Ordered Generating Systems of Finite Non-Abelian Groups

Robert Shwartz

June 21, 2018

1 Introduction

Definition: Ordered Generating System: The elements a_1, \cdots, a_n are considered Ordered Generating System of a group G, if every element $g \in G$ has a unique representation in a form:

$$g = a_1^{i_1}a_2^{i_2} \cdots a_n^{i_n},$$

where $0 \leq i_k \leq m_k$, for some m_k, for every $1 \leq k \leq n$.

We know from the basis theorem for finite abelian groups, that every abelian group has basis, and the basis by its definition, is the Ordered Generating System for an abelian group.

Our motivation is generalizing the basis theorem, as it possible, for non-abelian groups. Hence we define the Ordered Generating System.

Lemma 1: Let G be a finite group, and let H be its normal subgroup. Assume H has Ordered Generating system a_1, \cdots, a_k, and G/H has Ordered Generating System $b_1H, \cdots b_lH$, then the elements $b_1 \cdots b_l, a_1 \cdots a_k$ are Ordered Generating System of G.

Proof: Since, every element of G has a unique representation in a form ba, where $bH \in G/H$, and $a \in H$, and since every element in H has a unique representation in the form $a_1^{i_1} \cdots a_k^{i_k}$, and every element of G/H has a unique representation in the form $b_1^{i_1}H \cdots b_l^{i_l}H$, we get that every element in G has a unique representation in the form $b_1^{i_1} \cdots b_l^{i_l}a_1^{i_1} \cdots a_k^{i_k}$. Hence, the elements $b_1, \cdots, b_l, a_1, \cdots, a_k$ are Ordered Generating System of the group G, by the definition of Ordered Generating System.

Lemma 2: Let G be a finite group. Assume that each composition factor of G has Ordered Generating System, then G has Ordered Generating System, which is the union of the Ordered Generating Systems of the composition factors of G.
Proof: Let $G = G_0 > G_1 > G_2 > \cdots > G_n = \{1\}$, be a sequence such that G_{i+1} is a maximal normal subgroup of G_i, for every $1 \leq i \leq n$. Then G_i/G_{i+1} is isomorphic to one of the composition factors of G. Since $G_n = \{1\}$, G_{n-1} is isomorphic to G_{n-1}/G_n which is isomorphic to one of the composition factors of G. Hence, by the assumption of the Lemma, G_{n-1} has Ordered Generating System. Since, G_{n-2}/G_{n-1} is isomorphic to a composition factor of G, G_{n-2}/G_{n-1} has Ordered Generating System, and since G_{n-1} has Ordered Generating System, by Lemma 1, G_{n-2} has Ordered Generating System. Now assume by induction that every G_i has Ordered Generating System, where $k \leq i \leq n - 1$, and since G_{k-1}/G_k has Ordered Generating System, by Lemma 1, G_{k-1} has Ordered Generating System. Since $G = G_0$, by the induction G has Ordered generating System.

Known fact for solvable groups: Since, the composition factor of a finite solvable group are cyclic groups, Lemma 2 implies that every solvable group has Ordered Generating System. The Ordered Generating System is the elements which are corresponding to the generators of the cyclic groups in each composition factor. Hence, the existence of Ordered Generating System easily extendable to finite solvable groups.

Non-Solvable groups: Hence, we prove the existence of Ordered Generating System for some non-solvable groups.

Lemma 3: Let G be a group. Assume G has a subgroup H, such that H has Ordered Generating System, and $gcd(|G : H|, |H|) = 1$, and one of the following holds:

1. $|[G : H]| = p^k$ where p is prime number.
2. There exists an element of order $|[G : H]|$ in G.
3. There exists elements $a_1, a_2, \cdots a_n$, such that $a_i^{m_i} \in H$, for $1 \leq i \leq n$. Assume $m_1 \cdot m_2 \cdot \cdots m_n = |[G : H]|$, and all the elements of the form $a_1^{i_1}a_2^{i_2}\cdots a_n^{i_n} \notin H$, where $0 \leq i_k < m_k$.

Then G has Ordered Generating System as well.

Proof: Assume (i) holds: Then the the p-sylow subgroup of G does not belong to H, and we can take as a representative of the p^k different cosets of H in G, the p^k different elements of the p-sylow subgroup of G. Since every p-group is a solvable group, by Lemma 2, the p-sylow subgroup of G has Ordered Generating System. Then every element of G has a unique representation in a form $a_1^{i_1}a_2^{i_2}\cdots a_n^{i_n}b_1^{j_1}b_2^{j_2}\cdots b_k^{j_k}$, where a_1, \cdots, a_n are the Ordered Generating System of the p-sylow subgroup of G, and b_1, \cdots, b_k are the Ordered Generating System of the subgroup H of G.

Assume (ii) holds: Then there exists an element a of order $|[G : H]|$ in G. Since $gcd(|H|, |[G : H]|) = 1$, $a^k \notin H$, for $1 \leq k \leq |a| - 1$. Hence, every element in G has a unique representation of the form a^ih, where $h \in H$, and $0 \leq i \leq |a| - 1$. Then
a, and the Ordered Generating System of \(H \), is the Ordered Generating System of \(G \).

Assume (iii) holds: Then by the assumption of (iii) all the \(|[G : H]|\) cosets of \(H \) in \(G \) can be written in the form \(a_1^{i_1}a_2^{i_2}\cdots a_n^{i_n} \), where \(0 \leq i_k < m_k \). Then, \(a_1, a_2, \ldots, a_n \), and the Ordered Generating System of \(H \) is the Ordered Generating System of \(G \).

We use the following Theorem:

Theorem 1: The groups, which composition factors are cyclic groups, \(A_n \) or \(PSL_n(q) \) have Ordered Generating System.

Proof: By Lemma 2, it is enough to prove that every composition factor of \(G \) has Ordered Generating System. Hence, the Theorem is interesting for the simple groups only.

1. **The proof of the existence of Ordered Generating System for \(A_n \):** The proof is by induction. \(A_3 \) is a cyclic group of order 3, hence \(A_3 \) has Ordered Generating System. \(A_4 \) is a solvable group, hence by Lemma 2, \(A_4 \) has Ordered Generating System. Assume that \(A_i \) has Ordered Generating System for every \(i \leq 2k \). \(A_{2k+1} \) has a subgroup \(H \) which is isomorphic to \(A_{2k} \) (The stabilizer of \(2k + 1 \)). Let \(A = (1, 2, \ldots, 2k + 1) \). \(A \in A_{2k+1} \), and every element of \(A_{2k} \) has a unique representation of the form \(A^j H \), where \(0 \leq j \leq 2k \). Hence, \(A \), and the Ordered Generating System of \(H \) (Which exists by the assumption of the induction) is the Ordered Generating System of \(A_{2k+1} \). Now, we prove that \(A_{2k+2} \) has Ordered Generating System. Let \(L \) be a subgroup of \(A_{2k+2} \) which is the stabilizer of the point \(2k + 2 \). Then \(L \) is isomorphic to \(A_{2k+1} \). Let \(A = (1, 2, \ldots, k, k+1)(k+2, k+3, \ldots, 2k+1, 2k+2) \), and let \(B = (k+1, 2k+2)(1, 2k+1) \).

Since the \(2k + 2 \) elements \(A^r B^s \), where \(0 \leq r \leq k \), \(0 \leq s \leq 1 \) are taking the point \(2k + 2 \) to the \(2k+2 \) different points in the permutation of \(2k+2 \) points, then every element of \(A_{2k+2} \) has a unique representation in a form \(A^r B^s L \), where \(0 \leq r \leq k \), \(0 \leq s \leq 1 \). Hence, \(A, B \), and the Ordered Generating System of \(L = A_{2k+1} \) are Ordered Generating System for \(A_{2k+2} \). Hence, from the existence of Ordered Generating System for \(A_{2k} \), we get that \(A_{2k+1} \) and \(A_{2k+2} \) have Ordered Generating System as well. Hence \(A_n \) has Ordered Generating System for every \(n \).

2. **The proof of existence of Ordered Generating System for \(PSL_n(q) \):** The proof is in induction in \(n \). The order of \(PSL_2(q) \) is \(\frac{q(q-1)(q+1)}{2} \). \(PSL_2(q) \) has a solvable subgroup \(H \) of order \(\frac{q(q-1)}{2} \), where \(H \) is the subgroup corresponding to the upper triangular matrices. Since \(H \) is solvable, By Lemma 2, \(H \) has Ordered Generating System. Since \(H \) is corresponding to the upper triangular matrices, \(H \) is the stabilizer of the point \(\infty \) in the projective line over \(F_q \). Since \(|[PSL_2(q) : H]| = q + 1 \), we apply Lemma 3, for case (iii). Let \(A \) be an element of order \(\frac{q+1}{2} \) in \(PSL_2(q) \), and let \(B \) be an element of order 2, such that \(B \) is not corresponding.
to an upper triangular matrix in $PSL_2(q)$, and taking the point ∞ to a different point than every element A^i (where $1 \leq i < \frac{q+1}{2}$). Then, all the elements of the form A^iB^j (where $0 \leq i < \frac{q+1}{2}$, $0 \leq j \leq 1$) are taking the point ∞ to the $q+1$ different points of the projective line PF_q. Hence there are $q+1$ different cosets of H in $PSL_2(q)$ of the form A^iB^j, where $0 \leq i < \frac{q+1}{2}$, $0 \leq j \leq 1$. Then the elements A, B, and the Ordered Generating System of H is Ordered Generating System for $PSL_2(q)$.

Now assume that $PSL_{n-1}(q)$ has Ordered Generating System and we prove that $PSL_n(q)$ has Ordered Generating System as well. Let H be a subgroup of $PSL_n(q)$ which is corresponding to the matrices where all the entries $a_{n,i} = 0$, for $1 \leq i \leq n-1$. Then the composition factors of H are $PSL_{n-1}(q)$ and cyclic groups. $PSL_{n-1}(q)$ has Ordered Generating System by the assumption of the induction. Hence by Lemma 2, H has Ordered Generating System. $|PSL_n(q) : H| = \frac{q^n - 1}{q-1}$. Since, H is the subgroup which is the stabilizer of a subplane in the projective plane PF_q, and PF_q contains $\frac{q^n - 1}{q-1}$ points, we choose A which order is $\frac{q^n - 1}{(q-1)\cdot gcd(n,q-1)}$ and an element B of order $gcd(n,q-1)$ in the case where $gcd(n,q-1) \neq 1$.

There are 5 sporadic Mathieu Groups: M_{11}, M_{12}, M_{22}, M_{23}, M_{24}.

Theorem 3: The Group M_{11} has Ordered Generating System.

Proof: The sporadic group M_{11} has order 7920, has a subgroup H of index 11. The order of H is: 720. Since the composition factor of every non-solvable group of order ≤ 720 is either A_n, $PSL_2(7)$, $PSL_2(8)$, or $PSL_2(11)$, by 2, H has Ordered Generating System $a_2, \cdots a_n$. Since, the Order of H is 720. This order is prime to 11, there is an element a_1 of Order 11 in G which is not in G. Since, $[G : H] = 11$, there are 11 different cosets of H in G. Hence, $G = H \cup a_1H \cup \cdots a_{10}H$. Then, a_1, and the Ordered Generating System $a_2, \cdots a_n$ of the subgroup H are the Ordered Generating System of G.

Theorem 4: The Group M_{12} has Ordered Generating System.

Proof: The Group M_{12} is a subgroup of S_{12} of Order $95040 = 2^6 \cdot 3^3 \cdot 5 \cdot 11$, which is generated by:

$A = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)$

$B = (5, 6, 4, 10)(11, 8, 3, 7)$

$C = (1, 12)(2, 11)(3, 6)(4, 8)(5, 9)(7, 10)$

The subgroup H of M_{12} which is generated by A and B is isomorphic to M_{11}, and then by Theorem 3, H has Ordered Generating System.

Take the following elements: $X_1 = A^9 \cdot C \cdot A = (2, 3, 12)(1, 8, 4)(5, 7, 10)(6, 9, 11)$

$X_2 = C = (1, 12)(2, 11)(3, 6)(4, 8)(5, 9)(7, 10)$

$X_3 = A^9 \cdot C \cdot A^3 = (4, 12)(3, 5)(6, 9)(7, 11)(1, 8)(2, 10)$

Then the Ordered Generating System of M_{12} is the Ordered Generating System
of H and the elements X_1, X_2, and X_3.

Since in H is isomorphic to M_{11}, as a subgroup of S_{12}, where H is the stabilizer of the point 12 of the permutations in S_{12}. Then it can be shown easily that the 12 elements of the form $X_1^{i_1} \cdot X_2^{i_2} \cdot X_3^{i_3}$, where $0 \leq i_1 \leq 2$, $0 \leq i_2 \leq 1$, $0 \leq i_3 \leq 1$, are taking the point 12 in S_{12} to the 12 different points of S_{12}. Since H is the stabilizer of the point 12, every element in M_{12} has a unique representation of the form $h \cdot X_1^{i_1} \cdot X_2^{i_2} \cdot X_3^{i_3}$, where $h \in H$, and $0 \leq i_1 \leq 2$, $0 \leq i_2 \leq 1$, $0 \leq i_3 \leq 1$. Since H is isomorphic to M_{11}, by Theorem 3, H has Ordered Generating System. Then the Ordered Generating System of M_{12} is: The Ordered Generating System of $H = M_{11}$, and the elements X_1, X_2, and X_3.

Theorem 5: The Group M_{22} has Ordered Generating System.

Proof: M_{22} is a group of Order $443520 = 2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$, is a subgroup of S_{22} which is generated by the following 3 permutations in S_{22}.

$X = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)(12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22)$

$Y = (1, 4, 5, 9, 3)(2, 8, 10, 7, 6)(12, 15, 16, 20, 14)(13, 19, 21, 18, 17)$

$V = (11, 22)(1, 210(2, 10, 8, 6)(12, 14, 16, 20)(3, 13, 4, 17)(5, 19, 9, 18)$

Let H be a subgroup of M_{22} which is the stabilizer of the point 22 in the representation of M_{22} as a subgroup of S_{22}, which is generated by X, Y, U. Then H is isomorphic to $PSL_3(4)$.

The 22 elements of the form $V^i \cdot X^j$, where $0 \leq i \leq 1$, $0 \leq j \leq 10$, are taking the point 22 in S_{22} to the 22 different points of S_{22}. Since H is the stabilizer of the point 22, every element of S_{22} has a unique representation of the form $h \cdot V^i \cdot X^j$, where $h \in H$, $0 \leq i \leq 1$, and $0 \leq j \leq 10$. Since H is isomorphic to $PSL_3(4)$, H has Ordered Generating System by Theorem 2, and then the Ordered Generating System of M_{22} are: The Ordered Generating System of H, and the elements V, and X.

Theorem 6: The Group M_{23} has Ordered Generating System.

Proof: M_{23} is a group of Order $10200960 = 2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 23$. M_{23} has a subgroup H of index 23, which is isomorphic to M_{22}, and which order is prime to 23. By Theorem 5, H has Ordered Generating System $a_2 \cdot a_n$. Let a_1 be an element of order 23 in M_{23}. Since $[G : H] = 23$, and the order of H is prime to 23, there are 23 different cosets of H in G of the form $a_1^i H$, where $0 \leq i < 23$. Then, the elements a_1, and the Ordered Generating System of $H = M_{22}$, $a_2, \cdots a_n$, are the Ordered Generating System of M_{23}.

Theorem 7: The Group M_{24} has Ordered Generating System.

Proof: M_{24} is a group of Order $244823040 = 2^{10} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 23$. M_{24} is a subgroup of S_{24}, which is generated by the following 3 permutations:
$D = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23)$
$E = (3, 17, 10, 7, 9)(4, 13, 14, 19, 5)(8, 18, 11, 12, 23)(15, 20, 22, 21, 16)$
$F = (1, 24)(2, 23)(3, 12)(4, 16)(5, 18)(6, 10)(7, 20)(8, 14)(9, 21)(11, 17)(13, 22)(15, 19)$

M_{24} has a subgroup H which is the stabilizer of the point 23 in S_{24}, and isomorphic to M_{23}.

Let X_1 be $D^{-1}FD$, and let X_2 be D^3F. Then:
$X_1 = (2, 24)(1, 3)(4, 13)(5, 17)(6, 19)(7, 11)(8, 21)(9, 15)(10, 22)(12, 18)(14, 23)(16, 20)$
$X_2 = (1, 16, 15, 5, 14, 11, 8, 17, 7, 6, 21, 24)(2, 18, 9, 3, 10, 22, 23, 12, 19, 13, 4, 20)$

Then the 24 different elements of the form $X_1^i \cdot X_2^j$, where $0 \leq i < 2$, and $0 \leq j < 12$, are taking the point 24 to the 24 different point of the permutations of S_{24}. Since H is the stabilizer of the point 24, every element in S_{24} has a unique representation in the form $h \cdot X_1^i \cdot X_2^j$, where $h \in H$, $0 \leq i < 2$, and $0 \leq j < 12$. Since H is isomorphic to M_{23}, by Theorem 6, H has Ordered Generating System. Then the Ordered Generating System of H and the elements X_1, and X_2 are the Ordered Generating System of M_{24}.