CD8+ T cells from HLA-B*57 elite suppressors effectively suppress replication of HIV-1 escape mutants

Christopher W Pohlmeyer1, Robert W Buckheit III1,3, Robert F Siliciano1,2 and Joel N Blankson1*

Abstract

Background: Elite Controllers or Suppressors (ES) are HIV-1 positive individuals who maintain plasma viral loads below the limit of detection of standard clinical assays without antiretroviral therapy. Multiple lines of evidence suggest that the control of viral replication in these patients is due to a strong and specific cytotoxic T lymphocyte (CTL) response. The ability of CD8+ T cells to control HIV-1 replication is believed to be impaired by the development of escape mutations. Surprisingly, viruses amplified from the plasma of ES have been shown to contain multiple escape mutations, and it is not clear how immunologic control is maintained in the face of virologic escape.

Results: We investigated the effect of escape mutations within HLA*B-57 restricted Gag epitopes on the CD8+ T cell mediated suppression of HIV-1 replication. Using site directed mutagenesis, we constructed six NL4-3 based viruses with canonical escape mutations in one to three HLA*B-57-restricted Gag epitopes. Interestingly, similar levels of CTL-mediated suppression of replication in autologous primary CD4+ T cells were observed for all of the escape mutants. Intracellular cytokine staining was performed in order to determine the mechanisms involved in the suppression of the escape variants. While low baseline CD8+ T cells responses to wild type and escape variant peptides were seen, stimulation of PBMC with either wild type or escape variant peptides resulted in increased IFN-γ and perforin expression.

Conclusions: These data presented demonstrate that CD8+ T cells from ES are capable of suppressing replication of virus harboring escape mutations in HLA-B*57-restricted Gag epitopes. Additionally, our data suggest that ES CD8+ T cells are capable of generating effective de novo responses to escape mutants.

Keywords: HIV-1, Elite suppressor, Elite controller, Escape mutation, CTL

Background

In primary HIV-1 infection, vigorous viral replication results in plasma virus levels as high as one million copies/mL of HIV-1 RNA. As cellular immune responses develop, plasma virus levels decrease, and a viral set point is established. A subset of HIV-1-infected individuals known as Elite Controllers or Suppressors (ES), maintain a viral set point below the limit of detection of standard clinical assays (<50 copies of HIV-1 RNA/mL of blood [1-4]). Early studies suggested that some long-term non-progressors (LTNPs) and ES are infected with defective viruses [5,6]. In contrast, more recent studies have determined that many ES are infected with viruses that are fully replication competent, suggesting that host factors rather than infection by defective virus are responsible for ES status [7-11]. Some HLA alleles affect disease progression, including HLA-B*27, HLA-B*51, HLA-B*57/58, and HLA-B*35 [12,13]. Multiple cohort studies have demonstrated that the HLA-B*57 allele is overrepresented in ES [14-20]. This finding has been confirmed by multiple GWAS studies [21-26]. However, the majority of HIV-1-infected HLA-B*57+ patients develop progressive disease, and are thus termed chronic progressors (CPs) [14]. The protection conferred by HLA-B*57 and HLA-B*27 is thought to be mediated by effective CD8+ T cell responses against conserved immunodominant epitopes that are presented by MHC class I proteins [18,27-32]. Comparison studies of HLA-B*57+ ES and CPs have provided some details
about the elite suppressor phenotype. Stimulation of bulk peripheral blood mononuclear cells (PBMCs) with Gag peptides induces greater proliferation as well as more robust granzymes A/B and perforin expression in CD8+ T cells from HLA-B*57+ ES compared to HLA-B*57+ CPs [18].

Some nonsynonymous mutations in epitopes enable the virus to escape from the cytotoxic T lymphocyte (CTL) responses. The role these escape mutations play in determining protection versus progression in HLA-B*57 positive patients is controversial. A correlation between the number of HLA-B*57 Gag epitopes and the level of viremia was observed in a cohort of HLA-B*5703 positive patients with Clade C HIV-1 infection [33]. In another study, the development of escape mutations was temporarily associated with virologic breakthrough in a patient who had maintained undetectable viral loads for a year after infection [34]. In contrast, studies of early infection in other HLA-B*57/5801 positive patients have not found a correlation between the accumulation of escape mutations and virologic breakthrough [35,36]. Furthermore, one study found no difference in the frequency of escape mutations in HLA-B*57-restricted epitopes in proviral clones amplified from ES when compared to CPs [37]; other studies found that while escape mutations were largely absent from provirus amplified from CD4+ T cells of ES, virus amplified from the plasma of the same subjects contained a high frequency of escape mutations [38,39]. In this study, we sought to explain how ES maintain undetectable levels of plasma virus despite the presence of circulating HIV-1 isolates that contain numerous escape mutations. Specifically, we asked whether CD8+ T cells from these patients were capable of inhibiting the viral replication of engineered escape mutants. We demonstrate that ES can inhibit the replication of escape variant HIV-1 and suggest that these patients are capable of generating protective de novo responses against the escape mutant variants. This work has implications for the design of therapeutic T cell vaccines to prevent the progression of HIV-1 disease.

Results

Effect of escape mutations in HLA-B*57-restricted Gag epitopes on viral fitness

The effect of several escape mutations on viral fitness has been explored in vivo and in vitro [40-45]. We focused on escape mutations in the three HLA-B*5703 restricted Gag epitopes: IW9 (Gag 147–155), KF11 (Gag 162–172), and TW10 (Gag 240–249). We have previously demonstrated that HLA-B*5703 positive ES in our cohort do not target the fourth HLA-B*57-restricted Gag epitope QW9 (Gag 308–316) [38] and therefore we did not include this epitope in our analysis. To address the fitness cost of these escape mutations, we introduce a series of mutations into the reference isolate NL4-3 and generated GFP-expressing HIV-1 pseudoviruses carrying these mutations. Virus concentrations were measured in triplicates by RT-PCR. We then infected PHA-activated CD4+ T cells from four seronegative healthy donors using a 2 log range of virus inoculums. Infection curves for the seven viruses are shown in Figure 1A.

Infectivity relative to the reference clone NL4-3 was taken as a measure of fitness. Infectivity curves plateaued at different points for different mutants. A best fitting curve was generated with GraphPad to calculate a non-linear least squares regression model and was used to determine the theoretical maximal infection. Additional file 1: Figure S1 shows the best fit curve for each of the assayed viruses. This theoretical maximal infection was used to determine the relative percentage of maximal infection relative to the reference clone NL4-3 (Figure 1B). The I147L and A146P mutations, which are found in the IW9 epitope of p24, each had a minimal effect on viral fitness with calculated fitness levels of 88 percent and 90 percent, respectively. The effect of escape mutations on viral fitness has been explored in vivo and in vitro [40-45]. We focused on escape mutations in the three HLA-B*5703 restricted Gag epitopes: IW9 (Gag 147–155), KF11 (Gag 162–172), and TW10 (Gag 240–249). We have previously demonstrated that HLA-B*5703 positive ES in our cohort do not target the fourth HLA-B*57-restricted Gag epitope QW9 (Gag 308–316) [38] and therefore we did not include this epitope in our analysis. To address the fitness cost of these escape mutations, we introduce a series of mutations into the reference isolate NL4-3 and generated GFP-expressing HIV-1 pseudoviruses carrying these mutations. Virus concentrations were measured in triplicates by RT-PCR. We then infected PHA-activated CD4+ T cells from four seronegative healthy donors using a 2 log range of virus inoculums. Infection curves for the seven viruses are shown in Figure 1A.

Infectivity relative to the reference clone NL4-3 was taken as a measure of fitness. Infectivity curves plateaued at different points for different mutants. A best fitting curve was generated with GraphPad to calculate a non-linear least squares regression model and was used to determine the theoretical maximal infection. Additional file 1: Figure S1 shows the best fit curve for each of the assayed viruses. This theoretical maximal infection was used to determine the relative percentage of maximal infection relative to the reference clone NL4-3 (Figure 1B). The I147L and A146P mutations, which are found in the IW9 epitope of p24, each had a minimal effect on viral fitness with calculated fitness levels of 88 percent and 90 percent, respectively.
CD4+ T cells were infected with each variant individually did not have any other protective alleles. Unstimulated CTL escape mutations. We next determined whether CD8+ T cells from ES could inhibit the infection of viruses harboring escape mutations. We isolated CD4+ and CD8+ T cells from seven HLA-B*5703+ ES and five healthy seronegative donors. The ES did not have any other protective alleles. Unstimulated CD4+ T cells were infected with each variant individually and were co-cultured with unstimulated CD8+ T cells at various effector to target ratios for three or five days. Interestingly, unstimulated CD8+ T cells from ES were capable of suppressing each variant (Figure 2A), whereas healthy donors had no suppressive capabilities (Figure 2D). The percentage of suppression decreased at lower effector to target ratios. Compared to day three, day five showed increased levels of suppression at all effector to target ratios (Figure 2A).

A prior study demonstrated that CD8+ T cells that were stimulated with peptides were more effective at eliminating HIV-1 infected target cells [18]. We therefore stimulated PBMCs from the same group of ES and healthy donors with a combination of three wild type peptides (wild type IW9, wild type KF11, and wild type TW10) or a combination of three escape variant peptides (mutant IW9 (I147L), mutant KF11 (A163S), or mutant TW10 (T242N/G248A)) in the presence of 10 units/mL IL-2. After seven days of stimulation, CD8+ T cells from both stimulation groups were individually isolated and cultured with unstimulated CD4+ T cells that were infected with either wild type virus or one of the 6 escape mutants. Interestingly, there was no statistical difference in the suppressive capacity of CD8+ T cells that were stimulated with either wild type or escape variant peptides (Figure 2B, C and Additional file 2: Figure S2). Figure 3 shows the suppressive ability of unstimulated CD8+ T cells from each patient at day three and day five. Statistically significant differences in levels of suppression between wild type and escape variants were seen only for A163P at a one to two effector to target ratio (Figure 3A); this difference was not seen at any other effector to target ratios. Taken together, these results demonstrate that ES are capable of recognizing escape variant epitopes as effectively as their non-mutated counterparts.

ES CD8+ T cells suppress replication of viruses containing CTL escape mutations

We next determined whether CD8+ T cells from ES could inhibit the infection of viruses harboring escape mutations. We isolated CD4+ and CD8+ T cells from seven HLA-B*5703+ ES and five healthy seronegative donors. The ES did not have any other protective alleles. Unstimulated CD4+ T cells were infected with each variant individually and were co-cultured with unstimulated CD8+ T cells at various effector to target ratios for three or five days. Interestingly, unstimulated CD8+ T cells from ES were capable of suppressing each variant (Figure 2A), whereas healthy donors had no suppressive capabilities (Figure 2D). The percentage of suppression decreased at lower effector to target ratios. Compared to day three, day five showed increased levels of suppression at all effector to target ratios (Figure 2A).

A prior study demonstrated that CD8+ T cells that were stimulated with peptides were more effective at eliminating HIV-1 infected target cells [18]. We therefore stimulated PBMCs from the same group of ES and healthy donors with a combination of three wild type peptides (wild type IW9, wild type KF11, and wild type TW10) or a combination of three escape variant peptides (mutant IW9 (I147L), mutant KF11 (A163S), or mutant TW10 (T242N/G248A)) in the presence of 10 units/mL IL-2. After seven days of stimulation, CD8+ T cells from both stimulation groups were individually isolated and cultured with unstimulated CD4+ T cells that were infected with either wild type virus or one of the 6 escape mutants. Interestingly, there was no statistical difference in the suppressive capacity of CD8+ T cells that were stimulated with either wild type or escape variant peptides (Figure 2B, C and Additional file 2: Figure S2). Figure 3 shows the suppressive ability of unstimulated CD8+ T cells from each patient at day three and day five. Statistically significant differences in levels of suppression between wild type and escape variants were seen only for A163P at a one to two effector to target ratio (Figure 3A); this difference was not seen at any other effector to target ratios. Taken together, these results demonstrate that ES are capable of recognizing escape variant epitopes as effectively as their non-mutated counterparts.

Stimulation of CD8+ T cells with wild type or escape variant peptides increases expression of interferon gamma and perforin

To determine the mechanism of CTL suppression of escape mutants, we analyzed the expression of IFN-γ and perforin in freshly isolated CD8+ T cells and CD8+ T cells that were primed with either wild type or escape variant peptides. Freshly isolated PBMCs and PBMCs from each stimulation group were stimulated overnight with individual wild type or escape variant peptides. Freshly isolated CD8+ T cells were observed to have very low levels of IFN-γ expression in response to each peptide (Figure 4A, B, C left panel). In contrast, culture of PBMCs with wild type peptides over a 7 day period prior to overnight stimulation with wild type peptides resulted in a statistically significant increase (P < 0.05) in IFN-γ expression (Figure 4A, B, C center panel). A similar response was seen when the CD8+ T cells were stimulated with the analogous escape variant peptide. Interestingly, IFN-γ expression in response to restimulation with wild type or escape variant peptides individually were similar in CD8+ T cells that were cultured for 7 days in the presence of either wild type or escape variant peptides (Figure 4A, B, C right panel).

Because perforin expression is associated with CTL-mediated killing [18,31,46], we also examined perforin expression by stimulated CD8+ T cells. Low levels of perforin and IFN-γ double positive cells were observed when freshly isolated CD8+ T cells were stimulated with wild type or escape variant peptides (Figure 4D, E, F left panel). In contrast, CD8+ T cells that had been cultured for 7 days in the presence of wild type or escape variant peptide cocktails were observed to have an increase in the percentage of IFN-γ and perforin double positive CD8+ T cells when stimulated overnight with either wild type or escape variant peptides. Interestingly, culturing PBMCs in the presence of wild type peptides or escape variant peptide cocktails resulted in similar levels of CD8+ T cells that co-expressed IFN-γ and perforin in response to overnight peptide stimulation. Additionally, overnight stimulation with KK10 (Gag 263–272), an immunodominant HLA-B*27 specific peptide, resulted in no increase in IFN-γ or perforin expression, confirming the specificity of the enhanced CD8+ T cell responses to the HLA-B*57-restricted peptides.

To determine whether similar responses were present in HLA-B*57 positive CPs, we also analyzed CD8+ T cells from five CPs on suppressive HAART regimens, two CPs who recently had detectable viremia, and one CP with high levels of viremia who was not on HAART. With freshly isolated PBMCs, there was very low IFN-γ expression on
CD8+ T cells in response to overnight stimulation with peptides (Figure 5A, B, C left panel). Stimulation of cells with wild type peptides or escape variant peptides induced an increase in IFN-γ expression by CD8+ T cells in some patients after overnight stimulation with TW10 or KF11 (Figure 5A, B, C center and right panels). The percentage of CD8+ T cells that co-expressed IFN-γ and perforin increased from the unprimed baseline (Figure 5E, F, G), though generally not as dramatically as the increase seen in ES. This is consistent with the enhanced proliferative capacity of ES HIV-specific CD8+ T cells [18,27]. Interestingly, the patients on HAART who recently had detectable levels of viremia had higher responses than the patients on suppressive HART regimens who maintained undetectable viral loads consistent with a boosting effect of viral replication.

Discussion

CTL responses against Gag epitopes have been associated with virologic control [47-49] and Gag-specific CD8+ T cells can target incoming virions and therefore have the potential to kill cells prior to productive infection [50-54]. The CTL response has been associated with the appearance of escape mutations in HIV and SIV infection. The mechanism of escape observed for individual mutations can vary. Mutations can affect epitope processing, stability...
of peptides, MHC:peptide complex stability, or TCR recognition of the MHC:peptide complex. Mudd et al. observed that Mamu-B*00801 macaques that controlled viral infection acquired few, if any, escape mutations in Vif and Nef epitopes, whereas macaques that progressed acquired several during the acute phase, suggesting that control may result from an immunologic pressure that prevents the appearance of escape mutations [55]. In contrast, Migueles et al. found that there was no difference between HLA-B*57+ CPs and HLA-B*57+ ES in the frequency of escape mutations in Gag [37], and Bailey et al. found a high frequency of escape mutations in HLA-B*57-restricted epitopes present in virus amplified from ES plasma [38,39].

In this study, we sought to determine how ES maintain control of viral replication despite circulating escape mutant viruses in the plasma. We constructed a series of mutants that contained commonly observed HLA-B*57

![Figure 3 Individual suppression of NL4-3 escape variant viruses. Unstimulated CD4+ T cells from HLA-B*5703+ ES were infected with one of seven NL4-3 variants (wild type, black; I147L, orange; A146P, navy; A163S, red; A146P/A163S, purple; T242N/G248A, brown; A146P/A163S/T242N/G248A, teal) and cultured with autologous unstimulated CD8+ cells at three effector to target ratios. A shows maximal suppression on day 3; B shows maximal suppression on day 5. Black horizontal bars indicate median. Asterisk indicates P < 0.05.](image-url)
restricted Gag escape mutations. While our study is limited by the fact that we did not study viral inhibition of autologous escape mutants isolated from each ES, the A146P and T242N/G248A mutations in the IW9 and TW10 epitopes are commonly seen in our cohort [38]. Mutations in KF11 are rare in Clade B HIV-1 isolates, but one patient was found to have the A163S mutation and we demonstrated that this was in fact an escape mutation in a prior study [38]. In agreement with other studies [40-44], we found that some of the escape mutants we generated were detrimental to viral fitness. While attenuating escape mutations may contribute to elite control [56], viruses from CPs have been observed to have similar escape mutations, although compensatory mutations may partially restore viral fitness [57,58].

Klenerman and Zinkernagel demonstrated a limitation to the adaptive immune response: original antigenic sin [59]. In brief, when CTLs respond to an intracellular pathogen, any variant of the original pathogen elicits the activation of the original memory response, which is potentially less effective in the face of the new variant of the pathogen [60]. Allen et al. demonstrated in a cohort of HLA-A*11+ individuals that the CTL response that recognizes escape variants was incapable of recognizing the original, un-mutated variants, as these CD8+ T cells express unique Vβ segments [61]. New CTL responses
have been shown to arise not only during the acute phase, but during chronic infection in HLA-A*02+ patients [62]. Lichterfeld et al. have shown that HLA-B*27+ individuals can develop a de novo response to the immunodominant KK10 L268M escape mutation during chronic infection [63]. In a previous study, HLA-B*57/58+ children infected perinatally showed a remarkable ability to generate de novo CD8+ T cell responses to escape mutations in the TW10 Gag epitope. Interestingly, there was little recognition of the wild type TW10 epitope in these children [64]. Another study found that CD8+ T cells from both HLA-B*57+ ES and HLA-B*57+ viremic patients made responses to autologous TW10 escape variant peptides [65]. Furthermore, we previously have described CD8+ T cell de novo responses to escape mutants in HLA-B*57+ ES [38,66].

Figure 5 Intracellular cytokine staining of CP CD8+ T cells. A-D: CD8+ T cells of HLA-B*57 positive CP were either freshly isolated (left) or stimulated with either wild type (center) or escape variant (right) HLA-B*57-restricted Gag peptides for 7 days. CPs were either on suppressive HAART regiments with undetectable viral loads (circles), were on HAART regimens but recently had detectable levels of viremia (triangles), or were not on HAART and had high levels of viremia (diamond). Cells from each group underwent an overnight stimulation with individual peptides. Percentage of CD8+ T cells expressing IFN-γ when restimulated with TW10 (A), KF11 (B), and IW9 (C) in blue, or the escape mutant variant peptide containing T242N/G248A (A), A163S (B), and I147L (C) mutations in red is shown. E-H: Percentage of CD8+ T cells expressing both IFN-γ and perforin after overnight stimulation with TW10 (E), KF11 (F), and IW9 (G) in blue, or the escape variant peptide containing T242N/G248A (E), A163S (F), and I147L (G) mutations in red is shown. D and H show CD8+ T cells that express IFN-γ or co-express IFN-γ and perforin when PBMCs were stimulated overnight with Gag 263-272 (KK10, HLA-B*27+ peptide). Black asterisks indicate statistically significant difference (P < 0.05) between samples when restimulated with the same variant peptide; gray asterisks indicates statistically significant difference (P < 0.05) between samples when restimulated with opposite variant peptide.
While of all these studies examined IFN-γ responses, secretion of this cytokine is not a correlate of immunity in HIV infection [67,68]. Furthermore, discrepancies between IFN-γ ELISPOT assays and CD8+ T cell-mediated killing of both SIV and HIV escape variants have been reported [69,70]. Therefore in order to determine whether protective de novo responses were present in ES, we looked at the ability of CD8+ T cells to suppress replication of escape mutants. We used the suppression assay because Saez-Cirion and colleagues have demonstrated that the ability of unstimulated primary CD8+ T cells to inhibit viral replication correlates with elite control of HIV-1 infection [71,73], and we have recently confirmed this finding [72]. In a prior study, we demonstrated that CD8+ T cells from an HLA-B*57 ES suppressed multiple rare autologous TW10 escape variants by a non-cross reactive de novo response [74]. In the current study, we demonstrated that this phenomenon is not limited to that one ES or to rare TW10 epitopes. CD8+ T cells from multiple HLA-B*57 ES were able to suppress the replication of virus containing common escape mutations in all three HLA-B*5703-restricted Gag epitopes. This is probably due to the development of CD8+ T cells that produce perforin in response to wild type and escape variant peptides.

Interestingly, while the presence of residual intracellular concentrations of antiretroviral drugs prevented us from infecting CD4+ T cells and performing the suppression assay with cells from HLA-B*57+ CPs, we demonstrated de novo IFN-γ production when CD8+ T cells of some CPs were stimulated with variant peptides. This is consistent with an earlier study which showed that HLA-B*57+ CPs made IFN-γ responses to autologous TW10 variants that were as strong, if not stronger, than the responses made by HLA-B*57+ ES [65]. Thus the elite control of viral replication is not solely due to the ability to recognize escape mutants. Rather, our work suggests that ES maintain control of viremia in spite of virologic escape. It may explain how ES maintain levels of viremia in the face of virologic escape.

Conclusion
In this study, we demonstrate the ability of CD8+ T cells from ES to suppress replication of viruses harboring escape mutations in HLA-B*57-restricted Gag epitopes. The reduced fitness of these escape mutants may also contribute to elite control. Additionally, protective de novo CD8+ T cell responses to both wild type and escape variant peptides could be generated in ES and some CPs by priming PBMCs with either peptide. Induction of CD8+ T cells that could respond to wild type virus as well as common escape mutants would be advantageous for a CTL-based vaccine.

Methods
Patients
The HLA-B*57+ patients used in the study are described in Table 1.

Consent
All studies were approved by the Johns Hopkins Institutional Review Board. All patients and HIV negative donors provided written informed consent before participation in this study.

Construction of escape mutant viruses
Single-round infection by pseudotyped NL4-3 virus has been previously described [75]. In brief, eGFP was introduced in the env reading frame of pNL4-3, thus creating an env deficient pNL4-3 that allows for analysis of infected cells by flow cytometry. Individual point mutations were introduced by site directed mutagenesis (Agilent Technologies QuikChange II kit) and primers: A146P 5′ ggaaatgtagtaacagtccagccctatcacctagcaatctaaagagc 3′, I47L 5′ ggctttacttatcatcagtaacagttaaaaagagc 3′, A164S 5′ ggtaagaagagagatgagcagaaagtctttcagcccagaagtaatacc, and T242N/G248 5′ caggaacaaatagcctggtatagatgtaga 3′.

PBMC peptide stimulation
PBMCs were isolated from blood of ES, CP, and healthy donors by Ficoll gradient centrifugation. PBMCs were then cultured in RPMI 1640 supplemented with 10% FBS
and 10 units/mL IL-2 in the presence of either 10 μg/mL total of TW10, KF11, and IW9 peptide (3 μg/mL each), or corresponding peptides containing escape mutations, for 7 days, with IL-2 supplemented every 48 h.

CD8⁺ And CD4⁺ T cell isolation
PBMCs were isolated by Ficoll gradient centrifugation. CD8⁺ T cells were isolated from PBMC using the Miltenyi Human CD8 Microbeads according to the manufacturer’s instructions. CD4⁺ T cells were isolated from either bulk PBMCs or CD8-depleted PBMCs using the Miltenyi Human CD4⁺ T Cell Isolation Kit II according to the manufacturer’s instructions. Purity of both cell types was routinely greater than 95% as determined by staining with CD3-Pacific Blue and CD8 APC or CD4 PerCP-Cy5.5 (BD).

Suppression
Freshly isolated CD4⁺ T cells were spinoculated as described [76] at 1,200 × g for 2 h with one of seven NL4-3 pseudotyped viruses in 2.9 × 10⁶ cells/tube. We typically used 50 to 100 ng p24 virus for 100,000 CD4⁺ T cells which typically resulted in 2 to 10% GFP positive cells. Cells without virus were spinoculated as a negative control. After spinoculation, CD4⁺ T cells were washed and plated in a 96 well plate at 0.1 × 10⁵ cells / well in RPMI 1640 supplemented with 10% FBS. Unstimulated, wild type stimulated, or Mutant stimulated CD8⁺ T cells were immediately added to the spinoculated CD4⁺ T cells, at specified ratios. Cells were cultured for 3 or 5 days before fixation and staining (CD3 Pacific Blue, CD8 APC, BD) and analysis by flow cytometry on a FACSCanto II (BD).

Intracellular cytokine analysis
0.5 × 10⁶ unstimulated or stimulated PBMCs (from above) were restimulated with peptide (2 μg/mL), anti-CD28, and anti-CD49d in the presence of GolgiStop and GolgiPlug (BD) for 12 h. After staining with CD3 PE and CD8 APC-H7 (BD), cells were fixed and permeablized with Cytoperm/Cytofix Kit (BD). Cytokines were stained using IFN-γ PerCP-Cy5.5 (BD) and Perforin FITC (Cell Sciences). Stained cells were analyzed by flow cytometry on a FACSCanto II (BD).

Viral quantification
Concentrated virus was quantified by q-RTPCR. Viral RNA was isolated in triplicate with ZR Viral RNA Kit (Zymogen), and RT was performed using Superscript III First-Strand Synthesis Kit (Invitrogen) using poly(dT)₂₀ primers. VQA qPCR was performed as described [77]. In brief, Taqman Fast Advanced Master Mix (Invitrogen) was used with primers 5’ cagatgctgcatataagcagctg and 5’ ttttttttttttttttttttttaagcac, and run on a ViiA7 (AB).

Fitness assay
PBMCs were isolated from healthy donors by Ficoll gradient centrifugation and activated in RPMI 1640 supplemented with IL-2 (100 units/mL) and PHA (1 μg/mL) for 3 days. CD4⁺ T cells were isolated (as above) and spinoculated (1,200 × g, 2 h) in a 96-well plate with 0.1 × 10⁶ cells / well, with different concentrations of each virus as shown in Figure 1. 72 h after spinoculation, cells were fixed (3.3% formaldehyde) and the level of infection for each concentration of virus was analyzed by flow
cytometry on a FACScanto II (BD). GraphPad Prism was used to generate model curves. Relative fitness was determined as a percentage of the maximal infection of an individual virus relative to the wild type control.

Additional files

Additional file 1: Figure S1. Theoretical nonlinear regression curves plotted with each escape variant. Data generated in fitness assay is shown here (wild type, black; I147L, orange; A146P, navy; A163S, red; A146P/A163S, purple; T242N/G248A, brown; A146P/A163S/T242N/G248A, teal). Black line depicts theoretical nonlinear regression curve generated by GraphPad. R² values for each theoretical curve is shown on the bottom right of individual plots. Plot on the bottom right depicts all theoretical curves corresponding to NL4-3 variant color on the same plot.

Additional file 2: Figure S2. Comparison of stimulation status for suppressive function. Suppressive capacity of CD8⁺ T cells, either unstimulated or stimulated with peptides corresponding to HLA-B*57 Gag epitope (WT) or escape mutant variant (Mutant), is compared for each of seven different escape mutant variant viruses used (wild type, black; I147L, orange; A146P, navy; A163S, red; A146P/A163S, purple; T242N/G248A, brown; A146P/A163S/T242N/G248A, teal). Suppression on day 3 (left) and day 5 (right) is shown, n=7.

Competing interests

We, the authors, declare that we have no competing interests.

Authors’ contributions

CP and RWB performed all the experiments and helped draft the manuscript. RFS participated in the study design and helped to draft the manuscript. JNB conceived of the study, participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Supported by HHMI (RFS) and NIH grant AI080328 (JNB).

Author details

1. Department of Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, BRB 880, Baltimore, MD 21205, USA. 2. Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA. 3. Current address: Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.

Received: 11 October 2013 **Accepted:** 3 December 2013 **Published:** 12 December 2013

References

1. Okulicz JF, Lambotte O. Epidemiology and clinical characteristics of elite controllers. Curr Opin HIV AIDS 2011, 6(3):163–168.
2. O’Connell KA, Bailey JR, Blonkson JN: Elucidating the elite: mechanisms of control in HIV-1 infection. Trends Pharmacol Sci 2009, 30(5):63–67.
3. Deeks SG, Walker BD. Human immunodeficiency virus controllers: Mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity 2007, 27(6):406–416.
4. Migueles SA, Connor M: Long-term nonprogressive disease among untreated HIV-infected individuals: Clinical implications of understanding immune control of HIV. JAMA 2010, 304(19):194–201.
5. Deacon NJ, Tsykin A, Solomon A, Smith K, Ludford-Menting M, Hooker DJ, McPhee DA, Greenway AL, Eddle A, Chatfield C, Lawson VA, Crouse S, Maerz A, Sonza S, Learmont J, Sullivan JG, Cunningham A, Dwyer D, Dowton D, Mills J. Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 1995, 270(5298):991.
6. Alexander L, Weiskopf E, Greenough TC, Gaddis NC, Auebach MR, Malim MH, D’Ambrosi SJ, Walker BD, Sullivan JL, Desrosiers RC. Unusual polymorphisms in human immunodeficiency virus type 1 associated with nonprogressive infection. J Virol 2000, 74(12):4361–4376.
7. Blankson JN, Bailey JR, Thayl S, Yang HC, Lassen K, Lai J, Gandhi SK, Siliciano JD, Williams TM, Siliciano RF: Isolation and characterization of replication-competent human immunodeficiency virus type 1 from a subset of elite suppressors. J Virol 2007, 81(5):2508–2518.
8. Lamine A, Auamont-Sarosc A, Chak ML, Saez-Cirion A, Rouzicoux C, Delfassy JF, Paracino G, Lambotte O: Replication-competent HIV strains infect HIV controllers despite undetectable viremia (ANRS EP36 study). AIDS 2007, 21(10):1343–1345.
9. Bailey JR, O’Connell K, Yang HC, Han Y, Xu J, Jilek B, Williams TM, Ray SC, Siliciano RF, Blankson JN: Transmission of human immunodeficiency virus type 1 from a patient who developed AIDS to an elite suppressor. J Virol 2008, 82(15):7395–7410.
10. Jilg B, Pereyra F, Buzon MJ, Piechocka-Trocha A, Clark MJ, Baker BM, Lian J, Miura T, Martinez-Picado J, Addo MM, Walker BD. Infrcovery of infection from but robust exogenous infection of activated CD4⁺ T cells in HIV elite controllers. Clin Infect Dis 2010, 51(2):233–238.
11. Buckheit RW III, Allen TG, Alme A, Salgado M, O’Connor KA, Huculak S, Falade-Fawulwa O, Williams TM, Gallant JE, Siliciano RF, Blankson JN: Host factors dictate control of viral replication in two HIV-1 controller/chronic progressor transmission pairs. Nat Commun 2012, 3:716.
12. Tesseu S, Mathur-Wagh U, Skovron M, Brancato L, Marmor M, Zeleniuch-Jacquotte A, Winchester R: HLA B35 is associated with accelerated progression to AIDS. J Acquir Immune Defic Syndr 1991, 5(7):347–353.
13. Kaslow R, Carrington M, Apple R, Park L: Influence of combinations of human major histocompatibility complexes on the course of HIV-1 infection. Nat Med 1996, 2(10):406–411.
14. Migueles SA, Sabbaghian MS, Shupert WL, Bettinotti MP, Marincola FM, Martin L, Hallaway CW, Selig SM, Schwartz D, Sullivan J, Connors M: HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad Sci USA 2000, 97(6):2709–2714.
15. Lambotte O, Boufassa F, Madec Y, Nguyen A, Goujard C, Meyer L, Rouziou C, Venet A, Delfassy JF, SEROCO-HEMOCO Study Group: HIV controllers: A homogeneous group of HIV-1-infected patients with spontaneous control of viral replication. Clin Infect Dis 2005, 41(7):1053–1056.
16. Emu B, Sinclair E, Hatao H, Ferré A, Shacklett B, Martin JN, McCune JM, Deeks SG: HLA class I-restricted T-cell responses may contribute to the control of human immunodeficiency virus infection, but such responses are not always necessary for long-term virus control. J Virol 2008, 82(15):5389–5407.
17. Han Y, Lai J, Barditch-Crovo P, Gallant JE, Williams TM, Siliciano RF, Blankson JN: The role of protective HCP5 and HLA-C associated polymorphisms in the control of HIV-1 replication in a subset of elite suppressors. AIDS 2008, 22(6):541–544.
18. Migueles SA, Osborne CM, Royce C, Compton AA, Joshi RP, Weeks KA, Rood DJ, Desrosiers RC, Follman DA, Connors M: Lytic granule loading of CD8⁺ T cells is required for HIV-infected cell elimination associated with immune control. Immunity 2008, 29(6):1005–1021.
19. Pereyra F, Addo MM, Kaufmann DE, Liu Y, Miura T, Rathod A, Baker B, Trocha A, Rosenberg R, Mackey E, Ueda P, Lu Z, Cohen D, Wrin T, Petropoulos CJ, Rosenberg ES, Walker BD: Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy. J Infect Dis 2008, 197(4):563–571.
20. Sadjadi MM, Constantine NT, Mano D, Chu V, Dakan-Maddan E, Kadeck P, Redfield RR: Epidemiologic characteristics and natural history of HIV-1 natural viral suppressors. J Acquir Immune Defic Syndr 2009, 50(4):403–408.
21. Fellay J, Shianna KV, Ge D, Colombos S, Ledergerber B, Weale M, Zhang K, Gumbs C, Castagna A, Coszariza A, Cozzi-Lepri A, De Luca A, Easterbrook P, Francioni P, Mallal S, Martinez-Picado J, Miro JM, Obel N, Smith JP, Wyniger J, Desormes P, Antonarakis SE, Letvin NL, McMichael AJ, Hughes RF, Tekeli A, Goldstein DB: A whole-genome association study of major determinants for host control of HIV-1. Science 2007, 317(5840):944–947.
22. Catano G, Kulkami H, He W, Marconi VC, Akan BK, Landrum M, Anderson S, Delmar J, Telles V, Song L, Castiblanco J, Clark RA, Dolan MJ, Ahuja SK: HIV-1 disease-influencing effects associated with ZNDR1, HCPS and HLA-C alleles are attributable mainly to either HLA-A10 or HLA-B8,57 alleles. PLoS One 2008, 3(1):e2636.
23. Dalmasso C, Carpenter W, Meyer L, Routzoukis C, Goujard C, Chaix ML, Lambotte O, Avendan-Fenoul-V Le Clerc S, de Senneville LD, Deveau C, Boufassa F, Debre P, Delfraissy JF, Brot P, Theodourou I, ANRS Genome Wide Association 01: Distinct genetic loci control plasma HIV-RNA and cellular HIV-DNA levels in HIV-1 infection: The ANRS genome wide association study. PLoS Pathog. 2008, 4(12):e1000259.

24. Limou S, Le Clerc S, Coulouges C, Carpenter W, Dina C, Delauneau O, Labib T, Taing L, Stadler R, Deveau C, Ratsamandresy R, Montes M, Spadoni JL, Lelièvre JD, Levy Y, Therawth A, Schachter F, Matsuda F, Gut I, Fleguel P, Delfraissy JF, Herbberg S, Zagury JF, ANRS Genomic Group: Genomewide association study of an AIDS-nonsuppression cohort emphasizes the role played by HLA genes (ANRS Genome Wide Association Study 02). J Infect Dis. 2009, 199(4):419–426.

25. van Manen D, Kookstra NA, Boeser-Nunnink B, Handule MA, van't Woude AB, Schuttemaker A: Association of HLA-C and HCP5 genes regions with the clinical course of HIV-1 infection. AIDS. 2009, 23(1):19–28.

26. International HIV Controllers S, Pereyra F, Jia X, McLaren JL, Pellet A, de Bakker PI, Walker BD, Ripke S, Brumme CJ, Piltz SS, Carrington M, Kwiecinski-M, Carlson JM, Heckerman D, Graham RR, Plenge RM, Deeks SG, Gianniny L, Crawford S, Ulm JL, Davies L, Camargo A, Moore JM, Beattie N, Gupta S, Crenshaw A, Gupta R, Gudaonis D, Goepfert PA, Lederman MM, Benito JM, Goepfert PA, Connors M, Roederer M, Koup RA: Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyclonality, and clonal turnover. J Exp Med. 2007, 204(10):2473–2485.

27. Ferre AL, Hunt PW, Bazak HS, Newberg MH, Barouch DH, Sokolski J, Levina NL: Fitness costs limit viral escape from cytotoxic T lymphocytes at a structurally constrained epitope. J Virol. 2004, 78(19):13911–13917.

28. Bailey JR, Brennan TP, O'Connell KA, Siliciano RF, Blankson JN: Evidence of CD8 T-cell-mediated selective pressure on human immunodeficiency virus type 1 nef in HIV-B*057+ elite suppressors. J Virol. 2009, 83(8):88–97.

29. Friedrich TC, Dodds EJ, Yant LJ, Vojnov L, Rodgersen R, Cullen C, Evans DT, Desrosiers RC, Mothre B, Sidney J, Sette A, Kunstman K, Wolinsky S, Plaut M, Lison J, Hughes AL, Wilson N, O'Connor DH, Watkins DL: Reversion of CTL escape-variant immunodeficiency viruses in nature. Nat Med. 2004, 10(7):275–281.

30. Peyerl FW, Bazak HS, Newberg MH, Barouch DH, Sokolski J, Levina NL: Reduced viral replication capacity of human immunodeficiency virus type 1 subtype C caused by cytotoxic-T-lymphocyte escape variants in HIV-BS7 epitopes of capsid protein. J Virol. 2009, 83:2460–2468.

31. Meiraz A, Garber OG, Harari S, Hassin D, Berke G: Switch from perforin-expressing to perforin-deficient CD8+ T cells accounts for two distinct types of effector cytotoxic T lymphocytes in vivo. J Immunol. 2004, 172(5):2750–2757.

32. Martinez-Picado J, Prado JD, Fry EE, Pfafferott K, Leslie A, Chetty S, Thobakgale C, Honeyborne J, Crawford H, Matthews P, Pillay T, Rousseau C, Mullins JI, Brandt C, Walker BD, Stuart DI, Kiepiela P, Goulder PJ: Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. J Virol. 2006, 80:3617–3623.

33. Bouchet CL, Rowley CF, Essex M: Reduced viral replication capacity of human immunodeficiency virus type 1 subtype C caused by cytotoxic T-lymphocyte escape mutations in HIV-BS7 epitopes of capsid protein. J Virol. 2009, 83:2460–2468.

34. Bailey JR, Zhang H, Wegweiser BW, Yang H, Herrera L, Ahonkhai A, Williams TM, Mulenga J, Allen S, Goulder PJR, Hunter E: HIV Gag evolution in recently infected HLA-B*57 patients with Low level viremia. J Exp Med. 2009, 206:3122–3135.

35. Haynes BF, Cohen MS, Hraber P, Bhattacharya T, Borrow P, Perelson AS, Koup RA: Control of human immunodeficiency virus type 1 in an HLA-B*57+ patient during virologic escape. J Exp Med. 2007, 199(6):55–65.

36. Peyerl FW, Bazak HS, Newberg MH, Barouch DH, Sokolski J, Levina NL: Reduced viral replication capacity of human immunodeficiency virus type 1 subtype C caused by cytotoxic-T-lymphocyte escape variants in HIV-BS7 epitopes of capsid protein. J Virol. 2009, 83:2460–2468.

37. Migueles SA, Laborico AC, Imamichi H, Shupert WL, Royce C, McLaughlin M, Ehler L, Metcalf J, Liu S, Hallahan CW, Connors M: The differential ability of HLA B * 5701 * long-term nonsuppressors and progressors to restrict human immunodeficiency virus replication is Not caused by loss of recognition of autologous viral gag sequences. J Virol. 2003, 77(12):6889–6898.

38. Bailey JR, Williams TM, Siliciano RF, Blankson JN: Maintenance of viral suppression in HIV-1-infected HLA-B*57* elite suppressors despite CTL escape mutations. J Exp Med. 2006, 203(5):1357–1369.

39. Bailey JR, Brennan TP, O'Connell KA, Siliciano RF, Blankson JN: Evidence of CD8+T-cell-mediated selective pressure on human immunodeficiency virus type 1 nef in HIV-B*057+ elite suppressors. J Virol. 2009, 83:88–97.

40. Friedrich TC, Dodds EJ, Yant LJ, Vojnov L, Rodgersen R, Cullen C, Evans DT, Desrosiers RC, Mothre B, Sidney J, Sette A, Kunstman K, Wolinsky S, Plaut M, Lison J, Hughes AL, Wilson N, O'Connor DH, Watkins DL: Reversion of CTL escape-variant immunodeficiency viruses in nature. Nat Med. 2004, 10(7):275–281.

41. Peyerl FW, Bazak HS, Newberg MH, Barouch DH, Sokolski J, Levina NL: Reduced viral replication capacity of human immunodeficiency virus type 1 subtype C caused by cytotoxic-T-lymphocyte escape mutations in HIV-BS7 epitopes of capsid protein. J Virol. 2009, 83:2460–2468.

42. Meiraz A, Garber OG, Harari S, Hassin D, Berke G: Switch from perforin-expressing to perforin-deficient CD8+ T cells accounts for two distinct types of effector cytotoxic T lymphocytes in vivo. J Immunol. 2004, 172(5):2750–2757.

43. Martinez-Picado J, Prado JD, Fry EE, Pfafferott K, Leslie A, Chetty S, Thobakgale C, Honeyborne J, Crawford H, Matthews P, Pillay T, Rousseau C, Mullins JI, Brandt C, Walker BD, Stuart DI, Kiepiela P, Goulder PJ: Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. J Virol. 2006, 80:3617–3623.

44. Bouchet CL, Rowley CF, Essex M: Reduced viral replication capacity of human immunodeficiency virus type 1 subtype C caused by cytotoxic T-lymphocyte escape mutations in HIV-BS7 epitopes of capsid protein. J Virol. 2009, 83:2460–2468.

45. Meiraz A, Garber OG, Harari S, Hassin D, Berke G: Switch from perforin-expressing to perforin-deficient CD8+ T cells accounts for two distinct types of effector cytotoxic T lymphocytes in vivo. J Immunol. 2004, 172(5):2750–2757.

46. Peyerl FW, Bazak HS, Newberg MH, Barouch DH, Sokolski J, Levina NL: Reduced viral replication capacity of human immunodeficiency virus type 1 subtype C caused by cytotoxic-T-lymphocyte escape mutations in HIV-BS7 epitopes of capsid protein. J Virol. 2009, 83:2460–2468.
52. Buseyne F, Le Gall S, Boccaccio C, Abastado JP, Lisson JD, Arthur LQ, Riviere Y, Heard JM, Schwartz O: MHC-Restricted presentation of HIV-1 virion antigens without viral replication. Nat Med 2001, 7:344–349.

53. Buckheit RW III, Siliciano RF, Blankson JN. Primary CD8+ T cells from elite suppressors effectively eliminate non-productively HIV-1 infected resting and activated CD4+ T cells. Retrovirology 2013, 10:28.

54. Graf EJ, Pace MJ, Peterson B, Lynch LJ, Chukwueke SR, Mexas AM, Shaheen F, Martin JN, Deeks SG, Connors M, Migueles S, O'Doherty U. Gag-positive reservoir cells are susceptible to HIV-specific cytotoxic T lymphocyte mediated clearance. PLoS One 2013, 8(7):e18789.

55. Mudd P, A, Ericson AJ, Burwitz BJ, Wilson N, O'Conner DH, Hughes AL, Watkins DL. Escape from CD8+ T cell responses in Mamu-B*0801+ macaques differentiates progressors from elite controllers. J Immunol 2012, 188:3364–3370.

56. Miura T, Brockman M, Brumme ZL, Brumme CJ, Pereyra F, Trotta A, Block BL, Schneidewind A, Allen TM, Heckerman D, Walker BD. HLA-associated escape in replication capacity of chimeric NL4-3 viruses carrying gag-protease from elite controllers of human immunodeficiency virus type 1. J Virol 2009, 83:140–149.

57. Schneidewind A, Brockman M, A Yang R, Adam RL, Li B, Le Gall S, Rinaldo CR, Caggia SL, Allogia RL, Power K a, Kurtenz T, Tung C-S, Lalvute MK, Mueller SM, Harer T, McMichael AJ, Goulder PJR, Aiken C, Brandi C, Kellett AD, Allen TM. Escape from the dominant HLA-B827-restricted cytotoxic T-lymphocyte response in Gag is associated with a dramatic reduction in human immunodeficiency virus type 1 replication. J Virol 2007, 81:12382–12389.

58. Crawford H, Prado JG, Leslie A, Hué S, Honeyborne I, Reddy S, van der Stok M, Allen TM, Yu XG, Kalife ET, Reyor LL, Lichterfeld M, John M, Cheng M, Lichterfeld M, Kavanagh DG, Williams KL, Moza B, Mui SK, Miura T, Brockman M, Brumme ZL, Brumme CJ, Pereyra F, Trocha A, Block BL, Schneidewind A, Allen TM, Heckerman D, Walker BD. De novo generation of escape variant-specific CD8+ T cell responses following cytotoxic T-lymphocyte recognition. J Virol 2007, 81:8346–8351.

59. Knenerman P, Ziemienowicz RM. Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. Nature 1998, 394:482–485.

60. Francis TJ. On the doctrine of original antigenic Sin. Proc Am Philos Soc 1960, 104:572–578.

61. Allen TM, Yu XG, Kalife JJ, Rayor LL, Lichterfeld M, John M, Cheng M, Allogia RL, Mui S, Frahn N, Hul H, Brown NV, Johnston MN, Rosenblatt ES, Mallal SA, Brumme ML, Walker BD, Affoldt M. De novo generation of escape variant-specific CD8+ T cell responses following cytotoxic T-lymphocyte escape in chronic human immunodeficiency virus type 1 infection. J Virol 2005, 79:12992–12997.

62. Goulder PJR, Affoldt M, Rosenblatt ES, Nguyen T, Tang Y, Eldridge RI, Addo MM, He S, Muybridge JS, Phillips MN, Bunce M, Kalsari SA, Sekaly JR, Walker BD, Brandt C. Substantial differences in specificity of HLA-B*5703-restricted cytotoxic T cells in acute and chronic HIV infection. J Exp Med 2001, 193:181–194.

63. Lichterfeld M, Kavanagh DG, Williams KL, Moza B, Mui S, Miura T, Svanumarthy R, Alligaer R, Pereyra F, Trotta A, Feverey M, Gandhi RT, Rosenblatt ES, Affoldt M, Allen TM, Walker BD, Sandberg EJ, Yu XG. A viral CTL escape mutation leading to immunoglobulin-like transcript 4-mediated functional inhibition of myelomonomocytic cells. J Virol 2007, 81:2813–2824.

64. Feeley ME, Tang Y, Paffrath K, Roosevelt KA, Draerrett R, Trotta A, Yu XG, Verrill C, Allen T, Moore C, Mallal S, Buchett S, McIntosh K, Petson SJ, St John MA, Hizia R, Knenerman P, Affoldt M, Walker BD, Goulder PJR. HIV-1 viral escape in infancy followed by emergence of a variant-specific CTL response. J Immunol 2005, 175:7244–7250.

65. Miura T, Brockman MA, Schneidewint A, Lobritz M, Pereyra F, Rothod A, Block BL, Brumme ZL, Brumme CJ, Baker B, Rothchild AC, Li B, Trocha A, Cutrell E, Frahn N, Brandt C, Toth I, Arts EJ, Allen TM, Walker BD. HLA-B*5701 human immunodeficiency virus type 1 elite controllers select for rare Gag variants associated with reduced viral replication capacity and strong cytotoxic T-lymphocyte recognition. J Virol 2009, 83:3743–3755.

66. O’Connell K, A Brennan TP, Bailey JR, Ray SC, Siliciano RF, Blankson JN. Control of HIV-1 in elite suppressors despite ongoing replication and evolution in plasma virus. J Virol 2010, 84:7018–7028.

67. Betts MR, Ambrozak DR, Douek DC, Bonhoeffer S, Brenchley JM, Casasola JP, Koup RA, Picker LJ. Analysis of total human immunodeficiency virus (HIV)-specific CD4+ and CD8+ T-cell responses: Relationship to viral load in untreated HIV infection. J Virol 2001, 75:11983–11991.

68. Addo MM, Yu XG, Rathod A, Cohen D, Eldridge RL, Strick D, Johnston MN, Corcoran C, Wuncler AG, Fitzpatrick CA, Feeney ME, Rodriguez WR, Basgou N, Draerett R, Stone DR, Brandt C, Goulder PJR, Rosenblatt ES, Affoldt M, Walker BD. Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J Virol 2003, 77:2081–2092.

69. Valentine LE, Piaskowski SM, Rakasz EG, Henry NL, Wilson N, Watkins DL. Recognition of escape variants in ELISPOT does not always predict CD8+ T-cell recognition of simian immunodeficiency virus-infected cells expressing the same variant sequences. J Virol 2008, 82:575–581.

70. Loffredo JT, Burwitz BJ, Rakasz EG, Spencer SP, Stephany JI, Vela JG, Martin SR, Reed J, Piaskowski SM, Furlott J, Weisgrau RL, Rodrigues DS, Soma T, Napoél G, Frederick TC, Wilson N, A Kallas EG, Watkins DL. The antiviral efficacy of simian immunodeficiency virus-specific CD8+ T cells is unrelated to epitope specificity and is abrogated by viral escape. J Virol 2007, 81:2624–2634.

71. Sae-Cion N, Lacarbarat C, Lombotte O, Versmissie P, Urrutia A, Bousassa F, Barri-Sousioux F, Delfraissy JF, Sinet M, Pancino G, Vener A. HIV controllers inhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proc Natl Acad Sci USA 2007, 104:6776–6781.

72. Sae-Cion N, Sinet M, Shin SY, Urrutia A, Versmissie P, Lacarbarat C, Bousassa F, Aventand-Fenoll V, Roulozur C, Delfraissy JF, Barri-Sousioux F, Lombotte O, Venet A, Pancino G. Heterogeneity in HIV suppression by CD8 T cells from HIV controllers: Association with Gag-specific CD8 T cell response. J Immunol 2009, 182:7828–7837.

73. Buckheit RW, Salgado M, Siliciano RF, Blankson JN. Inhibitory potential of subpopulations of CD8+ T cells in HIV-1-infected elite suppressors. J Virol 2012, 86:13679–13688.

74. O’Connell K, Hegarty RW, Siliciano RF, Blankson JN. Viral suppression of multiple escape mutants by de novo CD8+ T cell responses in a human immunodeficiency virus-1 infected elite suppressor. Removology 2011, 8:63.

75. Zhang H, Zho Y, Alcock C, Kiefet T, Monie D, Siliciano J, Li Q, Pham P, Cofrancesco J, Persaud D. Siliciano RF. Novel single-cell-level phenotypic assay for residual drug susceptibility and reduced replication capacity of drug-resistant human immunodeficiency virus type 1. J Virol 2004, 78:1718–1729.

76. O’Doherty U, Swiggard WJ, Malim MH. Human immunodeficiency virus type 1 spinoculation enhances infection through virus budding. J Virol 2000, 74(10):10074–10080.

77. Shan L, Rabi SA, Lind GW, Eisele EE, Zhang H, Margolick JB, Siliciano RF. A novel assay for quantification of HIV-1 RNA. J Virol 2013, 87(11):6521–6525.