Geometric intersection of curves on punctured disks

By S. Öykü Yurtttaş

Abstract. We give a recipe to compute the geometric intersection number of an integral lamination with a particular type of integral lamination on an \(n\)-times punctured disk. This provides a way to find the geometric intersection number of two arbitrary integral laminations when combined with an algorithm of Dynnikov and Wiest.

1. Introduction

Given a surface \(M\) of genus \(g\) with \(s\) boundary components, a well known way of giving coordinates to integral laminations (i.e. a disjoint union of finitely many essential simple closed curves on \(M\) modulo isotopy) and measured foliations is to use either the Dehn-Thurston coordinates or train track coordinates. See (10) for details.

An alternative way to coordinatize integral laminations and measured foliations on an \(n\)-times punctured disk \(D_n\) is achieved by the Dynnikov coordinate system. That is, Dynnikov coordinate system provides an explicit bijection between the set of integral laminations \(\mathcal{L}_n\) on \(D_n\) and \(\mathbb{Z}^{2n-4} \setminus \{0\}\); and the set of measured foliations up to isotopy and Whitehead equivalence on \(D_n\) and \(\mathbb{R}^{2n-4} \setminus \{0\}\).

Isotopy classes of orientation preserving homeomorphisms on punctured disks are described by elements of Artin’s braid groups \(B_n\) (1; 2) and the action of \(B_n\) on \(\mathcal{L}_n\) in terms of Dynnikov coordinates is described by the update rules (5; 9; 8).

The Dynnikov coordinate system together with the Dynnikov formulae (update rules) was introduced in (5). Then, it was studied in (3; 4) as an efficient method for a solution of the word problem of \(B_n\) and in (9; 7; 8) for computing the topological entropy of braids.

In this paper, we shall use the Dynnikov coordinate system to study the geometric intersection number of two integral laminations on an \(n\)-times punctured disk. In particular, we shall give Theorem 11 which gives a recipe to compute the geometric intersection number of an integral lamination with a particular type of...
integral lamination, known as a relaxed integral lamination. This provides a way to find the geometric intersection number of two arbitrary integral laminations when combined with an algorithm of Dynnikov and Wiest \cite{Dynnikov:2002}, see Remark \ref{remark:algorithm}.

2. Dynnikov Coordinates

The aim of this section is to describe the Dynnikov coordinate system for the set of integral laminations \mathcal{L}_n and prove that there is an explicit bijection between \mathcal{L}_n and $\mathbb{Z}^{2n-4} \setminus \{0\}$. We shall begin with the triangle coordinates which describe each integral lamination by an element of \mathbb{Z}^{3n-5} using its geometric intersection number with given $3n-5$ embedded arcs in D_n. Dynnikov coordinates \cite{Dynnikov:2002} are certain linear combinations of these integers and yield a one-to-one correspondence between \mathcal{L}_n and $C_n = \mathbb{Z}^{2n-4} \setminus \{0\}$. This will be proved by Theorem \ref{theorem:bijection} which gives the inversion of Dynnikov coordinates.

Let A_n be the set of arcs in D_n which have each endpoint either on the boundary or at a puncture. The arcs $\alpha_i \in A_n$ ($1 \leq i \leq 2n-4$) and $\beta_i \in A_n$ ($1 \leq i \leq n-1$) are as depicted in Figure \ref{fig:arcs_and_regions} the arcs α_{2i-3} and α_{2i-2} (for $2 \leq i \leq n-1$) join the ith puncture to the boundary, while the arc β_i has both endpoints on the boundary and passes between the ith and $i+1$th punctures.

![Figure 1. The arcs α_i, β_i and triangular regions Δ_i](image)
Observe that the arcs divide the disk into $2n - 2$ (closed) regions and $2n - 4$ of these are triangular: Identifying the outer boundary of the disk with a point, each region on the left and right side of the ith puncture for $2 \leq i \leq n - 1$ is a triangle since it is bounded by three arcs.

The two triangles Δ_{2i-3} and Δ_{2i-2} on the left and right side of the ith puncture are defined by the arcs α_{2i-3}, α_{2i-2}, β_{i-1} and α_{2i-3}, α_{2i-2}, β_{i} respectively and the two end regions Δ_{0} and Δ_{2n-3} are bounded by β_{1} and β_{n-1} respectively. See Figure 1.

A naive way to describe integral laminations is achieved by triangle coordinates: Given $[\alpha]$ (the isotopy class of an arc $\alpha \in A_{n}$ under isotopies through A_{n}) and an integral lamination L, we shall write α for the geometric intersection number of $L \in L_{n}$ with the arc $\alpha \in A_{n}$: it will be clear from the context whether we mean the arc or the geometric intersection number assigned on the arc.

We also note that if $L \in L_{n}$ there is some curve system $L \in L$ which is taut (has minimum number of intersections in its homotopy class with each α_{i} and β_{i}). We fix a taut representative L of a given integral lamination $L \in L_{n}$ throughout.

For each i with $1 \leq i \leq n - 2$, define $S_{i} = \Delta_{2i-1} \cup \Delta_{2i}$ (see Figure 1). A path component of L in S_{i} is a component of $L \cap S_{i}$. There are four types of path components in S_{i}: An above component has end points on β_{i} and β_{i+1} and passes across α_{2i-1}. A below component has end points on β_{i} and β_{i+1} and passes across α_{2i}. A left loop component has both end points on β_{i+1} and a right loop component has both end points on β_{i}.

The solid lines in Figure 2 depict the above and below components. Left and right loop components are depicted by dashed lines. Note that there is one type of path component in the end regions: left loop components in region Δ_{0} and right loop components in region Δ_{2n-3}.

Remark 1. We note that there could only be one of the two types of loop components (i.e. right or left) in each S_{i} since the curves in L are mutually disjoint.

For each $1 \leq i \leq n - 2$ we define

$$b_{i} = \frac{\beta_{i} - \beta_{i+1}}{2}.$$ \hspace{1cm} (1)

Then $|b_{i}|$ gives the number of loop components in S_{i} and $\epsilon_{i} = \text{sgn}(b_{i})$ tells whether the loop components are left or right. That is, when $b_{i} > 0$ the loop components are right and when $b_{i} < 0$ the loop components are left. See Figure 2 on the left, $\beta_{i+1} = \beta_{i} + 2$ (so $b_{i} = -1$) and the additional two intersections of L with β_{i+1} yield one left loop component. Similarly, on the right $\beta_{i} = \beta_{i+1} + 4$ (so $b_{i} = 2$) and the additional four intersections of L with β_{i} yield two right loop components.
The following Lemma is obvious since each above and below component intersects α_{2i-1} and α_{2i} respectively.

Lemma 2. The numbers of above and below components in region S_i are given by $\alpha_{2i-1} - |b_i|$ and $\alpha_{2i} - |b_i|$ respectively.

Similarly, the next Lemma is obvious from Figure 3 and Figure 4.

Lemma 3. There are equalities for each S_i:

When there are left loop components ($b_i < 0$),

\[
\begin{align*}
\alpha_{2i} + \alpha_{2i-1} &= \beta_{i+1} \\
\alpha_{2i} + \alpha_{2i-1} - \beta_i &= 2|b_i|,
\end{align*}
\]

when there are right loop components ($b_i > 0$),

\[
\begin{align*}
\alpha_{2i} + \alpha_{2i-1} &= \beta_i \\
\alpha_{2i} + \alpha_{2i-1} - \beta_{i+1} &= 2|b_i|,
\end{align*}
\]

and when there are no loop components ($b_i = 0$),

\[
\begin{align*}
\alpha_{2i} + \alpha_{2i-1} &= \beta_i = \beta_{i+1}.
\end{align*}
\]

Note that Lemma 3 implies that some coordinates are redundant.
The triangle coordinate function $\tau : \mathcal{L}_n \rightarrow \mathbb{Z}_{\geq 0}^{3n-5}$ is defined by

$$\tau(\mathcal{L}) = (\alpha_1, \ldots, \alpha_{2n-4}, \beta_1, \ldots, \beta_{n-1}).$$
\[\tau : \mathcal{L}_n \to \mathbb{Z}_{\geq 0}^{3n-5} \] is injective: working in each region \(S_i \), we can determine the number of above, below and right/left loop components. Therefore, the path components in each \(S_i \) are connected in a unique way up to isotopy and hence \(L \) is determined uniquely.

However, it is not always possible to construct an integral lamination from given triangle coordinates. Namely, \(\tau : \mathcal{L}_n \to \mathbb{Z}_{\geq 0}^{3n-5} \) is not surjective since \(\tau(L) \) must satisfy the triangle inequality in each of the strips of Figure 1 as well as additional conditions such as the equalities in Lemma 3. Next, we shall discuss what properties an integral lamination \(\mathcal{L} \in \mathcal{L}_n \) satisfies in terms of its triangle coordinates and construct a new coordinate system from the triangle coordinates which describes integral laminations in a unique way. Namely, we shall describe the Dynnikov coordinate system \(\text{(5)} \).

Given a taut representative \(L \) of \(\mathcal{L} \in \mathcal{L}_n \) one can initially observe the following:

Remarks 4.

i. Every component of \(L \) intersects each \(\beta_i \) an even number of times. Also recall that \(b_i = \frac{\beta_i - \beta_{i+1}}{2} \) and \(|b_i| \) gives the number of loop components in \(S_i \). When \(b_i > 0 \) the loop components are right and when \(b_i < 0 \) the loop components are left (Figure 6).

ii. Set \(x_i = |\alpha_{2i} - \alpha_{2i-1}| \) and \(m_i = \min\{\alpha_{2i-1} - |b_i|, \alpha_{2i} - |b_i|\} ; 1 \leq i \leq n-2 \). Then \(x_i \) gives the difference between the number of above and below components in \(S_i \), and \(m_i \) gives the smaller of these two numbers by Lemma 2 (Figure 6). We note that \(x_i \) is even since each simple closed curve in \(L \) intersects \(\alpha_{2i} \cup \alpha_{2i-1} \) an even number of times.

iii. Set \(2a_i = \alpha_{2i} - \alpha_{2i-1} ; 1 \leq i \leq n-2 \), \((a_i \) is an integer since \(|a_i| = \frac{1}{2} \)). Assume that \(b_i \geq 0 \). Then, \(\beta_i = \alpha_{2i} + \alpha_{2i-1} \) by Lemma 3. Since \(2a_i = \alpha_{2i} - \alpha_{2i-1} \) it
follows that

\[\alpha_{2i} = a_i + \frac{\beta_i}{2}; \quad \text{and} \quad \alpha_{2i-1} = -a_i + \frac{\beta_i}{2}. \]

A similar calculation for \(b_i \leq 0 \) gives

\[\alpha_{2i} = a_i + \frac{\beta_{i+1}}{2}; \quad \text{and} \quad \alpha_{2i-1} = -a_i + \frac{\beta_{i+1}}{2}. \]

That is to say:

\[\alpha_i = \begin{cases} (-1)^i a_{\lceil i/2 \rceil} + \frac{\beta_{\lceil i/2 \rceil}}{2} & \text{if } b_{\lceil i/2 \rceil} \geq 0; \\ (-1)^i a_{\lceil i/2 \rceil} + \frac{\beta_{\lceil i/2 \rceil} + 2}{2} & \text{if } b_{\lceil i/2 \rceil} \leq 0 \end{cases} \]

where \(\lceil x \rceil \) denotes the smallest integer which is not less than \(x \).

iv. It is straightforward to compute \(\beta_i; 1 \leq i \leq n-1 \) from item ii. and item iii.

\[\beta_i = \begin{cases} 2m_i + 2 |a_i| & \text{if } b_i \leq 0; \\ 2m_i + 2 |a_i| + 2b_i & \text{if } b_i \geq 0. \end{cases} \]

That is,

\[\beta_i = 2 \left[|a_i| + \max(b_i, 0) + m_i \right]. \]

Since \(\beta_i = \beta_1 - 2 \sum_{j=1}^{i-1} b_j \) by III.,

\[\beta_1 = 2 \left[|a_i| + \max(b_i, 0) + m_i + \sum_{j=1}^{i-1} b_j \right] \quad \text{for} \quad 1 \leq i \leq n-2. \]

v. A crucial observation is that \(m_i = 0 \) for some \(1 \leq i \leq n-1 \) since otherwise there would be both above and below components in each \(S_i \) and hence the integral lamination would have a curve parallel to \(\partial D_n \). Then,

When \(m_i = 0; \)
\[\beta_1 = 2 \left[|a_i| + \max(b_i, 0) + \sum_{j=1}^{i-1} b_j \right]. \]

When \(m_i > 0; \)

\[\beta_1 > 2 \left[|a_i| + \max(b_i, 0) + \sum_{j=1}^{i-1} b_j \right]. \]

Therefore,

\[\beta_1 = \max_{1 \leq k \leq n-2} 2 \left[|a_k| + \max(b_k, 0) + \sum_{j=1}^{k-1} b_j \right]. \]

We have seen that \(a_i \) and \(b_i \) have been recovered from \(a_i \) and \(b_i \) where

\[a_i = \frac{\alpha_{2i} - \alpha_{2i-1}}{2} \quad \text{and} \quad b_i = \frac{\beta_i - \beta_{i+1}}{2}. \]

Now, we are ready to define the Dynnikov coordinate system which has the advantage to coordinatize \(\mathcal{L}_n \) bijectively and with the least number of coordinates.

Definition 5. The Dynnikov coordinate function \(\rho : \mathcal{L}_n \rightarrow \mathbb{Z}^{2n-4} \setminus \{0\} \) is defined by

\[\rho(\mathcal{L}) = (a, b) = (a_1, \ldots, a_{n-2}, b_1, \ldots, b_{n-2}). \]

where for \(1 \leq i \leq n-2 \)

\[a_i = \frac{\alpha_{2i} - \alpha_{2i-1}}{2} \quad \text{and} \quad b_i = \frac{\beta_i - \beta_{i+1}}{2}. \]

(8)

Let \(\mathcal{C}_n = \mathbb{Z}^{2n-4} \setminus \{0\} \) denote the space of Dynnikov coordinates of integral laminations on \(D_n \).

Example 6. The integral lamination \(\mathcal{L} \) in Figure 5 has Dynnikov coordinates \(\rho(\mathcal{L}) = (2, 1, 0, -2, 0, 2) \). We have,
\[\alpha_1 = 2, \quad \beta_1 = 4, \quad a_1 = \frac{\alpha_2 - \alpha_1}{2} = \frac{6 - 2}{2} = 2 \]

\[\alpha_2 = 6, \quad \beta_2 = 8, \quad a_2 = \frac{\alpha_4 - \alpha_3}{2} = \frac{5 - 3}{2} = 1 \]

\[\alpha_3 = 3, \quad \beta_3 = 8, \quad \alpha_3 = \frac{\alpha_5 - \alpha_6}{2} = \frac{4 - 4}{2} = 0 \]

\[\alpha_4 = 5, \quad \beta_4 = 4, \quad b_1 = \frac{\beta_2 - \beta_4}{2} = \frac{4 - 8}{2} = -2 \]

\[\alpha_5 = 4, \quad b_2 = \frac{\beta_4 - \beta_3}{2} = \frac{8 - 8}{2} = 0 \]

\[\alpha_6 = 4, \quad b_3 = \frac{\beta_3 - \beta_4}{2} = \frac{8 - 4}{2} = 2. \]

Note that \(b_i \) can easily be read off from a picture of the lamination by counting the number of loop components and checking whether they are left or right. For example, there are two left loop components in \(S_1 \), therefore \(b_1 \) should be \(-2\).

Theorem 7 (Inversion of Dynnikov coordinates). Let \((a, b) \in C_n\). Then \((a, b)\) is the Dynnikov coordinate of exactly one element \(L\) of \(L_n\), which has

\[\beta_i = 2 \max_{1 \leq k \leq n-2} \left[|a_k| + \max(b_k, 0) + \sum_{j=1}^{k-1} b_j \right] - 2 \sum_{j=1}^{i-1} b_j \quad (9) \]

\[\alpha_i = \begin{cases} (-1)^i a_{[i/2]} + \frac{\beta_{[i/2]}}{2} & \text{if } b_{[i/2]} \geq 0; \\ (-1)^i a_{[i/2]} + \frac{\beta_{[i/2]}}{2} & \text{if } b_{[i/2]} \leq 0 \end{cases} \quad (10) \]

where \([x]\) denotes the smallest integer which is not less than \(x\).

Proof. \(\rho \) is injective: Let \(\mathcal{L} \in L_n \), with \(\tau(\mathcal{L}) = (\alpha, \beta) \) and \(\rho(\mathcal{L}) = (a, b) \). We showed in Remarks that \((\alpha, \beta)\) must be given by (9) and (10). Hence there is no other \(\mathcal{L}' \in L_n \) with \(\rho(\mathcal{L}') = (a, b) \) since the triangle coordinate function is injective.

\(\rho \) is surjective: Let \((a, b) \in C_n\). We will show that \((\alpha, \beta)\) defined by (9) and (10) are the triangle coordinates of some \(\mathcal{L} \in L_n \) which has \(\rho(\mathcal{L}) = (a, b) \). It is clear that if there is some \(\mathcal{L} \) with \(\tau(\mathcal{L}) = (\alpha, \beta) \), then \(\rho(\mathcal{L}) = (a, b) \). By the construction in Remarks it is possible to draw in each \(S_i, 1 \leq i \leq n-2 \) some non-intersecting path components which intersect \(\beta_i, \alpha_{2i-1}, \alpha_{2i}, \) and \(\beta_{i+1} \) the number of times given by \((\alpha, \beta)\). Joining these components (and completing in the only way in the two end regions) gives a system of mutually disjoint simple closed curves in \(D_n \). There are no curves that bound punctures as every path component of a curve system
has the property that its intersection with each \(S_i \) is of one of the four types by construction, so in particular there can’t be a curve that bounds a puncture. There are no curves parallel to \(\partial D_n \) as some \(m_i \) is equal to zero. Hence this is an integral lamination which has triangle coordinates \((\alpha, \beta)\) as required. \(\square\)

In the next section we shall give a formula to compute the geometric intersection number of a given integral lamination \(L \in \mathcal{L}_n \) with a given relaxed curve \(C_{ij} \) in \(D_n \) in terms of triangle coordinates. Furthermore, the formula can be given in terms of Dynnikov coordinates by Theorem 7.

3. Geometric intersection of integral laminations with relaxed curves

![Diagram showing the intersection of laminations with relaxed curves](image)

Figure 7. \(s^a_{i,j} \) and \(s^b_{i,j} \)

Let \(S_{i,j} = \bigcup_{i \leq k \leq j} S_k \). A path component of \(L \) in \(S_{i,j} \) is a component of \(L \cap S_{i,j} \).

An above component in \(S_{i,j} \) has end points on \(\beta_i \) and \(\beta_{j+1} \) and does not intersect any \(\alpha_{2k} \) with \(i \leq k \leq j \). A below component in \(S_{i,j} \) has end points on \(\beta_i \) and \(\beta_{j+1} \) and does not intersect any \(\alpha_{2k-1} \) with \(i \leq k \leq j \) (Figure 7). Using Lemma 2 one can compute the number of above and below components in \(S_{i,j} \).

Lemma 8. The number of above and below components in \(S_{i,j} \) is given by

\[
\begin{align*}
s^a_{i,j} &= \min_{i \leq k \leq j} \{ \alpha_{2k-1} - |b_k| \} \\
&\quad \text{and} \\
s^b_{i,j} &= \min_{i \leq k \leq j} \{ \alpha_{2k} - |b_k| \}
\end{align*}
\]
respectively. Therefore the sum \(s_{i,j} = s_{i,j}^a + s_{i,j}^b \) gives the number of above and below components in \(S_{i,j} \).

Proof. For each \(1 \leq k \leq n-2 \), \(s_{i,j}^a = \alpha_{2k-1} - |b_k| \) and \(s_{i,j}^b = \alpha_{2k} - |b_k| \) by Lemma 2.

Then \(s_{i,j}^b = \min_{i \leq k \leq j} \{ s_k^b \} \) and \(s_{i,j}^a = \min_{i \leq k \leq j} \{ s_k^a \} \). Hence,

\[
s_{i,j} = \min_{i \leq k \leq j} \{ s_k^a \} + \min_{i \leq k \leq j} \{ s_k^b \}.
\]

\(\square\)

Remark 9. Notice that the number of path components in \(S_{i,j} \) which are not simple closed curves is given by \(\beta_i + \beta_j + 1 \) (Figure 7).

Given an essential simple closed curve \(C \) in \(D_n \), \(\|C\| \) denotes the minimum number of intersections of \(C \) with the \(x \)-axis. Then, given \(L \in L_n \), the norm of \(L \) is defined as

\[
\|L\| = \sum_i \|C_i\|
\]

where \(\{C_i\} \) are connected components of \(L \). We say that \(C_i \) is relaxed if \(\|C_i\| = 2 \). Then, \(L \) is relaxed if each of its connected components \(C_i \) is relaxed [3].

![Figure 8. Relaxed curves](image)

For \(1 \leq i < j < n \) or \(1 < i < j \leq n \), \(C_{ij} \in L_n \) denotes the isotopy class of relaxed curves in \(D_n \) which bound a disk containing the set of punctures \(\{i, i+1, \ldots, j\} \).
Hence, we observe that
\[\rho(C_{ij}) = (0, \ldots, 0, b_1, \ldots, b_{n-2}) \]
where \(b_{i-1} = -1 \) if \(i > 1 \), \(b_{j-1} = 1 \) if \(j < n \) and \(b_k = 0 \) for all other cases. Figure 8 shows some examples of relaxed curves.

Remark 10. It is always possible to turn a non-relaxed integral lamination \(L \in \mathcal{L}_n \) into one which is relaxed. That is to say, for any \(L \in \mathcal{L}_n \) there exists a braid \(\beta \in B_n \) such that \(\beta(L) \) is relaxed. An algorithm to accomplish this is given in (6).

Given \(L_1 \in \mathcal{L}_n \) and \(L_2 \in \mathcal{L}_n \) which are not relaxed, the geometric intersection number \(i(L_1, L_2) \) can be computed by first relaxing one of the integral laminations with an \(n \)-braid \(\beta \) by the algorithm described in (6) and then computing \(i(\beta(L_1), \beta(L_2)) \) (note that \(i(L_1, L_2) = i(\beta(L_1), \beta(L_2)) \)) since geometric intersection number is preserved under homeomorphisms. Hence, to compute \(i(L_1, L_2) \), it is sufficient to find a formula that gives \(i(C_{ij}, L) \) for a given \(L \in \mathcal{L}_n \).

Theorem 11. Given an integral lamination \(L \in \mathcal{L}_n \) with triangle coordinates \((\alpha, \beta)\) and \(C_{ij} \in \mathcal{L}_n \), \(i(L, C_{ij}) \) is given by,
\[i(L, C_{ij}) = \beta_{i-1} + \beta_j - 2s_{i-1,j-1}. \] (11)
where \(s_{i,j} \) is defined as in Lemma 8.

Proof. Take a taut representative \(L \in \mathcal{L} \) and a representative \(\gamma_{ij} \) of \(C_{ij} \) which is composed of subarcs of \(\beta_{i-1} \) and \(\beta_j \) and horizontal arcs which are such that the disk bounded by \(\gamma_{ij} \) contains all of the path components of \(L \) in \(S_{i-1,j-1} \). The number of intersections of \(\gamma_{ij} \) with the path components of \(L \) in \(S_{i-1,j-1} \) is given by \(\beta_{i-1} + \beta_j \) (See Remark 9). This number can be minimized by subtracting from it the number of path components which can be isotoped so that they do not intersect \(\gamma_{ij} \) any more. Such path components can only be above and below components in \(S_{i-1,j-1} \) (Figure 9). Since, each above and below component intersects \(\gamma_{ij} \) twice, we have that
\[i(L, C_{ij}) = \beta_{i-1} + \beta_j - 2s_{i-1,j-1}. \]
\[\square \]
Notice that the formulae given above can be written using Dynnikov coordinates since one can write each α_i and β_i in terms of a_i and b_i by Theorem 7.

Example 12. Let $\rho(L) = (2, 1, 0, -2, 0, 2)$ (Figure 5). We want to find $i(L, C_{24})$. Using the formula (11) we get,

$$i(L, C_{24}) = \beta_1 + \beta_4 - 2s_{13}.$$

From Theorem 7 we know that

$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6; \beta_1, \beta_2, \beta_3, \beta_4) = (2, 6, 3, 5, 4; 4, 8, 8, 4).$$
From Lemma 8 we have,

\[s^a_{1,3} = \min_{1 \leq k \leq 3} \{ \alpha_{2k-1} - |b_k| \} \quad \text{and} \quad s^b_{1,3} = \min_{1 \leq k \leq 3} \{ \alpha_{2k} - |b_k| \} \]

Therefore,

\[s^a_{1,3} = \min \{ \alpha_1 - |b_1|, \alpha_3 - |b_2|, \alpha_5 - |b_3| \} \]

\[= \min \{ -2, 3 - 0, 4 - 2 \} = 0 \]

and

\[s^b_{1,3} = \min \{ \alpha_2 - |b_1|, \alpha_4 - |b_2|, \alpha_6 - |b_3| \} \]

\[= \min \{ 6 - |-2|, 5 - 0, 4 - 2 \} = 2 \]

So the number of above and below components in \(S_{1,3} \) equals \(s^a_{1,3} + s^b_{1,3} = 2 \).

Therefore,

\[i(\mathcal{L}, \mathcal{C}_{24}) = \beta_1 + \beta_4 - 2s_{1,3} = 4 + 4 - 2 \times 2 = 4 \]

See Figure 10 and Figure 11.

Remark 13. Observe that if \(\mathcal{L}_1 = \bigcup C_{ij} \in \mathcal{L}_n \) and \(\mathcal{L}_2 \in \mathcal{L}_n \), then

\[i(\mathcal{L}_1, \mathcal{L}_2) = \sum i(C_{ij}, \mathcal{L}_2) \]

since the above construction can be carried out for each \(C_{ij} \) in turn, working from the inside out.

The next result gives the geometric intersection number of two arbitrary integral laminations on a 3-times punctured disk using Theorem 11. Again, we note that the formula can be given in terms of Dynnikov coordinates by Theorem 7.

Corollary 14. Let \(\mathcal{L}_1 \in \mathcal{L}_3 \) and \(\mathcal{L}_2 \in \mathcal{L}_3 \) have triangle coordinates \((\alpha^1, \beta^1)\) and \((\alpha^2, \beta^2)\) with Dynnikov coordinates \((a^1, b^1)\) and \((a^2, b^2)\) respectively. Then, the geometric intersection number \(i(\mathcal{L}_1, \mathcal{L}_2) \) is given by

\[
 i(\mathcal{L}_1, \mathcal{L}_2) = \begin{cases}
 \alpha_2^1 \alpha^2_1 + \alpha_1^1 \alpha^2_2 : & \text{if } \epsilon_1 \epsilon^2 = -1 \\
 |\alpha_2^1 \alpha^2_1 - \alpha_1^1 \alpha^2_2| : & \text{if } \epsilon_1 \epsilon^2 = +1
\end{cases}
\]

(12)
where $\epsilon^1 = \text{sgn}(b^1_1)$ and $\epsilon^2 = \text{sgn}(b^2_1)$.

![Diagram of curves](image)

Proof. We first observe that the only relaxed curves in D_3 are C_{12} and C_{23}. We also note that, given $\mathcal{L} \in \mathcal{L}_3$, $i(\mathcal{L}, C_{12}) = \beta_2 = |\alpha_2 - \alpha_1|$ and $i(\mathcal{L}, C_{23}) = \beta_1 = |\alpha_2 - \alpha_1|$. Hence the formula (12) is verified for $i(\mathcal{L}, C_{ij})$ by Lemma 2. See Figure 12.

For the general case, we recall that B_3 acts on both \mathcal{L} and C_{ij} and there exists $\beta \in B_3$ such that $\beta(\mathcal{L})$ is either C_{12} or C_{23}. Since the geometric intersection number is preserved under homeomorphisms, it follows that the formula (12) is verified for $i(\mathcal{L}_1, \mathcal{L}_2)$ for any $\mathcal{L}_1 \in \mathcal{L}_3$ and $\mathcal{L}_2 \in \mathcal{L}_3$. □

Example 15. Let \mathcal{L}_1 and \mathcal{L}_2 be the integral laminations depicted in Figure 13 and; (α^1, β^1) and (α^2, β^2) be their triangle coordinates respectively. We observe that $(\alpha^1_1, \alpha^1_2) = (3, 1)$ and $(\alpha^2_1, \alpha^2_2) = (4, 2)$. Since \mathcal{L}_1 has right loop components and \mathcal{L}_2 has left loop components, $\epsilon^1 \epsilon^2 = -1$ and hence by Corollary 14 $i(\mathcal{L}_1, \mathcal{L}_2)$ is given by

$$i(\mathcal{L}_1, \mathcal{L}_2) = \alpha^1_2 \alpha^2_2 + \alpha^1_1 \alpha^2_1 = 1 \times 4 + 3 \times 2 = 10.$$

Acknowledgements: The author would like to thank her supervisor, Dr. Toby Hall for his comments on the results of this paper most of which appeared in her Ph.D thesis.
Figure 13. $i(\mathcal{L}_1, \mathcal{L}_2) = 10$

References

[1] Artin, E., “Theorie der Zöpfe,” Abh. Math. Sem. Univ. Hamburg (4), 47-72, 1925.
[2] Artin, E., “Theory of braids,” Ann. of Math. (2), 48: 101-126, 1947.
[3] Patrick Dehornoy, “Efficient solutions to braid isotopy problem,” arXiv:math/0703666, 2007.
[4] Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, and Bert Wiest, “Why are braids orderable?,” volume 14 of Panoramas et Synthèses [Panoramas and Syntheses].Société Mathématique de France, Paris 2002.
[5] Dynnikov, I. A., “On a Yang-Baxter mapping and the Dehornoy ordering,” Uspekhi Mat. Nauk., 57(3(345)): 151-152, 2002.
[6] Ivan Dynnikov and Bert Wiest, “On the complexity of braids,” J. Eur. Math. Soc. (JEMS), 9(4): 801-840, 2007.
[7] Matthew D. Finn, and Jean-Luc Thiffeault, “Topological entropy of braids on the torus,” SIAM J. Appl. Dyn. Syst., 6 (1): 79-98 (electronic), 2007
[8] Toby Hall and S. Öykü Yurttaş, “On the topological entropy of families of braids,” Topology Appl., 156(8): 1554-1564, 2009.
[9] Jacques-Olivier Moussafir, “On computing the entropy of braids,” Funct. Anal. Other Math., 1(1): 37-46, 2006.
[10] R. C. Penner and J. L. Harer “Combinatorics of train tracks,” volume 125 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1992.