Rational Design of Membrane Proximal External Region Lipopeptides Containing Chemical Modifications for HIV-1 Vaccination

Vincent J. Venditto,
Douglas S. Watson,
Michael Motion,
David Montefiori,
Francis C. Szoka, Jr.

The inability to generate broadly neutralizing antibody (bnAb) responses to the membrane proximal external region (MPER) of HIV-1 gp41 using current vaccine strategies has hampered efforts to prevent the spread of HIV. To address this challenge, we investigated a novel hypothesis to help improve the anti-MPER antibody response. Guided by structural insights and the unique lipid reactivity of anti-MPER bnAbs, we considered whether amino acid side chain modifications that emulate hydrophilic phospholipid head groups could contribute to the generation of 2F5-like or 4E10-like neutralizing anti-MPER antibodies. To test this hypothesis, we generated a series of chemically modified MPER immunogens through derivatization of amino acid side chains with phosphate or nitrate groups. We evaluated the binding affinity of the chemically modified peptides to their cognate monoclonal antibodies, 2F5 and 4E10, using surface plasmon resonance. The modifications had little effect on binding to the antibodies and did not influence epitope secondary structure when presented in liposomes. We selected five of the chemically modified sequences to immunize rabbits and found that an immunogen containing both the 2F5 and 4E10 epitopes and a phosphorylated threonine at T676 elicited the highest anti-peptide IgG titers, although the high antipeptide titers did not confer higher neutralizing activity. These data indicate that side chain modifications adjacent to known neutralizing antibody epitopes are capable of eliciting antibody responses to the MPER but that these chemically modified gp41 epitopes do not induce neutralizing antibodies.

An effective HIV vaccine will require both humoral and cellular immune responses to prevent infection (1–3). Progress toward an HIV vaccine has been slow; the Merck trial of a recombinant adenoviral vaccine failed to protect against infection (4), and efforts in the RV144 Thai trial to elicit neutralizing antibodies showed only modest efficacy (5). A small number of broadly neutralizing antibodies (bnAbs) isolated from HIV-infected patients have guided the rational design of immunogens that might be suitable for an HIV vaccine (6–12). Three of the more potent bnAbs (2F5, 4E10, and Z13) are directed to the membrane proximal external region (MPER) of gp41, comprised of 35 amino acids N terminal to the transmembrane domain (Fig. 1) (13). The MPER is conserved across viral clades and essential for virus-cell fusion (14–16). However, with the exception of a few recent reports (17–19), MPER immunogens have failed to elicit antibodies, and none have had the breadth or potency of patient-derived bnAbs (13).

Weak antibody responses and a lack of structural definition are primary concerns with MPER-based immunogens (13). MPER-specific antibodies are rare in infected patients, and highly immunogenic scaffolds grafted with MPER sequences have failed to elicit detectable MPER reactivity in animals (20–22). Haynes and Alam (23) and Zwick (24) have suggested that antibody responses to the MPER are limited by tolerance mechanisms, which is supported by the cross-reactivity of MPER-targeted bnAbs with phospholipids (25–28). Moreover, these antibodies contain unusually long, hydrophobic heavy-chain complementarity-determining region 3 (CDRH3) sequences, which are necessary for viral neutralization by these bnAbs (29). In humans, antibodies with long CDRH3 segments are typically deleted in the bone marrow due to their autoreactive character, which could explain the rarity of 2F5-like and 4E10-like bnAbs (30). However, therapeutic use of 2F5 and 4E10 has shown no immunological side effects and an excellent overall safety profile (31–36). Furthermore, the interaction of 2F5 with unilamellar phospholipid vesicles is dependent on the presence of the MPER sequence in the bilayer (37). Alternative explanations for the rarity of MPER antibodies may include the immunodominance of the gp120 variable loops (38), the rapidity of conformational changes that expose the MPER (39), masking by nonneutralizing cluster II epitopes (40), or a bias in the germ line antibody repertoire (41). However, responses from B-cell clones against gp41 are distributed across clusters I, II, and IV, suggesting that epitope masking is not the cause for failure to neutralize the virus (42).

Lipid cross-reactivity is essential for broad neutralization by MPER-specific antibodies, but vaccine delivery strategies employing MPER-containing peptides or recombinant proteins formulated in lipid bilayers have not resulted in robust neutralization (13, 27, 43). We considered a novel alternative approach to the rational design of MPER immunogens: incorporation of amino acid side chain modifications that emulate hydrophilic phospholipid head groups. Moreover, posttranslational modifications (PTMs) such as phosphorylation and nitration are known to augment immune responses against antigens in cancer, autoimmu-

Received 22 October 2012 Accepted 24 October 2012
Published ahead of print 31 October 2012
Address correspondence Francis C. Szoka, Jr., szoka@cgl.ucsf.edu.
* Present address: Douglas S. Watson, Merck & Co., Inc., Elkton, Virginia, USA.
V.I.V. and D.S.W. contributed equally to this article.
Supplemental material for this article may be found at http://dx.doi.org/10.1128/CVI.00615-12.
Copyright © 2013, American Society for Microbiology. All Rights Reserved.
doi:10.1128/CVI.00615-12
to elicit anti-MPER neutralizing antibodies. These modifications on differences in secondary structure and the ability to present in liposomal formulations to analyze the effects of each monoclonal antibody 2F5 and 4E10. The peptides were then treated, and carboxylated peptides were investigated for binding to groups or inflammation-associated PTMs. Phosphorylated, nitro- modifications that could mimic hydrophilic phospholipid head bilayer vesicles (50,51). In the present study, we generated a series of peptides that are potently immunogenic when presented in lipid antibody responses in a subset of patients.

The Szoka laboratory previously reported MPER-derived lipo- peptides that are potent immunogenic when presented in lipid bilayer vesicles (50, 51). In the present study, we generated a series of MPER lipopeptide immunogens bearing anionic side chain modifications that could mimic hydrophilic phospholipid head groups or inflammation-associated PTMs. Phosphorylated, nitro-, and carboxylated peptides were investigated for binding to monoclonal antibodies 2F5 and 4E10. The peptides were then presented in liposomal formulations to analyze the effects of each modification on differences in secondary structure and the ability to elicit anti-MPER neutralizing antibodies in vivo.

MATERIALS AND METHODS

Amino acids, resins, and coupling agents were obtained from Nova- biochem (Darmstadt, Germany), Anaspec (San Jose, CA), or ChemPep (Miami, FL). Cholesterol, dimyristoylphosphatidylcholine (DMPC), and dimyristoylphosphatidylglycerol (DMPG) were obtained from Avanti Polar Lipids (Alabaster, AL). Cholesterol hemisuccinate (CHEMS; C6512) and monophosphoryl lipid A derived from Escherichia coli (MPL; L6638) were obtained from Sigma-Aldrich (St. Louis, MO). Peptides and lipopeptides were synthesized and formulated in liposomes as described previously (51). Phosphorylated and nitro residues were incorporated by addition of amino acids with side chains derivatized with O-benzyl-protected phosphate or 9-fluorenylmethoxy carbonyl–3-nitrotyrosine–OH (Bachem, Torrence, CA), respectively.

Surface plasmon resonance (SPR) kinetic binding analysis. A Bia-core T100 instrument (GE Healthcare) was used in all experiments. Monoclonal antibodies (MAbs) 2F5 and 4E10 (NIH AIDS Research & Reference Reagent Program) were covalently coupled to Biacore CM5 series S sensor chips at final densities of ~4,000 response units (RU). Peptides were flowed over as analytes with 2-fold dilutions ranging from 200 to 12.5 nM when evaluating peptide affinity for 2F5 and 2,000 to 125 nM when evaluating peptide affinity for 4E10. Peptides were prepared in running buffer (10 mM HEPES, pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.01% Tween 20) and evaluated at a flow rate of 30 µl/min for 90 s, followed by injection of running buffer for 2 min. Binding was analyzed using Biacore Evaluation software (GE Healthcare).

Circular dichroism spectroscopy. Stock liposome solutions containing 5 mM carrier lipid and 500 µM lipopeptide were prepared in 10 mM phosphate, pH 7.4. To minimize light scattering, liposomes were prepared by bath sonication under argon until a size of less than 100 nm was obtained. For analysis, samples were diluted to 5 µM lipopeptide in 10 mM phosphate buffer containing 1 mM carrier lipid. Spectra were obtained with a J-715 spectropolarimeter (Jasco, Easton, MD), and data were processed using Jasco software. Data were acquired in continuous scanning mode with a 1-cm path length, a 0.1-nm interval, and a 1-nm/s scan speed. Each spectrum represents an average of three scans in triplicate. A background spectrum of empty liposomes in buffer was subtracted from each sample spectrum. Percent helicity was estimated from the mean residue ellipticity at 222 nm according to the method of Taylor and Kaiser (52).

Rabbit immunizations. Rabbit studies were performed by Covance Inc. (Denver, PA). Specific-pathogen-free New Zealand White rabbits received subcutaneous immunizations on days 0, 21, 42, 63, 84, and 105. Blood was collected from the ear vein on days 31, 52, 73, 94, and 115. Injections on day 0 contained 250 µl Freund’s incomplete adjuvant. Subsequent injections contained 125 µl of the formulation described above emulsified in 250 µl Freund’s complete adjuvant. Subsequent injections contained 125 µl of the formulation described above emulsified in 125 µl Freund’s incomplete adjuvant. Alving and coworkers have demonstrated that liposomes are compatible with oil-in-water emulsions (53). After blood draw, cells were removed by centrifugation and sera were sent to the University of California, San Francisco (UCSF), on dry ice and stored at ~80°C.

Enzyme-linked immunosorbent assays (ELISAs) were performed on antisera as previously described (51). The titer was defined as the reciprocal dilution of antisera yielding an optical density twice that of the background. Samples were assayed in duplicate. Statistical significance was assessed by analysis of variance with Bonferroni posttest analysis, and values were considered significant when P was <0.05. Data analyses were performed using Prism software (GraphPad Software, Inc.).

Virus neutralization assay. Neutralization was determined by a reduction in luciferase reporter gene expression after infection of either TZM-bl cells (54) or A3R5 cells. Neutralization in TZM-bl cells tested a
virus pseudotyped with the Env of a clade B tier 1 virus (SF162.LS); murine leukemia virus Env-pseudotyped virus was used as a negative control. Assays in A3R5 cells utilized four clade B tier 2 viruses (SC22.3C2, RHPA, CH77, CH58) as infectious molecular clones containing a Tat-regulated Renilla luciferase reporter gene (IMC.LucR viruses) (55). Neutralization titer was defined as the sample dilution at which relative luminescence units (RLUs) were reduced by 50% compared to the numbers of RLUs in virus control wells after subtraction of background RLUs in cell control wells (50% infectious dose). Sera were heat inactivated (60 min, 56°C) before use.

RESULTS AND DISCUSSION

The MPER of gp41 has been investigated as a potential target for vaccine development (13). However, antibody responses to MPER immunogens, particularly the C terminus, have been weak, and few studies have reported elicitation of neutralizing antibodies with MPER immunogens (17,56, 57). In an attempt to overcome the weak immune responses to the MPER and generate neutralizing antibodies, we designed a series of lipopeptide immunogens bearing anionic side chain modifications that may recapitulate the immunogenic propensity of phospholipid head groups or inflammation-associated PTMs and thereby elicit 2F5-like or 4E10-like bnAbs.

Design of chemically modified MPER peptides and lipopeptides. The crystal structures of bnAbs 2F5 (Protein Data Bank [PDB] accession number 1TJG) (43) and 4E10 (PDB accession number 2FX7) (58) in complex with their corresponding peptide epitopes suggest that modifications of the epitopes at selected amino acids may promote favorable contacts with the antibody’s extended CDRH3 loops capable of interacting with such a modification. Furthermore, the binding pocket of 2F5 is largely cationic, with arginine and lysine residues surrounding the epitope, suggesting that an anionic charge may improve affinity (Fig. 2A). Likewise, 4E10 has an arginine at the base of the epitope-binding pocket, which appears to be too distant from the threonine in the 4E10 epitope to hydrogen bond (Fig. 2B); however, a phosphate group may introduce additional charge interactions. These structural insights were used to design a series of chemically modified MPER peptides and lipopeptides corresponding to the 2F5 epitope (N-MPER and N-MPERext) and the 4E10 epitope (C-MPER and C-MPERext) (summarized in Fig. 1A) with side chain modifications incorporated at available residues (serine, threonine, and tyrosine). A summary of the nomenclature and molecular weight data for the peptides and lipopeptides are reported in Table 1.

TABLE 1 Nomenclature and molecular weights of peptides and lipopeptides

Name	Sequence	Linker	Modification	Mol wt		
			Free peptide	CHEMS conjugated		
			Experimental	Observed	Experimental	Observed
C-MPER	671–683	AA	None		2,537.1	2,539.6
C-MPERext	667–683	AA	None		2,994.6	2,993.9
C-MPERext(S-PO3)	667–683	AA	S-PO3		3,077.6	3,075.2
C-MPER(Y-PO3)	671–683	AA	Y-PO3		2,617.0	2,617.0
C-MPER(Y-NO2)	671–683	AA	Y-NO2		2,583.2	2,583.2
N-MPER	656–671	GG	None		2,718.2	2,718.2
N-MPER(D)	667–677	GG	S668D		2,776.2	2,776.7
N-MPER(E)	667–677	GG	S668E		2,776.2	2,776.7
N-MPERext(S-PO3)	656–671	GG	S-PO3		2,313.6	2,313.6
N-MPERext(T-PO3)	656–677	GG	T-PO3		3,554.0	3,556.3
Surface plasmon resonance kinetic binding studies. Previous studies have identified MPER residues necessary for binding through natural amino acid mutations (59), and unnatural modifications that introduce structural constraints have also been investigated (60, 61). However, immunogens bearing phosphate, nitrate, and carboxylate chemical modifications of gp41 have not been reported. We measured the effects of these modifications on the binding affinity of MPER peptides to bnAbs 2F5 and 4E10 using SPR. Peptides containing the 2F5 epitope bound to 2F5 with ~10 nM affinity, while peptides containing the 4E10 epitope bound to 4E10 with ~50 nM affinity (Table 2). The binding affinities for the unmodified peptides were consistent with those reported previously (58, 62). Side chain modifications generally did not influence binding affinity, with one notable exception: phosphorylation of the 4E10 epitope T676 completely inhibited binding to MAb 4E10. Representative sensorgrams are shown in Fig. S1 in the supplemental material.

Effect of side chain modification on peptide secondary structure. We then determined if the modifications altered the secondary structure of the lipopeptides when presented in a lipid bilayer. The 4E10 epitope binds to the antibody in an alpha helical conformation, while the 2F5 antibody binds to a beta turn consisting of the DKW motif (43, 58). Presentation of structures similar to those that induced 2F5 and 4E10 may lead to a more robust neutralizing response. We have previously shown that the selection of those that induced 2F5 and 4E10 may lead to a more robust neutralizing response. Furthermore, the peptides using SPR. Peptides containing the 2F5 epitope bound to 2F5 with ~10 nM affinity, while peptides containing the 4E10 epitope bound to 4E10 with ~50 nM affinity (Table 2). The binding affinities for the unmodified peptides were consistent with those reported previously (58, 62). Side chain modifications generally did not influence binding affinity, with one notable exception: phosphorylation of the 4E10 epitope T676 completely inhibited binding to MAb 4E10. Representative sensorgrams are shown in Fig. S1 in the supplemental material.

Effect of side chain modification on peptide secondary structure. We then determined if the modifications altered the secondary structure of the lipopeptides when presented in a lipid bilayer. The 4E10 epitope binds to the antibody in an alpha helical conformation, while the 2F5 antibody binds to a beta turn consisting of the DKW motif (43, 58). Presentation of structures similar to those that induced 2F5 and 4E10 may lead to a more robust neutralizing response. We have previously shown that the selection of those that induced 2F5 and 4E10 may lead to a more robust neutralizing response. Furthermore, the peptides using SPR. Peptides containing the 2F5 epitope bound to 2F5 with ~10 nM affinity, while peptides containing the 4E10 epitope bound to 4E10 with ~50 nM affinity (Table 2). The binding affinities for the unmodified peptides were consistent with those reported previously (58, 62). Side chain modifications generally did not influence binding affinity, with one notable exception: phosphorylation of the 4E10 epitope T676 completely inhibited binding to MAb 4E10. Representative sensorgrams are shown in Fig. S1 in the supplemental material.

Effect of side chain modification on peptide secondary structure. We then determined if the modifications altered the secondary structure of the lipopeptides when presented in a lipid bilayer. The 4E10 epitope binds to the antibody in an alpha helical conformation, while the 2F5 antibody binds to a beta turn consisting of the DKW motif (43, 58). Presentation of structures similar to those that induced 2F5 and 4E10 may lead to a more robust neutralizing response. We have previously shown that the selection of those that induced 2F5 and 4E10 may lead to a more robust neutralizing response. Furthermore, the peptides using SPR. Peptides containing the 2F5 epitope bound to 2F5 with ~10 nM affinity, while peptides containing the 4E10 epitope bound to 4E10 with ~50 nM affinity (Table 2). The binding affinities for the unmodified peptides were consistent with those reported previously (58, 62). Side chain modifications generally did not influence binding affinity, with one notable exception: phosphorylation of the 4E10 epitope T676 completely inhibited binding to MAb 4E10. Representative sensorgrams are shown in Fig. S1 in the supplemental material.

Effect of side chain modification on antibody responses to MPER lipopeptides in New Zealand White rabbits. Five chemically modified MPER lipopeptides were selected to evaluate whether side chain modifications influence the immunogenicity of MPER lipopeptides in rabbits. The peptides used for rabbit immunizations included an unmodified peptide containing both epitopes (N-MPERext), two peptides containing the 4E10 epitope with modifications N terminal [C-MPERext(S-PO3)] and C-terminal [C-MPER(Y-NO2)] to the epitope, and two peptides containing the 2F5 epitope with C-terminal modifications adjacent to [N-MPER(S-PO3)] or distant from [N-MPER(T-P03)] the epitope. Furthermore, we included N-MPERext(T-P03) in the rabbit immunizations to evaluate a peptide to which the 4E10 MAb failed to bind but that could potentially induce modified epitope-specific polyclonal antibodies.

Antibody responses against the extended epitope containing a phosphorylated threonine [N-MPERext(T-PO3)] provided the highest response, with 2 of 3 rabbits responding with a mean titer of 6.1 \times 10^4. For each group, the fold change in average antibody titers compared to day 0 titers over time are shown in Fig. 3A, and the endpoint antibody titers of individual animals are shown in Fig. 3B. Antiserum titers over time postimmunization are shown in Fig. S3 in the supplemental material. It is important to note that one rabbit from the N-MPERext(T-P03) group, with an endpoint titer of 1.3 \times 10^5, had an unexpectedly high epitope-specific antibody titer prior to immunization. It is unclear why this animal had an elevated preimmunization titer, but as a result, this animal exhibited a 160-fold increase in titer over the course of the study, compared to a >1,500-fold increase in the other responder (endpoint titer, 5.2 \times 10^6) from this group. The analogous unmodified peptide, N-MPERext, elicited a 110-fold increase in just one rabbit (3.6 \times 10^3), while the other two rabbits failed to respond. All other rabbits showed less than a 15-fold increase over preimmunization titers. Furthermore, all rabbit sera failed to bind recombinant gp140 in an ELISA (data not shown). Antibody responses from the three rabbits with high titers showed a response directed toward the N-MPER peptide (Fig. 3C) but not the C-MPER peptide. Furthermore, the titers were unaffected when the serine adjacent to the epitope was phosphorylated, as determined by ELISA. Antibody responses toward each peptide immunogen are shown in Fig. S4 in the supplemental material. Endpoint sera from all rabbits showed less than a 15-fold increase over preimmunization titers. Furthermore, all rabbit sera failed to bind recombinant gp140 in an ELISA (data not shown). Antibody responses from the three rabbits with high titers showed a response directed toward the N-MPER peptide (Fig. 3C) but not the C-MPER peptide. Furthermore, the titers were unaffected when the serine adjacent to the epitope was phosphorylated, as determined by ELISA. Antibody responses toward each peptide immunogen are shown in Fig. S4 in the supplemental material. Endpoint sera from all rabbits were then evaluated for neutralization activity using a luciferase-based assay, but all samples failed to neutralize the virus. Thus, although strong antipeptide antibody responses were achieved using side chain-modified lipopeptides, the antibodies generated are not neutralizing.

Conclusions. In this study, the biophysical and immunogenic properties of side chain-modified MPER lipopeptides were evaluated. MPER peptides bearing anionic side chain modifications bound to anti-MPER bnAbs 2F5 and 4E10 with the same affinity as analogous unmodified peptides. When the peptides were attached to a cholesteryl anchor and the lipopeptides were formulated in liposomes, circular dichroism revealed very little structural difference between the side chain-modified lipopeptides and the analogous unmodified peptides. When the peptides were formulated in phospholipid bilayer vesicles, circular dichroism revealed very little structural difference between the side chain-modified lipopeptides and the analogous unmodified peptides. When the peptides were formulated in phospholipid bilayer vesicles, circular dichroism revealed very little structural difference between the side chain-modified lipopeptides and the analogous unmodified peptides.
unmodified analogues. Three of the four modified peptides failed to induce high-titer antibodies in rabbits compared to those in sera prior to immunization (day 0). The N-MPERext(T-PO3) lipopeptide formulation induced high antipeptide antibodies in rabbits, with titers being statistically significantly higher than those elicited by its unmodified lipopeptide analogue. Although neutralizing antibodies were not achieved, the improved immune response with one of the modified lipopeptides is consistent with the role of PTMs in breaking tolerance (46, 47, 63).

In summary, the key findings of these studies are 2-fold. First, chemical anionic side chain modifications of MPER peptides do not alter binding to human bnAbs 2F5 and 4E10, as determined by surface plasmon resonance. Second, specific modifications of amino acid side chains can modulate the antibody response toward MPER epitopes [N-MPERext(T-PO3) versus N-MPERext] but do not enable the generation of neutralizing antibodies.

ACKNOWLEDGMENTS

We thank Jay Levy (UCSF) and Anthony DeFranco (UCSF) for helpful discussions and Gary Fujii (Molecular Express, Inc., Rancho Dominguez, CA) for helpful suggestions regarding the liposome formulation. We thank Christina Ochsnbauer and John Kappes for the IMC.LucR viruses, and we thank Robert McLinden and Jerome Kim for the A3R5 cell line. We also thank Nancy Miller (NIH) and Alan Schultz (NIH) for their encouragement and support.

This work was supported by NIH grants R01 GM061851 and R21 AI093135, and partial funding was provided by NIH grant HHSN27201100016C. V. J. Venditto was funded by a grant from the National Institutes of Health, University of California, San Francisco—Glendale Institute of Virology & Immunology Center for AIDS Research (P30-AI027763). D. S. Watson was supported by a U.S. Department of Homeland Security (DHS) graduate fellowship, administered by the Oak Ridge Institute for Science and Education (ORISE) under U.S. Department of Energy (DOE) contract number DE-AC05-00OR22750.

The opinions expressed herein do not necessarily reflect the policies or views of DHS, DOE, or ORISE.

REFERENCES

1. Liu J, O’Brien K, Lynch D, Simmons N, La Porte A, Riggs A, Abbink P, Coffey R, Grandpre L, Seaman M, Forthal D, Montefiori DC, Carville A, Mansfield K, Havenga M, Pau M, Goudsmit J, Barouch D. 2009. Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys. Nature 457:87–91.

2. Montefiori DC, Karnasuta C, Huang Y, Ahmed H, Gilbert P, de Souza MS, McLinden R, Tovanabutra S, Laurence-Chenine A, Sanders-Buell E, Moody MA, Bonsignori M, Ochsnbauer C, Kappes J, Tang H, Greene K, Gao H, LaBranche CC, Andrews C, Polonis VR, Rerks-Ngarm S, Pitisuttithum P, Kaewkungwal J, Self SG, Berman PW, Francis D, Sinangil F, Lee C, Tartaglia J, Robb ML, Haynes BF, Michael NL, Kim JH. 2012. Magnitude and breadth of the neutralizing antibody response in the RV144 and Vax003 HIV-1 vaccine efficacy trials. J. Infect. Dis. 206:431–441.

3. Fauci AS. 2007. Toward an AIDS vaccine. Science 320:760–764.

4. Fauci, A.S. 2007. The release of new data from the HVTN 502 (STEP) HIV vaccine study. In National Institutes of Health (NIH) news, 7 November. National Institutes of Health, Bethesda, MD.

5. Rerks-Ngarm S, Pitisuttithum P, Kaewkungwal J, Chiu J, Paris R, Premkrua N, Namwat C, Souza M, Adams E, Benenson M, Gurunathan S, Tartaglia J, McNeil JG, Francis DP, Stablein D, Bix DL,
Venditto et al.

Chunsuittiwat S, Khamboonruang C, Thongcharoen P, Robb ML, Michael NL, Kunasol P, Kim JH, Investigators MOPHT-AVEG. 2009. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361:2219–2220.

Bianchi E, Joyce JG, Miller MD, Finnencoll FC, Liang X, Finotto M, Inglese P, Citron M, Metzger E, Seager RL, Hrin B, Nahas D, Wu C, Montefiori DC, Shiver JW, Pessi A, Kim PS. 2010. Vaccination with peptide mimetics of the gp41 prehairpin fusion intermediate mediates neutralizing antisera against HIV-1 isolates. Proc. Natl. Acad. Sci. U. S. A. 107:10655–10660.

Corti D, Langedijk JP, Hinz A, Seaman MS, Vanzetta F, Fernandez-Rodriguez BM, Silicini C, Pinna D, Jarrossy B, Balalla-Jhaaghoshrin S, Willis B, Ziekfeld MJ, Dreja H, O’Sullivan E, Prade C, Orkin C, Jezek SA, Montefiori DC, Davis D, Weissenhorn W, McKnight A, Heeney JL, Sallusto F, Sattentau QJ, Weiss RA, Lanzavecchia A. 2010. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1 infected individuals. PLoS One 5:e8805. doi:10.1371/journal.pone.0008805.

Karlsson Hedestam G, Fouchier R, Phogat S, Burton D, Sodroski J, Roederer M, Wyatt R, Nabel GJ, Mascola JR. 2009. Broad neutralization of HIV-1 elicited from human rhesus cynomolgus macaques. Proc. Natl. Acad. Sci. U. S. A. 106:20234–20239.

Brown BK, Karasavvas N, Beck Z, Matyas GR, Birx DL, Polonis VR, Alving CR. 2007. Monoclonal antibodies to phosphatidylinositol phosphate neutralize human immunodeficiency virus type 1: role of phosphatidylserine binding. J. Virol. 81:2087–2091.

Haynes BF, Fleming J, St Clair E, Katinger H, Steigler G, Koff WC, Poignard P, Burton DR. 2008. Antigenic and immunogenic study of membrane-proximal external region-grafted gp120 antigens by a DNA prime-protein boost immunization strategy. J. Virol. 81:4272–4285.

The HIV envelope protein by HA/gp41 chimeric protein-based DNA and VLP vaccines. PLoS One 6:e14813. doi:10.1371/journal.pone.0014813.

Kim M, Qiao L, Yu J, Montefiori DC, Reinherz E. 2007. Immunogenicity of recombinant human immunodeficiency virus type 1-like particles expressing gp41 derivatives in a pre-fusion state. Vaccine 25:5102–5114.

Law M, Cardoso RM, Wilson LA, Burton DR. 2007. Antigenic and immunogenic study of membrane-proximal external region-grafted gp120 antigens by a DNA prime-protein boost immunization strategy. J. Virol. 81:4272–4285.

Li Y, Svehla K, Louder M, Wycuff D, Phogat S, Tang M, Migueles S, Wu X, Phogat X, Shaw GM, Connors M, Hoxie J, Mascola J, Wyatt R. 2009. Analysis of neutralization specificity in polyclonal sera derived from human immunodeficiency virus type 1-infected individuals. J. Virol. 83:1045–1059.

Haynes BF, Alam SM. 2008. HIV-1 hides an Achilles’ heel in virion lipids. Immunity 28:10–12.

Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO, Binley JM, Forthal DN, Koff WC, Poignard P, Watkins DI, Burton DR. 2010. Rational design of membrane-proximal external region of the human immunodeficiency virus type 1 gp41: a target vaccine worth exploring. AIDS 19:1725–1737.

Alam SM, Morelli M, Dennison SM, Liao HX, Zhang R, Xia SM, Rits-Volloch S, Sun L, Harrison SC, Haynes BF, Chen P. 2009. Role of HIV membrane in neutralization by two broadly neutralizing antibodies. PLoS Pathog. 5:e1000585.

HIV membrane in neutralization by two broadly neutralizing antibodies. Proc. Natl. Acad. Sci. U. S. A. 106:20234–20239.

Brown BK, Karasavvas N, Beck Z, Matyas GR, Birx DL, Polonis VR, Alving CR. 2007. Monoclonal antibodies to phosphatidylinositol phosphate neutralize human immunodeficiency virus type 1: role of phosphatidylserine binding. J. Virol. 81:2087–2091.

Haynes BF, Fleming J, St Clair E, Katinger H, Steigler G, Koff WC, Poignard P, Burton DR. 2008. Antigenic and immunogenic study of membrane-proximal external region-grafted gp120 antigens by a DNA prime-protein boost immunization strategy. J. Virol. 81:2087–2091.

Matyas G, Beck Z, Karasavvas N, Alving CR. 2008. Lipid binding properties of 4E10, 2F5, and WR304 monoclonal antibodies that neutralize HIV-1. Biophys. Biochem. Acta 1788:660–665.

Olek G, McKeever K, Yang Y, Yang Z1, Skinner J, Guennaig F, Wyatt R, Zhu Z, Li Y, Svehla K, Louder M, Nabel GJ, Mascola JR. 2010. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329:856–861.

Zhou Z, Qin HM, Chen P, Zhao Q, Shen X, Schutte R, Wang Y, Ofek G, Steiger E, Prabakaran P, Fouda GG, Liao HW, Owens J, Louder M, Yang Y, Klaric KA, Moody MA, Mascola JR, Scott JK, Kwong PD, Montefiori D, Haynes BF, Tomaras GD, Dimitrov DS. 2011. Cross-reactive HIV-1 neutralizing monoclonal antibodies identified from a patient with 2F5-like antibodies, J. Virol. 85:11401–11408.

Montero M, van Houten N, Wang X, Scott JK. 2008. The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol. Mol. Biol. 72:54–85.

Manrique A, Ruset P, Joos B, Fischer M, Kuster H, Leemann C, Niederost B, Weber R, Stiegler G, Katinger H, Gunthard H, Trkola A. 2007. In vivo and in vitro escape from neutralizing antibodies to HIV-1. Immunity 28:1045–1059.

Meffre E, Millili M, Blanco-Betancourt C, Antunes H, Nussenzeig M, Schiff C. 2001. Immunoglobulin heavy chain expression shapes the B cell receptor repertoire in human B cell development. J. Clin. Invest. 108:879–886.

Armbruster C, Steigler GM, Vcelar BA, Jager W, Michael NL, Vetter N, Katinger HW. 2002. A phase I trial with two human monoclonal antibodies (hMAb 2F5, 2G12) against HIV-1. AIDS 16:227–233.

Armbruster C, Steigler GM, Vcelar BA, Jager W, Koller U, Jilch R, Ammann CG, Pruenster M, Stoiber H, Katinger HW. 2004. Passive immunization with the anti-HIV-1 human monoclonal antibody (hMAb 4E10) and the hMAb combination 4E10/2F5/2G12. J. Immunother. 28:195–202.

Hessell AJ, Rakasz EG, Tahani DM, Huber M, Weisgrau KL, Landucci G, Forthal DN, Koff WC, Poignard P, Watkins DI, Burton DR. 2010. Broadly neutralizing monoclonal antibodies 2F5 and 4E10 directed against the human immunodeficiency virus immunodominant gp120 external region protect against mucosal challenge by simian immunodeficiency virus SHIVBa-L. J. Virol. 84:1302–1313.

Hwang T, Zwick M, Kisting LA, Fischer M, Mascola JR, Katinger H. 2010. Relationship between antibody 2F5 neutralization of HIV-1 and hydrophobicity of its heavy chain third complementarity-determining region. J. Virol. 84:2955–2962.

Armbruster C, Steigler GM, Vcelar BA, Jager W, Michael NL, Vetter N, Katinger HW. 2002. A phase I trial with two human monoclonal antibodies (hMAb 2F5, 2G12) against HIV-1. AIDS 16:227–233.

Armbruster C, Steigler GM, Vcelar BA, Jager W, Koller U, Jilch R, Ammann CG, Pruenster M, Stoiber H, Katinger HW. 2004. Passive immunization with the anti-HIV-1 human monoclonal antibody (hMAb 4E10) and the hMAb combination 4E10/2F5/2G12. J. Immunother. 28:195–202.

Hessell AJ, Rakasz EG, Tahani DM, Huber M, Weisgrau KL, Landucci G, Forthal DN, Koff WC, Poignard P, Watkins DI, Burton DR. 2010. Broadly neutralizing monoclonal antibodies 2F5 and 4E10 directed against the human immunodeficiency virus immunodominant gp120 external region protect against mucosal challenge by simian immunodeficiency virus SHIVBa-L. J. Virol. 84:1302–1313.

Hwang T, Zwick M, Kisting LA, Fischer M, Mascola JR, Katinger H. 2010. Relationship between antibody 2F5 neutralization of HIV-1 and hydrophobicity of its heavy chain third complementarity-determining region. J. Virol. 84:2955–2962.

Armbruster C, Steigler GM, Vcelar BA, Jager W, Michael NL, Vetter N, Katinger HW. 2002. A phase I trial with two human monoclonal antibodies (hMAb 2F5, 2G12) against HIV-1. AIDS 16:227–233.
4E10 and 2F5 and retrospective analysis of clinical safety data. AIDS 21: 2161–2170.

37. Apellaniz B, Garcia-Saez AJ, Huarte N, Kunert R, Vorauer-Uhl K, Katinger H, Schwille P, Nieva JL. 2010. Confocal microscopy of giant vesicles supports the absence of HIV-1 neutralizing 2F5 antibody reactivity to plasma membrane phospholipids. FEBS Lett. 584:1591–1596.

38. Xu J, Gorny MK, Palker T, Karwowska S, Zolla-Pazner S. 1991. Epitope mapping of two immunodominant domains of gp41, the transmembrane protein of human immunodeficiency virus type 1, using ten human monoclonal antibodies. J. Virol. 65:4832–4838.

39. Chan DC, Kim PS. 1998. HIV entry and its inhibition. Cell 93:681–684.

40. Alam SM, Searce RM, Parks RJ, Plonk K, Plonk SG, Sutherland LL, Gorny MK, Zolla-Pazner S, Vanleeuwen S, Moody MA, Xia SM, Montefiori DC, Tomaras GD, Weinhold JK, Karim SA, Hicks CB, Liao HX, Robinson J, Shaw GM, Haynes BF. 2008. Human immunodeficiency virus type 1 gp41 antibodies that mask the membrane proximal region epitopes: antibody binding kinetics, induction, and potential for regulation in acute infection. J. Virol. 82:115–125.

41. Xiao X, Chen W, Feng Y, Zhu Z, Prabakaran P, Wang Y, Zhang MY, Longo NS, Dimitrov DS. 2009. Germline-like predecessors of broadly neutralizing antibodies lack measurable binding to HIV-1 envelope glycoproteins: implications for evasion of immune responses and design of vaccine immunogens. Biochem. Biophys. Res. Commun. 390:404–409.

42. Pietzsch J, Scheid JF, Mouquet H, Seaman MS, Broder CC, Nussenzweig MC. 2010. Anti-gp41 antibodies cloned from HIV-infected patients with broadly neutralizing serologic activity. J. Virol. 84:5032–5042.

43. Ofek G, Tang M, Sambor A, Katinger H, Mascola JR, Wyatt R, Kwong PD. 2004. Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope. J. Virol. 78:10724–10737.

44. Anderton S. 2004. Post-translational modifications of self antigens: implications for autoimmunity. Curr. Opin. Immunol. 16:753–758.

45. Dhiman M, Estrada-Franco JG, Pando JM, Ramirez-Aguilar FJ, Spratt H, Vazquez-Corzo S, Perez-Molina G, Gallegos-Sandoval R, Moreno R, Garg NJ. 2000. Increased myeloperoxidase activity and protein nitration are indicators of inflammation in patients with Chagas’ disease. Clin. Vaccine Immunol. 16:660–666.

46. Doyle H, Mamula M. 2001. Post-translational protein modifications in antigen recognition and autoimmunity. Trends Immunol. 22:443–449.

47. Ohmori H, Oka M, Nishikawa Y, Shigemitsu H, Takeuchi M, Magari M, Kanayama N. 2003. Immunogenicity of autologous IgG bearing the inflammation-associated marker 3-nitrotyrosine. Immunol. Lett. 96:47–54.

48. Sembala S, Geffard M, Daulouede S, Malvy D, Veyret B, Lemesre J, Holzmuller P, Minimneh S, Vincendeau P. 2004. Antibodies directed against nitrosylated neopterin in sera of patients with human African trypanosomiasis. Trop. Med. Int. Health 9:1104–1110.

49. Wegner N, Lundberg K, Kinloch A, Fischer B, Malstrom V, Feldmann M, Venables PJ. 2010. Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunol. Rev. 233:34–54.

50. Watson DS, Platt VM, Cao L, Venditto VJ, Szoka FC. 2011. Antibody response in mice to polyhistidine-tagged peptide and protein antigens attached to liposomes via lipid-linked nitrotriacetic acid. Clin. Vaccine Immunol. 18:289–297.

51. Watson D, Szoka FC. 2009. Role of lipid structure in the humoral immune response in mice to covalent lipid-peptides from the membrane proximal region of HIV-1 gp41. Vaccine 27:4672–4683.

52. Taylor J, Kaiser E. 1987. Structure-function analysis of proteins through the design, synthesis and study of peptide models. Methods Enzymol. 154:473–498.

53. Muserwa JM, Matyas GR, Spiteri LE, Alving CR. 1999. Oil-in-water liposomal emulsions: characterization and potential use in vaccine delivery. J. Pharm. Sci. 88:1332–1339.

54. Li M, Gao F, Mascola JR, Stamatatos L, Polonis VR, Koutsoukos M, Voss G, Goepfert P, Gilbert P, Greene KM, Bilsha M, Kothe DL, Salazar-Gonzalez JF, Wei X, Decker JM, Hahn BM, Montefiori DC. 2005. Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J. Virol. 79:10108–10125.

55. Edmonds TG, Ding H, Yuan X, Conway JA, Smith K, West J, Montefiori DC, Kappes JC, Ochsenbauer C. 2010. Replication competent molecular clones of HIV-1 expressing Renilla luciferase facilitate the analysis of antibody inhibition in PBMC. Virology 408:1–13.

56. Marusic C, Rizza P, Lattanzi L, Mancini C, Spada M, Belardelli F, Benvenuto E, Capone I. 2001. Chimeric plant virus particles as immunogens for inducing murine and human immune responses against human immunodeficiency virus type 1. J. Virol. 75:8434–8439.

57. Muster T, Guinea R, Trkola A, Pursert M, Klima A, Steinfeld F, Palese P, Katinger H. 1994. Cross-neutralizing activity against divergent human immunodeficiency virus type 1 isolates induced by the gp41 sequence ELDKWAS. J. Virol. 68:4031–4034.

58. Cardoso RM, Brunel FM, Fergusson S, Zwick M, Burton DR, Dawson PE, Wilson IA. 2007. Structural basis of enhanced binding of extended and helically constrained peptide epitopes of the broadly neutralizing HIV-1 antibody 4E10. J. Biol. Chem. 365:1533–1544.

59. Alam SM, McAdams M, Boren D, Rak M, Searce RM, Gao F, Camacho ZT, Gewirth D, Kelsoe G, Chen P, Haynes BF. 2007. The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1-envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes. J. Immunol. 178:4424–4435.

60. Cardoso RMF, Zwick MB, Stanfield RL, Kunert R, Binley JM, Katinger H, Burton DR, Wilson IA. 2005. Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41. Immunity 22:163–173.

61. Inglese S, Gach JS, Zwick MB, Dawson PE. 2010. Synthesis and analysis of the membrane proximal external region epitopes of HIV-1. J. Pept. Sci. 16:716–722.

62. Kim M, Sun ZY, Rand KD, Shi X, Song L, Cheng Y, Fahmy AF, Majumdar S, Ofek G, Yang Y, Kwong PD, Wang JH, Engen JR, Wagner G, Reinherz EL. 2011. Antibody mechanics on a membrane-bound HIV segment essential for GP41-targeted viral neutralization. Nat. Struct. Mol. Biol. 18:1235–1243.

63. Gamba V, Grunewald J, Gourney V, Deaton LM, Kang M, Bursulaya B, Ochsenbauer C, Prezioso V, Pascucci T, Caira K, Dhillon A, Sheehy D, Gao F, Schlesinger M, Zolla-Pazner S, Salazar-Gonzalez JF, Wood E, Coombs J, Barlow J, Decker JM, De Souza V, Simon GA, McAdams M, Ochsenbauer C, Ofek G, Gao F, Montefiori DC, Belka J, Katinger H, Hahn BM, Wilson IA. 2005. Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J. Virol. 79:10108–10125.

64. Edmonds TG, Ding H, Yuan X, Conway JA, Smith K, West J, Montefiori DC, Kappes JC, Ochsenbauer C. 2010. Replication competent molecular clones of HIV-1 expressing Renilla luciferase facilitate the analysis of antibody inhibition in PBMC. Virology 408:1–13.