Blood manganese levels during pregnancy and postpartum depression: A Cohort Study among Women in Mexico

Nia McRae1, Ghalib Bello2, Katherine Svensson3, Maritsa Solano-González4, Rosalind J. Wright1, Megan M. Niedzwiecki1, Mariana Torres Calapiz5, Chitra Amarasiriwardena1, Lourdes Schnaas5, Marcela Tamayo-Ortiz4,6, Martha M. Téllez-Rojo4, Robert O. Wright1

1. Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
2. London Institute of Medical Sciences, Imperial College, London, UK.
3. Department of Health Sciences, Karlstad University, Karlstad, Sweden.
4. Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México.
5. Division of Community Interventions Research, National Institute of Perinatology, México City, México.
6. Consejo Nacional de Ciencia y Tecnología, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México.

Abstract

Background—Occupational studies have shown an association between elevated Mn exposure and depressive symptoms. Blood Mn (BMn) naturally rises during pregnancy due to mobilization from tissues, suggesting it could contribute to pregnancy and postpartum depressive symptoms.

Objectives—To assess the association between BMn levels during pregnancy and postpartum depression (PPD), creating opportunities for possible future interventions.

Methods—We studied 561 women from the reproductive longitudinal Programming Research in Obesity, Growth, Environment, and Social Stressors (PROGRESS) cohort in Mexico City. BMn was measured at the 2nd and 3rd trimesters, as well as delivery. The Edinburgh Postnatal Depression Scale (EPDS) was used to assess PPD symptoms at 12-months postpartum. We used a generalized linear model assuming a Poisson distribution to assess the association between BMn levels and PPD, with adjustments for age, stress and depressive symptoms during pregnancy, education, socioeconomic status, and contemporaneous blood lead levels.

Correspondence to: Nia McRae. Icahn School of Medicine at Mount Sinai. 17 East 102nd Street, New York, NY 10029, United States. nia.x.mcrae@mssm.edu.

Competing Financial Interests
The authors declare they have no actual or potential competing financial interests.

Publisher’s Disclaimer: This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Results—The mean ± standard deviation (SD) EPDS score at 12-months postpartum was 6.51 ± 5.65, and 17.11% of women met the criteria for possible PPD (score ≥ 13). In adjusted models, BMn during the 3rd trimester (β: 0.13, 95% CI: 0.04–0.21) and BMn levels averaged at the 2nd and 3rd trimester (β: 0.14, 95% CI: 0.02–0.26) had a positive association with EPDS scores at 12 months postpartum. BMn at the 2nd trimester (β: 0.07, 95% CI: −0.09–0.22) and delivery (β: 0.03, 95% CI: −0.04–0.10) had a non-significant positive association with EPDS scores at 12-months postpartum. Stress and depressive symptoms during pregnancy was associated with higher EPDS scores at 12-months postpartum in all of the adjusted models but were only significant when either BMn during 3rd trimester or BMn averaged across 2nd and 3rd trimester was assessed as the exposure.

Discussion—Our results demonstrate that elevated BMn levels during pregnancy predict PPD symptoms and could be a potential pathway for intervention and prevention of PPD.

Keywords
manganese; pregnancy; postpartum depression; Mexico; cohort study

Introduction

Postpartum depression (PPD) is a highly prevalent mood disorder that can have detrimental impacts on the health of a mother and her child, predicting a higher risk of clinical depression and affecting early life parenting. PPD is a treatable clinical illness characterized by extreme sadness, indifference, and anxiety. PPD is defined by major depressive disorder (MDD) symptoms that occur after childbirth such as changes in energy, sleep, and appetite, all of which can negatively impact parenting behaviors (American Psychiatric Association 2017). PPD is the most common complication of childbirth, affecting 10–20% of women (Gaynes et al. 2005) (Postpartum Depression: Action Towards and Treatment 2015) (Fisher et al. 2012) in both developing and developed countries. In addition to its effects on mothers, PPD can harm the development of infants by preventing mothers from engaging in critical social interactions with their children (Ibarra-Yruegas et al. 2018). In extreme cases, PPD can result in suicide or even infanticide (El-Hachem et al. 2014). Despite the emotional, physical, and mental burden it places on mother and child, PPD remains an under examined, underdiagnosed, and undertreated mental disorder (Place et al. 2015) (Postpartum Depression: Action Towards and Treatment 2015).

A better understanding of the etiology of PPD could potentially improve prevention strategies. Established risk factors for PPD include history of depression, inadequate social support, stress during pregnancy, family conflict, socioeconomic status (SES), parity, lack of partner support, and low self-esteem (Norhayati et al. 2015) (Oppo et al. 2009) (Mori et al. 2017) (Almutairi et al. 2017). Neuroactive chemicals, such as manganese (Mn), may play a role as well. Metals (e.g. lead, copper, and iron, among others) have well-known impacts on neurobehavior and have been linked to depressive symptoms (Gonulalan et al. 2013; Li et al. 2018), albeit typically with clinically-relevant levels of high exposure or for some nutrient metals in the setting of mineral deficiency. Mlyniec et al. (2015) suggested that essential elements may contribute to the neurobiology of psychiatric disorders (Mlyniec et al. 2015). Manganese is an essential nutrient with well-known neurobehavioral effects from high
occupational exposures, including depressive symptoms (Horning et al. 2015) (Roels et al. 2012) (Bouchard et al. 2007). Because Mn is mobilized from internal stores in pregnancy, it may rise in the blood to levels that exceed homeostatic levels, raising the possibility that Mn may play a role in PPD (Claus Henn et al. 2017).

Mn is a ubiquitous trace element that naturally occurs in the environment and is an essential nutrient that bioaccumulates in the central nervous system (CNS), particularly in fetal life and infancy. This suggests that it plays a functional role in brain development (Pfalzer and Bowman 2017). Mn acts as a cofactor to anti-oxidant enzymes such as superoxide dismutase and to enzymes involved in neurotransmitter synthesis such as glutamine (Takeda 2003). Common Mn exposure pathways are air, diet, water, and occupation (Wright and Baccarelli 2007). Mn is a transition metal similar to iron and copper that is an anti-oxidant at homeostatic levels (Aschner and Aschner 2005) (Chen et al. 2015) (Horning et al. 2015). However, elevated Mn exposure, such as that from occupational exposure or from contaminated environments, is neurotoxic and can stimulate oxidative stress and neurodegenerative processes by acting as a catalyst for the Fenton reaction (Roels et al. 2012) (Farina et al. 2013). Mn-induced oxidative stress has been associated with MDD (Black et al. 2015) (Liu et al. 2015) (Pulta et al. 2014) (Maes et al. 2011). Most studies on Mn neurotoxicity have examined its detrimental effects on motor and cognitive function (Chen et al. 2015) (Haynes et al. 2015) (Guilarte 2011) but have not focused on emotion regulation or other aspects of mental health.

Research regarding chronic Mn exposure and psychiatric disorders has demonstrated a direct association between higher Mn levels and MDD symptoms (Bouchard et al. 2007) (Shiue 2015). Most relevant to this study are the recent studies which demonstrate that BMn levels rise rapidly in pregnancy to two to three times their baseline (Guy et al. 2018) (Rodrigues et al. 2015) (Eum et al. 2014) (Smargiassi et al. 2002) (Claus Henn et al. 2017). During pregnancy, there is a physiological redistribution of body Mn stores that is likely to facilitate transport of Mn to the fetus, leading to substantial increases in circulating BMn in mothers. If higher brain Mn is a cause of depressive symptoms, then we hypothesize that a relatively modest disruption in maternal Mn homeostasis during pregnancy might cause a threshold to be crossed, predisposing mothers to PPD following delivery. To our knowledge, this is the first study to focus on the association between BMn levels during pregnancy and PPD.

Methods

Study Participants

The Programming Research in Obesity, Growth, Environment, and Social Stressors (PROGRESS) study is an ongoing longitudinal birth cohort study based in Mexico City. Briefly, pregnant women were recruited during prenatal visits at four Mexican Social Security System (IMSS) clinics between July 2007 and February 2011, enrolled in the study in the 2nd trimester, consented and followed longitudinally thereafter. The inclusion criteria required the women to be at least 18 years old, less than 20 weeks pregnant, free of cardiac or renal ailments, have telephone access, and plan to maintain Mexico City residency for at least the following three years. Further details regarding the inclusion criteria have been previously described (Braun et al. 2014). Institutional review boards at the Harvard T.H.
Chan School of Public Health, Icahn School of Medicine at Mount Sinai, the Mexico National Institute of Public Health, the Mexico National Institute of Perinatology, and the IMSS approved the study protocols.

Postpartum Depression assessment

The presence of depressive symptoms was assessed during pregnancy as a covariate and at 12 months postpartum as the dependent variable based on scores from the Spanish version of the Edinburgh Postnatal Depression Scale (EPDS) which was been validated in the Mexican population (Cox et al. 1987) (Alvarado-Esquivel et al. 2014). The EPDS is a screening tool for depression and consists of 10 items which query respondents on various symptoms of depression. Responses to each item are scored on a 4-point Likert scale (range 0–3, with higher values representing greater symptom severity). The scores for all 10 items were then summed to produce a total score for each respondent. Higher EPDS scores represented greater severity of depressive symptoms. In the univariate analysis to examine the overall presence of possible depressive symptoms, we dichotomized EPDS scores with a cut-off ≥ 13 as this was previously demonstrated as the correct threshold for identifying cases of possible depressive symptoms (Alvarado-Esquivel et al. 2010). However, in the multivariate analysis, we assessed EPDS scores continuously as it was not significant when it was assessed as a binary variable in the logistic regression model. The time of assessment at 12 months was selected based on the risk period for PPD diagnosis defined by the Centers for Disease Control and Prevention (Centers for Disease Control and Prevention 2008).

Blood manganese during pregnancy measurements

Royal Blue top with Ethylene Diamine Tetra-Acetate (EDTA) Vacutainer tubes (Becton-Dickinson and Company, Franklin Lakes, New Jersey) were used to collect venous whole blood samples which were used to measure BMn. Women’s BMn (ug/dl) levels was assessed during the 2nd and 3rd trimesters of pregnancy, as well as at delivery. A dynamic reaction cell-inductively coupled plasma mass spectrometer (ICP-DRC-MS) (Elan 6100; PerkinElmer, Norwalk, CT) was used to measure BMn and BPb. Further details regarding the methods and quality control procedures are described elsewhere (Claus Henn et al. 2010). The sample sizes for BMn measures at 2nd trimester, 3rd trimester, and delivery were 530, 471 and 443, respectively. There were 81% of BMn samples from 2nd trimester which remained at 3rd trimester, and 78% of BMn samples at 2nd trimester overlapped with BMn samples at delivery. BMn measures across these time points were highly correlated with each other and analyzed in separate models to avoid multicollinearity. The 2nd and 3rd trimester BMn measurements were averaged and analyzed in a separate model as well.

Covariates

Covariates were selected a priori based on previous scientific literature. BPb (ug/dl) was measured concurrently and with the same ICP-MS technique as for BMn (Claus Henn et al. 2010). BPb was used as a covariate in the adjusted model based on previous literature, which established an association between BPb and depression (Bouchard et al. 2009). Stress during pregnancy was assessed either at 2nd or 3rd trimester using the negative life event (NLE) scores obtained from the Spanish version of the Crisis in Family Systems-Revised (CRISYS-R) survey, which had a test-retest reliability of 0.86 among Spanish speaking...
participants (Tamayo et al. 2017) (Berry et al. 2001). This survey asks respondents to rate the presence and severity of stressful life events spanning 11 domains (e.g. financial struggles, housing challenges, and medical problems) from the past 6 months. Survey responses were summed across domains where respondents reported a NLE to produce a summary score ranging from 0–11. Higher NLE scores indicate greater stress (Tamayo et al. 2017) (Schreier et al. 2015).

Covariates such as socioeconomic status (SES), education, and age were included in the final models based on previous literature on Mn and depressive symptoms during pregnancy (Miyake et al. 2018). Education was divided into three categories: less than high school, high school, and more than high school. SES, which was used as a proxy for income, is an index created by the “Asociación Mexicana de Agencias de Investigación de Mercados y Opinión Pública” (AMAI) which derived thirteen variables from questionnaire results regarding household head’s education and ownership of various household items (Carrasco 2002). The thirteen variables were collapsed into six levels before settling on three levels: low, medium, and high SES (Rodosthenous et al. 2017) (Stroustrup et al. 2016). Age was measured at 2nd trimester and expressed in years.

Statistical Analysis

Descriptive statistics were performed, followed by bivariate (unadjusted) and multivariable (adjusted) analyses. In these analyses, BMn and BPb measures, EPDS and NLE scores, and age were treated as continuous variables, while education and SES were treated as categorical variables. BMn distributions were slightly skewed but we did not perform transformations in the models. The limit of detection (LOD) for BPb and BMn was 0.060. The detection rate was above 99.5% for both BPb and BMn. The bivariate analyses examined the relationship between PPD (quantified by EPDS scores at 12-months postpartum) and each independent variable in separate models. Adjustments for each model included stress during pregnancy, age, SES, education, depressive symptoms during pregnancy, and BPb measures that were concurrent to each BMn time point. EPDS scores at 12-months postpartum were treated as the dependent variable, while BMn measures during pregnancy and covariates were treated as explanatory variables. Because of the discrete nature of EPDS scores, we utilized a Poisson regression model with adjustment for overdispersion. Three separate adjusted models were generated for BMn at each time point; 2nd trimester, 3rd trimester, and delivery. Two additional adjusted models were utilized to assess BMn averaged across both trimesters with and without the inclusion of delivery. We ran a quadratic nonlinear regression to test if a nonlinear model was appropriate but found no significant results. All statistical analyses were performed using SAS 9.4 (SAS, Inc., Cary, NC).

Results

Study Population

Distribution of EPDS scores at 12 months postpartum was right-skewed as shown in Figure 1. Information regarding demographic characteristics, depression and stress measures, and blood metal concentrations are shown in Table 1. Of the 948 women who delivered a live

Neurotoxicology. Author manuscript; available in PMC 2021 January 01.
birth and were enrolled in the study, 561 provided responses for EPDS at 12-months postpartum. In PROGRESS, 17.11% of women had EPDS scores ≥13. The mean ± standard deviation (SD) for EPDS scores at 12-months postpartum was 6.51 ± 5.65. The mean for BMn at 2nd trimester, 3rd trimester, and at delivery were 1.43 μg/dL ± 0.48, 1.89 μg/dL ± 0.71, and 2.41 μg/dL ± 1.04, respectively. The mean for BMn averaged across 2nd and 3rd trimesters was 1.65 μg/dL ± 0.55. The mean NLE and EPDS scores during pregnancy were 3.26 ± 2.11 and 8.56 ± 5.62, respectively. The average age of the women in the study was 27.64 ± 5.51 years. Approximately, half (52.58%) of the participants had low SES and 41% had less than a high school education.

Bivariate Analyses

Moderate to strong correlations were found between second trimester and 3rd trimester BMn (r=0.53, p<0.001), BMn at 2nd trimester and delivery (r=0.39, p<0.001), as well as BMn at 3rd trimester and delivery (r=0.41, p<0.001) (Table 2). BMn trends increased from 2nd trimester to delivery as shown in Figure 2.

Results from the unadjusted models are shown in Table 3. A 1μg/dL increase in 3rd trimester BMn was significantly associated with an increase of 0.10 points in 12-months postpartum EPDS scores (p<0.05). Neither BMn at 2nd trimester nor delivery nor the average of BMn across 2nd and 3rd trimester was associated with 12-months postpartum EPDS scores. Relative to women with less than high school education, women with more than a high school education had a decrease of 0.30 points in 12 months postpartum EPDS scores (p<0.01). A 1 point increase in NLE and EPDS scores during pregnancy were associated with an increase of 0.11 (p<0.0001) and 0.07 (p<0.0001) points, respectively in 12-month postpartum EPDS scores.

Multivariable Analysis

Results of the BMn measures and the significant covariates in their respective adjusted models (Models 1–4) are presented in Table 4. Women with higher 3rd trimester BMn levels had higher 12 months postpartum EPDS scores (β: 0.13, 95% CI: 0.04–0.21) after adjusting for covariates. The average of BMn across the 2nd and 3rd trimester showed a positive association with 12 months postpartum EPDS scores (β: 0.14, 95% CI: 0.02–0.26) after adjusting for covariates. BMn levels at delivery (β: 0.03, 95% CI: −0.04–0.10) and 2nd trimester (β: 0.07, 95% CI: −0.09–0.22) had non-significant positive associations with 12-months postpartum EPDS scores.

Discussion

We found that women with higher BMn levels during the 3rd trimester of pregnancy had higher EPDS scores at 12-months postpartum after adjusting for previous stressful life events and depression during pregnancy, demographic characteristics, and contemporaneous BPb. This study builds upon the literature on occupational and environmental exposure to Mn that shows associations with depressive symptoms, as the increase BMn in pregnancy is due to physiological changes that mobilize internal Mn stores, rather than environmental exposure. It also adds to the literature by focusing on the role of Mn in postpartum
depression, which is a life stage of heightened sensitivity to this disorder. We note that the primary source of Mn exposure may not be environmental but instead internal, via remobilization of internal Mn tissue stores, in many ways similar to the rise in BPb that also occurs in pregnancy from the mobilization of internal stores.

Environmental sources may still play a role as Mn exposure via air, water, food, etc. may contribute to the rise in BMn levels during pregnancy, perhaps tipping the balance of exposure towards toxic levels. The air pollution in Mexico City contains Mn among various other atmospheric contaminants and may contribute to increased Mn exposure (Genc et al. 2012) (Block and Calderon-Garciduenas 2009). Regardless of the sources, rises in BMn have repeatedly been shown to occur during pregnancy (Tholin et al. 1993; Zota et al. 2009). Our data suggest that relatively minor perturbations in this normal physiological BMn elevation may be contributing to increased risk for PPD. Because environmental Mn exposure has been associated with depressive symptoms in occupational settings (Bouchard et al. 2007) (Bowler et al. 2007), there is a consistency between our findings and the environmental literatures on Mn and depressive symptoms. It may be that the elevations in BMn during pregnancy represent a susceptibility window to PPD that is triggered by other concurrent risk factors such as stress or genetic susceptibility to depression or Mn.

To place our levels of depressive symptoms in PROGRESS in their proper context, the prevalence of PPD symptoms in our cohort was higher than that find in Hispanic women born in the USA (7.14%) but similar to women who migrated from the Dominican Republic and Puerto Rico (17.24%) (Doe et al. 2017). We note that prevalence of PPD symptoms in PROGRESS were similar to Mexican women in the urban area of Monterrey, Mexico (14.3%) (Place et al. 2015). With respect to BMn concentrations in pregnancy, our results were also comparable to other studies which demonstrated that BMn rose during pregnancy. For example, among women in Costa Rica, BMn concentrations had a positive association with gestational age ($\beta = 0.2; 95\%\ CI: 0.1$ to 0.2) (Mora et al. 2014).

To our knowledge, this is first study to investigate the association between the physiologic rise of BMn during pregnancy and PPD symptoms. In many ways, this illustrates that pregnancy is a sensitive window not only for children, but also for women. The physiologic changes of pregnancy may make women vulnerable to longer term health effects as well as their offspring. The well-described weight retention problems that occur in women post-pregnancy also illustrate this concept (Ruchat et al. 2018) (Nicodemus 2018). Our study extends this vulnerability to neuropsychiatric symptoms. Indeed, it is possible that some of the neurodevelopmental effects from fetal exposures, including Mn exposure, may be due to maternal depressive symptoms that affect parenting, thereby impacting child development (Mughal et al. 2019) (Maruyama et al. 2019) (Aoyagi et al. 2019). If so, then reducing excessive Mn exposure in pregnancy may have benefits directly to the mothers and indirectly to the children. Future research should address this issue. While the exact mechanisms by which Mn produces depressive symptoms is unclear, there are a number of studies showing an association between Mn and MDD symptoms in non-pregnant adults and these results are in agreement with our study. For example, among factory workers whose job consist of producing ferroalloy with high amounts of Mn, subjects in the two highest cumulated exposure indices (CEI) tertiles had higher odds of MDD symptoms compared to the...
reference group (Bouchard et al. 2007). Bouchard et al. measured Mn levels via dust in the air which can not be directly compared to Mn concentrations in our study which measured Mn in the blood.

Among the National Health and Nutrition Examination Surveys (NHANES) study sample, non-institutionalized adults in the United States with higher Mn levels had higher odds of MDD symptoms compared adults with lower Mn levels (Shiue 2015). There was a non-significant positive association between air Mn (0.05 μg/m3) and MDD among 288 adults who were not in engaged in mining work but resided in the mining district Molango in Mexico (Solis-Vivanco et al. 2009). Furthermore, case reports of unusually high levels of exposure to Mn demonstrate that adults with higher levels of Mn report characteristics that correspond to MDD symptoms (Donaldson, 1987) (Sassine et al. 2002). The positive association between Mn and MDD found in the abovementioned studies align with our results which established a positive association between Mn and PPD. It should be noted that a particular strength of our study is that we focused on what is likely a critical window for depression- i.e. the perinatal period. A growing body of literature suggests that Mn exposure during pregnancy is a vulnerable period for the fetus (Claus Henn et al. 2017) (Yamamoto et al. 2019) (Yu et al. 2014) (Zota et al. 2009). Pregnancy is a period of profound physiological changes in women that may make the mother vulnerable to alterations in Mn homeostasis. A very small body of literature exists on this topic for manganese, specifically in regards to lower levels of blood Mn in pregnancy being associated with preeclampsia (Soobramoney et al. 2019) (Liu et al. 2019). Pregnancy induces profound changes in physiology and brain neurotransmitters in mothers, with well-known effects on postpartum mental health and cardiovascular disease risk (Li et al. 2019) (Benschop et al. 2019). A separate body of literature shows that Mn metabolism is related to the same mental health disorders (Jain and Ferrando 2011) (Bowler et al. 2007) and that pregnancy induced physiologic changes include rises in BMn that are not seen at other adult life stages (Ashley-Martin et al. 2018) (Kupsc et al. 2019) (Smargiassi et al. 2002). Given our findings and the existing literature, we believe that the elevation in BMn during pregnancy may be a susceptibility risk factor specific to the pregnancy life stage and that disturbances in Mn metabolism, absorption and/or distribution during pregnancy could contribute to postpartum depression. If so, monitoring BMn in pregnancy may identify women at higher risk for PPD, and create potential opportunities for interventions. Based on our data, the 3rd trimester was more predictive of PPD and not delivery, which is the final day of the 3rd trimester. There are major interventions, and acute factors that occur at delivery that distinguish it from other days in the 3rd trimester such as intravenous hydration, pain from contractions, hormonal changes and physiologic changes that arise from labor. It may be that these profound changes in maternal physiology alter blood Mn sufficiently to obscure associations or it may be that the earlier phases of the 3rd trimester are the true susceptibility window and subsequent elevations in BMn that arise in late 3rd trimester do not pose additional risk.

One of the biological mechanisms that may explain the association between Mn and depressive symptoms involves neurotransmitters, such as dopamine (DA) and serotonin. The dopaminergic and serotonergic systems in the CNS play crucial roles in regulating mental health related behaviors, such as emotion regulation and executive functions. The neurons of
the raphe nuclei are the principal source of serotonin in the CNS. They are located in the brainstem where they form a neurotransmitter system reaching extensively across the central nervous system. These serotonergic receptors regulate mood and work together with dopaminergic neurons found in ventral and dorsal striatal structures, such as the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA). These brain regions are associated with associative and habit learning, motor and inhibition control, reward motivation and reinforcement, working memory, and attention (Belujon and Grace 2017; Treadway and Zald 2011) (Chinta et al. 2005). These brain regions are also high in tissue Mn levels, and manganese metalloenzymes—including arginase, glutamine synthetase, phosphoenolpyruvate decarboxylase, and Mn superoxide dismutase (Mn SOD)—are expressed in these regions. Given Mn in drinking water, rats demonstrate emotional lability and increased levels of striatal 5-hydroxyindoleacetic acid (a serotonin metabolite) in the brain (Krishna et al. 2014). Anhedonia, a lack of motivation and decreased ability to experience pleasure (Belujon and Grace 2017; Treadway and Zald 2011) is mediated in part by DA neurons that create pathways for reward responsiveness. Anhedonia is a core component of severe depression, as patients are less likely to seek pleasurable experiences (Belujon and Grace 2017; Sherdell et al. 2012).

Overall, the neurotransmitter systems regulating depression are complex and involve negative feedback mechanisms and autoregulation functions in CNS. However, a consistent finding is that the underlying basis of depression involves depletion in serotonin, norepinephrine, or dopamine in the CNS. This concept is supported by the mechanisms of common antidepressant drugs, such as monoamine oxidase inhibitors, tricyclic antidepressants or serotonin reuptake inhibitors, all of which increase levels of these neurotransmitters in the brain (Delgado 2000). These same monoamine neurotransmitters are impacted by Mn metabolism (Gordon and Goelman 2016). Among nonhuman primates, chronic Mn exposure altered in vivo dopamine release in the frontal cortex, as measured by positron emission tomography (Guilarte et al. 2019). Another theory of depression involves increases in brain inflammation, particularly at key developmental life stages (Galecki and Talarowska 2018). A transition element such as Mn, which plays a key role in mediating inflammation both at high and low concentrations and which has been associated with monoamine neurotransmitter metabolism, would seem to cross and even unify these two theories of depression. The ability of elevated Mn levels to induce both inflammation and dopamine dysregulation increases the likelihood that it contributes mechanistically to depression.

In addition to the Mn exposures, other covariates in our study were found to have an association with PPD symptoms. In the unadjusted (Table 3) and the adjusted models (Table 4), women with more than a high school education had lower EPDS scores at 12-months postpartum as compared to women with less than a high school education; however, the results were not significant in models 2 and 4 (Table 4). These findings bolster the concept of educational attainment being an important social determinant of health due to higher education being protective against MDD (Shankar et al. 2013) (Bracke et al. 2014). NLE and EPDS scores during pregnancy had positive associations with PPD symptoms in every model presented in Table 4, which concurs with other studies that indicated stress and depressive symptoms during pregnancy as risk factors for PPD (Norhayati et al. 2015).
findings verify that risk factors for PPD can be psychological and social (Bhati and Richards 2015).

Strengths and Weaknesses

Our study has many strengths. First, it is a longitudinal study and our measures of BMn precede measures of depressive symptoms. Differential exposure to Mn and/or phenotype misclassification is unlikely, as all assessments were performed without knowledge of BMn levels. Adjustments in the multivariate analysis included important covariates, such as psychosocial and biological measures previously reported to be associated with depression. Our levels of BMn are comparable to those found in pregnancy in the US and Canada (Zota et al. 2009) (Takser et al. 2004). Our focus on perinatal life as a developmental window for depression is also a strength.

Our study has a few limitations. As a screening tool, EPDS is not used to diagnose PPD but is used to assess possible depression, which is a correlate of PPD; as such, we believe our study addresses depressive symptoms but not clinical depression per se. Consequently, our results should be interpreted as an increased risk for depressive symptoms rather than for clinical depression. Still, our findings demonstrate that elevated Mn may increase reported depressive symptoms, and present a danger for women in perinatal life, particularly if they have other risk factors such as genetic vulnerability to depression, high stress levels, and a history of clinical depression, etc. These results may not be generalizable to the United States or other developed countries due to the homogeneity of our Mexican study sample. Nonetheless, we believe the study is internally valid and may be generalizable outside of Mexico, but further research is needed.

Conclusion

Higher BMn levels during pregnancy increased the prevalence of PPD symptoms among women in our present study. Our results suggest that the effects of Mn on MDD can be extended to PPD. This study is important as it contributes to developing a better understanding of an understudied mental disorder that is potentially harmful to mothers and children. Because BMn is affected by both exogenous (diet, air, etc.) and endogenous (tissue stores) sources, an increase in blood manganese from either source may contribute to raising BMn levels, potentially increasing risk for PPD. Further research is needed to confirm the sources of the elevated BMn levels in pregnancy and whether a threshold exists that predicts increased risk of PPD. Future research should explore environmental factors that may contribute to excess Mn exposure such as water contamination (Ntihabose et al. 2018), and factors that may regulate mobilization of internal stores, such as iron deficiency (Finley 1999).

Acknowledgements

The Programming Research in Obesity, Growth, Environment, and Social Stressors (PROGRESS) project was funded by the following National Institute of Environmental Health Sciences (NIEHS) grants: R01ES013744; R01ES014930; R01ES021357; R24ES028522; P30ES023515. PROGRESS received support and partial funding from the National Institute of Public Health (INSP)/Ministry of Health of Mexico. Support during analyses and manuscript preparation was provided through a grant from the National Heart Lung and Blood Institute (NHLBI) through the Short-term Research Training Program for Minority Students (R25HL108857). We are grateful to the
PROGRESS staff, participants and their families. We would like to thank the American British Cowdray (ABC) Hospital and National Institute of Perinatology in Mexico City, Mexico, for providing facilities for this research.

References

Almutairi AF, Salam M, Alanazi S, Alweldawi M, Alsomali N, Alotaibi N. 2017 Impact of help-seeking behavior and partner support on postpartum depression among saudi women. Neuropsychiatric disease and treatment 13:1929–1936. [PubMed: 28790828]

Alvarado-Esquivel C, Sifuentes-Alvarez A, Estrada-Martinez S, Salas-Martinez C, Hernandez-Alvarado A, Ortiz-Rocha S, et al. 2010 Prevalence of postnatal depression in women attending public hospitals in durango, mexico. 146:1–9.

Alvarado-Esquivel C, Sifuentes-Alvarez A, Salas-Martinez C. 2014 Validation of the edinburgh postpartum depression scale in a population of adult pregnant women in mexico. Journal of clinical medicine research 6:374–378. [PubMed: 25110542]

American Psychiatric Association. 2017 What is postpartum depression? Available: https://www.psychiatry.org/patients-families/postpartum-depression/what-is-postpartum-depression [accessed 2018 26 October].

Aoyagi SS, Takei N, Nishimura T, Nomura Y, Tsuchiya KJ. 2019 Association of late-onset postpartum depression of mothers with expressive language development during infancy and early childhood: The hbc study. PeerJ 7:e6566. [PubMed: 30863683]

Aschner JL, Aschner M. 2005 Nutritional aspects of manganese homeostasis. Mol Aspects Med 26:353–362. [PubMed: 16099026]

Ashley-Martin J, Dodds L, Arbuckle TE, Ettinger AS, Shapiro GD, Fisher M, et al. 2018 Maternal and cord blood manganese (mn) levels and birth weight: The mirec birth cohort study. International journal of hygiene and environmental health 221:876–882. [PubMed: 29886104]

Belujon P, Grace AA. 2017 Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol 20:1036–1046. [PubMed: 29106542]

Benschop L, Duvekot JJ, Roeters van Lennep JE. 2019 Future risk of cardiovascular disease risk factors and events in women after a hypertensive disorder of pregnancy. Heart (British Cardiac Society) 105:1273–1278. [PubMed: 31175138]

Berry C, Shalowitz M, Quinn K, Wolf R. 2001 Validation of the crisis in family systems-revised, a contemporary measure of life stressors. Psychol Rep 88:713–724. [PubMed: 11508009]

Bhati S, Richards K. 2015 A systematic review of the relationship between postpartum sleep disturbance and postpartum depression. J Obstet Gynecol Neonatal Nurs 44:350–357.

Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BW. 2015 Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology 51:164–175. [PubMed: 25462890]

Block ML, Calderon-Garciduenas L. 2009 Air pollution: Mechanisms of neuroinflammation and cns disease. Trends Neurosci 32:506–516. [PubMed: 19716187]

Bouchard M, Mergler D, Baldwin M, Panisset M, Roels HA. 2007 Neuropsychiatric symptoms and past manganese exposure in a ferro-alloy plant. Neurotoxicology 28:290–297. [PubMed: 16962176]

Bouchard MF, Bellinger DC, Weuve J, Matthews-Bellinger J, Gilman SE, Wright RO, et al. 2009 Blood lead levels and major depressive disorder, panic disorder, and generalized anxiety disorder in us young adults. Arch Gen Psychiatry 66:1313–1319. [PubMed: 19996036]

Bowler RM, Roels HA, Nakagawa S, Drezgic M, Diamond E, Park R, et al. 2007 Dose-effect relationships between manganese exposure and neurological, neuropsychological and pulmonary function in confined space bridge welders. Occup Environ Med 64:167–177. [PubMed: 17018581]

Bracke P, van de Straat V, Missinne S. 2014 Education, mental health, and education-labor market misfit. J Health Soc Behav 55:442–459. [PubMed: 25413804]

Braun JM, Wright RJ, Just AC, Power MC, Tamayo YOM, Schnaas L, et al. 2014 Relationships between lead biomarkers and diurnal salivary cortisol indices in pregnant women from mexico city: A cross-sectional study. Environ Health 13:50. [PubMed: 24916609]
Carrasco AJE. 2002 The amai system of classifying households by socio-economic level: The experience of Mexico and its comparison with Brazil and Argentina.

Centers for Disease Control and Prevention. 2008 Prevalence of self-reported postpartum depressive symptoms --- 17 states, 2004--2005. Available: https://www.cdc.gov/Mmwrt/preview/mmwrhtml/mm5714a1.htm [accessed 26 October 2018].

Chen P, Chakraborty S, Mukhopadhyay S, Lee E, Paoliello MM, Bowman AB, et al. 2015 Manganese homeostasis in the nervous system. J Neurochem 134:601--610. [PubMed: 25982296]

Chinta SJ, Andersen JKJ, Tijob, biology c. 2005 Dopaminergic neurons. 37:942--946.

Claus Henn B, Ettinger AS, Schwartz J, Tellez-Rojo MM, Lamadrid-Figueroa H, Hernandez-Avila M, et al. 2010 Early postnatal blood manganese levels and children’s neurodevelopment. Epidemiology 21:433--439. [PubMed: 20549838]

Claus Henn B, Bellinger DC, Hopkins MR, Coull BA, Ettinger AS, Jim R, et al. 2017 Maternal and cord blood manganese concentrations and early childhood neurodevelopment among residents near a mining-impacted superfund site. Environ Health Perspect 125:067020. [PubMed: 28665786]

Cox JL, Holden JM, Sagovsky R. 1987 Detection of postnatal depression. Development of the 10-item Edinburgh postnatal depression scale. Br J Psychiatry 150:782--786. [PubMed: 3651732]

Delgado PL. 2000 Depression: The case for a monoamine deficiency. The Journal of clinical psychiatry 61 Suppl 6:7--11.

Doe S, LoBue S, Hamaoui A, Rezai S, Henderson CE, Mercado R. 2017 Prevalence and predictors of positive screening for postpartum depression in minority parturients in the south bronx. Arch Womens Ment Health 20:291--295. [PubMed: 28025705]

Donaldson J, 1987 The physiopathologic significance of manganese in brain: Its relation to schizophrenia and neurodegenerative disorders. Neurotoxicology 8, 451--462. [PubMed: 3309736]

El-Hachem C, Rohayem J, Bou Khalil R, Richa S, Kesrouani A, Gemayel R, et al. 2014 Early identification of women at risk of postpartum depression using the Edinburgh postnatal depression scale (EPDS) in a sample of Lebanese women. BMC Psychiatry 14:242. [PubMed: 25193322]

Eum JH, Cheong HK, Ha EH, Ha M, Kim Y, Hong YC, et al. 2014 Maternal blood manganese level and birth weight: A mceh birth cohort study. Environ Health 13:31. [PubMed: 24775401]

Farina M, Avila DS, da Rocha JB, Aschner M. 2013 Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochem Int 62:575--594. [PubMed: 23266600]

Finley JW. 1999 Manganese absorption and retention by young women is associated with serum ferritin concentration. The American journal of clinical nutrition 70:37--43. [PubMed: 10393136]

Fisher J, Cabral de Mello M, Patel V, Rahman A, Tran T, Holton S, et al. 2012 Prevalence and determinants of common perinatal mental disorders in women in low- and lower-middle-income countries: A systematic review. Bull World Health Organ 90:139G--149G.

Galecki P, Talarowska M. 2018 Inflammatory theory of depression. Psychiatria polska 52:437--447. [PubMed: 30218560]

Gaynes BN, Gavin N, Meltzer-Brody S, Lohr KN, Swinson T, Gartlehner G, et al. 2005 Perinatal depression: Prevalence, screening accuracy, and screening outcomes. Evid Rep Technol Assess (Summ):1--8.

Gené S, Zadegolulari Z, Fuss SH, Gené C. 2012 The adverse effects of air pollution on the nervous system. Journal of toxicology 2012:782462. [PubMed: 22523490]

Gonulalan U, Hayirli A, Kosan M, Ozkan O, Yilmaz H. 2013 Erectile dysfunction and depression in patients with chronic lead poisoning. Andrologia 45:397--401. [PubMed: 23113807]

Gordon N, Goelman G. 2016 Understanding alterations in serotonin connectivity in a rat model of depression within the monoamine-deficiency and the hippocampal-neurogenesis frameworks. Behavioural brain research 296:141--148. [PubMed: 26367472]

Guisarte TR. 2011 Manganese and parkinson’s disease: A critical review and new findings. Cien Saude Colet 16:4549--4566. [PubMed: 22124833]

Guisarte TR, Yeh CL, McGlathran JL, Perez J, Finley P, Zhou Y, et al. 2019 Pet imaging of dopamine release in the frontal cortex of manganese-exposed non-human primates. J Neurochem.

Neurotoxicology. Author manuscript; available in PMC 2021 January 01.
Guy M, Accrombessi M, Fievet N, Yovo E, Massougbodji A, Le Bot B, et al. 2018 Toxics (pb, cd) and trace elements (zn, cu, mn) in women during pregnancy and at delivery, south benin, 2014–2015. Environ Res 167:198–206. [PubMed: 30036786]

Haynes EN, Sucharew H, Kuhnell P, Alden J, Barnas M, Wright RO, et al. 2015 Manganese exposure and neurocognitive outcomes in rural school-age children: The communities actively researching exposure study (ohio, USA). Environ Health Perspect 123:1066–1071. [PubMed: 25902278]

Horning KJ, Caito SW, Tipsy KG, Bowman AB, Aschner M. 2015 Manganese is essential for neuronal health. Annu Rev Nutr 35:71–108. [PubMed: 25974698]

Ibarra-Yruegas B, Lara MA, Navarrete L, Nieto L, Kawas Valle O. 2018 Psychometric properties of the postpartum depression predictors inventory-revised for pregnant women in mexico. J Health Psychol 23:1415–1423. [PubMed: 27488657]

Jain S, Ferrando SJ. 2011 Manganese neurotoxicity presenting with depression, psychosis and catatonia. Psychosomatics 52:74–77. [PubMed: 21300198]

Krishna S, Dodd CA, Hekmatyar SK, Filipov NM. 2014 Brain deposition and neurotoxicity of manganese in adult mice exposed via the drinking water. Archives of toxicology 88:47–64. [PubMed: 23832297]

Kupcso A, Sanchez-Guerra M, Amarasiiriwardena C, Brennan KJM, Estrada-Gutierrez G, Svensson K, et al. 2019 Prenatal manganese and cord blood mitochondrial DNA copy number: Effect modification by maternal anemic status. Environ Int 126:484–493. [PubMed: 30849576]

Li H, Bowen A, Bowen R, Balbuena L, Feng C, Bally J, et al. 2019 Mood instability during pregnancy and postpartum: A systematic review. Arch Womens Ment Health.

Li Z, Wang W, Xin X, Song X, Zhang D. 2018 Association of total zinc, iron, copper and selenium intakes with depression in the us adults. J Affect Disord 228:68–74. [PubMed: 29232566]

Liu T, Zhang M, Guallar E, Wang G, Hong X, Wang X, et al. 2019 Trace minerals, heavy metals, and preeclampsia: Findings from the boston birth cohort. Journal of the American Heart Association 8:e012436. [PubMed: 31426704]

Liu T, Zhong S, Liao X, Chen J, He T, Lai S, et al. 2015 A meta-analysis of oxidative stress markers in depression. PLoS One 10:e0138904. [PubMed: 26445247]

Maes M, Galecki P, Chang YS, Berk M. 2011 A review on the oxidative and nitrosative stress (o&ns) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35:676–692. [PubMed: 20471444]

Maruyama JM, Pastor-Valero M, Santos IS, Munhoz TN, Barros FC, Matijasevich A. 2019 Impact of maternal depression trajectories on offspring socioemotional competences at age 11: 2004 pelotas birth cohort. J Affect Disord 253:8–17. [PubMed: 31009846]

Miyake Y, Tanaka K, Okubo H, Sasaki S, Furukawa S, Arakawa M. 2018 Soy isoflavone intake and prevalence of depressive symptoms during pregnancy in japan: Baseline data from the kyushu okinawa maternal and child health study. Eur J Nutr 57:441–450. [PubMed: 27744546]

Mlyniec K, Gawel M, Doboszewska U, Starowicz G, Pytka K, Davies CL, et al. 2015 Essential elements in depression and anxiety. Part ii. Pharmacol Rep 67:187–194. [PubMed: 25712638]

Mora AM, van Wendel de Joode B, Mergler D, Cordoba L, Cano C, Quesada R, et al. 2014 Blood and hair manganese concentrations in pregnant women from the infants’ environmental health study (isa) in costa rica. Environmental science & technology 48:3467–3476. [PubMed: 24601641]

Mori E, Tsuchiya M, Maehara K, Iwata H, Sakajo A, Tamakoshi K. 2017 Fatigue, depression, maternal confidence, and maternal satisfaction during the first month postpartum: A comparison of japanese mothers by age and parity. International journal of nursing practice 23.

Mughal MK, Giallo R, Arnold PD, Kehler H, Bright K, Benzies K, et al. 2019 Trajectories of maternal distress and risk of child developmental delays: Findings from the all our families (aof) pregnancy cohort. J Affect Disord 248:1–12. [PubMed: 30690110]

Nicodemus NA Jr. 2018 Prevention of excessive gestational weight gain and postpartum weight retention. Current obesity reports 7:105–111. [PubMed: 29696560]

Norhayati MN, Hazlina NH, Asreneee AR, Emilin WM. 2015 Magnitude and risk factors for postpartum symptoms: A literature review. J Affect Disord 175:34–52. [PubMed: 25590764]
Ntihabose R, Surette C, Foucher D, Clarisse O, Bouchard MF. 2018 Assessment of saliva, hair and toenails as biomarkers of low level exposure to manganese from drinking water in children. Neurotoxicology 64:126–133. [PubMed: 28867366]

Oppo A, Mauri M, Ramacciotti D, Camilleri V, Banti S, Borri C, et al. 2009 Risk factors for postpartum depression: The role of the postpartum depression predictors inventory-revised (pdpi-r). Results from the perinatal depression-research & screening unit (pdrescu) study. Arch Womens Ment Health 12:239–249. [PubMed: 19415454]

Palta P, Samuel LJ, Miller ER 3rd, Szanton SL. 2014 Depression and oxidative stress: Results from a meta-analysis of observational studies. Psychosom Med 76:12–19. [PubMed: 24336428]

Place JM, Billings DL, Blake CE, Frongillo EA, Mann JR, deCastro F. 2015 Conceptualizations of postpartum depression by public-sector health care providers in mexico. Qual Health Res 25:551–568. [PubMed: 25281238]

Postpartum Depression: Action Towards C, Treatment C. 2015 Heterogeneity of postpartum depression: A latent class analysis. Lancet Psychiatry 2:59–67. [PubMed: 26359613]

Pfalzer AC, Bowman AB. 2017 Relationships between essential manganese biology and manganese toxicity in neurological disease. Current environmental health reports 4:223–228. [PubMed: 28417441]

Rodosthenous RS, Burris HH, Svensson K, Amarasingirawdena CJ, Cantoral A, Schnaas L, et al. 2017 Prenatal lead exposure and fetal growth: Smaller infants have heightened susceptibility. Environ Int 99:228–233. [PubMed: 27923585]

Rodrigues EG, Kile M, Dobson C, Amarasingirawdena C, Quamruzzaman Q, Rahman M, et al. 2015 Maternal-infant biomarkers of prenatal exposure to arsenic and manganese. Journal of exposure science & environmental epidemiology 25:639–648. [PubMed: 26306926]

Roels HA, Bowler RM, Kim Y, Claus Henn B, Mergler D, Hoet P, et al. 2012 Manganese exposure and cognitive deficits: A growing concern for manganese neurotoxicity. Neurotoxicology 33:872–880. [PubMed: 22498092]

Rodrigues EG, Kile M, Dobson C, Amarasingirawdena C, Quamruzzaman Q, Rahman M, et al. 2015 Maternal-infant biomarkers of prenatal exposure to arsenic and manganese. Journal of exposure science & environmental epidemiology 25:639–648. [PubMed: 26306926]

Ruchat SM, Mottola MF, Skow RJ, Nagpal TS, Meah VL, James M, et al. 2018 Effectiveness of exercise interventions in the prevention of excessive gestational weight gain and postpartum weight retention: A systematic review and meta-analysis. British journal of sports medicine 52:1347–1356. [PubMed: 30337461]

Sassine MP, Mergler D, Bowler R, Hudnell HK. 2002 Manganese accentuates adverse mental health effects associated with alcohol use disorders. Biol Psychiatry 51:909–921. [PubMed: 12022965]

Schreier HM, Hsu HH, Amarasingirawdena C, Coull BA, Schnaas L, Tellez-Rojo MM, et al. 2015 Mercury and psychosocial stress exposure interact to predict maternal diurnal cortisol during pregnancy. Environ Health 14:28. [PubMed: 25889585]

Shankar J, Ip E, Khalema E, Couture J, Tan S, Zulla RT, et al. 2013 Education as a social determinant of health: Issues facing indigenous and visible minority students in postsecondary education in western canada. Int J Environ Res Public Health 10:3908–3929. [PubMed: 23989527]

Sherdell L, Waugh CE, Gotlib IH. 2012 Anticipatory pleasure predicts motivation for reward in major depression. J Abnorm Psychol 121:51–60. [PubMed: 21842963]

Shiuie I 2015 Urinary heavy metals, phthalates and polyaromatic hydrocarbons independent of health events are associated with adult depression: USA nhanes, 2011–2012. Environ Sci Pollut Res Int 22:17095–17103. [PubMed: 26126689]

Smargiassi A, Takser L, Masse A, Sergerie M, Mergler D, St-Amour G, et al. 2002 A comparative study of manganese and lead levels in human umbilical cords and maternal blood from two urban centers exposed to different gasoline additives. The Science of the total environment 290:157–164. [PubMed: 12083707]

Solis-Vivanco R, Rodriguez-Agudelo Y, Riojas-Rodriguez H, Rios C, Rosas I, Montes S. 2009 Cognitive impairment in an adult mexican population non-occupationally exposed to manganese. Environ Toxicol Pharmacol 28:172–178. [PubMed: 21784000]
Soobramoney C, Maduray K, Moodley J, Moodley R, Naicker T. 2019 The screening of nails for selected essential and toxic elements in normotensive and pre-eclamptic women. Biological trace element research 189:28–33. [PubMed: 30073457]

Stroustrup A, Hsu HH, Svensson K, Schnaas L, Cantoral A, Solano Gonzalez M, et al. 2016 Toddler temperament and prenatal exposure to lead and maternal depression. Environ Health 15:71. [PubMed: 27312840]

Takeda A 2003 Manganese action in brain function. Brain Res Brain Res Rev 41:79–87. [PubMed: 12505649]

Takser L, Lafond J, Bouchard M, St-Amour G, Mergler D. 2004 Manganese levels during pregnancy and at birth: Relation to environmental factors and smoking in a southwest quebec population. Environ Res 95:119–125. [PubMed: 15147916]

Tamayo YOM, Tellez-Rojo MM, Trejo-Valdivia B, Schnaas L, Osorio-Valencia E, Coull B, et al. 2017 Maternal stress modifies the effect of exposure to lead during pregnancy and 24-month old children’s neurodevelopment. Environ Int 98:191–197. [PubMed: 27865525]

Tholin K, Palm R, Hallmans G, Sandstrom B. 1993 Manganese status during pregnancy. Ann N Y Acad Sci 678:359–360. [PubMed: 8494286]

Treadway MT, Zald DH. 2011 Reconsidering anhedonia in depression: Lessons from translational neuroscience. Neurosci Biobehav Rev 35:537–555. [PubMed: 20603146]

Wright RO, Baccarelli A. 2007 Metals and neurotoxicology. J Nutr 137:2809–2813. [PubMed: 18029504]

Yamamoto M, Sakurai K, Eguchi A, Yamazaki S, Nakayama S, Isobe T, et al. 2019 Association between blood manganese level during pregnancy and birth size: The japan environment and children’s study (jecs). Environ Res 172:117–126. [PubMed: 30782531]

Yu XD, Zhang J, Yan CH, Shen XM. 2014 Prenatal exposure to manganese at environment relevant level and neonatal neurobehavioral development. Environ Res 133:232–238. [PubMed: 24971720]

Zota AR, Ettinger AS, Bouchard M, Amarasingwardena CJ, Schwartz J, Hu H, et al. 2009 Maternal blood manganese levels and infant birth weight. Epidemiology 20:367–373. [PubMed: 19289966]
Highlights

• Elevated blood manganese levels during mid to late pregnancy are associated with postpartum depressive symptoms in mothers.

• Manganese is a nutrient critical to brain function, but a toxicant at high levels that can promote oxidative stress.

• This study suggests that dysregulation of the normal rise in blood manganese during pregnancy predicts depressive symptoms.

• Modifiable factors that affect blood manganese levels may be targets to prevent postpartum depressive symptoms.
Figure 1.
Histogram of EPDS Score at 12 Months Postpartum among pregnant women in Mexico City
Figure 2.
Scatter plots with LOESS (Locally Weighted Scatterplot Smoothing) smoother of BMn at each time point and EPDS Score at 12 months postpartum among pregnant women in Mexico City
Table 1.
Demographic, depressive symptoms and Mn exposure characteristics of 561 pregnant women in Mexico City

	Overall	PPD symptoms (≥3 EPDS)
	N (%) or mean ± SD	n (%) or mean ± SD
EPDS Score during pregnancy	8.56 ± 5.62	13.07 ± 6.16
Negative Life Event (NLE) Score during pregnancy	3.26 ± 2.12	4.41 ± 2.35
BMn at 2nd Trimester (μg/dL)	1.43 ± 0.48	1.43 ± 0.46
BMn at 3rd Trimester (μg/dL)	1.89 ± 0.71	1.99 ± 0.78
BMn during Delivery (μg/dL)	2.41 ± 1.04	2.38 ± 0.78
Average of BMn at 2nd & 3rd trimester (μg/dL)	1.65 ± 0.55	1.72 ± 0.55
BPb at 2nd trimester (μg/dL)	3.69 ± 2.69	3.63 ± 2.51
BPb at 3rd trimester (μg/dL)	3.84 ± 2.80	3.22 ± 2.13
BPb during delivery (μg/dL)	4.14 ± 3.10	3.41 ± 2.05
Average of BPb at 2nd and 3rd trimester (μg/dL)	3.76 ± 2.58	3.52 ± 2.37
Age (Years)	27.64 ± 5.51	27.13 ± 5.13
Education		
Less Than High School	230 (41.00)	45 (46.88)
High School	199 (35.47)	37 (38.54)
More Than High School	132 (23.53)	14 (14.58)
Socioeconomic Status (SES)		
Low	295 (52.58)	51 (53.13)
Medium	210 (37.43)	34 (35.42)
High	56 (9.98)	11 (11.46)
Table 2.
Correlations for BMn at different time points during pregnancy among women in Mexico City

	2nd trimester	3rd trimester	Delivery	Average of 2nd and 3rd trimester
2nd trimester	1.00			
3rd trimester	0.53 ***	1.00		
Delivery	0.39 ***	0.41 ***	1.00	
Average of 2nd and 3rd trimester	0.84 ***	0.92 ***	0.43 ***	1.00

*p<0.05
**p<0.01
***p<0.001
Table 3.
Unadjusted Poisson regression models for association between EPDS at 12 months postpartum and independent variables among pregnant women in Mexico City (N = 561).

	β (95% CI)	p value
Blood Mn at 2nd Trimester (μg/dL)	0.01 (−0.14, 0.17)	0.893
Blood Mn at 3rd Trimester (μg/dL)	0.10 (0.01, 0.20)	0.036
Blood Mn during Delivery (μg/dL)	0.00 (−0.07, 0.08)	0.928
Average of Blood Mn at 2nd & 3rd trimester (μg/dL)	0.08 (−0.05, 0.20)	0.227
NLE Score during pregnancy	0.11 (0.08, 0.14)	<0.0001
EPDS Score during pregnancy	0.07 (0.06, 0.08)	<0.0001
Age (Years)	−0.01 (−0.02, 0.01)	0.287
BPb at 2nd trimester (μg/dL)	0.01 (−0.01, 0.04)	0.342
BPb at 3rd trimester (μg/dL)	−0.02 (−0.05, 0.00)	0.102
BPb during delivery (μg/dL)	−0.01 (−0.04, 0.02)	0.434
Average of BPb at 2nd and 3rd trimester (μg/dL)	0.00 (−0.03, 0.03)	0.798
Education		
Less Than High School	Reference	
High School	−0.02 (−0.18, 0.13)	0.779
More Than High School	−0.30 (−0.50, −0.10)	0.003
Socioeconomic Status (SES)		
Low	Reference	
Medium	−0.12 (−0.27, 0.04)	0.141
High	0.05 (−0.18, 0.29)	0.661
Table 4.

Adjusted Poisson regression models separated based on time of BMn measure among pregnant women in Mexico City

Model 1 (n=489) \(^d\)	\(\beta\) Coefficients (95% CI)	\(p\) value
BMn at 2nd Trimester (μg/dL)	0.07 (−0.09, 0.22)	0.393
NLE Score during pregnancy	0.06 (0.03, 0.09)	0.001
EPDS Score during pregnancy	0.06 (0.05, 0.07)	<0.0001
More Than High School	−0.23 (−0.44, −0.01)	0.036

Model 2 (n=465) \(^b\)	\(\beta\) Coefficients (95% CI)	\(p\) value
BMn at 3rd Trimester (μg/dL)	0.13 (0.04, 0.21)	0.003
NLE Score during pregnancy	0.05 (0.02, 0.09)	0.002
EPDS Score during pregnancy	0.06 (0.05, 0.08)	<0.0001

Model 3 (n=514) \(^c\)	\(\beta\) Coefficients (95% CI)	\(p\) value
Average of BMn at 2nd & 3rd trimester (μg/dL)	0.14 (0.02, 0.26)	0.021
NLE Score during pregnancy	0.05 (0.02, 0.08)	0.002
EPDS Score during pregnancy	0.06 (0.05, 0.07)	<0.0001
More Than High School	−0.20 (−0.41, −0.00)	0.046

Model 4 (n=410) \(^d\)	\(\beta\) Coefficients (95% CI)	\(p\) value
BMn during delivery (μg/dL)	0.03 (−0.04, 0.10)	0.406
NLE Score during pregnancy	0.06 (0.02, 0.09)	0.002
EPDS Score during pregnancy	0.06 (0.05, 0.08)	<0.0001

Note: The results of covariates that failed to have a significant association with PPD are not shown in the table.

\(^d\) Adjustments for age, SES, education, stress during pregnancy, depressive symptoms during pregnancy and blood lead at 2nd trimester

\(^b\) Adjustments for all covariates in model 1 and blood lead at 3rd trimester

\(^c\) Adjustments for all covariates in model 1 and blood lead averaged at 2nd and 3rd trimester

\(^d\) Adjustments for all covariates in model 1 and blood lead during delivery

Neurotoxicology. Author manuscript; available in PMC 2021 January 01.