Structure and allosteric activity of a single disulfide conopeptide from *Conus zonatus* at human $\alpha_3\beta_4$ and α_7 nicotinic acetylcholine receptors.

Madhan Kumar Mohan1, Nikita Abraham2, Rajesh R P3, Benjamin Franklin Jayaseelan4, Lotten Ragnarsson2, Richard J. Lewis2, Siddhartha P. Sarma1

From the 1Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka - 560012, INDIA. 2Institute for Molecular Bioscience, Queensland Bioscience Precinct (Building 80), The University of Queensland, 306 Carmody Road, St Lucia Qld 4072, Australia. 3Sathyabama Institute of Science and Technology, Jeeppiaar Nagar, Rajiv Gandhi Salai, Chennai - 600119, Tamil Nadu, India. 4Bombay Natural History Society, Hornbill House, Dr. Salim Ali Chowk, Mumbai 400 001, Maharashtra, India.

Running title: *Single disulfide conopeptides*

To whom correspondence should be addressed: Siddhartha P. Sarma, Tel: +91 80 22933454, Fax: +91 80 2360 0535, sidd@iisc.ac.in.; Richard J. Lewis, Tel: +61 7 334 62984, r.lewis@uq.edu.au

Keywords: nAChR antagonists, single-disulfide conopeptides, allosteric modulation, conformational exchange, Proline *cis*- *trans* isomerism, NMR, conotoxin, nicotinic acetylcholine receptor, neurotoxin, Czon1107

ABSTRACT

Conopeptides are neurotoxic peptides in the venom of marine cone snails and have broad therapeutic potential for managing pain and other conditions. Here, we identified the single-disulfide peptides Czon1107 and Cca1669 from the venoms of *Conus zonatus* and *Conus caracristicus*, respectively. We observed that Czon1107 strongly inhibits the human $\alpha_3\beta_4$ (IC50 15.7 ± 3.0 µM) and α_7 (IC50 77.1 ± 0.05 µM) nicotinic acetylcholine receptor (nAChR) subtypes, but the activity of Cca1669 remains to be identified. Czon1107 acted at a site distinct from the orthosteric receptor site. Solution NMR experiments revealed that Czon1107 exists in equilibrium between conformational states that are the result of a key Ser4—Pro5 *cis*- *trans* isomerization. Moreover, we found that the X-Pro amide bonds in the inter-cysteine loop are rigidly constrained to *cis* conformations. Structure–activity experiments of Czon1107 and its variants at positions P5 and P7 revealed that the conformation around the X-Pro bonds (*cis*—*trans*) plays an important role in receptor subtype selectivity. The *cis* conformation at the Cys6—Pro7 peptide bond was essential for $\alpha_3\beta_4$ nAChR subtype allosteric selectivity. In summary, we have identified an unique single disulfide conopeptide with a non-competitive, potentially allosteric inhibitory mechanism at the nAChRs. The small size and rigidity of the Czon1107 peptide could provide a scaffold for rational drug design strategies for allosteric nAChR modulation. This new paradigm in the “conotoxinomic” structure–function space provides an impetus to screen venom from other Conus species for similar, short bioactive peptides that allosterically modulate ligand-gated receptor function.
The conopeptides are classified into 12 families (2), four of which contain a single disulfide bond and the other eight are disulfide free. The most extensively studied neurotoxic peptides in the cone snail venom are the two-disulfide α-conotoxins and the three-disulfide μ-, δ-, κ- and ω-conotoxins (3, 4). Interest in conotoxins arises from their broad therapeutic potential (e.g. ω-MVIA, that is used clinically in the treatment of pain)(5–7), resulting from their ability to modulate membrane proteins such as voltage- and ligand-gated ion channels with exquisite target selectivity. In contrast there have been very few studies on the structure and function of disulfide-poor peptides. Although, the conotoxins and conopeptides are co-deployed in the venom, the cellular targets of only a few of these disulfide-poor peptides have been characterized, such as the high voltage-gated Ca\(^{2+}\) channels by contrphans (8, 9), non-inactivating voltage-dependent K\(^{+}\) channels by κ-conotoxins (10, 11), vasopressin receptors by conopressins (12), Neurontin receptors by contulakins (13) and NMDA receptors by conantokins (14). Single-disulfide peptides that target the Na\(^{+}\) and K\(^{+}\) ion-channels and other ligand-activated receptors, such as neuronal nicotinic acetylcholine receptors (nAChRs) have not been reported (2). Toxins that target nAChRs are of interest since they serve as therapeutic leads for the treatment of Alzheimer’s disease, Parkinson’s disease, drug addiction, and lung and breast cancer (15–19). Indeed, the conotoxins α-RgIA and α-Vc1.1 have proceeded to pre-clinical and clinical trials for the treatment of neuropathic pain (20). In addition to α-conotoxins, the cone snail venom has proven to be a source of disulfide-rich nAChR modulators from 9 superfamilies (A, B3, D, J, L, M, O1, S and T) that vary significantly in their primary sequence, structure and potentially mode of action, thereby demonstrating that cone snail venom can provide structurally and functionally distinct classes of peptide nAChR modulators. We have recently initiated a program to characterize single-disulfide peptides of novel sequence, structure and function in the venom of cone snails found in the Indian coastal waters (21).

Consistent with this, we present the discovery of the first single-disulfide bond peptide modulator of the nAChRs. This novel conopeptide was identified in the venom of Conus zonatus. Unlike the standard two-disulfide bonded α-conotoxins, this novel single-disulfide peptide from C. zonatus modulate the nAChRs via a non-competitive mechanism (different to that of endogenous ligands). Data from our structural and functional studies demonstrate that a key proline cis-trans isomerization plays a major role in the mechanism of action and nAChR subtype selectivity of this peptide. Together, this study describes for the first time, an unique single-disulfide conopeptide with a non-competitive, potentially allosteric inhibitory mechanism at the nAChRs, thereby providing novel tools and rational drug design strategy in allosteric nAChR modulation. In addition, we have also discovered a peptide of novel sequence in the venom of the cone snail Conus caracteristicus. A BLAST search has revealed no homology, for these two peptides, to known polypeptide sequences in databases. However, the identity of the cellular target for the peptide from Conus caracteristicus remains unknown. The results of these studies are described below.

RESULTS

Mass spectrometry based identification of single-disulfide peptides—The presence of contrphans in the venom of cone snails from India have been reported earlier (9, 21–23). In this study, a focused search for other classes of single-disulfide peptides of novel sequences in the venoms of cone snails found in the Indian coastal waters was carried out by mass spectrometric analysis of the crude venom components. The occurrence of such peptides were identified from observation of mass shifts in the LC-ESI or MALDI-TOF spectra upon reduction and alkylation of peptides in the crude venom. Addition of a nominal mass of 250 Da upon alkylation with N-ethylmaleimide, for each disulfide bond reduced, enabled facile identification of single-disulfide peptides in the crude venom.

de novo sequencing by (MS)\(_n\) mass spectrometry. Sequence characterization of these peptides was carried out by MS/MS analysis of production spectra in LC-ESI-MS (24). The above protocol yielded two conopeptides of novel sequences, viz., Czon1107 from C. zonatus and Cca1669 from C. caracteristicus. The product-ion mass spectra of Czon1107 and Cca1669 are shown in Figure 1.
Characteristic “b” and “y” ions are observed in the spectra of both peptides. The chemical modification reactions, i.e., acetylation and esterification reactions indicated that Czon1107 did not contain D, E or K in the sequence. In contrast, Cca1669 did contain at least 3 acidic amino acids (D or E) and two lysines in the sequence. Detailed analysis of the “b” and “y” ions in the fragmentary spectrum of each peptide led to decryption of the sequence of Czon1107 and Cca1669. The sequencing data also indicated that Czon1107 and Cca1669 were post-translationally modified at the C-terminus to carboxamides. The sequences of these two peptides and two variants of Czon1107 are listed in Table 1. The peptide Cca1669 has an interesting feature of three sequential glutamate residues, a motif that may be responsible for Ca$^{2+}$ ion binding (25). The peptide Czon1107 has three proline residues, two of which are located in the cysteine-loop, potentially conferring rigidity to the structure. The sequences of Czon1107 and Cca1669 bear very little resemblance to other known single-disulfide toxins.

Biological assays—

Identification of the pharmacological target for Czon1107 and Cca1669. The biological activity of Czon1107 and Cca1669 were tested for their ability to modulate the major conotoxin targets including the oxytocin (hOTR), vasopressin (hV1aR and hV2aR), NMDA (NR1-1a/2A), muscarinic (M1 and M3), nicotinic acetylcholine receptors (α_7, $\alpha_3\beta_4$ nAChR) and voltage-gated calcium (Caα) and sodium channels (Naα). Neither peptide was found to modulate these targets except for the inhibition of the nAChR by Czon1107 (Figure 2(i), (ii)). Interestingly, although Czon1107 and Cca1669 possibly resemble conopeptides that modulate the oxytocin and vasopressin receptors (see Discussion), no activity was seen at these receptors. To expand the search, C-terminal amidated and non-amidated Cca1669 were tested for the ability to modulate target receptors. Both forms of the peptide were synthesized as it has been established that the chemistry at the C-terminus can significantly influence the global conformation and activity of such molecules (26, 27). However, both forms of Cca1669 were inactive and thus the pharmacological target for Cca1669 is yet to be identified.

Pharmacological characterization of Czon1107 on neuronal nAChRs. Based on the initial target profiling, the pharmacology of Czon1107-NH$_2$ was further characterized on the neuronal α_7 and $\alpha_3\beta_4$ nAChRs. Czon1107 inhibited both human nAChR subtypes with a 5-fold higher selectivity at the $\alpha_3\beta_4$ (IC$_{50}$ = 15.7 ± 3.0 µM) than the α_7 (IC$_{50}$ = 77.2 ± 0.05 µM) subtype (Figure 2(iii) and Table 2). Incomplete inhibition of responses was observed for both subtypes, indicating a potential non-competitive mode of action. The effect of Czon1107 on the concentration-activation curve of nicotine at $\alpha_3\beta_4$ was investigated. At fixed concentrations of nicotine (~ 4µM), Czon1107 was co-applied at increasing concentrations. A decrease of the maximal current response of the agonist (Figure 2(iv) and Table 3) without a significant change in the agonist IC$_{50}$, was observed. These results suggest that Czon1107 is potentially inhibiting the receptor via an allosteric binding site.

Solution structural studies— All structural studies were carried out on WT Czon1107-NH$_2$, henceforth referred to as Czon1107 or Czon1107-X, where X stands for sequence variants.

One dimensional spectroscopy - Proton 1D NMR spectrum. The one-dimensional NMR spectrum of Czon1107 (Figure S1, SI) shows well-resolved, sharp resonance lines in the amide region. Several lines in 1 — 0 ppm region of the spectrum are also observed. This is interesting, given the absence of polar and non-polar methyl containing amino acids (A, I, L, M, T, V) in the peptide sequence, indicating that other aliphatic protons are involved in strong interactions with aromatic rings.

Sequence specific assignments of Czon1107. Sequence specific assignments for WT and the analogues, P5A and P7A were obtained from homonuclear 2D-1H,13C - DQF-COSY, TOCSY, NOESY and ROESY spectra using protocols described by Wüthrich (28). In addition natural abundance 1H,13C - HSQC and 1H,13C - HSQC-TOCSY spectra proved extremely useful and crucial in resolving resonance assignments in cases of chemical shift degeneracy in the homonuclear spectra. A detailed description of the NMR analysis of the WT peptide follows. The WT peptide consists of 10 residues. In the DQF-COSY spectrum, 6 HN-H$^\alpha$ cross peaks were expected in the fingerprint region.
(Figure 3 (i)). However, several additional correlations (19 in number) were observed. This clearly indicated that the peptide existed as a mixture of conformational states that are in slow exchange on the NMR timescale. During the assignment process it was clear that two conformers, present in a ratio of ∼65:30, were significantly populated and could be unambiguously resolved. The major conformer is referred to as conformer A (numbered 1—10) and the minor conformer as conformer B (numbered 11—20). The sequence specific assignments for both conformers in the fingerprint region of the DQF-COSY spectrum are shown in Figure 3 (i). The assignments for 1H atoms in the side-chains for both conformers are shown in Figure-S2, SI. The sequential connectivity that establishes the conformer specific assignments is shown in Figure 3 (ii) and (iii). Cys6 and Cys10 are present in the oxidized form as inferred from the 13Cδ chemical shifts (29). Near complete 1H, 13C and 15N sequence specific assignments for conformers A and B are listed in Table ST1 - A and B (SI). Other conformers of much lower population (< 5%) were also observed but could not be sequence specifically assigned.

Origin of conformational equilibria. The conformational equilibria exhibited by WT Czon1107 could be traced to the cis-trans isomerization of the Ser4 - Pro8 peptide bond. 1H - 13C correlations in 13C - edited HSQC and HSQC-TOCSY spectra (Figure 4) show that the Ser4 - Pro5 peptide bond is trans in conformer A (Figure 4 (i)) and cis in conformer B (Figure 4 (iv)). The observed Δδ13Cδ (ppm) values (defined as δ13Cδ - δ13Cγ) for Pro5 in conformers A and B are 4.70 ppm and 10.1 ppm respectively (30, 31). In contrast the Cys6 - Pro7 (Figures 4 (ii) and (v)) and the Pro7 - Pro8 (Figure 4 (iii) and (vi)) peptide bonds are in the cis conformation for both conformers A and B. Of the eight possible X-Pro cis - trans conformers (2n; n = 3) in Czon1107, the two major conformers are unequivocally assigned. Thus, in conformer A, the three X-Pro peptide bonds are in the trans/cis/cis conformation, respectively. However, in conformer B, all three X-Pro peptide bonds are in the cis conformation. The chemical shifts for Pro7 could be resolved for both conformers. However, the resonance frequencies of NMR active nuclei of Pro8 are degenerate in the two conformers. The structural features that dictate this manifestation are discussed below. Based on the spectral evidence, two variants of WT viz., P5A and P7A were designed, to explore the effect of proline cis-trans isomerization on the conformer equilibrium and activity of Czon1107. Analysis of NMR spectra of P5A (Figure-S3, SI) and P7A (Figure-S4, SI) provided conclusive support for the conformer assignments of WT. P5A exists as a single conformer in solution (Figure 5 (i), (ii)) in which the Cys6 - Pro7 and Pro7 - Pro8 peptide bonds exist in the cis conformation. In contrast, P7A exhibited conformation equilibrium as a result of cis-trans isomerization about Ser4 - Pro5 bond (Figure 5 (iii), (iv), (v)). The two conformers exist in the trans/cis and cis/cis conformations. Like in the case of WT, the resonance frequencies of NMR active nuclei of Pro8 are degenerate in the two conformers. Sequence specific assignments for P5A and the two conformers of P7A were obtained using the protocols described for WT. The complete sequence specific assignments for P5A and conformers A and B of P7A are listed in Table ST1 - C, D and E (SI), respectively.

Secondary structure — The secondary structures of various conformers of WT, P5A and P7A are difficult to define based on either 1H or 13C chemical shifts. Chemical shifts (Table ST1 - A—E (SI)), secondary chemical shifts and CSI across conformers show similar patterns despite differences in conformation about X-Pro peptide bonds (Figure-S5, SI). Three bond 3JHH, 3HN, Hα coupling constants are also similar (> 9 Hz) indicating that the molecules adopt “extended-like” conformations. Corroborative evidence for the X-Pro conformation from ROE (NOE) data has been difficult to assign due to the overlap of Hα protons of Pro7 and Pro8 with the water resonance. However, these protons were easily identified in the 1H, 13C - HSQC spectra.

Tertiary structure — The tertiary structures of the major and minor conformers of WT and P7A and the structure of P5A were calculated using NMR derived distance and dihedral angle restraints. Table 4 lists the number of each type of restraint used in the structure calculations. The quality of the structures have been verified by the subjecting each ensemble of structures to a PSVS analysis (32–34)(Figure-S6, SI). The statistics that mark the quality of the structures are listed in Table 4. Figure 6
ties that echo those of the WT molecule.

The backbone structure of WT Czon1107 major conformer (trans-cis-cis conformation) resembles a “key chain” that has an extended N-terminus (Figure 6 (iii)). In the minor conformer, the CH···π interaction between Pro⁷ and Phe² causes the N-terminus to loop back, giving the backbone a “figure eight” like structure. The distinguishing feature of the tertiary structures of the two molecules is the CH···π interaction between Pro⁷ and Phe² in the minor conformer. In contrast the other “signature interaction”, the CH···π interaction between Pro⁸ and Phe⁹, is conserved in the two structures. The influence of the aromatic ring-current shifts on the chemical shifts of the ¹H³⁻γ is manifest in the NMR spectrum of the molecule (blue Figure 6 (vi)). The calculated shifts based on the structures determined here agree well with the observed shifts (Table-ST2, SI). The inter-cysteine loop is made up of a 17 atom macrocycle (Figure 6 (vi)). The P7A variant exhibits solution properties that echo those of the WT molecule. Cis-trans isomerization about the Ser⁴-Pro⁵ peptide bond is active. Furthermore, replacement of Pro⁷ with alanine restricts the conformation about the Cys⁶-Ala⁷ peptide bond to the trans conformation. Thus, the major (Figure 7 (i), (ii)) and minor conformers of P7A (Figure 7 (iii), (iv)) are similar in structure to those of the WT. The tertiary structure of the P5A variant closely resembles the structure of conformer A of the WT. Introduction of an alanine at position 5, restricts the conformation about the Ser⁴-Ala⁵ peptide bond to the trans conformation (ω = 180°). Thus, only the H³⁻γ' of Pro⁸, are upfield shifted in the NMR spectrum (Figure 7 (vi), (vii)). In summary, the three-dimensional structures of WT, P7A and P5A are characterized by strong CH···π interactions between proline and phenylalanine residues (Figures 6 (v) and 7 (v), (viii)).

Pharmacological profiles of Czon1107-P5A and Czon1107-P7A—Given the interesting structural role of the proline residues, the pharmacological profiles of Czon1107-P5A and Czon1107-P7A were examined. Czon1107-P5A was almost equipotent at both the α3β4 and α7 (~1.5-fold α7 > α3β4), whereas Czon1107-P7A was inactive at the α3β4 up to 100 µM but had an improved potency at the α7 almost 3-fold compared with the native Czon1107. Therefore, the proline residues were found to have a significant effect on peptide selectivity profile for the nAChR subtypes with Czon1107-P7A having the most pronounced switch in selectivity (Figure 2 (v), (vi)). It can be seen that for α3β4 subtype selectivity, the Cys⁶-Pro⁷ peptide bond is required to be in the cis conformation. The increased activity of the P5A variant at α7 nAChRs in comparison to the native peptide, is a consequence of the population weighted effect of the near 100% trans conformation about the Ser⁴-Pro⁵ peptide bond. Analogously, the improved selectivity of the P7A analogue is a result of the cumulative effects of the trans conformations about the Ser⁴-Pro⁵ and Cys⁶-Pro⁷ peptide bonds. It has been shown in the case of ImI, that residues Asp⁴-Pro⁵-Arg⁷ along with Trp¹⁰ are important for activity(35). Furthermore, it has been argued that these residues in inter-cysteine loop 2 may be responsible for receptor sub-type selectivity. In the Czon peptides, the residues in the inter-cysteine loop bear no sequence or structural resemblance to the pharmacophore in α-conotoxins.

DISCUSSION
Conotoxins are a structurally and functionally diverse group of peptides whose cellular targets include voltage- and ligand-gated ion channels such as the nAChR, Na⁸,s, Ca⁸,s, serotonin, NMDA, and glutamate to name a few (16). The neuropharmacological interest in conotoxins and peptide based animal toxins lies in their potency and receptor subtype selectivity. A vast body of data is available, through transcriptome and proteome analysis of cone snail venom, on the sequence and function of disulfide-rich peptides (1, 36, 37). Among the single disulfide peptides, only those belonging to the conopressins,contrphans,conomarfans,conorfamides,contulakins and some conantokin have been identified. We have recently initiated a program to identify novel single-disulfide peptides in the venom of Indian ocean cone snails (38, 39). The sequences of several novel peptides have been reported earlier by us (21) and they have very little sequence similarity to other known single-disulfide conopeptide...
classes. To date, conotoxins that target the nACHR are diverse in sequence and structure, possessing 2—5 disulfide bonds and have representatives from nine superfamilies (19) including conotoxins from superfamity A (283 peptides, representing cysteine frameworks (CF) - I, II, IV, VI/VII, XIV, XXII), B3 (1 peptide, CF - XXIV), D (114 peptides, CF - IV, XIV, XV, XX, XXIV), J (CF - XIV), L (15 peptides, CF - XIV, XXIV), M (CF - III), O1 (CF - XIV), S (CF - VIII) and T (CF - V) (1, 36) . Among these, the two disulfide bonded α-conotoxins from the A-superfamily are the largest group of natural product peptide inhibitors of the nACHRs, and have been invaluable tools to determine the orthosteric ligand recognition properties of receptor subtypes. The A-superfamily conotoxins of CF - I (CC-C-C) have been well characterized and are further categorized into α-3/5, 4/3, 4/4, 4/6, 4/7, and 5/5, where x/y indicates the number of residues in the cysteine loops. The prototypical α-4/3 conotoxins (ImI and ImII from C. imperialis)(15), and the α-3/5 conotoxins (GI, GIA, GII from C. geographus)(40) (Figure 8) are known inhibitors of a7 and a3b4 nACH receptors . This study describes for the first time the discovery and characterisation of Czon1107, an unique single disulfide containing, non-competitive nACHR inhibitor, representing a novel class of nACHR antagonists. The single-disulfide conopeptides are as yet an unclassified group of peptides that occur in the venom of cone snails. For the purpose of the following discussion, Czon1107 should be considered as an α-0/3 peptide (when compared to the CF-I α-4/3 and α3/5 conotoxins). BLAST searches reveal no sequence match to other known proteins, indicating that Czon1107 is a peptide of novel sequence and structure. Structural comparisons of Czon1107 with either the α-4/3 or α-3/5 conotoxins are not meaningful given the differences in sequence, structure and site of activity. The superfamity classification of these peptides can only be attempted after analysis of gene sequences from transcriptomic data. While the α-Conotoxins inhibit the activation of nACHRs via the endogenous ligand binding pocket (orthosteric ligand binding site) (19), our data demonstrates that the Czon1107-WT and analogues are non-competitive nACHR antagonists (c.f. Figure 2 (iv)). The importance and the relative ease of synthesis of the α-conotoxins, has facilitated extensive structure-activity studies, which have provided some crucial insights into the orthosteric ligand recognition properties of the nACHRs. Chemical modifications to the natural scaffold such as amino-acid substitutions, C-terminal deamidation, backbone cyclization, replacement of disulfide bridges with dicarba linkers and lipophilic analogues have further improved the native pharmacological properties, proteolytic resistance, synthetic yields and bioavailability (35, 41, 42), making α-conotoxins amenable to therapeutic applications. The role of disulfide bonds in the case of α-conotoxins ImI and GI (archetypal α-conotoxins of the CF-I) have been studied in detail (35). Replacement of disulfide bonds in multi-disulfide conotoxins results in lowered stability. Indeed, attempts have been made to modify ImI to include dicarba-bridges in place of Cys2-Cys8 (42). Although this increased the stability of the molecule, it reduced the potency by a factor of 10—20. From the point of view of disulfide conformational isomerism, native Czon1107 and analogues provide a distinct advantage, given the singularity in disulfide connectivity (43). Inspection of the structures determined here shows that this 17 membered ring formed by the Cys6-Cys10 disulfide bond is rigid, mainly due to the presence of two proline residues that are locked in a cis conformation. Indeed, the effects of cis-trans isomerism, which emanate from outside this ring system, have very little bearing on the structure of this inter-cysteine loop. Importantly, this 17-atom ring provides a scaffold for the development of small molecule analogs that are nACHR antagonists, with potentially greater selectivity and improved bio-availability. Among the conopeptides, Czon1107 does show some sequence similarity to conopressins (Figure 8), which are known modulators of the oxytocin and vasopressin receptors. However, our target screening demonstrated no bioactivity at these receptors. Instead, despite no sequence or structural similarities to conotoxin modulators of the nACHRs, Czon1107 non-competitively inhibits the human a7 and a3b4 nACHRs with micromolar potency. Furthermore, we demonstrate the ability to modulate nACHR subtype selectivity using the Czon1107-P5A and Czon1107-P7A analogues (c.f. Figure 2 (v), (vi)). Three-dimensional structures of the Czon1107 and analogues suggest that this subtype selectivity is a re-
result of altering the steric properties of amino acid side-chains (read replacing Pro with Ala). Interestingly, the Cca1669 peptide has no effect in modulating Ca\(^{2+}\) activity, despite sequence features that resemble Ca\(^{2+}\) binding peptides\(^{(25)}\). Future structure-activity relationship (SAR) experiments, that explores chemical space by incorporation of unnatural and/or modified amino acids will provide a better understanding of the Czon1107 pharmacophore and the structural requirements for nAChR subtype selectivity. Although our data demonstrates that Czon1107 is a non-competitive nAChR antagonist, superfAMILY classification of this peptide can only be attempted after analysis of gene sequences from transcriptomic data. While the affinities of the Czon1107 peptides are modest (in the micromolar range), our data demonstrates that the single disulfide bonded Czon1107, is a structurally novel class of peptides modulating the nAChR. Furthermore, we show that Czon1107 modulates the receptor via non-competitive mechanisms. Therefore, given the novel structural as well as functional features, Czon1107 potentially defines a novel class of nAChR modulating peptides that provides an opportunity to determine novel ligand recognition mechanisms at this receptor. Indeed, the results presented here provide an impetus to screen venom from other Conus species for similar, short bioactive peptides, that in principle act synergistically, as allosteric modulators at target receptors. Indeed, N-terminal deletion versions of native Czon1107 peptides have also been identified\(^{(21)}\). Furthermore, these ultra-short peptides also carry important posttranslational modifications such as proline hydroxylation and C-terminal amidation. The activity of these ultra-short single disulfide peptides and their role in predation and/or defence\(^{(44)}\) will be investigated in the near future. Thus, in conclusion, these Conus zonatus peptides provide a new paradigm in the “conotoxomic” structure-function space.

EXPERIMENTAL PROCEDURES

Sample collection — Specimens of Conus caracteristicus and Conus zonatus were collected from the coastal waters off the south east coast of India and from the coastal waters off the Andaman and Nicobar Islands, India, respectively. The species were identified by one of the co-authors (BFJ).

Extraction of Natural peptides — The venom glands were dissected immediately and stored in a 50:50 mixture of acetonitrile and water for further analysis. The venom duct was ground in a mortar and pestle and the lysates were collected and centrifuged to separate the venom components from cell debris. The centrifugate was filtered through 0.2 \(\mu\)m pore size filter, lyophilized and stored at \(-20^\circ\)C until further use.

HPLC — The lyophilized crude venom was redissolved in methanol and the peptide components were chromatographed on a Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) column (either Varian Pursuit XRs 5 C18 columns (bead size 5 \(\mu\)m and pore size 100 Å) or Agilent ZORBAX C18 semi preparative column (9.4 mm x 250 mm, 90 Å pore size) connected to a Shimadzu LC-20 AD Prominence liquid chromatography system equipped with SPD-20A UV-Visible dual wavelength detector, using a linear methanol:water binary gradient (0—100%) mobile phase with the flow rate of 1 mL/min. Peak fractions were detected at 226 and 280 nm. Aqueous and non-aqueous mobile phase components contained 0.1% Trifluoroacetic acid (TFA) as co-solvent. Large scale purification of synthetic peptides was carried out on semi-preparative or analytical reverse phase HPLC columns (Varian Pursuit XRs 5 C18, 5 \(\mu\)m particle size and 100 Å pore size). The solvent from eluates were rotary evaporated to remove methanol, lyophilized and stored for further experiments.

Mass spectrometry — Masses of HPLC (off line) purified peptides were measured by Electron Spray Ionization-Mass Spectrometry (ESI-MS) on a Bruker Daltonics Esquire 3000 Plus Ion-Trap Mass Spectrometer. Masses of peptides in crude venom were measured by Liquid Chromatography-Electron Spray Ionization-Mass Spectrometry (LC-ESI-MS) on a Bruker Daltonics Esquire 3000 Plus Ion-Trap Mass Spectrometer attached to an in-line Agilent 1100 series HPLC system or by Matrix Assisted Laser Desorption or Ionization Time of Flight (MALDI-TOF) on a Bruker Ultraflex TOF/TOF instruments (Bruker Daltonics, Germany). For ESI-MS data acquisition, samples were infused into the mass spectrometer by direct injection at an infusion rate of 0.2 mL per min. For LC-ESI-MS data samples were infused into the mass spectrometer.
Single disulfide conopeptides

through an HPLC column (Agilent Zorbax analytical C18 column, 150 x 4.6 mm, 5 µm, 90 Å pore size) and eluted using a binary gradient of water (0.1% TFA): acetonitrile (0.1% TFA) at a flow rate of 0.2 mL per min. Data were acquired over a m/z range of 100 — 2000 in positive ion mode. In the case of MALDI-TOF data acquisition, solid solutions of analytes were prepared by mixing with either sinapinic acid (SA) or α-cyano-4-hydroxycinnamic acid (CCA) prior spotting on the MALDI plate. The data were processed and analyzed by Flex Analysis software.

De novo peptide sequencing — Reduction and alkylation of natural venom and analysis by LC-ESI-MS. To the small amount of aliquoted stock solution of the venom, the reducing reagent Tris(2-carboxyethyl)phosphine (final concentration of 20 mM) added and incubated at 37°C for 90 minutes. N-Ethylmaleimide was added to the mixture to a final concentration of 40 mM and incubated for 45 minutes at room temperature. The mixture was analyzed by LC-ESI-MS to identify conopeptides containing single disulfides (45, 46).

Acetylation and esterification of reduced and alkylated peptides. Acetylation reactions were carried out by addition of 2 µL of acetic anhydride to 4 µL of the reduced and alkylated venom components (described above). The sample was diluted to 20 µL with distilled water and incubated for 60 minutes at 25°C (46). Esterification reactions were carried by addition of Methanolic-HCl to 4 µL of reduced and alkylated peptide and the samples were incubated for 30 minutes at 25°C (46). The products of the acetylation and esterification reactions were monitored by MALDI-TOF mass spectrometry.

Sequence determination. Reduced and alkylated single disulfide peptides were mass selected and fragmented by collision induced dissociation to generate daughter ion spectra for each individual peptide. The daughter ion spectra were manually analyzed to determine the amino acid sequences of the respective peptides (24). From the sequencing data one peptide from Conus caracteristicus and one from Conus zonatus named as Cca1669 and Czon1107, respectively, had novel primary structures and were selected for further studies.

Peptide synthesis — Cca1669 and Czon1107 peptides were custom synthesized by either Genscript corporation or by China Peptides (using Solid-Phase Peptide Synthesis) and was obtained in either the reduced (70% pure) or fully oxidized (> 98% pure) form. The Cca1669 peptide was synthesized in both the c-terminal amidated and non-amidated form while Czon1107 was synthesized in the C-terminal amidated form. The reduced peptides were oxidized in-house and purified by RP-HPLC for bio-activity and structural studies. Purification by RP-HPLC was repeated twice prior to use for Activity and NMR structural studies. The purified peptides were dissolved in Milli Q water and lyophilized and stored. Two variants of Czon1107, viz., Czon1107-P5A and Czon1107-P7A were custom synthesized by the same vendors and were procured in the fully oxidized form (> 98% pure). Purification by RP-HPLC was repeated twice prior to use for Activity and NMR structural studies. The purified peptides were dissolved in Milli Q water and lyophilized and stored.

NMR Spectroscopy — Sample preparation. Samples of Czon1107 for NMR spectroscopy were prepared by dissolution of lyophilized samples in sterile Milli Q water with 10% D$_2$O or in 100% D$_2$O. NMR data for Czon1107 (WT and variants) was acquired on samples that were ~ 2.5 mM in concentration.

Data Acquisition. All NMR spectra were acquired on Agilent 600 MHz NMR spectrometer equipped with a 5mm triple resonance cold probe fitted with a single (Z-axis) pulsed field gradient accessory, or Bruker Avance 700 MHz spectrometer also equipped with a cryoprobe fitted with a Z-axis only pulsed field gradient accessory. All NMR data was acquired at 25°C, unless specified. The transmitter of proton was set at 4.63 ppm. Solvent suppression in one-dimensional and two-dimensional homonuclear NMR experiments was achieved using the excitation sculpting read element (47). Solvent suppression in heteronuclear NMR experiments was achieved by either the WATERGATE pulse scheme as the read element or by pulsed field gradient enhanced coherence selection (48). All spectra were referenced to an external DSS standard and recorded in phase sensitive mode. Homonuclear spectra were acquired with 4096 (t2 max) data points in F2 dimension and 256 (t1 max) increments in F1 dimension with spectral widths of 8012.8 Hz in the directly and indirectly
NMR data processing and analysis. All NMR data were processed using NMR-Pipe/NMRDraw software (53) on an Intel i3 desktop computer running on openSUSE 42.3 Linux operating system software. Spectra were processed by applying a squared sine-bell weighting function that was phase shifted by 90°. Data sets were zero-filled once prior to Fourier transform and base line correction. Spectra were analyzed using the program CcpNmr Analysis versions 2.4 (54, 55).

Structure Calculations. Torsion Angles and Stereospecific assignments
Three bond $^3J_{H^N, H^α}$ coupling constants were determined from either one-dimensional proton spectrum or from two-dimensional DQF-COSY spectrum. Stereospecific assignments were made using the method described by Wagner (56). For t^2g^3, g^2g^3 and g^3t^3 side-chain conformations about the $C^α$ - $C^β$ bonds, the χ1 torsion angles were constrained to $-60°$, $60°$ and $180°$ respectively. Backbone dihedral angle constraints were derived from the size of the coupling constant, from the pattern of the observed NOEs between backbone atoms and from backbone $^1H^α$ and $^{13}C^α$ chemical shifts.

Distance Restraints and Structure calculations
Distance restraints for structure calculations were obtained from intensities of crosspeaks assigned in the ROESY spectra ($τ_m = 100 — 350$ ms). The distance restraints were classified as strong, medium and weak based on the intensities. The upper interproton distance bound corresponding to each distance category was set to 2.6, 3.6 and 5.5 Å. Lower bounds were set to 1.8 Å for all the categories. The $φ$ dihedral angles were incorporated in the initial rounds of structure calculation. The $ψ$ and $χ$1 dihedral angles were incorporated in the later stages of structure calculations. The X-Pro amide bonds were constrained to trans or cis conformation where appropriate. Disulfide bonds were introduced between Cys6 and Cys10 during the structure calculations. Distance restraints for disulfide bonds were created using the DisulfideRestraints.cya routine of Cyana-3.0. Tertiary structures for major and minor conformers of Czon1107, P7A and P5A were calculated with the program CYANA 3.97 (57) on the basis of experimentally observed ROEs and dihedral angle restraints using the torsion angle dynamics protocol. In the process of structure determination, 200 random conformers were subjected to 20000 steps of annealing to obtain an ensemble of 50 structures of acceptable stereochemical quality. These fifty low energy structures with no distance violations > 0.2 Å and no dihedral angle violations > 5 Å were subjected to A final step of restrained molecular dynamics with inclusion of explicit solvent water was used to improve further the quality of the final conformers. Structure refinement in explicit water was carried out using the XPLOR-NIH molecular structure determination program (58, 59). The stereochemical quality of individual structures was assessed using CYANA-3.0, MOLMOL (60), PROCHECK-NMR (61) and PSVS (34).

Structure analysis. Three dimensional structures of the molecules were analyzed using MOLMOL, PyMOL (62), and Chimera (63). Ring current shifts were calculated using the CalcShift routine in MOLMOL based on the method developed by Johnson and Bovey (64).

Activity studies — Receptor bioassays were performed using the Fluorescence Imaging Plate Reader (FLIPR™). The human oxytocin receptor (hOTR), the human vasopressin receptor V1a (hV1aR) and the human vasopressin receptor V1b (hV1bR) complementary DNAs (cDNAs) were obtained from OriGene Technologies, and the rat N-methyl-D-aspartate receptor (NMDA) subunits NR1-1a (# 17928) and NR2A (# 17924) were obtained from Addgene. COS-1 cells (American Type Culture Collection (ATCC)) grown in Dulbecco’s modified Eagle’s medium (DMEM) and 5% fetal bovine serum (FBS) were transiently transfected with plasmid DNA encoding the hOTR, hV1aR or hV1bR using FuGENE HD in a 1:3 ratio of DNA and FuGENE, following the manufacturer’s protocol.
HEK293T cells (ATCC) cultured in DMEM containing L-glutamine and 10% fetal bovine serum were transiently transfected with plasmid DNA encoding the rNR1-1a and rNR2A subunits in a 1:3 ratio of the NR1-1a and NR2A subunit, using FuGENE HD in a 1:3 ratio of DNA and FuGENE, following the manufacturer’s protocol. 24 h post-transfection, COS-1 cells were seeded at a density of 15,000 cells/well and the HEK293T cells were seeded at a density of 30,000 cells/well, respectively, in black-walled 384-well imaging plates (Corning, Sigma Aldrich) and maintained for another 24 h at 37°C in a 5% humidified CO₂ incubator. 48 h post-transfection. Voltage-gated sodium (Na⁺), calcium (Ca²⁺) channel, and nAChR assays were performed using the human neuroblastoma cell line SH-SY5Y, endogenously expressing these receptors. The SH-SY5Y cells were grown in RPMI medium supplemented with 10% FBS and L-glutamine. The SH-SY5Y cells were seeded at 100,000 cells per well in black-walled 384-well imaging plates (Corning, Sigma Aldrich) and maintained for another 24—48 h at 37°C in a 5% humidified CO₂ incubator to allow the formation of a confluent monolayer. On the day of the assay, the media was removed from the cells and cells were loaded with 20 µl of the Calcium 4 No-wash dye (Molecular Devices) by diluting the lyophilized dye in physiological salt solution (PSS: 140 mM NaCl, 11.5 mM glucose, 5.9 mM KCl, 1.4 mM MgCl₂, 1.2 mM NaH₂PO₄, 5 mM NaHCO₃, 1.8 mM CaCl₂, 10 mM HEPES, pH 7.4), and incubated for 30 min at 37°C in a 5% humidified CO₂ incubator. Intracellular Ca²⁺ responses were measured in response to ligands in a FLIPR™ (Molecular Devices) using a cooled CCD camera with excitation at 470—495 nm and emission at 515—575 nm. Camera gain and intensity were adjusted for each plate to yield a minimum of 1000 arbitrary fluorescence units (AFU) baseline fluorescence. Prior to the first addition, 10 baseline fluorescence readings were taken, followed by addition of 10 µl buffer, agonist or antagonist, respectively, prepared as a 3 x concentrated stock solution in PSS to give the final concentrations provided for each ligand. Fluorescent readings were taken every second for 600 s following the first addition, followed by the second addition of 10 µl agonist, prepared as a 4 x concentrated stock solution in PSS to give the final concentrations provided for each ligand, when testing for antagonist activity. Fluorescence measurements were recorded every second for a further 300 s after the second addition. Czon1107 and Cca1669 were tested for agonist and antagonist activity (100 µM) at the hOTR, hV1aR, hV1bR, and the NMDA receptor NR1-1a/2A in transiently transfected COS-1 and HEK293T cells, respectively. A final concentration of 100 µM of Czon1107 and Cca1669 were added to SH-SY5Y cells to investigate any agonist effect at endogenously expressed receptors and antagonist activity at Ca₉, Na₉, mAChR and nAChRs (α7 and α7β4). Oxytocin (10 µM) was used as positive control for the hOTR, vasopressin (1 µM) for the hV1aR and hV1bR, co-addition of glutamate (20 µM) and glycine (10 µM) for the NMDA receptor NR1-1a/2A, KCl (90 mM) for Ca₉, 50 µM veratridine for Na₉, acetylcholine (10 µM) for mAChRs and cholera for α7 or nicotine for α7β4 (30 µM). Additionally, N-(5-Methyl-3-isoxazolyl)-urea (PNU-120596) is also used (10 µM) to measure activity at the α7 subtype on the FLIPR platform. The channel kinetics are too fast to measure otherwise. All concentrations given are the final concentrations tested at the cellular level. The error bars indicate the standard error of the mean (SEM) for sample replicates as indicated in the figure legends.

DATA AVAILABILITY / DEPOSITION STATEMENT

Chemical shift data for major and minor conformers of Czon1107 WT, P5A and major and minor conformer of P7A peptides have been deposited in the BMRB database under accession numbers 36275, 36276, 36274, 36280 and 36279 respectively.

Structural data for major and minor conformers of Czon1107 WT, P5A and major and minor conformer of P7A peptides have been deposited in the PDB with PDB IDs : 6KN2, 6KN3, 6KMY, 6KNP and 6KNO respectively.

The raw and processed Mass Spectral data have been deposited in the PRoteomics IDEntifications (PRIDE) Database under the accession number.
PXD017882.
Raw NMR data will be shared on request.
Contact: Siddhartha P. Sarma
Affiliation: Molecular Biophysics Unit, Indian Institute of Science
E-mail: sidd@iisc.ac.in

Acknowledgments: MMK, RRP, BFJ and SPS would like to thank the Department of Science and Technology and The Department of Biotechnology, Government of India for the NMR and Mass spectrometric Facilities at the Indian Institute of Science. SPS would like to thank the DBT-IISc Partnership Program for funds to defray costs of the project.

Conflict of interest: The authors declare that they have no conflicts of interest with the contents of this article.

AUTHOR CONTACT INFORMATION
Name e-mail
Madhan Kumar Mohan madhank@iisc.ac.in
Nikita Abraham n.abraham@imb.uq.edu.au
Rajesh R. P. jeshran@gmail.com
J. Benjamin Franklin b.franklin@bnhs.org
Lotten Ragnarsson l.ragnarsson@imb.uq.edu.au
Richard J. Lewis r.lewis@uq.edu.au
Siddhartha P. Sarma sidd@iisc.ac.in
The following file(s) are available free of charge.

- Figures - 6
- Tables - 2
REFERENCES

1. Kaas, Q., Yu, R., Jin, A.-H., Duterre, S., and Craik, D. J. (2011) Conoserver: updated content, knowledge, and discovery tools in the conopeptide database. *Nucleic Acids Res.* **40**, D325–D330

2. Lebbe, E. K. and Tytgat, J. (2016) In the picture: disulfide-poor conopeptides, a class of pharmacologically interesting compounds. *J. Venom. Anim. Toxins incl. Trop. Dis.* **22**, 30

3. Terlau, H. and Olivera, B. M. (2004) Conus venoms: a rich source of novel ion channel-targeted peptides. *Physiol. Rev.* **84**, 41–68

4. Olivera, B. M., Showers Corneli, P., Watkins, M., and Fedosov, A. (2014) Biodiversity of cone snails and other venomous marine gastropods: evolutionary success through neuropharmacology. *Annu. Rev. Anim. Biosci.* **2**, 487–513

5. Hillyard, D. R., Monje, V. D., Mintz, I. M., Bean, B. P., Nadasdi, L., Ramachandran, J., Miljanich, G., Azimi-Zoonooz, A., McIntosh, J., Cruz, L. J., Imperial, J. S., and Olivera, B. M. (1992) A new *Conus* peptide ligand for mammalian presynaptic ca\(^{2+}\) channels. *Neuron* **9**, 69 – 77, https://doi.org/10.1016/0896-6273(92)90221-X

6. Olivera, B. M. (2000) in *Drugs from the Sea*, pp. 74–85, Karger Publishers

7. Miljanich, G. (2004) Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. *Curr. Med. Chem.* **11**, 3029–3040

8. Jacobsen, R., Jimenez, E. C., Grilley, M., Watkins, M., Hillyard, D., Cruz, L. J., and Olivera, B. M. (1998) The contrypans, a d-tryptophan-containing family of *Conus* peptides: interconversion between conformers. *J. Pep. Res.* **51**, 173–179

9. Sabareesh, V., Gowd, K. H., Ramasamy, P., Sudarsal, S., Krishnan, K., Sikdar, S., and Balaram, P. (2006) Characterization of contrypans from *Conus loriisii* and *Conus amadis* that target calcium channels. *Peptides* **27**, 2647–2654

10. Sudarsal, S., Singaravadivelan, G., Ramasamy, P., Ananda, K., Sarma, S. P., Sikdar, S. K., Krishnan, K., and Balaram, P. (2004) A novel 13 residue acyclic peptide from the marine snail, *Conus monile*, targets potassium channels. *Biochemical Biophysical Research Communications* **317**, 682 – 688, https://doi.org/10.1016/j.bbrc.2004.03.100

11. Kumar, G. S., Ramasamy, P., Sikdar, S. K., and Sarma, S. P. (2005) Overexpression, purification, and pharmacological activity of a biosynthetically derived conopeptide. *Biochemical Biophysical Research Communications* **335**, 965 – 972, https://doi.org/10.1016/j.bbrc.2005.08.002

12. Cruz, L. J., de Santos, V., Zafaralla, G. C., Ramilo, C. A., Zeikus, R., Gray, W. R., and Olivera, B. M. (1987) Invertebrate vasopressin/oxytocin homologs. characterization of peptides from *Conus geographus* and *Conus straitus* venoms.. *J. Biol. Chem.* **262**, 15821–15824

13. Craig, A. G., Norberg, T., Griffin, D., Hoeger, C., Akhtar, M., Schmidt, K., Low, W., Dykert, J., Richelson, E., Navarro, V., Mazella, J., Watkins, M., Hillyard, D., Imperial, J., Cruz, L. J., et al. (1999) Contulakin-g, an o-glycosylated invertebrate neurotensin. *J. Biol. Chem.* **274**, 13752–13759, 10.1074/jbc.274.20.13752

14. McIntosh, J. M., Olivera, B. M., Cruz, L., and Gray, W. (1984) Gamma-carboxyglutamate in a neuroactive toxin.. *J. Biol. Chem.* **259**, 14343–14346

15. McIntosh, J. M., Yoshikami, D., Mahe, E., Nielsen, D. B., Rivier, J. E., Gray, W. R., and Olivera, B. M. A nicotinic acetylcholine receptor ligand of unique specificity, \(\alpha\)-conotoxin imi.. *J. Biol. Chem.* **269**, 16733–16739

16. Olivera, B. M., Quik, M., Vincler, M., and McIntosh, J. M. (2008) Subtype-selective conopeptides targeted to nicotinic receptors: Concerted discovery and biomedical applications. *Channels* **2**, 143–152

17. Olivera, B. M. and Teichert, R. W. (2007) Diversity of the neurotoxic *Conus* peptides. *Mol. Interv.* **7**, 251
18. Dineley, K. T., Pandya, A. A., and Yakel, J. L. (2015) Nicotinic ach receptors as therapeutic targets in cns disorders. Trends Pharmacological Sciences 36, 96 – 108, https://doi.org/10.1016/j.tips.2014.12.002
19. Abraham, N. and Lewis, R. (2018) Neuronal nicotinic acetylcholine receptor modulators from cone snails. Mar. Drugs 16, 208
20. Pennington, M. W., Czerwinski, A., and Norton, R. S. (2018) Peptide therapeutics from venom: Current status and potential. Bioorg. & Med. Chem. 26, 2738–2758
21. Franklin, J. B., Rajesh, R. P., Vinithkumar, N. V., and Kirubagaran, R. (2017) Identification of short single disulfide-containing contryphans from the venom of cone snails using de novo mass spectrometry-based sequencing methods. Toxicon 132, 50–54
22. Thakur, S. S. and Balaram, P. (2007) Rapid mass spectral identification of contryphans. detection of characteristic peptide ions by fragmentation of intact disulfide-bonded peptides in crude venom. Rapid Comm. Mass Spect. 21, 3420–3426
23. Vijayasarathy, M., Basheer, S. M., Franklin, J. B., and Balaram, P. (2016) Contryphan genes and mature peptides in the venom of nine cone snail species by transcriptomic and mass spectrometric analysis. J. Prot. Res. 16, 763–772
24. Biemann, K. (1990) in Method. Enzymol., volume 193 pp. 455–479, Elsevier
25. Haber-Pohlmeier, S., Abarca-Heidemann, K., Körschen, H., Dhiman, H. K., Heberle, J., Schwalbe, H., Klein-Seetharaman, J., Kaupp, U., and Pohlmeier, A. (2007) Binding of ca2+ to glutamic acid-rich polypeptides from the rod outer segment. Biophysical Journal 92, 3207 – 3214, https://doi.org/10.1529/biophysj.106.094847
26. Balaji, R. A., Ohtake, A., Sato, K., Gopalakrishnakone, P., Kini, R. M., Seow, K. T., and Bay, B.-H. (2000) \(\lambda\)-conotoxins, a new family of conotoxins with unique disulfide pattern and protein folding: Isolation and characterization from the venom of Conus marmoreus. J. Biol. Chem. 275, 39516–39522, 10.1074/jbc.M006354200
27. Shon, K.-J., Grilley, M. M., Marsh, M., Yoshikami, D., Hall, A. R., Kurz, B., Gray, W. R., Imperial, J. S., Hillyard, D. R., and Olivera, B. M. (1995) Purification, characterization, synthesis, and cloning of the lockjaw peptide from Conus purpurascens venom. Biochemistry 34, 4913–4918
28. Wüthrich, K. (1986) NMR of Proteins and Nucleic acids, pp. 1–292, Wiley
29. Sharma, D. and Rajarathnam, K. (2000) 13C nmr chemical shifts can predict disulfide bond formation. J. Biomol. NMR 18, 165–171
30. Dorman, D. E. and Bovey, F. A. (1973) Carbon-13 magnetic resonance spectroscopy. spectrum of proline in oligopeptides. J. Org. Chem. 38, 2379–2383
31. Schubert, M., Labudde, D., Oschkinat, H., and Schmieder, P. (2002) A software tool for the prediction of xaa-pro peptide bond conformations in proteins based on 13C chemical shift statistics. J. Biomol. NMR 24, 149–154
32. Ramachandran, G. N., Ramakrishnan, C., and Sasisekaran, V. (1963) Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95 – 99
33. Laskowski, R. A., Rullmann, J. A. C., MacArthur, M. W., Kaptein, R., and Thornton, J. M. (1996) Aqua and procheck-nmr: Programs for checking the quality of protein structures solved by nmr. J. Biomol. NMR 8, 477–486, 10.1007/BF00228148
34. Bhattacharya, A., Tejero, R., and Montelione, G. T. (2007) Evaluating protein structures determined by structural genomics consortia. Proteins: Struct., Func., Bioinf. 66, 778–795
35. Lamthanh, H., Jegou-Matheron, C., Servent, D., Ménez, A., and Lancelin, J.-M. (1999) Minimal conformation of the \(\alpha\)-conotoxin imi for the \(\alpha7\) neuronal nicotinic acetylcholine receptor recognition: correlated cd, nmr and binding studies. FEBS Lett. 454, 293–298
36. Kaas, Q., Westermann, J.-C., and Craik, D. J. (2010) Conopeptide characterization and classifications: an analysis using conoserver. Toxicon 55, 1491–1509
37. Akondi, K. B., Muttenthaler, M., Dutertre, S., Kaas, Q., Craik, D. J., Lewis, R. J., and Alewood, P. F. (2014) Discovery, synthesis, and structure–activity relationships of conotoxins. Chem. Rev. 114, 5815–5847
38. Röckel, D., Kohn, A. J., and Korn, W. (1995) Manual of the living Conidae: Indo-Pacific region, volume 1, Verlag Christa Hemmen
39. Franklin, J. B., Subramanian, K., Fernando, S. A., and Krishnan, K. (2009) Diversity and distribution of conidae from the tamilnadu coast of india (mollusca: Caenogastropoda: Conidae). Zootaxa, 3–63
40. Gray, W. R., Luque, A., Olivera, B. M., Barrett, J., and Cruz, L. J. (1981) Peptide toxins from Conus geographus venom. Journal Biological Chemistry 256, 4734–4740
41. Gehrmann, J., Alewood, P. F., and Craik, D. J. (1998) Structuredetermination of the threedisulfide bond isomers of α-conotoxin gi: a model for the role of disulfide bonds in structural stability. J. Mol. Biol. 278, 401–415
42. Chhabra, S., Belgi, A., Bartels, P., van Lierop, B. J., Robinson, S. D., Kompella, S. N., Hung, A., Callaghan, B. P., Adams, D. J., Robinson, A. J., and Norton, R. S. (2014) Dicarba analogues of α-conotoxin rgia. structure, stability, and activity at potential pain targets. J. Med. Chem. 57, 9933–9944, 10.1021/jm501126u
43. Steiner, A. M., Bulaj, G., and Puillandre, N. (2013) On the importance of oxidative folding in the evolution of conotoxins: cysteine codon preservation through gene duplication and adaptation. PLoS ONE 8, e78456
44. Dutertre, S., Jin, A.-H., Alewood, P. F., and Lewis, R. J. (2014) Intraspecific variations in Conus geographus defence-evoked venom and estimation of the human lethal dose. Toxicon 91, 135–144
45. Aguilar, M. B., Lezama-Monfil, L., Maillo, M., Pedraza-Lara, H., López-Vera, E., and de la Cotera, E. P. H. (2006) A biologically active hydrophobic t-1-conotoxin from the venom of Conus spurius. Peptides 27, 500–505
46. Mandal, A. K., Ramasamy, M. R. S., Sabareesh, V., Openshaw, M. E., Krishnan, K. S., and Balaram, P. (2007) Sequencing of t-superfamily conotoxins from Conus virgo: pyroglutamic acid identification and disulfide arrangement by maldi mass spectrometry. J. Am. Soc. Mass Spectr. 18, 1396–1404
47. Hwang, T.-L. and Shaka, A. (1995) Water suppression that works. excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J. Magn. Reson., Series A 112, 275–279
48. Kay, L., Keifer, P., and Saarinen, T. (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. Chem. Soc. 114, 10663–10665
49. Rance, M., Sørensen, O., Bodenhauser, G., Wagner, G., Ernst, R., and Wüthrich, K. (1983) Improved spectral resolution in cosy 1h nmr spectra of proteins via double quantum filtering. Biochem. Biophys. Res. Commun. 117, 479–485
50. Cavanagh, J. and Rance, M. (1992) Suppression of cross-relaxation effects in tocsy spectra via a modified dipsi-2 mixing sequence. J. Magn. Reson. 96, 670–678
51. Bothner-By, A. A., Stephens, R., Lee, J., Warren, C. D., and Jeanloz, R. (1984) Structure determination of a tetrasaccharide: transient nuclear overhauser effects in the rotating frame. J. Am. Chem. Soc. 106, 811–813
52. Bodenhauser, G. and Ruben, D. J. (1980) Natural abundance nitrogen-15 nmr by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69, 185–189
53. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) Nmrpipe: a multidimensional spectral processing system based on unix pipes. J. Biomol. NMR 6, 277–293
54. Vranken, W. F., Boucher, W., Stevens, T. J., Fogh, R. H., Pajon, A., Llinas, M., Ulrich, E. L., Markley, J. L., Ionides, J., and Laue, E. D. (2005) The ccpn data model for nmr spectroscopy: development of a software pipeline. Proteins: Struct., Func., Bioinf. 59, 687–696
55. Skinner, S. P., Fogh, R. H., Boucher, W., Ragan, T. J., Mureddu, L. G., and Vuister, G. W. (2016) Ccpnmr analysis assign: a flexible platform for integrated nmr analysis. J. Biomol. NMR 66, 111–124

56. Wagner, G., Braun, W., Havel, T. F., Schaumann, T., Gö, N., and Wüthrich, K. (1987) Protein structures in solution by nuclear magnetic resonance and distance geometry: The polypeptide fold of the basic pancreatic trypsin inhibitor determined using two different algorithms, disgeo and disman. J. Mol. Biol. 196, 611 – 639, https://doi.org/10.1016/0022-2836(87)90037-4

57. Güntert, P. and Buchner, L. (2015) Combined automated noe assignment and structure calculation with cyana. J. Biomol. NMR 62, 453–471

58. Schwieters, C. D., Kuszewski, J. J., Tjandra, N., and Clore, G. M. (2003) The xplor-nih nmr molecular structure determination package. Journal Magnetic Resonance 160, 65 – 73, https://doi.org/10.1016/S1090-7807(02)00014-9

59. Schwieters, C. D., Kuszewski, J. J., and Clore, G. M. (2006) Using xplor–nih for nmr molecular structure determination. Progress Nuclear Magnetic Resonance Spectroscopy 48, 47 – 62, https://doi.org/10.1016/j.pnmrs.2005.10.001

60. Koradi, R., Billeter, M., and Wüthrich, K. (1996) Molmol: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55

61. Laskowski, R. A., Rullmann, J. A. C., MacArthur, M. W., Kaptein, R., and Thornton, J. M. (1996) Aqua and procheck-nmr: programs for checking the quality of protein structures solved by nmr. J. Biomol. NMR 8, 477–486

62. Schrödinger, L. (2015) The PyMOL molecular graphics system, version 1.8

63. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004) UCSF chimera – a visualization system for exploratory research and analysis. J. Comp. Chem. 25, 1605–1612

64. Johnson Jr, C. and Bovey, F. (1958) Calculation of nuclear magnetic resonance spectra of aromatic hydrocarbons. J. Chem. Phys. 29, 1012–1014

65. Dutertre, S., Croker, D., Daly, N. L., Andersson, , Muttenthaler, M., Lumsden, N. G., Craik, D. J., Alewood, P. F., Guillon, G., and Lewis, R. J. (2008) Conopressin-t from Conus tulipa reveals an antagonist switch in vasopressin-like peptides. Journal Biological Chemistry 283, 7100–7108, 10.1074/jbc.M706477200

66. Terrat, Y., Biass, D., Dutertre, S., Favreau, P., Remm, M., Stöcklin, R., Piquemal, D., and Ducancel, F. (2012) High-resolution picture of a venom gland transcriptome: Case study with the marine snail Conus consors. Toxicon 59, 34 – 46, https://doi.org/10.1016/j.toxicon.2011.10.001

67. Nielsen, D. B., Dykert, J., Rivier, J. E., and McIntosh, J. (1994) Isolation of lys-conopressin from the venom of the worm-hunting snail, Conus imperialis. Toxicon 32, 845 – 848, https://doi.org/10.1016/0041-0101(94)90009-4

68. Cruz, L. J., de Santos, V., Zafaralla, G. C., Ramilo, C. A., Zeikus, R., Gray, W. R., and Olivera, B. M. (1987) Invertebrate vasopressin/oxytocin homologs. characterization of peptides from Conus geographus and Conus striator venoms.. Journal Biological Chemistry 262, 15821–15824

69. Gray, W. R., Rivier, J., Galyean, R., Cruz, L. J., and Olivera, B. M. (1983) Conotoxin mi. disulfide bonding and conformational states.. J. Biol. Chem. 258, 12247–12251

70. Zafaralla, G. C., Ramilo, C., Gray, W. R., Karlstrom, R., Olivera, B. M., and Cruz, L. J. (1992) Phylogenetic specificity of cholinergic ligands: α -conotoxin si. Biochemistry 27, 7102–7105

71. Ramilo, C. A., Zafaralla, G. C., Nadasdi, L., Hammerland, L. G., Yoshikami, D., Gray, W. R., Kristipati, R., Ramachandran, J., and Miljanich, G. (1992) Novel. α - and ω-conotoxins and Conus striatus venom. Biochemistry 31, 9919–9926

Table 1: Sequence data for the peptides (Cca1669 and Czon1107)

S.No.	Name	Sequence
1	Cca1669	RDCGKMCEEEETWKG
2	Cca1669-NH₂	RDCGKMCEEEETWKG#
3	Czon1107	GFRSPCPPFC#
4	Czon1107-P5A	GFRSACPPFC#
5	Czon1107-P7A	GFRSPCAPFC#

- indicates C-terminal amidation
Table 2: IC₅₀ for Czon1107 and variants at α7 and α3β4

Peptide	α7 IC₅₀ µM ± SEM	α3β4 IC₅₀ µM ± SEM
Czon1107	77.2 ± 0.05	15.7 ± 3.0
Czon1107-P5A	22.7 ± 3.40	28.8 ± 6.0
Czon1107-P7A	26.2 ± 6.00	> 100
Table 3: Effect of Czon1107 on nicotine: concentration-activation curve

Czon1107 concentration (µM)	Nicotine IC$_{50}$ (µM ± SEM) at α3β4
No peptide	3.6 ± 0.3
3	4.1 ± 0.3
10	3.6 ± 0.2
30	3.7 ± 0.3
100	4.4 ± 0.8
300	4.0 ± 0.2
Table 4: NMR restraints and structural refinement statistics

Restraints & statistics	WT Conformer A	WT Conformer B	P5A Conformer A	P5A Conformer B	P7A Conformer A	P7A Conformer B	
NOE - based restraints							
Intra - residue (i − j	= 0)	51	36	58	46	6
Sequential (i-j ≤ 3)	47	10	39	29	6		
Long-range (i-j ≥ 4)	7	5	0	1	1		
Total	109	51	97	76	29		
Hydrogen bond restraints	0	0	0	0	0		
Dihedral angle restraints (φ, ψ)	6, 10	6, 10	7, 10	7, 10	7, 10		
Dihedral angle restraints (χ1, χ2)	0, 0	4, 2	4, 3	5, 3	2, 0		
Restraints violations							
Backbone dihedral angles > 5°	0	0	0	0	0		
Distance violations > 0.1Å	0	0	0	0	0		
van der Waals violations	0	0	0	0	0		
Ramachandran map statistics							
PROCHECK							
Most favored regions (%)	69	96	74	62	89		
Additionally allowed regions (%)	31	4	26	38	11		
Generously allowed regions (%)	0	0	0	0	0		
Total allowed regions	100	100	100	100	100		
Disallowed regions	0	0	0	0	0		
RMSD from mean structure coordinate (Å)							
Backbone	0.66 ± 0.24	0.49 ± 0.14	0.97 ± 0.41	0.83 ± 0.31	0.52 ± 0.19		
Heavy atom	1.00 ± 0.31	0.93 ± 0.34	1.51 ± 0.62	1.58 ± 0.65	1.38 ± 0.42		

1Structures are superposed on N,C,O,S heavy atoms of residues 6-10 (Numbering according to WT sequence)
Figure 1: i) LC-ESI-MS/MS spectrum of the double charged (m/z 860.2), reduced and alkylated Cca1669. Analysis of “b” (labeled in orange) and “y” (labeled in cyan) daughter ions enabled de novo assignment of the spectrum. Inset are the isotope clusters for the y2 and y3 ions. The m/z ions corresponding to the “b” and “y” ions are indicated on the deduced sequence. ii) LC-ESI-MS spectrum of the reduced and alkylated Czon1107 from crude venom. Both singly (m/z = 1359.7) and doubly (m/z = 680.3) charged species of the modified peptide can be observed. The peak at m/z = 999.4 and its doubly charged species at m/z = 500.1, correspond to a different peptide. ii b) LC-ESI-MS/MS spectrum of the doubly charged (m/z 680.3), reduced and alkylated Czon1107. Analysis of “b” (labeled in orange) and “y” (labeled in cyan) daughter ions enabled de novo assignment of the spectrum. The m/z ions corresponding to the “b” and “y” ions are indicated on the deduced sequence (shown in panel a). De novo sequencing revealed that both peptides are amidated at the C-terminus. The peak at m/z = 657.8 is tentatively assigned to the doubly charged a10 ion.
Single disulfide conopeptides

Figure 2: Screening for Cca1669#, Cca1669 and Czon1107# pharmacological target. Cca1669, Cca1669# and Czon1107# were tested for agonist (i) and antagonist (ii) activity at a concentration of 100 µM at the major conotoxin / conopeptide targets. Czon1107# inhibited the α7 and α3β4 nAChRs, while no activity was observed for Cca1669, Cca1669# at the targets screened. Data represents means ± SEM of one separate experiment performed in triplicate.

Functional characterization of Czon1107# at α7 and α3β4. (iii) Concentration response curves for Czon1107# at the human α7 and α3β4 nAChRs expressed in the SH-SY5Y cells. Czon1107# inhibits the α3β4 (15.3 µM) subtype with 5-fold increased selectivity over the α7 (77.2 µM) subtype. (iv) Concentration response curves for nicotine in the presence of an increasing concentration of Czon1107# shows an unsurmountable response, indicating a non-competitive mode of action. Data represents the mean ± SEM of n = 9 from three independent experiments for (iii) and n = 6 from two independent experiments for (iv).

Pharmacological profile of Czon1107# variants at α7 and α3β4. Concentration response curves for Czon1107#-P5A (v) and Czon1107#-P7A (vi) at the human α7 and α3β4 nAChRs expressed in the SH-SY5Y cells. In comparison to the native Czon1107#, Czon1107#-P5A equipotently inhibits both subtypes, whereas Czon1107#-P7A switches selectivity for the α7 subtype. Data represents the mean ± SEM of n = 9 from three independent experiments. # indicates a C-terminal amidated peptide and is a nomenclature used only in this figure.
Figure 3: i) H^N-H^α fingerprint region of assigned 2D - $^1\text{H},^1\text{H}$ - DQF-COSY spectrum of Czon1107. The sequence specific assignments for conformer A (major) are labeled black and those of conformer B (minor) are labeled green. ii and iii) Overlays of the H^N-H^α regions of the $^1\text{H},^1\text{H}$ - TOCSY (maroon) and ROESY (navy blue) spectra. Sequential connectivity walks are traced for the conformers A and B in (ii) and (iii) respectively. Residues in conformer A are numbered 1—10, whereas those of conformer B are labeled 11—20. Insets show NOE correlations that corroborate the sequence specific assignments for conformer B.
Figure 4: *Cis-trans isomerism.* Sections of the 1H, 13C - HSQC spectrum showing chemical shifts assignments for 1H$_{\beta}$/1H$_{\beta}'$, 1H$_{\gamma}$/1H$_{\gamma}'$, 13C$_{\beta}$ and 13C$_{\beta}'$ atoms of the Proline rings in Czon1107. i-iii) Assignments for the atoms named above for Pro$_5$, Pro$_7$ and Pro$_8$ of the conformer A. iv-vi) Assignments for the same atoms named above for Pro$_{15}$, Pro$_{17}$ and Pro$_{18}$ of conformer B. The $\Delta \delta ^{13}$C$_{\beta\gamma}$ (ppm) for each proline residue is indicated in the figure. A $\Delta \delta ^{13}$C$_{\beta\gamma}$ value < 7 ppm indicates a trans conformation about the X-Pro peptide bond ($\omega = 180^\circ$). Conversely a $\Delta \delta ^{13}$C$_{\beta\gamma}$ value > 8 ppm indicates a cis X-Pro peptide bond ($\omega = 0^\circ$). See text for details.
Figure 5: Cis-trans isomerism. Sections of the 1H,13C - HSQC spectrum showing chemical shifts assignments for 1H$^{\beta, \beta'}$/13C$^{\beta}$ and 1H$^{\gamma, \gamma'}$/13C$^{\gamma}$ atoms of the Proline rings in P5A and P7A. i-ii) Assignments for the atoms named above for Pro7 and Pro8 of P5A. iii,iv) Assignments for the same atoms named above for Pro5, Pro8 in conformer A of P7A. v) Assignments for the same atoms named above for Pro15 in conformer B of P7A. Note, the chemical shift values and hence the $\Delta\delta^{13}$C$^{\beta\gamma}$ values for Pro8 and Pro18 in conformers A and B of P7A are isochronous. The $\Delta\delta^{13}$C$^{\beta\gamma}$ (ppm) for each proline residue is indicated in the figure. A $\Delta\delta^{13}$C$^{\beta\gamma}$ value < 6 ppm indicates a trans conformation about the X-Pro peptide bond ($\omega = 180^\circ$). Conversely a $\Delta\delta^{13}$C$^{\beta\gamma}$ value > 8 ppm indicates a cis X-Pro peptide bond ($\omega = 0^\circ$). See text for details.
Figure 6: Solution NMR structure of Czon1107 WT. Centroids of aromatic rings in the tertiary structures are shown as black spheres. For structure ensembles, backbone atoms for residues 1—10 and side-chain atoms for residues 6—10 are shown. i) Ensemble of twenty lowest energy structures of conformer A, superposed on N, Cα, C atoms of residues 6-10. ii) Lowest energy structure in which residues Cys6, Pro8, Phe9 and Cys10 are shown in stick representation. Distances of Pro8 Hγ,γ′ to the ring centroid of Phe9 are shown in broken lines (magenta). iii) Lowest energy structure shown in cartoon representation. Backbone atoms of cysteine residues and the disulfide bond are shown in red. iv) Ensemble of twenty lowest energy structures of conformer B, superposed on N, Cα, C atoms of residues 16-20. v) Lowest energy structure in which residues Phe12 and Cys16-Cys20 are shown in stick representation. Distances of Pro17 Hγ,γ′ and Pro18 Hγ,γ′ to the ring centroid of Phe12 and Phe19, respectively, are shown in broken lines (cyan). The disulfide bonds in the ensemble structures are shown in red, whereas in the representative structures they are shown in ochre. vi) Aromatic ring-current effect as a consequence of CH···π interactions on the observed chemical shifts of Hβ,β′ and Hγ,γ′ protons of Pro8 (broken lines in magenta) in conformer A and Pro17 (broken lines in grey) in conformer B. The calculated shifts based on the structures determined here agree well with the observed shifts (see text for details). The chemical shifts of protons in Pro8 and Pro18 are overlapped in the two conformers. Atoms of the 17-membered ring formed by the Cys6-Cys10 disulfide bond are numbered in cyan.
Figure 7: Solution NMR structure of Czon1107 variants P7A and P5A. Centroids of aromatic rings in the tertiary structures are shown as black spheres. For structure ensembles, backbone atoms for residues 1—10 and side-chain atoms for residues 6—10 are shown. i) Ensemble of twenty lowest energy structures of conformer A for P7A, superposed on N, Cα, C atoms of residues 6—10. ii) Lowest energy structure in which residues Cys6, Pro8, Phe9 and Cys10 are shown in stick representation. Distances of Pro8 Hγ·γ′ to the ring centroid of Phe9 are shown in broken lines (olive color). iii) Ensemble of twenty lowest energy structures of conformer B of P7A, superposed on N, Cα, C atoms of residues 16—20. iv) Lowest energy structure in which residues Cys16, Pro18, Phe19 and Cys20 are shown in stick representation. Distances of Pro8 Hγ·γ′ and Pro18 Hγ·γ′ to the ring centroids of Phe9 and Phe19 are shown in broken lines (magenta). v) Aromatic ring-current effect as a consequence of CH···π interactions on the observed chemical shifts of Hβ·β′ and Hγ·γ′ protons of Pro8 (broken lines in olive) in conformer A and Pro17 (broken lines in magenta) in conformer B. The chemical shifts of protons in Pro8 and Pro18 are overlapped in the two conformers. vi) Ensemble of twenty lowest energy structures of P5A, superposed on N, Cα, C atoms of residues 6—10. vii) Lowest energy structure in which residues Cys6, Pro8, Phe9 and Cys10 are shown in stick representation. The disulfide bonds in the ensemble structures are shown in red, while in the representative structures they are shown in ochre. viii) Aromatic ring-current effect as a consequence of CH···π interactions on the observed chemical shifts of Hβ·β′ and Hγ·γ′ protons of Pro8 (broken lines in pink) in P5A. The calculated shifts based on the structures determined here for conformers of P7A and P5A agree well with the observed shifts (see text for details).
Conus species	Peptide	Sequence
C. zonatus	Czon1107 -	GF-...RSPCPPFC-NH₂
		α-4/3 (2 S-S)
C. imperialis (W)	α-ImI -	GCCSDPR-CAWR-C-NH₂
	α-ImII -	ACCSD-RR-CRWR-C-NH₂
C. geographus (P)	α-GI -	ECCNPACGRHYSC-NH₂
	α-GIA -	ECCNPACGRHYSCKG-NH₂
C. magus (P)	α-MI -	GRCCPACGKNFDC-NH₂
C. striatus (P)	α-SI -	ICCNPACGPKYSC-NH₂
	αSIA -	YCCPACGKNFDC-NH₂

Figure 8: Sequence comparison of WT-Czon1107 with conopressins from *Conus tulipa* (65), *Conus consors* (66), *Conus imperialis* (67) and *Conus striatus* (68) and prototype α-4/3 and α-3/5 conotoxins from *C. imperialis* (15), *C. geographus* (40), *C. magus* (69), and *C. striatus* (70, 71). W and P in parenthesis refers to worm-eating and fish-eating clades among the *Conus* species. Sequences have been aligned manually to the conserved cysteine residues. For comparison with α-conotoxins, the sequences have been aligned to the conserved cysteine residues in loop 2 for α-4/3 and loop 1 for α-3/5 conotoxins.
Structure and allosteric activity of a single disulfide conopeptide from Conus zonatus at human α3β4 and α7 nicotinic acetylcholine receptors
Madhan Kumar Mohan, Nikita Abraham, Rajesh R P, Benjamin Franklin Jayaseelan, Lotten Ragnarsson, Richard J Lewis and Siddhartha P Sarma

J. Biol. Chem. published online March 31, 2020

Access the most updated version of this article at doi: 10.1074/jbc.RA119.012098

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts