Sparse Nerves in Practice
Nello Blaser, Morten Brun

To cite this version:
Nello Blaser, Morten Brun. Sparse Nerves in Practice. 3rd International Cross-Domain Conference for Machine Learning and Knowledge Extraction (CD-MAKE), Aug 2019, Canterbury, United Kingdom. pp.272-284, 10.1007/978-3-030-29726-8_17. hal-02520067

HAL Id: hal-02520067
https://inria.hal.science/hal-02520067
Submitted on 26 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Sparse Nerves in Practice

Nello Blaser1 and Morten Brun1

Department of Mathematics, University of Bergen, Allégaten 41, Bergen, Norway

Abstract. Topological data analysis combines machine learning with methods from algebraic topology. Persistent homology, a method to characterize topological features occurring in data at multiple scales is of particular interest. A major obstacle to the wide-spread use of persistent homology is its computational complexity. In order to be able to calculate persistent homology of large datasets, a number of approximations can be applied in order to reduce its complexity. We propose algorithms for calculation of approximate sparse nerves for classes of Dowker dissimilarities including all finite Dowker dissimilarities and Dowker dissimilarities whose homology is Čech persistent homology.

All other sparsification methods and software packages that we are aware of calculate persistent homology with either an additive or a multiplicative interleaving. In \textit{Dowker homology}, we allow for any non-decreasing interleaving function α.

We analyze the computational complexity of the algorithms and present some benchmarks. For Euclidean data in dimensions larger than three, the sizes of simplicial complexes we create are in general smaller than the ones created by SimBa. Especially when calculating persistent homology in higher homology dimensions, the differences can become substantial.

Keywords: Sparse Nerve, Persistent Homology, Čech Complex, Rips Complex

1 Introduction

Topological Data Analysis combines machine learning with topological methods, most importantly persistent homology \cite{12,10}. The underlying idea is that data has shape and this shape contains information about the data-generating process \cite{3}. Persistent homology is a method to characterize topological features that occur in data at multiple scales. Its theoretical properties, in particular the structure theorem and the stability theorem make persistent homology an attractive machine learning method.

A major obstacle to the wide-spread use of persistent homology is its computational complexity when analyzing large datasets. For example the Čech complex grows exponentially with the number of points in a point cloud. In order to be able to calculate persistent homology, a number of approximations enable us to reduce the computational complexity of persistent homology calculations \cite{3,5,8,6}.
Recently, Blaser and Brun have presented methods to sparsify nerves that arise from general Dowker dissimilarities [1,2]. In this article, we apply these techniques to calculate the persistent homology of point clouds, weighted networks and more general filtered covers. This paper is focused on the algorithm implementation, computational complexity and benchmarking of methods suggested in Blaser and Brun [2].

All algorithms presented in this manuscript are implemented in the python package `dowker_homology`, available on github. With `dowker_homology` it is possible to calculate persistent homology of ambient Čech filtrations, and intrinsic Čech filtrations of point clouds, weighted networks and general finite filtered covers. The `dowker_homology` package does all the preprocessing and sparsification, and relies on `GUDHI` [13] for calculating persistent homology. Users may specify additive interleaving, multiplicative interleaving or arbitrary interleaving functions.

This paper is organized as follows. In Section 2 we give a short introduction on the underlying theory of the methods presented here. Section 3 presents the implemented algorithms in detail. In Section 4 we quickly discuss the size complexity of the sparse nerve and in Section 5 we provide detailed benchmarks comparing the sparse Dowker nerve to other sparsification strategies. Section 6 is a short summary of results.

2 Theory

The theory is described in detail in [2]. In brief, the algorithm consists of two steps, a truncation and a restriction. Given a Dowker dissimilarity \(\Lambda \), the truncation gives a new Dowker dissimilarity \(\Gamma \) that satisfies a desired interleaving guarantee. The restriction constructs a filtered simplicial complex that is homotopy equivalent to, but smaller than the filtered nerve of \(\Gamma \). The paper [2] gives a detailed description of the sufficient conditions for a truncation and restriction to satisfy a given interleaving guarantee. Here we give a new algorithm to choose a truncation and restriction that together result in a small sparse nerve. In Section 5 we compare sparse nerve sizes from the algorithms presented here with the sparse nerve sizes of the algorithms presented in [1] and [2].

3 Algorithms

We present all algorithms given a finite Dowker dissimilarity. Generating a finite Dowker dissimilarity from data is a precomputing step that we do not cover in detail. For the intrinsic Čech complex of \(n \) data points in Euclidean space \(\mathbb{R}^d \), this consists of calculating the distance matrix, with time complexity \(\mathcal{O}(n^2 \cdot d) \) operation.
3.1 Cover matrix

The cover matrix is defined in \[2\], Definition 5.4. Let $A: L \times W \to [0, \infty]$ be a Dowker dissimilarity. Given $l, l' \in L$ let

$$P(l, l') = \{ A(l', w) \mid w \in W \text{ with } A(l, w) < A(l', w) \}$$

and define the cover matrix ρ as

$$\rho(l, l') = \begin{cases} \sup P(l, l') & \text{if } P(l, l') \text{ is non-empty} \\ 0 & \text{if } P(l, l') = \emptyset. \end{cases}$$

More generally, we can define a cover matrix of two Dowker dissimilarities $A_1: L \times W \to [0, \infty]$ and $A_2: L \times W \to [0, \infty]$ as follows.

$$P(l, l') = \{ A_1(l', w) \mid w \in W \text{ with } A_2(l, w) < A_1(l', w) \}$$

and define the cover matrix ρ as before. We define the cover matrix algorithm in this generality, but sometimes we will use it with just one Dowker dissimilarity A, in which case we implicitly use $A_1 = A_2 = A$.

Our algorithms for calculating the truncated Dowker dissimilarity and for calculating a parent function both rely on the cover matrix. The cover matrix is the mechanism for the two algorithms to interoperate. Algorithm 1 explains how the cover matrix can be calculated from two Dowker dissimilarities.

Algorithm 1: Cover matrix

- **Input**: Dowker dissimilarities $A_1(l, w)$ and $A_2(l, w)$ for all $l \in L$ and $w \in W$.
- **Output**: Cover matrix $\rho(l_0, l_1)$ for all $l_0, l_1 \in L$.

Define ρ as an $|L| \times |L|$ matrix of zeros indexed by $L \times L$.

for (l_0, l_1) in $L \times L$ do

for w in W do

if $A_2(l_0, w) < A_2(l_1, w)$ then

Update $\rho(l_0, l_1) = \max\{\rho(l_0, l_1), A_1(l_1, w)\}$.

end

end

end

Return ρ.

The cover matrix algorithm is the bottleneck for calculating the truncated Dowker dissimilarity and the parent function. Its running time $O(|L|^2 \cdot |W|)$ is quadratic in the size of L and linear in the size of W.

3.2 Truncation

Given a Dowker dissimilarity $A: L \times W \to [0, \infty]$, and a translation function $\alpha: [0, \infty] \to [0, \infty]$, every Dowker dissimilarity $\Gamma: L \times W \to [0, \infty]$ satisfying
\(A(l, w) \leq \Gamma(l, w) \leq \alpha(A(l, w)) \), is \(\alpha \)-interleaved with \(\Gamma \). In the case where \(\alpha \) is multiplication by a constant, both extremes \(A(l, w) \) and \(\alpha(A(l, w)) \) will result in restrictions with sparse nerves of the same size. Our goal is to find a truncation that interacts well with the restriction presented in Section 3.4 in order to produce a small sparse nerve.

Algorithm 2 explains in detail, how the truncated Dowker dissimilarity is calculated. The high level view is that we first calculate a farthest point sampling from the cover matrix and the edge list \(E \) of the hierarchical tree of farthest points. Finally, we iteratively reduce \(\Gamma(l, w) \) starting from \(\alpha(A(l, w)) \) by taking the minimum of \(\Gamma(l, w) \) and \(\Gamma(l', w) \) for \((l', l)\) in \(E \).

Algorithm 2: Truncated Dowker dissimilarity

Input: Dowker dissimilarity \(A(l, w) \) for all \(l \in L \) and \(w \in W \), translation function \(\alpha : [0, \infty) \rightarrow [0, \infty] \).

Output: Truncated Dowker dissimilarity \(\Gamma(l, w) \) for all \(l \in L \) and \(w \in W \).

1. Calculate cover matrix \(\rho(l_0, l_1) \) of \(\Lambda \) and \(\alpha \Lambda \) for all \(l_0, l_1 \in L \).
2. Choose initial point \(l_0 \in L \) and set \(L_0 = \{l_0\} \) and \(T(l_0) = \infty \).
3. Initialize cover distance from \(L_0 \) as \(d(L_0, l) = \rho(l, l_0) \) for \(l \in L \setminus \{l_0\} \).
4. Set index \(i = 0 \).
5. While \(|L_0| < |L| \) do
 1. Increment \(i \) by 1.
 2. Add the point \(l_i = \text{argmax}_{l' \in L \setminus L_0} d(L_0, l') \) to \(L_0 \).
 3. Set \(T(l_i) = d(L_0, l_i) \).
 4. Update the cover distance from \(L_0 \) as \(d(L_0, l) = \min\{d(L_0 \setminus \{l_i\}, l), \rho(l, l_i)\} \) for \(l \in L \setminus L_0 \).
6. Initialize the graph \(G = (L, E) \) with \(E = \emptyset \).
7. For \(l \) in \(L_0 \setminus \{l_0\} \) (sorted in order points were added to \(L_0 \)) do
 1. If there exists a \(l' \in L \) with \(T(l) = \rho(l, l') \) then
 1. Find the minimum \(\psi(l) \) such that \(T(l) = \rho(l, \psi(l)) \).
 2. Else
 1. Find the minimum of \(\rho(l, l') \) for \(l' < l \) in the order and the argument \(\psi(l) \) minimizing it.
 3. Add \((l, \psi(l))\) to the edge list \(E \).
8. Topologically sort the nodes \(l \in L \) from highest to lowest \(T(l) \).
9. Initialize \(\Gamma(l, w) = \alpha(A(l, w)) \) for \(l \in L \) and \(w \in W \).
10. For \(l \) in \(L \setminus \{l_0\} \) (topologically sorted) do
 1. For \(l' \) such that \((l', l) \in E \) do
 1. Update \(\Gamma(l, -) = \min\{\Gamma(l, -), \Gamma(l', -)\} \).
 2. Update \(\Gamma(l, -) = \max\{\Gamma(l, -), A(l, -)\} \).
11. Return \(\Gamma \).
The truncation algorithm has a worst-case time-complexity $O(|L|^2 \cdot |W|)$. As mentioned earlier, calculating the cover matrix is the bottleneck. The time complexity of the while loop is $O(|L|^2)$, sorting is $O(|L| \cdot \log |L|)$, the first for loop is $O(|L|^2)$, the topological sort of a tree is $O(|L|)$, and the last for loop is $O(|L| \cdot |W|)$.

3.3 Parent function

The parent function $\varphi: L \rightarrow L$ can in principle be any function such that the graph G consisting of all edges $(l, \varphi(l))$ with $l \neq \varphi(l)$, is a tree.

Here we present the algorithm to create one particular parent function that works well in practice and combined with the truncation presented in Section 3.2 results in small sparse nerves.

Algorithm 3 is a greedy algorithm. Ideally, we would like to set the parent point of any point $l \in L$ as the point $l' \in L$ that minimizes $\rho(l, l'')$ for $l'' \in L$ with $\rho(l, l'') > 0$. However, this may not result in a proper parent function. Therefore we start with this as a draft parent function and then update it so that it becomes a proper parent function.

Algorithm 3: Parent points

- **Input**: Dowker dissimilarity $\Lambda(l, w)$ for all $l \in L$ and $w \in W$.
- **Output**: Parent points $\varphi(l)$ for all $l \in L$.

Calculate cover matrix $\rho(l_0, l_1)$ for all $l_0, l_1 \in L$.

for l in L do
 Find the minimum $m(l)$ of $\rho(l, l')$ for all $l' \neq l$ and the argument $\varphi^*(l)$ which minimizes it.

end

Sort $l \in L$ by non-increasing $m(l)$.

Let $l_0 \in L$ be the first point in L.

Initialize $\varphi(l) = l_0$ for all $l \in L$.

for l in $L \setminus \{l_0\}$ do
 if $\varphi^*(l)$ comes before l then
 Set $\varphi(l) = \varphi^*(l)$.
 end
 else
 Set $\varphi(l) = \text{argmin} \rho(l, l')$ for l' that come before l with $\rho(l, l') > 0$.
 end
end

Return φ.

The time complexity of calculating the cover matrix is $O(|L|^2 \cdot |W|)$. Every subsequent step can be done in at most $O(|L|^2)$ time.
3.4 Restriction

Given a set of parent points $\varphi(l)$ for $l \in L$ and the cover matrix $\rho: L \times L \to [0, \infty]$, Algorithm 4 calculates the minimal restriction function $R: L \to [0, \infty]$ given in [2] Definition 5.4, Proposition 5.5.

Algorithm 4: Restriction times

Input	Parent points $\varphi(l)$ for all $l \in L$, cover matrix $\rho(l_0, l_1)$ for all $l_0, l_1 \in L$.
Output	Restriction times $R(l)$ for all $l \in L$.

Initialize $R'(l) = \infty$ for all $l \in L$.

for l in L do
 if $\varphi(l)$ is not l then
 Set $R'(l) = \rho(l, \varphi(l))$.
 end
end

for l in L do
 Set $R(l) = R'(l)$.
 Set $l' = l$.
 while $\varphi(l')$ is not l' do
 Set $l' = \varphi(l')$.
 Set $R(l') = \max\{R(l'), R'(l')\}$.
 end
end

Return R.

The restriction algorithm has a worst-case quadratic time-complexity $O(|L|^2)$. The first loop is linear in the size of L, while the second loop depends on the depth $td(G)$ of the parent tree G. For a given parent tree depth, the complexity is $O(|L| \cdot td(G))$.

3.5 Sparse Nerve

In order to calculate persistent homology up to homological dimension d, we calculate the $(d + 1)$-skeleton N of the sparse filtered nerve of Γ. Given the truncated Dowker dissimilarity Γ, the parent tree φ and the restriction times R, Algorithm 5 calculates the $(d + 1)$-skeleton N. Note that the filtration values can be calculated either from Γ or directly from A.

The time complexity of the sparse nerve algorithm is $O(|L|^2 \cdot |W| + |N| \log(|N|))$. The loop to find slope points had time complexity $O(|L|^2)$ The loop for finding maximal faces has a time complexity of $O(|L|^2 \cdot |W|)$. The remaining operations have time complexity $O(|N| \log(|N|))$. Calculating persistent homology using the standard algorithm is cubic in the number of simplices.

So far we have considered the case of a Dowker dissimilarity $A: L \times W \to [0, \infty]$ with finite L and W. This includes for example the intrinsic Čech complex.
Algorithm 5: Sparse Nerve

Input: Dowker dissimilarities $\Lambda(l,w)$ and $\Gamma(l,w)$ for all $l \in L$ and $w \in W$, restriction times $R(l)$ for all $l \in L$, parent points $\varphi(l)$ for all $l \in L$, dimension d

Output: The $d+1$-skeleton N of the sparse nerve and filtration values $v(\sigma)$ for $\sigma \in N$.

Initialize slope points $S = L$.

for l in L do

Find the set L' of all points $l' \in L$ with $\varphi(l') = l$.

Set $r(L')$ to the maximum of $R(l')$ for $l' \in L'$.

if $R(l) < \infty$ and $r(L') < R(l)$ then

Remove l from S.

end

end

Initialize maximal faces F.

for l in L do

for w in W do

if $\Gamma(l,w) \leq R(l)$ then

Find the face f consisting of all $l' \in L$ with $R(l') \leq R(l)$, $\Gamma(l',w) \leq R(l')$, $\Gamma(l',w) < \infty$, and if $l' \in S$, then $\Gamma(l',w) < R(l')$. Add f to F.

end

end

end

Calculate the $d+1$-skeleton N of the sparse nerve consisting of all subsets σ of F of cardinality at most $d+2$.

for σ in N do

Calculate the filtration value $v(\sigma)$ of σ as $v(\sigma) = \min_{w \in W} \max_{l \in \sigma} \Lambda(l,w)$.

end

Sort N by $v(\sigma)$ for $\sigma \in N$.

Return N and v.

of any finite point cloud X in a metric space (M,d), where $L = W = X$ and $A = d$.

3.6 Ambient Čech complex

Let X be a finite subset of Euclidean space \mathbb{R}^n and consider its ambient Čech complex. For $L = X$ and $W = \mathbb{R}^n$, the Dowker nerve of $A = d|_{L \times X}$ is the ambient Čech complex of X. Since W is not finite we have to modify our approach slightly to in order to construct a sparse approximation of the Dowker nerve of A.

We first calculate the restriction function $R'(l)$ for $l \in L$ of the intrinsic Čech complex $A' = A|_{L \times L}$. Then we note that $R(l) = 2R'(l)$ is a restriction function for A [Definition 5.3]. We can use Algorithm 5 to calculate the simplicial complex N using the restriction times R and Dowker dissimilarity A'. However,
since W is infinite, we can not directly compute the minimum used to calculate the filtration values $v(\sigma)$ for $\sigma \in N$. We circumvent this problem by considering a filtered simplicial complex K with the same underlying simplicial complex as N, but with filtration values inherited from the Dowker nerve $N\Lambda$. This means that the filtration values are computed with the miniball algorithm. Thus, we construct a filtered simplicial complex K, such that, for all $t \in [0, \infty]$ we have $N_t \subseteq K_t \subseteq N\Lambda_t$.

Since N is α-interleaved with $N\Lambda$, it follows by [2, Lemma 2.14] that also K is α-interleaved with $N\Lambda$.

3.7 Interleaving Lines

Our approximations to Čech- and Dowker nerves are interleaved with the original Čech- and Dowker nerves. As a consequence their persistence diagrams are interleaved with the persistence diagrams of the original filtered complexes. In order to visualize where the points may lie in the original persistence diagrams, we can draw the matching boxes from [2, Theorem 3.9]. However, this result in messy graphics with lots of overlapping boxes. Instead of drawing these matching boxes we draw a single interleaving line. Points strictly above the line in the persistence diagram of the approximation match points strictly above the diagonal in the persistence diagram of the original filtered simplicial complex. More precisely, the matching boxes of points above the interleaving line do not cross the diagonal, while the matching boxes of all points below the diagonal have a non-empty intersection with the diagonal. Figure 1 illustrates such an interleaving line for 100 data points on a Clifford torus with interleaving $\alpha(x) = \frac{x^3}{2} + x + 0.3$.

4 Complexity Analysis

We have shown time complexity analysis of each step. Combined, the time it takes to calculate the sparse filtered nerve is $O(|L|^2 \cdot |W| + |N| \log(|N|))$. Here we present some results on the complexity of the nerve size depending on the maximal homology dimension d and the sizes of the domain spaces L and W of the Dowker dissimilarity $\Lambda : L \times W \to [0, \infty]$. Although we can not show that the sparse filtered nerve is small in the general case, we will show in the benchmarks below that this is the case for many real-world datasets.

We now limit our analysis to Dowker dissimilarities that come from doubling metrics and multiplicative interleavings with an interleaving constant $c > 1$. In that case, Blaser and Brun [2] have showed that the size of the sparse nerve is bounded by the size of the simplicial complex by Cavanna et al. [5], whose size is linear in the number $|L|$ of points.

5 Benchmarks

We show benchmarks for two different types of datasets, namely data from metric spaces and data from networks.
Fig. 1. Interleaving line. We generated 100 points on a Clifford torus that and calculated sparse persistent homology with an interleaving of $\alpha(x) = \frac{x^3}{2} + x + 0.3$. This demonstrates the interleaving line for a general interleaving. Points above the line are guaranteed to have matching points in the persistence diagram with interleaving $\alpha(x) = x$.

Metric data We have applied the presented algorithm to the datasets from Otter et al. [11]. First we split the data into two groups, data in \mathbb{R}^d with dimension d at most 10 and data of dimension d larger than 10. The low-dimensional datasets we studied consisted of six different Vicsek datasets (Vic1-Vic6), dragon datasets with 1000 (drag1) and 2000 (drag2) points and random normal data in 4 (rand4) and 8 (rand8) dimensions. For all low-dimensional datasets, we compared the sparsification method from Cavanna et al. [5] termed 'Sheehy', the method from [1] termed 'Parent' and the algorithm presented in this paper termed 'Dowker' for the intrinsic Čech complex. All methods were tested with a multiplicative interleaving of 3.0. In addition to the methods described above, we have applied SimBa [8] with $c = 1.1$ to all datasets. Note that SimBa approximates the Rips complex with an interleaving guarantee larger than 3.0. For the 3-dimensional data we additionally compute the alpha-complex without any interleaving [9]. For all algorithms we calculate the size of the simplicial complex used to calculate persistent homology up to dimension 1 (Table [5]).
Table 1. Comparison of sizes of simplicial complexes for homology dimension 1 for low-dimensional datasets in Euclidean space. The smallest simplicial complexes in each dimension are displayed in bold. For all three-dimensional datasets, SimBa results in slightly smaller simplicial complexes. For the two datasets of dimensions larger than three, the Dowker simplicial complex is smallest.

The sparse Dowker nerve is always smaller than the sparse Parent and sparse Sheehy nerves. In comparison to SimBa, it is noticeable that the SimBa results in slightly smaller simplicial complexes if the data dimension is three, but the sparse Dowker Nerve is smaller for most datasets in dimensions larger than 3. For datasets of dimension 3, the alpha complex without any interleaving is already smaller than the Parent or Sheehy interleaving strategies, but Dowker sparsification and SimBa can reduce sizes further.

The high-dimensional datasets we studied consisted of the H3N2 data (H3N2), the HIV-1 data (HIV), the Celegans data (eleg), fractal network data with distances between nodes given uniformly at random (f-ran) or with a linear weight-degree correlations (f-lin), house voting data (hou), human gene data (hum), collaboration network (net), multivariate random normal data in 16 dimensions (ran16) and senate voting data (sen).

For all high-dimensional datasets, we compared the intrinsic Čech complex sparsified by the algorithm presented in this paper ('Dowker') with a multiplicative interleaving of 3.0 to the Rips complex sparsified by SimBa \[c\] with \(c = 1.1\). For the high-dimensional datasets, we do not consider the 'Sheehy' and 'Parent' methods, because they take too long to compute and are theoretically dominated by the 'Dowker' algorithm. For all algorithms we calculate the size of the simplicial complex used to calculate persistent homology up to dimensions 1 and 10 (Table 5).

In comparison to SimBa, it is noticeable that the SimBa, the Dowker Nerve is smaller for most datasets, with a more pronounced difference for persistent homology in 10 dimensions.

Graph data In order to treat data that does not come from a metric, we calculated persistent homology from a Dowker filtration \[\mathcal{D}\]. Table 4 shows the sizes of simplicial complexes to calculate persistent homology in dimensions 1 and 10.
Sparse Nerves in Practice

1-dimensional

Name	Points	Dim	Base Dowker	SimBa
H3N2	2722 1173	3.4 \cdot 10^7	9478	11676
HIV	1088 673	2.1 \cdot 10^8	2972	14834
eleg	297 202	4.1 \cdot 10^8	1747	2688
f-lin	512 257	2.2 \cdot 10^7	1651	10757
fr-ran	512 259	2.2 \cdot 10^7	1571	13419
hou	445 261	1.5 \cdot 10^7	1168	2283
hum	1397 688	4.5 \cdot 10^8	4431	108118
net	379 300	9.1 \cdot 10^6	1164	1207
ran16	50 16	2.1 \cdot 10^4	105	203
sen	103 60	1.8 \cdot 10^5	269	298

10-dimensional

Name	Points	Dim	Base Dowker	SimBa
H3N2	2722 1173	3.4 \cdot 10^{12}	12503	25305
HIV	1088 673	5.5 \cdot 10^{27}	3273	1887483
eleg	297 202	8.2 \cdot 10^{20}	6229	14883
f-lin	512 257	6.1 \cdot 10^{23}	2927	13457079
fr-ran	512 259	6.1 \cdot 10^{23}	2249	\infty
hou	445 261	1.1 \cdot 10^{23}	1233	3753
hum	1397 688	1.1 \cdot 10^{29}	5673	\infty
net	379 300	1.6 \cdot 10^{22}	1617	1425
ran16	50 16	1.7 \cdot 10^{11}	105	293
sen	103 60	1.8 \cdot 10^{15}	279	317

Table 2. Comparison of sizes of simplicial complexes for homology dimensions 1 and 10 for high-dimensional datasets in Euclidean space. The smallest simplicial complexes in each dimension are displayed in bold. Except for one dataset, the Dowker sparsifications result in smaller simplicial complexes than SimBa. Note that we write \infty when the computer ran out of memory.

of several different graphs with 100 nodes. In both cases we calculated persistent homology with a multiplicative interleaving \alpha = 3, and for the 1-dimensional case we also calculated exact persistent homology. For the 1-dimensional case, the base nerves are always of the same size 166750, the restricted simplicial complexes for exact persistent homology range from 199 to 166750, while the simplicial complexes for interleaved persistent homology have sizes between 199 and 721. The simplicial complexes to calculate persistent homology in 10 dimensions do not grow much larger when multiplicative interleaving is 3.

Data properties	1-d case	10-d case			
Name	Nodes Edges	Base Dowker Dowker α = 3.0 α = 1.0	Base Dowker α = 3.0		
Cycle graph	100 100	166750	297 166750	1.2 \cdot 10^{15}	305
Circular ladder graph	150	324 166750	345		
Ladder graph	148	316 46894	333		
Star graph	99	199 199	199		
Wheel graph	198	199 199	199		
Grid graph	180	484 70286	721		
Multipartite graph	4000	199 166750	199		

Table 3. Comparison of sizes of simplicial complexes for homology dimensions 1 and 10 for graphs. For the 1-dimensional case, we show that the Dowker restriction can in some cases reduce the simplicial complex significantly even without any truncation.
6 Conclusions

We have presented a new algorithm for constructing a sparse nerve and have shown in benchmark examples that its size does not grow substantially for increasing data or homology dimension and that it in many cases outperforms SimBa. In addition, the presented algorithm is more flexible than previous sparsification strategies in the sense that it works for arbitrary Dowker dissimilarities and interleavings. We also provide a python package `dowker_homology` that implements the presented sparsification strategy.

Acknowledgements This research was supported by the Research Council of Norway through Grant 248840.

References

1. Blaser, N., Brun, M.: Sparse Dowker Nerves. ArXiv e-prints (Feb 2018), http://arxiv.org/abs/1802.03655
2. Blaser, N., Brun, M.: Sparse Filtered Nerves. ArXiv e-prints (Oct 2018), http://arxiv.org/abs/1810.02149
3. Botnan, M.B., Spreemann, G.: Approximating persistent homology in Euclidean space through collapses. Applicable Algebra in Engineering, Communication and Computing 26(1), 73–101 (2015), https://doi.org/10.1007/s00200-014-0247-y
4. Carlsson, G.: Topology and data. Bull. Amer. Math. Soc. (N.S.) 46(2), 255–308 (2009), https://doi.org/10.1090/S0273-0979-09-01249-X
5. Cavanna, N.J., Jahanseir, M., Sheehy, D.R.: A geometric perspective on sparse filtrations. CoRR abs/1506.03797 (2015)
6. Choudhary, A., Kerber, M., Raghvendra, S.: Improved topological approximations by digitization. CoRR abs/1812.04966 (2018).
7. Chowdhury, S., Mémoli, F.: A functorial Dowker theorem and persistent homology of asymmetric networks. arXiv e-prints arXiv:1608.05432 (Aug 2016)
8. Dey, T.K., Shi, D., Wang, Y.: SimBa: an efficient tool for approximating Rips-filtration persistence via simplicial batch-collapse. In: 24th Annual European Symposium on Algorithms, LIPIcs. Leibniz Int. Proc. Inform., vol. 57, pp. Art. No. 35, 16 (2016), https://doi.org/10.4230/LIPIcs.ESA.2016.35
9. Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the plane. IEEE Transactions on Information Theory 29(4), 551–559 (July 1983), https://doi.org/10.1109/TIT.1983.1056714
10. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: 41st Annual Symposium on Foundations of Computer Science (Reondo Beach, CA, 2000), pp. 454–463. IEEE Comput. Soc. Press, Los Alamitos, CA (2000), https://doi.org/10.1109/SFCS.2000.892133
11. Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap for the computation of persistent homology. EPJ Data Science 6(1), 17 (Aug 2017), https://doi.org/10.1140/epjds/s13688-017-0109-5
12. Robins, V.: Towards computing homology from approximations. Topology Proceedings 24 (01 1999)
13. The GUDHI Project: GUDHI User and Reference Manual. GUDHI Editorial Board (2015), http://gudhi.gforge.inria.fr/doc/latest/