Association Between Osteoarthritis and Water Fluoride Among Tongyu Residents, China, 2019: a Case-Control of Population-Based Study

Alphonse Sowanou1 · Xinyue Meng1 · Nan Zhong1 · Yongzheng Ma1 · Ailin Li1 · Jian Wang1 · Hanying Li1 · Junrui Pei1 · Yanhui Gao1

Received: 22 July 2021 / Accepted: 20 September 2021 / Published online: 28 September 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Fluoride is an environmental chemical that has adverse effects on articular cartilage, probably increasing osteoarthritis (OA) risk. However, this association still needs more epidemiological evidence to clarify. The aim of this study was to determine the relationships between chronic fluoride exposure and OA risk among the residents living in Tongyu County, China, 2019, with a frequency-matched case-control study (186 OA patients and 186 healthy participants). The results showed that urinary fluoride (UF) (2.73 ± 1.18 mg/L) was significantly higher in OA patients compared to the controls (2.35 ± 1.24 mg/L) (p < 0.002). After adjustment, the odds ratios (ORs) with 95% confidence intervals (95% CIs) between the OA risk and fluoride were calculated by the unconditional logistic regression. In full sample analysis, a 1 mg/L increase in UF level was associated with a 27% higher risk of OA (1.06–1.52, p = 0.008), and 4th quarter’s participants were associated with higher risk when compared to 1st quarter (OR: 2.46, 95% CI: 1.34–4.57, p = 0.003). In stratified analysis, compared to 1st quarter, 4th quarter’s participants were 4 times more likely to have OA (1.86–8.82, p < 0.001) in the non-obese group and 7.7 times more likely to have OA (2.58–25.05, p < 0.001) among adults ≤ 60 years. In conclusion, excessive exposure of water fluoride may increase OA risk, and could have more impact on the specific population such as non-obese, and adult aged ≤ 60 years.

Keywords Arthritis · Knee osteoarthritis · Urine fluoride · Fluorosis · Community-based study

Introduction
Osteoarthritis (OA) is the most chronic and prevalent ageing joint disease which does not have an effective treatment proven to delay disease progression. Individual with OA experiences pain, stiffness, swelling, and disability [1, 2]. According to the findings from the Global Burden of Disease Study 2017, approximately 61.2 million individuals were suffering from OA in China [3]. However, the cause of OA remains unclear until now.

Fluoride is a compound that can be found in the air, rocks, soil, and water, and it is both beneficial and harmful to bone health [4, 5]. Fluoride in ground water is a leading source of fluoride exposures to people, which causes skeletal fluorosis (SF) in the population when consumed excessively [6–8]. SF is mainly the manifestation of fluorosis, and a crippling disease induced by excessive accumulation of fluoride in the bone tissues which is caused by excess intake of fluoride through drinking water/food products/industrial pollutants over a long period [9–12]. SF manifests by chronic joint pain, backache, stiffness and rigidity of the spine, calcification of ligaments, physical limitations, inadequate labor capacity, and disability according to the stage of evolution [13–16]. These symptoms are very similar to OA, making differential diagnosis more difficult. As Roschger’s team concluded in 1995, SF can be a very sneaky disease highlighting the difficulty of its diagnostic [17]. The observations made in the endemic areas suggest that fluoride can damage articular cartilage...
and even worsen OA’s symptoms [18, 19]. Several studies have provided clues to a probable link between fluoride and OA. The works including radiological analysis studies and total arthroplasty studies for the treatment of hip and knee severe OA due to fluorosis which have shown that extensive degenerative changes in articular cartilage could occur in a patient with fluorosis [18, 20–22]. An ecological study in fluorosis-affected area (China) found that the incidence of OA in the fluorosis area was remarkably higher than in either the adjacent non-endemic area or the nation as a whole [23]. Additionally, another ecological study in which 56 endemic fluorosis patients were matched in age and sex to 40 non-endemic control patients suggested that endemic fluorosis may increase the severity of knee OA and cause OA before SF is obvious. And the radiological severity of knee OA and osteophytes sign were significantly higher in endemic fluorosis group than in control group [19]. In conversely, US health authorities still assume that fluoride does not cause arthritis symptoms before the traditional bone changes (osteosclerosis) of fluorosis are evident on X-ray [24]. Moreover, the US National Research Council review concluded that only fluoride at high therapeutic doses can cause nodules in articular cartilage and not at environmental doses [25]. Additionally, the above conflicting was also showed in two reports of fluoride at therapeutic doses in rheumatoid patients. One of them reported that fluoride exacerbated rheumatoid arthritis symptoms [26], but it was well tolerated in the other case [27]. Taken together, the present results give clue of the possible link between fluoride and OA; however, the conclusions are not consistent and still need further the evidence of epidemiological studies.

At present, the evidence for the association between fluoride and OA is not very strong, because the few works on the topic found in literature are only ecologic and case-report studies. Therefore, to address this weakness, we conducted a population-based case–control study in 2019 with purpose of evaluating whether fluoride chronic exposure is associated with the risk of OA in population in order to strengthen epidemiological evidence.

Materials and Methods

Study Population and Design

A population-based frequency-matched case–control study with two-step recruitment was carried out in Tongyu County (Baicheng city), Jilin province, as one of endemic fluorosis areas in China. In the first stage of the recruitment, four towns in Tongyu County were investigated from November 2019 to January 2020 using cluster sampling. The stratified random sampling was used to recruit 26–86 years old permanent residents at least 10 years (640 participants). All participants were born and raised in the local area. Subjects with incomplete data, rheumatoid arthritis, prior joint injury, and trauma (22 participants) were excluded. In the second stage, the OA patients (cases) were diagnosed from the remaining 618 participants by two independent evaluators according to the X-ray examination. To remove any selection bias, 186 consecutive and identical OA patients diagnosed by both radiologists were selected and then matched in sex to 186 healthy participants (see additional file, Figure 1). The frequency of sex was the same in the two groups (115 females and 71 males). Finally, the fluoride analysis of the 372 subjects was done in order to avoid any selection bias due to fluoride status at individual level. Sample size was calculated from an online Open Source Epidemiologic Statistics for Public Health [28], with 59.03% as OA prevalence from the fluorosis-afflicted area in China [23] and with the desired CI of 95%.

Collection of Data, Biological, and Radiological Samples

Participants were investigated through face-to-face interview using a structured questionnaire administered uniformly by trained investigators. The questionnaire included demographic information, anthropometric measures, drinking water information, medical history, diet and behaviors, and calcium and vitamin D supplementation information.

For all the 618 consenting participants, a single standing, anteroposterior radiograph of both the knee and elbow was performed in the Baicheng central hospital. The knee and elbow OA subtypes were selected in this study because both joints sites are the most frequently reported in the endemic area [19, 29]. Also, knee OA is the most frequent in normal situation and again with severe complications [30, 31].

About 50-mL spot urine samples (non-standard collection and first-catch urine in the morning) were collected from each participant in precleaned, labelled polythene tubes. All samples were kept in a cooled ice box and then sent immediately to laboratory. Samples were stored at –20 °C until analysis.

Fluoride Exposure Analysis

The 2019 national surveillance analysis of endemic fluorosis showed that fluoride concentration for Tongyu communities’ water samples ranged from 0.94 to 2.30 mg/L (1.49 mg/L as mean) while China’s national standard limit is 1.2 mg/L (GB5749-2006). The population of the study is mainly supplied by 5 water sources, namely 2 public tap water, 1 public shaft water, personal wells, and bottled water. An individual’s fidelity to a single water source is very rare and residents arbitrarily change their water source up to 3 in the same year or after a period of time. Hence, we considered UF as
the consistent and reliable parameter for measuring fluoride exposure at the individual level. UF has been shown to be an accurate evaluation of fluoride ingestion on a population basis [32].

Urine fluoride content was measured at the Key Lab of Etiology and Epidemiology, Center for Endemic Disease Control, Harbin Medical University, by fluoride ion-selective electrode. The operating process was performed according to the China standard for determination of fluoride in urine [33]. We added 5-mL ionic strength adjustment buffer to each urine sample (5 mL) for controlling the pH of the solution at 5.0–5.5 to optimize the determination conditions. Samples were retested twice and the mean value of each sample was used for analysis.

Community water fluoride concentration 2019 data was obtained from the local Center for Endemic Disease Control of Baicheng city, Jilin province, China, and served as an ecologic measure of exposure.

X-Ray Examination

Each knee and elbow was evaluated for the presence of lateral or medial osteophytes, joint space narrowing, sclerosis, and cysts. Both joints were also graded for overall evidence of radiographic OA according to the Kellgren and Lawrence criteria (grade 0 to 4, where 0 = none; 1 = possible osteophytes only; 2 = definite osteophytes and possible joint space narrowing; 3 = moderate osteophytes and or definite joint space narrowing; and 4 = large osteophytes, severe joint space narrowing, and or bony sclerosis) [34]. The OA patient (case) was defined as radiographic OA if they had a Kellgren/Lawrence grade of ≥2 in at least one knee or one elbow, and the healthy participant (control) when the Kellgren/Lawrence grade was <2. The X-ray films were independently evaluated by two experienced radiologists. The radiologists had no knowledge about the participants’ ages and their names.

To ensure the reliability of the diagnosis, all films were brought to the radiological unit of the 2nd affiliated hospital outpatient’s department of Harbin Medical University. They were then read by an experienced, academically based bone and joint radiologist using the same Kellgren and Lawrence criteria. Only the films with OA diagnosis from both radiologists were accepted and considered for this study.

Potential Confounders and Effect Modifiers

Several studies have found age, gender, and obesity to be clearly associated with the occurrence of OA as person level risk factor including a recent systematic and meta-analysis study which included 88 studies [30, 35–37]. They reported that OA risk increases in female group, obese group, and with age. Some dietary factor such as calcium and vitamin D has been suspected to be associated with OA [37].

To eliminate the interference of sex factor among the two groups, controls were selected according to the proportion of female and male sex in cases. Stratified and multivariable analyses were performed in data analysis stage to control the other factors (see the “Statistical Analysis” section). Calcium and vitamin D supplementation information were collected by the questionnaire.

Ethics Statement

This study was approved by the Ethical Review Board of Harbin Medical University (HMUIRB20120021). The study has obtained the necessary approvals from the authorities of Baicheng city. Written informed consent was obtained from each participant of the study population.

Statistical Analysis

All statistical analyses were performed using R software version 4.0.3 [38]. Two-tailed p < 0.05 was used for all tests as significance level.

The body mass index (BMI) was calculated according to height and weight by the formula: BMI (kg/m²) = weight/height². Population characteristics of cases and controls were compared applying Student’s t test for continuous variables and Pearson chi-squared test (age, gender, medical history, sport, smoking, alcohol, filter use, and education) and Fisher’s exact test (supplementation, ethnicity, and occupation) for qualitative variables. We presented the results as mean with standard deviation (SD) and number and percent as appropriate. ORs along with their 95% CIs were derived from all logistic regression models and presented. Based on the characteristics of the study population and the literature, age, gender, BMI, duration of living, daily water drunk, income, sport, and filter use were selected as confounding and or third factors.

Unconditional logistic regression was used to assess the association between fluoride exposure and the risk of OA. To have a better understanding of the quantitative relationship between fluoride exposure and OA risk, we used UF as continuous variable, dichotomous variable (with 2.38 mg/L median concentration as cut-off value), and ordinal variable (1st quarter from 0.35 to 1.61 mg/L, 2nd quarter from 1.61 to 2.38 mg/L, 3rd quarter from 2.38 to 3.30 mg/L and 4th quarter from 3.30 to 7.01 mg/L) in simple logistic regression analysis. Subsequently, we kept UF as an ordinal and continuous variable in multiple logistic regression analysis.

To limit confounding/effect modifiers influence and explore the independent effect of fluoride exposure, we performed stratified analysis by gender, age, and BMI, and UF was used as an ordinal variable. Multiple logistic regression
analysis was done in full sample and stratified group according to gender, age, and BMI. Age was divided into two groups, adult ≤ 60 years old and adult over 60 years. BMI variable was divided into two groups, no-obese and obese, using Chinese criteria of obesity (no-obese BMI < 27 kg/m², and obese BMI ≥ 27 kg/m²). To evaluate the magnitude of fluoride effect in these specific groups, we performed further stratified analysis in non-obese adult women ≤ 60 years (age ≤ 60 years and BMI < 27 kg/m² and female sex). Due to collinearity issue, we did not include age and duration of living in the model at the same time.

Results

Demographic Characteristics

A total of 372 participants, from which 186 OA cases (OA patients) and 186 controls (healthy participants), were enrolled in this study. The results showed that UF was significantly higher in the cases (2.73 ± 1.18 mg/L) compared to the control groups (2.35 ± 1.24 mg/L) (p < 0.002). Besides, the age in the cases group was significantly higher than that in the control group (63.22 ± 7.11 years versus 58.77 ± 10.23 years), and sex was evenly distributed in the two groups. The population characteristics in cases and controls are summarized and compared in Table 1. Sample descriptive statistics for fluoride exposure and OA subtype rate are shown in Tables 2 and 3, respectively.

Assessing Association Between Fluoride Exposure and OA Outcome

In simple logistic regression analysis shown in Table 4, from model 1 (UF as continuous variable), higher UF concentrations were associated with higher odds of getting OA (OR = 1.30, 95% CI: 1.09–1.55, p = 0.003). In other words, a 1 mg/L increase in UF level was associated with 30% higher risk of getting OA diagnosis in this sample. Model 2 (UF as dichotomous variable) showed that high level group (HLG) subjects were associated with 68% higher risk of getting OA as compared to low level group (LLG) subjects (OR = 1.68, 95% CI: 1.11–2.53, p = 0.013). For model 3 (UF as ordinal variable), the risk of getting OA increased with increasing fluoride concentration by category (≤ 1.61, 1.61–2.38, 2.38–3.30, and > 3.30 mg/L). Among the 2nd, 3rd, and 4th quarters, the odds of getting OA for the 3rd and 4th quarters were nearly 2 times and more than 2.5 times the odds as compared to the 1st quarter reference, respectively (OR = 1.87, 95% CI: 1.05–3.38, p = 0.034 and OR = 2.55, 95% CI: 1.42–4.63, p = 0.001).

In the multiple logistic regression analysis (Table 5), after adjusting for duration of living, daily water drunk, income, sport, and filter use covariates, we found that 3rd and 4th quarters were associated with higher risk of getting OA as compared to 1st quarter reference (OR = 1.84, 95% CI: 1.01–3.39, p = 0.048; OR = 2.51, 95% CI: 1.37–4.67, p = 0.003, respectively). However, when the set of factors sex, age, and BMI was introduced, only 4th quarter’s subjects were associated with a significant risk of getting OA (OR = 2.46, 95% CI: 1.34–4.57, p = 0.003). Using UF as continuous variable (Table 6), we found after adjustment for all covariates that a 1 mg/L increase in UF level was associated with 27% higher risk of getting OA (OR = 1.27, 95% CI: 1.06–1.52, p = 0.008).

Evaluation of Gender, Age, and BMI-Specific Association

In stratified analysis adjusted for covariates shown in Table 7, sex did not modify the association between fluoride exposure and OA. The 4th quarter’s participants were associated with higher risk of OA in female as well as in male group when compared to 1st quarter’s participants after adjustment (OR = 2.18, 95% CI: 1.01–4.79, p = 0.048; OR = 4.76, 95% CI: 1.59–15.30, p = 0.006, respectively). Before and after adjustment for covariates, body weight modified association between fluoride exposure and OA such that 4th quarter’s participants were associated with higher risk of getting OA when compared to 1st quarter’s participants among non-obese adult women ≤ 60 years (Table 7). We found a very strong association, such that before adjustment, 4th quarter’s participants were 10 times more likely to have OA and after adjustment 12 times more likely to have OA disease as compared to 1st quarter’s participants (OR = 10.22, 95% CI: 2.24–99.29, p = 0.004; OR: 12.55, 95% CI: 2.15–99.65, p = 0.008, respectively).
Discussion

To date, only two ecological studies [19, 23] really attempted to link fluoride exposure to the induction of OA, showing how much data is lacking to discuss this topic. We examined the association between fluoride and OA risk among residents living in Tongyu County (Baicheng city, Jilin province, China), an endemic fluorosis area where water fluoride ranged from 0.94 to 2.30 mg/L, and adjusted
for factors that can influence fluoride exposure/metabolism as well as OA outcome. Instead of water fluoride exposure rate at individual level, we were able to assess exposure at community level and used UF as biomarker due to the long-term exposure with unchanged residence place. UF has been demonstrated as a precise assessment of fluoride ingestion on a population basis [32].

We found in logistic regression analysis that a 1 mg/L increase in UF level was associated with a 27% higher risk of getting OA disease after adjustment. With UF as an ordinal variable, OA risk increased with increasing fluoride concentration by category. The participants in the 4th quarter were associated with a higher risk (OR = 2.55) of getting OA disease as compared to the 1st quarter (group reference). The association remained significant after adjustment (OR = 2.46). These results suggest that fluoride exposure from water source could be a serious independent predictor of OA, particularly as UF concentration increases in an individual, the risk of developing OA increases. Given the scarcity of data on the topic, additional and cohort studies are needed to carefully explore this eventuality.

Articular chondrocytes in the joint are one of the key chondrocytes cell types that may be subject to pathological changes. In most of the fluoride in the body, about 99% is contained in bone in the form of hydroxyapatite crystals [25]. Logically, mineral precipitates containing fluoride could occur in a joint if the concentration of fluoride and other cations such as calcium, magnesium, and aluminum achieved a very high concentration. As reported by Bang et al. in 1985 [39], a case of 74-year-old female who was on
fluoride therapy for osteoporosis for 30 months had developed a layer of calcified cartilage containing 3.9 mg/kg by ash weight in her femoral head. This underlines the possibility that excess fluoride can cause damage to the joints. Likewise, in a study evaluating patient’s groups with a greater number of subjects, Duell and Chesnut [26] found that the use of fluoride at therapeutic doses in rheumatoid patients exacerbated symptoms of rheumatoid arthritis. Another explanation may be the inhibition of osteoblast cell activity. Fluoride stimulates bone cell proliferation by direct inhibition of osteoblastic acid phosphatase activity [40] and by enhancing the mitogenic signals of growth factors [41, 42]. The activity of osteoblast cell produces a huge increase in bone formation at the organ level, producing exostoses, calcification of tendons and ligaments, and osteosclerosis [42].

Table 7 Association between fluoride exposure level and OA in stratified analysis before and after adjustment, Tongyu County, 2019

Stratification	Unadjusted OR	Adjusted OR				
	N Category (N)	UF (by quartile group)	p value	Category (N)	UF (by quartile group)	p value
		OR (95% CI)			OR (95% CI)	
Gender						
Female (a)	230	1st Q (63)	1 (reference)	1st Q (63)	1 (reference)	
		2nd Q (64)	1.26 (0.62, 2.56)	2nd Q (64)	1.19 (0.56, 2.52)	0.638
		3rd Q (45)	2.28 (1.05, 5.04)	3rd Q (45)	2.37 (1.03, 5.57)	0.043*
		4th Q (58)	2.15 (1.04, 4.50)	4th Q (58)	2.18 (1.01, 4.79)	0.048*
Male (a)	142	1st Q (31)	1 (reference)	1st Q (31)	1 (reference)	
		2nd Q (28)	3.24 (1.13, 9.77)	2nd Q (28)	5.20 (1.64, 17.93)	0.006*
		3rd Q (48)	1.77 (0.70, 4.68)	3rd Q (48)	2.05 (0.74, 5.94)	0.169
		4th Q (35)	3.55 (1.31, 10.17)	4th Q (35)	4.76 (1.59, 15.30)	0.006*
BMI						
Obese (b)	114	1st Q (24)	1 (reference)	1st Q (24)	1 (reference)	
		2nd Q (35)	1.11 (0.39, 3.19)	2nd Q (35)	1.25 (0.41, 3.88)	0.688
		3rd Q (26)	1.61 (0.53, 5.02)	3rd Q (26)	2.10 (0.63, 7.25)	0.228
		4th Q (29)	0.83 (0.27, 2.49)	4th Q (29)	1.06 (0.32, 3.48)	0.919
Non-obese (b)	258	1st Q (70)	1 (reference)	1st Q (70)	1 (reference)	
		2nd Q (57)	1.98 (0.97, 4.10)	2nd Q (57)	1.86 (0.88, 3.99)	0.105
		3rd Q (67)	1.97 (0.99, 3.96)	3rd Q (67)	1.76 (0.84, 3.72)	0.131
		4th Q (64)	4.21 (2.07, 8.84)	4th Q (64)	3.99 (1.86, 8.82)	0.000*
Age						
Adult over 60	215	1st Q (44)	1 (reference)	1st Q (44)	1 (reference)	
(c)		2nd Q (53)	1.07 (0.47, 2.41)	2nd Q (53)	1.25 (0.54, 2.91)	0.601
		3rd Q (60)	0.93 (0.42, 2.03)	3rd Q (60)	1.17 (0.50, 2.70)	0.711
		4th Q (58)	1.15 (0.52, 2.57)	4th Q (58)	1.29 (0.56, 2.99)	0.538
Adult ≤60	157	1st Q (50)	1 (reference)	1st Q (50)	1 (reference)	
(c)		2nd Q (39)	2.50 (0.98, 6.61)	2nd Q (39)	3.11 (1.10, 9.18)	0.034*
		3rd Q (33)	3.76 (1.44, 10.26)	3rd Q (33)	4.90 (1.66, 15.39)	0.005*
		4th Q (35)	6.00 (2.34, 16.41)	4th Q (35)	7.69 (2.58, 25.05)	0.000*
Non-obese adult	72	1st Q (26)	1 (reference)	1st Q (26)	1 (reference)	
women ≤60 (d)		2nd Q (19)	2.74 (0.58, 15.08)	2nd Q (19)	4.58 (0.84, 29.86)	0.086
		3rd Q (13)	4.79 (0.96, 28.07)	3rd Q (13)	8.06 (1.22, 67.29)	0.037*
		4th Q (14)	10.22 (2.24, 59.29)	4th Q (14)	12.55 (2.15, 99.65)	0.008*

* mean p value less than or equal to 0.05. N sample size of each stratified group.
(a) Adjusted for BMI, age, income, daily water drunk, sport, and filter use
(b) Adjusted for
age, gender, income, daily water drunk, sport, and filter use
(c) Adjusted for BMI, gender, income, duration of living, daily water drunk, sport, and filter use
(d) Adjusted for duration of living, daily water drunk, income, sport, and filter use
Q1: [0.35, 1.61], Q2: [1.61, 2.38], Q3: [2.38, 3.30], and Q4: [3.30, 7.01]
was demonstrated that patients with skeletal fluorosis had a greater severity of knee OA symptoms and osteophyte formation than age- and sex-matched control group patients. In our study, OA proportion increased as UF level increased by category. Everything suggests that people exposed to fluoride have an additional risk of developing OA, even if the entire mechanism is not yet clear. The development of OA relies on an interaction between several factors and so this process may be considered the final product of an interplay between systemic and local factors, genetics, and imbalance in the physiological process [43, 44], which may give the possibility to fluoride to play a certain role knowing that its target tissue is bone and cartilage [25, 39].

Any increase of OA risk in the obese group, female group, and with ageing could be of particular concern because they have been established with an elevated risk [35–37]. We also explored group-specific association and found that a non-obese adult woman ≤ 60 years with UF > 3.30 mg/L is associated with 12.55 times greater odds of getting OA disease as compared to one with UF ≤ 1.61 mg/L. This suggests that being an adult woman ≤ 60 years and non-obese at the same time is a factor that could allow chronic water fluoride exposure to considerably increase OA risk. Given the lack of studies on the topic, further investigations are needed to draw any conclusion, although association has been estimated in more detail in each group.

After dividing age into two groups of adult ≤ 60 years of age and adult over 60 years, we found an increased risk of OA in adult ≤ 60-year group. Before adjustment, 4th quarter’s participants were 6 times more likely to have OA when compared to 1st quarter’s participants. The association remained even stronger and significant after adjustment (OR = 7.7). This surprising association suggests that an adult under 60 years old is at increased risk (seventhfold) of developing OA once exposed to fluoride as compared to an adult over 60 years old. Bone fluoride concentration tends to increase with age due to the continuous accumulation over time [45, 46]. The potential reason for this is the preferential removal of crystallites with little or no fluoride in the elderly [25]. One would have expected an increased risk of OA in adults over 60-year age group as a result. Maybe the wear and tear of joint structure due to ageing is too evolved to be affected by the additional effect of fluoride, perhaps there is an intervention of other unknown factors.

In the non-obese group analysis, the 4th quarter’s participants were 4.21 times more likely to have OA as compared to the 1st quarter’s participants. Association remained significant after adjustment with 3.99 greater odds of getting OA in 4th quarter’s participants. Meanwhile, no significant association was observed in the obese group. This result means that in the fluoride exposure context, only the non-obese group was at increased risk of OA. It seems that obesity was a stage of impairment where the fluoride effect did not have too much influence. However, additional studies are needed for more exploration as data are sparse. Fluoride adverse effect depends on the magnitude and the length of exposure, and how it behaves in the body, whereas the mechanisms underlying its metabolism and biological effects are not clearly understood yet. Any environmental, biochemical, physiological, and pathological condition which interferes with the absorption or excretion of fluoride will influence its destiny in the body and may ultimately increase the risk of musculoskeletal disorders [47].

Limitations

One limitation of our study is the measurement of exposure rate at the individual level. Even if we measure the concentration of UF for every participant, this may not be directly related to the community water. Of course, the source of exposure is from the community water, but there might probably be some unidentified additional sources of exposure contributing to the exposure rate at the individual level as demonstrated by the difference between mean UF (2.54 ± 1.22 mg/L) and mean community water fluoride (1.49 ± 0.32 mg/L) in the study sample. At this point, we were unable to measure the other sources of exposure such as toothpaste, consumed foods and products locally made, and tea consumption. Different levels of exposure should be taken into account in future investigations. In addition, we observed a close relationship between fluoride exposure and OA outcome with some group-specific associations (non-obese and adult ≤ 60-year group). However, the relatively small sample size and the wide CI in stratified analysis associated with some variable could undermine the strength of this study and point out the lack of precision. Since this concerns the stratified analysis, we therefore encourage further explorations in these specific groups with large sample size. Our results should be interpreted with caution. Also, the cross-sectional nature of this study does not allow us to easily state a direction of the association between fluoride exposure and OA outcome. Given this limitation and the scarcity of evidence on the topic, our findings should be viewed along with others and as hypothesis testing. Ultimately, we recommend more prospective studies with a large sample size as possible to deeply explore the influence of fluoride exposure on OA outcome.

The strength of our study is that we used radiographic OA rather than self-report. We also provided data on OA rate at the individual level in endemic fluorosis areas as well as exposure rate at the individual level (UF concentration) with regard to the community level of exposure. Considering an association between fluoride and OA, our study design is better than the previous ones to address this issue. Finally, it is commonly known that age, gender, and body weight are
personal level risk factors for OA [35–37]. We believe that, by performing stratification analysis on these variables, we had overcome the issue of confounding and effect modification, at least to a certain extent.

Conclusion

Exposure to a high level of fluoride from water may be a serious independent risk factor for OA disease. Our analyses on the exploration of an association between fluoride and OA risk show that sex distorts the association while age and body weight modify it. Our findings suggest an additional effect on the risk of OA, particularly in a non-obese adult woman ≤ 60 years where OA risk is 12-fold. However, our results should be interpreted with caution and we recommend other large-scale cohort studies. Nonetheless, we would like to raise awareness of the healthcare professionals on the possible existence of fluorotic osteoarthritis, especially in endemic fluorosis areas and/or fluoridation areas.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s12011-021-02937-2.

Acknowledgements We would like to thank the residents of Tongyu County especially those participants that have been included in this study. We are grateful to the authorities of Baicheng city and of the local Center of Endemic Disease Control for their supports and assistance. The authors also wish to thank Dr. Justina Ucheorj Omwuka, Dr. Michael Boah and Ms Caselie Akiti for their comments on the draft manuscript.

Author contribution AS—contributed to study design, investigation, UF measurement, statistical analysis, writing (original draft), and interpretation. XM—contributed to investigation, UF measurement, and project management. NZ and YM—contributed to investigation and UF measurement. AL, JW, and HL—contributed to statistical analysis and verification. JP and YG—contributed to conceptualization, resources, funding acquisition, writing (review and editing), and supervision. All authors discussed the results, gave comments, and approved the final manuscript.

Funding This work was supported by the National Natural Science Foundation of China (81773468 and 811302389), the Wu Liande Science Foundation of Harbin Medical University (grant no. WLD-QN1703), and Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province (LBH-Q17092).

Data availability The dataset used and analyzed in this study is available from the authors in reasonable request.

** Declarations**

Ethics approval The study was approved by the Ethical Review Board of Harbin Medical University (HMUIRB20120021). Written informed consent was obtained from each participant of the study population. The study was performed according to the Declaration of Helsinki.

Competing interests The authors declare no competing interests.

References

1. CDC and Arthritis Foundation. A National Public Health Agenda for Osteoarthritis 2010 from https://www.cdc.gov/arthritis/publications/pdf/agenda-osteoarthritis.pdf. Accessed 16 July 2020
2. Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64(6):1697–1707. https://doi.org/10.1002/art.34453
3. Long H, Zeng X, Liu Q, Wang H, Vos T, Hou Y, Lin C, Qiu Y, Wang K, Xing D, Zhang Y, Zhou M, Lin J (2020) Burden of osteoarthritis in China, 1990–2017: findings from the Global Burden of Disease Study 2017. Lancet Rheumatol 2(3):e164–e172. https://doi.org/10.1016/S2665-9913(19)30145-6
4. Jha SK, Singh RK, Damodaran T, Mishra VK, Sharma DK, Rai D (2013) Fluoride in groundwater: toxicological exposure and remedies. J Toxicol Environ Health B Crit Rev 16(1):52–66. https://doi.org/10.1080/10937404.2013.769420
5. Namkaew M, Wiwatanaadate P (2012) Association of fluoride in water for consumption and chronic pain of body parts in residents of San Kamphaeng district, Chiang Mai, Thailand. Trop Med Int Health 17(9):1171–1176. https://doi.org/10.1111/j.1365-3156.2012.03061.x
6. Ghosh A, Mukherjee K, Ghosh SK, Saha B (2013) Sources and toxicity of fluoride in the environment. Res Chem Intermed 39:2881–2915. https://doi.org/10.1080/11164-012-0841-1
7. U.S. EPA (2010) Fluoride: exposure and relative source contribution analysis; 820-R-10–015; Health and Ecological Criteria Division, Office of Water, U.S. Environmental Protection Agency; Washington, DC, USA. Available from: https://www.epa.gov/sites/production/files/2019-03/documents/fluoride-exposure-relative-report.pdf. Accessed 2 Sept 2021
8. International Programme on Chemical Safety, United Nations Environment Programme, International Labour Organization, World Health Organization & IPCS Task Group on Environmental Health Criteria for Fluorine and Fluorides (1984). Fluorine and fluorides. World Health Organization. https://apps.who.int/iris/handle/10665/37288. Accessed 2 Sep 2021
9. Jolly SS, Singh BM, Mathur OC (1969) Endemic fluorosis in Punjab (India). Am J Med 47(4):553–563. https://doi.org/10.1016/0002-9343(69)90186-7
10. Choubisa SL (2001) Endemic fluorosis in southern Rajasthan. India Fluoride 34(1):61–70
11. Gopalakrishnan SB, Viswanathan G, Siva Ilanga S (2012) Prevalence of fluorosis and identification of fluoride endemic areas in Manur block of Tirunelveli District, Tamil Nadu, South India. Appl Water Sci 2:235–243. https://doi.org/10.1007/s13201-012-0043-4
12. Krishnamachari KA (1986) Skeletal fluorosis in humans: a review of recent progress in the understanding of the disease. Prog Food Nutr Sci 10(3–4):279–314
13. Teotia SP, Teotia M (1973) Secondary hyperparathyroidism in patients with endemic skeletal fluorosis. Br Med J 1(5854):637–640. https://doi.org/10.1136/bmj.1.5854.637
14. Pei J, Li B, Liu Y, Liu X, Li M, Chu Y, Yang Q, Jiang W, Chen F, Darko GM, Yang Y, Gao Y (2017) Matrix Metallopeptidase-2 Gene rs2287074 Polymorphism is Associated with Brick Tea Skeletal Fluorosis in Tibetans and Kazaks, China. Sci Rep 7:40086. https://doi.org/10.1038/srep40086
15. Izuora K, Twomby JG, Whittington GM, Demertzis J, Pacifici R, Whyte MP (2011) Skeletal fluorosis from brewed tea. J Clin...
Endocrinol Metab 96(8):2318–2324. https://doi.org/10.1210/jc.2010-2891

16. Waldott George L (1998) The preskeletal phase of chronic fluoride intoxication. International Society for Fluoride research 31(1): p. 13–20. From http://www.fluoridation.com/waldott.htm. Accessed 10 May 2021

17. Roscher P, Fratzi P, Schreiber S, Kalchhauser G, Plenk H, Koller K, Eschbergerj J, Klaushofer K (1995) Bone mineral structure after six years fluoride treatment investigated by backscattered electron imaging (BSEI) and small angle X-ray scattering (SAXS): a case report. Bone 16(3):407. https://doi.org/10.1016/8756-3282/95/00480-8

18. Luo R, Liu RG, Ye C, Yu Y, Guan ZZ (2012) Total knee arthroplasty for the treatment of knee osteoarthritis caused by endemic skeletal fluorosis. Chinese Journal of Tissue Engineering Research From https://fluoridereaustralia.org/wp-content/uploads/2019/08/Luo-2012.pdf. Accessed 10 May 2021

19. Savas S, Cetin M, Akdoğan M, Heybeli N (2001) Endemic fluorosis in Turkish patients: relationship with knee osteoarthritis. Rheumatol Int 21(1):30–35. https://doi.org/10.1007/s002960100132

20. Xu JC, Wang YZ, Xue DM, Xin SZ, Dai RT, Zhang ZL, Cheng X (1987) X-ray findings and pathological basis of bone fluorosis. Chin Med J (Engl) 100(1):8–16

21. Su WM, Liu RG, Ye C, Yu YN, Guan ZZ (2012) Total hip arthroplasty for the treatment of severe hip osteoarthritis due to fluorosis. Chin J Tissue Eng Res 16(9):1543–44

22. Chen X (1988) Radiological Analysis of Fluorotic Elbow Arthritis. J Guiyang Med Coll 13(2):303–305

23. Bao W, Liu N, Gao B, Sun X, Dend Q (2003) Epidemiological Observations on the Relationship between Fluorosis and Osteoarthritis. Chin J Endemiol 22(6):517–518

24. U.S. Department of Health and Human Services Federal Panel on Community Water Fluoridation (2015) U.S. Public Health Service Recommendation for Fluoride Concentration in Drinking Water for the Prevention of Dental Caries. Public Health Rep 130(4):318–31. https://doi.org/10.1177/003335491513000408

25. National Research Council (2006) Fluoride in Drinking Water: A Scientific Review of EPA’s Standards. The National Academies Press, Washington, DC. https://doi.org/10.17226/11571

26. Duell PB, Chesnut CH (1991) Excavation of rheumatoid arthritis by sodium fluoride treatment of osteoporosis. Arch Intern Med 151(4):783–784. https://doi.org/10.1001/archinte.1991.0400040121028

27. Adachi JD, Bell MJ, Bensen WG, Bianchi F, Cividino A, Sebald RJ, Gordon M, Ioannidis G, Goldsmith C (1997) Fluoride therapy in prevention of rheumatoid arthritis induced bone loss. J Rheumatol 24(12):2308–2313

28. Dean AG, Sullivan KM, Soe MM Open Epi: Open Source Epidemiologic Statistics for Public Health, Version. www.OpenEpi.com, updated 2013/04/06. Available from https://www.openepi.com/Menu/OE_Menu.htm. Accessed 16 Jun 2019

29. Czerwinski E, Nowak J, Dabrowska D, Skolarczyk A, Kita B, Ksiezczak M (1988) Bone and joint pathology in fluoride-exposed workers. Arch Environ Health 43(5):340–343. https://doi.org/10.1080/00039896.1988.9934945

30. Heidari B (2011) Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. Caspian J Intern Med 2(2):205–212

31. Spitaels D, Mamoumis P, Vaes B, Sweerts M, Luyten F, Hermens R, Vankrunkelsven P (2020) Epidemiology of knee osteoarthritis in general practice: a registry-based study. BMJ Open 10:e031734. https://doi.org/10.1136/bmjopen-2019-031734

32. Zipkin I, Likins RC, McClure FJ, Steere AC (1956) Urinary fluoride levels associated with use of fluoridated waters. Public Health Rep 71(8):767–772

33. ChineseStandard.net. Determination of fluoride in urine. Ion selective electrode method. Available from https://www.chinesestandard.net/PDF/English.aspx/WST89-2015. Accessed 2 Jan 2020

34. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthritis. Ann Rheum Dis 16(4):494–502. https://doi.org/10.1136/ard.16.4.494

35. Cui A, Li H, Wang D, Zhong J, Chen Y, Lu H (2020) Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine 29–30:100587. https://doi.org/10.1016/j.eclinm.2020.100587

36. Abed Nawar M, Adil Al-Hayali RM (2019) Risk factors of hand osteoarthritis. Int J Dev Res 09(01):25351–25363

37. Palazzo C, Nguyen C, Lefere-Comb MM, Rannou F, Poiradeau S (2016) Risk factors and burden of osteoarthritis. Ann Phys Rehabil Med 59(3):134–138. https://doi.org/10.1016/j.rehab.2016.01.006

38. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. 2020 Vienna, Austria. https://www.R-project.org/. Accessed 10 Oct 2020

39. Bang S, Boivin G, Gerster JC, Baud CA (1985) Distribution of fluoride in calcified cartilage of a fluoride-treated osteoporotic patient. Bone 6(4):207–210. https://doi.org/10.1016/8756-3282(85)90002-x

40. Lau KH, Farley JR, Freeman TK, Baylink DJ (1989) A proposed mechanism of the mitogenic action of fluoride on bone cells: inhibition of the activity of an osteoblastic acid phosphatase. Metabolism 38(9):858–868. https://doi.org/10.1016/0026-0495(89)90232-1

41. Gruber HE, Baylink DJ (1991) The effects of fluoride on bone. Clin Orthop Relat Res 267:264–277

42. Boivin G, Chavassieux P, Chapuy MC, Baud CA, Meunier PJ (1989) Skeletal fluorosis: histomorphometric analysis of bone changes and bone fluoride content in 29 patients. Bone 10(2):89–99. https://doi.org/10.1016/8756-3282(89)90004-5

43. Zhang Y, Jordan JM (2010) Epidemiology of osteoarthritis. Clin Geriatr Med 26(3):355–369. https://doi.org/10.1016/j.cger.2010.03.001

44. Eaton CB (2004) Obesity as a risk factor for osteoarthritis: mechanical versus metabolic. Med Health R I 87(7):201–204

45. Richards A, Mosekilde L, Søgaard C (1994) Normal age-related changes in fluoride content of vertebral trabecular bone–relation to bone quality. Bone 15(1):21–26. https://doi.org/10.1016/8756-3282(94)90886-9

46. Weidmann SM, Weatherell JA (1959) The uptake and distribution of fluoride in bones. J Pathol Bacteriol 78:243–255

47. Buzalaf MAR, Whitford GM (2011) Fluoride metabolism. Monogr Oral Sci 22:20–36. https://doi.org/10.1159/000325107

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.