Abstract

Hybrid Probabilistic Programs (HPPs) are logic programs that allow the programmer to explicitly encode his knowledge of the dependencies between events being described in the program. In this paper, we classify HPPs into three classes called HPP_1, HPP_2, and HPP_r, $r \geq 3$. For these classes, we provide three types of results for HPPs. First, we develop algorithms to compute the set of all ground consequences of an HPP. Then we provide algorithms and complexity results for the problems of entailment ("Given an HPP P and a query Q as input, is Q a logical consequence of P?") and consistency ("Given an HPP P as input, is P consistent?"). Our results provide a fine characterization of when polynomial algorithms exist for the above problems, and when these problems become intractable.

1 Introduction

Computing the probability of a complex event from the probability of the primitive events constituting it depends upon the dependencies (if any) known to exist between the events being composed. For example, consider two events e_1, e_2. The probability, $P(e_1 \land e_2)$ of the occurrence of both events is 0 if the events are mutually exclusive. However, if the events are independent, then $P(e_1 \land e_2) = P(e_1) \times P(e_2)$. If we are ignorant of the relationship between these two events, then, as stated by Boole[1], the best we can say about $P(e_1 \land e_2)$ is that it lies in the interval $[\max(0, P(e_1) + P(e_2) - 1), \min(P(e_1), P(e_2))]$.

In short, computing the probability of a complex event depends fundamentally upon our knowledge about the dependences between the events involved. In [2] we proposed a language called Hybrid Probabilistic (Logic) Programs (or HPPs, for short), that extended logic programs to deal with diverse types of probabilistic dependencies, and we defined the semantics of such a language. HPPs build upon the idea of an annotated logic program introduced in [21], and studied extensively by many researchers over the years [6, 9, 8] In this work, we make two classes of contributions.

First, we study the complexity of a variety of problems related to the semantics of HPPs. In particular, we show that the complexity of the entailment problem (answers to queries to HPPs) is polynomial for HPPs with atomic heads of rules, and in many cases for HPPs with at most two atoms in the heads. However, when formulas of size three or more are allowed in the heads of the rules, the complexity of query processing becomes NP-complete. We establish some other complexity results for related problems, such as checking the consistency of an HPP.

Second, we propose a proof system HGR_P for HPPs that may be used for query processing. This is a Hilbert-style proof system and it is shown to be sound and complete. We show that proofs in HGR_P are polynomially bounded in size (this is consistent with the preceding NP-completeness result because the search space may involve exponentially many derivations each of polynomially bounded length). This is an interesting and counterintuitive result — it says that (the answers to) all queries to HPPs have at least one polynomial explanation. It is well-known (see e.g. [20]) that for propositional classical logic, an existence of proof systems with polynomially bounded length of proofs is a difficult open question, as an affirmative answer implies that $NP = coNP$. In fact, for many proof systems for classic propositional logic (e.g. resolution based) and for variety of nonmonotonic logics superpolynomial lower bounds were established ([23, 20]).

Section 2 recapitulates the syntax and semantics of HPPs as described in [2]. In Section 3, we describe results on the computation complexity of HPPs. Section 4 introduces the proof system HGR_P, shows it is
2 Background

The aim of this section is to describe the syntax and semantics of HPPs — the content of this section is not new and overviews results in [2]. HPPs are based on an abstract class of functions called probabilistic strategies. Associated with each strategy \(s \), we can introduce a new “conjunction like” connective \(\land \), and a new “disjunction like” connective, \(\lor \), which may then be used to define a syntax for HPPs.

2.1 Probabilistic Strategies (p-strategies)

It is well-known that the probability of a compound event may be an interval, rather than a point even if point probabilities are known for the primitive events involved. This was first shown by Boole[1] in 1854. Thus, p-strategies will be defined on intervals — points, in any case, are special cases of intervals.

Definition 1 A probabilistic strategy (p-strategy) is a pair of functions: \(\rho = (c, md) \), such that:

1. \(c : C[0, 1] \times C[0, 1] \rightarrow C[0, 1] \) is called a probabilistic composition function if it satisfies the following axioms:
 - (a) Commutativity:
 \[c([a_1, b_1], [a_2, b_2]) = c([a_2, b_2], [a_1, b_1]) \]
 - (b) Associativity:
 \[c(c([a_1, b_1], [a_2, b_2]), [a_3, b_3]) = c([a_1, b_1], c([a_2, b_2], [a_3, b_3])) \]
 - (c) Monotonicity:
 \[c([a_1, b_1], [a_2, b_2]) \subseteq c([a_3, b_3], [a_2, b_2]) \text{ if } [a_1, b_1] \subseteq [a_3, b_3] \]
 - (d) Separation: there exist two functions \(c^1 \) and \(c^2 \) such that \(c([a_1, b_1], [a_2, b_2]) = c^1(a_1, a_2), c^2(b_1, b_2) \)

2. \(md : C[0, 1] \rightarrow C[0, 1] \) is called a maximal interval function.

Intuitively, a composition function determines, given the probability ranges of two events, the probability range of their (either and- or or-composition). A max-interval function \(md \) returns the best estimate for the probability of simple event given the probability of a compound event. For the discussion on why we specify max-interval functions as above see [2].

The two combinations of events we plan on dealing with are conjunctions of events and disjunction of events. Among all possible p-strategies, we identify conjunction and disjunction p-strategies, which will handle the computation of probabilities of these two combinations respectively.

Since composition functions are both commutative and associative, all terms constructed by applications of composition function \(c \) to \(n \geq 2 \) intervals \(\mu_1 = [a_1, b_1], \ldots, \mu_n = [a_n, b_n] \) will have the same value which we will denote as \(c(\mu_1, \ldots, \mu_n) \) with its lower bound \(c^1(a_1, \ldots, a_n) \) and upper bound \(c^2(b_1, \ldots, b_n) \). For technical reasons it's convenient in the case \(n = 1 \) for any \(\mu = [a, b] \) to set \(c(\mu) = c^1(a) = a \) and \(c^2(b) = b \).

In the definition below \([a, b] \leq [c, d]\) means that \(a \leq b \) and \(c \leq d \).

Definition 2 Conjunction and Disjunctive p-strategies

A p-strategy \(< c, d > \) is called conjunction (disjunctive) if it satisfies the following axioms:

Axiom	Conjunctive Strategies
Bottomline	\(c([a_1, b_1], [a_2, b_2]) \leq \min(a_1, a_2, \min(b_1, b_2)) \)
Identity	\(c([a, b], [0, 1]) = [a, b] \)
Annihilator	\(c([a, b], [0, 0]) = [0, 0] \)
Max Interval	\(md([a, b]) = [a, 1] \)

Axiom	Disjunctive Strategies
Bottomline	\(c([a_1, a_2], [a_2, b_2]) \leq c([a_1, b_1], [a_2, b_2]) \)
Identity	\(c([a, b], [0, 0]) = [a, b] \)
Annihilator	\(c([a, b], [1, 1]) = [1, 1] \)
Max Interval	\(md([a, b]) = [0, b] \)

For a more complete discussion of the axioms we refer the reader to [2].

Example 1 Below are some examples of p-strategies. We provide definitions of composition functions only, as max-interval functions are defined uniquely by the type of p-strategy [2].

- \(inc : p \)-strategies for independence assumption
 - Conjointive: \(c_{inc}([a, b], [c, d]) = [ac, bd] \)
 - Disjunctive: \(c_{inc}([a, b], [c, d]) = [a + c - ac, b + d - bd] \)
- \(igt : p \)-strategies for ignorance assumption
 - Conjointive: \(c_{igt}([a, b], [c, d]) = [\max(0, a + c - 1), \min(b, d)] \)
 - Disjunctive: \(c_{igt}([a, b], [c, d]) = [\max(a, c), \min(1, b + d)] \)
- \(pec : p \)-strategies for positive correlation assumption
 - Conjointive: \(c_{pec}([a, b], [c, d]) = [\min(a, c), \min(b, d)] \)
 - Disjunctive: \(c_{pec}([a, b], [c, d]) = [\max(a, c), \max(b, d)] \)
- \(ncc : p \)-strategy for negative correlation assumption
 - Conjointive: \(c_{ncc}([a, b], [c, d]) = [\min(a + c, 1), \min(b + d, 1)] \)

Example 2 We illustrate why max-interval function as defined as above on the following example. Consider conjunctive p-strategy for independence inc. Suppose
we know that the probability of the conjunction of two events e_1 and e_2 under the assumption of independence lies in the interval $[a, b]$. Our goal is to find the interval in which the probability of each of the two simple events lies. We are looking at pairs of intervals $[a_1, b_1]$ and $[a_2, b_2]$ such that $a_1a_2 = a$ and $b_1b_2 = b$. Clearly we are interested in minimal possible values for a_1 and a_2 and maximal possible values of b_1 and b_2 such that the above equalities hold. It is easy to notice that both a_1 and a_2 can go as low as a while both b_1 and b_2 can reach 1 (not together). Just set $[a_1, b_1] = [a, b]$ and $[a_2, b_2] = [1, 1]$ or vice versa. So, 1 is the maximum number b_1 and b_2 can reach. Now we note that in order for a product of two numbers less than or equal to 1 to be equal to a number a, neither number can be less than a. This makes a the minimum a_1 and a_2 can reach. This suggests that the probability that each of the events e_1 and e_2 holds lies between a and 1. This interval is what will be returned by the md_{ac} function.

As this paper investigates complexity of some algorithmic problems related to HPPs, we assume that all intervals are bounded by rational numbers (which may be represented for example by finite binary numbers). To make our results independent of complexity of particular strategies we will assume below that the computation of a composition function for each p-strategy is provided by a constant time oracle. This way, all bounds obtained in this paper should be multiplied by the complexity of computing the composition. However, for composition functions computable in polynomial time such multiplication will not result in the change in the polynomiality (deterministic or non-deterministic) of the bounds.

2.2 Syntax of hp-programs

Let L be a language which has predicate, variable and constant symbols, but has no function symbols. Let B_L be the set of all ground atoms of L.

In hybrid probabilistic programs, we assume the existence of an arbitrary, but fixed set of conjunctive and disjunctive p-strategies S denote $CONJDISJ$. The programmer may augment this set with new strategies when s/he needs new ones for their application. Each conjunctive p-strategy ρ has an associated conjunction operator \wedge_ρ and each disjunctive p-strategy ρ' has an associated disjunction operator \vee_ρ'.

Hybrid basic formulas, defined below, are either conjunctions of atoms, or disjunctions of atoms (but not mixes of both) w.r.t. a single connective.

Definition 3 Let ρ be a conjunctive p-strategy, ρ' be a disjunctive p-strategy and A_1, \ldots, A_k be distinct atoms. Then $A_1 \wedge_\rho \ldots \wedge_\rho A_k$ and $A_1 \vee_\rho' A_2 \ldots \vee_\rho' A_k$ are called hybrid basic formulas. Suppose $bf_\rho(B_L)$ denotes the set of all ground hybrid basic formulas for the \vee_ρ and \wedge_ρ connectives. Let $bf_\rho(B_L) = \bigcup_{\rho \in S} bf_\rho(B_L)$.

We define a notion of annotations inductively as follows: (1) Any real number or variable over real numbers is an annotation term. (2) If f is an interpreted function over the reals of arity k and t_1, \ldots, t_k are annotation terms, then $f(t_1, \ldots, t_k)$ is an annotation term. An annotation is pair $[a_1, a_2]$ where a_1, a_2 are annotation terms. Thus, for instance, $[0.5, 0.6]$, $[0.5, V^x_{1/2}]$ are both annotations.

Definition 4 A hybrid probabilistic annotated basic formula (hp-annotated basic formula) is an expression of the form $B : \mu$ where B is a hybrid basic formula and μ is an annotation.

Definition 5 Let B_0, B_1, \ldots, B_k be hybrid basic formulas. Let $\mu_0, \mu_1, \ldots, \mu_k$ be annotations. A hybrid probabilistic clause (hp-clause) is a construction of the form: $B_0 : \mu_0 \leftarrow B_1 : \mu_1 \wedge \ldots \wedge B_k : \mu_k$.

Informally speaking, the above rule is read: “If the probability of B_1 falls in the interval μ_1 and \ldots the probability of B_k falls within the interval μ_k, then the probability of B_0 falls within the interval μ_0. Note that it is entirely possible that B_1 uses a connective \wedge_ρ corresponding to a particular (conjunctive) p-strategy, while B_j may use a connective \vee_ρ' corresponding to some other disjunctive p-strategy. HPPs allow mixing and matching of different kinds of p-strategies, both in the B_i’s in the body of a rule, as well as in B_0 - the head of a rule.

Definition 6 A hybrid probabilistic program (hp-program) over set S of p-strategies is a finite set of hp-clauses involving only connectives from S.

An hp-program is ground iff its every clause is ground, i.e. all its clauses do not contain neither variables nor variable annotations.

For example, consider an image processing application that contains a set of facts stating who was seen with whom. These facts may be extracted by an image processing program which may identify persons in images with associated probabilities. A higher level program then classifies individuals as suspects based on different criteria. Such an application may be encoded as an hp-program containing rules such as those shown below.

seen(p1c1,id1,john): [0.5, 0.7] →
seen(p1c1,id1,ed): [0.2, 0.4] →
seen(p1c1,id2,ed): [0.5, 0.6] →
seen(p1c1,id2,dan): [0.2, 0.5] →
suspect(X): [1, 1] →

seen(Pic,Id1,X): [0.5, 1] \wedge
seen(Pic,Id2,ed): [0.5, 1] \wedge Id1 \neq Id2.
suspect2(X): [1, 1] —
(seen(Pic,Id1,X) \lor seen(Pic,Id2,ed)): [0.5, 1].
suspect3(X): [1, 1] —
(seen(Pic,Id1,X) \land seen(Pic,Id2,ed)): [0.5, 1].

In the above example, we have two pictures, each of which contains two objects. Picture Pic1's object with id2 is identified as Ed with 50–60% probability and Dan with 20–50% probability. Three alternative definitions of suspect are given. The first says that if X occurs (with over 50% probability) in a picture where Ed also appears (with over 50% probability), then X is considered a suspect. By this rule, John is a suspect. The second rule says that if we know nothing about the occurrences of people in a picture and if the probability of a subformula by the probability of a formula it is a part of. We say that hybrid formula function \(g \) is less than or equal to hybrid formula function \(h \), denoted \(g \leq h \) if \((\forall F \in bfs(B_L))(g(F) \leq h(F))\).

We are now in a position to specify what it means for a hybrid basic formula function to satisfy a formula.

Definition 9 Satisfaction. Let \(h \) be a hybrid basic formula function, \(F \in bfs(B_L) \), \(\mu \in C[0, 1] \). We say that

- \(h \models F : \mu \text{ iff } h(F) \subseteq \mu. \)
- \(h \models F_1 : \mu_1 \land \ldots \land F_n : \mu_n \text{ iff } (\forall 1 \leq j \leq n)h \models F_j : \mu_j. \)
- \(h \models F : \mu \text{ iff } h \models F_1 : \mu_1 \land \ldots \land F_n : \mu_n. \)
- \(h \models (\exists x)(F : \mu) \text{ iff } h \models F(t/x) : \mu \text{ for some ground term } t. \)
- \(h \models (\forall x)(F : \mu) \text{ iff } h \models F(t/x) : \mu \text{ for every ground term } t. \)

A formula function \(h \) is called a model of an hp-program \(P \) \((h \models P) \text{ iff } (h \models C) \text{ for all clauses } C \in P. \)

As usual, we say that \(F : \mu \text{ is a consequence of } P \text{ iff for every model } h \text{ of } P, \text{ it is the case that } h(F) \subseteq \mu. \)

It is possible for a hybrid formula function \(h \) to assign \(0 \) to some formula. When \(h(F) = 0 \), \(h \) is “saying” that \(F \)'s probability lies in the empty set. This corresponds to an inconsistency because, by definition, nothing is in the empty set.

Definition 10 Formula function \(h \) is called fully defined \(\text{ iff } \forall (F \in bfs(B_L))(h(F) \neq \emptyset). \)

Now we introduce the fixpoint semantics for the hp-programs. Operator \(S_P \) is a preliminary operator, restricted only to the clauses which have the same head as the argument. It is then extended to full fixpoint operator \(T_P \).

Definition 11 Let \(P \) be a hybrid probabilistic program. Operator \(S_P : \mathcal{HPF} \to \mathcal{HPF} \) is defined as follows (where \(F \) is a basic formula): \(S_P(h)(F) = \mu M \) where \(M = \{ [\mu]G : \mu \models F_1 : \mu_1 \land \ldots \land F_n : \mu_n \text{ is a ground instance of some clause in } P ; \sigma \text{ is a ground substitution of annotation variables and } (\forall j \leq n)h(F_j) \subseteq \mu_j \sigma \} \) if \(M = \emptyset S_P(h)(F) = [0, 1]. \)

We use the definition of \(S_P \) to define the immediate consequence operator \(T_P \).
Definition 12 Let \(P \) be a hybrid probabilistic program. We inductively define operator \(T_p : \mathcal{HFF} \rightarrow \mathcal{HFF} \) as follows:

1. Let \(F \) be an atomic formula.
 * If \(S_P(h)(F) = \emptyset \) then \(T_p(h)(F) = \emptyset \).
 * If \(S_P(h)(F) \neq \emptyset \), then let \(M = (\langle \mu, \rho \rangle | \langle \mu, \rho \rangle : \mu = F_1 : \mu_1 \wedge \ldots \wedge F_n : \mu_n \rangle \) where \(\sigma \)
 is a ground substitution for the annotation variables, and
 \(i \in S \) and \((V_j \leq n) h(F_j) \subseteq \mu_j \sigma \).
 We define
 \[T_p(h)(F) = (\langle \{ md(P) \sigma | \langle \mu, \rho \rangle i \in M \} \rangle \cap S_P(h)(F). \]

2. (\(F \) not atomic) Let \(F = F_1 \ast \ldots \ast F_n. \)
 Let \(M' = \langle \{ \mu, \rho \} | D_1 : \mu_1 \wedge \ldots \wedge D_k : \mu_k \rangle \) where
 \(\langle \mu_1 \wedge \ldots \wedge \mu_m \rangle \in \text{ground}(P); \)
 \((\forall i \leq j \leq m) h(E_j) \subseteq \mu_j; \{ F_1, \ldots, F_n \} \subseteq \{ D_1, \ldots, D_k \}, n < k \). Then:
 \[T_p(h)(F) = S_P(h)(F) \cap \langle \{ md(P) \sigma | \langle \mu, \rho \rangle i \in M' \} \rangle G_{\oplus} H = F \rangle \cap \langle \{ md(P) \sigma | \langle \mu, \rho \rangle i \in M' \} \rangle G_{\oplus} H = F \rangle. \]

In [2] it was shown that both \(S_P \) and \(T_p \) are monotonic if the annotations of the atoms in \(P \) are constant.

Definition 13 \(T_0 = h_\bot \) where \(\bot \) is the atomic function that assigns \([0, 1]\) to all ground atoms \(A \).
2. \(T_\alpha = T_p(T_\alpha - 1) \) where \(\alpha \) is a successor ordinal whose predecessor is denoted by \(\alpha - 1 \).
3. \(T_\gamma = \cup \{ T_\alpha | \alpha < \gamma \} \) where \(\gamma \) is limit ordinal.

The following results [2] ties together, the fixpoint theory and the model theoretical characterizations of hp-programs, regardless of which \(p \)-strategies occur in the hp-program being considered.

Theorem 1 Let \(P \) be any hp-program. Then:
1. \(h \) is a model of \(P \) iff \(T_p(h) \leq h \).
2. \(P \) has a model iff \(\text{lfp}(T_p) \) is fully defined.
3. If \(\text{lfp}(T_p) \) is fully defined, then it is the least model of \(P \), and \(F : \mu \) is a logical consequence of \(P \) iff \(\text{lfp}(T_p) \leq \mu \).

In what follows we will consider only ground hp-programs. It is clear that any such program \(P \), the least fixpoint of its \(T_p \) operator, \(\text{lfp}(T_p) \) is achieved in a finite number of iterations, i.e., at least, \(\text{lfp}(T_p) = T_p^2 \). For brevity we will denote \(\text{lfp}(T_p) \) as \(h_p \).

3 Algorithms and Complexity of ground HPPs

In this section, we will develop algorithms, and associated complexity results, for three kinds of HPP problems: logical consequences of an HPP \(P \), entailment problem (answer to query), and consistency of \(P \). Obviously, these three problems are closely related to one another. Due to space restrictions we are able to present only the algorithms and state the theorems here. All proofs and reductions can be found in [3].

3.1 Complexity of model computation

Given a basic formula \(G \), we define the \text{width}(G) to be the number of atoms in \(G \).

Given an hp-clause \(C = B_0 : \mu_0 \leftarrow B_1 : \mu_1 \wedge \ldots \wedge B_k : \mu_k \), we say that the head-width of \(C \) is the width of \(B_0 \), and the body-width of \(C \) is \(\max\{ \text{width}(B_1), \ldots, \text{width}(B_k) \} \).

We may now define a hierarchy of subclasses of HPPs in terms of the head/body widths of the clauses involved.

Definition 14 Let \(HHPP_{k,r} \) denote the class of HPP programs \(P \) such that for all clauses \(C \in P \), the head-width of \(C \) is less than or equal to \(k \) and the body-width of \(C \) is less than or equal to \(r \). Let \(HHPP = \bigcup_{k \geq 0} HHPP_{k,r} \).

Algorithm \(\text{LFP} \) below shows how we may compute the least fixpoint of \(T_p \) for class \(HHPP_{k,r} \).

Algorithm \(\text{LFP} \).
Input: \(P \in HHPP_{k,r} \), \(N \geq \max(k, r) \), \(m \) - number of clauses in \(P \), \(F_1, \ldots, F_M \) - all formulas of width \(\leq N \), lexicographically ordered.
Output: table \(t_{2m}(F_k) \), \(1 \leq k \leq M \).
BEGIN (algorithm)
(1) FOR \(j = 1 \) TO \(M \) DO \(t_0(F_j) := [0, 1] \);\n(2) FOR \(i = 0 \) TO \(2m - 1 \) DO
BEGIN
\begin{align*}
(3) & \text{FOR EACH } C = G : \mu \leftarrow C_1 : \mu_1 \wedge \ldots \wedge C_n : \mu_n \in P \\
& \text{such that for all } 1 \leq j \leq n \ t_i(G_j) \subseteq \mu_j \text{ DO} \\
(4) & t_{i+1}(G) := t_i(G) \cap \mu; \\
(5) & \text{delete } C \text{ from } P; \\
(6) & \text{FOR EACH } H \text{ included in } G, \text{ i.e. } G = H \oplus H' \text{ DO} \\
(7) & t_{i+1}(H) := t_i(H) \cap \text{md}(\mu); \\
& \text{END} \\
(8) & \text{FOR } j = 1 \text{ TO } M \text{ DO} \\
(9) & \text{FOR } k = j + 1 \text{ TO } M \text{ DO} \\
(10) & \text{IF } F_k = F_j \oplus H \text{ (for some } l < k) \\
(11) & \text{THEN } t_{i+1}(F_k) := t_{i+1}(F_j) \cap c_i(t_{i+1}(F_j), t_{i+1}(F_i)); \\
& \text{END}
\end{align*}
END.

The following theorem proves that algorithm \(\text{LFP} \) is a correct way of computing the least fixpoint of \(T_p \) for class \(HHPP_{k,r} \) and establishes its complexity.

Theorem 2 Let \(P \) be any program in \(HHPP_{k,r} \) with \(m \) clauses. Let \(a \) be the number of different atoms in \(P \), \(s \) be the number of different strategies in \(P \), and
This is stated in the following corollary.

The following result specifies that the above algorithm allows check entailment for hybrid probabilistic programs in this encoding, and similarly, if $F_*P...*P F_k$ is entailed by an HPP $P \in H P P_1$, then $P \models F_*P...*P F_k$ entails F.

Theorem 3 For any program $P \in H P P_1$ and annotated basic formula $F : \mu$ the entailment problem “$P \models F_*P...*P F_k$ is solvable in time $O(|P|^2 + |F_*P...*P F_k|)$ via Algorithm LFP$_1$.

Our next goal is to develop algorithms and provide complexity results for checking entailment when we consider hybrid probabilistic programs for $H P P_r$ when $r \geq 3$.

We start our analysis by first considering the class $H P P^0$ of HPPs that only consist of facts, i.e. all rules in such HPPs have an empty body.

The following nondeterministic algorithm allows check entailment for hybrid probabilistic programs in this class.

Algorithm Ent-HPP

Input: Program $P \in H P P^0$, consisting of m clauses $C_1,...,C_m$ with empty bodies: $C_k = H_k : \prescript{a_*}{b_*}k$, $k = 1,\ldots,m$, formula $F \models B_1 \ast \ldots \ast B_n$, and an interval $[a,b]$.

1. Guess such $k \leq \width(F)$, sequence of bounds x_1,\ldots,x_k, and partition $F = F_1 \ast \ldots \ast F_k$ which satisfy conditions:
 (i) each F_i is either some head H_k and $x_i \geq b_k$, or it is a subformula of some head $H_k = F_i \ast B\ast H_k'$ and $\md_{\rho}([a_*b_*k]) \subseteq [x,1]$, and
 (ii) $c^\rho(x_1,\ldots,x_k) \leq b$.

2. Guess such $k \leq \width(F)$, sequence of bounds x_1,\ldots,x_k, and partition $F = F_1 \ast \ldots \ast F_k$ which satisfy conditions:
 (i) each F_i is either some head H_k and $x_i \leq a_k$, or a subformula of some head $H_k = F_i \ast B\ast H_k'$ and $\md_{\rho}([a_*b_*k]) \subseteq [x,1]$, and
 (ii) $c^\rho(x_1,\ldots,x_k) \geq a$.

3. If both attempts are successful then output "Yes".
The following lemma establishes correctness of Algorithm \textbf{Ent-HPP}^0 and its complexity.

Lemma 1 (1) For any consistent hp-program \(P \in HPP^0\) and any query \(F : [a, b]\) algorithm \textbf{Ent-HPP}^0 output "Yes" iff \(P \models F : [a, b]\).

(2) Algorithm \textbf{Ent-HPP}^0 works in nondeterministic polynomial time.

Let us denote by \(\text{ Fired}_P(i)\) the set of those clauses of \(P\) whose bodies are satisfied by \(T^+_p\) but are not satisfied by \(T^*\).

We are now ready to present a generic algorithm, Algorithm \textbf{Ent-HPP}, that computes entailment by HPPs.

Algorithm \textbf{Ent-HPP}

Input: program \(P \in HPP\), consisting of \(m\) clauses \(C_1, \ldots, C_m\) of the form \(C_j = H_j : \mu_1 \rightarrow F^1_1 : \nu_1 \land \cdots \land F^1_n : \nu_n\), formula \(F = B_1 \ast_p \cdots \ast_p B_n\), and an interval \([a, b]\).

1. \(P_0 := \{H_j : \mu_1 \text{ body of } C_j \text{ is empty}\}\)
2. FOR \(i = 1\ TO \ 2m\) DO
3. \(\text{guess } \text{ Fired}_P(i)\)
4. FOR EACH \(C_j \in \text{ Fired}_P(i)\) DO
5. \(\text{FOR } l = 1 \ TO \ r \ DO\)
6. \(\text{Call } \textbf{Ent-HPP}^0(P, F^1_l : \nu_l)\)
7. END\ DO
8. END\ DO
9. \(P := P_{r-1} \cup \{H_j : \mu_1 \mid C_j \in \text{ Fired}(i)\}\)
10. END\ DO
11. \(\text{Call } \textbf{Ent-HPP}^0(P_{2m}, F : [a, b])\)
12. Output "Yes" if all (nondeterministic) calls of \textbf{Ent-HPP}^0 were successful.

The following result establishes that algorithm \textbf{Ent-HPP} correctly computes entailment in nondeterministic polynomial time.

Lemma 2 Algorithm \textbf{Ent-HPP} determines nondeterministically if \(P \models F : [a, b]\) in polynomial time.

This result provides an upper bound in the following claim.

Theorem 4 The entailment problem is \textbf{NP}-complete for the classes \(HPP\) and \(HPP_{k,r}(k \geq 3)\).

Recall that given a graph \(G = (V, E)\), a matching\([13]\) is a set \(E' \subseteq E\) such that no two edges in \(E'\) share a common vertex. A matching \(E'\) is maximal iff every edge in \((E - E')\) shares a vertex with some edge in \(E'\). If \(V = 2m\), we say a matching \(E\) is complete iff every vertex \(v \in V\) is the endpoint of some edge \(e_v \in E'\). It will turn out that entailment is polynomial time equivalent to the following generalized matching problem on general graphs.

Generalized weighted matching problem

Given an edge-weighted, undirected graph \(G = (V, E, w)\) and a goal weight combination function \(c\), find a complete matching for which the goal function on weights of selected edges is maximized (minimized).

More formally, we define two classes of "yes-no" matching problems:

- \(GW\text{M}_{\max}(c) = \{G = (V, E, w : E \rightarrow [0, 1]), B \in [0, 1]||V| = 2m\} and there exists a complete matching \(\{e_1, \ldots, e_m\} \subseteq E\) such that \(c(w(e_1), \ldots, w(e_m)) \geq B\)\)
- \(GW\text{M}_{\min}(c) = \{G = (V, E, w : E \rightarrow [0, 1]), B \in [0, 1]||V| = 2m\} and there exists a complete matching \(\{e_1, \ldots, e_m\} \subseteq E\) such that \(c(w(e_1), \ldots, w(e_m)) \leq B\).

The following result shows that entailment in HPPs is polynomial-time equivalent to the above generalized matching problems.

Theorem 5

(1) Let \(P \in HPP_2\) use probabilistic strategies with combination functions \(c = (c^1, c^2)\) where \(c^1 \in C^1, c^2 \in C^2\) for some sets of functions \(C^1\) and \(C^2\). Then the entailment problem for \(P\) and annotated basic formula \(F : \mu\) is polynomially reducible to the problems \(GW\text{M}_{\max}(c^1)\) and \(GW\text{M}_{\min}(c^2)\), where \(c^1 \in C^1, c^2 \in C^2\).

(2) Any generalized weighted matching problem for goal functions, satisfying axioms (a)-(d) of Definition 1, is reducible in polynomial time to entailment problems for hp-programs of \(HPP_{2,0}\).

It is well-known \([13]\) that weighted matching problem is solvable in polynomial time for the sum of edges weights. This allows to get effective algorithms for almost all of strategies considered in \([2]\).

Corollary 2 The entailment problem for the class of \(HPP_2\) programs over strategies \(S = \{\text{inc}, \text{igc}, \text{pcc}, \text{igd}, \text{pcd}, \text{ncd}\}\) is solvable in polynomial time.

The above result is interesting because it provides polynomial results for programs in \(HPP_2\) for all but one composition strategies studied in \([2]\). This leads to an interesting open question.

Open question. Is there polynomial time computable composition function \(c = (c^1, c^2)\) satisfying
3.3 Complexity of the Consistency Problem

In this subsection, we establish the complexity of determining if an HPP is consistent, i.e. is there a hybrid formula function h that satisfies all rules in P?

It is easy to see that even a simple HPP_1 program containing two simple facts, viz. $a : [0, 0]$, $a : [1, 1]$, is inconsistent. The complicated interactions between logic and probabilities can engender more devious inconsistencies in HPPs.

The following result tells us that to check if HPP_1, from HPP_2 and from HPP_3 or larger.

Lemma 3 Let $P \in HPP$ over set $S = \{p_1, \ldots, p_m\}$ of p-strategies and let $A = \{A_1, \ldots, A_n\}$ be all the atoms found in P. Then P is consistent iff for all formulas F_i of form $F_i = A_1 \ast_r \ldots \ast_r A_n, i = 1, \ldots, m$, $h_p(F_i) \neq \emptyset$.

As in the case of the Entailment Problem, we summarize our results in three cases — where programs are from HPP_1, from HPP_2 and from HPP_3 or larger.

Theorem 6

1. Given a program $P \in HPP$, its consistency can be established in polynomial time.

2. Inconsistency problem for HPP_2 is polynomially reducible to GW_{min} and GW_{max}. So, for HPP_3 programs over the set of p-strategies $\{inc, igc, pec, igd, pcd, ncd\}$ the consistency problem is solvable in polynomial time.

3. Consistency problem for HPP is co-NP-complete.

We present here only the nondeterministic algorithm $InCon$ which checks if an arbitrary HPP is inconsistent.

Algorithm InCon.

Input. An arbitrary HPP P.

1. Guess the shortest “inconsistent” formula F.

2. Guess two partitions of F into $G_1 \ast_r \ldots \ast_r G_m$ and $H_1 \ast_r \ldots \ast_r H_k$ two sets of numbers: x_1, \ldots, x_m and y_1, \ldots, y_k, $0 \leq x_i, y_j \leq 1$ such that $c_p^h(x_1, \ldots, x_m) > c_p^h(y_1, \ldots, y_k)$.

3. Using Algorithm Ent-HPP check that for all $i \in \{1, \ldots, m\}$ $P \models G_i : [0, x_i]$ and all $j \in \{1, \ldots, k\}$ $P \models H_j : [y_j, 1]$.

4. If all calls to Algorithm Ent-HPP of previous step are successful then output “Yes”.

4 Proof Procedure

In this section, we present a sound and complete proof procedure for HPPs. The first proof procedure for probabilistic programs, introduced in [2] and [17] is based upon expanding the program P to a larger set of clauses (a closure of the program) and then resolving queries against that set. Since this procedure is computationally inefficient, other tabulation based proof procedures have also been developed. Here, we present a Hilbert-style proof system for ground hp-programs which guarantees that all proofs are polynomially bounded in length. This is an interesting and counterintuitive result — it says that (the answers to) all queries to HPPs have at least one polynomial explanation. Let us now define the axioms and inference rules of the proof system HGR_P.

Definition 15 Let P be a ground hp-program over set S of p-strategies. We define the formal system HGR_P as follows:

1. Axioms of HGR_P are all expressions of the form: $A_i : \mu_L \mu_R$ where $A_i \in B_L$.

2. Inference Rules. There are 7 types of inference rule schemas in HGR_P. One type (Program) depends on the clauses of program P while other 6 types of inference rule schemas are independent of clauses in P but do depend on which p-strategies are in S.

Program: Let $F : \mu \rightarrow G_1 : \mu_1 \ldots G_k : \mu_k$

$$F : \mu$$

Note: rules corresponding to clauses with empty body ($k = 0$) are actually axioms.

A-Composition: Let $A_1, A_2 \in B_L, p \in S$

$$A_1 : \mu_1 \quad A_2 : \mu_2$$

$$\begin{align*}
(F \ast \ast p G) : \mu & \Rightarrow c_p(\mu_1, \mu_2) \\
(F \ast \ast p G) : \mu & \Rightarrow F : \mu
\end{align*}$$

F-Composition: Let $A_1, \ldots, A_k, B_1, \ldots, B_k \in B_L, p \in S$

$$\begin{align*}
(A_1 \ast_r \ldots \ast_r A_k) : \mu_1 & \Rightarrow (B_1 \ast_r \ldots \ast_r B_k) : \mu_2 \\
(A_1 \ast_r \ldots \ast_r A_k \ast_r B_1 \ast_r \ldots \ast_r B_k) : c_p(\mu_1, \mu_2)
\end{align*}$$

Decomposition (cut): Let $p \in S$

$$\begin{align*}
(F \oplus p G) : \mu & \Rightarrow (F \oplus p G) : \mu \\
F : \mu & \Rightarrow F : \mu
\end{align*}$$

Clarification: Let $A_1, A_2 \in B_L, p \in S$

$$\begin{align*}
F : \mu_1 & \Rightarrow F : \mu_2 \\
F : \mu_1 & \Rightarrow F : \mu_2
\end{align*}$$

Exchange: Let $A_1, \ldots, A_k \in B_L, p \in S$, and let B_1, \ldots, B_k be a permutation of A_1, \ldots, A_k

$$\begin{align*}
(A_1 \ast_r \ldots \ast_r A_k) : \mu & \Rightarrow (B_1 \ast_r \ldots \ast_r B_k) : \mu \\
(B_1 \ast_r \ldots \ast_r B_k) : \mu & \Rightarrow (A_1 \ast_r \ldots \ast_r A_k) : \mu
\end{align*}$$

Interval Weakening: Let $A_1, A_2 \in B_L, p \in S$

$$\begin{align*}
F : \mu_1 & \Rightarrow F : \mu_2 \\
F : \mu_1 & \Rightarrow F : \mu_2
\end{align*}$$

3. A finite sequence $C_1 \ldots C_r$ of annotated formulas is called an HGR_P-derivation iff each formula $C_j = F_j : \mu_j$ can be deduced from zero (in the case of...
axiom), one, or more previous of $C_1 \ldots C_{r-1}$ by applying one of the inference rules to them. We call formula C_r the result of the $HGRP$-derivation.

4. An annotated formula $C = F : \mu$ is derivable in $HGRP$ iff there exists such an $HGRP$-derivation C_1, \ldots, C_r that $C_r = C$. We denote it by $P \vdash_{HGRP} C$, or just by $P \vdash C$ in the absence of other inference systems.

Theorem 7 (soundness of $HGRP$) Let P be an hp-program and let Q be a an hp-formula. If $P \vdash_{HGRP} Q$, then $P \models Q$.

It is known that all “natural” proof systems for standard classical propositional logic have proofs of exponential size (see e.g. [23]). But this is not the fact in our proof system $HGRP$. The following result states that $HGRP$ is both a complete inference system and that the length of the proofs in $HGRP$ is polynomially bounded.

Theorem 8 For any $P \in HPP$ and annotated formula $F : \mu$ if $P \vdash F : \mu$ then there exists such an $HGRP$-derivation C_1, \ldots, C_r that $C_r = F : \mu$ and $r \leq O(|P|^2 + |F : \mu|)$.

5 Conclusions

As described in the introduction, there are numerous kinds of dependencies that might exist between uncertain events. Probability theory mandates that the probability of a complex event be computed not only in terms of the probabilities of the primitive events involved, but also it should take into account, dependencies between the events involved. Hybrid Probabilistic Programs (HPPs) [2] represent one of the first frameworks that allow a logic program to explicitly encode a variety of different probability assumptions explicitly into the program, for use in inferring. Most existing frameworks for uncertainty in logic programming [4, 5, 8, 9, 12, 14, 15, 17, 19, 21, 7] do not permit this. A few important initial attempts to incorporate different probabilistic strategies were made by Thone et al. [22], and Lakshmanan [12], which culminated in an extension of the relational algebra that accommodated different probabilistic strategies [10]. In this paper, we have made three contributions. First, we have developed algorithms to efficiently perform a variety of computations for hybrid probabilistic programs. Each of these algorithms is “tuned” to fit the class within which an HPP falls (i.e. class HPP_1, HPP_2 or $HPP_r, r \geq 3$). We have given algorithmic complexity analyses of these problems. To date, with the exception of the work by Kiessling’s group [7, 22] and by Lukasiewicz [18], almost no work on bottom up algorithms for computing probabilistic logic programs exists. Our algorithms are the first to apply not only to HPPs, but to have finer complexity bounds for different classes of HPPs.

Second, we have studied the computational complexity of the Entailment and Consistency problems for the abovementioned classes of HPPs. The results may be neatly summarized via the following table.

Problem	HPP_1	HPP_2	$HPP_r, r \geq 3$
Entailment	polynomial	polynomial for $c_p \in \{inc, igc, pcc, igd, pcd, ncd\}$	NP-complete
Consistency	polynomial	polynomial for $c_p \in \{inc, igc, pcc, igd, pcd, ncd\}$	co-NP-complete

In effect, this result says that from the point of view of complexity, it is possible to safely write HPPs over class HP_1P (with any set of composition strategies), or over class HPP_2 (but with certain composition strategies only), and be guaranteed a polynomial computation. To our knowledge, this paper is the first paper to contain a detailed analysis of complexity results in probabilistic logic programs, though [10] contains some results for probabilistic relational algebra, and [12] contains some results for a different probabilistic framework.

Finally, we have described a proof system for HPPs that guarantees that for every $F : \mu$ that is a ground logical consequence of an HPP P, we have a polynomially bounded proof of $F : \mu$, which in turn, means that an explanation for $F : \mu$ is polynomially bounded. Though many proof systems have been developed for annotated logic programs they do not apply to probabilistic logic programs. Our proof system $HGRP$ is new (and is also different from the proof system in [2]), and to our knowledge none of the existing proof systems for annotated logic have been shown to have polynomially bounded proofs (and hence succinct explanations).

Acknowledgements.

The work of the first author had been partially supported by Russian Fundamental Studies Foundation (Grants 97-01-00973). The other authors were supported by the Army Research Office under Grants DAAH-04-95-10174, DAAH-04-96-10297, and DAAH04-96-1-0398, by the Army Research Laboratory under contract number DAAI01-97-K0135 and under Cooperative Agreement DAAI01-96-2-0002 Federated Laboratory ATIRP Consortium, by an NSF Young Investigator award IRI-93-57756, and by a
Hybrid Probabilistic Programs: Algorithms and Complexity

TASC/DARPA grant J09301S98061.

References

[1] G. Boole. (1854) *The Laws of Thought*, Macmillan, London.

[2] A. Dekhtyar and V.S. Subrahmanian. (1997) *Hybrid Probabilistic Logic Programs*, accepted to Journal of Logic Programming, Jan. 1998, preliminary version available as University of Maryland Tech Report CS-TR-3883, from http://www.cs.umd.edu/TRs/authors/Alex_Dekhtyar.html.

[3] M. Dekhtyar, A. Dekhtyar and V.S. Subrahmanian. (1997) *Hybrid Probabilistic Programs: Algorithms and Complexity*, submitted to Theoretical Computer Science, Available as University of Maryland Tech Report CS-TR-3969.

[4] D. Dubois and H. Prade. Certainty and Uncertainty of Vague Knowledge and Generalized Dependencies in Fuzzy Databases. In *Proceedings International Fuzzy Engineering Symposium*, pp. 239–249, Yokohama, Japan, 1988.

[5] R. Fagin and J. Halpern. (1988) *Uncertainty, Belief and Probability*, in Proc. IJCAI-89, Morgan Kaufman.

[6] L.J. Henschen and J. Lu. (1992) *The Completeness of GP-resolution for Annotated Logics*, Information Processing Letters, 44, 1992, 135-140.

[7] W. Kiessling, H. Thone and U. Guntzer. (1992) *Database Support for Problematic Knowledge*, Proc. EDBT-92, pps 421-436, Springer LNCS Vol. 580.

[8] M. Kifer and A. Li. (1988) *On the Semantics of Rule-Based Expert Systems with Uncertainty*, 2nd Intl. Conf. on Database Theory, Springer Verlag LNCS 326, (eds. M. Gysseans, J. Paredaens, D. Van Gucht), Bruges, Belgium, pp. 102–117.

[9] M. Kifer and V. S. Subrahmanian. (1992) *Theory of Generalized Annotated Logic Programming and its Applications*, JOURNAL OF LOGIC PROGRAMMING, 12, 4, pps 335–368, 1992.

[10] V.S. Lakshmanan, N. Leone, R. Ross and V.S. Subrahmanian. *ProbView: A Flexible Probabilistic Database System*, ACM TRANSACTIONS ON DATABASE SYSTEMS, Vol. 22, Nr. 3, pps 419–469, Sep. 1997.

[11] V.S. Lakshmanan and F. Sadri. (1994) *Modeling Uncertainty in Deductive Databases*, Proc. Int. Conf. on Database Expert Systems and Applications, (DEXA '94), September 7-9, 1994, Athens, Greece, Lecture Notes in Computer Science, Vol. 856, Springer (1994), pp. 724-733.

[12] V.S. Lakshmanan and F. Sadri. (1994) *Probabilistic Deductive Databases*, Proc. Int. Logic Programming Symp., (ILPS'94), November 1994, Ithaca, NY, MIT Press.

[13] E. Lowler. *Combinatorial Optimization: Networks and Matroids*, Holt, Reinhart & Winston, New York, 1976.

[14] T. Lukasiewicz. (1998) *Probabilistic Logic Programming*, in Procs. 13th biennial European Conference on Artificial Intelligence, pps 388-392, Brighton, UK, August 1998.

[15] T. Lukasiewicz. (1998) *Magic Inference Rules for Probabilistic Deduction under Taxonomic Knowledge*, Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pps 354-361, Madison, Wisconsin, USA, July 1998.

[16] J.W. Lloyd. (1987) *Foundations of Logic Programming*, Springer.

[17] R. Ng and V.S. Subrahmanian. (1993) *Probabilistic Logic Programming*, INFORMATION AND COMPUTATION, 101, 2, pps 150–201, 1993.

[18] R. Ng and V.S. Subrahmanian. (1995) *Stable Semantics for Probabilistic Deductive Databases*, INFORMATION AND COMPUTATION, 110, 1, pps 42-83.

[19] N. Nilsson. (1986) *Probabilistic Logic*, Artificial Intelligence, 28, pp 71–87.

[20] P. Pudlak. *The lengths of proofs*, Handbook of proof theory; Stud. Logic Found. Math.,127, North-Holland, Amsterdam, pps. 547-637, 1998.

[21] V.S. Subrahmanian. (1987) *On the Semantics of Quantitative Logic Programs*, Proc. 4th IEEE Symp. on Logic Programming, pps 173-182, Computer Society Press. Sep. 1987.

[22] H. Thone, W. Kiessling and U. Guntzer. (1995) *On Cautious Probabilistic Inference and Default Detachment*, Annals of Operations Research, 55, pps 195–224.

[23] A. Urquhart. *The Complexity of Propositional Proofs*, The Bulletin of Symbolic Logic, 1(4):425-467, December 1995.