Rheological, Electrochemical, Surface, DFT and Molecular Dynamics Simulation Studies on the Anticorrosive Properties of New Epoxy Monomer Compound for Steel in 1 M HCl Solution

Omar Dagdaga, Ahmed El Harfia, Omar Cherkaouib, Zaki Safic, Nuha Wazzand, Lei Guoe, E. D. Akpanf,g, Chandrabhan Vermaf,g, E. E. Ebensof,g and Ramzi T.T. Jalghamb

aLaboratory of Agroresources, Polymers and Process Engineering (LAPPE), Department of Chemistry, Faculty of Science, Ibn Tofail University, BP 133, 14000 Kenitra, Morocco.
bHigher School of Textile and Clothing Industries, Laboratory REMTEX, BP 7731, Oulfa, Casablanca, Morocco.
cAl Azhar University-Gaza, Chemistry Department, Faculty of Science, P.O Box 1277, Gaza, Palestine.
dKing Abdulaziz University, Chemistry Department, Faculty of Science, P.O Box 42805, Jeddah, 21589, Saudi Arabia.
eSchool of Materials and Chemical Engineering, Tongren University, Tongren, 554300, China.
fDepartment of Chemistry, Faculty of Natural and Agricultural Sciences, School of Chemical and Physical Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
gMaterial Science Innovation & Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
bDepartment of Oil and Gas, Faculty of Engineering, Bani Walid University, Bani Walid, Libya.
Supplementary Information

ER: Brown viscous resin; 1H-NMR (300 MHz, CDCl$_3$): δppm=2.38; 2.63 (dd, 2H, CH$_2$) (A,B), 2.77; 3.16 (m, 1H, CH oxirane) (X), 3.46 (dd, 2H, -N-CH$_2$) (C,D), 3.61 (dd, 2H, -CO(N)-CH$_2$) (A,B), 6.94; 7.71 (s, 4H aromatic) (Ar); FTIR (cm$^{-1}$): 3270 (residual hydroxyl and amine groups), 2978, 2883 (C-H vibrations), 1585, 1500, 1450 (1,2- substituted aromatic ring), 1654 (C=O amide), 1396, 1095, 1043 (C-O), 930, 880 (oxirane ring).

![Fig SI 1](image1.png) 1H NMR spectra of ER.

![Fig SI 2](image2.png) Mechanism of ring opening reaction of epoxides of ER in acid solution.
Fig. SI 3 The consequences of concentration on viscosity of ER/Ethanol at: 20, 40, 60 and 70 °C.

Fig. SI 4 Viscosity as a function of temperature of ER/Ethanol at various concentrations.
Fig. SI 5 Arrhenius plots for the zero shear viscosity of concentrations of ER/Ethanol.

Fig. SI 6 Equivalent circuit used for the analysis of the EIS data.
Fig. SI 7 Potentiodynamic polarization plots of carbon steel in 1 M HCl solution without and in the presence of 10^{-3} M of ER at varying temperatures.

Fig. SI 8 The relationship between $\ln (i_{\text{corr}})$ and $1/T$ for carbon steel in 1 M HCl solution without and in the presence of 10^{-3} M concentration of ER.
Fig. SI 9 Transition state plots for carbon steel in 1 M HCl solution without and in the presence of 10^{-3} M concentration of ER.

Fig. SI 10. Langmuir adsorption isotherm plot of ER on the carbon steel surface at 298 K.
Fig. SI 11. EDX spectra of mild steel surface corroded in 1M HCl with and without ER.
Fig. SI 12. Graphical presentation of the calculated Fukui indices of ER and its protonated form ER⁺.
Table SI 1. Composition of the carbon steel.

	C	Mn	Si	Al	Cr	Mo	Ni	Cu	Co	V	Fe
	0.11	0.47	0.24	0.03	0.12	0.02	0.14	<0.001	<0.003	Balance	

Table SI 2. Name, abbreviation, chemical structure and analytical data of the synthesized compound.

Inhibitor	Chemical structure	Analytical data
Tetracyclicyl-1,2-Aminobenzamide	ER: Brown viscous resin, yield 92%; 1H-NMR (DMSO-d$_6$, 300 MHz): δppm=2.38; 2.63 (dd, 2H, CH$_2$), 2.77; 3.16 (m, 1H, CH oxirane), 3.21; 3.46 (dd, 2H, -N-CH$_2$), 3.21; 3.36: 3.61 (dd, 2H, -CO(N)-CH$_2$), 6.94; 7.71 (s, 4H aromatic); FTIR (cm$^{-1}$): 3270 (residual hydroxyl and amine groups), 2978, 2883 (C-H vibrations), 1585, 1500, 1450 (1,2-substituted aromatic ring), 1654 (C=O amide), 1396, 1095, 1043 (C-O), 930, 880 (oxirane ring).	

Table SI 3: The impact of temperature on the electrochemical parameters for carbon steel in 1 M HCl and 10$^{-3}$ M of ER.

T (K)	E_{corr} (mV/SCE)	i_{corr} (µA/Cm2)	η%
298	Blank - 473	Blank 10$^{-3}$ M of ER	10$^{-3}$ M of ER
308	- 459	1390	69.70
318	- 455	2700	268.85
328	- 453	4100	546.82
Table SI 4: Activation parameters for carbon steel in 1 M HCl solution without and in the presence of ER.

	E_a (kJ/mol)	ΔH_a (kJ/mol)	ΔS_a (J.mol$^{-1}$ K$^{-1}$)
Blank	41.94	39.30	-56.70
10$^{-3}$ M of ER	78.40	75.90	38.07

Table SI 5: Calculated Quantum chemical parameters for epoxy compound and its protonated form obtained from DFT/B3LYB/6-311+G (d, p) in both gas phase and in solution.

Energy (a.u.)	ER	ER$^+$	Gas	ER	ER$^+$
μ^*	3.731	3.949		5.660	3.698
E_{HOMO} (eV)	-6.385	-6.615	-6.338	-6.511	
E_{LUMO} (eV)	-0.968	-1.208	-0.881	-1.060	
I	6.385	6.615	6.338	6.511	
A	0.968	1.208	0.881	1.060	
ΔE	5.417	5.407	5.457	5.451	
χ	3.676	3.912	3.609	3.785	
η	2.709	2.704	2.728	2.726	
σ	0.369	0.370	0.367	0.367	
ω	2.709	2.704	2.728	2.726	
$\Delta N100$	0.043	0.000	0.043	0.000	
$\Delta N110$	0.211	0.168	0.211	0.168	
$\Delta N111$	0.038	-0.006	0.038	-0.006	
$\Delta \psi$	1.020	0.882	1.054	0.948	
ΔE_{b-d}	-0.677	-0.676	-0.682	-0.681	