Random Coordinate Underdamped Langevin Monte Carlo

Zhiyan Ding
Department of Mathematics
University of Wisconsin-Madison
Madison, WI 53706, USA
zding49@math.wisc.edu

Qin Li
Department of Mathematics
University of Wisconsin-Madison
Madison, WI 53706, USA
qinli@math.wisc.edu

Jianfeng Lu
Mathematics Department
Duke University
Durham, NC 27708, USA
jianfeng@math.duke.edu

Stephen J. Wright
Computer Sciences Department
University of Wisconsin-Madison
Madison, WI 53706, USA
swright@cs.wisc.edu

Abstract

The Underdamped Langevin Monte Carlo (ULMC) is a popular Markov chain Monte Carlo sampling method. It requires the computation of the full gradient of the log-density at each iteration, an expensive operation if the dimension of the problem is high. We propose a sampling method called Random Coordinate ULMC (RC-ULMC), which selects a single coordinate at each iteration to be updated and leaves the other coordinates untouched. We investigate the computational complexity of RC-ULMC and compare it with the classical ULMC for strongly log-concave probability distributions. We show that RC-ULMC is always cheaper than the classical ULMC, with a significant cost reduction when the problem is highly skewed and high dimensional. Our complexity bound for RC-ULMC is also tight in terms of dimension dependence.

1 Introduction

Langevin Monte Carlo (LMC) is a popular Monte Carlo sampling method, widely used in Bayesian statistics and machine learning (Andrieu et al., 2003). The goal is to construct a Markov chain that approximately generates i.i.d. samples from a target distribution given by (with some abuse of notation, we do not distinguish a distribution with its density)

\[p_X(x) = \frac{1}{Z} e^{-f(x)} , \]

where \(Z \) is a normalizing constant that ensures \(\int p_X(x) \, dx = 1 \). Throughout the paper we assume \(f(x) \) is a convex function on \(\mathbb{R}^d \), and thus \(p_X(x) \) is a log-concave probability distribution.

Among the many Monte Carlo sampling methods, LMC (Rossky et al., 1978; Parisi, 1981; Roberts and Tweedie, 1996) stands out for its simplicity: For each iteration one updates the loca-
tion of the particle by descending along the gradient and adding properly scaled Gaussian noise. For strongly log-concave distributions, it has been established in recent years that the empirical distribution of the iterate in LMC converges exponentially fast to the target distribution, with total computational cost $\mathcal{O}(d^2/\epsilon^2)$ to achieve ϵ accuracy in Wasserstein distance (Dalalyan and Karagulyan, 2019; Durmus et al., 2019). Here and throughout the paper, we measure “cost” in terms of the total number of evaluations of a single element of the gradient, and assume that a full gradient evaluation requires about d times as much computation as a single component of the gradient.

To reduce the computational cost of sampling, the underdamped version of Langevin dynamics has recently been used to design the ULMC algorithm. By augmenting the state space with velocity variables, ULMC achieves faster convergence than LMC: To get ϵ accuracy, the computational complexity is $\mathcal{O}(d^{3/2}/\epsilon)$, improving dependence on both d and ϵ (Cheng et al., 2018; Dalalyan and Riou-Durand, 2018; Eberle et al., 2018).

This work aims at further improving the algorithm in terms of its dimension dependence, especially for the very high dimensional problems that arise often in practical applications (see Ding et al., 2020b for discussions of several examples). For these problems, ULMC requires a full evaluation of the gradient ∇f at each iteration, which often costs a factor of $\mathcal{O}(d)$ greater than evaluating of a single component of the gradient. This factor arises when the expression of ∇f is not known explicitly, such as in partial differential equation (PDE) based inverse problems, where f is given implicitly by solving the forward problem given as a PDE, and finite-difference approximation to the full gradient would be d times more expensive than a single component. While automatic differentiation techniques have been developed, the cost of evaluation of the gradient often still leads to formidable computational and memory cost.

Other examples in which there is a factor-of-d difference in evaluation cost between a full gradient and single component of the gradient come from problems with particular structures, such as graph-based problems. Given a graph with nodes $\mathcal{N} = \{1, 2, \ldots, d\}$ and directed edges $\mathcal{E} \subset \{(i, j) : i, j \in \mathcal{N}\}$, suppose there is a scalar variable x_i associated with each node $i = 1, 2, \ldots, d$, and that the function f has the form $f(x) = \sum_{(i, j) \in \mathcal{E}} f_{ij}(x_i, x_j)$. Then the partial derivative of f with respect to x_i is given by

$$\frac{\partial f}{\partial x_i} = \sum_{j:(i, j) \in \mathcal{E}} \frac{\partial f_{ij}}{\partial x_i}(x_i, x_j) + \sum_{l:(i, l) \in \mathcal{E}} \frac{\partial f_{il}}{\partial x_i}(x_1, x_i).$$

Note that the number of terms in the summations in this expression equals the number of edges in the graph that touch node i, the expected value of which is about $2/d$ times the total number of edges in the graph. Meanwhile, evaluation of the full gradient would require evaluation of both partial derivatives of each component function f_{ij} for all edges in the graph, leading to a factor-of-d difference in evaluation cost.

In this work, we target these problems in which single components of the gradient are much less expensive than full gradients by incorporating the random coordinate descent (RCD) method from optimization into underdamped Langevin sampling algorithm. RCD differs from gradient descent (GD) in that it updates just a single component, chosen at random, of the variable vector x at each iteration. It takes a step in the negative gradient direction in just this component, leaving other components unchanged. (By contrast, gradient descent takes a step along the full negative gradient direction.) When there is a factor-of-d difference in cost between evaluating the full gradient and a single component of the gradient, the worst-case bounds for convex problems are better for RCD than for GD, the cost reduction being particularly significant when the dimension d is high and f is “skewed” in a sense to be defined later. Specifically, it was shown in Nesterov (2012) that when the coordinate is chosen from a distribution weighted according to the directional Lipschitz constants, the complexity is reduced from $d\kappa$ to $d\kappa_{\text{max}}$, where κ and κ_{max} are conditioning of f and the maximum directional conditioning of f respectively. Since $\kappa_{\text{max}} \leq \kappa$ for all functions (Wright, 2015), RCD is always cheaper than GD. Further, when the dimension of the problem is high and f is skewed in the sense that $\kappa \approx d\kappa_{\text{max}}$, the reduction in cost approaches a factor of d.

In this paper, we propose the random coordinate underdamped Langevin Monte Carlo (RC-ULMC) algorithm. We aim to improve the convergence of ULMC by utilizing cheaper steps, as in RCD, so we establish non-asymptotic convergence rates for RC-ULMC and compare with classical ULMC. Our main results are as follows:
1. The convergence rate of RC-ULMC depends on directional conditioning; see Theorem 6.2.
2. Comparing with ULMC, RC-ULMC is always cheaper than the classical ULMC, the change being
 \(d^{1/2} \kappa^{3/2} \rightarrow (d^{3/2} + \kappa^{1/2}). \)
 This cost reduction is significant when \(f \) is skewed and the dimension is high; see the discussion following Corollary 6.1.
3. The complexity bound of the RC-ULMC we obtain is tight in both \(d \) and \(\epsilon \); see Proposition 6.1.

The remainder of the paper is as follows. We review literature in Section 2 and summarize basic notations and assumptions in Section 3. In Section 4 we review ULMC and its convergence properties. In Section 5 we present our new method RC-ULMC. Our main results are presented in Section 6, where we discuss the non-asymptotic convergence rate, the numerical cost, the cost saving compared to the classical ULMC, and the tightness of the result. Computational results are presented in Section 7. Technical derivations and proofs appear in Supplementary Materials.

2 Related works

The non-asymptotic analysis of LMC and ULMC sampling methods has been an active area (Cheng et al., 2018; Dalalyan and Riou-Durand, 2018; Dalalyan and Karagulyan, 2019; Durmus et al., 2019); and it has been established that ULMC gives a faster convergence under the same log-concavity and smoothness assumptions on the distribution. When ULMC is modified with a better discretization scheme, e.g., the random midpoint method, the computational complexity can be even further reduced (Shen and Lee, 2019; He et al., 2020).

For ULMC, it was established in (Dalalyan and Riou-Durand, 2018) that it achieves \(\epsilon \) error in Wasserstein metric within \(\tilde{O} \left(d^{1/2} \kappa^{3/2}/\epsilon \right) \) iterations, where \(\tilde{O} \) hides log factors. The total cost of ULMC is therefore \(\tilde{O} \left(d^{3/2} \kappa^{3/2}/\epsilon \right) \). In comparison, the RC-ULMC method proposed in this paper is always cheaper and the saving can be significant for highly skewed distributions in high dimension.

The combination of RCD and LMC (based on overdamped Langevin dynamics) has been recently explored in works (Shen et al., 2019; Ding et al., 2020b). This algorithm will be referred to as RC-OLMC (where “O” stands for overdamped). Compared with their result, the method in this paper converges faster both in terms of \(d \) and \(\epsilon \), similar to the saving obtained going from LMC to ULMC.

This will be discussed further in Section 6.

Alternative sampling strategies have been developed without using the full gradient \(\nabla f \) at each step. A standard approach is the Random Walk Metropolis algorithm, which combines a random walk proposal with Metropolis-Hastings acceptance-rejection step (Hastings, 1970), and thus only uses \(f \) at each iteration. However, they are less efficient in high dimensions compared with gradient based methods (Mattingly et al., 2012; Pillai et al., 2012). There have been recent interests in ensemble based sampling methods, in particular in the context of data assimilation, inspired by the ensemble Kalman filter (Evensen, 2006), such as (Garbuno-Inigo et al., 2020, Iglesias et al., 2013). Unfortunately, none of these methods can be completely “gradient-free” and at the same time consistent for non-Gaussian distributions (Ding and Li, 2019a,b). To achieve consistency, one can try to incorporate weights to particles, as is done in importance sampling (Geweke, 1989) or sequential Monte Carlo (Doucet et al., 2001), however such methods often face the difficulty of high variance (Ding et al., 2020a).

When the log-density \(f(x) \) has the form of \(f(x) = \sum_{i=1}^{N} f_i(x) \), one can randomly select a representative \(\nabla f_r \) as a stochastic approximation to the full gradient, where \(r \) is uniformly chosen from \(\{1, \cdots, N\} \). This leads to the stochastic gradient Langevin Monte Carlo method (Welling and Teh, 2011). Note that in general we can write the full gradient as \(\nabla f = \sum_{i=1}^{d} \partial_i f e_i \) (where \(e_i \) is the unit vector in \(i \)-th direction), and thus RCD and stochastic gradient, while used for different setups, share some similarity in reducing the cost of gradient evaluation.

\section{Notations and assumptions}

Throughout the paper we assume convexity and gradient Lipschitz continuity of \(f \).

\textbf{Assumption 3.1.} The function \(f \) is second-order differentiable and \(\mu \)-strongly convex for some \(\mu > 0 \) and the gradient \(\nabla f \) is \(L \)-Lipschitz. Specifically, we have: for all \(x, x' \in \mathbb{R}^d \)

\[f(x) - f(x') - \nabla f(x')(x - x') \geq \frac{\mu}{2}|x - x'|^2 \]

and

\[|\nabla f(x) - \nabla f(x')| \leq L|x - x'|. \]

Since the full gradient is Lipschitz continuous, so is its directional derivative. We denote directional Lipschitz constants by \(L_i, i = 1, 2, \ldots, d \), meaning that

\[|\partial_i f(x + t e_i) - \partial_i f(x)| \leq L_i |t|, \]

for any \(i = 1, 2, \ldots, d \), any \(x \in \mathbb{R}^d \), and any \(t \in \mathbb{R} \).

Denote \(\nabla^2 f \) the Hessian, then the assumption implies that for all \(x \)

\[\mu I_d \leq \nabla^2 f(x) \leq LI_d, \quad |\partial_{ii} f(x)| \leq L_i, \]

where \(\partial_{ii} f(x) \) is the \((i, i)\)-element of \(\nabla^2 f(x) \). We also define condition numbers:

\[\kappa = L/\mu \geq 1, \quad \kappa_i = L_i/\mu \geq 1, \quad \kappa_{\max} = \max_i \kappa_i. \]

As shown in \cite{Wright2015}, we have

\[\kappa_i \leq \kappa_{\max} \leq \kappa \leq d\kappa_{\max}. \]

We note that both inequalities, \(\kappa_{\max} \leq \kappa \) and \(\kappa \leq d\kappa_{\max} \) are sharp. If \(\nabla^2 f \) is a diagonal matrix, then \(L_{\max} = L \), both being the largest eigenvalue of \(\nabla^2 f \), so that \(\kappa_{\max} = \kappa \). This is the case when all coordinates are independent of each other, for example \(f = \sum \lambda_i x_i^2 \). On the other hand, if \(f \) is highly skewed, such as \(f = (\sum_i x_i)^2 \), so \(\nabla^2 f = e \cdot e^\top \) (where \(e = [1, 1, \ldots, 1]^\top \)), then \(L = dL_{\max} \) and \(\kappa = d\kappa_{\max} \).

Furthermore, since \(\kappa_i \geq 1 \), we have for \(p > 0 \) that

\[(d - 1) + \kappa_{\max}^p \leq \sum_{i=1}^d \kappa_i^p \leq d\kappa_{\max}^p \leq d\kappa^p. \]

Both bounds are tight. In the case when \(f = \kappa_1 |x_1|^2 + \sum_{i=1}^d |x_i|^2 \) with \(\kappa_1 > 1 \), \(\sum_{i=1}^d \kappa_i^p = (d - 1) + \kappa_{\max}^p = (d - 1) + \kappa^p \). On the other hand, when \(f = \sum_i x_i^2 \), we have \(\kappa_i = \kappa_{\max} = 1 \), then \(\sum_{i=1}^d \kappa_i^p = d\kappa_{\max}^p = d\kappa^p \). And we say \(f \) is highly skewed if

\[\sum_{i=1}^d \kappa_i^p \approx (d - 1) + \kappa_{\max}^p. \]

To measure the distance between two probability distributions, we use the Wasserstein distance.

\textbf{Definition 3.1.} The Wasserstein distance \(W_p \) (for any \(p \geq 1 \)) between probability measures \(\mu \) and \(\nu \) is defined as

\[W_p(\mu, \nu) = \left(\inf_{(X, Y) \in \Gamma(\mu, \nu)} \mathbb{E}|X - Y|^p \right)^{1/p}, \]

where \(\Gamma(\mu, \nu) \) is the set of distribution of \((X, Y) \in \mathbb{R}^{2d}\) whose marginal distributions, for \(X \) and \(Y \) respectively, are \(\mu \) and \(\nu \).

In this paper, we will use the 2-Wasserstein metric \(W_2 \).
4 Classical ULMC

Underdamped Langevin dynamics is characterized by the following SDE:
\[
\begin{align*}
\text{d}X_t &= V_t \, \text{d}t, \\
\text{d}V_t &= -2V_t \, \text{d}t - \gamma \nabla f(X_t) \, \text{d}t + \sqrt{4\gamma} \, \text{d}B_t,
\end{align*}
\] (8)
where $\gamma \geq 0$ is a parameter to be tuned, and B_t is the Brownian motion. Here we use the parametrization form of [Cheng et al. (2018)] (alternative parametrizations are used in [Dalalyan and Riou-Durand (2018); Shen and Lee (2019)]). Denoting by $q(x, v, t)$ the probability density function of (X_t, V_t), we have that q satisfies the Fokker-Planck equation
\[
\partial_t q = \nabla \cdot \left(\left[\begin{array}{c} -v \\ 2v + \gamma \nabla f \end{array} \right] q \right) + \left[\begin{array}{cc} 0 & 0 \\ 0 & 2\gamma \end{array} \right] \nabla q.
\]

It is well known that under mild conditions, q converges to $p(x, v) \propto \exp(-(f(x) + |v|^2/2\gamma))$ (see e.g., [Villani (2006); Dolbeault et al. (2009); Baudoin (2016); Cao et al. (2019)]), and thus the marginal density function for x becomes the target distribution $p_X(x)$.

Denoting by $h > 0$ the time stepsize, we have that for $t \in [mh, (m + 1)h]$, (8) is equivalent to
\[
\begin{align*}
X(t) &= X(mh) + \frac{1 - e^{-2t}}{2} V(mh) - \frac{\gamma}{2} \int_{mh}^{t} \left(1 - e^{-2(t-s)} \right) \nabla f(X(s)) \, \text{d}s \\
&\quad + \sqrt{\gamma} \int_{mh}^{t} \left(1 - e^{-2(t-s)} \right) \, \text{d}B_s,
\end{align*}
\] (9)
\[
\begin{align*}
V(t) &= V(mh) e^{-2t} - \gamma \int_{mh}^{t} e^{-2(t-s)} \nabla f(X(s)) \, \text{d}s + \sqrt{4\gamma e^{-2t}} \int_{mh}^{t} e^{2s} \, \text{d}B_s.
\end{align*}
\] (10)

The sampling method, ULMC, can be viewed as a numerical solver for (9)-(10) based on the Euler approximation. Denoting by (x^m, v^m) the numerical approximation to $(X(mh), V(mh))$, and replacing $X(s)$ in (9)-(10) by x^m, Euler approximation yields that $(x^{m+1}, v^{m+1}) \in \mathbb{R}^{d}$ are two Gaussian random vectors with the following expectation and covariance:
\[
\begin{align*}
\mathbb{E} x^{m+1} &= x^m + \frac{1}{2} \left(1 - e^{-2h} \right) v^m - \frac{\gamma}{2} \left(h - \frac{1}{2} \left(1 - e^{-2h} \right) \right) \nabla f(x^m), \\
\mathbb{E} v^{m+1} &= v^m e^{-2h} - \frac{\gamma}{2} \left(1 - e^{-2h} \right) \nabla f(x^m), \\
\text{Cov} (x^{m+1}) &= \gamma \left[h - \frac{3}{4} - \frac{1}{4} e^{-4h} + e^{-2h} \right] \cdot I_d, \\
\text{Cov} (v^{m+1}) &= \gamma \left[1 - e^{-4h} \right] \cdot I_d, \\
\text{Cov} (x^{m+1}, v^{m+1}) &= \gamma \left[1 + e^{-4h} - 2e^{-2h} \right] \cdot I_d.
\end{align*}
\] (11)

Here \mathbb{E} denotes the expectation, and $\text{Cov}(a, b)$ denotes the covariance of a and b (abbreviated to $\text{Cov}(a)$ when $b = a$), and I_d is the identity matrix in \mathbb{R}^{d}. We thus draw x^{m+1}, v^{m+1} from this Gaussian distribution numerically to update the iteration. We summarize ULMC in Algorithm [1]

Algorithm 1 Underdamped Langevin Monte Carlo (ULMC)

Input: h (time stepsize); γ (parameter); d (dimension); $\nabla f(x)$; M (stopping index).
Initial: (x^0, v^0) i.i.d. sampled from the initial distribution $q_0(x, v)$.
for $m = 0, 1, \cdots, M$ **do**
1. Compute the expectation and the covariance as in (11).
2. Sample (x^{m+1}, v^{m+1}) from the associated Gaussian distribution.
end for
Output: $\{x^m\}$.

The algorithm converges exponentially when f is strongly convex with Lipschitz continuous gradient; see [Dalalyan and Riou-Durand (2018)]. The original statement uses a different parametrization. We translate the result to the current one in Supp. [X] and restate the result here.
Then we have
\[W_m \leq \sqrt{2} \exp(-0.375\mu h\gamma^{1/2}m)W_0 + (2d)^{1/2}\kappa h. \] (12)
Here \(W_m := W_2(q_m, p) \) and \(q_m(x, v) \) denotes the probability density function of iteration \(m \) of ULMC. Moreover, suppose the initial \(W_0 = O(1) \), then the total number of iterations to achieve \(\epsilon \)-accuracy is \(\tilde{O}\left(\frac{d^{1/2}\kappa^{3/2}}{\mu^{3/2}\epsilon}\right) \), and the cost is \(\tilde{O}\left(\frac{d^{1/2}\kappa^{3/2}}{\mu^{3/2}\epsilon^2}\right) \).

The cost depends on both the dimensionality \(d \) and condition number \(\kappa \) with 3/2 power for both.

5 Randomized Coordinate Underdamped Langevin Monte Carlo

We integrate the RCD idea into ULMC to yield our method RC-ULMC. Instead of updating every entry of the process as is done in (9)–(10), we randomly select one direction \(r^m \in \{1, 2, \ldots, d\} \) and evolve only \((X_{r^m}, V_{r^m})(t) \). Correspondingly, we would only change one single entry \((x_{r^m}^m, v_{r^m}^m) \) according to expectation and covariance, analogous to (11).

We denote the discrete distribution from which \(r^m \) is chosen by \(\Phi \), with \(\phi_i \) being the probability of component \(i \) being chosen, that is,
\[\Phi := \{\phi_1, \phi_2, \ldots, \phi_d\}, \] (13)
where \(\phi_i > 0 \) for all \(i \) and \(\sum_{i=1}^d \phi_i = 1 \). Denoting by \(h_i \) the stepsize when \(i \)-th direction is chosen, we choose \(h_i \) to be inversely proportional to \(\phi_i \), as follows:
\[h_i = \frac{h}{\phi_i}, \quad i = 1, 2, \ldots, d, \] (14)
where \(h > 0 \) is a parameter that can be viewed as the expected stepsize. We also define the total elapsed time after \(m \) steps as
\[T^m = \sum_{n=0}^{m-1} h_{r^n}. \]

The initial iterate \((x^0, v^0) \) is drawn from a distribution \(q_0 \), which can be any distribution that is easy to draw from (e.g., a normal distribution).

Because only component \(r^m \) is updated at iteration \(m \) of RC-ULMC, we have for \(t \in [T^m, T^{m+1}] \) that
\[X_{r^m}(t) = X_{r^m}(T^m) + \frac{1}{2}e^{-2t}V_{r^m}(T^m) - \frac{\gamma}{2} \int_{T^m}^t \left(1 - e^{-2(t-s)}\right) \partial_{r^m}f(X(s)) \, ds \]
\[+ \sqrt{\gamma} \int_{T^m}^t \left(1 - e^{-2(t-s)}\right) dB_s, \] (15)
\[V_{r^m}(t) = V_{r^m}(T^m)e^{-2(t-T^m)} - \gamma \int_{T^m}^t e^{-2(t-s)} \partial_{r^m} f(X(s)) \, ds + \sqrt{4\gamma} \int_{T^m}^t e^{-2(t-s)} dB_s, \] (16)
\[X_i(t) = X_i(T^m), \quad V_i(t) = V_i(T^m), \quad i \neq r^m. \] (17)

To obtain a practical algorithm, we apply the Euler approximation to these dynamics. Denoting by \((x_{r^m}^m, v_{r^m}^m) \) the numerical approximation to \((X(T^m), V(T^m)) \), we replace \(\partial_{r^m} f(X(s)) \) in (15)–(17) by \(\partial_{r^m} f(x^m) \), so that \(x_{r^m}^{m+1} = x_i^m, v_{r^m}^{m+1} = v_i^m \) for \(i \neq r^m \), and \((x_{r^m}^{m+1}, v_{r^m}^{m+1}) \) are two Gaussian
random variables with the following expectation and covariance:

\[
\mathbb{E}_{x, v}^{m+1} = x^m + \frac{1}{2} \left(1 - e^{-2h \gamma} \right) v^m - \frac{\gamma}{2} \left(h^m - \frac{1}{2} \left(1 - e^{-2h \gamma} \right) \right) \partial_r f(x^m),
\]

\[
\mathbb{E}_{v}^{m+1} = v^m e^{-2h \gamma} - \frac{\gamma}{2} \left(1 - e^{-2h \gamma} \right) \partial_r f(x^m),
\]

\[
\text{Cov} (x^{m+1}) = \gamma \left[h^m - \frac{3}{4} e^{-4h \gamma} + e^{-2h \gamma} \right],
\]

\[
\text{Cov} (v^{m+1}) = \gamma [1 - e^{-4h \gamma}],
\]

\[
\text{Cov} (x^{m+1}, v^{m+1}) = \frac{\gamma}{2} \left[1 + e^{-4h \gamma} - 2e^{-2h \gamma} \right].
\]

Then, \((x^{m+1}, v^{m+1})\) is drawn according to this Gaussian distribution for the update. We summarize the RC-ULMC approach in Algorithm 2.

Algorithm 2 Random Coordinate Underdamped Langevin Monte Carlo (RC-ULMC)

Input: \(h\) (time stepsize); \(\gamma\) (parameter); \(d\) (dimension); \(\nabla f(x)\); probability set \(\Phi := \{\phi_1, \phi_2, \ldots, \phi_d\}; \) \(M\) (stopping index).

Initial: \((x^0, v^0)\) i.i.d. sampled from the initial distribution induced by \(q_0(x, v)\).

for \(m = 0, 1, \ldots, M\) do

1. Draw \(r\) randomly from \(1, 2, \ldots, d\) according to \(\Phi\);
2. Update \((x^{m+1}, v^{m+1})\) as follows:
 - \(x_i^{m+1} = x_i^m, v_i^{m+1} = v_i^m\) for \(i \neq r\);
 - sample \((x_r^{m+1}, v_r^{m+1})\) as Gaussian variables according to (18).

end for

Output: \(\{x^m\}\).

6 Main results

We have three main results regarding the underlying dynamics (the SDE), and the RC-ULMC algorithm. In Section 6.1 we discuss convergence of the SDE (15)-(17). This SDE can be viewed as the continuum version of the RC-ULMC algorithm. Only with the convergence of this SDE can we hope for the convergence of RC-ULMC. In Section 6.2 we describe the non-asymptotic convergence properties of RC-ULMC. From this result, we can determine an optimal strategy for selecting the coordinate \(r^m\) at each iteration. We will also compare our results with those for classical ULMC, showing that the bounds for RC-ULMC are always better. Moreover, when \(f\) is highly skewed — for example when \(\kappa_1 = \kappa_{\text{max}} \gg 1\) and \(\kappa_i \approx 1\) for \(i \geq 2\) — the total cost is \(\tilde{O} \left((d^{3/2} + \kappa_{\text{max}})^{1/2} / \epsilon \right)\), as compared to \(\tilde{O} \left(d^{3/2} \kappa_{3/2} / \epsilon \right)\) for ULMC.

We provide an example in Section 6.3 to show that our bounds are tight.

6.1 Convergence of SDEs

Our first result is on the convergence of the SDE (15)-(17), the underdamped Langevin dynamics that incorporates random coordinate selection.

Denote \(X^m = X(T^m), V^m = V(T^m)\) and denote the probability filtration by \(\mathcal{F}^m = \{ x^0, v^0, r^m, B_{s \leq T^m} \}\). Then we have the following result about its geometric ergodicity.

Theorem 6.1. Suppose that \(f\) satisfies Assumption 3.1 and

\[
\gamma \leq \frac{1}{12}, \quad h \leq \frac{\gamma \mu \min \{ \phi_i \}}{312 + 12 \gamma + 8L + 432L^2},
\]

then \((X^m, V^m)\) is a Markov chain. Denoting by \(q_m(x, v)\) the probability density function of \((X^m, V^m)\), we have the following:

- The stationary distribution has density \(p(x, v) \propto \exp(-f(x) + |v|^2 / 2\gamma))\).
When the initial distribution \(q_0 \) has finite second moments, there exist constants \(R > 0 \) and \(r > 1 \) independent of \(m \) such that
\[
\int_{\mathbb{R}^d} |q_m(x, v) - p(x, v)| \, dx \, dv \leq R r^{-m}.
\] (19)

The proof, which can be found in Supp. B, uses the convergence analysis framework of Mattingly et al. (2002), based on construction of a special Lyapunov function. This theorem suggests that the TV distance between \(q_m \) and \(p \) decays exponentially, meaning that \((X^m, V^m) \) can be seen to be drawn from the target distribution \(p \) as \(m \to \infty \). Since the RC-ULMC algorithm is its Euler approximation, the samples generated by this algorithm are drawn from \(p \) as well — approximately, up to a discretization error.

Note that \(R \) and \(r \) are independent of \(m \) in Theorem 6.1, but we do not have explicit control on its dependence on parameters such as \(h \), \(d \), and \(L \). This is worse in comparison with the results in Cheng et al. (2018; Cao et al., 2019) for the underdamped Langevin dynamics, where the convergence rate is characterized explicitly in terms of all parameters. The difficulty of our case comes mainly from the complicated process of coordinate selection, which prevents us from applying the synchronous coupling approach of Cheng et al. (2018); Dalalyan and Karagulyan (2019) directly to the dynamics (15)–(17) to establish contraction. Whether the hypocoercity estimate of Cao et al. (2019) can be applied remains an interesting future research direction.

6.2 Convergence of RC-ULMC

Regarding the non-asymptotic error analysis of RC-ULMC, we have the following result (cf. Theorem 4.1).

Theorem 6.2. Suppose that \(f \) satisfies Assumption 3.1 and that
\[
\gamma \leq \frac{1}{L}, \quad h \leq \min \left\{ \frac{\gamma \mu \min \{ \phi_i \}}{240} \right\}.
\] (20)

Denote \(q_m(x, v) \) the probability density function of iteration \(m \) of RC-ULMC and define \(W_m = W_2(q_m, p) \). Then we have
\[
W_m \leq 4 \exp \left(-\frac{\mu \gamma m h}{8} \right) W_0 + 40 \gamma^{1/2} h \sqrt{\sum_{i=1}^{d} \frac{\kappa_i^2}{\phi_i^2}}.
\] (21)

The proof can be found in Supp. C. This result indicates that the Wasserstein distance between \(q_m \) and the target distribution decays exponentially except for an error term of size \(O(h) \). The convergence rate is given by \(\mu \gamma \), and with the choice \(\gamma = 1/L \), this quantity is the inverse condition number \(1/\kappa \) of the objective function (see (5)). The second term in (21) reflects the discretization error, with its size being determined by the directional condition number \(\kappa_i \) (see (5)) and the random selection probability distribution \(\Phi \).

This theorem not only allows us to estimate the number of iterations required to achieve a preset accuracy, but also suggests that we choose \(\{ \phi_i \} \) in a way that minimizes the bound.

Corollary 6.1. Suppose that the conditions of Theorem 6.2 hold and \(\gamma = 1/L \). We have the following estimates.

- For any \(\epsilon > 0 \), the number of needed iterations \(M \) to attain \(W_M \leq \epsilon \) is
\[
M = \Theta \left(\frac{\kappa^{1/2} \sqrt{\sum_{i=1}^{d} \kappa_i^2 / \phi_i^2}}{\mu^{1/2} \epsilon} \log \left(\frac{W_0}{\epsilon} \right) \right).
\] (22)

- The optimal choice of \(\phi_i \) is
\[
\phi_i = \frac{L_i^{2/3}}{\sum_{j=1}^{d} L_j^{2/3}}, \quad i = 1, 2, \ldots, d.
\] (23)
In this case, the number of iterations required is

\[
M = \Theta \left(\frac{\kappa^{1/2} \left(\sum_{j=1}^{d} \kappa_{j}^{2/3} \right)^{3/2}}{\mu^{1/2} \epsilon} \log \left(\frac{W_0}{\epsilon} \right) \right).
\]

(24)

Proof. According to Theorem 6.2, we achieve \(W_m \leq \epsilon \) by ensuring that both terms in (21) are less than \(\epsilon/2 \). Thus, in addition to (20), we need

\[
h \leq \frac{\epsilon L^{1/2}}{80 \sqrt{\sum_{i=1}^{d} \kappa_i^2}}, \quad m \geq \frac{8\kappa}{h} \log \frac{8W_0}{\epsilon}.
\]

(25)

We thus obtain (22). Finding the optimal choice of \(\phi_i \) amounts to minimizing the error term:

\[
\min_{\Phi} \sum_{i=1}^{d} \frac{\kappa_i^2}{\phi_i^2}, \quad \text{s.t.} \quad \sum_{i=1}^{d} \phi_i = 1, \, \phi_i > 0.
\]

An elementary argument based on constrained optimization theory leads to (23). (24) is then obtained by substituting (23) into (22).

Suppose the objective function \(f \) is well-conditioned in every direction, so that \(\kappa_i = O(1) \) for all \(i \). Then according to both (22) and (24), we see that the cost is roughly \(\tilde{O}(d^{3/2}/\epsilon) \). This order is the same as for the classical ULMC shown in Theorem 4.1.

When \(f \) is not as well-conditioned, meaning \(\kappa_i \) are not uniformly small in every direction, then RC-ULMC can have a significant advantage over the classical ULMC. In practice, if we have some a priori estimate of \(\kappa_i \), we can choose the optimal \(\Phi \) and the cost estimate will be given by (24). Of course, such a priori information might not be available, in such case, we can choose uniformly the coordinate at each iteration: \(\phi_i = 1/d \). We compare below the cost of RC-ULMC in these two scenarios with \(\tilde{O}(d^{3/2} \kappa^{3/2} / \mu^{1/2} \epsilon) \), the cost of the classical ULMC, as shown in Theorem 4.1.

Case 1: Uniform sampling, where we choose \(\phi_i = 1/d \). From (22), we found that the cost is

\[
\tilde{O} \left(\frac{d \kappa^{1/2}}{\mu^{1/2} \epsilon} \sqrt{\sum_{i=1}^{d} \kappa_i^2} \right),
\]

(26)

where the \(\tilde{O} \) ignores log terms. Since \(\sum_{i=1}^{d} \kappa_i^2 \leq d \kappa_{\max}^2 \leq d \kappa^2 \), we observe that RC-ULMC is always cheaper than ULMC. Furthermore, when \(f \) is highly skewed (7) with \(p = 2 \), then (26) is reduced to

\[
\tilde{O} \left(\frac{d(\sqrt{d} + \kappa_{\max}) \kappa^{1/2}}{\mu^{1/2} \epsilon} \right).
\]

This bound indicates that RC-ULMC is significantly cheaper than ULMC when both \(d \) and \(\kappa \) are large.

Case 2: With the optimal choice of \(\Phi \) (using (23)), the cost of RC-ULMC is equivalent to \(M \) in (24). We still have that RC-ULMC is always cheaper than ULMC. Furthermore, when \(f \) is highly skewed (7) with \(p = 3/2 \), then we have upper bound

\[
\left(\sum_{j=1}^{d} \kappa_j^{2/3} \right)^{3/2} \approx \left((d-1) + \kappa_{\max}^{2/3} \right)^{3/2} \leq 2(\frac{d^{3/2}}{\epsilon} + \kappa_{\max}).
\]

By substituting this bound into (24), we get the following bound:

\[
\tilde{O} \left(\frac{(d^{3/2} + \kappa_{\max}) \kappa^{1/2}}{\mu^{1/2} \epsilon} \right),
\]

(27)

The reduction over ULMC is significant when either \(d \) or \(\kappa \) is large.
We give one example that demonstrates the improvement of RC-ULMC over the classical ULMC. To achieve ϵ-accuracy, the total cost of RC-OLMC is
\[
\tilde{O}\left(\sum_{i=1}^{d} \frac{\kappa_i^2}{\phi_i} \right) / \mu \epsilon^2.
\]
Noting that \(\sqrt{\sum_{i=1}^{d} \frac{\kappa_i^2}{\phi_i^2}} \leq \sum_{i=1}^{d} \frac{\kappa_i}{\phi_i} \leq \sum_{i=1}^{d} \frac{\kappa_i^2}{\phi_i},\) (22) is always smaller, meaning RC-ULMC is always cheaper than RC-OLMC when \(\epsilon < 1/L^{1/2}.\) Furthermore, if we choose uniform sampling \((\phi_i = 1/d)\) and assume \(\gamma, \mu, \kappa_i\) are $O(1)$, then the cost of RC-ULMC is $\tilde{O}\left(\frac{d^{3/2}}{\epsilon}\right)$ while the cost of RC-OLMC is $\tilde{O}\left(\frac{d^2}{\epsilon^2}\right).$ We have a significant improvement in both d and ϵ.

Finally, we note that in Shen and Lee (2019), randomized midpoint method (RMM) is used to discretize SDE (8). According to He et al. (2020), RMM needs $\tilde{O}(d^{1/3}K/\epsilon^{2/3})$ iteration steps to achieve ϵ-accuracy, which equates to a cost of $O(d^{1/3}K/\epsilon^{2/3})$. By comparison, (27) is smaller in some extreme regimes, such as $d^2/\epsilon^{-2/3} < \kappa < \epsilon^{2/3}d^{3/3}$. We note that the comparison between RC-ULMC and RMM is not entirely fair since RMM uses a better discretization scheme than the Euler approximation (11) used in RC-ULMC. It is possible to include the RCD idea to RMM on ULMC as well, for a potentially better convergence rate. We leave that topic to future investigation.

6.3 Tightness of the bound

Corollary 6.1 shows that the numerical cost is roughly $\tilde{O}(d^{3/2}/\epsilon)$ when the problem is well conditioned. We show by use of an example that this bound is tight with respect to d and ϵ.

Proposition 6.1. Let the target distribution be a standard Gaussian
\[
p(x) = \frac{1}{(2\pi)^{d/2}} \exp\left(-\frac{|x|^2}{2}\right),
\]
which is the marginal distribution of the target distribution $p(x,v) = \frac{1}{(2\pi)^d} \exp(-|x|^2/2 - |v|^2/2)$. Suppose the initial distribution q_0 is chosen to be
\[
q_0(x,v) = \frac{1}{(2\pi)^d} \exp(-|x-u|^2/2 - |v|^2/2),
\]
with $u \in \mathbb{R}^d$ and $u_i = 1/400$ for all i. Then if we choose h so that $h < 10^{-8}/d$, we have
\[
W_m \geq \frac{\exp(-4hm)}{800^2} \frac{d}{8} + \frac{d^{3/2}h}{320 - 464dh},
\]
where $W_m := W_2(q_m,p)$, and q_m is the probability distribution of (x^m,v^m) generated by Algorithm 2 with $\gamma = 1/L = 1$ using uniform coordinate sampling. Furthermore, to have $W_m \leq \epsilon$, one needs at least $M = \tilde{O}(d^{3/2}/\epsilon)$ iterations.

The proof can be found in Supp. D. For this particular initialization, we have $W_0 = \sqrt{d}/400$. According to (30), we can guarantee $W_m \leq \epsilon$ only if both terms are smaller than ϵ, meaning that (ignoring a log term)
\[
h \lesssim \frac{320\epsilon}{d^{3/2}}, \quad m \geq \frac{1}{4h}
\]
which implies a cost of $\tilde{O}(d^{3/2}/\epsilon)$.

7 Numerical experiments

We give one example that demonstrates the improvement of RC-ULMC over the classical ULMC. In the example, we repeat the Markov chain for N independent trials and denote \(\{x^{(i)}, M\}_{i=1}^N\) the list of N samples at M-th iteration. Since Wasserstein distance is difficult to measure directly
numerically, especially when the underlying distribution function is presented by a list of particles, we evaluate the following error as a surrogate:

$$\text{Error} = \left\| \frac{1}{N} \sum_{i=1}^{N} \psi(x^{(i)}, M) - \mathbb{E}_{p_X}(\psi) \right\|_2,$$

(31)

where $\psi(x)$ is a matrix-valued function and referred to as the test function, $\| \cdot \|_2$ means the spectral norm of the matrix, and $\mathbb{E}_{p_X}(\psi)$ is the expected value of ψ with respect to the target distribution p_X. In the example, we set the target distribution function to be

$$p_X(x) \propto p_1(x)p_2(x),$$

with $p_2(x) = \exp\left(-\sum_{i=11}^{d} \frac{|x_i|^2}{2}\right)$ and

$$p_1(x) = \exp\left(-\frac{1}{2}x^\top \Gamma^\top \Gamma x\right),$$

where $x = (x_1, x_2, \ldots, x_{10})^\top$ is the list of first 10 entries, and $\Gamma = T + \frac{d}{10}I$. Here I is the 10×10 identity matrix and T is a random matrix whose entries are i.i.d. standard Gaussian random variables.

In the simulation we set $d = 100$, $N = 10^5$, and let $\psi(x) = xx^\top \in \mathbb{R}^{10 \times 10}$.

Initially, all particles are drawn from the density distribution $p_0(x, v) \propto p_1(x - 0.5e_{10})p_2(x) \exp\left(-|v|^2/2\right)$, where e_{10} is a vector in \mathbb{R}^{10} and all entries equal to 1. It is expected that the density of the target distribution is $p(x, v) \propto p_X(x) \exp\left(-|v|^2/2\right)$, making p_X the marginal probability density.

The result is plotted in Figure 1. To run RC-ULMC, we use time stepsize $h = 10^{-4}$. For comparison we also run ULMC, however, due to the cost difference per iteration, there is no standard choice of h for ULMC for a fair comparison. Since $d = 100$ in this example, per iteration, the cost of ULMC is 100 times that of RC-ULMC, we first experiment ULMC with $h = 10^{-2}$. It is clear that RC-ULMC, presented by the purple line achieves a lower error than ULMC with the same amount of cost.

We then test ULMC with different choices of h, hoping to find its best performance. As one increases h, the decay rate of error with respect to the cost increases too, but the error plateau is also higher, as one can see by comparing the yellow, red and blue lines in Figure 1 all produced by ULMC with different values of h. None of them, however, can compete with RC-ULMC regarding the level of error at the same cost.

![Figure 1: The decay of error with respect to the cost (the number ∂f calculations).](image)

References

Andrieu, C., Freitas, N., Doucet, A., and Jordan, M. (2003). An introduction to MCMC for Machine Learning. *Machine Learning*, 50:5–43.
Baudoin, F. (2016). Wasserstein contraction properties for hypoelliptic diffusions. *arXiv: 1602.04177.*

Cao, Y., Lu, J., and Wang, L. (2019). On explicit L^2-convergence rate estimate for underdamped Langevin dynamics. *arXiv:1908.04746.*

Cheng, X., Chatterji, N., Bartlett, P., and Jordan, M. (2018). Underdamped Langevin MCMC: a non-asymptotic analysis. In *Proceedings of the 31st Conference On Learning Theory*, volume 75, pages 300–323.

Dalalyan, A. and Karagulyan, A. (2019). User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient. *Stochastic Processes and their Applications*, 129(12):5278 – 5311.

Dalalyan, A. S. and Riou-Durand, L. (2018). On sampling from a log-concave density using kinetic Langevin diffusions. *arXiv:1807.09382.*

Ding, Z. and Li, Q. (2019a). Ensemble Kalman inversion: mean-field limit and convergence analysis. *arXiv:1908.05575.*

Ding, Z. and Li, Q. (2019b). Ensemble Kalman sampler: mean-field limit and convergence analysis. *arXiv:1910.12923.*

Ding, Z., Li, Q., and Lu, J. (2020a). Ensemble Kalman inversion for nonlinear problems: weights, consistency, and variance bounds. *Found. Data Sci.* arXiv:2003.02316.

Ding, Z., Li, Q., Lu, J., and Wright, S. J. (2020b). Random coordinate langevin monte carlo. *arXiv*, abs/2010.01405.

Dolbeault, J., Mouhot, C., and Schmeiser, C. (2009). Hypocoercivity for kinetic equations with linear relaxation terms. *Comptes Rendus Mathematique*, 347(9):511 – 516.

Doucet, A., Freitas, N., and Gordon, N. (2001). *Sequential Monte Carlo methods in practice.* Springer New York ; London.

Durmus, A., Majewski, S., and Miasojedow, B. (2019). Analysis of Langevin Monte Carlo via convex optimization. *Journal of Machine Learning Research*, 20:73:1–73:46.

Eberle, A., Guillin, A., and Zimmer, R. (2018). Couplings and quantitative contraction rates for langevin dynamics. *arXiv*, abs/1703.01617.

Evensen, G. (2006). *Data Assimilation: The ensemble Kalman filter.* Springer-Verlag.

Garbuno-Inigo, A., Hoffmann, F., Li, W., and Stuart, A. (2020). Interacting Langevin diffusions: Gradient structure and Ensemble Kalman sampler. *SIAM Journal on Applied Dynamical Systems*, 19(1):412–441.

Geweke, J. (1989). Bayesian inference in econometric models using Monte Carlo integration. *Econometrica*, 57(6):1317–1339.

Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications. *Biometrika*, 57(1):97–109.

He, Y., Erdoganu, M., and Balasubramanian, K. (2020). On the ergodicity, bias and asymptotic normality of randomized midpoint sampling method. *To appear in NeurIPS 2020.*

Iglesias, M., Law, K., and Stuart, A. (2013). Ensemble Kalman methods for inverse problems. *Inverse Problems*, 29(4):045001.

Mattingly, J., Stuart, A., and Higham, D. (2002). Ergodicity for sdes and approximations: locally Lipschitz vector fields and degenerate noise. *Stochastic Processes and their Applications*, 101(2):185 – 232.

Mattingly, J. C., Pillai, N. S., Stuart, A. M., et al. (2012). Diffusion limits of the random walk metropolis algorithm in high dimensions. *The Annals of Applied Probability*, 22(3):881–930.
A Proof of Theorem 4.1

Recall
\[
\begin{align*}
\{dX_t &= V_t \, dt, \\
\{dV_t &= -2V_t \, dt - \gamma \nabla f(X_t) \, dt + \sqrt{4\gamma} \, dB_t.
\end{align*}
\]

Fixed \(\gamma > 0\), we define
\[
Y(t) = X(\sqrt{\gamma}t), \quad Z(t) = \sqrt{\gamma}V(\sqrt{\gamma}t),
\]

then we have
\[
\begin{align*}
\{dY_t &= Z_t \, dt, \\
\{dZ_t &= -\gamma_1 Z_t \, dt - \nabla f(Y_t) \, dt + \sqrt{2\gamma_1} \, dB_t,
\end{align*}
\]

where \(\gamma_1 = \frac{2}{\sqrt{\gamma}}\). This implies (8) is equivalent to (32) with \(\gamma_1 = \frac{2}{\sqrt{\gamma}}\). Theorem 4.1 is then a direct translation of (Dalalyan and Riou-Durand, 2018, Theorem 2).

B Proof of Theorem 6.1

First, we introduce some notations. Denote the transition kernel by \(\Xi\), meaning
\[
\Xi((x_0, v_0), A) = \mathbb{P}(X_{m+1}, V_{m+1} \in A | X_m = x_0, V_m = v_0).
\]

Moreover, we denote \(\Xi^n\) the \(n\)-step transition kernel. The following proposition establishes the exponential convergence of the Markov chain.

Proposition B.1. Assume \(f\) satisfies assumption 3.1 and
\[
h \leq \frac{\gamma \mu \min\{\phi_k\}}{312 + 12\gamma + 8L + 532L^2},
\]
then there are constants \(R_1 > 0, r_1 > 1\), such that for any \((x^0, v^0) \in \mathbb{R}^{2d}\)
\[
\sup_{A \in \mathcal{B}(\mathbb{R}^{2d})} \left| \Xi^{nd}((x^0, v^0), A) - \int_A p(x, v) \, dx \, dv \right| \leq (|x^0 - x^*|^2 + |x^0 - x^* + v^0|^2 + 1) R_1 r_1^{-m},
\]
where \(x^*\) is the minimal point of \(f(x)\) and \(\mathcal{B}(\mathbb{R}^{2d})\) is the Borel set in \(\mathbb{R}^{2d}\).
We postpone the proof of the proposition to Section B.1 and first use the proposition to prove Theorem 6.1.

Proof of Theorem 6.1 First, if the distribution of \((X^m, V^m) \) is induced by \(p \), then the marginal distribution of \((X_{i^n}(t), V_{i^n}(t)) \) is preserved in (15)-(16). Since \(X_{i^{n+1}} = X_{i^n}, V_{i^{n+1}} = V_{i^n} \) for \(i \neq r^n \), we obtain \((X_{i^{n+1}}, V_{i^{n+1}}) \sim p \), meaning \(p \) is the invariant measure of this Markov chain, concluding the first bullet point.

Since \(q_0 \) has finite second moment, multiply \(q_0 \) on both sides of (33) and integrate, we obtain
\[
\int_{\mathbb{R}^d} |q_m(x,v) - p(x,v)| \, dx \, dv \leq C_0 r_1^{-m},
\]
where \(C_0 \) is a constant independent of \(m \).

According to Itô’s formula and (15)-(17), the boundedness of the second moment is preserved in each iteration. In particular:
\[
\mathbb{E} \left(|X_{r^n+1}^m|^2 + |V_{r^n+1}^m|^2 \left| |X_{r^n}^m, V_{r^n}^m, r^n| \right. \right) \leq c_1 \mathbb{E} \left(|X_{r^n}^m|^2 + |V_{r^n}^m|^2 \right) + c_2,
\]
where \(c_1, 2 \) are constants depending on \(\gamma, L, x^* \). Since \(q_0 \) has finite second moments, \(q_i \) has second moments. Therefore, multiply \(q_i \) on both sides of (33) and integrate, we further have for \(0 \leq i \leq d - 1 \)
\[
\int_{\mathbb{R}^d} |q_{md+i}(x,v) - p(x,v)| \, dx \, dv \leq C_i r_1^{-m},
\]
where \(C_i \) is a constant independent of \(m \). This proves (19) if we choose \(R = (\max, C_i) r_1 \) and \(r = r_1^{1/d} \). \(\square \)

B.1 Proof of Proposition B.1

To prove the proposition, we rely on the following result from (Mattingly et al. 2002).

Theorem B.1. [Mattingly et al. (2002, Theorem 2.5)] Let \(\{X^n\}_{n=0}^{\infty} \) denote the Markov chain on \(\mathbb{R}^{2d} \) with transition kernel \(\Xi \) and filtration \(\mathcal{F}^n \). Let \(\{X^n\}_{n=0}^{\infty} \) satisfy the following two conditions:

Lynapunov condition: There is a function \(L : \mathbb{R}^{2d} \to [1, \infty) \), with \(\lim_{x \to \infty} L(x) = \infty \), and real number \(\alpha \in (0, 1) \), and \(\beta \in [0, \infty) \) such that
\[
\mathbb{E} \left(L(X^{n+1}) \left| \mathcal{F}^n \right. \right) \leq \alpha L(X^n) + \beta.
\]

Minoration condition: Define set \(C \subset \mathbb{R}^{2d} \)
\[
C = \left\{ x \mid x \in \mathbb{R}^d, L(x) \leq \frac{2\beta}{\gamma - \alpha} \right\},
\]
for some \(\gamma \in (\alpha^{1/2}, 1) \) and \(L(x) \) comes from Lynapunov condition, there exists an \(\eta > 0 \), and a probability measure \(\mu \), with \(\mu(C) = 1 \), such that for all \(A \in \mathcal{B}(\mathbb{R}^{2d}) \) and \(x \in C \)
\[
\Xi(x,A) \geq \eta \mu(A).
\]

Then the Markov chain \(\{X^n\}_{n=0}^{\infty} \) has a unique invariant measure \(\pi \). Furthermore, there is a constant \(r \in (0, 1) \) and \(R \in (0, \infty) \) such that, for any \(x_0 \in \mathbb{R}^{2d} \):
\[
\sup_{A \in \mathcal{B}(\mathbb{R}^{2d})} |\Xi^m(x_0^\alpha, A) - \pi(A)| \leq L(x_0) R r^{-m}.
\]

Comparing this theorem and the Proposition B.1, we essentially need to prove the \(d \)-step chain \(\{\{X^{md}, V^{md}\}\}_{m=0}^{\infty} \) satisfies both conditions. To do so, we first claim two results.

Lemma B.1 (Lyapunov condition). Assume \(f \) satisfies Assumption 3.7 and
\[
\gamma \leq \frac{1}{L}, \quad h \leq \frac{\gamma \mu \min \{\phi_i\}}{312 + 12\gamma + 8L + 432L^2}.
\]
Let
\[L(x, v) = |x - x^*|^2 + |x - x^* + v|^2 + 1, \]
then we have
\[\mathbb{E} \left(L(X^{m+1}, V^{m+1}) \mid F^m \right) \leq \alpha L(X^m, V^m) + \beta \tag{35} \]
with
\[\alpha = 1 - \gamma \mu h/2, \quad \beta = (3780 \gamma + \gamma \mu/2) h. \]

Lemma B.2 (Minorization condition). Under conditions of Lemma [B.1] define
\[C = \left\{ (x, v) \mid L(x, v) \leq \frac{2\beta}{\gamma - \alpha} \right\}, \]
then there exists an \(\eta > 0 \), and a probability measure \(\mathcal{M} \), with \(\mathcal{M}(C) = 1 \), such that
\[\Xi^d(x, A) \geq \eta \mathcal{M}(A), \quad \forall A \in \mathcal{B}(\mathbb{R}^{2d}), x \in C. \tag{36} \]

Now, we are ready to prove Proposition [B.1]

Proof of Proposition [B.1] Define \((Y^m, Z^m) = (X^{md}, V^{md})\), then \((Y^m, Z^m)_{m=0}^{\infty}\) is a Markov chain with transition kernel \(\Xi = \Xi^d \) and filtration \(\mathcal{F}^m = \mathcal{F}^{md} \). We will prove \((Y^m, Z^m)_{m=0}^{\infty}\) satisfies the conditions in Theorem [B.1] with \(L(x, v) = |x - x^*|^2 + |x - x^* + v|^2 + 1 \).

We now show \((Y^m, Z^m)_{m=0}^{\infty}\) satisfies conditions in Theorem [B.1] with \(L(x, v) = |x - x^*|^2 + |x - x^* + v|^2 + 1 \), \(\alpha = \alpha^d \) and \(\beta = d\beta_1 \), and \(\pi \) is induced by \(p \). Indeed, we use Lemma [B.1] (35) iteratively for \(d \) times:
\[\mathbb{E} \left(L(Y^{m+1}, Z^{m+1}) \mid \mathcal{F}^m \right) \leq \alpha^d L(Y^m, Z^m) + d\beta_1, \]
which implies \((Y^m, Z^m)_{m=0}^{\infty}\) satisfies Lyapunov condition in Theorem [B.1] with \(\alpha = \alpha^d \) and \(\beta = d\beta_1 \). Next, since \(\Xi = \Xi^d \), Lemma [B.2] directly implies the minorization condition. Therefore, by Theorem [B.1]
\[\sup_{A \in \mathcal{B}(\mathbb{R}^{2d})} \left| \Xi^m((x^0, v^0), A) - \pi(A) \right| \leq L(x^0, v^0) R r^{-m}, \]
concluding the proposition by substituting \(\Xi = \Xi^d \) and \(\pi(A) = \int_A p(x, v) \, dx \, dv. \)

Proof of Lemma [B.7] For simplicity, we omit \(\mathcal{F}^m \) and assume \(x^* = 0 \). Define
\[w = x + v, \quad W(T^m) = X(T^m) + V(T^m), \quad W^m = X^m + V^m, \]
then we can write \(L(x, v) \) as
\[L(x, w) = |x|^2 + |w|^2 + 1. \]
We will prove (35) in this case.

We first separate \(L(X^{m+1}, W^{m+1}) \)
\[\mathbb{E} \left(L(X^{m+1}, W^{m+1}) \right) = \sum_{i=1}^d \phi_i \mathbb{E} \left(L(X^{m+1}, W^{m+1}) \mid r^m = i \right) \]
According to [15],[16], under condition \(r^m = i \), we have
\[
\begin{align*}
X_i^{m+1} - X_i^m &= \frac{1 - e^{-2h_i}}{2} W_i^m - \frac{1 - e^{-2h_i}}{2} X_i^m + \gamma \int_{T^m}^{T^m+h_i} \left(1 - e^{-2(T^m+h_i-s)} \right) \partial_i f(X(s)) \, ds \\
&+ \sqrt{\gamma} \int_{T^m}^{T^m+h_i} \left(1 - e^{-2(T^m+h_i-s)} \right) \, dB_s \\
W_i^{m+1} - W_i^m &= \frac{1 - e^{-2h_i}}{2} X_i^m - \frac{1 - e^{-2h_i}}{2} W_i^m + \gamma \int_{T^m}^{T^m+h_i} \left(1 + e^{-2(T^m+h_i-s)} \right) \partial_i f(X(s)) \, ds \\
&+ \sqrt{4\gamma} \int_{T^m}^{T^m+h_i} \left(1 + e^{-2(T^m+h_i-s)} \right) \, dB_s
\end{align*}
\tag{37}
Since
\[
\mathbb{E} \left(L(X^{m+1}, W^{m+1}) \right) = L(X^m, W^m) + 2 \langle X^m, X^{m+1} - X^m \rangle + \langle W^m, W^{m+1} - W^m \rangle
\]
\[+ \left| X^{m+1} - X^m \right|^2 + \left| W^{m+1} - W^m \right|^2.
\]
we have
\[
\mathbb{E} \left(L(X^{m+1}, W^{m+1}) \mid r^m = i \right) = L(X^m, W^m) + 2 \mathbb{E} \left[X_i^m \left(X_i^{m+1} - X_i^m \right) + W_i^m \left(W_i^{m+1} - W_i^m \right) \mid r^m = i \right]
\]
\[+ \mathbb{E} \left(\left(X_i^{m+1} - X_i^m \right)^2 + \left(W_i^{m+1} - W_i^m \right)^2 \right) \mid r^m = i \right].
\] (38)

We deal with second term and third term in (38) separately. First, use (37), we can write
\[
\mathbb{E} \left[2X_i^m \left(X_i^{m+1} - X_i^m \right) \mid r^m = i \right]
\]
\[= 2X_i^m \left[\frac{1 - e^{-2h_i}}{2} W_i^m - \frac{1 - e^{-2h_i}}{2} X_i^m \right] + \gamma \left(h_i - \frac{1 - e^{-2h_i}}{2} \right) X_i^m \partial_i f(X_i^m)
\]
\[+ \gamma \mathbb{E} \int_{T^m}^{T^m + h_i} \left(1 - e^{-2(T^m + h_i - s)} \right) X_i^m (\partial_i f(X(s)) - \partial_i f(X^m)) \, ds \mid r^m = i \right]
\]
and
\[
\mathbb{E} \left[2W_i^m \left(W_i^{m+1} - W_i^m \right) \mid r^m = i \right]
\]
\[= 2W_i^m \left[\frac{1 - e^{-2h_i}}{2} X_i^m - \frac{1 - e^{-2h_i}}{2} W_i^m \right] - \gamma \left(h_i + \frac{1 - e^{-2h_i}}{2} \right) W_i^m \partial_i f(X_i^m)
\]
\[+ \gamma \mathbb{E} \int_{T^m}^{T^m + h_i} \left(1 - e^{-2(T^m + h_i - s)} \right) W_i^m (\partial_i f(X(s)) - \partial_i f(X^m)) \, ds \mid r^m = i \right]
\]
Since \(h_i \leq \frac{1}{20} \), we have
\[|1 - e^{-2h_i}| < 2h_i + 2h_i^2,
\]
which implies
\[
\mathbb{E} \left[2X_i^m \left(X_i^{m+1} - X_i^m \right) \mid r^m = i \right]
\]
\[\leq 2h_i X_i^m \left[W_i^m - X_i^m \right] + 4h_i^2 \left[|W_i^m|^2 + 2|X_i^m|^2 \right] + 2\gamma h_i^2 \left(|X_i^m|^2 + |\partial_i f(X_i^m)|^2 \right)
\]
\[+ 2\gamma h_i^2 |X_i^m|^2 + 2\mathbb{E} \left(\sup_{T^m \leq t \leq T^m + h_i} |\partial_i f(X(t)) - \partial_i f(X^m)|^2 \mid r^m = i \right) \tag{39}
\]
and
\[
\mathbb{E} \left[2W_i^m \left(W_i^{m+1} - W_i^m \right) \mid r^m = i \right]
\]
\[\leq 2h_i W_i^m \left[X_i^m - W_i^m \right] - 2\gamma h_i W_i^m \partial_i f(X_i^m) + 4h_i^2 \left[|W_i^m|^2 + 2|X_i^m|^2 \right] + 2\gamma h_i^2 \left(|W_i^m|^2 + |\partial_i f(X_i^m)|^2 \right)
\]
\[+ 4\gamma h_i^2 |W_i^m|^2 + 2\mathbb{E} \left(\sup_{T^m \leq t \leq T^m + h_i} |\partial_i f(X(t)) - \partial_i f(X^m)|^2 \mid r^m = i \right) \tag{40}
\]
From Lemma E.1 (83), we have
\[
\mathbb{E} \left(\sup_{T^m \leq t \leq T^m + h_i} |\partial_i f(X(t)) - \partial_i f(X_i^m)|^2 \mid r^m = i \right)
\]
\[\leq L_i^2 \mathbb{E} \left(\sup_{T^m \leq t \leq T^m + h_i} |X_i(t) - X_i^m|^2 \mid r^m = i \right)
\]
\[\leq L_i^2 \left[54h_i^2 \left(|X_i^m|^2 + |W_i^m|^2 \right) + 9\gamma^2 h_i^2 |\partial_i f(X_i^m)|^2 + 540\gamma h_i^3 \right].
\]
By substituting into (39) and (40), we find that the first term can be bounded as follows:
\[
\mathbb{E} \left[2X_i^m \left(X_i^{m+1} - X_i^m \right) \mid r^m = i \right] + \mathbb{E} \left[2W_i^m \left(W_i^{m+1} - W_i^m \right) \mid r^m = i \right]
\]
\[\leq 2h_i X_i^m \left[W_i^m - X_i^m \right] + 2\gamma h_i W_i^m \left[X_i^m - W_i^m \right] - 2\gamma h_i W_i^m \partial_i f(X_i^m)
\]
\[+ h_i^2 (12 + 6\gamma + 216L_i^2) \left[|W_i^m|^2 + |X_i^m|^2 \right] + h_i^2 (4\gamma + 18\gamma^2) |\partial_i f(X_i^m)|^2 + 2160\gamma h_i^3
\]
\[\leq 2h_i X_i^m \left[W_i^m - X_i^m \right] + 2h_i W_i^m \left[X_i^m - W_i^m \right] - 2\gamma h_i W_i^m \partial_i f(X_i^m)
\]
\[+ h_i^2 (30 + 6\gamma + 4L_i + 216L_i^2) \left[|W_i^m|^2 + |X_i^m|^2 \right] + 2160\gamma h_i^3 \tag{41}
\]
where in the last inequality we use
\[|\partial_t f(X^m)|^2 \leq L_i^2 |X_i^m|^2 \]
since \(x^* = \bar{0} \) and \(\|\partial_t f\|_\infty \leq L_i \).

Next, we deal with third term in (38), notice Lemma [A.4] (33), (34), we have
\[
\begin{align*}
\mathbb{E} \left[(X_i^{m+1} - X_i^m)^2 + (W_i^{m+1} - W_i^m)^2 \mid r^m = i \right] \\
\leq 108h_i^2 \left(|X_i^m|^2 + |W_i^m|^2 \right) + 18\gamma^2 h_i^2 |\partial_t f(X^m)|^2 + 162\gamma h_i \\
\leq 126h_i^2 \left(|X_i^m|^2 + |W_i^m|^2 \right) + 162\gamma h_i, \\
\end{align*}
\]
(42)

where we use \(|\partial_t f(X^m)|^2 \leq L_i^2 |X_i^m|^2\) again.

By substituting (41), (42) into (38), we obtain
\[
\begin{align*}
\mathbb{E} \left(L(X_i^{m+1}, W_i^{m+1}) \mid r^m = i \right) \\
\leq L(X_i^m, W_i^m) + 2h_i (X_i^m - X_i^m) + 2h_i (W_i^m - W_i^m) - 2\gamma h_i \langle W_i^m, \nabla f(X^m) \rangle \\
+ h_i^2 \left(156 + 6\gamma + 4Li + 216L_i^2 \right) (L(X_i^m, W_i^m) - 1) + 3780\gamma h_i, \\
\end{align*}
\]
which implies that
\[
\begin{align*}
\mathbb{E} \left(L(X_i^{m+1}, W_i^{m+1}) \right) \\
\leq L(X_i^m, W_i^m) + 2h_i \langle X_i^m, W_i^m - X_i^m \rangle + 2h_i \langle W_i^m, X_i^m - W_i^m \rangle - 2\gamma h_i \langle W_i^m, \nabla f(X^m) \rangle \\
+ \frac{\left(156 + 6\gamma + 4Li + 216L_i^2 \right) h_i^2}{\min\{\phi_i\}} (L(X_i^m, W_i^m) - 1) + 3780\gamma h_i.
\end{align*}
\]

Similar to (99), (100), we have
\[
\begin{align*}
2h \langle X_i^m, W_i^m - X_i^m \rangle + 2h \langle W_i^m, X_i^m - W_i^m \rangle - 2\gamma h \langle W_i^m, \nabla f(X^m) \rangle \leq -\gamma \mu h \left(|X_i^m|^2 + |W_i^m|^2 \right),
\end{align*}
\]
which implies
\[
\begin{align*}
L(X_i^m, W_i^m) - 1 + 2h \langle X_i^m, W_i^m - X_i^m \rangle + 2h \langle W_i^m, X_i^m - W_i^m \rangle - 2\gamma h \langle W_i^m, \nabla f(X^m) \rangle \leq (1 - \gamma \mu h)(L(X_i^m, W_i^m) - 1).
\end{align*}
\]
Since \(h \leq \frac{\gamma \mu \min\{\phi_i\}}{312 + 12\gamma + 8L_i + 432L_i^2} \), we finally prove (35). \(\square \)

Proof of Lemma [B.2] To prove (36), we define another Markov chain, for fixed \(\left(\bar{X}^m, \bar{V}^m \right) \), the \(\left(\bar{X}^{m+1}, \bar{V}^{m+1} \right) \) is produced by the following coupled SDEs: Define
\[
\bar{T}^n = \sum_{i=1}^n h_i, \quad \bar{T}^0 = 0,
\]
then for \(\bar{T}^n \leq t \leq \bar{T}^{n+1} \) and \(0 \leq n \leq d - 1 \)
\[
\begin{align*}
\bar{V}_i(t) &= \bar{V}_i \left(\bar{T}^n \right) e^{-2(t-\bar{T}^n)} - \gamma \int_{\bar{T}^n}^t e^{-2(t-s)} \partial_t f \left(\bar{X}(s) \right) \, ds + \sqrt{4\gamma} \int_{\bar{T}^n}^t e^{-2(t-s)} \, dB_s \\
\bar{X}_i(t) &= \bar{X}_i \left(\bar{T}^n \right) + \frac{1 - e^{-2(t-\bar{T}^n)}}{2} \bar{V}_i \left(\bar{T}^n \right) - \frac{\gamma}{2} \int_{\bar{T}^n}^t \left(1 - e^{-2(t-s)} \right) \partial_t f \left(\bar{X}(s) \right) \, ds \\
&\quad + \sqrt{7} \int_{\bar{T}^n}^t \left(1 - e^{-2(t-s)} \right) \, dB_s
\end{align*}
\]
and \(\bar{X}_i(t) = \bar{X}_i \left(\bar{T}^n \right), \bar{V}_i(t) = \bar{V}_i \left(\bar{T}^n \right) \) for \(i \neq n \) with initial condition \(\bar{X}(0) = \bar{X}^n, \bar{V}(0) = \bar{V}^n \).

We set \(\left(\bar{X}^{n+1}, \bar{V}^{n+1} \right) = \left(\bar{X} \left(\bar{T}^{d} \right), \bar{V} \left(\bar{T}^{d} \right) \right) \). We denote the transition kernel by \(\Xi_2 \), then we have the following properties:

- For any \(x \in C \) and \(A \in B(\mathbb{R}^{2d}) \), we have
\[
\Xi^d(x, A) \geq \prod_{i=1}^d \phi_i \Xi_2(x, A) > 0.
\]
We then also define \(\Delta q \).

Therefore, quantifying the convergence from (36).

This proves (36).

\[\Xi_2(x, A) \geq \eta \mathcal{M}(A), \quad \forall A \in \mathcal{B}(\mathbb{R}^{2d}), x \in C, \]

which implies

\[\Xi^d(x, A) \geq \Pi^d_{i=1} \phi_i \Xi_2(x, A) > \Pi^d_{i=1} \phi_i \eta \mathcal{M}(A), \quad \forall A \in \mathcal{B}(\mathbb{R}^{2d}), x \in C. \]

Thus proves (36).

C Proof of Theorem 6.2

Recall

\[T^m = \sum_{n=0}^{m-1} h_r. \]

According to algorithm\[RC-ULMC \] can be seen as drawing \((x^0, v^0)\) from distribution induced by \(q_0\), and update \((x^m, v^m)\) using the following coupled SDEs for \(T^m < h \leq T^{m+1}\):

\[
\begin{cases}
V_r^m(t) = v^m_r e^{-2(t-T^m)} - \gamma_0 \mathcal{J}_r f(x^m) \int_t^{T^m} e^{-2(t-s)} \, ds + \sqrt{3\gamma_0} e^{-2(t-T^m)} \int_t^{T^m} e^{2s} \, dB_s, \\
X_r^m(t) = x^m_r + \int_t^{T^m} V_r^m(s) \, ds,
\end{cases}
\]

and \(X_i(t) = x^m_i, V_i(t) = v^m_i\) for \(i \neq r^m\), where \(B_s\) is a one dimensional Brownian motion. And we let \((x^{m+1}, v^{m+1}) = (X(T^{m+1}), V(T^{m+1}))\).

Define another trajectory of sampling by setting \((\tilde{x}^0, \tilde{v}^0)\) to be drawn from distribution induced by \(p\) and generating \((\tilde{X}(t), \tilde{V}(t))\) according to (15)-(17) with \((\tilde{X}(0), \tilde{V}(0)) = (\tilde{x}^0, \tilde{v}^0)\). Denote

\[
\tilde{x}^m = \tilde{X}(T^m), \quad \tilde{v}^m = \tilde{V}(T^m),
\]

it was proved in Theorem 6.1 that \((\tilde{x}^m, \tilde{v}^m)\) can be seen as drawn from distribution induced by \(p\) for all \(m \geq 0\).

Now, we define \(w^m = x^m_r + v^m_r\) and \(\tilde{w}^m = \tilde{x}^m + \tilde{v}^m\), and denote \(u_m(x, w)\) the probability density of \((x^m, w^m)\) and \(u^*(x, w)\) the probability density of \((x, w)\) if \((x, w = w-x)\) is distributed according to density function \(p\). From Cheng et al. (2018), we have:

\[
|x^m - x|^2 + |v^m - v|^2 \leq 4(|x^m - x|^2 + |w^m - w|^2) \leq 16(|x^m - x|^2 + |v^m - v|^2)
\]

and

\[
W_2^2(q_m, p) \leq 4W_2^2(u_m, u^*) \leq 16W_2^2(q_m, p).
\]

Therefore, quantifying the convergence from \(q_m\) to \(p\) is the same as showing the convergence from \(u_m\) to \(u^*\).

We then also define \(\Delta^m\)

\[
\Delta^m = \sqrt{|x^m - x|^2 + |\tilde{w}^m - w^m|^2}
\]

and pick \((\tilde{x}^0, \tilde{v}^0)\) such that

\[
W_2^2(u_0, u^*) = \mathbb{E}|\Delta^0|^2.
\]

Since \((\tilde{x}^m, \tilde{v}^m) \sim p\), we have \(W_2^2(u_m, u^*) \leq \mathbb{E}|\Delta^m|^2\) and we only need to bound \(\mathbb{E}|\Delta^m|^2\).

Now, we give the following iteration formula for \(\mathbb{E}|\Delta^m|^2\):

Proposition C.1. Under conditions of Theorem 6.2, assume \((x^m, v^m)\) is defined in (43), \((\tilde{x}^m, \tilde{v}^m)\) is defined in (44), and \(\{\Delta^m\}\) comes from (47),

\[
\mathbb{E}|\Delta^m|^2 \leq \left(1 - \frac{\gamma h}{4}\right) \mathbb{E}|\Delta^0|^2 + \frac{6\gamma h^3}{\mu} \sum_{i=1}^{d} \frac{L_i^2}{\phi_i^2}.
\]
We prove Proposition C.1 in Section C.1. Now, we are ready to prove the Theorem 6.2:

Proof of Theorem 6.2 Using (48) iteratively, we have

\[
E[\Delta^m]^2 \leq \left(1 - \frac{\mu \gamma h}{4} \right)^m E[\Delta^0]^2 + \frac{24 \gamma h^2}{\mu^2} \sum_{i=1}^{d} \frac{L_i^2}{\phi_i^2} \leq \exp \left(\frac{-\mu \gamma m h}{4} \right) E[\Delta^0]^2 + \frac{24 \gamma h^2}{\mu^2} \sum_{i=1}^{d} \frac{L_i^2}{\phi_i^2}.
\]

Taking square root on both sides, and use (46), we proves (21).

C.1 Proof of Proposition C.1

The Proposition C.1 is a direct result of the following lemma:

Lemma C.1. Assume \(f \) satisfies assumption 4.1 if \(\{ (x^m, v^m) \} \) is defined in (43), \(\{ (\tilde{x}^m, \tilde{v}^m) \} \) is defined in (44) and \(\{ \Delta^m \} \) comes from (47), then for any \(m \geq 0 \) and \(i = 1, 2, \ldots, d \):

\[
E[\Delta_i^{m+1}]^2 \leq \left(1 + \frac{\gamma \mu h}{2} + \frac{20 h^2}{\phi_i} \right) E[\Delta_i^m]^2 + \frac{10 \gamma^2 h^2}{\phi_i} \left(|\partial_i f(\tilde{x}^m) - \partial_i f(x^m)|^2 \right)
+ 2 \phi_i E K_i + \frac{6 \gamma L_i^2 h^3}{\mu \phi_i^2},
\]

(49)

where

\[K_i = (A_i^m - (\tilde{w}_i^m - w_i^m)) (\tilde{w}_i^m - w_i^m) + (C_i^m - (\tilde{\mu}_i - x_i^m)) (\tilde{\mu}_i - x_i^m), \]

(50)

\[A_i^m = (h_i + e^{-2h_i})(\tilde{w}_i^m - w_i^m) + (1 - h_i + e^{-2h_i})(\tilde{x}_i^m - x_i^m) - \frac{\gamma(1 - e^{-2h_i})}{2} [\partial_i f(\tilde{x}^m) - \partial_i f(x^m)], \]

(51)

\[C_i^m = (1 - h_i)(\tilde{x}_i^m - x_i^m) + h_i (\tilde{w}_i^m - w_i^m), \]

(52)

To show Proposition C.1 amounts to summing up all components in Lemma C.1. In particular, as will be shown in Lemma A.5.3, the third term in (49) will contribute a negative \(E[\Delta_i^m]^2 \) term. If it dominates \(\frac{24 h^2}{\mu} \) in the coefficient of the first term, the decay of the error is expected.

Proof of Lemma C.1 In the \(m \)-th time step, we have

\[P(r^m = i) = \phi_i, \quad P(r^m \neq i) = 1 - \phi_i. \]

This implies

\[
E[\Delta_i^{m+1}]^2 = \phi_i E \left(|\Delta_i^{m+1}|^2 \right)_{r^m = i} + (1 - \phi_i) E \left(|\Delta_i^{m+1}|^2 \right)_{r^m \neq i}
= \phi_i E \left(|\Delta_i^{m+1}|^2 \right)_{r^m = i} + (1 - \phi_i) E |\Delta_i^m|^2.
\]

(53)

It suffices to bound the first term of (53). Under condition \(r^m = i \), we first divide \(|\Delta_i^{m+1}|^2 \) into different parts under the condition \(r^m = i \), and compare (43) and (15), (17) for:

\[
|\Delta_i^{m+1}|^2 = \left| (\tilde{x}_i^m - x_i^m) e^{-2h_i} + (\tilde{x}_i^m - x_i^m) + \int_{T_m}^{T_{m+h_i}} (\tilde{V}_i(s) - V_i(s)) \ ds \right|^2
- \gamma \int_{T_m}^{T_{m+h_i}} e^{-2(T_m+h_i-s)} [\partial_i f(\tilde{X}(s)) - \partial_i f(x^m)] \ ds \right|^2
+ |(\tilde{x}_i^m - x_i^m) + \int_{T_m}^{T_{m+h_i}} (\tilde{V}_i(s) - V_i(s)) \ ds|^2
= |I_i^m|^2 + |J_i^m|^2,
\]

where we denote \(I_i^m \) and \(J_i^m \) the quantities in the first and second absolute value signs above respectively.
We try to bound $E\left(|I_i^m|^2 + |J_i^m|^2\right)$ using $E|\Delta_i^m|^2$. We first try to separate out $(x_i^m, \bar{x}_i^m, v_i^m, \bar{v}_i^m)$ from I_i^m and J_i^m. Denote

$$B_i^m = \int_{T^m}^{T^m+h_i} \left(\nabla_i(s) - V_i(s) - (\bar{v}_i^m - v_i^m) \right) \, ds$$

$$- \gamma \int_{T^m}^{T^m+h_i} e^{-2(T^m+h_i-s)} \left[\partial_i f(\bar{X}(s)) - \partial_i f(\bar{x}^m) \right] \, ds,$$

and

$$D_i^m = \int_{T^m}^{T^m+h_i} \left(\nabla_i(s) - V_i(s) - (\bar{v}_i^m - v_i^m) \right) \, ds,$$

according to the definition of A_i^m and C_i^m in (51), (52). we have:

$$I_i^m = A_i^m + B_i^m, \quad J_i^m = C_i^m + D_i^m.$$

Use Young’s inequality, for any $a > 0$, we have

$$|I_i^m|^2 + |J_i^m|^2 \leq (1 + a) \left(|A_i^m|^2 + |C_i^m|^2\right) + \left(1 + \frac{1}{a}\right) \left(|B_i^m|^2 + |D_i^m|^2\right).$$

According to Lemma (52), (53), we have

$$E\left(|B_i^m|^2 | r^m = i\right) \leq \frac{16h_i^4}{3} E|\bar{v}_i^m - v_i^m|^2 + \frac{8\gamma^2 h_i^4}{3} E\left(|\partial_i f(\bar{x}^m) - \partial_i f(x^m)|^2\right) + \frac{6\gamma^3 L_2^2 h_i^4}{5},$$

$$E\left(|D_i^m|^2 | r^m = i\right) \leq \frac{8h_i^4}{3} E|\bar{v}_i^m - v_i^m|^2 + \frac{4\gamma^2 h_i^4}{3} E\left(|\partial_i f(\bar{x}^m) - \partial_i f(x^m)|^2\right) + \frac{4\gamma^3 L_2^2 h_i^4}{15}.$$

Since $h_i < 1/240$, we obtain

$$E\left(|B_i^m|^2 + |D_i^m|^2 | r^m = i\right) \leq 8h_i^4 E|\bar{v}_i^m - v_i^m|^2 + 4\gamma^2 h_i^4 E\left(|\partial_i f(\bar{x}^m) - \partial_i f(x^m)|^2\right) + \frac{7\gamma^3 L_2^2 h_i^4}{5}.$$

Substituting (59) into (66), we have

$$E\left(|\Delta_i^m|^2 | r^m = i\right) \leq (1 + a) E\left(|A_i^m|^2 + |C_i^m|^2 | r^m = i\right)$$

$$+ \left(1 + \frac{1}{a}\right) 8h_i^4 E|\bar{v}_i^m - v_i^m|^2 + \left(1 + \frac{1}{a}\right) 4\gamma^2 h_i^4 E\left(|\partial_i f(\bar{x}^m) - \partial_i f(x^m)|^2\right)$$

$$+ \left(1 + \frac{1}{a}\right) \frac{7\gamma^3 L_2^2 h_i^4}{5}.$$

Considering

$$E\left(|A_i^m|^2 + |C_i^m|^2 | r^m = i\right) = E|\Delta_i^m|^2 + E\left(|A_i^m - (\bar{w}_i^m - w_i^m)|^2 + |C_i^m - (\bar{x}_i^m - x_i^m)|^2\right) + 2E|K_i|,$$

we need to give bounds to the second and the third terms. According to the definition of A_i^m and C_i^m in (51), (52), we have:

$$E\left(|A_i^m - (\bar{w}_i^m - w_i^m)|^2\right) \leq 4(1 - h_i - e^{-2h_i}) |\Delta_i^m|^2 + 2\gamma^2 h_i^2 E|\partial_i f(\bar{x}^m) - \partial_i f(x^m)|^2$$

$$\leq 4h_i^2 E|\Delta_i^m|^2 + 2\gamma^2 h_i^2 E|\partial_i f(\bar{x}^m) - \partial_i f(x^m)|^2,$$

$$E\left(|C_i^m - (\bar{x}_i^m - x_i^m)|^2\right) \leq 2h_i^2 E|\Delta_i^m|^2,$$

and thus:

$$E\left(|A_i^m|^2 + |C_i^m|^2 | r^m = i\right) \leq (1 + 6h_i^2) E|\Delta_i^m|^2 + 2\gamma^2 h_i^2 E|\partial_i f(\bar{x}^m) - \partial_i f(x^m)|^2 + 2E|K_i|.$$

20
Substituting (65) into (60) and using (53), we have

\[
E|\Delta_i^{m+1}|^2 \leq (1 + a\phi_i + 6h^2\phi_i(1 + a))E|\Delta_i^m|^2 + \left(1 + \frac{1}{a}\right)\phi_i8h^4E|\tilde{v}_i^m - v_i^m|^2 \\
+ \left[(1 + a)\phi_i2\gamma h^2\right] + \left(1 + \frac{1}{a}\right)\phi_i4\gamma h^2 |\partial_i f(\tilde{x}^m) - \partial_i f(x^m)|^2 \\
+ 2(1 + a)\phi_iE K_i + \left(1 + \frac{1}{a}\right)\phi_i7\gamma^2 L h^4.
\]

(64)

To find a good choice of \(a\), we cite the estimate in Lemma E.3 that states the fourth term of (64), when summed up in index \(i\), will contribute \(-\gamma \mu h(1 + a)E|\Delta|^2\):

\[
\sum_{i=1}^d \phi_i|\Delta_i|^2 \leq \left(-\frac{\gamma \mu h}{2} + \frac{3h^2}{\min\{\phi_i\}}\right)E|\Delta|^2.
\]

(65)

Therefore, the coefficient in the first line should not exceed the \(1 + \gamma \mu h\), which puts a good choice of \(a\) to be

\[
a = \frac{\gamma \mu h_i}{2} = \frac{\gamma \mu h}{2\phi_i} < 1,
\]

which also implies

\[
1 + \frac{1}{a} \leq \frac{4}{\gamma \mu h_i}.
\]

Substituting this into (64) and using \(E|\tilde{v}_i^m - v_i^m| \leq 2E|\Delta_i^m|^2\), \(h_i\phi_i = h\), we have

\[
E|\Delta_i^{m+1}|^2 \leq \left(1 + \frac{\gamma \mu h}{2} + \frac{12h^2}{\phi_i} + \frac{32h^3}{\gamma \mu \phi_i}\right)E|\Delta_i^m|^2 \\
+ \left(\frac{4\gamma^2 h^2}{\phi_i} + \frac{16\gamma h^3}{\mu \phi_i}\right)E |\partial_i f(\tilde{x}^m) - \partial_i f(x^m)|^2 \\
+ 2 \left(\phi_i + \frac{\gamma \mu h}{2}\right)E K_i + \frac{6\gamma^2 L h^3}{\mu \phi_i^2}.
\]

To further control the \(EK_i\) term, we note, using (62) again:

\[
E[(A_i^m - (\tilde{w}_i^m - w_i^m)) (\tilde{w}_i^m - w_i^m)] \\
\leq \frac{1}{2} \left(\frac{\phi_i}{h}E|A_i^m - (\tilde{w}_i^m - w_i^m)|^2 + \frac{h}{\phi_i}E|\tilde{w}_i^m - w_i^m|^2\right) \\
\leq \frac{5h}{2\phi_i}E|\Delta_i^m|^2 + \frac{\gamma^2 h}{\phi_i}E|\partial_i f(\tilde{x}^m) - \partial_i f(x^m)|^2,
\]

(67)

\[
E[(C_i^m - (\tilde{x}_i^m - x_i^m)) (\tilde{x}_i^m - x_i^m)] \\
\leq \frac{1}{2} \left(\frac{\phi_i}{h}E|C_i^m - (\tilde{x}_i^m - x_i^m)|^2 + \frac{h}{\phi_i}E|\tilde{x}_i^m - x_i^m|^2\right) \\
\leq \frac{3h}{2\phi_i}E|\Delta_i^m|^2.
\]

(68)

Therefore we finally have

\[
E|\Delta_i^{m+1}|^2 \leq \left(1 + \frac{\gamma \mu h}{2} + \frac{16h^2}{\phi_i} + \frac{32h^3}{\gamma \mu \phi_i}\right)E|\Delta_i^m|^2 \\
+ \left(5\gamma^2 h^2 + \frac{16\gamma h^3}{\mu \phi_i}\right)E |\partial_i f(\tilde{x}^m) - \partial_i f(x^m)|^2 + 2\phi_iK_i + \frac{6\gamma^2 L h^3}{\mu \phi_i^2}.
\]

Use \(h < \frac{\gamma \mu \min\{\phi_i\}}{240}\) and \(h/\phi_i < 1\), we have (49).

Now, we are ready to prove Proposition [C.1]
where we use f is L-Lipschitz in the second inequality and $\gamma L \leq 1$. Then, we use Lemma 4.3 (91) for the second and third term in (69):

$$E|\Delta^{m+1}|^2 \leq \left(1 + \frac{\gamma \mu h}{2} + \frac{3h^2}{\min\{\phi_i\}}\right) E|\Delta^m|^2 + 2 \sum_{i=1}^d \phi_i EK_i + \frac{6\gamma^2 h^3}{\mu} \sum_{i=1}^d \frac{L_i^2}{\phi_i^2},$$

where Δ takes all randomness into account. This implies to prove (30), it suffices to find a lower bound for $W_2^2(u_m, u^*)$.

Proof of Proposition 6.1

In this section, we prove Proposition 6.1.

First, we define $w_m = x^m + v^m$, and denote $u_m(x, w)$ the probability density of (x^m, w^m) and $u^*(x, w)$ the probability density of (x, w) if $(x, v = w - x)$ is distributed according to density function p. Recall (49), we just need to give a lower bound for $W_2^2(u_m, u^*)$.

Proof of Proposition 6.1. We first notice

$$W_2(u_m, u^*) \geq \sqrt{\int |w|^2 u_m(x, w) \, dw \, dx} - \sqrt{\int |w|^2 u^*(x, w) \, dw \, dx}$$

$$= \sqrt{\int |w|^2 u_m(x, w) \, dw \, dx} - \sqrt{2d} = \sqrt{E|w^m|^2} - \sqrt{2d}$$

where E takes all randomness into account. This implies to prove (30), it suffices to find a lower bound for second moment of w^m. Indeed, in the end, we will show that

$$W_2(u_m, u^*) \geq \left(1 - 2h + 2.9dh^2\right)^m \frac{d}{800^2} + \frac{d^{3/2}h}{80 - 116dh},$$

and thus

$$W_2(q_m, p) \geq \left(1 - 2h + 2.9dh^2\right)^m \frac{d}{800^2} + \frac{d^{3/2}b}{320 - 464dh},$$

proving the statement of the theorem. To show (71), we first note, that in this example:

$$L = 1, \quad \mu = 1$$
and by direct calculation:
\[
W_2(q_0, p) = \frac{\sqrt{d}}{400}, \quad E|x^0|^2 = \frac{160001}{160000} d, \quad E|\omega^0|^2 = E|x^0|^2 + E|\nu^0|^2 = \frac{160001}{160000} d + d = \frac{320001}{160000} d, \quad (72)
\]
then we divide the proof into several steps:

- **First step: a priori moment estimates**

According to (72), use Theorem 6.2 (21), we have for any \(m \geq 0 \)
\[
W_2(q_m, p) \leq \frac{\sqrt{d}}{100} + \frac{\sqrt{d}}{100} = \frac{\sqrt{d}}{50}, \quad W_2(u_m, u^*) \leq 4W_2(q_m, p) \leq \frac{2\sqrt{d}}{25},
\]
Similar to (70), we have
\[
W_2(q_m, p) \geq \sqrt{E|x^m|^2} - \sqrt{d}, \quad W_2(u_m, u^*) \geq \sqrt{E|w^m|^2} - \sqrt{2d}
\]
which implies
\[
\sqrt{E|x^m|^2} \leq \frac{51\sqrt{d}}{50}, \quad \sqrt{E|w^m|^2} \leq \left(\sqrt{2} + \frac{2}{25} \right) \sqrt{d} \quad (73)
\]
for any \(m \geq 0 \).

- **Second step: Iteration formula of \(E|w^m|^2 \).**

By the special structure of \(p \), we can calculate the second moment explicitly. Since \(f(x) \) can be written as
\[
f(x) = \sum_{i=1}^{d} \frac{|x_i|^2}{2},
\]
in each step of RC-ULMC, according to Algorithm [2] for each \(m \geq 0 \), we have for any \(1 \leq i \leq d \)
\[
E|w_i^{m+1}|^2 = \frac{1}{d} E \left(|w_i^{m+1}|^2 \mid r^m = i \right) + \left(1 - \frac{1}{d} \right) E \left(|w_i^m|^2 \right) \quad (74)
\]
Under condition \(r^m = i \), we have
\[
E \left(x_i^{m+1} \mid (x^m, v^m, r^m) \right) = x_i^m + \frac{1}{2} \left(1 - e^{-2dh} \right) v_i^m - \frac{1}{2} \left(dh - \frac{1}{2} \left(1 - e^{-2dh} \right) \right) x_i^m,
\]
\[
E \left(v_i^{m+1} \mid (x^m, v^m, r^m) \right) = v_i^m e^{-2dh} - \frac{1}{2} \left(1 - e^{-2dh} \right) x_i^m,
\]
\[
E \left(w_i^{m+1} \mid (x^m, v^m, r^m) \right) = \frac{1}{2} \left(1 + e^{-2dh} \right) w_i^m - \frac{1}{2} \left(dh - \frac{1}{2} \left(1 - e^{-2dh} \right) \right) x_i^m,
\]
\[
\text{Var} \left(x_i^{m+1} \mid (x^m, v^m, r^m) \right) = dh - \frac{3}{4} - \frac{1}{4} e^{-4dh} + e^{-2dh},
\]
\[
\text{Var} \left(v_i^{m+1} \mid (x^m, v^m, r^m) \right) = 1 - e^{-4dh},
\]
\[
\text{Cov} \left((x_i^{m+1}, v_i^{m+1}) \mid (x^m, v^m, r^m) \right) = \frac{1}{2} \left[1 + e^{-4dh} - 2e^{-2dh} \right].
\]
(75)

Now, since \(dh \leq \frac{1}{10} \), we can replace \(e^{-2dh} \) and \(e^{-4dh} \) by their Taylor expansion:
\[
e^{-2dh} = 1 - 2dh + 2d^2h^2 + D_1 h^3, \quad e^{-4dh} = 1 - 4dh + 8d^2h^2 + D_2 h^3,
\]
where \(D_1, D_2 \) are negative constants depends on \(h \) and satisfy
\[
|D_1| < 10d^3, \quad |D_2| < 100d^3.
\]
(76)
Substituting (76) into (75), we have
\[\mathbb{E} (w_i^{m+1} | (x_i^m, v_i^m, r_i^m)) = \left(1 - dh + d^2 h^2 + \frac{D_1 h^3}{2} \right) w_i^m - \left(\frac{d^2 h^2}{2} + \frac{D_1 h^3}{4} \right) x_i^m, \]
\[\text{Var} (x_i^{m+1} | (x_i^m, v_i^m, r_i^m)) = \left(D_1 - \frac{D_2}{4} \right) h^3, \]
\[\text{Var} (v_i^{m+1} | (x_i^m, v_i^m, r_i^m)) = 4dh - 8d^2 h^2 - D_2 h^3, \]
\[\text{Cov} ((x_i^{m+1}, v_i^{m+1}) | (x_i^m, v_i^m, r_i^m)) = 2d^2 h^2 + \frac{(D_2 - 2D_1) h^3}{2}. \]

The last three equalities in (77) implies

\[\text{Var} (w_i^{m+1} | (x_i^m, v_i^m, r_i^m)) = \text{Var} (x_i^{m+1} | (x_i^m, v_i^m, r_i^m)) + \text{Var} (v_i^{m+1} | (x_i^m, v_i^m, r_i^m)) \]
\[+ 2 \text{Cov} (x_i^{m+1}, v_i^{m+1}) | (x_i^m, v_i^m, r_i^m)) \]
\[= 4dh - 4d^2 h^2 - \left(D_1 + \frac{D_2}{4} \right) h^3. \]

Then, we can calculate the formula for \(\mathbb{E} (|w_i^{m+1}|^2 | r_i^m = i) \):

\[\mathbb{E} \left(|w_i^{m+1}|^2 \mid r_i^m = i \right) = \mathbb{E}_{x_i^m, v_i^m} \left(|w_i^{m+1}|^2 \mid (x_i^m, v_i^m, r_i^m = i) \right) \]
\[= \mathbb{E}_{x_i^m, v_i^m} \left(\left[\mathbb{E} (w_i^{m+1} | (x_i^m, v_i^m, r_i^m = i)) \right]^2 + \text{Var} (w_i^{m+1} | (x_i^m, v_i^m, r_i^m = i)) \right) \]
\[= \left(1 - dh + d^2 h^2 + \frac{D_1 h^3}{2} \right) \mathbb{E} |w_i^m|^2 + \left(\frac{d^2 h^2}{2} + \frac{D_1 h^3}{4} \right) \mathbb{E} |x_i^m|^2 \]
\[- 2 \left(1 - dh + d^2 h^2 + \frac{D_1 h^3}{2} \right) \left(\frac{d^2 h^2}{2} + \frac{D_1 h^3}{4} \right) \mathbb{E} \langle w_i^m, x_i^m \rangle \]
\[+ 4dh - 4d^2 h^2 - \left(D_1 + \frac{D_2}{4} \right) h^3. \]

Sum them up with \(i \) and use (74), we finally obtain an iteration formula for \(\mathbb{E} |w_i^m|^2 \):

\[\mathbb{E} |w_i^{m+1}|^2 = \left[1 - \frac{1}{d} + \frac{1}{d} \left(1 - dh + d^2 h^2 + \frac{D_1 h^3}{2} \right) \right] \mathbb{E} |w_i^m|^2 + \frac{1}{d} \left(\frac{d^2 h^2}{2} + \frac{D_1 h^3}{4} \right) \mathbb{E} |x_i^m|^2 \]
\[- \frac{2}{d} \left(1 - dh + d^2 h^2 + \frac{D_1 h^3}{2} \right) \left(\frac{d^2 h^2}{2} + \frac{D_1 h^3}{4} \right) \mathbb{E} \langle w_i^m, x_i^m \rangle \]
\[+ 4dh - 4d^2 h^2 - \left(D_1 + \frac{D_2}{4} \right) h^3. \]

(78)

Third step: Lower bound for \(W_2 (u_m, u^*) \)

Use (73), since \(D_1 < 0, h < \frac{1}{10d}, < \frac{d^2 h}{\sqrt{D_1 h^3}}, \) we have

\[\left(1 - dh + d^2 h^2 + \frac{D_1 h^3}{2} \right)^2 \geq 1 - 2dh + 2.9d^2 h^2, \]

and

\[\left(\frac{d^2 h^2}{2} + \frac{D_1 h^3}{4} \right) \mathbb{E} \langle w_i^m, x_i^m \rangle \leq \frac{d^2 h^2}{2} \left(\mathbb{E} |w_i^m|^2 \mathbb{E} |x_i^m|^2 \right)^{1/2} \leq 0.85d^3 h^2. \]

Substituting (79) and (80) into (78), we have

\[\mathbb{E} |w_i^{m+1}|^2 \geq \left(1 - 2h + 2.9dh^2 \right) \mathbb{E} |w_i^m|^2 + 4dh - 5.7d^2 h^2. \]

(81)
According to (72), use (81) iteratively, we have
\[\mathbb{E}[\omega^2] \geq \frac{(1 - 2h + 2.9dh)^m}{d} + \frac{(1 - (1 - 2h + 2.9dh)^m)}{d} \frac{4d - 5.7d^2h}{2 - 2.9dh} \]
\[= (1 - 2h + 2.9dh)^m \left[\frac{320001}{160000} \frac{4d - 5.7d^2h}{2 - 2.9dh} \right] + \frac{4d - 5.7d^2h}{2 - 2.9dh} \]
\[\geq (1 - 2h)^m \frac{d}{320000} \frac{4d - 5.7d^2h}{2 - 2.9dh}, \]

where we use \(h < \frac{1}{10d} \) to obtain \(\frac{4d - 5.7d^2h}{2 - 2.9dh} < 640001 \) in the last inequality. Substituting (82) into (70), we further have
\[W_2(u_m, u^*) \geq \frac{(1 - 2h)^m}{\sqrt{320000}} \frac{d}{2 - 2.9dh} + \frac{0.1d^2h}{4\sqrt{d}} \]
\[\geq \frac{(1 - 2h)^m}{800^2} \frac{d}{2} + \frac{d^{1/2}h}{80 - 116dh}. \]

\[\square \]

E Key lemmas in the proof of Theorem B.1

Consider (37), then we have the following lemma:

Lemma E.1. If \(h_i \leq \frac{1}{20} \) and \(\gamma \leq \frac{1}{\bar{L}} \), we have

\[\mathbb{E} \left(\sup_{t \in [T^m, T^m + h_i]} |X_i(t) - X_i(T^m)|^2 \bigg| \mathcal{F}^n \right) \leq 54h^2_i \left(|X_i^m|^2 + |W_i^m|^2 \right) + 9\gamma^2h_i^2 |\partial_i f(X^m)|^2 + 540\gamma h_i^3 \]

(83)

\[\mathbb{E} \left(\sup_{t \in [T^m, T^m + h_i]} |W_i(t) - W_i(T^m)|^2 \bigg| \mathcal{F}^n \right) \leq 54h^2_i \left(|X_i^m|^2 + |W_i^m|^2 \right) + 9\gamma^2h_i^2 |\partial_i f(X^m)|^2 + 1080\gamma h_i \]

(84)

\[\mathbb{E} \left(\sup_{t \in [T^m, T^m + h_i]} |\partial_i f(X(t))|^2 \bigg| \mathcal{F}^n \right) \leq 3|\partial_i f(X^m)|^2 + 16L_i^2h^2 \left(|X_i^m|^2 + |W_i^m|^2 \right) + 160L_i h^3 \]

(85)

Proof. First, we note (83), (85) are direct results from Shen and Lee (2019) Lemma 6.

Consider (37), we have

\[\mathbb{E} \left(\sup_{t \in [T^m, T^m + h_i]} |W_i(t) - W_i(T^m)|^2 \bigg| \mathcal{F}^n \right) \leq 2 \left(|X_i^m|^2 + |W_i^m|^2 \right) \]
\[+ \gamma^2 \mathbb{E} \left(\sup_{t \in [T^m, T^m + h_i]} \left| \int_{T^m}^t \left(1 + e^{-2(t-s)} \right) \partial_i f(X(s)) \, ds \right|^2 \bigg| \mathcal{F}^n \right) \]
\[+ 16\gamma \mathbb{E} \left(\sup_{t \in [T^m, T^m + h_i]} \left| \int_{T^m}^t \left(1 + e^{-2(t-s)} \right) \, dB_s \right|^2 \bigg| \mathcal{F}^n \right), \]

where the second term and third term can be further bounded by

\[\mathbb{E} \left(\sup_{t \in [T^m, T^m + h_i]} \left| \int_{T^m}^t \left(1 + e^{-2(t-s)} \right) \partial_i f(X(s)) \, ds \right|^2 \bigg| \mathcal{F}^n \right) \leq 2h_i^2 \mathbb{E} \left(\sup_{t \in [T^m, T^m + h_i]} |\partial_i f(X(t))|^2 \bigg| \mathcal{F}^n \right) \]
and
\[E \left(\sup_{t \in [T^{m}, T^{m} + h_i)} \left| \int_{T^{m}}^{t} \left(1 + e^{-2(t-s)} \right) dB_s \right|^2 \mid \mathcal{F}^n \right) \leq 18h_i \]

Substituting these into (86), we obtain (84).

\[\square \]

F Key lemmas in the proof of Theorem 6.2

In this section, we always assume \(f \) and \(h \) satisfy conditions in Theorem 6.2 and we use notations from Section C.

Lemma F.1. For any \(1 \leq i \leq d \) and \(m \geq 0 \)
\[E \left(\int_{T^{m}}^{T^{m} + 1} \left| \tilde{X}_i(t) - \tilde{x}_i^m \right|^2 \right) \leq \frac{h_i^3 \gamma}{3} \tag{87} \]
and
\[E \left(\int_{T^{m}}^{T^{m} + 1} \left| (\tilde{V}_i(t) - V_i(t)) - (\tilde{v}_i^m - v_i^m) \right|^2 \right) \leq \frac{8h_i^4}{3} E \left| \tilde{v}_i^m - v_i^m \right|^2 + \frac{4\gamma^2 h_i^2}{3} E \left| \partial_i f(\tilde{x}) - \partial_i f(x_m) \right|^2 + \frac{4\gamma^3 L^2 h_i^6}{15}. \tag{88} \]

Lemma F.2. For \(B_i^m, D_i^m \) defined in (54), (55), we have
\[E \left(|B_i^m|^2 \right) \leq \frac{16h_i^4}{3} E \left| \tilde{v}_i^m - v_i^m \right|^2 + \frac{8\gamma^2 h_i^2}{3} E \left| \partial_i f(\tilde{x}) - \partial_i f(x_m) \right|^2 + \frac{6\gamma^3 L^2 h_i^6}{5}, \tag{89} \]
\[E \left(|D_i^m|^2 \right) \leq \frac{8h_i^4}{3} E \left| \tilde{v}_i^m - v_i^m \right|^2 + \frac{4\gamma^2 h_i^2}{3} E \left| \partial_i f(\tilde{x}) - \partial_i f(x_m) \right|^2 + \frac{4\gamma^3 L^2 h_i^6}{15}. \tag{90} \]

Lemma F.3. Assume \(K_i^m \) is defined in (50), then
\[\sum_{i=1}^{d} \phi_i E K_i^m \leq \left(-\frac{\gamma h}{2} + \frac{3h^2}{\min\{\phi_i\}} \right) E|\Delta^m|^2 \tag{91} \]

Proof of Lemma F.1. First we prove (87). According to (15)-(17), we have
\[E \left(\int_{T^{m}}^{T^{m} + 1} \left| \tilde{X}_i(t) - \tilde{x}_i^m \right|^2 \right) \leq E \left(\int_{T^{m}}^{T^{m} + 1} \int_{T^{m}}^{t} \left| \tilde{V}_i(s) \right|^2 ds \mid r_m = i \right) \]
\[\leq \int_{T^{m}}^{T^{m} + h_i} (t - T^{m}) \int_{T^{m}}^{t} \left| \tilde{V}_i(s) \right|^2 ds \mid r_m = i \right) dt \]
\[= \int \left| v_i^m \right|^2 p(x,v) dx dv \int_{T^{m}}^{T^{m} + h_i} (t - T^{m}) dt = \frac{h_i^3 \gamma}{3}, \tag{92} \]

where in the first inequality we use \(T^{m+1} = T^m + h_i \) under condition \(r_m = i \) and Hölder’s inequality, and for the second equality we use \(p \) is a stationary distribution so that \((\tilde{X}, \tilde{V}) \sim p \) and \(\tilde{V}_t \sim \exp(-\left| v \right|^2/(2\gamma)) \) for any \(t \).

Second, to prove (88), using (13)-(15), we first rewrite \((\tilde{V}_i(t) - V_i(t)) - (\tilde{v}_i^m - v_i^m) \) as
\[
(\tilde{V}_i(t) - V_i(t)) - (\tilde{v}_i^m - v_i^m) = (\tilde{v}_i^m - v_i^m)(e^{-2(t-T^m)} - 1) \]
\[- \gamma \int_{T^{m}}^{t} e^{-2(t-s)} \left[\partial_i f(\tilde{X}(s)) - \partial_i f(x_m) \right] ds \tag{93} \]
\[= I(t) + \Pi(t) \]
for \(T^m < t \leq T^{m+1}\). Then we bound each term separately:

\[
E \left(\int_{T^m}^{T^{m+1}} |I(t)|^2 \, dt \bigg| \, r^m = i \right) \leq h_i E \left(\int_{T^m}^{T^{m+1}} \left(\tilde{v}_i^m - v_i^m \right) e^{-2(t-T^m)} \, dt \bigg| \, r^m = i \right) \\
\leq h_i \int_{T^m}^{T^{m+h_i}} (2(t-T^m))^2 E \left(\left| \tilde{v}_i^m - v_i^m \right| \bigg| \, r^m = i \right) \, dt \\
\leq \frac{4h_i^3}{3} E \left| \tilde{v}_i^m - v_i^m \right|^2 ,
\]

where we use \(T^{m+1} = T^m + h_i\) and Hölder’s inequality in the first inequality and \(1 - e^{-x} < x\) in the second inequality.

\[
E \left(\int_{T^m}^{T^{m+1}} |\Pi(t)|^2 \, dt \bigg| \, r^m = i \right) \\
\leq \gamma^2 E \left(\int_{T^m}^{T^{m+1}} \left| \int_t^{T^m} e^{-2(t-s)} \left[\partial_s f(\tilde{X}(s)) - \partial_s f(x^m) \right] \, ds \bigg| \, r^m = i \right) \\
\leq 2\gamma^2 E \left(\int_{T^m}^{T^{m+1}} \left| \int_t^{T^m} e^{-2(t-s)} \left[\partial_s f(\tilde{X}(s)) - \partial_s f(x^m) \right] \, ds \bigg| \, r^m = i \right) \\
+ 2\gamma^2 \int_{T^m}^{T^{m+1}} \left| \int_t^{T^m} e^{-2(t-s)} \left[\partial_s f(x^m) \right] \, ds \bigg| \, r^m = i \right) \, dt \\
\leq 2\gamma^2 \int_{T^m}^{T^{m+h_i}} (t-T^m) E \left(\int_t^{T^m} \left| \partial_s f(\tilde{X}(s)) - \partial_s f(x^m) \right|^2 \, ds \bigg| \, r^m = i \right) \, dt \\
+ 2\gamma^2 \int_{T^m}^{T^{m+h_i}} (t-T^m) E \left(\int_t^{T^m} \left| \partial_s f(x^m) \right|^2 \, ds \bigg| \, r^m = i \right) \, dt \\
\leq 2\gamma^2 L_i^2 \int_{T^m}^{T^{m+h_i}} (t-T^m) E \left(\int_t^{T^m} \left| \tilde{X}_i(s) - \bar{X}_i^m \right|^2 \, ds \bigg| \, r^m = i \right) \, dt \\
+ 2\gamma^2 \int_{T^m}^{T^{m+h_i}} (t-T^m) E \left(\int_t^{T^m} \left| \partial_s f(x^m) \right|^2 \, ds \bigg| \, r^m = i \right) \, dt \\
\leq \frac{2\gamma^2 L_i^2 h_i^3}{15} + \frac{2\gamma^2 h_i^3}{3} E \left| \partial_s f(x^m) \right|^2 ,
\]

where in (I) we use assumption \(\mathbf{3.1}\) and we use \(\mathbf{8.7}\) in (II).

Substituting \(\mathbf{94}\) and \(\mathbf{95}\) into the following inequality:

\[
E \left(\int_{T^m}^{T^{m+1}} \left| \left(\tilde{V}_i(t) - V_i(t) \right) - (\tilde{v}_i^m - v_i^m) \right|^2 \, dt \bigg| \, r^m = i \right) \\
\leq 2E \left(\int_{T^m}^{T^{m+1}} |I(t)|^2 \, dt \bigg| \, r^m = i \right) + 2E \left(\int_{T^m}^{T^{m+1}} |\Pi(t)|^2 \, dt \bigg| \, r^m = i \right) ,
\]

we prove \(\mathbf{88}\). \(\Box\)
Proof of Lemma F.2 First, because under condition $r^m = i, T^{m+1} = T^m + h_i$, we can separate B^m into two parts:

$$\mathbb{E} \left(|B^m_i|^2 \mid r^m = i \right) \leq 2\mathbb{E} \left(\left| \int_{T^m}^{T^{m+1}} (\bar{V}_i(t) - V_i(t)) - (\tilde{v}_i^m - v_i^m) \, dt \right|^2 \mid r^m = i \right)$$

$$+ 2\mathbb{E} \left(\gamma \int_{T^m}^{T^{m+1}} e^{-2((m+1)h-t)} \left[\partial_i f(\bar{X}(t)) - \partial_i f(\bar{x}^m) \right] \, dt \mid r^m = i \right).$$

We bound the two terms on the rhs:

$$\mathbb{E} \left(\left| \int_{T^m}^{T^{m+1}} (\bar{V}_i(t) - V_i(t)) - (\tilde{v}_i^m - v_i^m) \, dt \right|^2 \mid r^m = i \right)$$

$$\leq h_i \mathbb{E} \left(\left| \int_{T^m}^{T^{m+1}} (\bar{V}_i(t) - V_i(t)) - (\tilde{x}_i^m - v_i^m) \right|^2 \, dt \mid r^m = i \right)$$

$$\leq \frac{8h_i^4}{3} \mathbb{E} |\tilde{v}_i^m - v_i^m|^2 + \frac{4\gamma^2h_i^4}{3} \mathbb{E} \left(\left| \partial_i f(\bar{x}^m) - \partial_i f(x^m) \right|^2 \right) + \frac{4\gamma^3L_i^2h_i^6}{15},$$

where we use Lemma E.1 (88) in the second inequality.

$$\mathbb{E} \left(\gamma \int_{T^m}^{T^{m+1}} e^{-2((m+1)h-t)} \left[\partial_i f(\bar{X}(t)) - \partial_i f(\bar{x}^m) \right] \, dt \mid r^m = i \right)$$

$$\leq h_i \gamma^2 \mathbb{E} \left(\int_{T^m}^{T^{m+1}} e^{-2((m+1)h-t)} \left[\partial_i f(\bar{X}(t)) - \partial_i f(\bar{x}^m) \right]^2 \, dt \mid r^m = i \right)$$

$$\leq h_i \gamma^2 L_i^2 \mathbb{E} \left(\int_{T^m}^{T^{m+1}} \left| \bar{X}_i - \bar{x}^m \right|^2 \, dt \mid r^m = i \right)$$

$$\leq \frac{\gamma^3 L_i^2 h_i^4}{3},$$

where we use Lemma E.1 (87) in the last two inequalities.

Combine (96) and (97) together, we finally have

$$\mathbb{E} \left(|B^m_i|^2 \mid r^m = i \right) \leq \frac{16h_i^4}{3} \mathbb{E} |\tilde{v}_i^m - v_i^m|^2 + \frac{8\gamma^2h_i^4}{3} \mathbb{E} \left(\left| \partial_i f(\bar{x}^m) - \partial_i f(x^m) \right|^2 \right) + \frac{8\gamma^3 L_i^2 h_i^6}{15} + \frac{2\gamma^3 L_i^2 h_i^4}{3},$$

which implies (89) if we further use $h < 1$.

Next, estimation of $\mathbb{E} \left(|B^m_i|^2 \mid r^m = i \right)$ is a direct result of (96).

Proof of Lemma F.3 Recall

$$\sum_{i=1}^{d} \phi_i K_i^m = \sum_{i=1}^{d} \phi_i (1 - h_i - e^{-2h_i}) \left[(\tilde{x}_i^m - x_i^m) - (\tilde{w}_i^m - u_i^m) \right] (\tilde{w}_i^m - w_i^m)$$

$$\quad - \gamma \phi_i (1 - e^{-2h_i}) \frac{2}{2} \sum_{i=1}^{d} \left[\partial_i f(\tilde{X}_i) - \partial_i f(x_i^m) \right] (\tilde{w}_i^m - w_i^m)$$

$$\quad + \sum_{i=1}^{d} \phi_i h_i \left[(\tilde{w}_i^m - w_i^m) - (\tilde{x}_i^m - x_i^m) \right] (\tilde{x}_i^m - x_i^m)$$

Since $h_i < 1/20$, we have

$$|1 - 2h_i - e^{-2h_i}| < 2h_i^2,$$
which implies

\[
\sum_{i=1}^{d} \phi_i K_i^m = \sum_{i=1}^{d} \phi_i h_i [(\tilde{x}_i^m - x_i^m) - (\tilde{w}_i^m - w_i^m)] (\tilde{w}_i^m - w_i^m) - \gamma \phi_i h_i \sum_{i=1}^{d} [\partial_i f(\tilde{x}_i^m) - \partial_i f(x_i^m)] (\tilde{w}_i^m - w_i^m)
\]

\[
+ \sum_{i=1}^{d} \phi_i h_i [(\tilde{w}_i^m - w_i^m) - (\tilde{x}_i^m - x_i^m)] (\tilde{x}_i^m - x_i^m)
\]

\[
+ \sum_{i=1}^{d} C_i \phi_i h_i^2 [(\tilde{x}_i^m - x_i^m) - (\tilde{w}_i^m - w_i^m)] (\tilde{w}_i^m - w_i^m)
\]

\[- \frac{\gamma C_i \phi_i h_i^2}{2} \sum_{i=1}^{d} [\partial_i f(\tilde{x}_i^m) - \partial_i f(x_i^m)] (\tilde{w}_i^m - w_i^m) \]

= I + II

where \(|C_i| < 2, \)

\[
I = \sum_{i=1}^{d} \phi_i h_i [(\tilde{x}_i^m - x_i^m) - (\tilde{w}_i^m - w_i^m)] (\tilde{w}_i^m - w_i^m) - \gamma \phi_i h_i \sum_{i=1}^{d} [\partial_i f(\tilde{x}_i^m) - \partial_i f(x_i^m)] (\tilde{w}_i^m - w_i^m)
\]

\[
+ \sum_{i=1}^{d} \phi_i h_i [(\tilde{w}_i^m - w_i^m) - (\tilde{x}_i^m - x_i^m)] (\tilde{x}_i^m - x_i^m)
\]

and

\[
II = \sum_{i=1}^{d} C_i \phi_i h_i^2 [(\tilde{x}_i^m - x_i^m) - (\tilde{w}_i^m - w_i^m)] (\tilde{w}_i^m - w_i^m) - \frac{\gamma C_i \phi_i h_i^2}{2} \sum_{i=1}^{d} [\partial_i f(\tilde{x}_i^m) - \partial_i f(x_i^m)] (\tilde{w}_i^m - w_i^m)
\]

Let \(\tilde{x}^m - x^m = a, \tilde{w}^m - w^m = b, \) we first bound \(|II|, \) since \(\phi_i h_i^2 = \frac{h^2}{\phi_i}, \) we have

\[
|II| \leq \frac{4h^2}{\min\{\phi_i\}} \left| \sum_{i=1}^{d} [(\tilde{x}_i^m - x_i^m) - (\tilde{w}_i^m - w_i^m)] (\tilde{w}_i^m - w_i^m) \right|
\]

\[
+ \frac{2\gamma h^2}{\min\{\phi_i\}} \left| \sum_{i=1}^{d} [\partial_i f(\tilde{x}_i^m) - \partial_i f(x_i^m)] (\tilde{w}_i^m - w_i^m) \right|
\]

\[
\leq \frac{4h^2}{\min\{\phi_i\}} |a - b| + \frac{2\gamma h^2}{\min\{\phi_i\}} |(\nabla f(\tilde{x}^m_i) - \nabla f(x^m_i), b)|
\]

\[
\leq \frac{3h^2}{\min\{\phi_i\}} (|a|^2 + |b|^2),
\]

where we use Assumption\(3.1(3)\) and \(\gamma L \leq 1\) in the last inequality.

Next, we deal with I, since \(\phi_i h_i = h, \) we have

\[
I = h (a - b, b) - \gamma h \langle \nabla f(\tilde{x}^m_i), b \rangle + h \langle b - a, a \rangle
\]

By mean-value theorem and Assumption\(3.1\), there exists a matrix \(\mu I_d \leq \nabla f \leq LI_d\) such that

\[
\nabla f(\tilde{x}^m_i) - \nabla f(x^m_i) = \nabla f(a)
\]

Therefore, we have

\[
I = h [(a - b, b) + \langle b - a, a \rangle - \gamma \langle \nabla f(a), b \rangle] = h (a, b)^	op Q (a, b),
\]

where

\[
Q = \begin{bmatrix}
-I_d & -\frac{\gamma H_f}{2} \\
\frac{\mu}{2} & -\frac{\gamma H_f}{2}
\end{bmatrix}
\]

29
Calculate the eigenvalue of Q, we need to solve
\[
\det \left\{ (-1 - \lambda)^2 I_d - \left(I_d - \frac{\gamma h H}{2} \right)^2 \right\} = 0 ,
\]
which implies eigenvalues $\{ \lambda_j \}_{j=1}^K$ solve
\[
(-1 - \lambda_j)^2 - \left(1 - \frac{\gamma \Lambda_j}{2} \right)^2 = 0 ,
\]
which implies
\[
\lambda_j = -\frac{\gamma \Lambda_j}{2} \quad \text{or} \quad \lambda_j = \frac{\gamma \Lambda_j}{2} - 2
\]
since $\gamma \Lambda_j \leq \gamma \Lambda \leq 1$, we have
\[
\lambda_{\max}(Q) \leq -\frac{\gamma \mu}{2} .
\]
Therefore, we have
\[
|I| \leq -\frac{\gamma \mu h}{2} (|a|^2 + |b|^2) .
\]
Combining with (100) and (98), we prove (91).