Histone modifications as regulators of life and death in *Saccharomyces cerevisiae*

Birthe Fahrenkrog*
Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Rue Profs. Jeener et Brachet 12; 6041 Charleroi, Belgium.
* Corresponding Author: Birthe Fahrenkrog, E-mail: bfahrenk@ulb.ac.be

ABSTRACT Apoptosis or programmed cell death is an integrated, genetically controlled suicide program that not only regulates tissue homeostasis of multicellular organisms, but also the fate of damaged and aged cells of lower eukaryotes, such as the yeast *Saccharomyces cerevisiae*. Recent years have revealed key apoptosis regulatory proteins in yeast that play similar roles in mammalian cells. Apoptosis is a process largely defined by characteristic structural rearrangements in the dying cell that include chromatin condensation and DNA fragmentation. The mechanism by which chromosomes restructure during apoptosis is still poorly understood, but it is becoming increasingly clear that altered epigenetic histone modifications are fundamental parameters that influence the chromatin state and the nuclear rearrangements within apoptotic cells. The present review will highlight recent work on the epigenetic regulation of programmed cell death in budding yeast.

INTRODUCTION

Apoptosis or "programmed cell death" is a self-destructing process important for the development and homeostasis of multicellular organisms and its deregulation contributes to the pathogenesis of multiple diseases including autoimmune, neoplastic and neurodegenerative disorders [1]. Apoptosis is characterized by biochemical and morphological rearrangements throughout the cell [2] with chromatin condensation conjoined by DNA fragmentation being one of the most important nuclear alterations [3]. The mechanism by which chromosomes reorganize during apoptosis is still poorly understood, but recent years have shown that epigenetic changes of the chromatin state are fundamental parameters of the nuclear rearrangements experienced by apoptotic cells.

Chromatin is a composite of packaged DNA and associated proteins, in particular histones [4]. The basic subunit of chromatin is the nucleosome containing 147 base pairs of DNA, which are wrapped around a histone octamer containing two copies each of the core histones H2A, H2B, H3 and H4. Nucleosomes are then packaged into higher order structures in a yet controversially discussed manner [5], in which individual nucleosomes are separated from each other by the linker histone H1 and its isoforms. The tails of the core histones pass through channels within the DNA molecule away from it and are subjected to a wide variety of post-translational modifications. These post-translational modifications include lysine acetylation, butyrylation, propionylation, ubiquitination and sumoylation, lysine and arginine methylation, arginine citrullination, serine, threonine and tyrosine phosphorylation, proline isomerization as well as ADP ribosylation [6-10]. In the context of apoptosis in particular phosphorylation and acetylation of histones have long been suggested to affect chromatin function and structure during cell death [11].

The budding yeast *Saccharomyces cerevisiae* has matured as attractive model system for apoptotic research to study the evolutionary conserved aspects of programmed cell death. Apoptosis in S. cerevisiae can be activated by various agents including hydrogen peroxide (H$_2$O$_2$), acetic acid and pheromone or by physiological triggers, such as DNA replication stress, defects in DNA damage repair, chronological or replicative aging and failed mating [12-16]. The chronological lifespan (CLS) is defined as the time yeast cells remain alive in a post-mitotic, quiescence-like state [17-19] and genetically, amongst others, strongly influenced by key apoptotic regulators, such as Aif1, Bir1, Nma111, Nuc1, Ybh3 and Yca1 [20-28], all of which have homologs in mammals. Replicative aging, the second type of aging studied in yeast, is defined by the number of cell divisions an individual mother cell can undergo before entering senescence (replicative lifespan, RLS) and is equally controlled by some of these genetic factors as well as by environmental conditions [17, 19].

Keywords

apoptosis, autophagy, epigenetics, histone modification, Saccharomyces cerevisiae, yeast.

Abbreviations

CLS - chronological lifespan, DSBs - DNA double strand breaks, HAT - histone acetyltransferase, HDAC - histone deacetylase, RLS - replicative lifespan, ROS - reactive oxygen species.

doi: 10.15698/mic2016.01.472
Received originally: 11.09.2015;
in revised form: 11.11.2015;
Accepted 27.11.2015
Published 31.12.2015.
gen species (ROS) that ultimately results in programmed death of the budding yeast cells [24, 29].

As in higher eukaryotes, it is becoming more and more evident that the programmed death of *S. cerevisiae* is largely influenced by epigenetic modifications, in particular phosphorylation of H2B and H3, acetylation of H3 and H4, deubiquitination of H2B, as well as methylation of H3 [30-35]. This review will highlight current knowledge on the posttranslational histone modifications that decide on yeast life and death.

EPIGENETIC REGULATION OF YEAST LIFE AND DEATH

Histone phosphorylation

In metazoans, the first histone modification that had been linked to apoptosis was phosphorylation of the histone variant H2A.X at serine 139 (S139), known as γ-H2AX, that occurs during the formation of DNA double strand breaks (DSBs) under various conditions, including apoptosis [36]. Furthermore, phosphorylation of histone H2B at S14 had been associated with chromatin condensation and DNA fragmentation [37-39]. H2B phosphorylation is reciprocal and deacetylation of H2B at lysine 15 (K15) is necessary to allow H2BS14 phosphorylation [40].

This unidirectional crosstalk between two histone modifications was originally revealed in yeast: phosphorylation of S10 of H2B (H2BS10ph; Fig. 1) is essential for the induction of an apoptotic-like cell death in H2O2-treated cells [30]. H2BS10A point mutants exhibit increased cell survival accompanied by a loss of DNA fragmentation and chromatin condensation, whereas H2BS10E point mutants display the typical phenotypic markers of apoptosis, including chromatin compaction and DNA fragmentation. Triggering apoptosis by H2O2, acetic acid or the α-factor leads to phosphorylation of H2BS10 and H2BS10ph is preceded by H2A phosphorylation and mediated by the Sterile 20 kinase, Ste20 (Table 1) [30]. It is dependent on the yeast metacaspase Yca1 and the preceding deacetylation of lysine 11 [31].

H2B lysine 11 is acetylated (H2BK11ac) in logarithmically growing yeast [41] and deacetylated upon H2O2 treatment before H2BS10ph occurs. H2BK11ac was found to be present through 60 min of H2O2 treatment and the disappearance of K11ac after 90 min post H2O2-induction coincided with the onset of S10ph in H2B [31]. The crosstalk between H2BS10ph and H2BK11ac is unidirectional and confirmed by H2BK11 mutants: lysine-to-glutamine H2B K11Q mutants, that are acetyl-mimic, are resistant to cell death elicited by H2O2, while lysine-to-arginine H2B K11R mutants that imitate deacetylation promote cell death. Deacetylation of K11 is mediated by the histone deacetylase (HDAC) Hos3 (Table 1)[31].

Interestingly, in human cells it has been shown that H2BS14ph, which is mediated by caspase-activated kinase Mst1, is read by RCC1 [42]. RCC1 is chromatin-bound and the guanine nucleotide exchange factor for the RanGTPase, which acts as a molecular switch to regulate directionality.

FIGURE 1: Specific histone modifications that have been shown to be associated with apoptotic cell death and lifespan regulation in *S. cerevisiae*. Modified lysine residues are highlighted in cyan, modified serine residues in red, and modified tyrosine residues in grey. Ac, acetylation; Me, methylation; Ph, phosphorylation; Ub, ubiquitination.
of nucleocytoplasmic transport as well as distinct steps of mitosis, such as spindle and nuclear envelope assembly [43-45]. H2BS14ph immobilizes RCC1 on chromatin, which causes a reduction of nuclear RanGTP levels and the inactivation of the nucleocytoplasmic transport machinery [42], which in turn contributes to the inactivation of survival pathways, such as NF-κB signaling [11]. Whether H2BS10ph in yeast has a similar effect on the nucleocytoplasmic transport machinery and survival pathways remains to be studied.

A potential trans-histone crosstalk related to yeast apoptosis occurs between H2A and H3 phosphorylation: phosphorylation of H2AS129, which resembles γ-H2AX of higher eukaryotes [46], is increasing in yeast cells undergoing H$_2$O$_2$-induced apoptosis and it is paralleled by a decrease in phosphorylation of threonine 45 in histone H3 (H3T45ph) [47]. On the other hand, the function of H3T45ph in apoptotic signalling has been questioned and rather been linked to DNA replication and its absence with replicative defects [11]. Oxidative damage of DNA by menadione, a reactive quinone that as H$_2$O$_2$ generates ROS, has furthermore been shown to lead to phosphorylation of H2A at serine 122 (H2AS122), and serine-to-alanine H2AS122A mutants have impaired survival on plates containing DSB-inducing drugs, such as methyl methanesulfonate (MMS) or bleomycin [48], supporting the potential importance of H2A phosphorylation in apoptotic signalling during DNA damage response. However, further investigations are necessary to provide mechanistic insights.

Histone H2B ubiquitination

Another apoptosis-related modification of H2B is its ubiquitination (Fig. 1). H2B is monoubiquitinated (H2Bub1) at K123, which, in *S. cerevisiae*, is mediated by the macromolecular complex containing the E2-conjugating enzyme Rad6 and the E3 ligase Bre1 (Table 1) [49-51]. H2Bub1 has been linked to transcriptional activation and elongation and BRE1 disruption or lysine-to-arginine substitution at K123 of H2B (H2B-K123R) results in a complex phenotype that includes failures in gene activation [52-55] and lack of telomeric silencing [56-59]. H2Bub1 is important for nucleosome stability [60], it marks exon-intron structure in budding yeast [61] and prevents heterochromatin spreading [62], and it is implicated in DNA repair and checkpoint activation after DNA damage [63, 64] and during meiosis [65]. The function of H2Bub1 and Bre1 and its homologues in transcription regulation and DNA damage response appears conserved across evolution [66-70]. In human cells and in *Drosophila* it was furthermore shown that H2Bub1 is facilitated by O-linked N-acetylglucosamine modification of

TABLE 1. Histone modifications involved in aging and apoptotic processes in yeast.

Histone	Modification	Writer	Eraser	Implication	Reference
H2A	S122 phosphorylation			H$_2$O$_2$	[48]
H2A	S129 phosphorylation	Mec1, Tel1	PPH3	H$_2$O$_2$	[152, 153]
H2B	S10 phosphorylation	Ste20		H$_2$O$_2$	[30]
H2B	K11 acetylation	Hos3		H$_2$O$_2$	[31]
H2B	K123 ubiquitination	Rad6/Bre1	Ubp10, Ubp8	CLS, RLS, H$_2$O$_2$	[32, 35, 49, 50, 53, 72, 73]
H3	K4 methylation	Set1/COMPASS	Jhd2	CLS, RLS, H$_2$O$_2$	[33, 35, 57, 121, 154, 155]
H3	K36 methylation	Set2	Jhd1	RLS	[124, 143, 156]
H3	K79 methylation	Dot1		RLS	[33, 129]
H3	T45 phosphorylation	AKT1, 2		H$_2$O$_2$	[47, 157]
H3	K9 acetylation	Gcn5		CLS	[161, 164]
H3	K14 acetylation	Sas3	Hos3	CLS	[161, 164]
H3	K18 acetylation	Gcn5		CLS	[161, 164]
H3	K56 acetylation	Asf1, Rtt109	Hst3, Hst4	RLS	[91, 152, 153, 158]
H4	K16 acetylation	Sas2	Sir2	RLS	[87, 159, 160]

The implications listed are referring to the respective histone modifications. The listed writers and erasers may have impact on other histone modifications not related to cell death as well and the modifiers may have targets other than the histones, which may implicate them in other cell death pathways.
H2B at S112 [71].

The DNA damage response machinery is closely linked to apoptosis in yeast and higher eukaryotes [14]. The observation that a loss of the ubiquitin-specific protease UBP10, which is involved in cleaving the ubiquitin moiety from H2B (Table 1) [72, 73], activates the yeast metacaspase Yc1 and apoptosis [74], were first hints that H2B ubiquitination may in fact be involved in the regulation of yeast apoptosis. The finding that enhanced expression of Bre1 protected yeast cells from H2O2-induced cell death, whereas deletion of BRE1 potentiated cell death verified this notion [32].

During chronological aging, cells lacking bre1 show shortened lifespan that coincides with the appearance of typical apoptotic markers, such as DNA fragmentation and accumulation of ROS. The ability of Bre1 to reduce cell death is conferred by its E3 ubiquitin ligase activity mediated by its C-terminal zinc-binding RING finger domain [50]. RING domains are frequently found in E3 ubiquitin ligases and required for catalysing the transfer of ubiquitin from the E2 to the substrate [75]. ∆bre1 cells complemented with a RING finger mutant of Bre1 (C648G, C651G) lack H2Bub1 and exhibited increased apoptosis sensitivity similar to ∆bre1 cells, whereas the complementation of ∆bre1 cells with a functional Bre1 made the cells behave like wild-type [32]. Furthermore, H2B-K123R mutant cells, which too lack H2Bub1, have an increased sensitivity to apoptotic stimuli, exactly as ∆bre1 cells.

Yeast cells deficient for ubp10 display markers of apoptosis, such as DNA fragmentation, as well as enhanced expression of stress-responsive genes as compared to wild type [76]. The increased sensitivity to apoptosis observed in both ∆bre1 and ∆ubp10 strains is associated with an increase in the activity of Yc1, while deletion of yca1 restored the wild-type phenotype [32, 74]. Deletion of Silencing Information Regulator 2 (Sir2), a NAD⁺-dependent HDAC that amongst a plethora of targets predominately removes acetyl groups from K16 of histone H4 (Table 1) [77], could partially rescue the transcriptional pattern and abrogate the apoptotic effects of ∆ubp10 cells, suggesting that increased YCA1 expression may result from inappropriate localization of silencing complexes upon failed deubiquitination of H2B [72, 73, 76].

H2B ubiquitination is also an important regulator of the replicative lifespan of S. cerevisiae: replicatively aged cells have increased H2Bub1 in their telomeric heterochromatin, along with increased methylation of histone H3 at lysine 4 and 79 (H3K4 and H3K79; see section "Histone methylation"), respectively [35, 78]. Yeast aging is accompanied by the loss of transcriptional silencing at the three heterochromatic regions of the yeast genome: at least at one telomere [79], at the mating type locus [80] and of rDNA [81]. A key regulator of telomeric heterochromatin and rDNA silencing is Sir2 [82-86], which is furthermore of vital importance for RLS regulation: its over-expression extends lifespan [87], while yeast cells lacking sir2 have a shorter lifespan [88]. The effect on the RLS is likely due to Sir2’s ability to repress rDNA recombination [89], which in turn hampers the formation of extrachromosomal rDNA circles [87]. The protein levels of Sir2 typically decrease during aging, which leads to increased levels of acetylated histone H4 at lysine 16 (Fig. 1) and a concomitant loss of histones from specific subtelomeric regions of the genome [90]. The increase in H2Bub1 in replicatively aged yeast cells coincides with decreased Sir2 abundance and an increase in acetylation of histone H4 at K16 (H4K16ac; see section "Histone acetylation") along with much lower occupancies of H3, H4, or H2B at the heterochromatic regions [35]. A global loss of histones during aging was previously also observed by Feser et al. [91]. In addition to H2Bub1, also methylation of H3K4 and H3K79 are enriched in aged cells at regions proximal to telomeres [35]. Consequently deficiencies in rads6 and bre1 and the expression of H2B-K123R cells reduce the mean lifespans of yeast cells, which is not further reduced by deletion of sir2. Together these data indicate that H2B monoubiquitination and methylation of H3K4 and K3K79 regulate replicative aging through a Sir2-related pathway [35].

Regulation of apoptosis by H2Bub1 may further exist in multicellular organisms: deletion of Rfp1, the Bre1 homologue in Caenorhabditis elegans, leads to enhanced germ cell apoptosis in the worms [92] and the deletion of Bre1, one of the two Bre1 isoforms in mice, leads to a strong increase in apoptosis frequency in different mouse cell types [93]. In higher eukaryotic cells, however, ubiquitination of H2A is the most abundant species [94-97] and might assume some of the roles ubiquitinated H2B plays in yeast. Therefore H2A deubiquitination has been linked to chromatin condensation in mitotic and apoptotic cells in higher eukaryotes and the disappearance of H2Aub1 to late apoptotic events [98]. In fact, rapid and extensive deubiquitination of H2A occurs in Jurkat cells undergoing apoptosis initiated by, for example, anti-Fas activating antibody, staurosporine, etoposide, doxorubicin and proteasome inhibitors [99], indicating that histone deubiquitination, either H2A or H2B, is a common apoptotic trigger across evolution.

Histone methylation

Monoubiquitination of H2B is prerequisite to the di- and tri-methylation of histone H3 on lysine 4 (H3K4me2/3) and lysine 79 (H3K79me2/3) [59, 100, 101]. This crosstalk is unidirectional, as mutations that eliminate either H3 modification had no effects on the level of H2B ubiquitination [100]. H3K4 trimethylation is further regulated by monoubiquitination-independent processes: loss of H3K4 acetylation results in the specific loss of H3K4me3, but not mono- or dimethylation [102] and methylation of H3 at arginine 2 (H3R2) disables H3K4 methylation in yeast and mammalian cells [103-105]. H3K4me3 marks localize to the 5' end of active genes in budding yeast and are found associated with the initiated, phosphorylated form of RNA polymerase II [106-108], implicating it in transcriptional elongation. It is further not only important for transcriptional activation [109-112], but also for silencing at telomeres [112-114] and rDNA loci [57, 115, 116]. Yeast cells lacking set1 are deficient in the non-homologous end joining pathway of DSB repair and are impaired in traversing S-
phase of the cell cycle in the presence of replication stress [117]. In fact, set1 deficient cells have a reduced replication activity [118]. H3K4 methylation is mediated by the Set1-containing complex COMPASS (Table 1), which, in S. cerevisiae, consists of seven subunits [119-123] and is highly conserved among eukaryotes [61]. With respect to apoptosis it has been shown that a loss of H3K4me3 (Fig. 1) is a trigger for apoptotic cell death [33]. Strains lacking set1 (or two other members of the COMPASS complex, Spp1 and Bre2, respectively) are susceptible to Yca1-dependent apoptosis, both during chronological aging as well as in response to H2O2 treatment [33]. Δset1 cells similarly have a shortened RLS [124]. Preventing loss of H3K4me3 by depleting the H3K4 demethylase Jhd2 on the contrary prolonged the CLS of the cells [33].

H3K79me3 is mediated by the methyltransferase Dot1 (Disruptor Of Telomeric silencing 1; Table 1). Dot1 is highly conserved across evolution and appears to be the sole methyltransferase responsible for H3K79 methylation [125-130]. H3K79 methylation is essential for efficient silencing near telomeres, rDNA loci, and the yeast mating type loci [113], for precise DDR [63, 131-134], and in higher eukaryotes for transcriptional control of developmental genes, such as HOX9 [108, 135] and Wnt target genes [136]. Contrary to H2Bub1 and H3K4me3, H3K79me3, however, appears to play no primary role in apoptotic signalling in yeast: deletion of dot1 only slightly improves survival of wild-type cells, but it rescues Δset1 cells from apoptotic death [33]. Furthermore, the DNA damage checkpoint kinase Rad9 and the yeast homolog of endonuclease G, Nuc1, are critical for cell death of Δset1 cells, suggesting that loss of H3K4 methylation in the presence of H3K79 methylation and the kinase Rad9 enhances chromatin accessibility to endonuclease digestion. Importantly, wild-type, but not Δdot1Δ cells, loose H3K4 methylation during chronological aging, which coincides with a shorter lifespan and indicates that the loss of H3K4 methylation in fact acts as an important trigger for apoptotic cell death [33].

Histone acetylation

As outlined above, normal aging of yeast cells is accompanied by a profound loss of histone proteins [91]. The removal of histones from DNA and the incorporation of histones onto DNA are mediated by so-called histone chaperones. A highly conserved central chaperone of histones H3 and H4 is Antisilencing function 1 (Asf1), which is required for proper regulation of gene expression, acetylation of H3 on K56 (H3K56ac; Table 1), and the maintenance of genomic integrity [149-151]. Deletion of asf1 results in a very short CLS and a median RLS of only about 7 generations in comparison to the median life span of about 27 generations for wild-type yeast and of 15 generations for sir2 mutants [91]. Yeast lacking both asf1 and sir2 are extremely short lived with a median lifespan of 4 to 5 generations, which demonstrates that Asf1 and Sir2 are acting independently to promote longevity.

A link between apoptosis and H3K4me3 was also observed in other species, although data here are somewhat controversial: while deficiency in MLL1, one of several H3K4 methyltransferases in mammals [137], and a lack of H3K4me3 was enhancing apoptosis induced by ER-stress [138], H3K4me3 recognition was necessary to stimulate DNA-repair after UV irradiation and to promote DNA-damage- [139, 140] or genotoxic stress-induced apoptosis [141], indicating that regulation of apoptosis by H3K4 methylation may occur in a context- and/or tissue-specific manner.

As outlined above, replicatively aged cells have increased H2Bub1, H3K4me4, and H3K79me4 in their telomeric heterochromatin, which is accompanied by the loss of transcriptional silencing at the telomeres. The anti-silencing activity of H2Bub, H3K4me, and H3K79me at telomeric regions is opposed by another histone methyltransferase: Set2 [35, 124]. Set2 mediates methylation of H3 at K36 (Table 1) [142, 143], which occurs independent of H2Bub1 [100, 144]. Methylated H3K36 has been implicated in transcriptional elongation and H3K36me3 is typically found to accumulate at the 3′end of active genes in association with the phosphorylated elongating form of RNA polymerase II [142, 145-147]. The anti-silencing function of Set2 was observed at all three heterochromatic regions in yeast and set2-depleted cells have a prolonged RLS as compared to wild-type cells [35, 124]. Contrary to yeast, loss of H3K36me3 and deletion of the methyltransferase met-1 shortened the lifespan of the nematode C. elegans [148], whereas loss of H3K4me3 is prolonging it [155], further supporting the context-dependency of histone modifications.

Histone modifications in yeast cell death

B. Fahrenkrog (2015)

Microbial Cell | January 2016 | Vol. 3 No. 1
Autophagy (or autophagy) is an evolutionary conserved process important for human health by which cytoplasmic contents, such as damaged organelles or aggregated proteins, are degraded by the lysosome/vacuole. Autophagy is primarily a pro-survival process, but it can also contribute to cell death, and it is becoming increasingly clear that the transcriptional regulation of autophagy-related genes is partially controlled by histone modifications and that this serves as a key determinant of survival versus death decision in autophagic cells [160]. Key in this context appears to be the loss of H3 and/or H4 acetylation, in yeast as well as in higher eukaryotes.

First evidence therefor came from studies on chronologically aged cells: chronologically aging and dying yeast cells show a decline in the levels of polyamines, a typical hallmark of aging across evolution [161-163]. Treating wild-type yeast cells with the exogenous polyamide spermidine extended theCLS due to deacetylation of histone H3 at K9, K14, and K18 through the inhibition of HATs, which coincided with suppression of oxidative stress and necrotic cell death [161]. The altered acetylation status of histone H3 led to a significant up-regulation of autophagy-related genes and consequently autophagy activation, not only in aging yeast, but also in *Drosophila, C. elegans*, and human cells [161]. Hyperacetylation of H3 at K14 and K18, but not K9, due to defects in acetate metabolism on the contrary led to a dramatically reduced CLS of yeast cells, which appeared to be due to the inability of the yeast mutants to induce autophagy [164, 165]. This negative effect of hyperacetylated H3 on cellular aging appears conserved across species [164, 165].

The critical linkage between histone modifications, the transcriptional regulation of autophagy-related genes and cell death is further supported by the observation that a decrease in H4K16ac due to the down-regulation of the HAT hMOF emerged from the induction of autophagy in distinct mammalian cell lines [166]. Similarly, the expression of Sas2, the yeast homolog of hMOF, and H4K16ac levels were found repressed upon autophagy induction in yeast [160, 166]. The inhibition of H4K16 deacetylation in mammalian cells did not inhibit autophagy, but increased the autophagic flux, whereas reduced H4K16ac was accompanied by the down-regulation of a large number of autophagy-related genes [160, 166]. Alongside with the reduction of H4K16ac also H3K4me3 is decreased upon autophagy induction in a wide variety of cells from yeast to higher eukaryotes, which may contribute to a general transcriptional inhibition to save energy during prolonged starvation [160]. Antagonizing H4K16 deacetylation by overexpressing of hMOF or by inhibiting the HDAC SIRT1, which has H4K16 as its primary histone target, resulted in increased cell death upon autophagy-induction [160, 166]. In a screen using a library of histone H3-H4 yeast mutants, acetylation of H3K56 was further found reduced in cells treated with the TOR-inhibitor rapamycin, which was proposed to result from the TOR-dependent repression of the H3K56 HDACs Hst3 and Hst4 [167]. How this relates to programmed cell death remains to be seen.

POTENTIAL DOWNSTREAM MECHANISMS OF EPIGENETIC REGULATION DURING CELL DEATH

While it is without any doubt that histone modifications are critical regulators of cell survival and death, it is only poorly understood how they and the coinciding chromatin rearrangements do so on a mechanistic level. The most obvious process influenced by alterations in histone modifications is transcription (Fig. 2).

In this context it has been shown that altered H2B ubiquitination in ∆*bre1* and ∆*ubp10* cells led to the enhanced expression of YCA1, likely due to the inappropriate localization of silencing complexes [34, 72, 73, 76]. H2B ubiquitination also plays a role in p53-mediated apoptosis in human cells, although rather indirectly: knockdown of the EHF transcription factor induced p53-dependent apoptosis, whereas its overexpression is required for the survival of p53-positive colon cancer cells [168]. EHF directly activates the transcription of RUVBL1, an ATPase associated with chromatin-remodeling complexes. RUVBL1 represses transcription of p53 and its target genes by binding to the p53 promoter, as well as by interfering with RNF20/hBRE1-mediated H2B monoubiquitination and by promoting trimethylation of H3 at K9 (H3K9me3), a transcriptional silencing mark [168]. In leukaemia cells, it was furthermore shown that inhibition of DOT1L, the sole human homolog of yeast Dot1, and H3K79 methylation increased apoptosis due to down-regulation of anti-apoptotic BCL2L1 [169]. Yeast cells lacking *RTT109* or *ASF1* and consequently H3K56 acetylation are characterized by the repression of cell cycle genes and an accumulation of cells with in G2/M phase of the cell cycle [91], whereas H4K16 acetylation is, across species, important for the transcriptional regulation of autophagy-related genes and the subsequent survival versus death response [160, 166]. Also, ribosomal DNA silencing is affected by changes in H4K16ac [77, 84, 86, 87, 91], which may lead to nucleolar stress and an apoptotic response [170]. Together these data indicate that altered histone modifications can directly influence apoptosis due to deregulated transcription of key apoptosis regulatory proteins and indirectly due to deregulation of, for example, cell cycle, autophagy, and ribosomal genes.

Impaired DNA DSB repair and replication defects are other nuclear processes that are influenced by histone modifications and might link them to apoptosis (Fig. 2). For example, H2B ubiquitination is required for Rad9-mediated checkpoint activation after DNA damage and Rad51-dependent DNA repair in yeast [63, 64] and similarly H3K4 and H3K79 methylation have been implicated in DNA repair as well as DNA replication and recombination [171, 172]. Indeed yeast cells lacking *set1* and H3K4me have impaired DSB repair and are accumulating mutations [33], as well as replication defects [118], but it remains to be seen if this is related to the increase in apoptotic death of these cells.

Another, rather unexpected regulatory mechanism that is influenced by histone modifications appears to be altered nucleocytoplasmic localization (Fig. 2). In HeLa cells it
was shown that cytochrome c, released from mitochondria upon apoptosis induction, is translocating into the nucleus, where it specifically binds acetylated H2A [173]. Nuclear, H2Aac-bound cytochrome c is causing chromatin condensation and further potentiating apoptosis [173]. The ING (Inhibitor of Growth) family of tumor suppressors acts as readers and writers of histone modifications and ING1 is a reader of H3K4me3 [139]. ING1 is a nuclear and nucleolar protein, where it exhibits apoptotic functions, and it translocates to mitochondria of primary human fibroblasts and epithelial cell lines in response to apoptosis stimuli [174]. ING1 harbors a BH3-like domain due to which it can bind pro-apoptotic Bax and promote mitochondrial membrane permeability [174]. In mammalian cells it was further shown that H2BS14ph is directly contributing to the inactivation of survival pathways, including NF-kB, due to immobilizing the RanGEF RCC1 on chromatin, thereby reducing nuclear RanGTP levels and inactivating nucleocytoplasmic transport [11].

CONCLUSION

Apoptotic cell death is accompanied by pronounced structural rearrangements within the cell, including chromatin architecture. Accumulating evidence points towards an epigenetic regulation of the chromatin remodelling events. A key player in this context appears to be monoubiquitination of histone H2B: it shelters yeast cells against intrinsic and extrinsic death stimuli. H2B monoubiquitination is prerequisite for methylation of histone H3K4 and H3K79, respectively, and H3K4 methylation appears as another vitally essential histone mark, whereas the role of H3K79 methylation is less clear. Importantly, the same histone modifications seemingly decide on the fate of higher eukaryotic cells, although context- and tissue-specific vari-
ances contribute to and complicate the particular decision. Nevertheless, these studies show that beyond the conservation of the apoptotic core machinery in yeast, also intrinsic triggers of cell death are conserved. Future studies are needed to further dissect the death code of yeast cells and most importantly to further identify and characterize the up- and downstream players that transmit the signals to and from the nucleus.

ACKNOWLEDGMENTS
This work was supported by grants from the Fonds Nationale de Recherche Scientifique (FNRS) Belgium (grant T.0237.13), the Fédération Wallonie-Bruxelles (ARC 4.110.F.000092F), the Fonds Brachet and the Fonds Van Buuren.

CONFLICT OF INTEREST
The author declares no conflict of interest.

COPYRIGHT
© 2015 Fahrenkrog. This is an open-access article released under the terms of the Creative Commons Attribution (CC BY) license, which allows the unrestricted use, distribution, and reproduction in any medium, provided the original author and source are acknowledged.

Please cite this article as: Birthe Fahrenkrog (2015). Histone modifications as regulators of life and death in Saccharomyces cerevisiae. Microbial Cell 3(1): 1-13. doi: 10.15698/mic2016.01.472

REFERENCES
1. Fadeel B, Orrenius S (2005). Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. Journal of internal medicine 258(6): 479-517.
2. Kerr JF, Wyllie AH, Currie AR (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4): 239-257. PMID: 4561027
3. Wyllie AH (1980). Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284(5756): 555-556. PMID: 6245367
4. Olins DE, Olins AL (2003). Chromatin history: our view from the bridge. Nat Rev Mol Cell Biol 4(10): 809-814.
5. Luger K, Dechassa ML, Tremethick DJ (2012). New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13(7): 436-447.
6. Bannister AJ, Kouzarides T (2011). Regulation of chromatin by histone modifications. Cell Res 21(3): 381-395.
7. Singh RK, Gunjan A (2011). Histone tyrosine phosphorylation comes of age. Epigenetics 6(2): 153-160.
8. Fullgrabe J, Hajji N, Joseph B (2010). Cracking the death code: apoptosis-related histone modifications. Cell Death Differ 17(8): 1238-1243.
9. Rockenfeller P, Madeo F (2008). Apoptotic death of ageing yeast. Exp Gerontol 43(10): 876-881.
10. Carmona-Gutierrez D, Eisenberg T, Buttner S, Meisinger C, Herlan M, Habernig L, Carmona-Gutierrez D, Rockenfeller P, Laun P, Breitenbach M, Khoury C, Frohlich KU, Meisinger C, Kroemer G, Madeo F (2004). An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166(4): 501-507.
11. Corte-Real M, Madeo F (2013). Yeast programed cell death and aging. Frontiers in oncology 3(283).
12. Fabrizio P, Longo VD (2003). The chronological life span of Saccharomyces cerevisiae. Aging Cell 2(2): 73-81. PMID: 12882320
13. Kaeberlein M (2010). Lessons on longevity from budding yeast. J Cell Sci 123(Pt 11): 115-126.
14. Laun P, Pichova A,Madeo F, Fuchs J, Ellinger A, Kohlein S, Dawes I, Frohlich KU, Breitenbach M (2003). Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39(5): 1166-1173.
15. Madeo F, Herker E, Maldener C, Wissig S, Lachelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Frohlich KU (2002). A caspase-related protease regulates apoptosis in yeast. Mol Cell 9(4): 911-917.
27. Walter D, Matter A, Fahrenkrog B (2014). Loss of histone H3 methylation at lysine 4 triggers apoptosis in Saccharomyces cerevisiae. *PloS Genet* 10(1): e1004095.

28. Wright DE, Wang CY, Kao CF (2011). Flickin’ the ubiquitin switch: the role of H2B ubiquitylation in development. *Epigenetics* 6(10): 1165-1175.

29. Rhie BH, Song YH, Ryu HY, Ahn SH (2013). Cellular aging is associated with increased ubiquitylation of histone H2B in yeast telomeric heterochromatin. *Biochem Biophys Res Commun* 439(4): 570-575.

30. Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM (2000). Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. *J Biol Chem* 275(13): 9390-9395.

31. Cheung WL, Ajiro K, Samejima K, Kloc M, Cheung P, Mizzen CA, Earnshaw WC, Allis CD (2010). Sterile twenty kinase. *Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell* 113(4): 507-517.

32. Ajiro K (2000). Histone H2B phosphorylation in mammalian apoptotic cells. An association with DNA fragmentation. *J Biol Chem* 275(1): 439-443.

33. Fernandez-Capetillo O, Allis CD, Nussenzeneg (2004). Phosphorylation of histone H2B at DNA double-strand breaks. *J Exp Med* 199(12): 1671-1677.

34. Ajiro K, Scoltock AB, Smith LK, Ashasima M, Cidlowski JA (2010). Reciprocal epigenetic modification of histone H2B occurs in chromatin during apoptosis in vitro and in vivo. *Cell Death Differ* 17(6): 984-993.

35. Suka N, Suka Y, Carmen AA, Wu J, Grunstein M (2001). Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. *Mol Cell* 8(2): 473-479.

36. Wong CH, Chan H, Ho CY, Lai SK, Chan KS, Koh CG, Li HY (2009). Apoptotic histone modification inhibits nuclear transport by regulating RCC1. *Nat Cell Biol* 11(1): 36-45.

37. Gorlich D, Pante N, Kutay U, Aebi U, Bischoff FR (1996). Identification of different roles for RanGDP and RanGTP in nuclear protein import. *EMBO J* 15(20): 5584-5594. PMID: 8966452.

38. Melchior F, Paschal B, Evans J, Gerace L (1993). Inhibition of nuclear protein import by nonhydrolyzable analogues of GTP and identification of the small GTPase Ran as a nuclear import factor. *J Cell Biol* 123(6 Pt 2): 1649-1659. PMID: 8276887.

39. Moore MS, Blobel G (1993). The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. *Nature* 365(6447): 661-663.

40. van Attikum H, Fritsch O, Hohn B, Gasser SM (2004). Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. *Cell* 119(6): 777-788.

41. Baker SP, Phillips J, Anderson S, Qiu Q, Shabanowitz J, Smith MM, Yates JR, 3rd, Hunt DF, Grant PA (2010). Histone H3 Thr 45 phosphorylation is a replication-associated post-translational modification in *S. cerevisiae*. *Nat Cell Biol* 12(3): 294-298.

42. Robzyk K, Recht J, Osley MA (2000). Rad6-dependent ubiquitination of histone H2B in yeast. *Science* 287(5452): 501-504.

43. Hwang WW, Venkatasubramanyam S, tanculescu AG, Tong A, Boone C, Madhani HD (2003). A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. *Mol Cell* 11(1): 261-266.

44. Wood A, Schneider J, Dover J, Johnston M, Shilatifard A (2003). The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. *The Journal of biological chemistry* 278(37): 34739-34742.

45. Kao CF, Hillyer C, Tsukuda T, Henry K, Berger S, Osley MA (2004). Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. *Genes & development* 18(2): 184-195.

46. Henry KW, Wyce A, Lo WS, Duggan LJ, Emre NC, Kao CF, Pillus L, Shilatifard A, Osley MA, Berger SL (2003). Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. *Genes & development* 17(21): 2648-2663.

47. Wyce A, Xiao T, Whelan KA, Kosman C, Walter W, Eick D, Hughes TR, Krogan NJ, Strahl BD, Berger SL (2007). H2B Ubiquitylation Acts as a Barrier to Ctk1 Nucleosomal Recruitment Prior to Removal by Ubp8 within a SAGA-Related Complex. *Science* 317(5836): 275-288.

48. Xiao T, Krogan NJ, Sun ZW, Greenblatt JF, Osley MA, Strahl BD (2005). Histone H2B ubiquitylation is associated with elongating RNA polymerase II. *Molecular and cellular biology* 25(2): 637-651.

49. Dover J, Schneider J, Tawiah-Boateng MA, Wood A, Dean K, Johnston M, Shilatifard A (2002). Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. *The Journal of biological chemistry* 277(32): 28368-28371.

50. Briggs SD, Bryk M, Strahl BD, Cheung WL, Davids JK, Dent SY, Winston F, Allis CD (2001). Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. *Genes Dev* 15(24): 3286-3295.

51. Mutiu AI, Hoke SM, Geneveaux J, Liang G, Brandl CJ (2007). The role of histone ubiquitylation and deubiquitylation in gene expression as determined by the analysis of an HTB1(K123R) Saccharomyces cerevisiae strain. *Mol Genet Genomics* 277(5): 491-506.

52. Sun ZW, Allis CD (2002). Ubiquitination of histone H2B regulates histone methylation and gene silencing in yeast. *Nature* 418(6893): 104-108.

53. Chandrasekharan MB, Huang F, Sun ZW (2009). Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. *Proc Natl Acad Sci U S A* 106(39): 16686-16691.

54. Shieh GS, Pan CH, Wu JH, Sun YJ, Wang CC, Hsiao WC, Lin CY, Tung L, Chang TH, Fleming AB, Hillyer C, Lo YC, Berger SL, Osley MA, Kao CF (2011). H2B ubiquitylation is part of chromatin architecture that marks exon-intron structure in budding yeast. * BMC genomics* 12(627).

55. Ma MK, Heath C, Hair A, West AG (2011). Histone crosstalk directed by H2B ubiquitination is required for chromatin boundary integrity. *PloS Genet* 7(7): e1002175.

56. Giannattasio M, Lazzaro F, Plevani P, Muzi-Falconi M (2005). The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1p. *J Biol Chem* 280(11): 9879-9886.

57. Game JC, Williamson MS, Spicakova T, Brown M (2006). The RAD6/BRE1 histone modification pathway in Saccharomyces confers radiation resistance through a RAD51-dependent process that is independent of RAD18. *Genetics* 137(4): 1951-1968.

58. Yamashita K, Shinohara M, Shinohara A (2004). Rad6-Bre1-mediated histone H2B ubiquitylation modulates the formation of double-strand breaks during meiosis. *Proc Natl Acad Sci U S A* 101(31): 11380-11385.

59. Bray S, Musisi H, Bientz M (2005). Bre1 is required for Notch signaling and histone modification. *Dev Cell* 8(2): 279-286.
60. Chernikova SB, Dorth JA, Razorenova OV, Game JC, Brown JM (2010). Deficiency in Bre1 impairs homologous recombination repair and cell cycle checkpoint response to radiation damage in mammalian cells. Radiation research 174(5): 558-565.

61. Kim J, Hake SB, Roeder RG (2005). The human homolog of yeast BRE1 functions as a transcriptional activator through direct activator interactions. Mol Cell 20(5): 759-770.

62. Wood A, Krogan NJ, Dover J, Schneider J, Heidt J, Boetang MA, Dean K, Golshani A, Zhang Y, Greenblatt JF, Johnston M, Shilatifard A (2003). Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol Cell 11(1): 267-274.

63. Zhu B, Zheng Y, Pham AD, Mandal SS, Erdjument-Bromage H, Tempst P, Reinberg D (2005). Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol Cell 20(4): 601-611.

64. Fujiyuki R, Hashiba W, Sekine H, Yokoyama A, Chikanishi T, Ito S, Imai Y, Kim J, He HH, Igarashi K, Kanno J, Ohtake F, Kitagawa H, Roeder RG, Brown M, Kato S (2011). GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature 480(7378): 557-560.

65. Burhans WC, Weinberger M, Marchetti MA, Ramachandran L, D’Urso G, Huberman JA (2003). Apoposis-like yeast cell death in response to DNA damage and replication defects. Mutation research 532(1-2): 227-243.

66. Emre NC, Ingvarsdottir K, Wyce A, Wood A, Krogan NJ, Henry KW, Li K, Marmorstein R, Greenblatt JF, Shilatifard A, Berger SL (2005). Maintenance of low histone ubiquitylation by Ubp10 correlates with telomere-proximal Sir2 association and gene silencing. Mol Cell 17(4): 585-594.

67. Gardner RG, Nelson ZW, Gotschling DE (2005). Ubp10/Dot4p regulates the persistence of ubiquitinated histone H2B: distinct roles in telomeric silencing and general chromatin. Mol Cell Biol 25(14): 6123-6139.

68. Bettiga M, Calzari L, Orlandi I, Alberghina L, Vai M (2004). Involvement of the yeast metacaspase Yca1 in ubp4p-programmed cell death. FEMS yeast research 5(2): 141-147.

69. Deshaies RJ, Joazeiro CA (2009). RING domain E3 ubiquitin ligases. Annual review of biochemistry 78:399-434.

70. Orlandi I, Bettiga M, Alberghina L, Vai M (2004). Transcriptional profiling of ubp10 null mutant reveals altered subtelomeric gene expression and insuriscence of oxidative stress response. J Biol Chem 279(8): 6414-6425.

71. Imai S, Armstrong CM, Kaebelerin M, Guarante L (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403(6771): 795-800.

72. Lettre G, Kritikou EA, Jaeggi M, Calixto A, Fraser AG, Kamath RS, Ahringer J, Hengartner MO (2004). Genome-wide RNAi identifies p53-dependent and -independent regulators of germ cell apoptosis in C. elegans. Cell death and differentiation 11(11): 1198-1203.

73. Chernikova SB, Razorenova OV, Higgins JP, Sisich BJ, Nicolau M, Dorth JA, Chernikova DA, Kwok S, Brooks JD, Bailey SM, Game JC, Brown JM (2012). Deficiency in mammalian histone H2B ubiquitin ligase Bre1 (Rnf20/Rnf40) leads to replication stress and chromosomal instability. Cancer Res 72(8): 2111-2119.

74. Levinger L, Varshavsky A (1982). Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within the Drosophila genome. Cell 28(5): 375-385. PMID: 6277512.

75. Davie JR, Lin R, Allis CD (1991). Timing of the appearance of ubiquitinated histones in developing new macronuclei of Tetrahymena thermophila. Biochem Cell Biol 69(1): 66-71. PMID: 1645982.

76. Hensold JO, Swerdlov PS, Housman DE (1988). A transient increase in histone H2A ubiquitination is coincident with the onset of erythroleukemic cell differentiation. Blood 71(4): 1153-1156. PMID: 2833326.

77. Vassiliev AP, Rasmussen HH, Christensen EI, Nielsen S, Celis JE (1995). The levels of ubiquitinated histone H2A are highly upregulated in transformed human cells: partial colocalization of H2A clusters and PCNA/cyclin foci in a fraction of cells in S-phase. J Cell Sci 108 (Pt 12): 1205-1215. PMID: 7622605.

78. Marusighe Y, Marusighe K (1995). Disappearance of ubiquitinated histone H2A during chromatin condensation in TGF beta 1-induced apoptosis. Anticancer research 15(2): 267-272. PMID: 7762993.

79. Mimmnaug G, Kayastha M, GB, Hwang SG, Marcu MG, Trepel J, Cai SY, Marchesi VT, Neckers L (2001). Caspase-dependent deubiquitination of monoubiquitinated nucleosomal histone H2A induced by diverse apoptogenic stimuli. Cell Death Differ 8(12): 1182-1196.

80. Briggs SD, Xiao T, Sun ZW, Caldwell JA, Shabanowitz J, Hunt DF, Allis CD, Strahl BD (2002). Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418(6897): 498.

81. Shahbazian MD, Zhang K, Grunstein M (2005). Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1. Mol Cell 19(2): 271-277.

82. Nakanishi S, Sanderson BW, Delventhal KM, Bradford WD, Steaple-Hampton K, Shilatifard A (2008). A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation. Nat Struct Mol Biol 15(8): 881-888.

83. Guccione E, Bassi C, Casadio F, Martinato F, Cesaroni M, Schuchlautz H, Luscher B, Amati B (2007). Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449(7164): 933-937.

84. Kirmizis A, Santos-Rosa H, Penkett CJ, Singer MA, Vermeulen M, Mann M, Bahler J, Green RD, Kouzarides T (2007). Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature 449(7164): 928-932.

85. Lee JS, Smith E, Shilatifard A (2010). The language of histone crosstalk. Cell 142(5): 682-685.

86. Wood A, Shukla A, Schneider J, Lee JS, Stanton JD, Dzubiia T, Swanson SK, Flores L, Washburn MP, Wyrick J, Bhamuk SR, Shilatifard A (2007). Ctk complex-mediated regulation of histone methylation by COMPASS. Mol Cell Biol 27(2): 709-720.

87. Xiao T, Shibata Y, Yao B, Laribee RN, O'Rourke R, Buck MJ, Greenblatt JF, Krogan NJ, Lieb JD, Strahl BD (2007). The RNA polymerase II kinase Ctk1 regulates positioning of a 5' histone methylation boundary along genes. Mol Cell Biol 27(2): 721-731.

88. Kouzarides T (2007). Chromatin modifications and their function. Cell 128(4): 693-705.

89. Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T (2002). Active genes are tri-methylated at K4 of histone H3. Nature 419(6905): 407-411.

90. Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS, Kouzarides T, Schreiber SL (2002). Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U S A 99(13): 8695-8700.

91. Ng HH, Robert F, Young RA, Struhl K (2003). Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11(3): 709-719.
92. Nislow C, Ray E, Pillus L (1997). SET1, a yeast member of the trithorax family, functions in transcriptional silencing and diverse cellular processes. Mol Biol Cell 8(12): 2421-2436. PMID: 9398665

93. Singer MS, Kahana A, Wolf AJ, Meisinger LL, Peterson SE, Goggin C, Mahowald M, Gottschling DE (1998). Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 150(2): 613-632. PMID: 9755194

94. Mikheyeva IV, Grady PJ, Tamburini FB, Lorenz DR, Cam HP (2014). Multifaceted genome control by Set1 Dependent and Independent of H3K4 methylation and the Set1C/COMPASS complex. PLoS Genet 10(10): e1004740.

95. Ryu HY, Rhie BH, Ahn SH (2012). Evidence that Set1, a factor required for methylation of histone H3, regulates rDNA silencing in Saccharomyces cerevisiae by a Sir2-independent mechanism. Curr Biol 22(12): 165-170.

96. Ng HH, Ciccone DN, Morshed KB, Oettinger MA, Struhl K (2003). Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position-effect variegation. Proc Natl Acad Sci U S A 100(4): 1820-1825.

97. Faucher D, Wellinger RJ (2010). Methylated H3K4, a transcription-associated histone modification, is involved in the DNA damage response pathway. PLoS Genet 6(8).

98. Rizzardi LF, Dorn ES, Strahl BD, Cook JG (2010). Methylation of H3-lysine 79 is mediated by a new SET-domain protein. PLoS Genet 6(9).

99. Shilatifard A (2002). Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 71:65-95.

100. Shilatifard A (2006). Histone modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243-269.

101. Roguev A, Schaft D, Shevchenko A, Pijnappel WW, Wilm M, Aasland R, Stewart AF (2001). The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 20(24): 7137-7148.

102. Krogan NJ, Dover J, Khorrami S, Greenblatt JF, Schneider J, Johnston M, Shilatifard A (2002). COMPASS, a histone H3 (lysine-4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem 277(13): 10753-10755.

103. Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, Greenblatt JF, Shilatifard A (2001). COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci U S A 98(32): 12902-12907.

104. Ryu HY, Rhie BH, Ahn SH (2014). Loss of the Set2 histone methyltransferase increases cellular lifespan in yeast cells. Biochem Biophys Res Commun 446(1): 113-118.

105. Malik S, Bhaumik SR (2010). Mixed lineage leukemia: histone H3 lysine 4 methyltransferases from yeast to human. FEBS J 277(8): 1805-1821.

106. Wang X, Lu L, Fan J, Zhu Y, Liu X, Zhu K, Wu M, Li L (2014). Histone H3K4 methyltransferase Mi21 regulates protein glycosylation and tunicamycin-induced apoptosis through transcriptional regulation. Biochim Biophys Acta 1843(11): 2592-2602.

107. Peña PV, Hom RA, Hung T, Lin H, Kuo AJ, Wong RP, Subach OM, Champagne KS, Zhao R, Verkholova VV, Li G, Gozani O, Kutateladze TG (2008). Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor. Journal of molecular biology 380(2): 303-312.

108. Tyagi S, Herr W (2009). EZF1 mediates DNA damage and apoptosis through HCF-1 and the MLL family of histone methyltransferases. EMBO J 28(20): 3185-3195.

109. Hung T, Binda O, Champagne KS, Kuo AJ, Johnson K, Chang HY, Simon MD, Kutateladze TG, Gozani O (2009). ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell 33(2): 248-256.

110. Jones B, Su H, Bhat A, Lei H, Bajko J, Hevi S, Baltsus GA, Kadam S, Zhai H, Valdez R, Gonzalo S, Zhang Y, Li E, Chen T (2008). The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 4(9): e1000190.

111. van Leeuwen F, Gafken PR, Gottschling DE (2002). Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109(6): 745-756.

112. Lacoste N, Utley RT, Hunter JM, Poirier GG, Cote J (2002). Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J Biol Chem 277(34): 30421-30424.

113. Huyen Y, Zgeib D, Ditulio RA, Jr., Gorgoulis VG, Zacharatos P, Petty TJ, Sheston EA, Mellert HS, Stavridi ES, Halazonetis TD (2004). Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432(7015): 406-411.

114. Baas F, van Leeuwen F, Haferkamp J, Wyrick JJ, Smerdon MJ (2002). Characterization of the grappa gene, the Drosophila homolog of histone H3 lysine 79 methyltransferase. Genetics 161(1): 173-184.
Histone modifications in yeast cell death

125. Kim S, Benguria A, Lai CY, Jazwinski SM (1999). Modulation of lifespan by histone deacetylase genes in Saccharomyces cerevisiae. Mol Biol Cell 10(10): 3125-3136. PMID: 10512855

126. Brachmann CB, Sherman JM, Devine SE, Cameron EE, Pillus L, Boeke JD (1995). The Sir2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev 9(23): 2888-2902. PMID: 7498786

127. Bryk M, Banerjee M, Murphy M, Knudsen KE, Garfinkel DJ, Curio MJ (1997). Transcriptional silencing of T� elements in the RDN1 locus of yeast. Genes Dev 11(2): 255-269. PMID: 9009207

128. Fritzze CE, Verschueren K, Strich R, Easton Esposito R (1997). Direct evidence for Sir2 modulation of chromatin structure in yeast rDNA. EMBO J 16(21): 6495-6509.

129. Smith JS, Boeke JD (1997). An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 11(2): 241-254. PMID: 9009206

130. Smith JS, Brachmann CB, Pillus L, Boeke JD (1998). Distribution of a limited Sir2 protein pool regulates the strength of yeast rDNA silencing and is modulated by Sir4p. Genetics 149(3): 1205-1219. PMID: 9649515

131. Kaebelme R, McVey M, Guarente L (1999). The Sir2/3/4 complex and Sir2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13(19): 2570-2580. PMID: 10521401

132. Lamming DW, Latorre-Estives M, Medvedovic O, Wong SN, Tsang FA, Wang C, Lin SJ, Sinclair DA (2005). HST2 mediates Sir2-independent life-span extension by calorie restriction. Science 309(5742): 1861-1864.

133. Gottlieb S, Esposito RE (1989). A new role for a yeast transcriptional silencer gene, Sir2, in regulation of recombination in ribosomal DNA. Cell 56(5): 771-776. PMID: 2647300.

134. Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, Kaebelme R, Kennedy BK, Berger SL (2009). Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459(7248): 802-807.

135. Feser J, Truong D, Das C, Carson JJ, Kieft J, Harkness T, Tyler JK (2010). Elevated histone expression promotes life span extension. Mol Cell 39(5): 724-735.

136. Li J, Moazed D, Gygi SP (2011). Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation. J Biol Chem 277(51): 49383-49388.

137. Strahl BD, Grant PA, Briggs SD, Sun ZW, Bone JR, Caldwell JA, Mollah S, Cook RG, Shabanowitz J, Hunt DF, Allis CD (2002). Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol 22(5): 1298-1306.

138. Ng HH, Xu RM, Zhang Y, Struhl K (2007). Ubiquitination of histone H2B by Rpd3 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J Biol Chem 277(38): 34655-34657.

139. Li B, Howe L, Anderson S, Yates JR, 3rd, Workman JL (2003). The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 278(11): 8897-8903.

140. Schaft D, Rogue A, Kotovic KM, Chevchenko A, Sarov M, Chevchenko A, Neugebauer KM, Stewart AF (2003). The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation. Nucleic Acids Res 31(10): 2475-2482.

141. Xiao T, Hall H, Kizer KO, Shibata Y, Hall MC, Borchers CH, Strahl BD (2003). Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev 17(5): 654-663.
158. Hiraga S, Botsios S, Donaldson AD (2008). Histone H3 lysine 56 acetylation by Rtt109 is crucial for chromosome positioning. *J Cell Biol* 183(4): 641-651.

159. Kozak ML, Chavez A, Dang W, Berger SL, Ashok A, Xu O, Johnson FB (2010). Inactivation of the Sas2 histone acetyltransferase delays senescence driven by telomere dysfunction. *EMBO J* 29(1): 158-170.

160. Vaquero A, Sternglanz R, Reinberg D (2007). NAD+-dependent deacetylation of H4 lysine 16 by class I HDACs. *Oncogene* 26(37): 5505-5520.

161. Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Frohlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F (2009). Induction of autophagy by spermidine promotes longevity. *Nat Cell Biol* 11(11): 1305-1314.

162. Madeo F, Eisenberg T, Buttner S, Ruckenstuhl C, Kroemer G (2010). Spermidine: a novel autophagy inducer and longevity elixir. *Autophagy* 6(1): 160-162.

163. Scalabrino G, Ferioli ME (1984). Polyamines in mammalian ageing: an oncological problem, too? A review. *Mech Ageing Dev* 26(2-3): 149-164.

164. Eisenberg T, Schroeder S, Andryushkova A, Pendl T, Kuttner V, Bhukel A, Marino G, Pietrocola F, Harger A, Zimmermann A, Mustafa T, Sprenger A, Jany E, Buttner S, Carmona-Gutierrez D, Ruckenstuhl C, Ring J, Reichelt W, Schimmel K, Leeb T, Moser C, Schatz S, Kamolz LP, Magnes C, Sinner F, Sedej F, Frohlich KU, Juhasz G, Pieber TR, Dengjel J, et al. (2014). Nucleocytoplasmic depletion of the energy metabolite acetyl-coenzyme A stimulates autophagy and prolongs lifespan. *Cell Metabolism* 19(3): 431-444.

165. Schroeder S, Pendl T, Zimmermann A, Eisenberg T, Carmona-Gutierrez D, Ruckenstuhl C, Marino G, Pietrocola F, Harger A, Magnes C, Sinner F, Pieber TR, Dengjel J, Sigrist SJ, Kroemer G, Madeo F (2014). Acetyl-coenzyme A: a metabolic master regulator of autophagy and longevity. *Autophagy* 10(7): 1335-1337.

166. Fullgrabe J, Lynch-Day MA, Heldring N, Li W, Struijk RB, Ma Q, Hermanson O, Rosenfeld MG, Klionsky DJ, Joseph B (2013). The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy. *Nature* 500(7463): 468-471.

167. Chen H, Fan M, Pfeller LM, Larabee RN (2012). The histone H3 lysine 56 acetylation pathway is regulated by target of rapamycin (TOR) signaling and functions directly in ribosomal RNA biogenesis. *Nucleic Acids Res* 40(14): 6534-6546.

168. Taniue K, Oda T, Hayashi T, Okuno M, Akiyama T (2011). A member of the ETS family, EH, and the ATnPase RUVBL1 inhibit p53-mediated apoptosis. *EMBO Rep* 12(7): 682-689.

169. Liu W, Deng L, Song Y, Redell M (2014). DOT1L inhibition sensitizes MLL-rearranged AML to chemotherapy. *PLoS One* 9(5): e98270.

170. Prokhorova EA, Zamarava AV, Kopeina GS, Zhivotovsky B, Lavrik IN (2015). Role of the nucleus in apoptosis: signaling and execution. *Cell Mol Life Sci* 72(23): 4593-4612.

171. Chandrasekharan MB, Huang F, Sun ZW (2010). Histone H2B ubiquitination and beyond: Regulation of nucleosome stability, chromatin dynamics and the trans-histone H3 methylation. *Epigenetics* 5(6): 460-468.

172. Wood A, Schneider J, Shilatifard A (2005). Cross-talking histones: implications for the regulation of gene expression and DNA repair. *Biochem Cell Biol* 83(4): 460-467.

173. Nur EKA, Gross SR, Pan Z, Balklava Z, Ma J, Liu LF (2004). Nuclear translocation of cytochrome c during apoptosis. *J Biol Chem* 279(24): 24911-24914.

174. Bose P, Thakur S, Thalappilly S, Ahn BY, Satpathy S, Feng X, Suzuki K, Kim SW, Riabowol K (2013). ING1 induces apoptosis through direct effects at the mitochondria. *Cell death & disease* 4:e788.