ON TOTALLY REAL SUBMANIFOLDS
Ognian T. Kassabov
University of Sofia
Received March, 9 1985.

Many authors have investigated totally real submanifolds of Kählerian manifolds. In this paper we generalize some results in this direction obtained by B.-Y. Chen, K. Ogiue, M. Kon and K. Yano in [1] [4] [5] [6]. In particular, we study semiparallel totally real submanifolds. The notion of semiparallel submanifolds was introduced by J. Deprez in [2] [3] as extrinsic analogue for semisymmetric Riemannian spaces.

1. Preliminaries.

Let \(\tilde{M} \) be a \(2m \)-dimensional Kählerian manifold with Riemannian metric \(g \), complex structure \(J \) and covariant differentiation \(\tilde{\nabla} \). An \(n \)-dimensional submanifold \(M \) of \(\tilde{M} \) is said to be a totally real submanifold of \(\tilde{M} \), if for each point \(p \in M \) the inclusion \(JT_pM \subset T_pM^\perp \) holds. Then \(n \leq m \). For \(X, Y \in \mathfrak{X}(M) \) we write the Gauss formula:

\[
\tilde{\nabla}_X Y = \nabla_X Y + \sigma(X,Y),
\]

where \(\nabla \) is the covariant differentiation on \(M \) and \(\sigma \) is a normal-bundle-valued symmetric tensor field on \(M \), called the second fundamental form of \(M \). The mean curvature vector \(H \) of \(M \) is defined by \(H = (1/n) \text{tr} \sigma \). If \(H = 0 \), \(M \) is said to be a minimal submanifold of \(\tilde{M} \). In particular, if \(\sigma = 0 \), \(M \) is called a totally geodesic submanifold of \(\tilde{M} \). For \(\xi \in \mathfrak{X}(M)^\perp \) the Weingarten formula is given by

\[
\tilde{\nabla}_X \xi = -A_\xi X + D_X \xi,
\]

where \(-A_\xi X \) (resp. \(D_X \xi \)) denotes the tangential (resp. the normal) component of \(\tilde{\nabla}_X \xi \). It is well known that \(g(\sigma(X,Y), \xi) = g(A_\xi X, Y) \) and \(D \) is the covariant differentiation in the normal bundle. If \(D_X \xi = 0 \) for each \(X \in \mathfrak{X}(M) \), the normal vector field \(\xi \) is said to be parallel. For a normal vector field \(\xi \), let \(J\xi = P\xi + f\xi \), where \(P\xi \) (resp. \(f\xi \)) denotes the tangential (resp. the normal) component of \(J\xi \). Then \(f \) is an endomorphism of the normal bundle and \(f^3 + f = 0 \). So if \(f \) does not vanishes, it defines an \(f \)-structure in the normal bundle. If \(Df = 0 \), i.e. \(D_X f\xi - fD_X \xi = 0 \) for all \(X \in \mathfrak{X}(M) \), \(\xi \in \mathfrak{X}(M)^\perp \), the \(f \)-structure in the normal bundle is said to be parallel. In this case it is not difficult to find that
(1) \[\sigma(X, Y) = JA_{JX}Y = JA_{JY}X , \]
(2) \[D_XJY = J\nabla_XY , \]
(3) \[A_\xi = 0 , \]
for \(X, Y \in \mathfrak{X}(M) \), \(\xi \perp \mathfrak{X}(M) \oplus J\mathfrak{X}(M) \), see [6, p. 46]. We note, that if \(n = m \), \(f \) vanishes and (1) and (2) hold good. Because of (1), the equation of Gauss can be written in the form

\[\{ \tilde{R}(x, y)z \}^t = R(x, y)z - [A_{Jx}, A_{Jy}]z , \]

for \(x, y, z \in T_pM \), \(p \in M \) where \(\tilde{R} \) (resp. \(R \)) is the curvature tensor for \(\tilde{M} \) (resp. \(M \)) and \(\{ \tilde{R}(x, y)z \}^t \) denotes the tangential component of \(\tilde{R}(x, y)z \). In particular, if \(\tilde{M} \) is a complex space form \(\tilde{M}(\mu) \), i.e. a Kählerian manifold of constant holomorphic sectional curvature \(\mu \), we find

\[\frac{\mu}{4} x \wedge y = R(x, y)z - [A_{Jx}, A_{Jy}]z . \]

If \([A_\xi, A_\eta] = 0 \) for all \(\xi, \eta \in \mathfrak{X}(M)^\perp \), \(M \) is said to have commutative second fundamental forms. Then from (3) and (4) we obtain

Lemma 1. [6, p. 57] Let \(M \) be a totally real submanifold of a complex space form \(\tilde{M}(\mu) \). If the \(f \)-structure in the normal bundle is parallel, then \(M \) is of constant curvature \(\mu/4 \) if and only if \(M \) has commutative second fundamental forms.

For minimal submanifolds we have

Lemma 2. [6, p. 57] Let \(M \) be a totally real minimal submanifold with commutative second fundamental forms of a Kählerian manifold \(\tilde{M} \). If the \(f \)-structure in the normal bundle is parallel, then \(M \) is totally geodesic.

We note that because of (1)

\[M \text{ is minimal if and only if } \sum_{i=1}^n A_{Je_i}e_i = 0 \]

for any orthonormal basis \(\{e_1, \ldots, e_n\} \) of a tangent space of \(M \).

Let \(R^\perp \) be the curvature tensor of the normal connection, i.e.
\[
R^\perp(X,Y)\xi = D_X D_Y \xi - D_Y D_X \xi - D_{[X,Y]} \xi,
\]
for \(X, Y \in \mathfrak{X}(M), \xi \in \mathfrak{X}(M)\perp\). Using (2) we find that
\[
(6) \quad R^\perp(X,Y)JZ = JR(X,Y)Z.
\]

Let \(\nabla\) denote the covariant differentiation with respect to the connection of van der Waerden-Bortolotti. For example
\[
(\nabla_X \sigma)(Y, Z) = D_X \sigma(Y, Z) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z).
\]
If \(\nabla \sigma = 0\), then \(M\) is said to have parallel second fundamental form or to be a parallel submanifold. More generally \(M\) is said to be a semiparallel submanifold if \(\nabla\) is constant, if
\[
(\nabla(X,Y)\sigma)(Z, U) = (\nabla_X(\nabla_Y \sigma))(Z, U) - (\nabla_Y(\nabla_X \sigma))(Z, U),
\]
or equivalently
\[
(\nabla(X,Y)\sigma)(Z, U) = R^\perp(X,Y)\sigma(Z, U) - \sigma(R(X,Y)Z, U) - \sigma(Z, R(X,Y)U).
\]
In Euclidean spaces submanifolds of this kind are considered by J. Deprez [2] [3]. Using (1) and (6) we derive

Lemma 3. Let \(M\) be a totally real submanifold with parallel \(f\)-structure in the normal bundle of a Kählerian manifold \(\tilde{M}\). Then \(M\) is semiparallel if and only if
\[
R(x,y)A_{Jz}u = A_{Jz}R(x,y)u + A_{Ju}R(x,y)z
\]
for all \(x, y, z, u \in T_pM, p \in M\).

On the other hand, as a generalization of the submanifolds with parallel mean curvature vector, the submanifolds with semiparallel mean curvature vector are defined by \(R^\perp(X,Y)H = 0\). We note that the class of submanifolds with semiparallel mean curvature vector includes also the semiparallel submanifolds.

2. Submanifolds of constant curvature.

Proposition 1. Let \(M\) be an \(n\)-dimensional \((n > 1)\) totally real submanifold of constant curvature \(c\), with parallel \(f\)-structure in the normal bundle of a Kählerian
manifold \tilde{M}. If the mean curvature vector H of M is semiparallel, then M is minimal or flat.

Proof. First we note that $H \in J\mathfrak{X}(M)$, because of (1). Now using (6) we obtain:

$$0 = R^\perp(X,Y)H = -JR(X,Y)JH,$$

i.e.:

$$R(X,Y)JH = 0.$$

Since M is of constant curvature c, this implies that

$$(7) \quad c\{g(y, JH)x - g(x, JH)y\} = 0$$

for all $x, y \in T_pM$. Let $c \neq 0$. Putting in (7) $y = (JH)_p, x \perp y, x \neq 0$ we obtain $H_p = 0$. Hence M is minimal.

Now we prove the main result in this section.

Theorem 1. Let M be an n-dimensional ($n > 1$) totally real semiparallel submanifold of constant curvature c with parallel f-structure in the normal bundle of a Kählerian manifold \tilde{M}. Then M is flat, i.e. $c = 0$ or M is a totally geodesic submanifold of \tilde{M}.

Proof. Since M is of constant curvature c, $R(x, y) = cx \wedge y$ holds good. Hence Lemma 3 implies:

$$(8) \quad c\{g(y, A_{Jz}u)x - g(x, A_{Jz}u)y\} = c\{g(y, z)A_{Ju}x - g(x, z)A_{Ju}y$$

$$+ g(y, u)A_{Jz}x - g(x, u)A_{Jz}y\}$$

for all $x, y, z, u \in T_pM, p \in M$. Let $c \neq 0$ and $\{e_1, \ldots, e_n\}$ be an orthonormal basis of T_pM. We put $x = u = e_i$ in (8) and we add for $i = 1, \ldots, n$ using (5) and Proposition 1. The result is

$$(n + 1)cA_{Jz}y = 0.$$

Hence the assertion follows, because of (3).

Using Lemma 1 we obtain

Corollary. Let M be an n-dimensional ($n > 1$) totally real semiparallel submanifold of constant curvature c, with parallel f-structure in the normal bundle
of a complex space form \(\widetilde{M}(\mu) \). Then \(M \) is flat, i.e. \(c = 0 \) or \(M \) is a totally geodesic submanifold of \(\widetilde{M}(\mu) \), i.e. \(c = \mu/4 \).

For parallel minimal submanifolds this Corollary is proved in [1], see also [6, p.61].

3. Minimal submanifolds and the sign of the scalar curvature.

Let \(M \) be an \(n \)-dimensional totally real minimal semiparallel submanifold with parallel \(f \)-structure in the normal bundle of a complex space form \(\widetilde{M}(\mu) \). According to (4) and Lemma 3:

\[
\frac{\mu}{4} \{ g(y, A_{Jz}u)x - g(x, A_{Jz}u)y \} + [A_{Jx}, A_{Jy}]A_{Jz}u
\]

\[
= \frac{\mu}{4} \{ g(y, z)A_{Ju}x - g(x, z)A_{Ju}y \\
+ g(y, u)A_{Jz}x - g(x, u)A_{Jz}y \} \\
+ A_{Ju}[A_{Jx}, A_{Jy}]z + A_{Jz}[A_{Jx}, A_{Jy}]u
\]

holds good and hence we derive the relation:

\[
\frac{\mu}{4} \{ g(y, A_{Jz}A_{Ju}v)g(x, w) - g(x, A_{Jz}A_{Ju}v)g(y, w) \} \\
+ g([A_{Jx}, A_{Jy}]A_{Jz}A_{Ju}v, w)
\]

(9)

\[
= \frac{\mu}{4} \{ g(y, z)g(A_{Jx}A_{Ju}v, w) - g(x, z)g(A_{Jy}A_{Ju}v, w) \\
+ g(y, A_{Jv}v)g(A_{Jz}x, w) - g(x, A_{Ju}v)g(A_{Jz}y, w) \} \\
+ g([A_{Jx}, A_{Jy}]z, A_{Ju}A_{Jv}v) + g(A_{Jz}[A_{Jx}, A_{Jy}]A_{Ju}v, w)
\]

for all \(x, y, z, u, v, w \in T_pM, p \in M \). Let \(\{e_1, \ldots, e_n\} \) be an orthonormal basis of \(T_pM \). In (9) we put \(x = w = e_i, y = u = e_j, z = v = e_k \) and we add for \(i, j, k = 1, \ldots, n \); this gives:

\[
\frac{\mu}{4}(n+1) \sum_{i=1}^{n} \text{tr} A_{Je_i}^2 - 2 \sum_{i,j=1}^{n} \text{tr} A_{Jei}^2 A_{Jej}^2 - \sum_{i,j=1}^{n} \text{tr} A_{Je_i}^2 A_{Je_j}^2 A_{Je_i} A_{Je_j}
\]

(10)

\[
+ 2 \sum_{i,j=1}^{n} \text{tr} A_{Je_i} A_{Je_j} A_{Je_i} A_{Je_j} = 0.
\]

On the other hand it is not difficult to find that
\[\sum_{i,j=1}^{n} \text{tr} A_{Je_i}^2 A_{Je_j}^2 = \sum_{i,j=1}^{n} \text{tr} A_{Je_i} A_{Je_j}^2 A_{Je_i}. \]

Applying this to (10) we obtain:

\[\frac{\mu}{4} (n + 1) \sum_{i=1}^{n} \text{tr} A_{Je_i}^2 + \sum_{i,j=1}^{n} \left(\text{tr} (A_{Je_i} A_{Je_j} - A_{Je_j} A_{Je_i})^2 - \text{tr} A_{Je_i}^2 A_{Je_j}^2 \right) = 0. \]

Now, just as Theorem 8.1 in [6, p. 69], we can prove the following

Theorem 2. Let \(M \) be a totally real minimal semiparallel submanifold with parallel \(f \)-structure in the normal bundle of a complex space form \(\tilde{M}(\mu) \). If the square of the length of the second fundamental form is constant (or equivalently, if \(M \) has constant scalar curvature \(\tau \)), then \(M \) is totally geodesic or \(\tau \geq 0 \). Moreover, if \(\tau = 0 \), then \(M \) is flat.

4. **Commutative second fundamental forms.**

To begin this section we note, that if \(M \) is a totally real submanifold with commutative second fundamental forms and parallel \(f \)-structure in the normal bundle of a complex space form \(\tilde{M}(\mu) \), then the equation of Gauss (4) reduces to

\[R(x, y) = \frac{\mu}{4} x \wedge y. \]

Proposition 2. Let \(M \) be an \(n \)-dimensional \((n > 1)\) totally real semiparallel submanifold with commutative second fundamental forms of a complex space form \(\tilde{M}(\mu) \). If the \(f \)-structure in the normal bundle is parallel, then \(M \) is totally geodesic or flat.

Proof. According to (11), \(M \) is of constant curvature \(\mu/4 \). Now the assertion follows from Theorem 1.

More generally, from (11), Lemma 2 and Proposition 1 we derive

Proposition 3. Let \(M \) be an \(n \)-dimensional \((n > 1)\) totally real submanifold with commutative second fundamental forms and parallel \(f \)-structure in the normal bundle of a complex space form \(\tilde{M}(\mu) \). If the mean curvature vector \(H \) of \(M \) is semiparallel, then \(M \) is totally geodesic or \(\mu = 0 \).

Propositions 2 and 3 generalize some results in [6, p. 62].
If \(n = 2 \) and \(M \) has parallel mean curvature vector, we can weaken the assumptions of Proposition 3. Namely, we have

Proposition 4. Let \(M \) be a totally real surface with commutative second fundamental forms and parallel \(f \)-structure in the normal bundle of a Kähler manifold \(\tilde{M} \). If the mean curvature vector of \(M \) is parallel, then \(M \) is flat or totally geodesic.

This follows from Lemma 2 and the following

Proposition 5. Let \(M \) be a totally real surface with parallel \(f \)-structure in the normal bundle of a Kähler manifold \(\tilde{M} \). If the mean curvature vector \(H \) of \(M \) is parallel, then \(M \) is flat or minimal.

Proof. Since \(H \) is parallel, it has constant length. Let \(H \neq 0 \), i.e. \(M \) is not minimal. As in Proposition 1 we have \(R(X, Y)JH = 0 \). Hence \(R(X, JH, JH, X) = 0 \), and since \(H \) does not vanish, then \(M \) is flat.

Theorem 3. Let \(M \) be an \(n \)-dimensional (\(n > 1 \)) complete totally real submanifold with parallel mean curvature vector and commutative second fundamental forms of a \(2m \)-dimensional simply connected complete complex space form \(\tilde{M}(\mu) \). If the \(f \)-structure in the normal bundle is parallel and \(M \) is not totally geodesic, then \(M \) is a pythagorean product of the form

\[S^1(r_1) \times \ldots \times S^1(r_p) \times \mathbb{R}^{n-p} \]

in a \(\mathbb{C}^n \) in \(\mathbb{C}^m \), where \(1 \leq p \leq n \).

Proof. According to Proposition 3, \(\mu = 0 \). Then \(\tilde{M}(\mu) \) is (isometric to) \(\mathbb{C}^m \) and the assertion follows from Theorem 7.1 in [6, p. 65].

For parallel submanifolds, Theorem 3 is proved in [5], (see also [6, p. 66]).

Corollary. Under the same assumptions as in Theorem 3, if \(M \) is compact, it is pythagorean product of the form

\[S^1(r_1) \times \ldots \times S^1(r_n) \]

in a \(\mathbb{C}^n \) in \(\mathbb{C}^m \).

References

[1]. B.-Y, Chen and K. Ogiue. *On totally real submanifolds*. Trans. Amer. Math. Soc., 193 (1974), 257-266.
[2]. J. Deprez. *Semi-parallel hypersurfaces.* Rend. Sem. Mat. Univer. Politec. Torino, 44 (1986), 303-316.
[3]. J. Deprez. *Semi-parallel surfaces in Euclidean space* J. Geom. 25 (1985), 192-200.
[4]. M. Kon. *Totally real minimal submanifolds with parallel second fundamental forms.* Atti Accad. Naz. Lincei, 57 (1974), 187-189.
[5]. K. Yano and M. Kon. *Totally real submanifolds of complex space forms II.* Kodai Math. Sem. Rep., 27 (1976), 385-399.
[6]. K. Yano and M. Kon. *Anti-invariant submanifolds.* Marcel Dekker, INC. New York and Basel, 1976.

University of Sofia
Faculty of Mathematics and Mechanics
5, Anton Ivanov Street
1126 Sofia
BULGARIA