A Sharp Decay Estimate for Degenerate Oscillatory Integral Operators Using Broad-Narrow Method

Shaozhen Xu

Received: 28 September 2022 / Accepted: 20 November 2022 / Published online: 2 February 2023
© Mathematica Josephina, Inc. 2022

Abstract
We use broad-narrow method to establish the sharp L^4 decay estimate for a class of degenerate oscillatory integral operators in $(2 + 1)$ dimensions. Especially, the model phase function is

$$x^2t + yt^2,$$

a cubic homogeneous polynomial which is degenerate in the sense of Tang (Forum Math 18:427–444, 2006).

Keywords Degenerate oscillatory integrals · Sharp decay · Broad-narrow method

Mathematics Subject Classification 42B20 · 47G10

1 Introduction

It is always a longstanding problem to determine the decay rate for integrals with integrands containing oscillatory elements. For the scalar oscillatory integral

$$I(\lambda) = \int_{\mathbb{R}^d} e^{i\lambda S(x)} \psi(x) dx,$$

we are interested in determining the optimal decay rate whenever the phase function satisfies certain assumptions. The stationary phase method tells that if the critical points of $S(x)$ are nondegenerate, then we have the sharp decay estimate

$$|I(\lambda)| \leq C \lambda^{-\frac{d}{2}}.$$
It should be pointed out that the implicit constant C depends on the support function ψ and the phase function S. It strongly demonstrates the "local" characteristic contrast to the "global" van der Corput-type estimates. Readers may refer to [3, 10] for more comprehensive background. It is natural that we can further consider the oscillatory integrals with degenerate phases. If the phase function is real-analytic, Arnold posed the hypothesis that the sharp decay rate is determined by the Newton distance of the phase. This was confirmed by [30] in which the phase functions are assumed to satisfy certain nonsingular conditions.

As was generalized to the operator setting, we call the operators of the form

$$T_\lambda f(x) := \int_{\mathbb{R}^d} e^{i\lambda S(x,y)} \psi(x, y) f(y) dy, \quad (x, y) \in \mathbb{R}^d \times \mathbb{R}^d,$$

as $(d_X + d_Y)$-dimensional operators. If the phase function S is nondegenerate in the sense that the Hessian does not vanish on the support of ψ, then Hörmander’s lemma [18] gives the optimal decay estimate whenever $d_X = d_Y = d$. The model phase is $S(x, y) = x \cdot y$ which corresponds to Fourier transform. In fact, there is another geometric understanding for Hörmander’s lemma. Based on the phase function, we can write the canonical relation

$$C_S := \{(x, \xi; y, \eta)\} = \{(x, \nabla_x S; y, -\nabla_y S)\} \subset T^*\mathbb{R}^d \times T^*\mathbb{R}^d,$$

and view this as a Lagrangian submanifold when endowed with a symplectic form $dx \wedge d\xi - dy \wedge d\eta$. Define the left and right projection mapping, respectively, as

$$\pi_L : C_S \longrightarrow (x, \xi), \quad \pi_R : C_S \longrightarrow (y, \eta).$$

In the language of geometry, Hörmander’s lemma says that if both π_L and π_R are local diffeomorphisms, then $\|T_\lambda\|_{L^2 \rightarrow L^2}$ has the optimal decay estimate $\lambda^{-d/2}$. It is known that the singularity types of the mappings π_L or π_R influence the decay rates of T_λ. For further researches in this direction, see [6, 7, 13–16, 21].

However, a frustrating fact is that even the phase function is a simple homogeneous polynomial, the singularities of the corresponding mappings π_L and π_R are complicated. One way out of the geometric constraints is to focus on the algebraic and analytic properties, this leads to the thorough understanding of $(1 + 1)$-dimensional operators in the works on L^2 mapping properties [11, 22–24, 26] and L^p mapping properties [25, 27, 28, 31, 32].

In the $(2 + 1)$-dimensional case, Tang [29] obtained the (nearly) sharp L^2 decay estimates for operators with homogeneous polynomial phases satisfying an algebraic nondegeneracy condition. [12] extended them to higher dimensional cases. However, the general higher dimensional cases are little understood. When $d_X \neq d_Y$, researches about T_λ are largely motivated by Fourier restriction (or extension) phenomenon initially raised by Stein in 1960s. For instance, if the underlying geometric object is codimension-1 sphere or paraboloid, it can be generalized to Hörmander-type oscillatory integral operators, and progress can be found in [4, 5, 18, 19]; if the underlying
geometric objects are space curves, for instance, see [8], the generalization to corresponding oscillatory integral operators can be found in [1, 2]. For further research concerning more degenerate phases, we refer to [17].

Since the tools of restriction estimates are fruitful, then we aim to explore the possibility of applying some of these tools to establish sharp L^2 decay estimates for degenerate oscillatory integral operators.

Here, we consider the following $(2+1)$—dimensional operators

$$T_\lambda^\psi f(x, y) = \int_{\mathbb{R}} e^{i\lambda(x^2 t + y t^2)} \psi(x, y, t) f(t) dt.$$

Although the phase function is a simple cubic homogeneous polynomial, it does not satisfy the Carleson-Sjölin condition and is also outside scope of [29]. We use the broad-narrow method of Bourgain–Guth [5] and the classical bilinear method dating back to Fefferman [9] to give the following theorem.

Theorem 1.1 For the operator T_λ^ψ, we have the sharp L^4 decay estimate

$$\|T_\lambda^\psi f\|_{L^4(\mathbb{R}^2)} \lesssim C_\psi \lambda^{-3/8} \|f\|_{L^4(\mathbb{R})}. \quad (1.1)$$

In fact, by simple linear transformation, we can generalize this theorem to more general cases.

Corollary 1.2 Consider the following operators

$$\tilde{T}_\lambda^\psi f(x, y) = \int_{\mathbb{R}} e^{i\lambda[(ax+by)t^2+(cx+dy)t]2} \psi(x, y, t) f(t) dt,$$

if the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is nonsingular, we also have the sharp L^4 decay estimate

$$\|\tilde{T}_\lambda^\psi f\|_{L^4(\mathbb{R}^2)} \lesssim C_{\psi, a, b, c, d} \lambda^{-3/8} \|f\|_{L^4(\mathbb{R})}.$$

By Hölder’s inequality, we know that both T_λ^ψ and \tilde{T}_λ^ψ map L^p into L^p with λ—free upper bounds for $1 \leq p \leq +\infty$. Therefore, interpolation gives the following results.

Corollary 1.3 For $p > 4$, we have the sharp L^p decay estimates

$$\|T_\lambda^\psi f\|_{L^p(\mathbb{R}^2)} \lesssim C_{\psi} \lambda^{-3/2p} \|f\|_{L^p(\mathbb{R})},$$

$$\|\tilde{T}_\lambda^\psi f\|_{L^p(\mathbb{R}^2)} \lesssim C_{\psi, a, b, c, d} \lambda^{-3/2p} \|f\|_{L^p(\mathbb{R})}.$$

For $1 \leq p < 4$, we have the L^p decay estimates

$$\|T_\lambda^\psi f\|_{L^p(\mathbb{R}^2)} \lesssim C_{\psi} \lambda^{-1/2 + 4/2p} \|f\|_{L^p(\mathbb{R})},$$

$$\|\tilde{T}_\lambda^\psi f\|_{L^p(\mathbb{R}^2)} \lesssim C_{\psi, a, b, c, d} \lambda^{-1/2 + 1/2p} \|f\|_{L^p(\mathbb{R})}.$$
Notation: In this paper, $A \lesssim B$ means that there exists an absolute constant C such that $A \leq CB$.

2 Outline of the Proof

The strategy of proving Theorem 1.1 is similar to what have been done to Fourier restriction estimates. We use broad-narrow method to divide $T_\lambda^\psi f(x, y)$ into broad part and narrow part. Then we establish a rescaling lemma to deal with the narrow part. By employing the classical result of Phong–Stein [23] in $(1 + 1)$—dimensional case, we establish a bilinear estimate for the broad part. Last, we combine the argument above and derive an induction relation which leads to the final result.

Before the formal argument, we need some uniform constraints on the support function. Denote the class of functions U by

$$U := \{\psi(x, y, t) : \supp \psi \subset [-1, 1]^3, \left| \frac{\partial_j^j}{\partial t} \psi \right| \leq 1, \quad j = 0, 1, 2, 3\}.$$

Based on this, we further write

$$Q_p(\lambda) := \sup_{\psi \in U} \sup_{\|f\|_{L_p(\mathbb{R})} \leq 1} \|T_\lambda^\psi f\|_{L_p(\mathbb{R}^2)}.$$

To prove Theorem 1.1, it suffices to show the following result.

Theorem 2.1

$$Q_4(\lambda) \lesssim \lambda^{-\frac{3}{8}}.$$

To prove this theorem, it suffices to give the following iteration relation.

Lemma 2.2 For any large number $K > 10^4$, we have

$$Q_4(\lambda) \lesssim K^\frac{9}{8} \lambda^{-\frac{3}{8}} + K^{-\frac{1}{2}} Q_4(\lambda/K).$$

We now explain how Lemma 2.2 implies Theorem 2.1. We write down each step of the iteration

$$Q_4(\lambda) \lesssim K^\frac{9}{8} \lambda^{-\frac{3}{8}} + K^{-\frac{1}{2}} Q_4(\lambda/K),$$

$$Q_4(\lambda/K) \lesssim K^\frac{9}{8} (\lambda/K)^{-\frac{3}{8}} + K^{-\frac{1}{2}} Q_4(\lambda/K^2),$$

$$\ldots$$

$$Q_4(\lambda/K^M) \lesssim K^\frac{9}{8} \left(\lambda/K^M\right)^{-\frac{3}{8}} + K^{-\frac{1}{2}} Q_4(\lambda/K^{M+1}).$$
where $M \approx \log_K \lambda$. This means

$$Q_4(\lambda) \lesssim K^{\frac{9}{8}} \lambda^{-\frac{3}{8}} + K^{-\frac{M}{2}} Q_4(\lambda/K^{M+1})$$

$$\approx K^{\frac{9}{8}} \lambda^{-\frac{3}{8}} + \lambda^{-\frac{1}{2}} Q_4(1)$$

$$\lesssim \lambda^{-\frac{3}{8}}.$$

The last inequality follows from the induction.

It should be pointed out, using induction to prove oscillatory estimates had appeared previously in [2] or even earlier in [20].

3 Optimality

Now we give an example to show that the decay estimates given in Theorem 1.1, Corollary 1.2 and the first half part of Corollary 1.3 are sharp.

Suppose ψ is a nonnegative cut-off function and satisfies

$$\psi(x, y, t) = \begin{cases} 0, & |(x, y, t)| \geq 1, \\ 1, & |(x, y, t)| \leq \frac{1}{2}. \end{cases} \quad (3.1)$$

We choose the test function as

$$f(t) = \chi_{[0,1]}(t). \quad (3.2)$$

Assume the priori estimate

$$\|T_\lambda^{\psi} f\|_{L^p(\mathbb{R}^2)} \lesssim C_{\psi} \lambda^{-\delta} \| f \|_{L^p(\mathbb{R})}.$$

Then for the specific function (3.2), we see that

$$\left[\iint \left| \int_0^1 e^{i\lambda(x^2 t + y^2 t^2)} \psi(x, y, t) \, dt \right|^p \, dx \, dy \right]^\frac{1}{p} \lesssim C_{\psi} \lambda^{-\delta}.$$

With the support function (3.1), we have

$$\lambda^{-\frac{3}{2p}} \lesssim \left[\int_{|y| \leq \lambda^{-1}} \int_{|x| \leq \lambda^{-\frac{1}{2}}} \left| \int_0^1 e^{i\lambda(x^2 t + y^2 t^2)} \psi(x, y, t) \, dt \right|^p \, dx \, dy \right]^\frac{1}{p} \lesssim C_{\psi} \lambda^{-\delta}.$$

Since the inequality holds for arbitrarily large λ, then it requires

$$\delta \leq \frac{3}{2p}.$$

This ultimately shows the optimality.
4 Proof of Theorem 2.1

Broad-narrow method was introduced by Bourgain–Guth in [5] which efficiently reduces the linear restriction estimates to multilinear estimates which are well understood. As usual, we decompose the test function into K parts

$$f(t) = \sum_{j=0}^{K-1} f_j(t),$$

where $\text{supp } f_j \subset \left[\frac{j}{K}, \frac{j+1}{K} \right] \cup \left(-\frac{j+1}{K}, -\frac{j}{K} \right)$. For a positive number $\alpha \in (0, 1)$, we say a point $(x, y) \in [-1, 1]^2$ is α–broad if

$$\max_j \left| T_\lambda f_j(x, y) \right| \leq \alpha \left| T_\lambda f(x, y) \right|,$$

otherwise, the point (x, y) is called narrow. The choice of α is independent of K, it depends on whether we can get the bilinear bound (4.4) or not, actually, $\alpha = 10^{-1}$ suffices.

We write

$$Br_\alpha(T_\lambda f)(x, y) = \begin{cases} \left| T_\lambda f(x, y) \right| & \text{if } (x, y) \text{ is } \alpha \text{– broad;} \\
0 & \text{if } (x, y) \text{ is narrow.} \end{cases}$$

Therefore, pointwise we have

$$\left| T_\lambda f(x, y) \right| \leq Br_\alpha(T_\lambda f)(x, y) + \alpha^{-1} \max_j \left| T_\lambda f_j(x, y) \right|.$$

This implies the following inequality

$$\int \int \left| T_\lambda f(x, y) \right|^4 \, dx \, dy \leq \int \int \left| Br_\alpha(T_\lambda f)(x, y) \right|^4 \, dx \, dy + \alpha^{-4} \sum_{j=0}^{K-1} \int \int \left| T_\lambda f_j(x, y) \right|^4 \, dx \, dy. \tag{4.1}$$

We deal with the first term using bilinear estimates and the latter one using a rescaling estimate we now turn to.

4.1 Rescaling Argument

This part is devoted to proving a degenerate rescaling estimate which is basically the same as the parabolic rescaling estimate. Now we state the main result.
Lemma 4.1

\[
\sup_{\psi \in \mathcal{U}} \| T^\psi_\lambda f_j \|_{L^4(\mathbb{R}^2)} \lesssim K^{-\frac{1}{2}} Q_4(\lambda / K) \| f_j \|_{L^4(\mathbb{R})}. \tag{4.2}
\]

Proof For a cut-off function \(\phi \), we may assume \(f_j(t) = f(t)\phi_j(t) \) where \(\phi_j(t) = \phi \left(K \left(t - \frac{j}{K} \right) \right) \), then

\[
T^\psi_\lambda f_j(x, y) = \int_{\mathbb{R}} e^{i\lambda(x^2 t + y^2 t)} \psi(x, y, t) \phi_j(t) f(t) dt,
\]

\[
= \int_{\mathbb{R}} e^{i\lambda(x^2 t + y^2 t)} \psi(x, y, t) \phi \left(K \left(t - \frac{j}{K} \right) \right) f(t) dt
\]

\[
= \int_{\mathbb{R}} e^{i\lambda \left(\frac{x^2 + y^2}{K^2} \right)} \psi(x, y, \frac{s}{K}) \phi(s - j) f \left(\frac{s}{K} \right) ds / K,
\]

\[
= \int_{\mathbb{R}} e^{i\lambda \left(\frac{x^2 + y^2}{K^2} \right)} \psi(x, y, \frac{s}{K}) \phi(s - j) f \left(\frac{s}{K} \right) ds / K.
\]

Set \(\psi_K(x, y, s) = \psi \left(x, y, \frac{s}{K} \right) \) and \(f_j, K(s) = \phi(s - j) f \left(\frac{s}{K} \right) \), it can be verified that \(\psi_K \in \mathcal{U} \). Therefore,

\[
\left| T^\psi_\lambda f_j(x, y) \right| = \frac{1}{K} \left| T^\psi_{\lambda, K} f_j, K(x, y / K) \right|.
\]

So we have

\[
\| T^\psi_\lambda f_j \|_{L^4(\mathbb{R}^2)}^4 = \frac{1}{K^4} \cdot K \| T^\psi_{\lambda, K} f_j, K \|_{L^4(\mathbb{R}^2)}^4
\]

\[
\leq \frac{1}{K^3} Q_4 \left(\frac{\lambda}{K} \right) K \| f_j, K \|_{L^4(\mathbb{R})}^4
\]

\[
= \frac{1}{K^2} Q_4 \left(\frac{\lambda}{K} \right) \| f_j \|_{L^4(\mathbb{R})}^4.
\]

This implies the inequality (4.2). \(\square \)

Consequently, the latter term in RHS of (4.1) is bounded from above by

\[
10^4 K^{-2} Q_4(\lambda / K) \| f \|_{L^4(\mathbb{R})}^4. \tag{4.3}
\]

4.2 Bilinear Estimate

We now deal with the first term in RHS of (4.1). With the assumption \(\alpha = 10^{-1} \), we know that for each \(\alpha \)--broad point \((x, y) \) there exist \(j, k \) with \(|j - k| \geq 2 \) such that

\[
\left| T^\psi_\lambda f(x, y) \right| \leq K \left| T^\psi_\lambda f_j(x, y) \right|^{\frac{1}{2}} \left| T^\psi_\lambda f_k(x, y) \right|^{\frac{1}{2}}. \tag{4.4}
\]
Notice that the indices \(j, k \) depend on the point \((x, y)\), we use summation over all indices to eliminate such dependence. For each \(\alpha \)–broad point \((x, y)\), we always have
\[
|T_\lambda^\psi f(x, y)|^4 \leq K^4 \sum_{|j-k| \geq 2} |T_\lambda^\psi f_j(x, y)|^2 |T_\lambda^\psi f_k(x, y)|^2.
\]
This implies
\[
\iint |B_{\lambda\alpha}(T_\lambda^\psi f)(x, y)|^4 \, dx \, dy \\
\leq K^4 \sum_{|j-k| \geq 2} \iint |T_\lambda^\psi f_j(x, y)|^2 |T_\lambda^\psi f_k(x, y)|^2 \, dx \, dy \\
= K^4 \sum_{|j-k| \geq 2} \iint |T_\lambda^\psi f_j(x, y)T_\lambda^\psi f_k(x, y)|^2 \, dx \, dy \\
= K^4 \sum_{|j-k| \geq 2} \iint \left\| \int \int e^{i\lambda(x^2t+yt^2+x^2s+ys^2)} \psi(x, y, t)\psi(x, y, s)f_j(t)f_k(s) \, dt \, ds \right\|^2 \, dx \, dy.
\]
By changing variables
\[
u = t + s, \quad v = t^2 + s^2,
\]
then
\[
\iint e^{i\lambda(x^2t+yt^2+x^2s+ys^2)} \psi(x, y, t)\psi(x, y, s)f_j(t)f_k(s) \, dt \, ds \\
= \iint e^{i\lambda(x^2u+yv)} \psi(x, y, u)\psi(x, y, s) f_j(t(u, v))f_k(s(u, v)) \frac{du \, dv}{2|t-s|}.
\]
Write
\[
F_{j,k}(u, v) = \frac{f_j(t(u, v))f_k(s(u, v))}{2|t-s|}, \quad \psi(x, y, u, v) = \psi(x, y, t(u, v))\psi(x, y, s(u, v)),
\]
and transform the integral above to
\[
\iint e^{i\lambda(x^2u+yv)} \psi(x, y, u, v)F_{j,k}(u, v) \, du \, dv.
\]
Return to the broad part
\[
\iint |B_{\lambda\alpha}(T_\lambda^\psi f)(x, y)|^4 \, dx \, dy \\
\leq K^4 \sum_{|j-k| \geq 2} \iint \left\| \int \int e^{i\lambda(x^2u+yv)} \psi(x, y, u, v)F_{j,k}(u, v) \, du \, dv \right\|^2 \, dx \, dy.
\]
Observe that the phase function in the integrand can be viewed as separation of variables. Specifically, we write

\[\int \int e^{i \lambda (x^2 u + y v)} \psi(x, y, u, v) F_{j,k}(u, v) \, du \, dv \]

\[= \int e^{i \lambda x^2 u} \left[\int e^{i \lambda y v} \psi(x, y, u, v) F_{j,k}(u, v) \, dv \right] \, du. \]

Iterating the \((1 + 1)-\)dimensional result of Phong–Stein [23], we can see that

\[\int \int \left| \int \int e^{i \lambda (x^2 u + y v)} \psi(x, y, u, v) F_{j,k}(u, v) \, dv \right|^2 \, du \, dv \]

\[\leq C \lambda^{-\frac{1}{2}} \int \int \left| \int e^{i \lambda y v} \psi(x, y, u, v) F_{j,k}(u, v) \, dv \right|^2 \, du \, dv \]

\[\leq C \lambda^{-\frac{1}{2}} \int \int |F_{j,k}(u, v)|^2 \, du \, dv. \]

Thus we arrive at

\[\int \int |Br_{\alpha}(T_{\psi} f)(x, y)|^4 \, dx \, dy \leq C \lambda^{-\frac{3}{2}} K^4 \sum_{|j-k| \geq 2} \|F_{j,k}(u, v)\|_{L^2(du \, dv)}^2. \quad (4.5) \]

It should be noted that the constant \(C\) depends on the upper bounds of \(\left| \partial_u^j \psi(x, y, u, v) \right| \) and \(\left| \partial_v^j \psi(x, y, u, v) \right| \) for \(j = 0, 1, 2\), by omitting some cumbersome details we can verify that

\[\left| \partial_u^j \psi(x, y, u, v) \right| \lesssim 1, \quad \left| \partial_v^j \psi(x, y, u, v) \right| \lesssim 1, \]

and this is why the class \(U\) needs third derivatives. Since the supports of \(f_j\) and \(f_k\) are essentially separated, then

\[\|F(u, v)\|_{L^2(du \, dv)}^2 = \int \int \left| \frac{f_j(t(u, v)) f_k(s(u, v))}{2(t(u, v) - s(u, v))} \right|^2 \, du \, dv \]

\[= \int \int \left| \frac{f_j(t) f_k(s)}{|2(t - s)|} \right|^2 \, dt \, ds \]

\[\lesssim \frac{K}{|j - k|} \|f_j\|_{L^2}^2 \|f_k\|_{L^2}^2. \]

So return to (4.5), we know
\[\sup_{\psi \in U} \int \int \left| \mathcal{B}_\alpha (T_\psi f)(x, y) \right|^4 \, dx \, dy \lesssim \lambda^{-\frac{3}{2}} K^4 \sum_{|j-k| \geq 2} \frac{K}{|j-k|} \| f_j \|_{L^2}^2 \| f_k \|_{L^2}^2 \]
\[\lesssim \lambda^{-\frac{3}{2}} K^4 \sum_{|j-k| \geq 2} \frac{1}{|j-k|} \| f_j \|_{L^4}^2 \| f_k \|_{L^4}^2 \]
\[\lesssim \lambda^{-\frac{3}{2}} K^4 \left(\sum_{|j-k| \geq 2} \frac{1}{|j-k|^2} \right)^{\frac{1}{2}} \left(\sum_{|j-k| \geq 2} \| f_j \|_{L^4}^2 \| f_k \|_{L^4}^2 \right)^{\frac{1}{2}} \]
\[\lesssim \lambda^{-\frac{3}{2}} K^2 \| f \|_{L^4}^4. \quad (4.6) \]

Thus, (4.6) together with (4.3) implies

\[Q_4^4(\lambda) \lesssim K^{\frac{9}{2}} \lambda^{-\frac{3}{2}} + K^{-2} Q_4^4(\lambda/K). \]

This leads to Lemma 2.2. Thus we complete the proof of Theorem 1.1.

Acknowledgements The author thanks the anonymous referees for careful reading and many helpful suggestions which greatly improve the manuscript. The author would like to thank Prof. Xiaochun Li for sharing the idea of using induction machinery to deal with degenerate oscillatory integral operators when the author visited University of Illinois at Urbana-Champaign during 2017–2018. This work is supported by Jiangsu Natural Science Foundation under Grant No. BK20200308. Moreover, the author shows great gratitude to Ran Xu, Xiaonan Hu and Jie Tang for their constant encouragement.

References

1. Bak, J.-G., Lee, S.: Estimates for an oscillatory integral operator related to restriction to space curves. Proc. Am. Math. Soc. 132(5), 1393–1401 (2004)
2. Bak, J.-G., Oberlin, D., Seeger, A.: Restriction of Fourier transforms to curves and related oscillatory integrals. Am. J. Math. 131(2), 277–311 (2009)
3. Basu, S., Guo, S., Zhang, R., Zorin-Kranich, P.: A stationary set method for estimating oscillatory integrals. arXiv:2103.08844, (2021)
4. Bourgain, J.: L^p estimates for oscillatory integrals in several variables. Geom. Funct. Anal. 1(4), 321–374 (1991)
5. Bourgain, J., Guth, L.: Bounds on oscillatory integral operators based on multilinear estimates. Geom. Funct. Anal. 21(6), 1239–1295 (2011)
6. Comech, A.: Integral operators with singular canonical relations. Spectral theory, microlocal analysis, singular manifolds. Math. Top. 14, 200–248 (1997)
7. Comech, A., Cuccagna, S.: Integral operators with two-sided cusp singularities. Int. Math. Res. Not. IMRN 2000(23), 1225–1242 (2000)
8. Drury, S.W.: Restrictions of Fourier transforms to curves. Ann. Inst. Fourier (Grenoble) 35, 117–123 (1985)
9. Fefferman, C.: Inequalities for strongly singular convolution operators. Acta Math. 124(1), 9–36 (1970)
10. Gilula, M.: Some oscillatory integral estimates via real analysis. Math. Z. 289(1), 377–403 (2018)
11. Greenblatt, M.: Sharp L^2 estimates for one-dimensional oscillatory integral operators with C^∞ phase. Am. J. Math. 127(3), 659–695 (2005)
12. Greenleaf, A., Pramanik, M., Tang, W.: Oscillatory integral operators with homogeneous polynomial phases in several variables. J. Funct. Anal. 244(2), 444–487 (2007)
13. Greenleaf, A., Seeger, A.: Fourier integral operators with fold singularities. J. Reine Angew. Math. 450, 35–56 (1994)
14. Greenleaf, A., Seeger, A.: Fourier integral operators with cusp singularities. Am. J. Math. 120(5), 1077–1119 (1998)
15. Greenleaf, A., Seeger, A.: On oscillatory integral operators with folding canonical relations. Studia Math. 132(2), 125–139 (1999)
16. Greenleaf, A., Seeger, A.: Oscillatory and Fourier integral operators with degenerate canonical relations. Publ. Mat. 93, 141 (2002)
17. He, D., Shi, Z.: Sharp bounds for oscillatory integral operators with homogeneous polynomial phases. Canad. Math. Bull. 63(4), 771–786 (2020)
18. Hörmander, L.: Oscillatory integrals and multipliers on FL^p. Ark. Mat. 11(1), 1–11 (1973)
19. Guth, L., Hickman, J., Iliopoulou, M.: Sharp estimates for oscillatory integral operators via polynomial partitioning. Acta Math. 223(2), 251–376 (2019)
20. Nagel, A., Stein, E.M., Wainger, S.: Differentiation in lacunary directions. Proc. Natl. Acad. Sci. USA 75(3), 1060–1062 (1978)
21. Pan, Y., Sogge, C.: Oscillatory integrals associated to folding canonical relations. Colloq. Math., 60, 413–419. Institute of Mathematics Polish Academy of Sciences, (1990)
22. Phong, D.H., Stein, E.M.: Oscillatory integrals with polynomial phases. Invent. Math. 110(1), 39–62 (1992)
23. Phong, D.H., Stein, E.M.: Models of degenerate Fourier integral operators and Radon transforms. Ann. Math. 140(3), 703–722 (1994)
24. Phong, D.H., Stein, E.M.: The Newton polyhedron and oscillatory integral operators. Acta Math. 179(1), 105–152 (1997)
25. Phong, D.H., Stein, E.M., Sturm, J.: Multilinear level set operators, oscillatory integral operators, and Newton polyhedra. Math. Ann. 319(3), 573–596 (2001)
26. Rychkov, V.S.: Sharp L^2 bounds for oscillatory integral operators with C^\infty phases. Math. Z. 236(3), 461–489 (2001)
27. Shi, Z., Xu, S., Yan, D.: Damping estimates for oscillatory integral operators with real-analytic phases and its applications. Forum Math. 31(4), 843–865 (2019)
28. Shi, Z., Yan, D.: Sharp L^p-boundedness of oscillatory integral operators with polynomial phases. Math. Z. 286(3–4), 1277–1302 (2017)
29. Tang, W.: Decay rates of oscillatory integral operators in “2+1” dimensions. Forum Math. 18, 427–444 (2006)
30. Varchenko, A.N.: Newton polyhedra and estimation of oscillating integrals. Funct. Anal. Appl. 10(3), 175–196 (1976)
31. Xiao, L.: Endpoint estimates for one-dimensional oscillatory integral operators. Adv. Math. 316, 255–291 (2017)
32. Yang, C.W.: Sharp L^p estimates for some oscillatory integral operators in \mathbb{R}^1. Ill. J. Math. 48(4), 1093–1103 (2004)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.