E.M. Ovsiyuk, O.V. Veko

SPIN 1/2 PARTICLE IN THE FIELD OF THE DIRAC STRING ON THE BACKGROUND OF ANTI DE SITTER SPACE–TIME
Mozyr State Pedagogical University named after I.P. Shamyakin

Abstract

The Dirac monopole string is specified for anti de Sitter cosmological model. Dirac equation for spin 1/2 particle in presence of this monopole has been examined on the background of anti de Sitter space-time in static coordinates. Instead of spinor monopole harmonics, the technique of Wigner D-functions is used. After separation of the variables radial equations have been solved exactly in terms of hypergeometric functions. The complete set of spinor wave solutions $\Psi_{\epsilon,j,m,\lambda}(t,r,\theta,\phi)$ has been constructed, the most attention is given to treating the states of minimal values for total moment quantum number j_{min}. At all values of j, the energy spectrum is discrete.

PACS numbers: 11.10.Cd, 04.20.Gz

1 Introduction

De Sitter and anti de Sitter geometrical models are given steady attention in the context of developing quantum theory in a curved space-time – for instance, see in [1]. In particular, the problem of description of the particles with different spins on these curved backgrounds has a long history – see [2–34]. Here we will be interested mostly in treating the Dirac equation in de Sitter model. In the present paper, the influence of the Dirac monopole string on the spin 1/2 particle in the anti de Sitter cosmological model is investigated. Instead of spinor monopole harmonics, the technique of Wigner D-functions is used. After separation of the variables radial equation have been solved exactly in terms of hypergeometric functions. The complete set of spinor wave solutions $\Psi_{\epsilon,j,m,\lambda}(t,r,\theta,\phi)$ has been constructed. Special attention is given to treating the states of minimal values for total moment quantum number j_{min}, these states turn to be much more complicated than in the flat Minkowski space. At all values of j, the energy spectrum is discrete.

2 Dirac particle in the anti de Sitter space

The Dirac equation (the notation according to [39] is used)

$$\left[i\gamma^c (\epsilon^\alpha_{(c)} \partial_\alpha + \frac{1}{2} \sigma^{ab} \gamma_{abc}) - M \right] \Psi = 0$$

(1)

e.ovsiyuk@mail.ru
in static coordinates and tetrad of the anti de Sitter space-time

\[ds^2 = \Phi \, dt^2 - \frac{dr^2}{\Phi} - r^2(d\theta^2 + \sin^2 \theta d\phi^2) , \quad \Phi = 1 + r^2 , \]

\[e^{\alpha}_{(0)} = \left(\frac{1}{\sqrt{\Phi}}, 0, 0, 0 \right) , \quad e^{\alpha}_{(3)} = \left(0, \sqrt{\Phi}, 0, 0 \right) , \]

\[e^{\alpha}_{(1)} = \left(0, 0, \frac{1}{r}, 0 \right) , \quad e^{\alpha}_{(2)} = \left(1, 0, 0, \frac{1}{r \sin \theta} \right) , \]

\[\gamma^{030} = \frac{\Phi'}{2\sqrt{\Phi}} \, , \quad \gamma^{311} = \sqrt{\Phi} \frac{1}{r} \, , \quad \gamma^{322} = \sqrt{\Phi} \frac{1}{r} \, , \quad \gamma^{122} = \frac{\cos \theta}{r \sin \theta} \] , \tag{2}

takes the form

\[\left[i \frac{\gamma^0}{\sqrt{\Phi}} \partial_t + i \sqrt{\Phi} \left(\gamma^3 \partial_r + \frac{\gamma^1 \sigma^{31} + \gamma^2 \sigma^{32}}{r} + \frac{\Phi'}{2\Phi \gamma^0 \sigma^{03}} \right) + \frac{1}{r} \Sigma_{\theta,\phi} - M \right] \Psi(x) = 0 \] , \tag{3}

where

\[\Sigma_{\theta,\phi} = i \gamma^1 \partial_\theta + \gamma^2 i \partial + i \sigma^{12} \cos \theta \sin \theta . \]

Eq. (3) reads

\[\left[i \frac{\gamma^0}{\sqrt{\Phi}} \partial_t + i \sqrt{\Phi} \gamma^3 \left(\partial_r + \frac{1}{r} + \frac{\Phi'}{4\Phi} \right) + \frac{1}{r} \Sigma_{\theta,\phi} - M \right] \Psi(x) = 0 \] . \tag{4}

From (4), with the substitution \(\Psi(x) = r^{-1/4} \Phi^{-1/4} \psi(x) \), we get

\[\left(i \frac{\gamma^0}{\sqrt{\Phi}} \partial_t + i \sqrt{\Phi} \gamma^3 \partial_r + \frac{1}{r} \Sigma_{\theta,\phi} - M \right) \psi(x) = 0 . \] \tag{5}

Below the spinor basis will be used

\[\gamma^0 = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \, , \quad \gamma^j = \begin{bmatrix} 0 & -\sigma_j \\ \sigma_j & 0 \end{bmatrix} \, , \quad i \sigma^{12} = \begin{bmatrix} \sigma_3 & 0 \\ 0 & \sigma_3 \end{bmatrix} \, . \]

3 Separation of the variables

Let us start with the monopole Abelian potential in the Schwinger’s form \[35\] in flat Minkowski space

\[A^a(x) = (A^0, A^i) = \left(0, g \frac{(\vec{r} \times \vec{n})}{r} \left(\frac{\vec{r} \times \vec{n}}{r^2 - (\vec{r} \times \vec{n})^2} \right) \right) . \] \tag{6}

Specifying \(\vec{n} = (0, 0, 1) \) and translating the \(A_\alpha \) to the spherical coordinates, we get

\[A_0 = 0 \, , \quad A_r = 0 \, , \quad A_\theta = 0 \, , \quad A_\phi = g \cos \theta . \] \tag{7}
It is easily verified that this potential \(A_\phi \) obeys Maxwell equations in anti de Sitter space

\[
\frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^\alpha} \sqrt{-g} F^{\alpha \beta} = 0, \quad \sqrt{-g} = r^2 \sin \theta ,
\]

\[
F_{\phi \theta} = g \sin \theta , \quad \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} r^2 \sin \theta \frac{1}{r^2 \sin^2 \theta} g \sin \theta = 0 . \quad (8)
\]

Correspondingly, the Dirac equation in this electromagnetic field takes the form

\[
\left[i \frac{\gamma^0}{\sqrt{\Phi}} \partial_t + i \sqrt{\Phi} \gamma^3 \partial_r + \frac{1}{r} \Sigma_{\theta, \phi}^k - M \right] \psi(x) = 0 , \quad (9)
\]

where

\[
\Sigma_{\theta, \phi}^k = i \gamma^1 \partial_\theta + \gamma^2 \frac{i \partial_\phi + (i \sigma^{12} - k) \cos \theta}{\sin \theta} , \quad (10)
\]

and \(k \equiv eg/hc \). As readily verified, the wave operator in (9) commutes with the following three ones

\[
J_1^k = l_1 + \frac{(i \sigma^{12} - k) \cos \phi}{\sin \theta} , \quad J_2^k = l_2 + \frac{(i \sigma^{12} - k) \sin \phi}{\sin \theta} , \quad J_3^k = l_3 , \quad (11)
\]

which obey the \(\mathfrak{su}(2) \) Lie algebra. Clearly, this monopole situation come entirely under the Schrödinger [36] and Pauli [37] approach (detailed treatment of the method was given in [40]). Correspondingly to diagonalizing the \(J_2^k \) and \(J_3^k \), the function \(\psi \) is to be taken as \((D_{\sigma} \equiv D_{-m, \sigma}(\phi, \theta, 0) \) stands for Wigner functions [38])

\[
\psi^k_{\epsilon jm}(t, r, \theta, \phi) = e^{-i ct} \begin{vmatrix}
 f_1 & D_{k-1/2} \\
 f_2 & D_{k+1/2} \\
 f_3 & D_{k-1/2} \\
 f_4 & D_{k+1/2}
\end{vmatrix} . \quad (12)
\]

Further, with the help of recursive relations [38]

\[
\partial_\theta D_{k+1/2} = a D_{k-1/2} - b D_{k+3/2} , \quad \partial_\theta D_{k-1/2} = c D_{k-3/2} - a D_{k+1/2} ,
\]

\[
\sin^{-1} \theta \left[-m - (k + 1/2) \cos \theta \right] D_{k+1/2} = (-a D_{k-1/2} - b D_{k+3/2}) ,
\]

\[
\sin^{-1} \theta \left[-m - (k - 1/2) \cos \theta \right] D_{k-1/2} = (-c D_{k-3/2} - a D_{k+1/2}) ,
\]

\[
b = \frac{\sqrt{(j - k - 1/2)(j + k + 3/2)}}{2} ,
\]

\[
c = \frac{\sqrt{(j + k - 1/2)(j - k + 3/2)}}{2} ,
\]

\[
a = \frac{1}{2} \sqrt{(j + 1/2)^2 - k^2}.
\]
we find how the $\Sigma_{\theta,\phi}^k$ acts on $\psi_{\epsilon jm}^k$

$$\Sigma_{\theta,\phi}^k \psi_{\epsilon jm}^k = i \sqrt{(j + 1/2)^2 - k^2} e^{-i\epsilon t} \begin{vmatrix} -f_4 & D_{k-1/2} \\ f_3 & D_{k+1/2} \\ +f_2 & D_{k-1/2} \\ -f_1 & D_{k+1/2} \end{vmatrix};$$ \hspace{1cm} (13)

hereafter the factor $\sqrt{(j + 1/2)^2 - k^2}$ will be denoted by ν. For the $f_i(r)$, the radial system derived is

$$\frac{\epsilon}{\sqrt{\Phi}} f_3 - i \frac{\epsilon}{\sqrt{\Phi}} \frac{d}{dr} f_3 - i \frac{\nu}{r} f_4 - M f_1 = 0,$$
$$\frac{\epsilon}{\sqrt{\Phi}} f_4 + i \frac{\epsilon}{\sqrt{\Phi}} \frac{d}{dr} f_4 + i \frac{\nu}{r} f_3 - M f_2 = 0,$$
$$\frac{\epsilon}{\sqrt{\Phi}} f_1 + i \frac{\epsilon}{\sqrt{\Phi}} \frac{d}{dr} f_1 + i \frac{\nu}{r} f_2 - M f_3 = 0,$$
$$\frac{\epsilon}{\sqrt{\Phi}} f_2 - i \frac{\epsilon}{\sqrt{\Phi}} \frac{d}{dr} f_2 - i \frac{\nu}{r} f_1 - M f_4 = 0. \hspace{1cm} (14)$$

Else one operator can be diagonalized together with $i\partial_t, \vec{J}_k^2, J_k^3$; namely, a generalized Dirac operator

$$\hat{K}^k = -i \gamma^0 \gamma^3 \Sigma_{\theta,\phi}^k. \hspace{1cm} (15)$$

From the equation $\hat{K}^k \psi_{\epsilon jm} = \lambda \psi_{\epsilon jm}$ we find two possible eigenvalues and restrictions on $f_i(r)$

$$f_4 = \delta f_1, \hspace{0.5cm} f_3 = \delta f_2, \hspace{0.5cm} \lambda = -\delta \sqrt{(j + 1/2)^2 - k^2}. \hspace{1cm} (16)$$

Correspondingly, the system (14) reduces to

$$\left(\sqrt{\Phi} \frac{d}{dr} + \frac{\nu}{r} \right) f + \left(\frac{\epsilon}{\sqrt{\Phi}} + \delta M \right) g = 0, \hspace{0.5cm} (17)$$

$$\left(\sqrt{\Phi} \frac{d}{dr} - \frac{\nu}{r} \right) g - \left(\frac{\epsilon}{\sqrt{\Phi}} - \delta M \right) f = 0,$$

where

$$f = \frac{f_1 + f_2}{\sqrt{2}}, \hspace{0.5cm} g = \frac{f_1 - f_2}{\sqrt{2}i}.$$

It is known that quantization of $k = eg/hc$ and j is given by

$$eg/hc = \pm 1/2, \hspace{0.1cm} \pm 1, \hspace{0.1cm} \pm 3/2, \ldots$$

$$j = |k| -1/2, \hspace{0.1cm} |k| +1/2, \hspace{0.1cm} |k| +3/2, \ldots \hspace{1cm} (18)$$

The case of minimal value $j_{min} = |k| -1/2$ must be treated separately in a special way. For example, let $k = +1/2$, then to the minimal value $j = 0$ there corresponds the wave function in terms of only (t, r)-dependent quantities

$$\psi_{\epsilon jm}^{(j=0)}(x) = e^{-i\epsilon t} \begin{vmatrix} f_1(r) \\ 0 \\ f_3(r) \\ 0 \end{vmatrix}. \hspace{1cm} (19)$$
At $k = -1/2$, we have

$$\psi_{k=-1/2}^{(j=0)}(x) = e^{-i ct} \left| \begin{array}{c} 0 \\ f_2(r) \\ 0 \\ f_4(r) \end{array} \right|. \quad (20)$$

Thus, if $k = \pm 1/2$, then to the minimal values j_{\min} there correspond the function substitutions which do not depend at all on the angular variables (θ, ϕ); at this point there exists some formal analogy between these electron-monopole states and S-states (with $l = 0$) for a boson field of spin zero: $\Phi_{l=0} = \Phi(r, t)$. However, it would be unwise to attach too much significance to this formal similarity because that (θ, ϕ)-independence of $(e - g)$-states is not a fact invariant under tetrad gauge transformations.

In contrast, the relation below (let $k = +1/2$)

$$\Sigma_{\theta, \phi}^{+1/2} \psi_{k=+1/2}^{(j=0)}(x) = \gamma^2 \cot \theta (i \sigma^{12} - 1/2) \psi_{k=+1/2}^{(j=0)} \equiv 0 \quad (21)$$

is invariant under arbitrary tetrad gauge transformations. Correspondingly, the matter equation (9) takes on the form

$$\left(i \frac{\gamma^0}{\sqrt{\Phi}} \frac{\partial}{\partial t} + i \gamma^3 \frac{\partial}{\partial r} - M \right) \psi^{(j=0)} = 0. \quad (22)$$

It is readily verified that both (19) and (20) representations are directly extended to $(e - g)$-states with $j = j_{\min}$ at all the other $k = \pm 1, \pm 3/2, \ldots$. Indeed,

$$k = +1, +3/2, +2, \ldots, \quad \psi_{j_{\min}^{k>0}}^{k>0}(x) = e^{-i ct} \left| \begin{array}{c} f_1(r) D_{k-1/2} \\ 0 \\ f_3(r) D_{k-1/2} \\ 0 \end{array} \right|; \quad (23)$$

$$k = -1, -3/2, -2, \ldots, \quad \psi_{j_{\min}^{k<0}}^{k<0}(x) = e^{-i ct} \left| \begin{array}{c} 0 \\ f_2(r) D_{k+1/2} \\ 0 \\ f_4(r) D_{k+1/2} \end{array} \right|, \quad (24)$$

and the relation $\Sigma_{\theta, \phi} \psi_{j_{\min}} = 0$ still holds. For instance, let us consider in more detail the case of positive k. Using the recursive relations

$$\partial_\theta D_{k-1/2} = \frac{1}{2} \sqrt{2k - 1} D_{k-3/2},$$

$$\sin^{-1} \theta \left[-m - (k - 1/2) \cos \theta \right] D_{k-1/2} = -\frac{1}{2} \sqrt{2k - 1} D_{k-3/2},$$

we get

$$i \gamma^1 \partial_\theta \left| \begin{array}{c} f_1(r) D_{k-1/2} \\ 0 \\ f_3(r) D_{k-1/2} \\ 0 \end{array} \right| = \frac{i}{2} \sqrt{2k - 1} \left| \begin{array}{c} 0 \\ -f_3(r) D_{k-3/2} \\ 0 \\ +f_1(r) D_{k-3/2} \end{array} \right|,$$

$$\gamma^2 \frac{i \partial_\theta + (i \sigma^{12} - k) \cos \theta}{\sin \theta} \left| \begin{array}{c} f_1(r) D_{k-1/2} \\ 0 \\ f_3(r) D_{k-1/2} \\ 0 \end{array} \right| = \frac{i}{2} \sqrt{2k - 1} \left| \begin{array}{c} 0 \\ +f_3(r) D_{k-3/2} \\ 0 \\ -f_1(r) D_{k-3/2} \end{array} \right|. \quad (20)$$
in a sequence, the identity $\Sigma_{\theta, \phi} \psi_{j_{\min}} \equiv 0$ holds. The case of negative k can be considered in the same way. Thus, at every k, the j_{\min}-state equation has the same unique form

$$
\left(i \frac{\gamma^0}{\sqrt{\Phi}} \frac{\partial}{\partial t} + i \gamma^3 \sqrt{\Phi} \frac{\partial}{\partial r} - M \right) \psi_{j_{\min}} = 0 ;
$$

which leads to the same unique radial system

$k = +1/2, +1, \ldots$

$$
\begin{align*}
\frac{e}{\sqrt{\Phi}} f_3 - i \sqrt{\Phi} \frac{d}{dr} f_3 - M f_1 &= 0 , \\
\frac{e}{\sqrt{\Phi}} f_1 + i \sqrt{\Phi} \frac{d}{dr} f_1 - M f_3 &= 0 ;
\end{align*}
$$

$k = -1/2, -1, \ldots$

$$
\begin{align*}
\frac{e}{\sqrt{\Phi}} f_4 + i \sqrt{\Phi} \frac{d}{dr} f_4 - M f_2 &= 0 , \\
\frac{e}{\sqrt{\Phi}} f_2 - i \sqrt{\Phi} \frac{d}{dr} f_2 - M f_4 &= 0 .
\end{align*}
$$

In the limit of flat space–time, these equations are equivalent respectively to $k = +1/2, +1, \ldots$

$$
\left(\frac{d^2}{dr^2} + \epsilon^2 - m^2 \right) f_1 = 0 , \quad f_3 = \frac{1}{m} \left(\epsilon + i \frac{d}{dr} \right) f_1 ;
$$

$k = -1/2, -1, \ldots$

$$
\left(\frac{d^2}{dr^2} + \epsilon^2 - m^2 \right) f_4 = 0 , \quad f_2 = \frac{1}{m} \left(\epsilon + i \frac{d}{dr} \right) f_4 .
$$

These equation both lead us to the functions $f = \exp(\pm \sqrt{m^2 - \epsilon^2} r)$. In particular, at $\epsilon < m$, we have a solution

$$
\exp \left(- \sqrt{m^2 - \epsilon^2} r \right) ,
$$

which seems to be appropriate to describe bound states in the electron-monopole system.

4 Solution of the radial equations

Let us turn back to the system (17) and (for definiteness) consider equations at $\delta = +1$ (formally the second case $\delta = -1$ corresponds to the change $M \rightarrow -M$)

$$
\begin{align*}
(\sqrt{\Phi} \frac{d}{dr} + \frac{\nu}{r}) f + (\frac{e}{\sqrt{\Phi}} + M) g &= 0 , \\
(\sqrt{\Phi} \frac{d}{dr} - \frac{\nu}{r}) g - (\frac{e}{\sqrt{\Phi}} - M) f &= 0 .
\end{align*}
$$
Here we see additional singularities at the points
\[\epsilon + \sqrt{\Phi} M = 0 \quad \text{or} \quad \epsilon - \sqrt{\Phi} M = 0 . \]

For instance, the equation for \(f(r) \) has the form
\[
\frac{d^2}{dr^2} f + \left(\frac{2r}{1 + r^2} - \frac{Mr}{\sqrt{1 + r^2}(\epsilon + M\sqrt{1 + r^2})} \right) \frac{d}{dr} f + \left(\frac{\epsilon^2}{(1 + r^2)^2} - \frac{M^2}{1 + r^2} \right.
\]
\[
- \frac{\nu^2}{r^2(1 + r^2)} - \frac{\nu}{r^2(1 + r^2)^{3/2}} - \frac{M\nu}{(1 + r^2)(\epsilon + M\sqrt{1 + r^2})} \bigg) f = 0 .
\]

However, there exists possibility to move these singularities away through a special transformation of the functions \(f(r), g(r) \) \[24\]. To this end, let us introduce a new variable \(r = \sinh \rho \), eqs. \[31\] look simpler
\[
\frac{d}{d\rho} + \frac{\nu}{\sinh \rho} f + \left(\frac{\epsilon}{\cosh \rho} + M \right) g = 0 ,
\]
\[
\frac{d}{d\rho} - \frac{\nu}{\sinh \rho} g - \left(\frac{\epsilon}{\cosh \rho} - M \right) f = 0 .
\]

Summing and subtracting two last equations, we get
\[
\frac{d}{d\rho}(f + g) + \frac{\nu}{\sinh \rho}(f - g) - \frac{\epsilon}{\cosh \rho}(f - g) + M(f + g) = 0 ,
\]
\[
\frac{d}{d\rho}(f - g) + \frac{\nu}{\sinh \rho}(f + g) + \frac{\epsilon}{\cosh \rho}(f + g) - M(f - g) = 0 .
\]

Introducing two new functions
\[
f + g = e^{-\rho/2}(F + G) , \quad f - g = e^{+\rho/2}(F - G) ,
\]

or in matrix form
\[
\begin{pmatrix} G \\ H \end{pmatrix} = \begin{pmatrix} \cosh \rho/2 & -\sinh \rho/2 \\ -\sinh \rho/2 & \cosh \rho/2 \end{pmatrix} \begin{pmatrix} g \\ h \end{pmatrix} ,
\]

where (see definition of the variable \(z \) below)
\[
\cosh \frac{\rho}{2} = \sqrt{1 - \frac{z + 1}{2}} , \quad \sinh \frac{\rho}{2} = \sqrt{1 - \frac{z - 1}{2}} ,
\]

one transforms \[33\] into
\[
\frac{d}{d\rho} e^{-\rho/2}(F + G) + \frac{\nu}{\sinh \rho} e^{+\rho/2}(F - G)
\]
\[
- \frac{\epsilon}{\cosh \rho} e^{+\rho/2}(F - G) + M e^{-\rho/2}(F + G) = 0 ,
\]
\[
\frac{d}{d\rho} e^{+\rho/2}(F - G) + \frac{\nu}{\sinh \rho} e^{-\rho/2}(F + G)
\]
\[
+ \frac{\epsilon}{\cosh \rho} e^{-\rho/2}(F + G) - M e^{+\rho/2}(F - G) = 0 ,
\]
\[
\frac{d}{d\rho}(F + G) - \frac{1}{2}(F + G) + \frac{\nu}{\sinh \rho} (\cosh \rho + \sinh \rho)(F - G)
- \frac{\epsilon}{\cosh \rho} (\cosh \rho + \sinh \rho)(F - G) + M(F + G) = 0 ,
\]

\[
\frac{d}{d\rho}(F - G) + \frac{1}{2}(F - G) + \frac{\nu}{\sinh \rho} (\cosh \rho - \sinh \rho)(F + G)
+ \frac{\epsilon}{\cosh \rho} (\cosh \rho - \sinh \rho)(F + G) - M(F - G) = 0 .
\]

Now summing and subtracting two last equations, we obtain

\[
\left(\frac{d}{d\rho} + \nu \frac{\cosh \rho}{\sinh \rho} - \epsilon \frac{\sinh \rho}{\cosh \rho} \right) F + \left(\epsilon + M - \nu - \frac{1}{2} \right) G = 0 ,
\]

\[
\left(\frac{d}{d\rho} - \nu \frac{\cosh \rho}{\sinh \rho} + \epsilon \frac{\sinh \rho}{\cosh \rho} \right) G + \left(-\epsilon + M + \nu - \frac{1}{2} \right) F = 0 .
\]

Let us translate eqs. (37) to the variable \(z \):

\[
r^2 = \sinh^2 \rho = -z, \quad \frac{d}{d\rho} = 2\sqrt{-z(1-z)} \frac{d}{dz} ,
\]

\[
\left(2\sqrt{-z(1-z)} \frac{d}{dz} + \nu \sqrt{\frac{1-z}{-z}} - \epsilon \frac{\sqrt{-z}}{\sqrt{1-z}} \right) F
+ (\epsilon + M - \nu - \frac{1}{2}) G = 0 ,
\]

\[
\left(2\sqrt{-z(1-z)} \frac{d}{dz} - \nu \sqrt{\frac{1-z}{-z}} + \epsilon \frac{\sqrt{-z}}{\sqrt{1-z}} \right) G
+ (-\epsilon + M + \nu - \frac{1}{2}) F = 0 .
\]

From (38) it follow two 2-nd order differential equations for \(F \) and \(G \) respectively

\[
z(1-z) \frac{d^2 F}{dz^2} + \left(\frac{1}{2} - z \right) \frac{dF}{dz}
+ \left[\frac{1}{4} \left(M - \frac{1}{2} \right)^2 - \frac{\epsilon(\epsilon - 1)}{4(1-z)} - \frac{\nu(\nu + 1)}{4z} \right] F = 0 ,
\]

\[
z(1-z) \frac{d^2 G}{dz^2} + \left(\frac{1}{2} - z \right) \frac{dG}{dz}
+ \left[\frac{1}{4} \left(M - \frac{1}{2} \right)^2 - \frac{\epsilon(\epsilon + 1)}{4(1-z)} - \frac{\nu(\nu - 1)}{4z} \right] G = 0 .
\]

With the use of substitutions

\[F = z^A (1-z)^B \tilde{F}(z) , \quad G = z^K (1-z)^L \tilde{G}(z) , \]
eqs. (39) take the form

\[
z(1-z) \frac{d^2 \bar{F}}{dz^2} + \left[2A + \frac{1}{2} - (2A + 2B + 1)z \right] \frac{d\bar{F}}{dz} \\
+ \left[\frac{1}{4} \left(M - \frac{1}{2} \right)^2 - (A + B)^2 - \frac{\epsilon(\epsilon - 1) + 2B(1 - 2B)}{4(1 - z)} \\
- \frac{\nu(\nu + 1) - 2A(2A - 1)}{4z} \right] \bar{F} = 0 ,
\]
\tag{40}

\[
z(1-z) \frac{d^2 \bar{G}}{dz^2} + \left[2K + \frac{1}{2} - (2K + 2L + 1)z \right] \frac{d\bar{G}}{dz} \\
+ \left[\frac{1}{4} \left(M - \frac{1}{2} \right)^2 - (K + L)^2 - \frac{\epsilon(\epsilon + 1) + 2L(1 - 2L)}{4(1 - z)} \\
- \frac{\nu(\nu - 1) - 2K(2K - 1)}{4z} \right] \bar{G} = 0 .
\]
\tag{41}

First let us consider eq. (40); at \(A \) and \(B \) taken accordingly

\[
A = \frac{1 + \nu}{2}, \quad -\frac{\nu}{2}, \quad B = \frac{\epsilon}{2}, \quad \frac{1 - \epsilon}{2}
\]
\tag{42}

it becomes simpler

\[
z(1-z) \frac{d^2 f}{dz^2} + \left[2A + \frac{1}{2} - (2A + 2B + 1)z \right] \frac{df}{dz} \\
+ \left[\frac{1}{4} \left(M - \frac{1}{2} \right)^2 - (A + B)^2 \right] f = 0 ,
\]
\tag{43}

which is of hypergeometric type with parameters

\[
a = \frac{M}{2} - \frac{1}{4} + A + B , \quad b = -\frac{M}{2} + \frac{1}{4} + A + B , \quad c = 2A + 1/2 .
\]

To construct functions appropriate to describe bound states we must choose

\[
A = \frac{1 + \nu}{2} > 0 , \quad B = \frac{1 - \epsilon}{2} < 0 , \quad c = \nu + 3/2 ;
\]
\tag{44}

polynomial solutions will arise with the quantization rule imposed

\[
a = -n , \quad \epsilon_n = M + 2n + \nu + \frac{3}{2} , \\
b = -n - M - 1/2 , \quad c = \nu + 3/2 .
\]
\tag{45}

Now let us turn to eq. (41). At \(A, \ B \) chosen according to

\[
K = \frac{1 + \nu}{2} , \quad \frac{\nu}{2} , \quad L = -\frac{\epsilon}{2} , \quad \frac{1 + \epsilon}{2}
\]
\tag{46}
it will be simpler
\[
z(1 - z) \frac{d^2 g}{dz^2} + \left[2K + \frac{1}{2} - (2K + 2L + 1)z \right] \frac{dg}{dz}
+ \left[\frac{1}{4} \left(M - \frac{1}{2} \right)^2 - (K + L)^2 \right] g = 0,
\] (47)

which is of hypergeometric type
\[
\alpha = \frac{M}{2} - \frac{1}{4} + K + L,
\beta = -\frac{M}{2} + \frac{1}{4} + K + L,
\gamma = 2K + \frac{1}{2}.
\]

Again, to get bound states we choose the values
\[
K = \frac{\nu}{2} > 0, \quad L = -\frac{\epsilon}{2} < 0,
\] (48)
then the quantization rule arises
\[
\alpha = -N, \quad \epsilon_N = M + 2N + \nu - \frac{1}{2}.
\] (49)

It can be noted that \(\epsilon_N = \epsilon_n\), when \(N = n + 1\).

Let us calculate relative coefficient between functions \(F(z)\) and \(G(z)\). These being taken in the form
\[
F(z) = F_0 z^{(1+\nu)/2} (1 - z)^{(1-\epsilon)/2} \bar{F}(a, b, c; z), \quad c = \frac{3}{2} + \nu,
\]
\[
a = \frac{M}{2} + \frac{3}{4} + \frac{\nu}{2} - \frac{\epsilon}{2}, \quad b = -\frac{M}{2} + \frac{5}{4} + \frac{\nu}{2} - \frac{\epsilon}{2};
\] (50)

and
\[
G(z) = G_0 z^{\nu/2} (1 - z)^{-\epsilon/2} \bar{G}(\alpha, \beta, \gamma; z), \quad \gamma = \frac{1}{2} + \nu = c - 1,
\]
\[
\alpha = \frac{M}{2} - \frac{1}{4} + \frac{\nu}{2} - \frac{\epsilon}{2} = a - 1, \quad \beta = -\frac{M}{2} + \frac{1}{4} + \frac{\nu}{2} - \frac{\epsilon}{2} = b - 1,
\] (51)

must obey the following system
\[
\begin{align*}
\left(2\sqrt{-z(1 - z)} \frac{d}{dz} + \nu \frac{\sqrt{1 - z}}{\sqrt{-z}} - \epsilon \frac{\sqrt{-z}}{\sqrt{1 - z}} \right) F + (+\epsilon + M - \nu - \frac{1}{2}) G &= 0, \\
\left(2\sqrt{-z(1 - z)} \frac{d}{dz} - \nu \frac{\sqrt{1 - z}}{\sqrt{-z}} + \epsilon \frac{\sqrt{-z}}{\sqrt{1 - z}} \right) G + (-\epsilon + M + \nu - \frac{1}{2}) F &= 0.
\end{align*}
\]

To find a relative factor, it is convenient to use the second equation
\[
\begin{align*}
\left(-2\sqrt{-z(1 - z)} \frac{d}{dz} - \nu \frac{\sqrt{1 - z}}{\sqrt{-z}} + \epsilon \frac{\sqrt{-z}}{\sqrt{1 - z}} \right) G \\
+ (-\epsilon + M + \nu - \frac{1}{2}) F &= 0.
\end{align*}
\]
Substituting expressions for F and G, after simple calculation we get to

$$2 i G_0 \frac{d \tilde{G}}{dz} = F_0 (\epsilon + M + \nu - \frac{1}{2}) \tilde{F}.$$

Allowing for the known rule for differentiating hypergeometric functions

$$\frac{d}{dz} G(z) = \frac{d}{dz} F(a - 1, b - 1, c - 1; z) = \frac{(a - 1)(b - 1)}{c - 1} F(a, b, c; z),$$

we obtain

$$2 i G_0 \frac{(a - 1)(b - 1)}{c - 1} = F_0 (\epsilon + M + \nu - \frac{1}{2}).$$

Ultimately, we arrive at the formula

$$F_0 = i \frac{M - 1/2 + N}{2} G_0,$$

remembering that $\epsilon N = M - 1/2 + 2N + \nu$.

5 Radial equations in the case j_{\min}

Let us turn back to the case of the minimal value of j:

$$k = +1/2, +1, \ldots$$

$$\epsilon \sqrt{\Phi} f_3 - i \sqrt{\Phi} \frac{d}{dr} f_3 - M f_1 = 0,$$

$$\epsilon \sqrt{\Phi} f_1 + i \sqrt{\Phi} \frac{d}{dr} f_1 - M f_3 = 0; \quad (53)$$

from where for new functions

$$H = \frac{f_1 + f_3}{\sqrt{2}}, \quad G = \frac{f_1 - f_3}{i \sqrt{2}}$$

we derive

$$k = +1/2, +1, \ldots$$

$$\sqrt{\Phi} \frac{d}{dr} H + \left(\frac{\epsilon}{\sqrt{\Phi}} + M \right) G = 0,$$

$$\sqrt{\Phi} \frac{d}{dr} G - \left(\frac{\epsilon}{\sqrt{\Phi}} - M \right) H = 0. \quad (54)$$

And in the same manner for another case we have

$$k = -1/2, -1, \ldots$$

$$\epsilon \sqrt{\Phi} f_4 + i \sqrt{\Phi} \frac{d}{dr} f_4 - M f_2 = 0,$$

$$\epsilon \sqrt{\Phi} f_2 - i \sqrt{\Phi} \frac{d}{dr} f_2 - M f_4 = 0; \quad (55)$$

11
from whence for new functions

\[H = \frac{f_2 + f_4}{\sqrt{2}} , \quad G = \frac{f_2 - f_4}{i\sqrt{2}} \]

we obtain

\[
\sqrt{\Phi} \frac{d}{dr} G + \left(\frac{\epsilon}{\sqrt{\Phi}} - M \right) H = 0 , \\
\sqrt{\Phi} \frac{d}{dr} H - \left(\frac{\epsilon}{\sqrt{\Phi}} + M \right) G = 0 .
\]

(56)

We can use the above method to eliminate nonphysical singular points. Let us perform special transformation on the functions

\[G + H = e^{-\rho/2}(g + h) , \quad G - H = e^{+\rho/2}(g - h) . \]

(57)

After simple calculation we arrive at

instead of (54)

\[
\left(\frac{d}{d\rho} + \epsilon \frac{\sinh \rho}{\cosh \rho} \right) g + (-\epsilon + M - 1/2) h = 0 , \\
\left(\frac{d}{d\rho} - \epsilon \frac{\sinh \rho}{\cosh \rho} \right) h + (+\epsilon + M - 1/2) g = 0 ;
\]

(58)

instead of (56)

\[
\left(\frac{d}{d\rho} + \epsilon \frac{\sinh \rho}{\cosh \rho} \right) h + (-\epsilon - M - 1/2) g = 0 , \\
\left(\frac{d}{d\rho} - \epsilon \frac{\sinh \rho}{\cosh \rho} \right) g + (+\epsilon - M - 1/2) h = 0 .
\]

(59)

In the variable \(z \)

\[r = \sinh \rho = \sqrt{-z} \]

the system (58) takes the form

\[
\sqrt{-z}(1-z) \left(\frac{d}{dz} - \frac{\epsilon/2}{1-z} \right) g - \frac{(-\epsilon + M - 1/2)}{2} h = 0 , \\
\sqrt{-z}(1-z) \left(\frac{d}{dz} + \frac{\epsilon/2}{1-z} \right) h - \frac{(+\epsilon + M - 1/2)}{2} g = 0 .
\]

(60)

Note that the system is symmetric with respect to changes

\[f \leftrightarrow h , \quad \epsilon \leftrightarrow -\epsilon . \]

(61)
After excluding the function \(h \) from (60) we get
\[
\begin{align*}
 h &= \frac{2}{(-\epsilon + M - 1/2)} \sqrt{(-z)(1-z)} \left(\frac{d}{dz} - \frac{\epsilon/2}{1-z} \right) g, \\
 \sqrt{(-z)(1-z)} \left(\frac{d}{dz} + \frac{\epsilon/2}{1-z} \right) \sqrt{(-z)(1-z)} \left(\frac{d}{dz} - \frac{\epsilon/2}{1-z} \right) g \\
 &\quad - \frac{(M - 1/2)^2 - \epsilon^2}{4} g = 0 .
\end{align*}
\] (62)

Ultimately, an equation for \(g(z) \) reads
\[
\begin{align*}
 z(1-z) \frac{d^2g}{dz^2} + (1/2 - z) \frac{dg}{dz} + \left(\frac{(M - 1/2)^2}{4} - \frac{\epsilon^2 + \epsilon}{4} \frac{1}{1-z} \right) g &= 0 . \quad \text{(63)}
\end{align*}
\]

In the same manner we get a second order differential equation for \(h \) after exclusion of \(g \):
\[
\begin{align*}
 g &= \frac{2}{(\epsilon + M - 1/2)} \sqrt{(-z)(1-z)} \left(\frac{d}{dz} + \frac{\epsilon/2}{1-z} \right) h, \\
 \sqrt{(-z)(1-z)} \left(\frac{d}{dz} - \frac{\epsilon/2}{1-z} \right) \sqrt{(-z)(1-z)} \left(\frac{d}{dz} + \frac{\epsilon/2}{1-z} \right) h \\
 &\quad - \frac{(M - 1/2)^2 - \epsilon^2}{4} h = 0 ,
\end{align*}
\] (64)

and ultimately
\[
\begin{align*}
 z(1-z) \frac{d^2h}{dz^2} + (1/2 - z) \frac{dh}{dz} + \left(\frac{(M - 1/2)^2}{4} - \frac{\epsilon^2 - \epsilon}{4} \frac{1}{1-z} \right) h &= 0 . \quad \text{(65)}
\end{align*}
\]

Equations (65) and (63) differ only in the sign at the parameter \(\epsilon \).

6 Solutions of radial equations in the case \(j_{\text{min}} \)

With the use of substitution \(g = (1-z)^A \varphi(z) \), from (63) we produce for \(\varphi \)
\[
\begin{align*}
 z(1-z) \varphi'' + \left[\frac{1}{2} - (1 + 2A)z \right] \varphi' \\
 + \left[\left(A^2 - \frac{A}{2} - \frac{\epsilon^2 + \epsilon}{4} \right) \frac{1}{1-z} - A^2 + \frac{(M - 1/2)^2}{4} \right] \varphi.
\end{align*}
\] (66)

Requiring
\[
A^2 - \frac{A}{2} - \frac{\epsilon^2 + \epsilon}{4} = 0 \quad \implies \quad 2A = \epsilon + 1, -\epsilon
\]
one gets
\[
\begin{align*}
 z(1-z) \varphi'' + \left[\frac{1}{2} - (1 + 2A)z \right] \varphi' - \frac{4A^2 - (M - 1/2)^2}{4} \varphi &= 0 , \\
 \varphi &= F(a,b,c,z) , \quad c = \frac{1}{2} , \quad a + b = 2A , \quad ab = \frac{4A^2 - (M - 1/2)^2}{4} ,
\end{align*}
\] (67)
that is
\[a = \frac{2A + (M - 1/2)}{2}, \quad b = \frac{2A - (M - 1/2)}{2}. \]

(68)

Below we will use negative values for \(A \)
\[A = -\epsilon/2, \quad g(z) = (1 - z)^{-\epsilon/2}\varphi(z); \]

(69)

so that
\[a = -\frac{\epsilon + (M - 1/2)}{2}, \quad b = -\frac{\epsilon - (M - 1/2)}{2}. \]

(70)

Any 2-nd order differential equation has two linearly independent solutions; here they are
\[\varphi_1 = U_1(z) = F(a, b, c; z), \]
\[\varphi_2 = U_5(z) = z^{1-c}F(a+1-c, b+1-c, 2-c; z). \]

(71)

Similar analysis can be performed for eq. (65)
\[z(1-z)\frac{d^2h}{dz^2} + (1/2 - z)\frac{dh}{dz} + \left(\frac{(M - 1/2)^2}{4} - \frac{\epsilon^2 - \epsilon}{4}\frac{1}{1-z}\right)h = 0. \]

(72)

With the use of substitution \(h(z) = (1-z)^L\eta(z), \) for \(\eta(z) \) we produce
\[z(1-z)\eta'' + \left[\frac{1}{2} - (1 + 2L)z\right]\eta' + \left[\left(L^2 - \frac{L}{2} - \frac{\epsilon^2 - \epsilon}{4}\right)\frac{1}{1-z} - L^2 + \frac{(M - 1/2)^2}{4}\right]\eta = 0. \]

(73)

Requiring
\[L^2 - \frac{L}{2} - \frac{\epsilon^2 - \epsilon}{4} = 0 \quad \Rightarrow \quad 2L = +\epsilon, -\epsilon + 1 \]

one gets
\[z(1-z)\eta'' + \left[\frac{1}{2} - (1 + 2L)z\right]\eta' - \frac{4L^2 - (M - 1/2)^2}{4}\eta = 0, \]
\[\eta = F(\alpha, \beta, \gamma, z), \quad \gamma = \frac{1}{2}, \]
\[\alpha + \beta = 2L, \quad \alpha\beta = \frac{4L^2 - (M - 1/2)^2}{4}, \]

(74)

that is
\[\alpha = \frac{2L - (M - 1/2)}{2}, \quad \beta = \frac{2L + (M - 1/2)}{2}. \]

(75)
Below we will use negative values for L

$$L = (-\epsilon + 1)/2 < 0, \quad h(z) = (1 - z)^{(-\epsilon+1)/2} \eta(z),$$

(76)

so that

$$\alpha = -\epsilon + 1 + (M - 1/2) \quad \frac{2}{2}, \quad \beta = -\epsilon + 1 - (M - 1/2) \quad \frac{2}{2}.$$

(77)

Functions $g(z)$ and $h(z)$ must obey the above system of first order differential equations. To verify that, let us start with the functions

$$g = G_0(1 - z)^A \varphi_1(z) \quad \text{and} \quad h = H_0(1 - z)^L \eta_2(z) \quad \text{and} \quad \text{for} \quad a = \frac{\alpha + 1 - \gamma = -\epsilon + 2 + (M - 1/2)}{2}, \quad b = \frac{\beta + 1 - \gamma = -\epsilon + 2 + (M - 1/2)}{2}.$$

(78)

After simple calculations we obtain

$$G_0 \frac{d}{dz} F(a, b, c, z) = H_0 \frac{(-\epsilon + M - 1/2)}{2} F(a + 1, b + 1, c + 1, z),$$

from whence it follows

$$G_0 a b c = H_0 \frac{(-\epsilon + M - 1/2)}{2},$$

that is

$$H_0 = i (-\epsilon - M + 1/2) G_0.$$

To get polynomial solutions we must require

$$a = -n \quad \Rightarrow \quad \epsilon_n = M + 2n - 1/2 , \quad b = -n - M + 1/2 , \quad c = 1/2 , \quad g(z) = (1 - z)^{(-\epsilon_n+1)/2} F(a, b, c, z).$$

(80)

note that

$$g(z) = (1 - z)^{-n-(M-1/2)/2} F(-n, -n - M + \frac{1}{2}, \frac{1}{2}, z);$$

(81)
therefore as \(z = -r^2 \to -\infty \) the function \(g(z) \) tends to zero

\[
g(z) \to 0, \quad \text{only if} \quad M > \frac{1}{2}.
\]

In usual units, that condition for existence of bound states consistent with anti de Sitter geometry structure, the inequality \(M > \frac{1}{2} \), looks as

\[
\rho > \frac{1}{2} \frac{\hbar}{M c} = \frac{1}{2} \lambda_e = 1.213 \times 10^{-12} \text{ metre}
\]

so it can be broken only in a very strong anti de Sitter gravitation background, the latter is beyond of our treatment.

Let us write down several energy levels (in usual units)

\[
\epsilon_0 = M c^2 - \frac{1}{2} c \hbar \frac{\rho}{\rho}, \quad \epsilon_1 = M c^2 + \frac{3}{2} c \hbar \frac{\rho}{\rho}, \quad \epsilon_2 = M c^2 + \frac{5}{2} c \hbar \frac{\rho}{\rho}, \ldots
\]

or

\[
\epsilon_0 = M c^2 (1 - \frac{1}{2} \frac{\lambda_e}{\rho}), \quad \epsilon_1 = M c^2 (1 + \frac{3}{2} \frac{\lambda_e}{\rho}), \quad \epsilon_2 = M c^2 (1 + \frac{5}{2} \frac{\lambda_e}{\rho}), \ldots
\]

If one mentally increases the curvature radius \(\rho \), the energy levels will become denser and the minimal level tends to the value \(M c^2 \)

\[
\epsilon_0 = M c^2 (1 - \frac{1}{2} \frac{\lambda_e}{\rho}) \to M c^2.
\]

7 Conclusions and discussion

To understand better results, let us discuss the case of minimal \(j_{\text{min}} \) in the limit of vanishing curvature. To this end, let us specify in more detail solutions for minimal values \(j_{\text{min}} \) in Minkowski space:

\[
k = +1/2, +1, \ldots
\]

\[
\epsilon f_3 - i \frac{d}{dr} f_3 - M f_1 = 0,
\]

\[
\epsilon f_1 + i \frac{d}{dr} f_1 - M f_3 = 0;
\]

\[
k = -1/2, -1, \ldots
\]

\[
\epsilon f_4 + i \frac{d}{dr} f_4 - M f_2 = 0,
\]

\[
\epsilon f_2 - i \frac{d}{dr} f_2 - M f_4 = 0.
\]
Let detail the case of positive \(k = +1/2, +1, \ldots \). Let it be
\[
\frac{f_1 + f_3}{\sqrt{2}} = h(r), \quad \frac{f_1 - f_3}{i\sqrt{2}} = g(r)
\] (87)
relevant equations are
\[
\frac{d}{dr} h + (\epsilon + M) g = 0, \quad \frac{d}{dr} g - (\epsilon - M) h = 0.
\] (88)
With the substitutions
\[
h(r) = H e^{\gamma r}, \quad g(r) = G e^{\gamma r}
\] (89)
we get (first let it be \((\epsilon^2 - M^2) > 0)\)
\[
\gamma^2 = - (\epsilon^2 - M^2) \equiv = -p^2, \quad \gamma = +ip, -ip.
\]
\[
H\gamma + (\epsilon + M) G = 0 \quad \text{or} \quad G\gamma - (\epsilon - M) H = 0.
\] (90)
Thus we have two linearly independent solutions
\[
h_1(r) = H_1 e^{+ipr}, \quad g_1(r) = G_1 e^{+ipr}, \quad G_1 = \frac{\epsilon - M}{ip} H_1;
\]
\[
h_2(r) = H_2 e^{-ipr}, \quad g_2(r) = G_2 e^{-ipr}, \quad G_2 = \frac{\epsilon - M}{-ip} H_2.
\] (91)
Below, we take \(H_1 = H_2 = 1 \). We can introduce two linear combinations of these solutions the first
\[
\frac{h_1(r) + h_2(r)}{2} = \cos pr, \quad \frac{g_1(r) + g_2(r)}{2} = \frac{\epsilon - M}{p} \sin pr;
\] (92)
the second
\[
\frac{h_1(r) - h_2(r)}{2i} = \sin pr, \quad \frac{g_1(r) - g_2(r)}{2i} = \frac{\epsilon - M}{-p} \cos pr.
\] (93)
Now let us specify the case \((\epsilon^2 - M^2) < 0)\)
\[
\gamma^2 = - (\epsilon^2 - M^2) \equiv = +q^2, \quad \gamma = +q, -q.
\]
\[
H\gamma + (\epsilon + M) G = 0 \quad \text{or} \quad G\gamma - (\epsilon - M) H = 0.
\] (94)
Thus we have two linearly independent solutions
\[
h_1(r) = H_1 e^{+qr}, \quad g_1(r) = G_1 e^{+qr}, \quad G_1 = \frac{\epsilon - M}{q} H_1;
\]
\[
h_2(r) = H_2 e^{-qr}, \quad g_2(r) = G_2 e^{-qr}, \quad G_2 = \frac{\epsilon - M}{-q} H_2.
\] (95)
Below, we take $H_1 = H_2 = 1$. We can introduce two linear combinations of these solutions the first

\[
\frac{h_1(r) + h_2(r)}{2} = \cosh qr ,
\]
\[
\frac{g_1(r) + g_2(r)}{2} = \frac{\epsilon - M}{q} \sinh qr
\]

(96)

the second

\[
\frac{h_1(r) - h_2(r)}{2} = \sinh qr ,
\]
\[
\frac{g_1(r) - g_2(r)}{2} = \frac{\epsilon - M}{q} \cosh qr .
\]

(97)

Evidently, above constructed solutions in de Sitter model provide us with generalizations of these of Minkowski space. It may be verified additionally by direct limiting process when $\rho \to \infty$. To this end, let us translate solutions in de Sitter space to usual units

\[
g_1(R) = \left(1 + \frac{R^2}{\rho^2}\right)^{-\frac{E\rho}{2\hbar}} F(a, b, c; -\frac{R^2}{\rho^2}) , \quad c = 1/2 ,
\]
\[
g_2(R) = R \left(1 + \frac{R^2}{\rho^2}\right)^{-\frac{E\rho}{2\hbar}} F(a + 1 - c, b + 1 - c, 2 - c; -\frac{R^2}{\rho^2}) ,
\]
\[
h_1(R) = \left(1 + \frac{R^2}{\rho^2}\right)^{-\frac{E\rho}{2\hbar}+1/2} F(\alpha, \beta, \gamma; -\frac{R^2}{\rho^2}) , \quad \gamma = 1/2 ,
\]
\[
h_2(R) = R \left(1 + \frac{R^2}{\rho^2}\right)^{-\frac{E\rho}{2\hbar}+1/2} F(\alpha + 1 - \gamma, \beta + 1 - \gamma, 2 - \gamma; -\frac{R^2}{\rho^2}) ,
\]

Parameters of hypergeometric functions are given by

\[
a = \frac{1}{2} \left(\frac{E\rho}{\hbar} + (\frac{mcp}{\hbar} - \frac{1}{2})\right) , \quad b = \frac{1}{2} \left(\frac{E\rho}{\hbar} - (\frac{mcp}{\hbar} - \frac{1}{2})\right) ,
\]
\[
\alpha = \frac{1}{2} \left(-\frac{E\rho}{\hbar} + 1 + (\frac{mcp}{\hbar} - \frac{1}{2})\right) , \quad \beta = \frac{1}{2} \left(-\frac{E\rho}{\hbar} + 1 - (\frac{mcp}{\hbar} - \frac{1}{2})\right) .
\]

Let us examine the limiting procedure at $\rho \to \infty$ in $F(a, b, c; -\frac{R^2}{\rho^2})$. Because

\[
\frac{1}{2!} \frac{ab}{c} \left(-\frac{R^2}{\rho^2}\right) \to \frac{1}{2!} \left(\frac{m^2 c^2}{\hbar^2} - \frac{E^2}{\hbar^2} c^2\right) R^2 = \frac{1}{2!} (pR)^2 ,
\]
\[
\frac{1}{2!} \frac{a(a + 1)b(b + 1)}{c(c + 1)} \left(-\frac{R^2}{\rho^2}\right) \to \frac{(pR)^4}{4!} ,
\]
\[
\frac{1}{3!} \frac{a(a + 1)(a + 2)b(b + 1)(b + 2)}{c(c + 1)(c + 2)} \left(-\frac{R^2}{\rho^2}\right) \to -\frac{(pR)^6}{6!} ,
\]

and so on, we obtain the following limiting relation

\[
\lim_{\rho \to \infty} F(a, b, c; -\frac{R^2}{\rho^2}) = \cos pr \quad \implies \quad \lim_{\rho \to \infty} g_1(R) = \cos pr .
\]
Similarly, we get
\[
\lim_{\rho \to \infty} h_1(R) = \cos pr .
\] (98)

In the same manner, we arrive at two limiting relationships
\[
\lim_{\rho \to \infty} pR g_2(R) = \sin pR , \quad \lim_{\rho \to \infty} pR h_2(R) = \sin pR .
\] (99)

To rationalize how the finite sums (polynomials of \(n\)-order) may approximate the functions \(\cos pR\) and \(\sin pR\) (infinite series), we should take into account the quantization condition
\[
\alpha = -n \implies E = Mc^2 + \left(2n - \frac{1}{2}\right) \frac{ch}{\rho}
\]

At any fixed \(E\), as \(\rho\) increases the number \(n\) also must increase. This means, that the finite sums of \(n\) terms when \(\rho\) increases will approximate infinite series.

8 Acknowledgements

Authors are grateful to V.M. Red’kov for moral support and advices. This work was supported by the Fund for Basic Researches of Belarus F11M-152.

References

[1] Gibbons, G.W.: Anti-de-Sitter spacetime and its uses, in Mathematical and quantum aspects of relativity and cosmology (Pythagoreon, 1998), Lecture Notes in Phys., 537, Springer-Verlag, 102-142, 2000.

[2] Dirac, P.A.M.: The electron wave equation in the de Sitter space. Ann. Math. 36, 657–669 (1935)

[3] Dirac, P.A.M.: Wave equations in conformal space. Ann. of Math. 37, 429–442 (1936)

[4] Schrödinger, E.: The proper vibrations of the expanding universe. Physica. 6, 899–912 (1939)

[5] Schrödinger, E.: General theory of relativity and wave mechanics. Wiss. en Natuurkund. 10, 2–9 (1940)

[6] Goto, K.: Wave equations in de Sitter space. Progr. Theor. Phys. 6, 1013–1014 (1951)

[7] Nachtmann, O.: Quantum theory in de-Sitter space. Commun. Math. Phys. 6, 1–16 (1967)

[8] Chernikov, N.A., Tagirov, E.A.: Quantum theory of scalar field in de Sitter space-time. Ann. Inst. Henri Poincare. IX, 109–141 (1968)

[9] Börner, G., Dürr, H.P.: Classical and quantum theory in de Sitter space. Nuovo Cim. A. 64, 669–713 (1969)
[10] Fushchych, W.L., Krivsky, I.Yu.: On representations of the inhomogeneous de Sitter group and equations in five-dimensional Minkowski space. Nucl. Phys. B. 14, 573–585 (1969)

[11] Börner, G., Dürr, H.P.: Classical and Quantum Fields in de Sitter space. Nuovo Cim. LXIV, 669 (1969)

[12] Castagnino, M.: Champs spinoriels en Relativité générale; le cas particulier de l’espace-temps de De Sitter et les équations d’ond pour les spins élévés. Ann. Inst. Henri Poincaré. A. 16, 293–341 (1972)

[13] Tagirov, E.A.: Consequences of field quantization in de Sitter type cosmological models. Ann. Phys. 76, 561–579 (1973)

[14] S.W. Hawking, G.F.R. Ellis. The large scale structure of space-time. Cambridge University Press, 1973.

[15] Riordan, F.: Solutions of the Dirac equation in finite de Sitter space. Nuovo Cim. B. 20, 309–325 (1974)

[16] Candelas, P., Raine, D.J.: General-relativistic quantum field theory: an exactly soluble model. Phys. Rev. D. 12, 965–974 (1975)

[17] Schomblond, Ch., Spindel P.: Propagateurs des champs spinoriels et vectoriels dans l’univers de de Sitter. Bull. Cl. Sci., V. Ser., Acad. R. Belg. LXXII, 124 (1976)

[18] Hawking, S.W., Gibbons, G.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D. 15, 2738–2751 (1977)

[19] Avis, S.J., Isham, C.J., Storey, D.: Quantum Field Theory In Anti-de Sitter Space-Time. Phys. Rev. D. 18, 3565 (1978)

[20] S.J. Avis, C.J. Isham, D. Storey. Quantum field theory in anti-de Sitter space-time. Phys. Rev. D, 18 , 3565–3576 (1978)

[21] Lohiya, D., Panchapakesan, N.: Massless scalar field in a de Sitter universe and its thermal flux. J. Phys. A. 11, 1963–1968 (1978)

[22] Lohiya, D., Panchapakesan, N.: Particle emission in the de Sitter universe for massless fields with spin. J. Phys. A. 12, 533–539 (1979)

[23] Hawking, S., Page, D.: Thermodynamics Of Black Holes In Anti-de Sitter Space. Commun. Math. Phys. 87, 577–588 (1983)

[24] Otchik, V.S.: On the Hawking radiation of spin 1/2 particles in the de Sitter space-time. Class. Quantum Crav. 2, 539–543 (1985)

[25] Motolla, F.: Particle creation in de Sitter space. Phys. Rev. D. 31, 754–766 (1985)

[26] Takashi Mishima, Akihiro Nakayama: Particle production in de Sitter spacetime. Progr. Theor. Phys. 77, 218–222 (1987)
[27] Polarski, D.: The scalar wave equation on static de Sitter and anti-de Sitter spaces. Class. Quantum Grav. 6, 893–900 (1989)

[28] Bros, J., Gazeau, J.P, Moschella, U.: Quantum Field Theory in the de Sitter Universe. Phys. Rev. Lett. 73, 1746 (1994)

[29] Suzuki, H., Takasugi, E.: Absorption Probability of De Sitter Horizon for Massless Fields with Spin. Mod. Phys. Lett. A. 11, 431–436 (1996)

[30] Pol’shin, S.A.: Group Theoretical Examination of the Relativistic Wave Equations on Curved Spaces. I. Basic Principles. http://arxiv.org/abs/gr-qc/9803091 II. De Sitter and Anti-de Sitter Spaces. http://arxiv.org/abs/gr-qc/9803092 III. Real reducible spaces. http://arxiv.org/abs/gr-qc/9809011

[31] I.I. Cotaescu. Normalized energy eigenspinors of the Dirac field on anti-de Sitter spacetime. Phys. Rev. D(3) 60, 124006, 4pp (1999)

[32] Garidi, T., Huguet, E., Renaud, J.: De Sitter Waves and the Zero Curvature Limit Comments. Phys. Rev. D. 67, 124028 (2003)

[33] Moradi, S., Rouhani, S., Takook, M.V.: Discrete Symmetries for Spinor Field in de Sitter Space. Phys. Lett. B. 613, 74–82 (2005)

[34] A. Bachelot. The Dirac equation on the Anti-de-Sitter Universe. L’équation de Dirac sur l’univers Anti-de Sitter Comptes Rendus Mathematique. 345, Issue 8, 435-440 (2007)

[35] V.I. Strazhev, L.M. Tomil’chik. Electrodynamics with a magnetic charge. – Minsk: Nauka i Technika, 1975.

[36] Schrödinger, E.: The ambiguity of the wave function. Annalen der Physik. 32, 49–55 (1938)

[37] Pauli, W.: Über die Kriterium für Ein-oder Zweiwertigkeit der Eigenfunktionen in der Wellenmechanik. Helv. Phys. Acta. 1939. 12, 147–168 (1939)

[38] Varshalovich, D.A., Moskalev, A.N., Hersonskiy, V.K.: Quantum theory of angular moment. Nauka, Leningrad (1975)

[39] V.M. Red’kov. Fields in Riemannian space and the Lorentz group. Publishing House ”Belarusian Science”, Minsk, 496 pages (2009).

[40] V.M. Red’kov. Tetrad formalism, spherical symmetry and Schrödinger basis. Publishing House ”Belarusian Science”, Minsk, 339 pages (2011).