Genetic Susceptibility to Normal Tension Glaucoma (NTG)

Barkur S. Shastry1*

1Department of Biological Sciences, Oakland University, Rochester, MI, USA.

Author’s contribution

This work was carried out by the author BSS. Author BSS read and approved the final manuscript.

ABSTRACT

Aims: The Purpose of this short article is to summarize the recent developments in the genetics of normal tension glaucoma (NTG).

Background: Glaucoma is one of the leading causes of irreversible blindness. Primary open-angle glaucoma (POAG) is the most common type of glaucoma in most populations and is frequently associated with elevated intraocular pressure (IOP). However, patients with POAG can also have IOP within the normal range and they are classified as having normal tension glaucoma (NTG) – most likely an independent entity. In NTG, the optic nerve head is just susceptible to normal IOP. Therefore, factors other than elevated IOP are likely to play a role in the pathogenesis of glaucoma. Although factors such as myopia, older age, vasospasm, ischemia and vascular insufficiency are indicated to be associated with the development of NTG, substantial percentage of NTG patients (21%) have a family history of glaucoma suggesting that these patients may have a genetic predisposition for developing NTG.

Methodology: Using the keywords or phrases such as glaucoma, genetics, normal tension glaucoma, open-angle glaucoma and retinal ganglion cell, the literature search was carried out.

Results: NTG is a genetically complex disorder and many genes have been reported to be associated with the development of glaucoma. However, none of them account for a substantial portion of patient population. A complex glaucoma pathogenesis may include interplay among several factors such as genetic, epigenetic and environmental factors. Therefore, an understanding of IOP independent mechanisms of development

*Corresponding author: Email: shastry@oakland.edu;
of NTG is important.

Conclusion: NTG is relatively a less explored avenue of research. There has been paucity of research into the genetic basis of NTG.

Keywords: Blindness; degeneration; ganglion; gene; glaucoma; retina.

1. **INTRODUCTION**

Glaucoma is a multifactorial degenerative optic neuropathy and causes permanent damage of the retina and optic nerve [1] resulting in blindness. It is estimated that glaucoma affects nearly 70 million people worldwide [2]. The condition is characterized by the slow progressive loss of retinal ganglion cells (RGCs), optic nerve axons and visual field damage. It is the second leading cause of blindness and most often associated with elevated intraocular pressure (IOP). Epidemiological studies suggest that primary open-angle glaucoma (POAG) is the most common type of all glaucoma types and many patients have high IOP [3]. A host of genetic and environmental factors are considered to be contributing to glaucoma phenotypes [4-5]. For instance, in certain population, older age, history of thyroid disease, higher IOP and myopia have been reported to be significant risk factors for POAG [6-9]. These environmental risk factors exert their effects on IOP (either by decreasing or increasing) and/or the rate of RGC apoptosis.

Normal tension glaucoma (NTG) is a sub set of POAG – most likely an independent entity. Approximately one third of all Caucasian POAG patients have statistically normal (10-21 mmHg) IOP [10-11]. However, such patients show typical pathological cupping of the optic nerve similar to POAG. Therefore, factors other than elevated IOP are likely to play a role in the pathogenesis of glaucoma. In support of this is the finding that in some glaucoma patients significant IOP reduction does not prevent progression of disease and they continue to lose vision [12-13]. NTG is most prevalent in Japanese (3.6%) and Korean (2.04%) populations than in the Caucasian population (0.6%) [14-15]. In Japanese population, 92% of patients with POAG had NTG with an IOP of 21 mm Hg or less [16]. In Korean population, POAG with low IOP is the most common form accounting for 94.4% of the total number of cases [17]. Many individuals have IOP elevation without optic nerve damage and some individuals develop optic nerve degeneration without elevated IOP [18]. Therefore, it has been proposed that elevation in IOP is neither necessary nor sufficient for the onset of the progression of the disorder or optic nerve damage [18-20]. An understanding of IOP independent mechanisms of RGCs loss is therefore important in NTG. Factors such as myopia, older age, vasospasm, ischemia and vascular insufficiency are indicated to be associated with the development of NTG. However, a substantial percentage of NTG patients (21%) have a family history of glaucoma suggesting that these patients may have a genetic predisposition for developing NTG [21]. The aim of this short article is to summarize the recent developments in the genetics of NTG and no attempt has been made to discuss the entire field of glaucoma.

1.1 **Genetic Factors in NTG**

Glaucoma is genetically heterogeneous and many genes have been reported to be associated with the development of glaucoma [22]. The monogenic forms are rare in NTG and therefore, for the majority of cases a multigenic inheritance was proposed. For instance, a genetic locus (GLC1P) for familial NTG has been localized on chromosome 12q14 and
780 kbp duplication within this locus has been identified. Immunohistochemical, microarray expression and northern blot analyses suggest that duplication of TANK–binding kinase –1 (TBK1) gene is likely responsible for glaucoma in the patients analyzed [23-24]. This gene is expressed in the nerve fiber layer, ganglion cells and microvasculature of the human retina. It is suggested that its duplication may involve dysregulation of gene expression [25] or chromosomal rearrangement that may disrupt other genes. Recently, genome wide association studies (GWAS) have also identified a strong association of one single SNP (rs 523096) located on chromosome 9p21 in Japanese NTG patients [26]. Studies also demonstrate that genes in the GLC1F locus may be associated with the pathogenesis of NTG in Japanese patients [27]. In addition, microsatellite analysis of the GLC1B locus on chromosome 2 suggests that D2S176 marker had the strongest significant association implicating a candidate gene on chromosome 2 for further studies [28].

Association studies have also identified risk alleles in the SiRNA binding domain 1 (SRBD1) and fatty acid elongase 5 (ELOVL5) genes for NTG [29] but their significance remains to be established. In addition, association of single SNP in optineurin (OPTN), mitofusin-1 (MFN-1), mitofusin –2 (MFN-2), presenilin associated rhomboid –like (PARL) and optic atrophy (OPA1) genes has been reported for NTG [30-33]. Among these genes, OPA1 gene is interesting because many clinical characteristics of NTG are similar to OPA1. Therefore, it is possible that pathogenic mutations in OPA1 gene may be responsible for NTG. The OPA1 gene encodes a protein involved in mitochondrial metabolic functions. Hence it was proposed that NTG could be considered as a hereditary optic neuropathy of mitochondrial dysfunction [34]. However, the above mutational studies on OPA1 gene are based on relatively small sample sizes and more comprehensive studies did not reveal an association with OPA1 gene polymorphisms [31,35-38]. This could be due to ethnic differences in the association between OPA1 gene polymorphisms and NTG. There are also inconsistent reports regarding OPTN gene association with NTG [39-40]. It is likely that mutations in the OPTN gene are associated with rare cases of NTG patients and families. However, the mechanism involved of OPTN gene in glaucoma pathogenesis remains elusive.

Similarly, apolipoprotein E (ApoE) polymorphisms were reported to be associated with Chinese and Tasmanian populations [41-42] but not in another population [43]. In German population, studies suggest that myocilin (MYOC), OPTN and WDR-36 (tryptophan and aspartic acid repeat domain 36) gene variants are rare causes of NTG [44-48]. Mutations in these genes are already known to be associated with POAG that are characterized by elevated IOP. This may suggest that mechanisms of development of NTG may be very complex. Matrix metalloproteinases (MMP-9 and MMP-14) are involved in tissue modeling in glaucomatous optic neuropathy [49]. These metalloproteinases (genes) are found to be upregulated in NTG [50]. Similarly, an altered gene expression in lymphocytes has been found in NTG patients [51]. The significance of these findings in relation to NTG remains to be elucidated. Many other genes have also been studied for their involvement in NTG but they are not found to be associated with NTG (Table 1) suggesting that they may not have any role in the pathogenesis of optic neuropathy in NTG.
Table 1. A partial list of genes that are reported to be either associated or not associated with NTG

Gene	Association	No association		
	Seq. change	Reference	Gene	Reference
OPA1	IVS 8+4 C to T	[86]	ApoE	[43]
	IVS 8+32 T to C	[31,38,87]	LHON	[92]
OPTN	Met98Lys	[88]	p53	[93]
	His26Asp	[89]	Toll-like R2	[56]
Glu50Lys	677 C to T	[90]	IL-1 alpha	[94]
MTHFR		[91]	IL-1 beta	[95]
			LOXL-1	[96,97]

OPA1 = optic atrophy; OPTN = optineurin; ApoE = apolipoprotein E; LHON = Leber’s hereditary optic neuropathy; p53 = tumor suppressor protein; IL-1 = interleukin-1; MTHFR = methylenetetrahydrofolate reductase; LOXL-1 = lysyl oxidase like 1; IVS = intervening sequence.

Endothelin-1 is a vasoconstrictor and hence it may reduce the blood flow to the optic nerve head [52]. This may result in ischemia and that may cause RGCs death. It is also possible that it may change the axonal transport of the optic nerve that may have direct effect on optic nerve function [53]. In accordance with this is the finding of association of endothelin receptor type A gene polymorphism with NTG [54-55]. Although the function of this 3'-untranslated region (UTR) polymorphism is unknown, it may alter the level of gene expression. Similarly, toll-like receptor 4 (TLR4) mediate immune response to exogenous and endogenous ligands [56]. They may also interact with heat shock proteins which are implicated in glaucoma. Multiple SNPs in the TLR4 gene are reported to be associated with the risk of NTG in some populations but not in a Korean population [57-58]. In particular, one SNP (rs 7037117) in the 3'-UTR of the TLR4 gene is associated with NTG and this may also participate in the regulation of mRNA stability, translation and localization. Although the immunoregulation of heat-shock proteins is an important component of glaucoma [59] the factors contributing to the development of NTG have not been understood. In addition, natriuretic peptide gene polymorphisms and HLA-DRB1 gene are not associated with NTG suggesting that these genes do not play a role in the pathogenesis of NTG [60-61].

1.2 Animal Models

Transgenic mice expressing mutant human MYOC [62-63], OPTN [64] and WDR 36 [65] genes have been developed. These mice exhibited glaucoma. These heterologous mutant genes also affected retinal ganglion cell growth leading to a progressive retinal degeneration. For instance, E50K mutant OPTN gene selectively induced the death of RGCs and this was inhibited by antioxidants [66-67] suggesting that cell death was mediated by oxidative stress. Animal models representing NTG have also been developed but some of them are suitable as models of ischemia or optic nerve injury [68-69]. However, one model is particularly interesting for further discussion. For instance, it is well known that glutamate is the major excitatory neurotransmitter in the mammalian retina. Therefore, it is suggested that excessive stimulation of glutamatergic system could be the risk factor for the death of RGCs in glaucoma [70-71]. The solute carrier family 1 member 3 (SLC1A3) gene encodes a gliotype glutamate aspartate transporter (GLAST). This transporter is regulated to remove glutamate from the extracellular fluid in the retina. Because of this, extracellular glutamate concentrations will be kept below the neurotoxic level. Therefore, it has been proposed that GLAST dysfunction and the resultant elevation of glutamate levels may contribute to the death of RGCs in glaucoma patients. In accordance with this is the finding that mice deficient
with GLAST and excitatory carrier –1 (EAAC-1) exhibit spontaneous RGC death and optic nerve degeneration without elevated IOP [72-73]. However, there were no statistically significant differences in the allele frequency of SLC1A3 gene between NTG and normal patients [74]. Similarly, apoptosis signal-regulating kinase –1 (Ask-1) deficient mice are less susceptible to ischemic injury [75]. Studies on GLAST+/−: Ask-1−/− and GLAST−/−: Ask-1−/− mice suggest that Ask-1 activation is involved in NTG like pathology in both neural and glial cells. They also exhibit reduced RGC death, decreased axonal loss and mild visual disturbance [76]. These animal models are a powerful system for investigating mechanisms of neurodegeneration in NTG and developing therapies directed at IOP independent mechanisms of RGCs death [72]. In this respect, Ask-1 may be a potential therapeutic target for NTG.

1.3 Concluding Remark

Glaucoma is one of the leading causes of irreversible blindness. It is characterized by progressive degeneration of retinal ganglion cell and optic nerve. Although glaucoma is associated with elevated IOP, studies have shown that a subset of patients with POAG has normal IOP. This condition is called NTG and patients with NTG show typical pathological cupping of the optic nerve. Hence factors other than elevated IOP are likely to play a role in the pathogenesis of glaucomatous optic neuropathy in individuals with NTG. In support of this proposal is the finding that in some glaucoma patient’s significant IOP reduction does not prevent progression of disease [12,13]. Glaucoma including NTG is a genetically complex disorder and genes play a significant role in the pathogenesis. A complex glaucoma pathogenesis may include interplay among several factors such as genetic, epigenetic and environmental factors.

At present IOP is the only modifiable risk factor for the prevention or progression of glaucoma and low IOP is associated with reduced progression of visual field defect [77-78]. However, this cannot be applied to NTG. Recent development on stem-cell therapy may be interesting. The initial results of clinical trials in patients using stem-cell therapy showed some visual benefits with no sign of tumorigenicity [79-84]. Therefore, stem-cell therapy may be a promising approach to treat patients with retinal disease in the future. However, further research will be needed and an understanding of the role of epigenetics is also important to the success of the stem cell-based therapies [85]. In the future, studies will uncover the epigenetic mechanism contributing to glaucoma. A strong emphasis must be placed on epigenetics in the analysis of complex phenotypic variation. It may be necessary to develop a human methylation map to understand the difference in transcript expression. Epigenetic mechanisms in ophthalmology are truly exciting areas of research.

COMPETING INTERESTS

Author has declared that no competing interests exist.

CONSENT

Not applicable.

ETHICAL APPROVAL

Not applicable.
REFERENCES

1. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The identification and classification of glaucoma in prevalence surveys. Br J Ophthalmol. 2002;86(2):238-242.
2. Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol 1996;80(5):389-393.
3. Quigley HA. Open-angle glaucoma. New Engl J Med. 1993;328(15):1097-1106.
4. Shastry BS. Emerging concept of genetic and epigenetic contribution to the manifestation of glaucoma. In Glaucoma: new findings. Rumelt S. ed. InTech press, Israel 2012. (in press).
5. Shastry BS. Genetic risk factors in glaucoma. In Advances in Medicine and Biology. Berhardt LV ed. Nova Science Publishers, NY.
6. Kim M, Kim TW, Park KH, Kim JM. Risk factors for primary open-angle glaucoma in South Korea. Jpn J Ophthalmol. 2012;56(4):324-329.
7. Suzuki Y, Iwase A, Araie M, Yamamoto T, Abe H, Shirato S, et al. Risk factors for open-angle glaucoma in a Japanese population: the Tijimi study. Ophthalmol 2006;113(9):1613-1617.
8. Marcus MW, deVries MM, Junoy Montolio FG, Jansonius NM. Myopia as risk factors for open-angle glaucoma: a systematic review and meta-analysis. Ophthalmol. 2011;118(10):1989-1994 e2.
9. Xu L, Wang Y, Wang S, Wang Y, Jonas JB. High myopia and glaucoma susceptibility: the Beijing eye study. Ophthalmol. 2007;114(2):216-220.
10. Hitchings RA, Anderson SA. A comparative study of visual field defects seen in patients with low tension glaucoma and chronic simple glaucoma. Br J Ophthalmol. 1983;67(12):818-821.
11. Hitchings RA. Low tension glaucoma: its place in modern glaucoma practice. Br J Ophthalmol 1992;76(8):494-496.
12. Friedman DS, Wilson MR, Liebmann JM, Fechtner RD, Weinreb RN. An evidence based assessment of risk factors for the progression of ocular hypertension and glaucoma. Am J Ophthalmol. 2004;138(3 suppl):S19-S31.
13. Caprioli J. Neuroprotection for the optic nerve in glaucoma. Acta Ophthalmol Scand. 1997;75(4):364-367.
14. Shiose Y, Kitazawa Y, Tsukahara S, Akamatsu T, Mizokami K, Futa R et al. Epidemiology of glaucoma in Japan – a nation wide glaucoma survey. Jap J Ophthalmol. 1991;35(2):133-155.
15. Kim CS, Seong GJ, Lee NH, Song KC. Namil study group, Korean glaucoma society, prevalence of primary open-angle glaucoma in central south Korea, the Namil study. Ophthalmol. 2011;118(6):1024-1030.
16. Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S. et al. The prevalence of primary open-angle glaucoma in Japanese: The Tajimi study. Ophthalmol. 2004;111(9):1641-1648.
17. Kim JH, Kang SY, Kim NR, Lee ES, Hong S, Seong GJ, et al. Prevalence and characteristics of glaucoma among Korean adults. Korean J Ophthalmol 2011;25(2):110-115.
18. Wiggs JL. The cell and molecular biology of complex forms of glaucoma: updates on genetic, environmental, and epigenetic risk factors. Invest Ophthalmol Vis Sci. 2012;53(5):2467-2469.
19. Drance SM. Glaucoma: a look beyond intraocular pressure. Am J Ophthalmol. 1997;123(6):817-819.
20. Pascale A, Drago F, Govoni S. Protecting the retinal neurons from glaucoma: lowering ocular pressure is not enough. Pharmacol Res. 2012;66(1):19-32.
21. Drance S, Anderson DR, Schulz M. Collaborative normal tension glaucoma study group. Risk factors for progression of visual field abnormalities in normal tension glaucoma. Am J Ophthalmol. 2001;131(6):699-708.
22. Libby RT, Gould DB, Anderson MG, John SW. Complex genetics of glaucoma susceptibility. Ann Rev Genomics Hum Genet. 2005;6:15-44.
23. Fingert JH, Robin AL, Stone JL, Roos BR, Davis LK, Schutz TE, et al. Copy number variation on chromosome 12q14 in patients with normal tension glaucoma. Hum Mol Genet. 2011;20(12):2482-2494.
24. Kawase K, Allingham RR, Meguro A, Mizuki N, Roos B, Solivan-Timpse FM, et al. Confirmation of TBK1 duplication in normal tension glaucoma. Exp Eye Res. 2012;96(1):178-180.
25. Pomerantz JL, Baltimore D. NF-kappa B activation by signaling complex containing TRAP2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 1999;18(23):6694-6704.
26. Takamoto M, Kaburaki T, Mabuchi A, Araie M, Amano S, Aihara M, et al. Common variants on chromosome 9p21are associated with normal tension glaucoma. PLoS One. 2012;7(7):e40107.
27. Murakami K, Meguro A, Ota M, Shiota T, Nomura N, Kashiwagi K, et al. Analysis of microsatellite polymorphism with the GLC1F locus in Japanese patients with normal tension glaucoma. Mol Vis. 2010;16:462-466.
28. Akiyama M, Yatsu K, Ota M, Kanasuya Y, Kashiwagi K, Mabuchi F, et al. Microsatellite analysis of the GLC1B locus on chromosome 2 points to NCK2 as a new candidate gene for normal tension glaucoma. Br J Ophthalmol. 2008;92(9):1293-1296.
29. Meguro A, Inoko H, Ota M, Mizuki N, Bahram S. Genome-wide association study of normal tension glaucoma: common variants in SRBD1 and ELOVL5 contribute to disease susceptibility. Ophthalmol. 2010;117(7):1331-e5-1338e5.
30. Wolf C, Gramer E, Muller-Myhsok B, Pasutto F, Reinthal E, Wissinger B, et al. Evaluation of nine candidate gene in patients with normal tension glaucoma: a case control study. BMC Med Genet. 2009;10:91-96.
31. Powell BL, Toomes C, Scott S, Yeung A, Marchbank NJ, Spry PG, et al. Polymorphisms in OPA1 gene associated with normal tension glaucoma. Mol Vis 2003 Sept; 9: 460-464.
32. Mabuchi F, Tang S, Kashiwagi K, Yamagata C, Iijima H, Tsukahara S. The OPA1 gene polymorphism is associated with normal tension and high tension glaucoma. Am J Ophthalmol. 2007;143(1):125-130.
33. Aung T, Okada L, Ebenezer ND, Morris AG, Brice G, Child AH, et al. Investigating the association between OPA1 polymorphisms and glaucoma: comparison between normal tension and high tension primary open angle glaucoma. Hum Genet. 2002;110(5):513-514.
34. Buono LM, Foroozian R, Serragot RC, Savino PJ. Is normal tension glaucoma actually an unrecognized hereditary optic neuropathy? New evidence from genetic analysis. Curr Opin Ophthalmol. 2002;13(6):362-370.
35. Liu Y, Schmidt S, Qin X, Gibson J, Munro D, Wiggs JL, et al. No association between OPA1 polymorphisms and open angle glaucoma in three different populations. Mol Vis. 2007;13:2137-2141.
36. Woo SJ, Kim DM, Kim JY, Park SS, Ko HS, Yoo T. Investigation of the association between OPA1 polymorphisms and normal tension glaucoma in Korea. J Glaucoma. 2004;13(6):492-495.
37. Aung T, Okada K, Poinnoosawmy D, Membrey L, Brice G, Child AH, et al. The phenotype of normal tension glaucoma patients with and without OPA1 polymorphisms. Br J Ophthalmol. 2003;87(2):149-152.
38. Aung T, Ocaka L, Ebenezer ND, Morris AG, Krawczak M, Thiselton DL, et al. A major marker for normal tension glaucoma: association with polymorphisms in the OPA1 gene. Hum Genet. 2002;110(1):52-56.
39. Toda Y, Tang S, Kashiwagi K, Mabuchi F, Iijima H, Tsukahara S, et al. Mutations in the optineurin gene in Japanese patients with primary open-angle glaucoma and normal tension glaucoma. Am J Med Genet A. 2004;125A(1):1-4.
40. Tang S, Toda Y, Kashiwagi K, Mabuchi F, Iijima H, Tsukahara S, et al. The association between Japanese primary open-angle glaucoma and normal tension glaucoma patients and the optineurin gene. Hum Genet. 2003;113(3):276-279.
41. Lam CY, Fan BJ, Wang DY, Tam PO, Yung Tham CC, Leung DY, et al. Association of apolipoprotein E polymorphisms with normal tension glaucoma in a Chinese population. J Glaucoma. 2006;15(3):218-222.
42. Vickers JC, Craig JE, Stankovich J, McCormack GH, West AK, Dickinson JL, et al. The apolipoprotein epsilon 4 gene is associated with elevated risk of normal tension glaucoma. Mol Vis. 2002;8:389-393.
43. Lake S, Liverani E, Desai M, Casson R, James B, Clark A, et al. Normal tension glaucoma is not associated with the common apolipoprotein E gene polymorphisms. Br J Ophthalmol. 2004;88(4):491-493.
44. Weisschuh N, Neumann D, Wolf C, Wissinger B, Gramer E. Prevalence of myocilin and optineurin sequence variants in German normal tension glaucoma patients. Mol Vis. 2005;11:284-287.
45. Izumi K, Mashima Y, Obazawa M, Ohtake Y, Tanino T, Miyata H, et al. Variants of the myocilin gene in Japanese patients with normal tension glaucoma. Ophthalmic Res. 2003;35(6):345-350.
46. Mabuchi F, Yamagata Z, Kashiwagi K, Tang S, Iijima H, Tsukahara S. Analysis of myocilin gene mutations in Japanese patients with normal tension glaucoma and primary open-angle glaucoma. Clin Genet 2001;59(4):263-268.
47. Mardin CY, Velten I, Ozbey S, Rautenstrauss B, Michels-Rautenstrauss K. A GLC1A gene Gln368stop mutation in a patient with normal tension open-angle glaucoma. J Glaucoma. 1999;8(2):154-156.
48. Weisschuh N, Wolf C, Wissinger B, Gramer E. Variations in the WDR36 gene in German patients with normal tension glaucoma. Mol Vis. 2007;13:724-729.
49. Wang TT, Sethi C, Daniels JT, Limb GA, Murphy G, Khaw PT. Matric metalloproteinases in disease and repair processes in the anterior segment. Surv Ophthalmol. 2002;47(3):239-256.
50. Golubnitschaja O, Yeghiazaryan K, Liu R, Monkemann H, Leppert D, Schild H, et al. Increased expression of matrix metalloproteinases in mononuclear blood cells of normal tension glaucoma patients. J Glaucoma. 2004;13(1):66-72.
51. Golubnitschaja O, Liu R, Decker C, Zhu P, Haefliger IO, Flammer J. Altered gene expression in lymphocytes of patients with normal tension glaucoma. Curr Eye Res. 2000;21(5):867-876.
52. Yorio T, Krishnamoorthy R, Prasanna G. Endothelin: is it a contributor to glaucoma pathophysiology? J Glaucoma. 2002;11(3):259-270.
53. Stokely ME, Brady ST, Yorio T. Effect of endothelin-1 on components of anterograde axonal transport in optic nerve. Invest Ophthalmol Vis Sci. 2002;43(10):3223-3230.
54. Kim SH, Kim JY, Kim DM, Ko HS, Kim SY, Yoo T, et al. Investigation on the association between normal tension glaucoma and single nucleotide polymorphisms of endothelin-1 and endothelin receptor genes. Mol Vis. 2006;12:1016-1021.
55. Ishikawa K, Funayama T, Ohtake Y, Kimura I, Ideta H, Nakamoto K, et al. Association between glaucoma and gene polymorphism of endothelin type a receptor. Mol Vis. 2005;11:431-437.
56. Nakamura J, Meguro A, Ota M, Nomura E, Nishide T, Kashiwagi K, et al. Association of toll-like receptor 2 gene polymorphisms with normal tension glaucoma. Mol Vis. 2009;15:2905-2910.

57. Shibuya E, Meguro A, Ota M Kashiwagi K, Mabuchi F, Iijima H, et al. Association of toll-like receptor 4 gene polymorphisms with normal tension glaucoma. Invest Ophthalmol Vis Sci. 2008;49(10):4453-4457.

58. Suh W, Kim S, Ki C-S, Kee C. Toll-like receptor 4 gene polymorphisms do not associate with normal tension glaucoma in a Korean population. Mol Vis. 2011;17:2343-2348.

59. Tezel G, Hernandez R, Wax MR. Immunostaining of heat shock proteins in the retina and optic nerve head of normal and glaucomatous eyes. Arch Ophthalmol. 2000;118(4):511-518.

60. Jeoung JW, Kim DM, Ko HS, Park SS, Kim JY, Kim SY, et al. Investigation of the association between normal tension glaucoma and single nucleotide polymorphisms in natriuretic peptide gene. Korean J Ophthalmol. 2007;21(1):33-38.

61. Suzuki M, Meguro A, Ota M, Nomura E, Kato T, Nomura N, et al. Genotyping HLA-DRB1 and DQB1 alleles in Japanese patients with normal tension glaucoma. Mol Vis. 2010;16:1874-1879.

62. Zhou Y, Grinchuk O, Tomarev SI. Transgenic mice expressing the Tyr437His mutant of human myocilin protein develop glaucoma. Invest Ophthalmol Vis Sci. 2008;49(5):1932-1939.

63. McDowell CM, Luan T, Zhang Z, Putilwala T, Wordinger RJ, Millar JC, et al. Mutant human myocilin induces strain specific differences in ocular hypertension and optic nerve damage in mice. Exp Eye Res. 2012;100(7):65-72.

64. Meng Q, Xiao Z, Yuan H, Xue F, Zhu Y, Yang B, et al. Transgenic mice with overexpression of mutated human optineurin (E50K) in the retina. Mol Biol Rep 2012;39(2):1119-1124.

65. Chi ZL, Yasumoto F, Sergeev Y, Minami M, Obazawa M, Kimura I, et al. Mutant WDR 36 directly affects exon growth of retinal ganglion cells leading to progressive retinal degeneration in mice. Hum Mol Genet. 2010;19(19):3806-3815.

66. Chi ZL, Akahori M, Obazawa M, Minami M, Noda T, Nakaya N, et al. Overexpression of optineurin E50K disrupts Rab 8 interaction and leads to a progressive retinal degeneration in mice. Hum Mol Genet. 2010;19(13):2606-2615.

67. Chalasani ML, Radha V, Gupta V, Agarwal N, Balasubramanian D, Swarup G. A glaucoma associated mutant optineurin selectively induces death of retinal ganglion cells which is inhibited by antioxidants. Invest Ophthalmol Vis Sci. 2007;48(4):1607-1614.

68. Zhang X, Cheng M, Chintala SK. Optic nerve ligation leads to astrocytes associated matrix metalloproteinase –9 induction in the mouse. Neurosci Lett. 2004;356(2):140-144.

69. Poltorak A, He X, Smirnora I, Liu MY. Van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282(5396):2085-2088.

70. Izumi Y, Shimamoto K, Benz AM, Hammerman SB, Olney JW, Zorumsk CF. Glutamate transporters and retinal excitotoxicity. Glia. 2002;39(1):58-68.

71. Rauen T. Diversity of glutamate transporter expression and function in the mammalian retina. Amino Acids. 2000;19(1):53-62.

72. Harada T, Harada C, Nakamura K, Quah HA, Okumura A, Namekata K, et al. The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. J Clin Invest. 2007;117(7):1763-1770.
73. Namekata K, Harada C, Guo X, Kikushima K, Kimura A, Fuse N, et al. Interleukin-1 attenuates normal tension glaucoma-like retinal degeneration in EAAC-1 deficient mice. Neurosci Lett. 2009;465(2):160-164.

74. Yasumura R, Meguro A, Ota M, Nomura E, Uemoto R, Kashiwagi K, et al. Investigation of the association between SLC1A3 gene polymorphisms and normal tension glaucoma. Mol Vis. 2011;17(3):792-796.

75. Harada C, Nakamato K, Namekata K, Okamura Y, Mitamura Y, Iizuka Y. et al. Role of apoptosis signal-regulating kinase –1 in stress induced neural cell apoptosis in vivo. Am J Pathol. 2006;168(1):261-269.

76. Harada C, Namekata K, Guo X, Yoshida H, Mitamura Y, Matsumoto K. et al. Ask-1 deficiency attenuates neuronal cell death in GLAST-deficient mice: a model for normal tension glaucoma. Cell Death Diff. 2010;17(5):1751-1759.

77. The AGIS investigators. The advanced glaucoma intervention study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol. 2000;130(4):429-440.

78. Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M. Early manifest glaucoma trial group. Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch Ophthalmol. 2002;120(10):1268-1279.

79. Baker PS, Brown GC. Stem-cell therapy in retinal disease. Curr Opin Ophthalmol. 2009;20(3):175-181.

80. Tibbetts MD, Samuel MA, Chang TS, Ho AC. Stem-cell therapy for retinal disease. Curr Opin Ophthalmol 2012;23(3):226-234.

81. Schwartz SD, Hubschman JP, Heiwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem-cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713-720.

82. Boucherie C, Sowden JC, Ali RR. Induced pluripotent stem cell technology for generating photoreceptors. Regen Med. 2011;6(4):469-479.

83. Tucker BA, Park IH, Qi SD. Klassen HJ, Jiang C, Yao J, et al. Transplantation of adult mouse iPS cell derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS One. 2011;6(4):e18992.

84. Zhou L, Wang W, Liu Y. Fernandez de Castro J, Ezashi T, et al. Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina. Stem Cells. 2011;29(6):972-980.

85. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hong G, Tonti-Filippini J, et al. Human DNA methyolmes at base resolution show wide spread epigenetic differences. Nature. 2009;462(7271):315-322.

86. Yu-Wai-Man P, Stewart JD, Hudson G, Andrews RM, Griffith PG, Birch MK, et al. OPA1 increases the risk of normal but not high tension glaucoma. J Med Genet. 2010;47(2):120-125.

87. Mabuchi F, Tang S, Kashiwagi K, Yamagata C, Iijima H, Tsukahara S. The OPA1 gene polymorphism is associated with normal tension and high tension glaucoma. Am J Ophthalmol. 2007;143(1):125-130.

88. Fuse N, Takahashi K, Akiyama H, Nakazawa T, Seimiya M, Kuwahara S, et al. Molecular genetic analysis of optineurin gene for primary open-angle and normal tension glaucoma in the Japanese population. J Glaucoma. 2004;13(4):299-303.

89. Yasuda N, Nakamoto K, Funayama T, Mashima Y. Low penetrance of His 26Asp mutation in the optineurin gene in a Japanese family with normal tension glaucoma. Nihon Ganka Gakkai Zasshi. 2006;110(8):594-600.
90. Hauser MA, Sena DF, Flor J, Walter J, Auguste J, Larocque-Abramson K, et al. Distribution of optineurin sequence variations in an ethnically diverse population of low-tension glaucoma patients from the United States. J Glaucoma. 2006;15(5):358-363.

91. Woo SJ, Kim JY, Kim DM, Park SS, Ko HS, Yoo T. Investigation of the association between 677 C to T and 1298 A to C 5,10-methylenetetrahydrofolate reductase gene polymorphisms and normal tension glaucoma. Eye. 2009;23(1):17-24.

92. Opial D, Boehnke M, Tadessse S, Lietz-Partzsch A, Flammer J, Munier F, et al. Leber’s hereditary optic neuropathy mitochondrial DNA mutations in normal tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2001;239(6):437-440.

93. Dimasi DP, Hewitt AW, Green CM, Mackey DA, Craig JE. Lack of association of p53 polymorphisms and haplotypes in high and normal tension open-angle glaucoma. J Med Genet. 2005;42(9):e55.

94. Wang CY, Shen YC, Lo FY, Su CH, Lee SH, Tsai HY, et al. Normal tension glaucoma is not associated with the interleukin-1 alpha (-889) genetic polymorphism. J Glaucoma. 2007;16(2):230-233.

95. Wang CY, Shen YC, Su CH, Lo FY, Lee SH, Tsai HY, et al. Investigation of the association between interleukin-1 beta polymorphism and normal tension glaucoma. Mol Vis. 2007;13:719-723.

96. Tanito M, Minami M, Akahori M, Kaidzu S, Takai Y, Ohira A, et al. LOXL1 variants in elderly Japanese patients with exfoliation syndrome/glaucoma, primary open-angle glaucoma normal tension glaucoma and cataract. Mol Vis. 2008;14:1898-1905.

97. Wolf C, Gramer E, Muller-Myhsok B, Pasutto F, Gramer G, Wissinger B, et al. Lysyl oxidase-like 1 gene polymorphisms in German patients with normal tension glaucoma, pigmentary glaucoma and exfoliation glaucoma. J Glaucoma. 2010;19(2):136-141.

© 2013 Shastry; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: http://www.sciencedomain.org/review-history.php?id=177&id=12&aid=931