Supplementary Figure S1. Construction of the sa2056 mutant [1]. sa2056 was excised by a three-step procedure developed by Bae et al. [2]: First, the temperature-sensitive plasmid pCQ30 was integrated at 43 °C either up- or down-stream of sa2056 by homologous recombination. Only the resulting chromosomal organization of the recombination symbolized on the left is given. Next, the plasmid was allowed to excise together with the sa2056 gene at permissive temperature (30 °C). Finally, bacteria were selected for plasmid loss.
Supplementary Figure S2. (a) Amino acid sequence of SA2056. Transmembrane (TM) regions predicted by THMMH and C-termini of fragments (F) fused to PhoA are indicated. For TM2 and TM3, predictions of additional programs are depicted. Extra amino acids added to F3 are indicated (F3a–e). (b) Activity of fusion proteins was measured in biological and technical triplicates; mean values for each clone are given and the standard deviation is indicated. SA2056 fragments directing PhoA to the exoplasm were expected to produce values at least five times higher than the background levels (dashed line) measured in the \textit{phaA}-negative \textit{E. coli} strain CC118 (control).
VYLILVIFKGLAPFTILFLPFTVIGVIIALLITGETISVPSLIGMLM 950

LIGIVVNLIDRVIINNEQQGMEMEAIEAGGTRRPILMTAIATIC 1000

ALVPLLFQDSSILIKGLAATVIGGLISSTLTLVVVPVIYEILFTLKK 1050

RFTKR

TM2	369–391	379–392	376–398	372–391	375–391
TM3	398–415	399–416	402–424	398–415	398–415

(b)
Supplementary Figure S3. Localisation of SA2056. Exponentially grown *S. aureus* expressing SA2056-GFP under the control of the *sa2056* promoter was visualised by (a) phase contrast or (b) fluorescence microscopy as described below. Arrows indicate examples of dividing bacteria with visible septa and SA2056-patches. Bars indicate the size of 1 μm.

![Image](a.png) ![Image](b.png)

The 3'-region of SA2056 (SA2056$_{666nt}$) was amplified from genomic DNA using primers listed in supplementary table T2. The SA2056$_{666nt}$ fragment was cloned to the 5' end of *gfpmut1* in pSG5082 using the XhoI and HindIII restriction sites, yielding pCQ44 [3]. Following the transformation of pCQ44 into *E. coli* DH5α (CQ44), the suicide vector was integrated into *S. aureus* RN4220 (CQ48). To confirm correct integration, a PCR with subsequent sequencing of the region was performed.

CQ48 was grown in tryptic soy broth (TSB, Difco) until exponential phase, washed once in PBS (8 g NaCl, 0.2 g KCl, 2.68 g Na$_2$HPO$_4$·7H$_2$O, 0.24 g KH$_2$PO$_4$, pH 7.4) and resuspended therein. A drop of bacterial suspension was spotted on a microscope slide overlaid with a thin layer of 1 % agarose in PBS and covered with a cover slip. Cells were visualised using a Zeiss Axio Observer.Z1 microscope and the Metamorph v. 7.5 software (Molecular Devices). Pictures were acquired with the Photometrics CoolSNAP HQ2 camera (Roper Scientific), which was connected to the microscope. Pictures were analysed with the ImageJ software [4].
Supplementary Table S1. Resistance profiles of strains Newman and *sa2056*.

Substance	Newman	*sa2056*
Cell wall synthesis inhibitors		
Cefoxitin	6	6
Oxacillin	0.38	0.38
Teicoplanin	4	6
Vancomycin	5	6
Lysostaphin	0.125–0.25	0.125–0.25
D-cycloserine	8	8
Fosfomycin	0.25	0.25
Ramoplanin	1	1
Nisin	4	4
Mersacidin	32	32
Bacitracin	8	8
RND substrates		
Acriflavine	8	8
EtBr	1–2	1–2
SDS	64	64
Others		
Daptomycin	2	2
Clindamycin	0.94	0.94
Chloramphenicol	4	3
Tetracycline	0.19	0.25
Gentamicin	0.75	1
Erythromycin	0.25	0.25
Novobiocin	0.0313	0.0313
Fatty acids		
Capric acid	512	512
Linoleic acid	16	16
Cis-6-hexadecenoic acid	64	64
Supplementary Table S2. Strains and plasmids used in this study.

Strains	Relevant genotype and phenotype	Reference or source
S. aureus		
Newman	Clinical isolate (ATCC 25904), rsbU^r	[5]
RN4220	NCTC 8325-4 r^m	[6]
CQ33	Newman Δsa2056	[1]
CQ38	Newman Δsa2056 pME2, Te^c, Mc^e	[1]
CQ39	Newman pME2, Te^c, Mc^e	[1]
CQ48	RN4220 sa2056::pCQ44, SA2056-GFP, Emⁱ	This study
MS146	Newman femB::Tn551, Emⁱ, Lssⁱ	This study
MS147	Newman Δsa2056 femB::Tn551, Emⁱ, Lssⁱ	This study
UT34-2	NCTC 8325 mec Ω2006(femB::Tn551), Emⁱ, Lssⁱ	[7]
E. coli		
BL21	Expression strain, DE3 (E. coli B F[−] ompT hsdS_B gal dcm)^λ prophage carrying T7 polymerase	Novagen
CE43	Membrane protein overproducer selected from BL21	[8]
CC118	Reporter strain for PhoA fusion, Δ(ara-leu)7697 ΔlacZ47 ΔphoA20 galE galK	[9]
CQ44	DH5α pCQ44, Apⁱ	This study
DH5α	Cloning strain (F− Φ80lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 hsdR17 (rk−, mk⁺) phoA supE44 thi-1 gyrA96 relA1 λ−]	Invitrogen
DHM1	BACTH reporter strain, cyu	[10]
Plasmids		
pCQ44	Suicide vector, SA2056_{sal}-GFP fusion at C-terminus, Apⁱ, Emⁱ	This study
pET24b(+)	Expression vector, N-terminal T7-Tag or C-terminal His_N-Tag, T7 promoter, Kmⁱ	Novagen
pET24b(+)-femA	Expression vector, femA with His_N-Tag at the C-terminus, Kmⁱ	[11]
pET24b(+)-femB	Expression vector, femB with His_N-Tag at the C-terminus, Kmⁱ	[11]
pET24b(+)-femX	Expression vector, femX with His_N-Tag at the C-terminus, Kmⁱ	This study
pET24b(+)-sa2056	Expression vector, sa2056 with His_N-Tag at the C-terminus, Kmⁱ	This study
pGEX-2T	Expression vector, N-terminal GST-Tag, Apⁱ	GE
pGEX-2T-femA	Expression vector, femA with GST-Tag at the N-terminus, Apⁱ	This study
pGEX-2T-femB	Expression vector, femB with GST-Tag at the N-terminus, Apⁱ	This study
pGEX-2T-femX	Expression vector, femX with GST-Tag at the N-terminus, Apⁱ	This study
pGEX-2T-sa2056	Expression vector, sa2056 with GST-Tag at the N-terminus, Apⁱ	This study
pHA-1(yedZ)	PhoA fusion expression plasmid containing yedZ (XhoI-KpnI) with phoA fused to the 3′-end, araB promoter	[12]
pHA-F1-F14	PhoA fusion vectors, sa2056 fragments encoding F1-F14 fused to the 5′-end of phoA	This study
pKT25	BACTH vector, MCS at the C-terminus of the CyaA domain T25, Kmⁱ	[10]
pKNT	BACTH vector, MCS at the N-terminus of the CyaA domain T25, Kmⁱ	[13]
pKT25-femA	BACTH vector, femA fused to the C-terminus of T25, Kmⁱ	[11]
pKT25-femB	BACTH vector, femB fused to the C-terminus of T25, Kmⁱ	[11]
Table S2. Cont.

Strains	Relevant genotype and phenotype	Reference or source
pKT25-femX	BACTH vector, *femX* fused to the C-terminus of T25, Kmⁱ	This study
pKT25-php1	BACTH vector, *php1* fused to the C-terminus of T25, Kmⁱ	[14]
pKT25-php2	BACTH vector, *php2* fused to the C-terminus of T25, Kmⁱ	[14]
pKT25-php3	BACTH vector, *php3* fused to the C-terminus of T25, Kmⁱ	This study
pKNT25-php4	BACTH vector, *php4* fused to the N-terminus of T25, Kmⁱ	[14]
pKT25-php2a	BACTH vector, *php2a* fused to the C-terminus of T25, Kmⁱ	This study
pUT18	BACTH vector, MCS at the N-terminus of the CyaA domain T18, Apⁱ	[10]
pUT18C	BACTH vector, MCS at the C-terminus of the CyaA domain T18, Apⁱ	[10]
pUT18C-femA	BACTH vector, *femA* fused to the C-terminus of T18, Apⁱ	[11]
pUT18C-femB	BACTH vector, *femB* fused to the C-terminus of T18, Apⁱ	This study
pUT18C-femX	BACTH vector, *femX* fused to the C-terminus of T18, Apⁱ	This study
pUT18C-php1	BACTH vector, *php1* fused to the C-terminus of T18, Apⁱ	[14]
pUT18C-php2	BACTH vector, *php2* fused to the C-terminus of T18, Apⁱ	This study
pUT18C-php3	BACTH vector, *php3* fused to the C-terminus of T18, Apⁱ	[14]
pUT18C-php4	BACTH vector, *php4* fused to the N-terminus of T18, Apⁱ	[14]
pUT18C-php2a	BACTH vector, *php2a* fused to the C-terminus of T18, Apⁱ	This study
pUT18C-sa2056	BACTH vector, *sa2056* fused to the C-terminus of T18, Apⁱ	This study

MCS, multiple cloning site; Apⁱ, ampicillin resistant; Cmⁱ, chloramphenicol resistant; Emⁱ, erythromycin resistant; Lssⁱ, lysostaphin resistant; Mcⁱ, methicillin resistant; Tcⁱ, tetracycline resistant.
Supplementary Table S3. Primers used in this study.

Primer	Sequence 5'-3'	Use	Reference
CQ10	TCCACCTCTCCACTGACAGA	Confirmation pCQ44 integration	This study
CQ31	AGTGTGGGGAGATCTAAGTG	Confirmation pCQ44 integration	[3]
CQ33	ATGGACGAGCTGACACTA	Sequencing CQ48	This study
CQ72	TATAGCTGTCCTAGTTGATATACTG-TTTT	Construction of pCQ44	This study
CQ73	AAATCGAGCAAGAAACAGGGATTATTGC	Construction of pCQ44	This study
CQ74	CTAATCTGTCCTGTTTGTGC	Sequencing CQ48	This study
EH4	CTGCCACTTATGTAATATCTGTTAATCCCAC	Construction of pU18C-php2	This study
EH34	CGGTCTCACGATGATAAATATCTGATTAC	Construction of pHAI-F1-14	This study
EH35	CCGGTACCCGTTAGTAAATCTAAATTCTCCA	Construction of pHAI-F1	This study
EH36	ATAGGTACCGAGTACCCCATATTCTT	Construction of pHAI-F2	This study
EH37	ACCTGACCGGATTTTGAATTTGAC	Construction of pHAI-F3	This study
EH38	GATGTTACCACATACCTCAATTTCAGAG	Construction of pHAI-F4	This study
EH39	CCGGTACCCGATATATTTTCAACAA	Construction of pHAI-F5	This study
EH40	TATGGTACCCTAATATCTGCTACTG	Construction of pHAI-F6	This study
EH41	ATCCTGTAACATCTCTTACTGATGTGT	Construction of pHAI-F7	This study
EH42	ATGGTACCTTCTGCTGCTGCT	Construction of pHAI-F8	This study
EH43	TATGGTACCCTGAGAATATCTGACAGTGAC	Construction of pHAI-F9	This study
EH44	CCGGTACCCCATTCATTTAATTTGATAA	Construction of pHAI-F10	This study
EH45	TAGGTACCCGTTCTCCGATTAATAG	Construction of pHAI-F11	This study
EH46	TATGGTACCCTCATCTCCATGCC	Construction of pHAI-F12	This study
EH47	GTGGTGACGAAAAATGATTACGCACTAT	Construction of pHAI-F13	This study
EH48	CATGGTACCCGCTCTAGTGAATCTG	Construction of pHAI-F14	This study
EH50	AACCTGACGGAGAAACAAAAAGAGATCTTCA	Construction of pU18C-php2	This study
MS79	ATGGATCTCCGGAAGCAGAAAAATTTAATTTA	Construction of pET24b-php1	This study
MS80	TTAATCGAGGGATCTCCTTAACTG	Construction of pET24b-php1	This study
MS81	TTGGGATCCCTAAAAGACTAAAAAGATTTCAAAT	Construction of pET24b-php3	This study
MS82	TTAATCGAGTTTGCTCTTGTCTTTATTTTATC	Construction of pET24b-php3	This study
MS83	ATGGGATCCCCAAATTATATTTATATTATCATCAGTTT	Construction of pET24b-php4	This study
MS84	TTAATCGAGTTTCTTTTTCTTAAATATACGATTT	Construction of pET24b-php4	This study
MS85	ATGGGATCCCAAAATGAAAAATATTTCTTCACT	Construction of pET24b-mecA	This study
MS86	TTAATCGAGTCTTATATCTGTTACTTTTATT	Construction of pET24b-mecA	This study
MS106	CTAAGATCTTCTTTTCTTTTATTTTACCGATATTT	Construction of pGEX-2T-sa2056	This study
MS107	CGTGAATCCATAAAAAGCATTTAATTTTTC	Construction of pGEX-2T-sa2056	This study
MS108	CTAGAATCTTCTTTTATTTTACCTG	Construction of pGEX-2T-sa2056	This study
MS109	GTAAGATCTGAAAAATGATCTATGCTACAATAC	Construction of pGEX-2T-femX	This study
MS116	GCAGGTACCCTTATTCTTATTTTACG	Construction of pKT25-femB and pU18C-femB	This study
MS117	GTTGAATCCTTTCTTCTTTTATTTTTAG	Construction of pGEX-2T-femB	This study
MS118	CTAGAATCTTATTCTTTTGTTTATTTACGAG	Construction of pGEX-2T-femX	This study
MS155	ATGGGATCCGTACGTTTCTATTAAACAG	Construction of pHAI-F3a	This study
MS156	GAAGGTACCTGTAAGATTGTCTTTTCAAAAC	Construction of pHAI-F3b	This study
MS157	ATGGGATCCCGTCTGCTACGAATGTTTTC	Construction of pHAI-F3c	This study
MS158	GATGGTACCCCAATTGGGCTGCTAAGATGTTTTC	Construction of pHAI-F3d	This study
Table S3. Cont.

Primer	Sequence 5′-3′	Use	Reference
MS159	GATGGTACCGAATTGCGCGTCGTACGAATG	Construction of pHAI-F3e	This study
SR2	CGAGCTACGCGAAAAATGCTATACATAAATT	Construction of pET24b-femX	[15]
SR3	GCACTCGAGTTTGGTTTAAATTCAG	Construction of pET24b-femX	[15]
SR71	CGTCTCGAGTGTGTTAGGATGAACTGGTTT	Construction of pET24b-sa2056	This study
SR73	GCAGCTACGATTAAAAAGCTATACATAATTTTCTTTT	Construction of pET24b-sa2056	This study
SR100	GCACGTCAAGGAATTTACAGAGTTAATCTG	Construction of pUT18C-femB	[11]
SR101	GCACGTCAAGGAATTTACAGAGTTAATCTG	Construction of pKT25-femB	[11]
SR103	CATCTCGAGGAAAAAGATGCATATCAG	Construction of pKT25-femX	[11]
SR104	CATCTCGAGGAAAAAGATGCATATCAG	Construction of pUT18C-femX	[11]
SR105	GCAGGTACCTATTTTGCATTAAAAATTCAG	Construction of pKT25-femX	[11]
SR106	GTTGGATCCAAGTTTACAAATTTACAGCTA	Construction of pGEX-2T-femA	[11]
SR107	GTTGGATCCAAGTTTACAAATTTACAGCTA	Construction of pGEX-2T-femA	[11]
SR108	CAAGGATCCAAATTTACAGAGTTAATCTGTTAC	Construction of pGEX-2T-femB	[11]

Restriction sites are underlined.

References and Notes

1. Quiblier, C.; Zinkernagel, A.; Schuepbach, R.; Berger-Bächli, B.; Senn, M. Contribution of SecDF to *Staphylococcus aureus* resistance and expression of virulence factors. *BMC Microbiol.* 2011, 11, doi:10.1186/1471-2180-11-72.
2. Bae, T.; Schneewind, O. Allelic replacement in *Staphylococcus aureus* with inducible counter-selection. *Plasmid* 2006, 55, 58–63.
3. Pinho, M.G.; Errington, J. A divIVA null mutant of *Staphylococcus aureus* undergoes normal cell division. *FEMS Microbiol. Lett.* 2004, 240, 145–149.
4. ImageJ. Available online: http://rsb.info.nih.gov/ij/index.html (accessed on 24 December 2012).
5. Duthie, E.S.; Lorenz, L.L. Staphylococcal coagulase; mode of action and antigenicity. *J. Gen. Microbiol.* 1952, 6, 95–107.
6. Kreiswirth, B.N.; Lofdahl, S.; Betley, M.J.; O'Reilly, M.; Schlievert, P.M.; Bergdoll, M.S.; Novick, R.P. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. *Nature* 1983, 305, 709–712.
7. Henze, U.; Sidow, T.; Wecke, J.; Labischinski, H.; Berger-Bächli, B. Influence of femB on methicillin resistance and peptidoglycan metabolism in *Staphylococcus aureus*. *J. Bacteriol.* 1993, 175, 1612–1620.
8. Miroux, B.; Walker, J.E. Over-production of proteins in *Escherichia coli*: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. *J. Mol. Biol.* 1996, 260, 289–298.
9. Lee, E.; Manoil, C. Mutations eliminating the protein export function of a membrane- spanning sequence. *J. Biol. Chem.* 1994, 269, 28822–28828.
10. Karimova, G.; Pidoux, J.; Ullmann, A.; Ladant, D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. *Proc. Natl. Acad. Sci. USA* 1998, 95, 5752–5756.
11. Rohrer, S.; Berger-Bächli, B. Application of a bacterial two-hybrid system for the analysis of protein-protein interactions between FemABX family proteins. *Microbiology* 2003, 149, 2733–2738.
12. Drew, D.; Sjöstrand, D.; Nilsson, J.; Urbig, T.; Chin, C.N.; de Gier, J.W.; von Heijne, G. Rapid topology mapping of *Escherichia coli* inner-membrane proteins by prediction and PhoA/GFP fusion analysis. *Proc. Natl. Acad. Sci. USA* **2002**, *99*, 2690–2695.

13. Karimova, G.; Dautin, N.; Ladant, D. Interaction network among *Escherichia coli* membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. *J. Bacteriol.* **2005**, *187*, 2233–2243.

14. Reed, P.; Veiga, H.; Jorge, A.M.; Terrak, M.; Pinho, M.G. Monofunctional transglycosylases are not essential for *Staphylococcus aureus* cell wall synthesis. *J. Bacteriol.* **2011**, *193*, 2549–2556.

15. Rohrer, S. Studies on members of the FemABX protein family in *Staphylococcus aureus*. Ph.D. Thesis, Swiss Federal Institute of Technology, Zürich, Switzerland, 2002; p. 152.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).