ON STRONGLY QUASI-HEREDITARY ALGEBRAS

MAYU TSUKAMOTO

Abstract. Let A be a finite dimensional algebra over an algebraically closed field k. If A is quasi-hereditary and the projective dimensions of all standard modules are at most one, then A is called left strongly quasi-hereditary. In this paper, we construct a special heredity chain for left strongly quasi-hereditary algebras. Moreover, we show the quotient algebra by an ideal which appears in a special heredity chain of left strongly quasi-hereditary algebra is also left strongly quasi-hereditary algebra.

1. Introduction

1.1. Quasi-hereditary algebras. Quasi-hereditary algebras were introduced by Scott [Sco87] to study highest weight categories in the representation theory of semisimple complex Lie algebras and algebraic groups. Cline, Parshall and Scott proved many important results in [CPS88], see also [PS88]. In [DR89c], for a semiprimary ring, Dlab and Ringel gave another definition of quasi-hereditary by using an ideal chain.

Definition 1.1 (Dlab-Ringel [DR89c], Cline-Parshall-Scott [CPS88]). Let R be a semiprimary ring.

(1) A two-sided ideal H of R is called a heredity ideal of R if it satisfies the following conditions:

(a) H is a projective module as left R-modules;
(b) $\text{Hom}_R(H,R/H) = 0$;
(c) $HJ(R)H = 0$, where $J(R)$ is the Jacobson radical of R.

(2) A chain of two-sided ideals of a semiprimary ring R

$$R = H_0 > H_1 > \cdots > H_i > H_{i+1} > \cdots > H_n = 0$$

is called a heredity chain if H_i/H_{i+1} are heredity ideals in R/H_{i+1} for $0 \leq i < n$.

(3) R is called a hereditary ring if there exists a heredity chain.

From this definition, it immediately follows that if R is quasi-hereditary and H appears in a heredity chain of R, then R/H is also quasi-hereditary. In [DR89c], they showed that all semiprimary rings of global dimension at most two are quasi-hereditary. In particular, the Auslander algebra of a finite-representation type is also quasi-hereditary. In [DR89a], various kinds of “splitting filtration” and associated heredity chains are studied.
1.2. Left strongly quasi-hereditary algebras. Left strongly quasi-hereditary algebras and right strongly quasi-hereditary algebras were introduced by Ringel [Rin10] as a special class of quasi-hereditary algebras to give a concise proof of Iyama’s finiteness theorem [Iya03a]. This theorem states that every finitely generated module over an artin algebra Γ is a direct summand of some modules whose endomorphism ring Σ is quasi-hereditary, with a heredity chain of length n, and the global dimension of Σ is bounded by n. One can regard this result as a generalization of [DR89b]. In general, given a quasi-hereditary algebra with a heredity chain of length n, it is known that its global dimension is bounded by $2n - 2$. Ringel proved that the ring Σ in Iyama’s finiteness theorem is not only quasi-hereditary, but even left strongly quasi-hereditary in [Rin10].

Let Λ_w be the finite dimensional quotient algebra of the preprojective algebra associated with an element w in the Coxeter group. We denote by Sub_Λ_w the category of free Λ_w-modules of finite rank. For a standard cluster tilting object $M \in \text{Sub}_\Lambda_w$, the 2-Auslander algebra $\text{End}_{\Lambda_w}(M)$ is a left strongly quasi-hereditary algebra [IR11]. Geiss, Leclerc and Schröer found this result more previously for adaptable elements w of the Coxeter group [GLS07].

If Q is a finite quiver without loops, then there exists an admissible ideal I such that the algebra kQ/I has the global dimension at most two and is a left strongly quasi-hereditary algebra [DR89d, Theorem 3], see also [HZ13, Theorem 3.1] and [Poe10, Theorem 1. (a)].

1.3. Main results. The aim of this paper is to establish the following results.

Theorem (Theorem 3.10). Let A be a finite dimensional algebra over an algebraically closed field k. A is a left (resp. right) strongly quasi-hereditary algebra if and only if there exists a heredity chain

$$A = H_0 > H_1 > \cdots > H_i > H_{i+1} > \cdots > H_n = 0$$

such that, for any $0 \leq i < n$, the projective dimension of H_i/H_{i+1} as left (resp. right) A-modules is at most one.

From Theorem 1.3, we give the following definition.

Definition (Definition 3.11). Let A be a left (resp. right) strongly quasi-hereditary algebra with a heredity chain

$$A = H_0 > H_1 > \cdots > H_i > H_{i+1} > \cdots > H_n = 0$$

such that, for any $0 \leq i < n$, the projective dimension of H_i/H_{i+1} as left (resp. right) A-modules is at most one. We call such a chain of two-sided ideals a left (resp. right) strongly heredity chain of A.

Theorem (Theorem 3.13). Let A be a left (resp. right) strongly quasi-hereditary algebra over an algebraically closed field k with a left (resp. right) strongly heredity chain

$$A = H_0 > H_1 > \cdots > H_i > H_{i+1} > \cdots > H_n = 0.$$

Then A/H_i is again a left (resp. right) strongly quasi-hereditary algebra for $0 \leq i \leq n$.

From Theorem 1.3, we give the following definition.
Definition (Definition 3.14). We say that a finite dimensional algebra A is strongly quasi-hereditary if there exists a heredity chain
\[A = H_0 > H_1 > \cdots > H_i > H_{i+1} > \cdots > H_n = 0 \]
such that, for any $0 \leq i < n$, the projective dimension of H_i/H_{i+1} as left A-modules and the projective dimension of H_i/H_{i+1} as right A-modules are at most one. We call the above heredity chain a strongly heredity chain of A.

In [Rin10], he proved that if A is strongly quasi-hereditary, then the global dimension of A is at most two. However the question of whether every finite dimensional algebra of global dimension at most two is strongly quasi-hereditary is answered in the negative by providing an example of an Auslander algebra which is not strongly quasi-hereditary.

2. Preliminaries

In this section, we recall the definition of quasi-hereditary algebra and prove some lemmas needed later. We shall use the same notation as in [Don98, Appendix].

2.1. Definitions and basic properties. Let A be a finite dimensional algebra over an algebraically closed field k. Let J be the Jacobson radical of A. We fix a set of isomorphism classes of simple A-modules $\{L(\lambda) \mid \lambda \in \Lambda\}$ and fix a partial ordering \leq on the index set Λ. For $\lambda \in \Lambda$, we denote by $P(\lambda)$ the projective cover of $L(\lambda)$. We write A-mod for the category of finitely generated left A-modules and, for $X \in A$-mod, we write $[X : L(\lambda)]$ for the composition multiplicity of $L(\lambda)$. Let π be a subset of the index set Λ. For $X \in A$-mod, we denote by $O^\pi(X)$ a unique minimal submodule of X such that all composition factors of $X/O^\pi(X)$ belong to $\{L(\lambda) \mid \lambda \in \pi\}$. Sending an A-module M to $O^\pi(M)$ yields the functor $O^\pi : A$-mod $\to A$-mod. Note that O^π is a right exact functor. Since $O^\pi(A)$ is a two-sided ideal of A, we set $A(\pi) := A/O^\pi(A)$.

Lemma 2.1 (cf. Donkin [Don98, A.1]). Let π be a subset of Λ. For $X \in A$-mod, we have $O^\pi(X) = O^\pi(A).X$. In particular, if all composition factors of X belong to $\{L(\lambda) \mid \lambda \in \pi\}$, then $O^\pi(X) = 0$.

We regard $X/O^\pi(X)$ as $A(\pi)$-modules for $X \in A$-mod. Note that $\{L(\lambda) \mid \lambda \in \pi\}$ is a set of isomorphism classes of simple $A(\pi)$-modules, and $P(\lambda)/O^{\pi}(P(\lambda))$ is the projective cover of $L(\lambda)$ as left $A(\pi)$-modules.

Definition 2.2. For $\lambda \in \Lambda$, we put $\pi(\lambda) := \{\mu \in \Lambda \mid \mu < \lambda\}$. We define $\Delta(\lambda) = P(\lambda)/O^{\pi}(P(\lambda))$ for all $\lambda \in \Lambda$ and call the modules $\Delta(\lambda)$ the standard modules.

Remark 2.3. Let $\Delta := \{\Delta(\lambda) \mid \lambda \in \Lambda\}$ be the set of standard modules. We denote by $F(\Delta)$ the full subcategory of A-mod of modules which have a filtration with factors in Δ. Thus $M \in F(\Delta)$ if and only if M has a submodule series $M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_l = 0$ such that M_i/M_{i+1} is isomorphic to a module in Δ.
For $M \in \mathcal{F}(\Delta)$, the element $[M]$ in the Grothendieck group $K_0(A)$ of $A \mod$ corresponding to M can be written as

$$[M] = \sum_{\lambda \in \Lambda} m_\lambda[\Delta(\lambda)] = \sum_{\mu \in \Lambda} (\sum_{\lambda \in \Lambda} m_\lambda[\Delta(\lambda) : L(\mu)])[L(\mu)].$$

If $[\Delta(\lambda) : L(\mu)] \neq 0$, then we have $\mu \leq \lambda$. Thus the coefficients m_λ are uniquely determined (cf. [Don98, A.1 (7)]). In other words, the filtration multiplicities and the length of Δ-filtration do not depend on the choice of Δ-filtration. Thus we denote by $(M : \Delta(\lambda))$ for the filtration multiplicity of $\Delta(\lambda)$ and denote by $fl(M)$ the length of Δ-filtration of M.

Definition 2.4 (Cline-Parshall-Scott [CPS88]). We say that a pair $(A \mod, \leq)$ is a highest weight category if for any $\lambda \in \Lambda$ there exists a short exact sequence

$$0 \to K(\lambda) \to P(\lambda) \to \Delta(\lambda) \to 0$$

with the following properties:

(a) $K(\lambda) \in \mathcal{F}(\Delta)$ for any $\lambda \in \Lambda$;

(b) if $(K(\lambda) : \Delta(\mu)) \neq 0$, then we have $\lambda < \mu$.

Remark 2.5. $(A \mod, \leq)$ is a highest weight category if and only if A is a quasi-hereditary algebra [CPS88, Theorem 3.6]. Thus the highest weight category $(A \mod, \leq)$ and the quasi-hereditary algebra A can be regarded interchangeably.

Lemma 2.6 (cf. Donkin [Don98, Proposition A. 2.2]). Let $(A \mod, \leq)$ be quasi-hereditary. For $X \in A \mod$ and $\lambda \in \Lambda$, if $\text{Ext}^1_\Lambda(\Delta(\lambda), X) \neq 0$, then X has a composition factor $L(\mu)$ with $\mu > \lambda$.

For a subset $\pi \subseteq \Lambda$, π is called a poset ideal if $\lambda \in \Lambda$ whenever $\lambda < \mu$ and $\mu \in \pi$.

Lemma 2.7 (cf. Donkin [Don98, Lemma A 3.1]). We assume that $(A \mod, \leq)$ is quasi-hereditary. Let π be a poset ideal of Λ. Then for $X \in \mathcal{F}(\Delta)$, we have $O^\pi(X), X/O^\pi(X) \in \mathcal{F}(\Delta)$. Moreover

$$(X/O^\pi(X) : \Delta(\lambda)) = \begin{cases} (X : \Delta(\lambda)), & \lambda \in \pi; \\ 0, & \text{otherwise}. \end{cases}$$

2.2. From the rest of this section, we assume that A is a quasi-hereditary algebra with a heredity chain $A = H_0 > H_1 > \cdots > H_i > H_{i+1} > \cdots > H_n = 0$. For $1 \leq j < n$, we put $F_j := A/H_j \otimes_A -$. Then F_j are the right exact functors from $A \mod$ to $A/H_j \mod$.

Lemma 2.8. Let $\lambda, \mu, \nu \in \Lambda$. If $F_j(L(\lambda)) = L(\lambda)$ and $\mu < \lambda$, then we have $F_j(L(\mu)) = L(\mu)$ for $1 \leq j < n$. If $F_j(L(\lambda)) = 0$ and $\lambda < \nu$, then we have $F_j(L(\nu)) = 0$ for $1 \leq j < n$.

Proof. For the functor F_j, there exists a poset ideal $\pi_j \subseteq \Lambda$ such that $F_j(M) = M/O^{\pi_j}(M)$ for any $M \in A \mod$. Thus the assertion holds. □

Lemma 2.9. We fix an element $\lambda \in \Lambda$ such that $F_j(L(\lambda)) = L(\lambda)$. We denote by $\iota : K(\lambda) \hookrightarrow P(\lambda)$ the inclusion map. Then $F_j(\iota) : F_j(K(\lambda)) \hookrightarrow F_j(P(\lambda))$ is injective for $1 \leq j < n$.

Firstly, we show this statement in the case i for $1 \leq i < n$. We assume that $\Delta(\lambda)$ is isomorphic to M_j, and there exists the following short exact sequence:

$$0 \to K(\lambda) \to P(\lambda) \to \Delta(\lambda) \to 0. \tag{2-1}$$

Thus we have

$$0 \to \mathbb{L}_i F_j(\Delta(\lambda)) \to F_j(K(\lambda)) \xrightarrow{F_j(\iota)} F_j(P(\lambda)) \to F_j(\Delta(\lambda)) \to 0$$

for $1 \leq j < n$. We assume that $F_j(L(\lambda)) = 0$. Then we deduce from Lemma 2.8 and the condition (b) that if $(K(\lambda) : \Delta(\mu)) \neq 0$, then $F_j(L(\mu)) = 0$. Thus we have $F_j(\Delta(\mu)) = 0$ and we deduce from induction on the filtration length of $K(\lambda)$ that $F_j(K(\lambda)) = 0$. Therefore we have $\mathbb{L}_i F_j(\Delta(\lambda)) = 0$. Let $F_j(L(\lambda)) = L(\lambda)$. Then it follows from Lemma 2.9 that $F_j(\iota)$ is injective. Thus we deduce $\mathbb{L}_i F_j(\Delta(\lambda)) = 0$.

We assume that $fl(M) > 1$. Then there exists a standard module $\Delta(\lambda)$ and a factor module Q of M such that

$$0 \to \Delta(\lambda) \to M \to Q \to 0 \tag{2-2}$$

is a short exact sequence. Since $\mathbb{L}_i F_j(\Delta(\lambda)) = 0$, we have

$$0 \to \mathbb{L}_i F_j(M) \to \mathbb{L}_i F_j(Q) \to F_j(\Delta(\lambda)) \to F_j(M) \to F_j(Q) \to 0.$$

Therefore we deduce from the induction hypothesis that $\mathbb{L}_i F_j(M) = 0$.

Secondly, we also show the assertion in the case $i > 1$ by induction on $fl(M)$. If $fl(M) = 1$, then there exists $\lambda \in \Lambda$ such that $\Delta(\lambda)$ is isomorphic to M. Thus we have $\mathbb{L}_{i+1} F_j(\Delta(\lambda)) \cong \mathbb{L}_i F_j(K(\lambda))$ from the short exact sequence (2-1). Therefore the assertion follows from the induction hypothesis.

If $fl(M) > 1$, then we have

$$\cdots \to \mathbb{L}_{i+1} F_j(\Delta(\lambda)) \to \mathbb{L}_i F_j(M) \to \mathbb{L}_i F_j(Q) \to \mathbb{L}_i F_j(\Delta(\lambda)) \to \cdots$$

from the short exact sequence (2-2). Thus $\mathbb{L}_i F_j(M) \cong \mathbb{L}_i F_j(Q)$ for all $i \geq 2$. Therefore the assertion follows from the induction hypothesis.

In the following, We write $\mathbb{L}_i F_j$ for the i-th left derived functor of F_j. In the case $i = 1$, we write LF_j.

Lemma 2.10. The functors F_j on $\mathcal{F}(\Delta)$ are exact functors for $1 \leq j < n$.

Proof. Let $M \in \mathcal{F}(\Delta)$. We show that $\mathbb{L}_i F_j(M) = 0$ for $1 \leq j < n$ by induction on i. Firstly, we show this statement in the case $i = 1$ by induction on $fl(M)$. If $fl(M) = 1$, then there exists $\lambda \in \Lambda$ such that $\Delta(\lambda)$ is isomorphic to M, and there exists the following short exact sequence:

$$0 \to K(\lambda) \to P(\lambda) \to \Delta(\lambda) \to 0. \tag{2-1}$$

Thus we have

$$0 \to \mathbb{L}_i F_j(\Delta(\lambda)) \to F_j(K(\lambda)) \xrightarrow{F_j(\iota)} F_j(P(\lambda)) \to F_j(\Delta(\lambda)) \to 0$$

for $1 \leq j < n$. We assume that $F_j(L(\lambda)) = 0$. Then we deduce from Lemma 2.8 and the condition (b) that if $(K(\lambda) : \Delta(\mu)) \neq 0$, then $F_j(L(\mu)) = 0$. Thus we have $F_j(\Delta(\mu)) = 0$ and we deduce from induction on the filtration length of $K(\lambda)$ that $F_j(K(\lambda)) = 0$. Therefore we have $\mathbb{L}_i F_j(\Delta(\lambda)) = 0$. Let $F_j(L(\lambda)) = L(\lambda)$. Then it follows from Lemma 2.9 that $F_j(\iota)$ is injective. Thus we deduce $\mathbb{L}_i F_j(\Delta(\lambda)) = 0$.

We assume that $fl(M) > 1$. Then there exists a standard module $\Delta(\lambda)$ and a factor module Q of M such that

$$0 \to \Delta(\lambda) \to M \to Q \to 0 \tag{2-2}$$

is a short exact sequence. Since $\mathbb{L}_i F_j(\Delta(\lambda)) = 0$, we have

$$0 \to \mathbb{L}_i F_j(M) \to \mathbb{L}_i F_j(Q) \to F_j(\Delta(\lambda)) \to F_j(M) \to F_j(Q) \to 0.$$

Therefore we deduce from the induction hypothesis that $\mathbb{L}_i F_j(M) = 0$.

Secondly, we also show the assertion in the case $i > 1$ by induction on $fl(M)$. If $fl(M) = 1$, then there exists $\lambda \in \Lambda$ such that $\Delta(\lambda)$ is isomorphic to M. Thus we have $\mathbb{L}_{i+1} F_j(\Delta(\lambda)) \cong \mathbb{L}_i F_j(K(\lambda))$ from the short exact sequence (2-1). Therefore the assertion follows from the induction hypothesis.

If $fl(M) > 1$, then we have

$$\cdots \to \mathbb{L}_{i+1} F_j(\Delta(\lambda)) \to \mathbb{L}_i F_j(M) \to \mathbb{L}_i F_j(Q) \to \mathbb{L}_i F_j(\Delta(\lambda)) \to \cdots$$

from the short exact sequence (2-2). Thus $\mathbb{L}_i F_j(M) \cong \mathbb{L}_i F_j(Q)$ for all $i \geq 2$. Therefore the assertion follows from the induction hypothesis. \[\Box\]

Proposition 2.11. The functors $F_j \mid_{A/H_j \text{mod}} : A/H_j \text{mod} \to A/H_j \text{mod}$ are exact for $1 \leq j < n$.
Lemma 2.12. Let \(X, Y \in A/H_j \mod \). Then we have
\[
\text{Tor}_i^A(X, Y) \cong \text{Tor}_i^{A/H_j}(X, Y)
\]
for any \(i > 0 \) and \(1 \leq j < n \).

Proof. For \(X \in \mod A/H_j \), we define the functors \(G_j := X \otimes_{A/H_j} - \). Then \(G_j \) are right exact functors from \(A/H_j \mod \) to \(k \mod \). For \(1 \leq j < n \), \(F_j(P) \) is a \(G_j \)-acyclic for all projective objects \(P \) in \(A \mod \). Thus there exists a Grothendieck spectral sequence (for example, see [CE56]) \(E = (E_{p,q}^r, E_n) \) of \(A \mod \) such that for each \(Y \in A \mod \), the following holds:
\[
E_{2}^{p,q} \cong \text{Tor}_{p+q}^{A/H_j}(X, \mathbb{L}F_j(Y)), E_n = \text{Tor}_n^A(X, Y).
\]
Moreover it follows from Lemma 2.11 that \(\mathbb{L}_i F_j(Y) = 0 \) for \(i > 0 \) and \(1 \leq j < n \). Therefore the assertion holds.

Lemma 2.13. Let \(X \in A/H_j \mod \), \(Y \in A \mod \). Then we have
\[
\text{Ext}_A(X, Y) \cong \text{Ext}_{A/H_j}(X, F_j(Y))
\]
for any \(i \geq 0 \).

Proof. For \(X \in A/H_j \mod \),
\[
\text{Hom}_{A/H_j}(X, -) : A/H_j \mod \to k \mod
\]
is a left exact functor and \(F_j(I) \) is \(\text{Hom}_{A/H_j}(X, -) \)-acyclic for any injective object \(I \) in \(A \mod \). Moreover we have \(\text{Hom}_{A/H_j}(X, -) \circ F_j = \text{Hom}_A(X, -) \). Thus there exists a
Grothendieck spectral sequence \(E = (E_p^q, E^m) \) of \(A \text{mod} \) such that for each \(Y \in A \text{mod} \), the following holds:

\[
E_2^{p,q} \cong \text{Ext}_{A/H_j}^p(X, R^qF_j(Y)), E^n = \text{Ext}_A^{p+q}(X, Y).
\]

Therefore the proof is done. \(\square\)

3. Main results

3.1. Ideal chains for left strongly quasi-hereditary algebras.

Definition 3.1 (Ringel [Rin10, Definition in §4]). We say that a pair \((A \text{mod}, \leq)\) is **left strongly quasi-hereditary** if for any \(\lambda \in \Lambda\) there exists a short exact sequence

\[
0 \to K(\lambda) \to P(\lambda) \to \Delta(\lambda) \to 0
\]

with following properties:

(a) \(K(\lambda) \in F(\Delta)\) for all \(\lambda \in \Lambda\);
(b) if \((K(\lambda) : \Delta(\mu)) \neq 0\), then we have \(\lambda < \mu\);
(c) \(K(\lambda)\) is a projective left \(A\)-module.

Remark 3.2 (Ringel [Rin10, Proposition in §4]). If \((A \text{mod}, \leq)\) is left (resp. right) strongly quasi-hereditary, then \((A \text{mod}, \leq)\) is quasi-hereditary.

Example 3.3. We assume that a natural number \(e\) is greater than or equal to two. Let \(A_e\) be the algebra over an algebraically closed field defined by the following quiver

\[
\begin{array}{cccccccc}
1 & \overset{\alpha_1}{\cdots} & \overset{\alpha_{i-1}}{\cdots} & \overset{\alpha_i}{\cdots} & \overset{\alpha_{i+1}}{\cdots} & \cdots & \overset{\alpha_{e-1}}{\cdots} & e \\
\beta_1 & \cdots & \beta_i & \cdots & \beta_{i+1} & \cdots & \beta_{e-1}
\end{array}
\]

with relations \(\alpha_i\alpha_{i-1}, \beta_i\beta_{i-1}, \alpha_{i-1}\beta_{i-1} - \beta_i\alpha_i\) for \(2 \leq i \leq e-1\) and \(\alpha_{e-1}\beta_{e-1}\).

If \(e = 2\), then \(A_2\) is a left strongly quasi-hereditary algebra with respect to \(\{1 < 2\}\). If \(e > 2\), then \(A_e\) is a quasi-hereditary algebra with respect to \(\{1 < 2 < \cdots < e\}\). However \(A_e\) cannot be a left strongly quasi-hereditary algebra.

Remark 3.4. In general, \(A\) is quasi-hereditary if and only if \(A^{\text{op}}\) is quasi-hereditary [CPS88, Lemma 3.4]. However opposite algebras of left strongly quasi-hereditary algebras are not always left strongly quasi-hereditary.

Definition 3.5 (Ringel [Rin10]). \(A\) is called **right strongly strongly quasi-hereditary** if the conditions of Definition 3.1 hold for \(A^{\text{op}} \text{mod}\).

Example 3.6. Let \(B\) be the algebra over a field defined by the following quiver

\[
\begin{array}{ccc}
\alpha & 1 & \gamma \\
\beta & 2 & 3
\end{array}
\]

with relations \(\gamma\alpha, \alpha\beta\). Then \(B\) is left strongly quasi-hereditary with respect to \(\{1 < 2 < 3\}\), but \(B^{\text{op}}\) is not left strongly quasi-hereditary with respect to \(\{1 < 2 < 3\}\). However \(B^{\text{op}}\)
is left strongly quasi-hereditary with respect to \(\{2 < 1 < 3\} \). In fact, \(B \) and \(B^{\text{op}} \) are not left strongly quasi-hereditary with respect to the same ordering. Thus \(B \) is not strongly quasi-hereditary.

Remark 3.7. In [Rin10], Ringel showed that if \(A \) is left strongly quasi-hereditary and right strongly quasi-hereditary with respect to the same ordering, then \(\text{gldim} \ A \leq 2 \).

From now on, we construct a special heredity chain for left strongly quasi-hereditary algebras. This is an analogue of the construction of a heredity chain for quasi-hereditary algebras (cf. [Don98 Appendix]).

Proposition 3.8. Let \(A \) be a finite dimensional algebra over an algebraically closed field \(k \). Let \((A \text{mod}, \leq) \) be left (resp. right) strongly quasi-hereditary. We replace \(\Lambda \) by a totally ordered refinement, that is, \(i < j \) if \(\lambda_i < \lambda_j \). We put \(n := |\Lambda| \) and \(\pi(i) := \{\lambda_1, \ldots, \lambda_i\} \) for \(1 \leq i \leq n \). Then

\[
A > O^{\pi(1)}(A) > \cdots > O^{\pi(i)}(A) > \cdots > O^{\pi(n)}(A) = 0
\]

is a heredity chain of \(A \) and the projective dimensions of \(O^{\pi(i)}(A)/O^{\pi(i+1)}(A) \) as left (resp. right) \(A \)-modules are at most one for \(1 \leq i < n \).

Proof. Let \(\mu \) be a maximal element of \(\Lambda \). We set \(\sigma := \Lambda \setminus \{\mu\} \). Firstly, we show that \(O^\sigma(A) \) is a heredity ideal in \(A \). Since \(A \in \mathcal{F}(\Delta) \), it follows from Lemma 2.7 that \(O^\sigma(A) \) also belongs to \(\mathcal{F}(\Delta) \). Thus all filtration factors of \(O^\sigma(A) \) are isomorphic to \(\Delta(\mu) \). We assume that there exists a submodule \(X \) of \(O^\sigma(A) \) such that \(\text{Ext}^1_A(\Delta(\mu), X) \neq 0 \). Then there exists a composition factor \(L(\nu) \) with \(\nu > \mu \) because of Lemma 2.6, a contradiction. Thus we have \(O^\sigma(A) = \oplus \Delta(\mu) \) inductively. Since \(\mu \) is a maximal element, \(\Delta(\mu) \) is a projective module, and also for \(O^\sigma(A) \). We have \(\text{Hom}_A(O^\sigma(A), A/O^\sigma(A)) = 0 \) because \(\dim \text{Hom}_A(P(\mu), A/O^\sigma(A)) = [A/O^\sigma(A) : L(\mu)] = 0 \). It follows from the condition (a) that all indices of composition factors of \(J\Delta(\mu) \) belong to \(\sigma \). We have \(O^\sigma(A)J\sigma(\sigma(\sigma)) = 0 \) since it deduces from Lemma 2.1 that \(O^\sigma(A)J\Delta(\mu) = O^\sigma(J\Delta(\mu)) = 0 \).

Secondly, we show that \(O^{\pi(i)}(A)/O^{\pi(i+1)}(A) \) is a heredity ideal in \(A(\pi(i+1)) \). Since \(A(\pi(i+1)) \) is quasi-hereditary with respect to the induced ordering on \(\pi(i+1) \), we can also show that \(O^{\pi(i)}(A)/O^{\pi(i+1)}(A) = O^{\pi(i)}(A(\pi(I+1))) \) is a heredity ideal in \(A(\pi(i+1)) \) like the above discussion.

Finally, we show that the projective dimensions of \(O^{\pi(i)}(A)/O^{\pi(i+1)}(A) \) as left \(A \)-modules are at most one. From Lemma 2.7 we have \(O^{\pi(i)}(A(\pi(i+1))) \in \mathcal{F}(\Delta) \). Thus we deduce from the condition (b) that the projective dimensions of \(O^{\pi(i)}(A(\pi(i+1))) \) as left \(A \)-modules are at most one. Similarly, we obtain the assertion of right strongly quasi-hereditary algebras. \(\Box \)

Proposition 3.9. Let \(A \) be a finite dimensional algebra over an algebraically closed field \(k \). If there exists a heredity chain of \(A \)

\[
A = H_0 > H_1 > \cdots > H_i > H_{i+1} > \cdots > H_n = 0
\]

such that, for any \(0 \leq i < n \), the projective dimension of \(H_i/H_{i+1} \) as left (resp. right) \(A \)-modules is at most one. Then \(A \) is left (resp. right) strongly quasi-hereditary with respect
to the following order \(\preceq \): We put \(\Lambda(i) := \{ \lambda \in \Lambda | [S/H_i : L(\lambda)] \neq 0 \} \), for \(1 \leq i \leq n \), and \(\Lambda(0) := \emptyset \). For \(\lambda \in \Lambda \), we define a positive integer \(r(\lambda) \) to satisfy \(\lambda \in \Lambda(r(\lambda)) \setminus \Lambda(r(\lambda) - 1) \). Then we define \(\lambda \leq \mu \) if \(r(\lambda) \leq r(\mu) \).

Proof. Since \(A \) has a heredity chain, it is enough to show that the projective dimensions of standard modules are at most one. We show that \(H_i = O^{\Lambda(i)}(A) \) by decreasing induction on \(i \). If \(i = n - 1 \), then we have \(H_{n-1} = \bigoplus_{\lambda \in \Lambda} P(\lambda)^{d_{\lambda}} \). Since \(\dim \operatorname{Hom}_A(H_{n-1}, A/H_{n-1}) = 0 \), we deduce

\[
H_{n-1} = \bigoplus_{\lambda \in \Lambda \setminus \Lambda(n-1)} P(\lambda)^{d_{\lambda}} = O^{\Lambda(n-1)}(A).
\]

We assume that \(H_j = O^{\Lambda(j)}(A) \) for all \(j \geq i + 1 \). Then we deduce

\[
H_i/H_{i+1} = O^{\Lambda(i)}(A/H_{i+1}) = O^{\Lambda(i)}(A/O^{\Lambda(i+1)}(A)).
\]

Since \(H_i/O^{\Lambda(i+1)}(A) = O^{\Lambda(i)}(A)/O^{\Lambda(i+1)}(A) \), we have \(H_i = O^{\Lambda(i)}(A) \). It follows from Lemma 2.7 that

\[
(O^{\Lambda(i)}(A)/O^{\Lambda(i+1)}(A) : \Delta(\lambda)) = (O^{\Lambda(i)}(A)/O^{\Lambda(i+1)}(O^{\Lambda(i)}(A)) : \Delta(\lambda))
\]

\[
= \begin{cases}
(O^{\Lambda(i)}(A) : \Delta(\lambda)), & \lambda \in \Lambda(i+1); \\
0, & \text{otherwise.}
\end{cases}
\]

On the other hand, if \((O^{\Lambda(i)}(A) : \Delta(\lambda)) \neq 0 \), then \(\lambda \notin \Lambda(i) \). Thus it follows that \(r(\lambda) = i + 1 \) whenever \((O^{\Lambda(i)}(A)/O^{\Lambda(i+1)}(A) : \Delta(\lambda)) \neq 0 \). Similarly, we deduce that the projective dimensions of standard modules as right \(A \)-modules are at most one. \(\square \)

Combining Proposition 3.8 and Proposition 3.9, we have the following theorem.

Theorem 3.10. Let \(A \) be a finite dimensional algebra over an algebraically closed field \(k \). \(A \) is a left (resp. right) strongly quasi-hereditary algebra if and only if there exists a heredity chain

\[
A = H_0 > H_1 > \cdots > H_i > H_{i+1} > \cdots > H_n = 0
\]

such that, for any \(0 \leq i < n \), the projective dimension of \(H_i/H_{i+1} \) as left (resp. right) \(A \)-modules is at most one.

From Theorem 3.10, we give the following definition.

Definition 3.11. Let \(A \) be a finite dimensional algebra over an algebraically closed field \(k \)

(1) If \(A \) has a heredity chain of \(A \)

\[
A = H_0 > H_1 > \cdots > H_i > H_{i+1} > \cdots > H_n = 0
\]

such that, for any \(0 \leq i < n \), the projective dimension of \(H_i/H_{i+1} \) as left (resp. right) \(A \)-modules is at most one. Such a heredity chain is called a left (resp. right) strongly heredity chain of \(A \).
(2) We say that A is a left (resp. right) strongly quasi-hereditary algebra if there exits a left (resp. right) strongly heredity chain of A.

Remark 3.12. If A has a left (resp. right) strongly heredity chain $A = H_0 > H_1 > \cdots > H_i > H_{i+1} > \cdots > H_n = 0$, then we deduce that H_i are projective modules as left (resp. right) A-modules for $0 \leq i \leq n$ inductively. We assume that A has a heredity chain $A = H_0 > H_1 > \cdots > H_i > H_{i+1} > \cdots > H_n = 0$ such that, for any $0 \leq i \leq n$, H_i is a projective module as left (resp. right) A-modules. Then the projective dimension of H_i/H_{i+1} are at most one for any $0 \leq i < n$.

Thus we say that A is a left (resp. right) strongly quasi-hereditary algebra if A has a heredity chain $A = H_0 > H_1 > \cdots > H_i > H_{i+1} > \cdots > H_n = 0$ such that, for any $0 \leq i \leq n$, H_i is a projective module as left (resp. right) A-modules.

Theorem 3.13. Let A be a left (resp. right) strongly quasi-hereditary algebra over an algebraically closed field k with a left (resp. right) strongly heredity chain

$$A = H_0 > H_1 > \cdots > H_i > H_{i+1} > \cdots > H_n = 0.$$

Then A/H_i is again a left (resp. right) strongly quasi-hereditary algebra for $0 \leq i < n$.

Proof. From Theorem 3.10 we write

$$A = H_0 > H_1 > \cdots > H_i > H_{i+1} > \cdots > H_n = 0$$

for a left strongly heredity chain of A. Then

$$A/H_i = H_0/H_i > H_1/H_i > \cdots > H_i/H_i = 0$$

is a heredity chain of A/H_i.

Thus it is enough to show that the projective dimensions of H_j/H_{j+1} as left A/H_i-modules are at most one for $1 \leq j \leq i - 1$. Since the projective dimension of H_j/H_{j+1} as left A-modules is at most one, we write

$$0 \to P_1 \to P_0 \to H_j/H_{j+1} \to 0$$

for a projective resolution of H_j/H_{j+1} as left A-modules. It follows from Lemma 2.12 that $A/H_i \otimes_A -$ is an exact functor. Therefore

$$0 \to A/H_i \otimes_A P_1 \to A/H_i \otimes_A P_0 \to A/H_i \otimes_A H_j/H_{j+1} \to 0$$

is a projective resolution of H_j/H_{j+1} as left A/H_i-modules. Thus we have

$$\text{proj.dim}_{A/H_i} H_j/H_{j+1} \leq \text{proj.dim}_A H_j/H_{j+1} \leq 1.$$

Similarly, we obtain the assertion of right strongly quasi-hereditary algebras. \qed

3.2. Strongly quasi-hereditary algebras. From Theorem 3.10 we give the following definition:

Definition 3.14. Let A be a finite dimensional algebra over an algebraically closed field k.

(1) If A has a heredity chain of A

$$A = H_0 > H_1 > \cdots > H_i > H_{i+1} > \cdots > H_n = 0$$
such that, for any $0 \leq i < n$, the projective dimension of H_i/H_{i+1} as left A-modules and the projective dimension of H_i/H_{i+1} as right A-modules are at most one. Such a heredity chain is called a strongly heredity chain of A.

(2) We say that A is a strongly quasi-hereditary algebra if there exists a strongly heredity chain of A.

Remark 3.15. Let A be a finite dimensional algebra with a strongly heredity chain $A = H_0 > H_1 > \cdots > H_i > H_{i+1} > \cdots > H_n = 0$. Then it follows from Theorem 3.13 that A/H_i is again strongly quasi-hereditary, similarly to the definition of quasi-hereditary algebra by Dlab and Ringel [DR89c].

Remark 3.16. It deduces from [DR89c, Theorem 1] that A is hereditary if and only if any chain of idempotent ideals of A is a strongly heredity chain of A.

Most of the proof follows from [DR89c, Theorem 1]. Let A be hereditary. Then any chain of idempotent ideals of A becomes a heredity chain of A by [DR89c, Theorem 1]. Moreover it follows from the assumption that the projective dimensions of the quotients of ideals are at most one. Since a strongly heredity chain is a special case of a heredity chain, the converse is also true.

Example 3.17. Let A be the Auslander algebra of the truncated polynomial algebra $k[x]/(x^3)$. Then A is the algebra over an algebraically closed field k defined by the following quiver

$$
\begin{array}{ccc}
1 & \overset{\alpha_1}{\leftarrow} & 2 \\
& \overset{\beta_1}{\searrow} & \overset{\alpha_2}{\nearrow} \\
& & 3 \\
\end{array}
$$

with relations $\alpha_1\beta_1 - \beta_2\alpha_2$, $\alpha_2\beta_2$. Then A has the following strongly heredity chain:

$$A > A(e_2 + e_3)A > Ae_3A > 0.$$

If A is strongly quasi-hereditary, then the global dimension of A is at most two [Rin10]. However the question of whether every finite-dimensional algebra of global dimension at most two is strongly quasi-hereditary is answered in the negative by providing the following example.

Example 3.18. Let Q be the quiver $1 \leftarrow 2 \rightarrow 3$ whose underlying graph is the Dynkin graph A_3 and let A be the Auslander algebra of kQ. Then A is the algebra over an algebraically closed field k defined by the following quiver

$$
\begin{array}{ccc}
1 & \overset{\alpha}{\leftarrow} & 2 \\
& \overset{\beta}{\searrow} & 3 \\
& & 5 \\
& \overset{\gamma}{\nearrow} & 4 \\
& & 6 \\
\end{array}
$$

with relations $\beta\alpha$, $\delta\gamma$ and $\epsilon\beta - \varphi\delta$. The global dimension of A is two. However we can not construct a strongly heredity chain of A. Thus the converse of Ringel’s Theorem [Rin10] in not true.
Remark 3.19. If the global dimension of \(A \) is at most two, then \(A \) is a left (resp. right) strongly quasi-hereditary algebra. The most of the proof follows from [Iya03b, Theorem 3.6]. He showed that if \(A \) has global dimension at most two, then the category of finitely generated projective \(A \)-modules has a complete total left (resp. right) rejective chain. It can be shown that the category of finitely generated projective \(A \)-modules has a complete total left (resp. right) rejective chain if and only if \(A \) is a left (resp. right) strongly quasi-hereditary algebra.

Remark 3.20. It is known that a Ringel dual of a left strongly quasi-hereditary algebra is right strongly quasi-hereditary [Rin10]. Thus the Ringel self dual algebras which are left strongly quasi-hereditary are strongly quasi-hereditary and they have global dimension at most two. Consequently, from Remark 3.19 it follows that for a Ringel self dual algebra \(A \), \(A \) has global dimension at most two if and only if \(A \) is a (left) strongly quasi-hereditary algebra.

Acknowledgement. The author is greatly indebted to Yoshiyuki Kimura and Hyohe Miyachi for their valuable advice, and Osamu Iyama for his insightful comments on the last subsection. This work is supported by by Grant-in-Aid for JSPS Fellowships No. H15J09492.

References

[CE56] H. Cartan and S. Eilenberg, *Homological algebra*, Princeton University Press, Princeton, N. J., 1956. MR 0077480

[CPS88] E. Cline, B. Parshall, and L. Scott, *Finite-dimensional algebras and highest weight categories*, J. Reine Angew. Math. 391 (1988), 85–99. MR 961165

[Don98] S. Donkin, *The \(q \)-Schur algebra*, London Mathematical Society Lecture Note Series, vol. 253, Cambridge University Press, Cambridge, 1998. MR 1707336

[DR89a] V. Dlab and C. M. Ringel, *Auslander algebras as quasi-hereditary algebras*, J. London Math. Soc. (2) 39 (1989), no. 3, 457–466. MR 1002457

[DR89b] ______, *Every semiprimary ring is the endomorphism ring of a projective module over a quasi-hereditary ring*, Proc. Amer. Math. Soc. 107 (1989), no. 1, 1–5. MR 943793

[DR89c] ______, *Quasi-hereditary algebras*, Illinois J. Math. 33 (1989), no. 2, 280–291. MR 987824

[DR89d] Vlastimil Dlab and Claus Michael Ringel, *Filtrations of right ideals related to projectivity of left ideals*, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988), Lecture Notes in Math., vol. 1404, Springer, Berlin, 1989, pp. 95–107. MR 1035221

[GLS07] C. Geiss, B. Leclerc, and J. Schröer, *Cluster algebra structures and semicanonical bases for unipotent groups*, arXiv preprint http://arxiv.org/abs/math/0703039, mar 2007.

[HZ13] D. Happel and D. Zacharia, *Algebras of finite global dimension*, Algebras, quivers and representations, Abel Symp., vol. 8, Springer, Heidelberg, 2013, pp. 95–113. MR 3183882

[IR11] O. Iyama and I. Reiten, *2-Auslander algebras associated with reduced words in Coxeter groups*, Int. Math. Res. Not. IMRN (2011), no. 8, 1782–1803. MR 2806521

[Iya03a] O. Iyama, *Finiteness of representation dimension*, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1011–1014 (electronic). MR 1948089

[Iya03b] O. Iyama, *Rejective subcategories of artin algebras and orders*, arXiv preprint http://arxiv.org/abs/math/0311281, nov 2003.

[Poe10] N. Poettering, *Quivers without loops admit global dimension 2*, arXiv preprint http://arxiv.org/abs/1010.3871, oct 2010.
[PS88] B. Parshall and L. Scott, Derived categories, quasi-hereditary algebras, and algebraic groups, Carlton University Mathematical notes 3 (1988), 1–104.

[Rin10] C. M. Ringel, Iyama’s finiteness theorem via strongly quasi-hereditary algebras, J. Pure Appl. Algebra 214 (2010), no. 9, 1687–1692. MR 2593693

[Sco87] L. Scott, Simulating algebraic geometry with algebra. I. The algebraic theory of derived categories, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 271–281. MR 933417

Department of Mathematics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 JAPAN

E-mail address: m13sa30m19@st.osaka-cu.ac.jp