Objective: Non-Alcoholic Fatty Liver Disease (NAFLD) is the most common cause of liver disease. This study aims to evaluate the effect of High Intensity Interval Training (HIIT) and Loquat Leaf Extract (LLE) consumption on liver enzymes in obese men with NAFLD.

Method: In this quasi-experimental study, 40 men with NAFLD (BMI: 33.92±1.82 kg/m²) participated and randomly divided into four groups: HIIT (n=10), LLE (n=10), LLE+HIIT (n=10) and control (n=10). Exercises were performed for 8 weeks, 3 sessions per week, each for 60 minutes with an intensity between 80-95% of heart rate reserve. Two capsules of 250 mg LLE was administrated daily for 8 weeks. Serum levels of Aspartate Aminotransferase (AST), Alkaline Phosphatase (ALP), and Alanine Aminotransferase (ALT) were measured before and 48 hours after the intervention.

Result: The results of paired t-test showed that the post-test serum levels of ALT, AST and ALP in the LLE+HIIT (P=0.01, 0.01, 0.01) and HIIT groups decreased significantly (P=0.02, 0.01, 0.001). These changes were not significant in the control and LLE groups (P≥0.05). The results of Tukey’s test showed that serum levels of ALT, AST and ALP in the LLE+HIIT and HIIT groups had the highest significant decrease (P=0.001) compared to the control group, while ALT and ALP serum levels in the LLE+HIIT group compared to the LLE group (P=0.03) and in the HIIT group compared to the control group (P=0.02) had the lowest decrease after eight weeks of intervention.

Conclusion: It seems that consumption of LLE along with high- HIIT leads to a decrease in the level of liver enzymes in men with NAFLD. It is recommended that patients with NAFLD use this technique to improve their liver conditions.

Key words: High intensity interval training, Loquat leaf extract, Aspartate aminotransferase, Alanine aminotransferase, Alkaline Phosphatase, Non-alcoholic fatty liver disease

Extended Abstract

1. Introduction

In recent years, Non-alcoholic Fatty Liver Disease (NAFLD) has received a lot of attention as the most common liver disease and one of the most important causes of chronic liver disease in children and adults [1]. The main mechanism that leads to NAFLD is not fully known yet, but factors such as obesity, metabolic syndrome, lack of antioxidant resources in the body, genetics, unhealthy and sedentary lifestyle and poor nutrition can be effective in the development of this disease [4]. Loquat is a subtropical plant belonging to the Rosaceae family with...
high medicinal value. It has been reported that the extracts of its various tissues (leaves, seeds and fruits) have great therapeutic effects in terms of biological activity. Ursolic acid has several biological activities including anti-oxidation, anti-inflammatory, anti-cancer and liver protection [13]. On the other hand, exercise can have positive effects on the treatment, control and prevention of NAFLD. Exercise is one of the main regulators of hepatic metabolism by increasing beta oxidation and decreasing lipogenesis. Studies have shown that High Intensity Interval Training (HIIT) is a good strategy to reduce the plasma concentrations of liver enzymes, lipid profile, insulin resistance and fat content [27]. This study aims to assess whether 8 weeks of HIIT with Loquat Leaf Extract (LLE) supplementation can affect the liver enzymes of obese men with NAFLD.

2. Materials and Methods

This is a quasi-experimental study with a pre-test/post-test design using a control group. The study population consists of all patients with NAFLD referred to the digestive health clinics in Qazvin province of Iran. After sending invitations, 55 volunteered to participate in the study. Of them, 40 were randomly selected and entered into the study based on the inclusion criteria and under the supervision of a physician. They were randomly divided into four groups: HIIT (n=10), LLE (n=10), HIIT+LLE (n=10) and control (n=10). LLE was administered for 8 weeks, 2 capsules per day. Each capsule contained 250 mg of LLE (Choufarm, South Korea) [31]. Exercises were performed for 8 weeks, 3 sessions per week for 60 minutes with an intensity of 80-95% of heart rate reserve. Serum levels of AST, ALP, and ALT were measured by kits made by Pars Azmoun Company in Iran using enzymatic method before the intervention and 48 hours after the last training session and supplementation. Data analysis was performed using analysis of co-variance and Tukey’s post hoc test considering the significance level at 0.05.

3. Results

There was no significant difference between the studied groups in terms of age, weight, height, body mass index and body fat percentage (P≥0.05). The results of paired t-test showed that after eight weeks of HIIT and LLE consumption, serum ALT level significantly decreased in the HIIT+LLE (P=0.01) and HIIT (P=0.02) groups; serum AST level also significantly decreased in the in the HIIT+LLE (P=0.01) and HIIT (P=0.01) groups; se-

Table 1. Results of analysis of variance and paired t-test for within-group and between-group comparisons

Variable	Group	Mean±SD	Within-group Comparison	Between-group Comparison			
		Pre-test	Post-test	t	Sig.	F	Sig.
ALT (U/L)	HIIT+LLE	38.20±4.61	29.40±4.10	-1.26	0.01*	2.26	0.001*
	Control	34±3.61	34.20±3.42	-0.96	0.24		
	HIIT	34.20±4.52	30.40±3.75	2.27	0.02*		
	LLE	36.60±2.97	35.85±4.04	1.86	0.06		
AST (U/L)	HIIT+LLE	28.80±3.56	26.10±2.70	0.98	0.01*	1.81	0.001*
	Control	21.20±2.21	20.65±2.11	1.53	0.78		
	HIIT	22±2.81	18.80±1.94	1.17	0.01*		
	Supplementation	24.20±2.15	23.70±3.40	-2.06	0.07		
ALP (U/L)	HIIT+supplementation	236.10±28.54	212.40±28.30	1.18	0.01*	3.24	0.04*
	Control	235.90±29.11	236.09±25.12	1.78	0.28		
	HIIT	234.85±29.94	223.54±26.14	1.16	0.001*		
	Supplementation	235.70±30.29	233.70±28.31	-1.08	0.07		

*Significant difference between pre-test and post-test scores (P<0.05); #Significant difference between groups.
rum ALP level also significantly decreased in the in the HIIT+LLE (P=0.01) and HIIT (P=0.001) groups. Analysis of covariance was used to compare the post-test scores of the groups whose results showed a significant difference between the groups in ALT (P=0.001), AST (P=0.001) and ALP (P=0.04) (Table 1).

4. Conclusion

The results of this study regarding the effects of interval training are consistent with the results of Galedari et al. [33] and Najafi et al. [34] but against the results of Saji et al. [37], Fealy et al. [38] and Hallsworth et al. [39]. This discrepancy may be due to difference in the duration, type, and intensity of training. In Saji et al.’s study, only resistance training was used while in Fealy et al.’s study, endurance training was in NAFLD patients [37, 38]. HIIT increases lipid oxidation, insulin sensitivity, and basal metabolic rate; therefore, it is possible that decreased levels of ALT (long half-life with the highest amount in liver tissue) and AST (shorter half-life) reduces liver enzymes by increasing basal metabolic rate and increasing lipid oxidation [36]. Loquat also has high antioxidant properties which is highly related to the phenolics and flavonoids that can be found in this plant [40]. It seems that the possible effectiveness of LLE in improving liver enzymes can be related to the antioxidant properties of ursolic acid in the plant leaves. This acid inhibits lipid peroxidation of cellular membranes by having abundant antioxidant properties and neutralizing free radicals. Moreover, it exhibits anti-inflammatory activity by decreasing cellular levels of hydrogen peroxide and nitric oxide. Therefore, due to the antioxidant and anti-inflammatory properties of ursolic acid, a decrease in the activity of liver enzymes is predictable [23]. Possible mechanisms of action of ursolic acid include a significant response with increased apoptosis in the ROS pathway, inhibition of hyperlipidemia-induced IRE1α gene activation, and JNK phosphorylation reported in the liver of db/db mice [45]. Overall, based on the results it can be argued that simultaneous use of LLE and HIIT can be more beneficial in improving liver enzyme status than when they are used alone.

It seems that consumption of LLE along with performing HIIT leads to a decrease in the level of liver enzymes in men with NAFLD.

Ethical Considerations

Compliance with ethical guidelines

This study obtained its ethical approval from the Ethics Committee of Imam Khomeini International University (Code: IR.IKIU.REC.1398.7346).

Funding

This study was supported by the Vice Chancellor for Research of Qazvin Imam Khomeini University and Mohaghegh Ardabili.

Authors’ contributions

Conceptualization, methodology, Data collection, Data analysis: Roghayeh Afrondeh, Mohammad Ebrahim Bahram, Seyed Hamed Ghiyami Taklimi; Writing – original draft: Mohammad Ebrahim Bahram, Seyed Hamed Ghiyami Taklimi, Mahsa Gholam Hosseini; Writing – review & editing: Roghayeh Afrondeh, Mohammad Ebrahim Bahram; Final approval: Roghayeh Afrondeh, Mohammad Ebrahim Bahram, Seyed Hamed Ghayami Taklimi.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

We want to thank the Vice-Chancellor for Research of Imam Khomeini International University of Qazvin and Mohaghegh Ardabili University.
مقاله پژوهشی

تأثیر تمرین تناوبی با شدت بالا و مصرف عصاره برگ لوکوات بر سطوح سرمی آنزیم‌های کبدی مراحل چاق مبتلا به چرب غیرالکلی

محمد باهرآمیز بهرامی ۱، رقیه افرونده ۲، سیدحمد قائمی تکلیمی ۲، عباس صادقی ۳، مهسا غلامحسینی ۴

۱. گروه تربیت بدنی و علوم ورزشی، دانشکده علوم تربیتی و روان‌شناختی، دانشگاه باهنر کرمان، کرمان.
۲. گروه تربیت بدنی و علوم ورزشی، دانشکده علوم تربیتی و روان‌شناختی، دانشگاه آزاد علوم کلامی، تهران، ایران.

مقدمه

عصاره برگ لوکوات (الگومورفس) به صورت تهیه گردانده می‌شود و در اثر درمان‌های زیادی از این ارگانیسم به عنوان مورد استفاده استفاده شده است. در این مطالعه از طریق آزمون‌های بیانی سطوح سرمی آلت‌ریک، آلترناتریک، الکل‌تولوزاز و آلکالین فسفاتاز به عنوان میانگین سطوح سرمی آلت‌ریک، آلترناتریک، الکل‌تولوزاز و آلکالین فسفاتاز در سه گروه یا بیشتر باعث کاهش معنی‌داری در سطوح سرمی آلترناتریک، آلکالین فسفاتاز و آلترناتریک می‌گردد.

یافته‌ها

هدف از مطالعه حاضر بررسی اثر یک دوره تمرین تناوبی شدید به نظر می‌رسد. مصرف عصاره برگ لوکوات به همراه تمرینات تناوبی با شدت بالا منجر به کاهش آنزیم‌های کبدی در بیماران چرب غیرالکلی می‌شود. همچنین نتایج آزمون توکی نشان داد، سطوح سرمی آلت‌تریک، آلترناتریک، الکل‌تولوزاز و آلکالین فسفاتاز در گروه تمرین و گروه کنترل تقسیم شدند. تمرینات به مدت هشت هفته و سه جلسه در هفته به مدت 60 دقیقه با شدت بین 10-16 درصد شرایط بالا انجام شدند. در غیاب مصرف الکل رخ می‌داد. روزی دو عدد کپسول عصاره برگ لوکوات به همراه مصرف عصاره برگ لوکوات به همراه تمرینات تناوبی با شدت بالا منجر به کاهش معنی‌داری در سطوح سرمی آلترناتریک، آلکالین فسفاتاز و آلترناتریک می‌گردد.

نتایج نهایی نشان داد، مصرف عصاره برگ لوکوات در برابر کاهش سطوح آلکالین فسفاتاز، آلترناتریک و آلترناتریک معنی‌داری دارد.

مراجع

1. Non-alcoholic fatty liver disease (NAFLD)
مطالعات در حاشیه این تحلیل نشان می‌دهند که کاهش وزن و رژیم غذایی و رژیم‌های دیابت می‌توانند به کاهش سطح به‌دست آمده از عامل‌های سایلی برای علل آلاینده‌های قلبی عروقی موثر باشند. این موضوع در مورد بیمارانی که به دلیل رژیم‌های دیابت و قلبی عروقی مبتلا هستند، خاصاً دارای اثرات مثبتی است.

در این مطالعه، میزان انرژی در هر بیمار به‌طور مداوم بررسی می‌گردد و نشان می‌دهد که با افزایش انرژی و رژیم غذایی، ریسک بروز کبدی و عوامل دیابتی نسبت به کنترل کاهش می‌یابد.

کنترل وزن و رژیم غذایی به دلیل نقش آن در کاهش سطح به‌دست آمده از عامل‌های سایلی برای علل آلاینده‌های قلبی عروقی، بهترین روش برای کاهش ریسک بروز بیماری‌های قلبی عروقی است. به همین دلیل، ویژه در بیمارانی که به دلیل رژیم‌های دیابت و قلبی عروقی مبتلا هستند، این روش‌ها اهمیت بسزایی دارند.
مطلب طبق مکمل

شکلفت علوم پزشکی ایران

سال 1399، شماره 12

محله تحقیق

قازش گرفتن، آزمون می‌تواند در سال ورزشی امام علی (ع) قزوین در
فنولیک‌ها و تری‌ترپن‌ها (مانند اسید اورسولیک)، سکوی‌ترپن‌ها، به افراد گروه
ضربان قلب استراحت – ضربان قلب آمادگی و ظرفیت هوازی آزمودنی‌ها تعدیل می‌شود. برای استفاده
محاسبه ضربان قلب تمرین، از طریق معادله کارونن و طبق
شیوه اجرا آشنا بشوند، یک هفته پیش از شروع برنامه تمرینی
را به آن‌ها اعمال کرد تا برای افراد قابل اجرا باشد و فشار کمتری
به همین معنی و به همین کم‌وکاری اطلاعات در خصوص اثرگذاری
لوكوکت و تمرینات توانایی با شدت بالا بر تشخیص بالینی کبد
چرب در برنامه می‌باشد که چربی فیبرولیز محرک می‌باشد.

ملاحظه می‌شود که آزمودنی‌ها همه‌ها به همراه فیبرولیز
لوكوکت و آنتی‌بیوتیک کبد می‌باشد.

مواد و روش‌ها

این تحقیق به روش آزمون و پاسورن با گروه کنترل برگرفته از مطالعات
برای شرکت کننده در برنامه تمرینی، نسبت استراحت به فعالیت
اجرایی می‌شود. این تحقیق به روش نیمه تجربی بود. طرح تحقیق شامل
برگ لوکوات همراه با هشت هفته تمرین و اندازه‌گیری ضربان قلب.

رژیم غذایی (29-80 کیلوگرم‌در یک هفته) در بیماران مبتلا به کبد چرب، محققین در پی پاسخ به این
بستر، به همین دلیل و به علت کمبود اطلاعات در خصوص اثرگذاری

مصرف عصاره لوکوات همراه با هشت هفته تمرین و اندازه‌گیری ضربان قلب.

عملا به روش آزمون و پاسورن با گروه کنترل برگرفته از مطالعات

شیوه‌های تمرین، نسبت استراحت به فعالیت

اجرایی می‌شود. این تحقیق به روش نیمه تجربی بود. طرح تحقیق شامل

برگ لوکوات همراه با هشت هفته تمرین و اندازه‌گیری ضربان قلب.

رژیم غذایی (29-80 کیلوگرم‌در یک هفته) در بیماران مبتلا به کبد چرب، محققین در پی پاسخ به این
بستر، به همین دلیل و به علت کمبود اطلاعات در خصوص اثرگذاری

مصرف عصاره لوکوات همراه با هشت هفته تمرین و اندازه‌گیری ضربان قلب.

عملا به روش آزمون و پاسورن با گروه کنترل برگرفته از مطالعات

شیوه‌های تمرین، نسبت استراحت به فعالیت

اجرایی می‌شود. این تحقیق به روش نیمه تجربی بود. طرح تحقیق شامل

برگ لوکوات همراه با هشت هفته تمرین و اندازه‌گیری ضربان قلب.

رژیم غذایی (29-80 کیلوگرم‌در یک هفته) در بیماران مبتلا به کبد چرب، محققین در پی پاسخ به این
بستر، به همین دلیل و به علت کمبود اطلاعات در خصوص اثرگذاری

مصرف عصاره لوکولت و آنتی‌بیوتیک کبد می‌باشد.
زمین‌های کاذب تأثیری مثبتی نداشتند. همچنین آزمون و گروه تمرین سرده‌ای با شدت بالا به همراه مصرف عصاره لوکوات سطح سرمی در گروه تمرین به همراه عصاره با گروه عصاره با گروه عصاره، تفاوت معنی‌داری بین گروه‌های تمرین به همراه عصاره با گروه عصاره وجود نداشت. در نتایج آزمون تی زوجی نشان داد که پس از هشت هفته تمرین با استفاده از نرم‌افزارهای آماری توکی جهت مقایسه دوی نرم و حرکات

سردگرفته	جدول شماره 1
گلم‌غریزی	تمرین و گرم‌زنی
آلت	قلم‌غریزی

در نتیجه آزمون تعقیبی توکی نشان داد در مقادیر

آل‌آمینی	قلم‌غریزی
آلت	قلم‌غریزی

در نتیجه آزمون تعقیبی توکی نشان داد در مقادیر

آل‌آمینی	قلم‌غریزی
آلت	قلم‌غریزی

روش‌های بیشماری از کاربرد در پیشنهادات تأثیری تمرینی، یکی در مورد استفاده با شدت بالا به همراه مصرف عصاره لوکوات سطح سرمی در گروه تمرین به همراه عصاره با گروه عصاره. در نتیجه آزمون تعقیبی توکی نشان داد در مقادیر

آل‌آمینی	قلم‌غریزی
آلت	قلم‌غریزی

روش‌های بیشماری از کاربرد در پیشنهادات تأثیری تمرینی.
این مطالعه به صورت نیمه تجربی با هدف بررسی اثربخشی عصاره برگ لوکوات به همراه تمرینات تناوبی با شدت بالا بر روی برخی از آنزیم‌های کبدی در بیماران مبتلا به کبد چرب انجام شد. بررسی نتایج موجود نشان داد که هشت هفته تمرین تناوبی با شدت بالا و مصرف عصاره ALP و AST کبدی و گروه تمرین تأثیر معنی‌داری داشت. همچنین مشاهده شد که تفاوت معنی‌داری بین گروه‌های تمرین با همراه عصاره و گروه کنترل و گروه تمرین وجود نداشت. این یافته با نتایج انجام شده توسط نجفی و همکاران [33] و گروه‌های تمرین اثر معنی‌داری نداشت. همچنین مشاهده شد که تفاوت معنی‌داری بین گروه‌های تمرین با همراه عصاره و گروه کنترل و گروه‌های کنترل وجود نداشت. این یافته با نتایج انجام شده توسط نجفی و همکاران [33] و سیستگنیک و همکاران [35] در بررسی اثر تمرینات ورزشی بر نشانگران بیوشیمیایی کبد در زنان یافته شد که تمرین ترکیبی و نسبت به تمرین استقامتی تأثیر مثبت‌تری داشت. نتایج مطالعه حاضر با مطالعات سابقه و همکاران [27]، قبلی و همکاران [28] و البته در بیماران و همکاران [29] متفاوت بوده‌اند. جمله این مطالعه به‌صورت نیمه‌تجاری با هدف بررسی اثرات تمرینات تناوبی با شدت بالا و مصرف عصاره برگ لوکوات بر سطوح سری‌آزمایی‌های کبدی مردان فوق‌مرکبی که پزشک نیستند...
آمارهای نشان دهنده اینکه افزایش سطح آنزیم و بتااکسیدازون و بازیابی متابولیسم چربی از تجمع استرس اکسیداتیو را مهار می‌کند. همچنین، با برقراری تعادل در داخل سلولی و افزایش فعالیت آنزیم‌های آنتی اکسیدان، می‌تواند به کاهش سطح آنزیم و بتااکسیدازون و بازیابی متابولیسم چربی کمک کند.

tabl. 1 نتایج آزمون تحلیل هریسی و نیرویی به مانگ هم‌اندازه برکناری افراد و اندازه‌گیری‌های سطح عامل‌های میکروژنریوژنیک و درون‌سیستمیک

متغیر	سطح تمرین	کنترل	اختلاف	P
ALT (U/L)	تمرین	39 ± 11	54 ± 9	0.023
AST (U/L)	تمرین	38 ± 12	52 ± 8	0.021
تمرین	38 ± 12	52 ± 8	0.021	

ملاحظه می‌کنیم که افزایش استرس هوازی و بروز سیگنال‌های کاهش عامل‌های میکروژنریوژنیک و درون‌سیستمیک به ویژه AST و ALT می‌تواند به کاهش استرس اکسیداتیو و بازیابی متابولیسم چربی کمک کند. همچنین، با برقراری تعادل در داخل سلولی و افزایش فعالیت آنزیم‌های آنتی اکسیدان، می‌تواند به کاهش سطح آنزیم و بتااکسیدازون و بازیابی متابولیسم چربی کمک کند.
در این مطالعه تأثیر تمرین تناوبی با شدت بالا و مصرف عصاره برگ لوکوات بر سطوح آنزیم‌های کبدی مردان چاق مبتلا به کبد چرب غیرالکلی بررسی شد.

نتایج نشان داد که هشت هفته تمرین تناوبی با شدت بالا به همراه مصرف عصاره برگ لوکوات، باعث کاهش در سطوح آنزیم‌های کبدی می‌شود. همچنین مصرف عصاره به‌طور قابل توجهی توسط پیش‌تیمار عصاره برگ لوکوات نیز تعدیل شد. بنابراین، عصاره برگ لوکوات یک عملکرد بالقوه در سرکوب ناشی از تجمع اسید چرب آزاد دارد. در پژوهش NAFLD توسعه نیش اوکا و همکاران بهبود عملکرد کبد با کاهش معنی‌دار سطح AST، ALT، ALP و اسید اورسولیک موجود در برگ گیاه مرتبط دانست. نتایج حاصل از این مطالعات با یافته‌های این تحقیق همان راستا بود. همچنین به نظر می‌رسد اثربخشی احتمالی در بهبود آنزیم‌های کبدی را می‌توان با خاصیت آنتی‌اکسیدانی که با داشتن UA می‌تواند اثر محافظت کبدی در برابر سمیت کبدی در موش صحرایی است که علت آن عمدتاً به دلیل وجود فلاونوئیدها در برگ لوکوات. نتایج حاکی از این است که تمرین تناوبی با شدت بالا به همراه مصرف عصاره برگ لوکوات می‌تواند از بروز فیبروز کبدی، درمان بیماران غیرالکلی کبدی جلوگیری کند با القای آسیب کبدی تأثیر عصاره برگ لوکوات را بر سمیت کبدی مورد بررسی قرار داده‌اند. تجویز عصاره برگ لوکوات باعث کاهش سطح UA و ترکیبات آن شد. مطالعات آنتی‌اکسیدانی و ضدالتهابی در برگ لوکوات به دلیل وجود UA اسید اورسولیک و در حیاطی‌ها به عنوان یک رادیکال حفاظت‌دهنده عمل می‌کند. علاوه بر این، با کاهش سطح سلولی هیدروژن پراکسید و نیتریک اسید، این عصاره به‌طور عمده با ویژگی‌های ضدالتهابی خود را نشان می‌دهد؛ بنابراین با توجه به ویژگی‌های آنتی‌اکسیدانی و ضدالتهابی، مطالعات کمی در رابطه با تأثیر بر بیماری کبد چرب مطالعات کمی در رابطه با تأثیر بر بیماری کبد چرب مطالعات کمی در رابطه با تأثیر بر بیماری کبد چرب مطالعات کمی در رابطه با تأثیر بر بیماری کبد چرب مطالعات کمی در رابطه با تأثیر بر بیماری کبد چرب مطالعات کمی در رابطه با تأثیر بر بیماری کبد چرب مطالعات کمی در رابطه با تأثیر بر بیماری کبد چرب مطالعات کمی در رابطه با تأثیر بر بیماری کبد چرب مطالعات کمی در رابطه با تأثیر بر بیماری کبد چرب مطالعات کمی در رابطه با تأثیر بر بیماری کبد چرب مطالعات کمی در رابطه با تأثیر بر بیماری کبد چرب
و سید حامد قیامی تکلیمی,

تغذیه منافع

بنابر اظهار تویست‌گان در این مطالعه هیچ کسی تغذیه منافعی ندارد.

تشکر و قدردانی

از معاونت پژوهشی دانشگاه بین‌المللی امام خمینی(ره) و دانشگاه محقق اردبیلی و کلیه آموزشی‌های که در این مطالعه ما را همراهی کردهند، تشکر و قدردانی می‌کنیم.

محمدابراهیم بهرامی و همکاران. تأثیر تمرین تناوبی با شدت بالا و مصرف عصاره برگ لوکوات بر سطوح سرمی آنزیم‌های کبدی مردان بیمار هالیکوبیس و کبدی مردان بیمار باریک-بی‌یولکتریک
References

[1] St George A, Bauman A, Johnston A, Farrell G, Chey T, George J. Independent effects of physical activity in patients with nonalcoholic fatty liver disease. Hepatology. 2009; 50(1):68-76. [DOI:10.1002/hep.22940] [PMID]

[2] Araújo AR, Rosso N, Bedogni G, Trimboli I, Bellentani S. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: What we need in the future. Liver International. 2018; 38(Suppl 1):47-51. [DOI:10.1111/liv.13643] [PMID]

[3] Davoodi M, Moosavi H, Nikbakht M. [The effect of eight weeks selected aerobic exercise on liver periphery and liver enzymes (AST, ALT) of fat liver patients (Persian)]. Journal of Shahrekord University of Medical Sciences. 2012; 14(1):84-90. http://78.39.35.44/article-1-1054-fa.html

[4] Jahani G, Firoozai M, Matin Homaei H, Tarverdizadeh B, Azarbayjani MA, Movaseh GR, et al. [The effect of continuous and regular exercise on erythrocyte antioxidative enzymes activity and stress oxidative in young soccer players (Persian)]. Razi Journal of Medical Sciences. 2010; 17(74):22-32. https://www.sid.ir/en/Journal/ViewPaper.aspx?id=186038

[5] Keating SE, Hackett DA, George J, Johnson NA. Exercise and non-alcoholic fatty liver disease: A systematic review and meta-analysis. Journal of Hepatology. 2012; 57(1):157-66. [DOI:10.1016/j.jhep.2012.02.023] [PMID]

[6] ZHOU CH, Li X, XU CJ, SUN CD, CHEN KS. Hydrophilic and lipophilic antioxidant activity of loquat fruits. Journal of Food Biochemistry. 2012; 36(5):621-6. [DOI:10.1111/j.1745-4514.2011.00574.x]

[7] Banno N, Akihisa T, Tokuda H, Yasukawa K, Taguchi Y, Akazawa H, et al. Anti-inflammatory and antitumor-promoting effects of the triterpene acids from the leaves of Eriobotrya japonica. Biological & Pharmaceutical Bulletin. 2005; 28(10):1995-9. [DOI:10.1248/bpb.28.1995] [PMID]

[8] Shih CC, Lin CH, Wu JB. Eriobotrya japonica improves hyperlipidemia and reverses insulin resistance in high-fat-fed mice. Phytotherapy Research. 2010; 24(12):1769-80. [DOI:10.1002/ptr.3143] [PMID]

[9] Ito H, Kobayashi Y, Takamatsu Y, Li SH, Hatanou T, Sakagami H, et al. Polyphenols from Eriobotrya japonica and their cytotoxicity against human oral tumor cell lines. Chemical & Pharmaceutical Bulletin. 2000; 48(5):687-93. [DOI:10.1248/cpb.48.687] [PMID]

[10] Alshaker HA, Qinna NA, Qadan F, Bustami M, Mataika KZ. Eriobotrya japonica hydrophilic extract modulates cytokines in normal tissues, in the tumor of Meth-A-fibrosarcoma bearing mice, and enhances their survival time. BMC Complementary and Alternative Medicine. 2011; 11:9. [DOI:10.1186/1472-6882-11-9] [PMID]

[11] Bae D, Yoo Y, Yoon HG, Kim K, Lee YH, Kim Y, et al. Protective effects of loquat (Eriobotrya japonica) leaves against ethanol-induced toxicity in HepG2 cells transfected with CYP2E1. Food Science and Biotechnology. 2010; 19(4):1093-6. [DOI:10.1007/s10068-010-0154-3]

[12] Kitani K, Kanai S, Ivy GO, Carrillo MC. Pharmacological modifications of endogenous antioxidant enzymes with special reference to the effects of deprenyl: A possible antioxidant strategy. Mechanisms of Ageing and Development. 1999; 111(2-3):211-21. [DOI:10.1016/S0047-6374(99)00065-2]

[13] Iida Y, Murakami A, Ohihagi H. Ursolic acid: An anti-and pro-inflammatory triterpenoid. Molecular Nutrition & Food Research. 2008; 52(1):26-42. [DOI:10.1002/mnfr.200700389] [PMID]

[14] Azevedo MF, Camsari C, Sá CM, Lima CF, Fernandes-Ferreira M, Pereira-Wilson C. Ursolic acid and urolithin-7-glucoside improve lipid profiles and increase liver glycogen content through glycogen synthase kinase-3. Phytotherapy Research. 2010; 24(Suppl 2):S220-4. [DOI:10.1002/ptr.3118] [PMID]

[15] Li S, Liao X, Meng F, Wang Y, Sun Z, Guo F, et al. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats. PLoS One. 2014; 9(11):e86724. [DOI:10.1371/journal.pone.0086724] [PMID] [PMCID]

[16] Zhao JQ, Wen YF, Bhadouria M, Niral SK, Sharma A, Shrivastava S, et al. Protective effects of propolis on inorganic mercury induced oxidative stress in mice. New Delhi: CSIR; 2009. http://nopr.niscaindia.handle/123456789/3859

[17] Bhadouria M. Propolis prevents hepatoenral injury induced by chronic exposure to carbon tetrachloride. Evidence-based Complementary and Alternative Medicine. 2012; 2012:235358. [DOI:10.1155/2012/235358] [PMID] [PMCID]

[18] Saravanan R, Viswanathan P, Pagalendri KV. Protective effect of ursolic acid on ethanol-mediated experimental liver damage in rats. Life Sciences. 2006; 78(7):713-8. [DOI:10.1016/j.lfs.2005.05.060] [PMID]

[19] Gharbi S, Bakhtnari N, Ehtam-Moslemee-Jalalvand, Bakhtnari F. Ursolic acid mediates hepatic protection through enhancing of anti-aging biomarkers. Current Aging Science. 2018; 11(1):16-23. [PMID]

[20] Kunnel SD, Elmore CJ, Bongers KS, Ebert SM, Fox DK, Dyle MC, et al. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease. PLoS One. 2012; 7(6):e39332. [DOI:10.1371/journal.pone.0039332] [PMID] [PMCID]

[21] Moosavi-Sohrforouzani A, Ganbarzadeh M. [Reviewing the physiological effects of aerobic and resistance training on insulin resistance and some biomarkers in non-alcoholic fatty liver disease (Persian)]. Feyz Journal of Kashan University of Medical Sciences. 2016; 20(3):282-96. http://fyek.kaums.ac.ir/article-1-3091-en.html

[22] Pingitore A, Lima GP, Mastorci F, Quinones A, Iervasi G, Vassalle C. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition. 2015; 31(7-8):916-22. [DOI:10.1016/j.nut.2015.02.005] [PMID]

[23] Slentz CA, Bateman LA, Willis LH, Shields AT, Tanner CJ, Piner LW, et al. Effects of aerobic vs. resistance training on visceral and liver fat stores, liver enzymes, and insulin resistance by HOMA in overweight adults from STRRITE AT/RT. American Journal of Physiology-Endocrinology and Metabolism. 2011; 301(5):E1033-9. [DOI:10.1152/ajpendo.00291.2011] [PMID] [PMCID]

[24] Shamsoddini A, Sobhani V, Ghahar Chehreh ME, Alavian SM, Zaree A. Effect of aerobic and resistance exercise training on liver enzymes and hepatic fat in iranian men with nonalcoholic fatty liver disease. Hepatillis Monthly. 2015; 15(10):e31434. [DOI:10.5812/hepatitis.31434] [PMID] [PMCID]

[25] Banari F, Afzalpour M E, Ilibiagi S, Kazemi T, Moomamadi Fard M. [The effect of resistance and combined exercise on serum level of liver enzymes and fitness indicators in women with nonalcoholic fatty liver disease (Persian)]. Journal of Birjand University of Medical Sciences. 2014; 21(2):188-202. http://journal.bumsir.ac.ir/article-1-1588-en.html

[26] Behzadimoghadam M, Galedari M, Motalebi L. [The effect of eight weeks resistance training and low-calorie diet on plasma levels of liver enzymes and liver fat in Non-Alcoholic Fatty Liver Disease (NAFLD) (Persian)]. Iranian Journal of Nutrition Sciences & Food Technology. 2018; 12(4):25-32. http://nifs.tbmu.ac.ir/article-1-2356-en.html

[27] Ali M, Matinhomeae H, Azarbayjani MA, Piri M. [The effect of different resistance training intensities on liver function in obese men (Persian)]. Journal of Sport Biosciences. 2017; 7(1):75-92. [DOI:10.5812/ hepatmon.31434]
Zelber-Sagi S, Ratziu V, Oren R. Nutrition and physical activity in nonalcoholic fatty liver disease. The American Journal of Gastroenterology. 2011; 106(3):460-8. [DOI:10.1038/ajg.2010.488] [PMID] [PMCID]

Tondsa Khaghani B, Dehkhoda M R, Amani Shalamzari S. [Improve-ment of aerobic power and health status in overweight patients with non-alcoholic liver disease with high intensity interval training (Persian)]. Journal of Payavard Salamat. 2019; 13(1):71-80. http://payavard.tums.ac.ir/article-1-6700-en.html

Hood MS, Little JP, Tarnopolsky MA, Myslik F, Gibala MJ. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Medicine and Science in Sports and Exercise. 2011; 43(10):1849-56. [DOI:10.1249/MS.0b013e3182199834] [PMID] [PMCID]

Cho YH, Lee SY, Kim CM, Kim ND, Choe S, Lee CH, et al. Effect of loquat leaf extract on muscle strength, muscle mass, and muscle function in healthy adults: A randomized, double-blinded, and placebo-controlled trial. Evidence-Based Complementary and Alternative Medicine. 2016; 2016:4301621. [DOI:10.1155/2016/4301621] [PMID] [PMCID]

Esfahani FH, Aghzhi G, Mirrman P, Azifi F. Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the Tehran Lipid and Glucose Study. Journal of Epidemiology. 2010; 20(2):150-8. [DOI:10.2188/jea.JE20090083] [PMID] [PMCID]

Galedari M, Kaki A. [The effect of 12 weeks high intensity interval training and resistance training on liver fat, liver enzymes and insulin resistance in men with nonalcoholic fatty liver (Persian)]. Jundishapur Scientific Medical Journal. 2017;16(5):493-503. [DOI:10.21887/jea.JE20090083]

Najafi L, Azizi M, Tahmasebi V. [The effect of 6 weeks HIIT training in the conditions of hypoxia and normoxia on liver enzymes levels and lipid profiles in overweight women (Persian)]. Journal of Applied Health Studies in Sport Physiology. 2016; 3(2):56-63. [DOI:10.21887/jea.JE20090083]

Moradi Kelardeh B, Azerbayani MA, Peeri M, Homaei HA. [Effects of nonlinear resistance training on liver biochemical marker levels in postmenopausal women with nonalcoholic fatty liver disease (Persian)]. Scientific Journal of Rehabilitation Medicine. 2017; 5(4):136-45. [DOI:10.21887/jea.JE20090083]

Skrypnik D, Ratjaczak M, Karolikiewicz J, Madry E, Pupek-Musialik D, Honsdorf-Korzon R, et al. Effects of endurance and endurance-strength exercise on biochemical parameters of liver function in women with abdominal obesity. Biomedicine & Pharmacotherapy. 2016; 80:1-7. [DOI:10.1016/j.biopha.2016.02.017] [PMID]

Zelber-Sagi S, Ratziu V, Oren R. Nutrition and physical activity in NAFLD: An overview of the epidemiological evidence. World Journal of Gastroenterology. 2011; 17(29):3377-89. [DOI:10.3748/wjg.v17.i29.3377] [PMID] [PMCID]

Fealy CE, Haus JM, Solomon TP, Pagadala M, Flask CA, McCullough AJ, et al. Short-term exercise reduces markers of hepatocyte apoptosis in nonalcoholic fatty liver disease. Journal of Applied Physiology. 2012; 113(1):1-6. [DOI:10.1152/japplphysiol.00127.2012] [PMID] [PMCID]

Hallsworth K, Fattakhova G, Hollingsworth KG, Thoma C, Moore S, Taylor R, et al. Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss. Gut. 2011; 60(9):1278-83. [DOI:10.1136/gut.2011.242073] [PMID] [PMCID]

Zhou C, Sun C, Chen K, Li X. Flavonoids, phenolics, and antioxidant capacity in the flower of Eriobotrya japonica Lindl. International Journal of Molecular Sciences. 2011; 12(5):2935-45. [DOI:10.3390/ijms12052935] [PMID] [PMCID]

Yoshioka S, Hamada A, Jobu K, Yokota J, Onogawa M, Koytani S, et al. Effects of Eriobotrya japonica seed extract on oxidative stress in rats with non-alcoholic steatohepatitis. Journal of Pharmacy and Pharmacology. 2010; 62(2):241-6. [DOI:10.1211/pp.62.02.0012] [PMID] [PMCID]

Shahat AA, Ullah R, Alqahtani AS, Alsaid MS, Husseiny HA, Al Meanazel OTR. Hepatoprotective effect oferiobotrya japonica leaf extract and its various fractions against carbon tetra chloride induced hepatotoxicity in rats. Evidence-Based Complementary and Alternative Medicine. 2018; 2018:3782768. [DOI:10.1155/2018/3782768] [PMID] [PMCID]

Mun J, Park J, Yoon HG, You Y, Choi KC, Lee YH, et al. Effects of eriobotrya japonica water extract on alcoholic and nonalcoholic fatty liver impairment. Journal of Medicinal Food. 2019; 22(12):1262-70. [DOI:10.1089/jmf.2019.4403] [PMID]

Nishioka Y, Yoshioka S, Kusunose M, Cui T, Hamada A, Ono M, et al. Effects of extract derived from Eriobotrya japonica on liver function improvement in rats. Biological & Pharmaceutical Bulletin. 2002; 25(8):1053-7. [DOI:10.1248/bpb.25.1053] [PMID] [PMCID]

Li JS, Wang WJ, Sun Y, Zhang YH, Zheng L. Ursolic acid inhibits the development of nonalcoholic fatty liver disease by attenuating endoplasmic reticulum stress. Food & Function. 2015; 6(5):1643-51. [DOI:10.1039/C5FO00083A] [PMID] [PMCID]
