FIRST THREE-DIMENSIONAL RECONSTRUCTIONS OF CORONAL LOOPS WITH THE STEREO A+B SPACECRAFT. IV. MAGNETIC MODELING WITH TWISTED FORCE-FREE FIELDS

MARKUS J. ASCHWANDEN, JEAN-PIERRE WUELSER, NARIKI V. NITTA, JAMES R. LEMEN, MARC L. DEROSA, AND ANNA MALANUSHENKO

Lockheed Martin Advanced Technology Center, Solar & Astrophysics Laboratory, Org. ADBS, Bldg. 252, 3251 Hanover St., Palo Alto, CA 94304, USA; aschwanden@lmsal.com

Received 2011 October 24; accepted 2012 July 11; published 2012 August 21

ABSTRACT

The three-dimensional coordinates of stereoscopically triangulated loops provide strong constraints for magnetic field models of active regions in the solar corona. Here, we use STEREO/A and B data from some 500 stereoscopically triangulated loops observed in four active regions (2007 April 30, May 9, May 19, and December 11), together with SOHO/MDI line-of-sight magnetograms. We measure the average misalignment angle between the stereoscopic loops and theoretical magnetic field models, finding a mismatch of $\mu = 19^\circ$–46$^\circ$ for a potential field model, which is reduced to $\mu = 14^\circ$–19$^\circ$ for a non-potential field model parameterized by twist parameters. The residual error is commensurable with stereoscopic measurement errors ($\mu_{SE} \approx 8^\circ$–12$^\circ$). We developed a potential field code that deconvolves a line-of-sight magnetogram into three magnetic field components (B_x, B_y, B_z), as well as a non-potential field forward-fitting code that determines the full length of twisted loops ($L \approx 50$–300 Mm), the number of twist turns (median $N_{twist} = 0.06$), the nonlinear force-free α-parameter (median $\alpha \approx 4 \times 10^{-11}$ cm$^{-1}$), and the current density (median $j_z \approx 1500$ Mx cm$^{-2}$ s$^{-1}$). All twisted loops are found to be far below the critical value for kink instability, and Joule dissipation of their currents is found to be far below the coronal heating requirement. The algorithm developed here, based on an analytical solution of nonlinear force-free fields that is accurate to second order (in the force-free parameter α), represents the first code that enables fast forward fitting to photospheric magnetograms and stereoscopically triangulated loops in the solar corona.

Key words: magnetic fields – Sun: corona – Sun: magnetic topology – Sun: UV radiation

Online-only material: animations

1. INTRODUCTION

This is Paper IV of a series that explores the three-dimensional (3D) reconstruction of coronal loops with data from the two Solar TErrestrial RElations Observatory (STEREO) A and B spacecraft. The previous three studies focused on the 3D geometry of coronal loops (Aschwanden et al. 2008c), on electron density and temperature measurements (Aschwanden et al. 2008b), and on active region modeling with a stereoscopic tomography method (Aschwanden et al. 2009). In this fourth study, we concentrate on magnetic modeling of four stereoscopically observed active regions, which should reveal whether potential or non-potential magnetic field models fit the observed data better, and should provide more accurate information on magnetic fields and electric currents that are directly inferred from observables, and in this way allow us to test theoretical magnetic field models of the solar corona. The crucial benefit of this study is the inference of the true 3D magnetic field geometry, which presently can only be accurately measured by stereoscopic triangulation with the dual spacecraft STEREO/A and B, and thus it provides a most crucial input to test theoretical magnetic field models.

The STEREO was launched on 2006 October 26, consisting of two identical spacecraft (Ahead) and B(hind) that orbit from the Earth in opposite directions around the Sun, with a separation angle that increases by $\approx 45^\circ$ per year (Kaiser et al. 2008). Some tutorials or reviews on magnetic modeling using STEREO data can be found in Inhester et al. (2008), Wiegelmann et al. (2009), and Aschwanden (2011). Early methods of stereoscopic 3D magnetic field modeling have been already proposed in the pre-Stereo era, including loop twist measurements by fitting the projected shape of curved helical field lines (Portier-Fozzani et al. 2001), by fitting a linear force-free model to coronal loops geometrically reconstructed with solar-rotation stereoscopy (Wiegelmann & Neukirch 2002; Feng et al. 2007b), by topographic reconstruction constrained by the magnetohydrostatic equations (Wiegelmann & Inhester 2003; Ruan et al. 2008), by comparison of theoretical magnetic field models with spectro-polarimetric loop detections (Wiegelmann et al. 2005), or by using theoretical magnetic field models to resolve the stereoscopic correspondence ambiguity of triangulated loops (Wiegelmann & Inhester 2006; Conlon & Gallagher 2010). Once the STEREO mission was launched, the first stereoscopic triangulations of loops were performed from data of 2007 April onward, with a spacecraft separation angle of $\alpha_{sep} \gtrsim 5^\circ$ (Feng et al. 2007a; Aschwanden et al. 2008c). First fits of linear force-free field (LFFF) extrapolations (using SOHO/MDI magnetograms) to stereoscopically triangulated loops were found to be offset (Feng et al. 2007a; Inhester et al. 2008). A benchmark test of one potential field code and 11 nonlinear force-free field (NLFFF) codes modeling a partial active region (NOAA 10953) observed with Hinode/SOT and STEREO/EUVI on 2007 April 30 revealed mean 3D misalignment angles of $\mu = 24^\circ$ for the potential field code, and a range of $\mu = 24^\circ$–44$^\circ$ for the non-potential field (NLFFF) codes, which was attributed to the non-force-freeness in chromospheric heights and uncertainties in the boundary data (DeRosa et al. 2009). Misalignment measurements between stereoscopically triangulated loops and potential field source surface (PFSS) magnetic field extrapolations were then extended to four active regions with a similar finding of $\mu = 19^\circ$–36$^\circ$ (Sandman et al. 2009). The misalignment could be reduced by about a factor of two for potential field models.
that were not constrained by observed magnetograms, where the magnetic field is parameterized by buried unipolar magnetic charges (Aschwanden & Sandman 2010) or by a small number of 3–5 submerged dipoles (Sandman & Aschwanden 2011). These exercises demonstrated that potential field solutions exist that match the 3D geometry of coronal loops better than standard extrapolations from photospheric magnetograms.

Modeling of non-potential magnetic fields, constrained by stereoscopically triangulated loops, however, is still unexplored. A first step in this direction was pioneered by Malanushenko et al. (2009), taking a particular model of an NLFFF with a known analytical solution (Low & Lou 1990) and fitting an LFFF individually to each field line, which yields the twist and force-free α-parameter for each loop individually, but not in form of a self-consistent NLFFF. In a next step, a self-consistent NLFFF was fitted to the α of each loop (Malanushenko et al. 2012). In this study, we pursue for the first time non-potential magnetic field modeling applied to an observed set of coronal loops, i.e., to some 500 loops that have been stereoscopically triangulated from four different active regions. Since currently available NLFFF codes are very computationally intensive, which precludes an iterative fitting to individual loops, we developed a magnetic field parameterization that is suitable for fast forward fitting. In this parameterization, the magnetic field is characterized by a superposition of point charges with vertically twisted fields, which is approximately force free (to second order in α), as derived analytically (Aschwanden 2012) and tested numerically (Aschwanden & Malanushenko 2012). Since forward fitting requires some form of model parameterization, tests with physics-based models (such as twisted field components used here) will be useful to explore how closely the observed loop geometry can be fitted at all, although our choice of parameterization represents only a subset of all possible nonlinear force-free solutions. We will test the validity of the divergence freeness and force freeness numerically and quantify it by common figures of merit, which can be compared with the performance of other full-fledged NLFFF codes (which, however, are not capable of fast forward fitting to observations).

The outline of this paper is as follows: Section 2 contains the theoretical outline of a force-free field approximation, Section 3 presents the results of forward fitting to some 500 stereoscopically triangulated loops, and Section 4 concludes with a discussion of the results. Technical details of the forward-fitting code are described in the Appendix and in two related documents (Aschwanden 2012; Aschwanden & Malanushenko 2012).

2. THEORETICAL MODEL AND DATA ANALYSIS METHOD

Here, we develop a novel method to determine an approximate 3D magnetic field model of a solar active region, using a magnetogram that contains the line-of-sight magnetic field component and a set of stereoscopically triangulated loops, observed with STEREO/A and B in extreme-ultraviolet (EUV) wavelengths. A flowchart of this magnetic field modeling algorithm is given in Figure 1.

2.1. 3D Potential Field with Unipolar Magnetic Charges

Magnetograms that contain the line-of-sight magnetic field component $B_j(x, y)$ are readily available, while vector magnetograph data that provide the 3D magnetic field components $[B_x(x, y), B_y(x, y), B_z(x, y)]$ are only rarely available, are difficult to calibrate, are challenging to use when resolving the 180° ambiguity (even with the recent HMI/SDO instrument), and they generally contain substantially larger data noise in the B-components than magnetograms. It is therefore desirable to develop a method that infers 3D magnetic field components from magnetogram images. Such a method was recently developed with the concept of parameterizing the 3D magnetic field with subphotospheric unipolar magnetic charges that can be determined from an observed line-of-sight magnetogram, as described in Aschwanden & Sandman (2010). In the first version, we neglected the curvature of the solar surface, because the analyzed active regions have generally a substantially smaller size than the solar radius. For higher accuracy of the magnetic field model, however, we generalize the method by including here the full 3D geometry of the curved solar surface.

The simplest representation of a magnetic potential field that fulfills Maxwell’s divergence-free condition ($\nabla \cdot \mathbf{B} = 0$) is a magnetic charge that is buried below the solar surface (to avoid magnetic monopoles in the corona), which predicts a magnetic field $\mathbf{B}(\mathbf{x})$ that points away from the buried unipolar charge and whose field strength falls off with the square of the distance r,

$$\mathbf{B}(\mathbf{x}) = B_0 \left(\frac{d_0}{r} \right)^2 \mathbf{r},$$

where B_0 is the magnetic field strength at the solar surface directly above the buried magnetic charge, $\mathbf{r}_0 = (x_0, y_0, z_0)$ is the subphotospheric position of the buried charge, $d_0 = \sqrt{1-x_0^2 - y_0^2 - z_0^2}$ is the depth of the magnetic charge, and $\mathbf{r} = [(x-x_0), (y-y_0), (z-z_0)]$ is the distance vector of an arbitrary location $\mathbf{x} = (x, y, z)$ in the solar corona (where we desire to calculate the magnetic field) from the location \mathbf{r}_0 of the buried charge. We choose a Cartesian coordinate system (x, y, z) with the origin in the Sun center and use units of solar radii, with the direction of z chosen along the line of sight from Earth to Sun center. For a location near disk center ($x \ll 1, y \ll 1$), the magnetic charge depth is $d_0 \approx (1-z_0)$, an approximation that was used earlier (Aschwanden & Sandman 2010), while we use here the exact 3D distances to account for the curvature of the solar surface and for off-center positions of active region loops.

Our strategy is to represent an arbitrary line-of-sight magnetogram with a superposition of N_m magnetic charges, so that the potential field can be represented by the superposition of N_m fields B_j from each magnetic charge $j = 1, \ldots, N_m$,

$$\mathbf{B}(\mathbf{x}) = \sum_{j=1}^{N_m} B_j(\mathbf{x}) = \sum_{j=1}^{N_m} B_j \left(\frac{d_j}{r} \right)^2 \mathbf{r},$$

with $\mathbf{r} = [(x - x_j), (y - y_j), (z - z_j)]$ the distance from the magnetic charge j. Since the divergence operator is linear, the superposition of a number of potential fields is divergence-free also,

$$\nabla \cdot \mathbf{B} = \nabla \cdot \left(\sum_j B_j \right) = \sum_j (\nabla \cdot B_j) = 0.$$
Figure 1. Flowchart of magnetic field modeling algorithm: starting from a line-of-sight magnetogram (top left), the 3D magnetic field components and field lines of a potential field are calculated. On the other side, 3D loop coordinates are calculated from a pair of STEREO A and B images using stereoscopic triangulation (top right). A quasi-force-free magnetic field model with variable parameters that represent twisted loops is then forward-fitted to the loop coordinates by minimizing the misalignment angles between the theoretical model and the observed loops, from which the photospheric force-free α-parameter map $\alpha(x, y)$ and the photospheric current map $j_z(x, y)$ is derived (bottom).

Essentially, we start at the position (x_1, y_1) of the peak magnetic field $B_z(x_1, y_1)$ in the magnetogram image, fit the local magnetic field profile $B_1(x)$ (Equation (1)) to obtain the parameters of the first magnetic field component (x_1, y_1, z_1, B_1), subtract the first component from the image $B_z(x, y)$, and then iterate the same procedure at the second-highest peak to obtain the second component (x_2, y_2, z_2, B_2), and so forth, until we stop at the last component $(x_{N_m}, y_{N_m}, z_{N_m}, B_{N_m})$ above some noise threshold level. We alternate the magnetic polarity in the sequence of subtracted magnetic charge components, in order
to minimize the absolute value of the residual maps. The number of necessary components typically amounts to \(N_m \approx 100 \) for an active region, depending on the complexity and size of the active region. The geometrical details of the inversion of the parameters \((x_j, y_j, z_j, B_j)\) of a magnetic field component from the observables \((B_x, x_p, y_p, w)\) of an observed peak in a line-of-sight magnetogram at position \((x_p, y_p)\) with peak value \(B_z\) and width \(w\) are derived in the Appendix.

2.2. Force-free Magnetic Field Model

With the 3D parameterization of the magnetic field described in the foregoing section, we can compute magnetic potential fields that fulfill Maxwell’s divergence-free condition and are “current-free,”

\[
\nabla \cdot \mathbf{B} = 0
\]
\[
\nabla \times \mathbf{B} = 0.
\]

However, magnetic potential field models do not fit observed 3D loop geometries sufficiently well (DeRosa et al. 2009; Sandman et al. 2009; Aschwanden & Sandman 2010; Sandman & Aschwanden 2011). Therefore, we turn now to non-potential magnetic field models of the type of NLFFFs,

\[
\nabla \cdot \mathbf{B} = 0
\]
\[
\nabla \times \mathbf{B} = \alpha(\mathbf{x})\mathbf{B},
\]

where \(\alpha(\mathbf{x})\) is a scalar function that varies in space, but is constant along a given field line, and the current \(\mathbf{j}\) is co-aligned and proportional to the magnetic field \(\mathbf{B}\). General NLFFF solutions of Equation (5), however, are very computationally intensive and are subject to substantial uncertainties due to insufficient boundary constraints and non-force-free conditions in the lower chromosphere (Schrijver et al. 2006; DeRosa et al. 2009). In our approach to model NLFFF solutions that fit stereoscopically triangulated loops, we thus choose approximate analytical NLFFF solutions that can be forward-fitted to the observed 3D loop geometries much faster. The theoretical formulation of the force-free magnetic field approximation suitable for fast forward fitting is described in Aschwanden (2012) and numerical tests are given in Aschwanden & Malanushenko (2012).

The essential idea is that we generalize the concept of buried point charges we used for the representation of a potential field, by adding an azimuthal magnetic field component \(B_\phi(\rho)\) that describes a twist around a vertical axis. The concept is visualized in Figure 2. An untwisted flux tube can be represented by parallel field lines \(B_\rho(\rho)\) along an axis \(s\) with variable distances \(\rho\) from a given axis \(s\) (Figure 2, left). A uniformly twisted flux tube with some azimuthal component \(B_\phi(\rho)\) around the twist axis \(s\) (Figure 2, middle) has the following analytical solution for a force-free field (Gold & Hoyle 1958; Priest 1982, p. 125; Sturrock 1994, p. 216; Boyd & Sanderson 2003, p. 102; Aschwanden 2004, p. 216),

\[
B_\rho(\rho) = \frac{B_0}{1 + b^2 \rho^2},
\]

\[
B_\phi(\rho) = \frac{B_0 b \rho}{1 + b^2 \rho^2},
\]

where \(b\) is a parameter that quantifies the number \(N_{\text{twist}}\) of full twist turns over a (loop) length \(L\),

\[
b = \frac{2\pi N_{\text{twist}}}{L}.
\]

and is related to the force-free parameter \(\alpha\) in the force-freeness condition \((\nabla \times \mathbf{B}) = \alpha(\mathbf{x})\mathbf{B}\) by

\[
\alpha(\rho) = \frac{2b}{(1 + b^2 \rho^2)^2}.
\]

Thus, we see that \(\alpha\) has a finite value \(\alpha(\rho = 0) = 2b\) at the twist axis and drops monotonically with increasing distance \(\rho\) from the twist axis.

In a next step, we generalize the concept of a cylindrical twisted flux tube (Figure 2, middle) to a point charge with an associated vertically twisted field (Figure 2, right). The main difference to the twisted flux tube, which has a constant cross-section and thus a constant magnetic flux along the cylinder axis, is the quadratically decreasing field strength of the longitudinal field component \(B_z(s)\) along the twist axis with distance \(s\), to conserve the magnetic flux. It can be shown analytically that this topology has the following approximate force-free and divergence-free solution (satisfying Equations (4) and (5)), if we neglect second-order and higher-order terms of \([br \sin(\theta)]]\) (Aschwanden 2012),

\[
B_\rho(r, \theta) = B_0 \left(\frac{d^2}{r^2}\right) \frac{1}{1 + b^2 r^2 \sin^2 \theta},
\]

\[
B_\phi(r, \theta) = B_0 \left(\frac{d^2}{r^2}\right) \frac{br \sin \theta}{1 + b^2 r^2 \sin^2 \theta},
\]

\[
B_\theta(r, \theta) \approx 0,
\]

\[
\alpha(r, \theta) \approx \frac{2b \cos \theta}{(1 + b^2 r^2 \sin^2 \theta)}.
\]

Since \(b \ll \alpha\) for \(\theta \ll 1\) (Equation (13)), we refer to this approximation as second-order accuracy in \(\alpha\) for short. Thus, we can characterize a point charge with a vertically twisted field with five parameters: \((B_\rho, x_j, y_j, z_j, \alpha_j)\), where the force-free parameter \(\alpha_j = \alpha(\rho = 0)\) at the twist axis is related to \(b_j\) by \(\alpha_j = 2b_j\).

In analogy to the superposition principle we used to construct an arbitrary potential field based on a number of \(N_m\) magnetic charges, we apply the same superposition rule to a number of \(N_m\) point charges with vertical twist,

\[
\mathbf{B}(\mathbf{x}) = \sum_{j=1}^{N_m} \mathbf{B}_j(\mathbf{x}).
\]

and we can parameterize an arbitrarily complex non-potential field with \(5 \times N_m\) free parameters. The superimposed field \(\mathbf{B}\), which consists of a linear combination of quasi-force-free field components (to second order in \(\alpha\)), is not exactly force free, but it can be shown that the NLFFF approximation expressed in Equations (10)–(13) is divergence free to second-order accuracy in the term \([br \sin(\theta)]]\) and force free to third-order accuracy (Aschwanden 2012), which we call “quasi-force-free” here. The superposition of multiple twisted sources, which have each a twist axis with a different location and orientation (due to the curvature of the solar surface), needs to be transformed into a common Cartesian coordinate system, which is derived in detail in Section 2.4 of Aschwanden (2012).

We show a few examples of this non-potential magnetic field model in Figure 3, for a unipolar, a dipolar, and a quadrupolar...
configuration. More cases are simulated in Aschwanden (2012). Three cases are shown for the non-potential case with twist (Figure 3, right panels), which degenerate to the potential field case if the twist parameter is set to zero ($\alpha_j = 0$; Figure 3, left panels).

In our data analysis, we perform a global fit of our non-potential field model to a set of stereoscopically triangulated loops. Typically, we use a magnetic field model with $N_m \lesssim 200$ magnetic field components (which has $\lesssim 800$ potential field parameters that can directly be inverted from the line-of-sight magnetogram $B_z(x, y, z_{ph})$), and $\lesssim 200$ non-potential field parameters α_j, which need to be forward-fitted to the data, consisting of the stereoscopic 3D coordinates of some $N_L \approx 70$–200 loops per active region. Each forward fit minimizes the average misalignment angle (along and among the loops) between the theoretical model (i.e., twisted fields) and the observed loop (with stereoscopically triangulated 3D coordinates). The misalignment angle at a position x is defined as

$$\mu(x) = \cos^{-1} \left(\frac{B_{\text{theo}}(x) \cdot B_{\text{obs}}(x)}{|B_{\text{theo}}(x)| |B_{\text{obs}}(x)|} \right).$$

We derive a characteristic misalignment angle from measurements at 10 equispaced positions x along each observed loop segment, where a unique theoretical field line $B_{\text{theo}}(x)$ is calculated at each loop position. Generally, this yields 10 theoretical field lines that intersect a single loop at the 10 chosen positions, which degenerate to one single theoretical field line in the case of a perfectly matching model. The range of misalignment angles ignores the 180° ambiguity and is defined in the range of $\mu = [0^\circ, 90^\circ]$. Technical details of the numerical algorithm of our forward-fitting code to the stereoscopic loop coordinates are provided in Aschwanden & Malanushenko (2012).

2.3. Stereoscopic Triangulation of Loops

In order to obtain the 3D coordinates of coronal loops, we require one (or multiple wavelength filter) image pairs recorded with the two spacecraft STEREO/A and B, at some spacecraft separation angle that is suitable for stereoscopy. Here, we will use STEREO data from the first year (2007) of the mission, when the spacecraft separation was $\alpha_{\text{sep}} \lesssim 45^\circ$. An example of such a stereoscopic pair of EUVI images recorded at a wavelength of 171 Å is shown in Figure 1 (top right). Loop recognition requires a segmentation algorithm that traces curvilinear features. There are visual/manual methods as well as...
Figure 3. Simulations of potential field ($\alpha_j = 0$; left side) and twisted non-potential field cases ($\alpha_j \neq 0$; right side), represented by line-of-sight magnetograms $B_z(x, y)$ (gray scale) and magnetic field lines $B(s)$ projected into the x–y plane. Each set includes a unipolar magnetic charge (first row), a dipolar (second row), and a quadrupolar configuration (third row).
automated methods, which have been compared in a benchmark study (Aschwanden et al. 2008a). Although automated detection algorithms have improved to the level of or approaching visual perception for single images (Aschwanden 2010), an automated algorithm for dual detection of corresponding loop patterns in stereoscopic image pairs has not yet been developed yet, so that we have to rely on manual/visual detection. The 3D coordinates of such visually detected loops have been documented in previous publications (Aschwanden et al. 2008b, 2008c, 2009; Sandman et al. 2009; Aschwanden & Sandman 2010; Sandman & Aschwanden 2011).

The technique of loop detection falls into the category of image segmentation algorithms. The easiest way to segment coronal loops in an EUV image is to first apply a highpass filter (Figure 1), which enhances fine structures, in particular coronal loops with narrow widths. Stereoscopic triangulation can then be accomplished by (1) co-aligning a stereoscopic image pair into epipolar coordinates (where the stereoscopic parallax effect has the same direction in both images), (2) tracing a loop visually in a STEREO/A image, (3) identifying the corresponding counterpart in the STEREO/B image using the expected projected altitude range, (4) stereoscopic triangulation of the loop coordinates \((x_L[s], y_L[s], z_L[s])\) (along the loop length coordinate \(s\)), and (5) coordinate transformations into an Earth–Sun heliographic coordinate system. Here, we have to transform STEREO/A coordinates into the SOHO/MDI coordinate system, in order to enable magnetic modeling with MDI magnetograms. The height range of stereoscopically triangulated loops generally does not exceed 0.15 solar radii, due to the decrease of dynamic range in flux for altitudes in excess of one hydrostatic scale height. Here, we used the loop tracings and stereoscopic measurements from three different EUVI channels combined (171, 195, and 284 Å). The method of stereoscopic triangulation is described in detail in previous papers (Aschwanden et al. 2008b, 2008c, 2009).

What is also important to know when we attempt magnetic modeling of stereoscopically triangulated coronal loops is the related uncertainty. The parallax effect occurs mostly in the east–west direction, which implies that loop segments with north–south direction can be most accurately triangulated, while the accuracy decreases progressively for segments with longer components in east–west direction (Aschwanden et al. 2008b). Another source of error is misidentification or confusion of dual loop counterparts in stereoscopic image pairs, an uncertainty that can only be quantified in an empirical manner. Such empirical estimates of stereoscopic errors were evaluated by measuring deviations from parallelity of loop pairs triangulated in near proximity, which yielded an estimated uncertainty in the absolute direction of \(\mu_{SE} = 8^\circ - 12^\circ\) for four analyzed active regions (Aschwanden & Sandman 2010). So, even when we achieve a theoretical magnetic field model that perfectly matches the observed loops, we expect a residual misalignment error of \(\mu \approx 10^\circ\) due to the uncertainty of stereoscopic triangulation.

2.4. 3D Magnetic Field Representation

The input from the line-of-sight magnetogram provides the longitudinal component \(B_{L(x, y, z_{\text{ph}})}\) at the photospheric level \(r = 1\), which corresponds to the \(z\)-coordinate \(z_{\text{ph}} = \sqrt{1 - x^2 - y^2}\). The decomposition of the magnetogram data into unipolar magnetic charges (Section 2.1 and the Appendix) yields the full 3D vector field, \(B(x, y, z) = [B_x(x, y, z_{\text{ph}}), B_y(x, y, z_{\text{ph}}), B_z(x, y, z_{\text{ph}})]\) on the solar surface at the photospheric level \(z_{\text{ph}}\), which is a potential field by definition, since the derived field consists of a superposition of potential fields from single magnetic charges (Equation (2)).

The nonlinear force-free magnetic field model (Section 2.2), which we fit to the data by optimizing the misalignment angles with our chosen parameterization, defines a non-potential field \(B(x, y, z)\), which can be extrapolated at any point in the corona by stepping along a field line \([x(s), y(s), z(s)]\) in small incremental steps \(\Delta s\), where the cosines of the Cartesian magnetic field components \((B_x, B_y, B_z)\) define also the direction of the field line, so that it can be iteratively calculated with

\[
\begin{align*}
x(s + \Delta s) &= x(s) + \Delta s \left[\frac{\partial B_x}{\partial x} - \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z}\right] \rho, \\
y(s + \Delta s) &= y(s) + \Delta s \left[\frac{\partial B_y}{\partial x} - \frac{\partial B_z}{\partial y} + \frac{\partial B_x}{\partial y}\right] \rho, \\
z(s + \Delta s) &= z(s) + \Delta s \left[\frac{\partial B_z}{\partial x} - \frac{\partial B_x}{\partial y} + \frac{\partial B_y}{\partial z}\right] \rho,
\end{align*}
\]

where \(\rho = \pm 1\) represents the sign or polarization of the magnetic charge.

The force-free parameter \(\alpha(x, y, z)\) of our forward-fitted field \(B(x, y, z)\) at any given point of space in the computational box \((x, y, z)\) can be numerically computed for each of the three vector components of \((\nabla \times B)\)

\[
\begin{align*}
\alpha_x(x) &= \frac{1}{4\pi} \frac{(\nabla \times B)_x}{|B|} = \frac{1}{4\pi} B_z \left(\frac{\partial B_y}{\partial z} - \frac{\partial B_z}{\partial y}\right), \\
\alpha_y(x) &= \frac{1}{4\pi} \frac{(\nabla \times B)_y}{|B|} = \frac{1}{4\pi} B_z \left(\frac{\partial B_x}{\partial z} - \frac{\partial B_z}{\partial x}\right), \\
\alpha_z(x) &= \frac{1}{4\pi} \frac{(\nabla \times B)_z}{|B|} = \frac{1}{4\pi} B_z \left(\frac{\partial B_x}{\partial y} - \frac{\partial B_y}{\partial x}\right),
\end{align*}
\]

using a second-order scheme for the spatial derivatives, i.e.,

\[
\frac{\partial B_z}{\partial y} = \frac{(B_{z_{i+1,j,k}} - B_{z_{i-1,j,k}})}{2(y_{i+1} - y_{i-1})}.
\]

In principle, the three values \(\alpha_x, \alpha_y,\) and \(\alpha_z\) should be identical, but the numerical accuracy using a second-order differentiation scheme is most handicapped for those loop segments with the smallest values of the \(B\)-component (appearing in the denominator), for instance, in the \(\alpha_z\) component \(\alpha_z(|B|)\) near the loop tops (where \(B_z \approx 0\)). It is therefore most advantageous to use all three parameters \(\alpha_x, \alpha_y,\) and \(\alpha_z\) in a weighted mean,

\[
\alpha = \frac{\alpha_x w_x + \alpha_y w_y + \alpha_z w_z}{w_x + w_y + w_z},
\]

but weight them by the magnitude of the (squared) magnetic field strength in each component,

\[
w_x = B_x^2, \quad w_y = B_y^2, \quad w_z = B_z^2,
\]

so that those segments have no weight where the \(B\)-component approaches zero. This numerical method was found to render the \(\alpha\)-parameters most accurately (Aschwanden & Malanushenko 2012), while the analytical approximation (Equation (13)) breaks down near loop tops (where \(B_z \approx 0\)).

The computation of the current densities \(j(x, y, z)\) follows then directly from Equation (5),

\[
j(x, y, z) = \alpha(x, y, z) B(x, y, z).
\]
3. OBSERVATIONS AND RESULTS

We now present the results from four active regions, which all have been modeled with different magnetic field models before also (DeRosa et al. 2009; Sandman et al. 2009; Aschwanden & Sandman 2010; Sandman & Aschwanden 2011) and can now be compared with our modeling results. A summary of the four active regions, including the observing time, heliographic position, STEREO spacecraft separation, number of stereoscopically triangulated loops, maximum magnetic field strength, and magnetic flux is given in Table 1, which is reproduced from Aschwanden & Sandman (2010).

3.1. 3D Potential Magnetic Field

The first step of our analysis is the decomposition of the observed SOHO/MDI magnetograms of four active regions into \(N_m \) magnetic charges (Equation (2)), which yields the \(4 \times N_m \) parameters \([B_x, x_j, y_j, z_j], j = 1, \ldots, N_m \) for the 3D parameterization \(\mathbf{B}(\mathbf{x}) \) of the magnetic field. In the remainder of the paper, we will label the four active regions observed at the given times as follows (see also Table 1):

- (A) for active region 10953, 2007 April 30, 23:00 UT,
- (B) for active region 10955, 2007 May 9, 20:30 UT,
- (C) for active region 10953, 2007 May 19, 12:40 UT,
- (D) for active region 10978, 2007 December 11, 16:30 UT.

The pixel size of MDI magnetograms is 2’’ and the MDI magnetograms have been decomposed into Gaussian-like peaks (each one corresponding to a buried unipolar magnetic charge). The chosen field of views (FOVs) of the four active regions are (in units of solar radii)

- FOV(A) = \([x_1 = -0.65, x_2 = +0.05, y_1 = -0.50, y_2 = +0.20]\),
- FOV(B) = \([x_1 = -0.55, x_2 = -0.25, y_1 = -0.25, y_2 = +0.05]\),
- FOV(C) = \([x_1 = -0.22, x_2 = +0.18, y_1 = -0.15, y_2 = +0.25]\),
- FOV(D) = \([x_1 = -0.28, x_2 = +0.12, y_1 = -0.35, y_2 = +0.05]\).

So, all four active regions are located near disk center \([x = 0, y = 0]\), but some extend out to 0.65 solar radii (FOV A). We show the observed magnetograms \(B_x(x, y) \) for the four active regions in Figure 4 (left column), the corresponding model maps \(B_x(x, y) \) built from \(N_m = 200 \) magnetic charge components (Figure 4, middle column), and the difference between the observed and model maps (Figure 4, right column), all on the same gray scale, so that the fidelity of the model can be judged. The residual fields of the decomposed magnetograms after subtraction of \(N_m = 200 \) components are

- \(B_x / B_{max} = -0.0003 \pm 0.0097 \) for (A),
- \(B_y / B_{max} = -0.0011 \pm 0.0074 \) for (B),
- \(B_z / B_{max} = -0.0004 \pm 0.0164 \) for (C),
- \(B_z / B_{max} = -0.0008 \pm 0.0189 \) for (D)

(with the maximum field strengths \(B_{max} \) listed in Table 1). Therefore, our decomposition algorithm (the Appendix) represents the observed magnetic field down to a level of \(\approx 1\%–2\% \) residuals. Note that this method yields the 3D components of the magnetic field, \([B_x, B_y, B_z] \), with the accuracy specified for the case of a potential field, while the accuracy for a non-potential field components (i.e., horizontal components \(B_x \) and \(B_y \)) probably does not exceed a factor of two of this accuracy (i.e., \(\approx 2\%–4\% \)), which is still better than the accuracy of currently available vector magnetograph data (in the order of \(\approx 10\% \) for strong fields and worse for weak fields; M. DeRosa 2012, private communication).

3.2. Forward-fitting of 3D Force-Free Field

In Figure 5, we show the comparison of \(N_L = 200 \) stereoscopically triangulated coronal loops for active region A (2007 April 30), obtained from STEREO spacecraft EUVI/A and EUVI/B data, with the potential field model composed from \(N_m = 100 \) buried magnetic charges (Equation (2)). For each modeled magnetic field line, we have chosen the midpoint of the observed STEREO loop segment as the starting point, from which we extrapolate the potential field in both directions for segments (red curves) that are equally long as the observed loop segments (blue curves). A histogram of the median misalignment angles is shown in Figure 5 (bottom), measured at 10 positions along each loop segment, which has an average \((A) of \(\mu = 39\% \), a median \((M) of \(\mu = 29\% \), or a Gaussian peak \((P) fit with a centroid and width of \(\mu = 29.1 \pm 21.6 \). So, there is broad distribution of misalignment angles in the range of \(\mu \approx 10’’–60’’ \), which clearly indicates that a potential field model is not a very good fit for these observables.

In Figures 6–9, we present the main results of our force-free field forward-fitting code applied to the stereoscopically triangulated coronal loops data, for all four active regions A, B, C, and D. The 3D coordinates of the observed stereoscopic loops (Figures 6–9; blue curves) and forward-fitted theoretical field lines (Figures 6–9; red curves) are shown in three projections, in the \(x-y \) plane (in direction of the line of sight), as well as in the orthogonal \(x-z \) and \(z-y \) planes. The theoretical field lines are extrapolated to equally long segments as the observed EUV loops. The field lines have been computed with a step size of \(\Delta s = 0.002 \) solar radii (i.e., \(\approx 1500 \) km), which is identical to the spatial resolution of the magnetogram from SOHO/MDI (2’’ \(\approx 1500 \) km), and commensurable with the spatial resolution of STEREO/EUVI (i.e., 2 pixels with a size of 1’’6, which is \(\approx 2000 \) km).

Figures 5 and 6 show a direct comparison of modeling potential and non-potential fields for active region A, which results into a broad Gaussian distribution of \(\mu = 29.1 \pm 21.6 \) for the potential field, and to a much narrower distribution of \(\mu = 16.7 \pm 6.7 \) for the non-potential field model. An online movie that visualizes the forward-fitting process from the initial
Figure 4. Left column: photospheric magnetograms observed with SOHO/MDI for four observations. Middle column: the magnetic field is decomposed into $N_m = 200$ unipolar magnetic charges and the model map displays the line-of-sight component of the magnetic field, B_z. Right column: difference between the observed MDI magnetogram and the model.
guess of a potential field model to the best-fit non-potential model is also included in the online supplementary material of this paper.

3.3. Misalignment Statistics

A quantitative measure of the agreement between a theoretical magnetic field model and the 3D coordinates of observed coronal loops is the statistics of misalignment angles, which is shown for all four active regions in the bottom panels of Figures 6–9. We find the following Gaussian distributions of misalignment angles for each of the four active “regions”

Region	Mean (μ)	Standard Deviation
A	16°7 ± 6°7	for A (2007 April 30; Figure 6)
B	16°0 ± 6°0	for B (2007 May 9; Figure 7)
C	19°2 ± 6°7	for C (2007 May 19; Figure 8)
D	14°3 ± 5°6	for D (2007 December 11; Figure 9)

Figure 5. Number of 200 stereoscopically triangulated loops observed with STEREO (blue) are compared with the theoretical field lines of a potential field (red curves), defined by the potential fields of $N_m = 100$ buried magnetic charges, decomposed from the MDI line-of-sight magnetogram. The 3D views are shown in a top-down view in the x–y plane (middle), and in side views in z–y plane (right) and x–z plane (top). A histogram of the 3D misalignment angles is shown in the bottom panel, with the average (A), median (M), and peak value (P) of a fitted Gaussian distribution. This active region NOAA 10953, labeled as (A) in Table 1, was observed on 2007 April 30, 23:00 UT, which is identical to the case modeled in DeRosa et al. (2009).
Figure 6. Similar representation as in Figure 5 for active region A (2007 April 30), but modeled by forward-fitting our analytical approximation of a force-free field model. Note that the 3D misalignment angles for this quasi-force-free field are significantly smaller than for the potential field model shown in Figure 5. See also movie A of forward fitting of active region A.

(An animation (Movie A) of this figure is available in the online journal.)

so they have a most frequent value of \(\mu \approx 15^\circ \text{--} 19^\circ \), which matches very closely the estimated uncertainty of stereoscopic errors (based on the parallelity of loops in near proximity), which was found in a similar range of \(\mu_{\text{SE}} \approx 7^\circ \text{--} 10^\circ \) (Aschwanden & Sandman 2010). Online movies that visualize the forward-fitting process from the initial potential field model to the best-fit non-potential model are also included as online supplementary materials of this paper.

A comparison of our results with previous magnetic modeling of the same four active regions is compiled in Table 2. The improved misalignment statistics obtained with our code in the range of \(\mu \approx 14^\circ \text{--} 19^\circ \) is about two times smaller than what was obtained with earlier NLFFF models (\(\mu_{\text{NLFFF}} \approx 24^\circ \text{--} 44^\circ \); DeRosa et al. 2009), and also about two times smaller than potential field models, i.e., with potential source surface models (PFSS: \(\mu \approx 19^\circ \text{--} 36^\circ \); Sandman et al. 2009), with potential field
models with unipolar charges ($\mu \approx 16^\circ$–26$^\circ$; Aschwanden \& Sandman 2010), also measured with our new code described in this paper ($\mu \approx 18^\circ$–42$^\circ$). Thus, we find that our non-potential (force-free) field model clearly yields a better matching model than any previous potential or non-potential field model.

The mean value of the misalignment angle μ in an active region depends also on the number N_m of magnetic charges that have been used in the model, which is shown in Figure 10 (right panels). We repeated the forward fitting for $N_m = 1, 2, 4, 10, 20, 50, 100$, and 200 magnetic charges and find that the mean misalignment angle $\mu(N_m)$ generally improves (or decreases) with the number of magnetic components, up to $N_m \approx 100$, while for larger numbers (i.e., $N_m = 200$) a diminishing effect sets in (probably due to less efficient convergence in forward fitting with a too large number of variables). We show the dependence of the mean misalignment

Figure 7. Similar representation as in Figure 6, for active region NOAA 10955 observed on 2007 May 9, 20:30 UT. See also movie B on forward fitting of active region B.
(An animation (Movie B) of this figure is available in the online journal.)
angle $\mu(N_m)$ for both the potential field model (P) and the force-free field non-potential model (NP) in Figure 10 (right panels), which reveal interesting characteristics how potential-like an active region is. Clearly, active region B (2007 May 9) is the most potential one, while active region C (2007 May 19) is the most non-potential one, where a potential field model does not fit at all, regardless how many magnetic components are used. A similar result was also obtained in the study of Aschwanden & Sandman (2010), where the potential-like active region B was associated with the lowest GOES-class level (A7), while the most non-potential-like region C was exhibiting a GOES-class C0 flare.

3.4. Force-free α and Electric Current j_z Maps

Maps of the magnetic field components $B_x(x, y)$, $B_y(x, y)$, and $B_z(x, y)$ obtained from the decomposition of line-of-sight
magnetograms into 100 buried magnetic charges are shown for one (i.e., region A of 2007 April 30) of the four analyzed active regions in Figure 11. Note that only the line-of-sight component map \(B_z(x, y) \) is directly observed (with SOHO/MDI), as shown in the bottom right panel in Figure 11, while the other two component maps \(B_x(x, y) \) and \(B_y(x, y) \) are inferred from the spherical symmetry of the magnetic field of point charges assumed for a potential field (Equation (1)). These inferred field components define our potential field solution \(B_P(x, y) \).

Our non-potential field model adds additional azimuthal field components \(B_\phi(x, y) \) that are only constrained by fitting the stereoscopically triangulated loops. We show the difference between the non-potential and potential field components for the photospheric level in the middle column of Figure 11. We notice that the difference between the non-potential and potential solution is essentially contained in the transverse field components \(B_x(x, y) \) and \(B_y(x, y) \), because the line-of-sight component \(B_z(x, y) \) is an observed quantity and has to be

Figure 9. Similar representation as in Figures 6 and 7 for active region NOAA 10978 observed on 2007 December 11, 16:30 UT. See also movie D on forward fitting of active region D.

(An animation (Movie D) of this figure is available in the online journal.)
matched by any model. The difference maps shown in Figure 11 confirm that our model retrieves the non-potential field mostly from the transverse field components that are not measured with a line-of-sight magnetogram.

From our model, we can also derive a photospheric force-free $\alpha(x, y)$ map (top right panel in Figure 11) and a photospheric electric current density map $j_z(x, y)$ (middle right panel in Figure 11), based on Equation (22). The magnetograms and inferred current maps are shown for active region (A) in Figure 11, and for the other active regions (B), (C), and (D) in Figure 12. These inferred maps reveal that the locations of significant electric currents are located in strong field regions, and exhibit as much small-scale fine structure as the magnetic field line-of-sight component $B_z(x, y)$.

Statistics of obtained parameters of our non-potential field model is shown in the form of histogramed distributions in Figure 13, lumped together from all 454 stereoscopically triangulated loops of our four analyzed active regions. The histograms are shown in lin–lin (Figure 13, left) as well as in log–log representation (Figure 13, right) and can be characterized by power-law distributions. The median values are $L = 163$ Mm for the length of the extrapolated field lines that were extrapolated through the midpoint of the observed loops, $N_{\text{twist}} = 0.06$ for the number of twisted turns along the extrapolated full loop lengths, $\alpha = 4 \times 10^{-11}$ cm$^{-1}$ for the force-free α-parameter, and $|j_z| = 1500$ Mx cm$^{-2}$ s$^{-1}$ for the electric current density. The statistics of misalignment angles is given in Figure 10 and Table 2.

3.5. Divergence Freeness and Force Freeness

In order to test the accuracy of our analytical force-free model, which represents an approximation to a truly force-free field with an accuracy to second order (in α), it is useful to calculate some figures of merit. The divergence-freeness $\nabla \cdot \mathbf{B} = 0$ can be compared with the field gradient $\mathbf{B}/\Delta x$ over a pixel length Δx,

$$L_d = \frac{1}{V} \int_V \frac{|(\nabla \cdot \mathbf{B})^2}{|\mathbf{B}/\Delta x|^2} dV.$$ \hspace{1cm} (23)

Similarly, the force freeness can be quantified by the ratio of the Lorentz force, $(j \times \mathbf{B}) = (\nabla \times \mathbf{B}) \times \mathbf{B}$ to the normalization constant $B^2/\Delta x$,

$$L_f = \frac{1}{V} \int_V \frac{|(\nabla \times \mathbf{B}) \times \mathbf{B}|^2}{|B^2/\Delta x|^2} dV,$$ \hspace{1cm} (24)

where $B = |\mathbf{B}|$. These quantities, integrated over a computational box that covers the FOVs of an active region and extends over a height range of $\Delta h = 0.15$ solar radii, were found to be for the four active regions A, B, C, and D:

(A) $L_d = 0.5 \times 10^{-4}$ \hspace{0.5cm} and \hspace{0.5cm} $L_f = 5 \times 10^{-4}$

(B) $L_d = 1.1 \times 10^{-4}$ \hspace{0.5cm} and \hspace{0.5cm} $L_f = 7 \times 10^{-4}$

(C) $L_d = 1.4 \times 10^{-1}$ \hspace{0.5cm} and \hspace{0.5cm} $L_f = 1.8 \times 10^{-1}$

(D) $L_d = 1.0 \times 10^{-4}$ \hspace{0.5cm} and \hspace{0.5cm} $L_f = 1.0 \times 10^{-4}$.

In comparison, figures of $L_d \approx (8 \pm 5) \times 10^{-4}$ and $L_f \approx (24 \pm 23) \times 10^{-4}$ were found for simulated cases (Aschwanden & Malanushenko 2012), and $L_d \approx (0.2 \pm 8) \times 10^{-4}$ and $L_f \approx (6 \pm 2) \times 10^{-4}$ for forward fitting to the Low & Lou (1990) model, which is an analytical exact force-free solution (Aschwanden & Malanushenko 2012). Our values do not exceed figures of merits quoted from other NLFFF codes, i.e., $L_d \approx 0.07$ and $L_f \approx 0.1$ (Schrijver et al. 2006; Table III therein). For the sake of convenience, we evaluated these figures of merit in a rectangular box tangential to the solar disk at disk center, extending over a height range of $h = 1.00$–1.15, which covers the strong field regions only for active regions near disk center. Of course, the widely used definitions of divergence freeness (Equation (23)) and force freeness (Equation (24)) are proportional to the square of the normalization length scale L, i.e., $L_d \propto L^2$ and $L_f \propto L^2$, and thus would yield larger values for typical loop lengths or box sizes $L \gg \Delta x$.

4. DISCUSSION

4.1. The Potential-field Model with Unipolar Magnetic Charges

As a first step, we derived a potential field model of an active region. The knowledge of the potential field is a useful starting point for reconstructing a non-potential field model. In the asymptotic limit of small currents, i.e., for small values of the force-free parameter ($\alpha \mapsto 0$), the force-free field solution automatically converges to the potential field solution. Furthermore, since our analytical force-free field approximation is accurate to second order (in α), the highest accuracy is warranted for a small non-potentiality, say up to one full turn of twist along a loop length. The fact that we measured small twists along a loop length ≈ 0 can be compared with the field gradient $\mathbf{B}/\Delta x$ over a pixel length Δx,

$$L_d = \frac{1}{V} \int_V \frac{|(\nabla \cdot \mathbf{B})^2}{|\mathbf{B}/\Delta x|^2} dV.$$ \hspace{1cm} (23)

Similarly, the force freeness can be quantified by the ratio of the Lorentz force, $(j \times \mathbf{B}) = (\nabla \times \mathbf{B}) \times \mathbf{B}$ to the normalization constant $B^2/\Delta x$,

$$L_f = \frac{1}{V} \int_V \frac{|(\nabla \times \mathbf{B}) \times \mathbf{B}|^2}{|B^2/\Delta x|^2} dV,$$ \hspace{1cm} (24)
Figure 10. Distribution of best-fit misalignment angles α_{mis} (between the observed loops and the best fit of the theoretical force-free field model) is shown (left panels). The distributions are characterized by the value of the peak (P) of a Gaussian fit with Gaussian width, by the median (M), and the average (A). The dependence of the average misalignment angle (A) as a function of the number of magnetic components N_{mag} is shown in the right panels for the potential field model (P) and the non-potential (force-free field) model (NP).

method of superimposed fields from buried magnetic charges, the potential field solution is unique in every point of space, as well as at the boundaries (neglecting exterior magnetic charges). The potential field solution fixes also the line-of-sight component of the non-potential solution, $B_{\text{NP}}^z = B_{\text{P}}^z$, because this component is a direct observable that must be matched with every model, and thus is identical for both the potential and the non-potential model, while the transverse components represent the only free parameters for a non-potential solution, i.e., $B_{\text{NP}}^x \neq B_{\text{P}}^x$ and $B_{\text{NP}}^y \neq B_{\text{P}}^y$.

In this study, we derived an algorithm that accurately calculates a potential magnetic field by properly including the curvature of the solar surface and for locations away from the solar disk center. We are not aware that such a potential field code, defined in terms of buried unipolar magnetic charges and deconvolved from an observed magnetogram (Aschwanden & Sandman 2010), has been developed elsewhere, although similar parameterizations have been used in magnetic charge topology models (e.g., Longcope 2005). It would be interesting to compare its performance with other potential field codes, such as with the Green’s function method (Sakurai 1982), the eigenfunction expansion method (Altschuler & Newkirk 1969), or the PFSS code (e.g., Luhmann et al. 1998). Our magnetic charge decomposition method is related to the Green’s function method, but differs in the discretization of discrete magnetic elements of various strengths and variable location, while the Green’s
method uses a regular surface grid. Magnetic elements of sub-pixel size represent no particular problem (except that no more than one element can be resolved per pixel), because our method fits their radial field above the photosphere, but treats them as point charges below the photosphere. However, the resolution of our method is somehow limited by the depth of the point charges (which introduces finite numerical errors in the calculation of $\nabla \cdot \mathbf{B}$ and $\nabla \times \mathbf{B}$), as well as by the number of point charges (which represent a sensitivity threshold for weak magnetic field sources). Thus, smaller grid pixel sizes and larger number of magnetic field charges can enhance the accuracy of the solutions, but are more demanding regarding computation times. Similarly, the resolution of the Green’s function method is limited by the grid size, which is either given by the measurements, or limited by computation resources.

4.2. Non-potential Fields with Twisted Loops

Models of twisted flux tubes have been applied abundantly in solar physics, e.g., to braiding of coronal loops (Berger 1991), to prominences (Priest et al. 1989, 1996), to sigmoid-shaped filaments (Rust & Kumar 1996; Pevtsov et al. 1997), to emerging current-carrying flux tubes (Leka et al. 1996; Longcope & Welsch 2000), or to turbulent coronal heating (Inverarity & Priest 1995). Magnetic structures are believed to be twisted and current carrying before they emerge at the solar surface (Leka et al. 1996), many active region loops are observed to have a visible twist (see Section 6.2.4 in Aschwanden 2004), and filaments or prominences become unstable and erupt once their twist exceeds a critical angle of a few full turns due to the kink instability or torus instability (Fan & Gibson 2003, 2004; Török & Kliem 2003; Kliem et al. 2004). The twist of a magnetic structure is therefore an important indicator for its stability or transition to an instability, followed by the dynamic evolution that leads to eruptive flares and coronal mass ejections (CMEs). Our method allows us to determine the number of twisting turns of most stereoscopically triangulated coronal loops directly, and thus provides a reliable diagnostics on its stability and the amount of electric current the loop carries. The statistics in Figure 13 shows that the number of twisting turns has a range

\[B_x^P, B_y^P, B_z^P, B_x^{NP-Bx}, B_y^{NP-By}, B_z^{NP-Bz}, \text{Force-free } \alpha, \text{Electric current } j_z, \text{Magnetogram } B_z \]
up to $N_{\text{twist}} \lesssim 0.25$ (Figure 13), which is far below the critical limit of $N_{\text{twist}} \approx 1.2-2.4$ full turns required for the onset of the kink instability in a force-free magnetic field (Mikic et al. 1990; Török & Kliem 2003).

The amount of twisting clearly varies among different active regions. The improvement in the misalignment angle between a potential and a non-potential model characterizes the potentiality and free energy of an active region. The most potential active region is B (2007 May 9), where we achieve only a slight potentiality and free energy of an active region. The most potential active region is B (2007 May 9), where we achieve only a slight potentiality and free energy of an active region. The most potential active region is B (2007 May 9), where we achieve only a slight potentiality and free energy of an active region. The strongest non-potentiality is found for active region C (2007 May 19), where we achieve an improvement of $\mu \approx 46\pm 1\degree$ for these four active regions. During the time of observations, active region C indeed featured a GOES-class C0 flare, which explains its non-potentiality. The remaining amount of misalignment, in the order of $\mu \approx 15\degree$-20\degree, is attributed partly to stereoscopic measurement errors, which were estimated to $\mu_{SE} \approx 8\degree$–12$\degree$, and partly to our particular parameterization of a force-free field model, which is optimally designed for vertically twisted structures.

4.3. Force-free α-parameter and Electric Currents

For the force-free α-parameter, we find a distribution extended over the range of $\alpha \lesssim 20 \times 10^{-11}$ cm$^{-1}$ (Figure 13), with a median of $\alpha \approx 4 \times 10^{-11}$ cm$^{-1}$. Using a sheared arcade model, where the force-free α-parameter is defined as $\alpha = L \tan \mu$ (with L the length of the loops), a range of $\alpha = (0.6-13) \times 10^{-11}$ cm$^{-1}$ was found for the same data set, based on the residual misalign-

$$E_H = \frac{j^2}{\sigma},$$

(25)

where $\sigma \approx 6 \times 10^{16} \text{ s}^{-1}$ is the classical conductivity for a $T \approx 2$ MK hot corona. Our measured maximum current density of $|j| < 10^4$ Mx cm$^{-2}$ s$^{-1}$ yields then a value of $E_H < 2 \times 10^{-9}$ erg cm$^{-3}$ s$^{-1}$ for the volumetric heating rate. The corresponding Poynting flux F_H for a field line with a density scale height of $\lambda \approx 10^{10}$ cm (corresponding to the thermal scale height at a temperature of $T = 2$ MK), is

$$F_H = E_H \lambda(T) \approx 10^{10} E_H \left(\frac{T_e}{2 \text{ MK}} \right),$$

(26)

which yields $F_H < 20 \text{ erg cm}^{-2}$ s$^{-1}$, which is far below the heating requirement for active regions ($F_H \approx 10^5$–107 erg cm$^{-2}$ s$^{-1}$; Withbroe & Noyes 1977). Thus, Joule dissipation is far insufficient to heat coronal loops in active regions, according to our current measurements. Obviously, more energetic processes, such
as magnetic reconnection with anomalous resistivity in excess of classical conductivity is needed. Nevertheless, our technique of measuring current densities from the twist of observed loops may provide a useful diagnostic where currents are generated in active regions, e.g., near neutral lines with large gradients in the magnetic field, or in areas with large photospheric shear that produces magnetic stressing.

4.4. Benefits of Non-potential Magnetic Field Modeling

Modeling of the magnetic field with a non-potential model matches the observed loop geometries about a factor of two better than potential field models, as demonstrated in this study (Table 2). While our attempt of forward fitting of twisted fields to stereoscopically triangulated loops represents only a first step in this difficult problem of data-constrained non-potential field modeling, we expect that future non-potential models with similar parameterizations will be developed, which yield the 3D magnetic field with high accuracy, satisfying Maxwell’s equations of divergence freeness and force freeness. There are a number of benefits that will result from the knowledge of a realistic 3D magnetic field, of which we mention just a few:

1. The spatial distribution of coronal DC current heating can be inferred from localizations of non-potential field lines with a high degree of twist and current density (e.g., Bobra et al. 2008; DeRosa et al. 2009; Su et al. 2011).
2. The free (non-potential) energy $E_{\text{free}} = E_N - E_F$ can be determined from the difference of the non-potential (E_N) and potential (E_F) energy in a loop.

3. Correlations between the free energy E_{free} and the soft X-ray brightness $f_{\text{X-ray}}$ can quantify the volumetric heating rate E_H and pointing flux F_H in loops and active regions, and be related to the flare productivity (e.g., Jing et al. 2010; Aschwanden & Sandman 2010).

4. The helicity and its evolution can be traced in twisted coronal loops, which can be used to diagnose whether helicity injection from below the photosphere takes place (e.g., Malanushenko et al. 2012).

5. Hydrodynamic modeling of coronal loops, which is mostly done in a one-dimensional coordinate (s) along the loop, requires knowledge of the 3D geometry $[x(s), y(s), z(s)]$, which otherwise can only be obtained from stereoscopy. The inclination of the loop plane determines the ratio of the observed scale height to the effective thermal scale height, and thus the inferred temperature profile $T_x(s)$. Also, the inference of the electron density $n_e(s)$ along the loop depends on the column depth of the line-of-sight integration (e.g., Aschwanden et al. 1999). Most loop scaling laws depend explicitly on the loop length L (e.g., the Rosner–Tucker–Vaiana law; Rosner et al. 1978), which can only be reliably determined from magnetic models.

6. Electron time-of-flight measurements require the trajectory of electrons that stream along field lines from coronal acceleration sources to the photospheric footpoints. The location of the coronal acceleration can be determined from the observed energy-dependent time delays in hard X-rays and the knowledge of the pitch angle of the electron and the magnetic twist of the field line, which can only be obtained from magnetic models (e.g., Aschwanden et al. 1996).

7. Modeling of entire active regions requires models of the 3D magnetic field, the temperature $T_x(s)$, and density $n_e(s)$, using hydrostatic or hydrodynamic loop models, which can reveal scaling laws between the volumetric heating rate E_H, hydrodynamic loop parameters (n_e, T_x, p, L), and magnetic parameters (B), (e.g., Schrijver et al. 2004; Warren & Winebarger 2006, 2007; Warren et al. 2010; Lundquist et al. 2008a, 2008b).

8. Nonlinear force-free modeling of active regions and global coronal fields can establish better lower boundary conditions for modeling of the heliospheric field (e.g., Petrie et al. 2011).

5. CONCLUSIONS

There are two classes of coronal magnetic field models, potential fields and non-potential fields, which both so far do not fit the observed 3D geometry of coronal loops well. NLFFFs are found to match the data generally better than LFFFs. The 3D geometry of coronal loops is most reliably determined by stereoscopic triangulation, as it is now available from the twin STEREO/A and B spacecraft, and we made use of a sample of some 500 loops observed in four active regions during the first year of the STEREO mission (with spacecraft separation angles in the range of $\alpha_{sep} \approx 6^\circ$–$43^\circ$). We forward-fitted a force-free approximation to the entire ensemble of stereoscopically triangulated loops in four active regions and obtained the following results and conclusions:

1. A line-of-sight magnetogram that measures the longitudinal magnetic field component $B_z(x, y)$ can be decomposed into $N_m \approx 100$ unipolar magnetic charges, from which maps of all three magnetic field components $B_x(x, y), B_y(x, y)$, and $B_z(x, y)$ can be reconstructed at the solar surface with an accuracy of $\approx 1\%–2\%$. This boundary condition allows us to compute a 3D potential field model $B^P(x)$ in a 3D cube encompassing an active region, by superimposing the potential fields of each buried magnetic charge. Our algorithm takes the curvature of the solar surface into account and is accurate up to about a half-solar radius away from disk center.

2. Forward fitting of the twisted flux tube model to 70–200 loops per active region improves the median 3D misalignment angle between the theoretical field lines and the observed stereoscopically triangulated loops from $\mu = 19^\circ$–46° for a potential field model to $\mu = 14^\circ$–19° for the non-potential field model, which corresponds to a reduction of $\Delta \mu = \mu^P - \mu^\text{NP} = 5^\circ, \ldots, 26^\circ$. The residual misalignment is commensurable with the estimated stereoscopic measurement error $\mu_{SE} \approx 8^\circ$–12°.

3. The application of our stereo-constrained model allows us to obtain maps of the non-potential magnetic field components, $B_x(x, y), B_y(x, y)$, and $B_z(x, y)$, the force-free α-parameter $\alpha(x, y)$, and the current density $j_z(x, y)$ at the photospheric level or in an arbitrary 3D computation box. The divergence freeness and force freeness, numerically evaluated over a 3D computation box, was found to be reasonable well fulfilled.

4. The statistics of parameters from forward fitting of our force-free model yields the following values: field line lengths $L \approx 50$–300 Mm (median 163 Mm), number of twist turns $N_{\text{twist}} \lesssim 0.25$ (median $N_{\text{twist}} = 0.06$), nonlinear force-free α-parameter $\alpha \lesssim 15 \times 10^{-11}$ cm$^{-1}$ (median $\alpha \approx 4 \times 10^{-11}$ cm$^{-1}$), and current density $|j_z| \approx 10^{-2}$–10^{-4} Mx cm$^{-2}$ s$^{-1}$ (median $|j_z| \approx 1500$ Mx cm$^{-2}$ s$^{-1}$). All twisted loops are found to be far below the critical value for kink instability ($N_{\text{twist}} \approx 1.25$ turns) and Joule dissipation of their currents (with a median Poynting flux of $F_H < 20$ erg cm$^{-2}$ s$^{-1}$) is found far below the coronal heating requirement ($F_H \approx 10^{-9}$–10^{-7} erg cm$^{-2}$ s$^{-1}$).

Where do we go from here? The two algorithms developed here provide an efficient tool to quickly compute a potential field and a quasi-force-free solution of an active region, also yielding accurate measurements of geometric (helically twisted) loop parameters (full length of field line, number of twist turns), based on the constraints of stereoscopically triangulated loops. Our approach of forward-fitting a magnetic field model to coronal structures has also the crucial advantage to bypass the non-force-free zones in the lower chromosphere, which plague standard NLFFF extrapolation algorithms. A next desirable project would be to generalize the non-potential field forward-fitting algorithm to two-dimensional (2D) projections $[x(s), y(s)]$ of 3D loop coordinates $[x(s), y(s), z(s)]$ (as they are obtained from stereoscopic triangulation), so that the model works for a single line-of-sight magnetogram combined with a suitable single-spacecraft EUV image, without requiring stereoscopy. The stereoscopic 3D loop measurements (used here) as well as 3D vector magnetogram data (once available from HMI/SDO), however, represent important test data to validate any of these non-potential field models.

We thank the anonymous referee and Allen Gary for constructive and helpful comments. This work is supported by the NASA STEREO under NRL contract N00173-02-C-2035. The
Thus, we have the four observables (B_z, ρ_p, z_p, w) and want to derive the model parameters (B_m, x_m, y_m, z_m). In Figure 14 (right), we show the geometric definitions of the depth d_m of the magnetic charge (the radial distance between M and the surface) and the distance d between the magnetic charge M and the surface field at an observed position P, which is inclined by an angle β to the vertical direction above the magnetic charge M, so we have the relation

$$\cos \beta = \frac{d_m}{d}. \quad (A2)$$

The line-of-sight component B_z at point P is at an angle ($\alpha - \beta$) to the radial direction B_r with field strength $B_r = B_m(d_m/d)^2$ (Equation (1)) and thus obeys the following dependence on the aspect angle α and inclination angle β (with Equation (A2)):

$$B_z = B_m \left(\frac{d_m}{d}\right)^2 \cos (\alpha - \beta) = B_m \cos^2(\beta) \cos (\alpha - \beta). \quad (A3)$$

The radial coordinate ρ_p is related to the radial coordinate ρ_m of the magnetic charge by

$$\rho_p = \rho_m + d \sin (\alpha - \beta) = \rho_m + d_m \frac{\sin (\alpha - \beta)}{\cos \beta}. \quad (A4)$$

We further have the geometric relationships for the aspect angle α, the 3D distance r_m from Sun center, and the depth d_m,

$$\alpha = \arctan \left(\rho_m/z_m\right)$$

$$r_m = \sqrt{\rho_m^2 + z_m^2}$$

$$d_m = (1 - r_m). \quad (A5)$$

The observed line-of-sight component B_z has a dependence on the inclination angle β (Equation (A3)), and thus we need to compute the optimum angle β_p where the component B_z has a maximum, because we can only measure the locations of local peaks in magnetograms $B_z(x, y)$. We obtain this optimum angle β_p by calculating the derivative $\partial B_z/\partial \beta$ from Equation (A3) and setting the derivative to zero at the local maximum, i.e., $\partial B_z/\partial \beta = 0$ at $\beta = \beta_p$, which yields a quadratic equation for $\tan(\beta_p)$ that has the analytical solution,

$$\tan(\beta_p) = \frac{\sqrt{9 + 8 \tan^2 \alpha} - 3}{4 \tan \alpha} \approx \frac{\alpha}{3}. \quad (A6)$$

For the special case of a source at disk center ($\alpha = 0$), this optimum angle is $\beta_p = 0^\circ$, but increases monotonically with the radial distance from disk center and reaches a maximum value of $\beta_p = \arctan(1/\sqrt{2}) \approx 35.26^\circ$ at the limb ($\alpha = \pi/2$).

We further need to quantify the half-width w of the radial magnetic field profile $B_z(\rho)$ across a local peak, which is also one of the observables. A simple way is to approximate the magnetic field profile $B_z(\rho)$ with a Gaussian function, which drops to the half-value $B_z/2$ at an angle $\beta = \beta_2$,

$$B_z(\beta = \beta_2) = \frac{1}{2} B_z(\beta = \beta_p). \quad (A7)$$

Inserting the function $B_z(\beta)$ (Equation (A3)) then yields the following relationship for the half-width $w = (\rho_2 - \rho_p)$,

$$w = (\rho_2 - \rho_p) = d_m \left[\frac{\sin (\alpha - \beta_2)}{\cos \beta_2} - \frac{\sin (\alpha - \beta_p)}{\cos \beta_p} \right]. \quad (A8)$$
For the special case at disk center $\alpha = 0$, the solution is $w_0 = w(\alpha_0) = d_m \tan(\beta_2)$, and β_2 is related to β_p by

$$\cos^3(\beta_2) = \frac{\cos^3(\beta_p)}{2}. \quad (A9)$$

A general analytical solution is not possible, but numerical inversions of Equation (A3) give the following very close approximation:

$$w \approx d_m \tan \beta_2 \cos(1 - 0.1\alpha). \quad (A10)$$

We now have all the geometric relationships to invert the theoretical parameters (B_m, x_m, y_m, z_m) from the observables (B_z, ρ_m, z_p, w). An explicit derivation of the theoretical parameters is not feasible, but an efficient way is to start with an approximate value for the aspect angle, since $\tan(\alpha) = (\rho_m/z_m) \approx (\rho_p/z_p)$, followed by a few iterations to obtain the accurate value. The inversion can be done in the following order (using Equations (A1)–(A10)):

$$\alpha \approx \arctan(\rho_p/z_p)$$

$$\beta_p = \arctan[(\sqrt{9 + 8 \tan^2 \alpha} - 3)/4 \tan \alpha]$$

$$B_m = B_z/[\cos^2 \beta_p \cos(\alpha - \beta_p)]$$

$$\beta_2 = \arccos[(\cos(\beta_p^3/2))^{1/3}]$$

$$d_m = w/[(\tan \beta_2 \cos \alpha (1 - 0.1\alpha)]$$

$$l_m = (1 - d_m)$$

$$\rho_m = \rho_p - d_m \sin(\alpha - \beta_p)/\cos \beta_p$$

$$z_m = \sqrt{\rho_m^2 - \rho_p^2}$$

$$x_m = \rho_m \cos \gamma$$

$$y_m = \rho_m \sin \gamma. \quad (A11)$$

In our algorithm, we iteratively determine the local peaks of the line-of-sight components $B_z(x, y)$ and their widths w, which are found to be close to Gaussian 2D distribution functions, and invert the model parameters (B_m, x_m, y_m, z_m) with the inversion procedure given in Equation (A11).

REFERENCES

Altschuler, M. D., & Newkirk, G. Jr. 1969, Sol. Phys., 9, 131

Aschwanden, M. J. 2004, Physics of the Solar Corona. An Introduction (Chichester: UK: Praxis Publishing)

Aschwanden, M. J. 2010, Sol. Phys., 262, 399

Aschwanden, M. J. 2011, Living Rev. Sol. Phys., 8, 5

Aschwanden, M. J. 2012, Sol. Phys., in press (http://www.lmsal.com/~aschwand/epreprints/2012_f11f.pdf)

Aschwanden, M. J., Kosugi, T., Hudson, H. S., Wills, M. J., & Schwartz, R. A. 1996, ApJ, 470, 1198

Aschwanden, M. J., Lee, J. K., Gary, G. A., Smith, M., & Inhester, B. 2008a, Sol. Phys., 248, 359

Aschwanden, M. J., & Malanushenko, A. 2012. Sol. Phys., in press (http://www.lmsal.com/~aschwand/epreprints/2012_f11f2.pdf)

Aschwanden, M. J., Newmark, J. S., Delaboudiniere, J. P., et al. 1999, ApJ, 515, 842

Aschwanden, M. J., Nitta, N. V., Wuelser, J. P., & Lemen, J. R. 2008b, ApJ, 680, 1477 (Paper II)

Aschwanden, M. J., & Sandman, A. W. 2010, AJ, 140, 723

Aschwanden, M. J., Wuelser, J. P., Nitta, N. V., & Lemen, J. R. 2008c, ApJ, 679, 827 (Paper I)

Aschwanden, M. J., Wuelser, J. P., Nitta, N., Lemen, J., & Sandman, A. 2009, ApJ, 695, 12 (Paper III)

Berger, M. A. 1991, A&A, 252, 369

Bobra, M. G., Van Ballegooijen, A. A., & DeLuca, E. E. 2008, ApJ, 672, 1209

Boyd, T. J. M., & Sanderson, J. J. 2003, The Physics of Plasmas (Cambridge: Cambridge Univ. Press)

Conlon, P. A., & Gallagher, P. T. 2010, ApJ, 715, 59

DeRosa, M. L., Schrijver, C. J., Barnes, G., et al. 2009, ApJ, 696, 1780

Fan, Y., & Gibson, S. E. 2003, ApJ, 589, L105

Fan, Y., & Gibson, S. E. 2004, ApJ, 609, 1123

Feng, L., Inhester, B., Solanki, S., et al. 2007a, ApJ, 671, L205

Feng, L., Wiegelmann, T., Inhester, B., et al. 2007b, Sol. Phys., 241, 235

Gold, T., & Hoyle, F. 1958, MNRAS, 120, 89

Inhester, B., Feng, L., & Wiegelmann, T. 2008, Sol. Phys., 248, 359

Inverarity, G. W., & Priest, E. R. 1995, A&A, 296, 395

Jing, J., Tan, C., Yuan, Y., et al. 2010, ApJ, 713, 440

Kaiser, M. L., Kucera, T. A., Davila, J. M., et al. 2008, Space Sci. Rev., 136, 5

Kliem, B., Titov, V. S., & Török, T. 2004, A&A, 413, L23

Leka, K. D., Canfield, R. C., & McClymont, A. N. 1996, ApJ, 462, 547

Longcope, D. W. 2005, Living Rev. Sol. Phys., 2, 7

Longcope, D. W., & Welsch, B. T. 2000, ApJ, 545, 1089

Low, B. C., & Lou, Y. Q. 1990, ApJ, 352, 343

Luhmann, J. G., Gosling, J. T., Hoeksema, J. T., & Zhao, X. 1998, J. Geophys. Res., 103, 6585

Lundquist, L. L., Fisher, G. H., & McTiernan, J. M. 2008a, ApJS, 179, 509

Lundquist, L. L., Fisher, G. H., & McTiernan, J. M. 2008b, ApJ, 689, 1388

Malanushenko, A., Longcope, D. W., & McKenzie, D. D. 2009, ApJ, 707, 1044

Malanushenko, A., Schrijver, C. J., & De Rosa, M. L., Wheatland, M. S., & Gilchrist, S. A. 2012, ApJ, in press

Mikic, Z., Schnack, D. D., & VanHoven, G. 1990, ApJ, 361, 690

Petrie, G. J. D., Canou, A., & Amari, T. 2011, Sol. Phys., 274, 163

Pevtsov, A. A., Schrijver, C. J., De Rosa, M. L., & Alexander, D. 2009, Sol. Phys., 259, 1

Sandman, A., Aschwanden, M. J., De Rosa, M., Wuelser, J. P., & Alexander, D. 2009, Sol. Phys., 270, 503

Schrijver, C. J., De Rosa, M., Metcalf, T. R., et al. 2006, Sol. Phys., 235, 161

Schrijver, C. J., Sandman, A. W., Aschwanden, M. J., & De Rosa, M. L. 2004, ApJ, 615, 512

Sturrock, P. A. 1994, Plasma Physics: An Introduction to the Theory of Astrophysics, Geophysical and Laboratory Plasmas (Cambridge: Cambridge Univ. Press)

Su, Y. N., Surges, V., van Ballegooijen, A. A., Deluca, E., & Golub, L. 2011, ApJ, 734, 53

Török, T., & Kliem, B. 2003, A&A, 406, 1043

Warren, H. P., & Winebarger, A. R. 2006, ApJ, 645, 711

Warren, H. P., & Winebarger, A. R. 2007, ApJ, 666, 1245

Warren, H. P., Winebarger, A. R., & Brooks, D. H. 2010, ApJ, 711, 228

Wiegelmann, T., & Inhester, B. 2003, Sol. Phys., 214, 287

Wiegelmann, T., & Inhester, B. 2006, Sol. Phys., 236, 25

Wiegelmann, T., Inhester, B., & Feng, L. 2009, Ann. Geophys., 27, 2925

Wiegelmann, T., Lagg, A., Solanki, S. K., Inhester, B., & Woch, J. 2005, A&A, 435, 701

Wiegelmann, T., & Neukirch, T. 2002, Sol. Phys., 208, 163

Withbroe, G. L., & Noyes, R. W. 1977, ARA&A, 15, 363