Randomized phase II trial of fulvestrant alone or in combination with bortezomib in hormone receptor-positive metastatic breast cancer resistant to aromatase inhibitors: a New York Cancer Consortium trial

Kerin Adelson¹, Bhuvaneswari Ramaswamy², Joseph A Sparano³, Paul J Christos⁴, John J Wright⁵, George Raptis⁶, Gang Han⁷, Miguel Villalona-Calero⁸, Cynthia X Ma⁹, Dawn Hershman¹⁰, Joseph Baar¹¹, Paula Klein¹², Tessa Cigler¹³, G Thomas Budd¹⁴, Yelena Novik¹⁵, Antoinette R Tan¹⁶, Susan Tannenbaum¹⁷, Anupama Goel¹², Ellis Levine¹⁸, Charles L Shapiro², Eleni Andreopoulou³, Michael Naughton⁹, Kevin Kalinsky¹⁹, Sam Waxman¹² and Doris Germain¹²

The proteasome inhibitor bortezomib enhances the effect of the selective estrogen receptor (ER) downregulator (SERD) fulvestrant by causing accumulation of cytoplasmic ER aggregates in preclinical models. The purpose of this trial was to determine whether bortezomib enhanced the effectiveness of fulvestrant. One hundred eighteen postmenopausal women with ER-positive metastatic breast cancer resistant to aromatase inhibitors (AIs) were randomized to fulvestrant alone (Arm A—500 mg intramuscular (i.m.) day −14, 1, 15 in cycle 1, and day 1 of additional cycles) or in combination with bortezomib (Arm B—1.6 mg/m² intravenous (i.v.) on days 1, 8, 15 of each cycle). The study was powered to show an improvement in median progression-free survival (PFS) from 5.4 to 9.0 months and compare PFS rates at 6 and 12 months (α = 0.10, β = 0.10). Patients with progression on fulvestrant could cross over to the combination (arm C). Although there was no difference in median PFS (2.7 months in both arms), the hazard ratio for PFS in Arm B versus Arm A (referent) was 0.73 (95% confidence interval (CI) = 0.49, 1.09, P = 0.06, 1-sided log-rank test, significant at the prespecified 1-sided 0.10 α level). At 12 months, the PFS proportion in Arm A and Arm B was 13.6% and 28.1% (P = 0.03, 1-sided χ²-test; 95% CI for difference (14.5%) = −0.06, 29.1%). Of 27 patients on arm A who crossed over to the combination (arm C), 5 (18%) were progression-free for at least 24 weeks. Bortezomib likely enhances the effectiveness of fulvestrant in AI-resistant, ER-positive metastatic breast cancer by reducing acquired resistance, supporting additional evaluation of proteasome inhibitors in combination with SERDs.

npj Breast Cancer (2016) 2, 16037; doi:10.1038/npjbcancer.2016.37; published online 14 December 2016

INTRODUCTION
Endocrine therapy prolongs survival in patients with metastatic breast cancer whose tumors express the estrogen receptor (ER) and is better tolerated than chemotherapy. Current options include selective estrogen receptor modulators (e.g., tamoxifen), aromatase inhibitors (e.g., anastrozole, letrozole, and exemestane), and selective estrogen receptor downregulators (SERDs) (e.g., fulvestrant).¹ However, resistance to endocrine therapy is a major clinical challenge.² Recently, several agents have been shown to enhance the effectiveness of hormonal modulation, including the mTor inhibitor everolimus,³ the CDK 4/6 inhibitor palbociclib,⁴ and the histone deacetylase inhibitor entinostat,⁵ indicating that it may be feasible to abrogate endocrine resistance with rational combinations of endocrine and non-endocrine agents, including those that have only modest activity when used alone.

Fulvestrant is a SERD that binds, inhibits, and degrades the estrogen receptor (ER). It binds with 100-fold greater affinity than tamoxifen, and more effectively inhibits estrogen signaling than either tamoxifen or AIs.⁶—²⁸ suggesting that it may be a better platform for combining with agents targeting other pathways. In

¹Yale Cancer Center and Smilow Cancer Hospital, Yale University School of Medicine, New Haven, CT, USA; ²The Ohio State Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA; ³Department of Oncology, Montefiore Medical Center, Bronx, NY, USA; ⁴Department of Healthcare Policy & Research, Weill Cornell Medical Center, New York, NY, USA; ⁵Investigational Drug Branch, Cancer Therapy and Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; ⁶Department of Medicine, Northwell Health, Lake Success NY and Hofstra Northwell School of Medicine, Hempstead, NY, USA; ⁷Department of Epidemiology and Bio-statistics, School of Public Health, Texas A&M University, College Station, TX, USA; ⁸Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; ⁹Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA; ¹⁰Department of Medicine and Epidemiology New York Presbyterian-Columbia University Medical Center, New York, NY, USA; ¹¹Department of Medicine, Division of Hematology/Oncology, Seidman Cancer Center of the University Hospitals of the Cleveland Medical Center, Cleveland, OH, USA; ¹²Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA; ¹³Department of Hematology and Oncology, Department of Medicine, Weill Cornell Medical Center, New York, NY, USA; ¹⁴Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Center, Cleveland, OH, USA; ¹⁵Perlmutter Cancer Center, NYU Langone Medical Center, New York University School of Medicine, New York, NY, USA; ¹⁶Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; ¹⁷Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA; ¹⁸Roswell Park Cancer Institute, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY, USA and ¹⁹Department of Medicine, Division of Hematology and Oncology, New York Presbyterian-Columbia University Medical Center, New York, NY, USA.

Correspondence: K Adelson (kerin.adelson@yale.edu)

Presented in part at the San Antonio Breast Cancer Symposium, December, 2014.
Received 21 July 2016; revised 9 September 2016; accepted 18 October 2016
addition to degrading the ER in the nucleus, fulvestrant has a unique mechanism of action, which promotes the accumulation of insoluble ER aggregates in the cytoplasm, activating a sustained unfolded protein response, which leads to DNA fragmentation and apoptosis. Under normal circumstances the proteasome clears these ER aggregates, preventing cell death through this mechanism. By blocking proteasome activity, bortezomib enhances cytoplasmic fulvestrant-mediated ER aggregation, leading to apoptotic cell death in a panel of ER-positive breast cancer cell lines, a tamoxifen-resistant cell line in vitro, and also augments tumor regression in a hormone resistant breast cancer xenograft model.\(^1\) When bortezomib is added to fulvestrant, the nuclear degradation of the ER is maintained. Bortezomib enhances the efficacy of fulvestrant by promoting the novel effect of fulvestrant-mediated ER aggregates in the cytoplasm.

On the basis of these observations, we initiated a hypothesis-driven, randomized phase II open-label trial comparing fulvestrant with fulvestrant plus bortezomib in postmenopausal women with ER-positive metastatic breast cancer with disease that was resistant to AI therapy, a common indication for fulvestrant therapy.\(^1\) The primary trial endpoint was progression-free survival (PFS), and we herein report the results of the primary analysis. A secondary objective was to determine whether adding bortezomib to fulvestrant produced clinical benefit in patients whose disease progressed on the fulvestrant alone arm.

**RESULTS**

**Patient characteristics**

One hundred eighteen patients were enrolled from 17 institutions between June 2010 and October 2013, including 59 patients randomized to fulvestrant alone (arm A) and 59 patients randomized to fulvestrant plus bortezomib (Arm B). Two patients randomized to Arm B never received protocol therapy. Of 59 patients randomized to fulvestrant alone, Arm A, 27 (46%) crossed over to receive fulvestrant plus bortezomib (Arm C) at progression on fulvestrant alone.

The baseline characteristics of the 116 treated patients on arm A and B, plus the 27 patients who crossed over from arm A to arm C are shown are shown in Table 1. There were no significant differences in patient characteristics between arms A and B with regard to median age, Eastern Cooperative Oncology Group (ECOG) performance status, prior chemotherapy for metastasis, average prior lines of endocrine therapy (1.43 vs. 1.47), or liver metastases (36 vs. 37%). Patients in arm A had longer median interval between diagnosis and metastasis (49 vs. 28 months) and were more likely to present with de novo metastatic disease (32 vs. 26%).

**Efficacy**

PFS rates at 12 months were 13.6% in arm A and 28.1% in arm B \((P=0.03, 1\text{-sided } \chi^2\text{-test}; 95\% \text{ confidence interval (CI) for difference (14.5\%) = -0.06, 29.1\%})\). PFS rates at 6 months were 28.8% in arm A versus 38.6% in arm B, respectively \((P=0.13 \text{ for one-sided } \chi^2\text{-test})\). Although median PFS was similar in the two arms (2.69 vs. 2.73 months, respectively), the hazard ratio for Arm B versus Arm A (referred to) was 0.73 \((95\% \text{ CI} = 0.49, 1.09, P=0.06, 1\text{-sided log rank test})\) (Figure 1). This was significant at the prespecified \(\alpha < 0.1\).

We also compared the PFS in Arms A and B using the two-time point test procedure as was pre-specified in the protocol.\(^1\) We implemented the Mantel-Haenszel test procedure proposed by Freidlin and Korn\(^1\) to adjust for the potential bias between treatment arms due to subjective aspects coming from, for example, as specified in ref. 18, ‘desire of the patient and treating physician to get a patient on an active therapy regimen as quickly as possible.’ If the two time points were chosen to be the median (month 2.71) and twice the median (month 5.42) as suggested in Freidlin et al.,\(^1\) the two-sided test \(P\)-value was not significant \((P=0.290)\). However, if we chose the two time points to be months 6 and 12 given that the patient follow-ups were at every 3 months after initiating treatment, the two-sided test \(P\)-value was significant \((P=0.059)\), which was consistent with the significance from the log-rank test.

We used the reduced piecewise exponential estimate\(^1\) to detect statistically significant changes in the hazard rate (risk) of cancer progression in both arms. Then we compared the two arms using the two-sample exact exponential test developed by

| Table 1. Patient characteristics at registration |
|-----------------------------------------------|
| **Arm A:** fulvestrant alone | **Arm B:** fulvestrant plus bortezomib | **Arm C:** crossover from A to B |
| No. of treated patients | 59 | 57 | 27 |
| **Age** | | | |
| Median | 57 years | 59 years | 57 years |
| Range | 31–83 | 31–80 | 31–79 |
| **ECOG performance status** | | | |
| 0 | 38 (64%) | 37 (65%) | 19 (70%) |
| 1 | 20 (34%) | 19 (32%) | 7 (26%) |
| 2 | 1 (2%) | 1 (2%) | 1 (4%) |
| **Measurable disease** | | | |
| Yes | 38 (64%) | 31 (54%) | 17 (63%) |
| No | 21 (36%) | 26 (46%) | 10 (37%) |
| **Metastatic disease sites** | | | |
| Bone | 45 (76%) | 46 (78%) | 22 (81%) |
| Lung | 23 (39%) | 9 (15%) | 9 (33%) |
| Liver | 21 (36%) | 22 (37%) | 8 (30%) |
| Pleura | 8 (14%) | 5 (8%) | 2 (76%) |
| **Clinical presentation** | | | |
| Metastatic disease at diagnosis | | | |
| Recurrence after local regional presentation | | | |
| Interval between diagnosis and metastasis* | | | |
| Median | 49.3 months | 29.6 months | 47.8 months |
| Mean | 61.0 months | 53.9 months | 60.9 months |
| **Prior systemic therapy for metastasis** | | | |
| Endocrine therapy | 39 (66%) | 42 (74%) | 17 (63%) |
| Mean no. of prior endocrine therapies for advanced disease | 1.43 | 1.47 | |
| Chemotherapy | 16 (27%) | 17 (30%) | 6 (22%) |
| Adjuvant chemotherapy | 32 (54%) | 23 (40%) | 13 (48%) |
| Adjuvant therapy | 18 (30%) | 13 (23%) | 8 (30%) |
| Paclitaxel | 7 (23%) | 1 (2%) | 2 (7%) |
| Docetaxel | 25 (42%) | 14 (25%) | 10 (37%) |
| Taxane (sum of paclitaxel and docetaxel) | | | |
| | | | |
| Grade 1 Neuropathy at registration | 12 (20%) | 12 (21%) | 5 (19%) |

*Abbreviation: ECOG, Eastern Cooperative Oncology Group.
*Includes only patients who presented with localized breast cancer and had recurrence, including 40 patients in arm A, 42 in arm B and 10 patients in arm C.
Han et al\textsuperscript{12} which is the most power unbiased test. Comparing the two arms for three time periods with constant failure rates (before 3 months, between months 3 and 9, and after 9 months), the two-sided exact $P$-value from the two-sample exact exponential test was 0.056, corresponding to the estimated failure rate of 0.167 in Arm A and 0.077 in Arm B in the time period between 3 and 9 months. This analysis indicated that the failure rate in Arm B was 46\% of that in Arm A after the first follow-up and before the third follow-up. Thus, the log-rank test, the two time point test, and the exact exponential test all showed that the patients in the bortezomib-containing arm had improved PFS.

Of 27 patients randomized to fulvestrant alone (arm A) who crossed over to fulvestrant plus bortezomib at progression (arm C), clinical benefit occurred in 5 patients (18\%) who were progression-free for at least 24 weeks (Figure 2); this is consistent with the 17\% CBR rate that was prespecified as potentially promising. In addition, as shown in Figure 2, PFS was substantially longer after crossover to bortezomib than the initial period of PFS with fulvestrant monotherapy in three patients, and three patients remained on combination therapy after crossover at the time of the analysis.

At the time of the PFS analysis, median overall survival had not yet been reached. Death had occurred in 20 of 59 patients (34\%) originally randomized to fulvestrant alone, and 15 of 57 patients (26\%) originally randomized to and treated with fulvestrant plus bortezomib.

Treatment administered and adverse events

Patients received a total of 777 cycles of therapy, including 336 cycles on arm A (range 1–33), 333 on arm B (range 1–36), and 108 cycles on arm C (range 1–28). Of the 333 cycles of therapy given in arm B, bortezomib was given at full dose on days 1, 8, and 15 in 294 (88\%), 288 (86\%), and 282 (95\%) of the planned doses, respectively. Bortezomib was discontinued due adverse events in seven patients (12\%) in arm B.

Adverse events (all grades) are summarized in Table 2. Adverse events occurred more often in the bortezomib-containing arm, as expected. The most common adverse events in the fulvestrant/bortezomib combination arm compared with the fulvestrant alone arm included nausea (63 vs. 29\%), diarrhea (47 vs. 8\%), sensory neuropathy (46 vs. 29\%), and limb edema (37 vs. 19\%). Grade 3 events were uncommon, and there were no grade 4 or 5 adverse events. Peripheral neuropathy observed in both arms at baseline reflected prior taxane therapy and the trial eligibility criteria allowed grade 1 neuropathy. However, post-treatment neuropathy was higher in the bortezomib arm.

DISCUSSION

We performed a hypothesis-driven, randomized phase II trial of the SERD fulvestrant alone or in combination with the proteasome inhibitor bortezomib in 116 postmenopausal women with ER-positive metastatic breast cancer who had progressive disease after prior aromatase inhibitor therapy. Although previous studies indicated that bortezomib was ineffective when used as monotherapy in patients with metastatic breast cancer\textsuperscript{13,14} or in combination with aromatase inhibitors\textsuperscript{15} our trial design was based upon evidence that the fulvestrant-bortezomib combination exhibited synergistic antitumor activity in cell lines in vitro and a mouse xenograft model.\textsuperscript{9} The addition of bortezomib to fulvestrant significantly prolonged PFS, the prespecified primary endpoint, resulting in a doubling of the PFS rate at 1 year to 28\%, but did not improve median PFS. The overall hazard ratio also favored the combination. The addition of bortezomib to fulvestrant resulted in disease stabilization for at least 24 weeks in 5 of 27 patients (18\%) who crossed over to the combination after disease progression on prior fulvestrant monotherapy, providing an additional signal supporting this combination. Adverse events including grade 1–2

Figure 1. Kaplan–Meier estimates of progression-free survival for patients treated with fulvestrant (arm A) and fulvestrant plus bortezomib (arm B).

Figure 2. Swimmers plot showing length of time on Arm A and Arm A for patients who crossed over.
nausea, diarrhea, and neuropathy occurred more commonly in the bortezomib-containing arm, but more serious events were uncommon, and only 7 (12%) of patients discontinued bortezomib due to adverse effects, suggesting a favorable therapeutic index for the combination.

At the recommendation of the NCI/CTEP and in published guidelines for randomized phase II clinical trials, we pre-specified a statistical design that used a one-sided type I error rate of 10% ($P_{0.1}$). This is based on the intent to keep patient numbers reasonable in hypothesis generating phase II trials, the goal of which is to identify promising regimens that warrant further study, but not to provide definitive evidence of efficacy. In addition, our pre-specified statistical design required a test suggested by Friedlin and Korn to eliminate bias that could be introduced by imbalance in visit frequency between arm A (every 4 weeks) and arm B (weekly). Such analysis stipulated that we would look at PFS rates at 6 and 12 months in accordance with timing of imaging studies which were equivalent in both arms. This analysis also demonstrated significance at the prespecified $\alpha_{0.1}$. Finally, because our results suggested benefit for the combination by the overall hazard ratio and in PFS rates at 1 year but not in median PFS, we employed a post hoc two-sided reduced piecewise exponential approach, with the goal of determining whether clear differences in the fulvestrant only and combination arms emerged within specific time periods. This was also positive with two-sided $P$-value < 0.1.

### Table 2. Worst grade adverse events by treatment arm

| CTC AE Term          | Fulvestrant | Fulvestrant + Bortezomib |
|----------------------|-------------|--------------------------|
|                      | Grade 1 (%) | Grade 2 (%) | Grade 3 (%) | Grade 1 (%) | Grade 2 (%) | Grade 3 (%) |
| Hematologic          |             |             |             |             |             |             |
| Anemia               | 21 (36%)    | 3 (5%)      | 0 (%)       | 27 (47%)    | 8 (14%)     | 0 (%)       |
| Neutropenia          | 5 (8%)      | 0 (%)       | 0 (%)       | 16 (28%)    | 1 (2%)      | 0 (%)       |
| Thrombocytopenia     | 21 (36%)    | 3 (5%)      | 0 (%)       | 27 (47%)    | 8 (14%)     | 0 (%)       |
| Metabolic            |             |             |             |             |             |             |
| Hyperglycemia        | 22 (37%)    | 3 (5%)      | 1 (2%)      | 26 (46%)    | 3 (5%)      | 0 (%)       |
| Hypoglycemia         | 2 (3%)      | 1 (2%)      | 0 (%)       | 6 (11%)     | 1 (2%)      | 0 (%)       |
| SGOT_AST-High        | 12 (20%)    | 3 (5%)      | 0 (%)       | 13 (23%)    | 2 (4%)      | 2 (4%)      |
| SGPT_ALT-High        | 6 (10%)     | 2 (3%)      | 0 (%)       | 12 (21%)    | 0 (%)       | 0 (%)       |
| Hyponatremia         | 5 (8%)      | 0 (%)       | 0 (%)       | 6 (11%)     | 0 (%)       | 0 (%)       |
| Gastrointestinal     |             |             |             |             |             |             |
| Nausea               | 12 (20%)    | 4 (7%)      | 1 (2%)      | 23 (40%)    | 11 (19%)    | 2 (4%)      |
| Vomiting             | 4 (7%)      | 3 (5%)      | 0 (%)       | 11 (19%)    | 6 (11%)     | 1 (2%)      |
| Diarrhea             | 4 (7%)      | 1 (2%)      | 0 (%)       | 14 (25%)    | 8 (14%)     | 5 (9%)      |
| Constipation         | 18 (31%)    | 2 (3%)      | 0 (%)       | 19 (33%)    | 6 (11%)     | 1 (2%)      |
| Constipation         | 4 (7%)      | 2 (3%)      | 0 (%)       | 7 (12%)     | 3 (5%)      | 0 (%)       |
| Anorexia             | 3 (5%)      | 6 (10%)     | 0 (%)       | 9 (16%)     | 4 (7%)      | 0 (%)       |
| Neurologic           |             |             |             |             |             |             |
| Headache             | 6 (10%)     | 1 (2%)      | 0 (%)       | 11 (19%)    | 3 (5%)      | 0 (%)       |
| Pain                 | 18 (31%)    | 14 (24%)    | 3 (5%)      | 16 (28%)    | 14 (25%)    | 1 (2%)      |
| Neuropathy (Sensory) | 17 (29%)    | 0 (%)       | 0 (%)       | 23 (40%)    | 3 (5%)      | 0 (%)       |
| Mucocutaneous        |             |             |             |             |             |             |
| Rash/desquamation    | 5 (8%)      | 0 (%)       | 0 (%)       | 6 (11%)     | 0 (%)       | 0 (%)       |
| Injection Site Reaction | 13 (22%) | 1 (2%) | 0 (%) | 7 (12%) | 0 (%) | 0 (%) |
| Cardiopulmonary      |             |             |             |             |             |             |
| Dyspnea              | 14 (24%)    | 4 (7%)      | 1 (2%)      | 7 (12%)     | 3 (5%)      | 1 (2%)      |
| Cough                | 14 (24%)    | 2 (3%)      | 1 (2%)      | 11 (19%)    | 2 (4%)      | 0 (%)       |
| Constitutional and Other |         |             |             |             |             |             |
| Fatigue              | 30 (51%)    | 2 (3%)      | 1 (2%)      | 20 (35%)    | 11 (19%)    | 1 (2%)      |
| Limb edema           | 9 (15%)     | 2 (3%)      | 0 (%)       | 16 (28%)    | 5 (9%)      | 0 (%)       |
| Fever                | 8 (14%)     | 1 (2%)      | 0 (%)       | 6 (11%)     | 1 (2%)      | 0 (%)       |
| Insomnia             | 13 (22%)    | 2 (3%)      | 0 (%)       | 14 (25%)    | 5 (9%)      | 1 (2%)      |
| Hot flashes          | 20 (34%)    | 2 (3%)      | 0 (%)       | 17 (30%)    | 1 (2%)      | 0 (%)       |
| Dizziness            | 4 (7%)      | 0 (%)       | 0 (%)       | 10 (18%)    | 1 (2%)      | 0 (%)       |
| Pruritus             | 4 (7%)      | 0 (%)       | 0 (%)       | 7 (12%)     | 2 (4%)      | 0 (%)       |
| Rheumatologic        |             |             |             |             |             |             |
| Arthralgia           | 15 (25%)    | 6 (10%)     | 0 (%)       | 11 (19%)    | 5 (9%)      | 0 (%)       |
| Myalgia              | 4 (7%)      | 2 (3%)      | 0 (%)       | 6 (11%)     | 4 (7%)      | 0 (%)       |
| Other                |             |             |             |             |             |             |
| Anxiety              | 4 (7%)      | 1(2%)       | 0 (%)       | 8 (14%)     | 3 (5%)      | 0 (%)       |
| Depression           | 3(2%)       | 2(3%)       | 0 (%)       | 6 (11%)     | 2 (4%)      | 0 (%)       |

*a*There was one grade 4 AST elevation in Arm B, which was unrelated to study drug.  
b*There was one grade 5 cardiac arrest in Arm A, which was unrelated to study drug.
The proteasome normally acts to limit the accumulation of fulvestrant-induced ER aggregates and other toxic cytoplasmic proteins. Our preclinical data demonstrated that the addition of bortezomib to fulvestrant enhanced the accumulation of ER aggregates in the cytoplasm, promoting induction of a proapoptotic unfolded protein response, ultimately leading to cell death. Fulvestrant’s ability to degrade the ER in the nucleus is well described, but its ability to promote aggregation of newly synthesized ER in the cytoplasm has been largely overlooked. As bortezomib does not block the degradation of the ER in the nucleus but enhances the accumulation of ER-aggregates in the cytoplasm, this strategy simultaneously exploits both effects of fulvestrant on the ER. Resistance to endocrine therapy has been categorized as primary, defined as disease progression within 6 months, or secondary, defined as disease progression occurring after 6 months. Switching to an alternative endocrine therapy or chemotherapy may be appropriate in patients with either primary or secondary resistance, depending on multiple factors other than the resistance pattern. Our population exhibited a high degree of primary resistance to fulvestrant, as evidenced by the median PFS in both arms of <3 months, which is similar to what has been reported in other trials of women treated with fulvestrant after progression on an AI. Although the median PFS and 6-month PFS rates were similar in the two arms, the 12-month PFS rate was two-fold higher for the combination, suggesting that bortezomib did not impact primary resistance to fulvestrant, but may delay the onset of acquired, or secondary resistance. A potential explanation for this observation is that in breast tumors with primary fulvestrant resistance, the formation of aggregates alone may not be sufficient to induce cell death. Two potential mechanisms support this: First, the level of ER expression is likely to correlate with the ability of bortezomib to mediate its synergistic effect, as previously shown in preclinical models. As the threshold for the induction of the proapoptotic unfolded protein response requires a minimum level of accumulation of protein aggregates, it is likely that this threshold cannot be reached in breast cancers that express low ER levels. In fact, low ER expression has been shown to correlate with primary resistance to fulvestrant. Second, elimination of protein aggregates by autophagy provides an alternative mechanism to avoid the induction of the pro-apoptotic unfolded protein response. Since this trial was initiated, CDK4/6 inhibition has emerged as an important new therapeutic strategy for enhancing the effectiveness of endocrine therapy, with a substantial impact in abrogating primary resistance. The PALOMA 3 trial demonstrated that the combination of the CDK4/6 inhibitor palbociclib with fulvestrant significantly prolonged median PFS compared with fulvestrant alone (median 3.8 vs. 9.2 months, HR 0.42, P < 0.0001). Nonetheless, acquired resistance eventually develops in most patients, and other therapeutic strategies are needed to address this clinical problem. Preclinical cell line and xenograft data in multiple myeloma suggest that palbociclib can enhance the cytotoxic effects of bortezomib. A phase I/II study demonstrated that the combination of palbociclib and bortezomib can be safely co-administered. Given the complementary mechanism of action of palbociclib and bortezomib, their impact on different resistance patterns, and their safety when combined in multiple myeloma, the combination of fulvestrant plus palbociclib and bortezomib may warrant further evaluation in preclinical models and carefully designed clinical trials. In conclusion, our study supports the hypothesis that adding bortezomib to fulvestrant likely enhances its effectiveness by delaying or reversing acquired fulvestrant resistance. The results of this trial provide a foundation for further exploration of the combination of proteasome inhibitors with SERDs in postmenopausal women with ER-positive metastatic breast cancer as a strategy for addressing acquired resistance to fulvestrant-containing endocrine regimens.
power to detect a 70% improvement in median PFS from 5.4 to 9.0 months, and compare PFS rates after 6 and 12 months (one-sided \( \alpha = 0.10, \beta = 0.10 \)), with 100 PFS events required to perform the primary analysis. The PFS distributions of the two treatment arms were estimated by Kaplan–Meier survival analysis and compared by an unstratified log-rank test. Ninety-five percent confidence intervals for the Kaplan–Meier PFS estimates were calculated using Greenwood's formula. The primary comparison was made using the intent-to-treat (ITT) patient population for all patients who received at least one dose of fulvestrant. Because follow-up visit frequency differed between the two treatment arms, a protocol-specified two time point Mantel–Haenszel test procedure proposed by Freidlin et al was also used to reduce evaluation-time bias that could be introduced when comparing PFS between the two treatment arms.12 This technique was applied to test the association of PFS and treatment arm status with the two time points specified at the median and twice the median of the control arm (fulvestrant alone), as well as at months 6 and 12. A reduced piecewise exponential estimate13 was also used to fit the survival distribution in the two treatment arms. The two arms were then compared in terms of the piecewise exponential model parameters using a two-sample exact exponential test given in ref. 12.

A secondary objective was to evaluate the CBR in patients who crossed over from arm A (fulvestrant-alone) to arm C (fulvestrant+bortezomib) after progression on fulvestrant alone. The crossover phase was designed to distinguish between a CBR of 5 vs. 25% (\( \alpha = 0.10, \beta = 0.10 \)) using a Fleming one-stage design. The regimen would be considered worthy of further testing if at least 3 of 18 patients exhibited clinical benefit (i.e., CBR 17%). This assumed that about 30% of patients on arm A would cross over to arm C, although the actual crossover rate (27/59 (46%)) was higher than projected.

ACKNOWLEDGMENTS

This work is supported by contract No. N01-CM-62204 to the New York Cancer Consortium (P.I., Joseph A. Sparano) from the National Institutes of Health and by a grant from Millennium. The pre-clinical study leading to this trial was sponsored by the Samuel Waxman Cancer Research Foundation and the Chemotherapy Foundation. Dr Paul Christos was partially supported by the following grant: Clinical and Translational Science Center at Weill Cornell Medical College (UL1-TR000457-06).

COMPETING INTERESTS

C.X.M. has served as an advisor to Astra Zenica. M.N. has been a speaker for Amgen, Consortium (P.I., Joseph A. Sparano) from the National Institutes of Health and by a grant from Millennium.

REFERENCES

1. Johnston, S. R. & Schiavon, G. Treatment algorithms for hormone receptor-positive advanced breast cancer: going forward in endocrine therapy—overcoming resistance and introducing new agents. Am. Soc. Clin. Oncol. Educ. Book pp e28–e36 (2013); http://meetinglibrary.asco.org/content/150-132.
2. Cardoso, F., et al. A review of the treatment of endocrine responsive metastatic breast cancer in postmenopausal women. Cancer Treat. Rev. 39, 457–465 (2013).
3. Baselga, J., et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 366, 520–529 (2012).
4. Turner, N., et al. Double blind phase 3 trial of fulvestrant with or without palbociclib in pre- and post-menopausal women with hormone receptor-positive, her2-negative advanced breast cancer that progressed on prior endocrine therapy (PALOMA3 Study) (American Society of Clinical Oncology, Chicago, IL, 2015).
5. Yardley, D. A., et al. Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. J. Clin. Oncol. 31, 2128–2135 (2013).
6. Howell, A., et al. Fulvestrant, formerly ICI 182,780, is as effective as anastrozole in postmenopausal women with advanced breast cancer progressing after prior endocrine treatment. J. Clin. Oncol. 20, 3396–3403 (2002).
7. Osborne, C. K., et al. Double-blind, randomized trial comparing the efficacy and tolerability of fulvestrant versus anastrozole in postmenopausal women with advanced breast cancer progressing on prior endocrine therapy: results of a North American trial. J. Clin. Oncol. 20, 3386–3395 (2002).
8. Howell, A., et al. Comparison of fulvestrant versus tamoxifen for the treatment of advanced breast cancer in postmenopausal women previously untreated with endocrine therapy: a multinational, double-blind, randomized trial. J. Clin. Oncol. 22, 1605–1613 (2004).
9. Ishii, Y., et al. Bortezomib enhances the efficacy of fulvestrant by amplifying the aggregation of the estrogen receptor, which leads to a proapoptotic unfolded protein response. Clin. Cancer Res. 17, 2292–2300 (2011).
10. Di Leo, A., et al. Final overall survival: fulvestrant 500 mg vs. 250 mg in the randomized CONFIRM trial. J. Natl Cancer Inst. 106, d6337 (2014).
11. Han, G., Schell, M. J. & Kim, J. Improved survival modeling in cancer research using a reduced piecewise exponential approach. Stat Med 33, 59–73 (2014).
12. Han, G., Schell, M. J. & Kim, J. Comparing two exponential distributions using the exact likelihood ratio test. Stat. Biopharm. Res. 4, 348–356 (2012).
13. Engel, R. H., et al. A phase II study of single agent bortezomib in patients with metastatic breast cancer: a single institution experience. Cancer Invest. 25, 733–737 (2007).
14. Yang, C. H., et al. Bortezomib (VELCADE) in metastatic breast cancer: pharmacodynamics, biological effects, and prediction of clinical benefits. Ann. Oncol. 17, 813–817 (2006).
15. Trinh, X. B., et al. A phase II study of the combination of endocrine treatment and bortezomib in patients with endocrine-resistant metastatic breast cancer. Oncol. Rep. 27, 657–663 (2012).
16. Cannistra, S. A. Phase II trials in journal of clinical oncology. J. Clin. Oncol. 27, 3073–3076 (2009).
17. Rubinstein, L., Crowley, J., Iiy, P., Leblanc, M. & Sargent, D. Randomized phase II designs. Clin. Cancer Res. 15, 1883–1890 (2009).
18. Freidlin, B., et al. Proposal for the use of progression-free survival in unblinded randomized trials. J. Clin. Oncol. 25, 2122–2126 (2007).
19. Rugo, H. S., et al. Endocrine therapy for hormone receptor-positive metastatic breast cancer: american society of clinical oncology guideline. J. Clin. Oncol. 34, 3069–3103 (2016).
20. Di Leo, A., et al. Results of the CONFIRM phase III trial comparing fulvestrant 230 mg with fulvestrant 500 mg in postmenopausal women with estrogen receptor-positive advanced breast cancer. J. Clin. Oncol. 28, 4594–4600 (2010).
21. Ishii, Y., Waxman, S. & Germain, D. Tamoxifen stimulates the growth of cyclin D1-overexpressing breast cancer cells by promoting the activation of signal transducer and activator of transcription 3. Cancer Res. 68, 852–860 (2008).
22. Knudsen, S., et al. Development and validation of a gene expression score that predicts response to fulvestrant in breast cancer patients. PLoS ONE 9, e87415 (2014).
23. Rodriguez-Muela, N., Germain, F., Marino, G., Fitze, P. S. & Boya, P. Autophagy promotes survival of retinal ganglion cells after optic nerve axotomy in mice. Cell Death Differ. 19, 162–169 (2012).
24. Turner, N., et al. PALOMA3: A double-blind, phase III trial of fulvestrant with or without palbociclib in pre- and post-menopausal women with hormone receptor-positive, HER2-negative metastatic breast cancer that progressed on prior endocrine therapy. (American Society of Clinical Oncology, Chicago, IL, USA, 2015).
25. Meno, E., et al. A novel therapeutic combination using PD 0332991 and bortezomib: study in the ST33MM myeloma model. Cancer Res. 68, 5519–5523 (2008).
26. Huang, X., et al. Prolonged early G1 arrest by selective CDK4/CDK6 inhibition sensitizes myeloma cells to cytotoxic killing through cell cycle-coupled loss of IRF4. Blood 120, 1095–1106 (2012).
27. Niesvizky, R., et al. Phase 1/2 study of cyclin-dependent kinase (CDK)4/6 inhibitor palbociclib (PD-0332991) with bortezomib and dexamethasone in relapsed/refractory multiple myeloma. Leukemia & Lymphoma 56, 3320–3328 (2015).
28. Bringhen, S., et al. Efficacy and safety of once-weekly bortezomib in multiple myeloma patients. Blood 116, 4745–4753 (2010).
29. Pritchard, K. I., et al. Results of a phase II study comparing three dosing regimens of fulvestrant in postmenopausal women with advanced breast cancer (FINDER2). Breast Cancer Res. Treat. 123, 453–461 (2010).
30. Eisenhauer, E. A., et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/