“The engineers had the firm belief that the hybrid was the answer to all these questions -- oil depletion, emissions, and the long-term future of the automobile society -- but the business people weren't in agreement.”
Worldwide Sales of Toyota Hybrids as of July 2015

8,000,000
Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft

Kevin R. Antcliff
NASA Langley Research Center

Co-Authors:
Mark D. Guynn, Ty V. Marien, Douglas P. Wells
NASA Langley Research Center
Steven J. Schneider, Michael T. Tong
NASA Glenn Research Center

AIAA SciTech 2016, January 4-8, 2016
San Diego, California

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under CC BY-SA 3.0.
Outline

1. Background & Introduction
2. Approach
3. Results
4. Conclusions
5. Future Work

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under CC BY-SA 3.0.
1. Background & Introduction

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under CC BY-SA 3.0.
Short Haul Revitalization Study

MOBILITY THROUGH THE AIR IS VITAL TO ECONOMIC STABILITY, GROWTH, AND SECURITY AS A NATION

National Plan for Aeronautics R&D and Related Infrastructure

U.S. leadership for a new era of flight

6 Strategic Thrusts

- Safe, Efficient Growth in Global Operations
- Transition to Low-Carbon Propulsion
- Innovation in Commercial Supersonic Aircraft
- Real-Time System-Wide Safety Assurance
- Ultra-Efficient Commercial Vehicles
- Assured Autonomy for Aviation Transformation

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under CC BY-SA 3.0.
Many Experimental Aircraft...
...Even More to Come

Top-Left: Adambro, available at https://commons.wikimedia.org/wiki/File:Boeing_Fuel_Cell_Demonstrator_AB1.JPG, licensed under CC BY-SA 3.0.

Middle-Left: Bernd Sieker, available at https://commons.wikimedia.org/wiki/File:Airbus_E-Fan_%281408845198%29.jpg, licensed under CC BY-SA 2.0.

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under CC BY-SA 3.0.
Objective

• Would a parallel hybrid-electric aircraft introduced in the 2030 time frame be competitive with conventional aircraft for a regional, short-haul mission?

Output

• Total energy consumption
• Total projected energy cost
• TOGW, OEW, Battery Weight, etc.

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under CC BY-SA 3.0.
2. Approach

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under CC BY-SA 3.0.
Study Decisions and Assumptions

- Year 2030 technology
- Parallel hybrid-electric propulsion
- Various levels of battery specific energy
- No deviation from propulsion airframe integration of baseline aircraft
- No change to airframe design parameters
- Fixed level of electrification for full mission
- Tools used include: OpenVSP, FLOPS, NPSS, WATE++, and ModelCenter

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under CC BY-SA 3.0.
Parallel Hybrid-Electric Propulsion and Percent Electrification

Battery or Equivalent → Power Conditioning → Motor → Turbine → Engine

1. 0% Electric
2. 25% Electric
3. 50% Electric
4. 75% Electric

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under CC BY-SA 3.0.
Baseline Aircraft

ATR 42-500

48 pax

840 nm

Mach 0.475

5% Reserve

87 nm Alternate Airport

45 min. hold

Ty V. Marien. Seat Capacity Selection for an Advanced Short-Haul Aircraft Design 3:30 – 4:00pm Today
Advanced Aircraft (Year 2030)

1. Baseline aircraft modeled
2. Calibrated to match ATR 42-500
3. Decreased to the study mission range of 600 nm
4. Advanced technology factors introduced
5. Advanced aircraft sized for minimum gross weight to meet study mission
6. Hybrid-electric engine deck introduced
7. Optimized with hybrid-electric propulsion and additional battery weight
Multi-Disciplinary Optimization Framework

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under CC BY-SA 3.0.
3. Results

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under CC BY-SA 3.0.
Modified NASA PW127E-like Performance: Current and Advanced

Units	2015	2030
Mach	0	0
Altitude	0	0
Throttle	100	100
Power	2,400	2,400
Jet Thrust	287	287
SFC	0.474	0.427
Mass Flow	12.15	10.65
OPR	14.7	14.7

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/).
Modified NASA PW127E-like Weights: Current and Advanced

Component Weights (lb)	Current 2400 SHP	Advanced 2400 SHP	Advanced Hybrid-Electric Gas Turbine + Electric Motor		
			1800 + 600 SHP	1200 + 1200 SHP	600 + 1800 SHP
Turbine Engine + Gearbox	1054	1010	819	626	410
Propeller System + Nacelle	782	781	766	752	737
Electrical System	-	-	135	270	405
Total System	1836	1791	1720	1648	1552

Background Credit: Sefjo, available at [https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg], licensed under CC BY-SA 3.0.
Study Cases at 600 nm

Percent Electric	Battery Specific Energy
0%	500 Wh/kg
25%	750 Wh/kg
50%	1000 Wh/kg
75%	

Battery Specific Energy = BSE in the following slides

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0).
Battery, Fuel, and Total Energy versus Percent Electric

- Battery energy and fuel energy are equal at 76% electric.
- At 500 Wh/kg, total energy remains relatively constant.
- At 750 and 1000 Wh/kg, the total energy decreases significantly.

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under CC BY-SA 3.0.
Comparing our advanced 75% electric to 0% electric:

At 500 Wh/kg:
- 2.3X heavier TOGW

At 750 Wh/kg:
- 63% heavier TOGW

At 1000 Wh/kg:
- 39% heavier TOGW

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under CC BY-SA 3.0.
• $3.33 per gallon for Jet-A
• $0.11 per kWh for elec.
Comparing advanced 75% electric to 0% elec.

At 500 Wh/kg:
• 10% more

At 750 Wh/kg:
• 14% less

At 1000 Wh/kg:
• 23% less
Design Range Sensitivity (500 Wh/kg)

%Electric	Units	0%	75%	0%	75%
Range	nm	300	300	600	600
Total Fuel Weight	lb	2,310	850	3,340	1,720
Total Batt. Weight	lb	0	15,270	0	39,590
OEW	lb	21,300	24,200	21,800	30,300
TOGW	lb	34,500	51,100	35,900	82,400
Elec. Energy Cost	$	0	260	0	660
Fuel Energy Cost	$	610	220	1,110	550
Total Energy Cost	$	610	480	1,100	1,210

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/).
Break-Even Energy Cost for the 75% Electric Advanced Turboprop

Prediction 1:
- $3.33 per gallon of Jet-A
- $0.11 per kWh for elec.
- 9% increase in total energy cost

Prediction 2:
- $3.33 per gallon of Jet-A
- $0.08 per kWh for elec.
- 14% decrease in total energy cost

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under CC BY-SA 3.0.
4. Conclusions

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under CC BY-SA 3.0.
Conclusions

• At 600 nm, BSE must be greater than 500 Wh/kg to yield energy consumption parity
• At 300 nm, BSE can be less than 500 Wh/kg for energy consumption parity
• The economics for a parallel hybrid vehicle at 600 nm and 500 Wh/kg is less attractive than for a conventional unless the electricity to fuel cost ratio decreases
• The 75% electric advanced turboprop needs a BSE of 600 Wh/kg to operate in total energy cost parity

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under CC BY-SA 3.0.
5. Future Work

Background Credit: Sefjo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under CC BY-SA 3.0.
Future Work

- Explore additional comparison metrics (life cycle emissions, noise, etc.) for hybrid and conventional aircraft
- Determining the BSE needed at a given design range to achieve a given objective
- Alternative propulsion-airframe integration that takes advantage of additional flexibilities provided by electric propulsion (distributed electric propulsion, series-hybrid, etc.)
- Optimize additional airframe design parameters to ensure a match between airframe and propulsion
Thanks!

Any questions?

Acknowledgements:
This work was funded by NASA’s Advanced Air Transport Technologies project.

Background Credit: Sejfo, available at https://commons.wikimedia.org/wiki/File:Czech_Airlines_ATR_42-500_OK-KFO.jpg, licensed under CC BY-SA 3.0.