Effect of Insecticidal Atmospheres at High Temperature Combined with Short Cold-quarantine Treatment on Quality of ‘Valencia’ Oranges

Adriana Contreras-Oliva
Centro de Tecnología Poscosecha, Instituto Valenciano de Investigaciones Agrarias, 46113 Moncada, Spain; and Campus Córdoba, Colegio de Postgraduados, Carretera Federal Córdoba-Veracruz Km. 348, A.P. 94946, Amatlán de los reyes, Veracruz, México

Cristina Rojas-Argudo
Centro de Tecnología Poscosecha, Instituto Valenciano de Investigaciones Agrarias, 46113 Moncada, Spain

Maria B. Pérez-Gago1
Centro de Tecnología Poscosecha, Instituto Valenciano de Investigaciones Agrarias, 46113 Moncada, Spain; and Agroalimed, 46113 Moncada, Spain

Additional index words. Ceratitis capitata, controlled atmosphere, flavor, vitamin C, phenolics

Abstract. The combination of insecticidal atmosphere (IA) with short cold exposure periods has been effective in controlling the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). In the present work, ‘Valencia’ orange quality was assessed on fruit exposed to IA (95% CO2) at 23, 28, or 33 °C for 20 h; next stored at 1 °C for 8, 16, or 24 days; and then kept at 20 °C for 7 days to simulate shelf life. Physicochemical, sensory, and nutritional quality parameters were analyzed on treated and control (air-exposed) fruit. No significant negative effects on fruit quality were observed in IA-treated ‘Valencia’ oranges. In addition, the exposure of oranges to 95% CO2 at 28 °C reduced the weight and firmness loss compared with fruit kept in air. Ethanol content increased in the fruits exposed to 95% CO2 at 28 or 33 °C, but sensory quality was not adversely affected.

Many countries maintain strict quarantine protocols against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), which is one of the most damaging fruit pests worldwide and may be a major pest of citrus (White and Elson, 2004). The most widely used postharvest disinfection treatment of citrus against this fruit fly involves exposure of the fruit to near freezing temperatures. In the United States, the U.S. Department of Agriculture established a minimum exposure during overseas transit of 14 to 18 d at 1.1 to 2.2 °C (USDA, 2002). Today, extensive research is currently focused on the development of alternative or complementary quarantine treatments, especially for cold-sensitive commodities such as citrus (Jacas et al., 2008).

Controlled atmosphere treatments are known to be effective against fruit flies and other pests (Follett and Neven, 2006; Mitcham et al., 2003). Different works have investigated the use of insecticidal atmospheres (IA) consisting on high CO2 shocks previous or after cold exposure of citrus fruit to reduce the duration of the standard cold disinfection quarantine treatment against C. capitata and thus alleviate chilling injury (CI) problems (Alonso et al., 2005a, 2005b; Palou et al., 2008a). In general, the effects of insecticidal treatments on treated produce considerably differ depending on species and cultivar (Follett and Neven, 2006). Therefore, the optimum combination of atmosphere gas composition, temperature, and length of application should be pursued for each pest–host system. For example, IA treatments consisting of exposure to 95% CO2 at 20 °C for 20 h (Alonso et al., 2005a), 98% CO2 at 22 °C for up to 24 h (Alonso et al., 2005a), and 95% CO2 at 25 °C for 20 h (Palou et al., 2008a) achieved complete insect mortality on ‘Fortune’ mandarins, ‘Valencia’ oranges, and ‘Clementina’ mandarins, respectively, without affecting negatively fruit external appearance or sensory properties.

Today, IA at a curing temperature of 33 °C on citrus has also been studied to control postharvest green mold of mandarins (Palou et al., 2008b). These new physical methods combining heat and gas shocks could be interesting to control established pathogenic infections and/or induce fruit resistance to postharvest diseases. However, little information is available for the effects of high CO2 citrus exposure at high temperature followed by cold quarantine storage on overall fruit quality.

Conventionally, postharvest quality assessment has been conducted to evaluate the physicochemical quality of the fruit through parameters such as weight loss, firmness, maturity index, and acidity, among others. Additionally, the sensory evaluation of fruit is also performed to determine changes during postharvest handling. At present, the nutritional quality is gaining interest, being a component of the overall quality that is very much valued by consumers. In particular, citrus fruits are an important nutritional source of vitamin C and polyphenolic compounds with antioxidant properties such as flavonoids (Sánchez-Moreno et al., 2003). The necessity of preserving the health properties of citrus recommends that postharvest technologies would maintain both functional and nutritional quality until these reach the consumer.

Lee and Kader (2000) reviewed the factors affecting postharvest content of vitamin C and concluded that temperature is the most important factor. In general, losses are accelerated by using high temperatures and long storage. However, low-temperature storage can also accelerate the loss of vitamin C in cold-sensitive fruit, even before CI is evident (Miller and Heilmann, 1952). Therefore, the exposure of citrus fruit to high CO2 concentrations at different temperatures and the combination with different periods of cold storage might affect the physiology of the fruit, altering the biochemical components of citrus. Therefore, the aim of this work was to study the effect of IA (95% CO2) applied at 23, 28, and 33 °C combined with short cold quarantine storage on physicochemical, sensory, and nutritional quality of ‘Valencia’ oranges.

Materials and Methods

Fruit

‘Valencia’ oranges (Citrus sinensis) were hand-harvested with an average maturity index of 10.1 from a local grove in Valencia, Spain, and transferred to the IVIA postharvest facilities where they were selected, randomized, washed with tap water, and dipped in a mixed solution of imazalil (1000 ppm) for 1 min. Subsequently, fruit were put into 12 homogeneous groups of 80 fruit each, which were placed in separate unlidded commercial cardboard boxes (40 × 29 × 27 cm).

Insecticidal atmosphere treatments

For each period of time, four groups of 80 fruit were exposed for 20 h to the following IA treatments: 1) air atmosphere at 23 ± 1 °C (control); 2) IA containing 95% CO2 at 23 ± 1 °C; 3) IA containing 95% CO2 at 28 ± 1 °C; and 4) IA containing 95% CO2 at 33 ± 1 °C. In all cases, relative humidity (RH) was...
85% ± 5%. IA exposure chambers consisted of hermetic Perspex cabinets (82 × 62 × 87 cm) fitted with inlet and outlet ports through which CO2 (Alphagaz, N38; Air Liquid S.A., Madrid, Spain) passed at a rate adjusted to yield a concentration of 95% (v/v) inside the cabinet and balance air. Gas was allowed to escape from the outlet port through a bubble tube to maintain the proper gas mixture in the chamber. Levels of CO2, O2, temperature, and RH were continuously monitored by means of the Control-Tec® system (Tecnidex S.A., Paterna, Valencia, Spain). Cabinets were installed inside a 40-m storage room that was also set to each experimental temperature (23, 28, or 33°C). Once IA treatments were accomplished, fruit were coated with a 10% total solids water wax containing polyethylene, shellac, and 0.5% of the fungicide thiabendazole (Brillaqua®; Brillorcana S.A., Beniparrull, Valencia, Spain).

After waxing, the fruits were exposed to the standard cold quarantine temperature of 1 ± 0.5 °C for 8, 16, or 24 d followed by 7 d of shelf life at 20 °C to simulate prompt fruit commercialization. Approximately 50 additional oranges were used to determine fruit quality at harvest (initial quality). Quality attributes were determined as follows.

Materials

Reagents 2,2-diphenyl-1-picrylhydrazyl (DPPH®), potassium dihydrogen phosphate (KH₂PO₄), meta-phosphoric acid (MPA), phosphoric acid (H₃PO₄), Folin-Ciocalteu phenol reagents, sodium carbonate (Na₂CO₃), gallic acid, and standard L-ascorbic acid (AA) were purchased from Sigma (Sigma-Aldrich Chemie, Steinheim, Germany). Acetic acid glacial and dimethyl sulfoxide (DMSO) were from Scharlau (Sentmenat, Spain). 1,4-dithio-glacial and dimethyl sulfoxide (DMSO) were purchased from Sigma-Aldrich (Sigma-Aldrich, St. Louis, MO). 1,4-dithio-L-threitol (DTT) and hesperidin [hesperitin-7-0-rutinoside (HES)] were obtained from Extrasynthese (Genay, France). Didymin [naringenin-7-0-rutinoside (NAT)] and dihidromyricetin [isosakuranetin-7-0-rutinoside (DID)] were purchased from Extrasynthese (Genay, France). All solvents were of high-performance liquid chromatography grade and ultrapure water (Mili-Q; Millipore Corporation, Billerica, MA) was used.

Physicochemical quality

Weight loss. Lots of 30 fruits per treatment were used to measure weight loss. The same fruit was weighed at the beginning of the experiment and at the end of each storage period. The results were expressed as the percentage of initial weight loss.

Firmness. Firmness of 20 oranges per treatment was determined at the end of each storage time using an Instron Universal Testing Machine (Model 3343; Instron Corp., Canton, MA). Each fruit was compressed between two flat surfaces closing together at a rate of 5 mm min⁻¹. The instrument gave the deformation after application of a load of 10 N to the equatorial region of the fruit. Results were expressed as percentage of deformation related to initial diameter.

Ethanol and acetaldehyde contents. Ethanol and acetaldehyde contents (EC and AC, respectively) in juice were determined by head-space gas chromatography. Ten fruits in each of three replicates per treatment were analyzed. Five milliliters of orange juice was transferred to 10-mL vials with crimp-top caps and TFE/silicone septum seals and frozen until analysis. EC and AC were analyzed in a gas chromatograph (Thermo Fisher Scientific, Inc., Waltham, MA) equipped with an autosampler, a flame ionization detector, and fitted with a Poropak Q 80/100 column (Waters Corporation, Millord, MA) (1.2 m × 0.32 cm). Temperatures of the oven, injector, and detector were 150, 175, and 200 °C, respectively. The carrier gas was at a flow rate of 28 mL min⁻¹. One milliliter sample of the head-space was withdrawn from each vial previously equilibrated in the autosampler incubation chamber for 10 min at 40 °C. EC and AC concentrations were calculated using peak areas of the samples relative to the peak areas of standard solutions. Results were expressed as mg/100 mL juice.

External disorders. Eighty fruit per treatment were inspected for external physiological disorders at the end of each storage period. The different degrees of disorders were rated as 0 = none, 1 = light, 2 = moderate, and 3 = severe. Light was considered when less than 10% of the fruit surface was affected and severe when more than 20% of the fruit surface was affected. Results were converted to an average index.

Internal quality parameters. Soluble solids concentration (SSC) was measured with a digital refractometer (Atago, Model PR1; Atago Co., LTD., Tokyo, Japan) and titratable acidity (TA) was determined by titration with 0.1 N NaOH and phenolphthalein indicator and expressed as grams of citric acid per 100 mL of orange juice. The maturity index (MI) was calculated as SSC/TA ratio. The juice from three replicates of 10 fruit each was used to determine these parameters.

Sensory analysis. Sensory evaluation was conducted by 10 trained judges. Panelists rated flavor on a 9-point scale, in which 1 to 2 represented a range of acceptable quality with the presence of off-flavor, 4 to 6 represented a range of acceptable quality, and 7 to 9 represented a range of excellent quality. Off-flavor presence was evaluated using a 6-point scale in which 0 = absence of off-flavor and 5 = high presence of off-flavor.

One sample consisted of whole segments taken from approximately eight individual fruits. Samples were presented to panelist in trays labeled with three-digit random codes (Mili-Q; Millipore Corporation, Billerica, MA) was used.

Nutritional quality

DPPH radical-scavenging capacity. The total antioxidant capacity (TAC) was evaluated by the DPPH assay. A total of 0.4 mL of orange juice diluted with 0.8 mL methanol was centrifuged at 12,000 rpm and 4 °C for 20 min. Six methanolic dilutions from the supernatant (0.075 mL) were mixed with 0.2925 mL of DPPH® (24 mg·L⁻¹) and kept in darkness for 40 min. Afterward, the change in absorbance at 515 nm was measured in a Multiskan spectrum microplate reader (Thermo Labsystem; Thermo Fisher Scientific Inc., Waltham, MA).

For each dilution, the percentage of remaining DPPH® was determined on the basis of the DPPH® standard curve. The amount of juice in each dilution was plotted against the amount of DPPH® radical remaining. Using the curve obtained, the EC50 value was calculated. This result expressed the amount of orange juice (L) needed to reduce 1 kg of DPPH® by 50%; thus, lower values mean higher antioxidant activity.

Total ascorbic acid. Total AA was determined by the sum of AA plus L-dehydroascorbic acid by using the reducing agent DTT (Sánchez-Mata et al., 2000). One milliliter of orange juice was diluted to 10 mL with 2.5% (v/v) MPA. Two milliliters of this solution was mixed with 0.4 mL of DTT (20 mg·mL⁻¹) for 2 h in darkness. Afterward, the extracts were filtered through a 0.45-μm Millipore filter before being analyzed by high-performance liquid chromatography (HPLC).

The HPLC analyses were performed on a Lachrom Elite HPLC (Merck Hitachi, Darmstadt, Germany) equipped with an L-2200 autosampler, L-2130 quaternary pump, L-2300 column oven, and L-2450 diode array detector. System conditions were: injection volume 20 μL, oven 25 °C, detector wavelength 243 nm, flow rate 1 mL·min⁻¹, column Lichosher 100 RP-18 of 25 × 0.4 cm preceded by a precolumn (4 × 4 mm) with a 5-μm particle size (Merck, Darmstadt, Germany). The mobile phase was 2% KH₂PO₄ adjusted to pH 2.3 with H₃PO₄. Results were expressed as mg AA/100 mL of juice.

Flavanone glycosides. HES, NAT, and DID (mg·100 mL) were determined by the method described by Cano et al. (2008) slightly modified. Two milliliters of orange juice was homogenized with 2 mL DMSO: methanol (1:1 v/v) and centrifuged for 30 min at 12,000 rpm and 4 °C. The supernatant was filtered through one 0.45-μm nylon filter and analyzed by HPLC-DAD using the HPLC equipment described previously. System conditions were: injection volume 10 μL, oven 25 °C, detector wavelength 280 nm, flow rate 1 mL·min⁻¹, column Lichosher 100 RP-18 of 25 × 0.4 cm preceded by a precolumn (4 × 4 mm) of a 5-μm particle size (Merck, Darmstadt, Germany). The mobile phase was 2% KH₂PO₄ adjusted to pH 2.3 with H₃PO₄. Results were expressed as mg AA/100 mL of juice.
Total phenolic content. The orange juices were analyzed for total phenolics by the Folin-Ciocalteau colorimetric method. A total of 0.3 mL of orange juice was diluted with 1.7 mL of 80% aqueous methanol. Appropriately diluted extract (0.4 mL) was mixed with 2 mL of Folin-Ciocalteau commercial reagent (previously diluted with water 1:10, v/v) and incubated for 1 min before 1.6 mL sodium carbonate (7.5% w/v) was added. The mixture was incubated for 1 h at room temperature. The absorbance of the resulting blue solution was measured spectrophotometrically at 765 nm (Thermo UV1; Thermo Electron Corporation, Aucktermuchty Fife, U.K.) and the concentration of total phenolics was expressed as gallic acid equivalents per 100 mL (mg GAE/100 mL). All extracts were analyzed in triplicate.

Statistical analysis. Statistical analysis was performed using STATGRAPHICS Plus 4.1 (Manugistics, Inc., Rockville, MD). Significance between means was determined by least significant difference at $P \leq 0.05$.

Results and Discussion

Physicochemical quality. The use of high temperatures is known to enhance the insecticidal activity of quarantine treatments (Vincent et al., 2003), but also it might increase fruit weight loss in the same way that conventional curing of citrus increases fruit weight loss (Plaza et al., 2003; Porat et al., 2000). Figure 1 shows the weight loss of Valencia oranges exposed to the IA treatments (95% CO$_2$) at 23, 28, or 33 °C followed by cold quarantine storage at 1 °C for 8, 16, or 24 d and a shelf life period at 20 °C for 7 d. The exposure of Valencia oranges to the IA at different temperatures did not increase the weight loss compared with the control. Interestingly, oranges exposed to IA at 28 °C had the lowest weight loss. It is known that exposure to moderate temperatures and high RH induces wound healing by biosynthesis of lignin and other phenolic compounds (Mulas and Scharra, 2007; Nunes et al., 2007). Therefore, this mild heat treatment probably induced positive changes in the rind of the mandarins that helped reduce orange weight loss.

Fruit firmness significantly decreased after 24 d of storage at 1 °C (Table 1). Although no relevant differences were observed between IA-treated fruit and control fruit, fruit exposed to the IA at 28 or 23 °C maintained higher firmness values than control fruit after 8 or 24 d of cold storage, respectively, which is in accordance with the lower weight loss of these treatments under those storage conditions (Fig. 1). In general, the treatments had no harmful effect on fruit firmness and the maximal percentage of deformation remained below the 5% threshold established for firmness in citrus fruit (Martinez-Javega et al., 1998). Similar results have been reported on mandarins and oranges exposed to combined cold and IA quarantine treatments (Alonso et al., 2005a, 2005b; Palou et al., 2008a).

Figure 2 shows the EC and AC of Valencia oranges exposed to combined IA and cold quarantine treatments. The EC and AC of CO$_2$-treated oranges remained fairly constant as cold quarantine storage time increased. Valencia oranges exposed to high CO$_2$ had more EC and AC than those exposed to air. EC and AC were lower in fruit exposed to the IA at 23 °C than in those exposed at 28 and 33 °C. Under these high-temperature conditions (95% CO$_2$) at 23, 28, or 33 °C for 20 h followed by a cold quarantine storage at 1 °C for 8, 16, or 24 d and a shelf life of 7 d at 20 °C. Bars indicate so at $P \leq 0.05$.

![Figure 1. Weight loss of Valencia oranges exposed to air (control) or an insecticidal atmosphere (IA, 95% CO$_2$) at 23, 28, or 33 °C for 20 h followed by a cold quarantine storage at 1 °C for 8, 16, or 24 d and a shelf life of 7 d at 20 °C.](image1)

![Figure 2. Ethanol and acetaldehyde contents of Valencia oranges exposed to air (control) or an insecticidal atmospheres (IA, 95% CO$_2$) at 23, 28, or 33 °C for 20 h followed by a cold quarantine storage at 1 °C for 8, 16, or 24 d and a shelf life of 7 d at 20 °C.](image2)
conditions, EC exceeded the limit slightly, set up at 200 mg/100 mL juice, considered by some authors as the level of off-flavor build-up risk (Hagenmaier, 2002; Ke and Kader, 1990).

An increase in the concentration of these fermentative volatile compounds resulting from exposure to high CO2 and/or low O2 atmospheres has also been described in other citrus cultivars (Alonso et al., 2005a; Ke and Kader, 1990; Pesis and Avisar, 1989). Although the levels of volatile built up as a consequence of controlled atmosphere exposure depends on fruit cultivar, treatment conditions, and duration, these works report similar volatile built up to the results found in our work when IA treatments were applied at temperatures below 25 °C. In general, the level of ethanol, acetaldehyde, and other internal volatiles associated with anerobic conditions increased as the temperature of the application of the IA treatment increased.

The exposure of ‘Valencia’ oranges to the IA did not cause any rind damage. These results are in agreement with Alonso et al. (2005b) and Palou et al. (2008a) in ‘Fortune’ and ‘Clemenules’ mandarins, respectively. However, Ke and Kader (1990) described that longer exposures to high CO2 atmospheres (9 to 14 d) induced severe rind injuries in ‘Valencia’ oranges.

Application of IA treatments did not affect TA, SSC, or MI (data not shown). Similarly, Alonso et al. (2005a) and Palou et al. (2008a) showed no effect of high CO2 exposure for short storage periods on internal fruit quality parameters of ‘Fortune’ and ‘Clemenules’ mandarins, respectively. However, Pesis and Avisar (1989) showed that the exposure of oranges to high CO2 atmospheres for 20 to 40 h decreased TA and increased MI.

Sensory analysis. Overall flavor and off-flavors were unaffected by the IA treatment or the length of the cold quarantine period. Judges evaluated the oranges as acceptable at the end of storage and having a very slight

Table 3. DPPH• radical-scavenging capacity (DPPH• RSC) and bioactive compounds of ‘Valencia’ oranges exposed to air (control) or an insecticidal atmospheres (IA, 95% CO2) at 23, 28, or 33 °C for 20 h followed by a cold quarantine storage at 1 °C for 8, 16, or 24 d and a shelf life of 7 d at 20 °C.

Cold quarantine period (days)	IA treatment	DPPH• RSC (EC50) (L juice/Kg DPPH)	TAA (mg/100 mL juice)	TPC (mg GAE/100 mL juice)	FGs (mg/100 mL juice)	NAT	HES	DID
Initial (at harvest)								
8	Control (air at 23 °C)	233.0 ± 14.2	34.71 ± 1.40	93.20 ± 4.82	2.86 ± 0.24	8	10	7
IA 23 °C	239.5 ± 7.1 a	38.72 ± 1.10 a	94.10 ± 0.38 A	3.05 ± 0.20 A	24.97 ± 1.09 A	0.94 ± 0.08 A		
IA 28 °C	219.5 ± 5.6 a	36.21 ± 1.17 a	97.80 ± 3.58 a	2.95 ± 0.28 a	26.88 ± 1.61 A	0.87 ± 0.05 A		
IA 33 °C	216.1 ± 2.1 a	42.31 ± 1.65 b b	105.86 ± 4.99 B	2.88 ± 0.18 B	27.67 ± 0.61 A	0.85 ± 0.07 A		
16	Control (air at 23 °C)	233.0 ± 14.2	34.71 ± 1.40	93.20 ± 4.82	2.86 ± 0.24	8	10	7
IA 23 °C	239.5 ± 7.1 a	38.72 ± 1.10 a	94.10 ± 0.38 A	3.05 ± 0.20 A	24.97 ± 1.09 A	0.94 ± 0.08 A		
IA 28 °C	219.5 ± 5.6 a	36.21 ± 1.17 a	97.80 ± 3.58 a	2.95 ± 0.28 a	26.88 ± 1.61 A	0.87 ± 0.05 A		
IA 33 °C	216.1 ± 2.1 a	42.31 ± 1.65 b b	105.86 ± 4.99 B	2.88 ± 0.18 B	27.67 ± 0.61 A	0.85 ± 0.07 A		
24	Control (air at 23 °C)	233.0 ± 14.2	34.71 ± 1.40	93.20 ± 4.82	2.86 ± 0.24	8	10	7
IA 23 °C	239.5 ± 7.1 a	38.72 ± 1.10 a	94.10 ± 0.38 A	3.05 ± 0.20 A	24.97 ± 1.09 A	0.94 ± 0.08 A		
IA 28 °C	219.5 ± 5.6 a	36.21 ± 1.17 a	97.80 ± 3.58 a	2.95 ± 0.28 a	26.88 ± 1.61 A	0.87 ± 0.05 A		
IA 33 °C	216.1 ± 2.1 a	42.31 ± 1.65 b b	105.86 ± 4.99 B	2.88 ± 0.18 B	27.67 ± 0.61 A	0.85 ± 0.07 A		

Previous to DPPH• RSC and bioactive compounds determination, fruit was kept at 20 °C for 7 d to simulate shelf life conditions. Values give means ± sd (n = 3). For each cold quarantine period, different treatments with the same lowercase letter are not different at P ≤ 0.05. For each treatment and different quarantine periods, means with the same capital letter are not different at P ≤ 0.05.

DPPH• RSC = DPPH• radical-scavenging capacity; TAA = total ascorbic acid; TPC = total phenolic content; FGs = flavanone glycosides; NAT = narirutin; HES = hesperidin; DID = didymin.
diminish the capacity for the AA synthesis during fruit storage.

The FG contents of ‘Valencia’ oranges exposed to IA and cold quarantine were in the range of those reported for citrus fruit (Table 3) (Dhuique-Mayer et al., 2005; Nogata et al., 2006). The HES, NAT, and DID contents of ‘Valencia’ oranges were unaffected by the increase in the cold quarantine period (\(P \leq 0.05 \)). Palma et al. (2005) did not find significant differences in HES, NAT, or DID in ‘Fortune’ mandarin during 3 months of storage at 5 °C. In general, the FG contents were unaffected by the exposure to 95% CO\(_2\), except on oranges exposed to the IA at 33 °C after 16 d of cold quarantine storage that had more HES than the rest of the samples.

Total phenolic content (TPC) of ‘Valencia’ oranges ranged from 90.21 ± 2.02 to 107.80 ± 2.46 mg/100 mL (GAE) (Table 3). Gil-Zizquierdo et al. (2002) found that TPC of orange juice and pulp after domestic and commercial squeezing was 87.8 and 71.7 mg/100 mL, respectively. Gardener et al. (2000) also found that total polyphenols ranged from 50.4 ± 1.0 to 75.5 ± 1.8 mg/100 mL (GAE) in three commercial orange juices.

In general, there was an increase in the TPC of ‘Valencia’ oranges when the cold quarantine period increased. This result is in accordance with Patil et al. (2004), which reported higher flavonoid content after cold storage of citrus fruit. This was associated with an increase in the phenylalanine ammonia lyase (PAL) activity during low-temperature storage. On the other hand, other works have shown that cold storage either did not influence or decreased the citrus TPC. For example, Palma et al. (2005) did not find differences in the TPC of ‘Fortune’ mandarins after 90 d of storage at 5 °C, whereas Rapisarda et al. (2008) found a decrease of total phenolics in ‘Valencia’ oranges after 40 d of storage at 6 °C, which was attributed to senescence during storage.

It can be concluded from these results that the exposure of ‘Valencia’ oranges to 95% CO\(_2\) at 23, 28, or 33 °C combined with short cold quarantine periods did not induce any harmful effect on physicochemical, sensory, or nutritional citrus quality. Exposure of ‘Valencia’ oranges to 95% of CO\(_2\) at 28 °C for 20 h was beneficial to maintain the fruit quality, reducing weight and firmness loss. Combination of the IA and cold quarantine periods of 8 or 16 d did not affect the TAA content of the fruits; whereas when the cold quarantine period increased to 24 d, fruit exposed to high CO\(_2\) atmospheres had lower TAA content than control fruit. Therefore, this high CO\(_2\) atmosphere, alone or combined with curing temperatures, could be applied as insecticidal treatment or for the control of citrus moulds without negatively affecting the quality of ‘Valencia’ orange.

Literature Cited

Alonso, M., J. Jacas, and M.A. del Río. 2005a. Carbon dioxide diminishes cold tolerance of third instar larvae of Ceratitis capitata Wiedemann (Diptera: Tephritidae) in ‘Fortune’ mandarins: Implications for citrus quarantine treatments. Postharvest Biol. Technol. 36:103–111.

Alonso, M., L. Palou, J. Jacas, and M.A. del Río. 2005b. Effect of short-term exposure to CO\(_2\)-enriched atmospheres on ‘Valencia’ orange quality. Acta Hort. 682:1077–1082.

Cano, A., A. Medina, and A. Bermejo. 2008. Bioactive compounds in different citrus varieties. Discrimination among cultivars. J. Food Compost. Anal. 21:377–381.

Dhuique-Mayer, C., C. Veyrat, P. Ollitrault, F. Curk, and M.J. Amiot. 2005. Varietal and interspecific influence on micronutrient contents in citrus from the Mediterranean area. J. Agr. Food Chem. 53:2140–2145.

Follett, P.A. and L.G. Neven. 2006. Current trends in quarantine entomology. Annu. Rev. Entomol. 51:359–385.

Gardner, T.C. 1983. The flavor of mandarin hybrids with different coatings. Postharvest Biol. Technol. 24:79–87.

Jacas, J.A., L. Palou, F. Beita, and M.A. del Río. 2008. Control of in vivo infestation of mandarin fruit with Ceratitis capitata for development of quarantine treatments. Span. J. Agric. Res. 6:434–440.

Ke, D. and A.A. Kader. 1990. Tolerance of ‘Valencia’ oranges to controlled atmospheres as determined by physiological responses and quality attributes. J. Amer. Soc. Hort. Sci. 115: 779–783.

Ke, D., L. Rodriguez-Sinaloa, and A.A. Kader. 1991. Physiology and prediction of fruit tolerance to low-oxygen. J. Amer. Soc. Hort. Sci. 116:253–260.

Kevser, C., M. Falkowski, J. Tabart, J.O. Defrage, J.J. Domme, and J. Pinçaut. 2007. Evolution of antioxidant capacity during storage of selected fruits and vegetables. J. Agr. Food Chem. 55:8596–9603.

Lee, K. and A.A. Kader. 2000. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 20:207–220.

Martinez-Javea, J.M., M.A. del Río, J. Cuquerella, and P. Navarro. 1998. Avances y perspectivas del empleo del frío como tratamiento cuarentenario en tránsito para cítricos. Memorias Seminario Internacional de Tecnología Postcosecha de Frutas y Hortalizas, CYTED, San Carlos, Cojedas, Venezuela, p. 9.

Miller, J.V. and A.S. Heilman. 1952. Ascorbic acid and physiological breakdown in the fruits of the pineapple (Ananas comosus L. Merr). Science 116:505–506.

Mitcham, E.J., L. Tunya, A. Martin, Z. Shijun, and A.A. Kader. 2003. Summary of CA for arthropod control on fresh horticultural perishables. Acta Hort. 604:397–404.

Mulas, M. and M. Schirra. 2007. The effect of heat conditioning treatments on the postharvest quality of horticultural crops. Stewart Postharv. Res. 3:1–6.

Nogata, Y., K. Sakamoto, H. Shiratsuchi, T. Ishii, M. Yano, and H. Ohta. 2006. Flavonoid Composition of fruit tissues of citrus species. Biosci. Biotechnol. Biochem. 70:178–192.

Nunes, C., J. Usall, T. Manso, R. Torres, M. Olmo, and J.M. Garcia. 2007. Effect of high temperature treatments on growth of Penicillium spp. and their development on ‘Valencia’ oranges. Food Sci. Technol. Int. 13:63–68.

Palma, A., S. D’Aquino, M. Agabbi, and S. Schirra. 2005. Changes in flavonoids, ascorbic acid, polyphenol content and antioxidant activity in cold-stored ‘Fortune’. Mandarin. Acta Hort. 682:617–622.

Palou, L., J.A. Jacas, A. Marcilla, M. Alonso, and M.A. del Río. 2008a. Physico-chemical and sensory quality of ‘Clemenules’ mandarins and survival of the Mediterranean fruit fly as affected by complementary cold and carbon dioxide quarantine treatments. Postharvest Biol. Technol. 48:434–445.

Palou, L., C. Montesinos-Herrero, and M.A. del Río. 2008b. Short-term CO\(_2\) exposure at curing temperature to control postharvest green mold of mandarins. Acta Hort. 768:257–263.

Patil, B.S., J. Vanamala, and G. Hallman. 2004. Irradiation and storage influence on bioactive components and quality of ‘Clemenules’ mandarin ‘Rio Red’ grapefruit (Citrus paradisi Macf.). Postharvest Biol. Technol. 34:53–64.

Pesis, E. and I. Avisar. 1989. The post-harvest quality of orange fruits as affected by pre-storage treatments with acetaldelyde vapour or anaerobic conditions. J. Hort. Sci. 118:481–485.

Plaza, P., J. Usall, R. Torres, N. Lamarca, A. Assensio, and I. Viñas. 2003. Control of green and blue mould by curing of oranges during ambient and cold storage. Postharvest Biol. Technol. 28:195–198.

Porat, R., D. Pavoncello, J. Perez, S. Ben-Yehoshua, and S. Lucre. 2000. Effects of various heat treatments on the induction of cold tolerance and on the postharvest qualities of ‘Star Ruby’ grapefruit. Postharvest Biol. Technol. 18:159–165.

Rapisarda, P., M. Lo Bianco, P. Pannuzzo, and N. Timpanaro. 2008. Effect of cold storage on vitamin C, phenolics and antioxidant activity of five orange genotypes [Citrus sinensis (L.) Osbeck]. Postharvest Biol. Technol. 49:348–354.

Sánchez-Moreno, C., L. Plaza, B. de Ancos, and M.P. Cano. 2003. Quantitative bioactive compounds assessment and their relative contribution to the antioxidant capacity of commercial orange juice. J. Food Sci. Agr. 83:430–439.

Sánchez-Mata, M.C., M. Camara-Hurtado, C. Diez-Marques, and M.E. Torija-Isasa. 2000. Comparison of high-performance liquid chromatography and spectrofluorimetry for vitamin C analysis of green beans (Phaseolus vulgaris L.). Eur. Food Res. Technol. 210:220–225.

USDA. 2002. Importation of clementines from Spain: Final rule. United States Department of Agriculture. Fed. Regist. 67:64701–64739.

Vincent, C., G. Hallman, B. Pannefon, and F. Fleurat-Lessard. 2003. Management of agricultural insects with physical control methods. Annu. Rev. Entomol. 48:261–281.

White, I.M. and M.M. Else. 2004. Fruit files of economic significance: Their identification and biomics. CAB International, The Australian Center for International Agricultural Research, Eastbourne, UK.