Computerized Physician Order Entry - Wirksamkeit und Effizienz elektronischer Arzneimittelverordnung mit Entscheidungsunterstützungssystemen

Computerized Physician Order Entry - effectiveness and efficiency of electronic medication ordering with decision support systems

Abstract

Health political background

Computerized physician order entry (CPOE) systems are software to electronically enter medication orders. They can be equipped with tools for decision support (CDS). In Germany, various vendors offer such systems for hospitals and physicians' offices. These systems have mostly been developed during the last five to ten years.

Scientific background

CPOE-systems exist since the 1970’s. Usually, clinical decision support is integrated into the CPOE to avoid errors.

Research questions

This HTA-report aims to evaluate the effectiveness and efficiency of CPOE-/CDS-systems and their ethical, social and legal aspects.

Methods

The systematic literature search (27 international data bases) yielded 791 abstracts. Following a two-part selection process, twelve publications were included in the assessment.

Results

All reviews and studies included in the present report show that the use of CPOE-/CDS-systems can lead to a reduction of medication errors. Minor errors can be eliminated almost completely. The effect of CPOE-/CDS-systems on the rate of adverse drug events (ADE) is evaluated in only two primary studies with conflicting results. It is difficult to compare the results of economical studies because they evaluate different settings, interventions and time frames. In addition, the documentation often is not fully transparent. All four studies included measure costs and effects from the perspective of a hospital or hospital affiliation. Concerning social aspects, the literature points at changes regard competing interests of technology and humans that result from the implementation of CPOE-systems. The experience of institutions in which the implementation of CPOE-systems leads to problems showed that the importance of considering the socio-organisational context had partly been underestimated.

Heidi Stürzlinger¹
Cora Hiebinger¹
Daniela Pertl¹
Peter Traurig¹

¹ Gesundheit Österreich GmbH, Geschäftsbereich ÖBIG, Wien, Österreich
Discussion

CPOE-/CDS-systems are able to reduce the rate of medication errors when ordering medications. The adherence to guidelines, communication, patient care and personnel satisfaction can also be affected positively. However, the literature also reports negative effects, as through the use of CPOE-/CDS-systems new errors can be generated. This makes continuous revisions of the system, as well as data-updates necessary. Concerning the cost-benefit-ratio from the hospital perspective, the two qualitatively best economic studies show contradictory results. Therefore, a positive cost-benefit-ratio for individual hospitals cannot be assumed, particularly as the study results cannot be generalized.

Conclusions

If the implementation of CPOE-/CDS-systems is well planned and conducted, the system adapted to the needs of the institution and continuously reviewed, and data used are updated on a regular basis, the rate of medication ordering errors can be reduced considerably by using CPOE-/CDS-systems. However, it is not clear how this results in a reduction of ADE. Prospective, systematic multi-centre evaluation-studies with clear methodology are needed, which include an analysis of the user-friendliness and of social and technical aspects of the system. Such studies should evaluate the impact a CPOE-/CDS-system has on ADE-rates and mortality. A detailed description of the system used and of the hospital evaluated is essential. If possible, costs and cost effects should be surveyed and documented transparently.

Zusammenfassung

Gesundheitspolitischer Hintergrund

Softwaresysteme, mit deren Hilfe ein Arzt Arzneimittelverordnungen elektronisch eingibt (CPOE-Systeme) und die darüber hinaus mit Werkzeugen zur Entscheidungsunterstützung (CDS) ausgerüstet sein können, werden in Deutschland von verschiedenen Unternehmen angeboten, sowohl für Krankenhäuser als auch für Arztpraxen. Es handelt sich dabei größtenteils um eine Entwicklung der letzten fünf bis zehn Jahre.

Wissenschaftlicher Hintergrund

CPOE-Systeme an sich gibt es seit den 1970er Jahren. Meist werden auch klinische Entscheidungshilfen (CDS-Systeme) in das CPOE-System integriert, um Fehler zu vermeiden.

Fragestellung

In diesem HTA-Bericht sollen die Effektivität und die Effizienz von CPOE-/CDS-Systemen geklärt sowie die damit verbundenen ethischen, sozialen und juristischen Aspekte dargestellt werden.

Methodik

Die systematische Literatursuche (27 internationale Literaturdatenban-ken) ergab 791 Zusammenfassungen. Nach einem zweiteiligenSelektionsprozess verbleiben zwölf zu bewertende Publikationen.
Ergebnisse

Alle im vorliegenden Bericht eingeschlossenen Übersichtsarbeiten und Primärstudien berichten von einer Reduktion der Medikationsfehlerrate durch CPOE-/CDS-Systeme, wobei geringfügige Verordnungsfehler fast vollständig eliminiert werden können. Der Einfluss von CPOE-/CDS-Systemen auf die Rate von unerwünschten Arzneimittelereignissen (UAE) wird nur in zwei Primärstudien betrachtet. Die Ergebnisse hierzu sind widersprüchlich. Die Ergebnisse der ökonomischen Studien sind schwer vergleichbar, da sie verschiedene Settings, Interventionen und Zeiträume betrachten. Erschwerend kommt die teilweise mangelhafte Transparenz der Dokumentation hinzu. Alle vier eingeschlossenen Studien erfassen Kosten und Effekte aus Sicht eines Krankenhauses oder Krankenhausverbundes. Im Hinblick auf soziale Aspekte thematisiert die entsprechende Literatur die Veränderungsprozesse, die im Spannungsfeld Technik und Mensch aus der Einführung von CPOE-Systemen erwachsen. Erfahrungen aus Einrichtungen, in denen die Einführung von CPOE-Systemen mit Problemen behaftet war, haben gezeigt, dass die Berücksichtigung des sozio-organisationalen Kontexts zum Teil unterschätzt wurde.

Diskussion

CPOE-/CDS-Systeme sind in der Lage, die Medikationsfehlerrate bei der Verordnung von Arzneimitteln zu reduzieren. Auch die Einhaltung von Richtlinien, Kommunikation, Patientenbetreuung und Zufriedenheit der Belegschaft kann positiv beeinflusst werden. Es wird jedoch auch von negativen Auswirkungen berichtet, da durch die Anwendung von CPOE-/CDS-Systemen neue Fehler generiert werden können. Dies macht eine ständige Überprüfung der Systeme bzw. ggf. die Aktualisierung der verwendeten Daten erforderlich. Hinsichtlich der Kosten-Nutzen-Relation aus Krankenhaussicht kommen die zwei qualitativ besten ökonomischen Studien zu widersprüchlichen Ergebnissen. Von einer positiven Kosten-Nutzen-Relation für einzelne Krankenhäuser kann deshalb nicht sicher ausgenommen werden, insbesondere da die Ergebnisse nicht generalisierbar sind.

Schlussfolgerung

Wird die Implementierung eines CPOE-/CDS-Systems sorgfältig geplant, durchgeführt, das System an die Bedürfnisse der Institution angepasst, fortlaufend überwacht und ggf. aktualisiert, kann die Medikationsverordnungswahrscheinlichkeit durch die Verwendung von CPOE-/CDS-Systemen deutlich gesenkt werden. Allerdings ist nicht klar, inwieweit dies eine Reduktion von UAE bewirkt. Es werden prospektive, systematische Multizentren-Evaluierungsstudien mit klarer Methodik gefordert, die eine Analyse der Benutzerfreundlichkeit und sozialer bzw. -technischer Aspekte einschließen und den Einfluss eines CPOE-/CDS-Systems auf die UAE-Rate und Mortalität untersuchen. Unabdingbar ist eine genaue Beschreibung des verwendeten Systems und des untersuchten Krankenhauses. Nach Möglichkeit haben auch eine Erhebung und transparente Dokumentation der Kosten und Kosteneffekte zu erfolgen.

Schlüsselwörter: elektronische Arzneimittelverschreibung, elektronische Arzneimittelverordnung, elektronisches Rezept, Entscheidungsunterstützung, CPOE-System, CPOE
Executive Summary

1. Health political background

Adverse drug reactions or events (ADR or ADE) cannot be avoided entirely as they are a calculated risk of any drug therapy. However, ADE which result from a non-application of knowledge, e.g. on drug interactions, can be prevented. Drug interactions are, for the most part, described in the summary of product characteristics. However, their consideration is difficult to include in the medical routine due to the abundance of information. In addition, contraindications and allergies can lead to side effects which are not always recognized immediately. The use of clinical decision support systems (CDS-system) during electronic prescription using a computerized physician order entry (CPOE) in the in- and outpatient setting could help to assure the maximum effectiveness and safety of pharmaceuticals.

In Germany, various vendors offer CPOE-/CDS-systems for hospitals and physicians’ offices. These systems have mostly been developed during the last five to ten years, some of the projects are still in the pilot phase or are in the process of being further developed.

2. Scientific background

ADE are defined as any injury caused to a patient during drug treatment. ‘Avoidable ADE’ are differentiated from ‘unavoidable ADE’. Avoidable ADE are events caused by a medication error and could have been avoided had the patient been treated like artis. Medication errors are errors that occur in the process of ordering, transcription, dispensing, administration or monitoring drugs. They do not necessarily lead to an ADE; even ‘potential ADE’ can often be recognized and corrected soon enough or the administration of an incorrect drug does not cause any sequela in a patient. In the US, as well as in the UK, Norway and Denmark, more people die per year due to ADE than due to traffic accidents. In the US, an estimated 770,000 patients experience an ADE during their hospital stay. Valid data for Germany do not exist, however, it has to be assumed that the situation is similar to that in the US. Generally, errors can occur at any step of the medication process in the hospital or the physician’s office: while ordering, transcribing the order into the medication plan, dispensing the drug, administering the drug to the patient, or because of erroneous intake by the patient. Among ordering errors, failure to take into account allergies, clinically relevant interactions and contraindications play a role besides choosing a wrong dose (e.g. due to a lack of consideration of the patient’s weight or renal insufficiency). Despite physicians’ competence and diligence, such inadequate prescriptions occur and are probably the most frequent reason for avoidable ADE.

To reduce the number of medication errors, different strategies and technologies are suggested. The integration of pharmacists into the team responsible for patient care, the installation of satellite-pharmacies at particular wards (e.g. intensive care units), the encouragement of team work and open communication within the team, as well as training of personnel regarding correct medication can prevent medication errors. Apart from CPOE-systems, possible technologies that help to reduce the number of medication errors are electronic medical records (EMR), portable devices (tablet-PC, notebook, palms), automated medication dispensing machines, electronic medication administration records and barcode-technology. These technologies support the prevention of errors at different steps of the medication process and are often used combined with each other. At the steps of ordering and transcription, CPOE-systems, EMR and portable devices are primarily used.

CPOE-systems are computer programs which allow electronic prescription of medications; they make it possible to comfortably search for pharmaceuticals (brand name, active ingredients, indication, price comparison), select a drug from a pull-down menu together with a suggested dose, and directly access individual patient data (age, weight, diagnosis, comedication, renal function etc.). CPOE-systems exist since the 1970’s. CPOE-systems usually provide order sets (prepared prescriptions for a specific diagnosis and treatment) which help to avoid errors caused by incomplete or illegible information or transcription errors. In general, CDSS are integrated in the CPOE-system. CDSS provides warnings, reminders, clinical guidelines, diagnostic support, tools for clinical processes, reports on patient data and documentation templates.

According to the system, the CDSS can review if the indication specific dose and application frequency is correct with regard to organ function (including laboratory values). In addition, the system automatically checks for clinically relevant interactions with other drugs the patient is taking, as well as for allergies and contraindications. In case a change of dose is necessary, the physician receives a warning.

By linking the CPOE-system to other information systems of the hospital, physicians can also enter, access, monitor and search for laboratory or radiology orders, and clinical consultations. Treatments can be standardised, the communication between wards improved, transfer of patients facilitated and data collection for management, research and quality control be made possible. Despite this, only a few hospitals have implemented CPOE-systems (USA: 4.3% to 15%). In Germany, these systems have been implemented during the last five to ten years, some of the projects are still in the pilot phase or are in the process of being further developed. Apart from the university hospital in Heidelberg, CPOE-systems are also used in Saarbrücken, Frankfurt and Bottrop. The implementation of a CPOE-/CDS-system is a complex process. The success of a CPOE-system strongly depends on the willingness to change and on the organisational and structural pre-requisites of the individual hospital (project management, personnel resources, technical circumstances). A detailed analysis of the organisational structure of the institution and of the work-flow affected
by the implementation of the CPOE-system should be undertaken before implementation. Furthermore, the selection and adaptation of the CPOE-system according to the circumstances of the institution, sufficient financial and technical resources, distinct leadership, user training and support before and after implementation of the system, as well as a sufficient number of prepared order sets are crucial for a successful implementation. A step-wise implementation has been proven to increase the success rate.

The way information is provided by the CDSS also influences the use of the respective systems. Only systems oriented on the physicians' judgment of risks and clinical relevance are accepted and modify the prescription habits of physicians in the long run. An abundance of irrelevant warnings and notices can lead to the fact that users start to ignore important and relevant warnings as well.

3. Research questions

This report aims to answer the following questions:

- Which parameters are useful to evaluate the effects of CPOE-systems?
- What are the effects of CPOE-systems in regard to these parameters?
- What is the cost-effectiveness of CPOE-systems?
- What ethical, social and legal aspects need to be considered?

Only CPOE-systems used in the inpatient setting and for the prescription of medications with an integrated clinical decision support system are assessed.

4. Methods

This HTA report was prepared by applying the methods for a systematic literature review. The systematic literature search was conducted on October 4, 2007 and includes German and English publications since 2002. Of the 791 abstracts that the systematic literature search (in the DIMDI-HTA-superbase and HTA- and Cochrane-databases) yielded, eight medical and four economic publications were included following a two-part selection process according to standard, predefined criteria. 49 publications were added by hand search. A total of 180 publications are used as background literature (including publications on social, ethical and legal aspects), 139 publications are excluded. For the discussion of legal aspects, relevant texts of law are also used. Data extraction and assessment of included publications follow predefined criteria.

5. Results

The medical studies assessed evaluate different settings, interventions and time frames. Therefore, it is difficult to compare their results. The lack of transparency and documentation of some studies exacerbates this problem. All reviews and primary studies included in the present report show a reduction of the medication error rate. Minor errors (e.g., errors due to incomplete information) can be eliminated almost entirely by using CPOE-/CDS-systems, as they ensure the completeness and legibility of orders. The positive correlation between the number of prescribed drugs and the occurrence of medication errors can also be avoided by the CPOE-system. With regard to the rate of ADE, the results in two recent studies are contradictory. Additional possible effects of the use of CPOE-systems are the better adherence to standards of care and treatment (e.g., an earlier removal of catheters that have become unnecessary), however, an improvement of treatment results (e.g., less urinary tract infections) cannot be demonstrated. Length of stay is usually not affected by the use of CPOE-systems. In one study, improved communication of personnel is emphasised as the major benefit of the CPOE-system, another study shows that personnel satisfaction can be increased by using the CPOE-system.

The settings, interventions and time frames evaluated in economic studies also differ between studies. For this reason it is difficult to compare the results. In addition, the documentation often is not fully transparent. All four studies assessed measure costs and effects from the perspective of a hospital or hospital affiliation. Three studies financially balance these costs and effects against each other and come to the conclusion that net savings are to be expected by implementing the respective CPOE-system. Among the effects are, for example, cost savings due to reduced or more efficient use of drugs, more efficient work flow or a shorter length of stay due to a reduced ADE-rate.

The fourth study implies that the prevention of medication errors and, consequently, of ADE, results in an immaterial benefit per se for the hospital. The study calculates the costs which have to be paid for each ADE prevented by the implementation of CPOE. However, at 12,700 USD per prevented ADE, they are considerably higher than the cost savings presumably expected from a prevented ADE. From the perspective of the entire health system, the effects of CPOE-implementation in all or the majority of hospitals have a much broader scope, as potential effects in other areas of the health system have to be considered as well. From an economic point of view, effects such as shorter production downtime due to a shorter length of stay or less sequela due to a reduced ADE-rate need to be considered. From a patient’s point of view, an increase in life quality or a gain in life years are relevant if ADE – which may lead to death – are prevented.

In three studies, the CPOE-system is compared to a paper-based system. In one study, it is a (partly implemented) electronic medication ordering system without clinical decision support. The results do not allow conclusions regarding a comparison of CPOE-/CDS-systems and other options of medication error prevention, such as the recruitment of additional pharmaceutical personnel. Considering the limitations of the study results and their inconsistency, the transferability of the results to the German health system or to German hospitals can only be discussed in principle: regarding the (medical) effec-
tiveness of CPOE-/CDS-systems to prevent ADE, different organisational structures of hospitals need to be considered, particularly if it is a small, general hospital or a large, highly specialized one. Regarding the costs of CPOE-system implementation and the evaluation of cost savings of a hospital in particular, differences between health care systems need to be considered. According to the knowledge of the authors, a comprehensive evaluation of costs and benefits is not planned to be undertaken at any hospital in Germany. Concerning social aspects, the literature points at changes (e.g. regarding responsibilities and work flow) the implementation of CPOE-systems may cause. How the effects of these changes influence the acceptance of the CPOE-system by users is evaluated. An underestimation of the importance of the socio-organisational context may cause problems in the implementation of CPOE-systems.

6. Discussion

CPOE-/CDS-systems are able to reduce the rate of medication errors when ordering medications. Using the available data, it cannot be assessed conclusively to what extent CPOE-systems or the reduction of medication errors have an impact on the ADE-rate - which clinically is more relevant - or on mortality. Apart from effects on medication errors, CPOE-systems can also have a positive effect on the adherence to guidelines, communication, patient care, and personnel satisfaction. A systematic review published after the period of literature selection arrives at the same conclusions. Apart from positive effects of CPOE-/CDS-systems, negative effects are also reported. In one study, mortality significantly increases after the implementation of a CPOE-system in a pediatric hospital. Other authors also emphasise that new errors can be generated by CPOE-systems. These types of errors inherent to the system demonstrate the importance of continuously reviewing CPOE-/CDS-systems. An additional potential source of errors is the lack of integration of the CPOE-system with other computerized systems, e.g. the pharmacy- or laboratory system of the hospital. A lack of knowledge regarding medications and regarding how to enter specific medications into the system, as well as a general lack of familiarity with the system can lead to errors especially when users are inexperienced. This points to the importance of training regarding medication as an effective quality assurance measure. In addition, sufficient training of users before and support during the implementation of a CPOE-system needs to be provided. In order to assure the effectiveness of a CDSS, the triggers for warnings need to be sufficiently sensitive and the warning itself needs to be specific. Otherwise, warnings are often ignored. Furthermore, the data used by the system to support the decision making process need to be continuously updated. Thus, all patient data need to be available which emphasises the importance of a complete anamnesis at admission. As warnings regarding necessary dose-changes are only delivered during the ordering process, a daily, automated review of the medication a patient receives concerning current laboratory values is necessary. In order to identify the reasons for medication errors, a standardized error-detection-system is needed using precise definitions of medication errors and UAE. CPOE-systems have a great impact on the organizational culture of and clinical work-flow in an institution; therefore, it needs to be adjusted to the computerized systems already in place and to the needs of the respective institution. Regarding the cost-benefit-ratio from the hospital perspective, the two qualitatively best economic studies arrive at contradictory conclusions. A positive cost-benefit-ratio for an individual hospital can therefore not be assumed, particularly as the results cannot be generalised. From the perspective of the health care system or from an economic point of view, additional positive effects, e.g. an increase in life quality, need to be considered provided that the number of ADE is reduced. No quantitative evaluations exist on this topic. Regarding a comparison of CPOE-/CDS-systems with other options for medication error prevention, e.g. recruiting additional personnel, literature is lacking as well.

7. Conclusions/recommendations

If the implementation of CPOE-/CDS-systems is well planned and conducted, the system adapted to the needs of the institution and continuously reviewed, and data used are updated on a regular basis, the rate of medication ordering errors can be reduced considerably by using CPOE-/CDS-systems. However, it is not clear how this results in a reduction of ADE. Prospective, systematic multi-centre evaluation-studies with clear methodology, which include an analysis of the user-friendliness and of social and technical aspects of the system are needed. Such studies should evaluate the impact a CPOE-/CDS-system has on the ADE-rate and mortality. A detailed description of the system used and of the hospital evaluated is essential. If possible, costs and cost effects should be surveyed and documented transparently. A quantitative evaluation of the economic effects of implementing a CPOE-/CDS-system in (all) hospitals in Germany seems to be bold: the reliability of study results regarding relevant endpoints is only limited so far. They rarely allow a clear assignment of the results to individual measures and functionalities of the systems, or to other options; conclusions in regard to another context are only possible when data presentation is highly transparent. Structured interviews at selected hospitals with and without CPOE-/CDS-systems or using other measures to prevent medication errors could provide important input and help to appraise the need for further research.
Kurzfassung

1. Gesundheitspolitischer Hintergrund

Unerwünschte Arzneimittelwirkungen bzw. -ereignisse (UAW bzw. UAE) können nicht gänzlich ausgeschlossen werden, da sie ein kalkuliertes Risiko bei jeder Arzneimitteltherapie darstellen. Jedoch können jene UAE vermieden werden, die durch die Nichtanwendung von Wissen, z. B. zu Arzneimittelwechselwirkungen, entstehen. In Fachinformationen werden Wechselwirkungen von Arzneimitteln größtenteils beschrieben, jedoch ist ihre Berücksichtigung durch die Informationsfülle nur schwer in die ärztliche Routine einzuführen. Zusätzlich können Kontraindikationen und Allergien zu Nebenwirkungen führen, die im Vorfeld nicht immer erkannt werden. Der Einsatz von Entscheidungsunterstützungssystemen (Clinical decision support system (CDS-System)) bei elektronischer Arzneimittelverordnung (Computerized physician order entry (CPOE)) sowohl im stationären als auch im ambulanten Bereich könnte helfen, die maximale Wirksamkeit und Sicherheit von Arzneimitteln zu gewährleisten. In Deutschland bieten verschiedene Unternehmen CPOE-/CDS-Systeme an, sowohl für Krankenhäuser als auch für Arztpraxen. Es handelt sich dabei größtenteils um eine Entwicklung der letzten fünf bis zehn Jahre, die Projekte befinden sich teilweise noch in der Pilotphase bzw. in laufender Weiterentwicklung.

2. Wissenschaftlicher Hintergrund

UAE werden definiert als jeglicher Schaden, der einem Patienten während einer Arzneimittelbehandlung entsteht. Es wird unterschieden zwischen vermeidbaren und nicht-vermeidbaren UAE. Vermeidbare UAE sind Ereignisse, die, verursacht durch einen Medikationsfehler, nicht eingetreten wären, wenn der Patient lege artis behandelt worden wäre. Medikationsfehler sind Fehler, die im Prozess der Verordnung, Transkription, Abgabe, Verabreichung oder Kontrolle entstehen. Sie müssen nicht notwendigerweise zu einem UAE führen: Selbst potenzielle UAE können oft früh genug erkannt und korrigiert werden oder es kommt trotz der Verabreichung z. B. eines falschen Medikaments zu keinen Folgen für den Patienten. In den USA wie auch in England, Norwegen und Dänemark sterben pro Jahr mehr Menschen durch UAE als durch Verkehrsunfälle. In den USA tritt nach Schätzungen bei 770.000 Patienten während einem Krankenhausaufenthalt ein UAE auf. Valide Daten für Deutschland gibt es nicht, jedoch muss davon ausgegangen werden, dass die Lage in Deutschland ähnlich ist.

Generell kann es bei jedem Schritt des Medikationsprozesses im Krankenhaus zu Fehlern kommen: bei der Verordnung, bei der Übertragung der Verordnungen in den Medikationsplan, bei der Arzneimittelausgabe, bei der Verabreichung an den Patienten sowie durch Einnahmefehler vom Patienten. Unter den Verordnungsfehlern spielen neben falscher Dosierung (z. B. Nichtberücksichtigung des Patientengewichts oder einer Niereninsuffizienz) auch die Nichtbeachtung von Allergien, von klinisch relevanten Interaktionen und Kontraindikationen eine Rolle. In diesem Sinn inadäquate Verordnungen treten trotz ärztlicher Kompetenz und Sorgfalt immer wieder auf und sind vermutlich die häufigste Ursache vermeidbarer UAE.

Um die Zahl der Medikationsfehler zu reduzieren, werden verschiedene Strategien und Technologien vorgeschlagen. Zum einen können z. B. durch die Eingliederung von Pharmazeuten in das Patientenbetreuungsteam die Einrichtung von Satellitenapotheeken in bestimmten Stationen (z. B. Intensivstation), die Förderung von Teamwork und offener Kommunikation im Betreuungsteam sowie Schulungen der Mitarbeiter in Bezug auf korrekte Medikation dazu führen, dass Medikationsfehler vermieden werden.

Zu möglichen Technologien zählen neben CPOE-Systemen u. a. elektronische Patientenakte (EMR), tragbare Geräte (Tablet-PC, Notebook, Palms), automatisierte Medikationsausgabemaschinen (ADM), elektronische Medikationsadministrations-Protokolle (eMAR) und Barcode-Technologie. Diese Technologien unterstützen die Fehlervermeidung in verschiedenen Abschnitten des Medikationsprozesses und werden auch häufig kombiniert eingesetzt. Für den Verordnungs- und Transkriptionsschritt des Medikationsprozesses sind vor allem CPOE-Systeme, EMR und tragbare Computer zu nennen. CPOE-Systeme sind Computerprogramme, mit denen ärztliche Arzneimittelverordnungen elektronisch erfasst werden; sie ermöglichen eine komfortable Suche nach Arzneimitteln (Handelsname, Wirkstoff, ggf. Indikation, Preisvergleich) und eine Auswahl des Medikamentes aus einem Menü, zusammen mit der empfohlenen Dosierung, sowie einen direkten Zugriff auf patientenindividuelle Daten (Alter, Gewicht, Krankheit, Nierenfunktion usw.). Es gibt diese Systeme seit den 1970er Jahren.

CPOE-Systeme verwenden üblicherweise Verordnungssets (vorgefertigte Verordnungen für eine spezifische Diagnose oder Behandlungsmethode), mit deren Hilfe Fehler, die auf unvollständigen oder unleserlichen Angaben oder Übertragungsfehlern beruhen, vermieden werden. Oft werden klinische Entscheidungshilfen (CDSS) in das CPOE-System integriert. CDSS beinhalten Warnungen, Erinnerungen, klinische Richtlinien, diagnostische Unterstützung, Tools für klinische Abläufe, Berichte zu Patientendaten und Dokumentationsvorlagen. Mithilfe des CDSS kann – je nach System – unter anderem überprüft werden, ob die indikationsspezifische Dosis und die Applikationsfrequenz unter Berücksichtigung der Organfunktionen (inklusive Laborwerten) korrekt ist. Außerdem überprüft das System automatisch auf Vorliegen von klinisch relevanten Interaktionen mit anderen Medikamenten, die der Patient einnimmt; sowie auf Allergien und Kontraindikationen. Sind Dosierungsänderungen notwendig, erhält der Arzt einen Hinweis.

Mithilfe eines CPOE-Systems können durch die Vernetzung mit anderen Systemen des Krankenhausinformati-
onssystems (KIS) auch Labor- und Radiologieanweisungen sowie klinische Konsultationen elektronisch eingegeben, abgerufen, überwacht und ausfindig gemacht werden. Verfahren können standardisiert, die Kommunikation zwischen den Abteilungen verbessert, Patientenüberführungen erleichtert und Datensammlung für Management, Forschung und Qualitätskontrolle ermöglicht werden. Dennoch haben nur wenige Krankenhäuser CPOE-Systeme implementiert (USA: 4,3% bis 15%). In Deutschland hat in den letzten fünf bis zehn Jahren eine Entwicklung von CPOE-Systemen stattgefunden. Die Projekte befinden sich teilweise noch in der Pilotphase bzw. in laufender Weiterentwicklung: neben dem Universitätsklinikum Heidelberg werden CPOE-Systeme z. B. auch am Klinikum Saarbrücken, an der Universitätsklinik Frankfurt und in Bottrop angewendet. Die Implementierung eines CPOE-/CDS-Systems ist ein komplexes Unterfangen. Ob der Einsatz eines CPOE-Systems erfolgreich ist, hängt stark von der Veränderungsbe reitschaft und von organisatorischen bzw. strukturellen Voraussetzungen im jeweiligen Krankenhaus ab (Projektmanagement, Personalressourcen, technische Gegebenheiten). Eine genaue Analyse der Organisationsstruktur der Institution und der Arbeitsabläufe, die durch die Implementierung des CPOE-Systems betroffen sind, sollte noch vor der Implementierung durchgeführt werden. Des Weiteren ist die Auswahl und Anpassung des CPOE-Systems an die Gegebenheiten der Institution, ausreichende finanzielle und technische Ressourcen, klare Mitarbeiterführung, Training und Unterstützung der Benutzer vor und nach Implementierung des Systems sowie eine ausreichende Anzahl von Verordnungssets ausschlaggebend für eine erfolgreiche Implementierung. Eine schrittweise Implementierung hat sich bewährt. Auch die Art und Weise, wie Information vom CDSS bereitgestellt wird, beeinflusst den Umgang mit den jeweiligen Systemen. Nur Systeme, die sich an der ärztlichen Einschätzung von Risiken und deren klinischer Relevanz orientieren, finden Akzeptanz und modifizieren längerfristig das Verordnungsverhalten von Ärzten. Eine Flut irrelevanter Warnungen und Hinweise kann dazu führen, dass die Benutzer auch wichtige und relevante Warnungen zu ignorieren beginnen.

3. Forschungsfragen

Der Bericht geht folgenden Fragestellungen nach:

- Welche Zielgrößen sind geeignet, um die Auswirkungen von CPOE-Systemen zu beurteilen?
- Welche Auswirkungen haben CPOE-Systeme in Bezug auf diese Zielgrößen?
- Welche Kosteneffizienz zeigen CPOE-Systeme?
- Welche ethischen, sozialen bzw. juristischen Aspekte sind zu berücksichtigen?

Dabei werden ausschließlich im stationären Bereich und für die ärztliche Arzneimittelverordnung eingesetzte CPOE-Systeme betrachtet, die neben der elektronischen Erfas sung von Verordnungen auch Entscheidungsunterstützungssysteme beinhalten.

4. Methodik

Vorliegender HTA-Bericht verfolgt die Methodik einer systematischen Literaturrecherche. Die Literaturrecherche wird am 04.10.2007 durchgeführt und schließt deutsche und englische Publikationen ab dem Jahr 2002 mit ein. Von den 791 aus der systematischen Literatursuche (in der DIMDI-HTA-Superbase sowie in HTA- und Cochrane-Datenbanken) resultierenden Zusammenfassungen verbleiben nach einem zweiteiligen Selektionsprozess nach einheitlichen, vorab definierten Kriterien acht Volltexte zur medizinischen und vier Volltexte zur ökonomischen Bewertung. 49 Publikationen werden insgesamt über Handsuche ergänzt. 180 Texte werden als Hintergrundliteratur verwendet (inklusive Texte, die soziale, ethische und juristische Aspekte behandeln), 139 Texte werden ausgeschlossen. Für die Behandlung der juristischen Aspekte werden außerdem relevante Gesetzes texte herangezogen. Die Aufarbeitung (Datenextraktion) und Bewertung der eingeschlossenen Volltexte erfolgt gemäß festgelegten Kriterien.

5. Ergebnisse

Die Ergebnisse der medizinischen Studien sind insgesamt schwer vergleichbar, da sie verschiedene Settings, Interventionen und Zeiträume betrachten. Erschwerend kommt die zum Teil sehr mangelhafte Transparenz der Dokumentation hinzu. Alle im vorliegenden Bericht eingeschlossenen Übersichtsarbeiten und Primärstudien berichten von einer Reduktion der Medikationsfehler. Geringfügige Verordnungsfehler, die z. B. auf fehlende Angaben zurückzuführen sind, können fast gänzlich eliminiert werden, da die Vollständigkeit und Lesbarkeit von Verordnungen im CPOE-/CDS-System gewährleistet sind. Auch die positive Korrelation zwischen der Anzahl der verschriebenen Medikamente und dem Auftreten von Verordnungsfehlern kann durch CPOE-Systeme verhindert werden. Wird die Rate von UAE betrachtet, sind die Ergebnisse dazu in zwei neueren Studien widersprüchlich. Eine weitere mögliche Auswirkung der Verwendung von CPOE-Systemen ist, dass die Einhaltung von Leitlinien und die Patientenbetreuung (z. B. frühere Entfernung unnötiger Katheter) verbessert werden kann; allerdings kann keine Verbesserung der Behandlungsergebnisse gezeigt werden (wie z. B. weniger Harnwegsinfektionen). Auf die Dauer der Hospitalisierung hat die Verwendung von CPOE-Systemen meist keinen Einfluss.

In einer Studie wird als einer der Hauptnutzen eines CPOE-Systems die verbesserte Kommunikation innerhalb des Gesundheitspersonals hervorgehoben, in einer anderen Studie kann die Mitarbeiterzufriedenheit durch die Verwendung eines CPOE-Systems verbessert werden. Auch die Ergebnisse der ökonomischen Studien sind insgesamt schwer vergleichbar, da sie verschiedene Settings, Interventionen und Zeiträume betrachten. Erschwerend kommt...
die zum Teil sehr mangelhafte Transparenz der Dokumentation hinzu. Alle vier bewerteten Studien erfassen Kosten und Effekte aus Sicht eines Krankenhauses oder eines Krankenhausverbundes. Drei Studien rechnen diese monetär gegeneinander auf und kommen zu dem Ergebnis, dass insgesamt Nettoersparnisse durch die Einführung des jeweils betrachteten CPOE-Systems zu erwarten sind. Zu den Effekten zählen dabei beispielsweise Kosteneinsparungen durch geringer bzw. effizienter Arzneimittelverbrauch, effizientere Arbeitsabläufe oder geringere Krankenhausverweildauer aufgrund reduzierter UAE-Rate. Die vierte Studie nimmt implizit an, dass die Verhinderung von Medikationsfehlern und in der Folge von UAE für ein Krankenhaus einen (immaterialen) Wert per se hat. Sie berechnet die Kosten, die für jedes durch die CPOE-Einführung verhinderte UAE gezahlt werden müssen. Diese sind mit 12.700 USD allerdings deutlich höher als die mutmaßlich zu erwartenden Kosteneinsparungen durch ein verhindertes UAE. Aus Sicht des gesamten Gesundheitssystems sind die Auswirkungen der Einführung eines CPOE-Systems in beispielsweise allen oder in einem Großteil der Krankenhäuser weiter gefasst, da auch potenzielle Effekte in anderen Sektoren des Gesundheitssystems mit berücksichtigt werden müssen. Aus volkswirtschaftlicher Sicht sind des Weiteren Auswirkungen wie ein geringerer Produktivitätsausfall durch eine geringere Krankenhausverweildauer oder weniger bleibende Behinderungen bei reduzierter UAE-Rate in Erwägung zu ziehen. Aus Patientensicht relevant sind Zugewinne der Lebensqualität, wenn UAE verhindert werden, bzw. – bei Mortalität durch UAE – ein Zugewinn an Lebensjahren.

Die Vergleichsalternative ist bei drei Studien, soweit angegeben, ein papierbasiertes System und in einem Fall ein (erst teilweise eingesetztes) elektronisches Arzneimittelverordnungssystem ohne Entscheidungsunterstützung. Die Ergebnisse lassen keine Rückschlüsse auf einen Vergleich von CPOE-/CDS-Systemen zu weiteren Alternativen der Medikationsfehlervermeidung wie etwa die Einstellung von zusätzlichem pharmazeutischem Personal zu. In Anbetracht der Limitationen der Studienergebnisse und deren Widersprüchlichkeit ist die Übertragbarkeit der Ergebnisse auf das deutsche Gesundheitssystem bzw. auf deutsche Krankenhäuser nur grundsätzlich anzusprechen: Hinsichtlich der (medizinischen) Wirksamkeit von CPOE-/CDS-Systemen im Sinne einer Verhinderung von UAE sind unterschiedliche Krankenhausstrukturen zu berücksichtigen, insbesondere ob es sich um ein kleineres, allgemein ausgerichtetes Krankenhaus handelt oder um ein großes, hoch spezialisiertes Krankenhaus. Hinsichtlich der Kosten einer CPOE-System-Einführung und insbesondere hinsichtlich der Bewertung der im Krankenhaus entstehenden Kosteneinsparungen ist auch ganz grundsätzlich von Unterschieden zwischen den Gesundheitssystemen auszugehen. Eine umfassende Evaluation von Kosten und Nutzen ist nach dem Wissensstand der Autoren derzeit an keinem Krankenhaus in Deutschland geplant. Im Hinblick auf soziale Aspekte thematisiert die entsprechende Literatur im Spannungsfeld Technik und Mensch die Veränderungen (z. B. in Verantwortlichkeiten oder Arbeitsprozessen), die aus der Einführung von CPOE-Systemen entstehen können. Auswirkungen dieser Änderungen werden hinsichtlich ihres Einflusses auf die Akzeptanz der CPOE-Systeme geprüft. Erfahrungen aus Einrichtungen, in denen die Einführung von CPOE-Systemen mit Problemen behaftet war, haben gezeigt, dass die Berücksichtigung des sozio-organisationalen Kontexts zum Teil unterschätzt wurde. Eine Recherche nach Artikeln mit speziell ethisch relevanten Aspekten verlief ergebnislos bzw. lieferte keine repräsentativen Ergebnisse. Hinsichtlich juristischer Implikationen wird diskutiert, inwiefern CPOE-Systeme als Medizinprodukte im Sinne des Medizinproduktegesetzes (MPG) zu klassifizieren sind und welche Folgen daraus erwachsen (z. B. Haftung).

6. Diskussion

CPOE-/CDS-Systeme sind in der Lage, die Medikationsfehlerrate bei der Verordnung von Arzneimitteln zu reduzieren. Inwieweit die klinisch relevanter UAE-Rate oder die Mortalität durch den Einsatz eines CPOE-Systems bzw. durch eine Reduktion von Verordnungsfehlern beeinflusst wird, kann bei der vorliegenden Datenlage nicht schlüssig beurteilt werden. Neben den Auswirkungen auf Medikationsfehler können CPOE-Systeme auch die Einhaltung von Richtlinien, Kommunikation, Patientenbetreuung und Zufriedenheit der Belegschaft positiv beeinflussen. Auch eine nach dem Suchzeitraum publizierte systematische Übersichtsarbeit kommt zu diesem Schluss. Neben positiven Effekten von CPOE-/CDS-Systemen wird auch von negativen Auswirkungen berichtet. In einer Studie kommt es nach Implementierung eines CPOE-Systems in einem Kinderkrankenhaus sogar zu einem signifikanten Anstieg der Mortalität. Auch andere Autoren betonen, dass durch die Verwendung von CPOE-Systemen neue Fehler generiert werden können. Diese Art von systemimmanenten Fehlern unterstreicht die Wichtigkeit der ständigen Überprüfung von CPOE-/CDS-Systemen. Eine weitere Fehlerquelle ist die Nichtvernetzung des CPOE-Systems mit anderen computergestützten Systemen, z. B. mit dem Apotheken- oder Laborystem des Krankenhauses. Fehlendes Wissen über Medikamente und hinsichtlich der Eingabe bestimmter Medikationen sowie eine allgemein fehlende Vertrautheit mit dem System kann gerade für ungeübte Benutzer von CPOE-Systemen zu Fehlern führen. Dies betont die Wichtigkeit von Schulungen in Bezug auf Medikation als effektive Qualitätssicherungsmaßnahme und ausreichendem Training der Benutzer vor und Unterstützung während der Implementierung eines CPOE-Systems. Um die Effektivität eines CDSS zu gewährleisten, müssen die Auslöser für Warnungen entsprechend sensitiv und die Warnung selbst spezifisch sein, damit sie nicht ignoriert werden. Auch müssen ggf. die verwendeten Daten aktualisiert werden. Das impliziert, dass Patientendaten voll-
ständig vorliegen müssen, was wiederum die Wichtigkeit einer vollständigen Aufnahme-Anamnese betont. Da Warnungen zu nötigen Dosisanpassungen nur während des Verordnungsprozesses erstellt werden, ist eine tägliche, automatische Überprüfung der Medikation hinsichtlich der aktuellen Laborwerte erforderlich. Um die Gründe für Medikationsfehler zu identifizieren, wird ein standardisiertes Fehlermeldesystem benötigt, das klare Definitionen für Medikationsfehler und UAE verwendet. CPOE-Systeme haben große Auswirkungen auf die Organisationskultur und die klinischen Arbeitsabläufe in einer Institution; sie müssen daher auf bereits vorhandene Systeme und die Erfordernisse der entsprechenden Institution abgestimmt werden.

Hinsichtlich der Kosten-Nutzen-Relation aus Krankenhausicht kommen die zwei qualitativ besten ökonomischen Studien zu widersprüchlichen Ergebnissen. Von einer positiven Kosten-Nutzen-Relation für das einzelne Krankenhaus kann deshalb nicht sicher ausgegangen werden, insbesondere da die Ergebnisse nicht generalisierbar sind. Aus Sicht des Gesundheitssystems bzw. aus volkswirtschaftlicher Sicht sind – vorausgesetzt, es kommt zu einer UAE-Reduktion – jedoch zusätzliche positive Auswirkungen, etwa die erhöhte Lebensqualität, zu berücksichtigen. Hierzu gibt es in der Literatur keine quantitativen Untersuchungen. Auch zum Vergleich von CPOE-/CDS-Systemen mit weiteren Alternativen der Medikationsfehlervermeidung, z. B. Personalauflistung, ist anhand der Literatur wenig zu sagen.

7. Schlussfolgerung/Empfehlung

Wird die Implementierung eines CPOE-/CDS-Systems sorgfältig geplant, durchgeführt, das System an die Bedürfnisse der Institution angepasst und fortlaufend überwacht sowie die Daten ggf. aktualisiert, kann die Medikationsverordnungsfehlerrate durch die Verwendung von CPOE-Systemen deutlich gesenkt werden. Allerdings ist nicht klar, inwieweit dies eine Reduktion von UAE be wirkt. Es werden prospektive, systematische Multizentren-Evaluierungsstudien mit klarer Methodik gefordert, die eine Analyse der Benutzerfreundlichkeit und sozialer bzw. -technischer Aspekte einschließen und den Einfluss eines CPOE-/CDS-Systems auf die UAE-Rate (und Mortalität) untersuchen. Unverzichtbar ist eine genaue Beschreibung des verwendeten Systems und des untersuchten Krankenhauses. Nach Möglichkeit hat auch eine Erhebung und transparente Dokumentation der Kosten und Kosten effekte zu erfolgen.

Eine quantitative Abschätzung der volkswirtschaftlichen Auswirkungen der Einführung von CPOE-/CDS-Systemen an (allen) Krankenhäusern in Deutschland erscheint derzeit gewagt: Die bisherigen Ergebnisse in der Literatur sind in Hinblick auf die relevanten Endpunkte nur begrenzt aussagekräftig, erlauben selten eine klare Zuordnung zu einzelnen Teilmaßnahmen und Funktionalitäten der Systeme, geschweige denn Vergleichsalternativen; Rückschlüsse auf einen anderen Kontext sind nur bei höchster Transparenz der Darstellung möglich. Strukturierte Interviews an einer Auswahl von Krankenhäusern mit und ohne CPOE-/CDS-System bzw. mit alternativen Maßnahmen zur Medikationsfehlerreduktion könnten wichtige Inputs liefern bzw. helfen, den weiteren Forschungsbedarf einzuschätzen.

Korrespondenzadresse:
Heidi Stürzlinger
Gesundheit Österreich GmbH, Geschäftsbereich ÖBIG, Stubenring 6, 1010 Wien, Tel.: +43-1-51561 290
stuerzlinger@goeg.at

Bitte zitieren als
Stürzlinger H, Hieberinger C, Pertl D, Traurig P. Computerized Physician Order Entry - Wirksamkeit und Effizienz elektronischer Arzneimittelverordnung mit Entscheidungsunterstützungssystemen. GMS Health Technol Assess. 2009;5:Doc07.

Artikel online frei zugänglich unter
http://www.egms.de/en/journals/hta/2009-5/hta000069.shtml

Der vollständige HTA-Bericht steht zum kostenlosen Download zur Verfügung unter:
http://portal.dimdi.de/de/hta/hta_berichte/hta228_bericht_de.pdf

Copyright
©2009 Stürzlinger et al. Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.