Fluoxetine effects on retention of inhibitory avoidance: Enhancement by systemic but not intra-amygdala injections

INES B. INTROINI-COLLISON, SANG TO, and JAMES L. MCGAUGH
University of California, Irvine, California

Male Sprague-Dawley rats were trained in an inhibitory avoidance task and injected with saline or fluoxetine (15.0 mg/kg i.p.) immediately after training. Fluoxetine significantly facilitated retention assessed on a retention test 48 h later. In contrast, posttraining intra-amygdala injections of fluoxetine (1.0, 3.0, or 10.0 µg) did not modify retention of the inhibitory avoidance task. The findings suggest that the amygdala serotonergic system is not involved in the modulation of memory in this task.

It is now well established that memory storage in rats and mice can be enhanced or impaired by postraining treatments affecting several neurotransmitter or neuro-modulatory systems (McGaugh, 1973, 1983, 1989). For example, when administered shortly after training, systemic injection of either peripheral or centrally acting adrenergic agonists produces dose-dependent effects on subsequent retention (Introini-Collison & Baratti, 1986; Introini-Collison & McGaugh, 1986; McGaugh & Gold, 1989). Opioid peptide receptor antagonists enhance retention (Baratti, Introini, & Huygens, 1984; Gallagher & Kapp, 1978; Izquierdo, 1979; Messing et al., 1979), and opioid receptor agonists impair retention (Castellano, 1975; Introini & Baratti, 1984). GABA receptor antagonists enhance retention (Breen & McGaugh, 1961; Brion & McGaugh, 1988; Castellano, Introini-Collison, Pavone, & McGaugh, 1989), and GABAergic agonists impair retention (Brion, Nagahara, & McGaugh, 1989; Castellano et al., 1989).

Previous results from our laboratory, as well as other laboratories, suggest that adrenergic, opioid peptidergic, and GABAergic drugs modulate retention through influences involving the amygdaloid complex. Posttraining intra-amygdala injections of drugs affecting these neuro-modulatory systems produce effects on memory that are comparable to those found with systemic injections (Brion et al., 1989; Castellano et al., 1989; Ellis & Kesner, 1981; Gallagher, Kapp, McNall, & Pascoe, 1981; Introini-Collison, Nagahara, & McGaugh, 1989; Liang, Juler, & McGaugh, 1986; McGaugh, Introini-Collison, & Nagahara, 1988). Furthermore, the effects of these drugs are blocked by lesions of the amygdala or stria terminalis (a major amygdala pathway) (Ammassari-Teule, Pavone, Castellano, & McGaugh, 1991; Introini-Collison, Arai, & McGaugh, 1989; Liang & McGaugh, 1983; Liang et al., 1982). These findings suggest that the amygdala may play a general role in integrating neuromodulatory influences on memory storage (McGaugh, 1989; McGaugh et al., 1988; McGaugh, Introini-Collison, Nagahara, & Cahill, 1990).

In recent years, several studies have also reported that pharmacological manipulations of the serotonergic system affect memory processes (Altman & Normile, 1988; Altman, Ogren, Berman, & Normile, 1989; Flood & Cherkin, 1987; Richter-Levin & Segal, 1989). Flood and Cherkin (1987) reported that either systemic or central (i.c.v.) injections of the serotonin uptake inhibitor fluoxetine administered to mice before or after training facilitated retention in an active avoidance task as well as in an inhibitory avoidance task. Although the amygdala receives rich widespread serotonergic innervation from the raphe nuclei through the ventral serotonergic pathway (Nieuwenhuys, 1985), it is not yet known whether the memory-modulating effects of fluoxetine involve the amygdala. To address this issue, the present experiments examined the effects of systemic and intra-amygdala injections of fluoxetine on the retention of rats trained in an inhibitory avoidance task.

METHOD

Subjects
Male Sprague-Dawley rats (Charles River) weighing 200-250 g were individually housed and maintained on a 12:12-h light:dark cycle (lights on at 7:00 a.m.). Behavioral training and testing procedures were conducted during the light portion of the cycle. Food and water were available ad lib.

Surgery and Histology
One week after arrival, the rats were implanted bilaterally with 15-mm, 23-ga stainless steel cannulas. They were anesthetized with
ketamine hydrochloride (up to 100 mg/kg i.p.) and given atropine (0.4 mg/kg i.p.) and xylazine (5.0 mg/kg i.p.) as preanesthetics. The tips of the cannulas were aimed at the ventral caudate so that the injection needle tips (which protrude 2 mm from the tips of the cannulas) would be placed dorsal to the central nucleus of the amygdala according to Paxinos and Watson (1986) (AP -2.3 mm; ML ± 4.4 mm; DV -5.2 mm). Two surgical screws served as anchors and were placed in the left frontal (2 mm anterior to bregma and 2 mm lateral) and right posterior (7 mm posterior to bregma and 2 mm lateral) cortices. The cannulas were affixed to the skull with dental cement. Stylets made of 00 insect pins were inserted into the cannulas and remained there at all times except during injections. Immediately after surgery, the animals received penicillin G benzathine/G procaine (30,000 U in 0.1 ml) and were maintained in temperature-controlled chambers for at least 2 h or until they recovered from the anesthesia.

All implanted rats were sacrificed within 1 week after the completion of the behavioral testing. The rats were sacrificed by an overdose of pentobarbital (100 mg/kg i.p.) and perfused with physiologic saline solution (0.9%) followed by formalin (10%). The brains were then removed, stored in 10% formalin at least 48 h, and sliced (40 µm). The slices were stained with cresyl violet. The position of the cannulas and the needle tips were examined through the projection and examination of the slides.

Behavioral Procedures

One week after either arrival (unoperated rats) or surgery, the rats were trained on a trough-shaped inhibitory avoidance apparatus constructed of a stainless steel floor and walls (McGaugh et al., 1988). On the training trial, each rat was placed in the lighted compartment facing the door leading to the dark compartment. When the rat turned around, the door leading to the dark compartment was opened; after the rat stepped through the door into the dark compartment, the door was closed and a footshock (0.35 mA; 60 Hz during 0.7 sec) was delivered through the floor plates. The rat was immediately removed from the apparatus and injected systemically (i.p.) or intra-amygdally as described below. On the retention test 48 h later, the rat was placed in the lighted compartment as in the training session and the step-through latency (maximum of 600 sec) was recorded.

Intra-Amygdala Injection Procedure

Immediately after training, the cannula stylets were removed and the drugs were administered through 30-ga injection needles connected to a 10-µl Hamilton syringe by 1.0-m polyethylene tubing (PE-20). The needles protruded 2 mm beyond the tips of the cannulas. A 0.5-µl injection of a drug was delivered (during 40 sec) to each of the cannulas simultaneously by an automated syringe pump. The needles were retained in the cannulas for 30 sec after the injections were completed, and the stylets were replaced in the cannulas as soon as the injection needles were removed.

Drugs

The drug used for these experiments was the serotonergic uptake inhibitor fluoxetine (Eli Lilly). For the intraperitoneal injections, fluoxetine was dissolved in a saline solution and controls received the saline solution (1.0 ml/kg). The solution for the intra-cannula injection consisted of a phosphate buffer solution prepared by dissolving 0.105 g of PO₄Na₂H₂O₃ and 0.029 g of PO₄Na₂H in the 100 ml of saline solution. Doses are expressed as the salt. Control animals were injected with the buffer (0.5 µl/40 sec).

Statistical Analyses

Data are expressed as median step-through latencies and interquartile ranges and were analyzed by Mann-Whitney U tests.

Figure 1. Position of the needle tips in the brains of the rats used in the intra-amygdala experiment.
administered fluoxetine seen in mice (Flood & Cherkin, 1987) could be obtained with rats. The rats were trained in the inhibitory avoidance task and given immediate posttraining i.p. injections of either saline or fluoxetine (15.0 mg/kg). This dose was selected in view of the findings of Flood and Cherkin (1987) indicating that when it was injected systemically after training, this dose enhanced the retention of mice in active as well as inhibitory avoidance tasks. Retention was assessed 48 h after the training session. As is shown in Figure 2, the retention latencies of rats given posttraining administration of fluoxetine were significantly greater than those of controls ($p < .002$). These findings are comparable to those reported by Flood and Cherkin (1987).

Effects of Intra-amygdala Injections of Fluoxetine

Rats in this experiment were trained in the inhibitory avoidance task as described above and given intra-amygdala injections of buffer or fluoxetine (1.0, 3.0, or 10.0 μg) immediately after training. This range of doses was selected on the basis of the findings of Flood and Cherkin (1987) indicating that doses as low as 8 μg were effective in enhancing retention when administered intracerebroventricularly after training. As Figure 3 shows, there were no significant differences among the groups in performance on the retention test 48 h later ($p > .05$ in all cases).

RESULTS

Effects of Systemically Administered Fluoxetine

The purpose of the first experiment was to determine whether the memory-enhancing effects of systemically administered fluoxetine seen in mice (Flood & Cherkin, 1987) could be obtained with rats. The rats were trained in the inhibitory avoidance task and given immediate posttraining i.p. injections of either saline or fluoxetine (15.0 mg/kg). This dose was selected in view of the findings of Flood and Cherkin (1987) indicating that when it was injected systemically after training, this dose enhanced the retention of mice in active as well as inhibitory avoidance tasks. Retention was assessed 48 h after the training session. As is shown in Figure 2, the retention latencies of rats given posttraining administration of fluoxetine were significantly greater than those of controls ($p < .002$). These findings are comparable to those reported by Flood and Cherkin (1987).

RESULTS

Effects of Systemically Administered Fluoxetine

The purpose of the first experiment was to determine whether the memory-enhancing effects of systemically administered fluoxetine seen in mice (Flood & Cherkin, 1987) could be obtained with rats. The rats were trained in the inhibitory avoidance task and given immediate posttraining i.p. injections of either saline or fluoxetine (15.0 mg/kg). This dose was selected in view of the findings of Flood and Cherkin (1987) indicating that when it was injected systemically after training, this dose enhanced the retention of mice in active as well as inhibitory avoidance tasks. Retention was assessed 48 h after the training session. As is shown in Figure 2, the retention latencies of rats given posttraining administration of fluoxetine were significantly greater than those of controls ($p < .002$). These findings are comparable to those reported by Flood and Cherkin (1987).

DISCUSSION

These findings confirm and extend those of Flood and Cherkin (1987) indicating that when fluoxetine is administered systemically to mice, it significantly facilitates retention in an inhibitory avoidance task. The aim of the present experiment using systemic injections was to confirm the memory-enhancing effect of fluoxetine. It is of
interest that the same dose used by Flood and Cherkin (1987) in experiments examining the effects of fluoxetine on retention of active avoidance and inhibitory avoidance by mice also facilitated rats’ retention in an inhibitory avoidance task.

The findings of Flood and Cherkin (1987), indicating that comparable memory-enhancing effects were obtained with systemic (s.c.) and central (i.c.v.) injections, strongly suggest that the effects are due to central actions of the drug. Our previous findings based on experiments examining the effects of adrenergic, opioid peptidergic, and GABAergic drugs (McGaugh et al., 1990) suggested the possibility that the effects might be mediated by influences involving the amygdaloid complex. The present findings clearly indicate that retention was not influenced by intra-amygadal injections of fluoxetine. With the intra-amygadal site used, the range of doses injected (1.0, 3.0, and 10.0 μg), fluoxetine did not influence retention when administered after training. Flood and Cherkin (1987) reported that when fluoxetine was administered i.c.v., it was effective in influencing memory in doses as low as 8.0 μg. If such effects were due to actions on serotonergic function within the amygdala, fluoxetine should have been effective in doses of 1.0 to 10.0 μg administered directly into the amygdala. Clearly, it was not. It should be noted that the amygdala injection site was the same as that used in our previous studies examining the effects of drugs affecting other neuromodulatory systems.

Thus, the present findings provide no evidence suggesting the direct involvement of the amygdala serotonergic system (Cheetham, Yamaguchi, & Horton, 1989; Kilpatrick, Jones, & Tyers, 1988, 1989; Nieuwenhuys, 1985; Sakurai-Yamashita et al., 1989) in the effects of fluoxetine on memory. Relatively few experiments have investigated the brain system (or systems) mediating the effects of serotonergic influences on memory. Several studies have pointed to the hippocampus as a possible site mediating serotonergic influences on memory (Baker & Reynolds, 1989; Richter-Levin & Segal, 1989). Furthermore, the findings of Pellemounter et al. (1986) suggest that nigral serotonergic activity might also influence memory processes. Although the present findings provide no evidence that memory storage is modulated by direct activation of serotonergic receptors within the amygdala, they do not rule out the possibility that amygdala processes involved in modulating memory storage are influenced by activation of serotonin receptors in other brain regions.

In contrast with the findings reported in this paper along with those from other laboratories (Flood & Cherkin, 1987), other investigators have reported that memory is enhanced by serotonin antagonists (Altman & Normile, 1988; Altman et al., 1989). These conflicting results may be a consequence of the difference in specificity for serotonergic receptor agonists and antagonists. Fluoxetine is a serotonin uptake inhibitor and induces its pharmacological effects through an increase in the concentration of serotonin in the synaptic cleft. Serotonin has a greater affinity for 5-HT_1 receptors than for 5-HT_2 receptors, while the opposite is observed with serotonin receptor antagonists (Altman & Normile, 1988). Thus, the different results obtained with experiments examining the effects of serotonergic agonists and antagonists may be due to activation of different serotonin receptors.

REFERENCES

Altman, H. J., & Normile, H. J. (1988). What is the nature of the role of the serotonergic nervous system in learning and memory? Prospects for development of an effective treatment strategy for senile dementia. Neurobiology of Aging, 9, 627-638.

Altman, H. J., McGaugh, J. L., & Normile, H. J. (1989). The effects of p-chloroamphetamine, a depleter of brain serotonin, on the performance of rats in two types of positively reinforced complex spatial discrimination tasks. Behavioral & Neural Biology, 52, 131-144.

Amassari-Teule, M., Pavone, F., Castellano, C., & McGaugh, J. L. (1991). Amygdala and dorsal hippocampus lesions block the effects of GABAergic drugs on memory storage. Brain Research, 551, 149-159.

Baker, G. B., & Reynolds, G. P. (1989). Biogenic amines and their metabolites in Alzheimer’s disease: noradrenaline, 5-hydroxytryptamine and 5-hydroxyindole-3-acetic acid depleted in hippocampus but not in substantia innominata. Neuroscience Letters, 100, 335-339.

Baratti, C. M., Introni, I. B., & Hugens, P. (1984). Possible interaction between central cholinergic muscarinic and opioid peptidergic systems during memory consolidation in mice. Behavioral & Neural Biology, 40, 155-169.

Breen, R. A., & McGaugh, J. L. (1961). Facilitation of maze learning with posttrial injections of picrotoxin. Journal of Comparative & Physiological Psychology, 54, 498-501.

Brioni, J. D., & McGaugh, J. L. (1988). Posttraining administration of GABAergic antagonists enhances retention of aversively motivated tasks. Psychopharmacology, 96, 505-510.

Brioni, J. D., Nagahara, A. H., & McGaugh, J. L. (1989). Involvement of the amygdala GABAergic system in the modulation of memory storage. Brain Research, 487, 105-112.

Castellano, C. (1975). Effects of morphine and heroin on discrimination learning and consolidation in mice. Psychopharmacology, 42, 235-242.

Castellano, C., Introni-Collison, I. B., Pavone, F., & McGaugh, J. L. (1989). Effects of naloxone and naltrexone on memory consolidation in CDI mice: Involvement of GABAergic mechanisms. Pharmacology, Biochemistry & Behavior, 32, 563-567.

Cheetham, S. C., Yamaguchi, Y., & Horton, R. W. (1989). [3H]5-hydroxytryptamine binding sites in postmortem human brain. Neuropharmacology, 10, 1055-1060.

Ellis, M. E., & Kesner, R. P. (1981). Physostigmine and norepinephrine: Effects of injection into the amygdala on taste association. Physiology & Behavior, 27, 203-209.

Flood, J. F., & Cherkin, A. (1987). Fluoxetine enhances memory processing in mice. Psychopharmacology, 93, 36-43.

Gallagher, M., & Kapp, B. S. (1978). Manipulation of opiate activity in the amygdala alters memory processes. Life Sciences, 23, 1973-1978.

Gallagher, M., Kapp, B. S., McNall, C. L., & Pascoe, J. P. (1981). Opiate effects in the amygdala central nucleus on heart rate conditioning in rabbits. Pharmacology, Biochemistry & Behavior, 14, 497-505.

Introni, I. B., & Baratti, C. M. (1984). The impairment of retention induced by beta endorphin in mice may be mediated by reduction of central cholinergic activity. Behavioral & Neural Biology, 41, 152-163.

Introni-Collison, I. B., Arai, Y., & McGaugh, J. L. (1989). Stria terminalis lesions attenuate the effects of posttraining oxotremorine and atropine on retention. Psychobiology, 17, 397-401.
INTROINI-COLLISON, I. B., & BARATTI, C. M. (1986). Opioid peptidergic systems modulate the activity of beta-adrenergic mechanisms during memory consolidation processes. *Behavioral & Neural Biology, 46*, 227-241.

INTROINI-COLLISON, I. B., & McGAUGH, J. L. (1986). Interaction of adrenergic, cholinergic and opioid systems in modulation of memory storage. *Society for Neuroscience Abstracts, 12*, 710.

INTROINI-COLLISON, I. B., NAGAHARA, A. H., & McGAUGH, J. L. (1989). Memory-enhancement with intra-amygdala posttraining naloxone is blocked by concurrent administration of propranolol. *Brain Research, 476*, 94-101.

IZQUIERDO, I. (1979). Effect of naloxone and morphine on various forms of memory in the rat: Possible role of endogenous opiate mechanisms in memory consolidation. *Psychopharmacology, 66*, 199-203.

KILPATRICK, G. J., JONES, B. J., & TYERS, M. B. (1988). The distribution of specific binding of the 5-HT3 receptor ligand [3H]GR65630 in rat brain using quantitative autoradiography. *Neuroscience Letters, 94*, 156-160.

Kilpatrick, G. J., Jones, B. J., & Tyers, M. B. (1989). Binding of the 5-HT3 ligand, [3H]GR65630, to rat area postrema, vagus nerve and the brains of several species. *European Journal of Pharmacology, 159*, 157-164.

LIANG, K. C., Juler, R., & McGAUGH, J. L. (1986). Modulating effects of posttraining epinephrine on memory: Involvement of the amygdala noradrenergic system. *Brain Research, 368*, 125-133.

LIANG, K. C., & McGAUGH, J. L. (1983). Lesions of the stria terminalis attenuate the enhancing effect of posttraining epinephrine on retention of an inhibitory avoidance response. *Behavioural Brain Research, 9*, 49-58.

LIANG, K. C., McGAUGH, J. L., MARTINEZ, J. L., JR., JENSEN, R. A., VASQUEZ, B. J., & MESSING, R. B. (1982). Posttraining amygdaloid lesions impair retention of an inhibitory avoidance response. *Behavioural Brain Research, 4*, 237-249.

McGAUGH, J. L. (1973). Drug facilitation of learning and memory. *Annual Review of Pharmacology, 13*, 229-241.

McGAUGH, J. L. (1983). Hormonal influences on memory. *Annual Review of Psychology, 34*, 297-323.

McGAUGH, J. L. (1989). Involvement of hormonal and neuromodulatory systems in the regulation of memory storage. *Annual Review of Neuroscience, 12*, 255-287.

McGAUGH, J. L., & GOLDF, P. E. (1989). Hormonal modulation of memory. In R. B. BRUSH & S. Levine (Eds.), *Psychoneuroendocrinology* (pp. 305-339). New York: Academic Press.

McGAUGH, J. L., INTROINI-COLLISON, I. B., & NAGAHARA, A. H. (1988). Memory-enhancing effects of posttraining naloxone: Involvement of B-noradrenergic influences in the amygdaloid complex. *Brain Research, 446*, 37-49.

McGAUGH, J. L., INTROINI-COLLISON, I. B., NAGAHARA, A. H., & CAHILL, L. (1990). Involvement of the amygdaloid complex in neuro-modulatory influences on memory storage. *Neuroscience & Behavioral Reviews, 14*, 425-431.

MESSING, R. B., JENSEN, R. A., MARTINEZ, J. L., JR., SPEEKLER, V. R., VASQUEZ, B. J., SOUMIRE-MOURAT, B., LIANG, K. C., & McGAUGH, J. L. (1979). Naloxone enhancement of memory. *Behavioral & Neural Biology, 27*, 266-275.

NIEUWENHUIYS, R. (1985). *Chemocharchitecture of the brain*. Berlin: Springer-Verlag.

PAXINOS, G., & WATSON, C. (1986). *The rat brain in stereotaxic coordinates*. New York: Academic Press.

PHELPOOL, M. A., FISHER, Q., SCHLESINGER, K., HALL, M., DEARMY, P., & STEWART, J. (1986). The effect of substance P and its fragments on passive avoidance retention and brain monoamine activity. *Behavioural Brain Research, 21*, 119-127.

RICHTER-LEVIN, G., & SEGAL, M. (1989). Raphé cells grafted into the hippocampus can ameliorate spatial memory deficits in rats with combined serotonergic/cholinergic deficiencies. *Brain Research, 478*, 184-186.

SAKURAI-YAMASHITA, Y., KATAOKA, Y., YAMASHITA, K., MIYAZAKI, A., USHIRO, M., MIYAKE, K., NIWA, M., & UEKI, S. (1989). Conflict behavior and dynamics of monoamines of various brain nuclei in rats. *Neuropharmacology, 10*, 1067-1073.

(Manuscript received June 3, 1991; revision accepted for publication July 24, 1991.)