Supporting Information

Investigating the Ring-Opening Polymerization Activity of Niobium and Tantalum Ethoxides Supported by Phenoxyimine Ligands
Alyson S. Plaman and Christopher B. Durr*

Department of Chemistry, Amherst College, 25 East Drive, Amherst, Massachusetts 01002, United States of America

Contents

Experimental Details S2 – S14
Ligand and Catalyst NMR S15 – S50
Crystal Structures S51 – S56
Polymer NMR S57 – S58
Crystallographic Details S59 – S62
References S63
Experimental Details

Some of the general experimental and analytical procedures in our lab have been described previously.¹

All metal complexes were synthesized and manipulated under a nitrogen atmosphere in an MBraun glovebox. Reagents were obtained from Sigma-Aldrich, TCI America, Strem or Alfa-Aesar and used as received unless otherwise described. rac-lactide was donated from Corbion, stored at -35 °C in a nitrogen glovebox and used as received. ε-Caprolactone was purchased from TCI America, degassed under high-vacuum, dried over 4 Å activated molecular sieves and stored sealed under nitrogen. Anhydrous solvents were purchased from Beantown Chemical and Alfa-Aesar and used as received. Deuterated solvents were purchased from Sigma-Aldrich and Cambridge Isotope Laboratory, degassed under high-vacuum, and stored in the glovebox over 4 Å activated molecular sieves.

NMR spectra were recorded using a Bruker Ascend 400 spectrometer. Elemental analysis was performed by Robertson Microlit Laboratories. Some values deviate from the theoretical, likely due to the air sensitive nature of the molecules, but are reported here regardless to demonstrate the best values found to date.

GPC analysis was performed using an Agilent PL 1260 Infinity II instrument and calibrated according to poly(styrene) standards. Crude polymer samples were dissolved overnight in HPLC grade tetrahydrofuran (THF) (2 mL) and filtered using 0.45 µm nylon filters. Samples were separated by two PLgel 5 µm Mixed-C columns connected in parallel with a solvent (THF) flow rate of 1 mL / min at 35 °C. Detection was performed with a refractive index detector. Correction factors of 0.58 for PLA and 0.56 for PCL were applied to the Mn values of all homopolymers.² No correction factor was used for the Mn determination of the copolymer sample.

Samples for single crystal X-ray diffraction (SCXRD) were isolated in the glovebox and immersed in fluorinated oil. Each crystal was mounted on a MiTeGen MicroMount and cooled to the desired temperature with an Oxford Cryostream 800. Data was collected on a Rigaku Synergy-I diffractometer using a Cu radiation source, Kα = 1.541 Å, and equipped with a HyPix3000 detector. Data integration and absorption correction was performed with CrysAlis Pro.³ Structural solution was performed with SHELXT³ followed by data refinement with SHELXL⁵ within the OLEX2 GUI.⁶ Structural data has been deposited in the Cambridge Structural Database (CSD) and has been assigned registration numbers 2164469 – 2164480.

Catalysts 2, 5 and 3e crystallized with highly disordered solvent in the lattice. After numerous attempts to model the disorder, the solvent mask protocol of OLEX2 was utilized.⁶ Further details can be found embedded within the CIF.
Ligand Synthesis

The syntheses of HL_{1-3d} have been adapted from previous reports.7-12

HL_{1} 3,5-Di-tert-butyl-salicylaldehyde (2.97 g, 12.70 mmol) was added to a round bottom flask. 2,6-Diisopropylaniline (2.25 g, 12.70 mmol) was added to the round bottom and ethanol (25 mL) was added to dissolve both reactants along with 2 drops of formic acid. The reaction was refluxed at 95 °C for 18 h. The round bottom was then placed in a -15 °C freezer. Light yellow sticky solid was filtered and dried via vacuum for 6 hours. The ligand was then dissolved in ethyl acetate and magnesium sulfate was added to the solution. The solution was filtered, and the dissolved product was transferred to a round bottom and placed on a rotovap for 6 hours at 80 °C to produce a light yellow glassy solid. (2.07 g, 5.26 mmol, 41%).

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{ligand1}
\caption{1H NMR assignment}
\end{figure}

\begin{table}
\centering
\begin{tabular}{c c c c}
\hline
\toprule
\textbf{1H NMR (400 MHz, CDCl\textsubscript{3}, 293 K) δ (ppm)} & \textbf{13.46 (bs, 1H, H\textsubscript{a})} & \textbf{8.31 (s, 1H, H\textsubscript{b})} & \textbf{7.53 (d, J = 2.4 Hz, 1H, H\textsubscript{c})} \\
\textbf{2.93 (hept, J = 6.9 Hz, 2H, H\textsubscript{d})} & \textbf{1.52 (s, 9H, H\textsubscript{e})} & \textbf{1.36 (s, 9H, H\textsubscript{f})} & \textbf{1.21 (d, J = 6.8 Hz, 12H, H\textsubscript{g})} \\
\bottomrule
\end{tabular}
\caption{1H NMR assignment}
\end{table}

HL_{2} 3,5-Dichlorosalicylaldehyde (2.73 g, 14.27 mmol) was added to a round bottom flask. 2,6-Diisopropylaniline (2.53 g, 14.27 mmol) was added to the round bottom and ethanol (15 mL) was added to dissolve both reactants. The solution quickly became bright orange and a precipitate formed. The reaction was refluxed at 80 °C for 4 h and subsequently placed in a -15 °C freezer. The precipitate was isolated via vacuum filtration to yield an orange powder (4.367 g, 12.47 mmol, 87%).

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{ligand2}
\caption{1H NMR assignment}
\end{figure}

\begin{table}
\centering
\begin{tabular}{c c c c}
\hline
\toprule
\textbf{1H NMR (400 MHz, CDCl\textsubscript{3}, 293 K) δ (ppm)} & \textbf{13.97 (bs, 1H, H\textsubscript{a})} & \textbf{8.24 (s, 1H, H\textsubscript{b})} & \textbf{7.51 (d, J = 2.5 Hz, 1H, H\textsubscript{c})} \\
\textbf{7.27 (d, J = 2.5 Hz, 1H, H\textsubscript{d})} & \textbf{7.21 (t, J = 2.2 Hz, 3H, H\textsubscript{e})} & \textbf{7.21 (t, J = 2.2 Hz, 3H, H\textsubscript{f})} & \textbf{7.21 (t, J = 2.2 Hz, 3H, H\textsubscript{g})} \\
\bottomrule
\end{tabular}
\caption{1H NMR assignment}
\end{table}
HL₃α-o-Vanillin (3.267 g, 21.47 mmol) was added to a round bottom flask and dissolved in ethanol (10mL). Aniline (2.00 g, 21.47 mmol) was added to the round bottom and bright red solution was stirred overnight. The round bottom was placed on a rotovap to remove solvent, yielding an orange solid (4.510 g, 19.85 mmol, 92%).

\[\text{HL₃α-o-Vanillin} \]

1H NMR assignment

1H NMR (400 MHz, CDCl₃, 293 K) δ (ppm): 13.70 (bs, 1H, Hₐ), 8.63 (s, 1H, Hₐ), 7.43 (m, 2H, Hₐ), 7.29 (m, 3H, Hₐ), 7.03 (dd, J = 7.7, 1.5 Hz, 1H, Hₐ), 7.01 (dd, J = 8.0, 1.5 Hz, 1H, Hₐ), 6.88 (t, J = 7.9 Hz, 1H, Hₐ), 3.94 (s, 3H, Hₐ).

HL₃b-o-Vanillin (1.00 g, 6.57 mmol) was added to a round bottom flask and dissolved in ethanol (10mL). 2,6-Dimethylaniline (0.796, 6.57 mmol) and formic acid (5 drops) were added to the round bottom to give an orange solution. Reaction was refluxed at 80 °C for 6 hours and then filtered and dried via vacuum filtration to give a yellow powder (1.50 g, 5.87 mmol, 89%).

\[\text{HL₃b-o-Vanillin} \]

1H NMR assignment

1H NMR (400 MHz, CDCl₃, 293 K) δ (ppm): 13.53 (bs, 1H, Hₐ), 8.35 (s, 1H, Hₐ), 7.10 (d, J = 7.2 Hz, 2H, Hₐ), 7.03 (m, 1H, Hₐ), 6.97 (dd, J = 7.8, 1.6 Hz, 1H, Hₐ), 6.91 (t, J = 7.8 Hz, 1H, Hₐ), 3.96 (s, 3H, Hₐ), 2.21 (s, 6H, Hₐ).

HL₃c-o-Vanillin (5 g, 32.86 mmol) was added to a round bottom flask and dissolved in ethanol (30mL). 2,6-Diisopropylaniline (5.83 g, 32.86 mmol) and several drops of formic acid were added to the stirring o-vanillin, producing an orange solution. The reaction was refluxed at 80 °C for 18 hours and the resulting yellow powder was filtered and dried via vacuum filtration (5.0 g, 16.1 mmol, 82%).

\[\text{HL₃c-o-Vanillin} \]
\[^1H \text{ NMR assignment} \]

\[^1H \text{ NMR (400 MHz, CDCl}_3, 293 \text{ K}) \delta (ppm): 13.55 (bs, 1H, H_a), 8.33 (s, 1H, H_b), 7.20 (t, J = 2.4 \text{ Hz}, 3H, H_c), 7.03 (dd, J = 7.9, 1.6 \text{ Hz}, 1H, H_d), 7.00 (dd, J = 7.9, 1.6 \text{ Hz}, 1H, H_d), 6.93 (t, J = 7.9 \text{ Hz}, 1H, H_e), 3.98 (s, 3H, H_f), 3.02 (hept, J = 6.8 \text{ Hz}, 2H, H_g), 1.19 (d, J = 6.6 \text{ Hz}, 12H, H_h). \]

\[\text{HL}_{3d} \alpha\text{-Vanillin (1.455 g, 9.56 mmol) was added to a round bottom flask and dissolved in ethanol (10 mL). 2,4,6-Tri-\text{-} \text{tert-} \text{-} \text{butylaniline (2.50 g, 9.56 mmol) was added to the \alpha\text{-}vanillin solution and reaction was refluxed at 90}^\circ \text{C for 14 hours and then stirred at room temperature for 96 hours. Product was filtered and dried over vacuum to yield a light yellow powder (2.715 g, 6.86 mmol, 72%).} \]

\[^1H \text{ NMR assignment} \]

\[^1H \text{ NMR (400 MHz, CDCl}_3, 293 \text{ K}) \delta (ppm): 13.76 (s, 1H, H_a), 8.24 (s, 1H, H_b), 7.40 (s, 2H, H_c), 7.03 (m, 1H, H_d), 6.91 (m, 2H, H_e), 3.97 (s, 3H, H_f), 1.35 (s, 9H, H_g), 1.34 (s, 18H, H_h). \]

\[\text{Catalyst Synthesis} \]

\[\text{Catalyst 1} \]

\[\text{HL}_1 (0.309 \text{ g, 0.785 mmol) and Nb(OEt)}_5 (0.250 \text{ g, 0.785 mmol) were separately dissolved in a minimum of toluene (2 and 1 mL, respectively) and mixed. The yellow reaction mixture was stirred at room temperature for 16 hours. Toluene was removed under vacuum followed by addition of pentane (2 mL). Removal of the pentane under vacuum yielded a yellow powder (0.480 g, 0.722 mmol, 92%).} \]
Removal of the pentane under vacuum yielded a minimum of toluene (0.786 mmol) and Nb(OEt)₅ (0.250 g, 0.786 mmol) were separately dissolved in a minimum of toluene (2 and 1 mL, respectively) and mixed. The yellow reaction mixture was stirred at room temperature for 16 hours. Toluene was removed under vacuum followed by addition of pentane (2 mL). Removal of the pentane under vacuum yielded a yellow powder (0.486 g, 0.781 mmol, 99%).

Catalyst 2

\[
\text{HL}_2 (0.275 g, 0.786 \text{ mmol}) \text{ and Nb(OEt)}_5 (0.250 g, 0.786 \text{ mmol}) \text{ were separately dissolved in a minimum of toluene (2 and 1 mL, respectively) and mixed. The yellow reaction mixture was stirred at room temperature for 16 hours. Toluene was removed under vacuum followed by addition of pentane (2 mL). Removal of the pentane under vacuum yielded a yellow powder (0.486 g, 0.781 mmol, 99%).}
\]

Elemental Analysis:

For Catalyst 1:
- C: 63.14%
- H: 8.78%
- N: 2.10%

Found: C, 62.07; H, 7.80; N 2.05%

For Catalyst 2:
- C: 52.10%
- H: 6.48%
- N: 2.25%

Found: C, 51.58; H, 6.27; N 2.28%
Catalyst 3a

HL\textsubscript{3a} (0.179 g, 0.786 mmol) and Nb(OEt)\textsubscript{5} (0.250, 0.786 mmol) were separately dissolved in toluene (3 and 1 mL, respectively) and mixed. The orange reaction mixture was stirred at room temperature for 16 hours. Toluene was removed under vacuum followed by the addition of pentane (6 mL). Removal of pentane under vacuum yielded an amorphous yellow solid (0.356 g, 0.713 mmol, 91%).

\begin{align*}
\text{1H NMR assignment} & \quad \text{13C NMR assignment} \\
\begin{array}{c}
\text{8.21 (s, 1H, H\textsubscript{a}), 7.40 (m, 2H, H\textsubscript{b}), 7.30 (m, 3H, H\textsubscript{c}), 7.06 (dd, J = 7.8, 1.6 Hz, 1H, H\textsubscript{d}), 6.95 (dd, J = 7.8, 1.6 Hz, 1H, H\textsubscript{e}), 6.71 (t, J = 7.8 Hz, 1H, H\textsubscript{f}), 4.62 (q, J = 7.0 Hz, 2H, H\textsubscript{g}), 4.12 (m, 4H, H\textsubscript{h}), 3.94 (s, 3H, H\textsubscript{i}), 3.54 (q, J = 7.0 Hz, 2H, H\textsubscript{g}), 1.10 (t, J = 7.0 Hz, 6H, H\textsubscript{i}), 0.90 (t, J = 7.0 Hz, 3H, H\textsubscript{i}). \text{13C{}{1H} NMR (101 MHz, CDCl\textsubscript{3})} \\
\delta (ppm): 166.75 (C\textsubscript{5}), 155.48 (C\textsubscript{11}), 153.24 (C\textsubscript{4}), 150.42 (C\textsubscript{10}), 128.68 (C\textsubscript{3}), 126.95 (C\textsubscript{7}), 126.23 (C\textsubscript{1}), 123.39 (C\textsubscript{2}), 121.12 (C\textsubscript{8}), 119.16 (C\textsubscript{9}), 116.48 (C\textsubscript{6}), 71.70 (C\textsubscript{13}), 69.84 (C\textsubscript{13}), 67.28 (C\textsubscript{13}), 57.28 (C\textsubscript{12}), 18.71 (C\textsubscript{14}), 17.95 (C\textsubscript{14}), 17.74 (C\textsubscript{14}). \text{Elemental Analysis: C}_{22}\text{H}_{32}\text{NO}_{6}\text{Nb (499.41 g/mol) Calculated: C, 52.91; H, 6.46; N 2.80 %}. \text{Found: C, 51.38; H, 5.95; N 2.87 %}
\end{array}
\end{align*}

Catalyst 3b

HL\textsubscript{3b} (0.201 g, 0.786 mmol) and Nb(OEt)\textsubscript{5} (0.250, 0.786 mmol) were separately dissolved in toluene (3 and 1 mL, respectively) and mixed. The yellow reaction mixture was stirred at room temperature for 16 hours. Toluene was removed under vacuum followed by the addition of pentane (6mL). Removal of pentane under vacuum yielded a highly viscous yellow oil (0.350 g, 0.665 mmol, 85%).
1H NMR assignment

1H NMR (400 MHz, CDCl$_3$, 293 K) δ (ppm): 7.96 (s, 1H, H$_a$), 7.19 (m, 3H, H$_b$), 7.05 (m, 4H, H$_{b,c}$), 6.85 (dd, $J = 7.9$, 1.6 Hz, 1H, H$_d$), 6.67 (t, $J = 7.9$ Hz, 1H, H$_e$), 4.57 (bs, 2H, H$_f$), 4.26 (bs, 2H, H$_g$), 4.10 (bs, 2H, H$_h$), 3.94 (s, 3H, H$_i$), 3.46 (bs, 2H, H$_j$), 2.29 (s, 6H, H$_{k,l}$), 1.32 (bs, 3H, H$_m$), 1.09 (bs, 6H, H$_n$), 0.92 (bs, 3H, H$_i$). 13C(1H) NMR (101 MHz, CDCl$_3$) δ (ppm): 168.81 (C$_8$), 155.70 (C$_{12}$), 152.01 (C$_4$), 150.46 (C$_{11}$), 130.80 (C$_3$), 128.12 (C$_1$), 126.90 (C$_8$), 125.60 (C$_2$), 121.25 (C$_7$), 118.87 (C$_{10}$), 116.08 (C$_9$), 71.29 (C$_{14}$), 70.04 (C$_{15}$), 67.01 (C$_{16}$), 57.28 (C$_{17}$), 18.48 (C$_{18}$), 18.40 (C$_{19}$). Elemental Analysis: C$_{28}$H$_{44}$NO$_6$Nb (583.57 g/mol) Calculated: C, 56.18; H, 7.15; N 2.40 %. Found: C, 56.18; H, 7.15; N 2.34 %

Catalyst 3c

HL$_{3c}$ (0.278 g, 0.893 mmol) and Nb(OEt)$_5$ (0.284, 0.893 mmol) were separately dissolved in toluene (2 and 1 mL, respectively) and mixed. The yellow reaction mixture was stirred at room temperature for 16 hours. Toluene was removed under vacuum followed by addition of pentane (4 mL). Removal of pentane under vacuum yielded a yellow powder (0.433 g, 0.741 mmol, 83%).

1H NMR assignment

1H NMR (400 MHz, CDCl$_3$, 293 K) δ (ppm): 7.96 (s, 1H, H$_a$), 7.19 (m, 3H, H$_b$), 7.04 (dd, $J = 7.7$, 1.6 Hz, 1H, H$_d$), 6.83 (dd, $J = 7.8$, 1.6 Hz, 1H, H$_e$), 6.67 (t, $J = 7.8$ Hz, 1H, H$_f$), 4.55 (bs, 2H, H$_g$), 4.29 (bs, 2H, H$_h$), 4.05 (bs, 2H, H$_i$), 3.95 (s, 3H, H$_j$), 3.33 (m, 4H, H$_{k,l}$), 1.10 (m, 24H, H$_l$). 13C(1H) NMR (101 MHz, CDCl$_3$) δ (ppm): 168.56 (C$_8$), 155.88 (C$_{12}$), 152.17 (C$_4$), 150.44 (C$_{11}$), 130.80 (C$_3$), 128.22 (C$_1$), 126.93 (C$_8$), 125.63 (C$_2$), 121.25 (C$_7$), 118.97 (C$_{10}$), 116.08 (C$_9$), 71.29 (C$_{14}$), 70.04 (C$_{15}$), 67.01 (C$_{16}$), 57.28 (C$_{17}$), 18.48 (C$_{18}$), 18.40 (C$_{19}$). Elemental Analysis: C$_{28}$H$_{44}$NO$_6$Nb (583.57 g/mol) Calculated: C, 57.63; H, 7.60; N 2.40 %. Found: C, 56.18; H, 7.15; N 2.34 %
Catalyst 3d

HL_{3d} (0.311 g, 0.786 mmol) and Nb(OEt)$_5$ (0.250 g, 0.786 mmol) were separately dissolved in toluene (2 and 1 mL, respectively) and mixed. Reaction was stirred at room temperature for 16 hours, heated at 90 °C for 6 hours, and stirred at room temperature for an additional 16 hours. Toluene was removed under vacuum followed by the addition of pentane (10 mL). Removal of pentane yielded a yellow sticky solid (0.2080 g, 0.312 mmol, 40%).

1H NMR assignment

1H NMR (400 MHz, CDCl$_3$, 293 K) δ (ppm): 8.70 (s, 1H, H$_a$), 7.87 (dd, $J = 7.9$, 1.4 Hz, 1H, H$_b$), 7.39 (s, 2H, H$_c$), 7.01 (dd, $J = 7.9$, 1.4 Hz, 1H, H$_d$), 6.82 (t, $J = 7.9$ Hz, 1H, H$_e$), 4.31 (q, $J = 7.2$ Hz, 8H, H$_f$), 4.15 (s, 3H, H$_g$), 1.38 (s, 9H, H$_h$), 1.35 (s, 18H, H$_h$), 1.18 (t, $J = 7.1$, 12H, H$_i$). 13C(1H) NMR (101 MHz, CDCl$_3$) δ (ppm): 158.08 (C$_6$), 154.84 (C$_{12}$), 151.57 (C$_3$), 149.98 (C$_{11}$), 143.59 (C$_4$), 138.54 (C$_4$), 123.09 (C$_7$), 121.75 (C$_{3,10}$), 116.72 (C$_9$), 112.63 (C$_8$), 69.90 (C$_{14}$), 59.00 (C$_{13}$), 36.00 (C$_4$), 34.75 (C$_2$), 31.74 (C$_1$), 31.54 (C$_1$), 18.50 (C$_{15}$).

*Yield contains mixture of products.

Catalyst 4

HL$_2$ (0.242 g, 0.615 mmol) and Ta(OEt)$_5$ (0.250 g, 0.615 mmol) were separately dissolved in a minimum of toluene (2 and 1 mL, respectively) and mixed. The yellow reaction mixture was stirred at room temperature for 16 hours. Toluene was removed under vacuum followed by addition of pentane (2 mL). Removal of the pentane under vacuum yielded a yellow powder (0.331 g, 0.439 mmol, 71%).
Catalyst 5

HL₂ (0.369 g, 1.056 mmol) and Ta(OEt)₅ (0.429 g, 1.056 mmol) were separately dissolved in a minimum of toluene (2 and 1 mL, respectively) and mixed. The yellow reaction mixture was stirred at room temperature for 16 hours. Toluene was removed under vacuum followed by addition of pentane (6 mL). Removal of the pentane under vacuum yielded a yellow powder (0.734 g, 1.033 mmol, 98%).

\[^1H \text{ NMR (400 MHz, CDCl}_3, 293 K) \delta (ppm): 7.95 (s, 1H), 7.59 (d, } J = 2.6 \text{ Hz, 1H), 7.18 (m, 3H), 6.98 (d, } J = 2.6 \text{ Hz, 1H), 4.60 (q, } J = 7.0 \text{ Hz, 2H), 4.30 (dq, } J = 10.8, 7.0 \text{ Hz, 2H), 4.09 (dq, } J = 10.8, 7.0 \text{ Hz, 2H), 3.44 (m, 4H), 1.53 (s, 9H), 1.29 (s, 9H), 1.27 (m, 9H), 1.04 (m, 12H), 0.84 (t, } J = 6.9 \text{ Hz, 3H).} \]

\[^{13}C \text{ (} ^1H \text{) NMR (101 MHz, CDCl}_3) \delta (ppm): 170.32, 161.26, 149.44, 141.93, 138.96, 138.89, 131.10, 128.64, 126.83, 123.60, 120.83, 68.61, 67.73, 65.31, 35.26, 34.02, 31.39, 29.70, 27.19, 25.91, 23.12, 22.35, 19.39, 18.94, 18.33, 14.07. \]

Elemental Analysis: C₃₉H₄₅NOS₄Ta (753.80 g/mol) Calculated: C, 55.77%; H, 7.76%; N 1.86%. Found: C, 54.65%; H, 7.36; N 1.75%
Catalyst 6a

HL$_{3a}$ (0.139 g, 0.615 mmol) and Ta(OEt)$_5$ (0.250, 0.615 mmol) were separately dissolved in toluene (2 and 1 mL, respectively) and mixed. The orange reaction mixture was stirred at room temperature for 16 hours. Toluene was removed under vacuum followed by the addition of pentane (8 mL). Removal of pentane under vacuum yielded an amorphous yellow solid (0.305 g, 0.521 mmol, 84%).

\[^1H \text{ NMR assignment} \]

\[^{13}C \text{ NMR assignment} \]

1H NMR (400 MHz, CDCl$_3$, 293 K) δ (ppm): 8.19 (s, 1H, H$_a$), 7.40 (m, 2H, H$_b$), 7.32 (m, 3H, H$_c$), 7.08 (dd, $J = 7.7$, 1.6 Hz, 1H, H$_d$), 6.96 (dd, $J = 7.9$, 1.6 Hz, 1H, H$_e$), 6.72 (t, $J = 7.8$ Hz, 1H, H$_f$), 4.71 (q, $J = 7.0$ Hz, 2H, H$_g$), 4.18 (m, 4H, H$_h$), 3.93 (s, 3H, H$_i$), 3.62 (q, $J = 7.0$ Hz, 2H, H$_j$), 1.37 (t, $J = 7.0$ Hz, 3H, H$_k$), 1.07 (t, $J = 7.0$ Hz, 6H, H$_l$), 0.87 (t, $J = 7.0$ Hz, 3H, H$_m$). 13C(1H) NMR (101 MHz, CDCl$_3$) δ (ppm): 167.20 (C$_5$), 154.91 (C$_{11}$), 152.78 (C$_4$), 150.70 (C$_{10}$), 128.70 (C$_3$), 126.80 (C$_7$), 126.44 (C$_1$), 123.53 (C$_2$), 121.64 (C$_6$), 119.52 (C$_9$), 116.91 (C$_8$), 69.56 (C$_{13}$), 67.79 (C$_{13}$), 65.84 (C$_{13}$), 57.28 (C$_{12}$), 19.11 (C$_{14}$), 18.37 (C$_{14}$), 18.12 (C$_{14}$). Elemental Analysis: C$_{22}$H$_{32}$NO$_6$Ta (587.45 g/mol) Calculated: C, 44.98; H, 5.49; N 2.38 %; Found: C, 44.46; H, 5.30; N 2.35 %

Catalyst 6b

HL$_{3b}$ (0.157 g, 0.250 mmol) and Ta(OEt)$_5$ (0.250 g, 0.615 mmol) were separately dissolved in toluene (3 and 1 mL, respectively) and mixed. The yellow reaction mixture was stirred at room temperature for 16 hours. Toluene was removed under vacuum followed by the addition of pentane (4 mL). Removal of pentane under vacuum yielded a highly viscous yellow oil (0.335 g, 0.544 mmol, 88%).
pentane under vacuum yielded a yellow powder. Toluene was removed under vacuum followed by addition of pentane (4 mL). Removal of pentane under vacuum yielded a yellow powder (0.678 g, 1.011 mmol, 90%).

Catalyst 6c

HL(0.348 g, 1.117 mmol) and Ta(OEt)₃ (0.454, 1.117 mmol) were separately dissolved in toluene (2 and 1 mL, respectively) and mixed. The yellow reaction mixture was stirred at room temperature for 16 hours. Toluene was removed under vacuum followed by addition of pentane (4 mL). Removal of pentane under vacuum yielded a yellow powder (0.678 g, 1.011 mmol, 90%).

Catalyst 6c

\[
\begin{align*}
\text{HL} &\quad \text{Ta(OEt)}_3 \\
\text{Catalyst 6c} &\quad \text{HL} (0.348 \text{ g}, 1.117 \text{ mmol}) \text{ and } \text{Ta(OEt)}_3 (0.454, 1.117 \text{ mmol}) \text{ were separately dissolved in toluene (2} \\
&\quad \text{and 1 mL, respectively) and mixed. The yellow reaction mixture was stirred at room } \\
&\quad \text{temperature for 16} \\
&\quad \text{hours. Toluene was removed under vacuum followed by addition of pentane (4 mL). Removal of} \\
&\quad \text{pentane under vacuum yielded a yellow powder (0.678 g, 1.011 mmol, 90%).}
\end{align*}
\]
Catalyst 6d

\(\text{HL}_{3d} \) (0.243 g, 0.615 mmol) and \(\text{Ta(OET)}_5 \) (0.250 g, 0.615 mmol) were separately dissolved in toluene (2 and 1 mL, respectively) and mixed. Reaction was stirred at room temperature for 16 hours, heated at 90 °C for 6 hours, and stirred at room temperature for an additional 16 hours. Toluene was removed under vacuum followed by the additional of pentane (8 mL). Removal of pentane yielded a yellow sticky solid. Synthesis yielded a mixture of products.
Polymerization

ε-Caprolactone

In a nitrogen glovebox, the catalyst (0.0876 mmol) was weighed into an oven dried glass vial with a stir bar. CL (1.00 g, 8.76 mmol) was likewise weighed into the glass vial containing the catalyst to produce a 100:1 monomer to catalyst molar ratio. The reaction was heated at 140 °C until stirring was impeded and conversion was over 90% as determined by comparison of the integrals assigned to CL (4.20 ppm) and PCL (4.07 ppm) in the ¹H NMR. Aliquots taken for determination of conversion by NMR were removed from the glovebox and quenched with wet CDCl₃.

Additionally, after full conversion was achieved, a small amount of the reaction was removed from the glovebox and quenched by immediate exposure to air. The aliquot was dissolved in THF overnight and filtered through a 0.45 µm nylon syringe filter for Mₙ and PDI determination by gel-permeation chromatography (GPC).

rac-Lactide

In a nitrogen glovebox, the desired catalyst (0.0694 mmol) was weighed into an oven dried glass vial containing a stir bar. The LA (1.00 g, 6.94 mmol) was likewise weighed into the glass vial containing the catalyst to produce a 100:1 monomer to catalyst molar ratio. The reaction was heated at 140 °C until stirring was impeded and conversion was over 90% as determined by comparison of the integrals assigned to LA (4.76 ppm) and PLA (5.18 ppm). Aliquots for NMR were removed from the glovebox and quenched with wet CDCl₃.

Additionally, after full conversion was achieved, a small amount of the reaction was removed from the glovebox and quenched by immediate exposure to air. The aliquot was dissolved in THF overnight and filtered through a 0.45 µm nylon syringe filter for Mₙ and PDI determination by gel-permeation chromatography (GPC).

Copolymerization

In a nitrogen glovebox, the desired catalyst (0.069 mmol) was weighted into an oven dried vial containing a stir bar. Both LA (1.00 g, 6.94 mmol) and CL (0.792 g, 6.94 mmol) were weighed into the vial containing the catalyst to produce a 100:100:1 CL:LA:catalyst molar ratio. The reaction was heated to 140 °C until stirring was impeded and conversion was over 90% as determined by comparison of the integrals assigned to CL (4.20 ppm) and PCL (4.07 ppm), and LA (4.76 ppm) and PLA (5.18 ppm). Aliquots for NMR were removed from the glovebox and quenched with wet CDCl₃.

Additionally, after full conversion was achieved, a small amount of the reaction was removed from the glovebox and quenched by immediate exposure to air. The aliquot was dissolved in THF overnight and filtered through a 0.45 µm nylon syringe filter for Mₙ and PDI determination by gel-permeation chromatography (GPC).

Polymer Purification

A representative sample of PCL, PLA and poly(caprolactone-co-lactide) were purified by dissolving the crude polymer in dichloromethane followed by precipitation in either petroleum ether (PCL) or cold methanol (PLA and copolymer). The resulting material was filtered and dried. This procedure was repeated once more to yield the purified polymer in each case.
Figure S1. 1H NMR spectrum of HL$_1$ in CDCl$_3$, 400 MHz, 293 K. *Remaining 3,5-Di-tert-butylsalicylaldehyde starting material.

Figure S2. 1H NMR spectrum of HL$_2$ in CDCl$_3$, 400 MHz, 293 K.
Figure S3. 1H NMR spectrum of HL$_{3a}$ in CDCl$_3$, 400 MHz, 293 K.

Figure S4. 1H NMR spectrum of HL$_{3b}$ in CDCl$_3$, 400 MHz, 293 K.
Figure S5. 1H NMR spectrum of HL$_{3c}$ in CDCl$_3$, 400 MHz, 293 K.

Figure S6. 1H NMR spectrum of HL$_{3d}$ in CDCl$_3$, 400 MHz, 293 K.
Figure S7. 1H NMR spectrum of 1 in CDCl$_3$, 400 MHz, 293 K.

Figure S8. COSY 1H NMR spectrum of 1 in CDCl$_3$, 293 K.
Figure S9. 13C(1H) NMR spectrum of 1 in CDCl$_3$, 101 MHz, 293 K.

Figure S10. HSQC spectrum of 1 in CDCl$_3$, 293 K.
Figure S11. HMBC spectrum of 1 in CDCl$_3$, 293 K.
Figure S12. 1H NMR spectrum of 2 in CDCl$_3$, 400 MHz, 293 K.

Figure S13. 1H NMR spectrum of 2 in CDCl$_3$, 400 MHz, 223 K.
Figure S14. COSY 1H NMR spectrum of 2 in CDCl$_3$, 293 K.

Figure S15. 13C(1H) NMR spectrum of 2 in CDCl$_3$, 101 MHz, 293 K.
Figure S16. HSQC spectrum of 2 in CDCl₃, 293 K.

Figure S17. HMBC spectrum of 2 in CDCl₃, 293 K.
Figure S18. 1H NMR spectrum of 3a in CDCl$_3$, 400 MHz, 293 K.

Figure S19. COSY 1H NMR spectrum of 3a in CDCl$_3$, 293 K.
Figure S20. 13C(¹H) NMR spectrum of 3a in CDCl$_3$, 101 MHz, 293 K.

Figure S21. HSQC spectrum of 3a in CDCl$_3$, 293 K.
Figure S22. HMBC spectrum of 3a in CDCl₃, 293 K.
Figure S23. 1H NMR spectrum of 3b in CDCl$_3$, 400 MHz, 293 K.

Figure S24. 1H NMR spectrum of 3b in CDCl$_3$, 400 MHz, 223 K.
Figure S25. COSY 1H NMR spectrum of 3b in CDCl$_3$, 293 K.

Figure S26. 13C{1H} NMR spectrum of 3b in CDCl$_3$, 101 MHz, 293 K.
Figure S27. HSQC spectrum of 3b in CDCl₃, 293 K.

Figure S28. HMBC spectrum of 3b in CDCl₃, 293 K.
Figure S29. 1H NMR spectrum of 3c in CDCl$_3$, 400 MHz, 293 K.

Figure S30. 1H NMR spectrum of 3c in CDCl$_3$, 400 MHz, 223 K.
Figure S31. COSY 1H NMR spectrum of 3c in CDCl$_3$, 293 K.

Figure S32. 13C(1H) NMR spectrum of 3c in CDCl$_3$, 101 MHz, 293 K.
Figure S33. HSQC spectrum of 3c in CDCl₃, 293 K.

Figure S34. HMBC spectrum of 3c in CDCl₃, 293 K.
Figure S35. 1H NMR spectrum of 3d in CDCl$_3$, 400 MHz, 293 K.

Figure S36. COSY 1H NMR spectrum of 3d in CDCl$_3$, 293 K.
Figure S37. 13C(1H) NMR spectrum of 3d in CDCl$_3$, 101 MHz, 293 K.

Figure S38. HSQC spectrum of 3d in CDCl$_3$, 293 K.
Figure S39. HMBC spectrum of 3d in CDCl$_3$, 293 K.
Figure S40. 1H NMR spectrum of 4 in CDCl$_3$, 400 MHz, 293 K.

Figure S41. COSY 1H NMR spectrum of 4 in CDCl$_3$, 293 K.
Figure S42. 13C(1H) NMR spectrum of 4 in CDCl$_3$, 101 MHz, 293 K.

Figure S43. HSQC spectrum of 4 in CDCl$_3$, 293 K.
Figure S44. HMBC spectrum of 4 in CDCl₃, 293 K.
Figure S45. 1H NMR spectrum of 5 in CDCl$_3$, 400 MHz, 293 K.

Figure S46. COSY 1H NMR spectrum of 5 in CDCl$_3$, 293 K.
Figure S47. 13C\{1H} NMR spectrum of 5 in CDCl$_3$, 101 MHz, 293 K.

Figure S48. HSQC spectrum of 5 in CDCl$_3$, 293 K.
Figure S49. HMBC spectrum of 5 in CDCl$_3$, 293 K.
Figure S50. 1H NMR spectrum of 6a in CDCl$_3$, 400 MHz, 293 K.

Figure S51. COSY 1H NMR spectrum of 6a in CDCl$_3$, 293 K.
Figure S52. 13C(1H) NMR spectrum of 6a in CDCl$_3$, 101 MHz, 293 K.

Figure S53. HSQC spectrum of 6a in CDCl$_3$, 293 K.
Figure S54. HMBC spectrum of 6a in CDCl₃, 293 K.
Figure S55. 1H NMR spectrum of 6b in CDCl$_3$, 400 MHz, 293 K.

Figure S56. COSY 1H NMR spectrum of 6b in CDCl$_3$, 293 K.
Figure S57. 13C{H} NMR spectrum of 6b in CDCl$_3$, 101 MHz, 293 K.

Figure S58. HSQC spectrum of 6b in CDCl$_3$, 293 K.
Figure S59. HMBC spectrum of 6b in CDCl$_3$, 293 K.
Figure S60. 1H NMR spectrum of 6c in CDCl$_3$, 400 MHz, 293 K.

Figure S61. COSY 1H NMR spectrum of 6c in CDCl$_3$, 293 K.
Figure S62. 13C(1H) NMR spectrum of 6c in CDCl$_3$, 101 MHz, 293 K.

Figure S63. HSQC spectrum of 6c in CDCl$_3$, 293 K.
Figure S64. HMBC spectrum of 6c in CDCl$_3$, 293 K.
Figure S65. X-ray crystal structure of 1. Thermal ellipsoids drawn at 50% probability; hydrogen atoms are excluded for clarity. (teal: niobium, dark gray: carbon, scarlet: oxygen, blue: nitrogen)

Figure S66. X-ray crystal structure of 2. Thermal ellipsoids drawn at 50% probability; hydrogen atoms and disorder are excluded for clarity. (teal: niobium, dark gray: carbon, scarlet: oxygen, blue: nitrogen, green: chlorine)
Figure S67. X-ray crystal structure of 3a. Thermal ellipsoids drawn at 50% probability; hydrogen atoms and disorder are excluded for clarity. (teal: niobium, dark gray: carbon, scarlet: oxygen, blue: nitrogen)

Figure S68. X-ray crystal structure of 3b. Thermal ellipsoids drawn at 50% probability; hydrogen atoms are excluded for clarity. (teal: niobium, dark gray: carbon, scarlet: oxygen, blue: nitrogen)
Figure S69. X-ray crystal structure of 3c. Thermal ellipsoids drawn at 50% probability; one of three molecules in the asymmetric unit shown; hydrogen atoms are excluded for clarity (teal: niobium, dark gray: carbon, scarlet: oxygen, blue: nitrogen)

Figure S70. X-ray crystal structure of 3e. Thermal ellipsoids drawn at 50% probability; disorder, solvent, and hydrogen atoms are excluded for clarity (teal: niobium, dark gray: carbon, scarlet: oxygen, blue: nitrogen)
Figure S71. X-ray crystal structure of 3f. Thermal ellipsoids drawn at 50% probability; hydrogen atoms are excluded for clarity (teal: niobium, dark gray: carbon, scarlet: oxygen, blue: nitrogen)

Figure S72. X-ray crystal structure of 4. Thermal ellipsoids drawn at 50% probability; hydrogen atoms are excluded for clarity. (light blue: tantalum, dark gray: carbon, scarlet: oxygen, blue: nitrogen)
Figure S73. X-ray crystal structure of 5. Thermal ellipsoids drawn at 50% probability; hydrogen atoms and disorder are excluded for clarity. (light blue: tantalum, dark gray: carbon, scarlet: oxygen, blue: nitrogen, green: chlorine)

Figure S74. X-ray crystal structure of 6a. Thermal ellipsoids drawn at 50% probability; one of three molecules in the asymmetric unit shown; hydrogen atoms are excluded for clarity (light blue: tantalum, dark gray: carbon, scarlet: oxygen, blue: nitrogen)
Figure S75. X-ray crystal structure of 6b. Thermal ellipsoids drawn at 50% probability; hydrogen atoms are excluded for clarity (light blue: tantalum, dark gray: carbon, scarlet: oxygen, blue: nitrogen)

Figure S76. X-ray crystal structure of 6c. Thermal ellipsoids drawn at 50% probability; one of three molecules in the asymmetric unit shown; hydrogen atoms are excluded for clarity (light blue: tantalum, dark gray: carbon, scarlet: oxygen, blue: nitrogen)
Figure S77. Selected regions of 1H NMR of purified PCL in CDCl$_3$ from 2 showing ethoxide endgroups.

Figure S78. Selected regions of 1H NMR of purified PLA in CDCl$_3$ from 5 showing ethoxide endgroups.
Figure S79. Selected regions of 1H (top) and 13C(1H) (bottom) NMR in CDCl$_3$ for purified poly(lactide-co-caprolactone) from 5. Assignments were applied from the literature.$^{13-15}$
Table S1: Crystallographic Details

	Catalyst 1	Catalyst 2	Catalyst 4	Catalyst 5
Chemical formula	$\text{Cs}_3\text{H}_8\text{NNbO}_5$	$\text{Cs}_3\text{H}_8\text{Cl}_2\text{NNbO}_5$ + Solvent	$\text{Cs}_3\text{H}_8\text{NO}_5\text{Ta}$ + Solvent	$\text{Cs}_3\text{H}_8\text{Cl}_2\text{NO}_5\text{Ta}$ + Solvent
M	665.73	622.41	753.77	710.45
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/c$
Temperature (K)	100	100	100	100
a (Å)	17.4925 (1)	12.2594 (1)	17.5042 (2)	12.3041 (2)
b (Å)	9.7098 (1)	14.9618 (1)	9.7162 (1)	14.8403 (2)
c (Å)	21.0656 (1)	17.2931 (2)	21.0597 (2)	17.2175 (2)
α ($^\circ$)	90	90	90	90
β ($^\circ$)	96.823 (1)	93.696 (1)	96.761 (1)	93.448 (1)
γ ($^\circ$)	90	93.696 (1)	96.761 (1)	93.448 (1)
V (Å3)	3552.62 (5)	3165.35 (5)	3556.81 (6)	3138.17 (8)
Z	4	4	4	4
Radiation type	Cu Ka	Cu Ka	Cu Ka	Cu Ka
μ (mm$^{-1}$)	3.06	4.92	6.00	8.30
Crystal size (mm)	0.23 x 0.12 x 0.10	0.15 x 0.07 x 0.05	0.25 x 0.06 x 0.04	0.18 x 0.09 x 0.06
Diffractometer	XtaLAB Synergy, Single source at home/near, HyPix3000			
Absorption correction3	Multi-scan CrysAlis PRO 1.171.41.110a	Multi-scan CrysAlis PRO 1.171.41.117a	Multi-scan CrysAlis PRO 1.171.41.110a	Multi-scan CrysAlis PRO 1.171.41.117a
$T_{\text{min}}, T_{\text{max}}$	0.887, 1.000	0.760, 1.000	0.615, 1.000	0.466, 1.000
No. of measured, independent and observed [$I > 2s(I)$] reflections	66918, 6497, 6155	41357, 5802, 5186	35399, 6458, 5874	31224, 5745, 4876
R_{int}	0.044	0.042	0.040	0.060
(sin θ/λ)$_{\text{max}}$ (Å$^{-1}$)	0.603	0.603	0.603	0.604
$R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S	0.022, 0.055, 1.05	0.028, 0.071, 1.06	0.021, 0.049, 1.03	0.061, 0.158, 1.05
No. of reflections	6497	5802	6458	5745
No. of parameters	402	361	396	356
No. of constraints	0	27	0	0
H-atom treatment	Mixed	Mixed	Mixed	Mixed
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å$^{-3}$)	0.31, -0.40	0.57, -0.60	0.52, -0.75	2.29, -2.73

Tables have been adapted with the help of IUCr’s online publishing tools.16
Table S2: Crystallographic Details

	Catalyst 3a	Catalyst 3b	Catalyst 3c
Chemical formula	C$_{22}$H$_{32}$NNbO$_6$	C$_{24}$H$_{36}$NNbO$_6$	C$_{28}$H$_{44}$NNbO$_6$
Mr	499.39	527.45	583.55
Crystal system, space group	Monoclinic, Cc	Monoclinic, P2$_1$/c	Triclinic, P -1
Temperature (K)	100	100	100
a (Å)	15.7243 (3)	11.8342 (2)	11.0668 (1)
b (Å)	10.7481 (2)	11.7617 (2)	11.7096 (1)
c (Å)	14.2461 (2)	18.6313 (2)	34.2613 (4)
α (°)	90	90	88.898 (1)
β (°)	100.360 (2)	104.070 (1)	84.237 (1)
γ (°)	90	90	81.220 (1)
V (Å3)	2368.43 (7)	2515.50 (7)	4365.61 (8)
Z	4	4	6
Radiation type	Cu Ka	Cu Ka	Cu Ka
μ (mm$^{-1}$)	4.44	4.21	3.69
Crystal size (mm)	XtaLAB Synergy, Single source at home/near, HyPix3000	XtaLAB Synergy, Single source at home/near, HyPix3000	XtaLAB Synergy, Single source at home/near, HyPix3000
Diffractometer	Multi-scan CrysAlis PRO 1.171.41.110a	Multi-scan CrysAlis PRO 1.171.41.110a	Multi-scan CrysAlis PRO 1.171.41.110a
Absorption correction	0.17 × 0.09 × 0.05	0.18 × 0.11 × 0.05	0.13 × 0.08 × 0.04
Tmin, Tmax	0.681, 1.000	0.643, 1.000	0.919, 1.000
No. of measured, independent and observed [I > 2s(I)] reflections	21691, 4223, 4032	24652, 4564, 4184	85056, 15957, 14360
$R$$_{int}$	0.052	0.060	0.037
(sin θ/λ)$_{max}$ (Å$^{-1}$)	0.603	0.601	0.603
$R_1(F^2 > 2s(F^2))$, wR(F2), S	0.038, 0.099, 1.12	0.044, 0.121, 1.03	0.026, 0.066, 1.03
No. of reflections	4223	4564	15957
No. of parameters	296	296	1008
No. of constraints	2	0	0
H-atom treatment	Constrained	Constrained	Mixed
Δρ$_{max}$, Δρ$_{min}$ (e Å$^{-3}$)	0.65, -1.14	1.61, -1.68	0.62, -0.64
Absolute Structure Parameter17	0.025 (13)	–	–

Tables have been adapted with the help of IUCr’s online publishing tools.16
Table S3: Crystallographic Details

	Catalyst 3e	Catalyst 3f
Chemical formula	C₇₂H₁₂₂N₂Nb₄O₁₈+Solvent	C₅₆H₇₆N₂NbO₇
M_r	1747.45	1017.20
Crystal system, space group	Triclinic, P-1	Monoclinic, $P2_1/c$
Temperature (K)	180	100
a (Å)	15.2300 (2)	16.6408 (3)
b (Å)	16.4422 (3)	10.4805 (3)
c (Å)	19.3798 (3)	32.5152 (10)
α (*)	77.469 (1)	90
β (*)	82.818 (1)	92.702 (2)
γ (*)	88.762 (1)	90
V (Å³)	4700.14 (13)	5664.5 (3)
Z	2	4
Radiation type	Cu $K\alpha$	Cu $K\alpha$
μ (mm⁻¹)	4.35	2.12
Crystal size (mm)	$0.35 \times 0.22 \times 0.13$	$0.2 \times 0.1 \times 0.04$
Diffractometer	XtaLAB Synergy, Single source at home/near, HyPix3000	XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction²	Multi-scan CrysAlis PRO 1.171.41.110a	Multi-scan CrysAlis PRO 1.171.41.110a
T_{min}, T_{max}	0.643, 1.000	0.497, 1.000
No. of measured, independent and observed [$I > 2s(I)$] reflections	89541, 17036, 14475	25966, 10118, 8322
R_{int}	0.065	0.058
$(\sin \theta/\lambda)_{max}$ (Å⁻¹)	0.604	0.602
$R(F^2 > 2s(F^2))$, $wR(F^2)$, S	0.050, 0.145, 1.04	0.093, 0.232, 1.09
No. of reflections	17036	10118
No. of parameters	980	636
No. of constraints	54	0
H-atom treatment	Constrained	Constrained
$\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å⁻³)	1.65, -1.18	4.16, -1.81

Tables have been adapted with the help of IUCr’s online publishing tools.¹⁶
Table S4: Crystallographic Details

	Catalyst 6a	Catalyst 6b	Catalyst 6c					
Chemical formula	$\text{C}_2\text{H}_32\text{NO}_6\text{Ta}$	$\text{C}_2\text{H}_32\text{NO}_6\text{Ta}$	$\text{C}_2\text{H}_32\text{NO}_6\text{Ta}$					
M	587.43	615.49	671.59					
Crystal system, space group	Monoclinic, $P2_1$	Monoclinic, $P2_1/c$	Triclinic, $P-1$					
Temperature (K)	100	100	100					
a (Å)	8.9712 (2)	11.8727 (3)	11.07947 (6)					
b (Å)	14.5233 (3)	11.7358 (3)	11.71800 (5)					
c (Å)	9.0007 (2)	18.6058 (4)	34.21945 (16)					
α (°)	90	90	88.9319 (4)					
β (°)	100.390 (2)	103.756 (2)	84.2143 (4)					
γ (°)	90	90	81.2415 (4)					
V (Å3)	1153.48 (4)	2518.09 (11)	4368.49 (4)					
Z	2	4	6					
Radiation type	Cu Ka	Cu Ka	Cu Ka					
μ (mm$^{-1}$)	9.10	8.37	7.29					
Crystal size (mm)	$0.17 \times 0.11 \times 0.06$	$0.18 \times 0.08 \times 0.06$	$0.15 \times 0.13 \times 0.04$					
Diffractometer	XtaLAB Synergy, Single source at home/near, HyPix3000	XtaLAB Synergy, Single source at home/near, HyPix3000	XtaLAB Synergy, Single source at home/near, HyPix3000					
Absorption correction3	Multi-scan CrysAlis PRO 1.171.41.117a	Multi-scan CrysAlis PRO 1.171.41.110a	Multi-scan CrysAlis PRO 1.171.41.110a					
$T_{\text{min}}, T_{\text{max}}$	0.505, 1.000	0.400, 1.000	0.743, 1.000					
No. of measured, independent and observed $	I > 2\sigma(I)	$ reflections	22030, 4203, 4091	23914, 4541, 3969	87499, 15945, 14806			
R_{int}	0.053	0.052	0.040					
$(\sin \theta/\lambda)_{\text{max}}$ (Å$^{-1}$)	0.603	0.604	0.603					
$R[F	^2 > 2\sigma(F)], wR	F	^2$, S	0.032, 0.083, 1.05	0.032, 0.079, 1.11	0.022, 0.052, 1.03
No. of reflections	4203	4541	15945					
No. of parameters	277	296	1000					
No. of constraints	1	0	0					
H-atom treatment	Constrained	Constrained	Constrained					
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å$^{-3}$)	2.76, -0.84	1.22, -1.02	0.81, -0.77					
Absolute Structure Parameter17	0.163 (18)	–	–					

Tables have been adapted with the help of IUCr’s online publishing tools.16
References

(1) Seo, C. C. Y.; Ahmed, M.; Oliver, A. G.; Durr, C. B. Titanium ONN-(Phenolate) Alkoxide Complexes: Unique Reaction Kinetics for Ring-Opening Polymerization of Cyclic Esters. *Inorg. Chem.* 2021, 60 (24), 19336–19344. https://doi.org/10.1021/acs.inorgchem.1c03157.

(2) Save, M.; Schappacher, M.; Sourn, A. Controlled Ring-Opening Polymerization of Lactones and Lactides Initiated by Lanthanum Isopropoxide, 1. General Aspects and Kinetics. *Macromol. Chem. Phys.* 2002, 203 (5–6), 889–899. https://doi.org/10.1002/1521-3935(20020401)203:5<889::AID-MACP889>3.0.CO;2-O.

(3) Oxford Diffraction. CrysAlisPRO; Agilent Technologies UK Ltd: Yarnton, England.

(4) Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. *Acta Crystallogr. Sect. Found. Adv.* 2015, 71 (1), 3–8. https://doi.org/10.1107/S2053273314026370.

(5) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. *Acta Crystallogr. Sect. C Struct. Chem.* 2015, 71 (1), 3–8. https://doi.org/10.1107/S2053229614024218.

(6) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. a. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Crystallogr.* 2009, 42 (2), 339–341. https://doi.org/10.1107/S0021889808042726.

(7) Gibson, V. C.; Mastroianni, S.; Newton, C.; Redshaw, C.; Solan, G. A.; White, A. J. P.; Williams, D. J. A Five-Coordinate Chromium Alkyl Complex Stabilised by Salicylaldiminato Ligands. *J. Chem. Soc. Dalton Trans.* 2000, No. 13, 1969–1971. https://doi.org/10.1039/b002631j.

(8) Jones, M. D.; Davidson, M. G.; Keir, C. G.; Hughes, L. M.; Mahon, M. F.; Apperley, D. C. Zinc(II) Homogeneous and Heterogeneous Species and Their Application for the Ring-Opening Polymerisation of Rac-Lactide. *Eur. J. Inorg. Chem.* 2009, 2009 (5), 635–642. https://doi.org/10.1002/ejc.200810149.

(9) Lane, T. J.; Lane, C. S. C.; Kandathil, A. J. Chelate Stabilities of Certain Oxine-Type Compounds. III. Schiff Bases. *J. Am. Chem. Soc.* 1961, 83 (18), 3782–3785. https://doi.org/10.1021/ja01479a013.

(10) Kasumov, V. T.; Uçar, I.; Bulut, A.; Kösäl, F. Crystal Structure, Spectroscopic and Redox Properties of Copper(II) Bis[2-[(2,6-Dimethylphenyl)iminomethyl]-3-Methoxyphenolate]]. Z. Für *Naturforschung B* 2007, 62 (9), 1133–1138. https://doi.org/10.1515/znb-2007-0905.

(11) Darenbourg, D. J.; Rainey, P.; Yarbrough, J. Bis-Salicylaldiminato Complexes of Zinc. Examination of the Catalyzed Epoxide/CO₂ Copolymerization. *Inorg. Chem.* 2001, 40 (5), 986–993. https://doi.org/10.1021/ic0006403.

(12) Durr, C. B.; Williams, C. K. New Coordination Modes for Modified Schiff Base Ti(IV) Complexes and Their Control over Lactone Ring-Opening Polymerization Activity. *Inorg. Chem.* 2018, 57 (22), 14240–14248. https://doi.org/10.1021/acs.inorgchem.8b02271.

(13) Florczak, M.; Libiszowski, J.; Mosnacek, J.; Duda, A.; Penczek, S. L,L-Lactide and ε-Caprolactone Block Copolymers by a ‘Poly(L,L-Lactide) Block First’ Route. *Macromol. Rapid Commun.* 2007, 28 (13), 1385–1391. https://doi.org/10.1002/marc.200700160.

(14) Pappalaro, D.; Annunziata, L.; Pellecchia, C. Living Ring-Opening Homo- and Copolymerization of ε-Caprolactone and L- and d,L-Lactides by Dimethyl(Salicylaldiminato)Aluminum Compounds. *Macromolecules* 2009, 42 (16), 6056–6062. https://doi.org/10.1021/ma9010439.

(15) Vanhoorne, P.; Dubois, P.; Jerome, R.; Teyssie, P. Macromolecular Engineering of Polyactones and Poly lactides. 7. Structural Analysis of Copolymesters of ε-Caprolactone and L- or d,L-Lactide Initiated by Triisopropoxyaluminum. *Macromolecules* 1992, 25 (1), 37–44. https://doi.org/10.1021/ma90027a008.

(16) CIF publishing tools https://publicif.iucr.org/publicif.php (accessed 2022-03-17).

(17) Parsons, S.; Flack, H. D.; Wagner, T. Use of Intensity Quotients and Differences in Absolute Structure Refinement. *Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater.* 2013, 69 (3), 249–259. https://doi.org/10.1107/S2052519213010014.