NeuroD1 promotes neuroblastoma cell growth by inducing the expression of ALK

Fangjin Lu, Satoshi Kishida, Ping Mu, Peng Huang, Dongliang Cao, Shoma Tsubota and Kenji Kadomatsu

1Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; 2Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA

Neuroblastoma is derived from the sympathetic neuronal lineage of neural crest cells, and is the most frequently observed of the extracranial pediatric solid tumors. The neuronal differentiation factor, NeuroD1, has previously been shown to promote cell motility in neuroblastoma by suppressing the expression of Slit2. Here we report that NeuroD1 is also involved in the proliferation of neuroblastoma cells, including human cell lines and primary tumorspheres cultured from the tumor tissues of model mice. Interestingly, the growth inhibition of neuroblastoma cells induced by knockdown of NeuroD1 was accompanied by a reduction of ALK expression. ALK is known to be one of the important predisposition genes for neuroblastoma. The phenotype resulting from knockdown of NeuroD1 was suppressed by forced expression of ALK and, therefore, NeuroD1 appears to act mainly through ALK to promote the proliferation of neuroblastoma cells. Furthermore, we showed that NeuroD1 directly bound to the promoter region of ALK gene. In addition, the particular E-box in the promoter was responsible for NeuroD1-mediated ALK expression. These results indicate that ALK should be a direct target gene of NeuroD1. Finally, the expressions of NeuroD1 and ALK in the early tumor lesions of neuroblastoma model mice coincided in vivo. We conclude that the novel mechanism would regulate the expression of ALK in neuroblastoma and that NeuroD1 should be significantly involved in neuroblastoma tumorigenesis.

Materials and Methods

Cell culture. The human NB cell line SH-SY5Y was obtained from the American Type Culture Collection (Manassas, VA, USA). IMR-32 and SK-N-AS cells were procured from RIKEN (Tsukuba, Japan). They were cultured with DMEM supplemented with 10% heat-inactivated FBS in an incubator with humidified air at 37°C with 5% CO2. On receiving the cell lines, we prepared the frozen stock within one to two passages. Every 1 to 2 months, we thawed the stock to maintain the original condition. The stocks were routinely authenticated on the basis of viability, growth rate and morphology by microscopic examination.

Animals. MYCN Tg mice were maintained in our animal facility under a controlled environment and fed with standard nourishment and water. They were backcrossed with 1

Key words
ALK, neuroblastoma, NeuroD1, proliferation, tumoursphere
The present study was approved by the Animal Care and Use Committee of the Nagoya University Graduate School of Medicine.

RNA interference. Non-targeting shRNA (Sigma, St. Louis, MO, USA) and shRNA specific for human or mouse NeuroD1 were used. The shRNA sequences are listed in Supplementary Table S1. The lentivirus packaging was performed as previously described. (3)

RT-PCR and real-time PCR. RT-PCR and real-time PCR were carried out as previously described. (3) The primer sequences and annealing temperatures are listed in Supplementary Table S2. The expression levels of each gene were normalized by GAPDH.

Immunohistochemistry and western blot analysis. Immunohistochemistry and western blot were carried out according to the previous report. (3) For western blot analysis, anti-NeuroD1 (1:500; Cell Signaling Technology, Danvers, MA, USA), anti-Akt (1:500; Cell Signaling Technology), anti-P-Akt (1:500; Cell Signaling Technology) and anti-ALK (1:500; Cell Signaling Technology) antibodies were used.

Plasmids. The expression vector of human NeuroD1 was previously constructed. (3) The CMV-ALK-tGFP plasmid was purchased from Thermo Scientific (Waltham, MA, USA).

Luciferase reporter assay. The ALK promoter region from −216 to +30 amplified from genomic DNA of 293 cells was cloned into pGL4.74 (Promega, Madison, Wisconsin USA). E-box3 (−44, cagctg), E-box4 (−38, caagtg) and E-box5 (−19, cagatg) were mutated as (ccggatc), (gaattc) and (ccgcgg), respectively.

Primary culture of tumorspheres and neurospheres. The previous procedure was slightly modified as follows. (3) Approximately 0.5 cm^3 of tumor tissue was dissected from primary tumors of MYCN Tg mice. After washing, the tissue was minced and digested with 0.25% trypsin (Sigma) for 15 min, and the digestion was stopped by adding trypsin inhibitor (Sigma). The cells were centrifuged and washed twice. The

Fig. 1. Knockdown of NeuroD1 suppresses the proliferation of neuroblastoma (NB) cell lines. (a) Two independent shRNA were used to knockdown NeuroD1 in SH-SY5Y cells. NeuroD1 mRNA levels were confirmed by RT-PCR. (b) The proliferation of NeuroD1-knockdown cells was examined. At day 0, SH-SY5Y cells were infected with shRNA-expressing lentivirus. *P < 0.001. (c) The phase contrast images of cells at day 5 in (b). Scale bar, 200 μm. (d-f) The same experiments with IMR-32 cells as (a), (b) and (c), respectively.

129+TcR/ SvJcl mice (CLEA, Tokyo, Japan). The present study was approved by the Animal Care and Use Committee of the Nagoya University Graduate School of Medicine.

Cancer Sci | April 2015 | vol. 106 | no. 4 | 391
© 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
supernatant was collected into a new tube and centrifuged. To eliminate red blood cells, the pellet was treated with RBC lysis buffer (Biolegend, San Diego, CA, USA) according to the manufacturer’s instructions. The collected cells were cultured in a Petri dish with DMEM/F12 HAM (Sigma) plus 10 ng/mL EGF, 15 ng/mL bFGF (Peprotech, Rocky Hill, NJ, USA), 2% B27 supplement, 1% penicillin/streptomycin (GIBCO, Rockville, MD, USA), 15% FBS, 1% non-essential amino acid (NEAA), 1% sodium pyruvate and 55 μM β-mercaptoethanol. The tumorspheres were digested with trypsin and dissociated into single cells by pipetting with a 1-mL tip and were passaged every 3–4 days. Embryonic neural stem cells were prepared from an E13.5 ICR mouse (Japan SLC, Hamamatsu, Japan). Briefly, the hippocampus of an embryonic mouse was isolated and minced. Then, the tissue was washed with HBSS and centrifuged twice. The tissue was then re-suspended with HBSS, plated and left to stand for 10 min. The supernatant was collected and centrifuged. The cell pellet was collected and used as embryonic neural stem cells. These cells were cultured in DMEM/F12 HAM supplemented with B27, EGF, bFGF and penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA) in a 37°C 5% CO2 tissue culture incubator. Successfully formed neurospheres were dissociated with a NeuroCult Chemical Dissociation Kit

![Fig. 2. NeuroD1 is involved in the proliferation of tumorsphere cells cultured from MYCN Tg mice. (a) NeuroD1 in tumorsphere cells cultured from tumor tissues of MYCN Tg mice was knocked down by two independent shRNA. Sphere cells were infected with shRNA-expressing lentivirus, and were dissociated into single cells. 4 days later, the phase contrast pictures were taken. Scale bar, 200 μm. (b) The sphere numbers in (a) were counted. (c) The mRNA levels of NeuroD1 examined by real-time PCR. (d) The mRNA levels of ALK examined by real-time PCR. *P < 0.01. **P < 0.001.

![Fig. 3. Relationship of NeuroD1 and ALK in neurospheres. (a) NeuroD1 in neurosphere cells cultured from the hippocampus region of wild-type E13.5 embryos was knocked down by two independent shRNA. 4 days later, the phase contrast pictures were taken. Scale bar, 200 μm. (b) The sphere numbers in (a) were counted. (c) The mRNA levels of NeuroD1 were examined by real-time PCR. (d) The mRNA levels of ALK were examined by real-time PCR. *P < 0.05. **P < 0.01.](image-url)
(Stem Cell Technologies, Vancouver, BC, Canada) into single cells according to the manufacturer’s instructions and were passaged every 3–4 days.

Cell proliferation assay. Cells (5 × 10^3) were seeded in 96-well cell culture plates and allowed to adhere overnight. At each time point, the cell number was estimated using Cell Counting Kit-8 (Dojindo, Kumamoto, Japan) according to the manufacturer’s instructions.

Results

Knockdown of NeuroD1 suppresses the proliferation of NB cell lines. We examined whether the proliferation of NB cells was affected after knockdown of NeuroD1. When NeuroD1 was knocked down by two different shRNA (Fig. 1a), the proliferation of SH-SY5Y cells was significantly suppressed (Fig. 1b,c). This growth suppression was observed 5 days after infection with shRNA-expressing lentivirus. The same results were obtained with IMR-32 cells (Fig. 1d–f). The oncogenic transcription factor MYCN gene is amplified and highly expressed in IMR-32 cells, but is not amplified and is rarely expressed in SH-SY5Y cells. These results indicate that NeuroD1 is required for the proliferation of NB cells regardless of their MYCN status.

NeuroD1 is involved in the proliferation of tumorsphere cells cultured from MYCN Tg mice. To further evaluate the involvement of NeuroD1 in the proliferation of NB cells, we next examined the tumorsphere cells cultured from MYCN Tg mice. Spheroid culture from tumor tissues is considered to be a method for selectively culturing tumor-initiating cells. It has been reported that tumorsphere cells cultured from the tumor tissues of MYCN Tg mice efficiently developed subcutaneous tumors in nude mice. The characterization of those tumorsphere cells could be helpful in addressing the molecular mechanism of NB tumorigenesis. Here we knocked

Fig. 4. Relationship of NeuroD1 and ALK in human NB cell lines. (a) NeuroD1 was knocked down in SH-SY5Y cells, and the expression level of NeuroD1 was examined by real-time PCR. (b) The expression level of ALK was examined by real-time PCR. (c) The protein levels of NeuroD1 and ALK were examined by western blotting. (d–f) The same experiments with IMR-32 cells as (a), (b) and (c), respectively. (g) NeuroD1 was knocked down in SH-SY5Y cells, and phosphorylated Akt (P-Akt) was detected by western blotting. (h) The ratio between P-Akt and Akt was measured based on densitometry by ImageJ. (i–k) NeuroD1 was overexpressed in SK-N-AS cells. The mRNA and protein levels of Neurod1 and ALK were examined by real-time PCR (i, j) and western blotting (k), respectively. *P < 0.05. **P < 0.01. ***P < 0.001.
down NeuroD1 in tumorsphere cells with two different shRNA (Fig. 2c), and examined the effect on the sphere formation. The results showed that knockdown of NeuroD1 was associated with a significant reduction in the sphere numbers (Fig. 2a,b). The self-renewing ability of tumorsphere cells might be impaired in the absence of NeuroD1 expression. Interestingly, we found that ALK expression was also diminished in the NeuroD1-knockdown tumorsphere cells (Fig. 2d). ALK is one of the important predisposition genes for NB. The germ line and somatic hyperactive mutations have been identified and shown to be involved in the tumorigenesis of NB.16–19 Our result that ALK expression was concomitantly reduced in response to the knockdown of NeuroD1 in tumorsphere cells suggests that there is some relationship between ALK and NeuroD1 in NB cells.

Relationship of NeuroD1 and ALK in neurospheres. In NeuroD1-knockout mice, severe neuronal deficits appear in the hippocampus.6,7 We investigated the involvement of NeuroD1

Fig. 5. Restoration of ALK expression can rescue NeuroD1 deficiency. (a) SH-SY5Y cells were infected with the lentiviruses expressing shRNA-2 against NeuroD1 and exogenous ALK, respectively. Then, the cell proliferation was assayed. \(*P < 0.001 \). (b) The phase contrast images of cells at day 5 in A. Scale bar, 200 \(\mu \text{m} \).

Fig. 6. NeuroD1 binds to the promoter region of ALK to induce its expression. (a) E-boxes in the promoter region of the ALK gene. There are five possible E-boxes (1–5). The black arrows are the primers used for ChIP assay. (b) ChIP assay with three sets of primers (#1–#3). The #3 PCR amplifying the region containing E-box3–5 exhibited the positive result. (c) The ALK promoter region containing E-box3, 4 and 5 was cloned into luciferase reporter construct (WT). Each E-box was mutated in mut3, mut4 and mut5 constructs, respectively. 293T cells were transfected with WT or mutated versions (mut3, 4, 5) of luciferase reporter constructs together with NeuroD1 expression vector. The graphs show the relative luciferase activity. \(*P < 0.01 \).
in neurospheres cultured from the hippocampus region of E13.5 embryos. Because NB would arise from immature neuronal progenitor cells, it is likely that a similar molecular mechanism exists to maintain both neurospheres and tumorspheres. Indeed, we found that the knockdown of NeuroD1 in neurospheres (Fig. 3c) resulted in suppression of both sphere formation (Fig. 3a,b) and ALK mRNA level (Fig. 3d), which is consistent with the results in tumorspheres (Fig. 2). NeuroD1, and its relationship to ALK, might be necessary for the maintenance of tumor and neurosphere cells.

Relationship of NeuroD1 and ALK in human NB cell lines. Next, we confirmed the molecular relationship between NeuroD1 and ALK in human NB cell lines. In SH-SY5Y cells (Fig. 4a–c) and IMR-32 cells (Fig. 4d–f), the knockdown of NeuroD1 by two different shRNA (Fig. 4a,d) suppressed the ALK expression at both the mRNA (Fig. 4b,e) and protein levels (Fig. 4c,f). In addition, the activity of Akt, the downstream molecule of ALK signaling, was simultaneously attenuated (Fig. 4g,h). In contrast, the ectopic expression of NeuroD1 in SK-N-AS cells (Fig. 4i), which show very low endogenous expression of NeuroD1, increased the ALK expression (Fig. 4j,k). These results indicated that NeuroD1 induced the expression of ALK not only in the spheroid cells cultured from the mouse model but also in human NB cells.

Restoration of ALK expression can rescue NeuroD1 deficiency. Because the knockdown or overexpression of NeuroD1 was accompanied by a decrease or an increase in ALK expression, respectively (Fig. 4), ALK would function in the region downstream of NeuroD1. Next, therefore, we investigated the significance of ALK as a downstream factor of NeuroD1 signaling. As shown in Figure 1, the knockdown of NeuroD1 in NB cell lines resulted in significant growth suppression. In contrast, when ALK was exogenously expressed in the NeuroD1-knockdown NB cells, their proliferations were significantly restored (Fig. 5a,b). These results suggested that ALK could be a significant downstream factor of NeuroD1 signaling involved in promoting cell proliferation.

NeuroD1 directly binds to the promoter region of ALK and induces its expression. As NeuroD1 is a bHLH transcription factor, it can bind to E-box in the promoter region of target genes. In the promoter region of ALK, we found five possible E-boxes (E-box1 to 5 [Fig. 6a]). In order to examine the binding of NeuroD1 to these E-boxes, we performed a ChIP assay. The results suggested that NeuroD1 could bind to the region containing E-box3, 4 and 5 (Fig. 6a,b). Next, for the purpose of addressing the involvement of these E-boxes, we carried out a reporter assay. The ectopic NeuroD1 induced the luciferase reporter expression driven by the WT promoter containing three intact E-boxes (E-box3, 4 and 5 [Fig. 6c]). The mutation in E-box3 (mut3) resulted in impairment of NeuroD1-induced reporter expression (Fig. 6c). In contrast, mutations in E-box4 (mut4) or E-box5 (mut5) showed no significant effects. These results suggest that NeuroD1 binds to E-box3 and induces the expression of ALK.

Expression patterns of NeuroD1 and ALK in MYCN Tg mice. Finally, we investigated the physiological evidence supporting a molecular relationship between NeuroD1 and ALK in NB tumorigenesis. As we previously reported, NeuroD1 was highly expressed in the early lesions of NB in MYCN Tg mice (Fig. 7a,3) Here we found that the expression pattern of ALK was consistent with those of NeuroD1 (Fig. 7b). These expression patterns in vivo support the notion that NeuroD1 induces the expression of ALK and promotes the proliferation of NB cells.

Discussion

NeuroD1 is a transcription factor involved in neuronal differentiation. We previously identified NeuroD1 as an NB-related gene that promotes cell motility by downregulating Slit2 expression,(5) Here we report another function of NeuroD1 in NB. NeuroD1 is required for the proliferation of both human NB cell lines and tumorspheres cultured from MYCN Tg mice. In addition, ALK would be a critical and direct downstream factor of NeuroD1 signaling to promote proliferation. Seo et al.(20) previously identified ALK as a candidate direct transcriptional target of NeuroD1. They first screened the genes whose expression was induced by NeuroD1, and determined
the consensus E-box sequence recognized by NeuroD1. Based on the consensus sequence, they further screened putative target genes whose promoters contained the consensus E-box. As a result, ALK was included in the list of putative candidate genes. This report is consistent with our present data. We revealed that NeuroD1 binds to the promoter region of ALK, and indentified the particular E-box that is involved in the expression of ALK.

ALK is an important predisposition gene, whose mutation or amplification has been identified in NB patients. In terms of the mechanism for the expression of ALK in NB cells, it has recently been reported that MYCN directly induces the transcription of ALK to promote NB tumorigenesis. Because both MYCN and NeuroD1 are considered to recognize and bind to the same DNA sequence, E-box, it is likely that these two transcription factors independently regulate the transcription of ALK. Addressing their contribution to the ALK expression in NB cells is an important research subject.

For the purpose of understanding the molecular mechanism of NB tumorigenesis, it is thought to be important to investigate the mechanism of normal development of sympathetic neurons. The tumorigenesis and normal development should mainly be regulated by common molecular machinery, because NB specifically arises from immature progenitor cells that belong to the sympathoadrenal lineage of neural crest cells. A particular failure in the machinery of normal development should be a trigger of NB tumorigenesis. So far, although we have reported the involvement of NeuroD1 in NB tumorigenesis, its role in the normal development of sympathetic neurons has not been elucidated. Because ALK could be a potent molecular target of NB therapy, elucidation of the NeuroD1-ALK axis should be beneficial for clinical purposes. In NB patients, a high expression of NeuroD1 is closely related to poor prognosis. The simultaneous promotion of migration and proliferation by NeuroD1 might be important for tumorigenesis in NB.

Acknowledgments
This work was supported in part by a Grant-in-Aid from the National Cancer Center Research and Development Fund (22–4) to K.K., Health and Labour Sciences Research Expenses for Commission, Applied Research for Innovative Treatment of Cancer (H26-applied-general-006) from the Ministry of Health, Labour and Welfare to K.K., and Grants-in-Aid (24590377) from MEXT to S.K.

Disclosure Statement
The authors have no conflict of interest to declare.

References
1 Nakagawa A, Ohara M. Comprehensive genomics linking between neural development and cancer: neuroblastoma as a model. Cancer Lett 2004; 204: 213–24.
2 Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J 1997; 16: 2985–95.
3 Huang P, Kishida S, Cao D et al. The neuronal differentiation factor NeuroD1 downregulates the neuronal repellant factor Slit2 expression and promotes cell motility and tumor formation of neuroblastoma. Cancer Res 2011; 71: 2938–48.
4 Naya FJ, Huang HP, Qiu Y et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BET2/neuroD-deficient mice. Genes Dev 1997; 11: 2323–34.
5 Lee JE, Hollenberg SM, Snider L, Turner DL, Lipnick N, Weintraub H. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 1995; 268: 836–44.
6 Miyata T, Maeda T, Lee JE. NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev 1998; 13: 1647–52.
7 Schwab MH, Bartholomae A, Heinrich B et al. Neuronal basic helix-loop-helix proteins (NEX and BET2/NeuroD) regulate terminal granule cell differentiation in the hippocampus. J Neurosci 2000; 20: 3714–24.
8 Liu M, Pereira FA, Price SD et al. Essential role of BET2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev 2000; 14: 2839–54.
9 Kim WY, Fritzsch B, Serls A et al. NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development 2000; 128: 417–26.
10 Morrow EM, Furukawa T, Lee JE, Cepko CL. NeuroD regulates multiple functions in the developing neural retina in rodent. Development 1999; 126: 23–36.
11 Kuwabara T, Hiuchi J, Muroti A et al. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci 2009; 12: 1097–105.
12 Gao Z, Zhe K, Ales JL et al. NeuroD1 is essential for the survival and maturation of adult-born neurons. Nat Neurosci 2009; 12: 1090–2.
13 Osborne JK, Larsen JE, Shields MD et al. NeuroD1 regulates survival and migration of neuroendocrine lung carcinomas via signaling molecules TrkB and NCAM. Proc Natl Acad Sci U S A 2013; 110: 6524–9.
14 Hansford LM, McKee AE, Zhang L et al. Neuroblastoma cells isolated from bone marrow metastases contain a naturally enriched tumor-initiating cell. Cancer Res 2007; 67: 11234–43.
15 Cao D, Kishida S, Huang P et al. A new tumour model culture condition restores potential of self-renewal and metastasis of primary neuroblastoma in a mouse neuroblastoma model. PLoS One 2014; 9: e86813.
16 Chen Y, Takita J, Choi YL et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 2008; 455: 971–4.
17 George RE, Sanda T, Hama M et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 2008; 455: 975–8.
18 Janoueix-Lerosey I, Lequin D, Brugières L et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 2008; 455: 967–70.
19 Mousé YP, Laudenslager M, Longo L et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 2008; 455: 930–5.
20 Seo S, Lim JW, Yellajoshyula D, Chang LW, Kroll KL. Neurogenin and NeuroD direct transcriptional targets and their regulatory enhancers. EMBO J 2007; 26: 5093–108.
21 Hasan MK, Nafady A, Takatori A et al. ALK is a MYCN target gene and regulates cell migration and invasion in neuroblastoma. Sci Rep 2013; 3: 3450.

Supporting Information
Additional supporting information may be found in the online version of this article:
Table S1. Sequences of shRNA for target genes
Table S2. Sequences of primer for PCR experiments