Microsatellite markers for *Saussurea polylepis* (Asteraceae), a vulnerable continental island species endemic to Korea

Seon A Yun¹ and Seung-Chul Kim¹,²

PREMISE: Nuclear microsatellite markers were developed for *Saussurea polylepis* (Asteraceae), a vulnerable species with very limited distribution in a few southwestern continental islands of the Korean peninsula, in order to facilitate future population genetic studies.

METHODS AND RESULTS: Based on the Illumina sequence data, a total of 21 microsatellite primer pairs were designed and tested for their suitability. Nineteen of these primers, with two to 11 alleles per locus, were polymorphic in three natural populations of *S. polylepis*. The levels of expected and observed heterozygosity ranged from 0.000 to 0.842 and 0.000 to 0.933, respectively. Sixteen of these sequence repeat (SSR) markers were successfully cross-amplified in five congeneric species, namely *S. gracilis*, *S. grandifolia*, and *S. tanakae* for all 21 loci, and *S. maximowiczii* and *S. pulchella* for 18 loci.

CONCLUSIONS: The SSR markers developed here will be useful for future population genetic studies on *S. polylepis* and related species.

KEY WORDS Asteraceae; conservation; continental islands; microsatellite markers; *Saussurea polylepis*.

Saussurea DC. (ca. 400 species) is one of the largest genera in the tribe Cardueae (Asteraceae) and is also one of the most speciose groups in the flora of Korea (Lipschitz, 1979; Im, 2007). Of the approximately 40 species of *Saussurea* in Korea, nearly 40% (15 species) are endemic, mostly occurring in small-sized populations in isolated regions. Of these endemic species, *S. polylepis* Nakai, a perennial herb, is highly restricted to small continental islands (less than 10 locations) in the southwestern corner of the Korean peninsula. Its population size is extremely small, normally less than 30 individuals per population, and it is currently categorized as a vulnerable species (VU B2ab (iii, iv)) in the Korean Red List (National Institute of Biological Resources, 2014). Although the overall phylogenetic framework among the species of *Saussurea* in Korea is lacking, *S. polylepis* can be morphologically distinguished from its congeneric species by its glossy and reniform middle cauline leaves, hairs on adaxial and abaxial leaf surfaces, petioles without wings, and irregularly dentate leaf margins (Im, 2007).

Saussurea includes numerous ecologically and ethnomedicinally important species. For example, some species, such as *S. lappa* (Decne.) Sch. Bip., *S. gnaphalodes* (Royle ex DC.) Sch. Bip., *S. costus* (Falc.) Lipsch., and *S. ceratocarpa* Decne., contain many important chemical compounds that have become important drugs in the international market (Pandey et al., 2007; Zeng et al., 2012). In addition, some species occur at higher elevations than any vascular plant (e.g., *S. gnaphalodes* in the vicinity of Mount Everest at 6400 m; Yoshida, 2002; Yang et al., 2008). Because of their distribution in the subalpine/alpine regions and overexploitation for different medicinal and commercial purposes, many of these species are sensitive to climatic change and are subject to extinction. Several endemic species of *Saussurea* in the backbone mountain range (i.e., Baekdudaegan) in the Korean peninsula are not an exception to this situation (e.g., *S. grandicapitula* W. Lee & Im, *S. chabyoungsanica* Im, and *S. calcicola* Nakai). Despite the ecological and economic importance of the genus *Saussurea*, very few studies on population genetics and molecular marker development have been conducted (Jeong et al., 2012; Zeng et al., 2012). In this study, we selected one very rare species, *S. polylepis*, occurring in several continental islands in Korea, and developed polymorphic microsatellite markers for future population genetic studies. In addition, we tested whether some of these markers could be cross-amplified to five closely related species of *Saussurea*, namely *S. gracilis* Maxim., *S. grandifolia* Maxim., *S. maximowiczii* Herder, *S. pulchella* (Fisch.) Fisch. ex Colla, and *S. tanakae* Franch. & Sav. ex Maxim., which are commonly found in mountain regions of Korea.
METHODS AND RESULTS

Total genomic DNA was extracted from a fresh leaf sample collected in Hong-do, Korea (Appendix 1), and deposited in the National Center for Biotechnology Information (NCBI) BioSample database (BioSample accession number SAMN10362162) using a DNeasy Plant Mini Kit (QIAGEN, Carlsbad, California, USA), following the manufacturer instructions. An Illumina paired-end genomic library was constructed using a TruSeq DNA LT Sample Prep Kit (Illumina, San Diego, California, USA), and the library sequencing was conducted with the Illumina MiSeq platform at the Macrogen Company (Seoul, Korea). A total of 15,210,742 paired-end reads (4.5 Gbp, NCBI Sequence Read Archive BioProject ID PRJNA503488) were obtained. The raw reads were trimmed to remove low-quality bases using Sickle (Joshi and Fass, 2011) and adapters using Scythe (v0.994 BETA) (Buffalo, 2014). The paired-end reads were then assembled using SPAdes version 2.4 (Bankevich et al., 2012), and a total of 814,626 contigs were obtained. MIcroSAtellite identification software (MISA) with default settings (Thiel et al., 2003) was used to detect simple sequence repeat (SSR) motifs with a repeat unit ranging from two to six nucleotides. The minimum number of nucleotide repeats was set to six for dinucleotide repeats and five for trinucleotide, tetranucleotide, pentanucleotide, and hexanucleotide repeats, and a total of 40,773 regions were found. Primer3 version 2.3.6 software (Koressaar and Remm, 2007; Untergasser et al., 2012) was used to design SSR primers with the following settings: optimal conditions of length of 20 bp (18–27 bp), annealing temperature of 60°C (57–63°C), and product size range of 100–300 bp. Of the 40,773 regions, 35 candidate primer

Locus	Primer sequences (5′–3′)	Repeat motif	Allele size range (bp)	T_a (°C)	Fluorescent dye	GenBank accession no.
SP01	F: TCACAAGCCCATTCAGCCAT	(CT)₁₀	237–249	59	FAM	MK285611
	R: TACAGGGAACCAGAAGTCG					
SP02	F: TACAGGCGAGGTTTGTCGA	(TC)₁₁	269–273	59*, 60	HEX	MK285612
	R: TCAGGGTCACACCGTTTGA					
SP03	F: CTGCCGAGTCGCTCCTCTAG	(AAT)₁₀	234–297	59	FAM	MK285613
	R: TTTGGTCTCACACCCCTTGG					
SP04	F: CGGAGGACACACATACGACCC	(AGT)₅	225–234	60	HEX	MK285614
	R: TTCAGGAGATGTAACATGACG					
SP05	F: TCAAGGATGGGACAAAAACCA	(AC)₁₀	233–247	59	FAM	MK285615
	R: AAAAGGGTCGGGCTCTCAAC					
SP07	F: CTCTGCAAGGATCGCTCAA	(GA)₁₁	233–287	60	FAM	MK285616
	R: CAATAGCCGGCTAAACCAGAA					
SP10	F: GTTTTCGGCGCTACCAAAAC	(GGAG)₂	222–231	60	FAM	MK285617
	R: AACAATCCGGCTACCGCTC					
SP11*	F: CAGCGAGTTGGAGCAAGAG	(TCA)₆	191, 200	59*, 60	HEX	MK285618
	R: CTAGGGAGGCAACTCGAGA					
SP12	F: AGCGATTCTGATGTGCTCTCT	(TTG)₉	268–295	58*, 59	FAM	MK285619
	R: ACAACATGTTTGTCTTCTGAGG					
SP13	F: GCATACCGGCGAGTGAAGTG	(TCT)₁₀	222–246	59	FAM	MK285620
	R: CCATCAGTGGCGTGGCAGAT					
SP19^b	F: CTGCTAGGATGTGACTAAGAG	(GAT)₆	249	58	FAM	MK285621
	R: CGACGATGTTGATGTGCAAA					
SP20	F: GCCTTCTCTACCTGCTGCCACA	(TAG)₃	223–250	59	FAM	MK285622
	R: GTTTCGGCCGTCAACCTTG					
SP21	F: TGCTTCAACCTGATGATCAGC	(TCT)₁₀	253–256	59	FAM	MK285623
	R: TGACCAACCTTGGTTCACGAA					
SP22	F: TCACAACCCGGAGCAACAT	(TGGT)₁₂	273–285	60	HEX	MK285624
	R: CCTCTCTATTGGGCAACCATGG					
SP23	F: ACCAGATTGTGAGCAACCTCA	(ATAC)₆	272–348	58*, 59	HEX	MK285625
	R: CGCACAATTGGAGATACCGG					
SP25	F: GACACACAGTTGGTTTCCGC	(ATAC)₆	253–265	59	FAM	MK285626
	R: GCCCTAGTCTCCTCATGCTTA					
SP26	F: GCCCTAGGCTCTTTTGAGTGA	(GC)₆	237–239	59	FAM	MK285627
	R: CGACTGGCGCTACATAGGGTT					
SP29	F: TGTCGCGCAGGTCTCTATCT	(GGTT)₅	267–276	59*, 60	HEX	MK285628
	R: CAATACGGACTGACTGGCT					
SP30	F: ACTGAACTGCTGTCTTGGCTA	(ATAG)₂	225–253	59*, 60	HEX	MK285629
	R: TGCCATCATCTCTGCTCTACTCA					
SP31	F: TGCTAGCACAACACAGCTTGT	(TAA)₅	213–281	59*, 60	HEX	MK285630
	R: GATGAGTGGCACTGACATGACG					
SP32	F: TGTTGGAAAGGCGATGATGGA	(CATATA)₁₀	202–242	59	FAM	MK285631
	R: TCCATGGATGTTTGTCATGGT					

Note: T_a = annealing temperature.
^aFixed heterozygous locus.
^bMonomorphic locus.
[*]Although most of the samples were amplified based on a higher T_a setting, some samples failed to amplify and thus lowered annealing temperatures were used for PCR.
Significant deviation from Hardy–Weinberg equilibrium (Table 2). The SNP34 locus showed polymorphisms across all eight individuals. These 19 primer pairs were subsequently scored using 48 individuals of *S. polylepis* sampled from the same three island populations and five individuals from each of the other species, namely *S. gracilis*, *S. grandifolia*, *S. maximowiczii*, *S. pulchella*, and *S. tanakae* (Appendix 1), for congeneric cross-transferability of the markers. The PCR thermocycling conditions and genotyping method were the same as described above.

Population genetic diversity parameters, including number of alleles, expected heterozygosity, and observed heterozygosity, were calculated using GenAlEx v6.502 (Peakall and Smouse, 2006). Deviations from Hardy–Weinberg equilibrium were calculated for each locus with GENEPOP 4.2 (Rousset, 2008). Of the 21 SSRs developed in this study, 19 were polymorphic. The expected and observed heterozygosity values ranged from 0.000 to 0.842 and from 0.000 to 0.933, respectively (Table 2). Of the 19 polymorphic loci, five in the Hong-do population, five in the Heuksan-do population, and three in the Ui-do population deviated from Hardy–Weinberg equilibrium (Table 2).

TABLE 3. Cross-amplification of 21 microsatellite loci developed for *Saussurea polylepis* in five related congeneric species.

Locus	*S. grandifolia (N = 5)*	*S. maximowiczii (N = 5)*	*S. pulchella (N = 5)*	*S. tanakae (N = 5)*	*S. gracilis (N = 5)*
	Allele size range (bp)	Allele size range (bp)	Allele size range (bp)	Allele size range (bp)	Allele size range (bp)
SP01	7 231–245	3 281–285	1 197	2 237–239	3 237–241
SP02	5 263–285	3 281–309	4 283–293	3 271–275	4 261–279
SP03	5 258–315	1 258	1 258	5 258–297	5 258–297
SP04	5 201–252	0 —	0 —	1 225	4 222–237
SP06	7 231–255	4 239–251	5 235–251	6 235–249	6 217–251
SP07	6 225–267	3 223–235	0 —	7 223–253	8 227–265
SP10	3 222–231	3 222–231	2 222–225	3 216–225	4 222–231
SP11	2 191–200	0 —	6 167–197	2 191–200	2 191–200
SP12	5 265–283	3 175–271	3 214–229	3 271–277	5 268–280
SP13	4 202–274	1 226	1 226	3 218–242	4 194–242
SP19	1 249	2 246–249	1 249	1 249	2 249–255
SP20	5 217–232	2 220–223	2 211–223	4 220–232	4 217–229
SP21	3 256–280	2 304–307	1 292	4 262–271	2 259–265
SP22	5 265–285	1 237	2 245–269	2 273–281	2 265–273
SP23	7 264–352	4 272–352	4 272–329	4 272–372	7 264–372
SP25	3 233–253	2 249–253	2 249–253	3 253–261	6 253–277
SP26	3 233–237	2 235–237	2 235–237	4 233–239	2 235–237
SP29	4 264–279	2 270–276	0 —	1 270	4 267–276
SP31	5 221–241	2 229–237	3 217–265	5 225–249	5 221–245
SP34	2 221–281	1 221	1 221	2 221–281	1 221
SP35	4 202–218	0 —	2 130–174	2 202–210	6 202–240

Note: — unsuccessful amplification; A = number of alleles; N = number of individuals sampled.

*Locality and voucher information provided in Appendix 1.

For *S. polylepis*, applications in plant sciences 2019 7(6): e11270 Yun and Kim—amplification of 21 microsatellite loci developed for *Saussurea polylepis*.
Cross-amplification of the 21 primer pairs was conducted in five widely distributed congeneric species of *Saussurea* on the Korean peninsula. Three species (*S. gracilis*, *S. grandiflora*, and *S. tanakae*) were all successfully amplified and polymorphic for the 21 loci, while two species (*S. maximowiczii* and *S. pulchella*) were successfully amplified and polymorphic for 18 loci.

CONCLUSIONS

The results of the present study represent the second set of SSR markers developed for the genus *Saussurea*. The 21 SSR markers developed in this study will be useful for studying genetic diversity, gene flow, and population structure in *S. polylepis*. In addition, the resulting population genetic studies will help to develop appropriate conservation strategies and management plans of the endangered *S. polylepis* on continental islands in Korea. Lastly, the successful cross-amplification of these markers among commonly found *Saussurea* species in Korea will provide a novel population genetic tool in one of the most speciose groups in Korea.

ACKNOWLEDGMENTS

The authors thank the Korean National Park Service for special permission to collect samples of *Saussurea polylepis* from the islands of Hong-do, Hueksan-do, and Ui-do. This study represents a part of the first author’s Ph.D. dissertation submitted to Sungkyunkwan University.

AUTHOR CONTRIBUTIONS

S.A.Y. and S.-C.K. designed the project. S.A.Y. collected samples in the field, conducted the experiments, analyzed the data, and wrote the draft of the manuscript. S.-C.K. supervised the study and revised the manuscript. All authors approved the final version of the manuscript.

DATA ACCESSIBILITY

All sequence information was deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (BioProject ID PRJNA503488), and genomic DNA was deposited in the NCBI BioSample database (accession number SAMN10362162).

APPENDIX 1. Locality and voucher information of three *Saussurea polylepis* populations and five congeneric species used in this study.

Species	Collection locality	Geographic coordinates	N	Voucher specimen
Saussurea polylepis Nakai	Hongdo, Jeolla Province, Korea	—	13	SKKU044834
	Heuk-san-do, Jeolla Province, Korea	—	20	SKKU044835
	Ui-do, Jeolla Province, Korea	—	15	SKKU044836
Saussurea gracilis Maxim.	Mt. Gaya, Gyeongsang Province, Korea	35.825868°N, 128.117077°E	1	SKKU044840
	Mt. Yongmoon, Gyeonggi Province, Korea	37.560846°N, 127.543898°E	1	SKKU044841
	Mt. Naejang, Jeolla Province, Korea	35.485817°N, 126.81233°E	1	SKKU044843
	Mt. Doksal, Jeolla Province, Korea	34.076889°N, 125.10550°E	1	SKKU044847
	Jeju island, Korea	33.358472°N, 126.50391°E	1	SKKU031085
Saussurea grandifolia Maxim.	Mt. Odae, Gangwon Province, Korea	37.80222°N, 128.54722°E	1	SKKU031089
	Mt. An, Gangwon Province, Korea	38.141981°N, 128.32650°E	1	SKKU031079

(Continued)
Species	Collection locality	Geographic coordinates^a	N	Voucher specimen^b
Saussurea polylepis	Mt. Daeam, Gangwon Province, Korea	38.182150°N, 128.093567°E	1	SKKU031080
Saussurea polylepis	Uleung island, Gyeongsang Province, Korea	37.513883°N, 130.883817°E	1	SKKU044837
Saussurea polylepis	Russia	43.032722°N, 134.150306°E	1	SKKU044844
Saussurea maximowiczii Herder	Mt. Chilbo, Gyeonggi Province, Korea	37.258249°N, 126.933596°E	1	SKKU044838
Saussurea maximowiczii Herder	Mt. Bisle, Gyeongsang Province, Korea	35.714933°N, 128.525200°E	1	SKKU044846
Saussurea maximowiczii Herder	Mt. Baekun, Jeolla Province, Korea	35.067500°N, 127.646917°E	1	SKKU031088
Saussurea maximowiczii Herder	Mt. Mudeung, Jeolla Province, Korea	35.137000°N, 127.015000°E	1	SKKU031087
Saussurea maximowiczii Herder	Jeju island, Korea	33.358033°N, 126.462873°E	1	SKKU031078
Saussurea pulchella (Fisch.) Fisch. ex Colla	Mt. Hambaek, Gangwon Province, Korea	37.180667°N, 128.893850°E	1	SKKU044839
Saussurea pulchella (Fisch.) Fisch. ex Colla	Mt. Odae, Gangwon Province, Korea	37.792383°N, 128.563083°E	1	SKKU044853
Saussurea pulchella (Fisch.) Fisch. ex Colla	Mt. Goyang, Gangwon Province, Korea	37.414733°N, 128.752617°E	1	SKKU044852
Saussurea pulchella (Fisch.) Fisch. ex Colla	Bongwha, Gyeongsang Province, Korea	37.030693°N, 128.985611°E	1	SKKU044854
Saussurea pulchella (Fisch.) Fisch. ex Colla	Russia	43.031028°N, 131.556639°E	1	SKKU044845
Saussurea tanakae Franch. & Sav. ex Maxim.	Mt. Hwaak, Gyeonggi Province, Korea	37.990133°N, 127.500517°E	1	SKKU044842
Saussurea tanakae Franch. & Sav. ex Maxim.	Mt. Hambaek, Gangwon Province, Korea	37.148183°N, 128.908917°E	1	SKKU044848
Saussurea tanakae Franch. & Sav. ex Maxim.	Mt. Seorak, Gangwon Province, Korea	38.136000°N, 128.346965°E	1	SKKU044850
Saussurea tanakae Franch. & Sav. ex Maxim.	Mt. Deokhang, Gangwon Province, Korea	37.325683°N, 129.003617°E	1	SKKU044851
Saussurea tanakae Franch. & Sav. ex Maxim.	Mt. An, Gangwon Province, Korea	38.141981°N, 128.326502°E	1	SKKU044849

<sup>Note: N = number of samples.
<sup>aGeographic coordinates are not provided for *Saussurea polylepis* due to the vulnerable status of the species.
^{bAll voucher specimens are deposited in the Ha Eun Herbarium (SKK; Sungkyunkwan University, Korea).}