Coherent Power Corrections to Structure Functions

Ivan Vitev

Los Alamos National Laboratory, Theory Division and Physics Division, Mail Stop H846, Los Alamos, NM 87544

Abstract.
We calculate and resum a perturbative expansion of nuclear enhanced power corrections to the structure functions measured in deeply inelastic scattering of leptons on a nuclear target. Our results for the Bjorken x, Q^2- and A-dependence of nuclear shadowing in $F_A^T(x, Q^2)$ and the nuclear modifications to $F_A^L(x, Q^2)$, obtained in terms of the QCD factorization approach, are consistent with the existing data. We predict the dynamical shadowing from final state interactions in $\nu + A$ reactions for sea and valence quarks in the structure functions $F_A^T(x, Q^2)$ and $xF_A^L(x, Q^2)$, respectively. In $p + A$ collisions we calculate the centrality and rapidity dependent nuclear suppression of single and double inclusive hadron production at moderate transverse momenta.

Dynamical high twist shadowing

Under the approximation of one-photon exchange, the lepton-hadron DIS cross section $d\sigma_{lh}/dx dQ^2 \propto L_{\mu \nu} W^{\mu \nu}(x, Q^2)$, with Bjorken variable $x = Q^2 / (2p \cdot q)$ and virtual photon’s invariant mass $q^2 = -Q^2$. The hadronic tensor can be expressed in terms of structure functions based on the polarization states of the exchange virtual photon: $W^{\mu \nu}(x, Q^2) = \epsilon^{\mu \nu}_T F_T^L(x, Q^2) + \epsilon^{\mu \nu}_L F_T^L(x, Q^2)$. In DIS the exchange photon $\gamma^* = Q^2 / (2x m_N)$ probes an effective volume of transverse area $1/Q^2$ and longitudinal extent $\Delta z_N \times x_N / x$, where Δz_N is the nucleon size, $x_N = 1/(2r_0 m_N) \sim 0.1$ and $r_0 \sim 1.2$ fm. When Bjorken $x \ll x_N$ the lepton-nucleus DIS covers several nucleons in longitudinal direction while it is localized in the transverse plane.

In the lightcone $A^+ = 0$ gauge and the Breit frame we identify the natural short and long distance separation of the multiple final state interactions from the propagator structure of the struck quark, $i(\gamma^+/2p^+) / (x_i - x \pm ie)$ (pole term) and $ixp^+ / Q^2 \gamma^-$ (contact term) [1]. The two gluon contact exchange is therefore evaluated in a single nucleon state. Resumming the $A^{1/3}$-enhanced power corrections we find [1]:

$$F_T^A(x, Q^2) \approx A F_T^{(LT)} \left(x + \frac{x_N^2 (A^{1/3} - 1)}{Q^2}, Q^2 \right), \quad (1)$$

$$F_L^A(x, Q^2) \approx A F_L^{(LT)} (x, Q^2) + \frac{4 \xi^2}{Q^2} F_A(x, Q^2). \quad (2)$$
Here, ξ^2 represents the characteristic scale of higher twist per nucleon to $\mathcal{O}(\alpha_s)$:

$$\xi^2 = \frac{3\pi\alpha_s(Q^2)}{8r_0^2} \langle p | \hat{F}^2(\lambda_i) | p \rangle, \quad \langle p | \hat{F}^2(\lambda_i) | p \rangle = \lim_{x \to 0} \frac{1}{2x} x G(x, Q^2).$$

The x- and A-dependence of $F_2(A)/F_2(D)$, calculated for $\xi^2 = 0.09 - 0.12$ GeV2, is given in the left panel of Fig. 1. Comparison to a leading twist shadowing parameterization [2] is also shown. The right panel of Fig. 1 indicates the power law nature of the nuclear modification to the structure functions. The physical gluon exchange leads to a high twist contribution to the longitudinal structure function F_L and enhances the ratio $R = \sigma_L/\sigma_T$. We emphasize that both leading twist [3] and high twist shadowing [1] have their origin in the final state coherent scattering. This provides a natural explanation of the apparent lack of gluon shadowing in the NLO global analysis [4] which is the only one directly sensitive to gluons.
Neutrino-nucleus scattering

Neutrino-nucleus scattering provides the unique opportunity to separately study the effect of coherent power corrections for sea and valence quarks \(F_2(x, Q^2) \) and \(xF_3(x, Q^2) \) through the structure functions:

\[
F_{1(3)}^{V_A}(x_B, Q^2) \approx A(2) \left[\sum_{D,U} |V_{DU}|^2 \phi_D^3 \left(x_B + x_B \frac{\xi^2(A^{1/3} - 1)}{Q^2} + x_B \frac{M_D^2}{Q^2}, Q^2 \right) \right. \\
\left. + (-) \sum_{C,D} |V_{CD}|^2 \phi_C^3 \left(x_B + x_B \frac{\xi^2(A^{1/3} - 1)}{Q^2} + x_B \frac{M_D^2}{Q^2}, Q^2 \right) \right] .
\]

(3)

Here \(V_{DU} \) are the CKM matrix elements. Eq. (3) identifies the nuclear enhanced high twist corrections with dynamical mass \(m_{dyn}^2 = \xi^2(A^{1/3} - 1) \) generated by the final state parton scattering through direct comparison to \(M_{U,D}^2 \).

The modification to the structure functions \(F_2(x, Q^2) \) and \(xF_3(x, Q^2) \) for two select values of \(x_B \) are shown in the left panel of Fig. 2. These give a good description of the observed power law deviation of the reduced cross sections measured by NuTeV \([6, 7]\) from the leading twist pQCD at small values of \(Q^2 \). Note the difference in the “shadowing” of \(F_2 \) and \(xF_3 \) due to the different steepness of sea and valence quark PDFs (in \(x \)). The right panel of Fig. 2 demonstrates the improved agreement between data and theory for the Gross-Llewellyn-Smith sum rule \(\Delta_{GLS} \) \([5]\):

\[
\Delta_{GLS} \equiv \frac{1}{3} (3 - S_{GLS}) = \frac{\alpha_s(Q^2)}{\pi} + \frac{g^2}{Q^2} + \mathcal{O}(Q^{-4}) .
\]

(4)
Proton-nucleus collisions

The proton + nucleus analogue of the DIS coherent power corrections is the final state interactions of the small x_b parton in the $|\vec{t}| \ll |\vec{s}|, |\vec{q}|$ regime. Here $\vec{t} = q^2 = (x_d P_d - P_T / z_1)^2$ and the x_b rescaling in the lowest order pQCD formalism reads [8]:

$$F_{ab \rightarrow cd}(x_b) \Rightarrow F_{ab \rightarrow cd} \left(x_b \left[1 + C_d \frac{\xi^2}{-t} (A^{1/3} - 1) \right] \right).$$

In Eq. (5) $F_{ab \rightarrow cd}(x_b) = |M_{ab \rightarrow cd}|^2 \phi(x_b)/x_b$ and C_d is a color factor, $C_{q(\bar{q})} = 1$ and $C_g = C_A/C_F = 9/4$ for quark (antiquark) and gluon, respectively.

The left panel of Fig. 3 shows the upper limit on the centrality and rapidity dependent suppression $R^{(1)}_{pA}$ of single inclusive hadron production at RHIC. Data is from BRAHMS [9]. Additional nuclear suppression arises from the energy loss in cold nuclei [10]. The right panel shows the suppression of away side dihadron correlations $R^{(2)}_{pA}$ versus transverse momentum, rapidity and centrality on the example of the area of the correlation function $C(\Delta \phi) = dN_{h_1 \rightarrow h_2} / d\Delta \phi$ The pronounced p_T dependence is consistent with STAR preliminary data [11].

Acknowledgments: Useful discussion with S. J. Brodsky, R. Jaffe, J. W. Qiu and M. Tzanov is acknowledged. This work is supported by the J. Robert Oppenheimer Fellowship of the Los Alamos National Laboratory and by the US Department of Energy.
REFERENCES

1. J. W. Qiu and I. Vitev, Phys. Rev. Lett. 93, 262301 (2004).
2. K. J. Eskola, V. J. Kolhinen and C. A. Salgado, Eur. Phys. J. C 9, 61 (1999); V. Kolhinen, these proceedings.
3. S. J. Brodsky, P. Hoyer, N. Marchal, S. Peigne and F. Sannino, Phys. Rev. D 65, 114025 (2002); these proceedings.
4. D. de Florian and R. Sassot, Phys. Rev. D 69, 074028 (2004).
5. J. W. Qiu and I. Vitev, Phys. Lett. B 587, 52 (2004).
6. V. A. Radescu [NuTeV Collaboration], arXiv:hep-ex/0408006.
7. M. Tzanov et al. [NuTeV Collaboration], arXiv:hep-ex/0306035; these proceedings.
8. J. W. Qiu and I. Vitev, hep-ph/0405068.
9. I. Arsene et al. [BRAHMS Collaboration], Phys. Rev. Lett. 93, 242303 (2004).
10. B. Z. Kopeliovich, J. Nemchik, I. K. Potashnikova, M. B. Johnson and I. Schmidt, hep-ph/0501260.
11. A. Ogawa [STAR collaboration], nucl-ex/0408004.