Superhard B$_2$CO phases derived from carbon allotropes†

Chao Liu, Mingwei Chen, Julong He, Shuangshuang Yu and Tongxiang Liang* a

Two new orthorhombic B$_2$CO structures (oP16- and oC16-B$_2$CO) have been predicted theoretically by manual construction. The calculations of independent elastic constants and phonon dispersion spectra have confirmed the mechanical and dynamical stabilities of oP16- and oC16-B$_2$CO at zero pressure. Their formation enthalpies are both negative and lower than several B$_2$C$_x$O ($X = 1, 2, 3, 5$) phases, suggesting they are thermodynamically stable. Based on first-principles calculations, oP16- and oC16-B$_2$CO are both superhard materials with indirect band gaps. With excellent hardness and tunable band gaps, B$_2$CO will attract extensive attention for industrial applications and scientific research.

1. Introduction

Since B–C–O system compounds have been synthesized with compositions B$_x$C$_{1+y}$O$_{3-y}$ to B$_4$C$_{1.28}$O$_{0.31}$ (ref. 1 and 2) and B(C, O)$_{0.155}$ (ref. 3) experimentally, great attention has been attracted during their research, has numerous allotropes with abundant properties. Considering that B can combine O/C with strong covalent bonds in solid matter as B–O/C covalent bonds.† Li et al. studied B$_2$CO compounds, which are considered as the simplest ternary B–C–O compounds and are isoelectronic with diamond, and then proposed two new structures, P4 (tP4-B$_2$CO) and tI16 (tI16-B$_2$CO), as superhard materials. In Li’s opinion, B$_2$CO tends to be stable in the form of tetragonal structures with strong sp3 covalent B–C and B–O bonds. Inspired by Li’s report, B–C–O system compounds have attracted considerable attention in recent years. Zhang et al. studied B$_2$C$_x$O compounds and predicted three superhard B$_2$C$_x$O ($X \geq 2$) phases: I$_4$/amd-B$_2$C$_2$O, I$_4$mm2-B$_2$C$_4$O and P4m2-B$_2$C$_2$O. During their research, a reasonable relation between the carbon content and mechanical behavior of B$_2$C$_x$O was established and it was suggested that elastic moduli and hardness will benefit from the high carbon content. In 2016, Wang et al. explored the B–C–O system in a pressure range of 0–50 GPa, and proposed a new superhard phase, B$_4$CO$_n$, which is metastable under ambient conditions, but thermodynamically stable at high pressures above 23 GPa. However all superhard B–C–O phases belong to the tetragonal crystal system.† ‡ † Our previous work reveals that there exist some other superhard B–C–O phases with non-tetragonal crystal system, as oP8-B$_2$CO.‡ Actually, 2-dimensional B–C–O materials have also been studied and proposed as a promising 2-dimensional electronic device materials with tunable band gaps and high carrier mobility.§

Carbon, which is widely used in industrial applications and scientific research, has numerous allotropes with abundant properties. Considering that B can combine O/C with strong covalent bonds in solid matter as B–O/C covalent bonds.§ ‡ † Inspired by that tP4- and tI16-B$_2$C$_2$O are both diamond-like structures, oP8-B$_2$C$_2$O is a lonsdaleite-like structure, even the B$_2$C$_x$O ($X \geq 2$) phases are also diamond-like structures and can be derived from different tP4-B$_2$CO supercells with partial B and O replacing by C. Hence, we are curious about whether the fabricated B–C–O compounds with replacement of partial C atoms by B and O atoms in carbon allotropes are stable and what properties do they possess.

In this paper, we carried out the work with the simplest ternary B–C–O compounds B$_2$CO as a typical example. Numerous new phases of B$_2$CO have been constructed manually. Undergo rigorous structural stability analysis including mechanical and dynamical stabilities, two orthorhombic phases were discovered. The formation enthalpies were calculated to demonstrate their thermodynamic stabilities. Based on density function theory (DFT), the mechanical and electronic properties of newly discovered phases have been systematically studied.

2. Computational methods and details

Although evolutionary simulation methods like CALYPSO16–18 and USPEX19–21 have been played a significant role in successfully predicting superhard materials4–7,23,24 all potential crystal structures studied here were constructed manually. Here we conceived and constructed new structures following the steps below: (a) extensively selected carbon allotropes with strong sp3
C–C covalent bonds; (b) if the original structure contained 4n (n represents integer) atoms, skip step (b), otherwise constructed supercell to make sure the supercell contains 4n atoms; (c) broken symmetry and replaced a quarter of C atoms by O atoms, and a half of C atoms by B atoms. C and O atoms are separated by B atoms; (d) found and imposed symmetry.

The underlying geometry optimizations were performed in CASTEP code using DFT. The exchange-correlation functional was adopted CA-PZ form of the local density approximation. The another typically functional PBE of generalized gradient approximation was performed. To compare two different algorithms, the calculated results were listed in the ESL† To ensure the convergence accuracy less than 1 meV, the norm conserving pseudopotential was adopted at a plane wave cutoff kinetic energy of 960 eV and Monkhorst–Pack K points were generated by utilizing $2\pi \times 0.04 \text{ Å}^{-1}$ as K-points separation. During the geometry optimizations via BFGS method, iterations were continued until energy change per atom was less than $5 \times 10^{-6} \text{ eV}$; force tensor on atoms was reduced to 0.01 eV Å$^{-1}$; displacement on atom didn’t exceed $5 \times 10^{-4} \text{ Å}$ and stress no more than 0.02 GPa. The phonon calculation was implemented in CASTEP via the linear response method and the elastic constants were calculated by employing the efficient stress–strain method with 9 distorted structures generated for each strain pattern and maximum distortion 0.003. The conventional cells were adopted within the entire research, and the symmetry points for the Brillouin zone are $G(0, 0, 0); Z(0, 0.5, 0); T(−0.5, 0, 0.5); Y(−0.5, 0, 0); S(−0.5, 0.5, 0); X(0, 0.5, 0); and R(−0.5, 0.5, 0).

3. Results and discussion

Two newly discovered B$_2$CO structures have been proposed and their crystal structures schematic at zero pressure are shown in Fig. 1. Both of them are orthorhombic system and have 16 atoms per conventional cell. The first, denoted as oP16-B$_2$CO, is a primitive centered structure with space group Pbam, and another, denoted as oC16-B$_2$CO, is a C-centered (0.5, 0.5, 0) structure with space group Cmmm. All coordination numbers of the atoms in oP16 and oC16 phases are 4, and there are only sp3 hybridization B–C/O covalent bonds in oP16-, and oC16-B$_2$CO.

As depicted in Fig. 1a, oP16-B$_2$CO has a crystal structure similar to Cco-C8 (when B and O are replaced by C, oP16-B$_2$CO change its symmetry to Cmmm and form Cco-C8), and the structure is symmetric about the plane c = 0.5. Different with Cco-C8, oP16-B$_2$CO has no bonds rigid parallel to c axis. oC16-B$_2$CO, displayed in Fig. 1b, has more higher symmetry than oP16-B$_2$CO. The structure is symmetric about (0.5, 0.5, 0.5), and constructed from Bct-C4. In the ab plane, oC16-B$_2$CO can be viewed as the structural units (Fig. 1b, remarked by red line) connected by B–C bonds with 1.596 Å. Also, all the structural units can be viewed as the middle one slipping along the directions marked by black lines at a given distance 4.443 Å. Once B and O atoms in the structural units are replaced by C atoms, Bct-C4 appeared. In Bct-C4, four neighbour C atoms in the plane c = 0/0.5 formed a square. However, in oC16-B$_2$CO, the neighbour 2B and 2O atoms in the plane c = 0.5 formed a rhombus with length 1.631 Å and angles (87.17°, 92.83°); the neighbour 2B and 2C atoms in the plane c = 0 formed a rhombus with length 1.596 Å and angles (78.612°, 101.388°).

![Fig. 1](image-url) Structure graphs for (a) oP16-, and (b) oC16-B$_2$CO. The sticks in colour dark yellow and light orange represent the bonds B–O and B–C, respectively.

There is no doubt that from Table 2 the C$_{18}$s satisfy the criteria above, indicating oP16-, and oC16-B$_2$CO are mechanical stable. And no negative frequency was found, which indicates the dynamical stability of these two new B$_2$CO structures. For further experimental synthesis, there is necessity to explore the thermodynamic stability of oP16-, and oC16-B$_2$CO. The formation enthalpies normalized on a per-atom basis of known B$_2$C$_x$O ($X = 1, 2, 3, 5$) compounds. The formation enthalpy (ΔH_f), which with respect to the separate phases, is quantified by eqn (2):

$$\Delta H_f = H_{B,C,O} - 2H_B - xH_C - \frac{1}{2}H_O;$$

where diamond C, α-B35 and α-O$_2$ (ref. 36) are selected as the separate phases. For oP16-, and oC16-B$_2$CO, both have significant negative enthalpies, demonstrating that they are difficult to dissociate into elemental α-B, α-O$_2$, and diamond C at zero pressure. Compared to oP8-B$_2$CO, formation enthalpy of oP16-B$_2$CO has 14 meV (ΔH_f) per atom advantage at zero pressure. Even oP16-B$_2$CO has nearly identical formation enthalpy with oP4-B$_2$CO, only 3 meV disparity per atom. Although oC16-B$_2$CO has the highest enthalpy among all five B$_2$CO structures, its formation enthalpy is only 68 meV per atom higher than that of
The third-order Birth–Murnaghan equation of state (EOS) for the pressure (P)–volume (V) relation of oP16–, and oC16–B$_2$CO is adopted to fit the 17 pair P–V data for these two new B$_2$CO compounds, as presented in Fig. 4.

$$P(V) = \frac{3}{2} B_0 \left[\left(\frac{V}{V_0} \right)^{-3} - \left(\frac{V}{V_0} \right)^{-5} \right] \left(1 + \frac{3}{4} (B'_0 - 4) \right) \times \left[\left(\frac{V}{V_0} \right)^{-3} - 1 \right]$$

(3)

The equilibrium volume (V_0), bulk modulus (B_0) and its first order pressure derivative (B'_0) are obtained from eqn (4) and displayed in insert table in Fig. 4.

When loading with hydrostatic pressure to 80 GPa, both oP16–, and oC16–B$_2$CO sustain the volume shrinkage without mutation and share the similar shrinkage rates, 17.15% for oP16–B$_2$CO and 17.60% for oC16–B$_2$CO.

The mechanical property parameters including bulk modulus (B), shear modulus (G), Young modulus (E), and Poisson ratio (μ) of oP16–, and oC16–B$_2$CO are listed in Table 2. B and G can be acquired by independent elastic parameter, then E and μ can be obtained by B and G. Generally speaking, B represents the ability to resist deformation by loading pressure, G characterizes the ability to resist deformation upon shear stress. Both oP16–, and oC16–B$_2$CO have very large B (~300 GPa) and G (above 240 GPa), indicating the excellent resistance to volume deformation by pressure stress and shear stress.

![Fig. 2](image-url) Phonom dispersion spectra (left panel) and phonon density of states (right panel) of (a) oP16–, and (b) oC16–B$_2$CO at zero pressure.
Elastic anisotropy can give a prediction of the arrangement of the atoms in each direction, the bonding properties, and some chemical characteristics in different directions of materials. An illustrative way of the elastic anisotropy is described by a three-dimensional surface map representation. The curved surface map shows the variation of elastic modulus with crystallographic direction. For orthorhombic crystal, the directional dependence of the Young’s modulus is given by eqn (4)

\[
E_{ij}^{-1} = l_1^4 S_{11} + 2l_1^2 l_2^2 S_{12} + 2l_1^2 l_3^2 S_{13} + l_2^4 S_{22} + 2l_2^2 l_3^2 S_{23} + l_3^4 S_{33} + l_1^2 l_2^2 S_{44} + l_1^2 l_3^2 S_{55} + l_2^2 l_3^2 S_{66},
\]

where \(l_1, l_2 \) and \(l_3 \) are the direction cosines. \(S_{ij} \) represents the elastic compliance constants, the inverse of \(C_{ij} \).

Actually, Young’s modulus of the three main axis directions satisfy the following relations: \(E_{[100]}=1/S_{11}, \ E_{[010]}=1/S_{22}, \ E_{[001]}=1/S_{33}. \) For oP16-B2CO, the \(b \) and \(c \) axes have the almost consistent Young’s modulus (736 GPa and 738 GPa, respectively), which higher that of \(a \) axis with 100 GPa. For oC16-B2CO, Young’s modulus for three main axes \(a, b, \) and \(c \) are 495 GPa, 550 GPa and 750 GPa, the gradually increasing values also illustrated the obvious anisotropy.
For an isotropic crystal, the 3D curved surface would exhibit a spherical shape. The deviation degree from the spherical surface indicates the extent of anisotropy (Fig. 5).

As material’s fundamental mechanical property, hardness is extensively used and can be theoretically predicted. Here, we calculated the Vickers hardness (H_V) of oP16-, and oC16-B$_2$CO by adopting bond resistance model.40,41

$$H_V = 350N_c^{2/3}e^{-1.1915/d}d^{-2.5}$$

N_c is the electron density; f_i is Phillips iconicity of B–C/O bonds, which can be calculated from eqn (6). d is the bond length. Here we chose 0.75 as P_c value.

$$f_i = [1 - \exp(-|P_c - P|/P)]^{0.735}$$

The calculated hardness of oP16- and oC16-B$_2$CO displayed in Table 3 are both beyond 40 GPa, indicating that the two newly explored B$_2$CO are superhard materials. The B–C–O system compounds may have potential industrial applications as superhard materials.

A popular approach$^{42-45}$ to understand the structural deformation and strength has been extensively applied to solid material under specified strains.46 It is the material’s ideal strength which is defined as the stress at which a perfect crystal changes mechanically unstable, that sets an upper limit for material strength. The atomistic mechanism for structural deformation and failure models can be thoroughly understanding with the studies of strain–stress relations and bond-breaking processes.

Fig. 6 presents the calculated strain–stress relations for oP16-, and oC16-B$_2$CO under tensile strains in three principal symmetry crystallographic directions ([100], [010], and [001]). It can be seen that both oP16-, and oC16-B$_2$CO have large stresses with strain exist in the [001] than [010] and [100] directions. Along the [001] direction, oP16-B$_2$CO has a peak tensile stresses 69.1 GPa with a strain of 0.225, and 77.6 GPa with strain 0.275 for oC16-B$_2$CO. The tensile strengths of oC16-B$_2$CO along the [100] and [010] both reach a peak tensile stresses at strain 0.15 with 54.5 GPa and 52.1 GPa, respectively. oP16-B$_2$CO has a peak tensile stress 20.1 GPa with a strain of 0.045. As for the [010] direction of oP16-B$_2$CO, there are two observable peak 21.3 GPa, corresponding these bonds along b axis as B–O bonds breaking.
with a strain of 0.04 and B–C bonds breaking with a strain of 0.27 respectively. The calculated strain–stress relations reveal anisotropy of o_{P16}- and o_{C16}-B$_2$CO.

The band structures of these superhard B$_2$CO phases along the symmetry points for the Brillouin zone at zero pressure are calculated and shown in Fig. 7. Both o_{P16}- and o_{C16}-B$_2$CO are semiconductors with indirect band gaps. For o_{P16}-B$_2$CO, the valence band (VB) maximum and conduction band (CB) minimum are located at G point and U point, respectively, and they are separated by a forbidden band of 3.159 eV. For o_{C16}-B$_2$CO, the VB maximum and CB minimum are located at G point and Z point, respectively, and separated by a forbidden band of 3.412 eV. For o_{P16}- and o_{C16}-B$_2$CO, the calculated band gaps are 3.159 eV and 3.412 eV, respectively. With the different crystal systems and their atomic stack, these superhard B$_2$CO (o_{P4}- o_{P16}-, and o_{P8}-B$_2$CO within) with the tuneable band gaps from 1.7 eV to 3.5 eV may have potential application in semiconductor industry in future (Fig. 7).

The values of band gaps as a function of pressure in ranges of 0–80 GPa are calculated and plotted in Fig. 8. The band gap of o_{P16}-, and o_{C16}-B$_2$CO increases with pressure simultaneously within the whole studied pressure range. For o_{C16}-B$_2$CO, the gap’s increase degree is 0.409 eV/11.99%, higher than that of o_{P16}-B$_2$CO (0.213 eV/6.74%).

With the pressure increasing, bonding states and antibonding states appear gradually emerges, result in the energy of VB decline and the energy of CB increase, the VB expand to the lower energy region and CB to the higher energy region, the gap increases. The influence on electronic band can be analyzed based on partial specific band morphology under different pressures. Thus the bands with the minimum CB and maximum VB at 0 GPa are selected, and their morphology under different pressure are studied, as Fig. 9. We denoted the difference between maximum and minimum of the selected CB as ΔC, and of VB as ΔV.

For o_{P16}-B$_2$CO with pressure in 0–80 GPa, the minimum energy of CB increase, lead to the gap increases uninterruptedly. The ΔV and ΔC both increase with pressure, indicates the energy range of the selected bands are broaden. It’s not just an exception, thus as a whole, the energy range of VB and CB are both broader. The energy of VB is lower, while for CB is higher. The pressure’s influence can also be detected based on entire density of states (DOS). As displayed in Fig. 10a, for o_{P16}-B$_2$CO,
during the pressure increasing, the energy category of VB (CB) continuously enlarge to the low (high) energy region; the position of the highest peak of VB (CB) has been moved to lower (higher) energy region and the peak height has been reduced.

As for oC16-B2CO, the ΔC increases with pressure, indicates the energy range of the selected bands are broaden, while the ΔV undergoes a process with increase–decrease. As displayed in Fig. 10b, for oC16-B2CO, the energy category of VB (CB) continuously enlarge to the low (high) energy region; the position of the highest peak of VB (CB) has been moved to lower (higher) energy region and the peak height has been reduced.

4. Conclusions

By manual building B2CO phases from widely known allotropes of carbon, we proposed two new B2CO (oP16-, and oC16-B2CO), derived from Cco-C8 and Bct-C4, respectively. Based on the first-principles study, the elastic constants and phonon dispersion spectra declare that oP16-, and oC16-B2CO are mechanically and dynamically stable. Their formation enthalpies, respected to the separate phases, are both negative and lower than that of B2C (X = 1, 2, 3, 5), suggesting thermodynamically stable. oP16-B2CO even has the formation enthalpy which is closed with tP4-B2CO and lower than oP8-B2CO. Based on bond resistance model for hardness prediction, oP16-, and oC16-B2CO are both superhard with high hardness values of 47.817 GPa and 46.222 GPa, respectively. Electronic property calculation illustrates that the two newly discovered phases are all semiconductors with indirect band gaps of 3.159 eV and 3.412 eV, respectively. The band gap value as a function of pressure in ranges of 0–100 GPa indicate that pressure has an obvious influence on the band gaps of oP16-, and oC16-B2CO. The excellent mechanical and electronic properties indicate the attractive prospect for B–C–O compounds in industrial application and scientific research.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Science Foundation of China (Grant No. 91326203 and 51421091) and Jiangxi University of Science and Technology Scientific Research Starting Foundation (jxjbs17053).

References

1 L. A. J. Garvie, H. Hubert, W. T. Petuskey, P. F. McMillan and P. R. Buseck, J. Solid State Chem., 1997, 133, 365–371.
2 H. Hubert, L. A. Garvie, B. Devouard and P. F. McMillan, MRS Proceedings, 1997, 499, 315–320.
3 N. Bolotina, T. Dyuzheva and N. Bendeliani, Crystallogr. Rep., 2001, 46, 734–740.
4 Y. Li, Q. Li and Y. Ma, Europhys. Lett., 2011, 95, 66006.
5 M. Zhang, H. Yan, B. Zheng and Q. Wei, Sci. Rep., 2015, 5, 15481.
6 S. Wang, A. R. Oganov, G. Qian, Q. Zhu, H. Dong, X. Dong and M. M. D. Esfahani, Phys. Chem. Chem. Phys., 2016, 18, 1859–1863.
7 C. Liu, Z. Zhao, K. Luo, M. Hu, M. Ma and J. He, Diamond Relat. Mater., 2016, 73, 87–92.
8 S. Zhou and J. Zhao, Nanoscale, 2016, 8, 8910–8918.
9 T. Endo, T. Sato and M. Shimada, J. Mater. Sci. Lett., 1987, 6, 683–685.
10 M. Kobayashi, I. Higashi, C. Brodhag and F. Thevenot, J. Mater. Sci., 1993, 28, 2129–2134.
11 H. Hubert, B. Devouard, L. A. Garvie, M. O’Keeffe, P. R. Buseck, W. T. Petuskey and P. F. McMillan, Nature, 1998, 391, 376–378.
12 H. Dong, A. R. Oganov, Q. Wang, S. N. Wang, Z. Wang, J. Zhang, M. M. Esfahani, X. F. Zhou, F. Wu and Q. Zhu, Sci. Rep., 2016, 6, 31288.
13 V. L. Solozhenko, O. O. Kurakevych, D. Andrault, Y. Le Godec and M. Mezouar, Phys. Rev. Lett., 2009, 102, 015506.
14 P. Zinin, L. Ming, H. Ishii, R. Jia, T. Acosta and E. Hellebrand, J. Appl. Phys., 2012, 111, 114905.
15 M. Chen, J. W. McCAuley and K. J. Hemker, Science, 2003, 299, 1563–1566.
16 Y. C. Wang, J. A. Lv, L. Zhu and Y. M. Ma, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, 82, 094116.
17 Y. C. Wang, J. Lv, L. Zhu and Y. M. Ma, Comput. Phys. Commun., 2012, 183, 2063–2070.
18 H. Wang, Y. Wang, J. Lv, Q. Li, L. Zhang and Y. Ma, Comput. Mater. Sci., 2016, 112, 406–415.
19 A. R. Oganov and C. W. Glass, J. Chem. Phys., 2006, 124, 244704.
20 A. R. Oganov, A. O. Lyakhov and M. Valle, Acc. Chem. Res., 2011, 44, 227–237.
21 A. O. Lyakhov, A. R. Oganov, H. T. Stokes and Q. Zhu, Comput. Phys. Commun., 2013, 184, 1172–1182.
22 X. Zhang, Y. Wang, J. Lv, C. Zhu, Q. Li, M. Zhang, Q. Li and Y. Ma, J. Chem. Phys., 2013, 138, 114101.
23 Q. Yan, B. Wang, Y. X. Wang, J. Yang and G. Yang, J. Chem. Phys., 2014, 140, 224704.
24 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson and M. C. Payne, Z. Kristallogr., 2005, 220, 567–570.
25 J. P. Perdew and A. Zunger, Phys. Rev. B: Condens. Matter Mater. Phys., 1981, 23, 5048–5079.
26 D. M. Ceperley and B. Alder, Phys. Rev. Lett., 1980, 45, 566–569.
27 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865–3868.
28 H. J. Monkhorst and J. D. Pack, Phys. Rev. B: Condens. Matter Mater. Phys., 1976, 13, 5188–5192.
29 B. G. Pfrommer, M. Côté, S. G. Louie and M. L. Cohen, J. Comput. Phys., 1997, 131, 233–240.
30 S. Baroni, P. Giannozzi and A. Testa, Phys. Rev. Lett., 1987, 58, 1861–1864.
31 P. Giannozzi, S. De Gironcoli, P. Pavone and S. Baroni, Phys. Rev. B: Condens. Matter Mater. Phys., 1991, 43, 7231–7242.
32 Z. Zhao, B. Xu, X. F. Zhou, L. M. Wang, B. Wen, J. He, Z. Liu, H. T. Wang and Y. Tian, Phys. Rev. Lett., 2011, 107, 215502.
33 X. F. Zhou, G. R. Qian, X. A. Dong, L. X. Zhang, Y. J. Tian and H. T. Wang, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, 82, 134126.
34 F. Mouhat and F.-X. Coudert, Phys. Rev. B: Condens. Matter Mater. Phys., 2014, 90, 224104.
35 B. Decker and J. Kasper, Acta Crystallogr., 1959, 12, 503–506.
36 Y. A. Freiman and H.-J. Jodl, Phys. Rep., 2004, 401, 1–228.
37 Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu and J. Meng, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, 76, 054115.
38 H. B. Ozisik, K. Colakoglu, E. Deligöz and H. Ozisik, J. Mol. Model., 2012, 18, 3101–3112.
39 J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, 1985.
40 F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang and Y. Tian, Phys. Rev. Lett., 2003, 91, 015502.
41 Y. J. Tian, B. Xu and Z. S. Zhao, Int. J. Refract. Met. Hard Mater., 2012, 33, 93–106.
42 D. Roundy and C. R. Krenn, Phys. Rev. Lett., 1999, 82, 2713–2716.
43 D. Roundy, C. R. Krenn, M. L. Cohen and J. W. Morris, Philos. Mag. A, 2001, 81, 1725–1747.
44 B. B. Karki, G. J. Ackland and J. Crain, J. Phys.: Condens. Matter, 1997, 9, 8579–8589.
45 C. R. Krenn, D. Roundy, J. W. Morris Jr and M. L. Cohen, Mater. Sci. Eng., A, 2001, 319–321, 111–114.
46 Y. Zhang, H. Sun and C. Chen, Phys. Rev. Lett., 2005, 94, 145505.