Title
Rate of intramolecular electronic energy transfer in coumarin bichromophoric molecules. An investigation by multifrequency phase-modulation fluorometry

Permalink
https://escholarship.org/uc/item/1w6945ft

Journal
Chemical Physics Letters, 119(2-3)

ISSN
0009-2614

Authors
Mugnier, Jacques
Valeur, Bernard
Gratton, Enrico

Publication Date
1985-08-01

DOI
10.1016/0009-2614(85)80063-4

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
RATE OF INTRAMOLECULAR ELECTRONIC ENERGY TRANSFER IN COUMARIN BICHROMOPHORIC MOLECULES. AN INVESTIGATION BY MULTIFREQUENCY PHASE-MODULATION FLUOROMETRY

Jacques MUGNIER, Bernard VALEUR

Laboratoire de Chimie Générale 1, Conservatoire National des Arts et Métiers
292 rue Saint-Martin, 75003 Paris, France

and

Enrico GRATTON

Department of Physics, University of Illinois Urbana, IL 61801, USA

Received 4 April 1985; in final form 12 June 1985

Dynamics of intramolecular electronic energy transfer in bichromophoric molecules consisting of two coumarins linked by a variable number of methylene groups is investigated by multifrequency phase-modulation fluorometry. From observation of the acceptor delayed emission, information on the rate of transfer can be obtained.

1. Introduction

Intramolecular electronic energy involving two chromophores separated by a molecular chain or frame is still receiving considerable attention because of its implications in numerous fields: photophysical processes, biological systems, dye lasers, wavelength shifters, etc. The reader is referred to the recent review by Speiser [1].

In a previous paper [2], we have reported a very efficient intramolecular energy transfer in a bichromophoric molecule consisting of two coumarin dyes linked by a short aliphatic chain. Application to frequency conversion of light was suggested. This new type of bichromophore whose formula is

\[
\text{donor} \quad \text{acceptor}
\]

has been further investigated with special attention to the effects of various parameters (temperature, viscosity, nature of the solvent, number of methylene groups separating the donor and acceptor moieties) on the efficiency of energy transfer. The results are being reported separately [3].

An essential feature of energy transfer is the rate of transfer. In most studies, this rate is calculated from measurements of the transfer efficiency and the lifetime of the donor in the absence of transfer. Nevertheless, dynamics of energy transfer is best analyzed by using time-dependent techniques, especially when transfer cannot be characterized by a single rate constant. Pulse fluorometry has been currently used for this purpose but never phase fluorometry. However, thanks to recent improvements based on multifrequency modulation of light and cross-correlation detection [4], phase fluorometry can provide information equivalent to that obtained with pulse fluorometry [5,6]. In the present paper, we report the first investigation of energy-transfer dynamics by phase fluorometry.

Furthermore, in most previous studies, attention
was paid only to changes in the fluorescence decay of the donor. However, when very efficient energy transfer occurs and/or when the quantum yield of the donor is very low, the donor fluorescence is so weak that detection is difficult because of stray light. Nevertheless, information on transfer rate is contained in time-dependent acceptor fluorescence via donor excitation. For instance, picosecond pulse fluorometry can be used for the determination of the rise of the acceptor fluorescence following pulse excitation of the donor [7]. Alternately, as shown in this paper, phase fluorometry experiments are based on the measurement of the phase shift between the acceptor fluorescence in the presence of transfer with respect to the acceptor fluorescence in the absence of transfer at various frequencies. This kind of experiment is reported in the present work using the above-depicted bichromophoric molecules.

3. Theory

In a first approach, we consider a simple kinetic scheme involving a single rate constant \(k_T \) for transfer from donor to acceptor. If the emission spectrum of the acceptor does not overlap the absorption spectrum of the donor, there is no back transfer.

\[
\begin{align*}
D^* & \xrightarrow{k_T} A \\
D & \xrightarrow{k_D} D^* \\
A & \xrightarrow{k_A} A^*
\end{align*}
\]

\(k_D \) and \(k_A \) are the emission rate constants of the donor and the acceptor, respectively; they are equal to the reciprocal of the lifetimes \(\tau_D \) and \(\tau_A \), respectively, in the absence of transfer.

Following an infinitely short pulse of light, the concentrations in excited donor and acceptor obey the following system of differential equations:

\[
\begin{align*}
\frac{d[D^*]}{dt} &= -(k_D + k_T)[D^*], \\
\frac{d[A^*]}{dt} &= k_T[D^*] - k_A[A^*].
\end{align*}
\]

Assuming that \(k_T \) is not time dependent (Stern-Volmer kinetics), the solutions of this system are the impulse response functions [11]:

\[
\begin{align*}
[D^*] &= \alpha_{0D} \exp(-m_0 t), \\
[A^*] &= \alpha_{0A} \exp(-m_0 t) + \alpha_{1A} \exp(-m_1 t),
\end{align*}
\]

where

\[
m_0 = k_D + k_T.
\]
\(m_1 - k_A, \)
\(\alpha_{D} = [D^*]_0. \)
\(\alpha_{A} = -\left(\frac{k_T[D^*]_0}{k_D + k_T - k_A}\right) \)
\(\alpha_{1A} = \frac{k_T}{k_D + k_T - k_A} [D^*]_0 + [A^*_0]. \)

At the excitation wavelength, both donor and acceptor absorb and their initial concentrations are \([D^*]_0\) and \([A^*_0]\), respectively.

In phase fluorometry experiments, the exciting light is sinusoidally modulated and the harmonic responses that are observed, are the Fourier transforms of the impulse responses. The quantities that can be measured are \(\phi\), the phase shift of emission with respect to excitation, and \(M\), the modulation ratio (ac/dc ratio) \([12] \)

\[\phi = \tan^{-1}(S/G), \]
\[M = (S^2 + G^2)^{-1/2}, \]

where \(S\) and \(G\) are the sine and cosine transforms of the impulse response \(I(t)\):

\[S = \int_{0}^{\infty} I(t) \sin(\omega t) dt, \]
\[G = \int_{0}^{\infty} I(t) \cos(\omega t) dt, \]

\(\omega\) is the angular frequency of the exciting light.

In the present case, \(I(t)\) is given by eq. (3) for the donor and eq. (4) for the acceptor. Eqs. (12) and (13) thus yield:

\[S_D = \frac{m_0 \omega^2}{\omega^2 + m_0^2}, \]
\[G_D = \frac{m_0^2}{\omega^2 + m_0^2}, \]
\[S_A = \frac{m_0 m_1}{m_1 \alpha_{0A} + m_0 \alpha_{1A}} \left(\frac{m_0 \alpha_{0A}}{\omega^2} + \frac{m_1 \alpha_{1A}}{\omega^2}\right). \]

\[G_A = \frac{m_0 m_1}{m_1 \alpha_{0A} + m_0 \alpha_{1A}} \left(\frac{m_0 \alpha_{0A}}{\omega^2} + \frac{m_1 \alpha_{1A}}{\omega^2}\right). \]

3.1. Calculation of \(\phi\)

Let us assume first that we can find an exciting wavelength \(\lambda_1\) at which only the donor absorbs ([A^*_0] = 0 in eq (9)). Eqs. (4) can be now written in the following form:

\[[A^*] = \frac{[D^*]_0 k_T}{k_D + k_T - k_A} \times \{\exp(-k_A t) - \exp[-(k_D + k_T) t]\}. \]

Furthermore, at a higher exciting wavelength \(\lambda_2\) at which only the acceptor absorbs, we have

\[[A^*] = [A^*_0] \exp(-k_A t). \]

Denoting by \(\phi_A\) and \(\phi_A^0\) the phase shifts corresponding to eqs (18) and (19) respectively, it is of interest to calculate \(\tan(\phi_A - \phi_A^0)\). This calculation can be done by means of eqs. (12) and (13) and leads to a very simple expression:

\[\tan(\phi_A - \phi_A^0) = \omega/(k_D + k_T). \]

It is remarkable that this expression is identical to the tangent of the phase shift of the donor in the presence transfer:

\[\tan \phi_D = \omega/(k_D + k_T). \]

Therefore, equivalent information is obtained from observation of the donor and the acceptor provided that the phase of reference is appropriately chosen.

In practice, there is no wavelength at which the donor can be excited with negligible absorption of the acceptor. When both donor and acceptor absorb ([A^*_0] = 0 in eq. (9)), the same procedure of calculation can be used and leads to:

\[\Delta = \tan(\phi_A - \phi_A^0) \]

\[= \frac{\omega}{k_D + k_T - ([A^*_0]/[D^*_0])((k_T + k_D)^2 + \omega^2)/k_T}. \]

Once \(k_D\) and the ratio \([A^*_0]/[D^*_0]\) are evaluated, the measurement of \(\Delta\) provides a straightforward way to determine \(k_T\).
It is now worth examining what kind of information can be drawn from the measurement of the modulation ratio.

3.2. Calculation of M

Using eq (11) together with eqs. (16) and (17), we obtain:

$$M_A^2 = \left(\frac{m_0 m_1}{m_1 \alpha_{0A} + m_0 \alpha_{1A}}\right)^2 \times \frac{(m_1 \alpha_{0A} + m_0 \alpha_{1A})^2 + \omega^2 (\alpha_{0A} + \alpha_{1A})^2}{m_0^2 + \omega^2 (m_1^2 + \omega^2)}$$

Substituting the values of $m_0, m_1, \alpha_{0A}, \alpha_{1A}$ in this equation, the following expression for M_A is obtained:

$$M_A = M_A^0 \frac{k_D + k_T}{[(k_D + k_T)^2 + \omega^2]^{1/2}} \times \left(1 + \frac{\omega^2 [A^*]_0^2 /[D^*]_0^2}{[k_T + (k_T + k_D)[A^*]_0/[D^*]_0^2]}\right)^{1/2}$$

where M_A^0 is the modulation ratio of the acceptor in the absence of transfer,

$$M_A^0 = k_A / (k_A^2 + \omega^2)^{1/2}.$$

In the present investigation, the modulation frequency ranges from 1 to 160 MHz. Therefore $\omega^2 \leq 10^{18}$. In addition, the lifetime of the donor τ_D^0 is found to be 0.76 ns ($k_D = 1.31 \times 10^9$ s$^{-1}$). Furthermore, steady-state experiments have shown that the transfer efficiencies are about 0.93 [3]; k_T is thus expected to be of the order of 10^{10} s$^{-1}$. Therefore,

$$(k_D + k_T)^2 \gg \omega^2.$$

Moreover, if the exciting wavelength is chosen to be the wavelength of maximum absorption of the donor, we have, $[A^*]_0/[D^*]_0 < 0.1$. Therefore,

$$\frac{\omega^2 [A^*]_0^2 /[D^*]_0^2}{[k_T + (k_T + k_D)[A^*]_0/[D^*]_0^2} \ll 1.$$

Taking into account the inequalities (26) and (27), eqs. (22) and (23) reduce to

$$\Delta = \tan(\phi_A - \phi_A^0)$$

$$\approx \frac{\omega}{k_D + k_T - ([A^*]_0^2 /[D^*]_0^2)(k_T + k_D)^2/k_T}.$$

$$M_A \approx M_A^0.$$

Eq. (28) shows that a linear dependence of Δ as a function of ω is expected. The slope permits determination of k_T. Any departure from a linear dependence is evidence that there is not a single rate constant, or that this rate constant is time dependent.

Eq. (29) is of practical interest. It shows that the modulation ratio is not affected by transfer. Therefore, it is not necessary to use a second excitation wavelength at which the donor does not absorb; this would require, for the measurement of very small phase shifts, to take into account a possible slight "color effect" of the photomultiplier. As a matter of fact, the modulation lifetime τ_A^0 of the acceptor in the presence of transfer is expected to be constant versus frequency and equal to the modulation lifetime τ_A^0 in the absence of transfer.

Moreover, if the exciting wavelength is chosen to be the wavelength of maximum absorption of the donor, we have, $[A^*]_0/[D^*]_0 < 0.1$. Therefore,

$$\Delta = \tan(\phi_A - \phi_A^0)$$

$$\approx \frac{\omega}{k_D + k_T - ([A^*]_0^2 /[D^*]_0^2)(k_T + k_D)^2/k_T}.$$

$$M_A \approx M_A^0.$$

The lifetimes of the models for the donor and the acceptor described in ref. [3] were measured in propylene glycol at 25°C. The donor model was excited at 325 nm and the acceptor model at 442 nm. A multifrequency phase and modulation analysis leads to a single decay time. 0.759 ± 0.003 ns for the donor and 4.620 ± 0.040 ns for the acceptor.

The bichromophores were excited at 325 nm. At this wavelength, the ratio $[A^*]_0/[D^*]_0$ is close to the minimum and equal to 0.083. The acceptor fluorescence was selected by using a Corning 3.71 filter. The modulation lifetime of the acceptor is constant versus
frequency; the average values are 4.77 ± 0.04 ns for $n = 3$, 4.66 ± 0.04 ns for $n = 4$, 4.71 ± 0.04 ns for $n = 8$ and 4.63 ± 0.05 ns for $n = 12$. These results show that the approximations used in section 3 are valid. For frequencies less than 10 MHz, the accuracy of the modulation lifetime is poor because the modulation ratio is very close to 1. Therefore, the above average values were used to calculate ϕ_A^0 by means of eq. (31). At frequencies higher than 10 MHz, the calculation was performed by using the actual value of $(\tau_A)_M$ at each frequency instead of using the average value, in order to minimize the effect of slight systematic deviations from the average value.

The values of $\Delta = \tan(\phi_A - \phi_A^0)$ are reported in fig. 1. Apart from small deviations at low frequencies, the variations of Δ versus frequency are approximately linear, as expected from eq. (28). The calculation of the average slopes leads to the values of the rate constant which are reported in table 1. These values are in the range predicted by Förster; dipole–dipole interaction is in fact highly probable as a consequence of the large spectral overlap between donor emission and acceptor absorption [3]. The transfer rate constants are slightly sensitive to the number of methylene groups. This fact is in agreement with the small changes in transfer efficiencies determined by steady-state methods (whereas larger changes were observed when dimethylformamide is used as a solvent) [3].

The consistency between dynamic and steady-state methods is further confirmed by the values of transfer efficiencies η_T calculated from the rate constants (table 1) by means of the following relation:

$$\eta_T = k_T \tau_D / (1 + k_T \tau_D).$$

The agreement between steady-state results and time-resolved results indicates that the kinetics are simple; the small deviations at low frequencies are more likely accounted for by experimental error than by complex kinetics (the experiment is in fact more difficult to perform at the lowest frequencies). Several phenomena, such as distribution of interchromo-

Table 1

n	$k_T \times 10^{10} \text{s}^{-1}$	η_T
3	1.7 ± 0.4	0.93 ± 0.02
4	1.9 ± 0.2	0.935 ± 0.01
8	1.5 ± 0.2	0.92 ± 0.01
12	1.4 ± 0.2	0.91 ± 0.01

a) From ref. [3].
phoric distance, intramolecular motions, etc., could lead to complex kinetics but the effects are expected to be small in the present case since the transfer efficiency is high.

Acknowledgement

The authors are most grateful to Dr. J. Bourson for making his synthesized bichromophores available to us.

References

[1] S. Speiser, J. Photochem. 22 (1983) 195, and references therein.
[2] J. Bourson, J. Mugnier and B. Valeur, Chem. Phys. Letters 92 (1982) 430.
[3] J. Mugnier, J. Pouget, J. Bourson and B. Valeur, J. Luminescence, to be published.
[4] E. Gratton and M. Limkeman, Biophys. J. 44 (1983) 315.
[5] J.R. Lakowicz, G. Laczko, H. Cherek, E. Gratton and M. Limkeman, Biophys. J. 46 (1984) 463.
[6] E. Gratton, M. Limkeman, J.R. Lakowicz, B.P. Maliwal, H. Cherek and G. Laczko, Biophys. J. 46 (1984) 479.
[7] B. Kopainsky, W. Kaiser and F.R. Schäfer, Chem. Phys. Letters 56 (1978) 458.
[8] J. Bourson, to be published.
[9] R.D. Spencer and G. Weber, Ann. NY Acad. Sci. 158 (1969) 361.
[10] S. Brandt, Statistical and computational methods in data analysis, 2nd Ed. (North-Holland, Amsterdam, 1976).
[11] J. Birks, S. Georgiou and I. Munro, J. Phys. B1 (1968) 266.
[12] G. Weber, J. Phys. Chem. 85 (1981) 949.