Introduction

The world’s population is estimated to rise to 9 billion by 2050 [1]. There is a need to increase food production under less than optimal conditions due to population growth and climate change. In the mid- to late twentieth century, the cultivation efforts’ purpose is to improve crop varieties, introduce hybrids, and increase agricultural productions in terms of fertilizer, crop management practices, herbicides, water delivery systems, and pesticides resulted in the “Green Revolution” [2, 3]. Worldwide, there is a similar global challenge, leading to a need of breed-improved varieties as well as agricultural production practices [4]. The expansion of agricultural production to marginal lands and the effects of global climate change also need an increased biotic and abiotic stress tolerance and efficient nutrient utilization in crop plants for the future global food requirements to be met.

Endophytic fungi are organisms that are found anywhere (intercellularly or intracellularly in plants from nearly all genera of Kingdom Plantae). These fungi live in host plants for at least a portion of their lives without generating any immediate overt disease symptoms. These associations can encourage tissue differentiation and plant growth and can help in managing abiotic and biotic stresses to which the host plants are subjected [5, 6]. In addition, endophytic fungi may prevent pathogenic organisms and provide nutrients, benefiting the plant host [7]. These well-distributed fungi form diverse plant associations and thus constitute outstanding sources of new bioactive secondary metabolites [8]. Accordingly, there are several new bioactive compounds with insecticidal, antimicrobial, cytotoxic, and anticancer activities that have been separated from endophytic fungi recently [9, 10].

Plant signaling compounds, also called phytohormones, regulate plant responses to environmental change as well as control plant growth and development [11]. Notably, recent studies have reported that certain endophytes encourage plant growth through the synthesis of phytohormones, for example, gibberellins (GAs), cytokinins, and indole-3-acetic acid (IAA) [12-14]. Indeed, endophytic fungi promote plant growth by secreting gibberellins in the rhizosphere of their hosts, which leads to an increase in plant biomass production as well as disease resistance. Apart from this, some endophytic fungi secrete both IAA and GAs into culture media [15].

This research surveys both distribution and diversity of fungal endophytes in a certain coastal region of Korea. We have investigated fungal isolates’ capacity to encourage growth of Waito-C rice seedlings and have identified whether secondary metabolites like gibberellins were seen in fungal culture filtrates.
Table 1. Geographic coordinates and scientific names of plants native to the Buan salt marsh.

No.	Scientific name	Code	Site of collection	Habitat
1	Phragmites australis	Pa	35°35′34.69″N/126°36′2.42″E	Halophytic
2	Suaeda australis	Sa	35°35′10.99″N/126°32′44.70″E	Halophytic
3	Limonium tetragonum	Lt	35°35′10.73″N/126°32′51.40″E	Halophytic
4	Suaeda glauca Bunge	Su	35°35′10.80″N/126°32′51.90″E	Halophytic
5	Suaeda maritima	Sm	35°35′34.92″N/126°36′3.95″E	Halophytic

Materials and Methods

Plant Materials and Sampling Sites

Healthy plants and roots of Phragmites australis, Suaeda australis, Limonium tetragonum, Suaeda glauca Bunge, and Suaeda maritima were gathered from different places in the Buan salt marsh in South Korea. The samples were carefully sealed in sterile plastic bags and were then processed in the laboratory within 24 hours of collection. The scientific names, codes, and local sites of the five plant species are listed in Table 1.

Sterilization and Isolation of Endophytes from the Roots of Halophytes

Fungal endophytes were isolated from healthy roots of halophytic plants that were gathered from the salt marsh. Each plant's root samples were washed with tap water, cut into 2-2.5-cm-long segments, and treated with Tween 80 solution for 10 min on a shaker with 160 rotations per minute (rpm). Afterward, root segments were incubated in a solution of 1% (w/v) perchloric acid for 10 min and then rinsed with double-distilled water [16, 17]. Then, they were dehydrated for 5–6 min at a temperature of 22°C on a clean bench, and two to three root segments were placed in a 90-mm Petri plate with Hagem minimal media that contain 80 ppm streptomycin. Samples were incubated at 25°C in dark conditions until there is growth of fungi from the root segments seen [18, 19]. Lastly, pure fungal strains were separated from the root segments and were kept on potato dextrose agar at 25°C [20].

DNA Extraction, PCR Amplification, and the Identification of Fungal Strains

Fungal endophyte cultures were grown in an Erlenmeyer flask that contains 50 ml potato dextrose broth for 7–10 days at a temperature of 26°C on a shaker at 120 rpm. All the 188 lyophilized endophyte samples were known. There was a fungal genomic DNA extraction using a DNeasy Plant Mini Kit (Qiagen, USA). There was sterilization of fungi performed by sequencing the internal transcribed spacer (ITS) region with the universal primers ITS-1 (5′-TCCGTAGGTTGACAACCTGCAG-3′) and ITS-4 (5′-TCCATATGCATGATATGC-3′). Reaction cycling comprised of an initial denaturation step at 95°C for 2 min, which is then followed by 35 cycles of denaturation at 95°C for 30 sec, annealing at 55°C for 1 min, and extension at 72°C for 1 min. The final extension was done at 72°C for 7 min. PCR products were electrophoresed on agarose gels with an ethidium bromide stain and purified using the QiAquick PCR purification kit (Qiagen). The products were then sequenced with the use of the ABI PRISM BigDye terminator cycle sequencing kit (PE Biosystems, USA) on an ABI 310 DNA automated sequencer (Perkin, USA). The sequences were identified with the use of the BLAST (Basic Local Alignment Search Tool) tool of the National Center for Biotechnology Information (NCBI).

Statistical Analyses

The fungal endophytes' diversity at the genus level was indicated by the Shannon diversity index (H'), Fisher's alpha index (α), and Simpson's index of diversity. Richness was assessed by Menhinick's richness index (Dnn) and Margalef's index (Dmg) [21, 22]. The Menhinick's index was calculated through the following formula: Dnn = S/√N; Dmg=((S−1)/ln(N)), where S is the number of genera in a sample, and N is the total number of individuals in a community. Both indices ranged from 0 to ∞.

The genus diversity was evaluated using the Shannon diversity index (H'), Fisher's alpha index (α), and Simpson's index of diversity [23]. Fisher's alpha index (α) was calculated as follow; S=α·ln(1+N/α), where S is the number of genera, and N is the total number of individuals. The formula for Shannon's diversity index is H' = −Σni pi ln pi, where pi is the proportion of individuals found in genus i in a sample. The values of the Shannon diversity index generally range from 1.5 to 3.5. Simpson's index of diversity (1-D) was calculated as follow; D = ∑ni(ni−1)/N(N−1), where N is the total number of individuals in a sample, and ni is the number of individuals found in genus i in a sample. The magnitude of this index ranges from 0 to 1; the greater the magnitude, the greater the sample diversity.

Screening of Fungal Cultures on Waito-C rice Seedlings

To test whether the fungi have growth-promoting capacities, Waito-C rice sprouts were exposed to fungal culture filtrates. The fungal strains were grown in the Czapek Dox broth medium on a shaking incubator for 7 days at 25°C and 180 rpm and were harvested using filtration. The harvested fungal culture filtrates were immediately stored at a temperature of −70°C and then lyophilized. The lyophilized culture filtrates were then mixed together with 1 ml of distilled water. Waito-C rice grains were treated with uniconazole for 24 h to lessen gibberellins' activity in the seed coat. The treated rice seeds were washed and soaked in distilled water until radical emergence occurs, and then the young seedlings were placed in glass tubes with 0.6% water agar medium to grow in a growth chamber [24]. Concentrated, lyophilized culture filtrates (10 microliters) from each fungal isolate were applied to apical meristems after the rice seedlings reached the two-leaf stage. Both the plant and shoot lengths of rice were...
Table 2. Identification of endophytic fungal isolates from roots of plants.

Sample No.	Closely related fungal sequences	Similarity (%)	Accession No.
Pa-1-2-1	Pestalotia sp. 1 MJ-2014 (KJ572189)	100	K018214
Pa-1-3-1	Alternaria sp. BOP212b (KC771455)	100	K018215
Pa-1-3-3	Fusarium incarnatum strain LS03 (KJ721990)	99	K018216
Pa-1-4-3	Trichoderma aureoviride strain SL (KJ610807)	99	K018217
Pa-1-6-1	Alternaria rosea strain CM24T-EY-E (KF815569)	99	K018218
Pa-1-6-2	Lewia sp. OUCMBI101191 (HQ914885)	99	K018219
Pa-1-8-1	Alternaria alternata strain HMA1D (KJ677246)	100	K018220
Pa-1-8-2	Penicillium oxalicum strain SY20-5 (KJ619622)	99	K018221
Pa-1-8-3	Fusarium incarnatum strain FL-00602 (KJ572780)	99	K018222
Pa-1-8-4	Talaromyces verruculosus (JN678121)	99	K018223
Pa-1-9-1	Fusarium incarnatum strain FI-00602 (KJ572780)	99	K018224
Pa-1-9-2	Alternaria alternata strain HMA1D (KJ677246)	100	K018225
Pa-1-9-3	Alternaria sp. HT-M18-LS (KJ527010)	99	K018226
Pa-2-2-2	Lewia sp. OUCMBI101191 (HQ914885)	99	K018227
Pa-2-2-3	Simplicillium obclavatum (AB604000)	100	K018228
Pa-2-2-4	Macrospora sp. TXc4-6 (HQ262514)	100	K018229
Pa-2-3-1	Alternaria sp. DX-F007 (KF558883)	100	K018230
Pa-2-3-3	Alternaria alternata strain HMA1D (KJ677246)	100	K018231
Pa-2-4-1-2	Penicillium sp. CCF3828 (FJ430753)	99	K018232
Pa-2-4-2	Trichoderma ovalisporum strain (KC847168)	100	K018233
Pa-2-5-2	Penicillium sp. CCF3828 (FJ430753)	99	K018234
Pa-2-6-2	Alternaria alternata strain HMA1D (KJ677246)	100	K018235
Pa-2-6-5	Cladosporium sp. HT-Z1-V (KJ527013)	100	K018236
Pa-2-7-1	Phoma sp. P17E3 (JN207293)	99	K018237
Pa-2-7-3	Alternaria alternata strain HMA1D (KJ677246)	100	K018238
Pa-2-8-1-2	Fusarium caeruleum (KF887087)	100	K018239
Pa-2-8-2	Fusarium oxysporum strain P43 (X045812)	100	K018240
Pa-2-8-3-1	Fusarium incarnatum strain LS03 (KJ721990)	100	K018241
Pa-2-9-1	Verticillium saksense (KF472156)	99	K018242
Pa-2-9-2	Lewia sp. OUCMBI101191 (HQ914885)	100	K018243
Table 2. Continued.			

Sample No.	Closely related fungal sequences	Similarity (%)	Accession No.
Pa-2-9-3	Sclerotostomporpha phragmiticola strain (KF251230)	100	KP018244
Pa-2-9-4	Cladosporium cladosporioides strain (KJ589558)	100	KP018245
Pa-2-9-5	Verticillium saksenae (KF472156)	99	KP018246
Pa-2-9-7	Lewis sp. OUCMB101191 (HQ914885)	100	KP018247
Pa-2-9-8	Lewis sp. OUCMB101191 (HQ914885)	100	KP018248
Pa-2-10-2	Fusarium longipes (HG423537)	99	KP018249
Pa-2-10-6	Lewis sp. OUCMB101191 (HQ914885)	100	KP018250
Pa-3-1-1	Alternaria alternata strain HMA1D (KJ677246)	100	KP018251
Pa-3-1-3	Fusarium longipes (HG423537)	99	KP018252
Pa-3-2-3	Fusarium longipes (HG423537)	99	KP018253
Pa-3-2-4	Talaromyces verruculosus (JN676121)	100	KP018254
Pa-3-3-1	Phoma sp. P17E3 (IN207293)	99	KP018255
Pa-3-4-1	Fusarium incarnatum strain LS 03 (KJ721990)	100	KP018256
Pa-3-6-2	Fusarium incarnatum strain LS 03 (KJ721990)	100	KP018257
Pa-3-7-2	Fusarium commune strain DH 23113 (JX162390)	100	KP018258
Pa-3-7-3	Penicillium spinulosum isolate FFJC 16 (KF876837)	100	KP018259
Pa-3-7-4-1	Cladosporium cladosporioides isolate (KJ572146)	100	KP018260
Pa-3-7-4-2	Phoma sp. P17E3 (IN207293)	99	KP018261
Pa-3-9-1	Fusarium commune strain DH 23113 (JX162390)	100	KP018262
Pa-3-10-1	Leuconostictum sp. O_3_BESC_246b (KCO70329)	100	KP018263
Pa-3-10-2	Fusarium longipes (HG423537)	99	KP018264
Pa-3-10-3	Lewis sp. OUCMB101191 (HQ914885)	100	KP018265
Sa-1-3-1	Fusarium oxysporum strain HPA2 (KJ677253)	100	KP018266
Sa-1-3-2	Aspergillus brasilensis strain HPA8 (KJ677257)	100	KP018267
Sa-1-4-3	Acrostaligus luteobulbus isolate AcLu2 (JQ837575)	100	KP018268
Sa-1-5-1	Phoma sp. XJ1203 (KC020349)	100	KP018269
Sa-1-5-2-2	Phoma sp. XJ1203 (KC020349)	100	KP018270
Sa-1-6-2	Macrophoma sp. TXc4-6 (HQ262514)	100	KP018271
Sa-1-7-2	Macrophoma sp. TXc4-6 (HQ262514)	100	KP018272
Sa-1-9-1	Fusarium incarnatum strain FI-00602 (KJ572780)	100	KP018273
Sa-1-9-2	Macrophoma sp. TXc4-6 (HQ262514)	100	KP018274
Sa-2-1-2	Alternaria alternata strain HMA1D (KJ677246)	100	KP018275
Sa-2-2-1	Ecshialia oligosperma (AB480204)	100	KP018276
Sa-2-2-1-1	Paraconiothyrium cyclothyrioides strain (KC215138)	100	KP018277
Sa-2-2-3	Ecshialia oligosperma (AB777520)	100	KP018278
Sa-2-3-1	Macrophoma sp. TXc4-6 (HQ262514)	100	KP018279
Sa-2-3-2	Macrophoma sp. TXc4-6 (HQ262514)	100	KP018280
Sa-2-4-1	Pleospora bjoerlingii (JX045842)	100	KP018281
Sa-2-6-2	Penicillium canescens strain CV0198 (JX140832)	100	KP018282
Sa-2-7-1	Plectrophaerella sp. MF-1 (AB520859)	100	KP018283
Sa-2-7-2	Aspergillus terreus isolate D34 (KF971363)	100	KP018284
Sa-2-8-1	Penicillium lapiolosum (KJ676431)	100	KP018285
Sa-2-9-1	Sclerotostomporpha phragmiticola strain (KF251230)	99	KP018286
Sa-2-9-4	Paraphoma sp. B18 (KJ702586)	100	KP018287
Sa-2-10-1	Macrophoma sp. TXc4-6 (HQ262514)	100	KP018288
Sa-2-10-2	Alternaria sp. B15 (KJ702610)	100	KP018289
Sa-3-1-1	Hypocreasp. SFC20120803-50 (KF313111)	100	KP018290
Sa-3-1-2	Aspergillus af. fumigatus A28 (IN246065)	100	KP018291
Sa-3-3-1	Acrostaligus luteobulbus strain PT-1 (GU813970)	100	KP018293
Sa-3-4-2	Macrophoma sp. TXc4-6 (HQ262514)	100	KP018294
Sa-3-4-3	Macrophoma sp. TXc4-6 (HQ262514)	100	KP018295
Sa-3-6-1	Penicillium citrinum strain NF7 (KJ653821)	100	KP018296
Sa-3-6-3	Fusarium oxysporum isolate F102 (KJ512160)	100	KP018297
Sa-3-8-1	Penicillium simplicissimum strain (KF815055)	100	KP018298
Sa-3-8-1-1	Alternaria sp. B15 (KJ702610)	100	KP018299
Sa-3-8-2-1	Colletotrichum gloeosporioides strain (KJ632430)	100	KP018300
Sa-3-8-3	Aspergillus sp. B139 (KJ702608)	100	KP018301
Sa-3-9-1	Fusarium oxysporum isolate F102 (KJ512160)	100	KP018302
Sa-3-9-2	Fusarium oxysporum strain HPA2 (KJ677253)	99	KP018303
Sa-3-10-1	Penicillium citrinum strain NF7 (KJ653821)	100	KP018304
Sa-3-10-2	Trichoderma harzianum (HG490484)	100	KP018305
Lt-1-1-1	Pestalotiopsis sp. 1 AE-2013 strain F4872 (KF746123)	100	KP018306
Lt-1-2-2	Pleospora bjoeirlingii (JX045842)	100	KP018307
Lt-1-3-2	Penicillium lapiolosum (KJ676431)	100	KP018308
Sample No.	Closely related fungal sequences	Similarity (%)	Accession No.
------------	---------------------------------	----------------	---------------
Lt-1-4-1	Fusarium longipes (KJ412506)	100	KP018309
Lt-1-5-1	Paraconiothyrium cyclothyrioides strain (KC215138)	100	KP018310
Lt-1-6-1	Pleospora bjoerlingii (JX045842)	100	KP018311
Lt-1-8-2	Alternaria alternata strain SR/1/90 (KJ765332)	100	KP018312
Lt-1-9-1	Fusarium oxysporum f. sp. conglutinans (KF381081)	100	KP018313
Lt-1-10-1	Pestalotiopsis clavigera strain P44 (JX045813)	100	KP018314
Lt-1-10-2	Cochliobolus kusanoi isolate SH8 (KF572135)	100	KP018315
Lt-2-1-1	Colletotrichum acutatum strain 11E031 (KF717039)	100	KP018316
Lt-2-4-1	Penicillium paneum strain M-18 (IQ422610)	100	KP018317
Lt-2-5-1-1	Phoma sp. EIDDSF018 (KJ735451)	100	KP018318
Lt-2-5-1-2	Trichoderma sp. BCC 3579 (AY550911)	99	KP018319
Lt-2-6-2	Penicillium sp. SK14W2P (KC345799)	100	KP018320
Lt-2-7-1	Alternaria sp. B35 (KJ702610)	100	KP018321
Lt-2-8-2	Macrophoma sp. TXc-4-6 (HQ262514)	100	KP018322
Lt-3-2-2	Trichoderma harzianum strain ML16-1 (KJ619615)	100	KP018323
Lt-3-3-1	Lewia sp. OUCMBI101191 (HQ914885)	100	KP018324
Lt-3-3-2	Meira sp. JCM18504 (AB778892)	99	KP018325
Lt-3-6-1	Penicillium sp. 12140 (JX657339)	100	KP018326
Lt-3-7-1	Alternaria sp. B35 (KJ702610)	100	KP018327
Lt-3-9-1	Alternaria sp. B35 (KJ702610)	99	KP018328
Lt-3-9-2	Aspergillus brasiliensis strain HPA8 (KJ677257)	100	KP018329
Lt-3-9-4	Aspergillus clavatus strain USM008 (KF669482)	99	KP018330
Su-1-1-1	Talaromyces pinophilus isolate SCL85 (KF913534)	100	KP018331
Su-1-2-1	Talaromyces pinophilus isolate SCL85 (KF913534)	100	KP018332
Su-1-2-2	Penicillium sp. OY18307 (FJ571475)	100	KP018333
Su-1-4-1	Hypocreopsis sp. SFCD2012083-30 (KF313111)	100	KP018334
Su-1-6-2	Fusarium sp. B9 (KJ702598)	100	KP018335
Su-1-6-2-1	Alternaria sp. DX-P077 (KF558883)	100	KP018336
Su-1-7-2	Phomopsis sp. H4243 (GU595506)	99	KP018337
Su-1-9-1-1	Alternaria sp. B35 (KJ702610)	100	KP018338
Su-2-1-1	Pleospora bjoerlingii (JX045842)	100	KP018339
Su-2-2-3	Purpureocillium lilacinum strain (KC157754)	100	KP018340
Su-2-3-1	Phoma sp. Y19 (KJ752232)	100	KP018341
Su-2-3-2	Pleospora bjoerlingii (JX045842)	100	KP018342
Su-2-4-3	Purpureocillium lilacinum strain (KC157756)	100	KP018343
Su-2-5-3	Aspergillus brasiliensis (KJ451322)	100	KP018344
Su-2-6-2	Pleospora bjoerlingii (JX045842)	100	KP018345
Su-2-7-1	Gibberella fujikuroi (KC752592)	100	KP018346
Su-2-7-2	Penicillium sp. OY18307 (FJ571475)	100	KP018347
Su-2-8-1	Alternaria sp. B35 (KJ702610)	100	KP018348
Su-2-8-2	Metacordyceps chlamydospora (FN598950)	99	KP018349
Su-2-9-1	Penicillium sp. Ca13/2 (JN589948)	100	KP018350
Su-2-9-2	Alternaria sp. B35 (KJ702610)	100	KP018351
Su-2-9-3	Macrophoma sp. TXc-4-6 (HQ262514)	100	KP018352
Su-2-10-1	Alternaria sp. 174wat (KF811132)	100	KP018353
Su-2-10-2	Penicillium sp. KJ-2012 strain GZU (KJ965022)	100	KP018354
Su-3-1-1	Davidiella macropora (KJ529009)	100	KP018355
Su-3-1-1-1	Davidiella macropora (KJ529009)	100	KP018356
Su-3-1-2	Pleospora bjoerlingii (JX045842)	100	KP018357
Su-3-3-1	Fusarium oxysporum strain P43 (JX045812)	100	KP018358
Su-3-4-1	Pestalotiopsis clavigera strain P44 (JX045813)	100	KP018359
Su-3-4-3	Pleospora bjoerlingii (JX045842)	100	KP018360
Su-3-5-1	Phomopsis sp. H4243 (GU595506)	99	KP018361
Su-3-5-2	Aspergillus terreus isolate D34 (KF971363)	100	KP018362
Su-3-6-1	Colletotrichum gloeosporioides strain (KJ632430)	100	KP018363
Su-3-6-3	Aspergillus alahabadi strain CBS (GQ342626)	100	KP018364
Su-3-6-5	Pestalotiopsis clavigera strain P44 (JX045813)	100	KP018365
Su-3-7-2	Purpureocillium lilacinum strain E303 (KJ540087)	100	KP018366
Su-3-7-3	Cladosporium sp. B45 (KJ702611)	100	KP018367
Su-3-9-1	Clonostachys rosea strain F-3-51 (KF887020)	100	KP018368
Su-3-9-2	Gliomastix murorum (AB540558)	100	KP018369
Su-3-10-1	Alternaria sp. B35 (KJ702610)	100	KP018370
Su-3-10-2-1	Colletotrichum gloeosporioides strain (KJ632430)	100	KP018371
Su-1-1-2	Aspergillus sp. SL-P20 (KJ528999)	99	KP018372
Su-3-1-3	Macrophoma sp. TXc-4-6 (HQ262514)	100	KP018373
Table 2. Continued.

Sample No.	Closely related fungal sequences	Similarity (%)	Accession No.
Sm-1-3-2	Tetracladium setigerum isolate (HQ647302)	99	KP018374
Sm-1-5-3	Alternaria sp. (KJ702610)	100	KP018375
Sm-1-6-2	Alternaria sp. (KJ702610)	100	KP018376
Sm-1-9-2-2	Alternaria sp. (KJ702610)	100	KP018377
Sm-1-10-1	Fusarium andiyazi strain CBS 134430 (KC954400)	100	KP018378
Sm-1-10-2	Alternaria sp. (KJ702610)	100	KP018379
Sm-2-1-3	Alternaria sp. (KJ702610)	100	KP018380
Sm-2-6-1	Alternaria sp. (KJ702610)	100	KP018381
Sm-2-6-2	Alternaria sp. (KJ702610)	100	KP018382
Sm-2-7-2	Alternaria sp. (KJ702610)	100	KP018383
Sm-2-8-1	Talaromyces trachypernus strain (KF47920)	99	KP018384
Sm-2-8-2-1	Exophiala oligosperma (AB777520)	100	KP018385
Sm-2-8-2-2	Exophiala oligosperma (AB777520)	99	KP018386
Sm-2-9-1	Alternaria sp. (KF58883)	100	KP018387
Sm-2-9-2	Alternaria sp. (KJ702610)	100	KP018388
Sm-2-10-1	Alternaria sp. HT-M18-LS (KJ527010)	100	KP018389
Sm-2-10-2	Cladosporium cladosporioides strain (KJ589558)	100	KP018390
Sm-3-1-1	Macrophoma sp. (HQ662014)	99	KP018391
Sm-3-1-3	Cladosporium oxysporum strain B2F2 (KJ589590)	100	KP018392
Sm-3-2-1	Alternaria sp. (KJ702610)	100	KP018393
Sm-3-3-3	Penicillium sp. (KJ589874)	98	KP018394
Sm-3-4-1	Cochliobolus kusanoi isolate SH8 (KJ572135)	100	KP018395
Sm-3-5-1	Alternaria sp. (KF588833)	100	KP018396
Sm-3-8-1	Alternaria sp. (KF588833)	100	KP018397
Sm-3-8-2	Alternaria sp. (KF588833)	100	KP018398
Sm-3-9-2	Alternaria sp. (KF588833)	100	KP018399
Sm-3-10-2	Alternaria sp. HT-M18-LS (KJ527010)	100	KP018400
Sm-3-10-3	Cladosporium cladosporioides strain (KJ589558)	100	KP018401

Fig. 1. Distribution of fungal isolates in different plant samples at the class (A) and genus (B) levels. Pa, Phragmites australis; Sa, Suaeda australis; Lt, Limonium tetragonum; Su, Suaeda glauca; Butge; and Sm, Suaeda maritima.
Diversity of Endophytic Fungi isolates

About 188 culturable fungal strains were isolated from the roots of five halophytes based on colony morphologies. All endophytic fungi from halophytes belonged to 33 genera in accordance with molecular identification. Fungal isolates were then classified into 14 genera, 16 species, and 19 unclassified strains from *P. australis*; 17 genera, 17 species, and 17 unclassified strains from *S. australis*; 14 genera, 13 species, and 11 unclassified strains from *L. tetragonum*; 19 genera, 14 species, and 17 unclassified strains from *S. glauca* Bunge; and 11 genera, 7 species, and 22 unclassified strains from *S. maritima*.

As regards generic diversity, *S. glauca* Bunge had the highest score in Shannon's index (2.76), Fisher's (α) (13.75), and Simpson's index of diversity (0.970). *S. maritima* had the lowest scores in Shannon's index and Fisher's (α) (1.86 and 6.26, respectively), and *P. australis* had the lowest Simpson's index of diversity (0.904). As regards generic richness, *S. glauca* Bunge displayed the highest scores in Menhinick's index (2.97) and Margalef’s index (4.85). The lowest scores in Menhinick's and Margalef’s indices were in *P. australis* (1.94) and *S. maritima* (2.94), respectively.

Table 3. Endophytic fungi (188 strains) isolated from five plants with scientific names, plant codes, taxa of fungal strain, and number of fungal isolates.

Scientific name of plant sample	Abbreviated plant name	Taxon of fungal strains	No. of isolates
Phragmites australis	Pa	14 genera, 16 species	52
Suaeda australis	Sa	17 genera, 17 species	40
Limonium tetragonum	Lt	14 genera, 13 species	25
Suaeda glauca Bunge	Su	19 genera, 14 species	41
Suaeda maritima	Sm	11 genera, 7 species	30

Pa, *Phragmites australis*; Sa, *Suaeda australis*; Lt, *Limonium tetragonum*; Su, *Suaeda glauca* Bunge; and Sm, *Suaeda maritima*.

Table 4. Diversity indices and distribution of endophytic fungi isolated from plants native to the Buan salt marsh.

Fungal taxon	Pa	Sa	Lt	Su	Sm
Acrostalagmus	2				
Alternaria	10	3	4	6	11
Aspergillus	4	2	3	1	
Cladosporium	3	1		1	3
Clonostachys					1
Cochliobolus	1				
Colletotrichum	1	1			2
Davidiellla					2
Exophiala	2				
Fusarium	14	5	2	2	1
Gibberella		1			
Glomus				1	
Hypocrea	1				
Lecananicillium				1	
Lewia	7				
Macroghoma		8	1	1	8
Metra		1			
Metacordyceps					1
Paracynothrygium	1				
Paraphoma					1
Penicillium	4	5	4	4	1
Pestalotiopsis	1		2		2
Phoma	3	2	1		1
Phomopsis					2
Plectosphaerella				1	
Pleospora	1	2	5		
Purpureocillium				3	
Sclerotogospora	1	1			
Simplicillium		1			
Talaromyces	2				1
Tetradialium					1
Trichoderma	2	1	2		
Verticillium	2				
N	52	40	25	41	30
S	14	17	14	19	11
Shannon diversity index (H')	2.22	2.55	2.50	2.76	1.86
Simpson's index of diversity (1-D)	0.904	0.936	0.967	0.970	0.929
Menhinick's index (Dmn)	1.94	2.69	2.80	2.97	2.01
Margalef's index (Dmg)	3.29	4.34	4.04	4.85	2.94
Fisher's diversity (α)	6.29	11.17	13.14	13.75	6.26

Pa, *Phragmites australis*; Sa, *Suaeda australis*; Lt, *Limonium tetragonum*; Su, *Suaeda glauca* Bunge; and Sm, *Suaeda maritima*.
Fig. 2. Screening for plant growth promoting of Waito-C rice seedlings with culture filtrates of fungal endophytes isolated from plant samples A-F. Ten microliters of lyophilized culture filtrates was treated to Waito-C rice seedlings. The shoot length and plant length of the Waito-C rice seedlings were measured after 7 days of treatment. The standard deviation from means was calculated using Microsoft Excel.
Screening for Fungal Metabolites Promoting Plant Growth in Waito-C rice Seedlings

The fungal culture filtrates were applied on Waito-C rice seedlings, and the seedling lengths were measured after 1 week of fungal culture filtrate application. Out of 188 isolated fungi, 4 fungal isolates considerably encouraged shoot lengths of rice seedlings. The fungal isolate Sa-1-4-3 promoted maximum plant and shoot lengths of 21.6 cm and 11.5 cm, respectively, while culture filtrates Pa-3-9-1, Lt-1-10-1, and Sm-3-10-2 produced plant and shoot lengths of 19.7 and 8.6 cm, 19 and 9 cm, and 21.4 and 8.6 cm, respectively. There was a much lower plant and shoot growth promotion by *Gibberella fujikuroi* than by Sa-1-4-3 (Fig. 2); consequently, Sa-1-4-3 was chosen for further analysis.

Extraction and Quantification of Gibberellins

After the growth of Sa-1-4-3 fungal strain for 7 days in Czapek Dox broth medium (at 25°C; 180 rpm), the culture was then filtered with the use of a filter paper to obtain a clear supernatant (150 ml). The supernatant was extracted and chromatographed for the detection of gibberellins. The GC/MS-SIM analysis has discovered that different physiologically active and inactive gibberellins have different quantities. The physiologically bioactive gibberellins were GA1 (0.285 ng/ml) and GA3 (1.479 ng/ml), while the physiologically inactive gibberellins were GA9 (0.029 ng/ml) and GA24. GA3 was considered to be more abundant than other gibberellins (Fig. 3).

Discussion

Endophytes reside inside healthy plant tissues, providing shelter and nutrition. In return, these endophytes act as an excellent source of bioactive compounds and functional metabolites that impact both plant health and growth [26-28]. Some of these metabolites prompt resistance mechanisms that protect the plants against different biotic and abiotic stresses; therefore, plant fitness and productivity are increased [29].

In our study, 188 endophytic fungi were isolated from 5 plants growing in the Buan salt marsh and were identified by ITS1, 5.8S, and ITS2 sequencing. Thirty-three genera were recognized among the isolated fungal samples. *Alternaria* and *Fusarium* were the most commonly found fungi. The majority of endophytic fungi belong to the phylum Ascomycota [30, 31]. Recent studies have reported that the genus *Alternaria* was the most prominent fungus found in root, stem, and leaf tissues of *Gossypium hirsutum* [32]. Additionally, both *Alternaria* and *Fusarium* are the most frequently encountered endophytes in different types of plants [32].

Fungal endophytes are well known for their production of a wide range of secondary metabolites and enhancement of plant resistance to environmental stress. The plant growth-enhancing effects of these fungal culture filtrates were confirmed with the use of Waito-C rice seedling bioassays [33, 34]. Although other plants are also valuable for analyze the plant growth-enhancing effects, Waito-C rice has more benefits. Because of small size of plant and lack of gibberellin, uniconazole treated Waito-C rice reacts sensitively to gibberellin from foreign substances and shows rapidly the difference in growth following injection. The use of rice mutant Waito-C, which reduces gibberellin biosynthesis, was very efficient. The Sa-1-4-3 fungal strain has promoted a better plant growth in the Waito-C rice seedlings. These results are the same as those of a previous study wherein *Talaromyces pinophilus* Su-3-4-3, which is isolated from the roots of *S. glauca* Bunge, encouraged the growth in various rice plants [35].

The host plant benefits from the hormones produced by endophytic fungi. Several studies have shown plant growth-promoting characteristics and secretion of secondary metabolites, such as gibberellins, of endophytic fungi, most of which have a relationship with the roots [34, 36]. In growth of plant, many other growth promoting compounds including cytokinins and indole-3-acetic acid are also existing. But since gibberellin is the most representative compound, it was selected as a target material for growth promotion in this study. We have acquired a strain that was initially identified as *Acrostalagmus luteoalbus* (Sa-1-4-3) and detected gibberellin in this culture's...
filtrate. According to the result of the Waito-C rice cultivation, the *A. luteoalbus* strain (Sa-1-4-3) showed the better growth contribution of plant length than the *G. fujikuroi*. Based on the period of plant cultivation in this study, it is expected that *A. luteoalbus* will promote early growth of Waito-C rice in particular. The GC/MS-SIM method, an established technique to identify secondary metabolites, analyzed the gibberellins in the culture filtrate of Sa-1-4-3. In a nutshell, a total of 188 fungi were isolated from roots of five plants that are located in the Buan salt marsh. These fungi were classified into 2 phyla, 5 classes, 10 orders, 19 families, and 33 genera. *Alternaria* and *Psaearium* accounted for more than 30% of all isolates. Endophytic fungi that are isolated from *S. glaica* Bunge are the most diverse. This study informs us on the capacity of *A. luteoalbus* (Sa-1-4-3) to produce gibberellins. These results are expected to promote plant growth in areas with high salt concentrations, which are considered to be of great benefit to crop production and agriculture.

Acknowledgments

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), Ministry of Education (2016R1A6A1A05011910), Research Institute for Dok-do and Ulleung-do Island of Kyungpook National University, and Korea Ministry of Environment as "The Eco-Innovation Project".

Conflict of Interest

The authors have no financial conflicts of interest to declare.

References

1. Bologna M, Aquino G. 2020. Deforestation and world population sustainability: a quantitative analysis. *Sci. Rep.* 10: 7631.
2. Würschum T, Langer SM, Longin CFH, Tucker MR, Leiser WL. 2017. A modern Green Revolution gene for reduced height in wheat. *Plant J.* 92: 892-903.
3. Wu K, Wang S, Song W, Zhang J, Wang Y, Liu Q, et al. 2020. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. *Science* 367: eaax2046.
4. Martin RC, Dombrowski JE. 2015. Isolation and identification of fungal endophytes from grasses along the Oregon coast. *Ann. Rev. Plant Sci.* 64: 319-343.
5. Schulz B, Boyle C. 2005. The endophytic continuum. *Mycol. Res.* 109: 661-686.
6. Singh LP, Gill SS, Tuteja N. 2011. Unraveling the role of fungal symbionts in plant abiotic stress tolerance. *Plant Signal Behav.* 6: 175-191.
7. Strobel GA. 2003. Endophytes as sources of bioactive products. *Microbes Infect.* 5: 535-544.
8. Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA. 2015. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. *Microb. Pathog.* 82: 50-59.
9. Spaepen S, Vanderleyden J, Remans R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. *FEMS Microbiol. Rev.* 31: 425-448.
10. Tamaoki M. 2008. The role of phytohormone signaling in ozone-induced cell death in plants. *Plant Signal Behav.* 3: 166-174.
11. Ahmad N, Hamayun M, Khan SA, Khan AL, Lee IJ, Shin DH. 2010. Gibberellin-producing endophytic fungi isolated from *A. luteoalbus* (Sa-1-4-3) to produce gibberellins. These results are expected to promote plant growth in areas with high salt concentrations, which are considered to be of great benefit to crop production and agriculture.
28. Verma VC, Kharwar RN, Strobel GA. 2009. Chemical and functional diversity of natural products from plant associated endophytic fungi. *Nat. Prod. Commun.* **4**: 1511-1532.

29. Shores M, Harman GE, Moustari F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. *Annu. Rev. Phytopathol.* **48**: 21-43.

30. Min YJ, Park M, Fong J, Quan Y, Jung S, Lim, Y. 2014. Diversity and saline resistance of endophytic fungi associated with *Pinus thunbergii* in coastal shelterbelts of Korea. *J. Microbiol. Biotechnol.* **24**: 324-333.

31. Zhang T, Zhang YQ, Liu HY, Wei YZ, Li HL, et al. 2013. Diversity and cold adaptation of culturable endophytic fungi from bryophytes in the Fildes Region, King George Island, maritime Antarctica. *FEMS Microbiol. Lett.* **341**: 52-61.

32. Li ZF, Wang LF, Feng ZL, Zhao LH, Shi YQ, Zhu HQ. 2014. Diversity of endophytic fungi from different *Verticillium*-wilt resistant *Gossypium hirsutum* and evaluation of antifungal activity against *Verticillium dahliae* in vitro. *J. Microbiol. Biotechnol.* **24**: 1149-1161.

33. Khan SA, Hamayun M, Yoon H, Kim HY, Suh SJ, Hwang SK, et al. 2008. Plant growth promotion and *Penicillium citrinum*. *BMC Microbiol.* **8**: 231.

34. You YH, Yoon H, Kang SM, Shin JH, Choo YS, Lee JI, Kim JG. 2012. Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in suncheon bay. *J. Microbiol. Biotechnol.* **22**: 1549-1556.

35. Khalmuratova I, Kim JH, Nam YJ, Oh Y, Jeong MJ, Choi HR, et al. 2015. Diversity and plant growth promoting capacity of endophytic fungi associated with halophytic plants from the west coast of Korea. *Mycobiology* **43**: 373-383.

36. Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, et al. 2012. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. *Molecules* **17**: 10754-10773.