GIS technologies application in useful fossils search in the territory of the Republic of Sakha (Yakutia)

D V Andreev and M E Makarova

Federal State Autonomous Educational Institution of Higher Education "M. K. Ammosov North-Eastern Federal University", 58 Belinsky str, Yakutsk, Republic of Sakha (Yakutia), 677000, Russia

E-mail: verviL@List.ru

Abstract. The article discusses the idea of a project to create a Unified infrastructure for the geology of the Republic of Sakha (Yakutia). The approach to creating this project is based on the currently existing loosely coupled geological blocks of information, including spatial, quantitative and bibliographic data. The essence of the operation of the Unified geological infrastructure of the Republic of Sakha (Yakutia) is that the storage and retrieval of information of each individual information unit within a single information system is ensured by various technological solutions through a single standardized access to them.

1. Introduction
Remote sensing using geographic information technologies (GIS technologies) is promising for geological research with the goal of localizing mineral deposits. GIS technologies make it possible to use a more convenient analysis visualization form - cartographic, connecting all the information resources available in the form of databases and spreadsheets.

GIS technologies are increasingly used "in today's information society, representing a convenient and optimal mechanism for solving a large number of practical, scientific and educational problems" [1]. The presence of a developed information infrastructure created on the basis of GIS technologies is a prerequisite for ensuring the effectiveness of scientific research in this area [2].

2. Problem statement
Numerous and multi-years research in the field of geology through GIS technologies have provided a huge layer of information in the territory of Russia in general and in individual regions in particular. As a result, a lot of heterogeneous, divers, geographically distributed electronic libraries, databases and informational systems were obtained, which complicates their use to get complete and reliable information.

The integration of GIS technologies and computing resources, taking into account the organization of these resources access, is one of the most important problems in the field of geology of the Republic of Sakha (Yakutia) [3]. The search for minerals requires the creation of a holistic information field by combining available tools, analytical methods, descriptions and geodata.
3. Research questions
The design of the Unified infrastructure for geology of the Republic of Sakha (Yakutia) required the solution of the following issues:

- analysis of existing experience in creating electronic catalogs and information systems;
- using the ability to access geological data via the Internet;
- ensuring the simplicity and speed of finding the necessary data through thematic queries;
- visualization of the obtained geological data on the basis of cartography using GIS technologies.

4. Purpose of the study
The purpose of this article is to justify the need for the GIS technologies use in the search for minerals in the region in the process of creating a unified infrastructure for the geology of the Republic of Sakha (Yakutia). Therefore, as research tasks, it is necessary to solve the following:

- to determine the information base, GIS support and technical modules;
- to organize a single access point to the system;
- to ensure the integration of information resources.

5. Research methods
On the territory of the Republic of Sakha (Yakutia), GIS technologies have long been used by the State Committee for Geology and Subsoil Use and research institutes. Their application was used in the process of identifying patterns of permafrost landscapes development in the region for a very long time [4]. However, it is only more recently that they are used for localization of mineral deposits in the republic. Meanwhile, a unified corporate information system for geological objects in the Republic of Sakha (Yakutia), based on the basis of GIS technologies, is in the process of its creation [5].

It should be noted that until recently, professional GIS programs, such as: ArcGIS, MapInfo, Panorama, Operator, were oriented towards universality of use, which required the availability of technical resources and specialists for their adaptation precisely in the field of geological monitoring and forecasting [6]. However, over the past five years the situation has changed for the better. This is due to the following trends in the development of GIS technologies: the development of service architectures and the integration of data and formats [7].

As sources of information for the Unified infrastructure on geology of the Republic of Sakha (Yakutia) the following should be used:

- geographically distributed Internet resources;
- scientific materials from research and data centers;
- personal scientific publications of researches of the All-Russian Research Geological Institute named after A.P. Karpinsky and Yakutsk Scientific Center SB RAS.

Information should be of the following types [8]:

- geological cartographic information;
- topographic maps;
- state geological reports;
- open satellite information;
- expert knowledge on the geology of the Republic of Sakha (Yakutia);
- scientifically sound quantitative information;
- information about geologists in the region.
Territorial boundaries of the infrastructure being developed: Republic of Sakha (Yakutia): 62 ° N, 129 ° E [10].

To create the cartographic part of the GIS support of the Unified infrastructure for the geology of the Republic of Sakha (Yakutia), appropriate source materials are needed (figure 1).

Figure 1. Source materials for creating the cartographic part of the GIS support of the Unified infrastructure for geology of the Republic of Sakha (Yakutia) [11].

The idea of organizing a unified access point for the Unified Geological Infrastructure of the Republic of Sakha (Yakutia) is a one-time provision to the user of all possible information about the geological objects of the specified region and its processing services. Each separate information block of the Unified infrastructure for searching, storing information and, accordingly, its integration requires different approaches of various technological solutions (figure 2).

Figure 2. Generalized scheme of the Unified infrastructure for geology of the Republic of Sakha (Yakutia) [12].
Thus, the Unified infrastructure for geology of the Republic of Sakha (Yakutia) should contain the following blocks [13]:

- User interface unit.
- Request converter, which works on the principle of converting the territorial zones coordinates into geographical names.
- Supervisor of block interaction through a set of appropriate micromodules.
- A set of micromodules that interact with specific sites.
- Filtering results block.

In the project of the Unified infrastructure for geology of the Republic of Sakha (Yakutia), information search should be provided for four categories of queries: “what”, “where”, “who” and “when” [14].

When integrating geological data the following should be provided:

- accessibility to all information resources using unified user interfaces through unified protocols;
- end-to-end search across all integrated information resources;
- the ability to extract data in uniform formats;
- resources management and access to them in accordance with uniform policies [15].

The project of the Unified Infrastructure for Geology of the Republic of Sakha (Yakutia) developed in the framework of this article should ensure the storage and retrieval of information of each information unit within a unified information system, which is ensured by various technological solutions through a unified standardized access to them.

6. Findings
The need to use GIS technologies in the search for minerals in the region in the process of creating a unified infrastructure for the geology of the Republic of Sakha (Yakutia) has its own justification. This is the ability to use access to geological data via the Internet, ensuring the simplicity and speed of finding the necessary data through thematic queries, and visualizing the obtained geological data based on cartography using GIS technologies.

7. Conclusion
Summarizing the content of the article, we can conclude that GIS technologies solve the problems of integrating operational data obtained from various sources and are an effective tool in the search for mineral deposits. Their use in combination with other information resources and platforms can link loosely coupled geological blocks of information.

Acknowledgements
I, Makarova Maria Eduardovna, express special gratitude to my scientific leader – Andreev Dmitriy Vasilievich for the significant comments and the most important advice on the writing and design of this article.

References
[1] Andreev D V and Danilov Yu G 2019 Application of GIS-technologies for solving problems of mineral exploration in the territory of the Republic of Sakha (Yakutia) Information systems and technologies in science and education 2 37-42
[2] Naumova V V, Goryachev I N, Dyakov S V, Belousov A V and Platonov K A 2015 Modern technology of formation of information infrastructure to support scientific geological research in the far East of Russia Information technology 21(7) 551-9
[3] Shokin Y I, Fedotov A M and Zhizhimov O L 2015 Technology distributed information systems
for the support of scientific research Computational technologies 20(5) 251-74
[4] Stavsky A P, Mikhailov B K and Yalovik G A 2019 Digital foundations subsoil - a perspective view regional geological surveys Mineral resources of Russia Economics and management 1(164) 5-9
[5] Titov A G, Okladnikov I G and Gordov E P 2016 Development of a Web GIS-based services for processing and visualization spatial analysis and forecasting of regional climate change Information and mathematical technology in science and management 4(2) 96-109
[6] Alexandrov N P, Gulyaev V P, Klimov S M and Soloviev G A 2017 Use of systems for the collection and storage of information in the agro-industrial complex Bulletin of the ISAA 81(1) 114-8
[7] Kokieva G E, Rumyantseva T D, Dmitrieva I I, Donkov J J and Savin I I 2019 Use of technology of geographic information systems (GIS) in the Republic of Sakha (Yakutia) Science and education: new time 1(30) 47-52
[8] Gostuhina D F 2017 Modern thematic mapping Geosphere 95-7
[9] Gulyaev V P, Aleksandrov N P, Klimov S M and Soloviev G A 2017 The use of EPI INFO software in the collection and processing of data on technological and technical systems of the agro-industrial complex of the Republic of Sakha (Yakutia) Scientific and educational environment as the basis for the development of the agro-industrial complex of the regions of Russia 182-6
[10] Kim E G and Dzyubek K A 2016 Analysis and prospects of mining of South Yakutia Society and Economics of the Post-Soviet Space an international collection of scientific articles 58-62
[11] Turenko S K 2018 Fundamentals of Geoinformatics (Tyumen: Publishing House of the Tyumen Industrial University) p 134
[12] Beloborodov M A GIS technology in regional geological research Retrieved from: http://geoekoproekt.by/stories/gis-tehnologii-v-regionalnyh-geologicheskikh-issledovaniyah
[14] Krasheninin V F 2017 Geological and feasibility study of the conditions of mineral deposits in North Yakutia regarding rational use and protection of mineral resources Geology and Mineral Resources of Siberia 4(32) 110-4
[15] Tevelev A V GIS in geology Retrieved from: http://geo.web.ru/~tevelev/gis.htm
[16] Gokhman V V 2015 ArcReview GIS in mining 3 1-8