Scaling POMDPs For Selecting Sellers in E-markets—Extended Version

Athirai A. Irissappane
Nanyang Technological University
Singapore
athirai001@e.ntu.edu.sg

Frans A. Oliehoek
University of Amsterdam
University of Liverpool
frans.oliehoek@liverpool.ac.uk

Jie Zhang
Nanyang Technological University
Singapore
zhangj@ntu.edu.sg

Abstract

In multiagent e-marketplaces, buying agents need to select good sellers by querying other buyers (called advisors). Partially Observable Markov Decision Processes (POMDPs) have shown to be an effective framework for optimally selecting sellers by selectively querying advisors. However, current solution methods do not scale to hundreds or even tens of agents operating in the e-market. In this paper, we propose the Mixture of POMDP Experts (MOPE) technique, which exploits the inherent structure of trust-based domains, such as the seller selection problem in e-markets, by aggregating the solutions of smaller sub-POMDPs. We propose a number of variants of the MOPE approach that we analyze theoretically and empirically. Experiments show that MOPE can scale up to a hundred agents thereby leveraging the presence of more advisors to significantly improve buyer satisfaction.

1 Introduction

In many domains, agents need to determine the trustworthiness (quality) of other agents before interacting with them. Specifically, in e-marketplaces, buying agents need to reason about the quality of sellers and determine which sellers to do business with (referred to as the seller selection problem). When buyers have no previous experience with sellers, they can obtain advice by querying other buyers (called advisors). However, some advisors may be untrustworthy and provide misleading opinions to promote or demote the sellers (Irissappane and Zhang 2015).

The Partially Observable Markov Decision Process (POMDP) is a framework for sequential decision making under uncertainty, suitable for e-markets, where buyers often need to make decisions with limited information about the sellers and advisors (Regan, Cohen, and Poupart 2005). The Advisor POMDP, for the seller selection problem, which, rather than trying to achieve the most accurate estimate of sellers, tries to select good sellers optimally with respect to its belief. Seller and Advisor Selection (SALE) POMDP (Irissappane, Oliehoek, and Zhang 2014) extends Advisor POMDP to additionally deal with trust propagation, by introducing queries about advisors. The SALE POMDP formalism enables maximizing buyer satisfaction by optimally trading off information gain (querying advisors) and exploiting (selecting a seller) actions, and experiments have shown very good results in practice. Also, the approach is easily generalizable to deal with more general problems with trust-propagation components, such as routing in Wireless Sensor Networks (WSNs) (Irissappane et al. 2015).

Unfortunately, these POMDP approaches suffer from scalability issues. Finding optimal policies for POMDPs is, in general, computationally intractable (PSPACE complete) and POMDP solvers computing exact solutions, e.g., value iteration do not scale to more than a handful of states (Cassandra, Kaelbling, and Littman 1994). While approximation algorithms have been shown to supply good policies rapidly even for problems with very large state spaces (Spaan 2012; Silver and Veness 2010), the scalability of the SALE POMDP, which is based on one such method (Poupart 2005), is limited to about 10 agents (sellers and advisors). For larger number of agents, the solution time grows to the order of hours and solution quality degenerates, precluding the SALE POMDP from exploiting the presence of more sellers and advisors.

This paper proposes a novel method, referred to as the Mixture of POMDP Experts (MOPE) approach, for dealing with very large trust-propagation problems such as SALE POMDPs with many sellers and advisors. The key idea is to divide the large seller selection POMDP problem into a multitude of computationally tractable smaller (sub-)POMDPs, each containing a subset of sellers and advisors. The actions of the sub-POMDPs (SPs) are then aggregated, to find the best action in the process of selecting a good seller.

The MOPE approach exploits the structure of the Dynamic Bayesian Network that represents the transition and observation probabilities of the SALE POMDP; query actions do not affect the actual states but only the agent’s beliefs over the state factors, making it easier to decompose a large seller selection problem into smaller sub-problems that approximate the larger problem. Due to the improved scalability of MOPE, it can leverage the presence of more advisors to make more informed decisions about sellers, when the size of the seller selection problem increases. Extensive evaluation in a simulated e-marketplace demonstrates that MOPE can scale up to a hundred agents (millions of states and thousands of actions), outperforming the state-of-the-art POMCP (Silver and Veness 2010) approach, while using less computation time. We also demonstrate that MOPE can bring scalability to other domains by showing results for wireless sensor networks with up to 40 neighboring nodes.
2 Background

This paper mainly relies on POMDPs, which can be used to represent decision making problems under uncertainty in terms of states, actions, transitions, observations and rewards. We refer to Kaelbling et al. (1998), Spaan (2012) for a comprehensive introduction to POMDPs. Here, we try to convey the most basic intimations by briefly describing the Seller and Advisor Selection (SALE) POMDP (Irissappane, Oliehoek, and Zhang 2014), which is the main application for the technique we propose in this paper.

States. Each state is represented using a number of state factors, such as the quality levels of each seller ($q_j \in \{\text{high, low}\}$), each advisor ($u_i \in \{\text{trustworthy, untrustworthy}\}$), and status of the transaction ($sat \in \{\text{not started, satisfactory, unsuccessful, gave up, finished}\}$).

Actions and Transitions. For query actions such as $seller-query_{i,j}$ ($\{SQ\}_{i,j}$), i.e., ask advisor i about seller j and $advisor-query_{i,i'}$ ($\{AQ\}_{i,i'}$), i.e., ask advisor i about another advisor i', the states do not change. For BUY_j action, to buy from seller j, the state transitions to successful ($sat = \text{satisfactory}$) on buying from a good seller and unsuccessful ($sat = \text{unsatisfactory}$) on buying from a bad seller. For $do\not\text{buy}$ (DNB) action, i.e., do not buy from any seller, the state transitions to $sat = \text{gave up}$.

Rewards. There is small cost for the query actions. A reward/penalty is associated with a successful/unsuccesful transaction. There is a penalty for taking DNB action, when there is a seller of high quality, otherwise a reward is given.

Observations. After $SQ_{i,j}$, $AQ_{ii'}$ actions, an observation $o \in \{\text{good, bad}\}$, corresponding to the quality of seller j and $o \in \{\text{trustworthy, untrustworthy}\}$ corresponding to the quality of advisor i' is received, respectively. After BUY_j action, the agent can also receive an observation based on the actual quality of seller j, allowing to reuse the updated beliefs, in case of multiple transactions. The observation probabilities are such that trustworthy advisors give more accurate and consistent answers than untrustworthy ones.

The SALE POMDP agent interacts with its environment for an indefinite number of time steps and we model the problem using an infinite horizon. During this interaction, the agent maintains a belief $b \in B$, i.e., a probability distribution over states. If $b(s)$ specifies the probability of s (for all s), we can derive b' an updated belief after taking some action a and receiving an observation o using the Bayes' rule. A POMDP policy $\pi: B \rightarrow A$, maps belief $b \in B$ to an action $a \in A$. A policy π is associated with a value function $V(b)$, specifying the expected total reward of executing policy π starting from b, with discount factor γ. The main objective of the POMDP agent is to find an optimal policy π^*, which maximizes $V(b)$ (Eqn. 1). The value function can also be represented in terms of Q-functions, given by Eqn. 2, where, b^*_o is the belief state resulting from b after taking action a and receiving observation $o \in O$.

$$V^*(b) = \max_{\pi} \mathbb{E} \left[\sum_{s} \gamma^t R(s, a, s') | \pi, b \right] = \max_{a \in A} Q^*(b, a) \quad (1)$$

By computing the optimal value function, we can optimize long-term rewards by picking maximizing actions. This stands in contrast to myopic approaches that maximize the immediate rewards R. Such approaches are inherently unsuitable for seller selection: in order to correctly value the different query actions, one needs to reason about their impact on the future beliefs and the associated value of information. In order to actually compute V^* (approximately) one could rely on state-of-the-art flat solvers such as SAR-SOP (Kurniawati, Hsu, and Lee 2008), but these do provide very limited scalability (Oliehoek, Gokhale, and Zhang 2012), since the number of states grows exponentially with the number of agents n (i.e., sellers and advisors). Therefore, Irissappane, Oliehoek, and Zhang (2014) employ a solution method, factored Perseus (Poupart 2005), that exploits the factored representation of this domain, thus allowing to scale to roughly 10 agents. Beyond that solution times go up significantly while solution quality drops. Apart from the number of state factors themselves, a difficulty is that the number of actions grows with order $O(n^2)$ as the query actions involve pairs of agents.

3 A SingleExpert Baseline

In this paper, we propose techniques to exploit the structure present in (settings like) the SALE POMDP. Here, we introduce a baseline algorithm as an intuitive starting point for the more advanced method we propose in the next section.

This baseline, called SingleExpert, is basically a method to apply the SALE POMDP for large problems. That is, when faced with a SALE POMDP instance with many sellers and advisors, we can randomly select a subset of agents that is small enough to model and solve as a SALE POMDP and use the resulting policy. Since the q_j and u_i variables do not influence each other, defining such a sub-POMDP (SP) is trivial as it merely amounts to deleting all non-selected state variables as well as actions and observations that pertain to them. Also, the resulting model is a small SALE POMDP, thus we can find a good solution for it. While this voluntary restriction on the set of sellers and advisors that will be reasoned about could be limiting, it is quite possible that it may lead to acceptable performance and it might be better than incorrectly reasoning about all of the agents. We call this approach the ‘SingleExpert’ approach, since the randomly selected SP acts as a (single) expert as to what action to take in the larger problem.

4 Mixture of POMDP Experts (MOPE)

While we argue that SingleExpert might have its merit, clearly, we want to develop methods that can exploit large pools of potential sellers and advisors. To accomplish this, we introduce the Mixture of POMDP Experts (MOPE) framework. SingleExpert exploits a particular property of trusted-propagation-like domains: constructing an SP is possible because the state variables encoding seller and advisor qualities do not affect each other and cannot be influenced by actions. In fact, interaction of these variables only arises...
in the agent’s beliefs manifested as correlations induced by the coupling via observations. For example, if we query advisor \(i \) about seller \(j \) and receive observation \(\text{bad} \), it not only increases the probability of the seller being low quality \((q_j = \text{low}) \) and advisor being \(u_i = \text{trustworthy} \), but also of \((q_j = \text{high}, u_i = \text{untrustworthy}) \). The MOPE framework aims to take this insight further by approximating such correlations using smaller clusters of variables, as in variational inference approaches \(\textit{[Koller and Friedman 2009]} \), leading to the idea of representing the larger problem using a number of smaller SPs and leveraging their solutions. That is, rather than considering a single expert, we will want to consider many SPs.

4.1 MOPE Algorithm Overview

Algorithm \[\text{Algorithm 1}\] gives a brief overview of the MOPE framework. We first form the SPs by randomly selecting a subset of sellers and advisors \((M_k, A_k) \) from the entire population of \(M \). Each SP is solved to obtain the optimal policy and thereby its maximum expected total reward \(V_k \) (Line 2 \[\text{Algorithm 1}\]). When SPs have the same agent composition (number of sellers and advisors), the found \(V_k \) can be reused amongst them. Therefore, in our implementation we always select such uniformly composed SPs. We define \(V \) as a set of votes \(v \) collected from each SP. Each vote \(v = (a, q) \) is a set containing the action \(a \) suggested by the SP and its associated Q-value \(q \).

To maintain beliefs about all the state factors, it is possible to maintain the local beliefs in each SP, in parallel. However, doing so: 1) we need to deal with the actions not present in a SP as its local belief will be updated only if the SP contains the executed action \(\bar{a} \); 2) we cannot properly take into account the influence of state factors not modeled in the SP on the belief, which may lead to inconsistent beliefs in different SPs. Thus, we propose to maintain and update the beliefs \(b \in B \) at the global level, i.e., involving all state factors.

At each time step, for each SP, we first extract its current local belief \(b_k \) (Line 6 \[\text{Algorithm 1}\]) from the global belief \(b \). Based on \(b_k \), we obtain its vote \(v \), i.e., its recommended action \(a \) and the associated q value (Line 7 \[\text{Algorithm 1}\]). The overall best action \(\bar{a} \) is obtained (Line 8 \[\text{Algorithm 1}\]) by aggregating all the votes \(v \in V \). Action \(\bar{a} \) is then executed (Line 9 \[\text{Algorithm 1}\]) and an observation \(o \) is received (Line 10 \[\text{Algorithm 1}\]), based on which the global beliefs are updated (Line 11 \[\text{Algorithm 1}\]). The following subsections give a more detailed description of the techniques used in the framework.

4.2 Dividing into Sub-POMDPs

We randomly select subsets of sellers and advisors from the whole population \(W \) to decompose \(M \) into a number of SPs. If SPA is the number of SPs that each agent can be a part of and APS is the number of agents each SP should contain, the total number of SPs necessary for the seller selection problem is given by \(|W|^*\text{SPA}/*\text{APS} \). Also, APS is chosen such that the SPs can be computationally tractable.

4.3 AggregateVotes(\(V \))

Here, we describe different ways to aggregate the votes \(V \).

1 In practice, we may not solve the SPs optimally, and use the best policy and accompanying value function that we could find.

Parallel Max-Q

Here, the best action \(\bar{a} \) is selected as the action with the maximum Q-value \((\bar{a} = \text{argmax}_{a \in \mathcal{A}} q_a) \), among those present in \(V \). Also, Parallel Max-Q maintains, in parallel, a set \(B = \{b_1, ..., b_K\} \) of local beliefs (corresponding to the SPs). We will use \(B \) as the global belief, in this case. GlobalBeliefUpdate \((b, \bar{a}, o) \) is performed such that the beliefs \(b_k \) in each SP are updated using the Bayes’ rule in parallel, when \(\bar{a} \in A_k \) (actions in \(M_k \)) and \(o \in \mathcal{O}_k \). When either of these conditions fails, no belief update takes place.

To analyse the performance of Parallel Max-Q for a given decomposition \(D = \{M_1, ..., M_K\} \) of SPs, we derive a lower bound on its performance. Specifically, we show that the expected sum of rewards \(V_{\text{parallel}}^* \) realized by parallel Max-Q for a decomposition \(D \), is at least as much as the optimal value \(V_* \) realized by picking any SingleExpert \(M_k \in D \) for this, we need to make two assumptions: the decomposition \(D = \{M_1, ..., M_K\} \) is non-overlapping (i.e., no two SPs \(M_i, M_j \) contain the same seller or advisor state factors), and the true initial state distribution \(\beta_0(s) \) is factored along the decomposition (i.e., \(\beta_0(s) = \beta_0^1(s_1) \times \beta_0^2(s_2) \times ... \times \beta_0^K(s_K) \)).

Theorem 1. If the decomposition \(D = \{M_1, ..., M_K\} \) is non-overlapping, and the true initial state distribution \(\beta_0 \) is factored along the decomposition, then the value realized by Parallel Max-Q is at least as much as the value of the best SingleExpert: \(V_{\text{parallel}}^*(\beta_0) \geq \text{max}_{s_k \in \{1,...,K\}} V_*^k(\beta_0^k) \).

The proof of Theorem 1 is given in Appendix A, which includes a detailed theoretical analysis on the value realized by Parallel Max-Q. However, when the SPs are overlapping, Parallel Max-Q at times, can perform worse than the Best SingleExpert due to inconsistent beliefs across SPs. Imagine that there is a decomposition with two SPs (SP 1, SP 2) with a high overlap: there is one seller which is present in both SPs, but each SP has some private advisors. Also, assume that there is an uniform initial belief such that the values of the SPs are equal, and Parallel Max-Q selects a ‘winning’ SP, say SP 1, randomly. Subsequently, the executed action is a seller query that asks one of the private advisors of SP 1 about the (shared) seller, and if the answer is ‘bad’, the belief of SP 1 gets updated to reflect a lower probability of the seller being high quality. Next, however, Parallel Max-Q
will switch to SP 2 where the belief has not been altered. As such SP 2 is overestimating the value because its belief is no longer in sync with the true distribution. This overestimation of the value may lead to unnecessary information gathering actions which have costs associated with them and eventually may lead to Parallel Max-Q performing worse than the Best SingleExpert.

Max-Q. To address the issue of inconsistent beliefs, here in Max-Q, the beliefs are not maintained in parallel, instead they are maintained and updated (using Bayes’ rule) at the global level, i.e., involving all state factors, as it helps to propagate information (about the sellers and advisors) across SPs. We empirically show the advantage of Max-Q over Parallel Max-Q, for a decomposition \(D \) in Fig. 1 by plotting their values for different seller selection problems, comprising of 6 – 10 agents. We also show the value of SingleExpert (randomly chosen 5 agent SP) in Fig. 1.

Majority Voting. As Parallel Max-Q and Max-Q select the action of the maximizing SP (with the maximum Q-value), they consider the value that the action will generate for a single sub-problem. It is likely that certain actions are more useful for many sub-problems and it is better to select the action with a higher value in all SPs than the action with the highest value in one single SP. Here, we formalize one such technique called the Majority Voting approach.

Algorithm 2 describes the Majority Voting approach in detail. Based on the votes \(v \in V \), we first count the number of SPs which suggested the action \(a \) (Line 3). We also determine the mean Q-value associated with each action \(a \) using the qvalsum[] and meanQs[] variables (Lines 4 – 6).

While using the Majority Voting technique, we need to consider the fact that not every SP will have the same set of actions as it depends on which sellers and advisors are present in the SP. For instance, while each SP has the action \(DNB \), the action, say \(SQ_{a12,s23} \) will only be present in a SP containing both advisor12 and seller23. Thus, most \(SQ_{i,j} \) and \(AQ_{i,v} \) actions might not be represented in any SP, and the ones present may be represented in just one SP.

To address this, we make use of the additional information present in the actions of each SP by formulating the concept of *abstract* actions. Consider the case where the belief indicates that there is a reasonable chance that seller23 is of high quality, but it falls just short of being sufficient to select the \(BUY_{Y} \) action. Here, it is very likely that all query actions that ask about seller23 that are represented in some SPs (we will denote this set by \(SQ_{X,s23} \), \(AQ_{X,a30} \), \(DNB \)) can potentially help overcome the problem of sparsely represented actions.

However, only SPs which contain seller23 will have a \(SQ_{X,s23} \) action, still resulting in unbalanced voting. Thus, rather than only abstracting away just one argument, we abstract away both arguments leading to abstract actions \(SQ_{X,Y} \) and \(AQ_{X,Y} \). Doing this leads to a situation where every SP has abstract actions \(SQ_{X,Y} \), \(AQ_{X,Y} \), \(BUY_{Y} \) and \(DNB \) (called Level L2 actions). But, still there may arise scenarios where SP actions can outnumber the \(SQ_{X,Y} \), \(AQ_{X,Y} \), \(BUY_{Y} \) actions, individually, especially in cases when all good sellers are concentrated only to a group of SPs. Thus we consider (Level L3) abstract actions \(DNB \) and \(Others \) in \(\{ SQ_{X,Y} \}, AQ_{X,Y}, BUY_{Y} \), resulting in a 3 level abstraction hierarchy shown in Fig. 2.

The L1, L2 and L3 abstract actions lead to new questions about which ones should be included in the Majority Voting technique. In this work, we empirically investigate these questions by considering a number of so-called voting hierarchies. In H1 hierarchy, only L1 abstract actions are considered and the best abstract action \(\bar{a}^* \) is chosen, after which the concrete action \(\bar{a} \) is chosen. In hierarchy H2, first the

Algorithm 2: AggregateVotes by Majority Voting

Input: \(V \), the set of votes

1. **foreach** \(v \in V \) **do**
 1. \((a,q) \leftarrow v \);
 2. counts\([a]\) += 1;
 3. qvalsum\([a]\) += \(q \);

2. **foreach** \(a \in A \) **do**
 1. meanQs\([a]\) = qvalsum\([a]\) / counts\([a]\);

3. **foreach** \(v \in V \) **do**
 1. \(AV = \{ (\bar{a},q) \} \leftarrow AbstractedVotes(v) \);
 2. **foreach** \((\hat{a},q) \in AV \) **do**
 1. counts\([\bar{a}]\) += 1;
 2. qvalsum\([\bar{a}]\) += \(q \);
 3. **foreach** \(\hat{a} \in \hat{A} \) **do**
 1. meanQs\([\bar{a}]\) = qvalsum\([\bar{a}]\) / counts\([\bar{a}]\);
 2. \(\bar{a}^* = \arg \max_{\bar{a}} (\text{counts}[\bar{a}] * \text{meanQs}[\bar{a}]) \);
 3. \(\bar{a} = \text{Refine}(\bar{a}^*, \text{counts}, \text{meanQs}) \);
 4. **return** \(\bar{a} \)
best abstract action among the L2 abstract actions is determined, followed by the best L1 abstract action and finally the concrete action. In hierarchy H3 (shown in Fig. 2), first the best L3 abstract action is determined followed by L2, L1 best abstract actions and then the concrete action.

In Algorithm 2, we maintain a separate set of votes \(\mathcal{AV} \) for abstract actions \(\bar{a} \). In Line 8, we determine all the abstract actions that correspond to the regular action \(a \) contained in vote \(v \). Subsequently, we increment their counts \(\text{counts}[\bar{a}] \) and meanQs[\(\bar{a} \)] (Lines 9-13). Then, in Line [14] the best abstract action \(\bar{a}^* \) is first selected, which is subsequently refined to determine the best concrete action. This refinement process depends on the employed voting hierarchy. For instance when using the H1 hierarchy,

\[
\bar{a} = \arg \max_{a \in A(\bar{a}^*)} \text{counts}[a] \times \text{meanQs}[a],
\]

where \(A(\bar{a}^*) \) denotes the set of concrete actions consistent with abstract action \(\bar{a}^* \).

4.4 Belief Update

Though we can maintain and perform exact belief updates at the global level, i.e., involving all state factors, using the Bayes’ rule, such exact inference is complex and does not scale to more than 10 agents. Therefore, we propose to employ the approximate inference methods. In particular, we apply Factored Frontier (FF) [Murphy and Weiss 2001], which maintains the belief in fully factored form, i.e., as the product of marginals of state factors \(x_i; b(s) = \prod_{i=1}^{n} b(x_i) \). Thus the beliefs for each SP can directly be extracted via \(b_k(s) = \prod_{x_i \in X_k} b(x_i) \), where \(X_k \) denotes the set of state factors that are a part of the sub-POMDP \(M_k \). While FF is a simple algorithm, and other choices are possible, it does allow influence of variables to propagate through the network and our experiments suggest that FF performs quite well.

5 Experiments

Here, we empirically investigate the solution quality and scalability of the proposed Mixture of POMDP experts (MOPE) technique in the e-marketplace domain. We are primarily interested to see if the added scalability can actually translate into additional value from the buyer’s perspective.

Experimental Setup

We analyze different design considerations for MOPE (SPA=4 SPs per agent and APS=5 agents per SP with a uniform composition for all SPs comprised of 1 seller and 4 advisors, such that we can reuse \(V^* \), as described in Sec. 4.1) and compare it with:

1. the original SALE POMDP. We assume uniform initial beliefs and compute the SALE POMDP optimal policy using Symbolic Perseus [Poupart 2005].
2. SingleExpert(5), i.e., a randomly selected 5-agent SP, serving as the lower bound.
3. POMCP [Silver and Veness 2010], an online planning approach which requires a number of random simulations (we use 10,000 simulations per selected action) to estimate the potential for long-term reward.
4. an optimistic heuristic value \(V_{\text{maxv}} \), which is the value obtained by running many simulations of MOPE (Majority Voting with H3 hierarchy and SPA=8) on ‘ideal’ global problems (i.e., on 100 agent problems with good sellers and trustworthy advisors). We consider such a heuristic as we know that beginning with a most favourable state (which in our case is the presence of good sellers and trustworthy advisors in the SPs, as they have a higher probability of resulting in successful transactions), results in best performance while executing a POMDP policy.
5. the Q-MDP value \(V_{\text{qmdp}} \), which is the value obtained by considering the states to be fully observable in the next time step [Littman, Cassandra, and Kaelbling 1995]. Though majority of our (query) actions do not have value while computing \(V_{\text{qmdp}} \), we still consider the QMDP value as it can serve as an upper bound.

We conduct experiments in a simulated e-marketplace, where buyers need to choose sellers as successful transaction partners. We measure the average error \(\in [0, 1] \) in terms of the percentage of ‘unsuccessful transactions’ (buying from a bad seller or taking the DNB action in the presence of a good seller) and value, i.e., the discounted (0.95) reward in the process of choosing a seller. The buyer pays a cost of 1 for querying advisors about other advisors, 10 for querying about a seller, gains 100 for choosing a good seller or taking DNB when no seller is of good quality, loses 100 for choosing a bad seller or taking DNB when there is a good seller. The number of sellers is 20% of the whole population \(W \) and number of advisors is 80% among which 20% are untrustworthy. All the results are values averaged over 500 iterations from the point of view of a single buyer. We consider single transaction settings, where the buyer has no previous experience with the seller.

To analyze the scalability, we increase the number of agents \(W \) in the e-marketplace from 6 – 100 (size of the corresponding seller selection problem, is given in Table [I])

\(W \)	6	7	8	9	10	25	50	75	100		
\(S	\)	\(2^6 \)	\(2^7 \)	\(2^8 \)	\(2^9 \)	\(2^{10} \)	\(2^{25} \)	\(2^{50} \)	\(2^{75} \)	\(2^{100} \)
\(A	\)	27	38	45	59	75	486	1971	4456	7941

Table 1: Size of the seller selection problem
and measure the performance of the approaches in Fig. 3. As SALE POMDP does not scale effectively to more than 10 agents (ran out of time while computing the policy), its performance is not shown for $W>10$ in the figures.

5.1 Influence of using Factored Frontier (FF)

Fig. 3(a-b) show the influence of using FF for the belief update. We see that while the approximation introduced by FF leads to a reduction in value compared to using exact belief updates, the difference is quite small.

Analysis of Different Design Schemes for the Majority Voting MOPE Approach. Fig. 4 shows the analysis of the different design considerations, such as the performance of voting hierarchies, influence of SPA and APS for the Majority Voting MOPE approach. In Fig. 4(a-b), we analyse the performance of the H1, H2 and H3 hierarchies while using the Majority Voting MOPE approach. We see that H3 hierarchy outperforms H1 and H2. Also, we see that for (most) cases where the SALE POMDP is able to provide an answer, it is performing slightly better than H3. This is expected since it does a full POMDP reasoning over the entire state space. However, for larger problems, the difference in performance becomes negligible and when including more advisors, H3 finds policies that lead to significantly smaller errors and higher payoffs. SingleExpert(5) achieves a constant performance as it always considers a group of 5 agents to make decisions. The performance of all other approaches increase with the number of agents as there are more advisors to seek information about the sellers.

In Fig. 4(c-d), we analyse the influence of the number of SPs per agent (SPA), using H3 Majority Voting (with default SPA=4). Fig. 4(c-d) show that performance of H3 increases with SPA, i.e., H3S8 (SPA=8) shows the best performance and H3S2 (SPA=2) shows the least performance. This is because, on increasing SPA, the total number of SPs considered increase, resulting in more informed decision making. We see that H3 and H3S8 outperform SALE POMDP for 10 agents, suggesting that the quality of Symbolic Perseus degrades for larger problems. Fig. 4(e-f) show the influence of the number of agents per SP (APS) for the H3S8 technique. H3S8A6 (APS=6), H3S8A7 (APS=7) and H3S8A8 (APS=8) outperform H3S8 (default APS=5) as increasing APS improves performance by reasoning over a larger state space. Importantly, we see how this enables MOPE to accumulate a significantly higher value (H3S8A7 obtains a value of 72 for 100 agents) than the best SALE POMDP value (65 for 10 agents). We expect that the lower performance of H3S8A8 compared to H3S8A7 is caused by a relative degradation of the solution quality of the (larger) SPs. However, H3S8A6, H3S8A7 and H3S8A8 involve greater policy computation time than H3S8.

Comparison with Max-Q, POMCP, V_{max} and V_{qmdp}. In Fig. 5 we compare the performance of H3S8 along with Max-Q (SPA=8, APS=5 and using the FF algorithm for belief update). We have shown the error and value for the POMCP approach in Table 2 separately, to retain the clarity in Fig. 5(a-b). We see that H3S8 outperforms both Max-Q and POMCP. As the number of agents increases, performance of POMCP decreases, as it requires a larger number of simulations to sample the beliefs and histories about the agents. Also, POMCP does not scale well with the number of actions (which is large in these problems). We have not shown the POMCP results for $W>25$ due to the complexity of the simulations.

W	6	7	8	9	10	25	50	75	100
error	0.60	0.62	0.70	0.80	0.81	0.90	-	-	-
value	-46	-54	-68	-90	-92	-110	-	-	-

Table 2: Performance of POMCP
Figure 4: Performance comparison of the Majority Voting design schemes: (a-b) voting hierarchies; (c-d) influence of SPA; (e-f) influence of APS
Fig. 5(b) also shows the V_{maxv} and V_{qmdp} values. Specifically, we consider the V_{maxv} value, in order show the performance of the Majority Voting MOPE scheme (H3S8), under the most favourable conditions. We know that beginning with a most favourable state always results in best performance while executing a POMDP policy. In our case, the most favourable state represents the presence of good quality sellers and trustworthy advisors in the SPs, as they have a higher probability of resulting in successful transactions, thereby leading to greater value. As we can see, the V_{maxv} value is greater than the value obtained by H3S8 for normal problems (in which sellers can also be of low quality and advisors can be untrustworthy). V_{qmdp} is the upper bound value and looks like a piecewise function because of the same number of sellers in some of the problems. Thus, Fig. 5(b) shows the lower bound, i.e., the value of Single-Expert(5), optimistic heuristic value V_{maxv}, and the upper bound V_{qmdp} for a 5-agent decomposition.

Fig. 6 shows the policy computation time for each seller selection problem involving 6 to 100 agents. For POMCP, we measure the simulation time per episode. We see that the time taken by H3S8, SingleExpert(5), Max-Q is less than SALE POMDP and POMCP. Also, the constant time 22s for H3S8, SingleExpert(5) and Max-Q is due to using the same 5-agent policy for all SPs.

Performance in WSN Domain. While the MOPE approach can improve the scalability of the SALE POMDP model in the e-marketplace domain (as shown in Fig. 5), it can also be applied to improve the scalability of the POMDP models in other domains, which follow a similar trust propagation structure as the SALE POMDP. To verify this, we also apply the MOPE approach (H3S4 Majority Voting with APS=3, SPA=4) to improve the scalability of the SRP model (see Irissappane et al. 2015 for details) in the WSN domain and compare it with: 1) the original SRP model; and 2) Single-Expert(3) with 3 agents. We use the same simulation settings as used in (Irissappane et al. 2015). Fig. 7(a-b) show that SRP performs better than H3S4 for 3 – 5 neighbors. However, it cannot provide solutions for more than 5 neighbors, while H3S4 can scale up to 40 neighbors, generating a much higher value. Also, the policy computation time is 73s for H3S4 and 736s for the SRP model for 5 neighbors.
Figure 7: Performance in wireless sensor networks

6 Related Work

There is extensive literature on scalable solutions to solving POMDPs. Point-Based Value Iteration (PBVI) (Pineau, Gordon, and Thrun 2003) computes a value function over a finite subset of the belief space. A point based algorithm explores the belief space, focusing on the reachable belief states, while maintaining a value function by applying the point-based backup operator. Bounded policy iteration (BPI) (Poupart and Boutilier 2003) incrementally constructs a finite state controller by alternating policy improvement and policy evaluation until a local optimum is reached by slowly increasing the number of nodes. Gradient ascent (Aberdeen and Baxter 2002) restricts its search to controllers of a bounded size. However, the above approaches scale only to thousands of states (Poupart and Boutilier 2004).

In structured domains, further scaling can be achieved by exploiting compact representations (Feng and Hansen 2001; Guestrin, Koller, and Parr 2001b; Veiga et al. 2014; Poupart and Boutilier 2004), such as decision trees (Boutilier and Poole 1996), algebraic decision diagrams (ADDs) (Hansen and Feng 2000), or by indirectly compressing the belief space into a small subspace by value-directed compression (VDC) (Poupart 2005), one of which is also applied in the regular SALE POMDP model.

While all the above are offline policy computation algorithms, recently an online POMDP planning algorithm called POMCP (Silver and Veness 2010) has successfully scaled up to very large problems. POMCP is based on Monte Carlo tree search, which tries to break the curse of dimensionality and history by sampling states from the current belief and histories with a black-box simulator. On the other hand, in our approach, we use offline policy computation (Poupart 2005), to compute optimal policies for each sub-POMDP, while still achieving better scalability than POMCP (as shown in our experiments).

Some approaches use a similar concept of decomposing a (PO)MDP into smaller sub-problems. Meuleau et al. (1998) assume that sub-problems are very weakly coupled: each sub-problem corresponds to an independent sub-task whose state/action spaces do not directly influence the other tasks. In contrast, MOPE divdes a single large POMDP problem into SPs, which can contain overlapping state variables/ actions. Similar to our work, Williams and Young (2007) consider a more general decomposition, but they rely on domain specific heuristics, while we investigate several general methods to aggregate the recommendations from all SPs. Yadav et al. (2015) also propose an approach which decomposes a POMDP into SPs, but these are formed in a very different way: by sampling values for sub-sets of hidden state factors. A major difference between all these works and ours, is that their sub-problems directly follow from the domain. In contrast, in our approach, the number of sub-problems can be chosen to control the time vs. quality trade-off.

Decomposition has also been a popular technique in multiagent planning approaches (Guestrin, Koller, and Parr 2001a; Becker et al. 2003; Nair et al. 2003; Goldman and Zilberstein 2008; Witwicki and Durfee 2010; Oliehoek, Witwicki, and Kaelbling 2012; Amato and Oliehoek 2015; Oliehoek, Spaan, and Witwicki 2015). However, in all these cases structure is exploited that is particular to the multiagent setting by extending insights from factored (PO)MDP approaches and when applied to single-agent problems such as a SALE POMDP these methods do not offer any additional benefits.

MOPE is a type of ensemble method (Dietterich 2000). In particular, there is a resemblance to random forests (Breiman 2001): the way that they randomly select features is not unlike our random selection of state factors (seller and advisor variables).
7 Conclusion and Future Work

We propose the Mixture of POMDP Experts (MOPE) technique to address the scalability issues in solving large seller selection (SALE) POMDP problems for e-marketplaces. MOPE works by dividing the large POMDP problem into computationally tractable smaller sub-POMDPs and then aggregates the actions of the sub-POMDPs. Extensive evaluation shows that MOPE achieves a reasonable approximation to the SALE POMDP for small problems and can scale up to a hundred agents by effectively exploiting the presence of more advisors to generate significantly higher buyer satisfaction. We also show that MOPE improves the scalability of a POMDP model in the sensor network domain.

We conduct experiments to select the best action hierarchy to be used in the MOPE approach. However, whether empirically determining good hierarchies for other problems (other than seller selection problems) will be possible is an interesting open question, which we would like to investigate as future work. We will also analyze more sophisticated ways (e.g., using community detection) of dividing the sub-POMDPs rather than random partitioning.

Acknowledgments

This work is supported by the A*STAR SERC grant (1224104047) awarded to Dr. Jie Zhang, NWO Innovational Research Incentives Scheme Veni #639.021.336 awarded to Dr. Frans A. Oliehoek and the Institute for Media Innovation at Nanyang Technological University.

References

[Aberdeen and Baxter 2002] Aberdeen, D., and Baxter, J. 2002. Scaling internal-state policy-gradient methods for POMDPs. In Proceedings of the 19th International Conference on Machine Learning (ICML), 3–10.

[Amato and Oliehoek 2015] Amato, C., and Oliehoek, F. A. 2015. Scalable planning and learning for multiagent POMDPs. In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI), 1995–2002.

[Becker et al. 2003] Becker, R.; Zilberstein, S.; Lesser, V.; and Goldman, C. V. 2003. Transition-independent decentralized Markov decision processes. In Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), 41–48.

[Boutilier and Poole 1996] Boutilier, C., and Poole, D. 1996. Computing optimal policies for partially observable decision processes using compact representations. In Proceedings of the 13th National Conference on Artificial Intelligence (AAAI), 1168–1175.

[Breiman 2001] Breiman, L. 2001. Random forests. Machine Learning 45(1):5–32.

[Cassandra, Kaelbling, and Littman 1994] Cassandra, A. R.; Kaelbling, L. P.; and Littman, M. L. 1994. Acting optimally in partially observable stochastic domains. In Proceedings of the 12th National Conference on Artificial Intelligence (AAAI), volume 94, 1023–1028.

[Dietterich 2000] Dietterich, T. G. 2000. Ensemble methods in machine learning. In Multiple Classifier Systems, volume 1857. LNCS, Springer. 1–15.

[Feng and Hansen 2001] Feng, Z., and Hansen, E. A. 2001. Approximate planning for factored POMDPs. In Proceedings of the 6th European Conference on Planning (ECP).

[Goldman and Zilberstein 2008] Goldman, C. V., and Zilberstein, S. 2008. Communication-based decomposition mechanisms for decentralized MDPs. Journal of Artificial Intelligence Research 32:169–202.

[Guestrin, Koller, and Parr 2001a] Guestrin, C.; Koller, D.; and Parr, R. 2001a. Multiagent planning with factored MDPs. In Advances in Neural Information Processing Systems (NIPS), volume 1, 1523–1530.

[Guestrin, Koller, and Parr 2001b] Guestrin, C.; Koller, D.; and Parr, R. 2001b. Solving factored POMDPs with linear value functions. In Proceedings of the IJCAI Workshop on Planning under Uncertainty and Incomplete Information, 67–75.

[Hansen and Feng 2000] Hansen, E. A., and Feng, Z. 2000. Dynamic programming for POMDPs using a factored state representation. In Proceedings of the 5th International Conference on AI Planning Systems (AIPS), 130–139.

[Irissappane and Zhang 2015] Irissappane, A. A., and Zhang, J. 2015. Filtering unfair ratings from dishonest advisors in multi-criteria e-markets: a biclustering-based approach. Autonomous Agents and Multi-Agent Systems 1–30.

[Irissappane et al. 2015] Irissappane, A. A.; Oliehoek, F. A.; and Dutta, P. S. 2015. Secure routing in wireless sensor networks via POMDPs. In Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI), 2617–2623.

[Irissappane, Oliehoek, and Zhang 2014] Irissappane, A. A.; Oliehoek, F. A.; and Zhang, J. 2014. A POMDP based approach to optimally select sellers in electronic marketplaces. In Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 1329–1336.

[Kaelbling, Littman, and Cassandra 1998] Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998. Planning and acting in partially observable stochastic domains. Artificial intelligence 101(1):99–134.

[Koller and Friedman 2009] Koller, D., and Friedman, N. 2009. Probabilistic graphical models: principles and techniques. MIT press.

[Kurniawati, Hsu, and Lee 2008] Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. SARSOP: Efficient point-based POMDP planning by approximating optimally reachable belief spaces. In Proceedings of the Robotics: Science and Systems.

[Littman, Cassandra, and Kaelbling 1995] Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P. 1995. Learning policies for partially observable environments: Scaling up. In Proceedings of the 12th International Conference on Machine Learning (ICML), 362–370.
Appendix A

Analysis of Parallel Max-Q

Here, we present an analysis of Parallel Max-Q. In this analysis, we assume that the optimal values for the sub-POMDPs (SPs) can be computed exactly.

Parallel Max-Q. Here, we first summarize the essential characteristics of Parallel Max-Q. Like all MOPE approaches, this method divides the large SALE POMDP into \(D = \{ M_1, \ldots, M_K \} \) sub-POMDPs (SPs) randomly, and computes their optimal values \(\{ V_1^*, \ldots, V_K^* \} \) before execution. What is specific for Parallel Max-Q is that it treats these SPs as SingleExperts that are maintained in parallel. The actions are selected based on the maximizing Q-value in any SP.

Beliefs: Parallel Max-Q maintains, in parallel, a set \(B \) of local beliefs: \(B = \{ b_1, \ldots, b_K \} \). These beliefs \(b_k \) are defined over local states \(s_k \).

Belief update: The belief update operator \(BU_{pmq} \) produces a new set of beliefs \(B_{ao} = BU_{pmq}(B, a, o) \). In particular, each sub-problem \(M_k \) is updated in parallel such that \(B_{ao} = \{ b_{ao}^1, \ldots, b_{ao}^K \} \), where,

\[
b_{ao}^k = \begin{cases} BU(b_k, a, o), & \text{if } a \in A_k \text{ and } o \in O_k \\ b_k, & \text{otherwise} \end{cases}
\]

That is, each local belief is updated (using the Bayesian belief update operator \(BU \)) if the taken action and received observation exist in that SP.

Action Selection: At every stage, the Parallel Max-Q selects the ‘winning’ SP

\[
\bar{k} = \arg \max_{k \in \{1, \ldots, K\}} V_k^*(b_k)
\]

and subsequently executes its maximizing action:

\[
\bar{a} = \arg \max_{a \in A_k} Q_k^*(\bar{k}, a)
\]

Here, the Q-value is the standard Q-value for a POMDP:

\[
Q_k^*(\bar{k}, a) = R_{\bar{k}}(\bar{k}, a) + \gamma \sum_{o \in O_k} \Pr(o|b, a)V_k^*(b_{ao}^k)
\]

(The Q-value functions can be pre-computed along with the \(\{ V_1^*, \ldots, V_K^* \} \) or the back-projection can be computed online). We will also denote this action selection operation as \(Act_{pmq}(\cdot) \) such that \(\bar{a} \triangleq Act_{pmq}(B) \).

Parallel Max-Q Value Function. Here, we analyze the value realized by Parallel Max-Q by giving a formulation of its value function. We first identify the dependencies of this value function:

- It clearly depends on the chosen decomposition \(D \).
- Due to the action selection mechanism, this value is dependent on \(\{ V_1^*, \ldots, V_K^* \} \), the value functions of the SPs. Since these are implied by \(D \), we will leave this dependence implicit.
- Clearly, via the same mechanism, the value also depends on \(B \).
- However, since the belief updating process of Parallel Max-Q is different from the Bayes’ rule, \(B \) might not correspond to the true posterior distribution over states. Clearly, the true value will depend on such a true distribution. Therefore, we make the true state distribution explicit and denote it with \(\beta \).

We address the infinite-horizon setting, but for sake of argument, let us suppose there is only \(\tau = 1 \) step-to-go. In such a case, the expected reward is given by,

\[
V_{D_{pmq}}^*(\beta, B) = \sum_s \beta(s) R(s, Act_{pmq}(B))
\]

\[
\{ \text{we only get reward from selected SP } \bar{k} \} \quad = \quad \sum_s \beta(s) R_{\bar{k}}(s_{\bar{k}}, \bar{a})
\]

\[
= \sum_{s_{\bar{k}}} \beta(s_{\bar{k}}) R_{\bar{k}}(s_{\bar{k}}, \bar{a})
\]
We will denote this quantity with $R(\beta, B)$. Now, let us consider the general case where there are $\tau > 1$ steps-to-go. The expected immediate reward will be the same as described before, but we need to add an expected future reward term:

$$V_D^{\text{pmq}}(\beta, B) = R(\beta, B) + \gamma \mathbb{E}[V_D^{\text{pmq}}(\beta', B')]$$

(6)

Here, the updated beliefs β' and B' depend on the taken action $\bar{a} = \text{Act}_{\text{pmq}}(B)$ and received observation o: $\beta' = BU(\beta, \bar{a}, o)$ and $B' = BU^{\text{pmq}}(B, \bar{a}, o)$. This means that we can give an explicit formulation of the value function as follows:

Lemma 1. The value function for Parallel Max-Q is given by

$$V_D^{\text{pmq}}(\beta, B) = R(\beta, B) + \gamma \sum_o \Pr(o|\beta, \bar{a})V_D^{\text{pmq}}(BU(\beta, \bar{a}, o), BU^{\text{pmq}}(B, \bar{a}, o))$$

Proof. We substitute for the updated beliefs β', B' in Eqn. [6] and make the observation probability explicit.

As the presence of both β, B complicates the analysis, we introduce criteria under which they coincide:

Definition 1. We call β, B equivalent if

$$\forall_s \beta(s) = \prod_{i=1}^{K} b_k(s_k)$$

Lemma 2. When the following conditions hold:

1. The decomposition $D = \{M_1, \ldots, M_K\}$ is non-overlapping, meaning that no two SPs M_i, M_j contain the same (seller- or advisor-) state factors;
2. The true initial state distribution β^0 is factored along the decomposition: $\beta^0(s) = \beta^0_1(s_1) \times \beta^0_2(s_2) \cdots \times \beta^0_K(s_K)$;
3. Only actions and observations that are contained in one of the SPs are executed/received;

then Parallel Max-Q maintains the correct Bayesian posterior: That is, for all possible histories h of actions and observations, the induced beliefs by BU, β^h, are factored and therefore equivalent to those induced by BU^{pmq}: $\beta^h \equiv B^h$.

Proof. Via induction. For $t = 0$, B^0 is initialized as $\{\beta^0_1, \ldots, \beta^0_K\}$ and via assumption 2, β^0 is factored. B^0 and β^0 are therefore equivalent. Now, we prove that given β^t is factored, β^{t+1}, B^{t+1} are equivalent, so are β^{t+1}, B^{t+1}. Assume an arbitrary a, o satisfying condition 3. Then,

$$\forall_{s'} \beta^{t+1}(s') = \frac{BU(\beta^t, a, o)}{\Pr(o|\beta', a)} = \frac{O(a|s') \sum_{s} \beta^t(s)T(s'|s, a)}{\Pr(o|\beta', a)}$$

(7)

Let k denote the SP to which a belongs. Since per definition only actions that interact with the state factors in k are contained in k, and there is no overlap between state factors in different SPs, we have that $O(a|s') = O_k(a|s')$. Similarly, we have that $T(s'|s, a) = \prod_{l=1}^{K} T(s'_l|s_l, a)$. Therefore, we can rewrite the numerator of the belief update in Eqn. [7] as follows,

$$O_k(a, s'_k) \sum_s [\beta^t_1(s_1) \cdots \beta^t_k(s_k) \cdots \beta^t_K(s_K)] \prod_{l=1}^{K} T(s'_l|s_l, a)$$

$$= O_k(a, s'_k) \sum_{s_1} \cdots \sum_{s_K} \prod_{l=1}^{K} \beta^t_l(s_l)T(s'_l|s_l, a)$$

$$= O_k(a, s'_k) \left(\sum_{s_1} \beta^t_1(s_1)T(s'_1|s_1, a) \right) \cdots \left(\sum_{s_K} \beta^t_K(s_K)T(s'_K|s_K, a) \right)$$

$$= \left(O_k(a, s'_k) \sum_{s_k} \beta^t_k(s_k)T(s'_k|s_k, a) \right) \prod_{l \neq k} \left(\sum_{s_l} \beta^t_l(s_l)T(s'_l|s_l, a) \right)$$

There could be state factors not covered by the decomposition, but these can be ignored for purposes of this proof.
Similarly, the denominator can be written as:

\[
\sum_{s_k'} \cdots \sum_{s_k} \left(O_k(o|a, s_k') \sum_{s_k} \beta_k^t(s_k) T(s_k'|s_k, a) \right) \prod_{l \neq k} \left(\sum_{s_l} \beta_l^t(s_l) T(s_l'|s_l, a) \right)
\]

\[
= \sum_{s_k'} \left(O_k(o|a, s_k') \sum_{s_k} \beta_k^t(s_k) T(s_k'|s_k, a) \right) \prod_{l \neq k} \left(\sum_{s_l} \beta_l^t(s_l) T(s_l'|s_l, a) \right)
\]

\[
= \sum_{s_k'} \left(O_k(o|a, s_k') \sum_{s_k} \beta_k^t(s_k) T(s_k'|s_k, a) \right) 1
\]

\[
= \sum_{s_k'} \left(O_k(o|a, s_k') \sum_{s_k} \beta_k^t(s_k) T(s_k'|s_k, a) \right)
\]

Such that the entire \(BU \) operation can be written as,

\[
\beta^{t+1}(s') = \frac{O_k(o|a, s_k') \sum_{s_k} \beta_k^t(s_k) T(s_k'|s_k, a)}{\sum_{s_k'} \left(O_k(o|a, s_k') \sum_{s_k} \beta_k^t(s_k) T(s_k'|s_k, a) \right)} \prod_{l \neq k} \left(\sum_{s_l} \beta_l^t(s_l) T(s_l'|s_l, a) \right)
\]

which shows that \(\beta^{t+1} \) is factored. Moreover,

\[
\beta^{t+1}_k(s_k') = \frac{O_k(o|a, s_k') \sum_{s_k} \beta_k^t(s_k) T(s_k'|s_k, a)}{\sum_{s_k'} \left(O_k(o|a, s_k') \sum_{s_k} \beta_k^t(s_k) T(s_k'|s_k, a) \right)} = \text{BU}(b_k, a, o),
\]

and—since \(a \) is an action of \(SP \)—this is exactly the component that \(\text{BU}^{pmq} \) maintains. Due to the fact that the transitions in the \(SALE \) POMDP are static (states do not change)

\[
\forall l \neq k \quad \beta^{t+1}_l(s_l') = \sum_{s_l} \beta_l^t(s_l) T(s_l'|s_l, a) = \beta_l^t(s_l) I.H. b_l'(s_l)
\]

Here, the last equality follows from the induction hypothesis. Since \(a \not\in A_l \), \(b_l'(s_l) \) is exactly the component that \(\text{BU}^{pmq} \) maintains. This shows that \(\forall k \quad \beta^{t+1}_k = b_k^{t+1} \), thus proving the lemma.

This means that under stated assumptions, we can now simplify the value of Parallel Max-Q:

Corollary 1. Under the conditions of Lemma 2, the value function for Parallel Max-Q can be simplified to:

\[
V_D^{pmq}(B) = R_k(b_k, \bar{a}) + \gamma \sum_{o \in O_k} O_k(o|b_k, \bar{a}) V_D^{pmq}(\text{BU}^{pmq}(B, \bar{a}, o)),
\]

with

\[
R_k(b_k, \bar{a}) \triangleq \sum_{s_k} b_k(s_k) R_k(s_k, \bar{a}),
\]

and

\[
O_k(o|b_k, \bar{a}) = \sum_{s_k} O_k(o|\bar{a}, s_k') \sum_{s_k} b_k(s_k) T_k(s_k'|s_k, \bar{a})
\]

Proof. The proof of Lemma 2 showed that, under stated conditions, \(B \) represents the true posterior, such that \(\beta(s_k) = b_k(s_k) \). Therefore, the definition of \(\bar{R}(\beta, B) \) given by Eqn. 5 simplifies to the above definition of \(R_k(b_k, \bar{a}) \). Similarly, the observation probability only depends on \(s_k \) (due to the structure of the \(SALE \) POMDP) and thus \(b_k \).
Lower Bound on the Value of Parallel Max-Q. Here, we analyze the performance of Parallel Max-Q, giving a lower bound on its performance. In particular, we show that the V_D^{pmq} value realized by Parallel Max-Q for a given decomposition $D = \{M_1, \ldots, M_K\}$ is at least as much as the optimal SingleExpert value V_k^* that would be realized by picking any sub-POMDP M_k.

In more detail, let us define, given D, a method ‘Best SingleExpert’ that selects the best SingleExpert and sticks with it, then we can prove that the value of Best SingleExpert is a lower bound to that of Parallel Max-Q.

Theorem 1. If the decomposition $D = \{M_1, \ldots, M_K\}$ is non-overlapping, and the true initial state distribution β^0 is factored along the decomposition, then the value realized by Parallel Max-Q is at least as much as the value of the Best SingleExpert:

$$V_D^{pmq}(B^0) \geq \max_{k \in \{1, \ldots, K\}} V_k^*(\beta_k^0)$$

Proof. We will actually prove the stronger statement that says that the inequality holds for any two equivalent $B, \{\beta_1, \ldots, \beta_K\}$:

$$V_D^{pmq}(B) \geq \max_{k \in \{1, \ldots, K\}} V_k^*(\beta_k)$$

Let us first consider the right hand side. The maximizing value is produced by a maximizing action (\bar{a}):

$$\max_{k \in \{1, \ldots, K\}} V_k^*(\beta_k) = \max_{a \in A_k} Q_k^*(\beta_k, a) = Q_k^*(\bar{\beta}_k, \bar{a}),$$

where,

$$\bar{k} = \arg \max_{k \in \{1, \ldots, K\}} V_k^*(\beta_k),$$

$$\bar{a} = \arg \max_{a \in A_k} Q_k^*(\beta_k, a)$$

and \bar{k} denotes the maximizing SP. The (regular POMDP) optimal Q-value for SP \bar{k} is defined as:

$$Q_k^*(\beta_k, \bar{a}) = R_k(\bar{\beta}_k, \bar{a}) + \gamma \sum_{o \in O_k} \Pr(o|\bar{\beta}_k, \bar{a}) V_{\bar{k}}(BU(\bar{\beta}_k, a, o))$$

Since, neither Best SingleExpert nor Parallel Max-Q will select actions outside of the decomposition D, Lemma\cite{lemma2} asserts that the components b_k maintained by Parallel Max-Q are identical to β_k. Thus,

$$Q_k^*(\beta_k, \bar{a}) = Q_k^*(b_k, \bar{a}) = R_k(b_k, a) + \gamma \sum_{o \in O_k} \Pr(o|b_k, \bar{a}) V_{\bar{k}}(BU(b_k, a, o))$$

and by Eqn.\cite{eqn_8}

$$\max_{k \in \{1, \ldots, K\}} V_k^*(\beta_k) = \max_{k \in \{1, \ldots, K\}} V_k^*(b_k)$$

Now, we observe that Parallel Max-Q also first selects the SP with the highest current value (i.e., \bar{k}) and then executes the maximizing action (i.e, \bar{a}) specified by SP k. As such the only difference is that the future values for Parallel Max-Q are different, since it might switch to another sub-problem at the next stage (cf. Lemma\cite{lemma1}):

$$V^{pmq}_D(B) = R_k(b_k, \bar{a}) + \gamma \sum_{o \in O_k} O_k(o|b_k, \bar{a}) V^{pmq}_D(BU^{pmq}(B, \bar{a}, o))$$

Clearly, this suggests a proof via induction. Let $V^{pmq}_{D, \tau}$ and $V^{\ast}_{k, \tau}$ denote the values of performing τ steps of Parallel Max-Q and SingleExpert (k) respectively.

Base Case. For $\tau = 1$ step-to-go, the above analysis shows that both Parallel Max-Q and Best SingleExpert will realize $R_k(b_k, \bar{a})$.

Induction Step. The Induction Hypothesis is that

$$\forall B \ V_{D, \tau}^{pmq}(B) \geq \max_{k \in \{1, \ldots, K\}} V_{k, \tau}^*(b_k),$$

which means we have to prove that

$$\forall B \ V_{D, \tau+1}^{pmq}(B) \geq \max_{k \in \{1, \ldots, K\}} V_{k, \tau+1}^*(b_k).$$
Proof: Assume an arbitrary B, again \bar{k} denotes the maximizing SP in Parallel Max-Q and it specifies action \bar{a}. We then have,

\[
V_{D,\tau+1}^{\text{pmq}}(B) = R_{\bar{k}}(b_{\bar{k}}, \bar{a}) + \gamma \sum_{o \in O_{\bar{k}}} O_{\bar{k}}(o|b_{\bar{k}}, \bar{a}) V_{D}^{\text{pmq}}(BU^{\text{pmq}}(B, \bar{a}, o))
\]

\[
\{\text{LH.}\} \geq R_{\bar{k}}(b_{\bar{k}}, \bar{a}) + \gamma \sum_{o \in O_{\bar{k}}} O_{\bar{k}}(o|b_{\bar{k}}, \bar{a}) \max_{k \in \{1, \ldots, K\}} V_{k,\tau}^{*}(b_{\bar{k}}^{\bar{a}_o})
\]

\[
\geq R_{\bar{k}}(b_{\bar{k}}, \bar{a}) + \gamma \sum_{o \in O_{\bar{k}}} O_{\bar{k}}(o|b_{\bar{k}}, \bar{a}) V_{k,\tau}^{*}(b_{\bar{k}}^{\bar{a}_o})
\]

\[
= Q_{k,\tau+1}^{*}(b_{\bar{k}}, \bar{a})
\]

\[
\{\text{per def. (10), } \bar{a} \text{ is maximizing in } \bar{k}\} = V_{k,\tau+1}^{*}(b_{\bar{k}})
\]

\[
\{\text{per def. (9) } \bar{k} \text{ is the maximizing SP}\} = \max_{k \in \{1, \ldots, K\}} V_{k,\tau+1}^{*}(b_{\bar{k}})
\]

which concludes the proof. \(\square\)