LAV-BPIFB4 isoform modulates eNOS signalling through Ca\(^{2+}\)/PKC-alpha-dependent mechanism

Chiara Carmela Spinelli\(^1,\dagger\), Albino Carrizzo\(^2,\dagger\), Anna Ferrario\(^3\), Francesco Villa\(^1\), Antonio Damato\(^2\), Mariateresa Ambrosio\(^2\), Michele Madonna\(^2\), Giacomo Frati\(^2,\dagger\), Sergio Fucile\(^2,\dagger\), Miriam Sciaccaaluga\(^2\), Mario Capunzo\(^6\), Gaetano Calif\(^7\), Luciano Milanesi\(^3\), Anna Maciag\(^1\), Annibale Alessandro Puca\(^1,6,\dagger,\dagger\), and Carmine Vecchione\(^2,6,\dagger,\dagger\)

\(^1\)Aging Unit, IRCCS MultiMedica, 20138 Milan, Italy; \(^2\)IRCCS Neuromed, 86077 Pozzilli (IS), Italy; \(^3\)Institute for Biomedical Technologies—National Research Council, 20090 Segrate (MI), Italy; \(^4\)Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, C.so della Repubblica 79, 04100 Latina, Italy; \(^5\)Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; \(^6\)Department of Medicine and Surgery, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; and \(^7\)Institute of Experimental Endocrinology and Oncology, National Research Council, 80100 Naples, Italy

Received 26 April 2016; revised 21 December 2016; editorial decision 7 April 2017; accepted 12 April 2017; online publish-ahead-of-print 13 April 2017

Aims

Ageing is associated with impairment of endothelial nitric oxide synthase (eNOS) and progressive reduction in endothelial function. A genetic study on long-living individuals—who are characterized by delays in ageing and in the onset of cardiovascular disease—previously revealed I229V (rs2070325) in bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) as a longevity-associated variant (LAV); the LAV protein enhanced endothelial NO production and vasorelaxation through a protein kinase R–like endoplasmic reticulum kinase/14-3-3/heat shock protein 90 signal. Here, we further characterize the molecular mechanisms underlying LAV-BPIFB4-dependent enhancement of vascular function.

Methods and results

LAV-BPIFB4 upregulated eNOS function via mobilization of Ca\(^{2+}\) and activation of protein kinase C alpha (PKC\(\alpha\)). Indeed, the overexpression of LAV-BPIFB4 in human endothelial cells enhanced ATP-induced Ca\(^{2+}\) mobilization and the translocation of PKC\(\alpha\) to the plasma membrane. Coherently, pharmacological inhibition of PKC\(\alpha\) blunted the positive effect of LAV-BPIFB4 on eNOS and endothelial function. In addition, although LAV-BPIFB4 lost the ability to activate PKC\(\alpha\) and eNOS in ex vivo vessels studied in an external Ca\(^{2+}\)-free medium and in vessels from eNOS\(^{-/-}\) mice, it still potentiated endothelial activity, recruiting an alternative mechanism dependent upon endothelium-derived hyperpolarizing factor (EDHF).

Conclusions

We have identified novel molecular determinants of the beneficial effects of LAV-BPIFB4 on endothelial function, showing the roles of Ca\(^{2+}\) mobilization and PKC\(\alpha\) in eNOS activation and of EDHF when eNOS is inhibited. These results highlight the role LAV-BPIFB4 can have in restoring signals that are lost during ageing.

Keywords

Endothelium • Vascular function • Nitric oxide • BPIFB4 • PKC\(\alpha\)

1. Introduction

Endothelial nitric oxide synthase (eNOS) is a crucial enzyme for vascular physiology; its reduced activity during ageing is associated with increased susceptibility to cardio- and cerebro-vascular diseases.\(^1-4\) Moreover, in mice lacking eNOS, caloric restriction does not exert its positive effects in delaying ageing and increasing life span.\(^5\)
Long-living individuals (LLIs) have a favorable genetic profile characterized by an enrichment of alleles associated with the protection from ageing and cardiovascular disease.6,7 We have recently shown for three different populations that LLIs are enriched for rs2070325 (I229V), the minor allele of bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4).8 rs2070325 was one of four single-nucleotide polymorphisms on BPIFB4 that variously combined to generate BPIFB4 isoforms, such as the wild type (WT) protein and a longevity-associated variant (LAV). Of note, the LAV-BPIFB4 was associated with potentiated eNOS activity in cells, an effect correlated with increased binding of BPIFB4 to 14-3-3—through an atypical-binding site for the protein—and increased phosphorylation of BPIFB4 at serine 75—a site recognized by protein kinase R-like endoplasmic reticulum kinase (PERK). Heat shock protein 90 (HSP90) was also recruited to the LAV-14-3-3 complex as part of the eNOS activation machinery. Indeed, HSP90 co-localized with BPIFB4, and a specific HSP90 inhibitor blocked eNOS activity in cells, an effect correlated with increased binding of BPIFB4 to 14-3-3—through an atypical-binding site for the protein—and increased phosphorylation of BPIFB4 at serine 75—a site recognized by protein kinase R-like endoplasmic reticulum kinase (PERK).

On this point, we already reported that LAV-BPIFB4 enhanced acetylcholine (ACh)-evoked vasorelaxation. ACh-induced eNOS phosphorylation and activity requires capacitative Ca2+ influx.10 This function is mediated by protein kinase C alpha (PKC\textalpha{}), which stimulates nitric oxide (NO) production in endothelial cells and plays a role in regulating blood flow in vivo.11 In the present study, we demonstrate that PKC\textalpha{} is part of the signalling pathway activated by LAV-BPIFB4 to potentiate vascular function. In particular, we show that LAV-BPIFB4 activates eNOS-dependent endothelial function through Ca2+-mediated phosphorylation of PKC\textalpha{}. Moreover, when PKC\textalpha{} or/and eNOS is inactivated—e.g. by exposing cells to Ca2+-free media or knocking out eNOS—LAV-BPIFB4 can still enhance vasorelaxation through an endothelium-derived hyperpolarizing factor (EDHF)-mediated pathway.

2. Methods

All experiments involving animals conformed to the guidelines for the Care and Use of Laboratory Animals published with Directive 2010/63/EU of the European Parliament and were approved by the review board of IRCCS INMI Neuromed (ref. number 1070/2015 PR). C57BL/6 mice were bred in our animal facility. eNOS knockout (KO) mice were obtained from the Jackson Laboratory. All effort was made to minimize the number of animals used and their suffering.

2.1 Ex vivo transfection of mouse vessels and evaluation of vascular reactivity

Mice were sacrificed by intraperitoneal injection of ketamine/xylazine (respectively, 150 and 20 mg/kg BW), and second-order branches of the mesenteric arterial tree were surgically removed and mounted on a pressure myograph for experiments.8 Endothelium-dependent relaxation was assessed by measuring the dilatory responses of mesenteric arteries to cumulative concentrations of ACh (from 10^{-9} to 10^{-5} M) in vessels pre-contraction with U46619 at a dose necessary to obtain a similar level of pre-contraction in each ring (80% of initial KCl-evoked contraction).12 Values are reported as the percentage of lumen diameter change after drug administration. Responses were tested before and after transfection. ACh-evoked vasorelaxation was also tested in the presence of the PKC\textalpha{} inhibitor Gö6976 (0.5 \mu{}M) or the AKT inhibitor IL6-hydroxymethyl-chiro-inositol-2-(R)-2-O-methyl-3-O-octadecyl-sn-glycerocarbonate (10 \mu{}M) (no. 124005, Calbiochem). In some experiments, the endothelium was mechanically removed by inserting a tungsten wire into the lumen of the vessel and rotating it back and forth before mounting the vessel on the pressure myograph. Caution was taken to avoid endothelial damage.

Another experimental series was performed on vessels transfected in presence of Ca2+ and then studied in the absence of external Ca2+, using Ca2+-free Krebs, in presence of apamin (APA)—a potent inhibitor of ATP-type Ca2+-activated K+ channels and 2-APB (CTx)—a potent and selective inhibitor of the voltage-gated Ca2+-activated K+ channel (Kv1.3) and BK\textsubscript{Ca} channel (both were purchased from Sigma-Aldrich).

2.2 Fluorescence-activated cell sorting

For FACS analysis, transfected arteries were digested with type 2 collagenase (0.05%; Worthington CLS2) for 45 min at 37°C in a shaking incubator. Freed cells were washed with PBS and passed through a 100-\mu{}m strainer (BD Falcon). Afterwards, cells were stained with anti-CD31-FITC (1:100, BD Biosciences-Pharmigen) at 4°C for 20 min and then permeabilized with Cytofix/Cytoperm (BD Biosciences-Pharmin) at 4°C for 20 min. Subsequently, cells were incubated with anti-BPIFB4 (1:100; Abcam) at 4°C for 1 h and then an allophycocyanin (APC)-conjugated anti-mouse secondary antibody (1:200; BioLegend). For non-directly conjugated antibody to BPIFB4, a staining mix without anti-BPIFB4 antibody but with inclusion of the fluorescent secondary antibody was used as negative control. Analysis of cell populations was performed using a FACS Canto II equipped with FACS Diva software (BD Biosciences) and the FlowLogic (Miltenyi Biotec) analysis program.

2.3 Production of lentiviral vectors, cell culture, and co-immunoprecipitation

BPIFB4 cDNA (WT and LAV isoforms) was cloned from pRKS expression plasmids9 into the lentivector pCDH-EF1-MSC-pA-PGK-copgreen fluorescence protein (GFP)-T2A-Puro (System Biosciences). Lentiviral particles were generated by transfection of pCDH constructs along with the packaging vectors pMD2.G, pRSV-REV, and pMDLg/pRRE (kindly provided by Prof Luigi Naldini, San Raffaele Scientific Institute, Milan, Italy) into human embryonic kidney (HEK293T) cells by calcium phosphate transfection. Lentiviral particles were concentrated by ultracentrifugation (25 000 rpm for 4 h at 4°C) and stored at -80°C until immediately prior to use. Lentivirus titration was performed by transducing HEK293T cells with concentrated particles in the presence of 4 \mu{}g/ml polybrene and measuring GFP expression after 3 days by flow cytometry.

For Ca2+ mobilization and confocal microscopy assay, human umbilical vein endothelial cells (HUVECs) (Lonza) were grown in complete EGM2 medium (Lonza) and infected with empty lentiviral vectors or particles encoding either WT- or LAV-BPIFB4 [at 5 multiplicity of infection (MOI)]. After 72 h, cells were selected with 2 \mu{}g/ml puromycin for 48 h. HEK293T cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% (v/v) fetal bovine serum and 1% non-essential amino acids at 37°C in a 5% CO\textsubscript{2} atmosphere. For co-immunoprecipitation, 1.4 \times 10^6 cells were plated in 10-cm dishes and transfected with pRKS vector encoding LAV-BPIFB4 or with an empty plasmid, using Lipofectamine 2000 (Life Technologies) according to the manufacturer’s protocol. Twenty-four hours post-transfection, HEK293T cells were incubated with Go6976 (0.3 \mu{}M) for another 24 h, harvested, and solubilized in lysis buffer (20 mM Tris-HCl pH 7.5, 650 mM NaCl, 500 mM EDTA, 250 mM EGTA, and Triton X-100).
Lysates were cleared at 13,000 rpm for 20 min at 4 °C, and 700 μg protein incubated overnight with 2 μg of mouse anti-GFP (Invitrogen), mouse anti-14-3-3 (Abcam), or mouse anti-IgG (Millipore) for the control. The antibody–antigen complexes were precipitated with G-linked mouse anti-14-3-3 (Abcam), or mouse anti-IgG (Millipore) for the control. The antibody–antigen complexes were precipitated with G-linked mouse anti-14-3-3 (Abcam), or mouse anti-IgG (Millipore) for the control. The antibody–antigen complexes were precipitated with G-linked mouse anti-14-3-3 (Abcam), or mouse anti-IgG (Millipore) for the control. The antibody–antigen complexes were precipitated with G-linked mouse anti-14-3-3 (Abcam), or mouse anti-IgG (Millipore) for the control.

2.4 Western blotting

Each sample was a pool of mesenteric arteries (length, 2 mm; diameter, 250 μm) excised from four mice. HUVECs infected with lentiviral particles encoding WT- BPIFB4, LAV-BPIFB4, or GFP (‘empty’ vector) were starved in serum- and growth factor-free EGM-2 for 4 h and then stimulated with 100 μM ACh for 10 min. Protein extracts were separated on 8–10% SDS-PAGE, electro-blotted onto PVDF membranes, and hybridized with 1:1000 rabbit anti-14-3-3 (Abcam). Products were resolved with SDS-PAGE, electro-blotted onto PVDF membranes, and hybridized with 1:1000 rabbit anti-14-3-3 (Abcam). Western blots were analysed using ImageJ software (Wayne Rasband, National Institutes of Health, USA) to determine optical density (OD) of the bands. The OD readings of phosphorylated proteins are expressed as a ratio relative to total protein or to beta-actin. All other protein expressions are normalized to account for variations in loading.

2.5 Ca2⁺-transient recordings

Free intracellular Ca2⁺ concentration ([Ca2⁺]) recordings were obtained by time-resolved digital fluorescence microscopy on infected HUVECs loaded with the Ca2⁺ indicator X-rhod-1 AM (excitation, 550 nm; emission, 610 nm) to avoid overlapping of fluorescence signals due to the presence of GFP. Briefly, cells were incubated for 45 min at 37 °C with 2 μM of X-rhod-1 AM. Cells were then placed in standard mammalian Ringer solution (in mM: NaCl, 140; KCl, 2.5; CaCl2, 2; MgCl2, 2; Hepes-NaOH, 10; and glucose, 10; pH 7.3), and continuously super-fused with a gravity-driven fast perfusion system (BioLogique 100). Most cells were infected and displayed clear GFP fluorescence that did not interfere with the fluorescent signal of the Ca2⁺ dye. Ca2⁺ transients were elicited by applying 100 μM ATP for 2 min. The time courses of Ca2⁺ transients were quantified by measuring at each time point the fluorescence emission in the region of interest surrounding each cell, and then transforming the obtained values as follows: ΔF/F = (F(t) - F(0))/F(0). For each cell, the amplitude of the ATP-induced Ca2⁺ transient was evaluated as the difference between maximal and basal ΔF/F values.

2.6 Immunofluorescence and confocal microscopy

HUVECs infected with lentiviral particles encoding WT-BPIFB4, LAV-BPIFB4, or GFP (empty vector) were fixed in 4% paraformaldehyde in PBS for 20 min, washed twice in 50 mM NH4Cl in PBS, and permeabilized for 5 min in 0.2% Triton X-100 in PBS. Fixed cells were treated as described elsewhere. Immunofluorescence analysis was performed on an inverted, motorized microscope (Axio Observer Z.1) equipped with a 63X/1.4 Plan-Apochromat objective (Carl Zeiss). The attached laser-scanning unit (LSM 700 4X pigtailed laser 405-488-555-639, Carl Zeiss) enabled confocal imaging. For excitation, 405, 488, and 555 nm lasers were used. Fluorescence emission was revealed by a MBS (Main Dichroic Beam Splitter) and a VSD (Variable Secondary Dichroic Beam Splitter). Triple staining fluorescence images were acquired separately using ZEN 2012 software in the blue (Hoechst 33258), green (EGFP), and red (Alexa Fluor 594) channels at a resolution of 1024 × 1024 pixels, with the confocal pinhole set to one Airy unit, and then saved in TIFF format.

2.7 Statistical analyses

Vessel reactivity is given as mean ± S.E.M. and analysed by two-way ANOVA. Densitometry data were analysed with one-way ANOVA followed by Bonferroni post hoc analysis, as appropriate, using dedicated software (GraphPad Prism, v5.0).

3. Results

3.1 LAV-BPIFB4 activates PKCα

We previously reported that LAV-BPIFB4 enhances NO-mediated vasorelaxation evoked by ACh. ACh-evoked vasodilation of isolated mesenteric vessels has been reported to require intact PKCα activity. Here, we previously reported that LAV-BPIFB4 enhances NO-mediated vasorelaxation evoked by ACh. ACh-evoked vasodilation of isolated mesenteric vessels has been reported to require intact PKCα activity. Here, found that PKCα was more phosphorylated at threonine 497—an activation site of the enzyme—in LAV-BPIFB4-overexpressing vessels than in those expressing the WT protein or only GFP (Figure 1A). Expression of LAV-BPIFB4 protein was detected through FACS analysis in 79 ± 4% CD31⁺ endothelial cells (data not shown). To confirm that the mechanisms recruited by LAV-BPIFB4 take place in endothelial cells, we performed Western blotting on HUVECs infected with lentiviral vectors encoding GFP (empty), WT- BPIFB4, or LAV-BPIFB4. Also in this experimental setting, overexpression of LAV-BPIFB4 was associated with activation of PKCα and eNOS (Figure 1B).

To better characterize the role of the endothelial and smooth muscle layers, we performed experiments on endothelium-denuded vessels: the loss of endothelium was confirmed by the absence of eNOS upon Western blotting (Figure 1C) and by the absence of ACh-evoked vasorelaxation in functional studies (data not shown). Overexpression of LAV-BPIFB4 upregulated the phosphorylation of eNOS by about 2.5-fold and evoked the activation of PKCα regardless of the presence or not of endothelium (Figure 1C).

Of note, treatment with the PKCα inhibitor Go6976 significantly blunted ACh-evoked vasorelaxation in control vessels (Figure 2A) and abolished both endothelial vasorelaxation and enhanced eNOS phosphorylation in LAV-BPIFB4-expressing vessels (Figure 2B and C). Based on these results, we can assert that PKCα is recruited by LAV-BPIFB4 to modulate eNOS and vascular tone.

3.2 BPIFB4 isoforms modulate Ca2⁺ influx and translocation of PKCα to membrane

Based on the modulatory action of BPIFB4 on PKCα activity and vascular function—well-known Ca2⁺-dependent processes—we investigated how agonist-induced Ca2⁺ mobilization was influenced by the expression of the BPIFB4 isoforms in HUVECs. ATP was used to elicit Ca2⁺ transients (Figure 3A), so avoiding interaction of ACh with the nicotinic receptors present on the HUVECs. Overexpression of the LAV-BPIFB4 isoform determined clear increases in the number of responsive cells (Figure 3B) and the mean amplitude of Ca2⁺ transient upon stimulation (Figure 3C). Thus, the LAV isoform clearly facilitates agonist-induced Ca2⁺ mobilization. Moreover, overexpression of LAV-BPIFB4 was associated with increased localization of PKCα to the plasma membrane (Figure 3D), a hallmark of its activation. The percentages of cells with membrane-localized PKCα in each setting were: empty, 6.5%; WT- BPIFB4, 10%; LAV-BPIFB4, 60%.
Gap junctions allow exchange of Ca\(^{2+}\) ions between cells,\(^{19,20}\) and connexin-43 (Cx43) plays a prominent role in this mechanism.\(^{21}\) We found increased expression of Cx43 in vessels overexpressing LAV-BPIFB4 (Figure 3E). Based on this finding, we speculate that Cx43 could be involved in the effects of LAV-BPIFB4 on Ca\(^{2+}\) mobilization.

In previous work, we reported that mononuclear cells (MNCs) from homozygous rs2070325 carriers (which express LAV-BPIFB4) have significantly upregulated eNOS activity vs. those from heterozygous and WT carriers.\(^8\) To exclude that this mechanism was responsible for the above findings, we assessed recruitment of MNCs to vessels. Evaluation...
of the MNC marker CD45 indicated that MNCs were present in vessels treated with lipopolysaccharide (LPS) (a well-known stimulus that induces MNCs recruitment) but not in those overexpressing LAV-BPIFB4 (Figure 3E).

3.3 LAV-BPIFB4 fails to activate PKC<alpha> and eNOS in the absence of external Ca²+</p>

ACh-evoked eNOS phosphorylation requires influx of Ca²+. To clarify the role of Ca²+ in the vascular action of LAV-BPIFB4, we conducted vascular reactivity studies on mesenteric arteries in the absence of external Ca²+. In the Ca²+-free condition, LAV-BPIFB4 was hypo-phosphorylated and not able to enhance PKC<alpha> and eNOS phosphorylation (Figure 4A). However, endothelial vasorelaxation was still enhanced (Figure 4B).

In addition to NO, endothelium generates other mediators involved in the regulation of vascular tone, among which is EDHF. Thus, we inhibited EDHF release using APA—which blocks ATP-type Ca²-activated K⁺ channels and SK_{Ca}—plus Ctx—which blocks voltage-gated Ca²-activated K⁺ channels (Kv1.3) and BK_{Ca} channels. We found that when EDHF release was inhibited in the absence of external Ca²+, LAV-BPIFB4 failed to enhance endothelial vasorelaxation (Figure 4C). Taken together, these findings demonstrate that in the presence of external Ca²+, LAV-BPIFB4 enhances endothelial function via a PKC<alpha>eNOS-mediated mechanism, whereas in the absence of Ca²+, LAV-BPIFB4 functions via an EDHF-mediated pathway. This was supported by experiments performed on eNOS^{−/−} vessels: indeed, LAV-BPIFB4 was still able to enhance endothelial vasorelaxation in the absence of eNOS, but this effect was blunted in the presence of EDHF inhibition (Figure 4D).

3.4 PKC<alpha> is involved in a feed-forward mechanism on BPIFB4

We have previously reported that phosphorylation of serine 75 in BPIFB4 by PERK which is enhanced in the presence of the LAV isoform, induces binding to 14-3-3 and activation of eNOS. Detailed amino acid sequencing analysis revealed that serine 75 is also within a potential phosphorylation substrate motif for PKC<alpha> (amino acids 73–75: SXR/SIR). Thus, we hypothesized that PKC<alpha> contributes to eNOS activation also through its phosphorylation of BPIFB4. We first evaluated signalling in mesenteric vessels in which LAV-BPIFB4 could not be phosphorylated by PERK (namely by overexpressing a protein mutated in the PERK-phosphorylation site—LAV-BPIFB4_{mutPERK}—or by overexpressing the LAV isoform in the presence of the PERK inhibitor GSK2606414) or bound to 14-3-3 (by overexpressing a protein mutated in the 14-3-3-binding site—LAV-BPIFB4_{mut14–3-3}). In these setting, BPIFB4 was hypo-phosphorylated and eNOS was inactive, but PKC<alpha>
Figure 3 Overexpression of LAV-BPIFB4 sensitizes endothelial cells to agonist-induced Ca²⁺ mobilization, and the vascular effects do not require recruitment of MNCs. (A) Typical time-courses of [Ca²⁺]i changes elicited by 100 μM ATP (horizontal bar, 2 min application) in HUVECs overexpressing the WT- or LAV-BPIFB4 isoforms (average from 40 cells in individual optical fields). For the empty vector, a time-course averaged from 25 individual cells in a single optical field was shown. Histograms of (B) the percentage of responding cells (n = 134, 113, and 129 cells, respectively) and (C) their mean Ca²⁺ transient amplitudes after ATP application (empty, n = 3 independent experiments; WT and LAV, n = 5 independent experiments). *P < 0.05; ANOVA. (D) Subcellular localization of PKCα in infected HUVECs cells. PKCα (red) was mainly cytosolic in HUVECs infected with an empty vector (Empty) and with a lentiviral vector encoding WT-BPIFB4; in contrast, PKCα was located mainly to the plasma membrane in HUVECs overexpressing LAV-BPIFB4, a clear hallmark of PKCα activation. Arrows indicate regions of plasma membrane-localized PKCα; blue, Hoechst-stained nuclei; green, GFP expression. Scale bar = 10 μm. (E) Western blot of ex vivo mouse mesenteric arteries from C57BL/6 mice treated with LPS (20 mg/kg for 16 h) and of vessels from untreated C57BL/6 mice after transfection with empty vector (E) or overexpressing LAV-BPIFB4. Right graphs show quantification of CD45, Cx43, and BPIFB4. Values are means ± S.E.M., n = 6 experiments. Statistics was performed using one way ANOVA, following Bonferroni’s Multiple Comparison Test; *P < 0.05.
remained phosphorylated (Figure 5A). When the phosphorylation of PKCα was inhibited, LAV-BPIFB4 did not co-immunoprecipitate with 14-3-3 (Figure 5B). Indeed, as shown earlier, inhibition of PKCα significantly reduced phosphorylation of LAV-BPIFB4 at serine 75 and phosphorylation of eNOS (Figure 2C), indicating that PKCα is needed for the activation of LAV-BPIFB4 and eNOS.

Because Akt signalling is one of the most important pathways modulating eNOS function,25 we performed experiments in the presence of Akt

Figure 4 LAV-BPIFB4 can activate endothelial function through an EDHF-mediated mechanism. (A) Western blot of ex vivo C57BL/6 mouse mesenteric arteries transfected with LAV-BPIFB4 or empty (E) expression vectors, in the presence or absence (-Ca²⁺) of external Ca²⁺. Right graphs show quantification of p-eNOS (S1177), p-PKCα (T497), p-BPIFB4 (S75), and BPIFB4. Values are means ± S.E.M., n = 6 experiments. Statistics was performed using one way ANOVA, following Bonferroni’s Multiple Comparison Test; *P < 0.05. Dose–response curves to ACh of mouse mesenteric arteries from ex vivo WT C57BL/6 mice (B,C) or from eNOS KO mice (D) transfected with empty vector (E) or with a vector for the expression of LAV-BPIFB4 in the absence of external Ca²⁺ (-[Ca²⁺]ext) and in the absence or presence of the EDHF inhibitors APA + CTx (100 nM each). Values are means ± S.E.M., n = 11 experiments for B; n = 8 experiments for C and D. Statistics was performed using two-way ANOVA; *P < 0.05; **P < 0.01; ***P < 0.001 vs. after LAV + APA + CTx; #P < 0.05; ##P < 0.01 vs. before.
inhibition. In this experimental condition, vessels transfected with empty vector had significantly impaired ACh-evoked vasorelaxation, whereas those overexpressing LAV-BPIFB4 were still able to enhance ACh vasorelaxation (Figure 5C). These results clearly demonstrate that the vascular effects mediated by LAV-BPIFB4 are independent of Akt signalling.

4. Discussion

The main finding of this study is that the enhanced ability of the LAV isoform of BPIFB4 to stimulate NO production in the endothelium is due to activation of PKCα signalling. Indeed, the overexpression of LAV-BPIFB4 in HUVECs augmented Ca²⁺ mobilization, increasing translocation of PKCα to the plasma membrane, a step necessary for the activation of the kinase. In the absence of external Ca²⁺, the ability of LAV-BPIFB4 to enhance both PKCα and eNOS phosphorylation was abolished.

We demonstrated previously that phosphorylation of BPIFB4 at serine 75 by PERK and the binding to 14-3-3 protein are fundamental for activation of eNOS and endothelial function. So, to further clarify the mechanisms elicited by the LAV isoform, we investigated potential players, focusing our attention on PKCα, a major PKC family member expressed in endothelial cells and involved in regulating eNOS.
We found that inhibition of PKCα impeded the enhancing effects of LAV-BPIFB4 on eNOS and endothelial function, positioning this kinase between BPIFB4 and eNOS. Of note, mutation of LAV-BPIFB4 at its PERK-phosphorylated site or at its 14-3-3-binding site blunted eNOS activation but did not interfere with the ability to activate PKCα. These findings indicate that the activation of PKCα is independent of Ser75 phosphorylation and binding to 14-3-3.

We also found that serine 75 is within a PKC phosphorylation motif (amino acids 73–75: SXR/SIR), indicating that the kinase works also upstream of BPIFB4. Indeed, when we inhibited PKCα, the site serine 75 became hypo-phosphorylated and BPIFB4 did not co-immunoprecipitate with 14-3-3.

All these findings suggest a mechanism whereby the stimulation of Ca2+ influx by LAV-BPIFB4 leads to the activation PKCα, which in turn...
increases phosphorylation of BPIFB4 at serine 75; this hyperphosphorylation results in enhanced binding of LAV-BPIFB4 to 14-3-3 and HSP90, allowing eNOS to bind with the complex and become phosphorylated by PKCα (Figure 6).

In addition, careful analysis of our data revealed that in the absence of external Ca^{2+}, LAV-BPIFB4 still enhanced endothelial vasorelaxation despite blunted phosphorylation of PKCα and eNOS. We found that this effect was dependent upon the release of EDHF, which is known can substitute for NO in settings where eNOS is dysfunctional. To definitively clarify the concept that LAV-BPIFB4 is able to recruit alternative mechanisms protecting endothelial function in the absence of eNOS, we performed experiments on vessels from eNOS deficient mice. Also in this experimental setting, the expression of LAV-BPIFB4 was associated with enhanced endothelial vasorelaxation. More studies are needed to clarify the mechanism through which LAV-BPIFB4 mediates EDHF release.

Our findings highlight that Ca^{2+} mobilization is a key signal necessary for LAV-BPIFB4 to enhance endothelial NO release. The agonist-induced Ca^{2+} entry observed in HUVECs is an example of capacitive Ca^{2+} influx triggered by metabotropic receptors. LAV-BPIFB4 is not able to mobilize Ca^{2+} itself, but its expression strongly increases the amplitude of agonist-evoked Ca^{2+} signals, likely by interacting with one or more of the molecular machinery regulating [Ca^{2+}]. These findings also indicate a possible broader role of LAV-BPIFB4 in modulating other functions where PKCα is involved, such as control of stem cell maintenance, development, and differentiation, which functions are lost during ageing and that could be preserved in LLIs.31,32

Finally, our study defines the effects of LAV-BPIFB4 on the modulation of eNOS function in endothelial cells; we cannot exclude a contribution by smooth muscle cells in eNOS activation. Further work will be necessary to study this aspect of vasorelaxation.

5. Conclusions
The LAV of BPIFB4 has tremendous potential for exploitation as an important tool for the treatment of age-related diseases because of its effect on NO metabolism. Moreover, the effect of LAV-BPIFB4 on EDHF release opens up new scenarios for enhancing endothelial function via therapeutic targets other than eNOS.

Acknowledgements
We thank Prof. L. Naldini for providing the lentiviral packaging vectors.

Conflict of interest: none declared.

Funding
This work was supported by Italian Ministry of University and Research (MIUR/FIRB AUTOMED-RBP11233YA to A.A.P. and PRIN-20157ATSLF_009 to A.A.P., C.V, G.F. and L.M.). L. Milanesi is supported by Flagship “Interomics” PB05 and A.Ferraro is a fellow of this project.

References
1. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J 2012;33:829–837.
2. Nisan E, Tanello C, Cirtdle A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carrawa MO. Calibration price restricts mitochondrial biogenesis by inducing the expression of eNOS. Science 2005;310:314–317.
3. Perls TT, Wilmoth J, Levenson R, Drinkwater M, Cohen M, Bogan H, Joyce E, Brewster S, Kunikel L, Puca A. Life-long sustained mortality advantage of siblings of centenarians. Proc Natl Acad Sci USA 2002;99:1442–1447.
4. Zhang QJ, McMillin SL, Tanner JM, Palenoyte M, Abel ED, Symons JD. Endothelial nitric oxide synthase phosphorylation in treadmill-running mice: role of vascular signaling kinases. J Physiol 2009;587:3911–3920.
5. Villa F, Carrizzo A, Spinelli CC, Ferrario A, Malovini A, Maciag A, Damato A, Aumenta F, Spinietti G, Sangal D, Macrina M, Ambrosio M, Sitka L, Bigini P, Cali G, Schreiber S, Peris T, Fucic S, Musul F, Nebel A, Bellazzi R, Madera P, Vecchione C, Puca A. Genetic analysis reveals a longevity-associated protein modulation endotelial function and angiogenesis. Circ Res 2015;117:333–345.
6. Kraehling JR, Sessa WC. Enhanced eNOS activation as the fountain of youth for vascular disease: is BPIFB4 what ponce de leon was looking for? Circ Res 2015;117:309–319.
7. Adapala RK, Talalai PK, Birtz IN, Zhang DX, Suzuki M, Meszaros JG, Thodek CT. PKCαalpa activates acetylcholine receptor mediated ATP-dependent calcium influx in endothelial cells. Am J Physiol Heart Circ Physiol 2011;301:1757–1765.
8. Partiovan C, Zhuang Z, Moodie K, Lin M, Ouchi N, Sessa WC, Walsh K, Simons M. PKCα activates eNOS and increases arterial blood flow in vivo. Circ Res 2002;91:462–487.
9. Vecchione C, Arena A, Marino V, Bettanian U, Poullet R, Maffei A, Sbragio M, Pastore L, Gentile MT, Notte A, Iorio L, Hirsch E, Tarone G, Lombo G. Selective Rac-1 inhibition protects from diabetes-induced vascular injury. Circ Res 2006;98:218–225.
10. Orlandi A, Pagani F, Avisabelle D, Bonanno G, Scambra G, Vigna E, et al. Functional properties of cells obtained from human cord blood CD34+ stem cells and mouse cardiac myocytes in coculture. Am J Physiol Heart Circ Physiol 2008;294:H1541–H1549.
11. Cortes MP, Becerra JP, Vinet R, Alvarez R, Quintana I. Inhibition of ATP-induced calcium influx by homocysteine in human umbilical vein endothelial cells. Cell Biol Int 2013;37:600–607.
12. Cali G, Gentile F, Mogosavo S, Pallante P, Nitsch R, Ciancia G, Ferrario A, Fusco A, Nitsch L. CDH16/K-cadherin is expressed in the developing thyroid gland and is strongly down-regulated in thyroid carcinomas. Endocrinology 2012;153:L1–L34.
13. Pena VB, Bonini IC, Antonilli SS, Kobayashi T, Barrantes FJ. alpha 7-type acetylcholine receptor localization and its modulation by nicotine and cholesterol in vascular endothelial cells. J Cell Biol 2011;192:327–338.
14. Newton AC. Regulation of protein kinase C. Curr Opin Cell Biol 1997;9:161–167.
15. Deniker BM, Nigam SK. Molecular structure and assembly of the tight junction. Am J Physiol 1998;274:F1–F9.
16. Kumar NM, Gilbula NB. The gap junction communication channel. J Cell Sci 1993;9:910–918.
17. DePaola N, Davies PF, Pritchard WF Jr, Florez L, Harbeck N, Polacek DC. Spatial and temporal regulation of gap junction connexin-43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc Natl Acad Sci USA 1999;96:3154–3159.
18. Yamada M, Kubo H, Kobayashi S, Ishizawa K, Numasaki M, Ueda S, Suzuki T, Sasaki H. Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury. J Immunol 2004;172:1266–1272.
19. Ulmer AJ, Flad H, Rietzsch T, Platt M. Induction of proliferation and cytokine production in human T lymphocytes by lipopolysaccharide (LPS). Toxology 2000;152:37–45.
20. Feletou M, Vanhoucke PM. EDHF: new therapeutic targets? Pharmacol Rev 2004;56:565–580.
21. Carrizzo A, Damato A, Ambrosio M, Falco A, Rosati A, Capunzo M, Madama M, Turco MC, Janzlu J, De ES. 334. Vecchione C. The prosurvival protein BAG3: a new participant in vascular homeostasis. Cell Death Dis 2016;7:e2341.
22. Nishimatsu H, Suzuki E, Nagata D, Moriyama N, Satakon A, Walsh K, Sata M, Kangawa K, Matsu H, Goto A, Kitamura T, Hira H, Adrenomedullin induces endothelium-dependent vasorelaxation via the phosphatidylinositol 3-kinase/Akt-dependent pathway in rat aorta. Circ Res 2001;89:63–70.
23. Celinas DS, Bernacchi PM, Rosin R, Bazan DS, Sirog MS. Immediate and delayed VEGF-mediated NO synthesis in endothelial cells: role of P450, PKC and PLC pathways. Br J Pharmacol 2002;137:1021–1030.
24. Dhen S. Peptides acting at gap junctions. Peptides 2002;23:1701–1709.
25. Huang A, Sun D, Carroll MA, Jing H, Smith CJ, Conneta JJ, Falck JR, Shesly EG, Koller A. Kaley G. EDHF mediates flow-induced dilation in skeletal muscle arterioles of female eNOS-KO mice. Am J Physiol Heart Circ Physiol 2001;280:H1462–H1469.
26. Parkinson HT, Tare M, Currin NA. The EDHF story: the plot thickens. Circ Res 2008;102:1148–1150.
27. Van Zant G, McMillin SL, Tanner JM, Palenoyte M, Abel ED, Symons JD. Endothelial nitric oxide synthase phosphorylation in treadmill-running mice: role of vascular signaling kinases. J Physiol 2009;587:3911–3920.
28. Perls TT, Wilmoth J, Levenson R, Drinkwater M, Cohen M, Bogan H, Joyce E, Brewster S, Kunikel L, Puca A. Life-long sustained mortality advantage of siblings of centenarians. Proc Natl Acad Sci USA 2002;99:1442–1447.
29. Zhang QJ, McMillin SL, Tanner JM, Palenoyte M, Abel ED, Symons JD. Endothelial nitric oxide synthase phosphorylation in treadmill-running mice: role of vascular signaling kinases. J Physiol 2009;587:3911–3920.
30. Parkington HC, Tare M, Coleman HA. The EDHF story: the plot thickens. Pharmacol Res 2000;41:565–580.
31. Van Zant G, Liang Y. The role of stem cells in aging. Exp Gerontol 2003;38:659–672.
32. Adams ER, Nolan VG, Andersen SL, Perls TT, Terry DF. Centenarian offspring:stay healthier and stay healthier. J Am Geriatr Soc 2008;56:2089–2092.