Simulation of aerodynamic wind protection of oil platforms workplaces

P.V. Yakovlev 1, V.M. Piskunov 1, V.V. Andreev 1

1St. Petersburg Mining University, Vasilievsky Island, 21 line, house 2, St. Petersburg, 199106, Russia.

E-mail: yakovlev_pv@pers.spmi.ru

Abstract. The paper presents the results of a study of the effectiveness of aerodynamic windproof devices. Considered various options for the placement of wind protection relative to the deck and simulated wind speed and air movement trajectory. As a result of the analysis of the velocity fields, the best layout options for wind-proof devices have been proposed.

Introduction

The continuous production cycle of work on offshore oil platforms is a necessary condition for their economic efficiency. Difficult weather conditions create serious problems in terms of work safety, complications during handling operations, etc. High air velocity at the production site creates technological and environmental problems, increases the risk of work performance. The lack of natural protection from wind and the need to organize continuous work on offshore oil platforms determine the need to solve the problem of reducing wind exposure at workplaces, crossings, and helipads. To solve these problems, we have proposed the design of aerodynamic windproof elements with high protective and operational properties, mobility and low cost.

Methods and Materials

The study of various ways of arranging windproof elements based on the aerodynamic effects on the air flow has become the subject of our study. Windscreen can be organized by installing inclined flat panels, profiled concave sheet elements, devices in the form of a directional reflector. These devices can be placed on the edge of the deck, shifted from the edge, can be lowered below the level of the deck platform. Evaluation of the effectiveness and operational features of these methods, determining the choice of technical solutions, we obtained using a numerical model.

The numerical model includes the Navier-Stokes and continuity equations in difference form:

\[F_v + g \rho - gradP + \mu \nabla^2 u = \rho \frac{du}{dt} \]

In Cartesian coordinates for the direction of film flow along the x-axis, the equation takes the form [8]:

\[\rho \frac{du}{dt} = g_x P - \frac{\partial P}{\partial x} + 2 \frac{\partial}{\partial x} \left[\mu \frac{\partial u}{\partial x} \right] + \frac{\partial}{\partial y} \left[\mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right] - \frac{2}{3} \frac{\partial}{\partial x} \left[\mu \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \right]. \]

Similarly, the equation is written for the coordinates y and z. Because the change in airflow pressure is small, and the air density varies only slightly, the mass balance is taken into account by the continuity equation for an incompressible fluid:

\[divu = 0. \]
The design scheme for various ways of placing the aerodynamic protective elements of the platform is shown in Fig. 1.

Results

Flat aerodynamic elements can be located with different angles of inclination, barrage offset from the deck, and download slopes from the deck. For each of the options calculations are performed for the angles of inclination of the plates: 20°, 10°, 0°, -10°, -20°. As an example, Figure 2 shows the results of calculating the velocity field for three ways of placing aerodynamic elements.

![Diagram showing various ways to accommodate the aerodynamic windproof element](image)

Figure 1. Image of various ways to accommodate the aerodynamic windproof element
Figure 2. The velocity field and the current line: a - without barriers; b - barrage from the deck; c - barrage offset from the inclined deck to the deck
As can be seen from the figures, in the absence of a windscreen over the deck at a height of 4-5 m, the wind speed is 2 times higher than the background value, at a height of 2 m it is 1.5 times. Currently, wind protection is usually made in the form of a vertical plate placed on the edge of the deck. An example of such protection in the form of an inclined plate can be seen in Figure 3b. Below the upper edge of the plate, the wind speed is small, and a sheet of vortices is observed behind the sheet. With a plate height \(h \), at a height of 1.5\(h \), the speed reaches the value of the background wind speed, and at a height of 2\(h \) it exceeds the background one by 2 times. From this we can conclude that the high efficiency of windproof elements is achieved at heights of lower height of the plates. Increasing the height of the railing on the edge of the platform deck is undesirable in many cases. The work of cranes is complicated by high speed in the areas of movement of cargo.

The shift barrage offset from the deck increases the protection zone in height. The protective effect is achieved by the interaction of the aerodynamic element with the platform side, creating a vertical air flow in the form of an air curtain. The lower air velocity in the area of operation of cranes is also an advantage of this design.

Discussion

Figures 3-6 are graphs speed distribution along the length of the deck in various ways to install barriers on the edge of the deck.

![Graph](image)

Figure 3. Speed distribution along the length of the deck in various ways to install barriers on the edge of the deck at a height of 0.5 m above the deck.
Figure 4. Speed distribution along the length of the deck in various ways to install barriers on the edge of the deck at a height of 1.0 m above the deck.

Figure 5. Speed distribution along the length of the deck in various ways to install barriers on the edge of the deck at a height of 1.5 m above the deck.
Speed distribution (at a height of 2.0 m above the deck) along the length of the deck in various ways to install barriers on the edge of the deck

Figure 6. Speed distribution along the length of the deck in various ways to install barriers on the edge of the deck at a height of 2.0 m above the deck

The graphs of speed distribution along the length of the deck in various ways to install barriers on the edge of the deck were confirmed by the conclusions on the high efficiency of aerodynamic wind-protective elements made on the basis of the analysis of the velocity fields, barrage offset from the deck. At a distance of 30h along the deck and at a height of 2h the speed does not reach the value of the background wind speed.

Conclusions

Numerical simulation of wind protection of offshore oil platforms allowed us to identify promising areas for the creation of highly efficient aerodynamic elements with high performance. Research will be continued in terms of the specification of the structural parameters of protection to achieve the greatest effect and to obtain the calculated dependencies for the dynamic loads on the structural elements.

References

[1] Berezkina, T. E., Masyukevich, S. V., & Gall, N. R. (2015). Obtaining electricity by direct transfer of charge generated in corona discharge. Technical Physics Letters, 41(5), 479-481. doi:10.1134/S1063785015050211
[2] Belyaev, N. D., Geydarov, N. A., Ivanov, K. S., Lebedev, V. V., Nudner, I. S., Ragulin, V. V., . . . Zimin, A. I. (2015). Modeling cohesionless and cohesive soils erosion near oil platforms of gravity type. Paper presented at the 2015 International Conference on "Stability and Control Processes" in Memory of V.I. Zubov, SCP 2015 - Proceedings, 5-8. doi:10.1109/SCP.2015.7342037
[3] Chacykowski M. 2009 Sensitivity of pipeline gas flow model to the selection of the equation of state Chemical engineering research and design 3 159-163
[4] Dauber F., Span R. 2012 Achieving higher accuracies for process simulations by implementing the new reference equation for natural gases Computers and chemical engineering 7 15-21
[5] Efimova, V., Karelov, A., Nesterov, A., & Belyaev, N. (2016). Scour protection of the foundations of offshore wind energy converters. Paper presented at the Advanced Materials, Structures and Mechanical Engineering - Proceedings of the International Conference on Advanced Materials, Structures and Mechanical Engineering, 111-114.

[6] Elistratov, V., Konischev, M., & Fedorov, M. (2017). Optimization of power supply of the circumpolar territories on the basis of renewable energy sources. Paper presented at the 2017 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2017 - Proceedings, doi:10.1109/ICIEAM.2017.8076220

[7] Elistratov, V. V., Bolshev, A. S., Frolov, S. A., & Panfilov, A. A. (2018). The development of conceptual options to the construction of ice-resistant floating wind power plants. Paper presented at the IOP Conference Series: Earth and Environmental Science, , 193(1) doi:10.1088/1755-1315/193/1/012022

[8] Elistratov, V. V., & Kudryasheva, I. G. (2016). Principles of an integrated approach to determining the efficiency of stand-alone wind/diesel power systems. Power Technology and Engineering, 49(6), 464-467. doi:10.1007/s10749-016-0647-1

[9] Fetisov V.G., Nikolaev A.K., Lykov Y.V. 2018 Aggregative simulation method for implementing mathematical models for gas transmission systems The IOP Conference Series: Materials Science and Engineering vol 327 (2018) 022033

[10] Fetisov V. G., Nikolaev A.K., Lykov Y.V. 2017 Experimental Studies for Determining Gas Flow Rate Accidental Release on Linear Part of Pipeline IOP Conference Series: Earth and Environmental Science 1-6

[11] Arabloo F.M., Mohammadi A.H. 2014 Efficient estimation of natural gas compressibility factor using a rigorous method Journal of natural gas science and engineering 4 8-17

[12] Fetisov V.G., Nikolaev A.K., Lykov Y.V., Duchnevich L.N. 2018 Mathematical modeling of non-stationary gas flow in gas pipeline The IOP Conference Series: Materials Science and Engineering vol 327 (2018) 022034

[13] Jaeschke A.M. 1991 Accurate prediction of compressibility factors by the GERG virial equation SPE Production engineering 6 343-349

[14] Modisette J. 2012 Instability and other numerical problems in finite difference pipeline models PSIG Annual meeting New Mexico 5 22-27

[15] Makarichev, Y. A., Anufriev, A. S., Ivannikov, Y. N., Didenko, N., & Gazizulina, A. (2018). Low - power wind generator. Paper presented at the International Conference on Information Networking, , 2018-January 671-672. doi:10.1109/ICOIN.2018.8343203

[16] Makarichev, Y. A., Anufriev, A. S., Zubkov, Y. V., & Didenko, N. I. (2019). Energy efficiency of the wind power generator. Paper presented at the Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, EIConRus 2019, 1011-1015. doi:10.1109/EIConRus.2019.8657095

[17] Mustonen, M. A., Kuchinskiy, V. G., Adalev, A. S., Popkov, E. N., & Feshin, A. O. (2019). The rectifier of the generator with excitation from permanent magnets of the wind-driven power plant. Paper presented at the Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, EIConRus 2019, 1016-1020. doi:10.1109/EIConRus.2019.8656992

[18] Panasenko N.N., Yakovlev P.V., Rudenko M.F., Selivanov N.V, Bukin V.G. 2019 Strength of Carrier Structures of Maritime Ships and Port Facilities Under the Impact of Lightning International Conference on Modern Trends in Manufacturing Technologies and Equipment 2018 Volume 11, Part I. 580-585

[19] Sidorenko, G. I., & Mikheev, P. Y. (2017). Assessment of the environmental efficiency of the life cycles of energy facilities based on renewable energy sources. Ecology and Industry of Russia, 21(5), 44-49. doi:10.18412/1816-0395-2017-5-44-49

[20] Titkov, V. V., Bekbayev, A. B., Munyszbai, T. M., & Shakenov, K. B. (2018). Construction of autonomous buildings with wind power plants. Magazine of Civil Engineering, 80(4), 171-180. doi:10.18720/MCE.80.15

[21] Vasilyev, G. I., Ostryakov, V. M., Pavlov, A. K., & Chakchurina, M. E. (2017). Changes in the solar wind's isotope component, due to interaction between solar flare particles and the
photosphere. Bulletin of the Russian Academy of Sciences: Physics, 81(2), 143-145. doi:10.3103/S1062873817020435

[22] Yushkov, A., Nudner, I., Semenov, K., Ivanov, K., Geidarov, N., Stukolov, S., & Zakharov, Y. (2017). Computational investigation of turbulent flow impact on non-cohesive soil erosion near foundations of gravity type oil platforms. Paper presented at the CEUR Workshop Proceedings, 1839, 524-534.