Defuzzification Formula for Modelling and Scheduling A Furniture Fuzzy Project Network

S. Maheswari, M. Shalini, T. L. Yookesh

ABSTRACT - This research article presents a new defuzzification formula for deciding the critical path in a proposed network. Here we introduce an octagonal fuzzy numbers for representing the duration time. It is shown that it is better to use octagonal fuzzy numbers towards determining the critical path. A numerical example is given and the proposed formula as compared with the existing fuzzy numbers.

Keywords: FCPM, fuzzy project network, fuzzy numbers, defuzzification.

MSC: 63E72, 65K10, 90B15.

I. INTRODUCTION

The critical path method (CPM), worked out toward the start of the 1960s, Starting with the second part of the 1970s proposed in [5,8,11]. In [10] they calculated the critical path by considering the needed sources, the time of project completion. Zadeh [12] introduced another path to accord with vague data is to use the perception of fuzziness. Jain [4] proposed the idea of fuzzy numbers and positioning fuzzy numbers. In [1] acquainted a calculation with carryout critical path under fuzzy domain. In [3] they computed fuzzy math operations to calculate the fuzzy earliest starting time of activity in a network.

In [2] concentrated on the choice of the centroid strategy to find crisp values which speak to uncertain information. In [9] developed a proposed centroid method for trapezoidal fuzzy number. In [7] displayed an arranging model for a helicopter support focus, it is to ensure a decent administration level to restrict flying machine visit length. In [6] presented a wellbeing related personal satisfaction by utilizing four-advance calculation of positioning fuzzy numbers.

This paper, we present an approach, which is not researched so far. We used octagonal fuzzy numbers for centroid method to find the critical path. We compared our proposed fuzzy number with the existing triangular and trapezoidal fuzzy numbers. The conclusion has arrived through numerical example.

II. PRELIMINARIES

Here, we present the most basic concepts and defuzzification.

2.1. Fuzzy Set

If X is a collection of objects denoted generically by x, then a fuzzy set A in X is a set of ordered pair

\[A = \{ x, \mu_A(x) : x \in X \} \]

where \(\mu_A(x) \) is called themembership function of A.

2.2. Fuzzy Number

The fuzzy number A is a fuzzy set of the real number R with membership function

\[\mu_A(x) \]

1. \(\mu_A(x) \) is continuous

in \((a,b)\)

2. \(\mu_A(x) \) is increasing

in \((c,d)\)

3. \(\mu_A(x) \) is decreasing

2.3. Trapezoidal fuzzy number

\[\mu_A(x) = \begin{cases}
\frac{x - b_1}{b_2 - b_1}, & b_1 \leq x \leq b_2 \\
1, & b_2 \leq x \leq b_3 \\
\frac{x - b_4}{b_3 - b_4}, & b_3 \leq x \leq b_4 \\
0, & \text{otherwise}
\end{cases} \]

Here, \(A = (b_1,b_2,b_3,b_4) \) is a trapezoidal fuzzy number.

2.4. Triangular fuzzy number

\[\mu_A(x) = \begin{cases}
\frac{x - b_1}{b_2 - b_1}, & b_1 \leq x \leq b_2 \\
\frac{x - b_3}{b_2 - b_3}', & b_2 \leq x \leq b_3 \\
0, & \text{otherwise}
\end{cases} \]

Here, \(A = (b_1,b_2,b_3) \) is a triangular fuzzy number.

2.5. Defuzzification

Transformation from a fuzzy set to a crisp number is called a defuzzification. Defuzzification is required when you want a crisp number as output from a fuzzy system. It can take many forms, but the most standard defuzzification is through computing the centroid method.

Revised Manuscript Received on December 15, 2019.

S. Maheswari, Department of Mathematics, M.Kumarasamy College of Engineering, Karur- Tamil Nadu, India. Email smaheswari28@gmail.com

M. Shalini, S. Maheswari, Department of Mathematics, M.Kumarasamy College of Engineering, Karur- Tamil Nadu, India. Email drshalinimath@gmail.com

T. L. Yookesh, Department of Science and Humanities, VFSTR (Deemed to be University), Guntur-(A.P.) India. Email: renu_yookesh@yahoo.co.in

International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-9 Issue-1S5, December, 2019

DOI: 10.35940/ijeat.A1048.129219
Defuzzification Formula for Modelling and Scheduling A Furniture Fuzzy Project Network

2.6 Arithmetic Operations

Give A and B be two octagonal fuzzy numbers parameterized by \((A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8)\) and \((B_1, B_2, B_3, B_4, B_5, B_6, B_7, B_8)\) respectively. The simplified fuzzy number arithmetic operations between the fuzzy numbers A and B as follows: Fuzzy numbers addition \(\oplus\):

\[
(A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8) \oplus (B_1, B_2, B_3, B_4, B_5, B_6, B_7, B_8) = (A_1+B_1, A_2+B_2, A_3+B_3, A_4+B_4, A_5+B_5, A_6+B_6, A_7+B_7, A_8+B_8)
\]

Fuzzy numbers subtraction \(\ominus\):

\[
\mu_{A_i}(x) = \begin{cases}
\frac{x-a}{b-a}, & a \leq x < b \\
1, & b \leq x \leq c \\
\frac{d-x}{c-d}, & c < x \leq d \\
0, & \text{otherwise}
\end{cases}, \quad \mu_{B_i}(x) = \begin{cases}
\frac{x-c}{d-c}, & c \leq x < d \\
1, & d \leq x \leq e \\
\frac{f-x}{f-e}, & e < x \leq f \\
0, & \text{otherwise}
\end{cases}, \quad \mu_{C_i}(x) = \begin{cases}
\frac{x-e}{f-e}, & e \leq x < f \\
1, & f \leq x \leq g \\
\frac{h-x}{h-g}, & g < x \leq h \\
0, & \text{otherwise}
\end{cases}
\]

![Figure 1. Representation of an octagonal fuzzy number](image)

By fig.1 and from the above membership function we may write the defuzzification formula

\[
\text{Centroid}(A) = \frac{\int_a^b \frac{x-a}{b-a} x \, dx + \int_c^d \frac{d-x}{c-d} x \, dx + \int_c^d \frac{x-c}{d-c} x \, dx + \int_d^e \frac{f-x}{f-e} x \, dx + \int_e^f \frac{x-e}{f-e} x \, dx + \int_f^g \frac{h-x}{h-g} x \, dx}{\int_a^b \frac{x-a}{b-a} x \, dx + \int_c^d \frac{d-x}{c-d} x \, dx + \int_c^d \frac{x-c}{d-c} x \, dx + \int_d^e \frac{f-x}{f-e} x \, dx + \int_e^f \frac{x-e}{f-e} x \, dx + \int_f^g \frac{h-x}{h-g} x \, dx}
\]

3.1 Fuzzy Critical Path Algorithm

Consider the project network, here octagonal fuzzy numbers are utilized to speak to the movement time.

Step 1: Compute \(T_{ij}^f\)’s and \(E_{ij}^f\)’s using \(E_{ij}^f = \max_{j(i)} \left\{ E_{ij}^f \oplus T_j^f \right\} \) and \(E_{ij}^f = E_{ij}^f \oplus T_j^f\).

Step 2: Compute \(L_{ij}^f\)’s and \(L_{ij}^f\)’s using \(L_{ij}^f = \min_{j(i)} \left\{ L_{ij}^f \ominus T_j^f \right\} \) and \(L_{ij}^f = L_{ij}^f \ominus T_j^f\).

Step 3: Compute \(T_{ij}^f\)’s for all the activities \((i,j)\) using \(T_{ij}^f = L_{ij}^f \oplus E_{ij}^f\) or \(T_{ij}^f = L_{ij}^f \oplus E_{ij}^f\).

Step 4: Compute the total fuzzy slack time for every path.

Step 5: The path which having minimum value is the critical path.
IV. PROPOSED CENTROID METHOD USING OCTAGONAL FUZZY NUMBERS

Let $A= (a,b,c,d,e,f,g,h)$ be an octagonal fuzzy number. From fig. (1) and the above membership function the formula for centroid is

$$\text{Centroid}(A) = \frac{\int_{a}^{b} x \, dx + \int_{a}^{d} x \, dx + \int_{d}^{c} x \, dx + \int_{c}^{e} x \, dx + \int_{e}^{f} x \, dx + \int_{f}^{g} x \, dx + \int_{g}^{h} x \, dx}{\int_{a}^{b} x \, dx + \int_{a}^{d} x \, dx + \int_{d}^{c} x \, dx + \int_{c}^{e} x \, dx + \int_{e}^{f} x \, dx + \int_{f}^{g} x \, dx + \int_{g}^{h} x \, dx}$$

By solving the above centroid equation, we get the centroid octagonal formula as given in the following equation (1).

$$\text{Centroid}(A) = \frac{c^2 + d^2 + e^2 + f^2 + g^2 + h^2 + cd + ef + gh}{3[(c + d + e + f + g + h) - (a + b + c + d + e + h)]}$$

V. EXPERIMENTS AND RESULTS DESCRIPTION

To delineate the proposed formula, consider the accompanying framework graph. Node.1-Wooden arms and legs, Node.2-Wooden back, Node.3-Wooden base, Node.4-foam for back and base, Node.5- Fit covers, Node.6- Set everything together.

![Figure 5.1. Network Project](image)

5.1. Fuzzy Activity Time for Trapezoidal and Triangular Fuzzy Numbers

The venture given in Fig.(2) fuzzy action times are spoken to by trapezoidal and triangular fuzzy numbers.

Activity	ActivityTime in Trapezoidal	Total float	ActivityTime in Triangular	Total float
1-2	(3,5,6,9)	(-24,-4,4,24)	(3,6,9)	(-24,0,24)
1-3	(6,8,9,12)	(-18,0,7,25)	(6,9,12)	(-18,4,25)
1-4	(8,10,11,14)	(-4,11,17,32)	(8,11,14)	(-4,15,32)
2-3	(4,6,7,9)	(-24,-4,4,24)	(4,7,9)	(-24,0,24)
2-5	(4,7,7,10)	(-8,10,16,35)	(4,7,10)	(-8,14,35)
3-4	(9,12,13,16)	(-24,-4,4,24)	(9,13,16)	(-24,0,24)
3-5	(10,13,14,17)	(-24,-4,4,24)	(10,14,17)	(-24,0,25)
4-6	(14,16,17,20)	(-24,-4,4,24)	(14,17,20)	(-24,0,24)
5-6	(12,15,16,19)	(-24,-4,4,25)	(12,16,19)	(-24,0,25)

These are the paths from the Fig.(2) 1-4-6, 1-2-5-6, 1-3-4-6, 1-2-3-5-6, 1-3-5-6 and 1-2-3-4-6.
Defuzzification Formula for Modelling and Scheduling A Furniture Fuzzy Project Network

5.2. Centroid Method for Triangular Fuzzy Number

Fuzzy activity and slack time for each path is given below. And defuzzified values are calculated using triangular centroid formula.

\[
Centroid(A) = \frac{a+b+c}{3}
\]

(2)

Table 2: Defuzzified values of each path

Path	FuzzyActivityTime	SlackTime (a, b, c)	DefuzzifiedValue using eqn.(2)
1-4-6	(22, 28, 34)	(-28, 15, 56)	14.333
1-2-5-6	(19, 29, 38)	(-56, 14, 83)	13.666
1-3-4-6	(29, 39, 48)	(-66, 4, 73)	3.666
1-2-3-5-6	(29, 43, 54)	(-96, 0, 97)	0.666
1-3-5-6	(28, 39, 48)	(-66, 4, 74)	4
1-2-3-4-6	(30, 43, 54)	(-96, 0, 96)	0

We used defuzzified formula and we are getting the minimum value is 0. The path 1-2-3-4-6 is the critical path for the network. This is the critical path for the considered fuzzy project network.

5.3. Centroid Method for Trapezoidal Fuzzy Numbers

Fuzzy activity and slack time for each path given below. And defuzzified values are calculated using trapezoidal centroid formula.

\[
Centroid(A) = \frac{c^2 + d^2 + cd - (a^2 + b^2 + ab)}{3((c + d) - (b + a))}
\]

(3)

Table 3: Defuzzified values of each path

Path	FuzzyActivity time	SlackTime (a,b,c,d)	\(\frac{a+b+c+d}{4}\)	Values using eqn.(3)
1-4-6	(22, 26, 28, 34)	(-28, 7, 21, 56)	14	14
1-2-5-6	(19, 27, 29, 38)	(-56, 2, 24, 84)	13.5	13.625
1-3-4-6	(29, 36, 39, 48)	(-66, -8, 15, 73)	3.5	3.5
1-2-3-5-6	(29, 39, 43, 54)	(-96, 16, 16, 98)	0.5	0.619
1-3-5-6	(28, 36, 39, 48)	(-66, -8, 15, 74)	3.75	3.809
1-2-3-4-6	(30, 39, 43, 54)	(-96, 16, 16, 96)	0	0

We used defuzzified formulae and we are getting the minimum value is 0. This is the critical path 1-2-3-4-6 for the furniture network.

Table 4: Total float of each activity

Activities	FuzzyActivity time	Total float
1-2	(3, 3, 4, 5, 6, 7, 8, 9)	(-24, -18, -11, -4, 4, 11, 18, 24)
1-3	(6, 7, 8, 9, 10, 11, 12)	(-18, -13, -6, 0, 7, 12, 18, 25)
1-4	(8, 9, 10, 10, 11, 12, 13, 14)	(-4, 0, 6, 11, 17, 21, 26, 32)
2-3	(4, 4, 5, 6, 7, 8, 9, 9)	(-24, -18, -11, -4, 4, 11, 18, 24)
2-5	(4, 5, 6, 7, 7, 8, 9, 10)	(-8, -3, 4, 10, 16, 23, 29, 35)
3-5	(10, 11, 12, 13, 14, 15, 16, 17)	(-24, -18, -11, -4, 4, 11, 18, 25)
3-4	(9, 10, 11, 12, 13, 14, 15, 16)	(-24, -18, -11, -4, 4, 11, 18, 24)
4-6	(14, 15, 16, 16, 17, 18, 19, 20)	(-24, -18, -11, -4, 4, 11, 18, 24)
5-6	(12, 13, 14, 15, 16, 17, 18, 19)	(-24, -18, -11, -4, 4, 11, 18, 25)

The possible paths for the project network and fuzzy slack times are calculated and given below.
5.4. Proposed Centroid method using Octagonal Fuzzy Numbers

The project network given in Fig.(2) octagonal fuzzy numbers are used to represent the activity times.

Table 5: Defuzzified values of each path

Path	Slack time (a,b,c,d)	\(\frac{a+b+c+d+e+f+g+h}{8} \)	Proposed Defuzzified Value using eqn. (1)
1-4-6	(-28,-18,-5,7,21,32,44,56)	13.625	12.374
1-2-5-6	(-56,-39,-18,2,46,66,84)	13.625	12.523
1-3-4-6	(-66,-49,-28,-8,15,34,54,73)	3.125	2.219
1-2-3-5-6	(-96,-72,-44,-16,16,46,74,98)	0.75	0.184
1-3-5-6	(-66,-49,-28,-8,15,35,55,74)	3.5	3.031
1-2-3-4-6	(-96,-72,-44,-16,16,44,72,96)	0	0

We used defuzzified formulae and we are getting the minimum value is 0. This is the critical path 1-2-3-4-6 for the furniture network.

5.5. Comparison of the proposed method with the existing methods

Here triangular, trapezoidal and octagonal fuzzy numbers are compared. For finding the critical path in the project network octagonal fuzzy number is the better method.

Table 6: Comparison of fuzzy numbers

Path	Triangular Fuzzy Number	Trapezoidal Fuzzy Number	Proposed Octagonal Number
1-4-6	14.333	14	12.374
1-2-5-6	13.666	13.625	12.523
1-3-4-6	3.666	3.5	2.219
1-2-3-5-6	0.666	0.619	0.184
1-3-5-6	4	3.809	3.031
1-2-3-4-6	0	0	0

VLCOnCLUSION

This research article we have presented a proposed centroid method for fuzzy project network to find the critical path using octagonal fuzzy numbers. We have computed numerical example to compare with the existing methods and the illustrated method. This method will enable to meet the complex fuzzy project time line by channelizing resource on the Critical Path activities.

REFERENCES

1. Gin-Shuh Liang and Tzeu-Chen Han. (2004). Fuzzy Critical Path for Project Network. Information and Management Sciences, Vol.15, No. 4, 29-40.
2. Gunadi, Nurcahyo, W., Sitimarriyamshamsuddin, Rose Alinda Alias and Mohd. Noor Md. Sap. (2003). Selection of Defuzzification Method to Obtain Crisp Value for Representing Uncertain Data in a Modified Sweep Algorithm”, Int. J. of Systems and Information Sciences, Vol.3, No. 2, 22-28.
3. M. Hapke, R. Slowinski. (1996). Fuzzy priority heuristics for project scheduling, Fuzzy sets and systems, Vol. 83, No.3,291-299.
4. R. Jain. (1978). A procedure for multi-aspect decision making using fuzzy sets, Internat. J. Systems Sci, Vol.8, 1- 7.
5. J.E. Kelley. (1961). Critical path planning and scheduling – Mathematical basis, Oper. Res. Vol. 9, 296-320.
6. Lazim Abdullah and NorJamalina Jamal. (2010). Centroid-Point of Ranking Fuzzy Numbers and Its Application to Health Related Quality of Life Indicators, International Journal on Computer Science and Engineering, Vol.2, No.8,2773-2777.
7. MalekMasmoudi and Alain Hait. (2011). Fuzzy capacity planning for an helicopter maintenance center, International Conference on Industrial Engineering and Systems ManagementIESM’1,1-10.
8. Prade, H. (1979). Using fuzzy sets theory in a scheduling problem: a case study, Fuzzy Sets and Systems, No.2,153–165.
9. Ravi Shankar, N., Sireesha, V.andPhaniBushanRao, P. (2010). An Analytical Method for Finding Critical Path in a Fuzzy Project Network, Int. J. Contemp. Math. Sciences, Vol. 5, No. 20, 953 –962.
10. Shahsavari Pour, N., Zeynali, S. and Pour Kheradmand, M. (2012). Calculating the Fuzzy Project Network Critical Path. International Journal of Engineering and Technology, Vol.1, No.2,58-66.
11. Taha, A. (2010). Operations Research: An Introduction. N.-Y.: Prentice Hall, 790p.
12. Zadeh, L.A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems,3-28.