Promises and partnership in human-robot interaction

Lorenzo COMINELLI¹ Francesco FERI² Roberto GAROFALO¹
Caterina GIANNETTI¹,³ Miguel A. MELENDEZ-JIMENEZ⁴ Alberto GRECO¹
Mimma NARDELLI¹ Enzo Pasquale SCILINGO¹ Oliver KIRCHKAMP⁵

¹Department of Information Engineering and Center E. Piaggio. University of Pisa. Italy ²Department of Economics. Royal Holloway University of London, United Kingdom. ³Corresponding author: Department of Economics and Management. University of Pisa. ⁴Department of Economic Theory and Economic History. University of Malaga ⁵Friedrich-Schiller University Jena. Chair of Behavioural and Experimental Economics.

1st December 2020

Abstract. Understanding human trust in machine partners has become imperative due to the widespread use of intelligent machines in a variety of applications and contexts. The aim of this paper is to investigate whether human-beings trust a social robot - i.e. a human-like robot that embodies emotional states, empathy, and non-verbal communication - differently than other types of agents. To do so, we adapt the well-known economic trust-game proposed by Charness and Dufwenberg (2006) to assess whether receiving a promise from a robot increases human-trust in it. We find that receiving a promise from the robot increases the trust of the human in it, but only for individuals who perceive the robot very similar to a human-being. Importantly, we observe a similar pattern in choices when we replace the humanoid counterpart with a real human but not when it is replaced by a computer-box. Additionally, we investigate participants’ psychophysiological reaction in terms of cardiovascular and electrodermal activity. Our results highlight an increased psychophysiological arousal when the game is played with the social robot compared to the computer-box. Taken all together, these results strongly support the development of technologies enhancing the humanity of robots.
Introduction

Trust is considered as a social glue that connects people and promotes collective goals. It is normally defined as the “intention to accept vulnerability based on the positive expectations or beliefs regarding the intentions or behaviour of other people in general” [1]. As a consequence, behavioral science has always been interested in trust, and more particularly in its influence on decision making [2, 3]. In parallel, trust is also relevant if we want to build social artificial agents that interact alongside people (e.g. robo-advisors, co-working robots, assistive robots, etc.) and take responsible roles in our society [4, 5]. A lesson learned from previous research (e.g. economics, neuroeconomics, psychology) is that (general) trust is deeply rooted in social experiences, being more a matter of culture than genetics [1], and highly affected by the emotional states of the individuals [6, 7, 8]. Indeed, emotions have been proven to play a fundamental role in the decision-making process in general [9], as confirmed among other neuroscientists, by Damasio and colleagues in their studies [10, 11, 12, 13].

This stream of research thus suggests that trust and emotions are highly intertwined in the decision-making process in human-human interactions [14, 15, 16, 17], and may act as reasonable drivers in human-robot interactions as well [18]. It has been shown, for example, that not binding communications (i.e. cheap talk) is beneficial not only among humans but also to achieve higher cooperation when interacting with a machine (e.g. [19]). In particular, a simple conversation with a robot changes individual attitude towards the artificial agent by making it appearing more like a social agent [4, 20].

Very similar behavioural responses can be observed in children [4]. More in general, increasing the anthropomorphic features and the human social skills of a technology (e.g. by adding a name or a human voice to an autonomous vehicle) increases the individual willingness to accept and trust the technology itself (e.g. [21, 22, 13]).

Nonetheless, while the importance of emotions in driving the choice of a human to trust another human has been highly studied, less evidence is available when the decision to trust involves the interaction between artificial agents and humans ([23, 7, 21]). Moreover, we know that trust is highly culturally based, and that the appearance of the robot (especially its human-likeness, see [24]) affects the emotions perceived by its interlocutors. Therefore, studies on human-robot interactions and trust should always be repeated with different robot players having different aesthetics.

On that premise, the present study investigates how trust in a social robot is affected by its human likeness (both in terms of aesthetics and speech content), while taking into account the psychophysiological states of the players during the interaction through physiological signal processing. The objectives
are twofold. On the one side, we can gain insights into how human-likeness interacts with emotions to instill people’s trust in artificial agents, comparing it with that in human partners so as to assess the differences (if any). On the other side, we can gain a better understanding on how to design machines - both in terms of appearance and (e.g. communication) skills - in a way that helps facilitate a fruitful interaction with humans. To this end, we present a series of experimental sessions based on a modified version of a well-known game used in behavioral economics to study trust among humans: the trust game as proposed by Berg and colleagues and adapted by Charness and Dufwenberg [25, 26]. In this game, the outcome of the interaction depends on whether the first mover (the trustor) decides or not to trust the second mover (the trustee). If the first mover decides to trust the counterpart by remaining in the game, the second mover has to decide between a choice that does not benefit the trustor but it is more beneficial for himself (i.e. provides him with the highest payoff) and a choice that benefits the trustor but provides him with a lower payoff. If the first mover decides not trust, both players get a lower outside payoff. In other words, there is a conflict of interest between the two players when remaining in the game, but both would be better off if a mutual relationship is established (i.e. the first player remains in the game). A peculiar characteristic of this game is that prior to the trustor’s choice of remaining in the game, the trustee is given the opportunity to send him a non-binding (i.e. cheap-talk) message. We rely on this game as it has been specifically conceived to assess whether receiving a message containing a promise from the opponent increases individual trust in him (her).

In our experiment the role of the trustor is always played by a human participant while the role of the trustee is played by three different types of players: a humanoid robot with high human-likeness (FACE, Fig. 1), a human counter-part (Human, Fig. 1), and a computer-box machine (Computer-Box, Fig. 1). In all cases, we compare the trustors’ choices when the trustee sends a generic message - not including any type of promise (i.e. an ‘empty’ message) - with the trustors’ choices when the trustee sends instead a message containing a promise. Specifically, to generate the messages from the robot, we rely on real sentences that occurred between human participants in the experiment of Charness and Dufwenberg [25], and were therein classified either as empty or promising. In addition, to monitor the psychophysiological states of our participants, throughout all the experimental sessions we collect data on the most widely used autonomic nervous system correlates (ANS), such as pulse rate variability (PRV) and electrodermal activity (EDA), which are well known to contain information about the affective state of a subject [27]. PRV represents the variation in the time interval between two heartbeats, whereas EDA measures changes in skin conductance due to psychologically-induced sweat gland activity. They were measured on the wrist surface through a sensorized bracelet (i.e., Empatica’s E4 wrist
1 Experimental design

In the experiment we replicate the trust game proposed by Charness and Dufwenberg [25] as depicted in Figure 2. There are two players: A (the trustor) and B (the trustee). Player-A chooses between two options, In and Out. If Player-A chooses Out, the game ends and each player wins 5 Euro. If Player-A chooses In, then Player-B has to choose between two options, Roll or Don’t Roll. If he chooses Don’t Roll, then he wins 14 Euro while Player-A earns 0 Euro. If he chooses Roll, Player-A wins 0 Euro with probability 1/6 and 12 Euro with probability 5/6, while Player-B wins 10 Euro in any case. From an economic point of view, for Player-B it is better if Player-A chooses In, while for Player-A choosing In is convenient only if B chooses Roll. A characteristic of this game is that when Player-A wins 0, it is not possible for Player-A to infer with certainty whether Player-B has chosen either Roll or Don’t Roll. This game thus reflects (as many other experiments in economics) real-world situations where it is not possible to perfectly observe the behaviour of a partner that can be delegated to make relevant payoff decisions. In this experiment, the type of Player-B (i.e., the trustee) changes across treatments, while Player-A is always a human participant. In particular, the role of Player-B is played by either a humanoid (FACE), a computer-box, or a human. Regarding the message Player-B sends to Player-A, it can be of two kinds: a message containing a promise to roll the dice (promising), and a generic message.
In particular, we select messages from the original study of Charness and Dufwenberg [25] (as available on the related Supplementary material in the online Appendix). To further check whether the length of messages affects individual choices, for each type of message (i.e. promising and empty), we specifically select two short (less than 10 seconds) and two long (more than 10 seconds) messages.

Thus, we have a 3x2x2 design. Treatments are illustrated in Table 1 and 2, and an English translation of the instructions is available in the last section at the end of the paper.

In the FACE treatment, the role of Player-B is played by FACE, i.e. a hyper-realistic humanoid robot with the aesthetics of a woman (see Figure 1) that due to its perceptive, reasoning, and expressive capabilities, constitutes a sophisticated observation platform to study what happens when human and machine establish empathic links [28], [29]. However, although it has been shown that humanoid robots can use the expression of emotion to influence human perceptions of trustworthiness, we do not rely on FACE’s ability to show emotional information through facial expressions in order to isolate only the effect of human-likeness and promise in influencing the emotional state of our participants, as well as their choices.

In the Computer-Box treatment, the role of Player-B is played by a light-emitting audio-box reproducing the same audio-sentences and taking decisions in the same way as in FACE. Importantly, both in
Table 1: Treatments

This table classifies the number of observations collected in our study according to the type of counterpart the human participants confront with (i.e. computer-box, human, and humanoid) and the type of sentence they have to listen to (i.e. containing a promise or not, either a short or long sentence).

	Empty Short	Empty Long	Empty Total	Promising Short	Promising Long	Promising Total	Grand Total
Computer-box	12	19	31	20	13	33	64
Human	16	10	26	14	8	22	48
Humanoid (FACE)	15	10	25	16	9	25	50
Total	43	39	82	50	30	80	162

*FACE and Computer-Box treatments, the artificial agent has its own cognitive system with its perception analysis and architecture, i.e. the so-called Social Emotional Artificial Intelligence (SEAI). This framework allows the social scenario to be acquired and to influence the parameters which correspond to the ‘mood’ of the artificial agent (see Figure 4 and [30]). Specifically, in this experiment, due to SEAI, the artificial agent benefits from its own artificial emotions for choosing whether to *Roll* or *Don’t Roll* (see the Appendix for more information about how the robot takes a decision). More importantly, the participants in this experiment are aware that the artificial agent (like the human counterpart) is able to take its decision autonomously, i.e. not randomly but following its own behavioural rules, and therefore the results of game interaction are not determined by chance only.

In the Human treatment, the role of Player-B is played by the same professional actress who gave her voice for recording FACE/Computer-Box’ audios. The actress is free to autonomously decide her choices in the game, i.e. *Roll* or *Don’t Roll*, being paid accordingly, but she has no room to decide which sentences to state that have to be exactly the same ones, and in the same identical order, as the ones pronounced in FACE and Computer-Box. Moreover, the actress is instructed to avoid any facial expressions during the interaction with a participant, and has to wear FACE’s hair and dresses. Similarly, she has to follow the same experimental procedure as in the Computer-Box and FACE treatments (see the Appendix for details on the experimental procedure).

To investigate the psychophysiological state of Player-A while taking the decision, in all sessions the participants wear a wearable device on their left wrist (a sensorized bracelet, the Empatica’s E4 wristband) for the real-time collection of physiological data, such as PRV and EDA. The processing of these signals allows us to characterize the ANS activity of Player-A and infer about his (her) psychophysiological states. In particular, to quantify the autonomic nervous system activity we extracted three indexes.

1 The only exception being the actuation control (i.e. commands to induce movement and facial expressions), which is obviously different.

2 https://www.empatica.com/
to quantify both the sympathetic branch (i.e. the EDAsym index, [31]), the parasympathetic branch (i.e., the HFnu index [32]), and the sympathovagal balance (i.e. EDAHFnu index [33, 34]). In Appendix we describe in details how we computed these indexes.

At the end of the experiment, participants have to fill in a questionnaire asking information about how they perceive Player-B, as well as information about their individual characteristics, such as age, gender, and field of studies. In particular, as Nitsch and Glassen [20], participants has to rate on 7-likert scale how much they perceive Player-B as a human (i.e. the human-likeness, where 1 means non-human at all and 7 means totally human) and how much they perceive Player-B as a machine (i.e. the machine-likeness). We also ask participants to rate how much they believe their behaviour has affected Player-B’s choice and to make a guess about Player-B’s choice (Roll/Don’t roll). Finally, we elicit their technological affinity by the Affinity for Technological Interaction (ATI) scale as in Franke and coauthors [35] and measure their individual risk preferences with the International Test on Risk Attitudes (INTRA tests [36]).

The experiment was conducted from the end of July till October 2019, and 162 randomly invited participants out of a pool of more than 1500 students coming from all departments of the University of Pisa took part in the study (90 students were female and 72 male with no substantial difference across treatments). For more information on the protocol see the Appendix at the end of the paper.

2 Results

We start analyzing how participants rated the different types of player-B as a human and a machine, as well as their technological affinity. In Table 3 we report the average of these variables by type of Player-B. Note that in the following, we denote with p_p the one-sided p-value for a test for proportions, with p_t the one-sided p-value for a t-Student test, and with p_{perm} the one-sided p-value for a test with 500 data permutations (see more information on Methods in the Appendix). If we compare how much individuals rated Player-B as a human, we observe that Human is ranked higher than Face (mean diff=1.49, $p_t=0.000$), and Face is ranked higher than Computer-box (mean diff=0.87, $p_t=0.007$). Moreover, if we look at how participants assessed Player-B as a machine, we consistently find that Face ranked higher than Human (mean diff=2.03, $p_t=0.000$). It is important to remark that we ask our participants to give the same rating also to the human (actress) counterpart as her behaviour is not entirely natural, as she has to avoid any additional interactions as well as any facial expression during the game. We do not find any significant difference in technological affinity between participants in the different treatments.
Table 2: **Type of Messages**

Types	# Phrases	# Seconds	Phrases
Empty	2	<10	- 'Good luck!'
			- 'Please choose IN, so we both earn more money.'
	2	>10	- 'If you stay IN, the chances of the die coming up other than 1 are 5 in 6 – pretty good. Otherwise, should you choose OUT we’d both be stuck at 5 Euro.'
			- 'Good luck on your decision. Choose whatever. If you choose “out”, you get only 5 Euro more. If you choose “In” you can get 12 Euro instead of only 5 Euro. 7 Euro more is a lot of money!'
Promising	2	<10	- 'I will roll the dice'
			- 'Choose In and I will Roll. You have my word.'
	2	>10	- 'Choose in, I will roll dice, you are 5/6 likely to get 2, 3, 4, 5, or 6 and win 12 Euro. This way both of us will win something.'
			- 'Choose in and I will roll. That way, we’ll both get extra money.'

This table reports 8 sentences that occurred between human participants in the study of Charness and Dufwenberg (2006) and were selected in our study. 4 out of 8 sentences were classified as short (i.e. they last less than 10 seconds) and empty (i.e. they did not contain any type of promise to roll the dice).

Table 3: **Participants’ Perception and technological affinity**

For each type of player-B, this table reports the average values of variables measuring on a scale from 0 to 7 human-likeness, machine-likeness and technological affinity (ATI scale as in [35]).

	Human-likeness	Machine-likeness	ATI
Human	4.96	3.60	4.84
FACE	3.46	5.64	5.08
Computer-Box	2.59	5.93	4.98
Total	3.56	5.15	4.97
The main results are summarized in Table 4, which reports the relative frequencies of choice ‘In’ made by participants (acting as Player-A) by treatments and human-likeness. Specifically, for each type of Player-B, we categorize the level of human-likeness as Low when the participant rating is below the median choice (on the distribution on the 7-likert scale), and High otherwise. Note that we pool the data regardless the length of the message, since it does not significantly affect the decisions to play ‘In’ in any scenario.

We first compare the results according to the type of Player-B. We note that the frequency of choice ‘In’ is significantly lower when player-B is a Human than when player B is either FACE (0.60 vs. 0.80, mean diff=-0.20, \(p = 0.030 \), \(p_{\text{perm}} = 0.016 \)) or a Computer-box (0.77, mean diff=-0.17, \(p = 0.066 \), \(p_{\text{perm}} = 0.016 \)). There is no significant difference between FACE and Computer-box.

Regarding the effect of receiving a promise (vs. receiving an empty message), we do not find any significant effect on the frequency of choice ‘In’ looking at each type of player-B separately. However if we distinguish by human-likeness, we find significant effects of receiving a promise. Specifically, when Player-B is Human and human-likeness is high, the frequency of choice ‘In’ is significantly higher when a promise is received (0.86 vs. 0.53, mean diff=0.33, \(p = 0.030 \), \(p_{\text{perm}} = 0.018 \)). A similar, but only weakly significant, effect is found when Player-B is FACE and human-likeness is high (1 vs. 0.85, mean diff=0.15, \(p = 0.097 \), \(p_{\text{perm}} = 0.000 \)).

We now delve into the effects of human-likeness for each type of Player-B. To begin with, we observe that if participants assigned a high human-likeness to Player-B, the probability of choosing ‘In’ is significantly higher than those who assigned it a low human-likeness when Player-B is either FACE (0.91 vs. 0.70, mean diff=0.21, \(p = 0.033 \), \(p_{\text{perm}} = 0.010 \)) or Human (0.69 vs. 0.47, mean diff=0.22, \(p = 0.067 \), \(p_{\text{perm}} = 0.032 \)). There is no significant difference when Player-B is a Computer-box. Furthermore, if we distinguish between the group of participants who received a promise from those who received an empty message, we observe that, when Player-B is FACE, the effect of higher human-likeness is significant only among those who received a promise (1 vs. 0.73, mean diff = 0.27, \(p =0.037 \), \(p_{\text{perm}} =0.000 \)). A similar result is observed when Player-B is Human (0.86 vs. 0.37, mean diff= 0.49, \(p =0.010 \), \(p_{\text{perm}} =0.002 \)). Overall, we can conclude that the choice to trust FACE is significantly related to the way a participant perceived it as a human. If a participant recognises FACE very similar to a human being, the probability that he will choose ‘In’ increases. We find that this effect is mainly driven by those participants who received a promise.

If we attend to the emotional reaction of the participants, we concentrate on two out of the three indexes computed using the physiological data recorded during the experiment, namely EDAsymp.
Table 4: **RELATIVE FREQUENCIES OF ‘CHOICE IN’ BY TREATMENT AND HUMAN-LIKENESS**

Human-likeness	Low	High	Total
FACE			
Empty	0.67	0.85	0.76
Promising	0.73	1.00	0.84
Total	0.70	0.91	0.80
Human			
Empty	0.55	0.53	0.54
Promising	0.37	0.86	0.68
Total	0.47	0.69	0.60
Computer-Box			
Empty	0.71	0.80	0.74
Promising	0.79	0.79	0.79
Total	0.75	0.79	0.77

This table reports the relative frequencies of (i.e. the share of participants) choosing ‘IN’ for each treatment by human-likeness. Human-likeness is Low when the participant rating is in the lower side of the distribution on the 7-likert scale, and High otherwise. The number of observations are in squared brackets.

Table 5: **PHYSIOLOGICAL DATA: EDASYMP AND EDAHF_NU**

Index	Human-likeness	Box	Human	FACE
EDASymp	LOW	-0.144	-0.288	-0.129
		[28]	[9]	[26]
	HIGH	-0.327	-0.128	1.731
		[16]	[16]	[22]
	Total	-0.211	-0.186	0.724
EDAHFnu	LOW	-0.175	-2.173	0.275
		[28]	[9]	[26]
	HIGH	0.012	0.055	5.865
		[16]	[16]	[22]
	TOTAL	-0.107	-0.747	2.837

The EDASymp index quantifies the activity of the sympathetic nervous system, while the EDAHFnu index quantifies the sympthovagal balance. A full description is available in the Appendix. Human-likeness is Low when the participant rating is in the lower side of the distribution on the 7-likert scale, and High otherwise. The number of observations are in squared brackets.
and EDAHFnu (see Table 5), as the third index HFnu provides only marginally significant - although consistent - results. Specifically, we find a significantly higher autonomic nervous system (ANS) activation when Player-B is FACE that when Player-B is either Computer-box (0.724 vs. -0.211, mean diff\textsubscript{EDAsymp} = 0.935, p\textsubscript{t}=0.016, p\textsubscript{perm}=0.008; 2.837 vs. -0.107, mean diff\textsubscript{EDAHFnu} = 2.944, p\textsubscript{t}=0.053, p\textsubscript{perm}=0.050) or Human (0.724 vs. -0.186, mean diff\textsubscript{EDAsymp} = 0.909, p\textsubscript{t}=0.056, p\textsubscript{perm}=0.074; 2.837 vs. -0.747, mean diff\textsubscript{EDAHFnu} = 3.584, p\textsubscript{t}=0.063, p\textsubscript{perm}=0.068). Furthermore, when Player-B is FACE, we find that subjects who rated Player-B high in human-likeness are more likely to experience a stronger emotional reaction than participants who rated it low (1.731 vs. -0.129, mean diff\textsubscript{EDAsymp} =-1.859, p\textsubscript{t}=0.017, p\textsubscript{perm}=0.000; 5.865 vs. 0.275 EDAHFnu =-5.590, p\textsubscript{t}=0.009, p\textsubscript{perm}=0.000). We do not find a similar effect when Player-B is Human or Computer-box. Finally, we note that the psychophysiological reaction of subjects rating FACE high in human-likeness is significantly higher than that experienced by subjects interacting either with Computer-box or Human, regardless of the rating of human-likeness.

Regarding the relationship between the psychophysiological reaction of participants and their choices, we do not find any significant correlation using the two indexes EDAsymp and EDAHFnu. However, if we split our participants into two groups according to whether they express a stronger (or weaker) psychophysiological reaction than the median level of the distribution of EDAsymp (see Table 6), we can observe that those who experienced a stronger reaction are also less likely to choose ’In’ in both Computer (0.636 vs. 0.909, mean diff=0.273, and p\textsubscript{p}=0.015) and Human (0.462 vs. 0.750, diff=0.288, and p\textsubscript{p}=0.070).

Finally to study the interaction between human-likeness and psychophysiological reaction of our participants we conduct a probit analysis for the probability of playing ’In’ using as a set of regressors player human-likeness and EDAsymp dummy, along with a dummy for each treatment. Results are reported in Figure 3. This figure highlights that increasing the psychophysiological reaction from low to high reduces the probability of playing ’In’. However, increasing the level of human-likeness counterbalances this negative effect, especially in FACE and in Computer-box.

3 Discussion and conclusion

In our experiment participants were confronted with a counterpart which differed in the degree of human-likeness: a light-emitting computer-box, a female humanoid and a female human (which resembled the humanoid). The participants needed to decide - after listening to a message from the
Table 6: RELATIVE FREQUENCIES OF ‘CHOICE IN’ BY PHYSIOLOGICAL STATE AND HUMAN-LIKENESS

Human-likeness	EDASymp	Total	
	High	Low	
FACE			
High	0.916	0.900	0.909
Low	0.667	0.714	0.692
Total	0.792	0.792	0.792
Computer-Box			
High	0.667	0.857	0.750
Low	0.616	0.933	0.786
Total	0.636	0.909	0.770
Human			
High	0.500	0.875	0.686
Low	0.400	0.500	0.444
Total	0.462	0.750	0.600

Each cell represents the frequencies of choice ‘In’ within each category. An individual is classified in EDAsymp High whenever is above the median level of the EDAsymp distribution, and EDAsymp Low otherwise. Human-likeness is Low when the participant rating is in the lower side of the distribution on the 7-likert scale, and High otherwise. The number of observations are in squared brackets.

Figure 3: Marginal effect of Sympamp High on the probability of playing ‘In’
counterpart, containing in half of the cases a promise - whether to trust or not their opponent in the
game. We find evidence that a human receiving a promise from a humanoid has more trust in it only
when he (or she) perceived the artificial agent very similar to a human-being. Indeed, if we replace the
social robot with a human we find a similar pattern. However, replacing it by the computer-box the
effect of receiving a promise disappears. We also find that participants experienced a stronger psycho-
physiological reaction when confronted with a humanoid, especially if it appeared to them very close
to human. Moreover, we observe that those participants expressing stronger psychophysiological reac-
tion were less likely to trust the counterpart (i.e. chose more often the safer option) when this is either
a computer-box or a human.

Taken all together, these results suggest that human-likeness and (integral) emotions play both an
important role in the decision to trust the counterpart, possibly in interaction with each other. However,
some remarks follow in order. While in this experiment we can fully control the degree of human-
likeness by varying it across treatments, we have less control over the type of emotions experienced
by our subjects. Although physiological measures such electrodermal activity (EDA) have been widely
used over the last decades for representing emotional arousal, and most scholars accept a physiological
component in the definition of emotions, it is not possible to directly match the physiological state of
a participant with a direct type of emotion (e.g. fear or anxiety). In addition, the literature on emotion
arousal highlights that there might be individuals exhibiting different physiological responses to the
same emotional state [37]. Therefore, our results can only suggest a greater or a weaker ‘emotional
arousal’ without giving any insights into the type of emotions proved by our participants.

Nevertheless, the vast psychological literature on emotions and decision-making offers us an inter-
esting framework to interpret our results. In particular, recent evidence from laboratory experiments is
mostly consistent with the Appraisal-Tendency Framework according to which emotions change indi-
viduals’ appraisal of a situation, thereby affecting individual choices [9, 38]. Importantly, in that fram-
ing, emotions of the same valence (such as fear and anger) can exert opposing influences on choices.
Thus, what matters is whether an emotion (either positive or negative) by leading to a more cautious
appraisal of the situation reduces the feeling of control, e.g. thereby reducing the willingness to take
risks. Therefore, even if we are not able to disentangle among different types of emotions, we can rea-
onably assert that in our framework, whenever the experience of a stronger emotional arousal lead a
participant to a more cautious appraisal of the counterpart, we observe a more careful assessment of
the situation and a lower willingness to take risk and trust the counterpart. This interpretation of our
results is also consistent with previous research showing that participants with ventromedial prefrontal
cortex (a key area of the brain for integrating emotion and cognition) repeatedly select a riskier financial option over a safer one, even to the point of bankruptcy, despite their understanding of the suboptimality of their choices. In particular, their physiological measure of skin response suggests that they did not experience the emotional signals (i.e. the somatic markers) that lead normal decision makers to fear high risks [9]. Overall, these results strongly support the efforts in developing technologies enhancing the humanity of social robots, both in terms of human appearance and communication behaviour. Indeed, if from one-side it is not possible to control for human emotions, in line with recent studies [21, 22], our results suggest that increasing the human-likeness of an artificial agent increases sensibly the likelihood that a human counterpart will trust it. At the same time, the analysis we conducted opens an interesting question about the role of specific emotions, also over the longer time-horizons, that we are not able to fully disentangle in our simple one shot-game.

To conclude, we see several directions for future interdisciplinary research. The first one is to explore different types of human-robot interactions, for example, prisoner dilemma games, coordination games or repeated interactions (e.g. by replicating the analysis of Crandall and co-authors with a social robot [19]). The second direction of research is on the side of the social robot. It would be very interesting to introduce - within standard experiments in economics - the behavior of people interacting with a robot that can also additionally adapt its facial expression, as well as the mode of communication, to the perceived emotions of the human counterpart.
References

[1] Lange, P. A. M. V. Generalized trust: Four lessons from genetics and culture. *Current Directions in Psychological Science* **24**, 71–76 (2015). (document)

[2] Fehr, E. On the economics and biology of trust. *Journal of the European Economic Association* **7**, 235–266 (2009). (document)

[3] Langevoort, D. C. Selling hope, selling risk: some lessons for law from behavioral economics about stockbrokers and sophisticated customers. *Cal. L. Rev.* **84**, 627 (1996). (document)

[4] Nishio, S., Ogawa, K., Kanakogi, Y., Itakura, S. & Ishiguro, H. Do robot appearance and speech affect people’s attitude? evaluation through the ultimatum game. *Geminoid Studies: Science and Technologies for Humanlike Teleoperated Androids* 263–277 (2018). (document)

[5] Picard, R. W. Toward machines with emotional intelligence. In *ICINCO (Invited Speakers)*, 29–30 (Citeseer, 2004). (document)

[6] Engelmann, J. B., Meyer, F., Ruff, C. C. & Fehr, E. The neural circuitry of emotion-induced distortions of trust. *BioRxiv* 129130 (2018). (document)

[7] Schniter, E., Shields, T. W. & Sznycer, D. Trust in humans and robots: Economically similar but emotionally different (2018). (document)

[8] Jung, E.-S., Dong, S.-Y. & Lee, S.-Y. Neural correlates of variations in human trust in human-like machines during non-reciprocal interactions. *Scientific reports* **9**, 1–10 (2019). (document)

[9] Lerner, J. S., Li, Y., Valdesolo, P. & Kassam, K. S. Emotion and decision making. *Annual Review of Psychology* **66** (2015). (document)

[10] Damasio, A. R. The somatic marker hypothesis and the possible functions of the prefrontal cortex. *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences* **351**, 1413–1420 (1996). (document)

[11] Damasio, A. R. Descartes error revisited. *Journal of the History of the Neurosciences* **10**, 192–194 (2001). (document)

[12] Vaa, T. Driver behavior models and monitoring of risk: Damasio and the role of emotions. In *International Conference: Traffic Safety on Three Continents* PTrC Education and Research Services Limited, VTI Konferens 18A (2001). (document)
[13] Fox, A. S., Lapate, R. C., Shackman, A. J. & Davidson, R. J. *The nature of emotion: fundamental questions* (Oxford University Press, 2018). (document)

[14] Arkin, R. C., Ulam, P. & Wagner, A. R. Moral decision making in autonomous systems: Enforcement, moral emotions, dignity, trust, and deception. *Proceedings of the IEEE* **100**, 571–589 (2011). (document)

[15] Tortosa, M. I., Strizhko, T., Capizzi, M. & Ruz, M. Interpersonal effects of emotion in a multi-round trust game. *Psicologica: International Journal of Methodology and Experimental Psychology* **34**, 179–198 (2013). (document)

[16] Campellone, T. R. & Kring, A. M. Who do you trust? the impact of facial emotion and behaviour on decision making. *Cognition & emotion* **27**, 603–620 (2013). (document)

[17] Engelmann, J. B. *et al.* Emotions can bias decision-making processes by promoting specific behavioral tendencies (2018). (document)

[18] Hancock, P. A. *et al.* A meta-analysis of factors affecting trust in human-robot interaction. *Human factors* **53**, 517–527 (2011). (document)

[19] Crandall, J. W. *et al.* Cooperating with machines. *Nature communications* **9**, 1–12 (2018). (document)

[20] Nitsch, V. & Glassen, T. Investigating the effects of robot behavior and attitude towards technology on social human-robot interactions. In *2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)*, 535–540 (IEEE, 2015). (document) [1]

[21] Waytz, A., Heafner, J. & Epley, N. The mind in the machine: Anthropomorphism increases trust in an autonomous vehicle. *Journal of Experimental Social Psychology* **52**, 113–117 (2014). (document) [3]

[22] Nass, C. & Moon, Y. Machines and mindlessness: Social responses to computers. *Journal of social issues* **56**, 81–103 (2000). (document) [3]

[23] March, C. The behavioral economics of artificial intelligence: Lessons from experiments with computer players (2019). (document)

[24] Mori, M. The uncanny valley: The original essay by masahiro mori. *IEEE Robots &* (2017). (document)
[37] Picard, R. W. *Affective computing* (MIT press, 2000).

[38] Meier, A. N. Emotions, risk attitudes, and patience. Tech. Rep., SOEPpapers on Multidisciplinary Panel Data Research (2019).

[39] Greiner, B. *et al.* The online recruitment system orsee 2.0-a guide for the organization of experiments in economics. *University of Cologne, Working paper series in economics* 10, 63–104 (2004).

[40] Lazzeri, N., Mazzei, D., Cominelli, L., Cisternino, A. & De Rossi, D. E. Designing the mind of a social robot. *Applied Sciences* 8, 302 (2018).

[41] Bosse, T., Jonker, C. M. & Treur, J. Formalisation of damasio’s theory of emotion, feeling and core consciousness. *Consciousness and cognition* 17, 94–113 (2008).

[42] Zaraki, A. *et al.* Design and evaluation of a unique social perception system for human–robot interaction. *IEEE Transactions on Cognitive and Developmental Systems* 9, 341–355 (2016).

[43] Cominelli, L. *et al.* A preliminary framework for a social robot ,Äúsixth sense,Äu. In *Conference on Biomimetic and Biohybrid Systems*, 58–70 (Springer, 2016).

[44] Mazzei, D., Cominelli, L., Lazzeri, N., Zaraki, A. & De Rossi, D. I-clips brain: A hybrid cognitive system for social robots. In *Conference on Biomimetic and Biohybrid Systems*, 213–224 (Springer, Cham, 2014).

[45] Giarratano, J. C. & Riley, G. *Expert systems* (PWS publishing co., 1998).

[46] Russell, J. A. A circumplex model of affect. *Journal of personality and social psychology* 39, 1161 (1980).

[47] Cominelli, L. *et al.* Damasio,Äús somatic marker for social robotics: preliminary implementation and test. In *Conference on Biomimetic and Biohybrid Systems*, 316–328 (Springer, 2015).

[48] Mazzei, D., Lazzeri, N., Hanson, D. & De Rossi, D. Hefes: An hybrid engine for facial expressions synthesis to control human-like androids and avatars. In *2012 4th IEEE RAS & EMBS International Conference on biomedical robotics and biomechatronics (BioRob)*, 195–200 (IEEE, 2012).

[49] Kreibig, S. D. Autonomic nervous system activity in emotion: A review. *Biological psychology* 84, 394–421 (2010).
4 Methods

4.1 Participants

The experimental protocol was approved with unanimity by the Bioethical Committee of the University of Pisa (Review No. 21/2019), and all sessions were performed in accordance with relevant regulations and guidelines. Informed consent was obtained from all participants in the experiments. Informed consent was also obtained from the actress to publish online Figure 1.

Participants were invited through ORSEE system of the University of Pisa, which allow to randomly invite participants and to keep track of their participation in experiments. In total 164 participants signed-up and showed up in the laboratory in the day they were invited. Two subjects were removed from the pool because they did not followed the experimental procedure correctly. The final sample was therefore of 162 (90 students were female and 72 male, with a mean age of about 26 years old).

The total number of participants was determined based on previous study (in Charness and Dufwenberg 2006) as well as on technical constraints (i.e. the possibility to run the humanoid for a long period of time). In Charness and Dufwenberg (2006) there were 42 pairs in the session in which participants
could receive a message from the opponent, with a share of 0.74 of player-B choosing ‘In’. We knew that
given the proportion of 0.74 in the human treatment, the smallest difference that could be detected with
this sample size and a power of 0.80 was about 0.20. Therefore, we aim to have a final sample of about
50 participants, thereby we aimed to recruit 55 participants for each treatment. In the computer-box
machine we recruited slightly more subjects as we did experience several participants’ no-show up in
the previous treatment.

4.2 Experimental procedure

Each participant arrives in the laboratory and enter a room in which (s)he read and sign the consent
to participate in the study. The participant then sits in front of a computer screen where (s)he can read
autonomously the experiment instructions and fill in some preliminary questions about their attitudes
towards the technology. At this stage participant also worn the bracelet on their left wrist. This phase
will be then used as ‘the rest’ phase for measuring psychophysiological parameter (see also below).
Once the time dedicated to this part has expired, the participant is lead by the experimenter to another
room where the robot is located and a marker is recorded on the bracelet to begin the second phase of
measurement of psychophysiological parameters. The participant seats on chair, always located at the
same distance from the robot, and when is ready to start the experiment has to rise his hand. At this
point, the robot welcomes the participant with a standard sentence (‘Nice to meet you! Let’s start’) to
then state one random sentence out of 8 (according to the treatment, see again Table 1 in the paper).
The robot then tells the participant a standard final sentence, inviting the participant to enter his(her)
choice in the computer in front of him(her). The robot cannot observe though the choice the participant
has made. To conclude the experiment, the participant has to return to the initial room, to complete an
exit questionnaire about the interaction of the robot, and receive the final payment.

4.3 The FACE Robot and the SEAI Cognitive System

The FACE robot (Facial Automaton for Conveying Emotions) is a humanoid with hyper-realistic adult
female aesthetics, specifically designed for social robotics [40]. It is composed with a passive body
on the top of which a Hanson Robotics’ head has been mounted. The head is designed to host 32
servomotors that guide the neck of the robot, its eyes, mouth, and facial expression. The face of the
ginoid is made of Frubber [3], a registered material with skin-like mechanical and aesthetical features.

[3] https://patents.google.com/patent/US7113848?oq=frubber
This hardware is controlled by SEAI (Social Emotional Artificial Intelligence), a distributed control architecture made of perception, cognitive and actuation systems, that endow the robot with expressive and communicative capabilities [30], including also the possibility to emulate verbal communication following prerecorded audio files.\(^4\) SEAI is a bio-inspired architecture based on neuroscientific theories of mind. In particular, it has been inspired by the findings of Antonio Damasio and it is consistent with the computational formalization made by [41]. In its development, the influence of emotions in the decision-making process has been of primary importance. The perception part of the system is the Scene Analyzer, an audiovisual perception system conceived to analyze a social environment using the robot sensors and to extract meaningful social cues from these available data. Features that can be extracted from a human interlocutor are, e.g., the three dimensional position of 25 joint coordinates, their speaking probability, meaningful postures and gestures, estimated facial expressions, age and gender [42]. This Social Perception System has already been successfully integrated with the acquisition of physiological parameters (i.e., electrodermal activity, respiration rate and heart rate variability) in past experiments [43]. All the environmental information analyzed by the perception system of the robot is then processed by its cognitive system, i.e., the I-CLIPS Brain [44], a rule-based expert system written in CLIPS language [45]. The knowledge base of the expert system is written by means of IF-THIS-THEN-THAT rules, where each rule contains a set of actions that will be executed if several conditions about the upcoming factual information are satisfied. Thanks to these rules it is possible to design the behavior of the humanoid. For example, a particular expression gathered in its interlocutor can lead to the trigger of a sentence or a facial expression performed by the robot, but also to the modification of the robot’s internal values. In fact, SEAI includes emotional internal values (i.e., valence and arousal), which combination describes an emotional state, here defined as mood. This method of representing emotion is based on the well-known Russell’s Circumplex Model of Affect [46]. In the case of the robot, mood is not necessarily externalised by perceivable movements, rather it is implied in biasing the chaining of the rules, and so, the decision tree of the robot. Emotion biasing decision in this cognitive system has been previously tested [47]. The instructions coming from the cognitive block about the emotion to be expressed through facial expression - \((v,a)\) values, the sentence to say, and the point to look at, are merged and continuously executed thanks to the actuation system, which translate them in movements performed by the motors that drive the face, the mouth and the neck of the ginoid [48]. Furthermore, the SEAI architecture is completely modular and portable, all the blocks composing the framework are

\(^4\) The audio files used for the experiment have been recorded using the voice of a professional actress, the same who interpreted the role of Player-B in the interactions with the real person; the sentences were the Italian translation of the sentences between the Charness trust game players.
stand-alone applications that process a limited set of information. These modules are distributed in a
local net of computers that communicate by means of the YARP middleware. This implies that each
module can be activated or deactivated, and that the perception and cognitive systems can be used also
without controlling the FACE Robot. As a result, we were able to use exactly the same rules engine
in the computer box case, simply disabling the actuation part of the system that control the robot, and
using instead the bluetooth speaker, presented as a smart computer box, actually running the same
perception and actuation system of the robot. This led to a very close and controlled comparison.

4.4 How the robot takes a decision, the Rules Engine

In this experiment, the robot (as well as the computer box) decides whether to Roll or Don’t Roll accord-
ing to its emotional state and following its decision rules. In particular, a positive mood in SEAI (i.e., an
emotional state with positive valence) will lead the robot to be collaborative with the human player and
play Roll; while a negative mood in SEAI (i.e., an emotional state with negative valence) will lead the
robot to play Don’t Roll (see Figure 5). The decision is taken at the end of the interaction with Player-A,
when the subject goes out of the room, and so out of the field of view of the robot.

If in the moment in which the robot has to take a decision, it is in a qualitatively neutral mood (v=0,
regardless the arousal), the decision will be taken randomly (50%). Participants’ behavior during all
the time spent alone in the room with the robot, once observed by the Scene Analyzer and processed
in SEAI, act as an input modifying the parameters of the robot which correspond to its ‘mood’, thus in
turn affecting its course of action (i.e., its final decision). However, in this experiment, at each interac-
tion with a new participant the robot always resetted its internal values at the «neutral emotional state»
(which corresponds to $v = 0, a = 0$ in the graph). In conclusion, thanks to SEAI the robot was com-
pletely autonomous, by means of the rules everything was pre-programmed and automatized, starting
from the rules that use perceived social cues to modulate the emotional state of the robot, to other rules
determining which sentence it has to say, when to start and to end a treatment, and the storage of all
the data acquired with timestamps in a structured dataset. The complete code of the rules engine is
available upon request from the authors.

https://www.yarp.it/
4.5 Mean comparisons across groups

To compare the means (μ) of the distribution of a random variable for two independent groups (X, Y), we perform t-Student tests on the equality of means. Specifically, to test for $\mu_x = \mu_y$ (when the variances σ_x and σ_y are unknown and replaced by s_x and s_y) the test is $t = \frac{\bar{x} - \bar{y}}{(s_x^2/n_x + s_y^2/n_y)^{1/2}}$ which is distributed as Student’s t. When the random variable is not continuous but a proportion, we use a normally distributed test statistic calculated as $z = \frac{\hat{p}_x - \hat{p}_y}{(\hat{p}_y(1-\hat{p}_y)(1/n_1+1/n_2))^{1/2}}$ where $\hat{p}_x = \frac{x+y}{n_1+n_2}$ where x and y are the number of successes in the two populations.

Both t and proportion tests rely on assumption about the distribution of the data. This is the reason why we also rely on permutation tests, which are nonparametric tests - i.e. do not rely on any assumption about the distribution of the data. Permutation tests work by resampling the observed data many times. The permutation test based on means implies: 1) to compute the sample means for each group $d_{observed} = \bar{x} - \bar{y}$; 2) pool all the data together and randomly permute the pooled data; 3) then compute again the sample mean again for the two groups and note the difference d_1; 3) repeat step 2 and 3 several times in order to obtain several mean differences, i.e. $d_1, d_2, d_3,$. If the null hypothesis of no difference between the two groups is true, by changing the order of the data we should not observe any difference in the means, otherwise it should look different from the real data. The ranking of the real test statistic, i.e. $d_{observed}$, among the shuffled test statistics, $d_1, d_2, d_3,$, gives a p-value.

4.6 Description and analysis of Physio data

Pulse rate variability (PRV) and electrodermal activity (EDA) signals are directly modulated by the autonomic nervous system (ANS) activity and, therefore, are considered ideal non-invasive physiological signals to investigate the ANS dynamics. Indeed, the ANS plays a crucial role in the processing of the emotional response, mental fatigue and workload [49, 50, 51].

Particularly, the EDA signal measures the activity of eccrine sweat glands on the hand surface. Since sweat glands are directly innervated by the sympathetic branch of the ANS (and in particular the sudomotor nerve), the EDA analysis is considered one of the best ways to monitor the sympathetic activity [52]. As a preprocessing step, we applied the well-known cvxEDA model [53] to remove the superimposed noise. From each free-to-noise EDA signal, we estimated the power spectrum within the frequency range of 0.045 and 0.25Hz (EDAsymp), which has been demonstrated to be an effective estimator of the sympathetic nervous system activity [31].

The PRV signal was computed interpolating the interbeat interval time series (IBI) extracted from the
photoplethysmography signals acquired by the Empatica wearable acquisition system. To characterize
the activity of the parasympathetic nervous system, which, as known, regulates the high frequency
oscillations of the PRV signal, we estimated the Power Spectral Density (PSD) related to each PRV
signal [32]. Two main spectral bands were considered: low frequency (LF) band (ranging between 0.04
and 0.15 Hz), and high frequency (HF) band (from 0.15 to 0.4 Hz). Then, the power spectrum in the HF
band normalized to the sum of LF and HF power (HFnu) was computed to quantify the activity of the
parasympathetic nervous system.

Note that all physiological indexes computed during the interaction with the agent were normalized
for each participant by dividing them by the baseline value computed before the interaction phase

4.7 New index from the sympathovagal assessment

Emotions regulation process modulates the sympathovagal balance [54, 55], which is considered a re-
liable marker of the human affective state. Previous studies have suggested that LF power spectrum
can provide a quantitative marker of the sympathetic outflow and have used the LF/HF ratio as a cor-
relate of the sympathovagal balance. However, the LF power is now regarded as a measure of both
sympathetic and vagal tone, leading to ambiguities and possible inconsistent conclusions on the use of
the LF/HF ratio as sympathovagal marker. In this study, we employed novel indexes of the sympath-
ovagal dynamics based on the combination of the information extracted from the EDA and PRV signal
[33]. Indeed, while EDAsymp reliably characterizes the sympathetic activity, HFnu is considered an
effective cardiovascular-related features it that reliably quantify the parasympathetic outflow. Accord-
ingly, we have estimated the sympathovagal balance using the ratio between EDAsymp and HFnu:

EDAsymp/HFnu [33].
Figure 4: EMOTIONAL STATE OF THE ROBOT

Figure 5: DECISION RULE OF THE ROBOT
INSTRUCTIONS: English translation from Italian

Welcome! This experiment will last about 30 minutes. You will receive 5 Euro for your participation. Based upon the choices you will take in the experiment; you can earn additional money. We now ask you to turn off your mobile phone and to read the instructions carefully.

The aim of this experiment is to study how people take decisions. In particular, this experiment wants to study how people take decision when interacting with a human-like robot.

Should you have any doubt, please do not hesitate to ask clarifications to the experimenter.

The data related to this experiment will be saved and analyzed anonymously. No video will be recorded.

In this experiment you will play with FACE i.e. a social robot which is able to prove and express its emotions. [with a computer-box which is given a system of social perception]. FACE [The Computer box] is also able to take its decisions autonomously, following its own behavioral rules. In this game, FACE [The Computer box] is programmed to choose autonomously between two actions: ROLL and DON’T ROLL a six-faces dice.

[In this experiment you will play with Deborah. Deborah can choose autonomously between two actions: ROLL and DON’T ROLL a six-faces dice.]

YOUR CHOICE

You will have to choose between two options: whether to play IN or OUT.

Should you choose OUT, both you and FACE [Computer box] [Deborah] will earn 5 Euro each.

Should you choose IN, FACE [Computer box] [Deborah] can then choose between the two options: ROLL and DON’T ROLL the six-faces dice. In the event FACE [Computer box] [Deborah] choosing DON’T ROLL, you will receive 0 Euro and FACE [Computer box] [Deborah] will earn 14 Euro. In the event FACE [Computer box] [Deborah] choosing ROLL, FACE [Computer box] [Deborah] will always earn 10 Euro
while you earning depends on the results of dice roll. If the result of the dice roll is a number between 2 and 6 you will earn 12 Euro, otherwise if the result of the dice roll is the number 1 you will receive 0 Euro.

It is important to notice that FACE [Computer box] [Deborah] will not know whether you opted either IN or OUT when has to reach a decision. It is also important to notice that the money earned by FACE will remain to FACE itself [will remain to the lab (e.g. maintenance)], and used for its necessity (e.g. maintenance).

The payments are summarized in the table below.

Dice roll	You earning	FACE’s earning	
If you choose OUT	-	5 Euro	5 Euro
If you choose IN FACE choose DON’T ROLL	-	0 Euro	14 Euro
If you choose IN FACE choose ROLL	Result: 1	0 Euro	10 Euro
	Results: 2,3,4,5,6	12 Euro	10 Euro

Now you have 5 minutes to read these instructions alone and ask clarifications questions to the experiment. Once you have finished reading, the experiment will bring you to another room where FACE [Computer box] [Deborah] is. You will have to seat on the chair in front of face, and in order to begin the experiment you need to raise your right hand. At the point, you will hear a message from FACE [Computer box] [Deborah]. You will then enter your choice in the computer close to you.

Once you have done, we will wait for you to comeback again to this room, to fill in a final questionnaire and receive your payment.