Diamond Alpha Hilbert-Type Inequalities on Time Scales

Ahmed A. El-Deeb 1,*, Dumitru Baleanu 2,3,*, Sameh S. Askar 4,*, Clemente Cesarano 5,*, and Ahmed Abdeldaim 6

1 Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
2 Institute of Space Science, 077125 Magurele-Bucharest, Romania; dumitru@cankaya.edu.tr
3 Department of Mathematics, Cankaya University, Ankara 06530, Turkey
4 Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; saskar@ksu.edu.sa
5 Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186 Rome, Italy
6 Department of Mathematics and Computer Science, Faculty of Science, Port Said University, Port Said 42526, Egypt; ahassen@su.edu.sa

* Correspondence: ahmedeldeeb@azhar.edu.eg (A.A.E.-D.); c.cesarano@uninettunouniversity.net (C.C.)

Abstract: In this article, we will prove some new diamond alpha Hilbert-type dynamic inequalities on time scales which are defined as a linear combination of the nabla and delta integrals. These inequalities extend some known dynamic inequalities on time scales, and unify and extend some continuous inequalities and their corresponding discrete analogues. Our results will be proven by using some algebraic inequalities, diamond alpha Hölder inequality, and diamond alpha Jensen’s inequality on time scales.

Keywords: Hilbert’s inequality; dynamic inequality; time scale; diamond-a calculus

1. Introduction

Over the past decade, a great number of dynamic Hilbert-type inequalities on time scales has been established by many researchers who were motivated by various applications; see the papers [1–4].

For example, Pachpatte [5] proved that if \(\{a_n\} \), \(\{b_n\} \) are two non-negative sequences of real numbers defined for \(m = 1, \ldots, k \) and \(n = 1, \ldots, r \) with \(a_0 = b_0 = 0 \), and \(\{p_m\}, \{q_n\} \), are two positive sequences of real numbers defined for \(m = 1, \ldots, k \) and \(n = 1, \ldots, r \) where \(k, r \) are natural numbers. Further \(P_m = \sum_{s=1}^{m} p_s \) and \(Q_n = \sum_{t=1}^{n} q_t \), and \(\Phi \) and \(\Psi \) are two real-valued non-negative, convex, and submultiplicative functions defined on \([0, \infty) \), then

\[
\sum_{m=1}^{k} \sum_{n=1}^{r} \frac{\Phi(a_m)\Psi(b_n)}{m+n} \leq M(k, r) \left(\sum_{m=1}^{k} (k-m+1) \left(\frac{\nabla q_m}{q_m} \right)^2 \right)^{\frac{1}{2}} \times \left(\sum_{n=1}^{r} (r-n+1) \left(\frac{\nabla q_n}{q_n} \right)^2 \right)^{\frac{1}{2}},
\]

(1)

where

\[
M(k, r) = \frac{1}{2} \left(\sum_{m=1}^{k} \left(\frac{\Phi(P_m)}{p_m} \right)^2 \right)^{\frac{1}{2}} \left(\sum_{n=1}^{r} \left(\frac{\Psi(Q_n)}{q_n} \right)^2 \right)^{\frac{1}{2}}.
\]

Additionally, in the same paper [5], Pachpatte proved that if \(\ell \in C^1([0, \theta], \mathbb{R}^+) \), \(g \in C^1([0, \xi], \mathbb{R}^+) \) with \(\ell(0) = g(0) = 0 \) and \(p(\xi), q(\xi) \) are two positive functions defined
for $\xi \in [0, \vartheta)$ and $\tau \in [0, \xi)$, $P(\xi) = \int_0^\xi p(\xi)d\xi$ and $Q(\xi) = \int_0^\xi p(\tau)d\tau$ for $s \in [0, \vartheta)$ and $t \in [0, \xi)$ where ϑ, ξ are positive real numbers; thus

$$f_0^\vartheta \int_0^\xi \frac{\Phi(F(s))\Psi(g(3)))}{s + 3}dsd3 \leq L(\vartheta, \xi) \left(\int_0^\vartheta (\vartheta - s) \left(p(s)\Phi(f'(s))^{\frac{1}{1}} \right)^2 ds \right)^{\frac{1}{2}}$$

$$\times \left(\int_0^\xi (\xi - 3) \left(q(3)\Psi(g(3)))^{\frac{1}{1}} \right)^2 d3 \right)^{\frac{1}{2}},$$

where

$$L(\vartheta, \xi) = \frac{1}{2} \left(\int_0^\vartheta (\Phi(P(s)))^{\frac{1}{2}} ds \right)^{\frac{1}{2}} \left(\int_0^\xi (\Psi(Q(3)))^{\frac{1}{2}} d3 \right)^{\frac{1}{2}}.$$

Under the same conditions as seen above, with few modifications, Handley et al. [6] extended (1) and (2) as follows:

$$\sum_{m_1=1}^{k_1} \cdots \sum_{m_n=1}^{k_n} \prod_{\ell=1}^{n} \frac{\Phi(\ell) a_{\ell} m_\ell)}{(\sum_{\ell=1}^{n} \gamma_\ell m_\ell)^\gamma} \leq M(k_1, \ldots, k_n)^\gamma \prod_{\ell=1}^{n} \left(\frac{\Phi(\ell) a_{\ell} m_\ell)}{\gamma_\ell m_\ell} \right)^\gamma,$$

and

$$\int_0^{\vartheta_1} \cdots \int_0^{\vartheta_n} \prod_{\ell=1}^{n} \Phi(\ell) (s_\ell) \left(\sum_{\ell=1}^{n} \gamma_\ell s_\ell \right)^\gamma ds_1 \cdots ds_n$$

$$\leq L(\vartheta_1, \ldots, \vartheta_n) \prod_{\ell=1}^{n} \left(\int_0^{\vartheta_\ell} (\vartheta_\ell - s_\ell) \left(p_\ell(s_\ell)\Phi(\ell) (F'(s_\ell))^{\frac{1}{1}} \right)^{\frac{1}{1}} ds_\ell \right)^{\gamma_\ell},$$

$$L(\vartheta_1, \ldots, \vartheta_n) = \frac{1}{(\gamma')^\gamma} \prod_{\ell=1}^{n} \left(\int_0^{\vartheta_\ell} (\vartheta_\ell - s_\ell) \left(p_\ell(s_\ell)\Phi(\ell) (F'(s_\ell))^{\frac{1}{1}} \right)^{\gamma_\ell} ds_\ell \right)^{\gamma_\ell'},$$

where $\gamma_\ell \in (0, 1), \gamma_\ell' = 1 - \gamma, \gamma = \sum_{i=1}^{n} \gamma_\ell$, and $\gamma' = n - \gamma$.

In [7], Pachpatte established the following Hilbert-type integral inequalities under the following conditions: If $h \geq 1$, $l \geq 1$, and $f(\xi) \geq 0$, $g(\xi) \geq 0$, for $\xi \in (0, \vartheta)$ and $\tau \in (0, \xi)$, where ϑ and ξ are positive real numbers and define $F(s) = \int_0^s f(\xi)d\xi$ and $G(t) = \int_t^\xi g(\tau)d\tau$, for $s \in (0, \vartheta)$ and $t \in (0, \xi)$, then

$$\int_0^\vartheta \int_0^\xi \frac{f^h(s)G^l(3)}{s + 3}dsd3 \leq \frac{1}{2} h^l (\vartheta \xi) \frac{1}{2} \left(\int_0^\vartheta (\vartheta - s) \left(F^{h-1}(s)F(s) \right)^2 ds \right)^\frac{1}{2}$$

$$\times \left(\int_0^\xi (\xi - 3) \left(G^{l-1}g(3) \right)^2 d3 \right)^\frac{1}{2},$$

$$\left(\int_0^\vartheta (\vartheta - s) \left(F^{h-1}(s)F(s) \right)^2 ds \right)^\frac{1}{2}$$

$$\times \left(\int_0^\xi (\xi - 3) \left(G^{l-1}g(3) \right)^2 d3 \right)^\frac{1}{2},$$
and
\[
\int_0^\theta \int_0^\varsigma \frac{\Phi(F(s))\Psi(G(\varsigma))}{s+\varsigma} dsd\varsigma \leq L(\theta, \varsigma) \left(\int_0^\theta (\theta - s) \left(p(s)\Phi \left(\frac{f(s)}{p(s)} \right) \right)^2 ds \right)^\frac{1}{2} \times \left(\int_0^\varsigma (\varsigma - \varsigma) \left(q(\varsigma)\Psi \left(\frac{g(\varsigma)}{q(\varsigma)} \right) \right)^2 d\varsigma \right)^\frac{1}{2},
\]
where
\[
L(\theta, \varsigma) = \frac{1}{2} \left(\int_0^\theta \left(\frac{\Phi(P(s))}{P(s)} \right)^2 ds \right)^{\frac{1}{2}} \cdot \frac{1}{2} \left(\int_0^\varsigma \left(\frac{\Psi(Q(\varsigma))}{Q(\varsigma)} \right)^2 d\varsigma \right)^{\frac{1}{2}},
\]
and
\[
\int_0^\theta \int_0^\varsigma \frac{P(s)Q(\varsigma)\Phi(F(s))\Psi(G(\varsigma))}{s+\varsigma} dsd\varsigma \leq \frac{1}{2} \left(s(\varsigma) \right)^{\frac{1}{2}} \left(\int_0^\theta (\theta - s) \left(p(s)\Phi \left(\frac{f(s)}{p(s)} \right) \right)^2 ds \right)^{\frac{1}{2}} \times \left(\int_0^\varsigma (\varsigma - \varsigma) \left(q(\varsigma)\Psi \left(\frac{g(\varsigma)}{q(\varsigma)} \right) \right)^2 d\varsigma \right)^{\frac{1}{2}}.
\]

A time scale \(T \) is an arbitrary, non-empty, closed subset of the set of real numbers \(\mathbb{R} \). Throughout the article, we assume that \(T \) has the topology that it inherits from the standard topology on \(\mathbb{R} \). We define the forward jump operator \(\sigma : T \to T \) for any \(\xi \in T \) by
\[
\sigma(\xi) := \inf \{ s \in T : s > \xi \},
\]
and the backward jump operator \(\rho : T \to T \) for any \(\xi \in T \) by
\[
\rho(\xi) := \sup \{ s \in T : s < \xi \}.
\]

In the preceding two definitions, we set \(\inf \emptyset = \sup T \) (i.e., if \(\xi \) is the maximum of \(T \), then \(\sigma(\xi) = \xi \) and \(\sup \emptyset = \inf T \) (i.e., if \(\xi \) is the minimum of \(T \), then \(\rho(\xi) = \xi \), where \(\emptyset \) denotes the empty set.

A point \(\xi \in T \) with \(\inf T < \xi < \sup T \) is said to be right-scattered if \(\sigma(\xi) > \xi \), right-dense if \(\sigma(\xi) = \xi \), left-scattered if \(\rho(\xi) < \xi \), and left-dense if \(\rho(\xi) = \xi \). Points that are simultaneously right-scattered and left-dense are said to be dense points, whereas points that are simultaneously right-scattered and left-scattered are said to be isolated points.

The forward graininess function \(\mu : T \to [0, \infty) \) is defined for any \(\xi \in T \) by \(\mu(\xi) := \sigma(\xi) - \xi \).

If \(F : T \to \mathbb{R} \) is a function, then the function \(F^\sigma : T \to \mathbb{R} \) is defined by \(F^\sigma(\xi) = F(\sigma(\xi)) \), \(\forall \xi \in T \), that is \(F^\sigma = F \circ \sigma \). Similarly, the function \(F^\rho : T \to \mathbb{R} \) is defined by \(F^\rho(\xi) = g(\rho(\xi)) \), \(\forall \xi \in T \); that is, \(F^\rho = F \circ \rho \).

The sets \(T^\sigma, T^\rho, T^\sigma, T^\rho \) are introduced as follows: if \(T \) has a left-scattered maximum \(\xi_1 \), then \(T^\sigma = T - \{ \xi_1 \} \), otherwise \(T^\sigma = T \). If \(T \) has a right-scattered minimum \(\xi_2 \), then \(T^\rho = T - \{ \xi_2 \} \), otherwise \(T^\rho = T \). Finally, we have \(T^\sigma = T^\sigma \cap T^\rho \).
The interval $[a, b]$ in \mathbb{T} is defined by

$$[a, b]_\mathbb{T} = \{ \zeta \in \mathbb{T} : a \leq \zeta \leq b \}.$$

We define the open intervals and half-closed intervals similarly.

Assume $F : \mathbb{T} \to \mathbb{R}$ is a function and $\zeta \in \mathbb{T}_x$. Then $F^\Delta(\zeta) \in \mathbb{R}$ is said to be the delta derivative of F at ζ if for any $\varepsilon > 0$ there exists a neighborhood U of ζ such that, for every $s \in U$, we have

$$|F(\sigma(\zeta)) - F(s) - F^\Delta(\zeta)[\sigma(\zeta) - s]| \leq \varepsilon|\sigma(\zeta) - s|.$$

Moreover, F is said to be delta differentiable on \mathbb{T}_x if it is delta differentiable at every $\zeta \in \mathbb{T}_x$.

Similarly, we say that $F^\nabla(\zeta) \in \mathbb{R}$ is the nabla derivative of F at ζ if, for any $\varepsilon > 0$, there is a neighborhood V of ζ, such that for all $s \in V$

$$|F(\rho(\zeta)) - F(s) - F^\nabla(\zeta)[\rho(\zeta) - s]| \leq \varepsilon|\rho(\zeta) - s|.$$

Furthermore, F is said to be nabla differentiable on \mathbb{T}_x if it is nabla differentiable at each $\zeta \in \mathbb{T}_x$.

A function $F : \mathbb{T} \to \mathbb{R}$ is said to be right-dense continuous (rd-continuous) if F is continuous at all right-dense points in \mathbb{T} and its left-sided limits exist at all left-dense points in \mathbb{T}.

In a similar manner, a function $F : \mathbb{T} \to \mathbb{R}$ is said to be left-dense continuous (ld-continuous) if F is continuous at all left-dense points in \mathbb{T} and its right-sided limits exist at all right-dense points in \mathbb{T}.

The delta integration by parts on time scales is given by the following formula

$$\int_a^b g^\Delta(\zeta)F(\zeta)\Delta\zeta = g(b)F(b) - g(a)F(a) - \int_a^b g^\sigma(\zeta)F(\zeta)\Delta\zeta,$$

whereas the nabla integration by parts on time scales is given by

$$\int_a^b g^\nabla(\zeta)F(\zeta)\nabla\zeta = g(b)F(b) - g(a)F(a) - \int_a^b g^\rho(\zeta)F(\zeta)\nabla\zeta.$$

The following relations will be used.

(i) If $\mathbb{T} = \mathbb{R}$, then

$$\sigma(\zeta) = \rho(\zeta) = \zeta, \quad \mu(\zeta) = \nu(\zeta) = 0, \quad F^\Delta(\zeta) = F^\nabla(\zeta) = F'(\zeta),$$

$$\int_a^b F(\zeta)\Delta\zeta = \int_a^b F(\zeta)\nabla\zeta = \int_a^b F(\zeta)\,d\zeta.$$

(ii) If $\mathbb{T} = \mathbb{Z}$, then

$$\sigma(\zeta) = \zeta + 1, \quad \rho(\zeta) = \zeta - 1, \quad \mu(\zeta) = \nu(\zeta) = 1,$$

$$F^\Delta(\zeta) = \Delta F(\zeta), \quad F^\nabla(\zeta) = \nabla F(\zeta),$$

$$\int_a^b F(\zeta)\Delta\zeta = \sum_{\zeta=a}^{b-1} F(\zeta), \quad \int_a^b F(\zeta)\nabla\zeta = \sum_{\zeta=a+1}^b F(\zeta),$$

where Δ and ∇ are the forward and backward difference operators, respectively.

Now we will introduce the diamond-α calculus on time scales, and we refer the interested reader to [8,9] for further details on the definitions of nabla and delta integrals and derivatives.
If T is a time scale, and F is a function that is delta and nabla differentiable on T, then, for any $\xi \in T$, the diamond-α dynamic derivative of F at ξ, denoted by $F^{\diamond \alpha}(\xi)$, is defined by

$$F^{\diamond \alpha}(\xi) = aF^\Delta(\xi) + (1 - a)F^\nabla(\xi), \quad 0 \leq a \leq 1. \tag{14}$$

We conclude from the last relation that a function F is diamond-α differentiable if and only if it is both delta and nabla differentiable. For $a = 1$, the diamond-α derivative boils down to a delta derivative, and for $a = 0$ it boils down to a nabla derivative.

Assume $f, g : T \rightarrow \mathbb{R}$ are diamond-α differentiable functions at $\xi \in T$, and let $k \in \mathbb{R}$. Then

(i) $(f + g)^{\diamond \alpha}(\xi) = f^{\diamond \alpha}(\xi) + g^{\diamond \alpha}(\xi)$;

(ii) $(kf)^{\diamond \alpha}(\xi) = kf^{\diamond \alpha}(\xi)$;

(iii) $(fg)^{\diamond \alpha}(\xi) = f^{\diamond \alpha}(\xi)g^{\diamond \alpha}(\xi) + af^\nabla(\xi)g^\Delta(\xi) + (1 - a)F^\nabla(\xi)g^\Delta(\xi)$.

Let $F : T \rightarrow \mathbb{R}$ be a continuous function. Then the definite diamond-α integral of F is defined by

$$\int_a^b F(\xi)\Delta_{\alpha} = a \int_a^b F(\xi)\Delta_{\alpha} + (1 - a) \int_a^b F(\xi)\nabla_{\alpha}, \quad 0 \leq a \leq 1, \ a, b \in T. \tag{15}$$

Let $a, b, c \in T, k \in \mathbb{R}$. Then,

(i) $\int_a^b [F(\xi) + g(\xi)]\Delta_{\alpha} = \int_a^b F(\xi)\Delta_{\alpha} + \int_a^b g(\xi)\Delta_{\alpha}$;

(ii) $\int_a^b kf(\xi)\Delta_{\alpha} = k \int_a^b F(\xi)\Delta_{\alpha}$;

(iii) $\int_a^b F(\xi)\Delta_{\alpha} = \int_a^b F(\xi)\Delta_{\alpha} + \int_a^b F(\xi)\Delta_{\alpha}$;

(iv) $\int_a^b F(\xi)\Delta_{\alpha} = - \int_a^b F(\xi)\Delta_{\alpha}$;

(v) $\int_a^b F(\xi)\Delta_{\alpha} = 0$;

(vi) if $F(\xi) \geq 0$ on $[a, b]_T$, then $\int_a^b F(\xi)\Delta_{\alpha} \geq 0$;

(vii) if $F(\xi) \geq g(\xi)$ on $[a, b]_T$, then $\int_a^b F(\xi)\Delta_{\alpha} \geq \int_a^b g(\xi)\Delta_{\alpha}$;

(viii) $\int_a^b F(\xi)\Delta_{\alpha} \leq \int_a^b |F(\xi)|\Delta_{\alpha}$.

Let F be a diamond-α differentiable function on $[a, b]_T$. Then F is increasing if $F^{\diamond \alpha}(\xi) > 0$, non-decreasing if $F^{\diamond \alpha}(\xi) \geq 0$, decreasing if $F^{\diamond \alpha}(\xi) < 0$, and non-increasing if $F^{\diamond \alpha}(\xi) \leq 0$ on $[a, b]_T$.

Next, we write Hölder’s inequality and Jensen’s inequality on time scales.

Lemma 1 (Dynamic Hölder’s Inequality [3]). Suppose $u, v \in T$ with $u < v$. Assume $F^*, g^* \in C^1([u, v]_T \times [u, v], \mathbb{R})$ be integrable functions and $\frac{1}{p} + \frac{1}{q} = 1$ with $p > 1$ then

$$\int_u^v \int_u^v |F^*(r^*, s^*)g^*(r^*, s^*)|\Delta_{\alpha}r^*\Delta_{\alpha}s^* \leq \left(\int_u^v \int_u^v |F^*(r^*, s^*)|^p \Delta_{\alpha}r^*\Delta_{\alpha}s^* \right)^{\frac{1}{p}} \times \left(\int_u^v \int_u^v |g^*(r^*, s^*)|^q \Delta_{\alpha}r^*\Delta_{\alpha}s^* \right)^{\frac{1}{q}}. \tag{16}$$

This inequality is reversed if $0 < p < 1$ and if $p < 0$ or $q < 0$.

Lemma 2 (Dynamic Jensen’s Inequality [3]). Let $r^*, s^* \in R$ and $-\infty \leq m^*, n^* \leq \infty$. If $F^* \in C^1(\mathbb{R}, (m^*, n^*))$ and $\phi : (m^*, n^*) \rightarrow \mathbb{R}$ is convex then

$$\phi \left(\frac{\int_u^v \int_u^v F^*(r^*, s^*)\Delta_{\alpha}r^*\Delta_{\alpha}s^*}{\int_u^v \int_u^v \Delta_{\alpha}r^*\Delta_{\alpha}s^*} \right) \leq \frac{\int_u^v \int_u^v \phi(F^*(r^*, s^*))\Delta_{\alpha}r^*\Delta_{\alpha}s^*}{\int_u^v \int_u^v \Delta_{\alpha}r^*\Delta_{\alpha}s^*}. \tag{17}$$

This inequality is reversed if $\phi \in C((c, d), \mathbb{R})$ is concave.
Definition 1. \(\Phi \) is called a supermultiplicative function on \([0, \infty)\) if

\[
\Phi(\vartheta \zeta) \geq \Phi(\vartheta) \Phi(\zeta), \text{ for all } \vartheta, \zeta \geq 0.
\]

(18)

In this paper, we extend some generalizations of the integral Hardy–Hilbert inequality to a general time scale using diamond alpha calculus. As special cases of our results, we will recover some dynamic integral and discrete inequalities known in the literature.

Now we are ready to state and prove our main results.

2. Main Results

First, we enlist the following assumptions for the proof of our main results:

\(S_1 \) \(\mathbb{T} \) be time scales with \(\mathcal{S}_0, \mathcal{G}_s, \mathcal{S}_w, \mathcal{S}_r \in \mathbb{T}, \) \((\ell = 1, \ldots, n). \)

\(S_2 \) \(F(\mathcal{S}_s, \mathcal{S}_r) \) are non-negative, diamond-Alpha integrable functions defined on \([\mathcal{S}_0, \mathcal{G}_s]_{\mathbb{T}} \times [\mathcal{S}_0, \mathcal{G}_s]_{\mathbb{T}} \) \((\ell = 1, \ldots, n). \)

\(S_3 \) \(F(\mathcal{S}_s, \mathcal{S}_r) \) have partial \(\Phi_{\alpha} \)-derivatives \(F_{\alpha}^1(\mathcal{S}_s, \mathcal{S}_r) \) and \(F_{\alpha}^2(\mathcal{S}_s, \mathcal{S}_r) \) with respect \(\mathcal{S}_s \) and \(\mathcal{S}_r \), respectively.

\(S_4 \) All functions used in this section are integrable according to \(\Phi_{\alpha} \) sense.

\(S_5 \) \(F(\mathcal{S}_s, \mathcal{S}_r) \in \mathcal{C}^\left([\mathcal{S}_0, \mathcal{G}_s]_{\mathbb{T}} \times [\mathcal{S}_0, \mathcal{G}_s]_{\mathbb{T}}; [0, \infty)\right) \) \((\ell = 1, \ldots, n). \)

\(S_6 \) \(p_\alpha(\mathcal{S}_s, \mathcal{S}_r) \) are positive diamond-Alpha integrable functions defined for \(\mathcal{S}_s \in (\mathcal{S}_0, \mathcal{S}_r)_{\mathbb{T}}, \mathcal{S}_r \in (\mathcal{S}_0, \mathcal{S}_r)_{\mathbb{T}}. \)

\(S_7 \) \(q_\alpha(\mathcal{S}_s, \mathcal{S}_r) \) are positive diamond-Alpha integrable functions defined for \(\mathcal{S}_s \in (\mathcal{S}_0, \mathcal{S}_r)_{\mathbb{T}}, \mathcal{S}_r \in (\mathcal{S}_0, \mathcal{S}_r)_{\mathbb{T}}. \)

\(S_8 \) \(\Phi_{\ell} \) \((\ell = 1, \ldots, n) \) are \(n \) real-valued non-negative concave and supermultiplicative functions defined on \([0, \infty)\).

\(S_9 \) \(\theta_{\ell} \) and \(\xi_{\ell} \) are positive real numbers.

\(S_{10} \) \(\mathcal{S}_s \in [\mathcal{S}_0, \mathcal{G}_s]_{\mathbb{T}} \) and \(\mathcal{S}_r \in [\mathcal{S}_0, \mathcal{G}_s]_{\mathbb{T}}. \)

\(S_{11} \) \(F(\mathcal{S}_s, \mathcal{S}_r) = 0, (\ell = 1, \ldots, n). \)

\(S_{12} \) \(F_{\alpha}^1(\mathcal{S}_s, \mathcal{S}_r) = F_{\alpha}^2(\mathcal{S}_s, \mathcal{S}_r). \)

\(S_{13} \) \(\nu_{\alpha} = \int_{\mathcal{S}_0}^{\mathcal{S}_s} \int_{\mathcal{S}_0}^{\mathcal{S}_r} p_{\alpha}(\mathcal{S}_s, \mathcal{S}_r) \mathcal{S}_w \mathcal{S}_r. \)

\(S_{14} \) \(F(\mathcal{S}_s, \mathcal{S}_r) = \int_{\mathcal{S}_0}^{\mathcal{S}_s} \int_{\mathcal{S}_0}^{\mathcal{S}_r} F_{\alpha}^2(\mathcal{S}_s, \mathcal{S}_r) \mathcal{S}_w \mathcal{S}_r. \)

\(S_{15} \) \(\nu_{\alpha} = \int_{\mathcal{S}_0}^{\mathcal{S}_s} \int_{\mathcal{S}_0}^{\mathcal{S}_r} p_{\alpha}(\mathcal{S}_s, \mathcal{S}_r) \mathcal{S}_w \mathcal{S}_r. \)

\(S_{16} \) \(\gamma_{\alpha} = \gamma - \gamma_{\alpha}, \gamma_{\alpha} = \sum_{\ell=1}^{n} \gamma_{\alpha}, \text{ and } \gamma' = \sum_{\ell=1}^{n} \gamma'_{\alpha} = n - \gamma, (\ell = 1, \ldots, n). \)

\(S_{18} \) \(0 < \beta_{\ell} < 1. \)

\(S_{19} \) \(h_{\ell} \geq 2. \)

\(S_{20} \) \(\sum_{\ell=1}^{n} \frac{1}{h_{\ell}} = \frac{1}{\gamma}. \)

\(S_{21} \) \(\gamma_{\ell} \geq 1. \)

\(S_{22} \) \(F(\mathcal{S}_s, \mathcal{S}_r) \in \mathcal{C}^1[\mathcal{S}_0, \mathcal{G}_s]_{\mathbb{T}}, (\ell = 1, \ldots, n). \)

\(S_{23} \) \(\theta_{\ell} \) is a positive real number.

\(S_{24} \) \(F(\mathcal{S}_s, \mathcal{S}_r) = \int_{\mathcal{S}_0}^{\mathcal{S}_s} F(\mathcal{S}_s, \mathcal{S}_r) \mathcal{S}_w \mathcal{S}_r. \)

\(S_{25} \) \(s_{\ell} \in [\mathcal{S}_0, \mathcal{G}_s]_{\mathbb{T}}. \)

\(S_{26} \) \(p_{\ell}(\mathcal{S}_s, \mathcal{S}_r) \) are \(n \) positive functions.

\(S_{27} \) \(p_{\ell}(\mathcal{S}_s, \mathcal{S}_r) = \int_{\mathcal{S}_0}^{\mathcal{S}_s} p_{\ell}(\mathcal{S}_s, \mathcal{S}_r) \mathcal{S}_w \mathcal{S}_r. \)

\(S_{28} \) \(F(\mathcal{S}_s, \mathcal{S}_r) = \int_{\mathcal{S}_0}^{\mathcal{S}_s} p_{\ell}(\mathcal{S}_s, \mathcal{S}_r) F(\mathcal{S}_s, \mathcal{S}_r) \mathcal{S}_w \mathcal{S}_r. \)

\(S_{29} \) \(F(\mathcal{S}_s, \mathcal{S}_r) = 0. \)

Now, we are ready to state and prove the main results that extend several results in the literature.

Theorem 1. Let \(S_1, S_4, S_5, S_{14}, S_{6}, S_{15}, \) and \(S_8 \) be satisfied. Then for \(S_{10}, S_{18} \) and \(S_{20} \) we find that
\[
\frac{1}{\gamma} \left(\sum_{\ell=1}^{n} \frac{1}{\gamma} (s_{\ell} - 3_{0})(3_{\ell} - 3_{0}) \right) \bigg(\prod_{\ell=1}^{n} \Phi_{\ell}(F_{\ell}(s_{\ell}, 3_{\ell})) \bigg) \geq L(\theta_{1} \xi_{1}, \ldots, \theta_{n} \xi_{n})
\]

where

\[
L(\theta_{1} \xi_{1}, \ldots, \theta_{n} \xi_{n}) = \prod_{\ell=1}^{n} \left(\int_{3_{0}}^{s_{\ell}} \int_{3_{0}}^{3_{\ell}} \left(\Phi_{\ell}(P_{\ell}(s_{\ell}, 3_{\ell})) \right)^{\gamma_{\ell}} \diamond_{a} s_{\ell} \diamond_{a} 3_{\ell} \right)^{\frac{1}{\gamma_{\ell}}}.
\]

Proof. From the hypotheses of Theorem 1, \(S_{14}, S_{15}, S_{3}, S_{8}\), it is easy to observe that

\[
\Phi_{\ell}(F_{\ell}(s_{\ell}, 3_{\ell})) = \Phi_{\ell} \left(\frac{P_{\ell}(s_{\ell}, 3_{\ell})}{P_{\ell}(s_{\ell}, 3_{\ell})} \int_{3_{0}}^{s_{\ell}} \int_{3_{0}}^{3_{\ell}} \left(P_{\ell}(s_{\ell}, 3_{\ell}) \right) \left(\frac{F_{\ell}(s_{\ell}, 3_{\ell})}{P_{\ell}(s_{\ell}, 3_{\ell})} \right) \diamond_{a} s_{\ell} \diamond_{a} 3_{\ell} \right)^{\beta_{\ell}}.
\]

By using inverse Jensen dynamic inequality, we obtain that

\[
\Phi_{\ell}(F_{\ell}(s_{\ell}, 3_{\ell})) \geq \Phi_{\ell} \left(\frac{P_{\ell}(s_{\ell}, 3_{\ell})}{P_{\ell}(s_{\ell}, 3_{\ell})} \right) \int_{3_{0}}^{s_{\ell}} \int_{3_{0}}^{3_{\ell}} \left(P_{\ell}(s_{\ell}, 3_{\ell}) \right) \left(\frac{F_{\ell}(s_{\ell}, 3_{\ell})}{P_{\ell}(s_{\ell}, 3_{\ell})} \right) \diamond_{a} s_{\ell} \diamond_{a} 3_{\ell} \right)^{\beta_{\ell}}. \quad (21)
\]

Applying inverse Hölder’s inequality on the right hand side of (21) with indices \(\gamma_{\ell}\) and \(\beta_{\ell}\), it is easy to observe that

\[
\Phi_{\ell}(F_{\ell}(s_{\ell}, 3_{\ell})) \geq \Phi_{\ell} \left(\frac{P_{\ell}(s_{\ell}, 3_{\ell})}{P_{\ell}(s_{\ell}, 3_{\ell})} \right) \left[(s_{\ell} - 3_{0})(3_{\ell} - 3_{0}) \right] \left(\int_{3_{0}}^{s_{\ell}} \int_{3_{0}}^{3_{\ell}} \left(P_{\ell}(s_{\ell}, 3_{\ell}) \right) \left(\frac{F_{\ell}(s_{\ell}, 3_{\ell})}{P_{\ell}(s_{\ell}, 3_{\ell})} \right) \diamond_{a} s_{\ell} \diamond_{a} 3_{\ell} \right)^{\beta_{\ell}}. \quad (22)
\]

By using the following inequality on the term \([(s_{\ell} - 3_{0})(3_{\ell} - 3_{0})] \),

\[
\prod_{\ell=1}^{n} \eta_{\ell} \geq \left(\gamma \sum_{\ell=1}^{n} \frac{1}{\gamma_{\ell}} \right)^{\frac{1}{\gamma_{\ell}}},
\]

we get that

\[
\prod_{\ell=1}^{n} \Phi_{\ell}(F_{\ell}(s_{\ell}, 3_{\ell})) \geq \left(\gamma \sum_{\ell=1}^{n} \frac{1}{\gamma_{\ell}} \right)^{\frac{1}{\gamma_{\ell}}}. \quad (24)
\]

Integrating both sides of (24) over \(s_{\ell}, 3_{\ell}\) from \(3_{0}\) to \(\theta_{\ell}, \xi_{\ell}\) (\(\ell = 1, \ldots, n\)), we obtain that
\[
\int_{\theta_1}^{\phi_1} \ldots \int_{\theta_n}^{\phi_n} \prod_{\ell=1}^{n} \Phi_\ell(\hat{F}_\ell(s_\ell, 3_\ell)) \left(\gamma \sum_{\ell=1}^{n} \frac{1}{r_{\ell}} (s_\ell - 3_0)(3_\ell - 3_0) \right) \frac{1}{\gamma} \Delta a s_1 \Delta a 3_1 \ldots \Delta a s_n \Delta a 3_n \quad (25)
\]

 Applying inverse Hölder’s inequality on the right hand side of (25) with indices γ_ℓ and β_ℓ, it is easy to observe that

\[
\int_{\theta_1}^{\phi_1} \ldots \int_{\theta_n}^{\phi_n} \prod_{\ell=1}^{n} \Phi_\ell(\hat{F}_\ell(s_\ell, 3_\ell)) \left(\gamma \sum_{\ell=1}^{n} \frac{1}{r_{\ell}} (s_\ell - 3_0)(3_\ell - 3_0) \right) \frac{1}{\gamma} \Delta a s_1 \Delta a 3_1 \ldots \Delta a s_n \Delta a 3_n \quad (26)
\]

Using Fubini’s theorem, we observe that

\[
\int_{\theta_1}^{\phi_1} \ldots \int_{\theta_n}^{\phi_n} \prod_{\ell=1}^{n} \Phi_\ell(\hat{F}_\ell(s_\ell, 3_\ell)) \left(\gamma \sum_{\ell=1}^{n} \frac{1}{r_{\ell}} (s_\ell - 3_0)(3_\ell - 3_0) \right) \frac{1}{\gamma} \Delta a s_1 \Delta a 3_1 \ldots \Delta a s_n \Delta a 3_n \quad (27)
\]

By using the fact $\theta_\ell \geq \rho(\theta_\ell)$, and $\zeta_\ell \geq \rho(\zeta_\ell)$, we get that

\[
\int_{\theta_1}^{\phi_1} \ldots \int_{\theta_n}^{\phi_n} \prod_{\ell=1}^{n} \Phi_\ell(\hat{F}_\ell(s_\ell, 3_\ell)) \left(\gamma \sum_{\ell=1}^{n} \frac{1}{r_{\ell}} (s_\ell - 3_0)(3_\ell - 3_0) \right) \frac{1}{\gamma} \Delta a s_1 \Delta a 3_1 \ldots \Delta a s_n \Delta a 3_n \quad (28)
\]

This completes the proof. \(\Box\)

Remark 1. In Theorem 1, if $\mathbb{T} = \mathbb{R}$, $\alpha = 1$ we get the result due to Zhao et al. ([110], Theorem 2).

As a special case of Theorem 1, when $\mathbb{T} = \mathbb{Z}$, $\alpha = 1$ we have $\rho(n) = n - 1$, we get the following result.
Corollary 1. Let \(\{a_{s_1, \cdots, s_n} \} \) and \(\{p_{s_1, \cdots, s_n} \} \), \((\ell = 1, \ldots, n) \) be \(n \) sequences of non-negative numbers defined for \(m_{s_1} = 1, \ldots, k_{s_1} \) and \(m_{s_3} = 1, \ldots, k_{s_3} \), and define
\[
A_{s_1, \cdots, s_n} = \sum_{m_{s_1} = 1}^{k_{s_1}} a_{s_1, \cdots, s_n} m_{s_1},
\]
\[
P_{s_1, \cdots, s_n} = \sum_{m_{s_3} = 1}^{k_{s_3}} p_{s_1, \cdots, s_n} m_{s_3}.
\]

Then
\[
\sum_{m_{s_1}} \sum_{m_{s_3}} \cdots \sum_{m_{s_n}} \prod_{\ell=1}^{n} \frac{\prod_{\ell} \Phi_{\ell}(A_{s_1, \cdots, s_n})}{\prod_{\ell=1}^{n} (m_{s_\ell} - m_{s_\ell} - 1)} \geq C(k_1, k_3, \ldots, k_n)
\]

where
\[
C(k_1, k_3, \ldots, k_n) = \prod_{\ell=1}^{n} \frac{\prod_{\ell} \Phi_{\ell}(P_{s_1, \cdots, s_n})}{\prod_{\ell=1}^{n} (m_{s_\ell} - m_{s_\ell} - 1)}.
\]

Remark 2. Let \(F_{\ell}(\xi_{\ell}, \tau_{\ell}), P_{\ell}(\xi_{\ell}, \tau_{\ell}), P_{\ell}(\xi_{\ell}, \tau_{\ell}), \) and \(F_{\ell}(\xi_{\ell}, \tau_{\ell}), P_{\ell}(\xi_{\ell}), P_{\ell}(\xi_{\ell}) \) change to \(F_{\ell}(\xi_{\ell}), P_{\ell}(\xi_{\ell}), P_{\ell}(\xi_{\ell}) \) and \(F_{\ell}(\xi_{\ell}) \), respectively; with suitable changes, we have the following new corollary:

Corollary 2. Let \(S_{18}, S_{20}, S_{25} \) and \(S_8 \) be satisfied. Then for \(S_{18}, S_{20} \) and \(S_{25} \) we have that
\[
f_{\mathcal{S}_1} \cdots f_{\mathcal{S}_n} \prod_{\ell=1}^{n} \Phi_{\ell}(F_{\ell}(s_{\ell})) \geq L^*(\theta_1, \ldots, \theta_n, n) = \prod_{\ell=1}^{n} \left(\int_{\mathcal{S}_\ell} \left(\frac{\Phi_{\ell}(P_{\ell}(s_{\ell}))}{P_{\ell}(s_{\ell})} \right)^{\frac{1}{n}} \right)
\]

where
\[
L^*(\theta_1, \ldots, \theta_n) = \prod_{\ell=1}^{n} \left(\int_{\mathcal{S}_\ell} \left(\frac{\Phi_{\ell}(P_{\ell}(s_{\ell}))}{P_{\ell}(s_{\ell})} \right)^{\frac{1}{n}} \right)
\]

Corollary 3. In Corollary 2, if we take \(n = 2 \), \(\beta_{\ell} = \frac{1}{2} \) then the inequality (28) changes to
\[
f_{\mathcal{S}_1} f_{\mathcal{S}_2} \frac{\Phi_{\ell}(F_{\ell}(s_1)) \Phi_{\ell}(F_{\ell}(s_2))}{(s_1 - s_0) + (s_2 - s_0)^2} \geq L^{**}(\theta_1, \theta_2) \left(\int_{\mathcal{S}_1} (\rho(\theta_1) - s_1) \right)^2 \frac{1}{n} \frac{1}{n}
\]

where
\[
L^{**}(\theta_1, \theta_2) = 4 \left(\int_{\mathcal{S}_1} \frac{\Phi_{\ell}(P_{\ell}(s_1))}{P_{\ell}(s_1)} \right)^{-1} \frac{1}{n} \frac{1}{n}
\]
Remark 3. In Corollary 3, if we take $\mathbb{T} = \mathbb{R}$, then the inequality (29) changes to
\[
\int_0^{\theta_1} \int_0^{\theta_2} \frac{\Phi_1(f,s_1)\Phi_2(f,s_2)}{(s_1 + s_2)^2} ds_1 ds_2 \geq L^{**}(\theta_1, \theta_2) \left(\int_0^{\theta_1} (s_1 - s_1) \left(p_1(s_1) \Phi \left(f,s_1 \right) \right)^2 ds_1 \right)^{\frac{1}{2}} \times \left(\int_0^{\theta_2} (s_2 - s_2) \left(p_2(s_2) \Psi \left(f,s_2 \right) \right)^2 ds_2 \right)^{\frac{1}{2}}
\]
where
\[
L^{**}(\theta_1, \theta_2) = 4 \left(\int_0^{\theta_1} \left(\Phi_1(P_1(s_1)) \right)^{-1} ds_1 \right)^{-1} \left(\int_0^{\theta_2} \left(\Phi_2(P_2(s_2)) \right)^{-1} ds_2 \right)^{-1}.
\]
This is an inverse of the inequality (6) which was proved by Pachpatte [7].

Corollary 4. In Corollary 2, if we take $\beta_\ell = \frac{n-1}{n}$ the inequality (28) becomes
\[
\int_{\mathfrak{A}} \cdots \int_{\mathfrak{A}} \frac{\prod_{\ell=1}^{n} \Phi_\ell(f, \rho(s_\ell))}{\left(\sum_{\ell=1}^{n} (s_\ell - \xi_0) \right)^{\frac{n}{n-1}}} \varrho_a s_1 \cdots \varrho_a s_n \geq L^*(\theta_1, \ldots, \theta_n) \left(\int_{\mathfrak{A}} \left(\frac{\Phi_\ell(P_\ell(s_\ell))}{P_\ell(s_\ell)} \right)^{-(n-1)} \varrho_a s_\ell \right)^{\frac{1}{n-1}}
\]
where
\[
L^*(\theta_1, \ldots, \theta_n) = \frac{n}{\gamma_n} \prod_{\ell=1}^{n} \left(\int_{\mathfrak{A}} \left(\frac{\Phi_\ell(P_\ell(s_\ell))}{P_\ell(s_\ell)} \right)^{-(n-1)} \varrho_a s_\ell \right)^{\frac{1}{n-1}}.
\]

Theorem 2. Let $S_1, S_4, S_5, S_6, S_9, S_{15}$, and S_{16} be satisfied. Then for S_{10}, S_{18} and S_{20} we have that
\[
\int_{\mathfrak{A}} \cdots \int_{\mathfrak{A}} \frac{\prod_{\ell=1}^{n} P_\ell(s_\ell, \xi_0) \Phi_\ell(f, s_\ell, \xi_0))}{\left(\gamma_n \sum_{\ell=1}^{n} (s_\ell - \xi_0)(\xi_\ell - \xi_0) \right)^{\frac{1}{\gamma_n}}} \varrho_a s_1 \varrho_a \xi_1 \cdots \varrho_a s_n \varrho_a \xi_n \geq \prod_{\ell=1}^{n} \left(\int_{\mathfrak{A}} \left(\frac{\Phi_\ell(P_\ell(s_\ell))}{P_\ell(s_\ell)} \right)^{-(n-1)} \varrho_a s_\ell \varrho_a b_\ell \right)^{\frac{1}{n-1}}
\]

Proof. From the hypotheses of Theorem 2, and by using inverse Jensen dynamic inequality, we have
\[
\Phi_\ell(f(s_\ell, \xi_\ell)) = \Phi_\ell \left(\frac{1}{P_\ell(s_\ell, \xi_\ell)} \int_{\mathfrak{A}} \left(\frac{1}{P_\ell(s_\ell, \xi_\ell)} \int_{\mathfrak{A}} P_\ell(s_\ell, \xi_\ell) f(s_\ell, \xi_\ell) \varrho_a s_\ell \varrho_a \xi_\ell \right)^{\beta_\ell} \varrho_a s_\ell \varrho_a \xi_\ell \right)^{\beta_\ell}
\]
Applying inverse Hölder’s inequality on the right hand side of (32) with indices γ_ℓ and β_ℓ, it is easy to observe that
\[
\Phi_\ell(f(s_\ell, \xi_\ell)) \geq \frac{1}{P_\ell(s_\ell, \xi_\ell)} \left((s_\ell - \xi_0)(\xi_\ell - \xi_0) \right)^{\frac{1}{\gamma_n}} \left(\int_{\mathfrak{A}} \left(\frac{1}{P_\ell(s_\ell, \xi_\ell)} \int_{\mathfrak{A}} P_\ell(s_\ell, \xi_\ell) f(s_\ell, \xi_\ell) \varrho_a s_\ell \varrho_a \xi_\ell \right)^{\beta_\ell} \varrho_a s_\ell \varrho_a \xi_\ell \right)^{\frac{1}{\gamma_n}}.
\]
By using the inequality (23), on the term $[(s_\ell - \xi_0)(\xi_\ell - \xi_0)]^{\frac{1}{\gamma_n}}$ we get that
\[
\frac{P_f(s, \mathcal{E}_f) \Phi_f(f_s(s, \mathcal{E}_f))}{\left(\gamma \sum_{\ell = 1}^{n} \frac{1}{\tau}(s_{\ell} - 3_0)(3_\ell - 3_0) \right)} \geq \left(\int_{3_0}^{\delta Addition two sides of (33) over \(s_\ell, \mathcal{E}_\ell \) from 3_0 to \(\theta_\ell, \zeta_\ell \) (\(\ell = 1, \ldots, n\)), we get that

\[
\int_{3_0}^{\delta_1} \int_{3_0}^{\delta_1} \cdots \int_{3_0}^{\delta_n} \prod_{\ell = 1}^{n} P_f(s_\ell, \mathcal{E}_\ell) \Phi_f(f_s(s_\ell, \mathcal{E}_\ell)) \left(\gamma \sum_{\ell = 1}^{n} \frac{1}{\tau}(s_{\ell} - 3_0)(3_\ell - 3_0) \right)^{-\frac{1}{\tau}} \delta \mathcal{E}_1 \mathcal{E}_2 \cdots \mathcal{E}_n \mathcal{E}\]

(34)

By using Fubini’s theorem, we observe that

\[
\int_{3_0}^{\delta_1} \int_{3_0}^{\delta_1} \cdots \int_{3_0}^{\delta_n} \prod_{\ell = 1}^{n} P_f(s_\ell, \mathcal{E}_\ell) \Phi_f(f_s(s_\ell, \mathcal{E}_\ell)) \left(\gamma \sum_{\ell = 1}^{n} \frac{1}{\tau}(s_{\ell} - 3_0)(3_\ell - 3_0) \right)^{-\frac{1}{\tau}} \delta \mathcal{E}_1 \mathcal{E}_2 \cdots \mathcal{E}_n \mathcal{E}\]

(34)

By using the fact \(\theta_\ell \geq \rho(\theta_\ell)\), and \(\zeta_\ell \geq \rho(\zeta_\ell)\), we get that

\[
\int_{3_0}^{\delta_1} \int_{3_0}^{\delta_1} \cdots \int_{3_0}^{\delta_n} \prod_{\ell = 1}^{n} P_f(s_\ell, \mathcal{E}_\ell) \Phi_f(f_s(s_\ell, \mathcal{E}_\ell)) \left(\gamma \sum_{\ell = 1}^{n} \frac{1}{\tau}(s_{\ell} - 3_0)(3_\ell - 3_0) \right)^{-\frac{1}{\tau}} \delta \mathcal{E}_1 \mathcal{E}_2 \cdots \mathcal{E}_n \mathcal{E}\]

(34)

By using the fact \(\theta_\ell \geq \rho(\theta_\ell)\), and \(\zeta_\ell \geq \rho(\zeta_\ell)\), we get that

This completes the proof. \(\square\)

Remark 4. In Theorem 2, if \(T = \mathbb{R}, a = 1\) we get the result due to Zhao et al. (110), Theorem 3.

As a special case of Theorem 2, when \(T = \mathbb{Z}, a = 1\) we have \(\rho(n) = n - 1\), we get the following result.
Corollary 5. Let \(\{a_s, \ell_1, m_s, \ell_3\} \) and \(\{p_s, \ell_1, m_s, \ell_3\} \), \((\ell = 1, \ldots, n) \) be \(n \) sequences of non-negative numbers defined for \(m_s = 1, \ldots, k_s \), and \(m_3 = 1, \ldots, k_3 \), and define

\[
A_{s_\ell, m_s, \ell_3} = \frac{1}{\mathbb{I}_{s_\ell, m_s, \ell_3}} \sum_{s_\ell} \left[\sum_{m_s} \left(a_{s_\ell, m_s, \ell_3} \mathcal{P}_{s_\ell, m_s, \ell_3} \right) \right] .
\]

Then

\[
\sum_{m_s} P_{s_\ell, m_s, \ell_3} \prod_{\ell = 1}^{\infty} P_{s_\ell, m_s, \ell_3} \Phi_{s_\ell} \left(A_{s_\ell, m_s, \ell_3} \right) = \frac{1}{\mathbb{I}_{s_\ell, m_s, \ell_3}} \sum_{s_\ell} \left[\sum_{m_s} \left(a_{s_\ell, m_s, \ell_3} \mathcal{P}_{s_\ell, m_s, \ell_3} \right) \right] .
\]

Corollary 7. In Corollary 6, if we take \(n = 2 \), \(\beta_{s_\ell} = \frac{1}{2} \) then the inequality (28) changes to

\[
\prod_{s_\ell = 1}^{n} \left[\frac{P_{s_\ell}(s_\ell) \Phi_{s_\ell}(F_{s_\ell})}{(s_\ell - 3) + (3 - s_\ell)} \right] \mathcal{O}_{s_1} \mathcal{O}_{s_2} \geq 4 \left[(3 - \Phi_{s_\ell}) (3 - \Phi_{s_\ell}) \right]^{-1}
\]

Remark 6. In Corollary 7, if we take \(\mathbb{S} = \mathbb{R} \), then the inequality (37) changes to
\[
\int_0^{\theta_1} \int_0^{\theta_1} P_1(s_1)P_2(s_2) \Phi_1(F_1(s_1)) \Phi_2(F_2(s_2)) (s_1 + s_2)^{-2} ds_1 ds_2 \geq 4[\theta_1 \theta_1]^{-1}
\]

This is an inverse of the inequality (7), which was proven by Pachpatte [7].

Corollary 8. In Corollary 7, let \(p_1(s_1) = p_2(s_2) = 1 \), then \(P_1(s_1) = s_1, P_2(s_2) = s_2 \). Therefore, inequality (37) changes to

\[
\int_0^{\theta_1} \int_0^{\theta_1} \Phi_1(F_1(s_1)) \Phi_2(F_2(s_2)) (s_1 + s_2)^{-1} ds_1 ds_2 \geq 4[\theta_1 \theta_1]^{-1}
\]

Remark 7. In Corollary 8, if we take \(\mathbb{T} = \mathbb{R} \), then inequality (39) changes to

\[
\int_0^{\theta_1} \int_0^{\theta_1} \Phi(F(s)) G(\bar{\mathcal{G}}(\mathcal{G})) ds d\bar{\mathcal{G}} \leq \frac{1}{2}[\theta_1 \theta_1]^{1/2}
\]

Corollary 9. In Corollary 6, if we take \(\beta_\ell = \frac{n-1}{n} (\ell = 1, \ldots, n) \) the inequality (36)

\[
\prod_{\ell=1}^n P_\ell(s_\ell) \Phi_\ell(F_\ell(s_\ell)) \geq n^{1/n} \prod_{\ell=1}^n \psi_\ell(s_\ell - \bar{s}_\ell) \Phi_\ell(F_\ell(s_\ell)) \psi_\ell(s_\ell - \bar{s}_\ell) \psi_\ell(s_\ell - \bar{s}_\ell) \psi_\ell(s_\ell - \bar{s}_\ell)
\]

Theorem 3. Let \(S_1, S_4, S_2, S_9, S_{13}, S_7, S_{11}, S_{13}, S_5, S_{12}, S_8 \) and \(S_{17} \) be satisfied. Then, for \(S_{10} \) we have that

\[
\int_0^{\theta_1} \int_0^{\theta_1} \int_0^{\theta_1} \int_0^{\theta_1} \int_0^{\theta_1} \int_0^{\theta_1} \int_0^{\theta_1} \int_0^{\theta_1} \Phi_\ell(F_\ell(s_\ell, \bar{s}_\ell)) \gamma_\ell \psi_\ell(s_\ell - \bar{s}_\ell) \psi_\ell(s_\ell - \bar{s}_\ell) \psi_\ell(s_\ell - \bar{s}_\ell) \psi_\ell(s_\ell - \bar{s}_\ell)
\]

where
\[G(\theta_1, \ldots, \theta_n) = \prod_{\ell=1}^n \left(\int_{\mathcal{S}_0}^{s_\ell} \int_{\mathcal{S}_0}^{s_\ell} \left(\Phi_\ell(P_\ell(s_\ell, \mathcal{S}_\ell)) \frac{\ell}{P_\ell(s_\ell, \mathcal{S}_\ell)} \right)^{\gamma_\ell} \right) ^{\gamma_\ell}. \]

Proof. From the hypotheses of Theorem 3, we obtain

\[F_\ell(s_\ell, \mathcal{S}_\ell) = \int_{\mathcal{S}_0}^{s_\ell} \int_{\mathcal{S}_0}^{s_\ell} F_\ell(\mathcal{S}_\ell, \mathcal{S}_\ell) \mathcal{S}_\ell, \mathcal{S}_\ell. \]

From (41) and \(S_\mathcal{S}_0 \), it is easy to observe that

\[\Phi_\ell(F_\ell(s_\ell, \mathcal{S}_\ell)) = \Phi_\ell \left(\frac{P_\ell(s_\ell, \mathcal{S}_\ell)}{P_\ell(s_\ell, \mathcal{S}_\ell)} \int_{\mathcal{S}_0}^{s_\ell} \int_{\mathcal{S}_0}^{s_\ell} p_\ell(\xi_\ell) q_\ell(\xi_\ell) \left(\frac{F_\ell^{\mathcal{S}_\ell, \mathcal{S}_\ell}(\xi_\ell, \tau_\ell)}{p_\ell(\xi_\ell) q_\ell(\xi_\ell)} \right) \mathcal{S}_\ell, \mathcal{S}_\ell, \mathcal{S}_\ell, \mathcal{S}_\ell \right). \]

By using inverse Jensen’s dynamic inequality, we get that

\[\Phi_\ell(F_\ell(s_\ell, \mathcal{S}_\ell)) \geq \Phi_\ell \left(\frac{P_\ell(s_\ell, \mathcal{S}_\ell)}{P_\ell(s_\ell, \mathcal{S}_\ell)} \int_{\mathcal{S}_0}^{s_\ell} \int_{\mathcal{S}_0}^{s_\ell} p_\ell(\xi_\ell) q_\ell(\xi_\ell) \Phi_\ell \left(\frac{F_\ell^{\mathcal{S}_\ell, \mathcal{S}_\ell}(\xi_\ell, \tau_\ell)}{p_\ell(\xi_\ell) q_\ell(\xi_\ell)} \right) \right) \mathcal{S}_\ell, \mathcal{S}_\ell, \mathcal{S}_\ell, \mathcal{S}_\ell. \]

Applying inverse Hölder’s inequality on the right hand side of (43) with indices \(1/\gamma_\ell \) and \(1/\gamma_\ell' \), we obtain

\[\Phi_\ell(F_\ell(s_\ell, \mathcal{S}_\ell)) \geq \Phi_\ell \left(\frac{P_\ell(s_\ell, \mathcal{S}_\ell)}{P_\ell(s_\ell, \mathcal{S}_\ell)} \int_{\mathcal{S}_0}^{s_\ell} \int_{\mathcal{S}_0}^{s_\ell} p_\ell(\xi_\ell) q_\ell(\xi_\ell) \Phi_\ell \left(\frac{F_\ell^{\mathcal{S}_\ell, \mathcal{S}_\ell}(\xi_\ell, \tau_\ell)}{p_\ell(\xi_\ell) q_\ell(\xi_\ell)} \right) \right) \mathcal{S}_\ell, \mathcal{S}_\ell, \mathcal{S}_\ell, \mathcal{S}_\ell. \]

Using the following inequality on the term \([(s_\ell - \mathcal{S}_0)(\mathcal{S}_\ell - \mathcal{S}_0)]^{\gamma_\ell} \) where \(\gamma_\ell' < 0 \) and \(\lambda_\ell > 0 \).

\[\prod_{\ell=1}^n \lambda_\ell^{\gamma_\ell} \geq \left(\frac{1}{\gamma} \left(\sum_{\ell=1}^n \gamma_\ell \lambda_\ell \right) \right)^{\gamma_\ell'} . \]

We obtain that

\[\prod_{\ell=1}^n \Phi_\ell(F_\ell(s_\ell, \mathcal{S}_\ell)) \geq \prod_{\ell=1}^n \Phi_\ell \left(\frac{P_\ell(s_\ell, \mathcal{S}_\ell)}{P_\ell(s_\ell, \mathcal{S}_\ell)} \int_{\mathcal{S}_0}^{s_\ell} \int_{\mathcal{S}_0}^{s_\ell} p_\ell(\xi_\ell) q_\ell(\xi_\ell) \Phi_\ell \left(\frac{F_\ell^{\mathcal{S}_\ell, \mathcal{S}_\ell}(\xi_\ell, \tau_\ell)}{p_\ell(\xi_\ell) q_\ell(\xi_\ell)} \right) \right) \mathcal{S}_\ell, \mathcal{S}_\ell, \mathcal{S}_\ell, \mathcal{S}_\ell. \]

From (46), we have that

\[\prod_{\ell=1}^n \left(\frac{1}{\gamma} \sum_{\ell=1}^n \gamma_\ell \right)^{\gamma_\ell} . \]

Integrating both sides of (47) over \(s_\ell, \mathcal{S}_\ell \) from \(\mathcal{S}_0 \) to \(\mathcal{S}_\ell, \mathcal{S}_\ell \) \((\ell = 1, \ldots, n)\), we get that
\[
\int_{\mathbb{S}_0}^\theta \int_{\mathbb{S}_0}^\eta_1 \int_{\mathbb{S}_0}^\eta_2 \cdots \int_{\mathbb{S}_0}^\eta_n \prod_{\ell=1}^n \left(\frac{\Phi_t(F_\ell(s_\ell, 3\ell))}{\gamma} \right)^\gamma \bigwedge_{a} s_1^\gamma \bigwedge_{a} s_2^\gamma \cdots \bigwedge_{a} s_n^\gamma \bigwedge_{a} 3_n^\gamma
\]

\[
\geq \prod_{\ell=1}^n \left(\int_{\mathbb{S}_0}^\theta_\ell \int_{\mathbb{S}_0}^\eta_1 \int_{\mathbb{S}_0}^\eta_2 \cdots \int_{\mathbb{S}_0}^\eta_n \left(\Phi_t(F_\ell(s_\ell, 3\ell)) \right) \left(\frac{\gamma'}{\gamma} \bigwedge_{a} s_1^\gamma \bigwedge_{a} s_2^\gamma \cdots \bigwedge_{a} s_n^\gamma \bigwedge_{a} 3_n^\gamma \right) \right)^{\gamma_t}
\]

Applying inverse Hölder’s inequality on the right hand side of (48) with indices $1/\gamma_t$ and $1/\gamma_t'$, we obtain

\[
\int_{\mathbb{S}_0}^\theta \int_{\mathbb{S}_0}^\eta_1 \int_{\mathbb{S}_0}^\eta_2 \cdots \int_{\mathbb{S}_0}^\eta_n \prod_{\ell=1}^n \left(\frac{\Phi_t(F_\ell(s_\ell, 3\ell))}{\gamma} \right)^\gamma \bigwedge_{a} s_1^\gamma \bigwedge_{a} s_2^\gamma \cdots \bigwedge_{a} s_n^\gamma \bigwedge_{a} 3_n^\gamma
\]

By using Fubini’s theorem, we observe that

\[
\int_{\mathbb{S}_0}^\theta \int_{\mathbb{S}_0}^\eta \int_{\mathbb{S}_0}^\eta_1 \int_{\mathbb{S}_0}^\eta_2 \cdots \int_{\mathbb{S}_0}^\eta_n \left(\Phi_t(F_\ell(s_\ell, 3\ell)) \right) \left(\frac{\gamma'}{\gamma} \bigwedge_{a} s_1^\gamma \bigwedge_{a} s_2^\gamma \cdots \bigwedge_{a} s_n^\gamma \bigwedge_{a} 3_n^\gamma \right)^{\gamma_t}
\]

By using the fact $\theta_\ell \geq \rho(\theta_\ell)$, and $\eta_\ell \geq \rho(\eta_\ell)$, we get that

\[
\int_{\mathbb{S}_0}^\theta \int_{\mathbb{S}_0}^\eta \int_{\mathbb{S}_0}^\eta_1 \int_{\mathbb{S}_0}^\eta_2 \cdots \int_{\mathbb{S}_0}^\eta_n \left(\Phi_t(F_\ell(s_\ell, 3\ell)) \right) \left(\frac{\gamma'}{\gamma} \bigwedge_{a} s_1^\gamma \bigwedge_{a} s_2^\gamma \cdots \bigwedge_{a} s_n^\gamma \bigwedge_{a} 3_n^\gamma \right)^{\gamma_t}
\]

This completes the proof.

\textbf{Remark 8.} In Theorem 3, if $\mathbb{T} = \mathbb{Z}$, $\alpha = 1$ we get the result due to Zhao et al. ([11], Theorem 1.5).

\textbf{Remark 9.} In Theorem 3, if we take $\mathbb{T} = \mathbb{R}$, $\alpha = 1$ we get the result due to Zhao et al. ([11], Theorem 1.6).

\textbf{Remark 10.} Let $S_1, S_2, S_9, S_{11}, S_7, S_{13}, S_3$ and S_{12} be satisfied and let $\Phi_t, \gamma_t, \gamma_t', \gamma_t$, and γ_t' be as Theorem 3. Similar to proof of Theorem 3, we have
\[
\int_{\mathcal{A}_0}^{\mathcal{B}_1} \int_{\mathcal{A}_0}^{\mathcal{B}_1} \cdots \int_{\mathcal{A}_0}^{\mathcal{B}_1} \frac{\Phi_t(F(s_s, \mathcal{A}))}{\gamma} \hat{a}_s \hat{a}_s \cdots \hat{a}_s \hat{a}_s \\
\leq G^*(\hat{a}_s \hat{a}_s, \ldots, \hat{a}_s \hat{a}_s)
\]

where
\[
G^*(\hat{a}_s \hat{a}_s, \ldots, \hat{a}_s \hat{a}_s) = \frac{1}{(\gamma)^n} \prod_{\ell=1}^{n} \left(\int_{\mathcal{A}_0}^{\mathcal{B}_1} \Phi_t(P(s_s, \mathcal{A})) \frac{1}{\gamma} \hat{a}_s \hat{a}_s \right)^{\gamma}. \tag{51}
\]

This is an inverse form of the inequality (40).

Corollary 10. Let \(S_{22}, S_{23}, S_{25}, S_{26}, S_{27}, S_{29}, S_{17} \) and \(S_8 \) be satisfied. Then we have that
\[
\int_{\mathcal{A}_0}^{\mathcal{B}_1} \cdots \int_{\mathcal{A}_0}^{\mathcal{B}_1} \frac{\Phi_t(F(s_s, \mathcal{A}))}{\gamma} \hat{a}_s \hat{a}_s \\
\geq G^{**} (\hat{a}_s, \ldots, \hat{a}_s) \tag{52}
\]

where
\[
G^{**} (\hat{a}_s, \ldots, \hat{a}_s) = \prod_{\ell=1}^{n} \left(\int_{\mathcal{A}_0}^{\mathcal{B}_1} \Phi_t(P(s_s, \mathcal{A})) \frac{1}{\gamma} \hat{a}_s \hat{a}_s \right)^{\gamma}. \tag{52}
\]

Remark 11. In Corollary 10, if we take \(\mathbb{T} = \mathbb{Z}, \alpha = 1 \) we get an inverse form of inequality (3), which was given by Handley et al.

Remark 12. In Corollary 10, if we take \(\mathbb{T} = \mathbb{R}, \alpha = 1 \) we get an inverse form of inequality (4), which was given by Handley et al.

Remark 13. In inequality (51) taking \(n = 2, \gamma_1 = \gamma_2 = 2, \) then \(\gamma'_1 = \gamma'_2 = -1, \) we have
\[
\int_{\mathcal{A}_0}^{\mathcal{B}_1} \int_{\mathcal{A}_0}^{\mathcal{B}_1} \prod_{\ell=1}^{n} \frac{\Phi_1(F(s_1, s_2))}{(s_1 - \mathcal{A}_0) + (s_2 - \mathcal{A}_0)} \hat{a}_s \hat{a}_s \\
\geq D(\hat{a}_1, \hat{a}_2) \left(\int_{\mathcal{A}_0}^{\mathcal{B}_1} \rho(\hat{a}_1) - \hat{a}_1 \right) \left(\int_{\mathcal{A}_0}^{\mathcal{B}_1} \Phi_1 \left(\frac{t^{\hat{a}_1}(s_1)}{P(\hat{a}_1 \hat{a}_1)} \right) \frac{1}{\gamma} \hat{a}_s \hat{a}_s \right)^2. \tag{52}
\]

where
\[
D(\hat{a}_1, \hat{a}_2) = 4 \left(\int_{\mathcal{A}_0}^{\mathcal{B}_1} \Phi_1(P(\hat{a}_1 \hat{a}_1)) \frac{1}{P(\hat{a}_1 \hat{a}_1)} \hat{a}_s \hat{a}_s \right)^{-1} \left(\int_{\mathcal{A}_0}^{\mathcal{B}_1} \Phi_2(P(\hat{a}_2 \hat{a}_2)) \frac{1}{P(\hat{a}_2 \hat{a}_2)} \hat{a}_s \hat{a}_s \right)^{-1}. \tag{52}
\]

Remark 14. If we take \(\mathbb{T} = \mathbb{Z}, \alpha = 1 \) the inequality (52) is an inverse of inequality of (1), which was given by Pachpatte.
Remark 15. If we take $T = \mathbb{R}$, $\alpha = 1$ the inequality (52) is an inverse of inequality of (2), which was given by Pachpatte.

3. Conclusions

In this work, by applying \diamond_a calculus, defined as a linear combination of the nabla and delta integrals, we introduced some novel results of Hardy–Hilbert-type inequalities on a general time-scale. Furthermore, we gave the multidimensional generalization for these inequalities to time scales. We also applied our inequalities to discrete and continuous calculus to obtain some new inequalities as special cases.

Author Contributions: Conceptualization, A.A.E.-D., D.B., C.C. and A.A.; formal analysis, A.A.E.-D., D.B., C.C., S.S.A. and A.A.; investigation, A.A.E.-D., D.B., C.C. and A.A.; writing—original draft preparation, A.A.E.-D., D.B., C.C. and A.A.; writing—review and editing, A.A.E.-D., D.B., C.C., S.S.A. and A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no competing interest.

References
1. Yang, B.; Wu, S.; Chen, Q. A new extension of Hardy-Hilbert’s inequality containing kernel of double power functions. Mathematics 2020, 8, 894. [CrossRef]
2. Yang, B.; Wu, S.; Wang, A. A new Hilbert-type inequality with positive homogeneous kernel and its equivalent forms. Symmetry 2020, 12, 342. [CrossRef]
3. Agarwal, R.; O’Regan, D.; Saker, S. Dynamic Inequalities on Time Scales; Springer: Cham, Switzerland, 2014.
4. Saker, S.H.; El-Deeb, A.A.; Rezk, H.M.; Agarwal, R.P. On Hilbert’s inequality on time scales. Appl. Anal. Discrete Math. 2017, 11, 399–423. [CrossRef]
5. Pachpatte, B.G. A note on Hilbert type inequality. Tamkang J. Math. 1998, 29, 293–298. [CrossRef]
6. Handley, G.D.; Koliha, J.J.; Pecaric, J. A Hilbert type inequality. Tamkang J. Math. 2000, 31, 311–316. [CrossRef]
7. Pachpatte, B.G. On some new inequalities similar to Hilbert’s inequality. J. Math. Anal. Appl. 1998, 226, 166–179. [CrossRef]
8. Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhauser: Boston, MA, USA, 2001.
9. Sheng, Q.; Fadag, M.; Henderson, J.; Davis, J.M. An exploration of combined dynamic derivatives on time scales and their applications. Nonlinear Anal. Real World Appl. 2006, 7, 395–413. [CrossRef]
10. Zhao, C.-J.; Cheung, W.-S. On new Hilbert-pachpatte type integral inequalities. Taiwan. J. Math. 2010, 14, 1271–1282. [CrossRef]
11. Zhao, C.-J.; Cheung, W.-S. Inverses of new Hilbert-Pachpatte-type inequalities. J. Inequalities Appl. 2006, 2006, 97860. [CrossRef]