Magnetic susceptibility measurement and heavy metal pollution at an automobile station in Ilorin, North-Central Nigeria

Muyiwa Michael Orosun1, Sunday Adetola Oniku2, Adie Peter3, Rapheal Olugbenga Orosun4, Naheem Banji Salawu5 and Louis Hitler6

1 Department of Physics, University of Ilorin, Ilorin, Nigeria
2 Department of Physics, Modibbo Adama University of Technology, Yola, Nigeria
3 Factory Department, Savannah Sugar Company Limited, Numan, Nigeria
4 BS Geophysical and Consultancy Limited, Nigeria
5 CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
6 Department of Chemistry, University of Calabar, Calabar, Nigeria

E-mail: muyiwaorosun@yahoo.com

Keywords: pollution, magnetic susceptibility, heavy metals, geochemical analysis, atomic absorption spectrometry, anthropogenic sources

Abstract

Magnetic susceptibility measurement was carried out on 26 top-soil samples randomly collected from the study area and 5 selected top-soil samples outside the station, using the Bartington MS meter linked to a computer operated using Multisus2 software. The Measurements was done at both low (0.47 kHz) and high (4.7 kHz) frequency dependent susceptibilities which was further used to calculate the frequency dependent susceptibility (XFD). The values for low frequency mass magnetic susceptibility ranges between 96.6 \times 10$^{-7}$ m3 kg$^{-1}$ and 146 \times 10$^{-7}$ m3 kg$^{-1}$ with an average value of 117.35 \times 10$^{-7}$ m3 kg$^{-1}$ and standard deviation of 12.22 \times 10$^{-7}$ m3 kg$^{-1}$. The result reveal high magnetic susceptibility values at the station compared with the values observed outside the station which ranges between 53.0 \times 10$^{-5}$ m3 kg$^{-1}$ and 72.3 \times 10$^{-5}$ m3 kg$^{-1}$ with an average value of 63.2 \times 10$^{-5}$ m3 kg$^{-1}$ and standard deviation of 7.01 \times 10$^{-5}$ m3 kg$^{-1}$. This significant magnetic enhancement indicates high concentration of ferrimagnetic minerals in the soil and thus evidence of pollution due to the activities at the station which implies that the magnetic enhancement is of anthropogenic source than pedogenic and lithogenic. Analysis of the heavy metals also reveals higher values at the station. The correlation analysis between the mass specific magnetic susceptibility and the heavy metals concentrations (i.e. Cu (R = 0.92), Fe (R = 0.88), Cr (R = 0.85), Zn (R = 0.83), Cd (R = 0.79), Mg (R = 0.72), Mn (R = 0.60), Pb (R = 0.67)) which was conducted to further investigate the relationship between the soil magnetic susceptibility values and elemental variations, demonstrated magnetic susceptibility can be used as a proxy method for assessing the pollution of these heavy metals.

1. General Introduction

Magnetic susceptibility (X) is a dimensionless quantity given by the ratio of the total magnetization induced in a material to the intensity of the magnetic field that produces the magnetization. It measures the concentration of magnetic crystals, grain size, shape and type of the magnetic minerals present in a sample (Mullins 1977, Dearing et al 1985, Beget et al 1990, Dearing 1999, Dearing et al 2001, Meglish et al 2008, Blundell et al 2009, Kanu et al 2013a and 2013b). These magnetic minerals present in soil may either be inherited from the parent rocks during the formation of the soil or because of anthropogenic activities (Ayoubi and Karami 2019, Ayoubi and Adman 2019). Pollutants released into the atmosphere by human activities eventually settle and accumulates in the soil. Accumulation of these anthropogenic particles originating from human activities such as the one taking place at the station (i.e. welding, painting, vehicular discharges and dusts, poor disposal of spare part, etc), results in significant enhancement of soil magnetic susceptibility (Kapicka et al 2002, Caggiano et al 2005, El-Hassan 2005, El-Hassan 2006).
et al 2009, Mahamed et al 2011; Mohammad et al 2012, Murdock et al 2012, Kucer et al 2012, Kanu et al 2013a and 2013b, Oluyide et al 2019). These particles usually contain heavy metals and toxic elements.

There is a growing interest in using magnetic techniques for monitoring environmental pollution. Lecoanet et al 2003 efficiently use magnetic parameters to discriminate soil contamination sources, while Yang et al (2007), Morton-Bermea et al (2009) and Mücella, (2010) and many others investigated the relationship between heavy metals contamination of soil and its magnetic susceptibility. Kanu et al (2013b) successfully investigated and applied the magnetic properties of top soil samples from parts of Jalingo, Taraba State, N-E Nigeria to assess the level of soil pollution and identify pollution hotspots using magnetic proxy parameters. Similarly, Spiteri et al (2005) studied the relationships between topsoil magnetic susceptibility and heavy metal distribution in the Lausitz region of eastern Germany and opined that magnetic susceptibility can be used as a proxy for soil heavy metals contaminations.

A good relationship between magnetic susceptibility and concentration of some heavy metals in top soils has been reported by several authors (Strzyszcz and Magiera 1998, Jordanova et al 2003, Hu et al 2007, Yang et al 2007, Morton–Bermea et al 2009, Mahamed et al 2011; Brempong et al 2016). Since anthropogenic pollution usually have strong magnetic signature, this non-destructive magnetic technique looks promising in monitoring soil pollution (Mahamed et al 2011). Following the effectiveness of the integration of chemistry and magnetic properties in studies of the degree of pollution of the soil, dust, sediment and land systems, we have employed similar technique to successfully characterize and quantify the degree of pollution at an automobile station in Ilorin, Kwara State of Nigeria.

2. Materials and methods

2.1. Study area

The study area ‘Ilorin’ is situated between latitudes 8°20’ N and 8°50’ N and Longitudes 4°25’ E and 4°65’E (figure 1). Ilorin city is one of the fastest growing cities in Nigeria with a tropical wet and dry climate with mean annual rainfall of 1,200 mm (Olanrewaju, 2009). Its average annual temperature is 26.2 °C; it peaks at about 30 °C in March which marks the hottest month. Wet season is experienced from April to October and dry season from November to March.

The study area consists of Precambrian basement of south western Nigeria. The soils are formed from metamorphic and igneous rocks which are about 95%. The metamorphic rocks consist of quartztite augitegneiss, granitic gneiss, biotite gneiss and banded gneiss (Orosun et al 2019). The assortment of basement complex rocks brings about large number of ferruginous groups of soils. Therefore, ferrallitic soil type (generally deep red in colour with high clay content) is the major type of soil in Ilorin (Oyegun 1985, Orosun et al 2016a, Michael et al 2019).
2.2. Sample collection, preparation and laboratory analysis

A total of 26 samples of the top soil were collected randomly from strategic points within the study area. 5 top-soil samples were collected randomly outside the study area. The soil samples were collected in a fit rubber test container of about 10 cc each using a plastic spoon. These samples were sent to the laboratory where they were screened to remove macroscopic traces of stones, glass, rubber, hair, animal and plant matter to ensure that the materials to be analysed are free from such contaminants. The samples were air-dried at room temperature in the Laboratory for some days to reduce the mass contribution of water and to avoid any chemical reaction. The samples were air-dried at room temperature in a container of about 10 cc each using a plastic spoon. These samples were sent to the laboratory where they were stored in well labelled plastic containers for magnetic susceptibility measurements and further analysis.

Magnetic susceptibility measurement was carried on each of the collected sample using the Bartington MS2B meter linked to computer operated with Multisus2 software. For all the measurements, the sensitivity was set at 1.0. Measurements were carried out three times; first air reading, sample reading and a second air reading before and after each series for drift correction (Kanu et al. 2013b). The MS2B sensor is a handy laboratory sensor which makes use of 10 cm³ samples in plastic containers. It has the ability of taking measurements at two different frequencies i.e. at 470 Hz (low frequency) and 4700 Hz (high frequency). When the 10 cm³ cylindrical plastic bottles is in use, the accuracy of the MS2B meter is 1% (Dearing 1999). The susceptibility measurements were done at both low (470 Hz) and high (4700 Hz) frequencies which were further used to compute the frequency dependent susceptibility (\(\chi_{FD}\)).

For the geochemical analysis of the soil, we used Aqua Regia method for the digestion for trace metals in soil samples. 1 g of each soil sample was measured into a sanitized digestion flask. 3 ml of concentrated HCl and 9 ml of concentrated HNO₃ was added into the sample in the sanitized digestion flask (Orosun et al 2016b and USEPA 1986). For more details on this method, see Orosun et al (2016). The AAS technique which measures the concentrations of elements in digested samples down to parts per million of a gram (mg kg⁻¹) in a sample was carried out at ROTAS Soil-Lab in Ibadan using Buck Scientific Model 210 VGP Atomic Absorption Spectrophotometer.

3. Results and discussion

3.1. Result of magnetic susceptibility measurements

The results of the magnetic susceptibility measurement are given in tables 1 and 2.

The mass specific magnetic susceptibility values for the top-soil samples collected randomly within the study area are given in table 1. The values for low frequency mass magnetic susceptibility range between \(96.6 \times 10^{-5} \text{ m}^3 \text{ kg}^{-1}\) and \(146 \times 10^{-5} \text{ m}^3 \text{ kg}^{-1}\) with an average value of \(117.35 \times 10^{-5} \text{ m}^3 \text{ kg}^{-1}\) and standard deviation of \(12.22 \times 10^{-5} \text{ m}^3 \text{ kg}^{-1}\). These values of the magnetic susceptibility measurements at the station were much higher than the observed values outside the station. This significant magnetic enhancement indicates high concentration of ferrimagnetic minerals in the soil and thus increased pollution (Kanu et al 2013b, Stryszcz and Magiera, 1998, Jordanova et al 2003, Hu et al 2007, Yang et al 2007, Morton-Bermea et al 2009 etc). The value of high frequency mass magnetic susceptibility ranges between \(90.0 \times 10^{-5} \text{ m}^3 \text{ kg}^{-1}\) and \(108.7 \times 10^{-5} \text{ m}^3 \text{ kg}^{-1}\) with average value of \(97.27 \times 10^{-5} \text{ m}^3 \text{ kg}^{-1}\) and standard deviation of \(4.85 \times 10^{-5} \text{ m}^3 \text{ kg}^{-1}\). These values of the magnetic susceptibility fall within the range of values reported by Kanu et al (2013a and 2013b) where they carried out a preliminary assessment of soil pollution in some parts of Jalingo metropolis, Nigeria using magnetic susceptibility method and measured the magnetic susceptibility of soils of the Jalingo mechanic village in Jalingo, N-E Nigeria. Values reported by Yang et al (2007) from China, Mucella (2010) from Turkey, Mohamed et al (2011) and Ayoubi and Karami (2019) from Iran reveals high variability in the MS values but are all in the range of \(10^{-5}\) (SI) as well. The frequency dependent mass magnetic susceptibility ranges between 5.07 % and 29.36 % with an average value of 16.53 %. The results of the percentage frequency dependence susceptibility showed that only a few number of the samples have a mixture of superparamagnetic (SP) and coarse multidomains grains or superparamagnetic grains \(< 0.05 \mu\text{m}\). Sixteen samples (that is about 61%) have frequency dependent mass magnetic susceptibility \(> 14\) which indicates presence of contamination or anisotropy (Dearing 1999). Four samples (15%) are virtually SP grains as they have \(\chi_{FD}\) in the range of 12%--14%, while other samples (23%) have values in the range of 2%--10% indicating the presence of a mixture of SP and Multi Domain (MD) magnetic grains.

For the selected top-soil samples collected outside the study area, magnetic susceptibility measurements were performed at both low and high frequency. The result is given in table 2. The value for low frequency mass magnetic susceptibility ranges between \(53.0 \times 10^{-5} \text{ m}^3 \text{ kg}^{-1}\) and \(72.3 \times 10^{-5} \text{ m}^3 \text{ kg}^{-1}\) with an average value of \(63.2 \times 10^{-5} \text{ m}^3 \text{ kg}^{-1}\) and standard deviation of \(7.01 \times 10^{-5} \text{ m}^3 \text{ kg}^{-1}\). The value of high frequency mass magnetic susceptibility ranges between \(50.6 \times 10^{-5} \text{ m}^3 \text{ kg}^{-1}\) and \(65.7 \times 10^{-5} \text{ m}^3 \text{ kg}^{-1}\) with an average value of \(59.1 \times 10^{-5} \text{ m}^3 \text{ kg}^{-1}\) and standard deviation of \(5.47 \times 10^{-5} \text{ m}^3 \text{ kg}^{-1}\). The frequency dependent mass magnetic
susceptibility ranges between 3.40 % and 9.13 % with an average value of 6.71 % and standard deviation of 2.56 %. These values are very low compared with values observed at the station. This implies that the magnetic enhancement at the station is more of anthropogenic origin than lithogenic and pedogenic (Dearing, 1999).

3.2. Results of the geochemical analysis

The results of the geochemical analysis are given in tables 3 and 4.

Results of the heavy metals concentrations for the top-soil samples collected randomly within the station given in table 3, follows that, the mean concentration of the heavy metals of the selected top-soil decreases in the order Fe > Cr > As > Mg > Pb > Cu > Zn > Cd > Mn > Ag. The concentrations of Fe, Cr and As in the station were much higher than other selected heavy metals. This is believed to be due to gradual accumulation

S/N	Latitude	Longitude	Mass (g)	$X_{LF} \times 10^{-5}$ (SI)	$X_{HF} \times 10^{-5}$ (SI)	X_{FD} (%)
8.48074 N	4.60412E	13.01	118.00	96.80	17.97	
8.48078 N	4.60423E	14.02	110.00	98.40	10.55	
8.48090 N	4.60427E	14.30	114.00	92.00	19.30	
8.48090 N	4.60425E	14.80	122.00	98.00	19.67	
8.48071 N	4.60415E	13.22	106.00	98.40	7.17	
8.48082 N	4.60434E	13.02	127.40	90.00	29.36	
8.48062 N	4.60429E	14.52	102.60	97.40	5.07	
8.48066 N	4.60447E	13.43	121.00	96.00	20.67	
8.48093 N	4.60414E	13.36	128.80	99.80	22.52	
8.48075 N	4.60422E	14.06	121.20	98.00	18.65	
8.48095 N	4.60432E	13.45	116.40	93.00	20.10	
8.48081 N	4.60430E	12.88	124.00	102.40	17.42	
8.48081 N	4.60427E	13.67	108.80	90.00	17.28	
8.48080 N	4.60425E	13.76	104.20	98.00	5.95	
8.48080 N	4.60422E	13.48	96.60	90.00	6.83	
8.48065 N	4.60424E	13.98	122.00	98.00	19.67	
8.48065 N	4.60419E	14.08	138.60	104.60	24.53	
8.48064 N	4.60417E	14.24	146.80	108.40	26.16	
8.48093 N	4.60423E	13.38	102.40	88.60	13.48	
8.48095 N	4.60404E	13.68	108.80	92.50	14.98	
8.48085 N	4.60440E	13.24	106.80	96.40	9.74	
8.48088 N	4.60430E	13.26	104.80	97.40	7.06	
8.48090 N	4.60437E	13.22	133.00	102.00	23.31	
8.48090 N	4.60435E	13.98	128.00	102.60	19.84	
8.48091 N	4.60442E	13.82	124.00	100.80	18.71	
8.48092 N	4.60428E	13.92	114.80	99.00	13.76	

Min 12.88 96.60 90.00 5.07
Max 14.80 146.80 108.40 29.36
Median 13.68 117.20 98.00 18.31
Mean 13.68 117.40 97.30 16.53
SD 0.49 12.20 4.90 6.63
CV 3.58 10.39 5.04 40.11

S/N	Latitude	Longitude	Mass (g)	$X_{LF} \times 10^{-5}$ (SI)	$X_{HF} \times 10^{-5}$ (SI)	X_{FD} (%)
1	8.40255° N	4.62662°E	13.00	66.0	60.6	8.18
2	8.40258° N	4.62468°E	14.02	72.3	65.7	9.13
3	8.40680° N	4.62046°E	14.30	53.0	50.6	4.53
4	8.40880° N	4.61688°E	13.80	62.0	60.2	3.40
5	8.40990° N	4.61432°E	14.10	62.8	58.4	8.30

Min 13.00 53.0 50.6 3.40
Max 14.30 72.3 65.7 9.13
Median 14.02 62.8 60.2 8.18
Mean 13.84 63.2 59.1 6.71
SD 0.51 7.0 5.5 2.56
CV 3.68 11.08 9.31 38.15

Table 1. Magnetic Susceptibility of selected top-soil within the study area.

Table 2. Magnetic susceptibility of selected top-soil outside the study area.
from various pollution sources over time, including automobile exhaust and other related activities in
the station. Higher concentrations of Mn and Fe in the station are likely to have come from metallurgical sources
such as steel, iron and poor disposal of spare parts. The increased concentration of Cu and Zn could also be
related to the activities at the station, since it may result from deterioration of automobile parts. Besides, Zinc is
often used in the tyres fabrication and Cu is a familiar element in vehicle brake lining, thrust bearing and
remaining parts of the engine (Mohamed et al 2011, Kanu et al 2013a and 2013b; Canbay, 2010, Kucer et al
2012, Lu et al 2007; Mücella, 2010, Duan et al 2009; Durza, 1999). Zn compounds are expansively utilized as anti-
oxidants and also as agents for improving dispersant for motor oil (Lu et al 2007). We did similar analysis for the
top-soil samples collected randomly outside the study area (presumed virgin/control soil) and the result given in
table 4 shows that the mean concentration of the selected heavy metals are much lower than their respective
concentrations at the station. This also reveals that the higher values observed at the station could be due to the
anthropogenic inputs (Mohamed et al 2011, Kanu et al 2013a and 2013b, Strzyszcz and Magiera, 1998,
Jordanova et al 2003, Hu et al 2007, Yang et al 2007, Morton-Bermea et al 2009). The results of the heavy metals
analysis at the mechanic station despite higher than the measured values outside the station, are still lower than
the values reported by Isinkaye (2018) where he measured the distribution and multivariate pollution risks
assessment of heavy metals around abandoned iron-ore mines in North-central Nigeria. The calculation of
coefficient of variation (CV) also reveals the variability in the distribution of the magnetic susceptibility and the
heavy metals in the study area. CV <= 20% indicates little variability, 20 < CV <= 50% implies moderate
variability, while 50% < CV <= 100% indicates high variability and CV value greater than 100% is regarded as
exceptionally high variability (Isinkaye, 2018). From the results, the low frequency magnetic susceptibility (X_{LF})
and all the heavy metals (except Ag) show low variability in the soil.

3.3. Pearson correlation analysis

The Pearson correlation coefficients between the heavy metals concentrations and MS values and between
different elements are presented in table 5.
Table 4. Concentration of heavy metals of selected top-soil outside the study area in ppm.

S/N	Latitude	Longitude	Mg	Mn	Ag	Zn	Cd	Pb	Cu	Fe	As	Cr
1	8.40255° N	4.62662° E	4	3.4	ND	7.4	3.8	19	12	220	32	55
2	8.40258° N	4.62468° E	4.2	3.8	ND	8.8	3.5	18	12	212	30	60
3	8.40680° N	4.62046° E	4.2	3.6	2	8.2	3.5	19	10	224	35	52
4	8.40880° N	4.61688° E	4.2	4	2	8	4	19	10	242	35	50
5	8.40990° N	4.61432° E	4.6	3.4	ND	8.2	4.2	19	11	225	35	52
Min			4	3.4	ND	7.4	3.5	18	10	212	30	50
Max			4.6	4	2	8.8	4.2	19	12	242	35	60
Mean			4.24	3.64	2	8.12	3.8	18.8	11	224.6	33.4	53.8
SD			0.22	0.26	0	0.50	0.31	0.44	1	10.99	2.30	3.89
CV			5.19	7.14	0	6.16	8.16	2.34	9.09	4.89	6.89	7.23

ND = Not detectable.
operated using Multisus2 software. The measurements were done at both low area and 5 selected top-soil samples outside the station, using the Bartington MS meter linked to a computer. Magnetic susceptibility measurement was carried out on 26 top-soil samples randomly collected from the study location and activities of Automobile repair stations. If possible, the stations should be sited far away from residential areas or any drinking water source.

4. Conclusion

Magnetic susceptibility measurement was carried out on 26 top-soil samples randomly collected from the study area and 5 selected top-soil samples outside the station, using the Bartington MS meter linked to a computer operated using Multisus2 software. The measurements were done at both low (0.47 kHz) and high (4.7 kHz) frequency susceptibilities which was further used to calculate the frequency dependent susceptibility (\(X_{\text{FD}}\)). The results reveals high magnetic susceptibility values at the station compared with the values observed outside the station. This significant magnetic enhancement indicates high concentration of ferrimagnetic minerals in the soil and thus evidence of pollution due to the activities at the station. It also implies that the magnetic enhancement is of anthropogenic source than pedogenic and lithogenic. Analysis of the heavy metals also reveals higher values at the station.

So based on the results of this study it follows that the study area is polluted as a result of the activities at the station (i.e. welding, painting, vehicular discharges and dusts, poor disposal of spare part, etc) and the strong correlation observed between the heavy metals and magnetic susceptibility indicated a strong affinity of heavy metals to magnetic materials. Hence, since the MS method is cost effective, fast and can cover a very large area in a short time, it becomes very essential and should be utilized as a preliminary method/tool to identify polluted spots before applying the geochemical method that is time consuming and expensive.

Considering the significant magnetic enhancement and heavy metals pollution at the station, we recommend that the government of Nigeria via the environmental protection agency should monitor the location and activities of Automobile repair stations. If possible, the stations should be sited far away from residential areas or any drinking water source.

Table 5. Pearson correlation coefficient (R) matrix between heavy metals and magnetic susceptibility.

Element	Mg	Mn	Ag	Zn	Cd	Pb	Cu	Fe	As	Cr	X_{LF}
Mg	1	0.8847	0.1493	0.7968	0.8642	0.6855	0.6915	0.8605	0.2499	0.7902	0.7215
Mn	1	0.1783	0.9423	0.8602	0.8683	0.8683	0.9723	0.3659	0.9508	0.6042	
Ag	1	0.1228	0.1808	0.1303	0.1370	0.1174	0.2044	0.1811	0.1095		
Zn	1	0.9713	0.9631	0.9571	0.9671	0.2181	0.9719	0.8305			
Cd	1	0.8904	0.8938	0.9857	0.4604	0.9751	0.7942				
Pb	1	0.9957	0.9091	0.2675	0.9405	0.6712					
Cu	1	0.9143	0.2884	0.9442	0.9230						
Fe	1	0.1789	0.9869	0.8816							
As	1	0.2659	0.1140								
Cr	1	0.8506									

The correlation analysis between the mass specific magnetic susceptibility and the heavy metals concentrations was conducted to further investigate the relationship between the MS values and elemental variations (see table 5). The results were classified according to the correlation coefficient R (Yu and Hu 2005), as follows:

- \(0.8 \leq |R| \leq 1\) suggests a strong correlation;
- \(0.5 \leq |R| \leq 0.8\) suggests a significant correlation;
- \(0.3 \leq |R| \leq 0.5\) suggests a weak correlation; and
- \(|R| < 0.3\) suggests an insignificant correlation.

The resulting correlation analysis demonstrated that concentrations of Cu (\(R = 0.92\)), Fe (\(R = 0.88\)), Cr (\(R = 0.85\)) and Zn (\(R = 0.83\)) were strongly correlated with MS, where as Cd (\(R = 0.79\)), Mg (\(R = 0.72\)), Mn (\(R = 0.60\)), Pb (\(R = 0.67\)) gives significant correlation with MS. But As (\(R = 0.1140\)) and Ag (\(R = 0.1095\)) shows insignificant correlation.

The correlation between magnetic susceptibility measurements and heavy metals content reveals a good relation between ferrimagnetic oxides and heavy metals in the studied station. This relationship is believed to be as a result of the fact that heavy metals are adsorbed onto surface of pre-present ferrimagnetics in the environments or are subsumed into the lattice structure of the ferrimagnetics during combustion process (Hanesch and Scholger 2002, Morton-Bermea et al 2009, Mohamed et al 2011). A strong and positive correlation between the selected heavy-metal and also with Magnetic susceptibility was observed for most of the selected elements, indicating a common pollution source. Thus, high correlation coefficients between Magnetic susceptibility measurements and heavy-metal content can be used as an indicator of pollution level.
Acknowledgments

The authors are grateful to the Geophysics research group of Physics Department, Modibbo Adama University for allowing us to use their Lab to run the analyses. The authors also wish to express their gratitude to the anonymous reviewers for their anticipated useful comments and contribution.

Conflict of interests

The authors declare that they have no conflict of interest.

Funding

There is no funding received for this research work.

ORCID iDs

Muyiwa Michael Orosun © https://orcid.org/0000-0002-0236-3345
Naheem Banji Salawu © https://orcid.org/0000-0001-5089-2359
Louis Hitler © https://orcid.org/0000-0002-0286-2865

References

Ayoubi S and Adman V 2019 Iron mineralogy and magnetic susceptibility of soils developed on various rocks in western Iran Clay and Clay Minerals. 67 217–27
Ayoubi S and Karami M 2019 Pedotransfer functions for predicting heavy metals in natural soils using magnetic measures and soil properties J. Geochem. Explor. 197 212–9
Beget J E, Stone D B and Hawkins D B 1990 Paleoclimatic forcing of magnetic susceptibility variation in alaskan loess during the late quaternary Geology 18 40–3
Blundell A, Dearing J A, Boyle J F and Hannam J A 2009 Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales Earth. Sci. Res. 95 158–88
Brempang F, Mariam Q and Preko K 2016 The use of magnetic susceptibility measurements to determine pollution of agricultural soils in road proximity Afr. J. Environ. Sci. Technol. 10 263–71
Caggiano R, Coppola R, Di Leo S, Macchiato M and Ragosta M 2005 Comparison between in situ soil magnetic susceptibility measurements and heavy metal concentrations: the case of the Agri-valley, Basilicata, Italy Geophysical Research Abstracts 7 090
Canbay M. 2010 Investigation of the relation between heavy metal contamination of soil and its magnetic susceptibility International Journal of Physical sciences 5 393–400
Dearing J A, Maher B A and Oldfield F 1985 Geomorphological Linkages betweensoils and sediments: the role of magnetic measurements ed K S Richards, R R Arnett and S Ellis Geomorphology and Soils. (London: George Allen and Unwin)
Dearing J A 1999 Environmental Magnetic Susceptibility, Using the Bartington MS2 System. 2nd edition (England: Chi Publishing)
Dearing J A, Hannam J A, Anderson A S and Wellington E M H 2001 Magnetic, geochemical and DNA properties of highly magnetic soils in England: geophys J. Int. 144 183–96
[40] Duan XueMei, Hu ShouYun, Yan HaiTao, Blaha U., Roesler W., Appel E. and Sun WeiHua 2009 Relationship between magnetic parameters and heavy element contents of arable soil around a steel company, Nanjing Science China Earth Sciences 53 411–18
Durża O. 1999 Heavy metals contamination and magnetic susceptibility in soils around metallurgical plant Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 24 541–43
El-Hassan T, Al-Nawish A and Latafeh M S 2009 Environmental magnetism: heavy metal concentrations in soils as a function of magnetic minerals content Jordan journ. of Earth and Environmental Sciences 2 38–49
Hancesh M. and Scholer R. 2002 Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements Environmental Geology 42 857–70
Hu X F, Su Y, Ye R, Li X Q and Zhang G L 2007 Magnetic properties of the urban soils in Shanghai and their environmental implications Catena 70 428–36
Isinkaye O M 2018 Distribution and multivariate pollution risks assessment of heavy metals and natural radionuclides around abandoned iron-ore mines in North Central Nigeria Earth Systems and Environment. 2 331–43
Jordanova N V, Jordanova D V, Veneva L, Yorova K and Petrovsky E 2003 Magnetic response of soils and vegetation to heavy metal pollution. A case study Environ SciTechnol 37 4417–24
Kanu M O, Meludu O C and Oniku S A 2013a A preliminary assessment of soil pollution in some parts of jalingo metropolis, nigeria using magnetic susceptibility method Jordan Journal of Earth and Environmental Sciences 5 53–61
Kanu M O, Meludu O C and Oniku S A 2013b Measurement of magnetic susceptibility of soils in jalingo, N-E Nigeria: a case study of the jalingo mechanic village World Applied Sciences Journal 24 178–87 2013. © IDOSI Publications, 2013
Kapicka A, Jordanova N, Petrovsky E, Jordanova N and Fialova H 2002 The influence of industrial emissions on the magnetic parameters of soils Symposium No. 55, paper no. 2130, 17th WCSS, 14–21, August, Thailand
Kucer, N., Sabicoglu, I., & Can, N. (2012). Measurements of environmental pollution in industrial area using magnetic susceptibility method. ACTA Physica Polonica, 121, 20–2.

Lecoanet, H., Leveque, F., & Ambrosi, J. P. (2003). Combination of magnetic parameters: an efficient way to discriminate soil contamination sources (south France). Environ. Pollut., 122, 229–34.

Lu, S. G., Bai, S. Q., & Xue, Q. F. (2007). Magnetic properties as indicators of heavy metals pollution in urban topsoils: a case study from the city of Luoyang, China. Geophys. J. Int., 171, 368–80.

Orosun, M. M., Usikalu, M. R., Oyewumi, K. J., & Adagunodo, T. A. (2019). Natural radionuclides and radiological risk assessment of granite mining field in Asa, North-central Nigeria. Methods X, 6, 2304–14.

Meglish, T., Li, Y., & van Dam, R. J. (2008). Characterization of frequency-dependent susceptibility in UXO. Electromagnetic Geophysics SEG Annual Meeting, Las Vegas.

Mohamed, E. B., Mohamed, S., Ahmed, B., & Samir, N. (2011). Heavy metal pollution and soil of Beni Mellal City (Morocco). Environ. Earth Sci. (Berlin: Springer) 2011 (https://doi.org/10.1007/s12665-011-1215-5).

Mohammad, R., Abdolreza, K., Mohammad, J. M., Feredyoon, G., & Akbar, B. (2012). Magnetic susceptibility as a proxy to heavy metal content in the sediments of Anzali wetland, Iran. Iranian Journal of Environmental Health Sciences & Engineering, 2012, 9, 34.

Morton-Bermea, O., Hernandez, E., Martinez-Pichardo, E., Soler-Arechalde, A. M., Lozano, Santa-Cruz, R., Gonzalez-Hernandez, G., Beramendy-Orosco, L. A., & Urrutia-Fucugauchi, J. (2009). Mexico City top soils: heavy metals versus magnetic susceptibility. Geoderma, 151, 121–5.

Müccella, C. (2010). Investigation of the relation between heavy metal contamination of soil and its magnetic susceptibility. International Journal of Physical Sciences, 5, 393–400 May 2010. Available online at http://academicjournals.org/IJPS ISSN 1992-1950 © 2010 Academic Journals.

Mullins, C. E. (1977). Magnetic susceptibility of the soil and its significance in soil science: a review. J. Soil Sci., 28, 233–46.

Murdock, K., Wilkie, K. M., & Brown, L. L. (2012). Rock magnetic properties, magnetic susceptibility, and organic geochemistry comparison in core LZ 1029–7 Lake El’gygytgyn, far Eastern Russia. Climate of the past Discussions, 8, 4565–99.

Orosun, M. M., Lawal, T. O., & Akinoye, F. C. (2016a). Natural radionuclide concentrations and radiological impact assessment of soil and water in Tanko-Ilorin, Nigeria. Zimbabwe Journal of Science & Technology, 11, 158–72.

Orosun, M. M., Tchokossa, P., Lawal, T. O., Bello, S. O., & Nwankwo, L. I. (2016b). Assessment of heavy metal pollution in drinking water due to mining and smelting activities in Ajaokuta, Nigeria. Journal of the Nigerian Geophysical Society, 13(3), 30–8.

Olanrewaju, R. M. (2009). Department of geography university of ilorin, Nigeria 67 the climate effect of urbanization in a city of developing country: the case study of ilorin, kwara state, Nigeria. Ethiopian Journal of Environmental Studies and Management, 2, 67–72.

Olayide, S. O., Tchokossa, P., Akinoye, F. C., & Orosun, M. M. (2019). Assessment of radioactivity levels and transfer factor of natural radionuclides around Iron and steel smelting company located in Fashina village, Ile-Ife, Osun state, Nigeria. Facta Universitatis, Series: Working and Living Environmental Protection, 15, 241–56.

Oveygun, R. O. (1985). The use and waste of water in third world city. Geographical Journal, 10, 205–2010.

Spiteri, C., Kalinski, V., Rösler, W., Hoffmann, V., & Appel, E. (2005). Magnetic screening of a pollution hotspot in the Lausitz area, Eastern Germany: correlation analysis between magnetic proxies and heavy metal contamination in soils. Environ. Geol., 49, 1–9.

Strzyszcz, Z., & Magiera, T. (1998). Magnetic susceptibility and heavy metals contamination in soils of southern Poland. PhysChem Earth, 23, 1127–31.

USEPA (1986). United Stated Environmental Protection Agency. Acid digestion of sediment, sludge and soils. USEPA Test Methods for Evaluating Soil Waste SW-846. Cincinnati, OH, United States of America: USEPA.

Yang, T., Liu, Q., & Cao, G. (2007). Magnetic investigation of heavy metals contamination in urban topsoils around the East Lake, Wuhan, China. Geophys. J. Int., 171, 603–12.

Yu, J. and Hu, X. (2005). Application of data statistical analysis with SPSS (Beijing: Post & Telecom Press) pp 163–73.