Supplementary Information

The Fluorescent Quenching Mechanism of N and S Co-Doped Graphene Quantum Dots with Fe$^{3+}$ and Hg$^{2+}$ Ions and Their Application as a Novel Fluorescent Sensor

Yue Yang 1, Tong Zou 2, Zhezhe Wang 1, Xinxin Xing 1, Sijia Peng 3, Rongjun Zhao 1, Xu Zhang 2 and Yude Wang 2,3,*
Table 1. The atomic populations of Fe$^{3+}$@N, S-GQDs and Hg$^{2+}$@N,S-GQDs.

Materials	s	p	d	Total	Charge (e)	Bond Population	d (Å)		
Fe$^{3+}$	C4	1.20	2.98	4.18	-0.18	C1-O	0.48	1.43	
	C9	1.09	3.02	4.12	-0.12	C1-S	0.53	1.76	
	C10	1.26	2.92	4.18	-0.18	C2-S	0.64	1.70	
	N	1.40	3.84	5.23	-0.24	C2-N	0.88	1.39	
	O	1.81	4.60	6.42	-0.42	C3-N	0.83	141	
	S	1.63	3.60	5.22	0.78	C3-O	-0.05	2.63	
	Fe	0.28	-0.10	7.16	7.34	0.66	Fe-O	2.64	
						Fe-S	0.17	2.03	
						Fe-N	-0.17	2.80	
Hg$^{2+}$	C4	1.36	2.83	4.19	-0.19	C1-O	0.32	1.57	
	C9	1.07	3.07	4.14	-0.14	C1-S	0.43	1.76	
	C10	1.03	2.75	3.77	0.23	C2-S	0.59	1.71	
	N	1.39	3.87	5.25	-0.25	C2-N	0.86	1.39	
	O	1.73	4.55	6.28	-0.28	C3-N	0.91	1.41	
	S	1.70	3.50	5.20	0.80	C3-O	0.50	1.51	
	Hg	1.87	0.01	10.0	11.87	0.13	Hg-O	-0.07	3.37
						Hg-S	-0.06	3.85	
						Hg-N	-0.13	3.24	
Table S2 Recovery of Fe$^{3+}$ and Hg$^{2+}$ detection in drinking water samples.

Sample	Spiked concentration	Detected concentration	Recovery ± RSD (%)
Fe$^{3+}$ in Drinking water	700 nM	654 nM	93 ± 4.1
	1 μM	1.27 μM	127 ± 5.3
	3 μM	3.63 μM	121 ± 6.6
Hg$^{2+}$ in Drinking water	50 nM	62 nM	124 ± 3.4
	100 nM	114 nM	114 ± 4.6
	300 nM	284 nM	95 ± 7.6
Figure S1. The schematic diagram of detection device geometry and testing process.
Figure S2. The stability of fluorescence intensity of as-synthesized N, S-GQDs solutions.
Figure S3. The fluorescence intensity of N, S-GQDs in real sample detection.