Cladosporium species in indoor environments

K. Bensch1,2*, J.Z. Groenewald1, M. Meijer1, J. Dijksterhuis1, Ž. Jurjević3, B. Andersen4, J. Houbraken1, P.W. Crous1,5,6, and R.A. Samson1

1Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands; 2Botanische Staatsammlung München, Menzinger Straße 67, D-80638, München, Germany; 3EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ, 08077, United States; 4DTU Bioengineering, Technical University of Denmark, Safotofs Plads Building 221, DK-2800 Kgs., Lyngby, Denmark; 5Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa; 6Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands

*Correspondence: K. Bensch, k.bensch@westerdijkinstitute.nl

Abstract: As part of a worldwide survey of the indoor mycobionta about 520 new Cladosporium isolates from indoor environments mainly collected in China, Europe, New Zealand, North America and South Africa were investigated by using a polyphasic approach to determine their species identity. All Cladosporium species occurring in indoor environments are fully described and illustrated. Forty-six Cladosporium species are treated of which 16 species are introduced as new. A key for the most common Cladosporium species isolated from indoor environments is provided. Cladosporium halotolerans proved to be the most frequently isolated Cladosporium species indoors.

Key words: Indoor moulds, New species, Phylogeny, Taxonomy, 16 new taxa.

TAXONOMIC NOVELTIES: New species: Cladosporium aenium Bensch & Samson, C. coloradense Bensch & Samson, C. domesticicum Bensch & Samson, C. europaeum Bensch & Samson, C. neelhamense Bensch & Samson, C. neerlandicum Bensch & Samson, C. neolangeronii Bensch & Samson, C. parahalotolerans Bensch & Samson, C. parasubtilissimum Bensch & Samson, C. pulvericola Bensch & Samson, C. sinense Bensch & Samson, C. sloani Bensch & Samson, C. uwebraunianum Bensch & Samson, C. vicinum Bensch & Samson, C. westerdjikiae Bensch & Samson, C. wyomingense Bensch & Samson.

Available online 7 March 2018; https://doi.org/10.1016/j.simyco.2018.03.002.

INTRODUCTION

The monophyletic genus *Cladosporium* residing in the *Cladosporiaceae* (Dothideomycetes) is well circumscribed by having a unique coronate structure of its conidiogenous loci and conidial hila, consisting of a central convex dome surrounded by a raised periclinal rim (David 1997, Braun et al. 2003). It has been intensively studied in the last two decades to separate it from cladosporioid-like genera (Seifert et al. 2004, Heuchert et al. 2005, Crous et al. 2006, Crous et al. 2007b, Schubert et al. 2007a, Braun et al. 2008, Bezerra et al. 2017, Crous et al. 2017). Three major species complexes are recognised within the genus, mainly based on morphology, and used for practical purposes, viz. the *C. herbarum*, *C. sphaerospermum* and *C. cladosporioides* species complexes. Morphological features describing the three species complexes have been summarised in Bensch et al. (2012, 2015) and Marin-Felix et al. (2017). Most of the *Cladosporium* species can be referred to one of the three species complexes based on their morphology. The genus previously encompassed more than 772 names (Dugan et al. 2004) of which only 170 were recognized as true *Cladosporium* species in a monographic treatment (Bensch et al. 2012).

Due to continuous isolations from a range of substrates, collected on continents, this number has increased up to 218 species (Crous et al. 2014, Bensch et al. 2015, Braun et al. 2015, Razafinarivo et al. 2016, Marin-Felix et al. 2017), including several new species isolated from clinical samples in the United States (Sandoval-Denis et al. 2016) and from soil samples in China (Ma et al. 2017). However, little is known about which *Cladosporium* species occur in indoor environments. Besides *Aspergillus*, *Penicillium* and *Talaromyces* (Trichocomaceae, Eurotiales), *Cladosporioides* species are among the most abundant fungi in outdoor and indoor air (Fradkin et al. 1988, Flannigan 2001, Horner et al. 2004). In fact, *C. cladosporioides* was reported to be the most predominant fungus in houses in Ontario and Atlanta (Fradkin et al. 1987, Horner et al. 2004) and the most abundant fungus in outdoor air (Fradkin et al. 1987). As the composition of indoor species reflects the composition of outdoor species one would expect to find *C. cladosporioides* as dominant indoors.

In the present study a multilocus DNA sequence typing approach, employing three loci [the internal transcribed spacers of the rDNA genes (ITS), and partial actin and translation elongation factor 1-alpha gene sequences], as well as morphological examinations and cultural characteristics were used for the identification and delimitation of more than 500 isolates from indoor environments belonging to the genus *Cladosporium*.

MATERIAL AND METHODS

Isolates

Isolates included in this study were obtained from the culture collection of the Westerdijk Fungal Biodiversity Institute (former...
CBS-KNAW Fungal Biodiversity Centre; CBS), Utrecht, the Netherlands, from the working collection of Pedro Crous (CPC) and from the working collection of the Applied and Industrial Mycology department (DTO), both housed at the Westerdijk Institute. Isolates were inoculated onto 2 % potato-dextrose agar (PDA), synthetic nutrient-poor agar (SNA), 2 % malt extract agar (MEA), oatmeal agar (OA) (Crous et al. 2009), as well as dichloran 18 % glycerol agar (DG18) and Malt extract + 20 % sucrose (for Cladosporium sloanii sp. nov.) (Samson et al. 2010), and incubated under continuous near-ultraviolet light at 25 °C to promote sporulation. All cultures in this study are maintained at the Westerdijk Institute (Table 1). Nomenclatural novelties and descriptions were deposited in MycoBank (www.mycobank.org; Crous et al. 2004).

DNA isolation, amplification and sequence analysis

Fungal colonies were established on agar plates, and genomic DNA was isolated as described in Groenewald et al. (2013). DNA amplification of the internal transcribed spacer regions and intervening 5.8S rRNA gene (ITS) of the nrDNA cistron, partial actin (act) and translation elongation factor 1-alpha (tef1) genes followed Groenewald et al. (2005, 2013). The ITS was not included in the multigene phylogenetic analyses as this locus has limited resolution below genus level.

Novel sequences generated in this study were added to draft alignments representing the C. cladosporioides, C. herbarum and C. sphaerospermum species complexes and containing sequences from several studies (Zalar et al. 2007, Schubert et al. 2007b, 2009, Bensch et al. 2010, 2012, 2015, Segers et al. 2015, Sandoval-Denis et al. 2016, Ma et al. 2017). Based on draft phylogenetic trees, these alignments were subsequently trimmed back to include representatives of previously published sequences and species rather than all available sequences. Preference was also given to the inclusion of sequences from indoor environments where possible.

Phylogenetic analyses consisted of maximum parsimony (MP), maximum likelihood (ML) and Bayesian (BI) analyses of the trimmed combined act/tel1 alignments representing the C. cladosporioides, C. herbarum and C. sphaerospermum species complexes. In addition, a phylogenetic analysis was performed using only the available ITS sequences. The phylogenetic analyses were performed as described by Wang et al. (2016) with the following modifications: for the MP analyses 100 random taxon additions were used and for the BI analyses trees were sampled every 100 generations and the heating parameter was set to 0.15 for the C. cladosporioides and C. herbarum and C. sphaerospermum species complexes. Novel sequences were deposited in NCBI’s GenBank nucleotide database (Table 1) and the alignments and trees in TreeBASE (study accession number 21415).

Morphology

Light microscopy (LM): Microscopic observations of isolates were made from colonies cultivated for 7 d under continuous near ultraviolet light at 25 °C on SNA. Preparations were mounted in Shear’s solution (Crous et al. 2009). To study conidial development and branching patterns of conidial chains, squares of transparent adhesive tape (Titan Ultra Clear Tape, Conglomer Inc., Toronto, Canada) were placed on conidiophores growing in the zone between the colony margin and 2 cm inwards, and mounted between two drops of Shear’s solution under a glass cover slip. Conidial terminology follows Schubert et al. (2007b). Wherever possible, 50 measurements (×1 000 magnification, differential interference contrast microscopy, Zeiss Axioscope 2 PLUS) were made of conidia with outliers given in parentheses. For culture characteristics colonies were cultivated on PDA, OA and MEA for 14 d at 25 °C in the dark, after which surface and reverse colours were rated using the charts of Rayner (1970). Photographs of characteristic structures were captured with a Zeiss Axio Imager A2 microscope equipped with a Nikon DS-R2i high-definition colour camera head using differential interference contrast (DIC) optics and the Nikon software NIS-elements D v. 4.50.

Low-temperature scanning electron microscopy (SEM): Isolates of Cladosporium spp. were grown on SNA with 30 g agar/L for 3–7 d at room temperature under black light. Relevant parts of the small colonies with conidiophores and conidia were selected carefully under a dissection microscope, excised with a surgical blade as small agar (3 × 3 mm) blocks, and transferred into a copper cup for snap-freezing in nitrogen slush. Agar blocks were glued to the copper surface with frozen tissue medium (KP-Cryoblock, Klinipath, Duiven, The Netherlands). To ensure preservation of the very delicate spatial structure of the conidiophore Scotch tape was placed loosely on the cup. This prevented that the liquid nitrogen damaged the conidiophores. During freezing the tape was disconnected from the cup. Samples were examined in a JEOL 5600LV scanning electron microscope (JEOL, Tokyo, Japan) equipped with an Oxford CT1500 Cryostation for cryo-scanning electron microscopy (cryoSEM). Electron micrographs were acquired from uncoated frozen samples, or after sputter-coating by means of a gold target for several (typically 3, but dependent on the density of the gold layer) times during 30 s. Micrographs of uncoated samples were taken at an acceleration voltage of 2.5 kV, and consisted out of 30 averaged fast scans (SCAN 2 mode), and at 5 kV in case of the coated samples (SCAN 4 mode).

RESULTS

DNA phylogeny

Three phylogenetic analyses were performed on each of the combined act/tel1 alignments, representing the C. cladosporioides, C. herbarum and C. sphaerospermum species complexes. Core statistics for the different analyses are shown in Table 2. Additional details on the phylogenetic trees are provided in the species notes where necessary. Overall, the phylogenies presented in Figs 1–3 are highly similar in terms of the terminal clades irrespective of whether the phylogenetic trees were obtained from the maximum parsimony, Bayesian or maximum-likelihood analyses (data not shown, trees deposited in TreeBASE).

The C. cladosporioides species complex phylogeny presented in Fig. 1 delimits 66 species clades. The position of clades changes between the different analyses, as can be observed by the low or absent support values on the backbone of the tree. In general, the BI phylogeny contained more polytomies for species clades and therefore the MP phylogeny is presented in Fig. 1. In...
Table 1. Cladosporium isolates treated in the species phylogeny with their Genbank and culture collection accession numbers.

Species	Species complex	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers
Cercospora beticola	outgroup	CBS 116456; CPC 11557	Beta vulgaris	Italy	V. Rossi	AY840527 AY840494 AY840458
Cladosporium acalyphae	cladosporioides	CBS 125982*; CPC 11625	Acalypha australis	South Korea	H.D. Shin	HM147994 HM148235 HM148481
C. aciculare	sphaerospermum	CBS 140488*; CPC 16547	Syzygium coryanthum	Australia	P.W. Crous	KT600411 KT600509 KT600607
C. aerium sp. nov.	herbarum	CBS 143356*; DTO 323-84	Indoor air	China	—	MF472897 MF473324 MF473747
		DTO 323-G6	Indoor air	China	—	MF472898 MF473325 MF473748
		DTO 323-G7	Indoor air	China	—	MF472899 MF473326 MF473749
C. aggregatocicatricatum	herbarum	CBS 113751	Grape berry	USA: WA	F.M. Dugan lab	KT600449 KT600548 KT600646
		CBS 140493*; CPC 14709; ICMP 170869	Culture contaminant	New Zealand	C.F. Hill	KT600448 KT600547 KT600645
		CBS 284.84	Tempeh	Netherlands	—	KT600450 KT600549 KT600647
C. alboflavescens	cladosporioides	CBS 140690*; UTHSC DI-13-225; FMR 13338	Animal, bronchoalveolar lavage fluid	USA: CA	—	LN834420 LN834516 LN834604
C. allicinum	herbarum	CBS 110024	Industrial water	Germany	—	EF679343 EF679417 EF679495
		CBS 115683; ATCC 66670; CPC 5101	CCA-treated Douglas-fir pole	USA: NY	—	EF679350 EF679425 EF679502
		CBS 121624*; CPC 12211	Hordeum vulgare	Belgium	J.Z. Groenewald	EF679335 EF679406 EF679485
		CBS 139578; DTO 109-15	Indoor environment	Denmark	B. Andersen	KP701921 KP701798 KP702044
		CBS 134.31; ATCC 11283; IMI 049632; NCPF 2564	Germany	—	—	EF679335 EF679406 EF679485
		CBS 157.82	Quercus robur, leaf spot	Belgium	—	EF679336 EF679407 EF679486
		CBS 159.54; ATCC 36948	Man, skin of hand	Netherlands	—	EF679337 EF679408 EF679487
		CBS 161.55	Man, sputum	Netherlands	—	EF679338 EF679409 EF679488
		CBS 177.71; JCM 11500	Thuja tincture	Netherlands	—	EF679339 EF679410 EF679489
		CBS 188.54; ATCC 11290; IMI 049638; STE-U 3586	—	—	—	EF679340 EF679412 EF679491
		CBS 366.80	Man, skin of hand	Netherlands	St. Barbara Ziekenhuis Geleen	EF679340 EF679412 EF679491
		CBS 399.80	Man, skin of foot	Netherlands	St. Barbara Ziekenhuis Geleen	AJ204227 EF679413 EF679492
		CBS 521.68	Air	Netherlands	—	EF679341 EF679414 EF679493
		CBS 572.78; VKM F-405	Polyergus radiatus	Russia	—	DQ289799 DQ289415 DQ289866
		CBS 813.71	Polygonatum odoratum, leaf	Czech Republic	—	—
		CPC 11386	Tilia cordata, leaves	Germany	K. Schubert	EF679344 EF679419 EF679496
		CPC 11840	Oursia macrophylla	—	—	EF679345 EF679420 EF679497
		CPC 12042; EXF-389	Hyphersaline water, saltrens (reserve pond)	Slovenia	P. Zalar	EF679346 EF679421 EF679498
		CPC 12045; EXF-594	Hyphersaline water, saltrens (crystallisation pond)	Spain	New Zealand	A. Blouin EF679422 EF679499
		CPC 12046; EXF-680	Air conditioning system	Slovenia	M. Butala	EF679348 EF679423 EF679500
		CPC 12139	Hordeum vulgare	Netherlands	P.W. Crous	EF679349 EF679424 EF679501
		CPC 12212	Hordeum vulgare	Belgium	J.Z. Groenewald	EF679351 EF679426 EF679503

(continued on next page)
Species complex	Culture accession number(s)¹,²	Substrate	Country³	Collector	GenBank accession numbers⁴	
CPC 12921	Eucalyptus stellulata, leaves	Australia	B.A. Summerell		EF679352 EF679427 EF679504	
CPC 22268; EMSL 1726	Indoor air sample	USA: MN	Z. Jurjević		MF472900 MF473327 MF473750	
CPC 22312; EMSL 1808	Indoor air sample	USA: NJ	Z. Jurjević		MF472901 MF473328 MF473751	
CPC 22313; EMSL 1809	Indoor air sample	USA: NJ	Z. Jurjević		MF472902 MF473329 MF473752	
CPC 22343; EMSL 1856	Indoor air sample, bedroom	USA: NY	Z. Jurjević		MF472903 MF473330 MF473753	
CPC 22349; EMSL 1862	Indoor air sample, bedroom	USA: CA	Z. Jurjević		MF472904 MF473331 MF473754	
CPC 22358; EMSL 1871	Indoor air sample	UK: England	Z. Jurjević		MF472905 MF473332 MF473755	
CPC 22377; EMSL 1890	Indoor air sample, bedroom	USA: NY	Z. Jurjević		MF472906 MF473333 MF473756	
DTO 005-E8	Indoor environment	Germany	G. Fischer		MF472907 MF473334 MF473757	
DTO 084-F3	Indoor environment	Germany	LGA		KP701883 KP701760 KP702006	
DTO 086-D5	Swab sample, archive	Netherlands	M. Meijer		KP701888 KP701765 KP702011	
DTO 089-B9	Air sample, kitchen	Netherlands	M. Meijer		KP701891 KP701768 KP702014	
DTO 089-G4	Air sample, bedroom	Netherlands	J. Houbraeken		KP701894 KP701771 KP702017	
DTO 089-G6	Air sample, bedroom	Netherlands	J. Houbraeken		KP701895 KP701772 KP702018	
DTO 089-H3	Air sample, bathroom	Netherlands	J. Houbraeken		KP701896 KP701773 KP702019	
DTO 090-D3	Swab sample, archive	Netherlands	M. Meijer		KP701900 KP701777 KP702023	
DTO 090-H4	Swab sample, archive	Netherlands	M. Meijer		KP701901 KP701778 KP702024	
DTO 101-A1	Indoor environment, wet wall	Netherlands	J. Houbraeken		KP701903 KP701780 KP702026	
DTO 101-I8	Floor under curtain	Hungary	—		KP701909 MF473336 MF473759	
DTO 106-C2	Indoor air, crocodile area of zoo	Netherlands	B. Dictus		KP701906 KP701783 KP702029	
DTO 108-P9	Indoor environment	France	J. Dijkstra-Huis		MF472910 MF473337 MF473760	
DTO 109-E5; BA 1905	Indoor environment	Denmark	B. Andersen		MF472911 MF473338 MF473761	
DTO 109-E6; BA 1906	Indoor environment	Denmark	B. Andersen		KP701912 KP701789 KP702035	
DTO 109-F3; BA 1918	Indoor environment	Denmark	B. Andersen		KP701916 KP701793 KP702039	
DTO 109-F5; BA 1920	Indoor environment	Denmark	B. Andersen		KP701918 KP701795 KP702041	
DTO 109-I3; BA 1897	Indoor environment	Denmark	B. Andersen		MF472912 MF473339 MF473762	
DTO 110-B7	Wall of basement	Denmark	B. Andersen		KP701923 KP701800 KP702046	
DTO 111-A5	Air sample, bedroom	Denmark	U. Thane		KP701924 KP701801 KP702047	
DTO 127-E4; AR377	Air sample, bakery	USA: GA	—		MF472913 MF473340 MF473763	
DTO 147-I6	Indoor environment	Hungary	—		MF472914 MF473341 MF473764	
DTO 323-C3	Indoor air	China	—		MF472915 MF473342 MF473765	
DTO 323-E1	Indoor air	China	—		MF472916 MF473343 MF473766	
DTO 323-G5	Indoor air	China	—		MF472917 MF473344 MF473767	
C. allii	herbarum	Allium porrum, velvet spots	Netherlands		—	JN906977 JN906983 JN906996
C. angulosum	cladosporioides					
	CBS 140692*; UTHSC DI-13-235; FMR 13348	Man, bronchoalveolar lavage fluid	USA: TX	D.A. Sutton	LNB34425 LNB34521 LNB34609	
	CPC 11526	Acacia mangium	Thailand	W. Himamann	HM148127 HM148371 HM148616	
	CPC 14566	Corymbia foelscheana	Australia	B.A. Summerell	HM148147 HM148391 HM148636	
	CPC 22271; EMSL 1741	Indoor air sample	USA: SC	Z. Jurjević	MF472918 MF473345 MF473768	
C. angustherbarum	herbarum					
	CBS 140479*; CPC 17814	Pinus ponderosa	USA: UT	W. Quaedvlieg	KTa00378 KTa00475 KTa00574	
Species Complex	GenBank accession numbers	Indoors (continued)				
-----------------	--------------------------	---------------------				
C. angustisporum cladosporioides	CBS 125983*; CPC 12437	**Alloxyton wickhamii** Australia	B.A. Summerell	HM147995	HM148236	HM148482
CPC 22345; EMLS 1856	Outside air sample USA: AL	Z. Jurjević	MF472919	MF473346	MF473769	
CPC 22371; EMLS 1884	Indoor air sample, office USA: FL	Z. Jurjević	MF472920	MF473347	MF473770	
DTO 127-E9; AR387	Air sample, bakery USA: WI	—	KP701935	KP701812	KP702057	
C. angustiterminale cladosporioides	CBS 140480*; CPC 15564	**Bankia grandis** Australia	A.R. Wood	KT600379	KT600676	KT600575
C. anthropophilum cladosporioides	CBS 690.92*	Caloplaea regalis Antarctica	C. Möller	EF679334	EF679405	EF679484
CBS 117483; CPC 11684	Bamboo slats Japan	—	—	HM148007	HM148248	HM148494
CBS 122130; ATCC 38012; IFO 6539; JCM 10684; NBRC 6539		—	—	HM148008	HM148249	HM148495
CBS 132.29	Man, bronchoalveolar lavage fluid USA: MN	D.A. Sutton	LN834437	LN834533	LN834621	
CBS 674.82; ATCC 200936; ATCC 38026; CBS 320.87; IMI 126640	Gossypium sp., seed Israel	—	—	HM148010	HM148251	HM148497
CPC 10142	Cheno podium filicifolium South Korea	H.D. Shin	HM148015	HM148256	HM148502	
CPC 11119	Ricinus communis South Korea	H.D. Shin	HM148016	HM148257	HM148503	
CPC 11122	Phytolacca americana South Korea	H.D. Shin	HM148019	HM148260	HM148506	
CPC 11123	Vigna unguiculata (= V. sinensis) South Korea	H.D. Shin	HM148020	HM148261	HM148507	
CPC 11131	Dalbergia sp. India	W. Gams	HM148021	HM148262	HM148508	
CPC 11406	Plectranthus sp. South Korea	H.D. Shin	HM148026	HM148267	HM148513	
CPC 12852	Prunus wood USA: LA	K. Seifert	HM148032	HM148273	HM148519	
CPC 13235	Eucalyptus sp. Australia	P.W. Crous	HM148033	HM148274	HM148520	
CPC 13734	Areca sp. Thailand	I. Hidayat	HM148036	HM148277	HM148523	
CPC 14009; MRC 10150	Trilicum aestivum South Africa	—	HM148037	HM148278	HM148524	
CPC 14366; BA 1676	Food, coffee leaf Uganda	J.L. Särensen	HM148049	HM148290	HM148536	
CPC 14705	Fuchsia chinensis subsp. rhynchophylla South Korea	H.D. Shin	HM148050	HM148291	HM148537	
CPC 15038	Eucalyptus sp., endophyte spots Indonesia	M.J. Wingfield	HM148051	HM148292	HM148538	
CPC 22272; EMLS 1722	Indoor air sample, ship USA: CA	Z. Jurjević	MF574171	MF574173	MF574175	
CPC 22315; EMLS 1818	Indoor air sample, living room USA: GA	Z. Jurjević	MF472921	MF473348	MF473771	
CPC 22393; EMLS 1908	Indoor air sample, hospital USA: AZ	Z. Jurjević	MF472922	MF473349	MF473772	
DTO 127-E9; AR409	Air sample, bakery USA: GA	—	MF472923	MF473350	MF473773	
DTO 317-I7	Indoor air China	—	MF472924	MF473351	MF473774	
DTO 318-E3	Indoor air China	—	MF472925	MF473352	MF473775	
DTO 323-C2	Indoor air China	—	MF472926	MF473353	MF473776	
DTO 323-C6	Indoor air China	—	MF472927	MF473354	MF473777	
DTO 323-C7	Indoor air China	—	MF472928	MF473355	MF473778	
DTO 323-D2	Indoor air China	—	MF472929	MF473356	MF473779	
DTO 323-D8	Indoor air China	—	MF472930	MF473357	MF473870	

(continued on next page)
Species complex	Species	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers		
Species						**ITS**	**tef1**	**act**
C. aphidis	sphaerospermum	CBS 132182**; CPC 13204	Indoor air	China	—	MF472931	MF473358	MF473781
C. arthropodi	herbarum	CBS 124043**; CPC 16160	Arthropodium cirratum	New Zealand	C.F. Hill	JN906978	JN906985	JN906997
C. asperulatum	cladosporioides	CBS 126339; CPC 11158	Eucalyptus leaf litter	India	W. Gams	HM147997	HM148238	HM148484
		CBS 126340**; CPC 14040	Protea susannae	Portugal	—	HM147998	HM148239	HM148485
		CPC 22364; EMSL 1877	Indoor air sample, bathroom	USA: CA	Ž. Jurjević	MF472934	MF473361	MF473784
C. austriancanum	cladosporioides	CBS 125984**; CPC 13226	Eucalyptus moluccana	Australia	B.A. Summerell	HM147999	HM148240	HM148486
C. austrohemisphaericum	cladosporioides	CBS 140481**; CPC 16763	Leaf litter	South Africa	M. Gryzenhout	KT600381	KT600478	KT600577
		CBS 140482**; CPC 12068	Unidentified aphid	New Zealand	C.F. Hill	KT600382	KT600479	KT600578
C. basiflavum	herbarum	CPC 16250	Cussonia thyrsiflora	South Africa	P.W. Crous	KT600383	KT600480	—
		CPC 17029	Musa sp.	Australia	P.W. Crous	KT600384	KT600481	KT600579
		DTO 305-E8; TA05NZ-351A	House dust	New Zealand	T. Atkinson	KT600385	KT600482	—
C. basiflavum	herbarum	CBS 822.84*	Hordeum vulgare	Germany	—	HM148000	HM148241	HM148487
C. chlorosporioides	cladosporioides	CBS 125985**; CPC 13864	Fruiting bodies of Teratosphaeria proteae-	South Africa	P.W. Crous	HM148001	HM148242	HM148488
		CBS 132182**; CPC 13204	Unidentified aphid	Germany	N. Ale-Agha	JN906978	JN906986	JN906997
C. affinis	cladosporioides	CBS 132182**; CPC 13204	Indoor air	China	—	MF472931	MF473358	MF473781
C. affinis	cladosporioides	CBS 132182**; CPC 13204	Indoor air	China	—	MF472931	MF473358	MF473781
C. affinis	cladosporioides	CBS 132182**; CPC 13204	Indoor air	China	—	MF472931	MF473358	MF473781
C. affinis	cladosporioides	CBS 132182**; CPC 13204	Indoor air	China	—	MF472931	MF473358	MF473781
C. basiflavum	herbarum	CPC 16250	Cussonia thyrsiflora	South Africa	P.W. Crous	KT600383	KT600480	—
		CPC 17029	Musa sp.	Australia	P.W. Crous	KT600384	KT600481	KT600579
		DTO 305-E8; TA05NZ-351A	House dust	New Zealand	T. Atkinson	KT600385	KT600482	—
C. basiflavum	herbarum	CBS 822.84*	Hordeum vulgare	Germany	—	HM148000	HM148241	HM148487
C. chlorosporioides	cladosporioides	CBS 125985**; CPC 13864	Fruiting bodies of Teratosphaeria proteae-	South Africa	P.W. Crous	HM148001	HM148242	HM148488
		CBS 132182**; CPC 13204	Unidentified aphid	Germany	N. Ale-Agha	JN906978	JN906986	JN906997
C. affinis	cladosporioides	CBS 132182**; CPC 13204	Indoor air	China	—	MF472931	MF473358	MF473781
C. affinis	cladosporioides	CBS 132182**; CPC 13204	Indoor air	China	—	MF472931	MF473358	MF473781
C. affinis	cladosporioides	CBS 132182**; CPC 13204	Indoor air	China	—	MF472931	MF473358	MF473781
C. affinis	cladosporioides	CBS 132182**; CPC 13204	Indoor air	China	—	MF472931	MF473358	MF473781
C. basiflavum	herbarum	CPC 16250	Cussonia thyrsiflora	South Africa	P.W. Crous	KT600383	KT600480	—
		CPC 17029	Musa sp.	Australia	P.W. Crous	KT600384	KT600481	KT600579
		DTO 305-E8; TA05NZ-351A	House dust	New Zealand	T. Atkinson	KT600385	KT600482	—
C. basiflavum	herbarum	CBS 822.84*	Hordeum vulgare	Germany	—	HM148000	HM148241	HM148487
Species	Culture accession number(s)	Substrate	Country\(^3\)	Collector	GenBank accession numbers\(^4\)			
---------	-----------------------------	-----------	---------------	-----------	-------------------------------			
CPC 11161	Eucalyptus sp.	India	W. Gams	HM148022, HM148263, HM148509				
CPC 11393	Valeriana officinalis	South Korea	H.D. Shin	HM148023, HM148264, HM148510				
CPC 11398	Phragmidium griseum on Rubus crataegifolius	South Korea	H.D. Shin	HM148024, HM148265, HM148511				
CPC 11404	Rubus coreanus	South Korea	H.D. Shin	HM148025, HM148266, HM148512				
CPC 12214	Morus rubra, leaves	USA: WA	L. du Toit	HM148026, HM148267, HM148514				
CPC 12760	Spinacia oleracea, seed	USA: WA	L. du Toit	HM148028, HM148269, HM148515				
CPC 12762	Spinacia oleracea, seed	USA: WA	L. du Toit	HM148029, HM148270, HM148516				
CPC 12764	Spinacia oleracea, seed	USA: WA	L. du Toit	HM148030, HM148271, HM148517				
CPC 13667	Eucalyptus robertsonii subsp. hemisphaerica	South Africa	—	HM148038, HM148279, HM148525				
CPC 13667	Eucalyptus robertsonii subsp. hemisphaerica	South Africa	—	HM148039, HM148280, HM148526				
CPC 14015; MRC 10260	Triticum aestivum	South Africa	—	HM148038, HM148279, HM148525				
CPC 14017; MRC 10809	Triticum aestivum	South Africa	—	HM148039, HM148280, HM148526				
CPC 14018; MRC 10810	Triticum aestivum	South Africa	—	HM148040, HM148281, HM148527				
CPC 14019; MRC 10813	Triticum aestivum	South Africa	—	HM148041, HM148282, HM148528				
CPC 14021; MRC 10827	Triticum aestivum	South Africa	—	HM148042, HM148283, HM148529				
CPC 14024; MRC 11280	Asmina sp.	South Africa	—	HM148043, HM148284, HM148530				
CPC 14244	Magnolia sp.	USA: LA	P.W. Crous	HM148038, HM148279, HM148525				
CPC 14271	Twigs of an unidentified tree	France	P.W. Crous	HM148040, HM148286, HM148532				
CPC 14292; BA 1691	Soil, pea field	Denmark	B. Andersen	HM148046, HM148287, HM148533				
CPC 14293; BA 1692	Cellulose powder, paint manufacturer	Denmark	B. Andersen	HM148047, HM148288, HM148534				
CPC 14355; BA 1676	Food, mouldy pea	USA: WY	J.L. Sørensen	HM148048, HM148289, HM148535				
CPC 15167; HJS 1069	Living mite inhabiting a strawberry leaf	Slovenia	—	HM148052, HM148293, HM148539				
CPC 18230	Phaenocoma prolifera, leaf bracts	South Africa	K.L. Crous & P.W. Crous	JF499834, JF499872, JF499878				
CPC 22264; EMSL 1722	Indoor air sample	USA: GA	Ž. Jurjević	MF472936, MF473363, MF473786				
CPC 22265; EMSL 1723	Indoor air sample	USA: MN	Ž. Jurjević	MF472937, MF473364, MF473787				
CPC 22347; EMSL 1860	Indoor air sample, bedroom	USA: MI	Ž. Jurjević	MF472938, MF473365, MF473788				
CPC 22348; EMSL 1861	Indoor air sample, kitchen	USA: FL	Ž. Jurjević	MF472939, MF473366, MF473789				
CPC 22365; EMSL 1878	Indoor air sample, bedroom	USA: VT	Ž. Jurjević	MF472940, MF473367, MF473790				
CPC 22367; EMSL 1880	Indoor air sample, living room	USA: VA	Ž. Jurjević	MF472941, MF473368, MF473791				
CPC 22380; EMSL 1893	Indoor air sample, bedroom	USA: AZ	Ž. Jurjević	MF472942, MF473369, MF473792				
DTO 082-F1	Indoor air sample, living room	Netherlands	B. Favie	KP701879, KP701756, KP702002				
DTO 090-C6	Swab sample, archive	Netherlands	M. Meijer	KP701898, KP701775, KP702021				
DTO 101-G2	Indoor environment, table	Hungary	—	MF472943, MF473370, MF473793				
DTO 101-H7	Floor under curtain	Hungary	—	MF472944, MF473371, MF473794				
DTO 102-A4	Bathroom	Hungary	van Mil	KP701905, KP701782, KP702028				

(continued on next page)
Species	Species complex	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers
				ITS	tef1	act
C. colocasiae	cladosporioide	CBS 115191; CPC 4323; Lynfield 436	Colocasia esculenta (=C. antiquorum)	Fiji	C.F. Hill	AY251075 HM148308 HM148553
		CBS 119642; CPC 12726; JCM 13264	Colocasia esculenta (=C. antiquorum)	Japan	—	HM148006 HM148309 HM148554
		CBS 386.64*; ATCC 200944; MUCL 10084	Colocasia esculenta (=C. antiquorum)	Taiwan	K. Sawada	HM148067 HM148310 HM148555
		CPC 5124 Apium graveolens	Indoor environment	New Zealand	C.F. Hill	AY251076 HM148311 HM148556
C. colombiae	cladosporioide	CBS 274.80B*	Cortaderia sp.	Colombia	W. Gams	FJ936159 FJ936163 FJ936166
C. coloradensiae sp. nov.	sphaerosperm	CBS 143357*; CPC 22238; EMSL 1685	Air sample, bedroom	USA: SC	D.A. Sutton	LN834431 LN834527 LN834615
C. crousii	cladosporioide	CBS 140668*; UTHSC DI-13-247; FMR 13360	Man, bronchoalveolar lavage fluid	USA: SC	—	LN834431 LN834527 LN834615
C. cucumerinum	cladosporioide	CBS 158.51; ATCC 11279; IFO 6370; IMI 049628; VKM F-817	Cucumis sativus	Netherlands	—	HM148071 HM148315 HM148560
		CBS 171.52*; MUCL 10092	Cucumis sativus	Netherlands	—	HM148071 HM148315 HM148560
		CBS 172.54	Cucumis sativus	Netherlands	G.W. van der Helm	HM148073 HM148317 HM148562
C. cycadicola	sphaerosperm	CBS 137970*; CPC 17251	Cynas media, leaves	Australia	P.W. Crous & R.G. Shivas	KJ869122 KJ869236 KJ869227
C. delicatatum	cladosporioide	CBS 126342; CPC 14237; BA 1681	Indoor air	Denmark	B. Andersen	HM148079 HM148323 HM148568
		CBS 126343; CPC 14239; BA 1698	Building material	Denmark	B. Andersen	HM148080 HM148324 HM148569
		CBS 126344*; CPC 11389	Tilia cordata, leaves	Germany	K. Schubert	HM148081 HM148325 HM148570
		CBS 139574; DTO 082-F3	Indoor air, living room	Netherlands	B. Favié	KP701930 KP701816 KP702063
		CPC 14265; BA 1679	Indoor air	Denmark	B. Andersen	KP701941 KP701818 KP702063
		CPC 14286; BA 1680	Indoor air	Denmark	B. Andersen	KP701920 KP701797 KP702043
		CPC 14289; BA 1683	Door frame	Denmark	B. Andersen	KP701922 KP701799 KP702045
		CPC 14360; BA 1718	Indoor air	Denmark	B. Andersen	KP701933 KP701810 KP702055
		CPC 14363; BA 1724	Indoor air	Denmark	B. Andersen	KP701941 KP701818 KP702063
		CPC 14372; BA 1740	Dust, school	Denmark	B. Andersen	KP701920 KP701797 KP702043
DTO 090-F4		DTO 134-D3; DR22	Indoor air, apartment building	Algeria	L. Belhoucine	MF472946 MF473373 MF473796
DTO 134-D4		DTO 134-D5; O200	Indoor air, apartment building	Algeria	L. Belhoucine	MF472946 MF473373 MF473796
DTO 134-D6; BT27		DTO 134-D4	Indoor air	Algeria	L. Belhoucine	MF472946 MF473373 MF473796
DTO 134-D7; BT91		DTO 134-D6	Indoor air	Algeria	L. Belhoucine	MF472946 MF473373 MF473796
DTO 134-D8; BT92		DTO 134-D7	Indoor air	Algeria	L. Belhoucine	MF472946 MF473373 MF473796
Species	Species complex	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers
---------	-----------------	----------------------------	-----------	---------	-----------	-------------------------
C. domesticum sp. nov. sphaerospermum		DTO 145-C4	Indoor environment	Germany	—	KP701940 KP701817 KP702062
		DTO 167-H5	Indoor air, poultry houses	Poland	K. Plewa	KP701964 KP701841 KP702086
		DTO 168-F8	Indoor air, poultry houses	Poland	K. Plewa	MF472952 MF473379 MF473802
		DTO 305-H7; TA05NZ-346	House dust	New Zealand	T. Atkinson	MF472953 MF473380 MF473803
		DTO 305-I9; TA05NZ-340	House dust	New Zealand	T. Atkinson	MF472954 MF473381 MF473804
		C. domesticum sp. nov. sphaerospermum				
		CBC 143358*; CPC 22307; EMSL 1803	Indoor air sample	USA: NJ	Ž. Jurjević	MF472955 MF473382 MF473805
		CPC 22225; EMSL 1658	Indoor air sample, air conditioner	USA: PA	Ž. Jurjević	MF472956 MF473383 MF473806
		CPC 22226; EMSL 1659	Indoor air sample, living room	USA: CA	A. Amend	MF472963 MF473390 MF473813
		CPC 22318; EMSL 1821	Indoor air sample	USA: FL	Z. Jurjević	MF472958 MF473385 MF473808
		CPC 22402; EMSL 1930	Indoor air sample, classroom	USA: TX	Z. Jurjević	MF472959 MF473386 MF473809
		CPC 22408; EMSL 1936	Indoor air sample	USA: NJ	Z. Jurjević	MF472960 MF473387 MF473810
		CPC 22413; EMSL 1962	Attic, wood roofing sample	USA: PA	Z. Jurjević	MF472961 MF473388 MF473811
		DTO 305-H7; TA05NZ-346	House dust, basement HVAC room	USA: CA	A. Amend	MF472962 MF473389 MF473812
		DTO 305-I9; TA05NZ-340	House dust, basement HVAC room	USA: CA	A. Amend	MF472965 MF473392 MF473815
		DTO 307-H3; AA03US-402	House dust, basement HVAC room	USA: CA	A. Amend	MF472966 MF473393 MF473816
		DTO 308-B1; AA03US-368	House dust, basement HVAC room	USA: CA	A. Amend	MF472966 MF473393 MF473816
		DTO 306-B6; AA03US-525	House dust, basement HVAC room	USA: CA	A. Amend	MF472963 MF473390 MF473813
		DTO 307-E8; AA03US-368	House dust, basement HVAC room	USA: CA	A. Amend	MF472964 MF473391 MF473814
		DTO 307-H3; AA03US-402	House dust, basement HVAC room	USA: CA	A. Amend	MF472965 MF473392 MF473815
		DTO 308-B1; AA03US-387	House dust, basement HVAC room	USA: CA	A. Amend	MF472966 MF473393 MF473816
C. dominicanum sphaerospermum		CBS 119415*; EXF-732; dH 16386	Hypersaline water, salt lake	Dominican Republic	N. Gunde-Cimerman	DQ780353 JN906986 KJ596641
		CPC 11683	Citrus sp., fruit	Iran	—	DQ780357 — EF101369
		CPC 15932	Dracaena fragrans	Philippines	C.J.R. Cumagun	KT600390 KT600487 KT600586
		CPC 20109	Unknown vine	Taiwan	P.W. Crous	KT600391 KT600488 KT600586
		CPC 22244; EMSL 1697	Outside air sample	USA: CO	Z. Jurjević	MF472967 MF473394 MF473817
		CPC 22319; EMSL 1822	Indoor air sample	Bermuda	Z. Jurjević	MF472970 MF473397 MF473820
		EXF-696	Hypersaline water, saltlake	Dominican Republic	N. Gunde-Cimerman	DQ780353 JN906986 KJ596641
		EXF-718	Hypersaline water, salt lake	Dominican Republic	N. Gunde-Cimerman	DQ780356 KJ596581 KJ596643
		EXF-720	Hypersaline water, salt lake	Dominican Republic	N. Gunde-Cimerman	DQ780355 KJ596581 KJ596643
		EXF-721	Hypersaline water, saltlake	Dominican Republic	N. Gunde-Cimerman	DQ780354 KJ596580 —
C. echinulatum herbarum		CBS 123191; CPC 15386; reference	Dianthus barbatus	New Zealand	C.F. Hill	JN080680 JN080687 JN080699
C. europaeum sp. nov. cladosporioides		CBS 116744; dH 14053	Acer pseudoplatanus, leaves	Germany	L. Pehl	HM148053 HM148294 HM148540
		CBS 134914*; CPC 14296; BA1695	Indoor building material, school	Denmark	B. Andersen	HM148056 HM148298 HM148543
Species complex	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers	
-----------------	-----------------------------	-----------	---------	-----------	--------------------------	
CBS 125.80	Cirsium vulgare, seadcoat	Netherlands	—	B. Heuchert	DQ780941 HM148295 EF101351	
CPC 13220	Lichens on leaves of Acer platanoides	Germany	B. Heuchert	HM148054 HM148296 HM148541		
CPC 14238	Sambucus nigra, fruit	Netherlands	P.W. Crous	HM148055 HM148297 HM148542		
DTO 056-H7	Indoor air, archive	Netherlands	M. Meijer	KPT01787 KPT01748 KPT01994		
DTO 072-E4	Indoor air, archive	Netherlands	M. Meijer	KPT01787 KPT01752 KPT01998		
DTO 096-B3	Indoor air, archive	Netherlands	M. Meijer	KPT01787 KPT01763 KPT02009		
DTO 109-E7; BA 1907	Indoor environment	Denmark	B. Andersen	KPT01913 KPT01790 KPT02036		
DTO 151-H5	Indoor environment	Portugal	—	MF472971 MF473398 MF473821		
C. exasperatum	cladosporioides	Eucalyptus tintinnans	Australia	B.A. Summerell	HM148090 HM148334 HM148579	
C. exile	cladosporioides	Chasmothecia of Phyllactinia guttata on leaves of Corylus avellana	USA: WA	D. Glawe	HM148091 HM148335 HM148580	
C. flabelliforme	cladosporioides	Melaleuca cajuputi	Australia	B.A. Summerell	HM148092 HM148336 HM148581	
C. flavovirens	cladosporioides	Man, toenail	USA: FL	D.A. Sutton	LN834440 LN834536 LN834624	
C. flaccosum	herbarum	Man, ethmoid sinus	USA: MN	D.A. Sutton	LN834416 LN834512 LN834600	
C. fusiforme	cladosporioides	Allium sativum	Ukraine	A. Akulov	MF472972 MF473399 MF473822	
CPC 11807	Pine needles	Mexico	M. de Jesús Yáñez-Morales	MF472973 MF473400 MF473823		
CPC 22200; EMSL 1715	Indoor air sample	USA: MN	Z. Jurjević	MF472974 MF473401 MF473824		
CPC 22309; EMSL 1805	Indoor air sample	USA: TN	Z. Jurjević	MF472975 MF473402 MF473825		
CPC 22354; EMSL 1867	Indoor air sample, living room	USA: CO	Z. Jurjević	MF472976 MF473403 MF473826		
CPC 22399; EMSL 1927	Indoor air sample, bedroom	USA: MO	Z. Jurjević	MF472977 MF473404 MF473827		
CPC 22968; EMSL 2033	Indoor air sample, basement	USA: UT	Z. Jurjević	MF472978 MF473405 MF473828		
DTO 323-H6	Indoor air	China	—	MF472979 MF473406 MF473829		
C. fusiforme	cladosporioides	Ficus carica	Japan	—	HM148093 HM148337 HM148582	
CPC 11807	Vigna umbellata	Japan	—	HM148094 HM148338 HM148583		
CPC 22224; EMSL 1705	Air sample, hospital	USA: AL	Z. Jurjević	MF472980 MF473407 MF473830		
CPC 22282; EMSL 1756	Indoor air sample	USA: NJ	Z. Jurjević	MF472981 MF473408 —		
CPC 22298; EMSL 1782	Indoor air sample, office	USA: MA	Z. Jurjević	MF472982 MF473409 MF473831		
CPC 22391; EMSL 1906	Indoor air sample, bedroom	USA: NJ	Z. Jurjević	MF472983 MF473410 MF473832		
DTO 127-E7; AR045	Air sample, bakery	USA	—	MF472984 MF473411 MF473833		
C. fusiforme	sphaerospermum	Hypersaline water, saltern	Slovenia	L. Butinar	DQ780388 JK96640 JK96640	
CBS 452.71	Chicken food	Canada	—	—	DQ780390 MF473412 EF101371	
EXF-397	Hypersaline water, saltern	Slovenia	—	—	DQ780389 JK96695 EF101372	
C. gamainum	cladosporioides	Streitizia sp.	South Africa	W. Gams	HM148095 HM148339 HM148584	
Species	Species complex	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers
------------------	-------------------	-----------------------------	----------------------------------	---------	-----------	--------------------------
C. globisporum	cladosporioides	CBS 812.96*	Meat stamp	Sweden	M. Olsen	HM148096 HM148340 HM148585
		CPC 19124; BA 2038	Indoor environment, window frame	Denmark	B. Andersen	MF472985 MF473413 MF473834
C. grevilleae	cladosporioides	CBS 114271*; CPC 2913; JT 974	Grevillea sp., leaves	Australia	P.W. Crous & B.A. Summerell	JF770450 JF770472 JF770473
C. halotolerans	sphaerospermum	CBS 114065; DTO 036-G3; CNS 11416*: EXF-572; FMR 13493	Indoor air sample; pineapple storage room	Germany	U. Weidner	MF472986 MF473414 MF473835
		CBS 139583; DTO 147-B9	Indoor air sample, pineapple storage room	Namibia	N. Gunde-Cimerman	DQ780364 JN069389 KJ56633
CPC 22275; EMSL 1745			Indoor air sample, pineapple storage room	USA: SC	Ž. Jugevič	MF472987 MF473415 MF473836
		CPC 22278; EMSL 1749	Indoor air sample, pineapple storage room	USA: DE	Ž. Jugevič	MF472988 MF473416 MF473837
		CPC 22281; EMSL 1755	Indoor air sample, pineapple storage room	USA: DE	Ž. Jugevič	MF472989 MF473417 MF473838
		CPC 22293; EMSL 1774	Indoor air sample, living room	USA: NJ	Ž. Jugevič	MF472990 MF473418 MF473839
		CPC 22308; EMSL 1804	Indoor air sample	USA: NJ	Ž. Jugevič	MF472991 MF473419 MF473840
		CPC 22335; EMSL 1848	Indoor air sample, bedroom	USA: NJ	Ž. Jugevič	MF472992 MF473420 MF473841
		CPC 22337; EMSL 1850	Indoor air sample, 11th floor	USA: NY	Ž. Jugevič	MF472993 MF473421 MF473842
		CPC 22380; EMSL 1873	Indoor air sample, 19th floor	USA: NY	Ž. Jugevič	MF472994 — MF473843
		CPC 22366; EMSL 1879	Indoor air sample, living room	USA: NY	Ž. Jugevič	MF472995 MF473422 MF473844
		CPC 22372; EMSL 1885	Indoor air sample, hospital	USA: NY	Ž. Jugevič	MF472996 MF473423 MF473845
		CPC 22381; EMSL 1894	Indoor air sample, bathroom	USA: WI	Ž. Jugevič	MF472997 MF473424 MF473846
		CPC 22390; EMSL 1905	Indoor air sample, bedroom	USA: NJ	Ž. Jugevič	MF472998 MF473425 MF473847
		CPC 22397; EMSL 1925	Indoor air sample, classroom	USA: TX	Ž. Jugevič	MF472999 MF473426 MF473848
		CPC 22401; EMSL 1929	Indoor air sample, living room	USA: NJ	Ž. Jugevič	MF473000 MF473427 MF473849
		CPC 22411; EMSL 1960	Attic, wood roofing sample	USA: PA	Ž. Jugevič	MF473001 MF473428 MF473850
		CPC 22412; EMSL 1961	Attic, wood roofing sample	USA: PA	Ž. Jugevič	MF473002 MF473429 MF473851
		CPC 22414; EMSL 1963	Attic, wood roofing sample	USA: PA	Ž. Jugevič	MF473003 MF473430 MF473852
		dH12862 Culture contaminant	Culture contaminant	Brazil	—	DQ780371 EF101400 —
DTO 049-E7			Swab sample, house	Netherlands	J. Houbraken	MF473004 MF473431 MF473853
DTO 049-E9			Swab sample, house	Netherlands	J. Houbraken	MF473005 MF473432 MF473854
DTO 102-A1			Swab sample, house	Hungary	van Mil	MF473006 MF473433 MF473855
DTO 102-A3			Swab sample, house	Hungary	van Mil	MF473006 MF473433 MF473855
DTO 108-F7			Swab sample, indoor environment	France	Dijksterhuis	MF473007 MF473434 MF473856
DTO 109-D1			Swab sample, indoor environment	Thailand	Noonim	MF473008 MF473435 MF473857
DTO 109-D3			Swab sample, indoor environment	Thailand	Noonim	MF473011 MF473188 MF473204
DTO 114-H7			Swab sample, indoor environment	Netherlands	Noonim	MF473015 MF473202 MF473204
DTO 114-I3			Swab sample, indoor environment	Netherlands	Noonim	MF473016 MF473203 MF473204
DTO 117-H3; HM2 RS5			Indoor environment of house	Netherlands	M. Meijer & O. Terhoeven	MF473019 MF473186 MF473205
Species	Species complex	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers
----------	----------------	-----------------------------	--------------------------------	---------	-----------	--------------------------
DTO 127-E3; AR373			Air sample, bakery	USA: GA	—	MF473009 MF473436 MF473858
DTO 127-E8; AR407			Air sample, bakery	USA: GA	—	KPT01936 KPT01813 KPT02058
DTO 130-C9			Swab sample, food plant	Netherlands	M. Meijer	MF473010 MF473437 MF473859
DTO 147-B3			Indoor environment	Hungary	—	MF473011 MF473438 MF473860
DTO 147-B8			Indoor environment	Hungary	—	MF473012 MF473439 MF473861
DTO 153-C3			Bathroom	Netherlands	F. Hagen	KPT01952 KPT01829 KPT02074
DTO 153-C5			Bathroom	Netherlands	F. Hagen	MF473013 MF473440 MF473862
DTO 160-I2			Fungal growth in living room	Netherlands	J. Najafzadeh	MF473014 MF473441 MF473863
DTO 160-I3			Fungal growth in living room	Netherlands	J. Najafzadeh	MF473015 MF473442 MF473864
DTO 160-I5			Black spots in bathroom	Netherlands	J. Najafzadeh	MF473016 MF473443 MF473865
DTO 161-D5			Swab sample, wooden window frame in apartment	Netherlands	J. Houbraken	KPT01957 KPT01834 KPT02079
DTO 305-E4; AA03US-390			House dust, basement HVAC room	USA: CA	A. Amend	MF473017 MF473444 MF473866
DTO 305-E5; AA03US-412			House dust, basement HVAC room	USA: CA	A. Amend	MF473018 MF473445 MF473867
DTO 305-E6; KJ03SA-372			House dust, small apartment	South Africa	K. Jacobs	MF473019 MF473446 MF473868
DTO 305-E7; KJ03SA-381			House dust, small apartment	South Africa	K. Jacobs	MF473020 MF473447 MF473869
DTO 305-E9; AA01MX-246			House dust, rental studio	Mexico	A. Amend	MF473021 MF473448 MF473870
DTO 305-F1; AA03US-378			House dust, basement HVAC room	USA: CA	A. Amend	MF473022 MF473449 MF473871
DTO 305-F2; PN08TH-553			House dust from four rooms	Thailand	P. Noonim	MF473023 MF473450 MF473872
DTO 305-F3; AA03US-528			House dust, basement HVAC room	USA: CA	A. Amend	MF473024 MF473451 MF473873
DTO 305-F4; AA03US-385			House dust, basement HVAC room	USA: CA	A. Amend	MF473025 MF473452 MF473874
DTO 305-F6; AA07MX-882			House dust, in a hotel	Mexico	A. Amend	MF473026 MF473453 MF473875
DTO 305-F9; MB02UK-43			House dust, living room, bedroom	UK: England	M. Bidartondo	MF473027 MF473454 MF473876
DTO 305-G1; MB02UK-62			House dust, living room, bedroom	UK: England	M. Bidartondo	MF473028 MF473455 MF473877
DTO 305-G2; MB02UK-41			House dust, living room, bedroom	UK: England	M. Bidartondo	MF473029 MF473456 MF473878
DTO 305-G5; PN09TH-583			House dust, in meeting hall	Thailand	P. Noonim	MF473030 MF473457 MF473879
DTO 305-G6; AA03US-493			House dust, basement HVAC room	USA: CA	A. Amend	MF473031 MF473458 MF473880
DTO 305-G7; AA03US-498			House dust, basement HVAC room	USA: CA	A. Amend	MF473032 MF473459 MF473881
DTO 305-G8; KJ03SA-398			House dust, small apartment	South Africa	K. Jacobs	MF473033 MF473460 MF473882
DTO 305-G9; AA07MX-872			House dust, in a hotel	Mexico	A. Amend	MF473034 MF473461 MF473883
DTO 305-H3; AA03US-410			House dust, basement HVAC room	USA: CA	A. Amend	MF473035 MF473462 MF473884
Species	Species complex	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers
---------	----------------	---------------------------	-----------	---------	-----------	--------------------------
DTO 305-H6; AA03US-437		House dust, basement HVAC room	USA: CA	A. Amend	MF473036 MF473463 MF473885	
DTO 305-I3; MB02UK-55		House dust, living room, bedroom	UK: England	M. Bidartondo	MF473037 MF473464 MF473886	
DTO 305-I4; AA03US-442		House dust, basement HVAC room	USA: CA	A. Amend	MF473038 MF473465 MF473887	
DTO 305-I6; AA07MX-944		House dust, in a hotel Mexico	A. Amend	MF473039 MF473466 MF473888		
DTO 306-B2; AA03US-441		House dust, basement HVAC room	USA: CA	A. Amend	MF473041 MF473468 MF473890	
DTO 306-A4; AA03US-523		House dust, basement HVAC room	USA: CA	A. Amend	MF473042 MF473469 MF473891	
DTO 306-A9; AA03US-499		House dust, basement HVAC room	USA: CA	A. Amend	MF473043 MF473470 MF473892	
DTO 306-B1; AA03US-501		House dust, basement HVAC room	USA: CA	A. Amend	MF473044 MF473471 MF473893	
DTO 306-B3; AA03US-471		House dust, basement HVAC room	USA: CA	A. Amend	MF473045 MF473472 MF473894	
DTO 306-B4; AA03US-508		House dust, basement HVAC room	USA: CA	A. Amend	MF473046 MF473473 MF473895	
DTO 306-B5; AA03US-452		House dust, basement HVAC room	USA: CA	A. Amend	MF473047 MF473474 MF473896	
DTO 306-B8; AA03US-558		House dust, basement HVAC room	USA: CA	A. Amend	MF473048 MF473475 MF473897	
DTO 306-B9; AA03US-416		House dust, basement HVAC room	USA: CA	A. Amend	MF473049 MF473476 MF473898	
DTO 306-C2; AA07MX-817		House dust, in a hotel Mexico	A. Amend	MF473050 MF473477 MF473899		
DTO 306-C5; AA03US-370		House dust, basement HVAC room	USA: CA	A. Amend	MF473051 MF473478 MF473900	
DTO 306-C6; AA03US-369		House dust, basement HVAC room	USA: CA	A. Amend	MF473052 MF473479 MF473901	
DTO 306-C7; AA03US-383		House dust, basement HVAC room	USA: CA	A. Amend	MF473053 MF473480 MF473902	
DTO 306-C8; AA03US-552		House dust, basement HVAC room	USA: CA	A. Amend	MF473054 MF473481 MF473903	
DTO 306-C9; MB02UK-63		House dust, living room, bedroom	UK: England	M. Bidartondo	MF473055 MF473482 MF473904	
DTO 306-D3; AA03US-463		House dust, basement HVAC room	USA: CA	A. Amend	MF473056 MF473483 MF473905	
DTO 306-D4; AA03US-377		House dust, basement HVAC room	USA: CA	A. Amend	MF473057 MF473484 MF473906	
DTO 306-D5; 7050035.81-631		House dust	Canada	Health Canada	MF473058 MF473485 MF473907	

(continued on next page)
Species complex	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers
DTO 306-D6; AA03US-538	House dust, basement HVAC room	USA: CA	A. Amend		MF473059, MF473486, MF473908
DTO 306-D7; KJ03SA-370	House dust, small apartment	South Africa	K. Jacobs		MF473060, MF473487, MF473909
DTO 306-D9; KJ03SA-8	House dust	South Africa	K. Jacobs		MF473061, MF473488, MF473910
DTO 306-E1; AA03US-425	House dust, basement HVAC room	USA: CA	A. Amend		MF473062, MF473489, MF473911
DTO 306-E2; AA03US-519	House dust, basement HVAC room	USA: CA	A. Amend		MF473063, MF473490, MF473912
DTO 306-E5; KJ03SA-382	House dust, small apartment	South Africa	K. Jacobs		MF473064, MF473491, MF473913
DTO 306-E6; AA03US-564	House dust, basement HVAC room	USA: CA	A. Amend		MF473065, MF473492, MF473914
DTO 306-E8; AA03US-554	House dust, basement HVAC room	USA: CA	A. Amend		MF473066, MF473493, MF473915
DTO 306-E9; KJ03SA-364	House dust, small apartment	South Africa	K. Jacobs		MF473067, MF473494, MF473916
DTO 306-F1; MB02UK-39	House dust, living room, bedroom	UK: England	M. Bidartondo		MF473068, MF473495, MF473917
DTO 306-F2; KJ09SA-132	House dust	South Africa	K. Jacobs		MF473069, MF473496, MF473918
DTO 306-F3; AA03US-510	House dust, basement HVAC room	USA: CA	A. Amend		MF473070, MF473497, MF473919
DTO 306-F4; Arg-26	House dust	Argentina	G. Reppchen		MF473071, MF473498, MF473920
DTO 307-E9; KJ03SA-393	House dust, small apartment	South Africa	K. Jacobs		MF473072, MF473499, MF473921
DTO 307-F4; MB02UK-66	House dust, living room, bedroom	UK: England	M. Bidartondo		MF473073, MF473500, MF473922
DTO 307-F6; KJ10SA-48	House dust	South Africa	K. Jacobs		MF473074, MF473501, MF473923
DTO 307-F7; AA03US-430	House dust, basement HVAC room	USA: CA	A. Amend		MF473075, MF473502, MF473924
DTO 307-F8; AA03US-454	House dust, basement HVAC room	USA: CA	A. Amend		MF473076, MF473503, MF473925
DTO 307-F9; KJ10SA-37	House dust	South Africa	K. Jacobs		MF473077, MF473504, MF473926
DTO 307-G1; AA03US-426	House dust, basement HVAC room	USA: CA	A. Amend		MF473078, MF473505, MF473927
DTO 307-G2; TA10NZ-207A	House dust	New Zealand	T. Atkinson		MF473079, MF473506, MF473928
DTO 307-G3; AA03US-448	House dust, basement HVAC room	USA: CA	A. Amend		MF473080, MF473507, MF473929
DTO 307-G4; MB02UK-49	House dust, living room, bedroom	UK: England	M. Bidartondo		MF473081, MF473508, MF473930
DTO 307-G5; AA03US-429	House dust, basement HVAC room	USA: CA	A. Amend		MF473082, MF473509, MF473931
DTO 307-G7; AA03US-420	House dust, basement HVAC room	USA: CA	A. Amend		MF473083, MF473510, MF473932
DTO 307-G8; AA03US-515	House dust, basement HVAC room	USA: CA	A. Amend		MF473084, MF473511, MF473933
Species complex	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers
-----------------	-----------------------------	-----------	---------	-----------	--------------------------
DTO 307-H5; AA03US-431	House dust, basement HVAC room	USA: CA	A. Amend	MF473085, MF473512, MF473934	
DTO 307-H6; AA03US-428	House dust, basement HVAC room	USA: CA	A. Amend	MF473086, MF473513, MF473935	
DTO 307-H7; AA03US-421	House dust, basement HVAC room	USA: CA	A. Amend	MF473087, MF473514, MF473936	
DTO 307-H8; AA03US-460	House dust, basement HVAC room	USA: CA	A. Amend	MF473088, MF473515, MF473937	
DTO 307-H9; AA03US-484	House dust, basement HVAC room	USA: CA	A. Amend	MF473089, MF473516, MF473938	
DTO 307-I1; AA03US-423	House dust, basement HVAC room	USA: CA	A. Amend	MF473090, MF473517, MF473939	
DTO 307-I4; AA03US-440	House dust, basement HVAC room	USA: CA	A. Amend	MF473091, MF473518, MF473940	
DTO 307-I7; AA03US-511	House dust, basement HVAC room	USA: CA	A. Amend	MF473092, MF473519, MF473941	
DTO 307-I8; AA03US-381	House dust, basement HVAC room	USA: CA	A. Amend	MF473093, MF473520, MF473942	
DTO 308-A1; AA03US-401	House dust, basement HVAC room	USA: CA	A. Amend	MF473094, MF473521, MF473943	
DTO 308-A3; AA03US-422	House dust, basement HVAC room	USA: CA	A. Amend	MF473095, MF473522, MF473944	
DTO 308-A4; AA03US-467	House dust, basement HVAC room	USA: CA	A. Amend	MF473096, MF473523, MF473945	
DTO 308-A5; AA03US-432	House dust, basement HVAC room	USA: CA	A. Amend	MF473097, MF473524, MF473946	
DTO 308-A6; AA03US-411	House dust, basement HVAC room	USA: CA	A. Amend	MF473098, MF473525, MF473947	
DTO 308-A7; AA03US-391	House dust, basement HVAC room	USA: CA	A. Amend	MF473099, MF473526, MF473948	
DTO 308-A8; AA03US-507	House dust, basement HVAC room	USA: CA	A. Amend	MF473100, MF473527, MF473949	
DTO 308-A9; AA03US-400	House dust, basement HVAC room	USA: CA	A. Amend	MF473101, MF473528, MF473950	
DTO 308-B3; AA03US-520	House dust, basement HVAC room	USA: CA	A. Amend	MF473102, MF473529, MF473951	
DTO 308-B4; AA03US-464	House dust, basement HVAC room	USA: CA	A. Amend	MF473103, MF473530, MF473952	
DTO 308-B6; AA03US-408	House dust, basement HVAC room	USA: CA	A. Amend	MF473104, MF473531, MF473953	
DTO 308-B7; AA01MX-245	House dust, rental studio	Mexico	A. Amend	MF473105, MF473532, MF473954	

(continued on next page)
Species complex	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers	
C. herbaroides **herbarum**	CBS 121626; CPC 12052; EXF-1733	Indoor air, archive	Hypersaline water, salterns	Israel	P. Zalar	EF679357, EF679432, EF679509
C. herbarum **herbarum**	CBS 121621; ATCC MYA-4682; CPC 12177	Hordeum vulgare	Netherlands	P.W. Crous	EF679363, EF679440, EF679516	
C. hillianum **cladosporioides**	CBS 125988; CPC 15459; C92	Typha orientalis, leaf mold	New Zealand	R. Beever	HM148097, HM148341, HM148586	
C. inversicolor **cladosporioides**	CBS 139573; DTO 072-C9	Indoor air, archive	Netherlands	M. Meijer	KP701784, KP701751, KP701997	

Table 1.
Species	Species complex	Culture accession number(s)¹,²	Substrate	Country³	Collector	GenBank accession numbers⁴
CPC 14191	Outside air	Netherlands	M. Meijer	HM148107	HM148351	
CPC 14241	Sambucus nigra, fruit	Netherlands	P.W. Crous	HM148108	HM148352	
CPC 14368; BA 1735	School dust	Denmark	B. Andersen	HM148109	HM148353	
CPC 19108; BA 2015	Indoor air	Denmark	B. Andersen	M473120	M473547	
CPC 22267; EMSL 1763	Indoor air sample, bedroom	USA: OR	Z. Jurjević	M473121	M473548	
CPC 22289; EMSL 1765	Indoor air sample, living room	USA: AK	Z. Jurjević	M473122	—	
CPC 22300; EMSL 1786	Indoor air sample, living room	USA: OR	Z. Jurjević	M473123	M473549	
CPC 22365; EMSL 1900	Indoor air sample, bedroom	USA: WA	Z. Jurjević	M473124	M473550	
DTO 108-F8	Indoor environment	France	J. Dijksterhuis	KP701908	KP701765	
DTO 109-E9; BA 1909	Indoor environment	Denmark	B. Andersen	M473125	M473551	
C. ipereniae	cladosporioides	Puya sp.	A. van Iperen	KT600394	KT600491	
CPC 16855	Arctostaphylos pallida	USA: CA	P.W. Crous	KT600395	KT600492	
C. iranicum	cladosporioides	Citrus sinensis, leaf	Iran	HM148110	HM148354	
C. iridis	herbarum	—	—	EF679369	EF679446	
CBS 136.40**	Iris sp., leaves	Netherlands	—	EF679370	EF679447	
C. fangeronii	sphaerospermum	Moist aluminium school window frame	Belgium	DQ780380	M473552	
CBS 139561; DTO 124-D5	Air sample, food plant	Netherlands	M. Meijer	KP701931	KP701808	
CBS 189.54*	Man, mycosis	Brazil	Fonseca	DQ780379	JN960690	
CBS 601.84	Picea abies, wood	Germany	—	DQ780382	M473553	
CPC 19121; BA 2035	Indoor air	Denmark	—	M473126	M473554	
CPC 22235; EMSL 1681	Indoor air sample, storage room	USA: DE	Z. Jurjević	M473127	M473555	
CPC 22261; EMSL 1716	Indoor air sample	USA: MN	Z. Jurjević	M473128	M473556	
CPC 22299; EMSL 1783	Indoor air sample	USA: PA	Z. Jurjević	M473129	M473557	
CPC 22325; EMSL 1831	Indoor air sample, washroom	Ireland	Z. Jurjević	M473130	M473558	
CPC 22326; EMSL 1832	Indoor air sample, washroom	Ireland	Z. Jurjević	M473131	M473559	
DTO 004-C3	Swab sample, house	Netherlands	J. Houbraeken	M473132	M473560	
DTO 085-H6	Indoor air, archive	Netherlands	M. Meijer	KP701885	KP701762	
DTO 124-D2	Air sample, food plant	Netherlands	M. Meijer	M473133	M473561	
C. lebrasiae	sphaerospermum	Milk bread	France	KJ596568	KJ596583	
CBS 138283*; UBOCC-A-112063	Lichen Phaeophysica orbicularis and Physcia sp. on stems and bark of Acer platanoides	Germany	M. Le Bras	KJ596631		
C. licheniphilum	cladosporioides	CBS 125990*; CPC 13224	Lichen	W. von Brackel	HM148111	HM148355
C. limoniforme	herbarum	CBS 113737	Grape berry	USA: WA	F.M. Dugan lab	KJ600396
CBS 140484*; CPC 12039	Mira acuminata	Egypt	R.S. Summerbell	KJ600493	KJ600494	
CGMCC 3.18037	Populus euphratica, rhizosphere	China	Y. Hao	KX938396	KX938413	
CGMCC 3.18038	Populus euphratica, rhizosphere	China	—	KX938397	KX938414	
CPC 12048; EXF-1060	Hypersaline water	Israel	P. Zalar	KT600398	KT600495	
CPC 12049; EXF-1062	Hypersaline water	Israel	P. Zalar	KT600399	KT600496	

(continued on next page)
Species	Species complex	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers	
CPC 12050; EXF-1081		Hypersaline water	Israel	P. Zalar	KT600400	KT600497	KT600595
CPC 13923		Eucalyptus sp.	Cyprus	A. van Iperen	KT600401	KT600498	KT600596
CPC 18086; KSU C1		Tomato			KT600402	KT600499	KT600597
CPC 22250; EMSL 1863		Indoor air sample, bedroom	USA: CA	Z. Jurjević	MF473134	MF473562	MF473983
CPC 22384; EMSL 1899		Sample from under kitchen sink	USA: CA	Z. Jurjević	MF473135	MF473563	MF473984
CPC 22394; EMSL 1909		Indoor air sample, hospital	USA: AZ	Z. Jurjević	MF473136	MF473564	MF473985
CPC 22395; EMSL 1910		Indoor air, living room	Netherlands	B. Favé	MF473137	MF473565	MF473986
DTO 082-F2		Outside air sample	USA: MN		KT600403	KT600500	KT600598
DTO 090-H8		Swab sample, archive	Netherlands	M. Meijer	KP701901	KP701778	KP702024
DTO 305-G4; BH02AU-115		House dust	Australia: Tasmania	B. Horton	MF473139	MF473567	MF473988
CPC 12748; CPC 11833		Chasmothecia of Phylosticta guttata on leaves of Corylus avellana	USA: WA	D. Glawe	HM148113	HM148357	HM148602
CBS 274.80C		Puya sp.	Colombia	W. Gams	HM148114	HM148358	HM148603
CBS 574.78C; VKM F-2759		Aurobasidium caulivorum	Russia		HM148115	HM148359	HM148604
CPC 22256; EMSL 1711.b		Outside air sample	USA: MN	Z. Jurjević	MF473140	MF473568	MF473989
CBS 121623*; CPC 12752		Spinica oleracea	USA: WA	L. du Toit	EF679375	EF679453	EF679529
CBS 121811; CPC 12755		Spinica oleracea	USA: WA	L. du Toit	EF679376	EF679454	EF679530
CBS 175.82		Water	Romania		EF679371	EF679448	EF679524
CBS 223.31; ATCC 11287; IFO 6379; IMI 049635; JCM 11501		Mucopsphaeria tulasnei			AF222830	EF679449	EF679525
CBS 299.67		Triticum aestivum	Turkey		EF679372	EF679450	EF679526
CPC 11817		Cleistothecia of Phylosticta guttata on leaves of Corylus sp.	USA: WA	D. Glawe	EF679373	EF679451	EF679527
CPC 12054; EXF-2287		Hypersaline water, saltmarshes (precristalisation pond)	Slovenia	P. Zalar	EF679374	EF679452	EF679528
CPC 12756		Spinica oleracea	USA: WA	L. du Toit	EF679377	EF679455	EF679531
CPC 12757		Spinica oleracea	USA: WA	L. du Toit	EF679378	EF679456	EF679532
CPC 12758		Spinica oleracea	USA: WA	L. du Toit	EF679379	EF679457	EF679533
CPC 12759		Spinica oleracea	USA: WA	L. du Toit	EF679380	EF679458	EF679534
CPC 14305; BA 1704		Indoor environment, dust, school	Denmark	B. Andersen	MF473141	MF473569	MF473990
CBS 140486*; CPC 17963		Pine needles	Mexico	M. de Jesús Yáñez-Mora	KT600406	KT600504	KT600602
CPC 15605		Taraxacum sp.	Mexico	M. de Jesús Yáñez-Mora	KT600407	KT600505	KT600603
CPC 17804		Pine needles	Mexico	M. de Jesús Yáñez-Mora	KT600408	KT600506	KT600604
Species complex	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers		
-----------------	----------------------------	-----------	---------	-----------	--------------------------		
					ITS	tef1	act
C. myrtacearum cladosporioides CBS 126349; CPC 13689; NSM 734672	Eucalyptus placita	Australia	B.A. Summerell	HM148116	HM148360	HM148605	
	CBS 126350*; CPC 14567	Corymbia foelscheana	Australia	B.A. Summerell	HM148117	HM148361	HM148606
C. needhamense sp. nov. cladosporioides CBS 143359*; CPC 22353; EMSL 1868	Indoor air sample, office	USA: MA	Z. Jurjević	MF473142	MF473570	MF473991	
C. neerlandicum sp. nov. cladosporioides CBS 143360*; DTO 086-C5	Swab sample, archive	Netherlands	M. Meijer	KP701887	KP701764	KP702010	
C. neoangeroni sp. nov. sphaerospermum CBS 109868	Mortar of Muro Farnesiano	Netherlands	C. Urzi	DQ780377	MF473571	EF101362	
	CBS 797.97*	Indoor environment	O. Adan	MF473143	—	—	
	CPC 22236; EMSL 1682	Indoor air sample, pineapple storage room		MF473144	—	—	
	CPC 22262; EMSL 1717	Outside air sample		MF473145	—	—	
	CPC 22263; EMSL 1716	Indoor air sample		MF473146	MF473574	—	
	CPC 22266; EMSL 1724	Indoor air sample		MF473147	MF473575	—	
	CPC 22267; EMSL 1725	Indoor air sample		MF473148	MF473576	—	
	CPC 22314; EMSL 1810	Indoor air sample		MF473149	MF473577	MF473994	
	DTO 162-A4	Wall in a storage room of antiquities with mold growth		KP701962	KP701839	KP702084	
C. neopsychothotolerans cladosporioides CGMCC 3.18031*	Saussurea involucrata, rhizosphere soil	China	G. Wang	KX938383	KX938400	KX938386	
	CGMCC 3.18032	Saussurea involucrata, rhizosphere soil	China	G. Wang	KX938384	KX938401	KX938387
C. ossifragi herbarum CBS 842.91*; ATCC 200946	Narthecium ossifragum, green leaf	Norway	M. di Menna	EF679381	EF679459	EF679535	
	CBS 843.91	Narthecium ossifragum, green leaf	Norway	M. di Menna	EF679382	EF679460	EF679536
C. oxysporum cladosporioides CBS 125991; CPC 14371; IBT 14688	Soil, near the terracotta army	China	S. Gravesen	HM148118	HM148362	HM148607	
	CBS 126351; CPC 14308; IBT 25029	Indoor air	Venezuela	B. Andersen	HM148119	HM148363	HM148608
C. paracladosporioides cladosporioides CBS 171.54*; ATCC 11278, 200943; IFO 6368; IMI 049626; MUCL 917; NCTC 4097	—	—	—	HM148120	HM148364	HM148609	
C. parahalotolerans sp. nov. sphaerospermum CBS 136585*; DTO 161-D3	Swab sample, apartment	Netherlands	J. Houbraken	KP701965	KP701832	KP702077	
	CPC 22280; EMSL 1754	Indoor air sample, hotel room	USA: ME	Z. Jurjević	MF473150	MF473577	MF473998
	CPC 22330; EMSL 1843	Indoor air sample, family room	USA: NH	Z. Jurjević	MF473151	—	MF473999
	CPC 22336; EMSL 1849	Indoor air sample	USA: NJ	MF473152	MF473578	MF474000	
	CPC 22342; EMSL 1855	Indoor air sample, 18th floor	USA: NY	MF473153	—	MF474001	
	CPC 22373; EMSL 1886	Indoor air sample, hospital	USA: NY	MF473154	—	MF474002	

(continued on next page)
Species complex	Culture accession number(s)¹,²	Substrate	Country³	Collector	GenBank accession numbers⁴	
CPC 22376; EMSL 1889	Indoor air sample, hospital	USA: NY	Ž. Jurjevi	MF473155 — MF474003		
DTO 161-D6	Swab sample, apartment	Netherlands	J. Houbraken	KP701958 — KP702080		
DTO 305-F7; AA07MX-953	House dust, in a hotel	Mexico	A. Amend	MF473156 — MF474004		
DTO 305-F8; AA07MX-935	House dust, in a hotel	Mexico	A. Amend	MF473157 — MF474005		
DTO 305-H5; AA03MX-750	House dust, in a hardware store	Mexico	A. Amend	MF473158 — MF474006		
DTO 306-C1; AA07MX-836	House dust, in a hotel	Mexico	A. Amend	MF473159 — MF474007		
DTO 306-E4; AA02MX-573	House dust, in a church	Mexico	A. Amend	MF473160 — MF474008		
DTO 307-H4; AA03MX-612	House dust, in a hardware store	Mexico	A. Amend	MF473161 — MF474009		
DTO 323-B8	Indoor air	China	—	MF473162 — MF474010		
DTO 323-C1	Indoor air	China	—	MF473163 — MF474011		
DTO 323-C8	Indoor air	China	—	MF473164 — MF474012		
DTO 323-F4	Indoor air	China	—	MF473165 — MF474013		
DTO 323-H2	Indoor air	China	—	MF473166 — MF474014		
DTO 323-H3	Indoor air	China	—	MF473167 — MF474015		
DTO 324-A7	Indoor air	China	—	MF473168 — MF474016		
DTO 324-B7	Indoor air	China	—	MF473169 — MF474017		
C. paralimoniforme herbarum	CGMCC 3.18103*	Thododentron sp., rhizosphere soil	China	J. Zhuang	KX938392 — KX938375	
C. paralimoniforme herbarum	CGMCC 3.18104	—	China	Y. Hao	KX938393 — KX938410	
C. parapenidielloides cladosporioides	CBS 140487*; CPC 17193	Eucalyptus sp.	Australia	P.W. Crous	KT600410 — KT600508	
C. parapenidielloides cladosporioides	CBS 143361*; CPC 22332; EMSL 1845	Indoor air sample, bathroom	USA: NM	Ž. Jurjevi	MF473170 — MF474018	
C. parapenidielloides cladosporioides	CPC 22396; EMSL 1924	Indoor air sample, recreational vehicle	USA: CA	Ž. Jurjevi	MF473171 — MF474019	
C. parapenidielloides sphaerospermum	CBS 140498*; CPC 17674	Acacia verticillata	Australia	P.W. Crous	KT600412 — KT600510	
C. perangustum cladosporioides	CBS 125996*; CPC 13815	Chasmothecia of Phyllactinia guttata on leaves of Corylus avellana	South Africa	P.W. Crous	HM148121 — HM148610	
C. perangustum cladosporioides	CBS 126365; CPC 11820	Chasmothecia of Phyllactinia guttata on leaves of Corylus avellana	USA: WA	D. Glawe	HM148123 — HM148612	
CPC 11663	Oncoba spinosa	New Zealand	C.F. Hill	HM148128 — HM148617		
CPC 11815	Chasmothecia of Phyllactinia guttata on leaves of Corylus sp.	USA: WA	D. Glawe	HM148130 — HM148619		
CPC 11819	Chasmothecia of Phyllactinia guttata on leaves of Corylus sp.	USA: WA	D. Glawe	HM148131 — HM148620		
CPC 11821	Chasmothecia of Phyllactinia guttata on leaves of Corylus sp.	USA: WA	D. Glawe	HM148132 — HM148621		
CPC 11831	Chasmothecia of Phyllactinia guttata on leaves of Corylus sp.	USA: WA	D. Glawe	HM148133 — HM148622		
CPC 12216	Morus rubra	Germany	N. Ale-Agha	HM148135 — HM148624		
CPC 13727	Teratosphaenia maculiformis	South Africa	P.W. Crous	HM148139 — HM148628		
CPC 13730	Protea caffra	South Africa	P.W. Crous	HM148140 — HM148629		
Species	Species complex	Culture accession number(s)\(^{1,2}\)	Substrate	Country\(^3\)	Collector	GenBank accession numbers\(^4\)
-------------------------	------------------------------	-------------------------------------	--------------------	---------------	-------------	---------------------------------
CPC 13774		Protea caffra	South Africa	P.W. Crous	HM148141	HM148385 HM148630
CPC 13870		Teratosphaeria fibrillosa	South Africa	P.W. Crous	HM148142	HM148386 HM148631
CPC 14247		Magnolia sp.	USA: LA	P.W. Crous	HM148145	HM148389 HM148634
CPC 15192		Protea cynaroides	South Africa	L. Mostert	HM148149	HM148393 HM148638
CPC 22297; EMSL 1781		Indoor air sample	USA: PA	Z. Jurjevič	MF473172	MF473595 MF474020
CPC 22237; EMSL 1833		Indoor air sample	USA: ME	Z. Jurjevič	MF473173	—
CPC 22228; EMSL 1834		Indoor air sample	USA: ME	Z. Jurjevič	MF473174	MF473596 MF474022
CPC 22329; EMSL 1835		Indoor air sample, library	USA: CT	Z. Jurjevič	MF473175	MF473597 MF474023
CPC 22331; EMSL 1844		Indoor air sample, bedroom closet	USA: CA	Z. Jurjevič	MF473176	MF473598 MF474024
CPC 22375; EMSL 1888		Indoor air sample, hospital	USA: NY	Z. Jurjevič	MF473177	MF473599 MF474025
CPC 22378; EMSL 1891		Indoor air sample, bedroom	USA: CA	Z. Jurjevič	MF473178	MF473600 MF474026
DTO 127-E1; AR368		Air sample, bakery	USA: GA	—	MF473179	KP701811 KP702056
DTO 127-E2; AR371		Air sample, bakery	USA: GA	—	MF473180	MF473602 MF474027
DTO 323-E4		Indoor air	China	—	MF473181	MF473603 MF474029
DTO 323-E8		Indoor air	China	—	MF473182	MF473604 MF474030
DTO 323-E9		Indoor air	China	—	MF473183	MF473605 MF474031
DTO 324-A2		Indoor air	China	—	MF473184	MF473606 MF474032
DTO 324-A6		Indoor air	China	—	MF473185	MF473607 MF474033
DTO 324-D1		Indoor air	China	—	MF473186	MF473608 MF474034
C. phaeocomaës	cladosporioides	CBS 128769*; CPC 18223	Phaeocoma prolifera	South Africa	K.L. Crous & P.W. Crous	JF499837 JF499875 JF499881
C. phlei	herbarum	CBS 358.69**	Phleum pratense	Germany	—	JN090691 JN090691 JN0907000
C. phyllactiniconëa	cladosporioides	CBS 126352*; CPC 11836	Chasmothecia of Phyllactinia guttata on leaves of Corylus avellana	USA: WA	D. Glawe	HM148150 HM148394 HM148639
		CBS 126353; CPC 11823	Chasmothecia of Phyllactinia guttata on leaves of Corylus avellana	USA: WA	D. Glawe	HM148151 HM148395 HM148640
C. phyllophilum	cladosporioides	CBS 125992*; CPC 11333	Taphrina sp. on Prunus cerasus Teratosphaeria proteae-arboresae on Protea arborea	Germany	K. Schubert	HM148154 HM148398 HM148643
		CPC 13873	South Africa	P.W. Crous	HM148155	HM148399 HM148644
C. pini-ponderosæ	cladosporioides	CBS 124456*; CPC 13980; CIEFAP 322	Pinus ponderosa	Argentina	A. Greslebin	FJ936160 FJ936164 FJ936167
C. prolongatum	herbarum	CGMCC 3.18035	Populus euphratica, rhizosphere	China	Y. Hao	KX938395 KX938412 KX938378
		CGMCC 3.18036*	Populus euphratica, rhizosphere	China	Y. Hao	KX938394 KX938411 KX938377
C. pseudindis	herbarum	CBS 116463*; LYN 1065	Iris sp., large leaf lesions	New Zealand	C.F. Hill	EF679383 EF679461 EF679537
C. pseudochalastosporioides	cladosporioides	CBS 140490*; CPC 17823	Pine needles	Mexico	M. de Jesús Yáñez-Morales	KT600415 KT600513 KT600611
C. pseudocladosporioidës	cladosporioidës	CBS 117134	Cloud water	—	M. Sancelme	HM148156 HM148400 HM148645

(continued on next page)
Species	Species complex	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers
CBS 117153	Paeonia sp., living leaves	Germany	R. Kirschner	HM148157, HM148401, HM148646		
CBS 125993*; CPC 14189	Outside air	Netherlands	M. Meijer	HM148158, HM148402, HM148647		
CBS 139575; DTO 084-F1; CPC 14189	Indoor environment	Germany	—	KP701881, KP701758, KP702004		
CBS 139580; DTO 121-H1; CPC 14189	Bakery	Germany	—	KP701930, KP701807, MF474034		
CBS 149.66; NRRL A-14110	Triticum aestivum	USA: IL	—	HM148161, HM148405, HM148650		
CBS 574.78A; VKM F-422	Pteridium aquilinum	Russia	—	HM148163, HM148407, HM148652		
CBS 667.80	Malus sylvestris	Italy	—	HM148165, HM148409, HM148654		
CPC 673.69	Air	Netherlands	—	EF679353, EF679428, EF679505		
CPC 11605	Agrimonia pilosa	South Korea	H.D. Shin	HM148167, HM148411, HM148656		
CPC 12850	Pruned wood	USA: LA	K. Seifert	HM148169, HM148413, HM148658		
CPC 13488	Vernonia sp.	Brazil	O. Pereira	HM148171, HM148415, HM148660		
CPC 13992	Vernonia sp.	Italy	—	HM148175, HM148419, HM148663		
CPC 13992; CAMS 001160	Aloe dichotoma	South Africa	—	HM148175, HM148419, HM148663		
CPC 14001; MRC 03240	Oats	South Africa	—	HM148176, HM148420, HM148665		
CPC 14010; MRC 10183	Sorghum sp.	South Africa	—	HM148176, HM148420, HM148665		
CPC 14013; MRC 10221	Triticum aestivum	South Africa	—	HM148183, HM148427, HM148672		
CPC 14020; MRC 10814	Triticum aestivum	South Africa	—	HM148185, HM148429, HM148674		
CPC 14193	Outdaire air	Netherlands	M. Meijer	HM148186, HM148430, HM148675		
CPC 22237; ESMI 1683	Air sample, car air conditioner	USA: FL	Z. Jurjević	MF473196, MF473608, MF474035		
CPC 22283; ESMI 1759	Indoor air sample, hotel room	USA: NJ	Z. Jurjević	MF473187, MF473609, MF474036		
CPC 22284; ESMI 1760	Indoor air sample, hotel room	USA: NJ	Z. Jurjević	MF473188, MF473610, MF474037		
CPC 2265; ESMI 1761	Indoor air sample, airport - control tower	USA: MA	Z. Jurjević	MF473189, MF473611, MF474038		
CPC 22922; ESMI 1773	Indoor air sample, living room	USA: NJ	Z. Jurjević	MF473190, MF473612, MF474039		
CPC 22311; ESMI 1807	Indoor air sample	USA: NJ	Z. Jurjević	MF473191, MF473613, MF474040		
CPC 22334; ESMI 1847	Indoor air sample, bed	USA: OH	Z. Jurjević	MF473192, MF473614, MF474041		
CPC 22338; ESMI 1851	Indoor air sample	USA: NY	Z. Jurjević	MF473193, MF473615, MF474042		
CPC 22340; ESMI 1853	Indoor air sample, 27th floor	USA: NY	Z. Jurjević	MF473194, MF473616, MF474043		
CPC 22341; ESMI 1854	Indoor air sample	USA: NY	Z. Jurjević	MF473195, MF473617, MF474044		
CPC 22551; ESMI 1864	Indoor air sample, bedroom, 2nd floor	USA: NJ	Z. Jurjević	MF473196, MF473618, MF474045		
CPC 22556; ESMI 1869	Indoor air sample, bedroom closet	USA: TN	Z. Jurjević	MF473197, MF473619, MF474046		
CPC 22362; ESMI 1875	Indoor air sample, living room	USA: PA	Z. Jurjević	MF473198, MF473620, MF474047		
CPC 22368; ESMI 1881	Indoor air sample, office	USA: GA	Z. Jurjević	MF473199, MF473621, MF474048		
CPC 22369; ESMI 1882	Sumatra dragonfruit sample	USA: NJ	Z. Jurjević	MF473200, MF473622, MF474049		
CPC 22382; ESMI 1895	Indoor air sample, bathroom	USA: TX	Z. Jurjević	MF473201, MF473623, MF474050		
CPC 22386; ESMI 1901	Indoor air sample, classroom	USA: RI	Z. Jurjević	MF473202, MF473624, MF474051		
CPC 22389; ESMI 1904	Indoor air sample, living room	USA: NJ	Z. Jurjević	MF473203, MF473625, MF474052		
CPC 22392; ESMI 1907	Indoor air sample, hospital	USA: AZ	Z. Jurjević	MF473204, MF473626, MF474053		
Species	Species complex	Culture accession number(s)	Substrate	Country 3	Collector	GenBank accession numbers
------------------	---------------------	----------------------------	----------------------------	-----------	-----------	---------------------------
CPC 22966; EMSL 2014	Indoor air sample, office	USA: AZ	Ž. Jurjević	Z. Jurjević	MF473205 MF473627 MF474054	
DTO 079-F4	Wallpaper from a house	Netherlands	J. Hooiveld	J. Hooiveld	KP701877 KP701754 KP702000	
DTO 150-A7	Indoor environment	Portugal	—	—	MF473206 MF473628 MF474055	
DTO 150-C1	Indoor environment	Portugal	—	—	MF473207 MF473629 MF474056	
DTO 150-C7	Indoor environment	Portugal	—	—	MF473208 MF473630 MF474057	
DTO 151-A4	Indoor environment	Portugal	—	—	MF473209 MF473631 MF474058	
DTO 151-A8	Indoor environment	Portugal	—	—	MF473210 MF473632 MF474059	
DTO 151-B7	Indoor environment	Portugal	—	—	MF473211 MF473633 MF474060	
DTO 151-D1	Indoor environment	Portugal	—	—	MF473212 MF473634 MF474061	
DTO 151-E7	Indoor environment	Portugal	—	—	MF473213 MF473635 MF474062	
DTO 151-G7	Indoor environment	Portugal	—	—	MF473214 MF473636 MF474063	
DTO 152-A5	Indoor environment	Portugal	—	—	MF473215 MF473637 MF474064	
DTO 152-A6	Indoor environment	Portugal	—	—	MF473216 MF473638 MF474065	
DTO 152-D6	Indoor environment	Portugal	—	—	MF473217 MF473639 MF474066	
DTO 152-H5	Indoor environment	Portugal	—	—	MF473218 MF473640 MF474067	
DTO 152-H7	Indoor environment	Portugal	—	—	MF473219 MF473641 MF474068	
DTO 307-F3; 7330009-34-883	House dust	Canada	Health Canada	MF473220 MF473642 MF474069		
DTO 307-G9; 7050035.81-622	House dust	Canada	Health Canada	MF473221 MF473643 MF474070		
DTO 308-A2; 7330009.24-784	House dust	Canada	Health Canada	MF473222 MF473644 MF474071		
DTO 323-D3	Indoor air	China	—	—	MF473223 MF473645 MF474072	
C. psychrotolerans sphaerospermum	CBS 119412*: dH 16390; EXF-391	Hypersaline water	Slovenia	S. Sonjak	DQ780386 JN906992 KJ956632	
		House dust	Australia: Tasmania	L. Agustini	MF473223 MF473645 MF474073	
		House dust	New Zealand	T. Atkinson	MF473224 MF473646 MF474074	
		Hypersaline water, salttern	Slovenia	—	DQ780385 KJ956591 EF101364	
		Hypersaline water	Dominican Republic	—	DG703984 KJ956502 EF101365	
C. pulvericola sp. nov. sphaerooprum	CBS 109788; DAOM 226470	Indoor air, residence	Canada	—	MF473225 MF473647 MF474074	
		House dust	New Zealand	T.J. Atkinson	MF473226 MF473648 MF474075	
		House dust	USA: ME	Ž. Jurjević	MF473227 MF473649 MF474076	
		Indoor environment, wooden window frame	Netherlands	M. Meijer	MF473228 MF473650 MF474077	
		Indoor environment, swab sample	Netherlands	F. Segers	KP701971 KP701848 KP702093	
		Indoor environment, swab sample	Netherlands	G. Piccolo Maitan-Alfenas	KP701979 KP701856 KP702101	
		House dust	Australia: Tasmania	L. Agustini	KP701987 KP701864 KP702109	
C. puyae	herbarum	CBS 274.80A*	Puya goudotiana	Colombia	KT600418 KT600516 KT600614	
(continued on next page)						
Species	Species complex	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers
-----------------------------	-----------------	----------------------------	--------------------------------	---------	-----------	--------------------------
C. ramotenellum	herbarum	CBS 109031; IBT 13731	Cheese	Denmark	J. Frisvad	KT600419 KT600517 KT600615
		CBS 109601; dh 12343	Man, deep mycosis	Turkey	—	KT600420 KT600518 KT600616
		CBS 121627; CPC 12047; EXF-967	Air conditioning system, bathroom	Slovenia	M. Butala	EF679385 EF679463 EF679539
		CBS 121628*; CPC 12043; EXF-454	Hypersaline water	Slovenia	P. Zalar	EF679384 EF679462 EF679538
CBS 139577; DTO 089-C1		Air sample, kitchen	Paeonia sp.	Italy	—	KT600421 KT600519 KT600617
CBS 118.24; ATCC 36972; MUCL 10098		CBS 169.54; CBS 170.54; IMI 025324; NCTC 6740	Populus tremuloides, leaf spot	UK: England	—	KT600422 KT600520 KT600618
CBS 133.29; ATCC 36970		CPC 1126; Hill 1192	Arundo sp., leaf	UK: England	—	AJ300335 MF473652 MF474079
CBS 169.54; CBS 170.54; IMI 025324; NCTC 6740		CPC 13401	Dioscorea tenuipes	South Korea	H.D. Shin	KT600423 KT600522 KT600620
CBS 170.54; CBS 169.54; IMI 025324; NCTC 6740		CPC 11832	Weigela subsessilis	South Korea	H.D. Shin	KT600424 KT600523 KT600621
CBS 261.80		CPC 11395	Chasmothecia of Phyllactinia guttata on leaves of Corylus sp.	USA: WA	D. Glawe	KT600426 KT600525 KT600623
CPC 11401		CPC 11826	Chasmothecia of Phyllactinia guttata on leaves of Corylus sp.	USA: WA	D. Glawe	KT600427 KT600526 KT600624
CPC 12126; Hill 1192		CPC 12313	Yucca elephantipes, leaf spot	New Zealand	C.F. Hill	KT600428 KT600527 KT600625
CPC 12313		CPC 12385	Rosa sp.	Germany	N. Ale-Agha	KT600429 KT600528 KT600626
CPC 12385		CPC 13407	Eucaalyptus sp.	Australia	P.W. Crous	KT600430 KT600529 KT600627
CPC 13407		CPC 13789	Ginkgo biloba	Portugal	P.W. Crous	KT600431 KT600530 KT600628
CPC 13789		CPC 13792	Protea sp.	Spain: Tenerife	P.W. Crous	KT600432 KT600531 KT600629
CPC 13792		CPC 13795	Unknown plant	Spain: Tenerife	P.W. Crous	KT600433 KT600532 KT600630
CPC 13795		CPC 13798	Leucospernum sp.	Spain: Tenerife	P.W. Crous	KT600434 KT600533 KT600631
CPC 13798		CPC 13801	Leucadendron sp.	Spain: Tenerife	P.W. Crous	KT600435 KT600534 KT600632
CPC 13943		CPC 13943	Quercus infectoria	Cyprus	A. van Iperen	KT600437 KT600536 KT600634
CPC 14300; BA 1699		CPC 14306	Indoor building material	Denmark	B. Andersen	KT600438 KT600537 KT600635
CPC 14306; BA1705		CPC 18224	Food, garfish gill	Denmark	B. Andersen	KT600439 KT600538 KT600636
CPC 19119; BA 2033		CPC 19119	Phaeococoma proliferla, leaf bracts	South Africa	K.L. Crous & P.W. Crous	JF499839 JF499877 JF499883
CPC 22370; EMLSL 1883		CPC 22370	Indoor air	Denmark	B. Andersen	MF473230 MF473653 MF474080
DTO 084-F5		CPC 13801	Indoor air sample, hallway	USA: CA	Z. Jurjević	MF473231 MF473654 MF474081
DTO 097-H3		CPC 18224	Indoor environment	Germany	LGA	MF473232 MF473655 MF474082
DTO 097-H3		CPC 18224	Swab sample, indoor environment	Netherlands	G.J. Dolphin	MF473233 MF473656 MF474083
Species	Species complex	Culture accession number(s)1,2	Substrate	Country3	Collector	GenBank accession numbers4
---------	----------------	------------------------------	-----------	----------	-----------	--------------------------
C. rectoides	cladosporioides	DTO 109-F4; BA 1919	Indoor environment	Denmark	B. Andersen	KP701917 KP701974 KP702040
		DTO 150-F5	Indoor environment	Portugal	—	MF473234 MF473657 MF474084
		DTO 151-G3	Indoor environment	Portugal	—	KP701947 KP701824 KP702069
		DTO 151-G6	Indoor environment	Portugal	—	KP701948 KP701825 KP702070
		DTO 152-B3	Indoor environment	Portugal	—	MF473235 MF473658 MF474085
		DTO 152-D9	Indoor environment	Portugal	—	KP701950 KP701827 KP702072
		DTO 305-H1; TA10NZ-295	House dust	New Zealand	T. Atkinson	MF473236 MF473659 MF474086
		DTO 306-A3; TA10NZ-322	House dust	New Zealand	T. Atkinson	MF473237 MF473660 MF474087
		DTO 306-B2; TA10NZ-324	House dust	New Zealand	T. Atkinson	MF473238 MF473661 MF474088
		DTO 306-C4; KJ09SA-88	House dust	South Africa	K. Jacobs	MF473239 MF473662 MF474089
		DTO 323-B7	Indoor air	China	—	MF473247 MF473670 MF474097
		DTO 323-D4	Indoor air	China	—	MF473248 MF473671 MF474098
		DTO 323-D5	Indoor air	China	—	MF473249 MF473672 MF474099
		DTO 323-D6	Indoor air	China	—	MF473250 MF473673 MF474100
		DTO 307-F2; TA10NZ-297A	House dust	New Zealand	T. Atkinson	MF473245 MF473668 MF474095
		DTO 307-I2; TA10NZ-296	House dust	New Zealand	T. Atkinson	MF473246 MF473669 MF474096
		DTO 306-D1; TA10NZ-215B	House dust	New Zealand	T. Atkinson	MF473241 MF473664 MF474091
		DTO 306-D2; TA10NZ-289A	House dust	New Zealand	T. Atkinson	MF473242 MF473665 MF474092
		DTO 306-E7; TA10NZ-232	House dust	New Zealand	T. Atkinson	MF473243 MF473666 MF474093
		DTO 306-F5; TA10NZ-295	House dust	New Zealand	T. Atkinson	MF473244 MF473667 MF474094
		DTO 306-G3; TA10NZ-289	House dust	New Zealand	T. Atkinson	MF473245 MF473668 MF474095
		DTO 307-G3; TA10NZ-295	House dust	New Zealand	T. Atkinson	MF473246 MF473669 MF474096
		DTO 306-H1; TA10NZ-295	House dust	New Zealand	T. Atkinson	MF473247 MF473670 MF474097
		DTO 306-I1; TA10NZ-240	House dust	New Zealand	T. Atkinson	MF473248 MF473671 MF474098
		DTO 306-B2; TA10NZ-324	House dust	New Zealand	T. Atkinson	MF473249 MF473672 MF474099
		DTO 306-C4; KJ09SA-88	House dust	South Africa	K. Jacobs	MF473250 MF473673 MF474100
		DTO 307-F2; TA10NZ-297A	House dust	New Zealand	T. Atkinson	MF473245 MF473668 MF474095
		DTO 307-I2; TA10NZ-296	House dust	New Zealand	T. Atkinson	MF473246 MF473669 MF474096
		DTO 323-B7	Indoor air	China	—	MF473247 MF473670 MF474097
		DTO 323-D4	Indoor air	China	—	MF473248 MF473671 MF474098
		DTO 323-D5	Indoor air	China	—	MF473249 MF473672 MF474099
		DTO 323-D6	Indoor air	China	—	MF473250 MF473673 MF474100
		DTO 307-F2; TA10NZ-297A	House dust	New Zealand	T. Atkinson	MF473245 MF473668 MF474095
		DTO 307-I2; TA10NZ-296	House dust	New Zealand	T. Atkinson	MF473246 MF473669 MF474096
		DTO 323-B7	Indoor air	China	—	MF473247 MF473670 MF474097
		DTO 323-D4	Indoor air	China	—	MF473248 MF473671 MF474098
		DTO 323-D5	Indoor air	China	—	MF473249 MF473672 MF474099
		DTO 323-D6	Indoor air	China	—	MF473250 MF473673 MF474100
		DTO 307-F2; TA10NZ-297A	House dust	New Zealand	T. Atkinson	MF473245 MF473668 MF474095
		DTO 307-I2; TA10NZ-296	House dust	New Zealand	T. Atkinson	MF473246 MF473669 MF474096
		DTO 323-B7	Indoor air	China	—	MF473247 MF473670 MF474097
		DTO 323-D4	Indoor air	China	—	MF473248 MF473671 MF474098
		DTO 323-D5	Indoor air	China	—	MF473249 MF473672 MF474099
		DTO 323-D6	Indoor air	China	—	MF473250 MF473673 MF474100

continued on next page
Species complex	Culture accession number(s)1,2	Substrate	Country3	Collector	GenBank accession numbers4
Fuchsia excorticata	CBS 121629*, CPC 11839; Hill 1134A; ICMP 15819	Air	New Zealand	A. Blouin	EF679386 EF679464 EF679540
Triticum aestivum	CPC 14000; MRC 02998	Indoor environment	South Africa	—	KT600442 KT600541 KT600639
Crocus sativus	CPC 15454	Indoor environment	New Zealand	—	KT600443 KT600542 KT600640
Eryngium maritimum	CPC 17652	Indoor environment	Germany	J. Rennie	KT600444 KT600543 KT600641
Iris pseudacorus	CPC 18365	Indoor environment	Netherlands	U. Damm	KT600445 KT600544 KT600642
C. sloanii sp. nov. sphaerospermum	DTO 109-12: BA 1896	Swab sample, food plant	Denmark	B. Andersen	KP701919 KP701796 KP702042
C. soldanellae herbarum	CBS 143364*; DTO 130-D5	Swab sample, food plant	Netherlands	M. Meyer	MF473253 MF473676 MF474103
C. sp. herbarum	CBS 132188*; CPC 13153	Soldanelia alpina	Germany	K. Bensch	JN906982 JN906994 JN907001
C. sphaerospermum sphaerospermum	CPC 20045; EXF-2524; MZKI B-1066	Hypersaline water	Spain	P. Zalar	DQ780351 EU702562 EF101378
C. sphaerospermum	CBS 117728; ATCC 38493; CPC 12098; NRRL 8131	Wood	USA	—	AF393709 EU702568 EU570275
C. sphaerospermum	CBS 139567; DTO 084-F4	Indoor environment	Germany	—	KPT01884 KPT01761 KPT02007
C. sphaerospermum	CBS 133684; DTO 150-H8	Indoor environment	Portugal	—	KPT01844 KPT01821 KPT02066
C. sphaerospermum	CBS 109.14; ATCC 36950; MUCL 10093	Caryya illinoisensis, leaf scale	USA	—	DQ780350 EU702600 EF101384
C. sphaerospermum	CBS 193.54*; ATCC 11289; IMI 49637	L. man, nails	Netherlands	G.A. de Vries	DQ780343 EU702601 EU570269
C. sphaerospermum	CPC 11822	Phylactinia guttata on Corylus avellana	USA	D. Glawe	EU570254 EU702563 EU570270
C. sphaerospermum	CPC 12476	Ambrosia artemisiifolia	Germany	J. Nitschke	EU570255 EU702564 EU570271
C. sphaerospermum	CPC 13368	Phaseolus lunatus	Germany	N. Ale-Agha	EU570256 EU702565 EU570272
C. sphaerospermum	CPC 13995	Thatch	South Africa	G. Marais	EU570257 EU702566 EU570273
C. sphaerospermum	CPC 14016; MRC 10263	Triticum aestivum	South Africa	—	EU570258 EU702567 EU570274
C. sphaerospermum	CPC 22270; EMSL 1728	Indoor air sample	USA: MN	Z. Jurjević	MF473254 MF473677 MF474104
C. sphaerospermum	CPC 22301; EMSL 1789	Indoor air sample, bathroom	USA: CA	Z. Jurjević	MF473255 MF473678 MF474105
C. sphaerospermum	CPC 22302; EMSL 1790	Indoor air sample, bathroom	USA: CA	Z. Jurjević	MF473256 MF473679 MF474106
C. sphaerospermum	CPC 22317; EMSL 1820	Indoor air sample	USA: MS	Z. Jurjević	MF473257 MF473680 MF474107
C. sphaerospermum	CPC 22339; EMSL 1852	Indoor air sample, warehouse	USA: NY	Z. Jurjević	MF473258 MF473681 MF474108
C. sphaerospermum	CPC 22357; EMSL 1870	Indoor air sample	UK: England	Z. Jurjević	MF473259 MF473682 MF474109
C. sphaerospermum	CPC 22361; EMSL 1874	Indoor air sample, bedroom	USA: VT	Z. Jurjević	MF473260 MF473683 MF474110
C. sphaerospermum	CPC 22379; EMSL 1892	Indoor air sample, family room	USA: CA	Z. Jurjević	MF473261 MF473684 MF474111
C. sphaerospermum	DTO 017-C7	Swab sample, bathroom	Netherlands	J. Hoobraken	KPT01867 KPT01744 KPT01990
C. sphaerospermum	DTO 049-H5	Indoor environment	Netherlands	J. Hoobraken & M. Meijer	KPT01870 KPT01747 KPT01993
C. sphaerospermum	DTO 086-E7	Air filter	Netherlands	I.J. Vlug	KPT01889 KPT01766 KPT02012
C. sphaerospermum	DTO 086-E8	Air filter	Netherlands	I.J. Vlug	KPT01890 KPT01767 KPT02013
C. sphaerospermum	DTO 089-E9	Indoor air, living room	Netherlands	J. Hoobraken	KPT01893 KPT01770 KPT02016
C. sphaerospermum	DTO 090-A1	Indoor air sample, kitchen	Netherlands	J. Hoobraken	KPT01897 KPT01774 KPT02020
C. sphaerospermum	DTO 090-H9	Swab sample, archive	Netherlands	M. Meijer	MF473262 MF473685 MF474112
Species complex	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers
-----------------	-----------------------------	-----------	---------	-----------	--------------------------
DTO 090-I1		Swab sample, archive	Netherlands	M. Meijer	KP701902 KP701779 KP702025
DTO 106-D4		Indoor air, butterfly area of zoo	Netherlands	B. Dichts	KP701907 KP701784 KP702030
DTO 117-G5; HM1 RS3		Indoor environment of house	Netherlands	M. Meijer & O. Terhoeven	KP701927 KP701804 KP702050
DTO 117-H2; HM2 RS4		Indoor environment of house	Netherlands	M. Meijer & O. Terhoeven	KP701928 KP701805 KP702051
DTO 127-E5; AR385		Air sample, bakery	USA: WI	—	MF473263 MF473686 MF474113
DTO 150-I3		Indoor environment	Portugal	—	MF473264 MF473687 MF474114
DTO 150-I8		Indoor environment	Portugal	—	MF473265 MF473688 MF474115
DTO 153-B7		Indoor air sample, bathroom	Netherlands	F. Hagen	MF473266 MF473690 MF474117
DTO 153-C1		Indoor air sample, bathroom	Netherlands	F. Hagen	MF473267 MF473691 MF474118
DTO 160-I4		Black spots in bathroom	Netherlands	—	MF473268 MF473692 MF474119
DTO 161-D4		Swab sample, wall in apartment	Netherlands	J. Houbreken	KP701954 KP701831 KP702076
DTO 161-D7		Swab sample, apartment	Netherlands	J. Houbreken	KP701959 KP701836 KP702081
DTO 161-D8		Swab sample, wall near window in apartment	Netherlands	J. Houbreken	KP701960 KP701837 KP702082
DTO 161-D9		Swab sample, wall near window in apartment	Netherlands	J. Houbreken	KP701961 KP701838 KP702083
DTO 161-E1		Swab sample, wall near window in apartment	Netherlands	J. Houbreken	MF473266 MF473689 MF474116
DTO 194-A4		Indoor environment, hospital	Netherlands	V. Zaat	KP701965 KP701842 KP702087
DTO 244-C6		HA-coated hay pin	Germany	R. Raltenbacher	KP701970 KP701847 KP702092
DTO 305-F5; KJ03SA-383B		House dust, small apartment	South Africa	K. Jacobs	MF473267 MF473690 MF474117
DTO 306-D8; AAO3US-373		House dust, basement HVAC room	USA: CA	A. Amend	MF473268 MF473691 MF474118
DTO 306-E3; AAO3US-478		House dust, basement HVAC room	USA: CA	A. Amend	MF473269 MF473692 MF474119
DTO 307-G6; KJ08SA-151		House dust	South Africa	K. Jacobs	MF473270 MF473693 MF474120
DTO 307-H1; BH02AU-119		House dust	Australia: Tasmania	B. Horton	MF473271 MF473694 MF474121
DTO 307-I3; AAO3US-549		House dust, basement HVAC room	USA: CA	A. Amend	MF473272 MF473695 MF474122
ExF-1061		Hypersaline water, Dead Sea	Israel	—	DQ780346 — EF101379
ExF-455		Hypersaline water, saltern	Slovenia	—	DQ780349 KJ966600 EF101375
ExF-458		Hypersaline water, saltern	Slovenia	—	DQ780345 — EF101374
ExF-738		Bathroom	Slovenia	—	DQ780348 — EF101383
ExF-739		Bathroom	Slovenia	—	DQ780344 KJ966601 EF101381
ExF-962		Bathroom	Slovenia	—	DQ780347 — EF101382
C. spinulosum	CBS 119907*; EXF-334; MZKI B-1067	Hypersaline water	Slovenia	S. Sonjak	EF679388 EF679466 EF679542
C. subcinereum	CBS 119907*; EXF-334; MZKI B-1067	Hypersaline water	Slovenia	S. Sonjak	EF679388 EF679466 EF679542
C. subinflatum	CBS 119907*; EXF-334; MZKI B-1067	Hypersaline water	Slovenia	S. Sonjak	EF679388 EF679466 EF679542
Species complex	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers
-----------------	-----------------------------	-----------	---------	-----------	-------------------------
C. substilisimum	CPC 22303; EMSL 1791	Indoor air sample	USA: MN	Ž. Jurjević	MF473273 MF473696 MF474123
	CPC 22400; EMSL 1928	Indoor air sample, bathroom	USA: MO	Ž. Jurjević	MF473274 MF473697 MF474124
C. substilisimum	CBS 113753	Bing cherry fruits	USA	F.M. Dugan lab	EF679396 EF679474 EF679550
	CBS 113754*	Grape berry	USA	F.M. Dugan lab	EF679397 EF679475 EF679551
	CPC 12044; EXF-462	Hypersaline water, saltern (reserve pond)	Slovenia	P. Zalar	EF679398 EF679476 EF679552
C. subuliforme	CBS 126500*; CPC 13735; FIH 401	Chamaerea metallica	Thailand	I. Hidayat & J. Meeboon	HM148196 HM148441 HM148866
	DTO 130-H8	Indoor air, open Petri-dish	Thailand	P. Noonim	KP701938 KP701815 KP702060
	DTO 323-D1	Indoor air	China	—	MF473275 MF473698 MF474125
	DTO 324-B8	Indoor air	China	—	MF473276 MF473699 MF474126
	DTO 324-C7	Indoor air	China	—	MF473277 MF473700 MF474127
C. succulentum	CBS 140466*; FMR 13375; UTHSC Di-13-262	Dolphin, bronchus	USA: FL	D.A. Sutton	LN834434 LN834530 LN834618
C. tenellum	CBS 121633; CPC 12051; EXF-1083	Hypersaline water, saltern	Israel	N. Gunde-Cimerman	EF679400 EF679478 EF679554
	CBS 121634*; CPC 12053; EXF-1735	Hypersaline water, Dead Sea	Israel	P. Zalar	EF679401 EF679479 EF679555
	CBS 139582; DTO 127-D7; AR295	Air sample, bakery	USA	—	KP701932 KP701809 KP702054
	CPC 11813	Phylactinia sp. on leaves of Corylus sp.	USA: WA	D. Glawe	EF679399 EF679477 EF679553
C. tenissimum	CPC 22200; EMSL 1771	Indoor air sample, bathroom	USA: MI	Ž. Jurjević	MF473278 MF473701 MF474128
	CPC 22291; EMSL 1772	Indoor air sample, bedroom	USA: OR	Ž. Jurjević	MF473279 MF473702 MF474129
	CPC 22410; EMSL 1941	Indoor air sample, classroom	USA: MI	Ž. Jurjević	MF473280 MF473703 MF474130
C. subuliforme	CBS 125995*; CPC 14253	Lagerstroemia sp.	USA: LA	P.W. Crous	HM148197 HM148442 HM148867
	CBS 126359; CPC 12794	Musa sp.	USA: HI	I. Budenhagen	HM148196 HM148443 HM148888
	CBS 126501; CPC 14410	Musa sp.	Ivory Coast	K. Daouda	HM148199 HM148444 HM148889
	CBS 117.79	Fruit	Burundi	J. Rammelo	HM148200 HM148445 HM148890
	CBS 262.80	Fruit	Nigeria	—	HM148201 HM148446 HM148891
	CPC 10538	Musa sp.	Mozambique	A. Viljoen	HM148202 HM148447 HM148892
	CPC 10882	Gnaphalium affine	South Korea	H.D. Shin	HM148204 HM148449 HM148894
C. tenissimum	CPC 11521	Acacia mangium	Thailand	W. Himan	HM148214 HM148459 HM148704
	CPC 11612	Musa sp.	Indonesia	M. Arzanlou	HM148206 HM148451 HM148896
	CPC 11929	Acacia mangium	Thailand	W. Himan	HM148215 HM148460 HM148705
	CPC 12223	Unidentified rust fungus	Brazil	U. Braun	HM148208 HM148453 HM148898
	CPC 12795	Musa sp.	Polynesia	I. Budenhagen	HM148209 HM148454 HM148899
	CPC 13252	Rock	Australia	P.W. Crous	HM148216 HM148461 HM148706
	CPC 13732	Shorea siamensis	Laos	P. Phengs弥漫	HM148217 HM148462 HM148707
	CPC 14196	Basella alba (=B. rubra), leaves	Laos	P. Phengs弥漫	HM148218 HM148463 HM148708
	CPC 14311; BA 1710	Decayed branch under water	Venezuela	K. Lyhne	HM148219 HM148464 HM148709
	CPC 14370; BA 1737	Soil, bat cave	Bali	J.C. Frisvad	HM148221 HM148466 HM148711
	CPC 22277; EMSL 1748	Chilli pepper sample	Mexico	Ž. Jurjević	MF473281 MF473704 MF474131
Species complex	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers
-----------------	-----------------------------	-----------	---------	-----------	-------------------------
CPC 22320; EMSL 1823	Indoor air sample	Bermuda	Z. Jurjevi	MF473282 MF473705 MF474132	
CPC 22344; EMSL 1857	Indoor air sample, bedroom	USA: AZ	Z. Jurjevi	MF473283 MF473706 MF474133	
CPC 22383; EMSL 1896	Indoor air sample, bathroom	USA: TX	Z. Jurjevi	MF473284 MF473707 MF474144	
CPC 22398; EMSL 1926	Indoor air sample, classroom	USA: TX	Z. Jurjevi	MF473285 MF473708 MF474145	
D TO 109-A1	Bathroom ceiling	Thailand	P. Noonim	KP701910 KP701787 KP702033	
D TO 109-C4	Mycolab door	Thailand	P. Noonim	MF473286 MF473709 MF474136	
D TO 109-C7	Indoor air, open Petri-dish	Thailand	P. Noonim	MF473287 MF473710 MF474137	
D TO 131-A4	Indoor air, open Petri-dish	Thailand	P. Noonim	MF473288 MF473711 MF474138	
D TO 323-C5	Indoor air	China	—	MF473289 MF473712 MF474139	
D TO 323-C9	Indoor air	China	—	MF473290 MF473713 MF474140	
D TO 323-G3	Indoor air	China	—	MF473292 MF473715 MF474142	
D TO 323-G4	Indoor air	China	—	MF473293 MF473716 MF474143	
D TO 323-G8	Indoor air	China	—	MF473294 MF473717 MF474144	
D TO 323-I4	Indoor air	China	—	MF473295 MF473718 MF474145	
D TO 323-I6	Indoor air	China	—	MF473296 MF473719 MF474146	
D TO 323-I8	Indoor air	China	—	MF473297 MF473720 MF474147	
D TO 323-I9	Indoor air	China	—	MF473298 MF473721 MF474148	
D TO 324-A1	Indoor air	China	—	MF473299 MF473722 MF474149	
D TO 324-A3	Indoor air	China	—	MF473300 MF473723 MF474150	
D TO 324-C2	Indoor air	China	—	MF473301 MF473724 MF474151	
D TO 324-C3	Indoor air	China	—	MF473302 MF473725 MF474152	
D TO 324-C5	Indoor air	China	—	MF473303 MF473726 MF474153	
D TO 324-C6	Indoor air	China	—	MF473304 MF473727 MF474154	
D TO 324-C9	Indoor air	China	—	MF473305 MF473728 MF474155	
D TO 324-I4	Indoor air	China	—	MF473306 MF473729 MF474156	
D TO 324-I6	Indoor air	China	—	MF473307 MF473730 MF474157	

(continued on next page)
Species	Species complex	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers	ITS	tef1	act
C. variabile	herbarum	CBS 121635**; CPC 12753	Spinacia oleracea	USA: WA	L. du Toit	EF679403 EF679481 EF679557			
		CBS 121636**; CPC 12751	Spinacia oleracea	USA: WA	L. du Toit	EF679402 EF679480 EF679556			
C. varians	cladosporioides	CBS 126360; CPC 11327	Ulmus sp.	Germany	K. Schubert	HM148222 HM148468 HM148713			
CBS 126361; CPC 11154		Spinacia oleracea	Leaf debris	India	W. Gams	HM148223 HM148469 HM148714			
CBS 126362*; CPC 13658		Calafpa bungei		Russia	V.A. Meink	HM148224 HM148470 HM148715			
CBS 2061 F									
C. velox	sphaerospermum	CBS 119417*; CPC 11224	Bambusa sp.	India	W. Gams	DQ780361 JN906995 EF101388			
CPC 18450		Zea mays	Indoor air sample	USA: MA	Ž. Jurjević	KT600457 KT600556 KT600654			
CPC 22359; EMSL 1872		Indoor air	China		—	MF473308 MF473731 MF474158			
DTO 317-H1		Indoor air	China		—	MF473309 MF473732 MF474159			
DTO 323-H8		Indoor air	China		—	MF473310 MF473733 MF474160			
EXF-466		Hypersaline water, saltern	Slovenia		—	DQ780359 KJ96597 EF101388			
EXF-471		Hypersaline water, saltern	Slovenia		—	DQ780360 KJ96599 EF101387			
C. verruculodosporioides		CBS 126363*; CPC 12300	Rhus chinensis	South Korea	H.D. Shin	HM148226 HM148472 HM148717			
C. verruculosum	herbarum	CGMCC 3.18099*	Soil	China	T. Liu	KX938388 KX938405 KX938371			
CGMCC 3.18100		Soil	China		T. Liu	KX938389 KX938406 KX938372			
C. versiforme	herbarum	CBS 140491*; CPC 19053	Hordeum sp.	Iran	P.W. Crous	KT600417 KT600515 KT600613			
C. vicinum sp. nov.	cladosporioides	CBS 143366*; CPC 22316; EMSL 1819	Indoor air sample	USA: WI	Ž. Jurjević	MF473311 MF473734 MF474161			
CBS 306.84		Uredinospores of Puccinia allii	UK: England	G.S. Taylor		HM148057 HM148299 HM148544			
CPC 11664; Hill 1076-2		Oncoboa spinosa	New Zealand	C.F. Hill		HM148058 HM148300 HM148545			
CPC 13867		Leptosphaeria sp.	South Africa	P.W. Crous		HM148059 HM148301 HM148546			
CPC 15457		Imported buds of Prunus avium	New Zealand	J. Rennie		HM148060 HM148302 HM148547			
DTO 305-H5; TA10NZ-280B		House dust	New Zealand	T. Aitkinson		MF473312 MF473735 MF474162			
C. vignae	cladosporioides	CBS 121.25; ATCC 200933; MUCL 10110	Vigna unguiculata (= V. sinensis), living stems	USA: IN	M.W. Gardner	HM148227 HM148473 HM148718			
C. westerdjikiae sp. nov.	cladosporioides	CBS 113746*	Bing cherry fruits	USA: WA	R.G. Roberts	HM148061 HM148303 HM148548			
CPC 10150		Fabuus villosa	South Korea	H.D. Shin		HM148062 HM148304 HM148549			
CPC 13362		Paeonia obovata	Germany	P.W. Crous		HM148063 HM148305 HM148550			
CPC 13978		Pinus ponderosa, needles	Argentina	A. Greslebin		HM148064 HM148306 HM148551			
CPC 14284; BA 1674		Triticum sp., grain	Germany	B. Andersen		HM148065 HM148307 HM148552			
DTO 084-F2		Indoor environment	Germany	LGA		KP701915 KP701972 KP702038			
DTO 109-F2; BA 1911		Indoor environment	Denmark	B. Andersen		KP701915 KP701972 KP702038			
DTO 152-A9		Indoor environment	Portugal	—		MF473313 MF473736 MF474163			
DTO 152-H9		Indoor environment	Portugal	—		MF473313 MF473737 MF474164			
C. wyomingense sp. nov.	herbarum	CBS 143367*; CPC 22310; EMSL 1806	Indoor air sample, living room	USA: WY	Ž. Jurjević	MF473315 MF473738 MF474165			
C. xanthochromaticum	cladosporioides	CBS 126364; CPC 14532	Erythrophleum chlorostachys	Australia	B.A. Summerell	HM148122 HM148366 HM148611			
Species	Species complex	Culture accession number(s)	Substrate	Country	Collector	GenBank accession numbers			
---------	-----------------	-----------------------------	-----------	---------	-----------	------------------------			
CBS 140691*; UTHSC DI-13-211; FMR 13324	Man, bronchoalveolar lavage fluid	USA: TX	D.A. Sutton	L834415 L834511 L834599					
CBS 167.54; ATCC 11276; IMI 049624	—	—	—	HM148124 HM148368 HM148613					
CGMCC 3.18101	Alpine soil	China	T. Liu	KX938390 KX938407 KX938373					
CGMCC 3.18102	Alpine soil	China	Y. Hao	KX938391 KX938408 KX938374					
CPC 11046	Eucalyptus sp.	India	W. Gams	HM148128 HM148370 HM148615					
CPC 11153	—	—	—	HM148129 HM148373 HM148618					
CPC 11609	Musa sp.	India	M. Arzanlou	EF679356 EF679431 EF679508					
CPC 11806	Strelitzia sp.	South Africa	W. Gams	HM148129 HM148373 HM148618					
CPC 11866	Acacia mangium	Thailand	W. Himaman	HM148134 HM148378 HM148623					
CPC 12792	Musa sp.	Polynesia	I. Budenhagen	HM148136 HM148380 HM148625					
CPC 12793	Musa sp.	Polynesia	I. Budenhagen	HM148137 HM148381 HM148626					
CPC 14004; MRC 03367	Oats	South Africa	—	HM148143 HM148387 HM148632					
CPC 14008; MRC 10135	Triticum aestivum	—	HM148144 HM148380 HM148635						
CPC 14256	Pecan tree, leaves	USA	P.W. Crous	MF473316 MF473379 MF474166					
CPC 14911	Strelitzia sp.	South Africa	P.W. Crous	HM148148 HM148382 HM148637					
CPC 22239; EMSL 1686	Indoor air sample, bedroom	USA: CO	Z. Jurjević	MF473317 MF473379 MF474166					
CPC 22321; EMSL 1824	Indoor air sample, Bermuda	—	Z. Jurjević	MF473317 MF473379 MF474167					
DTO 108-G8	Indoor air, open Petri-dish	Thailand	P. Noonim	KP701909 KP701786 KP702032					
DTO 317-12	Indoor air	China	—	MF473318 MF473374 MF474168					
DTO 323-E2	Indoor air	China	—	MF473319 MF473372 MF474169					
DTO 323-E3	Indoor air	China	—	MF473320 MF473373 MF474170					
DTO 323-E5	Indoor air	China	—	MF473321 MF473374 MF474171					
DTO 323-E6	Indoor air	China	—	MF473322 MF473375 MF474172					
DTO 323-E7	Indoor air	China	—	MF473323 MF473376 MF474173					

1 ATCC: American Type Culture Collection, Virginia, USA; BA: Personal culture collection of Birgitte Andersen, Denmark; CAMS: SERA’s Centre for Applied Mycological Studies, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa; CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CGMCC: China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CIEFAP: Centro de Investigación y Extensión Forestal Andino Patagónico, Argentina; CPC: Culture collection of Pedro Crous, housed at CBS; DAOM: Plant Research Institute, Department of Agriculture (Mycology), Ottawa, Canada; dH: de Hoog Culture Collection, housed at CBS; DTO: Working collection of Jos Houbraken housed at CBS; EMSL: Working collection of Z. Jurjević, EMSL Analytical, Inc., Cinnaminson, New Jersey, USA; EXF: Culture Collection of Extremopholic Fungi, Biotechnical Faculty, Ljubljana, Slovenia; FMR: Facultad de Medicina, Universitat Rovira i Virgili, Reus, Spain; Hill: Personal culture collection of Frank Hill, New Zealand; HJS: Personal culture collection of Hans-Josef Schroers, Agricultural institute of Slovenia, Ljubljana, Slovenia; IFO: Institute for Fermentation, Osaka, Japan; IBT: IBT Culture Collection of Fungi, DTU Bioengineering, Technical University of Denmark, Denmark; ICMP: International Collection of Micro-organisms from Plants, Landcare Research, Private Bag 92170, Auckland, New Zealand; IFO: Institute for Fermentation, Osaka, Japan; IHEM: Collection of the Laboratory voor Microbiologie en Microbiële Genetica, Gent, Belgium; IMI: International Mycological Institute, CABI-Bioscience, Egham, Bakingham Lane, UK; JCM: Japan Collection of Microorganism, RIKEN BioResource Center, Japan; LinyiF: Private culture collection and herbarium of Frank Hill, New Zealand; NPCF: The National Collection of Pathogenic Fungi, Holborn, London, UK; NCTC: National Collection of Type Cultures, PHLS Central Public Health Laboratory, London, UK; NRRL: National Center for Agricultural Utilization Research, Peoria, Illinois, USA; PD: Plant Protection Service, nVWA, Division Plant, Wageningen, The Netherlands; UTHSC: Fungus Testing Laboratory at the University of Texas Health Science Center, San Antonio, TX, USA; VKM: All-Russian Collection of Microorganisms, Russian Academy of Sciences, Institute of Biochemistry and Physiology of Microorganisms, 142292 Pushchino, Moscow Region, Russia.

2 *: ex-type culture.; **: ex-epitype culture.

3 Abbreviations for USA according to ISO 3166.

4 act: partial actin gene, tef1: partial translation elongation factor 1-alpha gene, ITS: internal transcribed spacer region including intervening 5.8S rRNA gene.
Table 2. Statistical information of the different multilocus analyses performed in this study. act: partial actin gene; tef1: partial translation elongation factor 1-alpha gene.

Dataset	Substitution models	Statistics for Bayesian analyses	Statistics for the parsimony analyses	Statistics for the maximum-likelihood analyses	
	act	tef1	unique site patterns	number of trees sampled	
C. cladosporioides complex	HKY+G	HKY+G	145	235	963 978
C. herbarum complex	HKY+G	HKY+G	124	186	286 952
C. sphaerospermum complex	HKY+G	HKY+G	155	296	137 928

C. cladosporioides complex	number of strains	number of included characters	number of parsimony-informative characters	number of parsimony-uninformative characters	number of constant characters
(incl. outgroup(s))					
C. cladosporioides complex	412	548	326	43	89
C. herbarum complex	220	403	253	59	91
C. sphaerospermum complex	309	505	365	78	62

Tree length	Consistency index (CI)	Retention index (RI)	Rescaled CI (RC)	Number of saved trees	
C. cladosporioides complex	3 053	0.294	0.894	0.263	1 000
C. herbarum complex	1 591	0.407	0.893	0.363	1 000
C. sphaerospermum complex	1 968	0.518	0.955	0.494	1 000

Tree length	Alpha parameter value	Invar parameter value	Final ML Optimisation Likelihood	
C. cladosporioides complex	14.177192	1.200382	0.194323	−12952.10072
C. herbarum complex	7.591637	1.015297	0.163303	−6775.467992
C. sphaerospermum complex	6.896787	1.904976	0.151042	−7017.365135

For the maximum parsimony analysis, 507 characters were included, 88 of which were parsimony-informative, 318 which were constant and 101 which were variable and parsimony-uninformative. The maximum of 1 000 equally most parsimonious trees were saved (Tree length = 429; CI = 0.681; RI = 0.845; RC = 0.575). The Bayesian analysis lasted 19 980 000 generations and yielded 299 702 trees which were used to calculate the best tree and the posterior probability values after discarding the burn-in trees; a SYM+I+G model was used and there were 150 unique site patterns in the alignment. These phylogenies show that ITS lacks the resolution to distinguish many species of Cladosporium, especially in the C. cladosporioides and C. herbarum species complexes. Although the three species complexes can be recognised in broad lines in the phylogenetic tree, there are some overlap among the species complexes. For example, C. ruguloflabelliforme is found between sequences of the C. cladosporioides species complex while it belongs to the C. sphaerospermum species complex and C. basiinflatum is

The C. sphaerospermum species complex phylogeny presented in Fig. 3 delimits 23 species clades. The position of clades changes between the different analyses, as can be observed by the low or absent support values on the backbone of the tree. In a few cases, differences are also observed for the terminal nodes. For example, the position of C. lebrasiae (lineage 5) is sister to C. dominicanum (Clade 4) in the MP phylogeny, but not well-resolved in the ML and BI phylogenies.

Maximum parsimony and Bayesian ITS phylogenies were also generated from sequences representing all Cladosporium species currently known from ITS sequence data (Supplementary Fig. S1). For the maximum parsimony analysis, 507 characters were included, 88 of which were parsimony-informative, 318 which were constant and 101 which were variable and parsimony-uninformative. The maximum of 1 000 equally most parsimonious trees were saved (Tree length = 429; CI = 0.681; RI = 0.845; RC = 0.575). The Bayesian analysis lasted 19 980 000 generations and yielded 299 702 trees which were used to calculate the best tree and the posterior probability values after discarding the burn-in trees; a SYM+I+G model was used and there were 150 unique site patterns in the alignment. These phylogenies show that ITS lacks the resolution to distinguish many species of Cladosporium, especially in the C. cladosporioides and C. herbarum species complexes. Although the three species complexes can be recognised in broad lines in the phylogenetic tree, there are some overlap among the species complexes. For example, C. ruguloflabelliforme is found between sequences of the C. cladosporioides species complex while it belongs to the C. sphaerospermum species complex and C. basiinflatum is
Taxonomy

The status of numerous indeterminate strains isolated from indoor environments included in this study have been subjected to polyphasic analyses, which revealed 16 novel species. The circumscriptions and delimitations of these species are mainly based on quantitative as well as qualitative morphological features and on molecular data. Features that proved to be found in between sequences of the *C. cladosporioides* species complex while it belongs to the *C. herbarum* species complex. Assignment of an unknown isolate to a species complex should therefore be done based on high association to several species from the species complex and not based on a high association with only one species from the species complex. Overall, the topology of the resulting trees was poorly supported, both in the Bayesian and maximum parsimony analyses.

Fig. 1. The first of 1 000 equally most parsimonious trees obtained from a heuristic search of the *C. cladosporioides* species complex alignment. Bayesian posterior probabilities (BPP; >0.74), maximum-likelihood bootstrap support values (MLBS; >74 %) and maximum parsimony bootstrap support values (PBS; >74 %) are shown at the nodes (BPP/MLBS/PBS). Thickened lines with an asterisk (*) represent nodes with PP = 1.00, MLBS = 100 % and PBS = 100 % and a hash (#) represents nodes with PP >0.94, MLBS >94 % and PBS >94 %. The scale bar represents the number of changes. Species names are indicated to the right of the tree and clades/lineages are numbered to facilitate easier reference in the text. Species boundaries are indicated with coloured blocks. Names of novel species and culture numbers with type status are printed in bold face. Species from indoor environments are indicated with a blue star symbol in front of the species name. Isolation source and country of origin information are provided where known. The tree was rooted to *Cercospora beticola* (strain CBS 116456).
diagnostic at species rank were discussed in Bensch et al. (2012, 2015) and are also applied here. Together with previously described species which proved to occur in indoor environments, the new taxa are treated in alphabetical order below. Detailed descriptions (on SNA if not indicated differently), supplementing literature (listed under Lit.), illustrations (listed under Ill.) and comments are provided.

Cladosporium aerium Bensch & Samson, sp. nov. MycoBank MB822217. Fig. 4.

Etymology: Name refers to the substrate from which it was isolated, indoor air.

Holotype: China, isol. from indoor air, CBS H-23248. Ex-type culture: CBS 143356 = DTO 323-B4.

Diagnosis: Differs from C. allii in having narrower conidiophores as well as shorter and narrower, 0–2-septate conidia.

In vitro (on PDA): Mycelium abundantly formed, hyphae narrowly cylindrical-oblong or irregular in outline due to swellings, lateral outgrowths and constrictions, loosely branched, (1–)1.5–5 μm wide, septate, not constricted at septa, subhyaline, pale brown or pale olivaceous brown, almost smooth, asperulate to irregularly verruculose or verrucose, walls unthickened, occasionally anastomosing. Conidiophores macronematous, solitary, formed laterally or terminally from hyphae, straight or often somewhat flexuous, cylindrical-oblong or irregular in outline due to swellings and constrictions, often subnodulose or with unilateral swellings both terminally and intercalary, sometimes once slightly to distinctly geniculate-sinuous, rarely once branched,
Fig. 1. (Continued).

INDOOR CLADOSPORIUM SPECIES

CBS 109082	Silene maritima - UK	C. sienes	36
CGMCC 3.18096	Soil - China	C. sinatum	37
CGMCC 3.18097	Soil - China	C. monticolanum	38
CGMCC 3.18098	Soil - China	C. acalypheae	39
CBS 140486	Pine needles - Mexico	C. neerlandicum	40
CPC 15605	Taxacum sp. - Mexico	C. neerlandicum	40
CPC 17604	Pine needles - Mexico	C. neerlandicum	40
CBS 129582	Acalypha australis - South Korea	C. neerlandicum	40
CGMCC 3.18031	Saussurea involucrate, rhizosphere soil - China	C. neerlandicum	40
CGMCC 3.18032	Saussurea involucrate, rhizosphere soil - China	C. neerlandicum	40
CPC 11818	Phylactinia gultata chasmothecia on Corlylus sp. - USA	C. inversicolor	42
CPC 22289	Indoor air sample, living room - USA	C. inversicolor	42
CPC 22300	Indoor air sample, living room - USA	C. inversicolor	42
CPC 22385	Indoor air sample, bedroom - USA	C. inversicolor	42
DTO 072-C9	Indoor air, archive - Netherlands	C. inversicolor	42
DTO 109-E9	Indoor environment - Denmark	C. inversicolor	42
CBS 401.80	Triticum aestivum, leaf - Netherlands	C. inversicolor	42
CBS 484.80	Cortaderia sp. - Colombia	C. inversicolor	42
CPC 14190	Outside air - Netherlands	C. inversicolor	42
CPC 14191	Outside air - Netherlands	C. inversicolor	42
CPC 14241	Sambucus nigra, fruit - Netherlands	C. inversicolor	42
CPC 14368	School dust - Denmark	C. inversicolor	42
CPC 19108	Indoor air - Denmark	C. inversicolor	42
DTO 108-F8	Indoor environment - France	C. inversicolor	42
DTO 084-F2	Indoor environment - Germany	C. inversicolor	42
DTO 152-A9	Indoor environment - Portugal	C. inversicolor	42
CPC 13378	Pinus ponderosa, needles - Argentina	C. inversicolor	42
CPC 13362	Paorea ovata - Germany	C. inversicolor	42
DTO 152-H9	Indoor environment - Portugal	C. inversicolor	42
CBS 113746	Bing cherry fruits - USA	C. inversicolor	42
CPC 10150	Fatoua villosa - South Korea	C. inversicolor	42
CPC 14284	Triticum sp., grain - Germany	C. inversicolor	42
DTO 109-F2	Indoor environment - Denmark	C. inversicolor	42
DTO 305-49	House dust - New Zealand	C. inversicolor	42
CBS 126342	Tilia cordata, leaves - Germany	C. inversicolor	42
CBS 126344	Tilia cordata, leaves - Germany	C. inversicolor	42
CPC 14285	Indoor air - Denmark	C. inversicolor	42
CPC 14287	Indoor air - Denmark	C. inversicolor	42
CPC 14289	Door frame - Denmark	C. inversicolor	42
CPC 14360	Indoor air - Denmark	C. inversicolor	42
CPC 14362	Indoor air - Denmark	C. inversicolor	42
CPC 14372	Dust, school - Denmark	C. inversicolor	42
DTO 082-F3	Indoor air, living room - Netherlands	C. inversicolor	42
DTO 090-F4	Swab sample, archive - Netherlands	C. inversicolor	42
DTO 134-D3	Indoor environment - Algeria	C. inversicolor	42
DTO 134-D4	Indoor environment, apartment building - Algeria	C. inversicolor	42
DTO 134-D5	Indoor environment, apartment building - Algeria	C. inversicolor	42
DTO 134-D6	Indoor environment - Algeria	C. inversicolor	42
DTO 134-D7	Indoor environment - Algeria	C. inversicolor	42
DTO 134-D8	Indoor environment - Algeria	C. inversicolor	42
DTO 145-C4	Indoor environment - Germany	C. inversicolor	42
DTO 167-H5	Indoor air, poultry houses - Poland	C. inversicolor	42
DTO 168-F8	Indoor air, poultry houses - Poland	C. inversicolor	42
DTO 305-H7	House dust - New Zealand	C. inversicolor	42
CBS 126343	Building material - Denmark	C. inversicolor	42
CPC 14286	Indoor air - Denmark	C. inversicolor	42
CPC 14299	Building material - Denmark	C. inversicolor	42
CBS 125994	Vitis flexuosa - South Korea	C. rectoides	45
CBS 126357	Plectranthus sp. - South Korea	C. rectoides	45
CBS 113756	Bing cherry fruits - USA	C. rectoides	45
CPC 113749	Bing cherry fruits - USA	C. rectoides	45
CBS 125997	Picea abies, dead wood - Russia	C. rectoides	45
CBS 125999	Strelitzia sp. - South Africa	C. rectoides	45
CPC 126363	Rhus chinensis - South Korea	C. rectoides	45
CPC 22353	Indoor air sample, office - USA	C. rectoides	45
CBS 125979	Phaeocoma prolifera - South Africa	C. rectoides	45
CBS 125994	Eucalyptus moluccana - Australia	C. rectoides	45
DTO 109-E8	Indoor environment - Denmark	C. rectoides	45
DTO 090-D2	Swab sample, archive - Netherlands	C. rectoides	45
DTO 082-E3	Indoor air, archive - Netherlands	C. rectoides	45
CBS 139572	Indoor air, archive - Netherlands	C. rectoides	45
DTO 072-D8	Indoor air, archive - Netherlands	C. rectoides	45
DTO 305-H9	House dust - New Zealand	C. rectoides	45
subnodulose, with a single or rarely two unilateral swellings and occasionally an additional swollen shoulder at a lower level with 1–3(-4) conspicuous loci restricted to these swellings or shoulders, sometimes once geniculate-sinuous, with up to five loci per cell, loci protuberant, 1.5–2 μm diam, thickened and darkened-refractive. Ramoconidia absent. Conidia solitary or...
formed in short, unbranched or branched chains, chains with only up to five conidia, solitary, terminal and intercalary conidia ellipsoid, broadly ovoid or subcylindrical, (8–) 9.5–17(–19) × (4.5–)5–6.5(–7) μm (av. ± SD: 12.5 ± 2.8 × 5.7 ± 0.9), 0(–1)-septate, hila 1–2 μm diam, basally formed conidia ellipsoid or subcylindrical, 13–24 × (5–) 6–7(–8) μm (av. ± SD: 18.0 ± 3.1 × 6.4 ± 0.7), 0–1-septate, septum median or in the upper half, becoming curved or sinuous with age, occasionally slightly constricted, pale olivaceous to medium olivaceous brown, verruculose to distinctly verrucose, verrucae up to 1 μm high, densely aggregated, walls unthickened or slightly thick-walled, slightly or distinctly attenuated towards apex and base, with 1–2(–3) distal hila, hila 1–2 μm diam, thickened and darkened-refractive. *Microcyclic conidiogenesis* giving rise to secondary conidiophores occasionally occurring.

Culture characteristics: Colonies on PDA attaining 29–44 mm diam after 14 d at 25 °C, smoke-grey and olivaceous due to abundant and dense aerial mycelium, olivaceous grey and grey olivaceous towards margins, reverse leaden-grey, fluffy, margins narrow, white, somewhat feathery, regular or slightly undulate, growth flat, sporulation loose, mainly at colony margins.

Colonies on MEA reaching 30–49 mm diam after 14 d at 25 °C, smoke-grey due to abundant aerial mycelium, whitish or glaucous-grey towards margins, reverse olivaceous grey, velvety or fluffy, margins narrow, white, regular to undulate.
Fig. 1. (Continued).
Fig. 2. Bayesian consensus phylogram (50 % majority rule) of the C. herbarum species complex alignment. Bayesian posterior probabilities (BPP; >0.74), maximum-likelihood bootstrap support values (MLBS; >74 %) and maximum parsimony bootstrap support values (PBS; >74 %) are shown at the nodes (BPP/MLBS/PBS). Thickened lines with an asterisk (*) represent nodes with PP = 1.00, MLBS = 100 % and PBS = 100 % and a hash (#) represents nodes with PP = >0.94, MLBS = >94 % and PBS = >94 %. The scale bar represents the expected changes per site. Species names are indicated to the right of the tree and clades/lineages are numbered to facilitate easier reference in the text. Species boundaries are indicated with coloured blocks. Names of novel species and culture numbers with type status are printed in bold face. Species from indoor environments are indicated with a blue star symbol in front of the species name. Isolation source and country of origin information are provided where known. The tree was rooted to Cercospora beticola (strain CBS 116456).

www.studiesinmycology.org 215
growth flat to low convex, often radially furrowed, several small exudates formed, sporulation mainly at colony margins. Colonies on OA 21–42 mm diam after 14 d at 25 °C, smoke-grey, pale olivaceous grey with patches of iron-grey, reverse olivaceous to iron-grey, fluffy-feltly, margins somewhat undulate, aerial mycelium abundant, dense, fluffy, covering almost the entire colony, growth flat, numerous very small exudates formed giving the surface a glittering appearance, sporulation at colony margins.

Substrate and distribution: Indoor air, Asia (China).

Additional materials examined: China, isol. from indoor air, DTO 323-G6; DTO 323-G7.
Fig. 2. (Continued).
Notes: The description given above is from PDA; on SNA only very few conidiophores and conidia were formed after 7 d. *Cladosporium aerium* (Fig. 1, clade 20) is morphologically similar to *C. phlei* (Fig. 1, clade 12) and *C. sinuosum* (Fig. 1, clade 2); all three species have distinctly geniculate, subnodulose co-nidiophores and distinctly ornamented conidia. However, *C. phlei* forms ramoconidia and has longer and wider conidia and *C. sinuosum* possesses much longer conidiophores with swellings reaching up to 10 μm diam and shorter but wider conidia (Bensch et al. 2012, 2015). *Cladosporium allii* (Fig. 1, clade 19) which is the closest phylogenetic relative of *C. aerium*, differs in having wider conidiophores as well as longer and wider, 0–2(-4)-septate conidia (Bensch et al. 2012).

Cladosporium allii (Fr. : Fr.) Bensch et al., Stud. Mycol. 72: 50. 2012. MycoBank MB800304. Fig. 5.

Holotype: *Sweden*, Skåne, on tip blight of living leaves of *Allium* sp. (*Amaryllidaceae*), Fr. no. F-09810, UPS-FRIES. Neotype of *Cladosporium brunheii* (designated in Schubert et al. 2007b): *Belgium*, Kampenhout, isol. from *Hordeum vulgare* (*Poaceae*),...
Mycelium superficial, hyphae branched, 1.5–8 μm wide, pluri-septate, broader hyphae usually slightly constricted at the septa and somewhat swollen, hyaline to subhyaline, almost smooth to somewhat verruculose or irregularly rough-walled, sometimes appearing to have a slime coat, walls unthickened. Conidiophores macronematous, sometimes also micromematous, arising as lateral or terminal branches from plagiotropous or ascending hyphae, erect, straight to more or less flexuous, sometimes geniculate, nodulose, usually with small headlike swellings, sometimes also with intercalary nodules, sometimes swellings protruding and elongated to one side, unbranched, occasionally branched, (7–)20–330 μm, sometimes even longer, (2–)3–5 μm wide, swellings (4–)5–8 μm wide, pluriseptate, not
Location	Category	Country/Region
CPC 22225	Indoor air sample, air conditioner	USA
CPC 22226	Indoor air sample, living room	USA
CPC 22307	Indoor air sample	USA
CPC 22318	Indoor air sample	USA
CPC 22402	Indoor air sample, classroom	USA
CPC 22408	Indoor air sample	USA
CPC 22413	Indoor air sample, wood flooring sample	USA
DTO 305-H	House dust, basement HVAC room	USA
DTO 306-B	House dust, basement HVAC room	USA
DTO 307-E	House dust, basement HVAC room	USA
DTO 307-H	House dust, basement HVAC room	USA
DTO 308-B	House dust, basement HVAC room	USA
DTO 308-F	House dust, in a hotel	Mexico
DTO 306-C	House dust, in a hotel	Mexico
DTO 323-H	Indoor air	China
DTO 305-F	House dust, in a hotel	Mexico
DTO 306-E	House dust, in a church	Mexico
DTO 307-H	House dust, in a hardware store	Mexico
CBS 139585	Swab sample, apartment	Netherlands
DTO 161-D	Swab sample, apartment	Netherlands
DTO 323-B	Indoor air	China
DTO 323-C	Indoor air	China
DTO 323-8	Indoor air	China
DTO 324-A	Indoor air	China
DTO 324-B	Indoor air	China
CPC 22330	Indoor air sample, family room	USA
CPC 22342	Indoor air sample, 18th floor	USA
CPC 22373	Indoor air sample, hospital	USA
CPC 22280	Indoor air sample, hotel room	USA
CPC 22335	Indoor air sample	USA
CPC 22376	Indoor air sample, hospital	USA
DTO 305-B	House dust, in a hardware store	Mexico
DTO 323-F	Indoor air	China
CBS 119416	Hypersaline water, salt pans	Namibia
CPC 22308	Indoor air sample	USA
DTO 130-C	Swab sample, food plant	Netherlands
DTO 147-B	Indoor environment	Hungary
DTO 160-I	Fungal growth in living room	Netherlands
DTO 160-J	Black spots in bathroom	Netherlands
DTO 305-E	House dust, rental studio	Mexico
DTO 305-G	House dust, basement HVAC room	USA
DTO 305-H	House dust, basement HVAC room	USA
DTO 306-C	House dust, basement HVAC room	USA
DTO 306-D	House dust, South Africa	
DTO 306-A	House dust, small apartment	South Africa
DTO 307-F	House dust, South Africa	
DTO 307-I	House dust, basement HVAC room	USA
DTO 307-K	House dust, basement HVAC room	USA
DTO 308-B	House dust, rental studio	Mexico
CPC 22281	Indoor air sample, pineapple storage room	USA
DTO 305-E	House dust, small apartment	South Africa
CPC 22355	Indoor air sample, bedroom	USA
CPC 22366	Indoor air sample, living room	USA
CPC 22381	Indoor air sample, bathroom	USA
DTO 049-E	Swab sample, house	Netherlands
DTO 153-C	Bathroom	Netherlands
DTO 305-G	House dust, basement HVAC room	USA
DTO 305-H	House dust, basement HVAC room	USA
DTO 306-B	House dust, basement HVAC room	USA
DTO 306-E	House dust, basement HVAC room	USA
DTO 306-F	House dust, South Africa	
DTO 307-F	House dust, basement HVAC room	USA
DTO 307-G	House dust, basement HVAC room	USA
DTO 308-A	House dust, basement HVAC room	USA
DTO 308-A	House dust, basement HVAC room	USA
CPC 22337	Indoor air sample, 11th floor	USA
DTO 305-F	House dust, basement HVAC room	USA
DTO 305-F	House dust, basement HVAC room	USA
DTO 306-A	House dust, basement HVAC room	USA
DTO 306-B	House dust, basement HVAC room	USA
DTO 306-B	House dust, basement HVAC room	USA
DTO 306-C	House dust, basement HVAC room	USA
DTO 306-C	House dust, basement HVAC room	USA
DTO 306-F	House dust, basement HVAC room	USA
DTO 307-G	House dust, basement HVAC room	USA
DTO 307-H	House dust, basement HVAC room	USA
DTO 307-H	House dust, basement HVAC room	USA
DTO 308-B	House dust, basement HVAC room	USA
DTO 308-A	House dust, basement HVAC room	USA
DTO 308-B	House dust, basement HVAC room	USA

Fig. 3. (Continued)
constricted at the septa, septa sometimes not very conspicuous, subhyaline to pale brown or pale olivaceous, smooth or somewhat verruculose, walls unthickened or almost so, more thickened with age. Conidiogenous cells integrated, usually terminal, cylindrical with a terminal head-like swelling, sometimes with a second swelling, 15–40 μm long, proliferation sympodial, with few conidiogenous loci confined to swellings, up to six loci per swelling, loci protuberant, conspicuous, 1–2 μm diam, thickened and darkened-refractive. Ramoconidia occasionally formed, up to 34(–40) μm long, 3–4 μm wide, 0–2-septate. Conidia catenate, formed in branched chains, straight to slightly curved, small terminal conidia subglobose, ovoid to obovoid or somewhat limoniform, (3–)4–7(–9) × (2–)2.5–3.5 μm (av. ± SD: 5.3 ± 1.3 × 2.8 ± 0.4), aseptate; intercalary conidia ovoid, ellipsoid, 6–11(–12.5) × (2.5–)3–4 μm (av. ± SD: 8.6 ± 1.7 × 3.4 ± 0.5), 0(–1)-septate, secondary ramoconidia ellipsoid to subcylindrical or cylindrical, (8–)10–24(–31) × (3–)3.5–5(–7) μm (av. ± SD: 14.4 ± 4.1 × 4.2 ± 0.6), 0–1(–3)-septate, very rarely 5-septate, with up to 5 distal hila, subhyaline to pale brown or pale olivaceous, minutely verruculose to verrucose (mostly granulate with some muricate projections under SEM), walls unthickened or almost so, apex rounded or slightly attenuated towards apex and base, hila protuberant, conspicuous, 1–2 μm wide, up to 1 μm high, thickened and darkened-refractive; microcyclic conidiogenesis occurring.

Culture characteristics: Colonies on PDA reaching 22–32 mm diam after 14 d at 25 ºC, olivaceous grey to iron grey, sometimes whitish, smoke grey to pale olivaceous due to abundant aerial mycelium covering almost the whole colony, with age collapsing becoming olivaceous grey, occasionally zonate, velvety to floccose, margin narrow, entire edge, white, glabrous to somewhat feathery, aerial mycelium sparse to abundant, white, fluffy, growth regular, flat to low convex, sometimes forming few exudates in the colony centre, sporulating. Colonies on MEA reaching 21–32 mm diam after 14 d at 25 ºC, grey olivaceous, olivaceous grey to dull green or iron grey, sometimes whitish to pale smoke grey due to abundant aerial mycelium, olivaceous grey to iron grey reverse, velvety, margin narrow, entire edge to slightly undulate, white, radially furrowed, glabrous to slightly feathery, aerial mycelium sparse to abundant, mainly in the centre, white, fluffy, growth convex to raised, radially furrowed, distinctly wrinkled in the colony centre, without prominent exudates, sporulating. Colonies on OA reaching 20–32 mm diam after 14 d at 25 ºC, smoke grey, grey olivaceous to olivaceous grey, greenish black or iron grey reverse, margin narrow, entire edge, colourless to white, glabrous, aerial mycelium sparse to abundant, dark smoke grey, diffuse, high, later collapsed, felly, growth flat, without prominent exudates, sporulation profuse.
Substrates and distribution: On living and decaying plant and fungal material, human, air, hypersaline and industrial water; worldwide.

Additional materials examined: China, isol. from indoor air, DTO 323-C3, DTO 323-E1, DTO 323-G5. Denmark, isol. from indoor environment, B. Andersen, CBS 139578 = DTO 109-I5, DTO 109-E5 = BA 1905, DTO 109-E6 = BA 1906, DTO 109-F3 = BA 1918, DTO 109-F5 = BA 1920, Lyngby, isol. from an air sample, bedroom, U. Thrane, DTO 111-A5; isol. from wall basement, B. Andersen, DTO 110-B7. France, isol. from indoor environment, J. Dijksterhuis, DTO 108-F9. Germany, isol. from indoor environment, G. Fischer, DTO 005-E8; isol. from floor under curtain, DTO 101-I8; isol. from indoor environment, DTO 101-I8. Hungary, isol. from floor under curtain, DTO 101-I8; isol. from indoor environment, DTO 101-I8. The Netherlands, isol. from indoor air, area crocodiles, Zoo, DTO 106-C2; isol. from a wet wall, indoor, J. Houbraken, DTO 101-A1; Eindhoven, isol. from an air sample, bedroom, J. Houbraken, DTO 089-G4, DTO 089-G6, DTO 089-H5; ‘s Hertogenbosch, from swab sample archive, M. Meijer, DTO 089-D5; Rijksen, isol. from an air sample, kitchen, M. Meijer, DTO 089-B9; Rijswijk, from swab sample archive, M. Meijer, DTO 090-D3; Utrecht, from swab sample archive, M. Meijer, DTO 090-H4, UK, Ditchling, isol. from indoor air sample, Dec. 2012, Z. Jurjević, EMSL 1871 = CPC 22358. USA, California, Modesto, isol. from an indoor air sample, bedroom, Dec. 2012. Z. Jurjević, EMSL 1862 = CPC 22349; Georgia, Tucker, isol. from an air sample, bakery, DTO 127-E4 = AR377; Minnesota, isol. from indoor air sample, Z. Jurjević, EMSL 1726 = CPC 22266; New Jersey, Chatman, isol. from indoor air sample, Oct. 2012. Z. Jurjević, EMSL 1808 = CPC 22312; Z. Jurjević, EMSL 1809 = CPC 22313; New York, isol. from indoor air sample, bedroom, Dec. 2012. Z. Jurjević, EMSL 1856 = CPC 22343; isol. from indoor air sample, bedroom, 15th floor, Jan. 2013. Z. Jurjević, EMSL 1890 = CPC 22377.

Notes: Cladosporium allicinum (Fig. 2, clade 27) proved to be one of the most common Cladosporium species occurring in indoor environments after C. halotolerans (Fig. 3, clade 23), C. sphaerospermum (Fig. 3, clade 20) and C. pseudocladosporoides (Fig. 1, clade 56) (see also Segers et al. 2015). Surprisingly, none of the isolates included in the study of Segers et al. (2015) nor in this study turned out to be C. herbarum. This is of interest as C. herbarum is the most-studied species in allergy research (Breitenbach 2008, Poll et al. 2009). Segers et al. (2015) therefore recommended that specifically the common indoor fungi, C. sphaerospermum, C. halotolerans and C. allicinum, should be evaluated to assess whether the allergy screening panels of these fungi have to be adapted.
Fig. 4. Cladosporium aerium (CBS 143356). A–C. Colonies on PDA, MEA and OA. D–I. Conidiophores and conidia. J. Microcyclic conidiogenesis with a secondary ramoconidium forming a conidiophore with a conidium attached. K–L. Conidial chains. Scale bars = 10 μm.
Fig. 5. Cladosporium allicinum (DTO 109-E5). A–C. Colonies on PDA, MEA and OA. D–G. Macronematous conidiophores with conidial chains. H–J. Micronematous conidiophores. J. Conidia. Scale bars = 10 μm.
Cladosporium angulosum Sandoval-Denis et al., Persoonia 36: 289. 2016. MycoBank MB815333.

Holotype: USA, Texas, from human bronchoalveolar lavage fluid, Sep. 2008, D.A. Sutton, CBS H-22380. Ex-type culture: CBS 140692 = UTHSC DI-13-235 = FMR 13348.

Ill.: Sandoval-Denis et al. (2016: 289, fig. 3).

Mycelium superficial and immersed, hyphae unbranched or loosely branched, 1–3 μm wide, septate, subhyaline or pale olivaceous brown, smooth or minutely verruculose, thin-walled, often forming loose to dense ropes. Conidiophores macro- and micronematous, arising terminally or laterally from hyphae or hyphal ropes, erect, straight to slightly flexuous, narrowly cylindrical-oblong, non-nodulose or nodulose, usually not geniculate, unbranched or branched, frequently branching near the base in a 90° angle, branches short, often only as short lateral prolongations just below a septum, 9–150(−190) × (1.5)−2–4 μm, sometimes slightly attenuated towards the apex, septate, septa darkened, pale to medium olivaceous brown, smooth or minutely verruculose, especially towards the apex, thin-walled or slightly thickened, somewhat refractive. Ramoconidia subcylindrical, straight, 24.5−46 × 2−3.5 μm, bearing up to four conidiogenous loci of 1–1.5 μm diam, darkened and refractive. Ramoconidia subcylindrical, straight, 24.5−46 × 2−3.5 μm, 0–1-septate, pale olivaceous brown, smooth or finely roughened, with protuberant, thickened and darkened scars, base broadly truncate, 2–2.5 μm wide, unthickened or slightly thickened, somewhat refractive. Conidia catenate, numerous conidia formed in densely branched chains, branching in all directions, often forming loose to dense ropes. Erect, straight to slightly flexuous, narrowly cylindrical-oblong, non-nodulose, usually not geniculate, unbranched or once branched, sometimes two types of ramoconidia, short and long ones, 220–280 × (1.5)−2–4 μm, pleuroseptate, not constricted at septa, but sometimes irregular in outline due to wider or narrower parts within the stalk, pale to medium olivaceous brown or pale olivaceous, smooth or verruculose at the base, walls unthickened or slightly thickened. Conidiogenous cells terminal or intercalary, cylindrical, 8–46 × 2–3.5 μm, bearing up to four conidiogenous loci of 1–1.5 μm diam, darkened and refractive. Ramoconidia subcylindrical, straight, 24.5−46 × 2−3.5 μm, 0–1-septate, pale olivaceous brown, smooth or finely roughened, with protuberant, thickened and darkened scars, base broadly truncate, 2–2.5 μm wide, unthickened or slightly thickened, somewhat refractive. Conidia catenate, numerous conidia formed in densely branched chains, branching in all directions, often forming loose to dense ropes. Conidia subglobose or obovoid, 2.5−4.5 × 3−4 × 2.5(−3) μm, aseptate; intercalary conidia ovoid, limoniform or ellipsoidal, 4−10(−14.5) × 2−3 μm (av. ± SD: 7.2 ± 2.7 ± 2.6 ± 0.3), 0(−1)-septate, with 1–4 hila at the apex, attenuated towards apex and base; secondary ramoconidia ellipsoidal or subcylindrical to cylindrical, (7)−9–21.5(−30) × 2–3(−3.5) μm (av. ± SD: 15.9 ± 6.6 ± 2.8 ± 0.5), 0–1(−2)-septate, often constricted at septum, with 2–3(−4)−5 distal hila, pale to medium olivaceous brown, smooth or loosely minutely verruculose, thin-walled, with protuberant 0.5–1.5 μm diam conidial hila; microcyclic conidiogenesis not occurring.

Culture characteristics: Colonies on PDA attaining 50–56 mm diam after 14 d at 25 °C, olivaceous grey, olivaceous or iron-grey, reverse dull green to olivaceous black velvety to floccose, with regular white margin and a raised or umberate centre and radially folded towards the periphery. Colonies on MEA reaching up to 75 mm diam after 14 d at 25 °C, white to pale olivaceous grey or rosy buff, reverse olivaceous grey or ochraceous, floccose or fluffly, margins narrow, radially furrowed, aerial mycelium abundantly formed, loose to dense. Colonies on OA reaching 52–55 mm diam after 14 d at 25 °C, grey olivaceous or pale olivaceous grey, reverse olivaceous grey, velvety to floccose or fluffly-felt, with regular margin, flat. Without prominent exudates on all media.

Cardinal temperature for growth: Optimum 25 °C, maximum 35 °C, minimum 5 °C (from Sandoval-Denis et al. 2016).

Substrates and distribution: Isolated from plant, human bronchoalveolar lavage fluid and indoor air; Asia (Thailand), Australia (Australia), Central America (Panama), North America (USA).

Additional materials examined: Australia, Emerald Spring, isol. from Corymbia felsicheana, 22 Sep. 2007, B. Summerell, CPC 14566. USA, South Carolina, Charleston, isol. from indoor air sample, Aug. 2012, Ž. Jurjević, EMSL 1741 = CPC 22271.

Notes: Cladosporium angulosum (Fig. 1, clade 2) was introduced by Sandoval-Denis et al. (2016) as a closely related but phylogenetically distinct species of C. perangustum (Fig. 1, clade 4) showing sufficient genetic distance with respect to the ex-type strain of C. perangustum. Morphologically it differs from the latter species by forming smaller intercalary conidia and secondary ramoconidia. Conidia forming long branched chains with up to 14 conidia in the terminal unbranched part as described in Sandoval-Denis et al. (2016) could not be observed in the material examined. The strain CPC 14566 released some sulphur-yellow pigment into the PDA agar and some amber-coloured pigment into the OA agar. This has not been reported for the ex-type strain of C. angulosum. Cladosporium xanthochromaticum (Fig. 1, clade 3), another element of the C. perangustum s. lat. complex, was named for the production of a yellow diffusible pigment released into PDA agar and also some strains belonging to C. perangustum s. str. are able to produce an olivaceous buff or orange pigment in PDA agar and an amber coloured or orange pigment in OA agar. Cladosporium xanthochromaticum differs from C. angulosum in having longer conidia and in not growing at 35 °C (Sandoval-Denis et al. 2016).

The two isolates from Anaros comosus collected in Panama and reported in Bensch et al. (2015) as first records of C. perangustum in Central America proved to belong to C. angulosum (Sandoval-Denis et al. 2016).

Cladosporium angustisporum Bensch et al., Stud. Mycol. 67: 17. 2010. MycoBank MB517071. Fig. 6.

Holotype: Australia, North Queensland, Daintree National Park, isol. from Alloxylon willkhamii (Proteaceae), coll. B.A. Summerell, isol. P.W. Crous, CBS H-20423. Ex-type culture: CBS 125983 = CPC 12437.

Ill.: Bensch et al. (2010: 21, figs 5–6).

Mycelium immersed and superficial; hyphae branched, 1–3 μm wide, septate, mostly not constricted at septa, subhyaline to olivaceous brown, smooth to verrulose or irregularly rough-walled, walls unthickened, sometimes irregular in outline due to swellings and constrictions, forming expanded hyphal ropes. Conidiophores solitary, macro- and micronematous, erect or ascending, arising terminally or laterally from hyphae, straight or flexuous, filiform to cylindrical-oblong, non-nodulose, usually not geniculate, unbranched or once branched, sometimes two types of conidiophores, short and long ones, 22–280 × (1.5)−2–4 μm, pleuroseptate, not constricted at septa, but sometimes irregular in outline due to wider or narrower parts within the stalk, pale to medium olivaceous brown or pale olivaceous, smooth or verruculose at the base, walls unthickened or slightly thickened. Conidiogenous cells integrated, mainly terminal, sometimes also intercalary, neither nodulose nor geniculate, narrowly cylindrical-oblong, 10–27 μm long, with several loci crowded at the apex, in intercalary conidiogenous cells loci mainly situated on small lateral denticles just below a septum, subdentilicate, conspicuous, 1–1.5(−2) μm diam, thickened and darkened-refractive. Ramoconidia cylindrical, 18–42(−55) μm long, 0(−1)-septate, concolourous with tips of conidiophores, base broadly truncate, 2.5–3 μm wide, unthickened but sometimes slightly refractive. Conidia catenate, in branched chains, with 1–5 conidia in the terminal unbranched part of the chain, branching in all directions, small terminal conidia obovoid to
Fig. 6. *Cladosporium angustisporum* (CPC 22345). A–C. Colonies on PDA, MEA and OA. D–H. Conidiophores and conidial chains. I. Ramoconidium and conidia. J–L. Conidial chains. Scale bars = 10 μm.
narrowly ellipsoid, 3–6.5 × 1.5–2 μm (av. ± SD: 4.9 ± 1.0 × 1.8 ± 0.3), aseptate, intercalary conidia narrowly ellipsoid, fusiform, (4–)5.5–11.5–13) × (1.5–)2–2.5–(3) μm (av. ± SD: 8.1 ± 2.4 × 2.4 ± 0.4), 0(–)1-septate, with 1–3 distal hila, secondary ramoconidia ellipsoid to subcylindrical or cylindrical, (6–)7.5–26 × 2–3 μm (av. ± SD: 14.9 ± 6.1 × 2.7 ± 0.4), 0–1-septate, pale olivaceous or pale olivaceous brown, smooth or almost so, appearing to be reticulate, walls unthickened, somewhat attenuated towards apex and base, with 2–4(5) distal hila, hila conspicuous, subdentiulate, 0.5–2 μm diam, thickened and darkened-refractive.

Culture characteristics: Colonies on PDA attaining 55–65 mm diam after 14 d at 25 °C, olivaceous or mouse-grey due to abundant sporulation with pale olivaceous grey or smoke-grey patches of aerial mycelium, reverse leader-grey and iron-grey, velvety or flUFFy, margin whitish, feathery, broad, aerial mycelium abundant, woolly to flUFFy, loose diffuse or dense, growth low or high, without prominent exudates. Colonies on MEA reaching velvety or woolly-velvety or grey to pale greenish-grey, velvety to woolly-fluffy, margin whitish, leader-grey due to abundant aerial mycelium, reverse iron-grey to pale greenish-grey, velvety to woolly-fluffy, margin narrow, whitish, regular or undulate, aerial mycelium abundant, loose diffuse or dense, fluffy, growth low convex, radially furrowed, sometimes with few prominent exudates, sporulation profuse. Colonies on OA attaining 60–65 mm diam after 14 d at 25 °C, olivaceous grey with patches of white and smoke-grey due to aerial mycelium, reverse leader-grey and iron-grey, velvety or flUFFy, margin regular, glabrous, growth flat, without exudates, sporulation profuse.

Substrate and distribution: On plant material as well as isolated from indoor and outside air, also reported from clinical samples; Africa (South Africa, Uganda), Asia (China, India, Indonesia, Israel, Japan, South Korea, Thailand), Australasia (Australia), North America (USA).

Additional materials examined: USA, Alabama, Mobile, isol. from outside air sample, Dec. 2012, Z. Jurjević, EMSL 1858 = CPC 22345; Florida, Miami, isol. from indoor air sample, office, Jan. 2013, Z. Jurjević, EMSL 1884 = CPC 22371; Wisconsin, Oak Creek, isol. from air sample, bakery, DTO 127-E8 = AR387.

Notes: Cladosporium anthophilum (Fig. 1, clade 58) belongs to the C. cladosporioides species complex (Fig. 1) and is morphologically very close to C. cladosporioides s. str. but differs in having distinctly narrower conidia, 1.5–3 μm wide. Phylogeogenetically, C. anthophilum is allied to C. subuliforme (Fig. 1, clade 59) but the latter species is morphologically distinguishing in having slightly wider terminal and intercalary conidia and often awl-shaped conidiphores with a wider base and an attenuated apex (Bensch et al. 2010).

Until now C. anthophilum was only known from the type collected in Australia, but probably has an even wider distribution. It was recently reported from a clinical sample in the USA (Sandoval-Denis et al. 2015) and has been isolated several times from indoor and outside air (this study).

Cladosporium anthophilum Sandoval-Denis et al., Persoonia 36: 290. 2016. MycoBank MB815334.

Holotype: USA, Minnesota, from human bronchoalveolar lavage fluid, Sep. 2012, D.A. Sutton, CBS H-22381. Ex-type culture: CBS 140685 = UTHSC DI-13-269 = FMR 13382.

ill.: Sandoval-Denis et al. (2016: 290, fig. 4).

Mycelium superficial and immersed, hyphae unbranched or branched, (1–)2–4 μm wide, septate, subhyaline to pale olivaceous, smooth or minutely verruculose at or towards the base of conidiphores, thick-walled, anastomosing. Conidiphores macro- and semimacronematous, erect, cylindrical, non-nodulose, sometimes geniculate, usually branched, up to 550 μm long, 2–5 μm wide, often slightly attenuated towards the apex, septate, pale to medium olivaceous brown, slightly roughened to verruculose toward the base, with a thickened and refractive wall; occasionally micronematous conidiphores formed, 1.5–2 μm wide. Conidiogenous cells terminal and intercalary, cylindrical or subcylindrical, 15–54 × 3–5 μm, often with a swollen apex, bearing 3–8(10) conidiogenous loci, protuberant, subdentiulate, crowded, 1–2.5 μm diam, thickened and somewhat darkened. Ramoconidia cylindrical, 20–51 × 2–5 μm, 0(–)2-septate, pale olivaceous, smooth, with conidiol scars protuberant, thickened and darkened. Conidia forming short, branched chains with up to four conidia in the terminal unbranched part of the chain, small terminal conidia ovoid or ellipsoid, 3.5–9 × 2–3 μm (av. ± SD: 5.1 ± 1.3 × 2.5 ± 0.5), intercalary conidia limoniform to ellipsoid, 4.5–12(–19) × 2–3(–4) μm (av. ± SD: 9.3 ± 2.3 × 3.0 ± 0.5), aseptate; secondary ramoconidia ellipsoid to subcylindrical, 7–28(–30) × (2–)3–4(–5) μm (av. ± SD: 18.7 ± 6.3 × 3.4 ± 0.6), 0–1(–2)–septate, often attenuated at the centre, subhyaline or pale olivaceous brown, smooth or finely roughened, reticulate under SEM, with 2–5 protuberant hila forming dense clusters at the distal end, 0.5–2 μm diam; microcial conidiogenesis sometimes occurring.

Culture characteristics: On PDA attaining 17–80 mm diam after 14 d at 25 °C, grey olivaceous, olivaceous or greenish olivaceous, reverse leaden-grey or olivaceous black, velvety or powdery, margin white, regular, flat or folded, aerial mycelium sparse, diffuse, sometimes showing cottony to floccose white to grey cushions. Colonies on MEA reaching 50–72 mm diam after 14 d at 25 °C, grey olivaceous, glaucous-grey towards margins, reverse iron-grey, powdery or flUFFy-felt, margin regular, radially furrowed or wrinkled, aerial mycelium diffuse or more abundant in colony centre, flUFFy-felt. Colonies on OA attaining 27–74 mm diam after 14 d at 25 °C, smoke-grey, grey olivaceous or olivaceous greenish olivaceous towards margins, reverse leaden-grey, iron-grey or leaden-black, flat, velvety or flUFFy-felt, margin fimbriate, aerial mycelium sparse or more abundant. Sporulation profuse on all media, without prominent exudates and diffusible pigment.

Cardinal temperature for growth: Optimum 25 °C, maximum 35 °C, minimum 5 °C (from Sandoval-Denis et al. 2016).

Substrates and distribution: Isolated from human clinical samples, indoor air, food and plant material; Africa (South Africa, Uganda), Asia (China, India, Indonesia, Israel, Japan, South Korea, Thailand), Australasia (Australia), North America (USA).

Additional materials examined: China, isol. from indoor air, DTO 317-17, DTO 316-E3, DTO 323-C2, DTO 323-D6, DTO 323-C7, DTO 323-D2, DTO 323-D8, DTO 323-D9, DTO 324-C4, DTO 324-D3, India, isol. from Dalibergia sp., W. Gams, CPC 11131. Israel, isol. from seeds of Gossypium sp., CBS 674.82 = ATCC 200936. Japan, isol. from bamboo slats, CBS 122130 = ATCC 38012. South Africa, Babert, Laeveld Coop, isol. from Trichitis aestivum, CPC 14009. South Korea, isol. from Phytolacca americana, H.D. Shin, CPC 11122; from Ricinus communis, 2003, H.D. Shin, CPC 11119. Uganda, Mbunde, isol. from food, coffee leaf, B. Anderson, CPC 14356 = BA 1678. USA, Arizona, Tucson, isol. from indoor air sample, hospital, Jan. 2013, Z. Jurjević, EMSL 1908 = CPC 22393; Georgia, isol. from air sample, bakery, DTO 127-E8 = AR409; McDonough, isol. from indoor air sample, living room, Nov. 2012, Z. Jurjević, EMSL 1818 = CPC 22315.

Notes: Cladosporium anthophilum was recently introduced by Sandoval-Denis et al. (2016) and proved to be a common
saprobic fungus (see Table 1). It also represents a clinically relevant fungus, being the second most prevalent species identified in a set of clinical isolates from the USA after C. halotolerans (Sandoval-Denis et al. 2015), and has been isolated quite frequently from indoor environments. Although discussed as phylogenetically distant (Sandoval-Denis et al. 2016), C. anthropophillum (Fig. 1, clade 65) is shown to be morphologically and phylogenetically closely related to C. cladosporioides (Fig. 1, part 66). It mainly differs by its longer conidiophores, up to 550 μm long, with numerous loci crowded at or towards the often subnodulose apex and ovoid to ellipsoid terminal conidia, 3.5–9 μm long, showing a fine, dense reticulation under SEM, whereas C. cladosporioides forms shorter conidiophores (10–250 μm) with usually (1−2)−4 conidigenous loci at the apex and subglobose to limoniform, 3−6(−7) μm long terminal conidia with an irregularly reticulate or striped wall. Cladosporium anthropophillum also resembles C. pseudocladosporioides and C. tenuissimum, but they are genetically well differentiated (Fig. 1, clades 65, 56 and 64, respectively) and morphologically, C. anthropophillum shows longer terminal conidia, [3.5−9 μm long (av. ± SD: 5.1 ± 1.3)] vs 3−5.5 (av. ± SD: 4.1 ± 0.7) in C. pseudocladosporioides and (2−)2.5−5−(6) (av. ± SD: 3.7 ± 1.0) in C. tenuissimum] and forms longer conidiophores than C. pseudocladosporioides (15−155 μm long) (Bensch et al. 2012, Sandoval-Denis et al. 2016).

Cladosporium asperulatum Bensch et al., Stud. Mycol. 67: 21. 2010. MycoBank MB517072. Fig. 7.

Holotype: Portugal, isol. from Protea susannae (Proteaceae), 1 May 2007, P.W. Crous, CBS H-20424. Ex-type culture: CBS 126340 = CPC 14040.

Lit.: Bensch et al. (2012): 70–72; 2015: 41.

III.: Bensch et al. (2010): 22–24, figs 7–9; 2012: 70–72, figs 42–44.

Mycelium immersed, sparingly superficial; hyphae unbranched or very sparingly branched, 2−4.5 μm wide, septate, not constricted at septa, subhyaline to pale or medium olivaceous brown, smooth to minutely verruculose or irregularly verrucose, walls unthickened or almost so, sometimes forming loose to dense ropes of a few or several hyphae. Conidiophores macro- and micronematous, solitary, arising terminally or laterally from hyphae, erect, straight to slightly flexuous, cylindrical-oblong, sometimes slightly geniculate towards the apex, non-nodulose, (15−)45−210(−360) × (2−)3−4(−5) μm, sometimes up to 5 μm wide at the base, unbranched, occasionally branched, branches below the apex or at a lower level, usually below a septum, sometimes up to 105 μm long, plurisepitate with 0−12 septa, not constricted, pale to medium olivaceous brown, paler towards the apex and sometimes attenuated, smooth to asperulate or minutely verruculose, walls slightly thickened; micronematous conidiophores filiform or narrowly cylindrical-oblong, about 2 μm wide, paler and narrower, subhyaline or pale olivaceous brown, mostly with a single apical scar. Conidiogenous cells integrated, mainly terminal, cylindrical-oblong, sometimes slightly geniculate-sinusous towards the apex, 22−38 μm long, smooth or almost so, with 2−4 apical loci, protuberant, subdenticulate, sometimes situated on peg-like prolongations, 1−2 μm diam, thickened and darkened-refractive. Ramoconidia cylindrical-oblong, 15−50 × 3−4 μm, (0−)1-septate, concolourous with tips of conidiophores, smooth or almost so, base broadly truncate, (2.2−)2.5−3−(3.2) μm wide, unthickened. Conidia catenate, in branched chains, up to (8−10) conidia in the terminal unbranched part of the chain, small terminal conidia obvoid, 4.5−7(−8) × 2−3(−3.5) μm (av. ± SD: 5.4 ± 1.0 × 2.6 ± 0.4), intercalary conidia ovoid, fusiform to ellipsoid, 5−11(−13) × 2.5−3(−4) μm (av. ± SD: 8.0 ± 2.2 × 2.9 ± 0.4), aseptate, secondary ramoconidia ellipsoid, fusiform, subcylindrical, (7.5−) 9−26−(37) × (2.5−)3−4−(5) μm (av. ± SD: 17.9 ± 6.5 × 3.4 ± 0.6), 0(−)1-septate, very rarely with a second septum, not constricted at septa, subhyaline to pale olivaceous brown, smooth to minutely verruculose or irregularly rough-walled (LM), under SEM loosely verruculose or surface with irregularly reticulate structure or embossed stripes probably caused by diminishing turgor and shrivelling of tender conidia, walls slightly thickened, attenuated towards apex and base, hila protuberant, subdenticulate, 0.8−2 μm diam, thickened and darkened-refractive; microcyclic conidigenesis not observed.

Culture characteristics: Colonies on PDA attaining 48−53 mm diam after 14 d at 25 °C, olivaceous grey, iron-grey or grey olivaceous at margins, sometimes zonate, reverse leaden-grey, greyish blue to iron-grey, powdery to fluffy or hairy, margin white, narrow, glabrous, aerial mycelium abundantly formed, dense, fluffy and high in colony centre, growth flat to low convex with somewhat elevated colony centre, sometimes with prominent exudates, sporulation profuse. Colonies on MEA reaching 45−64 mm diam after 14 d at 25 °C, olivaceous grey to pale greenish grey, reverse olivaceous grey to iron-grey, powdery to fluffy, margin white to smoke-grey, narrow, regular, glabrous to feathery, radially furrowed, aerial mycelium abundant, sometimes several prominent exudates formed appearing blackish, sporulation profuse. Colonies on OA attaining 45−55 mm diam after 14 d at 25 °C, grey olivaceous or olivaceous, smoke-grey due to abundant fluffy-felt aerial mycelium, margin regular, without exudates, sporulation profuse.

Substrates and distribution: Isolated from plant material and indoor environment; Asia (India), Europe (Portugal), North America (Mexico, USA).

Additional materials examined: India, isol. from Eucalyptus leaf litter (Myrtaceae), 1 Mar. 2004, coll. W. Gams, isol. P.W. Crous, CBS 126339 = CPC 11158. USA: California, Frazier Park, isol. from indoor air sample, bathroom, Dec. 2012, Z. Jurjević, EMSL 1877 = CPC 22364.

Notes: Cladosporium asperulatum (Fig. 1, clade 28) is phylogenetically close to but distinct from C. myraceaeum (Fig. 1, clade 26; see Bensch et al. 2010) and C. angustimerinale (Fig. 1, clade 27; see Bensch et al. 2015). Morphologically this species is comparable with C. subtilissimum (Fig. 2, clade 25), which belongs to the C. herbarum species complex, but differs in having 0−12-septate, somewhat longer conidiophores and narrower conidia (Schubert et al. 2007b). It has recently been reported from Mexico (Bensch et al. 2015) and now proves to be also occurring in indoor environments.

Cladosporium austrohemisphaericae Bensch et al., Stud. Mycol. 82: 42. 2015. MycoBank MB814626. Fig. 8.

Holotype: New Zealand, Auckland, Morrin Reserve, −37.00, 175.00, isolated from black mould on the surface of a fruit of Lagunaria patersonia (Malvaceae), 18 Apr. 2005, C.F. Hill, Hill 1163, CBS H-22350. Ex-type culture: CBS 140482 = CPC 12068.

III.: Bensch et al. (2015: 46, fig. 10).
Mycelium immersed, branched, 1–4 μm wide, septate, subhyaline to very pale olivaceous brown, asperulate, minutely verruculose, verruculose or even verrucose, walls unthickened, without any swellings and constrictions. Conidiophores micro- to semimacronematous or macronematous, arising terminally and laterally from erect or ascending hyphae, erect, solitary or in pairs or loose groups, straight to flexuous, filiform to narrowly cylindrical-oblong, sometimes once geniculate at or towards the apex, unbranched or once branched, branches often only as short lateral peg-like prolongations just below a septum, 20–135(–180) × (2–)2.5–3.5 μm, at the base up to 4.5 μm wide, septate, often only with up to four not very conspicuous septa, sometimes disarticulating at septa and forming ramoconidia and fragments, subhyaline to pale or medium olivaceous brown,
Fig. 8. Cladosporium austrohemisphaericum (DTO 305-E8). A–C. Colonies on PDA, MEA and OA. D–I. Unbranched or branched conidiophores with conidial chains. J. Ramoconidium with conidial chains. Scale bars = 10 μm.
minutely verruculose, asperulate, sometimes verrucose or irregularly rough-walled especially towards the base and almost smooth at or towards the apex, walls unthickened or slightly thick-walled, slightly attenuating towards the apex, sometimes conidiophores reduced to conidiogenous cells. Conidiogenous cells integrated, mostly terminal, sometimes intercalary, filiform to narrowly cylindrical-oblong, sometimes once geniculate, non-nodulose, (6–)13–45(–60) μm long, with 1–3(–4) apical loci, conspicuous, subdenticulate to denticulate, 1–2 μm diam, thickened and darkened-refractive. Ranoconica cylindrical-oblong, 12–45 × 2–3(–3.5) μm, 0–1(–2)-septate, subhyaline to pale olivaceous brown, almost smooth to asperulate or minutely verruculose, base broadly truncate, 2–3 μm wide, neither thickened nor darkened. Conidia numerous, catenate, formed in branched chains, branching in all directions, in younger chains often dichotomously branched, 1–3 conidia in the terminal unbranched part of the chain, small terminal conidia globose, subglobulo to obvoid or ovoid, 2–5(–7) × (1–) 1.5–3 μm (av. ± SD: 3.3 ± 1.0 × 2.1 ± 0.5), aseptate, subhyaline to pale or medium olivaceous brown, minutely verruculose to verrucose, hila 0.5–0.8 μm diam or narrower, intercalary conidia ovoid to ellipsoid-ovoid, 4–11 × 2–3.5 μm (av. ± SD: 7.1 ± 2.1 × 2.6 ± 0.4), 0(–1)-septate, sometimes not very conspicuous, surface ornamentation as in small terminal conidia, rounded or only very slightly attenuated towards the ends, with 2–4 distal hila, 0.5–1 μm diam, secondary ranoconica ellipsoid to subcylindrical, (8–)10–27(–30) × 2–3.5(–4) μm (av. ± SD: 18.5 ± 6.2 × 2.9 ± 0.4), 0–1(–3)-septate, with age constricted at septa, septum median or in the upper half, 1–3(–4) distal hila, subhyaline to pale olivaceous brown, almost smooth to loosely verruculose or irregularly rough-walled, not or only slightly attenuated towards apex and base, hila conspicuous, subdenticulate, 1–2 μm diam, thickened and darkened-refractive; micromycetous conidiogenesis not occurring.

Culture characteristics: Colonies on PDA attaining 35–45 mm diam after 14 d at 25 °C, grey olivaceous to dull green or iron-grey, reverse greyish black to olivaceous black, velvety to powdery, margin white, narrow, glabrous to feathery, regular, aerial mycelium absent or sparse, loose, diffuse, growth flat or low convex, without prominent exudates, sporulation profuse. Colonies on MEA reaching 24–44 mm diam after 14 d at 25 °C, grey olivaceous to greenish grey or glaucous-grey at margins, paler in the centre, reverse olivaceous to olivaceous grey or iron-grey, velvety to powdery, margin white, very narrow, feathery, radially furrowed, growth flat to low convex with slightly elevated colony centre, wrinkled and folded, few prominent exudates formed, sporulation profuse. Colonies on OA attaining 26–34 mm diam after 14 d at 25 °C, grey olivaceous or iron-grey, smoke-grey due to abundant sporulation, reverse leaden-grey to leaden-black, powdery, margin white, very narrow, glabrous, slightly undulate, aerial mycelium absent or diffuse, without prominent exudates.

Substrates and distribution: On plant material and fruits of different hosts as well as indoor environments (house dust); Australasia (Australia, New Zealand), South Africa.

Additional material examined: New Zealand, isol. from house dust, DTO 305-E8 = TAU0SNZ-351A.

Notes: A single isolate from house dust collected in New Zealand morphologically fits the concept of the recently described species C. austrohemisphaericum which was isolated from black mould on the surface of a fruit in New Zealand. Therefore, it is herein treated as an additional isolate of that species although all four known isolates sit on quite long branches in a well-supported clade (Fig. 3, clade 9) and may each represent a cryptic species. For now we refrain from introducing further novel species for these morphologically similar isolates until additional isolates are available to formalise species concepts for these lineages.

Cladosporium cladosporioides (Fresen.) G.A. de Vries, Contr. Knowl. Genus Cladosporium: 57. 1952. Mycobank MB294915. Fig. 9

Type: Germany, on overwintered leaves of Hydrangea sp. (Hydrangeaceae) (not preserved). Neotype (designated in Bensch et al. 2010): Germany, isol. from indoor air, Ch. Trautmann, CBS H-20428. Ex-type culture: CBS 112388.

Lit.: Ellis (1971: 319), Domsch et al. (1980: 202), Ho et al. (1999: 121), Samson et al. (2000: 108), de Hoog et al. (2000: 583), Samson et al. (2001: 340), Park et al. (2004), Heuchert et al. (2005: 46–47), Bensch et al. (2010: 29–34), Bensch et al. (2012: 90–93).

Ill.: Fresenius (1850: Taf. 3, Figs 23–28), de Vries (1952: 58–59, Figs 10–11), Ellis (1971: 318, fig. 219 C), Domsch et al. (1980: 203, fig. 82), Ho et al. (1999: 122, figs 8–9), de Hoog et al. (2000: 583–584, figs), Samson et al. (2000: 108, fig. 48; 109, pl. 46), Bensch et al. (2010: 30–32, figs 17–19).

Mycelium immersed, rarely superficial; hyphae sparse, unbranched or sparingly branched, (1–)2–4(–5) μm wide, septate, septa occasionally darkened, without any swellings and constrictions, subhyaline, pale olivaceous brown or pale brown, smooth to minutely verruculose or rough-walled, walls unthickened. Conidiophores solitary, macro- or semimacronematous, sometimes micronematous, arising terminally from ascending hyphae or laterally from plagirotropous hyphae, straight to somewhat flexuous, narrowly cylindrical to cylindrical-oblong, sometimes filiform, non-nodulose, usually not geniculate-sinusuous, occasionally once geniculate, 40–300(–350) × (2.5–) 3–4(–5.5) μm, unbranched or occasionally branched, branches usually short, only as peg-like lateral outgrowth just below a septum, occasionally up to 60 μm, mostly in the upper third, plurisepatate, usually not constricted at septa, sometimes slightly constricted and one of the upper septa slightly darkened where ranoconica are formed, pale to medium olivaceous brown or brown, smooth to minutely verruculose or verrucose especially towards the base, walls unthickened or slightly thickened, occasionally slightly attenuated towards the apex, base sometimes swollen, up to 7 μm wide; micronematous conidiophores shorter, narrower, paler, unbranched, 9–150 × (1–)1.5–2.5(–3) μm wide. Conidiogenous cells integrated, usually terminal, sometimes intercalary with conidiogenous loci situated on small peg-like or integrated, usually terminal, sometimes

Cladosporium cladosporioides...
in long branched chains, up to 10 conidia in the upper unbranched part, branching in all directions, small terminal conidia subglobose, ovoid, ovoid to limoniform, 3−6(−7) × (1.5−) 2−2.5(−3) μm (av. ± SD: 4.7 ± 0.9 × 2.4 ± 0.3), aseptate, intercalary conidia limoniform, ellipsoid-ovoid, sometimes fusiform or subcylindrical, 5−12(−14.5) × (2−)2.5−3(−4) μm (av. ± SD: 8.1 ± 2.2 × 2.9 ± 0.3), aseptate, with up to 3(−4) distal hila, secondary ramoconidia ellipsoid, subcylindrical to cylindrical-oblong, (7−)10−33(−38) × (2−)2.5−4(−6) μm (av. ± SD: 19.4 ± 6.6 × 3.2 ± 0.5), 0(−1)-septate, rarely with two septa, not constricted at septa, with up to four distal hila, subhyaline, pale brown or pale olivaceous brown, smooth, under SEM smooth or surface with somewhat irregularly reticulate structure or embossed stripes probably caused by diminishing turgor and shrivelling of tender young conidia, thin-walled, sometimes cell structure unusual, with a small cavity in the cells, hila conspicuous, subdenticulate to denticulate, 0.5−2(−2.5) μm diam, somewhat thickened and darkened-refractive; microcyclic conidiogenesis occasionally occurring.

Culture characteristics: Colonies on PDA up to 80 mm diam after 14 d at 25 °C, grey olivaceous to dull green or olivaceous grey, reverse iron-grey, leaden grey or olivaceous black, velvety to floccose, margins grey olivaceous to white, feathery, regular,
aerial mycelium sparse, diffuse, or sometimes abundantly formed, dense, floccose-felt, low, forming mats, growth flat to low convex, usually without prominent exudates, occasionally with several small prominent exudates. Colonies on MEA 54−72 mm diam after 14 d at 25 °C, grey olivaceous to olivaceous or olivaceous grey, pale olivaceous grey or whitish due to aerial mycelium, olivaceous black or olivaceous buff at margins, reverse olivaceous black or iron-grey, velvety to floccose, margins white to grey olivaceous, glabrous to feathery, aerial mycelium sparse, scattered, diffuse to floccose, sometimes abundantly formed, covering almost the whole colony, floccose-felt, whitish, growth flat to effuse, somewhat radially furrowed, without prominent exudates. Colonies on OA 65−70 mm diam after 14 d at 25 °C, grey olivaceous, towards margins at first greenish olivaceous, then dull-green and again grey olivaceous, sometimes white, reverse olivaceous grey to leaden-grey, sometimes pale mouse-grey, velvety to floccose, margins narrow, glabrous, regular, aerial mycelium scattered to sometimes abundant, floccose or felty, loose to somewhat dense, growth flat, no prominent exudates; sporation usually profuse on all media.

Substrates and distribution: On fading and decaying plant material, on living leaves as secondary invader, isolated from air, soil, foodstuffs, water-damaged building materials and numerous other materials; cosmopolitan.

Additional materials examined: Denmark, isol. from indoor environment, B. Andersen, DTO 109-H4 = BA 1698, DTO 109-H6 = BA 1900. Hungary, isol. from indoor environment, DTO 147-A9; DTO 101-G2; isol. from floor under curtain, DTO 101-H7; isol. from a bathroom, DTO 102-A4. The Netherlands, air sample, bakery, DTO 127-D8 = AR362; Rijswijk, from swab sample archive, M. Meijer, DTO 090-C6; Weert,isol. from indoor air sample, living room, B. Favié, DTO 082-F1. USA, Arizona, Peoria, isol. from indoor air sample, bedroom, Jan. 2013, Z. Jurjević, EMSL 1893 = CPC 22380; Florida, St. Augustine,isol. from indoor air sample, kitchen, Dec. 2012, Z. Jurjević, EMSL 1861 = CPC 22348; Georgia,isol. from indoor air sample, Aug. 2012, Z. Jurjević, EMSL 1722 = CPC 22264; Michigan, Dryden,isol. from indoor air sample, bedroom, Dec. 2012, Z. Jurjević, EMSL 1860 = CPC 22347; Minnesota,isol. from indoor air sample, Aug. 2012, Z. Jurjević, EMSL 1723 = CPC 22265; Vermont, Williston,isol. from indoor air sample, bedroom, Dec. 2012, Z. Jurjević, EMSL 1878 = CPC 22365; Virginia, Arlington,isol. from indoor air sample, living room, Jan. 2013, Z. Jurjević, EMSL 1880 = CPC 22367.

Notes: Cladosporium cladosporioides (Fig. 1, clade 66) as previously circumscribed on the basis of morphology represents a heterogeneous complex of numerous phylogenetically and more or less also morphologically distinct species (Bensch et al. 2010). Cladosporium cladosporioides s. lat. is one of the most common, saprobic Cladosporium species with worldwide distribution, frequently occurring as secondary invader on necrotic parts of many different host plants, isolated from air, soil, textiles and numerous other substrates (Ellis 1971) and found as a common endophytic fungus (Riesen & Sieber 1985, El-Moray 2000, Kumaresan & Suryanarayanan 2002). Furthermore, the conidia of this species are among the most ubiquitous bioaerosols found in indoor and outdoor samples (Domsch et al. 1980, Mullins 2001, Park et al. 2004).

Yamamoto (1959), Ellis (1971), de Hoog et al. (2000) and Samson et al. (2000) discussed strains of “C. cladosporioides” with asperulate or finely verruculose conidia, which proved to represent different, phylogenetically clearly distinct species, as for instance C. asperulatum (Fig. 1, clade 28) and C. perangustum (Fig. 1, clade 4). Sandoval-Denis et al. (2016) introduced C. anthropophilum (Fig. 1, clade 65), a common saprobic fungus which can also represent a clinically relevant fungus (Sandoval-Denis et al. 2015), and discussed it to be phylogenetically distant from C. cladosporioides but in our analysis it now clusters close to it (Fig. 1, clades 65, 66).

However, the association between the two clades is only supported by the Bayesian analysis (BPP = 0.97). Although difficult to separate morphologically, C. anthropophilum mainly differs in forming longer (up to 550 μm) conidiophores with numerous conidigenous loci crowded at or towards the apex and avoid to ellipsoid terminal conidia (3.5−9 μm long) which show a fine, dense reticulation under SEM (Sandoval-Denis et al. 2016).

Three morphologically almost indistinguishable but phylogenetically distinct lineages, indicated in Bensch et al. (2010) as C. cladosporioides s. lat. Lineages 1, 2 and 4 which cluster apart from C. cladosporioides s. str. (Fig. 1, clade 66) are introduced as new species in this paper, namely C. europaeum (Fig. 1, clade 35), C. vicinum (Fig. 1, clade 34) and C. westerdijkiae (Fig. 1, clade 43). Given their high morphological similarity the use of a molecular approach for the correct identification of all these species is highly recommended.

Cladosporium coloradense Bensch & Samson, sp. nov. MycoBank MB822218. Fig. 10

Etymology: Name refers to the place where it was collected, Colorado.

Holotype: USA, Colorado, Denver, isol. from air sample, bedroom, June 2012, Z. Jurjević, CBS H-23249. Ex-type culture: CPC 22238 = CBS 143357 = EMSL 1685.

Diagnosis: Differs from C. succulentum by its narrowly ellipsoid terminal conidia and its longer conidiophores and conidia.

Superfacial mycelium sparingly formed, unfertile hyphae filiform, narrowly cylindrical-oblong, 1−2.5 μm wide, septate, neither constricted nor swollen, subhyaline, walls unthickened, fertile hyphae forming conidiophores, darker and wider, often somewhat swollen at the base of conidiophores, 3−5(−6) μm wide, pale to medium olivaceous brown, somewhat constricted at septa, smooth, walls somewhat thickened, sometimes forming loose aggregations. Conidiophores macro- and micromeratus, arising laterally or terminally from hyphae, solitary or in pairs, sometimes arising in loose groups of four from hyphal aggregations, straight or slightly flexuous, often very long, narrowly cylindrical-oblong, neither geniculate nor nodulose, unbranched, occasionally branched, (18−)30−510 μm long or even longer, (2.5−)3−4 μm wide, up to 5.5 μm wide at the base, pluriseptate, 1−18-septa, pale to medium olivaceous brown, often paler towards the apex, smooth or almost so, walls thickened, 0.5−1 μm thick. Conidigenous cells integrated, terminal and intercalary, cylindrical or subcylindrical, neither geniculate nor nodulose, (13−)21−36 μm long, in terminal cells 2−4 loci crowded at the uppermost apex, in intercalary ones 1−3 loci situated on small lateral outgrowths just below or above a septum, loci 1−2 μm diam. Ramoconidia subcylindrical or cylindrical, 25−43 × 3−4.5 μm, 0(−2)-septate, base 2(−3) μm wide, neither thickened nor darkened. Conidia catenate, numerous formed, paler than conidiophores and ramoconidia, up to five conidia in the terminal unbranched part of the chain, branching in all directions, small terminal conidia narrowly ellipsoidal, 3−5.5 × 1.5−2 μm (av. ± SD: 4.1 ± 0.7 × 1.7 ± 0.2), apex rounded, attenuated towards the base, subhyaline, pale olivaceous or pale olivaceous brown, almost smooth or asperulate, intercalary conidia narrowly ellipsoidal, 4.5−10 2−3 μm (av. ± SD: 7.7 ± 2.7 × 2.5 ± 0.4), aseptate, with 1−3(−4) distal scars, almost
Fig. 10. Cladosporium coloradense (CBS 143357). A–C. Colonies on PDA, MEA and OA. D–K. Conidiophores and conidial chains. L–M. Ramoconidia and conidial chains. Scale bars = 10 μm.
smooth, asperulate or loosely minutely verruculose, secondary ramoconidia narrowly ellipsoid or subcylindrical, 9.5–19(–25) × 3–3.5(–4.5) μm (av. ± SD: 15.6 ± 3.9 × 3.3 ± 0.4), aseptate, almost smooth or asperulate, pale olivaceous brown or pale medium olivaceous brown, walls unthickened or very slightly thick-walled, with 2–4 distal scars, hila conspicuous, 0.5–2 μm diam; microcyclic conidiogenesis not occurring.

Culture characteristics: Colonies on PDA reaching 43–58 mm diam after 14 d at 25 °C, olivaceous, iron-grey, reverse iron-grey, greyish blue towards margins, velvety or fluffy, margins glabrous, aerial mycelium diffuse, fluffy, without prominent exudates, sporulation profuse. Colonies on MEA attaining 41–49 mm diam after 14 d at 25 °C, olivaceous grey, olivaceous due to abundant sporulation mainly in colony centre, reverse olivaceous grey to iron-grey, powdery to velvety, margin narrow, white, glabrous or slightly feathery, aerial mycelium loose, diffuse to more densely and fluffy, high, growth low convex with somewhat elevated colony centre, radially furrowed, without exudates. Colonies on OA reaching 35–40 mm diam after 14 d at 25 °C, iron-grey, olivaceous due to abundant sporulation, reverse olivaceous grey to iron-grey, powdery or fluffy, margin regular, glabrous, aerial mycelium loose diffuse, high, growth flat, without exudates.

Substrates and distribution: Indoor air; North America (USA).

Notes: With its narrowly ellipsoid conidia, C. coloradense ([Fig. 3, clade 14]) is not a very typical member of the C. sphaerospermum species complex, but reminds one of species belonging to the C. cladosporioides species complex. Similar as in C. aciculare ([Fig. 3, clade 16]) and C. fusiforme ([Fig. 3, clade 17]) the conidial shape departs from the globose to subglobose shape of typical members of this species complex. Both species are phylogenetically allied but C. aciculare can be distinguished by its narrower conidiophores, secondary ramoconidia and conidigenous loci and hila ([Bensch et al. 2015]; and C. fusiforme possesses shorter conidiophores and wider, fusiform apical conidia ([Zalar et al. 2007; Bensch et al. 2012]). Its closest phylogenetic relative is C. succulentum ([Fig. 3, clade 15], isolated from a dolphin bronchus, which can be differentiated from the new species by its oval to short clavate terminal conidia and its shorter conidiophores and conidia ([Sandoval-Denis et al. 2016]). Until now the species is known only from a single isolate.

Cladosporium delicatulum Cooke, Grevillea 5(33): 17. 1876. MycoBank MB164571. [Fig. 11].

Holotype: India, on dead leaves (litter), Colonel Hobson, No. 23 (K [M] 121551). **Isotypes:** Vize, Micro-Fungi Exot. 24 (e.g., B 700006230).

Lit.: [Bensch et al. 2010: 37–40; 2012: 102–106; 2015: 45].

ILL.: [Bensch et al. 2010: 38–40, figs 22–25; 2012: 103–105, figs 87–92].

Mycelium immersed, rarely superficial; hyphae unbranched or sparingly branched, (0.5–)1–3(–4) μm wide, septate, without swellings and constrictions, subhyaline to pale olivaceous or pale olivaceous brown, smooth to minutely verruculose, sometimes loosely verrucose, sometimes forming ropes. **Conidiophores** macro- and micronematous, solitary, arising terminally and laterally from hyphae, erect, straight to somewhat flexuous, cylindrical-oblong, non-nodulose, sometimes slightly geniculate towards the apex, unbranched, occasionally branched, once or several times, often as short peg-like prolongations, 50–165(–200) × 3–4.5(–5) μm, 2–4(–7)-septate, sometimes attenuated at septa, pale olivaceous to pale medium olivaceous brown, smooth, sometimes loosely minutely verruculose at the base, walls unthickened or almost so, about 0.5 μm wide, sometimes slightly attenuated towards the apex, up to 5.5 μm wide at the base; micromenatous conidiophores narrower and pale olivaceous, 19–75(–100) × (1.5–)2–2.5 μm. **Conidigenous cells** integrated, terminal, sometimes intercalary, situated on small peg-like prolongations, cylindrical-oblong, sometimes geniculate at or towards the apex, non-nodulose, occasionally the whole cell inflated in shape like a secondary ramoconidium, 11–37 μm long, with (1–)2–3(–4) apical loci, crowded at the apex, conspicuous, subdenticulate to denticulate, sometimes situated on small lateral outgrowths, quite broad, truncate, rim and dome not distinctly visible, 1.5–2.2 μm diam, thickened and darkened-refractive. **Ramoconidium** cylindrical-oblong, 13–46 × 2.5–4(–5) μm, 0–1(–2)-septate, sometimes distinctly constricted at the median septum, base broadly truncate, 2–3 μm wide, neither thickened nor darkened-refractive. **Conidia** numerous, in densely branched chains, branching in all directions, up to four conidia in the terminal unbranched part of the chain, small terminal conidia obvoid, subglobe or globose, 2.5–4.5(–6) × (1.5–)2–2.5(–3.5) μm (av. ± SD: 3.7 ± 0.8 × 2.4 ± 0.4), aseptate, apex rounded, sometimes irregular due to additional lateral hila, intercalary conidia limoniform to ellipsoid-ovoid or sometimes irregular in outline due to lateral hila, 4–13(–17.5) × 2.5–3.5(–4) μm (av. ± SD: 7.8 ± 3.0 × 3.0 ± 0.4), 0–1-septate, attenuated towards apex and base, with 1–4(–6) distal hila, secondary ramoconidium ellipsoid-ovoid to subcylindrical or cylindrical, (6–)8–23.5(–31) × (2.5–)3–4.5(–5) μm (av. ± SD: 15.6 ± 5.4 × 3.6 ± 0.5), 0–1(–2)-septate, very rarely 3-septate, not constricted at septa, pale olivaceous to pale olivaceous brown, smooth or almost so, walls unthickened, often only slightly attenuated towards apex and base, with (1–)2–4(–5) distal hila, hila conspicuous, subdenticulate or denticulate, 0.5–2.2 μm diam, thickened and darkened-refractive; microcyclic conidiogenesis not observed.

Culture characteristics: Colonies on PDA attaining 60–78 mm diam after 14 d at 25 °C, olivaceous grey, grey olivaceous to olivaceous and olivaceous black, reverse olivaceous black, floccose to villose, margins grey olivaceous, feathery, regular, aerial mycelium scattered to abundant, covering almost the whole colony surface, floccose to villose, low to rarely high, growth flat, without prominent exudates, sporulation sparse. Colonies on MEA reaching 67–76 mm diam after 14 d at 25 °C, smoke-grey to pale olivaceous grey, olivaceous grey or glaucous grey at margins, reverse olivaceous grey, floccose, fluffy, margins white, glabrous to feathery, regular, aerial mycelium abundant, covering the whole colony surface, floccose to fluffy, growth flat, radially furrowed and wrinkled in colony centre, without prominent exudates, sporulation sparse or absent. Colonies on OA reaching 55–74 mm diam after 14 d at 25 °C, smoke-grey to pale olivaceous grey, grey olivaceous or olivaceous due to abundant sporulation, reverse pale greenish grey to olivaceous grey, velvety to floccose, margins regular, glabrous, narrow, colourless, aerial mycelium sparse to abundant, covering the whole surface, floccose, loose to dense, low, growth flat, without prominent exudates, sporulation sparse to profuse.

Substrates and distribution: Isolated from air, building material and dust, saprobic on dead leaves, fruits, stems, tubers, or
occurring as secondary invader on necrotic lesions caused by other fungi in vivo; widely distributed, Africa (Algeria), Asia (China, India, Taiwan), Australasia (New Zealand), Europe (Denmark, France, Germany, Poland, The Netherlands), North America (Mexico, USA), South America (Uruguay).

Additional materials examined: Algeria, isol. from indoor environment, L. Belhocine, DTO 134-D3 = DR22, DTO 134-D4, DTO 134-D5 = O200, DTO 134-D6 = BT27, DTO 134-D7 = BT91, DTO 134-D8 = BT92. Denmark, isol. from indoor air, 2007, B. Andersen, BA 1679 = CPC 14285, BA 1680 = CPC 14286, BA 1681 = CBS 126342 = CPC 14287; isol. from building material, school, 2007, B. Andersen, BA 1698 = CBS 126343 = CPC 14299; isol. from building material, 2007, B. Andersen, BA 1683 = CPC 14289; Asperen, swap sample archive, M. Meijer, DTO 090-F4; Broenshoej, isol. from indoor air, control room, 2000, B. Andersen, BA 1724 = CPC 14363, indoor air sample, in cupboard, water damaged room, 2000, B. Andersen, BA 1718 = CPC 14360; Valetcoed, isol. from dust, school, 2000, B. Andersen, BA 1740 = CPC 14372; Weert, isol. from indoor air.

Fig. 11. Cladosporium delicatulum (DTO 167-H5). A–C. Colonies on PDA, MEA and OA. D–I. Conidiophores and conidial chains. Scale bars = 10 μm.
air, living room, B. Favié, DTO 082-F3 = CBS 139574. Germany, isol. from indoor environment, DTO 145-C4; Sachsen-Anhalt, Halle (Saale), Robert-Franz-Ring, isol. from leaves of Tilia cordata (Tiliaceae), 2 Aug. 2004, K. Schubert. CBS H-20430, CBS 126344 = CPC 11389, reference strain of C. delicatulum. New Zealand, isol. from house dust, DTO 305-H7, DTO 305-f = TA0SNZ-340. Poland, isol. from indoor air in poultry houses, K. Plewa, DTO 167-H5, DTO 168-F6.

Notes: This species is undoubtedly a widespread saprobic hyphomycete commonly isolated from indoor environments. Morphologically it is comparable with C. cladosporioides (Fig. 1, clade 66) but C. delicatulum (Fig. 1, clade 44) differs from the latter species in having 0–1-septate intercalary conidia and secondary ramosconidia, only a few conidia in the terminal unbranched part of conidial chains, shorter often slightly geniculate conidiophores and shorter secondary ramosconidia. Cladosporium westertijikiae (Fig. 1, clade 43) is the closest relative in the tree but can be distinguished from C. delicatulum by usually aseptate and somewhat longer ramosconid and secondary ramosconid. Cladosporium inversicolor (Fig. 1, clade 42) is distinct by its longer conidial chains, longer small terminal and intercalary conidia, wider intercalary conidia and secondary ramosconidia, longer ramosconidia with a broader base, with conidia being smooth to loosely verruculose or irregularly rugose. The old, sparse type material of C. delicatulum is from India. New Indian collections and cultures are not available. Therefore, a formal epitypification of this species has not yet been proposed, but the German strain from Tilia cordata can serve as reference strain to fix the application of C. delicatulum and agrees well with the Indian type material (Bensch et al. 2010).

Cladosporium domesticum Bensch & Samson, sp. nov. MycoBank MB822219. Figs 12, 13.

Etymology: domesticum - Latin for house, all isolates from indoor environments.

Holotype: USA, New Jersey, Trenton, isol. from indoor air sample, Oct. 2012, Z. Jurjević, CBS H-23250. Ex-type culture: CBS 143358 = CPC 222307 = EMSL 1803.

Diagnosis: Differ from C. halotolerans by its 0–2-septate ramosconidia (0–5-septate in C. halotolerans), its less densely septate conidiophores and its slightly narrower conidia. The small terminal and intercalary conidia are not globose and not distinctly darker than ramosconidia and conidiophores as it is typical for C. halotolerans.

Mycelium unbranched or branched, 0.5–2.5(–4) μm wide, filiform or narrowly cylindrical-oblong, septate, mostly without any constrictions or swellings, if swollen then swellings up to 6 μm diam, subhyaline or pale olivaceous, smooth or almost or minutely verruculose especially those giving rise to conidiophores, often forming ropes of several hyphae, occasionally swollen hyphal cells or dense hyphal aggregations, swelling cells globose, doliform or irregular in outline. Conidiophores macro-, semimacro- or micromenato, arising from hyphae, occasionally also from swollen hyphal cells or hyphal aggregations, erect, straight, filiform or narrowly cylindrical-oblong, neither nodulose nor geniculate, unbranched or branched, often with one or several denticles or peg-like short lateral prolongations just below a septum, (3–) 30–125(–200) × 1.5–3 μm, septa appear to be darkened, sometimes somewhat constricted and thickened where ramoconidia will be seceded, subhyaline or very pale olivaceous, smooth or almost so, sometimes irregularly rough-walled, sometimes attenuated towards the apex, sometimes conidiophores very short, reduced to conidiogenous cells, formed as short denticle-like outgrowth of hyphae. Conidiogenous cells integrated, terminal and intercalary, (5–)10–39 μm long, with 1–3 conidiogenous loci at the apex or situated on short lateral prolongations, loci conspicuous, 1–1.5 μm diam, thickened and darkened-refractive. Ramoconidia formed but transition between ramosconidia and secondary ramosconidia difficult, 16–43 × 1.5–2.5 μm, 0–2–septate, base about 2 μm wide. Conidia catenate, numerous conidia formed in branched chains with branching in all directions, 1–5 conidia in the terminal unbranched part of the chain, small terminal conidia subglobose or obovoid, (2)–2.5–3.5(–4.5) × (1.5)–2.5(–3) μm (av. ± SD: 3.3 ± 0.8 × 2.2 ± 0.3), subhyaline or pale olivaceous brown, almost smooth to mostly irregularly verruculose, intercalary conidia limoniform, ovoid or ellipsoid, 4–11(–13) × 2–2.5(–3) μm (av. ± SD: 6.7 ± 2.2 × 2.4 ± 0.4), 0(–1)–septate, surface ornamentation and colour as in small terminal conidia, with 1–3 distal hila, secondary ramosconidia ellipsoid or subcylindrical, (6)–9(–12) × (1.5)–2(–3) μm (av. ± SD: 16.5 ± 6.0 × 2.4 ± 0.4), 0(–1)–3(–septate), pale olivaceous brown, smooth or almost so or irregularly verruculose as in smaller conidia, with (1–2)–4 distal hila, hila 0.5–1.5 μm diam; microcyclic conidiogenesis occurring.

Culture characteristics: Colonies on PDA reaching 35–50 mm diam after 14 d at 25 °C, pale olivaceous grey or olivaceous grey mainly in colony centre due to dense and abundant aerial mycelium, towards margins large patches of grey olivaceous or olivaceous where profusely sporulating, reverse leaden-grey and olivaceous grey, powdery or fluffy-felty, margins white, regular, glabrous or somewhat feathery, aerial mycelium diffused to mostly dense, sometimes very high in a few spots, growth flat or low convex with elevated and wrinkled colony centre, sometimes forming several prominent exudates, up to 2 mm diam. Colonies on MEA attaining 30–46 mm diam after 14 d at 25 °C, grey olivaceous where profusely sporulating, whitish or smoke-grey due to aerial mycelium, glaucous-grey, olivaceous grey or iron-grey at margins, reverse olivaceous grey and greyish sepia, velvety or felty, margins white, narrow, glabrous or somewhat feathery, radially furrowed, colony centre elevated, wrinkled and folded, aerial mycelium forming dense mats, low or high in a few spots, sometimes numerous small exudates starting to be formed. Colonies on OA reaching 35–50 mm diam after 14 d at 25 °C, grey olivaceous or olivaceous where sporulating, pale olivaceous grey to iron-grey due to aerial mycelium or where sterile, reverse smoke-grey, leaden-grey and olivaceous grey, velvety or fluffy-felty, margins glabrous, regular, aerial mycelium loose diffuse or mostly dense, low to very high, fluffy, without prominent exudates.

Substrates and distribution: Indoor environments (air, house dust); North America (USA).

Additional material examined: USA, isol. from house dust, DTO 305-H2 = AA03US-480, DTO 306-B6 = AA03US-525, DTO 307-E8 = AA03US-368, DTO 307-H5 = AA03US-402, DTO 308-B1 = AA03US-387; Florida, Oldsmar, isol. from indoor air sample, Nov. 2012, Z. Jurjević, EMSL 1821 = CPC 23218; New Jersey, Trenton, isol. from indoor air sample, Oct. 2012, Z. Jurjević, EMSL 1803 = CPC 222307; isol. from indoor air sample, 1st floor, Jan. 2013, Z. Jurjević, EMSL 1936 = CPC 22408; Pennsylvania, isol. from attic wood roofing sample, Jan. 2012, Z. Jurjević, EMSL 1962 = CPC 22413; Huntington Valley, isol. from indoor air sample, air conditioner, May 2012, Z. Jurjević, EMSL 1698 = CPC 22225; Texas, Georgetown, isol. from indoor air sample, classroom, Jan. 2013, Z. Jurjević, EMSL 1930 = CPC 22402.
Fig. 12. **Cladosporium domesticum** (CBS 143358). **A–C.** Colonies on PDA, MEA and OA. **D–H.** Macronematous conidiophores with conidial chains. **I–J.** Micronematous conidiophores with conidial chains. **K–L.** Conidial chains. Scale bars = 10 μm.
Notes: *Cladosporium domesticum* (Fig. 3, clade 21) is phylogenetically and morphologically closely allied to *C. halotolerans* (Fig. 3, clade 23) from which it can be differentiated by its 0–2-septate ramoconidia (0–5-septate in *C. halotolerans*), its less densely septate conidiophores and its slightly narrower conidia which are not arranged like a string of pearls. The small terminal and intercalary conidia are not globose and not distinctly darker than ramoconidia and conidiophores as is typical for *C. halotolerans*. On OA ramoconidia of *C. domesticum* are commonly formed and the conidiophores are much longer, up to 375 μm long or even longer.

Cladosporium parahalotolerans (Fig. 3, clade 22), also newly described and phylogenetically close to both *C. halotolerans* and *C. domesticum*, forms wider conidia and ramoconidia.

Cladosporium dominicanum Zalar et al., Stud. Mycol. 58: 169. 2007. MycoBank MB510995. Fig. 14.

Holotype: Dominican Republic, salt lake Enriquillo, isol. from hypersaline water, Jan. 2001, N. Gunde-Cimerman, isol. P. Zalar, CBS H-19733. Ex-type culture: EXF-732 = CBS 119415.

Lit.: Bensch et al. (2012: 108–110; 2015: 45).

ILL.: Zalar et al. (2007: 170, fig. 6), Bensch et al. (2012: 109, fig. 97).

Mycelium unbranched to sparingly branched, septate, not constricted at septa, pale olivaceous brown, minutely verrucose to irregularly rough-walled, walls unthickened or almost so, protoplasm somewhat aggregated in the centre of the cells.

Fig. 13. *Cladosporium domesticum* (DTO 305-H2). A, B. Shows rows of rounded cells present at agar level that can form aerial hyphae and/or conidiophores. C–H. Details of conidia next to aerial or substrate fungal structures. Note the less distinct ornamentation of the *C. sphaerospermum* type containing out of ridges and warts. Scars on conidia (D, H) and ramoconidia (with differences in size, G) are visible. Note the very long “neck” area between conidia in D, F–H. Scale bars = 2 (C, E–H), 5 (D), 10 (A, B) μm.
granular, without extracellular polysaccharide-like material. Conidiophores micro- and semimacronematous, hardly distinguishable from hyphae, arising laterally and terminally on erect or ascending hyphae, erect, somewhat flexuous, filiform to cylindrical-oblance, usually neither geniculate nor nodulose, unbranched or branched, once or several times, branches as short lateral prolongations below a septum, \((5–)10–100(–200) \times (1–)2–2.5(–3.5) \mu m\), aseptate or with few septa, pale olivaceous brown, smooth to minutely verruculose, walls thin-walled to slightly thickened; micronematous conidiophores often only as short denticile- or peg-like lateral outgrowths of hyphae. Conidiogenous cells integrated, terminal, sometimes intercalary or conidiophores reduced to conidiogenous cell, cylindrical, with a single or few apical loci, protuberant, denticulate, 0.8–1.5 \mu m diam, thickened and darkened-refractive. Ramoconidia occasionally formed, up to 40 \mu m long, base about 2 \mu m wide. Conidia catenate, in branched chains, branching in all directions, up to eight conidia in the unbranched parts, small
terminal conidia globose or subglobose to usually short-ovoid, narrower at both ends, (2–)3–3.5(–4.5) × 2–2.5 μm (av. ± SD: 3.0 ± 0.5 × 2.0 ± 0.2), aseptate, smooth to minutely verrucose, intercalary conidia ovoid, limoniform to ellipsoidal, (3.5–)4–8.5(–12) × 2–3 μm (av. ± SD: 6.0 ± 2.1 × 2.6 ± 0.3), 0(1–)-septate, smooth to minutely verrucose, with 1–3(–4) distal hila, secondary ramoconidia cylindrical to almost spherical, attenuated towards apex and base, (6.5–)9–23(–28) × (2–)2.5–3(–4) μm, (av. ± SD: 15.4 ± 5.0 × 2.8 ± 0.4), 0(1–2)-septate, not constricted at the median septum, with up to four distal scars, subhyaline to pale olivaceous or light brown, smooth or almost so, walls unthickened to slightly thickened, hila protuberant, conspicuous, denticulate, 0.5–1.5 μm diam, thickened and darkened-refractive; microcyclic conidiogenesis not occurring.

Culture characteristics: Colonies on PDA reaching 18–36 mm diam after 14 d at 25 °C, grey olivaceous in colony centre due to abundant sporulation, glaucous green to greynish green, reverse greenish grey, velvety to hairy or felty, margin regular, white, abundant sporulation, glaucous grey to greenish grey, reverse black, velvety to loosely powdery with raised central part due to fasciculate bundles of conidiophores, aerial mycelium sparse, whitish to smoke-grey, without exudates, sporulating.

Maximum tolerated salt concentration: 75% of tested strains develop colonies at 20% NaCl after 7 d, while after 14 d all strains grow and sporulate.

Cardinal temperatures: No growth at 4 and 10 °C, optimum 25 °C (30–32 mm diam), maximum 30 °C (2–15 mm diam), no growth at 37 °C.

Differential parameters: No growth at 10 °C, oval conidia, large amounts of sterile mycelium (from Zalar et al. 2007).

Substrates and distribution: Saprobic on fruit surfaces, hypersaline waters in (sub)temperate climates, indoor environments; Asia (Iran, Philippines, Taiwan), North America (Bermuda, USA), Central America (Dominican Republic), South America (Aruba, Venezuela).

Additional materials examined: Aruba, Oranjestad, isol. from air sample, hospital, Jul. 2012, Z. Jutjević, EML 1897 = CPC 22244. Bermuda, Samerset, isol. from indoor air sample, Nov. 2012, Z. Jutjević, EML 1922 = CPC 22319. USA, Colorado, Denver, isol. from outside air sample, Jun. 2012, Z. Jutjević, EML 1687, 1688 = CPC 22240, 22241.

Notes: Cultures of C. dominicanum (Fig. 3, clade 4) sporulate less abundantly than C. sphærosporum (Fig. 3, clade 20) and C. halotolerans (Fig. 3, clade 23) and tend to lose their ability to sporulate with subculturing (Zalar et al. 2007). The species proved to have a wider host range and distribution than known before (Zalar et al. 2007, Bensch et al. 2012, 2015). It is not only known from fruit surfaces and hypersaline water but was also isolated both from indoor and outside air. The strains reported by Segers et al. (2015) as C. dominicanum proved to belong to the newly described species C. pulvericola (Fig. 3, clade 1). For a comparison with C. pulvericola please consult the notes under the latter species.

The included ex-type isolate of Cladosporium lebrasiae (Fig. 3, clade 5), a species recently described from milk bread rolls in France (Razafirinano et al. 2016), clusters on a long branch among isolates of C. dominicanum (Fig. 3, clade 4). On the loci used in the present phylogeny, it is 93–98% similar to C. dominicanum. In the parsimony analysis, this isolate clusters as a sister lineage to C. dominicanum (data not shown). Additional isolates are necessary to prove whether C. lebrasiae is a distinct species.

Cladosporium europaeum Bensch & Samson, sp. nov. MycoBank MB822220.

Etymology: Refers to the continent of origin, Europe.

Holotype: Denmark, isol. from indoor building material, school, 2007, B. Andersen, CBS H-23251. Ex-type culture: CBS 134914 = BA 1695 = CPC 14296.

Diagnosis: Differs from C. vicinum, its closest phylogenetic neighbour in having shorter conidiogenous cells, secondary ramoconidia and ramoconidia.

Mycelium immersed and superficial; hyphae sparingly branched, 2–4 μm wide, septate, without swellings and constrictions, pale olivaceous or pale olivaceous brown, smooth, minutely verrucose or rough-walled. Conidiophores macronematos, sometimes micronematos, arising terminally and laterally from hyphae, solitary, erect, straight or flexuous, cylindrical-oblong, neither geniculate nor nodulose, unbranched or once branched, 35–150(–290) × (2.5–)3–4.5 μm, septate, pale olivaceous or pale olivaceous brown, smooth, often minutely verrucose or rough-walled at the base; micronematos conidiophores about 2 μm wide. Conidigenous cells integratored, terminal and intercalary, cylindrical-oblong, 6–36 μm long, with (1–)2–4 loci at the apex or on small lateral outgrowths in intercalary cells or situated on lateral shoulders, 1–2 μm diam. Ramoconidia cylindrical-oblong, 18–39 × 3–4 μm, 0–2-septate, smooth, base broadly truncate, 2–3 μm wide. Conidia numerously formed in branched chains, branching in all directions, with up to six conidia in the terminal unbranched part of the chain, small terminal conidia subglobose or obovoid, 2.5–4.5(–5.5) × 2–2.5(–3) μm (av. ± SD: 3.8 ± 0.7 × 2.3 ± 0.3), intercalary conidia ovoid, limoniform or ellipsoidal, 4–14 × (2–) 2.5–3.5(–4) μm (av. ± SD: 7.7 ± 2.6 × 3.0 ± 0.4), 0(1–)-septate, with 1–3(–4) distal hila, secondary ramoconidia ellipsoidal or subcylindrical (7–)10–25(–28) × (2.5–)3–4 μm (av. ± SD: 16.4 ± 5.3 × 3.2 ± 0.4), 0–1-septate, pale olivaceous or pale olivaceous brown, smooth, walls unthickened, attenuated towards apex and base, with up to four distal hila, hila conspicuous, subdenticulate or denticulate, 0.5–2 μm diam, thickened and darkened-refractive; microcyclic conidiogenesis not occurring.

Culture characteristics: Colonies on PDA attaining 73–82 mm diam after 14 d at 25 °C, grey olivaceous, olivaceous grey to olivaceous black with patches of smoke-grey or white due to aerial mycelium, reverse iron-grey, velvety or powdery, margin feathery, aerial mycelium sparse, more abundantly only in a few spots, growth flat, no exudates. Colonies on MEA reaching 50–76 mm diam after 14 d at 25 °C, grey olivaceous, reverse...
iron-grey, powdery or velvety, margin feathery, radially furrowed, wrinkled and with elevated colony centre, aerial mycelium forming large whitish or smoke-grey patches, fluffy-woolly, dense, no exudates. Colonies on OA attaining about 55 mm diam after 14 d at 25 °C, pale olivaceous or brownish, white and smoke-grey due to patches of fluffy-feltty aerial mycelium, reverse iron-grey or leaden-grey, powdery or fluffy-feltty, margin glabrous, growth flat, sometimes few prominent olivaceous buff exudates formed. Sporulation profuse on all media.

Substrates and distribution: Isolated from plant material, lichens and indoor environments; Europe (Denmark, Germany, Portugal, The Netherlands).

Additional materials examined: Denmark, isol. from indoor environment, B. Andersen, DTO 109-E7 = BA 1907. Germany, isol. from leaves of Acer pseudoplatanus (Aceraceae), L. Peft, CBS 116744 = dH 14053; Bavaria, isol. from a lichen on leaves of Acer platanoides (Aceraceae), 2006, W. von Brackel, CPC 13220. Portugal, isol. from indoor environment, DTO 151-H5. The Netherlands, Amsterdam, indoor air archive, M. Meijer, DTO 072-E4; ’s Hertogenbosch, swab sample archive, Meijer, DTO 086-B3; Leiden, isol. from seed coat of Coriaria vulgare (Aceraceae), CBS 125.80; Millingenwards, isol. from fruits of Sambucus nigra (Caprifoliaceae), 29 Aug. 2007, P.W. Crous, CPC 14238; Utrecht, swab sample, house, M. Meijer, DTO 056-H7.

Notes: Cladosporium europeum (Fig. 1, clade 35), formerly treated as C. cladosporioides Lineage 1 (Bensch et al. 2010) differs from C. cladosporioides s. str. (Fig. 1, clade 66) in producing shorter, 0−1-septate conidia and ramoconidia and is phylogenetically distant with 538/538 (100 %), 410/436 (94 %) producing shorter, 0−1-septate, base 3−3.5 µm wide. Conidia solitary or formed in short unbranched chains with up to four conidia, very rarely in branched chains with few conidia possessing two distal hila, solitary and terminal conidia ellipsoid-oidovoid, obovoid, rarely subglobose, sometimes subcilindrical, 6−15(−21.5) × (4−) 5−7(−8) µm (av. ± SD: 11.7 ± 3.3 × 6.0 ± 0.9), 0−1-septate, apex rounded, often attenuated towards the base, lumen appearing to be granular, intercalary and basal conidia ellipsoidovoid or sub-cylindrical, more or less attenuated towards apex and base, (8.5)−10−21(−27) × (4.5−)5.5−8(−10) µm (av. ± SD: 16.3 ± 4.0 × 7.0 ± 1.0), 0−1-septate, septum median or in the lower half, septum becoming sinuous with age, pale to medium olivaceous brown, densely verruculose, verrucose or echinulate, walls unthickened or only very slightly thickened, conidigenous hila conspicuous, 1−2 µm diam, sometimes situated on small stalk-like prolongations, somewhat thickened and darkened-refractive; microcyclic conidogenesis occasionally occurring.

Culture characteristics: Colonies on PDA attaining 50−68 mm diam after 14 d at 25 °C, olivaceous grey with patches of pale olivaceous grey aerial mycelium, reverse leaden-grey or iron-grey, fluffy. Colonies on MEA reaching 43−63 mm diam after 14 d at 25 °C, pale olivaceous grey and pale greenish grey with white or smoke-grey patches, reverse olivaceous grey, fluffy-feltty, aerial mycelium abundant, dense, colony centre somewhat elevated, radially furrowed and folded. Colonies on OA reaching 47−61 mm diam after 14 d at 25 °C, olivaceous grey or grey olivaceous, reverse leaden-grey or iron-grey, fluffy-feltty, margins regular, aerial mycelium abundant, diffuse or dense, white. Without prominent exudates, sporulation profuse on all media.

Substrate and distribution: Isolated from plant material, indoor air and a clinical sample; Asia (China), Europe (Ukraine), North America (Mexico, USA).

Additional materials examined: China, isol. from indoor air, DTO 323-H6. Mexico, Montecillo, Texcoco, isol. from pine needles (Pinaceae), 12 Oct. 2009, M. de Jesús Vázquez-Morales, as “Pandelia”, CPC 17892. Ukraine, Kharkov district, Zolochewy, Chepeliv village, isol. from Allium sativum (Alliaceae), 5 Jul. 2008, A. Akulov, stored as “Stemphylium versicoloratum”, CPC 15522. USA, Colorado, Fort Collins, isol. from indoor air sample, living room, Dec. 2012, Z. Jurijevič, EMSL 1867 = CPC 22354; Minnesota, isol. from indoor air sample, Aug. 2012, Z. Jurijevič, EMSL 1715 = CPC 22280; Missouri, Fort Leonard Wood, isol. from indoor air sample bedoom, Jan. 2013, Z. Jurijevič, EMSL 1927 = CPC 22399; Tennessee, isol. from indoor air sample, Oct. 2012, Z. Jurijevič, EMSL 1856 = CPC 22309; Utah Draper, isol. from indoor air sample, basement, Feb. 2013, Z. Jurijevič, EMSL 2033 = CPC 22968.

Notes: Cladosporium floccosum (Fig. 2, clade 4), recently described from a clinical sample in the USA (Sandoval-Denis et al. 2016) proves to occur also in indoor environments and on plant material. The shape of its conidiophores is very characteristic in being nodulose and once or several times distinctly geniculate, sometimes being rectangular and its conidia are 0−1-septate, densely verruculose, verrucose or echinulate formed solitary or in short unbranched chains. It resembles C. sinuosum (Fig. 2, clade 2) and the newly introduced species C. aeurium (Fig. 2, clade 20). However, C. sinuosum produces longer and slightly wider conidiophores (up to 380 µm long, 4−6(−7) µm wide) and slightly wider conidia, (4−)5−8−9) wide; and C. aeurium forms slightly longer and narrower conidia (8−)9.5−24 × (4−5—)
Fig. 15. Cladosporium floccosum (CPC 22399). A–C. Colonies on PDA, MEA and OA. D–I. Conidiophores and conidia. J. Ramoconidium. K–L. Microcyclic conidiogenesis with conidia forming secondary conidiophores. M. Conidia. Scale bars = 10 μm.
6–7(–8) μm (av. ± SD: 18.0 ± 3.1 × 6.4 ± 0.7). Both species are phylogenetically distant from C. floccosum (C. sinuosum and C. aerium in clades 2 and 20, respectively, vs clade 4 in Fig. 2).

Cladosporium funiculosum W. Yamam., Sci. Rep. Hyogo Univ. Agric., Ser. Agric. 4(1): 5. 1959. emend. MycoBank MB102888.

Holotype: Japan, isol. from leaves of Vigna umbellata [=Phaseolus chrysanthus] (Fabaceae), probably authentic strain of C. funiculosum. Ex-type culture: CBS 122129 = ATCC 38010 = IFO 6537 = JCM 10683.

Lit.: Bensch et al. (2010: 47–49; 2012: 128–129).

Ill.: Bensch et al. (2010: 48, figs 34–35; 2012: 128–129, figs 128–129).
Mycelium immersed and superficial, hyphae loosely branched, filiform to cylindrical-oblong or irregular in outline due to swellings, 1–3 μm wide, septate, smooth or loosely verruculose to densely verruculose, walls unthickened, sometimes forming ropes. **Conidiophores** micro-, semimacro- and macronematous, solitary, arising terminally and laterally from plagiotropous or ascending hyphae or hyphal strains, filiform to narrowly cylindrical-oblong, neither geniculate nor nodulose, unbranched, occasionally once branched, 10–120 × (2)–2.5–3.5(–4) μm, usually rather short, 0–2(–5)–septate, not constricted at septa, subhyaline to pale olivaceous brown, smooth or almost so, asperulate or minutely verruculose, walls unthickened. **Conidiogenous cells** integrated, terminal, sometimes intercalary, proliferation often distinctly sympodial, but neither geniculate nor nodulose, 10–45 μm long, with (1)–2(–3)–4 loci crowded at the apex, sometimes few additional loci at a lower level, subdenticulate, 1–2 μm diam, somewhat thickened and darkened-refractive. **Ramoconidia** occasionally formed. **Conidia** catenate, in long unbranched or basally, often dichotomously branched chains, up to 8(–14) conidia in the unbranched terminal part, straight, small **terminal conidia** obovoid, narrowly ovoid, ellipsoid, sometimes narrowly obclavate, (2.5)–4(–9) × (1.5)–2.5–3(–3) μm (av. ± SD: 5.3 ± 1.6 × 2.3 ± 0.3), asceptate, intercalary conidia narrowly ellipsoid, fusiform to subcylindrical, 5–13(–16) × 2–3 μm (av. ± SD: 9.6 ± 3.0 × 2.7 ± 0.3), 0–1–septate, with 1–3 distal hila, secondary ramoconidia ellipsoid to subcylindrical or cylindrical, (7–)11–23(–27) × 2.5–4.5–5(–5) μm (av. ± SD: 16.2 ± 5.1 × 3.3 ± 0.7), 0–1(–2)–septate, not constricted at septa, septum often somewhat in the upper half, with (1–)2–3(–4) distal hila, often, with a second hilum near the base forming additional conidia “backwards”, subhyaline to pale olivaceous, smooth or almost so, sometimes reulate, walls unthickened, slightly to distinctly attenuated towards apex and base, hila conspicuous, subdenticulate, 0.5–2 μm diam, somewhat thickened and darkened-refractive; microcyst conidiogenesis not observed.

Culture characteristics: Colonies on PDA attaining 57–78 mm diam after 14 d at 25 °C, glaucous-grey or olivaceous with tufts of pale olivaceous grey, reverse greenish grey, grey olivaceous or greyish blue, floccose, fluffy-felted, margin white to olivaceous, regular, aerial mycelium abundant, floccose to villose, low to high, growth effusive to low convex, somewhat wrinkled, sometimes with numerous small to large prominent exudates. Colonies on MEA 58–80 mm diam after 14 d at 25 °C, greenish or pale olivaceous grey to buff or rosy-buff, reverse olivaceous grey and iron-grey, velvet or floccose to feltly, margin white, glabrous to feathery, aerial mycelium abundant, covering most of the colony surface, floccose to feltly, smoke-grey or pale olivaceous grey, dense, low, growth effuse, radially furrowed and wrinkled, without prominent exudates. Colonies on OA attaining 47–67 mm diam after 14 d at 25 °C, white to smoke-grey, pale olivaceous grey or olivaceous grey, colony centre buff or rosy-buff, at margins faun, reverse leaden-grey, olivaceous grey to fawn, floccose to fluffy, margins glabrous, aerial mycelium abundant, covering almost the whole surface, floccose to feltly, growth flat, with numerous small prominent exudates.

Substrate and distribution: Isolated from plant material and indoor air; Asia (Japan), North America (USA).

Additional materials examined: USA, Alabama, Birmingham, isol. from air sample, hospital, Jul. 2012, Z. Jurjević, EMSL 1705 = CPC 22247; Massachusetts, Lakville, isol. from indoor air sample, office, Oct. 2012, Z. Jurjević, EMSL 1782 = CPC 22298; New Jersey, isol. from indoor air sample, Z. Jurjević, EMSL 1756 = CPC 22282; Manasquan, isol. from indoor air sample, bedroom, Jan. 2013, Z. Jurjević, EMSL 1906 = CPC 22391; Georgia, Tucker, isol. from indoor air sample, bakery, DTO 127-E7 = AR405.

Notes: The history of description, typification and deposited cultures of this species was discussed in Bensch et al. (2012). Conidiophore measurements and the species epithet “fungulusum” introduced in Yamamoto (1959) probably refer to hyphal strands and not conidiophores since these are often hardly distinguishable from hyphae or hyphal strands in the authentic strain. **Cladosporium fungulusum** was previously only known from two Japanese collections isolated from plant material (Bensch et al. 2010). Its species concept is herein emended to encompass several isolates from indoor environments collected in North America. It is characterised by its quite undifferentiated conidiophores and its smooth or somewhat reticulate conidia formed in long branched chains which is typical for species belonging to the C. cladosporioides species complex. Furthermore, it was reported from clinical samples in the USA (Sandoval-Denis et al. 2015). **Cladosporium fungulusum** (Fig. 1, clad 55) is phylogenetically distinct from other **Cladosporium** species.

Cladosporium globisporum Bensch et al., Stud. Mycol. 67: 51. 2010. MycoBank MB517080. Fig. 17.

Holotype: Sweden, isol. from meat stamp. 1986. M. Olsen, No. M291, CBS H-20435. Ex-type culture: CBS 812.96.

Lit.: Bensch et al. (2012: 139–141).

ill.: Bensch et al. (2010: 51–53, figs 38–40), Bensch et al. (2012: 141, figs 146–148).

Mycelium mainly immersed, sparingly branched, 2–5 μm wide, septate, not constricted at septa, pale brown, smooth to minutely verruculose, walls unthickened. **Conidiophores** macro- and microconidiatous, solitary, arising terminally and laterally from ascending or plagiotropous hyphae, erect, straight to slightly flexuous, cylindrical-oblong to filiform, non-nodulose, sometimes geniculate, unbranched to once branched, branches as short denticle-like lateral outgrowths, later becoming longer, 17–165 × 3–5 μm, microconidiatous conidiophores (1–)2–2.5(–3) μm wide, 0–4–septate, cells quite long, not constricted at septa, septa often darkened, pale to pale medium brown, slightly paler towards the apex, minutely verruculose, asperulate, walls unthickened or slightly thickened, up to 1 μm wide. **Conidiogenous cells** integrated, often distinctly sympodially proliferating, terminal, usually non-nodulose, sometimes slightly geniculate, filiform to cylindrical-oblong, somewhat flexuous, 17–55 μm long, with up to three apical loci, sitting close together at the apex, conspicuous, subdenticulate to denticulate, (1.2–)1.5–2(–2.2) μm diam, thickened and darkened-refractive. **Ramoconidia** cylindrical-oblong, 19–41(–56) × 3–4(–5) μm, 0(–2)–septate, base broadly truncate. **Conidia** catenate, in densely branched chains, straight to slightly curved, with 1–3 conidia in the terminal unbranched part of the chain, small **terminal conidia** globose, subglobose to ovoid, 2.5–6(–8) × 2.5–3.4 μm (av. ± SD: 4.1 ± 1.3 × 3.1 ± 0.4), broadly rounded at the apex, intercalary conidia subglobose, broadly ellipsoid-ovoid, (4–)5(–9) × 3–4(–5) μm (av. ± SD: 6.8 ± 2.4 × 3.7 ± 0.5), aseptate, with up to 3(–5) distal hila, often distinctly denticulate, secondary ramoconidia ellipsoid to subcylindrical, 9–27(–30) × (3)–3.5–5(–6) μm (av. ± SD: 16.7 ± 5.7 × 4.2 ± 0.5), 0(–1)–septate, 3–4 distal hila, sometimes hila not only distal but also lateral in the middle of the cell, pale brown, smooth or almost so, under SEM surface reticulate or with somewhat

www.studiesinmycology.org 245
Fig. 17. Cladosporium globisporum (CPC 19124). A–C. Colonies on PDA, MEA and OA. D–H. Conidiophores and conidial chains. I–J. Micronematous conidiophores. K. Conidial chain. Scale bars = 10 μm.
embossed stripes caused by diminishing turgor and shrivelling of tender young conidia, walls unthickened or only slightly so, attenuated towards apex and base, hila conspicuous, often distinctly denticulate, 0.5–2 μm diam, thickened and darkened-refractive; microcyclic conidiogenesis not observed.

Culture characteristics: Colonies on PDA grey olivaceous to olivaceous, reverse leaden-grey or olivaceous black, velvety to powdery or floccose, margin colourless to white, feathery, aerial mycelium sparse, loose, fluffy, only few areas covered, growth flat, without exudates, sporulation profuse. Colonies on MEA grey olivaceous, pale olivaceous grey towards margins, reverse olivaceous grey, velvety, due to aerial mycelium several white patches, fluffy, loose to dense, without exudates, sporulation profuse. Colonies on OA grey olivaceous to pale olivaceous due to profuse sporulation or olivaceous buff, reverse leaden-grey to iron-grey, velvety to powdery, glittering due to numerous small, not very prominent exudates (like little water drops), margin colourless, feathery, aerial mycelium absent or sparse, growth flat.

Substrate and distribution: Isolated from indoor environments (Denmark) and meat stamp (Sweden).

Additional material examined: Denmark, isol. from indoor environments, window frame, 7 Feb. 2011, B. Andersen, BA 2038 = CPC 19124.

Notes: Cladosporium globisporum (Fig. 1, clade 17) is morphologically somewhat intermediate between the C. cladosporioides and C. sphaerospermum species complexes. The conidiophores are C. cladosporioides-like, whereas the terminal and intercalary globose or subglobose conidia are...
reminiscent of *C. sphaerospermum*, although they are smooth and not verruculose as in the latter species (Bensch et al. 2010, 2012). It has so far only been known from the type specimen (Sweden, meat stamp), but the examined strain isolated from a window frame fits the species concept very well.

Cladosporium halotolerans Zalar et al., Stud. Mycol. 58: 172. 2007. MycoBank MB492439. Fig. 18.

Holotype: Namibia, isolated from hypersaline water of salters, 1 Sep. 2000, coll. N. Gunde-Cimerman, isol. P. Zalar, 1 Oct. 2000, CBS H-19734. *Ex-type culture*: EXF-572 = CBS 119416.

Lit.: Haubold et al. (1998), Buzina et al. (2003), Meklin et al. (2004), Sandoval-Denis et al. (2015), Segers et al. (2016).

Ill.: Zalar et al. (2007: 172, fig. 8).

Mycelium partly submerged, partly superficial; hyphae sparingly branched, (1–)2–4 μm wide, pluriseptate, septa often appearing somewhat darkened, usually not constricted, pale brown or pale olivaceous brown, almost smooth or minutely verruculose, walls unthickened, occasionally forming ropes. *Conidiophores* micro- to semimacronematous, arising laterally and terminally from hyphae, erect, straight to somewhat flexuous, narrowly cylindrical-oblong, occasionally slightly geniculate, non-nodulose, micromacronematous erect, straight to somewhat semimacronematous, arising laterally and terminally from hyphae, unthickened, occasionally forming ropes.

Conidiophores micro- to semimacronematous, arising laterally and terminally from hyphae, erect, straight to somewhat flexuous, narrowly cylindrical-oblong, occasionally slightly geniculate, non-nodulose, micromacronematous conidiophores filiform or only as short peg-like or denticle-like lateral outgrowths of hyphae, usually unbranched, sometimes intercalary with short lateral denticulate outgrowths just below a septum, 4–150(–300) × 2–3.5(–5.5) μm, micromacronematous conidiophores 1–1.5(–2) μm wide, mostly 0–3-septate, septa often appearing darkened, sometimes pluriseptate with up to 10 septa in short succession, especially towards the apex, septa not constricted, pale olivaceous brown, smooth to minutely verruculose, walls unthickened or almost so, sometimes forming ramoconidia and fragments. *Conidiogenous cells* integrated, terminal or sometimes intercalary, or conidiophores reduced to conidiogenous cells, cylindrical, 4–38 μm long, usually neither geniculate nor nodulose, with a single or up to four protuberant, subdenticulate or denticulate conidiogenous loci, 0.7–1.5(–2) μm diam, thickened and darkened. *Ramoconidia* 15–37(–46) × 2–3.5(–4) μm, 0–3–(5–)septate, base broadly truncate, about 2 μm wide, slightly thickened and somewhat darkened-refractive. *Conidia* catenate, in branched chains, conidial chains branching in all directions, terminal chains with up to 6(–9) conidia, small terminal conidia very numerous, formed, globose or subglobose, 2–4(–6) × 2–3.5(–5) μm (av. ± SD: 3.5 ± 0.6 × 2.6 ± 0.5), aseptate, intercalary conidia subglobose, ellipsoid or ellipsoidoid, 3.5–9(–11) × (2–) 2.5–3(–4) μm (av. ± SD: 6.2 ± 1.6 × 3.1 ± 0.5), 0(–1)-septate, pale to medium brown, often appear to be darker than conidiophores and secondary ramoconidia, minutely verruculose or verrucose, *secondary ramoconidia* ellipsoidoid, fusiform or cylindrical, 7–25(–31) × 2–3.5(–6.5) μm (av. ± SD: 16.2 ± 6 ± 2.9 ± 2.0), 0–3(–4)-septate, mostly 1-septate, not constricted at septa, septa often somewhat darkened, pale to medium brown, almost smooth to minutely verruculose, walls unthickened, slightly attenuated towards apex and base, with up to four distal hila, hila protuberant, subdenticulate or denticulate, 0.5–1.5(–2) μm diam, thickened and darkened-refractive; microcyclic conidiogenesis not occurring.

Culture characteristics: Colonies on PDA attaining 27–43 mm diam after 14 d at 25 °C, olivaceous, grey olivaceous or olivaceous grey, reverse olivaceous grey to leaden-grey or olivaceous black, velvety, powdery to felty-woolly, margins white, regular, glabrous or feathery, aerial mycelium absent or sparse, growth flat with a somewhat elevated colony centre, without prominent exudates, sporulation profuse. Colonies on MEA attaining 18–44 mm diam after 14 d at 25 °C, smoke-grey, pale olivaceous grey or olivaceous grey, sometimes glaucous grey at margin, reverse olivaceous grey, powdery to felty-woolly, margin colourless to white, glabrous or feathery, colony centre furrowed, aerial mycelium felty, abundant, covering most of the colony surface, sporulating. Colonies on MEA + 5 % NaCl 24–48 mm diam after 14 d at 25 °C, olive, furrowed, velvety, with more pale, unthickened margins, reverse dark green to black. Colonies on OA reaching 29–40 mm diam after 14 d at 25 °C, smoke-grey to grey olivaceous or dark mouse-grey, reverse olivaceous or olivaceous grey, velvety to felty, fluffy, margin white, somewhat feathery, aerial mycelium sparse, diffuse or abundantly formed, high, dense, whitish, growth flat with papillate surface, sporulation profuse.

Maximum tolerated salt concentration: Only 15 % of tested strains develop colonies at 20 % NaCl after 7 d, whereas after 14 d all cultures grow and sporulate.

Cardinal temperatures: No growth at 4 °C, optimum at 25 °C, maximum at 30 °C. No growth at 37 °C (from Zalar et al. 2007).

Substrates and distribution: Saprobic, frequently isolated from indoor environments but also from hypersaline water in sub-tropical climates, Arctic ice and biomes, contaminant in lesions of humans and animals, plants, rocks, soil, confier wood and mycorrhizal roots; probably circumboreal, Africa (Namibia, South Africa), Arctics, Asia (China, India, Israel, Thailand, Turkey), Australasia (New Zealand), Europe (Belgium, Bosnia and Herzegovina, Denmark, Germany, France, Hungary, Italy, Russia, Slovenia, Spain, Sweden, Switzerland, The Netherlands, UK), North America (Canada, Mexico, USA), Central and South America (Argentina, Brazil, Dominican Republic).

Additional materials examined: China, isol. from indoor air, DTO 323-F3, UK, isol. from house dust, DTO 306-C9. USA, California, isol. from house dust, basement HVAC room, A. Amend, DTO 305-H6; DTO 306-B3 = AA03US-471, DTO 306-B8. Additional isolates are listed in Table 1.

Notes: *Cladosporium halotolerans* (Fig. 3, clade 23) proved to be a common species with a worldwide distribution occurring on a wide range of different substrates. Sandoval-Denis et al. (2015) reported *C. halotolerans* as the most frequent *Cladosporium* species recovered from clinical samples in the USA and it proved to be the most common species isolated from indoor environments (this study) representing about a third of all new indoor isolates.

Cladosporium sphaerospermum (Fig. 3, clade 20) is morphologically close but differs in producing somewhat wider, 2.5–4.5(–6) μm, often branched, pluri- and densely septate conidiophores, slightly longer terminal conidia, (2–)3–5(–7) μm, longer ramoconidia, up to 50(–67) μm long and with up to five septa being commonly beaked (alternarioid) on MEA and PDA. *Cladosporium domesticum* (Fig. 3, clade 21) and *C. parahalotolerans* (Fig. 3, clade 22) are introduced in the present study as two new species occurring in indoor environments; they proved to be closely related but are both phylogenetically as well as morphologically distinguishable from *C. halotolerans*. *Cladosporium parahalotolerans* forms wider conidia and ramoconidia; and *C. domesticum* produces narrower conidia and ramoconidia.

Cladosporium inversicolor Bensch et al., Stud. Mycol. 67: 55. 2010. MycoBank MB517082. Fig. 19.
Fig. 19. *Cladosporium inversicolor* (CPC 22300). **A–C.** Colonies on PDA, MEA and OA. **D–H.** Conidiophores and conidial chains. **J.** Ramoconidium and conidia. **K–L.** Conidia. Scale bars = 10 μm.
Holotype: The Netherlands,isol. from a leaf of Triticum aestivum (Poaceae), deposited Jul. 1980 as C. cladosporioides,isol. by N.J. Fokkema, ident. by G.A. de Vries, CBS H-20437. Ex-type culture: CBS 401.80 = ATCC 200941.

Lit.: Bensch et al. (2012): 163–165; 2015: 45).

Mycelium immersed and sparingly superficial; hyphae mainly unbranched, 1.5–3(−4.5) μm wide, septate, not constricted at septa, without swellings, pale olivaceous to pale olivaceous brown, smooth to often minutely verrucose, walls unthickened. Conidiophores macronematous, solitary, arising terminally and laterally from hyphae, erect, straight to somewhat flexuous, cladosporioides-like, cylindrical-oblung, somewhat geniculate-sinuous towards or at the apex, non-nodulose, unbranched or once branched, 15–225 × 2.5–4(−5) μm, aseptate or with few septa, not constricted at septa, subhyaline to very pale olivaceous to greenish olivaceous, olivaceous, olivaceous grey or olivaceous buff, reverse pale greenish grey to olivaceous grey, leaden-grey or iron-grey, velvety to floccose, margins glabrous, olivaceous grey, narrow, aerial mycelium smoke-grey to pale olivaceous grey, feltly, growth flat. Sporulation profuse and without prominent exudates on all media.

Substrates and distribution: On plant material,isol. from air, indoor environments and food, also mycophilic; Africa (South Africa), Europe (Denmark, France, Germany, The Netherlands), North America (USA), South America (Colombia).

Additional materials examined: Denmark,isol. from indoor air, 2 Feb. 2011, B. Andersen, CPC 19108;isol. from indoor environment, B. Andersen, DTO 108–E9 = BA 1909. France,isol. from indoor environment, J. Dijksterhuis, DTO 108–FI. The Netherlands,Amsterdam, indoor air archive, M. Meijer, CBS 139573 = DTO 072–C9, USA, Oregon, Portland,isol. from indoor air sample, living room, October 2012, Z. Jurjević, EMSL 1806 = CPC 22300; Salem, isol. from indoor air sample, bedroom, Sep. 2012, Z. Jurjević, EMSL 1763 = CPC 22287;Washington, Tacoma,isol. from indoor air sample, bedroom, Jan. 2013, Z. Jurjević, EMSL 1900 = CPC 22385.

Notes: Cladosporium inversicolor (Fig. 1, clade 42) belongs to the C. cladosporioides species complex. The name of this species is derived from the unusual pigmentation of conidia with small and intercalary conidia being usually darker than ramosoconidia, secondary ramosoconidia and conidioiphores, which is unique and distinctive among Cladosporum species of this complex.

Cladosporum langeronii (Fonseca et al.) Vuillemin, Champ. Paras. Myc. Homme: 78. 1931, MycoBank MB328341. Figs 20, 21.

Basionym: Hormodendrum langeronii Fonseca et al., Sciencia Med. 5: 563. 1927.

Neotype: Brazil,isolated from human ulcero-nodular mycosis of hand and arm, 1927, coll. & isol. by da Fonseca, CBS H-19737. Ex-type culture: CBS 189.54.

Lit.: Zalar et al. (2007: 173–174), Bensch et al. (2012: 171–172). Ill.: Zalar et al. (2007: 174, fig. 9), Bensch et al. (2012: 171: fig. 184).

Mycelium partly immersed, partly superficial; hyphae branched, 1–3 μm wide, septate, without swellings and constrictions, subhyaline to pale brown, smooth or almost so, sometimes enveloped in polysaccharide-like material, sometimes forming few swollen hyphal cells, up to 7 μm diam, somewhat thickened and darkened-refractive; microcyclic conidiogenesis not observed.

Culture characteristics: Colonies on PDA attaining 42–70 mm diam after 14 d at 25 °C, olivaceous grey or olivaceous, grey olivaceous towards margins, leaden-grey to olivaceous black reverse with grey olivaceous margins, floccose, margins regular, white or colourless, aerial mycelium sparse to abundant, diffuse to floccose, loose to dense, growth effuse. Colonies on MEA 39–60 mm diam after 14 d at 25 °C, grey olivaceous to olivaceous grey or olivaceous, reverse iron-grey to black, velvety or powdery to floccose, margins colourless or white, regular or somewhat undulate, radially furrowed and somewhat wrinkled, aerial mycelium whitish to smoke-grey, feltly-floccose, growth effuse. Colonies on OA 43–60 mm diam after 14 d at 25 °C, grey olivaceous to greenish olivaceous, olivaceous, olivaceous grey or olivaceous buff, reverse pale greenish grey to olivaceous grey, leaden-grey or iron-grey, velvety to floccose, margins glabrous, olivaceous grey, narrow, aerial mycelium smoke-grey to pale olivaceous grey, feltly, growth flat. Sporulation profuse and without prominent exudates on all media.
Conidiogenous cells integrated, terminal or sometimes discrete, with a single apical scar, protuberant, 0.5–1 μm diam, thickened and darkened-refractive. Ramoconidia cylindrical, 0–1-septate, (10–)11–22(–42) × (3–)3.5–4.5(–5) μm, base broadly truncate, 2–3.5 μm wide, slightly thickened and somewhat darkened. Conidia catenate, in dichotomously branched chains, with up to 7(–8) conidia in the terminal, unbranched parts, straight, small terminal conidia subglobose or ovoid, (2.5–)4–5.5(–8) × (2–)3–4(–5) μm (av. ± SD: 3.7 ± 0.6 × 3.2 ± 0.4 μm), aseptate, rarely 1-septate, hila 0.5–0.8 μm diam, apex rounded, intercalary conidia broadly ovoid to ellipsoid, 5–8(–11) × 3–4 μm (av. ± SD: 6.7 ± 2.0 × 3.7 ± 0.5 μm), 0(–1)-septate, not constricted, attenuated towards apex and base, with a single apical hilum, 0.5–1 μm diam, secondary ramoconidia ellipsoid to cylindrical, (5.5–)9–20(–26) × (2.5–)3–4.5(–5.5) μm (av. 14.4 ± 4.3 × 3.5 ± 0.5 μm), 0–1(–2)-septate, not constricted at septa, pale to medium or dark brown, irregularly verruculose to sometimes loosely verrucose, walls slightly or more distinctly thickened, with 1–2(–3) distal hila, hila protuberant, peg-like, denticulate, 0.8–1.5(–2) μm diam, thickened and darkened-refractive; microcyclic conidiogenesis occasionally.
Fig. 21. Cladosporium langeroni (DTO 124-D5). A. Survey of colony structure of conidia on conidiophores. B. Young conidiophores formed on series of rounded cells, in one case with a transverse septum. C. As B. Here the distinct ornamentation of conidia is visible. D. Conidial chains, showing markedly less ornamentation at the apical end of the ramoconidia. E. Young conidiophore, with conidial chain, showing smooth apical zones and smooth necks between spores. F. Conidial chains showing the more distinct ornamentation in terminal conidia. Ornamentation exists out of distinct ridges that are more or less parallel. G–J. Details of conidial ornamentation with smooth apical zones and necks except in terminal conidia. Figure J shows a conidium initial. Scale bars = 2 (I, J), 5 (E–H), 10 (B–D), 20 (A) μm.
occurring. Conidia formed by micronematous conidiophores paler, narrower, usually only in unbranched chains, filiform, ellipsoid to obclavate, 3–12 × 1.5–2.5 μm, 0(–1)-septate.

Culture characteristics: Colonies on PDA, OA and MEA with restricted growth, attaining 2.5–4.5, 1.5–7 and 1–5.5 mm diam after 14 d at 25 °C, respectively. Colonies flat or heaped (up to 3 mm), dark green, with black reverse and slightly undulate margin with immersed mycelium. Sporulating on all media. On MEA + 5 % NaCl growth is faster, colonies attaining 8.5–12 mm diam after 14 d at 25 °C, sporulating and growing deeply into the agar.

Maximum tolerated salt concentration: All strains develop colonies at 17 % NaCl after 14 d at 25 °C.

Cardinal temperatures: No growth at 4 °C, optimum/maximum at 25 °C (1–5.5 mm diam), no growth at 30 °C (from Zalar et al. 2007).

Substrate and distribution: Indoor environments, air, conifer wood, humans; Europe (Belgium, Denmark, Ireland, The Netherlands), North America (USA), South America (Brazil).

Additional materials examined: Belgium, isol. from a moist aluminium school window frame, CBS 101880. Denmark, isol. from indoor air, 2 Feb 2011, BA 2035 = CPC 19112. Ireland, Dublin, isol. from indoor air sample, washroom, Nov. 2012, Z. Jurjević, EMSL 1831, 1832 = CPC 22325, 22326. The Netherlands, Eindhoven, isol. from a swab sample, house, J. Houbreken, DTO 004-C3; Hertogenbosch, indoor air archive, M. Meijer, DTO 085-H6; Ospel, air sample indoor air storage sample, Pineapple room, June 2012, Z. Jurjević, EMSL 1681 = CPC 22235, Minnesota, isol. from indoor air sample, Aug. 2012, Z. Jurjević, EMSL 1716 = CPC 22261; Pennsylvania, Kulitstown, isol. from indoor air sample, Oct. 2012, Z. Jurjević, EMSL 1763 = CPC 22239.

Notes: Cladosporium langeronii (Fig. 3, clade 13) is a saprobic species belonging to the C. sphaerospermum species complex. It has been repeatedly isolated from indoor environments. The strain CBS 109868, which was previously identified and treated as C. langeronii (Zalar et al. 2007), proved to belong to the newly described species C. neolangeronii (Fig. 3, clade 10). The latter species which is both morphologically as well as phylogenetically closely allied differs from C. langeronii in having longer ramoconidia and secondary ramoconidia as well as faster growth rates. Zalar et al. (2007) stated already that C. langeronii most likely represents a complex of at least two species with strains from the Arctic and the Antarctic probably being distinct from C. langeronii on species level. These isolates from polar ice and biomas from the Arctic and Antarctic clustered with CBS 109868 in the phylogenetic analyses carried out by Zalar et al. (2007) and are, therefore, conspecific with C. neolangeronii.

Cladosporium limoniforme Bensch et al., Stud. Mycol. 82: 47. 2015. MycoBank MB814628. Fig. 22.

Holotype: Egypt, isolated from Musa acuminate (Musaceae), 2005, coll. R.S. Summerbell, isol. P.W. Crous, CBS H-22354. Ex-type culture: CBS 140484 = CPC 12039.

Ill.: Bensch et al. (2015: 49–50, figs 13–14).

Mycelium sparingly formed, usually unbranched, 1.5–3 μm wide, pale olivaceous brown or subhyaline, asperulate to minutely verruculose, walls unthickened, sometimes forming small ropes of a few hyphae. Conidiophores micro- to semimacronematous, sometimes macronematous, short, sometimes only as very short lateral branches of hyphae, not very prominent, sometimes hardly distinguishable from hyphae, usually reduced to conidiogenous cells or 1(–2)-septate, terminally arising from hyphae, occasionally laterally arising from plagiotropous hyphae, unbranched, rarely branched, usually neither geniculate nor nodulose, rarely once geniculate, 5–90(–130) × (1–) 2–3(–4) μm, mostly only up to 60 μm long, subhyaline, pale brown to pale olivaceous brown, concolourous with hyphae, smooth or almost so to asperulate or somewhat irregularly rough-walled. Conidiogenous cells integrated, terminal, occasionally intercalary, narrowly cylindrical, neither geniculate nor nodulose, 15–34(–50) μm long, with 1–3 pronounced scars at the apex or situated on short lateral outgrowths at the apex in terminal cells, in intercalary cells a single or two loci situated on small lateral prolongations just below a septum, conidiogenous loci 1–1.5 μm diam, somewhat thickened and darkened-refractive. Ramoconidia 15–40(–50) μm long, 0(–1)-septate, base 2–2.5(–3) μm wide, somewhat refractive. Conidia cateenate, very numerous, usually 3–7(–8) conidia in the terminal unbranched part of the chain, occasionally up to 13, pale olivaceous brown or pale brown, ornamentation variable, loosely verruculose, sometimes somewhat spiny or irregularly rough-walled, walls unthickened, small terminal conidia obvoid to subglobose, apex rounded, attenuated towards the base, 3–4.5(–6.5) × (2–)2.5–3 μm (av. ± SD: 4.1 ± 0.8 × 2.6 ± 0.4), asceptate, intercalary conidia limoniform, ovoid to ellipsoid, sometimes fusiform, sometimes rostrate, (4–)5–10(–12) × 2.5–3.5(–4) μm (av. ± SD: 7.0 ± 1.9 × 3.1 ± 0.5), asceptate, very rarely 1-septate, attenuated towards apex and base, with 1–2(–3) distal hila, secondary ramoconidia ellipsoid, fusiform to subcylindrical, (8–)9.5–23(–30) × (2.5–)3–4 μm (av. ± SD: 16.2 ± 5.0 × 3.4 ± 0.4), 0–1-septate, septum sometimes becoming sinuous with age, pale olivaceous brown or pale brown, surface ornamentation variable, loosely verruculose, sometimes somewhat spiny or irregularly rough-walled, walls unthickened, with 2–3(–4) distal hila, hila protuberant, 0.5–1.5 μm diam, slightly thickened and somewhat darkened-refractive; microcyclic conidiogenesis occasionally occurring.

Culture characteristics: Colonies on PDA attaining 34–65 mm diam after 14 d at 25 °C, smoke-grey, iron-grey to dark grey olivaceous, sometimes dull green due to abundant sporulation, reverse iron-grey to olivaceous black, velvety to granular or floccose; margins regular, broad, white, glabrous to feathery; aerial mycelium sparse, diffuse, sometimes more abundantly formed in colony centre and then villose to densely tufted; growth flat, regular, sometimes with numerous small to large prominent exudates. Colonies on MEA reaching 39–57 mm diam after 14 d at 25 °C, grey olivaceous, greenish olivaceous to smoke-grey or glaucous-grey towards margins, sometimes large parts smoke-grey to glaucous-grey or whitish due to aerial mycelium, reverse olivaceous grey, iron-grey to black, granular, velvety to floccose; margins regular, narrow to broad, white, feathery to glabrous; aerial mycelium sparse or covering large parts of the colony; growth flat with somewhat elevated colony centre, radially furrowed, sporulation profuse. Colonies on OA attaining up to 69 mm diam after 14 d at 25 °C, grey olivaceous to olivaceous due to abundant sporulation forming concentric zones, reverse pale olivaceous grey to olivaceous grey or leaden-grey, velvety, floccose to felty; margins regular, narrow to broad, glabrous to feathery, greenish olivaceous; aerial mycelium absent, sparse or more abundantly formed covering large parts of the colony, smoke-grey; growth flat, without prominent exudates, sporulation profuse.
Fig. 22. Cladosporium limoniforme (CPC 22395). A–C. Colonies on PDA, MEA and OA. D–K. Conidiophores and conidial chains. L–M. Conidia. Scale bars = 10 μm.
Substrate and distribution: Isolated from plant material, indoor environments and hypersaline water; Africa (Egypt), Asia (Israel), Australia, Europe (Cyprus, The Netherlands) and North America (USA).

Strains examined: Australia, isolated from house dust, DTO 305-G4 = BH02AU-115. Cyprus, Polis, isolated from Eucalyptus sp. (Myrtaceae), 18 Mar. 2007, coll. A. van Iperen, P.W. Crous, CPC 13923. Israel, Dead Sea, Ein Bokek, isol. from hypersaline water, 2004, P. Zalar, EXF-1062 = CPC 12049; Ein Gedii, 31.45, 35.3833, isol. from hypersaline water, 2004, P. Zalar, EXF-1060 = CPC 12048, EXF-1081 = CPC 12050. The Netherlands, Utrecht, swab sample, archiver, M. Meijer, DTO 090-H8; Weert, isol. from indoor air living room, B. Favie, DTO 082-F2. USA, isolated from grape berry, F.M. Dugan lab, CBS 113737; Arizona, Tucson, isol. from indoor air sample, hospital, Jan 2013, Z. Jurjević, EMSL 1909, 1910 = CPC 22394, 22395; California, Indo, isol. from under kitchen sink sample, Jan 2013, Z. Jurjević, EMSL 1899 = CPC 22384; La Mesa, isol. from indoor air sample, bedroom, Dec. 2012, Z. Jurjević, EMSL 1863 = CPC 22350. Unknown, from tomato, CPC 18086 = KSU C1.

Notes: Cladosporium limoniforme (Fig. 2, clade 36) is well characterised by its few micromenotous conidiophores forming large numbers of conidia and its limoniform intercalary conidia. Conidial surface ornamentation is typical for species belonging to the C. herbarum species complex. It is phylogenetically but not morphologically allied to C. aggregatotricaricatum (Fig. 2, clade 34). The latter species clearly differs in having much longer macromenotous conidiophores being once or several times slightly to distinctly geniculate-sinuous or subnodulose with clusters of pronounced scars at apices or intercalary. The closest phylogenetic relative of C. limoniforme proved to be C. prolongatum (Fig. 2, clade 35) which was recently described from soil in China but differs in having shorter secondary ramoconidia and a densely verruculose conidial surface ornamentation (Ma et al. 2017). Cladosporium paralimoniforme (Fig. 2, clade 1), an additional species described from soil in China, resembles C. limoniforme but forms a distinct clade distant from C. limoniforme in the C. herbarum species complex and is distinguishable in having shorter conidiophores, ramoconidia and secondary ramoconidia (Ma et al. 2017).

Cladosporium lycopodermis Cooke, Grevillea 12(61): 32. 1883. MycoBank MB217533.

Lectotype (designated in Heuchert et al. 2005): USA, South Carolina, Aiken, on Lycopodion sp. (Araucariales), Ravenel & Cooke, Fungi Amer. Exs. 595 (K 121561). Isolectotypes: Ravenel & Cooke, Fungi Amer. Exs. 595 (e.g., BPI 427244, NY).

Lit.: Heuchert et al. (2005: 33–36), Bensch et al. (2010: 58–60; 2012: 178–180).

Ill.: Heuchert et al. (2005: 34–35, figs 11–12), Bensch et al. (2010: 59, fig. 48; 2012: 194–195).

Mycelium unbranched or loosely branched, filiform to cylindrical-oblong, (0.5)−1−5 μm wide, not constricted at septa, subhyaline to pale or medium olivaceous brown, smooth or almost so to often minutely verruculose or loosely verrucose, walls unthickened or almost so, occasionally forming ropes. Conidiophores macro- and micromenotous, solitary, arising terminally and laterally from hyphae, erect, straight or slightly flexuous, macromenotous conidiophores cylindrical-oblong or filiform, non-nodulose, usually not geniculate, occasionally slightly geniculate at or towards the apex due to sympodial proliferation, unbranched or once, rarely twice branched, branches often only as short lateral peg-like prolongations just below a septum, 20−250 × (2.5−3)−6−(6.5) μm, pluriseptate, with septa occasionally in short succession, not constricted at septa, few septa sometimes darkened just below potential ramoconidia or where conidiophores disarticulate into shorter pieces, pale olivaceous to medium olivaceous brown, smooth to somewhat irregularly rough-walled or minutely verruculose, especially at or towards the base, walls unthickened or almost so, about 0.5 μm wide, sometimes slightly attenuated towards the apex or intercalary somewhat wider; micromenotous conidiophores narrower, shorter and paler, 9−105 × 1.5−2.5 μm, filiform, not geniculate, unbranched or once branched, 0−5−septate, subhyaline to pale olivaceous, conidigenous cells 6.5−50 μm long, loci 0.5−1.2 μm diam. Conidiogenous cells integrated, terminal, intercalary or sometimes pleurogenous, often seceding and forming ramosclonia, cylindrical-oblong, sometimes slightly geniculate due to sympodial proliferation, 10−57 μm long, with (1−)2−4 loci at or towards the apex, sometimes with additional loci situated on a lower level, in intercalary conidiogenous cells loci usually situated on small peg-like lateral outgrowths, loci conspicuous, subdenticulate to denticulate, 1−2 μm diam, thickened and darkened-refractive. Ramoconidia often formed, cylindrical-oblong, 13.5−55 × 3−5(5.5) μm, 0−3−(6)−septate, not constricted at septa, with 2−4 distal hila, base broadly truncate, 2.2−3−(3.5) μm wide, unthickened or slightly thickened, often somewhat darkened or refractive, without dome and rim. Conidia catenate, in branched chains branching in all directions, up to 5−7 conidia in the terminal unbranched part of the conidial chains, straight, small terminal conidia subglobose to obvoid or narrowly ellipsoid, (2−)3.5−5 × (1.5−)2−5(−3) μm (av. ± SD: 4.2 ± 0.7 × 2.0 ± 0.3), aseptate, intercalary conidia limoniform, ovoid to ellipsoid, 4−14×(16.5) × (2−)2.5−3(−4) μm (av. ± SD: 8.6 ± 3.0 × 2.8 ± 0.5), 0(−1)−septate, with 1−3(−4) distal hila, secondary ramoconidia ellipsoid to cylindrical, sometimes almost doliform, 8−32×(38) × (2.5−)3(−4)−5 μm (av. ± SD: 15.6 ± 6.3 × 3.5 ± 0.5), 0−1(−3)−septate, not constricted at septa, pale olivaceous to pale olivaceous brown, smooth or almost so, walls unthickened or almost so, with 2−5 distal hila, intercalary conidia and secondary ramosclonia sometimes formed in dense whirls at the conidiogenous cells or secondary ramosclonia, hila conspicuous, subdenticulate, 0.5−2(−2.5) μm diam, thickened and darkened-refractive; microcyclic conidiogenesis occasionally occurring.

Culture characteristics: Colonies on PDA attaining 50−68 mm diam after 14 d at 25 °C, olivaceous grey, grey olivaceous towards margins, reverse leaden-grey to olivaceous black, floccose to fluffy, margins white to grey olivaceous, feathery, regular, aerial mycelium abundant, covering the whole colony surface, floccose to fluffy, growth flat to low convex, without prominent exudates, sporulation profuse. Colonies on MEA reaching 50−62 mm diam after 14 d at 25 °C, olivaceous grey to pale olivaceous grey, sometimes smoke-grey or white, reverse olivaceous grey to iron-grey, floccose to felty, margins white, narrow, feathery, regular, aerial mycelium abundant, covering the whole colony surface, growth flat to low convex, sometimes radially furrowed, without prominent exudates, sporulation profuse. Colonies on OA attaining 58−70 mm diam after 14 d at 25 °C, olivaceous grey to greenish olivaceous, olivaceous grey at margins, reverse leaden-grey to olivaceous grey, floccose to felty, margins glabrous, aerial mycelium abundant covering almost the whole colony surface, loose to dense, low to rarely high, growth at, without prominent exudates, sporulation profuse.

Substrate and distribution: On ascomycetes and fruiting bodies of different basidiomycetous fungi, as well as isolated from plant
material and outside air; Europe (Germany, Russia), North America (Canada, USA) and South America (Colombia, Uruguay).

Additional material examined: USA, Minnesota, isol. from outside air sample, Jul. 2012. Z. Jurjević, EMSL 1711b = CPC 22256.

Notes: The outside air sample from Minnesota proved to cluster with isolates that have been identified as C. lycoperdinum (Fig. 1, clade 33). An epitope for that species has not yet been designated since type material was collected on a basidiomycete, but the available cultures, which morphologically coincide with C. lycoperdinum (Heuchert et al. 2005), were isolated from ascomycetes or plant material (Bensch et al. 2010).

Cladosporium macrocarpum Preuss, in Sturm, Deutsch. Fl. 3(26): 27. 1848. MycoBank MB217783.

Neotype (designated by Schubert et al. 2007b): USA, Washington, isolated from Spinacia oleracea (Chenopodiaceae), 1 Jan. 2003, L. du Toit, CBS H-19855. Isoneotype: HAL 2020 F. Ex-neotype culture: CBS 121623 = CPC 12755.

Lit.: Bensch et al. (2012: 180–185).
Ill.: Schubert et al. (2007b: 129–132, figs 22–25), Bensch et al. (2012: 180–183, figs 186–199).

Mycelium unbranched or loosely branched, 1–4.5(–5) μm wide, septate, sometimes slightly constricted at septa, hyaline to pale brown, smooth to minutely verruculose, walls somewhat thickened or slightly thickened. Conidiophores micronematous and macro- nematous, solitary, arising terminally from plagiotropic hyphae or terminally from ascending hyphae. Macronematous conidiophores erect, straight to somewhat flexuous, cylindrical-oblong, nodulose to nodose, with a single apical or usually several swellings either somewhat distinct from each other or often in short succession giving conidiophores a knotty appearance, swellings sometimes laterally elongated or formed at the top of a branch-like outgrowth below the apical swelling, sometimes distinctly geniculate, unbranched, sometimes branched, 12–260 μm × (3–)4–6 μm, swellings 5–10 μm wide, pluriseptate, sometimes slightly constricted at septa, pale to medium brown or olivaceous brown, somewhat paler at apices, smooth to minutely verruculose or verruculose, walls somewhat thickened, sometimes even two- layered. Conidiogenous cells integrated, terminal or intercalary, cylindrical, nodulose with lateral shoulders or nodose with swellings round about the stalk, with conidiogenous loci confined to swellings, 12–37 μm long, with up to 12 loci per cell, usually with up to six, loci conspicuous, protuberant, (1–)1.5–2 μm diam, somewhat thickened and darkened-refractive. Micronematous conidiophores almost indistinguishable from hyphae, straight, narrowly filiform, non- nodulose or with a single or few swellings, mostly with small head-like swollen apices, usually only few micrometer long, 1.5–3 μm wide, aseptate or with only few septa, subhyaline, smooth or almost so, walls unthickened, with a single or only few conidiogenous loci, narrow, 0.8–1.2 μm diam, thickened and somewhat darkened-refractive. Conidia catenate, in branched chains, small terminal conidia subglabose, obvoido- oval, oval, lipo- niform, 4–11 μm × (3–)4–6 μm [av. ± SD, 7.6 (± 1.9) × 5.0 (± 0.8) μm], aseptate, intercalary conidia broadly ovoid-ellipsoidal, 10–17 × (4.5–)5–9 μm [av. ± SD, 12.7 (± 2.1) × 6.8 (± 0.8) μm], 0–1-septate; secondary ramoconidia broadly ellipsoidal to subcylindrical, 14–25(–30) × (5–)6–9(–10) μm [av. ± SD, 19.4 (± 3.5) × 7.6 (± 1.0) μm]. 0–2(–3)-septate, sometimes slightly constricted at the septa, septa somewhat sinuous with age, pale brown to medium olivaceous brown or brown, sometimes even dark brown, verruculose to echinulate (muricate under SEM), walls thickened, up to 1 μm thick, mostly broadly rounded at apex and base, sometimes attenuated, sometimes guttulate by oil drops, with up to three apical hila, mostly 1–2, hila sessile (apparently somewhat immersed) to somewhat protuberant, 1–2(–2.5) μm diam, thickened and darkened-refractive; microcyclic conidiogenesis occurring with conidia forming secondary micro- and macroconidemates conidiophores, conidia often germinating with long hyphae. Conidia formed by micronematous conidiophores usually smaller, narrower and paler, catenate, in short unbranched or branched chains, sub- globose, obvoid to limoniform, ellipsoidal or fusiform, 2.5–16 × 1.5–5 μm, 0(–1)-septate, few longer conidia subcylindrical to clavate, up to 37(–43) μm long, 0–2(–3)-septate, occasionally with up to four septa, sometimes slightly constricted at the septa, subhyaline to pale brown, almost smooth to minutely verruculose, walls unthickened, hila 0.8–1.2 μm diam, thickened and darkened-refractive.

Culture characteristics: Colonies on PDA reaching 30–43 mm in diam after 14 d at 25 °C, dark dull green to olivaceous grey, olivaceous grey, dark olivaceous to iron-grey reverse, pulvinate, velvety, sometimes somewhat zonate, paler zones towards the margin, margin regular, entire edge, almost colourless to white, glabrous to feathery, aerial mycelium sparse to more abundant in the colony centre or covering large areas of the colony, hairy, fluffy or felly, whitish to smoke-grey, sometimes becoming reddish, livid red to vinaceous, growth flat, regular, sometimes forming few prominent exudates, exudates sometimes slightly purplish, sporulation profuse with two kinds of conidiophores, low and high. Colonies on MEA reaching 31–50 mm in diam after 14 d at 25 °C, grey olivaceous to olivaceous grey or iron-grey, sometimes pale olivaceous grey to whitish due to abundant aerial mycelium, olivaceous grey or iron-grey reverse, velvety or powdery, margin narrow, entire edge, colourless to white, glabrous, aerial mycelium sparse to abundant, hairy or felly, growth regular, flat to low convex, radially furrowed, without prominent exudates, sporulation profuse. Colonies on OA reaching 29–40 mm in diam after 14 d at 25 °C, grey olivaceous, olivaceous grey to dark smoke-grey, olivaceous black or iron-grey reverse, margin entire edge, narrow, colourless or white, glabrous, aerial mycelium sparse, mainly in the colony centre, felly, white to smoke-grey or grey-olivaceous, felly, growth flat, regular, without exudates, sporulating.

Substrate and distribution: Decaying plant material, on dead fruiting bodies of other fungi, occasionally as secondary invader on lesions caused by other fungi, isolated from dust, human, water, incl. hypersaline water; widespread, almost cosmopolitan.

Additional material examined: Denmark, isol. from dust, soil, 2007, B. Andersen, BA 1704 = CPC 14305.

Notes: This isolate from dust agrees well with the species concept of C. macrocarpum (Fig. 2, clade 16).

Cladosporium needhamense Bensch & Samson, sp. nov. MycoBank MB822221. Fig. 23.

Etymology: Name refers to the place where the type specimen was collected, Needham.
Fig. 23. Cladosporium needhamense (CBS 143359). A–C. Colonies on PDA, MEA and OA. D–G. Macronematous conidiophores and conidia. H, J. Micronematous conidiophores and conidia. I. Ramoconidium and conidial chains. K. Conidial chains. Scale bars = 10 μm.
Holotype: USA, Massachusetts, Needham, isol. from indoor air sample, office, Dec. 2012, Z. Jurjević, CBS H-23252. Ex-type culture: CBS 143359 = CPC 222333 = EMSL 1866.

Diagnosis: Differs from C. uvebrauniam in having shorter conidiogenous cells (3–22 μm vs 17–50(–65) μm) and in forming densely branched chains, with 1–6(–8) conidia in the terminal unbranched part of the chains.

Superficial mycelium commonly formed, filiform or narrowly cylindrical-oblong, loosely branched, (0.5–)1–3.5 μm wide, sometimes up to 6 μm wide and then constricted at septa, plicate-septate, subhyaline or pale olivaceous or olivaceous brown, smooth or almost so, minutely verruculose or irregularly rough-walled, sometimes forming ropes of a few hyphae. Conidiophores micro-, semimacro- and macronematous, numerousy formed both laterally and terminally, arising from hyphae as short peg-like lateral outgrowths or longer, filiform to cylindrical-oblong, straight or flexuous, sometimes geniculate due to sympodial proliferation, once or several times, variable with regard to shape and size, unbranched or branched, 3–120 μm long, micronematous conidiophores 0.5–2 μm wide, macro- and semimacronematous conidiophores 2.5–3.5(–4) μm wide, septate, sometimes distinctly constricted at one of the septa, subhyaline or olivaceous brown, almost smooth, verruculose or irregularly rough-walled. Conidiogenous cells 3–22 μm long, terminal with dense clusters of pronounced scars at or towards the apex, up to seven loci closely aggregated, or reduced to conidiogenous cells, formed as short peg-like lateral outgrowths of hyphae, loci conspicuous, 0.5–2 μm diam, thickened and darkened-refractive. Ramoconidia commonly formed, cylindrical-oblong, up to 52 μm long, 3–4 μm wide, base about 2.5 μm wide. Conidia numerousy formed in densely branched chains, with 1–6(–8) conidia in the terminal unbranched part of the conidial chain, small terminal conidia obvoid, ovoid or ellipsoid, 4–6 × 1.5–2(–3) μm (av. ± SD: 4.6 ± 0.9 × 2.1 ± 0.5), intercalary conidia ellipsoid, limoniform or fusiform, (5–)6.5–12(–14) × 2.5–3 μm (av. ± SD: 9.1 ± 2.8 × 2.8 ± 0.2), with (1–)2–4 distal hila, secondary ramoconidia ellipsoid to cylindrical, 8–33(–37) × 2–4(–4.5) μm (av. ± SD: 20.7 ± 9.9 × 3.4 ± 0.7), 0–2-septate, septum median or in the upper half, with dense clusters of pronounced scars (2–6 hila) at the distal end, sometimes with additional hila near the basal hilum, smooth or irregularly rugulose, subhyaline or pale olivaceous, conidia formed by micronematous conidiophores shorter, narrower and paler, hila conspicuous, 0.5–2 μm diam; microcyclic conidiogenesis sometimes occurring.

Culture characteristics: Colonies on PDA attaining 65–72 mm diam after 14 d at 25 °C, grey olivaceous, smoke-grey and pale olivaceous grey, reverse iron-grey, fluffy-felt, margin regular, white, growth low convex, without prominent exudates. Colonies on MEA 68–76 mm diam after 14 d at 25 °C, whitish, smoke-grey and pale olivaceous grey, reverse olivaceous grey and iron-grey, velvety or fluffy, margins glabrous, radially furrowed, aerial mycelium abundant, dense, fluffy, several small but prominent exudates formed. Colonies on OA 55–65 mm diam after 14 d at 25 °C, grey olivaceous, pale olivaceous grey or smoke-grey, reverse leader-grey and olivaceous grey, velvety or fluffy-felt. Sporulating on all media.

Substrate and distribution: Indoor environment; North America (USA).

Notes: Cladosporium needhamense (Fig. 1, clade 49), a morphologically very variable species, is phylogenetically interetween C. verruculadosporioides (Fig. 1, clade 48), C. phaenocomae (Fig. 1, clade 50) and C. australiense (Fig. 1, clade 51). It differs from C. australiense in that the latter species has macronematous, often seta-like and very long conidiophores (48–285 μm), only occasionally forming ramoconidia and smooth conidia (Bensch et al. 2012). Cladosporium verruculadosporioides forms 0–1-septate, wider terminal and intercalary conidia showing a more prominent surface ornamentation (Bensch et al. 2010); and C. phaenocomae produces finely verruculose conidia and narrower conidiogenous loci and conidial hila (Crous & Groenewald 2011).

Cladosporium uvebrauniam (Fig. 1, clade 52), newly described from indoor environments, is also closely related but is distinct in having longer conidiogenous cells (17–50(–65) μm long), and conidia formed in long branched chains up to 10(–13) conidia in the terminal unbranched part of the chain. Until now C. needhamense is known only from a single isolate.

Cladosporium neerlandicum Bensch & Samson, sp. nov. MycoBank MB822224. Fig. 24.

Etymology: Name refers to the country, where the type specimen was isolated, The Netherlands.

Holotype: The Netherlands, ‘s Hertogenbosch, swab sample archive, M. Meijer, CBS H-23253. Ex-type culture: CBS 143360 = DTO 086-C5.

Diagnosis: Differs from C. acalyphe in having shorter, 0–3-septate conidiophores and shorter as well as narrower, smooth conidia.

Mycelium immersed, sparsely superficial, hyphae unbranched or loosely branched, 1.5–5 μm wide, septate, often slightly or distinctly constricted at the somewhat darkened and thickened septa, pale to medium olivaceous brown, verruculose. Conidiophores solitary or in pairs, macronematous, occasionally micronematous, straight or sometimes slightly flexuous, subcylindrical or conical being attenuated towards the apex, usually not geniculate, unbranched or once branched, (8–)12–60 μm long, 3–5(–6) μm wide at the base, 2.5–3.5 μm wide at the apex, 0–3-septate, septa somewhat darkened, pale to medium olivaceous brown, smooth, walls slightly thickened; micronematous conidiophores filiform, about 2 μm wide. Conidiogenous cells terminal, subcylindrical or cylindrical, neither geniculate nor nodulose, 7.5–20 μm long, with 2–5 loci crowded at the apex, loci 1–1.5(–1.8 μm) diam. Ramoconidia not occurring. Conidia catenate with conidial chains branching in all directions, with 1–5 conidia in the terminal unbranched part of the chains, small terminal conidia obvoid or ellipsoid, 4–8 × (2–)2.5–3 μm (av. ± SD: 5.8 ± 1.4 × 2.7 ± 0.4), apex rounded or with a single hilum, intercalary conidia ellipsoid, 5.5–11 × (2.5–)3.5–3.5 μm (av. ± SD: 7.4 ± 2.0 × 3.1 ± 0.3), asceptate, with 1–4 distal hila crowded at the apex, secondary ramoconidia ellipsoid or subcylindrical, (8–)9.5–18(–23) × 3–5.5(–4) μm (av. ± SD: 13.6 ± 3.8 × 3.4 ± 0.3), 0–1-septate, with (2–)3–6 distal hila forming dense cluster of pronounced scars, sometimes hila also situated on lateral prolongations or with one or few additional hila the lower end, pale olivaceous or pale olivaceous brown, smooth or almost so, hila protuberant, subdenticulate, 0.5–1.5(–1.8) μm diam, somewhat darkened,
Conidia often germinating, germ tubes up to 80 μm long or even longer, sepalate, about 1 μm wide.

Culture characteristics: Colonies on PDA attaining 33–37 mm diam after 14 d at 25 °C, olivaceous or olivaceous grey, reverse leaden-grey and iron-grey, velvety or floccose, margins narrow, undulate, white, growth flat, sometimes radially furrowed with slightly elevated and folded colony centre, aerial mycelium loose, diffuse. Colonies on MEA reaching 30–35 mm diam after 14 d at 25 °C, smoke-grey, glaucous grey towards margin, reverse olivaceous grey, velvety or powdery, margins white, undulate, glabrous, radially furrowed or wrinkled. Colonies on OA 24–34 mm diam after 14 d at 25 °C, olivaceous, iron-grey or olivaceous black towards margins, reverse olivaceous grey or iron-grey, powdery or fluffy, margins narrow, regular or slightly undulate. Sporulation profuse on all media, without prominent exudates.

Substrate and distribution: Indoor environment; Europe (The Netherlands).

Notes: Phylogenetically C. neerlandicum (Fig. 1, clade 40) is closely allied to C. acalyphae (Fig. 1, clade 39), a species described from South Korea on Acalypha australis. The latter species differs however in having very long, pluriseptate conidiophores (up to 430 μm long), ramoconidia and longer and wider, finely verruculose (reticulate under SEM) conidia (Bensch et al. 2010, 2012). On act, the two species are 167/171 (98 %) similar and on tef1 they are 254/256 (99 %) similar; they are identical on ITS. Until now C. neerlandicum is known only from a single isolate.

Cladosporium neolangeronii Bensch & Samson, sp. nov. MycoBank MB822223. Fig. 25.

Etymology: Name refers to its morphological and phylogenetic similarity with C. langeronii.

Holotype: The Netherlands, ’s-Hertogenbosch’ and Breda, isol. from indoor environment, 1996, O. Adan (until now stored as “C. sphaerospermum” in the CBS collection), CBS H-23254. Ex-type culture: CBS 797.97.

Diagnosis: Differs from C. langeronii in having faster growth rates and longer ramoconidia.
Fig. 25. *Cladosporium neolangeronii* (CBS 797.97). A–C. Colonies on PDA, MEA and OA. D–H. Macronematous conidiophores and conidia. I, K. Micronematous conidiophores and conidia. J. Ramoconidium and conidia. Scale bars = 10 μm.
Mycelium loosely branched, filiform or narrowly cylindrical, hyphae 1.5–5(–6) μm wide, septate, sometimes constricted and swollen, subhyaline, pale to medium olivaceous brown, smooth or almost so or minutely verruculose, walls unthickened or only slightly thickened, occasionally forming ropes or stromatic hyphal aggregations composed of swollen hyphal cells. **Conidiophores** mainly macronematous and micronematous, arising terminally or laterally from hyphae, solitary, in pairs of two or in small groups of 3–4, filiform to subcylindrical or cylindrical-oblong, 20–440(–840) × (2)–2.5–4(–5) μm, sometimes wider at the base and attenuated and paler towards the apex, neither geniculate nor nodulose, unbranched or branched, once or several times, branchlets sometimes quite long, up to 100 μm or even longer, plurisepitate, not constricted, pale olivaceous to medium olivaceous brown, smooth or almost so or minutely verruculose especially towards the apex, walls unthickened or slightly to distinctly thick-walled, sometimes up to 1 μm thick. **Conidiogenous cells** integrated, terminal and intercalary, cylindrical-oblong, 10–60 μm long, with 1–5 loci at the apex, in intercalary cells mostly a single focus situated on small lateral prolongations or subdenticle just below a septum, loci 1–2(–2.5) μm diam, somewhat thickened and darkened; often seceding at septa and forming ramoconidia. **Ramoconidia** frequently formed, cylindrical, 35–52 × (2)–3–4 μm, 0–1-septate, smooth or almost so or irregularly minutely verruculose, base truncate, 2–3 μm wide, slightly darkened. Conidia catenate, numerous, in branched chains, branching in all directions or dichotomously, with 1–5(–6) conidia in the terminal unbranched part of the chain; small **terminal conidia** globose, subglobose, obovoid, occasionally subrostrate or rostrate at the base, 2.5–5 × (2–3)–4(–5) μm (av. ± SD: 4.0 ± 0.6 × 3.3 ± 0.5), aseptate, **intercalary conidia** subglobose, ovoid, limoniform or ellipsoid, 4.5–11(–15) × (2–3)–4 μm (av. ± SD: 7.7 ± 2.9 × 3.6 ± 0.5), usually aseptate, sometimes irregular in shape due to lateral hila, 1–3 distal hila, sometimes subrostrate or rostrate towards hila, small terminal and intercalary conidia medium olivaceous brown, loosely and irregularly verruculose or verrucose, young conidia paler; **secondary ramoconidia** ellipsoid to subcylindrical or cylindrical, (6)–11–25(–35) × (2.5)–3–4(–5) μm (av. ± SD: 19.7 ± 6.6 × 3.4 ± 0.6), 0–1(–3)-septate, pale or medium olivaceous brown, surface ornamentation often not as prominent as in terminal and intercalary conidia, almost smooth, loosely minutely verruculose or irregularly rough-walled, walls somewhat thickened, slightly attenuated toward the base, with (1–)2–4(–5) distal hila, hila conspicuous, subdentulate, 0.5–2(–2.5) μm diam, somewhat thickened and darkened-refractive; microcyclic conidiogenesis occasionally occurring.

Culture characteristics: Colonies on PDA attaining 12–23 mm diam after 14 d at 25 °C, iron-grey or olivaceous black, pale olivaceous grey or olivaceous grey due to aerial mycelium, reverse olivaceous black, velvety or powdery, margin narrow, white, aerial mycelium loose, diffuse to denser, floccose, growth low convex to convex with elevated colony centre, radially furrowed. Colonies on MEA reaching 7–19 mm diam after 14 d at 25 °C, grey olivaceous, olivaceous grey and olivaceous grey due to abundant sporulation, in colony centre smoke-grey due to dense aerial mycelium, glaucous-grey at margins, reverse iron-grey, floccose or fluffy, margins narrow, white, growth low convex or convex, radially furrowed and folded in colony centre. Colonies on OA attaining 10–20 mm diam after 14 d at 25 °C, olivaceous grey and iron-grey, reverse leaden-grey, velvety-floccose, aerial mycelium loose to dense, especially in colony centre, growth flat. Sporulation profuse on all media, on PDA and MEA sometimes prominent exudates formed.

Substrate and distribution: Isolated from indoor environments and from a mortar of Muro Famesion; Europe (Italy, The Netherlands), North America (USA).

Additional materials examined: Italy, Parma,isol. from mortar of Muro Famesion, coll. by C. Urzi, Dept. Sci. Microbiol. Gen. Mol., Univ. of Messina, Italy, No. MC 783, CBS 109868. **The Netherlands**, wall in a storage room of antiquities with mold growth, J. Houbraken, DTO 162-44. **USA**, Delaware, isol. from indoor air storage sample, pineapple room, Jun. 2012, Z. Jurjević, EML 1682 = CPC 22236; Minnesota, isol. from indoor air sample, Aug. 2012, Z. Jurjević, EML 1724, 1725 = CPC 22266, 22267; isol. from outside air sample, Aug. 2012, Z. Jurjević, EML 1717 = CPC 22262, 22263; New Jersey, Chatman, isol. from indoor air sample, Oct. 2012, Z. Jurjević, EML 1810 = CPC 22314.

Notes: Cladosporium neolangeronii (Fig. 3, clade 10) is both morphologically as well as phylogenetically closely related to C. langeronii (Fig. 3, clade 13) and C. psychrotolerans (Fig. 3, clade 12). Cladosporium psychrotolerans differs in having paler and narrower, smooth or minutely verruculose conidia; and C. langeronii has lower growth rates (2.5–4.5, 1.5–7 and 1–5.5 mm on PDA, OA and MEA) and shorter ramoconidia (10–22(–42) μm long) (Zalar et al. 2007).

Cladosporium parahalotolerans Bensch & Samson, sp. nov. MycoBank MB822244. Fig. 26.

Etymology: Name refers to its morphological and phylogenetic similarity with **C. halotolerans**.

Holotype: The Netherlands, Gilze, swab sample in an apartment, J. Houbraken, CBS H-23255. **Ex-type culture**: CBS 139585 = DTO 161-D3.

Diagnosis: Differs from C. halotolerans in having distinctly wider conidia and less densely septate conidiophores.

Mycelium internal and superficial, hyphae sparingly branched, filiform or narrowly cylindrical-oblong, 1–4 μm wide, septate, subhyaline or pale olivaceous brown, almost smooth or minutely verruculose, sometimes forming ropes. **Conidiophores** macro-semimacro- and micronematous, arising terminally or laterally from hyphae, filiform or narrowly cylindrical-oblong, unbranched or branched, 5–130 × 2.3–4.5 μm, 1–7–septate, septa often darkened where ramoconidia secede, but not constricted, subhyaline, pale olivaceous up to pale medium olivaceous brown, smooth or almost so. **Conidiogenous cells** integrated, terminal and intercalary, in micronematous conidiophores usually reduced to conidigenous cell, 5–35 μm long, with 2–4 loci at the uppermost apex or in intercalary cells 1–2 loci situated on a short peg-like lateral outgrowth just below a septum, loci subdentulate, 1–1.5 μm diam. **Ramoconidia** subcylindrical or cylindrical, 24–37 × 2.5–3.5(–4) μm, 0(–1)–3–septate, with 2–4 distal scars, non-cladosporioidei base about (2)–2.5–3 μm wide. Conidia catenate, in branched chains, 1(–3)–6 conidia in the terminal unbranched part of the conidial chain, small **terminal conidia** sphaerical, 3–5 × 3.5–4 μm (av. ± SD: 3.8 ± 0.4 × 3.7 ± 0.3), intercalary conidia sphaerical or ovoid 4.5–9(–11) × (2.5)–3.5–4(–5) μm (av. ± SD: 6.4 ± 1.6 × 4.0 ± 0.4), pale olivaceous to often medium olivaceous brown, sparse masses appear even darker, often distinctly darker than secondary ramoconidia, ramoconidia and conidiophores, minutely verruculose or verruculose, not attenuated towards apex and base, secondary ramoconidia ellipsoid or subcylindric, (7)–8.5–23(–30) (2.5)–3–4(–4.5) μm (av. ± SD: 16.9 ± 7.0 × 3.4 ± 0.5), 0(–1)–3-septate,
Fig. 26. Cladosporium parahalotolerans (CBS 139585). A–C. Colonies on PDA, MEA and OA. D–I. Conidiophores and conidial chains. J–K. Ramoconidium and conidial chains. L–M. Micronematous conidiophores and conidia. Scale bars = 10 μm.
septa often appear somewhat darkened, pale olivaceous or pale medium olivaceous brown, smooth or almost so, hila protuberant, subdenticulate, 0.5–1.5 μm diam; microcyclic conidiogenesis not occurring.

Culture characteristics: Colonies on PDA attaining 27–40 mm diam after 14 d at 25 °C, olivaceous or olivaceous grey, reverse olivaceous grey to leaden-grey or olivaceous black, velvety, powdery to felt-y-wooly, margins white, aerial mycelium diffuse or floccose. Colonies on MEA attaining 18–40 mm diam after 14 d at 25 °C; smoke-grey, pale olivaceous grey or olivaceous grey, sometimes glaucous-grey at margin, reverse olivaceous grey, powdery to felt-y-wooly, margin colourless to white, glabrous or feathery, radially furrowed, aerial mycelium feltly, abundant. Colonies on OA reaching 29–40 mm diam after 14 d at 25 °C; grey olivaceous, olivaceous or olivaceous black, reverse olivaceous or olivaceous grey, velvety or floccose, margin narrow, somewhat feathery, aerial mycelium sparse, diffuse or abundantly formed, high, dense. Without prominent exudates but sporulation profuse on all media.

Substrate and distribution: Indoor environments; Asia (China), Europe (The Netherlands), North America (Mexico, USA).

Additional materials examined: China, isolated from indoor air, DTO 323-B8, DTO 332-C1, DTO 322-C8, DTO 332-F4, DTO 325-H2, DTO 323-H3, DTO 324-A7, DTO 324-B7. Mexico, isolated from house dust, DTO 305-F7 = AA07MX-953, DTO 305-F6 = AA07MX-935, DTO 305-I5 = AA03MX-750, DTO 306-C1 = AA07MX-836, DTO 306-E4 = AA02MX-573, DTO 307-H4; AA03MX-612.

Notes: Cladosporium parahalotolerans (Fig. 3, clade 22) is morphologically and phylogenetically related to C. halotolerans (Fig. 3, clade 23) and C. domesticum (Fig. 3, clade 21). However, the new species is genetically well differentiated (478/478 (100 %), 256/291 (88 %) and 163/165 (99 %) sequence similarity for ITS, tef1 and act to C. halotolerans, 545/556 (98 %), 245/295 (83 %) and 143/168 (85 %) sequence similarity for ITS, tef1 and act to C. domesticum respectively when ex-type sequences are compared) and produces distinctly wider conidia and less densely septate conidiophores.

Cladosporium parabasitilissimum Bensch & Samson, sp. nov. MycoBank MB822225. Fig. 27.

Etyymology: Name refers to the morphological similarity with C. subtilissimum.

Holotype: USA, New Mexico, Albuquerque, isolated from indoor air sample, bathroom, Nov. 2012, Z. Jurjević, CBS H-23256. Ex-type culture: CBS 143361 = CPC 22332 = EMSL 1845.

Diagnosis: Differs from C. subtilissimum by having shorter and slightly narrower conidia formed in shorter chains with 1–4–(5) conidia in the unbranched terminal part of the chain.

Mycelium internal and superficial, hyphae usually unbranched, filiform or narrowly cylindrical-oblong, 1.5–4 μm wide, without swellings and constrictions, septe, septe sometimes darkened, subhyaline or pale olivaceous, verruculose, verrucose or irregularly rough-walled, walls unthickened. Conidiophores macro- and micronematous, filiform or narrowly cylindrical-oblong, unbranched or once branched, non-nodulose, sometimes once geniculate, macro-nematous conidiophores 15–200 × 2.5–4 μm, 0–6-septate, micronematous conidiophores 9–60 × 2–2.5 μm, 0–4-septate, pale or medium olivaceous brown, smooth or almost so, sometimes asperulate, walls unthickened or slightly thick-walled. Conidiophorons cells terminal and intercalary, cylindrical-oblong, occasionally with a single geniculation, 9–25 μm long, with 2–4(–5) loci crowded at the uppermost apex, sometimes with 1–2(–3) additional loci at a lower level, sometimes situated on lateral prolongations at the apex, loci conspicuous, subdenticulate, 1–2 μm diam, thickened and darkened. Ramoconidia rarely formed, up to 34 μm long, base about 2.5 μm wide. Conidia numerous, catenate, formed in branched chains, branching in all directions, 1–4(–5) conidia in the unbranched terminal part of the conidial chain, small terminal conidia obvold or ellipsoid, sometimes subglobose, 3.45(–5.5) × (2–)2.5–3 μm (av. ± SD: 4.0 ± 0.7 × 2.5 ± 0.3), apex rounded or attenuated towards apex and base, intercalary conidia ellipsoid-ovoid, limoniform, 5.5–12(–13.5) × (2.5–)3–4 μm (av. ± SD: 7.8 ± 2.4 × 3.2 ± 0.4), aseptate, with 1(–)2–3(–4) distal hila, about 0.5–1 μm diam, secondary ramoconidia ellipsoid or subcylindrical. (6.5–)9–26 × 3–4(–5) μm (av. ± SD: 15.4 ± 5.2 × 3.7 ± 0.5), 0–1(–2)-septate, with 1(–)2–4 distal hila, sometimes even up to eight distal hila crowded at the distal end and then conidia somewhat irregular in shape due to these clusters of scars, intercalary conidia then formed in dense whirs, hila 1–2 μm diam, pale to medium olivaceous brown, minutely verruculose or verruculose, walls unthickened, hila conspicuous, microcyclic conidiogenesis not observed.

Culture characteristics: Colonies on PDA attaining 48–57 mm diam after 14 d at 25 °C, olivaceous grey or pale olivaceous grey, reverse leaden-grey and iron-grey, velvety or fluffy-feltly, margin regular to undulate, somewhat feathery, radially furrowed, aerial mycelium loose, diffuse to dense, low to high, fluffy-feltly, forming pale olivaceous grey patches, sporulation profuse. Colonies on MEA reaching up to 50 mm diam after 14 d at 25 °C, olivaceous grey, whitish, smoke grey or pale olivaceous grey due to the fluffy-feltly aerial mycelium mainly formed in colony centre, reverse iron-grey or black, margin narrow, white, feathery, radially furrowed, growth low convex with slightly elevated colony centre, sporulation profuse. Colonies on OA attaining 45–65 mm diam after 14 d at 25 °C, olivaceous grey or olivaceous due to abundant sporulation, reverse leaden-grey and olivaceous grey, velvety or fluffy, margin regular, white, aerial mycelium loose, diffuse or forming a few smoke-grey high and fluffy spots. Sporulation profuse on all media but no prominent exudates formed.

Substrate and distribution: Indoor air; North America (USA).

Additional material examined: USA, California, Gerber, isolated from indoor air sample, recreational vehicle, Jan. 2013, Z. Jurjević, EMSL 1924 = CPC 22396.

Notes: Both phylogenetically and morphologically this new species (Fig. 2, clade 26) is closely related to C. subtilissimum (Fig. 2, clade 25) but the latter species can be distinguished by its longer and slightly wider conidia formed in long chains with up to 12 or even more conidia (Bensch et al. 2012).

Cladosporium perangustum Bensch et al., Stud. Mycol. 67: 65. 2010. MycoBank MB517085. Fig. 28.
Fig. 27. *Cladosporium parasubtilissimum* (CBS 143361). A–C. Colonies on PDA, MEA and OA. D–L. Macro- and micromatous conidiophores and conidial chains. Scale bars = 10 μm.
Fig. 28. Cladosporium perangustum (DTO 127-E1). A–C. Colonies on PDA, MEA and OA. D–H. Macronematous conidiophores and conidial chains. I–J. Micronematous conidiophores and conidia. Scale bars = 10 μm.
Holotype: South Africa, Pretoria, Walter Sisulu park, isol. from Cussonia sp. (Araliaceae), 20 Feb. 2007, P.W. Crous, CBS H-20451. Ex-type culture: CBS 125996 = CPC 13815.

Lit.: Bensch et al. (2012: 208–210; 2015; 57), Jang et al. (2013), Sandoval-Denis et al. (2016).

Ill.: Bensch et al. (2010: 66–67, figs 54–56; 2012: 209–210, figs 233–235), Jang et al. (2013: 23, figs 1–2).

Myceillum immersed and superficial; hyphae filiform to narrowly cylindrical-oblong, loosely branched, (0.5–)1–4 μm wide, septate, sometimes irregular due to intercalary swellings and constrictions, subhyaline to pale olivaceous or pale olivaceous brown, smooth to usually verruculose or irregularly rough-walled, walls unthickened or almost so, sometimes swollen at the base of conidiophores, sometimes forming dense ropes. Conidiophores solitary, sometimes in pairs, macro-, semimacro- or micronematous, arising terminally and laterally from hyphae or from swollen hyphal cells, erect, straight or slightly flexuous, filiform to narrowly cylindrical-oblong, usually neither geniculate nor nodulose, sometimes geniculate-sinuous or unilaterally slightly swollen at the apex, unbranched, occasionally branched, once or several times, branches short, peg-like or up to 30 μm long, conidiophores (8–)12–130(–150) × (1.5–)2–3.5(–4) μm, 0–6-septate, usually not constricted at septa, occasionally septa darkened, subhyaline, pale olivaceous or pale olivaceous brown, more or less rough-walled, especially towards the base of conidiophores, asperulate-verruculose, at the apex smooth or almost so, walls unthickened or slightly thickened, about 0.5 μm wide, sometimes slightly attenuated towards the apex, at the base sometimes up to 45 μm wide. Conidiogenous cells integrated, mainly terminal, sometimes also intercalary, narrowly cylindrical-oblong, sometimes geniculate-sinuous, in intercalary cells loci situated on small peg-like lateral prolongations or just below the septum, 7–40 μm long, with 1–4(–5) apically crowded loci, forming clusters of pronounced scars, conspicuous, subdenticulate to denticulate, 0.8–1.5 μm diam, thickened and darkened-refractive. Ramoconi-dia cylindrical-oblong, 25–45 × 2.5–3(–4) μm, 0(–1)–2(–3)-septate, base truncate, 2–2.5(–4) μm wide, sometimes slightly darkened or refractive. Conidia numerous, catenate, in branched chains, branching in all directions, 1–4 conidia in the terminal unbranched part of the chain, small terminal conidia globose, subglobose or ovoid to obovoid, 2–(4–)5 × (1.5–)2–2.5 μm (av. ± SD: 3.2 ± 0.7 × 2.1 ± 0.2), apex broadly rounded or slightly attenuated, intercalary conidia ovoid, limoniform to ellipsoid, somewhat fusiform or subcylindrical, 4–15.5(–18) × 2–3(–3.5) μm (av. ± SD: 8.6 ± 3.8 × 2.5 ± 0.4), 0(–1)-septate, attenuated towards apex and base, with 1–3(–5) distal hila, secondary ramoconidia narrowly ellipsoidal to cylindrical-oblong, 6–33(–40) × 2–3(–3.5) μm (av. ± SD: 17.3 ± 7.3 × 2.5 ± 0.4), 0(–1)(–3)-septate, septum median or often somewhat in the upper half, with 2–4(–7) distal hila, pale olivaceous brown, smooth or almost so to finely verruculose (LM), under SEM smooth or surface with somewhat irregularly reticulate structure or embossed stripes probably caused by diminishing turgo and shrivelling of tender conidia, thin-walled, hila conspicuous, subdenticulate to denticulate, (0.8–)1–1.5 μm diam, thickened and darkened-refractive; microcyclic conidiogenesis occasionally occurring.

Culture characteristics: Colonies on PDA attaining 33–76 mm diam after 14 d at 25 °C, grey olivaceous to olivaceous, olivaceous grey or iron-grey, sometimes with patches of smoke-grey or pale greenish grey, reverse olivaceous grey, iron-grey or olivaceous black, sometimes releasing an olivaceous buff or orange to luteous soluble pigment into the agar, velvety, fluffy, floccose or powdery, margins glabrous to feathery, whitish, olivaceous buff or pale luteous due to the pigment, broad, regular or somewhat undulate, aerial mycelium diffuse to loosely floccose or felfy, growth effuse, usually without prominent exudates, occasionally numerous small to large prominent exudates formed, sporulation profuse. Colonies on MEA reaching 40–72 mm diam after 14 d at 25 °C, pale olivaceous grey to glaucous grey or grey olivaceous, whitish to smoke-grey due to aerial mycelium, reverse olivaceous grey to iron-grey, occasionally releasing an orange soluble pigment into the agar, velvety to floccose, margins white, narrow, regular to undulate, glabrous to somewhat feathery, aerial mycelium abundantly formed, covering most parts of colony surface, loosely to densely floccose or felfy, white to pale olivaceous grey or smoke-grey, growth effuse with sometimes elevated colony centre, radially furrowed, sometimes few small prominent exudates formed, sporulation profuse. Colonies on OA 40–75 mm diam after 14 d at 25 °C, whitish to smoke-grey and pale olivaceous grey or grey olivaceous, reverse pale olivaceous grey, pale greenish grey to olivaceous grey, leaden-grey or sometimes amber-coloured due to the pigment released into the agar, velvety or fluffy to floccose, margins white or greenish olivaceous, glabrous, regular, aerial mycelium abundant, covering large parts of the colony surface, dense, low to high, white, growth effuse, sometimes few prominent exudates formed, sporulating.

Substrate and distribution: On plant material, ascomycetes and isolated from indoor environments; Africa (South Africa, Asia (China, Korea), Australasia (New Zealand), Europe (Germany), North America (USA).

Additional materials examined: China, isol. from indoor air, DTO 323-E4, DTO 323-E8, DTO 323-E9, DTO 324-A2, DTO 324-A6, DTO 324-D1, Germany, Essien, botanical garden, 51.45, 7.0167, isol. from Morus rubra (Moraceae), 2005, N. Ale-ahga, CPC 12216, New Zealand, Auckland, Auckland University campus, isol. from leaves of onocca sp. (Salicaceae), Sep. 2004, C.F. Hill, Hill 1076-1 = CPC 11163, South Africa, Pretoria, Walter Sisulu park, isol. from Protea caffra (ascospor isolate) (Proteaceae), 2 Jan. 2007, P.W. Crous, CPC 13730, 13774; isol. from Teratosphaeria maculiformis (Teratosphaeriaceae) on Protea caffra, 2 Jan. 2007, P.W. Crous, CPC 13727; Western Cape Province, Jonker- Shonek Nature Reserve, isol. from Teratosphaeria fibrosa (Teratosphaeriaceae), 30 Mar. 2007, P.W. Crous, CPC 13870; Western Cape, Bellies Bay, Harold Porter National Park, isol. from Protea cynaroides (Proteaceae), 4 Dec. 2008, L Mostert, CPC 15192, USA, California, San Diego, isol. from indoor air sample, bedroom closet, Dec. 2012, Z. Jurjevi, EMSL 1844 = CPC 22331; Thousand Oaks, isol. from indoor air sample, bedroom, Jan. 2013, Z. Jurjevi, EMSL 1891 = CPC 22378; Connecticut, Manchester, isol. from indoor air, library, Nov. 2012, Z. Jurjevi, EMSL 1835 = CPC 22329; Georgia, Tucker, isol. from indoor sample, bakery, DTO 127-E1 = AR386, DTO 127-E2 = AR371; Louisiana, Baton Rouge, isol. from Magnolia sp. (Magnoliaceae), 8 Sep. 2007, P.W. Crous, CPC 14327; Maine, Westbrook, isol. from indoor air sample, Nov. 2012, Z. Jurjevi, EMSL 1833 = CPC 22327, CPC 22328; New York, New York, isol. from indoor air sample, hospital, Jan. 2013, Z. Jurjevi, EMSL 1888 = CPC 22375; Pennsylvania, Chaddes Ford, isol. from indoor air sample, Oct. 2012, Z. Jurjevi, EMSL 1781 = CPC 22297; Washington, Seattle, University of Washington campus, isol. from chasmotheca of Phylachalinia guttata (Erysiaphila) on leaves of Corylus avellana (Betulaceae), 16 Sep. 2004, D. Glawe (CBS 126365 = CPC 11820, CPC 11815, 11819, 11821, 11831).

Notes: Bensch et al. (2010, 2012) already discussed the phylogenetic variability within the subclades of C. perangustum (Fig. 1, clade 4, previously also including clades 2 and 3) but based on the quite conserved morphology refrained from splitting this species based on the sampling available at that stage. However, Sandoval-Denis et al. (2016) introduced two additional species, C. angulosum (Fig. 1, clade 2) and C. xanthochromaticum (Fig. 1, clade 3) for two
Fig. 29. Cladosporium pseudocladosporioides (DTO 151-A4). A–C. Colonies on PDA, MEA and OA. D–J. Conidiophores and conidial chains. Scale bars = 10 μm.
of the subclades of *C. perangustum*. *Cladosporium angulosum* differs in having slightly shorter intercalary conidia and secondary ramoconidia. Conidiophores described as typical for *C. angulosum* in being frequently branched in a 90° angle (Sandoval-Denis et al. 2016) are sometimes also formed in strains of *C. perangustum* (see Fig. 28). *Cladosporium xanthochromaticum* has slightly longer and wider secondary ramoconidia and usually smooth conidiophores; its ramoconidia are slightly wider but not shorter as in *C. perangustum*. Due to high similarity and overlapping characters within these three species an identification based on morphology alone will be difficult. Therefore, a molecular approach is highly recommended for a correct identification.

Cladosporium pseudocladosporioides Bensch et al., Stud. Mycol. 67: 71. 2010. MycoBank MB517087. Fig. 29.

Holotype: The Netherlands, Zwolle, isol. from outside air, 7 Jan. 2007, M. Meijer, CBS H-20445. *Ex-type cultures*: CBS 125993 = CPC 14189, CPC 14193.

Lit.: Bensch et al. (2012: 226–228).

Ill.: Bensch et al. (2010: 71–72, figs 60–61; 2012: 226–227, figs 257–258).

Mycelium immersed and superficial; hyphae unbranched or sparingly branched, (0.5)–1–4 μm wide, septate, sometimes constricted at septa, especially in wider ones, subhyaline to pale olivaceous or pale olivaceous brown, smooth or almost so, walls sometimes slightly thickened, about 0.5 μm wide, sometimes irregular in outline due to swellings and constrictions, sometimes forming small ropes of few hyphae, sometimes cells swollen, up to 6.5 μm wide, fertile hyphae minutely verruculose, mainly at the base of conidiophores. *Conidiophores* macronematous, sometimes also micronematous, solitary or in small loose groups, arising terminally and laterally from hyphae or swollen hyphal cells, erect, straight to slightly flexuous, cylindrical-oblong, non-nodulose, sometimes once geniculate-sinuous or slightly swollen at the apex, unbranched or branched once or twice, occasionally three times, branches often only as short denticle-like lateral outgrowths just below a septum, 15–155 μm long, 2–4 μm, sometimes attenuated towards apex, 0–5–septate, sometimes slightly constricted at septa, pale to pale medium olivaceous brown, sometimes paler towards the apex, smooth or almost so, at the base asperulate or finely verruculose like fertile hyphae, walls slightly thickened, about 0.5 μm wide or unthickened; micronematous conidiophores filiform, narrower, not attenuated, about 1.5 μm wide. *Conidigenous cells* integrated, terminal, sometimes intercalary, slightly attenuated, narrowly cylindrical-oblong, sometimes once geniculate, non-nodulose, (6.5)–9–33 μm long, with 1–4 loci at the apex, occasionally with up to seven loci crowded at or towards the apex, in intercalary cells loci situated on small lateral peg-like outgrowths, 1–2(–3) loci, conspicuous, subdenticulate, 1.5(–1.8) μm diam, somewhat thickened and darkened-refractive. *Ramoconidia* cylindrical-oblong, 19–48 × 3–4 μm, 0–2(–3)-septate, pale olivaceous brown, smooth, base broadly truncate, 2–3 μm wide, unthickened or slightly thickened, sometimes slightly refractive. *Conidia* vary numerous, catenate, in branched chains, branching in all directions with 3–6(–9) conidia in the terminal unbranched part of the chain, *small terminal conidia* ovoid, ovoid to limoniform or ellipsoidal, sometimes subglobose, 3.5–5 × (1)–1.5–2.5 μm (av. ± SD: 4.1 ± 0.7 × 2.1 ± 0.3), apex rounded or attenuated towards apex and base, *intercalary conidia* ovoid, limoniform to ellipsoidal or subcylindrical, 4.5–13(–19) × (1.8)–2–3 μm (av. ± SD: 8.8 ± 3.9 × 2.6 ± 0.3), 0(–1)-septate, slightly attenuated towards apex and base, with 1–4(–5) distal hila, secondary ramoconidia ellipsoid-ovoid to subcylindrical or cylindrical-oblong, (6.5)–8–23(–29) × (2)–2.5–3.5(–4) μm (av. ± SD: 16.1 ± 5.1 X 2.9 ± 0.3), 0(–1)–2-septate, septum median or often somewhat in the lower half, pale olivaceous to pale olivaceous brown, smooth or almost so, sometimes slightly rough-walled, walls unthickened, with (1)–2–4(–6) distal hila, conspicuous, subdenticulate, 0.5–1.5(–1.8) μm diam, somewhat thickened and darkened-refractive; microcyclic conidiogenesis not observed.

Culture characteristics: Colonies on PDA attaining 65–78 mm diam after 14 d at 25 °C, olivaceous grey to grey olivaceous, reverse leaden-grey to olivaceous black, felty-floccose, growth effuse to low convex, few small prominent exudates formed, sporulation profuse. Colonies on MEA attaining 52–78 mm diam after 14 d at 25 °C, smoke-grey to dark smoke-grey or grey olivaceous, reverse iron-grey, floccose, margins white, narrow, glabrous to somewhat feathery, aerial mycelium white, floccose, abundant, dense, growth effuse and somewhat radially furrowed, mostly without prominent exudates, sporulation profuse. Colonies on OA reaching 55–73 mm diam after 14 d at 25 °C, olivaceous grey olivaceous or olivaceous buff, pale olivaceous grey to greenish grey towards margins, reverse pale greenish grey, leaden-grey to iron-grey, floccose, margins colourless, glabrous, regular, aerial mycelium floccose to fely, sometimes covering large parts of colony surface, growth effuse with few prominent exudates, sporulation profuse.

Substrates and distribution: On plant material and fungal fruiting bodies, isolated from air, indoor environments, clinical samples, soil, water and food; widely distributed, Africa (South Africa, Uganda), Asia (China, Indonesia, South Korea), Australasia (Australia, New Zealand), Europe (France, Germany, Italy, Portugal, Romania, Russia, Slovenia, The Netherlands), North America (Canada, USA), South America (Brazil, Chile).

Additional materials examined: Canada, isol. from house dust, Health Canada, DTO 307-F3, DTO 307-G9; China, isol. from indoor air, DTO 323-D3; Germany, isol. from indoor environment, CBS 139575 = DTO 084-F1. Portugal, isol. from indoor environment, DTO 151-A4. The Netherlands, isol. from outside air, M. Meijer, CBS 125993 = CPC 14189; isol. from a wallpaper from a house, J. Hooivelt, DTO 079-F4, USA, Arizona, Tucson, isol. from indoor air sample, office, Feb. 2013, Z. Jurjević, EMSL 2014 = CPC 22396; isol. from indoor air sample, hospital, Jan. 2013, Z. Jurjević, EMSL 1907 = CPC 22392; Florida, Coral Springs, isol. from air sample, car air conditioner, Jun. 2012, Z. Jurjević, EMSL 1683 = CPC 22237; Georgia, Carrollton, isol. from indoor air sample, office, Jan. 2013, Z. Jurjević, EMSL 1891 = CPC 22368; New Jersey, Bridgeport, isol. from indoor air sample, bedroom, 2nd floor, Dec. 2012, Z. Jurjević, EMSL 1864 = CPC 22351; Maranaquin, isol. from indoor air sample, living room, Jan. 2013, Z. Jurjević, EMSL 1904 = CPC 22389; New York, New York, isol. from indoor air sample, 2nd floor, Dec. 2012, Z. Jurjević, EMSL 1853 = CPC 22340; Ohio, Columbus, isol. from indoor air sample, bedroom, Dec. 2012, Z. Jurjević, EMSL 1847 = CPC 22334; Pennsylvania, Chalfont, isol. from indoor air sample, living room, Dec. 2012, Z. Jurjević, EMSL 1875 = CPC 22362; Rhode Island, North Providence, isol. from indoor air sample, classroom, Jan. 2013, Z. Jurjević, EMSL 1901 = CPC 22386; Texas, Haltom City, isol. from indoor air sample, bathroom, Jan. 2013, Z. Jurjević, EMSL 1895 = CPC 22382. Additional isolates are listed in Table 1.

Notes: *Cladosporium pseudocladosporioides* (Fig. 1, clade 56) is a common, widespread saprobic hyphomycete phylogenetically and morphologically very close to *C. cladosporioides* (Fig. 1, clade 66) but clearly distinct by forming a separate lineage in
Fig. 30. Cladosporium psychrotolerans (DTO 307-H2). A–C. Colonies on PDA, MEA and OA. D–H. Conidiophores and conidia. I. Micronematous conidiophores. J–L. Ramoconidia and conidia. M. Conidia. Scale bars = 10 μm.
phylogenetic analyses (also see Bensch et al. 2010) and by having shorter and somewhat narrower, 0–1(–2)-septate secondary ramoconidia, narrower conidigenous loci and hila, and hyphae sometimes forming ropes. However, the distinction between the two species only based on morphology is difficult and not always possible with certainty, which is additionally complicated by the internal genetic structure of the C. pseudocladosporioides clade, suggesting that it possibly represents a complex containing cryptic species (observed in both the act and tef1 alignments in Bensch et al. 2010). Uncertain strains should simply be referred to as C. cladosporioides s. lat. (complex). Cladosporium paracladosporioides (Fig. 1, lineage 13) is also similar but differs in having wider, 0–3-septate secondary ramoconidia, wider conidigenous loci and hila and is phylogenetically distinct (see Bensch et al. 2010).

Sandoval-Denis et al. (2015) reported C. pseudocladosporioides as one of the more frequently isolated species from clinical samples in the USA. Within the C. cladosporioides complex it proved to be the most common species occurring in indoor environments (this study).

In the present analysis, Cladosporium crousi recently described from human bronchoalveolar lavage fluid in the USA (Sandoval-Denis et al. 2016), clusters on a long branch within the larger C. pseudocladosporioides clade (Fig. 1, clade 56) and is therefore probably conspecific with the latter species. The given description in Sandoval-Denis et al. (2016) is very close to that of C. pseudocladosporioides but in their analysis the ex-type strain clustered close to but outside that species. This could be an artefact of the phylogenetic analysis due to the much larger sampling of C. pseudocladosporioides strains in the present study, as C. crousi is 206/238 (87 %) similar on tef1 and up to 100 % identical on act to the closest C. pseudocladosporioides sequences included in our phylogeny.

Cladosporium psychrotolerans Zalar et al., Stud. Mycol. 58: 175. 2007. MycoBank MB492428. Fig. 30.

Holotype: Slovenia. Šečovje salterns, isolated from hypersaline water, May 1999, S. Sonjak, CBS H-19730. Ex-type culture: EF-391 = CBS 119412.

Lit.: Bensch et al. (2012: 229–230).

iii.: Zalar et al. (2007: 166, fig. 5 e, 176, fig. 11), Bensch et al. (2012: 230, fig. 261).

Mycelium partly superficial and partly submerged, with numerous lateral pegs, consistently enveloped in polysaccharide-like material; hyphae unbranched or sparingly branched, 1–3(–5) μm wide, septate, not constricted at septa, pale brown or pale olivaceous brown, almost smooth to verruclose, thin-walled. Conidiophores macro- and micronematous, arising terminally and laterally from hyphae, erect or ascending, straight or somewhat flexuous, neither geniculate nor nodulose, cylindrical-oblung, unbranched or branched, once or few times, 20–220 × (2–)3–4(–5) μm, micromatous 1–2 μm wide, septate, not constricted at septa, pale olivaceous brown or brown, smooth or almost so, sometimes verruculose at the base, walls slightly thickened, about 0.5 μm wide. Conidiogenous cells integrated, terminal and intercalary, cylindrical, 12–65 μm long, producing sympodial clusters of pronounced, conspicuous denticles (1–4 loci) at their distal ends, loci 1.5–2 μm diam, often seceding at a septum and behaving like conidia. Ramoconidia cylindrical with a broadly truncate base, 16–43(–47) × (2–)3–4(–4.5) μm, aseptate, rarely 1(–2)-septate, not only very slightly attenuated towards the base, base 2–2.5(–3) μm wide, somewhat darkened-refractive. Conidia catenate, in branched chains, branching in all directions, terminal chains with up to six conidia, small terminal conidia subglobose to ovoid, globose, (2–)3–5 × 2–2.5(–3) μm (av. ± SD: 3.9 ± 0.8 × 2.7 ± 0.4), aseptate, pale brown, smooth to minutely verruclose, rounded at the apex, attenuated towards the base, hila 0.5–0.8 μm diam, intercalary conidia ovoid, limoniform to ellipsoid, 5–9(–13) × 2.5–3.5(–3.5) μm (av. ± SD: 7.2 ± 1.9 X 3.2 ± 0.5), 0(–1)-septate, pale brown, smooth to minutely verruclose, with up to three distal hila, 0.5–1 μm diam, secondary ramoconidia ellipsoid to cylindrical, (7.5–)12–25(–31) × 2.5–3.5–(–4.5) μm (av. ± SD: 17.8 ± 5.6 × 3.3 ± 0.4), 0–1(–2)-septate, not constricted at septa, pale brown or olivaceous brown, smooth, somewhat attenuated towards apex and base, with 3(–5) distal hila, protuberant, denticulate, 1–2 μm diam, thickened and darkened-refractive; microcyclic conidiogenesis not observed.

Culture characteristics: Colonies on PDA reaching 10–27 μm diam after 14 d at 25 °C, grey olivaceous to olivaceous, becoming pale olivaceous grey or smoke grey due to abundant aerial mycelium, reverse olivaceous grey to iron-grey and leaden-grey, velvety to felty-woolly; margin narrow to wide, white, regular to undulate, glabrous to feathery; aerial mycelium at first absent, later abundantly formed, felty, high; growth flat to later convex, sometimes either heaped or radially furrowed; few prominent exudates formed; sporulation profuse. Colonies on MEA reaching 8–19 mm diam after 14 d at 25 °C, grey olivaceous, glaucous-grey at margin, smoke-grey to pale mouse-grey or whitish due to aerial mycelium, reverse olivaceous grey to iron-grey, velvety to woolly-felty, margin white, narrow, glabrous to feathery, radially furrowed; aerial mycelium abundant, fluffy; few prominent exudates formed; sporulation profuse. Colonies on MEA with 5 % NaCl growing much faster than on other media, reaching 25–38 mm diam after 14 d at 25 °C, of different colours, mostly reseda-green and granulate due to profuse sporulation, margin olive-yellow, reverse yellow to dark green. Colonies on OA reaching 7–20 mm diam after 14 d at 25 °C, at first grey olivaceous to olivaceous, reverse leaden-grey to leaden-black, later pale mouse-grey to pale olivaceous due to aerial mycelium, reverse black, velvety to felty; margin white, glabrous, regular or either undulate or arachnoid, deeply furrowed; aerial mycelium sparse to felty, dense, pale mouse-grey, covering only parts of the colony, mainly the colony centre; growth flat with papillate surface; without prominent exudates; sporulation profuse.

Maximum tolerated salt concentration: MEA + 17 % NaCl after 14 d.

Cardinal temperatures: No growth at 4 °C, optimum and maximum temperature at 25 °C (8–19 mm diam), no growth at 30 °C (from Zalar et al. 2007).

Substrates and distribution: Isolated from hypersaline water, indoor environments and plant material; Australasia (Australia, New Zealand), Europe (Germany, Slovenia), North America (USA), West Indies (Dominican Republic).

Additional materials examined: Australia, isol. from house dust, DTO 305-G3 = BH10AU-180. New Zealand, isol. from house dust, DTO 307-H2 = TA05NZ-543.

Notes: Cladosporium psychrotolerans (Fig. 3, clade 12), which belongs to the C. sphaerospermum species complex, differs from C. halotolerans (Fig. 3, clade 23) in having 0–1(–2)-septate
Fig. 31. Cladosporium pulvericola (CBS 143362). A–C. Colonies on PDA, MEA and OA. D–F, J. Macronematous conidiophores and conidial chains. G–I, L–N. Micronematous conidiophores and conidial chains. K. Conidia. Scale bars = 10 μm.
secondary ramoconidia with septa neither darkened nor thickened and globose, subglobose or ovoid small terminal conidia. It has been repeatedly isolated from indoor environments and is now also reported from Australasia. Phylogenetically, it is closely related to C. sloani (Fig. 3, clade 11), C. langeronii (Fig. 3, clade 13) and C. neolangeronii (Fig. 3, clade 10). However, C. langeronii is particularly well distinguishable from all other Cladosporium species by its slow growing colonies and its larger is particularly well distinguishable from all other Cladosporium species by its slow growing colonies and its larger apical conidia (4–5.5 × 3–4 μm vs 3–4 × 2.5–3 μm in Cladosporium psychrotolerans) (Zalar et al. 2007); and C. neolangeronii exhibits longer conidiophores and has somewhat darker and wider apical conidia. Cladosporium sloani is a xerophilic species growing on MA+ 20 % sucrose and DG 18 but usually not on the typical media used for Cladosporium and differs by having usually shorter conidiophores and wider conidia. Cladosporium neopsychrotolerans, recently described from soil in China, is also a psychrotolerant species and shares similar cultural characters but is both morphologically and phylogenetically distant from C. psychrotolerans in clustering in the C. cladosporioides species complex (Ma et al. 2017).

Cladosporium pulvericola Bensch & Samson, sp. nov. MycoBank MB822226. Fig. 31.

Etymology: From the Latin pulveris, of dust, -cola, living in, named for the substrate from which the type specimen was isolated, house dust.

Holotype: New Zealand, Otago, Dunedin, Warrington, 284 Coast Road, isol. from house dust, Duststream collection tube on vacuum cleaner, 1 May 2009, T.J. Atkinson, CBS H-23256. Ex-type culture: CBS 143362 = DTO 305-H8 = TA05NZ-345.

Diagnosis: Differs from C. dominicanum in having shorter conidiophores, slightly longer secondary ramoconidia and a significantly lower growth rate.

Mycelium filiform or narrowly cylindrical, sparsely branched, (0.5–)2–4 μm wide, pluriseptate, subhyaline, pale olivaceous or pale to medium olivaceous brown, smooth or almost so to minutely or irregularly rough-walled, sometimes forming ropes of a few hyphae. Conidiophores macro- and micronematous, cylindrical-oblong, occasionally once geniculate, non-nodulose, mostly unbranched, (3–)12–80(100) × 2.5–4 μm, micronematous starting as small lateral outgrowth of hyphae, 1–2 μm wide, septate, subhyaline, pale to medium olivaceous brown, smooth or minutely verruculose, walls thickened in macronematous conidiophores. Conidiogenous cells integrated, usually terminal, cylindrical, 6–18 μm long, with 2–4 loci crowded at the apex and sometimes 1–2 additional loci at a lower level, in micronematous conidiophores often only a single locus at the apex, loci conspicuous, 1–1.5 μm diam, thickened and darkened-refractive. Ramoconidia occasionally formed, up to 35 μm long, often 1-septate, base about 2.5 μm wide. Conidia very numerous, catenate, formed in branched chains, 1–7 conidia in the terminal unbranched part of the chains, small terminal conidia very small, subglobose, obovoid or limoniform, (1.5–)2.5–4(–5.5) × (1–)1.5–2.5(–3) μm (av. ± SD: 3.3 ± 0.8 × 2.3 ± 0.5 μm), asperate, apex rounded or with a single distal hilum, subhyaline or very pale olivaceous, hila about 0.5 μm diam or even narrower, smooth or almost so, with age somewhat darker and with a more prominent verruculose surface ornamentation, intercalary conidia ovoid or ellipsoid, 4–12 × 2–3(–3.5) μm (av. ± SD: 7.2 ± 2.5 × 2.6 ± 0.4 μm), 0–1-septate, very pale olivaceous or pale olivaceous brown, smooth or almost so to somewhat irregularly rough-walled, (1–)2–3 distal hila, hila (0.5–10.8–1 μm diam, secondary ramoconidia ellipsoid or subcylindrical, (7–)10–25(–33) × (2–)2.5–3(–4) μm (av. ± SD: 17.6 ± 6.5 × 2.9 ± 0.4 μm), 0–1(–3)-septate, pale olivaceous brown, almost smooth or irregularly rough-walled, walls unthickened or almost so, with 2–3(–5) distal hila, hila 1–1.5 μm diam, conspicuous, darkened-refractive; microcyclic conidiogenesis occurring, sometimes germinating.

Culture characteristics: Colonies on PDA attaining 9–32 mm diam after 14 d at 25 °C, greenish olivaceous, olivaceous grey to dull-green, zonate, reverse leaden-grey to leaden-black, with a narrow, regular, white margin, aerial mycelium loose, diffuse, smoke-grey, growth convex with slightly elevated colony centre, wrinkled at margins, without exudates, sporulation profuse. Colonies on MEA reaching 10–28 mm diam after 14 d at 25 °C, smoke-grey, grey olivaceous, greenish glaucous towards margin, reverse olivaceous grey or iron-grey, powdery or velvety, margins narrow, white, radially furrowed, aerial mycelium sparse, diffuse, wrinkled and folded in colony centre, a few prominent exudates formed, sporulation profuse. Colonies on OA attaining 10–18 mm diam after 14 d at 25 °C, grey olivaceous or olivaceous grey, olivaceous when sporulating profusely, sometimes glaucous-grey at margin, reverse iron-grey or leaden-grey, velvety or powdery, margins narrow, white, regular, aerial mycelium loose or fluffy and high, smoke-grey, growth flat, without exudates.

Substrate and distribution: Indoor air, dust and indoor surfaces; Australasia (Australia, New Zealand), Europe (The Netherlands), North America (Canada, USA).

Additional materials examined: Australia, Tasmania, isol. from house dust, L. Agustini, D07-E7 = BH10AU-183. Canada, isol. from air in a residence, 2001, isol. by J. Bissett, deposited as C. sphaerosperrum, CBS 109788 = DAOM 226470. The Netherlands, Born, swab sample, food plant, M. Meijer, DTO 130-D6; The Hague, swab sample, DTO 249-F4; Utrecht, swab sample, DTO 255-F7; DTO 255-H5 = CBS139591. USA, Maine, Falmouth, isol. from indoor air sample, living room, Jan. 2013, Z. Jurjevici, EMSL 1931 = CPC 22403.

Notes: Cladosporium pulvericola (Fig. 3, clade 1) is a typical taxon of the C. sphaerosperrum species complex. It is morphologically and phylogenetically closely allied to C. dominicanum (Fig. 3, clade 4) but differs in having shorter conidiophores, slightly longer secondary ramoconidia and a significantly lower growth rate. Cladosporium sphaerosperrum (Fig. 3, clade 20) is distinguishable by its slightly wider co-nidiophores with often several darkened and somewhat thickened septa, 0–3-septate, slightly wider secondary ramoconidia and often verrucose small terminal conidia.

Cladosporium ramotenellum K. Schub. et al., Stud. Mycol. 58: 137. 2007, emended in Bensch et al. 2015. MycoBank MB504577. Fig. 32.

Holotype: Slovenia, Secovlje, isolated from hypersaline water from reverse ponds, salterns, 2005, P. Zalar, CBS H-19862. Isotype: HAL 2026 F. Ex-type culture: CBS 121698 = CPC 12043 = EXF-454.

Lit.: Bensch et al. (2012: 230–232; 2015: 60–62), Lee et al. (2011), Jang et al. (2013).

Ill.: Schubert et al. (2007b: 138–139, figs 31–33), Bensch et al. (2012: 231–232, figs 262–264), Jang et al. (2013: 25, figs 3–4).

Mycelium unbranched or only sparingly branched, 1.5–4 μm wide, septate, without swellings and constrictions, hyaline or subhyaline,
smooth, sometimes irregularly rough-walled, walls unthickened. Conidiophores solitary, macro- and micronematous, arising as lateral branches of plagiotropic hyphae or terminally from ascending hyphae, erect, straight or slightly flexuous, cylindrical, neither geniculate nor nodulose, without capitate apices or intercalary swellings, unbranched, sometimes branched, branches often only as short lateral prolongations, mainly formed below a septum, 14–120(−230) × (1−)2−4(--5) μm, septate, not constricted at septa, subhyaline to pale olivaceous or brown, smooth to minutely verruculose, walls unthickened, sometimes guttulate.

Conidiogenous cells integrated, terminal, sometimes also intercalary, cylindrical, 10–28(−50) μm long, proliferation sympodial, sometimes swollen, up to 7 μm wide, with few conidiogenous loci, mostly 1–3, loci sometimes situated on small lateral prolongations, protuberant, 0.5–1.5(−2) μm diam, thickened and somewhat darkened-refractive. Ramoconidia cylindrical-oblong, 15–55 × 2–4(--5) μm, 0–1(−3)-septate, rarely up to 4-septate, subhyaline to very pale olivaceous, smooth or almost so, with a broadly truncate base lacking a dome and raised rim, 2–3 μm wide, not thickened but somewhat refractive. Conidia numerous, polymorphous,
catenate, in branched chains with 2–5(–6) conidia in the terminal unbranched part of the chain, straight, sometimes slightly curved, small terminal conidia numerous, globose, subglobose or ovoid, obovoid or limoniform, 2.5–6(–7) × 2–4(–4.5) μm (av. ± SD: 4.5 ± 1.1 × 2.8 ± 0.6 μm), aseptate, without distal hilum or with a single apical hilum, intercalary conidia ellipsoid, limoniform to subcylindrical, 5–12(15) × (2.5–)3–(4–)5 μm (av. ± SD: 8.7 ± 2.6 × 3.6 ± 0.5 μm), 0–1–(3)–7-septate, secondary ramoconidia ellipsoid, subcylindrical to cylindrical-oblong, (6–)9–30(–39) × (2.5–)3–4(–5) μm (av. ± SD: 17.9 ± 6.2 × 3.9 ± 0.6 μm), sometimes swollen up to 7 μm, 0–1(–3)–7-septate, usually not constricted at septa, sometimes distinctly constricted at the median septum, subhyaline to very pale olivaceous, minutely verruculose (granulate under SEM), walls unthickened or almost so, apex broadly rounded or slightly attenuated towards apex and base, sometimes guttulate, hila protuberant, conspicuous, 0.8–1.5(2) μm diam, somewhat thickened and darkened-refractive; microcyclic conidiogenesis occurring.

Culture characteristics: Colonies on PDA reaching 46–49 mm diam after 14 d at 25 °C, olivaceous to grey olivaceous due to abundant sporulation, appearing zonate in forming concentric zones, margin entire edge to slightly undulate, white, glabrous, aerial mycelium absent or sparse, growth flat with a somewhat folded and wrinkled colony centre, without prominent exudates, sporulation profuse. Colonies on MEA reaching 48–49 mm diam after 14 d at 25 °C, grey olivaceous to olivaceous grey, verylety, olivaceous grey to iron-grey reverse, margin entire edge to undulate, radially furrowed, glabrous to feathery, aerial mycelium sparse, diffuse, growth flat with slightly elevated colony centre, distinctly wrinkled, prominent exudates not formed, abundantly sporulating. Colonies on OA attaining 40 mm diam after 14 d at 25 °C, grey olivaceous, margin entire edge, hyaline or white, glabrous, aerial mycelium absent or sparse, growth flat, without exudates, sporulation profuse.

Substrate and distribution: Hypersaline water, air, indoor environments, food and plant material; Africa (South Africa), Australasia (Australia, New Zealand), Asia (China, South Korea), Europe (Cyprus, Denmark, Germany, Italy, Portugal, Slovenia, Spain, The Netherlands, Turkey, UK), North America (USA).

Additional materials examined: China, isol. from indoor air, DTO 323-D4, DTO 323-D5, DTO 323-D6. Denmark, isol. from indoor environment, B. Andersen, BA 1919 = DTO 109-F4; isol. from indoor air, 2 Feb. 2011, B. Andersen, BA 2033 = CPC 19119. Germany, isol. from indoor environment, LGA, DTO 084-F5. New Zealand, isol. from house dust, T. Atkinson, DTO 305-H1 = TA10NZ-295, DTO 305-I1 = TA10NZ-240, DTO 306-A3 = TA10NZ-322, DTO 306-B2 = TA10NZ-324, DTO 306-D1 = TA10NZ-215B, DTO 306-D2 = TA10NZ-289A, DTO 306-E7 = TA10NZ-232, DTO 306-F5; TA10NZ-308, DTO 307-F2 = TA10NZ-297A, DTO 307-I2 = TA10NZ-286. Portugal, indoor environment, DTO 150-F5, DTO 151-G3, DTO 151-G6, DTO 152-B3, DTO 152-D9. South Africa, isol. from house dust, K. Jacobs, DTO 306-C4 = KJ005A-98. The Netherlands, swab sample indoor environment, G.J. Dolphyn, DTO 097-H1; Rijssen, air sample kitchen, M. Meijer, CBS 139577 = DTO 089-C1. USA, isol. from indoor air sample, hallway, Jan. 2013, Z. Jurjević, EMLL 1883 = CPC 22370.

Notes: Cladosporium ramotenellum (Fig. 2, clade 37) was originally described from two Slovenian isolates (Schubert et al. 2007b), one being the type isolated from hypersaline water and an additional strain isolated from an air conditioning system. Recent molecular and morphological studies showed this species to be a common saprobic species occurring on various substrates with a wider geographic distribution. Based on these studies its species description was emended in Bensch et al. (2015). Samson (2014) showed that C. ramotenellum is also quite common in indoor environments which can be confirmed in the present study. Furthermore, it has been reported from clinical samples in the United States in Sandoval-Denis et al. (2015). Cladosporium basiinatum was included within the C. ramotenellum clade in all three analyses, but always on a long branch; this isolate is up to 100 % identical on tefl and 180/219 (82 %) similar on act to the closest C. ramotenellum sequences included in our phylogeny.

Cladosporium sinense Bensch & Samson, sp. nov. MycoBank MB822277. Figs 33, 34.

Etymology: Refers to the country of origin, China.

Holotype: China, Beijing, office building, isol. from indoor air, Sep. 2010, CBS H-23258. Ex-type culture: CBS 143363 = DTO 324-D2.

Diagnosis: Differs from C. aggregatocentricatum in having shorter, neither nodulose nor geniculate-sinuous conidiophores as well as shorter and narrower conidia.

Mycelium abundantly formed, hyphae filiform or narrowly cylindrical, sparsely branched, 0.5–3(–4) μm wide, subhyaline or very pale olivaceous, septate, neither constricted nor swollen, smooth or almost so, asperulate, minutely verruculose or somewhat irregularly ornamented, especially where conidiophores are formed, sometimes anastomosing, often forming ropes of two or few hyphae. Conidiophores macrosetomatus, solitary, erect or ascending, straight or curved, arising mostly laterally but also terminally from hyphae, narrowly cylindrical-oblong, often slightly attenuated towards the apex, neither nodulose nor geniculate, unbranched, 13–90(–110) × 2–3.5 μm, at the base up to 4.5 μm wide, pale to medium olivaceous or olivaceous brown, often slightly paler towards the apex, 0–4(–5)–septate, not constricted but septa sometimes darkened, smooth or almost so to asperulate with LM, walls unthickened or slightly thickened. Conidiogenous cells integrated, usually terminal, very rarely intercalary, short cylindrical-oblong, 13–30 μm long, with (1–)2–4 distal loci crowded at the apex and forming dense clusters of pronounced scars, loci conspicuous, subdenticulate, 1–1.5 μm diam, somewhat thickened and darkened. Ramoconidia formed, 18–40 × 2.5–3(–3.5) μm, 0–2–septate, with 2–4 distal scars, base about 2(–2.5) μm wide, non-cladosporoid but slightly thickened and somewhat darkened. Conidia catenate, formed in branched chains, branching in all directions, with 1–3 conidia in the terminal unbranched part of the chain, small terminal conidia subglobose or obovoid, 3–4 × 2–2.5(–3) μm (av. ± SD: 3.5 ± 0.5 × 2.3 ± 0.4 μm), apex broadly rounded; intercalary conidia limoniform or ellipsoid, 3.5–8.5(–10) × 2.5–3.5 μm (av. ± SD: 6.2 ± 2.0 × 2.9 ± 0.3 μm), aseptate, very rarely 1-septate, with 1–3 distal hila; secondary ramoconidia ellipsoid, subcylindrical or cylindrical, (5.5–)8–23 × (2.5–)3–3.5(–4) μm (av. ± SD: 14.3 ± 5.0 × 3.2 ± 0.4 μm), 0(–1)-septate, with 2–4 distal hila densely crowded at the uppermost apex, pale olivaceous or olivaceous brown, almost smooth, often asperulate or loosely to densely minutely verruculose (LM), walls unthickened or almost so, hila conspicuous, subdenticulate, 0.5–1.5 μm diam, somewhat thickened and darkened-refractive; microcyclic conidiogenesis not observed.

Culture characteristics: Colonies on PDA attaining 43–50 mm diam after 14 d at 25 °C, olivaceous to grey olivaceous, reverse greyish-blue to olivaceous grey, fluffy, margin glabrous, aerial
Fig. 33. Cladosporium sinense (CBS 143363). A–C. Colonies on PDA, MEA and OA. D–G. J. Conidiophores and conidia. H. Surface ornamentation of conidiophores and conidia shown in an air bubble. I, K–L. Conidial chains. Scale bars = 10 μm.
mycelium abundantly formed, fluffy, loose to dense, growth low convex, with few prominent exudates, sporulation profuse. Colonies on MEA reaching 38–44 mm diam after 14 d at 25 °C, pale olivaceous grey, glaucous-grey to white at colony margins, reverse olivaceous grey, fluffy, margin white, glabrous, somewhat undulate, radially furrowed, somewhat folded in colony centre, several large exudates formed, sporulation profuse. Colonies on OA attaining 42–50 mm diam after 14 d at 25 °C, olivaceous, pale olivaceous grey towards margins, reverse greenish grey to olivaceous grey, fluffy-felty, margins regular, glabrous, aerial mycelium abundantly formed, dense, high, growth low convex, sporulation profuse, without prominent exudates.

Substrate and distribution: Indoor air, Asia (China).
Fig. 35. Cladosporium sinuosum (DTO 109-I2). A–C. Colonies on PDA, MEA and OA. D–G. Conidiophores and conidia. H. Superficial mycelium. I. Ramoconidium and conidia. J. Conidia. Scale bars = 10 μm.
Notes: This new species (Fig. 2, lineage 33) is phylogenetically allied to C. aggregatocicatricatum (Fig. 2, clade 34) but the latter species differs in having longer, once or several times slightly to distinctly, loosely to densely geniculate-sinuous or subnodulose conidiophores as well as longer and wider conidia (Bensch et al. 2015). Until now C. sinense is known from only a single isolate.

Cladosporium sinuosum K. Schub. et al., Stud. Mycol. 58: 141. 2007, emended in Bensch et al. 2015. MycoBank MB504578. Fig. 35.

Holotype: New Zealand, Te Anau, isolated from leaves of Fuchsia excortica (Onagraceae), 31 Jan. 2005, A. Blouin, C.F. Hill 1134A, CBS H-19863. *Ex-type culture:* CBS 121629 = CPC 11839 = ICMP 15819.

Lit.: Bensch et al. (2012: 245–246; 2015: 67–68). **ill.:** Schubert et al. (2007b: 140–141, figs 34–35), Bensch et al. (2012: 245–246, figs 281–282; 2015: 69–71, figs 34–36).

Mycelium fimbriiform or narrowly cylindrical-oblong, loosely branched, 1–5(–7) μm wide, irregular in outline due to swellings and constrictions, sometimes swollen up to 7 μm, subhyaline to pale or medium olivaceous brown, smooth, minutely verruculose or irregularly rough-walled, walls unthickened, sometimes forming loose stromatic hyphal aggregations of swollen hyphal cells, hyphal cells up to 15 μm diam, medium brown or olivaceous brown, walls somewhat thickened; sterile hyphae sometimes forming ropes. **Conidiophores** macronematous, erect, solitary or on loose groups, straight to often flexuous, arising terminally and laterally from hyphae or from swollen bulbous hyphal cells, long, subnodulose or nodulose, with uni- or multilateral swellings, several times slightly to distinctly geniculate-sinuous due to sympodial proliferation, sometimes even zig-zag-like (see Bensch et al. 2012, fig. 282B), unbranched or branched, up to 380 μm long, (3.5–)4–6(–7) μm wide, swellings up to 10 μm wide, plurisepitate, septa often in short succession and somewhat darkened-refractive, medium olivaceous brown, smooth or minutely verruculose, walls thickened, sometimes even distinctly two-layered, 1(–1.5) μm thick. **Conidiogenous cells** integrated, terminal and intercalary, cylindrical-oblong, with 1–2 uni- or multilateral swellings per cell, rarely more, geniculate-sinuous, 8–35(–49) μm long, loci confined to swellings, up to four loci per nodule, loci conspicuous, prominent, 1–2(–2.2) μm diam, thickened and darkened-refractive. **Ramoconidia** not observed. **Conidia** solitary or in short unbranched or branched chains, up to four conidia in a chain, conidia without a distal hilum ovoid, obvoid to broadly ellipsoid or doliform, (5–)8–15(–17) × (4–)5–8(–9) μm (av. ± SD: 11.3 ± 2.8 × 7.0 ± 1.2 μm), 0–1-septate, basal and intercalary conidia ellipsoid-oidoid to subcylindrical, 11–19(–24) × (5–)6–9(–11) μm (av. ± SD: 15.9 ± 2.7 × 7.7 ± 1.0 μm), 0–1(–2)- septate, septa median or somewhat in the upper half, becoming curved or sinuous with age, pale olivaceous to medium olivaceous brown or pale greyish brown, densely verrucose to echinulate, walls appearing to be thick-walled due to surface ornamentation, 1–2 μm wide, with 1–2(–3) distal hila, hila protuberant, more or less conspicuous, sometimes immersed in surface ornamentation and therefore not very prominent, 1–2 μm diam, thickened and darkened-refractive; microcyclic conidiogenesis not observed on SNA but occurring while growing on PDA, MEA and OA.

Culture characteristics: Colonies on PDA attaining 16–47 mm diam after 14 d at 25 °C, smoke-grey to pale olivaceous grey due to aerial mycelium, grey olivaceous towards margins, reverse leaden-grey or olivaceous black, fluffy-felt, margins somewhat feathery, aerial mycelium high, loose to dense, fluffy, growth low convex, without prominent exudates. Colonies on MEA reaching 18–55 mm diam after 14 d at 25 °C, greenish grey to grey olivaceous, white or smoke-grey due to abundant aerial mycelium, reverse olivaceous grey, woolly-felt, margins white, narrow, glabrous to somewhat feathery, radially furrowed and folded, aerial mycelium loose to dense, fluffy to woolly or diffuse, growth flat or effuse, sporulation profuse. Colonies on OA attaining 15–37 mm diam after 14 d at 25 °C, white, smoke-grey to pale olivaceous grey, olivaceous grey at margins, reverse iron-grey or leaden-grey, woolly-felt, margins crenate, aerial mycelium abundant, covering almost the whole colony, woolly-felt, dense, low to high, growth flat, sporulation profuse.

Substrate and distribution: Isolated from various plants and mossaes, air and indoor environments; Africa (South Africa), Australasia (New Zealand), Europe (Denmark, France, Germany, The Netherlands).

Additional material examined: Denmark, isol. from indoor environment, B. Andersen, DTO 109-I2 = BA 1896.

Notes: **Cladosporium sinuosum** (Fig. 2, clade 2), introduced by Schubert et al. (2007b) as a member of the C. herbarum species complex, was described from a single collection on living leaves of Fuchsia excortica from New Zealand. In Bensch et al. (2015) the species concept was emended since several isolates from different substrates from Europe and South Africa were shown to belong to this species in that phylogenetic study. The isolate from indoor environments in Denmark agrees well with the emended species concept.

Cladosporium floccosum (Fig. 2, clade 4), introduced by Sandoval-Denis et al. (2016) as a new species associated with human infections, is morphologically very similar to C. sinuosum but differs in having shorter, rarely branched conidiophores and slightly shorter terminal conidia (up to 12.5 μm long). It proved to occur also in indoor environments, although there appears to be some intraspecific variation in this species.

Cladosporium sloanii Bensch & Samson, *sp. nov.* MycoBank MB822228. Fig. 36.

Etymology: Latin, *sloanii*, named in honour of Alfred P. Sloan.

Holotype: The Netherlands, Born, isol. from swab sample food plant, M. Meijer, CBS H-23259. *Ex-type culture:* CBS 143364 = DTO 130-D5.

Diagnosis: Xerophilic species that does not grow on general media, but well on DG18 and MA + 20 % sucrose.

Mycelium sparingly formed, hyphae cylindrical-oblong, (2–)3–5 μm wide, septate, often with swellings and constriction, pale olivaceous, smooth or almost so to minutely verruculose, forming swollen hyphal cells or stromatic hyphal aggregations, hyphal cells up to 9(–12) μm diam, medium to dark olivaceous brown. **Conidiophores** macronematous, arising solitary from hyphae, mainly laterally, or in small groups from swollen hyphal cells or stromatic hyphal aggregations, cylindrical-oblong, sometimes geniculate towards the apex, unbranched or branched, 40–90(–235) × 2.5–4 μm, up to 5 μm wide at the base, often slightly attenuated towards the apex, 1–4(–7)-septate, septa sometimes in short succession, often somewhat darkened,
Fig. 36. Cladosporium sloani (CBS 143364). A–C. Colonies on DG18 and MA + 20 % sucrose. C–G, I. Conidiophores and conidia. H, J–L. Ramoconidia and conidia. M. Conidial chains. Scale bars = 10 μm.
sometimes slightly constricted, pale to medium olivaceous brown, smooth or almost so. Conidiogenous cells integrated, mainly terminal, cylindrical-oblong, 12–31 μm long, with 1–3 conidiogenous loci at the apex, loci conspicuous, 1–2 μm diam, thickened and darkened-refractive. *Ramoconidia* frequently formed, cylindrical, 12–36(–42) × (2.5–)3–4 μm, (0–3)-septate, smooth or minutely verruculose, not attenuated towards the base, base broadly truncate, 2.5–3.5(–4) μm wide, somewhat refractive. *Conidia* catenate, often formed in dichotomously branched chains, with 1–2(–3) conidia in the terminal unbranched part, *small terminal conidia* globose, subglobulous, obvoid or ellipsoid, 3–7(–11) × (2.5–)3–4(–5) μm (av. ± SD: 5.9 ± 2.5 × 3.5 ± 1.0 μm), *intercalary conidia* ovoid, ellipsoid, 4.5–11(–13) × 3–4.5 μm (av. ± SD: 7.6 ± 2.6 × 3.6 ± 0.7 μm), 0(–1)-septate, with 1–2(–3) distal hila, *secondary ramoconidia* ellipsoid or subcylindrical, slightly attenuated towards apex and base, 9.5–21(–28) × 3–4(–4.5) μm (av. ± SD: 16.4 ± 4.4 × 3.7 ± 0.4 μm), 0–1(–2)-septate, septa sometimes refractive or distinctly constricted, pale to medium olivaceous brown, becoming dark brown and more swollen with age, smooth or almost so to often minutely verruculose, sometimes irregularly verruculose, hila conspicuous, 1–2 μm diam, thickened and darkened-refractive; microcyclic conidio genesis not occurring.

Culture characteristics: Colonies on DG18 reaching 8–9 mm diam after 14 d at 25 °C, olivaceous grey, reverse olivaceous to darkened-refractive; microcyclic conidiogenesis not occurring.

Notes: Visagie et al. (2014) described *Aspergillus sloanii* among interesting new species isolated from dust; this species is not able to grow on any of the media generally used for *Aspergillus* identifications, which was a remarkable finding. *Cladosporium sloanii* (Fig. 3, clade 11), known from a single isolate, is also not able to grow on most of the generally used media for *Cladosporium* identification. It is an obligate xerophilic species only growing on low water activity media such as DG18 and MA + 20 % sucrose, which is so far unique for species belonging to the genus *Cladosporium*. *Cladosporium halotolerans* and *C. sphaerospermum* also proved to be able to grow at lower water activity (Segers et al. 2015, 2016) but are not restricted in their growth abilities to these media. *Cladosporium psychrotolerans*, the closest relative of *C. sloanii*, differs in forming elongated conidiophores and narrower conidia.

Cladosporium sphaerospermum Penzig, Michelia 2(8): 473. 1882. MycoBank MB119529. Figs 37, 38.

Neotype: (designated by Zalar et al. 2007): Sine loco, isolated from a human nail, 1949, R.W. Zappey, CBS H-19738. Ex-neotype culture: CBS 193.54 = ATCC 11289 = IMI 049637.

Type: Italy, Padova, on faded leaves and stems of Citrus sp. (Rutaceae), Feb. 1882, O. Penzig (not preserved).

Lit.: de Hoog et al. (2000: 591), Samson et al. (2000: 114, 2001: 340), Zalar et al. (2007: 177–179), Dugan et al. (2008: 9–16), Bensch et al. (2012: 250–254), Segers et al. (2015).

ill.: de Hoog et al. (2000: 591–592, figs), Samson et al. (2000: 114, fig. 51; 115, pl. 49), Zalar et al. (2007: 166, fig. 5 g, 178, fig. 12), Dugan et al. (2008: 13–14, figs 2–3), Bensch et al. (2012: 251–253, figs 287–289).

Mycelium partly submersed, partly superficial; hyphae sparingly branched, 1–3 μm wide, septate, pale to pale medium olivaceous brown, smooth to sometimes minutely verruculose, walls slightly thickened, not enveloped in polysaccharide-like material. *Ramoconidio phores* micro- and macroconematous, arising terminally and laterally from hyphae, erect or ascending, straight to slightly flexuous. *Macroconematous conidiophores* cylindrical-oblong, neither geniculate nor nodulose, unbranched or branched, (10–) 45–130(–300) × 2.5–4.5(–6) μm, pluriseptate, with relatively dense septation (cells mostly 4.5–23 μm long), septa darkened and somewhat thickened, pale medium to medium olivaceous brown, smooth to minutely verruculose, walls thickened. *Conidiogenous cells* integrated, terminal, sometimes intercalary, cylindrical, usually short, 6–18 μm long, proliferation sympodial, with a single or few apical scars, loci protuberant, denticulate, 0.8–1.5 μm diam, thickened and darkened-refractive. *Microconematous conidiophores* filiform to narrowly cylindrical-oblong, up to 80 μm long or even longer, 1–2 μm wide, pluriseptate, not that densely septate as macroconematous conidiophores, septa also somewhat darkened and thickened, pale to medium olivaceous brown, walls almost unthickened. *Conidiogenous cells* integrated, terminal and intercalary, short cylindrical, 9–27 μm long, with a few subdenticulate loci, 0.5–0.8 μm diam, thickened and darkened-refractive. *Ramoconidia* often formed, cylindrical, (11.5–)20.5–50(–67) × (2.5–) 3(–3.5) μm, with up to five septa, base broadly truncate, 2–3 μm wide, slightly thickened and somewhat darkened-refractive, but not coronate. *Conidia* catenate, in branched chains, branching in all directions, with up to six conidia in the unbranched parts, straight, *small terminal conidia* globose to subglobulous, sometimes ovoid, (2–)3–5(–7) × (2–)3–5 μm (av. ± SD: 4.1 ± 0.7 × 3.2 ± 0.3 μm), aseptate, minutely verruculose to verrucose, narrower at both ends, *intercalary conidia* with 1–2 apical hila subglobulous, ovoid to ellipsoid, 4.5–10(–12) × 2.5–3.5(–4.5) μm (av. ± SD: 6.5 ± 1.6 × 3.6 ± 0.3 μm), aseptate, attenuated towards apex and base, secondary *ramoconidia* ellipsoid to cylindrical, 8–24(–38) × (2–) 2.5–3.5(–4) μm (av. ± SD: 15.4 ± 5.1 × 3.6 ± 0.5 μm), 0–3(–4)-septate, not constricted at septa, but septa somewhat darkened and thickened, pale to usually medium olivaceous brown, sometimes dark brown, smooth to minutely verruculose, walls thickened, with up to six pronounced, denticulate distal hila, 0.8–1.5 μm diam, sometimes loci situated at the end of protuberant, short, terminal projections, 1–2 μm long or even longer in secondary ramoconidia with beak-like ends, sometimes alternarioid, oblate, subbrostrate (not observed when cultivated on SNA after 7 d, but on PDA and MEA), thickened and darkened-refractive; microcyclic conidio genesis not observed.

Culture characteristics: Colonies on PDA reaching 21–50 mm diam in 14 d at 25 °C, grey olivaceous or greenish olivaceous, reverse dark grey olivaceous, iron-grey or greyish blue, velvety, margin white, regular, narrow, somewhat feathery, aerial mycelium absent or sparse, growth flat with an elevated colony centre, numerous prominent exudates formed, sporulating, some strains release green soluble pigment into the agar. Colonies on MEA attaining 15–45 mm diam after 14 d at 25 °C, grey olivaceous to
olivaceous grey, reverse olivaceous grey to iron-grey, powdery, velvety, margin colourless or white, feathery, regular, radially furrowed, aerial mycelium almost absent, growth low convex with elevated colony centre, centre often wrinkled forming a crater-like structure, without prominent exudates, sporulation profuse. Colonies on OA reaching 21–38 mm diam after 14 d at 25 °C, dark grey olivaceous, olivaceous or olivaceous grey due to profuse sporulation, reverse greenish grey, velvety, aerial mycelium absent, growth flat with papillate surface, without prominent exudates. Colonies on MEA with 5 % NaCl growing faster than on other media, reaching 31–60 mm diam after 14 d at 25 °C, mainly olive, either being almost flat or radially furrowed, with margin of superficial mycelium, sporulation dense, reverse ochraceous or dark green. Maximum tolerated salt concentration: On MEA + 20 % NaCl 89 % of all strains tested develop colonies after 7 d, 96 % after 14 d.
Cladosporium sphaerospermum (DTO 160-I2).

A. Conidiophores, ramoconidia and terminal conidia showing characteristic ornamentation.
B. Scars on ramoconidia and conidial chains. Note the smooth apical zones on the spores.
C. Conidial chains and scars. Note that terminal conidia do not have smooth regions.
D. Conidiophore with primary and secondary ramoconidia and conidial chains. Note the smooth cell wall of conidiophore stipe and primary ramoconidium.
E. Ramoconidia and chains.
F. Branching points on ramoconidium with smooth apical zones and scars.
G–J. Details of ramoconidia, intercalary conidia and terminal conidia. Note the ornamentation consisting out of ridges, which are often twisted (see I, J); the smooth cells wall next to the scars (H) and between conidia (G).

Scale bars = 2 (G–J), 5 (A–F) μm.

Fig. 38. Cladosporium sphaerospermum (DTO 160-I2). A. Conidiophores, ramoconidia and terminal conidia showing characteristic ornamentation. B. Scars on ramoconidia and conidial chains. Note the smooth apical zones on the spores. C. Conidial chains and scars. Note that terminal conidia do not have smooth regions. D. Conidiophore with primary and secondary ramoconidia and conidial chains. Note the smooth cell wall of conidiophore stipe and primary ramoconidium. E. Ramoconidia and chains. F. Branching points on ramoconidium with smooth apical zones and scars. G–J. Details of ramoconidia, intercalary conidia and terminal conidia. Note the ornamentation consisting out of ridges, which are often twisted (see I, J); the smooth cells wall next to the scars (H) and between conidia (G). Scale bars = 2 (G–J), 5 (A–F) μm.
Cardinal temperatures: No growth at 4 °C, optimum at 25 °C, maximum at 30 °C, no growth at 37 °C. (from Zalar et al. 2007).

Substrates and distribution: Occurring as secondary invader on numerous plants, saprobic on dead leaves, stems, wood and other plant organs, isolated from outdoor and indoor air, soil, hypersaline water, indoor wet cells, foodstuffs and other organic matter, paint, silicon, textiles and occasionally isolated from human and animals (nails, nasal mucus, etc.); cosmopolitan.

Additional materials examined: Australia, Tasmania, isol. from house dust. B. Horton, DTO 307-H1, BH02AU-119. Portugal, isol. from indoor environment, DTO 150-43; DTO 150-B. South Africa, isol. from house dust. K. Jacobs, DTO 305-F5 = KJ03SA-383B, DTO 307-G6 = KJ08SA-151. The Netherlands, Gilze, swab sample of wall near window in apartment, DTO 161-E1, J. Houbraken; Utrecht, swab sample archive, M. Meijer, DTO 090-H9, UK, Ditherington, isol. from indoor air sample, Dec. 2012. Z. Jurjević, EMSL 1870 = CPC 22357. USA, isol. from house dust, A. Amend, DTO 306-D8 = AA03US-373, DTO 306-E3 = AA03US-478, DTO 307-I3 = AA03US-549; California, Newport Beach, isol. from indoor air sample, bathroom, Oct. 2012. Z. Jurjević, EMSL 1789, 1790 = CPC 22301, 22302; San Francisco, isol. from indoor air sample, family room, Jan. 2013. Z. Jurjević, EMSL 1892 = CPC 22379; Minnesota, isol. from indoor air sample, Aug. 2012. Z. Jurjević, EMSL 1728 = CPC 22270; Mississippi, Ridge- land, isol. from indoor air sample, Nov. 2012. Z. Jurjević, EMSL 1820 = CPC 22317; New York, Hamlet, isol. from indoor air sample, warehouse, Dec. 2012. Z. Jurjević, EMSL 1852 = CPC 22339; Vermont, Williston, isol. from indoor air sample, bedroom, Dec. 2012. Z. Jurjević, EMSL 1874 = CPC 22361; Wisconsin, Oak Creek, isol. from indoor air sample, bakery, DTO 127-E5 = AR385. Additional isolates are listed in Table 1.

Notes: Cladosporium sphaerospermum (Fig. 3, clade 20) was described by Penzig (1882) from decaying Citrus leaves and branches in Italy. Penzig’s original material is not known to be preserved. Later, a culture derived from CBS 193.54, originating from a human nail, was accepted as typical for C. sphaerospermum. However, de Vries (1952), incorrectly cited it as ’lectotype’, and thus the same specimen was designated as neotype in Zalar et al. (2007), with the derived culture (CBS 193.54) used as ex-neotype strain. Zalar et al. (2007) considered C. sphaerospermum as halot- or osmotolerant. Although C. sphaerospermum has commonly been isolated from osmotically stressed environments, it is also known from non-stressed niches. It is a cosmopolitan species that has been studied from the perspectives of phylogeny, halotolerance and general ecology (summarised in Zalar et al. 2007), biodegradative capacities (e.g., Weber et al. 1995, Prenafeta-Boldú et al. 2001, Potín et al. 2004, Nieves-Rivera et al. 2006, Kim et al. 2007), and clinical aspects (summarised in de Hoog et al. 2000, Zalar et al. 2007, Sandoval-Denis et al. 2015). In the study of Sandoval-Denis et al. (2015) most of the clinical isolates morphologically identified as C. sphaerospermum were genetically reidentified as belonging to the phenotypically similar species C. halotolerans, which according to their data, emerged as the most common species from clinical origin.

Furthermore, Cladosporium sphaerospermum proved to be a common species isolated from indoor environments (Segers et al. 2015; this study, see Table 1). It is a phylogenetically well-delineated species (see Fig. 3, clade 20 and Zalar et al. 2007) which differs from C. halotolerans in forming often branched and densely septate, somewhat wider conidiophores, 2.5–4.5(–6) μm, and producing slightly longer small terminal conidia, (2)–3(–5)–(7) and with up to 5-septate ramoconidia being up to 50(–67) μm long, commonly beaked (alternarioid) on MEA and PDA.

Cladosporium subinflatum K. Schub. et al., Stud. Mycol. 58: 143. 2007. MycoBank MB504579. Fig. 39.

Holotype: Slovenia, Sečovlje, crystallisation ponds, salters, isolated from hypersaline water, 2005, S. Sonjak, CBS H-19864. Isotype: HAL 2027 F. Ex-type culture: CBS 121630 = CPC 12041 = EXF-343.

Lit.: Bensch et al. (2012: 258–260), Bensch et al. (2015: 68). Ill.: Schubert et al. (2007b: 143–144, figs 37–39), Bensch et al. (2012: 258–259, figs 296–298).

Mycelium unbranched or occasionally branched, 1.5–4 μm wide, later more frequently branched and wider, up to 7 μm wide, sometimes anastomosing, septate, not constricted at the septa, but sometimes single septa darkened, subhyaline or pale olivaceous brown, almost smooth to somewhat verruculose or irregularly rough-walled in fertile hyphae, walls unthickened. Conidiophores mainly macronematous, sometimes also micronematous, arising terminally from ascending hyphae or laterally from plagiotorpous hyphae, erect or subdecumbent, straight or flexuous, sometimes bent, cylindrical, noduloise, usually with small head-like swellings, sometimes swellings also on a lower level or intercalary, occasionally geniculate, unbranched, occasionally branched, (5)–10–100–(270) × (1–5(–2.5–4.5(–5.5)) μm, swellings 3–6.5 μm wide, aseptate or with few septa, not constricted at the septa, pale brown, pale or medium olivaceous brown, smooth, usually verruculose or irregularly rough-walled and paler, subhyaline towards the base, walls thickened, sometimes appearing even two-layered, up to 1 μm thick; macronematous conidiophores narrower, paler and shorter, mostly without capitulate apex, short narrowly cylindrical, up to 35 μm long, 2–3 μm wide. Conidigenous cells integrated, usually terminal or conidiophores reduced to conidigenous cells, cylindrical, noduloise, usually with small head-like swellings with loci confined to swellings, sometimes geniculate, 5–42 μm long, proliferation sympodial, with several loci, up to four situated at nodules or on lateral swellings, protuberant, conspicuous, denticulate, (0.8–)1–2 μm diam, thickened and darkened-refractive. Ramoconidia rarely formed. Conidia catenate, in short branched chains, 1–4 conidia in the terminal unbranched part of the chain, more or less straight, numerous globose and subglobose conidia, ovoid, obovoid, broadly ellipsoid to cylin- drical, small terminal conidia subglobose, obovoid or ellipsoid, (3–)4–7(–9) × (2.5–)3–4 μm (av. ± SD: 5.4 ± 1.4 × 3.3 ± 0.5 μm), intercalary conidia ovoid, ellipsoid, 5.5–9(–12.5) × (3–) 3.5–4(–4.5) μm (av. ± SD: 8.5 ± 2.1 × 3.8 ± 0.4 μm), aseptate, with 1(–2) distal hila, secondary conidia ellipsoid or sub- cylindrical, (7–)8.5–20(–25) × (3–)4–5.5(–7) μm (av. ± SD: 13.5 ± 4.2 × 4.6 ± 0.5 μm), 0(–1(–2)–septate, with (1–)2(–3–4) distal hila, pale to medium olivaceous brown, ornamentation variable, mainly densely verruculose to echinulate (loosely mucrate under SEM), spines up to 0.8 μm high, sometimes irregularly verrucose with few scattered tubercles or irregularly echinulate, walls unthickened or slightly thickened, apex rounded or slightly attenuated towards apex and base, hila conspicuous, protuberant, denticulate, 0.5–2 μm diam, thickened and darkened-refractive; micromycelial conidiogenesis observed.

Culture characteristics: Colonies on PDA attaining 26–60 mm diam after 14 d at 25 °C, pale olivaceous grey to olivaceous grey, or dull-green, reverse iron-grey or olivaceous black, margin regular, entire edge, narrow, colourless to white, glabrous, aerial mycelium abundantly formed, fluffy, dense, growth flat, somewhat folded in the colony centre, deep into the agar, few prominent exudates formed with age, sporulation profuse.
Colonies on MEA attaining 25–60 mm diam after 14 d at 25 °C, olivaceous grey to olivaceous due to abundant sporulation in the colony centre, pale greenish grey towards margin, iron-grey or olivaceous grey on reverse, velvety to powdery, margin narrow, white, glabrous, radially furrowed, aerial mycelium diffuse, growth convex with papillate surface, wrinkled colony centre, without prominent exudates, sporulation profuse. Colonies on OA attaining 26–58 mm diam after 14 d at 25 °C, olivaceous, dull-green towards margins, reverse iron-grey, leaden-grey to greenish black, velvety to fluffy, margin regular, aerial mycelium loose, diffuse or denser in colony centre, growth flat, deep into the agar, with a single exudate, abundantly sporulating.

Substrate and distribution: Hypersaline water, indoor air and plant material; Europe (Slovenia, Ukraine), North America (USA).

Additional materials examined: USA, Minnesota, Fergus Falls, isol. from indoor air sample, Oct. 2012, Ž. Jurjević, EMSL 1791 = CPC 22303; Missouri, Fort Leonard Wood, isol. from indoor air sample bathroom, Jan. 2013, Ž. Jurjević, EMSL 1928 = CPC 22400.
Fig. 40. Cladosporium subuliforme (DTO 324-C7). A–C. Colonies on PDA, MEA and OA. D–H. Macronematous conidiophores and conidial chains. I, K. Micronematous conidiophores. J. Ramoconidium seceded at a conidiophore. L. Conidial chains. Scale bars = 10 μm.
Notes: *Cladosporium subinflatum* (Fig. 2, clade 21) is a saprobic hyphomycete well characterised by the formation of numerous globose or subglobose conidia, resembling members of the *C. sphaerospermum* species complex (Fig. 3), with its coarse surface ornamentation ranging from verruculose to distinctly spiny. *Cladosporium spinulosum* (Fig. 2, clade 28), also isolated from hypersaline water, is morphologically close to *C. subinflatum*, but differs from the latter species in having somewhat narrower macronematous conidiphores, narrower conidigenous loci and hila, and conidia with longer spines, up to 1.3 μm. *Cladosporium allicinum* (Fig. 2, clade 27) may superficially also be confusable, but its conidia are minutely verruculose to verrucose but never spiny.

The species was previously known only from hypersaline environments and plant material but is now also reported from indoor environments and known from clinical samples (Sandoval-Denis et al. 2015).

Cladosporium subuliforme Bensch et al., Stud. Mycol. 67: 77. 2010. MycoBank MB517090. Fig. 40.

Holotype: Thailand, Chiang Mai, Sansai, Mai Jo, palm nursery, isol. from Chamaedorea metallica (Arecales), 26 Dec. 2006, coll. I. Hidayat & J. Meeboon, FIH 401, isol. P.W. Crous, CBS H-20448. Ex-type culture: CBS 126500 = CPC 13735.

Lit.: Bensch et al. (2012: 264–265; 2015: 68), Ramos-Garcia et al. (2016).

Ill.: Bensch et al. (2010: 78, figs 67–68; 2012: 264–265, figs 305–306).

Mycelium internal and superficial, abundantly formed; hyphae sparingly branched, 1–4 μm wide, septate, sometimes slightly constricted at the base of conidiophores, subhyaline to pale olivaceous brown, smooth to minutely verruculose or verruculose, often somewhat swollen at the base of conidiophores, up to 6 μm wide, sometimes forming ropes. *Conidiophores* macro-, semimacro- or micromacronematous, solitary or in pairs, arising terminally and laterally from hyphae, erect, straight to mostly flexuous, filiform to narrowly cylindrical-oblong, often slightly to distinctly attenuated towards the apex and wider at the base, not nodulose or geniculate, unbranched or branched, branches often only as short peg-like lateral outgrowths just below a septum bearing conidigenous loci, branches occasionally longer, up to 20 μm, 9–330 × (1.5–)2–4 μm, often wider towards the base, plurisepate, usually not constricted at septa, pale to medium olivaceous brown, smooth to sometimes minutely verruculose, parts of the stalk occasionally verrucose or irregularly rough-walled, basal cell sometimes swollen up to 8(–10) μm, walls unthickened or only slightly thickened, about 0.5 μm wide. *Conidigenous cells* integrated, mainly terminal but also intercalary, narrowly cylindrical-oblong, neither nodulose nor geniculate, 9–40 μm long, with up to five loci crowded at the uppermost apex, in intercalary cells loci often situated on small denticle- or peg-like lateral outgrowths just below a septum, loci conspicuous, subdenticulate, (0.8–)1–1.5(–2) μm diam, thickened and darkened-refractive. *Ramoconidia* commonly formed, cylindrical-oblong, differentiation between ramoconidia and secondary ramoconidia often quite difficult, (14–)17–39 × (1.5–)2–3 μm, 0(–1)-septate, pale olivaceous brown, smooth, walls unthickened, not attenuated towards the base, broady truncate, 2–2.5 μm wide, unthickened, but often somewhat darkened or refractive. *Conidia* numerous, catenate, in branched chains, up to 2–6 conidia in the unbranched terminal part of the chain, branching in all directions, straight, *small terminal conidia* obovoid, subglobose, ovoid to limoniform or ellipsoid, 2.5–4.5(–5.5) × 2–2.5 μm (av. ± SD: 4.1 ± 0.7 × 2.2 ± 0.3), aseptate, rounded at the apex, attenuated towards the base, *intercalary conidia* ellipsoid to subcylindrical, 5–13 × 2–3(–3.5) μm (av. ± SD: 8.3 ± 2.6 × 2.8 ± 0.4), aseptate, with up to four distal hila, attenuated towards apex and base, *secondary ramoconidia* ellipsoid to subcylindrical, sometimes cylindrical-oblong, (6–)8–27(–34) × 2–3.5 μm (av. ± SD: 17.6 ± 7.3 × 2.9 ± 0.4), 0–1-septate, not constricted at septa, median or somewhat in the lower half, usually somewhat attenuated towards the base, (2–)3–4(–5) distal hila, pale olivaceous brown, smooth or almost so (LM), walls unthickened, hila conspicuous, subdenticulate to denticulate, (0.2–)0.5–1.5(–2) μm diam, somewhat thickened and darkened-refractive; microcyclic conidiogenesis occasionally occurring.

Culture characteristics: Colonies on PDA attaining up to 80 mm diam after 14 d at 25 °C, grey olivaceous to mainly olivaceous grey, reverse olivaceous grey, velvety to floccose, fluffy, margins grey olivaceous to white, feathery, regular or slightly undulate, aerial mycelium abundant, loose, fluffy, growth effuse to low convex, without exudates, sporulation profuse. Colonies on MEA reaching 60–80 mm diam after 14 d at 25 °C, greenish olivaceous to pale olivaceous grey and olivaceous buff, glaucescent grey at margins, reverse olivaceous grey, floccose to flocculose, margins white, glabrous, regular to somewhat undulate, radially furrowed and wrinkled, effuse, aerial mycelium abundant, fluffy, mainly in colony centre, without exudates, sporulation profuse. Colonies on OA attaining up to 80 mm diam after 14 d at 25 °C, whitish to smoke-grey and pale olivaceous grey, olivaceous buff and dull green towards margins, somewhat zonate, grey olivaceous due to sporulation, reverse leaden-grey, floccose to felty, margins dull green or colourless, regular, glabrous, aerial mycelium abundant, floccose to fluffy-felty, covering large parts of colony surface, growth effuse, without exudates, sporulating.

Substrate and distribution: Isolated from plant material and indoor environments: Africa (South Africa), Asia (China, Thailand), Central and South America (Brazil, Cuba), North America (Mexico, USA).

Additional materials examined: China, isol. from indoor air, DTO 323-D1, DTO 324-B8, DTO 324-C7. Thailand, Suri Thani, isol. from indoor air (open Petri-dish), P. Noonim, DTO 130-H8.

Notes: *Cladosporium subuliforme* (Fig. 1, clade 59) belongs to the *C. cladosporioides* species complex, but deviates from allied species, specifically *C. cladosporioides* (Fig. 1, clade 66) and *C. tenuissimum* (Fig. 1, clade 64), by its long narrow subulate conidiophores with several loci crowded at the apex and its numerous ramoconidia with narrow loci and hila. *Cladosporium angustisporum* (Fig. 1, clade 58) is phylogenetically close to this species (also see Bensch et al. 2010, 2012, 2015) but morphologically easily separable. The conidiophores are not subuliform and the terminal conidia are somewhat longer and narrower.

Sandoval-Denis et al. (2015) reported *C. subuliforme* for the first time from clinical samples in the United States. In the present study it is now also reported to occur in indoor environments.

Cladosporium tenellum K. Schub. et al., Stud. Mycol. 58: 149. 2007. MycoBank MB504581. Fig. 41.
Fig. 41. Cladosporium tenellum (CPC 22290). A–C. Colonies on PDA, MEA and OA. D–H. Conidiophores and conidial chains. I–J. Micronematous conidiophores. K. Ramoconidium and conidia. Scale bars = 10 μm.
Holotype: Israel. Ein Bokek, Dead Sea, isolated from hypersaline water, 2004, M. Ota, CBS H-19866. Isotype: HAL 2029 F. Ex-type culture: CBS 121634 = CPC 12053 = EXF-1735.

Lit.: Bensch et al. (2012: 268–269).

Ill.: Schubert et al. (2007b: 148–149, figs 43–45), Bensch et al. (2012: 268–269, figs 311–313).

Mycesporium sparingly branched, 1–3 μm wide, septate, septa often not very conspicuous, not constricted at the septa, sometimes slightly swollen, subhyaline, smooth, walls unthickened. Conidiophores macro- and micronematous, solitary, arising terminally or laterally from plagiotropous or ascending hyphae, erect or subdecumbent, almost straight to more or less flexuous, cylindric, sometimes geniculate towards the apex, but not nodulose, sometimes with short lateral protrusions at the apex, unbranched to once or twice branched (angle usually 30–45° degree, sometimes up to 90°), branches usually below a septum, 6–200 × (1–2)–4–(5) μm, septate, septa often not very conspicuous, occasionally appearing somewhat darkened, not constricted at the septa, sometimes septa in short succession, subhyaline to pale brown, almost smooth to usually asperulate, walls unthickened or almost so. Conidiogenous cells integrated, terminal or intercalary, sometimes conidiophores reduced to conidigenous cells, cylindrical, sometimes geniculate, non-nodulose, 6–40 μm long, proliferation sympodial, with several conidiogenous loci often crowded at the apex and sometimes also at a lower level, situated on small lateral shoulders, unilateral swellings or protrusions, with up to 6(–10) denticulate loci, forming sympodial clusters of pronounced scars, intercalary conidiogenous cells with short or somewhat long lateral outgrowths, short denticle-like or long branches with several scars at the apex, usually below a septum, loci protuberant, 1–1.5(–2) μm diam, thickened and darkened-refractive. Ramoconidia sometimes occurring, cylindrical, up to 32 μm long, 2.5–4(–4.5) μm wide, with a broadly truncate, unthickened base, about 2(–2.5) μm wide. Conidia catenate, formed in branched chains, straight, small terminal conidia globose, subglobose, ovoid, (2.5–)3–5(–6) × (2–)2.5–3.5–(4) μm (av. ± SD: 4.0 ± 0.7 × 2.9 ± 0.5 μm), aseptate, asperulate, with 0–1 distal hila, intercalary conidia ovoid or ellipsoid, 5–11(–13) × 3 4.5(5) μm (av. ± SD: 7.4 ± 1.9 × 3.8 ± 0.6 μm), aseptate, with 1–4 distal hila, secondary ramoconidia ellipsoid-ovoid, ellipsoid to subcylindrical, (6–)8–21(–28) × (2.5–)3–5(–6) μm (av. ± SD: 14.4 ± 4.7 × 4.6 ± 3.8 μm), 0–1-septate, rarely with up to three septa, sometimes slightly constricted at septa, subhyaline, pale brown to medium olivaceous brown, asperulate or verruculose (mucitate, granulate or colliculate under SEM), walls unthickened or slightly thickened, apex rounded or slightly to distinctly attenuated towards apex and base, often forming several apical hila, up to 7(–9), crowded, situated on small lateral outgrowths giving them a somewhat irregular appearance, hila protuberant, 0.5–1.5 μm diam, thickened and darkened-refractive; microcyclic conidio genesis sometimes occurring.

Culture characteristics: Colonies on PDA reaching 27–34 mm diam after 14 d at 25 °C, smoke-grey, grey olivaceous to olivaceous grey, olivaceous grey to iron-grey reverse, velvety or powdery, margin regular, entire edge, narrow, colourless to white, aerial mycelium absent or sparingly formed, felty, white, growth regular, flat, radially furrowed, with folded and elevated colony centre, deep into the agar, with age forming few to numerous prominent exudates, sporulation profuse, few high conidiophores formed. Colonies on MEA reaching 25–44 mm diam after 14 d at 25 °C, olivaceous grey to olivaceous or iron-grey due to abundant sporulation in the colony centre, velvety, margin regular, entire edge, narrow, colourless, white to pale olivaceous grey, aerial mycelium loose, diffuse, growth convex with papillate surface, radially furrowed, wrinkled, without prominent exudates, sporulating. Colonies on OA reaching 23–32 mm diam after 14 d at 25 °C, grey olivaceous, olivaceous grey to olivaceous due to abundant sporulation in the colony centre, olivaceous or iron-grey reverse, velvety, margin regular, entire edge, narrow, colourless or white, aerial mycelium sparse, diffuse, floccose, growth flat to low convex, radially furrowed, wrinkled, without prominent exudates, sporulation profuse.

Substrate and distribution: Hypersaline water, indoor environments and plant material; Middle East (Israel), North America (USA).

Additional materials examined: USA,isol. from air sample, bakery, CBS 139582 = DTO 127-D = AR295; Michigan, Big rapids, isol. from indoor air sample, classroom, Jan. 2013, Z. Jurjević, EMSL 1419 = CPC 22410; Okemos, isol. from indoor air sample, bathroom, Sep. 2012, Z. Jurjević, EMSL 1771 = CPC 22290; Oregon, Salem, isol. from indoor air sample, bedroom, Sep. 2012, Z. Jurjević, EMSL 1772 = CPC 22291.

Notes: Cladosporium tenellum (Fig. 2, clade 22) comprises characters of various species complexes of the genus Cladosporium. The formation of globose or subglobose terminal conidia is reminiscent of members of the C. sphaerospermum species complex (Fig. 3). Based on the general morphology and size of conidiophores and conidia C. tenellum is rather comparable with species of the C. cladosporioides species complex (Fig. 1), e.g. C. cladosporioides s. str. characterised by smooth conidiophores and conidia with only few conidiogenous loci and conidial hila crowded at the apex and somewhat wider conidiophores, 3–5(–6) μm. However, it belongs to the C. herbarum species complex (Fig. 2) where it resembles C. subtilissimum (Fig. 2, clade 25) and C. ramotenellum (Fig. 2, clade 37; Schubert et al. 2007b). In C. subtilissimum the small terminal conidia are not globose but rather narrowly obovoid to limoniform, the conidiogenous loci and conidial hila are somewhat wider, (0.5–)0.8–2(–2.2) μm, and at the apices of conidiophores and conidia only few scars are formed. Cladosporium ramotenellum possesses longer and narrower, 0–3-septate conidia, 2.5–35 × 2–(4–)5 μm, but forms only few conidiogenous loci and conidial hila at the apices of conidiophores and conidia (Bensch et al. 2012). It has not only been isolated from hypersaline water and plant material but also from indoor environments.

Cladosporium tenuissimum Cooke, Grevillea 6(40): 140. 1878. MycoBank MB145672. Fig. 42.

Lectotype (designated by Heuchert et al. 2005): USA, South Carolina, Aiken, on leaf sheets of Zea mays (Poaceae), H.W. Ravenel, Ravenel, Fungi Amer. Exs. 160 (NY). Isolectotypes: Ravenel, Fungi Amer. Exs. 160 (e.g., K, PH 01020427). Topotype material: Roumeguère, Fungi Sel. Gall. Exs. 5295 (e.g., NY). Epitype (designated by Bensch et al. 2010): USA, Louisiana, Baton Rouge, isol. from fruits of Lagerstroemia sp. (Lythraceae), 8 Sep. 2007, P.W. Crous, CBS H-20449, Ex-epitype culture: CBS 125995 = CPC 14253.

Lit.: Ellis (1976: 326), Ho et al. (1999: 140), Heuchert et al. (2005: 50–52), Bensch et al. (2010: 78–81, 2012: 269–272).
Mycelium immersed and superficial, hyphae branched, (0.5–) 1–5 μm wide, septate, sometimes constricted at septa, subhyaline to pale or medium brown, with swellings and constrictions, often irregular in outline, smooth to sometimes minutely verruculose, sometimes appearing rough-walled, walls unthickened or very slightly thickened, sometimes forming ropes. Conidiophores solitary, macro- and micronematous, arising terminally and laterally from hyphae; macronematous conidiophores solitary, sometimes in groups of 2–3, erect, straight or slightly flexuous, cylindrical-oblong to almost filiform, sometimes slightly to distinctly geniculate towards the apex, often subnodulose or nodulose with an apical and sometimes a few

Fig. 42. Cladosporium tenuissimum (DTO 323-G3). A–C. Colonies on PDA, MEA and OA. D–H. Macronematous conidiophores and conidial chains. I–J. Micronematous conidiophores and conidia. Scale bars = 10 μm.

III.: Ellis (1976: 327, fig. 245 A), Ho et al. (1999: 143, figs 46–47), Heuchert et al. (2005: 51, fig. 20), Bensch et al. (2010: 80–81, figs 69–70; 2012: 270–271, figs 314–316).
additional swellings on a lower level, swellings quite distant from the apex and from each other, most conidiophores neither geniculate nor nodulose, unbranched or branched, branching often at an angle of 45°–90°, just below the apex or at a lower level, branches sometimes only as short denticle-like prolongations just below a septum, occasionally long, conidiophores 30–310(–460) × 2.5–4 μm (on OA up to 900 μm long), septate, sometimes distinctly constricted at septa, pale to medium brown or olivaceous brown, smooth, sometimes slightly rough-walled at the base, walls somewhat thickened, sometimes slightly attenuated towards the apex and distinctly swollen at the base, with age conidiophores becoming darker and more thick-walled; micro- to semicracinematic conidiophores narrower, paler, filiform to narrowly cylindrical-oblong, non-nodulose or only slightly swollen at the apex, unbranched, 17–85 × (1–)2–2.5 μm, with few septa or reduced to conidiogenous cells, pale brown or subhyaline, smooth, walls unthickened or almost so, with a single or up to seven subdenticulate, pronounced loci crowded at the tip, in intercalary conidiogenous cells loci often sitting at about the same level (arranged like a garland round about the stalk) or situated on small lateral shoulders, loci 1–1.5(–2) μm diam, thickened and darkened-refractive. Ramocordia occasionally formed, subcylindrical or cylindrical-oblong, 22–41 × 3–4(–5) μm, 0(–1)-septate, base broadly truncate, 2–3.5 μm wide. Conidia catenate, in densely branched chains, 1–4(–6) conidia in the terminal unbranched part of the chain, branching in all directions, straight, small terminal conidia subglobose, subobvoid, limoniform, sometimes globose, (2–)2.5–5(–6) × (1.5–)2–3 μm (av. ± SD: 3.7 ± 1.0 × 2.2 ± 0.4), aseptate, apex broadly rounded, intercalary conidia ovoid, ellipsoid or subcylindrical, 4–12(–17) × (1–)2–3(–4.5) μm (av. ± SD: 8.1 ± 2.7 × 2.8 ± 0.6), aseptate, occasionally 1-septate, with up to 5(–7) distal hila, sometimes cell lumen distinct, secondary ramocordia ellipsoid, fusiform to subcylindrical or cylindrical, (6–)7–25(–31) × (2–)2.5(–4) μm (av. ± SD: 15.0 ± 5.8 × 3.2 ± 0.5), with (1–)2(–6) distal hila, sometimes with 1–2 hila at the basal end, 0–1(–2)-septate, sometimes distinctly constricted at septa, with age more frequently septate, pale brown or pale olivaceous brown, smooth, occasionally irregularly rough-walled, walls unthickened or almost so, attenuated towards apex and base, hila conspicuous, subdenticulate to denticulate, 0.5–1.8(–2) μm diam, thickened and darkened-refractive; microcyclic conidiogenesis occasionally occurring with conidia forming secondary conidiophores.

Culture characteristics: Colonies on PDA attaining up to 84 mm diam after 14 d at 25 °C, smoke-grey to grey olivaceous or olivaceous grey, reverse leaden-grey to olivaceous black, woolly to fluffy, margin glabrous to feathery, grey olivaceous to white, aerial mycelium abundant, high, fluffy, smoke-grey, dense, without prominent exudates, sporulating. Colonies on MEA reaching 70–80 mm diam after 14 d at 25 °C, smoke-grey to pale olivaceous grey, pale olivaceous due to abundant sporulation, reverse olivaceous grey, woolly, fluffy, margins narrow, glabrous to feathery, colourless to white, sometimes radially furrowed and wrinkled, aerial mycelium abundant, fluffy, dense, high, pale olivaceous grey, covering large parts of the colony surface, growth low convex, few prominent exudates formed, sporulating. Colonies on OA attaining 65–73 mm diam after 14 d at 25 °C, smoke-grey, pale olivaceous grey to whitish due to aerial mycelium, greenish grey towards margin, reverse olivaceous grey to iron-grey or leaden-grey, woolly-fluffy to felty, margin colourless to white, narrow, glabrous, aerial mycelium high, abundantly formed, fluffy to felty, whitish, growth at to low convex, mostly without prominent exudates, sporulating.

Substrate and distribution: On different host plants isolated from dead leaves, twigs, stems, wood and other organic matter, also isolated from air, bread, clinical samples, soil and water; cosmopolitan but especially common in the tropics.

Additional materials examined: Bermuda, Samerset, isol. from indoor air sample, Nov. 2012, Z. Jurjevič, EMSL 1823 = CPC 22320. China, isol. from indoor air, DTO 323-C5, DTO 323-C9, DTO 323-G, DTO 323-C3, DTO 323-I4, DTO 323-I6, DTO 323-I8, DTO 323-I9, DTO 324-A1, DTO 324-A3, DTO 324-C2, DTO 324-C3, DTO 324-C5, DTO 324-C6, DTO 324-C9. Mexico, isol. from chili pepper sample, Aug. 2012, Z. Jurjevič, EMSL 1748 = CPC 22277. Thailand, Surat Thani, isol. from bathroom ceiling, P. Nooin, DTO 109-A1; from indoor environments (mycelial door), P. Nooin, DTO 109-C4; isol. from indoor air (open Petri-dish), P. Nooin, DTO 109-C7; Trang, isol. from indoor air (open Petri-dish), P. Nooin, DTO 131-M4. USA, Arizona, Casa Grande, isol. from indoor air sample, bedroom, Dec. 2012, Z. Jurjevič, EMSL 1857 = CPC 22344. Texas, Georgetown, isol. from indoor air sample, classroom, Jan. 2013, Z. Jurjevič, EMSL 1926 = CPC 22988.

Notes: Cladosporium tenuissimum (Fig. 1, clade 64) is a common saprobic hyphomycete comparable and confusable with C. cladosporioides (Fig. 1, clade 66), but genetically as well as morphologically distinct as demonstrated and discussed in Bensch et al. (2010, 2012), Cladosporium stanhoepeae, a species described on Stanhoepea (Orchidaceae) from Germany (Schubert & Braun 2004, Schubert 2005), resembles C. tenuissimum but is tentatively maintained as a separate species until isolates from that host can be included in molecular studies.

Cladosporium tenuissimum has been reported from several clinical samples in the USA (Sandoval-Denis et al. 2015) as the second most frequently isolated species after C. halotolerans and proved to be also commonly occurring in indoor environments.

Cladosporium uwebraunianum Bensch & Samson, sp. nov. MycoBank MB822229. Figs 43, 44.

Etymology: In honour of Uwe Braun for his valuable and extensive work on Cladosporium and other cladosporium-like genera.

Holotype: The Netherlands, Amsterdam, indoor air, archive, M. Meijer, CBS H-23260. Ex-type culture: CBS 143365 = DTO 072-D8.

Diagnosis: Diffsers from the phylogenetically closely related C. australiense in producing shorter conidiophores (up to 95(–135) μm), longer conidiogenous cells (17–50(–65) μm) and conidia formed in long branched chains with up to 10(–13) conidia in the terminal unbranched part of the chain.

Mycelium unbranched or loosely branched, hyphae (1–)2–5(–6.5) μm wide, septate, pale or medium olivaceous brown, smooth or almost so, minutely verruculose or irregularly rough-walled, walls slightly thickened. Conidiophores macro- and micromenatosum, formed solitary or in small groups of three laterally or terminally from hyphae, straight or somewhat flexuous, neither geniculate nor nodulose, cylindrical-oblong, quite....
Fig. 43. Cladosporium uwebraunianum (CBS 143365). A–C. Colonies on PDA, MEA and OA. D–H, J. Conidiophores and conidial chains. I. Ramoconidium and conidial chains. K. Conidial chains. Scale bars = 10 μm.
Fig. 44. Cladosporium uwebraunianum (CBS 143365). A. Survey of conidiophores sprouting from a common base, consisting out of a tissue of broadened connected cells, partially located under the agar surface. B. Free-standing conidiophore with intact stipes, ramoconidia, intercalary and terminal conidia. C. Conidia on conidiophore. Conidia are very smooth; some bear a subtle net-like ornamentation (typical for the C. cladosporioides complex). Some initials are visible; other chains are broken as judged by the scars on the conidia. D. Two intact conidiophores bearing numerous spores. This micrograph shows the compactness of the spore mass and also illustrates that conidial chains support each other throughout formation. E. Conidia on conidiophore showing some initials. F. Chains of conidia, two of the ending in terminally conidia. Scars are visible on a secondary ramoconidium. G. Details of the conidiophore. Note the very smooth surface of the conidia and conidiophore. Fine breaks delineate several spores. H, J, K. Details of scars of intercalary and also terminal conidia (H, J) and initial (J). I. Details of scars on a conidiophore. Note the difference in size of the scars, compare with the lines in Figure G. Scale bars = 2 (H–K), 5 (F, G), 10 (B–E), 50 (A) μm.
short, 15–95 (–135) μm long, 2–2.5 μm wide in micromenatous conidiophores, 2.5–4 μm wide in macromenatous conidiophores, unbranched or branched, branches as small lateral outgrowths just below or above a septum, 0–2 (–4)-septate, pale to medium sometimes even dark olivaceous brown, smooth, walls slightly thickened. Conidiogenous cells usually terminal or conidiophores reduced to conidiogenous cells, rarely intercalary in branched conidiophores, 17–50 (–65) μm long, with 2–3 (–4) distal scars situated at the apex, loci more or less truncate, 1–2 μm diam. *Ramoconidia* occasionally formed, 23–42 × 3–4 μm, base (2.5–)3 (–3.5) μm wide. *Conidia* numerous in formed in branched chains, branching in all directions, with up to 10 (–13) conidia in the terminal unbranched part of the conidial chains, *small terminal conidia* obvoid, limoniform or ellipsoid, (3–)4–7 (–10) × 2–3 μm (av. ± SD: 5.9 ± 1.5 × 2.5 ± 0.4), *intercalary conidia* ellipsoid or subcylindrical, (6–)7–12 (–15) × 2.5–3 (–3.5) μm (av. ± SD: 9.1 ± 2.4 × 2.8 ± 0.3), 0 (–1)-septate, with (1–)2–3 (–4) distal hila, *secondary ramoconidia* subcylindrical or cylindrical, 8.5–27 (–35) × (2.5–)3 (–4) μm (av. ± SD: 17.2 ± 5.8 × 3.5 ± 0.5), 0 (–2)-septate, with 2–3 distal hila, pale or medium olivaceous brown, sometimes pale olivaceous, smooth or almost so, small terminal and intercalary conidia appear to be reticulate, walls unthickened, hila 0.5–2 μm diam, thickened and darkened-refractive; microcyclic conidiogenesis not observed.

Culture characteristics: Colonies on PDA reaching 49–58 mm diam after 14 d at 25 °C, grey olivaceous, olivaceous or olivaceous black, reverse olivaceous grey and leaden-grey, velvety or powdery, margins glabrous, white, aerial mycelium loose diffuse, low or higher, growth flat, sometimes radially furrowed, without prominent exudates, profusely sporulating. Colonies on MEA attaining 51–58 mm diam after 14 d at 25 °C, olivaceous, grey olivaceous or olivaceous grey, reverse iron-grey and leaden-grey, velvety or powdery, margins white, somewhat feathery, aerial mycelium sparse, loose diffuse, growth flat to low convex, radially furrowed, colony centre somewhat elevated, without prominent exudates, densely sporulating. Colonies on OA reaching 47–57 mm diam after 14 d at 25 °C, greenish olivaceous or olivaceous due to dense sporulation, dull-green towards margins, reverse iron-grey or leaden-grey, velvety or powdery, margins narrow, glabrous, regular, aerial mycelium sparse, loose diffuse, growth flat, with numerous very small exudates giving the surface a glittering appearance.

Substrates and distribution: Isolated from indoor environments (air, house dust); Australasia (New Zealand), Europe (Denmark, The Netherlands).

Additional materials examined: Denmark,isol. from indoor environments, B.A. Andersen, DTO 109-E8 = BA 1908. New Zealand, isol. from house dust, DTO 305-H9 = TAN10Z-294A. The Netherlands, Amsterdam, indoor air, archive, M. Meijer, DTO 072-C8, DTO 082-E3: Rijswijk, swap sample, archive, M. Meijer, DTO 090-D2.

Notes: *Cladosporium uwebraunianum* (Fig. 1, clade 52) is closely related to *C. australiense* (Fig. 1, clade 51), but morphologically they are clearly differentiated. The former species is characterised by shorter conidiophores (up to 95 (–135) μm), longer conidiogenous cells (17–50 (–65) μm) and conidia formed in long branched chains with up to 10 (–13) conidia in the terminal unbranched part of the chain. In contrast, *C. australiense* exhibits very long, seta-like conidiophores (48–285 μm long) with shorter conidiogenous cells (6–15 (–40) μm) and conidia chains with only 2–4 (–5) conidia in the terminal part of the chain (Bensch et al. 2010). *Cladosporium fusicolusum* (Fig. 1, clade 55) is morphologically very similar in also forming quite long conidial chains with 8 (–14) conidia in the unbranched terminal part, but the chains are often dichotomously branched and the conidiophores narrower (2–3 μm).

Holotype: *India*, Charijdi, isolated from *Bambusa* sp. (*Poaceae*), W. Gams, CBS H-19735. Ex-type culture: CBS 119417.

Lit.: Bensch et al. (2012): 284–286; 2015: 68.

ill.: Zalar et al. (2007): 166, fig. 5 i, 180, fig. 14, Bensch et al. (2012): 285, fig. 334.

Mycelium partly superficially partly submerged; hyphae branched, 2–4 μm wide, septate, often with swellings and constrictions, therefore appearing irregular in outline, pale brown to pale olivaceous brown, smooth, walls unthickened to slightly thickened, often somewhat swollen at the base of conidiophores, without extracellular polysaccharide-like material. Conidiophores arising laterally or terminally from plagirotous or ascending hyphae, erect, straight to slightly flexuous, filiform to narrowly cylindrical-oblong, sometimes slightly geniculate, due to this geniculation slightly subnodulose, occasionally nodulose, (10–) 25–150 (–250) × (2–)2.5–4 (–4.5) μm, unbranched or branched, branches often only as short denticle-like prolongations below a septum, later branches longer, dichotomously branched in an angle of 30–45°, 0–7-septate, not constricted, septa often somewhat darkened, especially where ramoconidia are seceding, pale to medium olivaceous brown, smooth, walls somewhat thickened, often slightly attenuated towards the apex. *Conidiogenous cells* integrated, mainly terminal but also intercalary, sometimes conidiophores reduced to conidiogenous cells, filiform to narrowly cylindrical-oblong, 20–42 μm long, proliferation sympodial, with a single or several conidiogenous loci, often somewhat crowded at the apex, subdenticulate, protuberant, 0.8–1.5 μm diam, thickened and darkened-refractive. *Ramoconidia* subcylindrical or cylindrical, 20–50 (–63) × 2–3 μm, 0–1-septate, base truncate, 2–3 μm wide, somewhat darkened-refractive. *Conidia* catenate, in branched chains, branching in all directions, terminal chains with up to five conidia, straight, *small terminal conidia* globose, subglobose, ovoid, 2.5–4 × (1.5–)2–2.5 μm (av. ± SD: 3.2 ± 0.4 × 2.1 ± 0.3), aseptate, apex rounded, *intercalary conidia* limoniform to narrowly ellipsoid, 3.5–10 (–13) × 2–3 μm (av. ± SD: 6.7 ± 2.5 × 2.5 ± 0.4), aseptate, with up to 3 (–4) distal hila, attenuated towards apex and base, *secondary ramoconidia* narrowly ellipsoid to cylindrical-oblong, straight to slightly curved, (6–)10–30 (–42) × 2–3.5 (–4.5) μm (av. ± SD: 20.0 ± 8.6 × 2.9 ± 0.6), 0–1–septate, not constricted at septa, with up to 4 (–5) distal hila, pale brown, smooth or almost so to very finely verruculose, walls unthickened or almost so, slightly attenuated towards apex and base, hila conspicuous, subdenticulate to denticulate, 0.8–1.5 μm diam, thickened and darkened-refractive; microcyclic conidiogenesis not observed.

Culture characteristics: Colonies on PDA reaching 35–65 mm diam after 14 d at 25 °C, grey olivaceous to olivaceous, reverse leaden-grey, iron-grey or olivaceous black, velvety to powdery, margin broad, white, regular, glabrous to feathery, aerial
Fig. 45. Cladosporium velox (DTO 317-H1). A–C. Colonies on PDA, MEA and OA. D–H. Macronematous conidiophores and conidial chains. I–J. Micronematous conidiophores and conidia. Scale bars = 10 μm.
mycelium absent or sparse, growth regular, low convex, sometimes with numerous prominent exudates, sporulation profuse. Colonies on MEA reaching 30–55 mm diam after 14 d at 25 °C, olivaceous, grey olivaceous and pale olivaceous grey towards margins, radially furrowed, with raised, crater-shaped colony centre, with white, undulate, submerged margin, sporulation profuse. Colonies on OA reaching 30–52 mm diam after 14 d at 25 °C, olivaceous, reverse iron-grey and leaden-grey, velvety to powdery, margin regular, aerial mycelium sparse, without prominent exudates, sporulation profuse. Colonies on MEA with 5 % NaCl reaching 35–45 mm diam after 14 d at 25 °C, pale green, reverse pale green, velvety, flat with regular margin, sporulation poor.

Cardinal temperatures: Minimum at 10 °C (9 mm diam), optimum at 25 °C (30–42 mm diam) and maximum at 30 °C (5–18 mm diam) (from Zalar et al. 2007).

Substrates and distribution: Hypersaline water, indoor air and plant material (bamboo and Zea mays); Asia (China, India), Europe (Slovenia), North America (USA), South America (Brazil).

Additional materials examined: China, isol. from indoor air sample, DTO 317-H1, DTO 323-H8, USA. Massachusetts, Needham, isol. from indoor air sample, of- fice, Dec. 2012; Z. Jurjević, EMSL E1872 = CPC 22359.

Notes: Cladosporium velox (Fig. 3, clade 18) is a species of the C. sphaerospermum species complex. The small terminal conidia are, however, more ovoid and almost smooth (light microscopy). It was first described from bamboo collected in India and a few additional isolates from hypersaline water from saltlerns in Slovenia (Zalar et al. 2007). Bensch et al. (2015) recorded it also from Brazil isolated from Zea mays. The three additional isolates from indoor air samples collected in North America and China indicate that the species is probably much wider distributed than previously assumed.

Cladosporium vicinum

Bensch & Samson, sp. nov. MycoBank MB822230.

Etymology: Latin vicinus in the meaning of next to, neighbouring refers to the close phylogenetic and morphological relationship with C. europaeum.

Holotype: USA, Wisconsin, Racine, isol. from indoor air sample, Nov. 2012, Z. Jurjević, CBS H-23261. Ex-type culture: CBS 143366 = CPC 22316 = EMSL 1819.

Diagnosis: Differs from C. cladosporioides in forming more frequently septate conidia (usually aseptate in C. cladosporioides s. str. vs 0–1(–3) septate in C. vicinum).

Mycelium internal and superficial; hyphae sparingly branched, (1–)2–5.5 μm wide, septate, subhyaline or pale olivaceous, smooth or minutely verruculose, walls unthickened or slightly thickened. Conidiophores macro- and micronematous, arising terminally and laterally from hyphae, erect, solitary, occasionally in pairs of two, straight or slightly flexuous. Macronematous conidiophores cylindrical-oblong, non-nodulose, rarely once geniculate unbranched or branched, branches only as short peg-like lateral outgrowths just below a septum, 80–190(–235) × 3–5(–6) μm, septate, sometimes slightly attenuated or constricted at septa, pale olivaceous or pale olivaceous brown, smooth, walls unthickened or almost so. Conidiogenous cells integrated, terminal and intercalary, cylindrical-oblong, (5–)23–60 μm long, terminal cells with 1–5(–7) loci crowded at or towards the apex and occasionally 1–2 additional loci at a lower level, often seceded as ramoconidia, in intercalary cells loci situated on small denticle-like lateral outgrowth just below a septum, loci conspicuous, subdenticulate or denticulate, 1–2(–2.5) μm diam, thickened and darkened-refractive. Macronematous conidiophores narrower and paler, filiform or narrowly cylindrical-oblong, 23–75(–125) × (1(–)1.2–2.8) μm, septate, subhyaline or pale olivaceous, often with only a single locus at the apex, loci 1–1.5 μm diam, conidia formed by micronematous conidiophores narrower, about 2.5 μm wide. Ramoconidium cylindrical-oblong, 20–60(–70) × 3–4(–4.5) μm, 0–1(–3)-septate, base broadly truncate, (2.2–)2.5–3.5 μm wide, somewhat refractive. Conidia catenate, in branched chains, branching in all directions, with up to 6(–9) conidia in the unbranched terminal part of the chains, small terminal conidia subglobose or obovoid, 2–5 × 2–2.5(–3) μm (av. ± SD: 3.5 ± 0.8 × 2.2 ± 0.3), apex rounded, intercalary conidia limoniform, ellipsoid or subsphical, 4–16(–19) × (2–)2.5–3.5(–4) μm (av. ± SD: 8.5 ± 3.6 × 3.0 ± 0.5), 0(1–)-septate, with 1–4(–6) distal hila, secondary ramosconidia ellipsoid, subcylindrical or cylindrical, (7–) 9–31.5(–40) × (2.5–)3–4(–5) μm (av. ± SD: 20.2 ± 8.4 × 3.6 ± 0.5), 0–1(–3)-septate, median or often in the upper half, with (1–)2–4(–5) distal hila, pale olivaceous or pale to medium olivaceous brown, smooth, occasionally slightly rough-walled, walls unthickened or almost so, hila conspicuous, subdenticulate or denticulate, 0.5–2(–2.5) μm diam, thickened and darkened-refractive; microcyclic conidiogenesis not occurring.

Culture characteristics: Colonies on PDA reaching 55–79 mm diam after 14 d at 25 °C, olivaceous grey or iron-grey, reverse olivaceous black, floccose or felty, margins regular, glabrous or feathery, aerial mycelium abundantly formed, loose to dense, smoke-grey, growth flat to low convex. Colonies on MEA reaching 58–82 mm diam after 14 d at 25 °C, grey olivaceous or olivaceous grey, reverse iron-grey, floccose or fluffy-felty, margin regular, feathery, aerial mycelium whitish, smoke-grey or pale olivaceous grey, abundant, growth effuse, flat or low convex, radially furrowed, somewhat wrinkled in colony centre. Colonies on OA attaining 60–65 mm diam after 14 d at 25 °C, grey olivaceous or smoke-grey, dull-green at margins, reverse pale greenish-grey or olivaceous grey, floccose or felty, margins regular, glabrous, aerial mycelium covering large parts, smoke-grey, growth effuse. Without prominent exudates, sporulation profuse on all media.

Substrates and distribution: Isolated from indoor environments and plant material; Africa (South Africa), Australasia (New Zealand) Europe (UK), North America (USA).

Additional materials examined: New Zealand, isol. from house dust, DTO 305-H5 = TA10NZ-280B; isol. from imported buds of Prunus avium, J. Rennie, CPC 15457; Auckland, Auckland University campus, isol. from leaves of Oncoba spinosa, Sep. 2004, C.F. Hill 1076-2, CPC 11684. South Africa, isol. from Leptosphaeria sp., P.W. Crous, CPC 13867. UK, Manchester, isol. fromured spores of Puccinia allii, May 1984, G.S. Taylor, CBS 308.84.

Notes: This new species (Fig. 1, clade 34) is formerly known as C. cladosporioides Lineage 2 sensu Bensch et al. (2010). Bensch et al. (2010) hesitated in naming this phylogenetically distinct lineage since it is morphologically almost indistinguishable from C. cladosporioides s. str. Morphologically, C. vicinum is the closest of the three phylogenetically distinct lineages to C. cladosporioides s. str. (Fig. 1, clade 66) but differs in more frequently forming septate conidia (usually aseptate in
C. cladosporioides s. str. var 0–1(−3)-septate in C. vicinum. Cladosporium europeum (formerly C. cladosporioides Lineage 1 sensu Bensch et al. (2010); Fig. 1, clade 35) is the closest phylogenetic relative of C. vicinum (see species notes under C. europeum for sequence similarities) but produces somewhat shorter conidiogenous cells, secondary conidia and ramoconidia. Cladosporium westerdijkiae (formerly C. cladosporioides Lineage 4 sensu Bensch et al. (2010); Fig. 1, clade 43) introduced below differs from C. vicinum in having shorter intercalary conidia and secondary ramoconidia which are usually aseptate.

Cladosporium westerdijkiae Bensch & Samson, sp. nov. MycoBank MB822233. Etyymology: Named for Johanna Westerdijk, the first director of the Centraalbureau voor Schimmelcultures (now renamed as Westerdijk Fungal Biodiversity Institute) and the first female professor in the Netherlands.

Holotype: USA, Washington State, isol. from bing cherry fruits, R.G. Roberts, CBS H-23262. Ex-type culture: CBS 113746.

Diagnosis: Differs from C. cladosporioides in producing slightly shorter and narrower conidia formed in shorter conidioidal chains (only up to four in the terminal unbranched part of the chain vs up to 10 in C. cladosporioides).

Mycelium immersed, sparingly superficial; hyphae unbranched or sparingly branched, 1–5 μm wide, septate, sometimes slightly constricted at septa, subhyaline or pale olivaceous brown, smooth or minutely verruculose or irregularly rough-walled, walls unthickened or slightly so, sometimes forming ropes. **Conidiophores** marco- and micronematous, solitary, arising terminally and laterally from hyphae, erect, straight, flexuous or sometimes once bent at the apex, cylindrical-oblong or filiform, neither nodulose nor geniculate, unbranched, occasionally branched, 23–125(−185) × 3–5 μm, 0–3(−4)-septate, subhyaline or pale to medium olivaceous brown, smooth, sometimes minutely verruculose or irregularly rough-walled towards the base, walls unthickened or almost so, sometimes slightly attenuated towards the apex; **micronematous conidiophores** shorter, narrower and paler, filiform or narrowly cylindrical-oblong, 17–78 × 2–3 μm, subhyaline or pale olivaceous brown. **Conidiogenous cells** integrated, usually terminal, very rarely intercalary, cylindrical, (12–)23–54 μm long, in micronematous conidiophores 16–36 μm, with a single or two apical loci, sometimes up to four loci, conspicuous, denticle-like, sometimes situated on peg-like lateral prolongations, 1–2 μm diam, thickened and darkened-refractive. **Ramoconidia** occasionally formed, 22–52 × 3.5–4.5 μm, aseptate, base 3–3.5 μm wide, unthickened but somewhat refractive. **Conidia** numerous, catenate, with up to 4(−6) conidia in the terminal unbranched part of the conidial chains, small terminal conidia oval, 4–5(−5.5) × 2–2.5 μm (av. ± SD: 4.6 ± 0.6 ± 2.1 ± 0.2), intercalary conidia oval or ellipsoid, 5–8.5(−12) × 2–3 μm (av. ± SD: 6.5 ± 1.7 ± 2.6 ± 0.4), aseptate, with 1–2(−3) distal hila, very pale olivaceous, **secondary ramoconidia** ellipsoid, subcylindrical or cylindrical, (6–)9–27(−35) × 3–4(−5) μm (av. ± SD: 17.4 ± 6.8 ± 3.6 ± 0.5), (0–)1-septate, with up to 3 distal hila, pale olivaceous brown, smooth, walls unthickened, slightly attenuated towards apex and base, hila subdenticulate or denticulate, protuberant, 0.8–2 μm diam, thickened and darkened-refractive; **microcyclic conidiogenesis not occurring.**

Culture characteristics: Colonies on PDA reaching up to 61–75 mm diam after 14 d at 25 °C, grey olivaceous, olivaceous grey or dull-green, reverse greyish blue or iron-grey, powdery or floccose, margin colourless or white, narrow, feathery, aerial mycelium loose, diffuse, whitish, growth flat, without prominent exudates. Colonies on MEA attaining 46–75 mm diam after 14 d at 25 °C, grey olivaceous or olivaceous grey, sometimes greenish glaucous at margins, reverse leaden-grey or iron-grey, velvety, margins narrow, glabrous or feathery, radially furrowed, folded and wrinkled in colony centre, aerial mycelium sparse, diffuse, no prominent exudates formed. Colonies on OA reaching 53–75 mm diam after 14 d at 25 °C, olivaceous grey or grey olivaceous, greenish grey towards margins, reverse leaden-grey or iron-grey, powdery to fealty-floccose, margins very narrow, aerial mycelium mainly on colony centre, growth flat, sometimes numerous small, not very prominent exudates formed giving the colony a glittering appearance. Sporulation profuse on all media.

Substrates and distribution: Isolated from plant material and indoor environments; Asia (South Korea), Europe (Denmark, Germany, Portugal), North America (USA), South America (Argentina).

Additional materials examined: Denmark, isol. from indoor environment, DTO 109-F2 = BA 1911. Germany, isol. from indoor environment, DTO 084-F2. Portugal, isol. from indoor environment, DTO 152-A9, DTO 152-H9. South Korea, Pochon, National Arboretum, isol. from Fatana vitiosa, 18 Oct. 2002, H.D. Shin, CPC 10150.

Notes: Cladosporium westerdijkiae (Fig. 1, clade 43) was formerly treated as C. cladosporioides Lineage 4 sensu Bensch et al. (2010) as it was phylogenetically distinct but morphologically almost indistinguishable from C. cladosporioides s. str. (Fig. 1, clade 66). As more isolates could be included it is herein named and described as a new species. It is genetically distant to C. cladosporioides (clade 43 vs clade 66 in Fig. 1). Furthermore, the conidia are slightly shorter and narrower and form shorter conidial chains (only up to four in the terminal unbranched part of the chain vs up to 10 in C. cladosporioides). Its closest phylogenetic neighbour proved to be C. delicatulum (Fig. 1). This species differs in forming shorter conidiogenous cells (11–37 μm long), 0(−1)(−2)-septate ramoconidia and slightly shorter, 0(−1)(−2)-septate secondary ramoconidia.

Cladosporium wyomingense Bensch & Samson, sp. nov. MycoBank MB822233. Fig. 46. Etyymology: Named after the place of origin, Wyoming, where the type specimen was collected.

Holotype: USA, Wyoming, isol. from indoor air sample, living room, Oct. 2012, Z. Jurjević, CBS H-23263. Ex-type culture: CBS 143367 = CPC 22310 = EMSL 1806.

Diagnosis: Differs from C. herbarum and C. macrocarpum in having shorter and narrower conidiophores and slightly shorter and narrower conidia.

Mycelium abundantly formed, filiform or narrowly cylindrical, branched, 1–4 μm wide, septate, neither swollen nor constricted, subhyaline or pale olivaceous, almost smooth, asperulate or loosely verruculose, especially those hyphae forming conidiophores with surface ornamentation. **Conidiophores** macro- and micronematous, arising terminally or laterally from plagiotropous or ascending hyphae, macronematous conidiophores narrowly cylindrical-oblong, often distinctly geniculate, sometimes growing proceeding at an angle of 45–90°, subnodulose, sometimes forming lateral shoulders at or towards the apex,
Fig. 46. Cladosporium wyomingense (CBS 143367). A–C. Colonies on PDA, MEA and OA. D–F, H–J. Macronematous conidiophores and conidial chains. G, K–L. Micronematous conidiophores and conidia. M. Ramoconidium and conidia. N–O. Conidial chains. Scale bars = 10 μm.
mostly unbranched, 10−70(−120)×2.5−3.5(−4)μm, 0−3(−4)-septate, pale oliveaceous or pale olivaceous brown, smooth or almost so, asperulate or minutely verruculose, walls slightly thickened; micromerous conidiophores shorter, narrower, 1.5−2μm wide, and paler, subhyaline. Conidiogenous cells integrated, mainly terminal, occasionally also intercalary, 8−21(−43)μm long, geniculate and subnodulose, with loci often situated on lateral shoulders or short lateral prolongations, up to six loci per cell, conspicuous, 1−2μmdiam, thickened and darkened-refractive; in micromerous conidiogenous cells usually without swellings and geniculations, with 1−2loci at the apex, about 1μmdiam. Ramoconidia occasionally formed. Conidia catenate, formed in unbranched or basely branched chains, 3−7(−10)conidia in the unbranched part of the chain, verruculose or echinulate, small terminal conidia subglobule, obovoid or ellipsoid, occasionally globose, 3.5−10(−12.5)×3−5(−5.5)μm (av. ± SD: 6.8 ± 2.9 × 4.0 ± 0.9), often with a broadly rounded apex; intercalary conidia ovoid and ellipsoid, 6.5−11.5 × 4−5μm (av. ± SD: 9.1 ± 1.7 × 4.4 ± 0.4), 0(−1)-septate, slightly attenuated towards apex and base, with 1(−2)distal hila; secondary ramoconidia ellipsoid, fusiform or subcylindrical, (7)−10−22(−28) × (3)−4−6(−7)μm (av. ± SD: 16.4 ± 5.2 × 4.9 ± 0.7), 0−1-septate, slightly attenuated towards apex and base, with 1−2(−3)distal hila, pale oliveaceous or medium olive olivaceous brown, hila conspicuous, (0.5)−0.8−2μmdiam, thickened and darkened; microcyclic conidigenesis not observed.

Culture characteristics: Colonies on PDA reaching up to 60 mm diam after 14 d at 25 °C, olivaceous grey and pale oliveaceous grey, dull-green towards margins, reverse leaden-grey, dull green towards margins, fluffy-felt, margin broad, white, feathery, somewhat undulate, aerial mycelium abundant, loose to dense, low to high, without prominent exudates, sporulating. Colonies on MEA attaining up to 60 mm diam after 14 d at 25 °C; smoke-grey, pale oliveaceous grey, oliveaceous grey at margins where sporulation is profuse, reverse oliveaceous grey, fluffy-felt, margin white, feathery, aerial mycelium abundant, loose to high, colony centre folded and wrinkled, radially furrowed, without prominent exudates. Colonies on OA reaching up to 45 mm diam after 14 d at 25 °C, smoke-grey, pale greenish grey, dull-green towards margins, reverse smoke-grey and oliveaceous grey, fluffy-felt, margin slightly undulate, aerial mycelium low to high, often fel- ted, dense, with numerous very small exudates, sporulation sparse.

Substrates and distribution: Indoor air; North America (USA).

Notes: With its subnodulose conidiophores and ornamented conidia, *C. wyomingense* (Fig. 2, lineage 14) is a typical member of the C. *herbarum* species complex. It is allied to *C. angustisphaerum* (Fig. 2, lineage 13), *C. phlei* (Fig. 2, clad 12), *C. herbarum* (Fig. 2, clad 15) and *C. macrocarpum* (Fig. 2, clad 16) but differs in having shorter and narrower conidiophores and slightly shorter and narrower conidia (Bensch et al. 2012). Morphologically it resembles *C. angustisphaerum* (Fig. 2, lineage 13) but the latter species possesses narrower conidigenous loci and conidiial hila and the conidiophores do not grow in an up to 90° angle (Bensch et al. 2015). Until now it is known only from a single isolate.

Cladosporium xanthochromaticum Sandoval-Denis et al., Persoonia 36: 295. 2016. MycoBank MB817340.

Holotype: USA, Texas, from human bronchoalveolar lavage fluid, Sep. 2010, D.A. Sutton, CBS H-22388. *Ex-type culture:* CBS 140691 = UTHSC DI-13-211 = FMR 13324.

III.: Sandoval-Denis et al. (2016: 296, fig. 11).

Mycelium superficial and immersed, hyphae branched, 1−3μm wide, septate, subhyaline, pale oliveaceous or pale olivaceous brown, smooth or slightly rough-walled, thin-walled, sometimes forming ropes, occasionally swollen at the base of conidiophores. Conidiophores erect, solitary, macro- or micromerous, arising terminally or laterally from hyphae as short peg-like lateral outgrowths or longer, filiform or narrowly cylindrical-oblong, non-nodulose, occasionally once geniculate, unbranched or branched typically immediately before a septum, up to 210 μm long, (1.5−)2−4μm wide, septate, pale brown, pale oliveaceous or olive brown, usually smooth and thin-walled. Conidiogenous cells terminal, sometimes also intercalary, cylindrical, sometimes geniculate, 12−37×3−4μm, bearing up to three conidiogenous loci of 1−1.5μmdiam, darkened and refractive. *Ramoconidia* subcylindrical to cylindrical, 17−42(−50)×2−3.5(−4)μm, 0−1-septate, smooth or finely roughened, base about 2−2.5−3.5μm wide. Conidia forming branched chains, with 2−6(−7) conidia in the terminal unbranched part, small terminal conidia obvoid, limoniform or short ellipsoid (2.5−)3−5(−3)×(1.5−)2−2.5(−3)μm (av. ± SD: 4.1 ± 1.2 × 2.1 ± 0.4), aseptate; intercalary conidia ovoid, limoniform or ellipsoid, (4.5−)5−14(−18) × 2−3.5(−4)μm (av. ± SD: 8.2 ± 3.3 × 2.6 ± 0.5), 0(−1)-septate, with 1−4 distal hila; secondary ramoconidia ellipsoid to cylindrical, (7−)10−30(−38) × (2−)2.5−4μm (av. ± SD: 20.5 ± 7.3 × 2.9 ± 0.5), 0−1(−3)-septate, sometimes slightly constricted at the median septum, pale olivaceous brown, smooth and thin-walled, with protuberant, somewhat darkened, 0.5−1.5μmdiam conidial hila; microcyclic conidigenesis occasionally occurring.

Culture characteristics: Colonies on PDA attaining 60−75 mm diam after 14 d at 25 °C, grey oliveaceous or olivaceous, reverse grey oliveaceous, oliveaceous grey or oliveaceous, oliveaceous buff towards margins, sometimes with a light yellow, grey-yellow or citrine-green diffusible pigment released into the agar, velvety, floccose or felly, margin regular, white to yellow, flat or folded at centre, with abundant submerged mycelium. Colonies on MEA reaching 62−70 mm diam after 14 d at 25 °C, olivaceous, reverse iron-grey, velvety or floccose, margins white, narrow, radially furrowed, sometimes a few small but prominent exudates formed. Colonies on OA attaining 40−65 mm diam after 14 d at 25 °C, olivaceous or grey oliveaceous, whitish and smoke grey due to aerial mycelium, reverse oliveaceous grey, leaden-grey or leaden-black, floccose or fluffy-felt, radiate, margin regular, white, narrow, growth flat, and with abundant submerged mycelium; sometimes releasing an amber-coloured pigment into the agar. Sporulation profuse on all media. Cardinal temperature for growth – Optimum 20 °C, maximum 30 °C, minimum 5 °C.

Substrate and distribution: Isolated from plant material, food, indoor environments and human bronchoalveolar lavage fluid; Africa (South Africa), Asia (China, India, Polynesia, Thailand), Australasia (Australia), North America (Bermuda, USA).

Additional materials examined: Sine loco, sine data, isol. by C.H. Hassall, No. 4-1940, iden. by G.A. de Vries as *C. cladosporioides*, CBS 167.54 = ATCC 11276 = IMI 049624. *Australia*, isol. from margarine, N. Charley, CPC 11046; isol. from *Erythrophleum chlorostachys* (Fabaceae), 9 Jan. 2007, B.A.
Summerrell, CBS 126364 = CPC 14532. Bermuda, Samernet, isol. from indoor air sample, Nov. 2012, Z. Jurjević, EMSL 1824 = CPC 22321. China, isol. from indoor air sample, DTO 317-12, 323-E2 – 323-E7. India, isol. from Eucalyptus sp. (Myrtaceae), 3 Jan. 2004, coll. W. Gams, isol. P.W. Crous, CPC 11133; isol. from Musa sp. (Musaceae), 25 Oct. 2004, M. Arzaniou, CPC 11609. Polynesia, reserve Pun Kuki in forest, isol. from banana ‘Eka ulu’, 2006, coll. I. Budenhagen, isol. P.W. Crous, CPC 12792, 12793. South Africa, Allkmar, Laveeld Coop. isol. from wheat, 1988, CPC 14008 = MRC 10135. Durban, botanical garden Durban near Reunion, -29.85, 31.0167, isol. from Sterlitizia sp. (Sterlitizae), 2005, coll. W. Gams, isol. P.W. Crous, CPC 11806; Free State, Danielrus, isol. from oats, 1983, CPC 14004 = MRC 03367. Transkei, Mazeppa Bay, isol. from Sterlitizia sp., growing on fruiting structures, 1 June 2008, P.W. Crous, CPC 14911. Thailand, isol. from Aracacia mangium (Fabaceae), 2005, coll. W. Himaman, isol. P.W. Crous, CPC 11526, 11856; Surat Thani, isol from indoor air sample, Nov. 2012, M. Arzanlou, CPC 11609. China, isol. from banana ‘Eka ulu’, Musa sp. (Musaeeae), Nov. 2012, M. Arzanlou, CPC 323-E7.

Notes: Sandoval-Denis et al. (2016) splitted C. perangustum, a phylogenetically diverse but morphologically quite uniform species, into three species, C. perangustum s. str. (Fig. 1, clade 4), C. angulosum (Fig. 1, clade 2) and C. xanthochromaticum (Fig. 1, clade 3). Forming a basal lineage in the C. cladosporioides species complex they are characterised by narrow conidia and slightly roughened conidiophores and conidia. The conidiocinid in C. xanthochromaticum proved to be not significantly shorter than in C. perangustum (Sandoval-Denis et al. 2016) but often slightly wider, but the conidiophores are usually smooth compared to the asperulate or verruculose ones in C. perangustum. Furthermore, the secondary ramosconidin are also slightly wider [(2–)2.5–4 μm vs 2–3(–3.5) μm in C. perangustum]. Cladosporium angulosum differs from C. xanthochromaticum in having shorter conidia and in growing at 35 °C (Sandoval-Denis et al. 2016). All three species proved to occur in indoor environments.

KEY TO THE MOST FREQUENTLY OCCURRING CLADOSPORIUM SPECIES IN INDOOR ENVIRONMENTS

1 Conidial surface ornamentation usually smooth, occasionally finely roughened; faster growth rates (up to 75 mm diam on MEA after 14 d)……………………………………….2

1 Conidial surface ornamentation usually minutely verruculose to verrucose; slower growth rates (up to 45 mm diam on MEA after 14 d)……………………………………….3

2 Conidiophores longer, up to 310(–460) μm long, often with a head-like swollen apex, sometimes with few nodules on a lower level……………………………………….C. tenuissimum

2 Conidiophores shorter, up to 155 μm long, usually neither nodulose nor geniculate…………C. pseudocladosporioides

3 Conidiophores nodulose, usually with small terminal head-like swellings, sometimes with additional intercalary swellings, secondary ramosconidin 3–5(–7) μm wide……………..………………….C. allicinum

3 Conidiophores non-nodulose, secondary ramosconidin narrower, 2–4(–5) μm wide……………………………………….4

4 Conidia minutely verruculose, small terminal conidia sub-globose or obovoid, conidial septa not darkened……………………………………….C. ramotenellum

4 Small terminal and intercalary conidia usually globose, minutely verruculose to distinctly verrucose, but secondary ramosconidin almost smooth, septa usually darkened…………5

5 Conidiophores in vitro 2–3.5(–5.5) μm wide, usually unbranched, 0–3-septate; small terminal conidia 2–4(–6) μm long; ramosconidin up to 37(–46) μm long, usually 0–3-septate……………………………..C. halotolerans

5 Conidiophores somewhat wider, 2.5–4.5(–6) μm, often branched, pluriseptate, with often dense septation; small terminal conidia slightly longer, (2–)3–5(–7); ramosconidin up to 50(–67) μm long, with up to five septa………………………………C. sphaerospermum

DISCUSSION

The genus Cladosporium has been extensively reviewed in recent years in efforts to clarify the phylogeny and taxonomic structure of its species and allied fungi, and has resulted in a modern redefinition of the genus (Crous et al. 2007a, b, Schubert et al. 2007b, Zalar et al. 2007, Bensch et al. 2010, 2012, 2015). However, until recently, no attempt had been made to study the impact of these new approaches in the diversity of Cladosporium species occurring in indoor environments. This study presents a molecular phylogenetic study of species in this genus known from culture, with the intention to identify the common indoor species. Since fungi present in indoor environments can produce toxins or carry allergens which cause health hazards, it is important to know which fungal species are present indoors. Cladosporium species are found on plant material, in soil and air and are isolated from food and building material. Several species are known from clinical samples (Sandoval-Denis et al. 2016).

Of the 46 species found indoors 14 species are found in relation with human-derived samples. Sixteen species are described as new of which six species belonged to the C. cladosporioides species complex, four to the C. herbarum species complex and six to the C. sphaerospermum species complexes, respectively. Cladosporium halotolerans proved to be the most common species in indoor environments in this study (144 isolates), followed by C. sphaerospermum (46 isolates) and C. pseudocladosporioides (46 isolates) as well as C. allicinum (36 isolates).

Based on the studies of Fradkin et al. (1987) and Horner et al. (2004) one would expect to find C. cladosporioides as a dominant indoor fungus. This fungus is dominant in outdoor air and as the composition of indoor species reflects the composition of outdoor species one would expect to find C. cladosporioides as dominant indoors. However, a pilot study of indoor samples suggest (Segers et al. 2015) that members of the C. sphaerospermum species complex are also important and in the selection used in this study predominant in indoor environments. This was the case in indoor air samples, but even more so when samples were taken from indoor surfaces. As these fungi could grow at a lower water activity this fungus is dominant in outdoor air and as the complexity are also important and in the selection used in this study predominates in indoor fungus. This fungus is dominant in outdoor air and as the recent years in efforts to clarify the phylogeny and taxonomic structure of its species and allied fungi, and has resulted in a modern redefinition of the genus (Crous et al. 2007a, b, Schubert et al. 2007b, Zalar et al. 2007, Bensch et al. 2010, 2012, 2015). However, until recently, no attempt had been made to study the impact of these new approaches in the diversity of Cladosporium species occurring in indoor environments. This study presents a molecular phylogenetic study of species in this genus known from culture, with the intention to identify the common indoor species. Since fungi present in indoor environments can produce toxins or carry allergens which cause health hazards, it is important to know which fungal species are present indoors. Cladosporium species are found on plant material, in soil and air and are isolated from food and building material. Several species are known from clinical samples (Sandoval-Denis et al. 2016).

Of the 46 species found indoors 14 species are found in relation with human-derived samples. Sixteen species are described as new of which six species belonged to the C. cladosporioides species complex, four to the C. herbarum species complex and six to the C. sphaerospermum species complexes, respectively. Cladosporium halotolerans proved to be the most common species in indoor environments in this study (144 isolates), followed by C. sphaerospermum (46 isolates) and C. pseudocladosporioides (46 isolates) as well as C. allicinum (36 isolates).

Based on the studies of Fradkin et al. (1987) and Horner et al. (2004) one would expect to find C. cladosporioides as a dominant indoor fungus. This fungus is dominant in outdoor air and as the composition of indoor species reflects the composition of outdoor species one would expect to find C. cladosporioides as dominant indoors. However, a pilot study of indoor samples suggest (Segers et al. 2015) that members of the C. sphaerospermum species complex are also important and in the selection used in this study predominant in indoor environments. This was the case in indoor air samples, but even more so when samples were taken from indoor surfaces. As these fungi could grow at a lower water activity compared to the other Cladosporium species complexes, this habitat might help the fungi to survive on indoor surfaces. Even more important was the ability of C. halotolerans, a member of the C. sphaerospermum species complex, to deal with transient changes in relative humidity during growth (Segers et al. 2016). Colonies of the fungus resumed growth better compared to the indoor fungi Aspergillus niger and Penicillium rubens and hardly
showed cell damage after the changes. This occurred despite the fact that the latter fungi grow on media with a static water availability that was similar or lower compared to C. halotolerans. Under these conditions this fungus exhibits a very condensed growth pattern existing by the formation of rounded, pigmented cells in the central colony, the occurrence of bundles of hyphae and very quick spore formation. Cladosporium halotolerans and P. rubens were able to grow on phosphogypsum without added nutrients (Segers et al. 2017). Thus C. sphaerospermum and the related taxa develop under low nutrient conditions and deal with humidity changes, both so characteristic for indoor situations. As C. herbarum is the most studied species in allergy research (Breitenbach 2008, Poll et al. 2009) the indoor dominance of C. halotolerans and other taxa is interesting. From our studies it is evident that C. herbarum does not belong to the common indoor Cladosporia and therefore, evaluation if allergens produced by C. herbarum are the same as produced by the other Cladosporia is important. If there are differences, we could gain insight how important indoor Cladosporia are in evoking iters of antibodies and allergic reactions compared to outdoor Cladosporia. The ability of C. halotolerans to deal with dynamic water availability is probably related to the ecological niche of this fungus (Segers et al. 2016). Cladosporium species grow on leaves and are therefore called phylloplane fungi (Park 1982, Moody et al. 1999). The available water for fungi growing on leaves is highly dynamic and is influenced by changing temperature, dew formation, sunlight, and rain. It is interesting that the indoor environment is also characterized by changing temperature, dew formation, sunlight, and rain. It is interesting that the indoor environment is also characterized by changing humidity during the day. Park (1982) reports that phylloplane fungi can restore growth after minutes to hours of rehydration after drying for 2–3 wk.

This study and the study of Sandoval-Denis et al. (2016) show that pure morphological identification of Cladosporium species are no longer unequivocally possible without the aid of molecular data. One example of this is the four C. cladosporioides lineages sensu Bensch et al. (2010) which were morphologically indistinguishable from C. cladosporoides s. str. and at that time not formally named by the authors due to the lack of diagnostic morphological characters. In the present study, three of these lineages are introduced as new species, namely C. europeum (“Lineage 1”), C. vicinum (“Lineage 2”) and C. westerdijkiae (“Lineage 4”). The third lineage was published as C. silenes by Crous et al. (2011). Likewise, Sandoval-Denis et al. (2016) introduced two additional species, C. angulosum and C. xanthochromaticum, for the two lineages sister to the clade containing the type strain in the phylogenetically variable species C. perangustum. Although ITS is a suitable locus to identify an isolate as belonging to the genus Cladosporium, and to some extent even a specific species complex, additional loci are required to reach a conclusive species, or even species complex, identification. Therefore, the use of a molecular approach for the correct identification of all these species is highly recommended.

ACKNOWLEDGEMENTS

This research was supported by a grant from the Alfred P. Sloan Foundation Program on the Microbiology of the Built Environment (Grant No. G-2014-14529). The authors thank the technical staff, Mieke Stannik-Willemsen and Patrick Arensman (DNA isolation and sequencing), Ariën van IJperen (cultures), Trix Merkx (deposit of strains) and Marjan Vermaas (photo plates) for their invaluable assistance. We are grateful to A. Amend, T. Atkinson, M. Bidartondo, K. Jacobs, P. Noonim and all others who assisted with collections from indoor environments. Shaun Pennycook is thanked for giving nomenclatural advice.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data related to this article can be found at https://doi.org/10.1016/j.simyco.2018.03.002

REFERENCES

Bensch K, Braun U, Groenewald JZ, et al. (2012). The genus Cladosporium. Studies in Mycology 72: 1–401.
Bensch K, Groenewald JZ, Braun U, et al. (2015). Common but different: The expanding realm of Cladosporium. Mycological Progress 14: 175–207.
Bensch K, Groenewald JZ, Dijkstra HJ, et al. (2010). Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Studies in Mycology 67: 1–94.
Bezerra JDP, Sandoval-Denis M, Paiva LM, et al. (2017). New endophytic Toxicoledosporium species from cacti in Brazil, and description of Neo-cladosporium gen. nov. IMA Fungus 8(1): 77–97.
Braun U, Crous PW, Dugan FM, et al. (2003). Phylogeny and taxonomy of cladosporium-like hypomyctetes, including Davidiella gen. nov., the teleomorph of Cladosporum s.str. Mycological Progress 2(1): 3–18.
Braun U, Crous PW, Nakashima C (2015). Cercosporoid fungi (Mycosphaerellaceae). 3. Species on monocots (Poaceae, true grasses). IMA Fungus 6: 25–97.
Braun U, Crous PW, Schubert K (2008). Taxonomic revision of the genus Cladosporum s. lat. 8. Reintroduction of Graphiopsis (= Dichosporium) with further reassessments of cladosporioid hypomyctetes. Mycotaxon 103: 207–216.
Breitenbach M (2008). The spectrum of fungal allergy. International Archives of Allergy and Immunology 145(1): 58–68.
Buzina W, Braun H, Freedenschuss K, et al. (2003). Fungal biodiversity as found in nasal mucus. Medical Mycology 41: 149–161.
Crous PW, Braun U, Groenewald JZ (2007a). Mycosphaerella is polyphyletic. Studies in Mycology 58: 1–32.
Crous PW, Braun U, Schubert K, et al. (2007b). Delimiting Cladosporium from morphologically similar genera. Studies in Mycology 58: 33–56.
Crous PW, Braun U, Wingfield MJ, et al. (2009). Phylogeny and taxonomy of obscure genera of microfungi. Persoonia 22: 139–161.
Crous PW, Gams W, Stalpers JA, et al. (2004). MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology 50: 19–22.
Crous PW, Groenewald JZ (2011). Why everlastings don’t last. Persoonia 26: 70–84.
Crous PW, Schroers H-J, Groenewald JZ, et al. (2006). Metulocladosporiella gen. nov. for the causal organism of Cladosporium speckle disease of banana. Mycological Research 110: 264–275.
Crous PW, Shivas RG, Quaedvlieg W, et al. (2014). Fungal Plant description sheets: 214–280. Persoonia 32: 184–306.
Crous PW, Tanaka K, Sommerell BA, et al. (2011). Additions to the Mycosphaerellaceae. IMA Fungus 2(1): 49–64.
Crous PW, Wingfield MJ, Burgess TI, et al. (2017). Fungal Plant description sheets: 558–624. Persoonia 38: 240–384.
David JC (1997). A contribution to the systematics of Cladosporium. Revision of the fungi previously referred to Heterosporum. Mycological Papers 172: 1–157.
De Hoog GS, Guarro J, Gené J, et al. (2000). Atlas of clinical fungi; 2nd ed. CBS, Utrecht, The Netherlands and Universitat rovina I virgili, Reus, Spain.
De Vries GA (1962). Contribution to the knowledge of the genus Cladosporium Link ex Fr. CBS, Baarn.
Domisch KH, Gams W, Anderson TH (1980). Compendium of soil fungi. Vols 1 & 2. Academic Press, London, UK.
Dugan FM, Braun U, Groenewald JZ, et al. (2008). Morphological plasticity in Cladosporum sphaerospermum. Persoonia 21: 9–16.
Dugan FM, Schubert K, Braun U (2004). Check-list of Cladosporium names. Schlechtendalia 11: 1–103.
Ellis MB (1971). Dematiaceous hypomyctetes. CMI, Kew, UK.
Ellis MB (1976). More dematiaceous hypomyctetes. CMI, Kew, UK.
El-Morsy EM (2000). Fungi isolated from the endorhizosphere of halophytic plants from the Red Sea Coast of Egypt. Fungal Diversity 7: 43–54.
Flannigan B, (2001). Microorganisms in indoor air. In: Microorganisms in Home and Indoor Work Environments: Diversity, Health Impacts, Investigation and Control (Flannigan B, Samson R, Miller D, eds), 2nd ed. CRC Press, USA: 17–31.
