INTERDISCIPLINARY PHYSICS | RESEARCH ARTICLE

Effect of ultra-high pressure on small animals, tardigrades and Artemia

Fumihisa Ono1*, Yoshihisa Mori1, Kenichi Takarabe1, Akiko Fujii2, Masayuki Saigusa2, Yasushi Matsushima1, Daisuke Yamazaki4, Eiji Ito4, Simon Galas5 and Naurang L. Saini6

Abstract: This research shows that small animals, tardigrades (Milnesium tardigradum) in tun (dehydrated) state and Artemia salina cists (dried eggs) can tolerate the very high hydrostatic pressure of 7.5 GPa. It was really surprising that living organisms can survive after exposure to such a high pressure. We extended these studies to the extremely high pressure of 20 GPa by using a Kawai-type octahedral anvil press. After exposure to this pressure for 30 min, the tardigrades were soaked in pure water and investigated under a microscope. Their bodies regained metabolic state and no serious injury could be seen. But they were not alive. A few of Artemia eggs went part of the way to hatching after soaked in sea water, but they never grew any further. Comparing with the case of blue-green alga, these animals are weaker under ultra-high pressure.

Subjects: Biomaterials; Biophysics; Materials Science

Keywords: high pressure biology; pressure tolerance; tardigrade; Milnesium tardigradum; Artemia salina; study of matter at extreme conditions

1. Introduction

A terrestrial tardigrade, Milnesium tardigradum, belongs to Tardigrada which appeared on earth in Cambrian period, is a small animal about 0.6 mm in length. This animal usually lives among mosses. When it rains, it becomes metabolically active, while when dried, it turns into a dehydrated state called “tun.” A tardigrade in the cryptobiotic (dehydrated) state is known to show strong tolerance to extreme environmental conditions (Beltrán-Pardo et al., 2013; Guidetti, Altiero, & Rebecchi, 2011;...
Welnicz, Grohme, Kaczmarek, Schill, & Frohme, 2011), such as exposure to low temperature, high radioactive radiation, to outer-space vacuum for 10 days (Jönsson, Rabbow, Schill, Harms-Ringdahl, & Rettberg, 2008) and to high hydrostatic pressure of 0.6 GPa (Seki & Toyoshima, 1998). The present author’s group extended the study of the pressure tolerance of this animal to a very high pressure of order several GPa (Hirokawa et al., 2009; Ono et al., 2008). They found all of the 20 tuns of tardigrades set in a high-pressure cell alive after exposure to 7.5 GPa for 3 h. They also found that tardigrades can tolerate this pressure for more than 12 h.

Artemia salina belonging to Crustacea in Arthropoda, is a kind of plankton and is commonly known as brine shrimp or sea monkey. This animal lives in inland saltwater lakes and the species has been conserved without any significant evolution since the Triassic period. Artemia cists (dried eggs in cryptobiotic state) are metabolically inactive and even in the case when the lakes are dried up, they remain alive for many years. Artemia cists are also known to show very strong tolerance to severe environmental conditions. We have also extended high-pressure study on Artemia eggs and found that they can survive exposure to 7.5 GPa for up to 72 h (Minami et al., 2010; Ono, Minami, et al., 2010). This pressure corresponds to that existing in the middle of the upper mantle, at the depth of 180 km from the surface of the earth.

These findings are quite in contrast to the well-known fact that proteins began to unfold around 0.3 GPa, where most bacteria and many other organisms die (Silva, Luan, Glaser, Voss, & Weber, 1992; Suzuki & Taniguchi, 1972; Weber & Drickamer, 1983). To obtain any hint to make this point clear, we extended high-pressure study to various living samples including plants (Mori, Yokota, & Ono, 2012; Nishihira et al., 2012; Nishihira et al., 2010, Ono, Mori, et al., 2010; Ono et al., 2012; ) and yeast (Shibata et al., 2014). All of these creatures investigated so far were alive after exposure to 7.5 GPa for at least 1 h. However, the question mentioned above is yet to be solved.

In the present investigation, the maximum pressure has been extended to an ultra-high pressure range, as high as 20 GPa, which corresponds to the pressure just above the lower mantle of the earth. It will be interesting to see whether tardigrades and Artemia can withstand such ultra-high pressures.

2. Experiment
The experimental procedure adopted here is the same as described in the reference (Ono, 2015; Ono et al., 2013, 2015). Tardigrades (M. tardigradum) used as living samples in the present study were collected from a field in the city of Okayama, Japan. At one time, 5–10 tardigrades were dehydrated into tun state. Artemia cists samples were purchased from INVE Aquaculture, Ogden UT, USA. The tuns of tardigrades and a few dozens of Artemia eggs were sealed in a small Teflon capsule with a liquid pressure medium fluorinert (PC77, Sumitomo 3M). The inner diameter and the height of the capsules were 1.6 and 1.8 mm, respectively. An illustration of sample preparation and the configuration of the living samples in a Teflon capsule is shown in Figure 1. This capsule was put in the centre of an octahedron made of MgO with an edge length of 8.0 mm. To generate a pressure up to 20 GPa a Kawai-type two-stage octahedral anvil press installed at the Institute for Study of the Earth’s Interior (ISEI) of Okayama University was adopted. The pressure was increased to 20 GPa at the rate of 40 GPa/h, then kept for 30 min at the maximum pressure, and decreased down to ambient pressure at the rate of 20 GPa/h. Figure 2(a) and (b) show the MgO octahedron with Teflon capsule before and after exposure to the ultra-high pressure of 20 GPa for 30 min, respectively. It is seen in this figure that the dimension of the octahedron became about a half of its original size after the compression.

After the pressure was released, the Teflon capsule was brought out from the MgO high pressure cell, and the animal samples at the metabolic state were investigated under an optical microscope.
3. Results

3.1. Tardigrades after exposure to 20 GPa

The tuns of tardigrades after exposure to 20 GPa for 30 min were brought out of the Teflon capsule, and soaked in pure water. Tardigrades exposed to 20 GPa for 30 min (first run) are shown in Figure 3(a). The photo was taken 4 h after they were soaked in pure water. The one shown in the expanded scale in (b) looks almost alive. But, all of them were dead. No movement of their body and legs had been observed during the investigation till 3 days after they were soaked in water. Figure 4(a) shows five tardigrades after exposure to 20 GPa for 30 min (second run). Two of them are shown in an expanded scale in (b) and (c). These photos were taken 16 h after they were soaked in water. No serious injuries were seen in these bodies, but they all were not alive.

3.2. A. salina after exposure to ultra-high pressure

Artemia eggs exposed to 20 GPa for 30 min were also brought out of the Teflon capsule and soaked in sea water. The effect of high pressure on Artemia was investigated under a microscope by comparing the image of the control group which has not been exposed to high pressure. A few of Artemia
eggs went part of the way to hatching after they were soaked in sea water. One of them is shown in Figure 5(a). This photo was taken 14 h after being soaked in sea water. For comparison, a hatching egg of Artemia is shown in Figure 5(b) as a control, which is not exposed to high pressure. In Figure 5(c) is shown the same Artemia egg that is shown in (a) 39 h after being soaked in sea water. At this moment, the control Nauplius (hatched larva) was already moving around as seen in (d). All of these Artemia eggs that went part of the way to hatching observed at the time 14 h after being soaked in sea water never grew any further. Other Artemia eggs exposed to 20 GPa did not go hatching. Some of them are shown in Figure 6. Thus, all the Artemia eggs that were exposed to 20 GPa could not tolerate this high pressure. Comparing with the case of blue-green alga (Ono et al., 2015), Artemia is weaker against ultra-high pressure.
4. Discussion

It was shown by the present author’s group that all the living samples, both animals and plants that have been tested, could tolerate the high pressure of 7.5 GPa for at least 1 h. The animals tested were tardigrades in tun state and *Artemia* cysts, and the plants were spores of mosses, seeds of white clover *Trifolium Lepens* L. These results are incomprehensible, considering the fact that denaturation of proteins usually takes place below 1 GPa. To obtain any hints to this question, we have extended our experiment to the ultra-high pressure of 20 GPa.

In the case of tardigrades, we could not see any serious injuries in their bodies after exposure to 20 GPa for 30 min, but they all were not alive. This fact means that the cause of death is not a macroscopic injury of the bodies, but some other reasons such as choking, i.e., lack of Oxygen for breathing, braking some special molecules or DNAs. Under this ultra-high pressure, even in a solid material such as P₂O₅ the average atomic volume decreases about 40% (Brazhkin et al., 2015). The volume of a moss spore was estimated to decrease by about 60% on increasing pressure from ambient to 20 GPa (Ono, 2015). Under the ultra-high pressure of 20 GPa, the molecules and atoms that comprise the body are fixed too tightly to let the organisms breathe. Any microscopic injuries due to the existence of pressure gradient may also cause death.
On the other hand, in the case of *Artemia*, a few of high-pressure exposed eggs went part of the way to hatching. However, all of these eggs never grew any further. This fact implies that these eggs might be alive after exposure to the ultra-high pressure, but the cells which contribute to cell division might have serious injuries. This situation of the *Artemia* eggs which went part of the way to hatching is similar to the case of the moss *Venturiella*. As seen in the Figure 3(a) in the reference (Ono et al., 2013), a spore protonema of *Venturiella* after exposure to 20 GPa for 30 min went part of the way to full germination. But, this protonema did not grow any further. In this case, it is also considered that the cells which contribute to cell division might have serious injuries. It is well known that cells that contribute to cell division are weaker than normal cells under severe environmental conditions such as low temperature, high radioactive radiation, high pressure.

The high pressure tolerance of animals and plants investigated so far is illustrated in Figure 7. In this figure the data obtained by Koyama (2010) for the cells of normal eel and deep sea eel at the metabolic state are also shown for comparison.

It is worth emphasizing that the sizes of *Artemia* eggs (100 μm in diameter), tardigrade tun (150 μm) and moss spores (30 μm) are in the range of the order 20–200 μm. On the other hand, the size of blue-green alga is as small as 2 μm. We reported that blue-green algae, *Microcystis flos-aquae* (Wittl.) Kirchn. tolerate the ultra-high pressure of 20 GPa for 30 min (Ono et al., 2015). The stronger tolerance of them than tardigrades, *Artemia* and moss spores seems due to their smaller size. This fact implies that pressure gradient also plays an important role in the high-pressure tolerance of living creatures.

5. Conclusion
It was shown from the present study that tardigrade tuns and *Artemia* cysts could not survive after exposure to the ultra-high pressure of 20 GPa for 30 min. However, no serious injuries could be seen in the bodies of tardigrades brought back to metabolic state. This fact means that the cause of death of tardigrades is not due to a macroscopic injury of the bodies. Possible cause of death could be lack of Oxygen for breathing, breaking some special molecules or DNAs or some other microscopic injuries.

In the case of *Artemia*, a few eggs went part of the way to hatching. However, all of these eggs never grew any further. This fact implies that these eggs might be alive after exposure to the ultra-high pressure, but the cells which contribute to cell division might have serious injuries. Comparing with the case of much smaller sized sample, blue-green alga, these animals are weaker under ultra-high pressure.
Acknowledgments
Fumihisa Ono wishes his sincere thanks to Dr. Masaya Sougawa for his kind help in generating high pressure. This paper presents a result of a joint research programme carried out at the Institute for Study of the Earth's Interior, Okayama University.

Funding
The authors received no direct funding for this research.

Author details
Fumihisa Ono1
E-mail: fumihisa@das.ous.ac.jp
Yoshishita Mori1
E-mail: mori@das.ous.ac.jp
Kenichi Takarabe1
E-mail: takarabe@das.ous.ac.jp
Akiko Fuji2
E-mail: upogebid@gmail.com
Masayuki Saigusa2
E-mail: upogebid@gmail.com
Yasushi Matsushima3
E-mail: matsu@cc.okayama-u.ac.jp
Eiji Ito4
E-mail: dy@misasa.okayama-u.ac.jp
Daisuke Yamazaki4
E-mail: matusima@cc.okayama-u.ac.jp
Yasushi Matsushima3
E-mail: mori@das.ous.ac.jp
Yoshihisa Mori1
E-mail: fumihisa@das.ous.ac.jp
Naurang L. Saini5
E-mail: naurang.saini@roma1.infn.it

1 Department of Applied Science, Okayama University of Science, 1-1 Ridaicho, Kitaku, Okayama 700-0005, Japan.
2 Department of Biology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
3 Department of Physics, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
4 Institute for Study of Earth’s Interior, Okayama University, Misasa, Tottori 682-0193, Japan.
5 Faculté de Pharmacie, Laboratoire de Toxicologie, IBMM UMR 5247 CNRS-Université Montpellier-ENSCM, 15, avenue Charles Flahaut, Montpellier cedex 5 34093, France.

Citation information
Cite this article as: Effect of ultra-high pressure on small animals, tardigrades and Artemia, Fumihisa Ono, Yoshishita Mori, Kenichi Takarabe, Akiko Fuji, Masayuki Saigusa, Yasushi Matsushima, Daisuke Yamazaki, Eiji Ito, Simon Galas & Naurang L. Saini, Cogent Physics (2016), 3: 1167575.

References
Beltrán-Pardo, E., Jönsson, K. I., Wojciak, A., Haghdoot, S., Harms-Ringdahl, M., Bermúdez-Cruz, R. M., & Bernal Villegas, J. E. (2013). Effects of ionizing radiation on embryos of the tardigrade milnesium cf. tardigradum at different stages of development, PLoS ONE 8, e. p. e270598. doi:10.1371/journal.pone.0072098
Brazhnik, V. V., Gromnitskaya, E. L., Danilov, I. V., Katayama, Y., Lyapin, A. G., & Popova, S. V. (2015). High pressure behavior of P 2 0 5 crystaline modifications: Compressibility, elastic properties and phase transitions. Materials Research Express, 2, 025201. http://dx.doi.org/10.1088/2053-1591/2/02/025201
Guidetti, R., Alitiero, T., & Rebecchi, L. (2011). On dormancy strategies in tardigrades. Journal of Insect Physiology, 57, 567–576. http://dx.doi.org/10.1016/j.jinsphys.2011.03.003

Hirokawa, D. D., Iwato, K., Kawai, K., Koseki, S., Okuda, T., & Yamamoto, K. (2009). High hydrostatic pressure tolerance of four different anhydrobiotic animal species. Zoological Science, 26, 238–242.
Jönsson, K. I., Rabbow, E., Schill, R. O., Harms-Ringdahl, M., & Rettep, P. (2008). Tardigrades survive exposure to space in low Earth orbit. Current Biology, 18, R729–R731. http://dx.doi.org/10.1016/j.cub.2008.06.048
Koyama, S. (2010). Molecular and cellular biological studies for deep-sea multicellular organisms under atmospheric pressure condition. Journal of Japanese Society for Extremophiles, 9, 106–115. http://dx.doi.org/10.3118/jjse.9.106
Minami, K., Ono, F., Mori, Y., Takarabe, K., Saigusa, M., Matsushima, Y., ... Yamashita, M. (2010). Strong environmental tolerance of Artemia under very high pressure. Journal of Physics: Conference Series, 215, 012164, 4 p. http://dx.doi.org/10.1088/1742-6596/215/1/012164
Mori, Y., Yokota, S., & Ono, F. (2012). Germination of vegetable seeds exposed to very high pressure. Journal of Physics: Conference Series, 377, 012055, 4 p. http://dx.doi.org/10.1088/1742-6596/377/1/012055
Nishihira, N., Iwasaki, T., Shimpou, R., Hara, A., Ono, F., Hada, Y., ... Yamashita, M. (2012). Maintaining viability of white clover under very high pressure. Journal of Applied Physics, 111, 112619, 4 p. http://dx.doi.org/10.1063/1.4726241
Nishihira, N., Shindo, A., Saigusa, M., Ono, F., Matsushima, Y., Mori, Y., ... Yamashita, M. (2010). Preserving life of moss Physcomitrium under very high pressure. Journal of Physics and Chemistry of Solids, 71, 1123–1126. http://dx.doi.org/10.1016/j.jpcs.2010.03.018
Ono, F. (2015). Moss spores tolerate ultra-high pressure. In K. Akasaka & H. Matsuura (Eds.), High pressure bioscience (Chapter 22, pp. 443–466). Dordrecht: Springer.
Ono, F., Minami, K., Saigusa, M., Matsushima, Y., Mori, Y., Takarabe, K., ... Yamashita, M. (2010). Life of Artemia under very high pressure. Journal of Physics and Chemistry of Solids, 71, 1127–1130. http://dx.doi.org/10.1016/j.jpcs.2010.03.019
Ono, F., Mori, Y., Sougawa, M., Takarabe, K., Hada, Y, Nishihira, N., ... Saini, N. L. (2012). Effect of very high pressure on life of plants and animals. Journal of Physics: Conference Series, 377, 012053, 6 p. http://dx.doi.org/10.1088/1742-6596/377/1/012053
Ono, F., Mori, Y., Takarabe, K., Nishihira, N., Shindo, A., Saigusa, M., ... Yamashita, M. (2010). Strong environmental tolerance of moss Venturiella under very high pressure. Journal of Physics: Conference Series, 215, 012165, 4 p. http://dx.doi.org/10.1088/1742-6596/215/1/012165
Ono, F., Nishihira, N., Hada, Y, Mori, Y, Takarabe, K., ... Saini, N. L. (2012). Effect of very high pressure on to life of the tiny animal tardigrade. Journal of Physics: Conference Series, 48, 012164, 4 p. http://dx.doi.org/10.1088/1742-6596/48/1/012164
Ono, F., Nishihira, N., Sougawa, M., Hada, Y, Mori, Y, Takarabe, K., ... Saini, N. L. (2013). Distortion of spores of moss Venturiella under ultra high pressure. High Pressure Research, 33, 362–368.
Ono, F., Saigusa, M., Uozumi, T., Matsushima, Y., Ikeda, H., Saini, N. L., & Yamashita, M. (2009). Effect of high hydrostatic pressure on to life of the tiny animal tardigrade. Journal of Physics and Chemistry of Solids, 69, 2297–2300. http://dx.doi.org/10.1016/j.jpcs.2008.04.019
Seki, K. & Toyoshima, M. (1998). Preserving tardigrades under high pressure. Nature, 395, 853–854. http://dx.doi.org/10.1038/27576
Shibata, M., Toripoe, M., Matsumoto, Y., Yamamoto, M., Takizawa, N., Hada, Y., ... Ono, F. (2014). Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure. Journal of Physics: Conference Series, 500, 102004, 5 p. http://dx.doi.org/10.1088/1742-6596/500/10/102004
Silva, J. L., Luan, P., Glaser, M., Voss, E. W., & Weber, G. (1992). Effects of hydrostatic pressure on a membrane-enveloped virus; high immunogenicity of the pressure-inactivated virus. *Journal of virology, 66*, 2111–2117.

Suzuki, K., & Taniguchi, Y. (1972). Effect of pressure on biopolymers and model systems. *Symposia of the Society for Experimental Biology, 26*, 103–124.

Weber, G., & Drickamer, H. G. (1983). The effect of high pressure upon proteins and other biomolecules. *Quarterly Reviews of Biophysics, 16*, 89–112. 

Welnicz, W., Grohme, M. A., Kaczmarek, L., Schill, R. O., & Frohme, M. (2011). Anhydrobiosis in tardigrades—The last decade. *Journal of Insect Physiology, 57*, 577–583.