Excitation energy shift and size difference of low-energy levels in \(p \)-shell \(\Lambda \) hypernuclei

Yoshiko Kanada-En’yo
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

We investigated structures of low-lying \(0s \)-orbit \(\Lambda \) states in \(p \)-shell \(\Lambda \) hypernuclei \((\Lambda Z)\) by applying microscopic cluster models for nuclear structure and a single-channel folding potential model for a \(\Lambda \) particle. For \(A > 10 \) systems, the size reduction of core nuclei is small, and the core polarization effect is regarded as a higher-order perturbation in the \(\Lambda \) binding. The present calculation qualitatively describes the systematic trend of experimental data for excitation energy change from \(A^{-1}Z \) to \(\frac{A}{2}Z \), in \(A > 10 \) systems. The energy change shows a clear correlation with the nuclear size difference between the ground and excited states. In \(^7\Lambda Li \) and \(^8\Lambda Be \), the significant shrinkage of cluster structures occurs consistently with the prediction of other calculations.

I. INTRODUCTION

Owing to high-resolution \(\gamma \)-ray measurement experiments, spectra of low-lying states of various \(p \)-shell \(\Lambda \) hypernuclei have been revealed in these years \([1-3]\). Measured energy spectra and electromagnetic transitions are useful information to know properties of \(\Lambda \)-nucleon\((N)\) interactions and also helpful to investigate impurity effects of a \(\Lambda \) particle on nuclear systems. In order to theoretically study structures of \(p \)-shell \(\Lambda \) hypernuclei, various calculations have been performed with cluster models \([4-20]\), shell models \([21,20]\), mean-field and beyond mean-field models \([27,30]\), hyper antisymmetrized molecular dynamics (HAMD) model \([37,41]\), and core-core shell model \([42]\), and so on.

Since a \(\Lambda \) particle is free from Pauli blocking and \(\Lambda-N \) interactions are weaker than \(N-N \) interactions, the \(\Lambda \) spin degree of freedom in \(\Lambda \) hypernuclei more or less weakly couples with core nuclei in general. Therefore, the \(\Lambda \) particle in \(\Lambda \) hypernuclei can be regarded as an impurity of the nuclear system. Indeed, there are many theoretical works discussing \(\Lambda \) impurity effects of on nuclear structures such as shrinkage effects on cluster structures \([1,3,13,38,39,10,45,46]\) and effects on nuclear deformations \([29,32,34,40,46,47]\). One of the famous phenomena is the shrinkage of \(^7\Lambda Li \), which has been theoretically predicted \([4,5]\) and later evidenced experimentally through the \(E2 \) transition strength measurement \([48]\). The dynamical effects of \(\Lambda \) on nuclear structures can be significant in the case that core nuclei are fragile systems such as weakly bound systems and shape softness (or coexistence) ones. However, except for such cases, dynamical change of nuclear structure (the core polarization) is expected to be minor in general because of the weaker \(\Lambda-N \) interactions and no Pauli blocking. In this context, there might be a chance to probe original properties of core nuclear structures by a \(\Lambda \) particle perturbatively appended to the nuclear system.

Let us focus on energy spectra of \(p \)-shell \(\Lambda \) hypernuclei. The low-energy levels are understood as core excited states with a \(0s \)-orbit \(\Lambda \) \((0s)\Lambda \) states. When we consider the \(\Lambda \) particle as an impurity giving a perturbation to the core nuclear system, the first-order perturbation on the energy spectra, that is, change of excitation energies by the \(\Lambda \) particle, comes from structure difference between the ground and excited states through the \(\Lambda-N \) interactions, whereas dynamical structure change gives second-order perturbation effects on the energy spectra. For excited states with structures much different from that of the ground state, the \(\Lambda \) particle can give significant effect on energy spectra as discussed by Isaka et al. for \(Be \) isotopes \([38,39]\). In this concern, it is meaningful to look at excitation energy shifts, that is, excitation energy changes from \(A^{-1}Z \) to \(\frac{A}{2}Z \), in available data. For simplicity, we here ignore the \(\Lambda \) intrinsic spin degree of freedom because spin dependence of the \(\Lambda-N \) interactions is weak. In the observed energy spectra of \(^{10}B^{\Lambda Li}, ^{11}B^{\Lambda ^3Be} \), \(^{12}C^{\Lambda ^3Li} \), and \(^{12}C^{\Lambda ^3Li} \) systems, one can see that the excitation energies \((E_x)\) for \(^{10}B^{3^+_1} \), \(^{11}B(1/2^+_1, 3/2^+_2) \), \(^{11}C(1/2^-_1, 3/2^-_2) \) and \(^{12}C(2^+_1) \) are significantly raised by the \(\Lambda \) particle in \(\frac{A}{2}Z \) systems compared with those in \(A^{-1}Z \) systems. On the other hand, the situation is opposite in \(^6Li^{\Lambda ^7Li} \) systems. The \(E_x(3^+) \) is decreased by the \(\Lambda \) particle. To systematically comprehend the energy spectra of \(p \)-shell \(\Lambda \) hypernuclei, it is worth to examine the excitation energy shifts and their link with the structure difference between the ground and excited states.

Precise data of spectroscopy in various \(\Lambda \) hypernuclei are becoming available and they provide fascinating physics in nuclear many-body systems consisting of protons, neutrons, and \(\Lambda s \). Sophisticated calculations have been achieved mainly in light nuclei and greatly contributed to progress of physics of hypernuclei. Nevertheless, systematic studies for energy spectra of hypernuclei in a wide mass-number region are still limited compared with those for ordinary nuclei, for which various structure models have been developed and used for intensive and extensive studies. It is time to extend application of such structure models developed for ordinary nuclei to hypernuclei. To this end, it might be helpful to propose a handy and economical treatment of a \(\Lambda \) particle to core polarization in \(\Lambda \) hyper nuclei that can be applied to general structure models.

Our first aim, in this paper, is to investigate energy spectra of low-lying \((0s)\Lambda \) states in \(p \)-shell \(\Lambda \) hypernuclei. A particular attention is paid to the excitation energy shifts by the \(\Lambda \) and their link with structures of core nuclei. The second aim is that we are to propose a handy
treatment of the Λ particle in Λ hypernuclei and to check its phenomenological applicability. To describe detailed structures of the ground and excited states of core nuclei, we apply the generator coordinate method (GCM) \cite{49, 50} of microscopic α + d, 2α, and 2α + d cluster models for 6Li, 8Be, and 10B, respectively, and that of extended 2α + t and 3α cluster models with the cluster breaking for 11B, 11C, and 12C. For description of (0s)Λ states in Λ hypernuclei, a single S-wave channel calculation with a folding potential model is performed. Namely, the Λ-nucleus potentials are constructed by folding Λ-N interactions with the nuclear density calculated by the microscopic cluster models. As a core polarization effect, the core size reduction is taken into account in a simple way.

This paper is organized as follows. In the next section, we describe formalism of the present model. The adopted effective N-N and Λ-N interactions are explained in Sec. III. The results are shown in Sec. IV, and discussions are given in Sec. V. Finally, the paper is summarized in Sec. VI.

II. FORMULATION

A. microscopic cluster model for core nuclei

Structures of core nuclei are calculated by the microscopic cluster models with the GCM using the Brink-Bloch cluster wave functions \cite{51}. In the cluster GCM calculations, we superpose the microscopic α + d, 2α, and 2α + d, 2α + t(h), and 3α wave functions for 6Li, 8Be, 10B, 11B(C), and 12C.

For a system consisting of C_1, \ldots, C_k clusters (k is the number of clusters), the Brink-Bloch cluster wave function is given as

$$\Phi_{BB}(S_1, \ldots, S_k; r_1 \sigma_1, \ldots, r_A \sigma_A) = A \phi_{C_1}(S_1; r_1 \sigma_1, \ldots, r_A \sigma_A) \times \cdots \times \phi_{C_k}(S_k; r_{A-A_k} \sigma_{A-A_k}, \ldots, r_{A-A_k} \sigma_{A_k}),$$ \hspace{1cm} (1)

where S_j indicates the position parameter of the C_j cluster, r_i and σ_i indicate the coordinate and spin-isospin configuration of the ith nucleon, A is the antisymmetrizer of all nucleons, A is the mass number, and A_j is the mass number of the C_j cluster. The A_j-nucleon wave function ϕ_{C_j} for the C_j cluster is written by the $(0s)^{A_j}$ harmonic oscillator shell model wave function with the center shifted to the position S_j. The intrinsic spin configurations of d, t(h), and α clusters are $S = 1, 1/2, \text{and } 0$, states, respectively. The width parameter $\nu = 1/(2b^2)$ (b is the size parameter) of the harmonic oscillator is set to be a common value so that the center of mass (cm) motion can be removed exactly. In the present work, we use the same parameter $\nu = 0.235$ fm$^{-2}$ as that used in Ref. \cite{53} which reasonably reproduces the ground-state sizes of p-shell nuclei. The Brink-Bloch cluster wave function is a fully microscopic A-nucleon wave function, in which the degrees of freedom and antisymmetrization of A nucleons are taken into account, differently from non-microscopic cluster models (simple k-body potential models) and such semi-microscopic cluster models as the orthogonal condition model (OCM) \cite{52}.

To take into account inter-cluster motion, the GCM is performed with respect to the cluster center parameters S_j. Namely, the GCM wave function $\Psi(J^n_n)$ for the J^n_n state is expressed by linear combination of the spin-parity projected Brink-Bloch cluster wave functions with various configurations of S_j as

$$\Psi(J^n_n) = \sum_{S_1, \ldots, S_k} \sum_{K} C^{J^n_n}_{S_1, \ldots, S_k, K} P^{J^n_n}_{MK} \Phi_{BB}(S_1, \ldots, S_k),$$ \hspace{1cm} (2)

where $P^{J^n_n}_{MK}$ is the spin-parity projection operator. The coefficients $C^{J^n_n}_{S_1, \ldots, S_k, K}$ are determined by diagonalization of the Hamiltonian and norm matrices. In the present calculation, for two-cluster systems of $\alpha + d$ and 2α, S_k is chosen to be $S_1 - S_2 = (0, 0, d)$ with $d = \{1, 2, \ldots, 15 \text{ fm}\}$. For three-cluster systems of $2\alpha + d$, $2\alpha + t(h)$, 3α, S_k is chosen to be

$$S_1 - S_2 = (0, 0, d), \hspace{1cm} (3)$$

$$S_3 - A_2 S_1 + A_1 S_2 = (r \sin \theta, 0, r \cos \theta), \hspace{1cm} (4)$$

with $d = \{1.2, 2.4, \ldots, 4.2 \text{ fm}\}$, $r = \{0.5, 1.5, \ldots, 4.5 \text{ fm}\}$, $\theta = \{0, \pi/8, \ldots, \pi/2\}$.

In a long history of structure study of 8Be and 12C, the 2α and 3α GCM calculations have been performed in many works since 1970’s (see Ref. \cite{53, 54} and references therein), and successfully described cluster structures except for the ground state of 12C. For the ground state of 12C, the traditional 3α models are not sufficient because the cluster breaking component, in particular, the $p_{3/2}$-closed configuration is significantly mixed in it, and therefore, they usually fail to reproduce the $0^+_1 - 2^+_1$ energy spacing and $B(E2; 2^+_1 \rightarrow 0^+_1)$. Suhara and the author have proposed an extended 3α cluster model by adding the $p_{3/2}$-closed configuration in the 3α GCM calculation, which we call the $3\alpha + p_{3/2}$ model \cite{55}. In the present calculation of 12C, we apply the $3\alpha + p_{3/2}$ model and take into account the cluster breaking component. We also apply the extended version, the $2\alpha + t + p_{3/2}$ model to 11B by taking account the cluster breaking component by adding the $(p_{3/2})^3(p_{3/2})^4$ configuration in the $2\alpha + t$ GCM calculation (the $2\alpha + h + p_{3/2}$ model to 11C with $(p_{3/2})^4(p_{3/2})^3$ configuration in the $2\alpha + h$ GCM calculation).

The nuclear density $\rho_N(r)$ in the core nuclei is calculated for the obtained GCM wave function $\Psi(J^n_n)$. The $\rho_N(r)$ is the r-dependent spherical density of the J^n_n state after extraction of the cm motion.
B. Hamiltonian of nuclear part

Hamiltonian of the nuclear part consists of the kinetic term, effective nuclear interactions, and Coulomb interactions as follows,

\[H_N = T + V_N^{(c)} + V_N^{(so)} + V_{\text{coul}}, \]
(5)

\[T = \sum_{i<j}^{A} \frac{1}{2m_N} \mathbf{p_i}^2 - T_G, \]
(6)

\[V_N^{(c)} = \sum_{i<j}^{A} v_N^{(c)}(i,j), \]
(7)

\[V_N^{(so)} = \sum_{i<j}^{A} v_N^{(so)}(i,j), \]
(8)

\[V_{\text{coul}} = \sum_{i<j}^{Z} v_{\text{coul}}(r_{ij}), \]
(9)

where \(T_G \) is the kinetic term of the cm motion, and \(v_N^{(c)}(i,j) \) and \(v_N^{(so)}(i,j) \) are the effective \(N-N \) central and spin-orbit interactions. The energy \(E_N \) of the core nucleus is given as \(E_N = \langle \Psi(J^+_N) | H_N | \Psi(J^+_N) \rangle \) (the nuclear energy). In the GCM calculation, the coefficients \(c_{s_1 \ldots s_k}^{f_1 \ldots f_k} \) in (2) are determined so as to minimize \(E_N \).

C. Hamiltonian and folding potential of \(\Lambda \)-nucleus system

The \(0s \) states of \(\Lambda \) hypernuclei are calculated with a folding potential model by solving the following single \(S \)-wave channel problem within local density approximations,

\[H_A = T_A + U_A, \]
(10)

\[T_A = \frac{1}{2m_\Lambda} \mathbf{p}^2, \]
(11)

\[\mu_A = \frac{(A-1)m_Nm_\Lambda}{(A-1)m_N + m_\Lambda}, \]
(12)

\[U_A(r,r') = U_A^D(r) + |r|U_A^{EX}(r,r') \Psi(r'), \]
(13)

\[U_A^D(r) = \int r'' \rho_N(r'', r''')U_A^D(k_f; |r - r'''|), \]
(14)

\[U_A^{EX}(r,r') = \rho_N(r,r')V^{EX}_{\Lambda N}(k_f; |r - r'|), \]
(15)

\[v_{\Lambda N}^D(k_f; r) = \frac{1}{2}[V^{\rho}_{\Lambda N}(k_f; r) + V^{\sigma}_{\Lambda N}(k_f; r)], \]
(16)

\[v_{\Lambda N}^{EX}(k_f; r) = \frac{1}{2}[V^{\rho}_{\Lambda N}(k_f; r) - V^{\sigma}_{\Lambda N}(k_f; r)], \]
(17)

where \(r, r' \), and \(\mathbf{p} \) are defined with respect to the relative coordinate of the \(\Lambda \) from the cm of the core nucleus. \(V_{\Lambda N}^D(k_f; r) \) and \(V_{\Lambda N}^{\sigma}(k_f; r) \) are the even and odd parts of the effective \(\Lambda-N \) central interactions, respectively, where \(k_f \) is the parameter for density dependence of the effective \(\Lambda-N \) interactions.

D. core polarization effect

We take into account the core polarization, which is the structure change of core nuclei caused by the impurity, the \(\Lambda \) particle, in \(\Lambda \) hypernuclei as follows. In the present folding potential model, the \(\Lambda \) binding reflects the core nuclear structure only through the nuclear density \(\rho_N(r) \). When the \(0s \)-orbit \(\Lambda \) particle is regarded as an impurity of the nuclear system, the \(\Lambda-N \) interactions may act as an additional attraction to the nuclear system and make the nuclear size slightly small. To simulate the nuclear structure change induced by the \(0s \)-orbit \(\Lambda \), we add artificial nuclear interactions by slightly enhancing the central part by hand and perform the GCM calculation of the nuclear system for the modified Hamiltonian,

\[H_N + \Delta H(\epsilon) = T + (1 + \epsilon)V_N^{(c)} + V_N^{(so)} + V_{\text{coul}}, \]
(26)
with the additional term $\Delta H(\epsilon) = \epsilon V^2_N$, where ϵ is the enhancement factor and taken to be $\epsilon \geq 0$. For the GCM wave function $\Phi(\epsilon; J^N_2)$ of the J^N_2 state obtained with $H_N + \Delta H(\epsilon)$, we calculate the nuclear energy $E_N(\epsilon) = \langle \Phi(\epsilon; J^N_2)|H_N|\Phi(\epsilon; J^N_2) \rangle$ and the nuclear density $\rho_N(\epsilon;r)$. Then we calculate the Λ wave function ($\phi_\Lambda(\epsilon;r)$) and energy ($E_\Lambda(\epsilon)$) for the obtained ϵ-dependent nuclear density $\rho_N(\epsilon;r)$. Finally, we search for the optimum ϵ value so as to minimize the energy of the total system,

$$E(\epsilon) = E_N(\epsilon) + E_\Lambda(\epsilon),$$ \hspace{1cm} (27)

$$\frac{\delta E(\epsilon)}{\delta \epsilon} = 0.$$ \hspace{1cm} (28)

The Λ binding energy (B_Λ) is calculated as $B_\Lambda = -(E(\epsilon) - E^\text{np}_N)$ for the optimized ϵ value, where $E^\text{np}_N = E_N(\epsilon = 0)$ is the unperturbative nuclear energy without the Λ particle.

We vary only the GCM coefficients for the fixed basis cluster wave functions corresponding to the inert cluster ansatz. In this assumption, the enhancement of the effective central nuclear interactions acts like an enhancement of the inter-cluster potentials.

III. EFFECTIVE INTERACTIONS

A. Effective nuclear interactions

As for the effective two-body nuclear interactions, we use the finite-range central interactions of the Volkov No.2 parametrization [61] and the spin-orbit interactions of the G3RS parametrization [62],

$$v^\text{(c)}(1, 2) = V^\text{(c)}_{NN}(r_{12})(w + bP_x - hP_y - mP_z P_z),$$ \hspace{1cm} (29)

$$V^\text{(c)}_{NN}(r) = v_1 \exp \left[- \left(\frac{r}{a_1} \right)^2 \right] + v_2 \exp \left[- \left(\frac{r}{a_2} \right)^2 \right],$$ \hspace{1cm} (30)

$$v_1 = -60.65 \text{ MeV}, \quad v_2 = 61.14 \text{ MeV},$$ \hspace{1cm} (31)

$$a_1 = 1.80 \text{ fm}, \quad a_2 = 1.01 \text{ fm},$$ \hspace{1cm} (32)

$$v^{(so)}_{NN}(1, 2) = V^{(so)}_{NN}(r) \frac{1 + P_x + P_y}{2} l_{12} \cdot s_{12},$$ \hspace{1cm} (33)

$$V^{(so)}_{NN}(r) = u_1 \exp \left[- \left(\frac{r}{b_1} \right)^2 \right] + u_2 \exp \left[- \left(\frac{r}{b_2} \right)^2 \right],$$ \hspace{1cm} (34)

$$b_1 = 0.60 \text{ fm}, \quad b_2 = 0.447 \text{ fm},$$ \hspace{1cm} (35)

where $P_x(P_y)$ is the spin(isospin) exchange operator, r_{12} is the relative distance $r_{12} = |r_{12}|$ for the relative coordinate $r_{12} = r_1 - r_2$, l_{12} is the angular momentum for r_{12}, and s_{12} is the sum of nucleon spins $s_{12} = s_1 + s_2$.

We use $w = 0.40$, $m = 0.60$, and $b = h = 0.125$ for the central interactions, and $u_1 = -u_2 = 1600 \text{ MeV}$ for the spin-orbit interactions. These parameters reproduce the deuteron binding energy, the α-α scattering phase shift, and properties of the ground and excited states of ^{12}C [55, 63, 64]. For ^6Li, we use a modified values $w = 0.43$, $m = 0.57$, $b = h = 0.125$, and $u_1 = -u_2 = 1200 \text{ MeV}$ to reproduce the $^6\text{Li}(1^+)\Lambda$ and $^6\text{Li}(3^+)\Lambda$ energies relative to the $\alpha + d$ threshold energy. Note that this modification gives no effect on s-shell nuclei, d, t, h, and α.

B. Effective Λ-nucleon interactions

For the effective $\Lambda-N$ central interactions, we use the G-matrix interactions derived from $\Lambda-N$ interactions of the one-boson-exchange model, which we denote as the $\Lambda N G$ interactions [60, 67]. In this paper, we adopt the central part of the $\Lambda N G$ interactions with the ESC08a parametrization,

$$V^\text{(c)}_{\Lambda N}(k_f; r) = \frac{3}{2} \left[(c^e_{\Lambda N} + c^o_{\Lambda N} k_F^2) \exp \left[- \left(\frac{r}{\beta_1} \right)^2 \right] \right],$$ \hspace{1cm} (36)

$$V^{(so)}_{\Lambda N}(k_f; r) = \frac{3}{2} \left[(c^e_{\Lambda N} + c^o_{\Lambda N} k_F^2) \exp \left[- \left(\frac{r}{\beta_1} \right)^2 \right] \right],$$ \hspace{1cm} (37)

$$c^e_{\Lambda N} = \frac{1}{4} c^{1E}_{\Lambda N} + \frac{3}{4} c^{3E}_{\Lambda N},$$ \hspace{1cm} (38)

$$c^o_{\Lambda N} = \frac{1}{4} c^{1O}_{\Lambda N} + \frac{3}{4} c^{3O}_{\Lambda N},$$ \hspace{1cm} (39)

with $\beta_1 = 0.5 \text{ fm}, \beta_2 = 0.9 \text{ fm},$ and $\beta_3 = 2.0 \text{ fm}$. Values of the parameters $c^{1E, 3E, 1O, 3O}_{\Lambda N}$ are listed in Table I. Note that, in the present S-wave Λ calculation, the effective $\Lambda-N$ interactions are spin-independent central interactions, as the singlet and triplet parts are averaged with the factors 1/4 and 3/4, respectively, and the spin-orbit interactions are dropped off.

As for the k_f parameter of the $\Lambda N G$ interactions, we adopt two treatments. One is the density-dependent interactions with $k_f = \langle k_f \rangle_{\Lambda}$, where $\langle k_f \rangle_{\Lambda}$ is the averaged Fermi momentum for the Λ particle,

$$\langle k_f \rangle_{\Lambda} = \left[\frac{3\pi^2}{2} \rho_N \right]^{1/3},$$ \hspace{1cm} (40)

and self-consistently determined for each state. This k_f choice of the $\Lambda N G$ interactions is the so-called “averaged density approximation (ADA)” used in Refs. [40, 61, 65]. The other is the density-independent interaction with a fixed k_f value, $k_f = k^{\text{imp}}_f$. Here, the input parameter k^{imp}_f is chosen for each ΛZ system. It means that the k^{imp}_f is system dependent but “state independent”. In this paper, we use the mean value of $\langle k_f \rangle_{\Lambda}$ of low-energy states obtained by the former treatment (ADA) as the input of k^{imp}_f. These choices reasonably reproduce the Λ binding energies of $^3\text{Li}, ^9\Lambda\text{Be}, ^{11}\Lambda\text{B}, ^{12}\Lambda\text{B}, ^{12}\Lambda\text{C},$
and 13C. We label the first treatment, density-dependent ΛNG interactions with $k_f = \langle k_f \rangle$, as ESC08a(DD), and the second one with the density-independent ΛNG interactions with $k_f = k_f^{\text{pp}}$ ESC08a(DI). Note that the former is state-dependent (structure-dependent) and the latter is state-independent (structure-independent), but the system-dependent k_f is used in both cases.

The ΛNG interactions have been applied to various structure model calculations of hypernuclei such as cluster model, mean-field, and HAMD calculations. In the application of the ΛNG interactions to cluster model and HAMD calculations, the parameter k_f of the density-independent ΛNG interactions is usually adjusted to fit the Λ binding energy for each (sub)system. In applications of the effective ΛNG interactions to ΛA_Z in a wide mass number region, the density-dependent ΛNG interactions have been used, for instance, in the mean-field calculations and recent HAMD calculations [40, 41] because they were originally designed in the density-dependent form to reproduce systematics of Λ binding energy [52]. In Refs. [40, 56], they also showed the results with another choice of $k_f = k_f^{\text{LDA2}}$ in addition to the ADA results. In the present calculation for $(0s)_A \Lambda$ states, the results obtained with $k_f = k_f^{\text{LDA2}}$ show similar results to the present ESC08a(DD) ones.

Table I: Parameters of the ΛNG interactions of ESC08a from Table II of Ref. [56].

i	$t = 1$	$t = 2$	$t = 3$
$e_{0,1}^1$	-3144	368.0	-1.467
$e_{1,1}^1$	6411	-984.4	0
$e_{1,2}^1$	-2478	394.5	0
$e_{0,1}^{2E}$	-2734	316.8	-1.044
$e_{1,1}^{2E}$	5827	-901.6	0
$e_{1,2}^{2E}$	-2404	395.8	0
$e_{0,1}^{1T}$	663.1	124.6	-0.5606
$e_{1,1}^{1T}$	1728	-50.97	0
$e_{1,2}^{1T}$	-599	32.4	0
$e_{0,1}^{3T}$	810.6	-182.7	-0.7257
$e_{1,1}^{3T}$	-703.2	118.1	0
$e_{1,2}^{3T}$	209.6	-13.17	0

IV. RESULTS

By applying the $\alpha + d$, 2α, $2\alpha + d$, $2\alpha + t(h) + p_3/2$, and $3\alpha + p_3/2$ GCM to core nuclei, 6Li, 8Be, 10B, 11B(C), and 12C, we calculate $(0s)_A \Lambda$ states in ΛA_Z with the single-channel folding potential model by taking account the core polarization effect.

In the present calculation, the Λ particle around the I^π state of the core nucleus $A-1Z$(I^π) feels the spin-independent potentials, and therefore the spin partner $J^\pi = (I \pm 1/2)^\pi$ states in $A Z$ completely degenerate. We denote the spin partner $J^\pi = (I \pm 1/2)^\pi$ states in Λ hypernuclei by $\Lambda A_Z(I^\pi)$. We calculate low-lying I^π states with dominant $0\bar{h}\omega$ configurations in $A-1Z$, and the corresponding $(0s)_A \Lambda$ states in ΛA_Z.

The 8Be(0^+_2) and 6Li(3^+_1) states, which are strictly speaking quasi-bound states, are calculated in the bound state approximation with the boundary condition $\delta \leq 15$ fm of the GCM model space. The present GCM calculation gives stable results for these states. The 8Be(2^+_1) state is a broad resonance state, for which we cannot obtain a stable result in the bound state approximation. Instead, we calculate the excitation energy of 8Be(2^+_1) from the $\alpha + \alpha$ scattering phase shifts with the resonating group method (RGM).

To see the effect of the cluster breaking component in $A-1Z$ and ΛA_Z, we also show some results for 12C and 13C obtained by the traditional 3α GCM calculation without the cluster breaking ($p_3/2$) component and compare them with those obtained by the present $3\alpha + p_3/2$ model. Note that, in the present model, the cluster breaking components contribute only to 12C($0^+\tau$) and 11B,C($3/2^-$) but do not affect other spin-parity states.

A. Properties of core nuclei

Nuclear properties of isolate core nuclei without the Λ particle are shown in Tables III and III. The calculated values of the binding energies ($-E_N$), relative energies (E_r) measured from cluster break-up threshold energies, root-mean-square (rms) radii of nuclear matter (R_N), and $E2$ transition strengths to the ground states are listed compared with experimental data in Table III. For the experimental data of nuclear radii, the rms radii of point-proton distribution (R_p) reduced from the charge radii are shown. We also show the results for d, t, and α clusters of $(0s)$ configurations with $\nu = 0.235$ fm$^{-2}$. The energies and sizes are reasonably reproduced by the calculation except for the deuteron and triton. The deuteron size is much underestimated, because the fixed-width $(0s)^2$ configuration is assumed in the present cluster model. The calculated $B(E2)$ are in agreement with the experimental data without using any effective charges. For 12C, the 3α GCM calculation without the cluster breaking ($p_3/2$) gives a larger size and $B(E2; 2^+ \rightarrow 0^+_1)$ than those of the present calculation, meaning that 12C(0^+_1) slightly shrinks because of the cluster breaking effect as discussed in Ref. [53].

In Table III, we show the Coulomb shift $\Delta_{\text{coul}}(E_x)$, which is defined by the excitation energy difference between mirror nuclei, for $A = 11$ nuclei together with calculated radii. Since the Coulomb interactions give only minor change of nuclear structure, and therefore the Coulomb shift sensitively probes the size difference.
are listed. For Refs. [65–68].

TABLE II: Energies (MeV), radii (fm), and $B(E2)$ (e2fm4) in ordinary nuclei. Binding energies ($-E_N$), relative energies (E_r), measured from the cluster-decay threshold, calculated rms matter radii (R_m), the experimental rms point-proton radii (R_p), and $E2$ transition strengths to the ground states are listed. For 13C, the results obtained with the present 3σ + $p_{3/2}$ model and those with the 3σ model without the $p_{3/2}$ component are shown. The experimental data are from Refs. [65,68].

E_N	E_r	R_m	R_p			
cal	exp	cal	exp			
\(d(1^+_1)\)	0.43	2.224	0.98	1.941		
\(t(1/2^+_1)\)	6.9	8.481	1.23	1.504		
\(\alpha(0^+_1)\)	27.6	28.296	1.55	1.410		
\(^6\text{Li}(1^+_1)\)	29.5	31.995	-1.48	-1.48	2.56	2.426
\(^8\text{Be}(0^+_1)\)	55.0	56.499	0.21	0.39		
\(^9\text{Be}(1^+_1)\)	60.5	64.75	-4.88	-5.93	2.39	2.253
\(^{10}\text{B}(3/2^-)\)	71.8	76.203	-9.66	-11.13	2.33	2.229
\(^{11}\text{B}(3/2^-)\)	69.2	73.439	-7.05	-8.37	2.34	
\(^{12}\text{C}(1/2^-)\)	77.8	82.263	-9.66	-11.13	2.33	2.229
\(^{13}\text{C}(3/2^-)\)	71.8	76.203	-9.66	-11.13	2.33	2.229
\(^{14}\text{C}(3/2^-)\)	99.2	104.53	-12.56	-14.89	2.79	2.64
\(^{15}\text{C}(1/2^-)\)	117.8	123.18	-15.48	-17.82	3.24	3.10
\(^{16}\text{O}(3/2^-)\)	136.8	142.21	-18.40	-20.74	3.70	3.56
\(^{17}\text{O}(1/2^-)\)	155.8	161.24	-21.32	-23.66	4.16	4.02

TABLE III: The calculated values of rms radii (R_N (fm)), the size difference ($R_N - R_{N,gs}$ (fm)), excitation energies in 11B, and energy difference from the mirror nucleus 13C. The difference in the binding energy ($\Delta_{min}(-E_N)$ (MeV)) for the ground state and that in the excitation energies ($\Delta_{min}(E_x)$ (MeV)) for excited states are shown. The experimental data are taken from Ref. [68].

R_N	$\Delta_{min}(B.E)$					
cal	exp	cal	exp			
\(11\text{B}(3/2^-)\)	2.33	2.60	2.764			
\(11\text{B}(1/2^-)\)	2.50	0.18	2.79	2.125	0.17	0.13
\(11\text{B}(3/2^-)\)	2.58	0.26	5.57	5.020	0.22	0.22
\(11\text{B}(5/2^-)\)	2.51	0.19	4.66	4.445	0.16	0.13

between the ground and excited states except for weakly bound or resonance states. The calculated Coulomb shifts for $^{11}\text{B}(1/2^-; 3/2^-; 5/2^-)$ agree well with the experimental data indicating that the size differences of these states are reasonably described by the present calculation.

B. Ground states of $^{\Lambda}$ hypernuclei

We here discuss the ground state properties of $^{\Lambda}Z$. In $^{\Lambda}Z$, the nuclear size R_N (R_N) is the rms nuclear matter radius measured from the cm of the core nucleus) slightly decreases and the nuclear energy E_N slightly increases from the original size (R_m^0) and energy (E_m^0) of unperturbative core nuclei $^{\Lambda-1}Z$ without the Λ. We calculate the nuclear size change $\delta_{\Lambda}(R_N) = R_N - R_m^0$ and the nuclear energy change $\delta_{\Lambda}(E_N) = E_N - E_m^0$ caused by the Λ particle in $^{\Lambda}Z$. To see the core polarization effect, we also calculate the Λ energy gain, $\Delta_{\Lambda}(E_\Lambda) = E_\Lambda(\epsilon) - E_\Lambda(\epsilon = 0)$, defined by the energy difference between the calculations with and without the core polarization. Here $E_\Lambda(\epsilon = 0)$ is the Λ energy without the core polarization, that is the Λ energy in the $\Lambda-(^{\Lambda-1}Z$) system with the unperturbative core nucleus.

In Table IV, we show the calculated results of the ground state properties of $^{\Lambda}Z$ together with the experimental B_Λ. As reference data, we also show the results for ^3He obtained by the Λ-\alpha calculation with the inelastic \alpha core assumption. Systematics of Λ binding energies in this mass-number region is reasonably reproduced in both ESC08a(DI) and ESC08a(DD) interactions, though the reproduction is not perfect.

For $A > 10$ systems, the nuclear size change $\delta_{\Lambda}(R_N)$ is less than 5%. The small size change of the core nucleus in the ground state of 13C is consistent with the prediction of other calculations [4,5,9,13,20]. Moreover, the nuclear energy change $\delta_{\Lambda}(E_N)$ and Λ energy gain $\Delta_{\Lambda}(E_\Lambda)$ by the core polarization are also small and compensate each other. It indicates that the core polarization effect is minor and regarded as a higher-order perturbation in the Λ binding except for $A < 10$ systems. The core polarization effects in the ESC08a(DD) results for $A > 10$ systems are particularly small, because the ESC08a(DD) interactions become weak as the nuclear density increases because of the k_f dependence.

As explained previously, the core polarization effect is taken into account by changing the enhancement factor ϵ, which can be regarded as a control parameter of the nuclear size R_N. In Fig. 11, we show the nuclear size dependence of $E_N(\epsilon)$, $E_\Lambda(\epsilon)$, and $E(\epsilon) = E_N(\epsilon) + E_\Lambda(\epsilon)$ in 13C obtained by varying the enhancement factor ϵ. The energies are plotted as functions of the nuclear size $R_N(\epsilon)$. The R_N^{-3} dependence of $E_\Lambda(\epsilon)$ is also shown. In the ESC08a(DI) result, the Λ energy (E_Λ) gradually goes down with the nuclear size reduction because the higher nuclear density gives larger attraction to the Λ potentials. As a result, the Λ particle slightly reduces the core nuclear size. In contrast, in the ESC08a(DD) result, the Λ energy has almost no dependence on the nuclear size, because the density-dependence of the Λ interaction compensates the Λ energy gain in the higher nuclear
density. As a result, the Λ particle hardly changes the core nucleus size. Namely, the density dependence of the ESC08a(DD) interactions suppresses the size reduction of the core nuclei.

Let us turn to $A < 10$ systems, $^7\Lambda Li$ and $^9\Lambda Be$. Differently from $A > 10$ systems, rather significant core size reduction occurs, because 6Li and 8Be have spatially developed $\alpha+d$- and 2α-cluster structures, respectively, and they are rather fragile (soft) against the size reduction. This is consistent with the size shrinkage predicted by pioneering works in Refs. [4, 5] followed by many works (see a review paper [13] and references therein). Particularly remarkable core polarization effects are found in $^7\Lambda Li$, because 8Be is a very fragile system of the loosely bound (strictly speaking, quasi-bound) 2α state. The core polarization effects are seen in the nuclear size change $\delta_R^N(R_N)$ and also the energy changes, $\delta_E^N(E_N)$ and $\delta_E^N(E_A)$, in both ESC08a(DI) and ESC08a(DD) calculations. For $^7\Lambda Li$, the core size reduction is 13% in the ESC08a(DI) result, whereas it is 6% in the ESC08a(DD) result. It should be commented that the size reduction discussed here is the reduction of nuclear matter radii of core nuclei. Detailed discussions of the shrinkage of the inter-cluster distance in $^7\Lambda Li$ and $^9\Lambda Be$ are given later.

C. Excited states of Λ hypernuclei

We also apply the present method to core-excited $0s\Lambda$ states in Λ hypernuclei. A particular attention is paid to excitation energy shift and its relation to nuclear size difference from the ground state in each $^A\Lambda Z$ system.

1. Sizes and $E2$ strengths

In Table VII the calculated values of the Λ distribution size r_Λ, averaged Fermi momentum $\langle k_f\rangle_\Lambda$, core nuclear size R_N, and nuclear size change $\delta_R^N(R_N)$ for excited states obtained with ESC08a(DI) are shown. The nuclear size change $\delta_R^N(R_N)$ for excited states shows similar trend to that for the ground states. Namely, slight reduction of the nuclear size occurs in $^A\Lambda Z$ for $A > 10$. In $^7\Lambda Li$, significant size reduction occurs also in the excited state, $^7\Lambda Li(3^+_f)$, because of the spatially developed $\alpha + d$ clustering. $^8\Lambda Be(2^+_f)$ is a broad resonance, but it is bound in $^9\Lambda Be(2^+_f)$ because of the Λ attraction.

Table VIII shows the $E2$ transition strengths calculated with ESC08a(DI). The $B(E2; I^p \rightarrow I^\pm_f, \text{core})$ of the core nuclear part in $^A\Lambda Z$ are shown compared with the original $B(E2)$ in ^{A-1}Z systems without the Λ particle. $B(E2, \text{core})$ in $^A\Lambda Z$ is generally smaller than the original $B(E2)$ in ^{A-1}Z because of the nuclear size reduction. We also show the size reduction factor S_{E2} reduced from the ratio of $B(E2; I^p \rightarrow I^\pm_f, \text{core})$ in $^A\Lambda Z$ to the unperturbative value, $B(E2; I^p \rightarrow I^\pm_f)$ in ^{A-1}Z, as $S_{E2} = [B(E2; I^p \rightarrow I^\pm_f, \text{core})/B(E2; I^p \rightarrow I^\pm_f)]^{1/4}$. In $A > 10$ systems, the $B(E2)$ reduction is not as remarkable as that in $A < 10$ systems because of the small size reduction in the ground and excited states. By contrast, $B(E2)$ is remarkably reduced in $^7\Lambda Li$ as a result of the significant size reduction in the ground and excited states. This is nothing but the famous phenomenon of the so-called “glue-like role” of the Λ particle [14, 15]. The calculated $B(E2; 3^+_f \rightarrow 1^+_i, \text{core})$ in $^7\Lambda Li$ and $B(E2; 3^+_f \rightarrow 1^+_i)$ in 6Li agree with the experimental data. Detailed discussions are given later.

2. Excitation energy and size difference

In Table VIII excitation energies (E_x) in ^{A-1}Z and $^A\Lambda Z$ are listed. The calculated and experimental energy spectra are shown in Fig. 2. To see the effects of the Λ particle on excitation energies, we also show the excitation energy
The calculated results obtained with ESC08a(DI) and ESC08a(DD) are shown. The experimental data compilation in Ref. [69]. The experimental data of spin-averaged values ($\delta\Lambda(E_N)$ (MeV)) of the Λ binding energy for spin partners, $J^\pi = I^\pi \pm 1/2$, are also shown.

Table IV: Ground state properties of Λ hypernuclei

System	k_{τ}^{inc}	r_Λ	$\langle k_{\tau} \rangle_\Lambda$	R_N	$\delta_\Lambda(R_N)$	$\delta_\Lambda(E_N)$	$\Delta_{\text{exp}}(E_\Lambda)$	B_Λ	$B_{\Lambda,\exp}$	$\bar{B}_{\Lambda,\exp}$
5$\text{He}(0^+)$	0.95	2.84	0.95	1.55	3.6	3.12(2)	3.12(2)			
7$\text{Li}(1^+)$	0.93	2.57	0.95	2.22	-0.33	0.59	-0.85	5.4	5.58(3)	5.12(3)
9$\text{Be}(0^+)$	0.90	2.44	0.98	2.44	-0.94	1.69	-3.15	7.0	6.71(4)	6.71(4)
11$\text{B}(3^+)$	1.03	2.36	1.10	2.28	-0.10	0.37	-0.42	10.0	10.24(5)	10.09(5)
13$\text{B}(3^-)$	1.07	2.33	1.16	2.24	-0.09	0.29	-0.36	10.9	11.37(6)	11.27(6)
15$\text{C}(3^+)$	1.06	2.32	1.16	2.25	-0.09	0.31	-0.42	11.1	10.76(19)	10.65(19)
17$\text{C}(0^+)$	1.11	2.35	1.18	2.26	-0.09	0.27	-0.36	11.1	11.69(12)	11.69(12)
w/o $p_{3/2}$	1.11	2.45	1.11	2.41	-0.11	0.35	-0.42	9.9	11.69(12)	11.69(12)

The ESC08a(DI) result shows the significant energy shift and qualitatively describes the systematic trend of the experimental energy shift. The energy shift comes from the size difference between the ground and excited states because a Λ particle feels a deeper potential in a higher nuclear density system through the Λ-N interactions. As shown in Table IV, the excitation energy shift $\delta_\Lambda(E_N)$ clearly correlates with the size difference $R_N - R_{N,\text{gs}}$, where $R_{N,\text{gs}}$ is the size of the ground state. Namely, the excitation energies shift upward reflecting the larger sizes of excited states in $A > 10$ systems. Note that, in $A > 10$ systems, the size difference in $A\Lambda Z$ is consistent with that in $A^{-1}Z$ meaning that the origin of the size difference, i.e., the excitation energy shift, is the structure difference between the ground and excited states in original core nuclei $A^{-1}Z$. The excited state $^{10}\text{B}(1^+_1)$ has a developed $2\alpha + d$ cluster, and has a larger size than that of the ground state $^{10}\text{B}(3^+_1)$ with a weaker clustering because of the stronger spin-orbit attraction of the d cluster as discussed in Refs. [78, 79]. The excited states of ^{11}B and ^{11}C have the $2\alpha + f$ and $2\alpha + ^3\text{He}$ cluster structures, and have larger sizes than those of the ground states $^{11}\text{B}(3/2^+_1)$ and $^{11}\text{C}(3/2^+_1)$, respectively, which are reduced by the cluster breaking ($p_{3/2}$) component. Also in ^{12}C, the excited state $^{12}\text{C}(2^+_1)$ has the 3α cluster structure and the larger size than that of the ground state, in which significant mixing of the cluster breaking component reduces the size of the ground state. In ^7Li, the situation is opposite. The excited states, $^5\text{Li}(3^+_1)$ and $^7\text{Li}(3^+_1)$, have smaller sizes than those of the ground states, $^5\text{Li}(1^+_1)$ and $^7\text{Li}(1^+_1)$, because of the higher centrifugal barrier in addition to the stronger spin-orbit attraction between α and d clusters in the D-wave $\alpha + d$ state than in the S-wave state. Reflecting the smaller size than the ground state, the excitation energy of $^5\text{Li}(3^+_1)$ shifts downward. For ^8Be, it is difficult to give a quantitative discussion of the energy shift because $^8\text{Be}(2^+)$ is the broad resonance.
TABLE V: Properties of excited states in Λ hypernuclei. The Λ distribution size \((r_Λ)\), averaged Fermi momentum \((k_f)_Λ\) \((\text{fm}^{-1})\), core nuclear size \((R_N)\), nuclear size change \((\delta_Λ(R_N))\), the difference \(R_N - R_{N, gs}\) \((\text{fm})\) of the nuclear size from that of the ground state, excitation energies in \(Λ^{1−1}Z\) and \(Λ^2Z\) systems \((A−1E_x, ΔE_z (\text{MeV}))\), and the excitation energy shift \(ΔΛ(E_z)\) \((\text{MeV})\). The calculated values obtained with ESC08a(DI) are shown together with \(ΔΛ(E_z)\) calculated with ESC08a(DD).

\(Λ\)	\(r_Λ\)	\((k_f)_Λ\)	\(R_N\)	\(ΔΛ(R_N)\)	\(R_{N, gs}\)	\(Δ−1E_x\)	\(ΔE_z,\text{exp}\)	\(ΔΛ(E_z)\)	\(ΔΛ(E_z)\text{DD}\)	\(ΔΛ(E_z)\text{exp}\)		
\(^7\text{Li}(3^+)\)	2.42	1.02	2.04	−0.41	−0.19	2.08	2.19	0.89	1.86	−1.19	−0.21	−0.33
\(^9\text{Be}(2^+)\)	2.41	0.99	2.42	−3.39	−0.02	3.11	3.04	2.68	3.04	−0.43	−0.29	0
\(^{11}\text{B}(1^+\text{c})\)	2.50	1.03	2.47	−0.12	0.18	1.21	0.72	2.72	1.67	1.51	0.23	0.95
\(^{12}\text{B}(2^+)\)	2.24	1.09	2.40	−0.10	0.16	2.79	2.13	4.13	3.00	1.34	0.02	0.87 \(1^−\)
\(^{12}\text{C}(1^+\text{c})\)	2.43	1.09	2.41	−0.11	0.16	2.62	2.00	4.01	2.73	1.39	0.04	0.73 \(1^−\)
\(^{12}\text{C}(2^+)\)	2.43	1.09	2.48	−0.12	0.23	3.55	4.80	7.30	5.81	1.96	0.13	1.01*
w/o \(p_{3/2}\)	2.44	1.12	2.39	−0.10	−0.02	2.36	4.44	2.19	4.89	−0.17	−0.01	0.45 \(3/2^+\)

Although it is generally difficult to experimentally measure sizes of excited states in \(Λ^{1−1}Z\) systems, we can obtain information from the Coulomb shift in mirror nuclei. As described previously, the present calculation reasonably reproduces the experimental Coulomb shift in \(^{11}\text{B}^{14}\text{C}\). Roughly speaking, about 0.2 fm size difference describes \(Λ\) energy shift in \(^{11}\text{B}^{14}\text{C}\), whereas it gives \(Λ\) energy shift in \(^{12}\text{B}^{14}\text{C}\). Namely, the size difference causes about 5 times larger energy difference in the Λ energy than that in the Coulomb energy.

The energy shift and size difference calculated without the core polarization are also shown in Fig. 3 by open circles. They are almost consistent with the results with the core polarization because the core polarization (size reduction) effect on energy is higher-order perturbation. In other words, the origin of the excitation energy shift in \(Λ^2Z\) is, in the leading order, the nuclear size difference between the ground and excited states in the original (unperturbative) core nuclei \(Λ^{1−1}Z\). It turns out that the excitation energy shift in Λ hypernuclei can probe the size difference between the ground and excited states in original \(Λ^{1−1}Z\) nuclei in this mass-number region.

In contrast to the significant energy shift in the ESC08a(DI) results, the ESC08a(DD) results show almost no energy shift and fails to describe the systematic trend of the experimental energy shift as shown in Table V and Fig. 3. In the case of ESC08a(DD), the Λ energy in \(Λ^2Z\) has no (or only weak) dependence on the nuclear size because of the density \((k_f)\) dependence of the ΛNG interactions as discussed previously, and therefore, the Λ particle can not probe the nuclear size difference between the ground and excited states.

As seen in the bottom panel of Fig. 3, the systematic trend of the experimental energy shift can be described by the ESC08a(DI) calculation but not by the ESC08a(DD) calculation, meaning that the density-
independent ΛNG interactions are rather favored than the density-dependent ones. However, as for the quantitative reproduction, the ESC08a(DI) calculation generally overestimates the experimental energy shift by a factor of $1.5 - 2$. It is likely that weak density dependence of the ΛNG interactions may be suitable for detailed description of the excitation energy shift in $^4\Lambda Z$.

V. DISCUSSIONS

A. Density distributions

Figure 1 shows the distribution functions of the Λ density $\rho_\Lambda(r)$ and nuclear density $\rho_N(r)$ in the ground and excited states of $^4\Lambda Z$ as functions of r. Note that r is the distance from the cm of core nuclei. The figures also show the Λ density $\rho_\Lambda^{up}(r)$ and nuclear density $\rho_N^{up}(r)$ in Λ-($^4\Lambda Z$) systems with unperturbative core nuclei (without core polarization). $\rho_\Lambda^{up}(r)$ is the original nuclear density in isolate $^4\Lambda Z$ systems without the Λ particle.

Let us discuss the Λ density shown in the left panels of Fig. 1. As seen in the small difference between $\rho_\Lambda(r)$ and $\rho_\Lambda^{up}(r)$, the core polarization effect on the Λ distribution is rather minor except for $^9\Lambda Be$. Moreover, the difference between the ground and excited states in each system is also small. The center Λ density increases as the mass number A increases reflecting the deeper Λ binding in heavier systems.

Let us look at the nuclear density shown in the middle and right panels of Fig. 1. Compared with the original density $\rho_N^{up}(r)$ in $^4\Lambda Z$ systems, the nuclear density $\rho_N(r)$ in $^4\Lambda Z$ is slightly increased in $A > 10$ systems, and rather significantly enhanced in $A < 10$ systems, as the result of the size reduction discussed previously.

In comparison of the nuclear density between the ground and excited states in each system, we find significant difference between them except for $^9\Lambda Be$. In $A > 10$ systems, the inner density (typically in the $r \lesssim 2$ region) is lower in excited states than in the ground states. The situation is opposite in $^7\Lambda Li$. The $^7\Lambda Li(1^+_1)$ has the higher inner density than that of $^7\Lambda Li(1^+_f)$. As shown by green lines in right panels of Fig. 1, the r^2-weighted $\rho_\Lambda(r)$ has a maximum peak at $r = 1.5 \sim 2.0$ fm, and therefore, the Λ particle mainly probes the density difference between the ground and excited states in this region. Reflecting the nuclear density (size) difference between the ground and excited states, the excitation energy shift occurs. The trend is similar in the results with and without the core polarization because the core polarization slightly raises the inner nuclear density with almost the same amount in both ground and excited states.

B. Size shrinkage in $^7\Lambda Li$ and $^9\Lambda Be$: comparison with other cluster model calculations

The shrinkage of cluster structures in $^7\Lambda Li$ and $^9\Lambda Be$ has been theoretically investigated in connection with γ transitions in details with the semi-microscopic $\alpha + d + \Lambda$ and $2\alpha + \Lambda$ cluster models, respectively, using the OCM [4, 5]. The shrinkage and γ transitions in $^7\Lambda Li$ have been also investigated with the semi-microscopic $^7\Lambda He + p + n$ cluster OCM calculation [10]. The predicted size shrinkage in $^7\Lambda Li$ has been evidenced by the experimental measurement of the $E2$ transition strengths for the $5/2^+ \rightarrow 1/2^+$ transition [18].

We here describe the results for the shrinkage properties in $^7\Lambda Li$ and $^9\Lambda Be$, and compare them with results of Refs. [4, 10]. We also show comparison with the recent calculation of $^9\Lambda Be$ with a microscopic $2\alpha + \Lambda$ cluster model with the S-wave Λ assumption in Ref. [19]. The interactions for the Λ particle in Ref. [4] are phenomenological Λ-cluster potentials, and those in Ref. [10] are the Λ-cluster potentials derived from the ΛNG interactions with phenomenologically adjusted k_f parameters. In Ref. [19], the density-independent ΛNG interactions with a fixed k_f parameter are used as the effective ΛN interactions. These effective interactions are state-independent (structure-independent) and, in that sense, they correspond to the density-independent treatment of k_f in ECS08a(DI) in the present calculation. For the results of Refs. [11, 12], we show the values of the Nijmegen type-D (ND) case of the ΛNG parametrization.

In the works with semi-microscopic cluster models, the size shrinkage, i.e., the contraction of the $\alpha + t$ and $\alpha + \alpha$ cluster structures in $^7\Lambda Li$ and $^9\Lambda Be$ is usually discussed for the reduction of the rms distance between clusters because they are directly related to electric transition strengths in two-body cluster states. In particular, the $E2$ transition strength from the D-wave excited state to the S-wave ground state is sensitive to the shrinkage because it is approximately proportional to the fourth power of the inter-cluster distance. To discuss the shrinkage of the cluster structures and its relation to the $E2$ transitions, we approximately estimate the rms inter-cluster distances $\tau_{\alpha-x} \equiv \langle r^2_{\alpha-x} \rangle^{1/2}$ between α and x clusters from the calculated nuclear matter radius R_N using the following simple relation for non-microscopic two clusters,

$$ (4 + A_x)R_N^2 = \frac{4A_x}{4 + A_x} \langle r^2_{\alpha-x} \rangle + 4R_N^2 + A_x R_x^2, \quad (41) $$

where x is $d(\alpha)$ for $^7\Lambda Li$, $^9\Lambda Be$), and A_x and R_x are the mass number and rms matter radius of the x cluster, respectively. We use the theoretical values $R_N = 1.55$ fm and $R_d = 1.26$ fm for the $(0s)^4$ and $(0s)^2$ states with the present parametrization $\nu = 0.235$ fm$^{-2}$. We also approximate the $\alpha-\alpha$ distance $\tau_{\alpha-\alpha}$ in $^9\Lambda Be$ from R_N in Ref. [19] with (41) using their parameter $\nu = 1/(2 \cdot 1.36^2)$ fm$^{-2}$.
The size shrinkage in $^7\Lambda Li$ is characterized by the reduction of the distance $\tau_{\alpha-d}$ from 6Li to $^7\Lambda Li$, and is discussed with the size reduction factor

$$S = \frac{\tau_{\alpha-d}(^7\Lambda Li)}{\tau_{\alpha-d}(^6Li)}. \quad (42)$$

The reduction factor can be also reduced from the $E2$ transition strengths for $^6Li(3^+_1) \rightarrow ^6Li(1^+_1)$ and $^7\Lambda Li(5/2^+ \rightarrow ^7\Lambda Li(1/2^+)$, as

$$S_{E2} = \left[\frac{B(E2; ^6Li(3^+_1) \rightarrow ^6Li(1^+_1))}{(9/7)B(E2; ^7\Lambda Li(5/2^+ \rightarrow ^7\Lambda Li(1/2^+))} \right]^{1/4}. \quad (43)$$

Here the denominator corresponds to the $E2$ transition strength, $B(E2; I^+_1 \rightarrow I^+_2, \text{core})$, for the $3^+ \rightarrow 1^+$ transition of the core nuclear part in $^7\Lambda Li$. The factor $9/7$ is derived in the weak coupling limit of the core spin I and the Λ intrinsic spin $[4]$.

Table VII: α-d distance $\tau_{\alpha-d}$ in 6Li and $^7\Lambda Li$, and Λ binding energy (B_Λ) and Λ distribution size (r_Λ) in $^7\Lambda Li$ calculated with ESC08a(DI) and ESC08a(DD). The calculated $B(T_2; 3^+_1 \rightarrow 1^+_1)$ in 6Li, $B(T_2; 3^+_1 \rightarrow 1^+_1, \text{core})$ in $^7\Lambda Li$, the reduction factors S for the 1^+_1 and 3^+_1 states, and S_{E2} are also listed. Theoretical values of other calculations from Refs. [4, 10], and experimental values from Refs. [48, 66, 69] are also listed. The α-d distance of Ref. [10] is the rms α-(pn) distance.

	[4]	[10]	present	exp
6Li				
$\tau_{\alpha-d}(1^+_1)$ (fm)	3.8	3.85	4.45	4.45
$\tau_{\alpha-d}(3^+_1)$ (fm)	3.66	4.16	4.16	
$B(E2)$ (e2fm4)	6.6	9.62	11.3	11.3

$^7\Lambda Li$					
B_Λ (MeV)	5.59	5.58	5.44	5.43	5.58(3)
$\tau_{\alpha-d}(1^+_1)$ (fm)	3.13	2.94	3.56	4.05	
$\tau_{\alpha-d}(3^+_1)$ (fm)	2.91	3.02	3.56		
$r_\Lambda(1^+_1)$ (fm)	2.4	2.57	2.66		
$r_\Lambda(3^+_1)$ (fm)	2.33	2.42	2.61		
$B(E2,\text{core})$ (e2fm4)	3.2	3.1	3.4	6.2	4.6(1.3)

$S(1^+_1)$	0.82	0.76	0.80	0.91	
$S(3^+_1)$	0.80	0.72	0.86		
S_{E2}	0.83	0.75	0.74	0.86	0.81(4)

Table VIII: α-Λ distance $\tau_{\alpha-\Lambda}$ in 8Be and $^9\Lambda Be$, and Λ binding energy (B_Λ), Λ distribution size (r_Λ), and $B(E2; 2^+ \rightarrow 0^+, \text{core})$ in $^9\Lambda Be$ calculated with ESC08a(DI) and ESC08a(DD). Theoretical values of other calculations from Refs. [4, 10] are also listed. The experimental B_Λ value is from Ref. [69].

8Be					
$\tau_{\alpha-\Lambda}(0^+_1)$ (fm)	4.09	4.96	5.99	5.99	
$^9\Lambda Be$					
B_Λ (MeV)	7.49	7.33	7.04	6.43	6.71(4)
$\tau_{\alpha-\Lambda}(0^+_1)$ (fm)	3.46	3.61	3.76	4.41	
$\tau_{\alpha-\Lambda}(2^+_1)$ (fm)	3.44	3.56	3.71	4.65	
$r_\Lambda(0^+_1)$ (fm)	2.39	2.57	2.44	2.67	
$r_\Lambda(2^+_1)$ (fm)	2.39	2.55	2.41	2.67	
$B(E2,\text{core})$ (e2fm4)	11.3	13.1	15.2	31.6	

and the experimental value are shown. In the present calculation with ESC08a(DI), we obtain almost consistent results with those of other calculations. The distance $\tau_{\alpha-d}$ is significantly reduced in $^7\Lambda Li$ from 6Li. The reduction factor S_{E2} obtained with ESC08a(DI) agrees with the theoretical values of other calculations, and is in reasonable agreement with the experimental value within the error. In the ESC08a(DD) result, the size shrinkage is relatively small.

In Table VIII we list the results for $^9\Lambda Be$ with those of other calculations in Refs. [4, 10]. Also for $^9\Lambda Be$, the present calculation with ESC08a(DI) gives almost consistent results with those of Refs. [4, 10]. The significant shrinkage occurs in $^9\Lambda Be$ as seen in the smaller $\tau_{\alpha-\Lambda}$ value than that in 8Be.

C. Interpretation of enhancement factor

In order to take into account the core polarization in $^A Z$, we added the artificial interactions $\Delta H(\epsilon)$ to the Hamiltonian by slightly enhancing the central nuclear interactions. In the present cluster models, the perturbative interactions, $\Delta H(\epsilon) = \epsilon V_N^{(c)}$, act as slight enhancement of the inter-cluster potentials between inert clusters. It is consistent with the expectation from the glue-like role of a Λ particle. In a mean-field picture, this treatment corresponds to slight enhancement of the nuclear mean potentials $U_N^{(NN)}(r) \rightarrow U_N^{(NN)}(r) + \epsilon U_N^{(NN)}(r)$ originating in the NN interactions. In a self-consistent mean-field approach, nucleons in $^A Z$ feel the mean potentials $U_N^{(NN)}(r) + U_N^{(NN)}(r)$, where $U_N^{(NN)}(r)$ is the A-N-interaction-origin mean potentials for nucleons. In the case of $\rho_\Lambda(r) \sim \rho_N(r)/(A-1)$ that the Λ distribution
function is similar to the nuclear density distribution one, $U_N^{(AN)}(r)$ may be approximated to be

$$
\epsilon U_N^{(NN)}(r) \sim U_N^{(AN)}(r),
$$

(44)

which corresponds to the present treatment of the core polarization. In the present results in $A_{\Lambda}Z$ in the $6 < A < 14$ region, this condition is roughly satisfied as seen in the calculated Λ and nuclear densities as well as sizes $r_{\Lambda} \sim R_N$. Considering that $U_N^{(AN)}(r) \sim U_{\Lambda}(r)/(A - 1)$ in this condition, it leads to the relation,

$$
\epsilon U_N^{(NN)}(r) \sim U_N^{(AN)}(r) \sim \frac{1}{A - 1} U_{\Lambda}(r),
$$

(45)

$$
\epsilon \sim \frac{1}{A - 1} \frac{U_{\Lambda}(r)}{U_N^{(NN)}(r)}.
$$

(46)

It means that the enhancement factor ϵ can be proportional to $1/(A - 1)$. Figure 5 shows the $(A - 1)$-dependence of the optimized ϵ values, which are determined for each $A_{\Lambda}Z$ system to minimize the total energy. The ϵ values are approximately on the $1.2/(A - 1)$ line except for $A_{\Lambda}Be$, for which the mean-field picture may not work well because it is a dilute 2a-cluster system. The additional factor, 1.2, may come from various origins such as possible deviation from the relation $\rho_{\Lambda}(r) \sim \rho_N(r)/(A - 1)$, the Pauli blocking between nucleons (no blocking between Λ and a nucleon), the weaker Λ-N interactions than the N-N interactions, and so on.

The picture discussed here may support the present treatment of the core polarization at least in the light mass-number region. However, it may not obvious whether it is useful for heavier systems, in which the Λ particle is localized deeply inside the core nuclei and the condition $\rho_{\Lambda}(r) \sim \rho_N(r)/(A - 1)$ is no longer satisfied.

VI. SUMMARY AND OUTLOOK

We investigated structures of low-lying $(0s)_\Lambda$ states in p-shell Λ hypernuclei with microscopic cluster models. To describe structures of the ground and excited states of core nuclei, we applied the GCM of microscopic $\alpha + d$, 2α, and $2\alpha + d$ cluster models for 6Li, 8Be, and ^{10}B, respectively, and that of $2\alpha + t(h) + p_{3/2}$ and $3\alpha + p_{3/2}$ models with the cluster breaking for $^{11}B(C)$ and ^{12}C. The $0s$-orbit Λ particle in Λ hypernuclei is treated by the single S-wave channel calculation with the Λ-nucleus potentials, which are constructed by folding the effective Λ-N interactions with the nuclear density obtained by the microscopic cluster models. As a core polarization effect, the core size reduction is taken into account in a simple way.

For $A > 10$ systems, the core polarization, i.e., the nuclear size reduction by the Λ particle is small. The small change of the core size in the ground state of ^{13}C is consistent with prediction of other calculations. Moreover, the core polarization effect on energy is minor and regarded as a higher-order perturbation in the Λ binding except for $A < 10$ systems.

We discussed energy spectra of the ground and low-lying excited states. A particular attention is paid to excitation energy shift and its relation to nuclear size difference between the ground and excited states in each $A_{\Lambda}Z$ system. The present results show a clear correlation between the energy shift and the size difference. Namely, the larger size difference, the larger excitation energy shift. The calculation with ESC08a(DI) qualitatively describes the systematic trend of the available experimental data for the energy shift. The mechanism of this correlation is understood as the higher nuclear density gives the larger attraction, i.e., the deeper Λ-nucleus potential. In other words, the $0s$-orbit Λ particle can probe the inner density difference through the Λ-N interactions.

We also discussed the shrinkage properties of the $\alpha + d$ and 2α cluster structures in $^4\Lambda Li$ and $^9\Lambda Be$, respectively, and compare the present results with other calculations. The obtained results are similar to those of other calculations. For $^4\Lambda Li$, the results show the significant shrinkage, and reproduce the experimental $E2$ transition strengths in 6Li and $^7\Lambda Li$ without using effective charges. Also in $^9\Lambda Be$, the significant shrinkage occurs consistently with other calculations.

The effective Λ-N interactions used in the present calculation are the spin-independent central interactions of the ΛN interactions, which were derived from the Λ-N interactions of the one-boson-exchange model based on the G-matrix calculation for an infinite nuclear matter. We adopted two treatments of the k_f parameter in the ΛN interactions.

One is the density-independent (state-independent) ΛNG interactions and the other is the density-dependent (state-dependent) ΛNG interactions with the averaged density approximation. The present results indicate that the density-independent ESC08a interactions are rather favored in description of the systematic trend of experimental excitation energy shift in $A_{\Lambda}Z$ than the density-dependent ones. However, as for the quantitative reproduction, the density-independent calculation generally overestimates the experimental energy shift by a factor of $1.5-2$. It is likely that weak density dependence of the ΛNG interactions may be suitable for detailed description of the excitation energy shift in $A_{\Lambda}Z$. The density-dependent ΛNG interactions were constructed based on the G-matrix theory in an infinite nuclear matter and originally designed to reproduce systematics of Λ binding energy in $A_{\Lambda}Z$ in a wide mass-number region. The origin of the density dependence is the Pauli blocking effect on intermediate states in Λ-N scattering processes. The Pauli suppression of the effective Λ-N interactions is stronger in the higher nuclear density. However, it is not obvious that the density dependence of the ΛNG interactions can properly probe the density (or structure) difference between the ground and excited states in each $A_{\Lambda}Z$. The present k_f dependence in the ΛNG interactions is likely to be too strong to simulate the structure depen-
dence of the effective interactions in low-lying states in each system. The present framework is based on local density approximations in treatment of nuclear density matrices of the exchange folding potentials and that of the density dependence of the \(\Lambda - N \) interactions. The applicability of the present treatments to highly excited (particle-hole) states should be checked. In particular, the applicability to very dilute systems with much lower density than the saturation density should be carefully tested.

The present treatments of the \(\Lambda \) particle and the core polarization are very simple. However, one of the great advantages is that the method is handy and economical, and be able to be applied to general nuclear structure models without changing computational codes for the nuclear structure calculation. Moreover, the method can be applied to double \(\Lambda \) hypernuclei straightforwardly.

In the present work, we used the spin-independent central \(\Lambda - N \) interactions and ignored the \(\Lambda \) spin coupling with the core nuclear spin. Within the present framework, it is able to discuss only the leading properties of energy spectra. In order to discuss detailed energy spectra and spin dependence of the \(\Lambda - N \) interactions, some extensions of the framework are needed.

Acknowledgments

The author thanks to Dr. Motoba and Dr. Isaka for fruitful discussions. This work was inspired by the Kariuzawa workshop (June 2017). The author would like to give a huge thanks to Dr. Fujiwara for his continuous encouragement. The computational calculations of this work were performed by using the supercomputer in the Yukawa Institute for theoretical physics, Kyoto University. This work was supported by JSPS KAKENHI Grant Number 26400270.

[1] O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57, 564 (2006).
[2] H. Tamura, Prog. Theor. Phys. Suppl. 185, 315 (2010).
[3] H. Tamura et al., Nucl. Phys. A 914, 99 (2013).
[4] T. Motoba, H. Bandō and K. Ikeda, Prog. Theor. Phys. 70, 189 (1983).
[5] T. Motoba, H. Bandō, K. Ikeda and T. Yamada, Prog. Theor. Phys. Suppl. 81 42 (1985).
[6] T. I. Yamada, K. Ikeda, H. Bando and T. Motoba, Prog. Theor. Phys. 73, 397 (1985).
[7] Y. W. Yu, T. Motoba and H. Bandō, Prog. Theor. Phys. 76, 861 (1986).
[8] E. Hiyama, M. Kamimura, T. Motoba, T. Yamada and Y. Yamamoto, Phys. Rev. C 53, 2075 (1996).
[9] E. Hiyama, M. Kamimura, T. Motoba, T. Yamada and Y. Yamamoto, Prog. Theor. Phys. 97, 881 (1997).
[10] E. Hiyama, M. Kamimura, K. Miyazaki and T. Motoba, Phys. Rev. C 59, 2351 (1999).
[11] E. Hiyama, M. Kamimura, T. Motoba, T. Yamada and Y. Yamamoto, Phys. Rev. C 66, 024007 (2002).
[12] E. Hiyama, Y. Yamamoto, T. A. Rijken and T. Motoba, Phys. Rev. C 74, 054312 (2006).
[13] E. Hiyama, T. Motoba, T. A. Rijken and Y. Yamamoto, Prog. Theor. Phys. Suppl. 185, 1 (2010).
[14] E. Hiyama, M. Kamimura, T. Motoba, T. Yamada and Y. Yamamoto, Phys. Rev. Lett. 85, 270 (2000).
[15] E. Bravo, A. C. Fonseca and Y. Koike, Phys. Rev. C 66, 014001 (2002).
[16] V. M. Suslov, I. Filikhin and B. Vlachovic, J. Phys. G 30, 513 (2004).
[17] M. Shoeb and Sonika, Phys. Rev. C 79, 054321 (2009).
[18] Y. Zhang, E. Hiyama and Y. Yamamoto, Nucl. Phys. A 881, 288 (2012).
[19] Y. Funaki, T. Yamada, E. Hiyama, B. Zhou and K. Ikeda, PTEP 2014, no. 11, 113D01 (2014).
[20] Y. Funaki, M. Isaka, E. Hiyama, T. Yamada and K. Ikeda, arXiv:1705.07391 [nucl-th].
[21] A. Gal, J. M. Soper and R. H. Dalitz, Annals Phys. 63, 53 (1971).
[22] A. Gal, J. M. Soper and R. H. Dalitz, Annals Phys. 72, 445 (1972).
[23] A. Gal, J. M. Soper and R. H. Dalitz, Annals Phys. 113, 79 (1978).
[24] D. J. Millener, Nucl. Phys. A 804, 84 (2008).
[25] D. J. Millener, Nucl. Phys. A 835, 11 (2010).
[26] D. J. Millener, Nucl. Phys. A 881, 298 (2012).
[27] N. Guleria, S. K. Dhiman and R. Shyam, Nucl. Phys. A 886, 71 (2012).
[28] I. Vidana, A. Polls, A. Ramos and H.-J. Schulze, Phys. Rev. C 64, 044301 (2001).
[29] X. R. Zhou, H.-J. Schulze, H. Sagawa, C. X. Wu and E. G. Zhao, Phys. Rev. C 76, 034312 (2007).
[30] M. T. Win and K. Hagino, Phys. Rev. C 78, 054311 (2008).
[31] M. T. Win, K. Hagino and T. Koike, Phys. Rev. C 83, 014301 (2011).
[32] B. N. Lu, E. G. Zhao and S. G. Zhou, Phys. Rev. C 84, 044328 (2011).
[33] H. Mei, K. Hagino, J. M. Yao and T. Motoba, Phys. Rev. C 90, 064302 (2014).
[34] H. Mei, K. Hagino, J. M. Yao and T. Motoba, Phys. Rev. C 91, 064305 (2015).
[35] H. Mei, K. Hagino, J. M. Yao and T. Motoba, Phys. Rev. C 93, no. 4, 044307 (2016).
[36] H.-J. Schulze and E. Hiyama, Phys. Rev. C 90, no. 4, 047301 (2014).
[37] M. Isaka, M. Kimura, A. Dote and A. Ohnishi, Phys. Rev. C 83, 044323 (2011).
[38] M. Isaka and M. Kimura, Phys. Rev. C 92, no. 4, 044326 (2015).
[39] H. Homma, M. Isaka and M. Kimura, Phys. Rev. C 91, no. 1, 014314 (2015).
[40] M. Isaka, Y. Yamamoto and T. A. Rijken, Phys. Rev. C 94, no. 4, 044310 (2016).
[41] M. Isaka, Y. Yamamoto and T. A. Rijken, Phys. Rev. C 95, no. 4, 044308 (2017).
[42] R. Wirth, D. Gazda, P. Navrátil, A. Calci, J. Langhammer and R. Roth, Phys. Rev. Lett. 113, no. 19, 192502.
(2014).

[43] M. Isaka, M. Kimura, A. Dote and A. Ohnishi, Phys. Rev. C 83, 054304 (2011).

[44] T. Sakuda and H. Bandō, Prog. Theor. Phys. 78, 1317 (1987).

[45] T. Yamada, K. Ikeda, H. Bandō and T. Motoba, Prog. Theor. Phys. 71, 985 (1984).

[46] M. Isaka, H. Homma, M. Kimura, A. Dote and A. Ohnishi, Phys. Rev. C 85, 034303 (2012).

[47] B. N. Lu, E. Hiyama, H. Sagawa and S. G. Zhou, Phys. Rev. C 89, no. 4, 044307 (2014).

[48] K. Tanida et al., Phys. Rev. Lett. 86, 1982 (2001).

[49] D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).

[50] J. J. Griffin and J. A. Wheeler, Phys. Rev. 108, 311 (1957).

[51] D. M. Brink, Proc. Int. School of Physics Enrico Fermi, Course 36, Varenna, ed. C. Bloch (Academic Press, New York, 1966).

[52] S. Saito, Prog. Theor. Phys. 41, 705 (1969).

[53] Y. Fujiwara et al., Prog. Theor. Phys. Suppl. 68, 29 (1980).

[54] Y. Horinuchi, K. Ikeda, and H. Katō, Prog. Theor. Phys. Suppl. 192, 1 (2012).

[55] T. Suhara and Y. Kanada-En’yo, Phys. Rev. C 91, no. 2, 024315 (2015).

[56] Y. Yamamoto, T. Motoba and T. A. Rijken, Prog. Theor. Phys. Suppl. 185, 72 (2010).

[57] T. A. Rijken, M. M. Nagels and Y. Yamamoto, Prog. Theor. Phys. Suppl. 185, 14 (2010).

[58] J. W. Negele and D. Vautherin, Phys. Rev. C 11, 1031 (1975).

[59] M. Kamimura, Phys. Rev. A 38, 621 (1988).

[60] E. Hiyama, Y. Kino and M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003).

[61] A. B. Volkov, Nucl. Phys. 74, 33 (1965).

[62] N. Yamaguchi, T. Kasahara, S. Nagata and Y. Akaiishi, Prog. Theor. Phys. 62, 1018 (1979); R. Tamagaki, Prog. Theor. Phys. 39, 91 (1968).

[63] E. Uegaki, S. Okabe, Y. Abe and H. Tanaka, Prog. Theor. Phys. 57, 1262 (1977).

[64] E. Uegaki, Y. Abe, S. Okabe and H. Tanaka, Prog. Theor. Phys. 62, 1621 (1979).

[65] F. Ajzenberg-Selove, Nucl. Phys. A 506, 1 (1990).

[66] D. R. Tilley, C. M. Cheves, J. L. Godwin, G. M. Hale, H. M. Hofmann, J. H. Kelley, C. G. Sheu and H. R. Weller, Nucl. Phys. A 708, 3 (2002).

[67] D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J. Millener, J. E. Purcell, C. G. Sheu and H. R. Weller, Nucl. Phys. A 745, 155 (2004).

[68] J. H. Kelley, E. Kwan, J. E. Purcell, C. G. Sheu and H. R. Weller, Nucl. Phys. A 880, 88 (2012).

[69] D. H. Davis, Nucl. Phys. A 754, 3 (2005).

[70] M. Ukai et al. [E930’01 Collaboration], Phys. Rev. C 73, 012501 (2006).

[71] H. Akikawa et al., Phys. Rev. Lett. 88, 082501 (2002).

[72] Y. Miura et al., Nucl. Phys. A 754, 75 (2005).

[73] Y. Ma et al., Nucl. Phys. A 835, 422 (2010).

[74] S. Ajimura et al., Phys. Rev. Lett. 86, 4255 (2001).

[75] H. Kohri et al. [AGS-E929 Collaboration], Phys. Rev. C 65, 034607 (2002).

[76] L. Tang et al. [HKS Collaboration], Phys. Rev. C 90, no. 3, 034320 (2014).

[77] K. Hosomi et al., PTEP 2015, no. 8, 081D01 (2015).

[78] H. Morita and Y. Kanada-En’yo, PTEP 2016, no. 10, 103D02 (2016).

[79] H. Morita and Y. Kanada-En’yo, [arXiv:1702.02727] [nucl-th].

[80] M. Kamimura, Nucl. Phys. A351, 456 (1981).
FIG. 2: Energy spectra calculated with ESC08a(DI) and the experimental spectra. The experimental data for $A-1$Z are from Refs. [65, 68], and those for AZ are taken from Refs. [2, 48, 70–77]. The excitation energy of 6Be(2$^+$) is calculated by the RGM calculation. The experimental data for AZ are the spin-averaged values reduced from the excitation energies of spin partners, $J^\pi = I^\pi \pm \frac{1}{2}$, except for 12B(1/2$_1^-$, 3/2$_1^-$), 12C(1/2$_1^-$, 3/2$_1^-$), and 13C(2$^+$). For 12B(1/2$_1^-$), 12C(1/2$_1^-$), and 13C(2$^+$), the experimental values of $E_x(1^-)$, $E_x(2^-)$, and $E_x(3/2^+)$ are used, respectively. For 12B(3/2$_1^-$), the experimental values of $E_x(1^-)$ in 12B and $E_x(2^-)$ in 13C are averaged by assuming that the Coulomb shift in 12B(3/2$_1^-$)$-^{13}$C(3/2$_1^-$) is the same value as that in 12B(3/2$_1^-$)$-^{11}$C(3/2$_1^-$).
FIG. 3: (color online) (top) Excitation energy shift $\delta_{\lambda}(E_x)$ calculated with ESC08a(DI) and ESC08a(DD), and experimental values. The excitation energy shift without the core polarization calculated with ESC08a(DI) is also plotted by open circles. (middle) Nuclear size difference ($R_N - R_{N,gs}$) of excited states from that of the ground states obtained with ESC08a(DI) and ESC08a(DD). The result without the core polarization calculated with ESC08a(DI) is also shown by open circles. (bottom) The excitation energy shift plotted against the nuclear size difference obtained with ESC08a(DI) and ESC08a(DD). Experimental energy shift is plotted against the theoretical size difference calculated with ESC08a(DI).
FIG. 4: (color online) Λ density and nuclear density distributions in $^7\Lambda$Li, $^9\Lambda$Be, $^{11}\Lambda$B, $^{12}\Lambda$B, and $^{13}\Lambda$C calculated with ESC08a(D1). In the left panels, Λ density obtained in the calculation with and without the core polarization (w/o cp) are shown. In the middle and right panels, nuclear densities and r^2-weighted densities are shown, respectively. In the middle panels, Λ density ($\rho_\Lambda(r)$) multiplied by 4 in the ground state of $A_\Lambda Z$ is also shown for comparison.
FIG. 5: Enhancement factor ϵ in the ESC08a(DI) calculation. The factor is plotted as a function of $A - 1$.

\[y = \frac{1.2}{(A-1)} \]