Integrability of scattering amplitudes in $N = 4$ SUSY

I N Lipatov

St. Petersburg Nuclear Physics Institute, Russia
and
II. Institut für Theoretische Physik, Universität Hamburg, Germany

Received 2 February 2009, in final form 4 February 2009
Published 14 July 2009
Online at stacks.iop.org/JPhysA/42/304020

Abstract

We argue that the multi-particle scattering amplitudes in $N = 4$ SUSY at large N_c and in the multi-Regge kinematics for some physical regions have the high energy behavior corresponding to the contribution of the Mandelstam cuts in the corresponding t-channel partial waves. The Mandelstam cuts correspond to gluon composite states in the adjoint representation of the gauge group $SU(N_c)$. The Hamiltonian for these states in the leading logarithmic approximation coincides with the local Hamiltonian of an integrable open spin chain. We construct the corresponding wavefunctions using the integrals of motion and the Baxter–Sklyanin approach.

PACS numbers: 02.30.Ik, 11.30.Pb, 12.38.−t, 75.10.Pq

1. Introduction

At high energies $s \gg -t$ in QCD the elastic scattering amplitude for the process $AB \rightarrow A'B'$ in the leading logarithmic approximation (LLA)

$$a_s \ln s \sim 1, \quad a_s \ll 1$$

has the Regge form [1]

$$A_{2 \rightarrow 2} = g T^r_{AA} T^r_{BB} \delta_{\lambda_2 \lambda_2'} s^{1 + \omega(t)} t^{g T^r_{BB} \delta_{\lambda_2 \lambda_2'}, t = -q^2}.$$ (2)

Here T^r are the generators of the gauge group $SU(N_c)$, λ_r are the particle helicities and $j(t) = 1 + \omega(t)$ is the gluon Regge trajectory for the spacetime dimension $D = 4 - 2\epsilon$.

$$\omega(-q^2) = -\frac{\alpha_s N_c}{(2\pi)^2} (2\pi \mu)^{2\epsilon} \int \frac{d^2 k}{k^2(q-k)^2} \approx -a \left(\ln \frac{q^2}{\mu^2} - \frac{1}{\epsilon} \right).$$ (3)

In the framework of the dimensional regularization the parameter μ is the renormalization point for the ’t Hooft coupling constant and

$$a = \frac{\alpha_s N_c}{2\pi} (4\pi e^{-\gamma})^\epsilon, \quad \gamma = -\psi(1),$$ (4)
where \(\gamma = -\psi(1) \) is the Euler constant and \(\psi(x) = (\ln \Gamma(x))' \). The gluon trajectory \(j(t) \) was calculated also in the next-to-leading approximation in QCD [2] and in the SUSY gauge models [3].

In LLA gluons with momenta \(k_r \) (\(r = 1, \ldots, n \)) are produced in the multi-Regge kinematics,
\[
s = (p_A + p_B)^2 \gg s_r = (k_r + k_{r-1})^2 \gg -t_r = q^2_r, \quad k_r = q_{r+1} - q_r, \tag{5}
\]
where the amplitude has the factorized form
\[
A_{2 \to 2n} = 2s \delta_{\lambda_1 \lambda_2} g C_\mu(q_2, q_1) e^*_\mu(k_1) T_{ci c_i}^1 \frac{s_2}{q_2^2} \ldots \frac{s_{n+1}}{q_{n+1}^2} g T_{BB}^B \delta_{\lambda_\lambda B}. \tag{6}
\]
Here \(C_\mu(q_2, q_1) \) is the effective reggeon–reggeon gluon vertex. In the case when the polarization vector \(e^*_\mu(k_1) \) describes the gluon with a positive helicity in its c.m. system with the particle \(A' \) one can obtain [4]
\[
C = C_\mu(q_2, q_1) e^*_\mu(k_1) = \sqrt{2} q^2_1 q^2_1, \tag{7}
\]
where the complex notation \(q = q_1 + iq_1 \), for the two-dimensional transverse vectors \(\vec{q} \) was used.

The elastic scattering amplitude with vacuum quantum numbers in the \(t \)-channel is calculated in terms of the production amplitude \(A_{2 \to 2n} \) with the use of the s-channel unitarity [1]. In this approach the Pomeron appears as a composite state of two reggeized gluons. It is convenient to present the gluon transverse coordinates in the complex form together with their canonically conjugated momenta [4, 5],
\[
\rho_k = x_k + iy_k, \quad \rho_k^* = x_k - iy_k, \quad p_k = i \frac{\partial}{\partial \rho_k}, \quad p_k^* = i \frac{\partial}{\partial \rho_k^*}. \tag{8}
\]
In this case the homogeneous Balitsky–Fadin–Kuraev–Lipatov (BFKL) equation for the Pomeron wavefunction can be written as follows [1]:
\[
E \Psi(\vec{\rho}_1, \vec{\rho}_2) = H_{12} \Psi(\vec{\rho}_1, \vec{\rho}_2), \quad \Delta = -\frac{\alpha_s N_c}{2\pi} \min E, \tag{9}
\]
where \(\Delta \) is the Pomeron intercept entering in the asymptotic expression for the total cross-section \(\sigma_t \sim s^\Delta \). The BFKL Hamiltonian has a rather simple operator representation [5]
\[
H_{12} = \ln|p_1| p_2^2 + \frac{1}{p_1^2 p_2^2} (\ln|\rho_1|) p_1^2 p_2^2 + \frac{1}{p_1^2 p_2^2} (\ln|\rho_2|) p_1^2 p_2^2 - 4\psi(1), \tag{10}
\]
with \(\rho_1 = \rho_1 - \rho_2 \). The kinetic energy is proportional to the sum of two gluon Regge trajectories \(\omega(-|\rho_i|^2) \) (\(i = 1, 2 \)). The potential energy \(\sim \ln|\rho_{12}|^2 \) is obtained by the Fourier transformation from the product of two gluon production vertices \(C_\mu \). This Hamiltonian is invariant under the Möbius transformation [6]
\[
\rho_k \to \frac{aq_k + b}{cq_k + d}, \tag{11}
\]
where \(a, b, c \) and \(d \) are complex parameters. The eigenvalues of the corresponding Casimir operators are expressed in terms of the conformal weights,
\[
m = \frac{1}{2} + iv \frac{n}{2}, \quad \tilde{m} = \frac{1}{2} - iv - \frac{n}{2}, \tag{12}
\]
where \(v \) and \(n \) are respectively real and integer numbers for the principal series of unitary representations of the Möbius group \(SL(2, C) \). The eigenvalues of \(H_{12} \) depend on these parameters [6]:
\[
E_{m, \tilde{m}} = \psi(m) + \psi(1 - m) + \psi(\tilde{m}) + \psi(1 - \tilde{m}) - 4\psi(1). \tag{13}
\]
The Pomeron intercept in LLA is positive,
\[\Delta = 4 \frac{\alpha_s}{\pi} N_c \ln 2 > 0, \] (14)
and therefore the Froissart bound \(\sigma_t < C \ln^2 s \) for the total cross-section is violated [1].
To restore the broken s-channel unitarity one should take into account the contributions of diagrams corresponding to the t-channel exchange of an arbitrary number of reggeized gluons in the t-channel. The wavefunction of the colorless state constructed from \(n \) reggeized gluons can be obtained in LLA as a solution of the Bartels–Kwiecinski–Praszalowicz (BKP) equation [7]:
\[E \Psi = H^{(0)} \Psi, \quad \Delta = -\frac{\alpha_s N_c}{4\pi} \min E. \] (15)
In the \(N_c \to \infty \) limit the color structure is simplified and the corresponding Hamiltonian has the property of the holomorphic separability [8]:
\[H^{(0)} = \sum_{k=1}^{n} H_{k,k+1} = h^{(0)} + h^{(0)*}, \quad [h^{(0)}, h^{(0)*}] = 0. \] (16)
It is a consequence of the similar property for the pair BFKL Hamiltonian \(H_{12} \) (10) and the energy \(E_{m,\tilde{m}} \) (13).

The holomorphic Hamiltonian in the multi-color QCD can be written as follows (cf (10)):
\[h^{(0)} = \sum_{k} h^{(0)}_{k,k+1}, \quad h^{(0)}_{12} = \ln(p_1 p_2) + \frac{1}{p_1} (\ln \rho_{12}) p_1 + \frac{1}{p_2} (\ln \rho_{12}) p_2 - 2 \psi(1), \] (17)
where \(\psi(x) = (\ln \Gamma(x))' \). As a result, the wavefunction \(\Psi \) has the holomorphic factorization [8]
\[\Psi = \sum_{r,\tilde{r}} a_r \tilde{\Psi}(\rho_1, ..., \rho_n) \tilde{\Psi}^*(\rho_1^*, ..., \rho_n^*), \] (18)
which in the case of two-dimensional conformal field theories is a consequence of the infinite dimensional Virasoro group. Moreover, the holomorphic Hamiltonian \(h^{(0)} \) is invariant under the duality transformation [9]
\[p_i \to \rho_{i,i+1} \to p_{i+1}. \] (19)

Further, there are integrals of motion \(q_r \) commuting among themselves and with \(h^{(0)} \) [5, 10]:
\[q_r^{(0)} = \sum_{k_1 < k_2 < \cdots < k_r} \rho_{k_1,k_2} \cdots \rho_{k_{r-1},k_r} \cdots \rho_{k_1,k_r} p_{k_1} p_{k_2} \cdots p_{k_r}, \quad [q_r, h] = 0. \] (20)

The integrability of the BFKL dynamics in LLA was established in [10]. This remarkable property is related to the fact that \(h \) coincides with the local Hamiltonian of an integrable Heisenberg spin model [11]. Eigenvalues and eigenfunctions of this Hamiltonian were constructed in [12, 13] in the framework of the Baxter–Sklyanin approach [14].

In the next-to-leading approximation the integral kernel for the BFKL equation was constructed in [3, 15]. In QCD the eigenvalue of the kernel contains the Kroniker symbols \(\delta_n,0 \) and \(\delta_n,2 \) but in \(N = 4 \) SUSY it is an analytic function of the conformal spin and having the property of the maximal transcendentality [3, 16]. This extended supersymmetric theory appears in the framework of the AdS/CFT correspondence [17–19]. It is important that the one-loop anomalous dimension for twist-2 operators in \(N = 4 \) SUSY is proportional to the expression \(\psi(1) - \psi(j-1) \), which is related to the integrability of evolution equations for...
the quasi-partonic operators in this model [20]. The integrability also persists for some operators in QCD [21]. The maximal transcendentality principle suggested in [16] gave a possibility of extracting the universal anomalous dimension up to three loops in \(N = 4 \) SUSY [22, 23] from the corresponding QCD results [24]. The integrability of the \(N = 4 \) model was also verified for other operators, large coupling constants and in higher loops [25–27]. The asymptotic Bethe ansatz and integrability allowed us to calculate the anomalous dimensions in four loops [28]. The result is in an agreement with the next-to-leading BFKL predictions after taking into account the wrapping effects [29]. The maximal transcendentality was helpful for finding a closed integral equation for the cusp anomalous dimension in this model [30, 31] with the use of the four-loop result [32].

There is another region of investigation, in which the remarkable properties of the \(N = 4 \) SUSY are also found. Namely, Bern, Dixon and Smirnov (BDS) suggested a simple ansatz for the gluon scattering amplitudes in this model [33]. This ansatz was verified for the elastic amplitude in the strong coupling regime using the AdS/CFT correspondence [34]. But the BDS hypothesis does not agree in this regime with the calculation of the multi-particle amplitude [35]. The property of the conformal invariance of the BDS amplitudes in the momentum space was discussed in [36] and the relation with the Wilson loop approach was suggested in [37] generalizing the results of the strong coupling calculations of [34]. The BDS amplitudes \(A_n \) for \(n \geq 6 \) in the multi-Regge kinematics do not have correct analytic properties compatible with the Steinman relations [38]. It is a consequence of the fact that these amplitudes do not include the Mandelstam cuts [38]. This cut contribution was obtained from the BFKL-like equation for the amplitude with the \(t \)-channel exchange in the adjoint representation of the gauge group [38]. This equation was solved in LLA and the two-loop expression for the six-point scattering amplitude in the multi-Regge kinematics was derived [39]. Recently the two-loop correction was calculated numerically for some values of external momenta in an agreement with expectations based on the Wilson loop approach [40].

In this paper, we demonstrate that in the multi-color limit for the production amplitudes the contributions of the Mandelstam cuts generated by the multi-reggeon \(t \)-channel exchange can be expressed in terms of the solution of the BKP-like equation for the composite states of several reggeized gluons in the adjoint representation. It turns out that in LLA the corresponding Hamiltonian coincides with the local Hamiltonian of an integrable open Heisenberg spin chain. These results, partly, were presented at the conferences [41, 42].

2. Mandelstam cuts

A planar amplitude for the production of two gluons in the multi-Regge kinematics

\[
s \gg |s_1| \sim |s_2| \sim |s_3| \gg |t_1| \sim |t_2| \sim |t_3|
\]

has the multi-Regge form almost in all physical kinematical regions. But in the physical region where \(s_1, s_3 < 0; s > 0, s_2 > 0 \) the amplitude contains also the Mandelstam cut [43] in the angular momentum plane \(j_2 \) of the crossing channel \(t_2 = -q^2 \) [38] in the adjoint representation of the color group. The cut appears as a result of the exchange of two reggeized gluons with the momenta \(p_1 = k \) and \(p_2 = q - k \), respectively [39] (see appendix A for more details). In the region \(s_1, s_3 < 0; s_2 > 0 \) the integrals over the Sudakov variables \(\alpha = k p_A / p_A p_B \) and \(\beta = k p_B / p_A p_B \) do not vanish as in other regions because the integrand contains singularities situated above and below the corresponding integration contours in accordance with the Mandelstam requirements [43]. These singularities lead to simultaneous discontinuities of the amplitude in the invariants \(s_2 \) and \(s \).

For the planar amplitude with six external particles only diagrams with two reggeons in the \(t_2 \)-channel give a non-vanishing contribution because for a larger number of reggeons the
Mandelstam conditions for singularities in other Sudakov variables are not fulfilled. However, in the case of a larger number of external particles the exchange of several reggeons with momenta p_l gives also a non-vanishing contribution to the amplitude constructed from planar diagrams. For the Mandelstam cut resulting from an exchange of n reggeons, one needs at least $k = 2 + 2n$ external particles to have simultaneous singularities in upper and lower complex semi-planes for the Sudakov parameters α'_l, β'_l of the reggeon momenta p_l, as it is demonstrated in appendix A.

Let us discuss such a composite state of n reggeized gluons in the adjoint representation (cf a similar approach for the simple case $n = 4$ in [39]). One can write the homogeneous BKP equation for its wavefunction described by an amplitude with amputated propagators in the form (see appendix A)

$$H\Psi = E\Psi, \quad \Delta_a = -\frac{g^2 N_c}{16\pi^2} E. \quad (21)$$

Here H is a redefined Hamiltonian obtained after subtraction of the gluon Regge trajectory $\omega(t)$ containing infrared divergences. Namely, the Regge trajectory of the composite state is [41, 42]

$$\omega_n(t) = a \left(\frac{1}{\epsilon} - \ln \frac{-t}{\mu^2} \right) + \Delta_a, \quad a = \frac{g^2 N_c}{8\pi^2} (4\pi e^{-\gamma})' E, \quad (22)$$

where Δ_a is the infrared stable quantity expressed in terms of the energy E.

The Hamiltonian H in the multi-color limit can be written in the holomorphically separable form (see appendix A) (cf [39])

$$H = h + h^*, \quad h = \ln \frac{P_1 P_n}{q^2} + \sum_{r=1}^{n-1} h'_{r,r+1}, \quad q = \sum_{r=1}^{n} p_r, \quad (23)$$

where the pair Hamiltonian $h'_{r,r+1}$ is transposed to the corresponding unamputated operator (17),

$$h'_{r,r+1} = \ln(p_r p_{r+1}) + p_r \ln(p_{r+1}) \frac{1}{p_r} + p_{r+1} \ln(p_r) \frac{1}{p_{r+1}} + 2\gamma. \quad (24)$$

It is seen from equation (23) that the holomorphic Hamiltonian for the composite state in the adjoint representation differs from the corresponding expression for the singlet case $h^{(0)}$ (17) after its transposition only by the substitution

$$h_{n,1} \to \ln \frac{P_1 P_n}{q^2}, \quad (25)$$

which is related to the fact that the planar Feynman diagrams have the topology of a strip and the infrared divergences in the Regge trajectories of particles 1 and n are not compensated by the contribution from the pair potential energy $V_{n,1}$.

It turns out that the eigenvalues E do not depend on $|q|^2$ due to the scale invariance of H, as will be demonstrated below. As a result, the t-dependence of $\omega_n(t)$ is the same as in the gluon Regge trajectory.

The transposed holomorphic Hamiltonian is related to the initial Hamiltonian by the similarity transformation

$$h' = \left(\prod_{r=1}^{n} p_r \right)^{-1} h \left(\prod_{r=1}^{n} p_r \right), \quad (26)$$

which leads to the following hermicity property of the total Hamiltonian H:

$$H^* = \left(\prod_{r=1}^{n} |p_r|^2 \right)^{-1} H \left(\prod_{r=1}^{n} |p_r|^2 \right). \quad (27)$$
The last relation is compatible with the normalization condition for the wavefunction:
\[\| \Psi \| ^2 = \int \prod_{r=1}^{n-1} d^2 p_r \Psi^* \prod_{s=1}^{n} | p_s |^{-2} \Psi, \quad \sum_{s=1}^{n} p_s = q. \] (28)

Using the duality transformation (cf [9])
\[p_1 = z_{0,1}, \quad p_r = z_{r-1,r}, \quad q = z_{0,n}, \quad \rho_{r,r+1} = i \frac{\partial}{\partial z_r} = i \partial_r, \] (29)
the holomorphic Hamiltonian can be rewritten as follows:
\[h = \ln \frac{z_{0,1} z_{n-1,n}}{z_{0,n}} + \sum_{r=1}^{n-1} h'_{r,r+1}, \] (30)
where
\[h'_{r,r+1} = 2 \ln(\partial_r) + \frac{1}{\partial_r} z_{r-1,r} + \frac{1}{\partial_r} z_{r+1,r} + \ln(z_{r,r+1} z_{r-1,r}) + 2 \gamma. \] (31)

Here and later we neglect the pure imaginary contribution \(2 \ln(i)\) because it is canceled in the total Hamiltonian \(H\). Note that for the colorless composite state and \(q = z_{0,n} = 0\) the transformation (29) is indeed reduced to the usual duality substitution of [9].

To simplify \(h\) one can use the relations [5, 9]
\[\ln(x^2 \partial) = \ln(x \partial) + \frac{1}{\partial x}, \]
\[\ln(x^2 \partial) = \ln(x \partial) + \frac{1}{\partial x}, \] (32)
Then \(h'_{r,r+1}\) can be presented as follows:
\[h'_{r,r+1} = \ln(z_{r,r+1}^2 \partial_r) + \ln(z_{r-1,r}^2 \partial_{r-1}) - \ln z_{r,r+1} - \ln z_{r-1,r} + 2 \gamma. \] (33)

Further, by regrouping its terms we can write the holomorphic Hamiltonian in another form
\[h = -2 \ln z_{0,n} + \ln(z_{0,1}^2 \partial_1) + \ln(z_{n-1,n}^2 \partial_{n-1}) + 2 \gamma + \sum_{r=1}^{n-2} h'_{r,r+1}, \] (34)
where
\[h'_{r,r+1} = \ln(z_{r,r+1}^2 \partial_r) + \ln(z_{r-1,r}^2 \partial_{r-1}) - 2 \ln z_{r,r+1} + 2 \gamma \]
\[= \ln(\partial_r) + \ln(\partial_{r+1}) + \frac{1}{\partial_r} \ln z_{r,r+1} \partial_r + \frac{1}{\partial_{r+1}} \ln z_{r,r+1} \partial_{r+1} + 2 \gamma. \] (35)

The pair Hamiltonian \(h'_{r,r+1}\) coincides in fact after the substitution \(z_r \rightarrow \rho_r\) with the corresponding Hamiltonian in the coordinate representation (17) acting on the wavefunction with non-amputated propagators.

In particular, for \(n = 2\) one obtains (cf [39])
\[h = -2 \ln z_{0,2} + \ln(z_{0,1}^2 \partial_1) + \ln(z_{1,2}^2 \partial_1) + 2 \gamma. \] (36)

It is important that \(h\) (34) is invariant under the M"obius transformations
\[z_k \rightarrow \frac{a z_k + b}{c z_k + d} \] (37)
and does not contain the derivatives ∂_0 and ∂_n. Therefore we can put
\[z_0 = 0, \quad z_n = \infty, \] (38)
which leads to the simplified expression for h
\[h \to h' = \ln(z_1^2 \partial_1) + \ln(\partial_{n-1}) + 2\gamma + \sum_{r=1}^{n-2} h'_{r,r+1}. \] (39)
To return to initial variables in the final expression for the wavefunction one should perform the following substitution of z_k:
\[z_k \to z_k - z_0, \quad \frac{z_k - z_n}{q - \sum_{r'=1}^k p_r}. \] (40)
According to the above representation (30) for h, its transposed part h^t can be obtained from h by the similarity transformation which can be written in terms of h' as follows:
\[h'' = z_1^{-1} \left(\prod_{r=1}^{n-2} z_{r,r+1} \right)^{-1} h' z_1 \left(\prod_{r=1}^{n-2} z_{r,r+1} \right), \] (41)
which is compatible with the following normalization condition for the wavefunction in the full two-dimensional space:
\[\| \Psi \|_1^2 = \int d^2 z_{n-1} \prod_{r=1}^{n-2} d^2 z_r |\Psi|^2. \] (42)
On the other hand, from expression (39) for h' we obtain another relation for h'':
\[h'' = \left(\prod_{r=1}^{n-1} \partial_r \right)^{-1} \left(\prod_{r=1}^{n-1} \partial_r \right) h', \] (43)
corresponding to the second normalization condition for Ψ compatible with the hermicity properties of the total Hamiltonian:
\[\| \Psi \|_2^2 = \int d^2 z_{n-1} \prod_{r=1}^{n-1} |\partial_r|^2 \Psi. \] (44)
By comparing the above two relations between h' and h'' one can conclude (cf [10]) that the operator
\[A' = z_1 \prod_{r=1}^{n-2} z_{r,r+1} \prod_{r=1}^{n-1} \partial_r \] (45)
commutes with the holomorphic Hamiltonian
\[[A', h'] = 0. \] (46)

3. Integrable open spin chain

Let us verify that the holomorphic Hamiltonian h' (39) also commutes with the differential operator $D(u)$ being the matrix element T_{22} of the monodromy matrix (cf [10]):
\[T(u) = \begin{pmatrix} A(u) & B(u) \\ C(u) & D(u) \end{pmatrix} = L_1(u)L_2(u) \ldots L_{n-1}(u), \] (47)
where the L-operator is defined by the relation

$$L_r(u) = \begin{pmatrix} u + izr \partial_r & i \partial_r \\ -izr^2 \partial_r & u - izr \partial_r \end{pmatrix}.$$

(48)

To prove the commutativity of h' and $D(u)$ one can use the following relation:

$$[L_k(u)L_{k+1}(u), h'_{k,k+1}] = -i (L_k(u) - L_{k+1}(u)),$$

(49)

valid due to the Möbius symmetry of the pair Hamiltonian:

$$[\tilde{M}_{k,k+1}, h'_{k,k+1}] = 0, \quad \tilde{M}_{k,k+1} = \tilde{M}_k + \tilde{M}_{k+1}$$

(50)

and the commutation relation (see [9])

$$[h'_{k,k+1}, [\tilde{M}_{k,k+1}, \tilde{N}_{k,k+1}]] = 4\tilde{N}_{k,k+1}, \quad \tilde{N}_{k,k+1} = \tilde{M}_k - \tilde{M}_{k+1}.$$

(51)

The last relation is a consequence of the fact that the operator $\tilde{N}_{k,k+1}$ has non-vanishing matrix elements only between the states $|m_{k,k+1}\rangle$ and $|m_{k,k+1} \pm 1\rangle$ in the representation where the Casimir operator of the Möbius group is diagonal:

$$\tilde{M}_{k,k+1}^2 |m_{k,k+1}\rangle = m_{k,k+1}(m_{k,k+1} - 1)|m_{k,k+1}\rangle.$$

(52)

In this representation the commutation relation (51) is reduced to the recurrent relation for the eigenvalues $\epsilon(m_{k,k+1})$ of the Hamiltonian $h'_{k,k+1}$ (35):

$$\epsilon(m + 1) - \epsilon(m) = 2/m,$$

(53)

fulfilled due to the well-known representation of $\epsilon(m)$:

$$\epsilon(m) = \psi(m) + \psi(1 - m) + 2\gamma.$$

(54)

Relation (49) leads to the equality

$$\left[T(u), \sum_{r=1}^{n-2} h'_{r,r+1} \right] = iL_2(u)L_3(u) \ldots L_{n-1}(u) - iL_1(u)L_2(u) \ldots L_{n-2}(u).$$

(55)

On the other hand, one can easily verify that

$$\left[T_22(u), \ln(z_1^2 \partial_1) + \ln \partial_{n-1} \right] = (0, 1) \left[T(u), \ln(z_1^2 \partial_1) + \ln \partial_{n-1} \right] \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

(56)

which proves that the differential operator $D(u) = T_{22}(u)$ is an integral of motion:

$$[D(u), h'] = 0.$$

(57)

Thus, our Hamiltonian is the local Hamiltonian for an open integrable Heisenberg spin model with the spins which are generators of the Möbius group1.

With the use of the following decomposition of the L-operators:

$$L_r(u) = \begin{pmatrix} u & 0 \\ 0 & u \end{pmatrix} + \begin{pmatrix} 1 \\ -z_r \end{pmatrix}(z_r, 1) i \partial_r,$$

(58)

one can construct the matrix element $T_{22} = D(u)$ in an explicit way:

$$D(u) = \sum_{k=0}^{n-1} u^{n-1-k} q'_k,$$

(59)

1 I thank L D Faddeev for the fruitful discussion in which he suggested that the operator $D(u)$ could be an integral of motion for this open spin chain.
where

\[q'_0 = 1, \quad q'_i = -i \sum_{r=1}^{n-1} z_r \partial_r. \]
(60)

In a general case the integrals of motion \(q'_k \) are given below:

\[q'_k = - \sum_{0<r_1<r_2<...<r_k<n} z_{r_1} \prod_{s=1}^{k-1} z_{r_s,r_{s+1}} \prod_{t=1}^{k} i \partial_t. \]
(61)

In particular, we obtain that \(q'_{n-1} \) is proportional to the integral of motion \(A' \) (45):

\[q'_{n-1} = -i^{n-1} z_1 \prod_{s=1}^{n-2} z_{s,s+1} \prod_{t=1}^{n-1} i \partial_t = -i^{n-1} A'. \]
(62)

Note that one can parametrize the monodromy matrix in another form

\[T(u) = \begin{pmatrix} j_0(u) + j_3(u) \\ j_-(u) \\ j_0(u) - j_3(u) \end{pmatrix}, \quad j_\pm(u) = j_1(u) \pm i j_2(u). \]
(63)

In this case the Yang–Baxter equations for the currents \(j_\mu \) have the Lorentz-invariant representation \([9]\)

\[[j_\mu(u), j_\nu(v)] = \epsilon_{\mu \nu \rho \sigma} (j^\rho(u) j^\sigma(v) - j^\rho(v) j^\sigma(u)). \]
(64)

Here \(\epsilon_{\mu \nu \rho \sigma} \) is the antisymmetric tensor in the four-dimensional Minkowski space and \(\epsilon_{1230} = 1 \), \(g_{\mu \nu} = (1, -1, -1, -1) \).

In particular, we obtain from the Yang–Baxter equations the relation

\[[j_0(u) - j_3(u), j_0(v) - j_3(v)] = [j_0(u), j_3(v)] - [j_0(u), j_3(v)] = 0, \]
(65)

and therefore the integrals of motion \(q'_k \) are independent operators and commute each with others,

\[[q'_k, q'_l] = 0. \]
(66)

4. Composite states of two and three gluons

In the case \(n = 2 \) we have only one non-trivial integral of motion,

\[q'_1 = -i z_1 \partial_1. \]
(67)

Taking into account the normalization condition for the eigenfunction in the two-dimensional space

\[\| \Psi \|^2 = \int \frac{d^2z_1}{|z_1|^2} |\Psi|^2, \]
(68)

we find the orthonormalized and complete set of eigenfunctions:

\[\Psi^{(2)}_{m,\tilde{m}} = z_1^{\frac{1+m}{2}} (z_1^*)^{\frac{1+\tilde{m}}{2}}, \quad m = \frac{1+n}{2} + i v, \quad \tilde{m} = \frac{1+n}{2} - i v, \]
(69)

satisfying the single-valuedness requirement. Note that using the substitution (40) one can reproduce the wavefunctions of two gluon composite states in the momentum space (see [39]).

For the case \(n = 3 \) the operator \(D(u) \) is given below:

\[D_3(u) = u^2 - i u (z_1 \partial_1 + z_2 \partial_2) + z_1 z_{1,2} \partial_1 \partial_2. \]
(70)
By taking into account the normalization condition
\[\|\Psi\|^2 = \int \frac{d^2z_1}{|z_1|^2} \frac{d^2z_2}{|z_2|^2} |\Psi|^2, \]
(71)
one can search the holomorphic eigenfunction of this operator in the form
\[\Psi_1^{(x)}(z_1) = z_1^{1/2} \phi \left(\frac{z_1}{z_2} \right). \]
(72)
The function \(f(x) \) satisfies the equation
\[\left(x(1-x)\partial)^2 + \left(\frac{1}{2} + m \right) (1-x)\partial + \lambda \right) f = 0, \quad x = \frac{z_2}{z_1}, \]
(73)
where \(\lambda \) is the eigenvalue of the operator \(z_1 \partial_1 \partial_2 \). Two independent solutions of this equation can be expressed in terms of the hypergeometric function \(F \):
\[f_1(x) = F(a_1, a_2; 1 + a_1 + a_2; x), \quad f_2(x) = x^{a_1-a_2} F(-a_2, -a_1; 1 - a_1 - a_2; x), \]
(74)
where the parameters \(a_1 \) and \(a_2 \) are obtained from the set of equations
\[a_1 + a_2 = -\frac{1}{2} + m, \quad a_1a_2 = -\lambda. \]
(75)
The solutions near the point \(x = 1 \) can also be expressed in terms of hypergeometric functions and are expanded as follows:
\[\frac{\Gamma(a_1)\Gamma(a_2)}{\Gamma(1 + a_1 + a_2)} f_1(x) \bigg|_{x \to 1} = \frac{1}{a_1a_2} - (x - 1)(\ln(1-x) - \psi(1) \]
\[- \psi(2) + \psi(1 + a_1) + \psi(1 + a_2)) \]
and
\[\frac{\Gamma(-a_1)\Gamma(-a_2)}{\Gamma(1 - a_1 - a_2)} f_2(x) \bigg|_{x \to 1} = \frac{1}{a_1a_2} - (x - 1)(\ln(1-x) - \psi(1) \]
\[- \psi(2) + \psi(1 - a_1) + \psi(1 - a_2)). \]

Analogously one can find the large-\(x \) behavior of the functions \(f_1 \) and \(f_2 \):
\[f_1(x) \bigg|_{x \to \infty} = \frac{\Gamma(a_1 + a_2 + 1)\Gamma(a_2 - a_1)}{\Gamma(a_2)\Gamma(1 + a_2)} (-x)^{-a_1} + \frac{\Gamma(a_1 + a_2 + 1)\Gamma(a_1 - a_2)}{\Gamma(a_1)\Gamma(1 + a_1)} (-x)^{-a_2}, \]
\[f_2(x) \bigg|_{x \to \infty} = \frac{\Gamma(1 - a_1 - a_2)\Gamma(a_1 - a_2)}{\Gamma(-a_2)\Gamma(1 - a_2)} (-x)^{-a_1} + \frac{\Gamma(1 - a_1 - a_2)\Gamma(a_2 - a_1)}{\Gamma(-a_1)\Gamma(1 - a_1)} (-x)^{-a_2}. \]

To construct the wavefunction \(\Psi \) with the property of the single-valuedness in the two-dimensional subspaces \(\mathbf{z}_1 \) and \(\mathbf{x} \) we should write a bilinear combination of the functions \(f_i(x) \) and the corresponding functions in the anti-holomorphic subspace \(\overline{f}_i(x^*) \) taking into account that in the second pair of functions one should perform the substitution
\[a_1 \to \overline{a}_1, \quad a_2 \to \overline{a}_2, \quad \mu \to \overline{\mu} = \frac{1 - \mu}{2} + iv. \]
(76)
Due to the single-valuedness of the wavefunction near \(x = 0 \) we obtain for it the following expression:
\[\Psi = |z_2|^{2iv} \left(\frac{z_2}{z_1} \right) \Psi_{m,\overline{m}}(\mathbf{x}), \quad \Psi_{m,\overline{m}}(\mathbf{x}) = f_1(x) \overline{f}_1(x^*) + C f_2(x) \overline{f}_2(x^*), \]
(77)
where the constant \(C \) should be fixed from the requirement that the analytic continuation of \(\Psi \) in the neighborhood of the points \(x = 1 \) and \(x = \infty \) leads also to a single-valued expression.
The condition that near $x = 1$ the terms proportional to $|x - 1|^2 \ln(1 - x) \ln(1 - x^*)$ are absent gives the relation

$$
\frac{\Gamma(a_1 + a_2 + 1) \Gamma(\tilde{a}_1 + \tilde{a}_2 + 1)}{\Gamma(a_1) \Gamma(a_2) \Gamma(\tilde{a}_1) \Gamma(\tilde{a}_2)} + C \frac{\Gamma(1 - a_1 - a_2) \Gamma(1 - \tilde{a}_1 - \tilde{a}_2)}{\Gamma(-a_1) \Gamma(-a_2) \Gamma(-\tilde{a}_1) \Gamma(-\tilde{a}_2)} = 0. \quad (78)
$$

Providing that the constant C is fixed by this equality, the behavior of the total wavefunction at $x \to 1$ is simplified:

$$
\lim_{x \to 1} \Psi_{a, \tilde{a}}(\tilde{x}) \sim \left(\psi(1 + a_1) + \psi(1 + a_2) - \psi(-a_1) - \psi(-a_2) \right) |1 - x|^2 \ln(1 - x^*) + \left(\psi(1 + \tilde{a}_1) + \psi(1 + \tilde{a}_2) - \psi(-\tilde{a}_1) - \psi(-\tilde{a}_2) \right) |1 - x|^2 \ln(1 - x). \quad (79)
$$

Thus, the single-valuedness condition at $x \to 1$ leads to the additional equation

$$
cot(\pi a_1) + \cot(\pi a_2) = \cot(\pi \tilde{a}_1) + \cot(\pi \tilde{a}_2). \quad (80)
$$

A stronger constraint can be obtained from the single-valuedness condition for Ψ at $x \to \infty$. Indeed, its consequence for the bilinear combinations

$$(-x)^{-a_1} (-x^*)^{-\tilde{a}_1}, \ (-x)^{-a_2} (-x^*)^{-\tilde{a}_2},
$$

leads to the relations

$$
a_1 - \tilde{a}_1 = N_{a_1}, \quad a_2 - \tilde{a}_2 = N_{a_2}, \quad (81)
$$

where N_{a_1}, N_{a_2} are integers. Further, the absence of the interference terms

$$(-x)^{-a_1} (-x^*)^{-\tilde{a}_1}, \ (-x)^{-a_2} (-x^*)^{-\tilde{a}_2},
$$

is fulfilled due to the above relation (77) for C.

One can write the integral representation for the wavefunction satisfying the above constraints:

$$
\Psi \sim z_2^{a_1 + \tilde{a}_1} (z_2^{\tilde{a}_2}) z_1^{a_2} \int \frac{d^2 y}{|y|^2} y^{-a_2} (y^*)^{-\tilde{a}_2} \left(\frac{y - 1}{y - x} \right)^{a_1} \left(\frac{y^* - 1}{y^* - x} \right)^{\tilde{a}_1}, \quad x = \frac{z_2}{z_1}. \quad (82)
$$

where the integration is performed over the two-dimensional plane \vec{y}. Note that the integrand has no ambiguity in the points $y = 0, 1, x$ due to the derived relations between a_1, \tilde{a}_1 and a_2, \tilde{a}_2. Moreover, the function Ψ near the points $x = 0, 1, \infty$ can be presented in terms of the sum of products of the above hypergeometric functions.

There is another basis for the holomorphic solutions

$$
\Psi_1(z_1, z_2) = z_1^{a_1} z_2^{\tilde{a}_2} \left(a_1, -a_2, 1 + a_1 - a_2; \frac{z_1}{z_2} \right),
$$

$$
\Psi_2(z_1, z_2) = z_1^{a_2} z_2^{\tilde{a}_1} \left(a_2, -a_1, 1 + a_2 - a_1; \frac{z_1}{z_2} \right), \quad (83)
$$

allowing us to construct an equivalent representation for the total wavefunction Ψ. Note that these functions can be written in terms of the Mellin–Barnes integrals

$$
\Psi_1(z_1, z_2) \sim \int_{-\infty}^{\infty} \frac{\Gamma(a_1 + s) \Gamma(-a_2 + s) \Gamma(-s)}{\Gamma(a_1 - a_2 + 1 + s)} (-z_1)^{a_1 + s} (-z_2)^{a_2 - s} ds,
$$

$$
\Psi_2(z_1, z_2) \sim \int_{-\infty}^{\infty} \frac{\Gamma(a_2 + s) \Gamma(-a_1 + s) \Gamma(-s)}{\Gamma(a_2 - a_1 + 1 + s)} (-z_1)^{a_2 + s} (-z_2)^{a_1 - s} ds. \quad (84)
$$

Here it is assumed that the poles of $\Gamma(-s)$ are situated to the right from the integration contour whereas all other poles lie to the left of it.
5. Hamiltonian and integrals of motion

The holomorphic Hamiltonian for composite states of two reggeized gluons can be written as follows:

\[\tilde{H} = \ln \left(\frac{z_1^2 \bar{a}_1}{z_1} \right) + \ln \left(\frac{z_2^2 \bar{a}_2}{z_2} \right) + 2\gamma = \psi (z_1 \bar{a}_1) + \psi (-z_1 \bar{a}_1) + 2\gamma. \]

(85)

Acting by \(\tilde{H} \) on the function \(z_1^d \) we obtain

\[\tilde{H} z_1^d = \epsilon (\delta) z_1^d, \quad \epsilon (\delta) = \psi (\delta) + \psi (-\delta) + 2\gamma. \]

(86)

In the case of wavefunction (69) satisfying the single-valuedness and orthonormality conditions in the two-dimensional space one derives the following expression for the total energy [39]:

\[E_{m,\bar{m}} = \epsilon_m + \epsilon_{\bar{m}}, \quad \epsilon_m = \psi \left(-\frac{1}{2} + m \right) + \psi \left(\frac{1}{2} - m \right) + 2\gamma. \]

(87)

Note that it does not coincide with the corresponding result (13) for the Pomeron state.

The holomorphic Hamiltonian for composite states of three gluons has the form

\[h' = \ln \left(\frac{z_1^2 \bar{a}_1}{z_1} \right) + \ln \left(\frac{z_2^2 \bar{a}_2}{z_2} \right) + \ln \left(\frac{z_{1,2}^2 \bar{a}_{1,2}}{z_{1,2}} \right) - 2 \ln z_{1,2} + 4\gamma. \]

(88)

In the region

\[z_1 \ll z_2, \]

(89)

it is a sum of two independent pair Hamiltonians

\[h' = \psi (z_1 \bar{a}_1) + \psi (-z_1 \bar{a}_1) + \psi (z_2 \bar{a}_2) + \psi (-z_2 \bar{a}_2) + 4\gamma. \]

(90)

Because the limit \(x = z_2/z_1 \to \infty \) in solution (72) corresponds to this kinematics, we obtain

\[\epsilon = \epsilon (a_1) + \epsilon (a_2), \]

(91)

where \(a_1 \) and \(a_2 \) are the parameters of the three-gluon composite state (see (75)). The eigenvalues of the integrals of motion are also expressed in terms of these parameters. Due to the normalizability condition these quantities together with the parameters \(\tilde{a}_1, \tilde{a}_2 \) of the wavefunction in the anti-holomorphic space should be chosen as follows:

\[a_1 = i \nu a_1 + \frac{n a_1}{2}, \quad a_2 = i \nu a_2 + \frac{n a_2}{2}, \]
\[\tilde{a}_1 = i \nu a_1 - \frac{n a_1}{2}, \quad \tilde{a}_2 = i \nu a_2 - \frac{n a_2}{2}. \]

(92)

where \(\nu \) are real and \(n \) are integer numbers.

Note that

\[\nu = \nu a_1 + \nu a_2, \quad n = n a_1 + n a_2, \quad a_1 a_2 = -\lambda, \quad \tilde{a}_1 \tilde{a}_2 = -\lambda \]

(93)

and the eigenvalues of two integrals of motion \(q_k' \) can be obtained as coefficients of the polynomials

\[P_1 (u) = (u - i a_1)(u - i a_2), \quad \tilde{P}_1 (u) = (u - \tilde{i} a_1)(u - \tilde{i} a_2). \]

(94)

Generally for the composite state of \(n \) reggeized gluons the situation is similar. Namely, the holomorphic wavefunction in the region

\[z_1 \ll z_2 \ll z_3 \ll \cdots \ll z_{n-1} \]

(95)

is factorized

\[\Psi_{a_1,a_2,\ldots,a_{n-1}} = \prod_{r=1}^{n-1} \epsilon_{a_r}. \]

(96)
The energy for this solution is the sum of the particle energies
\[\epsilon = \sum_{r=1}^{n-1} \epsilon(a_r). \]
(97)

The eigenvalues of integrals of motion \(q'_r \) can be expressed in terms of the coefficients of the polynomial
\[P_n(u) = \prod_{r=1}^{n-1} (u - ia_r). \]
(98)

Due to the condition of the normalizability the parameters should have the form
\[a_r = iv_r + \frac{n_r}{2}, \]
(99)

where \(v_r \) is real and \(n_r \) is an integer number. The energies and eigenvalues of the integrals of motion in the anti-holomorphic space are given by the same expressions with the corresponding substitution of parameters
\[a_r \to \tilde{a}_r = iv_r - \frac{n_r}{2}. \]
(100)

The holomorphic wavefunction satisfies a set of differential equations following from the eigenvalue equation for the operator \(D(u) \):
\[D(u)\Psi_{a_1, a_2, \ldots, a_{n-1}} = \prod_{r=1}^{n-1} (u - ia_r) \Psi_{a_1, a_2, \ldots, a_{n-1}}. \]
(101)

This equation can be solved with the use of the Taylor expansion:
\[\Psi_{a_1, a_2, \ldots, a_{n-1}} = \prod_{r=1}^{n-1} \sum_{s_r=0}^{\infty} \frac{(z_1 \ldots z_{2})^{s_1}}{s_1!} \ldots \sum_{s_{n-1}=0}^{\infty} \frac{(z_{n-2} \ldots z_{n-1})^{s_{n-1}}}{s_{n-1}!} c(s_2, \ldots, s_{n-1}), \]
(102)

where the coefficients \(c(s_2, \ldots, s_{n-1}) \) are calculated in a recurrent way. The recurrent relations obtained from the eigenvalue equations for different operators \(q'_r \) are compatible due to their commutativity. The obtained solution has the singularities at \(z_{kl} = 0 \). But if we consider \((n-1)! \) functions \(\Psi_{a_1, \ldots, a_{n-1}} \) obtained by all possible permutations of parameters \(a_r \) and multiply them on the corresponding functions in the anti-holomorphic subspace, it is possible to construct the wavefunction having the single-valuedness property in two-dimensional spaces \(\tilde{z}_r \),
\[\Psi(\tilde{z}_1, \ldots, \tilde{z}_{n-1}) = \sum_{\{i_1, i_2, \ldots, i_{n-1}\}} C_{\{i_1, \ldots, i_{n-1}\}} \Psi_{a_{i_1}, a_{i_2}, \ldots, a_{i_{n-1}}} \Psi_{\tilde{a}_{i_1}, \tilde{a}_{i_2}, \ldots, \tilde{a}_{i_{n-1}}}. \]
(103)

For this purpose one should adjust the coefficients \(C_{\{i_1, \ldots, i_{n-1}\}} \) in an appropriate way presumably without additional constraints on the parameters \(a_r \) and \(\tilde{a}_r \). The composite state of \(n-1 \) gluons has the following total energy:
\[E = \epsilon + \tilde{\epsilon}, \quad \epsilon = \sum_{r=1}^{n-1} \epsilon(a_r), \quad \tilde{\epsilon} = \sum_{r=1}^{n-1} \epsilon(\tilde{a}_r). \]
(104)
6. Baxter–Sklyanin approach

To find a solution of the Yang–Baxter equation for the open spin chain one can use the Bethe ansatz. For this purpose it is convenient to work in the transposed representation for the monodromy matrix

\[T'(u) = \begin{pmatrix} j^0(u) + j^3(u) & j^1(u) \\ j^1(u) & j^0(u) - j^3(u) \end{pmatrix} = L^1_1(u) L^1_2(u) \cdots L^1_{n-1}(u), \]

where the L-operator can be chosen as follows:

\[L^1_r(u) = \begin{pmatrix} u + i\partial_z z_r & i\partial_r \\ -i\partial_r z_r^2 & u - i\partial_z z_r \end{pmatrix}. \]

The pseudo-vacuum state is defined as a solution of the equation

\[j^1_0(u) /\Psi_0 = 0. \]

It can be written in the form \[\Psi_0 = \prod_{r=1}^{n-1} z_r^{-2}. \]

Note that the function \[|\Psi_0|^2 \] does not belong to the principal series of the unitary representations. As a result, the states constructed in the framework of the Bethe ansatz by applying the product of the operators \[j^1_0(u_r) \] to \[/\Psi_0, \]

\[/\Psi_k = \prod_{r=1}^{k} j^1_0(u_r) /\Psi_0, \]

are non-physical. Nevertheless, these states are eigenfunctions of the integral of motion,

\[D'(u) /\Psi_k = (j^0_0(u) - j^3_0(u)) /\Psi_k = \Lambda(u) /\Psi_k, \]

providing that

\[\Lambda(u) = (u + i)^{n-1} \prod_{r=1}^{k} \frac{u - u_r + i}{u - u_r} \equiv (u + i)^{n-1} \frac{Q(u + i)}{Q(u)} \]

is a polynomial, which leads to a quantization condition for the Bethe roots \[u_r. \] If we parametrize this polynomial as follows:

\[\Lambda(u) = \prod_{l=1}^{n-1} (u - i\alpha_l), \]

the above-defined Baxter function \[Q(u) \] can be calculated as

\[Q(u) = \phi(u) \prod_{l=1}^{n-1} \frac{\Gamma(-iu - a_l)}{\Gamma(-iu + 1)}. \]

Here for generality we included the factor \[\phi(u) \] which is an arbitrary periodic function

\[\phi(u) = \phi(u + i). \]

In the case of a finite number of the multipliers \[j^1_0(u_r) \] in the Bethe ansatz for the wavefunction \[/\Psi_k, \] the expression \[Q(u) \] is also a polynomial:

\[Q(u) = \prod_{r=1}^{k} (u - u_r). \]
For such solutions the parameters $a_l = -k_l - 1$ are negative integer numbers satisfying the condition
\[\sum_{l=1}^{n-1} k_l = k. \]
(116)

The corresponding Baxter functions can be written as follows:
\[Q(u) = \prod_{l=1}^{n-1} \prod_{t=1}^{k_l} (u + it) = \prod_{p=1}^{\text{max}_i k_i} (u + i p)^{r_p}, \]
(117)

where r_p is the number of k_l satisfying the condition $k_l \geq p$.

As was mentioned above, the polynomial solutions for $Q(u)$ are non-physical, because the corresponding wavefunctions Ψ do not belong to the principal series of unitary representations of the Möbius group. We should find a set of non-polynomial solutions $Q_s(u)$ satisfying this physical requirement.

According to Sklyanin [14] the correct variables in which the dynamics of the Heisenberg spin model is drastically simplified are the zeros \hat{b}_r of the operator $B(u) = j^r(u)$ entering in the monodromy matrix
\[B(u) = P_{n-1} \prod_{k=1}^{n-2} (u - \hat{b}_k), \quad P_{n-1} = i \sum_{r=1}^{n-1} \hat{b}_r, \]
(118)

where the operators \hat{b}_r and P_{n-1} commute each with others,
\[[\hat{b}_r, \hat{b}_t] = [\hat{b}_r, P_{n-1}] = 0. \]
(119)

It is convenient to pass from the coordinate representation \vec{z} to the Baxter–Sklyanin representation [12], in which the currents $j^r(u)$ and $(j^r(u))^*$ (together with the operators \hat{b}_r, \hat{b}_r^* and P_{n-1}, P_{n-1}^*) are diagonal. We denote the eigenvalues of the Sklyanin operators by b_r, b^*_r. The kernel of the unitary transformation to the Baxter–Sklyanin representation is known explicitly for the cases $n = 2, n = 3$ and $n = 4$ [12]. For general n this integral operator can be presented as a multi-dimensional integral [13].

In the Baxter–Sklyanin representation the wavefunction in the holomorphic subspace can be expressed as a product of the pseudo-vacuum state in this representation $\Psi_0(P_{n-1}, b_1, b_2, \ldots, b_{n-2})$ and the Baxter functions $Q(u)$,
\[\Psi^i(P_{n-1}; b_1, \ldots, b_{n-2}) = P_{n-1}^{\frac{i}{2}} \prod_{k=1}^{n-2} Q(b_k) \Psi_0(P_{n-1}, b_1, \ldots, b_{n-2}), \]
(120)

where the power-like behavior in the variable P_{n-1} is in an agreement with the normalization condition.

The analogous representation is valid for the total wavefunction
\[\Psi^+(\vec{P}_{n-1}; \vec{b}_1, \ldots, \vec{b}_{n-2}) = P_{n-1}^{\frac{m}{2}} (P_{n-1}^*)^{-\frac{m}{2}} \prod_{k=1}^{n-2} Q(\vec{b}_k) \Psi_0(\vec{P}_{n-1}, \vec{b}_1, \ldots, \vec{b}_{n-2}), \]
(121)

with the use of the generalized Baxter function $Q(\vec{u})$ being a bilinear combination of the usual Baxter functions in the holomorphic and anti-holomorphic subspaces,
\[Q(\vec{u}) = \sum_{x,t} d_{x,t} Q_x(u) Q_t(u^*). \]
(122)

Here $Q_x(u)$ are different solutions of the Baxter equation with the same eigenvalue $\Lambda(u)$. The coefficients $d_{x,t}$ are chosen from the requirement that the function $Q(\vec{u})$ satisfies the
normalization condition everywhere including the points where the functions $Q_s(u)$ and $Q_t(u^*)$ have the poles [12, 13]. For the periodic spin chain this condition leads to the quantization of the eigenvalue of the operator $A(u) + B(u)$ although a simpler method of quantization is based on the requirement that all Baxter functions corresponding to the same eigenvalue should have the same holomorphic energy [12]. In the case of the open Heisenberg spin model, the situation is simpler and will be discussed below.

7. Baxter–Sklyanin representation for two and three gluon states

Let us consider the composite states constructed from two and three reggeons in the framework of the Baxter–Sklyanin approach. In the case $n = 2$ we have the following integral of motion in the transposed space:

$$D'(u) = j_0 - j_3 = u - i\partial_1z_1,$$

and its eigenstates in accordance with the Sklyanin approach are given by the expression

$$\Psi' \sim p_1^{\frac{1}{2} - m - 2}z_1^{-\frac{1}{2} + m}.$$

The corresponding transposed Hamiltonian is presented below:

$$h' = \ln(\partial_1z_1^2) + \ln \partial_2 + 2\gamma.$$

Its eigenvalue calculated for the above eigenfunction Ψ' is

$$\epsilon_m = \psi\left(-\frac{1}{2} + m\right) + \psi\left(\frac{1}{2} - m\right) + 2\gamma.$$

For the states composed from three reggeized gluons the transposed integral of motion in the holomorphic subspace is

$$D'_3(u) = u^2 - iu(\partial_1 + \partial_2) + \partial_1\partial_2z_{12},$$

and the operator j'_+^3 is given below:

$$j'_+^3 = iu(\partial_1 + \partial_2) - \partial_1\partial_2z_{12} = i(\partial_1 + \partial_2)(u - \hat{b}_1),$$

where

$$\hat{b}_1 = -i\partial_1\partial_2z_{12}.$$

The operator j'_+^3 is easily diagonalized after a transition to the momentum representation, where

$$i\partial_1f_{p_1,p_2} = p_1f_{p_1,p_2}, \quad i\partial_2f_{p_1,p_2} = p_2f_{p_1,p_2}.$$

In this case the eigenvalue equation for j'_+^3 has the form

$$\left(u(p_1 + p_2) - ip_1p_2\left(\frac{\partial}{\partial p_1} - \frac{\partial}{\partial p_2}\right)\right)f = (p_1 + p_2)(u - b_1)f,$$

where b_1 is the eigenvalue of \hat{b}_1. Its solution is given below:

$$f = \chi(p_1 + p_2, b_1)\left(p_1 \over p_2\right)^{-ib_1},$$

where χ is an arbitrary function of $p_1 + p_2$ and b_1. The dependence of Ψ' on $p_1 + p_2$ is fixed by the normalization condition:

$$\Psi' \sim (p_1 + p_2)^{-a_1 - a_2}.$$

16
On the other hand, the eigenvalue equation for the integral of motion in the momentum space can be written in the form

$$\frac{p_1 p_2}{\partial p_1} \left(\frac{\partial}{\partial p_2} - \frac{\partial}{\partial p_1} \right) \Psi(p_1, p_2) = a_1 a_2 \Psi(p_1, p_2).$$ \hspace{1cm} (134)

Using the ansatz

$$\Psi(p_1, p_2) = (p_1 + p_2)^{-a_1 - a_2} \eta(y), \quad y = \frac{p_2}{p_1},$$

we obtain the following equation for the function $\eta(y)$:

$$(y^2 \partial^2 + (a_1 + a_2 + 1)y \partial - a_1 a_2) \eta(y) = (-y^3 \partial^2 - 2y^2 \partial) \eta(y).$$ \hspace{1cm} (136)

There are two independent solutions of this equation:

$$\eta_1(y) = \sum_{k=1}^{\infty} \frac{\Gamma(k - a_1) \Gamma(k - a_2)(-1)^{k-1} y^{-k}}{\Gamma(k+1) \Gamma(k) \Gamma(1 - a_1) \Gamma(1 - a_2)}$$

$$= \frac{1}{y} F \left(1 - a_1, 1 - a_2, 2; -\frac{1}{y} \right)$$

$$= \frac{\Gamma(a_1 - a_2) y^{-a_1}}{\Gamma(1 - a_2) \Gamma(1 + a_1)} F(-a_1, 1 - a_1, 1 + a_2 - a_1; -y)$$

$$+ \frac{\Gamma(a_2 - a_1) y^{-a_2}}{\Gamma(1 - a_1) \Gamma(1 + a_2)} F(-a_2, 1 - a_2, 1 + a_1 - a_2; -y),$$ \hspace{1cm} (137)

and

$$\eta_2(y) = \frac{1}{a_1 a_2} + \sum_{k=1}^{\infty} \frac{\Gamma(k - a_1) \Gamma(k - a_2)(-1)^{k-1} y^{-k}}{\Gamma(k+1) \Gamma(k) \Gamma(1 - a_1) \Gamma(1 - a_2)} (\ln y + c_k(a_1, a_2))$$

$$= -\frac{\Gamma(-a_1) \Gamma(-a_2)}{\Gamma(1 + a_2 - a_1)} y^{-a_1} F(-a_1, 1 - a_1, 1 + a_2 - a_1; -y),$$ \hspace{1cm} (138)

where

$$c_k(a_1, a_2) = \psi(k) + \psi(k + 1) - \psi(k - a_1) - \psi(1 - k + a_2).$$ \hspace{1cm} (139)

One can construct the bilinear combination of these solutions having the single-valuedness property at $\tilde{y} = \infty$,

$$\eta_1(y) \tilde{\eta}_2(y^*) + \eta_2(y) \tilde{\eta}_1(y^*) + C \eta_1(y) \tilde{\eta}_1(y^*).$$ \hspace{1cm} (140)

On the other hand, let us use the above expression for $\eta_1(y)$ and $\eta_2(y)$ expressed in terms of the hypergeometric function regular at $y = 0$. To cancel the interference terms violating the single-valuedness condition at $y \to 0$ in the above bilinear combination for $\eta(y)$ we should fix C as follows:

$$\tilde{C} = -\frac{\sin(a_1 \pi) \sin(a_2 \pi)}{\pi \sin((a_1 - a_2) \pi)} = -\frac{\sin(q_1 \pi) \sin(q_2 \pi)}{\pi \sin((q_1 - q_2) \pi)}.$$ \hspace{1cm} (141)

Finally, with the use of the integral representation for the hypergeometric function the wavefunction Ψ in the momentum space can be written as follows:

$$\Psi(\vec{p}_1, \vec{p}_2) = (p_1 + p_2)^{-a_1 - a_2} (p_1^* + p_2^*)^{-q_1 - q_2} \phi(\tilde{y}),$$ \hspace{1cm} (142)

where $\phi(y)$ is given below:

$$\phi(\tilde{y}) = \int d^2 t \left(\frac{1}{ty^2} + 1 \right)^{a_1} \left(\frac{1}{t'y^2} + 1 \right)^{a_2} (1 - t)^{q_2 - 1} (1 - t')^{q_1 - 1}.$$ \hspace{1cm} (143)
and satisfies the single valuedness condition in the \vec{y}-space due to the quantization conditions (92).

The transition to the Baxter–Sklyanin representation (u, \tilde{u}) corresponds to the Mellin-type transformation of $\phi(\vec{y})$:

$$
\phi(u, \tilde{u}) = \int \frac{d^2 y}{|y|^2} y^{-iu} (y^*)^{-i\tilde{u}} \phi(\vec{y}) = \int d^2 t (1 - t)^{a_1 - 1}(1 - t^*)^{1 - i\tilde{u}} \chi(t),
$$

where

$$
-iu = iv_u + \frac{N_u}{2}, \quad -i\tilde{u} = iv_\tilde{u} - \frac{N_u}{2}.
$$

Here v_u is a real number and $N_u = 0, \pm 1, \pm 2, \ldots$. The function χ is given below:

$$
\chi(t) = \int \frac{d^2 y}{|y|^2} y^{-iu} (y^*)^{-i\tilde{u}} \left(\frac{1}{1 + iy} + 1 \right) a_1 \left(\frac{1}{1 + iy^*} + 1 \right) \tilde{a}_1 = t^{iu} (t^*)^{i\tilde{u}} c_1.
$$

The corresponding integrals can be calculated explicitly:

$$
c_1 = \frac{\Gamma(1 + \tilde{a}_1)}{\Gamma(1 - a_1)} \frac{\Gamma(iu) \Gamma(-iu - a_1)}{\Gamma(1 - iu + \tilde{a}_1)},
$$

$$
c_2 = \int \frac{d^2 t}{|1 - t|^2} (1 - t)^{a_1}(1 - t^*)^{-a_1} t^{iu} (t^*)^{i\tilde{u}} = \pi \frac{\Gamma(a_2)}{\Gamma(1 - a_2)} \frac{\Gamma(1 + i\tilde{u}) \Gamma(-iu - a_2)}{\Gamma(1 + i\tilde{u} + \tilde{a}_2)}.
$$

Therefore we obtain for $\phi(u, \tilde{u})$ the following expression:

$$
\phi(u, \tilde{u}) = \frac{\pi^2 \Gamma(1 + \tilde{a}_1) \Gamma(a_2)}{\Gamma(-a_1) \Gamma(1 - a_1) \Gamma(-iu - a_1) \Gamma(iu) \Gamma(1 + i\tilde{u}) \Gamma(-iu - a_2) \Gamma(1 + i\tilde{u} + \tilde{a}_2)}.
$$

The inverse transformation corresponds to the Baxter–Sklyanin representation for the wavefunction:

$$
\Psi'(\vec{p}_1, \vec{p}_2) = (p_1 + p_2)^{-a_1 - a_2} (p_1^* + p_2^*)^{-\tilde{a}_1 - \tilde{a}_2} \int d^2 u \phi(u, \tilde{u}) \left(\frac{p_1}{p_2} \right)^{iu} \left(\frac{p_1^*}{p_2^*} \right)^{-i\tilde{u}},
$$

where

$$
-iu = iv_u + \frac{N_u}{2}, \quad -i\tilde{u} = iv_\tilde{u} - \frac{N_u}{2}, \quad \int d^2 u \equiv \int_0^\infty dv_u \sum_{N_u = -\infty}^{\infty}.
$$

One can interpret the wavefunction $\phi(u, \tilde{u})$ in the Baxter–Sklyanin representation as a product of the pseudo-vacuum state $u\tilde{u}$ and the total Baxter function:

$$
\phi(u, \tilde{u}) = u\tilde{u} Q(u, \tilde{u}),
$$

where

$$
Q(u, \tilde{u}) \sim \frac{\Gamma(iu) \Gamma(\tilde{u})}{\Gamma(1 - iu) \Gamma(1 + i\tilde{u})} \frac{\Gamma(-iu - a_1) \Gamma(-i\tilde{u} - a_2)}{\Gamma(1 + i\tilde{u} + \tilde{a}_1) \Gamma(1 + iu + a_2)}.
$$

This expression for $Q(u, \tilde{u})$ is symmetric to the substitution

$$(u, a_1, a_2) \leftrightarrow (\tilde{u}, \tilde{a}_1, \tilde{a}_2)$$

and can be written in the factorized form

$$
Q(u, \tilde{u}) \sim Q(u, a_1, a_2) Q(\tilde{u}, \tilde{a}_1, \tilde{a}_2),
$$

where

$$
Q(u, a_1, a_2) = \frac{\Gamma(-iu - a_1) \Gamma(-i\tilde{u} - a_2)}{\Gamma^2(1 - iu)} \Phi(u),
$$

$$
Q(\tilde{u}, \tilde{a}_1, \tilde{a}_2).
$$
The expression $Q(u, a_1, a_2)$ differs from the Baxter function in the holomorphic space
\[Q(u) = \frac{\Gamma(-iu - a_1) \Gamma(-iu - a_2)}{\Gamma^2(1 - iu)} \]
only by the periodic function $\Phi(u)$ and therefore it can also be considered as a Baxter function. Note, however, that the function $\Phi(u)$ contains a square root singularity and, as a result, the recurrence relation for the function $Q(u, \tilde{u})$ differs from the similar relation for $Q(u)$ by a sign on its right-hand side:
\[Q(u + i, \tilde{u}) = -\frac{(u - ia_1)(u - ia_2)}{(u + i)^2} Q(u, \tilde{u}). \] (157)

To overcome this problem we can write $Q(u, \tilde{u})$ as follows:
\[Q(u, \tilde{u}) = Q(u) \Phi(u, \tilde{u}), \] (158)
where the function Φ is given below:
\[\Phi(u, \tilde{u}) = \frac{\sin(\pi (\tilde{u} + \tilde{a}_1)) \sin(\pi (\tilde{u} + \tilde{a}_2))}{\sin(i\pi u) \sin(i\pi \tilde{u})}. \] (159)

This additional factor $\Phi(u, \tilde{u})$ can be included in the definition of a new pseudo-vacuum state:
\[\Psi_0 = \Phi(u, \tilde{u}) u \tilde{u}. \] (160)

Really this pseudo-vacuum state can be considered as the additional factor for the wavefunction in the Baxter–Sklyanin representation providing correct hermicity properties of the Hamiltonian and integrals of motion in this representation (see also [13]). We shall return to this problem in our future publications.

8. Conclusion

In this paper, we established that the gluon production amplitudes in the planar approximation could have the Mandelstam cut contributions in the multi-Regge kinematics at some physical regions. For the cut corresponding to the composite states of n reggeized gluons the number of external particles should be $k \geq 2 + 2n$. The wavefunctions of these states in the adjoint representation satisfy the BFKL-like equation integrable in LLA and have the property of the holomorphic factorization. The corresponding holomorphic Hamiltonian coincides with the local Hamiltonian for an integrable open Heisenberg spin model. The Baxter equation for this model is reduced to a simple recurrent relation and can be solved in terms of the product of the Γ-functions. We constructed the wavefunctions of composite states of 2 and 3 gluons explicitly.

Acknowledgments

I thank L Faddeev, F Smirnov, M Staudacher, J Bartels and A Sabio Vera for helpful discussions. My work was supported by the Marie Curie Award and the grants RFBR 07-02-00902-a and RSGSS 5788.2006.2.

2 I thank Professor F Smirnov for discussions related to this important interpretation of the pseudo-vacuum state.
Appendix A. Mandelstam cuts in planar diagrams

Here we discuss an appearance of the Mandelstam cuts [43] in the crossing channels having adjoint representations of the color group SU(Nc) for the planar Feynman diagrams in the t’Hooft limit \(\alpha \ll 1, \alpha_c N_c \sim 1 \) and calculate the impact factors corresponding to the multireggeon exchange. To begin with, let us consider the elastic amplitude \(A(s, t) \) for the gluon–gluon scattering in the Regge kinematics. It is well known that in the leading logarithmic approximation the corresponding t-channel partial wave contains only one reggeized gluon pole. The contribution from the Pomeron exchange with color singlet quantum numbers is suppressed at large \(N_c \). The BFKL Pomeron appears as a composite state of two reggeized gluons and corresponds to the Mandelstam cut in the \(j \)-plane of the crossing channel. For the elastic amplitude the cuts in the adjoint representation appear in non-planar diagrams and are also suppressed at large \(N_c \). Indeed, according to S Mandelstam these contributions should have the following form:

\[
A(s, t) \sim \int \frac{d^2 k_\perp}{(2\pi)^2} \frac{(-s)^{(\frac{1}{2} - \xi)}}{k^2} \frac{(-s)^{(\frac{-1}{2} - \xi)}}{(q - k)^2} \Phi_1(k_\perp, q) \Phi_2(k_\perp, q),
\]

where \(j(t) \) are the Regge trajectories. The impact factors \(\Phi_j \) are the integrals from the particle–reggeon scattering amplitudes \(f_j \) (including the reggeon residues) over the invariants \(s, t \), in the direct channel:

\[
\Phi_j(k_\perp, q_\perp) = \int \frac{ds}{2\pi i} f_j(p, k, q), \quad s_1 = (p_A - k)^2, \quad s_2 = (p_B + k)^2.
\]

Here the integration contour \(L \) goes along the real axis above the right singularities of \(f_j \) and below left ones according to the Feynman prescription. Only when the amplitude \(f_j \) is constructed from the diagrams having both these singularities simultaneously, the result of the integration is non-zero because in an opposite case we can shift the contour \(L \) from the real axis to infinity with a vanishing result. The Mandelstam cuts are absent also for the planar amplitude with five external particles.

However, in the case of the six-point amplitude there are planar diagrams in which the Mandelstam cuts are present. Let us denote the momenta of initial gluons by \(p_A, p_B \) and the momenta of final particles by \(p_A, k_1, k_2, p_B \) in accordance with the order of multiplication of the corresponding color matrices \(T_A \). Then this cut appears in the physical region, where

\[
s = (p_A + p_B)^2 > 0, \quad s_1 = (p_A + k_1)^2 < 0, \quad s_2 = (k_1 + k_2)^2 > 0, \quad s_3 = (k_2 + p_B)^2 < 0.
\]

This region corresponds to the transition of four particles with their momenta \(p_A, -k_1, -k_2 \) and \(p_B \) to the two particles with the momenta \(p_A \) and \(p_B \). In the multi-Regge kinematics, where the corresponding Sudakov parameters are strongly ordered \(1 \gg -\beta_1 \gg -\beta_2, -\alpha_1 \ll -\alpha_2 \ll 1 \), the integrands in the impact factors \(\Phi_j \):

\[
\Phi_1(\vec{k}, \vec{k}_1, \vec{q}_2) = \int \frac{d\alpha}{2\pi i} f_1(p, k, k_1, q_2), \quad \Phi_2(\vec{k}, \vec{k}_2, \vec{q}_2) = \int \frac{d\beta}{2\pi i} f_2(p, k, k_2, q_2)
\]

in the simplest case have only the poles in the integration variables \(\alpha \approx 2kp_A/s \) and \(\beta \approx 2kp_B/s \):

\begin{align*}
\frac{f_1}{(p_A - k)^2 + i\epsilon (k_1 + q_2 - k)^2 + i\epsilon} &= \frac{1}{-s\alpha - k^2 + i\epsilon - a_1 \beta k_1 - (\vec{k}_1 + \vec{q}_2 - \vec{k})^2 + i\epsilon}, \\
\frac{f_2}{(p_B + k)^2 + i\epsilon (k_2 - q_2 + k)^2 + i\epsilon} &= \frac{1}{s\beta - \vec{k}^2 + i\epsilon \alpha_2 \beta - (\vec{k}_2 - \vec{q}_2 + \vec{k})^2 + i\epsilon}.
\end{align*}
These poles are situated above and below the integration contours \(L \) due to the inequalities \(\beta_1 < 0, \alpha_2 < 0 \) valid in the considered kinematical region where \(s_1 < 0, s_3 < 0 \). Therefore the integrals are non-zero and can be calculated by residues

\[
\Phi_1(\tilde{k}, \tilde{k}_1, \tilde{q}_2) = \frac{1}{(\tilde{k}_1 + \tilde{q}_2 - \tilde{k})^2}, \quad \Phi_2(\tilde{k}, \tilde{k}_2, \tilde{q}_2) = \frac{1}{(\tilde{k}_2 - \tilde{q}_2 + \tilde{k})^2}. \tag{A.6}
\]

In the case of production of two gluons with the same helicity at the multi-Regge kinematics in the physical region where \(s_1 < 0, s_2 > 0, s_3 < 0 \) the amplitude is proportional to the Born expression

\[
A_{2\to 4} = f_{2\to 4} g T^{c_{i_1}}_A g\frac{1}{|q_1|^2} g C(q_2, q_1) T^{c_{i_2}}_A g\frac{1}{|q_2|^2} g C(q_3, q_2) T^{c_{i_3}}_A g\frac{1}{|q_3|^2} g T^{c_{i_4}}_{B^*B}, \tag{A.7}
\]

where the reggeon–reggeon gluon vertex \(C \) is given above (see \((7) \)). In the lowest order approximation the corresponding proportionality factor \(f_{LO} \) for the Mandelstam cut contribution in the \(t_2 \)-channel contains some additional multipliers from the effective vertices \(C \) in comparison with the above result (see \([4, 39] \)),

\[
f_{LO} = \frac{g^2 N_c}{4\pi} \int \mu^2 d^2z_d \frac{2g}{(2\pi)^{2\epsilon}} \frac{[s_2^{(i_1)}]^{-1}}{|k|^2} \frac{[s_2^{(i_1)}]^{-1}}{|q_2|^2} \frac{G(q_2, q_1)}{\Phi_1} \frac{G(q_3, q_2)}{\Phi_2}, \tag{A.8}
\]

where

\[
\tilde{\Phi}_1 = q_1^t(k_1 + q_2 - k)(q_2 - k^*) \Phi_1(k, \tilde{k}_1, \tilde{q}_2) = \frac{q_1^t(q_2^* - k^*)}{k_1^* + q_2^* - k^*}, \tag{A.9}
\]

\[
\tilde{\Phi}_2 = q_3(q_2^* - k_2^* - k^*)(q_2 - k) \Phi_2(k, \tilde{k}_2, \tilde{q}_2) = \frac{q_3(q_2^* - k)}{q_2 - k_2^* - k^*}. \tag{A.10}
\]

In the weak coupling limit \(j = 1 \) and at \(\epsilon \to 0 \) the amplitude \(f_{LO} \) is

\[
\lim_{\epsilon \to 1} f_{LO} = \pi i a \left(\ln \frac{\tilde{q}_1^2 \tilde{q}_2^2}{(k_1 + k_2)^2} \frac{1}{\mu^2} - \frac{1}{\epsilon} \right), \quad a = \frac{g^2 N_c}{8\pi^2} (4\pi e^{-\gamma})^4, \tag{A.11}
\]

which coincides in this limit with the logarithm of the factor \(C \) introduced in [38]. This factor violates the Regge factorization of the BDS amplitude in the considered kinematical region due to the presence of the Mandelstam cut [38].

One can take into account the gluon reggeization in the channels \(t_1 \) and \(t_3 \) using the following substitution in the above expressions:

\[
\frac{1}{-s\alpha - \bar{k}^2 + i\epsilon} \to -(s\alpha - i\epsilon)^{j(i_1) - 2}, \quad \frac{1}{s\beta - \bar{k}^2 + i\epsilon} \to -(s\beta - i\epsilon)^{j(i_2) - 2}. \tag{A.12}
\]

It would lead to the multiplication of the integrand with the real factor

\[
R = \left(\frac{(-\bar{k}_1 + \bar{q}_2 - \bar{k})^2}{\beta_1} \right)^{j(i_1) - 1} \left(\frac{(-\bar{k}_2 - \bar{q}_2 + \bar{k})^2}{\alpha_2} \right)^{j(i_2) - 1} \approx (-s_1)^{j(i_1) - 1} (-s_3)^{j(i_1) - 1}. \tag{A.13}
\]

We can include also the diagrams with the reggeized gluon scattering in the crossing channel. It leads to the following expression for the Mandelstam contribution in LLA:

\[
f_{LLA}^{Mand} = i R^2 \frac{g^2 N_c}{4\pi} \int \mu^2 d^2z_d \frac{2g}{(2\pi)^{2\epsilon}} \frac{\mu^2 d^2z_d \frac{2g}{(2\pi)^{2\epsilon}} \frac{1}{|k|^2} \frac{1}{|q_2 - k|^2} G(k, \tilde{k}_1', \tilde{q}_2') \ln(-s_2)}{\Phi_1 \tilde{\Phi}_2}, \tag{A.14}
\]

\[
\approx \frac{g^2 N_c}{4\pi} \int \mu^2 d^2z_d \frac{2g}{(2\pi)^{2\epsilon}} \frac{1}{|k|^2} \frac{1}{|q_2 - k|^2} G(k, \tilde{k}_1', \tilde{q}_2') \ln(-s_2) \Phi_1 \tilde{\Phi}_2. \tag{A.14}
\]
where G is the Green’s function satisfying the BFKL-like equation for the octet quantum numbers in the t_2-channel:
\[
\frac{\partial}{\partial \ln s_2} G(k, k', q_2; \ln(-s_2)) = K G(k, k', q_2; \ln(-s_2)),
\]
\[
G(k, k', q_2; 0) = \frac{(2\pi)^{1-2e}}{\mu^{2e}} \delta^{2e}(k - k').
\] (A.15)

Here the operator K in LLA can be expressed in terms of the Hamiltonian H which does not contain infrared divergences:
\[
K = \omega(t_2) - \frac{\alpha_s^2 N_c}{16\pi^2} H, \quad \omega(t) = a \left(\frac{1}{t} - \ln \frac{-t}{\mu^2} \right),
\]
\[
H = 2 \ln \frac{|p_1|^2|p_2|^2}{|q_2|^2} + p_1 p_2 \ln|\rho_{12}|^2 + \frac{1}{p_1^2} - \frac{1}{p_2^2},
\] (A.16)

where $p_1 = k$, $p_2 = q - k$.

Let us consider now the Mandelstam cuts constructed from several reggeons. The non-vanishing contribution from the exchange of $r + 1$ reggeons appears in the planar diagrams only if the number of the external lines is $n \geq 2r + 4$. For the inelastic transition $2 \rightarrow 2 + 2r$ with the initial and final momenta p_A, p_B and $p_A, k_1, k_2, \ldots, k_{2r}, p_B$, respectively, the cut exists in the crossing channel with the momentum
\[
q = p_A - p_A' - \sum_{i=1}^{r} k_i = p_B - p_B' + \sum_{l=r+1}^{2r} k_l = \sum_{l=1}^{r+1} q'_l,
\] (A.17)

where q'_l are momenta of reggeons forming the composite state. The corresponding amplitude has the form
\[
A(p_A, p_B', k_1, \ldots, k_{2r}, p_B, p_B') \sim \int \prod_{l=1}^{r} \frac{d^2 q'_l |q'_l|^2}{2\pi s_l} \Phi_1(q'_1, \ldots, q'_{r+1}) \Phi_2(q'_1, \ldots, q'_{2r+1}).
\] (A.18)

The impact factors $\Phi_{1,2}$ are given in terms of the integrals over the Sudakov parameters $\alpha'_l = 2q'_l p_A/s$, $\beta'_l = 2q'_l p_B/s$ from the reggeon–particle scattering amplitudes $f_{1,2}$:
\[
\Phi_1 = \prod_{l=1}^{r+1} \int_L \frac{d\alpha'_l}{2\pi} f_1, \quad \Phi_2 = \prod_{l=1}^{r+1} \int_L \frac{d\beta'_l}{2\pi} f_2.
\] (A.19)

In QCD the tree expressions for $f_{1,2}$ appearing in the planar diagrams are given below:
\[
f_1 = I_1 \frac{1}{(p_A - q'_1)^2 (p_A - k_0 - q'_1)^2 \cdots (p_A - \sum_{l=1}^{r} q'_l - \sum_{l=0}^{r-2} k_l)^2} \times \frac{1}{(p_A - \sum_{l=1}^{r} q'_l - \sum_{l=0}^{r-1} k_l)^2}.
\]
\[
f_2 = I_2 \frac{1}{(p_B + q'_1)^2 (p_B - k_{2r+1} + q'_1)^2 \cdots (p_B + \sum_{l=1}^{r} q'_l - \sum_{l=r+3}^{2r+1} k_l)^2} \times \frac{1}{(p_B + \sum_{l=1}^{r} q'_l - \sum_{l=r+2}^{2r+1} k_l)^2},
\]
where \(k_0 = p_A, k_{2r+1} = p_B\). The additional factors \(I_{1,2}\) contain effective reggeon vertices for the production and scattering of the gluons with the same helicity. They can be written in the multi-Regge kinematics (5) as follows (cf. [4]):

\[
I_1 = \prod_{l=1}^r f_{q_{i+1}} \left(\frac{Q - \sum_{i=1}^l q_i^* - \sum_{i=1}^{l-1} k_i}{Q^* - \sum_{i=1}^l q_i^* - \sum_{i=1}^{l-1} k_i^*} \right) \prod_{l=1}^r \beta_l,
\]

\[
I_2 = \prod_{l=1}^r f_{\tilde{q}_{i+1}} \left(\frac{\tilde{Q}^* + \sum_{i=1}^l q_i^* - \sum_{i=1}^{l-1} k_{2r-l+1}}{\tilde{Q} + \sum_{i=1}^l q_i - \sum_{i=1}^{l-1} k_{2r-l+1}} \right) \prod_{l=1}^r \tilde{\alpha}_l,
\]

(A.20)

where \(Q = p_A - p_A, \tilde{Q} = p_B - p_B\) and the Sudakov variables of the produced particles \(\alpha_i = 2k_i p_A/s, \beta_i = 2k_i p_B/s\) are strongly ordered:

\[
1 \gg |\beta_1| \gg |\beta_2| \ldots \gg |\beta_{2r}|, \quad |\alpha_1| \ll |\alpha_2| \ll \ldots |\alpha_{2r}| < 1.
\]

(A.21)

In these variables the functions \(f_{1,2}\) are given below:

\[
f_1 = I_1 \frac{1 - s|\alpha'_1| + i \epsilon}{-s\beta_1 - |Q - q_1|^2 + i \epsilon} \frac{1}{s|\beta_1|},
\]

\[
f_2 = I_2 \frac{1 - s|\alpha'_2| + i \epsilon}{s\alpha_2 - |Q - q_2|^2 + i \epsilon} \frac{1}{s|\beta_2|},
\]

\[
\alpha'_l \sim \frac{|Q|^2}{s\beta_l}, \quad \beta'_l \sim \frac{|\tilde{Q}|^2}{s\alpha_{2r-l+1}}.
\]

(A.22)

In the physical region, where the signs of the Sudakov parameters of momenta \(k_i\) alternate with the index \(l\):

\[
\beta_1, \alpha_2 < 0; \quad \beta_5, \alpha_{2r-1} > 0; \quad \beta_3, \alpha_{2r-2} < 0; \ldots,
\]

(A.23)

which is equivalent to the following constraints on the invariants:

\[
s_1 < 0, \quad s_2 < 0, \ldots, s_r < 0, \quad s_{r+1} > 0,
\]

\[
s_{r+2} < 0, \quad s_{r+3} < 0, \ldots, s_{2r+1} < 0, \quad s > 0,
\]

(A.24)

the integrands in expressions for \(\Phi_{1,2}\) contain poles above and below the integration contours \(L\) over all variables \(\alpha_i, \beta_i\). Therefore, \(\Phi_{1,2}\) are non-zero and can be calculated by taking residues from the poles in \(f_{1,2}\):

\[
\Phi_1(q_1', \ldots, q_{r+1}') = \prod_{l=1}^r \frac{q_{i+1}^*}{(Q^* - \sum_{i=1}^l q_i^* - \sum_{i=1}^{l-1} k_i^*)},
\]

\[
\Phi_2(q_1', \ldots, q_{r+1}') = \prod_{l=1}^r \frac{q_{i+1}'}{(\tilde{Q} + \sum_{i=1}^l q_i')},
\]

(A.25)

(A.26)

In the case of the production of \(2r\) gluons with the same helicity the amplitude in \(N = 4\) SUSY is proportional to the Born expression containing the effective reggeon–reggeon gluon
vertices \(C \). The proportionality factor \(f_{2\to2r+2} \) for the Mandelstam cut constructed from \(r + 1 \) reggeized gluons can be written as follows:

\[
f_{2\to2r+2} = \left(\frac{g^2 N_c}{4\pi} \right)^{r} Q^{r} \tilde{Q}^{r} \int \prod_{l=1}^{r} \frac{\mu^2 d^{2-2e} q_l}{(2\pi)^{1-2e}} \prod_{l=1}^{r+1} \frac{(-s_{r+1})^{i(-|q_l|^2)-1}}{|q_l|^2} \Phi_1 \Phi_2 \prod_{l=1}^{r} k_{l}^2 k_{2r-l}.
\]

(A.27)

In the leading logarithmic approximation the proportionality factor has the form

\[
f_{2\to2r+2}^{LLA} = \left(\frac{g^2 N_c}{4\pi} \right)^{r} Q^{r} \tilde{Q}^{r} \int \prod_{l=1}^{r} \frac{\mu^2 d^{2-2e} p_l}{(2\pi)^{1-2e}} \prod_{l=1}^{r} \frac{1}{|p_l|^2} G(p, p'; s_{r+1}) \Phi_1 \Phi_2 \prod_{l=1}^{r} k_{l}^2 k_{2r-l},
\]

(A.28)

where we introduce the new notation \(p_l \) for the reggeon momenta \(q_l \). The Green’s function satisfies the equation

\[
\frac{\partial}{\partial \ln s_{r+1}} G(\vec{p}, \vec{p}'; s_{r+1}) = K G(\vec{p}, \vec{p}'; s_{r+1}), \quad G(\vec{p}, \vec{p}'; 0) = \prod_{l=1}^{r} \frac{(2\pi)^{1-2e}}{\mu^2} \delta^{2-2e} (p_l - p'_l).
\]

(A.29)

Here the operator \(K \) in LLA can be expressed in terms of the Hamiltonian \(H \) which does not contain infrared divergences:

\[
K = \omega(t) - \frac{g^2 N_c}{16\pi^2} H, \quad \omega(t) = a \left(\frac{1}{\epsilon} - \ln \frac{-t}{\mu^2} \right), \quad t = -|q|^2,
\]

(A.30)

where

\[
H = \ln \frac{|p_l|^2 |p_{r+1}|^2}{|q|^2} + \sum_{l=1}^{r} H_{l,l+1},
\]

(A.31)

Note that the above Hamiltonian has the property of the holomorphic separability,

\[
H = h + h^*, \quad h = \ln \frac{p_l p_{r+1}}{|q|^2} + \sum_{l=1}^{r} h_{l,l+1},
\]

(A.32)

where

\[
h_{l,l+1} = \ln p_l + \ln p_{r+1} + \ln |p_{l+1}|^2 + \frac{1}{p_l p_{l+1}^*} + \frac{1}{p_{r+1} p_{r+1}^*}.
\]

(A.33)

One can also take into account the enhanced contributions in the impact factors leading to the Regge-type dependence of the amplitude on other invariants \(s_i \) (\(i \neq r + 1 \)).

References

[1] Lipatov L N 1976 Sov. J. Nucl. Phys. 23 338
Fadin V S, Kuraev E A and Lipatov L N 1975 Phys. Lett. B 60 50
Kuraev E A, Lipatov L N and Fadin V S 1976 Sov. Phys.—JETP 44 443
Kuraev E A, Lipatov L N and Fadin V S 1977 Sov. Phys.—JETP 45 199
Balitsky I I and Lipatov L N 1978 Sov. J. Nucl. Phys. 28 822

[2] Fadin V S, Fiore R and Kotsky M I 1996 Phys. Lett. B 387 593
