Selection of housekeeping genes for quantitative gene expression analysis in yellow-feathered broilers

Jie Zhang*, Yu-Yun Gao*, Yi-Qiang Huang, Qian Fan, Xin-Tao Lu and Chang-Kang Wang

College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China

ABSTRACT
The aim of this study was designed to select housekeeping genes for quantitative gene expression analysis in yellow-feathered broilers. Twelve 3-week-old chickens were randomly selected from 60 yellow-feathered broilers. Then, 12 chickens were killed; the liver and jejunum samples were collected. The gene expression of housekeeping genes (β-actin, ACTB; glyceraldehyde-3-phosphate dehydrogenase, GAPDH; hypoxanthine phosphoribosyl transferase 1, HPRT1; ribosomal protein L13, RPL13; TATA box binding protein, TBP; hydroxymethylbilane synthase, HMBS) were determined using quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR). Furthermore, the expression stabilities of housekeeping genes were analysed using geNorm, Normfinder and BestKeeper programs. The result showed that RPL13 is the most proper gene in liver, GAPDH is the most proper gene in jejunum, and HMBS is the most proper gene in all tissues. In conclusion, this result provides the integrated reported evaluation of housekeeping genes for use in expression studies in yellow-feathered broilers. These findings further emphasise the need to accurately validate candidate housekeeping genes in the study before use in gene expression studies using RT-PCR.

Introduction
Real-time reverse transcriptase polymerase chain reaction (RT-PCR) is a sensitive technique for quantifying gene expression levels. RT-PCR has various applications, such as clinical diagnostics (Bustin and Dorudi 1998), gene expression and transcriptome analysis (Gachon et al. 2004). ‘Minimum Information for Publication of Quantitative Real-Time PCR Experiments’ (MIQE) was published to achieve more reliable and unequivocal interpretation from RT-PCR experiments (Bustin et al. 2009). It introduced precise normalisation, as an important requirement to ensure the accuracy of this method and obtain reliable gene expression measurement.

Because of differences in the quality and quantity of temple RNA and differences in efficiencies of reverse transcription between different samples (Huggett et al. 2005), the appropriate method for quantification is normalisation of the expression level of target gene to the expression level of housekeeping gene (Gutierrez et al. 2008; Udvardi et al. 2008; Løvdal and Lillo 2009). The housekeeping gene, such as ACTB, GAPDH and HPRT1 (Godornes et al. 2007; Wang et al. 2012; Marimoutou et al. 2015), is a stably expressed gene that is experimentally verified in given species and tissue under given experimental conditions (Løvdal and Lillo 2009). However, differences in the tissue and differences in experiment condition should have different choice criteria (Radonić et al. 2005; Watson et al. 2007; Boever et al. 2008; Cinar et al. 2012; Bages et al. 2015). There is a few reports about the stability of housekeeping genes in chickens (Bages et al. 2015; Nascimento et al. 2015). Therefore, this study was designed to evaluate the stability of housekeeping genes (ACTB, GAPDH, HMBS, HPRT1, RPL13 and TBP), aiming to provide the effective gist of housekeeping genes for use in expression studies in broilers.

Material and methods

Ethics statement
All animals used in this study were treated following the guidelines for experimental animals established by...
the Council of China. Animal experiments were approved by the Science Research Department of the Committee of Animal Care, Fujian Agriculture and Forestry University, Fuzhou, China (approval number: FAFU2016J15).

Animal management

A total of 60 three-week-old healthy yellow-feathered male broilers with an average initial body weight of 37.32 ± 0.22 g (mean ± standard deviation [SD]) were obtained from a commercial hatchery (Guangdong Wens Food Group Co. Ltd., China). A total of 12 chickens were randomly selected from 60 yellow-feathered broilers. Chickens were slaughtered by exsanguination and samples of liver and jejunum were collected within the following 15 min. Samples were immediately frozen in liquid nitrogen and then stored at −80°C until analysis.

RNA isolation and reverse transcription

The MIQE principle and operational method to determine gene expression were used in this paper (Bustin et al. 2009; Taylor and Mrkusich 2014; Gao et al. 2016). Total tissue RNA was extracted using RNAprep Pure Tissue Kit (DP431, Beijing Tiangen Biotechnology Co. Ltd., China) from liver and jejunum of chickens according to the manufacturer’s instructions. The RNA quantity and purity were determined at 260/280 nm by NanoDrop 2000 Spectrophotometer (Thermo Scientific, Waltham, MA, USA). This ratio ranged from 1.8 to 2.0 for all samples. The 20 μL reverse transcription reaction mixture consisted of the following components: 1 μL of total RNA, 1 μg/μL, 0.5 μL of RNase inhibitor, 1 μL of oligo dT primer 500 μg/mL, 1 μL of random primers, 1 μL of PCR nucleotide mix 10 mM, 1 μL reverse transcriptase, 2 μL of MgCl₂ 25 mM, 4 μL of 5X reaction buffer, 8.5 μL of nuclease-free water. The reverse transcription was performed according to the Reverse Transcription System kit (A3500, Promega, Madison, WI). The reverse transcription products (cDNA) were stored at −20°C for RT-PCR.

Housekeeping genes primer design

Six housekeeping genes were selected based on their common use as endogenous control genes in gene expression studies. Primer pairs were designed for ACTB, GAPDH, HMBS and TBP based on the published sequences with the following respective Genbank accession numbers: NM_205518, NM_204305, XM_417846 and NM_205103, respectively. Primer pairs were designed for HPRT1 and RPL13 based on Primer-BLAST with the following respective Genbank accession numbers: NM_204848 and NM_204999, respectively. The designed primer sequences (Table 1) were validated on BLAST in order to ensure high efficiency. Primers were synthesised by Shanghai Sangon Biotechnology Co. Ltd., China.

RT-PCR

RT-PCR was performed in a 20 μL reaction mixture that included 10 μL 2X qPCR Master Mix Go Taq, 0.5 μL (10 μM) of each primer, 2 μL cDNA and 7 μL nuclease-free water as recommended in the manufacturer’s instructions provided with Go Taq™ qPCR Master Mix (A6001, Promega, Madison, Wisconsin, CA). Amplification was performed by one round of pre-denaturation at 95°C for 10 min, followed by 40 cycles of denaturation at 95°C for 15 s and annealing at 58–60°C for 1 min. All reaction mixtures were incubated in an ABI 7500 RT-PCR System (Applied Biosystems, Foster City, CA). The PCR amplification efficiency of each primer pair was calculated from a standard curve using a fivefold dilution series (1/10³, 1/10², 1/10¹, 1/10⁰ and 1/10⁻⁴) of template cDNA. The efficiency values (Eff.) were obtained from the

Name	Gene number	Strand	Sequence	Size (bp)	Annealing temperature (°C)
GAPDH	NM_204305	Sense	ACTGTCAAGGCTGAGAACGG	86	60
ACTB	NM_205518	Sense	ATCGCGAACCCTCATTGTC	120	60
HMBS	XM_417846	Sense	GATGGATGCGATAGCCTGAA	195	60
RPL13	NM_204999	Sense	TGGATCCAGCGCAAGAAAC	193	58
HPRT1	NM_204848	Sense	TGGGAGTACCTCTCACAATC	187	58
TBP	NM_205103	Sense	TGTGTCAGGCGACACTCTTG	182	60
following equation (Pfaffl et al. 2004):

$$\text{Efficiency} \% = (10^{1-\frac{1}{\text{slope}}} - 1) \times 100\%$$

Data analysis

The RT-PCR results were analysed by ABI 7500 software (Applied Biosystems, Foster City, CA). Each sample was analysed in triplicate to obtain an average Ct value. To confirm results, three different programs, geNorm (Vandesompele et al. 2002), Normfinder (Andersen et al. 2004) and BestKeeper (Pfaffl et al. 2004) were used. These programs calculate the gene stability value to rank the housekeeping genes.

Results

Integrity of total RNA

The results of agarose gel electrophoresis (Figure 1) showed that total RNA of liver and jejunum samples clearly exhibited the visible 28S/18S peaks. The 260/ 280 nm values (mean ± SD) of liver and jejunum samples were 1.8972 ± 0.09573 and 1.8852 ± 0.08327, respectively. Only those RNA samples with good integrity and high purity were used for RT-PCR.

Analysis of housekeeping genes’ specificity

The melt curves (Figure 2) of ACTB, GAPDH, HMBS, HPRT1, RPL13 and TBP exhibited only one specific peak without primer dimer and nonspecific amplification, and the melt temperatures (mean ± SD) were 82.0 ± 0.2 °C, 81.8 ± 0.2 °C, 84.5 ± 0.2 °C, 80.9 ± 0.2 °C, 86.6 ± 0.2 °C and 81.1 ± 0.2 °C, respectively. The amplification efficiency of ACTB, GAPDH, HMBS, HPRT1, RPL13 and TBP were 105.23%, 102.87%, 107.62%, 96.78%, 95.12% and 100.56%, respectively. Therefore, the result of RT-PCR was accurate and reliable.

Determination of the stability of housekeeping genes by geNorm

geNorm program relies on the identical expression ratio of two ideal reference genes in all samples, independent of the treatment, condition or tissue. In this principle, the housekeeping gene expression stability measure (M value) is calculated as the average pairwise variation between an individual gene and all other housekeeping genes included in this analysis (Vandesompele et al. 2002). Low M values characterise genes with the most stable expression, that is, geNorm program has a cut-off limit of variability suggesting that any gene with an M < 1.5 should be considered reliable as a stable housekeeping gene. In this study, each data was transformed to relative quantities using the formula: $2^{-\Delta Ct}$, in which $\Delta Ct = \text{the corresponding Ct value} – \text{minimum Ct value}$. From the transformed data, geNorm produced a graph based on M values. From these results (Table 2), the rank in liver showed that the most stably expressed gene was GAPDH, and followed by RPL13, HMBS, HPRT1, ACTB and TBP. The rank in jejunum showed that the most stably expressed gene was GAPDH, and followed by RPL13, TBP, HMBS, ACTB and HPRT1. Meanwhile, the rank in all tissues showed that the most stably expressed gene was TBP, and followed by HMBS, ACTB, HPRT1, RPL13 and GAPDH.

Determination of the stability of housekeeping genes by Normfinder

Normfinder program is a RT-PCR data normalisation tool that ranks the potential housekeeping genes expression stability values for all samples. Normfinder programme calculates a stability value that is inversely correlated with the stability of gene expression (Andersen et al. 2004). Therefore, the lowest stability value will be top ranked. In our study, all raw Ct values were transformed to relative quantities using the $2^{-\Delta Ct}$ method, and each data was calculated and ranked using Normfinder (Table 2). The rank in liver showed that the most stably expressed gene was RPL13, followed by GAPDH, HMBS, HPRT1, ACTB and TBP. The rank in jejunum showed that the most stably expressed gene was GAPDH, followed by RPL13, TBP, HMBS, ACTB and HPRT1. Meanwhile, the rank in all tissues showed that the most stably expressed gene was ACTB, followed by HMBS, TBP, HPRT1, GAPDH and RPL13.

Determination of the stability of housekeeping genes by BestKeeper

BestKeeper program determines the variability in expression level of a set of housekeeping genes by analysing Ct values and classifying variability by the
coefficient of variance (CV) and the SD. BestKeeper creates BestKeeper Index which is the geometric mean of Ct values of all candidate reference genes grouped together. To define the most stable housekeeping gene, BestKeeper index is compared to each housekeeping gene resulting in a value for the Pearson correlation coefficient. And BestKeeper employs a pairwise correlational analysis which selects the optimal housekeeping genes (Pfaffl et al. 2004). It is recommended that any gene with a SD < 1 should be considered as a stable housekeeping gene and, in this study, all studied housekeeping genes with SD < 1

Figure 2. Melt curves generated for housekeeping genes. The melt curves of six housekeeping genes showed one specific peak.
could be considered as the stable housekeeping genes. From BestKeeper Index (Table 2), HPRT1 was shown to be the most stable gene in liver, followed by RPL13, HMBS, GAPDH, TBP and ACTB. ACTB was shown to be the most stable gene in jejunum, followed by GAPDH, HPRT1, TBP, RPL13 and HMBS. Meanwhile, HPRT1 was shown to be the most stable gene in all tissues, followed by HMBS, TBP, ACTB, RPL13 and GAPDH.

Discussion

RT-PCR has become a powerful tool for sensitive gene expression measurement, especially when samples quantities are limited or a transcript is expressed at a relatively low amount of RNA (Wong and Medrano 2005; Nolan 2006). However, the sensitivity of gene expression also means that experimental conditions of variation should be considered, such as differences in sample, differences in reverse transcriptase reaction efficiency and the amount of cDNA template used in each RT-PCR (Walker et al. 2008). Therefore, selecting appropriate housekeeping genes is an essential step for analysing gene expression using RT-PCR, and this essential step can improve the fidelity of RT-PCR result (Vandesompele et al. 2002; Guo et al. 2014). However, many researches make use of these housekeeping genes without proper validation of their stability of expression levels. This means that the proper housekeeping gene should be identified for a specific species under study or in a new experimental set up. In this study, we used RT-PCR technique for ACTB, GAPDH, HMBS, HPRT1, RPL13 and TBP as the housekeeping gene, and tested the stability of candidate housekeeping genes in liver and jejunum of broilers.

It is well known that choice of one, or preferably more, suitable reference genes are a key factor for any gene expression analysis applying RT-PCR (Engdahl et al. 2016; Huang et al. 2016; Xu et al. 2016). GAPDH or ACTB is commonly used housekeeping genes for gene expression studies in many researches (Niu et al. 2011; Guo et al. 2013; Buldak et al. 2014; Bronkhorst et al. 2016). ACTB was the most appropriate housekeeping gene for cell-free DNA and mRNA quantification (Bronkhorst et al. 2016), as well as GAPDH was shown to be a stable gene under heat shock in *Ditylum brightwellii* (Guo et al. 2013). However, other studies suggested that the conventional housekeeping genes were not always highly stably expressed in other animal species or in a complex range of experimental treatments (Schmittgen and Zakrajsek 2000; Selvey et al. 2001; Zhu et al. 2001; Glare et al. 2002; Bas et al. 2004). For example, Bas et al. (2004) demonstrated that ACTB was not suitable for housekeeping gene using RT-PCR in human T lymphocytes. In addition, GAPDH was described as the least stable gene in salmons infected by virus (Jorgensen et al. 2006). In our study, we also found that the most commonly used GAPDH should not be considered as reliable housekeeping gene in all tissues rank (Table 2).

The systematic validation of housekeeping genes demonstrated that none of them performed consistently well for all sample types and that the stability of genes varied according to tissue analysis (Table 2). All in all, this study employed geNorm, Normfinder and BestKeeper programs to validate the housekeeping gene stability. However, three programs did not rank the candidate housekeeping genes in the same ranks. This is due to differences in algorithms. geNorm calculates the stable value of gene expression, and
estimates the number of housekeeping gene (Jain et al. 2006; Jian et al. 2008). Normfinder focuses on the coefficient of variation of a gene across all samples (Andersen et al. 2004). BestKeeper depends on pairing correlation analysis about Ct values, and analyses original data directly (Kumar et al. 2011). According to the ranking provided by geNorm, GAPDH and RPL13 were the top two genes in liver and jejunum, and TBP and HMBS were the top two genes in all tissues. According to the ranking provided by Normfinder, GAPDH and RPL13 were also the top two genes in liver and jejunum, and ACTB and HMBS were the top two genes in all tissues. According to the ranking provided by BestKeeper, HPRT1 and RPL13 were the top two genes in liver, ACTB and GAPDH were the top two genes in all tissues. From the above, we conclude that RPL13 is the most proper gene in liver, GAPDH is the most proper gene in jejunum, and HMBS is the most proper gene in all tissues. Therefore, choice of housekeeping genes should apply some kinds of programs and analyse result at the same time. Only in this way, can we select the appropriate housekeeping gene for RT-PCR.

In conclusion, this study is aimed to validate a set of commonly used housekeeping genes in chicken tissues for the normalisation of gene expression analysis using RT-PCR. Our experimental purpose was to define the most stable expression of housekeeping gene, rather than determining a ‘best’ method for all experimental conditions. Therefore, the selected housekeeping genes may improve the reliability of gene expression studies in broilers. At the same time, these findings further emphasise the necessity to accurately validate candidate housekeeping genes in the study before use in gene expression studies using RT-PCR.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Funding

The research was funded by Fujian Specialist Funds of Chicken Industrial System (K83139297, 2013-2017) and Natural Science Foundation of Fujian Province (2016J01698).

References

Andersen CL, Jensen JL, Ørtoft TF. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research. 64:5245–5250.
Bages S, Estany J, Tor M, Pena RN. 2015. Investigating reference genes for quantitative real-time PCR analysis across four chicken tissues. Gene. 561:82–87.
Bas A, Forsberg G, Hammarstrom S, Hammarstrom ML. 2004. Utility of the housekeeping genes 18S rRNA, b-actin and glyceraldehyde-3-phosphate dehydrogenase for normalisation in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scand J Immunol. 59:566–573.
Boever SD, Vangestel C, Backer PD, Croubels S, Sys SU. 2008. Identification and validation of housekeeping genes as internal control for gene expression in an intravenous LPS inflammation model in chickens. Vet Immunol Immunopathol. 122:312–317.
Bronkhorst AJ, Aucamp J, Wentzel JF, Pretorius PJ. 2016. Reference gene selection for in vitro cell-free DNA analysis and gene expression profiling. Clin Biochem. 49:606–608.
Buldak L, Labuzek K, Buldak RJ, Kozlowski M, Machnik G, Liber S, Suchy D, Dulawa BA, Okopien B. 2014. Metformin affects macrophages’ phenotype and improves the activity of glutathione peroxidase, superoxide dismutase, catalase and decreases malondialdehyde concentration in a partially AMPK-independent manner in LPS-stimulated human monocytes/macrophages. Pharmacol Rep. 66:418–429.
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 55:611–622.
Bustin SA, Dorudi S. 1998. Molecular assessment of tumour stage and disease recurrence using PCR-based assays. Mol Med Today. 4:389–396.
Cinar MU, Islam MA, Uddin MJ, Tholen E, Tesfaye D, Looft C, Schellander K. 2012. Evaluation of suitable reference genes for gene expression studies in porcine alveolar macrophages in response to LPS and LTA. Bmc Res Notes. 5:56.
Engdahl E, Dunn N, Fogdell-Hahn A. 2016. Investigation of reference gene expression during human herpesvirus 6B infection indicates peptidylprolyl isomerase A as a stable reference gene and TATA box binding protein as a gene up-regulated by this virus. J Virol Methods. 227:47–49.
Gachon C, Mingam A, Charrier B. 2004. Real-time PCR: what relevance to plant studies? J Exp Bot. 55:1445–1454.
Gao YY, Ji J, Jin L, Sun BL, Xu LH, Wang CK, Bi YZ. 2016. Xanthophyll supplementation regulates carotenoid and retinoid metabolism in hens and chicks. Poult Sci. 95:541–549.
Glare EM, Divjak M, Bailey MJ, Walters EH. 2002. beta-Actin and GAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalising mRNA levels. Thorax. 57:765–770.
Godornes C, Leader BT, Molini BJ, Centurion-Lara A, Lukehart SA. 2007. Quantitation of rabbit cytokine mRNA by real-time RT-PCR. Cytokine. 38:1–7.
Guo J, Ling H, Wu Q, Xu L, Que Y. 2014. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep. 4:7042.
Guo R, Lee MA, Ki JS. 2013. Normalization genes for mRNA expression in the marine diatom Ditylum brightwellii.
following exposure to thermal and toxic chemical stresses. J Appl Phycol. 25:1101–1109.

Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C. 2008. The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotech J. 6:609–618.

Huang X, Gao Y, Jiang B, Zhou Z, Zhan A. 2016. Reference gene selection for quantitative gene expression studies during biological invasions: a test on multiple genes and tissues in a model ascidian Ciona savignyi. Gene. 576:79–87.

Huggett J, Dheda K, Bustin S, Zumla A. 2005. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 6:279–284.

Jain M, Nijhawan A, Tyagi AK, Khurana JP. 2006. Validation of housekeeping genes as internal control for gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun. 345:646–651.

Jian B, Liu B, Bi Y, Hou W, Wu C, Han T. 2008. Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol. 9:59.

Jørgensen SM, Kleveland EJ, Grimholt U, Gjøen T. 2006. Validation of reference genes for real-time polymerase chain reaction studies in Atlantic salmon. Mar Biotechnol (NY). 8:398–408.

Kumar V, Sharma R, Trivedi PC, Vyas GK, Khandelwal V. 2011. Traditional and novel references towards systematic normalization of qRT-PCR data in plants. Aust J Crop Sci. 5:1455–1468.

Lavdal T, Lillo C. 2009. Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal Biochem. 387:238–242.

Marimoutou M, Le Sage F, Smadja J, Lefebvre d’Hellencourt C, Gonthier MP, Robert-Da Silva C. 2015. Antioxidant polyphenol-rich extracts from the medicinal plants Antirhea borbonica, Doratorxylon apetalum and Gouania mauritiana protect 3T3-L1 preadipocytes against H₂O₂. TNFalpha and LPS inflammatory mediators by regulating the expression of superoxide dismutase and NF-kappaB genes. J Inflamm (Lond). 12:10.

Nascimento CS, Barbosa LT, Brito C, Fernandes RP, Mann RS, Pinto AP, Oliveira HC, Dodson MV, Guimaraes SE, Duarte MS. 2015. Identification of suitable reference genes for Real Time Quantitative Polymerase Chain Reaction assays on Pectoralis major muscle in chicken (Gallus gallus). PLoS One. 10:e0127935.

Niu L, Qiao W, Li G, Li Q, Huang Q, Gong J, Zhu W, Li N, Li J. 2011. Different alterations in rat intestinal glutamine transport during the progression of CLP- and LPS-induced sepsis. J Surg Res. 169:284–291.

Nolan T. 2006. Quantification of mRNA using real-time RT-PCR. Nature Protocols. 1:1559–1582.

Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnology Lett. 26:509–515.

Radonić A, Thulke S, Bae HG, Müller MA, Siegert W, Nitsche A. 2005. Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelopox virus and Cytomegalovirus infections. Virol J. 2:1–5.

Schmittgen TD, Zakrajsek BA. 2000. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods. 46:69–81.

Selvey S, Thompson EW, Matthaei K, Lea RA, Irving MG, Griffiths LR. 2001. Beta-actin—an unsuitable internal control for RT-PCR. Mol Cell Probes. 15:307–311.

Taylor SC, Mrkusic EM. 2014. The state of RT-quantitative PCR: first hand observations of implementation of minimum information for the publication of quantitative real-time PCR experiments (MIQE). J Mol Microbiol Biotechnol. 24:46–52.

Udvardi MK, Czechowski T, Scheible WR. 2008. Eleven golden rules of quantitative RT-PCR. Plant Cell. 20:1736–1737.

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3:RESEARCH0034.

Walker CG, Meier S, Mitchell MD, Roche JR, Littlejohn M. 2008. Evaluation of real-time PCR endogenous control genes for analysis of gene expression in bovine endometrium. BMC Mol Biol. 10:1–12.

Wang YC, Deng JL, Xu SW, Peng X, Zuo ZC, Cui HM, Wang Y, Ren ZH. 2012. Effects of zearalenone on IL-2, IL-6, and IFN-γ mRNA levels in the splenic lymphocytes of chickens. Sci World J. 2012:567327.

Watson S, Mercier S, Bye C, Wilkinson J, Cunningham AL, Harman AN. 2007. Determination of suitable housekeeping genes for normalisation of quantitative real time PCR analysis of cells infected with human immunodeficiency virus and herpes viruses. Virol J. 4:130.

Wong ML, Medrano JF. 2005. Real-time PCR for mRNA quantitation. Biotechniques. 39:75–85.

Xu X, Liu X, Chen S, Li B, Wang X, Fan C, Wang G, Ni H. 2016. Selection of relatively exact reference genes for gene expression studies in flixweed (Descurainia sophia) by quantitative real-time polymerase chain reaction. Pestic Biochem Physiol. 127:59–66.

Zhu G, Chang Y, Zuo J, Dong X, MZ, Hu G, Fang F. 2001. Fudenine, a C-Terminal truncated rat homologue of mouse Prominin, is blood glucose-regulated and can up-regulate the expression of GAPDH. Biochem Biophys Res Commun. 281:951–956.