Functional significance of Hippo/YAP signaling for drug resistance in colorectal cancer

Ruolan Song1,2 | Dongsheng Gu2 | Lining Zhang1 | Xiaoli Zhang2 | Beiqin Yu1 | Bingya Liu1 | Jingwu Xie2

1 Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
2 Indiana University Departments of Pediatrics, Biochemistry and Molecular Biology, Pharmacology and Toxicology, The Wells Center for Pediatrics Research and IU Simon Cancer Center, Indianapolis, Indiana

Correspondence
Jingwu Xie, Indiana University Departments of Pediatrics, Biochemistry and Molecular Biology, Pharmacology and Toxicology, The Wells Center for Pediatrics Research and IU Simon Cancer Center, Indianapolis, IN 46202.
Email: jinxie@iu.edu

Bingya Liu, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Email: liubingya@sjtu.edu.cn

Funding information
National Cancer Institute. Grant number: R01CA155086; The Wells Center for Pediatric Research; Riley Children Foundation; Jeff Gordon Research Laboratory, AGA, Healthcare Initiatives, Inc.; IU Simon Cancer Center; National Natural Science foundation of China, Grant numbers: 81672823, 81472641; Key Projects in the National Science & Technology Pillar Program of China, Grant number: 2014BAI09B03; CTSI Indiana

Colorectal cancer is a leading cause of cancer-related death worldwide. While early stage colorectal cancer can be removed by surgery, patients with advanced disease are treated by chemotherapy, with 5-Fluorouracil (5-FU) as a main ingredient. However, most patients with advanced colorectal cancer eventually succumb to the disease despite some responded initially. Thus, identifying molecular mechanisms responsible for drug resistance will help design novel strategies to treat colorectal cancer. In this study, we analyzed an acquired 5-FU resistant cell line, LoVo-R, and determined that elevated expression of YAP target genes is a major alteration in the 5-FU resistant cells. Hippo/YAP signaling, a pathway essential for cell polarity, is an important regulator for tissue homeostasis, organ size, and stem cells. We demonstrated that knockdown of YAP1 sensitized LoVo-R cells to 5-FU treatment in cultured cells and in mice. The relevance of our studies to colorectal cancer patients is reflected by our discovery that high expression of YAP target genes in the tumor was associated with an increased risk of cancer relapse and poor survival in a larger cohort of colorectal cancer patients who underwent 5-FU-related chemotherapy. Taken together, we demonstrate a critical role of YAP signaling for drug resistance in colorectal cancer.

KEYWORDS
cancer therapy, colorectal cancer, drug resistance, YAP, 5-fluorouracil (5-FU)

1 INTRODUCTION

Colorectal cancer (CRC) patients have benefited from research advancements in early screening and preventative measures in life styles. The overall incidence of CRC has significantly declined in the last two decades although CRC is still the leading cause of cancer-related deaths, with nearly 1.4 million cases a year and ~774,000 deaths worldwide.1

Chemotherapy, particularly 5-Fluorouracil (5-FU)-based adjuvant chemotherapy, has been widely used to treat CRC since early 1990s. Addition of oxaliplatin to 5-FU-based regimen has resulted in risk
2.1 Molecular mechanisms by which YAP signaling is elevated in 5-FU resistant LoVo-R cells

To determine the molecular mechanisms responsible for elevated YAP1 target gene expression, we detected phosphor- and total-protein levels of Mst1/2 and Lats1/2. We observed reduced levels of phosphor-Mst1/2 and Lats1/2 in the 5-FU resistant LoVo-R cells (Figure 3A), indicating that elevated YAP signaling is at least partially due to up-stream signaling activation.

There are several upstream signaling pathways that regulate the Hippo pathway. Elevated receptor tyrosine kinases (RTKs) can suppress Mst1/2 phosphorylation, leading to more nuclear YAP1 protein and elevated YAP1 target gene expression. Tight junction and adherent junction can promote Mst1/2 phosphorylation. Mst1/2 can also be activated by G-protein coupled receptors, including receptors for Wnts, the frizzled molecules. Gene expression comparison between the 5-FU resistant LoVo-R cells and the parental LoVo cells revealed elevated expression of several growth factors, such as PDGFD, EGF, FGF5, and VEGFC in the 5-FU resistant LoVo-R cells (Figure S1), suggesting that several RTKs may be activated in the resistant cells. If activation of RTKs is the major reason for reduced Lats1/2 phosphorylation, inhibiting RTKs using downstream inhibitors should increase the relative level of phosphorylated Lats1/2, which is indicated by the ratio of phosphorylated Lats1/2 versus total Lats1/2. We treated LoVo-R cells with MEK inhibitor AZD6244 and PI3K inhibitor BEZ235. We observed an increase in the ratio of phosphor-Lats1/2 versus total Lats1/2 (Figure 3B). This result indicates that RTKs are involved in regulation of Hippo/YAP1 signaling.

In addition, we also noticed morphological changes in 5-FU resistant LoVo-R cells (Figure 2A). 5-FU resistant LoVo-R cells are mesenchymal like whereas the parental cell is round with a large nucleus. Furthermore, the 5-FU resistant LoVo-R cells have more expression of vimentin, N-Cadherin, and integrin α5β1, suggestive of an EMT phenotype.

In addition, we found elevated expression of YAP1 and TEAD2 in 5-FU resistant LoVo-R cells (Figure 1). Thus, it appears that there are several mechanisms by which expression of YAP1 target genes are up-regulated in 5-FU resistant LoVo-R cells.
2.3 Significance of YAP1 for 5-FU resistance in LoVo-R cells

Although RTKs and EMT regulate YAP1 signaling, knocking down YAP1 seems to be more effective in suppression of YAP1 signaling because up-regulation of YAP1 and TEAD2 is one important mechanism by which YAP1 target genes are induced. We knocked down YAP1 by specific shRNAs in LoVo-R cells. We examined YAP1 target genes expression. As shown in Figure 4A, expression of ANKRD1 and CTGF were significantly suppressed whereas NRG1 and TEAD2 were not affected.

We further tested the IC50 of LoVo-R shYAP cells (Figure 4A). The IC50 value of LoVo-R shYAP is around 0.4 mM which is lower than 13.803 mM, the value observed for LoVo-R control cells (Figure 4B).

Next, we determined whether 5-FU sensitivity is altered by YAP1 knocking down in LoVo formed tumors in mice. After injection of LoVo-R-shYAP or the LoVo-R control cells into immune deficient NSG mice and tumor formation, we treated mice with 5-FU (50 mg/kg) once a week. We measured the tumor size at different time points. As shown in Figure 5, we found that the tumors derived from the LoVo-R control cells were not significantly different from the tumors from 5-FU treated mice (Figure 5A). In contrast, tumors from LoVo-R-shYAP1

FIGURE 1 Gene expression analysis in 5-FU resistant LoVo-R cells versus parental LoVo cells. Total RNAs were extracted from LoVo-R and LoVo cells, and real-time PCR was performed using taqman primers and probes. A, Shows a diagram of the Hippo/YAP1 pathway. B, Shows relative levels of YAP1, TEAD2, and several YAP target genes. C, Shows protein levels of YAP1 and CYR61. All the data were shown as mean ± SD and from three independent experiments.

FIGURE 2 Nuclear localization of YAP1 protein. We detected YAP1 protein in LoVo and LoVo-R cells by immunofluorescent staining and cell fractionation analysis. A, Shows typical YAP1 staining. Please note the different cell morphology between LoVo-R cells and LoVo cells. YAP1 was indicated by red staining, counter stained with DAPI. B, Shows detection of YAP1 in nuclear fractionated proteins by Western blotting, with LaminC as the internal control. Left is the Western blotting results and the right is the quantitative analysis of the nuclear YAP1/LaminC ratios. Cells treated with trypsin or without trypsin treatment had no significant difference. Significant difference was indicated by *** (P < 0.0005).
cells without 5-FU treatment continues to grow whereas 5-FU treatment significantly reduced tumor growth (Figure 5B), indicating that knocking down YAP1 sensitizes tumors to 5-FU treatment.

These experiments demonstrate that elevated YAP1 signaling is important for 5-FU resistance both in cultured LoVo cells and in LoVo-derived tumors.32

2.4 | Relevance of YAP1 signaling to cancer relapse and survival of colorectal cancer patients

To determine the relevance of our studies in 5-FU resistant LoVo-R cells and the matched parental LoVo cells, we used a public database to find the association between expression of YAP1 and its target genes in human colorectal cancer with cancer relapse and survival of colorectal cancer patients (through CBioportal database). All patients with colon cancer received 5-FU-containing chemotherapy as a standard treatment, and we determined the rate of cancer relapse in patients with high or low expression of YAP1 target genes in the tumor. We found that cancer relapse occurred in >33% of the patients with high expression of YAP1 target genes in the tumor. In contrast, the rate of cancer relapse in patients with low YAP1 target gene expression was only about 10%. The relevance of YAP1 target gene expression with drug resistance can be reflected from survival of colorectal cancer patients with high or low YAP1 target gene expression in the tumor. All patients underwent 5-FU containing chemotherapy as a standard treatment option. According to expression levels of YAP and its target genes, we analyzed the relationship between YAP1 target gene expression in the tumor with the survival time of the patients. We found that patients with low YAP1 target gene expression survived better than those with high YAP1 target gene expression (Figure 6).

Taken all the data together, we found that YAP1 and its target genes are highly expressed in 5-FU resistant LoVo-R cells. Although the exact mechanisms underlying YAP1 signaling activation remain incompletely understood, we believe that activated RTKs and YAP1 gene expression are responsible for elevated YAP1 signaling in drug resistant cells. We demonstrated that down-regulation of YAP1 by shRNAs sensitized LoVo-R cells to 5-FU treatment both in cultured cells and in mice. Our results are relevant to human colorectal cancer patients as high expression of YAP1 and its target genes are associated with a high cancer relapse rate and poor patient survival. Our data indicate that reducing YAP1 signaling may be one way to improve the efficacy of 5-FU-containing chemotherapy of colorectal cancer.

3 | DISCUSSION

Drug resistance has been a clinical issue for treatment of cancer, including traditional chemotherapy, targeted therapy, and immune therapy.33–35 Drug resistance to chemotherapy in colorectal cancer is a significant issue as most colorectal treatment includes 5-FU. While numerous studies have been conducted on drug resistance in colorectal cancer, thus far, no effective counter measures have been developed to reverse drug resistance. In this study, we tried to identify drug resistance mechanisms of colorectal cancer cells using cells with acquired 5-FU resistance in comparison with the parental cells. Through RNA-seq analyses, we discovered elevated YAP1 target gene expression as the major alteration in the 5-FU resistant cells. By knocking down YAP1, we demonstrated that YAP1 is required for 5-FU resistance. We also showed the relevance of our results to human colorectal cancer patients through gene expression association studies. We showed that patients with high YAP1 target gene
expression had a high risk of cancer relapse and poor survival. Thus, we identified YAP1 signaling as the major factor for 5-FU resistance, and thus, down-regulation of YAP1 signaling may be effective in promoting the efficacy of 5-FU-based chemotherapy.

Previous studies have linked YAP1 signaling to colorectal cancer development. In one study, a tyrosine kinase YES1 was shown to be up-regulated in the 5-FU resistant cells, and YES1 regulates drug resistance through regulation of YAP1. In other studies, YAP1 signaling is shown to be associated with cell proliferation in colorectal cancer cells as well as metastasis of colon cancer. In our studies, we revealed several possible mechanisms by which YAP1 signaling is activated in 5-FU resistant colorectal cancer cells. These include elevated activation of RTKs, EMT, and elevated expression of YAP1 itself. It thus appears that there are different mechanisms by which YAP1 signaling is activated in drug resistance in colorectal cancer. Using a large cohort of colorectal cancer patients (n = 633), we were able to show that high expression of YAP1, TEAD2, and YAP1 target genes CYR61 and ANKRD1 is associated with a high risk of cancer relapse (>33% vs ~10%) and poor survival (Figure 6), suggesting that our findings are relevant to colorectal cancer patients. As complicated as drug resistance, it is likely that multiple mechanisms are involved in regulation of 5-FU resistance in colorectal cancer.

It remains unclear how YAP1 signaling regulates 5-FU drug resistance. It is known that YAP1 signaling is an important pathway for regulation of tissue polarity. Like other cell polarity regulators, including hedgehog and Wnt signaling, YAP1 is known to regulate residual cancer cells or cancer stem cells. Efficiency of tumor sphere formation is one feasible biology assay for cancer stem cells. However, LoVo-R or its parental LoVo cells do not form tumor spheres, which prevents further analyses. Additional 5-FU resistant cell lines with activated YAP1 signaling will be sought to further the mechanism study.

5-FU is widely used in cancer treatment for chemotherapy or neoadjuvant chemotherapy. In addition to colorectal cancer, 5-FU has
been used for treatment with pancreatic cancer, head and neck cancers, skin and pediatric cancers. We predict that similar mechanisms may also exist for 5-FU resistance in other cancer types. In addition to being a drug target, elevated expression of YAP1 and its target genes may be also used to predict cancer relapse in chemotherapy.

4 | MATERIALS AND METHODS

4.1 | Cell culture

Human colon cancer cell lines LoVo and HEK293T were purchased from ATCC, Manassas, VA. LoVo cells were cultured in DMEM: F12 = 1:1 medium and HEK293T cells were cultured in DMEM, supplemented with 10% FBS and 100 U/mL penicillin and 100 µg/mL streptomycin at 37°C under a humidified environment containing 5% CO2. The cells in logarithmic growth were selected for subsequent experiments.

4.2 | Reagents and antibody

5-fluorouracil reagent was purchased from Sigma, F6627-5G. Powder was dissolved in growth medium (DMEM: F12), then stocked at −80°C until use. Western Blotting was performed using antibodies against YAP (Cell Signaling Technology, Inc, Danvers, MA, Cat#14074S), p-YAP (Cell Signaling Technology, Inc, #4693), p-LATS1 (Cell Signaling Technology, Inc, #9155), LATS1 (Cell Signaling Technology, Inc, #9153), p-MST1 (Cell Signaling Technology, Inc, #3681S), and β-actin antibody (Santa Cruz Biotechnology, Santa Cruz, CA).

4.3 | Cell viability and test cell growth inhibition rate

Day 1, cells (4000/well for LoVo cells, 3500/well for LoVo-R cells) were seeded into 96-well plates, with 100 µL growth medium for a well. After cultured for 24 h, chemosensitivity was assessed, with three treatment groups: group A—only growth medium for the background; group B—cells with fresh medium without 5-FU for basic metabolism; group C—the growth medium was replaced with various concentrations of 5-FU (LoVo cells, 0, 0.0154, 0.0308, 0.0616, 0.1232, 0.2464, 0.4928 mM; LoVo-R cells, 0, 0.3125, 0.625, 1.25, 2.5, 5, 10, 12, 15 mM). After treatment for 48 h, cell viability was performed by AlamarBlue (Thermo Scientific, Orlando, FL) with 10 µL for each well. After 1.5 h, the absorbance was measured by Microplate Reader (Thermo Scientific) at the 530/590 nm. The value was used as an indicator of cell viability. Eight wells were used for each drug concentration, and the experiment was repeated at least three times.

4.4 | Lentiviral infection

The plasmid siRNAs were purchased from Sigma (Broad Institute, St. Louis, MO). To generate YAP knockdown cells, HEK293T cells were used to generate lentiviruses after transfection with plasmids containing a specific shYAP. PRRE, RSV/REV, and CMVG plasmids using Lipofectamine 3000 (Invitrogen, Waltham, MA).
Viruses-containing cell culture supernatant was used to infect LoVo-R cells. After infection for three times, cells were selected with 1 µg/mL puromycin (Sigma) to establish stable shRNA expression.

4.5 | RNA extraction and real-time PCR

Total RNAs were extracted from cells using TRIzol reagent (Sigma, St. Louis, MO) and performed real-time PCR according to the manufacturer’s instructions. In brief, 1 µg of total RNA was reversely transcribed into cDNA using the First-Strand Synthesis Kit (Roche, Indianapolis, IN). Real-time PCR was carried out with specific probes according to manufacturer’s instructions. All probes for real-time PCR were purchased from the Applied Biosystems. (YAP-HS00902712-g1; CTGF-HS01026927; CYR61-HS00998500; ANKR-D1-HS00173317; TEAD2-HS01055894; NRG1-HS01101538).

4.6 | Western blot analysis

Cells were lysed using cell lysis buffer (50 mM Hepes, 2 mM EDTA, 100 mM NaCl, 1% Glycerol, 1% triton X-100, protease, and phosphatase inhibitors). Proteins were denatured at 100°C for 5 min.

Proteins were separated by SDS-PAGE, and then transferred onto PVDF membrane. Specific proteins were detected after incubation with the first antibodies (anti-MST1-P antibody, anti-LATS1-P antibody, anti-LATS1 antibody, anti-YAP-P antibody, anti-YAP antibody, which were diluted at 1:1000, Cell Signaling Technology; mouse anti- β actin antibody, diluted at 1:10000, Santa Cruz Biotechnology), followed by the secondary antibody (goat anti-rabbit-HRP/goat anti-mouse-HRP; diluted at 1:20000, Fisher Scientific, Waltham, MA). Proteins bands were detected by using an ECL Western blotting detection kit (Fisher Scientific).

4.7 | Immunofluorescence staining

To test the expression of YAP between LoVo cells and LoVo-R cells. Cells were seeded in six-well plates with coverslips at the bottom when cell confluence reaches 50-80%, cells were fixed with 4% of PFA/PBS for 15 min at room temperature. There were two groups: one group with the first antibody (anti-YAP antibody 1:400 dilution) and the second antibody (1:300); another group with the second antibody (1:300) only. DAPI was used for nuclear staining.

4.8 | Tumor xenografts and anticancer chemotherapy

All procedures about animal experiments were approved by the Institutional Animal Care and Use Committee in Indiana University of Medicine. To generate tumors in mice, we injected 1 x 10^7 cells re-suspended in 100 µL PBS into NSG mice. Tumor volume was measured with a caliper twice a week (0.5 x length x width^2). Mice with tumor were treated twice a week with 5-FU (50 mg/kg/body weight). Tumor was removed, weighted, and fixed in formalin for further study and analysis.

4.9 | Statistical analysis

All the data are presented as mean ± SD and from three independent experiments. IC50 values of 5-FU were calculated with the GraphPad Prism 7.0 software. Student’s test was done for statistical analysis with two groups and P-value was calculated by two-tail unpaired t-test. Significance was distinguished as *P < 0.05, **P < 0.005, ***P < 0.0005. Bands of Western blotting and pictures of immunofluorescence staining were quantified by ImageJ software. Analyses of a large cohort of colorectal cancer patients was through a public CTGA database (Cbioportal) with Kaplan-Meier survival generated automatically.

ACKNOWLEDGMENTS

This work was supported by National Cancer Institute R01CA155086, The Wells Center for Pediatric Research, Riley Children Foundation, Jeff Gordon Children’s Foundation, and IU Simon Cancer Center. This work was also funded by grants from National Natural Science foundation of China (No. 81672823, 81472641), Key Projects in the National Science & Technology Pillar Program of China (No. 2014BAI09B03). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This work was supported by National Cancer Institute R01CA155086, Jeff Gordon Research Laboratory, AGA, Healthcare Initiatives, Inc, and CTSI Indiana.

CONFLICTS OF INTEREST

The authors declare that they have no competing interests.

AUTHORS’ CONTRIBUTIONS

RS and DG performed the initial experiments. LZ and XZ help with real-time PCR and Western blot, BY help with LoVo-R cell line establishment. BL and JX designed the experiments. RS and JX wrote the manuscript.

ETHICS, CONSENT, AND PERMISSIONS

Our studies have been approved by IACUC (protocol number 11370) and IRB (Ex0909-22) from our institutions.

ORCID

Jingwu Xie http://orcid.org/0000-0002-3674-332X

REFERENCES

1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–E386.
2. McCahill LE, Yothers G, Sharif S, et al. Primary mFOLFOX6 plus bevacizumab without resection of the primary tumor for patients presenting with surgically unresectable metastatic colon cancer and an
SONG ET AL.

intact asymptomatic colon cancer: definitive analysis of NSABP trial C-10. J Clin Oncol. 2012;30:3223–3228.
3. Chang W, Wei Y, Ren L, et al. Randomized controlled trial of intraportal chemotherapy combined with adjuvant chemotherapy (mFOLFOX6) for stage II and III colon cancer. Ann Surg. 2016;263:434–439.
4. Papanastasopoulos P, Stebbing J. Molecular basis of 5-fluorouracil-related toxicity; lessons from clinical practice. Anticancer Res. 2014;34:1531–1535.
5. Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V, et al. Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell. 2012;22:373–388.
6. Keysar SB, Le PN, Anderson RT, et al. Hedgehog signaling alters reliance on EGF receptor signaling and mediates anti-EGFR therapeutic resistance in head and neck cancer. Cancer Res. 2013;73:3381–3392.
7. Della Corte CM, Bellecivice C, Vicidomini G, et al. SMO gene amplification and activation of the hedgehog pathway as novel mechanisms of resistance to anti-epidermal growth factor receptor drugs in human lung cancer. Clin Cancer Res. 2015;21:4686–4697.
8. Alonso S, Hernandez D, Chang YT, et al. Hedgehog and retinoid signaling alters multiple myeloma microenvironment and generates bortezomib resistance. J Clin Invest. 2016;126:4460–4468.
9. Zahreddine HA, Culjikovic-Kraljacic B, Assouline S, et al. The sonic hedgehog factor GLI1 imparts drug resistance through inducible glucuronidation. Nature. 2014;511:90–93.
10. Basset-Seguin N, Sharpe HJ, de Sauvage FJ. Efficacy of Hedgehog pathway inhibitors in basal cell carcinoma. Mol Cancer Ther. 2015;14:633–641.
11. Nozawa Y, Lin C, Chuang PT. Hedgehog signaling from the primary cilium to the nucleus: an emerging picture of ciliary localization, trafficking and transduction. Curr Opin Genet Dev. 2013;23:429–437.
12. Yang L, Xie G, Fan Q, Xie J. Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene. 2010;29:469–481.
13. Astudillo L, Da Silva TG, Wang Z, et al. The small molecule IMR-1 inhibits the notch transcriptional activation complex to suppress tumorigenesis. Cancer Res. 2016;76:3593–3603.
14. Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell. 2016;29:783–803.
15. Dai Y, Liu S, Zhang WQ, et al. YAP1 regulates ABCG2 and cancer cell side population in human lung cancer cells. Oncotarget. 2017;8:4096–4109.
16. Guo J, Wu Y, Yang L, et al. Repression of YAP by NCTD disrupts NSCLC progression. Oncotarget. 2017;8:2307–2319.
17. Lee BS, Park DI, Lee DH, et al. Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcinoma. Biochem Biophys Res Commun. 2017;491:493–499.
18. Yang C, Tan J, Zhu J, Wang S, Wei G. YAP promotes tumorigenesis and cisplatin resistance in neuroblastoma. Oncotarget. 2017;8:37154–37163.
19. Ooki A, Del Carmen Rodriguez Pena M, Marchionni L, et al. YAP1 and COX2 coordinate regulate urothelial cancer stem-like cells. Cancer Res. 2018;78:168–181.
20. Ganesh S, Shui X, Craig KP, et al. Beta-catenin mRNA silencing and MEK inhibition display synergistic efficacy in preclinical tumor models. Mol Cancer Ther. 2018;17:544–553.
21. Yang X, Liu Y, Li W, Li A, Sun Q. DKK4-knockdown enhances chemosensitivity of A549/DTX cells to docetaxel. Acta Biochim Biophys Sin (Shanghai). 2017;49:899–906.