The joint weight enumerator of an LCD code and its dual

Adel Alahmadi¹, Michel Deza², Mathieu Dutour-Sikirić³, Patrick Solé¹,⁴
¹ Math Dept., King Abdulaziz University, Jeddah, Saudi Arabia
² University of Campinas, IMECC, Campinas, Brazil
³ Rudjer Bosković Institute, Bijenicka 54, 10000, Zagreb, Croatia
⁴ LTCI, Telecom ParisTech, Paris, France

Abstract—A binary linear code is called LCD if it intersects its dual trivially. We show that the coefficients of the joint weight enumerator of such a code with its dual satisfy linear constraints, leading to a new linear programming bound on the size of an LCD code of given length and minimum distance. In addition, we show that this polynomial is, in general, an invariant of a matrix group of dimension 4 and order 12. Also, we sketch a Gleason formula for this weight enumerator.

I. INTRODUCTION

A binary linear code is called LCD if it intersects its dual trivially. These codes, introduced by Massey in [1], give an optimum linear coding solution for the two user binary adder channel. They were rediscovered recently in [2] in a context of countermeasures to passive and active side channel analyses on embedded cryptosystems. While most studies so far are concerned with constructions, the recent article [3] contains a linear programming bound on the size of a binary linear LCD code of given length and minimum distance. This bound is proved there to be sharper in many instances than the classical linear programming bound.

In the present work, we will present a linear programming bound on the same quantity with variables being the coefficients of the joint weight enumerator of such a code with its dual. The advantage of using this four-variable polynomial is that the condition of LCD-ness is now linear (instead of quadratic in [3]) and necessary and sufficient (instead of only necessary in [3]).

In addition, we observe that the joint weight enumerator of a linear code and its dual is an invariant of a matrix group of dimension 4 and order 12, and sketch a Gleason formula for this weight enumerator. This seems to have been unnoticed since the seminal application of invariant theory to codes 50 years ago in [4].

The material is organized as follows. Section II collects the notation and the definitions needed in the following sections. Section III, of independent interest develops the invariant theory of the joint weight enumerator of a code and its dual. Section III establishes the linear programming bound with variables the coefficients of the joint weight enumerator of a LCD code and its dual, and validates it by improving the numerical results of [3].

II. DEFINITIONS AND NOTATION

A. Codes

In this work, all considered codes are binary and linear. A code of length n is thus subspace over the field GF(2) of the vector space GF(2)^n. The dual C⊥ of such a code C ≤ GF(2)^n is defined with respect of the standard euclidean inner product as

\[C⊥ = \{ y ∈ GF(2)^n | ∀ x ∈ C, x.y = 0 \}. \]

A binary linear code C is Linear Complementary Dual (LCD) if \(C \cap C⊥ = 0 \).

B. Weight distributions

The Hamming weight of a binary vector x of length n is the number of its nonzero coordinates. For \(i = 0, 1, \ldots, n \), the weight distribution \(A_i \) of a binary code of length n is the number of code words with weight i.

The weight enumerator of a code C is then

\[w_C(x, y) = \sum_{i=0}^{n} A_i x^{n-i} y^i \]
C. Joint weight enumerator

Let \(u, v \) denote binary vectors of length \(n \). We define
\[i(u,v), j(u,v), k(u,v) \text{ and } l(u,v) \]
to be the number of indices \(i \in \{1, n\} \) with
\[(u_i,v_i) = (0, 0), (0, 1), (1, 0) \text{ and } (1, 1), \]
respectively.

The joint weight enumerator \(J(A, B) \) of, say, two binary linear codes \(A, B \), is the four-variable polynomial defined by the formula

\[J(A, B)(a, b, c, d) = \sum_{u \in A, v \in B} a^i(u,v)b^j(u,v)c^k(u,v)d^l(u,v). \]

Regrouping the terms on the basis of monomials, we get

\[J(A, B)(a, b, c, d) = \sum_{i+j+k+l=n} M(i, j, k, l) a^i b^j c^k d^l. \]

Note that the number of \(M(i, j, k, l) \)'s is \(\binom{n-1}{3} \), the number of decompositions (ordered partitions) of the integer \(n \) into four parts.

III. INVARIANT THEORY OF THE JOINT WEIGHT ENUMERATOR

In this Section, the code \(C \) needs not to be LCD.

Proposition 3.1:

\[J(C, C^\perp)(a, b, c, -d) = J(C, C^\perp)(a, b, c, d). \]

Proof. By orthogonality of \(u \in C \) and \(v \in C^\perp \), we see that \(l \) is even. \(\square \)

Proposition 3.2:

\[J(C, C^\perp)(a, b, c, d) = \frac{1}{16} J(C, C^\perp)(a+b+c+d, a+b-c-d, a-b+c-d, a-b-c+d). \]

Proof. Combine MacWilliams identity \([5](32) p.148\) between \(J(C, C^\perp) \) and \(J(C^\perp, C) \) with the relation \([5](29) p.148\). \(\square \)

Further, there is the following relation for \(n \) even.

Proposition 3.3: If \(n \) is even, then

\[J(C, C^\perp)(-a, -b, -c, -d) = J(C, C^\perp)(a, b, c, d). \]

Proof. Follows by homogeneity of the polynomial. \(\square \)

The polynomial \(J(C, C^\perp) \) is an invariant of degree \(n \) of a group \(G = \langle H, J, -I \rangle \) of order 12, where

\[2H = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{pmatrix}, \quad (4) \]

and

\[J = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}. \quad (5) \]

The three generators are implied by the three above propositions. The Molien series of \(G \) is

\[\frac{1+2t^2+t^4}{(1-t^2)^3(1-t^6)}. \quad (6) \]

Denoting by \(A_1, A_2, A_3, A_4 \) the primary invariants of respective degrees 2, 2, 6 and by \(B_1, B_2, B_3, B_4 \) secondary invariants of respective degree 2, 2, 4, we obtain the following *Gleason formula* for even \(n \geq 4 \):

\[J(C, C^\perp)(a, b, c, d) = \sum_{\alpha_1+\alpha_2+\alpha_3+\alpha_4=n} \sum_{\beta_1+\beta_2+\beta_3+\beta_4=n-2} \gamma \delta a_1 a_2 a_3 a_4 \prod_{i=1}^{4} A_i^{\alpha_i} \]

\[+ B_1 \sum_{\alpha_1+\alpha_2+\alpha_3+\alpha_4=n-2} \sum_{\beta_1+\beta_2+\beta_3+\beta_4=n-2} \gamma \delta a_1 a_2 a_3 a_4 \prod_{i=1}^{4} A_i^{\alpha_i} \]

\[+ B_2 \sum_{\alpha_1+\alpha_2+\alpha_3+\alpha_4=n-2} \sum_{\beta_1+\beta_2+\beta_3+\beta_4=n-2} \gamma \delta a_1 a_2 a_3 a_4 \prod_{i=1}^{4} A_i^{\alpha_i} \]

\[+ B_3 \sum_{\alpha_1+\alpha_2+\alpha_3+\alpha_4=n-2} \sum_{\beta_1+\beta_2+\beta_3+\beta_4=n-2} \gamma \delta a_1 a_2 a_3 a_4 \prod_{i=1}^{4} A_i^{\alpha_i} \]

\[(7) \]

where \(\alpha \)'s and \(\beta \), \(\gamma \), \(\delta \)'s are arbitrary rational constants. These invariants are too large to be displayed here.

IV. LINEAR PROGRAMMING BOUND

Let us consider the problem of existence of an LCD code and how linear programming can help. Given a set of parameters \([n, k, d]\), we will consider a set of equalities and inequalities satisfied by the parameters \(M(i, j, k, l) \). Our approach is different but related to the one \([3]\), where the size of the code is the objective function and the problem is nonlinear and depends only on \(n \) and \(d \). Here, for each triple \([n, k, d]\) we have a convex body defined by it and we stay in the framework of linear equalities and inequalities. In order to test if this convex body is empty or not, we have to solve a number of linear programs.
A. Formulation of the problem

Let us take a LCD code C and consider the joint LCD enumerator

$$J(C, C^\perp)(a, b, c, d) = \sum_{i+j+k+l=n} M(i, j, k, l) a^i b^j c^k d^l.$$

(8)

The invariance property of Section 3 can be used to find a set of equations satisfied by the joint LCD enumerator. Alternatively, one can use the basis found in Equation 7 and compute with it thereafter. Additionally, we consider the weight distributions A_i and B_i of C and C^\perp to be parts of the equation system.

We have following relations on the coefficients:

1) Since the dimension of the code C is k, we have

$$2^k = \sum_{k=0}^{n} M(n-k, 0, k, 0).$$

(9)

2) Since there is no vector $u \in C$, $v \in C^\perp$ with $u.v = 1$, we have

$$0 = M(i, j, k, l) \text{ if } l \equiv 1 \pmod{2}.$$

(10)

3) All coefficients are non-negative $M(i, j, k, l) \geq 0$.

4) The weight enumerator constraint is

$$A_i = M(n-i, 0, i, 0) \text{ for } 0 \leq i \leq n.$$

(11)

5) The dual code enumerator constraint is

$$B_i = M(n-i, i, 0, 0) \text{ for } 0 \leq i \leq n.$$

(12)

6) The code packing argument gives

$$A_i + B_i \leq \binom{n}{i}.$$

(13)

7) Since $C \cap C^\perp = \emptyset$, we have

$$M(i, 0, 0, n-i) = 0.$$

(14)

for $0 \leq i \leq n-1$.

8) The minimal distance of the code is d; so, we have

$$A_i = 0$$

(15)

for $0 < i < d$.

9) The number of pairs (u, v) with u of weight p is

$$A_p 2^{n-k} = \sum_{i+j+k+l=n, k+l=p} M(i, j, k, l)$$

(16)

for $0 \leq p \leq n$.

10) The number of pairs (u, v) with v of weight p is

$$B_p 2^k = \sum_{i+j+k+l=n, j+l=p} M(i, j, k, l)$$

(17)

for $0 \leq p \leq n$.

We denote by $K(n, k, d)$ the polytope determined by all those equalities and inequalities.

B. Relation with the simplified problem of [3]

In [3], a formulation of linear programming bound is given for the coefficients A_i and B_i given above. For the sake of completeness, we reformulate it in our language of polytopes, since the formulation of [3] is very different.

The coefficients A_i and B_i satisfy the following constraints:

1) $A_i \geq 0$ and $B_i \geq 0$ for $1 \leq i \leq n$,
2) $A_0 = B_0 = 1$,
3) $A_i = 0$ for $1 \leq i < d$,
4) for $1 \leq i \leq n$ the inequality

$$A_i + B_i \leq \binom{n}{i},$$

(18)

5) for $0 \leq i \leq n$ we have

$$B_i = 2^{-k} \sum_{j=0}^{n} A_j P_i(j)$$

(19)

with P_i being the i-th Krawtchuk polynomial defined by the relation

$$\sum_{i=0}^{n} P_i(x) z^i = (1 + z)^{n-x}(1 - z)^x.$$

(20)

Note that the inequality $B_i \geq 0$ is the Delsarte inequality and the only equation, that is specific to LCD codes, is (18). All those linear equalities and inequalities define a polytope $K_{res}(n, k, d)$. We have the following result.

Proposition 4.1: For $d, k \leq n$, equality $K_{res}(n, k, d) = \emptyset$ implies $K(n, k, d) = \emptyset$.

Proof. Proposition [3] implies the following for the weight enumerators w_C and w_{C^\perp} of C and C^\perp:

$$w_{C^\perp}(x, y) = J(C, C^\perp)(x, y, 0, 0) = \frac{1}{2} J(C, C^\perp)((x + y, x + y, x - y, x - y)) = \frac{1}{2} 2^{n-k} \sum_{u \in C} (x + y)^{n - w(u)} (x - y)^{w(u)} = \frac{1}{2} w_C(x + y, x - y).$$

(21)

Formula (19) then follows from the definition of the Krawtchuk polynomials. Other formulas are easy. □
C. Computational issues

Suppose that for a triple \((n, k, d)\) we find that the polytope \(\mathcal{K}(n, k, d)\) is empty. Then this will imply that the triple \((n, k, d)\) is not feasible. This computation is done by using linear programming iteratively for finding which inequalities imply equalities when combined. It is time-intensive, which explains why the computation is limited to \(n \leq 16\). We used \cite{6} with exact arithmetic as a library in a C++ program.

If the dimension of \(\mathcal{K}(n, k, d)\) is low, then we can compute everything about it; for example, the facets, vertices and integral points. The computation is done using \cite{6} and direct enumeration of integral points in a hypercube. Curiously, we found that \cite{7} takes more time than this direct approach.

D. Numerical results

If \(d < d'\), then \(\mathcal{K}(n, k, d') \subset \mathcal{K}(n, k, d)\). So, for a given pair \((n, k)\) there exist a maximum value \(d_{\max}(n, k)\), such that LCD code with parameters \((n, k, d)\) and \(d > d_{\max}(n, k)\) are not feasible and ones with \(d = d_{\max}(n, k)\) are not excluded by the joint LCD enumerator linear programming bound. The values of \(d_{\max}\) are given in Table \ref{tab:lowdim} for \(n \leq 16\). Then for a triple \((n, k, d)\) we compute \(k_{\max}(n, d)\) which is the maximum value \(k_{\max}(n, d)\), such that for \(k > k_{\max}(n, d)\), LCD codes of parameters \((n, k, d)\) are not feasible. The value of \(k_{\max}\) are given in Table \ref{tab:max_k}. Based on our results, we can state the following conjecture:

Conjecture 1: If \(\mathcal{K}(n, k, d) \neq \emptyset\), then \(\mathcal{K}(n, k', d) \neq \emptyset\) for all \(k' < k\).

As one can expect, the computation are harder to do when \(d\) is small. The cases \(d = 1\) and \(d = 2\) are especially difficult computationally, but, fortunately, for those cases we can use the trivial codes and the parity check codes. The parity check code in dimension \(n\) is defined as the span \(C\) of the vectors \(v_1 = (1,1,0,\ldots,0)\), \(v_2 = (0,1,1,0,\ldots)\), \ldots, \(v_{n-1} = (0,\ldots,0,1,1)\). The dual code is \(C^\perp = (1,\ldots,1)\). The intersection \(C \cap C^\perp\) is empty if and only if \(n\) is odd. The parameters of the code are \(k = n-1\), \(d = 2\). By using this code and easy arguments, we can resolve the feasibility of all cases with \(d = 2\).

Also, in Table \ref{tab:lowdim} we present several low-dimensional cases. This Table justifies the following conjecture:

Conjecture 2: If the polytope \(\mathcal{K}(n, k, d)\) is not empty, then it contains an integral point.

\((n, k, d)\)	\((\dim, F, V, P)\)
\((3,2,2)\)	\((0,1,1)\)
\((3,2,2)\)	\((0,1,1)\)
\((7,2)\)	\((0,1,1)\)
\((7,2)\)	\((0,1,1)\)
\((8,4)\)	\((0,1,1)\)
\((8,4)\)	\((0,1,1)\)
\((9,4)\)	\((0,1,1)\)
\((9,4)\)	\((0,1,1)\)
\((10,3,5)\)	\((0,1,1)\)
\((10,3,5)\)	\((0,1,1)\)
\((11,7,3)\)	\((0,1,1)\)
\((11,7,3)\)	\((0,1,1)\)
\((13,2,8)\)	\((0,1,1)\)
\((13,2,8)\)	\((0,1,1)\)
\((14,2,9)\)	\((0,1,1)\)
\((14,2,9)\)	\((0,1,1)\)
\((15,14,2)\)	\((0,1,1)\)
\((15,14,2)\)	\((0,1,1)\)
\((17,3,9)\)	\((0,1,1)\)
\((17,3,9)\)	\((0,1,1)\)
\((4,2,2)\)	\((1,2,2)\)
\((4,2,2)\)	\((1,2,2)\)
\((6,2,3)\)	\((1,2,2)\)
\((6,2,3)\)	\((1,2,2)\)
\((9,5,3)\)	\((1,2,2)\)
\((9,5,3)\)	\((1,2,2)\)
\((10,6,3)\)	\((1,2,2)\)
\((10,6,3)\)	\((1,2,2)\)
\((16,2,10)\)	\((1,2,2)\)
\((16,2,10)\)	\((1,2,2)\)
\((8,2,4)\)	\((3,4,4)\)
\((8,2,4)\)	\((3,4,4)\)
\((12,3,6)\)	\((3,5,1)\)
\((12,3,6)\)	\((3,5,1)\)
\((13,4,6)\)	\((4,7,10)\)
\((13,4,6)\)	\((4,7,10)\)
\((7,2,3)\)	\((5,8,10)\)
\((7,2,3)\)	\((5,8,10)\)
\((13,2,7)\)	\((5,8,10)\)
\((13,2,7)\)	\((5,8,10)\)
\((6,3,2)\)	\((7,19,98)\)
\((6,3,2)\)	\((7,19,98)\)
\((14,3,7)\)	\((8,9,9)\)
\((14,3,7)\)	\((8,9,9)\)

In other words, we could not rule out feasibility of \((n, k, d)\)-tuples by computing the integral points. But if the polytope contains just one integral point, the possibly feasible codes have their \(M(i, j, k, l)\) values determined and this could be used for further studies.

V. Conclusion

In this work we have derived a linear programming approach to bounding the parameters of LCD codes. The linear program considered contains many more variables than the approach in \cite{3}. This results in improvements of the upper bound on the minimum distance of LCD codes of given length and dimension, as evidenced by numerical values. Bounds on the largest dimension of LCD codes of given length and distance, which were not considered in \cite{3} are also given. Further improvement of the linear programming solvers could allow us to solve larger problems. It would be interesting to derive a semidefinite approach to these bounds, in the vein of \cite{8} to look for further improvements.
TABLE II: Value of $d_{\text{max}}(n, k)$ for $k \leq n \leq 16$. In parenthesis, best upper bound according to formulation of [3] if different

n/k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	1	1														
2	1	1														
3	3	2	1													
4	3	2	1	1												
5	5	2(3)	2	1												
6	5	3(4)	2(3)	2	1	1										
7	7	4	3(4)	2(3)	2	2	1									
8	7	5	3(4)	3	2	2	1	1								
9	9	6	4	4	3	2	2	2	2							
10	9	6	5	4	3(4)	3	2	2	2	1						
11	11	6(7)	5(6)	4(5)	4	4	3	2	2	2	1					
12	11	7(8)	6(7)	5(6)	4(5)	4	3(4)	2(3)	2	2	2	1				
13	13	8	6(7)	6(6)	4(5)	4	3(4)	2(3)	2	2	2	1				
14	13	9	7(8)	6(7)	6(6)	4(5)	4	3(4)	2(3)	2	2	2	1			
15	15	10	8(7)	7(8)	6(7)	6(6)	4(5)	4	3(4)	2(3)	2	2	2	1		
16	15	10	8	8(7)	7(8)	6(7)	6(6)	4(5)	4	3(4)	2(3)	2	2	2	1	1

TABLE III: Values of $k_{\text{max}}(n, k)$ for $d \leq n \leq 16$. In parenthesis, best upper bound according to formulation of [3] if different

n/d	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	1	1														
2	2	0														
3	3	2	1													
4	4	2	1	0												
5	5	4	1(2)	1	1											
6	6	4	2(3)	1(2)	1	0										
7	7	6	3(4)	2(3)	1	1	1									
8	8	6	4	2(3)	2	1	1	0								
9	9	8	5	4	2	2	1	1	1							
10	10	8	6	4(5)	3	2	1	1	1	0						
11	11	10	7	6	3(4)	2(3)	1(2)	1	1	1	1					
12	12	10	7(8)	6(7)	4(5)	3	4	2	1(2)	1	1	1	0			
13	13	12	8(9)	7(8)	5(6)	4(5)	2(3)	2	1	1	1	1	1			
14	14	12	9(10)	8(9)	6(7)	5(6)	3(4)	2(3)	2	1	1	1	1	0		
15	15	14	10(11)	9(10)	7(8)	6(7)	3(5)	2(4)	2	1	1	1	1	1	1	
16	16	14	11	10	8	7	4(5)	3(4)	2	2	1	1	1	1	1	0

REFERENCES

[1] J. L. Massey, “Linear codes with complementary duals,” *Discrete Math.*, vol. 106/107, pp. 337–342, 1992, a collection of contributions in honour of Jack van Lint. [Online]. Available: http://dx.doi.org/10.1016/0012-365X(92)90563-U

[2] C. Carlet and S. Guilley, “Complementary dual codes for countermeasures to side-channel attacks,” in *Proceedings of the 4th ICMCTA Meeting, Palmela, Portugal*, 2014.

[3] S. Dougherty, J.-L. Kim, B. Ozkaya, L. Sok, and P. Solé, “The combinatorics of LCD codes: linear programming bound and orthogonal matrices,” Jun. 2015, preprint at [arXiv:1506.01955](http://arxiv.org/abs/1506.01955).

[4] F. J. MacWilliams, C. L. Mallows, and N. J. A. Sloane, “Generalizations of Gleason’s theorem on weight enumerators of self-dual codes,” *IEEE Trans. Information Theory*, vol. IT-18, pp. 794–805, 1972.

[5] F. J. MacWilliams and N. J. A. Sloane, *The theory of error-correcting codes. I*. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977, North-Holland Mathematical Library, Vol. 16.

[6] K. Fukuda, *The cdd program*, 1999. [Online]. Available: http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html

[7] 4ti2 team, *4ti2–A Software package for algebraic, geometric and combinatorial problems on linear spaces*. [Online]. Available: http://www.4ti2.de/

[8] A. Schrijver, “New code upper bounds from the Terwilliger algebra and semidefinite programming,” *IEEE Trans. Inform. Theory*, vol. 51, no. 8, pp. 2859–2866, 2005. [Online]. Available: http://dx.doi.org/10.1109/TIT.2005.851748