Restoring the Pauli principle in the random phase approximation ground state

D. S. Kosov

College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia

Abstract

Random phase approximation ground state contains electronic configurations where two (and more) identical electrons can occupy the same molecular spin-orbital violating the Pauli exclusion principle. This overcounting of electronic configurations happens due to quasiboson approximation in the treatment of electron-hole pair operators. We describe the method to restore the Pauli principle in the RPA wavefunction. The proposed theory is illustrated by the calculations of molecular dipole moments and electronic kinetic energies. The Hartree-Fock based RPA, which is corrected for the Pauli principle, gives the results of comparable accuracy with Möller-Plesset second order perturbation theory and coupled-cluster singles and doubles method.
1. Introduction

Random phase approximation (RPA) has recently emerged as a very promising method to study correlated ground states in molecules \[1, 2, 3, 4, 5, 6, 7, 8\]. RPA calculations, especially when they are performed based on the density functional theory, give accurate total molecular correlation energies, reaction barriers, electron affinities, ionisation potentials \[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\] and provide a correct description of van der Waals intermolecular interactions \[14, 15, 16\]. The connection of RPA with the coupled-cluster doubles approach has been recently established \[2, 17\], which puts the method into the context of traditional quantum chemistry practices.

In this paper we would like to draw attention to the problem of violation of the Pauli exclusion principle in the RPA ground state and discuss the way of correcting it. This problem has been known in nuclear physics since 1968 \[18\] and since then, has been a subject of intensive studies there \[19, 20, 21\]. In quantum chemistry, despite early pioneering works of Simons \[22\], Linderberg and Ohrn \[23\], the issues associated with the antisymmetry of RPA wavefunction have been largely overlooked. To understand the problem, let us look at the (schematically written) RPA ground state wavefunction \[24, 25\]

$$|\Psi_0\rangle \sim e^{\sum T_{p_1p_2h_1h_2} \, c_{p_1}^\dagger \, c_{h_1}^\dagger \, c_{p_2} \, c_{h_2} |HF\rangle}.$$

(1)

Here and throughout the paper, indices \(h\) and \(p\) refer to Hartree-Fock occupied and virtual molecular orbitals, respectively, and \(c_k^\dagger (c_k)\) creates (annihilates) an electron in the Hartree-Fock molecular orbital \(k\). \(|HF\rangle\) is the Hartree-Fock ground state vector. The spin index is suppressed in the introduction for the simplicity. RPA treats particle-hole pair creation operators \(c_k^\dagger c_h\) as bosons, approximating the commutator (so-called quasiboson approximation \[24, 25\]) as

$$[c_{h_2}^\dagger c_{p_2}^\dagger, c_{p_1}^\dagger c_{h_1}] \approx \delta_{p_1p_2} \delta_{h_1h_2},$$

(2)

and therefore neglecting the internal fermionic structure of these operators. This leads to the over-counting of configurations in the RPA ground state wavefunction. The configurations with \(p_1 = p_2\) and \(h_1 = h_2\) in the exponent \(1\), which otherwise would be forbidden by the Pauli principle, do contribute to the RPA ground state. The violation of the Pauli principle is amplified in the RPA due to the exponential structure of the ground state – expanding the
exponent we see that terms containing two, four, six, eight and more identical electrons are allowed to occupy the same single-particle state. Therefore, the RPA ground state wavefunction (if it is treated in quasiboson approximation) over-correlates the electronic systems by including unphysical configurations and by letting the electrons to come closer in the violation of the Pauli principle.

How can we remove these unphysical states from the RPA ground state wavefunction and restore the Pauli principle? How can we correct the final expression for computed observables for the Pauli principle and at the same time preserve the original RPA equations? These are the questions which interest us in this paper.

2. Theory

2.1. RPA ground state vector with the Pauli principle corrections

We will work with the Hartree-Fock quasiparticle creation and annihilation operators, $a_{k\sigma}^\dagger$ and $a_{k\sigma}$, which are related to the original electron creation and annihilation operators in the Hartree-Fock spin-orbital, $c_{k\sigma}^\dagger$ and $c_{k\sigma}$, via the transformations [26]:

\begin{align}
 a_{k\sigma}^\dagger &= \begin{cases}
 c_{k\sigma}^\dagger, & \text{if } k \text{ is virtual orbital,} \\
 c_{k\sigma}, & \text{if } k \text{ is occupied orbital,}
 \end{cases} \\
 \text{(3)}
\end{align}

and

\begin{align}
 a_{k\sigma} &= \begin{cases}
 c_{k\sigma}, & \text{if } k \text{ is virtual orbital,} \\
 c_{k\sigma}^\dagger, & \text{if } k \text{ is occupied orbital.}
 \end{cases} \\
 \text{(4)}
\end{align}

Here $\sigma = -1/2, 1/2$ are two projections of electron spin. The quasiparticle operators defined above have Hartree-Fock ground state $|HF\rangle$ as a vacuum

$$a_{k\sigma}|HF\rangle = 0 \text{ for all } k, \sigma. \quad \text{(5)}$$

The building blocks for the RPA wavefunction are the particle-hole pair creation operators $C_{ph}^\dagger(JM)$ defined as

$$C_{ph}^\dagger(JM) = \sum_{\sigma\sigma'} \frac{1}{2} \frac{1}{2} \langle JM | a_{\sigma}^\dagger a_{\sigma'}^\dagger. \quad \text{(6)}$$
It creates the particle-hole excited pair with spin J and spin projection M. Over-line over spin indices means angular momentum time-reversal state $C_{ph}(JM) = (-1)^{J+M}C_{ph}(J-M)$ and $a^\dagger_{h\sigma} = (-1)^{1/2+\sigma}a^\dagger_{h-\sigma}$. The Clebsch-Gordan coefficient $\langle \frac{1}{2}\sigma | \frac{1}{2}\sigma' | JM \rangle$ couples electronic spins of occupied and virtual molecular orbitals into singlet $J = 0, M = 0$ or triplet $J = 1, M = -1, 0, 1$ states.

The RPA ground state wavefunction has the following form \cite{24, 25}

$$|\Psi_0\rangle = Ne^S|HF\rangle,$$ \hspace{1cm} (7)

where

$$S = \frac{1}{2} \sum_{JM} \sum_{php'h'} T^J_{php'h'} C^\dagger_{ph}(JM) C^\dagger_{p'h'}(JM).$$ \hspace{1cm} (8)

Here and everywhere in the paper

$$\sum_{JM} = \sum_{J=0}^{1} \sum_{M=-J}^{J}. \hspace{1cm} (9)$$

The correlated RPA ground state $|\Psi_0\rangle$ is a vacuum for the RPA excitation annihilation operators

$$Q_{JM_i}|\Psi_0\rangle = 0, \text{ for all } J, M, \text{ and } i,$$ \hspace{1cm} (10)

where the excitation annihilation operator is obtained from the corresponding creation operator

$$Q^\dagger_{JM_i} = \sum_{ph} X^{Ji}_{ph} C^\dagger_{ph}(JM) - Y^{Ji}_{ph} C_{ph}(JM)$$ \hspace{1cm} (11)

via Hermitian conjugation.

The structure of operator $Q^\dagger_{JM_i}$ and related RPA excitation energy ω_{ji} are determined from the standard system of RPA equations, which we write separately for singlet ($J = 0$) and triplet ($J = 1$) electronic excitations

$$\sum_{p'h'} A^J_{php'h'} X^{Ji}_{p'h'} + B^J_{php'h'} Y^{Ji}_{p'h'} = \omega_{ji} X^{Ji}_{ph},$$ \hspace{1cm} (12)

$$\sum_{p'h'} B^J_{php'h'} X^{Ji}_{p'h'} + A^J_{php'h'} Y^{Ji}_{p'h'} = -\omega_{ji} Y^{Ji}_{ph},$$ \hspace{1cm} (13)
Matrices A and B are given by the following expressions

$$A_{ph,p'h'}^J = (\epsilon_p - \epsilon_h)\delta_{pp'}\delta_{hh'} + [1 + (-1)^J] (ph|p'h') - (hh'|p'p'),$$

(14)

$$B_{ph,p'h'}^J = [1 + (-1)^J] (ph|p'h') - (p'h|ph'),$$

(15)

where ϵ_k is Hartree-Fock energy of k molecular orbital and $(kl|mn)$ is a two-electron integral in the Mulliken notations.

Suppose that we know X_{ji}^{Jp} and Y_{ji}^{Jp} in (11) from the solution of the RPA equations. Our goal in this section is to solve (10) directly and determine coefficient T without the use of the quasiboson approximation (2). We rewrite (10) as

$$Q_{JM_1}e^S|HF\rangle = 0$$

(16)

Using the standard operator identity we get

$$e^S(Q_{JMi} + [Q_{JMi}, S] + \frac{1}{2!}[[Q_{JMi}, S], S] + ...)|HF\rangle = 0.$$

(17)

We neglect higher order terms $O(S^2)$ in this expansion and the equation for operator S becomes

$$(Q_{JMi} + [Q_{JMi}, S])|HF\rangle = 0.$$

(18)

Substituting explicit expression for Q_{JMi} into (18) and rearranging the terms, we get

$$\frac{1}{2} \sum_J \sum_{p_1h_1p_2h_2} T_{p_1h_1p_2h_2}^{Jp} X_{p_3h_3}^{J3} \left[C_{p_3h_3}(J_3M_3), C_{p_1h_1}^{\dagger}(JM)C_{p_2h_2}^{\dagger}(JM) \right] |HF\rangle$$

$$= \sum_{p_3h_3} Y_{p_3h_3}^{J3} C_{p_3h_3}^{\dagger}(J_3M_3)|HF\rangle.$$

(19)

The commutator in the l.h.s. of (19) can be exactly computed and (19) becomes

$$\sum_J \sum_{p_1h_1p_2h_2} T_{p_1h_1p_2h_2}^{Jp} X_{p_3h_3}^{J3} \left\{ \delta_{JJ_3}\delta_{MM_3}\delta_{p_1p_3}\delta_{h_1h_3} - \frac{1}{2} \sum_{\sigma_3,\sigma_3',\sigma_1,\sigma_1'} \frac{1}{2}\sigma_3\frac{1}{2}\sigma_3'\frac{1}{2}\sigma_1\frac{1}{2}\sigma_1' |JM\rangle \Delta(p_3\sigma_3, p_1\sigma_1, h_3\sigma_3', h_1\sigma_1') \right\}$$

$$\times C_{p_2h_2}^{\dagger}(JM)|HF\rangle = \sum_{p_3h_3} Y_{p_3h_3}^{J3} C_{p_3h_3}^{\dagger}(J_3M_3)|HF\rangle.$$

(20)
where
\[
\Delta(p_1 \sigma_1, p_2 \sigma_2, h_1 \sigma'_1, h_2 \sigma'_2) = \delta_{p_1 p_2} \delta_{\sigma_1 \sigma_2} a_{\sigma_2}^\dagger a_{\sigma_1} + \delta_{h_1 h_2} \delta_{\sigma'_1 \sigma'_2} a_{\sigma'_2}^\dagger a_{\sigma'_1}.
\] (21)

To perform this derivation we use exact commutator between particle-hole pair creation and annihilation operators
\[
\left[C_{p_1 h_1} (J_1 M_1), C_{p_2 h_2}^\dagger (J_2 M_2) \right] = \delta_{p_1 p_2} \delta_{h_1 h_2} \delta_{J_1 J_2} \delta_{M_1 M_2}
\] (22)

The commutator (22) deserves special discussion. If we kept only the first term in r.h.s (22), this would correspond to standard RPA quasiboson approximation. The Pauli correction part is roughly proportional to the total number of particle and hole excitations in the RPA state, that means the more RPA ground state deviates from Hartree-Fock Stater determinant, the larger the Pauli corrections contribution to the r.h.s of the commutator (22) become and the more pronounced deviation from the bosonic behaviour of operators \(C(C)\) we see.

Coming back to (20) and taking into account that \(|HF\rangle\) is vacuum for the Hartree-Fock quasiparticle operators, after some straightforward algebra we transform (20) to the following form:
\[
\sum_{p'h'} T_{p'h'} X_{p'h'} - \sum_{p'h'} T_{p'h'} W(J', J) X_{p'h'} = Y_{p'h}'.
\] (23)

Here matrix \(W\) is
\[
W(J', J) = \sum_{M'=-J'}^{J'} \sum_{\sigma_1 \sigma'_1 \sigma_2 \sigma'_2} (-1)^{J+J'+M+M'}
\] (24)
\[
\times \langle \frac{1}{2} \sigma_2 - \frac{1}{2} \sigma'_2 | J M \rangle \langle \frac{1}{2} \sigma_1 - \frac{1}{2} \sigma'_1 | J' M' \rangle \langle \frac{1}{2} \sigma_2 - \frac{1}{2} \sigma'_2 | J' - M' \rangle \langle \frac{1}{2} \sigma_1 - \frac{1}{2} \sigma'_1 | J - M \rangle.
\]

Matrix \(W\) (24) is calculated numerically by summing up the corresponding Clebsch-Gordan coefficients and it is
\[
W(0, 0) = \frac{1}{2}, \quad W(0, 1) = -\frac{1}{2},
\] (25)
\[
W(1, 0) = -\frac{3}{2}, \quad W(1, 1) = -\frac{1}{2}.
\] (26)
The similar to (23) equation was obtained to describe RPA ground state correlations in spherical nuclei by Lenske and Wambach [20].

2.2. Calculation single-particle density matrices

Many molecular observables can be expressed in terms of single-particle density matrix. We define single-particle density matrix operators as

\[\rho_{p'p} = \sum_\sigma a_{p\sigma}^\dagger a_{p'\sigma}, \quad \rho_{h'h} = \sum_\sigma a_{p\sigma}^\dagger a_{p'\sigma}. \]

(27)

We show detailed derivations of the expectation value for operator \(\rho_{p'p} \) in the RPA ground state. The calculations for \(\rho_{h'h} \) are almost identical, we simply write the final expression for its expectation value in the end of the derivations.

We begin with the calculations of two commutators

\[[\rho_{p'p}, C_{p_1h_1}^\dagger (J)M] = \delta_{p'p_1} C_{p_1h_1}^\dagger (J)M, \]

(28)

\[[\rho_{p'p}, S] = \sum_{J} \sum_{h_1h_2} T_{p_1h_1p_2h_2}^J C_{p_1h_1}^\dagger (J)M C_{p_2h_2}^\dagger (J)M. \]

(29)

The expectation value is

\[\langle \Psi_0 | \rho_{p'p} | \Psi_0 \rangle = \langle \Psi_0 | e^S \rho_{p'p} e^{-S} | HF \rangle = \langle \Psi_0 | e^S \left(\rho_{p'p} + [\rho_{p'p}, S] + \frac{1}{2} [[\rho_{p'p}, S], S] + \ldots \right) | HF \rangle. \]

(30)

Taking into account that \(\rho_{p'p} | HF \rangle = 0 \) (since \(| HF \rangle \) is vacuum for Hartree-Fock annihilation operators) and that \([[\rho_{p'p}, S], S] = 0 \) (since \([\rho_{p'p}, S] \sim C^\dagger \)) so that it and all higher terms vanish, we get

\[\langle \Psi_0 | [\rho_{p'p}, S] | HF \rangle = \langle \Psi_0 | e^S [\rho_{p'p}, S] | HF \rangle. \]

(31)

Then, again, since the commutator \([\rho_{p'p}, S] \) commutes with \(S \), the expectation value becomes

\[\langle \Psi_0 | [\rho_{p'p}, S] | \Psi_0 \rangle = \langle \Psi_0 | [\rho_{p'p}, S] | \Psi_0 \rangle. \]

(31)

Substituting the commutator (29) into (31) we get

\[\langle \Psi_0 | \rho_{p'p} | \Psi_0 \rangle = \sum_{J} \sum_{h_1h_2} T_{p_1h_1p_2h_2}^J \langle \Psi_0 | C_{p_1h_1}^\dagger (J)M C_{p_2h_2}^\dagger (J)M | \Psi_0 \rangle. \]

(32)
We express $C_{p_2h_2}^\dagger (JM)$ in terms of RPA excitation and annihilation operators

$$C_{p_2h_2}^\dagger (JM) = \sum_i X_{p_2h_2}^J Q_{JM_i}^\dagger + Y_{p_2h_2}^J Q_{JM_i}^\dagger$$ \hspace{1cm} (33)$$

and substitute it back into equation (32):

$$\langle \Psi_0 | \rho_{p'p} | \Psi_0 \rangle = \sum_i \sum_{JM} \sum_{h_1} T_{p'h_1p_2h_2}^J X_{p_2h_2}^J \langle \Psi_0 | C_{p_2h_2}^\dagger (JM) Q_{JM_i}^\dagger | \Psi_0 \rangle.$$ \hspace{1cm} (34)$$

Contracting the amplitude X and coefficient T with the use of equation (23), we get

$$\langle \Psi_0 | \rho_{p'p} | \Psi_0 \rangle = \sum_i \sum_{JM} \sum_{h_1} \left(Y_{p'h_1}^J + \sum_{p_3h_3J_1} T_{p'h_3p_3h_1}^J W(J_1, J) X_{p_3h_3}^J \right) \langle \Psi_0 | C_{p_2h_2}^\dagger (JM) Q_{JM_i}^\dagger | \Psi_0 \rangle.$$ \hspace{1cm} (35)$$

The calculation of the first term in (34) is straightforward

$$\sum_i \sum_{JM} \sum_{h_1} Y_{p'h_1}^J \langle \Psi_0 | C_{p_2h_2}^\dagger (JM) Q_{JM_i}^\dagger | \Psi_0 \rangle = \sum_i \sum_{JM} \sum_{h_1} Y_{p'h_1}^J Y_{p'h_1}^J \langle \Psi_0 | Q_{JM_i}^\dagger Q_{JM_i}^\dagger | \Psi_0 \rangle = \sum_i \sum_{JM} \sum_{h_1} Y_{p'h_1}^J Y_{p'h_1}^J \delta_{ii'}$$ \hspace{1cm} (36)$$

The calculation of the second term in (34) is more involved and is given in some details in the appendix. The result is very interesting: The second term in (34), that is the Pauli principle corrections to the expectation value of single particle density matrix $\rho_{p'p}$, is the expectation value of the density matrix itself taken with negative sign:

$$\sum_{J_1} \sum_i \sum_{JM} \sum_{h_1} T_{p'h_2p_2h_1}^J W(J_1, J) X_{p_2h_2}^J \langle \Psi_0 | C_{p_2h_2}^\dagger (JM) Q_{JM_i}^\dagger | \Psi_0 \rangle = -\langle \Psi_0 | \rho_{p'p} | \Psi_0 \rangle$$ \hspace{1cm} (37)$$

Combining these two terms (35,36) together into (34) we get

$$\langle \Psi_0 | \rho_{p'p} | \Psi_0 \rangle = \sum_i \sum_{JM} \sum_{h} Y_{p'h}^J Y_{p'h}^J - \langle \Psi_0 | \rho_{p'p} | \Psi_0 \rangle,$$ \hspace{1cm} (37)$$

Pauli correction
which means
\[
\langle \Psi_0 | \rho_{\rho'p} | \Psi_0 \rangle = \frac{1}{2} \sum_i \sum_{JM} \sum_h Y_{\rho'h}^{j_i} Y_{\rho'h}^{j_i} \langle \rho \rangle_{\rho'p}.
\] (38)

The similar calculations are performed for single-particle density matrix for occupied molecular orbitals with the result
\[
\langle \Psi_0 | \rho_{\rho'h} | \Psi_0 \rangle = \frac{1}{2} \sum_i \sum_{JM} \sum_p Y_{\rho'h}^{j_i} Y_{\rho'h}^{j_i} \langle \rho \rangle_{\rho'h}.
\] (39)

3. Test results

We illustrate the role of the Pauli principle violation in the RPA ground state by the calculation of molecular dipole moments and electronic kinetic energies. A dipole moment is one the best observable for our purposes since it is directly related to the single-particle density matrices and it has readily available accurate experimental values for many molecules. We also computed electronic kinetic energy to assess the role of Pauli principle in the calculations of energy related quantities. The kinetic energy is chosen since it is the only part of electronic energy expressed in terms of expectation values of a single-particle operator.

Let us consider dipole moment operator written in the second quantised form
\[
d = \sum_{\sigma} \sum_{kl} \langle k | d | l \rangle c_{i\sigma}^\dagger c_{l\sigma},
\] (40)

where \(\langle k | d | l \rangle\) is the matrix element of dipole moment between Hartree-Fock orbitals. We perform the derivations for the dipole moment, the calculations of electronic kinetic energies can be performed along the exactly the same lines. Transforming it to Hartree-Fock quasiparticle basis (31), we get
\[
d = 2 \sum_h \langle h | d | h \rangle + \sum_{pp'} \langle p | d | p' \rangle \rho_{\rho'p} - \sum_{hh'} \langle h | d | h' \rangle \rho_{h'h}.
\] (41)

Here the first term is the Hartree-Fock value for the molecular dipole moment. We omit in (41) terms proportional to \(a_{\rho\sigma} \tilde{a}_{h\sigma}^\dagger\) and \(a_{h\sigma} \tilde{a}_{\rho\sigma}^\dagger\). These terms are linearly proportional to \(C_{\rho'h}^\dagger (JM)\) and \(C_{\rho'h} (JM)\), respectively, therefore they
are also linear in excitation creation Q_j^\dagger and annihilation operators $Q_{JM\mu}$ and do not contribute to RPA ground state expectation value due to (10).

Using the expressions obtained in the previous section for single particle density matrices in the RPA ground state, we obtain the following equation for the molecular dipole moment

$$\langle \Psi_0 | d | \Psi_0 \rangle = 2 \sum_h \langle h | d | h \rangle$$

$$+ \frac{1}{2} \sum_i \sum_{JM} \left(\sum_{hp} \langle p | d | p' \rangle Y_{\mu'h'} Y_{ph'} - \sum_{hp'} \langle h | d | h' \rangle Y_{\mu'h} Y_{ph} \right).$$

The extra factor $1/2$ originates from the restoration of the Pauli principle in the RPA ground state.

We compute molecular dipole moments and electronic kinetic energies for a representative set of molecules (lithium hydride, hydrogen fluoride, hydrogen chloride, water, hydrogen sulfide, ammonia, methyl fluoride, and methanol). All calculations have been performed with a development version of Mendeleev computer program for \textit{ab initio} quantum chemical calculations [27]. The current RPA implementation uses Hartree-Fock reference molecular orbitals and the details of the numerical implementation of RPA method is described in [28]. RPA with the Pauli principle correction calculations are compared with the standard RPA approach as well as with the Hartree-Fock (HF), Møller-Plesset second order perturbation theory (MP2) and coupled-cluster singles and doubles method (CCSD). We used 6-311++G(3df,3pd) basis set (cartesian form) in all calculations. The molecular geometries are taken from NIST Computational Chemistry Comparison and Benchmark Database [29]. The computed values of molecular dipole moments are also assessed against the experimental results.

The results of the calculations are summarised in Fig.1 and Fig.2. As seen in Fig.1, Hartree-Fock theory systematically overestimates the molecular dipole moments. The RPA (without correction for violation of the Pauli principle) produces too strongly correlated electronic ground states lowering the value of the dipole moment well below the experimental results. Restoring the Pauli principle in the RPA ground state (RPA+Pauli curve in Fig.1) brings the computed values close to the experimental data and gives the accuracy on a par with MP2 and CCSD methods. The similar behaviour is observed for electronic kinetic energies (Fig.2). The standard RPA significantly overestimates the kinetic energy while RPA with Pauli corrections
yields the results close to the MP2 and CCSD values.

4. Discussions and conclusions

One of the main results of the paper are equations (23) and (37). Eq. (23) determines the operator S in the RPA ground state $e^S|HF\rangle$ considering the exact commutation relations between particle-hole pair excitation operators (22), therefore it takes into account of the Pauli principle in construction of the ground state wavefunction. The additional Pauli correction term in (23) leads to the extra term in the single particle density matrix. The Pauli principle correction to the single particle density matrix is the same density matrix itself taken with negative sign, see (37). The proper consideration of
the Pauli principle leads to extra $\frac{1}{2}$ factor in the expressions for molecular observables (38, 39, 42).

To summarise, we have developed theoretical method to restore the Pauli exclusion principle in the RPA correlated wavefunction. We obtained new, corrected for the Pauli principle expression for the RPA ground state correlated wavefunction. The method is \textit{a posteriori} approach: The RPA eigenvalue problem remains intact and only the final expressions for molecular observables are corrected by $\frac{1}{2}$ factor. The role of the proposed Pauli principle corrections was illustrated by the calculations of molecular dipole moments and electronic kinetic energies. The corrected for the Pauli principle RPA ground gives results of comparable accuracy with Møller-Plesset second order perturbation theory and coupled-cluster singles and doubles method, while standard RPA significantly overestimates the role of electronic correlations.

Figure 2: Difference between correlated and Hartree-Fock electronic kinetic energies.
Acknowledgement

We thank Alan Dzhioev for many valuable discussions.

Appendix A. Derivation of eq. (36)

\[
\sum_{J_1} \sum_{i} \sum_{JM} \sum_{h_1p_2h_2} T^{J_1}_{p'h_2p_2h_1} W(J_1, J) X^{J_2}_{p'h_2} \langle \Psi_0 | C^\dagger_{ph_1} (JM) Q^\dagger_{JM} | \Psi_0 \rangle
\]

\[
= \sum_{J_1} \sum_{JM} \sum_{h_1p_2h_2} T^{J_1}_{p'h_2p_2h_1} W(J_1, J) \langle \Psi_0 | C^\dagger_{ph_1} (JM) C^\dagger_{p_2h_2} (JM) | \Psi_0 \rangle
\]

\[
= \sum_{J_1} \sum_{JM} \sum_{h_1p_2h_2} T^{J_1}_{p'h_2p_2h_1} W(J_1, J) \sum_{\sigma_1' \sigma_2' \sigma_1 \sigma_2} \langle \frac{1}{2} \sigma_1 | \frac{1}{2} \sigma_1' | JM \rangle \langle \frac{1}{2} \sigma_2 | \frac{1}{2} \sigma_2' | J - M \rangle
\]

\[
\times (-1)^{J + M} \langle \Psi_0 | a^\dagger_{p_1} a^\dagger_{h_1} a^\dagger_{p_2} a^\dagger_{h_2} | \Psi_0 \rangle
\]

\[
= \sum_{J_1} \sum_{JM} \sum_{h_1p_2h_2} T^{J_1}_{p'h_2p_2h_1} W(J_1, J) \sum_{\sigma_1' \sigma_2' \sigma_1 \sigma_2} \langle \frac{1}{2} \sigma_1 | \frac{1}{2} \sigma_1' | JM \rangle \langle \frac{1}{2} \sigma_2 | \frac{1}{2} \sigma_2' | J - M \rangle
\]

\[
\times (-1)^{J + M} \sum_{J_2M_2} \sum_{J_3M_3} \langle \frac{1}{2} \sigma_2 | \frac{1}{2} \sigma_2' | J_2M_2 \rangle \langle \frac{1}{2} \sigma_1 | \frac{1}{2} \sigma_1' | J_3 - M_3 \rangle (-1)^{J_3 + M_3}
\]

\[
\times \langle \Psi_0 | C^\dagger_{ph_1} (J_2M_2) C^\dagger_{p_2h_1} (J_3M_3) | \Psi_0 \rangle
\]

\[
\sim \delta_{J_2J_3} \delta_{M_2M_3}
\]

\[
= \sum_{J_1} \sum_{J_2M_2} \sum_{h_1p_2h_2} T^{J_1}_{p'h_2p_2h_1} \sum_{J} W(J_1, J) W(J, J_2)
\]

\[
\times (-1)^{J_2} \sum_{J_2M_2} \sum_{J_3M_3} \langle \frac{1}{2} \sigma_2 | \frac{1}{2} \sigma_2' | J_2M_2 \rangle \langle \frac{1}{2} \sigma_1 | \frac{1}{2} \sigma_1' | J_3 - M_3 \rangle (-1)^{J_3 + M_3}
\]

\[
\times \langle \Psi_0 | C^\dagger_{ph_1} (J_2M_2) C^\dagger_{p_2h_1} (J_3M_3) | \Psi_0 \rangle
\]

\[
= \sum_{J_2M_2} \sum_{h_1p_2h_2} \langle \Psi_0 | C^\dagger_{ph_1} (J_2M_2) C^\dagger_{p_2h_1} (J_2M_2) | \Psi_0 \rangle = - \langle \Psi_0 | \rho_{p'p} | \Psi_0 \rangle
\]
References

[1] H. Eshuis, J. E. Bates, F. Furche, Electron correlation methods based on the random phase approximation, Theoretical Chemistry Accounts 131 (1) (2012) 1–18.

[2] D. Peng, S. N. Steinmann, H. van Aggelen, W. Yang, Equivalence of particle-particle random phase approximation correlation energy and ladder-coupled-cluster doubles, J. Chem. Phys. 139 (10) (2013) 104112.

[3] P. Bleiziffer, A. Heßelmann, A. Goerling, Efficient self-consistent treatment of electron correlation within the random phase approximation, J. Chem. Phys. 139 (8) (2013) 084113.

[4] D. Rocca, Random-phase approximation correlation energies from lanczos chains and an optimal basis set: Theory and applications to the benzene dimer, The Journal of Chemical Physics 140 (18) (2014) 18A501.

[5] B. Mussard, P. Reinhardt, J. G. Angyan, J. Toulouse, Spin-unrestricted random-phase approximation with range separation: Benchmark on atomization energies and reaction barrier heights, J. Chem. Phys. 142 (15).

[6] M. Kallay, Linear-scaling implementation of the direct random-phase approximation, J. Chem. Phys. 142 (20) (2015) 204105.

[7] N. Colonna, M. Hellgren, S. de Gironcoli, Molecular bonding with the rpax: From weak dispersion forces to strong correlation, Phys. Rev. B 93 (2016) 195108.

[8] A. J. Garza, I. W. Bulik, A. G. S. Alencar, J. Sun, J. P. Perdew, G. E. Scuseria, Combinations of coupled cluster, density functionals, and the random phase approximation for describing static and dynamic correlation, and van der Waals interactions, Mol. Phys. 114 (7-8) (2016) 997–1018.

[9] H. Eshuis, J. Yarkony, F. Furche, Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration, J. Chem. Phys. 132 (23) (2010) 234114.
[10] H. F. Schurkus, C. Ochsenfeld, Communication: An effective linear-scaling atomic-orbital reformulation of the random-phase approximation using a contracted double-Laplace transformation, J. Chem. Phys. 144 (3) (2016) 031101.

[11] J. Paier, X. Ren, P. Rinke, G. E. Scuseria, A. Grueneis, G. Kresse, M. Scheffler, Assessment of correlation energies based on the random-phase approximation, New Journal of Physics 14 (4) (2012) 043002.

[12] J. Rekkedal, S. Coriani, M. F. Iozzi, A. M. Teale, T. Helgaker, T. B. Pedersen, Communication: Analytic gradients in the random-phase approximation, J. Chem. Phys. 139 (8) (2013) 081101.

[13] A. M. Burow, J. E. Bates, F. Furche, H. Eshuis, Analytical first-order molecular properties and forces within the adiabatic connection random phase approximation, Journal of Chemical Theory and Computation 10 (1) (2014) 180–194.

[14] J. F. Dobson, T. Gould, Calculation of dispersion energies, J. Phys.: Cond. Matt. 24 (7) (2012) 073201.

[15] J. Toulouse, I. C. Gerber, G. Jansen, A. Savin, J. G. Ángyán, Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation, Phys. Rev. Lett. 102 (2009) 096404.

[16] A. M. Reilly, A. Tkatchenko, van der waals dispersion interactions in molecular materials: beyond pairwise additivity, Chem. Sci. 6 (2015) 3289–3301.

[17] G. E. Scuseria, T. M. Henderson, D. C. Sorensen, The ground state correlation energy of the random phase approximation from a ring coupled J. Chem. Phys. 129 (23) (2008) 231101.

[18] D. J. Rowe, Methods for calculating ground-state correlations of vibrational nuclei, Phys. Rev. 175 (1968) 1283–1292.

[19] P. Ellis, RRA ground state correlations from perturbation theory, Nuclear Physics A 155 (2) (1970) 625 – 643.

[20] H. Lenske, J. Wambach, {RPA} ground state correlations in nuclei, Physics Letters B 249 (3–4) (1990) 377 – 380.
[21] S. Mishev, Structure of the phonon vacuum state, Phys. Rev. C 87 (2013) 064310.

[22] J. Simons, Direct calculation of first- and second-order density matrices. the higher rpa method, J. Chem. Phys. 55 (3) (1971) 1218–1230.

[23] J. Linderberg, Y. Öhrn, State vectors and propagators in many-electron theory. a unified approach, International Journal of Quantum Chemistry 12 (1) (1977) 161–191.

[24] D. J. Row, Nuclear Collective Motion: Models and Theory, World Scientific, 2010.

[25] P. Ring, P. Schuck, The nuclear many-body problem, Springer-Verlag, Berlin, 1980.

[26] P. R. Surjan, Second Quantized Approach to Quantum Chemistry, Springer, Berlin/Heidelberg, 1989.

[27] D. S. Kosov, Mendeleev, a quantum chemistry computer program (2016).

[28] D. S. Kosov, Expectation values of single-particle operators in the random phase approximation ground state, J. Chem. Phys. 146 (5) (2017) 054103.

[29] Nist computational chemistry comparison and benchmark database, NIST Standard Reference Database Number 101, Release 17b, September 2015, Editor: Russell D. Johnson III.