Prevalence and predictors of psychological response during immediate COVID-19 pandemic

Neslihan Cansel1 | İlknur Ucuz2 | Ahmet Kadir Arslan3 | Burcu Kayhan Tetik4 | Cemil Colak3 | Şahide Nur İpek Melez5 | Raziyе Şule Gümüstakım6 | Sinem Ceylan7 | Güzin Zeren Öztürk8 | Yasemin Kılıç Öztürk9 | Dursun Cadirci10 | Ayse Semra Demir Akca11

Abstract

Aim: COVID-19 pandemic has created a serious psychological impact worldwide since it has been declared. This study aims to investigate the level of psychological impacts of the COVID-19 pandemic on the Turkish population and to determine related factors.

Methods: The study was carried out by an online questionnaire using the virtual snowball sampling method. The sociodemographic data were collected on the following subjects: participants’ experience on any signs of infection within the last month, the history of COVID-19 contact-treatment-quarantine, level of compliance with precautionary measures, the sources of information and level of knowledge about the pandemic process and their belief levels on the knowledge they acquire. Besides, the questions that take place in the Depression, Anxiety and Stress Scale-21 (DASS-21), and Impact of Events Scale-Revised (IES-R) were asked to participants.

Results: Of the 3549 participants, anxiety was found in 15.8%, depression in 22.6%, stress in 12.9%, and psychological trauma in 20.29% based on moderate and above levels. Female gender, young age, higher education level, being single, high monthly income, presence of psychiatric illness, a large number of people living together, having any signs of infection, and contact history with COVID-19 infected person or contaminated object are identified as risk factors that may increase psychological impact. Compliance with the rules was found to reduce the risk of psychological response.

Conclusions: The risk factors for the psychological impact of the COVID-19 pandemic, and acknowledging these factors can help to formulate the interventions to reduce the stress levels of the population.

1 | INTRODUCTION

COVID-19 has emerged as a pneumonia form of unknown aetiology in a group of patients with a connection to the Huanan South China Seafood Market in Wuhan, China, in late 2019, and soon spread across the world.1 Being much more widespread than Severe Acute Respiratory Disorder Syndrome (SARS) in 2002, and Middle East Respiratory Syndrome (MERS) in 2012,2 COVID 19, which is considered as the most common viral epidemic of our time, has spread to
The COVID-19 pandemic caused various problems related to viral infection, including the risk of death. In addition, it caused different levels of psychological effects in individuals.

What is new?
1. Risk factors causing psychological response such as sociodemographic variables, data on the areas of concern, the level of compliance with precautionary measures, the participants’ information source, the presence of physical symptoms, were determined in detail within the same study.
2. Female gender, young age, higher education level, being single, high monthly income, presence of psychiatric illness, large number of people living together, having any signs of infection, and contact history with a COVID-19 infected person are identified as risk factors that may increase psychological impact.
3. Compliance with the rules was found to reduce the risk of psychological response.

2 | METHODS

2.1 | Participants and study protocol

This study is a cross-sectional study and has been approved by the ethics committee (2020/652). This study was conducted 6 weeks after the first COVID-19 case was officially announced. The individuals who were planned to participate in the study were determined by a virtual snowball sampling method and invited to participate in the web survey online. Data acquisition was stopped when the targeted sample size of 3549 people was reached within 5 consecutive days.

A questionnaire consisting of seven sub-units was sent to the participants. Section 1 of the questionnaire included sociodemographic features, Section 2 included questions on the presence of symptoms for any infectious disease, contact with COVID-19, treatment, quarantine history, Section 3 included questions on compliance with the measures taken (these questions were inspired by the 14 rules determined by the official authorities in our country), Section 4 included questions on the source from which information about COVID-19 was acquired; level of knowledge, belief in the information received, health services and measures sufficiency level, level of belief in life chances. Section 5 included questions on anxiety associated with possible health and sociological losses of the pandemic. The 6th section consisted of DASS-21 related questions and Section 7 consists of questions related to IES-R. DASS and IESR were used in previous pandemic studies.8,9 Data for individuals 18 and older who agree to participate voluntarily were included in the current study. Data of...
individuals with a history of bipolar disorder and/or psychotic disorder were not evaluated and excluded during the analysis phase.

2.2 | Data collection tools

2.2.1 | Depression anxiety and stress scale-21 (DASS-21)

In the study, DASS-21 was used to evaluate the current mental impact. DASS-21 is a short-form version of the original 42-item questionnaire designed as self-report.\(^\text{10}\) Its validity and reliability in Turkish were performed by Sarıçam in 2018.\(^\text{11}\) The scale consists of depression, anxiety, and stress subfields. In the depression subscale, 0-4 points are normal, 5-6 points are mild, 7-10 points are moderate, 11-13 points are severe, and ≥14 points are extremely severe. In the anxiety subscale, 0-3 points are normal, 4-5 points are mild, 6-7 points are moderate, 8-9 points are severe, ≥10 points are extremely severe anxiety; in the stress subscale, 0-7 points are normal, 7-8 points are mild, 10-12 points are moderate, 13-16 points are severe, and ≥17 express extremely severe stress.

2.3 | Impact of event scale-revised (IES-R)

The scale which was originally named Impact of Event Scale-Revised (IES-R)\(^\text{12}\) was used to measure the psychological trauma caused by the COVID-19 outbreak in the study. The Turkish validity and reliability of this scale, which is widely used in daily clinical practice and studies to evaluate the severity of post-traumatic stress, was made by Çorapçıoğlu et al in 2016.\(^\text{13}\) There are 22 questions divided into three subgroups (intrusive, avoidance, hyperarousal) on the scale where the severity of symptoms in the last 7 days is scored between 0 and 4. For the total IESR score, 0-23 is normal, 24-32 mild, 33-36 moderate, and ≥37 indicate severe psychological impact.

2.4 | Statistical analysis

The quantitative data used in the study were summarised as arithmetic mean ± standard deviation and qualitative data as numbers (percent). As the four dependent variables in the study, DASS-21 anxiety, depression and stress subfields, and IES-R total scores were selected, and the related data were converted into binary categorical data according to the following criteria. A cut-off of the IES-R total score ≥33 was used to reflect moderate-to-severe impact.\(^\text{14}\) Similarly, individuals with a score of 7 and above in the depression subscale, 6 and above in the anxiety subscale, 10 or above in the stress subscale cut-off points were used to determine the moderate and above psychological influence reflected on DASS-21.\(^\text{15}\) Since the number of dependent variables is four, four different binary logistic regression models were applied to the data set. Before applying the related models, variable selection algorithms based on each dependent variable were applied to the data, and independent variables considered to have no contribution to modelling were removed from the data set. As a variable selection method, LASSO (Least absolute shrinkage and selection operator)\(^\text{15}\) logistic regression technique was applied. The goodness of fit and coefficients of the created models were evaluated by Hosmer-Lemeshow (P > .05) and Omnibus (P < .05) tests, respectively. In logistic regression models, the significance level for model coefficients was determined as P < .05. In the analysis, “BKSY: Information Discovery Process Software” developed by Inonu University Faculty of Medicine Department of Biostatistics and Medical Informatics was used for the data analysis.\(^\text{16}\)

3 | RESULTS

3.1 | The relationship between sociodemographic variables and psychological response

The data obtained from 3549 people were included in the research. The average age of the participants was 38.8 ± 10.9 years, 1389 (39.1%) were male and 2160 (60.9%) were female. The average age for women was 37.8 (±11.1) years and the average age for men was 40.3 ± 10.7 years. When DASS-21 scores of 3549 participants were evaluated; 200 (5.6%) individuals were extremely severe, 124 (3.5%) severe, 479 (13.5%) moderate, 416 (11.7%) mild, 2330 (65.7%) normal levels for depression subspace. For the anxiety subsfield, 187 (5.3%) people were extremely severe, 127 (3.6%) people were severe, 246 (6.9%) were moderate, 385 (10.8%) were mild, and 2604 (73.4%) were normal. For the stress subsfield 69 (1.9%) individuals were extremely severe, severe for 160 (4.5%) people, moderate for 220 (6.2%) people, mild for 279 (7.9%), and normal range for 2821 (79.5%). When IESR scores were evaluated; 552 (15.6%) people were in the severe range, 168 (4.7%) people were in the moderate range, 662 (18.7%) were mild and 2167 (61.1%) were in the normal range. The prevalence values moderate to extremely severe, while DASS-21 was 10.51% for anxiety, 16.99% for depression, and 10.71% for stress, the prevalence value for the for the moderate to extremely severe was 20.29% for IES-R.

Data related to the relationship between sociodemographic variables and DASS-21 and IES-R are given in Table 1. Increasing age was associated with high depression (P = .021, OR = 0.985) and stress (P = .015, OR = 0.981) scores, but had no effect on anxiety and IES-R scores (P > .05). Being a woman generated more risk for anxiety, depression, and stress and trauma response. According to the level of education, being a university graduate reduces the risk of anxiety by 2.22 times (P = .026, OR = 0.451) and the risk of depression approximately 2.02 (P = .04, OR = 0.495) times compared with primary school graduates. Being married reduced the risk of developing stress 1.739 times compared with being single (P = .002, OR = 0.575). The most risky group for the development of stress was those with an income level of 10,000 TL and above (P = .003, OR = 2.029). As the number of people living at home
TABLE 1 Relationship between sociodemographic variables and psychological response

Sociodemographic variables	DASS-21 Anxiety	Depression	Stress	IES-R Total										
	P	OR	95% CI	P	OR	95% CI	P	OR	95% CI	P	OR	95% CI		
Age														
-														
Gender Male	1389 (39.14%)	2160 (60.86%)	.001	1.84	1.389-2.45	.001	1.509	1.189-1.919	.015	2.351	1.735-3.218	<.001	1.685	1.332-2.14
Education status Primary	65 (1.83%)	81 (2.28%)	.503	0.722	0.277-1.874	.316	0.64	0.267-1.528	NS	NS	NS			
Marital status Single	877 (24.71%)	466 (6.48%)	.466	0.823	0.486-1.381	.854	0.957	0.599-1.52	.47	0.813	0.459-1.416	.493	0.852	0.537-1.341
Profession Unemployed	48 (1.35%)	852 (24.01%)	.523	0.779	0.363-1.69	.056	0.64	0.280-1.73	NS	NS	NS			
Health insurance No	3084 (86.90%)	2303 (6.48%)	.466	0.823	0.486-1.381	.854	0.957	0.599-1.52	.47	0.813	0.459-1.416	.493	0.852	0.537-1.341
Monthly income ≤ 2500 TRY	389 (10.96%)	998 (28.12%)	.503	0.722	0.277-1.874	.316	0.64	0.267-1.528	NS	NS	NS			
Number of people living in the house 1	231 (6.51%)	534 (15.05%)	.503	0.722	0.277-1.874	.316	0.64	0.267-1.528	NS	NS	NS			
Presence of people over the age of 65 in the house No	3084 (86.90%)	465 (13.10%)	.247	0.807	0.559-1.155	NS	NS	NS	NS	NS	NS			
Presence of known psychiatric disease No	2939 (82.81%)	610 (17.19%)	.001	2.426	1.886-3.117	<.001	2.297	1.833-2.876	<.001	2.224	1.713-2.88	<.001	2.034	1.622-2.547
Presence of chronic disease in the family No	2266 (63.85%)	778 (21.92%)	.818	0.966	0.717-1.295	.395	1.106	0.876-1.395	.577	0.921	0.689-1.226	NS	NS	NS
Smoking No	2324 (65.48%)	1225 (34.52%)	NS	NS	NS	NS	NS	NS	.192	1.146	0.933-1.405			

Abbreviations: CI, Confidence interval; NA, Not available; NS, Not selected (by feature selection algorithm); OR, Odds ratio. Bold font indicates statistical significance: P < .05.
increased, the risk of developing stress increased. The fact that the number of people living at home was 5 and above posed a high risk for stress (P = .003, OR = 2.476). The presence of individuals over 65 years old at home did not cause any psychological response (P = .247, OR = 0.807). The presence of psychiatric illness in the individual was significantly associated with high DASS-21 and IES-R scores.

Having a history of psychiatric illness increased the risk of developing anxiety 2.5 times (P < .001, OR = 2.426), increased the risk of developing depression 2.3 times (P < .001; OR = 2.297), increased the risk of developing stress 2.2 times (P < .001, OR = 2.224). It was observed that it increased the risk of developing trauma approximately two times (P < .001, OR = 2.034). The presence of chronic illness in the family and smoking did not have any effect on the development of depression, anxiety, and trauma response (P > .05 for all areas).

3.2 | The relationship between participants’ history of contact and treatment with COVID-19 within the last month and their psychological response levels

Data related to the participants’ history of contact and treatment with COVID-19 within the last month and their psychological response levels are shown in Table 2. Five hundred thirty-eight (15.2%) of the participants had a history of meeting with someone diagnosed with COVID-19 and 159 (4.5%) had a history of contact with an individual with suspected COVID-19 or contaminated materials. The presence of a history of contact with a COVID-19 had a 2.3-times increase in the risk of anxiety (P < .001, OR = 2.297), and 1.43 times enhancing effect in the risk of depression (P = .029, OR = 1.428). Having a contact history with contact with an individual with suspected COVID-19 or infected materials, increased the risk for depression two times (P < .004, OR = 2.005). 1.84 times for stress (P = .028, OR = 1.838) and 1.77 times (P = .013, OR = 1.773) had an enhancing effect for IES-R. The test history for COVID-19 had a 1.62 times protective effect on trauma formation (P = .035, OR = 0.617). Although quarantine status had a protective effect on anxiety and stress, it had 2.35 times risk-reducing effects for anxiety and 2.99 times for stress (P = .027, OR = 0.424, P = .016, OR = 0.334, respectively). Treatment with COVID-19 did not affect the psychological impact.

3.3 | The relationship between the presence of physical symptoms within the last month and psychological response levels

The relationships between the presence of physical symptoms and psychological responses in the last 1 month are given in Table 3. When the participants were questioned whether they had experienced any / several of the symptoms of fever, cough, sore throat, shortness of breath, chest pain, headache, runny nose, muscle pain, diarrhoea, nausea in the past 1 month. In the analysis, different symptoms caused different levels of psychological response. The presence of fever in the last 1 month had an enhancing effect on the development of anxiety (P < .001, OR = 2.193) and stress (P = .013, OR = 1.572). Sore throat was associated with high anxiety and IES-R (P = .049, OR = 1.282, P = .016, OR = 1.431, respectively). Chest pain had an effect on increasing the risk for anxiety (P < .001, OR = 2.269) and trauma (P = .049, OR = 1.34). Shortness of breath had an increasing effect on the risk of experiencing anxiety (P < .001, OR = 2.286) and depression (P = .16, OR = 1.431). Headache, rhinorhea, diarrhoea, cough did not pose a risk in psychological response. Nausea increased the risk of developing anxiety and stress by 1.37 and 1.489 times, respectively, compared with those who did not have nausea (P = .028, OR = 1.37; P = .007, OR = 1.489).

3.4 | The relationship between participants’ source of information, level of belief in knowledge and their level of psychological response on COVID-19 pandemic

The relationships between the sources of information, its level, belief in knowledge, and psychological response are given in Table 4. One thousand seven hundred ninety-seven (50.6%) participants stated that they received information about COVID-19 most frequently from TV/radio. When the participants are evaluated in terms of knowledge level, source, and belief level from which the information is obtained; these variables had no effect on psychological response (P > .05 for all areas). The presence of chronic illness in the family and smoking did not have any effect on the development of depression, anxiety, and trauma (P > .05 for all areas). Finding the measures adequate reduced the risk of depression by 1.386 times (P = .041, OR = 0.721). In addition, compared with those who did not have the idea of finding a high chance of survival, it had a reducing effect on depression 1.68 times (P = .003, OR = 0.594).

3.5 | The relationship between the level of compliance with precautionary measures and psychological response levels

The relationships between the compliance level of the participants and the psychological response are given in Table 5. The number of people who comply with precautionary measures: 3357 (94.6%) for hand washing with soap, 3447 (97.1%) for closing the mouth and nose during coughing or sneezing, 3190 (89.9%) for cancelling international travel plans, paying attention to social distance, 3059 (86.2%) for wearing a mask while going out with or without symptoms, 3362 (94.7%) for the ventilation of the environment frequently, 2449 (69%) for cleaning the frequently used surfaces with water and detergent, 1976 (55.7%) for separating personal belongings, 2401 (67.7%) for washing clothes at high temperature 2275 (64.1%) for all
Contact / treatment history	DASS-21	IES-R Total													
Variables	Reference category	Other category(ies)	n (%)	Anxiety	Depression	Stress	P	OR	95% CI	P	OR	95% CI	P	OR	95% CI
Contact with someone diagnosed with COVID-19 in the last 1 mo	No	I do not know	2463 (69.40%)	1.238	0.914-1.667	.163	.885	0.978	0.726-1.314	.101	1.352	0.941-1.934	NS		
	Yes		538 (15.16%)	<.001	1.781	1.292-2.447	.029	1.428	1.035-1.965	.056	1.43	0.987-2.055			
Contact with an individual with suspected COVID-19 or contaminated materials	No	I do not know	2301 (64.84%)	NS	.051	1.266	0.998-1.605	.954	0.991	0.733-1.336	.035	0.617	0.39-0.957		
	Yes		159 (4.48%)	.004	2.005	1.248-3.215	.028	1.838	1.061-3.158	.013	1.773	1.121-2.782			
Testing status for COVID-19 in the last 1 mo	No		3343 (94.20%)	NS	NS	NS	.035	0.617	0.39-0.957						
Quarantine status for COVID-19 in the last 1 mo	No	Yes	3469 (97.75%)	.027	0.424	0.191-0.875	.305	0.68	0.315-1.388	.016	0.334	0.127-0.773	NS		
Treatment status for COVID-19 in the last 1 mo	No	Yes	3519 (99.15%)	NS	.254	0.459	0.108-1.628	NS	NS						

Abbreviations: CI, Confidence interval; NS, Not selected (by feature selection algorithm); OR, Odds ratio. Bold font indicates statistical significance: P < .05.
TABLE 3 The relationship between the presence of physical symptoms in participants within the last month and psychological response levels

Symptom presence	Reference category	Other category(ies)	DASS-21 Anxiety	Depression	Stress	IES-R Total
			P OR 95% CI	P OR 95% CI	P OR 95% CI	P OR 95% CI
Fever in the last 1 mo	No 3248 (91.52%)	Yes 301 (8.48%)	<0.001 2.193	.127 1.283	.013 1.572	.098 1.308
			1.575-3.045	0.931-1.765	1.096-2.237	0.949-1.793
Cough in the last 1 mo	No 2669 (75.20%)	Yes 880 (24.80%)	NS .14 1.186	.049 1.12	NS .284 1.154	NS .284 1.154
			0.945-1.485	0.902-1.389	0.888-1.497	0.888-1.497
Sore throat in the last 1 mo	No 2301 (64.84%)	Yes 1248 (35.16%)	.049 1.282	.304 1.12	.284 1.154	.003 1.375
			1.1-1.641	0.902-1.389	0.888-1.497	0.888-1.497
Shortness of breath in the last 1 mo	No 3159 (89.01%)	Yes 390 (10.99%)	<0.001 2.286	.016 1.431	.05 1.399	.42 1.129
			1.692-3.081	1.068-1.913	0.961-1.95	0.839-1.513
Chest pain in the last 1 mo	No 3145 (88.62%)	Yes 404 (11.38%)	<0.001 2.269	.067 1.31	.141 1.289	.049 1.34
			1.675-3.067	0.981-1.748	0.916-1.804	1-1.791
Headache in the last 1 mo	No 1596 (44.97%)	Yes 1953 (55.03%)	.176 1.2	.222 1.145	NS .108 1.198	.961-1.496
Rhinorrhoea in the last 1 mo	No 2492 (70.22%)	Yes 1057 (29.78%)	.097 1.228	.222 1.145	NS .358 1.127	.872-1.452
Muscle pain in the last 1 mo	No 2249 (63.37%)	Yes 1300 (36.63%)	.004 1.432	.028 1.264	.434 1.107	.058 1.228
			1.122-1.827	1.026-1.556	0.858-1.425	0.993-1.517
Diarrhoea in the last 1 mo	No 2947 (83.04%)	Yes 602 (16.96%)	.13 1.24	.376 1.142	NS .376 1.142	0.849-1.53
			0.937-1.634	NS NS NS	NS NS NS	
Nausea in the last 1 mo	No 2991 (84.28%)	Yes 558 (15.72%)	.028 1.37	.425 1.106	.007 1.489	.177 1.188
			1.033-1.809	0.862-1.413	1.111-1.988	0.924-1.524

Abbreviations: CI, Confidence interval; NS, Not selected (by feature selection algorithm); OR, Odds ratio. Bold font indicates statistical significance: P < .05.
Table 4
The relationship between the participants' information source, level of knowledge and level of belief in the knowledge about COVID-19 and psychological response levels

Variables	Reference category	Other category (es)	DASS-21 Anxiety	Depression	Stress	IES-R Total						
			P OR 95% CI	P OR 95% CI	P OR 95% CI	P OR 95% CI						
Source of information on COVID-19	TV-Radio	Social media	1195 (33.67%)	.488	1.093	.85-1.403	.973	1.004	.809-1.245	NS	NS	
		Friends-Milieu	81 (2.28%)	.77	1.112	0.53-2.205	.554	1.195	0.655-2.131	NS	NS	
		Doctor	280 (78.9%)	.19	0.737	0.462-1.154	.064	0.684	0.456-1.016	NS	NS	
		Other	196 (5.52%)	.698	0.903	0.53-1.496	.416	0.831	0.528-1.287	NS	NS	
Level of belief in the information you get about COVID-19	No	Partially	599 (16.88%)	.562	0.829	0.446-1.591	.432	1.282	0.699-2.419	NS	NS	
		Yes	2819 (79.43%)	.44	1.258	0.716-2.303	.77	1.099	0.591-2.1	NS	NS	
Following the daily number of COVID-19 patients	No	Partially	1861 (52.44%)	NS	NS	NS	.206	0.864	0.691-1.084	.348	1.347	0.734-2.562
		Yes	821 (23.13%)	NS	NS	NS	.041	0.721	0.526-0.986	.886	1.048	0.563-2.017
The presence of adequate measures relating to COVID-19	No	Partially	454 (12.79%)	.175	0.51	0.192-1.356	NS	NS	NS	NS		
		Yes	3067 (86.42%)	.063	0.407	0.157-1.056	NS	NS	NS	NS		
Adequate level of knowledge about COVID-19’s transmission patterns	No	Partially	740 (20.85%)	NS	NS	NS	.543	0.822	0.439-1.561	.236	0.827	0.604-1.131
		Yes	2729 (76.89%)	NS	NS	NS	.559	0.827	0.441-1.579	NS	NS	
The level of knowledge about the clinical symptoms of COVID-19 is sufficient	No	Partially	603 (16.99%)	NS	NS	NS	.415	0.715	0.322-1.621	NS	NS	
		Yes	2892 (81.49%)	NS	NS	NS	.179	0.575	0.259-1.304	NS	NS	

(Continues)
least 8 hours of sleep, 2052 (57.8%) for at least 2 L of fluid per day
and balanced nutrition was and the curfew was 2980 (84%). While
frequent ventilation in the environment had a reducing effect on
the anxiety level of approximately 1,577 times ($P = .047$, $OR = 0.634$),
separating personal items and doing regular sports decreased the
risk of depression ($P < .001$, $OR = 0.626$) by 1.59 times. Sleeping at
least 8 hours a day, at least 2 L of water consumption, and balanced
nutrition had a risk-reducing effect in all areas ($P < .05$). Compliance
with the curfew reduced the risk of trauma by 1.34 times ($P = .01,
$OR = 0.745$).

3.6 The relationship between data on the areas of concern and psychological response levels

The relationships between the areas of concern and the level of psychological response are given in Table 6. Considering the distribution of concerns according to age groups, 63.46% ($n = 331$) of the people between the ages of 18-25 were experiencing academic anxiety mostly. While 60.4% ($n = 539$) of the people between the ages of 26-35 were worried about the other people, the object of the anxiety of the individuals of 36 years old and above was based on the health of their families and relatives. The group with the most common economic anxiety was those with monthly income between 2500 and 5000 TL ($n = 463, 46.3\%$). Five hundred thirty-six (54.5%) of 983 people with chronic diseases were worried about taking the medications that they should use regularly.

The anxiety of one’s health had an enhancing effect by 1.56 times ($P < .001$, $OR = 1.565$) for anxiety and 1.49 times for trauma ($P < .001$, $OR = 1.49$). Anxiety for the health of relatives increased the stress level by about 1.99 times ($P = .01$, $OR = 1.992$). Experiencing economic anxiety had 1.25 times increasing effect on trauma formation ($P = .042$, $OR = 1.254$). While experiencing academic anxiety only had 1.30 times increasing effect on the risk of depression ($P = .028$, $OR = 1.305$), the anxiety that the treatment of the disease could not be found and safety anxiety was a risk-increasing factor in all areas of psychological response ($P < .001$). Experiencing anxiety while taking medications that should be used regularly increased 1.75 times the risk of anxiety ($P = .02$, $OR = 1.755$) had an enhancing effect. Experiencing fear of going to health controls had an enhancing effect by 1.39 times ($P = .003$, $OR = 1.39$) for depression, 1.363 times ($P = .025$, $OR = 1.363$) for stress and 1.269 times ($P = .031$, $OR = 1.269$) for trauma.

4 DISCUSSION

This study provides important data regarding the impact of the pandemic in Turkey. First of all, it was detected that the society was significantly affected by the pandemic. Amongst the participants in the study; based on moderate and above psychological effects, anxiety was found in 15.8%, depression in 22.6%, stress in 12.9% for
TABLE 5 The relationship between the level of compliance with precautionary measures and psychological response levels

Variables	Reference category	Other category(ies)	DASS-21 Anxiety	DASS-21 Depression	DASS-21 Stress	IES-R Total
Do you wash your hands often with soap?	No	Yes	NS	NS	NS	0.171
Do you cover your mouth and nose while coughing and sneezing?	No	Yes	.426	0.787	0.442-1.443	NS
With or without symptoms, do you wear a mask when going out?	No	Yes	NS	NS	NS	NS
Do you frequently ventilate the environments you are in?	No	Yes	.047	0.634	0.407-1.003	NS
Do you clean your frequently used surfaces with water and detergent every day?	No	Yes	NS	.138	0.851	0.678-1.054
Have you separated your personal belongings?	No	Yes	.008	0.76	0.621-0.93	NS
Do you wash your clothes at high temperatures (60°C and above)?	No	Yes	.252	1.151	0.906-1.466	NS
Do you sleep for at least 8 h	No	Yes	.048	0.79	0.626-0.999	<.001
Do you pay attention to at least 2 litres of fluid consumption per day and balanced diet?	No	Yes	.05	0.718	0.568-0.906	<.001
Do you exercise regularly?	No	Yes	.05	0.717	0.588-0.875	<.001
Do you comply with the ban on leaving the house?	No	Yes	.05	0.717	0.588-0.875	<.001

Abbreviations: CI, Confidence interval; NS, Not selected (by feature selection algorithm); OR, Odds ratio. Bold font indicates statistical significance: $P < .05$.
TABLE 6 The relationship between the data on areas of concern and psychological response levels

Areas of concern	Variables	Reference category	Other category(ies)	DASS-21 Anxiety	Depression	Stress	IES-R Total									
		n (%)	n (%)	P	OR	95% CI	P	OR	95% CI	P	OR	95% CI				
	I am worried about my own health	No	2105 (59.31)		<.001	1.565	1.22-2.008	NS	.283	1.154	0.888-1.501	<.001	1.49	1.201-1.848		
		Yes	1444 (40.69)													
	I am worried about the health of my family and relatives	No	623 (17.55)		.055	1.284	0.994-1.657	.068	1.235	0.984-1.547	.057	1.283	0.991-1.719	.042	1.254	1.007-1.559
		Yes	2926 (82.45)													
	I am worried about economic status	No	2378 (67.00)		.09	1.251	0.965-1.619	.57	1.069	0.849-1.343	.481	1.105	0.837-1.457	.623	1.059	0.843-1.328
		Yes	1171 (33.00)		.055	1.284	0.994-1.657	.068	1.235	0.984-1.547	.057	1.283	0.991-1.719	.042	1.254	1.007-1.559
	I am worried about academic status	No	2676 (75.40)		.451	1.111	0.845-1.456	.028	1.305	1.029-1.653	.191	1.203	0.911-1.586	.259	1.145	0.904-1.446
		Yes	873 (24.60)													
	I am worried about infecting others	No	1885 (53.11)		.274	1.147	0.897-1.466	.544	1.067	0.866-1.314	.725	1.048	0.808-1.361	.004	1.356	1.116-1.674
		Yes	1664 (46.89)		.09	1.251	0.965-1.619	.57	1.069	0.849-1.343	.481	1.105	0.837-1.457	.623	1.059	0.843-1.328
	I am worried about not getting adequate treatment when necessary	No	2388 (67.29)		.09	1.251	0.965-1.619	.57	1.069	0.849-1.343	.481	1.105	0.837-1.457	.623	1.059	0.843-1.328
		Yes	1161 (32.71)													
	I am worried about lack of access to enough food	No	3151 (88.79)		.896	1.02	0.759-1.367	NS	.896	1.02	0.759-1.367	NS	NS	NS		
		Yes	398 (11.21)													
	I am worried about that the treatment of the disease cannot be found and/or the outbreak will not end	No	2632 (74.16)		<.001	1.775	1.357-2.32	<.001	2.05	1.625-2.585	<.001	1.862	1.413-2.452	<.001	1.609	1.274-2.028
		Yes	917 (25.84)													
	I am worried about safety	No	2878 (81.09)		<.001	1.794	1.354-2.375	<.001	1.928	1.495-2.486	<.001	1.939	1.455-2.583	<.001	2.074	1.621-2.652
		Yes	671 (18.91)													
	I am worried while getting the medicines I should use regularly	No	3306 (93.15)		.02	1.755	1.237-2.485	.414	1.151	0.82-1.612	.096	1.365	0.943-1.964	.249	1.211	0.873-1.676
		Yes	243 (6.85)													
	I am afraid to go to health checks	No	1920 (54.10)		.003	1.39	1.122-1.723	.025	1.363	1.04-1.791	.031	1.269	1.021-1.576	.025	1.363	1.04-1.791
		Yes	1629 (45.90)													

Abbreviations: CI, Confidence interval; NS, Not selected (by feature selection algorithm); OR, Odds ratio. Bold font indicates statistical significance: $P < .05$.
DASS-21, and trauma response in 20.29% for IES-R. In a study by the American Psychiatric Association, it was stated that the COVID-19 pandemic caused anxiety in 50% of the society and more than one-third felt that their mental health was seriously affected. In the study conducted by Wang et al in the normal population in the second week of the pandemic, it was observed that 53.8% of the participants had a psychological response, 16.5% with depression, 28.8% with anxiety, and 8.1% with high stress. Although the data obtained were close to the rates determined in China, they differed in terms of low IES-R rates. This result is probably related to the reduction of the acute effect of the pandemic in the community since the study was performed at the 6th week of the epidemic. Moreover, the fact that Turkey was not one of the first countries experiencing the outbreak, and had time to establish certain infrastructure related to the outbreak may be associated with lower trauma scores. However, since there is no previous study in our country, such a comparison is not possible to be made.

Epidemiological studies on epidemics or disasters have shown that sociodemographic variables are associated with different levels of psychological response. Epidemiological studies on epidemics or disasters have shown that sociodemographic variables are associated with different levels of psychological response. Women, young people, people with higher education, health workers, students, those with low economic income, people with or without a history of any disease and smokers are emphasised in the literature for having higher rates of psychological response. In our study, being a woman was found to be a risk factor in terms of being psychologically affected during this pandemic period as before. This result may be related to the threat perceptions or anxieties about losing control amongst women. The literature explains this issue through sex differences in the neuroendocrine response giving rise to the risk of psychologically affected. Additionally, in accordance with the literature, young age, being single, an excessive number of people living together, presence of psychiatric disease history, and female gender were identified as higher risk conditions in terms of high psychological response. However, in contrast to the literature, high education levels significantly reduced the risk of anxiety and depression, while smoking, lack of health insurance, or low level of economic income were not associated with psychological exposure. This result may be because of the effects of cultural and/or religious differences amongst communities on human behaviour and perceptions.

While studies in the literature have shown that societies use the internet and social media as a general information source and the posts here play a role in psychological influence. In our study, it was seen that most of the participants use television/radio as a source of information and this fact is not related to psychological influence. Although Turkish society has high levels of internet usage, the fact that the main source of information is expressed as TV/radio may be because of the low belief in the news on the internet. Moreover, the feeling of trust towards TV may be resulted from the fact of authorised institutions’ regular and effective TV use during the pandemic. As a matter of fact, the high degree of satisfaction and belief in the information obtained supports this relationship.

Another conclusion drawn from our study is; although very few of the participants were diagnosed with COVID-19, in contrast to the literature, interestingly, it has been found that being treated for COVID-19 infection is not related to psychological affect. Moreover, being quarantined and having a test reduced the level of psychological response.

Moreover, although there was no diagnosis of COVID-19, the presence of symptoms suggestive of any infection, and a history of contact with an individual or object infected with COVID-19 were also factors that increased the risk of psychological response in individuals. This result seems to be a reflection of the anxiety developed in accordance with the nature of “uncertainty.” In the literature, “uncertainty” is accepted as causing a series of cognitive, emotional, and behavioural damage in the process of time. It is also considered as a “basic component of all anxiety disorders” which reduces problem-solving ability. Accordingly, taking precautions such as regular sharing of information that will eliminate this uncertainty during the days of pandemic intensification, dissemination of diagnostic tests can contribute positively to the mental health of the society.

According to previous studies, despite social differences, there is a relationship between compliance with the measures taken and psychological impact. In the study of Wang et al, compliance with precautionary measures has been shown to reduce the psychological response. In our study which is consistent with the literature, it was found that the majority of the participants to be complying with the measures taken although Turkish society has been facing such a pandemic for the first time in its history. It has been also remarkable that people’s adaptation to the rules to have a positive effect on psychological response. It is an expected result for a society in which people state that they pay more attention to the health of their relatives rather than their own and that they do not feel psychologically uncomfortable. In addition, it has been observed that regular exercise, a balanced diet, and attention to sleep patterns are protective factors in psychological response. However, it was found that most of the participants complied with these measures at a lower rate. Therefore, raising awareness of the society for these measures which are effective in psychological and biological empowerment seems to provide significant benefits in combating pandemics.

When the areas where the participants are concerned are evaluated, similar to previous pandemic studies, the first three places, respectively, were the health of family and relatives, anxiety to infect others, and going to health controls. However, it was seen that the characteristics of the individuals during the pandemic caused anxiety about different issues. For example, academic anxiety was the primary concern amongst young people aged 18-25. The individuals with the most economic concerns were those with a monthly income of 2500-5000 TL and university graduates.

A remarkable result here was that people’s anxiety about taking medications that they had to take constantly increased their stress levels by 75.5%. Biologically at risk of further damage than COVID-19 this anxiety of the people is an important situation in terms of the disruption of the treatments and subsequent serious
health problems. Unfortunately, our study on why people bear this concern has not been able to provide a clear explanation. However, in our opinion, presenting information that has not been confirmed about whether or not some drugs can be taken in the media seems to cause more confusion and anxiety. Therefore, preventing information pollution about COVID-19 and making necessary explanations to these people at risk, will contribute to the reduction of anxiety levels, and it seems to contribute positively to the lives of these people with physical illness. For that purpose, the presentation of online or smartphone-based psychoeducation applications, which include cognitive behavioural therapy (CBT) and mindfulness-based cognitive therapy can be helpful to provide correct information to these people who have exaggerated fear. Especially in this period of intense transmission, these may correct their cognitive biases and help them to improve their ability to manage and cope with their anxiety by relaxation techniques. Moreover, digital CBT, which covers a range of technologies such as the internet, smartphone applications, and other devices such as computers, can reduce this transmission from face-to-face communication and therapy. Since it provides easier access and has lower cost, not only the workload of hospitals would be reduced but also economic contribution can be succeeded. Furthermore, these platforms can also provide a support network for those people who have to spend most of their time at home during the pandemic.8

4.1 | Limitations and conclusion

There were some limitations regarding this study. First, although this study has reached a relatively high sample size from different strata of the society, inviting participants to the study in an electronic environment has prevented those who do not have this opportunity and those who do not read or speak Turkish. Therefore, the results may not reflect the general population. Additionally, this study mainly used self-reported questionnaires to measure psychiatric symptoms and did not make a clinical diagnosis. The gold standard for establishing psychiatric diagnosis includes a structured clinical interview and functional neuroimaging.38,39

In the future, the information obtained through face to face interviews and particularly functional neuroimaging rather than a questionnaire will correct the limitations. Second, because of the cross-sectional type of research, its place in the determination of psychological effects in the long term is limited. This indicates that follow-up studies are needed to determine the long-term effects of the pandemic.

Despite all these limitations, our study provides important data in terms of determining the changes in the mental health of society and related factors. These outcomes can guide in determining and directing the measures to be taken now and in the future.

DISCLOSURES
The authors have declared no conflicts of interest for this article.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

ORCID
Nesilhan CanSEL https://orcid.org/0000-0002-5519-205X
İlknur Ucuz https://orcid.org/0000-0003-1986-4688
Ahmet Kadir Arslan https://orcid.org/0000-0001-8626-9542
Burcu Kayhan Tetik https://orcid.org/0000-0002-3976-4986
Cemil Colak https://orcid.org/0000-0001-5406-098X
Şahide Nur İpek Melez https://orcid.org/0000-0001-5880-2733
Raziye Şule Gümüştakım https://orcid.org/0000-0003-0195-0895

REFERENCES
1. Weston S, Frieman MB. COVID-19: knowns, unknowns, and questions. Msphere. 2020;5(2):e00203-e00220.
2. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523-534.
3. World Health Organization. Coronavirus disease (COVID-19) pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-2019. (Accessed 9 December 2020).
4. Cao W, Fang Z, Hou G, et al. The psychological impact of the COVID-19 epidemic on college students in China. Psychiatry Res. 2020;287:112934.
5. Aytitay FK, Aytitay MK, Chiwero NB, Kamasah JS, Dzuvor C. Economic impacts of Wuhan 2019-nCoV on China and the world. J Med Virol. 2020;92(5):473-475.
6. Roy D, Tripathy S, Kar SK, Sharma N, Verma SK, Kaushal V. Study of knowledge, attitude, anxiety & perceived mental healthcare need in Indian population during COVID-19 pandemic [published online ahead of print, 2020 Apr 8]. Asian J Psychiatr. 2020;51:102083.
7. Moghanibashi-Mansourieh A. Assessing the anxiety level of Iranian general population during COVID-19 outbreak. Asian J Psychiatr. 2020;51:102076.
8. Wang C, Pan R, Wan X, et al. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. Int J Environ Res Public Health. 2020;17(5):1729.
9. Hao F, Tan W, Jiang L, et al. Do psychiatric patients experience more psychiatric symptoms during COVID-19 pandemic and lockdown? A case-control study with service and research implications for immunopsychiatry. Brain Behav Immun. 2020;87:100-106.
10. Lovibond PF, Lovibond SH. The structure of negative emotional states: comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav Res Ther. 1995;33(3):335-343.
11. Sarıçam H. The psychometric properties of Turkish version of Depression Anxiety Stress Scale-21 (DASS-21) in health control and clinical samples. Journal of Cognitive-Behavioral Psychotherapy and Research. 2018;7(1):19-30.
12. Creamer M, Bell R, Failla S. Psychometric properties of the impact of event scale revised. Behav Res Ther. 2003;41:1489-1496.
13. Çorapçıoğlu A, Yargıç İ, Geyran P, Kocabasoğlu N. Olayların etkisi ölçgesi. In IES-R) Türkçe versiyonunun geçerlilik ve güvenilirliği. Yeni Symposium. 2006;44:14-22.
14. Zhang Y, Ma ZF. Impact of the COVID-19 pandemic on mental health and quality of life among local residents in liaoning province,
China: a cross-sectional study. Int J Environ Res Public Health. 2020;17(7):2381.

15. Tibshirani R. Regression shrinkage and selection via the lasso. J Roy Stat Soc: Ser B. 1996;58(1):267-288.

16. İnönü Üniversitesi Tıp Fakültesi Biyoistatistik ve Tıp Bilişimi Anabilim Dalı Yapay Zeka ve İstatistik Tabanlı İnteraktif Web Yazılımları. http://biostatapps.inonu.edu.tr/kruskalwallis/

17. American Psychiatric Association. https://www.psychiatry.org/newsroom/news-releases/new-poll-covid-19-impacting-mental-well-being-americans-feeling-anxious-especially-for-loved-ones-older-adults-are-less-anxious. (Accessed 31 March 2020).

18. Liu N, Zhang F, Wei C, et al. Prevalence and predictors of PTSS during COVID-19 outbreak in China hardest-hit areas: gender differences matter. Psychiatry Res. 2020;287:112921.

19. Off M. Sex and gender differences in post-traumatic stress disorder: an update. European journal of psychotraumatology. 2017;8(4):1351204.

20. Charak R, Armour C, Elklit A, Angmo D, Elhai JD, Koot HM. Factor structure of PTSD, and relation with gender in trauma survivors from India. European J Psychotraumatology. 2014;5(1):25547.

21. Ahmed MZ, Ahmed O, Aibao Z, Hanbin S, Siyu L, Ahmad A. Epidemic of COVID-19 in China and associated psychological problems. Asian J Psychiat. 2020;51:102092.

22. Leung GM, Lam TH, Ho LM, et al. The impact of community psychological responses on outbreak control for severe acute respiratory syndrome in Hong Kong [published correction appears in J Epidemiol Community Health. 2003 Dec; 57(12):995]. J Epidemiol Community Health. 2003;57(11):857-863.

23. Zhang WR, Wang K, Yin L, et al. Mental health and psychosocial problems of medical health workers during the COVID-19 epidemic in China. Psychother Psychosom. 2020;89(4):242-250.

24. Zhai Y, Du X. Addressing collegiate mental health amid COVID-19 pandemic [published online ahead of print, 2020 Apr 17]. Psychiatry Res. 2020;288:113003.

25. Purgato M, Gastaldon C, Papola D, van Ommeren M, Barbui C, Tol WA. Psychological therapies for the treatment of mental disorders in low- and middle-income countries affected by humanitarian crises. Cochrane Database Syst Rev. 2018;7(7):CD011849.

26. Özdin S, Bayrak ÖŞ. Levels and predictors of anxiety, depression and health anxiety during COVID-19 pandemic in Turkish society: the importance of gender. Int J Soc Psychiatry. 2020;66(5):504-511.

27. Ho CSH, Tan ELY, Ho RCM, Chiu MYL. Relationship of anxiety and depression with respiratory symptoms: comparison between depressed and non-depressed smokers in Singapore. Int J Environ Res Public Health. 2019;16(1):163.

28. Lim GY, Tam WW, Lu Y, et al. Prevalence of depression in the community from 30 countries between 1994 and 2014. Sci Rep. 2018;8(1):2861.

29. Baral IA, Bhagawati KC. Post traumatic stress disorder and coping strategies among adult survivors of earthquake. Nepal. BMC psychiatry. 2019;19(1):1-8.

30. Gao J, Zheng P, Jia Y, et al. Mental health problems and social media exposure during COVID-19 outbreak. PLoS One. 2020;15(4):e0231924.

31. Lee AM, Wong JGWS, McAlonan GM, et al. Stress and psychological distress among Severe Acute Respiratory Syndrome (SARS) survivors 1 year after the outbreak. Can J Psychiatry. 2007;52:233-240.

32. Carleton RN. Into the unknown: a review and synthesis of contemporary models involving uncertainty. J Anxiety Disorder. 2016;39:30-43.

33. Sim K, HuakChan Y, Chong PN, Chua HC, Wen SS. Psychosocial and coping responses within the community health care setting towards a national outbreak of an infectious disease. J Psychosom Res. 2010;68(2):195-202.

34. Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. Aging. 2020;12(7):6049-6057.

35. Ho CS, Chee CY, Ho RC. Mental health strategies to combat the psychological impact of COVID-19 beyond paranoia and panic. Ann Acad Med Singapore. 2020;49(1):1-3.

36. Soh HL, Ho RC, Ho CS, Tam WW. Efficacy of digital cognitive behavioural therapy for insomnia: a meta-analysis of randomised controlled trials. Sleep Med. 2020;75:315-325.

37. Zhang MWB, Ho RCM, et al. The cost effective solution for internet cognitive behavioral therapy (I-CBT) interventions. Technol Health Care. 2017;25(1):163-165.

38. Husain SF, Yu R, Tang T-B, et al. Validating a functional near-infrared spectroscopy diagnostic paradigm for Major Depressive Disorder. Sci Rep. 2020;10(1):9740.

39. Ho CSH, Lim LJH, Lim AQ, et al. Diagnostic and predictive applications of functional near-infrared spectroscopy for major depressive disorder: a systematic review. Front Psychiatry. 2020;11:378.

How to cite this article: Cansel N, Ucuz I, Arslan AK, et al. Prevalence and predictors of psychological response during immediate COVID-19 pandemic. Int J Clin Pract. 2021;75:e13996. https://doi.org/10.1111/ijcp.13996