Surgical management of pancreatic neuroendocrine tumors

Jilesen, A.P.J.

Citation for published version (APA):
Jilesen, A. P. J. (2015). Surgical management of pancreatic neuroendocrine tumors.
CHAPTER 2

Postoperative complications, in-hospital mortality and 5-year survival after surgical resection for patients with a pancreatic neuroendocrine tumor.

A systematic review

Anneke P.J. Jilesen
Casper H.J. van Eijck
Klaas H. in ’t Hof
Susan van Dieren
Dirk J. Gouma
Els J.M. Nieveen van Dijkum
ABSTRACT

Background: Studies on postoperative complications and survival in patients with pancreatic neuroendocrine tumors (pNETs) are sparse and randomized controlled trials are not available. We reviewed all studies on postoperative complications and survival after resection of pNETs.

Method: A systematic search was performed in the Cochrane Central Register of Controlled Trials, MEDLINE and EMBASE from 2000-2013. Inclusion criteria were studies of resected pNETs, which described postoperative complications separately for each surgical procedure and/or 5-year survival after resection. Prospective and retrospective studies were pooled separately and overall pooled if heterogeneity was below 75%. The random-effect model was used.

Results: Overall, 2643 studies were identified and after full-text analysis 62 studies were included. Pancreatic fistula (PF) rate of the prospective studies after tumor enucleation was 45%; PF-rates after distal pancreatectomy, pancreatoduodenectomy or central pancreatectomy were resp. 14%-14%-58%. Delayed gastric emptying rates were resp. 5%-5%-18%-16%. Postoperative haemorrhage rates were resp. 6%-1%-7%-4%. In-hospital mortality rates were resp. 3%-4%-6%-4%. The 5-year overall survival (OS) and disease specific survival (DSS) of resected pNETs without synchronous resected liver metastases were resp. 85%-93%. Heterogeneity between included studies on 5-year OS in patients with synchronous resected liver metastases was too high to pool all studies. The 5-year DSS in patients with liver metastases was 80%.

Conclusion: Morbidity after pancreatic resection for pNET was mainly caused by PF. Liver resection in patients with liver metastases seems to have a positive effect on DSS. To reduce heterogeneity between studies on pNET, a uniform description of the postoperative outcome and survival is needed.
INTRODUCTION

Given the rarity of pancreatic neuroendocrine tumors (pNETs), well-designed randomized controlled trials on surgical treatment for pNET are not available1–3. Most studies are cohort studies or case reports and therefore the level of evidence in studies on surgical treatment of pNETs is limited to level III.

Studies on postoperative complications and in-hospital mortality often describe pNETs as part of a larger study population. These studies include patients with pancreatic ductal adenocarcinoma, intraductal papillary mucinous neoplasm (IPMN), chronic pancreatitis, pancreatic adenomas as well as pNETs4–6. These diagnoses may influence the postoperative complication rate and operative mortality. It is well known that patients with pancreatitis have a lower postoperative pancreatic fistula rate compared to non-pancreatitis patients7. Furthermore, postoperative complications after pancreatic surgery for pNET is influenced by the type of surgery, such as pancreatoduodenectomy, distal pancreatectomy, central pancreatectomy or enucleation8–11. Studies analyzing postoperative complications caused by the different surgical procedures in patients with pNET are limited.

Survival of pNET patients is mainly affected by metastasis found at the time of diagnosis. The overall 5-year survival of non-functional pNETs in patients with distant metastases (M1) is 43% with a median survival of 23 months. In contrast, patients with resected functional pNETs without metastases (M0) have a survival rate of 90-100%2,3. Survival is often presented by tumor stages but different staging systems are used, e.g. American Joint Committee on Cancer (AJCC) staging or European Neuro Endocrine Tumor Society (ENETS) staging system12,13. Another difficulty in analyzing survival of patients with pNETs after resection is the inclusion of non-hereditary and hereditary patients in the same cohort. Survival outcome of patients Multiple Endocrine Neoplasia type 1 (MEN-1) or Von Hippel-Lindau (VHL) disease may be influenced since these tumors are often early diagnosed and indication for the surgical treatment can be different3.

Considering the limitations of most studies as summarized, the aim of this study was to systematic review all studies on postoperative complications and 5-year survival in patients with resected pNETs.

METHODS

Search methods and Identification of studies
All types of study, including cohort, case-control or case series and languages, were included. Inclusion period ranged from January 2000 till December 2013. In 2000 the WHO classification was introduced and clearly defined the phenotypes of NETs and their clinicopathological conditions. In order to reduce ambiguities and heterogeneity on pathological origin, studies
before from 2000 were included14. The Cochrane Central Register of Controlled trials (CENTRAL) in the Cochrane Library, MEDLINE and EMBASE were searched for studies. Also the references of the identified studies were searched to identify suitable studies.

The search strategy was supervised by the local librarian and the query terms “neuroendocrine tumor”, “carcinoid”, “pancreas”, “foregut”, “pNET”, “GEP-NET”, “pancreatoduodenectomy”, “enucleation”, “pancreatectomy”, “complications”, “fistula”, “bleeding”, “delayed gastric emptying”, “survival” or every possible variants of these terms were used. Two authors (APJJ, EJMND) independently reviewed all included studies on title and abstract and later on full text.

Inclusion criteria were all studies on resected pNETs in which the postoperative complications, in-hospital mortality or survival after surgical resection was described. Postoperative complications were defined as pancreatic fistula, delayed gastric emptying, bleeding and mortality as in-hospital mortality after resection. Finally, at least 10 patients with a pNET had to be included in the study to reduce bias and heterogeneity and to enhance scientific relevance. Studies were scored as invalid if the patients were analyzed as a part of a larger cohort of none-pNET and the data of the patients with a pNET could not be extracted from full text analysis. Also, if not all described patients had undergone surgery and/or the resected patients have not been described separately or if studies described the postoperative complications or in-hospital mortality of the entire group and not specific after one surgical procedure, studies were scored as invalid. Finally, in order to improve homogeneity, studies were excluded from the 5-year survival analysis if all the patients of the study were affected with the MEN-1-syndrome/VHL disease or if all the included patients in the study had liver metastasis at time of surgery.

Data collection and statistical analysis

After screening on title and abstract, a full text screening was performed to determine if the studies fulfilled the inclusion criteria. Data of postoperative complications, in-hospital mortality and survival were extracted. If possible, the complications were scored according the ISGPF/S criteria15–17. An overall (grade A/B/C) pancreatic fistula rate and if possible a grade B/C pancreatic fistula rate was calculated. If the grade B/C pancreatic fistula rate was not described in detail, that study was only included in the overall pancreatic fistula proportion analysis. The same yields for delayed gastric emptying and postoperative haemorrhage. The variables of the postoperative complications and in-hospital mortality were analysed for each surgical procedure. Studies on survival were only included if the overall 5-year survival and/or the 5-year disease specific survival after curative resection could be extracted in patients with and/or without curative resected liver metastases. No strict definitions of a curative resection were enforced. If the survival was analysed based on resection margins, the R0 resection margin was used.
Postoperative complications, in-hospital mortality and 5-year survival were given in proportions with a 95% confidence interval (CI) and a meta-analysis of these proportions was performed with R18. The random effects model was used for expected heterogeneity. The I2 statistics was used to measure the consistency between the studies in the meta-analysis. If the I2 statistics was above 75%, the heterogeneity was considerable and the results of proportion analysis were not suitable for a meta-analysis19–21. In order to make a distinction in the quality of the studies, prospective and retrospective studies were analyzed separately. From all the prospective and retrospective studies an estimated pooled proportion was calculated and if the I2 statistics were both below 75%, all studies were pooled in an overall proportion.

Assessment of risk of bias

For the assessment of the risk of bias, the methodological index for non-randomized studies (MINORS) was used22. The MINORS contains 8 items: clear stated aim, inclusion consecutive patients, prospective data collection, endpoints appropriate to aim, unbiased assessment of the endpoint, appropriate follow-up period, loss to follow-up < 5% and prospective calculation of study size. Based on these 8 items, the included studies will be scored to a 3-point scale from 0 to 2. An item scored 0 if the item was not reported. An item scored 1, if it was reported but inadequate and an item scored 2 if it was reported and adequate. The ideal total score would be 16. An appropriate follow-up for the studies included in the survival analysis was at least 40 months. If it was not exactly described whether all the patients were included in the follow-up, the study scored 1 point in “lost to follow-up”.

2

POSTOPERATIVE COMPLICATIONS, IN-HOSPITAL MORTALITY AND 5-YEAR SURVIVAL AFTER SURGICAL RESECTION
RESULTS

A total of 2643 studies were identified through searching the different databases, including Cochrane Central Register of Controlled trials (CENTRAL) in the Cochrane Library, MEDLINE and EMBASE. A total of 511 duplicate studies were excluded, as depicted in figure 1, therefore 2132 references were suitable for further assessment. Of all these references, 1956 were excluded because they did not meet the inclusion criteria or the studies were invalid. Initially 176 studies were included in the full-text search and after these articles looked through, 114 studies were withdrawn by their outcome. Finally, 62 studies were included in this meta-analysis, 10 studies for postoperative complications, in-hospital mortality and survival analysis, 16 studies for only postoperative outcome analysis and 36 for only survival analysis, as depicted in figure 1.

[Table showing search strategy]

Figure 1. Flow Chart of the search strategy
Postoperative complications

Pancreatic fistula

Estimated pooled pancreatic fistula (PF) rate after tumor enucleation was 45% (95% CI: 34-57%, I^2: 57%), based on 6 prospective studies with 220 included patients. Heterogeneity of the 16 retrospective studies was too high to pool all 22 studies, as depicted in figure 2. Overall PF rate grade B/C after tumor enucleation was 27% (95%CI 19-37%), based on 8 studies with a total of 324 included patients (see appendix figure 1). Overall PF rate after distal pancreatectomy was 14% (95%CI 10-19%), based on 18 studies with a total of 383 included patients, as depicted in figure 3. The overall grade B/C PF rate after distal pancreatectomy was 8% (95%CI 2-35%), based on 2 studies with a total of 74 included patients (see appendix figure 2). Overall PF rate after pancreatoduodenectomy was 14% (95%CI 9-21), based on 11 studies with a total amount of 171 included patients as depicted in figure 4. None of these studies described grade B/C PF rate in detail. Overall PF rate after central pancreatectomy was 58% (95%CI 41-73%), based on 4 studies with a total of 56 included patients (see appendix figure 3). Two studies described grade B/C PF rate ranging from 12% to 41% (see appendix figure 4). Heterogeneity was too high to perform a pooled meta-analysis (I^2 77%).

Delayed gastric emptying

Delayed gastric emptying (DGE) was rarely reported and only the overall DGE rate was analyzed since none of the included studies made a distinction based on the ISGPS criteria. Overall DGE rate after tumor enucleation was 5% (95%CI 2-10%) based on six studies with a total amount of 231 included patients (see figure 5). Overall DGE rate after distal pancreatectomy was 5% (95%CI 1-19%, I^2: 12%) based on three studies with a total of 62 included patients, after pancreatoduodenectomy 18% (95%CI 10-31%, I^2: 0%) based on three studies with a total of 51 included patients (see figure 7) and after central pancreatectomy, 16% (95%CI 1-71%, I^2: 73%) (see appendix figure 5).

Postoperative haemorrhage

Postoperative haemorrhage was often not exactly defined according the ISGPS criteria in most studies. Therefore, a distinction between grade A and B/C haemorrhage could not be made. Six studies described the overall postoperative haemorrhage rate after tumor enucleation with a total amount of 254 included patients (see figure 8). In these studies the overall postoperative haemorrhage rate was 6% (95%CI 3-12%) as depicted in figure 9. Overall postoperative haemorrhage rate after pancreatoduodenectomy was 7% (95%CI 3-15%, I^2: 0%), based on four studies with a total of 77 included patients (see figure 10) and after central pancreatectomy 4% (95%CI 1-16%, I^2: 0%), based on 2 studies (see appendix figure 6).
In-hospital mortality
Overall pooled in-hospital mortality rate after tumor enucleation was 3% (95%CI 2-5%), based on 20 studies with a total amount of 624 patients29-40,42,44-48,54,57 (see appendix figure 7). The overall pooled in-hospital mortality after distal pancreatectomy was 4% (95%CI 2-7%)23,24,29-37,39,42,44,53,54, based on 16 studies with a total of 267 included patients (see appendix figure 8) and 6% after pancreatoduodenectomy (95%CI 3-12%), based on 10 studies with a total of 146 included patients23,29-31,34,44,54-56 (see appendix figure 9). The overall pooled in-hospital mortality after central pancreatectomy was 4% (95%CI 1-16%), based on 3 studies with a total of 51 included patients (see appendix figure 10)25,28,34.

Survival analysis
The 5-year overall and disease specific survival in patients without liver metastases
In the survival analysis, a distinction is made between studies including patients with or without resected liver metastases. In the overall 5-year survival analysis of the resected patients without liver metastases, 15 studies were analyzed with a total of 3089 included patients36,47,50,58-69. The heterogeneity between the prospective studies was too high to perform a pooled meta-analysis (I\^2 95%), mainly caused by the study of Bilimoria et al69. The estimated pooled proportion of the overall 5-year survival of the retrospective studies was 85% (95%CI 78-90%, I\^2 73.5%), see figure 11. In the 5-year disease specific survival (DSS) analysis, 6 studies were included with a total amount of 420 patients52,59,61,70-72. The overall pooled 5-year DSS after pancreatic resection was 93% (95%CI 88-96%), see appendix figure 11.

The 5-year overall and disease specific survival in patients with liver metastases
In all the included studies, at least one patient per study had resected liver metastases. In the 5-year overall survival analysis, 23 studies were included with a total amount of 1540 patients35,44,54,57,73-91. The heterogeneity was too high to perform an overall pooled proportion analysis, most studies included a proportion of high grade pNET (see figure 12). Four retrospective studies with a total of 207 included patients described the 5-year disease specific survival in patients with liver involvement. The overall pooled 5-year DSS was 80% (95CI 66-90%, I\^2 70%), see appendix figure 1292-95.

Assessment of risk of bias
On overview of the risk of bias of all the included studies is listed in table 1. The variety of the total points ranged from 5 to 12 points. None of the studies scored on unbiased assessment of the study endpoint or prospective calculation of the study size. Overall, 33/62 studies (53%) had a high MINOR score of ≥10 and only 8 studies (13%) had a low MINOR score ≤7.
Study	Inclusion	Clear stated aim	Inclusion consecutive patients	Prospective data collection
Niedergethmann et al, 2001	C	1	2	0
Solorzano et al, 2001	S	1	2	0
Chu et al, 2002	S	2	2	0
Matthews et al, 2002	C	2	2	0
Sarmiento et al, 2002	B	1	2	0
Guo et al, 2004	C	1	2	0
Norton et al, 2003	C	2	2	0
Jarufe et al, 2005	B	2	2	1
Moo Kang et al, 2005	S	2	2	0
Sledzianowski et al, 2005	C	2	2	2
Tomassetti et al, 2005	S	2	2	2
Vagefi et al, 2005	S	2	2	0
Bloomston et al, 2006	S	2	2	0
Chung et al, 2006	C	1	2	0
Kazanjian et al, 2006	B	2	2	0
Winter et al, 2006	S	1	2	0
Bahra et al, 2007	S	2	2	1
Casanova et al, 2007	C	0	2	0
Chul Chung et al, 2007	S	2	2	0
Liu et al, 2007	C	2	2	0
Nguyen et al, 2007	S	2	2	0
Schurr et al, 2007	S	2	2	0
Bettini et al, 2008	S	2	2	2
Bilimoria et al, 2008	S	2	2	2
Bonney et al, 2008	S	1	2	0
Fernández- Cruz et al, 2008	C	2	2	2
Fischer et al, 2008	S	2	2	2
Jagad et al, 2008	B	1	2	0
Study Inclusion

Clear stated aim

- Prospective data collection
- Appropriate endpoints
- Unbiased assessment of endpoint
- Appropriate follow-up period
- Loss to follow-up <5%
- Prospective calculation of study size
- Total points

Endpoints appropriate to aim	Unbiased assessment of endpoint	Appropriate follow-up period	Loss to follow-up <5%	Prospective calculation of study size	Total points
1	0	2	2	0	8
1	0	1	2	0	7
2	0	1	2	0	9
2	0	2	2	0	10
1	0	2	1	0	7
1	0	1	1	0	6
2	0	1	2	0	9
2	0	1	2	0	10
2	0	2	2	0	9
2	0	2	2	0	12
2	0	2	1	0	9
2	0	2	2	0	10
1	0	2	2	0	8
2	0	2	2	0	10
1	0	2	2	0	8
2	0	2	2	0	11
0	0	2	2	0	6
2	0	1	2	0	9
2	0	2	2	0	10
2	0	2	2	0	10
2	0	2	2	0	10
2	0	2	2	0	12
2	0	2	2	0	12
1	0	1	1	0	6
2	0	2	2	0	12
2	0	1	2	0	11
1	0	2	2	0	8
Study	Inclusion C / S / Bⁱ	Clear stated aim	Inclusion consecutive patients	Prospective data collection	
------------------------------	---------------------------------	------------------	--------------------------------	-----------------------------	
Ruiz-Tovar et al, 2008	B	0	2	0	
Ballian et al, 2009	S	2	2	2	
Goh et al, 2009	C	2	2	0	
Pitt et al, 2009	B	2	2	0	
Casadei et al, 2010	S	2	2	1	
Falconi et al, 2010	C	2	2	2	
Franko et al, 2010	S	2	2	0	
Goh et al, 2010	S	2	2	0	
Ito et al, 2010	S	2	2	0	
Pomianowska et al, 2010	S	2	2	0	
Scarpa et al, 2010	S	2	2	2	
Arvold et al, 2012	S	2	2	0	
Bettini et al, 2011	S	2	2	0	
Fernández-Cruz et al, 2012	C	2	2	2	
Hu et al, 2011	C	2	2	0	
Krausch et al, 2011	S	2	1	0	
Sellner et al, 2011	S	2	2	0	
Wang De-shen et al, 2011	S	2	2	0	
Wang Shin-E et al, 2011	S	2	2	0	
Boninsegna et al, 2012	S	2	2	2	
Cherif et al, 2012	B	2	2	2	
Crippa et al, 2012	C	2	2	1	
Dahdaleh et al, 2012	S	2	2	0	
Inchauste et al, 2012	C	2	2	0	
Kim et al, 2012	S	2	2	0	
Krampitz et al, 2012	S	2	2	2	
Poultsides et al, 2012	B	2	2	0	
Tsuchikawa, et al, 2012	S	2	2	0	
Study Inclusion

- Clear stated aim
- Consecutive patients
- Prospective data collection
- Appropriate endpoints
- Unbiased assessment of endpoint
- Appropriate follow-up period
- Loss to follow-up <5%
- Prospective calculation of study size
- Total points

Endpoints appropriate to aim	Unbiased assessment of endpoint	Appropriate follow-up period	Loss to follow-up <5%	Prospective calculation of study size	Total points
0	0	2	1	0	5
2	0	2	1	0	11
2	0	2	1	0	9
2	0	1	2	0	9
2	0	2	2	0	11
2	0	2	2	0	12
2	0	1	2	0	9
2	0	1	2	0	9
2	0	2	2	0	10
2	0	2	2	0	10
2	0	2	2	0	12
2	0	1	2	0	9
2	0	2	2	0	10
2	0	2	2	0	10
2	0	2	2	0	12
2	0	2	2	0	12
2	0	2	2	0	11
2	0	2	2	0	9
2	0	2	2	0	10
2	0	2	2	0	10
2	0	2	2	0	12
2	0	2	2	0	12
2	0	1	2	0	9
2	0	2	2	0	10
2	0	1	2	0	8
2	0	1	2	0	12
2	0	1	2	0	8
2	0	1	2	0	8

POSTOPERATIVE COMPLICATIONS, IN-HOSPITAL MORTALITY AND 5-YEAR SURVIVAL AFTER SURGICAL RESECTION
Inclusion

C / S / B1

Clear stated

aim

Consecutive

patients

Prospective
data

collection

Tsutsumi et al, 2012

S

2

2

0

Zhang et al, 2012

C

2

2

0

Cherenfant et al, 2013

S

1

2

0

Haugvik et al, 2013

B

2

2

0

Martin-Perez et al, 2013

S

2

2

2

Watzka et al, 2013

B

2

2

0

1 study included in (c) complication analysis, (s) survival analysis or (b) both complication and survival analysis.

DISCUSSION

This is the first systematic review including a proportion analysis on postoperative complications, in-hospital mortality and 5-year survival in patients with a pancreatic neuroendocrine tumor. Pooled PF rate after tumor enucleation of the prospective studies was high (45%) compared to overall pooled PF rate after distal pancreatectomy (14%) and pancreatoduodenectomy (14%). In patients with other diagnosis including pancreatic adenocarcinoma, the overall incidence of PF after pancreatoduodenectomy ranges from 2% up to more than 20%96–99 and after distal pancreatectomy from 12-32%100-104. This is coherent with the incidence of PF in patients with pNET in our review. Since the presence of PF accounts in the majority of cases for a prolonged hospital stay, the high incidence of these complications after tumor enucleation is alarming.

The analysis of postoperative complications in pancreatic surgery is more uniform since the clear definitions of these complications by the International Study Group of Pancreatic Surgery (ISGPS)15–17. The number of studies suitable for inclusion in the proportion analysis for pancreatic fistula grade B/C was limited. Most studies on grade B/C fistula (or delayed gastric emptying and postoperative haemorrhage) included patients with different underlying diseases. Patients with pNET were part of the studied cohort. These studies were not included in this review. Tumor enucleation is mainly indicated for pNET and therefore the number of studies for proportion analysis on grade B/C pancreatic fistula was relatively high compared to the other procedures (appendix figure 1). In future studies, we encourage the use of the ISGPS criteria in the analysis of postoperative complications and to describe the patients with pNET separately.
Recently, Hüttner et al described a high incidence of pancreatic fistula after tumor enucleation in patients with all types of pancreatic neoplasms. Although the authors conclude that a tumor enucleation can be performed safely and is considerable instead of a standard resection, this conclusion should be interpreted with caution. Even in high volume centres, the incidence of pancreatic fistula was comparable after both tumor enucleation and standard resection (both 23%) and therefore extensive experience in pancreatic surgery does not decrease the rate of pancreatic fistula. Although overall length of stay and mortality after tumor enucleation is lower compared to a standard resection, patients with severe pancreatic fistula will have comparable length of stay and mortality.

A considerable amount of studies described the 5-year survival after pancreatic resection with or without liver metastases. The 5-year disease specific survival in patients with and without liver metastases was fairly comparable with respectively 93% and 80%. Although there will be differences in tumor differentiation, functionality or hereditary tumors, the survival rate after surgical resection in patients with liver metastases is high. An aggressive treatment in patients with liver metastases may be justified. However, both patients and tumor characteristics, such as total tumor load in the liver, are important in this treatment. In our review, the heterogeneity between the included studies in the 5-year overall survival analysis was high (fig 9 and 10). These differences can be explained by the patients’ characteristics of the included studies. For example, in the study of Bahra et al, patients were enrolled with at least two malignant factors such as invasion in adjacent organs, metastases, tumor invasion, tumor size ≥ 2cm and tumor grade 2 or 3 pNET. Bilimoria et al also enrolled patients with distant metastases (20%), positive lymph nodes (52.8%) and poorly differentiated pNET (22.1%). Most likely, a
Chapter 2

High grade/poorly differentiated tumor has more influence on survival than the presence of resected liver metastases. This hypothesis has not been analyzed in this review. In addition, in most studies no differentiation was made between functional and non-functional pNETs. Since no randomized controlled trials were available, heterogeneity was notable. During full-text analysis, some studies were not clear or incomplete on the description of the outcome. For example, studies described the outcome after “standard pancreatic resection” but different definitions for a standard resection were used. Some studies described patients after pancreatoduodenectomy and distal pancreatectomy while other studies described patients with all types of pancreatic resection including central pancreatectomy and total pancreatectomy. Furthermore, some large studies, especially studies that extracted the data from the SEER database, described the survival outcome per tumor stage and most of these studies have not described an overall 5-year survival. Moreover, it was not always clear if all the included patients with stage IV disease were operated. All these studies were excluded from this review. There is no agreement of the exact cut-off value of heterogeneity in which it is accepted to perform a meta-analysis. According to the Cochrane handbook, with an I² above 75, heterogeneity is considerable. By the strict inclusion criteria, effort has been made to include homogeneous data and studies with good quality but the diversity of the studies on pNET is considerable and this review shows the best available data up till now.

In conclusion
Based on this review, we would like to recommend using uniform definitions for “pancreatic resection” or well-described “atypical resections” for a careful comparison of clinical outcome. Furthermore, the ISGPS criteria and Clavien-Dindo grading system should be used in the analysis of postoperative complications. In survival analysis, a distinguish should be made between tumor grade/tumor differentiation, patients with a hereditarily syndrome and patients with a functional or non-functional pNET. Although pNET is a rare disease, studies on postoperative outcome and survival must be uniform and clear to be able to interpret the results in the right way and to use the results in daily practice.
Prospective studies

Study	Events	Total	Proportion	95%-CI
Jarufe et al, 2005	3	9	0.33	[0.07; 0.70]
Fernández-Cruz et al, 2008	8	21	0.38	[0.18; 0.62]
Falconi et al, 2010	10	26	0.38	[0.20; 0.59]
Cherif et al, 2012	31	45	0.69	[0.53; 0.82]
Crippa et al, 2012	44	106	0.42	[0.32; 0.51]
Fernández-Cruz et al, 2012	5	13	0.38	[0.14; 0.68]
Estimated pooled proportion	**220**		**0.45**	**[0.34; 0.57]**

Heterogeneity: I-squared=57%, tau-squared=0.1866, p=0.0405

Retrospective studies

Study	Events	Total	Proportion	95%-CI
Matthews et al, 2002	0	4	0.00	[0.00; 0.60]
Norton et al, 2003	3	3	1.00	[0.29; 1.00]
Guo et al, 2004	5	15	0.33	[0.12; 0.62]
Chang et al, 2006	0	16	0.00	[0.00; 0.21]
Casanova et al, 2007	3	9	0.33	[0.07; 0.70]
Liu et al, 2007	4	26	0.15	[0.04; 0.35]
Jagad et al, 2008	0	6	0.00	[0.00; 0.46]
Ruiz-Tovar et al, 2008	5	20	0.25	[0.09; 0.49]
Goh et al, 2009	2	8	0.25	[0.03; 0.65]
Pitt et al, 2009	14	37	0.38	[0.22; 0.55]
Hu et al, 2011	7	21	0.33	[0.15; 0.57]
Inchauste et al, 2012	42	62	0.68	[0.55; 0.79]
Poultsides et al, 2012	5	11	0.45	[0.17; 0.77]
Zhang et al, 2012	6	129	0.05	[0.02; 0.10]
Hangvik et al, 2013	7	14	0.50	[0.23; 0.77]
Watzka et al, 2013	2	50	0.04	[0.00; 0.14]
Total	**431**			

Heterogeneity: I-squared=82.8%, tau-squared=1.415, p<0.0001

Figure 2. Overall pancreatic fistula rate after tumor enucleation
Figure 3. Overall pancreatic fistula rate after distal pancreatectomy

Prospective studies
Jarufe et al, 2005
Events: 2
Total: 7
Proportion: 0.29
95%-CI: [0.04; 0.71]

Sledzianowski et al, 2005
Events: 1
Total: 17
Proportion: 0.06
95%-CI: [0.00; 0.29]

Fernández -Cruz et al, 2008
Events: 2
Total: 23
Proportion: 0.09
95%-CI: [0.01; 0.28]

Estimated pooled proportion
Heterogeneity: I-squared=18.9%, tau-squared=0.1392, p=0.2327
Proportion: 0.12
95%-CI: [0.05; 0.29]

Retrospective studies
Matthews et al, 2002
Events: 1
Total: 8
Proportion: 0.12
95%-CI: [0.00; 0.53]

Matthews et al, 2002
Events: 1
Total: 9
Proportion: 0.11
95%-CI: [0.00; 0.48]

Guo et al, 2004
Events: 1
Total: 11
Proportion: 0.09
95%-CI: [0.00; 0.41]

Chung et al, 2006
Events: 0
Total: 4
Proportion: 0.00
95%-CI: [0.00; 0.60]

Kazanjian et al, 2006
Events: 3
Total: 32
Proportion: 0.09
95%-CI: [0.02; 0.25]

Casanova et al, 2007
Events: 0
Total: 8
Proportion: 0.00
95%-CI: [0.00; 0.37]

Liu et al, 2007
Events: 0
Total: 7
Proportion: 0.00
95%-CI: [0.00; 0.41]

Jagad et al, 2008
Events: 3
Total: 23
Proportion: 0.13
95%-CI: [0.03; 0.34]

Ruiz-Tovar et al, 2008
Events: 1
Total: 16
Proportion: 0.06
95%-CI: [0.00; 0.30]

Goh et al, 2009
Events: 4
Total: 9
Proportion: 0.44
95%-CI: [0.14; 0.79]

Hu et al, 2011
Events: 2
Total: 28
Proportion: 0.10
95%-CI: [0.01; 0.32]

Poultsides et al, 2012
Events: 16
Total: 65
Proportion: 0.25
95%-CI: [0.15; 0.37]

Zhang et al, 2012
Events: 2
Total: 18
Proportion: 0.11
95%-CI: [0.01; 0.35]

Haugevik et al, 2013
Events: 7
Total: 51
Proportion: 0.14
95%-CI: [0.06; 0.26]

Watzka et al, 2013
Events: 2
Total: 55
Proportion: 0.04
95%-CI: [0.00; 0.13]

Estimated pooled proportion
Heterogeneity: I-squared=22.9%, tau-squared=0.1376, p=0.1997
Proportion: 0.14
95%-CI: [0.09; 0.19]

Overall
Events: 383
Total: 473
Proportion: 0.14
95%-CI: [0.10; 0.19]

Figure 4. Overall pancreatic fistula rate after pancreatoduodenectomy
Prospective studies

Name	Events	Total	Proportion	95%-CI
Cherif et al, 2012	3	45	0.07	[0.01; 0.18]
Crippa et al, 2012	0	106	0.00	[0.00; 0.03]

Estimated pooled proportion

	Events	Total	Proportion	95%-CI
Overall	151		0.02	[0.00; 0.25]

Heterogeneity: I-squared=68.1%, tau-squared=2.522, p=0.0768

Retrospective studies

Name	Events	Total	Proportion	95%-CI
Kazanjian et al, 2006	0	11	0.00	[0.00; 0.28]
Liu et al, 2007	2	26	0.08	[0.01; 0.25]
Jagad et al, 2008	0	6	0.00	[0.00; 0.46]
Pitt et al, 2009	1	37	0.03	[0.00; 0.14]

Estimated pooled proportion

	Events	Total	Proportion	95%-CI
Overall	80		0.05	[0.02; 0.14]

Heterogeneity: I-squared=0%, tau-squared=0, p=0.8385

Overall

	Events	Total	Proportion	95%-CI
Overall	231		0.05	[0.02; 0.10]

Figure 5. Overall delayed gastric emptying rate after tumor enucleation

Retrospective studies

Name	Events	Total	Proportion	95%-CI
Kazanjian et al, 2006	0	32	0.00	[0.00; 0.11]
Liu et al, 2007	1	7	0.14	[0.00; 0.58]
Jagad et al, 2008	0	23	0.00	[0.00; 0.15]

Overall

	Events	Total	Proportion	95%-CI
Overall	62		0.05	[0.01; 0.19]

Heterogeneity: I-squared=12.4%, tau-squared=0.2407, p=0.3193

Figure 6. Overall delayed gastric emptying rate after distal pancreatectomy

Retrospective studies

Name	Events	Total	Proportion	95%-CI
Kazanjian et al, 2006	5	27	0.19	[0.06; 0.38]
Liu et al, 2007	0	3	0.00	[0.00; 0.71]
Jagad et al, 2008	4	21	0.19	[0.05; 0.42]

Overall

	Events	Total	Proportion	95%-CI
Overall	51		0.18	[0.10; 0.31]

Heterogeneity: I-squared=0%, tau-squared=0, p=0.9526

Figure 7. Overall delayed gastric emptying rate after pancreatoduodenectomy
Table 2.1: Summary of results for the 4 procedures.

Prospective studies

Study	Events	Total	Proportion	95%-CI
Falconi et al, 2010	1	26	0.04	[0.00; 0.20]
Cherif et al, 2012	6	45	0.13	[0.05; 0.27]
Crippa et al, 2012	4	106	0.04	[0.01; 0.09]

Estimated pooled proportion

			0.07	[0.02; 0.17]

Heterogeneity: I-squared=56.9%, tau-squared=0.4605, p=0.0982

Retrospective studies

Study	Events	Total	Proportion	95%-CI
Jagad et al, 2008	0	6	0.00	[0.00; 0.46]
Hu et al, 2011	1	21	0.05	[0.00; 0.24]
Watzka et al, 2013	0	50	0.00	[0.00; 0.07]

Estimated pooled proportion

			0.04	[0.01; 0.13]

Heterogeneity: I-squared=0%, tau-squared=0, p=0.5502

Overall

			0.06	[0.03; 0.12]

Figure 8. Overall postoperative haemorrhage rate after tumor enucleation

Retrospective studies

Study	Events	Total	Proportion	95%-CI
Jagad et al, 2008	0	23	0.00	[0; 0.15]
Watzka et al, 2013	0	55	0.00	[0; 0.06]

Overall

			0.01	[0; 0.09]

Heterogeneity: I-squared=0%, tau-squared=0, p=0.6698

Figure 9. Overall postoperative haemorrhage rate after distal pancreatectomy

Retrospective studies

Study	Events	Total	Proportion	95%-CI
Niedergethmann et al, 2001	1	12	0.08	[0.00; 0.38]
Sarmiento et al, 2002	2	29	0.07	[0.01; 0.23]
Jagad et al, 2008	1	21	0.05	[0.00; 0.24]
Watzka et al, 2013	1	15	0.07	[0.00; 0.32]

Overall

			0.07	[0.03; 0.15]

Heterogeneity: I-squared=0%, tau-squared=0, p=0.9813

Figure 10. Overall postoperative haemorrhage rate after pancreatoduodenectomy
Table: 5-Year survival in patients without liver metastases

Prospective studies	Total	Proportion	95%-CI	High grade	MEN	NF/F
Tomassetti et al, 2005	40	0.88	[0.73; 0.96]	NS	+	both
Bilimoria et al, 2008	2061	0.65	[0.63; 0.67]	+	NS	both
Ballian et al, 2009	43	0.91	[0.78; 0.97]	-	NS	NS
Scarpi et al, 2010	155	0.88	[0.82; 0.92]	+	-	both
Cherif et al, 2012	55	0.96	[0.87; 1.00]	-	NS	both
Krumpitz et al, 2012	145	0.93	[0.88; 0.97]	NS	+	both
Total	2499					

Heterogeneity: I-squared=94.5%, tau-squared=1.257, p<0.0001

Table: 5-Year survival in patients without liver metastases

Retrospective studies	Total	Proportion	95%-CI	High grade	MEN	NF/F
Solerzano et al, 2001	42	0.77	[0.61; 0.88]	NS	-	NF
Chul-Chung et al, 2007	18	0.73	[0.47; 0.90]	+	-	NF
Ruiz-Tovar et al, 2008	39	0.93	[0.79; 0.98]	NS	+	both
Pitt et al, 2009	124	0.92	[0.86; 0.96]	NS	NS	both
Franko et al, 2010	100	0.71	[0.61; 0.80]	NS	NS	NF
Krausch et al, 2011	27	0.78	[0.58; 0.91]	+	NS	both
Dahdaleh et al, 2012	44	0.95	[0.85; 0.99]	+	+	both
Kim et al, 2012	117	0.90	[0.83; 0.95]	+	-	NF
Pouliades et al, 2012	79	0.86	[0.76; 0.93]	-	+	both
Estimated pooled proportion	590	0.85	[0.78; 0.90]			

Heterogeneity: I-squared=73.5%, tau-squared=0.3767, p=0.0002

Figure 11. Overall 5-year survival in patients without liver metastases

1 High grade: patients with grade 3 or poorly differentiated pNET may be included.
2 MEN: patients with a hereditary syndrome such as MEN1 syndrome or von Hippel Lindau may be included.
3 NF/F: patients with non-functional pNET or functional pNET may be included
+ Some patients are affected with the condition
- None of the patients are affected with the condition
NS not specified. The study did not specified the number of patients with the condition
Figure 12. Overall 5-year survival in patients with liver metastases

1 High grade: patients with grade 3 or poorly differentiated pNET may be included.
2 MEN: patients with a hereditary syndrome such as MEN1 syndrome or von Hippel Lindau may be included.
3 NF/F: patients with non-functional pNET or functional pNET may be included

- Some patients are affected with the condition
- None of the patients are affected with the condition

NS not specified. The study did not specified the number of patients with the condition
ADDITIONAL FIGURES

Prospective studies	Events	Total	Proportion	95%-CI
Fernandez-Cruz et al, 2008	4	21	0.19	[0.05; 0.42]
Falconi et al, 2010	3	26	0.12	[0.02; 0.30]
Cherif et al, 2012	19	45	0.42	[0.28; 0.58]
Crippa et al, 2012	22	106	0.21	[0.13; 0.30]
Fernandez-Cruz et al, 2012	3	13	0.23	[0.05; 0.54]
Estimated pooled proportion	**211**		**0.24**	**[0.15; 0.36]**

Estimated pooled proportion: 211

- **Heterogeneity:** $I^2=62\%$, $\tau^2=0.2675$, $p=0.0325$

Retrospective studies	Events	Total	Proportion	95%-CI
Pitt et al, 2009	6	37	0.19	[0.06; 0.32]
Inchauste et al, 2012	26	62	0.42	[0.30; 0.55]
Haugvik et al, 2013	6	14	0.43	[0.18; 0.71]
Estimated pooled proportion	**113**		**0.32**	**[0.17; 0.53]**

Estimated pooled proportion: 113

- **Heterogeneity:** $I^2=71.2\%$, $\tau^2=0.401$, $p=0.0312$

Overall	Events	Total	Proportion	95%-CI
	324		**0.27**	**[0.19; 0.37]**

Heterogeneity: $I^2=45.4\%$, $\tau^2=0.9197$, $p=0.1758$

Appendix figure 1. Pancreatic fistula rate grade B/C after tumor enucleation

Prospective study	Events	Total	Proportion	95%-CI
Fernández -Cruz et al, 2008	0	23	0.00	[0.00; 0.15]

Retrospective study

Retrospective study	Events	Total	Proportion	95%-CI
Haugvik et al, 2013	7	51	0.14	[0.06; 0.26]

Overall	Events	Total	Proportion	95%-CI
	74		**0.08**	**[0.02; 0.35]**

Heterogeneity: $I^2=45.4\%$, $\tau^2=0.9197$, $p=0.1758$

Appendix figure 2. Pancreatic fistula rate grade B/C after distal pancreatectomy

Prospective studies	Events	Total	Proportion	95%-CI
Falconi et al, 2010	15	24	0.62	[0.41; 0.81]
Cherif et al, 2012	15	22	0.68	[0.45; 0.86]
Estimated pooled proportion	**46**		**0.65**	**[0.50; 0.77]**

Estimated pooled proportion: 46

- **Heterogeneity:** $I^2=0\%$, $\tau^2=0$, $p=0.6863$

Retrospective studies	Events	Total	Proportion	95%-CI
Liu et al, 2007	1	5	0.20	[0.01; 0.72]
Poultisides et al, 2012	2	5	0.40	[0.05; 0.85]
Estimated pooled proportion	**10**		**0.31**	**[0.10; 0.64]**

Estimated pooled proportion: 10

- **Heterogeneity:** $I^2=0\%$, $\tau^2=0$, $p=0.4968$

Overall	Events	Total	Proportion	95%-CI
	56		**0.58**	**[0.41; 0.73]**

Heterogeneity: $I^2=0\%$, $\tau^2=0$, $p=0.4968$

Appendix figure 3. Overall pancreatic fistula rate after central pancreatectomy
Appendix figure 4. Pancreatic fistula rate grade B/C after central pancreatectomy

Prospective studies	Events	Total	Proportion	95%-CI
Falconi et al, 2010	3	24	0.12	[0.03; 0.32]
Cherif et al, 2012	9	22	0.41	[0.21; 0.64]

Heterogeneity: I-squared=77.2%, tau-squared=0.9608, p=0.0364

Appendix figure 5. Overall delayed gastric emptying rate after central pancreatectomy

Prospective study	Events	Total	Proportion	95%-CI
Cherif et al, 2012	1	22	0.05	[0.00; 0.23]
Retrospective study Liu et al, 2007	2	5	0.40	[0.05; 0.85]

Heterogeneity: I-squared=73%, tau-squared=2.542, p=0.0543

Appendix figure 6. Overall postoperative haemorrhage rate after central pancreatectomy

Prospective studies	Events	Total	Proportion	95%-CI
Falconi et al, 2010	1	24	0.04	[0.00; 0.21]
Cherif et al, 2012	1	22	0.05	[0.00; 0.23]

Estimated pooled proportion: 0.04 [0.01; 0.16]

Heterogeneity: I-squared=0%, tau-squared=0, p=0.9498
Appendix figure 7. In hospital mortality rate after tumor enucleation

Prospective studies

Study	Events	Total	Proportion	95%-CI
Jarufe et al, 2005	0	9	0.00	[0.00; 0.34]
Fernández -Cruz et al, 2008	0	21	0.00	[0.00; 0.16]
Falconi et al, 2010	0	26	0.00	[0.00; 0.13]
Cherif et al, 2012	1	45	0.02	[0.00; 0.12]
Crippa et al, 2012	0	106	0.00	[0.00; 0.03]

Estimated pooled proportion 207 Events 0.02 [0.01; 0.06]

Retrospective studies

Study	Events	Total	Proportion	95%-CI
Matthews et al, 2002	0	4	0.00	[0.00; 0.60]
Norton et al, 2003	0	3	0.00	[0.00; 0.71]
Guo et al, 2004	0	15	0.00	[0.00; 0.22]
Chung et al, 2006	0	16	0.00	[0.00; 0.21]
Kazanjian et al, 2006	0	11	0.00	[0.00; 0.26]
Casanova et al, 2007	0	9	0.00	[0.00; 0.34]
Liu et al, 2007	0	26	0.00	[0.00; 0.13]
Jagad et al, 2008	0	6	0.00	[0.00; 0.46]
Ruiz-Tovar et al, 2008	0	20	0.00	[0.00; 0.17]
Goh et al, 2009	1	8	0.12	[0.00; 0.53]
Pitt et al, 2009	0	37	0.00	[0.00; 0.09]
Hu et al, 2011	0	21	0.00	[0.00; 0.16]
Inchauste et al, 2012	1	62	0.02	[0.00; 0.09]
Zhang et al, 2012	1	129	0.01	[0.00; 0.04]
Watzka et al, 2013	0	50	0.00	[0.00; 0.07]

Estimated pooled proportion 417 Events 0.03 [0.02; 0.06]

Overall

	Events	Total	Proportion	95%-CI
	624		0.03	[0.02; 0.05]

Heterogeneity: I-squared=0%, tau-squared=0, p=0.8238

Heterogeneity: I-squared=0%, tau-squared=0, p=0.8975

Heterogeneity: I-squared=0%, tau-squared=0, p=0.8975

Appendix figure 7. In hospital mortality rate after tumor enucleation
Appendix figure 8. In hospital mortality rate after distal pancreatectomy

Study	Events	Total	Proportion	95%-CI
Prospective studies				
Jarufe et al, 2005	0	7	0.00	[0.00; 0.41]
Sledzianowski et al, 2005	1	17	0.06	[0.00; 0.29]
Fernández -Cruz et al, 2008	0	23	0.00	[0.00; 0.15]
Estimated pooled proportion			0.05	[0.01; 0.17]
Retrospective studies				
Matthews et al, 2002	0	8	0.00	[0.00; 0.37]
Norton et al, 2003	0	9	0.00	[0.00; 0.34]
Guo et al, 2004	0	11	0.00	[0.00; 0.28]
Chung et al, 2006	0	4	0.00	[0.00; 0.60]
Kazanjian et al, 2006	0	32	0.00	[0.00; 0.11]
Casanova et al, 2007	0	8	0.00	[0.00; 0.37]
Liu et al, 2007	0	7	0.00	[0.00; 0.41]
Jagad et al, 2008	0	23	0.00	[0.00; 0.15]
Ruiz-Tovar et al, 2008	0	16	0.00	[0.00; 0.21]
Goh et al, 2009	0	9	0.00	[0.00; 0.34]
Hu et al, 2011	0	20	0.00	[0.00; 0.17]
Zhang et al, 2012	0	18	0.00	[0.00; 0.19]
Watzka et al, 2013	0	55	0.00	[0.00; 0.06]
Estimated pooled proportion	220		0.03	[0.02; 0.07]
Overall	267		0.04	[0.02; 0.07]
POSTOPERATIVE COMPLICATIONS, IN-HOSPITAL MORTALITY AND 5-YEAR SURVIVAL AFTER SURGICAL RESECTION

Prospective Studies

Study	Events	Total	Proportion	95%-CI
Jarufe et al, 2005	0	20	0.00	[0.00; 0.17]
Niedergethmann et al, 2001	0	12	0.00	[0.00; 0.10]
Matthews et al, 2002	0	1	0.00	[0.00; 0.09]
Sarmiento et al, 2002	3	29	0.10	[0.02; 0.27]
Norton et al, 2003	0	8	0.00	[0.00; 0.37]
Guo et al, 2004	0	10	0.00	[0.00; 0.31]
Kazanjian et al, 2006	0	27	0.00	[0.00; 0.13]
Liu et al, 2007	0	3	0.00	[0.00; 0.71]
Jagad et al, 2008	0	21	0.00	[0.00; 0.16]
Watzka et al, 2013	0	15	0.00	[0.00; 0.22]

Estimated pooled proportion

	Events	Total	Proportion	95%-CI
	126		0.07	[0.03; 0.13]

Heterogeneity: I-squared=0%, tau-squared=0, p=0.8732

Retrospective Studies

Study	Events	Total	Proportion	95%-CI
Falconi et al, 2010	0	24	0.00	[0.01; 0.15]
Cherif et al, 2012	1	22	0.05	[0.00; 0.23]

Estimated pooled proportion

	Events	Total	Proportion	95%-CI
	46		0.03	[0.01; 0.15]

Heterogeneity: I-squared=0%, tau-squared=0, p=0.6297

Overall

	Events	Total	Proportion	95%-CI
	146		0.06	[0.03; 0.12]

Appendix figure 9. In hospital mortality rate after pancreatoduodenectomy

Prospective Studies

Study	Events	Total	Proportion	95%-CI
Falconi et al, 2010	0	24	0.00	[0.01; 0.14]
Cherif et al, 2012	1	22	0.05	[0.00; 0.23]

Estimated pooled proportion

	Events	Total	Proportion	95%-CI
	46		0.03	[0.01; 0.15]

Heterogeneity: I-squared=0%, tau-squared=0, p=0.6297

Retrospective Study

Study	Events	Total	Proportion	95%-CI
Liu et al, 2007	0	5	0.00	[0.00; 0.52]

Overall

	Events	Total	Proportion	95%-CI
	5		0.04	[0.01; 0.16]

Appendix figure 10. In hospital mortality rate after central pancreatectomy
Appendix figure 11. 5-year disease specific survival in patients without liver metastases

1 High grade: patients with grade 3 or poorly differentiated pNET may be included.
2 MEN: patients with a hereditary syndrome such as MEN1 syndrome or von Hippel Lindau may be included.
3 NF/F: patients with non-functional pNET or functional pNET may be included

+ Some patients are affected with the condition
- None of the patients are affected with the condition

NS not specified. The study did not specified the number of patients with the condition

Appendix figure 12. 5-year disease specific survival in patients with liver metastases

1 High grade: patients with grade 3 or poorly differentiated pNET may be included.
2 MEN: patients with a hereditary syndrome such as MEN1 syndrome or von Hippel Lindau may be included.
3 NF/F: patients with non-functional pNET or functional pNET may be included

+ Some patients are affected with the condition
- None of the patients are affected with the condition

NS not specified. The study did not specified the number of patients with the condition
REFERENCES

1. Kulke MH, Anthony LB, Bushnell DL, Herder WW De, Goldsmith SJ, Klimstra DS, et al. NANETS Treatment Guidelines Well-Differentiated Neuroendocrine Tumors of the Stomach and Pancreas. Pancreas. 2010; 39: 735–752.

2. Jensen RT, Cadiot G, Brandi ML, de Herder WW, Kaltasas G, Komminoth P, et al. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms: functional pancreatic endocrine tumor syndromes. Neuroendocrinology. 2012; 95: 98–119.

3. Falconi M, Bartsch DK, Eriksson B, Klöppel G, Lopes JM, O'Connor JM, et al. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms of the digestive system: well-differentiated pancreatic non-functioning tumors. Neuroendocrinology. 2012; 95: 120–134.

4. Falconi M, Mantovani W, Crippa S, Mascetta G, Salvia R, Pederzoli P. Pancreatic insufficiency after different resections for benign tumours. Br J Surg. 2008; 95: 85–91.

5. Fendrich V, Merz MK, Waldmann J, Langer P, Heverhagen AE, Dietzel K, et al. Neuroendocrine pancreatic tumors are risk factors for pancreatic fistula after pancreatic surgery. Dig Surg. 2011; 28: 263–269.

6. Gaujoux S, Cortes A, Couvelard A, Noullet S, Clavel L, Rebour V, et al. Fatty pancreas and increased body mass index are risk factors of pancreatic fistula after pancreateicoduodenectomy. Surgery. 2010; 148: 15–23.

7. Pratt WB, Callery MP, Vollmer CM. Risk prediction for development of pancreatic fistula using the ISGPF classification scheme. World J Surg. 2008; 32: 419–428.

8. Crippa S, Bassi C, Warshaw AL, Falconi M, Partelli S, Thayer SP, et al. Middle pancreatectomy: indications, short- and long-term operative outcomes. Ann Surg. 2007; 246: 69–76.

9. Warshaw AL. Distal pancreatectomy with preservation of the spleen. J Hepatobiliary Pancreat Sci. 2010; 17: 808–812.

10. Hackert T, Hinz U, Fritz S, Strobel O, Schneider L, Hartwig W, et al. Enucleation in pancreatic surgery: indications, technique, and outcome compared to standard pancreatic resections. Langenbecks Arch Surg. 2011; 396: 1197–1203.

11. Gouma DJ, Dijkum EJMN Van, Obertop H. Pancreatic cancer: matters for debate. The standard diagnostic work-up and surgical treatment of pancreatic head tumours. Eur J Surg Oncol. 2000; 25: 113–123.

12. American joint committee on cancer (2010) AJCC cancer staging manual. Springer Seventh Edition.

13. Rindi G, Klöppel G, Alhman H, Caplin M, Couvelard A, de Herder WW, et al. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2006; 449: 395–401.

14. Hamilton SR, Aaltonen LA. World Health Organization Classification of Tumours, Pathology and Genetics of Tumours of the Digestive System. 2000. p. IARC Press Lyon.

15. Wente MN, Bassi C, Dervenis C, Fingerhut A, Gouma DJ, Izbicki JR, et al. Delayed gastric emptying (DGE) after pancreatic surgery: a suggested definition by the International Study Group of Pancreatic Surgery (ISGPS). Surgery. 2007; 142: 761–768.

16. Welsch T, Eisele H, Zschäbitz S, Hinz U, Büchler MW, Wente MN. Critical appraisal of the International Study Group of Pancreatic Surgery (ISGPS) consensus definition of postoperative hemorrhage after pancreateodudanectomy. Langenbecks Arch Surg. 2011; 396: 783–791.

17. Bassi C, Dervenis C, Butturini G. Postoperative pancreatic fistula: an international study group (ISGPF) definition. Surgery. 2005; 138: 8–13.
18. The R Core Team. R: A Language and Environment for Statistical Computing. 2013 p. 3604.

19. Higgins J, Thompson S. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002; 21: 1539–1558.

20. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003; 327: 557–560.

21. Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0, The Cochrane Collaboration. 2011.

22. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003; 73: 712–716.

23. Jarufe NP, Coldham C, Orug T, Mayer a D, Mirza DF, Buckels J a C, et al. Neuroendocrine tumours of the pancreas: predictors of survival after surgical treatment. Dig Surg. 2005; 22: 157–162.

24. F Fernández-Cruz L, Blanco L, Cosa R, Rendón H. Is laparoscopic resection adequate in patients with neuroendocrine pancreatic tumors? World J Surg. 2008; 32: 904–917.

25. Falconi M, Zerbi A, Crippa S, Balzano G, Boninsegna L, Capitanio V, et al. Parenchyma-preserving resections for nonfunctioning pancreatic endocrine tumors. Ann Surg Oncol. 2010; 17: 1621–1627.

26. Crippa S, Zerbi A, Boninsegna L, Capitanio V, Partelli S, Balzano G, et al. Surgical Management of Insulinomas. Arch Surg. 2012; 147: 261–266.

27. Fernández-Cruz L, Molina V, Vallejos R, Jiménez Chavarria E, López-Boado M-A, Ferrer J. Outcome after laparoscopic enucleation for non-functional neuroendocrine pancreatic tumors. HPB. 2012; 14: 171–176.

28. Cherif R, Gaujoux S, Couvelard A, Dokmak S, Vuillerme M-P, Ruszniewski P, et al. Parenchyma-sparing resections for pancreatic neuroendocrine tumors. J Gastrointest Surg. 2012; 16: 2045–2055.

29. Matthews B, Smith T, Kercher K, Holder W, Heniford B. Surgical Experience with Functioning Pancreatic Neuroendocrine Tumors. Am Surg. 2002; 68: 660–665.

30. Norton J a, Kivlen M, Li M, Schneider D, Chuter T, Jensen RT. Morbidity and mortality of aggressive resection in patients with advanced neuroendocrine tumors. Arch Surg. 2003; 138: 859–866.

31. Guo K, Liao H, Tian Y, Guo R, He S, Shen K. Surgical Treatment of nonfunctioning islet cell tumor: report of 41 cases. Hepatobiliary Pancreat Dis Int. 2004; 3: 469–472.

32. Chung JC, Choi SH, Jo SH, Heo JS, Choi DW, Kim YI. Localization and surgical treatment of the pancreatic insulinomas. ANZ J Surg. 2006; 76: 1051–1055.

33. Casanova D, Polavieja MG, Naranjo A, Pardo F, Rotellar F, Gonzalez F, et al. Surgical treatment of persistent hyperinsulinemic hypoglycemia (PHH) (insulinoma and nesidioblastosis). Langenbeck's Arch Surg. 2007; 392: 663–670.

34. Liu H, Peng C, Zhang S, Wu Y, Fang H, Sheng H, et al. Strategy for the surgical management of insulinomas: analysis of 52 cases. Dig Surg. 2007; 24: 463–470.

35. Jagad R, Koshariya M, Kawamoto J, Papstratis P, Kefalourous H, Patria V, et al. Pancreatic Neuroendocrine Tumors: Our Approach. Hepatogastroenterology. 2008; 55: 275–281.

36. Ruiz-Tovar J, Priego P, Martínez-Molina E, Morales V, Santuanbenito A, Lobo E. Pancreatic neuroendocrine tumours. Clin Transl Oncol. 2008; 10: 493–497.

37. Goh BKP, Ooi LLPJ, Cheow P-C, Tan Y-M, Ong H-S, Chung Y-F a, et al. Accurate preoperative localization of insulinomas avoids the need for blind resection and reoperation: analysis of
a single institution experience with 17 surgically treated tumors over 19 years. J Gastrointest Surg. 2009; 13: 1071–1077.

38. Pitt SC, Pitt HA, Baker MS, Christians K, Touzios JG, Kiely JM, et al. Small pancreatic and periampullary neuroendocrine tumors: resect or enucleate? J Gastrointest Surg. 2009; 13: 1692–1698.

39. Hu M, Zhao G, Luo Y, Liu R. Laparoscopic versus open treatment for benign pancreatic insulinomas: an analysis of 89 cases. Surg Endosc. 2011; 25: 3831–3837.

40. Inchauste SM, Lanier BJ, Libutti SK, Phan GQ, Nilubol N, Steinberg SM, et al. Rate of clinically significant postoperative pancreatic fistula in pancreatic neuroendocrine tumors. World J Surg. 2012; 36: 1517–1526.

41. Poultsides GA, Huang LC, Chen Y, Visser BC, Pai RK, Jeffrey RB, et al. Pancreatic neuroendocrine tumors: radiographic calcifications correlate with grade and metastasis. Ann Surg Oncol. 2012; 19: 2295–2303.

42. Zhang T, Mu Y, Qu L, Wang X, Lv Z, Du J, et al. Accurate combined preoperative localization of insulinomas aid the choice for enucleation: a single institution experience over 25 years. Hepatogastroenterology. 2012; 59: 1282–1285.

43. Haugvik SP, Marangos IP, Rosok BI, Pomianowska E, Gladhaug IP, Mathisen O, et al. Long-term outcome of laparoscopic surgery for pancreatic neuroendocrine tumors. World J Surg. 2013; 37: 582–590.

44. Watzka FM, Laumen C, Fottner C, Weber MM, Schad A, Lang H, et al. Resection strategies for neuroendocrine pancreatic neoplasms. Langenbecks Arch Surg. 2013; 398: 431–440.

45. Fernández-Cruz I, Blanco L, Cosa R, Rendón H. Is laparoscopic resection adequate in patients with neuroendocrine pancreatic tumors? World J Surg. 2008; 32: 904–917.

46. Falconi M, Zerbi A, Crippa S, Balzano G, Boninsegna L, Capitanio V, et al. Parenchyma-preserving resections for small nonfunctioning pancreatic endocrine tumors. Ann Surg Oncol. 2010; 17: 1621–1627.

47. Cherif R, Gaujoux S, Couvelard A, Dokmak S, Vuillerme M-P, Ruszniewski P, et al. Parenchyma-Sparing Resections for Pancreatic Neuroendocrine Tumors. J Gastrointest Surg. 2012; 16: 2045–2055.

48. Crippa S, Zerbi A, Boninsegna L, Capitanio V, Partelli S, Balzano G, et al. Surgical Management of Insulinomas. Arch surg. 2012; 147: 261–266.

49. Fernández-Cruz I, Molina V, Vallejos R, Jiménez Chavarria E, López-Boado M-A, Ferrer J. Outcome after laparoscopic enucleation for non-functional neuroendocrine pancreatic tumours. HPB. 2012; 14: 171–176.

50. Pitt SC, Pitt HA, Baker MS, Christians K, Touzios JG, Kiely JM, et al. Small pancreatic and periampullary neuroendocrine tumors: resect or enucleate? J Gastrointest Surg. 2009 Sep; 13: 1692–1698.

51. Inchauste SM, Lanier BJ, Libutti SK, Phan GQ, Nilubol N, Steinberg SM, et al. Rate of clinically significant postoperative pancreatic fistula in pancreatic neuroendocrine tumors. World J Surg. 2012; 36: 1517–1526.

52. Haugvik SP, Marangos IP, Rosok BI, Pomianowska E, Gladhaug IP, Mathisen Ø, et al. Long-Term Outcome of Laparoscopic Surgery for Pancreatic Neuroendocrine Tumors. World J Surg. 2013 Dec; 37: 582–590.

53. Sledzianowski JF, Duffas JP, Muscari F, Sue B, Fourtanier F. Risk factors for mortality and intra-abdominal morbidity after distal pancreatectomy. Surgery. 2005; 137: 180–185.

54. Kazanjian KK, Reber HA, Hines OF. Resection of Pancreatic Neuroendocrine Tumors. Arch Surg. 2006; 141: 765–770.

55. Niedergethmann M, Richter A, Wendt K, Schmidt B, Post S,
51

Trede M. Rare indications for a Kausch-Whipple procedure. Eur J Surg. 2001; 167: 115–119.

56. Sarmiento JM, Farnell MB, Que FG, Nagorney DM. Pancreaticoduodenectomy for islet cell tumors of the head of the pancreas: long-term survival analysis. World J Surg. 2002; 26: 1267–1271.

57. Jarufe NP, Coldham C, Orug T, Mayer a. D, Mirza DF, Buckels J a. C, et al. Neuroendocrine Tumours of the Pancreas: Predictors of Survival after Surgical Treatment. Dig Surg. 2005; 22: 157–162.

58. Tomassetti P, Campana D, Piscitelli L, Casadei R, Santini D, Nori F, et al. Endocrine pancreatic tumors: factors correlated with survival. Ann Oncol. 2005; 16: 1806–1810.

59. Ballian N, Loeffler AG, Rajamanickam V, Norstedt P a, Weber SM, Cho CS. A simplified prognostic system for resected pancreatic neuroendocrine neoplasms. HPB. 2009; 11: 422–428.

60. Scarpa A, Mantovani W, Capelli P, Beghelli S, Boninsegna L, Bettini R, et al. Pancreatic endocrine tumors: improved TNM staging and histopathological grading permit a clinically efficient prognostic stratification of patients. Mod Pathol.; 2010; 23: 824–833.

61. Krampitz G, Norton J, Poultsides G, Visser R, Sun L, Jensen R. Lymph Nodes and Survival in Pancreatic Neuroendocrine Tumors. Arch Surg. 2012; 147: 820–827.

62. Solorzano CC, Lee JE, Pisters PWT, Vauthey JN, Ayers GD, Jean ME, et al. Nonfunctioning islet cell carcinoma of the pancreas: Survival results in a contemporary series of 163 patients. Surgery. 2001; 130: 1078–1085.

63. Chung JC, Choi DW, Jo SH, Heo JS, Choi SH, Kim Y Il. Malignant Nonfunctioning Endocrine Tumors of the Pancreas: Predictive Factors for Survival after Surgical Treatment. World J Surg. 2007; 31: 579–583.

64. Franko J, Feng W, Yip L, Genovese E, Moser a J. Non-functional neuroendocrine carcinoma of the pancreas: incidence, tumor biology, and outcomes in 2,158 patients. J Gastrointest Surg. 2010; 14: 541–548.

65. Krausch M, Anlauf M, Schott M, Willenberg H, Lehwald N, Hafner D, et al. Loss of PTEN Expression in Neuroendocrine Pancreatic Tumors. 2011; 865–871.

66. Dahdahle F, Calva-Cerqueira D, Carr JC, Liao J, Mezhir JJ, O’Dorisio TM, et al. Comparison of clinicopathologic factors in 122 patients with resected pancreatic and ileal neuroendocrine tumors from a single institution. Ann Surg Oncol. 2012; 19: 966–972.

67. Kim MJ, Choi DW, Choi SH, Heo JS, Park HI, Choi KK, et al. Surgical strategies for non-functioning pancreatic neuroendocrine tumours. Br J Surg. 2012; 99: 1562–1568.

68. Poultsides G a, Huang L C, Chen Y, Visser RC, Pai RK, Jeffrey RB, et al. Pancreatic neuroendocrine tumors: radiographic calcifications correlate with grade and metastasis. Ann Surg Oncol. 2012; 19: 2295–2303.

69. Bilimoria KY, Talamonti MS, Tomlinson JS, Stewart AK, Winchester DP, Ko CY, et al. Prognostic score predicting survival after resection of pancreatic neuroendocrine tumors: analysis of 3851 patients. Ann Surg. 2008; 247: 490–500.

70. Goh BKP, Chow PKH, Tan Y-M, Cheow P-C, Chung Y-F a, Soo K-C, et al. Validation of five contemporary prognostication systems for primary pancreatic endocrine neoplasms: results from a single institution experience with 61 surgically treated cases. ANZ J Surg. 2011; 81: 79–85.

71. Wang S-E, Su C-H, Kao Y-J, Shyr Y-M, Li AF-Y, Chen T-H, et al. Comparison of functional and nonfunctional neuroendocrine tumors in the pancreas and peripancreatic region. Pancreas. 2011; 40: 253–259.

72. Tsutsumi K, Ohtsuka T, Mori Y, Fujino M, Yasui T, Aishima...
S, et al. Analysis of lymph node metastasis in pancreatic neuroendocrine tumors (PNETs) based on the tumor size and hormonal production. J Gastroenterol. 2012; 47: 678–685.

73. Bettini R, Boninsegna L, Mantovani W, Capelli P, Bassi C, Pederzoli P, et al. Prognostic factors at diagnosis and value of WHO classification in a mono-institutional series of 180 non-functioning pancreatic endocrine tumours. Ann Oncol. 2008; 19: 903–908.

74. Fischer L, Kleeff J, Esposito I, Hinz U, Zimmermann a, Friess H, et al. Clinical outcome and long-term survival in 118 consecutive patients with neuroendocrine tumours of the pancreas. Br J Surg. 2008; 95: 627–635.

75. Casadei R, Ricci C, Pezzilli R, Campana D, Tomassetti P, Calculi L, et al. Are There Prognostic Factors Related to Recurrence in Pancreatic Endocrine Tumors? Pancreatology. 2010; 10: 33–38.

76. Boninsegna L, Panzuto F, Partelli S, Capelli P, Delle Fave G, Bettini R, et al. Malignant pancreatic neuroendocrine tumour: lymph node ratio and Ki67 are predictors of recurrence after curative resections. Eur J Cancer 2012; 48: 1608–1615.

77. Martin-Perez E, Capdevila J, Castellano D, Jimenez-Fonseca P, Salazar R, Beguiristain-Gomez A, et al. Prognostic factors and long-term outcome of pancreatic neuroendocrine neoplasms: Ki-67 index shows a greater impact on survival than disease stage. The large experience of the Spanish National Tumor Registry (RGETNE). Neuroendocrinology. 2013; 98: 156–168.

78. Sarmiento JM, Farnell MB, Que FG, Nagorney DM. Pancreaticoduodenectomy for Islet Cell Tumors of the Head of the Pancreas: Long-term Survival Analysis. World J Surg. 2002; 26: 1267–1271.

79. Kang CM, Kim KS, Choi JS, Lee WJ, Kim BR. Experiences with Nonfunctioning Neuroendocrine Neoplasms of the Pancreas. Dig Surg. 2005; 22: 453–458.

80. Vagefi P, Razo O, Deshpande V, Mc Grath D, Lauwers G, Thayer S, et al. Evolving Patterns in the Detection and Outcomes of Pancreatic Neuroendocrine Neoplasms. Arch Surg. 2007; 142: 347–354.

81. Bloomston M, Muscharella P, Shah MH, Frankel WL, Al-Saif O, Martin EW, et al. Cytoreduction results in high perioperative mortality and decreased survival in patients undergoing pancreatoduodenectomy for neuroendocrine tumors of the pancreas. J Gastrointest Surg. 2006; 10: 1361–1370.

82. Bahra M, Jacob D, Pascher A, Plockinger U, Kristiansen G, Neuhau P, et al. Surgical strategies and predictors of outcome for malignant neuroendocrine tumors of the pancreas. J Gastroenterol Hepatol. 2007; 22: 930–935.

83. Nguyen S, Angel L, Divino C, Schluender S, Warner R. Surgery in Malignant Pancreatic Neuroendocrine Tumors. Journal of Surgical Oncology. 2007; 96: 397–403.

84. Schurr PG, Strate T, Rese K, Kaff JT, Reichelt U, Petri S, et al. Aggressive surgery improves long-term survival in neuroendocrine pancreatic tumors: an institutional experience. Ann Surg. 2007; 245: 273–281.

85. Bonney GK, Gomez D, Rahman SH, Verbeke CS, Prasad KR, Toogood GJ, et al. Results following surgical resection for malignant pancreatic neuroendocrine tumours. A single institutional experience. JOP. 2008; 9: 19–25.

86. Bettini R, Partelli S, Boninsegna L, Capelli P, Crippa S, Pederzoli P, et al. Tumor size correlates with malignancy in nonfunctioning pancreatic endocrine tumor. Surgery. 2011; 150: 75–82.

87. Sellner F, Thalhammer S, Stättner S, Karner J, Klimpfinger M. TNM stage and grade in predicting the prognosis of operated, non-functioning neuroendocrine carcinoma of the pancreas—a single-institution experience. J Surg Oncol. 2011; 104: 17–21.

88. Wang D, Zhang D, Qiu M, Wang Z, Luo H, Wang F, et al. Prognostic factors and survival in patients with neuroendocrine
POSTOPERATIVE COMPLICATIONS, IN-HOSPITAL MORTALITY AND 5-YEAR SURVIVAL AFTER SURGICAL RESECTION

89. Arvold ND, Willett CG, Fernandez-del Castillo C, Ryan DP, Ferrone CR, Clark JW, et al. Pancreatic neuroendocrine tumors with involved surgical margins: prognostic factors and the role of adjuvant radiotherapy. Int J Radiat Oncol Biol Phys. 2012; 83: e337–43.

90. Tsuchikawa T, Hirano S, Tanaka E, Kato K, Matsumoto J, Sichinohe T. Multidisciplinary treatment strategy for advanced pancreatic neuroendocrine tumors: a single center experience. Hepatogastroenterology. 2012; 59: 2623–2626.

91. Cherenfant J, Stocker SJ, Gage MK, Du H, Thurot T a, Odelaye M, et al. Predicting aggressive behavior in nonfunctioning pancreatic neuroendocrine tumors. Surgery. 2013; 154: 785–793.

92. Chu QD, Hill HC, Jr HOD, Driscoll D, Smith JL, Nava HR, et al. Predictive Factors Associated With Long-Term Survival in Patients With Neuroendocrine Tumors of the Pancreas. 2002; 9: 855–862.

93. Winter JM, Cameron JL, Campbell K a, Arnold M a, Chang DC, Coleman J, et al. 1423 pancreaticoduodenectomies for pancreatic cancer: A single-institution experience. J Gastrointest Surg. 2006; 10: 1199–1211.

94. Ito H, Abramson M, Ito K, Swanson E, Cho N, Ruan DT, et al. Surgery and staging of pancreatic neuroendocrine tumors: a 14-year experience. J Gastrointest Surg. 2010; 14: 891–898.

95. Pomianowska E, Gladhaug IP, Grzyb K, Rostok BI, Edwin B, Bergestuen DS, et al. Survival following resection of pancreatic endocrine tumors: importance of R-status and the WHO and TNM classification systems. Scand J Gastroenterol. 2010; 45: 971–979.

96. Tsujie M, Nakamoto S, Miyamoto A, Yasui M, Ikenaga M, Hirao M, et al. Risk factors of pancreatic fistula after pancreaticoduodenectomy - patients with low drain amylase level on postoperative day 1 are safe from developing pancreatic fistula.

97. Addeo P, Delpiero JR, Paye F, Oussoultzoglou E, Fuchshuber PR, Sauvanet A, et al. Pancreatic fistula after a pancreaticoduodenectomy for ductal adenocarcinoma and its association with morbidity: a multicentre study of the French Surgical Association. HPB. 2014; 16: 46–55.

98. Butturini G, Marcucci S, Molinari E, Mascetta G, Landoni L, Crippa S, et al. Complications after pancreaticoduodenectomy: the problem of current definitions. J Hepatobiliary Pancreat Surg. 2006; 13: 207–211.

99. Buchler MW, Friess H, Wagner M, Kulli C, Wagener V, Z K. Pancreatic fistula after pancreatic head resection. Br J Surg. 2000; 87: 883–889.

100. Lee SH, Kang CM, Hwang HK, Choi SH, Lee WJ, Chi HS. Minimally invasive RAMPS in well-selected left-sided pancreatic cancer within Yonsei criteria: long-term (>median 3 years) oncologic outcomes. Surg Endosc. 2014; 28: 2848–2855.

101. Hu M, Zhao G, Wang F, Zhao Z, Li C, Liu R. Laparoscopic versus open distal splenopancreatectomy for the treatment of pancreatic body and tail cancer: a retrospective, mid-term follow-up study at a single academic tertiary care institution. Surg Endosc. 2014; 28: 2584–2591.

102. Magge D, Gooding W, Choudry H, Steve J, Steel J, Zureikat A, et al. Comparative effectiveness of minimally invasive and open distal pancreatectomy for ductal adenocarcinoma. JAMA Surg. 2013; 148: 525–531.

103. Rehman S, John SKP, Lochan R, Jaques BC, Manas DM, Charnley RM, et al. Oncological feasibility of laparoscopic distal pancreatectomy for adenocarcinoma: a single-institution comparative study. World J Surg. 2014; 38: 476–483.

104. Diener MK, Seiler CM, Rossion I, et al. (2011) Efficacy of staple versus hand-sewn closure after distal pancreatectomy (DISPACT): a randomised, controlled multicentre trial. Lancet
(London, England) 377:1514–22.

105. Hüttner FJ, Koessler-Ebs J, Hackert T, et al. (2015) Meta-analysis of surgical outcome after enucleation versus standard resection for pancreatic neoplasms. Br J Surg.