\documentclass{article}

\title{\textit{\textbf{\textit{\textbf{\textit{j}-CATEGORIES AND \textit{j}-FUNCTORS IN REPRESENTATION THEORY}}}\
\textbf{II}}}\
\author{\textbf{BEN COX}}

\begin{document}

\textbf{Abstract.} This is a partial derivative of \cite{Cox94}. We give a list of examples/problems that some will find amusing.

The author is partially supported by a collaboration grant from the Simons Foundation (\#319261).

\section{Introduction}

In the tradition of I. M. Gelfand we will take some simple nontrivial examples and partially explore the consequences. In the tradition of Grothendieck we will categorify (this appears to be a small part of what Grothendieck had in mind - who knows what he had in mind? I certainly don’t.) If you are looking for proofs, I hate to disappoint you. As far as I can tell there are no proofs.

We use classical representation theoretic ideas found for example in \cite{Ser77} by J. P. Serre, in \cite{FH91} by W. Fulton and J. Harris, in \cite{GW09} by R. Goodman and N. Wallach and new ideas from C. Kassel and V. Drinfeld found in \cite{Kas95}. See also works by Bak-turin, Zhelobenko, Kirillov, Ibragimov, Lychagin, Komrakov, Vilekin, Vershik, Neretin and Vinberg.

I view categorification as a cheap mathematical microscope and/or telescope depending on one’s point of view.

\subsection{Clebsch-Gordan Coefficients and Clebsch-Gordan decomposition.}

The Clebsch-Gordan decomposition for $\mathfrak{sl}(2)$ is

$$F_m \otimes F_n \cong \bigoplus_{p=0}^{m-n} F_{m+n-2p}.$$

Thus we have an \mathcal{F}-category. The Clebsch-Gordan coefficients are obtained by taking a basis of F_m say $v_{m}, v_{m-2}, \ldots, v_{-m}$ and equating coefficients using a non-degenerate bilinear form (see \cite{Kas95} or more precisely \cite{CE10}). This isomorphism can defined on highest weight vectors by

$$\Phi(v^{m+n-2p}_{m+n-2p}) = \sum_{k=0}^{p} (-1)^{n-p} \frac{[n-p+k]![m-k]!}{[n-p]![m]!} \cdot \Phi^{(k+p)(2+m)+p^2-k^2+n}\cdot v^{m-j}_{k} \otimes v^{n}_{n-p+k}.$$

Now take your favorite finite group say D_n and its mutations or avatars such as Dic_h. The two have the same character theory. But what about their categorifications? There are a countable number of finite groups, so you have your work cut out for you. Categorify for example results in \cite{vdBC78} and \cite{Sak74}. Many of the groups often have geometric content. See for example \cite{Bre00}. Can one interpolate between categorifications? I think the answer is yes.

\end{document}
2. \(\mathfrak{g} \)-CATEGORIES FROM OTHER MINDS.

2.1. The category \(\mathcal{I} \) of Enright, [Enr79]. This is the non-triangular, nonabelian but additive category whose indecomposable objects are

\[M_n \text{ and } P_n \text{ but not } F_n. \]

Categorify \(M_n, P_n \), functors between them and study the resulting categorical structures. Only part of this work has been done. An abelian categorification of \(M_n \) appears in the work of Naisse-Vaz and an additive version starting from M. Khovanov’s work will appear hopefully some day. Then the pieces will need to be put back together.

The end result should be a categorification of Enright’s Theorem in [Enr79].

2.2. The category \(\mathcal{HT} \) of [HT92] of Howe and Tan. We might call this non-abelian categorification or non-abelian harmonic categorification? One needs to consult [HT92] for background info and notation.

Consider the representation \(\widetilde{(V_\lambda \otimes \overline{V}_\nu)} \) which has a “basis” \(v_n \otimes v_k \). Using the action of \(\mathfrak{sl}(2, \mathbb{R}) \) categorify this action. Consider the module \(U(\nu^+, \nu^-) \). Categorify its structure.

2.3. The category \(\mathcal{R} \) of Rasskazova [Ras94]. Consider the representation of Rasskazova’s \(V = V(\beta, \lambda, n) \), which has basis

\[\{v_j^i | i = 1, \ldots, n; j \in \mathbb{Z}\}, \]

we define the homomorphism \(\varphi : \mathfrak{sl}(2, \mathbb{C}) \to \mathfrak{gl}(V) \),

\[
\begin{align*}
\varphi(h)(v_j^i) &= h v_j^i = (2j + \beta)v_j^i \\
\varphi(e)(v_j^i) &= ev_j^i = v_{j+1}^i \\
\varphi(e)(v_j^i) &= ev_j^i = (\lambda + j\beta + j(j+1))v_{j+1}^i + v_{j+1}^{i+1} \\
\varphi(f)(v_j^i) &= fv_j^i = (\lambda + (j-1)\beta + j(j-1))v_{j-1}^i - v_{j-1}^{i+1} \\
\varphi(f)(v_j^i) &= fv_j^i = -v_{j-1}^i \\
\end{align*}
\]

Categorify these representations \(V(\beta, \lambda, n) \), functors between them and study the resulting categorical structures. I believe Rasskazova has other representations.

Categorify any functor \(F : \mathcal{HT}, \mathcal{R}, \mathcal{I} \to \mathcal{HT}, \mathcal{R}, \mathcal{I} \) etc.

3. CONCLUSION

There is no conclusion, but there are other partial derivatives of [Cox94]. My mind reels from the possibilities. What is the geometric content and structure? There is lots more to come into focus. I can see parts of images right now. I’ll write about those images later.

REFERENCES

[Bre00] Thomas Breuer, Characters and automorphism groups of compact Riemann surfaces, London Mathematical Society Lecture Note Series, vol. 280, Cambridge University Press, Cambridge, 2000. MR 1796706 (2002i:14034)

[CE10] Ben L. Cox and Thomas J. Enright, Representations of quantum groups defined over commutative rings. II, J. Pure Appl. Algebra 214 (2010), no. 7, 1017–1048. MR 2586983

[Cox94] Ben Cox, \(\mathfrak{g} \)-categories and \(\mathfrak{g} \)-functors in the representation theory of Lie algebras, Trans. Amer. Math. Soc. 343 (1994), no. 1, 433–453. MR 94g:17044
[Enr79] Thomas J. Enright, *On the fundamental series of a real semisimple Lie algebra: their irreducibility, resolutions and multiplicity formulae*, Ann. of Math. (2) **110** (1979), no. 1, 1–82. MR 541329

[FH91] William Fulton and Joe Harris, *Representation theory*, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991, A first course, Readings in Mathematics.

[GW09] Roe Goodman and Nolan R. Wallach, *Symmetry, representations, and invariants*, Graduate Texts in Mathematics, vol. 255, Springer, Dordrecht, 2009. MR 2522486

[HT92] Roger Howe and Eng-Chye Tan, *Nonabelian harmonic analysis*, Universitext, Springer-Verlag, New York, 1992, Applications of SL(2, R). MR 1151617

[Kas95] Christian Kassel, *Quantum groups*, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 96e:17041

[Ras94] M. N. Rasskazova, *Hyperbolic Kac-Moody Lie algebras of rank 2*, Algebra i Logika **33** (1994), no. 3, 286–300, 343. MR MR1302526 (95m:17019)

[Sak74] Isao Sakata, *A general method for obtaining Clebsch-Gordan coefficients of finite groups. II. Extension to antiunitary groups*, J. Mathematical Phys. **15** (1974), 1710–1711. MR 0389024

[Ser77] Jean-Pierre Serre, *Linear representations of finite groups*, Springer-Verlag, New York-Heidelberg, 1977, Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42.

[vdB78] P. M. van den Broek and J. F. Cornwell, *Clebsch-Gordan coefficients of symmetry groups*, Phys. Status Solidi (B) **90** (1978), no. 1, 211–224. MR 513992

Department of Mathematics, University of Charleston, Charleston, SC 29424, USA, coxbl@cofc.edu