A peer-reviewed version of this preprint was published in PeerJ on 14 July 2016.

View the peer-reviewed version (peerj.com/articles/2186), which is the preferred citable publication unless you specifically need to cite this preprint.

Li Y, Wang L, Zhou J, Li F. 2016. Transcription factor organic cation transporter 1 (OCT-1) affects the expression of porcine Klotho (KL) gene. PeerJ 4:e2186 https://doi.org/10.7717/peerj.2186
Transcription factor organic cation transporter 1 (OCT-1) affects the expression of porcine Klotho (KL) gene

Yan Li, Lei Wang, Jiawei Zhou, Fenge Li

Klotho (KL), originally discovered as an aging suppressor, was a membrane protein that shared sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might have a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (-418 bp to -3 bp) as the porcine KL core promoter. MARC0022311 in KL intron 1 appeared a polymorphism (A or G) in Landrace × DIV pigs, and relative luciferase activity of pGL3-D2-G was significantly higher than pGL3-D2-A. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1), which was confirmed using electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP). Moreover, OCT-1 regulated endogenous KL expression by RNA interference. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1.
Transcription factor organic cation transporter 1 (OCT-1) affects the expression of porcine Klotho (KL) gene

Yan Li¹#, Lei Wang¹#, Jiawei Zhou¹, Fenge Li¹*

¹Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, PR China

Short Title: OCT-1 affects porcine KL expression

#Yan Li and Lei Wang have contributed equally to this work.

*corresponding author: Dr. Fenge Li. Affiliation: College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, PR China; Tel: 0086-27-87282091; Fax: 0086-27-87280408; E-mail: lifener@mail.hzau.edu.cn.
Abstract

Klotho (KL), originally discovered as an aging suppressor, was a membrane protein that shared sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might have a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (-418 bp to -3 bp) as the porcine KL core promoter. MARC0022311 in KL intron 1 appeared a polymorphism (A or G) in Landrace× DIV pigs, and relative luciferase activity of pGL3-D2-G was significantly higher than pGL3-D2-A. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1), which was confirmed using electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP). Moreover, OCT-1 regulated endogenous KL expression by RNA interference. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1.

Keywords

Pig; KL gene; OCT-1; MARC0022311
Introduction

Klotho (KL) gene encoded a membrane protein that shared sequence similarity with the β-glucosidase enzymes and its product might function as part of a signaling pathway that regulated aging in vivo and morbidity in age-related diseases (Ko et al., 2013). Mutant mice lacking the KL gene showed multiple aging disorders and a shortened life span (Kuro-o et al., 1997). KL/KL mice had the pattern of ectopic calcification certainly contributed by the elevated phosphate and calcium levels (Hu et al., 2011; Ohnishi et al., 2009). KL also acted as a deregulated factor of mineral metabolism in autosomal dominant polycystic kidney disease (Mekahli & Bachetta., 2013). Mice that lacked Klotho activity were lean owing to reduced white adipose tissue accumulation, and were resistant to obesity induced by a high-fat diet (Ohnishi et al., 2011; Razzaque et al., 2012).

KL expression is regulated by thyroid hormone, oxidative stress, long-term hypertension and so on (Koh et al., 2001). Some transcription factors such as peroxisome proliferator-activated receptor gamma (PPAR-γ) also could regulate KL expression (Zhang et al., 2008). A double-positive feedback loop between PPAR-γ and Klotho regulated adipocyte maturation (Chihara et al., 2006; Zhang et al., 2008). Briefly, chromatin immuno-precipitation (ChIP) and gel shift assays found a PPAR-responsive element within the 5'-flanking region of human KL gene. Additionally, PPAR-γ agonists increased KL expression in HEK293 cells and several renal epithelial cell lines, while the induction was blocked by PPAR-γ antagonists or small interfering RNAs (Zhang et al., 2008). Furthermore, Klotho could induce PPAR-γ synthesis during adipocyte maturation (Chihara et al., 2006). However, little is known about the transcription
factors involved in regulating the expression of porcine KL gene.

To investigate the transcriptional regulation of porcine KL gene, we identified the core promoter of porcine KL gene, analyzed its upstream regulatory elements and revealed that transcription factor OCT1 directly bound to the core promoter region of porcine KL gene and regulated its expression.

Materials and Methods

Ethics statements

All animal procedures were performed according to protocols approved by the Biological Studies Animal Care and Use Committee of Hubei Province, PR China. Sample collection was approved by the ethics committee of Huazhong Agricultural University (No. 30700571 for this study).

MARC0022311 polymorphism in pigs

Nineteen Landrace × DIV crossbred pigs were genotyped with the Porcine SNP60 BeadChip (Illumina) using the Infinium HD Assay Ultra protocol, which was conducted under the technical assistance by Compass Biotechnology Corporation. DIV was a synthetic line derived by crossing Landrace, Large White, Tongcheng or Meishan pigs. Raw data had high genotyping quality (call rate > 0.99) and were analyzed with the GenomeStudio software.

In silico sequence analysis

KL gene sequence ENSSSCG00000009347 was available on the ENSEMBL online website (http://asia.ensembl.org/index.html). We obtained the up-stream sequence for KL promoter prediction. The potential promoter was analyzed using the online neural network promoter prediction (NNPP) (http://www.fruitfly.org/seq_tools/promoter.html) and Promoter 2.0 prediction
server (http://www.cbs.dtu.dk/services/Promoter/). Transcription factor binding sites were predicted using biological databases (BIOBASE) (http://www.gene-regulation.com/pub/programs.html) with a threshold of 0.90 and TFsearch (http://www.cbrc.jp/research/db/TFSEARCH.html) with a threshold of 85.

Cell culture, transient transfection and luciferase assay

The porcine kidney (PK) cells and swine testis (ST) cells obtained from China Center for Type Culture Collection (CCTCC) were cultured at 37 °C in a humidified atmosphere of 5% CO2 using DMEM supplemented with 10% FBS (Gibco).

Four KL promoter deletion fragments were cloned into pGL3-Basic vector to determine the core promoter region. The plasmids contained pig KL-D2 promoter and KL intron 1 fragments (g.1474 A and g.1474 G) were reconstructed, then transfected using lipofectamine 2000 (Invitrogen) into PK cells and ST cells. Plasmid DNA of each well used in the transfection containing 0.8 μg of KL promoter constructs and 0.04 μg of the internal control vector pRL-TK Renilla/luciferase plasmid. The enzymatic activity of luciferase was then measured with PerkinElmer 2030 Multilabel Reader (PerkinElmer).

RNA interference

Double-stranded small interfering RNAs (siRNAs) targeting OCT-1 were obtained from GenePharma. Cells were co-transfected with 2 μl of siRNA, 0.2 μg of reconstructed plasmids using Lipofetamine 2000™ reagent for 24 h. Transfection mixtures were removed, and fresh complete DMEM medium was added to each well. Finally, the enzymatic activity of luciferase was then measured with PerkinElmer 2030 Multilabel Reader (PerkinElmer).
Quantitative real time PCR (qPCR)

qPCR was performed on the LightCycler® 480 (Roche) using SYBR® Green Real-time PCR Master Mix (Toyobo). Primers used in the qPCR were shown in Table 1. qPCR conditions consisted of 1 cycle at 94°C for 3 min, followed by 40 cycles at 94°C for 40 sec, 61°C for 40 sec, and 72°C for 20 sec, with fluorescence acquisition at 74°C. All PCRs were performed in triplicate and gene expression levels were quantified relatively to the expression of β-actin. Analysis of expression level was performed using the 2^−ΔΔCt method (Livak & Schmittgen, 2001). Student’s t-test was used for statistical comparisons.

Western blotting

Western blotting was performed as described previously (Tao et al., 2014). Five μg proteins were boiled in 5 × SDS buffer for 5 min, separated by SDS-PAGE, and transferred to PVDF membranes (Millipore). Then, the membranes were blocked with skim milk and probed with anti-KL (ABclonal). β-actin (Santa Cruz) was used as a loading control. The results were visualized with horseradish peroxidase-conjugated secondary antibodies (Santa Cruz) and enhanced chemiluminescence.

Electrophoretic mobility shift assays (EMSA)

Nuclear protein of PK and ST cells was extracted with Nucleoprotein Extraction Kit (Beyotime). The oligonucleotides (Sangon) corresponding to the OCT-1 binding sites of KL intron 1 (Table 1) were synthesized and annealed into double strands. The DNA binding activity of OCT-1 protein was detected by LightShift® Chemiluminescent EMSA Kit (Pierce). Ten μg nuclear extract was added to 20 fmol biotin-labeled double stranded oligonucleotides, 0.1 mM EDTA, 2.5% Glycerol,
1×binding buffer, 5 mM MgCl$_2$, 50 ng Poly (dI·dC) and 0.05% NP-40. In addition, control group added 2 pmol unlabeled competitor oligonucleotides, while the super-shift group added 10 μg OCT-1 antibodies (Santa Cruz). The mixtures were then incubated at 24 °C for 20 min. The reactions were analyzed by electrophoresis in 5.5% polyacrylamide gels at 180 V for 1 h, and then transferred to a nylon membrane. The dried nylon was scanned with GE ImageQuant LAS4000 mini (GE-Healthcare).

Chromatin immunoprecipitation (ChIP) assay

ChIP assays were performed using a commercially available ChIP Assay Kit (Beyotime) as previously described (Tao et al., 2015). Briefly, after crosslinking the chromatin with 1% formaldehyde at 37 °C for 10 min and neutralizing with glycine for 5 min at room temperature, PK and ST cells were washed with cold PBS, scraped and collected on ice. Then, cells were harvested, lysed and treated by sonication. Nuclear lysates were processed 20 times for 10 sec with 20 min intervals on ice water using a Scientz-IID (Scientz). An equal amount of chromatin was immune-precipitated at 4 °C overnight with at least 1.5 μg of OCT-1 antibody (Santa Cruz) and normal mouse IgG antibody (Millipore). Immune-precipitated products were collected after incubation with Protein A + G coated magnetic beads. The beads were washed, and the bound chromatin was eluted in ChIP elution buffer. Then the proteins were digested with Proteinase K for 4 h at 45 °C. The DNA was purified using the AxyPrep PCR Cleanup Kit (Axygen). The DNA fragment of OCT-1 binding sites in KL intron 1 was amplified with the specific primers (Table 1).

Results
MARC0022311 status in pigs

MARC0022311 in KL intron 1 appeared a polymorphism (A or G) in 19 Landrace × DIV pigs, with 12 AA pigs and AG pigs genotyped using the Illumina PorcineSNP60 chip (Supplementary dataset). The SNP (MARC0022311) in pig KL intron 1 was renamed as KL g.1474 A>G according to the standard mutation nomenclature (den Dunnen & Antonarakis, 2000).

Identification of promoter region of the porcine KL gene

An 833 bp contig in 5’ flanking region of pig KL gene was obtained by PCR. To determine the promoter region, four promoter deletions (KL-D1: -178 bp to -3 bp, KL-D2: -418 bp to -3 bp, KL-D3: -599 bp to -3 bp and KL-D4: -835 bp to -3 bp) were cloned into fluorescent vector based on the prediction of NNPP online software and Promoter 2.0 (Fig. 1A). Luciferase activity analysis in both PK and ST cells revealed that KL-D2 (-418 bp to -3 bp) was essential for its transcriptional activity and was defined as the KL promoter region (Fig. 1B).

MARC0022311 SNP affects the KL expression

Intron SNPs could not change the amino acid sequence, but might alter gene promoter activity by affecting the binding of transcription factors (Van Laere et al., 2003). The plasmids contained KL-D2 and the wild-type A (g.1474 A) or mutant G (g.1474 G) sequence were named as pGL3-D2-A and pGL3-D2-G, respectively. Results showed that luciferase activity of pGL3-D2-G was significantly higher than pGL3-D2-A in both PK cells ($P < 0.05$) and ST cells ($P < 0.01$) (Fig. 2A), indicating the binding of certain regulatory elements affected KL promoter activity.

The SNP (MARC0022311) located in the first intron of KL gene (+1474 bp) was predicted to change the binding of OCT-1 by BIOBASE and TFsearch (Fig. S1). siRNAs were used to knock
down OCT-1 in PK and ST cells. After silencing OCT-1, luciferase activity of pGL3-D2-G was significantly lower than pGL3-D2-A in both PK cells and ST cells ($P < 0.05$) (Figs. 2B and 2C). Furthermore, compared with the negative control, the luciferase activity of pGL3-D2-A was significantly decreased ($P < 0.05$) (Figs. 2B and 2C). Thus, MARC0022311 regulated the promoter activity via OCT-1.

However, inhibition of OCT-1 expression significantly suppressed KL expression in PK and ST cells ($P < 0.05$) (Fig. 3), possibly because OCT-1 could stimulate KL expression by binding KL gene at other sites.

Transcription factor OCT-1 binds to the KL intron 1 both in vitro and in vivo

To address whether KL intron 1 contained OCT-1 binding sites *in vitro*, we used two oligonucleotides (A allele and G allele oligonucleotides) with differing only at SNP MARC0022311 position, as porcine OCT-1 probes in EMSA. EMSA revealed a highly specific interaction with allele A oligonucleotide, and a 100 fold excess of mutant allele G oligonucleotide could not outcompete the interaction (Fig. 4A). A super-shift was obtained when nuclear extracts from PK and ST cells were incubated with OCT-1 antibodies, providing further biochemical evidence for the presence of OCT-1 *in vitro* (Fig. 4A). We found the KL genotype at g.1474 A>G locus was AA in PK and ST cells by PCR-sequencing, indicating the endogenous binding of OCT-1 to KL in above two cell lines (Fig. S2). The chromatin was immuno-precipitated using an OCT-1 antibody and DNA fragments of the expected size were used as a template to perform PCR amplification. ChIP analysis showed that OCT-1 interacted with KL intron 1 (Fig. 4B). These results showed that transcription factor OCT-1 bound to KL intron 1
both *in vitro* and *in vivo*.

Discussion

KL gene encodes a type-I membrane protein that is related to beta-glucosidases (Ko et al., 2013). *KL* might function as part of a signaling pathway that regulated morbidity in age-related diseases such as atherosclerosis and cardiovascular disease, and mineral metabolism diseases such as ectopic calcification (Ko et al., 2013; Kuro-o et al., 1997; Hu et al., 2011; Ohnishi et al., 2009).

Overexpression of *KL* in the preadipocyte 3T3-L1 cell line can induce expression of several adipogenic markers, including *PPARγ*, CCAAT/enhancer binding protein alpha (*C/EBPα*) and CCAAT/enhancer binding protein delta (*C/EBPδ*), and facilitate the differentiation of preadipocytes into mature adipocytes (Chihara et al., 2006). Eliminating *KL* function from mice resulted in the generation of lean mice with almost no detectable fat tissue, and induced a resistance to high-fat-diet-stimulated obesity (Razzaque et al., 2012; Ohnishi et al., 2011).

Here we found the SNP MARC0022311 located in *KL* intron 1 showed a polymorphism in the tested pigs (Supplementary dataset). A number of SNPs were proved to have major effects on the phenotypic variations (Markljung et al., 2009; Milan et al., 2000; Ren et al., 2011; Van Laere et al., 2003). Previous research reported that a G to A transition in intron 3 of porcine insulin-like growth factor 2 (*IGF2*) affected the binding of ZBED6 and significantly up-regulated *IGF2* expression in skeletal muscle (Markljung et al., 2009; Van Laere et al., 2003). We predicted the SNP MARC0022311 located in *KL* intron 1 could change the binding of transcription factors including OCT1 by BIOBASE and TFsearch online software (Fig. S1).

The Octamer-binding proteins (OCTs) are a group of highly conserved transcription factors that...
specifically bind to the octamer motif (ATGCAAAAT) and closely related sequences that are found in promoters and enhancers (Zhao, 2013). OCT1 regulates the expression of a variety of genes, including immunoglobulin genes (Dreyfus, Doyen & Rougeon, 1987), β-casein gene (Zhao, Adachi & Oka, 2002), miR-451/AMPK signaling (Ansari et al., 2015), sex-determining region Y gene (Margarit et al., 1998), synbindin – related ERK signaling (Qian et al., 2015).

In the present study, luciferase activity of pGL3-D2-G was significantly higher than pGL3-D2-A in PK cells and ST cells and the following OCT-1 RNAi results showed that luciferase activity of pGL3-D2-G significantly decreased, confirming OCT-1 was the repressor. Therefore, we supposed that OCT-1 could bind to the first intron of KL when the SNP was allele A, and then depressed activity of KL promoter.

However, the expression of KL was significantly inhibited after silencing OCT-1. There were several OCT-1 binding sites in porcine KL gene. One hundred and sixty six OCT-1 binding sites were predicted in intron 1 (36324 bp in length) by BIOBASE and TFsearch online software (Fig. S3A). ChIP analysis showed that OCT-1 interacted with all of three tested regions (1395 bp to 1525 bp, 14322 bp to 14436 bp, 30970 bp to 31141 bp) in PK cells (Fig. S3B). In consequence, we hypothesized that OCT-1 could bind KL gene at multiple sites, and the positive regulation of KL gene might be dominant.

Klotho physiologically regulate mineral and energy metabolism by influencing the activities of fibroblast growth factors (FGFs) including FGF-2, FGF-19, FGF-23 and their receptors (FGFRs) (Guan et al., 2014; Razzaque et al., 2009; Wu et al., 2008). Taken together, KL exerts is function via OCT-1 - KL- FGF- FGFR pathway.
Conclusions

In summary, SNP MARC0022311 affected OCT-1 binding ability with the KL promoter. And the KL promoter activity was significantly decreased with allele A of MARC0022311 compared with allele G. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1.

Acknowledgements

We are grateful to Compass Biotechnology Corporation for technical assistance with Illumina SNP analysis. The authors also acknowledge the farmers for providing pig samples.

References

Ansari KI, Ogawa D, Rooj AK, Lawler SE, Krichevsky AM, Johnson MD, Chiocca EA, Bronisz A, Godlewski J. 2015. Glucose-based regulation of miR-451/AMPK signaling depends on the OCT1 transcription factor. Cell Reports 11(6):902-909 DOI 10.1016/j.celrep.2015.04.016.

Chihara Y, Rakugi H, Ishikawa K, Ikushima M, Maekawa Y, Ohta J, Kida I, Ogihara T. 2006. Klotho protein promotes adipocyte differentiation. Endocrinology 147(8):3835-3842 DOI 10.1210/en.2005-1529.

Den Dunnen JT, Antonarakis SE. 2000. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Human Mutation 15:7-12 DOI 10.1002/(SICI)1098-1004 (200001)15:1<7::AID-HUMU4>3.0.CO;2-N.

Dreyfus M, Doyen N, Rougeon F. 1987. The conserved decanucleotide from the
immunoglobulin heavy chain promoter induces a very high transcriptional activity in B-cells when introduced into a heterologous promoter. EMBO Journal 6:1685-1690.

Guan X, Nie L, He T, Yang K, Xiao T, Wang S, Huang Y, Zhang J, Wang J, Sharma K, Liu Y, Zhao J. 2014. Klotho suppresses renal tubulo-interstitial fibrosis by controlling basic fibroblast growth factor-2 signalling. The Journal of Pathology 234(4):560-572 DOI 10.1002/path.4420.

Hu MC, Shi M, Zhang J, Quiñones H, Griffith C, Kuro-o M, Moe OW. 2011. Klotho deficiency causes vascular calcification in chronic kidney disease. Journal of the American Society of Nephrology 22(1):124-136 DOI 10.1681/ASN.2009.

Ko GJ, Lee YM, Lee EA, Lee JE, Bae SY, Park SW, Park MS, Pyo HJ, Kwon YJ, WDPA. 2013. The association of Klotho gene polymorphism with the mortality of patients on maintenance dialysis. Clinical Nephrology 80(4):263-269 DOI 10.5414/CN107800.

Koh N, Fujimori T, Nishiguchi S, Tamori A, Shiomi S, Nakatani T, Sugimura K, Kishimoto T, Kinoshita S, Kuroki T, Nabeshima Y. 2001. Severely reduced production of Klotho in human chronic renal failure kidney. Biochemical and Biophysical Research Communications 280:1015-1020 DOI 10.1006/bbrc.2000.4226.

Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI. 1997. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45-51 DOI 10.1038/36285.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time
quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402-408 DOI 10.1006/meth.2001.1262.

Markljung E, Jiang L, Jaffe JD, Mikkelsen TS, Wallerman O, Larhammar M, Zhang X, Wang L, Saenz-Vash V, Gnirke A, Lindroth AM, Barrés R, Yan J, Strömberg S, De S, Pontén F, Lander ES, Carr SA, Zierath JR, Kullander K, Wadelius C, Lindblad-Toh K, Andersson G, Hjälm G, Andersson L. 2009. ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth. PLOS Biology 7(12): e1000256 DOI 10.1371/journal.pbio.1000256.

Margarit E, Guillén A, Rebordosa C, Vidal-Taboada J, Sánchez M, Ballesta F, Oliva R. 1998. Identification of conserved potentially regulatory sequences of the SRY gene from 10 different species of mammals. Biochemical and Biophysical Research Communications 245(2): 370-377 DOI 10.1006/bbrc.1998.8441.

Mekahli D, Bacchetta J. 2013. From bone abnormalities to mineral metabolism dysregulation in autosomal dominant polycystic kidney disease. Pediatric Nephrology 28:2089-2096 DOI 10.1007/s00467-012-2384-5.

Milan D, Jeon JT, Looft C, Amarger V, Robic A, Thelander M, Rogel-Gaillard C, Paul S, Iannuccelli N, Rask L, Ronne H, Lundström K, Reinsch N, Gellin J, Kalm E, Roy PL, Chardon P, Andersson L. 2000. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 288(5469):1248-51.
Ohnishi M, Kato S, Akiyoshi J, Atfi A, Razzaque MS. 2011. Dietary and genetic evidence for
enhancing glucose metabolism and reducing obesity by inhibiting klotho functions.
The FASEB Journal 25(6): 2031-2039 DOI 10.1096/fj.10-167056.

Ohnishi M, Nakatani T, Lanske B, Razzaque MS. 2009. Reversal of mineral ion homeostasis and
soft-tissue calcification of klotho knockout mice by deletion of vitamin D 1alpha-
hydroxylase. Kidney International 75:1166-1172 DOI 10.1038/ki.2009.24.

Qian J, Kong X, Deng N, Tan P, Chen H, Wang J, Li Z, Hu Y, Zou W, Xu J, Fang JY. 2015.
OCT1 is a determinant of synbindin-related ERK signalling with independent prognostic
significance in gastric cancer. Gut 64(1):37-48 DOI 10.1136/gutjnl-2013-306584.

Razzaque MS. 2009. The FGF23-Klotho axis: endocrine regulation of phosphate homeostasis.
Nature Reviews Endocrinology 5(11): 611-619 DOI 10.1038/nrendo.2009.196.

Razzaque MS. 2012. The role of Klotho in energy metabolism. Nature Reviews Endocrinology
8(10):579-587 DOI 10.1038/nrendo.2012.75.

Ren J, Duan Y, Qiao R, Yao F, Zhang Z, Yang B, Guo Y, Xiao S, Wei R, Ouyang Z, Ding N, Ai
H, Huang L. 2011. A missense mutation in PPARD causes a major QTL effect on ear size in
pigs. PLoS Genetics 7(5):e1002043 DOI 10.1371/journal.pgen.1002043.

Tao H, Mei S, Zhang X, Peng X, Yang J, Zhu L, Zhou J, Wu H, Wang L, Hua L, Li F. 2014.
Transcription factor C/EBPβ and 17β-Estradiol promote transcription of the porcine p53
gene. The International Journal of Biochemistry & Cell Biology 47:76-82 DOI
10.1016/j.biocel.2013.12.002.

Tao H, Wang L, Zhou J, Pang P, Cai S, Li J, Mei S, Li F. 2015. The transcription factor
ccaat/enhancer binding protein β (C/EBPβ) and miR-27a regulate the expression of porcine Dickkopf2 (DKK2). Scientific Reports 5:17972 DOI 10.1038/srep17972.

Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald AL, Haley CS, Buys N, Tally M, Andersson G, Georges M, Andersson L. 2003. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 25 (6960):832-836 DOI 10.1038/nature02064.

Wu X, Lemon B, Li X, Gupte J, Weiszmann J, Stevens J, Hawkins N, Shen W, Lindberg R, Chen JL, Tian H, Li Y. 2008. C-terminal tail of FGF19 determines its specificity toward Klotho co-receptors. The Journal of Biological Chemistry 283(48):33304-33309 DOI 10.1074/jbc.M803319200.

Zhang H, Li Y, Fan Y, Wu J, Zhao B, Guan Y, Chien S, Wang N. 2008. Klotho is a target gene of PPAR-gamma. Kidney International 74(6):732-739 DOI 10.1038/ki.2008.244.

Zhao FQ. 2013. Octamer-binding transcription factors: genomics and functions. Frontiers in Bioscience (Landmark Ed), 18: 1051-1071.

Zhao FQ, Adachi K, Oka T. 2002. Involvement of Oct-1 in transcriptional regulation of beta-casein gene expression in mouse mammary gland. Biochimica et Biophysica Acta 1577: 27-37 DOI 10.1016/S0167-4781(02)00402-5.
Figure Legends

Fig. 1: Deletion analysis of pig KL promoter. (A) Schematic diagram of KL promoter, MARC0022311 (KL g.1474 A>G) and OCT-1 binding site in intron 1. (B) Promoter activities of a series of deleted constructs determined by luciferase assay. Left panel, relative location of four deletion fragments. The nucleotides were numbered from the potential transcriptional start site assigned as +1. Right panel, the relative luciferase activities of four reconstructed vector contained sequence from KL-D1 to KL-D4. *** $P<0.001$.

Fig. 2: MARC0022311 in pig KL intron 1 affected promoter activity in PK and ST cells. (A) Luciferase assays of reporter constructs using pig KL-D2 promoter and intron 1 fragments (g.1474 A and g.1474 G). (B) Luciferase detection after co-transfection of OCT-1 siRNA with pGL3-D2-A and pGL3-D2-G in PK cells. (C) Luciferase detection after co-transfection of OCT-1 siRNA with pGL3-D2-A and pGL3-D2-G in ST cells. * $P<0.05$. ** $P<0.01$.

Fig. 3: OCT-1 up-regulated KL expression by RNAi. (A) PK cells were treated with 2 μl OCT-1 siRNA and 2 μl NC for 24 h. Knockdown of OCT-1 was confirmed by qPCR. KL mRNA and protein expressions were analyzed by qPCR and Western blotting. (B) ST cells were treated with 2 μl OCT-1 siRNA and 2 μl NC for 24 h. Knockdown of OCT-1 was confirmed by qPCR analysis. KL mRNA and protein expressions were analyzed by qPCR and Western blotting. * $P<0.05$. ** $P<0.01$.

Fig. 4: Binding of OCT-1 with KL intron 1 was analyzed by EMSA and ChIP. (A) The probe was incubated with nuclear extract in the absence or presence of 100-fold excess of various competitor probes (mutant or non-labeled probe) or anti-OCT-1. The specific super-shift (DNA-
protein-antibody complex) bands were both observed in PK and ST cells. The sequences of various probes were demonstrated under the panel. (B) ChIP assay of OCT-1 binding to the KL intron 1 in PK cells and ST cells. The interaction of OCT-1 *in vivo* with *KL* intron region was determined by chromatin immunoprecipitation analysis. DNA isolated from immune-precipitated material was amplified by PCR to amplify *KL* fragment. Total chromatin was used as the input. Normal mouse IgG was used as a negative control.
Table 1. Primers and DNA oligos used in this study.
Supplementary files

Fig. S1: Transcription factor binding site prediction of the procine KL intron 1 containing MARC0022311 (KL g.1474 A>G). Quadrilateral frame indicated the substitutions and extra binding site of OCT-1. (A) Predicted by BIOBASE online software. (B) Predicted by TFserach online software.

Fig. S2: Genotyping results of MARC0022311. (A) PK cells. (B) ST cells. MARC0022311 was marked in gray background.

Fig. S3. OCT-1 binding sites in the porcine KL intron 1. (A) Frequency distribution of the predicted OCT-1 binding sites. X-axis indicated the length of the porcine KL intron 1 in bp. Y-axis was the frequency of the predicted OCT-1 binding sites. (B) ChIP analysis of three candidate OCT-1 binding sites (1395 bp to 1525 bp, 14322 bp to 14436 bp, 30970 bp to 31141 bp) in KL intron 1 in PK cells. Primers used for ChIP-PCR was shown in Table 1. Input and R were positive control, while IgG was the negative control.

Supplementary dataset: SNP genotyping results in 19 Landrace × DIV pigs using the Porcine SNP60 BeadChip (Illumina). DIV was a synthetic line derived by crossing Landrace, Large White, Tongcheng or Meishan pigs.
Deletion analysis of pig KL promoter.

(A) Schematic diagram of KL promoter, MARC0022311 (KL g.1474 A>G) and OCT-1 binding site in intron 1. (B) Promoter activities of a series of deleted constructs determined by luciferase assay. Left panel, relative location of four deletion fragments. The nucleotides were numbered from the potential transcriptional start site assigned as +1. Right panel, the relative luciferase activities of four reconstructed vector contained sequence from KL-D1 to KL-D4. *** P<0.001.
MARC0022311 in pig KL intron 1 affected promoter activity in PK and ST cells.

(A) Luciferase assays of reporter constructs using pig KL-D2 promoter and intron 1 fragments (g.1474 A and g.1474 G). (B) Luciferase detection after co-transfection of OCT-1 siRNA with pGL3-D2-A and pGL3-D2-G in PK cells. (C) Luciferase detection after co-transfection of OCT-1 siRNA with pGL3-D2-A and pGL3-D2-G in ST cells. * P<0.05. ** P<0.01.
OCT-1 up-regulated KL expression by RNAi.

(A) PK cells were treated with 2 μl OCT-1 siRNA and 2 μl NC for 24 h. Knockdown of OCT-1 was confirmed by qPCR. KL mRNA and protein expressions were analyzed by qPCR and Western blotting. (B) ST cells were treated with 2 μl OCT-1 siRNA and 2 μl NC for 24 h. Knockdown of OCT-1 was confirmed by qPCR analysis. KL mRNA and protein expressions were analyzed by qPCR and Western blotting. * P<0.05. ** P<0.01.
Binding of OCT-1 with KL intron 1 was analyzed by EMSA and ChIP.

(A) The probe was incubated with nuclear extract in the absence or presence of 100-fold excess of various competitor probes (mutant or non-labeled probe) or anti-OCT-1. The specific super-shift (DNA-protein-antibody complex) bands were both observed in PK and ST cells. The sequences of various probes were demonstrated under the panel. (B) ChIP assay of OCT-1 binding to the KL intron 1 in PK cells and ST cells. The interaction of OCT-1 in vivo with KL intron region was determined by chromatin immunoprecipitation analysis. DNA isolated from immune-precipitated material was amplified by PCR to amplify KL fragement. Total chromatin was used as the input. Normal mouse IgG was used as a negative control.
Table 1 (on next page)

Primers and DNA oligos used in this study.
Table 1. Primers and DNA oligos used in this study.

Primer	Primer sequence (5’-3’)	Amplicon Length (bp)	Tm (°C)
5’-Bio of A (+)	GGTAATGTTGTAATAATGGCTAA	60	
5’-Bio of A (-)	TTAGCCATTATACACACATTACC	60	
cold probe of A (+)	GGTAATGTTGTAATAATGGCTAA	60	
cold probe of A (-)	TTAGCCATTATACACACATTACC	60	
cold probe of G (+)	GGTAATGTTGTAATAATGGCTAA	60	
cold probe of G (-)	TTAGCCACTATACACACATTACC	60	
KL_ChIP_PF	TGAAGACCACCTGCTACACACTT	193	58
KL_ChIP_PR	AGCAAACAGGTTTTGTGGAGGC	59	
KL_D1_PF	CGACGCCTCCCTGGAAGGCTTTGTT	433	59
KL_D2_PF	CGACGCCTCCCTGGAAGGCTTTGTT	614	59
KL_D3_PF	CGACGCCTCCCTGGAAGGCTTTGTT	850	59
KL_D4_PF	CGACGCCTCCCTGGAAGGCTTTGTT	196	58
OCT1_qPCR_PF	TGAACAATCCGTGACAAACC	196	58
OCT1_qPCR_PR	TGAGCAGCGACGCTGTAACACTT	173	57
KL_qPCR_PF	ACACGTATATTGAGGTGAGAGAC	130	50
KL_qPCR_PR	GAGACCTCTACGAGGTGTAAAC	114	51
KL_intron1_ChIP_PF	GCCGTAGATTTAGTAAGGC	171	50
KL_intron1_ChIP_PR	TCTGTGATACGAAACAGG	50	
KL_intron2_ChIP_PF	GCCAGTGTAGGTTGTTACC	51	
KL_intron2_ChIP_PR	ATTCTCAAAGAGACATACA	50	
KL_intron3_ChIP_PF	CAAGATTGTACCGTGGAG	50	
KL_intron3_ChIP_PR	GGTCATTTCACATCTTCT	50	

Protective bases and induced enzyme sites were in italic and bold respectively.