Knowledge and attitude towards hazardous effects of laser pointers among attendees of football matches in Riyadh, Saudi Arabia

Rahaf Altwijri, Suliman A. Alsuliman, Latifa Alanazi, Shaikha H. Aldossari1, Abeer Ahmad1, Hassan Al Dhibi1, Sulaiman M. Alsulaiman1

Abstract:

PURPOSE: There has been a recent increase in accidental retinal injuries due to the careless use of handheld laser devices. The scenarios under which these incidents occur suggest a lack of awareness of the sight-threatening hazards of some handheld lasers. This study aimed to assess knowledge of the population to plan awareness programs and establish protective health policies.

METHODS: This observational cross-sectional study used a newly-developed, validated, and pilot-tested questionnaire to survey attendees of football matches in Saudi Arabia between September to October 2018.

RESULTS: Five-hundred and sixty-nine attendees were surveyed, and 76% of respondents knew laser pointers were harmful and could damage the eye. However, 73% of respondents did not think that the blue laser was dangerous, indicating poor awareness regarding this particular laser. Only 38% knew which ocular structure is most commonly damaged, and 15.6% did not realize that brief exposure can cause vision loss. Females had better knowledge compared to males. Respondents between 25 and 40 years old, females, and married individuals had the highest levels of a positive attitude. There was no statistically significant difference in the mean knowledge score between those in the medical field and other fields ($P = 0.5$).

CONCLUSION: There is an inadequate knowledge of protective measures against handheld lasers. However, there’s an overall positive attitude towards spreading awareness about this issue. Yet, targeted awareness campaigns are still needed in addition to more strict government laws to prevent importing or using high-powered handheld laser pointers.

Keywords:
Blue lasers, handheld lasers, laser pointers, ocular damage, retina, retinal injury

INTRODUCTION

The use of lasers is prevalent in many aspects of life, including medicine, engineering, military, and educational tools.[1] However, handheld laser devices can be misused by many people, including teenagers and at many different places, including home, school, and even public venues such as football stadiums. Lately, highly powered handheld laser devices have been imported into the Middle East and can easily be acquired by the public.[2] High-power handheld laser devices (up to 1200 milliWatts) resembling low-power pointers are now available publicly for purchase or via the Internet.[1] The recent emergence of low-cost, high-power (up to 1400 mW), handheld laser devices have led to multiple cases of retinal injuries in the young population in Saudi Arabia[3] and other parts of the world.[4] We observed a common behavior during football matches in which attendees shine a laser beam into the eyes of the players. This behavior has the potential to cause serious ocular injuries, given some reported cases of blue laser injuries from distances as far as 1300 feet (396 Meters).[5] This behavior may reflect a lack of population awareness of ocular laser hazards or may be due to careless and negligent behavior. This study assesses the level of knowledge and...
attitude towards laser pointers among the Saudi population attending football matches.

Methods

Ethics

The study protocol was approved by the Internal Review Board/Ethical Committee at King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia.

Participant and data collection

This observational cross-sectional study recruited 569 subjects. The sample included adults who attended football matches in Riyadh, Saudi Arabia. Data collection was carried out in multiple football stadiums from September to the end of October 2018 in which medical students distributed the questionnaire to attendees of football matches.

Study instruments

A primary questionnaire was devised to measure the public knowledge and attitude towards the hazardous effects of blue lasers based on previous literature [Appendix A]. A panel of experts was used to establish content validity. They were asked to assess the overall content of the study instrument and specific questions on whether they do measure attitude, beliefs, and awareness simply. As a pilot study, the survey instrument was tested on individuals (N = 25) in the general population from different age groups to assess the language and perception of the questions. No changes were required for the primary questionnaire after the pilot study. The questionnaire comprised of three parts, the first part of the questionnaire consisted of 6 questions that covered demographic information, the second part of the questionnaire consisted of 15 questions that assessed the knowledge of respondents regarding laser pointers. The third part consisted of 8 questions to evaluate the attitude of the respondents towards laser pointer use. To find any associations between knowledge and attitude and demographics of the participants, we used only the participants who completed all questions on these scales. To score knowledge, we computed the total using only the questions where only one answer could be selected. We, therefore, excluded the questions: “what do you think is the most common reason behind purchasing a laser pen” and “what do you think is the reason why some people don’t buy a laser pen.” The final portion of the knowledge questionnaire consisted of 13 questions, where respondents could answer “yes” or “no.” Respondents answering with “I don't know” were considered to have no knowledge. One point was awarded for every correct answer and 0 points for a wrong answer. A total of 13 points could be given for the knowledge questionnaire. The same method was used for the attitude scale. In order to make a total score for the attitude, we excluded one question, “Why would you buy a laser pen.” This question was presented separately. The total score for the attitude questionnaire consisted of 7 questions, with a total score of 7 points. Respondents answering with “maybe” were considered to have a positive attitude.

The total scores on knowledge and attitude were measured by calculating the mean score of all items. For knowledge, two groups were created: “good knowledge” and “no knowledge.” If participants scored below the mean score of 8, they would be grouped into no knowledge, and a score of 8 or higher was considered good knowledge. For attitude, the mean total score was calculated for all items. If participants scored below the mean score of 5, they were grouped as negative attitudes, and a score of 5 or above, was considered a positive attitude.

Statistical data analysis

Descriptive statistics were used to describe the study population. Percentages and proportions were used to describe the categorical variables and mean score and SD for the total scores as continuous variables. Associations between the demographics of the participants and the knowledge and attitude questionnaire analyzed with the use of the chi-square test or the Fisher exact test, there were appropriate. Reliability analysis was performed by calculating the Cronbach alpha. Statistical significance in this study was set at a P-value < 0.05. The data were analyzed using Statistical Package for Social Science (SPSS) version 23 (IBM Corp., Armonk, NY, USA).

Results

Questionnaires were distributed to attendants of 9 football matches at Prince Faisal bin Fahd Stadium and King Saud University Stadium in Riyadh, Saudi Arabia. The current study enrolled 569 respondents (379 male, 67.7%; 181 female, 32.3%; Approximately 70% aged between the 19 and 40 years old, and 90% were Saudis; 65.4% were single; 54% had a bachelor’s degree or higher. Of the respondents, 86.9% were not working in the medical field [Table 1].

Knowledge

The knowledge questionnaire was further subdivided into questions that assessed the specific knowledge about laser use and damage to the eye and items that evaluated the general knowledge regarding this subject. Cronbach's alpha for this knowledge scale is 0.586.

Most of the respondents (76%) knew that laser pointers are harmful and can damage the eye. Although most of the respondents (71%) had the knowledge that distance between a laser pointer and the eye affects the severity of the damage, few respondents (15.6%) did not know or think that very brief (moments) laser exposure is enough to damage the eye. A quarter of the respondents had no knowledge about protective measures such as goggles that can be used to protect the eye from the laser [Table 2a].

Table 2b presents the general knowledge about the laser. Most of the respondents did not know which type of laser is the most dangerous to the eye; almost 73% of them did not know it was the blue laser [Table 2b]. Thirty-eight percent of respondents indicated that the retina sustains the most ocular damage after...
Altwijri, et al.: Knowledge and attitude towards hazardous effects of laser exposure to a laser pen. Most respondents (63.3%) thought that the most common reason to buy a laser pen is for entertainment and amusement.

Table 3 presents the results of the demographic differences in knowledge of laser pointers. Out of the 569 participants, only 280 patients (49.1%) completed all questions on the knowledge questionnaire. Age was significantly associated with having a good knowledge score. Among older respondents (40–64 years old), 94.7% had a good knowledge followed by 25–39 years old age group (80.4%) \(P = 0.045 \). Females (89.3%) exhibited better knowledge compared to males (79.3%), but this was not statistically significant \(P = 0.064 \). Interestingly, there was no statistically significant difference in the mean knowledge score between the medical field and other fields \((P = 0.5) \).

Attitude
The attitude questionnaire was further subdivided into questions related to the respondent's attitude towards awareness and the attitude towards having a laser pointer. Cronbach alpha calculated for the attitude scale is 0.63.

Table 4 presents the attitude in relation to demographics. Out of the 569 participants, 542 (95.3%) completed all questions on the attitude questionnaire. The 25–40 years old group had a statistically significantly higher mean score (5.99) than the 40–64 years old group (5.89) \((P = 0.001) \). The mean score was statistically significantly lower among males (5.63) than females (6.03) \((P = 0.012) \). The mean score was statistically significantly higher for married respondents (6.01) compared to those who were single (5.63) \((P = 0.011) \).

Figure 1 presents the reasons for purchasing handheld laser devices. The business was the most common reason \(n = 110 \) (19.3%), followed by entertainment \(n = 109 \) (19.2%), and some bought the laser as a weapon to harm others \(n = 27 \) (2.8%).

Discussion
This study sought to assess the community level of knowledge and attitude towards the recreational use of laser pointers and identify high-risk age groups. The data from this study will aid in establishing effective country-wide awareness programs and policies in the future. Laser pointers are a known cause of ocular injury.\(^1,6,7\) Locally, in the last decade, there has been an increasing number of injuries related to blue laser devices.\(^8\) In the UK, it was found that children with behavioral issues were at higher risk of laser exposure secondary to self-harm.\(^9\)
In the current study, attendants of football matches in Riyadh, Saudi Arabia were surveyed because we observed a recurring behavior in which the laser beam was directed into the eyes of football players. As a solution, we thought of conducting a survey in this regard to serve as a basis for national legislators to make new regulations towards this behavior.

Since 82.4% of our sample did not work in the medical field, our findings cannot be applied to healthcare workers. However, a local study compared the knowledge of laser pointers among ophthalmologists and non-ophthalmologists and indicated that the power used in the latter group’s pointers is unknown to 82% and that the majority (90.7%) of study subjects did not know the safety limit of laser pointers they owned.\[10\]

To the best of our knowledge, no studies have assessed attitudes towards the hazardous effects of laser pointers among individuals attending football matches. Our findings reveal an overall positive attitude towards spreading awareness about this issue, banning the use of laser pointers, and not purchasing them in the future. In fact, 91.9% of our sample did not own a laser pointer.

We found that the older the respondent was, the more likelihood of them knowing about the hazards of laser pointers hazards (P=0.05). Our findings also reveal that subjects aged between 25 and 40 (P=0.001), females (P=0.012), and married individuals (P=0.011) had the statistically highest percentages of positive attitudes. This suggests that awareness campaigns should target children in schools.

Internationally, the exact incidence of laser injuries remains unknown. Locally, however, a tertiary hospital study reported more than 14 cases from different parts of the Kingdom in one year.\[1\] Although the number of injuries has decreased notably in the last two years (unpublished data) due to multiple awareness campaigns conducted by King Khaled Eye Specialist Hospital, the use of laser pointers continues to be observed at football matches. Further targeted awareness campaigns are still needed. Furthermore, government legislation that proposes

Table 2b: General knowledge about blue laser pen

What age group owns the highest number of laser pens?	n (%)
Children	16.9
Adolescents	71.2
Elderly	10.2
Missing	1.8

What do you think is the most dangerous laser to the eye?
Green laser
Red laser
Blue laser
Violet laser
Missing

What is the most common ocular tissue involved in laser injury?
Retina
Cornea
Lens
I don’t know
No harm
Missing

Exposure of the eye to the laser pen may cause
Glaucoma
Cataract
Retinal cell damage
No effect
I don’t know
Missing

What do you think is the reason why some don’t buy a laser pen
Realize its danger
Difficult access
Parental monitoring
Missing

Do you think that closing the eye during a few moments of exposure to the laser may protect it more against high or low energy laser?
High energy
Low energy
Not an effective way to protect the eye
Missing

What do you think is the most common reason behind purchasing laser pens?
Low price
Easy access
Entertainment and fun
Weapon
Business purposes
Missing

Table 3: Demographic differences in knowledge about blue laser pens

Mean score (SD)	Knowledge Poor knowledge					
Age	No %	No %	P*			
18 years or younger	8.74 (0.93)	18	75	1	5.3	0.045**
19-24 years	8.75 (1.83)	92	78	26	22	
25-39 years	8.95 (1.5)	78	80	21	20	
40-64 years	9.26 (1.4)	36	95	2	5.3	
>64 years	10.5 (0.6)	4	100	0	0	

Gender	No %	No %	P*			
Male	8.78 (1.7)	162	80	41	20	0.064
Female	9.27 (1.4)	67	89	8	11	

Marital status	No %	No %	P*			
Single	8.84 (1.7)	147	83	31	17	0.753
Married	9.02 (1.5)	77	81	18	19	

Field of work	No %	No %	P*			
Medical field	9.25 (1.6)	31	86	6	14	0.5
Non-medical	8.85 (1.6)	195	82	44	18	

Educational level	No %	No %	P*			
Low	8.50 (2.8)	1	25	3	75	0.585
Middle	8.86 (1.5)	78	80	20	20	
High	8.94 (1.7)	149	84	28	16	

Only patients for which we could compute a total score on the knowledge questions. *Chi-square test/Fisher exact test. **Significant differences P<0.05
Table 4: Demographic differences in attitude about blue laser pen

Age	Mean score (SD)	Positive attitude	Negative attitude	P*
Age		No . %	No . %	
18 years or younger	5.40 (1.3)	33 68.8 15	31.3 0.002**	
19-24 years	5.64 (1.2)	191 83.4 38	16.6	
25-39 years	5.99 (0.99)	168 91.3 16	8.7	
40-64 years	5.89 (1.17)	61 85.9 10	14.1	
>64 years	6.25 (0.5)	4 100 0	0	

Gender

Gender	Mean score (SD)	Positive attitude	Negative attitude	P*
Male	5.63 (1.2)	296 82.2 64	17.8	0.012**
Female	6.03 (1.02)	161 90.4 17	9.6	

Nationality

Nationality	Mean score (SD)	Positive attitude	Negative attitude	P*
Saudi	5.78 (1.18)	414 84.7 75	15.3	0.718
Other	5.63 (1.26)	33 86.8 5	13.2	

Marital status

Marital status	Mean score (SD)	Positive attitude	Negative attitude	P*
Single	5.63 (1.2)	291 82 64	18 0.011**	
Married	6.01 (1.26)	153 90.5 16	9.5	

Field of work

Field of work	Mean score (SD)	Positive attitude	Negative attitude	P*
Medical field	5.96 (1.07)	63 88.7 8	11.3	0.284
Non-medical	5.72 (1.2)	377 83.8 73	16.2	

Educational level

Educational level	Mean score (SD)	Positive attitude	Negative attitude	P*
Low	5.54 (1.61)	3 23.1 10	76.9	0.42
Middle	5.81 (1.13)	177 87.2 26	12.8	
High	5.74 (1.2)	271 83.9 52	16.1	

* Only patients for which we could compute a total score on the attitude questions. * Chi-square test/Fisher exact test. ** Significant differences P<0.05

A significant penalty is required to prevent the entry of laser pointers into stadiums.

Several limitations exist in this study. Due to the busy stadium environment, we were unable to calculate the response rate as the number of surveys sent out was not available. Another limitation is that the Cronbach alpha for the knowledge and attitude questionnaires are very low. The reason is that we were not expecting the questions on the attitude and knowledge questionnaire to be related to each other. The questionnaire is more of a formative model instead of a reflective model. The construct of the questionnaire is the result of the questions. Therefore, we were not expecting a high Cronbach alpha for these questionnaires. In addition, we made a total score for the items. A higher score indicating higher knowledge or positive attitude. For this, the items on the questionnaires do not need to be related to each other.[11]

Acknowledgments

We thank Aryaf Abdulrahman Alslimah, Basim Jalal Altwijri, Faisal Khalid Binkhonain, Noura Ali Albulushi, Turky Nasser Alsehli for their indispensable help in the data collection process.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Alsulaiman SM, Alrushood AA, Almasaud J, et al. High-power handheld blue laser-induced maculopathy: The results of the king khaled eye specialist hospital collaborative retina study group. Ophthalmology 2014;121(566-72) e1.
2. Shenoy R, Bialasiewicz AA, Bandara A, Isaac R. Retinal damage from laser pointer misuse - case series from the military sector in Oman. Middle East Afr J Ophthalmol 2015;22:399-403. https://doi.org/10.4103/0974-9233.159780.
3. Abdelkader E. Accidental macular injury with class IVb laser outside the medical settings. Saudi J Ophthalmol. 2016;30(4):253-6.
4. Leslie B-P. Managing Retinal Injuries From Lasers. https://www.aao.org/eyenet/article/managing-retinal-injuries-from-lasers.
5. Gosling D, O’Hagan J, Quhill F. Blue laser induced retinal injury in a commercial pilot at 1300 B. Aerosp Med Hum Perform 2016;87:69-70.
6. Alsulaiman SM, Al-Marwani Al-Juhani MF, Ghazi NG. Intraretinal macular hemorrhage due to high-power handheld blue laser. Can J Ophthalmol 2017;1(52):e193-5. https://doi.org/10.1016/j.jcjo.2017.02.009.
7. Al-Amry MA, Alsulaiman SM, Ghazi NG. Anterior segment injury by a high-power handheld blue laser device. Ocul Immunol Inflamm. 2018;17(26):1174-6. https://doi.org/10.1080/09273948.2017.1327603.
8. Torp-Pedersen T, Welinder L, Justesen B, et al. Laser pointer maculopathy - on the rise? Acta Ophthalmol 2018;96:749-54.
9. Linton E, Walkden A, Steepley LR, et al. Retinal burns from laser pointers: A risk in children with behavioural problems. Eye (Lond) 2019;33:492-504. https://doi.org/10.1038/s41433-018-0276-z.
10. Alsulaiman SM, Al-Qahtani A, Mousa A, Ghazi NG. Laser pointers: How much does the general medical community know? Graefes Arch Clin Exp Ophthalmol 2017;255:635-6. https://doi.org/10.1007/s00417-016-3571-z.
11. Fayers PM, Hand DJ. Factor analysis, causal indicators, and quality of life [Internet]. SpringerLink. Kluwer Academic Publishers; [Last cited on 2019 Oct 29]. Available from: https://link.springer.com/article/10.1007/s00417-016-3571-z.
Appendix A

Data Collection Sheet – Research Department – KKESH

Demographics:
Name (Optional) ————————————

1. Age:
 - 18 years or younger
 - 19 to 24 years old
 - 25 to 49 years old
 - 50 to 64 years old
 - Older than 64 years

2. Gender:
 - Male
 - Female

3. Nationality:
 - Saudi
 - Other

4. Marital status:
 - Single
 - Married
 - Divorced
 - Widowed

5. Field of work:
 - Medical field
 - Others

6. Educational level:
 - Primary or Intermediate school
 - High school
 - Diploma
 - Bachelor’s degree
 - Postgraduate studies

Knowledge:

1. Have you ever heard of laser pens and the damage it could cause?
 - Yes
 - No

2. Do you think laser pens radiation is harmful to the eye?
 - Yes
 - No
 - Sometimes

3. What age group owns the highest number of laser pens?
 - Children
 - Adolescents from 13-19 years
 - Elderly

4. What do you think is the most dangerous to the eye:
 - Green laser
 - Red laser
 - Blue laser
 - Violet laser

5. Do you think that laser exposure to the eye for moment is enough to damage the eye?
 - Yes
 - No
 - I don’t know

6. Do you think that the distance between laser and the eye affects the severity of the damage to the eye?
 - Yes
 - No
 - I don’t know

7. What is the most common ocular tissue involved in laser injury?
 - Retina
 - Cornea
 - Lens

Attitude:

1. Do you think there are protective glasses against laser?
 - Yes
 - No

2. Do you think the use of protective glasses is effective in laser protection?
 - Yes
 - No

3. Do you think that spreading awareness information about the risk of laser pens and limiting its use may reduce the incidence of laser-related injuries in Saudi Arabia?
 - Yes
 - No
 - To a certain extent

4. Do you think that laser pens should be banned?
 - Yes
 - No
 - To a certain extent

5. Is it possible that you participate in increasing the awareness of Saudi society about the dangers of laser pens?
 - Yes
 - No
 - Maybe

6. Do you own a laser pen?
 - Yes
 - No

7. Have you ever owned one of the laser pens?
 - Yes
 - No
8. Is it possible to purchase a laser pen in the future?
 ● Yes
 ● No
 ● Maybe

9. If your answer was "yes", why would you buy it?
 ● For business purposes
 ● To see in the dark
 ● Entertainment and fun
 ● Weapon

10. Will you report who owns laser pens for the purpose of damaging the eyes of others?
 ● Yes
 ● No
 ● Maybe

11. Have you attended any football games in the stadium during the previous two years?
 ● Yes
 ● No
 ● Maybe

Specify: ____________________________