Naturally occurring hepatitis B virus reverse transcriptase mutations related to potential antiviral drug resistance and liver disease progression

Yu-Min Choi, So-Young Lee, Bum-Joon Kim

ORCID number: Yu-Min Choi (0000-0003-4709-3155); So-Young Lee (0000-0002-9638-893X); Bum-Joon Kim (0000-0003-0085-6709).

Author contributions: Kim BJ conceived participated in its design and coordination; Choi YM and Lee SY analyzed and interpreted the data.

Supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute and the Ministry of Health and Welfare, South Korea, No. HI14C0955.

Conflict-of-interest statement: There was no conflict of interest.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Article in press: April 16, 2018
Published online: April 28, 2018

Abstract

The annual number of deaths caused by hepatitis B virus (HBV)-related disease, including cirrhosis and hepatocellular carcinoma (HCC), is estimated as 887000. The reported prevalence of HBV reverse transcriptase (RT) mutation prior to treatment is varied and the impact of preexisting mutations on the treatment of naive patients remains controversial, and primarily depends on geographic factors, HBV genotypes, HBeAg serostatus, HBV viral loads, disease progression, intergenotypic recombination and co-infection with HIV. Different sensitivity of detection methodology used could also affect their prevalence results. Several genotype-dependent HBV RT positions that can affect the emergence of drug resistance have also been reported. Eight mutations in RT (rtL80I, rtD134N, rtN139K/T/H, rtY141F, rtM204I/V, rtF221Y, rtI224V, and rtM309K) are significantly associated with HCC progression. HBeAg-negative status, low viral load, and genotype C infection are significantly related to a higher frequency and prevalence of preexisting RT mutations. Preexisting mutations are most frequently found in the A-B interdomain of RT which overlaps with the HBsAg “a” determinant region, mutations of which can lead to simultaneous viral immune escape. In conclusion, the presence of baseline RT mutations can affect drug treatment outcomes and disease progression in HBV-infected populations via modulation of viral fitness and host-immune responses.

Key words: Polymerase; Hepatocellular carcinoma; Reverse transcriptase; Preexisting mutations; Hepatitis B virus

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.
Core tip: The prevalence of preexisting reverse transcriptase (RT) mutations in treatment-naive patients largely depends on geographic factors, HBV genotypes, HBeAg serostatus, hepatitis B virus (HBV) viral loads, disease progression, intergenotypic recombination, co-infection with HIV and the method used for detecting the mutation. Genotype-dependent polymorphic amino acid substitutions in RT may affect the emergence of drug resistance, and genotype C exhibits relatively elevated spontaneous RT mutation rates. HBeAg-negative status and low viral loads are significantly associated with a higher frequency and prevalence of HBV preexisting RT mutations. Preexisting mutations are most frequently found in the A-B interdomain of RT, mutations of which can lead to simultaneous viral immune escape.

Choi YM, Lee SY, Kim BJ. Naturally occurring hepatitis B virus reverse transcriptase mutations related to potential antiviral drug resistance and liver disease progression. World J Gastroenterol 2018; 24(16): 1708-1724 Available from: URL: http://www.wjgnet.com/1007-9327/full/v24/i16/1708.htm DOI: http://dx.doi.org/10.3748/wjg.v24.i16.1708

INTRODUCTION

Although an effective and safe vaccine against hepatitis B virus (HBV) has been available since 1982[1], approximately 257 million people are chronic carriers of the virus. The annual number of deaths caused by HBV related diseases, including cirrhosis and hepatocellular carcinoma (HCC), was estimated as 887000 in 2015 (WHO, 2017)[2]. Reverse transcriptase (RT) conducts the major enzymatic activity required for viral replication. Nucleos(t)ide analogs (NAs) such as lamivudine[3], adefovir dipivoxil[4], entecavir[5], telbivudine[6], and tenofovir[7], for treatment of HBV infection, mainly target RT and function as reverse transcriptase inhibitors by mimicking natural nucleosides and integrating within the DNA molecules to interfere with viral replication[8,9]. However, due to the lack of proof reading ability of RT, the error rate for viral genome replication is as high as 10⁻⁷ per nucleotide, which is 10-fold greater than that of other DNA viruses[10], resulting in the emergence of antiviral-drug resistance mutations[11-15]. These NA-resistant (NAr) mutants are the greatest challenge for treatment of HBV because they change the conformational structure of RT and lower the effectiveness of NAs by impeding their binding[16]. In addition, RT partially overlaps with HBV surface antigen (HBSAg) and RT mutation may simultaneously generate HBSAg mutations, which can alter the antigenicity, immune recognition, replication capacity, and virulence of HBV[17-19].

The reported prevalence of preexisting HBV polymerase RT mutations is varied and the impact of preexisting RT mutations on treatment-naive patients remains controversial. In addition, the relationship between preexisting RT mutations and advanced liver diseases, such as cirrhosis and HCC, has not been fully investigated[20]. Therefore, this review focuses primarily on factors affecting the prevalence and types of preexisting RT mutations in treatment-naive patients and the relationship between these mutations and disease progression.

DISTRIBUTION OF PREEXISTING HBV
NAR MUTATIONS IN SAMPLES FROM TREATMENT-NAÏVE PATIENTS

Liu et al[21] identified pre-existing HBV RT mutations in 42 potential NAr RT positions from 192 treatment-naive Chinese patients and arranged them into following four mutation categories: primary drug resistance (Category 1); secondary/compensatory mutation (Category 2); putative NAr (Category 3); and pretreatment (Category 4) (Table 1). To understand the global prevalence of these 42 naturally occurring NAr resistance mutations of RT, we reviewed a total of 50 previous studies[12,20-68] and collated their results (Figure 1). These include 32 articles published from institutions based in Asia (12 published from China, four from Iran, four from Turkey, four from India, three from Japan, two from Taiwan, and one each from Korea, Jordan, and Indonesia), 11 articles published from institutions based in Europe (six from Italy, two from Germany, and one each from Austria, Ireland, and Spain), four articles published from institutions based in North America (three from United States and one from Canada), two articles published from institutions based in South America (both from Brazil), and one article published from an institution in South Africa (Supplementary Table 1). Among the 50 studies, 36[20-23,25-28,32,33,36,39-41,47,50,51,56,60-65] used direct PCR sequencing methods, 11[22,28,59,66-68] used the INNO-LIPA line assay, and 3[29-31] detected RT mutations by ultra-deep pyrosequencing (UDPS). Seventeen articles[21,22,28,29,36,50,51,55,56,60,63,68] included treatment-naive patients infected with genotypes B and C, one study[22] with genotypes A and D, eleven studies[22,28,29,36,50,51,55,56,60,63,68] with genotype D, one study[20] with genotype C, and fifteen studies[20,23-25,40,41,44,45,52,54,57,61,64,65,67] with more than three genotypes (e.g., A, C, and D or A, B, C, and D). In five studies, genotypes of patients were not mentioned. Our literature-based study demonstrated that preexisting RT mutations were also found in treatment-naive patients at 40 of 42 previously identified NAR RT positions, the two exceptions were rtF242A, a pretreatment mutation and rtF166L, a lamivudine (LMV)-associated putative mutation. The distribution and overall incidence of RT mutations is presented in Figures 1 and 2.

Primary drug resistance mutations are amino acid changes that cause direct NA resistance by decreasing viral susceptibility to NAG[69-71]. Mutated RT positions known to induce primary drug resistance are rt169,
Table 1 Distribution of preexisting RT mutation in 42 potential NAr regions in treatment naïve patients

Mutation	RT mutation type	Change in HBsAg	Drug resistance	Genotype	Location	Ref.
Primary						
I169T		sW172 stop	ETV	B, C	China	[20,33]
A181T/V			LMV, LdT, ADV, TNF	A, B, C, D	Canada, Italy, China, United States	[24,25,30,39,45,53]
T184A/C/F/G/1/L/M/S	no change in HBsAg	ETV, LMV	A, B, C, D	China	[27,30,47]	
M201I/L/V	LMV	A, B, C, D	Canada, Italy, China, United States	[24,25,30,39,45,53]		
Secondary						
L80I/V		no change in HBsAg	LMV	A, B, C, D	China, Italy, South Korea, Indonesia, China, United States	[24,25,30,39,45,53]
V173L		sE164D	LMV	A, B, C, D	China, Canada, Italy	[20,25,30,39,47]
L180M		no change in HBsAg	LMV, ETV, LdT	A, B, C, D	China, South Korea, Italy, Indonesia, China, United States	[24,25,30,39,45,53]
Putative						
S83N		LMV	A, B, C, D	China, South Korea	[21,33,38]	
T54N		sP46T	ADV	A, B, C, D	Italy	[8]
V64M, S85A		LMV	A, B, C, D	South Korea	[33,53,127]	
Y1281	C-sI188	ADV	A, B, C, D	South Korea, China	[33,54,58]	
N139D/E/Q	N-sG145R, I-sP120S	LMV	A, B, C, D	South Korea, China	[33,54,58]	
W133Q/K/R/E	Q-sP120T, sG145R, E-sD144E	LMV	A, B, C, D	South Korea, China, Indonesia	[33,58,45,58]	
F166L		sF158Y	LMV	A, B, C, D	South Korea, China	[39,40,42,58]
V191I		sW199 stop, sM198	LMV	A, B, C, D	Germany, China, Italy	[27,32,39,83]
V207I		sW199 stop, sM198	LMV	A, B, C, D	Germany, China, Italy	[27,32,39,83]
S213T		LMV, ETV	A, B, C, D	China, India	[39,40,42,58]	
V246A		T-sS240R	ADV	A, B, C, D	China, South Korea, Italy, Turkey	[30,39,51,33-35]
Q215E/H/P/S	D-sI210Y, I-sS210Y	LMV	A, B, C, D	South Korea, China	[21,33,42,58]	
L225Q/V/W	E-sC221L, V-sF220L	LMV	A, B, C, D	South Korea, China	[33,42,58]	
I233V		ADV	A, B, C, D	Indonesia, Italy, China, South Korea, Germany	[25,38,40,38,78,79]	
P237H, N238D/S/T, Y245H	N/A	ADV	A, B, C, D	China, South Korea	[21,33,39,58]	
S/C256G		LMV	A, B, C, D	South Korea, China	[21,38,58]	
Pretreatment						
T38A, T38K	K-sQ90K	ADV	A, B, C, D	South Korea, China	[33,58]	
Y124H/D/N		LMV	A, B, C, D	South Korea, China	[21,33,38,58]	
D134E/N		sT126S/N	LMV	A, B, C, D	South Korea, China, Indonesia, China	[33,58,45,58]
N139K/H		K-sT131N, T-sT131P, H-sG139N	LMV	A, B, C, D	South Korea, China, Indonesia, China	[33,58,45,58]
I224V		No change in HBsAg	LMV	A, B, C, D	South Korea, China, Indonesia, China	[21,33,39,58]

1Well known NA resistance mutations (primary and secondary) with phenotypic data; 2Putative and pretreatment mutations relevant to NA resistance but not experimentally confirmed; 3Changes in HBsAg reported in Sheldon et al.[17] Liu et al.[21], Locarnini et al.[72], and Yang et al.[77]. Rt139 is shared in both Categories 3 (N139D/E/Q) and 4 (N139K/H). Overall, 42 positions in the RT region were studied. ADV: Adefovir dipivoxil; ETV: Entecavir; LdT: Telbivudine; LMV: Lamivudine; TNF: Tenofovir.
The distribution and overall incidence of RT region is the frequent incidence of rtM204I/V/S in treatment-naive patients (Figure 1). Similarly, Zhang et al. reported that rtL80I/V and V173L (incidence: 0.46% and 0.15%, respectively) (Figure 1). A systematic review by Zhang et al. revealed that the global incidence of rtM204I/V/S is 4.85%.

rt181, rt184, rt194, rt202, rt204, rt236, and rt250. The mutations rtA181T/V, rtM204I, and rtM204V also cause the simultaneous HBsAg mutations, sW172 stop, sW196S/L/Stop, and sI195M, respectively. rtL80I/V is the most frequently encountered in treatment-naive patients (5.89%), which was far more than the pooled mutation rate of rtA181T/V, rtS202C/G/I and rtN236T (incidence: 1.16%, 0.85% and 0.81%, respectively). Mutation of rtI196T (0.12%), rtI184G (0.06%), rtA194T (0.07%), and rtM250V/L (0.20%) had a very low pooled incidence (Figure 1).

A systematic review by Zhang et al. revealed that the global incidence of rtM204I/V/S is 4.85%. Several other studies have also reported the frequent incidence of rtM204I/V/S in treatment-naive patients. For example, Kobayashi et al., Lee et al., Tuncbilek et al., Fung et al., and Huang et al. reported rtM204I/V/S mutation frequencies in Japanese, Taiwanese, Turkish, Canadian, and Chinese treatment-naive patients ranging from 27.8% to 57%, 7.8%, 12%, and 26.9%, respectively.

Secondary, or compensatory, mutations refer to amino acid substitutions that compensate for replication defects caused by primary drug resistance mutations and may reduce drug susceptibility by restoring viral replication fitness. The mutations rtL80I/V, rtV173L, rtL180M are known for secondary resistance mutations. Our literature based incidence data showed that rtL180M had the highest natural incidence (2.96%), which was higher than the pooled mutation rate of rtL80I/V and V173L (incidence: 0.46% and 0.15%, respectively) (Figure 1). Similarly, Zhang et al. reported that the overall frequency of rtL180M mutation is 2.67%. Other studies, including Fung et al., Yamani et al., and Mirandola et al., reported that the prevalence rates of rtL180M were 10.0%, 2.08%, and 1.18% in Chinese, Indonesian, and Italian HBV carriers, respectively. The rtL80I/V mutation also occurs frequently in treatment-naive patients. Yamani et al. reported that rtL80I/V was the most frequently encountered pre-existing mutation of secondary drug resistance mutations in South Korea (3.8%, 5/131 patients), even higher than rtL180M frequency (2.3%, 3/131 patients). Another compensatory RT mutation, rtV173L, was also detected in several studies of treatment-naive patients, where Zhang et al., Wang et al., and Mirandola et al. reported that it occurred in 0.6%, 0.56%, and 0.39% of their patients, respectively.

RT mutations which have been identified as associated with drug resistance, but have not been confirmed experimentally in vitro, are defined as putative NA resistant mutations. A total of 26 types of RT mutations, including rtS53N, rtT54N, rtL82M, rtV84M, rtS8SA, rtT91L, rtY126C, rtT128I/N, rtN139D, rtW153Q, rtF166L, rtV191N, rtA200V, rtV207I, rtS213T, rtV214A, rtQ215P/S, rtL217R, rtE218D, rtF221Y, rtL229G/V/W, rtI233V, rtP237H, rtN238D/S/T, rtY245H, and rtS/C256G, are considered putative drug resistance mutations.

Recently, it has been proven through in vitro and in vivo experiments that several putative or pretreatment mutations, including rtL229F, rtS13T, and rtI233V, can also contribute to the development of drug resistance. In addition, several studies have reported that treatment-naive patients with only putative RT mutations, and without primary or secondary changes, developed drug resistance since treatment initiation. Our literature based pooled incidence data showed that several putative or pretreatment mutations, including rtI233V, were encountered with high frequency from the treatment naive patients. Another RT mutation, rtV224V, which was found pre-existing in 0.6%, 0.56%, and 0.39% of their patients, respectively.
April 28, 2018

To date, a total of 10 HBV genotypes (A-J) and several sub-genotypes have been identified; genotypes are separated from each other by sequence differences of more than 8% by phylogenetic analysis, based on whole genome sequences.[80,81] HBV genotypes, including genotypes A-J and the various sub-genotypes, are associated with several distinct traits, including geographical distribution, host ethnicity, and pathogenicity.[82] Since specific mutational patterns of mutation can be restricted by structural/functional constraints to particular genotypes, HBV genotype can influence the evolution frequency, or types, of mutations associated with NAr in treatment-naïve patients, as described by Liu et al.[21]. Moreover, some of these mutations also overlapped with genotype-dependent polymorphic sites, as described in the next section.

DISTRIBUTION OF GENOTYPE-DEPENDENT AMINO ACID POLYMORPHIC SITES IN TREATMENT-NAÏVE PATIENTS

To date, a total of 10 HBV genotypes (A-J) and several sub-genotypes have been identified; genotypes are separated from each other by sequence differences of more than 8% by phylogenetic analysis, based on whole genome sequences.[80,81] HBV genotypes, including genotypes A-J and the various sub-genotypes, are associated with several distinct traits, including geographical distribution, host ethnicity, and pathogenicity.[82] Since specific mutational patterns of mutation can be restricted by structural/functional constraints to particular genotypes, HBV genotype can influence the evolution frequency, or types, of mutations associated with NAr in treatment-naïve patients, as described by Liu et al.[21]. Moreover, some of these mutations also overlapped with genotype-dependent polymorphic sites, as described in the next section.

Moreover, some of these mutations also overlapped with genotype-dependent polymorphic sites, as described in the next section.

DISTRIBUTION OF GENOTYPE-DEPENDENT AMINO ACID POLYMORPHIC SITES IN TREATMENT-NAÏVE PATIENTS

To date, a total of 10 HBV genotypes (A-J) and several sub-genotypes have been identified; genotypes are separated from each other by sequence differences of more than 8% by phylogenetic analysis, based on whole genome sequences.[80,81] HBV genotypes, including genotypes A-J and the various sub-genotypes, are associated with several distinct traits, including geographical distribution, host ethnicity, and pathogenicity.[82] Since specific mutational patterns of mutation can be restricted by structural/functional constraints to particular genotypes, HBV genotype can influence the evolution frequency, or types, of mutations associated with NAr in treatment-naïve patients, as described by Liu et al.[21]. Moreover, some of these mutations also overlapped with genotype-dependent polymorphic sites, as described in the next section.

Moreover, some of these mutations also overlapped with genotype-dependent polymorphic sites, as described in the next section.
were more frequent in in genotype C than genotype B viruses \((P < 0.001)\). Notably, rtN226H/T was the only pretreatment mutation, which is more common in genotype B than genotype C \((P < 0.001)\). Singh et al.\(^{44}\)

Table 2 Genotype-dependent amino acid polymorphic sites and reverse transcriptase mutations in treatment-naive patients

RT position	Drug resistance	Mutations in RT region of four genotypes\(^{1}\)	Polymorphism	Ref.
38		T (4.4)\(^{1}\)	T (14.0)\(^{1}\)	[83]
53	LMV	D/T (1.8)\(^{1}\)	I/N/S/N	[21]
54	ADV	N (2.2)\(^{1}\)	T/T/T/H	[83]
84		I (0.5)\(^{1}\)	V	[127]
85		I (1.5)\(^{1}\)	S	[21]
91	LMV	L (23.5)\(^{1}\)	I (16.7)\(^{1}\)	[83]
103	I (100)\(^{1}\)	I (1.67)\(^{1}\)	V	[40]
122	H (47.0)\(^{1}\)	H (6.66)\(^{1}\)	F	[40]
124	H (2.2)\(^{1}\)	L/V/I(25.0)\(^{1}\)	N/N/Y/H	[83]
126	H (6.7)\(^{1}\)	R (23.7)\(^{1}\)	Y/H/H/H	[83]
128	LMV	N (2.2)\(^{1}\)	Y (1.4)\(^{1}\) Q (0.5)\(^{1}\)	[83]
129		I (1.9)\(^{1}\)	N (1.4)\(^{1}\) 1 (1.4)\(^{1}\)	[83]
134	L (100.0)\(^{1}\)	L (21.4)\(^{1}\)	M	[44]
139	LMV	N (40.5)\(^{1}\)	E/D/N/D/D	[38,54]
145		K (3.7)\(^{1}\)	K (11.9)\(^{1}\) Q/N/N/N	[38]
153	LMV	L (3.7)\(^{1}\)	K (2.3)\(^{1}\)	[83]
191	LMV	V (8.3)\(^{1}\)	V/R/R/R	[40]
200	LMV	F (7.7)\(^{1}\)	V/I/V/V	[39]
207	LMV	M (6.0)\(^{1}\) L (2.3)\(^{1}\)	A	[83]
214	LMV/ADV	A (0.5)\(^{1}\) I (0.5)\(^{1}\)	A (2.3)\(^{1}\)	[83]
215	ADV	E (7.7)\(^{1}\)	A (0.8)\(^{1}\) E (0.7)\(^{1}\)	[127]
217	L (6.7)\(^{1}\)	I (5.9)\(^{1}\) I/L/G (2.1)\(^{1}\)	V	[39]
221	ADV	F (40.5)\(^{1}\)	R (0.9)\(^{1}\) Y/Y/F/F	[38]
226		H/T (33.3)\(^{1}\)	Y (5.3)\(^{1}\)	[83]
237		H/T (2.4)\(^{1}\)	N	[38]
238	LMV, ETV	Q (3.9)\(^{1}\)	T (6.4)\(^{1}\)	[127]
245		H (1.0)\(^{1}\) W (1.0)\(^{1}\)	T (6.4)\(^{1}\)	[127]
256	LMV	D (2.2)\(^{1}\) T (2.2)\(^{1}\)	D (1.4)\(^{1}\)	[83]

A total of 29 reported genotype-dependent amino acid polymorphic sites in the RT region in treatment-naive patients are shown. The first column contains the RT positions and the second column details the relationship between mutations and drug resistance. Column three to six indicate the prevalence of each mutation as percentages, according genotype. Consensus amino acids are presented in column seven. \(^{1}\)Incidence (%) of mutations in the RT region; \(^{2}\)Putative mutation; \(^{3}\)Pretreatment mutation; \(^{4}\)Novel mutation. ADV: Adefovir dipivoxil; ETV: Entecavir; Ldt: Telbivudine; LMV: Lamivudine; TNF: Tenofovir.

Choi YM et al. Preexisting HBV RT mutations
Table 3 Positive relationships between HBeAg negative serostatus and preexisting reverse transcriptase mutation frequency in the treatment-naïve patients

Mutations	HBV-DNA	Mutations	HBV-DNA	Location	Ref.
3/14 (21.4)	7.8	11/14 (78.6)	5.7	B, C, E	California [26]
6/24 (25.0)	5.5	18/24 (75.0)	3.9	B, C, B-C	China [27]
0/4 (0.0)	7.2	4/4 (100.0)	4.7	A, B, C, D, F	California [45]
3/5 (60.0)	8.0	5/6 (83.3)	3.2	D	Turkey [36]
8/12 (66.7)	7.9	4/12 (33.3)	6.9	NA	Taiwan, China [35]
27/33 (81.8)	5.7	16/23 (78.3)	4.7	B, C	China [46]
8/13 (61.5)	6.3	5/13 (38.5)	5.4	B, C	China [47]
0/5 (0.0)	NA	5/5 (100.0)	NA	NA	Japan [34]
0/4 (0.0)	NA	4/4 (100.0)	NA	NA	Japan [88]

1Number of patients with RT mutation (%); 2HBV-DNA level (log_{10} IU/mL).

also showed that rtL91I and rtM129L are more common in samples from genotype C, than genotype D, infected patients. Overall, these findings indicate that distribution of genotype dependent polymorphic sites in treatment-naïve patients could affect drug treatment outcomes via modulation of viral fitness or replication. The distribution of the 29 genotype-dependent polymorphic-sites in the HBV RT region among treatment naïve patients identified in other reports is summarized in Table 2.

GENOTYPE DISTRIBUTION OF PRIMARY RT MUTATIONS IN TREATMENT-NAÏVE PATIENTS

Mirandola et al [23] identified the different genotype different distributions of antiviral drug resistant RT mutations using INNO LiPA line probe analysis of samples from treatment-naïve patients; RT mutations were detected in 13 (5%) of 255 HBV infected patients. Of these, 10 patients had mutations associated with primary resistance or reduced sensitivity, including three cases with a YMDD mutation (rtM204V), three with the mutation, rtM250L/V, which is associated with ETV resistance, and four with the mutation rtI233V, which is associated with reduced sensitivity to ADV. Notably all the three patients with the rtM204V mutation also had coexisting L180M compensatory mutations, and all were infected with HBV-C genotype viruses, suggesting that naturally occurring LMV-resistant HBV may be more frequent in patients infected with genotype C virus. This hypothesis is strongly supported by the recent report of Kim et al [33] of the high frequency of the YMDD mutation, (rtM204V/I) (6.87%, 9/131 patients), in Korean treatment-naïve patients with HBV genotype C2 infections. Wang et al [39] also reported that RT mutations were only found in genotype C treatment-naïve patients; however, no primary or secondary RT mutations were found in genotype B patients. In addition, a systemic meta-analysis review by Zhang et al [25] showed that rtM204V/I had the highest incidence of 4.89% (95%CI: 4.13%-5.65%) among primary and secondary RT mutations. These authors also found, via the subgroup analysis by genotype, that HBV genotype C had a tendency of toward a higher spontaneous YMDD mutation frequency (19.32%) than genotype B (15.01%) or D (14.79%). The increased spontaneous mutations in the viral genome of HBV genotype C could translate to a higher risk of primary NA resistance in HBV endemic areas, where genotype C infections are prevalent, including China and South Korea.

CLINICAL FACTORS (HBEAG SEROSTATUS AND HBV VIRAL LOADS) AFFECTING INCIDENCE OF PREEXISTING RT MUTATIONS IN TREATMENT-NATIVE PATIENTS

The majority of studies have consistently reported a significant association between the prevalence of preexisting RT mutations and lower HBV DNA loads, or HBeAg-negative status, in treatment-naïve patients [26,35,36,37,38,45-47,88] (Table 3). Vutien et al [40] reported that treatment-naïve patients with HBeAg-negative status had higher RT mutation frequencies (78.57%), compared with HBeAg-positive patients (21.42%). These authors also showed that HBeAg-negative patients had significantly lower HBV DNA viral loads compared with HBeAg-positive patients (5.65 log_{10} IU/mL vs 7.82 log_{10} IU/mL, respectively). Zhao et al [27] also reported similar results showing that 75% of patients with RT mutations were HBeAg-negative and had lower HBV DNA levels (3.92 log_{10} IU/mL) whereas 25% of patients with RT mutations were HBeAg-positive with higher HBV DNA loads (5.54 log_{10} IU/mL). Similarly, Zhu et al [45] found that Chinese patients with chronic HBV carrying preexisting RT mutations had significantly decreased serum baseline HBV DNA loads (P = 0.0363) and blood platelet counts (P = 0.0181) compared with those without RT mutations.

Several other studies [34,45,88] also found RT mutations only in HBeAg-negative patients, and the patients were also more likely to have decreased HBV DNA levels compared with those who were HBeAg-positive [45].
Kobayashi et al. reported that all asymptomatic HBV carriers with YMDD mutation were HBeAg-negative and eAb-positive, suggesting that sustained host immune pressure may be a major force driving potential NAR mutations. Zhang et al. also reported a systemic meta-analysis finding that patients with chronic hepatitis B (CHB) and genotype C infections, who were male and HBeAg-negative tended to have higher spontaneous mutation rates in subgroup analysis. Xu et al. reported no significant correlation between pre-existing mutations and the majority of clinical factors including gender, age, HBV genotype, ALT, HBeAg, and HBV DNA loads, in a Chinese population; however, subgroup analysis indicated that pre-existing mutations were strongly associated with lower HBV DNA levels in HBeAg sero-negative, but not HBeAg sero-positive, patients (HBeAg+ vs HBeAg−: 5.74 log₁₀ IU/mL vs 4.72 log₁₀ IU/mL, P = 0.0112). These findings suggest that preexisting RT mutations might lead to lower HBV viral loads in treatment-naïve patients with HBeAg-negative serostatus. Several other studies have reported similar positive associations between the frequency of pre-existing RT mutations and decreased HBV viral loads. Taken together, there appears to be a clear causal link between preexisting RT mutations and HBeAg-negative status, decreased HBV DNA load, or liver disease progression. This may be because mutations in the RT active domain, could impair enzyme activity, particularly at the HBeAg negative immune clearance stage, thus decreasing the efficacy of virus replication and, resulting in liver disease progression and poor treatment outcomes.

GENOTYPE DISTRIBUTION AND GEOGRAPHICAL FACTOR AFFECTING THE INCIDENCE OF PREEXISTING RT MUTATIONS

Reports of the incidence of preexisting RT mutations in treatment-naïve patients are highly variable, ranging from 0% to 57%. This huge discrepancy among studies may be due to differences in factors such as the geographical or ethnic backgrounds of studied patients, sample size, and viral genotype. A number of studies have reported prevalence rate of preexisting RT mutations (primary and secondary RT mutations) of more than 5% in treatment-naïve patients (Table 4). Fung et al. found a higher rate of baseline RT mutations (12% M204I/V, 10% L180M) by using the INNO-LIPA v.3 assay. In this study, many patients, most of whom were infected with genotype D, carried rtL180M, rtM204V/I, and rtL80V/I mutations. In addition, Nishijima et al. identified a high mutation rate (35.7%) in 14 treatment-naïve patients in Japan, using UDPS. Also, a recent study using direct sequencing of samples from 131 treatment-naïve patients infected with genotype C reported an overall rate of 12.98% for primary (rtT184A/C/F and rtM204I/V) or compensatory (rtL80I and rtL180M) mutations. According to a systemic meta-analysis review conducted by Zhang et al., the overall prevalence of spontaneous mutations among treatment-naïve patients worldwide was 5.73%. The highest pooled prevalence (8.00%) was identified in samples from China, followed by Japan, Turkey, Korea, South America, and Europe at 6.62%, 6.43%, 5.72%, 3.89%, and 2.53%, respectively. Another study of 325 genotype D infected treatment-naïve patients using direct PCR sequencing reported overall incidence of 15.69% for primary and secondary drug resistance mutations, including L80V/I, L180M, M204I/V, and S213T/N.

In contrast, several studies have reported prevalence rates of less than 5% for pre-existing RT mutations (primary and secondary RT mutations) in treatment-naïve patients (Table 4). For example, using direct sequencing of samples from treatment-naïve patients from the United States, Nguyen et al. demonstrated that only four (0.9%) of 472 patients were infected with viruses with primary and secondary mutations (rtA181AS, rtA194S, and rtM250I). Similarly, Zollner et al. screened a total of 96 patients infected with HBV genotypes A and D (52.08% and 47.92%, respectively) using a direct sequencing assay, but found no primary or secondary resistance mutations. Another study by Salpini et al. using the direct sequencing method reported that, of 140 treatment-naïve patients infected with genotype D, only 1.4% had primary drug resistance mutations, while 2.1% carried secondary mutations.

Overall, preexisting RT mutation prevalence clearly reflects the geographical distribution of HBV infection. For example, China is an area with high levels of endemic area of HBV infection (8%, according to a national survey in 2006) and also has higher prevalence of pre-existing RT mutations. Meanwhile, in Europe, which has low levels of endemic HBV infection (approximately 2%), there is a low incidence of spontaneous mutations (2.53%). Since the HBV geographic distribution has also a close relationship with the genotype distribution, the majority of countries in Asia with prevalent genotype B and C infections have high rates of spontaneous RT mutation (>5%), whereas countries in Europe, where genotype A and D infections are dominant, tend to have low incidences (<5%).

HBV INTERGENOTYPIC RECOMBINATION AND COINFECTION WITH HIV AFFECTING THE INCIDENCE OF PREEXISTING RT MUTATIONS

HBV intergenotypic recombination between different
Table 4 Variation in the prevalence of preexisting reverse transcriptase mutations according to mutation detection methods, genotype, and geographic distribution

Prevalence	Location	No. of cases	Genotype	HBV DNA loads (log10 IU/mL)	RT mutations prevalence	Mutation detecting methods	Ref.
HBV DNA RT mutations ≥ 5%	Italy	255	A, C, D	5.0	5.0% mutations overall	INNO-Lipa HBV DR v.3	[29]
	China	269	B, C, B-C	4.9	8.9% mutations overall	INNO-Lipa HBV DR v.3	[27]
	Canada	209	A, B, C, D	20%	12% M204V12, 10% L180M, 9% L180V/1, 3%V173L	INNO-Lipa HBV DR v.3	[24]
	Turkey	71	NA	NA	18.3% YMDD mutations	INNO-Lipa HBV DR v.1	[28]
	South Korea	131	C2	6.5	12.98% mutations overall	Direct Sequencing	[33]
	Turkey	77	D	7.3	7.8% YMDD mutations	Direct Sequencing	[36]
	China	213	B, C	6.2	6.1% mutations overall	Direct Sequencing	[47]
	China	104	B, C, B-C	4.5	26.9% YMDD mutations	Direct Sequencing	[30]
	Japan	18	NA	NA	27.8% YMDD mutations	Direct Sequencing	[34]
	Iran	325	D	NA	15.69% mutations overall	Direct Sequencing	[50]
	Taiwan, China	28	NA	7.5	57% YMDD mutations	Direct Sequencing	[33]
	China	357	B, C	6.3	16.8% mutations overall	Direct Sequencing	[39]
Meta-analysis (China)		8156	B, C, D	NA	8.0% mutations overall	Record screening	[75]
HBV DNA RT mutations < 5%	Iran	14	B, C	4.9	3.57% YMDD mutations	Ultra-deep sequencing	[94]
	China	328	B, C	6.9	3.6% mutations overall	Direct sequencing	[53]
	Japan	20	NA	NA	<1% mutations overall	Direct sequencing	[45]
	California	472	A, B, C, D,F	5.3	None	Direct sequencing	[48]
	Italy	100	NA	NA	None	None	[49]
	Italy	140	D	4.0	3.5% mutations overall	None	[32]
	Germany	96	A, D	NA	None	Direct sequencing	[41]
	Brazil	189	A, C, D, F	3.2	overall 6.0% in Northeast/ 0% in North	Direct sequencing	[41]
	California	198	B, C	4.2	1% mutations in polymerase	INNO-Lipa HBV DR v.3	[26]

genotypes is regarded as an important strategy for HBV genetic diversity and may impose challenges on vaccine designation and antiviral therapy strategies[95,96]. In particular, the high prevalence of vertical infections in HBV endemic areas, such as Asia or Africa, could lead to a life-long chronic infection[97], resultantly leading to a high probability of co-infection and a high risk for virus recombination[98-101]. Previous studies on HBV recombination have identified different types of intergenotypic recombinants in HBV RT, most of which have recombination in RT/S overlapping region[95,98-103]. Of note, a recent study conducted by Liu et al[100] demonstrated that, through full-length HBV RT sequences analysis from 201 Chinese chronic hepatitis B (CHB) patients, 38.10% (24/63) infected with genotype B had recombination with genotype C in the 3′-terminal RT sequences. These authors also showed that these intergenotypic recombinants were associated with enhanced viral DNA load and higher RT point mutation rates, compared with their parental genotype B or C, highlighting the importance of monitoring intergenotypic RT recombinants in HBV endemic areas to ensure optimal management.

Approximately, 10% of HIV-infected persons worldwide are chronically infected with HBV, and co-infection of two viruses is most frequently identified (up to 25%) in sub-Saharan Africa and Asia[104]. HBV and HIV co-infection is a major cause of morbidity and mortality because it could contribute to an increased risk of liver cirrhosis and HCC[105]. In general, previous studies showed a predominance of HBV genotype A in HIV infected individuals, compared with other genotypes[106,107]. In particular, Makondo et al[106] reported that the ratio of genotype A to non-A (97% to 3%) was higher in the HBV/HIV co-infected Southern Africa patients compared with mono-infected individuals. These authors also showed that 10 percent, 3 out of 29 patients prior to the initiation of antiretroviral therapy (ART), had drug resistance mutations rtV173L, rtL180M+rtM204V, and rtV214A. In South Africa, rtM204I has been mainly detected in treatment-naive HBV/HIV co-infected individuals[108] with rtM204V in treated HBV mono-infected participants[109], suggesting HIV co-infection could affect HBV preexisting RT mutation pattern. A study of South African patients conducted by Selabe et al[102] demonstrated that HBV lamivudine-resistant strains were detected in three out of 15 treatment-naive mono-infected chronic hepatitis B patients,
whereas detected in 10 out of 20 treatment-naive HBV/HIV-coinfected patients. In contrast, a multinational study of HIV/HBV-coinfected individuals carried out by Thio et al.\[110\] demonstrated that no subject had preexisting RT mutations in the majority population of the quasispecies, suggesting no need for HBV drug-resistance testing prior to starting anti-HBV therapy in HIV-HBV co-infected individuals. It is also supported by a recent study of Ghana patients conducted by Archampong et al.\[111\]. Taken together, geographical factors and HBV genotypes could have effects on the preexisting HBV RT mutation in treatment-naive HBV/HIV-coinfected patients.

DIFFERENT SENSITIVITY OF DETECTION METHODOLOGY USED CAN AFFECT THE REPORTED PREVALENCE OF PREEXISTING RT MUTATIONS: LIMITATION OF THE STUDIES IN PREEXISTING RT MUTATIONS

The detection methods used can also have a profound effect on the reported incidence results of preexisting RT mutations. The majority of studies have used direct sequencing methods, which can lead to the underestimation of preexisting RT mutations, due to the relative low sensitivity of these assays. Wang et al.\[39\] reported that the sensitivity of direct sequencing-based protocols declined when circulating viral subtypes (AA substitutions) levels were at ratio below 20%-25%. Similarly, there were several studies have reported discordance in the incidence of pre-existing RT mutations detected by direct sequencing and other screening methods, such as the INNO-LiPA assay, or UDPS. For example, Margeridon-Thermet et al.\[32\] reported that direct sequencing found an average of 5.9 mutations per sample, while UDPS identified an additional 4.6 mutations per sample, which could not be detected by direct sequencing. In that study, two of 17 treatment-naive patients had mutations which were detected only by UDPS, but not by direct sequencing; one rtM204I mutation with (1.3% mutant ratio) and the other an rtA181T mutation (1.0% ratio). Similarly, Aberle et al.\[66\] also compared the detection efficacies for preexisting RT mutations between the INNO-LiPA assay and direct sequencing. The former identified additional mutations in 8 (14%) of 56 patient samples, which could not be detected using the latter method, indicating the superiority of the former over the latter for RT mutation detection. Overall, these data demonstrate that the method used for detecting the mutations can affect the prevalence estimates of preexisting RT mutations in treatment-naive patients, which may cause discrepancies among the results of different studies.

PREEXISTING RT MUTATIONS ARE RELATED TO THE PROGRESSION OF LIVER DISEASES

Although the clear association between preexisting RT mutations and advanced liver disease has not been fully investigated, several types of HBV mutations in RT have previously been reported as related to the progression of liver diseases, such as cirrhosis and HCC (Table 5). Kim et al.\[33\] compared types and frequencies of pre-existing RT mutations between CHB and HCC treatment-naive patients. These authors found a significantly higher rate of RT mutations in HCC patients than in those with chronic hepatitis (3.17% vs 2.09%, \(P = 0.003\)) and also identified a total of three NAr mutations (rtL80I, rtN139K/T/H, and rtM204I/V) significantly associated with HCC progression. RT mutations rtN139K/T/H and rtM204I/V also cause simultaneous mutations in the YMDD-motif mutation (rtM204I/V) was found in 9 patients of 131 patients (8 HCC and 1 CHB) with the other two types of mutation, rt204I and rt204V, in 8 and 1 patients, respectively. The other HCC-related mutation (rtL80I) was first identified as a compensatory mutation associated with LMV resistance\[69,112\]. Its relationship with clinical deterioration is also corroborated by other reports that it was associated with increased viral loads, accompanied by an elevation in serum aminotransferase activity, and exacerbation of liver disease in every

Table 5 Relationship of preexisting reverse transcriptase mutations with disease severity

Type of mutation in RT	Chang in HBsAg	Genotype	Location	Disease progression	\(P\) value	Ref.
rtL80F	NC	C	South Korea	HCC	0.036	[33]
rtID134N	s1265/N	B, C	China	HCC	0.007	[114]
rtN139K/T/H	sT131N/P	C	South Korea	HCC	0.008	[33]
rtY141F	sM307T	Ce	Taiwan	HCC	0.029	[37]
rtM204I/V	sW196L/S/W	C	South Korea	HCC, poor survival rate	0.028/0.004	[20,115]
rtF221V	NA	B,C,D	China	HCC	0.005	[116]
rtG224V	NA	C	China	HCC	0.007	[116]
rtM309K	NA	C	China	HCC	0.007	[116]

HBV polymerase RT mutation; 1Primary; 2Secondary; 3Putative; 4Pretreatment; 5Novel RT mutation. HCC: Hepatocellular carcinoma; NA: Not available; NC: Not changed; RT: Reverse transcriptase.
Table 6 Distribution of preexisting reverse transcriptase mutations among reverse transcriptase domains

Domains	A-B interdomain	Non-A-B interdomains		
P value	Ref.			
1.45	3.51	2.58	< 0.001	[38]
1.37	4.4	3.77	< 0.001	[20]
1.07	7.5	3.16	0.008	[33]
0.43	3.82	0.52	0.0014	[21]

1Mutation frequency was calculated as the number of mutations found in a specific RT domain divided by the total number of sites in the domain; 2Domain including RT mutation sites; rt38, rt84, rt207, rt233, rt238, and rt256; 3A-B interdomain including RT mutations sites: rt53, rt191, rt213, rt218, rt229, and rt242; 4Non-A-B interdomains including RT mutation sites: rt124, rt126, rt128, rt134, rt139, and rt153; P-values of comparisons of mutation frequencies between A-B interdomain and other functional domains.

case. Interestingly, Kim et al.23 showed that rtL80I was combined with the rtM204V mutation in five of nine rtM204V cases, and that patients with L80I had increased HBV replication compared with those without this mutation, suggesting that, together with rtM204V, it may contribute to HCC generation in treatment-naïve patients by compensating for the defective replication of caused by rtM204V.

In another study, Yin et al.114 analyzed the association of the mutations of HBV polymerase with postoperative survival in 92 patients with HBV-related HCC using direct sequencing. They discovered three nucleotide sites, one (31st nucleotide) in a spacer region and two [529 (P = 0.007) and 1078 (P = 0.038)] in the RT region, which could be considered independent predictors of postoperative survival in HBV-related HCC. Of the two sites in RT related to HCC outcomes, rtD134N (mutation G529A) was associated with lamivudine resistance, further supporting previous findings of potential correlation between resistance to the anti-HBV nucleoside analog, lamivudine, and HCC prognosis114. Since rtD134N also causes an amino acid change in HBeAg (sI126N/V), it can induce changes in the antigenic properties of HBeAg. Further functional studies are necessary to determine whether the rtD134N mutation can induce HCC via modulation of RT activity or through its effects on HBV replication.

Huang et al.27 found seven viral single nucleotide polymorphisms (SNPs) in HBV polymerase, which enhance viral replication and liver disease progression in HBeAg negative subjects. Of these SNPs, rtY141F (Y487F), which is located in the RT region of HBV polymerase was associated with increased viral load and HCC (P = 0.0291). Moreover, rtY141F, a genotype C-related SNP, also led to a simultaneous amino acid change in the overlapping ‘a’ determinant region of HBeAg (sM307T). In addition, Li et al.115 and Zheng et al.20 reported that the rtF221Y mutation was also associated with poor overall survival (hazard ratio, 2.557; P = 0.004), suggesting that it is a potential independent risk factor and viral marker for HCC. Those results were consistent with the report of Li et al.115, which identified the rtF221Y mutant as an independent risk factor for recurrence of HCC and poor overall survival (P = 0.001 and P = 0.004, respectively). Wu et al.116 also investigated preexisting RT mutations potentially related to HCC in Chinese patients and identified rtI224V and rtM309K as significant risk factors for HCC (P = 0.005 and P = 0.007, respectively).

In addition, the number of RT mutations is associated with the liver disease progression. Zhu et al.99 revealed that patients with multiple RT mutant sites showed a significantly higher rate of liver fibrosis (P = 0.0128), suggesting a link between viral mutation and clinical progression of chronic hepatitis, and also highlighting that the natural accumulation of RT mutations is a process involved in viral survival during chronic liver fibrosis.

Overall, eight mutations in the RT region, namely rtL80I, rtD134N, rtI1223K/T/H, rtY141F, rtM204I/V, rtF221Y, rtI224V, and rtM309K, are significantly related to liver disease progression. The majority of HCC-related RT mutations were reported from studies of treatment-naïve patients infected with genotype C HBV. This supports previous reports that HBV genotype C is more likely to lead to severe and aggressive liver disease than other HBV genotypes112,117-122. Of note, association of the following three mutations, rtM204V, rtL80I, and rtD134N, with disease progression provides a likely explanation for the positive relationship between lamivudine resistance and liver disease progression.

DISTRIBUTION AND FREQUENCY OF PREEXISTING RT MUTATIONS IN DIFFERENT RT REGIONS

HBV RT consists of seven functional domains (G, F, A, B, C, D, and E) and five inter-domains (F-A, A-B, B-C, C-D, and D-E) which link the functional domains18,31,123. Previous studies20,21,33,38 reported a higher frequency of preexisting RT mutations in the A-B inter-domain, compared with other regions.

Liu et al.21 revealed that all six sites in the A-B interdomain, rt124, rt126, rt128, rt134, and rt153, exhibit mutations (6/6, prevalence 100%), indicating high genetic variability of this region compared with other sites within RT domains (sites with mutations: 6/22, 27.27%; P = 0.0014). In this study, the mutation frequency of the A-B interdomain (44/1152, 3.82%) was also significantly higher than those in other RT domains (Table 6). This result is in line with that reported by Zheng et al.20, who demonstrated that A-B interdomain exhibits higher mutation frequencies (4.3%, 5.3%, 3.6%) than those of other RT domains (1.4%, 1.4%, 1.3%) in Chinese.
treatment-naive patients with CHB, cirrhosis, and HCC. Specifically, they found that there was a clear tendency toward frequent mutations of the A-B interdomain in patients with cirrhosis suggesting a relationship between mutations in the A-B inter-domain and the development of this condition.

Similarly, Yamani et al. [38] also reported that the A-B interdomain had the highest mutation prevalence and frequency (3.51% ± 2.53%) compared with functional domains and non-A-B interdomains (1.45% ± 1.05% and 2.58% ± 0.51%, respectively) in Indonesian treatment-naive patients (Table 6). Moreover, they found that genotype C had substantially higher mutation rates in the A-B interdomain than genotype B (P < 0.001). Kim et al. [33] also revealed that mutations within the A-B interdomain were most frequent in treatment-naive Korean patients infected with genotype C2, compared with other domains, with 46 of 79 patients (58.22%) with preexisting RT mutations having changes in the A-B inter-domain. In this study, rtD134E/N/C was the most frequently encountered hot spot site among the six A-B interdomain sites and was mutated in 12/79 patients (15.2%). The authors also showed that the mutation frequency of A-B interdomain (59/786, 7.50%) was higher than that of non A-B interdomain (3.16%) (Table 6). Our pooled incidence also supported the previous notion of higher frequency of persisting RT mutations in A-B interdomain compared with other region in RT (Figure 2).

RT and HBsAg mutations can occur simultaneously, due to the overlap of RT region and HBsAg gene sequences [19,124]. Liu et al. [21] reported that 14 of 18 mutated positions in RT overlapped with HBsAg, and that RT mutations at 12 out of 14 RT positions (except those at rt124 and rt126) also led to simultaneous HBsAg mutations of 19 types in 16.67% (32/192) of isolates (Figure 1). Notably, these authors also found that RT mutations in the A-B interdomain could lead to simultaneous AA substitutions s1126A/N/S/, sG130N, sT131N/P, and sG145R of the overlapped ‘a’ determinant of HBsAg, including the most frequently described immune-escape mutation sG145R (1/192, 0.52%) [125,126]. Similarly, Kim et al. [33] demonstrated that RT mutations at 10 of 42 NAr positions could lead to 15 types of simultaneous overlapped HBsAg mutations in 32.06% (42/131) patients. Of interest, they also found that the RT mutations at 3 NAr positions (rt134, rt139, and rt153) located in the overlapped HBsAg “a” determinant region from 22 treatment-naive patients also had simultaneous “a” determinant mutations in two positions, S126 and S131, in 15 patients (15/22, 68.2%) (12 patients with mutations at rt134, leading to 10 changes of AA S126, and 8 patients with mutations at rt139, leading to 5 alterations of AA S131).

Overall, preexisting RT mutations are distributed in a non-random manner, and most frequently found in the A-B interdomain, overlapped with the HBsAg “a” determinant region, than in other domains. Moreover, the A-B interdomain also contains the most abundant mutations, indicating that these positions might be preexisting mutation hotspots in treatment-naive patients. Of six positions’ mutation in the A-B interdomain, three RT mutations, rtD134E/N, rtN139D/E/H/K/Q, and rtW153E/Q/R, that overlap with HBsAg “a” determinant region are hotspots found most frequently in treatment-naive patients, which could contribute to HBV viral persistence via generation of immune escape “a” determinant mutants proteins. In general, A-B interdomain mutations are prevalent in patients with genotype C2 infections and could contribute to HBV-associated disease, such as HCC and cirrhosis.
patients are related to potential drug resistance and progression of liver disease, such as HCC or cirrhosis. In addition, genotype-dependent polymorphic amino acid substitution in RT can also affect the emergence of drug resistance and treatment outcomes. The reported prevalence of spontaneous RT mutations in treatment-naive patients is varied, and largely depends on geographic factors, HBV genotypes, HBeAg serostatus, HBV viral loads, disease progression, intergenotypic recombination, and co-infection with HIV. Different sensitivity of detection methodology used could also affect their prevalence results. The INNO-LIPA assay and UDPS method detect higher prevalence rates of preexisting RT mutations compared with direct PCR sequencing in treatment-naive patients. Genotype C infection, HBeAg-negative status, and low viral loads are significantly associated with higher frequencies and prevalence rate of pre-existing HBV RT mutations. Higher frequencies of preexisting RT mutations were also generally associated with liver disease progression, including of HCC and cirrhosis. Eight mutations in RT region, rtL80I, rtD134N, rtN139K/T/H, rtY141F, rtM204I/V, rtF221Y, rtI224V, and rtM309K were significantly associated with progression of HCC in treatment-naive patients. Of RT domains, preexisting RT mutations occur most frequently in the A-B interdomain which overlaps with the HBsAg "a" determinant region, in which mutations can lead to simultaneous viral immune escape (Figure 3). In conclusion, the presence of baseline preexisting RT mutations can affect drug treatment outcomes and disease progression in populations by modulation of viral fitness and host-immune responses.

REFERENCES

1 Beasley RP, Huang LY, Lee GC, Lan CC, Roan CH, Huang FY, Chen CL. Prevention of perinatally transmitted hepatitis B virus infections with hepatitis B immune globulin and hepatitis B vaccine. Lancet 1983; 2: 1099-1102 [PMID: 6138642 DOI: 10.1016/S0140-6736(83)90624-4]

2 GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 385: 117-171 [PMID: 25530442 DOI: 10.1016/S0140-6736(14)61682-2]

3 Nevens F, Main J, Honkoop P, Tyrrell DL, Barber J, Sullivan MT, Favery J, De Man RA, Thomas HC. Lamivudine therapy for chronic hepatitis B: a six-month randomized dose-ranging study. Gastroenterology 1997; 113: 1258-1263 [PMID: 9322520 DOI: 10.1053/gast.1997.v113.pm9322520]

4 Marcellin P, Chang TT, Lim SG, Tong MJ, Sievert W, Shiffman ML, Jeffers L, Goodman Z, Wulfsohn MS, Xiong S, Fry J, Brosart CL; Adefovir Dipivoxil 437 Study Group. Adefovir dipivoxil for the treatment of hepatitis B e antigen-positive chronic hepatitis B. N Engl J Med 2003; 348: 808-816 [PMID: 12606735 DOI: 10.1056/NEJMoa020681]

5 Rivkin A. Entecavir: a new nucleoside analogue for the treatment of chronic hepatitis B. Drugs Today (Barc) 2007; 43: 201-220 [PMID: 17460784 DOI: 10.1358/dot.2007.43.4.1037479]

6 Matthews SJ. Telbivudine for the management of chronic hepatitis B virus infection. Clin Ther 2007; 29: 2635-2653 [PMID: 18201580 DOI: 10.1016/j.clinthera.2007.12.032]

7 Jenh AM, Thio CL, Pham PA. Tenofovir for the treatment of hepatitis B virus. Pharmacotherapy 2009; 29: 1212-1227 [PMID: 19792994 DOI: 10.1592/phco.29.10.1212]

8 Song ZL, Cui YJ, Zheng WP, Teng DH, Zheng H. Diagnostic and therapeutic progress of multi-drug resistance with anti-HBV nucleos(t)ide analogues. World J Gastroenterol 2012; 18: 7149-7157 [PMID: 23326119 DOI: 10.3748/wjg.v18.i48.7149]

9 Shi H, Han Z, Liu J, Xue J, Zhang S, Zhu Z, Xia J, Huang M. Comparing Efficacy of Lamivudine, Adefovir Dipivoxil, Telbivudine, and Entecavir in Treating Nucleoside Analogues Naive for HBeAg-Negative Hepatitis B with Medium Hepatitis B Virus (HBV) DNA Levels. Med Sci Monit 2017; 23: 5230-5236 [PMID: 29095799 DOI: 10.1265/msm.903382]

10 Nowak MA, Bonhoeffer S, Hall AM, Boehme R, Thomas HC, McDade H. Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci U S A 1996; 93: 4398-4402 [PMID: 8633078 DOI: 10.1073/pnas.93.9.4398]

11 Caligiuri P, Curnetti R, Icardi G, Brunozze B. Overview of hepatitis B virus mutations and their implications in the management of infection. World J Gastroenterol 2016; 22: 145-154 [PMID: 26755866 DOI: 10.3748/wjg.v22.i1.145]

12 Selabe SG, Lakhwareni A, Song E, Leeuw YG, Burnett RJ, Mphalele MI. Mutations associated with lamivudine-resistance in therapy-naive hepatitis B virus (HBV) infected patients with and without HIV co-infection: implications for antiretroviral therapy in HBV and HIV co-infected South African patients. J Med Virol 2007; 79: 1650-1654 [PMID: 17854040 DOI: 10.1002/jmv.20974]

13 Rodríguez C, Chevaliez S, Bensadoun P, Pawlotsky JM. Characterization of the dynamics of hepatitis B virus resistance to adefovir by ultra-deep pyrosequencing. Hepatology 2013; 58: 890-901 [PMID: 23502508 DOI: 10.1002/hep.26383]

14 Tenney DJ, Rose RE, Baldick CJ, Pokornowski KA, Eggers BJ, Fang J, Wichtroski MJ, Xu D, Yang J, Wilber RB, Colombo RJ. Long-term monitoring shows hepatitis B virus resistance to entecavir in nucleoside-naive patients is rare through 5 years of therapy. Hepatology 2009; 49: 1503-1514 [PMID: 19280622 DOI: 10.1002/hep.22841]

15 Zhang Y, Lian QJ, Li Y, Wang JP, Huang CX, Bai XF, Wang JP. Telbivudine plus adefovir therapy for chronic hepatitis B patients with virological breakthrough or genotypic resistance to telbivudine. Eur J Gastroenterol Hepatol 2013, 25: 814-819 [PMID: 23406845 DOI: 10.1097/MEG.0b013e328335f3f6]

16 Strasfeld L, Chou S. Antiviral drug resistance: mechanisms and clinical implications. Infect Dis Clin North Am 2010, 24: 809-833 [PMID: 206074805 DOI: 10.1016/j.clindc.2010.07.001]

17 Sheldon J, Rodès B, Zoulim F, Bartholomeusz A, Soriano V. Mutations affecting the replication capacity of the hepatitis B virus. J Viral Hepat 2006; 13: 427-434 [PMID: 16792535 DOI: 10.1111/j.1365-2893.2005.00713.x]

18 Stuyver LJ, Locarnini SA, Lok A, Richman DD, Carman WF, Dienstag JL, Schinazi RF. Nomenclature for antiretroviral resistant human hepatitis B virus mutations in the polymerase region. Hepatology 2001; 33: 751-757 [PMID: 11230757 DOI: 10.1001/jhep.2001.22166]

19 Sheldon J, Soriano V. Hepatitis B virus escape mutants induced by antiviral therapy. J Antimicrob Chemother 2008; 61: 766-768 [PMID: 18218641 DOI: 10.1093/jac/dkn014]

20 Zheng J, Zeng Z, Zhang D, Yu Y, Wang F, Pan Q. Covariance and significance of Hepatitis B reverse transcriptase mutations in different disease stages of untreated patients. Liver Int 2012; 32: 1535-1542 [PMID: 22882650 DOI: 10.1111/j.1478-3275.2012.02859.x]

21 Liu BM, Li T, Xu J, Li KG, Dong JP, Yan P, Yang JX, Yan L, Gao ZY, Li WP, Sun XW, Wang YH, Jiao XJ, Hou CS, Zhaung H. Characterization of potential antiviral resistance mutations in hepatitis B virus reverse transcriptase sequences in treatment-naive Chinese patients. Antiviral Res 2010; 85: 512-519 [PMID: 20034521 DOI: 10.1016/j.antiviral.2009.12.006]

22 Solomone M, Vincenti D, Prosperi MC, Bruselles A, Ippolito G, Capeobianchi MR. Use of massively parallel ultradepth pyrosequencing to characterize the genetic diversity of hepatitis B virus in drug-resistant and drug-naive patients and to detect
minor variants in reverse transcriptase and hepatitis B S antigen. J Virol 2009; 83: 1718-1726 [PMID: 19073746 DOI: 10.1128/JVI.02011-08]

23 Tan YY, Gwee GH, Zhao W, Gan JJ, Zhao Y, Niu ZL, Zhang DJ, Chen L, Yu XJ, Yang LJ. YMDD motif mutations in chronic hepatitis B antiviral treatment naïve patients: a multi-center study. Braz J Infect Dis 2012; 16: 250-255 [PMID: 22729192 DOI: 10.1016/S1413-8670(12)70319-7]

24 Fung SK, Mazzulli T, El-Kashab M, Sherman M, Popovic V, Sablen E. Lamivudine-Resistant Mutation among Treatment-Naïve Hepatitis B Patients Is Common and May Be Associated with Treatment Failure. Hepatology 2008; 48: 703a-703a

25 Miranda S, Campagnolo D, Borroletto G, Franceschini L, Marcelongolo M, Alberti A. Large-scale survey of naturally occurring HBV polymerase mutations associated with anti-HBV drug resistance in untreated patients with chronic hepatitis B. J Viral Hepat 2011; 18: e212-e216 [PMID: 21692935 DOI: 10.1111/j.1365-2893.2011.01435.x]

26 Vutien P, Trinh HN, Garcia RT, Nguyen HA, Levitt BS, Nguyen K, da Silveira E, Daugherty T, Ahmed A, Garcia G, Lutchman GA, Nguyen MH. Mutations in HBV DNA polymerase associated with nucleos(t)ide resistance are rare in treatment-naïve patients. Clin Gastroenterol Hepatol 2014; 12: 1363-1370 [PMID: 24342744 DOI: 10.1016/j.cgh.2013.11.036]

27 Zhao Y, Wu J, Sun L, Liu G, Li B, Zheng Y, Li X, Tao J. Prevalence of mutations in HBV DNA polymerase gene associated with nucleos(t)ide resistance in treatment-naïve patients with Chronic Hepatitis B in Central China. Braz J Infect Dis 2016; 20: 173-178 [PMID: 26876337 DOI: 10.1016/j.bjid.2015.12.006]

28 Akarsu M, Sengonul A, Tankurt E, Sayiner AA, Topalak O, Li M, Xu X, Zhang R, Chen J, Zhang Y, Tao J. Impact of genetic heterogeneity in polymerase of hepatitis B virus on dynamics of viral load and hepatitis B progression. PLoS One 2013; 8: e70169 [PMID: 23936156 DOI: 10.1371/journal.pone.0070169]

29 Yamani LN, Yano Y, Utsumi T, Wasiyastuti W, Rinonce HT, Widiasari DJ, Juniiastuti, Lusida MI, Soetjipto, Hayashi Y. Profile of Mutations in the Reverse Transcriptase and Overlapping Surface Genes of Hepatitis B Virus (HBV) in Treatment-Naïve Indonesian HBV Carriers. Jpn J Infect Dis 2017; 70: 647-655 [PMID: 29093313 DOI: 10.7883/yoken.JJID.2017.078]

30 Wang LP, Han FZ, Duan HL, Ji F, Yan XB, Fan YC, Wang K. Hepatitis B virus pre-existing drug resistant mutation is related to the genotype and disease progression. J Infect Dev Count 2017; 11: 727-732 [DOI: 10.3855/jidc.9021]

31 Ismail AM, Samuel P, Eapen CE, Kannangai R, Abraham P. Antiviral resistance mutations and genotype-associated amino acid substitutions in treatment-naïve hepatitis B virus-infected individuals from the Indian subcontinent. Intervirology 2012; 55: 36-44 [PMID: 21311172 DOI: 10.1159/000323521]

32 Pacheco SR, Dos Santos MMA, Stocker A, Zariife MAS, Schinoni MI, Paramar R, Dos Reis MG, Silvia LK. Genotyping of HBV and tracking of resistance mutations in treatment-naïve patients with chronic hepatitis B. Infect Drug Resist 2017; 10: 201-207 [PMID: 28740410 DOI: 10.2147/IDR.S135420]

33 Fan J, Zhang Y, Xiong H, Wang Y, Guo X. Nucleotide analogue-resistant mutations in hepatitis B viral genomes found in hepatitis B patients. J Gen Virol 2015; 96: 663-670 [PMID: 25481755 DOI: 10.1099/jgv.0.000010]

34 Li X, Liu Y, Zhao P, Wang Y, Chen L, Xin S, Zhang XX, Xu D. Investigation into drug-resistant mutations of HBV from 845 nucleoside/nucleotide analogue-naive Chinese patients with chronic hepatitis B. J Infect Drug Resist 2015; 8: 141-147 [PMID: 24992206 DOI: 10.3851/IMP2813]

35 Singla B, Chakraborti A, Sharma BK, Kapil S, Chawla YK, Arora SK, Das A, Dhiman RK, Duseja A. Hepatitis B virus reverse transcriptase mutations in treatment naïve chronic hepatitis B patients. J Med Virol 2013; 85: 1155-1162 [PMID: 23918533 DOI: 10.1002/jmv.23680]

36 Nguyen MH, Garcia RT, Trinh HN, Nguyen HA, Nguyen KK, Nguyen LH, Levitt B. Prevalence of hepatitis B virus DNA polymerase mutations in treatment-naïve chronic hepatitis B patients. Aliment Pharmacol Ther 2009; 30: 1150-1158 [PMID: 19785624 DOI: 10.1111/j.1365-2036.2009.04151.x]

37 Xu J, Wu B, Wang JH, Huang L, Wang DY, Zhao L, Zhao GP, Wang Y. Pre-existing mutations in reverse transcriptase of hepatitis B virus in treatment-naïve Chinese patients with chronic hepatitis B. PLoS One 2015; 10: e0117429 [PMID: 25821965 DOI: 10.1371/journal.pone.0117429]

38 Qian F, Zou W, Qin J, Li D. Naturally occurring genotypic drug-resistant mutations of HBV in Huzhou, China: a single-center study. Infect Drug Resist 2017; 10: 507-509 [PMID: 29276396 DOI: 10.2147/IDR.S149992]

39 Matsuda M, Suzuki F, Suzuki Y, Tsubota A, Akuta N, Hosaka T, Someya T, Kobayashi M, Saitoh S, Arase Y, Satoh J, Takagi K, Kobayashi M, Ikeda K, Kumada H. Low rate of YMDD motif mutations in polymerase gene of hepatitis B virus in chronically infected patients not treated with lamivudine. J Gastroenterol 2004; 39: 34-40 [PMID: 14767732 DOI: 10.1007/s00334-003-1242-4]

40 Pollicino T, Isgrò G, Di Stefano R, Ferraro D, Maimone S, Brancatelli S, Squadrato G, Di Marco V, Craxi A, Raimondo G. Variability of reverse transcriptase and overlapping S gene in hepatitis B virus isolates from untreated and lamivudine-resistant chronic hepatitis B patients. Antivir Ther 2009; 14: 649-654 [PMID: 19704167]
Hepatitis B virus (HBV) reverse transcriptase proteins from Iranian treatment-naive chronic HBV patients. *Hepat Mon* 2012; 24: 1417-1423 [PMID: 19486254 DOI: 10.1111/j.1440-1746.2009.05864.x]

Panigrahi R, Biswas A, De BK, Chakrabarti S, Chakravarty R. Characterization of antiviral resistance mutations among the Eastern HBV genotype B infected population. *Virolog J* 2013; 10: 56 [PMID: 23409946 DOI: 10.1186/1743-422X-10-56]

Altindis M, Aslan FG, Karoglu M, Eren A, Demir L, Uslan MI, Aslan S, Ozdemir M, Baykan M. Hepatitis B Virus Carrying Drug-Resistance Compensatory Mutations in Chronically Infected Treatment-naive Patients. *Viral Hepat* 2016; 22: 103-107 [DOI: 10.4274/vhd.07830]

Amini-Bavil-Olyaee S, Hosseini SY, Sabahi F, Alavian SM. Hepatitis B virus (HBV) genotype and YMDD motif mutation profile among patients infected with HBV and untreated with lamivudine. *Int J Infect Dis* 2008; 12: 83-87 [PMID: 17698384 DOI: 10.1016/j.ijid.2007.05.001]

Jardi R, Rodriguez-Frias F, Schaper M, Ruiz-G, Elefsiniotis I, Esteban R, Buti M. Hepatitis B virus polymerase variants associated with entecavir drug resistance in treatment-naive patients. *J Viral Hepat* 2007; 14: 835-840 [PMID: 18070286 DOI: 10.1111/j.1365-2893.2007.00877.x]

Li XG, Liu BM, Xu J, Liu XE, Ding H, Li T. Discrepancy of occurring mutations across the full-length genome of hepatitis B virus (HBV) reverse transcriptase during the NUC-tide analogues-untreated and treated patients with chronic hepatitis B in a hospital in China. *J Med Virol* 2012; 84: 207-216 [PMID: 22170539 DOI: 10.1002/jmv.23182]

Lampertico P, Vigano V, Facchetti F, Puoti M, Minola E, Suter VG. Role of additional mutations outside the YMDD motifs in NUC-naive chronic HBV infection. *Int J Infect Dis* 2008; 12: 252-255 [PMID: 17954033 DOI: 10.1016/j.ijid.2007.08.003]

Ghosh S, Mondal RK, Banerjee P, Nandi M, Sarkar S, Das K, Santra A, Banerjee S, Chowdhury A, Datta S. Tracking the naturally occurring mutations across the full-length genome of hepatitis B virus of genotype D in different phases of chronic e-antigen-negative infection. *Clin Microbiol Infect* 2012; 18: E412-E418 [PMID: 22827722 DOI: 10.1111/j.1469-0691.2012.03975.x]

Ludwig AD, Goebel T, Adams O, Baumann N, Hauck K, Fey H, Hengel H, Haussinger D, Erhardt A. Primary Resistance Mutations against Nucleoside and Nucleotide Analogues in Treatment Naive Patients with HBV-Infection. *Hepatology* 2008; 48: 701A-701A

Hamidi-Fard M, Makvandi M, Samarbaf-Zadeh A, Hajiani E, Shayesteh A, Masjiedzadeh A. Mutation analysis of hepatitis B virus reverse transcriptase region among untreated chronically infected patients in Ahvaz city (South-West of Iran). *Indian J Med Microbiol* 2011; 31: 360-365 [PMID: 24064642 DOI: 10.4103/0250-5857.88113]

Villa E, Lei B, Taliani G, Graziosi A, Critelli R, Luongo M, Gennari W, Bianchini M, Ferretti I. Pretreatment with pegylated interferon prevents emergence of lamivudine-resistant variants in lamivudine-naive patients: a pilot study. *Antivir Ther* 2009; 14: 1081-1087 [PMID: 20032538 DOI: 10.3851/IMP1465]

Mantovani N, Cicero M, Santana LC, Silveira C, do Carmo EP, Abrão PR, Díaz RS, Caseiro MM, Komninakis SV. Detection of lamivudine-resistant variants and mutations related to reduced antigenicity of HBsAg in individuals from the cities of Santos and São Paulo, Brazil. *Virology* 2010; 39: 320 [PMID: 21465277 DOI: 10.1016/j.virol.2010.11.003]

Aberle SW, Kletzmayr J, Watschinger B, Schmied B, Vetter N, Puchhammer-Stickl E. Comparison of sequence analysis and the INNO-LiPA HBV DR line probe assay for detection of lamivudine-resistant hepatitis B virus in patients under various clinical conditions. *J Clin Microbiol* 2001; 39: 1972-1974 [PMID: 11326026 DOI: 10.1128/JCM.39.5.1972-1974.2001]

Fenee F, Fanning LJ, Horgan M. Baseline genotypic resistance in untreated hepatitis B virus infection. *Gastroenterology* 2007; 132: 35A

Masadeh HA, Hayajneh WA, Alqudah EA. Hepatitis B virus genotypes and lamivudine resistance mutations in Jordan. *World J Gastroenterol* 2008; 14: 7231-7234 [PMID: 19084393 DOI: 10.3748/wjg.14.7231]

Lok AS, Zoulim F, Locarnini S, Bartholomeusz A, Ghany MG, Pawlotsky JM, Liaw FY, M zoikami M, Kuiken C; Hepatitis B Virus Drug Resistance Working Group. Antiviral drug-resistant HBV: standardization of nomenclature and assays and recommendations for management. *Hepatology* 2007; 46: 254-265 [PMID: 17596850 DOI: 10.1002/hep.21698]

Shaw T, Bartholomeusz A, Locarnini S. HBV drug resistance: mechanisms, detection and interpretation. *J Hepatol* 2006; 44: 593-606 [PMID: 1655151 DOI: 10.1016/j.jhep.2006.01.001]

Langley DR, Walsh AW, Balduck CJ, Eggers BJ, Rose RB, Levine SM, Kapur AJ, Colombo RJ, Tenney DJ. Inhibition of hepatitis B virus polymerase by entecavir. *J Virol* 2007; 81: 3992-4001 [PMID: 17267485 DOI: 10.1128/JVI.02395-06]

Locarnini S. Primary resistance, multidrug resistance, and cross-resistance pathways in HBV as a consequence of treatment failure. *Hepatol Int* 2008; 2: 147-151 [PMID: 1669299 DOI: 10.1007/s12027-008-9048-3]

Zhang Q, Liao Y, Cai B, Li Y, Li L, Zhang J, An Y, Wang L. Incidence of natural resistance mutations in naive chronic hepatitis B patients: a systematic review and meta-analysis. *J Gastroenterol Hepatol* 2015; 30: 252-261 [PMID: 25318660 DOI: 10.1111/jgh.12831]

Lai CL, Leung N, Teo EK, Tong M, Wong F, Hannah HW, Han S, Poynard T, Myers M, Chao G, Lloyd D, Brown NA; Telbivudine Phase II Investigator Group. A 1-year trial of telbivudine, lamivudine and the combination in patients with hepatitis B e-antigen-positive chronic hepatitis B. *Gastroenterology* 2005; 129: 528-536 [PMID: 16083710 DOI: 10.1016/j.gastro.2005.05.053]

Fu L, Cheng YC. Role of additional mutations outside the YMDD motif of hepatitis B virus polymerase in L(+)SDc (3C) resistance. *Biochem Pharmacol* 1998; 55: 1567-1572 [PMID: 9633992 DOI: 10.1016/S0006-2952(98)00050-1]

Wakil SM, Kazim SN, Khan L, Raisuddin S, Parvez MK, Guptan RC, Thakur V, Hasnain SE, Sarin SK. Prevalence and
profile of mutations associated with lamivudine therapy in Indian patients with chronic hepatitis B virus. *J Med Virol* 2002; 68: 311-318 [PMID: 12228816 DOI: 10.1002/jmv.20265]

77 **Yang H**, Westland CE, Delaney WY, 4th, Heathcote EJ, Ho V, Fry J, Brossart G, Gibbs CS, Miller MD, Xiong S. Resistance surveillance in chronic hepatitis B patients treated with adefovir dipivoxil for up to 60 weeks. *Hepatology* 2002; 36: 464-473 [PMID: 12143057 DOI: 10.1038/jhep.2002.34740]

78 **Ahn SH**, Park YK, Park ES, Kim JH, Kim DH, Lim KH, Jang MS, Choe WH, Ko SY, Sung IK, Kwon SY, Kim KH. The impact of the hepatitis B virus polymerase rtA181T mutation on replication and drug resistance is potentially affected by overlapping changes in surface gene. *J Virol* 2014; 88: 6805-6818 [PMID: 24869952 DOI: 10.1128/JVI.00635-14]

79 **Schildgen O**, Sirma H, Funk A, Olotu C, Wend UC, Hartmann H, Helm M, Rockstroh JK, Willems WR, Will H, Gerlich WH. Variant of hepatitis B virus with primary resistance to adefovir. *N Engl J Med* 2006; 354: 1807-1812 [PMID: 16641437 DOI: 10.1056/NEJMoa051214]

80 **Kramvis A**, Kew M, Francois G. Hepatitis B virus genotypes. *Vaccine* 2007; 25: 2409-2423 [PMID: 15752827 DOI: 10.1016/j.vaccine.2004.10.045]

81 **Schafer S**. Hepatitis B virus taxonomy and hepatitis B virus genotypes. *World J Gastroenterol* 2007; 13: 14-21 [PMID: 17206751 DOI: 10.3748/wjg.v13.i1.14]

82 **Sunbul M**. Hepatitis B virus genotypes: global distribution and clinical importance. *World J Gastroenterol* 2014; 20: 5427-5434 [PMID: 24833873 DOI: 10.3748/wjg.v20.i18.5427]

83 **Mirandola S**, Sebastiani G, Rosi C, Velo E, Erme EM, Vario A, Tenpessta D, Romualdi C, Campagnolo D, Albortti A. Genotype-specific mutations in the polymerase gene of hepatitis B virus potentially associated with resistance to oral antiviral therapy. *Antiviral Res* 2012; 96: 422-429 [PMID: 23026293 DOI: 10.1016/j.antiviral.2012.09.014]

84 **Damerow H**, Yuen L, Wiegand J, Walker C, Bock CT, Locarnini S, Tillmann HL. Mutation pattern of lamivudine-resistance in relation to hepatitis B genotypes: hepatitis B genotypes differ in their lamivudine resistance associated mutation pattern. *J Med Virol* 2010; 82: 1850-1858 [PMID: 20827711 DOI: 10.1002/jmv.21902]

85 **Colonnolo RJ**, Rose R, Baldick CJ, Levine S, Pokornowski K, Yu CF, Walsh A, Fang J, Hsu M, Mazzucco C, Eggers B, Zhang S, Plym M, Klesczewski K, Tenney DJ. Entecavir resistance is rare in hepatitis B virus polymerase rtA181T mutation on replication and drug resistance is potentially affected by overlapping changes in surface gene. *J Virol* 2014; 88: 6805-6818 [PMID: 24869952 DOI: 10.1128/JVI.00635-14]

86 **Mirandola S**, Sebastiani G, Rosi C, Velo E, Erme EM, Vario A, Tenpessta D, Romualdi C, Campagnolo D, Albortti A. Genotype-specific mutations in the polymerase gene of hepatitis B virus potentially associated with resistance to oral antiviral therapy. *Antiviral Res* 2012; 96: 422-429 [PMID: 23026293 DOI: 10.1016/j.antiviral.2012.09.014]

87 **Ciancio A**, Ciancio A, Mirandola S, Sunbul M, Kramvis A. Identification of novel inter-genotypic recombinants of hepatitis B virus by large-scale phylogenetic analysis. *Virology* 2012; 427: 51-59 [PMID: 22374235 DOI: 10.1016/j.virol.2012.01.030]

88 **Shi W**, Zhu C, Zhang W, Carr MJ, Higgins DG, Zhang Z. Subgenotype reclassification of genotype B hepatitis B virus. *BMC Gastroenterol* 2012; 12: 116 [PMID: 22925657 DOI: 10.1186/1471-230X-12-116]

89 **Liu B**, Yang JX, Yan L, Zha X, Li T. Novel HBV recombinants between genotypes B and C in 3′-terminal reverse transcriptase (RT) sequences are associated with enhanced viral DNA load, higher RT point mutation rates and place of birth among Chinese patients. *Virus Genet* 2012; 18: 26-36 [PMID: 22911722 DOI: 10.1007/s00624-011-0575-0]

90 **Lee SY**, Lee SH, Kim JE, Kim H, Kook YH, Kim BJ. Identification of Novel A2/C2 Inter-Genotype Recombinants of Hepatitis B Virus from a Korean Chronic Patient Co-Infected with Both Genotype A2 and C2. *Int J Mol Sci* 2017; 18: pii: E737 [PMID: 28358313 DOI: 10.3390/ijms1801.0073]
of tenofovir in HIV/hepatitis B virus (HBV)-coinfected individuals does not lead to HBV polymerase mutations and is associated with persistence of lamivudine HBV polymerase mutations. *HIV Med* 2009; 10: 229-235 [PMID: 19178592 DOI: 10.1111/j.1468-1293.2008.00675.x]

107 Querleri J, Moretti F, Bouzas MB, Lafer N, Carrillo MG, Giuliano SF, Pérez H, Cahn P, Salomon H. Hepatitis B virus genotype distribution and its lamivudine-resistant mutants in HIV-coinfected patients with chronic and occult hepatitis B. *AIDS Res Hum Retroviruses* 2007; 23: 525-531 [PMID: 17506609 DOI: 10.1089/aid.2006.0172]

108 Makondo E, Bell TG, Kramvis A. Genotyping and molecular characterization of hepatitis B virus from human immunodeficiency virus-infected individuals in southern Africa. *PloS One* 2012; 7: e46345 [PMID: 23029487 DOI: 10.1371/journal.pone.0046345]

109 Selabe SG, Song E, Burnett RJ, Mphahlele MJ. Frequent detection of hepatitis B virus variants associated with lamivudine resistance in treated South African patients infected chronically with different HBV genotypes. *J Med Virol* 2009; 81: 996-1001 [PMID: 19382250 DOI: 10.1002/jmv.21479]

110 Thio CL, Smeaton L, Saulynas M, Hwang H, Saravanan S, Kulkarni S, Hakim J, Nyirenda M, Ishqal HS, Laloo UG, Mehta AS, Hollabaugh K, Campbell TB, Lockman S, Currier JS. Characterization of HIV-HBV coinfection in a multinational HIV-infected cohort. *AIDS* 2013; 27: 191-201 [PMID: 23032418 DOI: 10.1097/QAD.0b013e328359f984]

111 Archampong TN, Boyce CL, Larrey M, Sagoe KW, Obokwa A, Kenu E, Blackard JT, Kwara A. HBV genotypes and drug resistance mutations in antiretroviral treatment-naïve and treatment-experienced HBV-HIV-coinfected patients. *Antivir Ther* 2017; 22: 13-20 [PMID: 27167598 DOI: 10.3855/mp0355]

112 Warner N, Locarnini S, Kuiper M, Bartholomeusz A, Ayres A, Yuen L, Shaw T. The L80I substitution in the reverse transcriptase domain of the hepatitis B virus polymerase is associated with hepatocellular carcinoma prognosis following liver resection. *Mol Med Rep* 2017; 15: 3292-3300 [PMID: 28339094 DOI: 10.3822/mmr.2017.6362]

113 Shi YH, Shi CH. Molecular characteristics and stages of chronic hepatitis B virus infection. *World J Gastroenterol* 2009; 15: 3099-3105 [PMID: 19575488 DOI: 10.3780/wg.15.3099]

114 Yin F, Xie Y, Fan H, Zhang J, Guo Z. Mutations in hepatitis B virus polymerase are associated with the postoperative survival of hepatocellular carcinoma patients. *PloS One* 2017; 12: e0189730 [PMID: 29287068 DOI: 10.1371/journal.pone.0189730]

115 Li H, Jia J, Wang M, Wang H, Gu X, Fang M, Gao C. F221Y mutation in hepatitis B virus reverse transcriptase is associated with hepatocellular carcinoma prognosis following liver resection. *Mol Med Rep* 2017; 15: 3292-3300 [PMID: 28339094 DOI: 10.3822/mmr.2017.6362]

116 Wu Y, Gan Y, Gao F, Zhao Z, Jin Y, Zhu Y, Sun Z, Wu H, Chen T, Wang J, Sun Y, Fan C, Xiang Y, Qian G, Groopman JD, Gu J, Tu H. Novel natural mutations in the hepatitis B virus reverse transcriptase domain associated with hepatocellular carcinoma. *PloS One* 2014; 9: e94864 [PMID: 24788140 DOI: 10.1371/journal.pone.0094864]

117 Kao JH, Chen PJ, Lai MY, Chen DS. Hepatitis B genotypes correlate with clinical outcomes in patients with chronic hepatitis B. *Gastroenterology* 2000; 118: 554-559 [PMID: 10702206 DOI: 10.1016/S0016-5085(00)07261-7]

118 Lee CM, Chen CH, Lu SN, Tung HD, Wang JH, Chen TM, Huang CC. Hepatitis B virus genotypes and the progression of chronic liver disease. *J Hepatol* 2002; 36: 238 [DOI: 10.1016/S0168-8278(02)80854-6]

119 Fujie H, Moriya K, Shintani Y, Totsuyanagi H, Ino S, Koike K. Hepatitis B virus genotypes and hepatocellular carcinoma in Japan. *Gastroenterology* 2001; 120: 1564-1565 [PMID: 11392329 DOI: 10.1053/gast.2001.24501]

120 Tsubota A, Arase Y, Ren F, Tanaka H, Ikeda K, Kumada H. Genotype may correlate with liver carcinogenesis and tumor characteristics in cirrhotic patients infected with hepatitis B virus subtype adw. *J Med Virol* 2001; 65: 257-265 [PMID: 11536231 DOI: 10.1002/jmv.2028]

121 Zhong YW, Li J, Song HB, Duan ZP, Dong Y, Xing XY, Li XD, Gu ML, Han YK, Zhu SS, Zhang HF. Virologic and clinical characteristics of HBV genotypes/subgenotypes in 487 Chinese pediatric patients with CHB. *BMC Infect Dis* 2011; 11: 262 [PMID: 21961963 DOI: 10.1186/1471-2334-11-262]

122 Chan HL, Hui HY, Wong ML, Tse AM, Hung LC, Wong VW, Sung JJ. Genotype C hepatitis B virus infection is associated with an increased risk of hepatocellular carcinoma. *Gut* 2004; 53: 1494-1498 [PMID: 15361502 DOI: 10.1136/gut.2003.033224]

123 Kwon H, Lok AS. Hepatitis B therapy. *Nat Rev Gastroenterol Hepatol* 2011; 8: 275-284 [PMID: 21432260 DOI: 10.1038/nrgastro.2011.33]

124 Datta S, Chatterjee S, Veer V, Chakravarty R. Molecular biology of the hepatitis B virus for clinicians. *J Clin Exp Hepatol* 2012; 2: 353-365 [PMID: 25755457 DOI: 10.1016/j.jeh.2012.10.003]

125 Avellón A, Echevarría JM. Frequency of hepatitis B virus ‘a’ determinant variants in unscreened Spanish chronic carriers. *J Med Virol* 2006; 78: 24-36 [PMID: 16299752 DOI: 10.1002/jmv.20516]

126 Svicher V, Gori C, Triggiani M, Visca M, Michelli V, Bernassola M, Salpinzi R, Gubertini G, Longo R, Niero F, Ceccherini-Silberstein F, De Sanctis GM, Ppanò A, Cappiello G, Perno CF. The profile of mutational clusters associated with lamivudine resistance can be constrained by HBV genotypes. *J Hepatol* 2009; 50: 461-470 [PMID: 19041419 DOI: 10.1016/j.jhep.2008.07.038]

127 Rhee SY, Margeridon-Thermet S, Nguyen MH, Liu TF, Kagan RM, Beggel B, Verheyen J, Kaiser R, Shafer RW. Hepatitis B virus reverse transcriptase sequence variant database for sequence analysis and mutation analysis. *Antiviral Res* 2010; 88: 269-275 [PMID: 20875460 DOI: 10.1016/j.antiviral.2010.09.012]

128 Ji D, Liu Y, Li L, Xu Z, Si LL, Dai JZ, Li X, Wang L, Yao Z, Xin SJ, Chen GF, Xu D. The rtL229 substitutions in the reverse transcriptase region of hepatitis B virus (HBV) polymerase are potentially associated with lamivudine resistance as a compensatory mutation. *J Clin Virol* 2012; 54: 66-72 [PMID: 22398037 DOI: 10.1016/j.jcv.2012.02.003]

P-Reviewer: Querleri J, Tamori A S-Editor: Gong ZM L-Editor: A E-Editor: Huang Y
