COEFFICIENT BOUNDS FOR A CERTAIN SUBCLASS OF ANALYTIC AND BI-UNIVALENT FUNCTIONS

NIZAMI MUSTAFA AND VEYSEL NEZIR

Abstract. In this paper, we introduce and investigate a new subclass of the analytic and bi-univalent functions in the open unit disk in the complex plane. For the functions belonging to this class, we obtain estimates on the first three coefficients in their Taylor-Maclaurin series expansion. Some interesting corollaries and applications of the results obtained here are also discussed.

1. Introduction and Preliminaries

Let A denote the class of all complex-valued analytic functions in the open unit disk $U = \{ z \in \mathbb{C} : |z| < 1 \}$ in the complex plane of the form

$$f(z) = z + a_2 z^2 + a_3 z^3 + \cdots = z + \sum_{n=2}^{\infty} a_n z^n, \ z \in U. \quad (1.1)$$

Furthermore, by S we shall denote the class of all functions in A which are univalent in U. Some of the important and well-investigated subclasses of S include the class $S^*(\alpha)$ of starlike functions of order α and the class $C(\alpha)$ of convex functions of order α ($\alpha \in [0, 1]$).

By definition

$$S^*(\alpha) = \left\{ f \in S : \text{Re} \left(\frac{zf'(z)}{f(z)} \right) > \alpha, \ z \in U \right\}, \ \alpha \in [0, 1)$$

and

$$C(\alpha) = \left\{ f \in S : \text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha, \ z \in U \right\}, \ \alpha \in [0, 1).$$

The above mentioned function classes have been recently investigated rather extensively in [10, 20, 26, 29] and the references therein.

It is well-known that every function $f \in S$ has an inverse f^{-1}, defined by $f^{-1}(f(z)) = z$, $z \in U$ and $f(f^{-1}(w)) = w$, $w \in D = \{ w \in \mathbb{C} : |w| < r_0(f) \}$, $r_0(f) \geq 1/4$ where $f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3) w^3 - (5a_3^2 - 5a_2 a_3 + a_4) w^4 + \cdots$.

Received by the editors: February 28, 2018, Accepted: October 08, 2018.
2010 Mathematics Subject Classification. Primary 30C45, 30C50.
Key words and phrases. Univalent functions, analytic functions, bi-univalent functions.
An analytic function \(f \) is subordinate to an analytic function \(\phi \), written \(f(z) < \phi(z) \), provided there is an analytic function \(u : U \to U \) with \(u(0) = 0 \) and \(|u(z)| < 1 \) satisfying \(f(z) = \phi(u(z)) \) (see, for example, [14]).

Ma and Minda [12] unified various subclasses of starlike and convex functions for which either of the quantity \(zf_0'(z)/f(z) \) or \(1 + zf''(z)/f(z) \) is subordinate to a more superordinate function. For this purpose, they considered an analytic function with positive real part in \(U \), with \(\phi(0) = 1 \), \(\phi'(0) > 0 \) and \(\phi \) maps \(U \) onto a region starlike with respect to 1 and symmetric with respect to the real axis. The class of Ma-Minda starlike and Ma-Minda convex functions consists of functions \(f \in A \) satisfying the subordination \(zf_0'(z)/f(z) < \phi(z) \) and \(1 + zf''(z)/f(z) < \phi(z) \), respectively. These classes denoted, respectively, by \(S^* (\phi) \) and \(C(\phi) \).

An analytic function \(f \in S \) is said to be bi-starlike of Ma-Minda type or bi-convex of Ma-Minda type if both \(f \) and \(f^{-1} \) are, respectively, Ma-Minda starlike or Ma-Minda convex functions. These classes are denoted, respectively, by \(S^*_\Sigma (\phi) \) and \(C^*_\Sigma (\phi) \). In the sequel, it is assumed that \(\phi \) is an analytic function with positive real part in \(U \), satisfying \(\phi(0) = 1 \), \(\phi'(0) > 0 \) and \(\phi(U) \) is starlike with respect to 1 and symmetric with respect to the real axis. Such a function has a series expansion of the following form:

\[
\phi(z) = 1 + b_1 z + b_2 z^2 + b_3 z^3 + \cdots, \quad b_1 > 0.
\]

(1.2)

A function \(f \in A \) is said to be bi-univalent in \(U \) if both \(f \) and \(f^{-1} \) are univalent. Let \(\Sigma \) denote the class of bi-univalent functions in \(U \) given by (1.1).

Examples of functions in the class \(\Sigma \) are

\[
\frac{z}{1-z}, \quad \ln \frac{1}{1-z}, \quad \ln \sqrt{\frac{1+z}{1-z}}.
\]

However, the familiar Koebe function is not a member of \(\Sigma \). Other common examples of functions in \(A \) such as

\[
\frac{2z - z^2}{2} \quad \text{and} \quad \frac{z}{1-z^2}
\]

are also not members of \(\Sigma \).

Earlier, Brannan and Taha [3] introduced certain subclasses of bi-univalent function class \(\Sigma \), namely bi-starlike function of order \(\alpha \) denoted \(S^*_\Sigma (\alpha) \) and bi-convex function of order \(\alpha \) denoted \(C^*_\Sigma (\alpha) \) corresponding to the function classes \(S^*(\alpha) \) and \(C(\alpha) \), respectively. Thus, following Brannan and Taha [3], a function \(f \in \Sigma \) is in the classes \(S^*_\Sigma (\alpha) \) and \(C^*_\Sigma (\alpha) \), respectively, if each of the following conditions is satisfied:

\[
\text{Re} \left(\frac{zf''(z)}{f(z)} \right) > \alpha, \ z \in U, \ \text{Re} \left(\frac{zg'(w)}{g(w)} \right) > \alpha, \ w \in D
\]
and \[\text{Re} \left(1 + \frac{zf'(z)}{f(z)} \right) > \alpha, z \in U, \quad \text{Re} \left(1 + \frac{zg'(w)}{g(w)} \right) > \alpha, w \in D. \]

For each of the function classes \(S^*_2(\alpha) \) and \(C^*_2(\alpha) \), they found non-sharp estimates on the first two Taylor-Maclaurin coefficients \(|a_2| \) and \(|a_3| \).

Lewin [11] investigated bi-univalent function class and showed that \(|a_2| < 1.51 \). Subsequently, Brannan and Clunie [2] conjectured that \(|a_2| < \sqrt{2} \).

For a brief history and interesting examples of functions which are in the class, together with various other properties of this bi-univalent function class, one can refer the work of Srivastava et al. [22] and references therein. In [22], Srivastava et al. reviewed the study of coefficient problems for bi-univalent functions. Also, various subclasses of bi-univalent function class were introduced and non-sharp estimates on the first two coefficients in the Taylor-Maclaurin series expansion (1.1) were found in several recent investigations (see, for example, [1, 4, 5, 6, 7, 8, 9, 13, 15, 19, 21, 23, 24, 25, 27, 28]. Recently, Orhan et al. [17] reviewed the study of coefficient problems for the subclass \(NP^{\beta\lambda}_2(\beta, h) \) of bi-univalent functions.

However, the problem to find the coefficient bounds on \(|a_n|, n = 3, 4, \ldots \) for functions \(f \in \Sigma \) is presumably still an open problem (see, for example [2, 11, 16]).

Inspired by the aforementioned works, we define a subclass of \(\Sigma \) as follows.

Definition 1.1. A function \(f \in \Sigma \) given by (1.1) is said to be in the class \(M^*_2(\beta, \phi) \), \(\beta \geq 0 \), where \(\phi \) is an analytic function given by (1.2), if the following conditions are satisfied:

\[
\left(\frac{zf'(z)}{f(z)} \right)^\beta \left(1 + \frac{zf''(z)}{f'(z)} \right)^{1-\beta} \prec \phi(z), \quad z \in U,
\]
\[
\left(\frac{zg'(w)}{g(w)} \right)^\beta \left(1 + \frac{zg''(w)}{g'(w)} \right)^{1-\beta} \prec \phi(w), \quad w \in D,
\]

where \(g = f^{-1} \).

Remark 1.2. Taking \(\beta = 1 \), we have \(M^*_2(\phi, 1) = S^*_2(\phi) \); that is, \(\frac{zf'(z)}{f(z)} \prec \phi(z), z \in U \) and \(\frac{zg'(w)}{g(w)} \prec \phi(w), w \in D \) if and only if \(f \in S^*_2(\phi) \), where \(g = f^{-1} \).

Remark 1.3. Taking \(\beta = 0 \), we have \(M^*_2(\phi, 0) = C^*_2(\phi) \); that is, \(1 + \frac{zf'(z)}{f(z)} \prec \phi(z), z \in U \) and \(1 + \frac{zg'(w)}{g(w)} \prec \phi(w), w \in D \) if and only if \(f \in C^*_2(\phi) \), where \(g = f^{-1} \).

Remark 1.4. These classes \(S^*_2(\phi) \) and \(C^*_2(\phi) \) were investigated by Ma and Minda [12].

The object of this paper is to introduce a new subclass \(M^*_2(\phi, \beta) \) of the function class \(\Sigma \) that is wider (respect to \(\beta \)) to the subclasses examined so far and to find
estimates on the first three Taylor-Maclaurin coefficients $|a_2|, |a_3|$ and $|a_4|$ for the functions in this class.

To prove our main results, we have to recall the following well-known Lemma [18].

Lemma 1.5. Let P be the class of all analytic functions $p(z)$ of the form

$$p(z) = 1 + p_1 z + p_2 z^2 + \cdots = 1 + \sum_{n=1}^{\infty} p_n z^n,$$

satisfying $\Re(p(z)) > 0$, $z \in U$ and $p(0) = 1$. Then,

$$2p_2 = p_1^2 + (4 - p_1^2) x,$$

$$4p_4 = p_1^4 + 2 \left(4 - p_1^2 \right) p_1 x - (4 - p_1^2) p_1 x^2 + 2 \left(4 - p_1^2 \right) \left(1 - |x|^2 \right) z,$$

for some x, z with $|x| \leq 1$, $|z| \leq 1$ and $p_1 \in [0, 2]$.

2. Coefficient bounds for the function class $M_\Sigma(\phi, \beta)$

In this section, we will try to find the estimates on the coefficients $|a_2|, |a_3|$ and $|a_4|$ for the functions in the class $M_\Sigma(\phi, \beta)$.

Theorem 2.1. Let the function $f(z)$ given by (1.1) be in the class $M_\Sigma(\phi, \beta)$, $\beta \in [0, 1]$, where ϕ is an analytic function given by (1.2). Then,

$$|a_2| \leq \frac{b_1}{2 - \beta}, |a_3| \leq \begin{cases} \frac{b_1^3}{(2 - \beta)^3}, & \text{if } b_1 \leq \frac{(2 - \beta)^2}{2(3 - 2\beta)}, \\ \frac{b_1}{2(3 - 2\beta)}, & \text{if } b_1 > \frac{(2 - \beta)^2}{2(3 - 2\beta)} \end{cases},$$

and

$$|a_4| \leq \min \left\{ \frac{b_1^3 \varphi(\beta) - 6(2 - \beta)^3 \Lambda + 6(2 - \beta)^3 |2b_2 - b_1|}{18(2 - \beta)^3(4 - 3\beta)} b_1, \frac{b_1}{3(4 - 3\beta)} \right\},$$

where $\varphi(\beta) = \beta^3 - 3\beta^2 - 46\beta + 60 > 0$ and $\Lambda = \Lambda(b_1, b_2, b_3) = b_1 - 2b_2 + b_3$.

Proof. Let $f \in M_\Sigma(\phi, \beta)$, $\beta \in [0, 1]$, where ϕ is an analytic function given by (1.2) and $g = f^{-1}$. Then, there are analytic functions $u : U \to U$, $v : D \to D$ with $u(0) = 0 = v(0)$, $|u(z)| < 1$, $|v(w)| < 1$ and satisfying

$$\left(\frac{z f'(z)}{f(z)} \right)^{\beta} \left(1 + \frac{z f''(z)}{f'(z)} \right)^{1-\beta} = \phi(u(z))$$

and

$$\left(\frac{w g'(w)}{g(w)} \right)^{\beta} \left(1 + \frac{w g''(w)}{g'(w)} \right)^{1-\beta} = \phi(v(w)). \quad (2.1)$$

Let us define the functions $p(z)$ and $q(w)$ by

$$p(z) = \frac{1 + u(z)}{1 - u(z)} = 1 + \sum_{n=1}^{\infty} p_n z^n, \quad z \in U$$

and

$$q(w) = \frac{1 + v(w)}{1 - v(w)} = 1 + \sum_{n=1}^{\infty} q_n w^n, \quad w \in D.$$
Using (2.2) and (2.3) in (1.2), we can easily write

\[u(z) = \frac{p(z) - 1}{p(z) + 1} = \frac{1}{2} \left\{ p_1 z + \left[p_2 - \frac{p_1^2}{2}\right] z^2 + \left[p_3 - p_1 p_2 + \frac{p_1^3}{4}\right] z^3 + \cdots \right\} \] (2.2)

and

\[v(w) = \frac{q(w) - 1}{q(w) + 1} = \frac{1}{2} \left\{ q_1 w + \left[q_2 - \frac{q_1^2}{2}\right] w^2 + \left[q_3 - q_1 q_2 + \frac{q_1^3}{4}\right] w^3 + \cdots \right\} \] (2.3)

Using (2.2) and (2.3) in (1.2), we can easily write

\[\phi(u(z)) = 1 + \frac{b_1 p_1}{2} z + \left[\frac{b_2}{2} \left(p_2 - \frac{p_1^2}{2}\right) + \frac{1}{4} b_2 p_1^2\right] z^2 + \left[\frac{b_3}{2} \left(p_3 - p_1 p_2 + \frac{p_1^3}{4}\right) + \frac{b_3 p_1}{2} \left(p_2 - \frac{p_1^2}{2}\right) + \frac{b_3 p_1^3}{8}\right] z^3 + \cdots \] (2.4)

and

\[\phi(v(w)) = 1 + \frac{b_1 q_1}{2} w + \left[\frac{b_2}{2} \left(q_2 - \frac{q_1^2}{2}\right) + \frac{1}{4} b_2 q_1^2\right] w^2 + \left[\frac{b_3}{2} \left(q_3 - q_1 q_2 + \frac{q_1^3}{4}\right) + \frac{b_3 q_1}{2} \left(q_2 - \frac{q_1^2}{2}\right) + \frac{b_3 q_1^3}{8}\right] w^3 + \cdots \] (2.5)

Also, using (2.4) and (2.5) in (2.1) and equating the coefficients, we get

\[(2 - \beta) a_2 = \frac{b_1 p_1}{2}, \] (2.6)

\[2 (3 - 2\beta) a_3 + \frac{1}{2} (\beta^2 + 5\beta - 8) a_2 = \frac{b_1}{2} \left(p_2 - \frac{p_1^2}{2}\right) + \frac{1}{4} b_2 p_1^2, \] (2.7)

\[3 (4 - 3\beta) a_4 + (4\beta^2 + 11\beta - 18) a_2 a_3 - \frac{1}{6} (\beta^3 + 21\beta^2 + 20\beta - 48) a_3^2 = \frac{b_1}{2} \left(p_3 - p_1 p_2 + \frac{p_1^3}{4}\right) + \frac{b_3 p_1}{2} \left(p_2 - \frac{p_1^2}{2}\right) + \frac{b_3 p_1^3}{8} \] (2.8)

and

\[-(2 - \beta) a_2 = \frac{b_1 q_1}{2}, \] (2.9)

\[-2 (3 - 2\beta) a_3 + \frac{1}{2} (\beta^2 - 11\beta + 16) a_2^2 = \frac{b_1}{2} \left(q_2 - \frac{q_1^2}{2}\right) + \frac{1}{4} b_2 q_1^2, \] (2.10)

\[-3 (4 - 3\beta) a_4 + (4\beta^2 - 34\beta + 42) a_2 a_3 + \frac{1}{6} (\beta^3 - 27\beta^2 + 158\beta - 192) a_3^2 = \frac{b_1}{2} \left(q_3 - q_1 q_2 + \frac{q_1^3}{4}\right) + \frac{b_3 q_1}{2} \left(q_2 - \frac{q_1^2}{2}\right) + \frac{b_3 q_1^3}{8} \] (2.11)

From (2.6) and (2.9), we have

\[a_2 = \frac{b_1 p_1}{2 (2 - \beta)} = \frac{-b_1 q_1}{2 (2 - \beta)}, \] (2.12)

which is equivalent to

\[p_1 = -q_1. \] (2.13)

By subtracting from (2.7) to (2.10) and considering (2.12) and (2.13), we can easily obtain
On the other hand, subtracting (2.11) from (2.8) and considering (2.12) and (2.14), we get

\[a_4 = \frac{b_1 p_4}{4 (2 - \beta)^2} + \frac{b_1 (p_2 - q_2)}{8 (3 - 2\beta)}. \]

(2.14)

where \(\beta = \theta_3 - 3 \beta^2 - 46 \beta + 60 > 0 \) and \(\Lambda = \Lambda (b_1, b_2, b_3) = b_1 - 2b_2 + b_3. \)

Since \(p_1 = -q_1, \) according to Lemma 1.5 we write

\[p_2 - q_2 = \frac{4 - p_1^2}{2} (x - y), \quad p_2 + q_2 = p_1^2 + \frac{4 - p_1^2}{2} (x + y) \]

(2.16)

and

\[p_3 - q_3 = \frac{p_3^3}{2} + \frac{p_1 (4 - p_1^2)}{4} (x + y) - \frac{p_1 (4 - p_1^2)}{16} \left[(1 - |x|^2) z - (1 - |y|^2) w \right]. \]

(2.17)

for some \(x, y, z, w \) with \(|x| \leq 1, |y| \leq 1, |z| \leq 1, |w| \leq 1. \) In this case, since \(p_1 \in [0, 2], \) we may assume without any restriction that \(t \in [0, 2], \) where \(t = |p_1|. \)

Hence, we find from (2.12) that

\[|a_3| \geq \frac{b_1}{2 - \beta}. \]

Applying triangle inequality on the last equation and taking \(\xi = |x|, \eta = |y|, \) we have

\[|a_3| \leq c_1(t) + c_2(t) (\xi + \eta), \]

(2.18)

where

\[c_1(t) = \frac{b_1 t^2}{4 (2 - \beta)^2} \geq 0, \quad c_2(t) = \frac{b_1 (4 - t^2)}{16 (3 - 2\beta)} \geq 0, \quad t \in [0, 2]. \]

Let us define the function \(F : \mathbb{R}^3 \rightarrow \mathbb{R} \) as follows:

\[F(\xi, \eta, t) = c_1(t) + c_2(t) (\xi + \eta), \quad (\xi, \eta) \in \Omega, \quad t \in [0, 2], \]

(2.19)

where \(\Omega = \{(\xi, \eta) : \xi, \eta \in [0, 1]\}. \)

From (2.18) and (2.19), we can write
\[|a_3| \leq \min \\{ \max \{ F(\xi, \eta, t) : (\xi, \eta) \in \Omega \} : t \in [0, 2] \} . \] (2.20)

We can easily show that
\[\max \{ F(\xi, \eta, t) : (\xi, \eta) \in \Omega \} = F(1, 1, t) = c_1(t) + 2c_2(t), \quad t \in [0, 2] . \] (2.21)

Now, let us define the function \(H : \mathbb{R} \to \mathbb{R} \) as follows:
\[H(t) = c_1(t) + 2c_2(t), \quad t \in [0, 2] . \]

Substituting the value of \(c_1(t) \) and \(c_2(t) \) in the above function, we have
\[H(t) = \frac{b_1}{2(3-2\beta)} + \frac{\Delta(\beta, b_1)}{8(3-2\beta)(2-\beta)^2} t^2, \] (2.22)
where \(\Delta(\beta, b_1) = 2(3-2\beta)b_1^2 - (2-\beta)^2b_1 \).

Differentiating both sides of (2.22), we get
\[H'(t) = \frac{\Delta(\beta, b_1)}{4(3-2\beta)(2-\beta)^2} t. \]

It is clear that \(H'(t) \leq 0 \) if \(0 < b_1 \leq \frac{(2-\beta)^2}{2(3-2\beta)} \); that is, \(H(t) \) is a decreasing function. Therefore,
\[\min \{ H(t) : t \in [0, 2] \} = H(2) = \frac{b_1^2}{(2-\beta)^2}. \] (2.23)

Let \(b_1 > \frac{(2-\beta)^2}{2(3-2\beta)} \), then \(H'(t) > 0 \), so \(H(t) \) is a strictly increasing function. Therefore,
\[\min \{ H(t) : t \in [0, 2] \} = H(0) = \frac{b_1}{2(3-2\beta)}. \] (2.24)

Consequently, from (2.21), (2.24) and (2.20), we have
\[|a_3| \leq \begin{cases} \frac{b_1^2}{(2-\beta)^2}, & \text{if } b_1 \leq \frac{(2-\beta)^2}{2(3-2\beta)}, \\ \frac{b_1}{2(3-2\beta)}, & \text{if } b_1 > \frac{(2-\beta)^2}{2(3-2\beta)}. \end{cases} \] (2.25)

Substituting the expressions (2.16) and (2.17) in (2.15), we obtain
\[a_4 = \frac{b_1(4-\rho_1^2)}{24(4-3\beta)} \left[(1 - |x|^2) z - (1 - |y|^2) w - \frac{b_1(4-\rho_1^2)p_1}{48(4-3\beta)} (x^2 + y^2) \right] + \frac{b_2(4-\rho_1^2)p_1}{24(4-3\beta)} (x + y) + \frac{5b_2(4-\rho_1^2)p_1}{64(2-\beta)(3-2\beta)} (x - y) + \frac{b_2(4-\rho_1^2)p_1}{144(2-\beta)^2(4-3\beta)} (x^2 + y^2). \]

Applying triangle inequality on the last equation, we have
where

\[d_1(t) = \frac{b_1 (4 - t^2) (t - 2)}{48 (4 - 3\beta)} \leq 0, \]

\[d_2(t) = \frac{(4 - t^2) t [8 |b_2| (2 - \beta) (3 - 2\beta) + 15b_1^2 (4 - 3\beta)]}{192 (2 - \beta) (3 - 2\beta) (4 - 3\beta)} \geq 0, \]

\[d_3(t) = \frac{b_3 \varphi(\beta) - 6 (2 - \beta)^3 A}{144 (2 - \beta)^3 (4 - 3\beta)} t^3 + \frac{b_1 (4 - t^2)}{12 (4 - 3\beta)} \geq 0. \]

Let us define the function \(G : \mathbb{R}^3 \to \mathbb{R} \) as follows:

\[G(\xi, \eta, t) = d_1(t) (\xi^2 + \eta^2) + d_2(t) (\xi + \eta) + d_3(t), \quad (\xi, \eta) \in \Omega, \quad t \in [0, 2]. \] \hspace{1cm} (2.27)

From (2.26) and (2.27), we can write

\[|a_4| \leq \min \{ \max \{ G(\xi, \eta, t) : (\xi, \eta) \in \Omega \} : t \in [0, 2] \}. \] \hspace{1cm} (2.28)

Firstly, we need investigate maximum of the function \(G(\xi, \eta, t) \) on the closed square \(\Omega \) for each \(t \in [0, 2] \). Since the coefficients of the function \(G(\xi, \eta, t) \) is dependent to variable \(t \), we must investigate this maximum respect to \(t \) taking into account these cases: \(t = 0, \ t \in (0, 2) \) and \(t = 2 \).

For \(t = 0 \) we have

\[G_0(\xi, \eta) = G(\xi, \eta, 0) = \frac{-b_1}{6 (4 - 3\beta)} (\xi^2 + \eta^2) + \frac{b_1}{3 (4 - 3\beta)}, \quad (\xi, \eta) \in \Omega. \]

We can easily show that the maximum of the function \(G_0(\xi, \eta) \) occurs at \((\xi, \eta) = (0, 0) \), and

\[\max \{ G_0(\xi, \eta) : (\xi, \eta) \in \Omega \} = G_0(0, 0) = \frac{b_1}{3 (4 - 3\beta)}. \] \hspace{1cm} (2.29)

In the case \(t \in (0, 2) \), by simple differentiation, we get

\[G_x(\xi, \eta, t) = 2d_1(t) \xi + d_2(t), \quad G_\eta(\xi, \eta, t) = 2d_1(t) \eta + d_2(t), \]

\[G_{xx}(\xi, \eta, t) = G_{xx}(\xi, \eta, t) = 2d_1(t), \quad G_{x\eta}(\xi, \eta, t) = G_{x\eta}(\xi, \eta, t) = 0. \]

From the first and second equations above, we see that \((\xi_0, \eta_0) \), where \(\xi_0 = \eta_0 = \frac{-d_2(t)}{2d_1(t)} \), is critical and likely a extremal point for of the function \(G(\xi, \eta, t) \).

Since

\[\Delta(\xi_0, \eta_0) = G_{xx}(\xi_0, \eta_0) G_{xx}(\xi_0, \eta_0) - \left[G_{x\xi}(\xi_0, \eta_0) \right]^2 = 4d_1^2(t) > 0 \]
and \(G''_{\xi} (\xi, \eta, t) = G''_{\eta} (\xi, \eta, t) = 2d_1 (t) < 0 \), \((\xi_0, \eta_0)\) is a likely maximum point for the function \(G(\xi, \eta, t) \). But, it is clear that \((\xi_0, \eta_0)\) is not a local maximum point if \(-\frac{d_2(t)}{2d_1(t)} > 0\); that is if \((\xi_0, \eta_0) \notin \Omega\). We assume that \((\xi_0, \eta_0) \in \Omega\). In this case \((\xi_0, \eta_0)\) is a local maximum point for the function \(G(\xi, \eta, t) \).

Therefore,

\[
\max \{ G(\xi, \eta, t) : (\xi, \eta) \in \Omega \} = G(\xi_0, \eta_0, t) = d_3 (t) - \frac{d_2^2 (t)}{2d_1 (t)}.
\]

Let us define the function \(h : \mathbb{R} \to \mathbb{R} \) by

\[
h(t) = d_3 (t) - \frac{d_2^2 (t)}{2d_1 (t)}, \quad t \in (0, 2).
\]

Substituting the value \(d_1(t), d_2(t) \) and \(d_3(t) \) in the above function, we have

\[
h(t) = h_1 t^3 + h_2 t^2 + h_3, \quad t \in (0, 2),
\]

where

\[
\begin{align*}
h_1 &= \frac{\vert b_1 \vert \beta (3 - 2 \beta)^3 A + 6 (2 - \beta)^3 |b_2|}{144 (2 - \beta)^3 (3 - 3 \beta)} \nonumber \\
&\quad + \frac{1536 (2 - \beta)^3 (3 - 2 \beta)^2 (4 - 3 \beta) b_1}{4 (3 - 3 \beta) b_1}, \quad h_1 > 0, \\
h_2 &= \frac{8 \vert b_2 \vert (2 - \beta) (3 - 2 \beta) + 15 b_1^2 (4 - 3 \beta)^2}{768 (2 - \beta)^3 (3 - 2 \beta)^2 (4 - 3 \beta) b_1} - \frac{b_1}{12 (4 - 3 \beta)}, \\
h_3 &= \frac{b_1}{3 (4 - 3 \beta)} > 0.
\end{align*}
\]

Also, we consider the function \(\bar{h} : \mathbb{R} \to \mathbb{R} \) as follows:

\[
\bar{h}(t) = h_1 t^3 + h_2 t^2 + h_3, \quad t \in (0, 2),
\]

where

\[
\bar{h}_2 = h_2 + \frac{b_1}{12 (4 - 3 \beta)} = \frac{8 \vert b_2 \vert (2 - \beta) (3 - 2 \beta) + 15 b_1^2 (4 - 3 \beta)^2}{768 (2 - \beta)^3 (3 - 2 \beta)^2 (4 - 3 \beta) b_1} > 0.
\]

Since \(h(t) < \bar{h}(t) \) for all \(t \in (0, 2) \), we can write

\[
\min \{ h(t) : t \in (0, 2) \} \leq \min \{ \bar{h}(t) : t \in (0, 2) \}.
\]

Now, we will investigate minimum of the function \(\bar{h}(t) \) on the open interval \((0, 2)\).

Differentiating both sides of \((2.31)\), we have

\[
\bar{h}'(t) = (3h_1 t + 2h_2) t, \quad t \in (0, 2).
\]

Since \(h_1 > 0, \bar{h}_2 > 0 \), the function \(\bar{h}(t) \) is a strictly increasing function on \((0, 2)\).

Therefore,

\[
\min \{ \bar{h}(t) : t \in (0, 2) \} = \bar{h}(0) = \lim_{t \to 0+} \bar{h}(t) = \frac{b_1}{3 (4 - 3 \beta)}.
\]
Finally, let $t = 2$. In this case the function $G(\xi, \eta, 2)$ is a constant as follows:

$$G_2(\xi, \eta) = G(\xi, \eta, 2) = d_3(2) = \frac{b_1^3 \varphi(\beta) - 6(2 - \beta)^3 \Lambda + 6(2 - \beta)^3 |2b_1 - b_2|}{18(2 - \beta)^3(4 - 3\beta)} \quad (2.34).$$

Thus, from (2.29)-(2.34) and (2.28), we obtain

$$|a_4| \leq \min \left\{ \left| \frac{b_1^3 \varphi(\beta) - 6(2 - \beta)^3 \Lambda + 6(2 - \beta)^3 |2b_1 - b_2|}{18(2 - \beta)^3(4 - 3\beta)} \right| \frac{b_1}{3(4 - 3\beta)} \right\}.$$

With this, the proof of Theorem 2.1 is completed.

The following theorems are direct results of Theorem 2.1.

Theorem 2.2. Let the function $f(z)$ given by (1.1) be in the class $S^\omega_\Sigma(\phi)$, where ϕ is an analytic function given by (1.2). Then,

$$|a_2| \leq b_1, |a_3| \leq \begin{cases} b_1^2, & \text{if } b_1 \leq \frac{1}{2}, \\ b_1, & \text{if } b_1 > \frac{1}{2} \end{cases}$$

and

$$|a_4| \leq \min \left\{ \left| \frac{2b_1^3 - \Lambda}{3} + |2b_1 - b_2| \right| \frac{b_1}{3} \right\},$$

where $\Lambda = \Lambda(b_1, b_2, b_3) = b_1 - 2b_2 + b_3$.

Theorem 2.3. Let the function $f(z)$ given by (1.1) be in the class $C^\omega_\Sigma(\phi)$, where ϕ is an analytic function given by (1.2). Then,

$$|a_2| \leq \frac{b_1}{2}, |a_3| \leq \begin{cases} b_1^2, & \text{if } b_1 \leq \frac{2}{3}, \\ b_1^2, & \text{if } b_1 > \frac{2}{3} \end{cases}$$

and

$$|a_4| \leq \min \left\{ \left| \frac{5b_1^3 - 4\Lambda}{48} + 4|2b_2 - b_1| \right| \frac{b_1}{12} \right\},$$

where $\Lambda = \Lambda(b_1, b_2, b_3) = b_1 - 2b_2 + b_3$.

3. **Concluding remarks**

If the function $\phi(z)$, aforementioned in study, is given by

$$\phi(z) = \frac{1 + az}{1 + bz} = 1 + (a - b)z - b(a - b)z^2 + b^2(a - b)z^3 + \cdots \quad (-1 \leq b < a \leq 1), \quad (3.1)$$

then $b_1 = (a - b)$, $b_2 = -b(a - b)$ and $b_3 = b^2(a - b)$.

Taking $a = 1 - 2\alpha$, $b = -1$ in (3.1), we have
\[
\phi(z) = \frac{1 + (1 - 2\alpha)z}{1 - z} = 1 + 2(1 - \alpha)z + 2(1 - \alpha)z^2 + 2(1 - \alpha)z^3 + \cdots \quad (0 \leq \alpha < 1).
\]
(3.2)

Hence, $b_1 = b_2 = b_3 = 2(1 - \alpha)$.

Choosing $\phi(z)$ of the form (3.1) and (3.2) in Theorem 2.1, we can readily deduce the following results, respectively.

Corollary 3.1. Let the function $f(z)$ given by (1.1) be in the class $M_\Sigma\left(\frac{1+z}{1-2z}, \beta\right)$ \((-1 \leq b < a \leq 1, 0 \leq \beta \leq 1\). Then,
\[
|a_2| \leq \frac{a-b}{2-\beta}, \quad |a_3| \leq \left\{\begin{array}{ll}
\frac{(a-b)^2}{2(\beta-2)}, & \text{if } a - b \leq \frac{2(\beta-2)}{2(\beta-2)}, \\
\frac{a-b}{2(\beta-2)}, & \text{if } a - b > \frac{2(\beta-2)}{2(\beta-2)},
\end{array}\right.
\]
and $|a_4| \leq \frac{a-b}{3(4-3\beta)}$.

Corollary 3.2. Let the function $f(z)$ given by (1.1) be in the class $M_\Sigma\left(\frac{1+2(1-\alpha)z}{1-2z}, \beta\right)$ \(= M_\Sigma(\alpha, \beta), \alpha \in [0,1), \beta \in [0,1]\). Then,
\[
|a_2| \leq \frac{2(1-\alpha)}{2-\beta}, \quad |a_3| \leq \left\{\begin{array}{ll}
\frac{1-\alpha}{2}, & \text{if } 0 \leq \alpha < 1 - \alpha_0, \\
\frac{4(1-\alpha)^2}{(2-\beta)^2}, & \text{if } 1 - \alpha_0 \leq \alpha < 1,
\end{array}\right.
\]
and $|a_4| \leq \frac{2(1-\alpha)}{3(4-3\beta)}$.

Also, taking $\alpha = 0$ in (3.2), we get
\[
\phi(z) = \frac{1+z}{1-2z} = 1 + 2z + 2z^2 + 2z^3 + \cdots .
\]
(3.3)

Hence, $b_1 = b_2 = b_3 = 2$.

Choosing $\phi(z)$ of the form (3.3) in Theorem 2.1, we arrive at the following corollary.

Corollary 3.3. Let the function $f(z)$ given by (1.1) be in the class $M_\Sigma\left(\frac{1+z}{1-2z}, \beta\right)$, $\beta \in [0,1]$. Then,
\[
|a_2| \leq \frac{2}{2-\beta}, \quad |a_3| \leq \frac{1}{3-2\beta} \quad \text{and} \quad |a_4| \leq \frac{2}{3(4-3\beta)}.
\]

Choosing $\phi(z)$ of the form (3.1) and (3.2) in Theorem 2.2, we can readily deduce the following results, respectively.

Corollary 3.4. Let the function $f(z)$ given by (1.1) be in the class $S_\Sigma^a\left(\frac{1+z}{1+2z}\right)$ \((-1 \leq b < a \leq 1\). Then,
\[
|a_2| \leq a-b, \quad |a_3| \leq \left\{\begin{array}{ll}
\frac{(a-b)^2}{a+b}, & \text{if } a - b \leq \frac{a+b}{2}, \\
\frac{a-b}{2}, & \text{if } a - b > \frac{a+b}{2},
\end{array}\right.
\]
and $|a_4| \leq \frac{a-b}{3}$.

Corollary 3.5. Let the function $f(z)$ given by (1.1) be in the class $S_\Sigma^a\left(\frac{1+2(1-\alpha)z}{1-2z}\right)$ \(= S_\Sigma^a(\alpha), \alpha \in [0,1]\). Then,
\[
|a_2| \leq 2(1-\alpha), \quad |a_3| \leq \left\{\begin{array}{ll}
1-\alpha, & \text{if } 0 \leq \alpha < \frac{3}{4}, \\
4(1-\alpha)^2, & \text{if } \frac{3}{4} \leq \alpha < 1 \quad \text{and} \quad |a_4| \leq \frac{2(1-\alpha)}{3}.
\end{array}\right.
\]
Remark 3.6. In the special case, we can also obtain Corollary 3.4 from Corollary 3.1 and Corollary 3.5 from Corollary 3.2 for $\beta = 1$.

Moreover, taking, for example, $\alpha = \frac{3}{4}$ in (3.2), we have

$$\phi(z) = \frac{2 - z}{2(1 - z)} = 1 + \frac{1}{2} z + \frac{1}{2} z^2 + \frac{1}{2} z^3 + \cdots.$$ (3.4)

Hence, $b_1 = b_2 = b_3 = \frac{1}{2}$.

Choosing $\phi(z)$ of the form (3.4) in Theorem 2.2, we arrive at the following corollary.

Corollary 3.7. Let the function $f(z)$ given by (1.1) be in the class $S_{\Sigma} \left(\frac{z}{2(1 - z)} \right)$. Then,

$$|a_2| \leq \frac{1}{2}, \quad |a_3| \leq \frac{1}{4} \quad \text{and} \quad |a_4| \leq \frac{1}{8}.$$

Remark 3.8. In the special case, we can also obtain Corollary 3.7 from Corollary 3.5 for $\alpha = \frac{3}{4}$.

Choosing $\phi(z)$ of the form (3.5) in Theorem 2.3, we can readily deduce the following results, respectively.

Corollary 3.9. Let the function $f(z)$ given by (1.1) be in the class $C_{\Sigma} \left(\frac{1 + \alpha z}{1 + \beta z} \right)$ ($-1 \leq b < a \leq 1$). Then,

$$|a_2| \leq \frac{a - b}{2}, \quad |a_3| \leq \begin{cases} \frac{(a - b)^2}{a - b}, & \text{if } a - b \leq \frac{2}{3}, \\ \frac{a - b}{6}, & \text{if } a - b > \frac{2}{3}, \end{cases} \quad \text{and} \quad |a_4| \leq \frac{a - b}{12}.$$

Corollary 3.10. Let the function $f(z)$ given by (1.1) be in the class $C_{\Sigma} \left(\frac{1 + (1 - 2\alpha)z}{1 - z} \right)$ = $C_{\Sigma}(\alpha), \; \alpha \in [0, 1)$. Then,

$$|a_2| \leq 1 - \alpha, \quad |a_3| \leq \begin{cases} \frac{1 - \alpha}{3}, & \text{if } 0 \leq \alpha < \frac{2}{5}, \\ (1 - \alpha)^2, & \text{if } \frac{2}{5} \leq \alpha < 1 \quad \text{and} \quad |a_4| \leq \frac{1 - \alpha}{6}. \end{cases}$$

Moreover, taking, for example, $\alpha = \frac{2}{3}$ in (3.2), we get

$$\phi(z) = \frac{3 - z}{3(1 - z)} = 1 + \frac{2}{3} z + \frac{2}{3} z^2 + \frac{2}{3} z^3 + \cdots.$$ (3.5)

Hence, $b_1 = b_2 = b_3 = \frac{2}{3}$.

Choosing $\phi(z)$ of the form (3.5) in Theorem 2.3, we arrive at the following corollary.

Corollary 3.11. Let the function $f(z)$ given by (1.1) be in the class $C_{\Sigma} \left(\frac{3 - z}{3(1 - z)} \right)$. Then,

$$|a_2| \leq \frac{1}{5}, \quad |a_3| \leq \frac{1}{5} \quad \text{and} \quad |a_4| \leq \frac{1}{15}.$$

Remark 3.12. In the special case, we can also obtain Corollary 3.11 from Corollary 3.10 for $\alpha = \frac{2}{3}$.
References

[1] Ali R. M., Lee S. K., Ravichandran V. and Supramanian S., Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, *Appl. Math. Lett.* 25(3), (2012), 334–351.

[2] Brannan D. A. and Clunie J. G., Aspects of Contemporary Complex Analysis, Proceeding of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979, (Academic Press, New York and London, 1980).

[3] Brannan D. A. and Taha T. S., On some classes of bi-univalent functions, *Mathematical Analysis and Its Applications* 3, (1985), 18-21.

[4] Bulut S., Coefficient estimates for a class of analytic and bi-univalent functions, *Novi Sad J. Mat.* 43(2), 59–65, 2013.

[5] Çağlar M., Orhan H. and Yağmur N., Coefficient bounds for new subclasses of bi-univalent functions, *Filomat* 27(7), 1165–1171, 2013.

[6] Deniz E., Certain subclasses of bi-univalent functions satisfying subordinate conditions, *J. Classical Anal.* 2(1), (2013), 49–60.

[7] Frasin B. A. and Aouf M. K., New subclasses of bi-univalent functions, *Appl. Math. Lett.* 24(9), (2011), 1569–1573.

[8] Goyali S. P. and Goswami P., Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, *J. Egyptian Math. Soc.* 20, (2012), 179–182.

[9] Hayami T. and Owa S., Coefficient bounds for bi-univalent functions, *Pan Amer. Math. J.* 22(4), 15-26, 2012.

[10] Kim Y. C. and Srivastava H. M., Some subordination properties for spirallike functions, *Appl. Math. Comput.* 203(2), (2008), 838–842.

[11] Lewin M., On a coefficient problem for bi-univalent functions, *Proc. Amer. Math. Soc.* 18, (1967), 63–68.

[12] Ma W. C. and Minda D., A unified treatment of some special classes of functions, in: *Proceedings of the Conference on Complex Analysis, Tianjin*, (1992), 157-169, Conf. Proc. Lecture Notes anal. I, Int. Press, Cambridge, MA, 1994.

[13] Magesh N. and Yamini J., Coefficient bounds for certain subclasses of bi-univalent functions, *Internal. Math. Forum* 8(27), (2013), 1337–1344.

[14] Miller S. S. and Mocanu P. T., Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics 225, Dekker, New York, 2000.

[15] Murugusundaramoorthy G., Magesh N. and Prameela V., Coefficient bounds for certain subclasses of bi-univalent functions, *Abs. Appl. Anal.* (2013), Article Id 573017, 3 pages.

[16] Netanyahu E., The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, *Arch. Rational Mech. Anal.* 32, (1969), 100–112.

[17] Orhan H., Magesh N. and Balaji V. K., Initial Coefficient Bounds for a General Class of Bi-Univalent Functions, *Filomat* 29(6), (2015), 1259–1267.

[18] Pommerenke C., Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.

[19] Prema S. and Keerthi B. S., Coefficient bounds for certain subclasses of analytic functions, *J. Math. Anal.* 4(1), (2013), 22-27.

[20] Ravichandran V., Polatoglu Y., Bokal M. and Sen A., Certain subclasses of starlike and convex functions of complex order, *Hacettepe J. Math. Stat.* 34, (2005), 9–15.

[21] Sivaprasad Kumar S., Kumar V. and Ravichandran V., Estimates for the initial coefficients of bi-univalent functions, (2012), arXiv:1203.5480v1.

[22] Srivastava H. M., Mishra A. K. and Gochhayat P., Certain subclasses of analytic and bi-univalent functions, *Appl. Math. Lett.* 23, (2010), 1188–1192.

[23] Srivastava H. M., Some inequalities and other results associated with certain subclasses of univalent and bi-univalent analytic functions, in *Nonlinear Analysis: Stability; Approximation; and Inequalities* (Panos M. Pardalos, Pando G. Georgiev, and Hari M. Srivastava, Editors),
Springer Series on Optimization and Its Applications Vol. 68, Springer-Verlag, Berlin, Heidelberg and New York, (2012), 607–630.

[24] Srivastava H. M., Bulut S., Çağlar M. and Yağmur N., Coefficient estimates for a general subclass of analytic and bi-univalent functions, *Filomat* 27(5), (2013), 831–842.

[25] Srivastava H. M., Murugusundaramoorthy G. and Magesh N., On certain subclasses of bi-univalent functions associated with Hohlov operator, *Global J. Math. Anal.* 1(2), (2013), 67–73.

[26] Srivastava H. M., Xu Q. H. and Wu G. P., Coefficient estimates for certain subclasses of spiral-like functions of complex order, *Appl. Math. Lett.* 23(7), (2010), 763–768.

[27] Xu Q. H., Gai Y. C. and Srivastava H. M., Coefficient estimates for a certain subclass of analytic and bi-univalent functions, *Appl. Math. Lett.* 25(6), (2012), 990–994.

[28] Xu Q. H., Xiao H. G. and Srivastava H. M., A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, *Appl. Math. Comput.* 218(23), (2012), 11461–11465.

[29] Xu Q. H., Cai Q. M. and Srivastava H. M., Sharp coefficient estimates for certain subclasses of starlike functions of complex order, *Appl. Math. Comput.* 225, (2013), 43–49.

Current address: Nizami Mustafa: Department of Mathematics, Faculty of Science and Letters, Kafkas University, Kars, 36100, Turkey.

E-mail address: nizamimustafa@gmail.com

ORCID Address: http://orcid.org/0000-0001-9640-8526

Current address: Veysel Nezir (Corresponding author): Department of Mathematics, Faculty of Science and Letters, Kafkas University, Kars, 36100, Turkey.

E-mail address: veyselnezir@yahoo.com

ORCID Address: http://orcid.org/0000-0002-2758-0274