How specific is second language-learning ability? A twin study exploring the contributions of first language achievement and intelligence to second language achievement

K Rimfeld1, PS Dale2 and R Plomin1

Learning a second language is crucially important in an increasingly global society, yet surprisingly little is known about why individuals differ so substantially in second language (SL) achievement. We used the twin design to assess the nature, nurture and mediators of individual differences in SL achievement. For 6263 twin pairs, we analyzed scores from age 16 UK-wide standardized tests, the General Certificate of Secondary Education (GCSE). We estimated genetic and environmental influences on the variance of SL for specific languages, the links between SL and English and the extent to which the links between SL and English are explained by intelligence. All SL measures showed substantial heritability, although heritability was nonsignificantly lower for German (36%) than the other languages (53–62%). Multivariate genetic analyses indicated that a third of genetic influence in SL is shared with intelligence, a third with English independent of intelligence and a further third is unique to SL.

INTRODUCTION

Learning a second language (SL) is increasingly important in modern global societies; however, surprisingly little is known about the origins of individual differences in foreign language acquisition. Given the importance of SL ability in the modern world, it is striking that only a handful of published studies have used genetically sensitive methods to investigate the etiology of individual differences in SL achievement. To our knowledge, the twin design has been applied in only three studies. A Dutch study using over 1600 12 to 26-year-old twin pairs, reported a high heritability estimate (71%). However, this study used self-reported aptitude, not measured performance in SL learning. An Australian study with a relatively small sample of 251 adolescent twin pairs investigated teacher-rated achievement in SL learning and reported high heritability estimates (72%) with shared environmental factors explaining 20% of the variance. The only adequately powered study using non-self-report SL measures was conducted with a subsample of the present study: teacher-rated achievement for 14-year-old twins from the Twins Early Development Study (TEDS) yielded a substantial heritability estimate of 42%, shared environmental influences of 32% and non-shared environmental influences of 26%. Importantly, this study also showed shared etiology between age 12 achievement in English and SL at age 14, demonstrating substantial phenotypic (0.44) and genetic correlations (0.49) between the first and SL achievement scores. However, these results were based on teacher ratings, and, as twins often have the same teacher for a given foreign language, this measure could lead to rater bias and to an inflated estimate of shared environment. In summary, the few available studies suggest that there is substantial heritability in SL achievement; however, the results to date are mixed, as would be expected, given the diverse measures used in these studies.

It is possible that SL achievement reflects a broader language skill. Indeed, early first language skills have been shown to be closely related to achievement in SL even after a 10-year gap. We have shown that achievement in the first language (English) is highly heritable in the early school years and at the end of compulsory education. In our previous report on SL, we showed that SL at the age of 14 was substantially correlated phenotypically (0.44) and genetically (0.49) with first language achievement scores.

The strongest predictor of SL achievement is a construct called second language learning aptitude, which is generally considered as a specific ability for SL learning. One way to look at this construct is in terms of ability to learn several languages; however, few students take more than one foreign language General Certificate of Secondary Education (GCSEs) and those that do are likely to be self-selected for SL-learning aptitude. SL-learning aptitude is typically measured using language-learning exercises, such as the Modern Language Aptitude Test that are very similar to the actual learning outcome they are used to predict, although the underlying psychological mechanisms remain poorly understood. Language-learning aptitude has been hypothesized to include memory, phonetic coding ability, language analytic ability and grammatical sensitivity, all of which appear to be related to intelligence. For example, both language analytic ability and memory are usually considered important components of intelligence. Furthermore, it is not clear whether aptitude is something different from intelligence. We did not have a measure that specifically addresses SL-learning aptitude. However, in addition to investigating whether SL achievement reflects broader language aptitude that includes first language, we were able to address, for the first time, the extent to which SL achievement is even more general in the sense of general

1King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK and Department of Speech and Hearing Sciences, University of New Mexico, Albuquerque, NM, USA. Correspondence: K Rimfeld, King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, PO80, Denmark Hill, London SE5 8AF, UK.

E-mail: kaili.rimfeld@kcl.ac.uk

Received 8 April 2015; revised 25 June 2015; accepted 22 July 2015
intelligence. Intelligence has been shown to be a significant predictor of SL achievement, as well as academic achievement in general. In terms of genetics, intelligence, such as academic achievement, is highlyheritable (~0.50). For these reasons, it is important to include intelligence in a multivariate genetic investigation of SL achievement.

In summary, the current study goes beyond our previous report in three ways. First, our sample is three times larger. This increased power enabled us to investigate the main SLs studied at school separately, and also allowed for more powerful multivariate genetic analyses. Second, instead of teacher ratings, our analyses were based on standardized examinations (GCSEs) taken at the end of compulsory education in the United Kingdom. Third, we included intelligence in multivariate analyses. These measures allowed us to investigate the extent to which SL achievement reflects a broader language skill (first language achievement) and an even broader cognitive ability (intelligence). We also included achievement for twins with GCSE scores at the age of 16 in English and SL and for whom intelligence scores were also available. We show, for the first time, the results of trivariate analyses investigating the association between intelligence, English and SL achievement.

MATERIALS AND METHODS

Sample

The sampling frame for the present study was the TEDS sample. TEDS is a large longitudinal sample involving over 16,000 twin pairs born in England and Wales during 1994–1996. Although there has been some attrition, more than 10,000 twin pairs have remained actively involved in the study. Since infancy, rich cognitive and behavioral data have been collected from the twins, including academic achievement. The sample is a representative sample of the UK population when compared with data from the National Statistics Office.

The present study included 12,526 individuals (6263 twin pairs) from whom GCSE scores were obtained for English or SL; intelligence scores were available for 4481 individuals (2240 pairs). The sample size for each measure is shown in the results. Children who had major medical or psychiatric problems were excluded from the analyses. Because the present study investigated achievement in first and second languages, children who did not have English as their first language were also excluded from the analyses; however, no information about the extent of bilingualism was available. Zygosity was assessed using a parent questionnaire of physical similarity, which is 95% accurate when compared with DNA testing. DNA testing was conducted when zygosity was not clear from the physical similarity criteria. Both same-sex twin pairs and opposite-sex twin pairs were included in the study, with the overall sample including 2229 monozygotic (MZ) pairs, 2050 same-sex dizygotic (DZ) twin pairs and 1984 opposite-sex DZ twin pairs.

Measures

We used the GCSE grades for language achievement measures at the age of 16. GCSEs are standardized examinations taken in the United Kingdom at the end of compulsory education. The GCSE courses usually begin at the age of 16. GCSEs are standardized examinations taken in the United Kingdom and Wales during 1994–1996. Although there has been some attrition, more than 10,000 twin pairs have remained actively involved in the study. Since infancy, rich cognitive and behavioral data have been collected from the twins, including academic achievement. The sample is a representative sample of the UK population when compared with data from the National Statistics Office.

The present study included 12,526 individuals (6263 twin pairs) from whom GCSE scores were obtained for English or SL; intelligence scores were available for 4481 individuals (2240 pairs). The sample size for each measure is shown in the results. Children who had major medical or psychiatric problems were excluded from the analyses. Because the present study investigated achievement in first and second languages, children who did not have English as their first language were also excluded from the analyses; however, no information about the extent of bilingualism was available. Zygosity was assessed using a parent questionnaire of physical similarity, which is 95% accurate when compared with DNA testing. DNA testing was conducted when zygosity was not clear from the physical similarity criteria. Both same-sex twin pairs and opposite-sex twin pairs were included in the study, with the overall sample including 2229 monozygotic (MZ) pairs, 2050 same-sex dizygotic (DZ) twin pairs and 1984 opposite-sex DZ twin pairs.

Phenotypic correlations

Phenotypic correlations were calculated between the composite GCSE SL and GCSE English, between the main GCSE SL languages of French, German and Spanish, and between SL measures and intelligence. The correlations between GCSEs in individual languages were based on a restricted sample and range, as only a minority of students took two or more GCSEs in a SL.

Twin method

The twin method was used to estimate the relative contribution of additive genetic (A), shared environmental (C) and non-shared environmental influences (E) for the variance of SL, English and intelligence measures and for the covariance between them. The twin method offers a powerful natural experiment by comparing the similarity of MZ twins to DZ twins, as MZ twins share 100% of their segregating genes, and DZ twins, just as any other siblings, share 50% of their segregating genes. By comparing twin correlations for MZ and DZ twins, the relative contributions of A, C and E can be estimated. Both MZ and DZ twin pairs growing up in the same family share the same environmental influences; therefore, the correlation between twin pairs for shared environmental influences is assumed to be 1.0. Non-shared environmental influences; therefore, the correlation between twin pairs for shared environmental influences is assumed to be 1.0. Non-shared environmental influences; therefore, the correlation between twin pairs for shared environmental influences is assumed to be 1.0.
influences are assumed to be unique to individuals, that is, uncorrelated between twins and not contributing to similarities between them.

Cross-twin correlations can be used to estimate ACE parameters. A is approximately double the difference between MZ and DZ correlations; C can be calculated by deducting the heritability estimate from the MZ correlations; and E can be calculated by deducting the MZ correlations from unity. E also includes measurement error. These A, C and E estimates can be calculated more accurately and with confidence intervals using structural equation models with maximum likelihood estimation. We used the structural equation modeling program OpenMx. Univariate parameter estimates are reported for all measures.

Bivariate genetic analysis extends univariate analysis of variance to the covariance between two variables. Similar to univariate decomposition of variance, the phenotypic covariance between traits can be decomposed into A, C and E components on the basis of cross-twin cross-trait correlations, examining the covariance between twin pairs across different traits (See Supplementary Figure S1). Genetic correlation (r_g) is an index of pleiotropy: it estimates the extent to which the same genes influence two traits independent of the heritability of the traits. By weighting the genetic correlation by the heritabilities of two traits, genetic mediation of the phenotypic correlation can be estimated. An algebraically equivalent representation of the same analysis is the Cholesky decomposition (Supplementary Figure S1b), which is conceptually similar to hierarchical regression. Cholesky decomposition focuses on the extent to which the phenotypic correlation can be estimated. An algebraically equivalent representation of the same analysis is the Cholesky decomposition (Supplementary Figure S1b), which is conceptually similar to hierarchical regression. Cholesky decomposition focuses on the extent to which the phenotypic correlation can be estimated. An algebraically equivalent representation of the same analysis is the Cholesky decomposition (Supplementary Figure S1b), which is conceptually similar to hierarchical regression. Cholesky decomposition focuses on the extent to which the phenotypic correlation can be estimated.

RESULTS

Means and s.d.’s are presented in Table 1 by sex and zygosity for five groups: MZ males, DZ males, MZ females, DZ females and DZ opposite-sex pairs. ANOVA results show that the sex, zygosity and their interaction explain only ~1% of the variance on average.

For subsequent analyses, scores were age and sex regressed and normalized using the van der Waerden transformation, as explained in the Materials and Methods section.

Univariate model fitting

Figure 1 shows univariate ACE (additive genetic, shared environmental and non-shared environmental components of variance) estimates for the mean SL score, as well as for French, German and Spanish. SL learning at the end of compulsory education is highly heritable (56% for composite GCSE SL grade). Heritability estimates for French and Spanish are substantial, 53% and 56%, respectively. Shared environmental influence accounted for approximately a quarter (27 and 22%) of the variance. Non-shared environmental influences (E) that do not contribute to similarities between the twins accounted for the remaining fifth of the variance (22 and 20%). Interestingly, German language achievement at the age of 16 yields a lower heritability estimate of 36% and a higher shared environmental influence of 45%, although these estimates are not significantly different from French or Spanish. All twin correlations and detailed model-fitting results, together with confidence intervals, are presented in Supplementary Table S1.

Table 1. Descriptive statistics

Variable	N	Whole sample	Male	Female	MZm	DZm	MZf	DZf	DZos	Sex	Zyg	Sex × Zyg	
GCSE English	12,099	8.91 (1.21)	8.69 (1.26)	9.12 (1.14)	8.96 (1.34)	8.62 (1.50)	8.56 (1.51)	8.82 (1.42)	0.00 (0.98)	0.00 (0.98)	0.00 (0.98)	0.03 (1.01)	0.00 (0.98)
GCSE SL	6,966	9.05 (1.20)	8.75 (1.23)	8.99 (1.13)	8.91 (1.15)	8.57 (1.33)	8.83 (1.42)	0.05 (1.01)	-0.03 (0.98)	0.00 (0.98)	0.00 (0.98)	0.07 (1.05)	0.03 (1.01)
Intelligence	4,481	8.91 (1.21)	8.69 (1.26)	9.12 (1.14)	8.96 (1.34)	8.62 (1.50)	8.56 (1.51)	8.82 (1.42)	0.00 (0.98)	0.00 (0.98)	0.00 (0.98)	0.03 (1.01)	0.00 (0.98)

Note: ANOVA analysis of variance; DZ, dizygotic; f, female; GCSE, General Certificate of Secondary Education; m, male; MZ, monozygotic; N, sample size after exclusions (individuals); os, opposite sex; SL, second language; Zyg, zygosity. Mean (s.d.) for GCSE English, GCSE SL grade, and intelligence. Results are conducted by selecting randomly one twin per pair testing the main effect of sex and zygosity, and the interaction between them. Results are **P < 0.01. **P < 0.001.

Correlations between SL, English and intelligence

Phenotypic correlations among the three variables are substantial. English and SL correlate 0.70 (0.69–0.72: 95% confidence intervals).
Intelligence correlates moderately with both English (0.52; 0.50–0.54) and SL (0.48; 0.45–0.51). Correlations between specific languages are also substantial (0.69–0.79), as shown in Supplementary Table S2. However, the sample size for these correlations was small and possibly not representative as it was limited to students who took more than one foreign language GCSE.

Bivariate model fitting

Figure 2 illustrates the results of bivariate genetic analyses for General Certificate of Secondary Education (GCSE) English and GCSE second language (SL) with 95% confidence intervals (in parentheses). Intelligence correlates moderately with both English (0.52; 0.50–0.54) and SL (0.48; 0.45–0.51). Correlations between specific languages are also substantial (0.69–0.79), as shown in Supplementary Table S2. However, the sample size for these correlations was small and possibly not representative as it was limited to students who took more than one foreign language GCSE.

Bivariate model fitting

Figure 2 illustrates the results of bivariate genetic analyses between English and SL. The heritability of SL achievement is 54%, the sum of the two paths $\sqrt{0.37}$ and $\sqrt{0.17}$, which differs only slightly from the estimate of 56% from univariate model fitting (Supplementary Table S1). The a_{12} path (see Supplementary Figure S1) of $\sqrt{0.37}$ indicates that English accounts for 68% (0.37/0.54) of the heritability of SL at the age of 16.

Bivariate genetic analyses conducted between intelligence and SL indicate that intelligence explains 27% (0.15/0.55) of the heritability of SL achievement (see Supplementary Figure S2). We conducted similar analyses for the specific languages of French, Spanish and German. Supplementary Figure S3 summarizes the results of these analyses. Similar to the results shown for the SL composite in Figure 2, bivariate Cholesky analyses of English as compared with the three languages showed that English accounted for ~80% of heritability of each of the languages (see Supplementary Figure S4). Similar to the results shown in Supplementary Figure S4, bivariate Cholesky analyses showed that intelligence accounted for ~30% of the heritability of each of the languages (see Supplementary Figure S5). In summary, the bivariate results shown in Figure 2 for the SL composite were similar to those that emerged for each of the languages separately; there were some differences in the magnitude of heritability explained by English, but these differences were not statistically significant. It is important to remember that we had much less power to conduct the bivariate analyses using three languages separately as compared with SL composite, as evident from the wide confidence intervals.

Trivariate model fitting

To investigate further the relationships between SL English and intelligence, a trivariate genetic analysis was conducted. Figure 3 presents the genetic results of (a) the Cholesky solution and (b) the correlated factor solution. The Cholesky analysis indicates that 36% (0.19/0.53) of the variance in the heritability of SL can be attributed to intelligence and English, a further 34% (0.18/0.53) of the heritability of SL can be attributed to English independent of intelligence, and 30% (0.16/0.53) of the heritability of SL is unique genetic variance, that is, independent of English and intelligence. Full Cholesky decomposition is shown in Supplementary Figure S6. The correlated factor solution (Figure 3b) yields a genetic correlation of 0.82 between SL and English, suggesting that the same genes largely contribute to these two measures. The genetic correlation between SL and intelligence is 0.59, which is significantly lower than the genetic correlation between SL and English, as seen by their nonoverlapping confidence intervals. Full correlation matrices, together with confidence intervals, are included in Supplementary Table S3.

DISCUSSION

We found that most individual differences in SL achievement are accounted for by genetic differences, rather than school, family
and other environmental influences. This conclusion holds for both Spanish and French, although there may be less genetic influence and more shared environmental influence for German.

These heritability estimates are higher than those in our earlier study, which might be because different measures were used. In the present study we used standardized examination scores at the end of compulsory education, as compared with teacher ratings of academic achievement in our earlier report. Secondly, the teacher-rated measure used previously was collected at the age of 14, which is typically in the middle of SL learning. Our current measure was obtained at the end of formal SL education, when individual differences may have become more stabilized.

Our bivariate results demonstrate a general genetic factor of language achievement at the end of compulsory education in the United Kingdom in the sense that achievement in English and SL is influenced to a large extent by the same genes. Furthermore, genetic influence on SL achievement cannot be explained by intelligence alone. SL heritability is just as much explained by English achievement as it is by intelligence, and the genetic bivariate relationship between SL and English is stronger than the bivariate genetic relationship between SL and intelligence. A more comprehensive picture is provided by our trivariate results, which show that genetic influences on intelligence contribute about one-third of the heritability of SL achievement. A further third of the heritability of SL can be accounted for by genetic influence on English independent of intelligence, pointing to a general factor of language. The final third of the heritability of SL is unique to SL, that is, independent of both intelligence and English.

We believe our study is the first adequately powered study to employ standardized examination results for SL learning at the end of compulsory education in order to estimate genetic and environmental influences on the variance and covariance of first and SL achievement and intelligence. There are, however, at least four limitations that need to be acknowledged. First, the usual assumptions about twin method were made, which are described in detail elsewhere. Second, the instructed language learning studied here could differ from learning in a natural setting, and therefore the results of this study cannot be generalized to SL acquisition outside of classroom settings, and only apply to those who have chosen to take GCSE in SL. Third, some schools in the United Kingdom require students to take at least one foreign language GCSE, whereas others do not allow pupils to choose more than one; therefore, we could not investigate the genetic and environmental origins of individual differences in choosing one or more foreign language GCSE courses. Furthermore, because SL GCSE is compulsory in some schools but not in other schools, it might not be a random group of students who took one or more foreign language GCSE courses. Finally, the foreign language GCSE examination consists of four parts: reading, writing, listening and speaking, which make it a reliable measure of overall academic achievement in language learning. However, only one composite grade per language is awarded at GCSE level, so that we could not distinguish these different aspects of language learning as they relate to English achievement or intelligence. We created the composite of English language and English literature because there is substantial overlap with the course content measuring reading, writing, speaking and listening skills. Nonetheless, we checked whether analyzing the English language grade by itself yields similar results; the results are highly similar to those shown for the composite measure. It is also noteworthy that both GCSE English and GCSE SL are assessed by standardized examinations, whereas intelligence is not. Thus, it is possible that shared method variance contributes to the correlation between English and SL.

The present results suggest several questions for further research on academic achievement in SLs. Our future research involves longitudinal investigations into SL achievement, for example, a longitudinal analysis exploring how early English achievement and intelligence relate etiologically to SL at the age of 16. We will also explore whether the conclusions presented here for the entire sample hold at the extremes of exceptionally high or low SL achievement. If appropriate samples can be found, multivariate genetic analyses should be conducted in different foreign languages to investigate the extent to which the same genetic and environmental factors influence learning diverse foreign languages. This was not possible in the present study because few students took more than one foreign language GCSE. Furthermore, all of the students in this study were native speakers of English. It would be of considerable theoretical interest to explore the role of first and SL typological distance as an influence on SL etiology, that is, how the differences between languages on various aspects of linguistic structure influence the rate of language learning and achievement. A large body of literature has shown that SL-learning aptitude, learning styles and quality of instruction are significant predictors of the rate of SL learning.

Further research is needed to study the etiology of the associations between these predictors and achievement in SL using a multivariate genetic design, and this is one of our goals for future research. Another goal is to understand the role of specific cognitive abilities, not just general intelligence, on SL achievement. One strategy that could prove useful in this regard is to study individuals with discrepancies between GCSE grades in English and SL.

We have demonstrated here that genes explain a larger proportion of differences between children in SL achievement than do shared environmental influences of school and home environment. It is important to note that genes not only influence the aptitude and achievement of children directly, but also their appetite for knowledge and hence indirectly their eventual achievement. This is an example of genotype–environment correlation; as children grow older they tend to select, modify and tailor their environment on the basis of their genetic propensities. Genotype–environment correlation may be increasingly important during adolescent development; achievement in language learning could be influenced by how much students use the language outside the school, their interest in the different cultures and self-efficacy.

Achievement at the end of compulsory education is of major, and increasing, importance to society and to individuals because these results are used to make decisions regarding further education and occupation. The findings of our study will become even more important once specific genes responsible for academic achievement in SL learning are identified, unique environmental factors are ascertained and gene–environment interplay is better understood.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGMENTS
We gratefully acknowledge the ongoing contribution of the participants in TEDS and their families. TEDS is supported by a program grant to RP from the UK Medical Research Council (G0901245 and previously G0500079), with additional support from the US National Institutes of Health (HD044454; HD059215). KR is supported by Medical Research Council studentship. RP is supported by a Medical Research Council Research Professorship award (G19/2) and a European Research Council Advanced Investigator award (295366).

DISCLAIMER
The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
REFERENCES

1 Vinkhuyzen AAE, van der Sluis S, Posthuma D, Boomsma DI. The heritability of aptitude and exceptional talent across different domains in adolescents and young adults. Behav Genet 2009; 39: 380–392.

2 Coventry W, Antón-Méndez I, Ellis EM, Levisen C, Byrne B, van Daal VHP et al. The etiology of individual differences in second language acquisition in Australian school students: a behavior-genetic study. Lang Learn 2012; 62: 880–901.

3 Dale PS, Harlaar N, Plomin R. Nature and nurture in school-based second language achievement. Lang Learn 2012; 62: 28–48.

4 Melby-Lervåg M, Lervåg A. Cross-linguistic transfer of oral language, decoding, phonological awareness and reading comprehension: a meta-analysis of the correlational evidence. J Res Read 2011; 34: 114–135.

5 Sparks R, Patton J, Ganschow L, Humbach N. Long-term crosslinguistic transfer of skills from L1 to L2. Lang Learn 2009; 59: 203–243.

6 Kovas Y, Haworth CMA, Dale PS, Plomin R. The genetic and environmental origins of learning abilities and disabilities in the early school years. Monogr Soc Res Child Dev 2007; 72: 1–144.

7 Shakeshaft NG, Trzaskowski M, McMillan A, Rimfeld K, Krapohl E, Haworth CMA et al. Strong genetic influence on a UK nationwide test of educational achievement at the end of compulsory education at age 16. PLoS ONE 2013; 8: e80341.

8 Dörnyei Z, Skehan P. Individual differences in second language learning. In: Doughty CJ, Long MH (eds). The Handbook of Second Language Acquisition. Wiley-Blackwell, 2005, p 589.

9 Carroll JB. The prediction of success in intensive foreign language training. In: Doughty CJ, Long MH (eds). The Handbook of Second Language Acquisition. Wiley-Blackwell, 2005, p 589.

10 DeKeyser R, Koeth J. Cognitive aptitudes for second language learning. In: Hinker L (ed). Handbook of Research in Second Language Teaching and Learning. Vol. 2. Routledge: New York, NY, USA, 2011, pp 395–406.

11 Carroll JB. The prediction of success in intensive foreign language training. In: Glaser R (ed). Training research and education. University of Pittsburgh Press: Pittsburgh, pp 87–136, 1962.

12 Dörnyei Z. Individual differences in second language learning. AILA Rev 2006; 19: 42–68.

13 Skehan P. A Cognitive Approach to Language Learning. Oxford University Press: Oxford, UK, 1998.

14 Teepen J. On the relationship between aptitude and intelligence in second language acquisition. Teach Coll Columbia Univ Work Pap TESOL Appl Linguist 2005; 4: 1–9.

15 Deary IJ, Johnson W, Houlihan LM. Genetic foundations of human intelligence. Hum Genet 2009; 126: 215–232.

16 Haworth CMA, Davis OSP, Plomin R. Twins Early Development Study (TEDS): a genetically sensitive investigation of cognitive and behavioral development from childhood to young adulthood. Twin Res Hum Genet 2013; 16: 117–125.

17 Price TS, Freeman B, Craig I, Pettrill SA, Ebersole L, Plomin R. Infant zyosity can be assigned by parental report questionnaire data. Twin Res 2000; 3: 129–133.

18 Pishghadam R, Khajavy GH. Intelligence and metacognition as predictors of foreign language achievement: a structural equation modeling approach. Learn Individ Differ 2013; 24: 176–181.

19 Deary IJ, Johnson W, Houlihan LM. Genetic foundations of human intelligence. Hum Genet 2009; 126: 215–232.

20 Haworth CMA, Davis OSP, Plomin R. Twins Early Development Study (TEDS): a genetically sensitive investigation of cognitive and behavioral development from childhood to young adulthood. Twin Res Hum Genet 2013; 16: 117–125.

21 Price TS, Freeman B, Craig I, Pettrill SA, Ebersole L, Plomin R. Infant zyosity can be assigned by parental report questionnaire data. Twin Res 2000; 3: 129–133.

22 Raven J, Raven JC, Court J. Manual for Raven’s Progressive Matrices and Vocabulary Scales. Oxford University Press: Oxford, 1996.

23 Raven JC, Raven J, Court JH. The Mill Hill Vocabulary Scale. OPP: Oxford, UK, 1998.

24 McGuire M, Bouchard TJ. Adjustment of twin data for the effects of age and sex. Behav Genet 1984; 14: 325–343.

25 Lehmann E. Nonparametric Statistical Methods Based on Ranks. Holden-Day: San Francisco, CA, USA, 1975.

26 Van Der Waerden BL. On the sources of my book Moderne Algebra. Hist Math 1975; 2: 31–40.

27 Plomin R, DeFries JC, Knopik VS, Neiderhiser JM. Behavioral Genetics. 6th edn, Worth Publishers: New York, NY, USA, 2013.

28 Rijsdijk FV, Sham PC. Analytic approaches to twin data using structural equation models. Brief Bioinform 2002; 3: 119–133.

29 Boker S, Neale M, Maes H, Wilde M, Spiegel M, Brick T et al. OpenMx: an open source extended structural equation modeling framework. Psychometrika 2011; 76: 306–317.

30 Ellis R. Second Language Acquisition. Oxford: Oxford University Press, 1997.

31 Ellis R. Understanding second language acquisition. The Oxford Applied Linguistics. OUP Oxford, 1985.

32 Ehrman ME, Leaver B Lou, Oxford RL. A brief overview of individual differences in second language learning. System 2003; 31: 313–330.

33 Lyster R, Sato K. Oral corrective feedback in second language classrooms. Lang Teach 2012; 46: 1–40.

34 Lyster R, Sato K. Oral feedback in classroom SLA. Lang Teach 2012; 46: 1–40.

35 Ashbury K, Plomin R. G is for Genes: The Impact of Genetics on Education and Achievement. John Wiley & Sons, 2013.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license; unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)