The \(E_1-E_2\) center in gallium arsenide is the divacancy

Peter A Schultz

Multiscale Science, Sandia National Laboratories, Albuquerque, NM 87185-1322, USA
E-mail: paschul@sandia.gov

Received 22 August 2014, revised 26 September 2014
Accepted for publication 2 October 2014
Published 30 January 2015

Abstract

Based on defect energy levels computed from first-principles calculations, it is shown the \(E_1-E_2\) center in irradiated GaAs cannot be due to an isolated arsenic vacancy. The only simple intrinsic defect with levels compatible with \(E_1\) and \(E_2\) is the divacancy. The arsenic monovacancy is reassigned to the \(E_3\) center in irradiated GaAs. These new assignments are shown to reconcile a number of seemingly contradictory experimental observations.

Keywords: gallium arsenide, defects, density functional theory

(Some figures may appear in colour only in the online journal)

1. Introduction

Performance of semiconductor electronic devices is dictated ultimately by the presence and behavior of point defects. A detailed knowledge of the properties and chemical evolution of those defects is crucial to the engineering of robust devices that operate effectively in normal operation conditions and under irradiation. In silicon, a vast, detailed understanding of defect behavior [1] has been developed, as a result of extensive study over decades, and this has been of inestimable value in designing robust modern electronics. After silicon, gallium arsenide is perhaps the most studied semiconductor, with uses in a variety of devices. Despite early optimism [2] and notwithstanding intense effort over decades, definitive knowledge concerning even simple intrinsic defects in GaAs remains scanty. With electron paramagnetic resonance studies impaired in GaAs as a sensitive probe for the chemical structure of a defect [2, 3], theory proved invaluable in identifying the arsenic antisite \(\text{As}_{\text{Ga}}\)—an arsenic replacing a gallium atom in the lattice—as the defect responsible for the \(EL_2\) [4, 5], the dominant center in as-grown GaAs.

Electron irradiation is an effective approach to study primary defects in materials. The initial products of electron irradiation are simple intrinsic defects: vacancies and interstitials resulting from primary lattice displacements. The \(EL_2\), only observed in as-grown GaAs, has been identified as \(\text{As}_{\text{Ga}}\). The identities of defect centers observed in irradiated GaAs have proven more inscrutable. In \(n\)-type GaAs, a series of levels, designated \(E_1\) through \(E_5\), have been observed in \(\alpha\)-irradiated GaAs above mid-gap [2]. The \(E_1\) level that appears at 32–45 meV below the conduction band (CB) and the \(E_2\) level at 0.13–0.18 eV [3, 6–8] are demonstrated to be two distinct transitions of the same defect [3], and are usually attributed to \(v_{\text{As}}\) [2]. The \(E_3\), \(E_4\), and \(E_5\) are transitions due to different defects, the \(E_3\) being the best characterized of these and is most commonly attributed to a \(v_{\text{As}}-\text{As}_{\text{i}}\) pair.

Identification of defects beyond the \(EL_2\) has been hampered by the lack of an experimental tool to unambiguously determine and characterize the chemical structure of a defect associated with an energy level. Conversely, first-principles calculations, particularly well suited for determining defect structure, have been unable to predict defect levels with quantitative accuracy sufficient to identify defects. In this work, I apply a robust method for computing accurate defect energy levels [9] to simple intrinsic defects in GaAs and determine that long-standing assignments of defect energy levels in GaAs need to be reassessed. The radiation-induced \(E_1-E_2\) center, formerly associated with the arsenic monovacancy \(v_{\text{As}}\), cannot be \(v_{\text{As}}\) and, instead, must be due to the divacancy \(v_{\text{v}}\). The \(v_{\text{As}}\), no longer conscripted to account for the \(E_1-E_2\) center, proves to give an apt account of the properties of the \(E_3\) center, once a site-shifting bistability is incorporated into a comprehensive description of \(v_{\text{As}}\). These new assignments correlate with observed
behavior and reconcile seemingly contradictory experimental observations.

2. Methods

All density functional theory (DFT) calculations are performed using the Gaussian-basis pseudopotential code SEQQUEST [10]. Exercising a new method for the accurate evaluation of energy levels of defects within a supercell approximation [9], we obtained all levels for all simple intrinsic defects of GaAs: both monovacancies and the divacancy, both antisites and the double antisite, and both single interstitials [11]. For silicon defects, this method predicted defect energy levels with an average accuracy of 0.1 eV and maximum error of ~0.2 eV. In GaAs, the computed span of defect levels, \(> 1.5 \) eV [12], almost exactly matches the experimental band gap of 1.52 eV [13]. Furthermore, \(a_{\text{Ga}} \) calculations quantitatively match \(E/L2 \) properties, e.g. the computed \((0/1+)\) level is mid gap, 0.73 eV above the valence band, the \((1+ / 2+)\) 0.24 eV below that [11]. This accuracy is comparable to the silicon defect study and validates using this computational model for accurate defect simulations in GaAs.

The analysis here (except where noted) focuses on the results of local density approximation (LDA) [14] simulations using Ga pseudopotentials with 3d electrons in the core, in 216-site cubic supercells with a \(2^3 \) \(k \)-sampling grid offset from the \(\Gamma \)-point. Computed energy levels for all intrinsic defects were also extrapolated from 512-site, and also selected 1000-site (both these with \(2^3 \) \(k \)-sampling) supercell calculations, to demonstrate that the computed levels were converged to the asymptotic dilute limit. The results extrapolated from 512-site cells matched to within \(-0.05\) eV of the same levels extrapolated from 216-site supercells, demonstrating robust control of finite size effects, \(k \)-point sampling, and boundary conditions. For the defects discussed here, the conclusions are insensitive to use of a generalized gradient approximation such as PBE [15] rather than the LDA, or including the Ga 3d electrons as valence electrons.

3. Results and analysis

The presence of the divacancy in GaAs has historically been dismissed, due to early calculations predicting a high \(vv \) formation energy that precluded any significant population in equilibrium conditions [16], and positron annihilation calculations that yielded predictions of lifetimes in \(vv \) incompatible with any experimental observation in irradiated GaAs [17]. In the current calculations, \(vv \) takes charge states from \((2+)\) to \((4-)\). The formation energy of \(vv(0) \), \(4.19\) eV, only slightly exceeds \(v_{\text{As}}(0) \), \(3.55\) eV [11]. The previously un anticipated \((4-)\) and \((3-)\) charge states of the divacancy prove pivotal in explaining the radiation-induced \(E1 – E2 \) centers. The \(v_{\text{As}} \) takes charge states from \((3+)\) to \((3-)\). A unified treatment of a site-shift bistability in the description of the arsenic vacancy proves crucial in accounting for its observed behavior. Structural changes for the negative charge states and all computed levels for these defects is illustrated in figure 1.

Figure 1. Schematic illustration of crucial features of the \(vv \) and \(v_{\text{As}} \) model for the \(E1 – E3 \) centers in irradiated GaAs. (a) Bonding in the highly negative \(vv \) charge states that result in the levels near the CB. The (blue) triangles depict arsenic atoms and (red) circles depict gallium atoms. The open shapes depictvacated sites. (b) Defect level diagram for \(vv \) and \(v_{\text{As}} \). The solid lines connect the levels of \(-U\) systems. (c) Bonding in the \(v_{\text{As}} \) charge states responsible for levels near the CB. The global site-shift bistability occurs between \(v_{\text{As}}(1-) \) and \(v_{\text{As}}(2-) \), as a Ga adjacent to the simple As vacancy hops into the vacant site.

The \(vv \) can be described usefully as a \(v_{\text{Ga}} – v_{\text{As}} \) pair. The \(vv(2-)\) has three full As lone pairs on the \(v_{\text{Ga}} \) side. The two electrons on the \(v_{\text{As}} \) side form a stretched Ga–Ga bond pair, illustrated in figure 1(a). The remaining trivalent Ga retreats from the vacant site. Adding an electron occupies the dangling bond on this Ga, causing it to pucker inwards by 0.6 Å in the \(vv(3-)\). The \(vv \) accommodates yet another electron in the \(vv(4-)\), puckering this Ga another 0.2 Å inwards. The resulting \(vv(4- / 3- / 2-) \) and \(vv(3- / 2-) \) levels are closer to the CB than any level from any other simple intrinsic defect. The next lower \(vv \) level is too distant from the conduction band (CB) to be of interest here; the \(vv(2- / 0) \) is a negative-\(U \) transition near mid-gap, the inversion of charge transition levels (the \(-U\)) triggered by the dissociation of the Ga–Ga bond pair across the \(v_{\text{As}} \) side of the divacancy.

The arsenic vacancy proves globally bistable, as illustrated in figure 1(c), between a simple \(v_{\text{As}} \) and a nearest-neighbor \(v_{\text{Ga}} – v_{\text{Ga}} \) pair obtained by an adjacent Ga atom shifting from its lattice site to the vacant site, a structure designated \(v_{\text{As}}^* \). The four valence electrons of \(v_{\text{As}}(1-) \) couple into two Ga–Ga bond pairs in the ground state of \(v_{\text{As}}(1-) \), with \(D_{3d} \) symmetry. The ground state of \(v_{\text{As}}(2-) \) and \(v_{\text{As}}(3-) \) is the site-shifted \(v_{\text{As}}^* \). The large lattice relaxation (the site shift) reverses the standard order of the transitions, forming a \(-U\) system: \(v_{\text{As}}(3- / 2-) \) is more strongly bound than \(v_{\text{As}}(2- / 1-) \).

The calculated \(v_{\text{As}} \) and \(vv \) levels are presented in figure 1(b). The \(v_{\text{As}} \) does not have two distinct levels in the upper part of the gap, only a single \(-U\) transition. This \(-U(3- / 1-)\) transition is much deeper in the gap than the \(E1 \) and \(E2 \) levels. The \(E1 \) and \(E2 \) were originally both
identified as acceptor levels [6], but negative charge states
proved incompatible with the (1−), (0), and (+) charge states
required for a vAs model to be consistent with the results of
positron experiments [18]. My computed vAs(1−/+1) charge
transition is a single −U energy level near mid-gap. It is farther
from the CB (and E1 and E2) than the maximum error seen
in any LDA (or PBE) defect level calculation. The vAs cannot
be responsible for E1 and E2.

The vv(4−/3−) and vv(3−/2−) transitions are the only viable
candidates for E1 and E2. These transitions are near the
CB, above all the computed vAs levels. No other simple
intrinsic defect has computed levels within 0.5 eV of the CB
dge. These vv levels are ideally located to correspond to E1
and E2, especially once spin polarization is included. Spin
lowers the vv(3−) energy by 0.03 eV, increasing the splitting
between vv(4−/3−) and vv(3−/2−) from 0.02 eV to 0.08 eV,
good agreement with the observed 0.10 eV splitting between
E1 and E2 observed in experiment, either E1−0.032 and
E2−0.129 eV [8] or E1−0.045 and E2−1.140 eV [3]. To confirm
the assignment of E1 and E2 to vv, a few other experimental
observations must be explained.

One early experiment proposed the divacancy was
responsible for the positron lifetimes associated with the E1
and E2 [19]. However, this assignment was rejected in
later studies, replaced with a vAs model, partially based
on analyses of positron studies. The positron annihilation lifetime
calculated for vv by Puska and Corbel [17] was much longer
than that observed for E1 and E2. This result was used to reject
the vv model [2, 7]. However, those lifetime calculations used
vv between structures where the atoms relaxed outwards, and did not
consider (4−) and (3−) charge states. The atoms in vv(4−)
and vv(3−) relax strongly inwards, and a smaller vacancy
volume generally leads to a shorter positron lifetime.

The observed position trapping coefficient decreases after
emitting one electron (E1), and disappears after emitting
a second electron (E2) [18]. This observation motivated the
reanalysis of the charge states in the vAs model: the neutral
vAs(0) would bind a positron less well than the negative
vAs(1−), positive charge in vAs(1+) would repel a
positron, rendering the center invisible to positron annihilation
spectroscopy. This progression of positron trapping behavior
with charge state can be explained just as well in a vv
assignment to this defect center, with transitions from vv(4−)
to vv(3−) to vv(2−).

In the (4−), (3−), and (2−) charge states, the three As lone pairs on the vGa side of the vv are populated by six
electrons. The electron charge changes occur on the vAs
side, evidenced by the sequential structural rearrangements
that occur there. In bulk GaAs, each As contributes 2 2
electrons to each bond, Ga 3 2 electrons. In a nominally neutral divacancy,
therefore, each Ga dangling bond has 3 2 electrons. In vv(4−),
the vAs side distributes four valence electrons among three
Ga dangling bonds in a Ga–Ga bond pair and two electrons
in a pyramidal Ga lone pair, resulting in a nominal charge of
−2 2. Going from vv(4−) to vv(3−) removes an electron
from the Ga lone pair, causing that Ga atom to retreat slightly
from the vacancy, reducing the charge on the vAs side to
−1 2. The next electron, to form the vv(2−), also comes out
of this Ga lone pair, the now-trivalent Ga retreats strongly
from the vacancy, toward a planar sp2 configuration, making
the vAs side a slightly positive +1 4. This net positive charge
makes it repulsive for positron capture. Furthermore, the
vGa side of vv is highly negative, nominally −1 2, making
the vGa side much more attractive for a positron than the now-
positive vAs side. Positrons trapped on the vGa side of vv
are invisible to spectroscopy; the isolated vGa(3−) has never
been observed, suggesting that positron trapping at full As lone
pairs leads to short positron lifetimes indistinguishable from
annihilation in bulk GaAs. Hence, in positron annihilation
experiments, vv mimics a bare vAs, with an offset in the total
charge state. The vv model for E1 and E2 reconciles the
original experiments that identify these as acceptors [6, 7] and
positron experiments suggesting the lowest state was positively
charged [18]. Positron lifetime calculations should be repeated
with these new vv charge states and the correct inward-relaxed
structures.

No longer conscripted to explain E1 and E2, the vAs is
now free to be assigned elsewhere. I propose that the E3
center in irradiated GaAs [3], asserted to be the same as
(or very similar to) the E1.6 center seen in semi-insulating
as-grown GaAs, [20], is the vAs. The E3 center is known to be
a primary defect of displacement damage—it must be an
intrinsic defect—and is an important recombination center in
GaAs [21]. The E3/E1.6 energy level is reported to be 0.27–
0.38 eV below the conduction band edge [3, 20–25]. The only
viable candidate in the computed survey of intrinsic defect
levels is the −U vAs(3−/1−) transition, at roughly −0.3 eV
in LDA (−0.35 eV in PBE), where this defect will emit two
electrons midway between the (3−/2−) and (2−/1−) energy
levels. With the divacancy assigned to the E1 and E2, no other
intrinsic defects have candidate levels this high in the band
gap; all other computed intrinsic defect levels are more than
0.2 eV lower, and hence farther than the observed maximum
error of 0.2 eV. The LDA (and PBE) calculations with these
new assignments agree with the experimental observations
for E1–E2 and E3 to within 0.1 eV.

An early LDA study using 216-site supercells [26] reports
vAs charge states up to (3−), predicting that the (2−/1−) and
(3−/2−) defect levels are almost equal, nearly −U, high in the
gap, which could be possibly consistent with an interpretation
of the vAs, highest two levels being associated with the E1–
E2 levels. A more recent hybrid screened exchange (HSE)
study using 64-site defect cells [27] reports their computed
defect levels for the vAs(3−/2−) and (2−/1−) transitions
near the conduction band, and assert these correspond with the
observed E1–E2 transitions, apparently confirming the classic
association of the E1–E2 levels with the arsenic vacancy.
The current results can reconcile these computational observations
as well. The essence of the analysis is illustrated in the
computed level diagrams of figure 2. In these, the computed
level diagrams of vAs near the CB are depicted, for (a) vAs
restricted to a paired-Das distortion (as in the HSE study [27]),
then (b) switching to the ground state vAs structures into the
resonant-Das(3−) ground state, and then (c) the full vAs energy
level diagram that includes the vAs site shift.

Earlier studies [11, 26] suggest that 216-site cells are
necessary to get reliable results for defects, particularly
This unified defect level model creating this $-U$, incorporating this site-shift, is dependent upon this site-shift being thermally accessible within an energy level measurement; otherwise they would be observed as two separate defects. My computations indicate the site-shifting barriers are very small. As the site-shifted v'_{As} loses electrons, it becomes less favored with respect to v_{As}. The $v'_{\text{As}}(1-)$ starting with the $v^*_{\text{As}}(2-)$ atomic configuration collapses to the ground state $v'_{\text{As}}(1-)$ without a barrier, in both LDA and PBE, in all supercells, from 216-site through 1000-site. Conversely, postulating that a electron filling pulse starting with the $v'_{\text{As}}(1-)$ could conceivably become trapped in the simple vacancy in the $(2-)$ or even the $(3-)$ charge state (not finding a path to the more stable v^*), the barrier from the v' to v^* for these charge states is also relevant. Saddle point barrier calculations reveal that the simple v^* has only a very small radius of stability against shifting into a v^*—a very small distortion of a neighbor toward the vacant site places the configuration on a downhill path to the lower energy site-shift—regardless of whether it is in the $(2-)$ or $(3-)$ charge state, with both LDA and PBE. The computed barrier for a site shift from $v'_{\text{As}}(2-)$ to $v^*_{\text{As}}(2-)$ is ~ 0.1 eV, the barrier from $v'_{\text{As}}(3-)$ to $v^*_{\text{As}}(3-)$ is less than 0.07 eV. The v'_{As} and v^*_{As} must both be included in a unified treatment of v_{As} defect levels.

Further experimental information also supports the notion of a larger $-U$ transition. The E_{L6} emission exhibits a large Franck-Condon factor, 0.6 eV, indicating this transition is associated with a large lattice relaxation [22]. It was later shown that the E_{L6} was but one of several emission peaks from a single defect: the intensities could be shifted between the E_{L5}–E_{L6}–E_{L7} family of levels by varying the filling pulse length in DLTS (deep-level transient spectroscopy), indicating a single DX-like center was responsible for these levels [25]. The predicted $-U$ $v_{\text{As}}(3-)$ has a DX-like lattice relaxation, this transition involves a Ga atom hopping between two sites, from v_{As} into v'_{As}, as illustrated in figure 1(c). Therefore, v_{As} is compatible with known observations of the E_3 and E_{L6} centers.

Identification of E_3 with v_{As} vindicates treating the GaAs–Ga pair as a bistable form of the simple As vacancy, including it in computing levels for v_{As}. The calculations demonstrated that v_{Ga} also exhibits a site-shift bistability [11], as originally proposed by Baraff and Schlüter [28]. These unified descriptions might be crucial to understand fermi-level pinning in GaAs: the site-shifting, charge-switching vacancies are the basis of an amphoteric native defect model for understanding many phenomena in GaAs [29, 30]. Though aspects of this amphoteric model are contested [31], our calculations confirm both monovacancies do exhibit the necessary features.

As shown in figure 1(b), both v^* and v_{As} are computed to have donor levels near the valence band edge. Levels measured in p-type GaAs could be consistent with these. It has been hypothesized that the $H0$–$H3$ traps observed in irradiated GaAs were other transitions of the same defects responsible for $E1$–$E3$ [2, 3], and the results here suggest this hypothesis is likely correct. However, absent other discriminating evidence, definitive assignment of those observed hole traps to v^* and v_{As} on the basis of defect level matching alone would be more for subtle relaxations around vacancies. The recent HSE results [27] reproduce very well our results with semilocal functionals, if one restricts the v_{As} vacancy to just the paired-D_{2d} structure. With either LDA or PBE, the $v^*_{\text{As}}(3-)$ level for the paired-D_{2d} is right at the CB edge, with the $(2-)$ slightly below, as seen in figure 2(a). However, earlier LDA results [11, 26], using larger 216-site cells with converged $2 \times 2 \times 2$ k-point sampling indicate that the resonant-D_{2d} structure is favored over the paired-D_{2d} for $v^*_{\text{As}}(3-)$, here, by $0.24(0.29)$ eV for LDA(PBE). The immediate consequence is that the $v_{\text{As}}(3-)$ transition becomes $-U$, as depicted in figure 2(b), even before considering a site shift, already making it an unlikely match for the E_1 and E_2 levels. The results for a sequence of supercells of increasing size in figure 2 indicates that this result is converged to the bulk asymptotic limit with 216-site supercells.

Moreover, these calculations indicate that the site-shifted $v^*_{\text{As}}(3-)$ and $v^*_{\text{As}}(2-)$ are both favored over the simple arsenic vacancy v'_{As}. For the $(3-)$, the v^* is favored over the resonant-D_{2d} by $0.34(0.42)$ eV for LDA(PBE); for the $(2-)$, by $20-40$ meV over the paired-D_{2d} (the resonant-D_{2d} $(2-)$ is higher yet by ~ 0.15 eV). This magnifies the $-U$ effect for the $(3-)$ transition, and lowers the associated double-emission thermodynamic energy level to $0.30-0.35$ eV below the CB edge, as depicted in figure 2(c). It is impossible that this thermodynamic level can correspond to the E_1 and E_2 near the CB edge, and it is in extraordinarily good agreement with the observed E_3 level. That both the LDA and PBE give nearly identical results lends further confidence to this prediction.

![Figure 2](image-url)
speculative, as other intrinsic defects are computed to also have candidate levels in the lower half of the band gap \cite{11} and could, in principle, be responsible for those hole traps.

In electron radiation experiments, the $E1$–$E3$ and $E3$ traps were determined to be from defects with atoms displaced from the arsenic sublattice \cite{2}, based upon (1) an analysis of the expected anisotropy of defect production rates, a shadowing effect, from [1 1 1]-directed electron beams \cite{32}, and (2) these traps being annealed by pair-recombination in first-order kinetics, presumably through annihilation by mobile A_{i}. Identification on the As sublattice was a central motivation for originally assigning $\nu_{A_{i}}$ to $E1$ and $E2$ \cite{2}, and appears inconsistent with a νvv model for this center. Incorporating a differential diffusivity for ejected Ga and As interstitials into this simple billiard-ball analysis results in an anisotropy selective for νvv on what appears to be the As sublattice.

The Ga$_{i}$ diffuses with thermal barriers of ~ 1 eV \cite{11,33,34}. Experiment inferred a 0.5 eV migration energy for A_{i}, confirmed in these DFT calculations \cite{11}. In addition, the calculations indicate A_{i} will diffuse athermally, sequential capture of electron and holes driving the arsenic interstitial through the lattice \cite{11}. Under e-irradiation, with copious carriers, athermal migration will be activated. A Ga$_{i}$ ejected in a radiation-induced displacement is more likely to remain displaced. An A_{i} displaced nearby has a greater probability of being recaptured by the (di)vacancy. Hence, a shadowing anisotropy results through the more or less distant ejection of A_{i}, as illustrated in figure 3. In one direction, the more distant A_{i} often escapes, resulting in more vv (and some νA_{i}). In the reverse direction, the nearer A_{i} is often recaptured, resulting in more νGa_{i} (and only some vv). The key corollary is to note that, to this date, νGa_{i} has been invisible to electronic probes, so that it would not be detected if it were present, hence capture of an A_{i} by νvv would cause it to vanish. The νGa_{i} has no levels above mid-gap, does not appear among the electron traps in n-type GaAs.

The threshold energy for displacement leading to generation of $E1$–$E2$ has been determined to be ~ 10 eV \cite{35}. By analogy to irradiated silicon, this was taken to be a single displacement, and lack of a second threshold at twice this energy suggesting the double-displacement, the divacancy, was absent. The results here, compelling evidence supporting the identification of the vv with $E1$–$E2$, suggest that the assumptions that went into generalizing this threshold analysis from elemental silicon to a binary GaAs need to be reexamined, that the simple analogy to irradiated silicon is not quantitative.

4. Conclusions

In conclusion, the $E1$–$E2$ center in GaAs is determined to be due to the divacancy, on the basis of quantitative calculations of defect energy levels, and a detailed analysis of other experimental data. The standard model, νA_{i}, cannot be responsible for $E1$ and $E2$ in GaAs. The νA_{i}, instead, gives an apt description of the $E3$ ($EL6$) center. Previously unanticipated negative charge states for νvv and a unified description of a site-shift bistable A_{i} are key insights needed to identify these traps. These assignments reconcile what had been seemingly conflicting experimental observations. Density functional theory supercell methods, using conventional semi-local functionals, are now accurate enough to make firm identifications of defects through defect level positions, adding A_{i} and νvv to $A_{Ga_{i}}$ ($EL2$) as intrinsic defects that are unambiguously identified in GaAs.

Acknowledgments

I thank Anatole von Lilienfeld for assistance in the calculations. I am very grateful to R Fleming and D Lang for innumerable enlightening insights regarding the interpretation of the vast experimental literature in irradiated GaAs. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

References

[1] Pilcher P 2004 Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon (New York: Springer)
[2] Bourgoin J C, Bardeleben H J and Stüvenard D 1988 Native defects in gallium arsenide J. Appl. Phys. 64 R65
[3] Pons D and Bourgoin J C 1985 Irradiation-induced defects in GaAs J. Phys. C: Solid State Phys. 18 3839
[4] Dabrowski J and Scheffler M 1988 Theoretical evidence for an optically inducible structural transition of the isolated As antisite in GaAs: identification and explanation for of $EL2$? Phys. Rev. Lett. 60 2183
[5] Chadi D J and Chang K J 1988 Metastability of the isolated arsenic-antisite defect in GaAs Phys. Rev. Lett. 60 2187
[6] Loualiche S, Nouailhat A, Guillot G and Lannoo M 1984 Interpretation of deep-level optical spectroscopy and deep-level transient spectroscopy data: application to irradiation defects in GaAs Phys. Rev. B 30 5822
[7] Corbel C, Stucky M, Hautojärvi P, Saarinen K and Moser P 1988 Positron-annihilation spectroscopy of native vacancies in as-grown GaAs Phys. Rev. B 38 8192
[8] Lai S T and Nener B D 1994 Annealing behavior of deep-level defects in 1 MeV electron-irradiated GaAs J. Appl. Phys. 75 2354
[9] Schultz P A 2006 Phys. Rev. Lett. 96 246401
[10] Schultz P A SeqQuest code (unpublished) see http://dft.sandia.gov/Quest
[11] Schultz P A and von Lilienfeld O A 2009 Simple intrinsic defects in gallium arsenide Modelling Simul. Mater. Sci. Eng. 17 084007
[12] Schultz P A and Edwards A H 2014 Modeling charged defects inside density functional theory band gaps Nucl. Instrum. Methods B 327 2
[13] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 Review of band gap parameters for compound semiconductors J. Appl. Phys. 89 8515
[14] Perdew J P and Zunger A 1981 Self-interaction correction for density-functional approximations for many-electron systems Phys. Rev. B 23 5048
[15] Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865
[16] Northrup J E and Zhang S B 1994 Energetics of the As vacancy in GaAs: the stability of the 3+ charge state Phys. Rev. B 50 4962
[17] Puska M J and Corbel C 1988 Positron states in Si and GaAs Phys. Rev. B 38 9874
[18] Saarinen K, Hautojiarvi P, Lanki P and Corbel C 1991 Ionization levels of As vacancies in as-grown GaAs studied by positron-lifetime spectroscopy Phys. Rev. B 44 10585
[19] Dannefaer S and Kerr D 1986 Vacancy interactions in GaAs J. Appl. Phys. 60 591
[20] Hashizume T and Nagabuchi H 1989 Characterization of deep electron states in LEC grown GaAs materials Semicond. Sci. Technol. 4 427
[21] Puska M J and Corbel C 1988 Positron states in Si and GaAs Phys. Rev. B 38 9874