Abstract. The aim of the present study was to uncover potential prognostic microRNA (miRNA) markers in head and neck squamous cell carcinoma (HNSCC). miRNA expression profile and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. Survival analysis was conducted by Kaplan-Meier method. Then, candidate prognostic miRNAs were screened via Cox proportional hazards regression analysis. Furthermore, target genes of miRNAs were predicted, and their interactions and functions were then analyzed. A total of 15 miRNAs were discovered to be significantly related to overall survival. Among them, miR-1251, miR-618 and miR-328 with p<0.05 were potentially significant prognostic factors of HNSCC. In the protein-protein interaction (PPI) network, the target gene of miR-328, MAX, interacted with multiple genes. The target gene of miR-618, E2F1, interacted with genes such as MAX, SMAD3 and IGF1. Furthermore, the target genes of miR-618 (e.g. E2F1 and SMAD3), and the target genes of miR-328 (e.g. MAX) were significantly enriched in the functions of transcriptional regulation. The target gene of miR-1251, IGF1, was associated with functions such as signal transduction. The above miRNAs (miR-1251, miR-618 and miR-328) may be potential prognostic markers in HNSCC.

Introduction

Head and neck squamous cell carcinoma (HNSCC) accounts for the major proportion of head and neck cancers and is the sixth most common non-skin cancer worldwide (1). The high mortality rate of HNSCC results from poor prognosis and lack of reliable prognostic signatures. Thus, it is urgent to reveal more reliable prognostic markers to achieve better outcomes for HNSCC patients.

Identification of prognostic microRNA candidates for head and neck squamous cell carcinoma

LIAN HUI, HUA WU, NING YANG, XING GUO and XUEJUN JANG

Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China

Received December 11, 2015; Accepted January 11, 2016

DOI: 10.3892/or.2016.4698

MicroRNAs (miRNAs) are small non-protein-coding RNAs of ~22 nucleotides, and they play roles in various biological functions, such as cell growth, differentiation and the development of disease (2). Dysregulation of miRNAs is also closely related to the development, diagnosis and prognosis of many types of cancers including HNSCC (3). For instance, miR-218 inhibits cell migration and invasion by suppressing the expression of laminin-332 in HNSCC (4). By suppressing invadopodia activity, miR-375 impairs the tumor invasion of HNSCC and is implicated in the poor outcome of HNSCC (5,6). Moreover, poorer overall survival of HNSCC has been found to be linked with the promoter methylation of miR-137 (7). In addition, overexpression of miR-205 is able to mediate HNSCC growth and E2F1 signaling (8). Although more and more studies have focused on uncovering miRNAs that are involved in HNSCC, few miRNAs have been identified as potential prognostic markers for HNSCC.

In the present study, to identify potential prognostic miRNA markers for HNSCC, miRNA expression profile and clinical data of 397 HNSCC cases were obtained from The Cancer Genome Atlas (TCGA) database. Survival and Cox regression analyses were performed to identify the miRNAs that were potentially associated with the survival of HNSCC patients. Furthermore, target genes of those miRNAs were predicted and the functions of the target genes were analyzed. The results may provide new information for the further study of HNSCC, and the identified miRNAs may be used as prognostic markers for HNSCC, which may be useful to improve future clinical outcome of HNSCC.

Materials and methods

Data acquisition. The miRNA expression profiling and clinical data of HNSCC were obtained from the TCGA database (http://cancergenome.nih.gov/, the deadline of data downloading: July 20, 2014). The miRNA expression profiling data included a total of 513 cases, and they were produced by two platforms: BCGSC_IlluminaGA_miRNASeq (37 cases) and BCGSC_IlluminaHiSeq_miRNASeq (476 cases). The clinical data included 418 HNSCC cases. After data filtering, only cases with both miRNA expression profile and clinical survival data (397 cases) were retained for further analysis.

Survival analysis. The average expression value of each miRNA in the 397 cases was calculated, and the mean value...
was set as the critical value. Then, the cases were divided into two groups according to the miRNA expression values higher or lower than the critical value. Furthermore, survival estimates were calculated by the Kaplan-Meier (KM) method and the log-rank test based on a survival package in R (9). Only the miRNAs with \(p < 0.05 \) were considered significant. The miRNAs that had a significant association with survival time were selected for subsequent analysis.

Cox regression analysis. The miRNAs having a significant impact on survival time and clinical survival data received Cox proportional hazards regression analysis (10) based on KMsurv package in R (11). Patients with a high risk score were considered to have poor survival. The miRNAs with \(p < 0.05 \) were chosen for further analysis.

Target gene prediction. The target genes of the miRNAs with \(p < 0.05 \) in the Cox regression analysis were obtained based on the databases of miRecords (http://c1.accurascience.com/miRecords/) (12) and MiRWalk (http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/) (13). Only the regulatory relationships recorded at least in 3 of the databases including miRanda (14), MirTarget2 (15), PicTar (16), PITA (17) and TargetScan (18) were selected for further analysis.

Construction of protein-protein interaction (PPI) network for target genes. PPIs between target genes of the miRNAs were analyzed via the online database Search Tool for the Retrieval of Interacting Genes (STRING, http://string-db.org/) (19). Then, target gene pairs with a combined score \(> 0.4 \) were chosen to construct PPI networks, which were visualized using the Cytoscape software (http://www.cytoscape.org/) (20). In the network, a node represents a protein (gene), and lines represent the interactions of the proteins. The ‘degree’ of each node is equal to the number of nodes that interact with this node. The larger the degree is, the closer the connections with other nodes are.

Functional analyses of target genes. The Database for Annotation, Visualization and Integrated Discovery (DAVID; https://david.ncifcrf.gov/) was applied to investigate the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the target genes (21). \(p < 0.05 \) was chosen as the cut-off criterion. To further investigate the function of the target genes, the GenCLip tool (22) was utilized to perform functional clustering for genes in the PPI network based on literature mining, and the cut-off criteria were \(p < 1E-04 \) and \(\text{hit} \geq 9 \). Additionally, pathway enrichment analysis was performed for the genes in the PPI network, based on the Gene Set Enrichment Analysis (GSEA) database (http://software.broadinstitute.org/gsea/index.jsp). \(p < 0.05 \) was set as the cut-off criterion.

Results

Survival analysis. In total, expression values of 1,046 miRNAs were obtained from the TCGA database. Among the miRNAs, a total of 15 miRNAs were discovered to be significantly

Factor	\(\beta \)	HR	P-value	Lower 95%	Upper 95%
Gender	0.070	1.072	0.66	0.7878	1.459
Smoke	0.194	1.214	0.19	0.9094	1.620
Alcohol	0.089	1.093	0.55	0.8171	1.462
Clinical_M	0.576	1.778	0.14	0.8218	3.848
Clinical_N	-0.049	0.952	0.32	0.8648	1.049
Clinical_T	0.023	1.023	0.76	0.8829	1.186
Clinical_stage	0.064	1.066	0.62	0.8269	1.374
hsa-mir-643	-0.123	0.884	0.39	0.6676	1.171
hsa-mir-126	0.0000418	1.000	0.44	0.9999	1.000
hsa-mir-1251	0.293	1.341	0.01	1.0897	1.649
hsa-mir-521-2	-0.001	0.999	1.00	0.2949	3.386
hsa-mir-618	0.204	1.226	0.01	1.0558	1.423
hsa-mir-502	0.0135	1.014	0.43	0.9799	1.048
hsa-mir-328	0.0147	1.015	0.02	1.0024	1.027
hsa-mir-193a	-0.001	0.999	0.05	0.9982	1.000
hsa-mir-1301	-0.016	0.984	0.22	0.9595	1.010
hsa-mir-1231	0.775	2.170	0.09	0.8921	5.278
hsa-mir-548y	0.275	1.317	0.06	0.9906	1.750
hsa-mir-519c	0.068	1.070	0.60	0.8274	1.385

\(\beta \), regression coefficient; HR, hazard ratio. Lower 95% and upper 95% represent the lower limit and the upper limit of the confidence interval, respectively.
related to survival time. Low expression of the 15 miRNAs was correlated with a higher survival rate based on the Kaplan-Meier survival analysis. Among the 15 miRNAs, miR-4292, miR-3685 and miR-1302.3 with no expression values in most of the samples were deleted and 12 miRNAs were finally screened.

Cox proportional hazards analyses. Cox proportional hazards analysis was performed with the clinical data [demographic characteristics, tumor-node-metastasis (TNM) classification, history of drinking and smoking] and the 12 miRNAs. Compared with the other clinical factors, miR-1251, miR-618 and miR-328 with p<0.05 were significantly associated with risk factors of HNSCC (Table I).

Analysis of PPI network of target genes. A total of 245 genes were discovered to be regulated by miR-1251, miR-618 and miR-328. miR-328 modulated most of the genes, such as MAX. miR-618 regulated genes such as E2F1 and SMAD3. miR-1251 targeted 6 genes such as IGF1 (Fig. 1).

To further analyze the interactions of the target genes, an interaction network of the target gene was further constructed based on the STRING database. The PPI network was composed of 97 nodes and 112 lines (Fig. 2). Several genes had strong interactions with the other genes. For example, MAX strongly interacted with 8 genes (e.g. E2F1); E2F1 interacted with MAX, SMAD3 and E2F1.

Functional analysis of target genes. To investigate the functions of the three miRNAs that were found to be potentially associated with risk factors of HNSCC, GO functional and KEGG pathway enrichment analyses of the target genes were performed. The target genes of hsa-mir-328 were mainly enriched in the GO terms of positive regulation of transcription (e.g. IL5 and FOXA2) and transcription activator activity (e.g. FOXA2 and MAX), as well as the pathways in cancer
HuI et al.: PROGNOSTIC miRNAs IN HNSCC

(e.g. MAX and SLC2A1) (Table II). Meanwhile, the target genes of hsa-mir-618 were mainly enriched in the GO terms of the negative regulation of transcription from the RNA polymerase II promoter (e.g. E2F1 and ID2) and transcription repressor activity (e.g. E2F1 and ID2), as well as the TGF-β signaling pathway (e.g. ID2 and SMAD3) (Table III). There were no significant GO and pathway terms enriched by the target genes of hsa-mir-1251.

Furthermore, to further reveal the functions of 97 genes in the PPI interaction network, functional clustering and pathway enrichment analysis were performed. According to the functional clustering, 19 clusters were enriched. A set of genes (e.g.

Figure 2. The protein-protein interaction network of target genes of miR-1251, miR-618 and miR-328. Nodes represent target genes; lines represent interactions; the thickness of the line is proportional to the combined score.
Category	Term	Count	P-value	Target genes
GOTERM_BP_FAT	GO:0045941-positive regulation of transcription	20	5.51E-06	ESRA, IL5, FOXA2, SOX11, ARID1B, NPA54, SIX4, FOXO4, FOXP3, TCF7L2, NRP1, CITED2, PRDM7, HAND2, EBF3, NEUROD1, HOXB9, PBX2, SERTAD2, ZNF423
GOTERM_BP_FAT	GO:0045935-positive regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	21	6.43E-06	ESRA, IL5, FOXA2, SOX11, ARID1B, NPA54, SIX4, FOXO4, FOXP3, TCF7L2, NRP1, CITED2, PRDM7, HAND2, EBF3, NEUROD1, HOXB9, HOX9, PBX2, SERTAD2, ZNF423
GOTERM_BP_FAT	GO:0010628-positive regulation of gene expression	20	8.43E-06	ESRA, IL5, FOXA2, SOX11, ARID1B, NPA54, SIX4, FOXO4, FOXP3, TCF7L2, NRP1, CITED2, PRDM7, HAND2, EBF3, NEUROD1, HOXB9, PBX2, SERTAD2, ZNF423
GOTERM_BP_FAT	GO:0051173-positive regulation of nitrogen compound metabolic process	21	1.02E-05	ESRA, IL5, FOXA2, SOX11, ARID1B, NPA54, SIX4, FOXO4, FOXP3, TCF7L2, NRP1, CITED2, PRDM7, HAND2, EBF3, NEUROD1, HOXB9, PBX2, SERTAD2, ZNF423
GOTERM_BP_FAT	GO:0010557-positive regulation of macromolecule biosynthetic process	21	1.28E-05	ESRA, IL5, FOXA2, SOX11, ARID1B, NPA54, SIX4, FOXO4, FOXP3, TCF7L2, NRP1, CITED2, PRDM7, HAND2, EBF3, NEUROD1, HOXB9, PBX2, SERTAD2, ZNF423
GOTERM_CC_FAT	GO:0005829-cytosol	22	0.01828695	ARL6IP1, FGD1, ARHGEF3, WDTC1, DIAP2HL, NR3C1, FOXO4, ACSS2, TCF7L2, CAPRIN1, PLC1A1, TIAM2, SNRPB, SPTA, UROC1, PLCB1, CRK, CLINT1, TRIM39, PIP2, AGPAT1, EDARADD
GOTERM_CC_FAT	GO:0031981-nuclear lumen	22	0.042046874	DNMT3A, UBEZ2, SOX11, ADNP, TLE1, NR3C1, NPA54, ARID1B, ACSS2, TCF7L2, NRP1, CITED2, HAND2, ANX11, PHF15, DDB2, SNRPB, DHX3, H2AFX, DNAJB1, HIST1H4D, PBX2, TSEN15
GOTERM_CC_FAT	GO:0000785-chromatin	6	0.04651322	DNMT3A, ARID1B, MECP2, H2AFX, HIST1H4D, CITED2
GOTERM_MF_FAT	GO:0016563-transcription activator activity	14	5.97E-04	FOXA2, NPA54, ARID1B, FOXP3, FOXO4, NRP1, CITED2, MAX, HAND2, NXX3-1, NEUROD1, HOXB9, ZNF423, SERTAD2
GOTERM_MF_FAT	GO:0030528-transcription regulator activity	31	9.24E-04	FOXA2, CNOT2, NR3C1, FOXO4, TCF7L2, CITED2, HIC1, MAX, HAND2, NXX3-1, SERTAD2, ZNF423, ESRA, SOX11, ADNP, RUNX1T1, MECP2, TLE1, ARID1B, EN2, NPA54, SIX4, FOXP3, NRP1, DLX3, EBF3, ZRANB2, NEUROD1, NEUROD4, HOXB9, PBX2
GOTERM_MF_FAT	GO:0008134-transcription factor binding	15	0.001574619	YWHAZ, MECP2, PIM1, TLE1, ARID1B, FOXP3, FOXO4, TCF7L2, NRP1, CITED2, MAX, HAND2, NXX3-1, NEUROD1, SERTAD2
GOTERM_MF_FAT	GO:0003700-transcription factor activity	22	0.002276973	ESRA, FOXA2, SOX11, ADNP, RUNX1T1, NR3C1, EN2, SIX4, FOXO4, FOXP3, TCF7L2, HIC1, CITED2, DLX3, MAX, HAND2, ZRANB2, NXX3-1, NEUROD1, HOXB9, PBX2, ZNF423
Table II. Continued.

Term Count	P-value	Target genes
39	0.006490896	NR3C1, FOXO4, LEMD3, HIC1, CTED2, MAX, HANP2, ZNF697, NX3-1, H2AFX, HIST1H4D, ZNF423, DNMT3A, ESCO1, ARID1B, ADNP, MECP2, MAX, RASSF1, SLC2A1, RUNX1T1, NKX3-1, RALA, CRK, TCF7L2, TGFB2

The GO terms listed in this Table are the top 5 ones with a lower p-value in BP and MF, as well as the significant ones in CC, respectively. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular component; MF, molecular function.

Discussion

HNSCC is a common type of non-skin cancer worldwide (1). In the present study, using the miRNA expression profile and clinical data of 397 cases in the TCGA database, miR-1251, miR-618 and miR-328 were screened out to be significantly associated with risk factors for HNSCC, based on the survival analysis and Cox regression analysis. A set of target genes of these three miRNAs were significantly enriched in a series of GO functions and pathways. For example, targets of miR-618, E2F1 and SMAD3, were significantly enriched in functions concerning regulation of transcription, and SMAD3 was also markedly enriched in the TGF-β signaling pathway. These two genes interacted with each other in the PPI network.

E2F1 encodes an E2F transcription factor, which mediates cell cycle and functions as a tumor-suppressor protein (23). Overexpression of E2F1 *in vitro* and *in vivo* suppresses HNSCC cell growth through induction of apoptosis (24). Additionally, single nucleotide polymorphisms (SNPs) of E2F1 are highly correlated with the risk of HNSCC (25). Moreover, as a transcriptional modulator and signal transducer, SMAD3 mediates multiple signaling pathways and plays a role in the regulation of carcinogenesis (26). In the present study, SMAD3 was predicted to interact with E2F1, which has been reported in a previous study (27). In HNSCC, SMAD3 is inactivated, which is associated with higher overall survival of patients (28). In the present study, SMAD3 was markedly enriched in the TGF-β signaling pathway. The association of SMAD3 and TGF-β signaling has been reported in numerous studies (29-31). A previous study reported that overexpression of death-associated protein kinase-related apoptosis-inducing kinase 1 (DRAK1) binds to Smad3, and then inhibits TGF-β1 tumor suppressor activity in HNSCC (32). Additionally, SNPs in miR-618 are implicated in cancer risk (33). miR-618 has been discovered to be progressively expressed in esophageal adenocarcinoma (34). There is no evidence that miR-618 is associated with HNSCC risk or survival rate. Taken together, miR-618 may play a crucial role in the prognosis of HNSCC by regulating the genes E2F1 and SMAD3.

Furthermore, in the PPI network, the target gene of miR-328, MAX, interacted with multiple genes, such as E2F1. MAX was significantly enriched in the function of transcription activator activity and the pathways in cancer. MYC associated factor X (MAX) encodes a transcription factor belonging to the helix-loop-helix leucine zipper (bHLHZ) family (35). It is able to form a homodimer and heterodimer with MYC, which is an oncprotein correlated with cell proliferation, differentiation and apoptosis (35). There is no evidence to prove the association of MAX with HNSCC. However, overexpression of c-myc has been reported to be associated with the poor prognosis of HNSCC (36). Furthermore, c-myc promotes elevated levels of glutaminolysis and glutamic acid, which marker aggressive
Table III. The enriched GO and pathway terms for target genes of hsa-mir-618.

Category	Term	Count	P-value	Target genes
GOTERM_BP_FAT	GO:0000122-negative regulation of transcription from RNA polymerase II promoter	7	9.04E-06	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1
GOTERM_BP_FAT	GO:0045892-negative regulation of transcription, DNA-dependent	7	4.69E-05	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1
GOTERM_BP_FAT	GO:0051253-negative regulation of RNA metabolic process	7	5.15E-05	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1
GOTERM_BP_FAT	GO:0006355-regulation of transcription, DNA-dependent	7	1.91E-04	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1
GOTERM_BP_FAT	GO:0000122-negative regulation of transcription from RNA polymerase II promoter	7	9.04E-06	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1
GOTERM_BP_FAT	GO:0045892-negative regulation of transcription, DNA-dependent	7	4.69E-05	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1
GOTERM_BP_FAT	GO:0051253-negative regulation of RNA metabolic process	7	5.15E-05	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1
GOTERM_BP_FAT	GO:0006355-regulation of transcription, DNA-dependent	7	1.91E-04	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1
GOTERM_BP_FAT	GO:0000122-negative regulation of transcription from RNA polymerase II promoter	7	9.04E-06	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1
GOTERM_BP_FAT	GO:0045892-negative regulation of transcription, DNA-dependent	7	4.69E-05	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1
GOTERM_BP_FAT	GO:0051253-negative regulation of RNA metabolic process	7	5.15E-05	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1
GOTERM_BP_FAT	GO:0006355-regulation of transcription, DNA-dependent	7	1.91E-04	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1
GOTERM_BP_FAT	GO:0000122-negative regulation of transcription from RNA polymerase II promoter	7	9.04E-06	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1
GOTERM_BP_FAT	GO:0045892-negative regulation of transcription, DNA-dependent	7	4.69E-05	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1
GOTERM_BP_FAT	GO:0051253-negative regulation of RNA metabolic process	7	5.15E-05	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1
GOTERM_BP_FAT	GO:0006355-regulation of transcription, DNA-dependent	7	1.91E-04	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1
GOTERM_BP_FAT	GO:0000122-negative regulation of transcription from RNA polymerase II promoter	7	9.04E-06	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1
GOTERM_BP_FAT	GO:0045892-negative regulation of transcription, DNA-dependent	7	4.69E-05	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1
GOTERM_BP_FAT	GO:0051253-negative regulation of RNA metabolic process	7	5.15E-05	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1
GOTERM_BP_FAT	GO:0006355-regulation of transcription, DNA-dependent	7	1.91E-04	E2F1, ID2, KLF12, MECP2, SMAD3, POU4F2, NCOR1

The GO terms listed in this Table are the top 5 ones with a lower p-value in BP, CC and MF, respectively. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular component; MF, molecular function.
Figure 3. Functional clustering of target genes. Horizontal axis represents target genes; vertical axis represents the terms of function. The color of green represents that genes are related to the functional term, and the color of black represents that genes are not related to the functional term.

Table IV. Enriched pathways of the target genes in the protein-protein interaction network.

Cluster	Pathway	Count	P-value	Genes
1	KEGG_Pathways in cancer	11	3.74E-06	CRK, E2F1, IGF1, MAX, RALA, RASSF1, RUNX1T1, SLC2A1, SMAD3, TCF7L2, TGFβ2
2	KEGG_Chronic myeloid leukemia	4	0.003836	CRK, E2F1, SMAD3, TGFβ2
2	KEGG_Renal cell carcinoma	3	0.023754	CRK, SLC2A1, TGFβ2
2	KEGG_Cell cycle	5	0.000997	E2F1, SMAD3, STAG1, TGFβ2, YWHAZ
2	BIOCARTA_G1 pathway	3	0.001847	E2F1, SMAD3, TGFβ2
2	KEGG_Pancreatic cancer	4	0.003295	E2F1, RALA, SMAD3, TGFβ2
2	KEGG_Colorectal cancer	3	0.017246	SMAD3, TCF7L2, TGFβ2
2	KEGG_TGFβ signaling pathway	3	0.039070	ID2, SMAD3, TGFβ2
3	KEGG_Acute myeloid leukemia	3	0.013764	PIM1, RUNX1T1, TCF7L2
4	BIOCARTA_PPARA pathway	3	0.014425	CITED2, NCO1, NRIP1
5	KEGG_Wnt signaling pathway	5	0.005182	LRP6, PLCB1, SFRP1, SMAD3, TCF7L2
5	Wnt_Signaling	3	0.043830	LRP6, SFRP1, TLE1
6	REACTOME_Clathrin derived vesicle budding	3	0.016514	CLINT1, CLTA, SNAP23
6	REACTOME_Membrane trafficking	3	0.031420	CLINT1, CLTA, SNAP23
7	ST_Integrin signaling pathway	3	0.031420	CRK, ITGA5, RALA
8	KEGG_Hypertrophic cardiomyopathy HCM	3	0.036795	IGF1, ITGA5, TGFβ2
8	KEGG_Dilated cardiomyopathy	3	0.045063	IGF1, ITGA5, TGFβ2
9	KEGG_Prostate cancer	3	0.043830	E2F1, IGF1, TCF7L2

KEGG, Kyoto Encyclopedia of Genes and Genomes.
tumorigenesis in HNSCC (37). Additionally, miR-328 has been confirmed to be highly expressed in salinomycin-treated HNSCC cells (38). Additionally, the expression level of miR-328 was found to be significantly higher in early-stage non-small cell lung cancer (NSCLC), and shows good diagnostic accuracy in NSCLC patients (39). These results indicate an important role of miR-328 in cancer. Therefore, miR-328 may play a pivotal role in the progression of HNSCC via targeting MAX, and it may be associated with the survival time of HNSCC patients.

In addition, the target gene of miR-1251, IGF1, also interacted with E2F1 in the PPI network, and it was enriched in multiple function clusters, such as cell death and signal transduction. Insulin-like growth factor I (IGF1) is involved in regulating cell growth and development (40), and the activation of multiple signaling pathways in head and neck cancer (41). Previous studies have demonstrated that IGF1 is able to stimulate the expression of vascular endothelial growth factor, which is correlated with increased progression and poor prognosis of HNSCC (42,43). Moreover, miR-1251 has been discovered to be downregulated in nasopharyngeal carcinoma (44). There is no study to report the association of miR-1251 with HNSCC. Therefore, miR-1251 may play a crucial role in the progression of HNSCC via mediating the expression of IGF1, and it may be closely associated with the survival of HNSCC patients.

Despite the aforementioned results, there were several limitations in the present study. The predicted results should be confirmed by laboratory data. In our further studies, the expression levels of miR-1251, miR-618 and miR-328, as well as the regulatory relationships of them and their target genes, will be validated in a large scale of patients with HNSCC.

In conclusion, miR-1251, miR-618 and miR-328 were predicted to be associated with the survival time of HNSCC patients. They may play pivotal roles in the progression of HNSCC via a set of genes associated with transcriptional regulation or signal transduction, such as MAX, E2F1, SMAD3 and IGF1. The three miRNAs were considered as novel prognostic markers in HNSCC. These findings contribute to our further experimental study, and may provide new information for the estimation of the prognosis of HNSCC.

Acknowledgements

The present study was supported by the Natural Science Foundation of Liaoning Province (no. 201202287).

References

1. Stranks N, Eglolf AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C, McKenna A, et al: The mutational landscape of head and neck squamous cell carcinoma. Science 333: 1157-1160, 2011.
2. Krol J, Loedige I and Filipowicz W: The widespread regulation of HNSCC patients. They may play pivotal roles in the progression of HNSCC via mediating the expression of IGF1, and it may be closely associated with the survival of HNSCC patients.

In conclusion, miR-1251, miR-618 and miR-328 were predicted to be associated with the survival time of HNSCC patients. They may play pivotal roles in the progression of HNSCC via a set of genes associated with transcriptional regulation or signal transduction, such as MAX, E2F1, SMAD3 and IGF1. The three miRNAs were considered as novel prognostic markers in HNSCC. These findings contribute to our further experimental study, and may provide new information for the estimation of the prognosis of HNSCC.

Acknowledgements

The present study was supported by the Natural Science Foundation of Liaoning Province (no. 201202287).

References

1. Stranks N, Eglolf AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C, McKenna A, et al: The mutational landscape of head and neck squamous cell carcinoma. Science 333: 1157-1160, 2011.
2. Krol J, Loedige I and Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11: 495-505, 2009.
3. Thomas M, Lieberman J and Lal A: Desperately seeking miRNA targets. Nat Struct Mol Biol 17: 1169-1174, 2010.
4. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacManemin P, da Piedade I, Gunsalus KC, Stoffel M, et al: Combinatorial microRNA target predictions. Nat Genet 37: 495-500, 2005.
5. Thomas MA, Prystowsky MB, Childs G and Segall JE: MicroRNA-375 regulates tumor invasion and metastasis phenotypes and is associated with poor outcome in head and neck squamous cell carcinoma. Cancer Res 73 (Suppl 8): 3100-3100, 2013.
6. Timsit JF, Alberti C and Chevret S: Cox proportional hazards regression analysis. Rev Mal Respir 22: 1058-1064, 2005 (In French).
7. Huang ZX, Tian HY, Hu ZF, Zhou YB, Zhao J and Yao KT: MicroRNA profiling reveals miR-205 upregulation is associated with head and neck squamous cell carcinoma and modulates E2F1 signaling. Cancer Res 73 (Suppl 8): 3100-3100, 2013.
8. Therneau TM: Modeling survival data. In: Extending the Cox Model. Springer, 2000. http://dx.doi.org/10.1007/978-1-4757-3294-8.
9. Dweep H, Sticht C, Pandey P and Gretz N: miWalk - database: Prediction of possible miRNA binding sites by ‘walking’ the genes of three genomes. J Biomed Inform 44: 839-847, 2011.
10. Ferguson N, Datta S and Brock G: msSurv, an R package for nonparametric estimation of multistate models. J Stat Software 50: 1-24, 2012.
11. Piriyapongsa J, Bootchai C, Ngamphiph C and Tongsima S: miRWalk: An integrated database of microRNA target sites within human promoter sequences. PLoS One 7: e33888, 2012.
12. Dweep H, Sticht C, Pandey P and Gretz N: miWalk - database: Prediction of possible miRNA binding sites by ‘walking’ the genes of three genomes. J Biomed Inform 44: 839-847, 2011.
13. Enright AJ, John B, Gaul U, Tuschl T, Sander C and Marks DS: microRNA targets in Drosophila, Genome Biol 5: R1-R1, 2003.
14. Wang X and El Naqa IM: Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 24: 325-332, 2008.
15. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacManemin P, da Piedade I, Gunsalus KC, Stoffel M, et al: Combinatorial microRNA target predictions. Nat Genet 37: 495-500, 2005.
16. Thomas M, Lieberman J and Lal A: Desperately seeking miRNA targets. Nat Struct Mol Biol 17: 1169-1174, 2010.
17. Huang ZX, Tian HY, Hu ZF, Zhou YB, Zhao J and Yao KT: GenCiLiP: A software program for clustering gene lists by literature profiling and constructing gene co-occurrence networks related to custom keywords. BMC Bioinformatics 9: 308, 2008.
18. Ting JH: Novel roles of cell cycle regulator E2F2 in the CNS: Implications for synaptic damage in HIV-associated neurocognitive disorders. University of Pennsylvania, Scholarly Commons: Publicly Accessible Penn Dissertations, Paper 1471. http://repository.upenn.edu/edissertations/1471.
19. Liu TJ, Wang M, Breau RL, Henderson Y, El-Naggar AK, Steck KD, Sicard MW and Clayman GL: Apoptosis induction by E2F-1 via adenoviral-mediated gene transfer results in growth suppression of head and neck squamous cell carcinoma cell lines. Cancer Gene Ther 6: 163-171, 1999.
26. Murata M, Yoshida K and Matsuzaki K: Early chronic inflammation and subsequent somatic mutations shift phospho-Smad3 signaling from tumor-suppression to fibro-carcinogenesis in human chronic liver diseases. In: Hepatocellular Carcinoma-Future Outlook. Kaseb A (Ed.). InTech 2013; DOI: 10.5772/56739. Available from: http://www.intechopen.com/books/hepatocellular-carcinoma-future-outlook/early-chronic-inflammation-and-subsequent-somatic-mutations-shift-phospho-smad3-signaling-from-tumor.

27. Kowalik TF: Smad about E2F. TGFbeta repression of c-Myc via a Smad3/E2F/p107 complex. Mol Cell 10: 7-8, 2002.

28. Xie W, Asinser S, Barades S, Sreekada G, Shah R and Reiss M: Alterations of Smad expression and activation in defining 2 subtypes of human head and neck squamous cell carcinoma. Head Neck 35: 76-85, 2013.

29. Derynck R and Zhang YE: Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425: 577-584, 2003.

30. Massagué J and Wotton D: Transcriptional control by the TGF-β/Smad signaling system. EMBO J 19: 1745-1754, 2000.

31. Heldin CH, Miyazono K and ten Dijke P: TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390: 465-471, 1997.

32. Park Y, Kim W, Lee J, Park J, Cho JK, Pang K, Lee J, Kim D, Park SW, Yang KM et al: Cyttoplasmic DRAK1 overexpressed in head and neck cancers inhibits TGF-β1 tumor suppressor activity by binding to Smad3 to interrupt its complex formation with Smad4. Oncogene 34: 5037-5045, 2015.

33. Pelletier C and Weidhaas JB: MicroRNA binding site polymorphisms as biomarkers of cancer risk. Expert Rev Mol Diagn 10: 817-829, 2010.

34. Wu X, Ajani JA, Gu J, Chang DW, Tan W, Hildebrandt MA, Huang M, Wang KK and Hawk E: MicroRNA expression signatures during malignant progression from Barrett's esophagus to esophageal adenocarcinoma. Cancer Prev Res 6: 196-205, 2013.

35. Blackwood EM and Eisenman RN: Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251: 1211-1217, 1991.

36. Field JK, Spanidios DA, Stell PM, Vaughan ED, Evan GI and Moore JP: Elevated expression of the c-myc oncoprotein correlates with poor prognosis in head and neck squamous cell carcinoma. Oncogene 4: 1463-1468, 1989.

37. Banda AD, Cortes MB, Kamarajan P, Rajendiran T, Chinnaiyan AM and Kapila YL: Glutamic acid and glutaminolysis mark aggressive tumorigenesis in head and neck squamous cell carcinoma. Cancer Res 75 (Suppl 15): 1192, 2015.

38. Kuo SZ, Blair KJ, Rahimy E, Kiang A, Abhold E, Fan JB, Wang-Rodriguez J, Altuna X and Ongekeko WM: Salinomycin induces cell death and differentiation in head and neck squamous cell carcinoma stem cells despite activation of epithelial-mesenchymal transition and Akt. BMC Cancer 12: 556, 2012.

39. Ulivi P, Foschi G, Mengozzi M, Scarpi E, Silvestrini R, Amadori D and Zoli W: Peripheral blood miR-328 expression as a potential biomarker for the early diagnosis of NSCLC. Int J Mol Sci 14: 10332-10342, 2013.

40. Woods KA, Camacho-Hübner C, Savage MO and Clark AJ: Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med 335: 1363-1367, 1996.

41. Rosenzweig SA and Holmes CO: Insulin-like growth factor-1 receptors in head and neck cancer. In: Molecular Determinants of Head and Neck Cancer. Springer, pp113-130, 2014.

42. Slomiany MG, Black LA, Kibbey MM, Day TA and Rosenzweig SA: IGF-1 induced vascular endothelial growth factor secretion in head and neck squamous cell carcinoma. Biochem Biophys Res Commun 342: 851-856, 2006.

43. Jameson MJ, Beckler AD, Taniguchi LE, Allak A, Vanwagner LB, Lee NG, Thomsen WC, Hubbard MA and Thomas CY: Activation of the insulin-like growth factor-1 receptor induces resistance to epidermal growth factor receptor antagonism in head and neck squamous carcinoma cells. Mol Cancer Ther 10: 2124-2134, 2011.

44. Flieskatt JL, Rinaldi G, Feng Y, Levine PH, Easley S, Martinez E, Hashmi S, Sadeghi N, Brindley PJ, Bethony JM, et al: Methods and matrices: Approaches to identifying miRNAs for nasopharyngeal carcinoma. J Transl Med 12: 3, 2014.