Intuitionistic Fuzzy Normal Operator on IFH - Space

A. Radharamani, S. Maheswari

Abstract: In this article, we define Intuitionistic Fuzzy Normal Operator operating on an IFH-Space. An operator S is an intuitionistic fuzzy normal operator if $SS^* = S^*S$ i.e. S commutes with its intuitionistic fuzzy adjoint.

Keywords: IFH-space, Intuitionistic fuzzy Adjoint operator (IF-A-operator), Intuitionistic Fuzzy Self-Adjoint operator (IFSA-operator), Intuitionistic Fuzzy Normal operator (IFN-operator).

I. INTRODUCTION

Let IFB(\mathcal{H}) be the set of all IF-Bounded Linear Operators on IFH-Space \mathcal{H}. Park [5] first studied the concept of Intuitionistic Fuzzy Metric Spaces. Later on, Intuitionistic Fuzzy Metric and Norm have been defined by Saadati [6]. Then Goudarzi et al. [4] in 2009, introduced Intuitionistic Fuzzy Inner Product Space (IFIP-space), Majumdar and Samanta [9] defined IFIP-space in 2011. In 2018, Radharamani et al. [1], [2] have given the definition and properties of Intuitionistic Fuzzy Hilbert Space (IFH-Space) \mathcal{H} as a triplet $(\mathcal{H}, \mathcal{F}_{\mu,\nu}, \tau)$ and also the concept of intuitionistic fuzzy adjoint and self-adjoint operators (IFA and IFSA-operators) in IFH-space. If $S \in$ IFB(\mathcal{H}), $\langle Sx, y \rangle = (x, S^*y), \forall x, y \in \mathcal{H}$. Also S is an IFSA-operator if $S = S^*$.

Now we introduced intuitionistic fuzzy normal operator on \mathcal{H}, if $SS^* = S^*S$. Here we establish some theorems and an example for intuitionistic fuzzy normal operator like addition and multiplication of intuitionistic fuzzy normal operator. S is intuitionistic fuzzy normal if $S \Rightarrow S^*$.

II. PRELIMINARIES

Definition 2.1: [4]

A continuous t - norm τ is called continuous t - representable iff \exists a continuous t – norm $*$ and a continuous t – conorm t on the interval $[0,1]$ such that for all $x = (x_1, x_2), y = (y_1, y_2) \in L^*$, $\tau(x, y) = (x_1 * y_1, x_2 \circ y_2)$.

Definition 2.2: [4]

Let $\mu: V^2 \times (0, +\infty) \rightarrow [0,1]$ and $\sigma: V^2 \times (0, +\infty) \rightarrow [0,1]$ be Fuzzy sets, such that $\mu(x, y, t) + \sigma(x, y, t) \leq 1, \forall x, y \in V & t > 0$.

Revised Manuscript Received on May 15, 2020.

Radharamani A, Assistant Professor, Department of Mathematics, Chikkanna Govt. Arts College, Bharathiar University, Tamil Nadu, India. E-mail: radhabtk@gmail.com

Maheswari S, Assistant Professor, Department of Mathematics, Tiruppur Kumaran College for Women, Bharathiar University, Tamil Nadu, India. E-mail: jawa_harmani@gmail.com

An Intuitionistic Fuzzy Inner Product Space (IFIP-Space) is a triplet $(V, \mathcal{F}_{\mu,\nu}, \tau)$, where V is a real Vector Space, τ is a continuous t - representable and $\mathcal{F}_{\mu,\nu}$ is an Intuitionistic Fuzzy set on $V^2 \times \mathbb{R}$ satisfying the following conditions for all $x, y, z \in V$ and $s, r, t \in \mathbb{R}$:

(i) if $\mathcal{F}_{\mu,\nu}(x, y, 0) = 0$ and $\mathcal{F}_{\mu,\nu}(x, x, t) > 0$, for every $t > 0$.

(ii) if $\mathcal{F}_{\mu,\nu}(x, y, t) = \mathcal{F}_{\mu,\nu}(y, x, t)$.

(iii) $\mathcal{F}_{\mu,\nu}(x, x, t) \neq H(t)$ for some $t \in \mathbb{R}$ iff $x \neq 0$.

where $H(t) = 1, \text{ if } t > 0 \quad 0, \text{ if } t \leq 0$

(i) For any $\alpha \in \mathbb{R}$,

$\mathcal{F}_{\mu,\nu}(\alpha x, y, t) = \left\{ \begin{array}{ll}
\mathcal{F}_{\mu,\nu}(x, y, \frac{t}{\alpha}), & \alpha > 0 \\
H(t), & \alpha = 0 \\
\mathcal{F}_{\mu,\nu}(x, y, \frac{t}{\alpha}), & \alpha < 0
\end{array} \right.$

(ii) By putting $(x, y) = \mathcal{F}_{\mu,\nu}(x, y, 1)$, it is very simple to show that the Intuitionistic Fuzzy Inner Product acts quite similarly as the Ordinary Inner Product.

(iii) Schwarz inequality:

$\mathcal{F}_{\mu,\nu}(x, y, ts) = \mathcal{T}(\mathcal{F}_{\mu,\nu}(x, x, t^2) \mathcal{F}_{\mu,\nu}(y, y, s^2))$, for $x, y \in V$ and $s, t > 0$.

(iv) A sequence $(x_n) \subseteq V$ is called τ-convergent to $x \in V$, if for any given $\epsilon > 0$ and $\lambda > 0$, $\exists N_0 \in \mathbb{Z}^+$, $N_0 = N_0(\epsilon, \lambda), \exists \mathcal{T}(x_n - x, \epsilon) > N_0(\lambda)$, whenever $n > N_0$.

(v) Let $\#(x)$ be a continuous linear function on V. Then it is said to be $\tau_{\mathcal{F}_{\mu,\nu}}$ - continuous, if $x_n \xrightarrow{\tau_{\mathcal{F}_{\mu,\nu}}} x \Rightarrow \#(x_n) \xrightarrow{\tau_{\mathcal{F}_{\mu,\nu}}} \#(x)$, for any $(x_n), x \in V$.

Theorem 2.4: [2]

Let $(V, \mathcal{F}_{\mu,\nu}, \tau)$ be an IFIP-Space, where τ is a continuous t - representable for every $x, y \in V$, $\sup \{t \in \mathbb{R}: \mathcal{F}_{\mu,\nu}(x, y, t) < 1\} < \infty$. Define $\mathcal{F}_{\mu,\nu}: V \times V \rightarrow \mathbb{R}$ by $x, y \Rightarrow \mathcal{F}_{\mu,\nu}(x, y, t) = \sup_{t \in \mathbb{R}} \mathcal{F}_{\mu,\nu}(x, y, t) < 1$. Then $(V, \mathcal{F}_{\mu,\nu}(\cdot, \cdot))$ is an IFIP-space, so that $(V, \mathcal{F}_{\mu,\nu}(\cdot, \cdot))$ is a normed space, where $\mathcal{F}_{\mu,\nu}(x, t) = (x, x)^{1/2} \forall x \in V$.

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-9 Issue-1, May 2020

Published By:
Blue Eyes Intelligence Engineering & Sciences Publication

Retrieval Number: F9798038620/202008BEIESP
DOI:10.35940/ijrte.F9798.059120

1920
Definition 2.5: [2]

Let \((V, F_{\mu, \nu}, T)\) be an IFIP-Space with IP: \((x, y) = \sup \{ t \in \mathbb{R} : F_{\mu, \nu}(x, y, t) < 1 \}, \forall x, y \in V\). If \((V, F_{\mu, \nu}, T)\) is complete in the norm \(P_{\mu, \nu}\), then \(V\) is an Intuitionistic Fuzzy Hilbert Space (IFH-Space).

Theorem 2.6: [2]

Let \((V, F_{\mu, \nu}, T)\) be an IFIP-Space with IP: \((x, y) = \sup \{ t \in \mathbb{R} : F_{\mu, \nu}(x, y, t) < 1 \}, \forall x, y \in V\). A sequence \((x_n)\) on \(V\) is \(\tau_{F_{\mu, \nu}}\)-convergent (i.e. \(x_n \xrightarrow{\tau_{F_{\mu, \nu}}} x\)) if \(x_n \xrightarrow{\tau_{F_{\mu, \nu}}} x\).

Proof:

Since \(x_n \xrightarrow{\tau_{F_{\mu, \nu}}} x\), we have

\[
\lim_{n \to \infty} P_{\mu, \nu}(x_n - x, \epsilon) = 0
\]

\[
\Rightarrow \lim_{n \to \infty} (x_n - x, x_n - x) = 0
\]

\[
\Rightarrow \sup \{ t \in \mathbb{R}^+: F_{\mu, \nu}(x_n - x, x_n - x, t) < 1 \} = 0
\]

\[
\leq \epsilon \sup \{ t \in \mathbb{R}^+: F_{\mu, \nu}(x_n - x, x_n - x, t) < 1 \} = 0
\]

Hence for any \(\epsilon > 0\) & \(0 < \lambda < 1\), we have

\[
\sup \{ t \in \mathbb{R}^+: F_{\mu, \nu}(x_n - x, x_n - x, t) < 1 \} = 1 - \lambda.
\]

So that, \(x_n \xrightarrow{\tau_{F_{\mu, \nu}}} x\).

Theorem 2.7: [2] (Riesz Theorem)

Let \((V, F_{\mu, \nu}, T)\) be an IFIP-Space. For any \(\tau_{F_{\mu, \nu}}\)-continuous linear functional \(\theta\), a unique vector \(y \in V\), such that \(\forall x \in V\), we have \(\theta(x) = \sup \{ t \in \mathbb{R} : F_{\mu, \nu}(x, y, t) < 1 \}\).

Proof:

Continuous linear functional \(\theta\) is \(\tau_{F_{\mu, \nu}}\)-continuous if \(x_n \xrightarrow{\tau_{F_{\mu, \nu}}} x\) implies \(\theta(x_n) \xrightarrow{\tau_{F_{\mu, \nu}}} \theta(x)\) for any \(x_n \in V\).

If \(x_n \xrightarrow{\tau_{F_{\mu, \nu}}} x\), then by theorem (2.6), \(x_n \xrightarrow{\tau_{F_{\mu, \nu}}} x\). So \(\theta\) is continuous on IFH-Space like an ordinary Hilbert Space.

Therefore, by Riesz Representation Theorem, it is proved.

Theorem 2.8: [2]

Let \((V, F_{\mu, \nu}, T)\) be an IFIP-Space, where \(T\) is continuous t-representable and sup \(\{ t \in \mathbb{R} : F_{\mu, \nu}(x, y, t) < 1 \} \leq \infty\). Then sup \(\{ t \in \mathbb{R} : F_{\mu, \nu}(x, y, t) < 1 \} = \sup \{ t \in \mathbb{R} : F_{\mu, \nu}(x, y, t) < 1 \}\) \(\forall x, y \in V\).

Definition 2.9: (IFA-operator in IFH-space) [2]

Let \((V, F_{\mu, \nu}, T)\) be an IFIP-Space and let \(S \in IB(V)\). Then there exists unique \(S^* \in IB(V) \ni (Sx, y) = (x, S^*y) \forall x, y \in V\).

Definition 2.10: (IFSA-operator) [2]

Let \((V, F_{\mu, \nu}, T)\) be an IFIP-Space with IP: \((x, y) = \sup \{ t \in \mathbb{R} : F_{\mu, \nu}(x, y, t) < 1 \}, \forall x, y \in V\) and let \(S \in IF(V)\). Then \(S\) is Intuitionistic Fuzzy Self-Adjoint Operator, if \(S = S^*\), where \(S^*\) is Intuitionistic Fuzzy Self-Adjoint of \(S\).

Theorem 2.11: [2]

Let \((V, F_{\mu, \nu}, T)\) be an IFIP-Space with IP: \((x, y) = \sup \{ t \in \mathbb{R} : F_{\mu, \nu}(x, y, t) < 1 \}, \forall x, y \in V\) and let \(S \in IF(V)\). Then \(S\) is Intuitionistic Fuzzy Self-Adjoint Operator.

Theorem 2.12: [2]

Let \((V, F_{\mu, \nu}, T)\) be an IFIP-Space with IP: \((x, y) = \sup \{ t \in \mathbb{R} : F_{\mu, \nu}(x, y, t) < 1 \}, \forall x, y \in V\) and let \(S \in IF(V)\). Then \(S\) is Intuitionistic Fuzzy Normal Operator if it commutes with its IF-Adjoint. i.e. \(SS^* = S^*S\).

III. MAIN RESULTS

In this section, we introduced the definition of Intuitionistic Fuzzy Normal Operator in IFH-Space and also explain some elementary properties of IFN-Operator in IFH-Space in detail.

Definition 3.1: (Intuitionistic Fuzzy Normal Operator)

Let \((V, F_{\mu, \nu}, T)\) be an IFIP-Space with an IP: \(\{u, v\} = \sup \{ t \in \mathbb{R} : F_{\mu, \nu}(u, v, t) < 1 \}\), \(\forall u, v \in V\) and let \(S \in IF(V)\). Then \(S\) is an Intuitionistic Fuzzy Normal Operator if it commutes with its IF-Adjoint. i.e. \(SS^* = S^*S\).

Remark 3.2:

1. It is obvious that every IFSA-operator is an IFN-operator.
2. If \(S\) is intuitionistic fuzzy normal and \(\alpha\) is a scalar, then \(\alpha S\) is also intuitionistic fuzzy normal.
3. The limit \(S\) of any intuitionistic fuzzy convergent sequence \(\{S_k\}\) of intuitionistic fuzzy normal operators is intuitionistic fuzzy normal.

Proof:

We know that \(S_k \xrightarrow{\tau_{F_{\mu, \nu}}} S_k\). So

\[
P_{\mu, \nu}(SS^* - S^*S)u, t) \leq P_{\mu, \nu}((SS^* - S_kS_k^*)u, t)
\]

\[
+ P_{\mu, \nu}((S_kS_k^* - S_kS_k^*)u, t)
\]

\[
\to 0
\]

Which implies that \(SS^* = S^*S\).
Theorem 3.3:

If S_1 and S_2 are IFN-operators on $(\mathcal{V},\mathcal{F}_{\mu,v})$ with the property that either commutes with IF-adjoint of the other, then $S_1 + S_2$ and $S_1S_2^*$ are IFN-operators.

Proof:
It is luminous by taking IF-adjoints that $S_1S_2^* = S_2^*S_1$ $\Leftrightarrow S_2S_1^* = S_1^*S_2$.
So, the assumption implies that each operator commutes with intuitionistic fuzzy adjoint of the other.

(a) We first prove that $S_1 + S_2$ is an IFN-operator as follows:

$$(S_1 + S_2)(S_1^* + S_2^*) = (S_1^* + S_2^*)(S_1 + S_2)$$

& $$(S_1 + S_2)(S_1^* + S_2^*) = (S_1 + S_2)(S_1^* + S_2^*)$$

Hence

$$(S_1 + S_2)^*(S_1 + S_2) = (S_1 + S_2)^*(S_1 + S_2)$$

Thus $S_1 + S_2$ is an IFN-operator.

(b) Next, we will show that S_1S_2 is an IFN-operator.

$$(S_1S_2)^*(S_1S_2) = (S_1S_2)^*(S_1S_2)$$

Thus S_1S_2 is an IFN-operator.

Theorem 3.4:

Let $(\mathcal{V},\mathcal{F}_{\mu,v})$ be an IFH-space with IP:

$$\langle u, v \rangle = \sup \{ t \in \mathbb{R} : \mathcal{F}_{\mu,v}(u, v, t) < 1 \}, \forall u, v \in \mathcal{V}$$

and let $S \in \text{IFB}(\mathcal{V})$. S is Intuitionistic Fuzzy Normal iff

$$(\mathcal{F}_{\mu,v}(S^*u, t)) = \mathcal{F}_{\mu,v}(S\mu, t) \forall u \in \mathcal{V}.$$

Proof:

Let $\mathcal{F}_{\mu,v}(S^*u, t) = \mathcal{F}_{\mu,v}(S\mu, t)$

$\Leftrightarrow \mathcal{F}_{\mu,v}(S^*u, t) = \mathcal{F}_{\mu,v}(S\mu, t)$

$\Leftrightarrow \sup \{ t \in \mathbb{R} : \mathcal{F}_{\mu,v}(S^*u, t) < 1 \}$

$\sup \{ t \in \mathbb{R} : \mathcal{F}_{\mu,v}(S\mu, t) < 1 \}$

$\sup \{ t \in \mathbb{R} : \mathcal{F}_{\mu,v}(S^*u, t) < 1 \}$

$\sup \{ t \in \mathbb{R} : \mathcal{F}_{\mu,v}(S\mu, t) < 1 \}$

$\sup \{ t \in \mathbb{R} : \mathcal{F}_{\mu,v}(S^*u, t) < 1 \}$

$\sup \{ t \in \mathbb{R} : \mathcal{F}_{\mu,v}(S\mu, t) < 1 \}$

$\sup \{ t \in \mathbb{R} : \mathcal{F}_{\mu,v}(S^*u, t) < 1 \}$

$\sup \{ t \in \mathbb{R} : \mathcal{F}_{\mu,v}(S\mu, t) < 1 \}$

Remark 3.6:

Any complex number z can be expressed uniquely as $z = a + ib$ where a and b are real numbers and that these real numbers are called real and imaginary parts of z. i.e.

$$a = \frac{z + \overline{z}}{2} \quad \text{and} \quad b = \frac{z - \overline{z}}{2i}.$$

The correlation between general operators and complex numbers and between IFSA-operators and real numbers suggests that for an arbitrary operator $S \in \text{IFB}(\mathcal{V})$, we form

$$T_1 = \frac{S + S^*}{2} \quad \text{and} \quad T_2 = \frac{S - S^*}{2i}.$$

T_1 and T_2 are clearly IFSA-operators and they have the property that

$$S = T_1 + iT_2.$$

The uniqueness of this expression for S follows at once

$$S^* = T_1 - iT_2.$$

The operators T_1 and T_2 are called real part and imaginary part of S.

Theorem 3.7:

Let $(\mathcal{V},\mathcal{F}_{\mu,v})$ be an IFH-space with IP:

$$\langle u, v \rangle = \sup \{ t \in \mathbb{R} : \mathcal{F}_{\mu,v}(u, v, t) < 1 \}, \forall u, v \in \mathcal{V}$$

and let $S \in \text{IFB}(\mathcal{V})$. S is intuitionistic fuzzy normal iff its real and imaginary parts commute.

Proof:
Suppose that T_1 and T_2 are real and imaginary parts of S. So that

$$S = T_1 + iT_2 \quad \text{and} \quad S^* = T_1 - iT_2.$$

Then,

$$SS^* = (T_1 + iT_2)(T_1 - iT_2)$$

$$= T_1^2 + T_2^2 + i(T_2T_1 - T_1T_2) \quad \text{(3.5)}$$

$$S^*S = (T_1 - iT_2)(T_1 + iT_2)$$

$$= T_1^2 + T_2^2 + (T_2T_1 - T_1T_2) \quad \text{(3.6)}$$

It is clear that $T_1T_2 = T_2T_1$. Then from (3.5) & (3.6), $S^*S = S^*S$.

Conversely, if $S^*S = S^*S$, then

$$T_1T_2 = T_2T_1.$$

So, $2T_1T_2 = 2T_1T_1$

Implies that $T_1T_2 = T_2T_1$.

Example 3.8:

Let $(\mathcal{V},\mathcal{F}_{\mu,v})$ be an IFH-space with IP:

$$\langle u, v \rangle = \sup \{ t \in \mathbb{R} : \mathcal{F}_{\mu,v}(u, v, t) < 1 \}, \forall u, v \in \mathcal{V}$$

and let $S \in \text{IFB}(\mathcal{V})$ be an arbitrary (intuitionistic fuzzy) operator and if γ and δ are scalars such that $|\gamma| = |\delta|$, show that $\gamma S + \delta S^*$ is intuitionistic fuzzy normal.
Intuitionistic Fuzzy Normal Operator on IFH - Space

Proof: From theorem 3.4, it is enough to prove $P_{\mu,\nu}((\gamma S + \delta S^*) + u_t) = P_{\mu,\nu}(\gamma S + \delta S^*)u_t$

Let us consider, $P_{\mu,\nu}(\gamma S + \delta S^*)u_t$

$P_{\mu,\nu}^2((\gamma S + \delta S^*)u_t) = ((\gamma S + \delta S^*)u_t, (\gamma S + \delta S^*)u_t)$

$= (\gamma S^* + \delta (S^*))u_t, (\gamma S^* + \delta (S^*))u_t)$

$= (\gamma S^* + \delta S^*)u_t, (\gamma S^* + \delta S^*)u_t)$

$= \sup \{ t \in \mathbb{R} : P_{\mu,\nu}((\gamma S^* + \delta S^*)u_t, (\gamma S^* + \delta S^*)u_t) < 1 \}$

$= \sup \{ t \in \mathbb{R} : P_{\mu,\nu}(\gamma S^* u_t, (\gamma S^* + \delta S^*)u_t) < 1 \}$

$= \sup \{ t \in \mathbb{R} : P_{\mu,\nu}(\gamma S^* u_t, (\gamma S^* + \delta S^*)u_t) < 1 \}$

Since $S^* = S$

$= \sup \{ t \in \mathbb{R} : P_{\mu,\nu}(\gamma S^* u_t, (\gamma S^* + \delta S^*)u_t) < 1 \}$

Therefore $\gamma S + \delta S^*$ is intuitionistic fuzzy normal.

IV. CONCLUSION

Here we conclude that the idea of Intuitionistic Fuzzy Normal Operator (IFN-Operator) in IFH-Space is moderately new. We endeavoured to prove a few properties of Intuitionistic Fuzzy Normal Operator in Intuitionistic Fuzzy Hilbert Space. By the consequences of this paper analysts can maturate Intuitionistic Fuzzy Functional Analysis.

ACKNOWLEDGEMENT

The authors would like to accept and express their warm thanks to the referees for helpful comments and effective suggestions.

REFERENCES

1. A Radharamani S Maheswari and A Brindha, “Intuitionistic fuzzy Hilbert space and some properties”, Inter. J. Sci. Res. – (JEN), Vol. 8(9), 2018, 15-21.

2. A.Radharamani and S.Maheswari, “Intuitionistic Fuzzy adjoint & Intuitionistic fuzzy self-adjoint operators in Intuitionistic fuzzy Hilbert space”, Inter. J. Research and Analytical Reviews (IJRAR), Vol. 5(4), 2018, 248-251.

3. A.Radharamani, A.Brindha and S.Maheswari, “Fuzzy Normal Operator in Fuzzy Hilbert Space & its Properties”, International Journal of Scientific Research (JEN), Vol. 8(7), 2018, 1-6.

4. M.Goudarzi et al., “Intuitionistic fuzzy Inner Product space”, Chaos Solitons & Fractals, Vol. 41, 2009, 1105-1112.

5. J H Park, “Intuitionistic fuzzy metric spaces”, Chaos Solit. Fract., Vol. 22, 2004, 1039-1046.

6. R.Saadah & J. H. Park, “On the Intuitionistic Fuzzy Topological Spaces”, Chaos solitons & fractals, Vol. 27(2), 2006, 331-344.

7. K.Atanasov, “Intuitionistic fuzzy sets”, FSS, Vol. 20(1), 1986, 87-96.

8. P Majumdar and S K Samanta, “On intuitionistic fuzzy normed linear spaces”, Far East Journal of Mathematics, Vol. 1, 2007, 3-4.

9. P.Majumdar and S.K.Samanta, “On Intuitionistic fuzzy Inner Product Spaces”, Journal of fuzzy Mathematics, Vol. 19(1), 2011, 115-124.

10. S.Mukherjee and T. Bag, “Some properties of fuzzy Hilbert spaces”, Int. Jr. of Mat and Sci Comp, Vol. 1(2), 2010, 55.

11. P Majumdar and S K Samanta, “On intuitionistic fuzzy normed linear spaces”, Far East Journal of Mathematics, Vol. 1, 2007, 3-4.

12. M.Goudarzi and S.M.Vaizpour, “On the definition of fuzzy Hilbert space and its application”, J. Nonlinear Sci. Applications, Vol. 2(1), 2009, 46-59.

13. Rajkumar Pradhan & Madhumangal pal, “Intuitionistic fuzzy linear transformations”, Annals of Pure and Appl. Math., Vol. 1(1), 2012, 57-68.

14. T K Samanta & Iqbal H Jibril, “Finite dimensional intuitionistic fuzzy normed linear space”, International Journal of Open Problems in Computer Science and Mathematics, Vol. 2(4), 2009, 574-591.

15. G.Deschrijver et al., “On The Representation of intuitionistic fuzzy t-norms and t-conorms”, IEEE Trans. Fuzzy Syst., Vol. 12, 2004, 45-61.

16. G Deschrijver and E E Kerre, “On the Relationship Between Some Extensions of Fuzzy Sets and Systems, Vol. 133, 2003, 227-235.

AUTHOR DETAILS

Radharamani A is an Assistant professor in Mathematics, Chikkanna Govt. Arts College, Bharathiar University, Tamil Nadu, India. Email: radhabtk@gmail.com

Maheswari S is an Assistant professor in Mathematics, Tiruppur Kumaran College for Women, Bharathiar University, Tamil Nadu, India. Email: jawaharmahi@gmail.com The research area includes applied mathematics.