Nilpotent residual of fixed points

Emerson de Melo, Aline de Souza Lima, and Pavel Shumyatsky

Abstract. Let q be a prime and A a finite q-group of exponent q acting by automorphisms on a finite q'-group G. Assume that A has order at least q^3. We show that if $\gamma_\infty(C_G(a))$ has order at most m for any $a \in A^\#$, then the order of $\gamma_\infty(G)$ is bounded solely in terms of m and q. If $\gamma_\infty(C_G(a))$ has rank at most r for any $a \in A^\#$, then the rank of $\gamma_\infty(G)$ is bounded solely in terms of r and q.

1. Introduction

Suppose that a finite group A acts by automorphisms on a finite group G. The action is coprime if the groups A and G have coprime orders. We denote by $C_G(A)$ the set

$$C_G(A) = \{ g \in G \mid g^a = g \text{ for all } a \in A \},$$

the centralizer of A in G (the fixed-point subgroup). In what follows we denote by $A^\#$ the set of nontrivial elements of A. It has been known that centralizers of coprime automorphisms have strong influence on the structure of G.

Ward showed that if A is an elementary abelian q-group of rank at least 3 and if $C_G(a)$ is nilpotent for any $a \in A^\#$, then the group G is nilpotent [20]. Later the third author showed that if, under these hypotheses, $C_G(a)$ is nilpotent of class at most c for any $a \in A^\#$, then the group G is nilpotent with (c, q)-bounded nilpotency class [17].

Throughout the paper we use the expression “(a, b, \ldots)-bounded” to abbreviate “bounded from above in terms of a, b, \ldots only”. In the recent article [3] the above result was extended to the case where A is not necessarily abelian. Namely, it was shown that if A is a finite group

1991 Mathematics Subject Classification. 20D45.

Key words and phrases. p-groups, Automorphisms, Nilpotent residual.

The first author was supported by FEMAT; The third author was supported by FAPDF and CNPq-Brazil.
of prime exponent q and order at least q^3 acting on a finite q'-group G in such a manner that $C_G(a)$ is nilpotent of class at most c for any $a \in A^\#$, then G is nilpotent with class bounded solely in terms of c and q. Many other results illustrating the influence of centralizers of automorphisms on the structure of G can be found in [9].

In the present article we study finite groups G acted on by a (possibly non-abelian) group A of prime exponent q and order at least q^3 such that $C_G(a)$ has “small” nilpotent residual for every $a \in A^\#$. Recall that the nilpotent residual $\gamma_\infty(K)$ of a group K is the last term of the lower central series of K. It can also be defined as the intersection of all normal subgroups of K whose quotients are nilpotent. The order of a finite group K is denoted by $|K|$. The rank of (a finite group) K is the minimal number r, denoted by $r(K)$, such that every subgroup of K can be generated by at most r elements. Guralnick [6] and, independently, Lucchini [15] proved that $r(K) \leq 1 + \max_p \{r(P) \mid P \text{ a Sylow } p\text{-subgroup of } K\}$.

We obtain the following results.

Theorem 1.1. Let q be a prime and A a finite q-group of exponent q acting by automorphisms on a finite q'-group G. Assume that A has order at least q^3 and $|\gamma_\infty(C_G(a))| \leq m$ for any $a \in A^\#$. Then $\gamma_\infty(G)$ has (m, q)-bounded order.

Theorem 1.2. Let q be a prime and A a finite q-group of exponent q acting by automorphisms on a finite q'-group G. Assume that A has order at least q^3 and $r(\gamma_\infty(C_G(a))) \leq r$ for any $a \in A^\#$. Then $r(\gamma_\infty(G))$ is (r, q)-bounded.

Unsurprisingly, these results depend on the classification of finite simple groups and it seems unlikely that one could find a classification-free proof.

2. Preliminaries

If A is a group of automorphisms of a group G, the subgroup generated by elements of the form $g^{-1}g^\alpha$ with $g \in G$ and $\alpha \in A$ is denoted by $[G, A]$. It is well-known that the subgroup $[G, A]$ is an A-invariant normal subgroup in G. Our first lemma is a collection of well-known facts on coprime actions (see for example [4]). Throughout the paper we will use it without explicit references.

Lemma 2.1. Let A be a group of automorphisms of a finite group G such that $(|G|, |A|) = 1$. Then

i) $G = C_G(A)[G, A]$.

ii) $[G, A, A] = [G, A]$.

iii) A leaves invariant some Sylow p-subgroup of G for each prime $p \in \pi(G)$.

iv) $C_{G/N}(A) = C_G(A)N/N$ for any A-invariant normal subgroup N of G.

v) If G is nilpotent and A is a noncyclic abelian group, then $G = \prod_{a \in A^\#} C_G(a)$.

We will require the following well-known fact.

Lemma 2.2. Let N, H_1, \ldots, H_l be subgroups of a group G with N being normal. If $K = \langle H_1, \ldots, H_l \rangle$, then $[N, K] = [N, H_1] \ldots [N, H_l]$.

Throughout the rest of this section we will assume the following hypothesis. As usual, $Z(K)$ stands for the center of a group K.

Let q be a prime and A a group of exponent q and order q^3. Denote by B a subgroup of order q of $Z(A)$. Let A act on a finite q'-group $G = PH$, where P and H are A-invariant subgroups such that P is a normal p-subgroup for a prime p and H is a nilpotent p'-subgroup. It is clear that A has precisely $q + 1$ subgroups of order q^2 containing B.

Lemma 2.3. Let A_1, \ldots, A_{q+1} be the subgroups of order q^2 of A containing B. Then $C_P(B) = \prod C_P(A_i)$ and $C_H(B) = \prod C_H(A_i)$.

Proof. Denote by \overline{A} the quotient-group A/B. Since \overline{A} is not cyclic and both centralizers $C_P(B)$ and $C_H(B)$ are A-invariants, it follows that $C_P(B) = \prod C_{P(B)}(\overline{a})$ and $C_H(B) = \prod C_{H(B)}(\overline{a})$ where $\overline{a} \in \overline{A}^\#$. An alternative way of expressing this is to write that $C_P(B) = \prod C_P(A_i)$ and $C_H(B) = \prod C_H(A_i)$. □

Lemma 2.4. Suppose that P is abelian. Then $[P, C_H(B)]$ is contained in $\prod [C_P(a), C_H(a)]$, where the product is taken over all $a \in A^\#$.

Proof. In view of Lemma 2.3 we have $C_H(B) = \prod C_H(A_i)$ and $P = \prod_{a \in A^\#} C_P(a)$ for each i. By Lemma 2.2 $[P, C_H(B)] = \prod [P, C_H(A_i)]$. Since P is abelian, for each i we have $[P, C_H(A_i)] = \prod [C_P(a), C_H(A_i)]$ where the product is taken over all $a \in A^\#$. In particular, $[P, C_H(A_i)] = \prod [C_P(a), C_H(a)]$. □

Lemma 2.5. If $[C_P(a), C_H(a)] = 1$ for any $a \in A^\#$, then $[P, H] = 1$.

Proof. First we assume that P is abelian. By Lemma 2.4 $[P, C_H(B)] = 1$. Let us prove that $[C_P(B), H] = 1$. Using the notation of Lemma 2.3 we have that $C_P(B) = \prod C_P(A_i)$ and $H = \prod_{a \in A^\#} C_H(a)$ for each i. Since P is abelian, we conclude that $[C_P(B), H] = \prod [C_P(A_i), H]$.

NILPOTENT RESIDUAL OF FIXED POINTS

3
Thus, $[C_P(A_i), H] = 1$ as $[C_P(A_i), C_H(a)] = 1$ for any $a \in A_i^\#$. Hence, $[C_P(B), H] = 1$.

The above shows that $C_P(B) \leq Z(G)$ and $C_H(B)$ centralizes P. If H is abelian, then $C_G(B) \leq Z(G)$. Hence, B acts fixed-point-freely on $G/Z(G)$ and so $G/Z(G)$ is nilpotent by Thompson’s theorem \cite{Thompson}. Consequently, G is nilpotent and so in the case where P and H both are abelian we have $[P, H] = 1$.

Suppose that H is not abelian. By the previous paragraph, $[P, Z(H)] = 1$. Considering the action of $H/Z(H)$ on P and arguing by induction on the nilpotency class of H we deduce that $[P, H] = 1$. Thus, in the case where P is abelian the lemma holds.

Assume that P is not abelian. Consider the action of HA on $P/\Phi(P)$. By the above, $[P, H] \leq \Phi(P)$. We see that $P = C_P(H)[P, H] \leq C_P(H)\Phi(P)$, which implies that $P = C_P(H)$ and $[P, H] = 1$.

Lemma 2.6. Suppose that P is abelian and $P = [P, H]$. Assume that the order of $[C_P(a), C_H(a)]$ is at most m for any $a \in A^\#$. Then $\langle C_P(B)^H \rangle$ has (m, q)-bounded order.

Proof. Recall that by Lemma 2.3 we have $C_P(B) = \prod C_P(A_i)$, where A_1, \ldots, A_{q+1} are the subgroups of order q^2 of A containing B. First, we prove that the order of $C_P(B)$ is (m, q)-bounded. It suffices to bound the order of $C_P(A_i)$ for each i. For each $a \in A_i$ we denote by P_a and H_a the centralizers $C_P(a)$ and $C_H(a)$ respectively. It is clear that P_a is normal in $C_G(a)$. Set $D_a = C_{P_a}(H_a)$ and $D_i = \cap_{a \in A_i} D_a$.

The index of D_a in P_a is m since $[P_a, H_a] = m$ and so the index of D_i in $C_P(A_i)$ is (m, q)-bounded. Now, let $x \in D_i$. Taking into account that $H = \prod_{a \in A_i^\#} H_a$ we deduce that $[x, H] = 1$. Thus, $x = 1$ since $P = [P, H]$. We conclude that D_i is trivial for each i. Therefore $C_P(A_i)$ has (m, q)-bounded order for any i as desired.

Now, let E_a be the centralizer of $[P_a, H_a]$ in H_a. Note that E_a has m-bounded index in H_a since H_a/E_a embeds in the automorphism group of $[P_a, H_a]$. Moreover, $[P_a, E_a] = 1$ because $P_a = C_{P_a}(H_a)[P_a, H_a]$. Set $E_i = \langle E_a \mid a \in A_i \rangle$. Note that E_i has (m, q)-bounded index in H since $H = \prod_{a \in A_i^\#} H_a$. Further, note that $[C_P(A_i), E_i] = 1$. It becomes clear that $E = \cap_i E_i$ has (m, q)-bounded index in H and $[C_P(B), E] = 1$. Therefore, $\langle C_P(B)^H \rangle$ has (m, q)-bounded order.

We use $Z_i(K)$ to denote the ith term of the upper central series of K.

Lemma 2.7. Suppose that the order of $[C_P(a), C_H(a)]$ is at most m for any $a \in A^\#$. Then the order of $[P, H]$ is (m, q)-bounded.
PROOF. We can assume that $P = [P, H]$. Note that if N is a normal subgroup of P such that $[N, H] = 1$, then $N \leq Z(P)$. Indeed, in this case we have $[P, N] \leq N$ and so $[P, [N, H]] = 1$ and $[H, [P, N]] = 1$. Consequently $[N, [P, H]] = 1$ by the three subgroup lemma.

For a normal A-invariant subgroup M of P and $a \in A^\#$, we write $j_a(P/M)$ for the order of $[C_{P/M}(a), C_H(a)]$. We write $j_a(P)$ when M is trivial. Set $k(P) = \sum_{a \in A^\#} j_a(P)$. It is clear that $k(P)$ is (m, q)-bounded. By induction on $k(P)$ we will prove that the nilpotency class of P is at most $t = 2k(P) + 1$. If $k(P) = q^3 - 1$ (the smallest possible value for $k(P)$ - it occurs if and only if $[C_P(a), C_H(a)] = 1$ for any $a \in A^\#$), then P is trivial by Lemma 2.5, since $P = [P, H]$. Further, if P is abelian there is nothing to prove. Suppose that P is not abelian. Then $[Z_2(P), H] \neq 1$ and so, by Lemma 2.5, $[C_{Z_2(P)}(a), C_H(a)] \neq 1$ for some $a \in A^\#$. Therefore $k(P/Z_2(P)) < k(P)$. By induction, $P/Z_2(P)$ has nilpotency class at most $2(k(P) - 1) + 1$ and so the nilpotency class of P is at most $2k(P) + 1$.

Clearly, $|P|$ is bounded in terms of $|P/P'|$ and the nilpotency class of P. Hence, by the previous paragraph in order to prove the lemma it is sufficient to prove that the order of P/P' is (m, q)-bounded. In particular, without loss of generality we may assume that P is abelian.

By Lemma 2.6 the subgroup $\langle C_P(B)^H \rangle$ has (m, q)-bounded order and since P is abelian we conclude that it is normal in G. We can pass to the quotient $G/\langle C_P(B)^H \rangle$ and without loss of generality assume that $C_P(B) = 1$.

By Lemma 2.4 $[P, C_H(B)]$ has (m, q)-bounded order. Hence, it is sufficient to show that $[P, H] = [P, C_H(B)]$. First, suppose that H is abelian. Then $[P, C_P(B)]$ is normal in G and passing to the quotient we can assume that $[P, C_P(B)] = 1$. Thus, $C_G(B) = C_H(B)$ belongs to $Z(G)$ and so $G/Z(G)$ admits a fixed-point-free automorphism of prime order q. By Thompson’s theorem [18], $G/Z(G)$ is nilpotent. Therefore, G is nilpotent and $[P, H] = 1$, as required.

Suppose that H is not abelian. We have proved that $[P, Z(H)] = [P, C_{Z(H)}(B)]$. The subgroup $[P, Z(H)]$ is normal in G. Hence, passing to the quotient $G/[P, Z(H)]$ we can consider the action of $H/[Z(H)]$ on P and arguing by induction on the nilpotency class of H we deduce that $[P, H] = [P, C_P(B)]$. \hfill \Box

Lemma 2.8. Let N be a normal HA-invariant subgroup of P. Assume that $P = [P, H]$ and $[[N, H]] = p^n$. Then $N \leq Z_{2n+1}(P)$.

Proof. If $[N, H] = 1$, then $[H, [P, N]] = [P, [N, H]] = 1$ and so $N \leq Z(P)$ by the three subgroup lemma. Let $M = N \cap Z_2(P)$ and suppose that N is not in $Z(P)$. Thus, it is clear that $M \not\leq Z(P)$ and
\[[M, H] \neq 1. \] Using induction on \(n \) with \(G \) and \(N \) replaced by \(G/M \) and \(N/M \) respectively we derive that \(N/M \leq Z_{2n-1}(P/M) \), whence \(N \leq Z_{2n+1}(P) \). \hfill \Box

Recall that a \(p \)-group is powerful if \(G' \leq G^p \) (for \(p \) odd) or \(G' \leq G^4 \) (for \(p = 2 \)). The reader can consult [2] for information on such groups.

For odd prime the next lemma can be found for example in [16, Lemma 2.2].

Lemma 2.9. Let \(N \) be a group of rank \(r \) and prime exponent \(p \) if \(p \) is odd or exponent 4 if \(p = 2 \). Then \(|N| \leq p^s \) where \(s \) is an \(r \)-bounded number.

Proof. By Theorem 2.13 of [2] \(G \) has a powerful characteristic subgroup \(N \) of index at most \(p^{\mu(r)} \) where \(\mu(r) \) is a number depending only on \(r \). Corollary 2.8 in [2] shows that \(N \) is a product of at most \(r \) cyclic subgroups. Therefore, \(N \) is of order at most \(p^r \) if \(p \) is odd or 4\(^r \) if \(p = 2 \) and the lemma follows. \hfill \Box

Lemma 2.10. Suppose that \(r([C_P(a), C_H(a)]) \leq r \) for any \(a \in A^\# \). Then \(r([P, H]) \) is \((r, q)\)-bounded.

Proof. Without loss of generality we assume that \(P = [P, H] \). Let \(M \) be any normal \(A \)-invariant subgroup of exponent \(p \) (or exponent 4 if \(p = 2 \)) in \(P \). By Lemma 2.9, the order of \([C_M(a), C_H(a)]\) is \(r \)-bounded for any \(a \in A \). Hence, applying Lemma 2.7 we deduce that \([M, H]\) is of \((r, q)\)-bounded order. In other words, there exists an \((r, q)\)-bounded number \(t \) such that \([M, H] \leq p^t \). Applying this argument to \(P/\Phi(P) \) we conclude that \(P \) can be generated with at most \(t \) elements since the minimal number of generators of \(P \) is equal to the rank of \(P/\Phi(P) \) by the Burnside Basis Theorem.

Let the symbol \(p \) denote \(p \) if \(p \) is odd and 4 if \(p = 2 \). Let \(N = \gamma_{2t+1}(P) \) where \(t \) is as above. We will show that \(N \) is powerful, that is \(\gamma'_i \leq N^p \). Pass to the quotient \(G/N^p \) and assume that \(N \) has exponent \(p \). By the first paragraph \([N, H] \leq p^t \) and so \(N \leq Z_{2t+1}(P) \) by Lemma 2.8. Note that \([\gamma_i(P), Z_i(P)] = 1 \) for any positive integer \(i \). Therefore, \(N \) is abelian modulo \(N^p \). This means that \(N \) is powerful.

We now wish to show that \(N \) can be generated with bounded number of elements. We can pass to the quotient \(P/\Phi(N) \) and assume that \(N \) is elementary abelian. Let \(d \) be the minimal number of generators of \(P \). For each \(n \) the section \(\gamma_n(P)/\gamma_{n+1}(P) \) is generated by \(d^n \) elements (see for example [9, Corollary 2.5.6]). Hence, it suffices to
bound the nilpotency class of P. Recall that we have already proved that under our assumptions $N \leq Z_{2t+1}(P)$. Therefore P is nilpotent of class at most $4t + 2$ and so the minimal number of generators of N is (r, q)-bounded.

Since N is powerful we obtain that $r(N)$ is (r, q)-bounded. The lemma follows since obviously $r(P) \leq r(P/N) + r(N)$. □

We finish this section with a useful result on coprime action. In the next lemma we will use the fact that if D is any coprime group of automorphisms of a finite simple group, then D is cyclic (see for example [12]).

Lemma 2.11. Let D be a non-cyclic q-group of order q^{2} acting on a finite q'-group $N = S_{1} \times \cdots \times S_{l}$ which is a direct product of t nonabelian simple groups. Suppose that $r(\gamma_{\infty}(C_{N}(d))) \leq r$ for any $d \in D^{\#}$. Then t is an (r, q)-bounded number and each direct factor S_{i} has rank at most r.

Proof. First, we prove that each direct factor S_{i} has rank at most r. Indeed, if S_{i} is D-invariant, then S_{i} is contained in $C_{G}(d)$ for some $d \in D^{\#}$ and so $r(S_{i}) \leq r$ by the hypotheses. Suppose that S_{i} is not D-invariant. Choose $d \in D^{\#}$ such that $S_{i}^{d} \neq S_{i}$. Write $S = S_{i} \times S_{i}^{d} \times S_{i}^{d_{i}} \cdots$. We see that $C_{S}(d)$ is exactly the diagonal subgroup of S and so $C_{S}(d)$ is isomorphic to S_{i}. Thus, we conclude that $r(S_{i}) \leq r$.

Now we prove that t is (r, q)-bounded. Write $G = K_{1} \times \cdots \times K_{s}$ where each K_{i} is a minimal normal D-invariant subgroup. Then each K_{i} is a product of at most $|D|$ simple factors and so $t \leq |D|s$. Therefore it is sufficient to bound s.

Let S_{j} be a direct factor of K_{i}. If S_{j} is D-invariant, then S_{j} is contained in $C_{G}(d)$ for some $d \in D^{\#}$. If S_{j} is not D-invariant, then we can choose $d \in D^{\#}$ such that $S_{j}^{d} \neq S_{j}$. Now, it is clear that $C_{S}(d)$ is exactly the diagonal subgroup of $S_{i} \times S_{i}^{d} \times S_{i}^{d_{i}} \cdots$ and so $C_{S}(d)$ is isomorphic to S_{j}. In other words, for every i there exists $d \in D^{\#}$ such that $C_{K_{i}}(d)$ contains a subgroup isomorphic to some S_{j}. Therefore $\gamma_{\infty}(C_{K_{i}}(d))$ has even order. Since $r(\gamma_{\infty}(C_{G}(d))) \leq r$, it follows that $\gamma_{\infty}(C_{K_{i}}(d))$ can have even order for at most r indexes i. Taking into account that there are only $|D| - 1$ nontrivial elements in D, we deduce that $s \leq (|D| - 1)r$. □

3. Main results

We will give a detailed proof only for Theorem 1.2. The proof of Theorem 1.1 is easier and can be obtained by just obvious modifications.
of the proof of Theorem \[1.2\] The following elementary lemma will be useful (for the proof see for example [1, Lemma 2.4]).

Lemma 3.1. Let G be a finite group such that $\gamma_\infty(G) \leq F(G)$. Let P be a Sylow p-subgroup of $\gamma_\infty(G)$ and H be a Hall p'-subgroup of G. Then $P = [P, H]$.

Let $F(G)$ denote the Fitting subgroup of a group G. Write $F_0(G) = 1$ and let $F_{i+1}(G)$ be the inverse image of $F(G/F_i(G))$. If G is soluble, the least number h such that $F_h(G) = G$ is called the Fitting height $h(G)$ of G. Let B be a coprime group of automorphisms of a finite soluble group G. It was proved in [19] that the Fitting height of G is bounded in terms of $h(C_G(B))$ and the number of prime factors of $|B|$ counting multiplicities. The nonsoluble length $\lambda(G)$ of a finite group G is defined as the minimum number of nonsoluble factors in a normal series of G all of whose factors are either soluble or (non-empty) direct products of nonabelian simple groups. It was proved in [11] (see Corollary 1.2) that the nonsoluble length $\lambda(G)$ of a finite group G does not exceed the maximum Fitting height of soluble subgroups of G. If B is a coprime group of automorphisms of a finite group G, then the nonsoluble length $\lambda(G)$ of G is bounded in terms of $\lambda(C_G(B))$ and the number of prime factors of $|B|$ counting multiplicities [10].

Let us now assume the hypothesis of Theorem \[1.2\] Thus, A is a finite group of prime exponent q and order at least q^3 acting on a finite q'-group G in such a manner that $r(\gamma_\infty(C_G(a))) \leq r$ for any $a \in A^\#$. We wish to show that $r(\gamma_\infty(G))$ is (r, q)-bounded. It is clear that A contains a subgroup of order q^3. Thus, replacing if necessary A by such a subgroup we may assume that A has order q^3.

Suppose that G is soluble. In that case $C_G(a)$ has r-bounded Fitting height for any $a \in A^\#$ (see for example Lemma 1.4 of [12]). Hence, G has (r, q)-bounded Fitting height and we can use induction on $h(G)$.

In the case where $h(G) = 2$ the proof is immediate from Lemma 2.10. Indeed, let P be a Sylow p-subgroup of $\gamma_\infty(G)$ and H a Hall A-invariant p'-subgroup of G. Then by Lemmas 2.10 and 3.1 the rank of $P = [P, H]$ is (r, q)-bounded. Therefore the rank of $\gamma_\infty(G)$ is (r, q)-bounded. Suppose that the Fitting height of G is $h > 2$ and let $N = F_2(G)$ be the second term of the Fitting series of G. It is clear that the Fitting height of $G/\gamma_\infty(N)$ is $h - 1$ and $\gamma_\infty(N) \leq \gamma_\infty(G)$. Hence, by induction we have that $\gamma_\infty(G)/\gamma_\infty(N)$ has (r, q)-bounded rank. Now, the result follows since $r(\gamma_\infty(G)) \leq r(\gamma_\infty(G)/\gamma_\infty(N)) + r(\gamma_\infty(N))$.
We now drop the assumption that G is soluble. Remark that $\lambda(C G(a))$ is r-bounded for any $a \in A^\# \text{ by } [11]$ since its soluble subgroups have r-bounded Fitting height. Hence, $\lambda(G)$ is (r, q)-bounded and we can use induction on $\lambda(G)$.

First, assume that $G = G'$ and $\lambda(G) = 1$. Since $G = G'$, it follows that $G/R(G)$ is a product of nonabelian simple groups where $R(G)$ is the soluble radical of G. By the above $\gamma_\infty(R(G))$ has (r, q)-bounded rank. We can factor out $\gamma_\infty(R(G))$ and assume $R(G)$ is nilpotent, that is $R(G) = F(G)$.

We now wish to show that the rank of $[F(G), G]$ is (r, q)-bounded. Clearly, it is sufficient to consider the case when $F(G) = P$ where P is a Sylow p-subgroup of $F(G)$. Note that if s is a prime different from p and H is an A-invariant Sylow s-subgroup of G, then $r(\gamma_\infty(PH))$ is (r, q)-bounded because PH is soluble. We will require the following observation about finite simple groups.

Lemma 3.2. Let K be a nonabelian finite simple group and p a prime. There exists a prime s different from p such that K is generated by two Sylow s-subgroup.

Proof. If $p \neq 2$, then we can use Guralnick’s result [5], Theorem A] that K is generated by an involution and a Sylow 2-subgroup. We therefore can take $s = 2$. If $p = 2$, we can use King’s results [8] that $K = \langle i, a \rangle$, where $|i| = 2$ and $|a|$ is an odd prime. We have $K = \langle a, a^i \rangle$ since this is an a-invariant and i-invariant subgroup, which is therefore normal. Hence, K is generated by two elements of odd prime order and the lemma follows. \qed

By Lemma [2.11] the quotient $G/F(G)$ is a product of a (r, q)-bounded number of normal A-invariant subgroups $K_1 \times \cdots \times K_s$ where K_i is a product of at most $|A|$ nonabelian simple groups. Hence, without loss of generality we can assume that $G/F(G)$ is a product of isomorphic nonabelian simple groups. In view of Lemma 3.2 we deduce that G/P is generated by the image of two Sylow s-subgroup H_1 and H_2 where s is a prime different from p. On the other hand, H_1 and H_2 are conjugate of an A-invariant Sylow s-subgroup of G. It follows that both $[P, H_1]$ and $[P, H_2]$ have (r, q)-bounded rank.

Let $H = \langle H_1, H_2 \rangle$. Thus $G = PH$. Since $G = G'$, it is clear that $G = [P, H]H$ and $[P, G] = [P, H]$. By Lemma [2.2] we have $[P, H] = [P, H_1][P, H_2]$ and therefore the rank of $[P, H]$ is (r, q)-bounded. Passing to the quotient $G/[P, G]$ we can assume that $P = Z(G)$. So we are in the situation where $G/Z(G)$ has (r, q)-bounded rank. By a theorem
of Lubotzky and Mann [14] (see also [13]) the rank of G' is (r, q)-bounded as well. Taking into account that $G = G'$ we conclude that the rank of G is (r, q)-bounded.

Let us now deal with the case where $G \neq G'$. Let $G^{(l)}$ be the last term of the derived series of G. The argument in the previous paragraph shows that $r(G^{(l)})$ is (r, q)-bounded. Consequently, $r(\gamma_\infty(G))$ is (r, q)-bounded since $G/G^{(l)}$ is soluble and $\gamma_\infty(G^{(l)}) \leq \gamma_\infty(G)$. This proves the theorem in the particular case where $\lambda(G) \leq 1$.

Assume that $\lambda(G) \geq 2$. Let T be a characteristic subgroup of G such that $\lambda(T) = \lambda(G) - 1$ and $\lambda(G/T) = 1$. By induction, the rank of $\gamma_\infty(T)$ is (r, q)-bounded. It is clear that $\lambda(G/\gamma_\infty(T)) = 1$. Therefore, the result follows since $r(\gamma_\infty(G)) \leq r(G/\gamma_\infty(T)) + r(\gamma_\infty(T))$.

References

[1] C. Acciarri, P. Shumyatsky, A. Thillaisundaram, Conciseness of coprime commutators in finite groups, Bull. Aust. Math. 89 (2014), 252-258.
[2] J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal, Analytic p-adic groups. Cambridge 1991.
[3] E. de Melo, P. Shumyatsky, Finite groups and their coprime automorphisms. Proc. Amer. Math. Society 145 (2017), 3755-3760.
[4] D. Gorenstein, Finite Groups, New York, Evanston, London : Harper and Row, (1968).
[5] R. Guralnick, Generation of Simple Groups, J. Algebra 103 (1986), 381-401.
[6] R. Guralnick, On the number of generators of a finite group, Archiv der Mathematik 53 (1989), 521-523.
[7] R. Guralnick, P. Shumyatsky, Derived Subgroups of Fixed Points, Israel J. Math. 126 (2001), 345-362.
[8] C. S. H. King, Generation of finite simple groups by an involution and an element of prime order, J. Algebra 478 (2017), 153-173.
[9] E. I. Khukhro, Nilpotent Groups and their Automorphisms, Berlin; New York: de Gruyter, (1993).
[10] E. I. Khukhro, P. Shumyatsky, On the length of finite groups and of fixed points, Proc. Amer. Math. Soc. 143 (2015), 3781-3790.
[11] E. I. Khukhro, P. Shumyatsky, Nonsoluble and non-p-soluble length of finite groups, Israel J. Math 207 (2015), 507-525.
[12] E. I. Khukhro, P. Shumyatsky, Finite groups with Engel sinks of bounded rank, To appear.
[13] L. A. Kurdachenko, P. Shumyatsky, The ranks of central factor and commutator groups, Math. Proc of Cambridge Phi. Soc 154 (2013), 63-69.
[14] A. Lubotzky, A. Mann, Powerful p-groups. I. Finite groups, J. Algebra 105 (1987), 484-505.
[15] A. Lucchini, A bound on the number of generators of a finite group, Archiv der Mathematik 53 (1989), 313-317.
[16] P. Shumyatsky, Involutory automorphisms of finite groups and their centralizers, Arch. Math. 71 (1998), 425-432.
[17] P. Shumyatsky, (2001). *Finite groups and the fixed points of coprime automorphisms*, Proc. Amer. Math. Soc. **129** (2001), 3479-3484.

[18] J. G. Thompson, *Finite Groups With Fixed-point-free Automorphisms of Prime Order*, Proc. Nat. Acad. Sci. U.S.A., **45** (1959), 578 – 581.

[19] A. Turull, *Fitting height of groups and of fixed points*, J. Algebra, **86** (1984), 555-566.

[20] J. N. Ward. *On finite groups admitting automorphisms with nilpotent fixed-point*, Bull. Aust. Math. **5** (1971) 281-282.

Department of Mathematics, University of Brasília, Brasília-DF 70910-900, Brazil

E-mail address: emerson@mat.unb.br

Department of Mathematics and Statistics, Federal University of Goiás, Goiânia-GO, 74001-970, Brazil

E-mail address: alinelima@ufg.br

Department of Mathematics, University of Brasília, Brasília-DF, 70910-900, Brazil

E-mail address: pavel@unb.br