RAP-NET: COARSE-TO-FINE MULTI-ORGAN SEGMENTATION WITH SINGLE RANDOM ANATOMICAL PRIOR

Ho Hin Lee 1, Yucheng Tang 1, Shunxing Bao 1, Richard G. Abramson 2, Yuankai Huo 1, Bennett A. Landman 1,2

1Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN USA
2Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA

ABSTRACT

Performing coarse-to-fine abdominal multi-organ segmentation facilitates extraction of high-resolution segmentation minimizing the loss of spatial contextual information. However, current coarse-to-refine approaches require a significant number of models to perform single organ segmentation. We propose a coarse-to-fine pipeline RAP-Net, which starts from the extraction of the global prior context of multiple organs from 3D volumes using a low-resolution coarse network, followed by a fine phase that uses a single refined model to segment all abdominal organs instead of multiple organ corresponding models. We combine the anatomical prior with corresponding extracted patches to preserve the anatomical locations and boundary information for performing high-resolution segmentation across all organs in a single model. To train and evaluate our method, a clinical research cohort consisting of 100 patient volumes with 13 organs well-annotated is used. We tested our algorithms with 4-fold cross-validation and computed the Dice score for evaluating the segmentation performance of the 13 organs. Our proposed method using single auto-context outperforms the state-of-the-art on 13 models with an average Dice score 84.58% versus 81.69% (p<0.0001).

Index Terms— Computed Tomography, Abdominal Multi-Organ Segmentation, Random Anatomical Prior, Single Multi-Organ Patch Model

1. INTRODUCTION

Creating a robust and accurate pipeline for volumetric abdominal organ segmentation in computed tomography (CT) domain is challenging. Deep neural networks have been used for performing semantic segmentation in medical imaging perspective with 2D images or 3D patches, such as DeepLab [3], UNet [4] and VoxResNet [5]. Current major challenges of abdominal organ segmentation are: 1) weak intensity boundaries between abdominal organs, 2) large morphological variation of different organs, and 3) high resolution of 3D volumes.

To overcome the limitation of using 2D CNNs, 3D volumes are sliced in axial, coronal and sagittal directions and used for coarse organ detection and perform segmentation with the detection output [6]. Both 2D and 3D-patch based learning methods target the single organ approaches. Roth et al. proposed coarse-to-fine pipeline with scaling input volumes at different levels using multi-scale pyramid networks and computed refined prediction at the last selective level for abdominal multi-organ segmentation [1]. Zhu et al. added expanded bounding box into a coarse-to-fine pipeline to abstract the ROI of small targets and improve robustness for refining single organ segmentation [2]. However, numerous organ-corresponding models are needed to be trained to obtain refine segmentation performance. Significant effort is allocated for tuning hyperparameters, and there is a lack of flexibility to combine contextual information across scales due to high complexity of training strategies. Backpropagating multiple loss functions for all organs to obtain a single model is not possible due to the missing organ regions in the extracted patches. Therefore, a single high-resolution refine model framework integrating global and local contextual information to refine segmentation is needed.

To address the challenges, we introduce a 3D hierarchical coarse-to-fine framework RAP-Net, performing multi-organ segmentation at refined level with single model. Briefly, we initially down-sampled the volumetric images and used a traditional approach to generate a coarse segmentation for each organ. The coarse segmentation then acts as an anatomical prior for each organ and extracted corresponding organ patches using the prior information. We transformed the corresponding organ coarse segmentation to binary anatomical prior and integrated as the second channel input with the image patches. The refined model is then trained with all binary labeled organ patches end-to-end. Such training strategies help the refined model encode the variability of shape and local intensity across all organs and limit the segmentation region with the anatomical prior, generating a robust and accurate performance for multi-organ segmentation.
2. MATERIALS AND METHODS

Our work aims to create a single model adapting high-resolution multi-organ context across global and local levels. As shown in Fig. 1, the backbone of the hierarchical approach is based on the state-of-the-art [7], which consists of 13 refined organ models separately capturing the local representation of each corresponding labeled organs. We propose a refined organ-voxel classifier that maintain the ability of classifying the morphological variations and abstracting the local contrast characteristics across all organs. By utilizing the anatomical prior information extracted from all organs, the extracted local representation from the single patch-wise multi-organ segmentation model integrates all intensity feature and the global morphological information, to generalize the structural variability and eliminate the possibility of over-segmenting towards neighboring organs. The proposed code is available at https://github.com/MASILab/coarse_to_fine_prior_seg.

2.1. Data

A clinical research cohort with 100 patient volumes in portal venous phase was retrieved in de-identified form under the approval of the local IRB (institutional review board). The range of slice numbers across all volumes in the cohort is between 42 and 149 with a dimension of 512 x 512. The resolution for x, y and z-axis are in the range of 0.5-0.9 mm, 0.5-0.9 mm and 2.5-7.0 mm, respectively. We first randomly split the dataset into 80 volumes as the training and validation set, and the other 20 volumes as the testing dataset. Each volumetric scan is manually annotated with 13 classes of multiple abdominal organs including spleen, right and left kidneys, gall bladder, esophagus, liver, stomach, aorta, inferior vena cava (IVC), portal splenic vein (PSV), pancreas, right and left adrenal glands.

We initially down-sampled each volume to a resolution of 2 x 2 x 6 mm and pad/crop to a constant dimension of 168 x 168 x 64 as the input for the coarse stage segmentation model. The predicted multi-organ segmentation mask of each volume is then converted back to its original corresponding resolution and extracts volumetric patches with the coarse segmented mask in dimension of 128 x 128 x 48 as the input for the refined stage segmentation model. The single refined model generates a 3D binary mask, corresponding to the organs extracted from the anatomical prior.

2.2. Global anatomical multi-organ prior extraction

We adapt a volume-based 3D UNet architecture as the initial stage of RAP-Net and provide supervisory end-to-end optimization to achieve a coarse level multi-organ segmentation [8]. The modified network consists of 8 encoders with convolutional kernel size of 3 x 3 x 3, batch normalization layers, and 10 decoders with deconvolutional kernel size of 2 x 2 x 2. Skip connections are used to integrate and capture the small variant representations from encoder blocks. ReLU activation units are used in both encoder and decoder blocks. The global representations can then be abstracted among all organs with the integration of high-level features from encoder to decoder. For multiple classes of abdominal organs A, we define the output of the final layer from 3D UNet as \(d_0 \in \mathbb{R}^{(C-1) \times 512 \times 512} \), where H, W, S and C are the number of height, width, slices and the channel number of the predicted multi-organ segmentation. A softmax activation is used to compute the probability map of the predicted segmentation \(p(A) = \text{softmax}(d_0)\) for each voxel. Each value of \(p(A)\) is extracted and compared with the similarity with the ground truth multi-organ label with multi-source Dice loss (MSDL).

\[
\text{MSDL} = -2 \frac{\sum_{i=0}^{C-1} w H \sum_{j=1}^{S} \sum_{l=1}^{W} V_{ijl} S_{ij} \text{log}(p(A))}{\sum_{i=0}^{C-1} w H \sum_{j=1}^{S} \sum_{l=1}^{W} V_{ijl} S_{ij} + \emptyset}
\]
where A is the number of organ anatomies, w represents the variance between labels set properties. S and V provides the segmentation probability and the intensity of voxel belongs to the classes of organs respectively. A function \emptyset is created to compute the correlation of the prediction and voxel value.

2.3. Single classifier with local anatomical random priors

To capture the local variation in feature representation, 50 volumetric patches are extracted randomly according to the corresponding anatomical prior extracted from the coarse model, to ensure the overlapping region covering the complete volume of organ. The extracted patches include neighboring organ voxels apart from the main organ and lead to the adverse effect of segmenting main organ in corresponding patches. Here, we integrate the global anatomical prior with the volumetric patches as two channels input and input all prior-integrated organ patches for end-to-end training. We adapt the 3D UNet model architecture with the same network configuration of the coarse segmentation model [8]. However, we modified the number of classes label in patches. Only the corresponding organ patch label is extracted as binary mask using anatomical organ priors as the label input to the refine model. We define the output of the final layer from 3D UNet model as $d_c \in R^{H \times W \times S \times 2}$, where H, W, S and 2 are the number of height, width, slices and the number of channels.

Training as single model framework provides an opportunity to adapt significant variation of the morphological and contrastive characteristics from large organs to small organs. Large numbers of organ-corresponding patches for training increases the generalizability of the model to segment all organs with prior information. As binary labels are used for all organs, the shape variation from small to large organs are also adapted to the feature representation for model to encode. With the integration of morphological and intensity variation characteristics across organs, the abstracted representations increase the localization ability of model. The integration of anatomical prior preserves the global anatomical location and the boundaries of specific organs in abdominal regions, while the random prior patches capture the large variability of shape and voxel intensities in the local regions, generating connective linkage between the voxel intensity variability and the morphological characteristics to stabilize the segmentation performance with the integrated representations from all organs.

Single channel Dice loss is used as the loss function for optimizing the binary segmentation for organ patches. The predicted segmentation for each patch is a binary mask corresponding to the specific organ. All binary masks from each organ patch are fused to generate a 13 channel multi-organ segmentation mask with majority voting.

2.4. Implementation details

We performed 4-fold cross-validation with our labeled clinical cohorts to ensure both coarse and refine level model can capture the anatomical information of each organs. In total, 80 volumes of the clinical research cohorts are used for training and validation. 80 volumes are randomly shuffled and split to 4 groups of combinations with 60 volumes for training and 20 volumes for validation. The optimized model is chosen with the best validation performance for segmentation across all folds. The testing cohort is the BTCV MICCAI 2015 Challenge testing dataset with 20 volumes. The batch size was set to 1 for coarse volume-based model, while it was set to 2 for refine patch-based model. Adam was used as the optimizer for both stages end-to-end training. We first trained the coarse segmentation model with 100 epochs with learning rate of 0.0001 and choose the model with the lowest validation loss. For the single refine model, we directly input 39000 patches and trained the model for 5 epochs with learning rate of 0.0001. To evaluate the segmentation performance of both models, Dice score is used as the evaluation metric and compute a quantitative measure of the overlapping similarity between the prediction and the ground truth label. Subject volumes without gall bladder are eliminated in calculating the quantitative measures of gall bladder organ only.

3. RESULTS AND DISCUSSION

Table 1 shows the quantitative comparison of the segmentation performance with Roth et. al., the state-of-the-art method, Zhu et. al. and our proposed model. The average Dice coefficient of all organ segmentation is increased from 81.69% to 84.58% and the standard deviation of Dice decreased from an average of 13.0% to 11.5% comparing to the state-of-the-art. RAP-Net demonstrated a better segmentation performance than Zhu's method in 9 of 13

Figure 2. The qualitative representation of the multi-organ segmentation result with coarse level model, coarse (C) and 13 refined organ-specific (R) models, and coarse and 1 single refine model.
The proposed coarse-to-fine framework allows a single deep learning model to encode the integration of morphological and contrastive characteristics with multiple abdominal organs. Further studies will be performed by inputting multi-organ priors instead of one single corresponding organ prior, as other channels. The morphological linkage between organs can be evaluated in the future and innovate stratifying approach according to the anatomical characteristics between abdominal organs.

5. ACKNOWLEDGMENTS

This research is supported by NIH Common Fund and National Institute of Diabetes, Digestive and Kidney Diseases U54DK120058, NSF CAREER NIH 2R01EB006136, NIH 1R01EB017230 (Landman), and NIH R01NS09529. ImageVU and RD are supported by the VICTR CTSA award (ULTR000445 from NCATS/NIH). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU usage and Dr. Michael R. Savona. There are no conflicts of interest.

6. REFERENCES

[1] H. R. Roth et al., "A multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation," in International conference on medical image computing and computer-assisted intervention, 2018: Springer, pp. 417-425.
[2] Z. Zhu, Y. Xia, L. Xie, E. K. Fishman, and A. L. Yuille, "Multi-scale coarse-to-fine segmentation for screening pancreatic ductal adenocarcinoma," in International conference on medical image computing and computer-assisted intervention, 2019: Springer, pp. 3-12.
[3] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, "Encoder-decoder with atrous separable convolution for semantic image segmentation," in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 801-818.
[4] O. Ronneberger, F. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," in Medical image computing and computer-assisted intervention, 2015: Springer, pp. 234-241.
[5] H. Chen, Q. Dou, L. Yu, J. Qin, and P.-A. Heng, "VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images," NeuroImage, vol. 170, pp. 446-455, 2018.
[6] Y. Zhou, L. Xie, W. Shen, Y. Wang, E. K. Fishman, and A. L. Yuille, "A fixed-point model for pancreas segmentation in abdominal CT scans," in International conference on medical image computing and computer-assisted intervention, 2017: Springer, pp. 693-701.
[7] Y. Tang et al., "High-resolution 3D abdominal segmentation with random patch network fusion," Medical Image Analysis, vol. 69, p. 101894, 2021.
[8] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, "3D U-Net: learning dense volumetric segmentation from sparse annotation," in International conference on medical image computing and computer-assisted intervention, 2016: Springer, pp. 424-432.

7. COMPLIANCE WITH ETHICAL STANDARDS

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the IRB (institutional review board) of Vanderbilt University (141368, 30th Aug 2016; 160764, 10th Oct 2019; 161515, 10th Jul 2019).