Origins of aminergic regulation of behavior in complex insect social systems

This work was made openly accessible by BU Faculty. Please share how this access benefits you. Your story matters.

| Version | Citation (published version): Kamhi JF, Arganda S, Moreau CS and Traniello JFA (2017) Origins of Aminergic Regulation of Behavior in Complex Insect Social Systems. Front. Syst. Neurosci. 11:74. doi: 10.3389/fnsys.2017.00074 |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

https://hdl.handle.net/2144/27132

Boston University
Origins of Aminergic Regulation of Behavior in Complex Insect Social Systems

J. Frances Kamhi1*, Sara Arganda2,3, Corrie S. Moreau4 and James F. A. Traniello2,5

1Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia, 2Department of Biology, Boston University, Boston, MA, United States, 3Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France, 4Department of Science and Education, Field Museum of Natural History, Chicago, IL, United States, 5Graduate Program for Neuroscience, Boston University, Boston, MA, United States

Neuromodulators are conserved across insect taxa, but how biogenic amines and their receptors in ancestral solitary forms have been co-opted to control behaviors in derived socially complex species is largely unknown. Here we explore patterns associated with the functions of octopamine (OA), serotonin (5-HT) and dopamine (DA) in solitary ancestral insects and their derived functions in eusocial ants, bees, wasps and termites. Synthesizing current findings that reveal potential ancestral roles of monoamines in insects, we identify physiological processes and conserved behaviors under aminergic control, consider how biogenic amines may have evolved to modulate complex social behavior, and present focal research areas that warrant further study.

Keywords: neuromodulation, biogenic amines, eusocial, social brain evolution, collective intelligence

INTRODUCTION

The ubiquitous biogenic amines octopamine (OA), serotonin (5-HT) and dopamine (DA) activate neural circuitry to regulate behavior (Libersat and Pflueger, 2004; Bergan, 2015). The phylogenetic distribution of these neuromodulators suggests a deep evolutionary history predating the origin of the nervous system (Gallo et al., 2016). With few structural modifications, monoamines are functionally diverse in insects (Roeder, 1999; Mustard et al., 2005; Blenau and Thamm, 2011). Conserved aminergic circuits (Kravitz and Huber, 2003; Barron et al., 2010; Perry et al., 2016) and patterns of receptor expression (Roeder, 1999; Blenau and Thamm, 2011) control behavior in diverse species across insect orders. However, how monoamine neurotransmitter systems served as preadaptations for the evolution of derived behaviors associated with the transition from solitary life to sociality in insects is poorly understood. Insect colonies show remarkable variation in structure and degree of integration of worker actions that could underscore complex social behavior. Using well-resolved insect molecular phylogenies (Wiegmann et al., 2011; Song et al., 2012, 2015; Moreau and Bell, 2013; Regier et al., 2013; Schmidt, 2013; Misof et al., 2014; Wang et al., 2014), we explore the evolution of neuromodulation of social behavior (Supplementary Table S1) by analyzing patterns of monoamine function in solitary and social taxa (Figure 1; Supplementary Table S2).

SOCIAL DECISION-MAKING SYSTEMS AND BEHAVIORAL DIVERSITY IN INSECTS

Two neural circuits regulate vertebrate decision-making: the social behavior network, controlled by neuropeptides and gonadal steroids, and the mesolimbic reward system, activated primarily by DA (O’Connell and Hofmann, 2011a,b). These circuits act in concert to regulate social interactions and evaluate stimulus valence, respectively, forming the social decision-making
network (O’Connell and Hofmann, 2011b, 2012). Insect social decision-making systems are poorly understood in comparison, although behavioral influences of neuromodulators are well known (Supplementary Table S2).

Neurochemical and neuroendocrine analyses of complex social behavior in insects have largely been limited to the species-rich Hymenoptera (>150,000 species), which includes ants, bees and wasps with solitary, presocial and eusocial life histories. Solitary species are composed of individuals that live and forage alone and interact with conspecifics primarily during mating or territorial disputes. Presocial describes life histories that are intermediate between solitary and eusocial (Eickwort, 1981). Eusociality is defined by: (1) reproductive division of labor (the differentiation of fertile [queens and males] and sterile [workers] castes); (2) allomaternal care (cooperative care of immatures by workers); and (3) overlapping generations of reproductive and worker castes (queen longevity allowing coexistence with offspring). Varying degrees of sociability are found in a number of clades. Phase transitions from solitary to gregarious behavior occur in desert locusts (Order Orthoptera; Anstey et al., 2009; Ott and Rogers, 2010), beetles (Order Coleoptera) show multiple occurrences of the evolution of familial sociability, including biparental care (Costa, 2006; Cunningham et al., 2015; Panaitof et al., 2016), and one species of weevil is eusocial (Kent and Simpson, 1992). Solitary life histories predate eusociality in the Hymenoptera (Wilson, 1971) and Isoptera, which diverged from cockroaches into entirely eusocial forms (Bourguignon et al., 2015). The evolution of a reproductive caste occurred once in ants and multiply in bees and wasps; diversification of workers, particularly in ants, has many independent origins (Oster and Wilson, 1978; Tribe and Kronauer, 2017). Eusociality independently evolved in the Order Isoptera (termites, >3000 species; Thorne and Traniello, 2003).

Parental behavior, reproductive competition and foraging and defense strategies in solitary (Field et al., 2006, 2015; Thompson et al., 2014) and eusocial (Titbbets, 2013) hymenopteran species reflect social decision-making, although neurochemical and neuroanatomical correlates of such systems are poorly understood (Iliis et al., 2015). For example, neural mechanisms underscoring vertebrate-like cognitive abilities, such as individual facial feature recognition in some eusocial wasps, are not known (Gronenberg et al., 2008; Sheehan and Tibbetts, 2011). Decision-making at the colony level is seen in collective (swarm) intelligence (Seeley, 2010; Jeanson et al., 2012; Sasaki and Pratt, 2012; Reid et al., 2015) and in part concerns worker interactions (Greene and Gordon, 2003; Greene et al., 2013) that may be causally related to brain neurotransmitter levels (Muscedere et al., 2012; Kamhi and Traniello, 2013; Kamhi et al., 2015; Hoover et al., 2016). Studies have focused on the aminergic control of worker interactions that contribute to social organization, including responsiveness to social signals and cues that regulate alloparental care, food exchange, nest construction, defensive behavior and foraging (reviewed in Kamhi and Traniello, 2013; Simpson and Stevenson, 2015; Hamilton et al., 2017). Studies have begun to explore genetic and epigenetic underpinnings of task performance and plasticity through state changes in behavior (Lucas and Sokolowski, 2009; Simola et al., 2016) that may involve neuromodulators.

**BEHAVIOR AND BIOGENIC AMINE FUNCTIONS IN INSECTS**

Genes controlling behavior in solitary insects regulate social behavior in eusocial species (LeBoeuf et al., 2013) and affect sensory receptor evolution (Baldwin et al., 2014). Monoamines functions in solitary insects likely reflect this conservation, and appear to have been preadaptive for eusociality. To understand the evolution of neuromodulatory systems in insects, we organized available data on aminergic control into eight behavioral categories: activity, aggression, development, higher-order sensory integration, nutrition, reproduction, sensorimotor functions and social functions (defined in Supplementary Table S1). Behaviors may span multiple categories, such as parental care and mate selection involving reproduction and derived social functions. Statistical tests showed similar patterns of monoamine function in solitary and eusocial species (Supplementary Figure S1), although small sample sizes constrain inferences. While data on biogenic amine regulation is variable and fragmentary, some patterns emerge suggesting that aminergic circuitry has shifted in function during the transition from solitary to social life. Monoamines have been co-opted for social functions through receptor and circuitry evolution and have gained novel functions to regulate social behaviors. For example, 5-HT (Alekseyenko et al., 2010, 2014; Bubak et al., 2014) and OA (Stevenson et al., 2000; Hoyer et al., 2008; Zhou et al., 2008; Stevenson and Rillich, 2017) increase aggression in solitary insects. In social insects, aggression is associated with the ability to pheromonally distinguish nestmates from non-nestmates (Stroeymeyt et al., 2010; Sturgis and Gordon, 2012), and OA is implicated in improved nestmate recognition (Robinson et al., 1999; Vander Meer et al., 2008; Kamhi et al., 2015). OA may thus enhance sensitivity to pheromonal cues and regulate social interactions similarly in both solitary and social insects.

**DA, 5-HT and OA are involved in regulating metamorphosis in solitary insects** (Nässel and Laxmyr, 1983; Hirashima et al., 1999). In social insects, monoamines are associated with age-related behavioral changes and collateral physiological and neural development (Schulz et al., 2002; Seid and Traniello, 2005; Cuvillier-Hot and Lenoir, 2006; Wnuk et al., 2010; Giraldo et al., 2016). OA increases with age and is causally related to the transition from nursing to foraging in honey bees (Schulz et al., 2002). In ants, 5-HT, DA (Seid and Traniello, 2005; Cuvillier-Hot and Lenoir, 2006), and OA (Wnuk et al., 2010) increase with age; 5-HT, similar to OA in bees, is correlated with age-related initiation of foraging (Seid and Traniello, 2005) and sensitivity to pheromonal signals underscoring trail communication (Muscedere et al., 2012).

In respect to other behaviors, suppressing DA neurons in *Drosophila melanogaster* consistently inhibits aversive but not appetitive learning, whereas manipulating OA action produces the opposite pattern (Schwaerzel et al., 2003;
Claridge-Chang et al., 2009; Aso et al., 2010). Similar patterns have been found in honey bees (Mercer and Menzel, 1982; Hammer and Menzel, 1998). However, appetitive learning in social insects must be considered in respect to the social context, where foraging is dependent on the nutritional state of the colony rather than the individual (Traniello, 1977; Seeley, 1989). OA increases the likelihood of successful foragers waggle dancing, which communicates information about food location and quality to nestmates; this demonstrates that an amine may be adapted to serve a colony-level function in food collection rather than benefit individual nutrition (Barron et al., 2007).

Biogenic amines appear to have gained new functions associated with the regulation of social organization. DA correlates with increased receptivity and mating in solitary insects (Pastor et al., 1991; Neckameyer, 1998; Chvalova et al., 2014; Brent et al., 2016), and reproductive state in many hymenopterans (e.g., Sasaki et al., 2007). Honey bee and some ant workers are reproductively capable; however, both ant and honey bee queens release a pheromone, queen mandibular pheromone (QMP), that inhibits worker reproduction (Fletcher and Blum, 1981; Hoover et al., 2003) by acting through DA circuitry (Harris and Woodring, 1995; Boulay et al., 2001; Beggs et al., 2007).
Aggressive interactions between workers to control reproductive dominance also affect DA levels (Shimoji et al., 2017). These studies suggest that in both solitary and eusocial insects DA regulates reproductive state, and DA additionally may be integral to the maintenance of reproductive division of labor and the resolution of reproductive competition in eusocial species.

**FOCAL QUESTIONS**

We identify four research areas, among several others, that are significant in the study of the neuromodulation of complex eusocial behavior.

**Altruism, Genes and Neuromodulators**

Altruism is evident in the sterility of workers and their fatal self-sacrificing behavior. Developmental programming controls ovarian function, feeding the queen and alloparental care, and likely regulates defensive responses that decrease the survival of altruistic workers. Correlations among DA, OA, their receptors, ovarian development and honey bee worker responsiveness to social signals of fertility have been identified (reviewed in Simpson and Stevenson, 2015; Hamilton et al., 2017). As discussed above, worker fertility is controlled by QMP, which also causes workers to feed and groom the queen and activates brain genes associated with alloparenting (Grozinger et al., 2003). Workers showing higher ovarian activity are less likely to show queen-directed behaviors (Galbraith et al., 2015). Honey bee ovarian development is associated with the expression of a tyramine receptor gene (Thompson et al., 2007) and brain levels of the OA receptor Oa1 (Cardoen et al., 2011; Galbraith et al., 2015; Sobotka et al., 2016). QMP also modulates DA receptor gene expression, decreases brain DA levels, and reduces activity possibly by inhibiting DA function in young workers (Beggs et al., 2007). Homologous systems appear to control reproduction in ants: QMP inhibits reproduction and DA may increase fertility (Boulay et al., 2001; Penick et al., 2014; Okada et al., 2015).

Together, these studies suggest that in eusocial insects DA regulates reproductive state and related social behaviors, which are key to altruism. Thompson et al. (2013) noted that “genes underlying altruism should coevolve with, or depend on, genes for kin recognition”; such genes specify recipients of altruistic actions. The regulation of polygyny (multiple queens) in ants and the direction of lethal aggression toward queens of a certain genotype, is under the control of the Gp-9 gene, which codes for an odorant-binding protein (Gotzek and Ross, 2007). This indicates that chemical communication underscores strategies associated with inclusive fitness. Nestmate recognition may be causally related to monoamine levels (Kamhi and Traniello, 2013; Kamhi et al., 2015; Hoover et al., 2016) and altruistic defense. Self-sacrifice is associated with defensive specializations of “soldiers,” and may concern serotonergic circuits (Giraldo et al., 2013). Soldiers are more tolerant of risk; elevated monoamine levels or subcaste-specific receptor profiles may underscore their self-sacrificing behavior.

**Orchestration of Individual and Colony-Level Behavior**

Social decision-making networks in vertebrates and eusocial insects function in different contexts and favor, respectively, individual reproduction and inclusive fitness. Concepts such as social brain theory (Dunbar, 1998), developed for vertebrates, may vary in its applicability to eusocial insects (Lihoreau et al., 2012). Similarly, neuromodulators play a key role in the “orchestration of behavior” (Sombati and Hoyle, 1984; Hoyle, 1985), but analyses of organizational mechanisms should distinguish between the regulation of individual behavior by monoamines and the control of emergent colony properties by pheromones to determine whether the orchestration hypothesis can explain the control of these two systems (Kamhi and Traniello, 2013). The circuitry of social networks underscoring division of labor and collective action may concern interactions of communicating workers, which have been considered to be functionally similar to neurons (Couzin, 2009; Feinerman and Korman, 2017). Similarly, pheromones are behavioral releasers that may parallel neurotransmitter functions in circuits. The role of the “colony brain” in emergent group behavior is therefore in part constructed from the neurochemistry of individual worker brains that modulate responsiveness to social cues and signals as well as social interactions and pheromonal communication systems that modulate group decision-making. Kamhi and Traniello (2013) hypothesized that worker interactions may cause neuromodulatory and behavioral synchronization in collective action, and that monoamine titers could regulate cyclical activity. Control processes analogous to neural synchronization in vertebrate brains may underscore colony-level behavior.

An emergent action that holds promise for such an analysis is cooperative foraging, a goal-oriented system in which chemical signals control colony behavior (Czaczkes et al., 2015). Foraging effort is modified by the responses of individual workers to pheromones that induce and terminate foraging activity by affecting individual and group decisions. The ability of workers to render decisions that modify colony-level responses may be related to worker physical caste or age. OA underscores subcaste-specific behavior in ants (Kamhi et al., 2015), and 5-HT in ants (Seid and Traniello, 2005; Seid et al., 2008) and OA in honey bees (Schulz et al., 2002) modulate age-related task transitions that involve striking shifts in stimulus environments within and outside of the nest. Biogenic amines may thus influence division of labor and collective action through changes in olfactory responsiveness.

**Nutrition and Biogenic Amines**

Nutrition has diverse effects on social behavior, from group aggregation to brain physiology (Simpson and Raubenheimer, 2012; Lihoreau et al., 2015). Diet influences levels of brain monoamines, which are derived from amino acids such as tryptophan and tyrosine (Crockett et al., 2009; Wada-Katsumata et al., 2011; Fernstrom, 2013). In insects, 5-HT, DA and OA modulate feeding behavior (Braun and Bicker, 1992; Falibene et al., 2012) through regulatory mechanisms that may be conserved between solitary and social species (Dacks et al., 2003;
different downstream regulatory effects and thus variable roles have species-specific effects on neural circuits, giving rise to receptors, and downstream regulatory mechanisms are highly conserved across species, how have biogenic amine circuits evolved to control derived social behaviors? Monoamines may have species-specific effects on neural circuits, giving rise to different downstream regulatory effects and thus variable roles in modulating behavior. Activation of the DA receptor DopR1 increased stress-induced hyperactivity and modulated circadian-dependent activity through different neural circuits in fruit flies (Lebestky et al., 2009). Social insects may have evolved distinct neural circuits to regulate social behaviors using the same signaling molecules as solitary species. Exploring biogenic amine receptors and downstream regulatory pathways involved in insect behavior and derived social functions will advance our understanding of how the eusocial insect brain evolved perceptual and cognitive capacities in association with sociality.

CONCLUSION

Broader sampling is required to gain phylogenetic insight into the evolution of aminergic control systems. Determining patterns of conservation and/or diversification of aminergic regulatory mechanisms of social behavior will benefit from studies of insect genera that include solitary and eusocial species. Despite the widespread activity of biogenic amines, functional patterns appear. 5-HT may control energy expenditure through feeding behavior and circadian rhythms, DA regulates fertility, thus modulating task performance in eusocial species, and OA modulates appetitive learning associated with feeding and nestmate recognition. Advances in epigenetics (Libbrecht et al., 2016), neurogenetics (Friedman and Gordon, 2016), and the integration of sociobiology and neurochemistry (Kamhi and Traniello, 2013) will aid in future research.

AUTHOR CONTRIBUTIONS

JFK, SA and JFAT compiled literature. SA performed statistical analyses and created associated figures, and CSM created the phylogenetic presentation of aminergic control of behavior. JFK, SA and JFAT prepared drafts of the manuscript. All authors contributed to the conception of the perspective, analysis and synthesis of material, manuscript revision and gave final approval for publication.

ACKNOWLEDGMENTS

Andrew Hoadley and Dr. Alfonso Pérez-Escudero commented on the manuscript, and Dr. Iulian Ilies gave helpful statistical advice. This work was supported by a Marie Skłodowska-Curie Individual Fellowship (funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. BrainiAnts-Project 660976) to SA, NSF grant IOS 1354193 to CSM, and NSF grant IOS 1354291 to JFAT. JFK was supported by an Australian Research Council Discovery Project grant (DP150101172).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnsys.2017.00074/full#supplementary-material
REFERENCES

Abril, S., Oliveras, J., and Gómez, C. (2007). Foraging activity and dietary spectrum of the Argentine ant (Hymenoptera: Formicidae) in invaded natural areas of the northeast Iberian Peninsula. *Environ. Entomol.* 36, 1166–1173. doi: 10.1603/0046-225X(2007)36[1166:faa2.0.co;2]  
Aleksyenko, O. V., Chan, Y. B., Fernandez, M. L., Bulow, T., Pankratz, M. J., and Kravitz, E. A. (2014). Single serotonergic neurons that mediate aggression in *Drosophila*. *Curr. Biol.* 24, 2700–2707. doi: 10.1016/j.cub.2014.09.051  
Aleksyenko, O. V., Lee, C., and Kravitz, E. A. (2010). Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male *Drosophila melanogaster*. *PLoS One* 5:e10806. doi: 10.1371/journal.pone.0010806  
Anstey, M. L., Rogers, S. M., Ott, S. R., Burrows, M., and Simpson, S. J. (2009). Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts. *Science* 323, 627–630. doi: 10.1126/science.1165939  
Aso, Y., Swamowicz, I., Bräcker, L., Ito, K., Kitamoto, T., and Tanimoto, H. (2010). Specific dopaminergic neurons for the formation of labile aversive memory. *Curr. Biol.* 20, 1445–1451. doi: 10.1016/j.cub.2010.06.048  
Baldwin, M. W., Toda, Y., Nakagita, T., O’Connell, M. J., Klasing, K. C., Baldwin, M. W., Toda, Y., Nakagita, T., O’Connell, M. J., Klasing, K. C., et al. (2016). The genome and methyleme of a beetle with complex social behavior, *Nicrophorus vespilloides* (*Coleoptera: Silphidae*). *Genome Biol. Evol.* 7, 3383–3396. doi: 10.1093/gbe/evw194  
Cuvillier-Hot, V., and Lenoir, A. (2006). Biogenic amine levels, reproduction and social dominance in the queenless ant *Solenopsis invicta*. *Naturwissenschaften* 93, 149–153. doi: 10.1007/s00114-006-0086-1  
Cazczkes, T. J., Gritter, C., and Ratnieks, F. L. W. (2015). Trial pheromones: an integrative view of their role in social insect colony organization. *Annu. Rev. Entomol.* 60, 581–599. doi: 10.1146/annurev-ento-010814-020627  
Dacks, A. M., Nickell, T., and Mitchell, B. K. (2003). An examination of seroton in and feeding in the flesh fly *Nobelia bullata* (Sarcophagidae: Diptera). *J. Insect Behav.* 16, 1–21. doi: 10.1023/A:1022817603178  
Eickwort, G. C. (1981). “Presocial insects,” in *Social Insects*, ed. H. R. Herrmann, (New York, NY: Academic Press), 199–281.  
Fernstrom, J. D. (2013). Large neutral amino acids: dietary effects on brain neurochemistry and function. *Amino Acids* 45, 419–430. doi: 10.1007/s00726-012-2130-0  
Field, J., Cronin, A., and Bridge, C. (2006). Future fitness and helping in social queues. *Nature* 441, 214–217. doi: 10.1038/nature04560  
Field, J., Shreesee, G., Kennedy, M., Bruce, S., and Gilbert, J. D. J. (2015). Sex-biased parental care and sexual size dimorphism in a provisioning arthropod. *Behav. Ecol. Sociobiol.* 69, 1987–1996. doi: 10.1007/s00265-015-1992-1  
Fletcher, D. J., and Blum, M. S. (1981). Phenomonal control of delaion and oogenesis in virgin queen fire ants. *Science* 212, 73–75. doi: 10.1126/science.212.4490.73  
French, A. S., Simcock, K. L., Rolke, D., Gartside, S. E., Blenau, W., and Wright, G. A. (2014). The role of serotonin in feeding and gut contractions in the honeybee. *J. Insect Physiol.* 61, 8–15. doi: 10.1016/j.jinsphys.2013.12.005  
Galbraith, D. A., Wang, Y., Amdam, G. V. V., Page, R. E., and Grolzinger, C. M. (2015). Reproductive physiology mediates honey bee (*Apis mellifera*)...
Kamhi et al. Amines and Insect Social Behavior

Hirashima, A., Suetsugu, E., Hirokado, S., Kuwano, E., Taniguchi, E., and Hammer, M., and Menzel, R. (1998). Multiple sites of associative odor learning

Hoyle, G. (1985). “Generation of motor activity and control of behaviour: the role of the neuropeptide octopamine and the organization hypothesis,” in Comparative Insect Physiology, Biochemistry and Pharmacology, eds G. A. Kerkt and L. Gilbert (Toronto: Pergamon Press), 607–621.

Illies, L., Muscedere, M. L., and Traniello, J. F. (2015). Neuroanatomical and morphological trait clusters in the ant genus Pheidole: evidence for

modularity and integration in brain structure. Brain Behav. Evol. 85, 63–76. doi: 10.1159/000370100

Jeanson, R., Dussutour, A., and Fourcassie, V. (2012). Key factors for the emergence of collective decision in invertebrates. Front. Neurosci. 6:121. doi: 10.3389/fnins.2012.00121

Kamhi, J. F., Nunn, K., Robson, S. K. A., and Traniello, J. F. A. (2015). Polymorphism and division of labour in a socially complex ant: neuromodulation of aggression in the Australian weaver ant, Oecophylla smaragdina. Proc. Biol. Sci. 282:20150704. doi: 10.1098/rspb.2015.0704

Kamhi, J. F., and Traniello, J. F. A. (2013). Biogenic amines and collective organization in a superorganism: neuromodulation of social behavior in ants. Brain Behav. Evol. 82, 220–236. doi: 10.1159/000356091

Kay, A. D., Bruning, A. J., van Alst, A., Abrahamson, T. T., Hughes, W. O., and Kaspari, M. (2014). A carbohydrate-rich diet increases social immunity in ants. Proc. Biol. Sci. 281:20132374. doi: 10.1098/rspb.2013.2374

Kay, A. D., Shik, J. Z., Van Alst, A., Miller, K. A., and Kaspari, M. (2012). Diet composition does not affect ant colony tempo. Funct. Ecol. 26, 317–323. doi: 10.1111/j.1365-2435.2011.01944.x

Kay, A. D., Zumbusch, T., Heinen, J. L., Marsh, T. C., and Holway, D. A. (2010). Nutrition and interference competition have interactive effects on the behavior and performance of Argentine ants. Ecology 91, 57–64. doi: 10.1890/09-0908.1

Kent, D. S., and Simpson, J. A. (1992). Eusociality in the beetle Austroplatypus incompertus (Coleoptera: Curculionidae). Naturwissenschaften 79, 86–87. doi: 10.1007/bf01131810

Klemm, N., Hustert, R., Cantera, R., and Nâsell, D. R. (1986). Neurons reactive to antibodies against serotonin in the stomatogastric nervous system and in the alimentary canal of locust and crickets (Orthoptera, Insecta). Neuroscience 17, 247–261. doi: 10.1016/0306-4522(86)90240-x

Kratz, E. A., and Huber, R. (2003). Aggression in invertebrates. Curr. Opin. Neurobiol. 13, 736–743. doi: 10.1016/j.conb.2003.10.003

Lesbetsy, T., Chang, J. S., Dankert, H., Zednik, L., Kim, Y. C., Han, K. A., et al. (2009). Two different forms of arousal in Drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits. Neuron 64, 522–536. doi: 10.1016/j.neuron.2009.09.031

Leboeuf, A. C., Benton, R., and Keller, L. (2013). The molecular basis of social behavior: models, methods and advances. Curr. Opin. Neurobiol. 23, 3–10. doi: 10.1016/j.conb.2012.08.008

Leboeuf, A. C., Wardiel, P., Brent, C. S., Goncalves, A. N., Menin, L., Ortiz, D., et al. (2016). Oral transfer of chemical cues, growth proteins and hormones in social insects. Elife 5:e02375. doi: 10.7554/eLife.20375

Liang, D., and Silverman, J. (2000). “You are what you eat”: diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 77, 412–416. doi: 10.1007/s001140050752

Libbrecht, R., Oxley, P. R., Keller, L., and Kronauer, D. J. (2016). Robust DNA methylation in the clonal raider ant brain. Curr. Biol. 26, 391–395. doi: 10.1016/j.cub.2015.12.040

Liberst, F., and Pflueger, H. J. (2004). Monoamines and the orchestration of behavior. Biosci. 54, 17–25. doi: 10.1641/0006-3568(2004)054[0:0017:mmateob]2.0.co;2

Lihoreau, M., Buhli, J., charcoal, M. A., Swing, G. A., Raubenheimer, D., and Simpson, S. J. (2015). Nutritional ecology beyond the individual: a conceptual framework for integrating nutrition and social interactions. Ecol. Lett. 18, 273–286. doi: 10.1111/ele.12406

Lihoreau, M., Latty, T., and Chittaka, L. (2012). An exploration of the social brain hypothesis in insects. Front. Physiol. 3:442. doi: 10.3389/fphys.2012.00442

Lisca, A., Solari, P., Gibbons, S. T., Gelperin, A., and Stoffolano, J. G. Jr. (2012). Effect of serotonin and calcium on the supercontractile muscles of the adult blowfly corpse. J. Insect Physiol. 58, 356–366. doi: 10.1016/j.jinsphys.2011.12.010

Lucas, C., and Sokolowski, M. B. (2009). Molecular basis for changes in behavioral state in ant social behaviors. Proc. Natl. Acad. Sci. U S A 106, 6351–6356. doi: 10.1073/pnas.0809463106

Mercer, A. R., and Menzel, R. (1982). The effects of biogenic amines on conditioned and unconditioned responses to olfactory stimuli in the honeybee Apis mellifera. J. Comp. Physiol. 145, 363–368. doi: 10.1007/bf00619340

Misof, B., Liu, S. L., Meusemann, K., Peters, R. S., Donath, A., Mayer, C., et al. (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767. doi: 10.1126/science.1257570
Molaei, G., and Lange, A. B. (2003). The association of serotonin with the alimentary canal of the African migratory locust, Locusta migratoria: distribution, physiology and pharmacological profile. J. Insect. Physiol. 49, 1073–1082. doi: 10.1016/j.jinsphys.2003.08.004

Monastirioti, M. (1999). Biogenic amine systems in the fruit fly Drosophila melanogaster. Microres. Res. Tech. 45, 106–121. doi: 10.1002/(sici)1097-0029(19990415)45:2<106::aid-jemt5>3.3.co;2-v

Moreau, C. S., and Bell, C. D. (2013). Testing the museum versus cradle tropical ecological diversity hypothesis: phylogeny, diversification, and ancient biogeographic range evolution of the ants. Evolution 67, 2240–2257. doi: 10.1111/evo.12105

Muscedere, M. L., Johnson, N., Gillis, B. C., Kamhi, J. F., and Traniello, J. F. A. (2012). Serotonin modulates worker responsiveness to trail pheromone in the ant Pheidole dentata. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 198, 219–227. doi: 10.1007/s00359-011-0701-2

Mustard, J. A., Beggs, K. T., and Mercer, A. R. (2005). Molecular biology of the invertebrate dopamine receptors. Arch. Insect Biochem. Physiol. 59, 103–117. doi: 10.1002/arch.20065

Nässel, D. R., and Laxmyr, L. (1983). Quantitative determination of biogenic amines and DOPA in the CNS of adult and larval blowflies, Calliphora erythrocephala. Comp. Biochem. Physiol. C 75, 259–265. doi: 10.1016/0742-8413(83)90190-1

Neckameyer, W. S. (1998). Dopamine modulates female sexual receptivity in Drosophila melanogaster. J. Neurogenet. 12, 101–114. doi: 10.3109/0167700980952759

Neckameyer, W. S. (2010). A trophic role for serotonin in the development of a simple feeding circuit. Dev. Neurosci. 32, 217–237. doi: 10.1159/000304888

O’Connell, L. A., and Hofmann, H. A. (2012). Evolution of a vertebrate social decision-making network. J. Comp. Neurol. 32, 330–335. doi: 10.1002/jn.24100

O’Connell, L. A., and Hofmann, H. A. (2011b). The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J. Comp. Neurol. 519, 3599–3639. doi: 10.1002/cne.22735

O’Connell, L. A., and Hofmann, H. A. (2012). Evolution of a vertebrate social decision-making network. Science 336, 1154–1157. doi: 10.1126/science.1218889

Okada, Y., Sasaki, K., Miyazaki, S., Shimoji, H., Tsuji, K., and Miura, T. (2015). Social dominance and reproductive differentiation mediated by dopaminergic signaling in a queenless ant. J. Exp. Biol. 218, 1091–1098. doi: 10.1242/jeb.118414

Oster, G. F., and Wilson, E. O. (1978). Caste and Ecology in the Social Insects. Princeton, NJ: Princeton University Press.

Ott, S. R., and Rogers, S. M. (2010). Gregarious desert locusts have substantially larger brains with altered proportions compared with the solitary phase. Proc. Biol. Sci. 277, 3087–3096. doi: 10.1098/rspb.2010.0694

Panaitof, S. C., Vaeger, J. D. W., Speer, I. P., and Renner, K. J. (2016). Biparental behavior in the burying beetle Nicrophorus orbicollis: a role for dopamine?Curr. Zool. 62, 285–291. doi: 10.1093/cz/ozw032

Pastor, D., Piulachs, M. D., Cassier, P., André, M., and Bellés, X. (1991). In vivo and in vitro study of the action of dopamine on oocyte growth and juvenile hormone production in Blattella germanica (L.) (Dictyoptera; Blattellidae). C. R. Acad. Sci. III 313, 207–212.

Penick, C. A., Brent, C. S., Dolezal, K., and Liebig, J. (2014). Neurohormonal changes associated with ritualized combat and the formation of a reproductive hierarchy in the ant Harpegnathos saltator. J. Exp. Biol. 217, 1496–1503. doi: 10.1242/jeb.098501

Perry, C. J., Baciadonna, L., and Chittka, L. (2016). Unexpected rewards induce dopamine-dependent positive emotion-like state changes in bumblebees. Science 353, 1529–1531. doi: 10.1126/science.aaa4454

Regier, J. C., Mitter, C., Zwick, A., Bazinet, A. L., Cummings, M. P., Kawahara, A. Y., et al. (2013). A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS One 8:e68588. doi: 10.1371/journal.pone.005868

Reid, C. R., Lutz, M. J., Powell, S., Kao, A. B., Couzine, I. D., and Garner, S. (2015). Army ants dynamically adjust living bridges in response to a cost-benefit trade-off. Nat. Neurosci. 18 A 112, 15113–15118. doi: 10.1037/pnas.1512241112

Robinson, G. E., Heuser, L. M., Le Conte, Y., Lengqueta, F., and Hollingworth, R. M. (1999). Neurochemicals aid bee nestmate recognition. Nature 399, 534–535. doi: 10.1038/21095

Roeder, T. (1999). Octopamine in invertebrates. Prog. Neurobiol. 59, 533–561. doi: 10.1016/S0301-0082(99)00167-7

Sasaki, T., and Pratt, S. C. (2012). Groups have a larger cognitive capacity than individuals. Curr. Biol. 22, R827–R828. doi: 10.1016/j.cub.2012.07.058

Sasaki, K., Yamasaki, K., and Nagao, T. (2007). Neuro-endocrine correlates of ovarian development and egg-laying behaviors in the primitive eusocial wasp (Polistes chinensis). J. Insect Physiol. 53, 940–949. doi: 10.1016/j.jinsphys.2007.03.006

Schulz, D. J., Barron, A. B., and Robinson, G. E. (2002). A role for octopamine in honey bee division of labor. Brain Behav. Evol. 60, 350–359. doi: 10.1159/000067788

Sheehan, M. J., and Tibbetts, E. A. (2011). Specialized face learning is associated with individual recognition in paper wasps. Science 334, 1272–1275. doi: 10.1126/science.1211334

Simola, D. F., Graham, R. J., Brady, C. M., Enzmann, B. L., Desplan, C., Ray, A., et al. (2016). Epigenetic (re)programming of caste-specific behavior in the ant Camponotus floridanus. Science 351:aac6633. doi: 10.1126/science.aac6633

Simpson, S. J., and Raubenheimer, D. (2012). The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity. Princeton, NJ: Princeton University Press.

Sinakevitch, I., Mustard, J. A., and Okada, Y. (2017). Queen contact and among-worker interactions dually suppress worker brain dopamine as a potential regulator of reproduction in an ant. Behav. Ecol. Sociobiol. 71:35. doi: 10.1002/bes.20663

Sokolova, N., Liang, A. P., and Bu, C. P. (2012). A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences. PLoS One 7:e48778. doi: 10.1371/journal.pone.0048778

Song, H. J., Amédégnato, C., Cigliano, M. M., Desutter-Grandcolas, L., Simpson, S. J., and Stevenson, P. A. (2015). “Neuromodulation of social behavior in insects,” in The Oxford Handbook of Molecular Psychology, ed. T. Canli (New York, NY: Oxford University Press), 27–51.

Sokolova, N., Liang, A. P., and Bu, C. P. (2012). A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences. PLoS One 7:e48778. doi: 10.1371/journal.pone.0048778

Sokolova, N., Liang, A. P., and Bu, C. P. (2012). A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences. PLoS One 7:e48778. doi: 10.1371/journal.pone.0048778
Stevenson, P. A., and Rillich, J. (2017). Neuromodulators and the control of aggression in crickets. In The Cricket as a Model Organism: Development, Regeneration, and Behavior, eds H. Wilson Horch, T. Mito, A. Popadic, H. Ohuchi and S. Noji (Tokyo: Springer), 169–195.

Stoffolano, J. G., Acrason, A., and Conway, M. (2008). “Bubbling” or droplet regurgitation in both sexes of adult Phormia regina (Diptera: Calliphoridae) fed various concentrations of sugar and protein solutions. Am. Entomol. Soc. Am. 101, 964–970. doi: 10.1603/0013-8746(2008)101(964:bdorrib)2.0.co;2

Stroeymeyt, N., Guerrieri, F. J., van Zweden, J. S., and d’Ettorre, P. (2010). Rapid decision-making with side-specific perceptual discrimination in ants. PLoS One 5:e12377. doi: 10.1371/journal.pone.0012377

Sturgis, S. J., and Gordon, D. M. (2012). Nestmate recognition in ants (Hymenoptera: Formicidae): a review. Myrm. News 16, 101–110.

Thompson, F. J., Donaldson, L., Johnstone, R. A., Field, J., and Cant, M. A. (2014). Dominant aggression as a deterrent signal in paper wasps. Behav. Ecol. 25, 706–715. doi: 10.1093/beheco/aru063

Thompson, G. J., Hurd, P. L., and Crespi, B. J. (2013). Genes underlying altruism. Biol. Lett. 9:20130395. doi: 10.1098/rsbl.2013.0395

Thompson, G. J., Yockey, H., Lim, J., and Oldroyd, B. P. (2007). Experimental manipulation of ovary activation and gene expression in honey bee (Apis mellifera) queens and workers: testing hypotheses of reproductive regulation. J. Exp. Zool. A Ecol. Genet. Physiol. 307, 600–610. doi: 10.1002/jez.415

Thorne, B. L., and Traniello, J. F. A. (1977). Recruitment behavior, orientation, and the organization of foraging in the carpenter ant Camponotus pennsylvanicus degeer (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 2, 61–79. doi: 10.1007/bf0299289

Traniello, J. F. A. (1977). Recruitment behavior, orientation, and the organization of foraging in the carpenter ant Camponotus pennsylvanicus degeer (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 2, 61–79. doi: 10.1007/bf0299289

Trible, W., and Kronauer, D. J. (2017). Caste development and evolution in ants: it’s all about size. J. Exp. Biol. 220, 53–62. doi: 10.1242/jeb.145292

Vander Meer, R. K., Preston, C. A., and Hefetz, A. (2008). Queen regulates biogenic amine level and nestmate recognition in workers of the fire ant, Solenopsis invicta. Naturwissenschaften 95, 1155–1158. doi: 10.1007/s00114-008-0432-6

Wada-Katsumata, A., Yamaoka, R., and Aonuma, H. (2011). Social interactions influence dopamine and octopamine homeostasis in the brain of the ant Formica japonica. J. Exp. Biol. 214, 1707–1713. doi: 10.1242/jeb.051565

Wang, T., Li, H., Wang, P., Song, F., and Cai, W. Z. (2014). Comparative mitogenomics of plant bugs (Hemiptera: Miridae): identifying the AGG codon reassignments between serine and lysine. PLoS One 9:e101375. doi: 10.1371/journal.pone.0101375

Wiegmann, B. M., Trautwein, M. D., Winkler, I. S., Barr, N. B., Kim, J. W., Lambkin, C., et al. (2011). Episodic radiations in the fly tree of life. Proc. Natl. Acad. Sci. U S A 108, 5690–5695. doi: 10.1073/pnas.1012675108

Wilson, E. O. (1971). The Insect Societies. Cambridge, MA: Belknap Press of Harvard University.

Wruk, A., Wiater, M., and Godzinska, E. J. (2010). Effect of past and present behavioural specialization on brain levels of biogenic amines in workers of the red wood ant Formica polyctena. Physiol. Entomol. 36, 54–61. doi: 10.1111/j.1365-3032.2010.00762.x

Yuan, Q., Joiner, W. J., and Sehgal, A. (2006). A sleep-promoting role for the Drosophila serotonin receptor 1A. Curr. Biol. 16, 1051–1062. doi: 10.1016/j.cub.2006.04.032

Yuan, Q., Lin, F., Zheng, X., and Sehgal, A. (2005). Serotonin modulates circadian entrainment in Drosophila. Neuron 47, 115–127. doi: 10.1016/j.neuron.2005.05.027

Zhou, C., Rao, Y., and Rao, Y. (2008). A subset of octopaminergic neurons are important for Drosophila aggression. Nat. Neurosci. 11, 1059–1067. doi: 10.1038/nn.2164

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.