Poor Oral Health, That Is, Decreased Frequency of Tooth Brushing, Is Associated With Endothelial Dysfunction

Masato Kajikawa, MD; Ayumu Nakashima, MD, PhD; Tatsuya Maruhashi, MD, PhD; Yumiko Iwamoto, MD; Akimichi Iwamoto, MD; Takeshi Matsumoto, MD; Takayuki Hidaka, MD, PhD; Yasuki Kihara, MD, PhD; Kazuaki Chayama, MD, PhD; Chikara Goto, PhD; Akira Taguchi, PhD; Kensuke Noma, MD, PhD; Yukihito Higashi, MD, PhD

Background: Poor oral health is an independent predictor of cardiovascular outcome. Endothelial dysfunction is the initial step of atherosclerosis, resulting in cardiovascular outcomes; but there is no information on the association between oral health and endothelial function. The purpose of this study was to determine the relationships between oral health and endothelial function.

Methods and Results: A total of 190 subjects who underwent health examinations (mean age, 57 ± 18 years), including patients with cardiovascular disease, completed a questionnaire on oral health and frequency of tooth brushing, and underwent measurement of vascular function, flow-mediated vasodilation (FMD) and nitroglycerine-induced vasodilation. The subjects were divided into 2 groups according to frequency of tooth brushing (> twice/day and < once/day). FMD was significantly lower in the < once/day tooth brushing group as compared to the > twice/day tooth brushing group (3.3 ± 2.2% vs. 5.0 ± 3.0%, P < 0.001). There was no significant difference in nitroglycerine-induced vasodilation between the 2 groups. On multiple logistic regression analysis, tooth brushing < once/day remained independently associated with low FMD tertile.

Conclusions: Poor oral health, that is, decreased frequency of tooth brushing, is associated with endothelial dysfunction. (Circ J 2014; 78: 950–954)

Key Words: Cardiovascular risk factor; Endothelial function; Flow-mediated vasodilation; Tooth brushing

Clinical and epidemiological studies have shown a link between oral health, especially periodontitis, and cardiovascular disease, but controversy remains regarding the independent association between oral health and cardiovascular disease. Systemic inflammation induced by periodontal disease is thought to affect the development and maintenance of atherosclerosis through activation of a biochemical reaction cascade, initiation and development of plaque formation, and injury of the endothelium.

Flow-mediated vasodilation (FMD) as an index of endothelium-dependent vasodilation, and nitroglycerine-induced vasodilation as an index of endothelium-independent vasodilation in the brachial artery on high-resolution ultrasound, are useful for assessing vascular function. Endothelial dysfunction is the initial step of atherosclerosis, leading to the maintenance and progression of atherosclerosis, resulting in cardiovascular complications. Assessment of FMD is non-invasive and reflects nitric oxide (NO) production. In addition, previous studies have shown that endothelial function assessed using FMD can serve as an independent predictor of cardiovascular events.

Recently, de Oliveira et al showed that poor oral health is associated with increasing risk of cardiovascular disease. Several investigators, including us, have shown that periodontitis...
Circulation Journal Vol.78, April 2014

Oral Health and Endothelial Function

is associated with endothelial dysfunction and that treatment of periodontitis improves endothelial function in patients with atherosclerosis as well as in healthy subjects.\(^{21,25}\) There is no information, however, on the association between oral health and endothelial function. We therefore investigated the relationship between oral health, frequency of tooth brushing, and vascular function in a general population of subjects who underwent a health-screening examination, including healthy subjects and patients with cardiovascular disease.

Methods

Subjects

Between March 2012 and June 2013, a total of 190 consecutive subjects (mean age, 57±18 years) were recruited from people who underwent health-screening examinations at Hiroshima University Hospital. Hypertension was defined as systolic blood pressure >140 mmHg or diastolic blood pressure >90 mmHg, in a sitting position, on at least 3 different occasions. Diabetes mellitus was defined according to the American Diabetes Association.\(^{26}\) Dyslipidemia was defined according to the third report of the National Cholesterol Education Program.\(^{27}\) The ethical committees in the present institutions approved the study protocol. Written informed consent for participation in the study was obtained from all subjects.

Study Protocol

We had a simple questionnaire about frequency of tooth brushing (<once/day and ≥ twice/day). Subjects fasted the previous night for at least 12 h. The study began at 08.30 A.M. The subjects were kept in the supine position in a quiet, dark, air-conditioned room (constant temperature, 22–25°C) throughout the study. A 23-gauge polyethylene catheter was inserted into the left deep antecubital vein to obtain blood samples. Thirty minutes after maintaining the supine position, FMD and nitroglycerine-induced vasodilation were measured. The observers were blind to the form of examination.

Measurement of FMD

The subjects remained supine throughout the study. The vascular response to reactive hyperemia in the brachial artery was used for assessment of endothelium-dependent FMD. A high-resolution linear artery transducer was coupled to computer-assisted analysis software (UNEXEF18G; UNEX Co, Nagoya, Japan) that used an automated edge detection system for measurement of brachial artery diameter. A blood pressure cuff was placed around the forearm. The brachial artery was scanned longitudinally 5–10 cm above the elbow. When the clearest B-mode image of the anterior and posterior intimal interfaces between the lumen and vessel wall was obtained, the transducer was held at the same point throughout the scan by a special probe holder (UNEX Co) to ensure consistency of the image. Depth and gain setting were set to optimize the images of the arterial lumen wall interface. When the tracking gate was placed on the intima, the artery diameter was automatically tracked, and the waveform of diameter changes over the cardiac cycle was displayed in real time using the FMD mode of the tracking system. This allowed the ultrasound images to be optimized at the start of the scan and the transducer position to be adjusted immediately for optimal tracking performance throughout the scan. Pulsed Doppler flow was assessed at baseline and during peak hyperemic flow, which was confirmed to occur within 15 s after cuff deflation. Blood flow velocity was calculated from the Doppler data and was displayed as a waveform in real time. The baseline longitudinal image of the artery was acquired for 30 s, and then the blood pressure cuff was inflated to

Table 1. Subject Clinical Characteristics

Variable	Total (n=190)	≤Once/day (n=56)	≥Twice/day (n=134)	P-value
Age (years)	57±18	63±14	55±20	0.001
Sex (M/F)	112/78	48/8	64/70	<0.001
BMI (kg/m²)	23.6±4.0	24.5±4.2	23.1±3.8	0.03
SBP (mmHg)	132±21	135±23	130±20	0.21
DBP (mmHg)	77±14	81±15	75±14	0.02
Heart rate (beats/min)	70±13	70±13	70±13	0.94
Total cholesterol (mg/dl)	188±36	183±30	191±39	0.17
Triglycerides (mg/dl)	134±79	130±87	136±75	0.71
HDL-C (mg/dl)	58±16	54±14	59±16	0.04
LDL-C (mg/dl)	109±32	108±26	110±34	0.66
Glucose (mg/dl)	122±40	115±33	126±44	0.13
hsCRP (mg/dl)	0.11±0.26	0.20±0.41	0.06±0.06	0.03

Medical history

Variable	Total (n=190)	≤Once/day (n=56)	≥Twice/day (n=134)	P-value
Hypertension	121 (63.7)	45 (80.4)	76 (56.7)	0.001
Dyslipidemia	101 (53.2)	25 (44.6)	76 (56.7)	0.12
Diabetes mellitus	55 (28.9)	20 (35.7)	35 (26.1)	0.18
Previous CAD	28 (14.7)	8 (14.3)	20 (14.9)	0.90
Previous stroke	8 (4.2)	2 (3.6)	6 (4.5)	0.77
Smoker	31 (16.3)	17 (30.4)	14 (10.5)	0.001
FMD (%)	4.5±2.9	3.3±2.2	5.0±3.0	<0.001
Nitroglycerine-induced vasodilation (%)	11.6±5.5	11.6±5.7	11.6±5.5	0.99

Data given as mean±SD or n (%).

BMI, body mass index; CAD, coronary artery disease; DBP, diastolic blood pressure; FMD, flow-mediated vasodilation; HDL-C, high-density lipoprotein cholesterol; hsCRP, high-sensitivity C-reactive protein; LDL-C, low-density lipoprotein cholesterol; SBP, systolic blood pressure.
5 min. Nitroglycerine-induced vasodilation was automatically calculated as a percentage change in peak vessel diameter from baseline. Nitroglycerine percentage (peak diameter–baseline diameter/baseline diameter) was used for analysis. Inter- and intra-coefficients of variation for the brachial artery diameter were 1.6% and 1.4%, respectively.

Statistical Analysis
Results are presented as mean±SD for continuous variables and as percentage for categorical variables. Statistical significance was set at P<0.05. Comparison of continuous variables between 2 groups was performed using the Mann-Whitney U-test or the chi-squared test for categorical data. Stepwise multiple regression analysis was performed to find independent predictors of low FMD tertile (<2.9%) among potential confounders (P<0.2) on univariate analysis. Using variables associated with low FMD tertile on stepwise multiple regression analysis, logistic regression analysis was then done. The data were processed using Stata version 9 (Stata, College Station, TX, USA).

Results
Clinical Characteristics
The baseline characteristics of the 190 subjects are listed in Table 1. Of the 190 subjects, 112 (58.9%) were men and 78 (41.1%) were women. One hundred and twenty-one (63.7%) had hypertension, 101 (53.2%) had dyslipidemia, 55 (28.9%) had diabetes mellitus, and 31 (16.3%) were current smokers. Of the 162 subjects who were evaluated, 28 (14.7%) had known coronary artery disease and 8 (4.2%) had known stroke.

Vascular Function and Oral Health
We divided the subjects into 2 groups according to frequency of tooth brushing (Table 1). There were significant differences

Table 2. Factors Associated With Low FMD Tertile (<2.9%)

Parameters	OR (95% CI)	P-value
Intercept	<0.001	
Age (1-year change)	1.03 (1.01–1.05)	0.01
Men	1.39 (0.67–2.93)	0.38
Diabetes mellitus	2.65 (1.27–5.65)	0.01
≤Once/day (Yes)	2.26 (1.07–4.81)	0.03

Output of a logistic regression model with FMD >2.9% taken as the reference. Adjusted R² of the model was 0.14. Initial factors included in the model were age, sex, dyslipidemia, diabetes mellitus, ≤once/day tooth brushing.
CI, confidence interval; OR, odds ratio. Other abbreviation as in Table 1.
between the 2 groups in age, sex, diastolic blood pressure, high-density lipoprotein cholesterol, high-sensitivity C-reactive protein (hsCRP), prevalence of hypertension, and smoking. FMD was significantly lower in the once/d Ay tooth brushing group than in the twice/day tooth brushing group (3.3±2.2% vs. 5.0±3.0%, P<0.001; Figure). There was no significant difference in nitroglycerine-induced vasodilation between the 2 groups. On multiple logistic regression analysis for low FMD tertile, age, diabetes mellitus and once/day tooth brushing remained independently associated with low FMD tertile (Table 2).

Discussion
In the present study, we showed that poor oral health, that is, decreased frequency of tooth brushing is associated with endothelial dysfunction. These harmful effects on the vasculature may contribute to an increase in the prevalence of cardiovascular events in subjects with poor oral health. Tooth brushing twice/day is beneficial for not only oral health but also endothelial function, leading to improvement in public health and savings in health-care costs.

Cumulative cardiovascular risk contributes to the development of cardiovascular and cerebrovascular events. Hypertension, dyslipidemia, diabetes mellitus, aging, smoking, and obesity are contributing risk factors. In the present study, there were significant differences in cardiovascular risk factors, including age, prevalence of hypertension, and smoking status between, the low-frequency and high-frequency tooth brushing groups. After adjustment of cardiovascular risk factors, low frequency of tooth brushing remained an independent predictor of low FMD tertile. Therefore, low frequency of tooth brushing may simultaneously or independently affect the maintenance and progression of atherosclerosis. To our knowledge, this is the first report on the effect of oral health, that is, frequency of tooth brushing, on vascular function.

It is well known that there is a relationship between inflammation and oral health. In the present study, we confirmed results of previous studies showing that the inflammation marker CRP was significantly associated with poor oral health.24,25 An association between inflammation and endothelial dysfunction has been suggested in many studies.23–25 We previously showed that chronic systemic infection with Helicobacter pylori impaired endothelium-dependent vasodilation in healthy male subjects.28 Patients with periodontal disease are also ideal models for evaluating how endothelium-dependent vasodilation is affected by inflammation. Indeed, periodontal disease is associated with endothelial dysfunction.21–25 We have also shown that periodontal therapy improves endothelium-dependent vasodilation in patients with periodontitis.24,25 These findings suggest that endothelial dysfunction observed in the poor oral health group is due to increase in systemic inflammation and that oral health care, including tooth brushing, may have a beneficial effect on endothelial function.

Chronic inflammation induced by poor oral health may contribute to endothelial dysfunction through a decrease in NO bioavailability, a decrease in NO production and/or an increase in NO inactivation. Under the condition of chronic systemic inflammation, production of pro-inflammatory cytokines downregulates the expression of endothelial NO synthase (eNOS) and decreases the half-life of eNOS mRNA.29,30 Interestingly, these cytokines attenuate endothelium-dependent vasodilation in vivo.31 CRP also directly decreased eNOS mRNA and protein levels and enzymatic activity in human aortic endothelial cells.32 It is thought that endothelial dysfunction causes inflammation of the vascular wall, leading to a vicious circle between endothelial dysfunction and inflammation. These findings suggest that poor oral health activates several pro-inflammatory pathways, resulting in downregulation of the expression of eNOS and decrease in enzymatic activity and NO production.

Study Limitations
Although the method of self-reported assessment for dental status is well established, we used a questionnaire on the frequency of tooth brushing at the time of FMD measurement. It is thought that lifestyle modifications, including physical activity and diet status, impair endothelial function, leading to cardiovascular outcomes.33–36 Unfortunately, in the present study, we did not obtain data on exercise status and diet. We cannot deny the possibility that differences in frequency of exercise and/or dietary fish intake affect the differences in FMD between patients with more and less frequent tooth brushing.

Not only the frequency of tooth brushing but also the quality and quantity of tooth brushing may influence FMD. Tooth brushing only once a day but done carefully and thoroughly at night immediately before bed might be more effective than poor tooth brushing twice a day for a short time. Evaluation of the effects of both quality and quantity of tooth brushing on vascular function would enable more specific conclusions to be drawn.

Conclusions
Poor oral health, that is, frequency of tooth brushing, is associated with endothelial dysfunction. Tooth brushing is a simple approach for improving poor oral condition, and it is expected that appropriate oral health care will improve endothelial function. Future large-scale clinical studies are needed to confirm whether long-term tooth brushing twice/day improves vascular function and reduces mortality and morbidity of cardiovascular disease in subjects with poor oral health.

Acknowledgments
We thank Miki Kumiji, Megumi Wakisaka, Ki-ichiro Kawano, and Satoko Michiyama for their excellent assistance with the manuscript. This study was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan (1859081500 and 21590898).

Disclosures
Financial disclosures: None.

References
1. Paunio K, Impivaara O, Tiikso J, Mäki J. Missing teeth and ischaemic heart disease in men aged 45–64 years. Eur Heart J 1993; 14 (Suppl K): 54–56.
2. Joshipura KJ, Rimm EB, Douglass CW, Trichopoulous D, Ascherio A, Willett WC. Poor oral health and coronary heart disease. J Dent Res 1996; 75: 1631–1636.
3. Beck JD, Etter JR, Heiss G, Couper D, Mauriello SM, Offenbacher S. Relationship of periodontal disease to carotid artery intima-media wall thickness: The atherosclerosis risk in communities (ARIC) study. Arterioscler Thromb Vasc Biol 2001; 21: 1816–1822.
4. Desvarieux M, Demmer RT, Rundek T, Boden-Albala B, Jacobs DR Jr, Sacco RL, et al. Periodontal microbiota and carotid intima-media thickness: The Oral Infections and Vascular Disease Epidemiology Study (INVEST). Circulation 2005; 111: 576–582.
5. Lockhart PB, Bolger AF, Papapanou PN, Osinowale O, Trevisan M, Levison ME, et al. Periodontal disease and atherosclerotic vascular disease: Does the evidence support an independent association? A scientific statement from the American Heart Association. Circulation 2012; 125: 2520–2544.
6. Celermaier DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OJ, Sullivan ID, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992; 340: 1111–1115.
7. Celermaier DS, Sorensen KE, Bull C, Robinson J, Deanfield JE.
Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. *J Am Coll Cardiol* 1994; 24: 1468–1474.

8. Benjamin EJ, Larson MG, Keyes MJ, Mitchell GF, Vasan RS, Keaney JF Jr, et al. Clinical correlates and heritability of flow-mediated dilation in the community: The Framingham Heart Study. *Circulation* 2004; 109: 613–619.

9. Idei N, Nishioka K, Soga J, Hidaka T, Hata T, Fujii Y, et al. Vascular function and circulating progenitor cells in thromboangiitis obliterans (Buerger’s disease) and atherosclerosis obliterans. *Hypertension* 2011; 57: 70–78.

10. Soga J, Noma K, Hata T, Hidaka T, Fujii Y, et al; ROCK Study Group. Rho-associated kinase activity, endothelial function, and cardiovascular risk factors. *Arterioscler Thromb Vasc Biol* 2011; 31: 2353–2359.

11. Fujimura N, Noma K, Hata T, Soga J, Hidaka T, et al; ROCK Study Group. Mineralocorticoid receptor blocker eplerenone improves endothelial function and inhibits rho-associated kinase activity in patients with hypertension. *Clin Pharmacol Ther* 2012; 91: 289–297.

12. Adams MR, Robinson J, McCredie R, Seale JP, Sorensen KE, Deanfield JE, et al. Smooth muscle dysfunction occurs independently of impaired endothelial-dependent dilation in adults at risk of atherosclerosis. *J Am Coll Cardiol* 1998; 32: 123–127.

13. Raitakari OT, Seale JP, Celermajer DS. Impaired vascular responses to nitroglycerin in subjects with coronary atherosclerosis. *Am J Cardiol* 2001; 87: 217–219.

14. Ross R. Atherosclerosis: An inflammatory disease. *N Engl J Med* 1999; 340: 115–126.

15. Modena MG, Bonetti L, Coppi F, Bursi F, Rossi R. Prognostic role of reversible endothelial dysfunction in hypertensive postmenopausal women. *J Am Coll Cardiol* 2002; 40: 505–510.

16. Gokce N, Keaney JF Jr, Hunter LM, Watkins MT, Menzoian JO, Vita JA. Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function: A prospective study. *Circulation* 2002; 105: 1567–1572.

17. Brevetti G, Silvestro A, Schiano V, Chiariello M. Endothelial dysfunction and cardiovascular risk prediction in peripheral arterial disease: Additive value of flow-mediated dilation to ankle-brachial pressure index. *Circulation* 2003; 108: 2093–2098.

18. Lerman A, Zeiher AM. Endothelial function: Cardiac events. *Circulation* 2005; 111: 363–368.

19. Yeboah J, Folsom AR, Burke GL, Johnson C, Polak JF, Post W, et al. Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: The multi-ethnic study of atherosclerosis. *Circulation* 2009; 120: 502–509.

20. de Oliveira C, Watt R, Hamer M. Toothbrushing, inflammation, and risk of cardiovascular disease: Results from Scottish Health Survey. *BMJ* 2010; 340: c2451.

21. Amar S, Gokce N, Morgan S, Loukideli M, Van Dyke TE, Vita JA. Periodontal disease is associated with brachial artery endothelial dysfunction and systemic inflammation. *Arterioscler Thromb Vasc Biol* 2003; 23: 1245–1249.

22. Blum A, Kryuger K, Mashiah Eizenberg M, Tatour S, Vigder F, Laster Z, et al. Periodontal care may improve endothelial function. *Eur J Intern Med* 2007; 18: 295–298.

23. Tonetti MS, D’Aiuto F, Nihali L, Donald A, Story C, Parkar M, et al. Treatment of periodontitis and endothelial function. *N Engl J Med* 2007; 356: 911–920.

24. Higashi Y, Goto C, Jitsuki D, Umemura T, Nishioka K, Hidaka T, et al. Periodontal infection is associated with endothelial dysfunction in healthy subjects and hypertensive patients. *Hypertension* 2008; 51: 446–453.

25. Higashi Y, Goto C, Hidaka T, Soga J, Nakamura S, Fujii Y, et al. Oral infection-inflammatory pathway, periodontitis, is a risk factor for endothelial dysfunction in patients with coronary artery disease. *Atherosclerosis* 2009; 206: 604–610.

26. American Diabetes Association. Clinical practice recommendations 1999. *Diabetes Care* 1999; 22 (Suppl 1): S1–S114.

27. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III), *JAMA* 2001; 285: 2486–2497.

28. Oshima T, Ozono R, Yano Y, Oishi Y, Teragawa H, Higashi Y, et al. Association of helicobacter pylori infection with systemic inflammation and endothelial dysfunction in healthy male subjects. *J Am Coll Cardiol* 2005; 45: 1219–1222.

29. Kohler S, Nickel T, Weis M. Role of cytokines in cardiovascular diseases: A focus on endothelial responses to inflammation. *Clin Sci (Lond)* 2005; 108: 205–213.

30. Yoshizumi M, Perrellia MA, Burnett JC Jr, Lee ME. Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. *Circ Res* 1993; 73: 205–209.

31. Hagi T, Vallance P. Inflammatory cytokines impair endothelium-dependent dilation in human veins in vivo. *Circulation* 1997; 96: 3042–3047.

32. Venugopal SK, Devaraj S, Yuhanna I, Shaul P, Jalal I. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. *Arterioscler Thromb Vasc Biol* 2001; 21: 1859–1864.

33. Heinzelmann F, Bagley WR. Response to physical activity programs (PANIC) study. *Am J Public Health* 1970; 60: 2179–2182.

34. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Third Report of the National Cholesterol Education Program (NCEP). *Clinical practice guidelines on the detection, evaluation, and treatment of high blood cholesterol in adults* (Adult Treatment Panel III). *JAMA* 2001; 285: 706–723.

35. Matsuzawa Y, Sugiyama S, Sugamura K, Sumida H, Kurokawa H, Fujisue K, et al. Successful diet and exercise therapy as evaluated on nutritional, metabolic, and anthropometric risk factors in Japanese men with hypercholesterolemia! *Circ J* 2010; 74: 2807–2815.

36. Poltavski D, Holm J, Vogeltanz-Holm N, McDonald L. Assessing health-related quality of life in Northern Plains American Indians: Prominence of physical activity as a health behavior. *Am Indian Alsk Native Ment Health Res* 2010; 17: 25–48.

37. Matsuzawa Y, Sugiyama S, Sugamura K, Sumida H, Kurokawa H, Fujisue K, et al. Successful diet and exercise therapy as evaluated on self-assessment score significantly improves endothelial function in metabolic syndrome patients. *Circ J* 2013; 77: 2807–2815.

38. Veijalainen A, Tompuri T, Laitinen T, Lintu N, Viitasalo A, Laaksonen DE, et al. Metabolic risk factors are associated with stiffness index, reflection index and finger skin temperature in children: Physical Activity and Nutrition in Children (PANIC) study. *Circ J* 2013; 77: 1281–1288.