Combined application of zinc-lysine chelate and zinc-solubilizing bacteria improves yield and grain biofortification of maize (*Zea mays* L.)

Safdar Bashir¹, Abdul Basit², Rana Nadeem Abbas³, Shahbaz Naeem³, Saqib Bashir¹, Niaz Ahmed⁴, Muhammad Saeed Ahmed⁴, Muhammad Zahaib Ilyas³, Zubair Aslam³*, Saqer S. Alotaibi⁵, Ahmed M. El-Shehawi⁵, Yunzhou Li²*

¹ Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan, Pakistan, ² Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou of China, ³ Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan, ⁴ Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab-Pakistan, ⁵ Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia

* liyunzhou2007@126.com (YL); zauaf@hotmail.com (ZA)

Abstract

Malnutrition a health disorders arising due to over or low use of minerals, vitamins and nutritional substances required for proper functioning of body tissues and organs. Zinc (Zn) is the most important mineral required for the normal metabolism of plants and humans. Zinc-deficiency is one of the major cause of malnutrition globally. Maize is highly susceptible to Zn-deficiency and inflicts Zn-deficiency to humans and other animals being nourished on it. This study evaluated the effect of zinc-lysine chelate alone (0.1, 0.5, 1.0 and 1.5%) as seed priming and in combination with Zn-solubilizing bacteria (PMEL-1, PMEL-48, PMEL-57 and PMEL-71) on grain biofortification of autumn maize. The Zn accumulation in different parts (roots, stem, leaves, grains and cob pith) was quantified. Results indicated that Zn contents were 18.5% higher in the seeds primed with 1.5% solution of Zn-lysine chelate and inoculation of ZSB strains compared to control treatments. Seed priming with 1.5% Zn-lysine chelate in combination with ZSB inoculation significantly improved cob diameter and cob length by 16.75% and 42% during 2016 and by 11.36% and 34.35% during 2017. The increase in 100 grains weight over control was 18.4% and 15.27% for 2016 and 2017, respectively. The Zn contents were increased by 15.3%, 15.6%, 49.1%, and 33.0% in grain, cob-pith, stem and roots, respectively compared from control. Thus, the combined application of 1.5% Zn-lysine chelates along with ZSB inoculation could be used for combating malnutrition.

Introduction

Global population is increasing with annual growth rate of 1.03% and 1.95% in Pakistan. According to the estimation of “World Nations”, global population will grow to 8.5 billion in 2030, 9.7 billion in 2050 and 10.9 billion during 2100 [1]. Thus, food demand will also increase and it would be challenging to fulfill global food demands. Yang et al. [2] presented a national survey report showing that 50% people of China suffer from Zn-deficiency. Latest publication
of “The State of Food Security and Nutrition in the World” has established a regular checkup for the desired targets set by 2030 agenda regarding food security and nutrition targets [3]. The Zn-deficiency is a widespread problem in Pakistani soils. The 21–77% of the soils in Khyber Pakhtunkhwa (KPK) province are Zn-deficit. Likewise, 42% of agricultural soils in Mansehra and Swat districts of KPK have been declared Zn-deficient [4].

Zinc is an essential micronutrient and required by all organisms [5, 6]. It is required as cofactor for >300 enzymes Coleman [7], and takes part in the structural component of many proteins containing several transcription factors [8, 9]. More than 25% of global human population suffers from Zn-deficiency [10]. In World Health Organization report of 2012, Zn-deficiency was declared 5th among crucial factor of health risks in the developing countries. The Zn-deficiency is important Fe and vitamin-A deficiencies. Grains enriched with Zn can significantly improve health. Moreover, proper Zn nutrition improves crop productivity [11].

Rice-wheat cropping system is practiced on 85% area of south Asia, which is Zn-deficient [12]. Zinc is involved in different mechanisms, including respiration, chlorophyll biosynthesis and photosynthesis; thus, considered more important than other nutrients [13, 14]. About 30% of soils are Zn deficient worldwide [15, 16]. Nonetheless, ~70% of arable lands in Pakistan are deficient [17].

Micronutrient deficiency is an emerging issue in developing and regarded as hidden hunger. Poor health, mental dysfunction and impaired immune system are some of the issues caused by Zn-deficiency. Zinc deficiency is a widespread cause of children’s death throughout the world [18]. Zinc deficiency is common in the countries where cereals are consumed for daily calories and protein [18] and Zn-deficiency was realized as plant nutritional problem throughout rice growing countries such as Japan, USA, Brazil, and Phillipines. Human nutrition and crop productivity can be improved by adding zinc lysine chelate and zinc solubilizing bacteria to plants. Seed germination under sub-optimal conditions, seed vigor, viability and stand establishment are improved with higher Zn contents in the seeds. Different soil factors are linked with Zn-deficiency, which include high pH, high salinity, high calcium and bicarbonates, water-logging, intensive cultivation and higher nutrient uptake [19, 20]. Morgan and Drew used the term “chelate” for the compounds capable for the compounds producing complexes with metals that can be used as additives in human and animal nutrition [21]. In 1950s, iron (Fe) chelates were used for the first time to ameliorate Fe-deficiency in plants [22]. Iron amino acid was the first evolved chelate, which was used to improve Fe concentrations in biological systems of human and animals [21]. Foliar application of amino acid chelate with certain Zn-amino chelate increased Zn contents, yield and grain quality of wheat [23]. Several amino chelates are available now, which supply a wide range of nutrients through seeds or foliar application [21].

Although several studies reported that foliar application of Zn improves growth and productivity of maize, very little is known about the impact of Zn seed priming on growth and productivity of maize crop. The available Zn in soil is important for growth of plants; however, Zn uptake is hindered due to its fixation in the soil. The Zn-solubilizing bacteria (ZSB) are capable of enhancing Zn uptake; however, limited studies have been conducted to evaluate the impact of ZSB on Zn uptake in cereals. Therefore, current study was conducted to evaluate the impact of zinc-lysine chelate seed priming in combination with ZSB on Zn availability, uptake and grain biofortification of maize.

Materials and methods
Experimental site and soil analysis
The experiments were conducted at Research Farm, Department of Agronomy, University of Agriculture, Faisalabad during autumn, 2016 and 2017. Collected soil samples were analyzed
for different physicochemical properties and Zn contents. Faisalabad is situated between 30.35–31.47°N latitude, 72.08-73°E longitude and 150 m above sea level.

Physicochemical properties of soil

Soil samples were collected before sowing and after harvesting through standard methods. Soil samples were collected from 0–20 cm depth with soil auger. The total five soil samples were taken from 0–20 cm depth, and they were made composite sample. The samples were packed in polythene bags and transferred to the laboratory. Experimental soil was loamy in nature. Soil properties are summarized in Table 1. Zinc was determined by using Atomic Absorption Spectrophotometer (Hitachi Polarized Zeeman AAS, Z-8200, Japan).

Experimental material

The seeds of maize hybrid 30Y87 (Pioneer) were collected from local grain market, Dijkot Road, Faisalabad. Zinc-lysine chelate was collected from Dr. Muhammad Qasim Associate Professor, Department of Botany, Govt. College University Faisalabad, while zinc solubilizing bacterial strains were isolated in Plant and Microbial Ecology Laboratory, Department of Agronomy, University of Agriculture, Faisalabad, Pakistan.

Screening of Zn-solubilizing bacteria

For isolation of Zn-solubilizing bacteria, soil samples were taken from the experimental site. The total five soil samples were taken from 0–20 cm depth and they were made composite sample. One gram of soil was added to 10 ml of 50 mM phosphate buffer (pH 7.0) and 50% of the soil mixture was treated by sonication with an electronic homogenizer (Bandelin Sonoplus, Berlin, Germany) at 260 W/cm² for 15 secs to isolate bacteria. Serial dilutions were performed after mixing both sonicated and non-sonicated portions. The diluted aliquots were spread on modified half-strength R2A agar plates [24]. A 100 μl aliquot was applied to half-strength R2A agar medium in large polystyrene Petri dishes (15 cm diameter) for 10⁻³ and 10⁻⁵ dilutions, and the plates were incubated at 28°C for 72 hours. The isolation medium was supplemented with 40% (v/v) soil extract and 50 μg/ml amphotericin B to inhibit fungal growth. The colonies were selected based on morphology, and the isolates were sub-cultured on modified half-strength R2A agar plates.

Out of 26 strains, only 4 (PMEL-1, PMEL-48, PMEL-57, and PMEL-71) were selected on the basis of their Zn solubilizing ability and success for 16S rRNA sequencing.

Table 1. Physicochemical properties of soil.

Soil property	Before sowing	After harvesting	Before sowing	After harvesting
	2016	2017	2016	2017
pH	7.4	7.3	7.4	7.4
Electrical Conductivity (EC) (dSm⁻¹)	1.54	1.46	1.62	1.45
Organic Matter (%)	1.22	1.28	1.19	1.26
Saturation (%)	32	31	34	32
Phosphorus (ppm)	12.2	9.8	11.5	9.3
Potassium (ppm)	240	224	260	220
Textural analysis			Sand = 40.3, Silt = 32.4, Clay = 27.3	
Zn (ppm)	0.26	0.38	0.28	0.34

https://doi.org/10.1371/journal.pone.0254647.t001
Seed priming and bacterial inoculation

The maize seeds were primed with different concentrations of Zn-lysine chelate solutions (0.1%, 0.5%, 1.0% and 1.5%) for 10 hr and surface dried for one hour in the laminar flow cabinet (to avoid bacterial contamination) to their original weight. In other treatments 4ZSB strains (PMEL-1, PMEL-48, PMEL-57 and PMEL-71) were used. These strains were identified based on 16S rRNA gene sequencing. Seed inoculation was done with standard method [24]. Briefly, seeds were washed twice with ethanol and subsequently with pure distilled water and dried to original weight. Sugar solution (10%) was applied to seed surface as sticky material and carbon source for ZSB in the moss peat applied as inoculants on seed and left for 2 hours in the laminar flow cabinet for drying and avoid contamination.

Biochemical and molecular characterization of bacterial strains

Gram staining of the unidentified strains, colony morphology, cell shape, temperature and pH range tests were done according to Aslam et al. [25]. The DNA extraction and purification was done by using Easy-DNA Kit (Thermo Fisher Scientific). The PCR reactions of 16S rRNA gene were performed using the eubacterial primers 27f (50-AGAGTTTGATCMTGGCTCAG-30) and 1492r (50-GGTTACCTTGTTACGACTT-30) from total genomic DNA. The other process from PCR to phylogenetic tree was accomplished by following Aslam et al. [25].

Planting geometry and crop husbandry

Seedbed was prepared by two-time cultivation followed by planking and ridges were made 75 cm apart with tractor-mounted ridger. Crop was sown in the third week of July by hand-dibbler at P × P distance of 25 cm. Fertilizers were applied @ 250 kg N, 115 kg P and 150 kg K ha⁻¹. All the K and P along with one third of N were applied at seedbed preparation, while remaining N was applied in two splits at 3–4 and 6–7 leaf stages. Sources of fertilizers were DAP (Diammonium phosphate), Urea and SOP (Sulphate of potash). Irrigation was done at seven days’ interval from emergence to harvesting except rainfall. For weed control, “Dual Gold 960 EC” (S-Metolachlor) a brand of “Syngenta” was used as pre-emergence herbicide 24 hours after sowing. Carbofuran 3% G was used to avoid stem borer attack.

Agronomic attributes

Fully matured leaves were collected from each plot and leaf area was recorded by leaf area meter. Cob length was measured with the help of meter rod. Cob diameter was recorded with keen precision by using electronic Vernier calipers. The 100 grains from each plot were weighed on analytical balance to record 100-grain weight.

Grain yield and biological yield (t ha⁻¹)

Three plants from each plot were randomly selected and cobs present on these plants were separated. Grains were separated from cob pith and grain weight was recorded. Crop was harvested at maturity and fresh weight of all plant components (leaves, roots and shoot) was recorded. The harvested plants were dried for 14 days under sunshine and dry weight was recorded. The recorded dry weight was used to compute biological yield.
Harvest index (HI %)

Harvest index was calculated through dividing the grain yield with biological yield expressed in percentage (%).

\[
\text{Harvest index} = \frac{\text{Grain yield}}{\text{Biological yield}} \times 100
\]

Standards preparation

By using commercially available stock solutions (Applichem®), calibrated standards were prepared (1000 ppm). Working standards were prepared by using highly purified deionized water. All the glass apparatus used in analytical work were immersed in 8N HNO₃ solution overnight and washed with deionized water before use.

Zn contents in leaves, stem cob-pith, roots and grains

The collected samples of different plant parts were dried at 70 °C for 24 hours. Afterwards, Zn concentration was measured by the method of [24]. Briefly, dried grains were ground to fine powder. The 1 g grain flour samples were taken in conical flask of 50 ml and 10 ml concentrated di-acid mixture of (1:2) nitric acid and perchloric acid was added to the flasks and left overnight. After 24 hours, flasks were heated on hot plate at 300 °C until aliquot material became transparent. It was cooled at room temperature and distilled water was added to make 50 ml volume. Zinc in prepared samples was determined by using Atomic Absorption Spectrophotometer (Hitachi Polarized Zeeman AAS, Z-8200, Japan) following the protocol described in AOAC. Instrumental operating conditions were; wavelength = 213.9 nm, slit width = 1.3nm, lamp current = 10 mA, burner height = 7.5 mm, burner head = standard type, flame = Air-C₂H₂, flow rate of oxidant gas pressure = 160 kpa and flow rate of fuel gas pressure = 6 kpa.

Root measurements

Roots were collected from soil with the help of spade and thoroughly washed. Root length was measured with the help of measuring tape. Root diameter was measured by using digital Vernier caliper. After measuring root length, roots fresh weight was recorded on digital balance. Roots were dried in oven until constant weight. Then dry weight of roots was noted.

Relative water contents (RWC) %

Relative water contents were determined according to [26]. For the determination of RWC, the flag leaf from the shoot of maize plant was removed with a sharp razor blade. Its fresh weight (fresh mass, FW) was determined immediately. For the determination of turgid weight (TW) leaves were put in the distilled water inside the closed plastic bags. The leaves were allowed for imbibition’s for overnight (24 hours) by placing plastic bags under dim light (around 20 m mol m⁻² s⁻¹) in the laboratory under the naturally fluctuating temperature. After the completion of imbibition’s, the leaf samples were again weighed, and turgid weight (TW) was recorded. After recording the turgid weight, the leaf samples were placed at 70˚C in an oven for 72 hours. After this, oven-dry weight (DW) of leaf samples was determined. All the measurements were made on an analytical scale, with the precision of 0.0001 g. The RWC was calculated by using the values of FW, TW, and DW by the given equation.

\[
\text{RWC} (\%) = \frac{[(\text{fresh weight} - \text{dry weight})/(\text{turgid weight} - \text{dry weight})] \times 100}{100}
\]
Chlorophyll a and b (mg L\(^{-1}\))

Fresh leaf sample were cut into 5 cm small pieces and put in test tubes. The 10 ml 80% acetone solution was poured into each test tube and the tubes were placed at -20˚C for 24 h. Test tubes were vortexed for 30 seconds, kept for one hour and then extract was centrifuged at 14000 rpm for 5 minutes at 25˚C. Supernatant material was collected and reading was recorded on spectrophotometer at wavelengths of 645 and 663. Chlorophyll a and b contents were calculated by using following equations. Total number of chlorophyll contents was calculated by sum of chlorophyll a and b contents.

\[
\text{Chlorophyll a (mg L}^{-1}\text{)} = 12.7 \times A_{663} - 2.69 \times A_{645}
\]

\[
\text{Chlorophyll b (mg L}^{-1}\text{)} = 22.9 \times A_{645} - 4.68 \times A_{663}
\]

Here, \(A_{663}\) and \(A_{645}\) represents the absorbance at which values read at 663 and 645 nm wavelengths of spectrophotometer, respectively.

Electrolyte leakage (%)

Electrolyte leakage (EL) was measured to determine the membrane permeability. Briefly, 1-gram leaf sample was cut into 0.5 cm small pieces. Small pieces were vertically put in test tubes where 10 ml distilled water was added. The tubes were cover with aluminum foil and left at 32˚C for four hours. The \(EC_1\) (dSm\(^{-1}\)) was recorded with Cond 315i/ Set, WTW Wi–Seenschafftlich-Technische Werkstatton 82362 Weilheim, Germany. The samples were autoclaved for 20 minutes at 121˚C. The samples were cooled at room temperature and \(EC_2\) (dSm\(^{-1}\)) was recorded. The EL was computed by following formula [27]:

\[
\text{EL} = \frac{EC_1}{EC_2} \times 100
\]

Statistical analysis

Statistics 8.1 was used for data analysis. Least significance difference (LSD) test at 5% probability level was used to compare treatment means [28].

Results and discussion

Cob diameter is very important yield increasing trait, which is significantly improved by priming with Zn-lysine chelate (1.5%) and seed inoculation with ZSB (Table 2). Cob diameter and cob length were increased by 16.75% and 42% during 2016 and by 11.36% and 34.35% during 2017. These results are in agreement with [29]. Proper and timely Zn supply as seed priming and seed inoculation increased Zn uptake in all plant parts. Siddiqui et al. [30] reported that sufficient supply of Zn increased N uptake of maize plants and ultimately increased yield components. Zinc application as seed priming is more important for better productivity as reported by [31]. Similarly, Zn application as seed treatment improved N uptake during milking and grain filling in maize [32].

The highest 100-grain weight was recorded for combined application of Zn-lysine chelate as (1.5%) and ZSB inoculation during both years. Higher 100-grain weight might be due to increased cob length and diameter, which produce heavier grains. Increased 100-grain weight, cob length and cob diameter are reported by Tahir et al. [33] with foliar application of Zn. The increase in 100-grain weight over control was 18.4% and 15.27% for 2016 and 2017, respectively. These results are close to the findings of Mohsin et al. [28] where 100-grain weight was improved by 19% through seed priming.
Leaf area is an important factor contributing towards better growth and development of crop. Seed priming along with ZSB inoculation significantly improved leaf area (Table 2). Higher values of leaf area and harvest index might be attributed to increased values of tryptophan amino acid and other growth promoting hormones responsible for leaf expansion [34]. Higher leaf area resulted in more leaf area index, crop growth rate and net assimilation rate, which increased dry matter production. Increased leaf area and leaf area index has been reported by Safyan et al. [35] for foliar application of Zn.

Healthy root system is an important characteristic for healthy plant growth and development. Zinc application significantly enhanced total number of roots per plant, root length,
Zinc solubilizing bacteria can enhance production of maize

Table 3. Effect of Zn lysine chelate priming and inoculation of ZSB on agronomic traits of maize.

Zn +ZSB	2016	2017	2016	2017	2016	2017	2016	2017
	Zn in Grain (ppm)	Zn in stem (ppm)	Zn in Leaves (ppm)	Zn in cob-pith (ppm)	Zn in roots (ppm)	Grain Yield t/ha	Biological Yield t/ha	
T0	7.03E	3.23E	4.00E	4.00F	4.00C	11.19 D	16.083 G	
T1	7.03E	3.66DE	5.50D	4.00F	4.13C	11.61 D	16.25 G	
T2	7.46CE	3.60DE	6.00CD	4.23EF	4.53BC	13.46 C	16.74 FG	
T3	7.50CE	3.83DE	6.00CD	4.70EF	4.50BC	14.22 A-C	17.81 E	
T4	7.60C-E	3.96DE	6.00CD	5.06DE	4.50BC	14.76 A-C	19.12 D	
T5	7.70B-D	4.33DE	6.00CD	6.03C	5.00AB	15.40 AB	20.10 C	
T6	7.30DE	4.60D	6.50BC	5.83CD	4.50BC	14.18 BC	17.48 EF	
T7	7.80A-D	6.66C	6.66BC	6.00C	4.50BC	15.41 AB	18.88 D	
T8	7.96A-C	8.30B	7.03B	6.46BC	4.50BC	15.87 AB	20.59 BC	
T9	8.23AB	9.10B	7.00B	7.06B	4.50BC	15.89 A	21.39 B	
T10	8.30A	13.83A	10.50A	8.33A	5.50A	16.06 A	23.69 A	
LSD =	0.57	1.27	0.85	0.87	0.79	1.72	0.89	

LSD = Least significant difference, T0(Control) = No priming nor inoculation, T1 = Hydro-priming, T2 = Priming with 0.1% Zn-lysine chelate, T3 = Priming with 0.5% Zn-lysine chelate, T4 = Priming with 1.0% Zn-lysine chelate, T5 = Priming with 1.5% Zn-lysine chelate, T6 = Inoculation with consortium of highly ZSB, T7 = Priming with 0.1% Zn-lysine chelate + Inoculation with consortium of highly ZSB, T8 = Priming with 0.5% Zn-lysine chelate + Inoculation with consortium of highly ZSB, T9 = Priming with 1.0% Zn-lysine chelate + Inoculation with consortium of highly ZSB, T10 = Priming with 1.5% Zn-lysine chelate + Inoculation with consortium of highly ZSB. ppm = parts per million (μg/g); t/ha = tones/hectare.

https://doi.org/10.1371/journal.pone.0254647.t003

root diameter. Hence, plants had more root surface area, which enabled them to absorb more water and nutrients from rhizosphere. Increased total root length and root diameter observed for Zn seed priming along with ZSB inoculation (Table 2). Increase in the root length and diameter was due to better Zn nutrition at early growth stages as reported by [24]. Hafeez et al. [36] reported positive effect of ZSB on plant growth as compared to control treatment.

Application of Zn through seed priming with Zn-lysine chelate along with ZSB inoculation significantly improved Zn contents in all plant parts during both years (Table 3). The Zn contents were significantly increased in all the parts; however, the highest Zn contents were recorded during 2017 with seed priming (1.5% Zn-lysine chelate) and ZSB inoculation. The Zn contents were increased by 15.3%, 15.6%, 49.1%, and 33.0% in grain, cob-pith, stem and roots, respectively compared from control. Increased Zn contents in all the plant parts might be due to timely provision of Zn as seed priming [28]. The prominent increase in Zn contents in all the plant parts is also reported by [28, 37].
Seed priming and ZSB inoculation improved grain and biological yields during both years. Increased grain and biological yield are the result of adequate and proper Zn supply, which increased cob length, cob diameter, grains per cob and 100 grains weight. Enhanced carbohydrates synthesis and translocation towards grain are the possible reasons behind improved grain and biological yield [38, 39]. Improved biological yield might be due to proper and better nutrition at early stages, which improved early growth of plants and increased dry matter production. Biological yield was increased due to increased leaf area and more plant height [40]. In the same way, Trehan and Sharma [41] reported increased dry matter production with Zn application for maize crop. In addition, Zn also improved harvest index. Plant growth promoting and Zn solubilizing activities of microorganisms (fungi and bacteria) had significant results on Zn solubilization in Shakeel et al. [42] Greater values of biological yield might be due to

	Chlorophyll-a	Chlorophyll-b	Chlorophyll-a	Chlorophyll-b	EL (%)
T₀	16.76D	35.40F	12.80E	22.40F	74.057A
T₁	20.16B-D	36.36EF	13.63DE	24.23EF	74.000A
T₂	20.63B-D	38.93D-F	16.20A-D	28.03CD	69.473A
T₃	20.30B-D	40.46CD	16.10B-D	29.63B-D	58.620B
T₄	22.90AB	41.43B-D	16.46A-C	30.56A-C	48.173C
T₅	22.43A-C	43.40BC	17.60A-C	30.16B-D	44.050C
T₆	18.66CD	39.40DE	15.10C-E	27.10DE	54.610C
T₇	20.90A-C	44.53AB	16.70A-C	31.36AB	46.370C
T₈	22.86A-C	44.86AB	17.10A-C	32.63AB	41.043CD
T₉	23.76AB	45.00AB	18.20AB	33.40A	35.953DE
T₁₀	22.86A-C	44.86AB	17.10A-C	32.63AB	41.043CD

LSD = 4.01 3.96 2.70 3.21 7.55 7.32

	Chlorophyll-a	Chlorophyll-b	Chlorophyll-a	Chlorophyll-b	EL (%)	RWC (%)
T₀	17.33E	36.63G	13.67E	22.87E	73.39A	46.30F
T₁	19.83C-E	37.63G	14.30DE	23.90E	66.34A	48.93EF
T₂	20.30CD	39.60F	15.53CD	27.70D	55.11B	52.96D-F
T₃	20.20CD	41.13DE	15.70CD	29.30B-D	46.21CD	53.76D-F
T₄	20.23CD	42.20CD	16.23C	29.90B-D	34.50F	58.15CD
T₅	20.50B-D	43.50BC	16.60BC	30.50A-D	51.13BC	58.15CD
T₆	19.53DE	39.70EF	14.77DE	28.77CD	69.38A	57.25C-E
T₇	22.56A-C	43.20BC	16.37C	30.70A-C	43.03DE	60.61B-D
T₈	21.53A-D	44.20B	16.53BC	31.70 AB	38.04EF	64.61A-C
T₉	23.10AB	45.93B	17.87AB	31.93AB	36.62EF	67.45AB
T₁₀	23.10AB	45.93B	17.87AB	31.93AB	36.62EF	67.45AB

LSD = 2.75 1.48 1.42 2.84 8.07 8.73

LSD = Least significant difference, T₀(Control) = No priming nor inoculation, T₁ = Hydro-priming, T₂ = Priming with 0.1% Zn-lysine chelate, T₃ = Priming with 0.5% Zn-lysine chelate, T₄ = Priming with 1.0% Zn-lysine chelate, T₅ = Priming with 1.5% Zn-lysine chelate, T₆ = Inoculation with consortium of highly ZSB, T₇ = Priming with 0.1% Zn-lysine chelate + Inoculation with consortium of highly ZSB, T₈ = Priming with 0.5% Zn-lysine chelate + Inoculation with consortium of highly ZSB, T₉ = Priming with 1.0% Zn-lysine chelate + Inoculation with consortium of highly ZSB, T₁₀ = Priming with 1.5% Zn-lysine chelate + Inoculation with consortium of highly ZSB. ppm = parts per million (μg/g); t/ha = tones/hectare. EL = Electrolyte leakage, RWC = Relative water contents.

https://doi.org/10.1371/journal.pone.0254647.t004
better crop nutrition provided by Zn seed priming which enhanced N uptake. In the same way, Trehan and Sharma [40] revealed that Zn application increased dry matter production of maize hybrids. Higher values of biological yield might be due to increase in plant height and healthy leaves [33].
Higher values of Electrolyte leakage (EL) in maize leaves were recorded in control treatment during both years (Table 4). On the other hand, decreased values of EL was observed for 1.5% Zn application as seed priming along with ZSB inoculation. A 57% and 56% reduction in EL was observed for 1.5% Zn + ZSB inoculation, whereas 40% and 52% reduction was recorded for 1.5% Zn application during 2016 and 2017, respectively. Higher values of EL are due to more membrane damage, whereas Zn application provided more strength to the membrane and caused less damage. Zinc application improved membrane integrity and decreased membrane damage. Proper Zn nutrition ameliorated EL with lower values than control treatments. Shakeel et al. [42] observed that reduction in growth could alter the levels of endogenous hormones and these hormonal regulations are involved in membrane permeability and water relations. Increased relative water content was observed in T\textsubscript{10} (Table 4) as compared to control treatment during 2016 and 2017.

The ZSB were identified by BLAST in NCBI data using 16S rRNA gene sequencing data. The four strains PMEL-1, PMEL-48, PMEL-57 and PMEL-71 were identified as species of genera \textit{Alcaligenes} sp., \textit{Bacillus} sp., \textit{Pseudomonas} sp. and \textit{Bacillus} sp., respectively (Fig 1, Table 5). The consortium of these strains played very active role in Zn-solubilizing and effectively uptake in plants as shown in Table 3. The maximum uptake and translocation was observed when 1.5% Zn-lysine chelate and consortium of highly ZSB [43, 44].

Conclusion

It can be concluded from this experiment that seed priming with 1.5% Zn-lysine chelate in combination with ZSB inoculation significantly improved cob diameter and cob length by 16.75% and 42% during 2016 and by 11.36% and 34.35% during 2017. The increase in 100 grains weight over control was 18.4% and 15.27% for 2016 and 2017, respectively. The Zn contents were increased by 15.3%, 15.6%, 49.1%, and 33.0% in grain, cob-pith, stem and roots, respectively compared from control. Thus, combination of 1.5% Zn-lysine chelates and ZSB inoculation could be used for combating malnutrition.

Author Contributions

Conceptualization: Safdar Bashir.

Data curation: Rana Nadeem Abbas, Saqib Bashir, Muhammad Zahaib Ilyas.

Formal analysis: Abdul Basit, Niaz Ahmed, Muhammad Zahaib Ilyas.

Funding acquisition: Saqer S. Alotaibi, Ahmed M. El-Shehawi.

Investigation: Abdul Basit, Rana Nadeem Abbas, Niaz Ahmed, Zubair Aslam, Yunzhou Li.

Methodology: Shahbaz Naeem.

Table 5. Identification of bacterial strains from BLAST on the basis of 16S rRNA gene sequencing and their similarity with type strains.

Strain name	bp	Similarity %	Top-hit taxon	Top-hit taxonomy
PMEL-1	1464	99.22	\textit{Alcaligenes faecalis} \textit{subsp. Parafaecalis G} 2	Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;Alcaligenaceae;Alcaligenes; Alcaligenes faecalis
PMEL-48	1469	100%	\textit{Bacillus cereus} \textit{ATCC 14579} T	Bacteria;Firmicutes;Bacillales;Bacillaceae;Bacillus
PMEL-57	1453	96.96	\textit{Pseudomonas marginalis} \textit{ATCC 10844} 2	Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Pseudomonadaceae; Pseudomonas
PMEL-71	1471	99.73	\textit{Bacillus cereus} \textit{ATCC 14579} T	Bacteria;Firmicutes;Bacillales;Bacillaceae;Bacillus

https://doi.org/10.1371/journal.pone.0254647.t005
Project administration: Shahbaz Naeem, Muhammad Saeed Ahmed.

Resources: Muhammad Saeed Ahmed, Zubair Aslam, Ahmed M. El-Shehawi, Yunzhou Li.

Software: Saqib Bashir, Ahmed M. El-Shehawi.

Supervision: Muhammad Saeed Ahmed.

Validation: Saqer S. Alotaibi.

Writing – original draft: Safdar Bashir.

Writing – review & editing: Saqib Bashir, Yunzhou Li.

References

1. United Nations (2017) World Population Prospectus. The 2017 Revision [online] available at https://esa.un.org/unpd/wpp/Download/Documentation/publications.htm. Verified on June, 2017.

2. Yang XE, Chen WR, Feng Y (2007) Improving human micronutrient nutrition through biofortification in the soil–plant system: China as a case study. Environ. Geochem. Health. 29: 413–428. https://doi.org/10.1007/s10653-007-9086-0 PMID: 17385049

3. Food Security Statistics. (2017) The State of Food Insecurity in the world. Food Agric. Organization, Rome, Italy.

4. Khattak JK (1995) Micronutrients in Pakistan agriculture. Pakistan Agriculture research council, Islamabad and department of soil science NWFP Agriculture. University Peshawar 135 PMID: 8523646

5. Andreini C, Banci L, Bertini I, Rosato A (2006) Zinc through the three domains of life. J. Proteome Res., 5: 3173–3178. https://doi.org/10.1021/pr603699 PMID: 17081069

6. Broadley MR, White PJ, Hammond JP, ZelkoA Lux I (2007) Zinc in plants. New Phytol., 173: 677–702. https://doi.org/10.1111/j.1469-8137.2007.01996.x PMID: 17286818

7. Coleman JE (1998) Zinc enzymes. Curr. Opin. Chem. Biol., 2, 222–234 https://doi.org/10.1016/s1367-5931(98)80064-1 PMID: 9667939

8. Kramer U, Clemens S (2008) Functions and homeostasis of zinc, copper, and nickel in plants, molecule. In: Molecular Biology of Metal Homeostasis and Detoxification. From Microbes to Man (Tama’s M. J. and Martinou E., eds), pp. 216–271, Springer

9. Hershinkel M (2006) Zn2+, a dynamic signaling molecule. In Molecular Biology of Metal Homeostasis and Detoxification. From Microbes to Man (Tama’s M. J. and Martinou E., eds), pp. 131–152, Springer

10. Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J. Trace Elem. Med. Biol., 20: 3–18. https://doi.org/10.1016/j.jtemb.2006.01.006 PMID: 16632171

11. Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil. 302: 1–17.

12. Trimsina J, Conner DJ (2001) Productivity and management of rice wheat cropping systems: Issues and challenges. Field Crops Res., 69:93–132.

13. Chasapis CT, Loutsidou AC, Spiliopoulou CA (2012) Zinc and human health: an update. Arch. Toxicol., 86: 521–534. https://doi.org/10.1007/s00204-011-0775-1 PMID: 22071549

14. Nishizawa NI (2005) The uptake and translocation of minerals in rice plants. Rice is life: Scientific perspectives for the 21st century proceedings.

15. Alloway BI (2008) Zinc in soils and crop nutrition. 2nd ed. International Zinc Association (IZA) and International Fertilizer Association (IFA). Brussels. Belgium and Paris, France. pp. 139.

16. Hacisalihoglu G, Koehian LV (2003) Mow do some plants tolerate low levels of soil zinc? Mechanism of zinc efficiency in crop plants. New Phytol., 159: 341–350.

17. Hamid A, N Ahmad (2001) Integrated Plant Nutrition System: Development and Rural Poverty Alleviation. Regional Workshop on Integrated Plant Nutrition System (IPNS), FADINAP, 18–20 September, Bangkok, Thailand.

18. Cakmak I (2009) Enrichment of fertilizers with zinc: An excellent investment for humanity and crop production in India. J. Trace Elem. Med. Biol., 23: 281–289. https://doi.org/10.1016/j.jtemb.2009.05.002 PMID: 19747624

19. Alloway BJ (2008) Micronutrients and crop production. In: Micronutrient Deficiencies in Global Crop Production. pp. 1–39© Springer Science Business Media BV.
20. Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health. 31: 537–548. https://doi.org/10.1007/s10653-009-9255-4 PMID: 19291414
21. Souri MK (2016) Amino chelate fertilizers: the new approach to the old problem; a review. Open Agriculture. 1: 1.
22. Jacobson L (1951) Maintenance of iron supply in nutrient solutions by a single addition of ferric potassium ethylenediamine tetra-acetate. Plant Physiol 26: 411–41. https://doi.org/10.1104/pp.26.2.411 PMID: 16654380
23. Ghasemi S, Khoshgoftarmanesh AH, Afyuni M, Hadadzadeh H. (2013) The effectiveness of foliar applications of synthesized zinc-amin acid chelates in comparison with zinc sulfate to increase yield and grain nutritional quality of wheat. Europ. J. Agric., 25: 679–680.
24. Aslam Z, Bashir S, Ahmed N, Bellitürk K, Qazi MA and ULLAH R, M. (2020) Effect of different levels of molybdenum and rhizobium phaseolii in rice-mung bean cropping system. Pak. J. Bot, 52, p.6.
25. Schonfeld MA, Johnson RC, Carwer BF and Mornhinweg DW (1988). Water relations in winter wheat as drought resistance indicators. Crop Sci 28: 526–531.
26. Senthilkumar M., Amaresan N., Sankaranarayanan A. (2021) Measurement of Electrolyte Leakage. In: Plant-Microbe Interactions. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1080-0_42
27. Steel RGD, Torrie JH & Dickey D (1997). Principles and procedures of statistics: A Biometrical Approach. 3rd Ed. McGraw Hill Book Co, New York.
28. Trehan SP, Sharma RC (2000) Phosphorus and zinc uptake efficiency of potato (Solanum tuberosum) in comparison to wheat (Trifolium aestivum), maize (Zea mays L.) and sunflower (Helianthus annuus L.). Indian J. Agric. Sci., 70: 840–45.
29. Shafeeq M, Rais A, Hassan MN, Hafeez FY (2015) Root associated bacillus sp. improves growth, yield and zinc translocation for Basmati Rice (Oryza sativa) varieties. Front. Microbiol., 6: 1–12. https://doi.org/10.3389/fmicb.2015.00001 PMID: 25653648
30. Kamran S, Izzah S, Baig DN, Rizwan M, Malik KA, Mehnaz S (2017) Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat. Front Microbiol 8: 2593 https://doi.org/10.3389/fmicb.2017.02593 PMID: 29312265
Kumar A, Dewangan S, Lawate P, Bahadur I, Prajapati S (2019) Zinc-Solubilizing Bacteria: A Boon for Sustainable Agriculture. In: Sayyed R., Arora N., Reddy M. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management. Microorganisms for Sustainability, vol 12. Springer, Singapore.