Network as a Complex System: Information Flow Analysis

Vladimir Gudkov* and Joseph E. Johnson†

Department of Physics and Astronomy
University of South Carolina
Columbia, SC 29208

(Dated: January 14, 2022)

Abstract

A new approach for the analysis of information flow on a network is suggested using protocol parameters encapsulated in the package headers as functions of time. The minimal number of independent parameters for a complete description of the information flow (phase space dimension of the information flow) is found to be about 10 - 12.

PACS numbers: 89.20.-a, 89.70.+c, 89.75.-k, 05.45.Gg
Both local and wide area (internet) networks are now intensively used for different kinds of communication and information exchange. A variety of different hardware devices from low level switches and routers to PC’s and to super-computers are involved in this process. The diversity of software to support this process even more impressive including many operating systems (with possible variations of open code ones) and application software. To control the information exchange, many protocols (like currently popular TCP/IT one) have been created. Different protocols (which contain a number of important parameters) are in charge of different processes during information exchange. Even to establish a host-to-host connection between two computers, one needs a multiple exchange of information.

Therefore, information exchange is a very complicated process requiring a careful analysis in order to support network simulations and the optimization of the exchange. The understanding of information flow on the network is necessary for real time network monitoring and for the difficult problem of detection\[1\] and prevention of network intrusions in real time. Possible solutions may be much more efficient provided we understand network traffic in detail.

In this letter we consider some problems related to the general properties of information flow on a network. Since, the process of information exchange is extremely complicated, we apply some approaches for analysis of complex systems in physics to the information flow on networks. The first question we would like to address is: how many parameters do we need to describe the information flow on the network? In other words, what is the dimension of the network parameter space? It is also important to know the extent and manner of how this dimension depends on the network topology, its size, and the operating systems involved in the network.

To define the fundamental objects related to information flow we recall that network information is transferred by packages of restricted size which are exchanged between computers. The structure of the packages vary from one to another and depend on the transfer process. In general each package consists of a header and encapsulated data. The header consists of encapsulated protocols related to different layers of communications: from a link layer to an application layer. In this letter we will ignore the encapsulated data, since it does not affect the package propagation through the network. Rather, we are interested in the information contained in the header which controls all network traffic.

Using these packages as fundamental objects for information exchange we apply some
methods known in physics as tools for the analysis of complex ergodic systems to the network traffic analysis.

The possibility of reconstructing the dynamics of ergodic systems from an experimental signal (see, for example ref.[2] and references therein) is related to the Mañé theorem [3] and can be briefly stated as follows: If an attractor of the system has finite Hausdorff dimension, then using a sufficient number of variables (less than about twice of the Hausdorff dimension) it is possible to plot trajectories of the attractor in the space of the variables without a self-crossings of these trajectories.

To define the dimension of the information flow on a network we use the approach for analysis of observed chaotic data in physical systems as suggested in papers[4, 5](see, also references therein). Any dynamical system with dimension N can be described by the system of N differential equations of the second order in configuration space or by the system of $2N$ differential equations of first order in phase space. We assume that the information flow can be described in terms of ordinary differential equations (or discrete-time evolution rules) for some unknown functions $\vec{F}(\vec{g})$ in a (parametric) phase space \vec{g}

$$\frac{d\vec{g}(t)}{dt} = \vec{F}(\vec{g}(t)).$$ \hspace{1cm} (1)

Here we use for the sake of simplicity, a continuous representation for dynamical systems. The discrete representation does not change any results. (For discussions of well-known relations between continuous and discrete representations see, e.g. refs.[2, 4].) We do not know the right dynamical variables \vec{g} which describe the motion (development in time) of our system in N-dimensional phase space. However, we assume that they could be related to some chosen \vec{x} parameter representation as $\vec{g}(\vec{x}(t))$. (Note that the dimensions of vectors \vec{g} and \vec{x} are different, in general.) Let us assume that we measure a scalar quantity s which is a function of these dynamical variables $s(\vec{g}(\vec{x}(t))) = s(t)$. To extract the dimension of the system phase space from the time-dependance of the variable s we construct d-dimensional vectors for all possible n

$$y^d(n) = [s(n), s(n + T), s(n + 2T), \ldots, s(n + T(d - 1))]$$ \hspace{1cm} (2)

from values of the parameter s at equal-distant time intervals T: $s(t) \rightarrow s(T \cdot n) \equiv s(n)$, where n is an integer numerating s values at different times. Building sets of vectors $y^d(n)$ for spaces with increasing dimension d, we calculate the number of nearest neighbors $\nu^d(n)$
for each point represented by the vector $y^d(n)$. Imagining that the vector \vec{y}^d corresponds to the system trajectory in d-dimensional space we are looking for that dimension for which the trajectory will not intersect itself. For the discrete type of trajectory represented in terms of vectors \vec{y}, the intersection means the existence of a number of nearest neighbors in the vicinity of the intersection decreases with increasing dimension d of the parametric space. Therefore, increasing the dimension d step-by-step and plotting the number of false nearest neighbors (FNN), one can reach a point with no FNN. This is because these (false) neighbors arise from the projection of far away parts of the trajectory in higher dimensional space and at the point where there are no FNN we come to the upper limit of the parametric space for our system. This could be illustrated by the simple example for a two-dimensional circle. If we project the circle on a one-dimensional space, we get an interval with two degenerate points along the projection axis. Increasing the dimension by 1 we come to the original two-dimensional circle without the degeneracy. Thus, the degenerate points in 1-dimension which have moved to the opposite sides of the circle in 2-dimensions could be called a false nearest neighbors (FNN). By unfolding the space further, to 3-dimension3, or further, one will no longer get a false nearest neighbors since a higher dimensional space covers the two-dimensional space to which the circle belongs to.

Therefore, if the parameter s is sensitive to the system dynamics and if it has been measured for a long enough period of time, provided the time interval T was chosen properly, than the number of false nearest neighbors decreases with the increasing of the dimension d up to some limit which corresponds to the real dimension of the system under consideration[2, 4].

To give a general idea why this algorithm is related to the dimensionality of the dynamical system governed by Eq.(1), we recall a simple method for numerical solution of a system of differential equations of N-th order based on finite differences approach. First of all one can rewrite the system of $2N$ differential equations of the first order (1) as a differential equation of $2N$-th order for the scalar function $s(t)$. To solve it one needs to calculate the function $s(t)$ and all its derivatives up to order $2N$. One can see from the simplest numerical expressions for derivatives of the function $s(t)$

$$\frac{ds(t)}{dt} \approx \frac{s(t + T) - s(t)}{T}$$
that the knowledge of the derivatives leads to the knowledge of the set of parameters $s(i)$ on
the proper chosen period of time for a sufficiently small interval T. This set of parameters
$s(i)$ corresponds exactly to the vector $\vec{y}_d(n)$ in Eq.(2).

To analyze information flow on a network we use “tcpdump” utilities, developed with the
standard of LBNL’s Network Research Group [6], to monitor local network communications.
Also we use tcpdump files for DARPA Intrusion Detection Evaluation from MIT Lincoln
Laboratory. It is important for our research that we did not discard apriori any information
contained in the binary tcpdump file in order to be able analyze any parameters in the
header of packages transferred through the network. Technically, we use decoding software
developed by our research team to extract any combination of the header parameters of the
packages (including Ethernet and IP protocols as well as transport layer protocols like, TCP,
UDP and ICMP) as functions of time. It should be noted that the procedure of network
monitoring allows us to collect information (to dump files) at different points in the networks
and to separate incoming, outgoing and internal network traffics.

First at all, we observed that the protocol parameters for host-to-host communication (i.e.
all information using in protocols) could be divided into two separate groups with respect
to the preservation or change in value during the package propagation through the network.
We call these two groups of parameters dynamic and static. The dynamic parameters may
change during the package propagation through the network (internet). For example, a
“physical” address of a computer, which is the MAC parameter of the Ethernet protocol, is
a dynamic parameter because it can change if the package has been re-directed by a router.
Conversely, the source IP address is an example of static parameter because it does not
change its value during a packet propagation. For the purposes of information flow analysis,
it is reasonable to use only static parameters since they may carry intrinsic properties of
the information flow neglecting the network (internet) structure. From the other hand if we
were interested in the influence of the network structure on the packages propagation, the
dynamic parameters could be a choice. However, this is out of the scope of this letter.

Now we can apply the above approach to understand the scale of dimension of the in-
formation flow and its dependance on network structure. We have done the analysis with
randomly chosen static parameters from the protocols in headers of the packages travelling on networks. To illustrate the procedure, let us consider an example for one particular parameter, the density (number of appearance in the fixed interval of time τ) of the ACK flag for TCP/IP protocol. The density of the ACK flag as a function of time has been extracted from the measurement (tcpdump file) on the gate of the local network with about 50 computers running under Windows 2000, Windows NT, Linux and Unix operating systems. This function is shown in Fig.1. It is important that this parameter (like any other parameters from the protocol) can be represented in the form of time-dependant function convenient for numerical analysis. Therefore, we can apply the algorithm for the restoration of the dimension of dynamical systems for determination of the dimension of information flow using this ACK parameter as a scalar function $s(t)$ related to the information flow dynamics. As a result, it gives us the dependance of the relative number of false nearest neighbors (FNN) as a function of dimensionality of the unfolding parametric space (see Fig.2 and Fig.3). One can see that the number of false nearest neighbors rapidly decreases up to about dimension’s value 10 or 12. After that it shows a slow dependance, if any at all, on the dimension. To define the embedded dimension of the information flow on the base of FNN analysis one can use different existing methods. There is the possibility to discriminate real FNN calculated distances of false nearest neighbors and define a threshold - the maximal allowed value for the minimal distances - to count a nearest point as an neighbor (see, e.g. ref.[4]). Another method [7] involves the preliminary optimal choice of the time lag based on the mutual entropy calculation for the signal (in our case the parameter ACK). For the proper analy-
FIG. 2: Relative number of false nearest neighbors as a function of dimension of unfolded space.

FIG. 3: Logarithm of relative number of false nearest neighbors as a function of dimension of unfolded space.

sis, a combination of these methods should be applied. Since we are interested not in the precise Hausdorff dimension of the system (which is probably a fractional one) but rather in the estimation of the number of linear independent parameters for the complete description information flow, we will provide here another criteria which helps us to understand the general features in the behavior of FNN as a function of dimension in Figs. 2 and 3. We use as a guideline the observation[8, 9] that, while a system changes its behavior from integrable to ergodic one, the distribution of the spacing between nearest neighbors of the system eigenvalues moves from a Poisson to Wigner-type distribution. It should be noted that we are taking into account the analogy between a non-correlated Poisson distribution
and a Wigner-type distribution with long range correlations for the eigenvalues of the system and for the false nearest neighbors in the phase space but we do not assume a relation between eigenvalues and false nearest neighbors themselves.

From this point of view the distribution of the number of false nearest neighbors as a function of their distances from the points under consideration will depend on the nature of the system behavior. If the false nearest neighbors originate from the projection of a high dimensional system attractor onto a lower dimensional manifold, than one expects randomly independent Poisson distribution of their numbers as a function of distances in the vicinity of the points of under consideration. On the other hand, if the false nearest neighbors originate from chaotic motion due to white noise in the system itself or in surrounding environment (as it may be in our case), one can expect a Wigner-type distribution. To be correct, in the last case the term “false nearest neighbors” is not a relevant one anymore since the distributions of these neighbors are governed not by the system itself but rather by a noise from the environment. Using this criterion one helps understand the nature of the tails for FNN dependencies on Figs.(2) and (3). For our case the FNN distributions are shown for dimensions 2 and 11 on Figs. (4) and (5). On the Fig. (4) one can see a Poison-like distribution for small ($d = 2$) dimension of the unfolded space. This distribution continuously transforms into Wigner-like one when the dimension of the unfolded space approaches 11 (see Fig.(5)). It should be noted that our criteria is consistent with the algorithm considered in ref.[4] since the Wigner-like distribution appears at large distances which are excluded from the region of definition of false neighbors.

Therefore, one can conclude that the above analysis, within the given accuracy, shows that the information flow on the network can be described in a parametric (phase) space with dimension of about 10 to 12, or in other words the information flow dynamics can be described in terms of 12 (or less) independent parameters.

Strictly speaking to make such conclusion we need to know that the chosen parameter (ACK, in the given example) has strong relation to the dynamics of the information flow and that our choice of time lags ($\tau = 5sec$ in the above case) is adequate for the time scale of the system. We cannot prove the relation of the parameter (ACK) to the system dynamics since there is no a reasonable theory to describe the information flow on the network. What we have done instead is the similar analysis of other (about 10) parameters from IP and TCP protocols. Within the same accuracy (± 1 degree of dimension) we have obtained the result
that the dimension of the information flow extracted using different parameters does not depend on the parameter choice and has the same value of 10 to 12. To address the question about the choice of the time lags we changed the parameter T from the scale of fractions of seconds to hundreds of seconds (where it was possible). An expected dependance has been observed: by increasing (decreasing) the T, one could decrease (increase) the chaotic (white noise, or high dimensional) part of distribution shown on Figs. (2) and (3) for large (small) values of the leg T with relatively independence of T in the wide region around the optimal value.

The next step of our analysis was the study of possible dependency of the obtained dimension of the information flow from network structure: its size, topology, and working.
operating systems. We used tcpdump files for networks with sizes from several computers up to more than hundred, separated internal and external flows, and used networks with different operating systems: Windows NT, Windows 2000, Linux and Unix. For all these cases the obtained dimension of the information flow was consistent with the value of 10 - 12.

This gives us reason to conclude that the information flow on the network is decoupled from network structure and can be considered as an independent (or almost independent) value with its dynamics described as a trajectory in a phase space with the dimension about 10 - 12. We can consider a rough analogy for the information flow on network with a liquid flow through the systems of pipes. In the last case one can use the Navier-Stokes equation. For the information flow the corresponding equation is unknown. However, it is important to know that one needs not more than 12 parameters to describe it.

We thank staff of Advanced Solutions Group for technical support. This work was supported by the DARPA Information Assurance and Survivability Program and is administered by the USAF Air Force Research Laboratory via grant F30602-99-2-0513, as modified.

* gudkov@sc.edu
† jjohnson@sc.edu

[1] S. Northcutt, J. Novak and D. McLachlan, “Network Intrusion Detection, An Analyst’s Handbook” New Riders Publishing, Indianapolis, IN, 2001.
[2] J.-P. Ecmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).
[3] R. Mañé, Lecture Notes in Mathematics 898, 230 (1981).
[4] H. D. I. Abarbanel, R. Brown, J. J. Sidorowich and L. Sh. Tsimring, Rev. Mod. Phys. 65, 1331 (1993).
[5] H. D. I. Abarbanel and M. B. Kennel, Phys. Rev. E47, 3057 (1993).
[6] LBNL’s Network Research Group, [http://ee.lbl.gov/].
[7] A. M. Fraser and H. L. Swinney, Phys. Rev. A33, 1134 (1986).
[8] O. Bohigas, M. J. Giannoni and C. Schmit, Phys. Rev. Lett. 52, 1 (1984).
[9] E. Caurier, B. Grammaticos and A. Ramani, J. Phys. A: Math. Gen. 23, 4903 (1990).