putatively used in-situ (during the fermentation process) and for the cleavage sites determined by in-vitro proteolysis (Table 3). In the latter case, all the cleavage sites of the cocoa aspartic protease have been considered, i.e. without discrimination between specific and unspecific cleavage sites as done in Table 1. Considerable differences have been observed for the relative abundance of some amino acids in the P4–P4’ positions between the in-situ (used during fermentation) and the in-vitro cleavage sites, respectively (Table 3). Analysis of chemical compounds by MALDI-TOF-MS used for the identification of peptide fragments generated during in-vitro proteolysis [1] is restricted to ions with m/z > 799, due to ions generated from the matrix components. As recently reported, most peptides present in fermented cocoa beans, however, have molecular masses below this limit [3,4]. Therefore, considerably more peptides and their corresponding N- and C-terminal ends can be detected and analyzed by LC-ESI-MS/MS than by LC-MALDI-TOF/TOF-MS/MS.

Transparency document. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.06.021.

References

[1] K. Janek, A. Niewienda, J. Wöstemeyer, J. Voigt, The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors, Food Chem. 211 (2016) 320–328.
[2] J. Voigt, H. Heinrichs, G. Voigt, D. Wrann, B. Biehl, Cocoa-specific aroma precursors are generated by proteolytic digestion of the vicilin-like globulin of the cocoa seeds, Food Chem. 50 (1994) 177–184.
[3] A. Marseglia, S. Sforza, A. Faccini, M. Bencivenni, G. Palla, A. Caligiani, Extraction, identification and semi-quantification of oligopeptides in cocoa beans, Food Res. Intern. 63 (2014) 382–389.
[4] J. Voigt, K. Janek, K. Textoris-Taube, A. Niewienda, J. Wöstemeyer, Partial purification and characterisation of the peptide precursors of the cocoa-specific aroma components, Food Chem. 192 (2016) 706–713.
[5] J. Voigt, B. Biehl, H. Heinrichs, S. Kamaruddin, S. Gaim Marsoner, A. Hugi, In-vitro formation of cocoa-specific aroma precursors: aroma-related peptides generated from cocoa-seed protein by co-operation of an aspartic endoprotease and a carboxypeptidase, Food Chem. 49 (1994) 173–180.
[6] G. Bytof, B. Biehl, H. Heinrichs, J. Voigt, Specificity and stability of the carboxypeptidase activity in ripe, ungerminated seeds of Theobroma cacao L, Food Chem. 54 (1995) 15–21.