Effect of the boundary condition on the Kapitza resistance between superfluid 3He-B and sintered metal

S. Autti, A. M. Guénault, A. Jennings, R. P. Haley, G. R. Pickett, R. Schanen, V. Tsepelin, J. Vonka, and D. E. Zmeev

Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom

A. A. Soldatov

P. L. Kapitza Institute for Physical Problems of RAS, 119334 Moscow, Russia

(Received 18 March 2020; revised 7 July 2020; accepted 31 July 2020; published 25 August 2020)

Understanding the temperature dependence of thermal boundary resistance, or Kapitza resistance, between liquid helium and sintered metal has posed a problem in low-temperature physics for decades. In the ballistic regime of superfluid 3He-B, we find the Kapitza resistance can be described via scattering of thermal excitations (quasiparticles) with a macroscopic geometric area, rather than the sintered metal’s microscopic area. We estimate that a quasiparticle needs on the order of 1000 collisions to successfully thermalize with the sinter. Finally, we find that the Kapitza resistance is approximately doubled with the addition of two monolayers of solid 4He on the sinter surface, which we attribute to an extra magnetic channel of heat transfer being closed as the nonmagnetic solid 4He replaces the magnetic solid 3He.

DOI: 10.1103/PhysRevB.102.064508

I. INTRODUCTION

The thermal boundary resistance, or Kapitza resistance, R_K between liquid helium and sintered metal is a common limiting factor in the pursuit of ultralow temperatures. As temperature decreases, the thermal boundary resistance R_K increases, reducing the cooling power attainable in dilution refrigerators. According to acoustic mismatch theory, phonon-phonon transfer should yield a boundary resistance proportional to inverse temperature cubed, $R_K \propto \frac{1}{T^3}$ [1]. A common way of decreasing the Kapitza resistance between liquid helium and metal and increasing refrigerator performance is to increase the surface area using sintered metal powders. However, the problem of Kapitza resistance between sintered metal and liquid 3He is still yet poorly understood despite the large-scale use of dilution refrigerators, in part due to sintered metals’ complicated geometry [1]. At very low temperatures, $T \lesssim 10$ mK, the boundary resistance deviates significantly from the prediction of acoustic mismatch theory. A lower than expected Kapitza resistance is observed in general, and with a temperature dependence of $R_K \propto T^{-1}$ [2]. In superfluid 3He-B at ultralow temperatures (about $0.3T_c$ or 0.3 mK at zero pressure) the mean free path of the thermal excitations exceeds the cell dimensions and the hydrodynamic picture becomes inadequate. In this ballistic regime previous measurements reported an exponential dependence [3,4] as well as quadratic or cubic relationships [5] of Kapitza resistance with temperature.

It is important to also consider the possible surface effects of solid helium at low temperatures as a few layers of solid helium will form on the surfaces due to van der Waal’s forces [6,7]. It is thought that the magnetic properties of 3He could play a large role in the smaller than expected Kapitza resistance, by the creation of a magnetic channel of energy exchange with magnetic impurities in the sintered metal [8,9].

Recently, it has become a popular technique in ultralow-temperature physics to preplate the surfaces of the experimental cell and objects with solid 4He. 4He preferentially adsorbs to surfaces over 3He due to its lower zero-point energy. Control over the number of 4He layers allows fine tuning of the surface scattering specularity. This technique has been used for the stabilization of the newly discovered polar phase in nematic aerogels [10] and the suppression of the B phase in thin slab geometries when the scattering at the slab surface becomes completely specular [6,7]. Importantly, solid 4He is also nonmagnetic. In the ballistic regime of the B phase, heat transfer should be dominated by quasiparticle collisions with the surface. The difference in magnetic and nonmagnetic quasiparticle scattering has been found to have a significant effect on the stabilization of the A phase [11,12] and of the polar phase [13] in anisotropic media. It is therefore likely that the magnetic properties of solid 3He are an important factor in the Kapitza resistance. Hence preplating surfaces with nonmagnetic 4He should change the effective Kapitza resistance, a key consideration for future experiments at ultralow temperatures.

In this paper we demonstrate the difference in Kapitza resistance between superfluid 3He-B and sintered silver with and without preplating of the surface with two layers of...
We compare the measured Kapitza resistance to earlier work [3,14] and find very good agreement with the reported exponential temperature dependence. Our observed difference in Kapitza resistance between solid 3He and solid 4He coverage provides evidence for the role of the magnetic channel in decreasing the Kapitza resistance between metal and liquid 3He. We use a simple model to calculate the increase in probability of a quasiparticle collision with sintered metal eventually resulting in quasiparticle recombination. We find that sinter covered with 3He offers about double the probability of recombination.

We have analyzed the results of three experiments and conclude that in the ballistic regime it is the geometric area of the sintered plates that needs to be considered in the calculation of the Kapitza resistance. We define the geometric area as the area of plates with direct contact to the liquid in the experimental volume which provides consistent results between measurements. The total (interfacial) area of all sintered plates or the area calculated from the spongelike sinter geometry at the microscopic level do not provide consistent results between different measurements. Similar conclusions have been made about the sinter surface area in contact with a saturated 3He-4He solution [15]. This makes intuitive sense, as a quasiparticle created in the volume has little chance of colliding with sintered plates that have other plates between them and the quasiparticle.

II. EXPERIMENTAL DETAILS

Our experimental apparatus is a Lancaster-style nested nuclear demagnetization cell attached to a custom-built dilution refrigerator (shown in Fig. 1). The inner cell contains eight copper plates of thickness 1.1 mm and 80 copper plates of thickness 0.2 mm which are used as a refrigerant for nuclear demagnetization. A silver powder of 70 nm particle size is sintered to both sides of each copper plate with a filling factor of 0.5 and results in a microscopic surface area of 80 m2 [16]. From the total surface area, which is more or less equal to the total microscopic sinter surface area, we can calculate the amount of gas needed to preplate all surfaces with two layers of solid 4He [17]. This is accomplished by inserting a small amount of 4He gas before filling the cell with 3He to saturated vapor pressure. After demagnetizing to the required magnetic field (or temperature) the copper plates act as a thermal bath.

Inside the cell we have a set of mechanical probes: a relatively large moving wire with a diameter of 135 μm, a small vibrating loop wire with a diameter of 4.5 μm, and a small quartz tuning fork. The damping in ballistic 3He-4He measured via mechanical resonance widths Δf of the vibrating loop and tuning fork is determined by the number of quasiparticle collisions, and hence the number density of quasiparticles in the superfluid. In the ballistic regime the quasiparticle density is exponential with temperature, thus vibrating resonators can be very sensitive thermometers [18]. The large wire can be moved at constant velocity with a direct current in a magnetic field which generates a Laplace force, which we term a DC pulse [19]. Moving the wire heats the experimental cell and increases the number of quasiparticles above the thermal equilibrium density [20]. Hence monitoring the width response of the vibrating loop and tuning fork during a DC pulse allows us to detect the heating and subsequent cooldown. Note that the actual temperature change is small due to the exponential dependence of the resonance width on temperature.

III. RESULTS

Initially, the bulk quasiparticle population is in thermal equilibrium with the thermal bath and the thermometer is resonating with a base resonance width of Δf_{base}.

After a DC pulse is started, the released heat goes directly into the liquid and increases the bulk quasiparticle population, detected by a rapid increase in thermometer width up to a peak value. The quasiparticles excited begin colliding with surfaces where the area is dominated by the silver sinter. In the ballistic regime these collisions are either near-elastic or result in the quasiparticles losing enough energy to successfully recombine as a Cooper pair. We expect an exponential decay of the quasiparticle density until thermal equilibrium is reached with the surroundings, measured by the thermometer width reaching the base value. Figure 2 shows a typical response of a thermometer width to a DC pulse that we model as [21]

$$\Delta f = \Delta f_{\text{base}} + H \frac{\tau_b}{\tau_b + \tau_w} (e^{-t/\tau_b} - e^{-t/\tau_w}).$$

Here, H is a constant describing the amplitude of the width response and τ_w is the response time of the thermometer, determined by the resonance width and is approximately equal to $1/(\pi \Delta f_{\text{base}})$. The decay time constant τ_b is governed by the
The heat capacity of 3He-B in the ballistic regime is
determined by the number of quasiparticles and exponentially
depends on temperature $C_B \propto \exp (-\Delta_B/k_B T)$, where Δ_B is
the superfluid energy gap of 3He-B and k_B is the Boltzmann
constant.

Figure 2 shows the different responses of the vibrating
loop thermometer to identical pulses for pure 3He and
4He preplated cases. The decay constant τ_b extracted for 4He pre-
plated surfaces is 1.0 ± 0.1s which is approximately double
the 0.5 ± 0.1s constant observed in pure 3He. Similar results
were obtained for the quartz tuning fork. Interestingly, the
time constant was found to not vary with the wire velocity
of the DC pulse. The time constant is thus independent of
the energy released by the DC pulse at least when the
energy released is varied from 5 to 100 pJ (wire velocities
of $2 - 50 \text{ mm s}^{-1}$). Furthermore, the thermalization time con-
stant τ_0 is independent of temperature for both types of cov-
erages, which is demonstrated in Fig. 3. According to Eq. (2),
this demonstrates an exponential temperature dependence on
Kapitza resistance in both cases, and leads to the conclusion
that preplating with solid 4He doubles the Kapitza resistance.

In the above analysis we have assumed that only the bulk
3He heat capacity is relevant. It is known that the solid
3He layer in a magnetic field and at low temperatures can
have a large contribution. Elbs et al. measured the surface

effective boundary resistance R_K, area A, and the heat capacity
C_B of superfluid 3He-B [4],

$$AR_K = \frac{\tau_b}{C_B}.$$ \hspace{1cm} (2)

The contribution to the overall heat capacity for a 0.13 cm3
container of 3He and found that at higher temperatures around
0.16–0.19 mK in a similar magnetic field to our measure-
ments the heat capacities of solid and liquid helium were
roughly equal [23]. For our much larger volume of 8.6 cm3
the contribution to heat capacity from the superfluid 3He-B
is much more than the contribution to heat capacity from any
solid layers, thus we neglect this heat capacity.

IV. DISCUSSION

The exponential temperature dependence is entirely con-
sistent with that previously reported by Parpia [4], Castelijns
et al. [3], and Carney et al. [14]. Thermalization time τ_b
reported by Castelijns et al. is about ten times larger. In that
work an electrical heater was used to create heating bursts,
which likely created a bubble of normal fluid around the
heater and altered the time constant [3]. The advantage of
our method is the direct creation and relaxation of quasipar-
ticles. The wire moving at supercritical velocities does not
destroy the bulk superfluid state [20]. Therefore, we ob-
serve purely the dynamics of the quasiparticles, which in
the ballistic regime governs the heat transport properties of the
superfluid.

Consider a superfluid quasiparticle excited by the DC
pulse. The quasiparticle travels with group velocity v_g
which is approximately 20 m s$^{-1}$ at these temperatures and pressure.
Due to the superfluid energy gap, when the quasiparticle
scatters with a wall it has a chance to either scatter elastically
or lose energy Δ_B and recombine into a Cooper pair. The
recombination results in a reduction of the overall superfluid
temperature. However, losing enough energy for recombin-
a tion after scattering with cell walls is extremely unlikely and
quasiparticle-quasiparticle interactions can be neglected in the
ballistic regime, hence only scattering with sinter matters.
The pore size in the sinter is roughly equal to the coherence
TABLE I. Experimental cells for each measurement. The interfacial area is the area of all plate faces covered in sinter and the microscopic area is the area of the sintered powder’s spongelike surface. The geometric area is the sintered plate surfaces that face the experimental volume containing the large wire with no other sintered surfaces between it and the volume (see text). The experimental volume quoted for this work excludes the tail piece, in which a small hole limited heat flow into the tail piece volume. However, the tail piece volume is not large and its inclusion would not change the results significantly.

Cell	Experimental volume (cm3)	Sinter area	Sinter mass (g)
This work	8.6	0.21	80
Castelijns et al. [3]	1.0	0.011	22
Carney et al. [14]	1.0	0.17	41

length of the superfluid pairs which is around 80 nm at zero pressure [2,24]. Hence, the sinter could appear as a wall of metal and high normal fluid density to any approaching quasiparticle [25].

We can estimate the number of collisions needed for a quasiparticle to eventually recombine by considering its motion in a cubic box of dimension d with only one thermally conductive wall due to the sintered copper plates. The time it takes to traverse from one wall to another is roughly $t_{\text{col}} = d/v_d$ and the average time taken for there to be no more collisions is approximately t_b. Therefore the probability of collision successfully leading to recombination is $P = e^{-t_b/t_{\text{coll}}}$. This gives an estimate on the order of 1000 collisions needed for a quasiparticle to lose its energy with the sinter and recombine.

For 3He coverage we also observed a similar magnetic field dependence as measured by Osheroff and Richardson [26] with pure 3He. About a 20% increase was observed in t_b as the field was doubled from 63 to 125 mT. This confirms the conclusion that magnetic impurities in the sinter also reduce the Kapitza resistance, and that this reduction is independent of the magnetic layers of solid 3He that form on all surfaces in the absence of 4He preplating.

The simple quasiparticle collision model described above assumes that the sinter is a flat surface in just one side of the cell. In contrast, our experimental cell has many plates of sinter and many of these plates are behind other plates. However, we may assume that a quasiparticle in the experimental volume has a significant chance of scattering only with sinter that is near the experimental volume and has no other plates or walls between it and the volume. We define a "geometric area" which consists of only the faces of the sintered plates that are in direct contact with this volume. We treat this area as if it has no gaps, meaning a quasiparticle cannot travel around the small gap between plates and the cell walls. This also means we assume the areas made of a collection of plates pushed together, such as the one just above the vibrating wire thermometer, as continuous. In reality there are small gaps. We can then test our assumption and the model by comparing our values of thermal boundary resistance to those obtained by Castelijns et al. and Carney et al. using the same silver powder and sintering technique as used in this work [16].

We fit zero-pressure data from Castelijns et al. and Carney et al. with a function that uses the BCS gap $\Delta_B = 1.76k_B T_c$. We compare several different areas for use in Eq. (2): the geometric area described above; the microscopic area, the area of all the sinter when not treated as a flat surface at the microscopic level; and the interfacial area, calculated by the area of all plates in the cell. Table I gives details of the volumes and different areas for each experiment.

We find that the geometric area gives good agreement with our results, shown in Fig. 4. Moreover, this is the only area that gives any agreement. Notably, both experiments by Carney et al. and Castelijns et al. have the exact same cell geometry in terms of geometric area, but the ratio between the measured boundary resistances at the lowest temperatures was about 2.5. Our data points lie closer to the results of Castelijns et al., or between the two lines if the tail piece volume is included in the calculation of the heat capacity in Eq. (2).

The difference between the results of Castelijns et al. and Carney et al. comes from the assumption that gaps between plates do not matter. In reality, a quasiparticle may go between the gaps and begin colliding within the plates. Since there is a much shorter distance between these two close plates, a quasiparticle has much less time between the collisions resulting in quicker recombination. Naturally, the chances of a quasiparticle going inside a gap will increase with the number of collisions, which is why our results are lower than the geometric area from Castelijns et al. and Carney et al.

![FIG. 4. The effective thermal boundary resistance R_K multiplied by the “geometric” sinter scattering area A for quasiparticles created by the wire as a function of inverse temperature. $T_c = 929$ μK is the critical temperature of superfluid 3He at zero pressure. The gold and red lines are fits for data from Refs. [3,14], respectively, and converted into thermal boundary resistance. For comparison, our data shown are only in pure 3He. They lie mostly on the gold line, or between the two lines if the tailpiece volume is included.](064508-4)
of gaps. In Castelijns et al., the cell had twelve 1-mm-thick plates, and a square was cut out of seven to form a 1 cm\(^3\) box. In Carney et al., 92 plates of 0.1 mm were used, resulting in many more gaps and the lower Kapitza resistance seen in Fig. 4. In our cell, there is a combination of both thick and thin plates, and our values lie closer to those reported from Castelijns et al. Therefore, the sinter plate layout is the likely explanation for the different outcomes obtained by these three experiments.

The difference between the two types of coverage, we believe, is due to different magnetic properties of the two. It has long been thought that a magnetic channel for transfer of heat is key to explaining the observed difference in Kapitza resistance between experiment and theory [27]. Further evidence was added by König et al., who saw a large difference in the performance of different brands of silver powder [8,9,28]. They concluded that Ulvac powder has a larger content of magnetic impurities and a lower Kapitza resistance at millikelvin temperatures. Incidentally, we, Osheroff and Richardson [26], Castelijns et al. [3], and Carney et al. [14] all used the 70-nm Ulvac powder, which has the highest magnetic impurity content of all brands and sizes measured by König et al.

V. CONCLUSIONS

We have demonstrated that in the ballistic regime the thermal boundary resistance between sintered metal and \(^3\)He is dominated by the collisions of quasiparticles with sinter walls. The probability of an eventually recombining collision can be calculated using the thermal time constant. The probability is surprisingly very low, on the order of one in a thousand. By considering the geometric surface area quasiparticles have available to scatter with, we find good agreement of Kapitza resistance with previous measurements. To increase the thermal boundary conductivity it is therefore important to increase the frontal surface area the particles can collide with in the experimental volume.

When designing cells for ultralow-temperature experiments, increasing the geometric surface in contact with the \(^3\)He is an important factor. Future designs should aim to increase the contact area, possibly by using ridgelike protrusions.

It is also important to consider the magnetic properties of the surface the quasiparticles scatter with. Covering the surfaces with two layers of nonmagnetic solid \(^4\)He doubles the thermal boundary resistance. This provides further evidence of a magnetic energy transfer channel between liquid \(^3\)He and metals to explain deviations in Kapitza resistance from theory. A well-developed theory explaining the Kapitza resistance at ultralow temperatures should include the magnetic properties and future sinter designs should aim at utilizing magnetic impurities.

It would be beneficial to extend the scope of the measurements by increasing the temperature range and probing different phases. Unfortunately, the described bolometry method can only be applied in the ballistic regime of the B phase and cannot be used in the A phase. Therefore, we were unable to make a similar measurement in the A phase. The method of heat transfer from superfluid \(^3\)He-A to sinter at ultralow temperatures is an interesting question for further work, since the propagation of quasiparticles is significantly different [29]. One would assume it is unlikely that the result in the B phase would then apply, but earlier measurements of the A phase found an exponential dependence on temperature similar to that in the B phase between 230 and 450 μK at zero pressure [30].

All data used in this article are available in Ref. [31], including descriptions of the data sets.

ACKNOWLEDGMENTS

We acknowledge M. G. Ward and A. Stokes for their excellent technical support. This work was funded by UK EPSRC (Grants No. EP/P024203/1 and No. EP/P022197/1) and EU H2020 European Microkelvin Platform (Grant Agreement No. 824109). S.A. acknowledges support from the Jenny and Antti Wihuri Foundation.

[1] T. Nakayama, Kapitza thermal boundary resistance and interactions of helium quasiparticles with surfaces, in Progress in Low Temperature Physics (Elsevier, Amsterdam, 1989), Chap. 3, Vol. 12, pp. 115–194.
[2] H. Franco, J. Bossy, and H. Godfrin, Properties of sintered silver powders and their application in heat exchangers at millikelvin temperatures, Cryogenics 24, 477 (1984).
[3] C. A. M. Castelijns, K. F. Coates, A. M. Guénault, S. G. Mussett, and G. R. Pickett, Exponential Temperature Dependence of the Thermal Boundary Conductance between Sintered Silver and \(^3\)He-B in the Region of Low Normal Fluid Density, Phys. Rev. Lett. 55, 2021 (1985).
[4] J. M. Parpia, Anomalous thermal boundary resistance of superfluid \(^3\)He-B, Phys. Rev. B 32, 7564 (1985).
[5] A. P. J. Voncken, D. Riese, L. P. Roobol, R. König, and F. Pobell, Thermal boundary resistance between liquid helium and silver sinter at low temperatures, J. Low Temp. Phys. 105, 93 (1996).
[6] S. M. Tholen and J. M. Parpia, Effect of \(^4\)He on the surface scattering of \(^3\)He, Phys. Rev. B 47, 319 (1993).
[7] L. V. Levitin, R. G. Bennett, A. Casey, B. Cowan, J. Saunders, D. Drung, T. Schurig, and J. M. Parpia, Phase diagram of the topological superfluid \(^3\)He confined in a nanoscale slab geometry, Science 340, 841 (2013).
[8] R. König, T. Herrmannsdörfer, A. Schindler, and I. Usherov-Marshak, The origin of the magnetic channel of the thermal boundary resistance between liquid \(^3\)He and Ag sinters at very low temperatures, J. Low Temp. Phys. 113, 969 (1998).
[9] R. König, T. Herrmannsdörfer, and I. Batko, Magnetization of Ag Sinters Made of Compressed Particles of Submicron Grain Size and their Coupling to Liquid \(^3\)He, Phys. Rev. Lett. 80, 4787 (1998).
[10] V. V. Dmitriev, A. A. Senin, A. A. Soldatov, and A. N. Yudin, Polar Phase of Superfluid \(^3\)He in Anisotropic Aerogel, Phys. Rev. Lett. 115, 165304 (2015).
[11] A. M. Zimmerman, M. D. Nguyen, J. W. Scott, and W. P. Halperin, Effect of Magnetic Impurities on Superfluid 3He, Phys. Rev. Lett. 124, 025302 (2020).
[12] P. J. Heikkinen, A. Casey, L. V. Levitin, X. Rojas, A. Vorontsov, P. Sharma, N. Zhelev, J. M. Parpia, and J. Saunders, Fragility of surface states in topological superfluid 3He, arXiv:1909.04210.
[13] V. V. Dmitriev, A. A. Soldatov, and A. N. Yudin, Effect of Magnetic Boundary Conditions on Superfluid 3He in Nematic Aerogel, Phys. Rev. Lett. 120, 075301 (2018).
[14] J. P. Carney, K. F. Coates, A. M. Guénault, G. R. Pickett, and G. F. Spencer, Thermal behavior of quasiparticles in 3He-B, J. Low Temp. Phys. 76, 417 (1989).
[15] D. J. Cousins, S. N. Fisher, A. M. Guénault, G. R. Pickett, E. N. Smith, and R. P. Turner, T^{-1} Temperature Dependence and a Length Scale for the Thermal Boundary Resistance between a Saturated Dilute 3He-4He Solution and Sintered Silver, Phys. Rev. Lett. 73, 2583 (1994).
[16] V. Keith and M. Ward, A recipe for sintering submicron silver powders, Cryogenics 24, 249 (1984).
[17] S. Autti, R. P. Haley, A. Jennings, G. R. Pickett, R. Schanen, A. A. Soldatov, V. Tsepelin, J. Vonka, T. Wilcox, and D. E. Zmeev, Fundamental dissipation due to bound fermions in the zero-temperature limit, arXiv:2002.10865.
[18] A. M. Guénault, V. Keith, C. J. Kennedy, S. G. Mussett, and G. R. Pickett, The mechanical behavior of a vibrating wire in superfluid 3He-4He in the ballistic limit, J. Low Temp. Phys. 62, 511 (1986).
[19] D. E. Zmeev, A method for driving an oscillator at a quasi-uniform velocity, J. Low Temp. Phys. 175, 480 (2014).
[20] D. I. Bradley, S. N. Fisher, A. M. Guénault, R. P. Haley, C. R. Lawson, G. R. Pickett, R. Schanen, M. Skyba, V. Tsepelin, and D. E. Zmeev, Breaking the superfluid speed limit in a fermionic condensate, Nat. Phys. 12, 1017 (2016).
[21] C. Winkelmann, J. Elbs, Y. M. Bunkov, E. Collin, H. Godfrin, and M. Krusius, Bolometric calibration of a superfluid 3He detector for dark matter search: Direct measurement of the scintillated energy fraction for neutron, electron and muon events, Nucl. Instrum. Methods Phys. Res. Sect. A 574, 264 (2007).
[22] C. Bäuerle, Y. M. Bunkov, S. N. Fisher, and H. Godfrin, Temperature scale and heat capacity of superfluid 3He-4He in the 100 μK range, Phys. Rev. B 57, 14381 (1998).
[23] J. Elbs, C. Winkelmann, Y. M. Bunkov, E. Collin, and H. Godfrin, Heat capacity of adsorbed helium-3 at ultra-low temperatures, J. Low Temp. Phys. 148, 749 (2007).
[24] J. Serene and D. Rainer, The quasiclassical approach to superfluid 3He, Phys. Rep. 101, 221 (1983).
[25] T. Hall, S. M. Tholen, K. R. Lane, V. Kotsubo, and J. M. Parpia, The superfluid fraction of 3He confined in pores of sintered silver, J. Low Temp. Phys. 89, 897 (1992).
[26] D. D. Osheroff and R. C. Richardson, Novel Magnetic Field Dependence of the Coupling of Excitations between Two Fermion Fluids, Phys. Rev. Lett. 54, 1178 (1985).
[27] O. Avenel, M. P. Berglund, R. G. Gylling, N. E. Phillips, A. Vetleseter, and M. Vuorio, Improved Thermal Contact at Ultralow Temperatures between 3He and Metals Containing Magnetic Impurities, Phys. Rev. Lett. 31, 76 (1973).
[28] R. König, T. Herrmannsdörfer, D. Riese, and W. Jansen, Magnetic properties of Ag sinters and their possible impact on the coupling to liquid 3He at very low temperatures, J. Low Temp. Phys. 106, 581 (1997).
[29] G. Pickett, M. Enrico, S. Fisher, A. Guénault, and K. Torizuka, Superfluid 3He at very low temperatures: A very unusual excitation gas, Physica B: Condens. Matter 197, 390 (1994).
[30] S. N. Fisher, A. M. Guénault, A. H. Jones, C. J. Kennedy, and G. R. Pickett, Exponential boundary resistance between superfluid 3He-3He-A and silver sinter at temperatures down to 230 μK, Europhys. Lett. 16, 385 (1991).
[31] https://doi.org/10.17635/lancaster/researchdata/382