Incorporation of Systematic Uncertainties in the Training of Multivariate Methods

Thomas Alef & Eckhard von Törne, University of Bonn

ACAT 2019
March 13th, 2019
Motivation and Goal

- Modern analysis often limited by systematic uncertainties
 ⇒ make multivariate methods robust against systematics
- **Systematic aware Boosted Decision Trees** (saBDT) developed during Masterthesis
 - Based on AdaBoost/Gini Index BDTs from TMVA
 - Tested on modified public data from Kaggle Higgs Challenge
- Compared with **Adversarial Neural Networks** (AdvNN)
- **AdvNN** based on KERAS
Public Data from Kaggle Higgs Challenge

- Data from Kaggle Higgs Challenge $H \rightarrow \tau \tau$
- 30 variables
- Training: 120,000 events (Kaggle challenge public data)
- Evaluation: 550,000 events (Kaggle challenge private data)
- For testing influence of systematics a systematic variation was added
Implementation of Systematic Variation

- Jet Energy Scale chosen as example systematic - standard ATLAS systematic
- Strength of systematic variation: 1% (ATLAS standard value 1-4%)
- Scale jet energies up by 1%
 → recalculate all variables based on jet energies with new values
 → new systematic varied *Up* dataset
- Repeat with scaling down by 1%
- ⇒ 3 Datasets: *Nominal*, *Up*, *Down*
Evaluation Metric: AAMS

- Kaggle Challenge used Approximate Median Significance (AMS)
- Adding systematic uncertainty: Advanced Approximate Median Significance (AAMS) (see hal-01208587)
- Cut and Count approach: events with higher score than x are classified signal

$$AAMS = \sqrt{2 \left((s + b) \ln \frac{s + b}{b_0} - s - b + b_0 \right) + \frac{(b - b_0)^2}{\sigma_b^2}}$$

$$b_0 = \frac{1}{2} \left(b - \sigma_b^2 + \sqrt{(b - \sigma_b^2)^2 + 4 (s + b) \sigma_b^2} \right)$$

- s signal events, b background events, σ_b background difference on the different data sets
- Unstable for small b \rightarrow add a regularization term of 10 to b
- Maximum of σ_b for all possible cut values: σ_b^{max}
 \Rightarrow if small, method behaves similar on varied datasets
How to make BDTs aware of Systematics

- BDT uses all three datasets during training
- If performance similar on all three datasets - invariant under systematic variations
- Similar behavior checked for:
 - Every single node split
 - Whole tree (Boostweight)
- AdaBoost BDT with Gini Index on ROOT 6.10/06
- NTrees=1000, MinNodeSize=1%, AdaBoost=0.2

Source: Y. Shin
So far: scan through all variables and possible cuts, maximize:

\[\text{Gain} = G_{\text{Parent}} - G_{\text{Left}} - G_{\text{Right}} \]

with Gini Index \(G = p \cdot (1 - p) \) (maximal for \(p=0.5 \)) and \(p = \frac{N_{\text{Signal}}}{N_{\text{All}}} \)

Basically: find the cut which improves the purity of the nodes the most
saBDT: Systematic Aware Node Split

- Modify *Gain* to penalize differing behavior on different data sets
- Modification based on purity to stay consistent
- Subtract a term accounting for purity differences on different data sets:

 $$\text{NewGain} = \text{Gain} - \lambda_{\text{Cut}} \cdot \frac{1}{8} \cdot \sqrt{\sum_{\text{Left,Right}} (p_{\text{Reg}} - p_{\text{Up,Down}})^2}$$

- λ_{Cut} as hyperparameter to control strength of invariance
- Penalty term can be between 0 and 0.25
saBDT: λ_{Cut} Hyperparameter Scan Results

- Stable AAMS with possible increase for low λ_{Cut}
 \Rightarrow Algorithm works!
- σ_b^{max} decreases - performance similar on different datasets
Every decision tree is weighted according to its error rate:

\[
err = \frac{N_{\text{misidentified}}}{N_{\text{All}}} \Rightarrow TW = \log \frac{1 + err}{1 - err}
\]

- \(TW\) is the boost weight, high when tree performing well
- Multiply factor accounting for differences on systematic varied samples:

\[
NewTW = TW \cdot \exp \left(-\lambda_{\text{Boost}} \cdot \frac{\sum U_{\text{Up}, Down} (err_{\text{Reg}} - err_{U_{\text{Up}, Down}})^2}{2} \right)
\]

- \(\lambda_{\text{Boost}}\) as hyperparameter
- New factor pulls down weight of trees affected by systematic variation
saBDT: λ_{Boost} Hyperparameter Scan Results

- AAMS (performance) drops for high λ_{Boost}
- Influence of systematics decreases as well!
- Stable region with possible increase for low values
saBDTs: 2-Dim Hyperparameter Scan

- Scanning through λ_{Cut} and λ_{Boost} reveals increasing AAMS
- Confirmed by Bootstrap: 82.1% chance it is not a statistical fluctuation
saBDT: Different Strength of Systematic Variation

- Different strength in systematic variation of data is applied

Systematic Variation	BDT (AAMS)	saBDT (AAMS)	% no stat. Fluc.
20%	1.07±0.05	1.52±0.06	98.4%
10%	1.38±0.06	1.94±0.07	99.6%
3%	2.40±0.09	2.64±0.09	92.3%
1%	3.13±0.11	3.22±0.10	82.1%

- 3% and 1% ATLAS standard values
- saBDTs improves result especially well with strong systematic variation
- Result dominated by systematic uncertainty in this region \rightarrow decreasing systematic uncertainty more valuable
Adversarial Neural Networks

- As comparison AdvNN (see Louppe, Kagan, Cranmer: arXiv:1611.01046)
- Multiple talks during the next days
- *Classifier* able to distinguish signal and background
- *Adversary* penalizing Classifier if it is sensitive to systematic variations
- γ as strength parameter for penalty
saBDTs vs AdvNNs

- Comparison for 1% systematic variation
- saBDT performs slightly better!
- Maximal $AAMS_{saBDT} = 3.23 \pm 0.10$, $AAMS_{AdvNN} = 3.08 \pm 0.11$
- AdvNN not fully optimized
Conclusion and Outlook

Conclusion

- saBDTs proved capable of reducing systematic uncertainty
- Gain in AAMS was achieved
- AdvNNs were outperformed
- AdvNNs less optimized than saBDTs - difference originating from this?
- Invariance proved to be most valuable for high systematic effects

Outlook

- saBDTs tested with different systematics
- New metrics to test the performance
- Multiple systematics at once?
Backup
saBDT: Node Split BDT Distribution

$\lambda_{\text{Cut}} = 0$

$\lambda_{\text{Cut}} = 0.001$

$\lambda_{\text{Cut}} = 0.02$
Distributions behave similar to λ_{Cut}

Getting shifted to the left
saBDT: AAMS

Significance

Dataset
- Standard
- $\lambda_{\text{Cut}} = 0.001$, $\lambda_{\text{Boost}} = 2$
Adversarial Neural Networks

Used AvdNN

- **Classifier**:
 - 30 input nodes, one for every variable
 - 3 dense hidden layers, regularized by $l_1 = 0.0001$ and $l_2 = 0.001$
 - 120 nodes each
 - Activation function is *relu* for the hidden layers
 - 1 output note, with *sigmoid* as activation function
 - Batch size is 64

- **Adversary**:
 - 1 input node
 - 3 dense hidden layers
 - The first two hidden layers have 30 nodes each and the last with 12
 - Activation function is *relu* for the hidden layers
 - 3 output nodes, with *softmax* as activation function
Variables

Variable	Comment
DER_mass_MMC	effect but hard to calculate – neglected
DER_mass_transverse_met_lep	If mEt is affected here as well
DER_mass_vis	not affected
DER_pt_h	If mEt is affected here as well
DER_deltaeta_jet_jet	not affected
DER_mass_jet_jet	directly affected
DER_prodelta_jet_jet	not affected
DER_deltar_tau_lep	not affected
DER_pt_tot	directly affected
DER_sum_pt	directly affected
DER_pt_ratio_lep_tau	not affected
DER_met_phi_centrality	If mEt is affected here as well
DER_lep_eta_centrality	not affected
PRI_tau_pt	not affected
PRI_tau_eta	not affected
PRI_tau_phi	not affected
PRI_lep_pt	not affected
PRI_lep_eta	not affected
PRI_lep_phi	not affected
PRI_met	affected similar to jet energy
PRI_met_phi	not affected
PRI_met_sumet	directly affected
PRI_jet_num	not affected
PRI_jet_leading_pt	directly affected
PRI_jet_leading_eta	not affected
PRI_jet_leading_phi	not affected
PRI_jet_subleading_pt	directly affected
PRI_jet_subleading_eta	not affected
PRI_lep_all_pt	directly affected
saBDT: systematic aware node split results

- *AAMS* (performance) drops initially with λ_{Cut}
- Influence of systematics decreases as well!
- Breakdown around $\lambda_{\text{Cut}} = 0.01$

![Graph showing AAMS and σ_B^{max} vs λ_{Cut}.]
saBDT: λ_{Boost} Hyperparameter Scan Results

- **AAMS** (performance) drops for high λ_{Boost}
- Influence of systematics decreases as well!
- Stable region with possible increase for low values
Overview of AMS/AAMS Results

Method	AMS	AAMS
Kaggle Winner	3.81	NA
Kaggle TMVA	3.50	NA
BDT	3.44	3.13
saBDT	3.35	3.22
NN	3.27	2.88
AdvNN	3.20	3.08

- Including systematic aware training leads to loss in AMS and gain in AAMS
- Tested methods not as fully optimized as during challenge
Aware Boosted Decision Trees: Bootstrap

- Difference in performance of standard BDT and tuned saBDT tested on bootstrapped samples
- Bootstrap creates new samples with different statistics out of the original sample
- saBDT performs indeed better, but not significant
- $\Delta AAMS = 0.138 \pm 0.150$