Composition of Roofs in Derived Category

SELCAN AKSOY
Florida State University
Faculty of Mathematics
E-mail: saksoy@math.fsu.edu

July 17, 2015

Abstract

In that paper, we prove that the composition of two roofs is another roof by using mapping cone of a morphism of cochain complexes.

Contents

1 Introduction 1
2 Mapping Cone and Homotopy 2
3 Triangulated Categories 3
4 The Localization of A Category 4
5 Composition of Two Roofs 5

1 Introduction

Assume that \(\mathcal{A} \) is an abelian category. P. Aluffi defines a mapping cone \(MC(f) \) of a morphism \(f: \mathcal{A} \rightarrow \mathcal{B} \) in \(C(\mathcal{A}) \) and homotopy between two morphisms in that category in [Al]. Also, in [Kr], H. Krause defines triangulated category and the localizing class. After that, he proves that the homotopic category \(K(\mathcal{A}) \) is triangulated in Section 2.5.

Using this information, we prove that for a given upside down roof in the localization of \(K(\mathcal{A}) \), we can obtain a regular roof in that category. This allows us to compute the composition of two regular roofs in the localization of homotopic category.
The collection $C(A)$ consisting of all cochain complexes in an abelian category A forms an abelian category. It is easy to show that the set of morphisms of that category is an abelian group, finite products and coproducts exist since they exist in A.

Definition 2.0.1. A morphism f between cochain complexes is quasi isomorphism if it induces an isomorphism in cohomology.

For a given morphism $f : A \to B$ between cochain complexes A and B, we define a mapping cone $MC(f)$ as $MC(f)^i = A[i] \oplus B^i = A^{i+1} \oplus B^i$ for all i. Here, we get the morphisms

$$d_{MC(f)}^i : MC(f)^i \to MC(f)^{i+1},$$
$$d_{MC(f)}^i(a, b) = (-d_A^{i+1}(a), f^{i+1}(a) + d_B^i(b))$$

between those objects.

$MC(f)$ is a cochain complex since $d_{MC(f)}^{i+1} \circ d_{MC(f)}^i = 0$.

Definition 2.0.2. A homotopy k between two morphisms of cochain complexes $f, g : A \to B$ is a collection of morphisms $k^i : A^i \to B^{i-1}$ such that for all i,

$$g^i - f^i = d_B^{i-1} \circ k^i + k^{i+1} \circ d_A^i.$$

The above morphisms f and g are homotopic if there is a homotopy between them. We use the following diagram to show that homotopy and use the symbol $f \sim g$ to mean there exists a homotopy between the morphisms f and g.

Definition 2.0.3. A morphism $f : A \to B$ is a homotopy equivalence if there is a morphism $g : B \to A$ such that $f \circ g \sim id_B$ and $g \circ f \sim id_A$.

2
A and B are homotopy equivalent if there is a homotopy equivalence $A \to B$.

Proposition 2.0.1. [Al] If $f, g : A \to B$ are homotopic, then $H^\bullet(f) = H^\bullet(g)$.

Corollary 2.0.1. If $f : A \to B$ is homotopy equivalence, then $H^\bullet(A) \cong H^\bullet(B)$.

Every homotopy equivalence is a quasi isomorphism, but every quasi isomorphism may not be a homotopy equivalence.

3 Triangulated Categories

Definition 3.0.4. [Kr] Assume that \mathcal{A} is an additive category with an equivalence $\mathcal{F} : \mathcal{A} \to \mathcal{A}$. A triangle (f, g, h) in \mathcal{A} is a sequence of morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \mathcal{F}(X)$ for all objects X, Y and Z in \mathcal{A}.

A morphism between two triangles (f_1, g_1, h_1) and (f_2, g_2, h_2) is a triple (k_1, k_2, k_3) of morphisms in \mathcal{A} making the following diagram commute.

\[
\begin{array}{ccc}
X & \xrightarrow{f_1} & Y \\
\downarrow{k_1} & & \downarrow{k_2} \\
X' & \xrightarrow{f_2} & Y'
\end{array}
\quad\quad
\begin{array}{ccc}
Y & \xrightarrow{g_1} & Z \\
\downarrow{k_3} & & \downarrow{\mathcal{F}(k_1)} \\
Y' & \xrightarrow{g_2} & Z'
\end{array}
\quad\quad
\begin{array}{ccc}
Z & \xrightarrow{h_1} & \mathcal{F}(X) \\
\downarrow{k_3} & & \downarrow{k_3} \\
Z' & \xrightarrow{h_2} & \mathcal{F}(X')
\end{array}
\]

The category \mathcal{A} is called pre-triangulated if it has a class of exact triangles satisfying the following conditions.

1. A triangle is exact if it is isomorphic to an exact triangle.
2. For all objects X in \mathcal{A}, the triangle $0 \xrightarrow{} X \xrightarrow{id} X \xrightarrow{} 0$ is exact.
3. Each morphism $f : X \to Y$ can be completed to an exact triangle (f, g, h).
4. A triangle (f, g, h) is exact if and only if the triangle $(g, h, -\mathcal{F}(f))$ is exact.
5. Given two exact triangles (f_1, g_1, h_1) and (f_2, g_2, h_2), each pair of maps k_1 and k_2 satisfying $k_2 \circ f_1 = f_2 \circ k_1$ can be completed to a morphism:

\[
\begin{array}{ccc}
X & \xrightarrow{f_1} & Y \\
\downarrow{k_1} & & \downarrow{k_2} \\
X' & \xrightarrow{f_2} & Y'
\end{array}
\quad\quad
\begin{array}{ccc}
Y & \xrightarrow{g_1} & Z \\
\downarrow{k_3} & & \downarrow{\mathcal{F}(k_1)} \\
Y' & \xrightarrow{g_2} & Z'
\end{array}
\quad\quad
\begin{array}{ccc}
Z & \xrightarrow{h_1} & \mathcal{F}(X) \\
\downarrow{k_3} & & \downarrow{k_3} \\
Z' & \xrightarrow{h_2} & \mathcal{F}(X')
\end{array}
\]

\mathcal{A} is a triangulated category if in addition it satisfies the following axiom.
6. **The Octahedral Axiom**: Given exact triangles \((f_1, f_2, f_3), (g_1, g_2, g_3)\) and \((h_1, h_2, h_3)\) with \(h_1 = g_1 \circ f_1\), there exists an exact triangle \((k_1, k_2, k_3)\) making the following diagram commutative.

\[
\begin{array}{ccc}
X & \xrightarrow{f_1} & Y \\
\downarrow h_1 & & \downarrow g_1 \\
X & \xrightarrow{f_2} & U \\
\downarrow g_2 & & \downarrow h_2 \\
Y & \xrightarrow{f_3} & \mathcal{F}(X) \\
\downarrow h_3 & & \downarrow g_3 \\
V & \xrightarrow{k_1} & \mathcal{F}(X)
\end{array}
\]

\[\mathcal{F}(Y) \xrightarrow{\mathcal{F}(f_2)} \mathcal{F}(U)\]

Remark 3.0.1. If \(A\) is a pretriangulated category, then \(A^{op}\) is a pretriangulated category, too.

4 The Localization of A Category

Definition 4.0.5. [Kr] Assume that \(A\) is a category and \(F\) is a class of maps in \(A\). \(F\) is a localizing class if the following conditions are satisfied.

1. If \(f, g\) are composable maps in \(F\), then \(g \circ f\) is in \(F\).

2. The identity map \(id_A\) is in \(F\) for all \(A \in A\).

3. If \(f : A \rightarrow B\) is in \(F\), then every pair of maps \(B' \rightarrow B\) and \(A \rightarrow A''\) in \(A\) can be completed to a pair of commutative diagrams;

\[
\begin{align*}
A' & \longrightarrow A \quad A \longrightarrow A'' \\
\downarrow f' & \quad \downarrow f \\
B' & \longrightarrow B \quad B \longrightarrow B''
\end{align*}
\]

such that \(f'\) and \(f''\) are in \(F\).

4. If \(f, g : A \rightarrow B\) are maps in \(A\), then there is some \(h : A' \rightarrow A\) in \(F\) with \(f \circ h = g \circ h\) if and only if there is some \(k : B \rightarrow B''\) in \(F\) with \(k \circ f = k \circ g\).

Definition 4.0.6. [Kr] Assume that \(A\) is a category and \(F\) is a class of maps in \(A\). The localization of \(A\) with respect to \(F\) is a category \(A[F^{-1}]\) together with a functor \(\mathcal{F} : A \rightarrow A[F^{-1}]\) such that \(\mathcal{F}(f)\) is an isomorphism for all \(f\) in \(F\) and any functor \(G : A \rightarrow B\) such that \(G(f)\) is an isomorphism for all \(f\) in \(F\) factors uniquely through \(\mathcal{F}\).

We can always find a localization like that.
Definition 4.0.7. Assume that \mathcal{A} is a category and F is a localizing class. The objects of $\mathcal{A}[F^{-1}]$ are the objects of \mathcal{A}. The morphisms $A \to B$ in $\mathcal{A}[F^{-1}]$ are equivalence classes of diagrams $A \xrightarrow{f} B' \xrightarrow{g} B$ with the morphism f in F for all objects A and B in the category $\mathcal{A}[F^{-1}]$. We will call those morphisms as regular roofs.

A pair (f, g) is also called a fraction because it is written as $g \circ f^{-1}$ in $\mathcal{A}[F^{-1}]$.

Remark 4.0.2. The functor $\mathcal{F} : A \to \mathcal{A}[F^{-1}]$ sends a map $f : A \to B$ to the pair (id_A, f).

Definition 4.0.8. (f, g) and (f', g') are equivalent if there exists a commutative diagram with f'' in F;

5 Composition of Two Roofs

Definition 5.0.9. [Al] Assume that \mathcal{A} is an abelian category. $K(\mathcal{A})$ is a category whose objects are the objects in $C(\mathcal{A})$ and the set of morphisms is

$$\text{Hom}_{K(\mathcal{A})}(A, B) = \text{Hom}_{C(\mathcal{A})}(A, B) / \sim$$

where \sim is homotopy relation.

If $f \circ g \sim id$ in $C(\mathcal{A})$, then $f \circ g = id$ in $K(\mathcal{A})$. As a result, homotopy equivalences in $C(\mathcal{A})$ become isomorphisms in $K(\mathcal{A})$ and we say that $K(\mathcal{A})$ is obtained by inverting all homotopy equivalences in $C(\mathcal{A})$. It is an additive category, but not abelian in general since homotopic maps don’t have same kernels and cokernels.

In [Kr], H. Krause proves that $K(\mathcal{A})$ is a triangulated category.

Remark 5.0.3. The set of quasi isomorphisms in $K(\mathcal{A})$ for a given abelian category \mathcal{A} forms a localizing class.

Theorem 5.0.2. [Al] Assume that \mathcal{A} is an abelian category and we have two morphisms $L \xrightarrow{\alpha} K$ and $M \xrightarrow{\beta} K$ with β is a quasi isomorphism for objects L and M in $K(\mathcal{A})$. Then, there exists a cochain complex K, morphisms $K \to L$ which is quasi isomorphism
and $K \to M$ in $K(A)$ such that the following diagram commutes.

$$
\begin{array}{c}
K \\
\gamma_2 \\
\downarrow \\
L \\
\alpha \\
\downarrow \\
K
\end{array}
\quad
\begin{array}{c}
\gamma_1 \\
\downarrow \\
M \\
\beta \\
\downarrow \\
K
\end{array}
$$

(1)

Proof. Assume that γ is the composition $L \longrightarrow K \longrightarrow MC(\beta)$, $K = MC(\gamma)[-1]$ and $K^i = L^i \oplus M^i \oplus K^{i-1}$. We define morphisms $K^i \to L^i$, $(l, m, k) \to l$ and $K^i \to M^i$, $(l, m, k) \to -m$ as in [Al].

We want to prove that L and M are connected by a regular roof as well.

For the rest of the proof, we need to show that the Diagram 1 commutes.

$H^\ast(M) \cong H^\ast(K)$ since β is a quasi isomorphism. This implies that $MC(\beta)$ is exact, so $H^\ast(MC(\beta)) = 0$.

$$
MC(\beta)^i = M[1]^i \oplus K^i = M^{i+1} \oplus K^i,
$$

$$
d^i_{MC(\beta)}: MC(\beta)^i \to MC(\beta)^{i+1},
$$

$$
d^i_{MC(\beta)}(m, k) = (-d^{i+1}_M, \beta^{i+1}(m) + d^i_K(k)).
$$

We define $\gamma^i(l) = (0, \alpha^i(l))$ and

$$
MC(\gamma)^i = L[1]^i \oplus M^{i+1} \oplus K^i = L^{i+1} \oplus M^{i+1} \oplus K^i,
$$

where $d^i_{MC(\gamma)} : MC(\gamma)^i \to MC(\gamma)^{i+1}$ with

$$
d^i_{MC(\gamma)}(l, m, k) = (-d^{i+1}_L(l), \gamma^{i+1}(l) + d^i_{MC(\beta)}(m, k)) =
$$

$$
(-d^{i+1}_L(l), -d^{i+1}_M(m), \alpha^{i+1}(l) + \beta^{i+1}(m) + d^i_K(k)).
$$

$K = MC(\gamma)[-1],

$$
MC(\gamma)[-1]^i = MC(\gamma)^{i-1} = L^i \oplus M^i \oplus K^{i-1} = K^i
$$

and $d^i_K = -d^{i-1}_{MC(\gamma)}$ with

$$
d^i_K = (d^i_L(l), d^i_M(m), -\alpha^i(l) - \beta^i(m) - d^{i-1}K(k)).
$$

Assume that $h^i : K^i \to K^{i-1}$ takes (l, m, k) to $-k$. We need to show that

$$
\alpha^i \circ \gamma_2^i - \beta^i \circ \gamma_1^i = d^{i-1}_K \circ h^i + h^{i+1} \circ d^i_K.
$$
for all $i \in \mathbb{Z}$ which shows that $\alpha \circ \gamma_2$ and $\beta \circ \gamma_1$ are homotopic maps in $K(A)$. This will show that they are same maps.

For all $(l, m, k) \in K^i$,

$$(\alpha^i \circ \gamma^i_2 - \beta^i \circ \gamma^i_1)(l, m, k) = \alpha^i(\gamma^i_2(l, m, k)) - \beta^i(\gamma^i_1(l, m, k)) = \alpha^i(l) - \beta^i(-m) = \alpha^i(l) + \beta^i(m)$$

since A is additive. On the other hand,

$$(d^{i-1}_K \circ h^i + h^{i+1} \circ d^i_K)(l, m, k) = d^{i-1}_K(h^i(l, m, k)) + h^{i+1}(d^i_N(l, m, k)) = d^{i-1}_K(-k) + \alpha^i(l) + \beta^i(m) + d^{i-1}_K(k) = \alpha^i(l) + \beta^i(m).$$

This shows the maps are homotopic and the diagram is commutative.

We need to show that γ_2 is a quasi isomorphism. We have an exact triangle;

$$\begin{array}{ccc}
L & \rightarrow & L[1] + MC(\beta) \\
\downarrow & & \downarrow \\
MC(\beta) & \rightarrow & MC(\beta)
\end{array}$$

This triangle is isomorphic to an exact triangle;

$$\begin{array}{ccc}
MC(\beta) & \rightarrow & MC(\beta) \\
\downarrow & & \downarrow \\
L[1] & \rightarrow & L[1] + MC(\beta)
\end{array}$$

Then, we take its cohomology and the triangle still will be exact.

$$\begin{array}{ccc}
H^*(MC(\beta)) & \rightarrow & H^*(MC(\beta)) \\
\downarrow & & \downarrow \\
H^*(L[1]) & \rightarrow & H^*(L[1] + MC(\beta))
\end{array}$$

$H^*(MC(\beta)) = 0$, so $H^*(L[1]) \cong H^*(L[1] + MC(\beta))$ and

$$L[1] + MC(\beta) = L[1] + M[1] + K = K[1].$$

Consequently, $H^*(L[1]) \cong H^*(K[1])$. This means $H^*(L) \cong H^*(K)$, hence γ_2 is a quasi isomorphism. □
The pair \((f \circ f'', \ g' \circ g'')\) is the composition of two pairs \((f, g)\) and \((f', g')\) as in the following commutative diagram;

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B' & \xrightarrow{g} & C' & \xrightarrow{g'} & C \\
\downarrow{f''} & & \downarrow{g''} & & \downarrow{f''} & & \downarrow{g''} \\
B' & \xrightarrow{f'} & C'' & \xleftarrow{g'} & C \\
\end{array}
\]

References

[Al] P. Aluffi, Algebra: Chapter 0, Graduate Studies in Mathematics, AMS, 104 (2009), 512-dc22.

[Kr] H. Krause, Derived Categories, Resolutions, and Brown Representability, arxiv: math/0511047v3, 2006.