In this material, we firstly report the further ablation study on Hybrid Prototype Alignment Module (HPAM) to explore the application of multi-scale, and then further show the effect of block sizes (m) and top k ratio (k) in the P2P module.

1 More Study on HPAM with Multi-Scale Scheme

Table 1 reports the ablation studies of multi-scale scheme. “BL” means the baseline of this ablation study which removes the multi-scale scheme as well as the Hybrid Prototype Alignment Module, “BL*” indicates the baseline with multi-scale scheme. We also conduct the single HPAM with only choosing the middle layer features, which are represented as “BL w/ single HPAM” and “BL* w/ single HPAM” respectively. And “BL* w/ HPAM” is the complete framework of our JC2A, in which the HPAM acts in each scale feature maps. From Table 1, we can draw the following conclusion as: 1) It is clear that multi-scale scheme can greatly improve the segmentation performance which has been verified in many FSS methods. 2) Not only for normal baseline but also the baseline with multi-scale scheme, our single HPAM can still make positive effect. 3) the model with multi-scale HPAM achieves highest accuracy in all folds, proving the superiority of our HPAM with multi-scale scheme.

2 Block size and top k settings

We further analyzed the effect of different block sizes (m) and the choice of top k ratio (k) in the P2B. As shown in Table 2, we find that the performance drops with the expansion of block size. These result with different m settings indicate that the large block is able to introduce more irrelevant semantic noises which weaken the representation of target parts within specific regions. Besides, setting k to 20% achieves the best performance while using all blocked features brings
Table 1. The performance comparison of 1-shot and 5-shot segmentation on PASCAL-5. Best-performing results are highlighted in bold.

Method	1-shot	5-shot
	fold-0 fold-1 fold-2 fold-3 mIoU FB-IoU	fold-0 fold-1 fold-2 fold-3 mIoU FB-IoU
BL	59.3 67.0 52.9 53.3 58.2 69.5	62.8 67.3 51.6 55.7 59.4 70.2
BL* w/ single HPAM	62.8 69.6 54.8 56.3 60.9 72.2	65.8 68.7 54.9 58.9 62.1 72.9
BL* w/ single HPAM (our)	65.4 71.2 56.5 59.0 63.0 75.2	67.7 71.8 57.3 61.4 64.6 74.8
BL* w/ HPAM (our)	**67.3** 72.4 57.7 60.7 **64.5** 76.5	**68.6** 72.9 **58.7** 62.0 65.4 **76.8**

negative effects. We can infer that our block selection of P2B can keep most relevant class-aware information without reducing computational efficiency.

Table 2. Ablation study on different block sizes (m) and topk ratio (k) settings in P2B. “/” represents the results of “1-shot/5-shot”.

m	10%	20%	30%	40%	50%	60%	70%	80%
3	62.1/63.4	64.5/65.4	64.3/65.0	64.2/65.1	64.4/65.3	64.5/65.2	64.1/64.9	63.0/64.3
5	61.4/62.8	63.2/64.1	63.0/64.0	63.5/64.7	62.9/63.4	63.3/63.8	62.2/63.2	62.0/63.7
7	60.7/61.9	60.0/64.4	62.9/63.7	62.5/63.7	63.1/64.2	62.7/64.4	62.0/63.6	61.6/62.9