Plant growth-promoting rhizobacteria and root system functioning

Jordan Vacheron, G. Desbrosses, Marie.-Lara Bouffaud, B. Touraine, Yvan Moënne-Loccoz, Daniel Muller, Laurent Legendre, Florence Wisniewski-Dyé, Claire Prigent-Combaret

To cite this version:

Jordan Vacheron, G. Desbrosses, Marie.-Lara Bouffaud, B. Touraine, Yvan Moënne-Loccoz, et al.. Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science, Frontiers, 2013, 4, pp.356. 10.3389/fpls.2013.00356 . hal-02522224

HAL Id: hal-02522224
https://hal-univ-lyon1.archives-ouvertes.fr/hal-02522224
Submitted on 29 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Plant growth-promoting rhizobacteria and root system functioning

Jordan Vacheron1,2,3, Guilhem Desbrosses4, Marie-Lara Bouffaud1,2,3,5, Bruno Touraine6, Yvan Moënne-Loccoz1,2,3, Daniel Muller1,2,3, Laurent Legendre1,2,3, Florence Wisniewski-Dyé1,2,3 and Claire Prigent-Combaret1,2,3*

The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture.

Keywords: plant-PGPR cooperation, rhizo-microbiome, rhizosphere, phytohormone, plant nutrition, ISR, functional group.

INTRODUCTION
Photosynthetic terrestrial plants play key roles as ecosystem engineers (Wright and Jones, 2006; Hartmann et al., 2009). They contribute, for instance, to the establishment of specific microbial ecological niches in plant-based systems. This is particularly the case in the rhizosphere, i.e., the soil in contact with plant roots. Besides its role in plant anchorage in soil, absorption of water and ions, nutrient storage, and plant vegetative growth, the root system is in close contact with a wide range of soil microbial populations (Berg and Smalla, 2009).

Despite their interactions with the biotic environment, the root system and its rhizosphere have received much less attention by plant physiologists than the rest of the plant. Plant roots exude a huge diversity of organic nutrients (organic acids, phytosiderophores, sugars, vitamins, amino acids, nucleosides, mucilage) and signals that attract microbial populations, especially those able to metabolize plant-exuded compounds and proliferate in this microbial habitat (Baix et al., 2006; Pothier et al., 2007; Badri et al., 2009; Shukla et al., 2011; Drogue et al., 2013). Root exudates being the largest source of carbon supply within soil, the rhizosphere compartment houses a rich microbial community, comprising up to 10^{10} bacteria per gram of soil (Gans et al., 2005; Roesch et al., 2007) and encompassing a large diversity of taxa (Kyselková et al., 2009; Gomes et al., 2010). The corresponding microbial community associated to plant roots can be referred to as the rhizo-microbiome (Chaparro et al., 2013). Its composition is distinct from that of the microbial community of the surrounding soil, a direct consequence of bacterial competition for nutrients liberated in the vicinity of plant roots (Barnaud et al., 2006; Bulgarelli et al., 2013; Chaparro et al., 2013). Since root exudate composition changes along the root system, according to stages of plant development and to plant genotypes, the rhizo-microbiome composition differs accordingly (Berg and Smalla, 2009; Aira et al., 2010; Bouffaud et al., 2012; Bulgarelli et al., 2013; Chaparro et al., 2013). Plant-driven selection of bacteria is an important issue recently discussed in several reviews (Hartmann et al., 2009; Doornbos et al., 2012; Drogue et al., 2012; Bulgarelli et al., 2013).
Within the rhizo-microbiome, some microorganisms can promote plant growth and provide better plant health through several indirect or direct mechanisms (Couulierot et al., 2009; Richardson et al., 2009). Beneficial plant-microbe interactions are symbiotic interactions in which costs and benefits are shared by the plants and the microorganisms (Ochum and Barrett, 2005; Bulgar et al., 2013) and can be categorized into two main types of interactions (Droguet al., 2012). First, mutualistic interactions correspond to intimate and mostly obligate interactions between microbes and a restricted range of compatible host plants. They generally lead to the formation of a structure specifically dedicated to the interaction (e.g., nodules during the symbiosis between nodulating rhizobia and Fabaceae, arbuscules in the endomycorrhizal symbiosis; Parniske, 2004; Masson-Boivin et al., 2009). Second, cooperations (also called associative symbioses) correspond to less obligate and specific interactions (Barzaet al., 2005; Droguet al., 2012). They involve soil bacteria able to colonize the surface of the root system (and sometimes root inner tissues) and to stimulate the growth and health of the plant, and are referred to as plant growth-promoting rhizobacteria (PGPR; Barza et al., 2005). Colonization of plant host roots by PGPR is heterogeneous along the root system; their competitiveness regarding this process is a sine qua non for plant growth promotion (discussed in Benizri et al., 2003; Compan et al., 2010; Dutta and Podile, 2012). In comparison to mutualistic symbioses, PGPR are thought to interact with a large range of host plant species and to encompass a huge taxonomic diversity, especially within the Firmicutes and Proteobacteria phyla (Lugtenberg and Kamilova, 2009; Droguet al., 2012). PGPR can enhance plant nutrition via associative nitrogen fixation, phosphate solubilization, or phytohormones production (Richardson et al., 2009). They can improve root development and growth through the production of phytohormones or enzymatic activities, as well as favor the establishment of rhizobial or mycorrhizal symbioses. Others can protect the plant through inhibition of phytopathogens, based on antagonism or competition mechanisms, and/or by eliciting plant defenses such as induced systemic resistance (ISR; Couulierot et al., 2009; Lugtenberg and Kamilova, 2009). Some PGPR can also help plants withstand abiotic stresses including contamination by heavy metals or other pollutants; certain are even able to increase the capacity of plants to sequester heavy metals (Jing et al., 2007; Saharan and Nehra, 2011; Tak et al., 2013). Therefore, utilizing PGPR is a new and promising approach for improving the success of phytoremediation of contaminated soils (for recent reviews see Zhuang et al., 2007; Shukla et al., 2011; Tak et al., 2013).

Understanding and quantifying the impact of PGPR on roots and the whole plant remain challenging. One strategy is to inoculate roots with a PGPR in vitro and monitor the resulting effects on plant. This showed that many PGPR may reduce the growth rate of the primary root (Dobbeleere et al., 1999), increase the number and/or length of lateral roots (Combes-Meynet et al., 2011; Chamam et al., 2013), and stimulate root hair elongation in vitro (Dobbeleere et al., 1999; Contexto et al., 2008). Consequently, the uptake of minerals and water, and thus the growth of the whole plant, can be increased. Some of these effects, including increased root and shoot biomass, are also documented for PGPR-inoculated plants growing in soil (El Zemrany et al., 2006; Minorsky, 2008; Veresoglou and Menezes, 2010; Walker et al., 2012).

The focus of this paper is to review the main modes of action of PGPR strains, the functioning of PGPR populations, and their ecology in the rhizosphere. Description of plant-beneficial properties of PGPR has been the focus of several reviews (e.g., Vessey, 2003; Richardson et al., 2009; Bashan and de-Bashan, 2010), but without integrating actual PGPR gene expression on roots, the interactions between different PGPR populations in the rhizosphere, or the resulting plant-beneficial effects. This paper is organized into four sections. In the first section, we present the molecular mechanisms through which PGPR may affect the architecture of the root system and interfere with the plant hormonal pathways, and review our current understanding of their impact on the structural properties of the roots. In the second section, recent findings related to the impact of PGPR on the physiology of the whole plant are presented, with a focus on plant nutrient acquisition, plant transcriptome and plant metabolome. The third section shows how expression of plant-beneficial properties can be affected within the rhizosphere by molecules emitted by other microbial populations or by the plant. As PGPR strains are not acting individually in the rhizosphere, the ecology of PGPR populations and notably the complexity of the interactions taking place between PGPR populations is discussed in the fourth section. Finally, we conclude on the importance of integrating molecular investigations on the modes of action and ecology of PGPR strains with high-throughput analyses on the abundance, taxonomic/functional diversity and activity of rhizosphere microbial communities, and with the monitoring of plant molecular responses.

IMPACT OF PGPR ON ROOT SYSTEM ARCHITECTURE AND ROOT STRUCTURE

Most terrestrial plants develop their root system to explore soil and find nutrients to sustain growth. Root is a complex organ made of distinct regions such as the root tip, root meristem, differentiation and elongation zones, and emerging lateral roots (Scheres et al., 2002). These regions have distinct roles. For instance, root hairs are differentiated epidermal cells important for plant mineral nutrition, as inferred from gene expression studies (Lauter et al., 1996; von Wieren et al., 2000) and nutrient accumulation measurements (Ahn et al., 2004). Root functional specificity is also reflected at the level of plant-microbe interactions. In Fabaceae for example, the root tip is the most important region to initiate the rhizobial colonization process leading eventually to the formation of a root nodule (Descrousse and Stougaard, 2011). In Poaceae, root hairs and lateral roots are preferentially colonized by PGPR, where they may express their plant beneficial properties (Pothier et al., 2007; Combes-Meynet et al., 2011). Root system architecture (RSA) integrates root system topology, the spatial distribution of primary and lateral roots, and the number and length of various types of roots. Several abiotic and biotic factors can influence RSA, including PGPR strains. PGPR modify RSA and the structure of root tissues mainly through their ability to interfere with the plant hormonal balance (Figure 1).
FIGURE 1 | Impact of phytostimulating PGPR on RSA, nutrient acquisition and root functioning. PGPR can modulate root development and growth through the production of phytohormones, secondary metabolites and enzymes. The most commonly observed effects are a reduction of the growth rate of primary root, and an increase of the number and length of lateral roots and root hairs. PGPR also influence plant nutrition via nitrogen fixation, solubilization of phosphorus, or siderosphere production, and modify root physiology by changing gene transcription and metabolite biosynthesis in plant cells.

PGPR EFFECTS ON RSA VIA MODULATION OF HOST HORMONAL BALANCE

Changes in RSA may result from interferences of PGPR with the main hormonal pathways involved in regulating plant root development: auxin, cytokinin, ethylene, and to a lesser extend gibberellin, and abscisic acid (ABA) (Moubayidin et al., 2009; Stepanova and Alonso, 2009; Dodd et al., 2010; Overvoorde et al., 2011). The balance between auxin and cytokinin is a key regulator of plant organogenesis, and shapes root architecture (Aloni et al., 2006). The auxin to cytokinin ratio can be affected by PGPR because they are able to produce a wide range of phytohormones, including auxins and/or cytokinins, and secondary metabolites that can interfere with these hormonal pathways.

Many PGPR are able to produce phytohormones and secondary metabolites interfering with the plant auxin pathway, such as auxins, 2,4-diacetylphloroglucinol (DAPG), and nitric oxide (NO). Indole-3-acetic acid (IAA) is the best-characterized auxin produced by many plant-associated bacteria, including PGPR (Spaepen et al., 2007a). Exogenous IAA controls a wide variety of processes in plant development and plant growth: low concentrations of IAA can stimulate primary root elongation, whereas high IAA levels stimulate the formation of lateral roots, decrease primary root length and increase root hair formation (Figure 1; Dobbelaere et al., 1999; Patten and Glick, 2002; Perig et al., 2007; Spaepen et al., 2007c; Romano et al., 2008). IAA is usually synthesized by rhizobacteria from tryptophan, which is found at different concentrations in root exudates according to plant genotype (Kamilova et al., 2006). In PGPR strains, several IAA biosynthetic pathways have been described depending on the metabolic intermediates (Spaepen et al., 2007a). The indole-3-pyruvate decarboxylase (encoded by the ipdC/ppdC bacterial gene) is a key enzyme involved in the indolepyruvic acid pathway. Effects of ipdC mutants on plant root morphology are often altered in comparison to those of wild-type strains (Brandl and Lindow, 1998; Dobbelaere et al., 1999; Patten and Glick, 2002; Suzuki et al., 2003; Malhotra and Srivastava, 2008).

Plant growth promotion by PGPR can also result from indirect stimulation of the plant auxin pathway. For example, several PGPR strains like *Azospirillum brasilense* have a nitrite reductase activity and consequently are able to produce NO during root colonisation (Creus et al., 2005; Potheir et al., 2007; Molina-Favero et al., 2008). NO is involved in the auxin signaling pathway controlling lateral root formation (Creus et al., 2005; Lanteri et al., 2006, 2008; Molina-Favero et al., 2008). DAPG is a well-known antimicrobial compound produced by biocontrol fluorescent pseudomonads (Couillerot et al., 2009). At lower concentrations, DAPG can also be a signal molecule for plants, inducing systemic resistance (Iavicoli et al., 2003; Bäker et al., 2007), stimulating root exudation (Phillips et al., 2004), and enhancing root branching (Brandl et al., 2008; Couillerot et al., 2011; Walker et al., 2013). DAPG can interfere with an auxin-dependent signaling pathway and thus modify RSA (Braszthon et al., 2008). Indeed, applications of exogenous DAPG, at a concentration around 10 μM, inhibited primary root growth and stimulated lateral root production in tomato...
seedlings. Furthermore, roots of an auxin-resistant *diageotropica*
mutant of tomato displayed reduced DAPG sensitivity (Brazelton et al.,
2008).

The growth-promotion effect of auxin or auxin-like com-
pounds by PGPR may require functional signaling pathways in
the host plant. To test that hypothesis, one could use a host plant
defective at a particular step of the hormone-signaling pathway
and assess whether PGPR inoculation complements or not the
effect of the mutation. This strategy requires the use of model
plant such as *Arabidopsis*, the only biological system that pro-
vides to date enough documented mutant plants (Dubrovsky et al.,
1994; Alonso et al., 2003). Consistent with that, some *Arab-
idopsis* auxin-signaling mutants failed to show the typical root
architecture changes in response to the benign rhizobacterium
Phyllobacterium brassicacearum STM196 (Contesto et al., 2010).
However, auxin content was not increased in roots upon inocula-
tion with *Phyllobacterium brassicacearum* STM196, ruling out the
potential implication of auxin of bacterial origin (Contesto et al.,
2010). Nevertheless, the use of *Arabidopsis* DR5:GUS reporter
line, whose expression is restricted to the root meristem where
the auxin maximum is located (Ulmasov et al., 1997; Casimiro et al.,
2001), showed a change of expression pattern in response
to STM196 inoculation (Figure 2). GUS staining appeared more
intense on a wider region of the root tip as well as in the vasculature,
suggesting that there was a change of auxin distribution in the root
in response to STM196 inoculation, even though this strain is a
low auxin producer (Contesto et al., 2010). Interestingly, a similar
observation was made when *Arabidopsis* plants were inoculated
with the PGPR *Bacillus subtilis* GB03 (Zhang et al., 2007), which
emits volatile organic compounds (VOCs), or with *Pseudomonas
fluorescens* WCS417 (Zamioudis et al., 2013).

Cytokinin production (especially zeatin) has been documented
in various PGPR like *Arthrobacter giacomelloi*, *Azospirillum
brasiliense*, *Bradyrhizobium japonicum*, *Bacillus licheniformis*, *Pseu-
domonas fluorescens*, and *Fusarium oxysporum* (Cacciari et al.,
1989; Timmusk et al., 1999; de Garcia Salamone et al., 2001; Per-
rig et al., 2007; Cassán et al., 2009; Heuissen and Hasnain, 2009).
Cytokinins stimulate plant cell division, control root meristem
differentiation, induce proliferation of root hairs, but inhibit
lateral root formation and primary root elongation (Silverman et al.,
1998; Riefler et al., 2006). Inoculation of plants with bac-
teria producing cytokinin has been shown to stimulate shoot
growth and reduce the root to shoot ratio (Arkhipova et al.,
2007). Bacterial genes involved in cytokinin biosynthetic path-
ways have been identified in silico but their role has not yet been
validated through functional analyses (Freibort et al., 2011). Con-
sequently, the contribution of cytokinin production by PGPR to
RSA modifications remains speculative.
Ethylene is another key phytohormone, which inhibits root elongation and auxin transport, promotes senescence and abscission of various organs, and leads to fruit ripening (Sloeker and Kende, 2000; Glick et al., 2007). Ethylene is also involved in plant defense pathways (Glick et al., 2007). This phytohormone can be produced in small amounts from the precursor methionine by some PGPR, like Azospirillum brasilense (Thuler et al., 2003; Periget et al., 2007). The ability of Azospirillum brasilense to produce ethylene is envisaged to be a key feature of root hair development in tomato plants. Indeed, exogenous ethylene supply to the plant mimics the effect of Azospirillum brasilense inoculation, while the addition of an ethylene biosynthesis inhibitor blocks this effect (Ribaud et al., 2006). Actually, PGPR are more widely able to lower plant ethylene levels through deamination of 1-aminocyclopropane-1-carboxylic acid (ACC). Many genomes of PGPR do contain a gene (acdS) coding for an ACC deaminase, which degrades ACC into ammonium and α-ketobutyrate (Blaha et al., 2006; Contesto et al., 2008; Prigent-Combaret et al., 2008). By lowering the abundance of the ethylene precursor ACC, the PGPR AcDS activity is thought to decrease root ethylene production, which can in turn alleviate the repressing effect of ethylene on root growth (Glick, 2005). Despite being widely accepted and supported by experimental data (Penrose et al., 2001; Contesto et al., 2008), the model raises issues that have not been well addressed yet. The first one deals with ethylene production within roots. Light is promoting ethylene biosynthesis, providing there is a sufficient CO₂ supply for shoots (Yang and Hoffman, 1984). Exposure of roots to light was shown to trigger an increase in ethylene production (Lee and Larue, 1992). In soil however, roots are sheltered from light, suggesting that this organ might not be able to synthesize large amounts of ethylene. In agreement with that, Fabaceae roots did produce ethylene in response to rhizobial colonization in presence of light, but less when they were in the dark (Lee and Larue, 1992). Secondly, there is a regulation of ethylene synthesis by a feedback loop (Yang and Hoffman, 1984). This loop should stimulate ethylene biosynthesis when the level of ACC is low. Unless PGPR disconnect that feedback loop, lowering ACC content would eventually result in stimulation of ethylene production. There is no indication yet how the feedback loop would work in presence of a PGPR. Last but not least, if ethylene plays a key role during the plant-PGPR interaction, one would expect that either plant ethylene mutants or impaired AcDS activity in the bacteria would result in clear disturbance of the plant responses to bacteria. However, minor effects on RSA were observed when plants were inoculated with an acdS bacterial mutant, or when plants affected in their ethylene signaling pathway were inoculated with wild-type PGPR (Contesto et al., 2008; Galland et al., 2012; Zamisoudis et al., 2013). It suggests that ethylene participates to the root architecture response but is not a key player. Taken together, the functional importance of the bacterial ACC deaminase function needs further clarification. One hypothesis could be that AcdS contributes to the fine-tuning of ethylene biosynthesis during the plant-PGPR cooperation.

Several reports have revealed that PGPR are able to produce ABA or gibberellinic acid, or to control the level of these hormones in plants (Richardson et al., 2009; Dodd et al., 2010). The first one, ABA, is well known for its involvement in drought stress. During water stress, increase in ABA levels causes closing of stomata, thereby limiting water loss (Bauer et al., 2013). However, this hormone also plays different roles during lateral root development (De Smet et al., 2006; Dodd et al., 2010). Inoculation with Azospirillum brasilense Sp245 led to an increase of ABA content in Arabidopsis, especially when grown under osmotic stress (Cohen et al., 2008). Gibberellins promote primary root elongation and lateral root extension (Vanley et al., 2001). Production of gibberellins has been documented in several PGPR belonging to Achromobacter xylosidans, Azotobacter chroococcum, Azospirillum spp., Bacillus spp., Herbaspirillum seropedicae, Gluconobacter diazotrophicus and rhizobia (Gutiérrez-Mateo et al., 2001; Bottini et al., 2004; Dodd et al., 2010). Application of gibberellinic acid on maize, at a concentration similar to that produced by Azospirillum, promotes root growth; furthermore, gibberellin content increases in maize root inoculated with Azospirillum (Fulcheri et al., 1993). In addition to playing a role in plant RSA, these two hormones are involved in plant defense mechanisms. Thus, PGPR producing these hormones may mediate the hormonal balance involved in plant defense, including the jasmonate and salicylic acid pathways (for a review see Pieterse et al., 2009).

Although the production of hormones by PGPR has been well described, the genetic determinants involved in their biosynthesis remain largely unknown and bacterial mutants affected in hormone biosynthesis are mostly lacking. Consequently, the involvement of hormones of bacterial origin in the modulation of plant hormonal balance has not been fully demonstrated.

MODIFICATION OF ROOT CELL WALL AND ROOT TISSUE STRUCTURAL PROPERTIES BY PGPR

Many PGPR can lead to modifications of the chemical composition and therefore structural properties of root cell walls (Figure 1; El Zemrany et al., 2007; Zhang et al., 2007). For example, the biocontrol agent Bacillus pumilus INR-7 is able to enhance lignin deposition in pearl millet epidermal tissues, and this plant defense response appears much more rapidly in PGPR-primed plants infected by the pathogen Sclerospora graminicola compared to non-primed plants (Niranjan Raj et al., 2012). The sole inoculation of INR-7 led to callose apposition. Although the precise location of these deposited polymers was not investigated, it is possible that their enhanced accumulation may participate to pathogen inhibition and disease suppression. A similar response was also triggered by Bacillus pumilus SE34 and Bacillus subtilis UMAF6639 when inoculated to respectively pea and melon roots. In both cases, it led to enhanced fungal pathogen tolerance (García-Gutiérrez et al., 2013). Inoculation of Pseudomonas fluorescens 63-28R to pea roots induced accumulation of lignin in root cells and inhibited colonization by the oomycete Pythium ultimum (Berdenou et al., 1996). The same result was observed with a Pseudomonas putida strain inoculated on bean roots (Anderson and Guerra, 1985). These cell wall modifications have been reported in the case of PGPR that protect plants against phytopathogens by activating ISR plant defense responses (Javicol et al., 2003; Desognies et al., 2012; Weller et al., 2012; García-Gutiérrez et al., 2013). One of the consequences of ISR is thus the reinforcement of the cell wall through enhanced lignin synthesis and callose apposition (Kovats et al., 1991; Strömberg and Brishammar, 1993), which...
restricts the progression of phytopathogens through plant tissues (García-Gutiérrez et al., 2013).

Modifications of the chemical composition of root cell walls are also triggered by PGPR that directly promote plant growth (Figure 1). Through the analysis of the infrared spectral characteristics of crude cell wall preparations of maize roots, El Zemarny et al. (2007) concluded that roots inoculated with Azospirillum lipoferum CRT1 had lower lignin content than uninoculated ones. This result contrasts with those aforementioned for biocontrol agents. Nevertheless, lower lignin content may facilitate cell elongation, and therefore overall root elongation. Similarly, Azospirillum irakense produces pectate lyases that are capable of degrading the pectate content of root cell wall and might allow its progression between root cortex cells and its functioning as an endophyte (Bekri et al., 1999). Up to now, the impact on plant lignin content of PGPR that are both inducing ISR and promoting root growth has not been clarified.

Modifications of root cell wall ultrastructure are thought to result mainly from PGPR-triggered changes in plant gene expression. Indeed, Bacillus subtilis GB03 promotes Arabidopsis growth by producing VOCs that were shown to modulate the expression of 38 genes with known functions associated with cell wall structure (Ryu et al., 2003; Zhang et al., 2007). Among them, 30 were implicated in cell wall expansion or loosening. The endophytic PGPR Azospirillum irakense was also shown to stimulate the expression of pectic-galacturonanases genes in inoculated rice roots (Sekar et al., 2000). Chemical mediators involved in the effects of PGPR on root cell walls have received little attention. A single report has indicated that the exogenous addition of auxins enhanced the induced pectic-galacturonanases activities observed in Azospirillum irakense inoculated rice roots (Sekar et al., 2000).

SYSTEMIC EFFECTS OF PGPR ON WHOLE PLANT PHYSIOLOGY AND FUNCTIONING

In addition to their effects on root tissues, PGPR can modify the physiology and functioning of plant tissues located at a substantial distance from the colonized sites, such as shoots. Two types of mechanisms are involved. On the one hand, some PGPR can enhance nutrient availability/uptake for plant roots. Stimulation of plant nutrition will lead to modifications in primary metabolism and consequently will contribute to enhance growth. On the other hand, certain PGPR trigger systemic specific responses, mostly by unknown signaling mechanisms. High-throughput analyses of plant transcriptomic and metabolomic responses have evidenced the effects of PGPR on plant gene expression and metabolite accumulation, respectively. These results highlight the extensive effect of PGPR on whole plant physiology and functioning (Figure 1), and provide clues to understand the systemic effect of PGPR.

IMPACT OF PGPR ON PLANT NUTRITION

The impact of PGPR on plant nutrition may result from effects on plant nutrient uptake and/or on plant growth rate (Mantelin and Touraine, 2004). It is indeed commonly hypothesized that nutrient uptake is increased as a consequence of increased root surface area triggered by PGPR. However, root ion transporters are under the control of regulatory processes that adjust their activity to the plant nutritional demand (Insam and Touraine, 1994; Lappartient and Touraine, 1996; Lappartient et al., 1999; Nannoz et al., 2003), so that regulations of root development and ion transporter activities are antagonistically coordinated to maintain steady nutrient acquisition rate and plant growth promotion (Figure 1).

Plant growth-promoting rhizobacteria can directly increase nutrient supply in the rhizosphere and/or stimulate ion transport systems in root. With regards to increased nutrient supply, two main types of bacterial activities can be considered. Firstly, phosphate solubilization is one key effect of PGPR on plant nutrition. Soils generally contain a large amount of phosphorus, which accumulates in the wake of regular fertilizer applications, but only a small proportion of the latter is available for plants. Plants are able to absorb on their own mono and dibasic phosphate; organic or insoluble forms of phosphate need to be mineralized or solubilized by microorganisms, respectively (Richardson et al., 2009; Remmers et al., 2010). Many PGPR – such as Pseudomonas, Bacillus, Rhizobium – are able to dissolve insoluble forms of phosphate (for a review see Richardson et al., 2009). Two main processes exist: acidification of the external medium through the release of low molecular weight organic acids (such as gluconic acid) that chelate the cations bound to phosphate (Müller et al., 2009), and production of phosphatases/phytases that hydrolyse organic forms of phosphate compounds. Secondly, many associated bacteria can fix N2 so that they could provide nitrogen to the plant. Evidence in favor of the participation of PGPR to the plant N budget has been reported for several plants, especially sugar cane (Boddey et al., 2003). However, the impact of N2 fixation by PGPR is still debated and is rarely credited for the stimulation of plant growth (for review see Dobbelare et al., 2003). In addition, non-fixing rhizobacteria can promote plant growth, showing that N provision is not obligatory for plant growth promotion. For instance, Pseudomonas brassicacearum STM196 is unlikely to fix N2 while it promotes the growth of canola and Arabidopsis (Bertrand et al., 2000, 2001; Mantelin et al., 2006).

With regards to the impact of PGPR on nutrient uptake systems, only very few studies have been published so far. Inoculation of canola with Actinobacter sp. strain U80417 resulted in an increase of both NO3 and K+ net influx rates per root surface area unit (Bertrand et al., 2000). In this study, the net H+ efflux was also enhanced, so that increased NO3- and K+ uptake rates may be part of a general mechanism leading to increased ion uptake rate, similar to energization of nutrient transport by enhanced proton pump activity (Sondergaard et al., 2004). In favor of this hypothesis, acidification of the rhizosphere has also been reported with Arabidopsis exposed to the VOC-emitting Bacillus subtilis strain GB03 (Zhang et al., 2009).

In Arabidopsis, NO3- uptake measurement in response to PGPR, over time, can lead to contradictory results: NO3- influx was increased in seedlings, upon 24 h-inoculation with Pseudomonas brassicacearum STM196, while it was reduced 7 days later (Mantelin et al., 2006). However, it is hard to draw a firm conclusion as the net NO3- uptake rate remained unchanged since ions...
changes in NO3+ uptake rate or NO\textsubscript{3}- distribution between roots and shoots (Kechid et al., 2013), suggesting an involvement in N-signaling rather than a direct role in N-metabolism.

Evidence in favor of a regulation of ion transporters at a transcriptional level by PGPR has been obtained in studies with Bacillus subtilis GB03. This strain induces concomitant down- and up-regulation of HKT1 expression in roots and shoots of Arabidopsis seedlings, respectively (Zhang et al., 2008). In the shoots, HKT1 functions in plasmodesmata to retrieve Na+ from the xylem (Beetham et al., 2003) and in the roots it is involved in Na+ uptake (Rav et al., 2001). The differential regulation of HKT1 expression in roots and shoots resulted in reduced accumulation of Na+ and increased accumulation of K+ in both organs of GB03-inoculated seedlings under salt-stress conditions (Zhang et al., 2008). Consistent with the effect of GB03 on HKT1, GB03 failed to rescue salt-stressed wild type seedlings from elevated Na+ accumulation.

Volatile organic compounds emitted by GB03 also activate the plant's iron acquisition machinery leading to increased iron assimilation (Zhang et al., 2009). Firstly, this PGPR leads to acidification of the rhizosphere, both directly due to chemical effects of some unidentified VOCs and indirectly through increased root proton efflux. Secondly, GB03 up-regulates the expression levels of FRO2 and IRT1 genes, coding respectively for a Fe3+ chelate reductase and a Fe2+ transporter. As a result, GB03-exposed Arabidopsis has enhanced ferric chelate reductase activity and increased iron content. Finally, it has been shown that this PGPR induces the expression of the FIT1 transcription factor that regulates positively FRO2 and IRT1 expressions (Zhang et al., 2009). The fact that GB03 fails to increase root ferric reductase activity and plant iron content in Arabidopsis fit1 mutants shows that PGPR can modify indirectly ion uptake by interfering with plant regulatory processes that control iron transporter expressions and/or activities (Zhang et al., 2009).

IMPACT OF PGPR ON PLANT TRANSCRIPTOME

Targeted or genome-wide analyses of plant gene expression following root inoculation by PGPR were reported with various bacterial models: phytohormone-regulated PGPR, endophytes and PGPR exerting a biocontrol activity. Inoculation of the phytohormoneregulated Pseudomonas putida MTCC5279 triggered overexpression of 520 genes and repression of 364 genes (threefold changes) in leaves of Arabidopsis; upregulated genes were involved in maintenance of genome integrity, growth hormone and amino acid synthases, ABA signalling and ethylene suppression, Ca2+ dependent signalling and induction of ISR (Srivastava et al., 2012). On rice, a recent study performed with Azospirillum points towards association specificity (Vargas et al., 2012). The targeted expression of ethylene receptors was followed after inoculation of Azospirillum brasilense Sp245 on two rice cultivars of contrasting ability to gain nitrogen from biologically nitrogen fixation. Seedlings of cultivar IR42, which enabled higher nitrogen fixation, also displayed higher expression of ethylene receptors compared to cultivar IAC4440 (Vargas et al., 2012).

The transcript accumulation of all ethylene receptors might be necessary for the establishment of a beneficial association between the plant and the bacteria. As for endophytes, differential colonization of rice roots was observed with an Azospirillum PGPR. In a less compatible interaction, a slight defense response occurred and was accompanied by the induction of pathogenesis-related proteins and proteins sharing domains with receptor-like kinases induced by pathogens; those proteins were also induced by a jasmonate treatment (Miché et al., 2006). Inoculation of rice roots with the endophytic PGPR Herbaspirillum seropedicae triggered the expression of genes responsive to auxin and ethylene and the repression of the defense-related proteins PRZ1 and thionins (Brusamarello-Santos et al., 2012). These studies suggest that endophytes modulate plant defense responses during colonization.

Plants treated with biocontrol PGPR, usually belonging to the Pseudomonas genus, are more resistant to subsequent infections by bacterial or fungal pathogens. In Arabidopsis, this rhizobacteria-mediated ISR requires sensitivity to jasmonate and ethylene, and the regulators MYC2 (Pieterse et al., 1996, 2000; Poos et al., 2008), NPR1 (Pieterse et al., 1998), and MYR2 (van der Ent et al., 2008) played a central role in this signaling. One of the earliest transcriptomic study performed with Pseudomonas fluorescens WCS417r indicated that bacteria elicited a substantial change in the expression of 97 genes in roots whereas none of the approximately 8,000 genes tested showed a consistent change in expression in the leaves (Verhagen et al., 2004). Subsequent studies on Arabidopsis reported an increase of defense-related transcripts, including PR-related proteins, in shoots of bacterized plants compared to untreated shoots (Carriéaux et al., 2003; Wang et al., 2005; van de Mortel et al., 2012). Interestingly, the ISR induced by Pseudomonas fluorescens SS101 was recently reported to be dependent on salicylic acid signaling and not on jasmonic acid and ethylene signaling (van de Mortel et al., 2012); moreover, a prominent role of camalexin and glucosinolates in the ISR was proposed. In wheat, bacterization with Pseudomonas fluorescens Q8r1-96 also triggered the accumulation of defense-related transcripts (Okubara et al., 2010; Maketon et al., 2012) and neither IAPG nor the type three secretion system were key single factors in the expression of these genes (Maketon et al., 2012). The establishment of beneficial associations requires mutual recognition and substantial coordination of plant and microbial responses and consequently beneficial microbes modulate plant immunity.

IMPACT OF PGPR ON PLANT METABOLOME

Several studies have addressed the metabolic changes triggered by PGPR inoculation, by analyzing metabolite contents of root
exudates, root tissues and shoots under normal or stressful conditions (Figure 1). Some studies have shown that PGPR can elicit changes in the activities of root enzymes involved in the production of metabolites, especially flavonoids, leading to changes in the pattern of root exudation (Lavania et al., 2006; Shaw et al., 2006). Moreover, compounds of microbial origin, such as phenazines and DAPG, could enhance total net efflux of amino acids in plant species (Heulin et al., 1987). Thus, PGPR inoculation (Manero et al., 2003; Jaleel et al., 2007; Bharti et al., 2013) may influence flavonoid exudation by Fabaceae roots. This property can be important for the design of mixed inoculants that will include a PGPR strain promoting flavonoid exudation together with rhizobia that will respond to plant flavonoids (Berti et al., 2013) or a PGPR strain combining two or all three together, leading to qualitative and quantitative modifications of root secondary metabolites, particularly benzoxazinoids and dehydrophthalate (Walker et al., 2012). These modifications depended on fertilization level and on the type of microorganisms inoculated. The three selected strains gave distinct results when used alone, but unexpectedly all microbial consortia gave somewhat similar metabolic responses. Plant growth-promoting rhizobacteria can help plants to withstand saline stress, a feature that may be linked to accumulation of specific metabolites. A higher level of proline content was reported in inoculated *Bacopa monnieri* (Bharti et al., 2013), as well as higher accumulation of glycine betaine-like quaternary compounds in rice inoculated with *Pseudomonas putida* (Jha et al., 2011). Similarly, *Arabidopsis* inoculation with the VOC-emitting strain *Bacillus subtilis* GB03 induced strong plant accumulation of glycine betaine and its precursor choline, and GB03-induced drought tolerance was lost in the xipof mutant of *Arabidopsis* with reduced choline production (Zhang et al., 2010). Alleviation of cold stress was demonstrated for *Burkholderia phytofirmans* PsJN on grapevine; this endophytic strain promotes plant post-chilling recovery by improving acclimation to cold (Alt Barka et al., 2006). This is accompanied by accumulation of stress-related metabolites such as proline, malondialdehyde and aldehydes (known as lipid peroxidation markers), hydrogen peroxide, and by higher expression of defense- and cold-related genes (Theocharis et al., 2012). Bacterization resulted in a 1.2-fold increase in starch content and in a two-fold increase in total soluble sugars, with sugars known to be involved in low-temperature tolerance (glucose, sucrose, and raffinose) displaying higher concentrations in treated plantlets (Fernandez et al., 2012). Independently of temperature, inoculation also enhanced phenolic content (Alt Barka et al., 2006).

EXPRESSION OF PLANT-BENEFICIAL FUNCTIONS OF PGPR IN THE RHIZOSPHERE

One PGPR strain can harbor several plant-beneficial properties, which may be co-regulated or not. Within the rhizosphere, the expression of PGPR's plant-beneficial properties is affected by both abiotic factors (like pH, oxygen, clay mineralogy, heavy metals, etc.) and biotic factors (i.e., compounds produced by plants or the rhizo-microbiome) that can lead to distinct expression patterns in space and time, possibly with different effects on host plant (Piccoli and Bottini, 1994; Potheir et al., 2008; Prigent-Combaret et al., 2008; Dutt and Podile, 2010; Almario et al., 2013; Drogue et al., 2013). In this section, a focus is put on the regulation of the expression of PGPR plant-beneficial properties by biotic factors occurring in the rhizosphere.

REGULATION OF PGPR FUNCTIONS BY ROOT EXUDATES

Through the release of root exudates, plants can impact bacterial gene expression, especially genes encoding plant-beneficial traits. Composition of root exudates is dependent upon intra and inter-specific genetic variability (Bertiin et al., 2003; Caiznota et al., 2013).
The expression of ptaA was increased fourfold in the rhizosphere of monocots (maize and wheat) compared to the rhizosphere of dicots (bean and cucumber). The analysis of six maize cultivars also revealed that pta expression and hence biocontrol activity could be affected by plant genotype (Nota et al., 2001). Specific components of root exudates, notably sugars, were shown to affect the production of antimicrobial compounds, such as DAPG, prototocatechuate and pyrrolnitrin by fluorescent pseudomonads, with some strain-dependent effects (Duffy and Defago, 1999). Among 63 plant compounds related to defense or development, or involved in plant-microbe interactions (flavonoids, phenolic acids, phytohormones, etc.), many could modulate the expression of phaA and pchA in Pseudomonas protegens CHA0 (de Verra et al., 2011). No specific chemical structures were identified that generally induced or repressed phtA or phtB expression (de Verra et al., 2011). Umbelliferone led to the strongest inhibition of phtA, salicylate, phe- nylacetic acid, and methyl jasmonate, all slightly reduced phtA expression, whereas the plant hormone IAA induced phtA expression. None of these compounds had an effect on phtB expression (de Verra et al., 2011) whereas a previous study reported repression of both DAPG and prototocatechuate biosynthesis genes by salicylate (Bachler et al., 2005).

1-Aminocyclopropane-1-carboxylic acid deamination (encoded by acdS) is another bacterial function that may be differentially expressed according to plant genotypes. Indeed, in vitro experiments demonstrated that some compounds present in root exudates tightly control acdS expression. First, ACC, the precursor of ethylene that is metabolized by AcdS, can positively regulate acdS expression (Henrizius et al., 2004; Prigent-Combaret et al., 2008). Second, licium, by inhibiting oligomerization of the Lrp-type regulator AcdR, prevents transcription of acdS expression, whereas the plant hormone IAA induced phtA expression (Li and Glick, 2001) and in Pseudomonas putida ipdC/ppdC (Spaepen et al., 2007a). The expression of ipdC/ppdC is an IAA precursor, tryptophan also plays an important role in regulating positively the ipdC/ppdC gene (Uma et al., 2005). Other root-exuded amino acids like tyrosine and phenylalanine can also induce ipdC/ppdC expression (Rothballer et al., 2005). Besides amino acids, plant roots release compounds like vitamins (e.g., pyridoxine and nicotinic acid) and organic acids (e.g., phenylacetic acid and pyrrolidin acid) that may influence the expression of plant-beneficial functions (Teplitski et al., 2006; Vanpeppel et al., 2010). Some Pseudomonas fluorescens strains unable to synthetize AHLs but possessing the cognate receptor may even recognize a plant compound to trigger expression of genes involved in biocontrol properties (Subramani et al., 2011). Metabolites present in root exudates can thus specifically modulate the expression of key genes involved in plant-beneficial functions. Consequently, specific physiological responses of the plant are dependent on the PGPR strain/plant cultivar combination (Drugué et al., 2012).

REGULATION OF PGPR FUNCTIONS BY MICROBIAL SIGNALS

Plant growth-promoting rhizobacteria exchange several types of cell-to-cell communication signals between each other and with other rhizosphere-inhabiting bacteria and fungi, i.e., quorum-sensing (QS) signals that allow bacteria to monitor their density and to coordinate gene expression only when a quorum of cells is achieved (Fuqua et al., 1994) and other bacterial signals that regulate gene expression independently of the cell density. Quorum-sensing relies on the synthesis and perception of small diffusible molecules, such as N-acyl-homoserine lactones (AHLs). In fluorescent pseudomonads, colonization properties and biosynthesis of antimicrobial metabolites, such as phenazines, is often subjected to an AHL-based QS regulation (Pierson et al., 1994; Chiu-A-Woeng et al., 2001; De Maeyer et al., 2011). Production of pyrrolnitrin in Seratia plymuthica HRO-C48, a strain isolated in the rhizosphere of oilseed rape and able to protect crops against Verticillium wilt, is also under QS regulation (Liu et al., 2007). In S. plymuthica G3, an endophytic strain, QS positively regulates antifungal activity, production of enzymes, but negatively regulates IAA production (Liu et al., 2011). Among the genus Azospirillum, only a few strains belonging to the lipoflavorum species and isolated from rice, display the ability to produce AHL signals (Vial et al., 2006). In the rice endophyte Azospirillum lipoflavorum B518, AHL inactivation abolishes pecticase activity, increases siderophore synthesis and reduces IAA production (in stationary phase) but no effect is observed on cellulase activity and on the phytohormulatory effect (Boyer et al., 2008). Moreover, a proteomic approach indicates that AHL-based QS regulation in Azospirillum is rather dedicated to control functions linked to rhizosphere competence and adaptation to plant roots (Boyer et al., 2008).

Interestingly, several studies have shown that bacterial communication of a specific bacterial population could be jammed by other microbes. Indeed, some soil bacteria can inactivate AHL (notably members of the genus Bacillus), whereas others can intercept AHL or can act as a physical barrier preventing their diffusion (Boyer and Wierzbowski-Day, 2009). Consequently, other members of the bacterial rhizosphere community can compromise expression of biocontrol traits in PGPR. Conversely, cross-talk between species using the same AHL signal or a structurally-related AHL can occur in natural habitats and was evidenced in the rhizosphere of wheat and tomato (Pierson et al., 1998; Steidle et al., 2001). Finally, plant compounds designated as AHL-mimics can also interfere with bacterial QS and may influence the expression of plant-beneficial functions (Teplitski et al., 2006; Vanpeppel et al., 2010). Some Pseudomonas fluorescens strains unable to synthetize AHLs but possessing the cognate receptor may even recognize a plant compound to trigger expression of genes involved in biocontrol properties (Subramani et al., 2011).
Exometabolites produced by microbial populations including pathogenic fungal strains can also affect PGPR plant-beneficial properties. For instance, fusaric acid produced by *Fusarium oxysporum* represses the production of DAPG in the biocontrol strain *Pseudomonas protegens* CHA0 (Notz et al., 2002). Next to their antifungal effect, some *Pseudomonas*-produced compounds can influence gene expression of biocontrol traits in pseudomonads. Indeed, in *Pseudomonas* protegens strains CHA0 and PF-5, DAPG and pyoluteorin productions are influenced by positive auto-regulation; moreover, DAPG and pyoluteorin mutually inhibit one another’s production (Brodhagen et al., 2004; Baehler et al., 2005).

In order to determine if DAPG could act as a signal on other PGPR strains than those of the fluorescent *Pseudomonas* group, a differential fluorescence induction promoter-trapping approach based on flow cytometry was developed on *Azospirillum*. Using this approach DAPG was shown to enhance expression of a wide range of *Azospirillum brasilense* genes, including genes involved in plant-beneficial activities. Four of them (i.e., *ppdb*, *flgE*, *nirK*, and *nifX-nifB*) were upregulated on roots in the presence of *Pseudomonas fluorescens* F113 compared with its DAPG-negative mutant (Combes-Meynet et al., 2011). Accordingly, *Pseudomonas fluorescens* F113 but not its DAPG-negative mutant enhanced the phytostimulatory effect of *Azospirillum brasilense* Sp245 on wheat. Thus, DAPG can act as a signal by which some beneficial pseudomonads may stimulate plant-beneficial activities of *Azospirillum* PGPR (Combes-Meynet et al., 2011). This finding is also relevant in the context of inoculation with microbial consortia, in which cell communication signals may coordinate the activities of all individual strains. Indeed, a vast array of PGPR populations displaying co-occurring plant-beneficial activities and that may share between each other antagonistic or synergistic effects are interacting with a same host plant (Figure 3).

When analysing plant growth-promoting effects, it is thus important to integrate the complexity of the interactions between PGPR populations within microbial consortia (Kumar et al., 2012; Walker et al., 2012). Further studies are needed to describe the synergistic effects between beneficial microorganisms at a molecular scale and to analyse the expression of plant-beneficial functions when consortia are used.

ECOLOGY OF PGPR POPULATIONS AND IMPACT ON ROOT SYSTEM FUNCTIONING

Many studies have deciphered the mechanisms of action of PGPR using one individual strain and one host plant. But in reality, as described above, PGPR strains are not acting individually in the rhizosphere but rather as part of bacterial communities, in which cell communication signals may coordinate the activities of all individual strains. Indeed, a vast array of PGPR populations displaying co-occurring plant-beneficial activities and that may share between each other antagonistic or synergistic effects are interacting with a same host plant (Figure 3). When analysing plant growth-promoting effects, it is thus important to integrate the complexity of the interactions between PGPR populations within microbial consortia (Kumar et al., 2012; Walker et al., 2012). Further studies are needed to describe the synergistic effects between beneficial microorganisms at a molecular scale and to analyse the expression of plant-beneficial functions when consortia are used.

ABBIOTIC FACTORS

- Soil composition
- Soil management
- Climatic factors

BIOTIC FACTORS

- Plant genotypes
- Plant developmental stages
- Plant defense mechanisms
- Other members of the microbial community

GLOBAL EFFECTS ON PLANT

- Nitrogen fixers
- Phyto-hormone producers
- ACC consumers
- Phosphate solubilizers
- DAPG producers

FIGURE 3 | Implementation of plant-growth promoting traits in PGPR functional groups. Selected PGPR functional groups are represented by different colored circles. The resulting effect of all PGPR functional groups on the plant is symbolized by the gray circle. Abiotic and biotic factors may influence the activity of each functional group. Solid arrows represent potential interactions (inhibition, signaling, etc.) between members of the functional groups, which may impact on the size, diversity and activity of these groups.
the rhizo-microbiome. To do so, functional ecology approaches are needed, in which the relations between the size, diversity and activities of PGPR assemblages in the rhizosphere are taken into account. This is of particular importance when assessing the effect of various environmental factors, including that of plant genotype.

PGPR ECOLGY IN THE RHIZOSPHERE: FROM INDIVIDUAL STRAINS TO FUNCTIONAL GROUPS

Plant growth-promoting rhizobacteria strains occur in various taxonomic groups, and these different taxonomic groups may be present simultaneously in a given soil (Kyselyova et al., 2009; Almarino et al., 2013a). This suggests that taxonomically-contrasted PGPR strains may coexist in soil and colonize a same rhizosphere, along with all non-PGPR members of the bacterial community. This possibility has been documented repeatedly, especially when characterizing the taxonomic status of bacterial isolates selected based on their positive effect on plant growth or health, their ability to inhibit phytopathogens, or the occurrence of a particular gene or property of relevance for PGPR effect (Bertrand et al., 2001; Barrusso et al., 2005; Upadhyay et al., 2009). In fact, this possibility seems to be the rule rather than the exception. PGPR populations contributing to a same type of function (i.e., ISR, nitrogen fixation, nutrient solubilization, plant development enhancement, etc.) belong to a same functional group. Functional group approaches can be implemented when specific genes are documented. For instance, nitrogen fixers can be assessed using the *nifH* gene, which encodes the dinitrogenase subunit of the nitrogenase. Its sequence is well conserved within the functional group and it is commonly used as marker to monitor the size and diversity of the diazotrophic community (Poly et al., 2001; Dixon and Kahn, 2004). Some of these PGPR functional groups are taxonomically narrow, such as the *Pseudomonas* DAPG producers (Frapolli et al., 2012). In contrast, others are much more diversified, and certain bacterial functional groups may also comprise both PGPR and non-PGPR strains. For instance, nitrogen fixers include PGPR as well as mutualistic symbionts and even a few pathogens (Herridge et al., 2008).

When considering PGPR-plant relationships in fields, the co-occurrence of genetically contrasted PGPR strains from a same functional group in the rhizosphere has two consequences. First, the activity of a given PGPR functional group corresponds to the resulting contributions of all active individual cells from each type of bacterium within the functional group. If synergistic effects occur between the PGPR populations, the expected performance level for the PGPR function might be higher than if only one type of strain was involved. On this basis, knowing the size of the functional group will help understand the potential importance of the corresponding function. Indeed, for functions leading to enhanced nutrient availability to the plant, such as nitrogen fixation or phosphorus solubilization, the higher the better. For others where optimality matters, such as the production of auxinic signals (Dobbeltrae et al., 1999; Spyropes et al., 2007b), the performance level of the functional group will need fine-tuning to avoid production levels too small or too great. How this is ecologically regulated at the scale of the corresponding functional group is unknown, but it raises the possibility of co-evolutionary patterns. To bridge the gap between the potential of a plant-beneficial PGPR function and its actual implementation by PGPR strains, the regulatory effects need also to be taken into consideration. Some of these regulatory effects will be common to all members of the functional group (Prigent-Combaret et al., 2008). However, other regulatory effects may be relevant for a subset only of the functional group. For instance, zinc sulfate stimulates DAPG production in certain but not all genetic groups of *Pseudomonas* PGPR strains (Dully and Défago, 1999).

Second, the relationships amongst the different PGPR strains co-occurring in a same rhizosphere are important. Interactions will take place within a functional group, as illustrated above with QS regulation of phenazine production in fluorescent *Pseudomonas* PGPR (Pirson et al., 1994). Interactions may also take place between different PGPR functional groups (Figure 3), integrating competitive and inhibitory effects (Couillerot et al., 2007), signal jamming (Boyer and Wiesiowski-Dyte, 2009) and positive signaling (Combes-Meynet et al., 2011), as well as more indirect processes such as root exudation modifications (Phillips et al., 2004; Dardanelli et al., 2010). These interactions have the potential to modulate spatial colonization patterns of PGPR on roots (Couillerot et al., 2011) and to affect PGPR performance (Pirson et al., 1998). This also suggests that members of different PGPR functional groups can function together, as consortia, with the possibility of synergistic effects or, contrariwise, antagonistic effects. These positive effects may be sought by implementing inoculation procedures in which different types of plant-beneficial microorganisms are used in combination, as highlighted above. Even in this context, interactions between the different microbial strains that are inoculated and indigenous microorganisms (including PGPR) probably matter.

IMPACT OF PLANT GENOTYPES ON PGPR FUNCTIONAL GROUPS

Plants at species, sub-species and variety levels exhibit substantial genetic and phenotypic diversity (Salamin et al., 2002; Vaughan et al., 2008). In the rhizosphere, different plant genotypes will have a different impact on the number, diversity and activity of microorganisms (Bass et al., 2006; Micalèf et al., 2009). This has been shown when comparing different plant species (Grayston et al., 1998; Costa et al., 2006; Berg and Smalla, 2009) or varieties within species (Germida and Siciliano, 2001; van Overbeek and van Elsas, 2008; Incroja et al., 2010; Bouffaud et al., 2012). It entails differences noticeably in root system structure, root exudation profile, and nutrient acquisition (Czarnota et al., 2003; Comas and Essienstat, 2009). These effects have also been evidenced when considering microbial functional groups of PGPR or where PGPR predominate.

Nitrogen-fixing bacteria are particularly important for plant nitrogen nutrition (Hsu and Buckley, 2009; Turk et al., 2011). The analysis of functional groups indicated that the size and/or composition of nitrogen-fixing bacteria is influenced by host plant features (Figure 3), both at plant species (Perin et al., 2006) and variety levels (Couillerot et al., 2009; Wu et al., 2009). Analysis of *nifH* gene transcripts extracted from the rhizosphere showed that only a fraction of the community expresses *nifH*, and that the corresponding bacterial species differed according to the plant variety, pointing to an influence of plant genotype on the functioning of nitrogen-fixing bacteria (Knauth et al., 2005;
Mättensson et al., 2009; Orr et al., 2011). Similar findings were made with the functional group of phosphate solubilizers (Richardson and Simpson, 2011). Their selection by roots varies according to host plant species (Kueppler et al., 2006; Chen et al., 2002; Ramakers et al., 2010).

Other functional groups, such as those involved in plant protection from parasites, act mainly by bacterial modulation of plant auxin distribution and IAA signal transduction pathways, independently of IAA production by PGPR. Surprisingly, bacterial modulation of plant RSA effects have long been associated with the production of phytohormones, but major knowledge gaps remain. In terms of molecular signaling and functioning, whether PGPR fine-tune plant hormonal pathways such as induced by pathogens and symbionts and/or trigger yet-unknown specific pathways requires clarification.

Plant growth-promoting rhizobacteria are able to modulate RSA and fine tune the vegetative growth and physiology of the whole plant. RSA effects have long been associated with the production of IAA. However, molecular modulation of plant auxin distribution and IAA signal transduction pathways, independently of IAA production by PGPR, has also been revealed. It is obviously a step forward in our understanding of plant-PGPR cooperation but it does not fully clarify the bacterial functions and plant hormonal networks involved. Plant hormones regulate genes for the biosynthesis of other hormones or components of hormonal pathways. Consequently, it is possible that PGPR can affect these cross-talks too. It would explain why PGPR can have such pleiotropic effects on plants. One of the major current scientific challenges lying ahead is to understand how these different signaling pathways are integrated to coordinate plant growth and development, and how PGPR influence the plant hormonal network.

Distinct PGPR populations present in a same soil can express plant-beneficial properties in concert. As aforementioned, the relationships between plants and their rhizosphere microorganisms are complex and vary both according to plant genotypes and soil inhabiting populations (and thus local soil properties, more generally speaking). Next-generation sequencing technologies have started to reveal their taxonomic and functional diversity. They have begun to bring new knowledge on the ecology of PGPR microbial groups. In the near future, it is expected that metatranscriptomics and metaproteomics will develop drastically, and will allow further progress on the understanding of the activity and ecological behavior of natural PGPR populations within the rhizosphere. However, given the heterogeneity in space and time of the rhizosphere habitat, samplings at different times and locations within the plant rhizosphere and within fields will be essential to better understand the ecology and performance of PGPR at plant and field scale. Nevertheless, despite being very reductionist, mechanistic functional studies using one PGPR and one plant are still useful to investigate the ways PGPR exert beneficial effects on plants. We think that the most important advances on plant-PGPR cooperation will be brought in the future by combining both ecology and functional biology approaches.
functional and ecological roles of the plant-PGPR cooperation.
pore L) and radish pine (Petas
radicis D. Don.). Soil Biol. Biochem.
34, 468–494. doi: 10.1016/S0038-
0717(01)00282-7
Chen, H. Wang, T. E., van Donk, D.,
De Vos, G., van der Drift, K. M.,
Tammann, S., Thomas-Oates, J. E.,
et al. (2001). Phenol-1-
carbamoylase production in the
biomass-redirecting strain Pseudomonas
chlororaphis PCL1931 is regulated by
multiple factors associated with
the growth medium. Mol. Plant
Microbe Interact. 14, 966–979.
doi: 10.1097/00003297-200104000-
00006
Coissel, M. R. R., Martel, I. E., Jen-
nison, S. N., Lammers, G. N., Salim, L.,
and O’Donnell, A. G. (2009). Molec-
dular detection and quantification of
spatial gene sequences in the rhiz-
sphere of sorghum (Sorghum bicolor)
seeds with two levels of nitrogen fer-
tilizer. Plant Soil 292, 483–495.
doi: 10.1007/s11104-009-0127-6
Dodd, B., Douh, H., Beaufort, S.,
Wainnioski-Dey, F., and Pugnet-
Combaret, C. (2013). Which specificity
in cooperation between
plant-growth-promoting rhizobacteria
and crops by rhizosphere signals,
“fpls-04-00356” — 2013/9/12 — 18:1 1 — page 14 — #14
“fpls-04-00356” — 2013/9/12 — 18:1 1 — page 14 — #14
of maize (Zea mays) following soil inoculation with the PGPR Azospirillum lipoferum CFB1. Plant Soil 291, 109–118. doi: 10.1007/s11104-008-0978-0

Fernandes, O., Theocharidis, A., Bro- duc, S., Feil, R., Jaquini, L., Clément, C., et al. (2012). Burkholderia phytofirmans PsJN acclimates grapevines to cold by modulating carbohydrate metabolism. New Phytol. 196, 337–346. doi: 10.1111/j.1469-8137.2012.03308.x

Francoi, M., Delgado, G., and Moreno- Loco, Y. (2010). Donorating gra- dient gel electrophoretic analysis of dominant 2,4-diacetylphloroglucinol biosynthetic plIkeIleids in fluorescent Pseudomonas from soil sup- ported or nonsterile substrates or to black root rot of tobacco. Soil Biol. Biochem. 42, 649–658. doi: 10.1016/j.soilbio.2010.01.005

Francoi, M., Pothier, J. F., Delgado, G., and Moreno-Loco, Y. (2011). Evolutionary history of syntheti- cian pathway genes for phloroglucinol and cyanide antimicrobials in associated fluorescent pseudomonas. Mol. Phylogenet. Evol. 63, 877–890. doi: 10.1016/j.ympev.2012.02.050

Freedt, I., Kowalka, M., Hulka, T., Donati, D. A., and Simpson, P. (2011). Evolution of cytokinin biosynthetic and degradation. J. Exp. Bot. 62, 2431–2442. doi: 10.1093/jxb/erq018

Fukuhara, M., Lagarkov, C., and Betrini, R. (1993). Inoculation with Azospir-illum lipoferum increases root and shelf- bound status of corn seedling roots. Plant Cell Physiol. 34, 1397–1399.

Fusaro, W. C., Wilcoxen, S. C., and Green- berg, E. P. (1994). Quorum sensing in bacteria: the Vibrio fischeri LuxR-LuxI family. Annu. Rev. Microbiol. 48, 823–852. doi: 10.1146/annurev.mi.48.110194.004401

Galland, M., Gamet, L., Varoquaux, F., Frapolli, M., Pothier, J. F., Défago, E. P., (1994). Quorum sensing in bacteria: the LuxR-LuxI family. Annu. Rev. Microbiol. 48, 823–852. doi: 10.1146/annurev.mi.48.110194.004401

García-Garrido, L., Zentzos, H., Frimousse, D., Cabrita, J., de Vicente, A., and Pérez-García, A. (2013). The antagonistic strain Bacillus subtilis UAMIF639 also con- fers protection to melon plants against cucumber powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses. Microbiol. Res. 168, 264–74. doi: 10.1016/j.mir.2012.10.028

Germaina, J., and Siciliano, S. (2001). Tannomycosis of bacteria associ- ated with the roots of modern, recent and ancient wheat cultivars. J. Phytopathol. 149, 500–503. doi: 10.1002/jph.2012

Glick, B. R. (2002). Modulation of plant ethylene levels by the bacte- rial enzyme ACC deaminase. FEMS Microbiol. Lett. 215, 1–7. doi: 10.1111/j.1574-6968.2002.tb10133.x

Glick, B. R., Cheng, Z., Ceron, J., and Duan, J. (2007). Promotion of plant growth by ACC-deaminase- producing soil bacteria. Eur. J. Plant Pathol. 119, 329–339. doi: 10.1007/s10650-007-9102-4

Gomes, N. M. C., Gleyre, D. F. R., Pinto, E. N., Igles, C., Almeida, A., Canha, A., et al. (2010). Taking root: Enduring effect of rhizosphere bacte- rial community selection on plant. PloS One 5:e10450. doi: 10.1371/journal.pone.0010450

Grayston, S. J., Wang, S., Campbell, C. D., and Edwards, A. C. (1996). Selection of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 28, 509–578. doi: 10.1016/S0038-0717(96)00021-7

Gurrieri, M. A., Ramos-Solano, B., Prebenna, A., Meschouli, J., Yalou, F. E., and Talon, M. (2001). The plant-growth promot- ing rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active phlB-like genes. Physiol. Plant. 111, 286–291. doi: 10.1034/j.1399-3054.2001.11100214.x

Hartmann, A., Schmid, M., Tümen, D., and Berg, G. (2009). Plant-driven selection of plant-growth-promoting rhizobacteria from manure amended soils. Appl. Environ. Microbiol. 75, 6767–6768. doi: 10.1128/AEM.00440-10

Jaeger, C. H. III, Lindow, S. E., Miller, W., Clark, E., and Firestone, M. K. (1999). Mapping of sugar and amino acids to plant and soil pIles.lites in endophytes growing on monostore and their effects on activities of rhizosphere bacteria. Mol. Plant Microbe Interact. 9, 250–256. doi: 10.1097/00003297-200104000-00009

Kochel, M., Dubrovska, G., Rößki, W., Varoquaux, F., Diekorn, A., and Touraine, B. (2013). The ARIZ-2 and AT2ZE2 genes are associated with different plant growth and plant growth promotion of Arabidopsis by the PGPR strain Pseudomonas fluorescens ISM096. New Phytol. 199, 514–524. doi: 10.1111/nph.12158

Kraaijeveld, S., Hunko, T., Brar, D., and Reinhold-Hurek, B. (2005). Influence of distinct Oryza cultivars on expression of pIleIe genes in roots of rice. Environ. Microbiol. 7, 1725–1733. doi: 10.1111/j.1462-2036.2005.00844.x

Kutter, Z., Mackenzi, N., Ramesh, S., Tjemsen, S. D., Kanor, B. N., and Glass, A. D. (2012). Nitrate transport capacity of the Arabidop- siss thaliana NRT2 family mem- bers and their interactions with ArabiNAK1. J. Biol. Chem. 284, 728– 731. doi: 10.1074/jbc.M112.340837

Kutina, L., Olejnik, M., Ravnik, I., Zseby, J., Hamlj, et al. (2013). Functional and ecological roles of the plant-PGPR cooperation
Kovacs, K., Bindes, A., and Hell, H. R. (1993). Cytology of induced systemic resistance of tomato to Phytophthora infestans. Planta 183, 491–496. doi: 10.1007/BF00194249

Kumar, V., Sarmas, M. V., Saka- r, N., Serriatova, R., Kumar, L., Saha, V., et al. (2012). Effect of formulated root endophytic fun- gus (Periconia sp.) on root development and plant growth-promoting rhizobacteria fluo- rescence pseudomonads Bi2 and R1 on Vigna mungo. World J. Micro- biol. Biotechnol. 28, 505–603. doi: 10.1007/s11274-011-0852-z

Kn teardown, M., Koppe, J., Gerspied, M., Delgou, G., Nagot-Makwona, G., Grakan, G., et al. (2009). Comparison of rhizobacterial con- tamination in soil suspension or conducive to tobacco black root rot disease. FEMS Microbiol. Lett. 313, 1999–2006. doi: 10.1128/AEM.68.5.2229-2235.2002

Lee, K. H., and Lame, T. A. (1982). Ethylene as a possible mediator of plant hormone-induced inhibition of nodulation of Pseudomonas sativus L. cv. Spave. Plant Physiol. 69, 1334–1340. doi: 10.1104/pp.69.3.1334

Li, J., and Blick, L. B. R. (2003). Transcript regulation of the flagellar motor complex NAV1-4 (motiliscan) in Caulobacter crescentus. J. Bacteriol. 185, 359–367. doi: 10.1128/JB.185.1.359-367.2003

Liu, X., Liu, J., Popat, R., Oort, C. A., Li, J., Dinglig, S. F., et al. (2011). Character- ization of two quorum sensing systems in the endophytic Salmonella phyllosticta strain G2. Differential control of motility and biofilm formation among sulfooligosaccharide-binding plant rhizobacteria. Appl. Environ. Microbiol. 77, 7354–7360. doi: 10.1128/AEM.00286-01

Liu, X. J., Liu, J., Peep, R., Oddil, C. A., Li, J., Dinglig, S. F., et al. (2011). Charac- terization of two quorum sensing systems in the endophytic Salmonella phyllosticta strain G2. Differential control of motility and biofilm formation among sulfooligosaccharide-binding plant rhizobacteria. Appl. Environ. Microbiol. 77, 7354–7360. doi: 10.1128/AEM.00286-01

Liu, X., Lu, J., Liu, J., Popat, R., Oort, C. A., Li, J., Dinglig, S. F., et al. (2011). Character- ization of two quorum sensing systems in the endophytic Salmonella phyllosticta strain G2. Differential control of motility and biofilm formation among sulfooligosaccharide-binding plant rhizobacteria. Appl. Environ. Microbiol. 77, 7354–7360. doi: 10.1128/AEM.00286-01

Liu, X., Jia, J., Popat, R., Oort, C. A., Li, J., Dinglig, S. F., et al. (2011). Character- ization of two quorum sensing systems in the endophytic Salmonella phyllosticta strain G2. Differential control of motility and biofilm formation among sulfooligosaccharide-binding plant rhizobacteria. Appl. Environ. Microbiol. 77, 7354–7360. doi: 10.1128/AEM.00286-01

Liu, X., Jia, J., Popat, R., Oort, C. A., Li, J., Dinglig, S. F., et al. (2011). Character- ization of two quorum sensing systems in the endophytic Salmonella phyllosticta strain G2. Differential control of motility and biofilm formation among sulfooligosaccharide-binding plant rhizobacteria. Appl. Environ. Microbiol. 77, 7354–7360. doi: 10.1128/AEM.00286-01

Liu, X., Jia, J., Popat, R., Oort, C. A., Li, J., Dinglig, S. F., et al. (2011). Character- ization of two quorum sensing systems in the endophytic Salmonella phyllosticta strain G2. Differential control of motility and biofilm formation among sulfooligosaccharide-binding plant rhizobacteria. Appl. Environ. Microbiol. 77, 7354–7360. doi: 10.1128/AEM.00286-01

Maketalon, C., Defortuna, A. M., and Lamattina, L. (2008). Calcium and nitric ox- ide-induced adventitious root formation in cucumber. Plant J. 52, 595–603. doi: 10.1111/j.1365-313X.2007.03149.x

Malhotra, M., and Srivastva, S. (2008). Plant-growth-promoting bacteria and phe- nolic acid biosynthesis in tomato. Postharvest Biol. Technol. 49, 94–99. doi: 10.1016/j.postharvbio.2008.06.001
Vacheron et al. Functional and ecological roles of the plant-PGPR cooperation

Phillips, D. A., Fox, T. C., King, M. D., Bhuremorena, T. V., and Teuber, L. R. (2004). Microbial products trigger amino acid exudation from plant roots. Plant Physiol. 136, 2807–2808. doi:10.1104/pp.2004.044222

Okubara, P. A., Call, D. R., Kwak, H. V., et al. (2006). Diazotrophic endosymbioses. Can. J. Microbiol. 52, 118–125. doi:10.1139/w00-128

Pierson, L. S. III, Keppenne, V. L., et al. (2006). Networking by small molecule hormones in plant immunity. Mol. Plant 1988, 11.1079. doi:10.1105/tpc.111.015744

Pierson, L. S. III. (1998). Inter-genic amino acid exudation from plant roots stimulates growth and colonization by Pseudomonas aureofaciens strains among resident soil populations. FEMS Microb. Ecol. 58, 191–205. doi:10.1111/j.1574-694X.2006.00333.x

Pieterse, C. M., van Wees, S. C., van Pelt, J. A., Ton, D. A., and Hartmann, A. (2005). Comparative in situ analysis of population signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol. Plant Microb. Interact. 11, 1078–1084. doi:10.1094/pp11989.11.1079

Pieterse, C. M., van Wees, S. C., van Pelt, J. A., Ton, D. A., and Hartmann, A. (2005). Comparative in situ analysis of population signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol. Plant Microb. Interact. 11, 1078–1084. doi:10.1094/pp11989.11.1079

Pieterse, C. M., Van Pelt, J. A., Ton, D. A., and Hartmann, A. (2005). Comparative in situ analysis of population signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol. Plant Microb. Interact. 11, 1078–1084. doi:10.1094/pp11989.11.1079

Pieterse, C. M., Van Pelt, J. A., Ton, D. A., and Hartmann, A. (2005). Comparative in situ analysis of population signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol. Plant Microb. Interact. 11, 1078–1084. doi:10.1094/pp11989.11.1079

Pieterse, C. M., Van Pelt, J. A., Ton, D. A., and Hartmann, A. (2005). Comparative in situ analysis of population signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol. Plant Microb. Interact. 11, 1078–1084. doi:10.1094/pp11989.11.1079

Pieterse, C. M., Van Pelt, J. A., Ton, D. A., and Hartmann, A. (2005). Comparative in situ analysis of population signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol. Plant Microb. Interact. 11, 1078–1084. doi:10.1094/pp11989.11.1079

Pieterse, C. M., Van Pelt, J. A., Ton, D. A., and Hartmann, A. (2005). Comparative in situ analysis of population signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol. Plant Microb. Interact. 11, 1078–1084. doi:10.1094/pp11989.11.1079

Pieterse, C. M., Van Pelt, J. A., Ton, D. A., and Hartmann, A. (2005). Comparative in situ analysis of population signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol. Plant Microb. Interact. 11, 1078–1084. doi:10.1094/pp11989.11.1079

Pieterse, C. M., Van Pelt, J. A., Ton, D. A., and Hartmann, A. (2005). Comparative in situ analysis of population signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol. Plant Microb. Interact. 11, 1078–1084. doi:10.1094/pp11989.11.1079

Pieterse, C. M., Van Pelt, J. A., Ton, D. A., and Hartmann, A. (2005). Comparative in situ analysis of population signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol. Plant Microb. Interact. 11, 1078–1084. doi:10.1094/pp11989.11.1079
Plant growth-promoting rhizobacteria (PGPR) have been a subject of extensive research due to their significant roles in enhancing plant growth and health. These bacteria can improve plant productivity through various mechanisms, including nutrient scavenging, biocontrol of plant pathogens, and stimulation of plant defense responses.

The plant-PGPR cooperation can be beneficial not only for the plant but also for the bacteria. PGPR can be defined as any microorganism that increases plant growth, yield, or quality, or enhances plant disease resistance (Schenck and Kloepper 1997). These interactions are mediated by a variety of mechanisms, including the production of phytohormones, siderophores, or antibiotics that can stimulate plant growth, suppress pathogen colonization, or induce systemic acquired resistance (SAR) (Wong et al. 2003).

One of the key mechanisms through which PGPR enhance plant health is their ability to colonize the rhizosphere and root surfaces, allowing them to access nutrients that are not readily available to the plant (Stotzky 1984). Rhizobacteria can fix atmospheric nitrogen, solubilize phosphates, or chelate heavy metals, thereby making these nutrients more available to the plant (Kalogeris and Vinhas 1993). In addition, PGPR can enhance the uptake of essential nutrients, such as nitrogen and phosphorus, by modifying the root architecture and the root exudation of organic compounds (Bakker et al. 1994).

Another important role of PGPR is in the management of plant diseases. PGPR can compete with pathogenic bacteria for resources, produce antimicrobial compounds, or stimulate the production of plant defense compounds, such as phytoalexins or phytoanticipins, which can help protect plants from infection (Bakker and Bakker 1994). PGPR can also enhance plant resistance to abiotic stresses, such as drought or salinity, by improving the plant’s water relations or by inducing the synthesis of stress proteins (Schippers et al. 2003).

Moreover, PGPR can influence the composition and activity of the plant microbiome. PGPR can alter the activities of the rhizosphere and endorhizosphere microbiome, which can have implications for the plant growth and health. For example, PGPR can reduce the activity of plant pathogenic bacteria, such as Pseudomonas syringae, by producing antimicrobial compounds or by inducing systemic acquired resistance (SAR) in the plant (Bakker et al. 1994).

In conclusion, the plant-PGPR cooperation is a complex and dynamic interaction that can have significant impacts on plant growth, productivity, and health. Understanding the mechanisms and factors that govern these interactions is crucial for developing effective strategies to enhance plant health and productivity, and for conserving and utilizing beneficial bacteria for the benefit of agriculture and the environment.
Vacheron et al. Functional and ecological roles of the plant-PGPR cooperation

Vaughan, D. A., Lu, B.-R., and Tomooka, V. (2003). Plant growth-promoting rhizobacteria of the genus Azospirillum. New Phytol. 159, 494–508. doi: 10.1046/j.1469-8137.2003.00804.x

Walker, V., Coudert, O., Von Felten, A., Belcourt, F., Jansa, J., Moënne-Loccoz, M., et al. (2012). Variation of secondary metabolic levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant Soil 356, 151–163. doi: 10.1007/s11104-011-0980-2

Wang, Y., Okara, Y., Nakrashiki, H., Tosa, Y., and Maruma, S. (2005). Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria. Pseudomonas fluorescens PFP001-15 in Arabidopsis thaliana. Mol. Plant Microbe Interact. 18, 385–396. doi: 10.1094/MPMI.2005.18.8.385

Wei, D. M., Mummchig, D. V., van Pelt, J. A., Pieterse, C. M., van Loon, L. C., and Bakker, P. A. (2012). Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102, 405–412. doi: 10.1094/PHYTO-10-11-0222

Whitton, B. J., and Adams, C. G. (2010). The concept of organisms as ecosystems engineered ten years on: progress, limitations, and challenges. BioScience 60, 205–210. doi: 10.1525/bio.2010.60.3.9

Wu, L., Ma, K., and Lu, Y. (2011). Unraveling root developmental programs initiated by beneficial Pseudomonas bacteria. Plant Physiol. 158, 304–316. doi: 10.1104/pp.110.172937

Yang, S. F., and Hoffman, N. E. (1994). Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 45, 155–189. doi: 10.1146/annurev.pl.45.090194.001045

Yasuda, J. R., Ross, J. J., Sheriff, L. J., and Reid, J. B. (2011). Gibberellin biosynthesis mutants and root development in pea. Plant Physiol. 52, 627–635. doi: 10.1104/pp.112.196272

Zhang, H., Kim, M. S., Krishna-machar, V., Payton, P., Sun, Y., Grimson, M., et al. (2017). Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Plant Physiol. 172, 889–901. doi: 10.1104/pp.17.00411

Zhang, H., Kim, M. S., Sun, Y., Dou, S. E., Shi, H., and Pan, P. W. (2018). Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol. Plant Microbe Interact. 21, 757–764. doi: 10.1094/MPMI-17-0137

Zhang, H., Kim, M. S., Sun, Y., Dou, S. E., Shi, H., and Pan, P. W. (2018). Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol. Plant Microbe Interact. 21, 757–764. doi: 10.1094/MPMI-17-0137

Zheng, H., Sun, Y., Xie, X., Kim, M. S., Dou, S. E., and Pan, P. W. (2019). A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant Physiol. 38, 705–717. doi: 10.1104/pp.19.00130

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 29 May 2013; accepted: 23 August 2013; published online: 17 September 2013.

Copyright © 2013 Vacheron, Desbrosses, Bouffard-Boudot, Bats, Comte and Prigent-Combaret. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the source are credited and that the original publication in this journal is quoted, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.