Radiological Risk Assessments for Occupational Exposure at Fuel Fabrication Facility in AlTuwaitha Site Baghdad – Iraq by using RESRAD Computer Code

Ziadoon H Ibrahim¹, S A Ibrahim², M K Mohammed¹, A H Shaban²
¹Central Laboratories Directorate Ministry of Science and Technology
²Department of Physics College of Education Ibn AlHaitham University of Baghdad

Abstract. The purpose of this study is to evaluate the radiological risks for workers for one year of their activities at Fuel Fabrication Facility (FFF) so as to make the necessary protection to prevent or minimize risks resulted from these activities this site now is under the Iraqi decommissioning program (40) Soil samples surface and subsurface were collected from different positions of this facility and analyzed by gamma rays spectroscopy technique High Purity Germanium detector (HPGe) was used It was found out admixture of radioactive isotopes (²³²Th, ⁴⁰K, ²³⁵U, ²³⁸U, ¹³⁷Cs) according to the laboratory results the highest values were (9.75758) for ²³⁸U (21203) for ²³⁵U (218) for ²³²Th (4046) for ⁴⁰K and (129) for ¹³⁷Cs in (Bqkg⁻¹) unit The annual total radiation dose and risks were estimated by using RESRAD (onsite) 70 computer code The highest total radiation dose was (5617µSv/year) in area that represented by soil sample (S7) and the radiological risks morbidity and mortality (118E02 8661E03) respectively in the same area

1 Introduction
Italian fuel fabrication facility (FFF) is located in AlTwaitha site at Iraq / Baghdad at 33°12'57 North and 44°31'82 East It was previously belong to the Iraqi Atomic Energy Commission (IAEC) The total area of this site was about (13 km²) the concern facility FFF area around (37400 m²) Each soil sample represent (100 m²) from this facility were as in 'figure 6' During the second Gulf war (1991) it was completely destroyed and now is subjected to the Iraqi decommissioning project (IDP) The facility was contaminated by Uranium radionuclides (238U235U) in soil concrete equipments and scrap materials

Dose and risk estimation managements were carried out according to single or numerous radionuclides and the radiation types (alpha beta gamma) to demonstrate compliance with regulations[12] Radiological dose and risk assessment done at the beginning of project during decommissioning or decontamination and after cleanup of a site[3] It was used pathway analysis and exposure scenarios

A radiological dose is afforded by a likely exposed individual because of a specific exposure[45]

- External doses happen when the body is exposed to radioactive material outside the body
- Internal doses take place from radioactive exposure to material entered into the body by inhalation or ingestion
- skinny absorption doses happen from skin absorption of radionuclides (Tritium or open wound)
The dose can be centralized to particular organs or spread across the whole body due to the radionuclide intake or organ exposed by the nature of work. The total dose is the sum of all pathways such as external exposure, inhalation, and ingestion [67]. The radiation dose and risk was evaluated by using ResRad (onsite) 70 computer code. The results of soil samples were regarded after analyzing in laboratory so as to characterize the radionuclides concentrations which represent the chosen zones. A radiological risk evaluation is a probability assessment of deadly cancer over the existence of an exposed. It can express the radiation cancer health risks through terms of death and incidence. A risk of 1×10^6 means the possible for an exposed individual having a deadly cancer is one in 10000 persons. The concept of risk constrain provide a basic level of protection for the individuals from a source and serves as an upper bound on the individual risk in optimization of protection for that source. According to International Atomic Energy Agency (IAEA) safety standards, the relation between dose and cancer risk development is well described for high doses of most radiation kinds. The exposure scenarios, pathways, and environmental parameters values should be identified to the workers.

The suitable radiological risk factor is $(1 \times 10^{6} \text{ to } 1 \times 10^{3})$ [89]. The radiological dose and risk evaluation can be helpful through:

- To support a lot of kinds of decisions like operational controls to make certain that the radiation exposures are safe and reasonable time limitations arrival controls personal protective equipment and storage requirements.
- Decisions to remediation and decontamination objectives (getting the site clean enough the effectiveness different in assessments actions in terms of limiting future radiation exposures and the possible future uses of the site).
- Storage treatment disposal facility operation and design The necessity in design and operation features for a facility workers protection public protection during operations and facility closure.

The information that needed to manage these assessments are the source material features physical regulations location and exposure scenarios (Workers’ activities environmental pathways onsite direct exposure surface water or groundwater contamination and soil contamination) [10].

2 ResRad computer code

In order to assess contaminated sites it can use a suite of software tools developed by the US Department of Energy to assessing radiation dose and risks from residual radioactive material under different scenarios using suitable parameters [810]. Four kinds of scenarios are being used Resident Farmer (RFS), Suburban Resident (SRS), Industrial Worker (IWS), and Recreationist (RS). RESRAD code Version 70 was used in the research and IW scenario was carried out for being benefited with decommissioning work. Table 1 shows the parameters that applied in this scenario.

Table 1: Factors values of the Industrial Workers scenario Dose Library

Parameter	(Unit)	Quantity
Area	square meters	100
Exposure time	Hour/year	1250
Inhalation rate	m³/year	11400
Indoor time fraction (occupancy factor)		005
Outdoor time fraction (occupancy factor)		014
Contaminated fraction of food (plant meet and aquatic food)	kg/year	0
The amount of the annual soil ingestion	g/year	365
Soil and dust density	g/cm³	15
Wind speed	m/s	02
Contaminated zone erosion rate	m/year	0001
Contaminated zone total porosity		04
Saturated zone effective porosity		02
3 Materials and methods

The equipment that are used are sampling tools core sample milling machine sieve of 750 μm mesh size drying oven weighting scale sample container global position system (GPS) as shown in 'figures 12' portable device for radiological survey(LUDLUM 2241 2RK) type 4410 sodium iodide scintillation detector and Gamma Spectroscopy system (Canberra) as shown in 'figures 45' Gamma spectroscopy system consists of a detector preamplifier pulseheight analyzer(DSA1000) lead shield multichannel analyzer (MCA) with 8192 channel and vertical high purity germanium (HPGe) detector with relative efficiency 40% and resolution (<18keV) based on measurements of 1332 MeV gamma ray at photo peak of 60Co source Both high voltage supply and amplifier device are compact in one unit (DSA1000) detector shield with a cavity adequate to 10 cm Lead absorbed grid from Cadmium 16mm and Copper 04mm to reduce radiological background as shown in 'figure 5'

3.1. Samples Collecting

The samples was collected (40) (surface and subsurface) from the Fuel Fabrication Facility at depth of 15cm and 6 samples at 40 cm depth each sample represent the studied area (100m²) from facility three samples were collected from outside AlTuwaitha site to determine the background levels Samples were labeled and coded in all locations by using (GPS) where the samples taken from the mass of the sample was one kilogram

3.2. Preparing samples method

By putting each soil sample in a drying oven at 100°C for one hour to make sure of removing any remaining of moisture samples preparation was managed then the dried samples was milled till to be a fine powder using grinder for pulverizing the soil sample A 750 μm mesh is used to sieve the soil samples to obtain uniform particle sizes The volume was (500ml) that was kept in sealed Marinelli Beaker with plastic strip to avoid the escaping of (222Rn) and (220Rn) from the samples as shown in 'figure 3' after that it was stored for one month so that the Uranium238 and Thorium 232 chains could reach to the radiological equilibrium

3.3. Samples analysis

Gamma Spectroscopy system (Canberra) was used to analyze soil samples A library of radionuclide’s which contained the energy of the characteristic gamma emissions of each radionuclide and their corresponding emissions probabilities were built from the date supplied in the software (Genie 2000)238U radioactivity concentration was determined by gamma energy (1001keV) that is belong to the Protactinium isotope (234mPa) for high radionuclide concentration samples and by (60932 keV) that is belong to the Bismuth (214Bi) to low concentration239U was determined at gamma energy (1438 keV 1633 keV 1857 keV and 2053 keV)which are belong to the same isotope the corrected activity in Genie 2000 software was depended whereas the thorium (232Th) was determined at (9117keV) gamma energy by energy is belong to 228Ac 40K and 137Cs isotopes which can be determined at 14608 and 662keV peak energy respectively it should be noticed that all concentrations were determined in (Bq /kg) unit
Figure 1. a milling machine for soil sample (b) sieve (c) oven (d) weighing scale.

Figure 2. Trowel tool used to collect sample, handheld GPS unit.

Figure 3. A prepared soil samples filling in 500 ml Marinelli beaker.

Figure 4. Gamma spectrometry system.

Figure 5. Ludlum dose rate meter.
3.4. Samples analysis results

Three samples were analyzed using gamma spectrometry system with consider that samples are as the radiation background in order to compare results with the selected areas. The (40) mentioned samples were analyzed the radiological activity concentration can be seen in Table 2 and figures 67. Table 3 shows the higher and lower radiological activity concentration in samples.

Sample code	Coordinate North	East	Radionuclide concentration Bq/kg	238U	235U	232Th	40K
S1	33° 12014	44° 30757	128±09	BDL**	129±11	4755±12	BDL
S2	33° 11970	44° 30789	13±085	BDL	149±112	2997±171	25±032
S3 Sub*	33° 12013	44° 30755	148±095	BDL	7±16	392±145	BDL
S4 Sub	33° 11984	44° 30770	184±114	BDL	161±1	3345±20	BDL
S5 Sub	33° 11946	44° 30774	125±13	BDL	84±12	453±15	BDL
S6	33° 11962	44° 30776	62116	149±89	86±13	258±113	73±085
S7	33° 11958	44° 30778	975758	21203	BDL	3796±444	BDL
S8	33° 11949	44° 30780	18952	4044	138±28	281±105	BDL
S9	33° 11972	44° 30770	166±13	BDL	153±17	3127	BDL
S10	33° 11996	44° 30754	91±1	BDL	135±18	346±11	32±05
S11	33° 12003	44° 30744	141±13	BDL	99±15	2594±21	24±05
S12	33° 11985	44° 30745	115±12	BDL	11±15	2683±209	39±05
S13	33° 11952	44° 30776	11942	2904	123±16	2702	43±066
S14	33° 11954	44° 30768	94525	21535	BDL	335±11	BDL
S15	33° 11964	44° 30719	749005	15592	BDL	3636	BDL
S16	33° 11971	44° 30962	153174	3656	BDL	2534	BDL

Sample code	Coordinate North	East	Radionuclide concentration Bq/kg	238U	235U	232Th	40K
S17	33° 11967	44° 30964	224630	4161	BDL	BDL	BDL

Table 2 Activity concentration in soil samples
S18	33° 11956	44° 30735	377785	6744	BDL	BDL	BDL
S19	33° 11968	44° 30721	539612	13083	BDL	332	BDL
S20	33° 11981	44° 30741	342493	8179	BDL	2836	BDL
S21 Sub	33° 11924	44° 30672	11±085	BDL	149±112	316±121	BDL
S22 Sub	33° 11996	44° 30647	14±084	BDL	159±112	2737±171	BDL
S23	33° 12010	44° 30732	108206	BDL	15	2902	57
S24	33° 11990	44° 30711	86086	878	157	3566	44
S25	33° 11973	44° 30726	121765	2269	171	3312	22
S26 Sub	33° 11938	44° 30752	163	BDL	142	3285	BDL
S27	33° 11939	44° 30736	193956	4367	BDL	2759	BDL
S28	33° 11961	44° 30702	42731	936	163	2873	5
S29	33° 11933	44° 30721	66290	14822	158	3336	BDL
S30	33° 11980	44° 30686	5215	929	182	2872	34
S31	33° 11960	44° 30691	201993	40615	BDL	2417	BDL
S32	33° 11962	44° 30689	2865425	5466	BDL	4046	BDL
S33	33° 11913	44° 30723	178346	35246	212	3952	15
S34	33° 11980	44° 30670	31428	559	218	3393	71
S35	33° 11932	44° 30703	55974	1236	144	3436	BDL
S36	33° 11960	44° 30667	26063	557	106	2956	32
S37	33° 11930	44° 30690	1021	2125	118	3172	79
S38	33° 11914	44° 30692	69084	1419	119	2038	129
S39	33° 11963	44° 30668	169014	299	877	2188	BDL
S40	33° 11897	44° 30670	169±089	BDL	118±075	2374±145	17±025

S3 Sub soil sample sub surface BDL below detection limit
Table 3 Summary of the activity concentration of soil sample

Sample code	238U Bq/kg	235U Bq/kg	232Th Bq/kg	40K Bq/kg	137Cs Bq/kg
Highest sample	975758	21203	BDL	3796±444	BDL
Lowest sample	91±1	BDL	135±18	346±11	32±05
Average background	878	BDL	1326	28398	BDL

Figure 6 location of sampling in FFF and 238U concentration activity levels (Bq/kg)

Figure 7 Radioactivity concentration in soil samples
The radiological dose and risks results

The radiation dose and risks was analyzed to workers by using RESRAD onsite computer code. The industrial scenario (IS) in RESRAD was applied with the limited exposure pathways because it is suitable with the workers in FFF to their activities in decommissioning project. The RESRAD code used a pathway analysis method in which the relation between radionuclides concentrations in soil with dose and risks to a member of workers that expressed as a pathways sum which is the sum of products of pathway factors correspond to pathways involving radionuclides that can be transported or from radiation that can be emitted. Table 1 shows the input values for RESRAD software parameters. Table 4 and figures 89 show the annual radiological dose and risk (morbidity and fatal mortality).

Table 4 Total radiological dose and risk in FFF

Sample code	Total annual dose µSv/yr	Radiological risk	Sample code	Total annual dose µSv/yr	Radiological risk
S6	4383	9324E05	S27	1102E+03	2311E03
S7	5617E+03	118E02	S28	3309E+01	7078E05
S8	1160E+02	2444E04	S29	3899E+02	8184E04
S13	7723E+01	1632E04	S30	3776E+01	8051E05
S14	5527E+02	1160E03	S31	1143E+03	2396E03
S15	4283E+03	8973E03	S32	1647E+03	3451E03
S16	8766E+02	1838E03	S33	1139E+02	2407E04
S17	1272E+03	2665E03	S34	1883E+02	3965E04
S18	2139E+03	4480E03	S35	4175E+01	8909E05
S19	3139E+03	6579E03	S36	2329E+01	5032E05
S20	1753E+03	3668E03	S37	1249E+01	2727E05
S23	6394E+01	1353E04	S38	4653E+01	9865E05
S24	5670E+01	1205E04	S39	1008E+02	2122E04
S25	7804E+01	1651E04			

Figure 8 The annual effective dose for selected area
Figure 9 The annual radiological risk factor for selected area

Figure 10 The total radiological dose to highest area (S7) by pathways components

Figure 11 The total radiological dose to highest area (S7) by the radionuclides
Figure 12 The radiological risk factor for highest area (S7) by pathways components

5. Discussion
(40) soil samples were collected from the fuel fabrication facility according to the results obtained from laboratory analysis as in table 2 there were a presence of high concentrations of (\(^{238}\text{U}\) and \(^{235}\text{U}\)) radionuclides in (27) soil sample above background level the highest radiation dose for the chosen area of (S7) was (5617\(\mu\text{Sv/year}\)) and risk (118\(x10^{-8}\), 124\(x10^{-3}\)person/year) morbidity and mortality respectively. The total radiation dose and risk factor were conducted to (27) areas because of these areas have residual radioactive material depending on soil samples analysis results. In 'figure 10' it can see the contribution and participation of each by pathways components in the total radiation dose and risks such as external ingestion and inhalation. As shown in 'figure 11' the total radiological dose to highest area (S7) area along 100 years by contribution of the radionuclides \(^{238}\text{U}\) is the highest radionuclide that contribute in radiation dose and risk. In 'figures 10, 11, 12' there are decreasing in radiation dose and risks over the time integration from RESRAD program report (19) areas were determined over to the risk limit that illustrated in table 4 and 'figures 8, 9' these areas are (S7, S8, S13, S14, S15, S16, S17, S18, S19, S20, S23, S25, S27, S29, S31, S32, S33, S34, S39).

6. Conclusions and Recommendations
The radiological risk depend on total dose from the results of this research there are a rising in nineteen areas in FFF each area in this study represent 100 m\(^2\) that mean 1900 m\(^2\) from 37400 m\(^2\) (5%) from total FFF area over the risk limit 2700 m\(^2\) from 37400m\(^2\) are contaminated (72%) under this study Radiation protection program must conduct for workers in these areas by decreasing the working hours wearing protective clothing and suitable equipment's. From one area that represented by soil sample the external exposure of all radionuclides that dominant on the exposure pathways (inhalation and ingestion) therefore must focus on the precaution and protection workers from external dose by taking in to account the working time is the major factor from radiation exposure. Time factor can solve by reduce the daily number of working hours or use the alternative system for workers \(^{238}\text{U}\) is the highest radionuclide that contributes in radiation dose and risk because of the obviously high difference in concentration activity between \(^{238}\text{U}\) and another radionuclides by analyzed soil samples. Because of the long life \(^{238}\text{U}\) (about 45x10\(^9\) year) the radiological dose and risk reduce over the time but slightly by radioactive decay of all radionuclide but the second basis is environmental condition that play main role to reduce dose and risk from transport the contaminants by wind and leaching them underground that fine in 'figures 10, 11, 12'.
The highest areas (S7 S15 S17 S18 S19 S20 S27 S31 S32) must be controlled by surrounding with warning label to prevent anyone from reaching them and putting a plan to decontamination as well as other contaminated areas.

Acknowledgments

I would like to thank the assistance that given from physicists team in Decommissioning Directorate and to acknowledge the Radiation Measurements Department/ Central Laboratories Directorate at Ministry of Science and Technology.

References

[1] Council of the European Union 1996 laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation

[2] United Nations Scientific Committee on the effect of Atomic Radiation UNSCEAR 2000 Sources effect and risks of ionizing radiation

[3] International Atomic Energy Agency IAEA 2008 safety standards series No WsG52 decommissioning of facilities using radioactive material safety guide Vienna 2008

[4] International Atomic Energy Agency IAEA 1996 Safety Series Reports No 115 International basic safety standards for protection against ionizing radiation and for the safety of radiation sources Vienna

[5] Till JE and and Helen A G 2008 radiological risk assessment and environmental analysis Oxford University Press 2008

[6] Agbalagba E Avwiri G and ChadUmohre Y 2012 Gamma spectroscopy measurement of natural radioactivity and assessment of radiation hazard indices in soil samples from oil fields environment of Delta State Nigeria Journal of environmental radioactivity 109 page 6470

[7] Michael G Stabin 2007 Radiation protection and dosimetry an introduction to health physics Springer Science and Business Media

[8] International Commission On Radiation Units And Measurements 1993 Quantities and units in radiation protection dosimetry report No 51 Icru Bethesda

[9] Department of energy and the US Nuclear regulatory commission The US nuclear regulatory commission 2014 RESRAD onsite version 70 computer code the Environmental science Division of Argonne National Laboratory

[10] C Yu Cheng and S Kamboj 2015 RESRAD for radiological risk assessment comparison with EPA cercla ToolsPRG and DCC calculators argonne national laboratory

[11] Ibrahim NK 2016 radioactive contamination and radiological risk assessment of the destroyed nuclear facilities at AlTuwaitha nuclear site PhD Thesis University of AlMustansiriyah College of Science