INTRODUCTION

Pathogenic microorganisms are responsible for a variety of diseases affecting plants. Despite the wide range of defence strategies that plants have developed to trigger immune responses, pathogenic microorganisms still represent a serious threat to agriculture. These defence strategies include pathogen-associated molecular patterns (PAMPs)-triggered immunity (PTI), a process through which PAMPs are recognized by plasma membrane-bound receptors located at the cell surface, inducing primary defence response (Akira et al., 2006). This process can be suppressed by pathogen-delivered effector proteins, which can also cause infections (Houterman et al., 2008; Lisen Liu and Zhaohan Wang contributed equally to this work.)
of V. dahliae is composed of nearly 800 proteins (Klosterman et al., 2011). However, relatively few of these secreted proteins have been functionally characterized, and a better understanding of how V. dahliae facilitates plant immunity could provide insights into ways to improve host plant resistance. In this study, we assessed the variation of the Vd991 strain and compared the published Vd991 genome with our de novo assembly of the V. dahliae 991 genome (unpublished data), finding that they were highly conserved. We also analysed 34 candidate effectors from secreted proteins and identified a potential secreted protein, Vd424Y, that induces cell death in tobacco, Arabidopsis, and pepper leaves. Vd424Y is a member of the glycoside hydrolase family 11 (GH11) and targeted the nucleus of the host cells. Its presence was necessary for V. dahliae to be fully virulent in cotton. Moreover, we observed that whether or not Vd424Y triggered cell death depended on its nuclear localization signal (NLS) and signal peptide (SP), and that its ability to induce cell death was dependent on BAK1 and SOBIR1. Finally, we demonstrated that a Vd424Y-induced immune response in N. benthamiana leaves could depend on its translocation from the plant cell apoplastic space to the nucleus.

2 | RESULTS

2.1 | Identification of a V. dahliae secreted protein that elicits plant cell death

Few proteins secreted by V. dahliae capable of inducing cell death have been reported. We analysed the genomes of V. dahliae strain 991 (Vd991) and 34 effectors with a signal peptide (SP), which were individually cloned into potato virus X (PVX) vector pGR107 (Table S1). We then performed transient expression in N. benthamiana to screen potential candidate V. dahliae effectors capable of inducing cell death. Green fluorescent protein (GFP) and Bcl-2-associated X protein (BAX) were used as negative and positive controls, respectively. Agrobacterium carrying each of the effectors was injected into the leaves of 4-week-old N. benthamiana plants. Seven days after infiltration, we identified a candidate effector EVM0004916 (hereafter designated Vd424Y) that induced intense cell death (Figure 1a). Western blot analysis demonstrated that both GFP and Vd424Y were expressed (Figure 1c), with a significant increase in the electrolyte leakage around the region of Vd424Y expression compared to regions of GFP expression. This is consistent with the cell death phenotype (Figure 1b). Additionally, the Agrobacterium-mediated transient expression of Vd424Y in pepper and Arabidopsis thaliana induced cell death, which did not occur in the GFP control (Figure S1). These findings highlighted the ability of Vd424Y to induce cell death in various plant species.

Vd424Y encodes a 223 amino acid protein with a conserved glycoside hydrolase domain (Figure S2), and has a signal peptide (SP) encoded by the first 60 nucleotides (Figure S2) along with a predicted nuclear localization signal (NLS) (Dingwall & Laskey, 1991) encoded
2.2 | The NLS and SP are required for Vd424Y-induced cell death

Subcellular localization demonstrated that Vd424Y is predominantly located in the plant nuclei (Figures 2c and S4a). This suggests it could be closely related to the presence of a putative NLS (Figure S2). To investigate whether the NLS had a significant effect on the Vd424Y-induced cell death due to its location in the nucleus, we performed NLS mutation analysis and fused a nuclear export signal (NES) to the effector (Vd424Y-nls). Three vectors were individually expressed in N. benthamiana via Agrobacterium tumefaciens-mediated infiltration, and yellow fluorescent protein (YFP) fluorescence was detected in the infiltrated leaves using a confocal microscope at 48 hr postinfiltration (hpi). These vectors included Vd424Y-nls-YFP, in which the NLS residues were mutated to alanines (Figures 2a and S4), Vd424Y-nls-NES-YFP, in which Vd424Y-nls was fused with a NES (Du, Berg, et al., 2015) at the C-terminus (Figure 2a), and Vd424Y-NES-YFP, in which Vd424Y was fused with an NES at the C-terminus (Figure 2a). As shown in Figure 2c, the YFP signal intensity in the nuclei expressing Vd424Y-nls was weaker than the signalling intensity in the nuclei expressing Vd424Y-YFP. Vd424Y-YFP also displayed a significantly stronger YFP signal intensity in the nucleus than both Vd424Y-nls-NES and Vd424Y-NES. These results indicate that the predicted NLS in Vd424Y affects nuclear localization, and that the NES is capable of guiding Vd424Y out of the nucleus. Additionally, we performed a transient expression assay demonstrating that Vd424Y-nls, Vd424Y-nls-NES, and Vd424Y-NES were unable to induce intense cell death (Figure 2b). This suggests that NLS-mediated nuclear localization is required for Vd424Y to induce cell death.

To determine whether or not Vd424Y-induced cell death depends on Vd424Y secretion, we constructed an SP-deleted (amino acids 1–20; Figure S2) mutant (Vd424Y21–223, hereafter designated Vd424N; Figure 2a) and fused the SP of N. benthamiana pathogenesis-related protein (NbPR1) to produce Vd424N-SP$_{\text{N}b\text{PR}1}$ (Figure 2a). Both of these Vd424Y variants were expressed in N. benthamiana. Immunoblot analysis confirmed the presence of Vd424N and Vd424N-SP$_{\text{N}b\text{PR}1}$ (Figure S5). We found that Vd424N did not induce cell death in N. benthamiana, while the expression of Vd424N-SP$_{\text{N}b\text{PR}1}$ did (Figure 2b). This suggests that SP is required for Vd424Y-induced cell death and that Vd424Y must target the extracellular space for cell death to occur. These results demonstrate that NLS and SP are necessary for Vd424Y to induce intense cell death, and that a Vd424Y-induced immune response in N. benthamiana leaves depends on its translocation from the plant’s apoplastic space to the nucleus.

2.3 | Vd424Y triggers plant immunity responses

To determine whether Vd424Y-activated cell death was associated with plant immune response, we examined a hypersensitive response (HR)-specific marker gene (NbHIN1) (Takahashi et al., 2004) in N. benthamiana leaves following Vd424Y infiltration via Agrobacterium. Analysis of expression levels demonstrated that 3 days after infiltration NbHIN1 was significantly activated by Vd424Y but not by Vd424N or Vd424Y-nls (Figure 3). To confirm whether Vd424Y-triggered immunity involved hormone signalling pathways, we used quantitative reverse transcription PCR (RT-qPCR) analysis to detect the SA-dependent immunity marker genes NbPR1a and NbPR2 (Dean et al., 2005), and the jasmonic acid (JA)-dependent immunity gene NbPR4 (Asai & Yoshioka, 2009; Rodriguez et al., 2014). These marker genes were significantly induced in N. benthamiana.
leaves expressing Vd424Y, and their expression levels were higher than in leaves expressing the variants Vd424N and Vd424Y-nls (Figure 3). Furthermore, we demonstrate that Vd424Y (but not its variants Vd424N and Vd424Y-nls) was able to induce the expression of PTI-related marker genes, including *NbCYP71D20* (Heese et al., 2007), *NbPti5*, *NbWRKY7*, and *NbWRKY8* (Ishihama et al., 2011; Nguyen et al., 2010) (Figure 4). This confirms that Vd424Y is a microbial PAMP. These results suggest that Vd424Y can be recognized by *N. benthamiana* and activate plant immunity in a manner dependent on its NLS and SP.

2.4 | *NbBAK1* and *NbSOBIR1* are required for Vd424Y-induced cell death in *N. benthamiana*

BAK1 and SOBIR1 are receptor-associated kinases that participate in various PAMP-triggered immune responses and are activated by cell death-inducing proteins secreted by fungi or oomycetes (Heese et al., 2007; Ma et al., 2015; Nie et al., 2019). Vd424Y properties that induce cell death in the extracellular space are dependent on the SP, so we tested whether BAK1 and SOBIR1 mediate Vd424Y-induced cell death in *N. benthamiana*. We performed virus-induced gene silencing (VIGS) to silence *NbBAK1* and *NbSOBIR1* in *N. benthamiana* leaves, and used RT-qPCR to confirm the silencing of *NbBAK1* and *NbSOBIR1* 21 days after VIGS-mediated gene silencing (Figure 5b). These leaves were then agroinfiltrated with Vd424Y, Vd424Y-nls, and positive control BAX, and control green fluorescent protein (GFP). Representative photographs of *N. benthamiana* leaves were taken after 7 days. (c) Subcellular localizations of Vd424Y-YFP, Vd424Y-nls-YFP, Vd424Y-nls-NES-YFP, and Vd424Y-NES-YFP in *N. benthamiana* on *A. tumefaciens*-mediated transient expression. Fluorescence was detected by confocal microscopy 48 hr postinfiltration. Bars, 40 µm.
indicate that Vd424Y-mediated plant cell death depends on NbBAK1 and NbSOBIR1. We further investigated whether Vd424Y-triggered cell death involved other signalling components by silencing NbNDR1 and NbEDS1 in N. benthamiana leaves (Figure S6). Although immunoblotting analysis confirmed that Vd424Y and its variants were expressed in leaves inoculated with pTRV2:NDR1, pTRV2:EDS1, and pTRV2:GFP, the silencing of either NbNDR1 or NbEDS1 did not affect Vd424Y-induced cell death (Figure S6).
2.5 | Vd424Y enhances *N. benthamiana* resistance to oomycete pathogens

To investigate whether Vd424Y modulates plant resistance to the oomycete pathogen *Phytophthora capsici*, we transiently expressed Vd424Y, Vd424N, and Vd424Y-nls in *N. benthamiana* leaves. *P. capsici* zoospores were inoculated onto the infiltrated area 24 hr after Agrobacterium infiltration (Figure 6a), and the size of the resulting lesions was recorded at 48 hr postinoculation (hpi). As shown in Figure 6b,c, the biomass and lesion size of *Phytophthora* in leaves expressing Vd424Y were both significantly lower than in leaves expressing Vd424N, Vd424Y-nls, and an empty vector control. These results strongly demonstrate that Vd424Y triggers plant defence responses and alters plant immunity, enhancing *N. benthamiana* resistance to oomycete pathogens. We also found that both SP and NLS are essential for enhancing Vd424Y’s resistance in *N. benthamiana*.

2.6 | Vd424Y contributes to *V. dahliae* virulence

To evaluate the expression profile of Vd424Y during the early stages of *V. dahliae* infections in cotton, we inoculated cotton roots with fresh *V. dahliae* spores and collected the infected cotton root samples at different time points. RT-qPCR analysis indicated that
Vd424Y’s expression was strongly upregulated during the early stages of cotton infection by V. dahliae (Figure S7), reaching its peak at 3 hpi. This strong induction indicated that Vd424Y could promote V. dahliae infection.

To determine whether Vd424Y is involved in fungal virulence, we generated V. dahliae mutants by replacing the Vd424Y gene with a hygromycin resistance gene (Figure S8) according to methods previously described (Gao et al., 2010; Gui et al., 2017). There were similarities in the growth rate and colony morphology of Vd424Y knockout mutants (ΔVd424Y) and the wild type Vd991 (Figure 7a,b). However, compared to the wild type, ΔVd424Y mutants caused fewer disease symptoms and had a lower disease index 26 days after pathogen inoculation in cotton plants (Figure 7c,d). We found that complementing ΔVd424Y mutants resulted in disease symptoms and colony morphology similar to the wild type Vd991 (Figure 7a,d), highlighting the important role that Vd424Y plays in V. dahliae virulence during cotton infection.

3 | DISCUSSION

V. dahliae is a soilborne fungal pathogen that destroys the xylem of host cells and causes injury to plants (Fradin & Thomma, 2006; Klosterman et al., 2009). Relatively few secreted effector proteins have been found to play a role in virulence. Therefore, it is necessary to identify virulence-related effectors and determine their potential roles and pathogenic mechanisms. In this study, we analysed transient expression in N. benthamiana leaves to identify the toxic effectors that induced intense cell death. One of the effectors secreted by V. dahliae, Vd424Y, can trigger strong cell death in N. benthamiana, pepper, and Arabidopsis (Figures 1 and S1). This indicates that Vd424Y could act as a PAMP during host plant infection.

After assessing the yeast signal trap assay system, we found that the fusion of the signal peptide of Vd424Y into the invertase gene resulted in the secretion of invertase in yeast (Figure S3). This indicates that Vd424Y was most probably secreted into the extracellular space during infection of the host plant. The transient expression of Vd424Y lacking the signal peptide, Vd424N, did not induce cell death (Figure 2b), suggesting that the extracellular secretion of Vd424Y was needed to induce cell death in N. benthamiana. These effector-mediated cell death effects have been previously reported in numerous pathogens. PsXEG1, a glycoside hydrolase family 12 (GH12) protein, acts as a PAMP in soybean and N. benthamiana, in which SP was required for PsXEG1-induced cell death by targeting the apoplast (Ma et al., 2015). VmE02 exhibited cell-death-inducing activity in N. benthamiana, while an SP-mediated apoplastic location is required to fully induce death of the cell (Nie et al., 2019).

Pathogenic effectors located in the cell nuclei are recognized by their host and have been identified in pathogenic bacteria, fungi, oomycetes, and mutualistic fungi (Kloppholz et al., 2011; Szurek et al., 2001). PSR1 was identified in oomycetes and targeted the RNAi component PINP1 to disturb the defence mechanism in plants (Qiao et al., 2013, 2015). A VdSCP7-induced immune response was dependent on its nuclear localization (Zhang et al., 2017). Similar research found that Vd424Y-induced immunity depends on its nuclear localization, while defence signalling is probably initiated in the host nucleus. Our research demonstrated that certain V. dahliae effectors with SP and NLS are secreted into extracellular space and subsequently enter the plant cell nucleus, altering plant immunity. This study assessed Vd424Y-activated innate immune responses...
in *N. benthamiana*, pepper, and Arabidopsis, including the upregulation of HR-specific marker genes and the activation of SA- and JA-mediated resistance pathways (Figure 3). Therefore, we speculated that Vd424Y is a potential PAMP. Consistent with our hypothesis, Vd424Y dramatically activated the expression of PTI marker genes (Figure 4). Two PRR-RLKs, BAK1 and SOBIR1, were shown to be necessary for Vd424Y-triggered cell death in *N. benthamiana* (Figure 5), further confirming Vd424Y to be a PAMP. This is similar to the case of VdCUT11 and VmE02: VdCUT11-induced plant defence responses in *N. benthamiana* were dependent on both BAK1 and SOBIR1 (Gui et al., 2018) and VmE02 triggered cell death in *N. benthamiana* depending on the presence of BAK1, SOBIR1, HSP90, and SGT1 (Nie et al., 2019). We observed that SP and NLS are essential for Vd424Y-triggered immune responses, because they activate the expression of marker genes involved in SA and JA signalling and PTI, while mutations in the SP and the NLS weaken expression of the above marker genes (Figures 3 and 4). These results demonstrated that immune responses in *N. benthamiana* leaves that are induced by the Vd424Y effector protein depend on its translocation from the plant’s apoplastic space to the nucleus. Phylogenetic analysis demonstrated that Vd424Y is conserved in different *Verticillium* species and that its homologs are present in several fungi species (Figure S9), suggesting that Vd424Y may have a conserved function in triggering plant immunity.

We also performed *V. dahliae* infection assays in cotton plants and found that Vd424Y was highly expressed at the early stages of cotton infection by *V. dahliae* (Figure S7). This indicates that Vd424Y is closely related to the virulence of *V. dahliae* when it has infected cotton. Vd424Y knockout mutants did not affect the growth rate and colony morphology of Vd991 but weakened its virulence. Similar findings were reported in *Fusarium graminearum* (Yang et al., 2021), where the secreted ribonuclease Fg12 was significantly induced at the early stages of *F. graminearum* infection in soybean. Deleting the secreted ribonuclease Fg12 reduced the virulence of *F. graminearum*. In conclusion, our results demonstrate that Vd424Y can efficiently activate plant immunity.

4 EXPERIMENTAL PROCEDURES

4.1 Strains and plant growth conditions

The wildtype *V. dahliae* strain 991 (Vd991) was grown in the dark on potato dextrose agar (PDA) at 25 °C. The *P. capsici* strain 35 (Table S2) was also grown in the dark in 10% VB juice agar at 25 °C. *Escherichia coli* DH5α, which was cultured in a Luria-Bertani (LB) medium at 37 °C, was used for plasmid construction, whereas *A. tumefaciens*...
GV3101 (pSoup), which was grown in LB medium at 28 °C, was used for the agroinfiltration of plants. *N. benthamiana, Capsicum annuum,* and *A. thaliana* were grown in a greenhouse under a 16 hr light/8 hr dark cycle at 22 ± 1 °C. Cotton plants were also grown in a greenhouse under a 16 hr light/8 hr dark cycle at 26 ± 1 °C.

4.2 Plasmids construction

The V. *dahliae* candidate effector EVM0004916 (Vd424) with SP (Vd424Y), was amplified from a Vd991 cDNA library with gene-specific primers (Table S3) using TKS Gflex DNA polymerase (Takara). The fragment was then cloned into the PVX vector pGR107-HA (Yang et al., 2021) using the ClonExpress II One Step Cloning Kit (Vazyme Biotech Co. Ltd). The variants Vd424N (without SP), Vd424Y-nls (with the mutated NLS), and Vd424N-NbPR1-SP (with the SP of NbPR1 fused into Vd424N) were cloned into pGR107. For subcellular localization, the Vd424V, Vd424Y-nls, Vd424Y-nls-NES (Vd424Y-nls fused with the NES), and Vd424Y-NES (Vd424Y fused with the NES) variants were cloned into the Gateway entry vector pQB3 and then into the destination expression vector pEG101 (Earley et al., 2006). For *Phytophthora* infection assays, the QBV3-Vd424Y, QBV3-Vd424N, and QBV3-Vd424Y-nls were ligated into the pEG100 vector. For VIGS assays, NbBAK1, NbSOBIR1, NbEDS1, NbNDR1, GFP, and phytoene desaturase (PDS) were cloned into pTRV2 (Dong et al., 2007).

4.3 Yeast signal sequence trap

A yeast secretion system was performed to validate the function of the predicted SP (Yin et al., 2018). Specifically, Vd424Y’s predicted SP was cloned into pSUC2T7M13ORI (pSUC2) using specific primers (Table S3) using TKS Gflex DNA polymerase (Takara). The fragment was then cloned into the pEG101 vector. For VIGS assays, NbBAK1, NbSOBIR1, NbEDS1, NbNDR1, GFP, and phytoene desaturase (PDS) were cloned into pTRV2 (Dong et al., 2007).

4.4 VIGS in *N. benthamiana*

In TRV-mediated gene silencing assays, the plasmid constructs pTRV1, pTRV2-NbBAK1, pTRV2-NbSOBIR1, pTRV2-NbEDS1, pTRV2-NbNDR1, pTRV2-GFP, and pTRV2-PDS were introduced into *A. tumefaciens* GV3101. The two primary leaves of four-leaf-stage *N. benthamiana* seedlings were injected with a mixture (1:1 ratio) of *A. tumefaciens* culture (OD₆₀₀ = 1.8) containing pTRV1 and pTRV2-genes. The pTRV2-PDS was used to evaluate VIGS efficiency, while the pTRV2-GFP served as control. The RNA extracted from leaves was used to validate the efficiency of gene silencing by RT-qPCR.

4.5 Infection assays

To infect cotton plants with *V. dahliae*, 4-week-old Jimian 11 plants were inoculated with 10 ml conidial suspensions following previously published methods (Gong et al., 2017). The disease index (DI) was calculated according to previously described protocols (Gong et al., 2017). The infected plants were classified into five grades (grade 0, 1, 2, 3, and 4) according to the symptoms on the cotyledons and new leaves (Wang, Chen, et al., 2004; Zhang et al., 2012).

To infect *N. benthamiana* with *P. capsici*, 4-week-old *N. benthamiana* plants expressing the empty vector pEG100 (used as control), Vd424Y, Vd424N, and Vd424Y-nls were inoculated with *P. capsici* strain 35 using a previously published protocol (Zhang et al., 2019). Disease development was evaluated by staining lesions with trypan blue (Xiong et al., 2014) and assessing the biomass of *P. capsici* (Zhang et al., 2019). This procedure was repeated twice for validation and provided similar results.

4.6 RT-qPCR analysis

Total RNA was isolated using Tiangen RNAprep Pure Plant Plus Kit (DP441), quantified and used as a template for reverse transcription with the PrimeScript RT reagent Kit (Takara). The RT-qPCR assays were performed using the 2× Wiz Universal SYBR Green qPCR Master Mix (BCS, No. SPE00005). The NbActin gene was used as an internal control. The sequences of each of the primers used in the different RT-qPCR assays are listed in Table S2.

4.7 Subcellular localization assays

Recombinant plasmids were transformed into *A. tumefaciens* GV3101. The resulting strains were then expressed in 4-week-old *N. benthamiana* leaves using a previously described protocol (Qiao et al., 2015). Forty-eight hours after *Agrobacterium*-infiltration, yellow fluorescence from YFP was detected using a LSM780 confocal microscope.

4.8 Protein extraction and western blotting

For transient expression analysis, the protein was extracted from the leaves of 4-week-old *N. benthamiana* plants after *Agrobacterium*-infiltration. The infiltrated leaves were subsequently collected after 48 hr, ground in liquid nitrogen, and mixed with an equal volume of cold protein isolation buffer (1 mM EDTA pH 8.0, 20 mM Tris-HCl pH 7.5, 5 mM dithiothreitol, 150 mM NaCl, 0.1% sodium dodecyl sulphate [SDS], 10% glycerol, and 1 × protease inhibitor cocktail...
[Sigma-Aldrich]). The mixture was centrifuged at 4 °C for 10 min at 13,000 x g, transferred to a new tube, and boiled in protein sample buffer for 5 min. Proteins were analysed by SDS-polyacrylamide gel electrophoresis (PAGE) and electroblotted onto polyvinylidene fluoride (PVDF) membranes (GE Healthcare).

4.9 | Bioinformatics analysis

SP prediction was implemented using the SignalP-5.0 Server (http://www.cbs.dtu.dk/services/SignalP/). The putative bipartite NLS (Ding et al., 1991) was predicted using the cNLS Mapper (nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi).

ACKNOWLEDGEMENTS

The authors thank Professor Suomeng Dong (Nanjing Agriculture University) for providing the pGR107 vector and Professor Yongli Qiao (Shanghai Normal University) for providing the P. capsici strain 35, as well as the pEG100 and pEG101 vectors. The authors are also grateful to Professor Yule Li (Tsinghua University) for kindly providing the pTRV plasmids, Professor Heng Jian (China Agricultural University) for providing the YTK12 strain and the pSUC2 vector, and Associate Professor Xiaofeng Su (Biotechnology Research Institute of Chinese Academy of Agricultural Sciences) for providing the pCHG vector. This research was financially supported by “Seven Crop Breeding” National Major Project (grant no. 2016YFD0101006), Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences, China Agriculture Research System of MOF and MARA (CARS-15-02).

AUTHOR CONTRIBUTIONS

X.Y.G., L.S.L., F.G.L., and J.Y.L. wrote the paper. All authors commented on the article before submission.

DATA AVAILABILITY STATEMENT

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Xiaoyang Ge https://orcid.org/0000-0003-3428-2942

REFERENCES

Akira, S., Uematsu, S. & Takeuchi, O. (2006) Pathogen recognition and innate immunity. Cell 124 783–801.

Asai, S. & Yoshioka, H. (2009) Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana. Molecular Plant- Microbe Interactions, 22 619–629.

Chisholm, S.T., Coaker, G., Day, B. & Staskawicz, B.J. (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124 803–814.

Dean, J., Goodwin, P. & Hsiang, T. (2005) Induction of glutathione S-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance. Journal of Experimental Botany, 56, 1525–1533.

Dingwall, C. & Laskey, R.A. (1991) Nuclear targeting sequences—a consensus? Trends in Biochemical Science, 16, 478–481.

Dodds, P. & Rathjen, J. (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics, 11, 539–548.

Dong, Y., Burch-Smith, T., Liu, Y., Mamillapalli, P. & Dinesh-Kumar, S. (2007) A ligation-independent cloning tobacco rattle virus vector for high-throughput virus-induced gene silencing identifies roles for NbMADS4-1 and -2 in floral development. Plant Physiology, 145, 1161–1170.

Du, Y., Berg, J., Gover, F. & Bouwmeester, K. (2015) Immune activation mediated by the late blight resistance protein R1 requires nuclear localization of R1 and the effector AVR1. New Phytologist, 207, 735–747.

Du, Y., Mpla, M.H., Birch, P.R.J., Bouwmeester, K. & Gover, F. (2015) Phytophthora infestans RXLR effector AVR1 interacts with exoyx component Sec5 to manipulate plant immunity. Plant Physiology, 169, 1975–1990.

Earley, K.W., Haag, J.R., Pontes, O., Opper, K., Juehne, T., Song, K. et al. (2006) Gateway-compatible vectors for plant functional genomics and proteomics. The Plant Journal, 45, 616–629.

Eulgem, T. & Somssich, I.E. (2007) Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 10, 366–371.

Fradin, E.F. & Thomma, B.P. (2006) Physiology and molecular aspects of Verticillium wilt disease caused by V. dahliae and V. albo-atrum. Molecular Plant Pathology, 7, 71–86.

Gao, F., Zhou, B.-J., Li, G.-Y., Jia, P.-S., Li, H., Zhao, Y.-L. et al. (2010) A glutamic acid-rich protein identified in Vorticillium dahliae from an insertional mutagenesis affects microsclerotial formation and pathogenicity. PLoS One, 5 e15319.

Gong, Q., Yang, Z., Wang, X., Butt, H., Chen, E., He, S. et al. (2017) Salicylic acid-related cotton (Gossypium arboretum) ribosomal protein GarPL18 contributes to resistance to Vorticillium dahliae. BMC Plant Biology, 17, 59.

Gui, Y., Chen, J., Zhang, D., Li, N., Li, T., Zhang, W. et al. (2017) Vorticillium dahliae manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with carbohydrate-binding module 1. Environmental Microbiology, 19, 1914–1932.

Gui, Y., Zhang, W., Zhang, D., Zhou, L., Short, D., Wang, J. et al. (2018) A Vorticillium dahliae extracellular cutinase modulated plant immune responses. Molecular Plant-Microbe Interactions, 2, 260–273.

Heese, A., Hann, D.R., Gimenez-Ibanez, S., Jones, A.M.E., He, K., Li, J. et al. (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plant. Proceedings of the National Academy of Sciences of the United States of America, 104, 12217–12222.

Hou, Y., Zhai, Y.I., Feng, L.I., Karimi, H.Z., Rutter, B.D., Zeng, L. et al. (2019) A Phytophthora effector suppressors trans-kingdom RNAi to promote disease susceptibility. Cell Host & Microbe, 25, e155.

Houterman, P., Cornelissen, B. & Rep, M. (2008) Suppression of plant resistance gene-based immunity by a fungal effector. PLoS Pathogens, 4, e1000061.

Ishihama, N., Yamada, R., Yoshioka, M., Katou, S. & Yoshioka, H. (2011) Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response. The Plant Cell, 23, 1153–1170.

Jing, M., Guo, B., Li, H., Yang, B.O., Wang, H., Kong, G. et al. (2016) A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant binding immunoglobulin proteins. Nature Communications, 7, 11685.
de Jonge, R., Peter van Esse, H., Kombrink, A., Shinya, T., Desaki, Y., Bours, R. et al. (2010) Conserved fungal LysM effector EcP6 prevents chitin-triggered immunity in plants. Science, 329, 953–955.

de Jonge, R., Peter van Esse, H., Maruthachalam, K., Bolton, M.D., Santhanam, P., Saber, M.K. et al. (2012) Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 109, 5110–5115.

King, S.R.F., McLellan, H., Boevink, P.C., Armstrong, M.R., Bukharova, T., Sukarta, O. et al. (2014) Phytophthora infestans RXLR effector PexRD2 interacts with host MAPKKK epsilon to suppress plant immune signaling. The Plant Cell, 26, 1345–1359.

Kloppholz, S., Kuhn, H. & Requena, N. (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Current Biology, 21, 1204–1209.

Klosterman, S.J., Atallah, Z.K., Vallad, G.E. & Subbarao, K.V. (2009) Diversity, pathogenicity, and management of Verticillium species. Annual Review of Phytopathology, 47, 39–62.

Klosterman, S.J., Subbarao, K.V., Kang, S., Veronese, P., Gold, S.E., Thomma, B.P.H.J. et al. (2011) Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathogens, 7, e1002137.

Kong, L., Qiu, X., Kang, J., Wang, Y., Chen, H., Huang, J. et al. (2017) A Phytophthora effector manipulates host histone acetylation and reprograms defense gene expression to promote infection. Current Biology, 27, 981–991.

Liu, T., Song, T., Zhang, X., Yuan, H., Su, L., Li, W. et al. (2014) Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nature Communications, 5, 4686.

Lo Presti, L., Lanver, D., Schweizer, G., Tanaka, S., Liang, L., Tollot, M. et al. (2015) Fungal effectors and plant susceptibility. Annual Review of Plant Biology, 66, 513–545.

Ma, L., Cornelissen, B. & Takken, F. (2013) A nuclear localization for Avr2 from Fusarium oxysporum is required to activate the tomato resistance protein I-2. Frontiers in Plant Science, 4, 94.

Ma, Z., Song, T., Zhu, L., Ye, W., Wang, Y., Shao, Y. et al. (2015) A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. The Plant Cell, 27, 2057–2072.

Nguyen, H.P., Chakravarty, S., Velásquez, A.C., McLane, H.L., Zeng, L., Nakayashiki, H. et al. (2010) Methods to study PAMP-triggered immunity using tomato and Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 23, 991–999.

Nie, J., Yin, Z., Li, Z., Wu, Y. & Huang, L. (2019) A small cysteine-rich protein from two kingdoms of microbes is recognized as a novel pathogen-associated molecular pattern. New Phytologist, 222, 995–1011.

Oh, S., Young, C., Lee, M., Oliva, R., Bozkurt, T., Cano, L. et al. (2009) In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2. The Plant Cell, 21, 2928–2947.

Pantelidis, I., Tjamos, S. & Plammatas, E. (2010) Ethylene perception via ETR1 is required in Arabidopsis infection by Verticillium dahliae. Molecular Plant Pathology, 11, 191–202.

Petre, B. & Kamoun, S. (2014) How do filamentous pathogens deliver effector proteins into plant cells? PLoS Biology, 12, e1001801.

Qiao, Y., Liu, L., Xiong, Q., Flores, C., Wong, J., Shi, J. et al. (2013) Oomycete pathogens encode RNA silencing suppressors. Nature Genetics, 45, 330–333.

Qiao, Y., Shi, J., Zhai, Y., Hou, Y. & Ma, W. (2015) Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection. Proceedings of the National Academy of Sciences of the United States of America, 112, 5850–5855.

Qin, J., Wang, K., Sun, L., Xing, H., Wang, S., Li, L. et al. (2018) The plant-specific transcription factors CBP60g and SAR102 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity. eLife, 7, e34902.

Rodriguez, P., Stam, R., Warbroek, T. & Bos, J.B. (2014) Mp10 and Mp42 from the aphid species Myzus persicae trigger plant defense in Nicotiana benthamiana through different activities. Molecular Plant-Microbe Interactions, 27, 30–39.

Shen, Q.-H., Saijo, Y., Mauch, S., Biskup, C., Bieri, S., Keller, B. et al. (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science, 315, 1098–1103.

Stergiopoulos, I. & de Wit, P.J. (2009) Fungal effector proteins. Annual Review of Phytopathology, 47, 233–263.

Stergiopoulos, I., Kourmpetis, Y.A., Slot, J.C., Bakker, F.T., de Wit, P.J. & Rokas, A. (2012) In silico characterization and molecular evolutionary analysis of a novel superfamily of fungal effector proteins. Molecular Biology and Evolution, 29, 3371–3384.

Szurek, B., Marois, E., Bonas, U. & Van den Ackervelen, G. (2001) Eukaryotic features of the Xanthomonas type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. The Plant Journal, 26, 523–534.

Takahashi, Y., Berberich, T., Yamashita, K., Uehara, Y., Miyazaki, A. & Kusano, T. (2004) Identification of tobacco HIN1 and two closely related genes as spermine-responsive genes and their differential expression during the Tobacco mosaic virus-induced hypersensitive response and during leaf- and flower-senescence. Plant Molecular Biology, 54, 613–622.

Tsuda, K. & Katagiri, F. (2010) Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current Opinion in Plant Biology, 13, 459–465.

Wang, J., Cai, Y., Gou, J., Mao, Y., Xu, Y., Jiang, W. et al. (2004) VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Applied and Environmental Microbiology, 70, 4989–4995.

Wang, Y.Q., Chen, D.J., Wang, D.M., Huang, Q.S., Yao, Z.P., Liu, F.J. et al. (2004) Over-expression of Gastrodia anti-fungal protein enhances Verticillium wilt resistance in coloured cotton. Plant Breeding, 123, 454–459.

Wu, D., van Roepenack-Lahaye, E., Buntru, M., de Lange, O., Schandy, N., Pérez-Quintero, A.L. et al. (2019) A plant pathogen type III effector protein subverts translational regulation to boost host polyamine levels. Cell Host & Microbe, 26, 638–649.

Xiong, Q., Ye, W., Choi, D., Wong, J., Qiao, Y., Tao, K. et al. (2014) Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 27, 1379–1389.

Yang, B., Wang, Q., Jing, M., Guo, B., Wu, J., Wang, H. et al. (2017) Distinct regions of the Phytophthora essential effector Avh238 determine its function in cell death activation and plant immunity suppression. New Phytopathologist, 214, 361–375.

Yang, B., Wang, Y., Tian, M., Dai, K., Zheng, W., Liu, Z. et al. (2021) Fg12 ribonuclease secretion contributes to Fusarium graminearum virulence and induces plant cell death. Journal of Integrative Plant Biology, 63, 365–377.

Yin, W., Wang, Y., Chen, T., Lin, Y. & Luo, C. (2018) Functional evaluation of the signal peptides of secreted proteins. Bio-Protocols, 8, e2839.

Zhang, B., Yang, B., Wang, Y., Tian, M., Li, H. et al. (2015) Fungal effectors and plant susceptibility. PLoS One, 7, e10919.

Zhang, L., Ni, H., Du, X., Wang, S., Ma, X., Nürnberg, T. et al. (2017) The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections. New Phytologist, 215, 368–381.
Zhang, P., Jia, Y., Shi, J., Chen, C., Ye, W., Wang, Y. et al. (2019) The WY domain in the Phytophthora effector PSR1 is required for infection and RNA silencing suppression activity. *New Phytologist*, 223, 839–852.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the Supporting Information section.