Evidence Based Prediction and Progression Monitoring on Retinal Images from Three Nations

Al Turk, L., Wang, S., Krause, P., Wawrzynsk, J., Saleh, G. M., Alsawadi, H., Alshamrani, A. Z., Peto, T., Bastawrous, A., Li, J., & Tang, H. L. (2020). Evidence Based Prediction and Progression Monitoring on Retinal Images from Three Nations. Translational Vision Science & Technology, 9, [44].

Published in:
Translational Vision Science & Technology

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback
Evidence Based Prediction and Progression Monitoring on Retinal Images from Three Nations

Authors: Lutfiah Al Turk PhD¹, Su Wang PhD², Paul Krause PhD*², James Wawrzynski MD⁸, George M Saleh MD⁸, Hend Alsawadi MD³, Abdulrahman Zaid Alshamrani MD⁴, Tunde Peto PhD⁵, Andrew Bastawrous MD⁶, Jingren Li MD⁷, and Hongying Lilian Tang PhD²

1. Department of Statistics, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
2. Department of Computer Science, University of Surrey, Guildford, Surrey, UK
3. Faculty of Medicine, King Abdulaziz University, Saudi Arabia
4. Ophthalmology Department, Faculty of Medicine, University of Jeddah, Saudi Arabia
5. Centre for Public Health, Queen’s University Belfast, NI, UK
6. International Centre for Eye Health, Department of Clinical Research, Faculty of Infectious and Tropical Diseases. London School of Hygiene and Tropical Medicine London, United Kingdom
7. 7th Medical Center of PLA General Hospital, Diabetes Professional Committee of China, Geriatric Health Association, P.R. China.
8. NIHR Biomedical Research Centre at Moorfield Eye Hospital and the UCL Institute of Ophthalmology, London, UK

* Corresponding author.

Paul Krause CMath, FIMA
Professor in Complex Systems,
Department of Computer Science, University of Surrey, Guildford, Surrey, GU2 7XH
E-mail: p.krause@surrey.ac.uk
Tel: +44 (0) 1483 689861
Abstract

PURPOSE

The aim of this work is to demonstrate how a retinal image analysis system, DAPHNE, supports the optimisation of diabetic retinopathy (DR) screening programmes for grading colour fundus photography.

METHOD

Retinal image sets, graded by trained and certified human graders, were acquired from Saudi Arabia, China and Kenya. Each image was subsequently analysed by the DAPHNE automated software. The sensitivity, specificity, positive and negative predictive values for the detection of referable DR and/or diabetic macular oedema were evaluated, taking human grading or clinical assessment outcomes to be the gold standard. The automated software's ability to identify co-pathology and to correctly label DR lesions was also assessed.

RESULTS

In all three datasets the agreement between the automated software and human grading was between 0.84 to 0.88. Sensitivity did not vary significantly between populations (94.28% to 97.1%) with specificity ranging between 90.33% to 92.12%. There were excellent negative predictive values above 93% in all image sets. The software was able to monitor DR progression between baseline and follow-up images with the changes visualised. No cases of proliferative DR or DMO were missed in the referable recommendations.

CONCLUSIONS

The DAPHNE automated software demonstrated its ability not only to grade images
but also to reliably monitor and visualise progression. Therefore, it has the potential to assist timely image analysis in patients with diabetes in varied populations, and also help to discover subtle signs of sight-threatening disease onset.

TRANSLATIONAL RELEVANCE

The paper takes research on machine vision and evaluates its readiness for clinical use.

Keywords: diabetic retinopathy, lesion detection, deep learning, AI algorithm, diabetes

Introduction

Diabetic retinopathy (DR) is a common complication of diabetes mellitus. Among patients with diabetes, DR prevalence is approximately 28.5% in the United States, 34.08% in China and 34.6% in Saudi Arabia. The diagnosis of DR early in the pre-symptomatic phase through screening is critical to the eventual visual outcome and relies on a detailed analysis of fundus photographs taken regularly (e.g. often annually) within DR screening programmes. At present, photographs are most commonly analysed by ophthalmologists, optometrists and professional graders.

Several classification systems have been developed and adopted in order to guide DR screening frequency and ophthalmic referral based on a population’s needs and/or the resources available in different parts of the world. Two commonly used systems are the International Clinical Diabetic Retinopathy and Diabetic Macular Oedema Severity Scale (ICDRS) and the one defined by the UK National Screening Committee (NSC). Guidance on screening intervals, investigation and treatment are also incorporated into these guidelines.
In England and Wales, where over 80% of those with diabetes undergo DR screening at least annually, DR is no longer the leading cause of blindness in the working-age population. However, the majority of countries around the world have no such established screening programme; one of the barriers remains the need to have sufficient trained staff to manually grade every fundus image captured. The availability of automated image grading might become a facilitator to support DR screening services in resource limited settings.

Over the past two decades, automated retinal image analysis for DR detection and grading has been studied extensively. Computer vision and machine learning methods have been proposed. The rise of deep learning, typically implemented as Convolutional Neural Networks (CNNs), has given a significant boost to the field of automated DR detection. This facilitated the usage of large datasets of fundus images to improve the accuracy and scalability of DR recognition and classification.

However, such systems continue to suffer from significant limitations:

- The inability of many deep learning systems to provide detail or evidence to support their “black-box” DR classification;
- Absence of the capacity to detect and grade DR within the broader context of other possible diagnoses such as age related macular degeneration (AMD) and retinal vein occlusion, in order to minimise false positive results and indicate the presence of non-DR pathologies.

Hypothesis of the Study: This study aims to evaluate the ability of a retinal image analysis software system to provide effective detection of referable DR and surrogate markers of Diabetic Macular Oedema (DMO), and the monitoring of progression of DR and DMO based on either the ICDRS or NSC grading criteria. The measure of its performance is based on its agreement with human graders and clinical assessment. Validations were carried out on external testing data collected from three geographic locations, Kenya, Saudi Arabia and China, with different camera types and settings. The software also provides evidence of its prediction
through visualising relevant lesions and identifies the presence of co-pathology whilst not confusing it with DR.

Methods

DAPHNE automated software

DAPHNE is an automated system for retinal image analysis developed by the University of Surrey, UK. DAPHNE was originally developed as a software system for diabetic retinopathy filtering of normal images\(^{28}\). Over the years it has evolved with the addition of a range of components with the aim of supporting a holistic reading of retinal images on key pathological manifestations of DR and other pathologies. Two major components are evaluated in this work; one is an image based classifier, the other is an object detector.

The DAPHNE classifier is an end to end CNN architecture with multiple output layers for different classifications based on the training samples annotated on their quality, as well as DR grade in either ICDRS or NSC (see below, in the Retinal Images Datasets section of this paper). Images were first pre-processed to subtract local average colour to reduce differences in lighting\(^{24}\). These were then augmented to increase spatial, rotational, and scale variance. To speed up the ‘learning’ process, batch normalisation and pre-initialisation were used. Pre-initialisation also improved performance of the CNN network. The CNN framework was trained to provide multiple outputs, including: (1) quality assessment; (2) ICDRS DR grades (e.g., 0-no DR, 1-mild, 2-moderate, 3-severe, or 4-proliferative); (3) UK NSC DR grades (e.g., R0 - no DR, R1 - background, R2 - pre-proliferative or R3 - proliferative); and, (4) presence of referable DR.

The DAPHNE object detector has a number of components. A set of U-net\(^{25}\) and CNN-based detectors were trained to detect: retinal anatomical structures, such as the optic disc and macula; the DR lesions, such as microaneurysms, haemorrhages, exudates; and, other lesions, such as intraretinal microvascular abnormality (IRMA), new vessel on disc, new vessel elsewhere, cotton wool, drusen, venous beading.
The rest of this section will first describe the prediction workflow after the algorithms are trained, followed by further information on training and validation datasets, prediction output categories as well as how the prediction accuracy is reported.

DAPHNE Workflow: In the first stage of the processing, raw data in any image format are cropped by removing any black mask borders around the retina region then passed through the classifier network to obtain a prediction on both quality and DR scales. To minimise the throwing away of those low readability images caused by the presence of certain pathologies, the probability outputs on both quality measure and disease measures are fed into a logistic regression model parametised by some samples of images with pure quality issues and those with conditions such as cataract and retinal detachment. This filtering process does not intend to achieve 100% accuracy but aims to pick up some portion of the low quality images caused by different pathological conditions, if any, so they could be processed further. Otherwise those images with low quality scores are marked as ungradable. All the images that are deemed to have a quality score indicating adequate quality, are passed to the next stage.

In the second stage, DAPHNE detectors output the locations of anatomical structures in the fundus image, as well as the likelihood that a certain region is pathological. This works together with the DAPHNE classifier that outputs the DR severity grading. The detected pathological regions that are consistent with the predicted grading level are visualised as evidence for the predicted grade. With regards to DMO analysis, the DAPHNE detector detects and visualises the location of the optic disc, fovea and any exudate around the macula region as well as any appearance of microaneurysms or haemorrhages within 1-disc diameter of the fovea.

Analysis for progression: DR is a progressive disease and UK23 data suggests that it may be possible to stratify patients for risk, using grading outcomes only, into groups with low and high risk of progressing to proliferative DR. Subsequently, screening
intervals for such diverse groups of patients could then safely be modified according to their risk stratification. In our work the DR progression monitoring was carried out by combining the results from individual image classification on disease level and then adding in the DAPHNE detectors to visualise the changes between time-points.

When analysing a set of images taken for DR screening of the same patients at different examination time points, the system first applies detected anatomical structures to register between baseline and follow-up images of the same eye. It then computes any change in the severity of DR by comparing the grading results of these images. After registration, the lesion detectors are used to extract and visualise the following morphological changes in pathology (see Fig. 1):

- Any new lesion;
- Any disappearing lesion;
- Any change of existing lesions (smaller or bigger compared with baseline images).

Retinal Image Datasets

Training sets:

The development of the DAPHNE classifier was undertaken partly using 35,124 macula-centred retinal fundus images generated by EyePACS and available at Kaggle\(^7\). These images were already labelled by EyePACS using the ICDRS scheme. We also annotated these images using the NSC grading scheme and used 28,100 of them as part of our training and testing dataset. The remaining 20% (7,024 images) served as an internal validation test set. Cameras used to capture the images include the Optovue iCam, Centervue DRS, Topcon NW and Canon CR1/DGi/CR2 using 45-degree fields-of-view. As with any typical real-world dataset, this dataset included photographs that contained artefacts, or could be out of focus, underexposed or overexposed. Another 4,980 images were selected from our own collections, from different cameras and ethnic groups, with the annotations in both ICDRS and NSC agreed by three trained graders. Together these form 33,800 training sample images for learning each grading standard (ICDRS and NSC).
For lesion detection in the DAPHNE detector, we first used a public database (DiaRetDB119). All images were obtained using the same 50-degree field-of-view fundus camera with varying imaging settings. It contains 89 digital retinal images and a human-expert annotated ground truth for several common DR lesions, including microaneurysms, haemorrhages and exudates. We then added a further 1952 images annotated by three trained graders and a medical retina specialist on retinal pathological regions. After random sampling and preprocessing, 50,000 sub-images in smaller patch sizes are sampled from 2041 (89+1952) images for training. These sub-images include those regions with or without pixels where the lesions are located to form negative and positive samples. For negative samples, normal patches on various locations of the retina without any pathology can be used. There are many possibilities to sample such sub-images with the lesions appearing at different positions of the patch for positive samples. Positive samples include those features appearing in DR, as well as those non-DR but pathological. 50,000 patch samples allowed the algorithm to be trained under different scenarios.

As a general strategy, during the training, all the training data were divided randomly into training and testing sets based on an 80/20 split strategy. These data were not used for any internal or external validation. There was no patient-level overlap in the training and testing sets in either the internal or external validation.

External validation test sets: In order to test the generalisability and reproducibility of the software, we used three distinct datasets for external validation acquired with varying imaging settings and cameras from the three countries: 15,000 from China; 10,026 from Saudi Arabia; and, 24,700 from Kenya18.

China: Images were obtained from DR screening, fully anonymised locally and with appropriate permissions in place. The gold-standard for DR grading using the NSC grading criteria was carried out by trained and certified graders. Two fundus images were taken in each eye; one optic disc centred and the other macula centred. No follow up images or clinical assessments were received.
Saudi Arabia: Images were collected at an Eye Clinic after appropriate approvals were put in place. Zeiss Visucam 500 cameras were used once eyes were dilated using pharmacological dilation. As this was a clinic based population, most patients had eye conditions but not necessarily DR. Multiple fundus images were acquired from the same patients with varied examination intervals between image capture (ranging from one month to one year). The ground truth on images was extracted based on clinical assessment and converted to DR grades using NSC grading including features of DMO being noted.

Kenya: Data were from a population-based survey undertaken in 2007/08 in Nakuru district, Kenya, as the baseline using a Topcon® NW6S Non Mydriatic camera model, then in 2013/2014 as follow-up in the same population using a DRS Digital Fundus Camera (Haag-Streit)18. Two 45° fundus photographs were taken in each eye; one optic disc centered and the other macula centered. The gold-standard for DR grading of DR was carried out using ICDRS grading criteria. In addition, age related macular degeneration (AMD) and optic disc changes based on retinal photographs were completed by trained graders at the Moorfields Eye Hospital Reading Centre, London, UK. This was the most complex image and grading set of the 3 but also the one with the most complete grading.

A public database, Messidor-220,21 was also included in the external validation, consisting of 874 subjects with diabetes (1748 digital retinal colour images, one fovea-centred image per eye). These subjects were imaged, without pharmacological dilation, using a Topcon TRC NW6 non-mydriatic fundus camera with a 45-degree field of view, centred on the fovea, at varying imaging settings. Two categories of disease have been provided by the medical experts for each image; the ICDR scales and a definition of DMO risk based on the distance between macula and hard exudates.

Table 1. provides an overview of the training, internal and external validation test sets.
The Grading Categories and Definitions

Different countries adopt different grading schemes depending on their healthcare resources and policies. The DAPHNE software is trained to predict the probabilities of the following categories:

- **Image quality (gradable or non-gradable):** The quality grading standard is based on using the UK National Screening Programme for Diabetic Retinopathy’s guidelines for the definition of acceptable quality\(^ {27}\).

- **Diabetic retinopathy severity:** The DAPHNE classifier grades images based on either ICDRS or UK NSC classification schemes; whichever is suitable for the country’s needs.

- **A modified definition of DMO (0–1):** Fundus photography does not reliably identify DMO, but allows for surrogate markers to be identified. These surrogate markers of oedema such as presence of exudates, or microaneurysms within 1-disc diameter of the macula\(^ {19}\), are identified by the DAPHNE software as well. According to the UK NSC guidelines, diabetic maculopathy (M1) is defined as “A group of exudates is an area of exudates that is greater than or equal to half the disc area and this area is all within the macular area”, while the macula is defined as “that part of the retina which lies within a circle centred on the centre of the fovea whose radius is the distance between the centre of the fovea and the temporal margin of the disc.”\(^ {26}\) The detection of DMO markers are carried out by the DAPHNE object detector and subsequently classified as a referable disease.

- **Non-referable DR vs referable DR:** In ICDRS level 0 or 1 and in UK NSC R0 or R1 are non-referable DR, whilst ICDRS level 2, 3, 4 and UK NSC R2 or R3 are Referable DR.

Statistical Analysis of Performance

Evaluation was conducted by measuring sensitivity (SN), specificity (SP), positive and negative predictive values (PPV and NPV), and their 95% confidence intervals (CIs). We also calculated the agreement of the DR and DMO grading results between the
DAPHNE system and human experts by using the quadratic weighted kappa. These analyses were measured through the StatsModels version 0.8.0 and SciPy version 1.0.0 python packages.

RESULTS

The DAPHNE system is being evaluated in its intended stage in the care pathway; reading of referable cases with evidence, noting any progression changes.

On External validation datasets: This dataset was graded as 95% gradable by our system. Referable DR prevalence was 42.5% (21,133 images). According to the NSC and ICDRS grading standards, DAPHNE classifies data into referral (R2 and above in NSC or moderate DR and above in ICDRS) and non-referral cases (R0/R1 in NSC or no apparent retinopathy and Mild NPDR in ICDRS). As there is no overlapping in images graded in NSC and ICDRS, we report here the combined calculation on referable retinopathy. Any image with detected DMO markers is also referable.

The kappa scores to measure the agreement between the ground truth and the software on referable diseases in China, Saudi Arabia and Kenya datasets are: 0.85, 0.88 and 0.84 respectively. The performance of DAPHNE with regards to the detection of referable retinopathy at high sensitivity operating points was as follows: sensitivity, 94.1% (95% CI: 92.3%–95.6%); specificity, 87.0% (95% CI: 84.9%–88.9%); negative predictive value, 93.9% (95% CI: 93.9%–96.3%); and, positive predictive value, 85.3% (95% CI: 82.1%–86.1%). At high specificity operating points, the sensitivity of our system was 88.2% (95% CI: 85.9%–90.3%), specificity was 93.0% (95% CI: 91.4%–94.5%), the negative predictive value was 91.5% (95% CI: 89.9%–92.8%), and the positive predictive value was 90.4% (95% CI: 88.3%–92.1%). Table 2 (a-c) shows the detail of the software performance on each of these three populations.

We chose 3548 eyes with baseline and follow-up images. The measure of changes on their disease levels were calculated. The kappa score is 0.827 when comparing those
changes assessed by human graders. Fig. 2 and Fig. 3 show the detected DR signs across baseline and follow-up images using the DAPHNE lesion detector.

We also carried out an evaluation based on the consistency between the detected features by the software, and the DR severity level for the whole image annotated by human graders. If the software detects sufficient features that can be mapped to the same level of DR severity graded by human graders, it is considered as an agreement. The DAPHNE system achieved a weighted kappa score of 0.87 on these external validation sets. The software, however, detected some of the other non-DR lesions and individual artefacts as DR-related. This showed that further work is still needed in order to refine the detection. On the other hand, this will aid flagging up any non-DR pathology.

On external public dataset Messidor-2: This consisted of 1,748 retinal images from 874 subjects. This dataset was assessed as 100% gradable by our system. 264 images are Referable DR and 125 DMO. Table 2 (d) shows the performance of the algorithm for detecting the different levels of diabetic retinopathy.

At the high sensitivity operating point of detecting referable DR levels (according to ICDR scales and DMO scales), the sensitivity of our system was 97.1% (95% CI: 94.8%–98.6%) and specificity was 88.3% (95% CI: 86.5%–90.0%), with a negative predictive value of 99.1% (95% CI: 98.5%–99.5%), and positive predictive value of 69.8% (95% CI: 66.6%–72.8%). At the high specificity operating point, the sensitivity of our system was 89.2% (95% CI: 85.7%–92.2%) and specificity was 95.6% (95% CI: 94.4%–96.6%), with a negative predictive value of 97.0% (95% CI: 96.0%–97.7%), and positive predictive value of 85.0% (95% CI: 81.5%–87.9%).

Sensitivity, based on referral level prediction when PDR cases are in the referable category, was 100% (95% CI: 96.5%–100%, which means no cases of PDR cases were missed), and sensitivity for detecting DMO was also 100% using the referral threshold (95% CI: 95.8%–100%; i.e., no cases of DMO were missed). The AUC for
detecting the referral DR was 0.983 (95% CI: 0.969%–0.993%). On the other hand, if a threshold is set to separate PDR and non-PDR, there were cases of PDR classified as severe DR but in the referable category as shown in Table 2.

On Internal validation dataset:
As a part of the internal validation on 7,024 images from the Kaggle dataset, two operating points were selected for the detection of referable DR levels (according to the ICDR scales) for fully gradable images; one for high sensitivity and another for high specificity. At the high sensitivity operating point, the sensitivity of our system was 94.2% (95% CI: 93.7%–94.7%) and specificity was 76.5% (95% CI: 76.1%–76.9%), a negative predictive value of 98.2% (95% CI: 98.1%–98.4%), and positive predictive value of 48.7% (95% CI: 48.2%–49.1%). At the high specificity operating point, the sensitivity of our system was 80.1% (95% CI: 80.0%–81.5%) and specificity was 92.6% (95% CI: 92.4%–92.9%), a negative predictive value of 95.3% (95% CI: 95.1%–95.5%), and positive predictive value of 72.1% (95% CI: 71.4%–72.8%). The AUC for detected referable DR level was 0.985 (95% CI: 0.969%–0.993%).

For grading against the ICDR scales our proposed system obtained a quadratic weighted kappa score of 0.857, which is slightly lower than the winner of the DR competition, but higher than other published methods.

Evidence based visualisation:
The current DAPHNE lesion detectors can visualise lesions such as MAs, haemorrhage, exudate, drusen, IRMA and new vessels, explicitly when the prediction probability confidence of these is high. A general category of “abnormal region” is used in the visualisation when explicit labeling of the region is of low probability but high as abnormal. Once the CNN outputs any grade indicating the image is not normal (not 0 in ICDRS or not R0 in NSC), the lesion detectors will visualise at least one of the above pathological regions that are within the definition of the particular grade. On the other hand, if CNN grades an image as normal, the lesion detectors
will search for any missed lesion/abnormal regions using higher prediction probability values.

DISCUSSION

This study demonstrates that all components for the DAPHNE software, such as image quality assessment, image grading, lesion detection and visualisation performed well. These results show good generalisability of the DAPHNE software results to detect gradable quality images, the relevant abnormalities to identify referable DR and DMO and to visualise the relevant changes that happened over time. The study was carried out on large sets of images captured from a diverse population with varying camera types and settings. Therefore, we believe that so far the evaluation of the DAPHNE software showed sufficiently promising results for it to be useful in the intended stage in the DR screening and imaging analysis care pathway.

In many DR screening programmes, human graders do not have access to any other information on the patient but the fundus images they read. Therefore the way the algorithm learns and generates the results needs to mimic the ground truth based on how human graders read the images and come to the conclusion of referral being required. Our purpose was to see if the algorithm can learn to perform at an acceptable level of reading fundus images in order to safely determine quality of the images and then subsequently place patients in the correct referral pathway. Gradability of the images can determine the quality of the programme and so first of all, DAPHNE looked into any significant impact on software performance when images are from different cameras, with either dilated, or undilated eyes. Testing the data collected from three nations with variation of these factors showed that, as long as the quality assessment is in place in the workflow, the performance of the algorithm is consistent. This is in line with other studies29, 30, where AI was evaluated in coordination with either assessing the quality and protocol adherence of images, or data imaged with mydriasis through a high quality imaging platform.
Moreover, an effective algorithm should learn about the true pattern across a large set of images even if there may be a certain level of noise or variation in some individual samples. As the DAPHNE software’s agreement with human grading was above 84% in all validation datasets, it shows potential for further testing as to how it might be incorporated into clinical practice.

The software is very sensitive to sight-threatening disease. DAPHNE copes well across different datasets with a varying proportion of normal vs. abnormal cases. When patients do not have DR or DMO but do have another pathology, the lesion detectors in DAPHNE are able to recognise them as having abnormal regions. DAPHNE thus has the ability to identify the existence of many common ocular co-morbidities in eyes without diabetic retinopathy. The software, however, still needs to be refined to differentiate DR from other visually similar diseases or images with abnormal regions.

The software also shows an ability to monitor DR progression changes between baseline and follow-up images. As the changes of condition can be measured quantitatively, this progression monitoring may potentially benefit patient care management. Furthermore, it might potentially assist with decision making for optimal screening intervals for patients with diabetes in varied populations.

This automated interpretation addresses only one of the several challenges involved in implementing a successful screening program. This work, however, is not trying to redesign any screening programme but rather just to focus on how an automated software system may assist the analysis of the images produced within a functioning screening programme. Further work is required to understand a holistic interaction and integration of an AI software into clinical workflows within a given health care system31.
Acknowledgments

The authors of this paper thank the participants and teams of the Saudi Arabia, China, Kenya Studies. This project was supported by the NSTIP strategic technologies program in the Kingdom of Saudi Arabia (Project No.: 10-INF1262-03). The authors also acknowledge with thanks the Science and Technology Unit, King Abdulaziz University for technical support. The authors would like to thank the Engineering and Physical Sciences Research Council (EPSRC) in the UK for supporting the foundation of this work. This research was partly funded and supported by the National Institute for Health Research (NIHR), Biomedical Research Centre based at Moorfields Eye Hospital, NHS Foundation Trust and UCL Institute of Ophthalmology. The views expressed here are those of the authors and not necessarily those of the Department of Health. We would also like to thank the referees for their comments which have helped us make some important improvements to the paper.

All authors declare that they have no conflicts of interest.
References

1. Zhang, X., Saaddine, J.B., Chou, C.F., Cotch, M.F., Cheng, Y.J., Geiss, L.S., Gregg, E.W., Albright, A.L., Klein, B.E. and Klein, R., 2010. Prevalence of diabetic retinopathy in the United States, 2005-2008. Jama, 304(6), pp.649-656.

2. Liu, Y., Song, Y., Tao, L., Qiu, W., Lv, H., Jiang, X., Zhang, M. and Li, X., 2017. Prevalence of diabetic retinopathy among 13473 patients with diabetes mellitus in China: a cross-sectional epidemiological survey in six provinces. BMJ open, 7(1), p.e013199.

3. Hajar, S., Al Hazmi, A., Wasli, M., Mousa, A. and Rabiu, M., 2015. Prevalence and causes of blindness and diabetic retinopathy in Southern Saudi Arabia. Saudi medical journal, 36(4), p.449.

4. Grading diabetic retinopathy from stereoscopic colour fundus photographs--an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1991. 98:786.

5. Royal College of Ophthalmologists. 1997. Guidelines for the management of diabetic retinopathy., London.

6. Chakrabarti, R., Harper, C.A. and Keeffe, J.E., 2012. Diabetic retinopathy management guidelines. Expert Review of Ophthalmology, 7(5), pp.417-439.

7. Scanlon, P.H., 2017. The English National Screening Programme for diabetic retinopathy 2003–2016. Acta diabetologica, 54(6), pp.515-525.

8. Peto T, Tadros C. Screening for diabetic retinopathy and diabetic macular edema in the United Kingdom. Curr Diab Rcp. 2012 Aug;12(4):338-45. doi: 10.1007/s11892-012-0285-4.

9. Mookiah, M.R.K., Acharya, U.R., Chua, C.K., Lim, C.M., Ng, E.Y.K. and Laude, A., 2013. Computer-aided diagnosis of diabetic retinopathy: A review. Computers in biology and medicine, 43(12), pp.2136-2155.

10. Abràmoff, M.D., Folk, J.C., Han, D.P., Walker, J.D., Williams, D.F., Russell, S.R., Massin, P., Cochenier, B., Gain, P., Tang, L. and Lamard, M., 2013. Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA ophthalmology, 131(3), pp.351-357.

11. Tang, H.L., Goh, J., Peto, T., Ling, B.W.K., Hu, Y., Wang, S. and Saleh, G.M., 2013. The reading of components of diabetic retinopathy: an evolutionary approach for filtering normal digital fundus imaging in screening and population-based studies. PloS one, 8(7), p.e66730.

12. Wang, S., Tang, H.L., Hu, Y., Sanei, S., Saleh, G.M. and Peto, T., 2017. Localizing microaneurysms in fundus images through singular spectrum analysis. IEEE Transactions on Biomedical Engineering, 64(5), pp.990-1002.

13. Abramoff, M.D., Lou, Y., Erginay, A., Clarida, W., Amelon, R., Folk, J.C. and Niemeijer, M., 2016. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Investigative ophthalmology & visual science, 57(13), pp.5200-5206.

14. Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J. and Kim, R., 2016. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama, 316(22), pp.2402-2410.

15. LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. nature, 521(7553), p.436.

16. Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).

17. Kaggle, Inc. Diabetic Retinopathy Detection Vol. 2016. 2015. Available at: https://www.kaggle.com/c/diabetic-retinopathy-detection. Accessed 1st of March, 2017.

18. Bastawrous, A., Mathenge, W., Peto, T., Weiss, H.A., Rono, H., Foster, A., Burton, M. and Kuper, H., 2014. The Nakuru eye disease cohort study: methodology & rationale. BMC ophthalmology, 14(1), p.60.
19. Kälviäinen, R.V.J.P.H. and Uusitalo, H., 2007. DIARETDB1 diabetic retinopathy database and evaluation protocol. In Medical Image Understanding and Analysis (Vol. 2007, p. 61).
20. Quellec, G., Lamard, M., Josselin, P.M., Cazuguel, G., Cochener, B. and Roux, C., 2008. Optimal wavelet transform for the detection of microaneurysms in retina photographs. IEEE Transactions on Medical Imaging, 27(9), pp.1230-41.
21. Decencière, E., Zhang, X., Cazuguel, G., Lay, B., Cochener, B., Trone, C., Gain, P., Ordonez, R., Massin, P., Erginay, A. and Charton, B., 2014. Feedback on a publicly distributed image database: the Messidor database. Image Analysis & Stereology, 33(3), pp.231-234.
22. Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
23. Progression of Diabetes Retinal Status Within Community Screening Programs and Potential Implications for Screening Intervals, Diabetes Care 2015;38:488–494 | DOI: 10.2337/dc14-1778
24. Graham, B. Kaggle Diabetic Retinopathy Detection competition report. Tech. Rep., University of Warwick (2015).
25. Ronneberger, O., Fischer, P. and Brox, T., 2015, October. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.
26. Public Health England, NHS Diabetic Eye Screening Programme Grading definitions for referrable disease, 2017.
27. Definition of acceptable image quality, National Screening Programme for Diabetic Retinopathy, Version 3.0, Agreed by the Grading and Quality Assurance Subcommittee, 9 May 2006, reviewed in May 2008
28. M B. Hansen, HL Tang, S Wang, L Al Turk, R Piemarocchi, M Speckauskas, H-W Hense, Irene Leung and Tunde Peto, Automated detection of Diabetic Retinopathy in Three European Populations, Journal of Clinical & Experimental Ophthalmology, cited as: Hansen et al., J Clin Exp Ophthal mol 2016, 7:4, DOI: 10.4172/2155-9570.1000582.
29. Abràmoff, M.D., Lavin, P.T., Birch, M. et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. npj Digital Med 1, 39 (2018). https://doi.org/10.1038/s41746-018-0040-6
30. Olvera-Barrios A, Heeren TF, Balaskas K, et al, Diagnostic accuracy of diabetic retinopathy grading by an artificial intelligence-enabled algorithm compared with a human standard for wide-field true-colour confocal scanning and standard digital retinal images, British Journal of Ophthalmology Published Online First: 06 May 2020. doi: 10.1136/bjoophthal mol-2019-315394
31. Emma Beede, Elizabeth Baylo, Fred Hersch, Anna Iurchenko, Lauren Wilcox, Paisan Ruamviboonsuk, Laura M. Vardoulakis, A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy, CHI '20: Proceedings of the 2020 CHI Conference on Human Factors in Computing SystemsApril 2020 Pages 1–12, https://doi.org/10.1145/3313831.3376718
Table 1: an overview of the training, internal and external validation test sets.¹

ICDRS	0	1	2	3	4
Training samples on DAPHNE classifier using 28,100 from Kaggle	20647	1955	4234	698	566
Internal validation (7,024 from Kaggle)	5161	488	1058	175	142

external validation datasets

| Kenya | 11479 | 9463 | 3395 | 329 | 34 |

NSC	R0	R1	R2	R3	-
Additional Training Samples on DAPHNE classifier (here only show its distribution in NSC for simplicity)	3659	346	750	224	-

external validation datasets

NSC	R0	R1	R2	R3	-
China	9986	3279	1240	495	-
Saudi Arabia	7451	1854	582	139	-

¹ ICDRS: International Clinical Diabetic Retinopathy and Diabetic Macular Oedema Severity Scale. 0-no DR, 1-mild, 2-moderate, 3-severe, 4-proliferative. NSC: (UK) National Screening Committee. R0-no DR, R1-background, R2-pre-proliferative, R3-proliferative.
Figure 1. Top row: images from the same eye taken on 26/10/2015 (Baseline), 03/11/2015 (Dot Hemorrhage), and 08/03/2016 (MA, Hemorrhage and Preretinal Hemorrhage). Bottom row: the comparison of morphological changes for DR signs between a baseline image (26/10/2015) and a follow-up retinal image (08/03/2016)
Figure 2. The detected results of DR progression changes over a five-year period: First and second rows: from normal images (R0) to background retinopathy (R1); Last row: from pre-proliferative retinopathy (R2) to stable treated proliferative retinopathy (R3s)). First column: baseline images; second column: follow-up fundus images.
Figure 3. The detected results of DR progression changes within one month (between images column 1 and 2) and 2 to 4 months (between images in column 2 and 3). Each row shows images from one patient.
Table 2: DAPHNE’s performance on external validations:

(a) Sensitivity, Specificity and Corresponding 95% CIs for Referral Level Output to Detect Referral, PDR and DMO, and PDR Level Output to Detect PDR on the Kenya Dataset.

Disease Level	Daphne Predicted Results	Sensitivity	Specificity
Referral vs Non-	Referral	94.28% (93.1% -	92.12% (88.27% -
Referral		95.22%)	93.33%)
PDR		100% (95.5% - 100%)	-
DMO			
PDR vs Non-PDR	PDR	97.35% (92.3% -	85.78% (83.2% -
		99.7%)	87.81%)

(b) Sensitivity, Specificity and Corresponding 95% CIs for Referral Level Output to Detect Referral, PDR and DMO, and PDR Level Output to Detect PDR on the Saudi Arabian Dataset. The ground truth of DMO was obtained from eye clinic, to assess the detection of DMO markers by the DAPHNE detector.

Disease Level	Daphne Predicted Results	Sensitivity	Specificity
Referral vs Non-	Referral	97.1% (95.1% -	90.33% (85.71% -
Referral		97.25%)	92.17%)
PDR		100% (94.5% - 100%)	-
DMO		100% (94.5% - 100%)	-
PDR vs Non-PDR	PDR	98.23% (93.3% -	83.78% (82.12% -
		99.6%)	88.87%)

2 CIs: confidence intervals. DMO: Diabetic Macular Oedema. PDR: Proliferative Diabetic Retinopathy

23
(c) Sensitivity, Specificity and Corresponding 95% CIs for Referral Level Output to Detect Referral, PDR and DMO, and PDR Level Output to Detect PDR on the China Dataset.

Disease Level	Daphne Predicted Results	Sensitivity	Specificity
Referral vs Non-Referral	Referral	95.51% (93.1% - 97.50%)	91.11% (85.11% - 92.63%)
	PDR	100% (95.8% - 100%)	-
	DMO		-
PDR vs Non-PDR	PDR	97.18% (91.2% - 99.6%)	87.77% (85.3% - 88.80%)

(d) Sensitivity, Specificity and Corresponding 95% CIs for Referral Level Output to Detect Referral, PDR and DMO, and PDR Level Output to Detect PDR on the Messidor-2 Dataset.

Disease Level	Daphne Predicted Results	Sensitivity	Specificity
Referral vs Non-Referral	Referral	95.8% (94% - 97.42%)	91.32% (86.7% - 93.53%)
	PDR	100% (96.5% - 100%)	-
	DMO	100% (95.8% - 100%)	-
PDR vs Non-PDR	PDR	98.55% (91.3% - 99.6%)	86.78% (84.2% - 88.8%)