Research article

A certain subclass of bi-univalent functions associated with Bell numbers and \(q \)-Srivastava Attiya operator

Erhan Deniz\(^1\)*, Muhammet Kamali\(^2\)* and Semra Korkmaz\(^1\)

\(^1\) Kafkas University, Faculty of Science and Letters, Department of Mathematics, Kars, Turkey
\(^2\) Kyrgyz-Turkish Manas University, Faculty of Sciences, Department of Mathematics, Chyngyz Aitmatov avenue, Bishkek, Kyrgyz Republic

* Correspondence: Email: edeniz36@gmail.com, muhammet.kamali@manas.edu.kg.

Abstract: In the present study, we introduced general a subclass of bi-univalent functions by using the Bell numbers and \(q \)-Srivastava Attiya operator. Also, we investigate coefficient estimates and famous Fekete-Szegö inequality for functions belonging to this interesting class.

Keywords: bi-univalent function; \(q \)-Srivastava Attiya operator; Bell numbers; coefficient estimates

Mathematics Subject Classification: 30C45, 30C50

1. Introduction and preliminaries

Let \(\mathcal{A} \) be the class of all analytic functions of the form

\[
f(z) = z + \sum_{k=2}^{\infty} a_k z^k
\]

in the open unit disk \(D = \{z \in \mathbb{C} : |z| < 1\} \) normalized by the conditions \(f(0) = 0 \) and \(f'(0) = 1 \). The well-known Koebe one-quarter theorem \cite{8} ensures that the image of \(D \) under every univalent function \(f \in \mathcal{A} \) contains a disk of radius 1/4. Thus, every univalent function \(f \) has an inverse \(f^{-1} \) satisfying \(f^{-1}(f(z)) = z \) and

\[
f^{-1}(f(w)) = w, \quad (|w| < r_0(f), \ r_0(f) \geq 1/4)
\]

where

\[
f^{-1}(w) = w - a_2w^2 + (2a_2^2 - a_3)w^3 - \cdots.
\]

A function \(f \in \mathcal{A} \) is said to be bi-univalent in \(D \) if both \(f \) and \(g \) to \(D \) are univalent in \(D \), where \(g \) is the analytic continuation of \(f^{-1} \) to the unit disk \(D \). Let \(\Sigma \) denote the class of bi-univalent functions...
Lemma 1.1. For a brief history of functions in the class \(\Sigma \), see [3, 4, 16, 19]. Later, Srivastava et al.’s [24, 26–28] gave very important contributions to this theory. Recently, for coefficient estimates of the functions in some particular subclasses of bi-univalent functions, one may see [6, 7, 10, 15, 20, 25, 29, 30].

For analytic functions \(f \) and \(g \) in \(\mathbb{D} \), \(f \) is said to be subordinate to \(g \) if there exists an analytic function \(w \) such that \(w(0) = 0 \), \(|w(z)| < 1 \) and \(f(z) = g(w(z)) \). This subordination is denote by \(f(z) < g(z) \).

In particular, when \(g \) is univalent in \(\mathbb{D} \),

\[
f(z) < g(z) \iff f(0) = g(0) \text{ and } f(D) \subset g(D) \quad (z \in \mathbb{D}).
\]

The \(q \)-difference operator, which was introduced by Jackson [13], is define by

\[
\partial_q f(z) = \frac{f(qz) - f(z)}{(q - 1)z}, \quad (z \neq 0)
\]

for \(q \in (0, 1) \). It is clear that \(\lim_{q \to 1^+} \partial_q f(z) = f'(z) \) and \(\partial_q f(0) = f'(0) \), where \(f' \) is the ordinary derivative of the function. For more properties of \(\partial_q \) see [9, 11, 12].

Thus, for function \(f \in \mathcal{A} \) we have

\[
\partial_q f(z) = 1 + \sum_{k=2}^{\infty} [k]_q a_k z^{k-1},
\]

where \([k]_q\) is given by

\[
[k]_q = \frac{1 - q^k}{1 - q}, \quad [0]_q = 0
\]

and the \(q \)-factorial is define by

\[
[k]_q! = \begin{cases}
\prod_{n=1}^{k} [n]_q, & k \in \mathbb{N} \\
1, & k = 0
\end{cases}
\]

As \(q \to 1^− \), then we get \([k]_q \to k\). Thus, if we choose the function \(g(z) = z^k \), while \(q \to 1 \), then we have

\[
\partial_q g(z) = \partial_q z^k = [k]_q z^{k-1} = g'(z),
\]

where \(g' \) is the ordinary derivative.

In order to derive our main results, we have to recall here the following lemmas.

Lemma 1.1. [8] If \(p \in \mathcal{P} \) then \(|p_k| \leq 2 \) for each \(k \), where \(\mathcal{P} \) is the family of all functions \(p \) analytic in \(\mathbb{D} \) for which \(\Re p(z) > 0 \),

\[
p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots
\]

for \(z \in \mathbb{D} \).

Lemma 1.2. [17] If the function \(p \in \mathcal{P} \) is given by the series 1.8, then

\[
2p_2 = p_1^2 + x(4 - p_1^2),
\]

\[
4p_3 = p_1^3 + 2(4 - p_1^2)p_1 x - p_1(4 - p_1^2)x^2 + 2(4 - p_1^2)(1 - |x|^2)z
\]

for some \(x, z \) with \(|x| \leq 1 \) and \(|z| \leq 1 \).
For a fixed non-negative integer \(n \), the Bell numbers \(B_n \) count the possible disjoint partitions of a set with \(n \) elements into non-empty subsets or, equivalently, the number of equivalence relations on it. The numbers \(B_n \) are named the Bell numbers after Eric Temple Bell (1883 – 1960) (see [1,2]) who called them the “exponential numbers”. The Bell numbers \(B_n \) \((n \geq 0)\) are generated by the function \(e^{e^z - 1} \) as follows: \(e^{e^z - 1} = \sum_{n=0}^{\infty} B_n \left(\frac{z^n}{n!} \right) (z \in \mathbb{R}) \). The Bell numbers \(B_n \) satisfy the following recurrence relation involving binomial coefficients: \(B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k \). Clearly, we have \(B_0 = B_1 = 1 \), \(B_2 = 2 \), \(B_3 = 5 \), \(B_4 = 15 \), \(B_5 = 52 \) and \(B_6 = 203 \). We now consider the function \(\varphi (z) := e^{e^z - 1} \) with its domain of definition as the open unit disk \(\mathbb{D} \). Recently Srivastava and co-authors studied geometric properties and coefficients bounds for starlike functions related to the Bell numbers (see [5,14]).

On the other hand, Shah and Noor [21] introduced the \(q \)-analogue of the Hurwitz Lerch zeta function by the following series:

\[
\phi_q (s,b;z) = \sum_{k=0}^{\infty} \frac{z^k}{[k+b]_q^s},
\]

where \(b \in \mathbb{C} \setminus \mathbb{Z}_0^-, s \in \mathbb{C} \) when \(|z| < 1\), and \(\text{Re} (s) > 1 \) when \(|z| = 1\). The a normalized form of 1.9 as follows:

\[
\psi_q (s,b;z) = [1+b]_q^s \left[\phi_q (s,b;z) - [b]_q^{-s} \right] = z + \sum_{k=2}^{\infty} \left(\frac{[1+b]_q}{[k+b]_q} \right)^s z^k.
\]

From 1.10 and 1.1, Shah and Noor [21] defined the \(q \)-Srivastava Attiya operator \(J_{q,b}^s f (z) : \mathcal{A} \rightarrow \mathcal{A} \) by

\[
J_{q,b}^s f (z) = \psi_q (s,b;z) * f (z) = z + \sum_{k=2}^{\infty} \left(\frac{[1+b]_q}{[k+b]_q} \right)^s a_k z^k
\]

where * denotes convolution (or the Hadamard product).

We note that:

(i) If \(q \rightarrow 1^- \), then the function \(\phi_q (s,b;z) \) reduces to the Hurwitz-Lerch zeta function and the operator \(J_{q,b}^s \) coincides with the Srivastava-Attiya operator (see [22,23]).

(ii) \(J_{q,0}^1 f (z) = \int_0^z f(t) t^{-1} d_q t \) \((q-\text{Alexander operator}) \).

(iii) \(J_{q,b}^1 f (z) = \frac{[1+b]_q}{[z]} \int_0^z f(t) t^{-1} d_q t \) \((q-\text{Bernardi operator [18]}) \).

(iv) \(J_{q,1}^1 f (z) = \frac{[z]_q}{[z]} \int_0^z f(t) t^{-1} d_q t \) \((q-\text{Libera operator [18]}) \).

In present paper, we defined a general subclass \(\Sigma H_{q,b}^{s} (\tau, \lambda, \mu) \) of bi-univalent functions related to the Bell numbers by using \(q \)-Srivastava Attiya operator. Using the principles of subordination, the estimates for the coefficients \(|a_2|, |a_3| \) and \(|a_3 - \delta a_2^2| \) of the functions of the form 1.1 in the class \(\Sigma H_{q,b}^{s} (\tau, \lambda, \mu) \) have been obtained. For some particular choices of \(\tau, \lambda, \mu \) and \(s \) the bounds determined.
2. Coefficient estimates

Let Ω be the class of analytic functions of the form

$$w(z) = w_1z + w_2z^2 + w_3z^3 + \ldots$$

in the unit disk \mathbb{D} satisfying the condition $|w(z)| < 1$. There is an important relation between the classes Ω and P as follows:

$$w \in \Omega \Leftrightarrow \frac{1 + w(z)}{1 - w(z)} \in P \text{ or } p \in P \Leftrightarrow \frac{p(z) - 1}{p(z) + 1} \in \Omega. \quad (2.1)$$

Define the functions p and s in P given by

$$p(z) = \frac{1 + u(z)}{1 - u(z)} = 1 + p_1z + p_2z^2 + p_3z^3 + \cdots$$

and

$$s(z) = \frac{1 + v(z)}{1 - v(z)} = 1 + s_1z + s_2z^2 + s_3z^3 + \cdots.$$

It follows that

$$u(z) = \frac{p(z) - 1}{p(z) + 1} = \frac{p_1z}{2} + 1 \left(p_2 - \frac{p_1^2}{2} \right) z^2 + \cdots \quad (2.2)$$

and

$$v(z) = \frac{s(z) - 1}{s(z) + 1} = \frac{s_1z}{2} + 1 \left(s_2 - \frac{s_1^2}{2} \right) z^2 + \cdots. \quad (2.3)$$

Definition 2.1. A function $f \in \Sigma$ is said to be in the class $\Sigma H^s_{q,b}(\tau, \lambda, \mu)$ if the following conditions hold true for all $z, w \in \mathbb{D}$:

$$1 + \frac{1}{\tau} \left((1 - \lambda) \left[\frac{J^s_{q,b,f}(z)}{z} \right] + \lambda \varphi_q \left(J^s_{q,b,f}(z) \right) \left(\frac{J^s_{q,b,f}(z)}{z} \right)^{\mu-1} - 1 \right) < \varphi(z)$$

and

$$1 + \frac{1}{\tau} \left((1 - \lambda) \left[\frac{J^s_{q,b,g}(w)}{w} \right] + \lambda \varphi_q \left(J^s_{q,b,g}(w) \right) \left(\frac{J^s_{q,b,g}(w)}{w} \right)^{\mu-1} - 1 \right) < \varphi(w)$$

where $\varphi(z) = e^{\varphi z}$, $g(w) = f^{-1}(w)$, $\tau \in \mathbb{C} \setminus \{0\}$, $\mu > 0$, $0 < q < 1$ and $\lambda \geq 0$.

Remark 2.1. We note that, for suitable choices parameters, the class $\Sigma H^s_{q,b}(\tau, \lambda, \mu)$ reduces to the following classes.

1) Let $\lambda = 1$ in $\Sigma H^s_{q,b}(\tau, \lambda, \mu)$. Then a function $f \in \Sigma$ is said to be in the class $\Sigma H^s_{q,b}(\tau, \mu)$ if the following subordinations hold for all $z, w \in \mathbb{D}$:

$$1 + \frac{1}{\tau} \left[\varphi_q \left(J^s_{q,b,f}(z) \right) \left(\frac{J^s_{q,b,f}(z)}{z} \right)^{\mu-1} - 1 \right] < \varphi(z)$$
and

\[1 + \frac{1}{\tau} \left[\partial_q \left(J_{q,b}^s g (w) \right) \left(J_{q,b}^s g (w) \right)^{\mu - 1} - 1 \right] < \varphi (w) \]

2) Let \(\lambda = 1 \) and \(\tau = 1 \) in \(\Sigma H_{q,b}^s (\tau, \lambda, \mu) \). Then a function \(f \in \Sigma \) is said to be in the class \(\Sigma H_{q,b}^s (\mu) \) if the following subordinations hold for all \(z, w \in \mathbb{D} \):

\[\partial_q \left(J_{q,b}^s f (z) \right) \left(J_{q,b}^s f (z) \right)^{\mu - 1} < \varphi (z) \]

and

\[\partial_q \left(J_{q,b}^s f (w) \right) \left(J_{q,b}^s f (w) \right)^{\mu - 1} < \varphi (w) \]

3) Let \(\mu = 1 \) in \(\Sigma H_{q,b}^s (\tau, \lambda, \mu) \). Then a function \(f \in \Sigma \) is said to be in the class \(\Sigma H_{q,b}^s (\tau, \lambda) \) if the following subordinations hold for all \(z, w \in \mathbb{D} \):

\[1 + \frac{1}{\tau} \left[(1 - \lambda) \frac{J_{q,b}^s f (z)}{z} + \lambda \partial_q \left(J_{q,b}^s f (z) \right) - 1 \right] < \varphi (z) \]

and

\[1 + \frac{1}{\tau} \left[(1 - \lambda) \frac{J_{q,b}^s g (w)}{w} + \lambda \partial_q \left(J_{q,b}^s g (w) \right) - 1 \right] < \varphi (w) \]

4) Let \(\mu = 1 \) and \(\tau = 1 \) in \(\Sigma H_{q,b}^s (\tau, \lambda, \mu) \). Then a function \(f \in \Sigma \) is said to be in the class \(\Sigma H_{q,b}^s (\lambda) \) if the following subordinations hold for all \(z, w \in \mathbb{D} \):

\[(1 - \lambda) \frac{J_{q,b}^s f (z)}{z} + \lambda \partial_q \left(J_{q,b}^s f (z) \right) < \varphi (z) \]

and

\[(1 - \lambda) \frac{J_{q,b}^s g (w)}{w} + \lambda \partial_q \left(J_{q,b}^s g (w) \right) < \varphi (w) \]

5) Let \(\mu = 1, \tau = 1 \) and \(\lambda = 0 \) in \(\Sigma H_{q,b}^s (\tau, \lambda, \mu) \). Then a function \(f \in \Sigma \) is said to be in the class \(\Sigma H_{q,b}^s \) if the following subordinations hold for all \(z, w \in \mathbb{D} \):

\[\frac{J_{q,b}^s f (z)}{z} < \varphi (z) \]

and

\[\frac{J_{q,b}^s g (w)}{w} < \varphi (w) \]

6) Let \(s = 0 \) in \(\Sigma H_{q,b}^s (\tau, \lambda, \mu) \). Then a function \(f \in \Sigma \) is said to be in the class \(\Sigma H (\tau, \lambda, \mu) \) if the following subordinations hold for all \(z, w \in \mathbb{D} \):

\[1 + \frac{1}{\tau} \left[(1 - \lambda) \left(f (z) \right)^\mu + \lambda \partial_q \left(f (z) \right) \left(f (z) \right)^{\mu - 1} - 1 \right] < \varphi (z) \]

and

\[1 + \frac{1}{\tau} \left[(1 - \lambda) \left(g (w) \right)^\mu + \lambda \partial_q \left(g (w) \right) \left(g (w) \right)^{\mu - 1} - 1 \right] < \varphi (w) \]
Theorem 2.1. Let \(f \) given by (1.1) be in the class \(\Sigma H_{q,b}^s (\tau, \lambda, \mu) \). Then

\[
|a_2| \leq \left| \left[\frac{2 + b}{1 + b} \right] \right|^s \min \left\{ \frac{\tau}{\mu + \lambda q}, \sqrt{\frac{\tau}{\mu + \frac{2\tau}{\mu(1 + \mu) + 2\lambda q(\mu + q)}}} \right\} \tag{2.4}
\]

and

\[
|a_3| \leq \left| \left[\frac{3 + b}{1 + b} \right] \right|^s \frac{\tau}{\mu + \lambda q(1 + q)} \min \left\{ 1, \frac{\tau(\mu + \lambda q(1 + q))}{(\mu + \lambda q)^2} \right\}. \tag{2.5}
\]

Proof. Let \(f \in \Sigma H_{q,b}^s (\tau, \lambda, \mu) \) and \(g = f^{-1} \). Then, there are analytic functions \(u, v \in \Omega \) satisfying

\[
1 + \frac{1}{\tau} \left[1 - \lambda \right] \left[\frac{J_{q,b}^s f(z)}{z} \right]^\mu + \lambda \partial_\mu \left(J_{q,b}^s f(z) \right) \left(\frac{J_{q,b}^s f(z)}{z} \right)^{\mu-1} = \varphi(u(z)) \tag{2.6}
\]

and

\[
1 + \frac{1}{\tau} \left[1 - \lambda \right] \left[\frac{J_{q,b}^s g(w)}{w} \right]^\mu + \lambda \partial_\mu \left(J_{q,b}^s g(w) \right) \left(\frac{J_{q,b}^s g(w)}{w} \right)^{\mu-1} = \varphi(v(z)). \tag{2.7}
\]

In other words, by using 2.1 in 2.6 and 2.7 we write

\[
1 + \frac{1}{\tau} \left[1 - \lambda \right] \left[\frac{J_{q,b}^s f(z)}{z} \right]^\mu + \lambda \partial_\mu \left(J_{q,b}^s f(z) \right) \left(\frac{J_{q,b}^s f(z)}{z} \right)^{\mu-1} = \varphi \left(\frac{p(z) - 1}{p(z) + 1} \right) = e^{\frac{p(z)-1}{p(z)+1}} \tag{2.8}
\]

and

\[
1 + \frac{1}{\tau} \left[1 - \lambda \right] \left[\frac{J_{q,b}^s g(w)}{w} \right]^\mu + \lambda \partial_\mu \left(J_{q,b}^s g(w) \right) \left(\frac{J_{q,b}^s g(w)}{w} \right)^{\mu-1} = \varphi \left(\frac{s(z) - 1}{s(z) + 1} \right) = e^{\frac{s(z)-1}{s(z)+1}}. \tag{2.9}
\]

From 2.8 and 2.9, we have

\[
1 + \frac{(\mu + \lambda q)}{\tau} \left(\frac{1 + b}{2 + b} \right)^s a_2 \frac{z}{1 + b} + \frac{1}{\tau} \left(\frac{(\mu - 1) (\mu + 2 \lambda q)}{2} \right) \left(\frac{1 + b}{2 + b} \right)^{2s} a_2^2 + \left(\mu + \lambda q (1 + q) \right) \left(\frac{1 + b}{3 + b} \right)^s a_3 \frac{z^2}{2} + \cdots
\]

\[
= 1 + \frac{p_1}{2} + \frac{p_2}{2} \frac{z^2}{2} + \cdots
\]

and

\[
1 - \frac{(\mu + \lambda q)}{\tau} \left(\frac{1 + b}{2 + b} \right)^s a_2 w + \frac{1}{\tau} \left(\lambda q (2q + \mu + 1) + \frac{\mu (\mu + 3)}{2} \right) \left(\frac{1 + b}{2 + b} \right)^{2s} a_2^2 + \left(-\mu - \lambda q (1 + q) \right) \left(\frac{1 + b}{3 + b} \right)^s a_3 \frac{w^2}{2} + \cdots
\]
Comparing the coefficients on the both sides of above last equalities, we have the relations

\[\frac{1}{r} (\mu + \lambda q) a_2 \left(\frac{[1 + b]_q}{[2 + b]_q} \right)^s = \frac{p_1}{2}, \]
\[(2.10) \]

\[\frac{1}{r} \left(\frac{(\mu - 1)(\mu + 2\lambda q)}{2} \right) \left(\frac{[1 + b]_q}{[2 + b]_q} \right)^{2s} + (\mu + \lambda q) (1 + q) \left(\frac{[1 + b]_q}{[3 + b]_q} \right)^s a_3 = \frac{p_2}{2}, \]
\[(2.11) \]

\[- \frac{1}{r} (\mu + \lambda q) a_2 \left(\frac{[1 + b]_q}{[2 + b]_q} \right)^s = \frac{s_1}{2} \]
\[(2.12) \]

and

\[\frac{1}{r} \left(\frac{\lambda q(2q + \mu + 1) + \mu(\mu + 3)}{2} \right) \left(\frac{[1 + b]_q}{[2 + b]_q} \right)^{2s} a_2^2 - (\mu + \lambda q) (1 + q) \left(\frac{[1 + b]_q}{[3 + b]_q} \right)^s a_3 = \frac{s_2}{2}. \]
\[(2.13) \]

Therefore, from the Eqs 2.10 and 2.12, we find that

\[p_1 = -s_1 \]
\[(2.14) \]

and

\[\left[\frac{1}{r} (\mu + \lambda q) \left(\frac{[1 + b]_q}{[2 + b]_q} \right)^s \right]^2 a_2^2 = \frac{1}{8} \left(p_1^2 + s_1^2 \right), \]
\[(2.15) \]

which upon applying Lemma 1.1, yields

\[|a_2| \leq \left| \left(\frac{[2 + b]_q}{[1 + b]_q} \right)^s \right| \frac{|r|}{\mu + \lambda q}. \]

On the other hand, by using 2.11 and 2.13, we obtain

\[\frac{1}{r} \left(\mu^2 + \mu + 2\lambda q\mu + 2\lambda q^2 \right) \left(\frac{[1 + b]_q}{[2 + b]_q} \right)^{2s} a_2^2 = \frac{p_2 + s_2}{2}, \]
\[(2.16) \]

which yields

\[|a_2| \leq \left| \left(\frac{[2 + b]_q}{[1 + b]_q} \right)^s \right| \sqrt{\frac{2 |r|}{\mu^2 + \mu + 2\lambda q\mu + 2\lambda q^2}}. \]

We now, investigate the upper bound of \(|a_3|\). For this, by using 2.11 and 2.13, we have

\[\frac{2}{r} (\mu + \lambda q(1 + q)) \left(\frac{[1 + b]_q}{[2 + b]_q} \right)^{2s} a_2^2 - \left(\frac{[1 + b]_q}{[3 + b]_q} \right)^s a_3 = \frac{s_2 - p_2}{2}. \]
\[(2.17) \]

Therefore for substituting 2.15 in 2.17, we have

\[\left(\frac{[1 + b]_q}{[3 + b]_q} \right)^s a_3 = \frac{r^2 \left(p_1^2 + s_1^2 \right)}{8 (\mu + \lambda q)^2} + \frac{\tau (p_2 - s_2)}{4 (\mu + \lambda q(1 + q))} \]
\[(2.18) \]
or
\[a_3 = \left(\frac{[3 + b]_q}{[1 + b]_q} \right)^s \frac{\tau}{4(\mu + \lambda q(1 + q))} \left(p_2 - s_2 \right) + \frac{\tau (\mu + \lambda q(1 + q))}{(\mu + \lambda q)^2} p_1^2. \]

(2.19)

On the other hand, according to the Lemma 1.2 and 2.14, we write
\[2p_2 = p_1^2 + x \left(4 - p_1^2 \right) \]
\[2s_2 = s_1^2 + y \left(4 - s_1^2 \right) \]
\[\implies p_2 - s_2 = \frac{4 - p_1^2}{2} (x - y) \]

(2.20)

and so, from 2.19 and 2.20, we have
\[a_3 = \left(\frac{[3 + b]_q}{[1 + b]_q} \right)^s \frac{\tau}{4(\mu + \lambda q(1 + q))} \left[\frac{4 - p_1^2}{2} (x - y) + \frac{\tau (\mu + \lambda q(1 + q))}{(\mu + \lambda q)^2} p_1^2 \right]. \]

(2.21)

If we apply triangle inequality to equation 2.21, we obtain
\[|a_3| \leq \left| \left(\frac{[3 + b]_q}{[1 + b]_q} \right)^s \frac{\tau}{4(\mu + \lambda q(1 + q))} \left[\frac{4 - p_1^2}{2} (|x| + |y|) + \frac{\tau (\mu + \lambda q(1 + q))}{(\mu + \lambda q)^2} p_1^2 \right] \right|. \]

Since the function \(p(e^{\theta z}) \) (\(\theta \in \mathbb{R} \)) is in the class \(\mathcal{P} \) for any \(p \in \mathcal{P} \), there is no loss of generality in assuming \(p_1 > 0 \). Write \(p_1 = p, p \in [0, 2] \). Thus, for \(|x| \leq 1 \) and \(|y| \leq 1 \) we obtain
\[|a_3| \leq \left| \left(\frac{[3 + b]_q}{[1 + b]_q} \right)^s \frac{\tau}{4(\mu + \lambda q(1 + q))} \left[4 + \frac{\tau (\mu + \lambda q(1 + q))}{(\mu + \lambda q)^2} - 1 \right] p_1^2 \right|, \]

which upon applying Lemma 1.1, yields upper bound of \(|a_3| \). \(\square \)

Theorem 2.2. If \(f(z) \) given by (1.1) be in the class \(\Sigma H^{2}_{q,b} (\tau, \lambda, \mu) \) and \(\delta \in \mathbb{C} \), then
\[|a_3 - \delta a_2^2| \leq |\tau| (|K + L| + |K - L|) \]

where
\[K = \left(\frac{[3 + b]_q}{[1 + b]_q} \right)^s - \frac{\tau}{(\mu^2 + \mu + 2\lambda q \mu + 2\lambda q^2),} \]

(2.22)

\[L = \left(\frac{[3 + b]_q}{[1 + b]_q} \right)^s - \frac{1}{2(\mu + \lambda q + \lambda q^2).} \]

Proof. From the Eqs 2.16 and 2.18 we obtain
\[a_2^2 = \frac{\left([2 + b]_q \right)^{2s}}{([1 + b]_q)^2} \frac{\tau (p_2 + s_2)}{2(\mu^2 + \mu + 2\lambda q \mu + 2\lambda q^2)} \]

(2.23)

and
\[a_3 = \frac{\tau}{2} \left(\frac{[3 + b]_q}{[1 + b]_q} \right)^s \left(\frac{p_2 + s_2}{(\mu^2 + \mu + 2\lambda q \mu + 2\lambda q^2)} - \frac{s_2 - p_2}{2(\mu + \lambda q + \lambda q^2)} \right). \]

(2.24)

Therefore, by using the equalities 2.23 and 2.24 for \(\delta \in \mathbb{C} \), we have
\[a_3 - \delta a_2^2 = \frac{\tau}{2} \left(\frac{[3 + b]_q}{[1 + b]_q} \right)^s \left(\frac{p_2 + s_2}{(\mu^2 + \mu + 2\lambda q \mu + 2\lambda q^2)} - \frac{s_2 - p_2}{2(\mu + \lambda q + \lambda q^2)} \right). \]
By substituting 2.16 in 2.26, we have

\[
-\delta \left(\frac{[1 + b]_q}{[3 + b]_q} \right)^{2s} \frac{\tau (p_2 - s_2)}{2 (\mu^2 + \mu + 2\lambda q \mu + 2\lambda q^2)}.
\]

After the necessary arrangements, we rewrite the above last equality as

\[
a_3 - \delta a_2^2 = \frac{\tau}{2} ((K + L) p_2 + (K - L) s_2)
\]

(2.25)

where \(K \) and \(L \) are given by 2.22. Taking the absolute value of 2.25, from Lemma 1.1 we obtain the desired inequality.

\[\Box\]

Theorem 2.3. If \(f(z) \) given by (1.1) be in the class \(\Sigma H_{q,b}^{s}(\tau, \lambda, \mu) \) and \(\delta \in \mathbb{C} \), then

\[
\left| \left(\frac{[1 + b]_q}{[3 + b]_q} \right)^s a_3 - \delta \left(\frac{[1 + b]_q}{[2 + b]_q} \right)^{2s} a_2^2 \right| \leq 2 |\tau| \left\{ \frac{1}{2 (\mu + \lambda q + \lambda q^2)} 0 \leq |\Psi(\delta)| \leq \frac{1}{2 (\mu + \lambda q + \lambda q^2)} \right\}
\]

where

\[
\Psi(\delta) = \frac{1 - \delta}{\mu^2 + \mu + 2\lambda q \mu + 2\lambda q^2}.
\]

Proof. From Eq 2.17, we write

\[
\left(\frac{[1 + b]_q}{[3 + b]_q} \right)^s a_3 - \delta \left(\frac{[1 + b]_q}{[2 + b]_q} \right)^{2s} a_2^2 = \frac{\tau (p_2 - s_2)}{4 (\mu + \lambda q + \lambda q^2)} + (1 - \delta) \left(\frac{[1 + b]_q}{[2 + b]_q} \right)^{2s} a_2^2.
\]

(2.26)

By substituting 2.16 in 2.26, we have

\[
\left(\frac{[1 + b]_q}{[3 + b]_q} \right)^s a_3 - \delta \left(\frac{[1 + b]_q}{[2 + b]_q} \right)^{2s} a_2^2 = \frac{\tau (p_2 - s_2)}{4 (\mu + \lambda q + \lambda q^2)} + (1 - \delta) \left(\frac{[1 + b]_q}{[2 + b]_q} \right)^{2s} a_2^2.
\]

\[
= \frac{\tau (p_2 - s_2)}{4 (\mu + \lambda q + \lambda q^2)} + (1 - \delta) \frac{\tau (s_2 + p_2)}{2 (\mu + \lambda q + \lambda q^2)}
\]

\[
= \frac{\tau}{2} \left(\Psi(\delta) + \frac{1}{2 (\mu + \lambda q + \lambda q^2)} \right) p_2 + \left(\Psi(\delta) - \frac{1}{2 (\mu + \lambda q + \lambda q^2)} \right) s_2
\]

where

\[
\Psi(\delta) = \frac{1 - \delta}{\mu^2 + \mu + 2\lambda q \mu + 2\lambda q^2}.
\]

Therefore, we conclude that

\[
\left| \left(\frac{[1 + b]_q}{[3 + b]_q} \right)^s a_3 - \delta \left(\frac{[1 + b]_q}{[2 + b]_q} \right)^{2s} a_2^2 \right| \leq 2 |\tau| \left\{ \frac{1}{2 (\mu + \lambda q + \lambda q^2)} 0 \leq |\Psi(\delta)| \leq \frac{1}{2 (\mu + \lambda q + \lambda q^2)} \right\},
\]

which evidently complete the proof of the theorem.

\[\Box\]
Corollary 2.1. Let f given by (1.1) be in the class $\Sigma H^s_{q,b} (\tau, \mu)$. Then

$$|a_2| \leq \left| \frac{[2 + b]_q}{[1 + b]_q} \right|^s \min \left\{ \frac{|\tau|}{\mu + q}, \frac{2|\tau|}{\mu(1 + \mu) + 2q(\mu + q)} \right\},$$

$$|a_3| \leq \left| \frac{[3 + b]_q}{[1 + b]_q} \right|^s \frac{|\tau|}{\mu + q(1 + q)} \min \left\{ 1, \frac{|\tau|(\mu + q(1 + q))}{(\mu + q)^2} \right\},$$

$$|a_3 - \delta a_2^2| \leq |\tau|(|K_1 + L_1| + |K_1 - L_1|)$$

and

$$\left| \frac{[1 + b]_q}{[3 + b]_q} \right|^s a_3 - \delta \left| \frac{[1 + b]_q}{[2 + b]_q} \right| a_2^2 \leq 2|\tau| \left\{ \frac{1}{2(\mu + q + q^2)}, \quad 0 \leq |\Psi_1(\delta)| \leq \frac{1}{2(\mu + q + q^2)} \right\},$$

where

$$K_1 = \left(\frac{[3 + b]_q}{[1 + b]_q} \right)^s - \delta \left(\frac{[2 + b]_q}{[1 + b]_q} \right)^{2s} \frac{1}{\mu^2 + \mu + 2q(\mu + q)},$$

$$L_1 = \left(\frac{[3 + b]_q}{[1 + b]_q} \right)^s \frac{1}{2(\mu + q + q^2)},$$

$$\Psi_1(\delta) = \frac{1 - \delta}{\mu^2 + \mu + 2q(\mu + q)}. $$

Corollary 2.2. Let f given by (1.1) be in the class $\Sigma H^s_{q,b} (\tau, \lambda)$. Then

$$|a_2| \leq \left| \frac{[2 + b]_q}{[1 + b]_q} \right|^s \min \left\{ \frac{|\tau|}{1 + \lambda q}, \frac{|\tau|}{1 + \lambda q(1 + q)} \right\},$$

$$|a_3| \leq \left| \frac{[3 + b]_q}{[1 + b]_q} \right|^s \frac{|\tau|}{1 + \lambda q(1 + q)} \min \left\{ 1, \frac{|\tau|(1 + \lambda q(1 + q))}{(1 + \lambda q)^2} \right\},$$

$$|a_3 - \delta a_2^2| \leq |\tau|(|K_2 + L_2| + |K_2 - L_2|)$$

and

$$\left| \frac{[1 + b]_q}{[3 + b]_q} \right|^s a_3 - \delta \left| \frac{[1 + b]_q}{[2 + b]_q} \right| a_2^2 \leq 2|\tau| \left\{ \frac{1}{2(1 + \lambda q + \lambda q^2)}, \quad 0 \leq |\Psi_2(\delta)| \leq \frac{1}{2(1 + \lambda q + \lambda q^2)} \right\},$$

where

$$K_2 = \left(\frac{[3 + b]_q}{[1 + b]_q} \right)^s - \delta \left(\frac{[2 + b]_q}{[1 + b]_q} \right)^{2s} \frac{1}{2(1 + \lambda q + 2\lambda q^2)},$$

$$L_2 = \left(\frac{[3 + b]_q}{[1 + b]_q} \right)^s \frac{1}{2(1 + \lambda q + \lambda q^2)},$$

$$\Psi_2(\delta) = \frac{1 - \delta}{2(1 + \lambda q + \lambda q^2)}.$$
Corollary 2.3. Let \(f \) given by (1.1) be in the class \(\Sigma H(\tau, \lambda, \mu) \). Then

\[
|a_2| \leq \min \left\{ \frac{|\tau|}{\mu + \lambda q}, \sqrt[2]{\frac{2|\tau|}{\mu(1+\mu) + 2\lambda q(\mu + q)}} \right\},
\]

\[
|a_3| \leq \frac{|\tau|}{\mu + \lambda q(1 + q)} \min \left\{ 1, \frac{|\tau| (\mu + \lambda q(1 + q))}{(\mu + \lambda q)^2} \right\}
\]

and

\[
|a_3 - \delta a_2^2| \leq 2|\tau| \left\{ \frac{1}{2(1+\lambda q+\lambda q^2)}, \quad 0 \leq |\Psi_3(\delta)| \leq \frac{1}{2(1+\lambda q+\lambda q^2)} \right\},
\]

where

\[
\Psi_3(\delta) = \frac{1 - \delta}{2(1 + \lambda q + \lambda q^2)}.
\]

3. Conclusions

In this paper, we defined a general subclass of bi-univalent functions related with \(q \)-Srivastava Attiya operator by using the Bell numbers and subordination. For the functions belonging to this class, we obtained non-sharp bounds for the initial coefficients and the Fekete-Szegö functional. Some interesting corollaries and applications of the results are also discussed.

Acknowledgement

The research was supported by the Commission for the Scientific Research Projects of Kyrgyz-Turkish Manas University, project number KTMU-BAP-2020.FB.04.

References

1. E. T. Bell, The iterated exponential integers, Ann. Math., 39 (1938), 539–557.
2. E. T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 558–577.
3. D. A. Brannan, J. G. Clunie, Aspects of Contemporary Complex Analysis, (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1–20, 1979), Academic Press: New York, NY, USA; London, UK, 1980.
4. D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Stud. Univ. Babeş-Bolyai Math., 31 (1986), 70–77.
5. N. E. Cho, S. Kumar, V. Kumar, et al. Starlike functions related to the Bell numbers, Symmetry, 219 (2019), 1–17.
6. M. Çağlar, E. Deniz, Initial coefficients for a subclass of bi-univalent functions defined by Salagean differential operator, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 66 (2017), 85–91.
7. E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2 (2013), 49–60.
8. P. L. Duren, *Univalent Functions*, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983.

9. H. Exton, *q–Hypergeometric Functions and Applications*, Chichester, UK: Ellis Horwood Limited, 1983.

10. B. A. Frasin, M. K. Aouf, *New subclasses of bi-univalent functions*, Appl. Math. Lett., 24 (2011), 1569–1573.

11. G. Gasper, M. Rahman, *Basic Hypergeometric Series*, Cambridge, UK: Cambridge University Press, 1990.

12. H. A. Ghany, *q–derivative of basic hypergeometric series with respect to parameters*, Int. J. Math. Anal., 3 (2009), 1617–1632.

13. F. H. Jackson, *On q–functions and a certain difference operator*, Trans. Royal Society Edinburgh, 46 (1908), 253–281.

14. V. Kumar, N. E. Cho, V. Ravichandran, et al. *Sharp coefficient bounds for starlike functions associated with the Bell numbers*, Math. Slovaca, 69 (2019), 1053–1064.

15. A. Y. Lashin, *Coefficient estimates for two subclasses of analytic and bi-Univalent functions*, Ukr. Math. J., 70 (2019), 1484–1492.

16. M. Lewin, *On a coefficient problem for bi-univalent functions*, Proc. Am. Math. Soc., 18 (1967), 63–68.

17. R. J. Libera, E. J. Zlotkiewicz, *Coefficient bounds for the inverse of a function with derivatives in P*, Proc. Amer. Math. Soc., 87 (1983), 251–257.

18. K. I. Noor, S. Riaz, M. A. Noor, *On q–Bernardi integral operator*, TWMS J. Pure Appl. Math., 8 (2017), 3–11.

19. E. Netanyahu, *The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1*, Arch. Ration. Mech. Anal., 32 (1969), 100–112.

20. H. Orhan, N. Magesh, V. K. Balaji, *Fekete-Szegö problem for certain classes of Ma-Minda bi-univalent functions*, Afr. Math., 27 (2016), 889–897.

21. S. A. Shah, K. I. Noor, *Study on the q–analogue of a ceratin family of linear operators*, Turk J. Math., 43 (2019), 2707–2714.

22. H. M. Srivastava, A. A. Attiya, *An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination*, Integ. Transf. Spec. F., 18 (2007), 207–216.

23. H. M. Srivastava, J. Choi, *Series associated with zeta and related function*, Dordrecht, the Netherlands: Kluwer Academic Publisher, 2001.

24. H. M. Srivastava, A. K. Mishra, P. Gochhayat, *Certain subclasses of analytic and bi-univalent functions*, Appl. Math. Lett., 23 (2010), 1188–1192.

25. H. M. Srivastava, S. S. Eker, R. M. Ali, *Coefficient bounds for a certain class of analytic and bi-univalent functions*, Filomat, 29 (2015), 1839–1845.

26. Q. H. Xu, Y. C. Gui, H. M. Srivastava, *Coefficient estimates for certain subclasses of analytic functions of complex order*, Taiwanese J. Math., 15 (2011), 2377–2386.
27. Q. H. Xu, Y. C. Gui, H. M. Srivastava, *Coefficient estimates for a certain subclass of analytic and bi-univalent functions*, Appl. Math. Lett., 25 (2012), 990–994.

28. Q. H. Xu, H. G. Xiao, H. M. Srivastava, *A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems*, Appl. Math. Comput., 218 (2012), 11461–11465.

29. P. Zaprawa, *Estimates of Initial Coefficients for Bi-Univalent Functions*, Abst. Appl. Anal. Article ID 357480, 6. 2014.

30. P. Zaprawa, *On the Fekete–Szegö problem for classes of bi-univalent functions*, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), 169–178.