Gama-oryzanol reduces renal inflammation and oxidative stress by modulating AGEs/RAGE axis in animals submitted to high sugar-fat diet

Introduction: The receptor for AGEs (RAGE) is a multiligand member of the immunoglobulin superfamily of cell surface receptors expressed in many organs, among them, the kidneys. When activated, RAGE leads to a sequence of signaling that results in inflammation and oxidative stress, both involved in kidney disease pathogenesis. Gamma-oryzanol (γOz) comprises a mixture of ferulic acid (FA) esters and phytosterols (sterols and triterpene alcohols) mainly found in rice, with antioxidant and anti-inflammatory activities. Aim: To evaluate the effect of γOz to reduce renal inflammation and oxidative stress by modulating the AGEs/RAGE axis.

Methods: Male Wistar rats (±187g) were randomly divided into two experimental groups: control (n = 7 animals) and high sugar-fat diet (HSF, n = 14 animals) for 20 weeks. After this period, when the presence of renal disease risk factors was detected in the HSF group (insulin resistance, dyslipidemia, increased systolic blood pressure and obesity), the HSF animals were divided to begin the treatment with γOz or continue receiving only HSF for 10 more weeks.

Results: No effect of γOz on obesity and metabolic parameters was observed. However, kidney inflammation and oxidative stress decreased as soon as RAGE levels were reduced in HSF + γOz.

Conclusion: It is possible to conclude that the gamma-oryzanol was effective in reducing inflammation and oxidative stress in the kidney by modulating the AGEs/RAGE axis.

Keywords: AGE receptor; Inflammation; Antioxidants; Kidney; Obesity.
Introdução

A glicação de proteínas é uma série complexa de reações sequenciais chamadas coletivamente de reação de Maillard, que resulta na formação de produtos finais da glicação avançada (AGEs, do inglês *advanced glycation end products*). Fontes endógenas de AGEs podem ser encontradas em todos os tecidos e fluidos onde a concentração de glicose é suficiente para reagir com proteínas, tais como em condições de hiperglycemia e diabetes⁴. Além disso, a degradação de proteínas glicadas, intermediários glicolíticos e a degradação de aldoses e cetoses resultam na formação de espécies carbonílicas reativas, tais como glicóxil (G), metilglicóxil (MG) e 3-deoxiglicosaona, que também são capazes de reagir com proteínas para formar mais AGEs diretamente⁵. Os mesmos também estão presentes em alimentos ingeridos, caracterizando fontes exógenas de AGEs. O conteúdo depende da composição de nutrientes e de como o alimento é processado (por exemplo, altos níveis de AGEs são encontrados em alimentos torrados, defumados e assados)¹⁻³.

A nível celular, os efeitos prejudiciais destes produtos têm sido atribuídos a várias proteínas de ligação de AGEs, tais como RAGE (receptor de AGEs), receptor de AGEs (AGER) 1, 2, R3, e receptores scavenger, como CD-36 e SCR-II. É importante enfatizar que estes receptores de superfície celular podem se ligar a produtos finais da glicação avançada, e também podem interagir com múltiplos ligantes chamados receptores multi-ligantes, entre eles: proteína do grupo de alta mobilidade (B)1 (HMGB1), do inglês *high-mobility group protein* (B)1, proteína ligante de cálcio S-100, proteína β-amiloide, Mac-1, e fosfatidilserina. Entre os receptores de AGEs, o RAGE é o mais notável, e desencadeia estresse oxidativo e inflamação tanto em doenças agudas como crônicas. Especificamente, a ligação do RAGE leva a uma sequência de sinalização com a ativação do fator de transcrição fator nuclear kappa-B (NFkB, do inglês *nuclear factor kappa-B*) resultando na produção de citocinas pró-inflamatórias, entre elas o fator de necrose tumoral alfa (TNF-a, do inglês *tumor necrosis factor alfa*), interleucina-6 (IL-6) e a proteína quimioatraente de monócitos-1 (MCP-1, do inglês *monocyte chemoattractant protein-1*).⁷

A ativação de RAGE leva ao estresse oxidativo pela indução de nicotinamida adenina dinucleotídeo fosfato (NADPH)-oxidase (NOX), especialmente NOX-4. A oxidação impulsionada pelo eixo RAGE/AGEs induz a oxidação proteica e lipídica levando à formação de carbonilas de proteínas e peroxidação lipídica, sendo responsável por espécies carbonílicas reativas derivadas de lipídios que, por sua vez, formam adutos carbonílicos de proteínas (ALEs) que também são quelantes de RAGE, sustentando assim a ativação do RAGE⁶. Assim, de acordo com as informações acima descritas, é possível observar que o eixo RAGE/AGEs é uma interface entre estresse oxidativo e inflamação, que são pilares para o desenvolvimento de várias doenças, especialmente em órgãos que expressam esses receptores para AGEs, como cérebro, coração e rins⁸.

O podócito é a principal célula que expressa o RAGE no glomérulo renal⁹. Tem sido descrito na literatura que a transdução de sinal RAGE-dependente em podócitos leva à apoptose, produção de proteína quimioatraente de monócitos -1, mediadores inflamatórios e estresse oxidativo via NOX-4, causando alterações estruturais renais, resultando em aumento da proteinúria e redução da taxa de filtração glomerular (TFG). Uma vez que a TFG é a principal forma de excretar AGEs, a exacerbação da lesão renal contribui para o acúmulo de AGEs, caracterizando um feedback vicioso positivo do acúmulo de AGEs através do estresse oxidativo induzido por RAGE/AGEs no curso da progressão da DRC⁷.

Desta forma, a busca por estratégias para diminuir a carga de ligantes (AGEs e outros ligantes de RAGE) e estratégias para amortecer a ativação de RAGE tem recebido atenção, como o uso de compostos naturais como um promissor pool de substâncias para tratar doenças.⁸,¹¹ O gama-orizanol (γOz) compreende uma mistura de ésteres de ácido ferúlico (AF) e fitoesteróis (esteróis e álcoois triterpenos) encontrados principalmente no arroz, um grão muito importante na dieta humana. Uma grande variedade de efeitos biológicos tem sido atribuída ao γOz, tais como efeitos antidiabéticos, antioxidantes, anti-inflamatórios e anti-obesidade. Outros estudos já demonstraram um efeito positivo do γOz para prevenir a síndrome metabólica cardiorrenal, melhorar a doença renal e aumentar o crescimento muscular e o desempenho esportivo⁴.

Assim, uma vez que a ligação RAGE/AGEs é capaz de induzir inflamação renal e estresse oxidativo e dada a falta de estudos que avaliem o efeito do γOz na modulação de RAGEs/AGE renais, o objetivo deste estudo foi avaliar o efeito do γOz na redução da inflamação renal e do estresse oxidativo pela modulação do eixo RAGE/AGEs em animais.
submetidos a uma dieta rica em gordura e açúcar. A lógica da utilização do γOz neste modelo animal é sustentada pela literatura recente que demonstra que esta classe de compostos, além de ter uma atividade antioxidante bem estabelecida, exerce um efeito antiglicante direto15.

MATERIAL E MÉTODOS

PROTOCOLO EXPERIMENTAL

Todos os experimentos e procedimentos foram aprovados pelo Comitê de Ética Animal da Faculdade de Medicina de Botucatu (1150/2015) e foram realizados de acordo com o Guia de Cuidados e Uso de Animais de Laboratório do Instituto Nacional de Saúde. Ratos Wistar machos (±187 g) foram alojados em gaiolas individuais em uma sala com ambiente controlado (22±3 °C; ciclo claro-escuro de 12 h, e umidade relativa de 60±5 %) e divididos aleatoriamente em dois grupos experimentais: controle (n = 7 animais) e dieta rica em gordura e açúcar (HSF, n = 14 animais) por 20 semanas. Na 20ª semana, quando foi detectada a presença de fatores de risco para doença renal no grupo HSF10,13 (resistência à insulina, dislipidemia, aumento da pressão arterial sistólica e obesidade), os animais foram divididos para iniciar o tratamento com γOz ou continuar recebendo apenas HSF por mais 10 semanas: HSF, n=7 animais e HSF + γOz, n= 7 animais. A dieta HSF continha farinha de soja, sorgo, casca de soja, dextrina, sacarose, frutose, banha, vitaminas e minerais, mais 25% de sacarose na água potável; a dieta controle continha farinha de soja, sorgo, casca de soja, dextrina, óleo de soja, vitaminas e minerais. Os nutrientes e a composição nutricional de cada dieta foram descritos em nosso estudo anterior13.

GAMA-ORIZANOL

O composto foi adquirido da Tokyo Chemical Industry Co., Ltd. (Toshima, Kita-ku, Tóquio) (lote.5ZZYLPJ). O γOz utilizado neste estudo foi adicionado à ração (0,5 w/w), em consonância com nosso estudo anterior13, a fim de simular o consumo diário de arroz de um indivíduo adulto no Brasil, de acordo com dados da Pesquisa de Orçamento Familiar (POF) 2008-200916.

PARÂMETROS NUTRICIONAIS E AVALIAÇÃO DOS DISTÚRBIOS RELACIONADOS À OBESIDADE

O perfil nutricional considerado foi: peso corporal final (PCF), índice de adiposidade (IA), resistência à insulina, níveis de triglicerídeos e pressão arterial sistólica (PAS). O peso corporal foi medido semanalmente. Após a eutanásia, os depósitos de gordura (visceral (VAT), epididimal (EAT) e retroperitoneal (RAT)) foram usados para calcular o índice de adiposidade (IA) pela seguinte fórmula: VAT+EAT+RAT /PCF ×10017.

Após jejum de 12 h, foi coletado sangue, e o plasma foi usado para medir parâmetros insulinícos e bioquímicos. O sangue de animais em jejum foi coletado em tubos contendo EDTA e centrifugado a 3500 rpm e o plasma foi coletado para análise. A concentração de glicose foi determinada usando um glicosímetro (Accu-Chek Performa, Roche Diagnostics Brazil Limited); os triglicerídeos foram medidos com um sistema analisador enzimático automático (Chemistry Analyzer BS-200, Mindray Medical International Limited, Shenzhen, China). Os níveis de insulina foram medidos usando o método de ensaio imunoenzimático (ELISA) usando kits comerciais (EMD Millipore Corporation, Billerica, MA, EUA). O modelo homeostático de avaliação da resistência à insulina (HOMA-IR) foi utilizado como um índice de resistência à insulina, calculado de acordo com a seguinte fórmula: HOMA-IR= (glicose de jejum (mmol/L) × insulina de jejum (μU/mL)) / 22,518.

A avaliação da pressão arterial sistólica (PAS) foi feita em ratos conscientes pelo método não-invasivo de cauda-manguito com um eletrofigmomanômetro Narco Bio-Systems® (International Biomedical, Austin, TX, EUA). Os animais foram mantidos em uma caixa de madeira (50×40 cm) entre 38 e 40 °C durante 4-5 minutos para estimular a vasodilatação arterial19. Após este procedimento, um manguito com um sensor de pulso pneumático foi fixado à cauda de cada animal. O manguito foi inflado a 200 mmHg de pressão e posteriormente desinfestado. Os valores da pressão arterial sistólica foram registrados em um polígrafo Gould RS 3200 (Gould Instrumental Valley View, Ohio, EUA). A média de três leituras de pressão foi registrada para cada animal.

NÍVEIS DE RAGE

O tecido renal (±150 mg) foi homogeneizado (ULTRA-TURRAX® T 25 básico IKA® Werke, Staufen, Alemanha) em 1,0 mL de solução salina tampão fosfato (PBS) com pH 7,4 e centrifugado a 800 g a 4 °C durante 10 min. O sobrenadante (100 μL) foi utilizado na análise. Os níveis de receptores para produtos finais da glicação avançada (RAGE) foram
medidos usando o método de ensaio imunoenzimático (ELISA) usando kits comerciais da R&D System, Minneapolis, EUA (DY- 1616; 4000- 31,3 pg/mL de detecção). Os resultados foram corrigidos de acordo com a quantidade de proteína.

NÍVEIS DE AGES

A maioria dos AGEs tem uma fluorescência característica. Assim, a determinação dos AGEs foi baseada na detecção espectrofluorométrica de acordo com Henle et al. (1991)21 e Münch et al. (1997)21. Plasma e urina foram diluídos 1:20 com PBS (tampão fosfato) pH 7,4 e a intensidade de fluorescência foi registrada no máximo de emissão (440 nm) após excitação a 370 nm (espectrofluorômetro Fluoromax-3, Jobin Yvon Horiba, EUA). A intensidade da fluorescência é expressa em unidades arbitrárias (UF/mg de proteína).

PARÂMETROS INFLAMATÓRIOS RENAI

A própria inflamação é um fator de risco para a perda da funçãorenal22. A ativação do RAGE leva a uma sequência de sinalização com ativação de resposta inflamatória1.

O tecido renal (±150 mg) foi homogeneizado (ULTRA-TURRAX® T 25 básico IKA® Werke,斯塔芬, Alemanha) em 1,0 mL de solução salina tampão fosfato (PBS) pH 7,4 e centrifugado a 800 g a 4°C por 10min. O sobrenadante (100 μL) foi utilizado na análise. Os níveis de fator de necrose tumoral alfa (TNF-α), interleucina-6 (IL-6) e proteína quimioatraente de monócitos-1 (MCP-1) foram medidos pelo método ELISA usando kits comerciais da R&D Systems, Minneapolis, EUA (TNF-α: DY 510; IL-6: DY 506; MCP-1). O limite de detecção do TNF-α foi de 4000-62,5 pg/mL, o limite de detecção da IL-6 foi de 8000-125 pg/mL, e o limite da MCP-1 foi de 1000-15,6 pg/mL. O sobrenadante (100 μL) foi utilizado para análise, e os resultados foram corrigidos de acordo com a quantidade de proteína.

CARBONILAÇÃO DE PROTEÍNA RENAL

A carbonilação é uma modificação proteica irreversível induzida por espécies reativas de oxigênio (ERO). Pode ser produzida por clivagem oxidativa da cadeia principal da proteína ou por um ataque por radicais de ERO a alguns aminooácidos específicos nas cadeias laterais, como lisina, arginina, prolina ou treonina. As carbonilas proteicas são os marcadores mais amplamente utilizados para medir o dano proteico oxidativo21.

O sobrenadante descrito acima foi usado para análise da carbonilação da proteína renal. As proteínas carboniladas foram medidas por um método não específico que utiliza DNPH (agente de derivatização 2, 4-dinitrofenilhidrazina) e detecção fotométrica de qualquer proteína modificada por carbonilação23. Os níveis de proteína carbonilada são expressos em nmol de DNPH/mg de proteína.

RENAL NOX-4 GENE EXPRESSION

Das isoformas de NOX, a Nox4 é abundantemente expressa no rim e é uma fonte importante de ERO renal desencadeada por RAGE21. O RNA total foi extraído do tecido renal usando a reagente TRIzol (Invitrogen). O kit SuperScript II First-Strand Synthesis System for RT-PCR (Invitrogen) foi utilizado para a síntese de 20 mL de DNA complementar a partir de 1000 ng de RNA total. Os níveis de mRNA de NOX-4 (ensaio Rn 00585380_m1; Applied Biosystems) foram determinados por PCR em tempo real. As medições quantitativas foram feitas com um kit comercial (TaqMan PCRq; Applied Biosystems) em um sistema de detecção (StepOne Plus; Applied Biosystems). As condições de ciclagem foram as seguintes: ativação enzimática a 50 ºC por 2 min, desnaturação a 95 ºC por 10 min; produtos complementares de DNA foram amplificados por quarenta ciclos de desnaturação a 95 ºC por 15s e anelamento/extensão a 60 ºC por 1 min. A expressão gênica foi quantificada em relação aos valores do grupo Controle após a normalização por um controle interno (ciclofilina: ensaio Rn 00690933_m1; Applied Biosystems) pelo método 22DDCT, conforme descrito anteriormente26.

FUNÇÃO RENAL

Após a coleta da urina de 24 horas das gaiolas metabólicas, a função renal foi avaliada considerando a taxa de filtração glomerular (TFG = (creatinina urinária × fluxo) / creatinina plasmática)10 e a relação proteína/creatinina, uma vez que reflete a proteinúria e é considerado um marcador da função renal27.

ANÁLISE ESTATÍSTICA

Os resultados são reportados como média ± desvio padrão (DP) ou mediana (intervalo interquartil). As diferenças entre os grupos foram determinadas pela ANOVA One Way. As variáveis estatisticamente significativas foram submetidas ao teste post-hoc de Tukey para comparar todos os grupos. As análises estatísticas foram realizadas usando Sigma Stat para Windows Versão 3.5 (Systat Software Inc.,
San Jose, CA, EUA). Considerou-se estatisticamente significativo um valor de p de 0,05.

RESULTADOS

A Figura 1 apresenta os parâmetros nutricionais dos grupos. É possível verificar que ambos os grupos que receberam dieta HSF (grupos HSF e HSF + γOz) apresentaram aumento do índice de adiposidade, resistência à insulina, dislipidemia e pressão arterial sistólica em comparação com o grupo controle. Não foi observado nenhum efeito do γOz sobre estes parâmetros.

Os níveis plasmáticos de AGEs foram os mesmos nos grupos HSF e HSF + γOz e mais elevados que os do grupo controle. O grupo HSF apresentou menor AGE na urina e aumento do RAGE nos rins em comparação com o grupo controle. O grupo HSF + γOz apresentou um aumento dos níveis de AGEs na urina e uma redução dos níveis de RAGE em comparação com o grupo HSF (Figura 2).

Os parâmetros de estresse oxidativo renal são apresentados na Figura 3. O grupo HSF apresentou maior expressão gênica de NOX-4 em comparação com o grupo controle. O tratamento com gama-orizanol foi eficaz para reduzir a carbonilação e a expressão gênica de NOX-4 no HSF + γOz em comparação com o grupo HSF.

Figura 1. Parâmetros de transtornos nutricionais e relacionados à obesidade ao final de 30 semanas. (A) Peso corporal final (g); (B) Índice de adiposidade (%); (C) HOMA-IR; (D) Níveis de triglicerídeos plasmáticos (mg/dL); (E) Pressão arterial sistólica (mmHg). Os dados são expressos em médias ± desvios padrão ou medianas e intervalos interquartis (n = 7 animais/grupo). Comparação por ANOVA One Way com post-hoc de Tukey. *p < 0,05. HSF: dieta rica em gordura e açúcar; HSF + γOz: dieta rica em gordura e açúcar + gama-orizanol.
A Figura 4 mostra os parâmetros inflamatórios renais. O grupo HSF apresentou níveis mais altos de parâmetros pró-inflamatórios em comparação com o grupo controle, enquanto o grupo HSF + γOz apresentou níveis mais baixos de IL-6, TNF-α e MCP-1 do que o grupo HSF.

Os parâmetros da função renal são apresentados na Figura 5. O grupo HSF apresentou aumento da relação proteína/creatinina e menor TFG em comparação com o grupo controle. Por outro lado, o grupo HSF + γOz apresentou melhora na função renal, caracterizada pelo aumento da taxa de filtração glomerular. Este grupo também apresentou redução na lesão renal, com menor proteinúria (relação proteína/creatinina) em comparação com o HSF.

DISCUSSÃO

O objetivo deste estudo foi avaliar o efeito do γOz na redução da inflamação renal e do estresse oxidativo pela modulação do eixo RAGE/AGEs em animais submetidos a uma dieta rica em gordura e açúcar. A obesidade é uma condição associada a vários transtornos considerados fatores de risco para o desenvolvimento de doenças renais, entre eles, obesidade central, aumento dos níveis de triglicerídeos, baixa lipoproteína de alta densidade, hipertensão e glicemia de jejum elevada28. Algumas vias possíveis para induzir doenças renais são a resistência à insulina e inflamação crônica, um dos principais contribuintes para a remodelação microvascular; dislipidemia e
disponibilidade excessiva de nutrientes que podem induzir disfunção mitocondrial; desequilíbrio de adipocinas; o sistema renina-angiotensina; e estresse oxidativo. Nossos resultados não mostraram nenhum efeito do γOz sobre os parâmetros metabólicos, em contraste com a literatura que mostra efeitos positivos, especialmente nos níveis de glicose e dislipidemia. Esta divergência pode ser explicada pelo uso de diferentes modelos animais, dose de γOz, e tempo de tratamento. Nosso estudo tratou ratos Wistar machos com 0,5% de γOz na ração durante 10 semanas, uma dose correspondente a um consumo médio de 50 mg/dia de γOz. Wang et al. (2015) alimentaram ratos Sprague Dawley machos com uma dieta rica em gorduras e frutose, suplementada com 0,05% de AF ou 0,16% de γOz por 13 semanas e descobriram que o AF e γOz apresentaram efeitos semelhantes no alívio da obesidade, hiperlipidemia, hiperiglicemia e resistência à insulina. Cheng et al. (2013) estudaram o efeito de uma dieta com 15% de óleo de palma com a adição de 5,25 g de gama-orizanol durante 5 semanas em ratos Wistar machos com diabetes tipo 2 induzida por estreptozotocina. Nenhum efeito de γOz foi observado na gordura corporal, glicose e insulina; no entanto, os níveis de resistência à insulina (área sob a curva), triglicerídeos e colesterol LDL foram reduzidos com o composto.

O papel da inflamação na patogênese e progressão da doença renal crônica (DRC) tem sido reconhecido desde o final dos anos 90, quando os níveis de IL-1 foram associados a complicações importantes e ao aumento da taxa de mortalidade em pacientes.

Figura 4. Parâmetros inflamatórios renais. (A) Interleucina-6 (IL-6, pg/g de proteína); (B) Fator de necrose tumoral alfa (TNF-α, pg/g de proteína); (C) Proteína quimioatraente de monócitos -1 (MCP-1, pg/g de proteína). Os dados são reportados em médias ± desvios padrão ou medianas e intervalos interquartis (n = 7 animais/grupo). Comparação por ANOVA One Way com teste post-hoc de Tukey. *p < 0,05. HSF- dieta rica em gordura e açúcar; HSF + γOz- dieta rica em gordura e açúcar + gama-orizanol.

Figura 5. Parâmetros da função renal. (A) Relação proteína/ creatinina urinária; (B) Taxa de filtração glomerular (TFG, mL/min). Os dados são reportados em medianas e intervalos interquartis (n = 7 animais/grupo). Comparação por ANOVA One Way com teste post-hoc de Tukey. *p < 0,05. HSF: dieta rica em gordura e açúcar; HSF + γOz: dieta rica em gordura e açúcar + gama-orizanol.
submetidos à diálise crônica. Os estudos seguintes demonstraram que a inflamação persistente é capaz de promover consequências adversas para os rins31. Evidências mostram que inflamação e reações inflamatórias de qualquer causa podem modificar ou interferir com a regulação microcirculatória intrarrrenal e a distribuição da perfusão e podem induzir dano renal, melhorando assim a progressão da doença renal31. Nossos resultados mostraram que a resposta inflamatória no rim foi atenuada no grupo HSF tratado com γOz, corroborando o efeito anti-inflamatório do composto.

A patogênese do estresse oxidativo em pacientes com DRC tem sido bem documentada na literatura atual32. A produção excessiva de ERO resulta na ativação de vários sistemas enzimáticos, como a nicotinamida adenina dinucleotídeo fosfato (NADPH) oxidase e a cadeia respiratória mitocondrial, e, juntamente com mecanismos de defesa antioxidante comprometidos, são os principais fatores para a condição de estresse oxidativo que ocorre na DRC, o que leva à oxidação de macromoléculas, danos aos tecidos e disfunção. Portanto, a geração excessiva de ERO tem sido diretamente ligada aos mecanismos e processos da doença associados ao início e progressão da DRC, incluindo proteinúria, hipertensão arterial e diabetes mellitus. Além disso, a associação entre estresse oxidativo e disfunção crônica e endotelial mantém e perpetua o círculo vicioso onde o dano renal crônico gera mais lesão renal e complicações sistêmicas da DRC, como disfunção cardiovascular. Evidências mostram que o estresse oxidativo já está presente mesmo nos estágios iniciais da DRC com o aumento da produção de NADPH oxidase, especialmente a subunidade NOX-4 da NADPH. Foi demonstrado que partículas de lipoproteínas oxidadas, como proteínas carboniladas, se acumulam na DRC e contribuem para a disfunção renal progradindo com o aumento da produção de NADPH oxidase, especialmente a subunidade NOX-4 da NADPH. Foi demonstrado que partículas de lipoproteínas oxidadas, como proteínas carboniladas, se acumulam na DRC e contribuem para a disfunção renal progradindo.
formação de AGEs por um efeito antiglicação direto e pela eliminação dos radicais livres gerados durante as reações de glicação. Além disso, a atividade antioxidante do γOz foi relatada em experimentos in vitro e in vivo por vários grupos.10,36,37

Em resumo, este estudo descobriu que o grupo tratado com gama-orizanol apresentou níveis reduzidos de RAGE renal, inflamação e estresse oxidativo e aumento da excreção renal dos AGEs provavelmente devido ao efeito positivo na taxa de filtração glomerular. Assim, é possível concluir que o gama-orizanol foi eficaz na redução da inflamação e do estresse oxidativo no rim pela modulação do eixo RAGE/AGEs.

É importante relatar algumas limitações deste estudo. Somente AGEs ou RAGE gerais, e não específicos, foram analisados, mais marcadores de estresse oxidativo e inflamação poderiam ser incluídos nos parâmetros analisados, a análise imunohistoquímica para RAGE poderia ter sido realizada, assim como a análise histológica dos rins para demonstrar possíveis danos às estruturas.

\section*{Agradeimentos}

Os autores agradecem a Universidade degli Studi di Milano e o financiamento do estudo pela Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) - processos #2015/10626-0 e #2018/15294-3 e CAPES (PDSE-88881.132505/2016-01).

\section*{Contribuição dos Autores}

Conceitualização: Francisqueti-Ferron FV; Minatel IO; Aldini G; Correa CR. Curadoria de dados: Francisqueti-Ferron FV; Garcia JL; Ferron AJT; Altomare AA; Moreto F. Análise formal: Francisqueti-Ferron FV; Minatel IO; Ferron AJT; Altomare AA; Ferreira ALA; Aldini G; Correa CR. Aquisição de financiamento: Correa CR. Metodologia: Francisqueti-Ferron FV; Garcia JL; Ferron AJT; Altomare AA; Moreto F; Minatel IO. Administração do projeto: Francisqueti-Ferron FV; Correa CR. Redação - rascunho original: Francisqueti-Ferron FV; Minatel IO; Aldini G; Correa CR.

\section*{Conflito de Interesses}

Os autores declaram não haver conflito de interesses.

\section*{Referências}

1. Gugliucci A, Menini T. The axis AGE-RAGE-soluble RAGE and oxidative stress in chronic kidney disease. In: Crisuto WE, Dong H, Radeke HH, Rezaei N, Steinlein O, Xiao, J., eds. Advances in experimental medicine and biology. Amsterdam: Springer; 2014. v. 824. p. 191-208. DOI: https://doi.org/10.1007/978-3-319-07320-0

2. Thornalley PJ, Rabbani N. Progress in uremic toxin research: highlights and hotspots of protein glycation in end-stage renal disease. Semin Dial. 22(4):400-4. DOI: https://doi.org/10.1111/j.1525-139X.2009.00589.x

3. Vlassara H, Torreggiani M, Post JB, Zheng F, Uhrbarri J, Striker GE. Role of oxidants/inflammation in declining renal function in chronic kidney disease and normal aging. Kidney Int. 2009 Dec;76(Suppl 114):S3-S11. DOI: https://doi.org/10.1038/sj.ki.6010901

4. Luevano-Contreras C, Garay-Sevilla ME, Chapmann-Novakofski K. Role of dietary advanced glycation end products in diabetes mellitus. J Evidence-Based Complement Altern Med. 2013;18(1):50-66. DOI: https://doi.org/10.1177/1525-139X.2013.11.4.224

5. Lee EJ, Park JH. Receptor for advanced glycation endproducts (RAGE), its ligands, and soluble RAGE: potential biomarkers for diagnosis and therapeutic targets for human renal diseases. Genomics Inform. 2013 Dec;11(4):224-9. DOI: https://doi.org/10.5808/gi.2013.11.4.224

6. Agati VD, Schmidt AM. RAGE and the pathogenesis of chronic kidney disease. Nat Rev Nephrol. 2010 Apr;6:352-60. DOI: https://doi.org/10.1038/nrneph.2010.54

7. Mol M, Degani G, Coppa C, Baron G, Popolo L, Carini M, et al. Advanced lipoxidation end products (ALEs) as RAGE binders: mass spectrometric and computational studies to explain the reasons why. Redox Biol. 2019 May;23:101083. DOI: https://doi.org/10.1016/j.redox.2018.101083

8. Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, et al. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab. 2018 Sep;28(3):337-52. DOI: https://doi.org/10.1016/j.cmet.2018.08.014

9. Busch M, Franke S, Rüster C, Wolf G. Advanced glycation endproducts and the kidney. Eur J Clin Invest. 2010 Jul;40(8):742-55. DOI: https://doi.org/10.1111/j.1365-2362.2010.02317.x

10. Ferron AJT, Ferron FV, Hasimoto FK, Alves PHR, Garcia JL, Santos KC, et al. Gamma oryzanol treats obesity-induced kidney injuries by modulating the adiponectin receptor 2/PPAR-α axis. Oxid Med Cell Longev. 2018;2018:1278392.

11. Ferron AJT, Aldini G, Francisqueti-Ferron FV, Silva CCVA, Bazan SGZ, Garcia JL, et al. Protective effect of tomato-oleoresin supplementation on oxidative injury recoveries cardiac function by improving β-adrenergic response in a diet-obesity induced model. Antioxidants. 2019 Sep;8(9):368. DOI: https://doi.org/10.3390/antiox8090368

12. Minatel IO, Francisqueti FV, Corrêa CR, Pace G, Lima P. Antioxidant activity of γ-oryzanol: a complex network of interactions. Int J Mol Sci. 2016 Aug;17(8):1107.

13. Francisqueti FV, Minatel IO, Ferron AJT, Bazan SGZ, Silva VS, Garcia JL, et al. Effect of gamma-orzanol as therapeutic agent to prevent cardio renal metabolic syndrome in animals submitted to high sugar-fat diet. Nutrients. 2017 Dec;9(12):1299.

14. Esfandi S, Esa NM, Marandi SM, Ghasemi G, Eslami S. Effects of gamma oryzanol supplementation on anthropometric measurements & muscular strength in healthy males following chronic resistance training. Indian J Med Res. 2014 Jun;139(6):857-63.

15. Soby R, Zhan F, Mekawi E, Khalifa I, Liang H, Li B. The noncovalent conjugations of bovine serum albumin with three structurally different phytosterols exerted antiglycation effects: a study with AGES-inhibition, multispectral, and docking investigations. Bioorg Chem. 2020 Jan;93:103478. DOI: https://doi.org/10.1016/j.bioorg.2019.103478

16. Instituto Brasileiro de Geografia e Estatística (IBGE). Coordenação de Trabalho e Rendimento. Pesquisa de orçamentos familiares: 2008-2009. Análise do consumo alimentar pessoal no Brasil. Brasília (DF): IBGE; 2011.

17. Luvizotto RAM, Nascimento AF, Imaizumi E, Pierine DT, Conde SJ, Correa CR, et al. Lycopene supplementation modulates plasma concentrations and epididymal adipose tissue mRNA of leptin, resistin and IL-6 in diet-induced obese rats. Br J Nutr. 2016;110(10):1803-9. DOI: https://doi.org/10.1017/S0007114513001256
18. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985 Jul;28(7):412-9.

19. Santos PP, Rafacho BPM, Gonçalves AF, Jaldin RG, Nascimento TB, Silva MAB, et al. Vitamin D induces increased systolic arterial pressure via vascular reactivity and mechanical properties. PLoS One. 2014;9(6):e98895.

20. Henle T, Deppisch R, Beck W, Hergesell O, Hänsch GM, Ritz E. Advanced glycated end-products (AGE) during haemodialysis treatment: discrepant results with different methodologies reflecting the heterogeneity of AGE compounds. Nephrol Dial Transplant. 1999 Aug;14(8):1968-75.

21. Münch G, Keis R, Wessels A, Riederer P, Bahner U, Heidland A, et al. Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA. Eur J Clin Chem Clin Biochem. 1997 Sep;35(9):669-77.

22. Silva Junior GB, Bentes ACSN, Daher EF, Matos SMA. Obesity and kidney disease. J Bras Nefrol. 2017 Jan/Mar;39(1):65-9. DOI: https://doi.org/10.5935/0101-2800.20170011

23. Ruiz-Ojeda FJ, Olao J, Gil Á, Aguilera CM. Oxidative stress and inflammation in obesity and metabolic syndrome. In: Del Moral AM, García CMA, eds. Obesity: oxidative stress and dietary antioxidants. Cambridge: Academic Press; 2018. p. 1-15. DOI: https://doi.org/10.1016/b978-0-12-812504-5.00001-5

24. Mesquita CS, Oliveira R, Bento F, Geraldo D, Rodrigues JV, Marcos JC. Simplified 2,4-dinitrophenylhydrazine spectrophotometric assay for quantification of carbonyls in oxidized proteins. Anal Biochem. 2014;458:69-71.

25. Thallas-Bonke V, Jandeleit-Dahm KAM, Cooper ME. Nox-4 and progressive kidney disease. 2015 Jan;24(1):74-80. DOI: https://doi.org/10.1097/MNH.0000000000000082

26. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001 Dec;25(2):402-8.

27. Anna VO, Mátyus J, Sárkány E, Horváth A, Fodor B. New trends in the laboratory diagnostics of proteinuria and albuminuria. Orv Hetil. 2010 May;151(21):28891. DOI: https://doi.org/10.1556/06H.2010.28891

28. Zhang X, Lerman LO. The metabolic syndrome and chronic kidney disease. Transl Res. 2016 May;183:14-25. DOI: https://doi.org/10.1016/j.trsl.2016.12.004

29. Wang O, Liu J, Cheng Q, Guo X, Wang Y, Zhao L, et al. Effects of ferulic acid and γ-oryzanol on metabolic syndrome in rats. PLoS One. 2015;10(2):e0118135.

30. Cheng HH, Ma CY, Chou TW, Chen YY, Lai MH. Gamma-oryzanol ameliorates insulin resistance and hyperlipidemia in rats with streptozotocin/nicotinamide-induced type 2 diabetes. Int J Vitam Nutr Res. 2013 Jan;80(1):45-53. DOI: https://doi.org/10.1024/0300-9831/a000005

31. Mihai S, Codrici E, Popescu ID, Enciu AM, Albulescu I, Necula LG, et al. Inflammation-related mechanisms in chronic kidney disease prediction, progression, and outcome. J Immunol Res. 2018; 2018:2180373. DOI: https://doi.org/10.1155/2018/2180373

32. Ling XC, Kuo KL. Oxidative stress in chronic kidney disease. Ren Replace Ther. 2018 Dec;4:53.

33. Duni A, Liakopoulos V, Roumeliotis S, Peschos D, Dounoussi E. Oxidative stress in the pathogenesis and evolution of chronic kidney disease: untangling Ariadne's thread. Int J Mol Sci. 2019;20(15):3711. DOI: https://doi.org/10.3390/ijms20153711

34. Chen J, Lin X, Bu C, Zhang X. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutr Metab (Lond). 2018 Oct;15:72.

35. Xu J, Chen LJ, Yu J, Wang HJ, Zhang F, Liu Q, et al. Involvement of advanced glycation end products in the pathogenesis of diabetic retinopathy. Cell Physiol Biochem. 2018;48:705-17. DOI: https://doi.org/10.1159/000491897

36. Rungratanawanich W, Abate G, Serafini MM, Guarienti M, Catanzaro M, Marziano M, et al. Characterization of the antioxidant effects of γ-oryzanol: involvement of the Nrf2 pathway. Oxid Med Cell Longev. 2018;2018:2987249.

37. Bumrungpert A, Chongsuwat R, Phosat C, Butacnum A. Rice bran oil containing gamma-oryzanol improves lipid profiles and antioxidant status in hyperlipidemic subjects: a randomized double-blind controlled trial. J Altern Complement Med. 2019 Mar;25(3):1-6. DOI: https://doi.org/10.1089/acm.2018.0212