Status and trends of Rangifer tarandus and Ovibos moschatus populations in Canada

Michael A. D. Ferguson and Line Gauthier.

Renewable Resources. Government of the N.W.T., Pond Inlet, N.W.T., Canada X0A 0S0

Abstract: We identified 97 Rangifer tarandus and 17 Ovibos moschatus populations in Canada. In July 1991, the Canadian populations totalled 1.9 to 2.6 million caribou, 13,600 reindeer and 108,600 muskoxen. Seven barren-ground caribou populations contributed about 75% to Canada’s total number of caribou. Most population trends of these barren-ground caribou had shifted from increasing in the early 1980s to stable or decreasing in the late 1980s. The George River herd of Quebec and Labrador has been decreasing since 1987, but remains the largest Canadian caribou population. The ecological factors driving barren-ground caribou population dynamics are not well understood. Arctic islands caribou are about 17% of all Canadian caribou. Over 60% of Arctic islands caribou occurred on Baffin Island. Most Arctic islands populations were decreasing with the exceptions of Southampton, Bathurst, Victoria and Baffin islands. Movements within and between islands are not well understood, and probably limit the usefulness of small surveys for indicating long-term trends of Arctic islands caribou populations. Woodland caribou form about 7% of all Canadian caribou, with about 42% of these occurring on the island of Newfoundland. Most Canadian woodland caribou have not been well studied or censused. In many areas, they were faced with an increasing rate of habitat loss. Exceptions included: some eastern Yukon populations and most Newfoundland populations which were increasing. Over 70% of the Canadian muskox population occurred on Banks and Victoria islands. Almost all muskox populations were increasing, especially those on Banks, Victoria, Melville and Bathurst islands. Muskoxen on the mainland Northwest Territories are re-colonizing southern portions of their historical distribution.

Keywords: Rangifer tarandus, Ovibos moschatus, caribou, reindeer, muskox, Canada.

Introduction

Williams and Heard (1986) and Case et al. (1989) summarized the status of most Canadian populations of Rangifer tarandus in 1985 and Ovibos moschatus in 1987, respectively. Case et al. (1989) also described the muskox harvest management system of the Northwest Territories (NWT). Our paper summarizes the current status and trends of these two ungulate species in Canada. We also briefly discuss some implications of recent population trends.

Methods

The term “population” is used for the various groupings of Rangifer as described by the many sources. As a result, a given “population” may be a calving herd, demographic or genetic group, survey unit or a group within jurisdictional boundaries. Because of limited information on muskoxen movements and distributions, the delineation of these populations is also rather arbitrary (Case et al., 1989), and usually represents survey units.
Estimates from surveys conducted after July 1991 were not included. Sources of population estimates and distributions are indicated as footnotes to Tables 1-7. "Unpubl data" indicates that we received survey data and/or reports, while "pers comm" indicates that we received only limited verbal or written information. If available, published references were used; but most estimates were based on unpublished surveys or guesses.

Estimation methods (Tables 1-5 and 7) were lumped into five categories. "Total" indicates either visual or photographic counts of seasonal aggregations which probably represent an entire population. "Minimum" or "min" includes any survey(s) which does not allow estimation of a confidence interval, and probably does not represent a count of the entire population. "Sample" includes visual and photographic, transect and block surveys, as well as mark-recapture and mark-resighting surveys, which could lead to calculation of a confidence interval. Confidence intervals were listed if provided by the source. "Guess" refers to estimates based largely on incidental observations, anecdotal information, local knowledge and gut-feelings. We categorized each estimate's method after reviewing information from its source. "Unknown" indicates that we did not receive sufficient information to categorize the estimation method.

Where a caribou population overlapped two maps (Fig. 1-4), the second listing (Tables 3 and 4) refers the reader back to the first listing (Tables 1 and 2, respectively). Like Williams and Heard (1986), we attempted to avoid double counting any population. Based on new information, we updated and/or corrected some population distributions previously indicated by Williams and Heard (1986).

Results
The total number of Rangifer in Canada was estimated at 1.9 to 2.6 million animals (Table 6); similar to that estimated by Williams and Heard (1986). Of the 57 populations for which recent trends were indicated, 39% were increasing; 37%, stable; and 24%, decreasing. This compares to 49%, 33% and 18%, respectively, for 57 populations in 1985 (Williams and Heard 1986).

About 98% of Canada’s Rangifer population occurred within the NWT, Quebec and Labrador, the Yukon, and the island of Newfoundland which held 58%, 28%, 9% and 3%, respectively.

Based largely on survey estimates from 1985 to 1991, the total Canadian muskox population was estimated at about 108,600; up from 58,500 based on available 1961-86 estimates (Table 7). The vast majority of the increase was caused by actual population increases, although some previously unidentified populations were included. Of the 13 populations for which recent trends were known, 11 were increasing while two were apparently stable.

Of the four Arctic islands where both species had been surveyed recently (Tables 2 and 7), the muskox populations were increasing on three where caribou were decreasing. On Bathurst Island, both caribou and muskox populations were increasing.

We identified 97 Rangifer tarandus populations in Canada (Tables 1-5); compared to 77 identified by Williams and Heard (1986). This increase was largely due to new populations being identified and greater detail being provided by many sources (Table 1-6, "No previous information" and "Different boundaries", respectively). As a result, it was difficult to numerically assess trends in caribou population sizes since 1985 in British Columbia, Alberta, Manitoba and Ontario, although all sources suggested that overall provincial numbers were not increasing. In the NWT, we subdivided Williams and Heard’s Peary caribou population in the Queen Elizabeth Islands into five in order to present recent survey results (Table 2, Populations 23-42). We also added three reindeer herds not identified by Williams and Heard (1986) (Tables 2, 3 and 4; Populations 22, 58 and 74, respectively). Other changes in the delineation of Rangifer populations are relatively minor.

We identified 15 muskox populations in the NWT (cf. 9 populations in Case et al., 1989), one introduced population in Quebec, and one experimental captive herd in Saskatoon, Saskatchewan (Table 7, Fig. 7). Most of the latest NWT muskox estimates are from surveys completed since 1986. Two populations estimates predating 1986 were presented by Case et al. (1989) (Table 7; Populations 7 and 12); another was available to Case et al. (1989) but not reported by them (Table 7; 2); and another was presented with different boundaries (Table 7; 3).
Discussion

Rangifer tarandus

Barren-ground caribou

For our purpose, Canadian barren-ground caribou populations are those which usually migrate between treeless winter habitats and Arctic tundra calving areas, and are found in the Yukon, the NWT, Quebec/Labrador and Man/Ont (Fig. and Tables 1-5; Populations 1, 23, 25, 26, 27, 62, 63, 75 and 76). The seven largest barren-ground populations made up 75% of all Canadian caribou. However, their numbers may have decreased somewhat from about 1.83 million during 1983-84 (Williams and Heard, 1986) to about 1.66 million during 1988-91 (Tables 1, 2 and 5). Williams and Heard (1986) indicated that six of the seven increased between 1979 and 1984, while the Bluenose herd (Fig. 2; 23) was stable. Although the trend of the Bluenose herd shifted from stable to increasing, the trends of the three other NWT herds (Table 2; populations 25, 26 and 27) changed from increasing to stable. As well, the George River herd (Table 5; 76) has been decreasing from a peak of about 680,000 since 1987 (M. Crête, pers comm).

"...The great days of the caribou on the barren lands..." (Bergerud, 1985 Arctic 38: 156, in Williams and Heard, 1986) may now be starting to fade. Why have these trends been changing? An understanding of both the functional relationships of the forage-herbivore-predator system and the effects of these relationships on population dynamics is required for the predictive capability allowing future proactive management (G. Caughley, pers comm). Perhaps censuses of barren-ground caribou populations should be deemphasized in favour of comprehensive assessment of their functional ecological interrelationships.

Arctic Islands caribou

Arctic islands caribou occupy Arctic tundra year-round. For our purposes, these caribou include all island populations from Coats and Baffin islands in the southeast, north to Ellesmere Island, and west to Banks Island (Fig. 2; populations 28-42); plus those on the northeast mainland of the NWT (Fig. 2; 30 and 35).

As of July 1991, these caribou represented 17% of all Canadian caribou. Over 60% of Arctic islands caribou occurred on Baffin Island; with another 33% on the northeast mainland of the NWT. Recent survey estimates were insufficient to suggest an overall trend for these caribou. Nevertheless, severe declines apparently have occurred on Coats and Banks islands (Table 2; 28 and 37); while the introduced Southampton Island population probably has shown the greatest rate of increase (Table 2; 29). Recently the status of Peary caribou on the Queen Elizabeth Island (QEI) (Fig. 2; 38 - 42) was changed from threatened to endangered.

The ecology of Arctic islands caribou differs from that of barren-ground caribou because the former can not use relatively productive and extensive treed winter habitats, which may lead to distinctive long-term dispersal strategies. Ongoing studies on southern Baffin Island suggest that these caribou undertake occasional dispersal movements en masse (Ferguson and Labine 1991; Ferguson, unpubl data). Resident Svalbard caribou have also undertaken unexpected dispersal movements during a recent severe winter (Tyler and Øritsland, 1989).

Peary caribou on the QEI may also undertake occasional winter range shifts between island groups over the long term. Reportedly, one such movement by Peary caribou occurred during winter 1989-90 from Ellesmere Island to northwestern Greenland, resulting in a harvest of over 100 caribou by Greenlanders during May-November 1990 (A. Rosing-Asvid, pers comm). Previously, Roby et al. (1984) had concluded that the caribou population on northwestern Greenland probably had been extirpated by the late 1970s.

Such dispersal movements between island groups would limit the usefulness of surveying portions of the Peary caribou’s range to assess overall long-term population trends of the subspecies. Although caribou on the western QEI have declined since the 1970s (Table 2; 38), caribou in the adjacent Bathurst Island area (Table 2; 39) have increased over the same period. Given the inherent difficulties of estimating such populations (Ferguson, 1987; Miller, 1991), the combined estimates from both the western QEI and Bathurst Island groups show little, if any, overall change in number between 1974 (i.e., 2570) and the late 1980s (i.e., 2320). Has the overall status of Peary caribou changed significantly since the mid-1970’s?
Woodland caribou

Woodland caribou utilize treed and/or alpine tundra habitats year-round, and contributed only 7% to the total number of Canadian caribou. In many areas, recent increases were largely due to counting of previously unknown or unsurveyed populations. The trends of caribou populations on the island of Nfld (Table 5) are perhaps the best known. This relatively small island held about 40% of Canada's woodland population at probably the highest overall density. The Yukon held another 19% of the woodland population.

As Williams and Heard (1986) pointed out, the few large herds of barren-ground caribou would not compensate for the distinctive genetic pools represented by populations of woodland caribou (Røed, et al., 1991). Genetic studies of the isolated remnant populations of woodland caribou may provide useful insights for future conservation of the heterozygosity of Peary caribou, if that subspecies declines in the future.

As a whole, woodland caribou have been subjected to increasing hunting pressure and increasing predation. Apparently, the major overriding factor is habitat loss and change due to human activities. With the apparently increasing rate of development within their caribou range in Canada, time to reverse these trends among woodland caribou populations may be very limited.

Ovibos moschatus

About 43%, 28% and 13% of the Canadian muskox population occurred on Banks, Victoria and other Arctic islands, respectively (Table 7). Historical evidence suggests that the commercial muskox trade during 1860-1916 may have caused the local extermination of populations on the southern mainland tundra of the NWT (Barr, 1991). Recent surveys have indicated that mainland populations are re-colonizing the southern portion of their historical distribution (Fig. 7; 14 and 15).

Fig. 1. Distribution of Rangifer tarandus populations in the Yukon Territory, Canada.
Fig. 2. Distribution of *Rangifer tarandus* populations in the Northwest Territories, Canada.

Fig. 3. Distribution of *Rangifer tarandus* populations in British Columbia, Alberta and Saskatchewan, Canada.

Fig. 4. Distribution of *Rangifer tarandus* populations in Manitoba, Ontario and southern Northwest Territories, Canada.
Fig. 5. Distribution of *Rangifer tarandus* populations in Quebec and Newfoundland/Labrador, Canada.

Fig. 6. Provinces and territories of Canada.

Fig. 7. Distribution of *Ovibus moschatus* populations in Canada.
Table 1. Status of *Rangifer tarandus* populations in the Yukon Territory, Canada.

Population Number/Name	Recent information	Previous information					
	Estimate	Year	Method	Trend	Estimate	Year	Method
1. Porcupine	178,000	1989	Total	Increasing\(^1\)	150,000	1983	Total\(^2\)
2. Hart River			No recent information		1200	1978	Sample\(^2\)
3. Bonnet Plume			No recent information		5000	1982	Guess\(^2\)
4. Mayo			No recent information				No previous information
5. Ethel Lake			No recent information		200	1977	Guess\(^2\)
6. Moose Lake	87	1991	Total	Unknown\(^1\)	300	1985	Guess\(^2\)
7. Tay River	3200–4300	1991	Sample	Increasing\(^1\)	300	1985	Guess\(^2\)
8. Redstone			No recent information		5K–10K	1982	Guess\(^2\)
9. Nahanni			No recent information		2000	1981	Guess\(^2\)
10. Finlayson	4900–7000	1990	Sample	Increasing\(^1\)	2500	1984	Total\(^2\)
11. Pelly			No recent information		1000	1977	Guess\(^2\)
12. Glenlyon			No recent information		350	1977	Guess\(^2\)
13. Klaza	440	1987	Total	Unknown\(^1\)	250	1985	Guess\(^2\)
14. Aishihik	785	1991	Total	Decreasing\(^1\)	1500	1981	Total\(^2\)
15. Burwash	200	1990	Total	Decreasing\(^1\)	400	1982	Total\(^2\)
16. Carcross	400	1980	Sample	Stable\(^1\)			Different boundaries\(^2\)
17. Squanga	300	1980	Guess	Unknown\(^1\)			No previous information
18. Teslin	400	1978	Guess	Unknown\(^1\)			No previous information
19. Wolf Lake	530–800	1987	Sample	Stable\(^1\)	500	1985	Guess\(^2\)
20. Little Rancheria	550–820	1988	Sample	Stable\(^1\)	450	1985	Guess\(^2\)
21. Smith River	200	1991	Guess	Unknown\(^1\)			No previous information
Most recent total	205K–213K	1977–91			172K–177K	1977–85	

\(^1\) B. Gilroy, pers comm.

\(^2\) Williams and Heard, 1986.
Table 2. Status of *Rangifer tarandus* populations in the Northwest Territories, Canada.

Population Number/Name	Recent information	Previous information						
	Estimate	Year	Method	Trend	Estimate	Year	Method	
22. Tuktoyaktuk Reindeer	13,000	1986	Total	Stable¹	No previous information			
23. Bluenville	120,000	1987	Total	Increasing²	50K–80K	1983	Sample³	
24. MacKenzie Woodland	No recent information		Stable⁴	2000–5000	1985	Guess³		
25. Bathurst	274K–430K	1990	Sample	Stable⁵	320K–450K	1984	Sample³	
26. Beverly	120K–260K	1988	Sample	Stable⁶	250K–420K	1984	Sample³	
27. Kaminuriak	148K–292K	1988	Sample	Stable⁷	180K–280K	1983	Sample³	
28. Coats Island	540	1991	Sample	Increasing⁸	2100	1984	Sample³	
29. Southampton Island	4270–6530	1986	Sample	Increasing⁹	1100	1978	Sample³	
30. Northeast Mainland	No recent information		Stable⁸	110K–130K	1983	Sample³		
31. South Baffin	60K–180K	1991	Guess	Stable⁸	> 60,000	1984	Sample³	
32. Northeast Baffin	> 10,000	1991	Guess	Stable⁸	> 10,000	1985	Guess³	
33. North Baffin	50K–150K	1991	Guess	Stable⁸	> 30,000	1985	Guess³	
34. Somerset–Prince of Wales	No recent information		Different boundaries³	4400–5800	1983	Sample³		
35. Boothia Peninsula	4830	1985	Sample	Unknown⁹	Different boundaries³	7000–9000	1980	Sample³
36. Victoria Island	N/A	1991	Guess	Increasing¹⁰	5000	1985	Sample³	
37. Banks Island	740–1040	1989	Sample	Decreasing¹¹	2340	1974	Sample¹⁴	
38. Western Queen Elizabeth Islands	1290	1986–87	Sample	Decreasing¹²,¹³	230	1974	Sample¹⁶	
39. Bathurst Island	1030	1988	Sample	Increasing¹⁵	145	1973	Sample¹⁸	
40. Southern Ellesmere Island	89	1989	Sample	Decreasing¹⁷	6700–6900	1961	Sample¹⁹	
41. Central Queen Elizabeth Islands	850–1150	1987	Guess	Decreasing¹⁹	13	1961	Min²⁰	
42. Northern Ellesmere Island	45	1987	Minimum	Unknown²¹	1,045K–1,501K	1961–85²²		

¹ Godkin, 1986. ² McLean and Russell, unpub. data. ³ Williams and Heard, 1986. ⁴ J. Bourque, pers comm. ⁵ Heard and Jackson, 1990a. ⁶ Heard and Jackson, 1990b. ⁷ D. Heard, pers comm. ⁸ M. Ferguson, pers comm. ⁹ Gunn and Ashevak, 1990. ¹⁰ A. Gunn, pers comm. ¹¹ B. McLean, pers comm. ¹² Miller, 1987. ¹³ Miller, 1988. ¹⁴ Miller, *et al*. 1977. ¹⁵ Miller, 1991. ¹⁶ Fischer and Duncan, 1976. ¹⁷ Case and Ellsworth, unpub. data. ¹⁸ Riewe, unpub. data. ¹⁹ Miller’s (1990) estimate of 3300–3600 Peary caribou, minus other estimates for populations 38–40 and 42. ²⁰ Tener, 1961. ²¹ Wissink, unpub. data. ²² Using only Williams and Heard (1986).
Table 3. Status of Rangifer tarandus populations in British Columbia, Alberta and Saskatchewan, Canada.

Population Number/Name	Recent information	Previous information					
	Estimate	Year	Method	Trend	Estimate	Year	Method
16. Atlin West	See Yukon, 16. Carcross						
18. Atlin East	See Yukon, 18. Teslin						
20. Blue River	See Yukon, 20. Little Rancheria						
21. Smith River	See Yukon, 21. Smith River	125	1978	Total			
43. Jennings	400	1991	Unknown	Unknown	No previous information		
44. Horse Ranch	340	1983	Minimum	Increasing	300	1982	Total
45. Kaudy/Level	770	1983	Minimum	Decreasing	800	1983	Total
46. Edziza	100	1991	Unknown	Unknown	No previous information		
47. Spatsizi/Lawyers	No recent information						
48. Northeastern British Columbia	>5000	1991	Guess	Stable	1260	1982	Total
49. Omincina	1900-2400	1991	Minimum	Increasing	No previous information		
50. Telkwa	75	1991	Unknown	Unknown	40	1977	Total
51. Tweedsmuir	400-500	1991	Unknown	Unknown	200	1978	Total
52. Itcha/Igachuz/Rainbow Mtn.	1550	1990	Total	Stable	700	1982	Total
53. Quesnel	100	1991	Total	Decreasing	No previous information		
54. Kamloops	500	1990	Total	Increasing	No previous information		
55. Kootenay	620	1991	Minimum	Stable	No previous information		
56. Selkirk	50-60	1990	Total	Decreasing	25-30	1980	Total
57. Western Alberta	300-400	1980-81	Total	Stable	Different boundaries		
58. Peace Reindeer	140	1991	Total	Unknown	No previous information		
59. Northern Alberta	2700-3100	1991	Guess	Unknown	Different boundaries		
60. Saskatchewan	2500	1985	Guess	Unknown	2500	1985	Guess
26. Beverly	See Northwest Territories, 26. Beverly						

Most recent totals

British Columbia	13K-14K	1983-91	5250	1977-85
Alberta	3000-3500	1980-91	1500-3000	1985
Saskatchewan	2500	1985	2500	1985

1 Williams and Heard, 1986. 2 R. Marshall, pers comm. 3 Bergerud and Elliot, 1986. 4 R. Thompson, pers comm. 5 D. King, pers comm. 6 T. Smith and D. Langin, pers comm. 7 D. Low and D. Jury, pers comm. 8 G. Woods, pers comm. 9 J. Edmonds, pers comm. 10 B. Rutley, pers comm. 11 T. Rock, pers comm. 12 Williams and Heard (1986), less Atlin population.
Table 4. Status of *Rangifer tarandus* populations in Manitoba, Ontario and southern Northwest Territories, Canada.

Population Number/Name	Recent information	Previous information					
	Estimate	Year	Method	Trend	Estimate	Year	Method
27. Kaminuriak							
61. Central Manitoba	1000–2000	1991	Guess	Unknown\(^1\)			
62. Cape Churchill	1800–2200	1988	Sample	Increasing\(^1\)			
63. Pen Islands	4800	1986	Total	Unknown\(^1,3\)			
64. Eastern Manitoba	350–450	1991	Guess	Unknown\(^1\)			
65. Happy Lake	50	1990	Total	Decreasing\(^1\)	200	1980	Total\(^1\)
66. Kenora	37	1983	Minimum	Unknown\(^3\)			
67. Red Lake	570	1978	Unknown	Unknown\(^3\)			
68. Sioux Lookout	1750	1978	Unknown	Unknown\(^3\)			
69. Geraldton	2710	1978	Sample	Unknown\(^3\)			
70. Northeast Ontario	3500–5600	1981–84	Sample	Unknown\(^3\)			
71. Nipigon	285	1978–87	Minimum	Unknown\(^3\)			
72. Southeast Ontario	130–820	1983–84	Unknown	Unknown\(^3\)			
73. Lake Superior	530	1986	Minimum	Unknown\(^3\)			
74. Belcher Islands Reindeer	500	1989	Total	Stable\(^4\)	287	1982	Sample\(^4\)

Most recent totals

- **Manitoba**: 8000–9500, 1986–91
- **Ontario**: 9500–12,300, 1978–87
- **Southern NWT**: 500, 1989

\(^1\) C. Elliot, pers comm. \(^2\) Williams and Heard, 1986. \(^3\) Darby *et al.*, 1989. \(^4\) Arragutainaq, Hudson and Poole, unpubl data.
Table 5. Status of *Rangifer tarandus* populations in Quebec and Newfoundland/Labrador, Canada.

Population	Recent information	Previous information					
	Estimate	Year	Method	Trend	Estimate	Year	Method
75. Leaf River	> 100,000	1990	Sample	Increasing\(^1,2\)	65K–75K	1983	Unknown\(^3\)
76. George River	500,000	1990	Sample	Decreasing\(^1,4\)	600,000	1984	Sample\(^3\)
77. Torngat Mountains	5K–10K	1991	Guess	Increasing\(^4\)	5K–10K	1985	Guess\(^3\)
78. White Bear Lake	0	1991	Guess	Extinct\(^4\)	<100	1977	Total\(^3\)
79. Mealy Mountains	1900–2200	1987	Sample	Stable\(^4\)	660–740	1981	Total\(^3\)
80. Red Wine Mountains	600–700	1988	Sample	Stable\(^4\)	720–780	1981	Total\(^3\)
81. Lac Joseph	300–400	1986	Sample	Stable\(^4\)	<600	1978	Total\(^3\)
82. Boreal Quebec	6K–18K	1991	Guess	Unknown\(^5\)	6000–7000	1977–82	Unknown\(^3\)
83. Val d’Or	30	1991	Unknown	Decreasing\(^1\)	50	1985	Total\(^3\)
84. Grand-Jardins	100	1991	Unknown	Increasing\(^1\)	67	1982	Total\(^3\)
85. Gaspesie	200	1991	Unknown	Decreasing\(^1\)	250	1980	Total\(^3\)
86. Northern Peninsula	2000–3500	1986	Sample	Increasing\(^6\)	1500	1982	Total\(^3\)
87. Grey Islands	500–700	1989	Total	Increasing\(^6\)	No previous information		
88. Humber	1500	1989	Sample	Increasing\(^6\)	450	1982	Total\(^3\)
89. Hampden Downs	400	1989	Sample	Stable\(^6\)	400	1982	Total\(^3\)
90. Fogo Island	150	1988	Total	Stable\(^6\)	No previous information		
91. Buchans	No recent information				2000	1982	Total\(^3\)
92. Gaff Topsails	4700	1988	Sample	Increasing\(^6\)	1000–2100	1982	Sample\(^3\)
93. Mt. Peyton/Tolt/Middle Ridge	15,000	1989	Sample	Increasing\(^6\)	4600–9600	1982	Sample\(^3\)
94. LaPoile	11,200	1988	Sample	Increasing\(^6\)	7K–12K	1982	Sample\(^3\)
95. Grey River/Sandy Lake/Pothill	20,000	1987	Sample	Increasing\(^6\)	3200–9000	1982	Sample\(^3\)
96. Maresheen Island	150	1990	Total	Stable\(^7\)	No previous information		
97. Cape Shore	840	1991	Sample	Increasing\(^6\)	No previous information		
98. Avalon	5000–6500	1990	Sample	Increasing\(^7\)	3300–6900	1982	Sample\(^3\)

Most recent totals
- Quebec: 606K–618K, 1990–91
- Nfld/Labrador: 71K–80K, 1986–91

\(^1\) M. Crête, pers comm. \(^2\) Couturier *et al.*, 1990. \(^3\) Heard and Williams, 1986. \(^4\) S. Luttich, pers comm. \(^5\) Based on a mean density of 1–3 caribou/100 km\(^2\) (M. Crête, pers comm). \(^6\) S. Mahoney, pers comm. \(^7\) B. Tucker, pers comm. \(^8\) Populations 75, 76 and 82–85, plus Koroq population (Williams and Heard, 1986).
Table 6. Status of *Rangifer tarandus* in Canada.

Province or Territory	Recent information¹	Previous information¹		
	Estimate	Years	Estimate	Years
Yukon Territory	205,000 – 213,000	1977-91	172,000 – 177,000	1977-85
Northwest Territories	933,000 – 1,622,000	1980-91	1,050,000 – 1,507,000	1961-85
British Columbia	13,200 – 13,800	1978-81	5,300	1977-85
Alberta	3,000 – 3,500	1980-91	1,500 – 3,000	1985
Saskatchewan	2,500	1985	2,500	1985
Manitoba	8,000 – 9,500	1986-91	5,000	1985
Ontario	9,500 – 12,300	1978-87	8,400	1984-85
Quebec	606,000 – 618,000	1990-91	676,000 – 682,000	1977-85
Newfoundland/Labrador	71,200 – 79,900	1986-91	30,500 – 56,200	1977-82
Canada	1,850,000 – 2,573,000		1,951,000 – 2,446,000	

¹ Sources given in Tables 1 – 5.

Acknowledgements

We thank the following persons who provided unpublished data, personal communications, and/or other assistance: L. Arragutainaq, Weasels Hunters and Trappers Association, Sanikiluaq, N.W.T.; J. W. Bourque, Renewable Resources (RR), Government of the N.W.T. (GNWT), Yellowknife, N.W.T.; R. Case, RR, GNWT, Yellowknife, N.W.T.; G. Caughey, Division of Wildlife and Ecology, CSIRO, Canberra, Australia; M. Crête, Direction générale de la ressource faunique, Ministère du Loisir de la Chasse et de la Pêche, Québec, QC; W. Darby, Ministry of Natural Resources, Fort Frances, Ontario; R. Decker, RR, GNWT, Yellowknife, N.W.T.; E. J. Edmonds, Alberta Fish and Wildlife, Edson, Alberta; C. Elliott, Department of Natural Resources, Thompson, Manitoba; T. Ellsworth, RR, GNWT, Fort Smith, N.W.T.; P. F. Flood, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon; P. Fraser, RR, GNWT, Inuvik, N.W.T.; B. Gilroy, Renewable Resources, Government of Yukon, Whitehorse, Yukon; A. Gunn, RR, GNWT, Coppermine, N.W.T.; D. Heard, RR, GNWT, Yellowknife, N.W.T.; R. J. Hudson, Department of Animal Science, University of Alberta, Edmonton; D. Jury, B. C. Fish and Wildlife (BCFW), Ministry of the Environment (ME), Prince George, B.C.; B. Kingscote-Godkin, Box 1468, Innisfail, Alberta; D. Langin, BCFW, ME, Williams Lake, B.C.; P. Latour, RR, GNWT, Norman Wells, N.W.T.; D. J. Low, BCFW, ME, Kamloops, B.C.; S. Luttich, Wildlife Division (WD), Department of Environment and Lands (DEL), Goose Bay, Labrador; S. Mahoney, WD, DEL, St. John’s, Nfld; R. Marshall, BCFW, ME, Smithers, B.C.; B. D. McLean, RR, GNWT, Inuvik, N.W.T.; R. Mulders, RR, GNWT, Arviat, N.W.T.; P. Poole, address unknown; R. Rieve, address unknown; T. Rock, Wildlife Branch, Parks and Renewable Resources, Prince Albert, Saskatchewan; A. Rosing-Asvid, Gothersgade, Copenhagen, Denmark; H. J. Russell, Box 68, Waterton Park, Alberta; B. Rutley, Northern Lights College, Dawson Creek, B.C.; T. Smith, BCFW, ME, Williams Lake, B.C.; H. Thing, Danish Polar Center, Copenhagen, Denmark; R. Thompson, BCFW, ME, Fort St. John, B.C.; B. Tucker, WD, DEL, St. John’s, Nfld; R. Wissink, Northern Ellesmere National Park Reserve, Parks Canada, Pangnirtung, N.W.T.; and G. Woods, BCFW, ME, Nelson, B.C. I sincerely thank A. Gunn for her very helpful review of this manuscript.

138 Rangifer, 12 (3), 1992
Table 7. Status of *Ovibos moschatus* populations in Quebec and Newfoundland/Labrador, Canada.

Population	Recent information	Previous information					
Number/Name	Estimate	Year	Method	Trend	Estimate	Year	Method
1. Northern Ellesmere	240	1989	Minimum	Unknown¹	180	1961	Minimum²
2. Central Queen Elizabeth Islands	3400	1961	Sample	Unknown²	No previous information		
3. Western Queen Elizabeth Islands	5900	1986-87	Sample	Increasing³⁴	4240	1974	Sample⁵
4. Bathurst Island	520	1988	Sample	Increasing⁶	230	1981	Total⁷
5. Southern Ellesmere	2000	1989	Sample	Increasing⁸	1200	1973	Sample⁹
6. Devon Island	370	1990	Minimum	Stable¹⁰	400	1981	Minimum¹¹
7. Prince of Wales/Sommerset	1130	1980	Sample	Stable¹²	910	1975	Sample¹³
8. Victoria Island	30,650	1988-90	Sample	Increasing¹⁴	11,020	1983	Sample¹⁵,¹⁶
9. Banks Island	46,600	1989	Sample	Increasing¹⁷	27,500	1985	Sample¹⁸
10. North of Great Bear Lake	3040	1987	Sample	Increasing¹⁹	2020	1983	Sample²⁰
11. Rae/Richardson	1800	1988	Sample	Increasing¹⁴	1300	1983	Sample²⁰
12. Bathurst Inlet	3420	1986	Sample	Increasing²¹	No previous information		
13. Queen Maud Gulf	7600	1985-88	Sample	Increasing²²	8500	1982	Sample²³
14. Artillery Lake	560	1989	Sample	Unknown²⁴	No previous information		
15. Baker Lake	1050	1991	Sample	Unknown²⁵	840	1986	Sample²⁶
16. Northern Quebec	290	1986	Total	Increasing²⁷	150	1983	Total²⁷
17. Saskatoon	17	1991	Total	Increasing²⁸	No previous information		
Most recent totals	108,600				58,500		

¹ Wissink, unpubl data. ² Tener, 1961. ³ Miller, 1987. ⁴ Miller, 1988. ⁵ Miller *et al.*, 1977. ⁶ Miller, 1991. ⁷ Ferguson, 1987. ⁸ Case and Ellsworth, unpubl data. ⁹ Riewe, unpubl data. ¹⁰ Case, unpubl data. ¹¹ Decker, unpubl data. ¹² Gunn and Decker, 1984. ¹³ Fisher and Duncan, 1976. ¹⁴ Gunn, unpubl data. ¹⁵ Jingfors, 1984. ¹⁶ Jingfors, 1985. ¹⁷ Fraser and Gunn, unpubl. data. ¹⁸ McLean *et al.*, 1986. ¹⁹ McLean, unpubl data. ²⁰ Case and Poole, 1985. ²¹ Gunn, 1990. ²² Gunn and Case, unpubl data. ²³ Gunn and Case, 1984. ²⁴ Graf and Shank, 1989. ²⁵ Mulders, unpubl data. ²⁶ Graf *et al.*, 1990. ²⁷ Le Henaff and Crête, 1989. ²⁸ P. Flood, pers comm.
References

Barr, W. 1991. Back from the brink: The road to muskox conservation in the Northwest Territories. - The Arctic Institute of North America of the University of Calgary, Alberta, Canada. Komatik Series No. 3. 127 pp.

Bergerud, A. T. and Elliot, J. P. 1986. Dynamics of caribou and wolves in northern British Columbia. - Canadian Journal of Zoology 64: 1515-1529.

Case, R., Gunn, A. and Jackson, F. 1989. Status and management of muskoxen in the Northwest Territories. - In: P. F. Flood (Ed.) Proceedings of the Second International Muskox Symposium, Saskatoon, Sask., Canada, 1-4 Oct. 1987. National Research Council of Canada, Ottawa. pp. A16-A22.

Case, R. L. and Poole, K. G. 1985. Distribution, abundance and composition of muskoxen north of Great Bear Lake, March 1983. - NWT Wildlife Service, Yellowknife, N.W.T., Canada. File Report No. 51. 48 p.

Couturier, S., Brunelle, J., Vandal, D. and St-Martin, G. 1990. Changes in the population dynamics of the George River caribou herd, 1976-87. - Arctic 43 (1): 9-22.

Darby, W. R., Timmermann, H. R., Snider, J. B., Abraham, K. F., Stefanski, R. A. and Johnson, C. A. 1989. Woodland caribou in Ontario. - Background to a policy. - Ministry of Natural Resources, Toronto, Ontario, Canada. 38 p.

Ferguson, M. A. D. 1987. Status of Peary caribou and muskox populations on Bathurst Island, N.W.T., August 1981. - Arctic 40 (2): 131-137.

Ferguson, M. A. D. and Labine, M. 1991. Implications of long-term changes in caribou distribution on Fosse Peninsula, Baffin Island, N.W.T. - In: C. E. Butler and S. P. Mahoney, (Eds.), Proceedings of the 4th North American Caribou Workshop, St. John’s, Newfoundland, Canada. pp 218-230.

Fischer, C. A. and Duncan, E. A. 1976. Ecological studies of caribou and muskoxen in the Arctic archipelago and northern Keewatin. - Renewable Resources Consulting Service Ltd., Edmonton, Alberta, Canada. 194 pp.

Godkin, G. F. 1986. The reindeer industry in Canada. - Canadian Veterinary Journal 27 (12): 488-490.

Graf, R., Case, R. and Mulders, R. 1990. Abundance and distribution of muskoxen in central Keewatin, NWT, July 1986. - Renewable Resources, Government of the N.W.T., Fort Smith, N.W.T., Canada. File Report No. 92. 17 p.

Graf, R. and Shank, C. 1989. Abundance and distribution of muskoxen near Artillery Lake, NWT, March 1989. - Renewable Resources, Government of the N.W.T., Fort Smith, N.W.T., Canada. File Report No. 80. 19 p.

Gunn, A. 1990. Distribution and abundance of muskoxen between Bathurst Inlet and Contwoyto Lake, NWT, 1986. - Renewable Resources, Government of the N.W.T., Coppermine, N.W.T., Canada. File Report No. 100. 28 p.

Gunn, A. and Ashevak, J. 1990. Distribution, abundance and history of caribou and muskoxen north and south of the Boothia isthmus, NWT, May-June 1985. - Renewable Resources, Government of the N.W.T., Coppermine, N.W.T., Canada. File Report No. 90. 34 p.

Gunn, A. and Case, R. 1984. Numbers and distribution of muskoxen in the Queen Maud Gulf area, July, 1986. - NWT Wildlife Service, Yellowknife, N.W.T., Canada. File Report No. 39. 56 p.

Gunn, A. and Decker, R. 1984. Numbers and distributions of Peary caribou and muskoxen in July 1980 on Prince of Wales, Russell and Somerset islands, N.W.T. - NWT Wildlife Service, Yellowknife, N.W.T., Canada. File Report No. 38. 56 p.

Heard, D. C. and Jackson, F. J. 1990a. Beverly calving ground survey, June 2-14, 1988. - Renewable Resources, Government of the N.W.T., Yellowknife, N.W.T., Canada. File Report No. 86. 27 p.

Heard, D. C. and Jackson, F. J. 1990b. Kaminuriak calving ground survey, 5-17 June 1988. - Renewable Resources, Government of the N.W.T., Yellowknife, N.W.T., Canada. File Report No. 84. 23 p.

Jingfors, K. 1984. Abundance, composition and distribution of muskoxen on southeastern Victoria Island. - NWT Wildlife Service, Yellowknife, N.W.T., Canada. File Report No. 36. 24 p.

Jingfors, K. 1985. Abundance and distribution of muskoxen on northwestern Victoria Island. - NWT Wildlife Service, Inuvik, N.W.T., Canada. File Report No. 47. 22 p.

Le Henaff, D. and Creté, M. 1989. Introduction of muskoxen in Northern Quebec: the demographic explosion of a colonizing herbivore. - Canadian Journal of Zoology 67 (5): 1102-1105.

McLean, B., Jingfors, K. and Case, R. 1986. Abundance and distribution of muskoxen and caribou on Banks Island, July 1985. - Renewable Resources, Government of the N.W.T., Inuvik, N.W.T., Canada. File Report No. 64. 45 p.

Miller, F. L. 1987. Peary caribou and muskoxen on Prince Patrick Island, Eglinton Island, and Emerald Isle, Northwest Territories, July 1986. - Canadian Wildlife Service, Western and Northern Region, Edmonton, Alberta, Canada. Technical Report No. 29. 65 p.

Miller, F. L. 1988. Peary caribou and muskoxen on Melville and Bynam Martin islands, Northwest Territories, July 1987. - Canadian Wildlife Service, Western and Northern Region, Alberta, Canada. Technical Report No. 37. 58 p.

Rangifer, 12 (3), 1992
Miller, F. L. 1990. *Peary caribou status report.* - Report prepared for the Committee on the Status of Endangered Wildlife in Canada. Canadian Wildlife Service, Edmonton, Alberta, Canada. 64 p.

Miller, F. L. 1991. Estimating Bathurst Island Peary caribou and muskox populations. - *Arctic* 44 (1): 57–62.

Miller, F. L., Russell, R. H. and Gunn, A. 1977. Distributions, movements and numbers of Peary caribou and muskoxen on western Queen Elizabeth Islands, Northwest Territories, 1972–74. - Canadian Wildlife Service Report Series No. 40. 55 p.

Roby, D. B., Thing, H. and Brink, K. L. 1984. History, status and taxonomic identity of caribou (*Rangifer tarandus*) in northwest Greenland. - *Arctic* 37 (1): 23–30.

Røed, K. H., Ferguson, M. A. D., Crête, M. and Bergerud, T. A. 1991. Genetic variation in transferrin as a predictor for differentiation and evolution of caribou from eastern Canada. - *Rangifer* 11 (2): 65–74.

Tener, J. S. 1963. Queen Elizabeth Islands game survey, 1961. - Canadian Wildlife Service Occasional Paper No. 4. 50 p.

Tyler, N. J. C. and Øritsland, N. A. 1989. Why don’t Svalbard reindeer migrate? - *Holarctic Ecology* 12 (4): 369–376.

Williams, T. M. and Heard, D. C. 1986. World status of wild *Rangifer tarandus* populations. - *Rangifer*, Special Issue No. 1: 19–28.

Manuscript accepted 1. March, 1992