Approximation by multivariate quasi-projection operators
and Fourier multipliers

Yurii Kolomoitsev1,2 and Maria Skopina3,4

1Universität zu Lübeck, Lübeck, Germany; kolomoitsev@math.uni-luebeck.de
2Institute of Applied Mathematics and Mechanics of NAS of Ukraine, Slov’yan’s’k, Ukraine
3Saint Petersburg State University, St. Petersburg, Russia; skopina@ms1167.spb.edu
4Regional Mathematical Center of Southern Federal University

Abstract

Multivariate quasi-projection operators $Q_j(f, \varphi, \tilde{\varphi})$, associated with a function φ and a distribution/function $\tilde{\varphi}$, are considered. The function φ is supposed to satisfy the Strang-Fix conditions and a compatibility condition with $\tilde{\varphi}$. Using technique based on the Fourier multipliers, we studied approximation properties of such operators for functions f from anisotropic Besov spaces and L^p spaces with $1 \leq p \leq \infty$. In particular, upper and lower estimates of the L^p-error of approximation in terms of anisotropic moduli of smoothness and anisotropic best approximations are obtained.

Keywords. Quasi-projection operator, Besov space, Error estimate, Anisotropic best approximation, Anisotropic moduli of smoothness, Fourier multipliers

AMS Subject Classification. 41A17, 41A25, 42B10, 94A20

1 Introduction

The multivariate quasi-projection operator with a matrix dilation M is defined as:

$$Q_j(f, \varphi, \tilde{\varphi}) = |\det M|^j \sum_{n \in \mathbb{Z}^d} \langle f, \tilde{\varphi}(M^j \cdot + n) \rangle \varphi(M^j \cdot + n),$$

where φ is a function, $\tilde{\varphi}$ is a tempered distribution, and $\langle f, \tilde{\varphi}(M^j \cdot + n) \rangle$ is an appropriate functional.

The class of operators $Q_j(f, \varphi, \tilde{\varphi})$ is quite large. It includes the operators associated with a regular function $\tilde{\varphi}$, in particular, the so-called scaling expansions appearing in wavelet constructions (see, e.g., \cite{3, 11, 12, 20, 21, 28}) as well as the Kantorovich-Kotelnikov operators and their generalizations (see, e.g., \cite{8, 16, 18, 25, 33}). An essentially different class consists of the operators $Q_j(f, \varphi, \tilde{\varphi})$ associated with a tempered distribution $\tilde{\varphi}$ related to the Dirac delta-function (the so-called sampling-type operators). The model example of such operators is the following classical sampling expansion, appeared originally in the Kotelnikov formula,

$$\sum_{n \in \mathbb{Z}} f(-2^{-j}n) \frac{\sin \pi(2^j x + n)}{\pi(2^j x + k)} = 2^j \sum_{n \in \mathbb{Z}} \langle f, \delta(2^j \cdot + n) \rangle \text{sinc}(2^j x + n),$$

where δ is the Dirac delta-function and $\text{sinc} x := \frac{\sin \pi x}{\pi x}$. In recent years, many authors have studied approximation properties of the sampling-type operators for various functions φ (see, e.g., \cite{4, 5, 13, 15, 18, 21, 27, 32}). Consideration of functions φ with a good decay is very useful for different engineering applications. In particular, the operators associated with a linear combination of B-splines as φ, and the Dirac delta-function as $\tilde{\varphi}$, was studied, e.g., in \cite{2, 6, 27}. For a class of fast decaying functions φ,
the sampling-type quasi-projection operators were considered in [21], where the error estimates in the L_p-norm, $p \geq 2$, were obtained in terms of the Fourier transform of f, and the approximation order of the operators was found in the case of an isotropic matrix M. These results were extended to an essentially wider class of functions φ in [7] (see Theorem A below). Next, in the paper [17], the results of [21] were improved in several directions. Namely, the error estimates were obtained also for the case $1 \leq p < 2$, the requirement on the approximated function f were weakened, and the estimates were given in terms of anisotropic moduli of smoothness and best approximations.

The main goal of the present paper is to extend the results of [17] to band-limited functions φ and to the case $p = \infty$. The scheme of the proofs of our results is similar to the one given in [17], but the technic is essentially refined by means of using Fourier multipliers. This development allows also to improve the results for the class of fast decaying functions φ and to obtain lower estimates for the L_p-error of approximation by quasi-projection operators in some special cases. Similarly, the main result of [16] (see Theorem B below) is essentially extended in several directions (lower estimates, fractional smoothness, approximation in the uniform metric).

The paper is organized as follows. Notation and preliminary information are given in Sections 2 and 3, respectively. Section 4 contains auxiliary results. The main results are presented in Section 5. In particular, the L_p-error estimates for quasi-projection operators $Q_j(f, \varphi, \bar{\varphi})$ in the case of weak compatibility of φ and $\bar{\varphi}$ are obtained in Subsection 5.2. In this subsection, we also consider lower estimates for the L_p-error and a generalization of compatibility conditions to the case of fractional smoothness. Subsection 5.3 is devoted to approximation by operators $Q_j(f, \varphi, \bar{\varphi})$ in the case of strict compatibility φ and $\bar{\varphi}$. Two generalizations of the Whittaker–Nyquist–Kotelnikov–Shannon-type theorem are also proved in this subsection.

2 Notation

As usual, we denote by \mathbb{N} the set of positive integers, \mathbb{R}^d is the d-dimensional Euclidean space, \mathbb{Z}^d is the integer lattice in \mathbb{R}^d, $\mathbb{Z}_+^d := \{x \in \mathbb{Z}^d : x_k \geq 0, k = 1, \ldots, d\}$, and $\mathbb{T}^d = \mathbb{R}^d/\mathbb{Z}^d$ is the d-dimensional torus. Let $x = (x_1, \ldots, x_d)^T$ and $\xi = (\xi_1, \ldots, \xi_d)^T$ be column vectors in \mathbb{R}^d, then $(x, \xi) := x_1\xi_1 + \cdots + x_d\xi_d$, $|x| := \sqrt{x(x)}$, $0 = (0, \ldots, 0)^T \in \mathbb{R}^d$, and $B_\delta = \{x \in \mathbb{R}^d : |x| < \delta\}$.

Given $a, b \in \mathbb{R}^d$ and $\alpha \in \mathbb{Z}_+^d$, we set

$$[\alpha] = \sum_{k=1}^d \alpha_k, \quad D^\alpha f = \frac{\partial^{[\alpha]} f}{\partial x^\alpha} = \frac{\partial^{[\alpha]} f}{\partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}}, \quad (ab)^j = \prod_{j=1}^d a_j b_j, \quad \alpha! = \prod_{j=1}^d \alpha_j!.$$

If M is a $d \times d$ matrix, then $\|M\|$ denotes its operator norm in \mathbb{R}^d; M^* denotes the conjugate matrix to M, $m = |\det M|$. By I we denote the identity matrix, i.e., $I = M^0$.

A $d \times d$ matrix M is called a dilation matrix if its eigenvalues are bigger than one in modulus. We denote the set of all dilation matrices by \mathfrak{M}. It is well known that $\lim_{j \to \infty} \|M^{-j}\| = 0$ for dilation matrices. For any $M \in \mathfrak{M}$, we set $\mu_0 := \min\{\mu \in \mathbb{N} : \mathbb{T}^d \subset \frac{1}{\mu} M^\nu \mathbb{T}^d \text{ for all } \nu \geq \mu - 1\}$.

Recall that a matrix M is isotropic if it is similar to a multiple of an orthogonal matrix, its eigenvalues $\lambda_1, \ldots, \lambda_d$ are such that $|\lambda_1| = \cdots = |\lambda_d|$.

As usual, L_p denotes the space $L_p(\mathbb{R}^d)$, $1 \leq p \leq \infty$, with the norm $\| \cdot \|_p = \| \cdot \|_{L_p(\mathbb{R}^d)}$, C denotes the space of all uniformly continuous bounded functions on \mathbb{R}^d, and

$$C_0 := \{f \in C : \lim_{|x| \to \infty} f(x) = 0\}.$$

We use W^n_p, $1 \leq p \leq \infty$, $n \in \mathbb{N}$, to denote the Sobolev space on \mathbb{R}^d, i.e. the set of functions whose derivatives up to order n are in L_p, with usual Sobolev norm.

If f and g are functions defined on \mathbb{R}^d and $f \mathcal{G} \in L_1$, then

$$\langle f, g \rangle := \int_{\mathbb{R}^d} f(x)\overline{g(x)}dx.$$
The convolution of functions f and g is defined by

$$f * g(x) = \int_{\mathbb{R}^d} f(t)g(x-t)dt.$$

The Fourier transform of $f \in L_1$ is given by

$$\mathcal{F}f(\xi) = \hat{f}(\xi) = \int_{\mathbb{R}^d} f(x)e^{-2\pi i x \cdot \xi} dx.$$

For any function f, we denote $f^{-}(x) = \overline{f(-x)}$.

The Schwartz class of functions defined on \mathbb{R}^d is denoted by \mathcal{S}. The dual space of \mathcal{S} is \mathcal{S}', i.e. \mathcal{S}' is the space of tempered distributions. Suppose $f \in \mathcal{S}$ and $\varphi \in \mathcal{S}'$, then $(f, \varphi) := \varphi(f)$. For any $\varphi \in \mathcal{S}'$, we define $\overline{\varphi}$ and φ^- by $(f, \overline{\varphi}) := \overline{(f, \varphi)}$, $f \in \mathcal{S}$, and $(f, \varphi^-) := (f, \varphi)$, $f \in \mathcal{S}$, respectively.

The Fourier transform of $\overline{\varphi}$ is defined by $(\hat{f}, \overline{\varphi}) = (f, \varphi)$, $f \in \mathcal{S}$. The convolution of $\varphi \in \mathcal{S}'$ and $f \in \mathcal{S}$ is given by $f * \varphi(x) = (f, \varphi(x \cdot)) = (f, \varphi(\cdot - x))$. For suitable functions/distributions f and h, we denote by $\Lambda_h(f)$ the following multiplier operator:

$$\Lambda_h(f) := \mathcal{F}^{-1}(h\hat{f}).$$

Next, for a fixed matrix $M \in \mathfrak{M}$ and a function φ, we define φ_{jk} by

$$\varphi_{jk}(x) := m^{j/2}\varphi(M^jx + k), \quad j \in \mathbb{Z}, \quad k \in \mathbb{R}^d.$$

For $\overline{\varphi} \in \mathcal{S}'$, $j \in \mathbb{Z}$, and $k \in \mathbb{Z}^d$, we define $\overline{\varphi}_{jk}$ by

$$(f, \overline{\varphi}_{jk}) := (f_{-j,-M^{-j}k}, \overline{\varphi}), \quad f \in \mathcal{S}.$$

By \mathcal{S}'_N, $N \geq 0$, we denote the set of all tempered distribution $\widehat{\varphi}$ whose Fourier transform $\widehat{\varphi}$ is a measurable function on \mathbb{R}^d such that $|\widehat{\varphi}(\xi)| \leq c(\widehat{\varphi})(1 + |\xi|)^N$ for almost all $\xi \in \mathbb{R}^d$.

Let $1 \leq p \leq \infty$. We set

$$\mathcal{L}_p := \left\{ \varphi \in L_p : \|\varphi\|_{\mathcal{L}_p} := \left\| \sum_{l \in \mathbb{Z}^d} |\varphi(\cdot + l)| \right\|_{L_{p}(\mathbb{T}^d)} < \infty \right\}.$$

It is not difficult to see that $\mathcal{L}_1 = L_1$, $\|\varphi\|_{p} \leq \|\varphi\|_{\mathcal{L}_p}$, and $\|\varphi\|_{\mathcal{L}_q} \leq \|\varphi\|_{\mathcal{L}_p}$ for $1 \leq q \leq p \leq \infty$.

For any $d \times d$ matrix A, we introduce the space

$$\mathcal{B}_{A,p} := \{ g \in L_p : \operatorname{supp} \hat{g} \subset A^* \mathbb{T}^d \}$$

and the corresponding anisotropic best approximations

$$E_{A}(f)_p := \inf \{ \| f - P \|_p : P \in \mathcal{B}_{A,p} \}.$$

Let α be a positive function defined on the set of all $d \times d$ matrices A. We consider the following anisotropic Besov-type space associated with a matrix A. We say that $f \in \mathbb{B}^{\alpha(\cdot)}_{p,A}$, $1 \leq p \leq \infty$, if $f \in L_p$ for $p < \infty$, $f \in C_0$ for $p = \infty$, and

$$\| f \|_{\mathbb{B}^{\alpha(\cdot)}_{p,A}} := \| f \|_p + \sum_{\nu = 1}^{\infty} |\det A|^\nu \alpha(A\nu)E_{A\nu}(f)_p < \infty.$$

Note that in the case $A = 2I$ and $\alpha(\cdot) \equiv \alpha_0 \in \mathbb{R}$, the space $\mathbb{B}^{\alpha(\cdot)}_{p,A}$ coincides with the classical Besov space $B^{d/p+\alpha_0}_{p}(\mathbb{R}^d)$.

For any matrix $M \in \mathfrak{M}$, we denote by \mathcal{A}_M the set of all positive functions $\alpha : \mathbb{R}^{d \times d} \to \mathbb{R}_+$ that satisfy the condition $\alpha(M^{\mu+1}) \leq c(M)\alpha(M\mu)$ for all $\mu \in \mathbb{Z}_+$.

3
For any \(d \times d \) matrix \(A \), we introduce the anisotropic fractional modulus of smoothness of order \(s, s > 0 \),
\[
\Omega_s(f, A)_p := \sup_{|A^{-1}h| < 1} \| \Delta^s_h f \|_p,
\]
where
\[
\Delta^s_h f(x) := \sum_{\nu=0}^{\infty} (-1)^\nu \binom{s}{\nu} f(x + h\nu).
\]
Recall that the standard fractional modulus of smoothness of order \(s, s > 0 \), is defined by
\[
\omega_s(f, t)_p := \sup_{|h| < t} \| \Delta^s_h f \|_p, \quad t > 0.
\]
We refer to [19] for the collection of basic properties of moduli of smoothness in \(L_p(\mathbb{R}^d) \).

For an appropriate function \(f \) and \(s > 0 \), the fractional power of Laplacian is given by
\[
(-\Delta)^{s/2} f(x) := \mathcal{F}^{-1} \left(|\xi|^s \hat{f}(\xi) \right)(x).
\]

As usual, \(\ell_p, 1 \leq p \leq \infty \), denotes the space of all sequences \(a = \{a_n\}_{n \in \mathbb{Z}^d} \subset \mathbb{C} \) equipped with the norm
\[
\|a\|_{\ell_p} := \left\{ \begin{array}{ll}
\left(\sum_{n \in \mathbb{Z}^d} |a_n|^p \right)^{1/p}, & \text{if } p < \infty, \\
\sup_{n \in \mathbb{Z}^d} |a_n|, & \text{if } p = \infty,
\end{array} \right.
\]
and \(c_0 \) denotes the subspace of \(\ell_\infty \) consisting of the sequences converging to zero.

By \(\eta \) we denote a real-valued function in \(C^\infty(\mathbb{R}^d) \) such that \(\eta(\xi) = 1 \) for \(\xi \in \mathbb{T}^d \) and \(\eta(\xi) = 0 \) for \(\xi \notin 2\mathbb{T}^d \). For any \(\delta > 0 \), we denote \(\eta_\delta = \eta(\delta^{-1}) \).

Finally, for any \(p \in [1, \infty] \), we define \(p' \) by \(1/p' + 1/p = 1 \) and write \(c, c_1, c_2, \ldots \) to denote positive constants that depend on indicated parameters.

3 Preliminary information and main definitions.

In what follows, we discuss the operator
\[
Q_j(f, \varphi, \overline{\varphi}) := \sum_{k \in \mathbb{Z}^d} \langle f, \overline{\varphi}_{jk} \rangle \varphi_{jk},
\]
where the "inner product" \(\langle f, \overline{\varphi}_{jk} \rangle \) has meaning in some sense. This operator is associated with a matrix \(M \), which is a matrix dilation by default.

The operator \(Q_j(f, \varphi, \overline{\varphi}) \) is an element of the shift-invariant space generated by the function \(\varphi \). It is known that a function \(f \) may be approximated by the elements of such shift-invariant space only if \(\varphi \) satisfies the so-called Strang-Fix conditions.

Definition 1 We say that a function \(\varphi \) satisfies the Strang-Fix conditions of order \(s \) if \(D^\beta \overline{\varphi}(k) = 0 \) for every \(\beta \in \mathbb{Z}^d_+, |\beta| < s \), and for all \(k \in \mathbb{Z}^d \setminus \{0\} \).

Certain compatibility conditions for a distribution \(\overline{\varphi} \) and a function \(\varphi \) is also required to provide good approximation properties of the operator \(Q_j(f, \varphi, \overline{\varphi}) \). For our purposes, we will use the following two conditions.

Definition 2 A tempered distribution \(\overline{\varphi} \) and a function \(\varphi \) is said to be weakly compatible of order \(s \) if \(D^\beta (1 - \overline{\varphi}\varphi)(0) = 0 \) for every \(\beta \in \mathbb{Z}^d_+, |\beta| < s \).

Definition 3 A tempered distribution \(\overline{\varphi} \) and a function \(\varphi \) is said to be strictly compatible if there exists \(\delta > 0 \) such that \(\overline{\varphi}(\xi)\varphi(\xi) = 1 \) a.e. on \(\delta\mathbb{T}^d \).
For $\tilde{\varphi} \in S'_N$ and different classes of functions φ, approximation properties of quasi-projection operators $Q_j(f, \varphi, \tilde{\varphi})$ were studied in [23], [21], [18], and [13]. Generally speaking, if $\tilde{\varphi} \in S'$, then the functional $\langle f, \tilde{\varphi}_{jk} \rangle$ has meaning only for functions f belonging to S. Under some additional restrictions on the distribution $\tilde{\varphi}$, the class of functions f can be essentially extended. To this end, the quantity $\langle f, \tilde{\varphi}_{jk} \rangle$ was replaced by the inner product $\langle \tilde{f}, \tilde{\varphi}_{jk} \rangle$ in the mentioned papers. The following result is a combination of Theorem 14 from [7] and Theorem 5 from [21].

Theorem A. Let $2 \leq p < \infty$, $s \in \mathbb{N}$, $N \geq 0$, $\delta \in (0, 1/2)$, M be an isotropic matrix, $\psi \in L_p$, and $\tilde{\psi} \in S_N$. Suppose

1) $\tilde{\psi} \in L_{p'}$ and $\sum_{k \in \mathbb{Z}^d} |\tilde{\psi}(\xi + k)|^{p'} < c_1$ for all $\xi \in \mathbb{R}^d$;

2) $\tilde{\psi}(\cdot + l) \in C^s(B_{\delta})$ for all $l \in \mathbb{Z}^d \setminus \{0\}$ and $\sum_{l \neq 0} \sum_{\|\theta\|_1 = s} \sup_{|\xi| < \delta} |D^\beta \tilde{\psi}(\xi + l)|^{p'} < c_2$;

3) the Strang-Fix conditions of order s are satisfied for ψ;

4) $\tilde{\psi} \in C^s(B_{\delta})$;

5) ψ and $\tilde{\psi}$ are weakly compatible of order s.

If $\tilde{f} \in L_{p'}$, and $\tilde{f}(\xi) = O(\|\xi\|^{-N-d-\varepsilon})$, $\varepsilon > 0$, as $|\xi| \to \infty$, then

$$\left\| f - \lim_{N \to \infty} \sum_{\|k\| \leq N} \frac{\langle \tilde{f}, \tilde{\psi}_{jk} \rangle \psi_{jk}}{\|k\|^{N-d-\varepsilon}} \right\|_p \leq C \begin{cases} |\lambda|^{-j(N+d/p+\varepsilon)} & \text{if } s > N + d/p + \varepsilon \\ (j+1)^{1/p'} |\lambda|^{-js} & \text{if } s = N + d/p + \varepsilon \\ |\lambda|^{-js} & \text{if } s < N + d/p + \varepsilon \end{cases},$$

where λ is an eigenvalue of M and the constant C is independent on j.

This result is obtained for a wide class of operators $Q_j(f, \psi, \tilde{\psi})$, but unfortunately, the error estimate is given only for $p \geq 2$. Another drawback of this theorem is the restriction on the decay of \tilde{f}. It is not difficult to see that it is redundant, for example, if $\tilde{\psi} \in L_{p'}$ and $f \in L_p$. Also, although Theorem A provides approximation order for $Q_j(f, \psi, \tilde{\psi})$, more accurate error estimates in terms of smoothness of f were not obtained.

The mentioned drawbacks of Theorem A were avoided in [16], where a class of Kantorovich-type operators $Q_j(f, \varphi, \tilde{\varphi})$ associated with a regular function φ and a bandlimited function φ was considered. In particular, the next theorem was obtained in [16] Theorem 17. To formulate it, we introduce the space B, which consists of functions φ given by $\varphi = F^{-1}\theta$, where $\supp \theta \subset [a,b] := \{a_1, b_1\} \times \cdots \times \{a_d, b_d\}$ and $|\theta|_{[a,b]} \in C^d([a,b])$.

Theorem B. Let $1 < p < \infty$, $s \in \mathbb{N}$, $\delta > 0$, and $\varepsilon \in (0, 1)$. Suppose

1) $\varphi \in B$, supp $\tilde{\varphi} \subset B_{1-\varepsilon}$, and $\tilde{\varphi} \in C^{s+d+1}(B_{\delta})$;

2) $\varphi \in B \cup L_{p'}$ and $\tilde{\varphi} \in C^{s+d+1}(B_{\delta})$;

3) φ and $\tilde{\varphi}$ are weakly compatible of order s.

Then, for every $f \in L_p$, we have

$$\left\| f - \sum_{k \in \mathbb{Z}^d} \langle f, \tilde{\varphi}_{jk} \rangle \varphi_{jk} \right\|_p \leq c \omega_s (f, \|M^{-j}\|)_p,$$

where c is independent on f and j.
In what follows, we will consider a class of quasi-projection operators \(Q_j(f, \varphi, \tilde{\varphi}) \) associated with a tempered distribution \(\tilde{\varphi} \) belonging to the class \(S'_p \), where \(1 \leq p \leq \infty \), \(M \in \mathfrak{M} \), and \(\alpha \in \mathcal{A}_M \). We say that \(\tilde{\varphi} \in S'_p \) if \(\tilde{\varphi} \) is a measurable locally bounded function and
\[
\| \Lambda_{F(\tilde{\varphi})} P_\mu \|_p \leq \alpha(M^\mu) \| P_\mu \|_p \quad \text{for all} \quad P_\mu \in \mathcal{B}_{M^\mu} \cap L_2, \mu \in \mathbb{Z}_+.
\]
Obviously, inequality (1) is satisfied with \(\alpha \equiv 1 \) if \(\tilde{\varphi} \) is the Dirac delta-function or \(\tilde{\varphi} \in L_1 \). If \(M = \text{diag}(m_1, \ldots, m_d) \) and \(\tilde{\varphi} \) is a distribution corresponding to the differential operator of the form \(\tilde{\varphi}(x) = D^\beta \delta(x) \), \(\beta \in \mathbb{Z}^d_+ \), then \(\tilde{\varphi} \) belongs to the class \(S'_p \) with \(\alpha(M) = m^{\beta_1} \cdots m^{\beta_d} \). If \(M \) is an isotropic matrix, then \(\alpha(M) = m^{1/d} \). This follows from the Bernstein inequality (see, e.g., [30, p. 252]) given by
\[
\| P^p \|_{L_p(\mathbb{R})} \leq c \| P \|_{L_p(\mathbb{R})}, \quad P \in L_p(\mathbb{R}), \quad \text{supp} \tilde{P} \subset [-\sigma, \sigma].
\]
Now we are going to extend the operator \(Q_j(f, \varphi, \tilde{\varphi}) \) with \(\tilde{\varphi} \in S'_p \) onto the Besov spaces \(\mathbb{B}^{\alpha(\cdot)}_{p,M} \) and the space \(C_0 \). For this, we need to define (extend) the functional \(\langle f, \tilde{\varphi}_{jk} \rangle \) in an appropriate way. In the case \(\alpha(M) = | \det M |^{1/d+1/p} \) and \(1 \leq p < \infty \), a similar extension was given in [17].

Definition 4 Let \(1 \leq p \leq \infty \), \(M \in \mathfrak{M} \), \(\alpha \in \mathcal{A}_M \), and \(\delta \in (0,1) \). For \(\tilde{\varphi} \in S'_q \) and \(f \in \mathbb{B}^{\alpha(\cdot)}_{p,M} \) or \(\tilde{\varphi} \in S'_{\text{const, } \infty; M} \) and \(f \in C_0 \), we set
\[
\langle f, \tilde{\varphi}_{0k} \rangle := \lim_{\mu \to \infty} \langle \tilde{P}_\mu, \tilde{\varphi}_{0k} \rangle, \quad k \in \mathbb{Z}^d,
\]
where the functions \(\{ P_\mu \} \) are such that \(P_\mu \in \mathcal{B}_{kM^\mu} \cap L_2 \) and
\[
\| f - P_\mu \|_p \leq c(d, \mu) E_{\delta, M^\mu}(f)_p, \quad \delta = \begin{cases} \frac{\delta}{2} & \text{if } p = \infty, \\ \delta & \text{if } p < \infty. \end{cases}
\]
Set also
\[
\langle f, \tilde{\varphi}_{jk} \rangle := m^{-j/2} \langle f(M^{-1}), \tilde{\varphi}_{0k} \rangle, \quad j \in \mathbb{Z}_+.
\]
Some comments are needed to approve this definition. First, it will be proved in Lemma 9 that the limit in (2) exists and does not depend on a choice of \(P_\mu \) and \(\delta \). Second, in view of Lemmas 14 and 15 one can always find functions \(P_\mu \in \mathcal{B}_{kM^\mu} \cap L_2, 1 \leq p \leq \infty \), such that (3) holds. Third, we can write
\[
\langle \tilde{P}_\mu, \tilde{\varphi}_{0k} \rangle = \Lambda_{F(\tilde{\varphi})} P_\mu(-k).
\]
Finally, we mention that if \(\tilde{\varphi} \in L_{p'}, \) then \(\langle f, \tilde{\varphi}_{jk} \rangle \) is the standard inner product, which has meaning for any \(f \in L_p \).

Remark 5 Note that if \(\tilde{\varphi} \in S'_N \) for some \(N \geq 0 \) and the Fourier transform of a function \(f \) has a sufficiently good decay such that the inner product \(\langle f, \tilde{\varphi}_{0k} \rangle \) has sense, then it is natural to define the operator \(Q_j(f, \varphi, \tilde{\varphi}) \) by setting \(\langle f, \tilde{\varphi}_{0k} \rangle := \langle \hat{f}, \tilde{\varphi}_{0k} \rangle \) (see, e.g., [21], [18], [15] as well as Theorem A). It is not difficult to see that such an operator \(Q_j(f, \varphi, \tilde{\varphi}) \) is the same as the corresponding operator defined by means of Definition 4 (see, e.g., [17]).

The main tools in this paper are Fourier multipliers. Let us recall their definition and basic properties.

Definition 6 Let \(h \) be a bounded measurable function on \(\mathbb{R}^d \). Consider the linear transformation \(\Lambda_h \) defined by \(\Lambda_h(f) = F^{-1}(hf) \), \(f \in L_2 \). The function \(h : \mathbb{R}^d \to \mathbb{C} \) is called a Fourier multiplier in \(L_p \), \(1 \leq p \leq \infty \), (we write \(h \in \mathcal{M}_p \)) if there exists a constant \(K \) such that
\[
\| \Lambda_h(f) \|_p \leq K \| f \|_p \quad \text{for any} \quad f \in L_2 \\
\| h \|_{\mathcal{M}_p}.
\]
The smallest \(K \), for which inequality (5) holds, is called the norm of the multiplier \(h \). We denote this norm by \(\| h \|_{\mathcal{M}_p} \).

6
Note that if \([\mathcal{L}]\) holds and \(1 \leq p < \infty\), then the operator \(\Lambda_h\) has a unique bounded extension to \(L_p\), which satisfies the same inequality. As usual, we denote this extension by \(\Lambda_h\).

Let us recall some basic properties of Fourier multipliers (see, e.g., [1] Ch. 6 and [24] Ch. 1):

(i) if \(1 < p < 2\), then \(M_1 \subset \mathcal{M}_p \subset M_2 = L_\infty\);
(ii) if \(1 \leq p \leq \infty\), then \(\mathcal{M}_p = \mathcal{M}_p'\) and \(\|h\|_{\mathcal{M}_p} = \|h\|_{\mathcal{M}_p'}\);
(iii) if \(h_1, h_2 \in \mathcal{M}_p\), then \(h_1 + h_2 \in \mathcal{M}_p\) and \(h_1 h_2 \in \mathcal{M}_p\);
(iv) if \(h \in \mathcal{M}_p\), then \(h(A) \in \mathcal{M}_p\) and \(\|h(A)\|_{\mathcal{M}_p} = \|h\|_{\mathcal{M}_p}\) for any non-singular matrix \(A\).

The classical sufficient condition for Fourier multipliers in \(L_p\), \(1 < p < \infty\), is Mikhlin’s condition (see, e.g., [10] p. 367), which states that if a function \(h\) is such that

\[
|D^\nu h(x)| \leq K|\xi|^{-|\nu|}, \quad \xi \in \mathbb{R}^d \setminus \{0\},
\]

for all \(\nu \in \mathbb{Z}^d, \|\nu\| \leq d/2 + 1\), then \(h \in \mathcal{M}_p\) for all \(1 < p < \infty\) and \(\|h\|_{\mathcal{M}_p} \leq c(p, d)(\|h\|_\infty + K)\).

Concerning the limiting cases \(p = 1\) and \(\infty\), we note that if \(h\) is a continuous function, then \(h \in \mathcal{M}_1\) if and only if \(h\) is the Fourier transform of a finite Borel (complex-valued) measure. The multiplier itself is a convolution of a function and this measure. Numerous efficient sufficient conditions for Fourier multipliers in \(L_1\) and \(L_\infty\) can be found in the survey [22]. Here, we only mention the Beurling-type condition, which states that if \(h \in \mathcal{W}_2^d\) with \(h > d/2\), then \(h \in \mathcal{M}_1\) (see, e.g., [22] Theorem 6.1).

Finally, we note that if \(\varphi \in \mathcal{B}\), then \(\hat{\varphi} \in \mathcal{M}_p\) for all \(1 < p < \infty\). Indeed, for any \(\varphi \in \mathcal{B}\), we have \(\hat{\varphi} = \chi_{\Pi} \cdot \theta\), where \(\theta\) belongs to \(C^d(\mathbb{R}^d)\) and has a compact support. It is well known that the characteristic function of \(\Pi\) is a Fourier multiplier in \(L_p\), \(1 < p < \infty\) (see, e.g., [29] p. 100). By Mikhlin’s condition the same holds for the function \(\theta\). Thus, it follows from (iii) that \(\hat{\varphi} \in \mathcal{M}_p\).

4 Auxiliary results

Lemma 7 ([31] Theorem 4.3.1]) Let \(g \in L_p\), \(1 \leq p < \infty\), and supp \(\hat{g} \subset [-\sigma_1, \sigma_1] \times \cdots \times [-\sigma_d, \sigma_d]\), \(\sigma_j > 0, j = 1, \ldots, d\). Then

\[
\frac{1}{\sigma_1 \cdots \sigma_d} \max_{k \in \mathbb{Z}^d} \max_{x \in Q_{k, \sigma}} |g(x)|^p \leq c\|g\|_p^p,
\]

where \(Q_{k, \sigma} = \left[\frac{2k_1 - 1}{2\sigma_1}, \frac{2k_1 + 1}{2\sigma_1}\right] \times \cdots \times \left[\frac{2k_d - 1}{2\sigma_d}, \frac{2k_d + 1}{2\sigma_d}\right]\) and \(c\) depends only on \(p\) and \(d\).

Lemma 8 Let \(1 \leq p \leq \infty\), \(g \in L_p\), \(h \in L_p\), and \(\hat{h} \in \mathcal{M}_p\). Then the operator \(T(g) := h \ast g\) is bounded in \(L_p\) and \(\|h \ast g\|_p \leq \|\hat{h}\|_{\mathcal{M}_p}\|g\|_p\).

Proof. In the case \(p = \infty\), the statement follows from Minkowski’s inequality (without assumption \(\hat{h} \in \mathcal{M}_p\)). Consider the case \(p < \infty\). Choose a sequence \(\{g_n\}_n \subset \mathcal{S}\) converging to \(g\) in \(L_p\)-norm. Since \(\hat{h} \in \mathcal{M}_p\), the functions \(\Lambda_{\hat{h}}(g_n)\) form a Cauchy sequence in \(L_p\). Hence, \(\Lambda_{\hat{g}}(g_n) \to G, G \in L_p\). On the other hand, \(\Lambda_{\hat{h}}(g_n) = h \ast g_n\), and the sequence \(h \ast g_n\) converges to \(h \ast g\) almost everywhere. It follows that \((h \ast g)(x) = G(x)\) for almost all \(x\). Thus, we derive

\[
\|h \ast g\|_p = \|G\|_p \leq \|\Lambda_{\hat{h}}(g_n)\|_p + \|G - \Lambda_{\hat{g}}(g_n)\|_p \leq \|\hat{h}\|_{\mathcal{M}_p}\|g_n\|_p + \|G - \Lambda_{\hat{g}}(g_n)\|_p
\]

\[
\leq \|\hat{h}\|_{\mathcal{M}_p}\|g\|_p + \|\hat{h}\|_{\mathcal{M}_p}\|g - g_n\|_p + \|G - \Lambda_{\hat{g}}(g_n)\|_p.
\]

Finally, passing to the limit as \(n \to \infty\), we complete the proof.

Lemma 9 Let \(1 \leq p \leq \infty\), \(M \in \mathfrak{M}, n \in \mathbb{N}, \delta \in (0, 1]\), and \(\alpha \in \mathcal{A}_M\). Suppose that \(\hat{\varphi}, f,\) and the functions \(P_\mu, \mu \in \mathbb{Z}_+,\) are as in Definition [7] Then the sequence \(\left\{\{\hat{P}_\mu(\hat{\varphi}_0k)\}_k\right\}_{k=1}^\infty\) converges in \(\ell_p\) as \(\mu \to \infty\) and its limit is independent of the choice of \(P_\mu\) and \(\delta\); a fortiori for every \(k \in \mathbb{Z}^d\) there
exists the limit \(\lim_{n \to \infty} (\overline{P}_\mu, \hat{\varphi}_{0k}) \) independent of the choice of \(P_\mu \) and \(\delta \). Moreover, for all \(f \in \mathbb{R}^{\mathbb{Z}^d} \), we have
\[
\sum_{\mu=n}^{\infty} \left\| \langle \overline{P}_{\mu+1}, \hat{\varphi}_{0k} \rangle - \langle \overline{P}_\mu, \hat{\varphi}_{0k} \rangle \right\|_{\ell_p} \leq c \sum_{\mu=n}^{\infty} m_{\mathbb{Z}^d} \alpha(M^\mu) E_{\delta_{\mu}, M^\mu}(f)_p,
\] (6)
where \(c \) depends only on \(d \), \(p \), and \(M \).

Proof. Consider the case \(p < \infty \). Setting
\[
F(x) := \int_{\mathbb{R}^d} \left(\overline{P}_{\mu+1}(M^{\mu+1}x) - \overline{P}_\mu(M^{\mu+1}x) \right) e^{2\pi i (\xi, x)}\,d\xi,
\]
we get
\[
\left\| \langle \overline{P}_{\mu+1}, \hat{\varphi}_{0k} \rangle - \langle \overline{P}_\mu, \hat{\varphi}_{0k} \rangle \right\|_{\ell_p}^p = m_{\mathbb{Z}^d}^{\mu+1} \sum_{k \in \mathbb{Z}^d} |F(M^{\mu+1}k)|^p.
\] (7)
Since \(\text{supp} \overline{P} \subset [-\sigma, \sigma]^d \), where \(\sigma = \sigma(M, d) > 1 \), using Lemma 7 and taking into account that each set \(Q_{k, \alpha} \) contains a finite number (depending only on \(M \) and \(d \)) points \(M^{\mu+1}k, k \in \mathbb{Z}^d \), we obtain
\[
\sum_{k \in \mathbb{Z}^d} |F(M^{\mu+1}k)|^p \leq c_1 \sigma^d \int_{R^d} |F(x)|^p \,dx.
\] (8)
Recall that \(\mu_0 = \min\{\mu \in \mathbb{N} : T^\delta \subset \frac{1}{\mu} M^\mu T^d \text{ for all } \nu \geq \mu - 1 \} \). Since \(M^{\mu+1} \delta T^d \subset M^{\mu+\mu_0} \delta T^d \) and \(M^{\mu} \delta T^d \subset M^{\mu+\mu_0} \delta T^d \), both the functions \(P_\mu \) and \(P_{\mu+1} \) are in \(B^{\delta_{\mu}, \mu_0}_{\mu, p} \cap L_2 \). Thus, combing (7) and (8) and using (1), we derive
\[
\left\| \langle \overline{P}_{\mu+1}, \hat{\varphi}_{0k} \rangle - \langle \overline{P}_\mu, \hat{\varphi}_{0k} \rangle \right\|_{\ell_p} \leq c_2 m_{\mathbb{Z}^d}^{\mu+1} \left\| F \right\|_p = c_2 m_{\mathbb{Z}^d}^{\mu+1} \left\| F(M^{\mu+1}.) \right\|_p
\]
\[
\leq c_2 m_{\mathbb{Z}^d}^{\mu+1} \alpha(M^\mu) \left\| P_{\mu+1} - P_\mu \right\|_p \leq c_2 m_{\mathbb{Z}^d}^{\mu+1} \alpha(M^\mu) \left\| P_{\mu+1} - P_\mu \right\|_p
\]
\[
\leq c_3 m_{\mathbb{Z}^d}^{\mu+1} \alpha(M^\mu) E_{\delta_{\mu}, M^{\mu+1}}(f)_p + \alpha(M^{\mu+1}) E_{\delta_{\mu}, M^{\mu+1}}(f)_p,
\] (9)
which implies (6) after the corresponding summation.

Let now \(p = \infty \). Taking into account (4), we can write
\[
\langle \overline{P}_{\mu+1}, \hat{\varphi}_{0k} \rangle - \langle \overline{P}_\mu, \hat{\varphi}_{0k} \rangle = \Lambda_f(-)(P_{\mu+1} - P_\mu)(-k).
\]
Then, using (1), we obtain
\[
\left\| \langle \overline{P}_{\mu+1}, \hat{\varphi}_{0k} \rangle - \langle \overline{P}_\mu, \hat{\varphi}_{0k} \rangle \right\|_{\ell_\infty} \leq \left\| \Lambda_f(-)(P_{\mu+1} - P_\mu) \right\|_\infty \leq \alpha(M^{\mu+\mu_0}) \left\| P_{\mu+1} - P_\mu \right\|_\infty \leq c_4 \alpha(M^\mu) E_{\delta_{\mu}, M^{\mu+1}}(f)_\infty + \alpha(M^{\mu+1}) E_{\delta_{\mu}, M^{\mu+1}}(f)_\infty,
\] (10)
which again implies (6).

Next, it is clear that there exists \(\nu(\delta) \in \mathbb{N} \) such that \(E_{\delta_{\mu}, M^{\mu}}(f)_p \leq E_{M^{\mu-\nu(\delta)}}(f)_p \) and \(\alpha(M^\mu) \leq c(\delta, M) \alpha(M^{\mu-\nu(\delta)}) \) for all big enough \(\mu \). Thus, if \(f \in \mathbb{R}^{\mathbb{Z}^d} \), then it follows from (6) that \(\{\langle \overline{P}_\mu, \hat{\varphi}_{0k} \rangle\}_{\mu=1}^\infty \) is a Cauchy sequence in \(\ell_p \). Fortiori, for every \(k \in \mathbb{Z}^d \), the sequence \(\{\langle \overline{P}_\mu, \hat{\varphi}_{0k} \rangle\}_{\mu=1}^\infty \) has a limit.

Let now \(p = \infty \), \(\alpha = \text{const} \), and \(f \in C_0 \). For every \(\mu', \mu'' \in \mathbb{N} \), there exists \(\nu \in \mathbb{N} \) such that both the functions \(\overline{P}_{\mu'} \) and \(\overline{P}_{\mu''} \) are supported in \(M^{\mu'} T^d \), and similarly to (11), we have
\[
\left\| \langle \overline{P}_{\mu'}, \hat{\varphi}_{0k} \rangle - \langle \overline{P}_{\mu''}, \hat{\varphi}_{0k} \rangle \right\|_{\ell_\infty} \leq c_5 \left(E_{\delta_{\mu'}, M^{\mu'}}(f)_\infty + E_{\delta_{\mu''}, M^{\mu''}}(f)_\infty \right).
\]
Thus, again \(\{\langle \overline{P}_\mu, \hat{\varphi}_{0k} \rangle\}_{\mu=1}^\infty \) is a Cauchy sequence in \(\ell_\infty \) and every sequence \(\{\langle \overline{P}_\mu, \hat{\varphi}_{0k} \rangle\}_{\mu=1}^\infty \) has a limit.
Let us check that the limit of \(\{ (\hat{P}_\mu, \hat{\varphi}_{0k}) \}_{\mu=1}^\infty \) in \(\ell_p \) does not depend on the choice of functions \(P_\mu \) and \(\delta \). Let \(\delta' \in (0,1) \) and \(P'_\mu \in B_{\delta'M'(p)} \cap L_2 \) be such that \(\| f - P'_\mu \|_p \leq c'(d,p)E_{\delta'_M}(f) \). Since both the functions \(P_\mu \) and \(P'_\mu \) are in \(B_{\delta'M}(p) \cap L_2 \), repeating the arguments of the proof of inequalities (9) and (10) with \(P'_\mu \) instead of \(P_{\mu+1} \) and 0 instead of \(\mu_0 \), we obtain
\[
\| (\hat{P}_\mu - \hat{P}_\nu)(\hat{\varphi}_{0k}) \|_{\ell_p} \leq c_0 m^{\frac{m+1}{2}}(M'^*)\| P'_\mu - P_\nu \|_p \\
\leq c_7 m^{\frac{m+1}{2}}(M'^*)(E_{\delta'_M}(f)p + E_{\delta'_M}(f)p).
\]
It follows that \(\| (\hat{P}_\mu - \hat{P}_\nu)(\hat{\varphi}_{0k}) \|_{\ell_p} \to 0 \) as \(\mu \to \infty \), which yields the independence from the choice of \(P_\mu \) and \(\delta \). ◯

Lemma 10 Let \(\varphi \in L_p \), \(1 \leq p \leq \infty \), be such that \(\text{supp} \hat{\varphi} \) is compact and \(\hat{\varphi} \in \mathcal{M}_p \). Then, for any sequence \(\{ a_k \}_{k \in \mathbb{Z}^d} \in \ell_p \) if \(p < \infty \) and \(\{ a_k \}_{k \in \mathbb{Z}^d} \in c_0 \) if \(p = \infty \), the series \(\sum_{k \in \mathbb{Z}^d} a_k \varphi_{0k}(x) \) converges unconditionally in \(L_p \) and
\[
\left\| \sum_{k \in \mathbb{Z}^d} a_k \varphi_{0k} \right\|_p \leq c \left\| \{ a_k \} \right\|_{\ell_p},
\]
where \(c \) does not depend on \(\{ a_k \}_{k \in \mathbb{Z}^d} \).

Proof. Let us fix an integer \(n \). By duality, we can find a function \(g \in L_{p'} \) such that \(\| g \|_{p'} \leq 1 \) and
\[
\left\| \sum_{\| k \| \leq n} a_k \varphi(-k) \right\|_p = \left\| \left(\sum_{\| k \| \leq n} a_k \varphi(-k), g \right) \right\| = \left\| \sum_{\| k \| \leq n} a_k \langle \varphi(-k), g \rangle \right\|.
\]
(11)
Consider the case \(p > 1 \). Applying Hölder’s inequality, using Lemmas 7 and 8 and taking into account that \(\mathcal{M}_p = \mathcal{M}_{p'} \), we obtain
\[
\sum_{\| k \| \leq n} |a_k \langle \varphi(-k), g \rangle| \leq \| \{ a_k \} \|_{\ell_p} \left(\sum_{k \in \mathbb{Z}^d} \| \varphi(-k), g \|_p \right)^{\frac{1}{p'}}
\]
(12)
\[
= \| \{ a_k \} \|_{\ell_p} \left(\sum_{k \in \mathbb{Z}^d} \| \varphi g^- \|_p \right)^{\frac{1}{p'}} \leq c_1 \| \{ a_k \} \|_{\ell_p} \| \varphi \|_{p'} \| g^- \|_{p'} \\
\leq c_2 \| \{ a_k \} \|_{\ell_p} \| g \|_{p'}.
\]
where \(c_2 \) does not depend on \(n \). Combining (11) and (12), we get that the cubic sums of the series \(\sum_{k \in \mathbb{Z}^d} a_k \varphi_{0k} \) are bounded in \(L_p \)-norm.

Similarly, the boundedness of the cubic sums in \(L_1 \)-norm follows from
\[
\sum_{k \in \mathbb{Z}^d} |a_k \langle \varphi_j(-k), g \rangle| \leq \| \{ a_k \} \|_{\ell_1} \sup_k |\langle \varphi(-k), g \rangle| \\
\leq c_3 \| \{ a_k \} \|_{\ell_1} \| \varphi \|_{\infty} \| g^- \|_{\infty} \leq c_4 \| \{ a_k \} \|_{\ell_1} \| g \|_{\infty}.
\]
Now it is clear that all statements hold. ◯

Lemma 11 (11, THEOREM 2.1) Let \(\varphi \in \mathcal{L}_p \), \(1 \leq p \leq \infty \). Then, for any sequence \(\{ a_k \}_{k \in \mathbb{Z}^d} \in \ell_p \), we have
\[
\left\| \sum_{k \in \mathbb{Z}^d} a_k \varphi_{0k} \right\|_p \leq \| \varphi \|_{\mathcal{L}_p} \| \{ a_k \} \|_{\ell_p}.
\]

Lemma 12 (23, PROPOSITION 5) Let \(f \in L_p \), \(1 \leq p \leq \infty \), and \(\tilde{\varphi} \in \mathcal{L}_{p'} \). Then
\[
\left\| \{ f, \tilde{\varphi}_{0k} \} \right\|_{\ell_p} \leq \| \tilde{\varphi} \|_{\mathcal{L}_{p'}} \| f \|_p.
\]
Lemma 13 Let $f \in C_0$ and $\widehat{\varphi} \in \mathcal{S}'_{\text{const,}\infty,\mathcal{M}}$ for some $M \in \mathcal{M}$. Then $\{\langle f, \widehat{\varphi}_{0k} \rangle\}_k \in c_0$ and
\[
\|\{\langle f, \widehat{\varphi}_{0k} \rangle\}_k\|_{\ell_\infty} \leq c \|f\|_\infty,
\]
where c does not depend on f.

Proof. By Lemma 14 for any $\varepsilon > 0$, there exists a function $P_\mu \in \mathcal{B}_{M^p,\infty} \cap L_2$ such that $\|f - P_\mu\|_\infty \leq c_1 E_{M^p}(f)_\infty$ and
\[
\|\{\langle f, \widehat{\varphi}_{0k} \rangle - \langle \widehat{P}_\mu, \widehat{\varphi}_{0k} \rangle\}_k\|_{\ell_\infty} < \varepsilon.
\]
(13)
Moreover, due to (11) and (4), we have
\[
|\langle \widehat{P}_\mu, \widehat{\varphi}_{0k} \rangle| = |A_{\mathcal{F}(\widehat{\varphi})}(-k)| \leq \|A_{\mathcal{F}(\widehat{\varphi})}P_\mu\|_\infty \leq \text{const} \|P_\mu\|_\infty \leq c_1 |f|_\infty.
\]
Combining this with (13), we prove the lemma. ◊

Let us also recall some basic inequalities for the best approximation and moduli of smoothness.

Lemma 14 (Lemma 8) Let $f \in L_p$, $1 \leq p < \infty$, and let A be a $d \times d$-matrix. Then
\[
\inf_{P \in \mathcal{B}_{A,\infty} \cap L_2} \|f - P\|_p \leq c E_A(f)_p,
\]
where c depends only on p and d.

Lemma 15 Let $f \in C_0$ and let A be a $d \times d$-matrix. Then
\[
\inf_{P \in \mathcal{B}_{2A,\infty} \cap L_2} \|f - P\|_\infty \leq c E_A(f)_\infty,
\]
where c depends only on d.

Proof. Since $f \in C_0$, there exists a compactly supported $g \in C$ satisfying
\[
\|f - g\|_\infty \leq E_A(f)_\infty.
\]
Let $Q \in \mathcal{B}_{A,\infty}$ be such that
\[
\|g - Q\|_\infty \leq 2 E_A(g)_\infty.
\]
Denote $N_A = \mathcal{F}^{-1}(\eta(A^{-1}))$. Obviously, $N_A * Q = Q$ and $N_A * g \in \mathcal{B}_{2A,\infty} \cap L_2$. This, together with the above two inequalities, yields
\[
\inf_{P \in \mathcal{B}_{2A,\infty} \cap L_2} \|f - P\|_\infty \leq \|f - N_A * g\|_\infty \leq \|f - g\|_\infty + \|g - Q\|_\infty + \|N_A * (g - Q)\|_\infty
\]
\[
\leq 3 E_A(f)_\infty + \|N_A\|_1 \|g - Q\|_\infty \leq (3 + \|N_A\|_1) E_A(f)_\infty. \quad \diamond
\]

Lemma 16 (See [24, 5.2.1 (7)] or [30, 5.3.3]) Let $f \in L_p$, $1 \leq p \leq \infty$, and $s \in \mathbb{N}$. Then
\[
E_1(f)_p \leq c \omega_s(f,1)_p,
\]
where c depends only on d and s.

Finally, the next two statements can be found, e.g., in [34], see also [19].

Lemma 17 Let $P \in \mathcal{B}_{I,p}$, $1 \leq p \leq \infty$, and $s \in \mathbb{N}$. Then
\[
\sum_{|\beta| = s} \|D^\beta P\|_p \leq c \omega_s(P,1)_p,
\]
where c does not depend on P.

Lemma 18 Let $P \in \mathcal{B}_{I,p}$, $1 < p < \infty$, and $s > 0$. Then
\[
c_1 \omega_s(P,1)_p \leq \|(-\Delta)^{s/2} P\|_p \leq c_2 \omega_s(P,1)_p,
\]
where the constants c_1 and c_2 do not depend on P.

10
5 Main results

5.1 Main lemma

Let $M \in \mathcal{M}$, $\alpha \in A_M$, and let φ belong to $S'_{\alpha,p,M}$. In what follows, we understand (f, φ_{jk}) in the sense of Definition 3. Thus, the quasi-projection operators

$$Q_j(f, \varphi, \varphi) = \sum_{k \in \mathbb{Z}^d} (f, \varphi_{jk}) \varphi_{jk}$$

are defined for all $f \in B^{\alpha(\cdot)}_{p,M}$. By Lemmas 9 and 13 we have that $\{ (f, \varphi_{jk}) \}_k \in \ell_p$ and $\{ (f, \varphi_{jk}) \}_k \in c_0$ if $p = \infty$. This, together with Lemmas 10 and 12 implies that the series $\sum_{k \in \mathbb{Z}^d} (f, \varphi_{jk}) \varphi_{jk}$ converges unconditionally in L_p. Thus, the operator $Q_j(f, \varphi, \varphi)$ is well defined.

An analogue of the following lemma for the case $\varphi \in L_p$, $\alpha(M) = |\det M|^{\frac{1}{N}}$, and $p < \infty$ can be found in [17]. In the general case, the proof is similar, but for completeness, we present it in detail.

Lemma 19 Let $1 \leq p \leq \infty$, $M \in \mathcal{M}$, $\delta \in (0,1]$, and $\nu \in \mathbb{Z}_+$. Suppose that $\varphi \in L_p$ or $\varphi \in L_p$ is band-limited with $\hat{\varphi} \in M_p$, and the functions P_{μ}, $\mu \in \mathbb{Z}_+$, are as in Definition 4.

(i) If $\alpha \in A_M$, $\varphi \in S'_{\alpha,p,M}$, and $f \in B^{\alpha(\cdot)}_{p,M}$, then

$$\|f - Q_0(f, \varphi, \varphi)\|_p \leq \|P_\nu - Q_0(P_\nu, \varphi, \varphi)\|_p + c \sum_{\mu=\nu} \|Q_0(f - P_\mu, \varphi, \varphi)\|_p + \|Q_0(f - P_\nu, \varphi, \varphi)\|_p + c E_{\delta_p,M^\nu}(f)_p.$$ \(14\)

(ii) If $\varphi \in L_p$ and $f \in L_p$, $p < \infty$, or $\varphi \in S'_{\text{const} \cdot \infty, M}$ and $f \in C_0$, $p = \infty$, then

$$\|f - Q_0(f, \varphi, \varphi)\|_p \leq \|P_\nu - Q_0(P_\nu, \varphi, \varphi)\|_p + c E_{\delta_p,M^\nu}(f)_p.$$ \(15\)

In the above two inequalities, the constant c does not depend on f and ν.

Proof. Obviously,

$$\|f - Q_0(f, \varphi, \varphi)\|_p \leq \|P_\nu - Q_0(P_\nu, \varphi, \varphi)\|_p + \|f - P_\nu\|_p + \|Q_0(f - P_\nu, \varphi, \varphi)\|_p.$$ \(16\)

Suppose that conditions of item (i) hold. Then, using Lemmas 10, 11, and 9 we obtain

$$\|Q_0(f - P_\nu, \varphi, \varphi)\|_p \leq c_1 \|\{(f - P_\nu, \varphi_{0k})\}_k\|_{\ell_p} \leq c_2 \sum_{\mu=\nu} \|\{(P_{\mu+1} - P_\mu, \varphi_{0k})\}_k\|_{\ell_p}$$

$$\leq c_3 \sum_{\mu=\nu} m \|\alpha(M^\nu)\| E_{\delta_p,M^\nu}(f)_p.$$ \(17\)

Combining (16), (17), and (3), we get (14).

Similarly, under assumptions of item (ii) in the case $p < \infty$, it follows from Lemmas 10, 11, and 12 that

$$\|Q_0(f - P_\nu, \varphi, \varphi)\|_p \leq c_4 \|\{(f - P_\nu, \varphi_{0k})\}_k\|_{\ell_p} \leq c_4 \|\varphi\|_{L_p^\nu} \|f - P_\nu\|_p \leq c_5 E_{\delta_p,M^\nu}(f)_p.$$ \(18\)

Thus, combining (16), (18), and (3), we obtain (15) for $p < \infty$. In the case $p = \infty$, using Lemma 13 together with Lemma 10, we get

$$\|Q_0(f - P_\nu, \varphi, \varphi)\|_\infty \leq c_6 \|\{(f - P_\nu, \varphi_{0k})\}_k\|_{\ell_\infty} \leq c_7 E_{\delta_p,M^\nu}(f)_\infty,$$

which completes the proof of the lemma. \(\diamond\)
5.2 The case of weak compatibility of φ and $\tilde{\varphi}$

In this subsection, we give error estimates for the quasi-projection operators associated with weakly compatible φ and $\tilde{\varphi}$.

Theorem 20 Let $1 \leq p \leq \infty$, $M \in \mathcal{M}$, $\alpha \in \mathcal{A}_M$, $s \in \mathbb{N}$, and $\delta \in (0, 1]$. Suppose that $\tilde{\varphi} \in \mathcal{S}'_{\alpha,p;M}$ and $\varphi \in L_p$ satisfy the following conditions:

1) φ is band-limited with $\tilde{\varphi} \in \mathcal{M}_p$, or $\varphi \in L_p$;
2) the Strang-Fix condition of order s holds for φ;
3) φ and $\tilde{\varphi}$ are weakly compatible of order s;
4) $\eta \delta^j \varphi, \tilde{\varphi} \in \mathcal{M}_p$ and $\eta \delta^j \varphi, \tilde{\varphi} \in \mathcal{M}_p$ for all $\beta \in \mathbb{Z}_+^d$, $[\beta] = s$, and $l \in \mathbb{Z}^d \setminus \{0\}$;
5) $\sum_{l \neq 0} \|\eta \delta^j \varphi, \tilde{\varphi} \|_{\mathcal{M}_p} < \infty$ for all $\beta \in \mathbb{Z}_+^d$, $[\beta] = s$.

Then, for any $f \in \mathbb{B}^{\alpha,(-)}_{p,m}$, we have

$$
\|f - Q_j(f, \varphi, \tilde{\varphi})\|_p \leq c \left(\Omega_s(f, M^{-j})_p + m^{-j} \sum_{\nu=j}^{\infty} m^{\nu} \alpha(M^{\nu-j}) E_{M^{\nu}}(f)_p \right).
$$

(19)

Moreover, if $\tilde{\varphi} \in L_{p'}$ and $f \in L_p$, $p < \infty$, or $\tilde{\varphi} \in \mathcal{S}'_{\text{const},\infty;M}$ and $f \in C_0$, $p = \infty$, then

$$
\|f - Q_j(f, \varphi, \tilde{\varphi})\|_p \leq c \Omega_s(f, M^{-j})_p.
$$

(20)

In the above inequalities, the constant c does not depend on f and j.

Proof. First we note that it suffices to prove (19) and (20) for $j = 0$. Indeed,

$$
\left\| f - \sum_{k \in \mathbb{Z}^d} \langle f, \varphi_{jk} \rangle \varphi_{jk} \right\|_p = \left\| m^{-j/p} \left(f(M^{-j} \cdot) - \sum_{k \in \mathbb{Z}^d} \langle f(M^{-j} \cdot), \varphi_{0k} \rangle \varphi_{0k} \right) \right\|_p.
$$

Obviously, $m^{-j/p} f(M^{-j} \cdot) \in \mathbb{B}^{\alpha,(-)}_{p,m}$ whenever $f \in \mathbb{B}^{\alpha,(-)}_{p,m}$. We have also that

$$
E_{M^{\nu}}(m^{-j/p} f(M^{-j} \cdot))_p = E_{M^{\nu+j}}(f)_p
$$

and

$$
\omega_s(f(M^{-j} \cdot), 1)_p = m^{j/p} \Omega_s(f, M^{-j})_p,
$$

which yields (19) and (20) whenever these relations hold true for $j = 0$.

Next, in view of Lemmas 19 and 16 to prove the theorem, it suffices to show that

$$
\left\| P - \sum_{k \in \mathbb{Z}^d} \langle P, \varphi_{0k} \rangle \varphi_{0k} \right\|_p \leq c_1 \sum_{[\beta]=s} \| D^\beta P \|_p,
$$

(21)

where the function P is such that $P \in \mathcal{B}_{\delta^j L_p} \cap L_2$ and $\| f - P \|_p \leq c(d, p) E_{\delta^j L_p}(f)_p$ (remind that $\delta_p = \delta$ for $p < \infty$ and $\delta_p = \delta/2$ for $p = \infty$, and the function P exists in view of Lemmas 14 and 15). Indeed, due to Lemmas 17 and 16 there holds

$$
\sum_{[\beta]=s} \| D^\beta P \|_p \leq c_2 \omega_s(P, 1)_p \leq c_2 \left(\omega_s(f, 1)_p + E_{\delta^j L_p}(f)_p \right) \leq c_3 \omega_s(f, 1)_p.
$$

(22)

Thus, combining (22) and (21) with Lemma 19 we obtain

$$
\| f - Q_0(f, \varphi, \tilde{\varphi}) \|_p \leq c_4 \left(\omega_s(f, 1)_p + \sum_{\nu=0}^{\infty} m^{\nu} \alpha(M^\nu) E_{\delta^\nu M^{\nu}}(f)_p \right).
$$
Since there exists \(\nu_0 = \nu(\delta) \in \mathbb{N} \) such that \(E_{\delta, M^\nu}(f)_p \leq E_{M^\nu - \nu_0}(f)_p \) and \(\alpha(M^\nu) \leq c(\delta, M) \alpha(M^{\nu - \nu_0}) \) for all \(\nu > \nu_0 \), applying Lemma 16 and the inequality \(\omega_s(f, \lambda)_p \leq (1 + \lambda)^s \omega_s(f, 1)_p \) (see, e.g., 19) to the first \(\nu_0 \) terms of the sum, we get 19 for \(j = 0 \). Similarly, taking into account Lemmas 16 we derive (20). Thus, it remains to verifying inequality (21).

Set

\[
\Psi_0 = 1 - \widehat{\varphi^2} \quad \text{and} \quad \Psi_l = \widehat{\varphi(\cdot + l)\varphi}, \quad l \in \mathbb{Z}^d \setminus \{0\},
\]

and estimate \(\| \Lambda_{\Psi_l}(P) \|_p \) for all \(l \in \mathbb{Z}^d \).

Let \(l \in \mathbb{Z}^d \setminus \{0\} \). Using condition 2) and Taylor’s formula, we have

\[
\widehat{\varphi}(\xi + l) = \sum_{|\beta| = s} \frac{s}{\beta!} \int_0^1 (1 - t)^{s-1} D^\beta \widehat{\varphi}(t\xi + l) dt,
\]

which yields for \(p < \infty \) that

\[
\| \Lambda_{\Psi_l}(P) \|_p^p = \int_{\mathbb{R}^d} dx \left| \sum_{|\beta| = s} \frac{s}{\beta!} \int_0^1 dt (1 - t)^{s-1} \int_{\mathbb{R}^d} d\xi \left(D^\beta \widehat{\varphi}(t\xi + l) \xi^\beta \overline{P(\xi)} \right) e^{2\pi i (\xi, x)} \right|^p = \int_{\mathbb{R}^d} dx \left| \sum_{\beta \neq (2\pi l, p)} \frac{s}{\beta!} \int_0^1 dt (1 - t)^{s-1} \int_{\mathbb{R}^d} d\xi_\beta (t\xi) D^\beta \widehat{\varphi}(t\xi + l) \overline{\Theta_\beta(\xi)} e^{2\pi i (\xi, x)} \right|^p,
\]

where

\[
\Theta_\beta = F^{-1} \left(\widehat{D^\beta P \varphi} \right).
\]

Since \(\eta_\delta(t) D^\beta \widehat{\varphi}(t \cdot + l) \in \mathcal{M}_p \) for every \(t > 0 \) and \(\| \eta_\delta(t) D^\beta \widehat{\varphi}(t \cdot + l) \|_{\mathcal{M}_p} \) does not depend on \(t \) (see property (iv) of Fourier multipliers), it follows from condition 4) and inequality 11 that

\[
\| \Lambda_{\Psi_l}(P) \|_p \leq \sum_{|\beta| = s} \sup_{t \in (0, 1)} \left\| F^{-1} \left(\eta_\delta(t) D^\beta \widehat{\varphi}(t \cdot + l) \overline{\Theta_\beta} \right) \right\|_p \leq \sum_{|\beta| = s} \| \eta_\delta D^\beta \widehat{\varphi}(\cdot + l) \|_{\mathcal{M}_p} \| \Theta_\beta \|_p = \sum_{|\beta| = s} \| \eta_\delta D^\beta \widehat{\varphi}(\cdot + l) \|_{\mathcal{M}_p} \Lambda_{\mathcal{M}_p}(D^\beta P) \|_p \leq \alpha(\delta I) \sum_{|\beta| = s} \| \eta_\delta D^\beta \widehat{\varphi}(\cdot + l) \|_{\mathcal{M}_p} \| D^\beta P \|_p. \quad (23)
\]

Similarly,

\[
\| \Lambda_{\Psi_l}(P) \|_\infty \leq \sum_{|\beta| = s} \sup_{t \in (0, 1)} \left\| F^{-1} \left(\eta_\delta(t) D^\beta \widehat{\varphi}(t \cdot + l) \overline{\Theta_\beta} \right) \right\|_\infty \leq \sum_{|\beta| = s} \| \eta_\delta D^\beta \widehat{\varphi}(\cdot + l) \|_{\mathcal{M}_\infty} \| \Lambda_{\mathcal{M}_\infty}(D^\beta P) \|_\infty \leq \alpha(\delta I) \sum_{|\beta| = s} \| \eta_\delta D^\beta \widehat{\varphi}(\cdot + l) \|_{\mathcal{M}_\infty} \| D^\beta P \|_\infty. \quad (24)
\]

Combining relations (23) and (24) with condition 5), we get

\[
\sum_{l \neq 0} \| \Lambda_{\Psi_l}(P) \|_p \leq c_5 \sum_{|\beta| = s} \| D^\beta P \|_p \quad (25)
\]

To estimate \(\| \Lambda_{\Psi_0}(P) \|_p \), we note that by condition 4) and Taylor’s formula, there holds

\[
\varphi(\xi) \overline{\varphi(\xi)} - 1 = \sum_{|\beta| = s} \frac{s}{\beta!} \xi^\beta \int_0^1 (1 - t)^{s-1} D^\beta \varphi_{\overline{\varphi}}(t\xi) dt.
\]
As above, we obtain for $p < \infty$ that
\[
\|\Lambda \varphi_0(P)\|_p =
\left(\int_{\mathbb{R}^d} dx \left| \sum_{|\beta| = s} \beta!(2\pi i)^{|eta|} \int_0^1 dt (1-t)^{s-1} \int_{\mathbb{R}^d} d\xi \, \eta_{\delta}(t\xi) D^\beta (\hat{\varphi}(\xi)) (t\xi) D^\beta P(\xi) e^{2\pi i \xi, x} \right|^p \right)^{1/p}.
\]
(26)

\[
\begin{align*}
&\leq \sum_{|\beta| = s} \sup_{t \in (0,1)} \left\| F^{-1} \left(\eta_{\delta}(t\cdot) D^\beta (\hat{\varphi}(\cdot)) (t\cdot) \hat{P} \right) \right\|_p
&\leq c_6 \sum_{|\beta| = s} \| D^\beta P \|_p,
\end{align*}
\]
and, similarly,
\[
\|\Lambda \varphi_0(P)\|_\infty \leq \sum_{|\beta| = s} \sup_{t \in (0,1)} \left\| F^{-1} \left(\eta_{\delta}(t\cdot) D^\beta (\hat{\varphi}(\cdot)) (t\cdot) \hat{P} \right) \right\|_\infty \leq c_7 \sum_{|\beta| = s} \| D^\beta P \|_\infty.
\]

Next, we set $G(\xi) := \sum_{k \in \mathbb{Z}^d} \hat{P}(\xi + k) \hat{\varphi}(\xi + k)$ and prove that
\[
\sum_{k \in \mathbb{Z}^d} \langle P, \varphi_0(k) \varphi_0 \rangle = F^{-1}(G \varphi).
\]
(27)

First we consider the case $\varphi \in L_p$. Let $l \in \mathbb{Z}^d \setminus \{0\}$ and let h_l denote the restriction of $\hat{\varphi}$ onto the set $\mathbb{T}^d \setminus l$. Then
\[
F^{-1}(Gh_l)(x) = \int_{\mathbb{T}^d} G(\xi) h_l(\xi) e^{2\pi i \xi, x} \, d\xi = \int_{\mathbb{T}^d} \hat{P}(\xi) \hat{\varphi}(\xi) \xi \hat{\varphi}(\xi + l) e^{2\pi i \xi, x + l} \, d\xi = \Lambda \varphi_0(P)(x).
\]

Denote by Ω and Ω_N respectively the sum and the N-th cubic partial sum of $\sum_{l \in \mathbb{Z}^d} F^{-1}(Gh_l)$, which converges in L_p because of (24). Let us check that $\Omega = F^{-1}(G \hat{\varphi})$ in the distribution sense. Since $\hat{\varphi}$ is bounded, the function Gh_l is in L_2, which yields that $\sum_{|l| \leq N} Gh_l = F \Omega_N$ almost everywhere. Hence, for every $g \in \mathcal{S}$, we have
\[
\langle F^{-1}(G \hat{\varphi}) - \Omega_N, g \rangle = \langle G \hat{\varphi} - \sum_{|l| \leq N} \hat{G}h_l, \hat{g} \rangle \rightarrow 0 \quad N \rightarrow \infty
\]
and, obviously,
\[
(\Omega - \Omega_N, g) \rightarrow 0 \quad N \rightarrow \infty.
\]
Thus, the tempered distribution Ω coincides with $F^{-1}(G \hat{\varphi})$. On the other hand, using Lemma 1 from [24] and cubic convergence of the Fourier series of G in L_2-norm, we have the equality
\[
F \left(\sum_{k \in \mathbb{Z}^d} \langle P, \varphi_0(k) \varphi_0 \rangle \right) = G \hat{\varphi}
\]
(28)
in the distribution sense. Thus, the functions Ω and $Q_0(f, \varphi, \hat{\varphi})$ coincide as distributions. But both Ω and $Q_0(f, \varphi, \hat{\varphi})$ are locally summable, hence, due to the du Bois-Reymond lemma, these functions coincide almost everywhere, and so (27) is proved.

Now consider the case of bandlimited φ. Again (28) holds true in the distribution sense. Since G is locally in L_2 and $\hat{\varphi}$ is bounded and compactly supported, we have $G \hat{\varphi} \in L$. Thus, again both the functions $F^{-1}(G \hat{\varphi})$ and $\sum_{k \in \mathbb{Z}^d} \langle P, \varphi_0(k) \varphi_0 \rangle$ are locally summable, which yields (27).

It follows from (27) that
\[
\sum_{k \in \mathbb{Z}^d} \langle P, \varphi_0(k) \varphi_0 \rangle(x) = \int_{\mathbb{R}^d} G(\xi) \hat{\varphi}(\xi) e^{2\pi i \xi, x} \, d\xi
\]
\[
= \sum_{l \in \mathbb{Z}^d} \int_{\mathbb{T}^d} G(\xi) \hat{\varphi}(\xi + l) e^{2\pi i \xi + l, x} \, d\xi = \sum_{l \in \mathbb{Z}^d} \int_{\mathbb{T}^d} \hat{P}(\xi) \hat{\varphi}(\xi) \hat{\varphi}(\xi + l) e^{2\pi i \xi, x} \, d\xi.
\]
(29)
From this, taking into account that $P = F^{-1}(\tilde{P})$, we obtain

$$\left\| P - \sum_{k \in \mathbb{Z}^d} \langle P, \tilde{\varphi}_{0k} \rangle \varphi_{0k} \right\|_p \leq \|\Lambda \psi_1(P)\|_p + \sum_{l \neq 0} \|\Lambda \psi_l(P)\|_p,$$

which together with (25) and (26) yields (21). This completes the proof of the theorem. \(\diamond\)

Corollary 21 Let $1 \leq p \leq \infty$, $s \in \mathbb{N}$, $\delta \in (0, 1)$, $M \in \mathbb{N}$, $\alpha \in A_M$, and let $\varphi \in L_p$ and $\tilde{\varphi} \in S_{s,p,M}$. Suppose that conditions 2) and 3) of Theorem 20 are satisfied and, additionally,

a) if $1 < p < \infty$, we suppose that for some $k \in \mathbb{N}$, $k > \frac{1}{p} - \frac{1}{2}$,

$\bar{\varphi}_\beta \in C^{s+k}(2\delta \mathbb{T}^d)$, \(\bar{\varphi}(\cdot + l) \in C^{s+k}(2\delta \mathbb{T}^d)\) for all \(l \in \mathbb{Z}^d \setminus \{0\}\),

and

$$\sum_{l \neq 0} \sup_{\xi \in 2\delta \mathbb{T}^d} |D^\beta \bar{\varphi}(\xi + l)|^{1 - \frac{d}{p} - \frac{1}{2}} < \infty \quad \text{for all} \quad \beta \in \mathbb{Z}^d_+, \quad [\beta] = s;$$

b) if $p = 1$ or $p = \infty$, we suppose that for some $k \in \mathbb{N}$, $k > \frac{d}{4}$,

$\bar{\varphi}_\beta \in W^{s+k}_2(2\delta \mathbb{T}^d)$, \(\bar{\varphi}(\cdot + l) \in W^{s+k}_2(2\delta \mathbb{T}^d)\) for all \(l \in \mathbb{Z}^d \setminus \{0\}\),

and

$$\sum_{l \neq 0} \|D^\beta \bar{\varphi}(\cdot + l)\|_{L_{2}(2\delta \mathbb{T}^d)}^{1 - \frac{d}{p}} < \infty \quad \text{for all} \quad \beta \in \mathbb{Z}^d_+, \quad [\beta] = s.$$

Then inequalities (19) and (20) hold true.

For a band-limited function φ, the above statement remains valid if the condition $\varphi \in L_p$ is replaced by the assumption that $\varphi \in L_1$ in the case $p = 1$, and $\varphi = F^{-1}(\chi_U \psi)$, where U is compact and $\psi \in C_0^k(\mathbb{R}^d)$ if $1 < p < \infty$.

The proof of Corollary 21 easily follows from sufficient conditions for Fourier multipliers given in [14, Corollaries 2 and 3]. Let us compare this result with Theorem 10 in [17], where the same estimates are obtained for the case $\alpha(M) = |\det M|^N$, but the proof is given without using Fourier multipliers. A higher order of smoothness near the integer points is required for functions $\tilde{\varphi}$ and $\bar{\varphi}$ as compared to ψ in that theorem, namely, differentiability of order $s + d + 1$ is assumed. However, the requirement on the decay for the functions $D^\beta \tilde{\varphi}$ is less restrictive there. To provide the same decay for $D^\beta \bar{\varphi}$, we give another corollary based on Mikhlin’s condition (see Section 3) for Fourier multipliers.

Corollary 22 Let $1 < p < \infty$, $s \in \mathbb{N}$, $M \in \mathbb{N}$, $\alpha \in A_M$, $\delta \in (0, 1)$, $k \in \mathbb{N}$, $k > \frac{d}{4}$, and let $\tilde{\varphi} \in S_{s,p,M}$ and $\varphi \in L_p$. Suppose that conditions 2) and 3) of Theorem 20 are satisfied. Additionally,

$\bar{\varphi}_\beta \in C^{s+k}(2\delta \mathbb{T}^d)$, \(\bar{\varphi}(\cdot + l) \in C^{s+k}(2\delta \mathbb{T}^d)\) for all \(l \in \mathbb{Z}^d \setminus \{0\}\),

and

$$\sum_{l \neq 0} \sup_{\xi \in 2\delta \mathbb{T}^d} |D^\beta \bar{\varphi}(\xi + l)| < \infty \quad \text{for all} \quad \beta \in \mathbb{Z}^d_+, \quad [\beta] = s.$$

Then inequalities (19) and (20) hold true.

For a band-limited function φ, the above statement remains valid if the condition $\varphi \in L_p$ is replaced by the assumption that $\varphi = F^{-1}(\chi_U \psi)$, where U is compact and $\psi \in C_0^k(\mathbb{R}^d)$.

Example 1. Let $d = 2$, $p = \infty$, $s = 2$, and let $Q_j(f, \varphi, \tilde{\varphi})$ be a mixed sampling-Kantorovich quasi-projection operator associated with $\varphi(x) = \frac{1}{4} \sin^3(\frac{x}{4}) \sin^3(\frac{x}{4})$ and $\tilde{\varphi}(x) = \delta(x_1) \chi_{\mathbb{T}}(x_2)$, i.e.,

$$Q_0(f, \varphi, \tilde{\varphi})(x) = \sum_{k \in \mathbb{Z}^2} \int_{k_2 - 1/2}^{k_2 + 1/2} f(k_1, t) dt \varphi(x - k).$$
It is easy to see that all assumptions of Theorem 20 for the case \(p = \infty \) and \(\tilde{\varphi} \in S_{\text{const}, \infty}^p \) are satisfied, which implies
\[
\| f - Q_j(f, \varphi, \tilde{\varphi}) \|_{\infty} \leq c \Omega_2(f, M^{-j})_{\infty}.
\]

Example 2. Let \(d = 2, 1 < p < \infty, s \in \mathbb{N}, f \in L_p, \) and let \(Q_j(f, \varphi, \tilde{\varphi}) \) be a differential sampling expansion of the form
\[
Q_j(f, \varphi, \tilde{\varphi})(x) = \sum_{k \in \mathbb{Z}^2} \left(f(M^{-j}k) + \frac{\partial^s}{\partial x^s} f(M^{-j}k) \right) \text{sinc}(M^j x - k),
\]
i.e., \(\varphi(x) = \text{sinc} x \) and \(\tilde{\varphi}(x) = (I + \frac{\partial^s}{\partial x^s}) \delta(x) \). We have \(\tilde{\varphi} \in S_{\alpha, p}^p \), where \(\alpha(M) = m_1^s \) in the case of the diagonal dilation matrix \(M = \text{diag}\{m_1, m_2\} \). Thus, using Theorem 20 it is not difficult to see that
\[
\| f - Q_j(f, \varphi, \tilde{\varphi}) \|_{p} \leq c \left(\Omega_s(f, M^{-j}) + m_1 (s + \frac{1}{2}) m_2 \sum_{\nu = j}^{\infty} m_1^{\nu - s} m_2^\nu E_{M^\nu}(f) \right),
\]
where \(f \in B_{p, \nu}^s \) and \(c \) does not depend on \(f \) and \(j \).

Fractional smoothness and lower estimates

We have the following generalization of Theorem 20 in terms of fractional moduli of smoothness.

Theorem 23 Let \(1 < p < \infty, s > 0, \delta \in (0, 1/2), M \in \mathbb{N}, \) and \(\alpha \in A_M \). Suppose that \(\tilde{\varphi} \in S_{\alpha, p}^p \), \(\varphi \in L_p \) and the following is satisfied:

1) \(\text{supp} \tilde{\varphi} \subset T^d \) and \(\tilde{\varphi} \in M_p \);

2) \(\eta_\delta \frac{1 - \text{sinc}^2}{2} \in M_p \).

Then, for any \(f \in B_{p, \nu}^s \), we have
\[
\| f - Q_j(f, \varphi, \tilde{\varphi}) \|_{p} \leq c \left(\Omega_s(f, M^{-j}) + m_1 (s + \frac{1}{2}) m_2 \sum_{\nu = j}^{\infty} m_1^{\nu - s} m_2^\nu E_{M^\nu}(f) \right).
\]

Moreover, if \(\tilde{\varphi} \in L_p \), then for any \(f \in L_p \), we have
\[
\| f - Q_j(f, \varphi, \tilde{\varphi}) \|_{p} \leq c \Omega_s(f, M^{-j})_{p}.
\]

In the above inequalities, the constant \(c \) does not depend on \(f \) and \(j \).

Proof. Repeating the arguments of the proof of Theorem 20 for the case of bandlimited \(\varphi \), we see that it suffices to verify that for any \(P \in B_{d, \nu} \cap L_2 \) such that \(\| f - P \|_{p} \leq c(d, \nu) E_{d, \nu}(f)_{p} \), one has
\[
\| \Lambda_{\Psi_0}(P) \|_{p} \leq c_1 \omega_s(f, 1)_{p}, \tag{30}
\]
where \(\Psi_0 = 1 - \tilde{\varphi} \).

Using condition 2), we derive
\[
\| \Lambda_{\Psi_0}(P) \|_{p} = \left\| \mathcal{F}^{-1} \left((1 - \tilde{\varphi}) | \cdot |^{-s} \eta_\delta | \cdot |^{s} \right) \right\|_{p} \leq c_2 \| (-\Delta)^{s/2} P \|_{p}.
\]

Thus, to get (30), it remains to note that, due to Lemmas 15 and 16 we have
\[
\| (-\Delta)^{s/2} P \|_{p} \leq c_3 \omega_s(P, 1)_{p} \leq c_4 \| f - P \|_{p} + \omega_s(f, 1)_{p} \leq c_5 \omega_s(f, 1)_{p},
\]
which proves the theorem. \(\diamond \)

In the next theorem, we obtain lower estimates for the \(L_p \)-error of approximation by the quasi-projection operators \(Q_j(f, \varphi, \tilde{\varphi}) \). Note that such type of estimates are also called strong converse inequalities, see, e.g., [1].
Theorem 24 Let $1 < p < \infty$, $s > 0$, $M \in \mathcal{M}$, and $\alpha \in A_M$. Suppose that $\bar{\varphi} \in S'_{\alpha,p,M}$ and $\varphi \in L_p$ satisfy the following conditions:

1) $\text{supp} \bar{\varphi} \subset \mathbb{T}^d$ and $\bar{\varphi} \in \mathcal{M}_p$;

2) $\eta_{1-\bar{\varphi}} \in \mathcal{M}_p$.

Then, for any $f \in B_{\alpha,c}^{\alpha,(-)}$, we have

$$\Omega_s(f,M^{-j})_p \leq c \|f - Q_j(f,\varphi,\bar{\varphi})\|_p + cm^{-\frac{s}{4}} \sum_{\nu=j}^{\infty} m^\nu \alpha(M^{-j}) E_M\nu(f)_p.$$

Moreover, if $\bar{\varphi} \in \mathcal{L}_{p'}$, then for any $f \in L_p$, we have

$$\Omega_s(f,M^{-j})_p \leq c \|f - Q_j(f,\varphi,\bar{\varphi})\|_p.$$

In the above inequalities, the constant c does not depend on f and j.

Proof. As in the proof of the previous theorems, it suffices to consider only the case $j = 0$. Let $P \in B_{1,p} \cap L_2$ be such that $\|f - P\|_p \leq c(d,p) E_1(f)_p$. Due to the same arguments as in the proof of Theorem 20 we have (29), which takes now the following form

$$P - \sum_{k \in \mathbb{Z}^d} \langle P, \bar{\varphi}_{0k} \rangle \varphi_{0k} = F^{-1} \left(\hat{P} (1 - \hat{\bar{\varphi}}) \right).$$

Using this equality, Lemma 18 and condition 2), we derive

$$\Omega_s(f,I)_p = \omega_s(f,1)_p \leq \omega_s(P,1)_p + c_1 \|f - P\|_p \leq c_2 \left(\|(-\Delta)^{s/2} P\|_p + E_1(f)_p \right)$$

$$= c_2 \left(\left\| F^{-1} \left(\frac{\eta \cdot |\cdot|^s}{1 - \bar{\varphi}^2} \hat{P} (1 - \bar{\varphi}^2) \right) \right\|_p + E_1(f)_p \right)$$

$$\leq c_3 \left(\left\| P - \sum_{k \in \mathbb{Z}^d} \langle P, \bar{\varphi}_{0k} \rangle \varphi_{0k} \right\|_p + E_1(f)_p \right)$$

$$\leq c_3 \left(\left\| f - Q_0(f,\varphi,\bar{\varphi}) \right\|_p + \left\| P - f \right\|_p + \left\| \sum_{k \in \mathbb{Z}^d} (P - f, \bar{\varphi}_{0k}) \varphi_{0k} \right\|_p + E_1(f)_p \right)$$

$$\leq c_4 \left(\left\| f - Q_0(f,\varphi,\bar{\varphi}) \right\|_p + E_1(f)_p + \left\| Q_0(f,\varphi,\bar{\varphi}) \right\|_p \right)$$

$$\leq c_5 \left(\left\| f - Q_0(f,\varphi,\bar{\varphi}) \right\|_p + E_1(f)_p ,$$

where the last inequality follows from Lemmas 10 and 12. Thus, to prove (32), it remains to note that in view of the inclusion $\text{supp} F(Q_0(f,\varphi,\bar{\varphi})) \subset \text{supp} \bar{\varphi} \subset \mathbb{T}^d$, we have $E_1(f)_p \leq \|f - Q_0(f,\varphi,\bar{\varphi})\|_p$.

Remark 25 Note that the conditions on functions/distributions φ and $\bar{\varphi}$ in Theorems 23 and 24 can be also given in terms of smoothness of $\bar{\varphi}$ and $\bar{\varphi}$, similarly to those given in Corollaries 21 and 22. For this, one can use the sufficient conditions for Fourier multipliers mentioned in Section 3 as well as some results of papers 22 and 14.

Example 3. Let $1 < p < \infty$, $\varphi(x) = \text{sinc}(x) := \prod_{\nu=1}^{d} \frac{\sin(\pi x_\nu)}{\pi x_\nu}$, and $\bar{\varphi}(x) = \chi_{\mathbb{T}^d}(x)$ (the characteristic function of \mathbb{T}^d). Then all conditions of Theorems 23 and 24 are satisfied and, therefore, for any $f \in L_p$, we have

$$\left\| f - \sum_{k \in \mathbb{Z}^d} m^j \left(\int_{M^{-j}\mathbb{T}^d} f(M^{-j}k - t)dt \right) \text{sinc}(M^j \cdot -k) \right\|_p = \Omega_2(f,M^{-j})_p,$$

(33)
where \simeq is a two-sided inequality with constants independent of f and j. Note that if we replace $	ext{sinc } x$ by $	ext{sinc}^2 x$, then the upper estimate in (33) via the modulus $\Omega_2(f, M^{-j})_p$ holds for all $f \in L_p$, $1 \leq p \leq \infty$. This can be easily verified using Theorem 20 see also [16].

Similarly, using Theorems 23 and 24 and some basic properties of Fourier multipliers (see Section 3 and also [26] for some special multipliers), one can prove the following L_p error estimates for approximation by quasi-projection operators generated by the Bochner-Riesz kernel of fractional order.

Example 4. Let $1 < p < \infty$ and $\varphi(x) = R^*_\gamma(x) := \mathcal{F}^{-1}\left((1 - |3\xi|^\alpha)^\gamma\right)(x)$, $s > 0$, $\gamma > \frac{d-1}{2}$.

1) If $\tilde{\varphi}(x) = \delta(x)$, then for any $f \in \mathbb{B}^{1}_{p,M}$, we have
 \[c_1\Omega_s(f, M^{-j})_p \leq \left\| f - m^j \sum_{k \in \mathbb{Z}^d} f(M^{-j}k)R^*_\gamma(M^j \cdot -k) \right\|_p \leq c_2 m^{-\frac{j}{p}} \sum_{v=j}^\infty m^\frac{v}{p}\Omega_s(f, M^{-v})_p, \]
 where c_1 and c_2 are some positive constants independent of f and j

2) If $\tilde{\varphi}(x) = \chi_{\gamma\delta}(x)$, then for any $f \in L_p$ and $s \in (0, 2]$, we have
 \[\left\| f - m^j \sum_{k \in \mathbb{Z}^d} \left(\int_{M^{-j}\mathbb{T}^d} f(M^{-j}k-t) dt \right) R^*_\gamma(M^j \cdot -k) \right\|_p \simeq \Omega_s(f, M^{-j})_p, \]
 where \simeq is a two-sided inequality with positive constants independent of f and j.

5.3 The case of strict compatibility for φ and $\tilde{\varphi}$

Theorem 26 Let $1 \leq p \leq \infty$, $\delta \in (0, 1]$, $M \in \mathfrak{M}$, and $\alpha \in A_M$. Suppose that $\tilde{\varphi} \in \mathbf{S}_\alpha^{t,M} \text{ and } \varphi \in L_p$ satisfy the following conditions:

1) supp $\tilde{\varphi} \subset \mathbb{T}^d$ and $\tilde{\varphi} \in \mathcal{M}_p$;

2) φ and $\tilde{\varphi}$ are strictly compatible with respect to δ.

Then, for any $f \in \mathbb{B}^{\alpha(t)}_{p,M}$, we have
 \[\|f - Q_j(f, \varphi, \tilde{\varphi})\|_p \leq c m^{-\frac{j}{p}} \sum_{v=j}^\infty m^\frac{v}{p}\alpha(M^{v-j})E_{b,M^v}(f)_p. \]
 (34)

Moreover, if $\tilde{\varphi} \in L_p$, and $f \in L_p$, $p < \infty$, or $\tilde{\varphi} \in \mathbf{S}_\text{const,}^{t,\infty}_M$ and $f \in C_0$; $p = \infty$, then
 \[\|f - Q_j(f, \varphi, \tilde{\varphi})\|_p \leq c E_{b,M^j}(f)_p. \]
 (35)

In the above inequalities, the constant c does not depend on f and j.

Proof. As above, it suffices to consider only the case $j = 0$. Repeating the arguments of the proof of Theorem 20 we obtain from (29) that
 \[P_0 - \sum_{k \in \mathbb{Z}^d} \langle P_0, \tilde{\varphi}_{0k} \rangle \varphi_{0k} = 0, \]
 Thus, applying Lemma [19] we prove both the statements of the theorem. ◇

Remark 27 In the case $p = \infty$, δ_p in estimates (34) and (35) can be replaced by $\rho \delta$, where $\rho \in (0, 1)$.

18
Example 5. If \(\tilde{\varphi}(x) = \chi_{\mathbb{T}^d}(x) \) and \(\varphi(x) = F^{-1}\left(\frac{\chi_{\mathbb{R}^d}(\xi)}{\sin(\xi)}\right)(x) \), then Theorem 28 provides the following estimate for the corresponding Kantorovich-type operator

\[
\left\| f - \sum_{k \in \mathbb{Z}^d} m^j \left(\int_{M^{-j} k - t} f(M^{-j}k - t)dt \right) \varphi(M^j \cdot -k) \right\|_p \leq c E_{M^j}(f)_p,
\]

where \(f \in L_p, 1 < p < \infty \), and \(c \) does not depend on \(f \) and \(j \). Note that the corresponding estimate in the case of Kotelnikov operators (the case \(\tilde{\varphi}(x) = \delta(x) \) and \(\varphi(x) = \text{sinc}(x) \)) has the following form:

\[
\left\| f - m^j \sum_{k \in \mathbb{Z}^d} f(M^{-j}k)\text{sinc}(M^j \cdot -k) \right\|_p \leq c m^{-\frac{1}{p}} \sum_{\nu = j}^{\infty} m^{\frac{\nu}{p}} E_{M^{\nu}}(f)_p, \quad f \in B_{p,M}^1.
\]

Whittaker–Nyquist–Kotelnikov–Shannon-type theorems

One can easily see that the right hand side of (34) is identically zero if \(\text{supp} \tilde{f} \subset \delta_p M^* \mathbb{T}^d \) and the matrix \(M \) is such that \(M \mathbb{T}^d \subset \mathbb{T}^d \). This leads to the following counterpart of the classical Kotelnikov formula

\[
f = Q_1(f, \varphi, \tilde{\varphi}) \text{ a.e.}
\]

The next two theorems provide results of this type under significantly milder conditions.

Theorem 28 Let \(M \) be a non-degenerate matrix and \(\delta \in (0,1] \). Suppose that

1) \(\text{supp} \tilde{\varphi} \subset \mathbb{T}^d \) and \(\tilde{\varphi} \in L_\infty; \)

2) \(\varphi \in S' \) and \(\hat{\varphi} \) is bounded on \(\delta \mathbb{T}^d; \)

3) \(\varphi \) and \(\tilde{\varphi} \) are strictly compatible with respect to \(\delta \).

If a function \(f \) is such that \(\text{supp} \tilde{f} \subset \delta M^* \mathbb{T}^d \) and \(\hat{f} \in L_q, q > 1 \), then

\[
f(x) = \lim_{n \to \infty} \sum_{\|k\|_\infty \leq n} \langle \tilde{f}, \varphi_{1k}\rangle \varphi_{1k}(x) \text{ for almost all } x \in \mathbb{R}^d.
\]

Proof. First let \(M = I \). Set \(G(\xi) := \sum_{k \in \mathbb{Z}^d} \tilde{\varphi}(\xi + k)\varphi_k(\xi + k) \). Since \(G \in L_q(\mathbb{T}^d) \), its Fourier series is cubic convergent to \(G \) in \(L_q(\mathbb{T}^d) \), i.e., \(|G - G_n|_{L_q(\mathbb{T}^d)} \to 0 \), where \(G_n \) is the \(n \)-th cubic partial Fourier sum and

\[
G_n(\xi)\tilde{\varphi}(\xi) = \sum_{\|k\|_\infty \leq n} \tilde{G}(k)e^{2\pi i k \cdot \xi}\varphi_k(\xi) = \sum_{\|k\|_\infty \leq n} \langle \tilde{f}, \varphi_{0k}\rangle \varphi_{ok}(\xi) =: H_n(\xi).
\]

Obviously, \(H_n \in L_q \). This, together with condition 1), yields

\[
\|H_m - H_n\|_q^q = \int_{\mathbb{R}^d} |(G_m(\xi) - G_n(\xi))\tilde{\varphi}(\xi)|^q d\xi
\]

\[
= \int_{\mathbb{T}^d} |(G_m(\xi) - G_n(\xi))\tilde{\varphi}(\xi)|^q d\xi \leq \|\tilde{\varphi}\|_\infty^q \|G_m - G_n\|_{L_q(\mathbb{T}^d)}^q.
\]

Thus, the sequence \(\{H_n\} \) converges in \(L_q \). Without loss of generality, we can suppose that \(q \leq 2 \), by the Hausdorff-Young inequality, \(F^{-1}H_n \) and \(F^{-1}H_m \) are in \(L_p \), where \(p = \frac{q}{q-1} \), and

\[
\|F^{-1}H_m - F^{-1}H_n\|_p \leq \|H_m - H_n\|_q \to 0 \text{ as } n, m \to \infty.
\]

It follows that the series \(\sum_{k \in \mathbb{Z}^d} \langle \tilde{f}, \varphi_{0k}\rangle \varphi_{ok} \) is cubic convergent in \(L_p \) and its sum is in \(L_p \). Again by the Hausdorff-Young inequality,

\[
\left\| f - \lim_{n \to \infty} \sum_{\|k\|_\infty \leq n} \langle \tilde{f}, \varphi_{0k}\rangle \varphi(\cdot + k) \right\|_p \leq \|\tilde{f} - G\tilde{\varphi}\|_q
\]

\[
\leq \|\tilde{f}(1 - \tilde{\varphi})\|_q + \|\tilde{\varphi}\| \sum_{k \neq 0} \|\tilde{f}(\cdot + k)\tilde{\varphi}(\cdot + k)\|_q := I_1 + I_2.
\]
Using condition 3) and taking into account that \(\text{supp} \hat{f} \subset \delta \mathbb{T}^d \), we obtain that \(I_1 = 0 \). At the same time, we have that \(I_2 = 0 \) because both the functions \(\varphi \) and \(f \) are band-limited to \(\mathbb{T}^d \). This yields (36) for the case \(M = I_d \).

Now let \(M \) be an arbitrary non-degenerate matrix. Setting \(g := f(M^{-1} \cdot) \), we have \(\text{supp} \hat{g} \subset \delta \mathbb{T}^d \). Hence, equality (36) holds for \(g \) and

\[
\hat{f}(x) = g(Mx) = \lim_{n \to \infty} \sum_{\|k\|_\infty \leq n} \langle \hat{g}, \varphi_{0k} \rangle \varphi_{0k}(Mx) \quad \text{for almost all} \quad x \in \mathbb{R}^d.
\]

Finally, after a suitable change of variable in the inner products, we get (36). \(\Diamond \)

There are two drawbacks in the latter theorem (as well as in the Kotelnikov-type formula extracted from Theorem [20]). First, the Fourier transform of \(f \) is assumed to be in \(L_q \), \(q > 1 \), and second, the Kotelnikov-type equality holds only at almost all points. Under an additional restriction on \(\varphi \), these drawbacks are avoided in the following statement.

Theorem 29 Let \(M \) be a non-degenerate matrix and \(\delta \in (0, 1] \). Suppose that

1) \(\text{supp} \hat{\varphi} \subset \mathbb{T}^d \) and \(\hat{\varphi} \in L_\infty \);
2) \(\left| \frac{\partial^2 \varphi}{\partial x_l \partial x_l} (\xi) \right| \leq B \) for all \(\xi \in \mathbb{R}^d \) and \(l = 1, \ldots, d \);
3) \(\varphi \in S' \) and \(\hat{\varphi} \) is bounded on \(\delta \mathbb{T}^d \);
4) \(\varphi \) and \(\hat{\varphi} \) are strictly compatible with parameter \(\delta \).

If a function \(f \) is such that \(\text{supp} \hat{f} \subset \delta M^* \mathbb{T}^d \) and \(\hat{f} \in L_1 \), then

\[
f(x) = \lim_{n \to \infty} \sum_{\|k\|_\infty \leq n} \langle \hat{f}, \varphi_{1k} \rangle \varphi_{1k}(x) \quad \text{for all} \quad x \in \mathbb{R}^d.
\]

Proof. First let \(M = I \). Set \(\Theta_x(\xi) := \sum_{s \in \mathbb{Z}^d} \hat{\varphi}(\xi + s)e^{2\pi i(x, \xi + s)} \). By the Poisson summation formula, \(\Theta_x \) is a summable 1-periodic (with respect to each variable) function and its \(n \)-th Fourier coefficient is

\[
\hat{\Theta}_x(k) = \int_{\mathbb{R}^d} \hat{\varphi}(\xi)e^{-2\pi i(k-x, \xi)} \, d\xi = \hat{\varphi}(k-x) = \varphi(x-k).
\]

Since \(\Theta_x \) is a bounded function, its Fourier series cubic converges almost everywhere. Let us check that the cubic partial Fourier sums are uniformly bounded in \(L_\infty \)-norm. Set

\[
S_n(\Theta_x, \xi) := \sum_{\|k\|_\infty \leq n} \hat{\Theta}_x(k)e^{2\pi i(k, \xi)}.
\]

Using the Lebesgue inequality and the Jackson type inequality for the rectangular best approximations of periodic functions (see [30] Sec. 5.3.1]), we have

\[
\|S_n(\Theta_x, \cdot)\|_\infty \leq \|\Theta_x\|_\infty + \|\Theta_x - S_n(\Theta_x, \cdot)\|_\infty \\
\leq \|\Theta_x\|_\infty + c(d) \log^d(n + 1) \sum_{\nu=1}^d \omega_1(\nu) \left(\Theta_x, \frac{1}{n} \right)_\infty,
\]

where \(\omega_1(\nu) (g, h)_\infty = \sup_{\|l\|_\infty \leq k} \| \Delta_{\nu l}^1 g, h \|_\infty \) and \(\{e_\nu\}_{\nu=0}^d \) is the standard basis in \(\mathbb{R}^d \). Since the function \(\Theta_x \) and all its partial derivatives are bounded (uniformly with respect to \(x \)), there exists a constant \(c_1 \) such that

\[
\sum_{\nu=1}^d \omega_1(\nu) \left(\Theta_x, \frac{1}{n} \right)_\infty \leq \frac{c_1}{n} \quad \text{for all} \quad x \in \mathbb{R}^d,
\]

20
which together with (5.3) implies the required boundedness. Using this with Lebesgue’s dominated convergence theorem and taking into account that both the functions φ and f are band-limited to T^d, we derive

$$
\lim_{n \to \infty} \sum_{\|k\|_{\infty} \leq n} \langle \hat{f}, \hat{\varphi}_0 \rangle \varphi(x + k) = \lim_{n \to \infty} \int_{\mathbb{R}^d} \sum_{\|k\|_{\infty} \leq n} \varphi(x + k) e^{-2\pi i (k, \xi)} \hat{\varphi}(\xi) \hat{f}(\xi) \, d\xi
$$

$$
= \int_{\mathbb{R}^d} \lim_{n \to \infty} \sum_{\|k\|_{\infty} \leq n} \varphi(x - k) e^{2\pi i (k, \xi)} \hat{\varphi}(\xi) \hat{f}(\xi) \, d\xi
$$

$$
= \int_{\mathbb{R}^d} e^{2\pi i (x, \xi)} \sum_{s \in \mathbb{Z}^d} \hat{\varphi}(\xi + s) e^{2\pi i (x, s)} \hat{\varphi}(\xi) \hat{f}(\xi) \, d\xi = \int_{\mathbb{T}^d} \hat{\varphi}(\xi) \hat{\varphi}(\xi) \hat{f}(\xi) e^{2\pi i (x, \xi)} \, d\xi.
$$

Since $\text{supp} \hat{f} \subset \delta \mathbb{T}^d$, it follows from condition 4) that

$$
f(x) - \lim_{n \to \infty} \sum_{\|k\|_{\infty} \leq n} \langle \hat{f}, \hat{\varphi}_0 \rangle \varphi(x + k) = \int_{\delta \mathbb{T}^d} (1 - \hat{\varphi}(\xi) \hat{\varphi}(\xi)) \hat{f}(\xi) e^{2\pi i (x, \xi)} \, d\xi = 0
$$

for every $x \in \mathbb{R}^d$.

So, the theorem is proved for the case $M = I$. For the general case, it remains to repeat the arguments at the end of the proof of Theorem 28.

Remark 30 Condition 2) in Theorem 29 can be replaced by the assumption that $\hat{\varphi} \in \text{Lip}_\alpha, \alpha > 0$, with respect to each variable. In the case $d = 1$, condition 2) can be also replaced by the requirement of bounded variation for $\hat{\varphi}$.

Acknowledgments This research was supported by Volkswagen Foundation in framework of the project ”From Modeling and Analysis to Approximation”. The first author was partially supported by the DFG project KO 5804/1-1.

References

[1] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer, 1976.

[2] C. Bardaro, P. L. Butzer, R. L. Stens, G. Vinti, Prediction by samples from the past with error estimates covering discontinuous signals, *IEEE Trans. Inform. Theory* 56 (2010), no. 1, 614–633.

[3] C. de Boor, R. DeVore, A. Ron, Approximation from shift-invariant subspaces of $L_2(\mathbb{R}^d)$, *Trans. Amer. Math. Soc.* 341 (1994), no. 2, 787–806.

[4] M. D. Buhmann, F. Dai, Pointwise approximation with quasi-interpolation by radial basis functions, *J. Approx. Theory* 192 (2015), 156–192.

[5] P. L. Butzer, J. R. Higgins, R. L. Stens, Classical and approximate sampling theorems: studies in the $L_p(\mathbb{R})$ and the uniform norm, *J. Approx. Theory* 137 (2005), no. 2, 250–263.

[6] P. L. Butzer, R. L. Stens, Reconstruction of signals in $L_p(\mathbb{R})$-space by generalized sampling series based on linear combinations of B-splines, *Integral Transforms Spec. Funct.* 19 (2008), no. 1, 35–58.

[7] D. Costarelli, A. Krivoshein, M. Skopina, G. Vinti, Quasi-projection operators with applications to differential-difference expansions, *Applied Mathematics and Computation* 363 (2019), Article 124623.

[8] D. Costarelli, G. Vinti, Rate of approximation for multivariate sampling Kantorovich operators on some functions spaces, *J. Int. Eq. Appl.* 26 (2014), no. 4, 455–481.
[9] Z. DITZIAN, K. G. IVANOV, Strong converse inequalities, *J. Anal. Math.* 61 (1993), 61–111.

[10] L. GRAFAKOS, Classical Fourier Analysis. Second edition. Springer, New York, 2008.

[11] R.-Q. JIA, Refinable shift-invariant spaces: from splines to wavelets, in: C.K. Chui, L.L. Schumaker (Eds.), Approximation Theory VIII, vol. 2 (College Station, TX, 1995), Ser. Approx. De- compos., vol. 6, World Scientific Publishing, River Edge, NJ, 1995, pp. 179–208.

[12] R.-Q. JIA, Approximation by quasi-projection operators in Besov spaces, *J. Approx. Theory* 162 (2010), no. 1, 186–200.

[13] A. KIVINUUK, T. METSMÄGI, The variation detracting property of some Shannon sampling series and their derivatives, *Sampling Theory Signal Image Process* 13 (2014), no. 2, 189–206.

[14] Yu. S. KOLOMOITSEV, Multiplicative sufficient conditions for Fourier multipliers, *Izv. Math.* 78 (2014), no. 2, 354–374.

[15] Yu. KOLOMOITSEV, A. KRIVOSHEIN, M. SKOPINA, Differential and falsified sampling expansions, *J. Fourier Anal. Appl.* 24 (2018), no. 5, 1276–1305.

[16] Yu. KOLOMOITSEV, M. SKOPINA, Approximation by multivariate Kantorovich-Kotelnikov operators, *J. Math. Anal. Appl.* 456 (2017), no. 1, 195–213.

[17] Yu. KOLOMOITSEV, M. SKOPINA, Approximation by sampling-type operators in L_p-spaces, to appear in *Math. Methods Appl. Sciences* (2020), 1-17, DOI:10.1002/mma.6222.

[18] Yu. KOLOMOITSEV, M. SKOPINA, Quasi-projection operators in weighted L_p spaces, to appear in *Appl. Comput. Harmon. Anal.* (2020), https://doi.org/10.1016/j.acha.2020.01.003.

[19] Yu. KOLOMOITSEV, S. TIKHONOV, Properties of moduli of smoothness in $L_p(\mathbb{R}^d)$, *J. Approx. Theory* (2020) 257, 105423.

[20] A. KRIVOSHEIN, V. PROTASOV, M. SKOPINA, Multivariate Wavelet Frames. Industrial and Applied Mathematics, Springer. Singapore, 2016.

[21] A. KRIVOSHEIN, M. SKOPINA, Multivariate sampling-type approximation, *Anal. Appl.* 15 (2017), no. 4, 521–542.

[22] E. Liflyand, S. Samko, R. Trigub, The Wiener algebra of absolutely convergent Fourier integrals: an overview, *Anal. Math. Phys.* 2 (2012), 1–68.

[23] H. Q. NGUYEN, M. UNSER, A sampling theory for non-decaying signals, *Appl. Comput. Harmon. Anal.* 43 (2017), no. 1, 76–93.

[24] S. M. Nikolskii, The Approximation of Functions of Several Variables and the Imbedding Theorems, 2nd ed. Moscow: Nauka, 1977 (Russian). – English transl. of 1st. ed.: John Wiley & Sons, New-York, 1978.

[25] O. ORLOVA, G. TAMBERG, On approximation properties of generalized Kantorovich-type sampling operators, *J. Approx. Theory* 201 (2016), 73–86.

[26] K. RUNOVSKI, H.-J. SCHMEISER, On families of linear polynomial operators generated by Riesz kernels, *Eurasian Math. J.* 1 (2010), no. 4, 124–139.

[27] H.-J. SCHMEISER, W. SICKEL, Sampling theory and function spaces. In : Applied Mathematics Reviews, Vol. 1, 205–284, World Scientific, 2000.

[28] M. SKOPINA, Band-limited scaling and wavelet expansions, *Appl. Comput. Harmon. Anal.* 36 (2014), 143–157.
[29] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.

[30] A. F. Timan, Theory of Approximation of Functions of a Real Variable, Pergamon Press, Oxford, London, New York, Paris, 1963.

[31] R. M. Trigub, E. S. Belinsky, Fourier Analysis and Approximation of Functions. Kluwer. 2004.

[32] M. Unser, Sampling - 50 years after Shannon, *Proceedings of the IEEE* 88 (2000), 569–587.

[33] G. Vinti, L. Zampogni, Approximation results for a general class of Kantorovich type operators, *Adv. Nonlinear Stud.* 14 (2014), no. 4, 991–1011.

[34] G. Wilmes, On Riesz-type inequalities and \(K \)-functionals related to Riesz potentials in \(\mathbb{R}^N \), *Numer. Funct. Anal. Optim.* 1 (1979), no. 1, 57–77.