Excited isovector mesons using the stochastic LapH method

Colin Morningstar
Carnegie Mellon University

32nd International Symposium on Lattice Field Theory
New York, NY, USA
June 25, 2014
Outline

- project goals:
 - comprehensive survey of QCD stationary states in finite volume
 - hadron scattering phase shifts, decay widths, matrix elements
 - focus: large 32^3 anisotropic lattices, $m_\pi \sim 240$ MeV

- extracting excited-state energies

- single-hadron and multi-hadron operators

- the stochastic LapH method

- level identification issues

- preliminary results for 20 channels $I = 1, \ S = 0$
 - correlator matrices of size 100×100
 - large number of extended single-hadron operators
 - attempt to include all needed 2-hadron operators

- preliminary results for $I = \frac{1}{2}, \ S = 1, T_{1u}$

- future work
Dramatis Personae

Brendan Fahy
CMU

You-Cyuan Jhang
CMU

David Lenkner
CMU

C. Morningstar
CMU

John Bulava
Trinity, Dublin

Justin Foley
NVIDIA

Jimmy Juge
U Pacific, Stockton

Ricky Wong
UC San Diego

Thanks to NSF Teragrid/XSEDE:
- Athena+Kraken at NICS
- Ranger+Stampede at TACC

C. Morningstar

Excited Isovectors
Building blocks for single-hadron operators

- building blocks: covariantly-displaced LapH-smeared quark fields
- stout links $\tilde{U}_j(x)$
- Laplacian-Heaviside (LapH) smeared quark fields

$$\tilde{\psi}_{a\alpha}(x) = S_{ab}(x,y) \psi_{b\alpha}(y), \quad S = \Theta \left(\sigma_s^2 + \tilde{\Delta} \right)$$

- 3d gauge-covariant Laplacian $\tilde{\Delta}$ in terms of \tilde{U}
- displaced quark fields:

$$q^A_{a\alpha j} = D^{(j)} \tilde{\psi}^{(A)}_{a\alpha}, \quad \overline{q}^A_{a\alpha j} = \overline{\tilde{\psi}}^{(A)}_{a\alpha} \gamma_4 D^{(j)\dagger}$$

- displacement $D^{(j)}$ is product of smeared links:

$$D^{(j)}(x,x') = \tilde{U}_{j_1}(x) \tilde{U}_{j_2}(x+d_2) \tilde{U}_{j_3}(x+d_3) \ldots \tilde{U}_{j_p}(x+d_p) \delta_{x'} x + d_{p+1}$$

- to good approximation, LapH smearing operator is

$$S = V_s V_s^\dagger$$

- columns of matrix V_s are eigenvectors of $\tilde{\Delta}$
Extended operators for single hadrons

- quark displacements build up orbital, radial structure

Meson configurations

Baryon configurations

\[
\Phi_{AB}^{\alpha\beta}(p, t) = \sum_x e^{ip \cdot (x + \frac{1}{2} (d_\alpha + d_\beta))} \delta_{ab} \overline{q}_b^B(x, t) \overline{q}_a^A(x, t)
\]

\[
\Phi_{ABC}^{\alpha\beta\gamma}(p, t) = \sum_x e^{ip \cdot x} \varepsilon_{abc} \overline{q}_c^C(x, t) \overline{q}_b^B(x, t) \overline{q}_a^A(x, t)
\]

- group-theory projections onto irreps of lattice symmetry group

\[
\overline{M}_l(t) = c^{(l)*}_{\alpha\beta} \Phi_{AB}^{\alpha\beta}(t) \quad \overline{B}_l(t) = c^{(l)*}_{\alpha\beta\gamma} \Phi_{ABC}^{\alpha\beta\gamma}(t)
\]

- definite momentum \(p \), irreps of little group of \(p \)
Small $-a$ expansion of probes

- link variables in terms of continuum gluon field

$$U_\mu(x) = \mathcal{P} \exp \left\{ ig \int_x^{x+\hat{\mu}} d\eta \cdot A(\eta) \right\},$$

- classical small $-a$ expansion of displaced quark field:

$$U_j(x) U_k(x + \hat{j}) \psi_\alpha(x + \hat{j} + \hat{k}) = \exp(aD_j) \exp(aD_k) \psi_\alpha(x).$$

- where $D_j = \partial_j + igA_j$ is covariant derivative
- must take smearing of fields into account
- radiative corrections of expansion coefficients (hopefully small due to smearing)
iso-vector meson continuum probe operators

$$M_{\mu j_1 j_2 \ldots} = \chi^d \Gamma_{\mu} D_{j_1} D_{j_2} \cdots \psi^u,$$

$$\chi = \bar{\psi} \gamma_4$$

where $$\Gamma_0 = 1$$ and $$\Gamma_k = \gamma_k$$ (analogous table inserting $$\gamma_4, \gamma_5, \gamma_4 \gamma_5$$)

$$J^P G$$	$$O^G_{h}$$ irrep	Basis operator
0++	$$A^+_{1g}$$	$$M_0$$
1−+	$$T^+_{1u}$$	$$M_1$$
1−−	$$T^-_{1u}$$	$$M_{01}$$
0+-	$$A^-_{1g}$$	$$M_{11} + M_{22} + M_{33}$$
1+-	$$T^-_{1g}$$	$$M_{23} - M_{32}$$
2++	$$E^-_{g}$$	$$M_{11} - M_{22}$$
	$$T^-_{2g}$$	$$M_{23} + M_{32}$$
0++	$$A^+_{1g}$$	$$M_{011} + M_{022} + M_{033}$$
1+-	$$T^-_{1g}$$	$$M_{023} - M_{032}$$
2++	$$E^+_{g}$$	$$M_{011} - M_{022}$$
	$$T^+_{2g}$$	$$M_{023} + M_{032}$$
isovector meson continuum probe operators

\[M_{\mu j_1 j_2 \cdots} = \chi^d \Gamma_\mu \mathcal{D}_{j_1} \mathcal{D}_{j_2} \cdots \psi^u, \quad \chi = \overline{\psi} \gamma_4 \]

where \(\Gamma_0 = 1 \) and \(\Gamma_k = \gamma_k \) (analogous table inserting \(\gamma_4, \gamma_5, \gamma_4 \gamma_5 \))

\(J^P \)	\(O_h^G \) irrep	Basis operator
0^{--}	\(A_{1u}^- \)	\(M_{123} + M_{231} + M_{312} - M_{321} - M_{213} - M_{132} \)
1^{--}	\(T_{1u}^+ \)	\(M_{111} + M_{122} + M_{133} \)
1^{--}	\(T_{1u}^+ \)	\(2M_{111} + M_{221} + M_{331} + M_{212} + M_{313} \)
1^{--}	\(T_{1u}^- \)	\(M_{221} + M_{331} - M_{212} - M_{313} \)
2^{--}	\(E_u^- \)	\(M_{123} + M_{213} - M_{231} - M_{132} \)
\(T_{2u}^- \)	\(M_{221} - M_{331} + M_{313} - M_{212} \)	
2^{--}	\(E_u^+ \)	\(M_{123} + M_{213} - 2M_{321} - 2M_{312} + M_{231} + M_{132} \)
\(T_{2u}^+ \)	\(M_{221} - M_{331} - 2M_{122} + 2M_{133} - M_{313} + M_{212} \)	
3^{--}	\(A_{2u}^+ \)	\(M_{123} + M_{231} + M_{312} + M_{213} + M_{321} + M_{132} \)
\(T_{1u}^+ \)	\(2M_{111} - M_{221} - M_{331} - M_{212} - M_{313} - M_{122} - M_{133} \)	
\(T_{2u}^+ \)	\(M_{331} - M_{212} + M_{313} - M_{122} + M_{133} - M_{221} \)	
Two-hadron operators

- our approach: superposition of products of single-hadron operators of definite momenta
 \[c_{p_a I_3 b} I_{3 a I_3 b} p_b \lambda_b B_{p_a I_3 a} I_{3 a I_3 a} S_a \lambda_a \Lambda_a i_a R^p_{p_a I_3 b} I_{3 b} \lambda_b i_b \]
- fixed total momentum \(p = p_a + p_b \), fixed \(\Lambda_a, i_a, \Lambda_b, i_b \)
- group-theory projections onto little group of \(p \) and isospin irreps
- restrict attention to certain classes of momentum directions
 - on axis \(\pm \hat{x}, \pm \hat{y}, \pm \hat{z} \)
 - planar diagonal \(\pm \hat{x} \pm \hat{y}, \pm \hat{x} \pm \hat{z}, \pm \hat{y} \pm \hat{z} \)
 - cubic diagonal \(\pm \hat{x} \pm \hat{y} \pm \hat{z} \)
- crucial to know and fix all phases of single-hadron operators for all momenta
 - each class, choose reference direction \(p_{\text{ref}} \)
 - each \(p \), select one reference rotation \(R^p_{p_{\text{ref}}} \) that transforms \(p_{\text{ref}} \) into \(p \)
- efficient creating large numbers of two-hadron operators
- generalizes to three, four, … hadron operators
Quark line diagrams

- temporal correlations involving our two-hadron operators need
 - slice-to-slice quark lines (from all spatial sites on a time slice to all spatial sites on another time slice)
 - sink-to-sink quark lines

- isoscalar mesons also require sink-to-sink quark lines

- solution: the stochastic LapH method!
Stochastic estimation of quark propagators

- do not need exact inverse of Dirac matrix $K[U]
- use noise vectors η satisfying $E(\eta_i) = 0$ and $E(\eta_i \eta_j^*) = \delta_{ij}$
- Z_4 noise is used \{1, i, -1, $-i$\}
- solve $K[U]X^{(r)} = \eta^{(r)}$ for each of N_R noise vectors $\eta^{(r)}$, then obtain a Monte Carlo estimate of all elements of K^{-1}

$$K^{-1}_{ij} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} X^{(r)}_i \eta^{(r)*}_j$$

- variance reduction using noise dilution
- dilution introduces projectors

$$P^{(a)}P^{(b)} = \delta^{ab}P^{(a)}, \quad \sum_a P^{(a)} = 1, \quad P^{(a)}\dagger = P^{(a)}$$

- define

$$\eta^{[a]} = P^{(a)}\eta, \quad X^{[a]} = K^{-1}\eta^{[a]}$$

to obtain Monte Carlo estimate with drastically reduced variance

$$K^{-1}_{ij} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_a X^{(r)[a]}_i \eta^{(r)[a]}_j$$

C. Morningstar

Excited Isovectors 10
Stochastic LapH method

- introduce Z_N noise in the LapH subspace
 \[\rho_{\alpha k}(t), \quad t = \text{time}, \alpha = \text{spin}, \ k = \text{eigenvector number} \]
- four dilution schemes:

\[
\begin{align*}
P_{ij}^{(a)} &= \delta_{ij} \quad a = 0 \quad \text{(none)} \\
P_{ij}^{(a)} &= \delta_{ij}\delta_{ai} \quad a = 0, 1, \ldots, N-1 \quad \text{(full)} \\
P_{ij}^{(a)} &= \delta_{ij}\delta_{ai,Ki/N} \quad a = 0, 1, \ldots, K-1 \quad \text{(interlace-}K) \\
P_{ij}^{(a)} &= \delta_{ij}\delta_{ai,i \mod k} \quad a = 0, 1, \ldots, K-1 \quad \text{(block-}K)
\end{align*}
\]
- apply dilutions to
 - time indices (full for fixed src, interlace-16 for relative src)
 - spin indices (full)
 - LapH eigenvector indices (interlace-8 mesons, interlace-4 baryons)
The effectiveness of stochastic LapH

- comparing use of lattice noise vs noise in LapH subspace
- N_D is number of solutions to $Kx = y$

![Graph](image)
Quark line estimates in stochastic LapH

- each of our quark lines is the product of matrices
 \[Q = D^{(j)} SK^{-1} \gamma_4 SD^{(k)^\dagger} \]
- displaced-smeared-diluted quark source and quark sink vectors:
 \[\varrho^{[b]}(\rho) = D^{(j)} V_s P^{(b)} \rho \]
 \[\varphi^{[b]}(\rho) = D^{(j)} SK^{-1} \gamma_4 V_s P^{(b)} \rho \]
- estimate in stochastic LapH by \((A, B, \text{flavor, } u, v, \text{ compound: space, time, color, spin, displacement type)}\)
 \[Q_{uv}^{(AB)} \approx \frac{1}{N_R} \delta_{AB} \sum_{r=1}^{N_R} \sum_{b} \varphi^{[b]}(\rho^r) \varrho^{[b]}(\rho^r)^* \]
- occasionally use \(\gamma_5\)-Hermiticity to switch source and sink
 \[Q_{uv}^{(AB)} \approx \frac{1}{N_R} \delta_{AB} \sum_{r=1}^{N_R} \sum_{b} \overline{\varphi^{[b]}(\rho^r)} \overline{\varrho^{[b]}(\rho^r)^*} \]
- defining \(\overline{\varrho}(\rho) = -\gamma_5 \gamma_4 \varrho(\rho)\) and \(\overline{\varphi}(\rho) = \gamma_5 \gamma_4 \varphi(\rho)\)
Source-sink factorization in stochastic LapH

- baryon correlator has form
 \[C_{\bar{l}l} = c_{ijk} c_{\bar{i}\bar{j}\bar{k}}^{(l)} Q_{\bar{i}i}^A Q_{\bar{j}j}^B Q_{\bar{k}k}^C \]

- stochastic estimate with dilution
 \[C_{\bar{l}l} \approx \frac{1}{N_R} \sum_r \sum_{d_A d_B d_C} c_{ijk} c_{\bar{i}\bar{j}\bar{k}}^{(l)} \left(\varphi_i^{(Ar)} [d_A] \varphi_j^{(Ar)} [d_B] \varphi_k^{(Ar)} [d_A]^* \right) \times \left(\varphi_j^{(Br)} [d_B] \varphi_j^{(Br)} [d_B]^* \right) \left(\varphi_k^{(Cr)} [d_C] \varphi_k^{(Cr)} [d_C]^* \right) \]

- define baryon source and sink
 \[B_l^{(r)[d_A d_B d_C]} (\varphi^A, \varphi^B, \varphi^C) = c_{ijk} \varphi_i^{(Ar)} [d_A] \varphi_j^{(Br)} [d_B] \varphi_k^{(Cr)} [d_C] \]
 \[B_l^{(r)[d_A d_B d_C]} (\varphi^A, \varphi^B, \varphi^C) = c_{ijk} \varphi_i^{(Ar)} [d_A] \varphi_j^{(Br)} [d_B] \varphi_k^{(Cr)} [d_C] \]

- correlator is dot product of source vector with sink vector
 \[C_{\bar{l}l} \approx \frac{1}{N_R} \sum_r \sum_{d_A d_B d_C} B_l^{(r)[d_A d_B d_C]} (\varphi^A, \varphi^B, \varphi^C) B_{\bar{l}}^{(r)[d_A d_B d_C]} (\varphi^A, \varphi^B, \varphi^C)^* \]
Correlators and quark line diagrams

- baryon correlator
 \[C_{\bar{l}l} \approx \frac{1}{N_R} \sum_r \sum_{d_A d_B d_C} B_l^{(r)[d_A d_B d_C]} (\phi^A, \phi^B, \phi^C) B_{\bar{l}}^{(r)[d_A d_B d_C]} (\bar{\phi}^A, \bar{\phi}^B, \bar{\phi}^C) \]

- express diagrammatically

- meson correlator
More complicated correlators

- two-meson to two-meson correlators (non isoscalar mesons)
Quantum numbers in toroidal box

- periodic boundary conditions in cubic box
 - not all directions equivalent ⇒ using J^{PC} is wrong!!

- label stationary states of QCD in a periodic box using irreps of cubic space group even in continuum limit
 - zero momentum states: little group O_h
 \[A_{1a}, A_{2a}, E_a, T_{1a}, T_{2a}, G_{1a}, G_{2a}, H_a, \quad a = g, u \]
 - on-axis momenta: little group C_{4v}
 \[A_1, A_2, B_1, B_2, E, \quad G_1, G_2 \]
 - planar-diagonal momenta: little group C_{2v}
 \[A_1, A_2, B_1, B_2, \quad G_1, G_2 \]
 - cubic-diagonal momenta: little group C_{3v}
 \[A_1, A_2, E, \quad F_1, F_2, G \]

- include G parity in some meson sectors (superscript $+$ or $-$)
Spin content of cubic box irreps

- numbers of occurrences of Λ irreps in J subduced

J	A_1	A_2	E	T_1	T_2
0	1	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	1	0	1	1
4	1	0	1	1	1
5	0	0	1	2	1
6	1	1	1	1	2
7	0	1	1	2	2

J	G_1	G_2	H	J	G_1	G_2	H
$\frac{1}{2}$	1	0	0	$\frac{9}{2}$	1	0	2
$\frac{3}{2}$	0	0	1	$\frac{11}{2}$	1	1	2
$\frac{5}{2}$	0	1	1	$\frac{13}{2}$	1	2	2
$\frac{7}{2}$	1	1	1	$\frac{15}{2}$	1	1	3
Common hadrons

Irreps of commonly-known hadrons at rest

Hadron	Irrep	Hadron	Irrep	Hadron	Irrep
π	A_{1u}^-	K	A_{1u}	η, η'	A_{1u}^+
ρ	T_{1u}^+	ω, ϕ	T_{1u}^-	K^*	T_{1u}
a_0	A_{1g}^+	f_0	A_{1g}^+	h_1	T_{1g}
b_1	T_{1g}^+	K_1	T_{1g}	π_1	T_{1u}^-
N, Σ	G_{1g}	Λ, Ξ	G_{1g}	Δ, Ω	H_g
Ensembles and run parameters

- plan to use three Monte Carlo ensembles
 - \((32^3|240)\): 412 configs \(32^3 \times 256\), \(m_\pi \approx 240\) MeV, \(m_\pi L \sim 4.4\)
 - \((24^3|240)\): 584 configs \(24^3 \times 128\), \(m_\pi \approx 240\) MeV, \(m_\pi L \sim 3.3\)
 - \((24^3|390)\): 551 configs \(24^3 \times 128\), \(m_\pi \approx 390\) MeV, \(m_\pi L \sim 5.7\)

- anisotropic improved gluon action, clover quarks (stout links)
- QCD coupling \(\beta = 1.5\) such that \(a_s \sim 0.12\) fm, \(a_t \sim 0.035\) fm
- strange quark mass \(m_s = -0.0743\) nearly physical (using kaon)
- work in \(m_u = m_d\) limit so \(SU(2)\) isospin exact
- generated using RHMC, configs separated by 20 trajectories

- stout-link smearing in operators \(\xi = 0.10\) and \(n_\xi = 10\)
- LapH smearing cutoff \(\sigma_s^2 = 0.33\) such that
 - \(N_v = 112\) for \(24^3\) lattices
 - \(N_v = 264\) for \(32^3\) lattices

- source times:
 - 4 widely-separated \(t_0\) values on \(24^3\)
 - 8 \(t_0\) values used on \(32^3\) lattice
Use of XSEDE resources

- use of XSEDE resources crucial
- Monte Carlo generation of gauge-field configurations: ~ 200 million core hours
- quark propagators: ~ 100 million core hours
- hadrons + correlators: ~ 40 million core hours
- storage: ~ 300 TB

Kraken at NICS
Stampede at TACC
correlator software *last_laph* completed summer 2013
 - testing of all flavor channels for single and two-mesons completed
 - testing of all flavor channels for single baryon and meson-baryons ongoing

small-\(a\) expansions of all operators completed

inclusion of all possible 2-meson operators

3-meson operators currently neglected

still finalizing analysis code

initial focus: the 20 bosonic channels with \(I = 1, \; S = 0\)
Operator accounting

- numbers of operators for $I = 1$, $S = 0$, $P = (0,0,0)$ on 32^3 lattice

| $(32^2|240)$ | A_{1g}^+ | A_{1u}^+ | A_{2g}^+ | A_{2u}^+ | E_g^+ | E_u^+ | T_{1g}^+ | T_{1u}^+ | T_{2g}^+ | T_{2u}^+ |
|-----------|-----------|-----------|-----------|-----------|--------|--------|-----------|-----------|-----------|-----------|
| SH | 9 | 7 | 13 | 13 | 9 | 9 | 14 | 23 | 15 | 16 |
| “$\pi\pi$”| 10 | 17 | 8 | 11 | 8 | 17 | 23 | 30 | 17 | 27 |
| “$\eta\pi$”| 6 | 15 | 10 | 7 | 11 | 18 | 31 | 20 | 21 | 23 |
| “$\phi\pi$”| 6 | 15 | 9 | 7 | 12 | 19 | 37 | 11 | 23 | 23 |
| “$K\bar{K}$”| 0 | 5 | 3 | 5 | 3 | 6 | 9 | 12 | 5 | 10 |
| Total | 31 | 59 | 43 | 43 | 43 | 69 | 114 | 96 | 81 | 99 |

| $(32^2|240)$ | A_{1g}^- | A_{1u}^- | A_{2g}^- | A_{2u}^- | E_g^- | E_u^- | T_{1g}^- | T_{1u}^- | T_{2g}^- | T_{2u}^- |
|-----------|-----------|-----------|-----------|-----------|--------|--------|-----------|-----------|-----------|-----------|
| SH | 10 | 8 | 11 | 10 | 12 | 9 | 21 | 15 | 19 | 16 |
| “$\pi\pi$”| 3 | 7 | 7 | 3 | 8 | 11 | 22 | 12 | 12 | 15 |
| “$\eta\pi$”| 26 | 15 | 10 | 12 | 24 | 21 | 25 | 33 | 28 | 30 |
| “$\phi\pi$”| 26 | 15 | 10 | 12 | 27 | 22 | 26 | 38 | 30 | 32 |
| “$K\bar{K}$”| 11 | 3 | 4 | 2 | 11 | 5 | 12 | 5 | 12 | 6 |
| Total | 76 | 48 | 42 | 39 | 82 | 68 | 106 | 103 | 101 | 99 |
Operator accounting

- numbers of operators for $I = 1$, $S = 0$, $P = (0, 0, 0)$ on 24^3 lattice

| (24²|390) | A_{1g}^+ | A_{1u}^+ | A_{2g}^+ | A_{2u}^+ | E_g^+ | E_u^+ | T_{1g}^+ | T_{1u}^+ | T_{2g}^+ | T_{2u}^+ |
|----------------|----------|----------|----------|----------|--------|--------|--------|--------|--------|--------|
| SH | 9 | 7 | 13 | 13 | 9 | 9 | 14 | 23 | 15 | 16 |
| “ππ” | 6 | 12 | 2 | 6 | 8 | 9 | 15 | 17 | 10 | 12 |
| “ηπ” | 2 | 10 | 8 | 4 | 8 | 11 | 21 | 14 | 14 | 13 |
| “φπ” | 2 | 10 | 8 | 4 | 8 | 11 | 23 | 3 | 14 | 13 |
| “K−K” | 0 | 4 | 1 | 4 | 1 | 4 | 8 | 10 | 4 | 6 |
| Total | 19 | 43 | 32 | 31 | 34 | 44 | 81 | 67 | 57 | 60 |

| (24²|390) | A_{1g}^- | A_{1u}^- | A_{2g}^- | A_{2u}^- | E_g^- | E_u^- | T_{1g}^- | T_{1u}^- | T_{2g}^- | T_{2u}^- |
|----------------|----------|----------|----------|----------|--------|--------|--------|--------|--------|--------|
| SH | 10 | 8 | 11 | 10 | 12 | 9 | 20 | 15 | 19 | 16 |
| “ππ” | 1 | 5 | 6 | 2 | 3 | 7 | 18 | 8 | 10 | 9 |
| “ηπ” | 19 | 9 | 4 | 6 | 13 | 12 | 11 | 18 | 15 | 14 |
| “φπ” | 18 | 9 | 4 | 6 | 14 | 12 | 11 | 19 | 15 | 15 |
| “K−K” | 7 | 2 | 2 | 2 | 6 | 4 | 9 | 4 | 8 | 4 |
| Total | 55 | 33 | 27 | 26 | 48 | 44 | 69 | 64 | 67 | 58 |
Excited states from correlation matrices

- in finite volume, energies are discrete (neglect wrap-around)

\[C_{ij}(t) = \sum_n Z_i^{(n)} Z_j^{(n)*} e^{-E_n t}, \quad Z_j^{(n)} = \langle 0 | O_j | n \rangle \]

- not practical to do fits using above form
- define new correlation matrix \(\tilde{C}(t) \) using a single rotation

\[\tilde{C}(t) = U^\dagger C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2} U \]

- columns of \(U \) are eigenvectors of \(C(\tau_0)^{-1/2} C(\tau_D) C(\tau_0)^{-1/2} \)
- choose \(\tau_0 \) and \(\tau_D \) large enough so \(\tilde{C}(t) \) diagonal for \(t > \tau_D \)
- effective masses

\[\tilde{m}_{\alpha}^{\text{eff}}(t) = \frac{1}{\Delta t} \ln \left(\frac{\tilde{C}_{\alpha\alpha}(t)}{\tilde{C}_{\alpha\alpha}(t + \Delta t)} \right) \]

- tend to \(N \) lowest-lying stationary state energies in a channel
- 2-exponential fits to \(\tilde{C}_{\alpha\alpha}(t) \) yield energies \(E_\alpha \) and overlaps \(Z_j^{(n)} \)
$I = 1, \ S = 0, \ T_{1u}^+ \ channel$

- effective masses $\tilde{m}^{\text{eff}}(t)$ for levels 0 to 15
- results for $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- two-exponential fits
$I = 1$, $S = 0$, T^+_1 energy extraction, continued

- Effective masses $\tilde{m}^{\text{eff}}(t)$ for levels 16 to 31
- $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
effective masses $\tilde{m}^{\text{eff}}(t)$ for levels 32 to 47

- 32$^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
Level identification

- level identification inferred from Z overlaps with probe operators
- analogous to experiment: infer resonances from scattering cross sections
- keep in mind:
 - probe operators \overline{O}_j act on vacuum, create a “probe state” $|\Phi_j\rangle$,
 Z’s are overlaps of probe state with each eigenstate
 $$|\Phi_j\rangle \equiv \overline{O}_i|0\rangle,$$
 $$Z^{(n)}_j = \langle \Phi_j | n \rangle$$
 - have limited control of “probe states” produced by probe operators
 - ideal to be ρ, single $\pi\pi$, and so on
 - use of small $-a$ expansions to characterize probe operators
 - use of smeared quark, gluon fields
 - field renormalizations
 - mixing is prevalent
 - identify by dominant probe state(s) whenever possible
Level identification

- overlaps for various operators

C. Morningstar

Excited Isovectors
Identifying resonances

- resonances: finite-volume “precursor states”
- probes: *optimized* single-hadron operators
 - analyze matrix of just single-hadron operators $O^{[SH]}_i$
 - rotation to build probe operators $O^{[SH]}_m = \sum_i v_i^m O_i^{[SH]}$
- obtain Z' factors of these probe operators $Z_m^{(n)} = \langle 0 | O^{[SH]}_m | n \rangle$

VERY PRELIMINARY
Bosonic $I = 1$, $S = 0$, T_{1u}^+ channel

- finite-volume stationary-state energies: “staircase” plot
- $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max overlaps with SH optimized operators

![Graph showing levels of energy versus levels](image)

- blue: levels of max overlaps with SH optimized operators

C. Morningstar

Excited Isovectors
Bosonic $I = 1, \ S = 0, \ A_{1u}^{-}$ channel

- finite-volume stationary-state energies: “staircase” plot
- $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max overlaps with SH optimized operators

\[
B(3u)_{1u}^{-}
\]
Bosonic $I = 1$, $S = 0$, E_u^+ channel

- finite-volume stationary-state energies: “staircase” plot
- $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max overlaps with SH optimized operators

![Graph showing energy levels](image.png)
Bosonic $I = 1$, $S = 0$, T_{1g}^- channel

- finite-volume stationary-state energies: “staircase” plot
- $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max overlaps with SH optimized operators
Bosonic $I = 1, \ S = 0, \ T_{1u}^-$ channel

- finite-volume stationary-state energies: “staircase” plot
- $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max overlaps with SH optimized operators

![Graph showing energy levels vs. levels]

C. Morningstar
Excited Isovectors
Bosonic $I = \frac{1}{2}$, $S = 1$, T_{1u} channel

- kaon channel: effective masses $\tilde{m}^{\text{eff}}(t)$ for levels 0 to 8
- results for $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- two-exponential fits
Bosonic $I = \frac{1}{2}$, $S = 1$, T_{1u} channel

- effective masses $\tilde{m}^{\text{eff}}(t)$ for levels 9 to 17
- results for $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- two-exponential fits
Bosonic $I = \frac{1}{2}, S = 1, T_{1u}$ channel

- effective masses $\tilde{m}^{\text{eff}}(t)$ for levels 18 to 23
- dashed lines show energies from single exponential fits

C. Morningstar Excited Isovectors
Bosonic $I = \frac{1}{2}, \ S = 1, \ T_{1u}$ channel

- finite-volume stationary-state energies: “staircase” plot
- $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max overlaps with SH optimized operators
Issues

- address presence of 3 and 4 meson states
- in other channels, address scalar particles in spectrum
 - scalar probe states need vacuum subtractions
 - hopefully can neglect due to OZI suppression
- infinite-volume resonance parameters from finite-volume energies
 - Luscher method too cumbersome, restrictive in applicability
 - need for new hadron effective field theory techniques
$I = 1$ $\pi \pi$ scattering phase shift

- various channels, various total momenta, $32^3 \times 256$, $m_\pi \approx 240$ MeV
- Brendan Fahy talk (Monday), collaborator Ben Hoerz (Dublin)
- results below very preliminary
References

S. Basak et al., *Group-theoretical construction of extended baryon operators in lattice QCD*, Phys. Rev. D *72*, 094506 (2005).

S. Basak et al., *Lattice QCD determination of patterns of excited baryon states*, Phys. Rev. D *76*, 074504 (2007).

C. Morningstar et al., *Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD*, Phys. Rev. D *83*, 114505 (2011).

C. Morningstar et al., *Extended hadron and two-hadron operators of definite momentum for spectrum calculations in lattice QCD*, Phys. Rev. D *88*, 014511 (2013).
Conclusion and future work

- goal: comprehensive survey of energy spectrum of QCD stationary states in a finite volume
- stochastic LapH method works very well
 - allows evaluation of all needed quark-line diagrams
 - source-sink factorization facilitates large number of operators
 - last_laph software completed for evaluating correlators
- analysis of 20 channels $I = 1$, $S = 0$ for $(24^3|390)$ and $(32^3|240)$ ensembles nearing completion
- can evaluate and analyze correlator matrices of unprecedented size 100×100 due to XSEDE resources
- study various scattering phase shifts also planned
- infinite-volume resonance parameters from finite-volume energies \rightarrow need new effective field theory techniques