Ethnomycological study on wild mushrooms in Pu‘er Prefecture, Southwest Yunnan, China

Ran Wang¹², Mariana Herrera³, Wenjun Xu⁴, Peng Zhang², Jesús Pérez Moreno⁵, Carlos Colinas¹⁶ and Fuqiang Yu²*

Abstract

Background: Yunnan is rich in fungal diversity and cultural diversity, but there are few researches on ethnomycology. In addition, extensive utilization of wild edible fungi (WEF), especially the ectomycorrhizal fungi, threatens the fungal diversity. Hence, this study aims to contribute to the ethnomycological knowledge in Pu‘er Prefecture, Yunnan, China, including information on the fungal taxa presented in markets and natural habitats, with emphasis in ectomycorrhizal fungi (EMF).

Methods: Semi-structured interviews with mushroom vendors in markets and with mushroom collectors in natural habitats were conducted. Information related to local names, habitat, fruiting time, species identification, price, cooking methods and preservation methods of wild edible mushrooms were recorded. Wild edible fungi were collected from forests, and morphological and molecular techniques were used to identify fungal species.

Results: A total of 11 markets were visited during this study. The 101 species collected in the markets belonged to 22 families and 39 genera, and about 76% of them were EMF. A wealth of ethnomycological knowledge was recorded, and we found that participants in the 45–65 age group were able to judge mushroom species more accurately. Additionally, men usually had a deepest mushroom knowledge than women. A total of 283 species, varieties and undescribed species were collected from natural habitats, and about 70% of them were EMF. Mushroom species and recorded amounts showed correspondence between markets and the natural habitats on different months.

Conclusion: The present study shows that Pu‘er Prefecture is rich in local mycological knowledge and fungal diversity. However, it is necessary to continue the research of ethnomycological studies and to design and conduct dissemination of local knowledge in order to preserve it, since it currently remains mainly among the elderly population.

Keywords: Ethnomycology, Fungal diversity, Pu‘er, South of the Tropic of Cancer

Background

Wild edible fungal fruiting bodies, or mushrooms, known as “delicacies from the mountains,” are a natural forest resource widely acknowledged for their nutritional, medicinal, economic and cultural value [1–4]. China is one of the most important mushroom producers in the world in terms of the total volume of trade and commercialized fungal species. The Yunnan Province in southwestern China, in particular, has an important tradition of consumption and mushroom trade [5]. In China, there are about 900 species of wild edible fungi (WEF), 90% of which are present in Yunnan and utilized by local people as both a source of food and income [6]. Most of the main mushroom markets, with a large variety of species, are located in the central regions of the province because of the dense population, convenient transportation and high market demand, while countless small...
mushroom markets with unique fungal species are scattered throughout Yunnan in mountainous areas which are inhabited by a number of ethnic groups [7] where gathering of WEF and mushroom industry has become an important tool for poverty alleviation [8–10].

The rural population of Yunnan has a wealth of traditional knowledge related to WEF and is familiar with many species as well as their uses and ecology. The traditional mycological knowledge, generally gathered by the indigenous communities in their long interaction with nature, is an important part of human cultural heritage [11–15]. Ethnomycology is a relatively new area of research that investigates traditional knowledge, as well as cultural and environmental effects, of the association between human societies and fungi [16]. Yunnan is the province with the largest number of ethnic groups in China, each minority with their own culture, language, history and, of course, different uses for wild forest fungi. Brown [17] investigated Yi ethnomycological knowledge in four communities in Nanhua County, Yunnan Province, which showed that documenting ethnomycological knowledge highlights the importance of fungi in local ecosystems and livelihoods. Ethnomycological knowledge is a key tool for forest conservation to predict anthropic harvesting pressure zones of WEF and support the management and sustainable utilization of wild fungi [18]. For example, documenting the fungal biodiversity which has a local use would allow to design and implement strategies to cultivate the most important WEF in specific areas and at the same time to integrate this cultivation into production systems which contribute to the recycling of local agricultural wastes, providing at the same time nutritious and healthy food. Additionally, the record of the local ethnomycological knowledge would allow to increase the promotion of responsible use and to design preservation techniques for the most valuable WEF, in order to maintain this important natural resource as a livelihood opportunity in rural areas. Additionally, the documentation and preservation of traditional mycological knowledge are fundamental to avoid poisonings [19]. However, compared with local folk knowledge related to plants and animals, ethnomycological knowledge started late and remains scarce [20, 21].

The annual production of WEF in Yunnan amounts to about 80,000 t [6]. The largest market share of commercial fungi, either in terms of monetary value or of quantity, includes truffles (Tuber indicum Cooke & Massee, Tuber sinoaestivum J.P. Zhang & P.G. Liu), matsutake (Tricholoma matsutake (S. Ito & S. Imai) Singer), porcini (Boletus edulis Bull.), chanterelles (Cantharellus cibarius Fr.) and milk agaric (e.g., Lactarius deliciosus (L.) Gray, Lactifluus volens (Fr.) Kuntze). Most of high-priced WEF are ectomycorrhizal fungi (EMF) which form a symbiotic relationship with trees and play an important role in the ecosystem [22, 23]. Wang and Liu [7] studied systematically the trade of fungi in Yunnan markets and showed that about 81.2% of the WEF species are EMF. Limited by cultivation techniques, mushrooms, especially of EMF, have been almost exclusively harvested from the wild [24]. Their high economic value has been driving forest-dependent communities to completely devote their resources to hunting mushrooms for immediate cash thanks to an endless market demand [25, 26]. Disorderly digging and hunting, habitat loss, and vegetation deterioration, has caused overexploitation of many species and is threatening the survival of fungal populations and the forests that support them [27–30]. A survey of mushroom markets and natural habitats in Yunnan, to a large extent, will reveal the problems of development and utilization of WEF [31, 32].

Based on this scenario, in the present research we studied the areas in Pu'er Prefecture in the southern part of Yunnan Province which has the highest diversity of both cultures and fungi. Yu et al. [33] studied the species diversity, use and threatened status of WEF in two counties of Pu'er Prefecture and found that large-scale commercial harvesting had led to the decline of mushroom production. Pu'er Prefecture has an area of 45,385 km², and its population is 2.4 million. It is located in southwest Yunnan and bordered by Myanmar, Laos and Vietnam. The Tropic of Cancer runs through the middle of Pu'er. It generally belongs to subtropical monsoon climate with lower altitude, diverse topography, rich forest resources and unique ethnic groups, like Hani, Lahu, Wa or Dai.

In this study, we aimed (1) to gather ethnomycological knowledge regarding the fungal species used by ethnic groups in Pu’er; (2) to update the knowledge about fungal species sold in Pu’er markets, especially ectomycorrhizal species; (3) to document the fungal diversity inhabiting Pu’er forests through natural habitats sampling; and (4) to identify the fungal species (sold in markets and collected in the natural habitats) using taxonomical and molecular approaches.

Methods

Study area

Pu’er Prefecture, with a total area of 45,385 square kilometers, is the largest prefecture in Yunnan Province. It is located between 22°02’ N–24°50’ N and 99°09’ E–102°19’ E, and the Tropic of Cancer runs across the middle of the prefecture. About 62.8% of Pu’er is forested where the main type of vegetation is broad-leaved forest, mixed forest (Alnus, Castanopsis, Olea, Pinus, Quercus) and Pinus forests [34]. Pu’er is one of the most culturally diverse prefectures, with 2.4 million population and fourteen ethnic groups inhabiting this area. Our investigation
was carried out in five nationality autonomous counties (Lancang Lahu, Menglian Dai Lahu Wa, Mojiang Hani, Ning’er Hani Yi, Ximeng Wa) and one homonymous municipality, Pu’er (Fig. 1, Table 1), all located south of the Tropic of Cancer.

Ethnomycological survey in markets
Semi-structured interviews were carried during the mushroom season (July to October) in three consecutive years (2019 to 2021) in established mushroom markets, mobile markets and street-stalls beside county highways or village roads (Fig. 2, Table 2). The number and the male–female ratio of vendors in markets, the knowledge, attitude and practice of human–mushroom interaction including the local names of mushrooms and their local uses (medicine, food, etc.), habitat, seasonality of species, marketability, form of mushrooms used (fresh/dried), methods of preparation for food and preservation (storage) were also recorded. For illiterate vendors, interviews were carried out mainly in Mandarin Chinese, although local languages were also used with assistance from local guides. Twenty percent of vendors in markets were randomly selected as respondents to answer the semi-structured interviews. Obtained information from these interviews was written down in sheets, which avoided distrust in the interviewed people.

Diversity of culturally relevant wild fungi in forests
In order to record the vegetation types associated with the fungal species sold in the markets and to investigate the presence of additional edible fungal species different than those recorded in the markets or with other uses and relevance categories, WEF were collected from forests nearby the studied markets in Pu’er prefecture. The forest areas were selected according to the information provided by some collectors previously interviewed in the markets. Forests nearby visited markets, reforested areas and a national nature reserve (Table 3) were investigated. Field work was conducted during the same season as the interviews were carried out using the random line transect method [35]. In order to gather more ethnomycological information regarding WEF, participant

Table 1 Sociodemographic characteristics of the six studied localities in Pu’er Prefecture

Locality	Population	Main ethnic groups	Economy
Pu’er Municipality	416,200	Hani, Yi, Lahu	Agriculture, tea, robber, animal
Mojiang County	281,600	Hani, Yi, Dai	Agriculture, tea, walnut, tobacco, animal
Ning’er County	162,700	Hani, Yi, Dai	Agriculture, tea, fruit, animal
Lancang County	441,500	Lahu, Wa, Hani	Agriculture, tea, animal
Ximeng County	87,300	Wa, Lahu, Dai	Agriculture, tea, robber, coffee, walnut
Menglian County	144,700	Lahu, Wa, Dai	Agriculture, tea, robber, coffee
observation was performed in some forest areas. We joined some collectors in their daily routine of collecting WEF. While walking with them, we recorded some local names of the mushrooms, hours invested in this activity, types of collectors and habitat ecological information.

Table 2 The timetable of selling mushrooms, minority and the average number of vendors with different gender in markets in three years

Markets' name	Type of market	Business Hours	Ethnic groups	July Female	July Male	August Female	August Male	September Female	September Male	October Female	October Male
Wuyi, Pu'er market	EM	2 p.m–6 p.m	Hani, Yi, Lahu	47	19	172	56	141	46	14	9
Lancang street	EM	7 a.m–12 p.m on Sunday	Lahu, Hani, Yi	44	17	93	25	183	56	55	15
Mojiang market	EM	1 p.m–4 p.m	Hani, Yi	10	2	67	37	15	8	4	1
Ning'er market	MM	2 p.m–5 p.m	Yi, Hani	17	5	49	13	51	27	26	10
Menglian market	MM	7 a.m–11 a.m every five days	Lahu, Dai, Wa	3	2	8	2	23	5	10	4
Ximeng market	MM	4 p.m–8 p.m	Wa, Lahu, Dai	2	1	2	8	41	7	10	3
No name	SS	1 p.m–5 p.m	×	×	×	×	×	×	×	×	×

1 Type of markets. EM is established market, MM is mobile market, SS is street-stall
2 Street-stalls beside county highways or village roads. We only recorded information about business time because of strong mobility.
Table 3 Description of the sampling sites in natural habitats

Location	Altitude (m)	Locality	Forest type	Habitat
Pu’er Municipality	1450	22°49′13″ N, 101°00′12″ E	Forests nearby markets	Pure pine forests (Pinus kesiya)
	1608	22°60′38″ N, 101°09′65″ E	The Sun River National Forest Park	Mixed forests (Pinus, Quercus, Castanopsis, Olea)
Mojiang County	1595	23°22′48″.85″ N, 101°41′0.69″ E	Forests nearby markets	Mixed forests (Pinus, Quercus)
	1627	23°44′43.00″ N, 101°12′56.1″ E	Ecological forest (Kuaiia village)	Pure pine forests (P. kesiya)
Ning’er County	1437	23°01′1.35″ N, 100°59′47.6″ E	Forests nearby markets	Mixed forests (Pinus, Quercus)
	1537	22°59′50.84″ N, 101°0′19.18″ E	Ecological forest (Hualiang village)	Pure pine forests (P. kesiya)
Lancang County	1350	22°19′51″ N, 100°00′34″ E	Forests nearby markets	Mixed forests (Quercus, Alnus, Pinus)
	1490	22°35′02″ N, 99°58′44″ E	Forests nearby markets	Mixed forests (Quercus, Pinus)
Ximeng County	1128	22°37′14.06″ N, 99°35′53.98″ E	Forests nearby markets	Mixed forests (Quercus, Alnus, Pinus)
	1497	22°36′10.53″ N, 99°35′0.02″ E	Forests nearby markets	Mixed forests (Quercus, Alnus, Pinus)
Menglian County	1250	22°16′21.99″ N, 99°16′30.06″ E	Forests nearby markets	Mixed forests (Quercus, Alnus, Pinus)
	1380	22°16′46.11″ N, 99°16′27.97″ E	Forests nearby markets	Mixed forests (Quercus, Alnus, Pinus)

Morphological study

Collections purchased from markets and collected from natural habitats were identified through taxonomical and molecular studies. Morpho-anatomical descriptions based on fresh samples were obtained following Largent [36]. A small sample of tissue, mostly hymenophore, was stored in silica gel and/or frozen in Eppendorf’s tubes and stored at −20 °C to be used later for molecular analyses. Then, all the samples were dried in a hot air dehydrator at 45 °C for further analyses. All collections were deposited in the Herbarium of Cryptogams, Kunming Institute of Botany, Chinese Academy of Sciences (HKAS). Microscopic characteristics were described from fresh specimens. Dried samples were sectioned with a razor blade by hand, mounted in 5% KOH solution and then stained with Melzer’s reagent. The sections were examined under a compound light microscope (Leica DM2500).

DNA extraction, PCR amplification and sequencing

DNA of samples was extracted using an Aidlab™ kit (Beijing). The internal transcribed spacer (ITS) region of the ribosomal DNA was amplified from DNA extracts using the ITS1F/ITS4 primer pair [37, 38]. To amplify the ribosomal large subunit (LSU), the primer combination of LROR and LR5 [39] was used. Each 25 μL PCR mixture consisted of 2.5 μL 10 × PCR buffer (Mg2+), 1.5 μL dNTPs (1 mM), 1 μL BSA (0.1%), 1 μL each primer (5 μM), 1 μL 25-fold diluted DNA extracts (obtained following the manufacturer’s instructions), 0.5 μL MgCl2 (25 mM) and 1.5 U Taq DNA polymerase (Takara, Takara Biotechnology, Dalian Co. Ltd, China). The amplifications were performed with the following cycling parameters for ITS: 94 °C for 5 min, followed by 35 cycles of 94 °C for 1 min, 50 °C for 1 min and 72 °C for 1 min, and with a final extension at 72 °C for 10 min. The amplifications were performed with the following cycling parameters for LSU: 94 °C for 3 min, followed by 35 cycles of 94 °C for 1 min, 50 °C for 1.5 min and 72 °C for 2 min, and with a final extension at 72 °C for 10 min. Three microliters of each PCR product were run on 1% (w/v) agarose gels and stained with ethidium bromide. The PCR products were purifed and sequenced forward and reverse sequences at TsingKe Biological Technology, Kunming, China, using ITS1F/ITS4 and LROR/LR5 primer pairs. Sequences were edited manually using Sequencher™ 4.1.4 (Gene Codes, USA) and queried against the NCBI public database GenBank with the BLASTn algorithm for identification. Sequences generated in this study were deposited in GenBank.

Results

Diversity of wild mushrooms in markets and in the natural habitats

Update and supplement of mushroom species

A total of 623 (HKAS 106765–HKAS 122601) samples were obtained and identified. From those, 110 were collected from markets and 513 from the natural habitats. A total of 310 wild mushroom species, varieties and some undescribed species which are currently under taxonomic study along with ethnomycological catalog information such as scientific names, family names, ecology and edibility were recorded (Table 4). No significant changes were recorded in the amount or diversity of commercialized species during the sampling period. Edibility information of most of the mushrooms was gathered directly from sellers and confirmed by taxonomists, professional atlases [40–43] and specialized literature. The 310 recorded species belong to 56 families and 112 genera. Approximately 70% of the species are ectomycorrhizal. Among of them, the 101 species collected in the
Scientific name	Family name	Market	Natural habitat	ECM	Edible part	Voucher No
Abortiporus biennis (Bull.) Singer	Podoscypheaceae	√	Inedible, wood-decay fungus			HKAS-111766
Acreus globulosus Ekanayaka, Q. Zhao & K.D. Hyde	Pyronemataceae	√	Inedible, too tiny			HKAS-122632
Agaricus heterostyris Heinem. & Gooss.-Font	Agaricaceae	√	Edible			HKAS-122370
Agaricus luteofibrillosus M.Q. He, Linda L. Chen & R.L. Zhao	Agaricaceae	√	Edible			HKAS-122412
Agaricus sp	Agaricaceae	√	Unknown			HKAS-122511
Albatrellus sp.	Albatrelliaceae	√	Edible			HKAS-111880
Amanita albidostipes Y.Y. Cui, Q. Cai & Zhu L. Yang	Amanitaceae	√	Toxic			HKAS-124004
Amanita angustilamella (Hohn.) Boedijn	Amanitaceae	√	Unknown			HKAS-123967
Amanita caqizong Zhu L. Yang, Y.Y. Cui & Q. Cai	Amanitaceae	√	Edible			HKAS-124005
Amanita cf. grisefarinosa	Amanitaceae	√	Unknown			HKAS-122658
Amanita citroaunnulata Y.Y. Cui, Q. Cai & Zhu L. Yang	Amanitaceae	√	Toxic			HKAS-122410
Amanita elata (Massee) Corner & Bas Matsuda	Amanitaceae	√	Maybe toxic			HKAS-123968
Amanita esculenta Hongo & L. Matsuda	Amanitaceae	√	Toxic			HKAS-122372
Amanita eijiir Zhu L. Yang	Amanitaceae	√	Unknown			HKAS-111744
Amanita fritillaria (Sacc.) Sacc	Amanitaceae	√	Toxic			HKAS-111691
Amanita grisefolia Zhu L. Yang	Amanitaceae	√	Edible			HKAS-111779
Amanita levistriata D.T. Jenkins	Amanitaceae	√	Toxic			HKAS-111778
Amanita princeps D.T. Jenkins	Amanitaceae	√	Toxic			HKAS-122502
Amanita pseudoporphyria Hongo	Amanitaceae	√	Toxic			HKAS-111708
Amanita pseudovaginata Hongo	Amanitaceae	√	Unknown			HKAS-122692
Amanita rubescens Pers	Amanitaceae	√	Toxic			HKAS-122544
Amanita rubromarginata Har. Takah. Zhu L. Yang	Amanitaceae	√	Edible			HKAS-122664
Amanita rubrovolvata S. Imai	Amanitaceae	√	Toxic			HKAS-122702
Amanita rufoferruginea Hongo	Amanitaceae	√	Toxic			HKAS-111723
Amanita sinensis Zhu L. Yang	Amanitaceae	√	Edible			HKAS-122507
Amanita spissacea S. Imai	Amanitaceae	√	Toxic			HKAS-111877
Amanita subglobosa Zhu L. Yang	Amanitaceae	√	Maybe toxic			HKAS-122396
Amanita subhemibapha Zhu L. Yang, Y.Y. Cui & Q. Cai	Amanitaceae	√	Edible			HKAS-122503
Amanita synchopiramis Corner & Bas	Amanitaceae	√	Toxic			HKAS-122650
Amanita virgineoides Bas	Amanitaceae	√	Maybe toxic			HKAS-111833
Amanita yuaniana Zhu L. Yang	Amanitaceae	√	Edible			HKAS-122505
Amanita zonata Y.Y. Cui, Qing Cai & Zhu L. Yang	Amanitaceae	√	Maybe toxic			HKAS-122624
Amauroderma rugosum (Blume & T. Nees) Torrend	Ganodermataceae	√	Medicinal			HKAS-111701
Anamika angustilamellata Zhu L. Yang & Z.W. Ge	Hymenogastraceae	√	Maybe toxic			HKAS-111783
Asterophora lycopeoides (Bull.) Ditmar	Lyophylliaceae	√	Unknown			HKAS-122678
Aureoboletus mirabilis (Murrill) Halling	Boletaceae	√	Edible			HKAS-123972
Auricularia delicata (Mont. ex Fr.) Henn	Auriculariaceae	√	Edible			HKAS-111857
Scientific name	Family name	Market	Natural habitat	ECM	Edible part	Voucher No
-----------------	-------------	--------	----------------	-----	-------------	------------
Auricularia fuscosuccinea (Mont.) Henn	Auriculariaceae	√	Edible	HKAS-122598		
Blastosporella zonata T.J. Baroni & Franco-Mol	Lyophyllaceae	√	Unknown	HKAS-111854		
Boletus indistinctus G. Wu, Fang Li & Zhu L. Yang	Boletaceae	√	Unknown	HKAS-111749		
Boletus sp1	Boletaceae	√	Unknown	HKAS-111715		
Boletus sp2	Boletaceae	√	Unknown	HKAS-111794		
Boletus sp3	Boletaceae	√	Unknown	HKAS-122405		
Boletus aereus Bull	Boletaceae	√	Edible	HKAS-124009		
Boletus auripes Peck	Boletaceae	√	Edible	HKAS-111826		
Boletus bainiugan Dentinger	Boletaceae	√	Edible	HKAS-111821		
Boletus reticulatus Schaef	Boletaceae	√	Edible	HKAS-122381		
Boletus subvelutipes Peck	Boletaceae	√	Edible	HKAS-111756		
Boletus violaceofuscus W.F. Chiu	Boletaceae	√	Edible	HKAS-123966		
Bondarzewia berkeleyi (Fr.) Bondartsev	Bondarzewiaceae	√	Unknown	HKAS-122722		
Butyriboletus peckii (Frost) Kuan Zhao & Zhu L. Yang	Boletaceae	√	Edible, but sour or bitter	HKAS-111872		
Butyriboletus huangnianlai N.K. Zeng, H. Chai & Zhi Q. Liang	Boletaceae	√	Edible	HKAS-111755		
Caloboletus yunnanensis Kuan Zhao & Zhu L. Yang	Boletaceae	√	Edible	HKAS-122727		
Ceriporiopsis semisupina C.L. Zhao, B.K. Cui & Y.C. Dai	Meruliaceae	√	Unknown	HKAS-111855		
Cerrena zonata (Berk.) H.S.Yuan	Cerrenaceae	√	Unknown	HKAS-122586		
Clarkeinda trachodes (Berk.) Singer	Agaricaceae	√	Toxic	HKAS-122723		
Clavaria zollingeri Lév	Clavariaceae	√	Inedible, contains lectin	HKAS-111865		
Clavulina alpina Franchi & M. Marchetti	Hydnaceae	√	Edible	HKAS-122671		
Clavulina cristata (Holmsk.) J. Schröt	Hydnaceae	√	Edible	HKAS-111850		
Clavulina flavida (Holmsk.) J. Schröt	Hydnaceae	√	Maybe edible	HKAS-122481		
Clavulina rugosa (Bull.) J. Schröt	Hydnaceae	√	Edible	HKAS-111717		
Clavulina sp.	Hydnaceae	√	Maybe edible	HKAS-122494		
Clavulinopsis fusiformis (Sowerby) Corner	Clavariaceae	√	Edible	HKAS-122627		
Scientific name	Family name	Market	Natural habitat	ECM	Edible part	Voucher No
---------------------------------------	-------------------	--------	-----------------	-----	-------------	------------
Clitopilus chalybescens T.J. Baroni &	Entolomataceae	√	Unknown			HKAS-111784
Desjardin						
Clitopilus sinoapalus S.P. Jian & Zhu	Entolomataceae	√	Unknown			HKAS-122631
L. Yang						
Clitopilus sp.	Entolomataceae	√	Unknown			HKAS-122655
Collybiopsis fibrosipes (Berk. & M.A.	Marasmiaceae	√	Unknown			HKAS-122635
Curtis R.H. Petersen						
Coltricia crassa Y.C. Dai	Marasmiaceae	√	Inedible, dry			HKAS-122441
			and tough			
Coltricia veii Y.C. Dai	Hymenochaetaceae	√	Inedible, dry			HKAS-122593
			and tough			
Cortinarius aff. torvus	Cortinariaceae	√	Unknown			HKAS-122452
Cortinarius Albicyaneus Fr	Cortinariaceae	√	Unknown			HKAS-111851
Cortinarius alpinus Boud	Cortinariaceae	√	Unknown			HKAS-122660
Cortinarius boulderensis A.H. Sm	Cortinariaceae	√	Unknown			HKAS-122445
Cortinarius caesistilus A.H. Sm	Cortinariaceae	√	Unknown			HKAS-122446
Cortinarius cotonus Fr	Cortinariaceae	√	Edible			HKAS-122455
Cortinarius croceus (Schaef) Gray	Cortinariaceae	√	Unknown			HKAS-122559
Cortinarius fulvo-ochraceus Rob.	Cortinariaceae	√	Unknown			HKAS-122657
Cortinarius frigidus	Cortinariaceae	√	Unknown			HKAS-111713
Cortinarius purpurascens Fr	Cortinariaceae	√	Edible			HKAS-122529
Cortinarius sp.	Cortinariaceae	√	Unknown			HKAS-111771
Cortinarius tenuipes (Hongo) Hongo	Cortinariaceae	√	Unknown			HKAS-122467
Cortinarius trivialis J.E. Lange	Cortinariaceae	√	Unknown			HKAS-111789
Cortinarius valgus Fr	Cortinariaceae	√	Unknown			HKAS-111836
Cortinarius vinaceobrunneus Ammerrati	Cortinariaceae	√	Unknown			HKAS-122626
Beug, Liimat., Niskanen & O. Ceska						
Craterellus aureus Berk. & M.A. Curtis	Hydnaceae	√	Edible			HKAS-123973
Craterellus cornucopioides (L.) Pers	Hydnaceae	√	Edible			HKAS-111827
Craterellus luteus T.H. Li & X.R. Zhong	Hydnaceae	√	Edible			HKAS-111759
Craterellus parvogriseus U. Singh, K.	Hydnaceae	√	Edible			HKAS-122486
Das & Buyck						
Craterellus sp.	Hydnaceae	√	Edible			HKAS-122643
Craterellus tubaeformis (Fr.) Quél	Hydnaceae	√	Edible			HKAS-111843
Crocinobolus laetissimus (Hongo)	Boletaceae	√	Edible			HKAS-122417
N.K. Zeng, Zhu L. Yang & G. Wu						
Crocinobolus sp.	Boletaceae	√	Edible			HKAS-111764
Cystotrama asprata (Berk.) Redhead &	Physalacriaceae	√	Unknown			HKAS-122721
Ginnis						
Entocybe trachyspora (Largent) Largent, T.J. Baroni & V. Hofst	Entolomataceae	√	Maybe toxic			HKAS-122647
Entoloma amniense (Hongo) E. Horak	Entolomataceae	√	Toxic			HKAS-111709
Entoloma petchii E. Horak	Entolomataceae	√	Maybe toxic			HKAS-122493
Entoloma praegracile Xiao L. He & T.H.	Entolomataceae	√	Maybe toxic			HKAS-111787
Li						
Entoloma subsinuatum Murrill	Entolomataceae	√	Maybe toxic			HKAS-122542
Entoloma sp.	Entolomataceae	√	Unknown			HKAS-111834
Fistulina hepatica (Schaeff) With	Fistulinae	√	Edible, but			HKAS-111775
Fistulina sp.	Fistulinae	√	slightly bitter			HKAS-111893
Scientific name	Family name	Market	Natural habitat	ECM	Edible part	Voucher No
-----------------	-------------	--------	----------------	-----	-------------	------------
Fistulina subhepatica	Fistulinaceae	√	Unknown	HKAS-122466		
Fomitopsis pinicola (Sw.) P. Karst	Fomitopsidaceae	√	Medicinal	HKAS-111896		
Ganoderma lingzhi Sheng H. Wu, Y. Cao & Y.C. Dai	Polyporaceae	√	Medicinal	HKAS-111736		
Geastrum velutinum Morgan	Geastraceae	√	Unknown	HKAS-111879		
Gomphus xanthophyllum (Bres.)	Marasmiaceae	√	Unknown	HKAS-112652		
Gloeophyllum sepiarium (Wulfen) P. Karst	Gloeophyllaceae	√	Medicinal	HKAS-122703		
Gymnopilus penetrans (Fr.) Murrill	Hymenogastraceae	√	Toxical	HKAS-122710		
Gymnopilus dryophilus (Bull.) Murrill	Omphalotaceae	√	Edible, but not worthwhile because of thin flesh and tough stem	HKAS-122640		
Gymnopus subnudus (Ellis ex Peck)	Omphalotaceae	√	Unknown	HKAS-122729		
Hymenochaete subferruginea Bres. & Syd	Hymenochaetaceae	√	Unknown	HKAS-122472		
Hymenopellis orientalis (R.H. Petersen & Nagas.) R.H. Petersen	Physalacriaceae	√	Unknown	HKAS-122599		
Hypomyces chlorinigenus	Hypocreaceae	√	Inedible, parasitic fungus	HKAS-122567		

*Table 4 (continued)
Scientific name	Family name	Market	Natural habitat	ECM	Edible part	Voucher No
Hypomyces perniciosus Magnus Magnus	Hypocreaceae	√	Inedible, parasitic fungus		HKAS-111690	
Hypomyces pseudolactifluorum F.M. Yu, Q. Zhao & K.D. Hyde	Hypocreaceae	√	Inedible, parasiticfungus		HKAS-122679	
Inocybe sp.	Inocybaceae	√	√	Unknown	HKAS-123963	
Laccaria amethystina Cooke	Hydnangiaceae	√	Edible	HKAS-122734		
Laccaria aurantia Popa, Rexer, Donges, Zhu L. Yang & G. Kost	Hydnangiaceae	√	Edible	HKAS-122365		
Laccaria fascata (Scop.) Cooke	Hydnangiaceae	√	√	Edible	HKAS-111743	
Laccaria moshujun Popa & Zhu Liang Yang	Hydnangiaceae	√	√	Edible	HKAS-122719	
Laccaria vinaceaevallanea Hongo	Hydnangiaceae	√	√	Edible	HKAS-111721	
Laccaria yunnanensis Popa, Rexer, Donges, Zhu L. Yang & G. Kost	Hydnangiaceae	√	√	Edible	HKAS-123996	
Lactarius acerinus Britzelm	Russulaceae	√	Edible, but not tasty	HKAS-111712		
Lactarius aff. subplinthogalus	Russulaceae	√	Edible	HKAS-111825		
Lactarius akahatsu Nobuj. Tanaka	Russulaceae	√	Unknown	HKAS-111772		
Lactarius austrotomentosus H.T. Le & Verbeken	Russulaceae	√	√	Edible	HKAS-122639	
Lactarius cinnamomeus WF. Chiu	Russulaceae	√	√	Edible	HKAS-122463	
Lactarius conglutinatus X.H. Wang	Russulaceae	√	Toxic	HKAS-111697		
Lactarius formosus H.T. Le & Verbeken	Russulaceae	√	Unknown	HKAS-111772		
Lactarius gracilis Wisitr. & Nuynintrk	Russulaceae	√	√	Unknown	HKAS-111699	
Lactarius hatsudake Nobuj. Tanaka	Russulaceae	√	√	Edible	HKAS-111725	
Lactarius hirtipes J.Z. Ying	Russulaceae	√	Toxic	HKAS-122708		
Lactarius purpureus R. Heim	Russulaceae	√	√	Edible, but not tasty	HKAS-111745	
Lactarius rubrobrunneus H.T. Le & Nuynintrk	Russulaceae	√	√	Edible	HKAS-111805	
Lactarius sp.	Russulaceae	√	√	Edible	HKAS-122654	
Lactifluus aff. tropicosinicus	Russulaceae	√	√	Edible	HKAS-122728	
Lactifluus ambicystidiatus X.H. Wang	Russulaceae	√	√	Maybe inedible, bitter and spicy	HKAS-122435	
Lactifluus dvaliensis (K. Das, J.R. Sharma & Verbeken) K. Das	Russulaceae	√	√	Edible	HKAS-111781	
Lactifluus gerardi (Peck) Kuntze	Russulaceae	√	√	Edible	HKAS-122402	
Lactifluus hygrophoroides (Berk. & M.A. Curtis) Kuntze	Russulaceae	√	√	Edible	HKAS-123965	
Lactifluus leae (D. Stubbe & Verbeken) Verbeken	Russulaceae	√	√	Edible	HKAS-111695	
Lactifluus pilosus (Verbeken, H.T. Le & Lumyong) Verbeken	Russulaceae	√	√	Edible	HKAS-111859	
Lactifluus pinguis (Van de Putte & Verbeken) Van de Putte	Russulaceae	√	√	Edible	HKAS-122422	
Lactarius piperatus (L.) Pers	Russulaceae	√	√	Edible	HKAS-111795	
Lactifluus pseudoluteopus (X.H. Wang & Verbeken) X.H. Wang	Russulaceae	√	√	Maybe toxic	HKAS-122349	
Lactifluus rugatus (Kühner & Romagn.) Verbeken	Russulaceae	√	√	Edible	HKAS-111848	
Lactifluus subpruninosus X.H. Wang	Russulaceae	√	√	Edible	HKAS-122371	
Lactifluus valemus (Fr.) Kuntze	Russulaceae	√	√	Edible	HKAS-122387	
Lannanoma pallidorosea (Both) Raspé & Vadthanarat	Boletaceae	√	√	Edible	HKAS-123971	
Scientific name	Family name	Market	Natural habitat	ECM	Edible part	Voucher No
----------------	-------------	--------	----------------	-----	-------------	------------
Lauriomycetes heliocephalus (V. Rao & de Hoog) R.F. Castañeda & W.B. Kendrick	Lauriomycetaceae	√	Inedible, pathogenic fungus	HKAS-111894		
Leccinellum quercophilum M. Kuo	Boletaceae	√	Edible	HKAS-122418		
Leccinum rugosiceps (Peck) Singer	Boletaceae	√	Edible	HKAS-122386		
Lentinula edodes (Berk.) Pegler	Omphalotaceae	√	Edible	HKAS-111768		
Lentinus squarrosulus Mont	Omphalotaceae	√	Edible	HKAS-111758		
Leotia atroveners Pers	Leotiaceae	√	Unknown	HKAS-111847		
Leotia lubrica (Scop.) Pers	Leotiaceae	√	Edible, but tasteless	HKAS-111791		
Lyophyllum fumosum (Pers.) P.D. Orton	Lyophyllaceae	√	Edible	HKAS-111813		
Lyophyllum rhopalopodium Clémençon	Lyophyllaceae	√	Edible	HKAS-111793		
Marasmius chlorinosmus A.H. Sm. & Trappe	Russulaceae	√	Unknown	HKAS-122489		
Macrocybe gigantea (Massee) Pegler & Lodge	Callistosporiaceae	√	Edible	HKAS-122496		
Macrolepiota velosa Vellinga & Zhu L. Yang	Agaricaceae	√	Unknown	HKAS-122634		
Marasmius sp.	Marasmieae	√	Unknown	HKAS-111705		
Marasmius pseudopurpureostriatus Wannathes, Desjardin & Lumyong	Marasmieae	√	Edible, but not worthwhile because of small size and thin flesh	HKAS-123994		
Microporus xanthopus (Fr.) Kuntze	Polyporaceae	√	Inedible, leathery flesh	HKAS-111716		
Ophiocordyceps nutans (Pat.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora	Ophiocordycipitaceae	√	Medicinal	HKAS-122621		
Ophiocordyceps oxycephala (Penz. & Sacc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora	Ophiocordycipitaceae	√	Medicinal	HKAS-123960		
Panellus pusillus (Pers. ex Lév.) Burds. & O.K. Mill	Boletaceae	√	Edible	HKAS-122667		
Panus tigrinus (Bull.) Singer	Polyporaceae	√	Edible	HKAS-123994		
Paxillus involutus (Batsch) Fr	Paxillaceae	√	Toxic	HKAS-122442		
Phaeolus schweinitzii (Fr.) Pat	Fomitopsidaceae	√	Inedible, too tough	HKAS-122400		
Pholiota multicingulata E. Horak	Strophariaceae	√	Maybe toxic	HKAS-122568		
Phylloporus luxiensis M. Zang	Boletaceae	√	Edible	HKAS-111883		
Phylloporus rubiginosus M.A. Neves & Halling	Boletaceae	√	Unknown	HKAS-122582		
Polyporus cuticulatus Y.C. Dai, Jing Si & Schigel	Polyporaceae	√	Edible	HKAS-111809		
Scientific name	Family name	Market	Natural habitat	ECM	Edible part	Voucher No
-----------------	-------------	--------	-----------------	-----	-------------	------------
Pulveroboletus iteninus (Pat. & C.F. Baker) Watling	Boletaceae	✓	✓	Toxic, maybe medicinal	HKAS-111741	
Pulveroboletus subrufus N.K. Zeng & Zhu L. Yang	Boletaceae	✓	✓	Toxic	HKAS-122514	
Ramaria asiatica (R.H. Petersen & M. Zang) R.H. Petersen	Gomphaceae	✓	✓	Edible	HKAS-123983	
Ramaria cartilaginea Marr & D.E. Stuntz	Gomphaceae	✓	✓	Edible	HKAS-123998	
Ramaria cyanophagea (Berk. & M.A. Curtis) Corner	Gomphaceae	✓	✓	Maybe toxic	HKAS-122630	
Ramaria fennica (P. Karst.) Ricken	Gomphaceae	✓	✓	Edible, but bitter	HKAS-111790	
Ramaria livida (Schaeff.) Quél	Gomphaceae	✓	✓	Edible, but little bitter	HKAS-111706	
Ramaria sanguinipes R.H. Petersen & M. Zang	Gomphaceae	✓	✓	Edible	HKAS-111746	
Ramaria sp.	Gomphaceae	✓	✓	Edible	HKAS-111774	
Ramaria thindii K. Das, Hembrom, A. Parihar & A. Ghosh	Gomphaceae	✓	✓	Edible	HKAS-122425	
Ramaria vinosimaculans Marr & D.E. Stuntz	Gomphaceae	✓	✓	Edible	HKAS-111785	
Retiboletus fuscus (Hongo) N.K. Zeng & Zhu L.Yang	Boletaceae	✓	✓	Edible	HKAS-122545	
Retiboletus sinensis N.K. Zeng & Zhu L.Yang	Boletaceae	✓	✓	Edible	HKAS-122610	
Retiboletus sp.	Boletaceae	✓	✓	Edible	HKAS-122552	
Rhizocybe alba Y.X. Ding & E.J. Tian	Agaricales	✓		Unknown	HKAS-122720	
Rhizopogon songmaodan R. Wang & Fu Q. Yu	Gomphaceae	✓	✓	Edible	HKAS-123980	
Rubroboletus esculentus Kuan Zhao, H.M. Shao & Zhu L. Yang	Boletaceae	✓	✓	Edible	HKAS-124003	
Rugiboletus extremiorientalis (Lj.N. Vassiljeva) G. Wu & Zhu L. Yang	Boletaceae	✓	✓	Edible	HKAS-123978	
Russula adusta (Pers.) Fr	Russulaceae	✓	✓	Edible	HKAS-122583	
Russula amarissima Romagn. & E.-J. Gilbert	Russulaceae	✓	✓	Edible	HKAS-111737	
Russula ceracea (Soehner) J.M. Vida	Russulaceae	✓	✓	Unknown	HKAS-122509	
Russula compacta Frost	Russulaceae	✓	✓	Edible	HKAS-111734	
Russula crustosa Peck	Russulaceae	✓	✓	Edible	HKAS-122506	
Russula cyanoxantha (Schaeff.) Fr	Russulaceae	✓	✓	Edible	HKAS-122577	
Russula delica Fr	Russulaceae	✓	✓	Edible	HKAS-123987	
Russula densifolia Sect. ex Gillet	Russulaceae	✓	✓	Edible	HKAS-122430	
Russula dissimulans Shaffer	Russulaceae	✓	✓	Edible	HKAS-122628	
Russula flavida Frost ex Peck	Russulaceae	✓	✓	Edible	HKAS-122512	
Russula foetens Pers	Russulaceae	✓	✓	Toxic	HKAS-111702	
Russula griseocarna X.H. Wang, Zhu L. Yang & Knudsen	Russulaceae	✓	✓	Edible	HKAS-122424	
Russula lachanpalii A. Ghosh, K. Das & R.P. Bhatt	Russulaceae	✓	✓	Unknown	HKAS-122622	
Russula lilacea Quêl	Russulaceae	✓	✓	Edible	HKAS-111853	
Russula nigricans Fr	Russulaceae	✓	✓	Edible	HKAS-123961	
Russula purpureocracilis F. Hampe, Looney & Manz	Russulaceae	✓	✓	Unknown	HKAS-111722	
Russula rosea Pers	Russulaceae	✓	✓	Edible, but some consider it inedible	HKAS-122342	
Table 4 (continued)

Scientific name	Family name	Market	Natural habitat	ECM	Edible part	Voucher No
Russula senecis S. Imai	Russulaceae	✓	✓	✓	Edible	HKAS-122352
Russula sp.	Russulaceae	✓	✓	Unknown	HKAS-122376	
Russula sororia (Fr.) Romell	Russulaceae	✓	✓	Edible	HKAS-122487	
Russula substriata J. Wang, X.H. Wang, Buyck & T. Bau	Russulaceae	✓	✓	Unknown	HKAS-122625	
Russula virensens (Schaeff.) Fr	Russulaceae	✓	✓	✓	Edible	HKAS-122384
Russula viridicinnamomea F. Yuan & Y. Song	Russulaceae	✓	✓	Edible	HKAS-122524	
Russula vinosa Lindblad	Russulaceae	✓	✓	✓	Edible	HKAS-122380
Sarcoporia polyspora P. Karst	Sarcoporiaceae	√	Unknown	HKAS-122725		
Schizophyllum commune Fr	Schizophyllaceae	√	Unknown	HKAS-123962		
Scleroderma flavidum Ellis & Everh	Sclerodermataceae	✓	✓	Toxic	HKAS-122469	
Scleroderma sinnamariense Mont	Sclerodermataceae	✓	✓	Toxic	HKAS-111718	
Scleroderma yunnanense Y. Wang	Sclerodermataceae	✓	✓	Unknown	HKAS-111786	
Sparassis sp.	Sparassidaceae	✓	Unknown	HKAS-122536		
Stereopsis radicans (Berk.) D.A. Reid	Stereopsidaceae	✓	Unknown	HKAS-111876		
Strobilomyces confusus Singer	Boletaceae	✓	✓	Edible	HKAS-122534	
Strobilomyces latirostris J.Z. Ying	Boletaceae	✓	✓	Edible	HKAS-122520	
Strobilomyces seminudus Hongo	Boletaceae	✓	✓	Edible	HKAS-111720	
Stropharia rugosoannulata Farl. ex Murill	Strophariaceae	✓	Unknown	HKAS-122474		
Sulzbacheromyces yunnanensis D. Liu, Li S. Wang & Goffinet	Lepidostromataceae	✓	Unknown	HKAS-122355		
Suillellus sp.	Boletaceae	✓	✓	Unknown	HKAS-111890	
Suillellus subvelutipes (Peck) Murrill	Boletaceae	✓	✓	Maybe toxic	HKAS-111754	
Suillus bovinus (L.) Roussel	Suillaceae	✓	✓	Edible	HKAS-111891	
Suillus luteus (L.) Roussel	Suillaceae	✓	✓	Toxic	HKAS-111788	
Suillus placidus (Bonord.) Singer	Suillaceae	✓	✓	Toxic	HKAS-122590	
Tapinella panuoides (Fr) E.-J. Gilbert	Tapinellaceae	✓	Toxic	HKAS-122726		
Termiticolia sp.	Agaricaceae	✓	Unknown	HKAS-111738		
Termitomyces albiceps S.C. He	Lyophyllaceae	✓	✓	Edible	HKAS-111703	
Termitomyces aurantiacus (R.Heim) R. Heim	Lyophyllaceae	✓	✓	Edible	HKAS-122633	
Termitomyces clypeatus R. Heim	Lyophyllaceae	✓	✓	Edible	HKAS-123988	
Termitomyces eumrhizus (Berk.) R. Heim	Lyophyllaceae	✓	✓	Edible	HKAS-124007	
Termitomyces heimii Natarajan	Lyophyllaceae	✓	Edible	HKAS-123975		
Termitomyces fuliginosus R. Heim	Lyophyllaceae	✓	Edible	HKAS-111732		
Termitomyces microcarpus (Berk. & Broome) R. Heim	Lyophyllaceae	✓	Edible	HKAS-111735		
Termitomyces sp.1	Lyophyllaceae	✓	Edible	HKAS-122510		
Termitomyces sp.2	Lyophyllaceae	✓	Edible	HKAS-122623		
Thelephora ganbajun M. Zang	Thelephoraceae	✓	✓	Edible	HKAS-111698	
Thelephora regularis Schwein	Thelephoraceae	✓	✓	Edible	HKAS-111874	
Thelephora sikkimensis K. Das, Hembrum & Kuhar	Thelephoraceae	✓	✓	Unknown	HKAS-122715	
Thelephora sp	Thelephoraceae	✓	✓	Edible	HKAS-111830	
Thelephora virosa Schwein	Thelephoraceae	✓	✓	Edible	HKAS-122373	
Triapaptum abietinum (Pers. ex.J.F. Gmel) Ryvarden	Hymenochaetales	✓	Inedible, leathery flesh	HKAS-122706		
markets belong to 22 families and 39 genera, and about 76% of them are EMF. The 283 species collected in the natural habitats belong to 52 families and 100 genera, and about 70% are EMF.

In the markets, 91 species are edible and about 80% are EMF. A few new species which have only been published in recent years [44–47] were found in markets. And some previously described species were revised or classified in other section or genus by molecular phylogenetic study [48–50]. Furthermore, four species from markets are medicinal, two of which, *Ophiocordyceps nutans* (Pat.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora and *O. oxycephala*, are mainly distributed in tropical and subtropical broad-leaved forests. It is interesting that four species which have been reported to cause gastroenteritis type poisoning, including *Heimioporus japonicus* (Hongo) E. Horak and *Tylopilus neofelleus* Hongo (in July) were sold in large quantities in Pu’er market, and *Tricholoma equestre* (L.) P. Kumm. (August to October) was mixed with a few *Tricholoma saponaceum* (Fr.) P. Kumm. in some small stalls. Some specimens, of one inedible species, *Abortiporus biennis* (Bull.) Singer, were recorded to be sold in a few markets as *Thelephora ganbajan* M. Zang. Similarly, *Hygrocybe cuspidata* (Peck) Murrill with unknown toxicity was sold occasionally in some stalls maybe because for some people it is *Cantharellus*-looking. Therefore, the accurate taxonomic status of these apparently toxic species has to be carefully checked, in order to determine if they correspond to new taxa or if the ecotypes in the area are non-toxic species. Most commercial mushrooms are common species in all markets (Fig. 3a–i). Six sampled markets shared 49 mushroom species, while 12 unique species were only sold in Pu’er market and 9 unique species were only sold in Lncang market (Fig. 3j).

The forest areas selected for the natural habitats work (according to information gathered from some collectors) were within 15 km of the markets. Due to its protected status, the Ecological Conservation Forests and the Sun River National Forest Park are less visited by gatherers or recreational visitors. A total of 283 species were recorded and collected from natural habitats, which include 129 edible species, accounting for about 84% EMF, 15 inedible species, 11 medicinal species, 53 poisonous species and 75 species with unknown edibility. Moreover, 23 species are undescribed and are currently under taxonomic study (Fig. 4).

Local preference and acceptability of WEF species

A total of 74 species were recorded in both markets and natural habitats, including 65 edible species, 4 medicinal species, 4 toxic species and one species with unknown use. *Amanita caojizong* Zhu L. Yang, Y.Y. Cui & Q. Cai, *Cantharellus cinnabarinus* (Schwein.) Schwein., *Crate -rellus cornucopioides* (L.) Pers., *Lactifluus piperatus* (L.) Pers., *Lactifluus volemus* (Fr.) Kuntze and *Ramaria* spp. were popular in markets and easy to find in natural habitats in mushroom season (Fig. 5). The most frequently bought wild mushrooms belonged mainly to Boletaceae (16 species), Hydnaceae (14 species), Lyophyllaceae (11 species) and Russulaceae (23 species). The families Amanitaceae (26 species), Boletaceae (32 species), Cortinariaceae (16 species), Hydnaceae (24 species), Hydnangiaceae (6 species), Lyophyllaceae (11 species) and Russulaceae (50 species) were common
in natural habitats and forests. Mushroom species and amount showed a high correspondence between markets and the natural habitats on different months (Fig. 5). Preference of WEF for locals was mostly related to their availability in the forests.

Ethnomycological data

Type of markets and constitution of vendors

A total of 11 markets were visited during this study. As illustrated in Table 2, three markets were established markets, 3 markets were mobile markets and 5 street-stalls were without names. Different markets have different sale time to sell mushrooms according to the local people’s different lifestyles. The highest number of vendors in all markets was recorded in August and September. The vendors in the mobile markets and in the street-stalls were usually low-income people, who travel usually by foot from the natural collection areas to the selling points.

Almost all vendors were able to speak Mandarin in Wuyi market of Pu’er City although most of vendors belong to ethnic groups, like Hani, Yi and Lahu people. This is the largest market in Pu’er, and up to 200 vendors, including gatherers, two-way merchants (those who buy mushrooms from gatherers directly in natural habitats) and brokers (those who buy mushrooms from gatherers or to two-way merchants), sold mushrooms in August and September (Fig. 2a–c). Most of the valuable mushrooms are usually sold at higher prices to large markets or restaurants of Kunming (the capital of Yunnan province) by brokers. Vendor’s main age group was between 35 and 55, and most of them were able to receive contactless payments through their mobile phones.

In the markets of Mojiang and Ning’er Counties, the number of vendors reached 100 in August or September. The Yi and Hani people are the main ethnic groups who inhabit these two counties. In recent years, local governments have paid great attention to the development of WEF resources marketing, and more mushroom markets have been established. Vendors in these markets were gatherers, merchants and some brokers, and the main age group was between 20 and 45. A small group of aged vendors (60+) spoke southwest Mandarin and could not use mobile phone apps to receive payments for the mushroom sale.

Lancang Street Market (Fig. 2d, e) had mostly Lahu and Hani people. The villagers in the surrounding towns bring a variety of products to Lancang Street Market on Sunday every week. Vendor’s main age group was between 40 and 65, 48% of which could not speak Mandarin, only Lahu language and southwest Mandarin. In addition, most of aged vendors accepted cash only.
Nearly all vendors in Lancang Street Market were gatherers, and most of them usually sell mushrooms along with vegetables, fruits or local products, so seller mobility in this market was not strong within market time.

Menglian and Ximeng Counties are not far from Lancang County. The Lahu, Dai and Wa people are the main ethnic groups in these two counties. Vendors here spoke Lahu, Dai and Wa languages and southwest Mandarin. Compared with other markets, fewer vendors sold mushrooms. However, some vendors said that many buyers from Lancang County or Pu’er Municipality came here to buy mushrooms to process or dry and then resell them, so many vendors collect mushrooms and sell them directly to wholesale buyers.

Mushroom species from five street-stalls which have 1 to 15 vendors by county highways or village roads were also recorded. These vendors come from nearby villages and most of them were aged people. They do not have transportation to go to markets to sell mushrooms, so they usually sell them on the side of the road after

Fig. 4 Typical edible wild mushrooms and their natural habitats. a–c Sampled vegetation types: a Pinus kesiya forest; b Coniferous and broad-leaved forest mixed forest; c Broad-leaved forest. d–i Representative abundant mushroom species: d Ramaria sp.; e Cantharellus cinnabarinus; f Lactifluus piperatus; g Craterellus cornucopioides; h Amanita caojizong; i Laccaria yunnanensis. j–l Some undescribed fungi: j Cortinarius sp.; k Phaeocollybia sp.; l Ramaria sp.
collecting them. As a consequence, only very fresh mushrooms were recorded (Fig. 2 g, i).

Gender of vendors

The male-to-female ratio of vendors showed that women outnumber men in markets. Female vendors were involved in every stage of mushroom utilization from collection to processing and marketing.

Mushroom prices in three years

The prices of popular mushrooms were similar in the six studied counties, and the price of each species did not fluctuate much over the three years (Table 5). However, a large fluctuation was recorded throughout the mushroom season mainly due to their availability and quality of the specimens. Overall, the prices of popular mushrooms, *Russula griseocarnosa* X.H. Wang, Zhu L. Yang & Knudsen, *Termitomyces* spp. (e.g., *T. globulus*, *T. striatus*) and *Thelephora ganbajun* were higher than those of other mushroom species. *Schizophyllum commune* Fr. was only recorded to be sold in a few stalls in each market, and its price was as high as to 200 yuan per kilogram. In each market, vendors carefully placed mushrooms on green banana leaves or in plastic bags, baskets or plates (Fig. 6) with a certain weight (generally 0.5 kg or 1 kg), which due to the arrangement always looked beautiful and clean.

Except for brokers, most collectors are farmers who grow tea and other crops or raise hogs and cattle. During the mushroom season, they usually collect wild mushrooms in the mountains near their homes and sell them for an extra income (3000–6000 yuan per family, approximately equivalent to USD$450 to 900) for their families.

The use and preparation methods of WEF

The main use of wild mushrooms is for food, and a few are medicinal species used to make medicinal liquor (Fig. 7, Table 6). The most common cooking preparation way among local people was to fry the mushrooms with fermented bamboo shoots or other local vegetables. *Lactifluus piperatus*, which has a spicy taste, is considered to be a perfect match for sour pickles. *Tylopilus neofelleus* is an interesting species considered toxic by some local people; however, other people enjoy its bitter flavor. They found a cooking method to remove toxic components, which was by drying slices of the mushroom and then deep frying them. For species of Boletaceae, local people had a common understanding of adding more garlic and cooking them for more than 30 min. Likewise, local people soak peeled *Scleroderma yunnanense* Y. Wang fruiting bodies or slices in water or saline water before cooking to remove some components to avoid any gastrointestinal upset.

Local people stored mushrooms by drying, pickling and frying, but they enjoy more to eat fresh mushrooms. Some dry mushrooms, like *Boletus* spp. (porcini), *Russula griseocarnosa*, *Russula virescens* (Schaeff.) Fr. and *Ramaria* spp., were usually sold to people from other cities.

![Fig. 5 Comparison of the most abundant edible wild mushrooms sampled in markets (black bars) and natural habitats (gray bars) of Pu’er Municipality and Lancang County during July to October. Numbers of black bars represent percentages of stalls sold the most abundant edible wild mushrooms to total stalls; numbers of gray bars represent percentages of numbers of collected the most abundant edible wild mushrooms to total collected mushrooms.](image)
Traditional recognition methods of WEF

The rich variety of mushroom species gathered by local people demonstrate that they have a rich traditional knowledge. Local mushroom names demonstrate a particular taxonomic knowledge. According to the color, shape, taste, texture, habitat and some special features of mushrooms or even local legends, interesting and vivid names have been given to mushrooms and people are able to make a local classification system for mushrooms (Table 7). Sometimes, mushrooms have more than one name, like *Scleroderma yunnanense*, which is named “bubble with horse skin” in most areas of Pu’er because of its shape and texture, but Lahu people call it “soil fruits” because of its habitat. *Lactifluus rugatus* (Schaeff.) Fr. is named “milk cap mushroom” because of the fluid it produces, and the names “monkey mushroom” (local monkeys are yellow) and “sweet yellow mushroom” come from its pileus color and taste. Experienced gatherers have a more impressive knowledge. Such as valuable *Russula griseocarnosa* could be distinguished from other similar or poisonous species by its thick pileus, light-gray context and solid stipe (they usually squeeze the stipe). *Amanita caojiizong* and poisonous *Amanita pseudoporporphyria* Hongo are locally distinguished by the stipe shape and smell. The knowledge of selecting mushrooms has usually passed from generation to generation. Moreover, some collectors have their own mental maps to find specific places where mushrooms, especially valuable ones, appear every year, and the information is usually kept within their family to avoid the collection by other people, which would affect their family’s income.

Discussion

A total of 310 wild mushroom species, varieties and some undescribed species were collected from markets and natural areas. Approximately 70% of the species were ectomycorrhizal. In the markets from the 91 edible species, about 80% were EMF. With the development of transportation infrastructures, Pu’er has become one of the main supply centers of WEF for central Yunnan, and WEF processing industries are becoming large scale. Yu et al. [33] surveyed markets in Pu’er from 2002 to 2009 and reported a sharp decline of WEF production of 43 species, such as *Lactifluus volemus*, *Russula griseocarnosa*, *Termitomyces* spp. and *Thelephora ganbajun* which were considered important in Yunnan. In our study, interviews with vendors showed that production of these species had declined even more in recent years and they had to travel farther to collect them. However, we also found that some mushrooms, that were not so common then, are now popular in Pu’er area, such as *Cantharellus cinnabarinus*, *Laccaria laccata* and *Boletus edulis* [33]. These species have a high market value and high production in the sites sampled in our study. This change might have due to the growing mycological knowledge of Pu’er people. The increase in mushroom species could reduce the pressure of collection of valuable species to some extent. But local people still act cautiously and even refuse eating some edible mushrooms that have only recently become mainstream edibles. In our study, 57 good edible species that we found in nature were not sold in markets. Very tasty species as *Amanita subhemibapha* Zhu L. Yang, Y.Y. Cui & Q. Cai, *Boletus violaceofuscus* W.F. Chiu and *Laccaria amethystina* Cooke have beautiful color and good production in the forests, but they were not recorded in the markets maybe due to the fact

Species	Year 2019	Year 2020	Year 2021
Boletus spp. (porcini group)	30–90 yuan/kg	20–75 yuan/kg	30–85 yuan/kg
Craterellus cornucopioides	20–70 yuan/kg	20–60 yuan/kg	20–70 yuan/kg
Laccaria spp.	20–40 yuan/kg	15–40 yuan/kg	15–40 yuan/kg
Lactifluus piperatus	10–30 yuan/kg	10–30 yuan/kg	10–30 yuan/kg
Lactifluus volemus	30–90 yuan/kg	25–90 yuan/kg	30–90 yuan/kg
Ramaria spp.	20–40 yuan/kg	20–40 yuan/kg	10–40 yuan/kg
Russula griseocarnosa	45–120 yuan/kg	50–120 yuan/kg	40–130 yuan/kg
Russula virescens	30–80 yuan/kg	30–90 yuan/kg	30–80 yuan/kg
Scleroderma yunnanense	15–40 yuan/kg	15–40 yuan/kg	15–40 yuan/kg
Termitomyces spp.	30–160 yuan/kg	30–160 yuan/kg	25–160 yuan/kg
Thelephora ganbajun	90–180 yuan/kg	95–180 yuan/kg	90–195 yuan/kg
that they are preferred for self-consumption rather than commercialization. The utilization of WEF resources in Pu’er still has great potential to be developed. However, in the studied area the knowledge and implementation of strategies and actions in order to protect the decline of relevant WEF are its infancy. In general, fungi have historically been left out of conservation initiatives [51].

In addition, climate change, habitat loss, overexploitation and land pollution might be affecting the natural production of WEF. Therefore, it is urgent for the development of ecological studies and the implementation of comprehensive monitoring of natural production of WEF in the studied area along with cultivation of ectomycorrhizal edible fungi. These strategies would allow

Fig. 6 In each market, vendors place mushrooms on green banana leaves, plastic bags, baskets or cans with a defined weight (usually 0.5 kg or 1 kg), which facilitates the selling process

Fig. 7 Preparation way of wild fungi. **a** Termitomyces soup; **b** Stir-fried Cantharellus cinnabarinus; **c** Hot pot with Boletaceae, Lactarius, Lyophyllum, Russula and some artificial cultivated mushrooms
Table 6 Local preferred preparations and storage methods for edible mushrooms

Species	Preparation	Note	Storage
Amanita caoijizong, A. sinensis	Make soup, stir-fry with little garlic	—	—
Boletaceae	Fried with garlic and chili (dry chili or fresh chili)	Cooking time must be longer	Slice and dry Fry and soak in oil
Cantharellus spp.	Stir-fried with little garlic	—	Dry
Craterellus cornucopioides	Stir-fry with garlic and chili	Cooking time is short to keep its crisp mouthfeel	—
Lactifluus piperatus	Chop mushrooms, then fry with garlic, dry chili and sour bamboo shoots or pickles	—	—
Lactifluus volemus	Fry with garlic, chili and meat	—	—
Ramaria spp.	Fry with garlic, dry chili and sour bamboo shoots or pickles	—	Dry
Russula griseocarnosa	Cook with chicken soup	—	Dry
Russula virescens	Stir-fry with garlic and fresh chili	—	Dry
Lactifluus piperatus	Frying and soaking in oil	—	—
Scleroderma yunnanense	Slice, fry with garlic and chili	Peel and soak in water before cooking to reduce bitter taste	Slice and pickle with salt
Termitomyces spp.	Make soup	—	—
Thelephora ganbajun	Fried with garlic, chili and bacon	—	—
Tylopilus neofelleus	Dry, slice and deep fry	—	—

Table 7 Interesting local name of popular commercial mushrooms in markets

Species	Local name (in Chinese)	Local name (in English)	Origin of name
Amanita sinensis	麻母鸡	Pock chicken	Color and pulverulent to flocculent squamules
Amanita caoijizong	鸭蛋菌	Duck’s egg mushroom	Smooth and rounded pileus
Boletus spp.	牛肝菌/羊肝菌	Beef/lamb liver mushroom	Plump flesh
Cantharellus spp.	见手青	Turn to green when hands touch	Indigo color reaction after injury
Cortinarius tensipes	黄栎窝	Nest of yellow mushroom under the oak	Color, habitat and cluster
Craterellus spp.	喇叭菌	Trumpet mushroom	The shape of fruiting body
Hydnum spp.	伞盖巴	Goat’s cheek	Soft spines
Laccaria spp.	鸡油菌	Chicken ass mushroom	Shape of pileus
Lactifluus piperatus	辣菌	Spicy mushroom	Spicy taste
Lactifluus volemus	奶浆菌	Milk cap mushroom	Milk flowing out when cut
Panus tigrinus	八担柴	Eight loads of wood	Tough texture, need a lot of wood to cook
Ramaria spp.	刷把菌	Brush mushroom	Multiple-branch
Russula griseocarnosa	大红菇	Red mushroom	The color of fruiting body
Russula nigricans	火炭菌	Charcoal mushroom	The color of fruiting body
Russula virescens	肾头菌	Green head mushroom	The color of fruiting body
Scleroderma yunnanense	马皮泡	Horse skin bubble	Shape of fruiting body
Thelephora spp.	干巴菌	Jerky mushroom	Chewy flesh
Tricholoma equestre	八面菌	Buckwheat mushroom	Fruiting body’s color
Tylopilus neofelleus	苦马肝	Bitter horse liver	Bitter taste and plump flesh
the development of codes of conduct and appropriate legislation related to the maximum amounts allowed to be collected for marketing, optimal harvesting methods and sustainable use of the relevant genetic resource constituted by WEF in the area.

In our study, some poisonous mushrooms were identified. Mushroom poisoning has always been an important food safety issue in China, and it recently has gained a conspicuous attention. Currently, the Chinese Centers for Disease Control and Prevention have developed a systematic technical support network supported by technical staff, doctors and mycologists. This has allowed to start a precise record of the mushroom species involved in mushroom poisoning in the country. Li et al. [52–54] identified using morphological and molecular characterization, approximately 74 poisonous mushrooms which originated hundreds mushroom incidents in 25 provinces up to now. The most dangerous mushrooms, Amanita exitialis, Lepiota brunneoincarnata and Russula subsections, showed the highest fatality rate. Seven different mycetism syndromes have been recorded worldwide [45]: acute liver failure, acute renal failure, rhabdomyolysis, gastroenteritis, psychoneurological disorder, erythrolysis and photosensitive dermatitis, all of which have been recorded in China [55, 56]. Despite the fact that very complete reviews have been published dealing with the mycetisms and their potential treatments [57, 58], the topic is far to be complete. With the advent of molecular techniques, new poisonous species continue being identified [59, 60]. Therefore, a more active role of scientists, doctors and policy-makers at local and national levels is urgently necessary in order to reduce mycetisms in China and worldwide.

A total of 11 markets from one municipality and 5 counties were visited during this study. Sales activities of wild mushrooms can be carried out uniformly in established markets, while local government strengthens the sales supervision of markets to make the sale of wild mushrooms more standardized and reduce the probability of wild mushroom poisoning. In each market, the male-to-female ratio of vendors showed that women outnumber men. It seems that in many regions of the world women are often the main collectors [61–63]. But women usually collected mushrooms closest to their houses, while men go farther to collect. For this reason, men usually have developed a deeper knowledge related to WEF compared to women. We recorded that the members of the local ethnic groups have developed a profound knowledge in order to distinguish edible species from those poisonous ones. This knowledge is based on accurate morphological characterization, ecological observations, association with vegetation types or even specific trees and phenological patterns of WEF. In addition, the age of collectors was mainly between 45 and 65 years old and only few young people were involved in mushroom collecting or selling. Traditional knowledge is being lost through economic change, modernization, urbanization and even formal education. Therefore, further research on ethnomycology is urgent to preserve the current knowledge before their lost forever.

Despite the fact that open-air markets in southeast Asia are relevant reservoirs of biocultural diversity in southeast Asia, they have been largely understudied. As far as useful mycological resources concerns, it has been shown that these markets are additionally an important source of traditional knowledge due to the fact that frequently the sellers are the current gatherers, recipients of ancestral mycological knowledge. Some areas in different parts of southwest Asia have shown to harbor a great biodiversity of edible mushrooms. For example, in the markets of Luang Prabang in north Central Laos, 54 species of fungi have been reported to be sold [64]. In this area, a large number of rare species of Russula, some probably new to science, are commercialized in local markets. Some of the species reported from markets of this region of Laos were also recorded to be sold in the Pu’er’s studied markets in our work including: Amanita princeps, Auricularia delicata, Boletus reticulatus, Lactifluus pinguis, Lentinula edodes, Lentinus squarrosulus, Macrocybe gigantea, Russula delica, R. virescens, Schizophyllum commune, Termitomyces fuliginosus, T. eukrizus, T. heimii and T. microcarpus [64]. Recently, a monograph of the useful fungi of Northern Laos, including edible and medicinal species has been published [65]. There are also a large number of species reported in this monograph with those sold in the markets of Pu’er in China. These include members of the genera Amanita, Auricularia, Boletus Cantharellus, Craterellus, Lactarius, Lactifluus, Lentinus, Lentinula, Lyophyllum, Ramaria, Russula, Thelephyora, Termitomyces, Tricholoma and Tylopilus, most of which are EMF. The situation of the ethnomycological understudy of open-air markets selling wild mushrooms is not exclusive of Southeast Asia, but it is a global issue. For example in Tanzania, 128 edible wild mushrooms are commercialized in 31 traditional markets. Among them the genera with the highest diversity were Termitomyces, Cantharellus and Russula with 21, 17 and 9 species, respectively [66]. In Mexico, in one single market located in the central part of the country, called Ozumba, 60 species of WEF were reported to be sold. In this market, with 411 stands selling WEF mainly during July and August, 90% of the vendors were women, and 64% were between 40 and 60 years old [62]. In southeastern Poland, 30 edible wild mushrooms were recorded to be sold [67]. A similar number of species have been recorded to be sold in western Black Sea region in Turkey, where 33
edible wild mushrooms are commercialized in 70 local markets [21]. In other areas, a smaller number of species have been recorded to be sold in open-air markets; for example, in Armenia located in Western Asia, only 12 edible wild species of mushrooms have been reported to be commercialized [68]. In fact, in general the open-air markets constitute cultural treasures, whose study should receive more attention in order to increase the knowledge related to the sustainable use and conservation of wild mushrooms as a paramount local source of food around the globe.

Conclusion
We recorded a wealth of ethnomycological knowledge through interviews and collected abundant wild mushroom samples from local markets and forests in three consecutive years. Mushroom harvesting is a challenging activity that requires a deep local environmental knowledge to achieve success. Local mushroom collectors in Pu’er have rich experience with the habitats where their WEF proliferate, their fruiting time and species identification which comes mainly from the previous generation, as well as special cooking and preservation methods. There are established markets, mobile markets and street-stalls for selling mushrooms in Pu’er area. In markets, men usually develop a more profound knowledge on WEF than woman, although the number of female vendors is larger than that of male vendors. Our current study provides useful documentation, which contributes to preserving ethnomycological knowledge in Pu’er Prefecture. In addition, the diversity of species of wild fungi, especially ectomycorrhizal fungi, in markets and natural areas has been updated and supplemented which helps us to recognize mushroom species accurately and detect valuable species. Local preference and acceptance of more mushroom species of WEF may reduce the pressure to collect traditional choice species. However, the rational management of WEF species with high yield in natural areas and the collection and use of ectomycorrhizal fungi germplasm resources for cultivation will benefit the sustainable utilization of local WEF. Finally, it is necessary to continue the research of ethnomycology in order to preserve existing knowledge, since knowledge of fungi remains mainly among the elderly population.

Acknowledgements
Not applicable.

Author contributions
RW conducted the investigation and experiment, analyzed the data and prepared the manuscript. MH conducted the investigation and edited the manuscript. WJX conducted the investigation and experiment. PZ conducted the investigation. JPM and CC guided in study plan and revised the manuscript. FQY supervised the research and edited the manuscript. All authors contributed to the article and approved. All authors read and approved the final manuscript.

Funding
This work was supported by the International (Regional) Cooperation and Exchange Projects of the National Natural Science Foundation of China (No. 31961143010) and the open research project of the “Cross-Cooperative Team” of the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Crop and Forest Science, University of Lleida, Av. Alcalde Rovira Roule, 191, 25198 Lleida, Spain. 2Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, Yunnan, People’s Republic of China. 3Plant Science and Conservation, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL, USA. 4Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kamiina, Nagano, Japan. 5Edafología, Campus Montcèllol, Colegio de Postgraduados, Km 36.5 Carr. México-Texcoco, CP 56230 Montcèllol, Texcoco, Estado de México, Mexico. 6Forest Sciences Center of Catalonia (CTFC), Ctra. Sant Llorenç S/N, Solsona, Spain.

Received: 20 April 2022 Accepted: 31 July 2022
Published online: 10 August 2022.

References
1. Boa E. Wild edible fungi: a global overview of their use and importance to people. FAO, Rome, Italy, 2004. ISBN: 92-5-105157-7.
2. Barros L, Cruz T, Baptista P, Estevinho LM, Ferreira ICFR. Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem Toxicol. 2008;46:2742–7. https://doi.org/10.1016/j.fct.2008.04.030.
3. Moerman D. The mushroom issue, an introduction. Econ Bot. 2008;62:205–6. https://doi.org/10.1007/s13231-008-00947-2.
4. Li HL, Tian Y, Menolli N, Ye L, Karunarathna SC, Perez-Moreno J, Rahman MW, Rashid H, Phengsintham P, Rizal L, et al. Reviewing the world’s edible mushroom species: a new evidence-based classification system. Compr Rev Food Sci F. 2021;20:1982–2014. https://doi.org/10.1111/1541-4337.12708.
5. Sitta N, Davoli P. Edible ectomycorrhizal mushrooms: international markets and regulations. In: Zambonelli A., Bonito G. (eds) Edible ectomycorrhizal mushrooms. Soil Biology, vol 34. Springer, Berlin, 2012, https://doi.org/10.1007/978-3-642-33823-6_20.
6. Yang ZL. Kingdom of wild mushroom-species diversity of wild edible mushroom in Yunnan. Presented at the the wild mushroom conference of Nanhua, Yunnan, China, 2016.
7. Wang KH, Liu PG. Resources investigation and studies on the wild commercial fungi in Yunn. Biodiversity Sci. 2002;10:318–25. https://doi.org/10.3321/jissn.1005-0094.200203.011.
8. Wang GH, Chen ZM. Exploration and utilization of wild fungus resources to promote poverty alleviation in west Yunnan. Knowl Econ. 2019: 73–74.
9. Duan TY. Current situation and trend of precision poverty alleviation in edible fungi industry in the new era. Edible Fungi of China. 2020; 39: 192–195. https://doi.org/10.13629/cnki.issn.53-1054.202011.045.
10. Zhang CX. The experience and inspiration of the whole minorities in Yun-
nan. Soc Governance Rev. 2020; 10: 36–43. https://doi.org/10.16775/j.cnki.10-1285/d.2020.01010.

11. Santiago FH, Pérez-Moreno J, Cázares BX, Almaraz SJJ, Ojeda-Trejo E, Mata G, Díaz AI. Traditional knowledge and use of wild mushrooms by Mixtec or Nuu savi, the people of the rain, from Southeastern Mexico. J Ethno-
biol Ethnomed. 2016;12:35. https://doi.org/10.1186/s13002-016-0108-9.

12. Osiakhenkoe OJ, John OA, Theophilus DA. Ethnopharmacological conspectus of West African Mushrooms: an awareness document. Adv Microb. 2014:39–54. https://doi.org/10.4236/am.2014.51008.

13. Quíñones-Martínez M, Ruan-Soto F, Aguilar-Moreno IE, Garza-Ocañas F, Lebsegue-Keleng T, Lavín-Murcio PA, Enríquez-Acosta ID. Knowledge and use of edible mushrooms in two municipalities of the sierra Tarahu-
mará, Chihuahua, Mexico. J Ethnobiol Ethnomed. 2014; 10. 67. https://doi.org/10.1186/1746-4267-10-67.

14. Teke NA, Kinge TR, Bechem E, Nji TM, Ndum LM, MiM AM. Ethnopharmaco-
logical study in the klum-ljm mountain forest, Northwest Region, Cameron. J Ethnobiol Ethnomed. 2018;14:25. https://doi.org/10.1186/s13002-018-0225-8.

15. Haro-Luna MX, Ruan-Soto F, Guzman-Davalos L. Traditional knowledge, uses, and perceptions of mushrooms among the Wixaritari and mestizos of Villa Guerrero, Jalisco, Mexico. JAMA. 2019;10(6). https://doi.org/10.1001/jama.2019.0016-6.

16. Wason VP, Wasson RG. Mushrooms, Russia and history. New York: Pan-
theon Books; 1957.

17. Brown MI. Ethnomycology: wild mushroom knowledge and use in Yunnan China. J Ethnobiol. 2019;39:131–57. https://doi.org/10.2993/j.
2002-0771-39.1. 131.

18. Franco-Maass S, Burrola-Aguilar C, Arana-Gabriel Y, Garcia-Almaraz LA. A local knowledge-based approach to predict antioxy hap-
per zones of wild edible mushrooms as a tool for forest conservation in Central Mexico. Forest Policy Econ. 2016;73:239–50. https://doi.org/10.101.
6/j.forpol.2016.02.009.

19. Ruan-Soto F. Sociodemographic differences in the cultural significance of edible and toxic mushrooms among Tsoits towns in the Highlands of Chipas, Mexico. J Ethnobiol Ethnemed. 2018;14:32. https://doi.org/10.1186/s13002-018-0322-9.

20. Chen SY, Chen QW. Fungus Anthropology and culture immortality. J Hubei Agric Coll. 2003; 6: 426–433.

21. Yilmaz H, Zencirci N. Ethnomycology of Macrofungi in the Western Black Sea Region of Turkey: identification to marketing. Econ Bot. 2016;70:270–
84. https://doi.org/10.1007/s13652-016-0183-3.

22. Allen, MF. The ecology of mycorrhiza. Cambridge University Press, New York, USA, 1991; pp: 1–8, 113–118.

23. Liang Y, Guo LD, Ma KP. The role of mycorrhizal fungi in ecosystems. Chin J Plant Ecol. 2002;26:739–45.

24. Wang Y, Hall IR. Edible ectomycorrhizal mushrooms: challenges and achieve-
ments. Can J Bot. 2004;82:1063–73. https://doi.org/10.1139/j.
04-051.

25. Mortimer PE, Karunaratna SC, Li QH, Gui H, Yang XQ, Yang XF, He L, Ye L, Guo JY, Li HE, et al. Prized edible Asian mushrooms: ecology, conservation and sustainability. Fungal Divers. 2012;56:31–47. https://doi.org/10.1007/s
13225-012-0196-3.

26. Hall IR, Wang Y, Armicucci A. Cultivation of edible ectomycorrhizal mush-
rooms. Trends Biotechnol. 2003;21:433–8. https://doi.org/10.1016/ s0167-739x-39.1.131.

27. Liang HJ, Zhang HS, Zhang YZ, Zhang KP, Zhou J, Yin Y, Jiang SF, Ma PB, He Q, Zhang YT, et al. Mushroom poisoning outbreaks—China 2020. China CDC Weekly. 2020;2:19–24.

28. Li HJ, Zhang HS, Zhang YZ, Zhang KP, Zhou J, Yin J, Jiang SF, Ma PB, He Q, Zhang YT, et al. Mushroom poisoning outbreaks—China 2019. China CDC Weekly. 2020;4:31–45. https://doi.org/10.46234/cdcwv2020.014.

29. Li HJ, Zhang HS, Zhang YZ, Zhou J, Yin J, Jiang SF, Ma PB, He Q. Zhang YT, et al. Mushroom poisoning outbreaks—China 2019. China CDC Weekly. 2020, 4: 35–40. https://doi.org/10.46234/ccdw2020.010.
55. White J, Weinstein SA, De Haro L, Bedry R, Schaper A, Rumack BH, Zilker T. Mushroom poisoning: a proposed new clinical classification. Toxicon. 2019;157:53–65. https://doi.org/10.1016/j.toxicon.2018.11.007.
56. Lu ZQ, Hong GL, Sun CY, Chen XR, Li HJ. Clinical expert consensus on the diagnosis and treatment of mushroom poisoning in China. Chin J Emerg Med. 2019;28:935–43. https://doi.org/10.3760/cma.j.issn.1671-0282.2019.08.004.
57. Graeme KA. Mycetism: a review of the recent literature. J Med Toxicol. 2014;10:173–89. https://doi.org/10.1007/s13181-013-0355-2.
58. Smith MR, Davis RL. Mycetismus: a review. Gastroenterol Rep. 2016;4:107–12. https://doi.org/10.1093/gastro/gov062.
59. Cai Q, Cui YY, Yang ZL. Lethal Amanita species in China. Lethal Amanita Species in China. Mycologia. 2016;108:993–1009. https://doi.org/10.3852/16-008.
60. Xu YC, Xie XX, Zhou ZY, Feng T, Liu JK. A new monoterpene from the poisonous mushroom Trogia venenata, which has caused Sudden Unexpected Death in Yunnan province, China. Nat Prod Res. 2016;32, 2547–2552. https://doi.org/10.1080/14786419.2018.1425851.
61. Zhang C, Xu XE, Liu J, He M, Wang W, Wang Y, Ji KP. Scleroderma yunnanense, a new species from south China. Mycotaxon. 2013;125:193–200. https://doi.org/10.5248/125.193.
62. Wang XH, Buyck B, Verbeken A, Hansen K. Revisiting the morphology and phylogeny of Lactifluus with three new lineages from southern China. Mycologia. 2015;107:941–58. https://doi.org/10.3852/13-393.
63. Cui YY, Cai Q, Tang LP, Liu JW, Yang ZL. The family Amanitaceae: molecular phylogeny, higher-rank taxonomy and the species in China. Fungal Divers. 2018;91:5–230. https://doi.org/10.1007/s13225-018-0405-9.
64. Łuczaj Ł, Lamxay V, Tongchan K, Xayphakatsa K, Phimmakong K, Rada­vant S, Kanyasone V, Pietras M, Karbarz M. Wild food plants and fungi sold in the markets of Luang Prabang, Lao PDR. J Ethnobiol Ethnomed. 2021;17:6 https://doi.org/10.1186/s13002-020-00423-y.
65. Læssøe T, Pedersen OS, Syoupanhthong P. An introduction to the edible, poisonous and medicinal fungi of northern Laos, 2019.
66. Tibuhwa DD. Edible and Medicinal Mushrooms Sold at Traditional Markets in Tanzania. Res J For. 2018; 12: 1−14. https://doi.org/10.17311/rjf.2018.14.
67. Kasper-Pakosz R, Pietras M, Łuczaj Ł. Wild and native plants and mushrooms sold in the open-air markets of south-eastern Poland. J Ethnobiol Ethnomed. 2016;12:45. https://doi.org/10.1186/s13002-016-0117-8.
68. Nanagulyan S, Zakaryan N, Kartashyan N, Piwowarczyk R, Łuczaj Ł. Wild plants and fungi sold in the markets of Yerevan (Armenia). J Ethnobiol Ethnomed. 2020;16:26. https://doi.org/10.1186/s13002-020-00375-3.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.