ChildPredictor: A Child Face Prediction Framework With Disentangled Learning

Yuzhi Zhao, Student Member, IEEE, Lai-Man Po, Senior Member, IEEE, Xuehui Wang, Student Member, IEEE, Qiong Yan, Wei Shen, Yujia Zhang, Graduate Student Member, IEEE, Wei Liu, Chun-Kit Wong, Chiu-Sing Pang, Weifeng Ou, Wing-Yin Yu, and Buhua Liu

Abstract—The appearances of children are inherited from their parents, which makes it feasible to predict them. Predicting realistic children’s faces may help settle many social problems, such as age-invariant face recognition, kinship verification, and missing child identification. It can be regarded as an image-to-image translation task. Existing approaches usually assume domain information in the image-to-image translation can be interpreted by “style”, i.e., the separation of image content and style. However, such separation is improper for the child face prediction, because the facial contours between children and parents are not the same. To address this issue, we propose a new disentangled learning strategy for children’s face prediction. We assume that children’s faces are determined by genetic factors (compact family features, e.g., face contour), external factors (facial attributes irrelevant to prediction, such as moustaches and glasses), and variety factors (individual properties for each child). On this basis, we formulate predictions as a mapping from parents’ genetic factors to children’s genetic factors, and disentangle them from external and variety factors. In order to obtain accurate genetic factors and perform the mapping, we propose a ChildPredictor framework. It transfers human faces to genetic factors by encoders and back by generators. Then, it learns the relationship between the genetic factors of parents and children through a mapping function. To ensure the generated faces are realistic, we collect a large Family Face Database to train ChildPredictor and evaluate it on the FF-Database validation set. Experimental results demonstrate that ChildPredictor is superior to other well-known image-to-image translation methods in predicting realistic and diverse child faces. Implementation codes can be found at https://github.com/zhaoyuzhi/ChildPredictor.

Index Terms—Child face prediction, disentangled learning, generative adversarial network, image-to-image translation.

Manuscript received 6 December 2021; revised 24 February 2022 and 29 March 2022; accepted 30 March 2022. Date of publication 5 April 2022; date of current version 8 September 2023. The Associate Editor coordinating the review of this manuscript and approving it for publication was Dr. Chang Xu. (Corresponding author: Yuzhi Zhao.)

Yuzhi Zhao, Lai-Man Po, Yujia Zhang, Chun-Kit Wong, Chiu-Sing Pang, Weifeng Ou, and Wing-Yin Yu are with the Department of Electrical Engineering, City University of Hong Kong, Hong Kong (e-mail: yzha02-c@my.cityu.edu.hk; elmpo@cityu.edu.hk; yzhang2383-c@my.cityu.edu.hk; ckwong535-c@my.cityu.edu.hk; chiuspang2-c@my.cityu.edu.hk; weifengou2-c@my.cityu.edu.hk; wingyinyu8-c@my.cityu.edu.hk). Xuehui Wang and Wei Shen are with the Artificial Intelligence Institute, Shanghai Jiao Tong University, Shanghai 201100, China (e-mail: wangxuehui@sjtu.edu.cn; wei.shen@sjtu.edu.cn). Qiong Yan is with the SenseTime Research and Tetras.AI, Hong Kong (e-mail: sophie.yanqiong@gmail.com). Wei Liu is with the ByteDance Ltd., Beijing 100080, China (e-mail: liujiukun63@gmail.com). Buhua Liu is with the Department of Computer Science, Hong Kong Baptist University, Hong Kong (e-mail: csbhluia@comp.hkbu.edu.hk).

Digital Object Identifier 10.1109/TMM.2022.3164785

I. INTRODUCTION

The appearances of children are inherited from their parents. Their internal relations (e.g., kinship verification and identification) have been well studied [1]–[5]. It provides the prerequisite for predicting child faces from their parents. Predicting realistic child faces are beneficial to many social issues such as law enforcement, criminal investigations, age-invariant face recognition [6]–[9], kinship verification [1]–[5], kinship identification [10], and missing children identification [11], especially under the circumstances that only parent faces are known. Recently, the generative adversarial network (GAN) [12] has shown its advance in the face generation area. If we treat child face prediction as an image-to-image translation issue, there is a potential for GAN to predict high-quality child faces. In this paper, we propose a GAN-based ChildPredictor framework for realistic child face prediction.

The fundamental difficulty of child face prediction lies in the requirement on both diversity and similarity at the same time, in addition to image quality. Conditioned on parent faces, the predicted child faces need to be similar to real faces while retaining diversity. The existing strategies to address the issues fall into the two categories:

1) Image-to-image translation (I2I) (Fig. 1(a)): Assuming parents’ and children’s faces form two individual domains, and predicting child faces by transferring “style” from parent domain to children domain;

2) DNA-Net [13] (Fig. 1(b)): Learning the direct mapping between parents’ and children’s features, which are generated by the same pre-trained encoder. Diverse prediction is implemented by random selection S.

Unfortunately, these methods have difficulties in predicting pleasant faces. Firstly, state-of-the-art I2I methods [14]–[16] proposed a shared content space and individual style spaces to improve image translation quality. If simply applying it to child face prediction, though the paired parent-child data is used for training I2I methods, they easily fall into “appearance collapse” (e.g., the generated children have the same facial structures and contours with parents). We assume that the disentanglement of content (i.e., structure or shape) and style (i.e., texture) is not reasonable for this task since different children could have similar structures with parent faces but not the same. Secondly, DNA-Net fused features of parents and then changed them using an age regression model [17]. Since parent and child faces...
and are content, style, external, variety (or attribute for (b)) and genetic latent domains, respectively. The network \(G \) and \(W \) are pair of \(Y \) represent parent and children domain, to combine \(G \) and \(e \) are two sequential steps in the training phase compared with previous one-step pipelines:

![Image](http://example.com/image.png)

Fig. 1. Assumption and data flow: (a) I2I methods [14]–[16]; (b) DNA-Net [13]; (c), (d) ChildPredictor. The \(X \) and \(Y \) represent parent and children domain, respectively. The \(C, S, E, V, G \) are content, style, external, variety (or attribute for (b)) and genetic latent domains, respectively. The network \(E \) and \(G \) are pair of encoder and generator that connect image space and latent space. The network \(T \) is a mapping function used in the latent space.

This paper presents a novel framework for synthesizing realistic and diverse child faces. Built upon previous experiences, we first assume a human face is determined by a genetic factor, external factor, and variety factor, among which a child’s genetic factor is predicted from parents’ genetic factors. These three factors are trained to be orthogonal, as shown in Fig. 1(d), and detailed definitions are concluded as:

1) Genetic factor \(g \): Family characteristics such as contour, eye shape, pupil color, skin color, etc., which model the inter-identity variation between different identities;
2) External factor \(e \): Categorical and gene-irrelevant attributes, e.g., moustaches, ages, expressions, glasses;
3) Variety factor \(v \): Individual diversities for an identity. It is not correlated to genetic and external factors, which models acquired factors (intra-identity variations).

Based on the assumption, we propose a GAN-based framework called ChildPredictor to predict child faces from their parents. The data flow of ChildPredictor is shown in Fig. 1(c). There are two sequential steps in the training phase compared with previous one-step pipelines:

1) Domain-specific disentangled learning: Learning disentangled representations of different factors for both domains, i.e., the disentanglement of \(G_X/E_X \) and \(G_Y/E_Y/V_Y \) (please see the caption of Fig. 1) and the training phase of Fig. 1(c) for their definitions), respectively;
2) Inter-domain multimodal mapping: Predicting multiple children’s genetic factors between the disentangled genetic factors in both spaces \(G_X \) and \(G_Y \).

There are four advances of our setting:

1. Domain-specific training is not based on limited parent-child pairs, additional data can be used, e.g., FFHQ child faces [18] are used to improve the generation quality of \(G_Y \); 4) Our mapping function learns a multimodal prediction instead of unimodal [13] thus it is able to simulate different child identities from the same parent. In summary, our ChildPredictor framework largely improves child face prediction quality in similarity, diversity, and realness.

In addition, to train ChildPredictor, we newly collect a large-scale FF-Database from the Internet. It includes 7488 parent faces and 8558 child faces with 128×128 resolution and even gender distribution. Each face is aligned to be almost frontal and labeled with 6 attributes which are gender, age, expression, glasses, moustache, and skin color. For evaluation, we notice that common metrics (e.g., PSNR) fail to measure face similarity since the generated and ground truth faces are not pixel-wisely aligned. We use a cosine similarity metric to compute feature distances from a pre-trained face recognition model and conduct a human perceptual study for subjective evaluation. The experiment results on the FF-Database validation set demonstrate that ChildPredictor performs better than previous pipelines [13]–[16], [19]–[21] on cosine similarity, FID [22], LPIPS [23] scores and human preference rates.

The main contributions of this paper are as follows:

1) We propose a GAN-based ChildPredictor framework specializing in the task of child face prediction;
2) We propose a latent representation disentangled learning method by sampling from three latent factors;
3) We newly collect a large-scale Family Face Database (FF-Database). To our best knowledge, it is the first dataset for child face prediction with labeled attributes;
4) We propose a cosine similarity metric and a human perceptual study for evaluating paired predicted and real faces. The ChildPredictor achieves the best performance.

II. RELATED WORK

Generative Adversarial Network (GAN) and Inversion. The GAN [12] has accomplished great improvements in image generation. It consists of a generator and a discriminator, where
the generator produces realistic samples and the discriminator distinguishes input samples from ground truth or generated. However, GAN is hard to converge and unstable. To address the issue, some methods minimized mode collapse [24] and loss fluctuation [25], or proposed new architectures [18], [26]–[28]. To discover the relation between generated images and latent space, GAN inversion techniques have been widely studied. For instance, [29] and [30] learned to search interpretable directions in GAN’s latent space. To edit images accurately, inverse encoders [31]–[37] were proposed to simulate reverse process of GANs. They learned the inversion in original latent space or extend W+ space.

Face Attribute Transfer. The previous face attribute transfer methods are normally based on paired data [38]. However, it is hard to collect many different attributes for the same person. To avoid that, researchers used several representations such as pre-defined attributes [39]–[43], facial landmarks [44], face mask [45], and action unit [46]. These methods were further enhanced by processing multiple attributes simultaneously [47]–[49]. More recently, the GAN inversion techniques [50], [51] and latent disentangled learning [52]–[54] have been used in the face attribute transfer area. For instance, Nitzan et al. [50] transferred attributes based on an exemplar face by manipulating pre-trained GAN’s latent space.

Image-to-Image Translation (I2I) and Disentangled Learning. The I2I denotes the mappings of images from one domain to other domains. For instance, Pix2Pix [55] used a conditional GAN to perform domain transfer on pixel-aligned data, which is necessary, otherwise, the results are blurry. To extend I2I to unaligned data, some approaches have been developed, e.g., enlarging the distance between generated samples and source [56], [57] and cycle consistency [19], [20], [58]. However, the models often fail (i.e., mode collapse) when there exist extreme transformations or training data is limited.

To improve the image translation quality, the disentangled learning [14]–[16], [21], [59]–[67] assumed that images from individual domains share the same latent content space but separate style space. By changing “style code”, the network transfers input images to other domains while maintaining the content information. To further address the mode collapse issue, [24] proposed a mode-seeking loss to enlarge distances of different generated samples for regularization. However, such disentangled learning methods are not appropriate for child face prediction since the goal is not only to transfer the style but also to consider facial attributes and intra-identity variations. To address the issue, we propose a new disentangled learning method based on genetic, external, and variety factors (please see Fig. 1(c) and (d) for their definitions).

III. DATA COLLECTION OF FF-DATABASE

We collect a large-scale Family Face Database (FF-DATABASE), consisting of 16046 images with 128 × 128 resolution. Built upon it, we learn the child prediction in a data-driven manner. There are 4 steps to collect a group of images in FF-DATABASE, as shown in Fig. 2: 1) Downloading family images by country or district names in 6 continents from the Internet, and filtering out unrelated face images; 2) Extracting faces by dlib\(^1\) and aligning them to be almost frontal; 3) Enhancing faces by denoising [68], inpainting [69], super-resolution [70] algorithms, and resizing to 128 × 128 resolution. Note that the very low-quality images are discarded by human effort; 4) Labeling them with 6 attributes including gender, age, expression, glasses, moustache, and skin color.

We divide the whole dataset into two parts, where the training set includes 15538 faces and the validation set includes 708 faces. Specifically, there are 7148 parents and 8190 children in the training set; and there are 340 and 368 faces in the validation set, respectively. The attributes and the division of training and validation sets are concluded in Table I, respectively.

IV. METHODOLOGY

A. Problem Formulation

Given paired parent faces \(x^f, x^m \in \mathcal{X} \) and a child face \(y \in \mathcal{Y} \), the target of child face prediction is to learn \(p(y|x^f, x^m) \). Note that their corresponding genetic factors \(g_y, g_z^f, g_z^m \) are the compact and simplified representations of face images by our definition. Therefore, it is more tractable to solve the problem in the genetic domain, i.e., to learn \(p(g_y|g_z^f, g_z^m) \), only if the genetic

\(^1\)Online. Available: http://dlib.net/
The latent codes g^*, e^*, v^* represent genetic, external and variety factors. Factors and faces are transferable from each other. To achieve this, we design the two-stage framework, domain-specific disentangled learning which learns to extract the genetic factors from faces and restore them to faces for parent and children domain separately, and inter-domain multimodal mapping which maps parent genetic factors to children domain.

Our framework is different from existing methods, as shown in Fig. 1. Firstly, the I2I methods assume a shared content space for parent and children domains and easily falls into appearance collapse. However, the child face prediction is not simply transferring styles of the faces. Secondly, DNA-Net assumes a shared latent space for parent and child faces and then performs age-regression. However, this design cannot ensure the generator recovers realistic child faces. As for the ChildPredictor, we assume parent and child genetic factors are in the individual latent spaces and propose a mapping function T to learn the prediction from parents’ genetic factors to child genetic factors.

During inference, our ChildPredictor firstly extracts genetic factors from the parent faces, then maps them to children genetic domain, finally predicts diverse outputs by sampling different genetic, external, and variety factors. The workflow is shown in Fig. 3(c) and all the notations are concluded in Table II. Details on the training process are presented below.

B. Domain-specific Disentangled Learning

1) Assumption: We perform the domain-specific disentangled learning in the parent and children domain separately. To ensure the transferability between face images and genetic factors for both domains, the two encoder-generator pairs $(E_X, G_X), (E_Y, G_Y)$ must satisfying:

$$x^f = G_X(E_X(x^f), e^f_x), E_X(x^f) = g^f_x, \quad (1)$$

$$x^m = G_X(E_X(x^m), e^m_x), E_X(x^m) = g^m_x, \quad (2)$$

$$y = G_Y(E_Y(y), e_y, v_y), E_Y(y) = g_y, \quad (3)$$

where e_x and v_x denote external and variety factors, respectively. The goal is to ensure that encoders should only extract genetic factors. To further differentiate their roles, we assume genetic factors follow normal distribution and variety factors follow uniform distribution. External factors are categorical attributes thus binary distributed.

2) Parent Domain X: We adopt [71] as E_X and G_X, as shown in Fig. 3(a). The encoder E_X firstly encodes a parent image x to a genetic factor g^f_x. Then, the generator G_X receives the produced genetic factor with a given external factor e_x to recover a face image x_e. It is an identity transformation only when the given e_x is from x; otherwise, G_X performs attribute transfer while maintaining identity unchanged. It is because genetic factors are disentangled from external factors. The whole loss L_X for training E_X and G_X is given as:

$$L_X = \lambda^1_X L^1_X + \lambda^2_X L^G_X + \lambda^3_X L^G_G + \lambda^4_X L^G_G, \quad (4)$$
where \(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \) and \(\lambda_5, \lambda_6, \lambda_7, \lambda_8 \) are trade-off parameters. The \(L1 \) reconstruction loss \(L_{X} \) maintains attribute-invariant features determined by genetic factors. The classification loss \(L_{C}^{X} \) enforces the differences between faces with and without attributes determined by different dimensions of external factors, which share similar definitions with [48]. The image-level adversarial loss \(L_{G}^{1}/L_{G}^{2} \) [25] enhances perceptual similarity. To further disentangle genetic and external factors in the latent space, we use a genetic-factor-level adversarial loss \(L_{G}^{M}/L_{G}^{3} \) to make \(G_{X} \) approach to standard normal distribution. The detailed formulations are:

\[
L_{X}^{1} = \mathbb{E}[||x - \hat{x}||_{1}],
\]

\[
L_{X}^{C} = -e_{x}\log(D_{X}^{C}(x)) + (1 - e_{x})\log(1 - D_{X}^{C}(x))
- e_{y}\log(D_{X}^{C}(\hat{x}y)) + (1 - e_{y})\log(1 - D_{X}^{C}(\hat{x}y)),
\]

\[
L_{X}^{G} = -\mathbb{E}[D_{X}^{G}(\hat{x}y)],
\]

\[
L_{X}^{D} = \mathbb{E}[D_{X}^{D}(\hat{x}y)] - \mathbb{E}[D_{X}^{D}(y)],
\]

where two discriminators are used to compute these losses. Image-level discriminator \(D_{X} \) has two branches, one of which outputs a binary vector for computing \(L_{X}^{C} \) and the other of which outputs a scalar for computing \(L_{X}^{G} \). Factor-level discriminator \(D_{G}^{s} \) receives genetic factors. In Equation (8), \(u \) is a random sample from a standard Gaussian distribution \(N(0, 1) \) with the same dimension of genetic factors \(\hat{g}_{x} \). Note that the variety factor is not considered in the parent domain as there is only one parent pair for any child, while there is more than one child for each parent pair.

3) Children Domain \(\mathcal{Y} \): We adopt PGGAN as \(G_{Y} \) to achieve a higher-quality generation. It generates images based on the given genetic factors, external factors, and variety factors, as shown in Fig. 3(a). To perform disentangled learning, we use a GAN-inverse encoder \(E_{Y} \) to recover only genetic factors from images generated by a pre-trained \(G_{Y} \).

To pre-train \(G_{Y} \), we define the loss \(L_{G_{Y}} \) as:

\[
L_{G_{Y}} = \lambda_{1}L_{X}^{G} + \lambda_{2}L_{C}^{G} + \lambda_{3}L_{M}^{G},
\]

where \(L_{X}^{G} \) is an adversarial loss [12], which promotes \(G_{Y} \) generating realistic faces. \(L_{C}^{G} \) is the auxiliary classification loss [72], which ensures external factors can control the facial attributes. \(L_{M}^{G} \) is the mode-seeking loss [24] which ensures variety factors are related to individual variations. Their detailed definitions are as follows:

\[
L_{X}^{C} = -e_{x}\log(D_{X}^{C}(\hat{x}y)) + (1 - e_{x})\log(1 - D_{X}^{C}(\hat{x}y)),
\]

\[
L_{X}^{D} = \mathbb{E}[D_{X}^{D}(\hat{x}y)] - \mathbb{E}[D_{X}^{D}(y)],
\]

\[
L_{X}^{M} = \max_{G_{Y}} \left(\frac{dy(y_{e,v}^2 - y_{e,v})}{dy(v_{y}^2 - v_{y}^2)} \right),
\]

where \(y_{e,v} \) is the randomly generated result based on an external factor \(e_{y} \) and a variety factor \(v_{y} \). \(y \) is a real sample selected from all training child images. \(D_{X}^{G} \) and \(D_{X}^{C} \) are two branches of the discriminator \(D_{Y} \). When computing \(L_{M}^{G} \), there are two individual outputs \(y_{e,v} \) and \(\tilde{y}_{e,v} \) generated from the same external factor \(e_{y} \) but individual variety factors \(v_{y} \) and \(\tilde{v}_{y} \). We adopt the \(l1 \)-norm as distance metric \(d_{1}(\cdot) \), which includes 3 sequential operations: subtraction, taking absolute value, and computing average.

Then, we train \(E_{Y} \) to disentangle the genetic factor from the other two factors in the latent space of \(G_{Y} \). Suppose that a fixed genetic factor is used to generate faces with different external and variety factors, an ideal encoder can restore the same genetic factor (i.e., same identity) from those faces. Based on the assumption, we train the \(E_{Y} \) by loss \(L_{E_{Y}} \):

\[
L_{E_{Y}} = \mathbb{E}[||y_{y} - E_{Y}(G_{Y}(y_{y}, e_{y}, v_{y}))||_{1}],
\]

where the \(G_{Y} \) is fixed. The \(e_{y} \) and \(v_{y} \) are randomly sampled for a same \(y_{y} \). After its convergence, we can obtain the disentangled genetic factors for arbitrary child faces by \(E_{Y} \).

C. Inter-domain Multimodal Mapping

Different from previous I2I methods, we perform the “multimodal mapping” from parent domain to children domain only on genetic factors in the latent space. The reason is after the disentangled learning for domain \(X \) and \(\mathcal{Y} \), the genetic factors \(g_{y} \) are disentangled from other factors \(e_{y} \) and \(v_{y} \), and by our definition only the genetic factors among the three are related between the two domains.

To learn \(G_{X} \rightarrow G_{Y} \), we firstly obtain parent-child genetic factor pairs \((g_{x}^{1}, g_{x}^{2}, g_{y}) \) for each family by encoding faces through \(E_{X} \) and \(E_{Y} \). Then, we use a neural network as mapping function \(T \), as shown in Fig. 3(b). To simulate multiple children, we simply let \(T \) predict \(k \) different genetic factors by \(k \) branches, i.e., \(T : \hat{g}_{x}^{1}, \hat{g}_{x}^{2}, \ldots, \hat{g}_{x}^{k} = T(g_{x}^{1}, g_{x}^{2}) \). We set \(k = 4 \) in our experiments. The training for \(T \) is supervised by parent-child genetic factor pairs and the following loss \(L_{T} \):

\[
L_{T} = \mathbb{E}[||g_{y}^{j} - \hat{g}_{y}^{j}||_{1}^{1}] + \lambda_{1}\mathbb{E}[||g_{y}^{j} - \hat{g}_{y}^{j}||_{1}^{1}]
+ \lambda_{2}\mathbb{E}[||g_{y}^{j} - \hat{g}_{y}^{j}||_{1}^{1}],
\]

where \(\hat{g}_{y}^{j} \) and \(g_{y}^{j} \) are the \(j \)-th predicted and real genetic factor, respectively. Note that different loss coefficients \((1, \lambda_{1}, \lambda_{2}, \lambda_{3}) \) are used for the 4 predictions in order to fulfill the multimodal prediction. For families with 4 children or more, we select the first 4 children as ground truth \(g_{y}^{1}, g_{y}^{2}, g_{y}^{3}, \) and \(g_{y}^{4} \). For families with less than 4 children, we replace the blank position \(g_{y}^{j} \) with \(\hat{g}_{y}^{j} \). For instance, for families with only 3 children, we use the 1-st child as ground truth for the 4-th branch. Note that, different loss coefficients are applied to 1-st and 4-th branches though their ground truth images are the same; while the ground truth images of 2-nd and 3-rd branches are different from 1-st and

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.
4-th branches. Therefore, different optimizations are achieved for all 4 branches.

D. Network Architecture

1) Parent Domain \mathcal{X}: The parent domain networks consist of encoder-decoder pairs $E_{\mathcal{X}}, G_{\mathcal{X}}$ and two discriminators $D_{\mathcal{X}}^X, D_{\mathcal{X}}^G$. $E_{\mathcal{X}}$ has 5 generator convolutional blocks (including a convolutional layer, a BatchNorm [73] layer, and a LeakyReLU [74] activation function) to produce genetic factors g_x. $G_{\mathcal{X}}$ adopts 5 generator convolutional blocks to progressively upsample the combinations of genetic and external factors. The feature maps of the encoder are injected into the generator as U-Net [71]. $D_{\mathcal{X}}$ has 5 discriminator convolutional blocks (including a transposed convolutional layer, an InstanceNorm [75] layer, and a ReLU [76] activation function), followed by 2 parallel MLP layers. The outputs are used for computing WGAN adversarial loss L_D^{X} and classification loss L_{Y^X}, respectively. $D_{\mathcal{X}}$ contains 2 discriminator convolutional blocks followed by a MLP layer. The output is adopted to compute the genetic factor adversarial loss L_{G^X}.

2) Children Domain \mathcal{Y}: We modify the official PGGAN [27] as $G_{\mathcal{Y}}$, which receives genetic, external, and variety factors as inputs. The factors are concatenated along the channel dimension. The output resolution is 128×128. We use PixelNorm [27] and PReLU [77] as the normalization layer and activation function, respectively. $E_{\mathcal{Y}}$ inverts an image generated by $G_{\mathcal{Y}}$ back to the genetic factor. It is composed of a VGG-network [78] and a MLP layer, where the MLP layer projects the features from VGG-network into 480-dimensional output, which is consistent to the dimension of genetic factor.

3) Mapping Function T: The mapping network T receives the genetic factors of mother and father as the inputs. It consists of a head module, a body module, and a tail module. The head module is a simple combination of two convolutional layers and a LeakyReLU activation function. The body module contains 5 residual layers [79] with LeakyReLU activation function. The tail module includes 4 MLP layers which predicts 4 genetic factors ($g_{1Y}^1, g_{1Y}^2, g_{2Y}^2$, and g_{2Y}^4). In addition, we apply a normalization operation (minus mean and divide variance for each output genetic factor) to the output genetic factors to push them to standard Gaussian distribution.

V. EXPERIMENT

A. Training Details

General Training Details. The training process of Child-Predictor can be concluded in 4 steps, as shown in Table III. Specifically, for step 1, the training of $E_{\mathcal{X}}, G_{\mathcal{X}},$ and $G_{\mathcal{Y}}$ are parallel. However, the training of step 2 is based on the results of step 1, and so as step 3 and 4. The batch size is set to 16 for each step. We initialize the network parameters using the Xavier initialization [80]. We use Adam optimizer [81] with $\beta_1=0.5$ and $\beta_2=0.999$. The discriminators share the same learning rates as the corresponding generators. There is no weight decay used in the training procedure, but the learning rates for individual steps are different, as listed in Table III. There is no regularization terms used for the training.

Dataset. We adopt the training set of FF-Database (7148 parent and 8190 child faces) and 5000 high-quality child faces from FFHQ dataset [18]. The FFHQ child faces are post-processed based on the same pipeline as FF-Database, e.g., 1) We use dlib to extract and align faces; 2) We label them with the same attributes as in FF-Database. All parent and child faces (including FF-Database and FFHQ) are used in the domain-specific training of domain \mathcal{X} and \mathcal{Y}, respectively. The motivation to use FFHQ child faces is to enhance the generation quality of $G_{\mathcal{Y}}$.

The attributes used in the training for parent domain \mathcal{X} are gender, moustache, glasses and expression, while they are age, gender, glasses and expression for children domain \mathcal{Y}. To simplify the computation of the classification losses, we define age and expression as binary attributes (i.e., young or senior and laugh or not laugh, respectively).

Loss Function. The loss functions used in each step are concluded in Table III. The coefficients of different loss terms are shared for different steps, i.e., $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6, \lambda_7, \lambda_8, \lambda_9, \lambda_{10}, \lambda_{11}, \lambda_{12}$, and λ_{13} are empirically set to 100, 10, 1, 0.1, 1, 0.8, 0.6, and 0.4, respectively.

Time. The ChildPredictor is trained on 8 NVIDIA Titan Xp GPUs (12 Gb memories for each). It is implemented by PyTorch 1.1.0 framework and Python 3.6. The training time of PGGAN $G_{\mathcal{Y}}$ is approximately 5 days. Considering the parallel training procedure (see Table III), the remaining training time takes approximately 7 days.

B. Experiment Settings

1) Baselines: To give a comprehensive and fair comparison, we do experiment on both domain transferring methods and state-of-the-art child face prediction DNA-Net. They are, 1) IDI: DualGAN [20], CycleGAN [19], UNIT [21], DRIT [14], MUNIT [15], and DRIT++ [16], where DRIT, MUNIT, and DRIT++ predict multimodal by changing latent style codes;
2) DNA-Net [13]: It predicts multimodal by changing the linear factor in the random selection \(S \).

Since input and output are paired, we adjust the training scheme of all baselines by feeding parent-child pairs instead of randomly choosing samples from the whole training dataset for fairness. An example of I2I method is given in Table IV. Since DNA-Net is not open-source, we train it with the same attributes as ChildPredictor, where fathers and mothers are separately encoded, as shown in Fig. 1(b). In addition, to avoid ChildPredictor (using glasses, emotion, age and gender) and DNA-Net (using age and gender) using different face attributes in comparison, we fix the child external factors equal to ground truth for fairness.

2) Evaluation: We perform experiments on 170 validation parent-child pairs of the FF-Database. They are of the same image resolution as training data. Normally, the generated and ground truth faces are not strictly unaligned. To evaluate the generation quality, it is more reasonable to compare feature-level face similarity. To evaluate the generation diversity, we evaluate how large the differences are among different generated child faces from the same parent. For every family and every multimodal method, we predict 40 different child faces, which forms 40 groups of results. The experiments of subsections C-H are performed on FF-Database validation set.

Cosine distance (Cos. Dis.). It measures feature-level cosine similarity between two faces. We use features from the second-last fully-connected layer of a Sphere20 network [82], [83] pre-trained on CelebA dataset [84]. We compute pairwise cosine similarity for every family in every group and then compute the average of 40 groups. In order to demonstrate the effectiveness of cosine similarity, we randomly shuffle the 170 real parent-child pairs to obtain 6800 random parent-child pairs. Then, we compute the average of all the cosine similarity values. The average is 0.3204.

Fréchet Inception Distance (FID) [22]. It measures the distance between two sets of images, i.e., the generated child faces and training data. The training data denotes child faces in the FF-Database training set. We use the features from the default “pool3” layer of the Inception-V3 [85] pre-trained on ImageNet [86]. We compute the FID for every group and then compute the average of 40 groups.

Learned Perceptual Image Patch Similarity (LPIPS) [23]. It measures the diversity of the generated child faces. It is represented by the L1 distance between the features extracted from

Item	Original CycleGAN	Baseline CycleGAN
\(G_{p-c} \)	input 3c, output 3c	input 6c, output 3c
\(G_{c-s} \)	input 3c, output 3c	input 3c, output 6c
\(D_p \)	input 3c	input 6c
\(D_c \)	input 3c	input 3c
Training data	random parent-child data	paired parents-child data
Parameters	the same as [19]	the same as [19]

the AlexNet [87] pre-trained on ImageNet [86]. We compute the average of the pairwise distances among 40 groups of outputs for every family (i.e., 780 pairs if 40 outputs, \(C_{40}^2 = 780 \)). Then, we compute the average across all 170 families. Note that, the color change is unwanted in child face prediction, although it facilitates the output diversity. For accurate evaluation, we conduct histogram equalization on all the generated images of all algorithms in comparisons. The histogram equalization operation removes the effect of color shift obviously. Thus, the evaluation is more fair in terms of the baselines (i.e., the style transfer methods often change the skin color, which is not real for this task).

Human Perceptual Study. We perform a human perceptual study to subjectively evaluate different methods. If a method obtains higher preference rates, it shows the method can produce higher-quality and more diverse faces. There are overall 14 human observers. The generated faces, input parents, and real child faces are presented to observers. The observers need to select one method that predicts faces closest to ground truth for each family. Finally, we count the preference rates.

C. Experiment on Child Face Prediction Reality

1) Qualitative Analysis: We illustrate some generated samples by different methods in Fig. 4. There are 4 samples for each multimodal method in the figure, where we sample different style codes for baselines to generate multiple faces, while we change genetic factors or variety factors for ChildPredictor.

Firstly, results from I2I methods (yellow background) are very similar to mothers. We claim it is an “appearance collapse” issue caused by the shared content space assumption. It promotes the networks simply copying the face structures from mothers; thereby the results are not similar enough compared with real children. Though we feed parent-child pairs to train baselines (see Fig. IV), the disentanglement of content and style is not appropriate for this task. Secondly, DNA-Net assumes parents and children share the same content space like I2I methods but additionally uses a mapper to learn the relation between parent content codes and child content codes. After that, it performs an age-regression to the mapped child content codes to obtain a face. It is not like a natural biological process thus leading to artifacts in the generated faces.

ChildPredictor predicts very similar results with real children (e.g., face structure, color, and facial features). Also, the generated faces have less artifacts than baselines. We claim it is because the proposed disentangled learning is more accurate than the separation of content and style. Since external and variety factors are disentangled from genetic factors, the learning between parent and children domains of ChildPredictor is only on genetic factors. Compared with style codes, genetic factors are a special design for this task.

2) Quantitative Analysis: The quantitative results are concluded in Table V. Since the I2I baselines do not adopt face attributes and FFHQ child data, we exclude them at the training stage for fairness, i.e., “ChildPredictor (normal)”. Firstly, “ChildPredictor (normal)” obtains better cosine similarity and...
Fig. 4. Illustration of some generated samples by ChildPredictor and baselines. The 1st column is input parents and the last column is real children. The 2nd-4th columns include parent-child pairs and single predicted children by different methods, respectively. The 5th-9th columns include diverse children generated by representative I2I methods (yellow background), DNA-Net (green background), and ChildPredictor (red background), respectively.

Method	Cos. Dis. ↑	FID ↓	LPIPS ↑
DualGAN	0.3733	82.01	/
CycleGAN	0.3805	71.23	/
UNIT	0.3727	71.78	/
DRIT	0.3843	62.99	0.0041
MUNIT	0.3702	63.61	0.1669
DRIT++	0.2013	79.92	0.0056
DNA-Net	0.3137	88.23	0.0087
ChildPredictor (normal)	0.4245	60.73	0.0053
ChildPredictor (full)	0.4393	38.15	0.2757

TABLE V

Quantitative Analysis of Baselines and Our ChildPredictor on Cosine Distance, FID, and LPIPS Metrics. The Best Performances Are Highlighted With the Red Color.

FID than the baselines. It demonstrates the architecture predicts the closest samples with ground truth with the best perceptual quality. Secondly, the full ChildPredictor enhances the results of “ChildPredictor (normal)”. It is because of the use of attributes for the disentangled learning, which denotes the prediction-irrelevant information is disentangled from genetic factors. In addition, ChildPredictor obtains the highest LPIPS. It demonstrates that the design of predicting 4 genetic factors by T and variety factors are helpful for producing diverse faces.

3) Human Perceptual Study: The preference rates (PRs) for each method in terms of both similarity and diversity are concluded in Table VI. The ChildPredictor obtains clearly higher PRs than baselines, which demonstrates that it predicts perceptually more realistic and diverse faces, respectively.

D. Ablation Study

We conduct 9 experiments to evaluate several key components of ChildPredictor. The comparison results are included in the Table VII and Fig. 5. The analysis is as follows:

1) Disentangled Learning Ability: We exclude the classification losses L^C_X or L^C_Y or both to train ChildPredictor without external factors. Also, we optimize E_Y in image space rather
Fig. 5. Illustration of the generated images under 9 different ablation study settings. There are 2 output images for each setting by only changing the variety factor. The left column is input parents (gray background), the middle part includes results of different settings (yellow background), the right parts are full ChildPredictor’s results and real child faces (red and blue background, respectively).

TABLE VI
SUBJECTIVE HUMAN PERCEPTUAL STUDY RESULTS OF BASELINES AND CHILD PREDICTOR ON PREFERENCE RATES (PRs)

Method	Similarity PR	Diversity PR
DualGAN	0.84%	
CycleGAN	1.01%	
UNIT	4.08%	
DRTT	7.61%	5.04%
MUNIT	6.69%	9.83%
DRTT++	1.21%	1.14%
DNA-Net	5.13%	1.05%
ChildPredictor (full)	74.03%	82.94%

TABLE VII
COMPARISON OF DIFFERENT ABLATION STUDY SETTINGS OF THE PROPOSED CHILD PREDICTOR

Ablation study setting	Cos Dis. †	FID †	LPIPS †
1) w/o L_y^G	0.4167	43.76	0.2875
1) w/o L_y^G	0.3665	39.71	0.2161
1) w/o L_y^G and L_y^G	0.3572	39.89	0.2060
1) L_E^y, in image space	0.3592	39.39	0.3511
2) w/o L_y^M	0.4247	54.51	0.2213
2) w/o L_y^M and L_y^G	0.4168	64.14	0.2213
2) T outputs one gene	0.4161	52.57	0.0653
3) w/o L_y^G	0.4303	45.94	0.2236
3) w/o FFHQ data	0.4296	69.11	0.1482
ChildPredictor (full)	0.4303	38.15	0.2757

than on genetic factors (i.e., L_E^y performs on images), leading to false disentangled learning in children domain. All the settings lead to obvious decreases of metrics (e.g., more than 0.06 decrease of Cos. Dis for “w/o L_y^G”). The outputs are not realistic, even contain visual artifacts, e.g., the faces, eyes and mouths marked by green rectangles of Fig. 5 1).

2) Generation Diversity: We exclude the mode-seeking loss L_y^M or let mapping function T produce one genetic factor instead of 4 factors. The LPIPS metric of these settings decreases obviously due to no effect of variety factors or no diverse output genetic factors. Therefore, those different generated faces are almost the same, as shown in Fig. 5 2).

3) Other Terms: We exclude the auxiliary loss L_{G_y} or additional FFHQ data when training G_y. All the metrics decrease since L_{G_y} and FFHQ data contribute to high-quality image generation. The predicted faces are blurry or ghosted if excluding them, as the specific regions marked by green rectangles of Fig. 5 3).

In conclusion, all the network components, loss functions, and disentangled learning method are significant for ChildPredictor to generate realistic and diverse child faces.

E. Experiment on Disentangled Learning

To further demonstrate the effectiveness of disentangled learning, we show more predicted faces with and without disentangled learning (w/o L_y^G, w/o L_y^G, w/o L_y^G and L_y^G, and L_E^y in image space; please see ablation study setting 1)). The results are illustrated in Fig. 6, where 68 landmarks are illustrated for every face. The results from full ChildPredictor are more similar to real children.

F. Disentangled Learning and Robustness Analysis

The disentangled learning is the basic of ChildPredictor since it assists to extract accurate genetic factors. For parent domain, we walk the latent code of g_x or e_x and fix the other, as shown in Fig. 7. Obviously, changing genetic factors g_x will not influence attributes, and modifying attributes e_x will not change identity. Therefore, the parent genetic factors can well represent prediction-relevant information. For children domain, we illustrate generated faces from one input parent, e.g., from different genetic factors g_x predicted by mapping function or different external factors e_y, as shown in Fig. 8(a). The e_y only changes specific attributes, while the v_y only influences individual properties when other factors are
Fig. 6. Illustration of more results on ChildPredictor with and without disentangled learning (i.e., ablation study setting 1)). The left two columns are inputs for the ChildPredictor. The 68 face landmarks (extracted by dlib) are illustrated alongside the generated child faces and real child faces.

Fig. 7. Disentangled learning in parent domain X. The left is input and the right is the generated face. The texts around arrows denote changed attributes.

Fig. 8. Illustration of (a) Disentangled learning in children domain Y: generated faces of the same parents from different genetic, external, and variety factors; (b) Robustness analysis in children domain Y: fixing one of input parents and changing the other.

fixed. We also show generated faces by changing one of input parents, as shown in Fig. 8(b). The model is robust to different inputs, which proves that it does not fall into the appearance collapse.

G. Supervised Learning Analysis

To demonstrate the information from parents improves the child prediction quality, we compare results from the full ChildPredictor framework with randomly generated samples from the pre-trained PGGAN (G'_Y). The parent-child pairs are utilized for supervised learning for our framework. Note that G'_Y is pre-trained in an unsupervised manner (following PGGAN training as Equation 9); therefore, the weights are not the same as G_Y in the ChildPredictor framework. There are overall 6800 generated face images on validation set by ChildPredictor and we also randomly generate 6800 samples by pre-trained G'_Y. To compare the image generation quality of supervised learning and unsupervised learning, we compute the FID for them on validation set and the results are concluded in Table VIII. It shows that results from the full ChildPredictor are more similar to real child faces in the validation set than the pre-trained PGGAN G'_Y.

In addition, we illustrate the generated results of the full ChildPredictor and G'_Y in Fig. 9. It is obvious that the children domain generator can predict faces with better quality conditioned on parent images. The supervised learning provides a more fixed...
Fig. 9. Illustration of child face prediction results by supervised ChildPredictor and the unsupervised pre-trained children domain generator G_Y'. There are 32 images shown for each setting, which are randomly sampled from 6800 predicted face images.

(a) Randomly selected face images on FF-Dataset validation set generated by the full ChildPredictor (supervised, conditioned on parent images). There are almost no artifacts.

(b) Randomly selected face images on by the pre-trained children domain generator G_Y' (unsupervised, generated from random latent codes). The unreal regions or artifacts are highlighted by green rectangles.

Fig. 10. Illustration of child face prediction results on grandparents and black background, respectively. The original images are also shown for reference.

(a) Child face prediction results on grandparents. Faces are extracted by dilh. “Input 1” and “Input 2” denote the “father input” and “mother input” for the ChildPredictor, respectively.

(b) Child face prediction results on black background. Faces are extracted by dilh. “Input 1” and “Input 2” denote the “father input” and “mother input” for the ChildPredictor, respectively.

TABLE VIII

Method	FID
Full ChildPredictor (supervised learning)	59.77
Pre-trained G_Y' (unsupervised learning)	53.89

latent space for children domain generator G_Y; therefore, it can produce more reasonable faces.

H. Experiment on Other Circumstances

We consider two other circumstances: 1) The “parents” are replaced by “grandparents” and 2) The background is darkened. The predicted child faces are illustrated in Fig. 10, where results from the normal setting are also shown for comparisons. In case 1), the ChildPredictor can still output child face given grandparent faces. It is because the mapping function can still map the grandparents’ genetic factors to child genetic factors in the learned space, while the children domain generator transforms the predicted child genetic factors to child faces. In case 2), the ChildPredictor can still predict a face similar with ground truth when changing the background color (e.g., the background color is darkened in Fig. 10(b)). However, the two predicted child faces under normal lighting condition and dark background are not very similar. It is because different background colors are not modeled during the training. In future work, we will consider it and make the ChildPredictor more robust.

I. Experiment on Other Datasets

To further evaluate the proposed ChildPredictor, we include two more datasets: Families in the Wild (FIW)\(^2\) and Family101\(^3\). However, the original images in the datasets are not processed with the same pipeline as FF-Database, or have different image resolutions and formats (e.g., grayscale format). To minimize the gap, we apply the same pre-processing procedures to the images in the two datasets. In addition, we manually exclude some grandparent-parent pairs and some profile face images. The pre-processing procedures result in 50 validation pairs from the FIW dataset (extracted from “F0001” to “F0200” of FIW training images) and 17 validation pairs from the Family101 dataset, respectively. They are of 128×128 resolution and not overlapped with FF-Database images. The processed images will be publicly available.

\(^2\)[Online]. Available: https://web.northeastern.edu/smilelab/fiw/

\(^3\)[Online]. Available: http://chenlab.ece.cornell.edu/projects/KinshipClassification/index.html
Fig. 11. Illustration of some generated samples by ChildPredictor (red background) and I2I baselines (yellow background). Input parents and real children are shown in the left and right, respectively. The samples are selected from the processed FIW dataset and Family101 dataset, respectively.

TABLE IX
QUANTITATIVE ANALYSIS OF BASELINES AND OUR CHILD PREDICTOR ON COSINE DISTANCE AND LPIPS METRICS. THE RESULTS ON FIW AND FAMILY 101 ARE SEPARATELY REPRESENTED

Method	FIW Cos. Dis. ↑	LPIPS ↑	Family101 Cos. Dis. ↑	LPIPS ↑
DualGAN	0.3533	/	0.3612	/
CycleGAN	0.3649	/	0.3771	/
UNIT	0.3793	/	0.3878	/
DRIT	0.3660	0.0047	0.3331	0.0049
MUNIT	0.3658	0.1727	0.3665	0.1715
DRIT++	0.1907	0.0065	0.1648	0.0069
ChildPredictor	0.4259	0.2247	0.3914	0.2323

Since the validation sets are relatively small, we only adopt the cosine distance and LPIPS as quantitative metrics because they evaluate the pairwise image quality. The baselines and ChildPredictor trained on the FF-Database are used in the experiment. Note that the DNA-Net cannot well generalize to FIW and Family101 images (e.g., predicted faces are extremely ambiguous) so we do not include it in the experiment. The quantitative results are concluded in Table IX. The proposed ChildPredictor achieves better performances than other methods according to face prediction similarity and diversity on both datasets. The results are consistent with the conclusion on the FF-Database validation set.

Some samples are illustrated in Fig. 11. Compared with other methods, ChildPredictor predicts more similar faces to real children, more diverse faces, and higher-quality faces. For instance, I2I baselines (please see the yellow background in Fig. 11) still produce faces with very similar shapes to input mothers, i.e., appearance collapse. However, ChildPredictor does not have this issue since the mapping is performed in the genetic domain, while the face-prediction-irrelevant factors are disentangled. The visual results also demonstrate that the proposed ChildPredictor has better generalization ability since it is not trained on these two datasets.

J. Experiment on Famous Families

We download 4 famous family images from the Internet for testing the ChildPredictor. The same pre-processing pipeline is applied to these images. The predicted face images are illustrated in Fig. 12. The ChildPredictor framework can predict reasonable child faces for these real-world cases.

K. Limitation of ChildPredictor Framework

For many situations, ChildPredictor can generate high-quality child faces. However, there are some common failure cases...
shown in Fig. 13 including: side face input (left two samples) and low-quality input (right two samples). It may be because there are little profile or low-quality faces in FF-Database. In the future, we will enhance the ChildPredictor to be more robust to such input images.

VI. BROADER IMPACT

The success of ChildPredictor depends on the proposed large-scale FF-database. Although the faces in the dataset are anonymous, they may be sensitive to privacy issues. We are strongly aware that privacy protection is a significant issue in the community. To largely protect privacy: 1) We plan not to disclose original face images of the FF-Database; however, we will alternatively release the features extracted by state-of-the-art face recognition networks for future study. 2) In terms of application, we encode faces by an irreversible process and delete the background data; 3) In terms of algorithm, we can adopt privacy-preserving generative models [90]–[93]. These methods promote discoveries that may be hindered by data-protection barriers and maintain the reproducibility of the algorithm; 4) In terms of generated data, we can learn the characteristics of generated samples to identify them [94]. They are orthogonal work and we will not include them in this paper. In the future, we will use them to enhance the privacy protection of ChildPredictor.

The ChildPredictor can synthesize realistic child faces from parents. It helps to solve many social issues, such as missing child identification and criminal investigations. However, to avoid improper use, we are very cautious about the pros and cons of ChildPredictor. We will strictly control the use of ChildPredictor in the aforementioned social applications.

VII. CONCLUSION

In this paper, we presented a ChildPredictor framework to automatically predict diverse child faces from parents. In order to simulate a biological process, we formulate it as a genetic factor mapping problem. We learn this mapping from parents to children in the latent space. We adopt the encoder-generator architecture to connect the image spaces and latent spaces of the parent and children domains. To extract precise genetic factors, we exclude external factors (facial attributes) and variety factors (individual properties) based on disentangled learning. For the parent domain, it is achieved by enforcing classification loss on generated faces. For the children domain, it is implemented by regularizing the latent space by a GAN encoder. We collected a large-scale Family Face Database (FF-Database) to train the ChildPredictor. It includes 16046 faces (7148 parent faces and 8190 child faces) with labeled facial attributes. Finally, we validated the ChildPredictor with several state-of-the-art methods by both quantitative analysis and human perceptual study on the FF-Database. Experiment results demonstrate that our ChildPredictor can predict higher-quality, more diverse, and more realistic child faces than state-of-the-art methods.

ACKNOWLEDGMENT

The authors would like to thank K. Liu, Q. Li, Z. Ke, and Y. Zhou for their reviews, and S. Wang for labeling a part of facial attributes in the proposed FF-Database. They would also like to thank the anonymous reviewers and editors for their helpful comments.

REFERENCES

[1] S. Xia, M. Shao, and Y. Fu, “Kinship verification through transfer learning,” in Proc. Int. Joint Conf. Artif. Intell., 2011, pp. 2539–2544.
[2] J. Lu, X. Zhou, Y.-P. Tan, Y. Shang, and J. Zhou, “Neighborhood repulsed metric learning for kinship verification,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 2, pp. 331–345, Feb. 2014.
[3] H. Dibeklio˘glu, A. Ali Salah, and T. Gevers, “Like father, like son: Facial expression dynamics for kinship verification,” in Proc. IEEE Int. Conf. Comput. Vis., 2013, pp. 1497–1504.
[4] Y. Sun, J. Li, Y. Wei, and H. Yan, “Video-based parent-child relationship prediction,” in Proc. IEEE Vis. Commun. Image Process., 2018, pp. 1–4.
[5] W. Li, S. Wang, J. Lu, J. Feng, and J. Zhou, “Meta-mining discriminative samples for kinship verification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 16130–16139.
[6] U. Park, Y. Tong, and A. K. Jain, “Age-invariant face recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 5, pp. 947–954, May 2010.
[7] Z. Huang, J. Zhang, and H. Shan, “When age-invariant face recognition meets face age synthesis: A multi-task learning framework,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 7278–7287.
[8] C. Yan et al., “Age-invariant face recognition by multi-feature fusion- and decomposition with self-attention,” ACM Trans. Multimedia Comput., Commun., Appl., vol. 18, no. 1, pp. 1–18, 2022.
[9] J. Zhao, S. Yan, and J. Feng, “Towards age-invariant face recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 1, pp. 474–487, Jan. 2022.
[10] W. Wang, S. You, and T. Gevers, “Kinship identification through joint learning using kinship verification ensembles,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 613–628.
[11] P. S. Chandran et al., “Missing child identification system using deep learning and multiclass SVM,” in Proc. IEEE Recent Adv. Intell. Comput. Syst., 2018, pp. 113–116.
[12] J. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680.
[13] P. Gao et al., “DNA-Net: Age and gender aware kin face synthesizer,” in Proc. IEEE Int. Conf. Multimedia Expo, 2021, pp. 1–6.
[14] H.-Y. Lee, H.-Y. Tseng, J.-B. Huang, M. Singh, and M.-H. Yang, “Diverse image-to-image translation via disentangled representations,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 35–51.
[15] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal unsupervised image-to-image translation,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 172–189.
[16] H.-Y. Lee et al., “Dirt : Diverse image-to-image translation via disentangled representations,” Int. J. Comput. Vis., vol. 128, no. 10, pp. 2402–2417, 2020.
[17] Z. Zhang, Y. Song, and H. Qi, “Age progression/regression by conditional adversarial autoencoder,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 4396–4405.
[18] T. Karras, S. Laine, and T. Alia, “A style-based generator architecture for generative adversarial networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 4396–4405.
[19] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 2223–2232.
[20] Z. Yi, H. Zhang, P. Tan, and M. Gong, “DualGAN: Unsupervised dual learning for image-to-image translation,” in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 2849–2857.
et al., 2017, pp. 5744–5753.

G. Zhang, M. Kan, S. Shan, and X. Chen, “AttGAN: Facial attribute editing by only changing what you want,” IEEE Trans. Image Process., vol. 28, no. 11, pp. 5464–5478, Nov. 2019.

Z. He, M. Kan, J. Zhang, and S. Shan, “PA-GAN: Progressive attention generative adversarial network for facial attribute editing,” 2020, arXiv:2007.05892.

Y. Nitzan, A. Bermano, Y. Li, and D. Cohen-Or, “Face identity disentanglement via latent space mapping,” ACM Trans. Graph., vol. 39, pp. 1–14, 2020, arXiv:2005.07728.

O. Toy, Y. Aaluf, Y. Nitzan, O. Patashnik, and D. Cohen-Or, “Designing an encoder for styleGAN image manipulation,” ACM Trans. Graph., vol. 40, no. 4, pp. 1–14, 2021.

X. Zhu, C. Xu, and D. Tao, “Learning disentangled representations with latent variation predictability,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 684–700.

X. Zhu, C. Xu, and D. Tao, “Where and what? Examining interpretable disentangled representations,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 5861–5870.

Z. He, M. Kan, and S. Shan, “EigenGAN: Layer-wise eigen-learning for GANs,” in Proc. IEEE Int. Conf. Comput. Vis., 2021, pp. 14408–14417.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2017, pp. 5967–5976.

A. Shrivastava et al., “Learning to simulate images through adversarial training,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 2242–2251.

K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan, “Unsupervised pixel-level domain adaptation with generative adversarial networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 105–114.

T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to discover cross-domain relations with generative adversarial networks,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 1857–1865.

Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha, “StarGAN v2: Diverse image synthesis for multiple domains,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 8183–8194.

J. Lin, Y. Pang, Y. Xia, Z. Chen, and J. Luo, “TuiGAN: Learning versatile image-to-image translation with two unpaired images,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 18–35.

H. Chen et al., “Distilling portable generative adversarial networks for image translation,” in Proc. AAAI Conf. Artif. Intell., 2020, pp. 3585–3592.

D. Bhattacharjee, S. Kim, G. Vizier, and M. Salzmann, “DUNIT: Detection-based unsupervised image-to-image translation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 4786–4795.

Y. Liu et al., “Smoothing the disentangled latent style space for unsupervised image-to-image translation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 10780–10789.

F. Pizzati, P. Cerri, and R. D. Charette, “ComoGAN: Continuous model-guided image-to-image translation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2021, pp. 14283–14293.

X. Li et al., “Image-to-image translation via hierarchical style disentanglement,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 8635–8644.

H. Emami, M. M. Aliabadi, M. Dong, and R. B. Chinnam, “SPA-GAN: Spatial attention GAN for image-to-image translation,” IEEE Trans. Multimedia, vol. 23, pp. 391–401, 2020.

S. Kwong, J. Huang, and J. Liao, “Unsupervised image-to-image translation via pre-trained styleGAN2 network,” IEEE Trans. Multimedia, vol. 24, pp. 1435–1448, 2022.

S. Gu, Y. Li, L. V. Gool, and R. Timofte, “Self-guided network for fast image denoising,” in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 2511–2520.

J. Yu et al., “Free-form image inpainting with gated convolution,” in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 4471–4480.

X. Wang et al., “ESRGAN: Enhanced super-resolution generative adversarial networks,” in Proc. Eur. Conf. Comput. Vis. Workshop, 2018, pp. 1–16.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in Proc. Int. Conf. Med. Image Comput. Assist. Interv., 2015, pp. 234–241.

A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classifier GANs,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 2642–2651.
Yuzhi Zhao (Student Member, IEEE) received the B.Eng. degree in electronic information from the Huazhong University of Science and Technology, Wuhan, China, in 2018. He is currently working toward the Ph.D. degree with the Department of Electronic Engineering, City University of Hong Kong, Hong Kong. His research interests include image processing and deep learning, particularly generative models, image and video enhancement, and low-level & physic-based computer vision.

Lai-Man Po (Senior Member, IEEE) received the B.S. and Ph.D. degrees in electronic engineering from the City University of Hong Kong, Hong Kong, in 1988 and 1991, respectively. Since 1991, he has been with the Department of Electronic Engineering, City University of Hong Kong, Hong Kong, where he is currently an Associate Professor with the Department of Electrical Engineering. He has authored more than 150 technical journal and conference papers. His research interests include image and video coding with an emphasis on deep learning based computer vision algorithms. He is a Member of the Technical Committee on Multimedia Systems and Applications and the IEEE Circuits and Systems Society. In 2012 and 2013, he was the Chairman of the IEEE Signal Processing Hong Kong Chapter. In 2011 to 2013, he was an Associate Editor for the IEEE Transactions. He was also on the Organizing Committee of the IEEE International Conference on Acoustics, Speech and Signal Processing in 2003, and the IEEE International Conference on Image Processing in 2010.

Xuehai Wang (Student Member, IEEE) received the B.S. degree from Shandong University, Jinan, China, in 2018, and the master’s degree from the School of Computer Science, Sun Yat-sen University, Guangzhou, China, in 2021. He is currently working toward the Ph.D. degree with Artificial Intelligence Institute, Shanghai Jiao Tong University, Shanghai, China. His research interests include computer vision (super resolution, instance segmentation), and deep learning.

Qiong Yan received the bachelor’s degree in computer science and technology from the University of Science and Technology of China, Hefei, China, in 2009, and the Ph.D. degree in computer science and engineering from The Chinese University of Hong Kong, Hong Kong, in 2013. She is currently a Research Director of Sense Time, leading a group on computational imaging related research and production. Her research interests include low-level vision tasks, such as image/video restoration and enhancement, image editing, and generation.

Wei Shen has been a tenure-track Associate Professor with Artificial Intelligence Institute, Shanghai Jiao Tong University, Shanghai, China, since October 2020. He was an Assistant Research Professor with the Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA. His research interests include computer vision, machine learning, deep learning, and medical image analysis. He was an Associate Editor for the Neurocomputing and the Area Chair of CVPR 2022.
Wei Liu received the B.S. and Ph.D. degrees from the Harbin Institute of Technology, Harbin, China, in 2016 and 2020, respectively. He was a Visiting Student with the Ohio State University, Columbus, OH, USA for two years. He was an Intern with Sense Time. He is currently an Algorithm Engineer with ByteDance. His research interests include image generation, domain adaptation, semantic segmentation, and low-level computer vision. Dr. Liu is a Peer Reviewer for the IEEE TRANSACTIONS ON IMAGE PROCESSING, ISPRS Journal of Photogrammetry and Remote Sensing, and IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING.

Chun-Kit Wong is currently working toward the B.Eng. degree in information engineering with the City University of Hong Kong, Hong Kong. His research interests include deep learning and computer vision.

Chiu-Sing Pang is currently working toward the B.Eng. degree of Engineering in information engineering with the City University of Hong Kong, Hong Kong. His research interests include deep learning and computer vision.

Weifeng Ou received the B.Eng. degree in telecommunication engineering from the Guangdong University of Technology, Guangzhou, China, in 2013, the M.Eng. degree in signal and information processing from the South China University of Technology, Guangzhou, China, in 2016, and the Ph.D. degree with the Department of Electrical Engineering, City University of Hong Kong, Hong Kong, in 2021. From 2016 to 2018, he was an R&D Engineer with Huawei. He is currently with Sense time. His research interests include biometrics and deep learning.

Wing-Yin Yu received the B.Eng. degree in information engineering from the City University of Hong Kong, Hong Kong, in 2019. He is currently working toward the Ph.D. degree with the Department of Electrical Engineering, City University of Hong Kong. His research interests include deep learning and computer vision.

Buhua Liu received the B.Eng. degree from the School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China, in 2019. He is currently working toward the Ph.D. degree with the Department of Computer Science, Hong Kong Baptist University, Hong Kong. His research interests include AI security, privacy and computer vision, particularly in adversarial learning, and federated learning.