TECHNICAL NOTE

Improved SNR of Magnetic Resonance Microimaging using a Cooled Resonance Circuit at 0.3T

Hiroshi Nakano1* and Toshiharu Nakai2

1Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology
1–8–31, Midorioka, Ikeda, Osaka 563–8577, Japan
2Neuroimaging & Informatics Lab, Department of Gerontechnology, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
(Received October 15, 2010; Accepted June 1, 2011)

Because it is noninvasive, magnetic resonance microimaging (MRMI) can be used for 3-dimensional measurement of living tissues for cell engineering. Thermal noise in the resonance circuit of the radiofrequency (RF) system of the MRMI cannot become ignored as the signal diminishes in accordance with decreasing sample size, and cooling the RF coil of the receiver circuit can effectively reduce thermal noise. We used a low temperature normal conductor circuit to reduce noise and confirmed improved signal-to-noise ratio for a conventional microimaging system at low B0 field (0.3T) with low cost.

Keywords: cooled, MRMI, SNR

Introduction

Magnetic resonance microimaging (MRMI) can be used for 3-dimensional measurement of living tissues for cell engineering because it is noninvasive. Measurement of small samples at high spatial resolution requires a small field of view (FOV) and, so, a small radiofrequency (RF) coil. Because the signal decreases as the sample size decreases, the thermal noise in the resonance circuit of the RF system cannot become ignored. Cooling the RF coil of the receiver circuit effectively reduces thermal noise.

Two methods have been proposed to reduce the thermal noise of RF circuits; use of a superconductor circuit (including a high temperature superconductor [HTS]) and use of a low temperature normal conductor (LTNC) circuit. Cooling RF circuits to reduce thermal noise of a nuclear magnetic resonance (NMR) equipment is not a new idea.1 The first nuclear magnetic resonance spectroscopy with an LTNC NMR probe cooled by liquid helium was demonstrated in 1979.2 Use of a 20-cm square copper surface coil cooled by liquid nitrogen for whole body imaging at low B0 field (0.15T) achieved an improvement factor of 1.3 signal-to-noise ratio (SNR) for in vivo images of the human lumbar spine with 128 × 128 image matrix.3 Use of a conventional surface coil cooled by Joule-Tomson micro-refrigerator demonstrated an SNR improvement factor of 2.7.4 Use of a superconducting RF system may be expected to show an even higher SNR because the coil resistance is near zero, and such systems have become available for high resolution NMR. These systems can achieve higher sensitivity, and their application in MRMI is reported.5 Blank and associates used surface coil resonators with an HTS and measured Q factor (quality factor) exceeding 50,000.6,7 Using an HTS coil of 2-cm diameter cooled to 30 K for in vivo imaging of a rat brain, Miller and colleagues achieved a nearly 4-fold gain in SNR at 2T compared to that achieved using a warm copper coil.8 However, processing superconducting materials to form a circuit of complex design that maintains superconductivity for small volumes is expensive and technically difficult.

In this study, we investigated the cost-effectiveness of using an LTNC for a conventional microimaging system at a low B0 field (0.3T). We obtained relatively high resolution using a conventional system. We believe that this method will be useful for MRMI.

Theory

The noise generated in the receiver circuit is ther-
normal noise. The Nyquist formula states that the mean square of the thermal noise voltage fluctuations in a conductor is proportional to the product of its absolute temperature \(T \) and its resistance \(R \):

\[
\langle V \rangle^2 = 4k_B T R \Delta f,
\]

where \(k_B \) is Boltzmann’s constant and \(\Delta f \) is the frequency bandwidth of the measurement. When the receiver circuit is a series resonance circuit, the \(Q \) of the resonance circuit is:

\[
Q = \frac{\omega L}{R},
\]

where \(\omega = 2\pi f \), \(f \) is the resonance frequency, \(L \) is the inductance of the coil, and \(R \) is the resistance of the resonance circuit. Then the SNR of the resonance circuit is:

\[
SNR \propto \frac{Q}{\sqrt{T}}.
\]

Therefore, the SNR is larger at higher \(Q \) and lower \(T \). From Eq. 2, \(Q \) is higher at lower \(R \).

Methods

The circuit of the RF transmitter and receiver (TR) system consisted of a coil and capacitors. The RF coil was designed as a 22-turn solenoid coil of 21-mm diameter using an enameled copper wire (2 mm φ). We made a phantom using a glass tube of 10-mm diameter surrounded by an inner vacuum insulated Dewar cylinder made of fiber-reinforced plastics (FRP) for heat insulation. We used a 33-pF fixed and a 40-pF variable capacitor for the resonance circuit and a 22-pF fixed and a 40-pF variable capacitor for the matching circuit (Fig. 1). We cooled the resonance circuit with coil and capacitors using liquid nitrogen (77 K) within an outer vacuum insulated Dewar box made of FRP for heat insulation. The outer Dewar was surrounded by electromagnetic shields. We connected the resonance circuit with coil and capacitors to a network analyzer, tuned it to 50 Ω at a resonance frequency of 12.91 MHz, and measured the \(Q \) factor (Fig. 2). We measured the \(Q \) factor at room temperature (300 K) in the same way. The minor diameter of the phantom was 9 mm, and the volume of CuSO₄ solution in the coil was 2163 μL. We obtained projection images of 25 mmol/L CuSO₄ solution at 77 K and 300 K using a conventional spin echo sequence. The MR imaging magnet was 0.3T. The thickness was 8 cm (60 kg, homogeneity 30 ppm @40 mm bore, Hitachi Metals Company, Japan). The MR imaging system consisted of an RF amplifier and 3-axis gradient coils. The bandwidths of the RF amplifier were 5 to 100 MHz; currents of the gradient coils, ±5A; and maximum gradient magnetic fields, \(2.9 \times 10^{-2} \) T/m. The slew rate was \(9.7 \times 10^{-2} \) T/(msec) (MRTechnology, Tsukuba, Japan). Imaging parameters were: resonance frequency, 12.91 MHz; repetition time (TR), 100 ms; echo time (TE), 13 ms; number of excitations (NEX), one; image matrix, 128 \(\times \) 256 pixels (one pixel was 0.47 mm \(\times \) 0.17 mm \(\pm \) 0.01 mm); and bandwidth (BW), 10 kHz. Slice thickness was 9.4 mm and the first flip angle was 90°. SNR was calculated as the average of the signal area divided by the standard deviation of the background noise.

Results

We obtained MR images at 77 K and room temperature (300 K) on an X-Z plane (Fig. 2). To evaluate the actual pixel size, we obtained images of a cross phantom (9.0 mm \(\times \) 21.8 mm) of plastic material at room temperature (27°C [300 K]). One voxel was 0.47 mm \(\times \) 0.17 mm \(\pm \) 0.01 mm) (Fig. 3). Measurements were repeated 5 times. At 300 K, the \(Q \) factor was 160 (standard deviation [SD], 8.4) and the SNR was 21.99 (SD, 1.2), respectively. And at 77 K, the \(Q \) factor was 640 (SD, 10.6) and the SNR was 36.01 (SD, 1.5), respectively (Fig. 4). The SNR improved 1.64 fold using the LTNC (\(P < 0.05 \)).

Discussion and Conclusions

The spatial resolution of MR images depends on the SNR. The image area is smaller with larger SNR. As the strength of the static magnetic field increases, the MR signal also increases, whereas \(T_2 \) or \(T_2^* \) decreases. This trade-off of SNR is not a significant problem for whole body imaging with
sufficient spins to produce an MR signal, but it is a critical consideration in microimaging. SNR can be improved by cooling the coil, a cost-effective option that can be added to any type of MR unit without modifying the main system.

In this study, we observed a significant reduction in the thermal noise of MR images using liquid nitrogen cooling at sub-millimeter spatial resolution. The SNR of an MR image is in proportion to $\sqrt{Q/T}$, so we estimated a 4-fold improvement in SNR; however, we only achieved improvement of 1.64 times. This discrepancy may result from decreased conductivity of the sealing material caused by frost consolidation. Frost decreases the Q factor of the resonance circuit and decreases the SNR. The SNR at 77 K was 36.01 at 0.3T and 0.47 × 0.17 mm spatial resolution in this study. In conclusion, we believe that LTNC will become a practical and cost-effective method to improve images from conventional microimaging systems.

References

1. Hoult DI, Richards RE. The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 1976; 24:71-85.

2. Styles P, Soffe NF, Scott CA, et al. A high-resolution NMR probe in which the coil and preamplifier are cooled with liquid helium. J Magn Reson 1984;
3. Hall AS, Barnard B, McArthur P, Gilderdale DJ, Young IR, Bydder GM. Investigation of a whole-body receiver coil operating at liquid nitrogen temperatures. Magn Reson Med 1988; 7:230–235.

4. Wright AC, Song HK, Elliott DM, Wehrli FW. Use of a Joule-Thomson micro-refrigerator to cool a radio-frequency coil for magnetic resonance microscopy. Rev Sci Instrum 2005; 76:014301–014301-7.

5. Darrasse L, Ginefri JC. Perspectives with cryogenic RF probes in biomedical MRI. Biochimie 2003; 85:915–937.

6. Black RD, Roemer PB, Mogro-Campero A, Turner LG, Rohling KW. High temperature superconducting resonator for use in nuclear magnetic resonance microscopy. Appl Phys Lett 1993; 62:771–773.

7. Black RD, Early TA, Roemer PB, et al. A high-temperature superconducting receiver for nuclear magnetic resonance microscopy. Science 1993; 259:793–795.

8. Miller JR, Hurlston SE, Ma QY, et al. Performance of a high-temperature superconducting probe for in vivo microscopy at 2.0T. Magn Reson Med 1999; 41:72–79.

9. Nyquist H. Thermal agitation of electric change in conductors. Phys Rev 1928; 32:110–113.