Schematic Harder-Narasimhan Stratification

Nitin Nitsure

Abstract

For any flat family of pure-dimensional coherent sheaves on a family of projective schemes, the Harder-Narasimhan type (in the sense of Gieseker semistability) of its restriction to each fiber is known to vary semicontinuously on the parameter scheme of the family. This defines a stratification of the parameter scheme by locally closed subsets, known as the Harder-Narasimhan stratification.

In this note, we show how to endow each Harder-Narasimhan stratum with the structure of a locally closed subscheme of the parameter scheme, which enjoys the universal property that under any base change the pullback family admits a relative Harder-Narasimhan filtration with a given Harder-Narasimhan type if and only if the base change factors through the schematic stratum corresponding to that Harder-Narasimhan type.

The above schematic stratification induces a stacky stratification on the algebraic stack of pure-dimensional coherent sheaves. We deduce that coherent sheaves of a fixed Harder-Narasimhan type form an algebraic stack in the sense of Artin.

2010 Math. Subj. Class.: 14D20, 14D23, 14F05.

1. Introduction

Let X be a projective scheme over a locally noetherian base scheme S, with a chosen relatively ample line bundle $\mathcal{O}_X(1)$. Let E be a coherent sheaf on X which is flat over S, such that the restriction $E_s = E|_{X_s}$ of E to the schematic fiber X_s of X over each $s \in S$ is a pure-dimensional sheaf of a fixed dimension $d \geq 0$. For any $s \in S$, let $\text{HN}(E_s)$ denote the Harder-Narasimhan type of E_s in the sense of Gieseker semistability. With respect to a certain natural partial order on the set HNT of all possible Harder-Narasimhan types τ, the Harder-Narasimhan function $s \mapsto \text{HN}(E_s)$ is known to be upper semicontinuous on S.

In this note, we prove that each level set $S^\tau(E)$ of the Harder-Narasimhan function has a natural structure of a locally closed subscheme of S, with the following universal property: a morphism $T \to S$ factors via $S^\tau(E)$ if and only if the pullback E_t on X_t for each $t \in T$ is of type τ and the pullback family E_T on $X \times_S T$ admits a relative Harder-Narasimhan filtration, that is, a filtration $0 \subset F_1 \subset \ldots \subset F_\ell = E_T$ by coherent subsheaves such that the graded pieces F_i/F_{i-1} are flat over T, which for each $t \in T$ restricts to the Harder-Narasimhan filtration of E_t on X_t.

1
As a corollary, we deduce that sheaves of a fixed Harder-Narasimhan type form an algebraic stack in the sense of Artin.

In Section 2 we recall the basic definitions and results of Harder-Narasimhan-Shatz that we need. In Section 3 we prove our main result (Theorem 5), which gives natural schematic structures on the Harder-Narasimhan strata. In Section 4, we show (Theorem 8) that sheaves of a given Harder-Narasimhan type form an Artin algebraic stack.

This work had its origin in questions arising from the proposal of Leticia Brambila-Paz to construct a moduli scheme for indecomposable unstable rank 2 vector bundles on a curve, fixing their Harder-Narasimhan type and the dimension of their vector space global endomorphisms. A construction of such a moduli scheme is given in [B-M-Ni], which uses special cases of the results proved here.

2. The Harder-Narasimhan filtration and stratification

Let \(\mathbb{Q}[\lambda] \) be the polynomial ring in the variable \(\lambda \). An element \(f \in \mathbb{Q}[\lambda] \) is called a numerical polynomial if \(f(\mathbb{Z}) \subset \mathbb{Z} \). If a nonzero numerical polynomial \(f \) has degree \(d \), it can be uniquely expanded as \(f = (r(f)/d!)(\lambda^d) + \text{lower degree terms} \), where \(r(f) \in \mathbb{Z} \). If \(f = 0 \) we put \(r(f) = 0 \). There is a total order \(\leq \) on \(\mathbb{Q}[\lambda] \) under which \(f \leq g \) if \(f(m) \leq g(m) \) for all sufficiently large integers \(m \). Let the set of all \textbf{Harder-Narasimhan types}, denoted by HNT, be the set consisting of all finite sequences \((f_1, \ldots, f_p)\) of numerical polynomials in \(\mathbb{Q}[\lambda] \), where \(p \) is allowed to vary over all integers \(\geq 1 \), such that the following three conditions are satisfied.

1. We have \(0 < f_1 < \ldots < f_p \) in \(\mathbb{Q}[\lambda] \).
2. The polynomials \(f_i \) are all of the same degree, say \(d \), and
3. the following inequalities are satisfied
 \[
 \frac{f_1}{r(f_1)} > \frac{f_2 - f_1}{r(f_2) - r(f_1)} > \ldots > \frac{f_p - f_{p-1}}{r(f_p) - r(f_{p-1})}.
 \]

Given any \(x = (a, f) \) and \(y = (b, g) \) in \(\mathbb{Z} \times \mathbb{Q}[\lambda] \), the segment joining \(x \) and \(y \) is the subset \(xy \subset \mathbb{Z} \times \mathbb{Q}[\lambda] \), consisting of all \((c, h) \) such that \((c, h) = t(a, f) + (1-t)(b, g) \) for some \(t \in \mathbb{Q} \) with \(0 \leq t \leq 1 \). For any \((f_1, \ldots, f_p)\) in HNT, we define the corresponding \textbf{Harder-Narasimhan polygon} to be the subset

\[
\text{HNP}(f_1, \ldots, f_p) \subset \mathbb{Z} \times \mathbb{Q}[\lambda]
\]

which is the union of the segments \(x_0x_1 \cup x_1x_2 \cup \ldots \cup x_{p-1}x_p \) where \(x_0 = (0, 0) \) and \(x_i = (r(f_i), f_i) \) for \(1 \leq i \leq p \).

A point \((a, f)\) in \(\mathbb{Z} \times \mathbb{Q}[\lambda] \) is said to lie under another point \((b, g)\) in \(\mathbb{Z} \times \mathbb{Q}[\lambda] \) if \(a = b \) in \(\mathbb{Z} \) and \(f \leq g \) in \(\mathbb{Q}[\lambda] \). A point \((a, f)\) in \(\mathbb{Z} \times \mathbb{Q}[\lambda] \) is said to lie under the
Grassmannian subsheaves unique strictly increasing filtration $0 = HN_0 \subset HN_1 \subset \ldots \subset HN_\ell E$ of the support of E is called the Harder-Narasimhan filtration of the support of E. The first step $HN_1 E$ is a subobject of E that is destabilizing. This filtration is called the Harder-Narasimhan filtration of E in the sense of Gieseker semistability. The first step $HN_1 E$ is the maximal destabilizing subsheaf of E. The integer ℓ (also written as $\ell(E)$) is called the length of the Harder-Narasimhan filtration of E. In these terms, a nonzero pure-dimensional coherent sheaf is semistable if and only if its Harder-Narasimhan filtration is of length $\ell(E) = 1$. The ordered $\ell(E)$-tuple

$$HN(E) = (P(HN_1(E)), \ldots, P(HN_\ell(E))) \in \text{HNT}$$

is called the Harder-Narasimhan type of E.

In his path-breaking paper [Sh], S.S. Shatz addressed the question of the variation of the Harder-Narasimhan type in a family. The set-up for this is as follows. Let S be a locally noetherian scheme, and let $\pi : X \to S$ be a projective scheme over S, with a relatively ample line bundle $\mathcal{O}_X(1)$. Let E be a coherent sheaf of \mathcal{O}_X-modules such that each restriction E_s to the schematic fiber $X_s = \pi^{-1}(s)$ is pure-dimensional. The Harder-Narasimhan function of E is the function

$$|S| \to \text{HNT} : s \mapsto HN(E_s)$$
where $|S|$ denotes the underlying topological space of the scheme S. Shatz proved in [Sh] that $\text{HN}(E_s)$ is upper-semicontinuous w.r.t. the partial order \leq on HNT defined above (actually, HN-filtrations in the sense of μ-semistability rather than Gieseker semistability are considered in [Sh], but the proofs in the Gieseker semistability case are similar with obvious changes).

Remark 1 In particular, for any $\tau \in \text{HNT}$, the corresponding level set

$$|S|^\tau(E) = \{ s \in |S| \text{ such that } \text{HN}(E_s) = \tau \}$$

is locally closed in $|S|$, the subset $|S|^\leq \tau(E) = \bigcup_{\alpha \leq \tau} |S|^{\alpha}(E) \subset |S|$ is open in $|S|$, and $|S|^\tau(E)$ is closed in $|S|^\leq \tau(E)$.

Remark 2 If $(f_1, \ldots, f_p) \in \text{HNT}$, then $(f_2 - f_1, \ldots, f_p - f_1)$ is again in HNT. Let E be pure-dimensional on Y with $\text{HN}(E) \leq (f_1, \ldots, f_p) \in \text{HNT}$. If $E' \subset E$ is a coherent subsheaf with $P(E') = f_1$, then we must have $\text{HN}_1(E) = E'$, that is, such an E' is automatically the maximal destabilizing subsheaf of E. The quotient $E'' = E/E'$ is pure-dimensional, with $\text{HN}(E'') \leq (f_2 - f_1, \ldots, f_p - f_1)$. Moreover, we have $\text{Hom}_Y(E', E'') = 0$.

Remark 3 If $(Y, \mathcal{O}_Y(1))$ is a projective scheme over a field k and if K any extension field of k, then a coherent sheaf E on Y is semistable w.r.t. $\mathcal{O}_Y(1)$ if and only if its base-change $E_K = E \otimes_k K$ to Y_K is semistable w.r.t. $\mathcal{O}_{Y_K}(1) = \mathcal{O}_Y(1) \otimes_k K$. Consequently, if E is any pure-dimensional sheaf on Y then the Harder-Narasimhan filtration $\text{HN}_i(E_K)$ is just the pullback $\text{HN}_i(E) \otimes_k K$ of the Harder-Narasimhan filtration of E.

3. Scheme structures on HN strata

For basic facts that we need from Grothendieck’s theory of Quot schemes and their deformation theory, the reader can consult [Hu-Le], [F-G], [Ni 1] and [Ni 2].

Lemma 4 A morphism $f : T \to S$ between locally noetherian schemes is a closed embedding if (and only if) f is proper, injective, unramified and induces an isomorphism $k(f(t)) \to k(t)$ of residue fields for all $t \in T$.

Proof Note that $f(T)$ is closed in S, and $f_* \mathcal{O}_T$ is coherent. It only remains to show that the homomorphism $f^# : \mathcal{O}_S \to f_* \mathcal{O}_T$ is surjective. It is enough to show it stalk-wise at all points of $f(T)$, so we can assume that $S = \text{Spec} A$ where A is a
Let X be a projective scheme over a locally noetherian base scheme S, with a chosen relatively ample line bundle $\mathcal{O}_X(1)$. Let E be a coherent sheaf on X which is flat over S, such that the restriction $E_s = E|_{X_s}$ of E to the schematic fiber X_s of X over each $s \in S$ is a nonzero pure-dimensional sheaf of a fixed HN type $\tau = (f_1, \ldots, f_\ell)$. A relative Harder-Narasimhan filtration of E is a filtration $0 = E_0 \subset E_1 \subset \ldots \subset E_\ell = E$ by coherent subsheaves on X, such that for each i with $1 \leq i \leq \ell$, the quotient E_i/E_{i-1} is flat S, and for each $s \in S$ this filtration restricts to give the Harder-Narasimhan filtration $\text{HN}_i(E_s)$ of E_s.

We now come to the main result of this note.

\textbf{Theorem 5} (Main Theorem) Let X be a projective scheme over a locally noetherian scheme S, with a relatively ample line bundle $\mathcal{O}_X(1)$. Let E be a coherent sheaf on X which is flat over S, such that the restriction $E_s = E|_{X_s}$ of E to the schematic fiber X_s of X over each $s \in S$. Let $\tau = (f_1, \ldots, f_\ell) \in \text{HNT}$. Then we have the following.

1. Each Harder-Narasimhan stratum $|S|^\tau(E)$ of E has a unique structure of a locally closed subscheme $S^\tau(E)$ of S, with the following universal property: a morphism $T \to S$ factors via $S^\tau(E)$ if and only if the pullback E_T on $X \times_S T$ admits a relative Harder-Narasimhan filtration of type τ.

2. A relative Harder-Narasimhan filtration on E, if it exists, is unique.

3. For any morphism $f : T \to S$ of locally noetherian schemes, the schematic stratum $T^\tau(E_T) \subset T$ for E_T equals the schematic inverse image of $S^\tau(E)$ under f.

\textbf{Proof} If $\ell = 1$, then we take $S^\tau(E)$ to be the open subscheme of S consisting of all s such that E_s is semistable with Hilbert polynomial f_1. We now argue by induction on $\ell \geq 2$. By Remark \[\text{all} s \text{ with } \text{HN}(E_s) \leq \tau \text{ form an open subset } |S|^\leq \tau(E) \text{ of } S, \]

and $|S|^\tau(E)$ is a closed subset of $|S|^\leq \tau(E)$. We give $|S|^\leq \tau(E)$ the unique structure of an open subscheme of S, which we denote by $S^\leq \tau(E)$. In what follows we will give the closed subset $|S|^\tau(E)$ a particular structure of a closed subscheme of $S^\leq \tau(E)$, which has the desired universal property.

Let $X^\leq \tau$ be the inverse image of $S^\leq \tau = S^\leq \tau(E)$ in X, and let $\mathcal{O}_{X^\leq \tau}(1)$ and $E^\leq \tau$ be the restrictions of $\mathcal{O}_X(1)$ and E to $X^\leq \tau$. Consider the relative Quot scheme

$$Q = \text{Quot}^{|f_\tau - f_1|, \mathcal{O}_{X^\leq \tau}(1)}_{E^\leq \tau/X^\leq \tau/S^\leq \tau}$$
with projection \(\pi : Q \to S^{\leq \tau} \). Then \(\pi \) is projective, hence proper.

Let \(q \in Q \) represent a quotient \(q' : E_q \to \mathcal{F} \) on \(X_q \). Then \(\ker(q') = \text{HN}_1(E_q) \) by Remark 2. If \(q \mapsto s \in S^{\leq \tau} \), then by Remark 3 the quotient \(q' \) is the pullback of the quotient \(E_s \to E_s/\text{HN}_1(E_s) \) which is defined over \(X_s \). Hence the residue field extension \(k(s) \to k(q) \) is trivial. By the uniqueness of \(\text{HN}_1(E_s) \), there exists at most one such \(q \) over \(s \). The fiber of \(\pi : Q \to S^{\leq \tau} \) over \(s \) is the Quot scheme

\[
\pi^{-1}(s) = \text{Quot}_{E_s/X_s/k(s)}^{f_2-f_1, \mathcal{O}_{X_s}(1)}.
\]

By a standard fact in the deformation theory for Quot schemes (see, for example, Theorem 3.11.(2) in [Ni 2]), its tangent space at \(q \) is given by

\[
T_q(\pi^{-1}(s)) = \text{Hom}_{X_q}(\ker(q'), E_q/\ker(q')) = \text{Hom}_{X_q}(\text{HN}_1(E_q), E_q/\text{HN}_1(E_q))
\]

which is zero by Remark 2. Hence \(\pi : Q \to S^{\leq \tau} \) is unramified.

It now follows by Lemma 4 that \(\pi : Q \to S^{\leq \tau} \) is a closed imbedding.

Now consider the universal quotient sheaf \(E_q \to E'' \) on \(X_Q = X \times_S Q \). By Remark 2 for all \(q \in Q \) the sheaf \(E''_q \) on \(X_q \) is pure-dimensional, with

\[
\text{HN}(E''_q) \leq \tau'' = (f_2 - f_1, \ldots, f_{\ell} - f_1).
\]

In particular, we have \(Q^{\leq \tau''}(E'') = Q \). The Harder-Narasimhan type \(\tau'' \) has length \(\ell - 1 \), hence by induction on the length, the closed subset \(|Q|^\tau''(E'') \) of \(Q \) has the structure of a closed subscheme \(Q^{\tau''}(E'') \subset Q \) which has the desired universal property for \(E'' \). We regard \(Q \) as a closed subscheme of \(S^{\leq \tau} \) via \(\pi \), and we finally define the closed subscheme \(S^{\tau}(E) \subset S^{\leq \tau} \) by putting

\[
S^{\tau}(E) = Q^{\tau''}(E'') \subset Q \subset S^{\leq \tau}.
\]

We now show that \(S^{\tau}(E) \) so defined has the desired universal property. As \(\tau'' \) has length \(\ell - 1 \), by induction on the length, the restriction \(E''_{S^{\tau}(E)} \) of \(E'' \) to \(X \times_S S^{\tau}(E) \) has a unique relative Harder-Narasimhan filtration

\[
0 \subset E''_1 \subset \ldots \subset E''_{\ell-1} = E''_{S^{\tau}(E)}
\]

with Harder-Narasimhan type \(\tau'' \). For \(2 \leq i \leq \ell \), let \(E_i \) be the inverse image of \(E''_{i-1} \) under the restriction of universal quotient \(E_q \to E'' \) to \(X_{S^{\tau}(E)} \). This defines a relative Harder-Narasimhan filtration \(0 \subset E_1 \subset \ldots \subset E_\ell = E_{S^{\tau}(E)} \) of \(E_{S^{\tau}(E)} \) over the base \(S^{\tau}(E) \). In particular, if a morphism \(T \to S \) factors via \(S^{\tau}(E) \) then the pullback of this filtration gives a relative Harder-Narasimhan filtration over \(T \).

Conversely, let \(f : T \to S \) be a morphism such that the pullback \(E_T \) on \(X_T \) has a relative Harder-Narasimhan filtration \(0 = F_0 \subset F_1 \subset \ldots \subset F_\ell = E_T \) of type
τ. The quotient $E_T \to E_T/F_1$ has Hilbert polynomial $f_i - f_1$ over all $t \in T$, so by the universal property of the Quot scheme Q, the morphism $T \to S$ factors via $Q \hookrightarrow S$, inducing a morphism $f' : T \to Q$. By Remark 2, the restriction of E_T/F_1 is pure-dimensional on X_t for all $t \in T$, and $0 = (F_1/F_1) \subset (F_2/F_1) \subset \ldots \subset (F_\ell/F_1) = E_T/F_1$ is a relative Harder-Narasimhan filtration of $E_T/F_1 = (f')^*(E''')$ over the base T, with type τ'' which has length $\ell - 1$. Hence by induction, $f' : T \to Q$ factors via $Q_{\tau''}(E'') = S^{\tau}(E)$, as desired. This completes the proof of (1).

Next we show the uniqueness of a relative Harder-Narasimhan filtration $0 = E_0 \subset E_1 \subset \ldots \subset E_\ell = E$ over a base S, assuming such a filtration exists. As $|S|^\tau(E) = |S|$, we at least have $S = S^{\le \tau}(E)$. With notation as above, we have shown that $\pi : Q \to S^{\le \tau}$ is a closed imbedding, therefore π admits at most one global section, which shows that E_1 is unique. By inductive assumption on ℓ, the quotient family E/E_1 admits a unique relative Harder-Narasimhan filtration F_i, so defining $E_i \subset E$ to be the inverse image of F_{i-1} under $E \to E/E_1$ for $2 \le i \le \ell$, we see that $0 = E_0 \subset E_1 \subset \ldots \subset E_\ell = E$ is the only possible relative Harder-Narasimhan filtration on E. This proves the statement (2).

The base-change property (3) for the schematic strata is a direct consequence of the universal property (1). This completes the proof of the theorem. □

The following immediate implication of Theorem 5 shows that when the HN type is constant over a reduced base scheme, the outcome is as nice as can be expected.

Corollary 6 (Case of constant HN type over a reduced base) Let X be a projective scheme over a locally noetherian base scheme S, with a chosen relatively ample line bundle $\mathcal{O}_X(1)$. Let E be a coherent sheaf on X which is flat over S, such that the restriction $E_s = E|_{X_s}$ of E to the schematic fiber X_s of X over each $s \in S$ is a pure-dimensional sheaf of a fixed Harder-Narasimhan type $\tau \in HNT$. Suppose moreover that S is reduced. Then $S = S^\tau$, that is, E admits a unique relative Harder-Narasimhan filtration.

4. **Moduli stack $\text{Coh}_{X/S}^\tau$**

For basic terminology and conventions about stacks, we will follow the book [L-MB] by Laumon and Moret-Bailly. In what follows, X will be a projective scheme over a locally noetherian base scheme S, with a chosen relatively ample line bundle $\mathcal{O}_X(1)$, and $\tau = (f_1, \ldots, f_\ell)$ will be any element of HNT.

Let $\text{Coh}_{X/S}$ denote the Artin algebraic stack over S of all flat families of coherent sheaves on X/S (see [L-MB] 2.4.4). In any such family, pure-dimensionality of all restriction to fibers is an open condition on the parameter scheme, pure-dimensionality is preserved by arbitrary base changes, and the base-change under a surjection is
pure-dimensional on all fibers if and only if the original is so. Hence pure-dimensional coherent sheaves form an open algebraic substack $\text{Coh}_X^{\text{pure}} \subset \text{Coh}_X$.

We will define the moduli stack Coh_X^τ of pure-dimensional coherent sheaves of type τ as a strictly full sub S-groupoid of $\text{Coh}_X^{\text{pure}}$, as follows. For any S-scheme T, we say that an object $E \in \text{Coh}_X^\tau(T)$ lies in $\text{Coh}_X^\tau(T)$ if and only if E admits a relative Harder-Narasimhan filtration with constant type τ. This is clearly closed under pullbacks $f^* : \text{Coh}_X^\tau(T) \to \text{Coh}_X^\tau(T')$ for all S-morphisms $f : T' \to T$.

To prove that the S-groupoid Coh_X^τ thus defined is a stack, we need the following property of effective descent.

Lemma 7 Let T be an S-scheme and let E be an object of $\text{Coh}_X^\tau(T)$. Let $f : T' \to T$ be a faithfully flat quasi-compact morphism. If the pullback f^*E is in $\text{Coh}_X^\tau(T')$, then E is in $\text{Coh}_X^\tau(T)$.

Proof Each E_t, where $t \in T$, is pure-dimensional with Harder-Narasimhan type τ, as its pullback E_t' is so for any $t' \in T'$ with $t' \mapsto t$, and as $T' \to T$ is surjective. It now only remains to construct a relative Harder-Narasimhan filtration of E. This we do by showing that the relative Harder-Narasimhan filtration (F_i) of the pullback $E_{T'}$ descends under $T' \to T$.

Let $T'' = T' \times_T T'$ with projections $\pi_1, \pi_2 : T'' \rightrightarrows T'$. By Grothendieck’s result on effective fpqc descent for quasicoherent subsheaves of the pullback of a quasicoherent sheaf, to show that the filtration descends to T we just have to show that the pullbacks of the filtration under the two projections $\pi_1, \pi_2 : T'' \rightrightarrows T'$ are identical. But note that we have an identification $\pi_1^*(E_{T'}) = \pi_2^*(E_{T'}) = E_{T''}$, under which the pullbacks $\pi_1^*(F_i)$ and $\pi_2^*(F_i)$ are relative Harder-Narasimhan filtrations of $E_{T''}$. Hence these filtrations coincide by Theorem 5. □

Theorem 8 Let X be a projective scheme over a locally noetherian scheme S, with a relatively ample line bundle $\mathcal{O}_X(1)$. Let τ be any Harder-Narasimhan type. Then all flat families of pure-dimensional coherent sheaves on X/S with fixed Harder-Narasimhan type τ form an algebraic stack Coh_X^τ over S, which is a locally closed substack of the algebraic stack Coh_X of all flat families of coherent sheaves on X/S.

Proof The inclusion 1-morphism of S-groupoids $\theta : \text{Coh}_X^\tau \hookrightarrow \text{Coh}_X^{\text{pure}}$ is fully faithful. Hence Coh_X^τ is a pre-stack over S. By Lemma 7, the pre-stack Coh_X^τ satisfies effective fpqc descent, so it is a stack over S. We next prove that it is algebraic.

Given any E in $\text{Coh}_X^{\text{pure}}(T)$, let $T^\tau(E) \subset T$ be the corresponding schematic Harder-Narasimhan stratum as given by Theorem 5. Let $[E] : T \to \text{Coh}_X^{\text{pure}}$ be the
classifying 1-morphism of E. By Theorem 5 we have a natural isomorphism

$$T \times_{[E], \text{Coh}_{X/S}^\tau} \text{Coh}_{X/S}^\tau \cong T^\tau(E)$$

of S-groupoids, under which the projection of the fibered product to T corresponds to the imbedding of $T^\tau(E)$ as a locally closed subscheme in T.

This shows the inclusion 1-morphism $\theta : \text{Coh}_{X/S}^\tau \hookrightarrow \text{Coh}_{X/S}$ of stacks is a representable locally closed imbedding. Hence $\text{Coh}_{X/S}^\tau$ is an algebraic stack over S, which is a locally closed substack of $\text{Coh}_{X/S}$.

We now come to the question of quasi-projectivity of $\text{Coh}_{X/S}^\tau$. For a given X/S, $\mathcal{O}_X(1)$ and $\tau = (f_1, \ldots, f_\ell)$, consider the following boundedness condition (*).

(*): There exists a natural number N such that for any morphism $\text{Spec } K \to S$ where K is a field and any semistable coherent sheaf F on the base-change X_K whose Hilbert polynomial is equal to f_i for any $1 \leq i \leq \ell$, the sheaf $F(N) = F \otimes \mathcal{O}_X(K(N)$ is generated by global sections, and all its cohomology groups $H^j(X_K, F(N))$ vanish for $j \geq 1$.

By the boundedness theorems of Maruyama-Simpson [Si] and Langer [La], the condition (*) is indeed satisfied in many cases of interest, for example, when S is of finite type over an algebraically closed field k of arbitrary characteristic.

Proposition 9 (Quasi-projectivity of $\text{Coh}_{X/S}^\tau$) If the above boundedness condition (*) is satisfied, then the stack $\text{Coh}_{X/S}^\tau$ admits an atlas $U \to \text{Coh}_{X/S}^\tau$ such that U is a quasi-projective scheme over S.

Proof If a coherent sheaf E is of type τ on X_K for an S-field K, then by (*), E is a quotient of $\mathcal{O}_{X_K}(-N)^{f_i(N)}$. Let Q be the relative Quot scheme over S which parameterizes all coherent quotient sheaves of $\mathcal{O}_{X}(-N)^{f_i(N)}$ on fibers of X/S, with fixed Hilbert polynomial f_i. Let E be the universal quotient sheaf on $X \times_S Q$. Let $Q_o \subset Q$ be the open subscheme consisting of all $q \in Q$ satisfying the conditions that E_q is pure-dimensional, $E_q(N)$ is generated by global sections, the map $H^0(X_q, \mathcal{O}_{X_q}^{f_i(N)}) \to H^0(X_{q}, E_q(N))$ induced by q is an isomorphism, and $H^i(X_{q}, E_q(N)) = 0$ for all $i \geq 1$ (each of these conditions is an open condition).

Let E_o be the restriction of E to $X \times_S Q_o$. Let $Q_o^\tau(E_o)$ be the locally closed subscheme of Q_o corresponding to the Harder-Narasimhan type τ, given by Theorem 5. The classifying 1-morphism $[E_o] : Q_o^\tau(E_o) \to \text{Coh}_{X/S}^\tau$ of E_o is an atlas for $\text{Coh}_{X/S}^\tau$ (that is, $[E_o]$ is a representable smooth surjection), as follows from the proof of Theorem 4.6.2.1 in Laumon and Moret-Bailly [L-MB]. As Q is projective over S, its locally closed subscheme U is quasi-projective over S, as desired. □
References

[B-M-Ni] Brambila-Paz L., Mata, O. and Nitsure, N. : Endomorphisms and moduli for unstable bundles. (Preprint, 2009).

[F-G] Fantechi, B. and Göttsche, L. : Local properties and Hilbert schemes of points. Part 3 of ‘Fundamental Algebraic Geometry – Grothendieck’s FGA Explained,’ Fantechi et al, Math. Surveys and Monographs Vol. 123, American Math. Soc. (2005).

[H-N] Harder, G. and Narasimhan, M.S. : On the cohomology groups of moduli spaces of vector bundles on curves. Math. Ann. 212 (1974/75), 215–248.

[Hu-Le] Huybrechts, D. and Lehn, M. : ‘The Geometry of Moduli Spaces of Sheaves.’ Aspects of Mathematics 31, Vieweg (1997).

[La] Langer, A. : Semistable sheaves in positive characteristic. Ann. of Math. (2) 159 (2004), 251–276.

[L-MB] Laumon, G. and Moret-Bailly, L. : ‘Champs algébriques.’ Springer (2000).

[Ni 1] Nitsure, N. : Construction of Hilbert and Quot schemes. Part 2 of ‘Fundamental Algebraic Geometry – Grothendieck’s FGA Explained,’ Fantechi et al, Math. Surveys and Monographs Vol. 123, American Math. Soc. (2005).

[Ni 2] Nitsure, N. : Deformation theory for vector bundles. Chapter 5 of Moduli Spaces and Vector Bundles (edited by Brambila-Paz, Bradlow, Garcia-Prada and Ramanan), London Math. Soc. Lect. Notes 359, Cambridge Univ. Press (2009).

[Sh] Shatz, S.S. : The decomposition and specialization of algebraic families of vector bundles. Compositio Math. 35 (1977), no. 2, 163–187.

[Si] Simpson, C. Moduli of representations of the fundamental group of a smooth projective variety -I. Publ. Math. I.H.E.S. 79 (1994), 47–129.

School of Mathematics,
Tata Institute of Fundamental Research,
Homi Bhabha Road,
Mumbai 400 005,
INDIA.

nitsure@math.tifr.res.in
04 Sep 2009