Simulation of conditioned diffusions

Bernard Delyon, Ying Hu
IRMAR, Université Rennes 1
Campus de Beaulieu, 35042 Rennes Cedex, France
Emails: bernard.delyon@univ-rennes1.fr, ying.hu@univ-rennes1.fr

Abstract

In this paper, we propose some algorithms for the simulation of the distribution of certain diffusions conditioned on terminal point. We prove that the conditional distribution is absolutely continuous with respect to the distribution of another diffusion which is easy for simulation, and the formula for the density is given explicitly.

1 Introduction

The aim of this paper is to propose algorithms for the simulation of the distribution of a diffusion conditioned on terminal point. We prove that the conditional distribution is absolutely continuous with respect to the distribution of another diffusion which is easy for simulation, and the formula for the density is given explicitly.

1. The matrix \(\sigma(t,x) \) depends only on \(t \), and \(b \) has the form \(b(t,x) = b_0(t) + A(t)x + \sigma(t)b_1(t,x) \).
2. The matrix $\sigma(t,x)$ is uniformly invertible.

This simulation algorithm can be applied to a problem of parameter estimation for a discretely observed diffusion as in [S].

This paper is organized as follows: In Sect. 2, we recall a Girsanov theorem for unbounded drift which is essential for our simulation algorithm. In Sect. 3, we consider Case 1, and in Sect. 4, we consider Case 2.

2 A Girsanov theorem for unbounded drifts

This section is devoted to give a slightly generalized Girsanov theorem which will be used in the next section. We call a measurable function $F(t,x)$ from $\mathbb{R}_+ \times \mathbb{R}^d$ to \mathbb{R}^n locally Lipchitz with respect to x, if for any $R > 0$, there exists a constant $C_R > 0$, such that, for any $(t,x,y) \in \mathbb{R}_+ \times \mathbb{R}^d \times \mathbb{R}^d$ with $|x| \leq R, |y| \leq R,$

$$|F(t,x) - F(t,y)| \leq C_R|x - y|.$$ This section is devoted to give a slightly generalized Girsanov theorem which will be used in the next section. We call a measurable function $F(t,x)$ from $\mathbb{R}_+ \times \mathbb{R}^d$ to \mathbb{R}^n locally Lipchitz with respect to x, if for any $R > 0$, there exists a constant $C_R > 0$, such that, for any $(t,x,y) \in \mathbb{R}_+ \times \mathbb{R}^d \times \mathbb{R}^d$ with $|x| \leq R, |y| \leq R,$

$$|F(t,x) - F(t,y)| \leq C_R|x - y|.$$ And on the metric space $C([0,T]; \mathbb{R}^m)$, we define the filtration $\{\mathcal{F}_t\}_{t}$ to be the natural filtration of the coordinate process.

Theorem 1 Let $b(t,x), h(t,x), \sigma(t,x)$ be measurable functions from $\mathbb{R}_+ \times \mathbb{R}^d$ to $\mathbb{R}^d, \mathbb{R}^m$, and $\mathbb{R}^{d \times m}$ which are locally Lipschitz with respect to x; consider the following stochastic differential equations:

\begin{align*}
 dx_t &= b(t,x_t)dt + \sigma(t,x_t)dw_t, \quad (1) \\
 dy_t &= (b(t,y_t) + \sigma(t,y_t)h(t,y_t))dt + \sigma(t,y_t)dw_t, \quad y_0 = x_0, \quad (2)
\end{align*}

on the finite interval $[0,T]$. We assume the existence of strong solution for each equation. We assume in addition that h is bounded on compact sets. Then the Girsanov formula holds: for any non-negative Borel function $f(x,w)$ defined on $C([0,T]; \mathbb{R}^d) \times C([0,T]; \mathbb{R}^m)$, one has

\begin{align*}
 E_y[f(y,w^h)] &= E_x[f(x,w)e^{\int_0^T h^*(t,x_t)dw_t - \frac{1}{2} \int_0^T |h(t,x_t)|^2 dt}], \\
 E_x[f(x,w)] &= E_y[f(y,w^h)e^{-\int_0^T h^*(t,y_t)dw_t - \frac{1}{2} \int_0^T |h(t,y_t)|^2 dt}],
\end{align*}

where $w_t^h = w_t + \int_0^t h(s,y_s)ds$, and h^* stands for the transpose of h.

Proof: We assume first that the positive supermartingale

$$M_t = \exp \left\{ \int_0^t h^*(s,x_s)dw_s - \frac{1}{2} \int_0^t |h(s,x_s)|^2 ds \right\}$$

is a martingale under P_x which will be proved later. In this case $\tilde{w}_t = w_t - \int_0^t h(s,x_s)ds$ is a Brownian motion under $M_T P_x$, leading to a solution (x, \tilde{w}) of (2):

$$dx_t = b(t,x_t)dt + \sigma(t,x_t)h(t,x_t)dt + \sigma(t,x_t)d\tilde{w}_t.$$ As $b(t,x), h(t,x), \sigma(t,x)$ are locally Lipschitz with respect to x, pathwise uniqueness holds for (1) and (2). The standard Girsanov theorem implies that (3) holds.
We prove now that M_t is a martingale. For any $R > 0$, consider the stopping time
$$\tau_R = \inf\{t \geq 0 : |x_t| \geq R\} \land T.$$
Taking into consideration that h is locally bounded, we have, according to the Girsanov theorem for bounded drift:
$$P_y|_{\mathcal{F}_{\tau_R}} = M_{\tau_R}P_x|_{\mathcal{F}_{\tau_R}}.$$
Hence
$$E_x[M_T] \geq E_x[1_{\tau_R = T}M_T] = E_x[1_{\tau_R = T}M_{\tau_R}] = P_y[\tau_R = T]$$
which converges to 1 as $R \to \infty$. It implies that $E_x[M_T] = 1$, and M is a martingale.

Finally, (4) follows in the same way.

3 Case when σ is independent of x

We assume here that x_t has the specific form
$$dx_t = (\sigma_t h(t, x_t) + A_t x_t + b_t)dt + \sigma_t dw_t, \quad x_0 = u,$$
where σ_t and A_t are time dependent deterministic matrices and $h(t, x), b_t$ are vector valued with appropriate dimension.

For example the 2-dimensional process (x, y) which satisfies the following SDE:
$$dx_t = y_t dt$$
$$dy_t = b(t, x_t, y_t)dt + \sigma dw_t$$
and which is the noisy version of $\ddot{x}_t = b(t, x_t, \dot{x}_t)$, see, e.g. [1].

We shall prove the following result:

Theorem 2 Assume that A_t, b_t and σ_t are bounded measurable functions of t with values in $\mathbb{R}^{d \times d}$, \mathbb{R}^d and $\mathbb{R}^{d \times m}$, respectively. Assume also that $h(t, x)$ is locally Lipschitz with respect to x uniformly with respect to t with values in \mathbb{R}^m, and locally bounded; and the SDE (5) has a strong solution. Moreover, we assume that σ admits a measurable left inverse almost everywhere\(^1\), denoted by σ^+; and that h, A, b and σ^+ are left continuous with respect to t. Then,

(i) the covariance matrix R_{st} of the Gaussian process ξ_t corresponding to (5) with $h = 0$ is given by:
$$R_{st} = P_s \int_0^{\min(s, t)} P_u^{-1} \sigma_u \sigma^*_u P_u^{-*} du P_t^*,$$
where
$$\frac{dP_t}{dt} = A_t P_t, \quad P_0 = Id,$$
and $P_u^{-*} = (P_u^{-1})^*$;

\(^1\)This requires essentially that $\sigma^* \sigma$ is almost everywhere > 0
(ii) the distribution of the process
\[p_t = \xi_t - R_t R_T^T (\xi_T - v) \]
(8)
is the same as the distribution of \(\xi \) conditioned on \(\xi_T = v \) \((M^+ \text{ stands for the left pseudo-inverse}^2 \text{ of } M)\). For any nonnegative measurable function \(f \),
\[E[f(x)|x_0 = u, x_T = v] = CE \left[f(p)e^{\int_0^T h^*(t, p_t)(\sigma_t^+ \sigma_t^- + \sigma_t^- \sigma_t^+) dt} - \frac{1}{2} \int_0^T \|h(t, p_t)\|^2 dt \right], \]
(9)
where \(C \) is a constant depending on \(u, v \) and \(T \).

PROOF: (i) The formula for \(R_{st} \) is classic and comes from \(\xi_t = P_t \int_0^t P_u^{-1} (b_u du + \sigma_u dw_u) + P_t \xi_0 \), see e.g. [6].

(ii) Let us first recall that if \((Y, Z)\) is a Gaussian vector, the distribution of \(Y \) conditioned on \(Z = z_0 \) coincides with the distribution of another Gaussian vector \(Y - R_{YZ} R_{ZZ}^{-1} (Z - z_0) \), where \(R_{ZZ}^+ \) is the left pseudo-inverse of \(R_{ZZ} \); its covariance is \(R_{YY} - R_{YZ} R_{ZZ}^+ R_{ZY} \). Taking \(Y \) as the vector \((\xi_t, \ldots, \xi_T)\), and \(Z = \xi_T \), we observe that, defining the process \(p \) by [8], \((p_t, \ldots, p_T)\) has the same distribution as that of \((\xi_t, \ldots, \xi_T)\) conditioned on \(\xi_T = v \). And the covariance of \(p_t \) is \(C_{st} = R_{st} - R_{st} R_{TT}^+ R_{TT} \).

Denote by \(p_T^+ \) the process [8]; in particular for any nonnegative measurable function \(\varphi(\cdot) \), \(E[\varphi(\xi)] = \int E[\varphi(p^+)] \mu_T (dv) \) where \(\mu_T \) is the distribution of \(\xi_T \). For any nonnegative measurable functions \(f \) and \(g \),
\[E[f(x)g(x_T)] = E[f(x)g(\xi_T) e^{\int_0^T h^*(t, \xi_t) \sigma_t^+ \sigma_t^- dt} - \frac{1}{2} \int_0^T \|h(t, \xi_t)\|^2 dt] \]
\[= E[f(x)g(\xi_T) e^{\int_0^T h^*(t, \xi_t) (\sigma_t^+ \sigma_t^- + \sigma_t^- \sigma_t^+) dt} - \frac{1}{2} \int_0^T \|h(t, \xi_t)\|^2 dt]. \]
(10)
Given a sequence of partitions \((\Delta_n)_{n \geq 1}\) of \([0, T]\):
\[\Delta_n = \{t_0^n < t_1^n < \cdots < t_k^n = T\} \]
with \(|\Delta_n| = \max_{0 \leq i \leq k_n-1} (t_i^n - t_{i+1}^n) \to 0 \), and a continuous stochastic process \(X \), we define:
\[S_n(X) = \sum_{i=0}^{k_n-1} h^*(t_i^n, X_{t_i^n}) \sigma_{t_i^n}^+ (X_{t_i^n} - X_{t_{i+1}^n}). \]

Then
\[E[|S_n(\xi) - S_m(\xi)| \wedge 1] = \int_{\mathbb{R}^d} E[|S_n(p^+ - S_m(p^+)| \wedge 1] \mu_T (dv), \]
which implies that \(S_n(p^+) \) converges in probability \(P \otimes \mu_T \). Hence, we can define \(\int_0^T h^*(t, p_t^+) \sigma_t^+ dp_t^+ \) as the limit (in probability \(P \otimes \mu_T \)) of the sequence \(S_n(p^+) \). Obviously, this limit is independent of the sequence of partitions \((\Delta_n)_n\) which satisfies \(|\Delta_n| \to 0 \).

Finally, defining the continuous function \(\Theta_N(x) = N \wedge x, x \geq 0 \), we have
\[E[\Theta_N(f(\xi) g(\xi_T) e^{S_n(\xi) - \int_0^T h^*(t, \xi_t) \sigma_t^+ (A_t \xi_t + b_t) dt} - \frac{1}{2} \int_0^T \|h(t, \xi_t)\|^2 dt)] \]
\[= \int_{\mathbb{R}^d} E[\Theta_N(f(p^+) e^{S_n(p^+) - \int_0^T h^*(t, p_t^+) \sigma_t^+ (A_t p_t^+ + b_t) dt} - \frac{1}{2} \int_0^T \|h(t, p_t^+)\|^2 dt g(v))] \mu_T (dv). \]

\(^2M^+ = (M^* M)^{-1} M^* \) and the symmetric matrix is inverted by diagonalisation with 1/0 = 0
Taking the limit first in n and then in N, and returning to \eqref{10}, we deduce:

\[
E[f(x)g(x_T)] = \int_{\mathbb{R}^d} E[f(p^{v})e^{\int_0^T h^*(t,p^v_t)(\sigma_t^x dp^v_t - \sigma_t^p (Ap_t^v + b_t)) dt - \frac{1}{2} \int_0^T \|h(t,p^v_t)\|^2 dt}]|g(v)\mu_T(dv)
\]

which implies \eqref{3} and C is the value of the density of μ_T with respect to the distribution of x_T at v.

As the Brownian bridge, we have:

Proposition 3 Let us assume that $M_t = \int_0^T P^{-1} \sigma_u \sigma_u^* P^{-1} du$ is positive definite for any $t \in [0,T)$. Then the distribution of the process p is the same as that of q which is the solution to the following linear SDE

\[
dq_t = Ap_t dt + b_t dt + \sigma_t \sigma_t^* P^{-1} M^{-1}_t (P^{-1}_t (E[\xi_t] - q_t) - P^{-1}_T (E[\xi_T] - v)) dt + \sigma_t dw_t,
\]

with $q_0 = u$.

Proof: The matrix $Q_t = P_t M_t$ is solution to $\dot{Q}_t = (A_t - \sigma_t \sigma_t^* P^{-1}_t M^{-1}_t P^{-1}_t) Q_t$, implying that the covariance of q_t can be rewritten as follows: for $s < t$,

\[
Q_s = Q_s \sigma_s \sigma_s^* Q_s^* dt = Q_s \int_0^s \sigma_u \sigma_u^* Q_u^* du Q_t^* - \int_0^s \sigma_u \sigma_u^* Q_u^* du Q_t^* = Q_s (M_s^{-1} - M_0^{-1}) Q_t^* = P_s M_s (M_s^{-1} - M_0^{-1}) M_t P_t^* = P_s (M_0 - M_s) (I - M_0^{-1} (M_0 - M_t)) P_t^* = C_{st}.
\]

On the other hand, from \eqref{3}, the expectation \bar{p}_t of the process p_t satisfies

\[
\frac{d}{dt} \bar{p}_t - A_t \bar{p}_t - b_t = -\sigma_t \sigma_t^* P_t^{-1} R_{TT}^{-1} (E[\xi_T] - v).
\]

Elementary algebra shows $P_t^* R_{TT}^{-1} = -Q_t^{-1} (R_{TT} R_{TT}^{-1} - P_t P_t^{-1})$, hence

\[
\frac{d}{dt} \bar{p}_t - A_t \bar{p}_t - b_t = \sigma_t \sigma_t^* P_t^{-1} Q_t^{-1} (R_{TT} R_{TT}^{-1} - P_t P_t^{-1}) (E[\xi_T] - v) = \sigma_t \sigma_t^* P_t^{-1} Q_t^{-1} (E[\xi_T] - \bar{p}_t - P_t P_t^{-1} (E[\xi_T] - v))
\]

which is the equation satisfied by $E[q_t]$. The conclusion follows by noting that both p and q are Gaussian processes.

Remark. M_t is positive definite for any $t \in [0,T)$ if and only if the pair of functions (A, σ) is controllable on $[t,T]$ for any $t \in [0, T)$. See, e.g. \cite{6} for some discussions.

Example. Consider the 2-dimensional stochastic differential equation defined by \eqref{6,7}, where $\sigma \neq 0$. Let us assume that b is locally Lipschitz with respect to (x,y), and this equation admits a strong solution (the strong solution exists if there exists a Lyapunov function, see, e.g. \cite{11}). Then we have:

\[
E[f(x,y)|(x_0, y_0) = u, (x_T, y_T) = v] = CE \left[f(p,q)e^{\sigma^2 \int_0^T b(t,p_t,q_t) d\xi_t - \frac{1}{2\sigma^2} \int_0^T b(t,p_t,q_t)^2 dt} \right] \tag{12}
\]
where \((p,q)\) is the following bridge starting from \((p_0,q_0) = u:\)

\[
\begin{pmatrix}
 p_t \\
 q_t
\end{pmatrix} = \begin{pmatrix}
 z_t \\
 \dot{z}_t
\end{pmatrix} - \frac{t}{T^3} \begin{pmatrix}
 t(3T - 2t) & -tT(T - t) \\
 6(T - t) & T(3t - 2T)
\end{pmatrix} \begin{pmatrix}
 z_T - v_1 \\
 \dot{z}_T - v_2
\end{pmatrix},
\]

\(\text{with } z_t = u_1 + tu_2 + \sigma \int_0^t w_s ds, \quad \dot{z}_t = u_2 + \sigma w_t;\)

or \((p,q)\) can be chosen as:

\[
\begin{align*}
 dp_t &= q_t dt, \\
 dq_t &= \left(-6 \frac{p_t - v_1}{(T - t)^2} - 2 \frac{2q_t + v_2}{T - t}\right) dt + \sigma dw_t.
\end{align*}
\]
4 σ invertible, general b

4.1 Bounded drift

Let us consider the following SDEs:

\[dx_t = b(t, x_t)dt + \sigma(t, x_t)dw_t, \quad x_0 = u, \] (15)

\[dy_t = b(t, y_t)dt - \frac{y_t - v}{T - t} dt + \sigma(t, y_t)dw_t, \quad y_0 = u. \] (16)

Remark. If \(b = 0 \) and \(\sigma = Id \), then \(x \) is a Brownian motion. It is well known (see, e.g. [6]) that the law of the Brownian motion \(x \) conditioned on \(x_T = v \) is the same as that of the Brownian bridge \(y \) satisfying the following SDE:

\[dy_t = -\frac{y_t - v}{T - t} dt + dw_t, \quad y_0 = u. \]

The form of SDE (16) is inspired by the above SDE in order to fit the simplest case: the Brownian bridge case.

The objective of this section is to prove that the distribution of \(x \) (solution of (15)) conditioned on \(x_T = v \) is absolutely continuous with respect to \(y \) (solution of (16)) with an explicit density. We shall assume some regularity conditions on \(b \) and \(\sigma \) here.

Assumption 4.1 The functions \(b(t, x) \) and \(\sigma(t, x) \) are \(C^{1,2} \) with values in \(\mathbb{R}^d \) and \(\mathbb{R}^{d \times d} \) respectively; and the functions \(b, \sigma \), together with their derivatives, are bounded. Moreover, \(\sigma \) is invertible with a bounded inverse.

Let \(x^{s,u} \) be the solution of (15) starting at \(s \in [0,T] \). Under Assumption 4.1, \(x \) is a strong Markov process with positive transition density. For \((s,u) \in [0,T] \), we denote \(p(s,u;t,z) \) to be the density of \(x_t^{s,u} \). Then there exist constants \(m, \lambda, M, \Lambda > 0 \), such that the density function \(p(s,u;t,z) \) satisfies Aronson’s estimation [2] : for \(t > s \),

\[m(t-s)^{-d} e^{-\frac{\lambda |z-u|^2}{t-s}} \le p(s,u;t,z) \le M(t-s)^{-d} e^{-\frac{\lambda |z-u|^2}{t-s}}. \]

We first study SDE (16).

Lemma 4 Let Assumption 4.1 hold. Then the SDE (16) admits a unique solution on \([0,T]\). Moreover, \(\lim_{t \to T} y_t = v \), a.s. and \(|y_t - v|^2 \le C(T-t) \log \log [(T-t)^{-1} + e], a.s. \), where \(C \) is a positive random variable.

Proof: The fact that the SDE (16) admits a unique solution on \([0,T]\) is classic. Applying Itô’s formula to \(\frac{y_t - v}{T-t} \), we deduce easily the following:

\[\frac{y_t - v}{T-t} = \frac{u-v}{T} + \int_0^t (T-s)^{-1} b(s, y_s) ds + \int_0^t (T-s)^{-1} \sigma(s, y_s) dw_s. \]

For each \(i \), \(\left\{ \left(\int_0^t (T-s)^{-1} \sigma(s, y_s) dw_s \right)_i, t \ge 0 \right\} = \{ \sum_{j=1}^d \int_0^t (T-s)^{-1} \sigma_{ij}(s, y_s) dw^j_s, t \ge 0 \} \) is a continuous local martingale, and its quadratic variation process \(\tau_t = \int_0^t \sum_{j=1}^d (T-s)^{-2} \sigma_{ij}^2(s, y_s) ds \)

7
satisfies $\tau_t \to \infty$ as $t \to T$, and $\tau_t \leq \frac{c}{T-t}$ for a constant $c > 0$. Applying Dambis-Dubins-Schwarz’s theorem, for each i, there exists a standard one-dimensional Brownian motion B^i, such that
\[
\left(\int_0^t (T-s)^{-1}\sigma(s,y_s)dw_s \right)_i = B^i(\tau_t), \ t \geq 0.
\]

Taking into consideration of the law of the iterated logarithm for the Brownian motion B^i, the conclusion follows easily.

Now we can state the main theorem of this section.

Theorem 5 Let Assumption 4.1 hold. Then
\[
E[f(x)|x_T = v] = C E \left[f(y) \exp \left\{ - \int_0^t \frac{2\tilde{y}_t^* A_t(y_t)b_t(y_t)dt + \tilde{y}_t^*(dA_t(y_t))\tilde{y}_t + \sum_{ij} d\langle A^{ij}_t(y_t), \tilde{y}^i_t \tilde{y}^j_t \rangle}{2(T-t)} \right\} \right] \tag{17}
\]
where $A(t,y) = (\sigma(t,y)^*)^{-1}\sigma(t,y)^{-1}$, $\tilde{y}_t = y_t - v$, and $\langle \cdot, \cdot \rangle$ is the quadratic variation of semimartingales.

Remark. From Lemma 4, the integral in (17) is well defined.

Proof: Let $f(x)$ be an \mathcal{F}_t-measurable nonnegative function, $t < T$, then
\[
E[f(y)] = E \left[f(x) \exp \left\{ - \int_0^t \frac{(\sigma^{-1}_s(x_s)(x_s - v))}{T-s} \right\} \right] \tag{18}
\]
On the other hand, Itô’s formula gives:
\[
d \frac{\|\sigma^{-1}(t,x_t)(x_t - v)\|^2}{T-t} = 2(x_t - v)^* A(t,x_t)dx_t + \frac{\|\sigma^{-1}(t,x_t)(x_t - v)\|^2}{(T-t)^2} dt + \frac{d \cdot dt}{T-t} \\
+ \frac{(x_t - v)^*(dA(t,x_t))(x_t - v)}{T-t} + \sum_{ij} d\langle A^{ij}_t(t,x_t), (x^i_t - v^i)(x^j_t - v^j) \rangle
\]
Combining the above equation with (18), we deduce that,
\[
E[f(y)] = CC_t E \left[f(x) \exp \left\{ - \frac{\|\sigma^{-1}_t(x_t)(x_t - v)\|^2}{T-t} \right\} \right] + \int_0^t \frac{(x_s - v)^* A(x_s) b_s(x_s)}{T-s} ds \\
+ \frac{1}{2} \int_0^t \frac{(x_s - v)^*(dA_s(x_s))(x_s - v)}{T-s} + \sum_{ij} d\langle A^{ij}_s(x_s), (x^i_s - v^i)(x^j_s - v^j) \rangle
\]
where $C > 0$ is a constant, and $C_t = (T-t)^{-\frac{d}{2}}$.

Or equivalently,
\[
E[f(y)\varphi_t] = CC_t E \left[f(x) \exp \left\{ - \frac{\|\sigma(t,x_t)^{-1}(x_t - v)\|^2}{2(T-t)} \right\} \right] \tag{19}
\]
where
\[
\varphi_t = \exp \left\{ - \int_0^t \frac{\tilde{y}^*_s A_s(y_s)b_s(y_s)}{T-s} ds - \frac{1}{2} \int_0^t \frac{\tilde{y}^*_s (dA_s(y_s))\tilde{y}_s}{T-s} + \sum_{ij} d\langle A^{ij}_s(y_s), \tilde{y}^i_s \tilde{y}^j_s \rangle}{T-s} \right\} \tag{20}
\]

8
Note that \(\{\varphi_t, t \in [0, T]\} \) is a well defined continuous process, thanks to Lemma 4.

Putting \(f = 1 \) in (19), we deduce then:

\[
\frac{\mathbb{E}[f(y)\varphi_t]}{\mathbb{E}[\varphi_t]} = \frac{E \left[f(x) \exp \left\{ -\frac{\|\sigma(t,x_t) - 1(x_t - v)\|^2}{2(T-t)} \right\} \right]}{E \left[\exp \left\{ -\frac{\|\sigma(t,x_t) - 1(x_t - v)\|^2}{2(T-t)} \right\} \right]},
\]

(21)

Assuming that \(f(x) \) takes the form \(f(x) = g(x_{t_1}, \ldots, x_{t_N}) \), \(0 < t_1 < t_2 < \cdots < t_N < T \), \(g \in C_b(\mathbb{R}^{Nd}) \), and letting \(t \to T \), from the Lemmas 7 and 8 in the Appendix, we get:

\[
\frac{\mathbb{E}[f(y)\varphi_T]}{\mathbb{E}[\varphi_T]} = \mathbb{E}[f(x)|x_T = v].
\]

This completes the proof of the theorem.

Remark. For practical implementation, it is useful to note that the second and third terms of the integral in (17) are the limit of \(\sum \tilde{y}_{t_k}^* (A(t_k, y_{t_k}) - A(t_{k-1}, y_{t_{k-1}})) \tilde{y}_{t_k} \frac{1}{2(T-t_k)} \).

4.2 Unbounded drift

Let us now consider the following SDE:

\[
dx_t = b(t, x_t)dt + \sigma(t, x_t)dw_t, \quad x_0 = u,
\]

(22)

where the drift \(b \) can be unbounded. We assume instead

Assumption 4.2 The function \(\sigma(t, x) \) is \(C^{1,2} \) with values in \(\mathbb{R}^{d \times d} \); the function \(\sigma \) together with its derivatives are bounded; and \(\sigma \) is invertible with a bounded inverse. The function \(b \) is locally Lipschitz with respect to \(x \) and is locally bounded. Moreover, the SDE (22) admits a strong solution.

Combining the Theorems 1 and 5, we are able to prove the following

Theorem 6 Let Assumption 4.2 hold, and \(y \) be the solution of

\[
dy_t = -\frac{y_t - v}{T-t}dt + \sigma(t, y_t)dw_t, \quad y_0 = u.
\]

(23)

Then,

\[
E[f(x)|x_T = v] = CE \left[f(y) \exp \left\{ -\int_0^T \frac{\tilde{y}_t^* (\langle dA(t, y_t) \rangle \tilde{y}_t + \sum_{ij} d\langle A^{ij}(t, y_t) \rangle \tilde{y}_i \tilde{y}_j^* \rangle)}{2(T-t)} \right. \right.
\]

\[
+ \int_0^T (b^* A)(t, y_t)dy_t - \frac{1}{2} \int_0^T |\sigma^{-1} b|^2(t, y_t)dt \left. \right\],
\]

where \(A(t, y) = \sigma(t, y)^{-*} \sigma(t, y)^{-1} \), \(\tilde{y}_t = y_t - v \), and \(\langle \cdot, \cdot \rangle \) is the quadratic variation of semimartingales.
Proof: Let \(\bar{x} \) be the solution of:

\[
\frac{d\bar{x}_t}{dt} = \sigma(t, \bar{x}_t)dw_t, \quad \bar{x}_0 = u.
\]

(24)

Then, from Theorem 1 for nonnegative measurable functions \(f \) and \(g \),

\[
\mathbb{E}[f(x)g(x_T)] = \mathbb{E}[f(\bar{x})g(\bar{x}_T)e^{\int_0^T (b^*A)(t, \bar{x}_t) \frac{1}{2} \int_0^T |b|_2^2(t, \bar{x}_t) dt}] \\
= \int_{\mathbb{R}^d} \mathbb{E}[f(\bar{x})e^{\int_0^T (b^*A)(t, \bar{x}_t) \frac{1}{2} \int_0^T |b|_2^2(t, \bar{x}_t) dt} | \bar{x}_T = v] g(v) dv.
\]

It remains to apply Theorem 5.

Remark. If the drift \(b \) is bounded, both formulas in Theorems 5 and 6 are available. Unfortunately, it is difficult to compare the efficiency of simulation when applying these two formulas.

10
5 Appendix

Lemma 7 Let $0 < t_1 < t_2 < \cdots < t_N < T$, and $g \in C_b(\mathbb{R}^{Nd})$. Then, putting

$$\psi_t = \exp\left\{ -\frac{\|\sigma(t, x_t)^{-1}(x_t - v)\|^2}{2(T - t)} \right\},$$

$$\lim_{t \to T} \frac{\mathbb{E}[g(x_{t_1}, x_{t_2}, \cdots, x_{t_N})\psi_t]}{\mathbb{E}[\psi_t]} = \mathbb{E}[g(x_{t_1}, x_{t_2}, \cdots, x_{t_N}) | x_T = v]. \tag{25}$$

Proof: For any $t \in (t_N, T)$,

$$\frac{\mathbb{E}[g(x_{t_1}, x_{t_2}, \cdots, x_{t_N})\psi_t]}{\mathbb{E}[\psi_t]} = \int_{\mathbb{R}^d} \Phi_g(t, z) \exp\left\{ -\frac{\|\sigma(t, z)^{-1}(z - v)\|^2}{2(T - t)} \right\} \, dz$$

where

$$\Phi_g(t, z) = \int_{\mathbb{R}^{Nd}} g(z_1, \cdots, z_N)p(0, u; t_1, z_1) \cdots p(t_N, z_N; t, z) \, dz_1 \cdots dz_N,$$

which is continuous thanks to Aronson’s estimation. Evidently, $\Phi_1(t, z) = p(0, u; t, z)$.

Moreover, applying a simple change of variable $z = v + (T - t)^\frac{1}{2} z'$,

$$(T - t)^{-\frac{1}{2}} \int_{\mathbb{R}^d} \Phi_g(t, z) \exp\left\{ -\frac{\|\sigma(t, z)^{-1}(z - v)\|^2}{2(T - t)} \right\} \, dz$$

$$= \int_{\mathbb{R}^d} \Phi_g(t, v + (T - t)^\frac{1}{2} z') \exp\left\{ -\frac{\|\sigma(t, v + (T - t)^\frac{1}{2} z')^{-1} z'\|^2}{2} \right\} \, dz'$$

$$\to \Phi_g(T, v) \int_{\mathbb{R}^d} \exp\left\{ -\frac{\|\sigma(T, v)^{-1} z'\|^2}{2} \right\} \, dz'.$$

Hence,

$$\lim_{t \to T} \frac{\mathbb{E}[g(x_{t_1}, x_{t_2}, \cdots, x_{t_N})\psi_t]}{\mathbb{E}[\psi_t]} = \frac{\Phi_g(T, v)}{\Phi_1(T, v)},$$

from which we deduce (25) by the Bayes formula, since

$$\Phi_g(T, v) = \int_{\mathbb{R}^{Nd}} g(z_1, \cdots, z_N)q(z_1, \cdots, z_N, v) \, dz_1 \cdots dz_N,$$

where q is the density of $(x_{t_1}, \cdots, x_{t_N}, x_T)$.

□

Lemma 8

$$\lim_{t \to T} \mathbb{E}[|\varphi_t - \varphi_T|] = 0.$$

We need the following two propositions to prove this lemma.
Proposition 9
(i) There exist two constants $c_1 > 0, c_2 > 0$, such that
$$c_1 \leq C_t E[\psi_t] \leq c_2, \forall t \in [0, T),$$
where
$$C_t = (T - t)^{-\frac{d}{2}}.$$
(ii) There exists a constant $c_3 > 0$, such that
$$E[\varphi_t] \leq c_3, \forall t \in [0, T).$$

Proof: (i) We note that
$$C_t E[\psi_t] = (T - t)^{-\frac{d}{2}} \int \exp \left\{ -\frac{\|\sigma(t, z)^{-1}(z - v)\|^2}{2(T - t)} \right\} p(0, u; t, z) dz.$$
We get easily the conclusion taking into consideration of Aronson’s estimation after a change of variable $z = v + (T - t)^{\frac{d}{2}}z'$.
(ii) It follows from (19) and (i).

Proposition 10
For any $\varepsilon > 0$, there exists an adapted bounded process α_t such that
$$dC_t \psi_t = dM_t + \alpha_t(C_t \psi_t)^{1-\varepsilon}(T - t)^{-h} dt, \quad h = \frac{\varepsilon d + 1}{2}$$
where $(M_t)_{0 \leq t < T}$ is a martingale.

Proof: Set $\tilde{x}_t = x_t - v$, $p_t = \|\sigma^{-1}(t, x_t)\tilde{x}_t\|$, and $A_t = \sigma^{-*}(t, x_t)\sigma^{-1}(t, x_t)$. We have
$$d\left(\frac{p_t^2}{T - t}\right) = 2\tilde{x}_t^* A_t dx_t \left(\frac{T - t}{T - t}\right) + d\left(\frac{p_t^2}{(T - t)^2}\right) + d\left(\frac{\tilde{x}_t^* (dA_t) \tilde{x}_t}{T - t}\right) + \frac{1}{T - t} \sum_{ij} d\langle A_t^{ij}, \tilde{x}_t^i \tilde{x}_t^j \rangle$$
$$= 2\tilde{x}_t^* \sigma(t, x_t)^{-*} dw_t \left(\frac{T - t}{T - t}\right) + d\left(\frac{p_t^2}{(T - t)^2}\right) + d\left(\frac{r_t}{T - t}\right) dt + \frac{p_t^2}{T - t} r'_t dw_t,$$
where r_t and r'_t are two adapted bounded processes. Hence we get:
$$dC_t \psi_t = \frac{d}{2(T - t)} C_t \psi_t dt - \frac{1}{2} C_t \psi_t d\left(\frac{p_t^2}{T - t}\right) + \frac{1}{8} C_t \psi_t d\left(\frac{p_t^2}{T - t}\right)$$
$$= dM_t + C_t \psi_t r''_t \left(\frac{p_t^2}{T - t} + \frac{p_t^2}{(T - t)^2}\right) dt,$$

where r''_t is an adapted bounded process. For any $\varepsilon > 0$, $e^{-\varepsilon \sqrt{T} |x|^k}, k = 1, 2, 3, 4$, are all bounded functions, then there exists a constant $c_\varepsilon > 0$ such that
$$\psi_t \left(\frac{p_t^2}{T - t} + \frac{p_t^2}{(T - t)^2}\right) \leq \frac{c_\varepsilon}{\sqrt{T - t}},$$
Hence,
$$dC_t \psi_t = dM_t + (C_t \psi_t)^{1-\varepsilon}(T - t)^{-h} r''_t c_\varepsilon dt,$$

12
where r^n_t is still an adapted bounded process.

Let us now return to the proof of Lemma 8.

Proof: First, from Fatou’s lemma and Proposition 9

$$E[\varphi_T] \leq \liminf_{t \to T} E[\varphi_t] \leq c_3.$$

We choose $t_0 \in (0, T)$ which is close enough to T, and A large enough, and put

$$\sigma = \inf\{t_0 < t < T, C_t \psi_t \leq \frac{1}{A}\} = \inf\{t_0 < t < T, p_t^2 \geq 2(T - t) \log \frac{A}{(T - t)^{\eta}}\}.$$

Under the distribution of x, $\sigma < T$ a.s. However under the distribution of y, $\lim_{A \to +\infty} \sigma = T$, a.s., taking into consideration of Lemma 11. We have, from (21),

$$\frac{E[\varphi_{1, \sigma < t}]}{E[\varphi_t]} = \frac{E[\psi_{1, \sigma < t}]}{E[\psi_t]} \leq \frac{1}{c_1} E[C_t \psi_t 1_{\sigma < t}].$$

On the other hand, from Proposition 10 with a fixed $\varepsilon \in (0, 1/d)$,

$$dC_t \psi_t = dM_t + \alpha_t (C_t \psi_t)^{1-\varepsilon} (T - t)^{-\eta} dt,$$

i.e.,

$$C_t \psi_t = C_\sigma \psi_\sigma + M_t - M_\sigma + \int_{\sigma}^{t} \alpha_s (C_s \psi_s)^{1-\varepsilon} (T - s)^{-\eta} ds.$$

Hence,

$$E[C_t \psi_t 1_{\sigma < t}] \leq A^{-1} + \bar{\alpha} \int_{t_0}^{t} E[C_s \psi_s 1_{\sigma < s}]^{1-\varepsilon} (T - s)^{-\eta} ds, \text{ with } \bar{\alpha} = \sup_t ||\alpha_t||_{\infty}.$$

Therefore, $E[C_t \psi_t 1_{\sigma < t}]$ is bounded by u_t which is the solution of the following differential equation,

$$du_t = \bar{\alpha} u_t^{1-\varepsilon} (T - t)^{-\eta} dt, \quad u_{t_0} = A^{-1};$$

and this equation has an explicit solution:

$$u_t = \left\{ \frac{\bar{\alpha}}{1-\varepsilon} ((T - t_0)^{1-\eta} - (T - t)^{1-\eta}) + A^{-\varepsilon} \right\}^{1/\varepsilon} \leq \left\{ c_0 (T - t_0)^{1-\eta} + A^{-\varepsilon} \right\}^{1/\varepsilon},$$

where $c_0 > 0$ is a constant. We get finally,

$$\frac{E[\varphi_{1, \sigma < t}]}{E[\varphi_t]} = 1 - \frac{E[\varphi_{1, \sigma < t}]}{E[\varphi_t]} \geq 1 - \frac{1}{c_1} (c_0 (T - t_0)^{1-\eta} + A^{-\varepsilon})^{1/\varepsilon}.$$

We note that $\{\varphi_{1, \sigma < t}\}_{t}$ is a uniformly integrable family due to Novikov’s lemma, since we have

$$1_{1 \leq \sigma} \varphi_t \leq C \exp \left\{ \int_0^{t/\sigma} \frac{|y_s - u|^2}{T - s} v_s dw_s - \frac{1}{2} \int_0^{t/\sigma} \frac{|y_s - u|^4}{|T - s|^2} |v_s|^2 ds \right\};$$

13
where for fixed A, C is a positive constant and v_t is an adapted bounded process.

Taking the $\lim\inf_{t \to T}$, we get,

$$\frac{E[\varphi_T 1_{\sigma=T}]}{\limsup_{t \to T} E[\varphi_t]} \geq 1 - \frac{1}{c_1} (c_0 (T - t_0)^{1-h} + A^{-\epsilon})^{1/\epsilon}.$$

Since $1_{\sigma=T}$ converges to one a.s. as $A \to \infty$, we get

$$\frac{E[\varphi_T]}{\limsup_{t \to T} E[\varphi_t]} \geq 1 - \frac{1}{c_1} (c_0 (T - t_0)^{1-h})^{1/\epsilon}.$$

It remains to let $t_0 \to T$ to get:

$$\limsup_{t \to T} E[\varphi_t] \leq E[\varphi_T].$$

Hence,

$$\lim_{t \to T} E[\varphi_t] = E[\varphi_T],$$

and we finish the proof by Scheffé’s lemma (see, e.g. [4]).
References

[1] L. Arnold, Random Dynamical Systems. Springer, Berlin, 1998.

[2] D.G. Aronson, Bounds for the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc. 73 (1967), 890-896.

[3] G. Casella, C.P. Robert, Monte Carlo Statistical Methods. Springer, New York, 1999.

[4] C. Dellacherie, P.A. Meyer, Probabilités et Potentiels. Chapitre I à IV. Hermann, Paris, 1975.

[5] R.Z. Has’minskii, Stochastic Stability of Differential Equations. Sijthoff and Noordhoff, 1980.

[6] I. Karatzas, S. Shreve, Brownian Motion and Stochastic Calculus. Second edition. Springer, New York, 1991.

[7] T.J. Lyons, W.A. Zheng, On conditional diffusion processes. Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 243-255.

[8] G.O. Roberts, O. Stramer, On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithms. Biometrika 88 (2001), 603-621.