Broken S_3 Neutrinos

H. B. Beno"aum
Prince Mohammad Bin Fahd University, Al-Khobar 31952, Saudi Arabia
Email: hbenaoum@pmu.edu.sa

August 13, 2013

Abstract

Motivated by recent measurements which strongly support a nonzero reactor mixing angle θ_{13}, we study a deviation from S_3 neutrino discrete symmetry by explicitly breaking the neutrino mass matrix with a general retrocirculant matrix. We show that nonzero θ_{13} and nonzero CP violation parameter J_{CP} arise due to the difference between y_2 and y_3. We demonstrate that it is possible to obtain the experimentally favored results for neutrino masses and mixing angles from this mass matrix. Furthermore, we estimate the effective masses m_β and $m_{\beta\beta}$ and total neutrino mass $\sum |m_i|$ predicted by this mass matrix.

Keywords: Neutrino Physics; Flavor Symmetry; Neutrino Mass and Mixing; Discrete Symmetries.

PACS numbers: 14.60.Pq; 12.15.Ff

Experiments using solar, atmospheric and reactor neutrinos have made considerable progress in establishing two different mass squared differences (Δm_{21}^2 and Δm_{31}^2) and two large mixing angles (θ_{12} and θ_{23}) in the lepton sector. Recently MINOS [1, 2], T2K [3], Double CHOOZ [4], Daya Bay [5] and RENO [6] have revealed that the reactor mixing angle θ_{13} is not only nonzero but relatively large.

The phenomenon of neutrino mixing can be simply described by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix V_{PMNS}, which links the neutrino flavor eigenstates ν_e, ν_μ, ν_τ to the mass eigenstates ν_1, ν_2, ν_3:

$$V = \begin{pmatrix} V_{e1} & V_{e2} & V_{e3} \\ V_{\mu 1} & V_{\mu 2} & V_{\mu 3} \\ V_{\tau 1} & V_{\tau 2} & V_{\tau 3} \end{pmatrix}. \quad (1)$$

In the standard parametrization used by the Particle Data Group (PDG), the PMNS matrix is expressed by three mixing angles θ_{12}, θ_{23} and θ_{13} and one intrinsic CP violating phase δ for Dirac neutrinos,

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{23}s_{13}e^{i\delta} & s_{12}c_{13} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -s_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} P_{Maj}. \quad (2)$$

where $c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij}$ and P_{Maj} is a diagonal matrix with Majorana CP violating phases.
The three mixing angles are related to the moduli of the elements of the PMNS mixing matrix as:

$$\sin^2 \theta_{13} = |V_{e3}|^2$$
$$\sin^2 \theta_{12} = \frac{|V_{e2}|^2}{1 - |V_{e3}|^2}$$
$$\sin^2 \theta_{23} = \frac{|V_{\mu3}|^2}{1 - |V_{e3}|^2}$$.

(3)

The well-known tri-bimaximal (TBM) mixing pattern, which corresponds to $\theta_{13} = 0$, $\theta_{23} = \pm \frac{\pi}{4}$ and $\theta_{12} = \sin^{-1} \left(\frac{\sqrt{3}}{2} \right)$, has attracted a degree of attention in the literature because it suggests some underlying flavor symmetry among lepton’s generations. This flavor symmetry is expected to explain the mass spectrum and neutrino mixing pattern.

The TBM form is:

$$V_0 = \begin{pmatrix}
\frac{\sqrt{2}}{\sqrt{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{pmatrix}.$$

(4)

Models based on discrete symmetries were successful in reproducing this matrix. Among a number of interesting discrete flavor symmetries discussed in the literature, the S_3 symmetry which is the permutation group of three objects, is the simplest [8]. S_3 is the smallest non-Abelian discrete group.

The three-dimensional reducible representations of all S_3 group elements are:

$$S^{(1)} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}; \quad S^{(12)} = \begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}; \quad S^{(13)} = \begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}.$$

$$S^{(23)} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}; \quad S^{(123)} = \begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}; \quad S^{(132)} = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix}.$$

(5)

The most general neutrino mass matrix M^0_ν invariant under S_3 is:

$$M^0_\nu = \alpha \ S^{(1)} + \beta \ (S^{(12)} + S^{(13)} + S^{(23)})$$

where α and β are, in general, complex numbers.

In the basis where the charged lepton mass matrix is diagonal, the TBM mixing matrix diagonalizes the neutrino matrix M^0_ν.

$$V_0^T M^0_\nu V_0 = \begin{pmatrix}
\alpha & 0 & 0 \\
0 & \alpha + \beta & 0 \\
0 & 0 & \alpha
\end{pmatrix}.$$

(7)

This matrix leads to two degenerate masses, namely m_1 and m_3. However, this is not correct experimentally. To overcome this problem, it was suggested in [9] that in fact the three masses are degenerate by letting the complex number α lies in the third quadrant,

$$\alpha = -i |\alpha| e^{-i \frac{\psi}{2}} \text{ for } 0 \leq \psi < \pi$$

(8)
and taking β as real number such that:

$$\beta = \frac{2}{3} |\alpha| \sin \frac{\psi}{2} \quad .$$

(9)

In this work, we consider the neutrino matrix M^0_ν, which is invariant under S_3, as zeroth order with degenerate masses and TBM mixing angles. Nondegenerate mass spectrum and nonzero θ_{13} were realized in [9]-[10] by introducing small perturbations that violate S_3 symmetry.

Here, we investigate the phenomenological consequences of the deviation from an exact S_3 symmetry by explicitly breaking the neutrino mass matrix M^0_ν with a general retrocirculant matrix:

$$\Delta M_\nu = -\alpha \begin{pmatrix} y_1 & y_2 & y_3 \\ y_2 & y_3 & y_1 \\ y_3 & y_1 & y_2 \end{pmatrix}$$

(10)

where the dimensionless parameters $y_i = \frac{|y_i| e^{i\varphi_i}}{2}$ are complex numbers with magnitude less than one and $0 \leq \varphi_i \leq \pi$. We also consider the charged lepton to be diagonal so the leptonic mixing solely comes from the neutrino sector. It is easy to see that ΔM_ν can be written as a linear combination of $S(23)$, $S(12)$ and $S(13)$ as:

$$\Delta M_\nu = -\alpha \left(y_1 S^{(23)} + y_2 S^{(12)} + y_3 S^{(13)}\right)$$

(11)

As a result the broken neutrino matrix M_ν becomes:

$$M_\nu = M^0_\nu + \Delta M_\nu$$

$$= \begin{pmatrix} \alpha + \beta - \alpha y_1 & \beta - \alpha y_2 & \beta - \alpha y_3 \\ \beta - \alpha y_2 & \alpha + \beta - \alpha y_3 & \beta - \alpha y_1 \\ \beta - \alpha y_3 & \beta - \alpha y_1 & \alpha + \beta - \alpha y_2 \end{pmatrix}$$

(12)

The eigenvalues of the above matrix are:

$$m_1 = \alpha - \alpha \sqrt{y_1^2 + y_2^2 + y_3^2 - y_1y_2 - y_1y_3 - y_2y_3}$$

$$m_2 = \alpha + 3\beta - \alpha (y_1 + y_2 + y_3)$$

$$m_3 = \alpha + \alpha \sqrt{y_1^2 + y_2^2 + y_3^2 - y_1y_2 - y_1y_3 - y_2y_3}$$

(13)

The matrix M_ν is called magic mass matrix since every row and column add up to the same value which is m_2 for this case. It implies that this mass matrix has a trimaximal eigenvector $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^T$. Moreover the $\mu - \tau$ symmetry corresponding to $\theta_{13} = 0$ and $\theta_{23} = \pm \frac{\pi}{4}$ is broken for M_ν.

$$[M_\nu, S^{(23)}] = -\alpha \left(y_2 - y_3\right) \left(S^{(123)} - S^{(132)}\right)$$

(14)

due to the difference between y_2 and y_3.

Interestingly, by rotating the above matrix by the TBM mixing matrix V_0, we get:

$$V_0^T M_\nu V_0 = \begin{pmatrix} \alpha - \frac{\sqrt{3}}{3} (2y_1 - y_2 - y_3) & 0 & \frac{\sqrt{3}}{3} (y_2 - y_3) \\ 0 & \alpha + 3\beta - \alpha (y_1 + y_2 + y_3) & 0 \\ \frac{2\sqrt{3}}{3} (y_2 - y_3) & 0 & \alpha + \frac{2}{3} (2y_1 - y_2 - y_3) \end{pmatrix}$$

(15)
As a consequence, the neutrino matrix M_{ν} is diagonalized by the total unitary matrix $V = V_0 U P_{Maj}$. The mixing matrix U is given by:

$$U = \begin{pmatrix} \cos \theta & 0 & e^{-i\delta} \sin \theta \\ 0 & 1 & 0 \\ -e^{i\delta} \sin \theta & 0 & \cos \theta \end{pmatrix}.$$ \hspace{1cm} (16)

A straightforward calculation yields that the angle θ and the CP-phase δ are:

$$\tan 2\theta = \sqrt{X^2 + Y^2} \hspace{1cm} \tan \delta = \frac{Y}{X} \hspace{1cm} (17)$$

where

$$X = \sqrt{3} \left(|y_2| \cos \frac{\varphi_2}{2} - |y_3| \cos \frac{\varphi_3}{2} \right)$$
$$Y = \sqrt{3} \left(|y_1||y_2| \sin \frac{\varphi_1 - \varphi_2}{2} - |y_1||y_3| \sin \frac{\varphi_1 - \varphi_3}{2} + |y_2||y_3| \sin \frac{\varphi_2 - \varphi_3}{2} \right)$$
$$Z = 2|y_1| \cos \frac{\varphi_1}{2} - |y_2| \cos \frac{\varphi_2}{2} - |y_3| \cos \frac{\varphi_3}{2} \hspace{1cm} (18)$$

The explicit expression of V is:

$$V = \begin{pmatrix} \frac{\sqrt{2}}{\sqrt{6}} \cos \theta & \frac{1}{\sqrt{3}} & -\frac{\sqrt{2}}{\sqrt{6}} e^{-i\delta} \sin \theta \\ -\frac{\cos \theta}{\sqrt{6}} + \frac{e^{i\delta} \sin \theta}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{\cos \theta}{\sqrt{6}} - \frac{e^{-i\delta} \sin \theta}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} - \frac{e^{i\delta}}{\sqrt{2}} \sin \theta & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} + \frac{e^{-i\delta}}{\sqrt{2}} \sin \theta \end{pmatrix} . P_{Maj} \hspace{1cm} (19)$$

We immediately obtain the mixing angles:

$$\sin^2 \theta_{13} = \frac{2}{3} \sin^2 \theta$$
$$\sin^2 \theta_{12} = \frac{1}{2 + \cos 2\theta}$$
$$\sin^2 \theta_{23} = \frac{1}{2} \left(1 + \frac{\sqrt{3} \sin 2\theta \cos \delta}{2 + \cos 2\theta} \right) \hspace{1cm} (20)$$

which for $|y_3| = |y_2| = 0$ (i.e. $\theta_{13} = 0$) give the TBM mixing angles.

The first and second equation in (20) show that the solar and reactor neutrino mixing angles are related by:

$$\sin^2 \theta_{12} = \frac{1}{3 \cos^2 \theta_{13}} \hspace{1cm} (21)$$

Next by considering the third equation in (20), a simple relation between the CP-phase δ and the mixing angles can be derived. The result for $\cos \delta$ reads:

$$\cos \delta = -\frac{1}{\sqrt{3}} \frac{\cos 2\theta_{23}}{\cos \theta_{12} \sqrt{3 \sin^2 \theta_{12} - 1}} \hspace{1cm} (22)$$

This, in turn, would imply that the solar mixing angle θ_{12} has to be,

$$\sin^2 \theta_{12} > \frac{1}{3} \hspace{1cm} (23)$$
which is right on the edge from the global fits to the neutrino oscillation data. Such a constraint could be confirmed or ruled out with a little better data.

The strength of CP violation in neutrino oscillations is described by the Jarlskog rephasing invariant parameter. It is given by:

\[
J_{CP} = \text{Im} \left(V_{e2} V_{\mu 3}^* V_{e3}^* V_{\mu 2}^* \right) = -\frac{1}{6 \sqrt{3}} \sin 2\theta \sin \delta
\]

\[
= -\frac{1}{6 \sqrt{3}} \frac{Y}{\sqrt{X^2 + Y^2 + Z^2}} . \tag{24}
\]

Similarly, the Jarlskog parameter \(J_{CP} \) can be written in terms of the solar \(\theta_{12} \) and the atmospheric \(\theta_{23} \) mixing angles.

It proves convenient to use the ratio \(R_\nu = \frac{\Delta m^2_{21}}{\Delta m^2_{31}} \), to write the mass squared differences as:

\[
\Delta m^2_{21} = 2|\alpha|^2 R_\nu \sqrt{X^2 + Y^2 + Z^2} \\
\Delta m^2_{31} = 2|\alpha|^2 \sqrt{X^2 + Y^2 + Z^2} \\
\Delta m^2_{32} = 2|\alpha|^2 (1 - R_\nu) \sqrt{X^2 + Y^2 + Z^2} . \tag{25}
\]

In order to confront the above neutrino matrix with the experimental observations (Table 1), we use the constraints on neutrino parameters at \(2\sigma \) and \(3\sigma \) [12].

Parameter	Best fit	\(2\sigma \)	\(3\sigma \)		
\(\Delta m^2_{21} \times 10^{-3} \text{eV}^2 \)	7.62	7.27 - 8.01	7.12 - 8.20		
\(\Delta m^2_{31}	\times 10^{-3} \text{eV}^2 \)	2.55	2.38 - 2.68	2.31 - 2.74
	2.43	2.29 - 2.58	2.21 - 2.64		
\(\sin^2 \theta_{12} \)	0.320	0.29 - 0.35	0.27 - 0.37		
\(\sin^2 \theta_{23} \)	0.613	0.38 - 0.66	0.36 - 0.68		
	0.600	0.39 - 0.65	0.37 - 0.67		
\(\sin^2 \theta_{13} \)	0.0246	0.019 - 0.030	0.017 - 0.033		
	0.0250	0.020 - 0.030	0.017 - 0.033		
\(\delta \)	0.80\pi	0 - 2\pi	0 - 2\pi		
	-0.03\pi	0 - 2\pi	0 - 2\pi		

Table 1: Global oscillation analysis with best fit for \(\Delta m^2_{21} \), \(\Delta m^2_{31} \), \(\sin^2 \theta_{12} \), \(\sin^2 \theta_{23} \), \(\sin^2 \theta_{13} \) and \(\delta \) the upper and/or lower corresponds to normal and/or inverted neutrino mass hierarchy.

For numerical analysis, we use the \(3\sigma \) ranges of neutrino oscillation parameters. The neutrino mass matrix \(M_\nu \) depends on \(|\alpha|, |y_1|, |y_2|, |y_3| \) and the phases \(\psi, \varphi_2, \varphi_2 \) and \(\varphi_3 \).

Since there are many unknown parameters, we consider a particular set of those parameters and show how the measured values of neutrino experiments can be accommodated in our neutrino mass matrix \(M_\nu \). For simplicity, we take \(\varphi_2 = \varphi_3 = 0 \), as inputs.

To see how the nonzero value of the phase \(\varphi_1 \) can lift the degeneracy between \(m_1 \) and \(m_2 \), we notice that for
$y_3 = y_2 = 0$, the mass squared differences become:

$$
\begin{align*}
\Delta m_{21}^2 &= 4|\alpha|^2|y_1| \sin \frac{\psi}{2} \sin \frac{\psi - \varphi_1}{2} \\
\Delta m_{31}^2 &= 4|\alpha|^2|y_1| \cos \frac{\varphi_1}{2} \\
\Delta m_{32}^2 &= 4|\alpha|^2|y_1| \cos \frac{\psi}{2} \cos \frac{\psi - \varphi_1}{2} .
\end{align*}
$$

(26)

It is worthwhile to remark that for $\varphi_1 = \psi$, the masses m_1 and m_2 are degenerate and $|m_3| > |m_2|$. Now to separately obtain a nonzero mass squared difference Δm^2_{31} which is smaller than Δm^2_{31}, we introduce a small phase difference $\epsilon_1 = \psi - \varphi_1$ between the phases ψ and φ_1. Such a small phase difference will be responsible for lifting the mass degeneracy between the first and second generation.

To see the behavior of the mass eigenvalues with respect to ψ and other observables, we take $\epsilon_1 = 6^\circ$ as a typical value with $|\alpha| = 0.1$ eV, $|y_1| = 5 \times 10^{-2}$, $|y_2| = 1.3 \times 10^{-3}$ and $|y_3| = 1.2 \times 10^{-3}$. Figure 1 shows the variation of the masses $|m_i|$ as a function of the phase ψ. One clearly observes that Fig. 1 suggests a normal hierarchical ordering pattern for $\psi > 70^\circ$.

![Figure 1: Neutrino’s masses versus ψ.](image)

Based on the expression of the neutrino mass squared differences, we numerically scan over a broader range of $|y_1|$ ($0.05 \leq |y_1| \leq 0.4$) to obtain the restriction on the parameter space of $|y_2|$ and $|y_1|$. We have plotted in Fig. 2 the contour plots of the mass squared differences in the two-dimensional parameter spaces ($|y_2|, |y_3|$) where we take $\psi = 120^\circ$, $\epsilon_1 = 6^\circ$ and $|\alpha| = 0.1$ eV as inputs.

From Fig. 2, we obtain the allowed ranges of $|y_2|$ and $|y_3|$ for the normal mass hierarchy,

$$
|y_i| \leq 0.02 \quad \text{for } i = 2, 3 .
$$

(27)

The ratio R_ν for normal mass hierarchy ordering in the 3σ allowed range is:

$$
R_\nu = \left(2.99^{+0.32}_{-0.44}\right) \times 10^{-2} .
$$

(28)

Figure 3 shows contour plot of the ratio R_ν in the two parameter space ($\psi, \epsilon_1 = \psi - \varphi_1$) where $|y_1| = 0.05, |y_2| = 1.3 \times 10^{-3}$ and $|y_3| = 1.2 \times 10^{-3}$. As expected, the ratio R_ν at 3σ indicates that ψ has to be greater than 70°.

The departure of the mixing angles from TBM mixing angles depend on the phase ϵ_1 and the two parameters $|y_2|$ and $|y_3|$. Scanning over $|y_2|$ and $|y_3|$ within their allowed ranges ($|y_2|, |y_3| \leq 0.02$), we investigate how a nonzero θ_{13} can be obtained for normal mass hierarchy. As a result of numerical analysis, contour plots in
Figure 2: Contour plot of the mass squared differences Δm^2_{21} (left panel) and Δm^2_{31} (right panel) in the parameter space $(|y_1|, |y_2|)$.

Figure 3: Contour plot of the ratio R_ν in the parameter space (ψ, ϵ_1).
the \((\psi, |y_1|)\) parameter plane of the mixing angles \(\theta_{13}, \theta_{12}\) and \(\theta_{23}\) are shown in Fig. 4 using the experimental constraints on the measured angles.

The CP violation parameter \(J_{CP}\), which is directly related to the Dirac phase \(\delta\), arises due to nonzero value of the difference \(|y_3| - |y_2|\) in the neutrino matrix \(M_\nu\). We have plotted in Fig. 5, \(J_{CP}\) with respect to \(\psi\) using the allowed region of \(|y_i|\). It leads to values of \(|J_{CP}|\) around \(10^{-3}\). Nonvanishing \(|J_{CP}|\) will be explored by the next generation high performance long-baseline neutrino experiments.

The absolute neutrino mass scale can be probed by nonoscillatory neutrino experiments. Cosmology is sensitive to the sum of neutrino masses \(\sum |m_i|\). The beta decay endpoint measurements probe the so-called effective electron neutrino mass \(m_\beta\). The rate of the neutrinoless double beta decay depends on the effective Majorana mass of the electron neutrino \(m_{\beta\beta}\).

Both \(m_{\beta\beta}\) and \(m_\beta\) and the sum of neutrino masses are given by:

\[
\begin{align*}
 m_{\beta\beta} & = | \sum \bar{\nu}_e V_{ei} | \\
 m_\beta & = \sqrt{ \sum \bar{\nu}_e^2 |V_{ei}|^2 } \\
 \sum |m_i| & = |m_1| + |m_2| + |m_3|
\end{align*}
\]

(29)
From the neutrino mass M_ν, the effective Majorana masses $m_{\beta\beta}$ and m_β can be written as:

$$m_{\beta\beta} = \frac{1}{3} \sqrt{5 + 4 \cos \psi - 6 |y_1| \left(\sin \frac{\psi - \varphi_1}{2} + 2 \sin \frac{\varphi_1}{2} \right) + 9 |y_1|^2}$$

$$m_\beta = |\alpha| \sqrt{1 - \frac{2}{3} y_1 \left(2 \cos \frac{\varphi_1}{2} + \cos(\psi - \varphi_1) \right) + \frac{4}{3} (y_2 + y_3) \cos^2 \frac{\psi}{2} + y_1^2 + y_2^2 + y_3^2}.$$ \quad (30)

Present cosmological constraints on the sum of neutrino masses $\sum |m_i|$ are in the range $0.44 - 0.76 \text{ eV}$ \cite{13}. The Mainz \cite{14} and Troitsk \cite{15} experiments on the high precision measurement of the end-point part of the β-spectrum of ^3H decay found the 95% C.L. upper bounds $m_\beta \leq 2.3 \text{ eV}$ (Mainz) and $m_\beta \leq 2.1 \text{ eV}$ (Troitsk). Experimental bound on $m_{\beta\beta}$ is below 0.36 eV \cite{16}.

Figure 6 gives the effective electron neutrino mass m_β, the effective Majorana mass $m_{\beta\beta}$ and the sum of neutrino masses $\sum |m_i|$ with respect to ψ for $\epsilon_1 = 6^\circ$. It shows the predicted $m_\beta, m_{\beta\beta}$ and $\sum |m_i|$ are well below the experimental bounds. The magnitude of $m_{\beta\beta}$ increases with larger $|y_1|$ values.

Acknowledgments

I would like to thank S. Nasri and J. Schechter for reading the manuscript and useful comments.

References

[1] L. Whitehead [MINOS Collaboration], Recent results from MINOS, Joint Experimental- Theoretical Seminar (24 June 2011, Fermilab, USA). Websites: theory.fnal.gov/jetp, http://www-numi.fnal.gov/prplots/.

[2] P. Adamson et al. [MINOS Collaboration], Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, [arXiv:1108.0015 [hep-ex]].

[3] The T2K Collaboration, K. Abe et al., Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822].

[4] H. De. Kerrect, Low Nu 2011, Seoul, South Korea, http://workshop.kias.re.kr/lownu11/.

[5] F. P. An et. al, The Daya Bay Collaboration, arXiv:1203.1669 [hep-ex].

[6] J. K. Ahn et. al, RENO Collaboration, arXiv:1204.0626 [hep-ex].

[7] B. Pontecorvo, J. Exptl. Theoret. Phys. 33 (1957) 549 [Sov. Phys. JETP 6 (1958) 429]; J. Exptl. Theoret. Phys. 34 (1958) 247 [Sov. Phys. JETP 7 (1958) 172]; Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28 (1962) 870.
[8] L. Wolfenstein, Phys. Rev. D 18 (1978) 958; S. Pakvasa and H. Sugawara, Phys. Lett. B 73 (1978) 61; 82, 105 (1979); E. Derman and H.S.Tsao, Phys. Rev. D 20 (1979) 1207; S.-L. Chen, M. Frigerio and E. Ma, hep-ph/0404084; M. Fukugita, M. Tanimoto and T. Yanagida, Phys. Rev. D 57 (1998) 4429; E. Ma and G. Rajasekaran, Phys. Rev. D 64 (2001) 113012; Z.-z. Xing, D. Yang and S. Zhou, arXiv:1004.4234v2 [hep-ph]; D. A. Dicus, S.-F. Ge and W. W. Repko, arXiv:1004.3266 [hep-ph]; H. Fritzsch and Z.-Z.Xing, Phys. Lett. B 440 (1998) 313; P. F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. B530 (2002) 79; Z.-Z.Xing, Phys. Lett. B 533 (2002) 85; X.G.He and A. Zee, Phys. Lett. B 560 (2003) 87; P. F. Harrison and W. G. Scott, hep-ph/0302025; C.I.Low and R.R.Volkas, Phys. Rev. D 68 (2003) 033007; A.Zee, Phys. Rev. D 68 (2003) 093002; J.D. Bjorken, P. F. Harrison and W. G. Scott, hep-ph/0511201; R. N. Mohapatra, S. Nasri and H. B. Yu, arXiv:hep-ph/0605020; S. F. King, Nucl. Phys. B 576 (2000) 85; S. F. King and N. N. Singh, Nucl. Phys. B 591 (2000) 3; E. Ma, Phys. Rev. D 70 (2004) 091301; M. Hirsch, A. Velanova del Morel, J.W.F. Valle and E. Ma, Phys. Rev. D 72 (2005) 031901; A. Montdragon, M. Montdragon and E. Peinado, J.Phys. A41 (2008) 304035; T. Fukuyama and H. Nishiura, hep-ph/9702253; R. N. Mohapatra and S. Nussinov, Phys. Rev. D 60 (1999) 013002; E. Ma and M. Raidal, Phys. Rev. Lett. 87 (2001) 011802; C. S. Lam, hep-ph/0104116; T. Kitabayashi and M. Yasue, Phys.Rev. D67 (2003) 015006; W. Grimus and L. Lavoura, hep-ph/0305046; Y. Koide, Phys.Rev. D69 (2004) 093001; Y. H. Ahn, Sin Kyu Kang, C. S. Kim, Jake Lee, hep-ph/0602160; A. Ghosal, hep-ph/0304090; W. Grimus and L. Lavoura, Phys. Lett. B 572 (2003) 189; W. Grimus and L. Lavoura, J. Phys. G 30 (2004) 73; W. Grimus, A. S. Joshipura, S. Kaneko, L. Lavoura, H. Sawanaka, M. Tanimoto, hep-ph/0408123; R. N. Mohapatra, JHEP, 0410 (2004) 027; A. de Gouvea, Phys.Rev. D69 (2004) 093007; R. N. Mohapatra and W. Rodejohann, Phys. Rev. D72 (2005) 053001; T. Kitabayashi and M. Yasue, Phys.Lett., B 621 (2005) 133; R. N. Mohapatra and S. Nasri, Phys. Rev. D 71 (2005) 033001; R. N. Mohapatra, S. Nasri and H. B. Yu, Phys. Lett. B 615 (2005) 231; K. Matsuda and H. Nishiura, Phys. Rev. D 73 (2006) 013008; A. Joshipura, hep-ph/0512252; R. N. Mohapatra, S. Nasri and H. B. Yu, Phys. Lett. B 636 (2006) 114; T. Kaneko, H. Sawagama, Phys.Lett. B 697 (2011) 329.

[9] R. Jora, S. Nasri and J. Schechter, Int. J. Mod. Phys. A 21 (2006) 5875; R. Jora, J. Schechter and M. Naeem Shahid, Phys. Rev. D 80 (2009) 093007, [Erratum-ibid. 82 (2010) 079902]; R. Jora, J. Schechter and M. Naeem Shahid, Phys. Rev. D 82 (2010) 053006; R. Jora, J. Schechter and M. Naeem Shahid. arXiv:1210.6755 [hep-ph].

[10] S. Dev, S. Gupta, R. R. Gautam, Phys. Lett. B 702 (2011) 28; S. Dev, S. Gupta, R. R. Gautam, Phys.Lett.B 708 (2012) 284.

[11] P. F. Harrison and W. G. Scott, Phys. Lett. B 557 (2003) 76; C. S. Lam, Phys. Lett. B 640 (2006) 260; W. Grimus, L. Lavoura, JHEP 0809 (2008) 106; C. H. Albright, W. Rodejohann Eur. Phys. J. C 62 (2009) 599; S. Kumar, Phys. Rev. D 82 (2010) 013010.

[12] D. V. Forero, M. Tortola and J. W. F. Valle, arXiv:1205.4018.

[13] S. Hannestad, A. Mirizzi, G.G. Raffelt and Y.Wong, JCAP 08 (2010) 001; M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, J. High. Ener. Phys. 1008 (2010) 117.

[14] C. Kraus et al., Eur. Phys. J. C40 (2005) 447.

[15] Troitsk, V. Aseev et al., Phys. Rev. D84 (2011) 112003.

[16] J. J. Gomez-Cadenas, J. Martin-Albo, M. Mezzetto, F. Monrabal and M. Sorel, Riv. Nuovo Cim. 35, 29 (2012).