Research article

Characteristics of catechin loading rice porous starch/chitosan functional microsphere and its adsorption towards Pb^{2+}

Suwei Jiang a,*, Hailiang Hu b

a Department of Biological and Environmental Engineering, Hefei University, Hefei 230601, Anhui, China
b Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China

ARTICLE INFO

Keywords:
Polyphenol
Adsorption kinetics
Composite microspheres

ABSTRACT

In this paper, we explore the adsorption potential of catechin (CT) loaded composite microspheres and provide a new micron scale carrier of functional factor. Chitosan (CS) modified rice porous starch (RPS/CS) was used as a CT adsorption carrier to prepare bioactive CT-loaded composite microspheres (CT@RPS/CS). The adsorption kinetics, storage characteristics, and biological activity maintenance of CT@RPS/CS were studied in an aqueous solution, and the sustained-release characteristics of CT@RPS/CS were studied in vitro during simulated gastrointestinal digestion. An aqueous solution further studied the removal characteristics of adsorbed heavy metal ion Pb^{2+}. RPS/CS can significantly improve the ability to adsorb CT. RPS/CS can also significantly improve CT's storage stability, antioxidant stress, and slow-release characteristics, and the sustained release effect in gastric and intestinal juice. CT@RPS/CS can be removed Pb^{2+} by adsorbing in the solution, and their adsorption was physical adsorption and chemisorption, but the primary interaction is chemisorption. CT@RPS/CS can be used as a micron carrier of new food functional factors, which has potential space for improving and expanding the functional characteristics of its loaded functional factors and the endowing of new functions.

1. Introduction

Polyphenols are prone to moisture absorption, browning, oxidation, and lose biological function when exposed to the natural environment. Catechin (CT) is the main component of tea polyphenols. Many studies have shown that CT has a significant effect on antioxidant, anti-cancer [1, 2], antibacterial [3, 4], and anti-inflammatory abilities [5, 6], and CT can reduce lipid production and decrease the incidence rate of cardiovascular and cerebrovascular diseases [7, 8], and which can effectively improve the body's immunity, and protect the heavy metals poisoning. It has been widely applied in food, medicine, and other fields. However, the active phenolic hydroxyl groups make CT more sensitive to environmental conditions (such as light, high temperature, humidity, and alkalinity). They are easy to oxidative browning, resulting in the decline or disappearance of activity and declined bioavailability [9].

Chitosan (CS) is rich in many sources, mainly extracted from chitin and prepared by deacetylation. The CS has biological function, non-toxicity, biodegradability, and good biocompatibility. Chitosan can remove DPPH, hydroxyl, and superoxide free radicals [10, 11] and show antioxidant capacity. The amino and hydroxyl groups of chitosan can form intramolecular and intermolecular hydrogen bonds to form a three-dimensional network structure, which can chelate heavy metal ions and exhibit adsorption properties [12, 13]. However, it is difficult for chitosan to release catechin, which affects its antioxidant effect.

At present, the methods of removing lead from solution include adsorption [14], ion exchange [15], membrane filtration [16], electrodialysis [17] and biological treatment [18, 19]. Previous studies [20] have shown that porous microspheres have very high adsorption efficiency for Pb^{2+}. Researchers can modify the material to obtain higher adsorption capacity [21, 22], and some materials also have the characteristics of reuse [23]. Studies [24] demonstrated that modified starch could remove Pb^{2+} from industrial wastewater. Compared with other cereal starch, nature rice starch (NRS) has a small particle size, uniform size, and high specific surface area. It can be widely used in papermaking, textile, medicine, chemical industry. Rice porous starch (RPS) is generally prepared from rice starch by enzyme method, chemical method, or combination of chemical method and enzyme method.

Our previous study found that RPS/CS composite functional microsphere had good adsorption characteristics, sustained release characteristics, and storage stability for proanthocyanidin [24]. RPS/CS composite functional microsphere carrier has the potential advantage of loading catechin, but there is no relevant literature. This paper mainly discusses...
that catechin loading rice porous starch/chitosan functional microsphere (CT@RPS/CS), as an adsorbent, can adsorb heavy metal lead ions and give full play to the antioxidant properties of catechin. CT@RPS/CS would be a potential micron carrier of food functional factors, which may have space to improve and expand the functional characteristics of the loaded functional factors.

2. Material and method

2.1. Chemicals and reagents

Epicatechin (EC, HPLC ≥ 98%), Epigallocatechin (EGC, HPLC ≥ 98%), Epicatechin gallate (EGG, HPLC ≥ 98%), and a,a-diphenyl-bpicrylhydrazyl (DPPH) were purchased from Sigma Chemical Co., Ltd (St Louis, MO, USA). Chitosan (degree of deacetylation ≥ 95%, viscosity 100–200 mPa s) was purchased from Aladdin Chemical Reagent Co., Ltd. (Shanghai, China). Milli-Q water was obtained from the Millipore Bedford purification system (MA, USA). Lead acetate (AR, Pb(C2H3O2)2⋅3H2O) and acetic acid (purity over 99%) were purchased from Sinopharm Chemical Reagent Co., Ltd. The test conditions are as follows: chromatographic column waters X Bridge (4.6 × 25 × 5 μm), The column temperature is 30 °C, and the mobile phase is ultrapure water: acetonitrile: ethyl acetate (86: 12: 2), flow rate 1.0 mL/min, detection wavelength λ = 280 nm, injection volume 20 μL. The peak time was 19 min, and four groups of standard curves (Table 1) and mixed standard spectra (Figure 1) were obtained.

The adsorption mechanism of NRS, RPS, RPS/CS, and Cs on CT, the adsorption process is simulated by pseudo-first-order and pseudo-second-order kinetic models (Eqs. (2) and (3)), respectively.

\[
\ln(q_e - q_t) = \ln q_e - k_1t \\
\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}
\]

\[
q_t = q_{eq} = \frac{C \cdot V}{m}
\]

\[
\ln(q_e - q_t) = \ln q_e - k_1t \\
\]

\[
ln\left(\frac{q_t}{q_e} + \frac{1}{k_2 q_e^2}\right) = \ln\left(\frac{1}{k_2 q_e^2}\right) + \frac{t}{q_e}
\]

In Eq. (4), \(c_e\) is the concentration of CT solution at t min (mg/ml), v is the volume of solution (mL), and m is the mass of sample (g).

2.2. The preparation of porous chitosan-modified starch preparation

The preparation of the porous chitosan-modified starch (RPS/CS) was performed as follows [24]: 1) The preparation of CS solution: 1 g of CS was dissolved in 400 ml of acetic acid solution (2 g/L), and then magnetic stirring and mixing at 20 °C for 30 min. 2) 3 g of RPS was evenly dispersed in CS solution to obtain RPS/CS dispersion with a CS content of 25% (w/w); 3) After natural precipitation for 24 h, the supernatant was removed, and the precipitation was freeze-dried (2.5, 5, 10, 20, 30, 60, 90, 120, 180, 240, 360 and 480 min). 2 ml water was obtained from the Millipore Bedford purification system (degree of deacetylation ≥ 95%, Epicatechin gallate (ECG, HPLC 98%), and a,a-diphenyl-bpicrylhydrazyl (DPPH) were purchased from Sigma Chemical Co., Ltd (St Louis, MO, USA). Chitosan (degree of deacetylation ≥ 95%, viscosity 100–200 mPa s) was purchased from Aladdin Chemical Reagent Co., Ltd. (Shanghai, China). Milli-Q water was obtained from the Millipore Bedford purification system (MA, USA). Lead acetate (AR, Pb(C2H3O2)2⋅3H2O) and acetic acid (purity over 99%) were purchased from Sinopharm Chemical Reagent Co., Ltd.

2.3. The preparation of CT loading RPS/CS

The preparation of CT loading RPS/CS was performed as follows: 1) The preparation of CT solution: 1 g of CT was dissolved in 400 ml of acetic acid solution (2 g/L), and then magnetic stirring and mixing at 20 °C for 30 min. 2) 3 g of RPS was evenly dispersed in CS solution to obtain RPS/CS dispersion with a CS content of 25% (w/w); 3) After natural precipitation for 24 h, the supernatant was removed, and the precipitation was freeze-dried (−50 °C, 24 h) to avoid the gelatinization according to reference [25]. and then, the powder sample was heat-treated in an oven at 130 °C for 4 h and cooled to room temperature. The powder (RPS/CS) was collected through a 200-mesh sieve.

2.4. Adsorption towards CT

1 g NRS, RPS, RPS/CS, and Cs was dispersed in 30 ml CT solution (2 g/L) and shaken in constant temperature water at 25 °C for various times (2.5, 5, 10, 20, 30, 60, 90, 120, 180,240,360 and 480 min). 2 ml dispersion were centrifuged (6000g, 5 min), the supernatant was removed, and the precipitation was freeze-dried (−50 °C, 24 h). Finally, we obtained various CT-loaded composite microspheres labeled CT@NRS, CT@RPS, CT@RPS/CS, and CT@CS.

2.5. Release experiment of CT

We dissolved 1 g CT@NRS, CT@RPS, CT@RPS/CS, and CT@CS in 30 mL Mill-Q water and shook (120 r/min) in constant temperature water at 25 °C for various times (2.5, 5, 10, 20, 30, 60, 90, 120, 180,240,360 and 480 min). 2 ml dispersion (add 2 ml of the corresponding medium to keep the total volume of the solution unchanged) were centrifuged (6000g, 10 min) and used to determine the concentration of EC, EGC, ECG and EGCG in the supernatant were determined by HPLC, and the release \(q_t\) (mg/g) of CT was calculated:

\[
q_t = \frac{C \cdot V}{m}
\]

2.6. Stability experiment of storage

Take appropriate amount of CT@RPS/CS and CT were placed in sample bottles and stored according to experimental groups. Lightless group: wrap the sample with tin foil and keep it in the medicine cabinet; Humidity group: take out the desiccant from the dryer and put it on the test bench; Humidity group: take out the desiccant from the dryer and put it on the test bench; Humidity group: take out the desiccant from the dryer and put it on the test bench. The test conditions are as follows: chromatographic column waters X Bridge (4.6 × 25 × 5 μm), The column temperature is 30 °C, and the mobile phase is ultrapure water: acetonitrile: ethyl acetate (86: 12: 2), flow rate 1.0 mL/min, detection wavelength λ = 280 nm, injection volume 20 μL. The peak time was 19 min, and four groups of standard curves (Table 1) and mixed standard spectra (Figure 1) were obtained.

The adsorption mechanism of NRS, RPS, RPS/CS, and Cs on CT, the adsorption process is simulated by pseudo-first-order and pseudo-second-order kinetic models (Eqs. (2) and (3)), respectively.

\[
\ln(q_e - q_t) = \ln q_e - k_1t \\
\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}
\]

| Table 1. Standard curve of EC, EGC, ECG, and EGCG. |
|-----------------|-----------------|-----------------|-----------------|
Line relation	R²	Line relation	R²
EC	y = 11884x – 8159.3	EGC	y = 28763x – 59670
ECG	y = 2392.9x – 5471.4	EGCG	y = 19251x – 46993

In Eq. (1), \(c_0\) and \(c_t\) are the initial concentration of CT solution and the concentration at t min (mg/ml), v is the volume of solution (mL), and m is the mass of sample (g). When the balance of adsorption, the concentration and adsorption capacity of the solution are expressed by \(c_e\) and \(q_e\), respectively.
In Eq. (5), \(c_0\) represents the initial storage concentration, \(c_n\) represents the concentration at \(n\) days of storage, and \(n\) represents the storage day.

2.7. Detection of antioxidant stress in vitro

2.7.1. Determination of hydroxyl free radical scavenging ability

The hydroxyl free radical (\(\cdot \text{OH}\)) scavenging capacity was determined by the o-phenanthrene-Fe\(^{2+}\) oxidation method. Generally, 1 g CT@NRS, CT@RPS, CT@RPS/CS, and CT@CS were dissolved in 30 mL Milli-Q water and shook (120 r/min) in constant temperature water at 25 °C for 4 h, and then the supernatant was used to carry out the next antioxidant stress experiment in vitro.

The 1.0 mL supernatant was taken after centrifugation (6000 g, 10 min). Tests were performed according to reference [26]. The test sample was mixed with 2.0 mL phosphate buffer (pH 7.4), and then 1.5 mL phenanthroline solution (5 mmol/L), 1.0 mL ferrous sulfate solution (7.5 mmol/L), and 1.0 mL H\(_2\)O\(_2\) (0.1%) were added and mixed evenly, Milli-Q water was supplied to 10 mL and water bath at 37 °C for 1 h, finally, the absorbance \(A\) of the solution were determined at 510 nm. Two blank tubes were labeled undamaged \(A_0\) and damaged \(A_1\). \(A_0\) was not added to H\(_2\)O\(_2\). \(A_1\) was added 1.0 mL H\(_2\)O\(_2\) (0.1%). Take the Vc as the control to calculate the hydroxyl clearance rate (\(R_{\cdot \text{OH}}\), %):

\[
R_{\cdot \text{OH}}(\%) = \frac{A_0 - A_1}{A_0} \times 100\%
\]

In Eq.(6), \(A\) represents the absorbance of the tested solution, \(A_0\) represents the absorbance of an undamaged \(A_0\) tube, \(A_1\) represents the absorbance of a damaged \(A_1\) tube.

2.7.2. Determination of reducing power

The reducing power was determined according to the method [27]. Briefly, 2.5 mL of the supernatant was taken from 1.7.1. 2.5 mL phosphate buffer (pH 6.6) was mixed evenly in the supernatant, and then 2.5 mL potassium ferricyanide solution (1%) was added. The mixture was added and mixed evenly with 2.5 mL trichloroacetic acid solution (10%) after a water bath at 50 °C for 20 min. The 5 mL supernatant after centrifugation (6000g, 10 min) and 5 mL Milli-Q water, and 1 mL ferric chloride solution (0.1%) were mixed and used to determine the absorbance of the solution at 700 nm and analyze its reducing power (VC equivalent concentration). Draw the VC concentration standard curve with VC concentration as the abscissa and absorbance as the ordinate (as shown in Figure 2). The fitting standard equation is \(y = 1.463x - 1.487, R^2 = 0.9993\).

\[
R_{\text{DPPH}}(\%) = \frac{A_0 - (A_S - A_1)}{A_0} \times 100\%
\]

In Eq.(7), \(A_0\) represents the absorbance of DPPH-ethanol solution, \(A_1\) represents the absorbance of sample solution + ethanol solution, and \(A_S\) represents the absorbance of the test sample.

2.8. Digestion experiment in vitro

2.8.1. Preparation of simulated gastric juice and simulated intestinal juice

The preparation of simulated gastric juice and intestinal juice according to reference [28], and some improvements were made as follows: 1) Preparation of simulated gastric juice: 0.2g pepsin was dissolved in a certain amount of sterile normal saline (0.5%, w/V), and the pH of the solution was adjusted to 2.0 with hydrochloric acid, and finally the solution was obtained with concentration reach to 3 g/L. 2) Preparation of
simulated intestinal juice: 0.04 g trypsin and 0.03 g bile salt were dissolved in 10 mL NaHCO3/Na2CO3 buffer solution (0.1 mol/L, pH 7). Simulated gastric and intestinal fluid was filtered by a 0.22 μm filter membrane, ready for the next experiment.

2.8.2. Simulate digestion in gastric juice
4 g CT@NRS, CT@RPS, CT@RPS/CS, and CT@CS were taken, and 40 mL simulated gastric juice was mixed, respectively. The mixture was warped with tin foil paper and vibrated in the water bath at 37 °C for various times (0, 30, 60, 120, 240, 360, and 480 min). Then the supernatant was taken after centrifugation (6000 g, 4 °C, 5 min), and was measured the CT concentration by HPLC.

2.8.3. Simulate digestion in the intestinal juice
4 g CT@NRS, CT@RPS, CT@RPS/CS, and CT@CS were taken, and 40 mL simulated intestinal juice was mixed, respectively. The mixture was warped with tin foil paper, and vibrated in the water bath at 37 °C for 2 h. Then the precipitate was taken after centrifugation (6000 g, 4 °C, 10 min) and mixed in 40 mL simulated intestinal juice. The pH of the mixture was adjusted to 7, warped with tin foil paper, and vibrated in the water bath at 37 °C for various times (0, 30, 60, 120, 240, 360, and 480 min). Then the supernatant was taken after centrifugation (6000 g, 4 °C, 5 min), and was measured the CT concentration by HPLC.

2.9. Adsorption characteristics of lead ions by CT@RPS/CS

2.9.1. Correlation between the concentration of Pb2+ and the removal rate of Pb2+

The lead ion concentration solution was prepared according to the concentration (0, 2.5, 5, 10, 15, and 20 mg/L), the absorbance was determined by atomic absorption spectrometry (AAS), and the Pb2+ concentration standard curve was drawn (Figure 3). The fitting equation is $y = 0.00983x + 0.00151$, $R^2 = 0.99951$.

We added 2 g CT@RPS/CS in 50 mL of Pb2+ lead acetate solutions of different concentrations (50, 100, 150, 250, 300, 500 μM), respectively. The mixture was shaken in a water bath at 25 °C for 2 h, the supernatant was taken after centrifugation (6000g, 4 °C, 10 min), and the concentration of Pb2+ was determined by AAS calculated the removal rate ($R_{Pb2+}^{\%}$, %).

$$R_{Pb2+}^{\%} = \frac{C_0 - C_1}{C_0} \times 100\%$$ \hspace{1cm} (8)

In Eq. (8), C_0 and C_1 represent the initial concentration of Pb2+ and lead ion concentration in the solution after adsorption, respectively.

2.9.2. Effect of the removal rate of Pb2+ by adsorbents in solution

The removal rate of Pb2+ by adsorbent was 250 μM in lead acetate solution, 2g NRS, CT@NRS, RPS, CT@RPS, RPS/CS, CT@RPS/CS, CS, and CT@CS was added in 50ml 250 μM lead acetate solutions, respectively. The mixture was shaken in a water bath at 25 °C for 2 h, the supernatant was taken after centrifugation (6000g, 4 °C, 10 min), and the concentration of Pb2+ was determined by formulating 8 and calculating the removal rate ($R_{Pb2+}^{\%}$, %).

2.9.3. Adsorption kinetics of Pb2+ by CT@RPS/CS and FT-IR analysis

We added 2 g CT@RPS/CS in 50 mL lead acetate solution (250 μM) and vibrated in water bath at 25 °C for various time (0, 2.5, 10, 15, 20, 30, 60, 90, 120, 180, 240, 360 and 480 min). Then took 2 mL of the supernatant and centrifuged (6000g, 4 °C, 10 min); finally, the adsorption capacity of Pb2+ was determined by AAS and drewled adsorption kinetic curve.

To study the binding form of Pb2+ and CT@RPS/CS, the samples were analyzed by FTIR. Tablet was used for potassium bromide, and the scanned range is 400–4000 cm⁻¹.

3. Result and discussion

3.1. Kinetic analysis of CT adsorption by adsorbents

Four adsorption materials (CS, NRS, RPS, and RPS/CS) have an adsorption effect on CT, and there was a noticeable difference among the adsorption characteristics (Figure 4).

The adsorption characteristics of CT are highly similar between NRS and RPS. At the beginning of 20 min, the adsorption rate of NRS and RPS on CT increased linearly and rapidly and reached about 40% of the maximum adsorption capacity; Then, the adsorption rate gradually slowed down after 90 min and tended to balance, reaching their maximum adsorption capacity of 18 mg/g and 21 mg/g respectively. Figure 4 shows that the adsorption capacity of RPS on CT is more significant than NRS at an observed time; it may be because the specific surface of RPS is larger than that of NRS, which is similar to studies [29].

The adsorption characteristics of CS on CT were significantly different from those of NRS and RPS on CT. The adsorption rate of CS on CT increased linearly and sharply within 5 min of the beginning. The adsorption of CS on CT tended to balance after 180 min and reached the maximum adsorption capacity of 50 mg/g. The maximum adsorption capacity of CS on CT was 2.78 times and 2.38 times that of NRS and RPS, respectively. The reason may be that there is mainly a chemically combined between CT and CS, while the primary surface adsorption between starch particles and CT, which is similar to previous studies [24].

![Figure 3. Standard curve of Pb2+ concentration.](image3)

![Figure 4. Adsorption kinetics of CT onto samples.](image4)
Table 2. Pseudo-first-order and second-order equation parameters of CT adsorption onto samples.

Sample	Pseudo-first-order	Pseudo-second-order
NRS	$q_1 = 17.702 \pm 0.957$, $k_1 = 0.994$, $R^2_1 = 0.993$, $R^2_2 = 0.987$	$q_1 = 19.331 \pm 0.003$, $k_1 = 0.884$, $R^2_1 = 0.991$, $R^2_2 = 0.988$
RPS	$q_1 = 20.129 \pm 1.003$, $k_1 = 0.995$, $R^2_1 = 1.021$, $R^2_2 = 0.988$	$q_1 = 50.695 \pm 0.0005$, $k_1 = 2.482$, $R^2_1 = 0.999$, $R^2_2 = 0.992$
RPS/CS	$q_1 = 44.681 \pm 2.231$, $k_1 = 0.996$, $R^2_1 = 50.659$, $R^2_2 = 0.979$	$q_1 = 50.659 \pm 0.006$, $k_1 = 2.526$, $R^2_1 = 0.992$, $R^2_2 = 0.979$
CS	$q_1 = 48.251 \pm 2.322$, $k_1 = 0.913$, $R^2_1 = 2.526$, $R^2_2 = 0.979$	$q_1 = 50.659 \pm 0.006$, $k_1 = 2.526$, $R^2_1 = 0.992$, $R^2_2 = 0.979$

Values (mean ± SD) were calculated using the results from three independent experiments. Values in a column followed by different lowercase letters in superscripts that were significantly different from each other ($p < 0.05$).

Figure 5. Release curve of CT from samples.

RPS/CS for CT tended to balance after 180 min and reached the maximum adsorption capacity of 46 mg/g, 2.56 times, 2.19 times, and 0.92 times of the maximum adsorption of catechin by NRS, RPS, and CS, respectively. These results reflected that the adsorption characteristics of RPS/CS were between (NRS and RPS) and CS on CT.

The adsorption mechanism of NRS, RPS, RPS/CS, and CS on CT by pseudo-first-order and pseudo-second-order kinetic models, respectively. The results are shown in Table 2. R^2_1 in NRS and RPS is slightly lower than R^2_2, indicating that the pseudo-first-order model is more effective in stimulating the adsorption of NRS and RPS for CT and reflecting that NRS and RPS on CT belong to physical adsorption, and the control step is mass transfer process [24]. R^2_2 in CS is slightly higher than R^2_1, indicating that the pseudo-second-order model is more effective in stimulating the adsorption of CS for CT, and reflects the possible adsorption mechanism of CS on CT is mainly chemical adsorption or strong surface complexation [24]. R^2_2 and R^2_1 are both higher than 0.990 in RPS/CS. They are very closed, indicating that pseudo-first-order and second-order models can effectively simulate the adsorption process of RPS/CS for CT. The results reflected that the possible adsorption mechanism of RPS/CS for CT is the coexistence of physical adsorption or chemical adsorption or strong surface complexation. q_{e1} and q_{e2} of RPS/CS were two times higher than those of RPS and NRS, slightly lower than that of CS, indicating that the adsorption capacity of RPS/CS mainly depended on CS [24].

3.2. Release characteristics of CT @ carrier in aqueous solution

The changing trend of the CT release curve in each sample is the same, the release rate of CT increased rapidly in the initial stage but approached the maximum and stabilized after 4 h, and the order of CT release rate is CT@NRS > CT@RPS > CT@RPS/CS > CT@CS (Figure 5). The driving force of NRS on CT release comes from the concentration difference between the adsorbent surface and CT in the solution. Therefore, the release rate decreases gradually with the increase of release, which is consistent with a previous study [24]. The release mechanism of CT is consistent between CT@RPS and CT@NRS, but because of hinders the diffusion of CT in the micropores of RPS, so CT@RPS releases less CT than CT@NRS, which is consistent with the literature [30]. Due to chemical adsorption or strong surface complexation, this strong intermolecular force makes CT@CS difficult to release CT in an aqueous solution. RPS/CS shows a well-controlled release behavior, and the release amount of RPS/CS for CT is between CT@RPS and CT@CS. The CT release of CT@NRS and CT@RPS reached 2.32 mg/g and 2.02 mg/g after 1 h, respectively. CT@RPS/CS reached 2.05 mg/g after 4 h, which showed a well-controlled release effect, while CT@CS was only 0.76 mg/g after 4 h, which was too slowly released to be applied.

3.3. Storage stability characteristics of CT@RPS/CS

Four groups of samples were stored for 30 days, and the changes in the sample's morphology during storage are shown in Figure 6. It has strong water absorption characteristics of CT, but there is no significant impact on CT morphology under dry conditions, whether natural light irradiation or not. However, in the case of humidity 70%, especially in dark conditions, the moisture absorption phenomenon appeared after 10 days, which made the original powder sample gel, and the gel became more obvious as time went on. Similarly, CT@RPS/CS has no obvious moisture absorption in the case of humidity 70% and whether natural light irradiation or not. CT@RPS/CS can better maintain particle morphology in terms of morphology and appearance. These results reflected that RPS/CS could reduce the hygroscopic properties of CT, which may be due to the decrease of hydrophilic properties after the interaction of hydrophilic groups such as phenolic hydroxyl or amino groups with RPS/CS.

Figure 6. Morphology changes of samples during storage. (a) Arid + Darkness, (b) Arid + Lightness, (c) Darkness + RH 70% and (d) Lightness + RH 70%. The biggest bottle is the morphology of samples before the storage experiment.
There was no sign of hydroxyl radicals.

Under the same Arid conditions, the results showed that the failure rate of CT@RPS/CS in the natural lightness group was 1.64 times higher than that in the darkness group after 5 days, and the failure rate of CT in the CT group was 2.22 times higher than that in darkness group and compared them have the differences statistically significant (Table 3).

Table 3. Effects of storage conditions on loss percentage of CT.

Group	Time(d)	5	10	15	20	30
Arid + Dark	CT/RPS/CS	5.43 ± 0.33	27.44 ± 1.11	29.11 ± 1.06	32.54 ± 1.36	35.80 ± 1.54
Arid + Lightness	CT/RPS/CS	8.91 ± 0.43	27.52 ± 1.25	30.63 ± 1.69	34.45 ± 1.18	36.26 ± 2.76
Darkness + RH 70%	CT/RPS/CS	23.4 ± 1.91	27.99 ± 1.13	33.38 ± 1.64	35.73 ± 1.93	38.36 ± 1.86
Darkness + RH 70%	CT	25.08 ± 1.65	33.97 ± 1.73	36.24 ± 1.98	37.82 ± 1.41	45.79 ± 1.67

Note: a represents p < 0.05 vs. Arid, b represents p < 0.05 vs. Lightness, c represents p < 0.05 vs. Darkness.

At the same humidity, the failure rate of CT@RPS/CS still retains enough activity compared to the darkness group, indicating that they all have suitable hydroxyl radical removal ability.

3.4. Antioxidant capacity of CT@carrier in water

3.4.1. Hydroxyl radical scavenging capacity

The results of the scavenging capacity of hydroxyl radicals in water are in Table 4. The changing trend of the release curve after 8 h, the CT remaining amount of CT@RPS/CS was 4.81, 6.75, 34.60, and 48.96 mg/g, respectively. The remaining CT in CT@NRS and CT@RPS is relatively small (Figure 7B), which is not enough to maintain its biological activity and sustainable release ability in the intestine after simulating gastric juice in vitro.

Table 4. Scavenging capacity of hydroxyl radicals of samples in water.

c (mg/mL)	R_{sc} (%)			
	CT@NRS	CT@RPS	CT@RPS/CS	CT@CS
0.5	100	100	100	100
5	92.36	92.11	91.87	90.75
3	81.21	80.33	80.16	78.21
1	71.23	70.16	67.13	55.22

Note: c represents concentration, R_{sc} (%) represents the scavenging capacity of hydroxyl radicals.

3.4.2. Reducing power

The results of the scavenging capacity of reducing power in water are in Table 5. The change of reducing capacity of the sample in water is consistent with its removal capacity of hydroxyl radical. The reduction ability of CT@NRS and CT@RPS is higher than CT@CS, and the reduced ability of CT@RPS/CS is between CT@NRS and CT@RPS.

Table 5. Reducing capacity of samples in water.

c (mg/mL)	c (Vc)			
	CT@NRS	CT@RPS	CT@RPS/CS	CT@CS
0.67	1.91	1.88	1.63	1.39
0.67	1.02	0.97	0.84	0.71
0.33	0.54	0.51	0.41	0.34

Note: c represents concentration, and c (Vc) represents the equivalent concentration of Vc.

3.4.3. The free radical scavenging ability of DPPH

The results of the scavenging capacity of reducing power in water are in Table 6. The results showed that the scavenging ability of CT@carrier to DPPH in water was like that to hydroxyl radical. It is worth noting that when the concentration of CT@RPS/CS is 5 mg/ml, the clearance rate of DPPH reaches 100%, indicating that it has good DPPH clearance ability.

3.5. Simulate digestion in gastric juice

The release curve (Figure 7A) and remain curve (Figure 7B) of CT in simulated gastric juice in vitro. The changing trend of the release curve and the remaining curve is consistent. This release characteristic showed that CT@NRS, CT@RPS, and CT@RPS/CS have well-controlled CT release performance in simulated gastric juice in vitro. However, the release equilibrium of the CT@CS was reached rapidly within 10 min, and this release characteristic showed that it did not have a well-controlled release performance. It may be due to the binding mode between CT and CS being chemical adsorption or strong surface complexation. The remaining curve of CT on the carrier (Figure 7B) shows that CT release in simulated gastric juice in vitro after 8 h, The CT remaining amounts of CT@NRS, CT@RPS, CT@RPS/CS, and CT@CS were 4.81, 6.75, 34.60, and 48.96 mg/g, respectively. The remaining CT in CT@NRS and CT@RPS is relatively small (Figure 7B), which is not enough to maintain its biological activity and sustainable release ability in the intestine after simulating gastric juice in vitro.

Table 6. DPPH free radical scavenging capacity of samples in water.

c (mg/mL)	R_{sc} (%)			
	CT@NRS	CT@RPS	CT@RPS/CS	CT@CS
0.5	100	100	100	100
3	96.34	95.15	94.12	93.77
1	86.37	85.23	74.12	67.72
0.5	81.47	80.17	53.98	41.71
0.2	46.72	44.17	28.49	22.46

Note: c represents concentration, R_{sc} (%) represents the scavenging capacity of hydroxyl radicals.
3.6. Simulate digestion in the intestinal juice

The release curve (Figure 8A) and remaining curve (Figure 8B) of CT in simulated intestinal juice in vitro. Figure 8A showed that the CT release reached the highest and remained stable after 30 min when the CT@NRS and CT@RPS in simulated intestinal fluid, and the retention was close to 0 (Figure 8B). The results reflected that the controlled release ability of CT@NRS and CT@RPS for CT can only be maintained for 30 min in simulated gastric juice, and then the CT has no biological activity in CT@NRS and CT@RPS. The CT release of CT@CS reached 0.85 mg/g after 30 min and remained stable. The release amount was negligible, which reflected that CT@CS is not a well-controlled release characteristic. The CT release amount of CT@RPS/CS was linear with time, indicating that CT@RPS/CS has good stable and sustainable release ability in simulated intestinal fluid in vitro. This characteristic is beneficial to maintaining its biological activity and concentration in the intestine.

3.7. The removal rate of CT@RPS/CS for Pb²⁺

The removal rate of CT@RPS/CS for Pb²⁺ increased with Pb²⁺ concentration (Figure 9). The maximum removal rate of CT@RPS/CS for Pb²⁺ is 82.2% when the concentration of Pb²⁺ is 250 μM. Subsequently,
the removal rate of CT@RPS/CS for Pb²⁺ was not increased with the increase of Pb²⁺ concentration. It may be reached adsorption saturation of CT@RPS/CS for Pb²⁺. According to the experimental results, 250 μM Pb²⁺ solution was selected for subsequent experiments.

To further investigate each component’s contribution in CT@RPS/CS to the adsorption of Pb²⁺ in this experiment, the removal rate of Pb²⁺ in 250 μM lead nitrate solution was assessed, as shown in Figure 10. The removal capacity of the four adsorption carriers for Pb²⁺ was CS > RPS/CS > RPS > NRS (Figure 10). The ability of RPS/CS to adsorbed Pb²⁺ is enhanced after CS modifies RPS. At the same time, the removal rates of Pb²⁺ was increased by 0.38%, 7.41%, 9.18%, and 10.27% comparing CS, RPS/CS, RPS and NRS, CT@RPS/CS, CT@RPS, and CT@NRS respectively, indicating that CT has a significant synergistic effect on Pb²⁺ removal, which related to the fact that the phenolic hydroxyl or amino groups of CT are easy to complex with Pb²⁺ and produce chemical adsorption.

3.8. Adsorption kinetic analysis of Pb²⁺ by CT@RPS/CS and FT-IR analysis

In this experiment, pseudo-first-order and second-order kinetic simulations were carried out for the adsorption process of CT@RPS/CS and Pb²⁺ (Figure 11). The adsorption rate of CT@RPS/CS for Pb²⁺ is high-speed and reached 17.35 mg/g after 10 min, and then the adsorption capacity tended to be stable (the maximum adsorption capacity is 19.53 mg/g) (Figure 11A). The simulation results of pseudo-first-order kinetics ($R^2 = 0.9820$, $q_e = 18.57$ mg/g) (Figure 11B) and pseudo-second-order kinetics ($R^2 = 0.9999$, $q_{e1} = 19.53$ mg/g) (Figure 11C) suggest that the pseudo-second-order kinetic model can more effectively simulate the adsorption process of Pb²⁺ by CT@RPS/CS. its actual maximum adsorption capacity (19.53 mg/g) is consistent with the pseudo-second-order kinetic model. There are physical adsorption and chemical adsorption of Pb²⁺ in the CT@RPS/CS adsorbing the Pb²⁺, but mainly chemical adsorption (such as chemical complexation between Pb²⁺ and CT).

To confirm that the adsorption of Pb²⁺ onto CT@RPS/CS is mainly chemical, the samples were analyzed by FTIR in this study, and the results are shown in Figure 12. The characteristic absorption peaks of CT appear at 3350 and 1618–1530 cm⁻¹, representing the stretching vibration of O–H and the skeleton vibration ring of benzene, respectively [31]. When the RPS/CS adsorbed CT, the stretching vibration peak of O–H moved to a low wave (3393 → 3383 cm⁻¹), which was attributed to the formation of the hydrogen bond. When the CT@RPS/CS adsorbed Pb²⁺, the stretching vibration peak of O–H moved to a low wave (3383 → 3370 cm⁻¹), CT’s N–H bending vibration absorption (two bands) shifted to a low wave (1563 → 1547 cm⁻¹). This information confirmed the chemical complexation between Pb²⁺ and CT @RPS/CS.

4. Conclusion

The adsorption kinetics study of functional microspheres, confirming the mechanism of the adsorption of RPS/CS to CT was physical adsorption, chemical adsorption, or strong surface complexation, and the adsorption capacity of RPS/CS to CT mainly depended on CS content, which could maintain the particle morphology better. CT@RPS/CS had well-sustained release characteristics with a moderate CT release rate and a sustained-release capacity in an aqueous solution. Its ability to resist oxidation was positively related to the amount of CT released in water. CT has a synergistic effect on Pb²⁺ removal, and CT@RPS/CS significantly enhanced Pb²⁺ removal ability relative to RPS/CS. The results also confirmed the physical adsorption and chemisorption of Pb²⁺ in the adsorption process of CT@RPS/CS. However, chemical adsorption (chemical complexation between Pb²⁺ and CT) was dominant.

Declarations

Author contribution statement

Suwei Jiang: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Hailiang Hu: Performed the experiments; Analyzed and interpreted the data; Wrote the paper.

Funding statement

This work was supported by the Project of Anhui Province (2019-03a06020031).
