On the low ortho-to-para H$_2$ ratio in star-forming filaments

Alessandro Lupi1,2,*, Stefano Bovino3, and Tommaso Grassi4

1 Dipartimento di Fisica “G. Occhialini”, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
2 INFM – Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
3 Departamento de Astronomía, Facultad Ciencias Físicas y Matemáticas, Universidad de Concepción, Av. Esteban Iturra s/n Barrio Universitario, Casilla 160, Concepción, Chile
4 Center for Astrochemical Studies, Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse 1, D-85748, Garching, Germany

Received XXX; accepted January 5, 2022

ABSTRACT

The formation of stars and planetary systems is a complex phenomenon, which relies on the interplay of multiple physical processes. Nonetheless, it represents a crucial stage for our understanding of the Universe, and in particular of the conditions leading to the formation of key molecules (e.g. water) on comets and planets. Herschel observations demonstrated that stars form out of gaseous filamentary structures in which the main constituent is molecular hydrogen (H$_2$). Depending on its nuclear spin H$_2$ can be found in two forms: ‘ortho’ with parallel spins and ‘para’ where the spins are anti-parallel. The relative ratio among these isomers, i.e. the ortho-to-para ratio (OPR), plays a crucial role in a variety of processes related to the thermodynamics of star-forming gas and to the fundamental chemistry affecting the deuteration of water in molecular clouds, commonly used to determine the origin of water in Solar System’s bodies. Here, for the first time, we assess the evolution of the OPR starting from the warm neutral medium, by means of state-of-the-art three-dimensional magneto-hydrodynamic simulations of turbulent molecular clouds. Our results show that star-forming clouds exhibit a low OPR (≈ 0.1) already at moderate densities (~ 1000 cm$^{-3}$). We also constrain the cosmic rays ionisation rate, finding that 10^{-16} s$^{-1}$ is the lower limit required to explain the observations of diffuse clouds. Our results represent a step forward in the understanding of the star and planet formation process providing a robust determination of the chemical initial conditions for both theoretical and observational studies.

Key words. ISM: molecules – Stars: formation – Astrochemistry – Magnetohydrodynamics – methods: numerical
For the purpose of this study, we equipped the code with an on-the-fly non-equilibrium chemistry network, implemented via the public chemistry library krome (Grassi et al. 2014). The chemical network we employ is based on Grassi et al. (2017a), which is an updated version of that in Glover et al. (2010). We include isomer-dependent chemistry, by employing the most up-to-date reaction rates (Sipilä et al. 2015; Bovino et al. 2019). The final network includes 40 species: H, H⁺, He, He⁺, He⁺², ortho-H₂, para-H₂, ortho-H⁻³, para-H⁻³, H⁺, C⁺, C, O⁻, O, OH, HOC⁺, CO, CH, CH₂, C₂, HCO, H₂O, O₂, ortho-H⁺¹, para-H⁺¹, CH⁺, CH₂⁺, CO⁺, CH⁻³, OH⁺, H₂O⁺, H₂O⁻, O₂⁻, C⁺, O⁻, electrons, plus GRAIN0, GRAIN⁻, and GRAIN⁺, which represent dust grains. A total of 397 reactions connects all these species, including ortho-to-par conversion by protons collisions (H⁺ and H⁺¹), adsorption and desorption of CO and water on the surface of grains (Cazaux et al. 2010; Hocuk et al. 2014), ionisation/dissociation induced by impact with cosmic rays, and dissociation of molecules induced by a standard interstellar radiation field (Draine flux, Draine 1978), which includes self-shielding of H₂ (Glover et al. 2010) and CO (Visser et al. 2009). Electron attachment and recombination of positive ions on grains are also included in the chemical network (Walmsley et al. 2017), with the Coulomb factor consistently calculated for the Draine flux (Draine & Sutin 1987), as well as H₂ formation on dust (assuming an initial OPR of 3 at formation; see Watanabe et al. 2010; Gavilan et al. 2012; Hama & Watanabe 2013; Wakelam et al. 2017) and dust cooling (Grassi et al. 2014), which are determined via pre-computed dust tables, in this case density-, temperature-, and A_d-dependent. The extinction parameter is determined from the isothermal sound speed c_s = (k_B T_ga/μ m_H), with m_H the proton mass, k_B the Boltzmann constant, and μ = 2.4 the molecular weight, and the average 3D velocity dispersion σ_v = \sqrt{\sum_{k=x,y,z} \sigma_{vk}^2}, where σ_v,k is the average over the filament of the k-th direction average velocity dispersion. Since we are not interested into an extremely accurate measure of the filament lengths and widths, and given the complex geometry of our simulated filaments, far from a perfect cylinder, we opt for a simple and approximate determination of the filament length and width. In detail, we proceed as follows: we first align the structure along its major axis (using the position angle of the ellipse associated to the filament), and then define the length L as the maximum horizontal distance among the pixels belonging to the filament. The width W is then retrieved as W = A_{pp}/L, which guarantees that the area is preserved exactly, and the error in the estimate of W is as good as that used for L. At last, a crucial parameter used to determine the fate of (potentially) star-forming filaments is the mass-to-length ratio M/L, which is typically compared to a critical value [M/L]_{crit} = 2 c_s/G, with G the gravitational constant.

3. Results

We evolve the cloud for a few Myr, necessary for the first filaments to form out of the low-density material. During this stage, the temperature evolves self-consistently (see Appendix B), leading to an average Mach number in the cloud of ~ 5 − 6 after 4 Myr, consistent with typically observed values (Mac Low & Klessen 2004). The gas distribution in our fiducial simulated
cloud at 4 Myr (just before the formation of the first sink particle, see Appendix A) is shown in Fig. 1 with the four panels on the right reporting the line-of-sight-integrated ortho-to-para ratio \(\text{OPR}^N \equiv N_{\text{O}}/N_{\text{P}} \), of four massive filamentary structures out of hundreds identified. Qualitatively, Fig. 1 indicates that the OPR is around 0.1 already at these early stages, with peaks of \(\sim 0.01 \) in the densest regions (clumps).

More in detail, in Table 1 we report the average properties of the four selected filaments (among the most massive and extended ones, i.e. \(M > 100 M_\odot \)) at \(t = 4 \) Myr. In particular, from left to right, we report the \(H_2 \) column density \(N_{\text{HH}} \), the cosmic-ray ionisation rate \(\xi_{\text{HH}} \), the gas temperature \(T_{\text{fil}} \), the Mach number \(M \), the magnetic field \(\beta \) magnitude, and two values for the OPR, i.e. OPR and the density-weighted line-of-sight average ratio \(\text{OPR}^\alpha = \langle n_{\text{O}} \rangle / \langle n_{\text{P}} \rangle \). Finally, in the last two columns, we report the mass per unit length \(M/L \) and the filament width \(W \approx A_{\text{PR}}/L \), with \(A_{\text{PR}} \) the effective pixel area of the dendrogram and \(L \) the major axis length of the filament. In general, the filaments identified in our simulations show typical properties consistent with observations (Arzoumanian et al. 2011), i.e. lengths \(L \) between 1 and 10 pc, axis ratios between 1:2 and 1:20, masses from a few tens up to a thousand solar masses, and, being still in an initial collapse stage, densities not exceeding \(10^4 \text{ cm}^{-3} \) with average temperatures around 30 K. The estimated mass per unit length \((M/L) \) is compared with the critical value for collapse, obtaining a full spectrum of values ranging from \(\sim 0.2 \) (sub-critical) up to \(\sim 3 \) (super-critical), with the four reported in Table 1 lying around 1.0-1.5.

To further confirm the accuracy of our modelling which, being developed with ab-initio physics, has not been calibrated to reproduce real clouds, in Fig. 2 we compare our simulated cloud with observations of “diffuse” clouds. In particular, we focus on properties connected to \(H_2 \) and its OPR, like the \(H_2^+ \) abundance (top-left panel) and the cosmic-ray ionisation rate \(\xi_{\text{HH}} \) (top-right panel) (Indriolo 2012), the para- to-ortho ratio of \(H_3^+ \) and \(H_2^+ \) (Crabtree et al. 2011) (bottom-left panel), and the water- to-HF column density ratio (bottom-right panel) (Sonnentrucker et al. 2015). The coloured two-dimensional histogram represents the full distribution of pixels (0.25 pc wide) in our simulation, the grey dots are the observed data, and the blue, orange, green, and red stars the average abundances from the identified filaments at different times. Finally, the magenta lines correspond to the theoretical abundance of \(H_2^+ \) assuming a nascent distribution (solid line), in which the formation of \(H_2^+ \) from cosmic ray-induced ionisation of \(H_2 \) fully determines the relative abundance of the nuclear spin values, and a thermalised distribution (dashed line), in which the relative abundance is dominated by collisional exchange between \(H_3^+ \) and \(H_2^+ \) (Crabtree et al. 2011). The remarkable agreement suggests that our theoretical framework naturally produces reliable initial conditions for the collapsing filaments within molecular clouds (see Appendix C for a detailed analysis of the other simulations of our suite). In particular, in the bottom-left panel, both our simulation and observations lie in between the two theoretical curves, with our results more closely following the nascent distribution, which reflects the strong impact of cosmic rays. The abundance of water is slightly underestimated, particularly at high-density, likely because of the missing formation channels of water on dust grains in our network, which are potentially relevant in cold gas (Cazaux et al. 2010; Sonnentrucker et al. 2015).

In order to disentangle whether time or density play the major role in producing these results, we report in Fig. 3 the evolution of the OPR distribution for every simulation element, as a function of the total hydrogen nuclei density. For this analysis, we directly use the local properties of the gas in the simulation, which allows us to avoid the dilution effects resulting from integrating along the line-of-sight (Ferrada-Chamorro et al. 2021). Each solid curve corresponds to a different time, with the error bars showing the 20th and 80th percentiles, whereas the black dashed line is the thermalised OPR, i.e. the balance between the ortho-to-para and para-to-ortho conversion, and the orange long-dashed one to the steady-state value, i.e. the ratio at chemical equilibrium self-consistently computed using our network. For completeness, we also show the total uncertainty resulting from our entire suite of simulations (see Appendix C), as a grey shaded area. We notice that the distribution extends to very low values \(\lesssim 0.1 \) already at moderate densities \(n_{\text{HH}} \approx 10^4 \text{ cm}^{-3} \). Moreover, the distribution does not significantly change with time, suggesting that the OPR is mainly determined by density, with the dynamical evolution only being a second-order effect. This result suggests that, as soon as filaments form, the OPR is already well below 0.1, and that higher values found for OPR\(^N\) and from observations are hugely affected by dilution effects (by one order of magnitude or more). Our results are robust even against different physical assumptions (see Appendix C), with the upper limits (grey shaded area) still exhibiting very low OPR values when \(n_{\text{HH}} \gtrsim 10^7 \text{ cm}^{-3} \). At low density, the ratio tightly follows the thermalised one, which is also consistent with the equilibrium value. As soon as the gas becomes fully molecular, instead, the distribution starts to differ, but still decreases towards very small values (0.001 or less). At the highest densities probed, the OPR in the simulation settles on the equilibrium value, which showed a moderate increase above \(n_{\text{HH}} \approx 10^4 \text{ cm}^{-3} \), hence departing from the thermalised one.

4. Discussion and conclusions

In this work, we have performed 3D MHD simulations of a molecular cloud with state-of-the-art on-the-fly non-equilibrium chemistry, finding that filaments are characterised by already low OPR values. Our simulations show a remarkable agreement with available observations, without any a priori tuning of the model. It is important to remark that a proper comparison with other available works is difficult, as direct measurements or estimates of the OPR in diffuse and molecular clouds are rare. In particular, the few data in diffuse clouds (Crabtree et al. 2011) suggest values around 0.3-0.7, slightly higher than ours, but in relatively good agreement when considering the observational uncertainties (e.g. optical thickness of these lines and the possible dilution effects along the line-of-sight). Some indirect estimates in between 0.001-0.2 have also been provided for prestellar cores (Troscompt et al. 2009; Brüken et al. 2014; Pagani et al. 2013), i.e. in regions with densities higher than those explored by our simulations and representing an advanced stage of the star-formation process. However, the strong assumptions made to infer this fundamental quantity from different chemical proxies do not allow to get a reliable estimation from observations. In this context, our study represents a relevant step forward to improve the fundamental knowledge of the star-formation process.

The absence of sulfur chemistry in our work might represent a limitation, since it could reduce the ortho-to-para conversion efficiency by removing \(\text{H}^+ \) via the reaction path \(\text{S} + \text{H}^+ \rightarrow \text{S}^+ + \text{H} \) (Furuya et al. 2015). However, Furuya et al. (2015) show that (i) sulfur is quickly adsorbed on dust grains as soon as \(\text{S}^+ \) recombines and, as a consequence, (ii) this effect is relevant only for extremely high metal abundances, which are not compatible with the measured values of sulfur from obser-
Fig. 1. Column density map of H$_2$ at 4 Myr. On the right, we report the OPRn in four filaments identified in the snapshot (corresponding to the four white squares in the left panel). The cloud already exhibits clear filamentary structures, and also some clumps forming within the most massive and largest ones. In these regions, the OPR is already low, with values typically below 0.1.

Table 1. Main properties of four filaments out of hundreds in our fiducial simulation (cfr. Fig. 1). From left to right, we report H$_2$ column density, average number density n_{H_2}, average cosmic ray ionisation rate ζ_{H_2}, gas temperature T_{fil}, Mach number M, magnetic field magnitude B, OPR (using both column densities –first value– and average number densities – second value), mass per unit length M/L, and filament width W. All values we find are consistent with the expected ones derived from observations.

ID	N_{H_2} (cm$^{-2}$)	n_{H_2} (cm$^{-3}$)	$\log \zeta_{H_2}$ (s$^{-1}$)	T_{fil} (K)	M	B (µG)	OPRn	M/L	W (pc)
1	21.28	768.24	-15.55	31.4	10.60	7.60	0.10/0.06	77.56	0.10
2	21.28	1237.57	-15.54	28.0	3.55	10.13	0.08/0.03	54.09	0.12
3	21.22	1274.69	-15.58	23.9	7.78	9.92	0.06/0.01	41.33	0.16
4	21.38	2022.84	-15.51	28.3	6.14	9.30	0.06/0.03	52.70	0.08

Concluding, our state-of-the-art three-dimensional magneto-hydrodynamic simulations of molecular clouds formation with on-the-fly non-equilibrium chemistry indicate that the H$_2$ ortho-to-para ratio quickly evolves with density, reaching very low values (but far from the thermalised one) already at moderate densities typical of proto-filaments. This is particularly relevant for smaller scale studies, in which the unconstrained initial OPR is either varied in the allowed range to bracket its effect on the results (see, e.g. Sipilä et al. [2015], Kong et al. [2015], Bovino et al. [2020] or conservatively assumed to be around 0.1 (see, e.g. Jensen et al. [2021]), i.e. larger than ours ($10^{-3} - 10^{-2}$). The results in this work therefore establish that the initial conditions of the star formation process in filaments are characterised by already low OPR and typically high ζ_{H_2}, both conditions that would dramatically boost the deuteration mechanism and shorten the corresponding timescales. We notice that, even in filaments characterised by low cosmic ray ionisation rates (Indriolo [2012]), the expected OPR would be only moderately higher, and never as high as 0.1. For the first time, we have been able to determine the initial conditions of star-forming filaments from ab-initio conditions, in particular the chemical abundances of important species like H$_2$ (ortho- and para-), H$_2^+$, CO, and H$_2$O, which have far-reaching implications for the deuteration process (hence on the reliability of chemical clocks), for the observed HDO/H$_2$O ratios in planet-forming regions (which strongly depends on the OPR), and its connection with the origin of water in our Solar System.

Acknowledgements. AL acknowledges funding from MIUR under the grant PRIN 2017-MB8AEZ. The computations/simulations were performed with resources provided by the Kulturn Astronomy Hybrid Cluster. This research made use of astrodendro, a Python package to compute dendrograms of astronomic...
Fig. 2. Comparison of our simulation with existing observations of diffuse clouds, shown as grey dots (Crabbée et al. 2011) and Indriolo+12 (Sonnentrucker et al. 2015). The top-left panel shows the abundance of H$_3^+$ relative to H$_2$, the top-right panel the corresponding f_{OH_2}, the bottom panel the para-to-total ratio for both H$_2^+$ and H$_2$, and the bottom-right panel the H$_2$O relative abundance with respect to HF, where the HF column density in our simulation is extracted assuming a rigid scaling relative to H$_2$ (Indriolo 2012) with scaling factors in the range 0.5 x 10$^{-6}$–3.5 x 10$^{-8}$. Our simulation is in remarkable agreement with the observational results of most tracers, confirming the accuracy of our chemical and physical modelling, with only a slight discrepancy in H$_2$O, but still consistent with observations. This is likely attributed to the missing water formation channels on dust grains in our chemical network, which might be potentially important in cloud conditions (Cazaux et al. 2010; Sonnentrucker et al. 2015).

Cazaux, S., Cobut, V., Marseille, M., Spaans, M., & Caselli, P. 2010, A&A, 522, 175
Czernik, L. M. R., & Hollenbach, D. J. 2003, ApJ, 589, 512
Federrath, C., Rathborne, J. M., Longmore, S. N., et al. 2016, ApJ, 832, 143
Ferrada-Chamorro, S., Lupi, A., & Bovino, S. 2021, MNRAS, 505, 3442
Furuya, K., Aikawa, Y., Hama, T., & Watanabe, N. 2019, ApJ, 882, 172
Furuya, K., Aikawa, Y., Hincelin, U., et al. 2015, A&A, 584, A124
Gavilan, L., Vidali, G., Lemaire, J. L., et al. 2012, ApJ, 760, 35
Glover, S. C. O., Federrath, C., Mac Low, M.-M., & Klessen, R. S. 2010, MNRAS, 404, 2
Grassi, T., Bovino, S., Haugbølle, T., & Schleicher, D. R. G. 2017a, MNRAS, 466, 1259
Grassi, T., Bovino, S., Haugbølle, T., & Schleicher, D. R. G. 2017b, MNRAS, 466, 1259
Grassi, T., Bovino, S., Schleicher, D. R. G., et al. 2014, MNRAS, 439, 2386
Hama, T. & Watanabe, N. 2013, Chemical Reviews, 113, 8783
He, J. & Vidali, G. 2014, Faraday Discussions, 168, 517
Hocuk, S., Cazaux, S., & Spaans, M. 2014, MNRAS, 438, L56
Hogerheijde, M. R., Bergin, E. A., Brinch, C., et al. 2011, Science, 334, 338
Hopkins, P. F. 2015, MNRAS, 450, 53
Hopkins, P. F. 2016, MNRAS, 462, 576
Hopkins, P. F., & Raives, M. J. 2016, MNRAS, 455, 51
Indriolo, N. 2012, Philosophical Transactions of the Royal Society of London A, 370, 5142
Jensen, S. S., Jørgensen, J. K., Furuya, K., Haugbølle, T., & Aikawa, Y. 2021, A&A, 649, A69
Jørgensen, J. K., Belloche, A., & Garrod, R. T. 2020, ARA&A, 58, 727
Kong, S., Caselli, P., Tan, J. C., Wakelam, V., & Sipilä, O. 2015, ApJ, 804, 98
Mac Low, M.-M. & Klessen, R. S. 2004, Reviews of Modern Physics, 76, 125
Mandal, A., Federrath, C., & Körtgen, B. 2020, MNRAS, 493, 3098
McKee, C. F. & Ostriker, E. C. 2007, ARA&A, 45, 565
Molinari, S., Swinyard, B., Bally, J., et al. 2010, A&A, 518, L100
Padoan, P. & Nordlund, A. 2011, ApJ, 730, 40
Padoan, P., Pan, F., Haugbølle, T., & Nordlund, Å. 2016, ApJ, 822, 11
Padovani, M., Galli, D., & Glassgold, A. E. 2009, A&A, 501, 619
Padovani, M., Ivel, A. V., Galli, D., & Caselli, P. 2018, A&A, 614, A111
Pagani, L., Lesaffre, P., Jorfi, M., et al. 2013, A&A, 551, A38
Fig. 3. Three-dimensional distribution of the OPR as a function of $n_{H,\text{tot}}$ at different times. The grey shaded area represents the uncertainty in the physical/chemical modelling in our suite of simulations (shown for completeness), the black dashed line corresponds to the thermalised ratio, valid for temperatures below ~ 100 K (i.e. for densities larger than 30-40 cm$^{-3}$ in our specific case), and the orange long-dashed line to the equilibrium/steady-state value. We clearly see that time plays a minor role, with the distribution being almost uniquely determined by density. Most importantly, the OPR is already well below 0.1 above 10^3 cm$^{-3}$, reaching 0.001 around 10^4 cm$^{-3}$. Even in the most pessimistic case, dense gas above 10^4 cm$^{-3}$ never exhibits OPR values above a few 0.01. The ratio follows the thermalised/steady-state value, starting to depart around $n_{H,\text{tot}} \sim 100$ cm$^{-3}$, when the gas becomes fully molecular. However, at high densities, the OPR settles on the equilibrium value, which is much higher than the thermalised one.

Perets, H. B. & Biham, O. 2006, MNRAS, 365, 801
Pontzen, A., Roskar, R., Stinson, G. S., et al. 2013, pynbody: Astrophysics Simulation Analysis for Python, astrophysics Source Code Library, ascl:1305.002
Sipilä, O., Caselli, P., & Harju, J. 2015, A&A, 578, A55
Sonnentrucker, P., Wolfire, M., Neufeld, D. A., et al. 2015, ApJ, 806, 49
Springel, V. 2005, MNRAS, 364, 1105
Troscompt, N., Faure, A., Maret, S., et al. 2009, A&A, 506, 1243
Tsuge, M., Namiyoshi, T., Furuya, K., et al. 2021, ApJ, 908, 234
Ueta, H., Watanabe, N., Hama, T., & Kouchi, A. 2016, Phys. Rev. Lett., 116, 253201
Vidali, G. & Li, L. 2010, Journal of Physics Condensed Matter, 22, 304012
Visser, R., van Dishoeck, E. F., & Black, J. H. 2009, A&A, 503, 323
Wakelam, V., Bron, E., Cazaux, S., et al. 2017, Molecular Astrophysics, 9, 1
Walmsley, C. M., Flower, D. R., & Pineau des Forêts, G. 2004, A&A, 418, 1035
Watanabe, N., Kimura, Y., Kouchi, A., et al. 2010, ApJ, 714, L233
Wolfire, M. G., McKee, C. F., Hollenbach, D., & Tielens, A. G. G. M. 2003, ApJ, 587, 278
Appendix A: Numerical methods

Appendix A.1: Turbulence driving

In order to drive turbulence in the box with properties similar to observed molecular clouds, the gas distribution is stirred by a random acceleration field obtained via an Ornstein–Uhlenbeck process (Federrath et al. 2010; Bauer & Springel 2012). The energy power spectrum normalisation is set to obtain a velocity dispersion in the cloud $\sigma_v \sim 7 \, \text{km s}^{-1}$, and the auto-correlation time of the random process is set to $\tau = 10$ Myr. Energy is injected only at large scales, according to a parabolic power spectrum peaking at $k = 3$ (extending from $k = 2$ up to $k = 4$), assuming a half-solenoidal half-compressive driving (Bauer & Springel 2012). This assumption is reasonably consistent with recent simulations of molecular cloud formation in which turbulence was driven self-consistently via random supernova explosions (Padoan et al. 2016). During this relaxation phase, which lasts for 50 Myr in order to let turbulence fully develop, we do not include self-gravity, and we assume an isothermal equation of state with $T = 5000$ K and no chemistry evolution (Man-dal et al. 2020). This allows us to start the self-consistent evolution of the cloud with ab-initio chemical abundances typical of the warm neutral medium, avoiding any pre-processing of the species during the relaxation. Nevertheless, to further corroborate our results and isolate the effect of self-gravity, we also perform an additional experiment in which chemistry and proper cooling are already included during the relaxation phase.

Appendix A.2: Sink formation

Near the end of the simulation, we expect clumps to form in filamentary and a few resolution elements to reach very high densities, thus requiring very short time-scales to integrate the dynamics. In order to avoid this undesired slow-down and let the simulation evolve for longer times, we convert the gas hitting the resolution limit of the simulation into proto-stellar objects, commonly dubbed ‘sink particles’, which are able to grow via accretion of surrounding gas. In this work, we include a simple sink formation scheme, i.e. gas particles i) above $n_\text{crit} > 10^{19} \, \text{cm}^{-3}$ ii) showing negative velocity divergence and iii) located at a relative gravitational potential minimum are converted into sink particles, unless another sink is found within their kernel volume. After a sink has formed, we allow it to accrete gas within its kernel volume, corresponding to a sphere enclosing an effective number of 32 neighbours that matches the sink formation condition. However, since our main interest is in the pre-stellar phase, rather than in the star formation process itself, we stop our simulations after a few sinks have formed in the box, making the details of the sink formation scheme almost irrelevant.

Appendix A.3: Cosmic ray flux determination

The cosmic ray ionisation rate in molecular clouds is affected by several uncertainties, since it strongly depends on the physical conditions inside and outside the cloud. For this reason, most studies to date explore different values of the cosmic ray ionisation rate $\dot{\zeta}_H$, typically in the range $1.3 \times 10^{-17} - 1.3 \times 10^{-16}$. While, in some of our simulations we also employ a constant value, in a real cloud cosmic rays are attenuated as they move deeper into it, hence a more consistent modelling should take into account this aspect. However, detailed cosmic ray propagation in 3D simulations is computationally expensive, and would add an additional layer of complexity to our already computationally expensive simulations. For this reason, in this work we opt for an effective model which, starting from the local properties of each resolution element, allows us to follow the variations of $\dot{\zeta}_H$ in the cloud, at a moderate computational cost (Padovani et al. 2018).

\[\dot{\zeta}_H = \dot{\zeta}_H^{\text{p}} + \dot{\zeta}_H^{\text{e}} \]

(A.1)

where the two contributions are from protons and electrons, respectively, and are defined as

\[\dot{\zeta}_H^{\text{p}} = \begin{cases} 6.8 \times 10^{-16} N_\text{H}^{0.423} & N_\text{eff} < 10^{25} \, \text{cm}^{-2} \\ 5.4 \times 10^{-18} \exp(-\Sigma_{\text{eff}}/38) & \text{otherwise} \end{cases} \]

(A.2)

\[\dot{\zeta}_H^{\text{e}} = \begin{cases} 1.4 \times 10^{-19} N_\text{H}^{-0.04} & N_\text{eff} < 10^{25} \, \text{cm}^{-2} \\ 3.3 \times 10^{-20} \exp(-\Sigma_{\text{eff}}/71) & \text{otherwise} \end{cases} \]

(A.3)

where $N_\text{eff} = N_{\text{eff}} / 10^{20} \, \text{cm}^{-2}$ and $\Sigma_{\text{eff}} = 2.36n_\text{H}N_{\text{eff}}$, with N_{eff} the effective column density traversed by cosmic rays. To determine N_{eff}, we assume that the magnetic field lines are relatively not curved (as expected in this earlier star-formation stage) and they have small intensity variations, allowing us to consider the total column density $N_\text{H} = N_\text{H}_\text{p} + N_\text{H}_\text{e}$, as a reliable first-order approximation, which we determine using a local approximation (Grassi et al. 2017b) in which $N_\text{e} = 1.87 \times 10^{21} (n_\text{H} / 10^{3} \text{cm}^{-3})^{2/3}$ of N_{eff}. When the magnetic field lines are not straight, our estimate of N_{eff} represents a lower limit to the actual value, which translates into our cosmic ray ionisation rate being an upper limit. This is why, in our suite, we chose an average model among those in the literature (Padovani et al. 2009), and also explored very different conditions, i.e. a conservative and uniform $\dot{\zeta}_H = 1.3 \times 10^{-17} \, \text{s}^{-1}$, and the locally varying one, to bracket the possible conditions of real clouds.

Appendix A.4: Ortho-to-para H_2 conversion on dust

Recent experimental works both on amorphous solid water (Ueta et al. 2016) as well as on bare silica (Tsuge et al. 2021), show the efficiency of the ortho-to-para H_2 conversion on the surface of dust grains. To consistently follow this process within our simulations and evaluate its overall impact on the OPR, we employ state-of-the-art frameworks (Bovino et al. 2017; Furuya et al. 2019), in which the conversion rates in units of s^{-1} are defined as

\[k_\text{op} = k_\text{ads} \eta_\text{op} \]

(A.4)

\[k_\text{po} = k_\text{ads} \eta_\text{po} \]

(A.5)

where the $k_\text{ads} = S_\text{v}/\sigma_{\text{dust}}$ are the adsorption rates of the species on the surface of grains, with S_v being the sticking coefficient (here assumed to be 1 for simplicity), σ_{dust} the thermal gas speed, and σ_{dust} the distribution-averaged grain geometrical cross-section. The efficiency of the process is regulated by the factor η, which represents the competition between the conversion process and desorption, and it is defined as (Furuya et al. 2019).

\[\eta_\text{op} = \frac{\tau_\text{des}}{\tau_\text{conv}+\tau_\text{cond}} \frac{1}{1+\gamma} \]

(A.6)

\[\eta_\text{po} = \frac{\tau_\text{des}}{\tau_\text{conv}+\tau_\text{cond}} \frac{\gamma}{1+\gamma} \]

(A.7)

where the desorption time is calculated as the minimum between the thermal desorption time and the cosmic-ray induced desorption time, τ_{conv} is the experimental conversion time (Tsuge...
et al. 2021), fitted as $\tau_{\text{conv}} = 6.3 \times 10^{4} T^{-1.9}$, and $\gamma = 9 \exp(-170.5/T_{\text{dust}})$ is the thermalised value of the ortho-to-para H_2 ratio, assuming the energy difference between o-H_2 and p-H_2 on the grains is the same as that in the gas phase. This allows us to include in the H_2 rate equations both the ortho-para conversion and its inverse process (para-to-ortho). However, since the inverse process is in general negligible at low temperatures (Bovino et al. 2017), we opt for completely neglecting it in our simulations, which in practice corresponds to assuming $\gamma = 0$ (Bovino et al. 2017). We note that our approach is based on a single average binding energy approximation, in particular $E_B = 600 \text{ K}$ as reported in literature (Perets & Bihani 2006; Vidali & Li 2010; He & Vidali 2014), and refer to other recent works (Furuya et al. 2019) for a more comprehensive treatment which also includes the thermal hopping between different adsorption sites. The effect of these processes on the evolution of the H_2 OPR is discussed in Appendix C.

Appendix A.5: HF abundance in diffuse clouds

Observations of water in diffuse clouds typically lack a direct measure of the H_2 column density, using instead HF (or other hydrides) as an alternative proxy (Sonnentrucker et al. 2015). Despite the correlation $N_{\text{HF}} = \chi_{\text{HF}} N_{H_2}$ is found to be quite tight, the uncertainty in the conversion factor reaches up to a factor of ~ 7, ranging from 0.5×10^{-6} up to 3.5×10^{-8} (Indriolo 2012). For this reason, and considering the fact that our chemical network does not include HF, no simple comparison between simulations and observations exists, and particular attention must be taken when converting H_2 to HF (or vice versa). For the comparison between our runs and observations of Fig. 2, we opt therefore for a more sophisticated procedure, i.e. for each value of N_{H_2} in our simulations, we estimate the N_{HF} using 100 different values of χ_{HF} within the observed range, so that the source of uncertainty is properly accounted for, and combine all these measures in a single 2D histogram reported in the bottom-right panel of the figure, appropriately normalised to the total number of measures available.

Appendix B: Relaxation phase

Our simulation suite is composed of four runs, three of them starting from our fiducial isothermal relaxation without chemistry, that we call RelaxIso and one in which proper cooling and chemistry are accounted for during relaxation, that we call RelaxChem, in which $\xi_{H_2} = 1.3 \times 10^{-17} \text{ s}^{-1}$ is kept constant over time in the entire box. The relaxation phase is necessary to guarantee that turbulence fully develops in the box, producing initial conditions of the actual simulations that more closely represent realistic molecular clouds (Federrath et al. 2010a). To give an idea of the global evolution of our fiducial simulated cloud, we show in Fig. B.1 the main properties of the box during both the relaxation phase (reported as a grey shaded area with negative times) and the actual run (positive times). While turbulence leads to an initial increase of σ_v (reflected in all the other properties it affects), the sound speed remains constant during relaxation, producing a Mach number slightly above unity. During the run, instead, M increases quickly to the typically observed values, because of cooling. On average, the magnetic field does not change significantly, as long as the typical density interval remains small.

![Fig. B.1. Evolution of the global properties of the turbulent cloud in our fiducial model, during the relaxation phase (shaded area with negative times) and the actual run (positive times). While turbulence leads to an initial increase of σ_v (reflected in all the other properties it affects), the sound speed remains constant during relaxation, producing a Mach number slightly above unity. During the run, instead, M increases quickly to the typically observed values, because of cooling. On average, the magnetic field does not change significantly, as long as the typical density interval remains small.](image)

For completeness, we also report in Table B.1 the same main properties at the end of the relaxation phase for the two relaxation models we considered, in addition to the density-weighted average density and temperature. While the turbulence-driven properties are the same in both relaxation models, the thermodynamic is not, resulting in very different average temperatures and densities. To better clarify how the gas is distributed in the two cases, in Fig. B.2 we show the density and temperature distributions (the latter only for the RelaxChem case). Overlaid on the density-temperature plot of RelaxChem we also report the average temperature (red) and dust temperature (green)
Table B.1. Main properties of our turbulent box after 50 Myr of relaxation for the two different considered models RelaxIso and RelaxChem. The inclusion of cooling and chemistry during the relaxation phase allows the gas to spread over a larger density/temperature interval, resulting in very different thermal properties (typical of colder and denser gas), whereas those fully determined by turbulence remain almost identical (the 3D velocity dispersion σ_v and the virial parameter α_{vir}).

Model	$\langle n_{\text{H, tot}} \rangle$ (cm$^{-3}$)	$\langle T \rangle$ (K)	$\langle \sigma_v \rangle$ (kms$^{-1}$)	c_s (kms$^{-1}$)	M	β	α_{vir}
RelaxChem	123.8	128	7.525	0.663	11.35	0.318	1.761
RelaxIso	6.2	5×10^3	7.162	5.820	1.230	2.008	1.600

Fig. B.2. Distribution of the gas at the end of the relaxation phase. The density–temperature diagram corresponds to RelaxChem (notice that this distribution does not change when gravity is included, apart from extending to higher densities as the gas collapses), with the red line representing the average temperature, and the green one the average dust temperature. The temperature-only distribution in the right-hand panel shows the typical temperature of the gas, 100-200 K, higher than the typical temperature assumed in isothermal molecular cloud simulations. In the top panel, we show instead the density distribution for both relaxation models, where RelaxChem, extending to higher densities because of cooling, is shown in blue, and RelaxIso, more concentrated around the initial density, in orange.

Appendix C: The full simulation suite

The four simulations we performed are meant to cover most of the plausible parameter space, thus properly constraining our models relative to observations. In particular, compared to our fiducial model, we consider: a) RelaxChem plus self-gravity, named RelaxChem_SG, b) RelaxIso plus self-gravity, named RelaxIso_SG, c) RelaxChem plus self-gravity and cooling, named RelaxChem_SC, and d) RelaxIso plus self-gravity and cooling, named RelaxIso_SC.
laxIso_SG, c) the fiducial model (see Main Text), and d) the fiducial model with the addition of ortho–to–para conversion on dust (as described in Section A), named RelaxIso_CR_OPdust. Similar to Fig. [3] in the Main Text, Fig. [C.2] reports the OPR evolution for models RelaxChem_SG (top panel), RelaxIso_SG (middle panel), and RelaxIso_OPdust (bottom panel) for completeness. RelaxIso_CR_OPdust gives almost identical results to our fiducial model, suggesting that the OPR conversion on dust, which slightly accelerates the ortho-to-para conversion, does not change our picture significantly, and that the gas-phase collisions with H+ and H2+ are already efficient enough to bring the OPR down, without the need of this additional mechanism. For RelaxChem_SG, in which chemistry is also evolved during the relaxation phase, the OPR distribution in these stages is reported with negative times and an additional ‘(R)’ in the label. We immediately see that, even without self-gravity, when cooling is included, the denser gas stirred by turbulence quickly settles on a steady-state OPR distribution, and the addition of gravity does not alter the distribution at all. Compared to the fiducial run, here the OPR is typically higher, farther from the thermalised value. Nevertheless, a clear drop can be observed around $n_{H_2,\mathrm{tot}} \sim 3 \times 10^3 \, \text{cm}^{-3}$, which also in this case yields an OPR well below 0.1 at the typical densities of star-forming filaments ($n_{H_2,\mathrm{tot}} \geq 10^4 \, \text{cm}^{-3}$). A similar trend can be observed in RelaxIso_SG, although the high density drop is even steeper that in the previous case, consistent with the weak time-dependence of the distribution (notice indeed that in this second case chemistry was not present during the initial relaxation, hence the processing time is much shorter). Combining the results of these two models, we can conclude that the higher OPR distribution relative to our fiducial model is the result of the very low cosmic ray ionisation rate, which is reasonable for protostellar cores, but not for the typical conditions of molecular clouds (Padovani et al. 2009, 2018). Nonetheless, all our models, even the most pessimistic ones, result in low OPR ($\lesssim 0.01$) at the typical densities of star-forming filaments, and this further corroborates our conclusions in the Main Text.

To further support our claims about the effect of a too low ζ_{H_2}, we compare in Fig. [C.1] our RelaxIso_SG with observations, as in Fig. [2]. We immediately see that, with respect to our fiducial run, the results here are completely off, with the simulation yielding lower abundances than those observed. This is perfectly consistent with the discrepancy between our assumed ζ_{H_2} with respect to the observationally-inferred value (Indriolo 2012), even though these results might be compatible with the claimed non-detections. Moreover, in the bottom-left panel, our results almost perfectly lie on the thermalised distribution, consistently with the fact that cosmic ray-induced ionisation of H$_2$ becomes almost negligible with respect to the atom exchange reactions dominating in thermalised conditions.

Despite not being the focus of this study, we report in Fig. [C.3] the abundance of gaseous CO in our fiducial simulation for completeness at different times. CO forms efficiently in our

Notice that, in this last case, dense filaments and clumps already form during the relaxation phase, and they collapse in less than 1 Myr after self-gravity is included.
filaments, reaching the canonical fraction of about 10^{-4}, despite the high cosmic ray ionisation rate. We also notice that CO does not exhibit any strong time-dependence in the probed density range, but this is not surprising since freeze-out on dust grains still has a negligible impact.
Fig. C.4. Examples of column density maps of three important chemical species in molecular clouds, i.e. CO, H$_2$O, and H$_3^+$ respectively, from left to right. While H$_3^+$ is quite uniformly distributed in the box, H$_2$O forms in larger amounts in moderately higher density gas, and CO reaches typically observed values ($N_{\text{CO}} \gtrsim 10^{17} \text{ cm}^{-2}$) only in proto-filaments (notice the huge difference, about 4 orders of magnitude, between the filaments and the background).