Effect of feeding strategy on survival, growth, intestine development, and liver status of maraena whitefish *Coregonus maraena* larvae

Vlastimil Stejskal\(^1\) | Tatyana Gebauer\(^1\) | Roman Sebesta\(^1\) | Joanna Nowosad\(^2\) | Mateusz Sikora\(^2\) | Mateusz Biegaj\(^2\) | Dariusz Kucharczyk\(^2\)

\(^1\)Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice, Czech Republic

\(^2\)Faculty of Animal Bioengineering, Department of Ichthyology and Aquaculture, University of Warmia and Mazury, Olsztyn, Poland

Abstract
Optimizing larval rearing protocols is critical to successful intensive fish culture. We compared the efficacy of feeding strategies for larvae of maraena whitefish *Coregonus maraena*, a promising candidate for intensive aquaculture. Survival, growth indicators, intestine development, and liver status were compared in larvae fed live feed, commercial dried feed, and weaned from live to dried feed at 5, 10, 15, 20, or 25 days post hatching (dph). Seven experimental groups in three repetitions used 5,250 larvae (2 dph, initial body weight = 7.4 ± 0.1 mg; initial total length = 13.0 ± 0.1 mm). This 30-day trial showed initial weaning from live feed (*Artemia* sp.) to artificial diet after 15 days to be the optimal, with beneficial effects on growth, body weight, and larva yield. No differences in survival rate, size heterogeneity, and condition factor were observed among groups. Live feed and weaning to artificial diet at the appropriate time was beneficial to intestine development, while feeding on artificial feed only was associated with severe intestine impairment. Liver pathology was not seen in any group.

KEYWORDS
artificial diet, coregonid, larviculture, live feed, weaning
INTRODUCTION

The maräna whitefish Coregonus maräna (Bloch 1779) is a commercially and ecologically valuable species showing promise for inland freshwater aquaculture in eastern, central (Mukhachev & Gunin, 1999), and northern Europe, particularly Finland (Jobling et al., 2010), Germany (Bochert, Horn, & Luft, 2017), and Norway (Sikavuopio, Knudsen, Amundsen, Saether, & James, 2011). Several decades ago, predation by the great cormorant Phalacrocorax carbo (L.) led to dramatic decline in maräna whitefish populations in Europe (Suter, 1997). Depletion has been exacerbated by overfishing (Jackson et al., 2001), hybridization (Luczyński, Falkowski, Vuorinen, & Jankun, 1992), habitat eutrophication (Thomas & Eckmann, 2007), degradation of natural spawning sites (Winfield, Fletecher, & James, 2004), pollution, and environmental changes (Walther et al., 2002). At present, re-establishment of natural whitefish populations must be supported by culture in intensive recirculating aquaculture systems (RASs) (Matousek et al., 2017; Matousek, Stejskal, Prokesova, & Kouril, 2017). The RAS is an important model for aquaculture worldwide, given its cost-effectiveness and low environmental impact, along with allowing control of water quality and manipulation of characteristics of the final product (d'Orbcastel, Person-Le Ruyet, Le Bayon, & Blancheton, 2009). Successful whitefish production in RAS requires identification of optimal larviculture conditions and protocols, including water physicochemical parameters, stocking density, nutrition, and feeding regime (Lahnsteiner & Kletzl, 2015).

Feeding strategies can influence a range of physiological and production parameters (Geng et al., 2019; Lall, Lewis-McCrea, & Tibbetts, 2018; Orihuela et al., 2018). Farmed fish may display considerable species-specificity in feeding patterns. It is standard practice to start fish larvae on live feed (LF) before weaning to a commercial formulated diet. Brine shrimp Artemia salina (L.) nauplii comprise approximately 40% of the LF used in aquaculture and are particularly suitable for hatchery operations, as they can be stored for long periods and are readily available when needed (Lavens & Sorgeloos, 2000). Feeding on LF is essential to many fish species, including coregonids such as lake whitefish Coregonus clupeaformis (Mitchill, 1818) (Harris, 1992). Alternatively, commercial dry feed can be used for the first exogenous feeding of coregonids (Enz, Schäffer, & Müller, 2001; Leithner & Wanzenbock, 2015), usually with nutritional supplementation. For maräna whitefish, this is generally propionic acid (Lahnsteiner & Kletzl, 2015). Larval feeding on nematodes (Hundt et al., 2015), rotifers, or a combination of rotifers and Artemia (Bochert et al., 2017) has also been tested in this species.

Research into effects of diet and feeding approaches on coregonids is critical to their productive culture. The goal of the present study was to identify feeding strategies optimal for survival, growth, intestine development, and liver status of maräna whitefish larvae to support intensive culture for commercial exploitation and conservation efforts.

MATERIALS AND METHODS

2.1 Eggs and larvae

Maräna whitefish broodstock were obtained from lagoons in Szczecin in the River Odra, north-western Poland. Gametes of 35 female and 35 male naturally spawning (no hormone stimulation) fish were stripped manually by commercial fishermen in December 2016 shortly after capture and transported to local hatcheries for fertilization and incubation. Eggs (100 mg) were fertilized with 0.5 mL milt mixed with 50 mL hatchery water and incubated at the ambient water temperature of the river (2–3 °C) with initial water inflow 3 L/min, oxygen saturation to 90%, and pH near 7.0. In February 2017, the eggs were taken to the Department of Lake and River Fisheries (Olsztyn, Poland).
where they were distributed among five 8-L Zug jars (Sebesta, Kucharczyk, Nowosad, Sikora, & Stejskal, 2018; Sebesta, Stejskal, Matoušek, & Lundova, K., 2018) \((n = \sim 150,000\) eggs/jar) in a recirculating system and incubated at 3.0–3.5°C with water inflow 3 L/min, oxygen saturation to 90%, and pH near 7.0. In total, \(\sim 750,000\) eggs were incubated. After 60 days, eggs were transferred to a second set of 8-L Zug jars and incubated at 8–9°C to accelerate development and hatching. After 5 days, temperature was increased to 10°C for mass hatching. Hatching success was estimated at 90%, and \(\sim 675,000\) larvae were available for the experiment. Hatched larvae swam into a 1 m³ tank underlain with 0.2 mm mesh. Larvae at 2 days post hatching (dph) were transferred to tanks in the RAS.

2.2 Experimental system and rearing conditions

Seven groups of larvae in three repetitions were transferred to the experimental system consisting of 21 two-L tanks, \(96 \times 154 \times 200\) mm. Two-hundred-fifty larvae (initial body weight, \(7.4 \pm 0.1\) mg, mean ± standard error of mean (SEM); initial total length, \(13.0 \pm 0.1\) mm) were placed in each tank. A total of \(5,250\) larvae were used in the experiment lasting 30 days.

Oxygen level, water temperature, and pH were checked daily at 8.00 and 16.00. The pH range was monitored using an OXYGUARD H04PP Handy pH meter (OXYGUARD International, Denmark). The initial temperature without supplemental heat was 10°C. Temperature was elevated to 15°C by 24 hr (0.2°C/hr), 19°C at 48 hr (0.2°C/hr), and maintained at \(~19\)°C by an HC-1000A cooler (HAILEA, China). Oxygenation was maintained using two Syncra 5.0 pumps (5,000 L/hr) (SICCE, Italy). Temperature and oxygenation were monitored using probes connected to a central electronic software program, Pacific Insatech A/S (OXYGUARD, Denmark). Ammonia, nitrate, and nitrite concentrations were checked twice weekly using LCK 304, LCK 339, and LCK 341 kits (HACH, Germany) with a DR5000 spectrophotometer (HACH, Germany). Sodium chloride was added at 1 g/L weekly to maintain a 16:1 chloride: nitrogen ratio to prevent nitrite toxicity. A constant inflow of 0.4 L/min was ensured. Dead larvae were removed and counted during daily cleaning. Over the course of the 30 day trial, basic physico-chemical parameters were temperature \(= 19.1 \pm 0.0\)°C, pH \(= 8.7 \pm 0.0\), O₂ saturation \(= 85.8 \pm 0.9\)%, O₂ concentration \(= 7.9 \pm 0.1\) mg/L, NH₄⁺ \(= 0.1 \pm 0.0\) mg/L, NO₂⁻ \(= 0.8 \pm 0.1\) mg/L, and NO₃⁻ \(= 21.2 \pm 5.4\) mg/L.

2.3 Feeding

Larvae were fed manually during the light phase (12 hr:12 light:dark) beginning at 2 dph. The artificial feed (AF) group were fed PERLA LARVA PROACTIVE 4.0 (particle size 0.1 and 0.2 mm) (SKRETTING, Nutreco, Netherlands) to excess. The LF group were fed fresh Artemia metanauplii (Ocean HE >230,000, NPG Nutrition, Belgium) (20–24 h, 0.4–0.5 mm) at 10 mL homogenous suspension/tank at approximately 3-hr intervals (08.30, 11.00, 14.00, and 16.30). AF was provided manually every 10 min during 4-hr-long feeding periods (08.30–09.30, 11.00–12.00, 14.00–15.00, and 16.30–17.30). This feeding practise was based on the character of the diet, as Artemia metanauplii, with its swimming ability, color, and enzyme secretions acting as visual and chemical stimuli, extend feeding activity. As AF has limited attraction, it is advised to present it more frequently. Feeding level was fixed at 500–700 Artemia sp. metanauplii/fish/day. The daily ration was based on a previous experiment (unpublished data) and was in slight excess, as some uneaten metanauplii were observed in tanks at the end of the day. The feeding level was adapted according to fish body weight and loss of larvae during the experiment. The nutritional composition of the commercial diet and Artemia is provided in Table 1.
FW5—first weaning from LF to artificial diet after 5 days;
FW10—first weaning from LF to artificial diet after 10 days;
FW15—first weaning from LF to artificial diet after 15 days;
FW20—first weaning from LF to artificial diet after 20 days;
FW25—first weaning from LF to artificial diet after 25 days.

2.4 | Sampling and measuring

Ten larvae from each tank (30 from each experimental group) were randomly taken for measurements of total length (TL, ± 0.01 mm) and body weight (W, ± 0.1 mg) on days 0, 5, 10, 15, 20, 25, and 30 of rearing, as described by Łaczyńska et al. (2016) and Nowosad et al. (2013). Larvae were anesthetized (Propiscin—0.4 mL/L; IRS, Poland), weighed on a digital microbalance (ABJ 220-4 M KERN, Germany) and measured manually from images taken with a Leica MZ16 A stereomicroscope and a digital camera with 5 Mp resolution for Leica DFW420 image analysis. The anesthetized larvae were lain singly on a rectangular net of known weight which was placed on paper to absorb water. The dried fish and net were placed on a balance with accuracy to 0.1 mg, weighed, and the weight of net was subtracted to obtain the weight of the fish. Fish sampled for measurements and histological analysis were humanely killed using anesthetic overdose. To avoid underestimation of final survival rate, these fish were not included in the calculation of final cumulative survival.

Skretting	Particle size	Mm	0.1–0.2
	Crude proteins	g/kg	620
	Crude lipids	g/kg	110
	Crude ash	g/kg	90
	Crude cellulose	g/kg	11
	Vit A	IU/kg	672
	Vit D3	IU/kg	671
	Na	g/kg	8
	Ca	g/kg	22
	P	g/kg	17
	MnSO₄ × H₂O	mg/kg	69.3
	FeSO₄ × H₂O	mg/kg	182.4
	ZnSO₄ × H₂O	mg/kg	369.8
	CuSO₄ × 5H₂O	mg/kg	29.5
	KI	mg/kg	3.9

Artemia	Artemia size	NPG	HE >230,000
	Crude proteins	g/kg	540
	Crude lipids	g/kg	110
	Crude ash	g/kg	50
	Moisture	g/kg	80
Experimentation was carried out in accordance the European Communities Council Directive of November 24, 1986 (86/609/EEC).

The survival rate (SR), size heterogeneity (SH), larval yield (LY), and condition factor (K) were assessed as follows:

\[
\text{SR} (\%) = 100 \times \left(\frac{N_f}{N_i} \right)
\]

in which \(N_i\) and \(N_f\) = initial and final number of larvae, respectively.

\[
\text{LY} (g/\text{group}) = \left(\frac{N_i}{100} \times \text{SR} \right) \times W
\]

with SR and \(W\) = % surviving and mean \(W\) (g) in larva groups, respectively.

\[
\text{SH} (\%) = 100 \times \left(\frac{\text{SD}}{W} \right)
\]

in which \(SH\) = size heterogeneity; SD = mean standard deviation of body weight of 10 randomly selected larvae/tank; \(W\) = mean body weight (mg) of 10 larvae/tank.

\[
K = 100,000 \times \frac{W}{(TL^3)}
\]

in which \(W\) = mean body weight (g) of 10 larvae/tank; \(TL\) = mean total length (mm) of 10 larvae/tank.

2.5 Histology

Five larvae from each group were sampled for histology on days 0, 5, 10, 15, 20, 25, and 30. Whole larvae were fixed in Bouin's fluid for 24–48 hr depending on size. The fixed samples were washed in an ethanol series (75, 80, 90, 95%), acetone, xylene, and liquid paraffin at 54°C. The obtained material was embedded in paraffin blocks, cut into 6 μm sections on a rotating microtome (Leica RM 2155), and sections were placed onto protein-coated slides. The slides were stained with Mayer's hematoxylin and eosin (Baginski, 1965). Subsequently, the stained preparations were sealed in Histokitt mounting medium (Glaswarenfabrik Karl Hecht GmbH & Co KG, Germany). After drying, the preparations were examined microscopically (Axio Scope A1, Zeiss, Germany) with AxioVs40 v. 4.8. 2.0 software (Carl Zeiss MicroImaging GmbH, Germany).
Five larvae from each group were photographed, and intestine diameter (ID), villi length (VL), villi thickness (VT), hepatocyte nucleus diameter, and hepatocyte diameter (HD) were measured. The measurements were compared among groups on days 5, 10, 15, and 20. At the completion of trial, the presence of intestine and liver pathology was assessed and compared using criteria of McFadzen, Coombs, and Halliday (1997) to categorize liver condition. Each specimen was assigned a grade (1–3), with a healthy specimen scoring 1 to degraded liver scoring 3 (Table 2). Intestinal degradation was evaluated, and each fish was assigned a grade (−, +, ++, +++), from healthy to severe degradation (Table 3).

2.6 | Statistical analysis

The data are presented as mean ± SEM. Statistical analyses were conducted using STATISTICA 12.0 (StatSoft, Praha, Czech Republic). The effects of feeding strategy on W, TL, SR, LY, SH, K, ID, VL, VT, ND, HD, and IIS were analyzed by one-way ANOVA with feeding as fixed variable. The level of significance used for all tests was \(\alpha = .05 \) (Zar, 1999). Prior to ANOVA, survival percentages were arcsin-transformed. All data were tested for homogeneity of variance using the Cochran, Hartley, and Bartlett test, and for normality with the Shapiro–Wilk normality test. Tukey’s test was used for identifying significant differences among groups. All applicable international, national, and institutional guidelines for the care and use of animals were followed by the authors.

3 | RESULTS

3.1 | Growth performance, survival, size heterogeneity, condition factor, yield

At the conclusion of the trial, the highest values of W (171.4 ± 8.9 mg), TL (32.2 ± 0.3 mm), LY (23.1 ± 1.24 g/tank), SH (28.4 ± 2.0%), and K (0.51 ± 0.01) were observed in the FW15 group (Figure 2, Table 4). The W (\(p = .00083 \)), TL (\(p = .00052 \)), and LY (\(p = .00075 \)) differed significantly among some groups, while no significant differences were observed in SH (\(p = .317 \)), K (\(p < .146 \)), and SR (\(p < .658 \)) (Table 4). Significantly greater W (\(p < .05 \)) was observed in FW15 compared to LF, AF, FW5, and FW10 and in FW20 compared to the AF and FW5 groups. Similarly, significantly greater TL (\(p < .01 \)) was observed in FW15 and FW20 in comparison with the LF, AF, FW5, and FW10 groups. The LF group showed the greatest growth/body weight at the first 20 days of rearing, and AF showed poorest

Tissue	Grade 1. Healthy	Grade 2. Intermediate	Grade 3. Degraded
Liver nuclei	Nuclei lightly granular, small and indistinct	Nuclei with abundant dark granules; nucleoli	Nuclei small dark and pyknotic
Liver hepatocyte cytoplasm	Structured: Varied texture, scattered granules with eosin positive patches	Homogenous, granular, slight variability in staining property	Hyaline, lacking texture, dark small and often separated from the cell boundary
Intestine mucosa	Enterocytes intact, villi with deep, longitudinal folds, cytoplasm homogenous, no vacuolation, microvilli intact	Separation of enterocytes in basal region, coarse dark cytoplasm, frequent areas of microvilli degeneration	Enterocytes small dark and separated, extensive intercellular cells may be present, microvilli often indistinct

Note: Adapted from McFadzen et al. (1997).
Table 3: Classification of degradation and histomorphometry of intestine of maraena whitefish Coregonus maraena larvae at the end of a 30-day trial

Lesion	Groups	LF	AF	FW5	FW10	FW15	FW20	FW25
Hyperplasia of mucosa	+	+	++	++	++	++	+	+
Villus oedema	–	+++	++	+	+	+	+	–
Exfoliation of intestine epithelium	+	++	++	+	+	+	+	–
Intestine diameter (μm)	629.3 ± 18.30	690.1 ± 23.24	717.6 ± 32.42	744.9 ± 58.31	686.7 ± 82.21	646.7 ± 11.92	672.0 ± 22.46	
Length of villi (μm)	148.4 ± 1.83^a	133.9 ± 4.10^b	151.4 ± 5.21^b	136.2 ± 5.53^a	163.5 ± 9.48^a	152.9 ± 9.71^b	176.6 ± 9.03^b	
Width of villi (μm)	54.5 ± 2.42	52.4 ± 3.01	58.2 ± 1.79	56.5 ± 3.04	54.5 ± 1.12	51.1 ± 3.39	53.1 ± 0.74	
Intestine injury score	0.18 ± 0.05^a	2.03 ± 0.41^b	0.49 ± 0.05^a	0.22 ± 0.05^a	0.18 ± 0.04^a	0.17 ± 0.03^a	0.06 ± 0.02^a	

Note: Histomorphometry parameters indicate mean ± SEM (n = 3). Different letters indicate significant differences (p < .05). Degradation score: hyperplasia of mucosa, villus oedema, and exfoliation of intestine epithelium ranges from - (none) to +++ (severe). Intestine injury score was calculated using information presented in Table 2. First weaning (FW) from live diet to a commercial diet at 5 days (FW5), 10 days (FW10), 15 days (FW15), 20 days (FW20), and 25 days (FW25).

Abbreviations: -, none; +, mild; ++, moderate; ++++, severe.
results over the course of the trial. The W and TL increments in 5-day periods are shown in Figure 2. Significantly higher LY ($p < .01$) was obtained in FW15 compared to LF, AF, FW5, and FW10, and in FW20 compared to AF.

3.2 Histology

Significantly lower ID was observed in AF compared to LF ($p = .0026$) and FW5 ($p = .0063$) on Day 10, as well as in AF compared to LF ($p = .022$), FW5 ($p = .0065$), and FW10 ($p = .0012$) on Day 15. Significantly longer villi were observed in LF compared to AF ($p = .00018$), FW5 ($p = .0030$), and FW10 ($p = .0035$) and in FW5 ($p = .0013$) and FW10 ($p = .00025$) compared to AF on Day 15. Significantly greater villi width was observed in LF compared to AF ($p = .019$) and FW15 ($p = .019$) on Day 20 (Figure 3). At the conclusion of the 30-day trial, the LF, FW5, FW10, and FW15 groups exhibited no serious intestine degradation. The AF group was the only treatment to receive a (+++) grade on any aspect of intestinal degradation scoring (Table 3 and Figure 4).

Significantly greater hepatocyte nucleus diameter was observed in AF compared to FW5 ($p = .040$) on Day 10 and in LF compared to FW10 ($p = .0066$) on Day 20. Significantly greater HD was observed in LF compared to AF on Day 5 ($p = .0018$), and in AF compared to LF ($p = .00022$), FW5 ($p = .00019$), FW10 ($p = .0085$), and FW15 ($p = .0091$) on Day 20 (Figure 3). Over the 30-day trial, liver of fish from all groups was normal (Grade 1).

4 DISCUSSION

The present study reported a feeding strategy in which LF (Artemia) was applied for 15 days with subsequent abrupt weaning to dry feed as favorable to maximize growth and survival rate in Coregonus maraena larvae. Larva survival
TABLE 4 Effects of feeding strategy on growth and survival of maraena whitefish *Coregonus maraena* larvae in a 30-day growth trial

Group	LF	AF	FW5	FW10	FW15	FW20	FW25	SS	df	F	MS	p
SH (%)	22.5 ± 1.0	22.7 ± 3.1	23.9 ± 2.5	18.4 ± 1.5	28.4 ± 2.0	23.0 ± 1.2	25.7 ± 5.0	168	6	28	1	.32
K	0.49 ± 0.01	0.47 ± 0.02	0.49 ± 0.01	0.51 ± 0.01	0.48 ± 0.01	0.50 ± 0.01	0	6	0	2	.13	
SR (%)	90.5 ± 0.3	85.8 ± 1.1	90.0 ± 2.1	90.2 ± 0.4	90.8 ± 2.0	89.7 ± 1.0	88.2 ± 2.9	42	6	7	0	.66
LY	17.3 ± 0.73ab	15.2 ± 0.62a	16.9 ± 1.19ab	17.2 ± 0.85ab	23.1 ± 1.24c	20.7 ± 0.32abc	18.7 ± 1.27abc	127	6	21	7	0

Note: Data are means ± SEM. Identical letters indicate no significant differences (p > .05) among groups. First weaning (FW) from live diet to a commercial diet at 5 days (FW5), 10 days (FW10), 15 days (FW15), 20 days (FW20), and 25 days (FW25).

Abbreviations: df, degrees of freedom; F, distribution fitting; factor parameter: FS, feeding strategy; K, condition factor; LY, larva yield, MS, mean square; SH, final size heterogeneity; SR, survival rate; SS, sum of square.
and growth are affected by starter feed, which must satisfy nutritional needs immediately after depletion of the yolk sac (Puvanendran & Brown, 1999), and feed composition and feeding strategy are of critical importance (Lee, 2003). The timing of weaning is considered to be the most important factor in successful larva feeding in peled Coregonus peled (Gmelin) (Stejskal et al., 2017), pikeperch Sander lucioperca (L.) (Hamza, Mhetli, & Kestemont, 2007), totoaba Totoaba macdonaldi (Gilbert) (Mata-Sotres, Lazo, & Baron-Sevilla, 2015), burbot Lota lota (L.) (Palićnska-Zarska et al., 2014), golden pompano Trachinotus ovatus (L.) (Ma et al., 2015), fine flounder, Paralichthys adspersus (Orihuela et al., 2018), Japanese flounder, Paralichthys olivaceus (Geng et al., 2019), and butter catfish Ompok bimaculatus (Bloch) (Pradhan, Jena, Mitra, Sood, & Gisbert, 2014). The majority of these reports also described a positive effect of LF for initial feeding, and exclusive use of starter diets in early stages of rearing is often suggested to have negative effects on later development (Bochert et al., 2017). This is supported by Leithner and Wanzenbock (2015) who observed dramatically reduced survival rate at 30–40 dph when feeding dried feed only in different strains of Coregonus lavaretus. Results were compromised by unidentified disease in some groups near the end of their experiment. A similar dramatic increase in mortality from 30 to 40 days of rearing was observed by Esmaeilzadeh-Leithner and Wanzenböck (2018). Importance of using LF during early phases of larval rearing is also highlighted by Bochert et al. (2017).

We found no significant differences in SR, SH, and K among the feeding regimes. The SR of larvae fed the commercial diet was lower than in the other groups, but did not reach significance. This was also observed by Mahmoudzadeh, Ahmadi, and Shamsaei (2009), who reported that larvae fed dry feed showed comparable SR to those fed a live and artificial diet at the first 4 weeks. Bochert and Luft (2019) found superior survival in C. maraena larvae fed exclusively with dry feed compared to those receiving Artemia and a mixture of live and dry feed from the initiation of exogenous feeding, irrespective culture temperature (6–20°C). A similar feeding technique with Artemia only for the first phase of rearing, followed by a cofeeding 50% Artemia and 50% dry feed and a final transition to dry feed only, is used in Atlantic whitefish Coregonus huntsmanui as described in a rearing handbook (Whitelaw et al., 2015).

The survival rate of the most successful group in the present study (FW15) was higher than other reported results (Beltran & Champigneulle, 1992; Bochert & Luft, 2019; Leithner & Wanzenbock, 2015) for a comparable length trial. Ostaśewska et al. (2018) reported considerably lower survival at the end of a 35-day experiment (82.9%) for a feeding strategy similar to FW15 in the present study. Our higher survival rate (91.8%) could imply an effect of the commercial feed used. Survival rate in the present study was also considerably higher than reported for C. peled (Stejskal et al., 2017, Matousek et al., 2020), as a related species.

At the end of our trial, significantly higher larva TL, W, and LY (p < .05) were observed in FW15 and FW20 compared to other treatments. The LF group showed highest length and body weight values during the first 20 days of the trial, and AF produced inferior results throughout the trial. Our results are similar to those of Bochert
et al. (2017) at 30 days, who reported enhanced growth in maraena whitefish larvae fed live *Artemia* nauplii at first feeding. Fish fed *Artemia* 6–16 dph and AF 17–42 dph displayed the highest TL and W from Day 7 to Day 42. With respect to growth, our results are superior to those obtained by Bochert et al. (2017). Growth of fish reared at low water temperatures (Leithner & Wanzenbock, 2015) has been reported lower compared to findings of the present study. Hundt et al. (2015) confirmed the highest growth at 17 dph in European whitefish larvae fed *Artemia* compared to a dry diet or live nematodes. Stejskal et al. (2017) observed the lowest W with AF in all weekly increments from 7–35 dph, with LF producing the highest W values, except at 28 and 35 dph. Fish weaned at 20 and 25 dph tended to have lower final body weight compared to those weaned at 15 days. A similar phenomenon was observed by Ostaszewska et al. (2018).

A study of the characid black tetra *Gymnocorymbus ternetzi* reported successful larva weaning prior to gastric differentiation, which results in reduced dependence on *Artemia* during early stages of rearing (Lipscomb, Yanong, Ramee, & DiMaggio, 2020). Interaction of intestine and liver function is assumed to be a key factor for growth and welfare of farmed fish. Histological examination revealed the most severe intestine degradation (Grade 3; IIS = 2.03) in the AF group, corresponding to the lowest ID, VL, and VT (Table 3). The AF group also produced the lowest growth, survival, and larval yield (Table 4).

The ID, as well as VL and VT, displayed a trend to higher values with LF and later weaning time, in conjunction with higher growth and survival in these groups. This may be attributed to the digestive enzymes obtained from LF. However, it remains to be clarified whether the digestibility of dry diets is comparable to that of live diets.

It has been reported that production of specific pancreatic digestive enzymes occurs at different times after the onset of first feeding and that their activity increases rapidly. Appearance of gastric enzymes is linked to development of the stomach toward the end of the larval period and, hence, occurs later as reported for pigfish *Orthopristis chrysoptera* (Thompson, Faulk, & Fuiman, 2019).

In our investigation, no group presented evidence of liver pathology (Table 2), and all showed a level of fat deposit within the normal range. Ostaszewska et al. (2018) also did not find significant pathologies using similar feeding techniques, but a different diet (OtohimB1, Red Mariculture, USA), Escaffre and Bergot (1986), in a study of rainbow trout *Oncorhynchus mykiss* (Walbaum), reported that the diameter of hepatocyte nuclei reflects the nutritional status of the fish. Segner, Rösch, Schmidt, and Jürgen von Pocppinghausen (1988) stated that European whitefish *Coregonus lararetus* (L.) larvae fed on zooplankton exhibited the largest nuclei, with those of larvae reared on dry diets being significantly smaller. This was confirmed by Ostaszewska et al. (2018). In our study, the hepatocyte nucleus diameter was similar among tested groups, and no significant differences ($p > .05$) were found in larvae fed LF compared to AF. LF may stimulate liver metabolic activity, in particular protein metabolism, which enhances growth of maraena whitefish larvae.

FIGURE 4 Intestine of maraena whitefish *Coregonus maraena* (Bloch 1779) larvae after 30-day feeding trial. (a) LF (live feed), (b) AF (artificial feed), (c) FW5 (first weaning from live feed to a commercial dry diet at Day 5). (a) healthy (intestine injury score = 0.18), (b) moderate damage (intestine injury score = 2.03), and (c) slight damaged (intestine injury score = 0.49)
We used a feeding regime in which we manually provided dry food at 28 feedings per day during the first 30 days of rearing. This is labor intensive and may be excessive. Further research should be aimed at establishing optimal feeding frequency during European whitefish larval stage, as such frequent offering of dry feed may bring unsustainable labor costs.

Present study investigated a single artificial diet in combination with Artemia. However, it was demonstrated that different formulations of artificial diets can provide significantly different results during larval rearing as demonstrated for Gulf killifish Fundulus grandis (Patterson et al., 2016). Therefore, next research should be focused on comparison of performance available commercial diets in early rearing protocols for C. maraena.

5 | CONCLUSIONS

The reduction or elimination of Artemia from the early feeding protocol for maraena whitefish would be economically advantageous. However, this 30-day investigation shows initial weaning from LF to an artificial diet after 15 days to be the optimal strategy for beneficial effects on growth, body weight, and yield. Efficacy of other tested feeding strategies can be ranked FW20 > FW25 > FW10 > LF > FW5 > AF. LF and appropriate time of weaning to artificial diet is beneficial for intestine development, while a diet consisting of only AF is associated with severe intestine impairment. Live/dry feeding strategies are not associated with liver pathology.

ACKNOWLEDGMENTS

The study was financially supported by the Ministry of Agriculture of the Czech Republic, project NAZV project (QK1810296).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

ORCID

Vlastimil Stejskal https://orcid.org/0000-0002-7892-695X
Tatyana Gebauer https://orcid.org/0000-0002-4943-1923
Joanna Nowosad https://orcid.org/0000-0001-9491-0141
Dariusz Kucharczyk https://orcid.org/0000-0002-0889-0656

REFERENCES

Bagiński, S. (1965). Technika mikroskopowa: praktyczny poradnik mikroskopowy. (1–617). Warsaw, Poland: Państwowe Wydawnictwo Naukowe.
Beltran, R. R., & Champigneulle, A. (1992). Studies on improvement of the first feeding on dry diet for Coregonus lavaretus L. larvae. Aquaculture, 102, 319–331.
Bochert, R., Horn, T., & Luft, P. (2017). Maraena whitefish (Coregonus maraena) larvae reveal enhanced growth during first feeding with live Artemia nauplii. Archives of Polish Fisheries, 25, 3–10.
Bochert, R., & Luft, P. (2019). Combined effect of temperature and live feed period on growth and survival of Coregonus maraena (Bloch, 1779) larvae. Aquaculture Research, 50, 2972–2977.
d’Orbcastel, E. R., Person-Le Ruyet, J., Le Bayon, N., & Blancheton, J. P. (2009). Comparative growth and welfare in rainbow trout reared in recirculating and flow through rearing systems. Aquacultural Engineering, 40, 79–86.
de Alcântara, A. M., da Fonseca, F. A., Araújo-Dairiki, T. B., Faccioli, C. K., Vicentini, C. A., da Conceição, L. E., & Gonçalves, L. U. (2019). Ontogeny of the digestive tract of Arapaima gigas (Schinz, 1822)(Osteoglossiformes: Arapaimidae) larvae. Journal of the World Aquaculture Society, 50, 231–241.
Enz, C. A., Schäffer, E., & Müller, R. (2001). Importance of diet type, food particle size, and tank circulation for culture of lake Halliwitl whitefish larvae. North American Journal of Aquaculture, 63, 321–327.
Escaffre, A. M., & Bergot, P. (1986). Morphologie quantitative du foie des alevins de truite arc-en-ciel (Salmo gairdnerii) issus de gros ou de petits œufs: incidence de la date du premier repas. Archiv für Hydrobiologie, 107, 331–348.
Esmaeilzadeh-Leithner, S., & WANZENBOCK, J. (2018). Suitability of two agglomerated commercial microdiets for rearing larvae of different strains of Coregonus lavaretus under cold-water conditions. Aquaculture Nutrition, 24, 260–268.

Geng, J., Belfranc, C., Zander, I. A., Goldstein, E., Mathur, S., Lederer, B. I., … Benetti, D. D. (2019). Effect of stocking density and feeding regime on larval growth, survival, and larval development of Japanese flounder, Paralichthys olivaceus, using live feeds. Journal of the World Aquaculture Society, 50, 336–345.

Hamza, N., Mhetli, M., & KESTEMONT, P. (2007). Effects of weaning age and diets on ontogeny of digestive activities and structures of pikeperch (Sander lucioperca) larvae. Fish Physiology and Biochemistry, 33, 121–133.

Hansen, J. Ø., Berge, G. M., Hillestad, M., Krogdahl, A., Galloway, T. F., Holm, H., … Ruyter, B. (2008). Apparent digestion and apparent retention of lipid and fatty acids in Atlantic cod (Gadus morhua) fed increasing dietary lipid levels. Aquaculture, 284, 159–166.

Harris, K. C. (1992). Techniques used for the fully-intensive culture of lake whitefish (Coregonus clupeaformis) larvae and yearlings in Ontario, Canada. Polskie Archiwum Hydrobiologii, 39, 3–4.

Hundt, M., Bruggemann, J., Grote, B., Bischoff, A. A., Martin-Creuzburg, D., Gergs, R., & Buck, B. H. (2015). Fatty acid composition of Turbatrix aceti and its use in feeding regimes of Coregonus maraena (Bloch, 1779): Is it really a suitable alternative to Artemia nauplii? Journal of Applied Ichthyology, 31, 343–348.

Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., … Warner, R. R. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629–638.

Jobling, M., Arnesen, A. M., Befey, T., Carter, C., Hardy, R., LeFrancois, N., … Lamarre, S. (2010). The salmonids (family: Salmonidae), In N. LeFrancoid, M. Jobling, C. Carter, & P. Blier (Eds.), Finfish aquaculture diversification (pp. 234, 704–288). Oxfordshire, England: CAB International.

Łaczyńska, B., Nowosad, J., Bilas, M., Krejczef, S., Müller, T., Kucharczyk, D., & Żarski, D. (2016). Effect of age, size and digestive tract development on weaning effectiveness in crucian carp, Carassius carassius (Linnaeus, 1758). Journal of Applied Ichthyology, 32, 866–872.

Lahnsteiner, F., & Kletzl, M. (2015). On-feeding and juvenile production of coregonid species with formulated dry feeds: Effects on fish viability and digestive enzymes. Journal of Agricultural Science, 7, 48–58.

Lall, S. P., Lewis-McCrea, L. M., & Tibbetts, S. M. (2018). Growth, survival, and whole-body proximate and fatty acid composition of haddock, Melanogrammus aeglefinus L., postlarvae fed a practical microparticulate weaning diet. Journal of the World Aquaculture Society, 49, 83–95.

Lavens, P., & Sorgeloos, P. (2000). The history, present status and prospects of the availability of Artemia cysts for aquaculture. Aquaculture, 181, 397–403.

Lee, C. S. (2003). Biotechnological advances in finfish hatchery production: A review. Aquaculture, 227, 439–458.

Leithner, S., & WANZENBOCK, J. (2015). Rearing larvae of different strains of Coregonus lavaretus under cold water conditions: Comparison of a special cold-water line with a standard agglomerated microdiet. Journal of Agricultural Science, 7, 28–36.

Lipscomb, T. N., Yanong, R. P., Ramee, S. W., & DiMaggio, M. A. (2020). Histological, histochemical and biochemical characterization of larval digestive system ontogeny in black tetra Gymnocorymbus ternetzi to inform aquaculture weaning protocols. Aquaculture, 520, 734957.

Luczyński, M., Falkowski, S., Vuorinen, J., & Jankun, M. (1992). Genetic identification of European whitefish (Coregonus lavaretus), peled (C. peled) and their hybrids in spawning stocks of ten polish lakes. Polish Archives of Hydrobiology, 39, 571–577.

Ma, Z., Zheng, P., Guo, H., Zhang, N., Wang, L., Jinang, S., & Zhang, D. (2015). Effect of weaning time on the performance of Trachinotus ovatus (Linnaeus 1758) larvae. Aquaculture Nutrition, 21, 670–678.

Mahmoudzadeh, H., Ahmadi, M. R., & Shamsaei, M. (2009). Comparison of rotifer Brachionus plicatilis as a choice of live feed with dry feed in rearing Coregonus lavaretus fry. Aquaculture Nutrition, 15, 129–134.

Mata-Sotres, J. A., Lazo, J. P., & Baron-Sevilla, B. (2015). Effect of age on weaning success in totoaba (Totoaba macdonaldi) larval culture. Aquaculture, 437, 292–296.

Matoušek, J., Gebauer, T., & Stejskal, V. (2020). Effect of weaning initiation time and feed pellet size on peled Coregonus peled (Gmelin 1789) larviculture. Aquaculture Research, 51, 2150–2154.

Matoušek, J., Prokesova, M., Novikava, K., Sebesta, R., Zuskova, E., & Stejskal, V. (2017). The effect of oxygen level on growth and haematological parameters in peled whitefish (Coregonus peled) juveniles. Aquaculture Research, 48, 5411–5417.

Matoušek, J., Stejskal, V., Prokesova, M., & Kouriil, J. (2017). The effect of water temperature on growth parameters of intensively reared juvenile peled Coregonus peled. Aquaculture Research, 48, 1877–1884.

McFadzen, I. R. B., Coombs, S. H., & Halliday, N. C. (1997). Histological indices of the nutritional condition of sardine, Sardina pilchardus (Walbaum) larvae of the north coast of Spain. Journal of Experimental Marine Biology and Ecology, 212, 239–258.

Mukhachev, I. S., & Gunin, A. P. (1999). A review of the production of cultivated whitefishes (Coregonus spp.) in the Urals and West Siberia. Advances in Limnology, 57, 171–181.
Sebesta, R., Žarski, D., Bilas, M., Dryl, K., Krejzeff, S., & Kucharczyk, D. (2013). Dynamics of ammonia excretion in juvenile common tench Tinca tinca (L.), during intensive rearing under controlled conditions. Aquaculture International, 21, 629–637.

Orihuela, L., Montes, M., Linares, J., Castro, A., Carrera, L., & Lazo, J. P. (2018). Effect of two novel experimental microdiet types on growth, survival, and pigmentation during the weaning period of the fine flounder, Paralichthys adspersus, larvae. Journal of the World Aquaculture Society, 49, 770–777.

Ostaszewska, T., Korwin-Kossakowski, M., & Wołnicki, J. (2006). Morphological changes of digestive structures in starved tench Tinca tinca (L.) juveniles. Aquaculture International, 14, 113–126.

Ostaszewska, T., Krajnik, K., Adamek-Urbariska, D., Kasprzak, R., Luczynski, M., Karczewska, A. T., & Dabrowski, K. (2018). Effect of feeding strategy on digestive tract morphology and physiology of lake whitefish (Coregonus lavaretus). Aquaculture, 497, 32–41.

Palieńska-Żarska, K., Żarski, D., Krejzeff, S., Nowosad, J., Bilas, M., Trejchel, K., ... Kucharczyk, D. (2014). The effect of age, size and digestive tract development on burbot, Lota lota (L.), larvae weaning effectiveness. Aquaculture Nutrition, 20, 281–290.

Patterson, J., Ohs, C., O'Malley, P., Palau, A., D'Abramo, L., Reigh, R., & Green, C. (2016). Feeding larval gulf killifish: Total replacement of Artemia nauplii and co-feeding from hatch. North American Journal of Aquaculture, 78, 396–404.

Pradhan, P. K., Jena, J., Mitra, G., Sood, N., & Gisbert, E. (2014). Effects of different weaning strategies on survival, growth and digestive system development in butter catfish (Ompok bimaculatus (Bloch)) larvae. Aquaculture, 424, 120–130.

Puwanendran, V., & Brown, J. A. (1999). Foraging, growth and survival of Atlantic cod larvae reared in different prey concentrations. Aquaculture, 175, 77–92.

Sebesta, R., Kucharczyk, D., Nowosad, J., Sikora, M., & Stejskal, V. (2018). Effect of different temperatures on growth performance and survival of European whitefish (Coregonus maraena) larvae in RAS conditions. Aquaculture Research, 49, 3151–3157.

Sebesta, R., Stejskal, V., Matoušek, J., & Lundova K. (2018). The combined effect of light intensity and tank wall colour on performance of peled (Coregonus peled (Gmelin)) larvae. Turkish Journal of Fisheries and Aquatic Sciences, 19, 541–549.

Segner, H., Rösch, R., Schmidt, H., & Jürgen von Pocppinghausen, K. (1988). Studies on the suitability of commercial dry diets for rearing of larval Coregonus lavaretus from Lake onstance. Aquatic Living Resources, 1, 231–238.

Siikavuopio, S. I., Knudsen, R., Amundsen, P. A., Sæther, B. S., & James, P. (2011). Effects of high temperature on the growth of maraena whitefish (Coregonus maraena L.). Aquaculture Research, 44, 8–12.

Stejskal, V., Matoušek, J., Prokesová, M., Podhorec, P., Šebestia, R., & Drozd, B. (2017). Combined effect of weaning time and co-feeding duration on growth and survival of peled (Coregonus peled (Gmelin)) larvae. Aquaculture Nutrition, 24, 434–441.

Suter, W. (1997). Roach rules: Shoaling fish are a constant factor in the diet of cormorants (Phalacrocorax carbo) in Switzerland. Ardea, 85, 9–27.

Thomas, G., & Eckmann, R. (2007). The influence of eutrophication and population biomass on common whitefish (Coregonus lavaretus) growth – The Lake Constance example revisited. Canadian Journal of Fisheries and Aquatic Sciences, 64, 402–410.

Thompson, K. L., Faulk, C. K., & Fuiman, L. A. (2019). Applying the ontogeny of digestive enzyme activity to guide early weaning of pigfish, Orthopristis chrysoptera (L.). Aquaculture Research, 50, 1404–1410.

Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., ... Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416, 389–395.

Whitlaw, J., Manriquez-Hernández, J., Duston, J., Shane Francis, O. N., & Bradford, R. G. (2015). Atlantic Whitefish (Coregonus hunsmani) culture handbook, Fisheries and Oceans Canada.

Winfield, I. J., Fletcher, J. M., & James, J. B. (2004). Modelling the impact of water level fluctuations on the population dynamics of whitefish (Coregonus lavaretus (L.) in Haweswater, UK). Ecosystem and Hydrobiologia, 4, 409–416.

Yanes-Roca, C., Toledo-Cuevas, M. E., Sánchez, L. J., Born-Torrijos, A., Rhody, N., & Main, K. L. (2018). Digestive enzyme activity during larval development of black Snook, Centropomus nigrescens. Journal of the World Aquaculture Society, 49, 612–624.

Zar, J. H. (1999). Biostatistical analysis. Hoboken, NJ: Prentice-Hall.

How to cite this article: Stejskal V, Gebauer T, Sebesta R, et al. Effect of feeding strategy on survival, growth, intestine development, and liver status of maraena whitefish Coregonus maraena larvae. J World Aquac Soc. 2021;1–14. https://doi.org/10.1111/jwas.12785