Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a global concern. Phylogenetic analyses resolve uncertainties regarding genetic relatedness of isolates with identical phenotypes and inform whether AMR is due to new mutations and clonal expansion or separate introductions by importation. We sequenced 1,277 isolates with associated epidemiologic and antimicrobial susceptibility data collected during 2013–2016 to investigate N. gonorrhoeae genomic variability in England. Comparing genetic markers and phenotypes for AMR, we identified 2 N. gonorrhoeae lineages with different antimicrobial susceptibility profiles and 3 clusters with elevated MICs for ceftriaxone, varying mutations in the penA allele, and different epidemiologic characteristics. Our results indicate N. gonorrhoeae with reduced antimicrobial susceptibility emerged independently and multiple times in different sexual networks in England, through new mutation or recombination events and by importation. Monitoring and control for AMR in N. gonorrhoeae should cover the entire population affected, rather than focusing on specific risk groups or locations.

Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a global concern. Penicillin, ciprofloxacin, and cefixime were the recommended first-line antimicrobial drug therapies until AMR prevalence breached the World Health Organization (WHO) recommended threshold of ≥5% of local isolates demonstrating resistance; at that point, ceftriaxone became the preferred antimicrobial drug treatment (1). However, ceftriaxone resistance has been reported in many countries and frequently in East and Southeast Asia, probably because of poor antimicrobial stewardship (2). Ceftriaxone resistance has been linked to mutations in the penA gene, which has been reported in several continents, including North America and Europe (3–5).

To clarify the spread of AMR in N. gonorrhoeae and the population groups most at risk, surveillance programs and research studies often link phenotypic susceptibility data with data on the epidemiologic characteristics of cases (6,7). However, these analyses are limited because isolates with identical phenotypes might not be genetically related. Consequently, determining the extent to which AMR transmission is due to clonal dissemination or separate introductions is challenging and these data are essential to guide the public health response.

Combining phenotypic and genomic data can help resolve uncertainties. Whole-genome sequencing (WGS) enables investigation of genetic determinants for AMR and how these are distributed in the pathogen population (4,5). WGS also can contribute evidence toward the development of rapid antimicrobial susceptibility tests to improve treatment decisions (8,9). However, few N. gonorrhoeae WGS studies have been conducted in England, and none include representative geographic coverage over time (10–13).

We investigated the genomic and phenotypic variability in N. gonorrhoeae antimicrobial susceptibility in England. We described the epidemiologic characteristics of genetically distinct clusters of infection with reduced susceptibility to cefixime, ceftriaxone, and azithromycin and resistance to ciprofloxacin and penicillin. We focused on N. gonorrhoeae with mutations in the penA allele, which contribute to reduced susceptibility to ceftriaxone. In addition, we assessed the genetic similarity of N. gonorrhoeae in England, Europe, and the United States to determine the
extent to which international travel might influence the spread of AMR in *N. gonorrhoeae*.

**Methods**

**Isolate Selection**

We selected *N. gonorrhoeae* isolates from the archives of the Gonococcal Resistance to Antimicrobials Surveillance Programme (GRASP), a sentinel program implemented by Public Health England (PHE) in 2000. GRASP is designed to represent the gonococcal population in England (14) and includes clinical, sociodemographic, and behavioral data collected through the GUMCAD STI Surveillance System (https://www.gov.uk/guidance/gumcad-sti-surveillance-system) and directly from clinics. During a 3-month period each year, GRASP tests for antimicrobial susceptibility in consecutive isolates from all culture-positive *N. gonorrhoeae* cases identified in 26 sexual health clinics in England and Wales (15). GRASP collects ≈1,200–2,500 isolates annually for antimicrobial susceptibility testing (16).

We selected isolates collected from 5 GRASP clinics, 2 in London and 3 in other geographically distinct areas in England: Birmingham, Bristol, and Liverpool. We chose these locations to obtain isolates from cases representing a broad range of sociodemographic and behavioral characteristics, including sex, sexual orientation, age, ethnicity, and HIV status (Appendix Table 1, https://wwwnc.cdc.gov/EID/article/26/3/19-0732-App1.pdf). We sequenced all isolates collected during 2013–2016 by the 5 clinics and stored in the GRASP archive. We chose the most recent years of GRASP data to investigate prevailing trends and patterns. We did not include isolates from a 2015 outbreak of high-level azithromycin-resistant *N. gonorrhoeae* in the United Kingdom in this sampling frame because the isolates did not meet the eligibility criteria of our study.

**Ethics Considerations**

PHE has permission to process confidential patient data obtained by GRASP under Regulation 3 (Control of Patient Information) of the Health Service Regulations 2002. Information governance advice and ethics approval for this study were granted by the PHE Research Ethics and Governance Group.

**Antimicrobial Susceptibility Testing**

GRASP tests isolates for antimicrobial susceptibility by using agar dilution methods, records MICs for antimicrobial drugs, and defines AMR by using European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints. For our study, we used data on MICs for ceftriaxone, azithromycin, cefixime, penicillin, and ciprofloxacin (17). In GRASP, epidemiologic data were linked to MICs for antimicrobial drugs for each isolate phenotype.

**Isolation and WGS**

We retrieved selected isolates from the GRASP archive by culturing on nonselective gonococcus agar (Difco BBL GC II Agar Base [Becton, Dickinson and Company, https://www.bd.com] plus 1% Vitox [Oxoid, http://www.oxoid.com]). We extracted DNA from a subculture of a single colony of each isolate by using the automated QIAsymphony DNA Mini Kit (QIAGEN, https://www.qiagen.com). WGS was conducted at the Wellcome Sanger Institute (Cambridge, UK) by using the HiSeq X Ten system (Illumina, https://www.illumina.com) and processed in the routine Sanger WGS data management pipeline (Appendix).

**Data Sources from Europe and the United States**

We compared the study sample with published WGS and associated metadata for *N. gonorrhoeae* isolates from international studies. The collection from Europe (European Nucleotide Archive (ENA; accession no. PRJEB9227) contained 1,054 isolates from the European Gonococcal Antimicrobial Surveillance Programme (Euro-GASP) (5). Isolates were collected in 2013 from 20 countries and included 106 isolates from England. We excluded 21% (22/106) that were duplicates of isolates in the study sample, leaving 948 isolates from Europe. The metadata for isolates from Europe included reporting country, antimicrobial susceptibility profile, MICs for ceftriaxone and cefixime, and the presence of the penA-34 allele. We grouped MICs to match the categories used in GRASP.

Isolates from the United States were from 2 previous studies investigating the association between phenotype and genotype for AMR in *N. gonorrhoeae* (4,9). The collection from the United States contained 1,114 isolates collected during 2000–2013 (ENA accession nos. PRJEB2999 and PRJEB7904). The metadata for the isolates from the United States included antimicrobial susceptibility profiles; 270 had reduced susceptibility to cephalosporin (MIC ≥0.25 mg/L for cefixime or MIC ≥0.125 mg/L for ceftriaxone); 294 had reduced susceptibility to azithromycin (MIC ≥2 mg/L); and 594 were ciprofloxacin-resistant (MIC ≥1 mg/L). Metadata also included sexual orientation of case-patients and the presence of the penA-34 allele. We grouped MICs to match the categories used in GRASP.
**Phylogenetic Analysis**

We created phylogenetic trees and removed genetic recombination events by using default settings in Gubbins version 2.4.0 (18), including 5 iterations and ≥3 base substitutions to identify a recombination event, and the RAxML (Geneious, https://www.geneious.com) or FastTree (19) tree building option (Appendix). We created 3 phylogenetic trees: isolates from England only, isolates from England and other countries in Europe, and isolates from England and the United States.

We identified known genetic markers of AMR, including mutations in the penA allele, by using ARIBA (20). We compared MICs to the genetic markers by using the ARIBA micplot module.

We identified the genotype of isolates in large and distinct clusters of *N. gonorrhoeae* with elevated MICs for ceftriaxone (MIC ≥0.015 mg/L) and cefixime (MIC ≥0.03 mg/L) from the phylogenetic trees. We compared the epidemiologic characteristics of cases in the clusters by using the χ² or Fisher exact test.

**Statistical Analysis**

We used univariate and multivariable analyses to assess differences in the epidemiologic characteristics and antimicrobial susceptibility of isolates between lineages identified in the phylogenetic tree. We analyzed the following explanatory variables: year and location of isolation, the isolate was collected; case-patient information, including gender, sexual orientation, age, ethnicity, country of birth, whether they had a symptomatic infection or previous sexually transmitted infection (STI), HIV status, and the number of sexual partners they had in the United Kingdom or through travel-associated sexual partnerships ≤3 months before diagnosis; and isolate susceptibility data, including reduced susceptibility to ceftriaxone (MIC ≥0.015 mg/L), cefixime (MIC ≥0.03 mg/L), or azithromycin (MIC ≥0.25 mg/L); or resistance to penicillin (MIC >1 mg/L or β-lactamase positive) or ciprofloxacin (MIC >0.06 mg/L). We used elevated MIC thresholds for ceftriaxone (MIC >0.015 mg/L), cefixime (MIC >0.125 mg/L), or azithromycin (MIC >0.5 mg/L), 16.6% to penicillin (MIC >1 mg/L), and none to ceftriaxone (MIC >0.125 mg/L). The MIC distribution of the isolates not sequenced was similar to the distribution of the sequenced isolates. Most (69%; 881/1,277) isolates were from genital infections, 23.4% (299/1,277) were from pharyngeal infections. Overall, we identified 226 different sequence types (STs) by using *N. gonorrhoeae* multiantigen sequence typing (NG-MAST) (Appendix). We deposited novel sequences extracted for this study into ENA (accession no. ERP022090) and provide metadata (Appendix).

**Results**

**Sample Description**

Of the eligible isolates, we successfully sequenced 91% (1,277/1,407); the bacteria of the remaining 130 isolates were no longer viable for DNA extraction. For all antimicrobial drugs tested, the MIC distributions of the study isolates were similar to those of all GRASP isolates (Appendix Table 2). We found that 3.6% of isolates were resistant to azithromycin (MIC >0.5 mg/L) and 2 isolates were highly resistant (MIC ≥256 mg/L); 0.6% were resistant to cefixime (MIC >0.125 mg/L), 36.3% to ciprofloxacin (MIC >0.06 mg/L), 16.6% to penicillin (MIC >1 mg/L), and none to ceftriaxone (MIC >0.125 mg/L). The MIC distribution of the isolates not sequenced was similar to the distribution of the sequenced isolates. Most (69%; 881/1,277) isolates were from genital infections, 23.4% (299/1,277) were from pharyngeal infections, and 6.3% (80/1,277) were from pharyngeal infections. Overall, we identified 226 different sequence types (STs) by using *N. gonorrhoeae* multiantigen sequence typing (NG-MAST) (Appendix). We deposited novel sequences extracted for this study into ENA (accession no. ERP022090) and provide metadata (Appendix).

**N. gonorrhoeae Lineages Circulating in England**

We noted 2 distinct lineages in the phylogenetic tree (Figure 1). Compared with lineage B, lineage A was more likely to contain isolates from clinics in London than those outside of London (outside London:ison in London adjusted odds ratio [aOR] 1.74, 95% CI 1.27–2.67; p = 0.001). Lineage A also contained more isolates from persons ≥35 years of age than persons <24 years of age (aOR 1.68, 95% CI 1.16–2.40; p = 0.006). Asian ethnicity also was associated more frequently with isolates from lineage A compared with white ethnicity (aOR 1.86, 95% CI 1.01–3.45; p = 0.048) (Table 1). Lineage A was less likely to contain isolates from women (aOR 0.14, 95% CI 0.09–0.22; p<0.001) or men who reported having sex with women exclusively (MSW; aOR 0.33, 95% CI 0.23–0.47; p<0.001) compared with MSM. This lineage also was less likely to contain isolates from persons reporting black Caribbean ethnicity compared with persons reporting only statistically significant variables associated with the outcome in the univariate model to control for possible confounding between variables. We used the likelihood ratio test to determine which explanatory variables should remain in the multivariable model by using p<0.05 as the threshold of statistical significance.
white ethnicity (aOR 0.49, 95% CI 0.32–0.76; p = 0.001). Lineage A was more likely to contain isolates from persons who reported a travel-associated sexual partnership compared with isolates from lineage B (crude odds ratio [cOR] 1.96, 95% CI 1.20–3.21; p = 0.006), but this association did not persist in the multivariable model (aOR 1.66, 95% CI 0.94–2.91; p = 0.078 adjusting for location, age, sex, sexual orientation, and ethnicity). However, isolates from persons who had a recent travel-associated sexual partnership were more likely to be resistant to ciprofloxacin (aOR 1.83, 95% CI 1.13–2.96; p = 0.015, adjusting for location, age, sex, sexual orientation, and ethnicity). We saw no statistically significant association between recent travel-associated sexual partnerships and *N. gonorrhoeae* with reduced susceptibility to ceftriaxone, cefixime, or azithromycin, or resistance to penicillin.

Isolates with reduced susceptibility to ceftriaxone, cefixime, or azithromycin or resistance to ciprofloxacin and penicillin were dispersed throughout the phylogenetic tree (Figure 1). However, compared with lineage B, isolates in lineage A were more likely to have higher MICs for ceftriaxone (aOR 15.4, 95% CI 8.50–27.8; p<0.001), cefixime (aOR 3.97, 95% CI 2.76–5.76; p<0.001), azithromycin (aOR 7.5, 95% CI 5.37–10.5; p<0.001), and penicillin (aOR 18.2, 95% CI 11.4–29.2; p<0.001) (Table 2).

**Distribution of penA Alleles across the Phylogeny**

Overall, we identified 32 different known mutations in 8 genes associated with resistance to ceftriaxone, cefixime, azithromycin, ciprofloxacin, or penicillin. For all antimicrobial drugs, we noted isolates with the same combination of genotypic markers of
resistance but differing phenotypic MICs (Appendix Figures 1–5).

The larger, distinct clusters with elevated MICs for ceftriaxone and cefixime contained the penA-34 allele and the penA-44 allele (Figure 1). All isolates with the penA-34 allele (n = 86) had a MIC of ≥0.015 mg/L for cefixime and 67 had a MIC of ≥0.015 mg/L for ceftriaxone. Most (81/84; 96%) isolates with the penA-44 allele had a MIC of ≥0.015 mg/L for cefixime, a MIC of ≥0.015 mg/L for ceftriaxone (83/84; 98%), or both (81/84; 96%).

The 2 largest clusters with the penA-34 allele (cluster 1, n = 57; cluster 2, n = 26) were genetically distinct from each other and isolates in the 2 groups had statistically significant differences by year, clinic, sexual orientation, and HIV status (Table 3). Most (81%; 21/26) isolates in cluster 2 were from London in 2014–2015, and most (67%; 38/57) in cluster 1 were from outside London but distributed across all 4 years of the study. Most (96%; 25/26) isolates in cluster 2 were from MSM; whereas cluster 1 was more mixed and composed of isolates from women (21%; 12/57), MSW (37%; 21/57), and MSM (42%; 24/57). Cluster 2 had a higher percentage of persons living with HIV (35%; 9/26) than did cluster 1 (7%; 4/57). Most (82%;
Comparison of Isolates from England, Europe, and the United States
Isolates from England were genetically interspersed with isolates from other countries in Europe (Figure 2) or the United States (Figure 3), although some large clades of isolates came only from England or the United States. Isolates in cluster 1 with the penA-34 allele in England were clustered with isolates from Europe and the United States (Figures 2–3). Isolates with the penA-34 allele in cluster 2 from England that were only found after 2013 were not related genetically to isolates from the United States or from other countries in Europe.

Discussion
We conducted a large study on genomic variability of antimicrobial susceptibility in N. gonorrhoeae in England. We sampled isolates from geographically dispersed clinics in England, and our data likely represent patterns at a national level. Our data suggest that N. gonorrhoeae with reduced susceptibility to antimicrobial drugs, including ceftriaxone, has emerged in England through novel mutation and recombination events, repeated introduction from overseas, clonal expansion, or a combination of these.

We observed 3 distinct clusters with 2 different penA alleles and reduced susceptibility to ceftriaxone and cefixime and found patients in each cluster with differing epidemiologic characteristics. The genetic similarity of isolates from England, Europe, and the United States is consistent with global dissemination of N. gonorrhoeae concerning genotypic and phenotypic features. Our data highlight the potential influence of travel-associated sexual partnerships in AMR transmission.

As seen in other N. gonorrhoeae studies, the high frequency of DNA recombination requires computational strategies to use single-nucleotide polymorphism differences arising through mutation rather than recombination. We identified and removed recombinant DNA, but some likely remained, which might lead to incorrect inferences about relatedness for some isolates.

We found 2 distinct lineages of N. gonorrhoeae with different antimicrobial susceptibility profiles circulating in England. The larger lineage contained isolates with elevated MICs or resistance to all 5 antimicrobial drugs tested, consistent with findings from recent studies in Europe and globally (5,21). The authors of those studies hypothesized that differing susceptibility profiles of the 2 lineages were associated with different sexual orientation networks, but neither study had complete data on sexual orientation to support the hypothesis. Our study includes sexual orientation data for 99% of cases. Our findings strongly support the hypothesis that MSM are more frequently infected with N. gonorrhoeae strains with reduced susceptibility to antimicrobials, whereas MSW and women are more frequently infected with the more susceptible lineage. Nevertheless, many MSW were infected with N. gonorrhoeae with reduced susceptibility to antimicrobial drugs and MSM were

| Susceptibility                      | Lineage A, no. isolates | Lineage B, no. isolates | aOR  | 95% CI       | p value |
|------------------------------------|-------------------------|-------------------------|------|--------------|---------|
| Reduced Ceftriaxone, MIC ≥0.015 mg/L | No                      | 572                     | 418  | Referent     | –       | –       |
|                                   | Yes                     | 263                     | 15   | 15.4         | 8.50–27.8 | <0.001  |
| Cefixime, MIC ≥0.03 mg/L           | No                      | 544                     | 370  | Referent     | –       | –       |
|                                   | Yes                     | 291                     | 63   | 3.97         | 2.76–5.76 | <0.001  |
| Azithromycin, MIC ≥0.25 mg/L       | No                      | 328                     | 367  | Referent     | –       | –       |
|                                   | Yes                     | 507                     | 66   | 7.50         | 5.37–10.5 | <0.001  |
| Resistant Penicillin, MIC >1 mg/L or β-lactamase positive | No                       | 671                     | 378  | Referent     | –       | –       |
|                                   | Yes                     | 164                     | 55   | 1.33         | 0.92–1.93 | 0.134  |
| Ciprofloxacin, MIC >0.06 mg/L      | No                      | 400                     | 408  | Referent     | –       | –       |
|                                   | Yes                     | 435                     | 25   | 18.2         | 11.4–29.2 | <0.001  |

*Each model adjusted for location inside or outside of London, and patient age, sexual orientation, and ethnicity. Nine isolates did not have MIC data. Bold text indicates statistical significance, i.e., p<0.05 and 95% CI does not cross 1. aOR, adjusted odds ratio.
infected by antimicrobial-susceptible *N. gonorrhoeae*, and we noted intralineage variation by sexual orientation. MSM have more bacterial STI diagnoses and greater exposure to antimicrobial drugs, thereby increasing selection pressures for AMR, a hypothesis supported by mathematical models (21–24). Resistant strains also might persist in the absence of selective pressure because the organism’s biologic fitness is unaffected or compensatory mutations mitigate a deleterious effect (25–27).

By combining WGS, epidemiologic, and phenotypic data, we found that reduced susceptibility to ceftriaxone and cefixime emerged repeatedly in separate sexual networks in England. Without WGS data, we would have grouped all *penA*-34 samples from MSM together. Likewise, if we restricted sequencing to the *penA* gene, we would not have identified unique clusters with the same *penA*-34 allele.

The large group of isolates in England with the *penA*-34 allele clustered with isolates from Europe and the United States that had the same allele. Some of the *penA*-34 allele isolates belonged to the NG-MAST 1407 lineage, a widely disseminated clone associated with elevated MICs for ceftriaxone and cefixime and the catalyst for changing national treatment guidelines in the United Kingdom.

### Table 3. Epidemiologic characteristics of patients from whom *Neisseria gonorrhoeae* isolates were collected in the 2 largest *penA*-34 clusters, England*

| Characteristics                        | Total | Cluster 1, n = 57, no. (%) | Cluster 2, n = 26, no. (%) | p value† |
|----------------------------------------|-------|---------------------------|---------------------------|----------|
| **Year**                               |       |                           |                           |          |
| 2013                                   | 26    | 26 (45.6)                 | 0                         | <0.001‡  |
| 2014                                   | 29    | 14 (24.6)                 | 15 (57.7)                 |          |
| 2015                                   | 20    | 10 (17.5)                 | 10 (38.5)                 |          |
| 2016                                   | 8     | 7 (12.3)                  | 1 (3.8)                   |          |
| **Sex and sexual orientation**         |       |                           |                           |          |
| MSM                                    | 49    | 24 (42.1)                 | 25 (96.2)                 | <0.001‡  |
| MSW                                    | 21    | 21 (36.8)                 | 0                         |          |
| F                                      | 13    | 12 (21.1)                 | 1 (3.8)                   |          |
| **Clinic location**                    |       |                           |                           | <0.001‡  |
| Outside London                         | 43    | 38 (66.7)                 | 5 (19.2)                  |          |
| London                                 | 40    | 19 (33.3)                 | 21 (80.8)                 |          |
| **Age, y**                             |       |                           |                           |          |
| ≥24                                    | 28    | 23 (40.4)                 | 5 (19.2)                  | 0.081    |
| 25–34                                  | 29    | 20 (35.1)                 | 9 (34.6)                  |          |
| ≥35                                    | 26    | 14 (24.6)                 | 12 (46.2)                 |          |
| **Ethnicity**                          |       |                           |                           |          |
| White                                  | 59    | 37 (68.5)                 | 22 (84.6)                 | 0.408‡   |
| Black Caribbean                        | 6     | 6 (11.1)                  | 0                         |          |
| Black, Other                           | 2     | 2 (3.7)                   | 0                         |          |
| Asian                                  | 5     | 4 (7.4)                   | 1 (3.8)                   |          |
| Other                                  | 4     | 2 (3.7)                   | 2 (7.7)                   |          |
| Mixed                                  | 4     | 3 (5.6)                   | 1 (3.8)                   |          |
| **Place of birth**                     |       |                           |                           |          |
| United Kingdom                         | 40    | 30 (52.6)                 | 10 (38.5)                 | 0.262‡   |
| Not United Kingdom                     | 40    | 26 (45.6)                 | 14 (53.9)                 |          |
| Unknown                                | 3     | 1 (1.7)                   | 2 (7.7)                   |          |
| **Symptomatic infection**              |       |                           |                           |          |
| No                                     | 28    | 13 (24.5)                 | 15 (57.7)                 | 0.004    |
| Yes                                    | 51    | 40 (75.5)                 | 11 (42.3)                 |          |
| **New STI diagnosed ≤1 year, excluding HIV** |       |                           |                           |          |
| No                                     | 68    | 51 (89.5)                 | 17 (65.4)                 | 0.013‡   |
| Yes                                    | 15    | 6 (10.5)                  | 9 (34.6)                  |          |
| **HIV status**                         |       |                           |                           |          |
| Negative or unknown                    | 70    | 53 (93.0)                 | 17 (65.4)                 | 0.003‡   |
| Positive                               | 13    | 4 (7.0)                   | 9 (34.6)                  |          |
| **Number of sexual partners in the United Kingdom ≤3 mo of *N. gonorrhoea* diagnosis** |       |                           |                           |          |
| 0                                      | 6     | 6 (13.3)                  | 0                         | 0.675‡   |
| 1                                      | 19    | 16 (35.6)                 | 3 (33.3)                  |          |
| ≥2                                     | 29    | 23 (51.1)                 | 6 (66.7)                  |          |
| **Travel-associated sexual partnership** |       |                           |                           |          |
| No                                     | 43    | 34 (75.6)                 | 9 (100)                   | 0.178‡   |
| Yes                                    | 11    | 11 (24.4)                 | 0                         |          |

*Bold text indicates statistical significance (i.e., p<0.05 and 95% CI does not cross 1). MSM, men who have sex with men; MSW, men who reported sexual activity exclusively with women.
†Calculated using *χ²* test, except where noted.
‡Calculated using Fisher exact test.

*Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 26, No. 3, March 2020*
therefore, the larger penA-34 group probably represents clonal spread of a previously identified endemic strain of *N. gonorrhoeae*; the smaller penA-34 group represents a new strain emerging in a different sexual network largely comprising MSM in London with a history of STIs, including HIV. Consequently, restricting public health resources that measure, prevent, and control AMR in *N. gonorrhoeae* to specific risk groups or geographic locations could be ineffective because AMR appears to emerge independently in different sexual networks and locations.

We found some evidence for importation of AMR. Isolates from persons who recently had a travel-associated sexual partnership were more likely to be infected with *N. gonorrhoeae* that was resistant to ciprofloxacin. Although de novo development of high-level resistance to azithromycin in the United Kingdom has been described, some studies have concluded that importation events probably initiate AMR spread in countries with low population prevalence, such as England (11,27,28). The success of antimicrobial stewardship policies and compliance with treatment guidelines that aim to curtail AMR in the endemic gonococcal population in England could be undermined by the importation and subsequent spread of resistant isolates. These data support the importance of promoting STI prevention messages and testing to international travelers, particularly those visiting countries where AMR *N. gonorrhoeae* is endemic. Quantifying the relationship between *N. gonorrhoeae* circulating in England and internationally also could help parameterize mathematical models exploring the relative contribution of importation and de novo development on AMR prevalence and distribution.

Rapid molecular tests for genetic markers that are highly predictive of an antimicrobial susceptibility phenotype could lead to more effective use of antimicrobials. Tests detecting markers of ciprofloxacin and cephalosporin antimicrobial susceptibility are already in development (8,29,30). However, as found in our study and elsewhere, the association between genotype and phenotype is much stronger for ciprofloxacin resistance than for cephalosporin resistance (4,31,32). Most rapid tests for cephalosporin resistance focus on detecting mutations in the penA allele, but reduced susceptibility to cephalosporins also can
be caused by mutations in the semimosaic penA allele, penA-35, the nonmosaic penA allele, penA-44, or even in the mtrR and penB genes (30,33).

Molecular tests that focus on the presence or absence of 1 mutation without considering the additive effect of multiple mutations could be insufficient for detecting resistance and predicting treatment failure. Epistasis, in which phenotypic resistance is dependent on complex interactions of multiple mutant genes, is known to occur in N. gonorrhoeae (22,31,34). In our study, the antimicrobial susceptibility of isolates with identical genetic markers of resistance varied by >2 doubling dilutions, and most isolates with resistance markers were sensitive. Nonetheless, the presence of 1 mutation that belongs to a complex of mutations required for resistance indicates the potential for phenotypic resistance to develop. Clinicians could prioritize patients infected with these strains for a test of cure or consider use of alternative antimicrobial drugs unaffected by the resistance marker. In any event, mathematical modeling studies have shown that molecular tests should only be implemented if they are highly sensitive; otherwise, they could accelerate the spread of AMR (23). Elucidation of the mechanisms and genomic markers of cephalosporin resistance is needed and can be achieved through a combination of microbiologic and genomic studies, including genomewide association studies. WGS cannot replace phenotypic testing for all antimicrobial susceptibility because it can only detect known mutations associated with resistance, and novel mutations associated with resistance develop constantly in N. gonorrhoeae (31).

In conclusion, phylogenetic analyses with WGS data revealed transmission patterns of N. gonorrhoeae with reduced susceptibility in England that would not have been identified by using only epidemiologic and phenotypic data. Reduced susceptibility to
antimicrobial drugs likely has emerged and spread independently in different sexual networks in England through multiple de novo mutation and recombination events and through some repeated importation by persons who have travel-associated sexual partnerships. Consequently, public health actions to limit dissemination of AMR in England should aim to reduce risk behaviors that support *N. gonorrhoeae* transmission and encompass the diffuse distribution and epidemiologic diversity of the population groups affected.

**Acknowledgments**

We thank our funders, the Blood-Borne and Sexually Transmitted Infections Steering Committee of the National Institute for Health Research Health Protection Research Unit (NIHR HPRU), Caroline Sabin, Anthony Nardone, Catherine Mercer, Gwenda Hughes, Jackie Cassell, Greta Rait, Samreen Ijaz, Tim Rhodes, Kholoud Porter, Sema Mandal, and William Rosenberg; the Welcome Trust (grant no. 098051); and Public Health England. We also thank the clinical and laboratory staff who contributed to GRASP and Hester Allen for her help with data management and analysis.

This research was funded by the National Institute for Health Research (NIHR) Health Protection Research Unit in Blood Borne and Sexually Transmitted Infections at University College London in partnership with Public Health England, in collaboration with the London School of Hygiene & Tropical Medicine. The views expressed are those of the authors and not necessarily those of the NIHR, the Department of Health and Social Care, or Public Health England.

**About the Author**

Dr. Town was the senior surveillance scientist on the Gonococcal Resistance to Antimicrobials Surveillance Programme (GRASP) at Public Health England and graduated from University College London with a PhD in epidemiology. Dr. Town’s research focuses on investigating new methods for understanding, monitoring, and preventing the spread of *Neisseria gonorrhoeae* and antimicrobial resistance.

**References**

1. Tapsall JW. Antimicrobial resistance in *Neisseria gonorrhoeae*. Geneva: World Health Organization; 2001.
2. Wi T, Lahra MM, Ndowa F, Bala M, Dillon JR, Ramon-Fardo P, et al. Antimicrobial resistance in *Neisseria gonorrhoeae*: global surveillance and a call for international collaborative action. PLoS Med. 2017;14:e1002344. https://doi.org/10.1371/journal.pmed.1002344
3. Demczuk W, Lynch T, Martin I, Van Domselaar G, Graham M, Bharat A, et al. Whole-genome phylogenomic heterogeneity of *Neisseria gonorrhoeae* isolates with decreased ceftriaxone susceptibility collected in Canada between 1989 and 2013. J Clin Microbiol. 2015;53:191–200. https://doi.org/10.1128/JCM.02589-14
4. Grad YH, Harris SR, Kirkcaldy RD, Green AG, Marks DS, Bentley SD, et al. Genomic epidemiology of gonococcal resistance to extended-spectrum cephalosporins, macrolides, and fluoroquinolones in the United States, 2000–2013. J Infect Dis. 2016;214:1579–87. https://doi.org/10.1093/infdis/jiw420
5. Harris SR, Cole MJ, Spiteri G, Sánchez-Busó L, Golparian D, Jacobsson S, et al.; Euro-GASP study group. Public health surveillance of multidrug-resistant clones of *Neisseria gonorrhoeae* in Europe: a genomic survey. Lancet Infect Dis. 2018;18:758–68. https://doi.org/10.1016/S1473-3099(18)30225-1
6. Town K, Obi C, Quaye N, Chisholm S, Hughes G; GRASP Collaborative Group. Drifting towards ceftriaxone treatment failure in gonorrhea: risk factor analysis of data from the Gonococcal Resistance to Antimicrobials Surveillance Programme in England and Wales. Sex Transm Infect. 2017;93:39–45. https://doi.org/10.1136/srextran-2016-052583
7. Kirkcaldy RD, Zaidi A, Hook EW III, Holmes KK, Soge O, del Rio C, et al. *Neisseria gonorrhoeae* antimicrobial resistance among men who have sex with men and men who have sex exclusively with women: the Gonococcal Isolate Surveillance Project, 2005–2010. Ann Intern Med. 2013;158:321–8. https://doi.org/10.7326/0003-4819-158-5-201305050-00004
8. Allan-Blitz L-T, Humphries RM, Hemarajata P, Bhatti A, Pandori MW, Siedner MJ, et al. Implementation of a rapid genotypic assay to promote targeted ciprofloxacin therapy of *Neisseria gonorrhoeae* in a large health system. Clin Infect Dis. 2017;64:1268–70. https://doi.org/10.1093/cid/ciw864
9. Grad YH, Kirkcaldy RD, Trees D, Dordel J, Harris SR, Goldstein E, et al. Genomic epidemiology of *Neisseria gonorrhoeae* with reduced susceptibility to cefixime in the USA: a retrospective observational study. Lancet Infect Dis. 2014;14:220–6. https://doi.org/10.1016/S1473-3099(13)70693-5
10. Town K, Bolt H, Croxford S, Cole M, Harris S, Field N, et al. *Neisseria gonorrhoeae* molecular typing for understanding sexual networks and antimicrobial resistance transmission: A systematic review. J Infect. 2018;76:507–14. https://doi.org/10.1016/j.jinf.2018.02.011
11. Fifer H, Cole M, Hughes G, Padfield S, Smolaruch C, Woodford N, et al. Sustained transmission of high-level azithromycin-resistant *Neisseria gonorrhoeae* in England: an observational study. Lancet Infect Dis. 2018;18:573–81. https://doi.org/10.1016/S1473-3099(18)30122-1
12. Eyre DW, Town K, Street T, Barker L, Sanderson N, Cole MJ et al. Detection in the United Kingdom of the *Neisseria gonorrhoeae* FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, October to December 2018. Euro Surveill. 2019;24. https://doi.org/10.2807/1560-7917.ES.2019.24.19.1900147
13. De Silva D, Peters J, Cole K, Cole MJ, Cresswell F, Dean G, et al. Whole-genome sequencing to determine transmission of *Neisseria gonorrhoeae*: an observational study. Lancet Infect Dis. 2016;16:1295–303. https://doi.org/10.1016/S1473-3099(16)30157-8
14. Hughes G, Nichols T, Ison CA. Estimating the prevalence of gonococcal resistance to antimicrobials in England and Wales. Sex Transm Infect. 2011;87:526–31. https://doi.org/10.1136/sextrans-2011-050071
15. Public Health England. Gonococcal Resistance to Antimicrobials Surveillance Programme (GRASP); protocol. 2014 [22 Jan 2020]. https://www.gov.uk/government/publications/gonococcal-resistance-to-antimicrobials-surveillance-programme-grasp-protocol/gonococcal-resistance-to-antimicrobials-surveillance-programme-grasp-protocol

16. Mohammed H, Ison CA, Obi C, Chisholm S, Cole M, Quaye N, et al.; GRASP Collaborative Group. Frequency and correlates of culture-positive infection with Neisseria gonorrhoeae in England: a review of sentinel surveillance data. Sex Transm Infect. 2015;91:287-93. https://doi.org/10.1136/sextrans-2014-051756

17. Cole MJ, Quaye N, Jacobsson S, Day M, Fagan E, Ison C, et al. Ten years of external quality assessment (EQA) of Neisseria gonorrhoeae antimicrobial susceptibility testing in Europe elucidate high reliability of data. BMC Infect Dis. 2019;19:281. https://doi.org/10.1186/s12879-019-3900-z

18. Crouch NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43:e15. https://doi.org/10.1093/nar/gku1196

19. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641-50. https://doi.org/10.1093/molbev/msp077

20. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J, Keane JA, et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom. 2017;3:e000131. https://doi.org/10.1099/mgen.0.000131

21. Sánchez-Busó L, Golparian D, Corander J, Grad YH, Ohnishi M, Flemming R, et al. The impact of antimicrobials on gonococcal evolution. Nat Microbiol. 2019;4:1941-50. https://doi.org/10.1038/s41564-019-0501-y

22. Unemo M, Shafer WM. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev. 2014;27:587–613. https://doi.org/10.1128/CMR.00010-14

23. Chen SC, Yin YP, Dai XQ, Unemo M, Chen XS. First nationwide study regarding ceftriaxone resistance and molecular epidemiology of Neisseria gonorrhoeae in China. J Antimicrob Chemother. 2016;71:92–9. https://doi.org/10.1093/jac/dkv321

24. Tomberg J, Unemo M, Davies C, Nicholas RA. African-specific ARMS–PCR assay for detection of Neisseria gonorrhoeae. J Clin Microbiol. 2018;56:e00365-18. https://doi.org/10.1128/JCM.00365-18

25. Abrams AJ, Kirkcaldy RD, Pettus K, Fox JL, Kubin G, Trees DL. A case of decreased susceptibility to ceftriaxone in Neisseria gonorrhoeae in the absence of a mosaic penicillin-binding protein 2 (penA) allele. Sex Transm Dis. 2017;44:492-4. https://doi.org/10.1097/OLQ.0000000000000645

26. AI Suwayyid BA, Coombs GW, Speers DJ, Pearson J, Wise MJ, Kahler CM. Genomic epidemiology and population structure of Neisseria gonorrhoeae from remote highly endemic Western Australian populations. BMC Genomics. 2018;19:165. https://doi.org/10.1186/s12864-018-4557-5

27. Hui BB, Whiteley DM, Donovan B, Law MG, Regan DG; GRAND Study Investigators. Identifying factors that lead to the persistence of imported gonorrhoeae strains: a modelling study. Sex Transm Infect. 2017;93:221–5. https://doi.org/10.1136/sextrans-2016-052738

28. Goldstein E, Kirkcaldy RD, Reshef D, Berman S, Weinstock H, Sabeti P, et al. Factors related to increasing prevalence of resistance to ciprofloxacin and other antimicrobial drugs in Neisseria gonorrhoeae, United States. Emerg Infect Dis. 2012;18:1290–7. https://doi.org/10.3201/eid1808.111120

29. Donà V, Smid JH, Kasraian S, Egli-Gany D, Dost F, Imeri F, et al. Mismatch amplification mutation assay-based real-time PCR for rapid detection of Neisseria gonorrhoeae and antimicrobial resistance determinants in clinical specimens. J Clin Microbiol. 2018;56:e00366-15. https://doi.org/10.1128/JCM.00366-15

30. Zhao L, Liu A, Li R, Zhao S. Multiplex TaqMan real-time PCR platform for detection of Neisseria gonorrhoeae with decreased susceptibility to ceftriaxone. Diagn Microbiol Infect Dis. 2019;93:299–304. https://doi.org/10.1016/j.diagmicrobio.2018.10.013

31. Unemo M, Shaffer WM. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev. 2014;27:587–613. https://doi.org/10.1128/CMR.00010-14

Address for correspondence: Katy Town, Public Health England, 61 Colindale Ave, London NW9 5EQ, UK; email: katy.town.15@alumni.ucl.ac.uk
Genomic and Phenotypic Variability in *Neisseria gonorrhoeae* Antimicrobial Susceptibility, England

Appendix

This research was undertaken as part of the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Blood-Borne and Sexually Transmitted Infections at University College London, England, UK.

Methods

Antimicrobial Susceptibility Testing External Quality Assurance

Quality assurance of antimicrobial susceptibility testing was performed by including 12 control strains, WHO A, WHO D, WHO E, WHO J, WHO K, WHO L, TR01, 1336, 1339, A02, A24, and QA07–09. In addition, we participated in external quality assurance (EQA) exchanges with the national reference laboratories of Scotland and Belgium, and in the Euro-GASP EQA.

Antimicrobial Resistance Definitions

The Gonococcal Resistance to Antimicrobials Surveillance Programme (GRASP) uses European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints to define antimicrobial resistance as follows: ceftriaxone, MIC >0.125 mg/L; cefixime, MIC >0.125 mg/L; azithromycin, MIC >0.5 mg/L; ciprofloxacin, MIC >0.06 mg/L; penicillin, MIC >1 mg/L.

Whole-Genome Sequencing Methods

Whole-genome sequencing (WGS) was conducted at the Wellcome Sanger Institute by using the HiSeq X Ten system (Illumina, http://www.illumina.com), and put through the routine Sanger WGS data management pipeline ([1](#)). The following measures were used to assess the quality of the WGS data for each isolate included in the phylogenetic analyses: a quality score >30 for the nucleotides called during the sequencing process, the majority of raw reads identified as *N. gonorrhoeae* when cross-referenced to a public database of pathogen genomes by using Kraken ([2](#)), the assembly length similar to the *N. gonorrhoeae* reference genome FA1090 ([3](#)).
2,153,922 nt, the assembly guanine and cytosine content (53%) similar to the *N. gonorrhoeae* reference genome FA1090, and >90% of the reference genome covered by reads.

After passing quality control, the raw reads were aligned to the reference genome FA1090 to create a consensus whole-genome sequence for each isolate. We used the Burrows-Wheeler Aligner Maximal Exact Match (BWA-MEM) algorithm with the option to flag duplicate shorter reads that match as secondary for removal (option M) (4). The Sequence Alignment/Map (SAM) (5) file output was converted into a Binary Alignment/Map (BAM) file using SAMTools to reduce the size of the file for faster computer processing (5). The Genome Analysis Toolkit (GATK) was used to realign indels, which helps the process of identifying single-nucleotide polymorphisms (SNPs) (6). SAMTools mpileup was used to identify the variant nucleotides identified in each read and the haploid option of Binary Call Format (BCF) tools from SAMTools filtered this information to select the variant nucleotides based on the following conditions: the minimum base call quality was ≥50 (quality of the base was previously determined using the Phred score system in SAMTools); the minimum mapping quality score by BWA-MEM was 20; ≥8 reads have the same variant and ≥3 are from each strand direction, forward and back; and the specific variant called is the same in 80% of the reads used. The consensus sequence for each isolate was compiled into 1 multiple FASTA file and used for the analyses.

**Phylogenetic Tree Construction for Isolates from England**

Gubbins version 2.4.0 (7) was used with the default settings (5 iterations and ≥3 base substitutions to identify a recombination event) and the tree building option Randomized Axelerated Maximum Likelihood (RAxML) version 8.2.8 (8) to create the phylogenetic tree with recombination events removed. Prior to this, the *opa* and *pil* genes, phages (9), and the Gonocccocal Genetic Island (GGI) (10) were manually removed from the alignment. The output phylogenetic tree was midpoint rooted, i.e., the root of the tree was placed half-way between the 2 isolates with the largest SNP difference, using Figtree version 1.4.3 (http://tree.bio.ad.uk/software/figtree), and the branches were ladderized, i.e., branches were rotated so that they were ordered by increasing clade size at each node to aid visualization. Statistical support for the structure of the phylogenetic tree was assessed by using the Booster program (11). First, the phylogenetic tree was recreated by using Gubbins and RAxML with the bootstrap option to create 100 trees and input into Booster along with the reference tree used for
analysis. Booster was used to calculate the transfer bootstrap expectation (TBE), a value that quantifies the presence of each branch at a particular position in the bootstrap trees. A value of 1 indicates that the branch is in all bootstrap trees and a value of 0 indicates that the bootstrap trees are random. Statistical support for the phylogenetic tree was high: 79% (1,014/1,276) of nodes had a TBE value >70%.

**Phylogenetic Tree Construction for Isolates from England, Europe, and the United States**

For each international dataset, the consensus sequences were combined with the study consensus sequences and the mobile and repetitive elements removed. Phylogenetic trees with genetic recombination events removed were created by using Gubbins version 2.4.0 (9) with the default settings (5 iterations and ≥3 base substitutions to identify a recombination event) and the tree building option FastTree version 2.1.4 (12), which also uses a heuristic approach to find the tree with the maximum likelihood of producing the data given the model. FastTree has been shown to produce similar phylogenetic trees as RAxML methods but can analyze larger datasets within 1 day (13).

**Results**

*N. gonorrhoeae* Multiantigen Sequence Typing (NG-MAST) Data

The most common sequence types (STs) were ST51 (8.8%; 113/1,277), ST2992 (5%; 67/1,277), ST292 (3%; 45/1,277). By NG-MAST, the 2 isolates highly resistant to azithromycin had ST649 and ST13124, which are not the same STs seen in the United Kingdom during a 2015 outbreak of high-level azithromycin–resistant *N. gonorrhoeae*.

The largest *penA*-34 cluster contained 22 different previously reported STs and 4 novel STs. The 3 most frequently found STs were ST1407 (14/57; 25%), ST3169 (6/57; 10%), and ST8953 (5/57; 9%). The smaller *penA*-34 cluster primarily contained isolates with ST4244 (21/26; 81%). The remaining isolates were ST11084 (n = 2), ST3808 (n = 1), ST9897 (n = 1), and 1 isolate had a previously unidentified ST by NG-MAST. The *penA*-44 cluster contained 16 different STs, 30% (25/84) were ST2400, 21% (18/84) were ST10149, 17% (14/84) were ST6360, and 5 isolates had an ST that had not been identified previously.
References

1. Page AJ, De Silva N, Hunt M, Quail MA, Parkhill J, Harris SR, et al. Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microb Genom. 2016;2:e000083. PubMed https://doi.org/10.1099/mgen.0.000083

2. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15:R46. PubMed https://doi.org/10.1186/gb-2014-15-3-r46

3. National Center for Biotechnology Information. Genome assembly and annotation report: Neisseria gonorrhoeae FA 1090. [accessed 2018 Nov. 11] https://www.ncbi.nlm.nih.gov/genome/864?genome_assembly_id=300414

4. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013; 1303(3997). https://arxiv.org/abs/1303.3997

5. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9. PubMed https://doi.org/10.1093/bioinformatics/btp352

6. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303. PubMed https://doi.org/10.1101/gr.107524.110

7. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43:e15. PubMed https://doi.org/10.1093/nar/gku1196

8. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. PubMed https://doi.org/10.1093/bioinformatics/btu033

9. Piekarowicz A, Klyz A, Majchrzak M, Adamczyk-Poplawska M, Maugel TK, Stein DC. Characterization of the dsDNA prophage sequences in the genome of Neisseria gonorrhoeae and visualization of productive bacteriophage. BMC Microbiol. 2007;7:66. PubMed https://doi.org/10.1186/1471-2180-7-66

10. Harrison OB, Clemence M, Dillard JP, Tang CM, Trees D, Grad YH, et al. Genomic analyses of Neisseria gonorrhoeae reveal an association of the gonococcal genetic island with antimicrobial resistance. J Infect. 2016;73:578–87. PubMed https://doi.org/10.1016/j.jinf.2016.08.010
11. Lemoine F, Domelevo Entfellner JB, Wilkinson E, Correia D, Dávila Felipe M, De Oliveira T, et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature. 2018;556:452–6. PubMed [https://doi.org/10.1038/s41586-018-0043-0](https://doi.org/10.1038/s41586-018-0043-0)

12. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–50. PubMed [http://dx.doi.org/10.1093/molbev/msp077](http://dx.doi.org/10.1093/molbev/msp077)

13. Lees JA, Kendall M, Parkhill J, Colijn C, Bentley SD, Harris SR. Evaluation of phylogenetic reconstruction methods using bacterial whole genomes: a simulation based study. Wellcome Open Res. 2018;3:33. PubMed [https://doi.org/10.12688/wellcomeopenres.14265.1](https://doi.org/10.12688/wellcomeopenres.14265.1)

### Appendix Table 1. Epidemiologic characteristics of the study sample compared to all gonorrhea cases diagnosed in England, 2013–2016

| Characteristics                        | Study sample, no. (%) | England, no. (%) | p value* |
|----------------------------------------|-----------------------|------------------|----------|
| **Total**                              | 1,267 (100.0)         | 146,369 (100.0)  |          |
| **Year**                               |                       |                  |          |
| 2013                                   | 326 (25.5)            | 31,213 (21.3)    | <0.001   |
| 2014                                   | 333 (26.1)            | 37,178 (25.4)    | 0.580    |
| 2015                                   | 367 (28.7)            | 41,396 (28.3)    | 0.718    |
| 2016                                   | 251 (19.7)            | 36,582 (25.0)    | <0.001   |
| **Clinic location**                    |                       |                  |          |
| London                                 | 527 (44.8)            | 72,809 (49.7)    | <0.001   |
| Outside London                         | 705 (55.2)            | 73,560 (50.2)    | <0.001   |
| **Gender and sexual orientation†**     |                       |                  |          |
| MSM                                    | 786 (60.0)            | 72,660 (49.6)    | <0.001   |
| MSW                                    | 304 (23.8)            | 34,330 (23.5)    | 0.768    |
| F                                      | 206 (16.1)            | 36,178 (24.7)    | <0.001   |
| Missing                                | 1 (<0.1)              | 3,201 (2.2)      | N/A      |
| **Age, y**                             |                       |                  |          |
| <24                                    | 384 (30.1)            | 55,029 (37.6)    | <0.001   |
| 25–34                                  | 503 (39.4)            | 54,143 (37.0)    | 0.077    |
| ≥35                                    | 390 (30.5)            | 37,197 (25.4)    | <0.001   |
| **Ethnicity**                          |                       |                  |          |
| White                                  | 824 (64.5)            | 104,028 (71.1)   | <0.001   |
| Black Caribbean                        | 132 (10.3)            | 8,280 (5.7)      | <0.001   |
| Black African                          | 47 (3.7)              | 5,858 (4.0)      | 0.559    |
| Black, other                           | 10 (0.8)              | 3,238 (2.2)      | <0.001   |
| Asian                                  | 74 (5.8)              | 5,750 (3.9)      | <0.026   |
| Other                                  | 32 (2.5)              | 4,747 (3.2)      | 0.138    |
| Mixed                                  | 106 (8.2)             | 8,614 (5.9)      | <0.001   |
| Missing                                | 53 (4.2)              | 5,815 (4.0)      | 0.747    |
| **Place of birth**                     |                       |                  |          |
| United Kingdom                         | 782 (61.2)            | 96,189 (65.7)    | <0.001   |
| Not United Kingdom                     | 407 (31.9)            | 38,334 (26.2)    | <0.001   |
| Missing                                | 88 (6.8)              | 11,846 (8.1)     | 0.117    |
| **New STI diagnosed ≤1 year, excluding HIV** |               |                  |          |
| N                                      | 1,015 (79.5)          | 117,493 (80.3)   | 0.481    |
| Y                                      | 262 (20.5)            | 28,876 (19.7)    | 0.481    |
| **HIV status**                         |                       |                  |          |
| Negative or unknown                    | 1,051 (82.3)          | 130,198 (89.0)   | <0.001   |
| Positive                               | 226 (17.7)            | 16,171 (11.0)    | <0.001   |

*p value calculated by using 2 sample proportions z-test. Bold text indicates statistical significance.

†MSM, men who report having sex with men; MSW, men who report having sex with women exclusively.
Appendix Table 2. Phenotypic antimicrobial susceptibility profile of study sample and all GRASP isolates, 2013–2016*  

| MIC                | Study sample, no. (%)† | GRASP, no. (%) | p value† | Study sample as a % of GRASP |
|--------------------|------------------------|----------------|----------|------------------------------|
| **Total**          | 1,267 (100.0)          | 6,184 (100.0) | 20.5     |                              |
| **Ceftriaxone**    |                        |                |          |                              |
| <0.002             | 207 (16.3)             | 938 (15.2)     | 0.569    | 22.1                         |
| 0.004              | 409 (32.3)             | 1,999 (32.3)   | 20.5     |                              |
| 0.008              | 374 (29.5)             | 1,760 (28.5)   | 21.3     |                              |
| 0.015              | 150 (11.8)             | 833 (13.5)     | 18.0     |                              |
| 0.03               | 121 (9.6)              | 601 (9.7)      | 20.1     |                              |
| 0.06               | 7 (0.6)                | 52 (0.8)       | 13.5     |                              |
| 0.125              | 0                      | 1 (<0.1)       | 0        |                              |
| **Azithromycin**   |                        |                |          |                              |
| <0.004             | 127 (10.0)             | 598 (9.7)      | 0.847    | 21.2                         |
| 0.006              | 186 (14.7)             | 924 (14.9)     | 20.1     |                              |
| 0.125              | 382 (30.1)             | 1,873 (30.3)   | 20.4     |                              |
| 0.25               | 402 (31.7)             | 1,913 (30.9)   | 21.0     |                              |
| 0.50               | 125 (9.9)              | 622 (10.1)     | 20.1     |                              |
| 1.00               | 39 (3.1)               | 192 (3.1)      | 20.3     |                              |
| 2.00               | 1 (0.1)                | 31 (0.5)       | 3.2      |                              |
| 4.00               | 3 (0.2)                | 15 (0.2)       | 20.0     |                              |
| 8.00               | 1 (0.1)                | 3 (0)          | 33.3     |                              |
| 16.0               | 0                      | 3 (0)          | 0        |                              |
| ≥256               | 2 (0.2)                | 10 (0.2)       | 20.0     |                              |
| **Cefixime**       |                        |                |          |                              |
| <0.002             | 37 (2.9)               | 200 (3.2)      | 0.795    | 18.5                         |
| 0.004              | 62 (4.9)               | 306 (4.9)      | 20.3     |                              |
| 0.008              | 331 (26.1)             | 1,691 (27.3)   | 19.6     |                              |
| 0.015              | 484 (38.2)             | 2,187 (35.4)   | 22.1     |                              |
| 0.03               | 174 (13.7)             | 882 (14.3)     | 19.7     |                              |
| 0.06               | 144 (11.4)             | 729 (11.8)     | 19.8     |                              |
| 0.125              | 28 (2.2)               | 140 (2.3)      | 20.0     |                              |
| 0.25               | 8 (0.6)                | 46 (0.7)       | 17.4     |                              |
| 0.50               | 0                      | 4 (0.1)        | 0        |                              |
| **Ciprofloxacin**  |                        |                |          |                              |
| (2013–2015; threshold for resistance, MIC >0.06 mg/L) |                     |                |          |                              |
| 0.03               | 632 (49.9)             | 3,009 (48.7)   | 0.952    | 21.0                         |
| 0.06               | 12 (0.9)               | 65 (1.1)       | 18.5     |                              |
| 0.125              | 6 (0.5)                | 28 (0.5)       | 21.4     |                              |
| 0.25               | 2 (0.2)                | 14 (0.2)       | 14.3     |                              |
| 0.50               | 3 (0.2)                | 28 (0.5)       | 10.7     |                              |
| 1.00               | 18 (1.4)               | 84 (1.4)       | 21.4     |                              |
| 2.00               | 13 (1.0)               | 78 (1.3)       | 16.7     |                              |
| 4.00               | 68 (5.4)               | 329 (5.3)      | 20.7     |                              |
| 8.00               | 145 (11.4)             | 698 (11.3)     | 20.8     |                              |
| 16.0               | 90 (7.1)               | 427 (6.9)      | 21.1     |                              |
| 32.0               | 37 (2.9)               | 140 (2.3)      | 26.4     |                              |
| **Ciprofloxacin**  |                        |                |          |                              |
| (2016 breakpoint plates; threshold for resistance, MIC >0.06 mg/L) |                     |                |          |                              |
| ≤0.06              | 164 (12.9)             | 851 (13.8)     | 0.302    | 19.3                         |
| >0.06 and <0.50    | 5 (0.4)                | 13 (0.2)       | 38.5     |                              |
| ≥0.50              | 73 (5.8)               | 420 (6.8)      | 17.4     |                              |
| **Penicillin**     |                        |                |          |                              |
| (threshold for resistance, MIC >1.0 mg/L) |                     |                |          |                              |
| 0.06               | 92 (7.3)               | 386 (6.2)      | 0.066    | 23.8                         |
| 0.125              | 298 (23.5)             | 1,400 (22.6)   | 21.3     |                              |
| 0.25               | 399 (31.5)             | 2,112 (34.2)   | 18.9     |                              |
| 0.50               | 186 (14.7)             | 1,009 (16.3)   | 18.4     |                              |
| 1.0                | 82 (6.5)               | 413 (6.7)      | 19.9     |                              |
| 2.0                | 34 (2.7)               | 168 (2.7)      | 20.2     |                              |
| 4.0                | 44 (3.5)               | 156 (2.5)      | 28.2     |                              |
| 8.0                | 133 (10.5)             | 540 (8.7)      | 24.6     |                              |

*GRASP, Gonococcal Resistance to Antimicrobials Surveillance Programme.
†Denominator is less than study sample because 10 samples from 2016 failed routine phenotypic testing so AMR data are unavailable.
‡p value from χ² test comparing distribution of MICs in the study sample to the GRASP sample.
Appendix Table 3. Epidemiologic characteristics of cases in *penA*-44 group compared to 2 *penA*-34 groups*

| Characteristics | *penA*-44 (n = 84) | *penA*-34 comparison, p value† | Cluster 1 (n = 57) | Cluster 2 (n = 26) |
|-----------------|---------------------|-------------------------------|-------------------|-------------------|
| Year            |                     |                               |                   |                   |
| 2013            | 39 (46.4)           |                               | 0.952             | <0.001‡           |
| 2014            | 23 (27.4)           |                               |                   |                   |
| 2015            | 12 (14.3)           |                               |                   |                   |
| 2016            | 10 (11.9)           |                               |                   |                   |
| Gender and sexual orientation§ |                     |                               |                   |                   |
| MSM             | 69 (82.1)           | <0.001                        | 0.116‡            |                   |
| MSW             | 11 (13.1)           |                               |                   |                   |
| F               | 4 (4.8)             |                               |                   |                   |
| Clinic location |                     |                               |                   |                   |
| Outside London  | 38 (45.2)           | 0.012                         | 0.021‡            |                   |
| London          | 46 (54.8)           |                               |                   |                   |
| Age, y          |                     |                               |                   |                   |
| ≤24             | 16 (19.0)           | 0.021                         | 0.508             |                   |
| 25–34           | 39 (46.4)           |                               |                   |                   |
| ≥35             | 29 (34.5)           |                               |                   |                   |
| Ethnicity       |                     |                               |                   |                   |
| White           | 60 (72.3)           | 0.867‡                        | 0.836‡            |                   |
| Black Caribbean | 5 (6.0)             |                               |                   |                   |
| Black African   | 1 (1.2)             |                               |                   |                   |
| Black, other    | 1 (1.2)             |                               |                   |                   |
| Asian           | 6 (7.2)             |                               |                   |                   |
| Other           | 4 (4.8)             |                               |                   |                   |
| Mixed           | 6 (7.2)             |                               |                   |                   |
| Place of birth  |                     |                               |                   |                   |
| United Kingdom  | 56 (66.7)           | 0.201‡                        | 0.019‡            |                   |
| Not United Kingdom | 26 (31.0)       |                               |                   |                   |
| Unknown         | 2 (2.4)             |                               |                   |                   |
| Symptomatic infection |             |                               |                   |                   |
| N               | 19 (25.3)           | 0.917                         |                   | 0.003             |
| Y               | 56 (74.7)           |                               |                   |                   |
| New STI diagnosed <1 year, excluding HIV |             |                               |                   |                   |
| N               | 60 (71.4)           | 0.01                          | 0.557             |                   |
| Y               | 24 (28.6)           |                               |                   |                   |
| HIV status      |                     |                               |                   |                   |
| Negative or unknown | 61 (72.6)       | 0.003                         | 0.478             |                   |
| Positive        | 23 (27.4)           |                               |                   |                   |
| Number of sexual partners in the United Kingdom ≤3 mo before diagnosis |             |                               |                   |                   |
| 0               | 1 (1.9)             | 0.082                         | 0.915             |                   |
| 1               | 18 (34.0)           |                               |                   |                   |
| ≥2              | 34 (64.2)           |                               |                   |                   |
| Travel-associated sexual partnership |             |                               |                   |                   |
| N               | 51 (96.2)           | 0.003                         | 1.00‡             |                   |
| Y               | 2 (3.8)             |                               |                   |                   |

*Bold text indicates a statistically significant result, p<0.05 and CI does not cross 1. See Table 2 in the main manuscript for epidemiologic characteristics of isolates with *penA*-34 allele.
†p value calculated by using χ² test, except where indicated.
‡p value calculated by using Fisher exact test.
§MSM, men who reported sex with men; MSW, men who reported sex with women exclusively.
Appendix Figure 1. Genetic markers of antimicrobial resistance and MIC for ceftriaxone in a study of antimicrobial susceptibility of *Neisseria gonorrhoeae*, England, 2013–2016. Only marker combinations with ≥5 isolates included. Dotted line indicates reduced susceptibility threshold of MIC >0.015 mg/L. Colors are a visual aide to distinguish every 4 groups of genotypic markers and are not representative of any genotypic types. AMR, antimicrobial resistance; MIC, minimal inhibitory concentration.
Appendix Figure 2. Genetic markers of antimicrobial resistance and MIC for cefixime in a study of antimicrobial susceptibility of *Neisseria gonorrhoeae*, England, 2013–2016. Only marker combinations with >5 isolates included. Dotted line indicates reduced susceptibility threshold of MIC >0.015 mg/L. Dashed line indicates resistance threshold of MIC >0.125 mg/L. The colors are a visual aide to distinguish every 4 groups of genotypic markers and are not representative of any genotypic types. AMR, antimicrobial resistance; MIC, minimal inhibitory concentration.
Appendix Figure 3. Genetic markers of antimicrobial resistance and MIC for azithromycin in a study of antimicrobial susceptibility of *Neisseria gonorrhoeae*, England, 2013–2016. Only marker combinations with ≥5 isolates included, dotted line indicates reduced susceptibility threshold of MIC ≥0.25 mg/L. Dashed line indicates resistance threshold of MIC >0.5 mg/L. Colors are a visual aide to distinguish every 4 groups of genotypic markers and are not representative of any genotypic types. AMR, antimicrobial resistance; MIC, minimal inhibitory concentration.
Appendix Figure 4. Genetic markers of antimicrobial resistance and MIC for ciprofloxacin in a study of antimicrobial susceptibility of Neisseria gonorrhoeae, England, 2013–2016. Only marker combinations with ≥5 isolates included. Dashed line indicates resistance threshold of MIC ≥0.06 mg/L. The colors are a visual aide to distinguish every 4 groups of genotypic markers and are not representative of any genotypic types. For isolates from 2016, only data on whether the isolate was susceptible or resistant to ciprofloxacin were available, so for MIC analyses all resistant isolates were allocated an MIC of 1 mg/L and all sensitive isolates were allocated an MIC of ≤0.03 mg/L. AMR, antimicrobial resistance; MIC, minimal inhibitory concentration.
Appendix Figure 5. Genetic markers of antimicrobial resistance and MIC for penicillin in a study of antimicrobial susceptibility of Neisseria gonorrhoeae, England, 2013–2016. Only marker combinations with >5 isolates included. Dashed line indicates resistance threshold of MIC ≥1 mg/L. The colors are a visual aide to distinguish every 4 groups of genotypic markers and are not representative of any genotypic types. AMR, antimicrobial resistance; MIC, minimal inhibitory concentration.