Parameterized Complexity of some Permutation Group Problems

V. Arvind
Institute of Mathematical Sciences, Chennai
India
email arvind@imsc.res.in

January 9, 2013
Plan of Talk

• Permutation groups background.

• Fixed point free elements of a permutation group (and its parameterization).

• Computing a minimum base for a permutation group (and its parameterization).
Permutation Groups: Definitions

- \(S_n \) denotes the group of all permutations on \(n \) elements. Forms a group under permutation composition.

- A subgroup \(G \) of \(S_n \), denoted \(G \leq S_n \), is called a permutation group (of degree \(n \)).

- The permutation group \(\langle S \rangle \), generated by a subset \(S \subseteq S_n \) of permutations, is the smallest subgroup of \(S_n \) containing \(S \).

- Every finite group \(G \) has a generating set of size \(\log_2 |G| \). So, giving a generating set is a succinct presentation of a finite group as algorithmic input.
Definitions Contd.

• For a permutation $\pi \in S_n$, a point $i \in [n]$ is a fixed point if $\pi(i) = i$.

• $\text{fix}(\pi)$ is the number of points fixed by π.

• A permutation group $G \leq S_n$ induces an equivalence relation on the domain $[n]$: i and j are related iff $g(i) = j$ for some $g \in G$. The equivalence classes are the orbits of G.

• G is called transitive if there is exactly one orbit.
Orbit Counting Lemma

Some ancient results (by CS standards):

Lemma 1 (Orbit Counting) Let $G \leq S_n$ be any permutation group and $\text{orb}(G)$ denote the number of orbits of G. Then

$$\text{orb}(G) = \frac{1}{|G|} \sum_{g \in G} \text{fix}(g).$$

Theorem 2 (Jordan’s Theorem (1872)) If $G \leq S_n$ is transitive then the group G has a fixed point free element.

Follows easily from the Orbit Counting Lemma.
Cameron-Cohen’s Theorem

Theorem 3 (CC92) If $G \leq S_n$ is transitive then the group G has a fixed point free element then there are at least $|G|/n$ many elements that are fixed point free.

Remark 4 Let $G = \langle S \rangle$ be a permutation group given as input by generating set S. Using an algorithm of C. Sims [1970] it is possible to sample uniformly at random from G in polynomial time. This gives a simple randomized algorithm for computing a fixed point free element.

We derandomize this as part of our FPT algorithm.
Fixed Point Free Elements

- Computing fixed point free elements in *nontransitive* permutation groups $G = \langle S \rangle$ given by generating sets is known to be NP-hard [Cameron-Wu 2010].

- This is similar to the NP-hard problem of computing a fixed point free automorphism of a graph [Lubiw 1980].

- We now introduce a parameterized version of the problem.
Fixed Point Free: Parameterized

- \textbf{\textit{k-MOVE} Problem:}

Input: A permutation group \(G = \langle S \rangle \leq S_n \) given by generators and a parameter \(k \).

Problem: Is there an element in \(G \) that \textit{moves} at least \(k \) points (i.e. the element fixes at most \(n - k \) points).

For \(k = n \) notice that such an element if fixed point free. Our first result:

\textbf{Theorem 5} \textit{The} \(k \)-\textit{MOVE problem is fixed parameter tractable} (in time \(2^{2k+O(\sqrt{k} \lg k)} k^{O(1)} + n^{O(1)} \)).
Proof Idea

- Let $\text{move}(g)$ denote the number of points moved by $g \in G$ and $\text{move}(G)$ denote the number of points moved by some $g \in G$.

- The orbit counting proof method easily yields for any permutation group G that $\frac{1}{|G|} \sum_{g \in G} \text{move}(g) \geq \text{move}(G)/2$.

- The left side in the above inequality is an expectation. We can “derandomize” this and find a $g \in G$ such that $\text{move}(g) \geq \text{move}(G)/2$ in polynomial time.

- If $\text{move}(G) \geq 2k$ we are done. If $\text{move}(G) \leq 2k$, the domain shrinks to size $2k$ giving a kernel of that size.
Bases for Permutation Groups

• Let $G \leq S_n$ be a permutation group. A subset of points $B \subseteq [n]$ is called a base for G if the subgroup G_B of G that fixes every point of G is the identity.

• This generalizes bases for vector spaces and has proven computationally useful. There is a library of nearly linear-time algorithms for small base groups due to Akos Seress and others.

• Finding minimum bases of permutation groups is NP-hard [Blaha 1992] even for cyclic groups and groups with bounded orbit size.
The k-BASE problem

We define the parameterized complexity with $|B|$ as parameter for cyclic and bounded orbit groups.

Input: A permutation group $G = \langle S \rangle \leq S_n$ given by generators and a parameter k.

Problem: Is there a base for G of size at most k?

Our results:

Theorem 6 • The k–BASE problem is fixed parameter tractable for cyclic permutation groups and for permutation groups with bounded orbit size.
Some Questions

For example:

- The parameterized complexity of k-BASE for general permutation groups?
- Parameterized versions of Graph Isomorphism and related problems...
THANKS!