Placental vascular pathology and increased thrombin generation as mechanisms of disease in obstetrical syndromes

Obstetrical complications including preeclampsia, fetal growth restriction, preterm labor, preterm prelabor rupture of membranes and fetal demise are all the clinical endpoint of several underlying mechanisms (i.e. infection inflammation, thrombosis, endocrine disorder, immunologic rejection, genetic, and environmental), therefore, they may be regarded as syndromes. Placental vascular pathology and increased thrombin generation were reported in all of these obstetrical syndromes. Moreover, elevated concentrations of thrombin-anti-thrombin III complexes and changes in the coagulation as well as anticoagulation factors can be detected in the maternal circulation prior to the clinical development of the disease in some of these syndromes. In this review, we will assess the changes in the hemostatic system during normal and complicated pregnancy in maternal blood, maternal-fetal interface and amniotic fluid, and describe the contribution of thrombosis and vascular pathology to the development of the great obstetrical syndromes.
Placental Vascular Pathology and Increased Thrombin Generation as Mechanisms of Disease In Obstetrical Syndromes

Salvatore Andrea Mastrolia¹,², Moshe Mazor², Giuseppe Loverro¹, Vered Klaitman², and Offer Erez²

¹ Department of Obstetrics and Gynecology, Azienda Ospedaliero-Universitaria Policlinico di Bari, School of Medicine, University of Bari “Aldo Moro”, Bari, Italy
² Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev, Beer Sheva, Israel

Corresponding author
Offer Erez M.D.
Acting director Maternal Fetal Medicine Unit
Department of Obstetrics and Gynecology
Soroka University Medical Center
School of Medicine, Faculty of Health Sciences
Ben Gurion University of the Negev
P.O.Box 151,
Beer Sheva 84101
Israel
erezof@bgu.ac.il

1. Introduction

Obstetrical complications including preeclampsia, fetal growth restriction, preterm labor, preterm prelabor rupture of membranes and fetal demise are all the clinical endpoint of several underlying mechanisms (i.e. infection inflammation, thrombosis, endocrine disorder, immunologic rejection, genetic, and environmental), therefore, they may be regarded as syndromes. In this review, we will assess the changes in the hemostatic system during normal and complicated pregnancy in maternal blood, maternal-fetal interface and amniotic fluid, and describe the contribution of thrombosis and vascular pathology to the development of the great obstetrical syndromes.

2. What are the great obstetrical syndromes?
The major obstetrical complications including preeclampsia, intrauterine growth restriction (IUGR), preterm labor (PTL), preterm prelabor rupture of membranes (PROM), fetal demise, and recurrent abortions are all syndromes, also defined as "great obstetrical syndromes". As reported in The Oxford Medical Dictionary a syndrome is ‘a combination of symptoms and/or signs that form a distinct clinical picture indicative of a particular disorder’. Hence, they represent the clinical manifestation of many possible underlying mechanisms of disease.

Key features of these syndromes are: multiple etiologies; long preclinical stage; frequent fetal involvement; clinical manifestations which are often adaptive in nature; and predisposition to a particular syndrome is influenced by gene–environment interaction and/or complex gene-gene interactions involving maternal and/or fetal genotypes. These mechanisms of disease were identified and reported in all the obstetrical complications listed above. This review is focused on the role of thrombosis and vascular pathology of the placenta in these syndromes.

3. What are the changes in the coagulation system during normal pregnancy?

In terms of the coagulation and hemostatic systems there are several major compartments: the maternal circulation, the fetal maternal interface (the placenta, and membranes), amniotic fluid and the fetus that each has a specific behavior during gestation. The changes in the coagulation system during gestation are considered to be adaptive mechanisms and are aimed to: 1) the prevention of bleeding at the time of trophoblast implantation and the delivery of the fetus; 2) allow the laminar flow and the intervillous space; and 3) seal amniotic fluid leak and reduce obstetrical bleeding. Of interest, the fetus is somewhat less involved and its coagulation system develops during gestation, and this subject is beyond the scope of this review.

Indeed, normal pregnancy has been associated with excessive maternal thrombin generation and a tendency for platelets to aggregate in response to agonists. Pregnancy is accompanied by 2 to 3-fold increase in fibrinogen concentrations and 20% to 100% increase in factors VII, VIII, IX, X, and XII, all of which peak at term. The concentrations of vWF increase up to 400% by term. By contrast, those of pro-thrombin and factor V remain unchanged while the concentrations of factors XIII and XI decline modestly. Indeed there is evidence of chronic low-level thrombin and fibrin generation throughout normal pregnancy as indicated by enhanced concentrations of pro-thrombin fragment 1.2, thrombin-antithrombin (TAT) III complexes, and soluble fibrin polymers. Free protein S concentration declines significantly (up to 55%) during pregnancy due to increased circulating complement 4B-binding protein its molecular carrier. Protein S nadir at delivery and this reduction is exacerbated by cesarean delivery and infection.

12. As a consequence, pregnancy is associated with an increase in resistance to activated protein
The concentrations of PAI-1 increase by 3 to 4-folds during pregnancy while plasma PAI-2 values, which are negligible before pregnancy reach concentrations of 160 mg/L at delivery. Thus, pregnancy is associated with increased clotting potential, as well as decreased anticoagulant properties, and fibrinolysis. Therefore, it can be defined as a prothrombotic state. One of the most important mediators of the hypercoagulable state of normal pregnancy is tissue factor (TF). Indeed, there is a substantial increase in TF concentrations in the decidua and myometrium, preventing placental abruption since this leads to an increase in the efficiency of clotting function. The placenta is a source of TF, since trophoblast cells constitutively express it, behaving as activated endothelium, and leading to a condition of procoagulant state that, if not controlled by anticoagulant mechanisms, predisposes to thrombotic complications. The principal anticoagulant mechanism inhibiting TF activation pathway is tissue factor pathway inhibitor (TFPI), which mRNA is highly expressed in the macrophages in the villi in term placenta. Similarly, high TF concentrations have been detected in the fetal membranes (mainly the amnion) and amniotic fluid. TFPI has been found in amniotic fluid as well, but it is not clear if the presence of TF and its natural inhibitor is related to coagulation per se or is somehow connected with embryonic development.

In contrast to the changes detected in the amniotic fluid and the decidua, the median maternal plasma immunoreactive TF concentration of normal pregnant women do not differ significantly from that of non-pregnant patients. However, labor at term increases significantly the maternal plasma immunoreactive TF concentration in comparison to the non-pregnant state. In addition to the changes in TF, normal pregnancy is associated with increased thrombin generation, as determined by the elevation of maternal concentrations of fibrinopeptide A, prothrombin fragments (PF) 1 and 2, and thrombin–antithrombin (TAT) III complexes. The concentration of these complexes further increases during and after normal parturition, and subsequently decreases during the puerperium.

4. What are the changes in the hemostatic system associated with the great obstetrical syndromes?

The great obstetrical syndromes are associated with changes in the hemostatic and vascular systems in the compartments mentioned above: 1) the maternal circulation; 2) the feto-maternal interface of placenta and membranes; 3) and the amniotic fluid.

4.1 Changes in the hemostatic system of women with obstetrical syndromes.
The involvement of the hemostatic system in the pathophysiology of these obstetrical syndromes is becoming more and more apparent. Indeed, increased thrombin generation is reported in the maternal circulation of women with preeclampsia30-34, IUGR30-32, 35, 36, fetal demise37, PTL8, 37, 38 and preterm PROM8, 37, 39.

There are several possible explanations for the increased thrombin generation in these patients: 1) increased activation of coagulation cascade in the maternal circulation due to pathological processes including bleeding or inflammation; and 2) depletion of anticoagulation proteins that subsequently leads to increased thrombin generation (Table 1).

4.1.1 Increased activation of the coagulation cascade and thrombin generation in the maternal circulation in patients with pregnancy complications

All the obstetrical syndromes including preeclampsia30-34, 40, 41, IUGR31, 32, 35, 36, fetal demise37, PTL8, 38 and preterm PROM8, 37, 39 are associated with a higher maternal thrombin generation than a normal pregnancy. These may be of clinical implication since in women with preterm labor, elevated maternal plasma TAT III complexes concentration was associated with a higher chance to deliver within <7 days from admission37 (Fig. 1). To further understand how does thrombin affect the duration of pregnancy and the clinical phenotype of patients with the obstetrical syndromes we need to consider what are the mechanisms leading to thrombin generation and how it affects the feto-maternal unit.

Increased thrombin generation can result from the following underlying mechanisms: 1) decidual hemorrhage that leads to a retro-placental clot formation42; 2) intra-amniotic infection/inflammation which can induce decidual bleeding and sub-clinical abruption43, as well as increased intra-amniotic TAT complexes37; and 3) an increased maternal systemic inflammatory response44 that may activate the extrinsic pathway of coagulation due to the expression and release of TF by activated monocytes45.

Thrombin affects many systems including also the following: 1) stimulation of decidual cell secretion of matrix metalloproteinase (MMP) (i.e. MMP-1 and MMP-3) that can degrade the extracellular matrix of the chorioamniotic membranes46, 47 (as in preterm PROM); 2) myometrial activation and uterine contractions generation that may lead to preterm labor with or without rupture of membranes and a subsequent preterm delivery38, 48, 49; and 3) thrombin has an inhibitory effect on the production of TFPI by endothelial cells50, and the increased thrombin generation observed in patients with PTL may be associated with a concomitant reduction in TFPI production by the maternal vascular endothelium (the depletion of anticoagulant proteins will be discussed in the following section of this review).
There is evidence to support that the extrinsic pathway of coagulation is activated in many of these pregnancy complications and it is the source of the increased thrombin generation. Indeed, increased immunoreactive TF concentrations were reported in women with preeclampsia and those with preterm PROM. Moreover, the contribution of preeclampsia to elevated maternal immunoreactive TF persisted also among patients with fetal demise, while those with fetal death who were normotensive did not have higher median TF concentration than normal pregnant women. Moreover, the median TF concentration of patients with preeclampsia was also higher than in patients with fetal demise without hypertension. These findings are consistent with previous studies, suggesting that elevated TF immunoreactivity and activity may be associated with the pathophysiologic process leading to preeclampsia, rather than being a consequence of the fetal death.

In some of the obstetrical syndromes there was elevated TF activity in the maternal circulation without a concomitant increase in the plasma concentration of this factor. This was the case among patients with a small for gestational age (SGA) neonate and those with preterm labor (Table 1). This suggests that the increased TF activity among patients with PTL as well as those with an SGA neonate, contributes to a higher generation of factor Xa that, along with the physiologic increase in the maternal plasma concentrations of factor VII and factor X during gestation, may be the underlying mechanism leading to the increased thrombin generation reported these syndromes.

The differences between PTL and preterm PROM in term of maternal plasma TF concentration and activity may derive from the specific component of the common pathway of parturition, which is activated in each obstetrical syndrome. While preterm PROM is associated with the activation of the decidua and the membranes, myometrial activation is the major component of preterm labor with intact membranes. This is relevant because the decidua and the membranes have a high TF concentration.

In summary, the evidence brought herein suggests that increased thrombin generation in patients with the great obstetrical syndromes may reflect the activation of the coagulation cascade mainly through the extrinsic arm. This activation can be attributed to various underlying mechanisms.

4.1.2 Depleted or insufficient anticoagulant proteins concentration

In the normal state there is a delicate balance between the proteins activating/participating the coagulation cascade and their inhibitors. Increased thrombin generation may result, as we presented above, from activation of the coagulation cascade due to higher concentrations or activities of the proteins included in the coagulation cascade. However, thrombin generation can also result from insufficient concentration or activity of anticoagulation proteins.
Tissue factor pathway inhibitor (TFPI), a glycoprotein comprising of three Kunitz domain60 that are specific inhibitors of trypsin-like proteinases61, is the main inhibitor of the extrinsic pathway of coagulation. TFPI inhibits thrombin generation through the inactivation of activated factor X and the factor VIIa/TF complex60, 62. The mean maternal plasma concentrations of total TFPI increases during the first half of pregnancy, remains relatively constant in the second half63 and decreases during labor20. There are two types of TFPI: 1) TFPI-1 is the more prevalent form in the non-pregnant state in the maternal circulation and can also be found in the fetal blood, platelets, endothelial cells and other organs19, 64; and 2) TFPI-2- the major form of TFPI in the placenta65-68, also known as Placental Protein 5 (PP5)69, 70. During pregnancy, the maternal plasma concentration of TFPI-2 increases gradually, reaches a plateau at 36 weeks and subsides after delivery71-74. The overall balance between the concentration and activity of the coagulation factors and the anti-coagulation proteins is one of the determining factors of thrombin generation. In the normal state, the immunoreactive concentrations of TFPI in the plasma are 500 to 1000 times higher than that of TF75, suggesting that an excess of anti-coagulant proteins closely controls the coagulation cascade activity. The median maternal plasma TFPI concentration increases during preeclampsia53, 76, which is associated with an exaggerated maternal systemic inflammatory response. However, the increase in the median maternal TF plasma concentration is such that the overall balance between TF and its inhibitor is affected leading to increased thrombin generation in this syndrome. In contrast to preeclampsia, maternal plasma TFPI concentration decreases in patients with PTL52 and preterm PROM77 regardless to the presence of intra-amniotic infection/inflammation, as well as in women with fetal demise54, and does not change in mothers with SGA fetuses53. Overall these findings suggest that the increased thrombin generation observed among these patients may derive not only from an increased activation of the hemostatic system, but also from insufficient anti-coagulation, as reflected by the lower TFPI concentrations (Fig. 2).

A possible explanation of the lower maternal plasma concentration observed in some of the obstetrical syndromes may be that during these syndromes there is a reduction in the placental production of TFPI65, 66, 69, 76 (mainly TFPI-2), contributing to the low maternal plasma concentrations detected in patients with PTL, in addition to the thrombin inhibitory effect to TFPI expression on endothelial cells, as above mentioned. Indeed, patients with vascular complications of pregnancy (preeclampsia, eclampsia, placental abruption, fetal growth restriction, and fetal
demise) have a lower placental concentration of total TFPI, and TFPI mRNA expression than in
women with normal pregnancies. Other proteins implicated in the inhibitory control of the coagulation
cascade are protein S, protein C and protein Z. Protein S is a cofactor to protein C in the inactivation of factors
Va and VIIIa. This protein exists in two forms: a free form and a complex form bound to complement
protein C4b-binding protein (C4BP). Only the free form is active. Protein S also acts as a TFPI cofactor, in
the presence of weak pro-coagulant stimuli, by enhancing the interaction of TFPI with factor Xa while
using Ca2+ and phospholipids in the process without increasing inhibition of factor VIIa-TF by TFPI. During
pregnancy there is a physiologic change in the relationship between the bound and the free forms of protein
S in the maternal plasma. The increase in C4BP during gestation reduces free protein S concentration in up to 55%
of its value out of pregnant state, reaching its nadir at delivery. Of interest, cesarean delivery and infection
exacerbate the reduction in free protein S concentrations. Moreover, a functional protein S deficiency can
explain a poor response to activated protein C. The association between the alteration of concentration and
function of protein S and protein C in the great obstetrical syndromes is not completely clear. The evidence regarding the association of
protein S and protein C deficiency and preeclampsia is controversial. While some reported an association
between protein S deficiency and an increased risk for this syndrome (especially for early onset preeclampsia) others could not demonstrate this effect. There is some evidence regarding the relation of protein S deficiency and increased risk of stillbirth and mid-trimester IUGR. An increased risk of stillbirth has been reported in patients
with protein S deficiency while the risk was not significantly increased in cases of protein C deficiency, and Kupferminc et al found that protein S, but not protein C deficiency, was
significantly associated with severe mid-trimester IUGR.
Protein Z, in complex with protein Z-dependent protease inhibitor (ZPI) (Fig. 3), acts as a
physiologic inhibitor of activation of prothrombin by factor Xa. Protein Z is a vitamin K-dependent plasma glycoprotein that is an essential cofactor for ZPI activity. In the absence of
protein Z, the activity of ZPI is reduced by more than 1000-fold. Normal pregnancy is
characterized by an increased plasma concentration of protein Z, probably as a compensation
for the increase of factor X concentration. Women with preterm labor without intra-amniotic infection or inflammation and those with vaginal bleeding who delivered preterm had a lower
median maternal plasma protein Z concentration than women with a normal pregnancy and those
with vaginal bleeding who delivered at term. The changes of protein Z concentrations in other
pregnancy complications are controversial. Some demonstrated that the median plasma
concentration of protein Z in patients with preeclampsia, IUGR, and late fetal death were not significantly different than that of patients with a normal pregnancy. Others reported lower median maternal plasma protein Z concentrations in women with preeclampsia or pyelonephritis and higher proportion of protein Z deficiency (defined as protein Z plasma concentration below the 5th percentile) in patients with preeclampsia or fetal demise than in those with a normal pregnancy. Moreover, increased maternal plasma anti-protein Z antibodies concentrations were associated with SGA neonates, fetal demise and preeclampsia. The information presented above suggest that it is not only the concentration of one coagulation factor or anticoagulation protein, but rather the overall balance between the coagulation factors and their inhibitors that increases thrombin generation in the great obstetrical syndromes. Indeed, although preterm labor was not associated with a significant change in the median maternal plasma TF concentration, the TFPI/TF ratio of these patients was lower than that of normal pregnant women, mainly due to decreased TFPI concentrations. This observation was also reported in patients with preterm PROM, and those with preeclampsia. The lower TFPI/TF ratio in patients with preeclampsia occurs despite the increase in the median maternal plasma TFPI concentration observed in these patients. This suggests that the balance between TF and its natural inhibitor may better reflect the overall activity of the TF pathway of coagulation, than the individual concentrations of TF or TFPI. Collectively, these observations suggest that our attention should be focused not only on the coagulation protein but also on their inhibitors since an imbalance between them may contribute to increased thrombin generation leading to the onset of the great obstetrical syndromes.
4.2 Changes in the feto-maternal interface

Normal placental development and the establishment of an adequate feto-maternal circulation are key points for a successful pregnancy. The networks of the placental vascular tree either on the maternal or fetal side are dynamic structures that can be substantially altered in cases of abnormal placentation and trophoblast invasion. The human trophoblast has properties of endothelial cells and can regulate the degree of activation of the coagulation cascade in the intervillous space. The villous trophoblasts express heparin sulfate, protein C and protein Z on their surface that serve as anticoagulant that sustain laminar blood flow through the intervillous space. On the other hand, unlike the endothelium of other organs, the trophoblast constantly presents the active placental isoform of TF on its surface. This isoform has a higher affinity for factor VIIa, which may lead to increased activation of the coagulation cascade. One of the leading pathological processes observed in all these syndromes is thrombosis and vascular abnormality of the placenta at the maternal-fetal interface. The incidence of these pathological processes varies among the different syndromes being more prevalent in preeclampsia, IUGR, and fetal demise than in PTL and preterm PROM.

4.2.1 Placental pathology in the Great Obstetrical Syndromes

There is a range of placental vascular and thrombotic lesions that are being observed in placentas of patients with pregnancy complications. Thrombotic events of placental vessels can cause an impairment of placental perfusion, leading to fetal growth restriction (FGR), preeclampsia and fetal death as well as in some extents to PTL and preterm PROM. The frequency of the specific vascular placental lesions varies among these obstetrical syndromes. Placental vascular lesions are divided into maternal or fetal vascular origin (figure 4-5).

Lesions of the maternal vascular compartment include placental marginal and retro-placental hemorrhages, lesions related to maternal under perfusion (acute atherosis and mural hypertrophy, increased syncytial knots, villous agglutination, increased intervillous fibrin deposition, villous infarcts). Placental fetal vascular obstructive lesions are the result of stasis, hypercoagulability and vascular damage within the feto-placental circulation of the placenta. Placental fetal vascular abnormalities include: cord-related abnormalities (as torsion of cord, over-coiling, strictures and tight knots) and vascular lesions consistent with fetal thrombo-occlusive disease (thrombosis of the chorionic plate and stem villous vessels, fibrotic, hypo-vascular and avascular villi). In addition, villitis of unknown etiology or chronic villitis, defined as lymphohistiocytic...
inflammation localized to the stroma of terminal villi but often extending to the small vessels of upstream villi is also associated with obliterative fetal vasculopathy106 (Fig. 4-5).

Preeclampsia: The classical example for an association between obstetrical syndrome and vascular placental lesions is preeclampsia. Women who develop preeclampsia have an increased rate of abnormalities of the maternal side of the placental circulation and maternal underperfusion109, 110. The frequency of these lesions is inversely related to the gestational age in which the hypertensive disorder was diagnosed. The earliest development of hypertension/preeclampsia the more severe are the vascular lesions111, 112. Moreover, Kovo et al113 reported that the presence of fetal growth restriction in women with preeclampsia increases also the frequency of fetal vascular lesions. Indeed, patients with early-onset preeclampsia complicated by FGR had a higher rate of fetal-vascular supply lesions consistent with fetal thrombo-occlusive disease than women with early-onset disease without FGR113. An assessment of the pathologic changes in placental hemostatic system has been performed in patients with preeclampsia. Teng et al114 studied TF and TFPI placental levels in pregnant patients with preeclampsia, compared to normal pregnancies. They found increased TF placental expression and a reduced expression of TFPI-1 and TFPI-2, with a significant correlation between the levels of TF and TFPI-2 between maternal plasma and placenta.

Fetal growth restriction: Placentas from pregnancies complicated by FGR are smaller and have significantly increased maternal and fetal vascular lesions compared to placentas from normal pregnancies with appropriate for gestational age neonates (AGA)115, 116. Maternal vascular lesions were detected in about 50\% of placentas from pregnancies complicated with FGR at term, compared to only 20\% in normal pregnancies, while fetal vascular lesions were observed in 11\% of FGR pregnancies compared to only 4\% in placentas from normal pregnancies113. Placentas from normotensive pregnancies complicated by early-onset FGR (<34 weeks of gestation) had a higher rate of low placental weight (<10th percentile) and maternal underperfusion, as compared to placentas of women who delivered AGA neonates ≤34 weeks of gestation115. Of interest, placentas from the late onset FGR group (after 34 weeks of gestation), in addition to the high maternal vascular abnormalities, show also more fetal vascular abnormalities, compared with AGA controls who delivered >34 weeks117.

Fetal demise: Placental disease has been recognized as an important contributor to unexplained fetal demise. Fetal vascular abnormalities105 are extensively involved in early and late fetal death rather than maternal vascular lesions. In fetal death occurring prior to 34 weeks, an earlier and
extended insult in the placental development occurs. On the other hand, late fetal demise is an
unpredicted event that is mostly characterized by non-thrombotic cord related lesions and less
placental vascular compromise107.

Preterm labor and preterm PROM: Placental studies in PTL demonstrated a combination of
inflammatory and vascular lesions. PTL is generally attributed to an inflammatory response
involving the bacterial induction of cytokine and prostanoid production118. Finding of histological
chorioamnionitis in PTL119 has established infection and inflammation as a causative factor of
preterm birth, moreover, noninfectious trigger may also contribute to the development of preterm
labor and in some instances may be evident by placental sterile inflammatory response120. In
addition, isolated placental vascular lesions, mostly of maternal supply, were reported in 20% of
cases of PTL and an additional 20% had combined inflammatory and vascular lesions. Moreover,
there are consistent reports describing increased rate of failure of transformation of the spiral
arteries in women with preterm labor without intrauterine infection/inflammation and in those
with preterm PROM than in women with normal pregnancies121. Such findings imply that an
inadequate uteroplacental blood flow due to abnormal placentation plays an important role in
pathogenesis of preterm parturition121,122.

Collectively, placental vascular lesions were reported in all the great obstetrical syndromes. The
severity of these lesions is associated with the timing of diagnosis of the disease. The more severe
the vascular injury, the more likely these complications will become clinically evident prior to 34
weeks of gestation. Of interest, vascular lesions often come along with evidence of acute
inflammation or lesions associated with chronic inflammatory processes, suggesting that
sometimes more than one mechanism is involved in development of a specific obstetrical
syndrome.

4.3. Hemostatic changes in the amniotic fluid of women with obstetrical syndromes

During normal pregnancy, there is an increase in the amniotic fluid TF concentration7,20-23. In
order to demonstrate the association of hemostatic changes and the development of obstetrical
complications, Erez et al54 studied the changes in the intra-amniotic concentration of TAT III
complexes, as well as TF concentration and activity, in cases of fetal demise and in normal
pregnancies.

Patients with a fetal demise had higher median amniotic fluid–TF concentration and activity than
those with normal pregnancies. Moreover, among patients with a FD there was a significant
correlation (Fig. 6) between the amniotic fluid–TF concentrations and activity ($r =0.88$, P
The median amniotic fluid– TAT III complexes concentration did not differ significantly between the groups (normal pregnancy: median: 66.3 mg/l, range 11.4–2265.4 vs. FD: median: 59.3 mg/l, range: 13.6–15,425.3; P = 0.7). In their study, the median amniotic fluid– TF concentration in normal pregnant women was 10 fold higher than in maternal plasma. The changes in amniotic fluid thrombin generation were reported also in women with preterm parturition. Indeed, intra-amniotic infection and/or inflammation is associated with an increased amniotic fluid TAT III complexes (Fig. 7). This is important since it represents an increased thrombin generation in the amniotic cavity during infection and/or inflammation that may contribute to uterine contractility and the development of preterm birth [123]. Of interest, elevated intra-amniotic TAT III concentrations were associated with a shorter amniocentesis to delivery interval and an earlier gestational age at delivery only in patients with preterm labor without intra-amniotic infection or inflammation [123]. This observation suggests that in a subset of patients with preterm labor, activation of the coagulation system can generate preterm parturition and delivery; while in those with intra-amniotic infection and/or inflammation the activation of the coagulation and thrombin generation is a byproduct of the inflammatory process leading to preterm birth.

This represents evidence of the activation and propagation of coagulation cascade, being thrombin generation the witness of the former mechanisms and the inhibitor of the initiation step [54].

5. Conclusion
The evidence presented herein suggests a role for increased thrombin generation and vascular placental lesions in the pathogenesis of the great obstetrical syndromes. This process can be the result of the contribution of procoagulant and vascular abnormalities as well as inflammatory and infectious mechanisms, representing the starting point for pregnancy complications based on vascular disease. As presented, these changes affect the mother, the placenta, membranes and amniotic fluid. Moreover, preliminary evidence suggest that some of the changes in the hemostatic system in the mother and in the amniotic fluid predate the clinical presentation of the disease. Suggesting that better understanding of the vascular and coagulation changes associated with the great obstetrical syndromes may assist us in earlier detection and the development or introduction of therapeutic modalities for these syndromes.
References

1. *Concise Medical Dictionary*: Oxford University Press, 2010.
2. Romero R. Prenatal medicine: the child is the father of the man. 1996. J Matern Fetal Neonatal Med 2009;22:636-9.
3. Bellart J, Gilabert R, Miralles RM, Monasterio J, Cabero L. Endothelial cell markers and fibrinopeptide A to D-dimer ratio as a measure of coagulation and fibrinolytic balance in normal pregnancy. Gynecol Obstet Invest 1998;46:17-21.
4. Walker MC, Garner PR, Keely EJ, Rock GA, Reis MD. Changes in activated protein C resistance during normal pregnancy. Am J Obstet Gynecol 1997;177:162-9.
5. Sørensen JD, Secher NJ, Jespersen J. Perturbed (procoagulant) endothelium and deviations within the fibrinolytic system during the third trimester of normal pregnancy. A possible link to placental function. Acta Obstet Gynecol Scand 1995;74:257-61.
6. Yuen PM, Yin JA, Lao TT. Fibrinopeptide A levels in maternal and newborn plasma. Eur J Obstet Gynecol Reprod Biol 1989;30:239-44.
7. de Boer K, ten Cate JW, Sturk A, Born JJ, Treffers PE. Enhanced thrombin generation in normal and hypertensive pregnancy. Am J Obstet Gynecol 1989;160:95-100.
8. Chaiworapongsa T, Espinoza J, Yoshimatsu J, Kim YM, Bujold E, Edwin S, Yoon BH, Romero R. Activation of coagulation system in preterm labor and preterm premature rupture of membranes. J Matern Fetal Neonatal Med 2002;11:368-73.
9. Yoneyama Y, Suzuki S, Sawa R, Otsubo Y, Power GG, Araki T. Plasma adenosine levels increase in women with normal pregnancies. Am J Obstet Gynecol 2000;182:1200-3.
10. Sheu JR, Hsiao G, Luk HN, Chen YW, Chen TL, Lee LW, Lin CH, Chou DS. Mechanisms involved in the antiplatelet activity of midazolam in human platelets. Anesthesiology 2002;96:651-8.
11. Bremme KA. Haemostatic changes in pregnancy. Best Pract Res Clin Haematol 2003;16:153-68.
12. Eichinger S, Weltermann A, Philipp K, Hafner E, Kaider A, Kittl EM, Brenner B, Mannhalter C, Lechner K, Kyrle PA. Prospective evaluation of hemostatic system activation and thrombin potential in healthy pregnant women with and without factor V Leiden. Thromb Haemost. 1999;82:1232-6.
13. Ku DH, Arkel YS, Paidas MP, Lockwood CJ. Circulating levels of inflammatory cytokines (IL-1 beta and TNF-alpha), resistance to activated protein C, thrombin and fibrin generation in uncomplicated pregnancies. Thromb Haemost 2003;90:1074-9.
14. Lockwood CJ. Pregnancy-associated changes in the hemostatic system. Clin Obstet Gynecol 2006;49:836-43.
15. Erlich J, Parry GC, Fears C, Muller M, Carmeliet P, Luther T, Mackman N. Tissue factor is required for uterine hemostasis and maintenance of the placental labyrinth during gestation. Proc Natl Acad Sci U S A 1999;96:8138-43.
16. Kuczyński J, Uszyński W, Zekanowska E, Soszka T, Uszyński M. Tissue factor (TF) and tissue factor pathway inhibitor (TFPI) in the placenta and myometrium. Eur J Obstet Gynecol Reprod Biol 2002;105:15-9.
17. Lockwood CJ, Krikun G, Schatz F. Decidual cell-expressed tissue factor maintains hemostasis in human endometrium. Ann N Y Acad Sci 2001;943:77-88.
18. Lockwood CJ, Krikun G, Schatz F. The decidua regulates hemostasis in human endometrium. Semin Reprod Endocrinol 1999;17:45-51.
19. Edstrom CS, Calhoun DA, Christensen RD. Expression of tissue factor pathway inhibitor in human fetal and placental tissues. Early Hum Dev 2000;59:77-84.
20. Uszyński M, Zekanowska E, Uszyński W, Kuczyński J. Tissue factor (TF) and tissue factor pathway inhibitor (TFPI) in amniotic fluid and blood plasma: implications for the mechanism of amniotic fluid embolism. Eur J Obstet Gynecol Reprod Biol 2001;95:163-6.

21. Lockwood CJ, Bach R, Guha A, Zhou XD, Miller WA, Nemerson Y. Amniotic fluid contains tissue factor, a potent initiator of coagulation. Am J Obstet Gynecol 1991;165:1335-41.

22. Omsjø IH, Oian P, Maltau JM, Osterud B. Thromboplastin activity in amniotic fluid. Gynecol Obstet Invest 1985;19:1-5.

23. Creter D. Amnioplastin: new reagent for coagulation tests. Lancet 1977;2:251.

24. Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen I, Demunck H, Kasper M, Breier G, Evrard P, Müller M, Risau W, Edgington T, Collen D. Role of tissue factor in embryonic blood vessel development. Nature 1996;383:73-5.

25. Holmes VA, Wallace JM. Haemostasis in normal pregnancy: a balancing act? Biochem Soc Trans 2005;33:428-32.

26. Reber G, Amiral J, de Moerloose P. Modified antithrombin III levels during normal pregnancy and relationship with prothrombin fragment F1 + 2 and thrombin-antithrombin complexes. Thromb Res 1998;91:45-7.

27. Uszyński M. Generation of thrombin in blood plasma of non-pregnant and pregnant women studied through concentration of thrombin-antithrombin III complexes. Eur J Obstet Gynecol Reprod Biol 1997;75:127-31.

28. Reinthaller A, Mursch-Edlmayr G, Tatra G. Thrombin-antithrombin III complex levels in normal pregnancy with hypertensive disorders and after delivery. Br J Obstet Gynaecol 1990;97:506-10.

29. Andersson T, Lorentzen B, Hogdahl H, Clausen T, Mowinckel MC, Abildgaard U. Thrombin-inhibitor complexes in the blood during and after delivery. Thromb Res 1996;82:109-17.

30. Schjetlein R, Abdelnoor M, Haugen G, Husby H, Sandset PM, Wisløff F. Hemostatic variables as independent predictors for fetal growth retardation in preeclampsia. Acta Obstet Gynecol Scand 1999;78:191-7.

31. Chaiworapongs A, Yoshimatsu J, Espinoza J, Kim YM, Berman S, Edwin S, Yoon BH, Romero R. Evidence of in vivo generation of thrombin in patients with small-for-gestational-age fetuses and pre-eclampsia. J Matern Fetal Neonatal Med 2002;11:362-7.

32. Hayashi M, Numaguchi M, Ohkubo N, Yaoi Y. Blood macrophage colony-stimulating factor and thrombin-antithrombin III complex concentrations in pregnancy and preeclampsia. Am J Med Sci 1998;315:251-7.

33. Kobayashi T, Terao T. Preeclampsia as chronic disseminated intravascular coagulation. Study of two parameters: thrombin-antithrombin III complex and D-dimers. Gynecol Obstet Invest 1987;24:170-8.

34. Hayashi M, Inoue T, Hoshimoto K, Negishi H, Ohkura T, Inaba N. Characterization of five marker levels of the hemostatic system and endothelial status in normotensive pregnancy and pre-eclampsia. Eur J Haematol 2002;69:297-302.

35. Hayashi M, Ohkura T. Elevated levels of serum macrophage colony-stimulating factor in normotensive pregnancies complicated by intrauterine fetal growth restriction. Exp Hematol 2002;30:388-93.

36. Ballard HS, Marcus AJ. Primary and secondary platelet aggregation in uraemia. Scand J Haematol 1972;9:198-203.

37. Erez O, Romer R, Vaisbuch E, Chaiworapongs A, Kusanovic JP, Mazaki-Tovi S, Gotsch F, Gomez R, Maymon E, Pacora P, Edwin SS, Kim CJ, Than NG, Mittal P, Yeo L, Dong
38. Elovitz MA, Baron J, Phillippe M. The role of thrombin in preterm parturition. Am J Obstet Gynecol 2001;185:1059-63.

39. Rosen T, Kuczynski E, O'Neill LM, Funai EF, Lockwood CJ. Plasma levels of thrombin-antithrombin complexes predict preterm premature rupture of the fetal membranes. J Matern Fetal Med 2001;10:297-300.

40. Kobayashi T, Tokunaga N, Sugimura M, Suzuki K, Kanayama N, Nishiguchi T, Terao T. Coagulation/fibrinolysis disorder in patients with severe preeclampsia. Semin Thromb Hemost 1999;25:451-4.

41. Kobayashi T, Sumimoto K, Tokunaga N, Sugimura M, Nishiguchi T, Kanayama N, Terao T. Coagulation index to distinguish severe preeclampsia from normal pregnancy. Semin Thromb Hemost 2002;28:495-500.

42. Lockwood CJ, Toti P, Arcuri F, Paidas M, Buchwalder L, Krikun G, Schatz F. Mechanisms of abruption-induced premature rupture of the fetal membranes: thrombin-enhanced interleukin-8 expression in term decidua. Am J Pathol 2005;167:1443-9.

43. Gómez R, Romero R, Nien JK, Medina L, Carstens M, Kim YM, Chaiworapongsas T, Espinoza J, González R. Idiopathic vaginal bleeding during pregnancy as the only clinical manifestation of intrauterine infection. J Matern Fetal Neonatal Med 2005;18:31-7.

44. Gervasi MT, Chaiworapongsas T, Naccasha N, Pacora P, Berman S, Maymon E, Kim JC, Kim YM, Yoshimatsu J, Espinoza J, Romero R. Maternal intravascular inflammation in preterm premature rupture of membranes. J Matern Fetal Neonatal Med 2002;11:171-5.

45. Østerud B, Bjørklid E. Sources of tissue factor. Semin Thromb Hemost 2006;32:11-23.

46. Rosen T, Schatz F, Kuczynski E, Lam H, Koo AB, Lockwood CJ. Thrombin-enhanced matrix metalloproteinase-1 expression: a mechanism linking placental abruption with premature rupture of the membranes. J Matern Fetal Neonatal Med 2002;11:11-7.

47. Mackenzie AP, Schatz F, Krikun G, Funai EF, Kadner S, Lockwood CJ. Mechanisms of abruption-induced premature rupture of the fetal membranes: Thrombin enhanced decidual matrix metalloproteinase-3 (stromelysin-1) expression. Am J Obstet Gynecol 2004;191:1996-2001.

48. Elovitz MA, Ascher-Landsberg J, Saunders T, Phillippe M. The mechanisms underlying the stimulatory effects of thrombin on myometrial smooth muscle. Am J Obstet Gynecol 2000;183:674-81.

49. Elovitz MA1, Saunders T, Ascher-Landsberg J, Phillippe M. Effects of thrombin on myometrial contractions in vitro and in vivo. Am J Obstet Gynecol 2000;183:799-804.

50. Bilsel AS1, Onaran N, Moini H, Emerk K. Long-term effect of 17beta-estradiol and thrombin on tissue factor pathway inhibitor release from HUVEC. Thromb Res 2000;99:173-8.

51. VanWijk MJ, Boer K, Berekmans RJ, Meijers JC, van der Post JA, Sturk A, VanBavel E, Nieuwland R. Enhanced coagulation activation in preeclampsia: the role of APC resistance, microparticles and other plasma constituents. Thromb Haemost 2002;88:415-20.

52. Erez O, Romero R, Vaisbuch E, Kusanovic JP, Mazaki-Tovi S, Chaiworapongsas T, Gotsch F, Fareed J, Hoppensteadt D, Than NG, Yoon BH, Edwin S, Dong Z, Espinoza J, Mazor M, Hassan SS. High tissue factor activity and low tissue factor pathway inhibitor concentrations in patients with preterm labor. J Matern Fetal Neonatal Med 2010;23:23-33.
520 53. Erez O, Romero R, Hoppensteadt D, Than NG, Fareed J, Mazaki-Tovi S, Espinoza J, Chaiworapongs T, Kim SS, Yoon BH, Hassan SS, Gotsch F, Friel L, Vaisbuch E, Kusanovic JP. Tissue factor and its natural inhibitor in pre-eclampsia and SGA. J Matern Fetal Neonatal Med 2008;21:855-69.

524 54. Erez O, Gotsch F, Mazaki-Tovi S, Vaisbuch E, Kusanovic JP, Kim CJ, Chaiworapongs T, Hoppensteadt D, Fareed J, Than NG, Nhan-Chang CL, Yeo L, Pacora P, Mazor M, Hassan SS, Mittal P, Romero R. Evidence of maternal platelet activation, excessive thrombin generation, and high amniotic fluid tissue factor immunoreactivity and functional activity in patients with fetal death. J Matern Fetal Neonatal Med 2009;22:672-87.

529 55. Beller FK, Ebert C. The coagulation and fibrinolytic enzyme system in pregnancy and in the puerperium. Eur J Obstet Gynecol Reprod Biol 1982;13:177-97.

533 56. Stirling Y, Woolf L, North WR, Seghatchian MJ, Meade TW. Haemostasis in normal pregnancy. Thromb Haemost 1984;52:176-82.

538 57. Brenner B. Haemostatic changes in pregnancy. Thromb Res 2004;114:409-14.

543 58. Romero R, Gonçalves LF, Kusanovic JP, Devesa R, Espinoza J. Mechanisms of preterm labor and preterm premature rupture of the membranes. In: Kurjak A, Chervenak F, eds. Textbook of Perinatal Medicine 2nd Edition, 2006.

548 59. Lockwood CJ, Krikun G, Rahman M, Caze R, Buchwalder L, Schatz F. The role of decidualization in regulating endometrial hemostasis during the menstrual cycle, gestation, and in pathological states. Semin Thromb Hemost 2007;33:111-7.

553 60. Broze GJ Jr, Warren LA, Novotny WF, Higuchi DA, Girard JJ, Miletich JP. The lipoprotein-associated coagulation inhibitor that inhibits the factor VII-tissue factor complex also inhibits factor Xa: insight into its possible mechanism of action. Blood 1988;71:335-43.

558 61. Laskowski M, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem 1980;49:593-626.

563 62. Broze GJ, Girard TJ, Novotny WF. Regulation of coagulation by a multivalent Kunitz-type inhibitor. Biochemistry 1990;29:7539-46.

568 63. Sarig G, Blumenfeld Z, Leiba R, Lanir N, Brenner B. Modulation of systemic hemostatic parameters by enoxaparin during gestation in women with thrombophilia and pregnancy loss. Thromb Haemost 2005;94:980-5.

573 64. Tay SP, Cheong SK, Boo NY. Circulating tissue factor, tissue factor pathway inhibitor and D-dimer in umbilical cord blood of normal term neonates and adult plasma. Blood Coagul Fibrinolysis 2003;14:125-9.

578 65. Hubé F, Reverdieu P, Ichmann S, Trassard S, Thibault G, Gruel Y. Demonstration of a tissue factor pathway inhibitor 2 messenger RNA synthesis by pure villous cytotrophoblast cells isolated from term human placentas. Biol Reprod 2003;68:1888-94.

583 66. Iino M, Foster DC, Kisiel W. Quantification and characterization of human endothelial cell-derived tissue factor pathway inhibitor-2. Arterioscler Thromb Vasc Biol 1998;18:40-6.

588 67. Sprecher CA, Kisiel W, Mathewes S, Foster DC. Molecular cloning, expression, and partial characterization of a second human tissue-factor-pathway inhibitor. Proc Natl Acad Sci U S A 1994;91:3353-7.

593 68. Udagawa K, Miyagi Y, Hirahara F, Miyagi E, Nagashima Y, Minaguchi H, Misugi K, Yasumitsu H, Miyazaki K. Specific expression of PP5/TFPI2 mRNA by syncytiotrophoblasts in human placenta as revealed by in situ hybridization. Placenta 1998;19:217-23.
Kamei S, Kazama Y, Kuijper JL, Foster DC, Kisiel W. Genomic structure and promoter activity of the human tissue factor pathway inhibitor-2 gene. Biochim Biophys Acta 2001;1517:430-5.

Kisiel W, Sprecher CA, Foster DC. Evidence that a second human tissue factor pathway inhibitor (TFPI-2) and human placential protein 5 are equivalent. Blood 1994;84:4384-5.

Bützow R, Virtanen I, Seppälä M, Närvänen O, Stenman UH, Ristimäki A, Bohn H. Monoclonal antibodies reacting with placential protein 5: use in radioimmunoassay, Western blot analysis, and immunohistochemistry. J Lab Clin Med 1988;111:249-56.

Chand HS, Foster DC, Kisiel W. Structure, function and biology of tissue factor pathway inhibitor-2. Thromb Haemost 2005;94:1122-30.

Seppälä M, Wahlström T, Bohn H. Circulating levels and tissue localization of placential protein five (PP5) in pregnancy and trophoblastic disease: absence of PP5 expression in the malignant trophoblast. Int J Cancer 1979;24:6-10.

Obiewke BC, Chard T. Placental protein 5: circulating levels in twin pregnancy and some observations on the analysis of biochemical data from multiple pregnancy. Eur J Obstet Gynecol Reprod Biol 1981;12:135-41.

Shimura M, Wada H, Wakita Y, Nakase T, Hiyoyama K, Nagaya S, Mori Y, Shiku H. Plasma tissue factor and tissue factor pathway inhibitor levels in patients with disseminated intravascular coagulation. Am J Hematol 1997;55:169-74.

Abdel Gader AM, Al-Mishari AA, Awadalla SA, Buyuomi NM, Khashoggi T, Al-Hakeem M. Total and free tissue factor pathway inhibitor in pregnancy hypertension. Int J Gynaecol Obstet 2006;95:248-53.

Erez O, Espinoza J, Chaiworapongs T, Gotsch F, Kusanovic JP, Than NG, Mazaki-Tovi S, Vaisbuch E, Papp Z, Yoon BH, Han YM, Hoppensteadt D, Fareed J, Hassan SS, Romero R. A link between a hemostatic disorder and preterm PROM: a role for tissue factor and tissue factor pathway inhibitor. J Matern Fetal Neonatal Med 2008;21:732-44.

Xiong Y, Zhou Q, Jiang F, Zhou S, Lou Y, Guo Q, Liang W, Kong D, Ma D, Li X. Changes of plasma and placential tissue factor pathway inhibitor-2 in women with preeclampsia and normal pregnancy. Thromb Res 2010;125:e317-22.

Aharon A, Lanir N, Drugan A, Brenner B. Placental TFPI is decreased in gestational vascular complications and can be restored by maternal enoxaparin treatment. J Thromb Haemost 2005;3:2355-7.

Faught W, Garner P, Jones G, Ivey B. Changes in protein C and protein S levels in normal pregnancy. Am J Obstet Gynecol 1995;172:147-50.

Dahlbäck B, Carlsson M, Svensson PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci U S A 1993;90:1004-8.

Rodger MA, Paidas M, McLintock C, Middeldorp S, Kahn S, Martinelli I, Hague W, Rosene Montella K, Greer I. Inherited thrombophilia and pregnancy complications revisited. Obstet Gynecol 2008;112:320-4.
86. Yalinkaya A, Erdemoglu M, Akdeniz N, Kale A, Kale E. The relationship between thrombophilic mutations and preeclampsia: a prospective case-control study. Ann Saudi Med 2006;26:105-9.

87. Preston FE, Rosendaal FR, Walker ID, Briët E, Berntorp E, Conard J, Fontcuberta J, Makris M, Mariani G, Noteboom W, Pabinger I, Legnani C, Scharrer I, Schulman S, van der Meer FJ. Increased fetal loss in women with heritable thrombophilia. Lancet 1996;348:913-6.

88. Kupferminc MJ, Many A, Bar-Am A, Lessing JB, Ascher-Landsberg J. Mid-trimester severe intrauterine growth restriction is associated with a high prevalence of thrombophilia. BJOG 2002;109:1373-6.

89. Han X, Fiehler R, Broze GJ. Isolation of a protein Z-dependent plasma protease inhibitor. Proc Natl Acad Sci U S A 1998;95:9250-5.

90. Han X, Huang ZF, Fiehler R, Broze GJ Jr. The protein Z-dependent protease inhibitor is a serpin. Biochemistry 1999;38:11073-8.

91. Han X, Fiehler R, Broze GJ. Characterization of the protein Z-dependent protease inhibitor. Blood 2000;96:3049-55.

92. Yin ZF, Huang ZF, Cui J, Fiehler R, Lasky N, Ginsburg D, Broze GJ Jr. Prothrombotic phenotype of protein Z deficiency. Proc Natl Acad Sci U S A 2000;97:6734-8.

93. Taylor FB, Chang AC, Peer G, Li A, Ezban M, Hedner U. Active site inhibited factor VIIa (DEGR VIIa) attenuates the coagulant and interleukin-6 and -8, but not tumor necrosis factor, responses of the baboon to LD100 Escherichia coli. Blood 1998;91:1609-15.

94. Kusanovic JP, Espinoza J, Romero R, Hoppensteadt D, Nien JK, Kim CJ, Erez O, Soto E, Fareed J, Edwin S, Chaiwerapongsa T, Than NG, Yoon BH, Gomez R, Papp Z, Hassan SS. Plasma protein Z concentrations in pregnant women with idiopathic intrauterine bleeding and in women with spontaneous preterm labor. J Matern Fetal Neonatal Med 2007;20:453-63.

95. Bretelle F, Arnoux D, Shojai R, D’Ercole C, Sampol J, Dignat F, Camoin-Jau L. Protein Z in patients with pregnancy complications. Am J Obstet Gynecol 2005;193:1698-702.

96. Nien JK, Romero R, Hoppensteadt D, Erez O, Espinoza J, Soto E, Kusanovic JP, Gotsch F, Kim CJ, Mittal P, Fareed J, Santolaya J, Chaiwerapongsa T, Than NG, Yoon BH, Soto E, Papp Z, Hassan SS. Pyelonephritis during pregnancy: a cause for an acquired deficiency of protein Z. J Matern Fetal Neonatal Med 2008;21:629-37.

97. Sood R, Kalloway S, Mast AE, Hillard CJ, Weiler H. Fetomaternal cross talk in the placental vascular bed: control of coagulation by trophoblast cells. Blood 2006;107:3173-80.

98. Sood R, Sholl L, Isermann B, Zogg M, Coughlin SR, Weiler H. Maternal Par4 and platelets contribute to defective placenta formation in mouse embryos lacking thrombomodulin. Blood 2008;112:585-91.

99. Lanir N, Aharon A, Brenner B. Procoagulant and anticoagulant mechanisms in human placenta. Semin Thromb Hemost 2003;29:175-84.

100. Isermann B, Sood R, Pawlinski R, Zogg M, Kalloway S, Degen JL, Mackman N, Weiler H. The thrombomodulin-protein C system is essential for the maintenance of pregnancy. Nat Med 2003;9:331-7.

101. Aharon A, Brenner B, Katz T, Miyagi Y, Lanir N. Tissue factor and tissue factor pathway inhibitor levels in trophoblast cells: implications for placental hemostasis. Thromb Haemost 2004;92:776-86.

102. Butenas S, Orfeo T, Brummel-Ziedins KE, Mann KG. Tissue factor in thrombosis and hemorrhage. Surgery 2007;142:S2-14.
103. Midderdorp S. Thrombophilia and pregnancy complications: cause or association? J Thromb Haemost 2007;5 Suppl 1:276-82.

104. Martinelli I, Legnani C, Bucciarelli P, Grandone E, De Stefano V, Mannucci PM. Risk of pregnancy-related venous thrombosis in carriers of severe inherited thrombophilia. Thromb Haemost 2001;86:800-3.

105. Kovo M, Schreiber L, Bar J. Placental vascular pathology as a mechanism of disease in pregnancy complications. Thromb Res 2013;131 Suppl 1:S114-7.

106. Redline RW, Heller D, Keating S, Kingdom J. Placental diagnostic criteria and clinical correlation--a workshop report. Placenta 2005;26 Suppl A:S114-7.

107. Bar J, Schreiber L, Ben-Haroush A, Ahmed H, Golan A, Kovo M. The placental vascular component in early and late intrauterine fetal death. Thromb Res 2012;130:901-5.

108. Cromi A, Ghezzi F, Dürig P, Di Naro E, Raio L. Sonographic umbilical cord morphology and coiling patterns in twin-twin transfusion syndrome. Prenat Diagn 2005;25:851-5.

109. Salafia CM, Pezzullo JC, Ghidini A, Lopèz-Zeno JA, Whittington SS. Clinical correlations of patterns of placental pathology in preterm pre-eclampsia. Placenta 1998;19:67-72.

110. Roberts DJ, Post MD. The placenta in pre-eclampsia and intrauterine growth restriction. J Clin Pathol 2008;61:1254-60.

111. Mayhew TM, Ohadike C, Baker PN, Crocker IP, Mitchell C, Ong SS. Stereological investigation of placental morphology in pregnancies complicated by pre-eclampsia with and without intrauterine growth restriction. Placenta 2003;24:219-26.

112. Ogge G, Chaiworapongsa T, Romero R, Hussein Y, Kusanovic JP, Yeo L, Kim CJ, Hassan SS. Placental lesions associated with maternal underperfusion are more frequent in early-onset than in late-onset preeclampsia. J Perinat Med 2011;39:641-52.

113. Kovo M, Schreiber L, Ben-Haroush A, Wand S, Golan A, Bar J. Placental vascular lesion differences in pregnancy-induced hypertension and normotensive fetal growth restriction. Am J Obstet Gynecol 2010;202:561.e1-5.

114. Teng Y, Jiang R, Lin Q, Ding C, Ye Z. The relationship between plasma and placental tissue factor, and tissue factor pathway inhibitors in severe pre-eclampsia patients. Thromb Res 2010;126:e41-5.

115. Rerdline RW. Placental pathology: a systematic approach with clinical correlations. Placenta 2008;29 Suppl A:S86-91.

116. Salafia CM, Minior VK, Pezzullo JC, Popek EJ, Rosenkrantz TS, Vintzileos AM. Intrauterine growth restriction in infants of less than thirty-two weeks' gestation: associated placental pathologic features. Am J Obstet Gynecol 1995;173:1049-57.

117. Kovo M, Schreiber L, Ben-Haroush A, Gold E, Golan A, Bar J. The placental component in early-onset and late-onset preeclampsia in relation to fetal growth restriction. Prenat Diagn 2012;32:632-7.

118. Romero R, Espinoza J, Kusanovic JP, Gotsch F, Hassan S, Erez O, Chaiworapongsa T, Mazor M. The preterm parturition syndrome. BJOG 2006;113 Suppl 3:17-42.

119. Arias F, Rodríguez L, Rayne SC, Kraus FT. Maternal placental vasculopathy and infection: two distinct subgroups among patients with preterm labor and preterm ruptured membranes. Am J Obstet Gynecol 1993;168:585-91.

120. Nath CA, Ananth CV, Smulian JC, Shen-Schwarz S, Kaminsky L; New Jersey-Placental Abruption Study Investigators. Histologic evidence of inflammation and risk of placental abruption. Am J Obstet Gynecol 2007;197:319.e1-6.
Kim YM, Chaiworapongs A, Gomez R, Bujold E, Yoon BH, Rotmensh S, Thaler HT, Romero R. Failure of physiologic transformation of the spiral arteries in the placental bed in preterm premature rupture of membranes. Am J Obstet Gynecol 2002;187:1137-42.

Salafia CM, Vogel CA, Vintzileos AM, Banham KF, Pezzullo J, Silberman L. Placental pathologic findings in preterm birth. Am J Obstet Gynecol 1991;165:934-8.

Stephenson CD, Lockwood CJ, Ma Y, Guller S. Thrombin-dependent regulation of matrix metalloproteinase (MMP)-9 levels in human fetal membranes. J Matern Fetal Neonatal Med 2005;18:17-22.
Figure 1. Thrombin–antithrombin III (TAT) levels in control patients, patients with preterm labor who delivered between 21 and 7 days, and patients with preterm labor who delivered within 7 days. Open diamonds, Mean levels; black error bars, SD. *P <.05, Student-Newman-Keuls method (from Elovitz MA, Baron J, Phillippe M. The role of thrombin in preterm parturition. Am J Obstet Gynecol 2001 Nov;185(5):1059-1063. With permission).

Figure 2. (a) Comparison of median maternal plasma TF concentration between patients with normal pregnancy (n=79), pre-eclampsia (n=133), and women who delivered an SGA neonate (n=61). (b) Comparison of median maternal plasma TFPI concentration between patients with normal pregnancy (n=86), pre-eclampsia (n=133), and women who delivered an SGA neonate (n=61). (c) Comparison of maternal plasma TFPI/TF ratio between women with normal pregnancy (n=79), pre-eclampsia (n=133), and women who delivered an SGA neonate (n=61). (From Erez O, Romero R, Hoppensteadt D, Than NG, Fareed J, Mazaki-Tovi S, Espinoza J, Chaiworapongsa T, Kim SS, Yoon BH, Hassan SS, Gotsch F, Friel L, Vaisbuch E, Kusanovic JP. Tissue factor and its natural inhibitor in pre-eclampsia and SGA. J Matern Fetal Neonatal Med. 2008 Dec;21(12):855-69. With permission).

Figure 3. Factor X activation and protein Z/protein Z-dependent protease inhibitor (ZPI) inhibition of activated factor X. (a) Then formation of the complex of tissue factor (TF) and factor VIIa (FVIIa) at the site of injury and activation of extrinsic coagulation cascade. (b) Activation of circulating factor X by the TFþFVIIa complex in the presence of exposed phospholipids and Ca2þ. (c) Inhibition of factor Xa (FXa) by the protein Z/ZPI complex by binding to its active site. Modified from Broze JG, Lancet 2001;357:900–901.

Figure 4. Histologic features of maternal vessel and implantation site reaction patterns: a. Acute atherosclerosis of maternal arterioles in the placental membranes: a cluster of decidual arterioles shows varying stages of fibrinoid necrosis. The vessel at the upper right shows full histologic expression with dark homogenous fibrinoid replacement of the vessel wall accompanied by occasional foamy macrophages ([original magnification is indicated for all panels] X 20). b. Mural
hypertrophy of decidual arterioles in the placental membranes: a cluster of arterioles shows
medial hypertrophy with the vessel wall occupying greater than one third of total vessel diameter
(X 10). c. Muscularized basal plate arteries with accompanying implantation site abnormalities:
maternal spiral arteries in the basal plate lack normal trophoblast remodeling and retain their pre-
pregnancy muscular media. Clusters of immature intermediate trophoblast and increased
placental giant cells are seen above and below the muscular arteries, respectively (X 10). d. Acute
atherosclerosis of muscularized basal plate arteries with accompanying implantation site abnormalities:
three cross sections of a basal plate artery are seen. The two on the left show persistence of the
muscular media while the one on the right has undergone fibrinoid necrosis of the media with
foamy macrophages (acute atherosis). Clusters of immature intermediate trophoblast are also
seen overlying the arteries (X 4). e. Immature intermediate trophoblast: clusters of abnormally
small intermediate trophoblast with focal vacuolation are surrounded by an excessive amount of
basal plate fibrin. Increased placental site giant cells are also seen at the lower margin (X 10). f.
Increased placental site giant cells: numerous multinucleate placental site giant cells, not usually
seen in the delivered placenta, are scattered in loose decidua tissue which is devoid of normal
intermediate trophoblast and fibrinoid (X 10).

From: Redline RW, et al. Maternal vascular underperfusion: nosology and reproducibility of
placental reaction patterns. Pediatr Dev Pathol. 2004;7(3):237-49. With permission.

Figure 5. Histologic features of villous and intervillous lesions; a. Increased syncytial knots:
aggregates of syncytiotrophoblast nuclei cluster at one or more poles of distal villi in the vicinity
of larger stem villi (arrowhead) at the periphery of the lobule ([original magnification is indicated
for all panels] X 10). b. Villous agglutination: clusters of degenerating distal villi are adherent to
one another and focally enmeshed in fibrin (X 4). c. Distal villous hypoplasia: a long, thin, non-
branching stem villus is surrounded by a markedly reduced number of small hypoplastic distal
villi (X 10). d. Increased intervillous fibrin: stem villi are surrounded by a mantle of fibrin-type
fibrinoid that does not extend to distal villi at the center of the lobule (X 2). e. Nodular
intervillous (and intravillous) fibrin: small aggregates of intervillous fibrin adhere to, and are
focally reepithelialized by, distal villous trophoblast (X 20). f. Increased intervillous fibrin with
intermediate trophoblast (X-cells): stem and distal villi are enmeshed in a matrix of fibrin and fibrinoid containing prominent intermediate trophoblast (arrowhead) (X 10).

From: Redline RW, et al. Maternal vascular underperfusion: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol. 2004;7(3):237-49. With permission.

Figure 6. Amniotic fluid tissue factor concentration among women with normal pregnancies (median 3710.4 pg/ml, range 2198.8–6268) and patients with a fetal demise (median 8535.4 pg/ml, range 2208.2–125,990.0); (b) Amniotic fluid tissue factor activity among women with normal pregnancies (median 28.4 pM, range 10.2–84.9) and patients with a fetal demise (median 81.6 pM, range 7.2–1603.4). From EREZ O, GOTSCH F, MAZAKI-TOVI S, et al. Evidence of maternal platelet activation, excessive thrombin generation, and high amniotic fluid tissue factor immunoreactivity and functional activity in patients with fetal death. J Matern Fetal Neonatal Med 2009;22:672-87, with permission.

Figure 7. Maternal plasma TAT III concentration in women with preterm labor (PTL) and those with a Normal pregnancy (From Chaiworapongsa T, Espinoza J, Yoshimatsu J, Kim YM, Bujold E, Edwin S, et al. Activation of coagulation system in preterm labor and preterm premature rupture of membranes. J Matern Fetal Neonatal Med 2002 11(6):368-373, with permission).
Table 1

Table 1. Concentration and activity in maternal plasma of coagulating and anticoagulating factors and their relation with thrombin generation in the great obstetrical syndromes.
Table 1. Concentration and activity in maternal plasma of coagulating and anticoagulating factors and their relation with thrombin generation in the great obstetrical syndromes.

Condition	TF concentration and/or activity	TFPI concentration and/or activity	TAT III complexes concentration	Protein Z concentration	Thrombin generation	References
Premature rupture of membranes	Concentration ↑	Concentration ↓	Concentration ↑	Concentration ↓	↑	1-5
Preterm labor	Activity ↑	Concentration =	Concentration ↑	Concentration ↓	↑	1-5
Fetal demise	Activity =	Concentration =	Concentration ↑	Concentration ↓	↑	1-5
Preeclampsia	Activity ↑	Concentration ↑	Concentration ↑	Concentration ↓	↑	1-5
Intrauterine growth retardation	Concentration ↓	Concentration =	Concentration ↑	Concentration ↓	↑	1-5

1. Erez O, Romero R, Vaisbuch E, Kusanovic JP, Mazaki-Tovi S, Chaiworapongs T, Gotsch F, Fareed J, Hoppensteadt D, Than NG, Yoon BH, Edwin S, Dong Z, Espinoza J, Mazor M, Hassan SS. High tissue factor activity and low tissue factor pathway inhibitor concentrations in patients with preterm labor. J Matern Fetal Neonatal Med. 2010 Jan;23(1):23-33

2. Erez O, Gotsch F, Mazaki-Tovi S, Vaisbuch E, Kusanovic JP, Kim CJ, Chaiworapongs T, Hoppensteadt D, Fareed J, Than NG, Nhan-Chang CL, Yeo L, Pacora P, Mazor M, Hassan SS, Mittal P, Romero R. Evidence of maternal platelet activation, excessive thrombin generation, and high amniotic fluid tissue factor immunoreactivity and functional activity in patients with fetal death. J Matern Fetal Neonatal Med. 2009 Aug;22(8):672-87

3. Kusanovic JP, Espinoza J, Romero R, Hoppensteadt D, Nien JK, Kim CJ, et al. Plasma protein Z concentrations in pregnant women with idiopathic intrauterine bleeding and in women with spontaneous preterm labor. J Matern Fetal Neonatal Med 2007 Jun;20(6):453-463.

4. Gris JC, Quere I, Dechaud H, Mercier E, Pincon C, Hoffet M, Vasse M, Mares P. High frequency of protein Z deficiency in patients with unexplained early fetal loss. Blood 2002;99:2606–2608

5. Paidas MJ, Ku DH, Lee MJ, Manish S, Thurston A, Lockwood CJ, Arkel YS. Protein Z, protein S levels are lower in patients with thrombophilia and subsequent pregnancy complications. J Thromb Haemost 2005;3:497–501.
Figure 1

Thrombin-antithrombin III (TAT) levels in control patients, patients with preterm labor who delivered between 21 and 7 days, and patients with preterm labor who delivered within 7 days. Open diamonds, Mean levels; black error bars, SD. *P < .05, Student-Newman-Keuls method (from Elovitz MA, Baron J, Phillippe M. The role of thrombin in preterm parturition. Am J Obstet Gynecol 2001 Nov;185(5):1059-1063. With permission).
Figure 2 (on next page)

Figure 2

Figure 2. (a) Comparison of median maternal plasma TF concentration between patients with normal pregnancy (n=79), pre-eclampsia (n=133), and women who delivered an SGA neonate (n=61). (b) Comparison of median maternal plasma TFPI concentration between patients with normal pregnancy (n=86), pre-eclampsia (n=133), and women who delivered an SGA neonate (n=61). (c) Comparison of maternal plasma TFPI/TF ratio between women with normal pregnancy (n=79), pre-eclampsia (n=133), and women who delivered an SGA neonate (n=61). (From Erez O, Romero R, Hoppensteadt D, Than NG, Fareed J, Mazaki-Tovi S, Espinoza J, Chaiworapongsa T, Kim SS, Yoon BH, Hassan SS, Gotsch F, Friel L, Vaisbuch E, Kusanovic JP. Tissue factor and its natural inhibitor in pre-eclampsia and SGA. J Matern Fetal Neonatal Med. 2008 Dec;21(12):855-69. With permission).
Figure 3

Factor X activation and protein Z/protein Z-dependent protease inhibitor (ZPI) inhibition of activated factor X. (a) Then formation of the complex of tissue factor (TF) and factor VIIa (FVIIa) at the site of injury and activation of extrinsic coagulation cascade. (b) Activation of circulating factor X by the TFpFVIIa complex in the presence of exposed phospholipids and Ca2+. (c) Inhibition of factor Xa (FXa) by the protein Z/ZPI complex by binding to its active site. Modified from Broze JG, Lancet 2001;357:900-901.
Histologic features of maternal vessel and implantation site reaction patterns: a. Acute atherosis of maternal arterioles in the placental membranes: a cluster of decidual arterioles shows varying stages of fibrinoid necrosis. The vessel at the upper right shows full histologic expression with dark homogenous fibrinoid replacement of the vessel wall accompanied by occasional foamy macrophages ([original magnification is indicated for all panels] X .20 b. Mural hypertrophy of decidual arterioles in the placental membranes: a cluster of arterioles shows medial hypertrophy with the vessel wall occupying greater than one third of total vessel diameter (X 10). c. Muscularized basal plate arteries with accompanying implantation site abnormalities: maternal spiral arteries in the basal plate lack normal trophoblast remodeling and retain their pre-pregnancy muscular media. Clusters of immature intermediate trophoblast and increased placental giant cells are seen above and below the muscular arteries, respectively (X 10). d. Acute atherosis of muscularized basal plate arteries with accompanying implantation site abnormalities: three cross sections of a basal plate artery are seen. The two on the left show persistence of the muscular media while the one on the right has undergone fibrinoid necrosis of the media with foamy macrophages (acute atherosis). Clusters of immature intermediate trophoblast are also seen overlying the arteries (X 4). e. Immature intermediate trophoblast: clusters of abnormally small intermediate trophoblast with focal vacuolation are surrounded by an excessive amount of basal plate fibrin. Increased placental site giant cells are also seen at the lower margin (X .10 f. Increased placental site giant cells: numerous multinucleate placental site giant cells, not usually seen in the delivered placenta, are scattered in loose decidual tissue which is devoid of normal intermediate trophoblast and fibrinoid (X .10 From: Redline RW, et al. Maternal vascular underperfusion: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol. 2004;7(3):237-49. With permission.
Histologic features of villous and intervillous lesions; a. Increased syncytial knots: aggregates of syncytiotrophoblast nuclei cluster at one or more poles of distal villi in the vicinity of larger stem villi (arrowhead) at the periphery of the lobule ([original magnification is indicated for all panels] X 10). b. Villous agglutination: clusters of degenerating distal villi are adherent to one another and focally enmeshed in fibrin (X .(4 c. Distal villous hypoplasia: a long, thin, non-branching stem villus is surrounded by a markedly reduced number of small hypoplastic distal villi (X .(10 d. Increased intervillous fibrin: stem villi are surrounded by a mantle of fibrin-type fibrinoid that does not extend to distal villi at the center of the lobule (X .(2 e. Nodular intervillous (and intravillous) fibrin: small aggregates of intervillous fibrin adhere to, and are focally reepithelialized by, distal villous trophoblast (X 20). f. Increased intervillous fibrin with intermediate trophoblast (X-cells): stem and distal villi are enmeshed in a matrix of fibrin and fibrinoid containing prominent intermediate trophoblast (arrowhead) (X .(10

From: Redline RW, et al. Maternal vascular underperfusion: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol. 2004;7(3):237-49. With permission.
Figure 6 (on next page)

Figure 6

Amniotic fluid tissue factor concentration among women with normal pregnancies (median 3710.4 pg/ml, range 2198.8–6268) and patients with a fetal demise (median 8535.4 pg/ml, range 2208.2–125,990.0); (b) Amniotic fluid tissue factor activity among women with normal pregnancies (median 28.4 pM, range 10.2–84.9) and patients with a fetal demise (median 81.6 pM, range 7.2–1603.4). From Erez O, Gotsch F, Mazaki-Tovi S, et al. Evidence of maternal platelet activation, excessive thrombin generation, and high amniotic fluid tissue factor immunoreactivity and functional activity in patients with fetal death. J Matern Fetal Neonatal Med 2009;22:672-87, with permission.
Maternal plasma TAT III concentration in women with preterm labor (PTL) and those with a Normal pregnancy (From Chaiworapongsa T, Espinoza J, Yoshimatsu J, Kim YM, Bujold E, Edwin S, et al. Activation of coagulation system in preterm labor and preterm premature rupture of membranes. J Matern Fetal Neonatal Med 2002 11(6):368-373, with permission).
