Magnetic Weyl semimetals with diamond structure realized in spinel compounds
Wei Jiang, Huaqing Huang, Feng Liu, Jian-Ping Wang, and Tony Low
Phys. Rev. B 101, 121113 — Published 18 March 2020
DOI: 10.1103/PhysRevB.101.121113
Magnetic Weyl semimetals with diamond structure realized in spinel compounds

Wei Jiang,1 Huaqing Huang,2 Feng Lin,2 Jian-Ping Wang,1 and Tony Low1,*

1Department of Electrical & Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.
2Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT 84112, USA.
(Dated: March 9, 2020)

We discover a eg-orbital (d_{x^2}, d_{y^2}) model within the diamond lattice (eg-diamond model) that hosts novel topological states. Specifically, the eg-diamond model yields a 3D nodal cage (3D-NC), which is characterized by a d-d band inversion protected by two types of degenerate states (i.e., eg-orbital and diamond-sublattice degeneracies). We demonstrate materials realization of this model in the well-known spinel compounds (AB2X4), where the tetrahedron-site cations (A) form the diamond sub-lattice. An ideal half metal with one metallic spin channel formed by well-isolated and half-filled eg-diamond bands, accompanied by a large spin gap (4.36 eV) is discovered in one 4-2 spinel compound (VMg2O4), which becomes a magnetic Weyl semimetal when spin-orbit coupling effect is further considered. Our discovery greatly enriches the physics of diamond structure and spinel compounds, opening a door to their application in spintronics.

Quantum topological systems have attracted tremendous attention for both exotic physics (e.g., various quantum Hall effect1,2, topological superconductivity3, Weyl fermions4) and promising applications (e.g., spintronics5 and quantum computing6). In particular, Weyl semimetal systems, characterized with momentum space separated monopole pairs, Fermi arc, and the chiral anomaly, have recently been explored extensively both experimentally and theoretically7–15. Magnetic Weyl semimetals have attracted special attention because of the intrinsic magnetic properties15–21. However, most of the studied Weyl semimetals have either both spin channels entangled near the Fermi level or Weyl points formed far away from the Fermi level13,14, adding difficulties in studying the intrinsic properties of Weyl points. It is highly desirable if the Weyl points are located at the Fermi energy, allowing topological properties to be directly explored and exploited.

Studies of two-dimensional (2D) graphene have spawned various intriguing physical phenomena22, such as Dirac fermion23, quantum Spin Hall effect1, and superconductivity24,25. It has also stimulated many branches of exciting researches, such as silicene, germanene as its 2D analogues26, valleytronics that utilize k and k' valley degree of freedom27,28, and px,py-orbital counterpart of graphene with flat band and Wigner crystallization29,30. The diamond structure, which is essentially formed by stacking buckled honeycomb layer in the A-B-C configuration, can be viewed as a three-dimensional (3D) analogue of the 2D honeycomb lattice. It is the simplest system to study analogous exotic physics in three dimensions. Based on diamond structure, theoretical proposal had indeed been made to achieve 3D topological insulators31, whose proposal has yet been able to be mapped onto real materials. It would be important to identify a physical model based on diamond structure that spawns intriguing topological states and can be realized in real materials.

One of the most famous families of materials that hold the same group symmetry as diamond (Fd-3m) is the spin compounds (AB2O4)32–34. With remarkable magnetic properties, spinel compounds have been extensively studied for decades for their promising applications, e.g., permanent magnets, power handling, and magnetic recording et al35. Surprisingly, its topological properties have been greatly overlooked12, where only HgCr2Se4 has been proposed to be magnetic Weyl semimetal due to the band inversion between |S⟩ and |P⟩ states from Sc36. Careful examinations show that there are several advantages studying topological properties of spinel compounds, including, for example, perfect diamond structure sublattice, good isolation of localized d orbitals for ideal band structure with clean topological features, versatility and high tunability, and mature materials synthesis.

Here, based on tight-binding analysis, we develop a novel two eg-orbitals (d_{x^2} and d_{y^2}) model on the diamond structure (eg-diamond model). When both nearest-neighbor (NN) and next-NN (NNN) interactions are considered, the eg-diamond bands form a Dirac/Weyl nodal cage (NC) in the 3D Brillouin zone with hourglass fermions corresponding to the Dirac/Weyl points in the 2D case. The hourglass fermions involved are protected by the coexistence of eg orbitals degeneracy and diamond crystal symmetry with A, B sublattices degeneracy. Furthermore, we demonstrate real materials realization of the model in a representative 4-2 spinel compound (V^{4+}Mg^{2+}O4) using first-principles calculations. The spin-polarized eg-diamond bands are exactly half-filled and isolated from other bands because of the strong tetrahedron crystal field splitting and the exchange splitting. The spin-orbit coupling effect further breaks the degeneracy of the 3D-NC, leading to the magnetic Weyl semimetal state. It is exciting to note that VMg2O4 has excellent lattice matching (and chemical compatibility) with MgO, which is a widely used spintronics oxide material in industry. This opens the door for the realization of novel spintronics devices, such as achieving low switch-
model with parameters based on Slater-Koster matrix also confirms these features37.

In the absence of the NNN interactions, the same amplitude between hoppings among \(d_{z^2}\) orbitals and that among \(d_{x^2-y^2}\) orbitals guarantees the double degeneracy of the bands. This can be understood as two copies of single-orbital diamond model due to the degeneracy of two \(e_g\) orbitals on each site, as shown in Fig.1c37. In the single-orbital diamond model, the same NN hopping amplitude enables the formation of Dirac nodal lines along X-W path due to 2-fold rotation symmetries (C\(_2\) axis along x, y, and z directions through A and B sites). It is straightforward that X-W and its inversion and rotational symmetric paths (four 3-fold rotation axis along tetrahedral bond direction) will have the same degeneracy. It is important to emphasize that there exist two types of band degeneracies: type-A is due to the degeneracy of \(e_g\) orbitals (\(d_{x^2} \) and \(d_{x^2-y^2}\)) and the type-B owing to the \(C_2\) rotational symmetry in the single-orbital diamond Hamiltonian with degenerate A and B sites.

Next, NNN hopping interactions are included. There are two types of NNN hoppings, i.e., hoppings between \(d_{x^2} \) and \(d_{x^2-y^2}\) orbitals (termed type-I thereafter, \(t_1\)), and hoppings among \(d_{x^2}/d_{x^2-y^2}\) orbitals (termed type-II thereafter, \(t_2\)). Considering each single-orbital diamond Hamiltonian as one block, type-I hopping terms mix the two unit blocks with the off-diagonal interaction, and the type-II hopping terms act as on-site energy variation of the two blocks37. Detailed analysis about effects of these two hopping terms to the band structure can be found in the supplementary materials37. Interestingly, we notice that under some symmetric hopping conditions, the band degeneracy along certain high-symmetry k-paths remains even for nonzero \(t_1\) and \(t_2\) NNN hoppings.

Specifically, we find that at the center of the eight hexagonal Brillouin boundary (\(K_{HC}\), the type-A degeneracy remains when the NNN hopping Hamiltonian keeps the \(C_4\) rotational symmetry. Similarly, at the \(\Gamma\) and any point between \(\Gamma\) and \(K_{HC}\), the band degeneracy remains while both \(C_4\) rotational symmetry and the summation of hoppings along 12 NNN directions equals to zero37. Note the type-B degeneracy along X-W path is also conserved as the \(C_2\) rotation symmetry remains. One important outcome of the coexistence of two types of band degeneracy along different k-paths is the guaranteed band crossing (nodal point, hourglass fermion) along certain k-paths, where the two terminal k-points have different types of degeneracies, as shown in Fig. 1d. Such band crossing can be understood from the continuity nature of the wavefunctions that essentially leads to a d-d band inversion, since the two degenerate bands are formed with different orbital states37. As a consequence, those nodal points surprisingly construct a three-dimensional nodal cage, which will be further discussed later.

Magnetic semimetal in spinel compounds To realize the aforementioned \(e_g\)-diamond model in real materials, we focus on the well-known spinel compounds that also have a space group ofFd-3m as the diamond struc-
A compound with chemical formula of AB$_2$O$_4$ with the primitive unit cell labelled using dashed red lines. Cations A and B occupy the tetrahedral and octahedral sites, respectively. The band structure of 4-2 spinel (V$^{2+}$B$^{4+}$O$_4$), showing half-filled four-band structure isolated from the other bands with $d-t$ crystal splitting gap Δ_{E1}, $p-d$ charge transfer gap Δ_{E2}, and exchange splitting gap Δ_{E3}. Wannier fitted result is overlaid with cyan dotted lines. The black arrow indicates the position of Weyl points.

The observed band isolation in spin up channel can be traced to the underlying energy splittings indicated as Δ_{E1} and Δ_{E2}, as shown in Fig. 2b. The energy gap above (Δ_{E1}) is between d orbitals, which is essentially the tetrahedral crystal field splitting energy (Δ_{tet}) between e_g and t_{2g} orbitals. The large separation, Δ_{tet} \approx 2 eV, is due to strong interactions with O^{2-} ions and the high oxidation state of V$^{4+}$. Δ_{E2} below the Fermi level is between d and p orbitals, which is the charge-transfer gap determined by the energy-level separation of orbitals between vanadium and oxygen. The separation can be well characterized by elemental electronegativity and the Madelung potential. On the other hand, the large band gap in the spin down channel can be understood as the cooperative effect of Δ_{E2} and Δ_{E3}. Δ_{E3} is essentially the exchange splitting of the d electrons, which is known to be significant because of the strong localization effect of transition metal d orbitals. Ideally, such large gap would guarantee pure spin current and prevent any current leakage of the minority spin. To the best of our knowledge, this is also the largest spin gap among reported half-metallic ionic compounds.

The band structure of VMg$_2$O$_4$ without considering the spin-orbit coupling (SOC) effect is shown in Fig. 2b. There is a clear spin-polarized four-band structure right at the Fermi level with very good isolation from other bands. It exhibits an ideal half-metallicity feature where one spin channel is metallic and the other spin channel is insulating with a band gap as large as 4.36 eV at the PBE level of accuracy. Further calculations using hybrid functionals show the same band structure with a even larger spin gap (5.17 eV for meta-GGA and 6.62 eV for HSE37). To understand this peculiar electronic structure, we plotted and analyzed the projected density of states (PDOS) of VMg$_2$O$_4$. As shown in Fig. 2b, the four bands around the Fermi level are nearly half-filled and mainly contributed by V d electrons, which agrees with the magnetic moment distribution. The PDOS of Mg are located far above the Fermi level, as the two valence electrons are fully transferred to O^{2-} ions to form the Mg$^{2+}$ with zero valence electrons. The oxygen states are about 2 eV below the Fermi level because of the closed shell electronic configuration.

The electronic and magnetic properties of VMg$_2$O$_4$, a Conventional atomic structure of an ionic spinel compound with chemical formula of AB$_2$O$_4$ with the primitive unit cell labelled using dashed red lines. Cations A and B occupy the tetrahedral and octahedral sites, respectively. Band structure of 4-2 spinel (V$^{2+}$B$^{4+}$O$_4$), showing half-filled four-band structure isolated from the other bands with $d-t$ crystal splitting gap Δ_{E1}, $p-d$ charge transfer gap Δ_{E2}, and exchange splitting gap Δ_{E3}. Wannier fitted result is overlaid with cyan dotted lines. Maximaly localized wannier functions of d_z and $d_{x^2-y^2}$ orbitals from wannier fitting. Enlarged four-band structure near the Fermi level.

32-34. These inorganic oxides, with a chemical formula of AB$_2$O$_4$, are constructed by FCC lattice of O^{2-} anions and interstitial cations in tetrahedral (T-site) and octahedral (O-site) sites formed by O^{2-} ions, as shown in Fig. 2a. It is important to mention that in normal spinels, A cations in T-sites form exactly a diamond structure and B cations in O-sites form a 3D kagome lattice instead. To the best of our knowledge, though the diamond structure made by transition metal ions exist in many compounds, their intriguing electronic and topological properties have not been studied.

For A cations, the local tetrahedral crystal field splits five degenerate d orbitals into three-fold degenerate t_{2g} and two-fold degenerate e_g orbitals. Further exchange splitting of these d-orbitals breaks the time reversal symmetry and lifts the spin degeneracy37. With proper filling of e_g orbitals, e.g., one electron per site, half-filled magnetic e_g-diamond bands can be formed around the Fermi level. Indeed, we found one experimentally studied 4-2 spinel compound (VMg$_2$O$_4$) that perfectly satisfies these criteria38,39 where vanadium cations (4s23d3) have one d electron left after donating four valence electrons (V$^{4+}$) to neighboring oxygen anions (O$^{2-}$). Our density functional theory calculations37 show that VMg$_2$O$_4$ is ferromagnetic (FM) with a magnetic moment of 2 μ_B per unit cell, which are mainly contributed by V cations, as confirmed by the spin distribution plot37. The energy difference between FM and antiferromagnetic (AFM) state is around 0.43 eV at the PBE level, indicating a promising room temperature FM feature37.

The band structure of VMg$_2$O$_4$ without considering the spin-orbit coupling (SOC) effect is shown in Fig. 2b. There is a clear spin-polarized four-band structure right at the Fermi level with very good isolation from other bands. It exhibits an ideal half-metallicity feature where one spin channel is metallic and the other spin channel is insulating with a band gap as large as 4.36 eV at the PBE level of accuracy. Further calculations using hybrid functionals show the same band structure with a even larger spin gap (5.17 eV for meta-GGA and 6.62 eV for HSE37). To understand this peculiar electronic structure, we plotted and analyzed the projected density of states (PDOS) of VMg$_2$O$_4$. As shown in Fig. 2b, the four bands around the Fermi level are nearly half-filled and mainly contributed by V d electrons, which agrees with the magnetic moment distribution. The PDOS of Mg are located far above the Fermi level, as the two valence electrons are fully transferred to O^{2-} ions to form the Mg$^{2+}$ with zero valence electrons. The oxygen states are about 2 eV below the Fermi level because of the closed shell electronic configuration.

The observed band isolation in spin up channel can be traced to the underlying energy splittings indicated as Δ_{E1} and Δ_{E2}, as shown in Fig. 2b. The energy gap above (Δ_{E1}) is between d orbitals, which is essentially the tetrahedral crystal field splitting energy (Δ_{tet}) between e_g and t_{2g} orbitals. The large separation, Δ_{tet} \approx 2 eV, is due to strong interactions with O^{2-} ions and the high oxidation state of V$^{4+}$. Δ_{E2} below the Fermi level is between d and p orbitals, which is the charge-transfer gap determined by the energy-level separation of orbitals between vanadium and oxygen. The separation can be well characterized by elemental electronegativity and the Madelung potential40. On the other hand, the large band gap in the spin down channel can be understood as the cooperative effect of Δ_{E2} and Δ_{E3}. Δ_{E3} is essentially the exchange splitting of the d electrons, which is known to be significant because of the strong localization effect of transition metal d orbitals. Ideally, such large gap would guarantee pure spin current and prevent any current leakage of the minority spin. To the best of our knowledge, this is also the largest spin gap among reported half-metallic ionic compounds.

38-40. These inorganic oxides, with a chemical formula of AB$_2$O$_4$, are constructed by FCC lattice of O^{2-} anions and interstitial cations in tetrahedral (T-site) and octahedral (O-site) sites formed by O^{2-} ions, as shown in Fig. 2a. It is important to mention that in normal spinels, A cations in T-sites form exactly a diamond structure and B cations in O-sites form a 3D kagome lattice instead. To the best of our knowledge, though the diamond structure made by transition metal ions exist in many compounds, their intriguing electronic and topological properties have not been studied.

40-42. These inorganic oxides, with a chemical formula of AB$_2$O$_4$, are constructed by FCC lattice of O^{2-} anions and interstitial cations in tetrahedral (T-site) and octahedral (O-site) sites formed by O^{2-} ions, as shown in Fig. 2a. It is important to mention that in normal spinels, A cations in T-sites form exactly a diamond structure and B cations in O-sites form a 3D kagome lattice instead. To the best of our knowledge, though the diamond structure made by transition metal ions exist in many compounds, their intriguing electronic and topological properties have not been studied.

42-44. These inorganic oxides, with a chemical formula of AB$_2$O$_4$, are constructed by FCC lattice of O^{2-} anions and interstitial cations in tetrahedral (T-site) and octahedral (O-site) sites formed by O^{2-} ions, as shown in Fig. 2a. It is important to mention that in normal spinels, A cations in T-sites form exactly a diamond structure and B cations in O-sites form a 3D kagome lattice instead. To the best of our knowledge, though the diamond structure made by transition metal ions exist in many compounds, their intriguing electronic and topological properties have not been studied.

44-46. These inorganic oxides, with a chemical formula of AB$_2$O$_4$, are constructed by FCC lattice of O^{2-} anions and interstitial cations in tetrahedral (T-site) and octahedral (O-site) sites formed by O^{2-} ions, as shown in Fig. 2a. It is important to mention that in normal spinels, A cations in T-sites form exactly a diamond structure and B cations in O-sites form a 3D kagome lattice instead. To the best of our knowledge, though the diamond structure made by transition metal ions exist in many compounds, their intriguing electronic and topological properties have not been studied.

46-48. These inorganic oxides, with a chemical formula of AB$_2$O$_4$, are constructed by FCC lattice of O^{2-} anions and interstitial cations in tetrahedral (T-site) and octahedral (O-site) sites formed by O^{2-} ions, as shown in Fig. 2a. It is important to mention that in normal spinels, A cations in T-sites form exactly a diamond structure and B cations in O-sites form a 3D kagome lattice instead. To the best of our knowledge, though the diamond structure made by transition metal ions exist in many compounds, their intriguing electronic and topological properties have not been studied.
lated MLWFs show clearly the shape of d_{x^2} and $d_{x^2-y^2}$ orbitals (Fig.2e), confirming the orbital characteristics and again validating the e_g-diamond model. This is further supported from the band-resolved partial charge distribution plot of these bands, which show a characteristic shape composed of the two orbitals37.

As demonstrated from the e_g-diamond model, we expect the band structure of VMg$_2$O$_4$ to form a nodal cage in the first-Brillouin zone. To confirm the 3D-NC feature, we calculated 3D band structures in two 2D k-planes with one at the hexagonal Brillouin boundary [(111) surface, Fig.3a] and the other one at k_x-k_y plane across the Γ point [(110) surface, Fig.3c]. The 3D band structure37 and the band gap plot between middle two Dirac bands (Fig.3b and d) show clearly nodal ring features within both the hexagon (111) and octagon (110) planes. Based on the C_3 rotational and the inversion symmetry, the other seven hexagonal Brillouin zone boundaries also possess the same feature as (111) surface37. Similarly, same rules apply to symmetry invariant planes of (110) surface, i.e., (101) and (011) planes across the Γ point due to the C_3 rotational symmetry37.

From the band structure in Fig.2b, we noticed nearly all the nodal points are located closely adjacent to the Fermi level (< 20 meV). Therefore, the Fermi surface could essentially capture the 3D-NC feature. Indeed, the Fermi surface plot, as shown in Fig.3e, shows a smooth surface that ends at the hexagonal Brillouin zone boundaries. Small energy dispersion of the 3D-NC lead to the coexistence of electron and hole pockets, where hole pockets are mostly located near square zone boundaries. Cross sections of the 3D Fermi/nodal cage for different planes (2D Fermi surface37) show that the nodal ring within (111) surface is nearly flat, while that of (110) surface shows small energy oscillation (\pm 20 meV) as it cut across the square zone boundaries. We also calculated the 3D band structure and 2D Fermi surface for two series of 2D k-planes, i.e., (111) planes and (110) planes from the boundary to the center of the Brillouin zone, which further confirm the intriguing 3D-NC feature37.

Magnetic Weyl semimetal Generally, such nodal cage is not robust, which will become gapped after considering SOC effect32,43. Depending on whether the system becomes fully gaped or not, the material becomes the quantum anomalous Hall insulator or magnetic Weyl semimetal. Therefore, we proceed to include the SOC to determine the topological phases of VMg$_2$O$_4$. Firstly, we performed non-collinear calculations with different spin configurations37, which show that the system remains to be FM with nearly degenerate energies along different magnetization directions. The corresponding band structure for the magnetization direction along <111> direction is plotted along high-symmetry k-paths (Fig.2d), where most of the NC become gapped with several k-points remaining degenerate, such as that along Γ-W that is perpendicular to the magnetic field. Detailed calculations show 18 Weyl pairs, as confirmed by the Berry phase of $\pm \pi$ through the Berry curvature integration around these points37.

To demonstrate topological properties of VMg$_2$O$_4$, we calculated the surface state using a semi-infinite system based on Green's function. Figure 4a and d show clearly topological surface states connecting bulk states for (111) and (110) surfaces, respectively. As one of the characteristic feature of Weyl semimetals, Fermi arcs for these two surfaces are also calculated, as shown in Fig.4b and e. The Fermi arcs show dramatic difference between different surfaces due to different projections of Weyl pairs. For the (110) surface, two pairs of Weyl points can be clearly seen from the two separated Fermi arcs as required by the C_2 rotational symmetry. For the (111) surface, the Fermi arcs form a “Fermi ring” with three pairs of Weyl points due to the C_3 rotational symmetry. These Weyl points are accidentally overlapping while projecting to the (111) surface, which are separated within the bulk Brillouin zone. Spin textures of the Fermi arc shown in Fig.4c and f also confirm the positive and negative chirality of Weyl points.

Discussion and perspectives One of the intriguing properties of Weyl semimetal is their proposed large intrinsic anomalous Hall conductivity σ_{H}^A, which comes from the integration of Berry curvature from bulk band structure44,45. Considering the small charge current σ due to the semi-metallic feature, it is believed that Weyl semimetal could have a large anomalous Hall angle σ_{H}^A/σ. Therefore, we calculated intrinsic anomalous Hall conductivity of VMg$_2$O$_4$, which shows a relatively large peak (\approx 100 $\Omega^{-1} \cdot cm^{-1}$) around the Fermi level37. Theoretical proposals suggest engineering extra bulk bands to cross the Fermi level may help to increase σ_{H}^A. To test this idea, we modified the band dispersion through strain engineering and successfully realize the proposed band structure upon compressive strain. The σ_{H}^A indeed shows a large enhancement by at least 2-folds37.
FIG. 4. Topological properties of Weyl semimetal VMg$_2$O$_4$. a Topological surface state connecting bulk states for the (111) surface. b and c Fermi arc and the corresponding spin texture of the (111) surface. d, e, and f Same as a, b, and c for (110) surface.

The intriguing phenomenon observed in VMg$_2$O$_4$ can also be extended to other spinel compounds. Through theoretical calculations, we find spinel compounds formed with elements having the same valance states as VMg$_2$O$_4$, e.g., VMg$_2$Se$_4$ and VCa$_2$O$_4$, share the same features as VMg$_2$O$_4$. On the other hand, based on the same model with different electron filling, some other potentially interesting phases can be realized with elements having different valence states. For example, we can acquire large gap (\approx 3 eV) half-metal phase in MnMg$_2$O$_4$ and realize an FM insulating state in CrMg$_2$O$_4$. It is interesting to mention that FM insulator possesses two different band gaps (0.6 eV and 3.6 eV) in different spin channels, which could potentially be used as spin filter in magnetic tunneling junction devices.

On the other hand, the lattice compatibility/match with (001) textured MgO tunneling barrier is critical for practical applications. Many materials, such as heusler materials, that have been studied face practical integration issues with MgO because of lattice mismatch. Interestingly, the material we studied here has a very small lattice mismatch with MgO for both (001) and (111) planes ($<0.4\%$), because of their structural similarity. This lattice matching might facilitate high quality growth of VMg$_2$O$_4$ directly on top of MgO to study or utilize its intriguing magnetic Weyl semimetal features. For example, we can build MTJ devices with VMg$_2$O$_4$/MgO/VMg$_2$O$_4$ stacking or simply use VMg$_2$O$_4$ as the spin filtering layer.

In summary, we have discovered a novel e_g-diamond model which spawns intriguing nodal cage feature due to the coexistence of orbital and sublattice degeneracies. We discovered that such model can be realized in the well-studied spinel oxide compounds. Using 4-2 spinel compound VMg$_2$O$_4$ as a representative example, we confirmed the validity of the e_g-diamond model and demonstrate the formation of 3D-NC due to linear crossing between the middle two bands. The material is calculated to be a magnetic Weyl semimetal, which is novel to spinel compounds. We further expand the model to a series of spinel compounds and demonstrate their promising applications as spintronic materials. This theoretical discovery substantially enriches the physics of spinel compounds and could potentially lead to new applications.

Acknowledgement. This project is supported by SMART, one of seven centers of nCORE, a Semiconductor Research Corporation program, sponsored by National Institute of Standards and Technology (NIST).
Parkin, C. Felser, and Y. L. Chen, Science 365, 1282 (2019).
17 N. Morali, R. Batabyal, P. K. Nag, E. Liu, Q. Xu, Y. Sun, B. Yan, C. Felser, N. Avraham, and H. Beidenkopf, Science 365, 1286 (2019).
18 I. Belopolski, K. Manna, D. S. Sanchez, G. Chang, B. Ernst, J. Yin, S. S. Zhang, T. Cochran, N. Shumya, H. Zheng, B. Singh, G. Bihan, D. Multer, M. Litskevich, X. Zhou, S.-H. Huang, B. Wang, T.-R. Chang, S.-Y. Xu, A. Bansil, C. Felser, H. Lin, and M. Z. Hasan, Science 365, 1278 (2019).
19 S. Chowdhury, K. F. Garrity, and F. Tavazza, npj Comput. Mater. 5 (2019), 10.1038/s41524-019-0168-1.
20 S. Borisenko, D. Evtushinsky, Q. Gibson, A. Yaresko, K. Koepernik, T. Kim, M. Ali, J. v. d. Brink, M. Hoesch, A. Fedorov, E. Haubold, Y. Kushnirenko, I. Soldatov, R. Schfer, and R. J. Cava, Nat Commun. 10 (2019), 10.1038/s41467-019-11393-5.
21 A. Pertsova, R. M. Geilhufe, M. Bremholm, and A. V. Balatsky, Phys. Rev. B 99, 205126 (2019).
22 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
23 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
24 B. Uchoa and A. H. Castro Neto, Phys. Rev. Lett. 98, 146801 (2007).
25 Y. Cao, V. Fatemi, S. Fang, K. Watanebe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature 556, 43 (2018).
26 P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012).
27 D. Gunlycke and C. T. White, Phys. Rev. Lett. 106, 136806 (2011).
28 Y. Jiang, T. Low, K. Chang, M. I. Katsnelson, and F. Guinea, Phys. Rev. Lett. 110, 046601 (2013).
29 C. Wu, D. Bergman, L. Balents, and S. Das Sarma, Phys. Rev. Lett. 99, 070401 (2007).
30 W. Jiang, Z. Liu, J.-W. Mei, B. Cui, and F. Liu, Nanoscale 11, 955 (2019).
31 L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
32 D. S. McClure, Journal of Physics and Chemistry of Solids 3, 311 (1957).
33 P. K. Baltzer, H. W. Lehmann, and M. Robbins, Phys. Rev. Lett. 15, 493 (1965).
34 K. E. Sickafus, J. M. Wills, and N. W. Grimes, JACS 82, 3279 (1999).
35 R. Valenzuela, Phys. Research International 2012 (2012), 10.1155/2012/591839.
36 J. Zou, Z. He, and G. Xu, npj Comput. Mater. 5 (2019), 10.1038/s41524-019-0237-5.
37 See Supplemental Material at [URL will be inserted by publisher] for methods, tight-binding analysis, Curie temperature analysis, band formation, and non-collinear spin analysis.
38 H. Oshima, S. Shirasaki, and H. Yamamura, JACS 60, 277 (1977).
39 J. R. Hellmann and V. S. Stubican, JACS 66, 265 (1983).
40 Y. Ohta, T. Tohyama, and S. Maekawa, Phys. Rev. Lett. 66, 1228 (1991).
41 N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).
42 H. Huang, W. Jiang, K.-H. Jin, and F. Liu, Phys. Rev. B 98, 045131 (2018).
43 H. Chen, S. Zhang, W. Jiang, C. Zhang, H. Guo, Z. Liu, Z. Wang, F. Liu, and X. Niu, J. Mater. Chem. A 6, 11252 (2018).
44 C. Zeng, Y. Yao, Q. Niu, and H. H. Weitering, Phys. Rev. Lett. 96, 037204 (2006).
45 S. Onoda, N. Sugimoto, and N. Nagaosa, Phys. Rev. Lett. 97, 126602 (2006).
46 E. Derunova, Y. Sun, C. Felser, S. S. P. Parkin, B. Yan, and M. N. Ali, Science Advances 5 (2019), 10.1126/sci-adv.aav8575.