Effect of hepatocyte apoptosis induced by TNF-α on acute severe hepatitis in mouse models

Guo Qing Zang, Xia Qiu Zhou, Hong Yu, Qing Xie, Guo Ming Zhao, Bin Wang, Qing Guo, Yue Qin Xiang and Dan Liao

Abstract

AIM To study the effect of hepatocyte apoptosis and necrosis induced by TNF-α on the pathogenesis of acute severe hepatitis (ASH).

METHODS The model of ASH was prepared in D-galactosamine (GalN) sensitized BALB/c mice by injection of either endotoxin (ET) or tumor necrosis factor-α (TNF-α). Morphological changes of apoptotic hepatocytes were studied by both light and electron microscope and in situ end labeling method (ISEL). Molecular biological changes of DNA ladder were observed by electrophoresis of extract from liver tissues. Biochemical changes were measured by alanine aminotransferase (ALT), aspartate transaminase; endotoxins; mice.

CONCLUSION TNF-α can cause liver damage by inducing hepatic apoptosis and necrosis in mice with endotoxemia.

INTRODUCTION

Apoptosis is one of the cell death forms, which is quite different from cell necrosis in morphology, biochemistry and biology. Clinical studies showed that ET (Endotoxin, ET) and tumor necrosis factor-α (TNF-α) elevated obviously in the sera of patients with severe hepatitis. Recent researches showed that hepatocyte apoptosis was closely related with pathogenesis of hepatitis especially that of ASH[1-11]. The present study deals with the effect of both apoptosis and necrosis induced by TNF-α on the pathogenesis in ASH, and their relationship.

MATERIAL AND METHODS

Reagents

Recombinant murine TNF-α and immunoglobulin (Ig) G1 fraction of anti-murine TNF-α were purchased from Pepro Tech EC LTD. Terminal-deoxynucleotidyl transferase (TdT) and Bio-11-dUTP Na salt were purchased from Dako LTD. Salmonella abortus equi endotoxin (ET) was purchased from Sigma Chemical Co. GalN was purchased from Chong Qing Medical University. Endogenous mouse TNF-α ELISA Kit was provided by Endogen Inc. Unless otherwise specified, all other reagents were analytical reagents.

Animal and experimental methods

One hundred and thirty specific pathogen-free male BALB/c mice (from Shanghai Second Medical university animal breeding house) were divided into 7 groups: 1. Control; 2. GalN; 3. ET; 4. TNF-α; 5. GalN/ET; 6. GalN/TNF-α; and 7. anti-TNF-α IgG1/GalN/ET.

Each group contained 20 mice except Group 7 which contained 10 mice. Both GalN (800mg/kg) and ET (2.4µg/kg) were injected intraperitoneally; Both TNF-α (1.0µg/kg) and anti-TNF-α IgG1 (100µg/mouse) were injected in tail vein. The control group received the same volume of normal saline.

Five mice were killed at 1.5, 3.5, 6, and 9 h respectively after injection. TNF-α, ALT, and AST were measured in the blood samples taken from the mouse heart. Tissue samples taken from liver were also prepared for morphological and molecular biological examinations.

The sections of liver tissue were stained with hematoxylin and eosin (HE), and ISEL[12] for detection of apoptotic liver cells were performed. DNA was extracted from fresh liver tissue for further analysis of DNA ladder.
RESULTS

Histological alterations of the liver in control, GalN, ET, and TNF-α groups

Hepatic lobular architecture was clear and intact without any abnormalities in the liver section of control group. Only mild swelling of hepatic cell was presented in GalN, ET and TNF-α groups. With the time prolonging from 1.5 h, 3.5 h, 6 h, to 9 h, the mild swelling become moderate degree. Neither apoptosis nor necrosis was present in HE and ISEL staining. No DNA ladder was found in any group mentioned above.

Histological alterations of the liver in GalN/ET group

No obvious liver cell alterations were present at 1.5h on the section of HE staining and ISEL staining failed to detect positive signals of apoptosis.

Mild swelling of liver cells on HE section and a few apoptotic cells on ISEL section were present at 3.5h (Figure 1A).

Obvious swelling of liver cells and lots of apoptotic cells were found at 6h and mild dotted necrosis was also observed. Strong apoptotic positive signals could be detected in the cell nuclei.

Nine hours after GalN/ET injection, enormous apoptotic liver cells and pieces of hepatic necrosis with leukocytes infiltration can be seen (Figure 1B).

These data demonstrate that apoptosis occurred as an early event during the development of hepatic failure. Compared with the ET model, the majority of changes occurred earlier in the TNF model, which agrees with the phenomena that ET act on hepatocytes by inducing TNF-α.

Histological alterations of the liver in GalN/TNF-α group

Morphological changes of the liver in this group were basically the same as those in GalN/ET group but severer at 1.5 h, 3.5 h, 6 h and 9 h (Figures 2A, 2B), 1.5 h, 3 h, 6 h and 9 h after administrating inducer, apoptosis positive rates of GalN/ET group were 0.0%, 0.2%, 1.21% and 3.14% respectively, while for the GalN/TNF-α group, were 0.2%, 0.5%, 2.57% and 3.19% respectively.

DNA fragment assay

DNA ladder was found at 6 h and 9 h after GalN/ET, GalN/TNF-α administration, but was not found at 1.5h and 3.5h after GalN/ET, GalN/TNF-α injection, and DNA ladder was not found in other groups (Figures 3A,3B).

Electron microscopic assay

Electron microscopic study showed the chromatin condensation of apoptotic cells and near the nuclear lining (Figure 4).

Blockage of liver damage induced by GalN/ET by pretreatment of mice with anti-TNF-α IgG1

In the GalN/ET group pretreated with anti-TNF-α IgG1, only mild swelling of liver cells could be seen on the HE staining. Neither apoptosis nor necrosis could be found on ISEL staining. No DNA ladder was present on electrophoresis of agarose gel (Figure 3A).

Time course of apoptosis and necrosis

We compared the time course of typical morphology of apoptosis (chromatin condensation, apoptotic bodies) with ALT and AST (as a parameter for necrosis) in each group (Table 1). ALT and AST remained normal at 3.5h after GalN/TNF-α challenge, at this time point, a small amount of apoptotic liver cells could be found. Apoptotic liver cells become obvious at 6h, ALT and AST were elevated mildly at the same time. This finding indicated that apoptosis was already developed while the liver cell membrane still remained intact 6 h after challenge, suggesting that apoptosis occurred earlier than necrosis.

The prominent increase of ALT and AST occurred at 9h, when a great number of necrotic liver cells were observed. Meanwhile, profuse apoptotic liver cells were also present even after the death of mice associated with ASH and electrophoresis of agarose gel still showed DNA ladder at the final stage.

Figure 1 Liver cells apoptosis in mice induced by GalN/ET. A 3.5 hours after GalN/ET, individual apoptotic cells are visible, apoptotic positive signal mainly locates in nucleus. ISEL×400 B 9 hours after GalN/ET, further increase of apoptotic liver cells and pieces of liver cell necrosis and bleeding with leukocytes infiltration appear. Apoptotic cells (a), apoptotic bodies (b), leukocytes (1) and necrosis (n). HE×400
DISCUSSION

ASH may be caused by viral infection and drug intoxication. It was believed that the large amount of liver cell death was necrosis due to associated immune damage mediated by dysfunction of host immune system and TNF-α may cause liver necrosis directly\(^{13,14}\). Recent studies have shown that besides necrosis, hepatic apoptosis induced by TNF-α plays an important role in the course of ASH\(^{1,15-27}\). Our study showed that only mild injury could be found by injecting ET or TNF-α alone. While the combination of GalN with either ET or TNF-α can cause ASH in mice.

Liver cells may synthesize the protecting protein after exposure to injury factors. The process needs the participation of intact cyto-metabolism and protein-synthesis mechanism. GalN may specifically deplete uridine nucleotides in liver cell and influence its metabolic course, leading to a hepatic transcriptional block and the suppression of

Table 1 Comparison of TNF-α, ALT and AST at corresponding time in different groups (\(n = 5, \bar{x} \pm s\))

	1 h	3 h	6 h	9 h
TNF	13.9±15.0	39.6±10.3	124.0±17.0	18.8±15.2
ALT	18.8±15.2	40.1±6.0	129.6±33.5	28.0±21.1
AST	10.4±16.2	40.8±12.8	118.4±40.1	45.2±35.7
	15.9±15.9	41.5±5.4	100.1±24.3	25.4±29.7
	20.0±31.1	46.8±4.2	135.4±62.4	47.3±9.0
	28.0±43.3	47.2±23.5	63.0±20.1	100.2±35.5
	50.8±51.3	52.4±23.0	194.3±62.4	58.2±30.0
	123.7±84.3	223.0±85.0	150.1±17.8	51.1±25.4
	147.3±103.9	230.1±82.9	127.3±70.1	119.5±98.4
	32.1±14.6	89.1±37.1	325.3±138.4	230.1±82.9
	33.7±18.0	46.0±13.4	108.6±36.0	268.3±380.8
	36.3±27.0	48.4±14.7	129.8±50.3	798.2±319.8

Comparing of results with controls at the corresponding time: \(p < 0.05\)
Comparing of each other group at the different time. TNF-α: \(p < 0.05\); ALT: \(p < 0.05\); AST: \(p < 0.05\).
TNF-α may induce apoptosis of liver cell which is transferred by hepatitis B virus or other virus[35-41], suggesting the cells infected by virus involved in TNF-α sensitivity.

The results of our study showed that TNF-α was mainly produced in the early stage of endotoxemia, and decreased obviously from 6h to 9h after challenge. TNF-α combined with TNF-α receptor on the membrane of liver cells through a series signal transmission activating caspase-3 and then inducing apoptosis, and TGF-β1 can also produce similar effect which can induce apoptosis[42-45], delayed treatment with the caspase 3-like protease inhibitor Z-VAD attenuated apoptosis by 81% to 88% and prevented liver cell necrosis[46]. At the same time TNF-α can activate nuclear transription factor-κκ (NF-κκκ) of hepatocytes[47], Kuppfer cells and endotheliocyte, which increases expression of ICAM-1, VCAM-1 and selectin, these inflammatory factors further induce the inflammatory injury of hepatocytes, and TNF-α also induce Shwartzman-like reaction in the liver[48]. Recent study demonstrated that mitochondria may be the centre of cell apoptosis, if mitochondrial structural alterations occur without functional failure, the cell dies by apoptosis. In contrast, if the injury is severe enough to lead to mitochondrial functional failure, the cell dies by necrosis[49,50].

In summary, our results showed that TNF-α plays an important role in the course of hepatic apoptosis and necrosis. The blockage of liver apoptotic signal transmission and caspase activation induced by TNF-α with Z-VAD, anti-ET antibody and anti-TNF monoclon antibody can improve prognosis of fulminant hepatic failure[2,42-46,51] and may prevent liver cell from apoptosis and necrosis and hence has an important significance in the prevention and treatment of ASH.

REFERENCES

1 Leist M, Gantner F, Bohlinger I, Ties G, Germann PG, Wendel A. Tumor necrosis factor induced hepatocyte apoptosis precedes liver failure in experimental murine shock models. Am J Pathol, 1995;146:1220-1234
2 Tsukidate K, Yamamoto K, Snyder JW, Farber JL. Microtubule antagonists activate programmed cell death (Apoptosis) in cultured rat hepatocytes. Am J Pathol, 1993;143:918-925
3 Ogawara I, Watanabe Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S. Lethal effect of the anti Fas antibody in mice. Jpn J Cancer Res, 2000;91:303-306
4 Ando K, Moriyama T, Guidotti LG, Wirth S, Schreiber RD, Schlicht H, Huang SN, Chisari FV. Mechanisms of class I restricted immunopathology-a transgenic mouse model of fulminant hepatitis. J Immunol, 1994;152:1418-1428
5 Tabawa YI, Sekikawa K, Ikwuya K. Suppression of concanavalin A-induced hepatic injury in IFN-γ mice, but not in TNF-γ/mice: role for IFN γ in activating apoptosis of hepatocytes. J Immunol, 1997;159:1418-1428
6 Guo LL, Guo Y, Zhao CA. Expressions of CD4/CD54 and Fas/Fasl, in chronic viral hepatitis. Shi Jie Huang Rou Xiaohou Zazhi, 1999;8:705-706
7 Okamoto T, Yamakata T, Yamamura KI, Hino O. Induction of Fas ligand and Fas antigen mRNA expressions in interferon-γ transgenic mouse liver. Jpn J Pathol, 1998;78:233-235
8 Bradham CA, Plumpé J, Mann MP, Brenner DA, Trautwein C. Mechanisms of hepatic toxicity. 1. TNF induced liver injury. Am J Physiol, 1998;275(3 pt1):G387-392
9 Rosenfeld HE, Prichard L, Shiorii N. Prevention of hepatic apoptosis and endotoxic lethality in RelA/TNFFR1 double mice. J Hepatol, 1999;31:1006-1005
10 Okamoto T, Nakano Y, Yamakawa T, Hara K, Yamamura KI, Hino O. Chronic hepatitis in interferon γ transgenic mice is associated with elevated CPP32 like activity and interleukin 1β converting enzyme activity suppression. Jpn J Pharmacol, 1999;79:289-294
11 Gantner F, Leist M, Lohse AW, Germann PG, Ties G. Concana valin A induced T cell mediated hepatic injury in mice.the role of tumor necrosis factor. Hepatology, 1995;21:190-197
12 Gavviti E, Sherman Y, Ben Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol, 1992;119:493-501
13 Muto Y, Nouri Aria KT, Meager A, Alexander GYM, Eddleston ALWF, Williams R. Enhanced tumour necrosis factor and interleukin 1 in fulminant hepatic failure. Lancet, 1988;2:72-74
14 Wang JH, Redmond HP, Watson RWG, Boucher Hayes D. Role of lipopolysaccharide and tumor necrosis factor-α in induction of hepato cyt necrosis. Am J Physiol, 1995;269(2 Pt 1):G297-304
15 Gonzalez Amor R, Garcia Monzon C, Garcia Buey L, Moreno Otero R, Alonso JL, Yuee G, Pipel JP, Lopez-Cabrera M, Fern ndez Ruiz E, Sanchez-Madrid F. Induction of tumor necrosis factor-α production by human hepatocytes in chronic viral hepatitis. J Exp Med, 1994;179:841-848
16 Ties G, Niehorster M, Wendel A. Leukocyte alterations do not account for hepatitis induced by endotoxin or TNF-α in galactosaminized mice. Biochem Pharmacol, 1990;40:1317-1322
17 ang QG, Yu H, Zhou XQ, Liao D, Xie Q, Wang B. TNF-α induced apoptosis and necrosis of mouse hepatocytes. Shi Jie Huaren Xiaohou Zazhi, 1998;20:303-306
18 Sekiyama KD, Yoshida M, Thomson AW. Circulating proinflammatory cytokines (IL-1β, TNF-α, and IL-6) and IL-1 receptor antagonist (IL-1 Ra) in fulminant hepatic failure and acute hepatitis. Clin Exp Immunol, 1994;98 :71-77
19 Fan X, Zhang Z. Increased tumour necrosis factor α production by neutrophils in patients with hepatitis B. J Clin Pathol, 1994;47:616-618
20 Zhang QG, Zhou XQ, Yu H, Xie Q, Wang B, Zhao GM, Guo Q, Xiang YQ, Liao D. The roles of TNF-α induced hepatocyte apoptosis in the development of fulminant liver failure.Zhonghua Xiaohou Zazhi, 2000;20:163-166
21 Nakao A, Taki S, Yasui M, Kimura Y, Nonami T, Harada A, Takagi H. The fate of intravenously injected endotoxin in normal rats and in rats with liver failure. Hepatology, 1994;19:1251-1256
22 van Leeuwen PAM, Hong RW, Rounds JD, Wilmore ML, Wiegmann K, Ohashi PS, Krnke M, Mak TW. Hepatic failure and coma after liver resection is reversed by manipulation of gut contents: the role of endotoxicity. Surgery, 1991;110:169-175
23 Kusters S, Gantner F, Kunstle G, Ties G. Interferon gamma plays a critical role in T cell dependent liver injury in mice initiated by concanavalan A. Gastroenterology, 1996;111:462-471
24 Gantner F, Leist M, Jilg S, Germann PG, Freudenberg MA, Ties G. Tumor necrosis factor induced hepatic DNA fragmentation as an early marker of T cell dependent liver injury in mice. Gastroenterology, 1996;111:156-166
25 Pfeffer K, Matsuyama T, Kundig TM, Wakeham A, Kishihara K, Shahinian A, Wiegmann K, Ohashi PS, Krnke M, Mak TW. Mice deficient for the 55kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell, 1997;73:457-467
26 Leist M, Gantner F, Jilg S, Wendel A. Activation of the 55kd tumor necrosis factor receptor is necessary and sufficient for TNF-induced liver failure, hepatocyte apoptosis,and nitrite release. J Immunol, 1995;154:1307-1316
27 Chossay JG, Essani NA, Dunn CJ, Jaeschke H. Neutrophil margination and extravasation in sinusoids and venules of liver during endotoxic induced injury. Am J Physiol, 1997;272(5 pt1):G1195-1200
28 Bahrami S, Redi H, Leichtfried G, Yu Y, Schlag G. Similar cytokine but different coagulation reactions to lipopolysaccharide injection in D galactosamine mice sensitized versus nonsensitized rats. Infect Immun, 1994;62:99-105
29 Seybert HW, Schmidt-gayk H, Hackenthal E. Toxicity, clearance and distribution of endotoxin in mice as influenced by actinomycin D, cycloheximide,tx-aminant and lead acetate. Toxico, 1972;10:491-495
30 Galanos C, Freudenberg MA, Reutter W. Galactosamine induced
sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci USA, 1979;76:5939-5943
31 Wallach D, Holtmann H, Engelmann H, Nophar Y. Sensitization and desensitization to lethal effects of tumor necrosis factor and IL 1. J Immunol, 1988;140:2994-2999
32 Lehmann V, Freudenberg MA, Galanos C. Lethal toxicity of lipopolysaccharide and tumor necrosis factor in normal and D. galactosamine treated mice. J Exp Med, 1987;165:657-663
33 Leist M, Gantner F, Rohlinger I, Germann PG, Tiegs G, Wendel A. Murine hepatocyte apoptosis induced in vitro and in vivo by TNF α requires transcriptional arrest. J Immunol, 1994;153:1778-1788
34 Tiegs G, Wolter M, Wendel A. Tumor necrosis factor is a terminal mediator in galactosamine/endotoxin induced hepatitis in mice. Biochem Pharmacol, 1989;38:627-631
35 Jiang YG, Li QF, Wang YM, Gu CH. Fas/FasL expression and hepatocyte apoptosis on liver tissues in tupaia with HDV/HBV infection. Shijie Huaren Xiaohua Zazhi, 2000;8:406-409
36 Guilhot S, Miller T, Cornman G, Isom HC. Apoptosis induced by tumor necrosis factor-α in rat hepatocyte cell lines expressing hepatitis B virus. Am J Pathol, 1996;148:801-814
37 Gilles PN, Guerrette DL, Ulevitch RJ, Schreiber RD, Chisari FV. HBsAg retention sensitizes the hepatocyte to injury by physiological concentrations of interferon-γ. Hepatology, 1992;16:653-663
38 Jiang YG, Li QF, Mao Q, Wang YM, Gu CH, Zhang J. ICE expression in hepatocytes in tupaia with HDV/HBV infection. Shijie Huaren Xiaohua Zazhi, 2000;8:296-298
39 Gut JP, Schmitt S, Bingen A, Anton M, Kirn A. Probable role of endogen ous endotoxins in hepatocyte cytolyis during murine hepatitis caused by frog virus S. J Infect Dis, 1984;149:621-629
40 Mori W, Aoki N, Shiga J. Acute hepatic cell necrosis experimentally produced by viral agents in rabbits. Am J Pathol, 1981;103:31-38
41 Bian ZQ, Wang WY, Qin YZ, Xiao RM, Wang GZ, Qin HY. Experimental study of tumor necrosis factor induced acute liver necrosis in duckling infected with DHBV. Zhonghua Chuanranbing Zazhi, 1992;10:88-92
42 Okamoto T, Kobayashi T, Tsubuiki N, Hara K. Induction of CPP32 like a civity and inhibition of interleukin 1β converting enzyme activity in the liver of a mouse concanavalin A induced hepatitis model. Jpn J Pharmacol, 1998;77:257-259
43 Rodriguez I, Matsuura K, Ody C, Nagata S, Vassalli P. Systemic injection of a tripeptide inhibits the intracellular activation of CPP32 like proteases in vivo and fully protects mice against Fas mediated fulminant liver destruction and death. J Exp Med, 1996;184:2067-2072
44 Inayat Hussain SH, Couet C, Cohen GM, Cain K. Processing/activation of CPP32 like proteases is involved in transforming growth factor β-1 induced apoptosis in rat hepatocytes. Hepatology, 1997;25:1516-1526
45 Cain K, Inayat Hussain SH, Couet C, Cohen GM. A cleavage site directed inhibitor of interleukin 1β converting enzyme like proteases inhibits apoptosis in primary cultures of rat hepatocytes. Biochem J, 1996;314:27-32
46 Jaeschke H, Fisher MA, Lawson JA, Simmons CA, Farhood A, Jones DA. Activation of caspase 3(CPP32) like proteases is essential for TNF-α-induced hepatic parenchymal cell apoptosis and neutrophil mediated necrosis in a murine endotoxin shock model. J Immunol, 1998;160:3480-3486
47 Essani NA, McGuire GM, Manning AM, Jaeschke H. Endotoxin induced activation of the nuclear transcription factor κB and expression of E selectin m essenger RNA in hepatocytes, kupffer cells, and endothelial cells in vivo. J Immunol, 1998;156:2956-2963
48 Movat HZ, Burrowes CE, Cybulsky MI, Dinarello CA. Acute inflammation and a shwartzman like reaction induced by interleukin 1 and tumor necrosis factor. Am J Pathol, 1987;129:463-476
49 Green DR, Red JC. Mitochondria and apoptosis. Science, 1998;281:1309-1312
50 Botla R, Spivey JR, Aguilar H, Bronk SF, Gores GJ. Ursodeoxycholate (UDCA) inhibits the mitochondrial membrane permeability transition induced by glycochenodeoxycholate: a mechanism of UDCA cytoprotection. J Pharmacol Exp Ther, 1995;272:930-938
51 Mantouhas CA, Schmidt GA, Kemp R, Wood LDH. Fulminant hepatic failure treated with anti endotoxin antibody. Crit Care Med, 1992;20:1617-1619

Edited by You DY
Verified by Ma JY