Re-analysis of the Nucleon Space- and Time-like Electromagnetic Form Factors in a Two-component Model

R. Bijker and F. Iachello

1 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México, D.F., México
2 Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120

(Dated: May 11, 2004)

Recent experimental data on space-like and time-like form factors of the nucleon are analyzed in terms of a two-component model with a quark-like intrinsic \(q^4 \) structure and quark-antiquark pairs.

PACS numbers: 13.40.Gp, 14.20.Dh

Recent experiments on the electromagnetic form factors of the proton and the neutron using the recoil polarization technique have shown a dramatically different picture of the nucleon as compared with a previously accepted picture [1]. Leaving aside the question of whether or not the experimental results are in disagreement with each other [1], which is the subject of many theoretical investigations related to the role of two-photon contributions [2], the new experiments for the proton are in excellent agreement with a model of the nucleon put forward in 1973 [3], wherein the external photon couples both to an intrinsic structure and to a meson cloud through the intermediate vector mesons (\(\rho, \omega, \phi \)). On the contrary, the new experiments for the neutron are in agreement with the 1973 model up to \(Q^2 \sim 1 \text{ (GeV/c)}^2 \), but not so for higher values of \(Q^2 \). It is of great current interest to understand whether a modification of the 1973 parametrization can bring the calculation in agreement with both proton and neutron data.

We use the formalism of [1] and introduce Dirac, \(F_1(Q^2) \), and Pauli, \(F_2(Q^2) \), form factors. The observed Sachs form factors, \(G_E \) and \(G_M \) can be obtained from \(F_1 \) and \(F_2 \) by the relations

\[
G_M = (F_1^S + F_1^V) + (F_2^S + F_2^V),
\]

\[
G_E = (F_1^S + F_1^V) - \tau (F_2^S + F_2^V),
\]

\[
G_M = (F_1^S - F_1^V) + (F_2^S - F_2^V),
\]

\[
G_E = (F_1^S - F_1^V) - \tau (F_2^S - F_2^V),
\]

where we have introduced the isoscalar, \(F_1^S \), and isovector, \(F_1^V \), form factors, and used \(\tau = Q^2/4M_N^2 \). In 1973, the Dirac form factor was attributed to both the intrinsic structure and the meson cloud, while the Pauli form factor was attributed to the meson cloud. Since this model was previous to the development of QCD, no explicit reference was made to the nature of the intrinsic structure. In this article, we identify the intrinsic structure with a three valence quark structure and reanalyze the situation. In particular, we study the question of whether or not there is a coupling to the intrinsic structure also in the Pauli form factor \(F_2 \). Relativistic constituent quark models in the light-front approach [4, 5] point to the occurrence of such a coupling. In the meantime, the development of perturbative QCD (p-QCD) [2] has put some constraints to the asymptotic behavior of the form factors, namely that the non-spin-flip form factor \(F_1 \to 1/Q^2 \) and the spin-flip form factor \(F_2 \to 1/Q^6 \). This behavior has been very recently confirmed in a perturbative QCD re-analysis [5]. The 1973 parametrization, even if it was introduced before the development of p-QCD, had this behavior. In modifying it, we insist on maintaining the asymptotic behavior of p-QCD and introduce in \(F_2^V \) a term of the type \(g(Q^2)/(1 + \gamma Q^2) \). The parametrization we use is therefore:

\[
F_1^S(Q^2) = \frac{1}{2} g(Q^2) \left[1 - \beta_\omega - \beta_\varphi + \beta_\omega \frac{m_\varphi^2}{m_\omega^2 + Q^2} + \beta_\varphi \frac{m_\omega^2}{m_\varphi^2 + Q^2} \right],
\]

\[
F_1^V(Q^2) = \frac{1}{2} g(Q^2) \left[1 - \beta_\rho + \beta_\mu \frac{m_\mu^2}{m_\rho^2 + Q^2} \right],
\]

\[
F_2^S(Q^2) = \frac{1}{2} g(Q^2) \left[(\mu_p + \mu_n - 1 - \alpha_\omega) \frac{m_\omega^2}{m_\omega^2 + Q^2} + \alpha_\omega \frac{m_\omega^2}{m_\varphi^2 + Q^2} \right],
\]

\[
F_2^V(Q^2) = \frac{1}{2} g(Q^2) \left[(\mu_p - \mu_n - 1 - \alpha_\rho) \frac{1}{1 + \gamma Q^2} + \alpha_\rho \frac{m_\rho^2}{m_\rho^2 + Q^2} \right],
\]

with \(\mu_p = 2.793 \) and \(\mu_n = -1.913 \). This parametrization insures that the three-quark contribution to the anomalous moment is purely isovector, as given by \(SU(6) \). For the intrinsic form factor we use \(g(Q^2) = (1 + \gamma Q^2)^{-2} \). This form

\[\text{(2)}\]
is consistent with p-QCD and in addition is the form used in our approach to the intrinsic three quark structure by means of algebraic methods\cite{14}. The values of the masses here are the standard ones: \(m_p = 0.776\) GeV, \(m_\omega = 0.783\) GeV, \(m_\rho = 1.019\) GeV. The five coefficients, \(\beta_\rho, \beta_\omega, \beta_\rho, \alpha_\rho, \alpha_\omega\) and the value of \(\gamma\) are fitted to the data. Before comparing to the data, two modifications are needed in Eq. (2). The first modification is crucial for the small \(Q^2\) behavior and arises from the large width of the \(\rho\) meson. This is taken into account as in\cite{5} by the replacement

\[
\frac{m^2_\rho}{m^2_\rho + Q^2} \rightarrow \frac{m^2_\rho + 8\Gamma_\rho m_\pi/\pi}{m^2_\rho + Q^2 + (4m^2_\rho + Q^2)\Gamma_\rho \alpha(Q^2)/m_\pi},
\]

with

\[
\alpha(Q^2) = \frac{2}{\pi} \left[\frac{4m^2_\rho + Q^2}{Q} \right]^{1/2} \ln \left(\frac{\sqrt{4m^2_\rho + Q^2 + V^2}}{2m_\pi} \right).
\]

Since our intent is to compare with\cite{3} we use the same value of the effective width \(\Gamma_\rho = 0.112\) GeV.

The second (not important for the present range of \(Q^2\) measurements) is the logarithmic dependence of pertubative QCD. This can be taken into account by the replacement

\[
Q^2 \rightarrow Q^2 \ln \left[\left(\frac{\Lambda^2 + Q^2}{\Lambda^2_{\text{QCD}}} \right) \right] / \ln \left(\frac{\Lambda^2}{\Lambda^2_{\text{QCD}}} \right),
\]

with \(\Lambda = 2.27\) GeV and \(\Lambda_{\text{QCD}} = 0.29\) GeV\cite{16}. Since this change gives rise to small corrections below \(Q^2 = 10\) GeV\(^2\), we neglect it in the present paper.

We have determined the five coefficients \(\beta_\rho, \beta_\omega, \beta_\rho, \alpha_\rho, \alpha_\omega\) and the parameter \(\gamma\) by a fit to recent data on electromagnetic form factors. Because of the inconsistencies between different data sets, most notably between those obtained from recoil polarization and Rosenbluth separation, the choice of the data to which to fit plays an important role in the final outcome. We have used recoil polarization JLab data for the ratios \(R_p = \mu_p G_{E_p}/G_{M_p}\) and \(R_n = \mu_n G_{E_n}/G_{M_n}\) and Rosenbluth separation data, mostly from SLAC, for \(G_{M_n}\) and \(G_{M_{\omega}}\), as well as some recent measurements of \(G_{E_{\omega}}\). The data actually used in the fit are quoted in the captions to Figs. 1 and 2 and are indicated by filled squares in those figures. The values of the parameters that we extract are: \(\beta_\rho = 0.512, \beta_\omega = 1.129, \beta_\rho = -0.263, \alpha_\rho = 2.675, \alpha_\omega = -0.200\) and \(\gamma = 0.515\) (GeV/c)\(^2\). These values differ somewhat from those obtained in the 1973 fit, although they retain most of their properties, namely a large coupling to the \(\omega\) meson in \(F_1\) and a very large coupling to the \(\rho\) meson in \(F_2\). Also the spatial extent of the intrinsic structure is somewhat larger than in\cite{3}, \((r^2)^{1/2} \approx 0.49\) fm instead of \(\approx 0.34\) fm.

Fig. 1 shows a comparison between the calculations with parameters given above and proton data for \(R_p = \mu_p G_{E_p}/G_{M_p}\) (bottom panel) and for \(G_{M_n}/\mu_p G_{D}\), where \(G_D = (1 + Q^2/0.71)^{-2}\) (top panel). In this figure, the 1973 calculation, with no direct coupling to \(F_2\), is also shown. One can see that the inclusion of the direct coupling pushes the zero in \(R_p\) to larger values of \(Q^2\) (in\cite{3} the zero is at \(\approx 8\) (GeV/c)\(^2\)). We note that any model parametrized in terms of \(F_1\) and \(F_2\) will produce results for \(R_p\) that are in qualitative agreement with the data, such as a soliton model\cite{18} or relativistic constituent quark models\cite{10, 19}. Perturbation expansions of relativistic effects also produce results that go in the right direction\cite{20}. Fig. 2 shows the same comparison, but with neutron data: for \(R_n = \mu_n G_{E_n}/G_{M_n}\) (bottom panel) and for \(G_{M_n}/\mu_p G_{D}\) (top panel). Contrary to the case of the 1973 parametrization, the present parametrization is in excellent agreement with the neutron data. This is emphasized in Fig. 3 where the electric form factor of the neutron is shown and compared with additional data not included in the fit. However, as one can see from Fig.1, the excellent agreement with the neutron data is at the expense of a slight disagreement with proton data. To settle the question of consistency between proton and neutron space-like data, one needs to:

(i) Measure \(\mu_p G_{E_p}/G_{M_p}\) beyond \(6\) (GeV/c)\(^2\). This is the approved JLab experiment E01-109\cite{24}. (ii) Measure \(G_{M_n}\) beyond \(2\) (GeV/c)\(^2\). This experiment is in the course of analysis\cite{25}. (iii) Measure \(G_{E_n}\) beyond \(1.4\) (GeV/c)\(^2\). This is the proposed experiment JLab PR04-003\cite{26}.

Recently it has been suggested that time-like form factors be also used in a global understanding of the structure of the nucleon\cite{27, 28}. The time-like structure of the nucleon form factors within the framework of the 1973 parametrization has been recently analyzed\cite{28}. We use here the same method to analyse the time-like structure of the form-factors discussed in this note. The method consists in analytically continuing the intrinsic structure to

\[
g(q^2) = \frac{1}{(1 - \gamma e^{i\theta q^2})^2},
\]

where \(q^2 = -Q^2\) and \(\theta\) is a phase. The contribution of the \(\rho\) meson is analytically continued for \(q^2 > 4m^2_\rho\) as

\[
\frac{m^2_\rho}{m^2_\rho - q^2} \rightarrow \frac{m^2_\rho + 8\Gamma_\rho m_\pi/\pi}{m^2_\rho - q^2 + (4m^2_\rho - q^2)\Gamma_\rho \alpha(q^2)/m_\pi},
\]

where \(\gamma = 1\).
where

\[
\alpha(q^2) = \frac{2}{\pi} \left[\frac{q^2 - 4m^2}{q^2} \right]^{1/2} \ln \left(\frac{\sqrt{q^2 - 4m^2} + \sqrt{q^2}}{2m} \right),
\]

\[
\beta(q^2) = \sqrt{\frac{q^2 - 4m^2}{q^2}}.
\]

(8)

Our results for time-like form factors are shown in Figs. 4 and 5 together with those of [29]. The phase \(\theta \) obtained from a best fit to the proton data is \(\theta = 0.397 \text{ rad} \approx 22.7^\circ \), again somewhat different than the value \(\simeq 53^\circ \) obtained in [29]. It should be noted that the correction to the large \(q^2 \) data discussed in [29] has not been done in these figures. One can see from these figures that while the proton form factor, \(|G_{M_p}| \), obtained from analytic continuation of the present parametrization is in marginal agreement with data, the neutron form factor, \(|G_{M_n}| \), is in major disagreement. This result points once more to the inconsistency between neutron space-like and time-like data already noted by Hammer et al. [32] and in [29]. A remeasurement of neutron time-like data at FRASCATI-DAFNE [33] would help resolving this inconsistency. The result presented here is in contrast with that of the 1973 parametrization that was in good agreement with both proton and neutron time-like form factors. In Figs. 4 and 5 the electric form factors \(|G_{E_p}| \) and \(|G_{E_n}| \) are also shown for future use in the extraction of \(|G_{M_p}| \) and \(|G_{M_n}| \) from the data. This figure shows that the assumptions \(|G_{E_n}| = |G_{M_p}| \) and \(|G_{E_n}| = 0 \) used in the extraction of the magnetic form factors from the experimental data, are not always justified.

In conclusion, we have performed a re-analysis of the combined space- and time-like data on the electromagnetic form factors of the nucleon and found that one can obtain a good fit to the space-like neutron form factors measured recently, but this is at the expense of a slight deterioration of the fit for proton space-like data and especially a failure to describe neutron time-like data. The picture emerging from the fit reported here is that of an intrinsic structure slightly larger in spatial extent than that of \(\tilde{\alpha} \), \((r^2)^{1/2} \approx 0.49 \text{ fm} \) instead of 0.34 fm, and a contribution of the meson cloud (\(q\bar{q} \) pairs) slightly smaller in strength than that of \(\tilde{\alpha} \), \(\alpha_p = 2.675 \) instead of 3.706.

This work was supported in part by Conacyt, Mexico, and in part by DOE Grant No. DE-FG-02-91ER40608. We wish to thank Richard Maday for having stimulated it and Kees DeJager for his continuing interest.

[1] M.K. Jones et al., Phys. Rev. Lett. 84, 1398 (2000).
[2] O. Gayou et al., Phys. Rev. C 64, 038202 (2001);
O. Gayou et al., Phys. Rev. Lett. 88, 092301 (2002).
[3] R. Madey et al., Phys. Rev. Lett. 91, 122002 (2003).
[4] R.C. Walker et al., Phys. Rev. D 49, 5671 (1994).
[5] L. Andivahis et al., Phys. Rev. D 50, 5491 (1994).
[6] J. Arrington, Phys. Rev. C 68, 034325 (2003).
[7] P.G. Blunden, W. Melnitchouk and J.A. Tjon, Phys. Rev. Lett. 91, 142303 (2003);
J. Arrington, nucl-ex/0310109.
[8] F. Iachello, A.D. Jackson and A. Lande, Phys. Lett. B 43, 191 (1973).
[9] F. Iachello, Eur. Phys. J. A (2004), in press.
[10] M.R. Frank, B.K. Jennings and G.A. Miller, Phys. Rev. C 54, 920 (1996).
[11] E. Pace, G. Salmè, F. Cardarelli and S. Simula, Nucl. Phys. A 666, 33c (2000).
[12] G.P. Lepage and S.J. Brodsky, Phys. Rev. Lett. 43, 545 (1979);
G.P. Lepage and S.J. Brodsky, Phys. Rev. D 22, 2157 (1980).
[13] A. V. Belitsky, X. Ji, and F. Yuan, Phys. Rev. Lett. 91, 092003 (2003).
[14] R. Bijker, F. Iachello and A. Leviatan, Ann. Phys. (N.Y.) 236, 69 (1994);
R. Bijker, F. Iachello and A. Leviatan, Phys. Rev. C 54, 1935 (1996).
[15] W.R. Frazer and J.R. Fulco, Phys. Rev. 117, 1609 (1960).
[16] M. Gari and W. Krumpelmann, Phys. Lett. B 173, 10 (1986).
[17] Th. Pospischil et al., Eur. Phys. J. A 12, 125 (2001).
[18] G. Holzwarth, Z. Phys. A 356, 339 (1996).
[19] F. Cardarelli and S. Simula, Phys. Rev. C 62, 065201 (2000).
[20] M. De Sanctis, M.M. Giannini, L. Repetto and E. Santopinto, Phys. Rev. C 62, 025208 (2000); M. De Sanctis, M.M. Giannini, E. Santopinto and A. Vassallo, nucl-th/0401029.
[21] S. Rock et al., Phys. Rev. D 46, 24 (1992);
A. Lung et al., Phys. Rev. Lett. 70, 718 (1993);
W. Xu et al., Phys. Rev. Lett. 85, 2900 (2000);
G. Kubon et al., Phys. Lett. B 524, 26 (2002);
W. Xu et al., Phys. Rev. C 67, 012201 (2003).

[22] C. Herberg et al., Eur. Phys. J. A 5, 131 (1999) applies FSI corrections to M. Ostrick et al., Phys. Rev. Lett. 83, 276 (1999);
I. Passchier et al., Phys. Rev. Lett. 82, 4988 (1999);
H. Zhu et al., Phys. Rev. Lett. 87, 081801 (2001);
J. Golak et al., Phys. Rev. C 63, 034006 (2001) applies FSI corrections to J. Becker et al., Eur. Phys. J. A 6, 329 (1999);
J. Bermuth et al., Phys. Lett. B 564, 199 (2003) updates D. Rohe et al., Phys. Rev. Lett. 83, 4257 (1999);
G. Warren et al., Phys. Rev. Lett. 92, 042301 (2004)

[23] R. Schiavilla and I. Sick, Phys. Rev. C 64, 041002 (2001).
[24] C. Perdrisat, private communication.
[25] W. Brooks, private communication.
[26] R. Madey et al., JLab Proposal PR04-003.
[27] E. Tomasi-Gustafsson and M.P. Rekalo, Phys. Lett. B 504, 291 (2001).
[28] F. Iachello, [nucl-th/0312074]
[29] F. Iachello and Q. Wan, Phys. Rev. C, (2004), submitted.
[30] M. Castellano et al., Il Nuovo Cimento A 14, 1 (1973);
G. Bassompierre et al., Phys. Lett. B 68, 477 (1977);
D. Bisello et al., Nucl. Phys. B 224, 379 (1983);
T.A. Armstrong et al., Phys. Rev. Lett. 70, 1212 (1993);
G. Bardin et al., Nucl. Phys. B 411, 3 (1994);
A. Antonelli et al., Phys. Lett. B 334, 431 (1994);
M. Ambrogiani et al., Phys. Rev. D 60, 032002 (1999).
[31] A. Antonelli et al., Nucl. Phys. B 517, 3 (1998).
[32] H.-W. Hammer, U.-G. Meissner and D. Drechsel, Phys. Lett. B385, 343 (1996).
[33] R. Baldini et al., private communication.
FIG. 1: Comparison between experimental and theoretical space-like nucleon form factors. Top panel: the proton magnetic form factor $G_{M_p}/\mu_p G_D$. The experimental values are taken from [4]. Bottom panel: the ratio $\mu_p G_{E_p}/G_{M_p}$. The experimental data included in the fit are taken from [2] (filled squares). Additional data, not included in the fit, are taken from [1] (open circles) and [17] (open triangles). The solid lines are from the present analysis and the dashed lines from [8].
FIG. 2: Comparison between experimental and theoretical space-like nucleon form factors. Top panel: the neutron magnetic form factor $G_{M_n}/\mu_n G_D$. The experimental data are taken from [21]. Bottom panel: the ratio $\mu_n G_{E_n}/G_{M_n}$. The experimental data are taken from [2]. The solid lines are from the present analysis and the dashed lines from [8].
FIG. 3: Comparison between experimental and theoretical space-like nucleon form factors: the neutron electric form factor G_{E_n}. The experimental data included in the fit are taken from [22] (filled squares). Additional data, not included in the fit, are taken from [3] (open circles) and [23] (open triangles). The solid lines are from the present analysis and the dashed lines from [8].
FIG. 4: Comparison between experimental and theoretical time-like nucleon form factors. Top panel: the proton magnetic form factor $|G_{M_p}|$. The experimental values are taken from [30] under the assumption $|G_{E_p}| = |G_{M_p}|$. Bottom panel: the proton electric form factor $|G_{E_p}|$. The solid lines are from the present analysis and the dashed lines from [29].
FIG. 5: Comparison between experimental and theoretical time-like nucleon form factors. Top panel: the neutron magnetic form factor $|G_{Mn}|$. The experimental values, not included in the fit, are taken from [31] under the assumption $|G_{En}| = 0$. Bottom panel: the neutron electric form factor $|G_{En}|$. The solid lines are from the present analysis and the dashed lines from [29].