Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Therapeutic anticoagulation using heparin in early phase severe coronavirus disease 2019: A retrospective study

Wataru Takayama a,b,⁎, Akira Endo a, Yasuhiro Otomo a

a Trauma and Acute Critical Care Center, Tokyo Medical and Dental University Hospital, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
b Department of Acute Critical Care and Disaster Medicine, Graduate School of Tokyo Medical and Dental University, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan

ABSTRACT

Background: Although several reports recommend the use of systemic anticoagulation therapy in patients with severe coronavirus disease 2019 (COVID-19) pneumonia, appropriate target population and timing of administration are unknown. We assessed association between therapeutic anticoagulation administration with unfractionated heparin and outcomes in patients with severe COVID-19 pneumonia, assuming that anticoagulant administration effects are influenced by therapy timing.

Methods: This retrospective observational study included severe COVID-19 patients requiring mechanical ventilation in a tertiary emergency critical care hospital intensive care unit (ICU) in Japan from May 1, 2020 to September 30, 2021. All included patients were divided into early and late-phase administration groups based on therapeutic anticoagulant administration timing (≤5 and >5 days, respectively, after commencing oxygen therapy). Primary outcomes (in-hospital mortality and adverse events related to anticoagulation therapy) and secondary outcomes [veno-venous extracorporeal membrane oxygenation (ECMO), ventilator-free days (VFD), and ICU-free days] were compared between groups using univariate and multivariate models.

Results: Of 198 included patients 104 (52.5%) and 94 (47.5%) were in early-phase and late-phase administration groups, respectively. Although background characteristics were similar between the groups, the early-phase administration group had a significantly lower in-hospital mortality rate (3.8% vs. 27.7%; p < 0.001), lower adverse event rates (1.9% vs. 12.8%; p < 0.001), significantly longer VFD and ICU-free days, and lower ECMO rates, than the late-phase administration group, in the multivariate model.

Conclusions: Late administration of therapeutic-dose anticoagulation in patients with severe COVID-19 pneumonia was significantly associated with worse outcomes than early administration.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

List of abbreviations

APACHE II Acute Physiology and Chronic Health Evaluation
COVID-19 coronavirus disease 2019
CRP C-reactive protein
ECMO extracorporeal membrane oxygenation
FDP fibrin-fibrinogen degradation product
ICU intensive care unit
PaO2/FiO2 arterial oxygen partial pressure to fractional inspired oxygen
PCT randomized control trial
SARS-CoV-2 severe acute respiratory syndrome coronavirus disease 2
SOFA Sequential Organ Failure Assessment
UFH unfractionated heparin
VFD ventilator-free days

⁎ Corresponding author at: Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-0034, Japan.
E-mail address: tak2accm@tmd.ac.jp (W. Takayama).

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic, an ongoing public health problem, has caused the death of more than 4.8 million people worldwide, as of the end of September 2021 [1]. COVID-19 induces a cytokine storm that activates a coagulation cascade, resulting in coagulopathy and thrombotic phenomena, which leads to multiple organ dysfunction and high mortality [2]. The inflammation and thrombosis associated with endothelial dysfunction and hypercoagulability lead to an increased risk of micro (or macro) vascular thrombosis [3,4]. Thus, guidelines from several medical organizations recommend the use of anticoagulation therapy in patients with COVID-19 [5].

A large cohort study [6,7] reported that the use of anticoagulation at therapeutic doses may be associated with a reduced risk of mortality among hospitalized patients with COVID-19. Although a recent randomized control trial (RCT) has reported that therapeutic-dose...
anticoagulant and/or antiplatelet therapy, smoking history, Charlson Comorbidity Index score [10], administration of ECMO, drug treatment for COVID-19, and status on hospital discharge (i.e., dead or alive). The clinical course, length of ventilation, and ICU stay for each patient were also recorded. Furthermore, we collected laboratory results such as D-dimer, fibrin-fibrinogen degradation products (FDP), white blood cell count, and C-reactive protein (CRP) levels. All blood samples evaluated in this study were obtained after the institution of mechanical ventilation and before administering anticoagulation therapy. For all included patients, the worst Sequential Organ Failure Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation (APACHE) II scores within the first 24 h of mechanical ventilation were assessed.

2.5. Definitions and outcome measures

In this study, severe COVID-19 pneumonia was defined as an acute need for invasive mechanical ventilation. The “early-phase administration group” was defined as patients who received therapeutic anticoagulation within 5 days after the commencement of oxygen therapy, while the “late-phase administration group” was defined as those who received it 6 days or after, based on the fact that almost all patients who need oxygen therapy require hospitalization. A cut-off value of “5 days” was determined as the median number of days from oxygen therapy administration to therapeutic anticoagulation administration. The date of disease onset was defined as the day that the symptoms were observed. COVID-19-related sepsis was defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, according to the 2016 Third International Consensus Definition [11]. Secondary infection was diagnosed when patients showed clinical symptoms or signs of pneumonia, urinary tract infection, or central line–associated bloodstream infection; or when patients had a positive culture of a new pathogen from blood, lower respiratory tract (qualified sputum or endotracheal aspirate), or urine specimens after ICU admission [12].

We defined the primary efficacy outcome as in-hospital mortality. The primary safety outcomes included anticoagulation therapy–related adverse events, defined as any of the following events: (1) hemoglobin level < 7 g/dl and any red blood cell transfusion, (2) at least two units of red blood cell transfusion within 48 h, or (3) clinical diagnosis of major bleeding (defined as symptomatic intracranial hemorrhage or hemorrhage requiring surgical or radiological intervention). Secondary outcomes were defined as the administration of ECMO, ventilator-free days (VFD) 28 days after admission, and ICU-free days within the first 28 days after admission.

2.6. Statistical analysis

In the univariate analysis, continuous variables were compared using Student’s t-test or the Mann–Whitney U test. Categorical variables were compared using the \(\chi^2 \) test or Fisher’s exact test, as appropriate. First, using a multivariable logistic regression model, we evaluated the interaction between therapeutic-dose anticoagulant therapy and the days from commencement of oxygen therapy to the anticoagulant therapy for the primary outcome, to determine whether the timing of therapeutic anticoagulation influenced the outcomes. We incorporated age and SOFA score, which are known a priori to be associated with outcomes in patients with severe COVID-19 pneumonia [13-15], and selected variables based on clinical plausibility and the number of outcomes (10 events per variable rule) as covariates in the multivariate model. Second, we divided the enrolled patients into two groups: the early-phase administration group (≤5 days after the commencement of oxygen therapy) and the late-phase administration group (>5 days after the commencement of oxygen therapy) based on the median number of days from oxygen therapy administration to therapeutic anticoagulation administration. We then compared the characteristics, severity, and outcomes of both groups. Furthermore, we divided the enrolled patients into two groups based on the other cut-off value (7 days) and performed a sensitivity analysis of the primary and
secondary outcomes. All statistical analyses were conducted using R software (version 4.1.1; R Foundation for Statistical Computing, Vienna, Austria). Statistical significance was set at \(p < 0.05 \).

3. Results

The patient selection process is shown in Fig. 1. Among 606 potentially eligible patients with COVID-19, 198 (32.7%) patients with severe pneumonia underwent mechanical ventilation during the study period. Of these, 104 (52.5%) patients were treated with therapeutic anticoagulation in the early phase. Table 1 shows the main clinical characteristics, laboratory data at the initiation of mechanical ventilation, the worst clinical scores during the first 24 h after intubation, and the administered drugs during the ICU stay. The patients' laboratory data and severity scores were similar between the two groups. However, D-dimer and CRP levels, FDP, and severity scores tended to be higher in the late-phase administration group. Compared with the early-phase administration group, the late-phase administration group had significantly lower in-hospital mortality rate \((4 \text{ (3.8\%)} \text{ vs. } 26 \text{ (27.7\%)} \text{ patients; } p < 0.001) \) and a lower rate of anticoagulation therapy-related adverse events \((2 \text{ (1.9\%)} \text{ vs. } 12 \text{ (12.8\%)} \text{ patients; } p < 0.001) \).

4. Discussion

In this retrospective observational study, we found that the timing of therapeutic anticoagulation therapy significantly influenced the outcomes in 198 patients with COVID-19 pneumonia requiring mechanical ventilation. Furthermore, our findings indicated that late administration compared to early administration of therapeutic-dose anticoagulation was significantly associated with higher in-hospital mortality, adverse events, and ECMO administration, as well as shorter VFD and ICU-free days. To the best of our knowledge, this is the first study to report the association between the timing of therapeutic dose anticoagulation and outcomes in patients with severe COVID-19 pneumonia.

In COVID-19 pneumonia, despite anticoagulant prophylaxis or therapy, several studies have reported life-threatening arterial or venous thrombosis, including frequent severe pulmonary embolisms [16,17]. Such disease characteristics have led to the empirical treatment of patients with severe COVID-19 with heparin at therapeutic doses than at the usual thromboprophylaxis doses [18]. In addition to its known anticoagulant properties, heparin has been reported to have potential therapeutic effects in severe lung inflammation, impaired pulmonary gas exchange, and high viral load [19-21]. Because SARS-CoV-2 infection causes an excessive inflammatory response that may lead to coagulation hyperactivity, anticoagulation therapy using heparin is expected to have positive effects on the outcomes based on potential antiviral mechanisms [21] in addition to anticoagulative effects. However, the optimal anticoagulant regimen remains unknown. A recent RCT did not support the hypothesis that routine therapeutic dose anticoagulation benefits patients with severe COVID-19 pneumonia [8], possibly because the net effect of anticoagulation on clinical outcomes may depend on the timing of initiation in relation to disease course or severity. Further RCTs considering the timing of commencement are warranted to assess the effects of therapeutic anticoagulation.

In severe COVID-19 pneumonia cases, dramatic changes in the coagulation/fibrinolytic status on illness days 7–10 have been reported, where the status is changed from a hypofibrinolytic state to a hyperfibrinolytic state [22,23]. In this respect, late administration of therapeutic-dose anticoagulation in patients with severe COVID-19 could influence the fibrinolytic state, increasing bleeding risk. However, since the underlying mechanisms of the late-phase administration of therapeutic anticoagulation could not be elucidated by our clinical data, further research is warranted to reveal the differences in the effect between the early and late phases in patients with severe COVID-19.

Lymphopenia has been reported in most patients with severe COVID-19 pneumonia [24], and immunosuppression is more obvious in severe cases than in mild cases [25]. In severe cases, immunosuppression has been reported to develop after more than 7 days of illness onset [26]. In this study, we found that the prevalence of secondary infection in the late-phase administration group was higher than that in the early-phase administration group (22.3% vs. 3.8%). Previous studies reported high mortality in patients with COVID-19 with secondary infections [27,28], and the higher incidence of secondary infection observed in the late-phase administration group might have affected the outcomes in this study. Although details regarding the immune effect of heparin and the immune status of the patients could not be assessed in the present study, the immune effect, in addition to the anticoagulative effect, might have influenced the worse outcomes in the late-phase administration group.

The present study had several limitations. First, this was a retrospective observational study conducted at a single hospital with a limited sample size. Accordingly, the number of variables used in the multivariate analysis had to be limited, and there is a risk of residual confounding and type II error. Additional research is necessary to provide more definitive data, including large-scale studies adjusted for covariates. Second, we did not consider the coronavirus variant type or the days from disease onset to therapeutic anticoagulation administration, which could influence the outcomes and coagulation state. Third, patients who had...
Table 1
Comparison of characteristics and laboratory data at ICU admission between the early-phase and the late-phase administration groups.

Characteristic	All patients (n = 198)	Early-phase administration group (n = 104)	Late-phase administration group (n = 94)	p value
Age (y), median [IQR]	62 [52–75]	59 [50–73]	66 [55–77]	0.180
Male, n (%)	167 (84.3)	87 (83.7)	80 (85.1)	0.503
Body mass index (kg/m²), median [IQR]	26.3 [24.2–27.9]	26.8 [24.9–28.4]	25.5 [23.9–28.1]	0.302
History of smoking, n (%)	93 (47.0)	50 (48.7)	44 (46.8)	0.252
History of anticoagulant and/or antiplatelet therapy, n (%)	35 (17.7)	19 (18.3)	16 (17.0)	0.595
Days from the oxygen therapy to the administration of mechanical ventilation, median [IQR]	5 [4–6]	5 [3–5]	7 [5–11]	<0.001
Days from illness onset to the administration of mechanical ventilation, median [IQR]	8 [7–10]	6 [5–7]	10 [8–13]	<0.001
Laboratory data				
D-dimer level, median [IQR]	3.5 [2.2–6.1]	2.4 [1.5–5.8]	4.3 [2.4–6.8]	0.104
Fibrin-fibrinogen degradation products, median [IQR]	7.1 [5.8–9.6]	5.8 [4.3–7.3]	8.2 [6.6–10.8]	0.161
White blood cell count (×10⁹/l), median [IQR]	9200 [7400–10,800]	10,500 [6100–11,800]	7400 [6400–8600]	0.133
C-reactive protein (mg/dl), median [IQR]	5.6 [3.4–7.8]	4.0 [3.1–7.2]	7.4 [3.9–9.8]	0.085
Clinical scores				
SOFA score, median [IQR]	4 [3–5]	4 [3–5]	5 [3–5]	0.208
APACHE II score, median [IQR]	15 [11–16]	12 [11–15]	16 [11–17]	0.178
Treatment drugs				
Favipiravir, n (%)	82 (41.4)	42 (40.4)	40 (42.6)	0.712
Tocilizumab, n (%)	85 (43.2)	48 (46.2)	37 (39.4)	0.328
Remdesivir, n (%)	75 (37.9)	38 (36.5)	37 (39.4)	0.389
Baricitinib, n (%)	41 (20.7)	23 (22.1)	18 (19.1)	0.412
Nafamostat meylate, n (%)	24 (12.1)	13 (12.5)	11 (11.7)	0.314
Corticosteroid, n (%)	196 (99.0)	103 (99.0)	93 (98.9)	0.913
Clinical complications				
Severe sepsis, n (%)	96 (48.5)	31 (29.8)	65 (69.1)	<0.001
Secondary infection, n (%)	25 (12.6)	4 (3.8)	21 (22.3)	<0.001

ICU, intensive care unit; IQR, interquartile range; SOFA, Sequential Organ Failure Assessment; APACHE II, Acute Physiology and Chronic Health Evaluation.

Table 2
Treatment outcomes of both groups.

Outcome	All patients (n = 198)	Early-phase administration group (n = 104)	Late-phase administration group (n = 94)	p value
Primary outcomes				
In-hospital mortality, n (%)	30 (15.2)	4 (3.8)	26 (27.7)	<0.001
Anticoagulation therapy-related adverse events, n (%)	14 (7.1)	2 (1.9)	12 (12.8)	<0.001
Secondary outcomes				
ECMO, n (%)	20 (10.1)	3 (2.9)	17 (18.9)	<0.001
VFD, median days [IQR]	15 [8–19]	17 [12–21]	11 [6–18]	<0.001
ICU-free days, median days [IQR]	13 [3–17]	15 [10–18]	8 [4–15]	<0.001

ECMO, extracorporeal membrane oxygenation; VFD, ventilator-free days; ICU, intensive care unit; IQR, interquartile range;

Table 3
Multivariate analysis of the impact of the late-phase therapeutic anticoagulation.

Outcome	Adjusted odds ratio [95% CI]	Adjusted difference [95% CI]	p value
Primary outcome			
In-hospital mortality	8.86 [5.45–11.3]	-	<0.001
Anticoagulation therapy-related adverse events	6.34 [3.35–8.13]	-	<0.001
Secondary outcomes			
ECMO	7.82 [4.15–9.92]	-	<0.001
VFD	−4.7 [−6.9–1.6]	-	<0.001
ICU-free days	−4.1 [−7.0–2.1]	-	<0.001
CI, confidence interval; ECMO, extracorporeal membrane oxygenation; VFD, ventilator-free days; ICU, intensive care unit.

The results of this study suggest that late administration of therapeutic-dose anticoagulation in patients with COVID-19 pneumonia already received anticoagulants and/or antiplatelet agents were excluded from this study. The proportions were similar between the two groups in our study (early-phase administration group, 18.3% vs. late-phase administration group, 17.0%), although these agents could influence the coagulable state and anticoagulation sensitivity.

Despite these limitations, we showed a novel and significant association between the timing of therapeutic anticoagulation therapy and the outcomes in patients with severe COVID-19 pneumonia. Further large-scale research is necessary to confirm the results of the present study.

5. Conclusion

The results of this study suggest that late administration of therapeutic-dose anticoagulation in patients with COVID-19 pneumonia...
requiring mechanical ventilation was significantly associated with worse outcomes compared to early administration. Further studies are necessary to validate our results.

Ethics approval and consent to participate

The study was approved by the institutional review board of our hospital (approval number: M2020–130). The board waived the need for written informed consent because the study was retrospective.

Consent for publication

This study was approved by the institutional review board, and written informed consent was waived because of the retrospective design.

Availability of data and materials

The datasets analyzed in this study are not publicly available due to privacy issues, but are available from the corresponding author upon reasonable request.

Funding sources

Not applicable.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors’ contributions

WT, AE, and YO participated in the study conception and design, data collection, and drafting of the manuscript. All authors read and approved the final manuscript.

Credit authorship contribution statement

Wataru Takayama: Writing – review & editing, Writing – original draft, Validation, Supervision, Resources, Project administration, Methodology, Investigation, Data curation, Conceptualization. Akira Endo: Data curation, Investigation, Validation, Writing – review & editing. Yasuhiro Otomo: Writing – review & editing, Validation, Supervision.

Declaration of Competing Interest

The authors declare that they have no competing interests.

Acknowledgments

The authors thank all patients and their families, physicians, nurses, and staff.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ajem.2022.05.031.

References

[1] World Health Organization Geneva. COVID-19 Dashboard. https://covid19.who.int/; 2020. [Accessed 30 Sep 2021].
[2] Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–4. https://doi.org/10.1016/S0140-6736(20)30268-0.
[3] Ackermann M, Verleden SE, Kuehnel M, Haverich A, Weile T, Langer F, et al. Pulmonary vascular endotheliitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med. 2020;383:120–8. https://doi.org/10.1056/NEJMoa2015432.
[4] Iba T, Levy JH, Levi M, Connors JM, Thachil J. Coagulopathy of coronavirus disease 2019. Crit Care Med. 2020;48:1358–64. https://doi.org/10.1097/CCM.0000000000004458.
[5] Cuker A, Tseng EK, Niewoehner RA, Angchaisukris R, Blair C, Dane K, et al. American Society of Hematology 2021 guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID-19. Blood Adv. 2021;5:872–88. https://doi.org/10.1182/bloodadvances.2020003761.
[6] Wijaya I, Andhika R, Huang I. The use of therapeutic-dose anticoagulation and its effect on mortality in patients with COVID-19: a systematic review. Clin Appl Thromb Hemost. 2020;26. https://doi.org/10.1097/TH.00006206906797. 107602626906797.
[7] Ionescu F, Jaysyem I, Petreiciu L, Lawler PR, Castillo E, Munoz-Maldonado Y, et al. Association of anticoagulation dose and survival in hospitalized COVID-19 patients: a retrospective propensity score-weighted analysis. Eur J Haematol. 2021;106:165–74. https://doi.org/10.1111/ejh.15353.
[8] REMAP-CArI Investigators, ACTIV-4a Investigators, ATTACC Investigators, Goligher EC, Bradford CA, BJ McVerry, et al. Therapeutic anticoagulation with heparin in critically ill patients with Covid-19. N Engl J Med. 2021;385:787–89. https://doi.org/10.1056/NEJMoa2103417.
[9] ATTACC Investigators, ACTIV-4a Investigators, REMAP-CArI Investigators, Lawler PR, Goligher EC, Berger JS, et al. Therapeutic anticoagulation with heparin in noncritically ill patients with Covid-19. N Engl J Med. 2021;385:790–802. https://doi.org/10.1056/NEJMoa2105911.
[10] Carlson ME, Pompé P, Ales KL, Mackenzie CR. A new method of classifying prognostic comorbidities in longitudinal studies: development and validation. J Chronic Dis. 1987;40:373–83. https://doi.org/10.1016/0021-9681(87)90171-8.
[11] Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10. https://doi.org/10.1001/jama.2016.0287.
[12] Huang C, Wang Y, Li X, Ren L, Zhao L, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.
[13] Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–77. https://doi.org/10.1007/s00134-017-4683-6.
[14] Romero Starke K, Reising D, Peteriet-Haack G, Schmauder S, Nienhaus A, Seidler A. The isolated effect of age on the risk of COVID-19 severe outcomes: a systematic review with meta-analysis. BMJ Glob Health. 2021;6:e006434. https://doi.org/10.1136/bmjgh-2021-006434.
[15] Gupta S, Hayek SS, Wang W, Chan L, Mathews KS, Melamed ML, et al. Factors associated with death in critically ill patients with coronavirus disease 2019 in the US. JAMA Intern Med. 2020;180:1436–46. https://doi.org/10.1001/jamainternmed.2020.3596.
[16] Connors JM, Levy BH. COVID-19 and its Implications for thrombosis and anticoagulation. Blood. 2020;135:2033–40. https://doi.org/10.1182/blood.2020006000.
[17] Grillf E, Behr J, Calame P, Aubry S, Delabrouse E. Acute pulmonary embolism associated with COVID-19 pneumonia detected by pulmonary CT angiography. Radiol. 2020;296:e186–8. https://doi.org/10.1148/radiol.2020201544.
[18] Cattaneo M, Bertinato EM, Birocci S, Bizzio C, Malavolta D, Manzoni M, et al. Pulmonary embolism or pulmonary thrombosis in COVID-19? Is the recommendation to use high-dose heparin for thromboprophylaxis justified? Thromb Haemost. 2020;120:1200–2. https://doi.org/10.1177/0040423020112097.
[19] Poterucha TJ, Libby P, Coldhaber S. More than an anticoagulant: do heparins have inflammatory effects of heparin and related compounds. Thromb Res. 2008;122:743–52. https://doi.org/10.1016/j.thromres.2006.10.028.
[20] Young E. The anti-inflammatory effects of heparin and related compounds. Thromb Res. 2008;122:743–52. https://doi.org/10.1016/j.thromres.2006.10.028.
[21] Vienozzi E, Canucci F, Pinna D, Mancini N, Carletti S, Lazzari A, et al. Coronaviridae and SARs-associated coronavirus strain HSR1. Emerg Infect Dis. 2004;10:413–8. https://doi.org/10.3201/eid1003.030683.
[22] Asakura H, Ogawa H. Perspective on fibrinolytic therapy against suppressed-fibrinolytic-type DIC. J Intensive Care. 2020;8:71. https://doi.org/10.1186/s41598-020-00491-y.
[23] Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thorac Haemost. 2020;120:1200–2. https://doi.org/10.1111/jth.14768.
[24] Lee J, Park SS, Kim TY, Lee DG, Kim DW. Lymphopenia as a biological predictor of outcomes in COVID-19 patients: A nationwide cohort study. Cancers (Basel). 2021;13:471. https://doi.org/10.3390/cancers13030471.
[25] Song CV, Xu J, He JQ, Lu YQ. Immune dysfunction following COVID-19, especially in severe patients [Sci. rep.:15838]. Sci Rep. 2020;10:15838. https://doi.org/10.1038/s41598-021-92219-8.