Combined stellar structure and atmosphere models for massive stars

I. Interior evolution and wind properties on the main sequence

D. Schaerer¹, A. de Koter², W. Schmutz³, and A. Maeder¹

¹ Geneva Observatory, CH-1290 Sauverny, Switzerland; e-mail: schaerer@scsun.unige.ch, maeder@scsun.unige.ch
² Universities Space Research Association, Code 681, GSFC, Greenbelt, MD 20771, USA; e-mail: alex@home.gsfc.nasa.gov
³ Institut für Astronomie, ETH Zentrum, CH-8092 Zürich, Switzerland; e-mail: schmutz@astro.phys.ethz.ch

Received date; accepted date

Abstract. We present the first "combined stellar structure and atmosphere models" (CoStar) for massive stars, which consistently treat the entire mass losing star from the center out to the asymptotic wind velocity. The models use up-to-date input physics and state-of-the-art techniques to model both the stellar interior and the spherically expanding non-LTE atmosphere including line blanketing. Our models thus yield consistent predictions regarding not only the basic stellar parameters, including abundances, but also theoretical spectra along evolutionary tracks. On the same ground they allow us to study the influence of stellar winds on evolutionary models.

In this first paper, we present our method and investigate the wind properties and the interior evolution on the main sequence (MS) at solar metallicity.

The wind momentum and energy deposition associated with the MS evolution is given and the adopted wind properties are discussed. From our atmosphere calculations, which include the effect of multiple scattering and line overlap, we also derive theoretical estimates of mass loss driven by radiation pressure. These values are compared with the predictions from recent wind models of the Munich group (Pauldrach et al. 1990, 1994, Puls et al. 1995). We find an overall agreement with most of their results. In addition, our models are better in reproducing the strong wind momentum rates observed in supergiants than those of Puls et al.

A comparison between boundary conditions given by the conventional plane parallel and the new spherically expanding atmosphere approach is made. For the MS evolution the evolutionary tracks and the interior evolution are found to be basically unchanged by the new treatment of the outer layers. However, for stars close to the Eddington limit, a small uncertainty in the behaviour of the deep atmosphere is found which might marginally affect the evolution. Given the small spherical extension of the continuum forming layers in the considered evolutionary phases, the predicted stellar parameters differ negligibly from those obtained using plane parallel atmospheres.

Key words: Stars: atmospheres - early-type - evolution - fundamental parameters - Hertzsprung-Russel (HR) diagram - mass-loss

1. Introduction

This is the first paper in a series dealing with "combined stellar structure and atmosphere models". In the present publication we introduce our method and study wind properties and the interior evolution on the main sequence. The second paper in this series will deal with the spectral evolution of the models presented here (Schaerer et al. 1995, hereafter Paper II). A first study covering the Wolf-Rayet phases is presented in Schaerer (1995a,b). The CoStar models use up-to-date input physics and are based on state-of-the-art techniques for both the interior and atmosphere modeling. The latter, in particular, includes the effects of line blanketing in the non-LTE expanding atmosphere, as presented by Schaerer & Schmutz (1994a,b; henceforth SS94ab).

Mass loss through stellar winds is (i) the determining process for the evolution of the most massive stars ($M_\ast \geq 20 M_\odot$; cf. Chiosi & Maeder 1986, Maeder & Conti 1994), and is also responsible for (ii) profoundly shaping the emergent spectral energy distribution of these stars (e.g. Kudritzki & Hummer 1990, Schmutz et al. 1992). Since the mass outflow is important in the outermost layers, where radiation decouples from matter, stellar winds
parameters, such as radii and temperatures. In admittedly 2D, Schauer et al.: Combined stellar structure and atmosphere models for massive stars the outer stellar layers of massive stars, current evolution-cesses affected by mass loss, which demonstrate the in- and the wind.

ary models still rely on hydrostatic plane parallel grey timate link between the stellar interior, the atmosphere, and stellar winds. For a more realistic description of the in- late their outer boundary conditions. Within this frame- and stellar winds. For a more realistic description of the is the aim of this project, which attempts a consistent in- ary phases corresponding to OB, Of/WN, and Wolf/Ray et a/ first step for future hydrodynamic studies of e.g. WR

latest grids of Meynet et al. (1994). For a more detailed en volution code. We use the same input physics as for the dence describ ed by plane parallel and spherically expand/- drodynamic models, theoretical mass loss rates from our in- and the associated wind momen tum and energy output in- line blank eted atmosphere calculations. Finally, in Sect. 4 in- estions describ ed by plane parallel and spherically expand/-

Despite the complex physical situation prevailing in in- sphere models allow us to study the e/ect of a spher- scarde et al. (1992). In particular, the models are com- in the expanding atmosphere. Our choice of in- guarantees that radiation at all wavelengths is thermalised and that the di/usion approximation used in the in- radiation field should be su/ciently close to isotropy, whic- the usual expression for the radiation pres/-.

The equation of state treats the partial ionization of H, He, C, O, Ne and Mg as described in Schaller et al. (1992).

The latest OPAL opacities are used (Iglesias et al. 1992), which are completed with the atomic and molec/ary opacities of Kurucz (1993) for temperatures below 10 kK. The equation of state treats the partial ionization of H, He, C, O, Ne, and Mg as described in Schaller et al. (1992).

The core is equal to the total stellar mass contained in the expanding atmosphere. Our choice of in- guarantees that radiation at all wavelengths is thermalised and that the di/usion approximation used in the in- radiation field should be su/ciently close to isotropy, whic- the usual expression for the radiation pres/-.

Diagram

Fig. 1. Sketch of the stellar model computed with a modelled moderate core overshooting. The latest OPAL opacities are used (Iglesias et al. 1992), which are completed with the atomic and molec/ary opacities of Kurucz (1993) for temperatures below 10 kK. The equation of state treats the partial ionization of H, He, C, O, Ne, and Mg as described in Schaller et al. (1992).

The core is equal to the total stellar mass contained in the expanding atmosphere. Our choice of in- guarantees that radiation at all wavelengths is thermalised and that the di/usion approximation used in the in- radiation field should be su/ciently close to isotropy, whic- the usual expression for the radiation pres/-.

Equations

- \(P = \rho \frac{d}{2 \pi R} \) where \(R \) is the radius, where the Lan/...
Since \(\tau \leq \tau_c \) can be derived, in particular also the photospheric radius \(R_{\tau=2/3} \) at \(\tau_{\text{Ross}} = 2/3 \). The boundary conditions are given by the velocity
\[
v(M_r = M) = v_+,
\]
which, given the atmospheric structure (see below), is determined by the above requirement for the optical depth. For the interior below \(\tau_c \) expansion is neglected (but see Schaefer 1995a,b for Wolf-Rayet phases). From the continuity equation we obtain the boundary condition for the density \(\rho_+ \), i.e.
\[
\rho(M_r = M) \equiv \rho_+ = \frac{\dot{M}}{4\pi R_+^2 v_+}.
\]
The last boundary condition is given by the temperature \(T(R_+) \). It is obtained by a simultaneous solution of the temperature and density structure for the photosphere and the wind as described in the following.

In calculating the atmospheric structure for the MS phases we closely follow de Koter (1993) and de Koter et al. (1995). Basically the atmosphere is characterised by two parts: the subsonic regime with an extended photosphere, and the wind, where the flow is accelerated to the terminal wind velocity \(v_\infty \). In between, both parts are smoothly connected. More precisely, in the subsonic regime the density structure \(\rho(r) \) is computed by solving the momentum equation for a stationary flow taking into account gas and radiation pressure. We write the momentum equation as
\[
\frac{\partial v}{\partial r} = -\frac{1}{\rho} \frac{\partial P_g}{\partial r} - \frac{GM}{r^2} \left[1 - \frac{\Gamma(r)}{r^2} \right],
\]
where
\[
\Gamma(r) = \frac{\Gamma_r}{\Gamma_+} = \frac{L_+ \kappa_F(r)}{4\pi cGM} = \frac{\sigma T_+^4 \kappa_F(r)}{c g_+}
\]
is the ratio between the radiative acceleration \(g_r \) and the gravitational acceleration \(g_+ = GM/R_+^2 \). The other variables have their usual meaning. Note that \(\Gamma(r) \) is not constant due to its dependence on the flux weighted opacity \(\kappa_F \), which is a priori a function of \(T, \rho, v \) and \(dv/dr \) if the effects of continuum and line acceleration are taken into account.

With regard to the flux mean opacity, we have chosen the following approach: For optical depths \(\tau_{\text{Ross}} < \tau_c = 2 \), we adopt the electron scattering opacity, i.e. \(\kappa_F = \sigma_e \). Since \(\sigma_e \) depends on the chemical composition and the ionization of the considered elements, we adopt the value calculated from the equation of state of the interior model at the boundary \(\tau_c \). At large optical depths \(\tau_{\text{Ross}} \geq \tau_c \) we adopt for \(\kappa_F(r) \) the Rosseland opacities as for the interior. Note that these opacity calculations assume LTE and a static medium. By checking the departure coefficients in depths LTE is attained to sufficient precision. Since opacities in expanding media are larger than in the static case (e.g. Karp et al. 1977), and the use of Rosseland opacities instead of flux weighted mean opacities can also lead to an underestimate of the opacity, the adopted opacities provide a lower limit. An improved treatment would clearly require a much more complicated calculation of the radiative forces coupled together with a hydrodynamic solution.

Following de Koter et al. (1995) we rewrite Eq. (4) using the continuity equation and write the equation of state for the perfect gas as \(P_g = \rho a^2 \), where \(a = (kT/\mu m_H)^{1/2} \) is the local isothermal sound speed. This yields
\[
\frac{\partial v}{\partial r} = \frac{1}{v^2 - a^2} \left\{ \frac{2a^2}{r} - \frac{GM}{r^2} \left[1 - \Gamma(r) \right] - \frac{k}{\mu m_H} \frac{\partial T}{\partial r} \right\}.
\]
The mean molecular weight \(\mu \) is obtained from the equation of state as described for the electron scattering opacity above. Integrating Eq. (6) from subsonic velocities \(v_+ \) outward one progressively obtains an increasing velocity gradient, as \(v < a \) and the quantity in large brackets in Eq. (4) is negative for \(v < a \). This property allows us to smoothly connect the subsonic part with a wind structure given by
\[
v(r) = v_\infty \left(1 - \frac{r_+}{r} \right)^{\beta},
\]
where the radius \(r_+ \) is adjusted such that both the velocity field and its first derivative are continuous. The choice of the wind parameters \(v_\infty \) and \(\beta \) is described in Sect. 2.4.

A consistent solution of the momentum equation and temperature structure yields the density and temperature structure. At the same time the velocity \(v_+ \) is also adjusted to fulfil the boundary condition with the stellar interior (cf. Eq. (1)). The temperature structure is given by radiative equilibrium in an extended grey atmosphere. It is determined from the generalised Eddington approximation following Lucy (1971) and Wessolowski et al. (1988). The procedure is basically the same as described in SS94a, where more details can be found (cf. also de Koter 1993). In the outermost regions of the wind the temperature is not allowed to drop below a minimum value \(T_{\min} \), which, following the results of Drew (1989), is chosen as follows: For \(T_{\text{eff}} \geq 20 \text{ kK} \) we set \(T_{\min} = 0.4 \ T_{\text{eff}} \), and \(T_{\min} = 0.5 \ T_{\text{eff}} \) for \(T_{\text{eff}} < 20 \text{ kK} \).

Because of the large computational effort required, we have neglected the influence of line blanketing on the temperature structure in calculating CoStAR models. However, the effect of line blanketing is taken into account in the statistical equilibrium and radiative transfer calculations (see Sect. 2.5).

2.3. Consistent interior and atmosphere solution

For given stellar and wind parameters \((L_+, R_+, M, \dot{M}, v_\infty, \beta) \) we obtain with the procedure of Sect. 2.2 a consistent atmospheric structure covering the photosphere and
ture $T(R_*)$ determining the temperature boundary condition for the stellar interior. In another iterative process, embracing both the stellar interior and the atmosphere, we finally obtain a consistent solution for the entire star satisfying all boundary conditions. The procedure is schematically shown in Fig. 1.

2.4. Mass loss rates and wind structure

The adopted mass loss rate \dot{M}_{evol} and the additional parameters required to describe the wind structure are as follows:\footnote{Note that the mass loss rate \dot{M}_{evol} adopted for the evolutionary calculations should not be confused with the theoretical mass loss rate estimate \dot{M}_{calc} predicted by our atmosphere calculations in Sect. 3.2.2.}

- Mass loss rates are adopted as in Meynet et al. (1994). This means that for population I stars throughout the HR diagram we use the mass loss rates given by de Jager et al. (1988), enhanced by a factor of two. Justifications for this choice are given by Meynet et al. (1994) and Maeder & Meynet (1994).
- The terminal velocities v_{∞} are from wind models of Leitherer et al. (1992). Comparisons of our adopted terminal velocities with observations are discussed in Sect. 3.2.1.
- For the rate of acceleration of the supersonic flow (see Eq. (7)), we take $\beta = 0.8$ following theoretical predictions of Friend & Abbott (1986) and Pauldrach et al. (1986). These predictions are in good agreement with observations of O stars by Groenewegen & Lamers (1991).

2.5. non-LTE radiation transfer including line blanketing

The non-LTE radiation transfer calculations, which yield the detailed spectral evolution use the atmospheric structure from the CoStar model described above. For the detailed transfer calculations we used the ISA-WIND non-LTE code of de Koter et al. (1993, 1995). In this code, the line transfer problem is treated using the Sobolev approximation, including the effects of the diffuse radiation field, and the continuous opacity inside the line resonance zone. As a new feature of the ISA-WIND code we also include line blanketing, following the opacity sampling technique introduced by Schmutz (1991). The method involves a Monte Carlo radiation transfer calculation including the most important spectral lines of all elements up to zinc. The ionization and excitation of the metals is treated as in SS94ab, where the reader is referred to for a detailed description of the entire procedure.

The input physics for the atmospheric structure calculations consists of atomic data for the elements explicitly included in the non-LTE model. In the present work hydrogen and helium are treated using the same data as de Koter et al. (1995): In the atomic model for H and He I we account for the first ten levels with principal quantum number $n = 1$ to 10. The atomic model for He II, consisting of 17 levels, is described by Wessolowski et al. (1988). In total we account for 226 line transitions. The inclusion of C, N, O, Si, and other elements is in progress.

The H, He, C, N, and O composition of the atmosphere is that corresponding to the outermost layer of the interior model. For the metals included in the line blanketed atmosphere, the abundances of Anders & Grevesse (1989) have been adopted.

3. Interior evolution and feedback to the ISM

We have calculated three CoStar tracks for solar metallicity and initial masses of $M_i = 40$, 60, and $85 \, M_\odot$. Only the results for the MS phase are discussed in this work. We also exclude those parts of the tracks where the WR phase (defined by a hydrogen surface abundance $X < 0.4$ in mass fraction and $\log T_{\text{eff}} > 4$; cf. Schaller et al. 1992) is already entered during the H-burning phase. In our models this occurs for the $85 \, M_\odot$ model. Therefore only part of the H-burning phase of this model is covered in
Table 1. H-burning lifetimes and total momentum and energy deposition during MS evolution at Z=0.02

Initial mass	H-burning phase [10^6 yr]	momentum [g cm s^-1]	energy [erg]	comments
40 M\(_\odot\)	4.40	3.12 \(10^{42}\)	3.36 \(10^{50}\)	
60 M\(_\odot\)	3.47	7.87 \(10^{42}\)	8.25 \(10^{50}\)	
85 M\(_\odot\)	2.67	1.42 \(10^{42}\)	1.75 \(10^{51}\)	to beginning of WR phase

Fig. 3. a Mass loss rate as a function of age during the MS evolution. The line styles are as follows: 85 M\(_\odot\) short-dashed, 60 M\(_\odot\) solid, and 40 M\(_\odot\) long-dashed. b Terminal velocity as a function of age. The lines are coded as in panel a.

Section 4 we will examine in more details the atmospheric structures to understand this result.

The evolution of the wind properties during the MS evolution are presented in Fig. 3, where we show the mass loss rate, \(M_{\text{evol}}\), and the terminal velocity, \(v_{\text{esc}}\), as a function of age. Due to an increasing luminosity and evolution towards lower temperatures \(M_{\text{evol}}\) increases during the evolution. The terminal velocity remains nearly constant during the first million years, whereas it decreases afterwards, mainly as a result of an increasing radius, hence a decreasing escape velocity.

Fig. 5. Adopted terminal velocities as a function of escape velocity (The thick lines denote our models: line styles as in Fig. 3). Thin lines represent different fits. The thin dashed-dotted line shows the fit through our model data (see text). The dotted line (marked GLP) is the relation obtained by Groenewegen et al. (1989) from UV fits. See text for a discussion.
3.1. Deposition of momentum and energy

To study the effect of mass loss in massive stars on the interstellar medium it is of interest to quantify the wind momentum flux $M_{\text{evol}} v_{\infty}$, and the rate of release of mechanical energy $1/2 M_{\text{evol}} v_{\infty}^2$ into their surroundings. These values may be used to investigate the properties of individual nebulae, but may also be used to derive predictions for integrated young stellar populations (see Leitherer et al. 1992, Williams & Perry 1994).

The momentum flux and mechanical wind power during the MS phase is shown in Fig. 4, while the total momentum and energy deposition integrated over the MS lifetime is given in Table 1. Figure 4 illustrates the progressive increase of both wind momentum and energy during the MS evolution caused by the strong enhancement of mass loss towards the end of the main sequence.

3.2. Discussion of wind properties

In this section, we discuss the most important adopted wind parameters, i.e., terminal velocity and mass loss rate. We first compare our adopted v_{∞} with observations. We then present theoretical mass loss rates derived from simple energetic considerations, and compare these with the adopted values.

3.2.1. Terminal velocities

To make a comparison between the adopted and observed values of v_{∞}, we plot both against the escape velocity v_{esc}. The relation between v_{esc} and v_{∞} is discussed by, e.g., Castor et al. (1975) and Abbott (1978). We derive the escape velocity from the effective gravity $g_{\text{eff}} = g_{n}(1 - \Gamma)$. The correction for the radiation pressure due to electron scattering is given by $\Gamma = 7.66 \times 10^{-3} \sigma_{e}(L/L_{\odot})(M_{\odot}/M) $, where the value of the electron scattering opacity corresponds to the value at the boundary R_{e} (cf. Sect. 2.2).

In Fig. 5 the adopted terminal velocity is shown as a function of the resulting v_{esc}. A least-square fit to the values from the three tracks shown in Fig. 5 yields $v_{\infty} = (633.97 \pm 4.42) + (1.921 \pm 0.005)v_{\text{esc}}$, where the velocities are in km s$^{-1}$. As a comparison we have also plotted in Fig. 5 the relation derived by Groenewegen et al. (1989, Eq. 6) from UV fits including the effect of turbulence. The agreement is reasonable, the maximum differences in the considered range being about 20%. Note that the overestimation obtained by their Eq. 6 for stars close to the ZAMS (i.e., large v_{esc}) would be slightly reduced by adopting their fit-formula (Eq. 9), which takes also the dependence of v_{∞} on T_{eff} into account. For velocities $v_{\text{esc}} \lesssim 2000$ km s$^{-1}$ our adopted formula probably slightly overestimates the wind velocity (cf. Leitherer et al. 1992). Our results are also in agreement with the relation from Prinja et al. (1990), provided a small ($\sim 8\%$) downward correction of their adopted escape velocities is applied.

In résümé, we can conclude that for escape velocities $v_{\text{esc}} \gtrsim 800$ km s$^{-1}$ the adopted terminal velocities compare well with the observations, while for lower values the adopted v_{∞} is probably overestimated by up to $\sim 25\%$. However, as can be seen from Fig. 3, this only concerns a short period of time close to the end of the main sequence evolution.
3.2.2. A mass loss rate estimate using the photon energy balance

Presently all evolutionary models, including the ones developed in this work, rely on the use of empirical mass loss rates. While radiation driven wind theory is quite successful in explaining the overall properties of OB stars and possibly also LBV’s (e.g. Kudritzki et al. 1991 and references therein; Pauldrach & Puls 1990) discrepancies still remain (e.g. Groenewegen et al. 1989, Schmutz & Schaerer 1992, Lamers & Leitherer 1993 hereafter LL93, Puls et al. 1995). Although the calculation of consistent hydrodynamic wind models, such as the ones presented by SS94a, is clearly beyond the scope of the present work, it is however very interesting to make estimates of the mass loss rates which can be driven by radiation pressure.

We estimate the mass loss rate, subsequently called \dot{M}_{calc}, from the photon energy balance, which is obtained from our Monte-Carlo radiation transfer calculations. Since our models cover the entire main sequence for stars from $M_i = 40$ to 85 M_\odot, a comparison of estimated radiation driven mass loss rates with observations could yield useful insight to understand the present difficulties of the radiation driven wind theory.

To determine \dot{M}_{calc}, we follow the considerations of Abbott & Lucy (1985). From the total radiative energy deposition in the wind, $L_T = L(R_e) - L(\infty)$, we calculate \dot{M}_{calc} from $L_T = 1/2 \dot{M}_{\text{calc}} [v_\infty^2 + v_{\text{esc}}^2]$, assuming that the entire radiative energy deposition in the wind is converted to mechanical energy only, by lifting matter out of the gravitational field and giving it its asymptotic kinetic energy. The flux transfer rate L_T is obtained from the MC simulation taking into account a large number of metal lines, and including line overlap and multiple scattering (see SS94a and Paper II). Note, however, that achieving consistency is beyond the scope of the present work. This could be accomplished by adjusting the mass loss rate until L_T, which depends on the wind density, equals the mechanical energy (cf. Abbott & Lucy 1985). Our results should only therefore be taken as estimates for mass loss driven by radiation pressure. Surprisingly, as shown below, this method shows a good agreement with detailed hydrodynamic calculations of Schaerer & Schmutz (1994a).

In Figure 6a, we have plotted the ratio $\dot{M}_{\text{calc}}/\dot{M}_{\text{evol}}$ of the theoretical to the adopted mass loss rate as a function of effective temperature. For the models close to the ZAMS ($T_{\text{eff}} \geq 43.6$ kK) we see that the estimated theoretical mass loss rate is of the same order, or even larger, than the adopted values for \dot{M}_{evol}. In this case, the energy extracted from the radiation field can, in principle, account for the energy stored in the stellar wind. On the other hand, for the models with $T_{\text{eff}} \ll 43.6$ kK, the adopted \dot{M}_{evol} is larger than the theoretical derived values. Similar discrepancies as a function of effective temperature are predicted by LL93, who use analytic solutions of Ku-
Pauldrach et al. (1990). This indicates a shortcoming in the current state of the radiation driven wind theory for evolved stars, which may be resolved by consistent hydrodynamic calculations.

Of particular interest is the wind efficiency $\eta = \frac{\dot{M} v_{\infty}}{L}$ predicted by radiation driven wind models. For OB stars one typically finds $\eta \sim 0.1$--0.6, while for WR stars values considerably larger than unity can be obtained (e.g., LL93).

In Figure 6b, we have plotted the theoretical wind efficiency η_{calc} as a function of the luminosity. The model data are fitted by the relation

$$\log \eta_{\text{calc}} = (0.669 \pm 0.067) \log (L/L_\odot) - 4.276 \pm 0.386, \quad (8)$$

with a rms of 0.052 dex. The relation is represented by the dashed line. Interestingly the corresponding value from a self-consistent hydrodynamic calculation of SS94a for ζ Puppis is quite well matched by the above relation. This indicates that, despite the lack of consistency pointed out above, the estimated mass loss rate \dot{M}_{calc} determined from the flux transfer rate L_T yields a reasonable value for the mass loss rate as derived from full hydrodynamic modeling.

We have compared our predictions for η_{calc} with the those of LL93, which are based on parametrized line forces calculated by Pauldrach et al. (1990). The results of LL93 (their Eq. 23) are plotted as the dotted line in Fig. 6b, the uncertainty being 0.1 dex. Figure 6b reveals that our models predict a steeper increase of the wind momentum with luminosity. For the most luminous model we obtain $\eta_{\text{calc}} \sim 0.7$, which is a factor of two larger than the value of LL93. Since the methods used in both approaches are completely independent, it is difficult to trace the differences back to one single reason. However, we expect to find the largest differences for cases where the effects of multiple scattering may become important since this effect is correctly treated in our models, but has been neglected by Pauldrach et al. (1990). On the other hand the larger wind efficiencies predicted by our calculations could also indicate systematic differences in the ionization structures.

With respect to the ionization problem, we note that our models are supported by comparisons of predicted Fe features in UV spectra, which show a good agreement with observations for the evolved models (see Paper II), where iron is the dominant source of the radiation force.

New calculations of radiation driven wind models based on the improvements reported by Pauldrach et al. (1994) have recently been presented by Puls et al. (1995). They show that the most appropriate quantity when comparing theoretical predictions with observations is the “wind momentum rate” $\dot{M} v_{\infty} R_\star^{1/2}$, since this quantity is expected to show a very weak dependence on the adopted stellar parameters. Indeed a strong correlation of $\log (\dot{M} v_{\infty} R_\star^{1/2})$ with $\log L$ is expected if the line force parameter k, which represents the flux-weighted number of driving lines, is constant. The slope is then only determined by the line force parameters α and δ, and is found to be $1/(\alpha - \delta)$. Observational evidence for such a correlation has been presented by Kudritzki et al. (1995).

To compare our calculations with the results of Puls et al. (1995) we have plotted the predicted wind momentum rate from our models as a function of luminosity in Fig. 7. Also shown are the predictions for the individual galactic objects of luminosity class I objects (solid) and II-V objects (dashed) derived from the data of Puls et al. (their Table 8, galactic objects only).

Fig. 7. Theoretical wind momentum rate as a function of luminosity. Stars, triangles and crosses denote the predictions from our models on the 40, 60, and 85 M_\odot tracks respectively. Small squares show the predictions for individual galactic objects of luminosity class I (filled squares) and II-V (open squares) from Puls et al. (1995). The lines show the mean relations for observed luminosity class I (solid) and II-V objects (dashed)
In this section we discuss the influence of atmospheric boundary conditions on the evolutionary tracks. As will be discussed below, we need to adopt a slightly different treatment for the most massive stars \(M_i \gtrsim 85 \, M_\odot \), which lie close to the Eddington limit. We therefore discuss these cases separately.

4.2. Evolution of the \(M_i = 85 \, M_\odot \) model

For more massive stars the situation can become slightly more complicated because they evolve quite close to the Eddington limit. This may introduce an additional difficulty in the computation of the atmospheric structure.

To illustrate this point we have calculated the MS evolution of a 85 \(M_\odot \) model with both types of atmospheres. We first assumed a constant mass loss rate of \(M_{\text{loss}} = 1.14 \times 10^{-5} \, M_\odot \, \text{yr}^{-1} \) to eliminate indirect effects of mass loss on the evolutionary tracks (see Sect. 4.2.2). The resulting tracks are shown in Fig. 9a. It is important to note that, contrary to the usual treatment (cf. Sect. 2.2), the atmosphere of the CoStar model has been calculated with a depth-independent effective gravity corrected for electron scattering only. As we will argue below, this should yield a more realistic structure than the hydrostatic plane parallel atmosphere using Rosseland opacities.

4.2.1. Constant mass loss tracks for \(M_i = 85 \, M_\odot \)

Figure 9b shows the evolutionary track in the gravity-\(T_{\text{eff}} \) diagram. To illustrate its proximity with respect to the Eddington limit we have plotted the limit derived by Lamers & Fitzpatrick (1988) from Kurucz models (labeled \(g_{\text{Edd}} \)). Also shown is the lowest \(\log g \) value (labeled \(\log g_{\text{min}} \)) for which they obtained converged hydrostatic atmosphere structures, and which were used to determine the \(g_{\text{Edd}} \) limit by extrapolation.

The difference between the tracks in the HR-diagram (Fig. 9a) can be understood by looking at the atmospheric
structures of models with stellar parameters corresponding to the model marked 306 in this figure. Figure 10 shows the temperature and density stratification of the plane parallel (dashed line) and the spherically expanding atmosphere (solid line). Note that at log $\tau_{\text{Ross}} > -0.2$ the hydrostatic model shows a small density inversion. The ρ-inversion occurs in the zone where He becomes completely ionised and is due to the increasing opacity (Fig. 9b).

If we suppress the density inversion in the plane parallel model by assuming a constant opacity ($\kappa = \kappa_\odot$), the density scale height remains constant (dotted line). However, a higher density results at any given optical depth, and at the inner boundary in particular, because the opacity only accounts for electron scattering.

In a hydrodynamic solution, on the other hand, one could make the conjecture that the opacity increase at rather low optical depths contributes to the acceleration of the outflow and washes out the density inversion. Since in this work we are not able to solve consistently for the full hydrodynamic equations of the entire atmospheric structure, we use our usual procedure to describe the wind and the photosphere, but we do not allow for density inversions in CoStar models. This is simply obtained by adopting a constant, i.e. depth-independent effective gravity corrected for electron scattering only. The usual Rosseland opacities are however used for the temperature determination. The resulting structure of the spherically expanding atmosphere is plotted in Fig. 10 showing (in the inner part) the same density scale height as the plane parallel model where the ρ-inversion has been suppressed. One can clearly see the large velocity gradient, which is just located outward of the zone of the density inversion of the hydrostatic model.

Since the temperature is basically determined in the photosphere (cf. above) both models have the same temperature at the inner boundary. Due to the higher density in atmospheres without ρ-inversion the pressure is, however, slightly larger than in the hydrostatic atmosphere where the density inversion occurs.

When the modified boundary conditions are used to determine the entire stellar structure, the star will readjust itself to the increased compression, which yields a slightly lower radius. This explains the differences between the CoStar and the conventional track (both with $\dot{M}_{\text{rel}} = \text{const}$) shown in Fig. 9. As we will see below, the effect of modified boundary conditions has indirect consequences on the evolution, since the position in the HR-diagram determines the mass loss rate.

\[^2\] Approximately 30% of the total pressure at τ_\odot is provided by the gas pressure.
4.2.2. Variable mass loss track for $M_i = 85 \, M_\odot$

We now adopt the mass loss rate prescription given in Sect. 2.4. This allows us to illustrate indirect effects of the boundary conditions on evolutionary tracks. Figure 11 shows a comparison of the $CoStar$ track with the track calculated with the plane parallel atmosphere (from Meynet et al. 1994). Here we concentrate on the evolution from the ZAMS to the beginning of the WR phase, marked by a star in the HR-diagram. To illustrate the differences in later phases, we show the continuation of the tracks in the WNL phase. As explained above, the $CoStar$ track has been calculated with a constant effective gravity in the photosphere. Therefore the pressure at the boundary τ_e is slightly larger than for the plane parallel atmosphere, which results in a reduced radius, i.e. a larger effective temperature. Since, in turn, the mass loss rate at a given luminosity decreases with increasing T_{eff} (see de Jager et al. 1988; also Lamers & Leitherer 1993), the $CoStar$ model suffers a smaller mass loss (cf. Fig. 11b), which explains its slight overluminosity and hence the shortened lifetime (although only $\sim 1.5\%$) with respect to the conventional model.

Clearly the effects discussed here for the O star phase are quite small. Looking at the beginning of the subsequent WR phase, part of which is also plotted in Fig. 11, the tracks seem to diverge. In fact, this only concerns a very short time before the end of H-burning and the beginning of the hydrogen free WR phase (WNE).

We conclude that the differences in evolutionary track, interior evolution and lifetimes on the main sequence, between the conventional and $CoStar$ models are negligible. However, a small uncertainty in the tracks and the predicted stellar parameters remains for the most luminous MS stars due to their proximity to the Eddington limit. A fully hydrodynamic treatment including the subphotospheric layers and the wind is required to improve the present treatment.

Post-MS phases are discussed in Schaefer (1995a,b).

5. Summary and conclusions

In the present paper we have presented the first “combined stellar structure and atmosphere models” ($CoStar$) for massive stars, which consistently treat the stellar interior and a spherically expanding atmosphere including the wind. Our approach replaces the widely used boundary conditions given by plane parallel grey atmospheres. The $CoStar$ models also predict the detailed emergent spectrum along the evolutionary tracks taking non-LTE effects and line blanketing into account (see Paper II).

As a first exploration of the behaviour of radiation driven wind models on the entire MS we derive estimates of theoretical mass loss rates from energy considerations (Sect. 3.2.2). This is of particular interest since our atmosphere calculations include the effects of multiple scattering and line overlap, which are usually neglected. We have compared our results with the predic-
verify whether for OB stars the quantitative discrepancies of the wind theory (see e.g. Puls et al. 1995) can indeed be explained by the effects included in our models. Atmosphere on the main sequence evolution of massive stars have been discussed. Consistent hydrodynamic calculations (cf. Schaerer & Schmutz 1994a) will be necessary to verify whether for OB stars the quantitative discrepancies of the wind theory (see e.g. Puls et al. 1995) can indeed be explained by the effects included in our models.

One of the important aims of this study was to investigate the possible influence of the spherically extended atmosphere on the main sequence evolution of massive stars, and in particular, on the predicted positions in the HR-diagram. From the well known convergence properties of radiative envelopes (e.g. Schwarzschild 1958) it is expected that small changes of the external boundary conditions have little influence on the interior evolution during phases where only a central nuclear burning source is present. This is confirmed in general by our modeling of the MS evolution, although some uncertainties, related to the modeling of either density inversions in plane parallel hydrostatic atmospheres or the acceleration zone from recent wind models of the Munich group (Pauldrach et al. 1990, 1994, Puls et al. 1995). While we find an overall agreement with their results, our models in addition also reproduce the strong wind momentum rates observed in supergiants. Possible reasons for this finding have been discussed. Consistent hydrodynamic calculations (cf. Schaerer & Schmutz 1994a) will be necessary to verify whether for OB stars the quantitative discrepancies of the wind theory (see e.g. Puls et al. 1995) can indeed be explained by the effects included in our models.

It is important to realize that the above stated relatively unimportant effect of outer boundary conditions on the stellar structure may not generally be true in phases where a burning shell is present. In this case the boundary values may indeed influence the conditions in the shell, leading to a readjustment of its nuclear energy production, which thereby also affects the growth of the underlying He-core. Such a behavior was e.g. found for stars with $M \sim 15-20 \ M_\odot$ undergoing blue loops (Langer 1991).

Subsequent to the MS evolution presented in this paper the considered models will evolve through a brief “LBV like” phase with strong mass loss before entering the Wolf-Rayet phase (see Meynet et al. 1994), where the burning shell will be extinguished in most cases. While the effects of the expanding atmosphere on the interior evolution has been studied for the WR phases by Schaerer (1995a,b), its influence during the short transient phase is expected to be negligible, although it still needs to be explored.

With respect to the accuracy of positions in the HR-diagram the situation can be summarised as follows: Since for main sequence OB stars the continuum is essentially formed in a quasi-hydrostatic photosphere, not only the subsonic lower boundary conditions of both spherical and plane parallel atmospheres are basically identical, but also the spherical extension is negligible. The predicted stellar parameters (radius, T_{eff}) are therefore essentially identical (Sect. 4).

Acknowledgements. We thank Dr. Joachim Puls for providing us with results from recent hydrodynamic calculations. This work was supported in part by the Swiss National Foundation of Scientific Research and by NASA through a grant to the GHRS science team.

References

Abbott D.C., 1978, ApJ 225, 893
Abbott D.C., Lucy L., 1985, ApJ 288, 679
Anders E., Grevesse N., 1989, Geochim. Cosmochim. Acta 53, 197
Castor J.I., Abbott D.C., Klein R.I., 1975, ApJ 195, 157
Chiosi C., Maeder A., 1986, A&A 214, 329
de Koter A., 1993, Ph.D. thesis, Utrecht University, The Netherlands
de Koter A., Lamers H.J.G.L.M., Schmutz W., 1995, A&A , in press
de Koter A., Schmutz W., Lamers H.J.G.L.M., 1993, A&A 277, 561
Drew J.E., 1989, ApJS 71, 267
Friend D.B., Abbott D.C., 1986, ApJ 311, 701
Groenewegen M.A.T., Lamers H.J.G.L.M., 1991, A&AS 88, 625
Groenewegen M.A.T., Lamers H.J.G.L.M., Pauldrach A.W.A., 1989, A&A 221, 78
Iglesias C.A., Rogers F.J., Wilson B.G., 1992, ApJ 397, 717
Jager C., Nieuwenhuijzen H., van der Hucht K.A., 1988, A&A 173, 293

Fig. 11. a HR-diagram of the 85 M_\odot CoStar model (solid line) and the conventional model from Meynet et al. (1994; dashed line; uncorrected temperature T_a). The H-burning phase proceeds from the ZAMS up to the position marked with a star where the tracks enter the WR phase (WNL). Since the CoStar model evolves at slightly higher temperatures its mass loss is smaller (cf. panel (b)) and hence it evolves at higher luminosities. (b): Evolution of the central hydrogen abundance X_c (mass fraction) and the stellar mass, expressed by the ratio M/M_\odot of the present mass to the initial mass. Shown is only the evolution from the ZAMS up to the beginning of the WR phase, which is marked by a star in the panel (a). The mass difference at this stage is $\approx 2.8 \ M_\odot$. Although the tracks diverge during the WR phase, the resulting differences for the H-burning lifetimes are still small.
