The complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant *Rubus chingii* Hu

Qirui Wang, Shuisheng Yu, Chenshu Gao, Yuqing Ge and Rubin Cheng

College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China; The Administration Bureau of Zhejiang, Jiulongshan National Nature Reserve, Suichang, China; The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, China

ABSTRACT

Rubus chingii Hu is an important traditional Chinese medicine with a beneficial effect on the kidney. In this study, we report the complete chloroplast genome sequence of *R. chingii*. The assembled chloroplast genome was 155843 bp in length, containing two inverted repeated (IR) regions of 25372 bp each, a large single copy (LSC) region of 86456 bp and a small single copy (SSC) region of 18643 bp. The genome contained 130 genes, including 86 protein genes, eight rRNA genes, and 36 tRNA genes. The overall GC content of complete chloroplast genome was 37.1%. Phylogenetic analysis demonstrated that *R. chingii* clustered together with the monophyletic group of *R. crataegifolius* and *R. takesimensis*, suggesting a close relationship among the three species from Tribe Rubeae.

The Chinese wild raspberry *Rubus chingii* Hu is a widely distributed economic and medicinal plant belonging to the Rubus genus in the family Rosaceae (Gu et al. 1993). The fruits of *R. chingii* have been employed as a functional food as well as a traditional medicine to treat kidney enuresis and other illnesses in the clinic (He et al. 2018). The fresh leaves of this species were often used as popular beverages in China. The ethanol extract from the fruits of *R. chingii* exhibited protecting activity to the skin against UVB damage, suggesting potential applications in cosmetics (She et al. 2019). Furthermore, Rubus is one large and diverse genus containing plentiful species with similar morphologies, causing complicated arguments on the species identification and classification (Alice and Campbell 1999). Molecular identification is an efficient approach for species-level differentiation via standard DNA barcodes. Here, we report the complete chloroplast genome of *R. chingii* to provide genomic resources for molecular marker development and clarify the phylogenetic position of this plant within others in Rosaceae.

The sample of *Rubus chingii* was collected from the area of Jiulongshan National Nature Reserve in Zhejiang Province (28°41′58.49″N, 119°10′51.01″E). The specimen was deposited in the collection center of Zhejiang Chinese Medical University with the specific identifying number of JSL-1903. Total genomic DNA was extracted and sequenced using the Illumina Hiseq Platform according to the previous report (Ying et al. 2019). The chloroplast genome of *R. chingii* was assembled by metaSPAdes with the chloroplast sequence of *R. crataegifolius* as reference (Nurk et al. 2017). The chloroplast was annotated using GeSqe and further corrected by BLAST (Tillich et al. 2017). The complete cp genome of *R. chingii* was submitted to GenBank with the accession number of MN885523.

The length of the complete chloroplast genome sequence of *R. chingii* was 155843 bp, with a large single copy (LSC) region of 86456 bp, a small single copy (SSC) region of 18643 bp, and two separated inverted repeated (IR) regions of 25372 bp each. A total of 130 genes were identified in the cp of *R. chingii*, including 86 protein-coding genes, 36 tRNA genes and 8 rRNA genes. The overall GC content was 37.1%, and the corresponding contents for LSC, SSC and IR regions were 35.0%, 30.9% and 42.8%, respectively. The genome included 16 duplicated genes in the IR region and exhibited 51.5% protein-coding sequences. Moreover, a total of 57 small single repeats (SSR) are identified in the cp of *R. chingii*, ranging from 10 bp to 18 bp.

The complete genome sequences of *R. chingii* and other 17 representative species from Rosaceae family were analyzed using MEGA 7.0 by maximum-likelihood (ML) method to confirm the phylogenetic position (Kumar et al. 2016).
The result demonstrated a sister relationship between \textit{R. chingii} and the combined group forming by \textit{R. crataegifolius} and \textit{R. takesimensis}, suggesting a close relationship among the three species (Figure 1). In addition, Rubus species clustered in a clade together with high supporting scores, but did not display sister-relationship with the monophyletic group of other species in Rosaceae (Figure 1). These results suggested the unique evolutionary status of Rubus and required further revision on the taxonomy of Family Rosaceae.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was financially supported by the Opening Project of Zhejiang Provincial Preponderant and Characteristic Subject of Key University (Traditional Chinese Pharmacology), Zhejiang Chinese Medical University [No. ZYAOX2018033] and Project of Quality Guarantee System of Chinese Herbal Medicines [Grant No. 201507002-4].

References

Alice LA, Campbell CS. 1999. Phylogeny of Rubus (Rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Am J Bot. 86(1):81–97.

Gu Y, Zhao CM, Jin W, Li WL. 1993. Evaluation of Rubus germplasm resources in China. Acta Hortic. 352:317–324.

He Y, Jin S, Ma Z, Zhao J, Yang Q, Zhang Q, Zhao Y, Yao B. 2018. The antioxidant compounds isolated from the fruits of Chinese wild raspberry \textit{Rubus Chingii} Hu. Nat Prod Res. 1–4. doi:10.1080/14786419.2018.1504046

Kumar S, Stecher G, Tamura K. 2016. Mega 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33(7):1870–1874.

Nurk S, Meleshko D, Korobeynikov A, Pevzner P A. 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27(5):824–834.

She JM, Yuan HH, Zhang J, Si ZN, Lan MB. 2019. Protective effect of the \textit{Rubus chingii} Hu. fruit extract on ultraviolet B-induced photoaging via suppression of mitogen-activated protein kinases (MAPKs) in vitro. Arch Biol Sci (Beogr). 71(3):541–550.

Tillich M, Lehwaer P, Pellitzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S. 2017. GeSeq - versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45(W1):W6–W11.

Ying Z, Wang Q, Yu S, Liao G, Ge Y, Cheng R. 2019. The complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant \textit{Lysimachia hemsleyana}. Mitochondrial DNA B. 4(2):3878–3879.