DIVISIBILITY AND DISTRIBUTION OF 5-REGULAR PARTITIONS

QI-YANG ZHENG

Abstract. In this paper we study \(b_5(n) \), the 5-regular partitions of \(n \). Using the
theory of modular forms, we prove several theorems on the divisibility and distribution
properties of \(b_5(n) \) modulo prime \(m \geq 5 \). In particular, we prove that there are
infinitely many Ramanujan-type congruences modulo prime \(m \geq 5 \).

1. Introduction and statement of results

1.1. Introduction. In number theory, we usually denote \(p(n) \) as the number of the
partitions of \(n \). Ramanujan found the three remarkable congruences as follows:
\[
p(5n + 4) \equiv 0 \pmod{5}, \\
p(7n + 5) \equiv 0 \pmod{7}, \\
p(11n + 6) \equiv 0 \pmod{11}.
\]
Such congruences are called Ramanujan-type congruences.

For \(k \in \mathbb{Z}_{>1} \), we define the \(k \)-regular partitions \(b_k(n) \) by
\[
\sum_{n=0}^{\infty} b_k(n)q^n = \prod_{n=1}^{\infty} \frac{1 - q^{kn}}{1 - q^n}.
\]
We study the arithmetical properties of \(b_5(n) \) in this paper. Hirschhorn and Sellers\,[3] prove that there are infinitely many Ramanujan-type congruences of \(b_5(n) \) modulo 2. Gordon and Ono\,[2] prove that
\[
b_5(5n + 4) \equiv 0 \pmod{5}.
\]

Up to now, Ramanujan-type congruence of \(b_5(n) \) modulo prime \(m \geq 7 \) has not
been found. Our main result is that for each prime \(m \geq 5 \), there exist infinitely many
Ramanujan-type congruences modulo \(m \). For example, we obtain
\[
b_5(2023n + 99) \equiv 0 \pmod{7}
\]
satisfied for each nonnegative integer \(n \). We will give more examples in Section 5.

1.2. Statement of results.

Theorem 1.1. Let \(m \geq 5 \) be a prime. Then a positive density of primes \(l \) have the
property that
\[
b_5 \left(\frac{mln - 1}{6} \right) \equiv 0 \pmod{m}
\]
satisfied for each integer \(n \) with \((n, l) = 1 \).

The theorem immediately implies that there are infinitely many Ramanujan-type congruences of \(b_5(n) \) modulo \(m \). Moreover, together with the Chinese Remainder Theorem, we obtain that if \(m \) is a squarefree integer coprime to 3, then there are infinitely many Ramanujan-type congruences of \(b_5(n) \) modulo \(m \).

Surprisingly, we do not know whether there is Ramanujan-type congruence of \(b_5(n) \) modulo 3.

Theorem 1.1 also implies that
\[
\#\{0 \leq n \leq X \mid b_5(n) \equiv 0 \pmod{m}\} \gg X,
\]
where \(m \geq 5 \) is a prime. For other residue classes \(i \not\equiv 0 \pmod{m} \), we also provide a useful criterion to obtain similar result.

Theorem 1.2. Let \(m \geq 5 \) be a prime. If there exists one \(k \in \mathbb{Z} \) such that
\[
b_5\left(mk + \frac{m^2 - 1}{6}\right) \equiv e \not\equiv 0 \pmod{m},
\]
then for each \(i = 1, 2, \cdots, m - 1 \), we have
\[
\#\{0 \leq n \leq X \mid b_5(n) \equiv i \pmod{m}\} \gg \frac{X}{\log X}.
\]
Moreover, if such \(k \) exists, then \(k < 10(m - 1) \).

The congruence of Gordon and Ono show that our criterion is inapplicable for the case \(m = 5 \).

2. **Notation and definitions**

Our proof is depending on the theory of modular forms. First recall that the Dedekind’s eta function is defined by:
\[
\eta(z) = q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1 - q^n),
\]
where \(q = e^{2\pi iz} \). It is well-known that \(\eta(z) \) is holomorphic and never vanishes in the upper half plane.

Now we introduce the \(U \) operator. If \(j \) is a positive integer, we define \(U(j) \) as follows:
\[
(2.1) \quad \left(\sum_{n=0}^{\infty} a(n)q^n \right) | U(j) = \sum_{n=0}^{\infty} a(jn)q^n.
\]
Sometimes the following expression of $U(j)$ operator is more convenient for computation.

$$\left(\sum_{n=0}^{\infty} a(n)q^n \right) \mid U(j) = \sum_{n=0}^{\infty} a(n)q^{\frac{n^2}{j}}. \quad (2.2)$$

We define $M_k(\Gamma_0(N), \chi)_m$ as the reduction mod m of the q-expansions of modular forms in $M_k(\Gamma_0(N), \chi)$ with integral coefficients. Moreover, we define $S_k(\Gamma_0(N), \chi)_m$ in a similar way.

3. Proof of Theorem 1.1

Before proving Theorem 1.1, we list some useful results. The following theorem is due to Gordon and Hughes\[1\].

Theorem 3.1 (B. Gordon, K. Hughes). Let $f(z) = \prod_{\delta \mid N} \eta(\delta z)^{r_\delta}$ be an η-quotient for which

$$\sum_{\delta \mid N} \delta r_\delta \equiv 0 \pmod{24},$$

$$\sum_{\delta \mid N} \frac{N}{\delta} r_\delta \equiv 0 \pmod{24},$$

$$k := \frac{1}{2} \sum_{\delta \mid N} r_\delta \in \mathbb{Z},$$

then $f(z)$ satisfies

$$f \left(\frac{az + b}{cz + d} \right) = \chi(d)(cz + d)^k f(z)$$

for each $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$. Here χ is a Dirichlet character modulo N and

$$\chi(n) = \left(\frac{-1}{n} \right) \prod_{\delta \mid N} \delta r_\delta,$$

for each positive odd number n.

Though Theorem 3.1 ensures that $f(z)$ is weakly modular, we need to show that the order at the cusps of $\Gamma_0(N)$ are nonnegative(resp. positive) to obtain that $f(z)$ is a modular(resp. cusp) form. The following theorem of Martin\[4, 6\] provides the explicit expression of the order at cusps.

Theorem 3.2 (Y. Martin). Let c, d, N be positive integers with $d \mid N$ and $(c, d) = 1$ and $f(z)$ is an η-quotient satisfying the conditions of Theorem 3.1, then the order of vanishing of $f(z)$ at the cusp $\frac{c}{d}$ is

$$\frac{N}{24} \sum_{\delta \mid N} r_\delta(d^2, \delta^2) \frac{1}{\delta(d^2, N)}.$$
The following theorem due to Serre[7] show that cusp forms have very nice arithmetic properties.

Theorem 3.3 (J.-P. Serre). The set of primes \(l \equiv -1 \pmod{Nm} \) such that
\[
f \mid T(l) \equiv 0 \pmod{m}
\]
for each \(f(z) \in S_k(\Gamma_0(N), \psi)_m \) has positive density, where \(T(l) \) denotes the usual Hecke operator acting on \(S_k(\Gamma_0(N), \psi) \).

Proof of Theorem 1.1. For a fixed prime \(m \), let
\[
f(m; z) := \frac{\eta(5z)}{\eta(z)} \eta^a(5mz) \eta^b(mz),
\]
where \(m' := (m \mod 6) \) and \(a := 5 - m', \ b := m' - 1 \). It is easy to show that \(f(m; z) \equiv \eta^{am+1}(5z)\eta^{bm-1}(z) \pmod{m} \) and
\[
\eta^{am+1}(5z)\eta^{bm-1}(z) \in S_{2m}(\Gamma_0(5), \chi_5),
\]
where \(\chi_5(n) = \left(\frac{1}{5} \right) \). On the other hand,
\[
f(m; z) = \sum_{n=0}^{\infty} b_5(n) q^{\frac{24n + m(5n + b) + 4}{24}} \prod_{n=1}^{\infty} (1 - q^{5mn})^a (1 - q^{mn})^b.
\]
Acting the \(U(m) \) operator on \(f(z) \) and since \(U(m) \equiv T(m) \pmod{m} \), obtaining
\[
\sum_{n=0}^{\infty} b_5(n) q^{\frac{24n + m(5n + b) + 4}{24}} | U(m) \equiv \frac{\eta^{am+1}(5z)\eta^{bm-1}(z)}{\prod_{n=1}^{\infty} (1 - q^{5mn})^a (1 - q^{bn})^b} \pmod{m},
\]
where \(T(m) \) denotes usual Hecke operator acting on \(S_{2m}(\Gamma_0(5), \chi_5) \). As for the LHS of (3.3), we have
\[
\sum_{n=0}^{\infty} b_5(n) q^{\frac{24n + m(5n + b) + 4}{24}} | U(m) = \sum_{\substack{n=0 \\ m \mid 6n + 1}}^{\infty} b_5(n) q^{\frac{24n + m(5n + b) + 4}{24}}.
\]
Using Theorem 3.1 and 3.2, one can verify that \(\eta^4(5z)\eta^4(z) \in S_4(\Gamma_0(5)) \) and have the order of 1 at all cusps. Thus we can write \(\eta^{am+1}(5z)\eta^{bm-1}(z) | T(m) = \eta^4(5z)\eta^4(z)g(m; z) \), where \(g(m; z) \in M_{2m-4}(\Gamma_0(5), \chi_5)_m \). Hence
\[
\sum_{\substack{n=0 \\ m \mid 6n + 1}}^{\infty} b_5(n) q^{\frac{6n + 1}{m}} \equiv \eta^{4-a}(5z)\eta^{4-b}(z)g(m; z) \pmod{m}.
\]
Replacing \(q \) by \(q^6 \) shows that
\[
\sum_{\substack{n=0 \\ m \mid 6n + 1}}^{\infty} b_5(n) q^{\frac{6n + 1}{m}} \equiv \eta^{4-a}(30z)\eta^{4-b}(6z)g(m; 6z) \pmod{m}.
\]
Since $b_5(n)$ vanishes for non-integer n, so
\begin{equation}
\sum_{n=0}^{\infty} b_5 \left(\frac{mn-1}{6} \right) q^n \equiv \eta^{4-a}(30z) \eta^{4-b}(6z) g(m; 6z) \pmod{m}.
\end{equation}

Moreover, one can verify that $\eta^{4-a}(30z) \eta^{4-b}(6z) \in S_2(\Gamma_0(180))$. Let
\begin{equation}
\sum_{n=0}^{\infty} a(n) q^n = \eta^{4-a}(30z) \eta^{4-b}(6z) g(m; 6z) \in S_{2m-2}(\Gamma_0(180), \chi_5).
\end{equation}

By Theorem 3.3, the set of primes l such that
\begin{equation}
\sum_{n=0}^{\infty} a(n) q^n \mid T(l) \equiv 0 \pmod{m}
\end{equation}
has positive density, where $T(l)$ denotes Hecke operator acting on $S_2(\Gamma_0(180), \chi_5)$.

Moreover, by the theory of Hecke operator, we have
\begin{equation}
\sum_{n=0}^{\infty} a(n) q^n \mid T(l) = \sum_{n=0}^{\infty} \left(a(ln) + \left(\frac{l}{5} \right) l^{2m-3} a \left(\frac{n}{l} \right) \right) q^n.
\end{equation}

Since $a(n)$ vanishes for non-integer n, $a(n/l) = 0$ when $(n, l) = 1$. Thus $a(ln) \equiv 0 \pmod{m}$ when $(n, l) = 1$. Recalling that $a(n) \equiv b_5 \left(\frac{mn-1}{6} \right) \pmod{m}$, we obtain
\begin{equation}
b_5 \left(\frac{mln-1}{6} \right) \equiv 0 \pmod{m}
\end{equation}
satisfied for each integer n with $(n, l) = 1$.

\begin{flushright}
\square
\end{flushright}

4. Proof of Theorem 1.2

First we recall another important theorem of Serre\cite{7}.

\begin{theorem}[J.-P. Serre] The set of primes $l \equiv 1 \pmod{Nm}$ such that
\begin{equation}
a(nl^r) \equiv (r+1)a(n) \pmod{m}
\end{equation}
for each $f(z) = \sum_{n=0}^{\infty} a(n) q^n \in S_k(\Gamma_0(N), \psi)_m$ has positive density, where r is a positive integer and n is coprime to l.
\end{theorem}

Here we introduce a theorem of Sturm, which provide a useful criterion to get some congruences via finite computation. Variants of Sturm’s Theorem are stated in \cite{5, 6, 8}.

\begin{theorem}[J. Sturm] Suppose $f(z) = \sum_{n=0}^{\infty} a(n) q^n \in M_k(\Gamma_0(N), \chi)_m$ such that
\begin{equation}
a(n) \equiv 0 \pmod{m}
\end{equation}
for all $n \leq \frac{kN}{12} \prod_{p | N} \left(1 + \frac{k}{p} \right)$. Then $a(n) \equiv 0 \pmod{m}$ for all $n \in \mathbb{Z}$.
\end{theorem}
Proof of Theorem 1.2. Let $m \geq 5$ be a prime. Suppose $k \in \mathbb{Z}$ such that

$$b_5 \left(mk + \frac{m^2 - 1}{6} \right) \equiv e \not\equiv 0 \pmod{m},$$

let $s = 6k + m$. Since $b_5(n)$ vanishes for negative n, we have $mk + (m^2 - 1)/6 \geq 0$. Hence $s = 6k + m > 0$ and

$$b_5 \left(\frac{ms - 1}{6} \right) \equiv b_5 \left(mk + \frac{m^2 - 1}{6} \right) \equiv e \pmod{m}.$$

For a fix prime $m \geq 5$, let $S(m)$ denote the set of primes l such that

$$a(nl^r) \equiv (r + 1)a(n) \pmod{m} \quad \text{for each} \quad f(z) = \sum_{n=0}^{\infty} a(n)q^n \in S_{2m-2}(\Gamma_0(180),\chi_5)_m,$$

where r is a positive integer and $(n,l) = 1$. Recalling that

$$\sum_{n=0}^{\infty} b_5 \left(\frac{mn - 1}{6} \right) q^n \in S_{2m-2}(\Gamma_0(180),\chi_5)_m,$$

since $S(m)$ is infinite by Theorem 4.1, choose $l \in S(m)$ such that $l > s$, then

$$b_5 \left(\frac{ml^rs - 1}{6} \right) \equiv (r + 1) b_5 \left(\frac{ms - 1}{6} \right) \equiv (r + 1)e \pmod{m}.$$

Now we fix l, choose $\rho \in S(m)$ such that $\rho > l$, then

$$(4.1) \quad b_5 \left(\frac{m\rho n - 1}{6} \right) \equiv 2b_5 \left(\frac{mn - 1}{6} \right) \pmod{m}$$

satisfied for each n coprime to ρ. For each $i = 1, 2, \ldots, m - 1$, let $r_i \equiv i(2e)^{-1} - 1 \pmod{m}$ and $r_i > 0$. Let $n = l^r_s$ in (4.1), we obtain

$$b_5 \left(\frac{ml^rs - 1}{6} \right) \equiv 2b_5 \left(\frac{ml^r_i s - 1}{6} \right) \equiv 2(r_i + 1)e \equiv i \pmod{m}.$$

Since the variables except ρ are fixed, it suffices to prove that the estimate of the choices of $\rho \gg X/\log X$ and which is derived from Theorem 4.1 and the Prime Number Theorem.

The upper bound $10(m - 1)$ of k is obtained by Sturmb’s Theorem.

□

5. Examples of Ramanujan-type congruences

Using Sturm’s Theorem, we compute that

$$\sum_{n=0}^{\infty} b_5 \left(\frac{mn - 1}{6} \right) q^n \mid T(l) \equiv 0 \pmod{m}$$

satisfied for $(m,l) = (7,17), (11,41), (13,16519)$. Some elementary computation yields that

Examples.

$$b_5(2023n + 99) \equiv 0 \pmod{7},$$

$$b_5(18491n + 75) \equiv 0 \pmod{11},$$

$$b_5(3547405693n + 35791) \equiv 0 \pmod{13}.$$
Moreover, the congruence $b_5(5n + 4) \equiv 0 \pmod{5}$ implies that

$$\sum_{n=0}^{\infty} b_5 \left(\frac{5n - 1}{6} \right) q^n \mid T(l) \equiv 0 \pmod{5}$$

satisfied for each prime l.

6. OPEN PROBLEMS

We have the following conjecture of the existence of Ramanujan-type congruence.

Conjecture 6.1. Let m be a positive integers, then there are infinitely many Ramanujan-type congruences modulo m.

We also have the following conjecture analogous to Newman’s Conjecture for the usual partition function $p(n)$.

Conjecture 6.2. Let m be a positive integers, then for each integer i, there are infinitely many n for which

$$b_5(n) \equiv i \pmod{m}.$$

Remark. By Theorem 1.2, we verify that Conjecture 6.2 is true for prime $7 \leq m \leq 40$.

REFERENCES

[1] Gordon B, Hughes K. Multiplicative properties of eta-products II[J]. Contemporary Mathematics, 1993, 143: 415-415.
[2] Gordon B, Ono K. Divisibility of certain partition functions by powers of primes[J]. The Ramanujan Journal, 1997, 1(1): 25-34.
[3] Hirschhorn M D, Sellers J A. Elementary proofs of parity results for 5-regular partitions[J]. Bulletin of the Australian Mathematical Society, 2010, 81(1): 58-63.
[4] Martin Y. Multiplicative η-quotients[J]. Transactions of the American Mathematical Society, 1996, 348(12): 4825-4856.
[5] Murty M R. Congruences between modular forms[J]. London Mathematical Society Lecture Note Series, 1997: 309-320.
[6] Ono K. The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series[M]. American Mathematical Soc., 2004.
[7] Serre J P. Divisibilité de certaines fonctions arithmétiques[J]. Séminaire Delange-Pisot-Poitou. Théorie des nombres, 1974, 16(1): 1-28.
[8] Sturm J. On the congruence of modular forms[M]//Number theory. Springer, Berlin, Heidelberg, 1987: 275-280.

DEPARTMENT OF MATHEMATICS, SUN YAT-SEN UNIVERSITY(ZHUHAI CAMPUS), ZHUHAI

Email address: zhengqy29@mail2.sysu.edu.cn