The complete chloroplast genome of *Camellia brevistyla* (Hayata) Coh. St. (Theaceae: Ericales) from China based on PacBio and Illumina data

Xin Yin\(^{a,b}\), Bin Huang\(^a\), Bo Wang\(^a\), Li-an Xub and Qiang Wen\(^a\)

\(^a\)Jiangxi Provincial Key Laboratory of Camellia Germplasm Conservation and Utilization, Jiangxi Academy of Forestry, Nanchang, China; \(^b\)Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China

ABSTRACT

Camellia brevistyla is an economic plant that can produce high-value edible oil in southern China. Using a combination of PacBio RS and Illumina sequencing platforms, the complete chloroplast genome of *C. brevistyla* was assembled and annotated. This newly deciphered chloroplast genome was 2,731 bp shorter in the *ycf1* gene than the previously published *C. brevistyla* genome. The phylogenetic analysis fully resolved *C. brevistyla* in a clade with *C. kissii*, *C. chkeiangoleosa*, and *C. japonica*. The results not only supported the proposal to merge the sections *Oleifera* and *Paracamellia*, but also showed the close relationship between them and section *Camellia*.

Camellia brevistyla is a valuable woody edible oil germplasm resource and model species (\(2n = 30\)) classified to section *Paracamellia* in the genus *Camellia* (Chang 1981). The seed oil of *C. brevistyla* has anti-inflammatory, anti-oxidant, and regulating effects on intestinal inflammations (Wang et al. 2019; Wu et al. 2020), and its seed pomace was also shown to be effective in treating hypertension (Chiang et al. 2019). The phenotypic characteristics and reproductive stage of *C. brevistyla* are consistent with that of *Camellia oleifera*, while the former has smaller flowers, fruits, and leaves, but higher oil content. Chang (1981) divided sect. *Paracamellia* into two sections, sect. *Oleifera* and sect. *Paracamellia*. However, due to the similar phenotypic characteristics, Ming and Zhang (1996) merged sect. *Oleifera* into sect. *Paracamellia*. In view of the controversy of the phylogenetic relationship between two sections (Chang and Ren 1998; Ming 2000), obtaining more chloroplast genomes for molecular phylogenetic analysis is particularly important. Wang et al. (2020) presently obtained the chloroplast genome of *C. brevistyla* by using Illumina sequencing. However, we observed that its length was different from the published chloroplast genomes of 48 other *Camellia* species. Using Pacbio RS along with illumina sequencing, we obtained the complete chloroplast genome of *C. brevistyla* from Jiangxi, China to test the length polymorphism, contribute to further studies on the evolutionary phylogeny of this taxon, and for the conservation efforts of *Camellia*.

The samples of *C. brevistyla* were collected from Wuyi Mountain (Jiangxi, China; coordinates: 27°49′59.88″N, 117°44′28.98″E; altitude: 1485 m), and were reserved in the Key Laboratory of *Camellia* Germplasm Conservation and Utilization, Jiangxi Academy of Forestry, 1629 Fenglin West Street, Nanchang 330013, China

CONTACT Qiang Wen \(\text{jxwenqiang@aliyun.com}\) Jiangxi Provincial Key Laboratory of Camellia Germplasm Conservation and Utilization, Jiangxi Academy of Forestry, 1629 Fenglin West Street, Nanchang 330013, China

\(\text{© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.}

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ARTICLE HISTORY

Received 17 March 2021
Accepted 12 April 2021

KEYWORDS

Camellia brevistyla; chloroplast; Pacbio sequencing; phylogeny
chloroplast genome of *C. brevistyla* from Jiangxi was 2731 bp shorter in length than that published by Wang et al. (2020). The difference mainly appeared in the *ycf1* gene at the boundary between the SSC and IRa. The length of the *ycf1* gene in our assembly was only 5620 bp, while it was 8356 bp in Wang’s study. It is suspected that this difference was caused by assembly errors due to the assembly and sequencing methods. Here we found the same reverse sequence from *rpl32* to the boundary of IRa/SSC, including the whole coding sequence of the *ndhF* gene.

The phylogenetic analysis was performed based on the alignment of complete chloroplast genomes of 24 published *Camellia* species. A bayesian-inference (BI) phylogenetic tree was reconstructed using MAFFT v7.475 and Mrbayes v3.2.6 with nucleotide substitution model GTR + I + G (Huelsenbeck and Ronquist 2001; Katoh and Standley 2013), and the tree was visualized using Figtree v1.4.3. Two species from the genus *Symplocos* (*S. ovatifoloba* and *S. costaricana*) were used as an outgroup. As shown in Figure 1, *Camellia* species have a close relationship with 100% posterior probability, and *C. brevistyla* was closely related to *C.kissii*. Although there was a significant difference from Wang et al. (2020) in the gene *ycf1*, a continuous 2736 bp sequence fragment, it did not affect the phylogenetic position of *C. brevistyla*. The phylogenetic tree constructed in this study was in general consistent with the classification of *Camellia* written by Chang (1981). Obviously, the phylogenetic tree inferred using the whole chloroplast genome sequence had a higher resolution than those using common various barcodes (e.g. *matK*, *rbcL*, *trnL-F*, *rps16*, etc.) (Zhang et al. 2014). The difference between this phylogenetic hypothesis and that reported by Wang et al. (2020), may be due to the different data sets and different models used for phylogenetic analysis.

In addition, the phylogenetic tree also revealed that species from sect. *Paracamellia*, sect. *Oleifera* and sect. *Camellia* are closer in relationship.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research was funded by the National Natural Science Foundation of China [31860179], the Key Research and Development Program of Jiangxi Province, China [20201BBF61003], and the Natural Science Foundation of Jiangxi Province, China [20151BAB204030].

Data availability statement

The genome sequence data that support the findings of this study are openly available in Genbank of NCBI (https://www.ncbi.nlm.nih.gov/) under the accession no. MW256435. The associated Bioproject, SRA, and Biosample numbers are PRJNA704218, SRX10153405, and SAMN18035138 respectively.

References

Chang HT. 1981. A taxonomy of genus *Camellia*. Guangzhou (China): The Editorial Staff of the Journal of Sun Yatsen University.

Chang HT, Ren SX. 1998. Theaceae. In: Flora reipublicae popularis sinicae. Beijing (China): Science Press.

Chiang SS, Hsu F-L, Hsu CK, Liu CF, Chu C. 2019. Role of *Camellia brevistyla* (Hayata) Coh. Stuart seed pomace extract on hypertension and vascular function in L-NAME–treated mice. J Food Sci. 84(12): 3555–3564.
Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 17(8):754–755.
Kato K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.
Ming TL. 2000. Monography of the genus Camellia. Kunming (China): Yunnan Science and Technology Press.
Ming TL, Zhang WJ. 1996. The evolution and distribution of genus Camellia. Acta Botanica Yunnanica. 18:1–13.
Wang RY, Tung YT, Chen SY, Lee YL, Yen GC. 2019. Protective effects of camellia oil (Camellia brevistyla) against indomethacin-induced gastrointestinal mucosal damage in vitro and in vivo. J Funct Foods. 62:103539.
Wang Y, Li J, Fan Z, Wu D, Yin H, Li X. 2020. Characterization of the complete chloroplast genome of Camellia brevistyla, an oil-rich and evergreen shrub. Mitochondrial DNA B Resour. 5(1):386–387.
Wu C-C, Tung Y-T, Chen S-Y, Lee W-T, Lin H-T, Yen G-C. 2020. Anti-inflammatory, antioxidant, and microbiota-modulating effects of camellia oil from Camellia brevistyla on acetic acid-induced colitis in rats. Antioxidants. 9(1):58.
Yang JB, Yang SX, Li HT, Yang J, Li DZ. 2013. Comparative chloroplast genomes of Camellia species. PloS One. 8(8):e73053.
Zhang W, Kan SL, Zhao H, Li ZY, Wang XQ. 2014. Molecular phylogeny of Tribe Theeae (Theaceae s.s.) and its implications for generic delimitation. Plos One. 9(5):e98133.