NiCo$_2$S$_4$ Nanocrystals on Nitrogen-Doped Carbon Nanotubes as High-Performance Anode for Lithium-Ion Batteries

Haisheng Han1, Yanli Song1, Yongguang Zhang1*, Gulnur Kalimuldina2 and Zhumabay Bakenov3

Abstract

In recent years, the development of lithium-ion batteries (LIBs) with high energy density has become one of the important research directions to fulfill the needs of electric vehicles and smart grid technologies. Nowadays, traditional LIBs have reached their limits in terms of capacity, cycle life, and stability, necessitating their further improvement and development of alternative materials with remarkably enhanced properties. A nitrogen-containing carbon nanotube (N-CNT) host for bimetallic sulfide (NiCo$_2$S$_4$) is proposed in this study as an anode with attractive electrochemical performance for LIBs. The prepared NiCo$_2$S$_4$/N-CNT nanocomposite exhibited improved cycling stability, rate performance, and an excellent reversible capacity of 623.0 mAh g$^{-1}$ after 100 cycles at 0.1 A g$^{-1}$ and maintained a high capacity and cycling stability at 0.5 A g$^{-1}$. The excellent electrochemical performance of the composite can be attributed to the unique porous structure, which can effectively enhance the diffusivity of Li ions while mitigating the volume expansion during the charge–discharge processes.

Keywords: Anode, NiCo$_2$S$_4$, Nitrogen-doped carbon nanotube, Lithium-ion batteries, Binary metal sulfides

Background

Lithium-ion battery (LIB) is a leading battery technology used in portable electronic devices, electric vehicles, and renewable energy storage [1, 2]. Therefore, the development of LIBs with a high energy density has become a research direction crucial for the sustainable development of various sectors of economics and industry [3–5]. For instance, the specific energy density of a commercial graphite anode material reached its theoretical capacity of 372 mAh g$^{-1}$, which does not leave much room for its further enhancement to satisfy the performance requirements of emerging electronics and electric vehicle technologies [6, 7]. As a result, it is essential to develop alternative anode materials for LIBs to satisfy the needs of the modern society.

Transition-metal sulfides (TMSs) offer remarkably higher specific capacity than traditional electrode materials [8–12]. Recently, TMSs have been reported as anodes with excellent conductivity and catalytic activity. Among them, binary nickel–cobalt sulfide (NiCo$_2$S$_4$) exhibits a high theoretical specific capacity (703 mAh g$^{-1}$), an excellent electronic conductivity (1.26 \times 10^6$ S m$^{-1}$), and a greater abundance of redox reaction sites [13–17]. The reported general charge/discharge mechanism of NiCo$_2$S$_4$ with lithium (Li) involves the following reactions:

\begin{align*}
\text{NiCo}_2\text{S}_4 + 8\text{Li}^+ + 8\text{e}^- &\rightarrow \text{Ni} + \text{Co} + 4\text{Li}_2\text{S} \quad (1) \\
\text{Ni} + x\text{Li}_2\text{S} &\leftrightarrow \text{NiS}_x + 2x\text{Li}^+ + 2x\text{e}^- \quad (2) \\
\text{Co} + x\text{Li}_2\text{S} &\leftrightarrow \text{CoS}_x + 2x\text{Li}^+ + 2x\text{e}^- \quad (3)
\end{align*}

However, despite the large Li storage capacity of NiCo$_2$S$_4$, there are still problems related to the low...
the accompanying volume variation, leading to material disintegration and consequently severe capacity fading [18]. Another serious problem originates from the shuttle effect of polysulfides produced by the dissolution of lithium polysulfide (LPS) in the electrolyte, resulting in a low capacity retention as well [19, 20].

To overcome the issues of NiCo2S4 anodes related to the volume change and LPS dissolution, various approaches including nanostructuring and use of carbonaceous additives and carbon-based hosts have been developed with promising results. Nanostructuring and its combination with carbon/graphene networks can increase the electrode–electrolyte interface contact area and shorten the Li-ion pathways, leading to a higher specific capacity [18]. Therefore, this study reports the in situ growth of NiCo2S4 nanoparticles onto carbon nanotubes (CNT) structure using a hydrothermal method. Furthermore, to increase the electroactivity of the electrode material, the nitrogen (N) heteroatoms were incorporated into the CNT matrix. Such a processing makes N-CNT more conducive, leading to the uniform growth of NiCo2S4 and thus improving the crystallinity of NiCo2S4/N-CNT anode. In this unique structure, CNT forms an elastic matrix that enhances the structural stability, improves the ionic conductivity of the composite, and mitigates the volume variation of NiCo2S4 particles. The NiCo2S4/N-CNT material maintains good capacity retention during cycling and significantly restrains the voltage fading. The NiCo2S4/N-CNT composite anode exhibits an initial discharge capacity of 1412.1 mAh g⁻¹ at 0.1 A g⁻¹, and the discharge capacity remains at 623.0 mAh g⁻¹ after 100 cycles.

Methods

Synthesis of NiCo2S4

First, 0.074 g of Co(AC)2·4H2O and 0.037 g of Ni(AC)2·4H2O were dissolved in 40 mL ethanol. The solution was stirred on a water bath at 80 °C for 2 h and at room temperature for another 2 h. Then, 0.078 g of thiourea was added to the mixture, which was further continuously stirred for 20 h before transferring the reaction mixture to a 100 mL autoclave. The hydrothermal reaction was carried out at 170 °C for 3 h. The product was cooled to room temperature and centrifuged with deionized water several times and freeze-dried. NiCo2S4/CNT was synthesized following the same method but without the addition of NH3·H2O.

Characterization of Materials

The crystal structure of the as-synthesized samples was characterized by powder X-ray diffraction (XRD, D8 Discover Bruker). X-ray photoelectron spectrometry (XPS) was performed to analyze the elemental composition of the samples using a K-Alpha 1063 analyzer. The morphology of the samples was studied using a scanning electron microscope (SEM, JSM-7100F, JEOL) and a transmission electron microscope (TEM, JEM-2100F). The specific surface area of the samples was calculated using the Brunauer–Emmett–Teller (BET) method based on the N2 adsorption–desorption isotherms obtained by using a V-Sorb 2800P. Thermogravimetric analysis (TGA) was carried out in air with a heating rate of 10 °C min⁻¹.

Electrochemical Measurements

The electrochemical performance of NiCo2S4/N-CNT samples was evaluated in CR 2032 coin-type cells. To prepare the electrode slurry, 70 wt% of NiCo2S4/N-CNT composite, 15 wt% of carbon black (Super P), and 15 wt% of polyvinylidene fluoride (PVDF) binder were mixed in 1-methyl-2-pyrrolidinone (NMP). The slurry was uniformly spread onto a Cu foil using a doctor blade technique and then dried at 70 °C for 8 h in air. Circular disk electrodes were cut after drying, and the cells were assembled in a high-purity Ar-gas (99.9995%) filled glove box (MBraun). The mass loading of NiCo2S4/N-CNT in the electrodes was about 2 mg cm⁻². Pure Li foils were used as reference and counter electrodes, and microporous polypropylene Celgard 2300 was used as a separator. The electrolyte was 1 mol L⁻¹ LiPF6 (Aladdin, CAS number: 21324-40-3) in a mixture of ethylene carbonate (EC, Aladdin, CAS number: 96-49-1) and dimethyl carbonate (DMC, CAS number: 616-38-6) with a volume ratio of 1:1. The galvanostatic charge/discharge measurements were conducted using a multichannel battery testing system (Neware BTS4000) at a potential window of 0.01–3.00 V (vs. Li⁺/Li). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed using an electrochemical workstation (Princeton, VersaState4).
Results and Discussion

Scheme 1 shows the preparation route of NiCo$_2$S$_4$/N-CNT composite. Initially, the surface of CNT was pretreated with a solution of Ni$^{2+}$ and Co$^{2+}$. Then, the N atoms were doped into the CNTs via a hydrothermal reaction at 170 °C, while NiCo$_2$S$_4$ was grown in situ on the surface of CNTs. The crystal structures of NiCo$_2$S$_4$, NiCo$_2$S$_4$/CNT, and NiCo$_2$S$_4$/N-CNT composites were characterized by XRD (Fig. 1a). The characteristic diffraction peaks of NiCo$_2$S$_4$ (JCPDS 20-0728) were observed in all the three samples. Moreover, the peaks in NiCo$_2$S$_4$/N-CNT were more pronounced and sharper than those in NiCo$_2$S$_4$/CNT [21]. It is believed that N-CNT can be used as active nucleation sites to promote the uniform and dense growth of NiCo$_2$S$_4$ [22]. Figure 1b shows the BET results for the NiCo$_2$S$_4$/N-CNT nanocomposites. The specific surface area of NiCo$_2$S$_4$/N-CNT nanocomposites is 62.67 m2 g$^{-1}$. As shown in the TGA analysis data (Fig. 1c), the NiCo$_2$S$_4$/N-CNT nanocomposite exhibited a weight loss at a temperature range of 400–600 °C, which was caused by the combustion of CNTs. Therefore, the content of NiCo$_2$S$_4$ in the NiCo$_2$S$_4$/N-CNT composite was determined as ~30 wt%.

The SEM results of the samples are shown in Fig. 2a, b. The as-synthesized NiCo$_2$S$_4$ nanoparticles appear to be more tightly packed and agglomerated. On the other hand, through the introduction of CNT and N-CNT, the NiCo$_2$S$_4$ nanoparticles were uniformly distributed and deposited to form NiCo$_2$S$_4$/CNT composite (Fig. 2c, d) and NiCo$_2$S$_4$/N-CNT (Fig. 2e, f), respectively. However, the density of NiCo$_2$S$_4$ nanoparticles on the N-CNT surface in NiCo$_2$S$_4$/N-CNT was significantly higher than that in the NiCo$_2$S$_4$/CNT composite. This confirms that the introduction of N atoms in CNTs promotes the denser growth of NiCo$_2$S$_4$ nanoparticles.

The TEM images in Fig. 3a show that the NiCo$_2$S$_4$ particles have an average diameter of ~5 nm and are uniformly distributed on the surface of N-CNTs. In the high-resolution TEM (HRTEM) image of NiCo$_2$S$_4$/N-CNT shown in Fig. 3b, the nanoparticles of about 5 nm in diameter exhibit a clear lattice fringe of 0.35 nm, corresponding to the (220) plane of NiCo$_2$S$_4$. Besides, many crooked graphitic lattice fringes were observed around
the nanoparticles. The fast Fourier transform (FFT) and lattice spacing profiles in Fig. 3b further confirmed the incorporation of NiCo$_2$S$_4$ nanoparticles into the N-CNT structure.

Further, XPS was used to determine the bonding characteristics and surface chemical composition of NiCo$_2$S$_4$/N-CNT. The Co 2p spectra (Fig. 4a) can be divided into two peaks at 778.8 eV and 793.0 eV, corresponding to Co$^{3+}$ and Co$^{2+}$, respectively [23, 24]. In the N 1s spectrum (Fig. 4b), the peaks at 398.3, 399.7, and 400.9 eV can be assigned to the pyridinic, pyrrolic, and graphitic N, respectively [25, 26]. In the XPS spectrum
of S 2p (Fig. 4c), the S 2P_{3/2} and S 2P_{1/2} can be clearly observed at 161.2 and 163.1 eV, respectively, and the peak at 163.8 eV corresponds to the metal-sulfur bond [27, 28]. As shown in Fig. 4d, in addition to the satellite peaks, the binding energies of Ni 2p centered at 854.6 and 856.9 eV correspond to Ni 2P_{3/2}, and those at 871.1 and 875.5 eV correspond to Ni 2P_{1/2}. This indicates the presence of both Ni^{3+} and Ni^{2+} in the sample [29, 30]. As shown in Fig. 4e, three fitting peaks are present in the C1s profile at 284.9, 285.7, and 290.4 eV, which can be attributed to C–C, C–N, and –C=O bonds, respectively. In summary, the XPS of NiCo_{2}S_{4}/N-CNT indicated the formation of a highly ordered crystal structure of NiCo_{2}S_{4} and demonstrated the successful introduction of N element into the structure of compounds.

The electrochemical characteristics of NiCo_{2}S_{4}/N-CNT for Li storage were evaluated by CV and charge–discharge cycling, as shown in Fig. 5 at a potential range of 0.01–3.00 V (vs. Li^{+}/Li). The cathodic process consisted of three reduction peaks (Fig. 5a) situated at 1.71 V, 1.33 V, and 0.70 V. The strongest peak is positioned at 1.33 V, and two weaker peaks correspond
to the reduction of NiCo$_2$S$_4$ to Ni and Co. In comparison, the peaks at 1.71 V and 0.70 V correspond to the formation of Li$_2$S and the SEI film, respectively. In the anodic process, the oxidation peaks at 1.33 V and 2.05 V can be attributed to the oxidation of metallic Co to CoS$_x$. In addition, there is an intensive peak at 2.32 V resulting from the oxidation reactions of metallic Ni and Co to NiS$_x$ and CoS$_x$, respectively. The shape of the curve, peak position, and the intensity of peaks are relatively stable in the following cycles, indicating that NiCo$_2$S$_4$/N-CNT has good stability and reversibility.

Figure 5b shows the charge–discharge curves of NiCo$_2$S$_4$/N-CNT at 0.1 A g$^{-1}$ for the 1st, 2nd, and 10th cycles. The first charge and discharge capacities of the NiCo$_2$S$_4$/N-CNT electrode reached 807.6 and 1412.1 mAh g$^{-1}$, respectively, with the initial coulombic efficiency of 57.2%. The discharge capacities of the 2nd and 10th cycles are 970.7 mAh g$^{-1}$ and 891.1 mAh g$^{-1}$, respectively. The reversibility of the charge/discharge process improved with the cycle number accompanied with an increased coulombic efficiency. The obtained
CV profiles correspond to the charge/discharge curves of NiCo$_2$S$_4$/N-CNT.

To further study the electrochemical performance of NiCo$_2$S$_4$/N-CNT, the rate capability was evaluated at current densities from 0.1 to 5 A g$^{-1}$ (Fig. 5c). The results indicate that the capacity of NiCo$_2$S$_4$/N-CNT decreased with the increase in current density. When the current density was returned to 0.1 A g$^{-1}$, the capacity of NiCo$_2$S$_4$/N-CNT returned to a value of 796.1 mAh g$^{-1}$, exhibiting about 84% capacity retention and demonstrating that NiCo$_2$S$_4$/N-CNT exhibits an excellent rate performance. The cycling performance data of NiCo$_2$S$_4$/N-CNT, NiCo$_2$S$_4$/CNT, and NiCo$_2$S$_4$ for 100 cycles at 0.1 A g$^{-1}$ are shown in Fig. 5d. For the initial 50 cycles, the anode undergoes a slight capacity fading. Then, NiCo$_2$S$_4$/N-CNT anode stabilized its capacity for the rest of the cycles and demonstrated a value of 623.0 mAh g$^{-1}$ after 100 cycles. These results show that compared with the NiCo$_2$S$_4$/CNT and NiCo$_2$S$_4$ electrodes, the NiCo$_2$S$_4$/N-CNT electrode exhibited a remarkably higher discharge specific capacity and better cycle stability. Figure 5e shows the EIS data. The high-frequency semicircles in the Nyquist plots correspond to the charge transfer resistance (R_t) of the electrodes. The NiCo$_2$S$_4$/N-CNT electrode clearly exhibits the lowest R_t values, suggesting a remarkably enhanced charge/mass transfer kinetics. Figure 5f shows the cycling performance of NiCo$_2$S$_4$/N-CNT electrode at 0.5 A g$^{-1}$ over 500 cycles. The NiCo$_2$S$_4$/N-CNT electrode delivers an initial specific discharge capacity of 750.2 mAh g$^{-1}$ and maintains a reversible capacity of 539.3 mAh g$^{-1}$ after 500 cycles, further confirming an excellent cycling and rate capability of this high capacity anode for lithium batteries.

Conclusions

In summary, a NiCo$_2$S$_4$/N-CNT composite was prepared using a one-pot facile hydrothermal synthesis route. By introducing the N atoms into the CNT structure, uniformly distributed NiCo$_2$S$_4$ nanoparticles with reduced particle sizes were formed. The assembled cells with the NiCo$_2$S$_4$/N-CNT anode demonstrated a high specific capacity of about 623.0 mAh g$^{-1}$ and excellent cycling stability at 0.1 A g$^{-1}$ after 100 cycles. Furthermore, this electrode exhibited an excellent cycling property at 0.5 A g$^{-1}$ over 500 cycles, confirming its ability to maintain its high performance at elevated current densities. Our study shows that this synthesis method is a feasible way to grow NiCo$_2$S$_4$ nanoparticles with uniform distribution on the surface of a CNT substrate as a high-performance anode for LIBs.

Abbreviations

LIBs: Lithium-ion batteries; CNT: Carbon nanotube; NiCo$_2$S$_4$: Binary nickel–cobalt sulfide; PVDF: Polyvinylidene fluoride; NMP: N-Methyl-2-pyrrolidone; XRD: X-ray powder diffraction; SEM: Scanning electron microscopy; CV: Cyclic voltammetry; EIS: Electrochemical impedance spectroscopy; N-CNT: Nitrogen-containing carbon nanotube; TMS: Transition metal sulfides; LPS: Lithium polysulfide; XPS: X-ray photoelectron spectrometry; TEM: Transmission electron microscope; HRTEM: High-resolution transmission electron microscope; BET: Brunauer–Emmett–Teller; TGA: Thermogravimetric analysis; EC: Ethylene carbonate; DMC: Dimethyl carbonate; FFT: Fast Fourier transform; N: Nitrogen; Li: Lithium.

Authors’ contributions

HH and YS contributed to formal analysis; HH and YS contributed to investigation; HH contributed to writing—original draft preparation; GK, ZB, and YZ contributed to writing—review and editing; YZ supervised the study; YZ contributed to project administration. All authors read and approved the final manuscript.

Funding

This research was funded by Natural Science Foundation of Hebei Province of China (B2020202052); the Program for the Outstanding Young Talents of Hebei Province, China; Chunhui Project of Ministry of Education of the People’s Republic of China (Grant No. 20200701); the Faculty Development Competitive Research Grant Program Grant 110119FD4504 and Collaborative Research Program Grant 091019CRP2114 from Nazarbayev University.

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article.

Declaration

Competing interests

The authors declare that they have no competing interests.

Author details

1 School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China. 2 Department of Mechanical and Aerospace Engineering, Nazarbayev University, Nur-Sultan 010000, Kazakhstan. 3 Department of Chemical and Materials Engineering, National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan.

Received: 22 February 2021 Accepted: 3 June 2021

Published online: 12 June 2021

References

1. Ma Y, Liu P, Xie Q, Zhang C, Wang L, Peng D (2020) Intrinsic performance regulation in hierarchically porous Co$_3$O$_4$ microrods towards high-rate lithium ion battery anode. Mater Today Energy 16:100383
2. Xu G, Li J, Huang L, Lin W, Sun S (2013) Synthesis of Co$_3$O$_4$ nano-octahedra enclosed by facets and their excellent lithium storage properties as anode material of lithium ion batteries. Nano Energy 2.994–402
3. Su Q, Zhang J, Wu Y, Du G (2014) Revealing the electrochemical conversion mechanism of porous Co$_3$O$_4$ nanospheres in lithium-ion battery by in situ transmission electron microscopy. Nano Energy 9:264–272
4. Zhang C, Song Y, Xu L, Yin F (2020) In situ encapsulation of Co/Co$_3$O$_4$ nanoparticles in nitrogen-doped hierarchically ordered porous carbon as high performance anode for lithium-ion batteries. Chem Eng J 380:122545
5. Wang B, Lu X, Tsang C, Wang Y, Au W, Guo H, Tang Y (2018) Charge-driven self-assembly synthesis of straw-sheaf-like Co$_3$O$_4$ with superior cyclability and rate capability for lithium-ion batteries. Chem Eng J 380:278–286
6. Lou X, Deng D, Lee J, Feng J, Archer L (2008) Self-supported formation of needlelike Co$_3$O$_4$ nanotubes and their application as lithium-ion battery electrodes. Adv Mater 20:258–262
7. Mao Y, Shen X, Wu Z, Zhu L, Liao G (2020) Preparation of Co$_3$O$_4$ hollow microspheres by recycling spent lithium-ion batteries and...
their application in electrochemical supercapacitors. J. Alloy Compd 816:152604.

8. Chu K, Li Z, Xu S, Yao G, Xu Y, Niu P, Zheng F (2020) MOF-derived hollow NiCo2O4 nanowires as stable Li-ion battery anodes. Dalton T 49:10808–10815.

9. Liu Y, Han D, Wang L, Li G, Liu S, Gao X (2019) NiCo2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium-sulfur battery. Adv Energy Mater 9:1803477.

10. Ding Y, Zeng PY, Fang Z (2020) Spindle-shaped FeS2 enwrapped with NiS Co-doped carbon for high-rate sodium storage. J Power Sources 450:227688.

11. Zeng P, Li J, Ye M, Zhuo K, Fang Z (2017) In situ formation of Co9S8/N-C hollow nanospheres by pyrolysis and sulfurization of ZIF-67 for high-performance lithium-ion batteries. Chem Eur J 23:9517–9524.

12. Liu Y, Jiang W, Liu M, Zhang L, Qiang C, Fang Z (2019) Ultrafine Co1–xS attached to porous interconnected carbon skeleton for sodium-ion batteries. Langmuir 35:16487–16495.

13. Liang H, Wang Z, Gao H, Li X (2017) Unique porous yolk-shell structured Co3O4 anode for high performance lithium-ion batteries. Ceram Int 43:11058–11064.

14. Shin H, Lee W (2018) Ultrathin mesoporous shell Co3O4 hollow spheres as high-performance electrode materials for lithium-ion batteries. Mater Chem Phys 214:165–171.

15. Zhang X, Yang Z, Li C, Xie A, Shen Y (2017) A novel porous tubular Co3O4 Self-assembly and excellent electrochemical performance as anode for lithium-ion batteries. Appl Surf Sci 403:294–301.

16. Min F, Fan Y, Min Z, Teng F, Wang S, Wu H, Feng C (2018) Synthesis and electrochemical performance of NiCo2S4 as anode for lithium-ion batteries. J Nanosci Nanotechno 18:5749–5755.

17. Lin Z, Min Z, Chen W, Min F, Wu H, Wang S, Feng C, Zhang Y (2019) NiCo2S4/carbon nanotube composites as anode material for lithium-ion batteries. J Electron Mater 48:8138–8148.

18. Chen H, Ma X, Shen PK (2019) NiCo2S4 nanocores in-situ encapsulated in graphene sheets as anode materials for lithium-ion batteries. Chem Eng J 364:167–176.

19. Wu S, Xia T, Wang J, Lu F, Xu C, Zhang X, Huo L, Zhao H (2017) Ultrathin mesoporous Co3O4 nanosheets-constructed hierarchical clusters as high rate capability and long life anode materials for lithium-ion batteries. Appl Surf Sci 406:46–55.

20. Wang X, Zhou B, Guo J, Zhang W, Guo X (2016) Selective crystal facets exposing of dumbbell-like Co3O4 towards high performances anode materials in lithium-ion batteries. Mater Res Bull 83:414–422.

21. Jain A, Paul B, Kim S, Jain V, Kim J, Rai A (2019) Two-dimensional porous nanodisks of NiCo2O4 as anode material for high-performance rechargeable lithium-ion battery. J Alloys Compd 772:72–79.

22. Zhu F, Xia H, Feng T (2015) Nanowire interwoven NiCo2S4 nanowall arrays as promising anodes for lithium-ion batteries. Mater Technol 30:AS3–AS7.

23. Xie Y, Wang H (2015) NiCo2O4 polyhedra with controllable particle size as high-performance anode for lithium-ion battery. Ionics 22:159–166.

24. Wang J, Wu J, Wu Z, Han L, Huang T, Xin H, Wang D (2017) High-rate and long-life lithium-ion battery performance of hierarchically hollow-structured NiCo2O4/CNT nanocomposite. Electrochim Acta 244:8–15.

25. Zhao F, Zhao X, Peng B, Gan F, Yao M, Tan W, Dong J, Zhang Q (2018) Polyimide-derived carbon nanofiber membranes as anodes for high-performance flexible lithium-ion batteries. Chinese Chem Lett 29:1692–1697.

26. Wang J, Fan H, Shen Y, Li C, Wang G (2019) Large-scale template-free synthesis of nitrogen-doped 3D carbon frameworks as low-cost ultra-long-life anodes for lithium-ion batteries. Chem Eng J 357:376–383.

27. Lin R, Liu G, Liu C, Sun L (2016) High electrochemical performances of hierarchical hydrangea macrophylla-like NiCo2O4 and NiCo2S4 as anode materials for Li-ion batteries. Mater Res Bull 80:309–315.

28. Raj S, Dong Y, Kar P, Mai L, Jin S, Roy P (2018) Hybrid NiCo2O4-NiCo2S4 nanoflakes as high-performance anode materials for lithium-ion batteries. ChemistrySelect 3:2315–2320.

29. Wang M, Lai Y, Fang J, Qin F, Zhang Z, Li J, Zhang K (2016) Hydrangea-like NiCo2S4 hollow microspheres as an advanced bifunctional electrocatalyst for aqueous metal-air batteries. Catal Sci Technol 6:434–437.

30. Chen J, Jiang J, Liu S, Ren J, Lou Y (2019) MOF-derived bimetal oxides NiO/NiCo2O4 with different morphologies as anodes for high-performance lithium-ion battery. Ionics 25:5787–5797.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.