Fruit Characteristics of ‘York’ Apples during Development and after Storage

Morris Ingle and Mervyn C. D’Souza
Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506-6108
E.C. Townsend
Department of Statistics, West Virginia University, Morgantown, WV 26506-6108

Abstract. Firmness, soluble solids concentration (SSC), starch index (SI), internal ethylene concentration (IE), and titratable acid concentration (TA) of ‘York Imperial’ apple (Malus ×domestica Borkh.) fruit changed linearly with harvest date between 152 and 173 days after full bloom (DAFB). Firmness was positively correlated with TA, SSC was correlated with SI, and SI was negatively correlated with TA. After 150 days of refrigerated-air (RA) storage, there was no relationship between DAFB at harvest and firmness or superficial scald, but the malic acid concentration declined linearly and storage decay increased linearly with DAFB. Firmness had declined to a plateau and was not correlated with any variable at harvest. Malic acid concentration after CA storage was correlated with DAFB, firmness, SSC, and SI; scald was correlated with firmness and SI; and decay was correlated with DAFB, firmness, SSC, and SI. During 150 days of controlled-atmosphere (CA) storage (2.5% O2, 1.0% CO2), firmness and TA decreased as a linear function of DAFB. Percentage of fruit with scald and scald rating changed quadratically with DAFB, and decay increased linearly with DAFB. After 150 days of CA, firmness was correlated with DAFB, SI, and IE at harvest; TA was correlated with DAFB, firmness, SSC, TA, and SI; scald was correlated with firmness and SI; and decay was correlated with DAFB, SSC, and scald index at harvest. During 250 days of CA storage, firmness, TA, scald, and decay changed linearly with DAFB in only 1 or 2 years out of 3. Formulas were created to predict firmness after CA within 10 to 12 N (2.0–2.5 lb-f) and TA to within 25%.

Very little has been published about the maturation and storage of ‘York’ (≡ ‘York Imperial’) apples, perhaps because ‘York’ is a cultivar of local importance. Although ‘York’ comprises only 3% of the national apple crop, it makes up 46% of the total crop in the mid-Atlantic states of Delaware, Maryland, Pennsylvania, Virginia, and West Virginia (Terpstra, 1991). Another reason for the lack of published information may be that a large fraction of the crop is processed directly after harvest, with little or no storage. Recently, however, some processors have been storing fruit to extend plant utilization (R. Bentley, Knouse Foods, personal communication).

Manness et al. (1926) reported that ‘York’, ‘Winesap’, ‘Yellow Newtown’, and ‘Arkansas Black’ fruit were firmer than those of ‘Stayman’ (‘Stayman Winesap’) or ‘Rome Beauty’ at harvest and that they all softened at about the same rate in 0 °C refrigerated-air (RA) storage. As a result, ‘York’ fruit reached about the same firmness as ‘Stayman’ and ‘Rome’ after 1 month of additional storage. During 0 °C storage, soluble solids increased from 10% to 12% or 14%, while titratable acid (malic acid) decreased by one-third. Magness believed that the storage life of ‘York’ fruit was determined primarily by the development of superficial scald. If harvest were delayed until the danger of scald was past, preharvest drop could become a hazard. Haller and Smith (1950) concluded that if ‘York’ fruit were harvested 160 days after full bloom (DAFB), eating quality would be satisfactory until March and scald would be absent or slight and tolerable. Internal ethylene concentration and ethylene evolution rates have been suggested as guides for harvesting some apple cultivars (Dilley, 1981; Smith, et al., 1969) but these methods have not been used for ‘York’.

This report describes changes in firmness, titratable acid concentration (TA), soluble solids concentration (SSC), starch index (SI), and internal ethylene concentration (IE) of ‘York’ fruit from 150 to 170 DAFB, and the relationship of these characteristics to firmness and disorders after RA and controlled-atmosphere (CA) storage. The overall objective was to determine if condition after storage can be predicted from some or all of the aforementioned fruit characteristics at harvest.

Materials and Methods

In Aug. 1987, five replicate trees were chosen in five commercial orchards in Berkeley County, W.Va. The two blocks in the northern end of the county were 2 km apart and were separated from the three blocks in the southern part of the county by 20 km; the latter three blocks were within 3 km of one another. The trees were chosen based on similar size and fruit load. All trees were 25 to 30 years old and on seedling rootstocks. In 1988 and 1990, some of the original trees did not appear to have sufficient fruit and a nearby, similar tree was substituted. There was no experiment in 1989 because spring frost resulted in nearly complete crop loss. In 1988, one site was unavailable because of frost.

On each picking date, ≈100 fruit were collected from all parts around the bottom 1.5 m of the tree. At the laboratory, 10 fruit were drawn randomly from each replicate. Within 6 h of picking, IE was determined in a 1-mL gas sample withdrawn through an 18-gauge needle inserted into the core through the calyx end. In 1987 and 1988, individual fruits were sampled. In 1990, gas samples from the 10 fruit in each replicate were combined in one 10-mL syringe before analysis. Ethylene concentration was measured with a Varian 3700 gas chromatograph fitted with an alumina column and flame-ionization detector. After the ethylene measurements had been made, firmness was measured on opposite, pared sides of the fruit with an Effegi penetrometer (11-mm tip). Soluble solids concentration in juice expressed from the outer flesh of each fruit was estimated with a calibrated hand-held refractometer (Atago N-1; McCormick Supply, Wenatchee, Wash.). Relative starch content or SI was determined, according to the Ontario SI scale (Priest and Lougheed, 1981), on fruits cut in half transversely. The halves of the apples not stained for starch were combined and frozen immediately. After some months they were thawed and juiced (Acme Juicerator; Acme Juice Co., Le Moyne, Pa.), and duplicate 10-mL aliquots were titrated to pH 8.2 and the malic acid concentration calculated.

Thirty-six to 48 h after harvest, the fruit were placed in a 0 °C storage room. About 15 h later, two 30-fruit samples were placed in plastic bags. One sample from each replicate was placed in a 210-L plastic barrel. When filled, the barrel lid was sealed with petroleum jelly and a locking ring. Flow of oxygen and nitrogen gases was adjusted using rotameters and mixed to produce 2.5% O2 in N2. This mixture was metered continuously to the barrels, using glass capillaries mounted on flow boards at the rate of 35 L h-1. In 1990, the barrels were flushed with the low O2 product of a membrane gas separator as required to maintain 2.5% O2, Carbon dioxide was maintained at <1% by the inclusion of hydrated lime (0.5 kg per 20 kg fruit). The O2 level declined to <3% O2 within 12 h of closing the barrels. The other sample from each replicate was stored in open boxes in the same storage room. Fruits were stored in air for 150 d, and in CA for 150 or 250 d. A portion of the fruit stored for 150 d in CA was held for 14 or 28 d in RA.

After storage plus 7 d at 20 °C, firmness was measured with the same penetrometer...
Results

Temperature and precipitation. The mean temperature was highest in the 1987 growing season, although the differences between years were not large. Accumulated heat units in 1990 were 84% of those in 1987 and were similar to those in 1988. The highest total rainfall was in 1988. About twice as much rain fell in Sept. 1987, essentially the last month of fruit development, as in the other 2 years. Full bloom dates were within an 8-d interval across years.

Differences between sites were nonsignificant; therefore, the data for the four or five sites were combined and used for correlation and regression analyses.

Effect of time of harvest. When the data for the 3 years were combined, all five of the fruit characteristics measured were found to have changed linearly between 150 and 170 DAFB (Table 1). After combining data for all four harvests, the mean yearly firmness was nearly the same in 1987 and 1990 but 12 to 14 N less than in 1988 (Table 1). Firmness after storage (Table 2). There was no effect of time of harvest on fruit firmness after storage (Table 2). Internal ethylene concentration was correlated with firmness, TA, and decay after CA (Table 3).

Air storage. During storage at 0 °C in air for 150 d, firmness declined by 23% to 36%. There was no effect of time of harvest on firmness after storage (Table 2). In 1988 and 1990, firmness of fruit from all harvest times had declined to a similar level; in 1987, there were greater differences between harvest times but no trend was evident. The rate of softening of "York" in RA storage was estimated to be 0.1 to 0.25 N·d⁻¹. Malic acid concentrations declined linearly with DAFB in all 3 years. Superficial scald increased linearly with DAFB in 1988 but decreased linearly in 1990. There was much less scald in 1987 and the severity score tended to be lower in 1987 and 1990. Internal ethylene concentration was associated with firmness, TA, and decay after storage, but not with scald (Table 3); DAFB and year affected firmness after storage.

Table 1. Effect of days after full bloom (DAFB) (1987, 1988, 1990 combined) and year on firmness, soluble solids, starch index, malic acid, concentration, and internal ethylene concentration of 'York' apples at harvest.

Factor	Firmness (N)	Soluble solids (%)	Starch index	Malic acid (g·L⁻¹)	Internal C₂H₄ (µL·L⁻¹)
DAFB					
150 d RA plus 7 d at 20 °C					
150	55	4930	36.4	10.3	
157	52	4230	49.3	14.7	
164	54	4180	39.0	29.1	
171	54	3910	39.9	36.8	
Significance	ns		L		
150 d CA plus 7 d at 20 °C					
150	67	4640	32	1.5	
157	66	4330	41	0.6	
164	66	4150	55	2.3	
171	57	4130	32	22.2	
Significance	ns		ns		L
150 d CA plus 14 d RA plus 7 d at 20 °C					
150	68	4790	56		
157	66	4190	47		
164	68	4090	64		
171	58	3740	51		
Significance	L				
150 d CA plus 28 d RA plus 7 d at 20 °C					
150	67	4020	52	2	
157	63	4240	47	7	
164	61	3840	55	6	
171	51	3730	32	25	
Significance	L				L
250 d CA plus 7 d at 20 °C					
150	68	4870	62	15	
157	70	4710	53	13	
164	69	4400	61	22	
171	60	3500	7	43	
Significance	L				L

*Mean separation within factors and columns by Duncan’s new multiple range test, P ≤ 0.05.

*Significance L = linear, Q = quadratic (P ≤ 0.01).

Table 2. Main effects of days after full bloom (DAFB) on firmness, titratable acid concentration (TA), scald, and decay of ‘York’ apple after regular (RA) or controlled-atmosphere (CA) storage.

DAFB	Firmness (N)	TA (mg·L⁻¹)	Scald (% unmarketable)	Decay (%)
150 d RA plus 7 d at 20 °C				
150	55	4930	36.4	10.3
157	52	4230	49.3	14.7
164	54	4180	39.0	29.1
171	54	3910	39.9	36.8
Significance	ns			
150 d CA plus 7 d at 20 °C				
150	67	4640	32	1.5
157	66	4330	41	0.6
164	66	4150	55	2.3
171	57	4130	32	22.2
Significance	ns			
150 d CA plus 14 d RA plus 7 d at 20 °C				
150	68	4790	56	
157	66	4190	47	
164	68	4090	64	
171	58	3740	51	
Significance	L			
150 d CA plus 28 d RA plus 7 d at 20 °C				
150	67	4020	52	2
157	63	4240	47	7
164	61	3840	55	6
171	51	3730	32	25
Significance	L			
250 d CA plus 7 d at 20 °C				
150	68	4870	62	15
157	70	4710	53	13
164	69	4400	61	22
171	60	3500	7	43
Significance	L			

*NS = nonsignificant, L = linear, Q = quadratic (P ≤ 0.01).
Malic acid concentration after CA was correlated with DAFB, and with TA, firmness, and SSC at harvest (Table 3). After transfer from CA to RA, the rates of decline in firmness and TA became similar to the rates in continuous RA (data not shown), scald increased by 10% to 15%, and decay became excessive only for the last harvest date.

When held in CA for 100 d, the rate of softening for the last 100 d was <0.038 N·d⁻¹ (Table 2). Firmness still declined linearly with DAFB. About 10% more of the malic acid disappeared between 150 and 250 d of storage. During this period, scald increased 58% to 81% in the 1988 crop and 21% to 61% in the 1990 crop; scald was fairly high after 150 d CA in the latter. Decay increased with DAFB. Correlations between fruit characteristics at harvest and after 250 d were much the same as after 150 d CA storage.

Using the best correlations in Table 3, prediction equations for firmness were calculated (Table 4). Equation 4 had the highest R² after 150 d and Equation 7 after 250 d CA storage. Both use DAFB, SI, and SSC at harvest. Observed firmness agreed well with predicted firmness calculated from the same data set from which the formulas were derived (Table 5). The ratio of observed/predicted firmness ranged from 0.95 to 1.05.

Discussion

Firmness loss on the tree between 150 and 170 DAFB ranged from 4.4 N in 1990 to 14.5 N in 1987. The high softening rate in 1987 may be attributable to the highest seasonal temperature of the 3 years (data not shown). The first 2 weeks of Oct. 1987 were colder than the comparable periods in 1988 or 1990. By comparison, over a 3-week period in 1983 and 1994, five ‘Delicious’ strains softened 4 to 13 N (Ingle and D’Souza, 1989). There was no apparent relationship between firmness and rainfall over any period. Sept. 1987 had more than twice as much rainfall as Sept. 1988 or 1990, but fruit in 1990 was only 4 N less firm than in 1987. Total rainfall was greatest in 1988, but fruit were the least firm of the 3 years. There was essentially no difference in SSC between the 3 years and changes in SSC on the trees were similar. Some strains of ‘Delicious’ have higher total soluble solids than does ‘York’, but overall the differences were not striking (Ingle and D’Souza, 1989).

The starch index remained low over the 21 d between the first and last fruit collections, and changed much less than was observed in ‘Delicious’ (Ingle and D’Souza, 1989). The ‘mature’ level starch index of 4–5 as defined by Blanpied and Silsby (1993) or Priest and Lougheed (1981) was never reached, even though fruit drop had become severe.

Dilley (1981) suggested that 1 µL·L⁻¹ IE indicates that the climacteric is in progress and autocaltotic production has commenced, and that storage potential will be limited. While average ethylene concentrations were always <1 µL·L⁻¹, values were higher in some fruit. In 1987, 2% of the fruit at two sites had levels >1 µL·L⁻¹ at the first harvest. By the third harvest, as many as 25% of the fruits from one site contained an IE of ≥1 µL·L⁻¹. By the last harvest the average IE at that site was 1 µL·L⁻¹ with a frequency of 50%. In 1988, none of the fruit tested over the 21-d period had an IE >1 µL·L⁻¹. Because combined samples were used in 1990, we cannot tell if some fruit contained ≥1 µL·L⁻¹, but there cannot be many of the average values would have been higher.

The most important ‘York’ fruit characteristics after storage are firmness, acidity, scald incidence, and decay. Most of these were significantly correlated with at least one characteristic at harvest. Firmness after RA storage was the quality least correlated with harvest characteristics, including DAFB, because a common firmness plateau apparently had been reached by 150 d; this time may be beyond the RA limit for ‘York’ in that scald and decay percentages were unacceptably high and usually nonsignificant with respect to DAFB.

Since firmness after 150 or 250 d CA storage was significantly correlated with DAFB, SSC, and SI, prediction equations were calculated (Table 10). These equations can be used to provide a general guide for predicting firmness of ‘York’ apples after CA storage. Days after full bloom, SSC, or SI never accounted for ≥13% of the variation in firmness. Table 5 compares the observed firmness after 150 and 250 d CA storage with firmness estimated by Equations 1–7 (Table 4) and ratios of observed versus estimated firmness.

Characteristic after storage	Characteristic at harvest			
Firmness	TA	Scald	Decay (%)	
DAFB	-0.35	-0.56	0.06	0.43
Firmness	-0.18	0.42	0.50	-0.16
SSC	-0.22	0.33	0.06	0.39
SI	-0.50	-0.54	0.12	0.83
IE	-0.37	0.15	0.24	0.09
TA	-0.08	0.51	0.14	0.09

Table 4. Prediction equations for firmness (N) of ‘York’ apples after 150 or 250 d of controlled-atmosphere (CA) storage plus 7 d at 20 °C.

Variable used	Equation	R²	P
1. DAFB	\(Y = 130.12 - 0.41 \text{ DAFB}\)	0.29	0.0005
2. SI	\(Y = 71.60 - 4.39 \text{ SI}\)	0.29	0.0005
3. DAFB and SI	\(Y = 108.32 - 0.25 \text{ DAFB} - 2.65 \text{ SI}\)	0.35	0.0006
4. DAFB, SI, and SSC	\(Y = 111.78 - 0.41 \text{ DAFB} - 2.47 \text{ SI} + 5.48 \text{ SSC}\)	0.36	0.0006

Table 5. Comparison of observed firmness vs. firmness estimated by Equations 1–7 (Table 4) and ratios of observed versus estimated firmness.

Treatment	150 d CA plus 7 d at 20 °C	250 d CA plus 7 d at 20 °C							
DAFB	Observed	Eq. 1	Eq. 2	Eq. 3	Eq. 4	Observed	Eq. 5	Eq. 6	Eq. 7
150	66.8	66.8	67.7	67.7	68.9	68.2	70.3	70.2	69.7
157	65.9	65.8	65.4	65.4	66.3	69.5	68.5	67.2	67.2
164	65.9	62.9	62.9	62.9	64.3	68.6	66.8	66.3	66.0
170	57.1	60.1	60.0	57.1	59.7	59.6	65.0	64.9	64.2
Mean	0.97	1.02	0.99	0.97	0.96	0.97	0.97	0.97	0.98

CA = controlled atmosphere; DAFB = days after full bloom.
derived from the former. The equations need to be calibrated with independent harvests over several sites and times. Identification of lots that would contain excessively soft fruits, and suggesting constant monitoring and earlier removal, would be possible. Formulas 4 and 7 use DAFB, SSC, and SI, and are therefore easy to use. Recently, Evensen et al. (1993) reported that harvest firmness and SSC of ‘York’ fruit could be used to predict firmness if firmness is greater than a target value after several storage systems. They also found that firmness could be predicted more accurately after CA storage than after refrigerated storage, and suggested that ‘date of harvest’ could be substituted. The relationship between IE, ethylene production, or SI and poststorage firmness was not mentioned. The most useful fruit parameter for predicting ‘York’ firmness was DAFB, which agrees with the findings of Haller and Smith (1950) for several apple cultivars and Ingle and D’Souza (1989) for ‘Delicious’.

No attempts were made to calculate predictive equations for TA, scald, or decay because there were no consistent effects of DAFB (Tables 2 and 3) and there were no fruit characteristics at harvest that accounted for a very large percentage of the variation. Essentially the same was true of decay.

Prediction equations were also calculated for TA, since it was always significantly correlated with SI (Table 1). Soluble solids concentrations were usually correlated with TA, but multiple regression did not sufficiently improve predictive precision to make this measurement worthwhile. None of the R^2 values were >0.05. Thus these formulas predict TA within only 25%, which makes them of limited use. Correlations of scald and decay with at-harvest variables were not high enough to justify regression analysis.

Literature Cited

Blanpied, G.D. and K.J. Silsby. 1993. Predicting harvest date windows for apples. Cornell Univ. Coop. Ext. Info. Bul. 221.

Dilley, D.R. 1981. Assessing fruit maturity and ripening and techniques to delay ripening in storage. Proc. Mich. State Hort. Soc. 110:132–146.

Evensen, K., P. Hammer, R. Crassweller, G. Greene, and L.L. Salada. 1993. Predicting firmness of ‘York Imperial’ apples. HortTechnology 3:318–322.

Haller, M.H. and E. Smith. 1950. Evaluation of indexes of maturity for apples. U.S. Dept. Agr. Tech. Bul. 1003.

Haller, M.W., J.M. Lutz, and E.D. Mallison. 1944. The relation of firmness to ripeness of eastern grown apples. U.S. Dept. Agr. Circ. 579.

Ingle, M. and M.C. D’Souza. 1989. Fruit characteristics of ‘Red Delicious’ apple strains during maturation and storage. J. Amer. Soc. Hort. Sci. 114:776–780.

Magness, J.R., H.C. Diehl, and M.H. Haller. 1926. Picking maturity of apples in relation to storage. U.S. Dept. Agr. Bul. 1448.

Priest, K.C. and E.C. Lougheed. 1981. Evaluating apple maturity using the starch-iodine test. Ontario Ministry of Agr. and For. Agdex 211/59.

Smith, R.B., E.C. Lougheed, and E.W. Franklin. 1969. Ethylene production as an index of maturity for apples. Can. J. Plant Sci. 49:805.

Terpstra, A.E. 1991. Market doors open to U.S. crops. Amer. Fruit Grower 111(9):6–7.