Daily fruit and vegetable consumption and diabetes status in middle-aged females in the general US population

Jennifer K Julius, Courtney K Fernandez, Amy C Grafa, Paige MC Rosa and Jessica L Hartos

Abstract
Objectives: Fruit and vegetable consumption may impact development of diabetes, but limited research has addressed whether daily consumption of fruits and vegetables differs by those with and without diabetes, especially within high-risk groups. Thus, the purpose of this study was to determine whether daily fruit and vegetable consumption differs by diabetes status in middle-aged females in the general US population.

Methods: This cross-sectional analysis used 2017 Behavioral Risk Factor Surveillance System data for females ages 45–64 years old in Arizona (n = 2609), Florida (n = 3768), Georgia (n = 1018), and Texas (n = 2092). Multiple logistic regression analysis by state assessed the relationship between the daily consumption of fruit (fruit, 100% fruit juice) and vegetables (green leafy or lettuce salad, potatoes, other vegetables) and diabetes status, while controlling for health status, health behaviors, demographic factors, and socioeconomic status.

Results: Across states, relatively similar proportions of participants with and without diabetes reported daily fruit consumption (with: 58%–63%; without: 61%–68%) and daily vegetable consumption (with: 58%–63%; without: 61%–68%). The results of adjusted analyses indicated that daily fruit and vegetable consumption did not differ by diabetes status across states.

Conclusion: Across states, daily fruit and vegetable consumption did not differ by diabetes status in middle-aged females. In the primary care setting, providers should educate all females ages 45–64 on the importance of eating fresh fruits and vegetables and may consider sharing information about flavonoid-rich fruit and vegetable consumption for diabetes.

Keywords
Fruit consumption, vegetable consumption, diabetes, middle-age, females

Date received: 20 December 2018; accepted: 1 July 2019

Introduction
Worldwide there are currently up to 430 million people affected by diabetes,1,2 and this is expected to increase.3,4 In the United States alone, it is estimated that up to 31 million people have diabetes,5–7 and up to one in four may not know they have it.6 Many other chronic conditions are also related to having diabetes including depression, hypertension, and low-grade inflammation,8 as well as kidney failure, amputations, blindness,2,5–7 cardiovascular disease,1,9 and stroke.2,7 Overall in the United States, one-fifth of healthcare spending is related to diabetes and related complications,6 and those with diabetes have a 50% higher risk of death at younger ages than those without diabetes.1,5,6

The onset of diabetes has been linked to many demographic and health-related factors. For example, risk factors for diabetes and related complications include age, gender, race/ethnicity, family history of diabetes, and low socioeconomic status.1,5–7 Research also shows that those with high body mass index (BMI), sedentary lifestyles, decreased physical activity, and poor eating habits are more likely to develop diabetes.1,5–7 However, prior research for the relationship between fruit and vegetable consumption and diabetes risk is mixed. Some studies have found that fruit and
vegetable consumption are inversely related to risk for diabetes,3,10,11 while others have found no relationship.4,11

Where prior research has focused on whether fruit and vegetable consumption is related to the risk of developing diabetes, we found no research that specifically addresses whether fruit and vegetable consumption differs between those who have been diagnosed with diabetes and those who have not. This information may be important for considering health behaviors conducive to preventing or managing diabetes, especially for middle-aged females, who is the group more likely to be diagnosed with diabetes and related complications.1,6 Therefore, the purpose of this study was to determine whether fruit and vegetable consumption differs by diabetes status in middle-aged females in the general US population.

Methods

Design

This cross-sectional analysis used data from the 2017 Behavioral Risk Factor Surveillance System (BRFSS) by the Centers for Disease Control and Prevention (CDC).12 BRFSS is a health-related telephone survey system established in 1984 that collects data via a random digit dialing system of more than 400,000 adult interviews annually. BRFSS collects data from all 50 states in the United States as well as the District of Columbia and three US territories, focusing on health status, prevention of diseases, and health risk behaviors. The CDC compiles all BRFSS data and makes de-identified data accessible to researchers in order to conduct secondary data analysis. As such, this study was given exempt status by the Institutional Review Board of the University of North Texas Health Science Center.

Sample

The samples for this study included middle-aged females 45–64 years old in Arizona (n = 2609), Florida (n = 3768), Georgia (n = 1018), and Texas (n = 2092) who had data for fruit and vegetable consumption and diabetes status. These states were chosen because of higher prevalence for (a) diabetes and (b) middle-aged females in comparison to other states based on the BRFSS 2016 prevalence survey data maps.13

Data

All variables originated from the BRFSS 2017 data set.14,15 The outcomes were daily fruit and vegetable consumption. For fruit consumption, we used the calculated BRFSS variable that combined responses for two items (“Not including juices, how often did you eat fruit?” and “Not including fruit-flavored drinks or fruit juices with added sugar, how often did you drink 100% fruit juice such as apple or orange juice?”) into “yes” or “no” for daily fruit consumption. For vegetable consumption, we used the calculated BRFSS variable that combined responses for four items (“How often did you eat a green leafy or lettuce salad, with or without other vegetables?” “How often did you eat any kind of fried potatoes, including french fries, home fries, or hash browns?” “How often did you eat any other kind of potatoes, or sweet potatoes, such as baked, boiled, mashed potatoes, or potato salad?” and “Not including lettuce salads and potatoes, how often did you eat other vegetables?”) into “yes” or “no” for daily vegetable consumption. The factor of interest, diabetes status, was measured as “ever diagnosed with diabetes,” versus “never diagnosed with diabetes” (which includes pre-, borderline, and gestational diabetes).

The control variables were general health status, health conditions, weight status, physical activity, alcohol use, tobacco use, age, ethnicity/race, education level, employment status, and income level. All variables and categories are shown in Table 1. Health conditions were calculated by adding the number of “yes” responses to being diagnosed with any of the following (other than diabetes): high blood pressure, high cholesterol, heart attack, coronary heart disease, stroke, skin cancer, other cancer, chronic obstructive pulmonary disease, arthritis, depression, kidney disease, or asthma, and then categorizing values as “0 health conditions,” “1 health condition,” or “2 or more health conditions.” In BRFSS, alcohol use was measured as the average number of drink occasions per day, and we then categorized responses as “none” (no use), “light” (one or less drinks per day), “moderate” (female 1–3 drinks per day), and “excessive” (female 4 or more drinks per day).16

Analysis

Frequency distributions were calculated by state to describe the sample and identify any issues with distributions of variables. State data were analyzed separately in order to assess patterns of relationships between variables of interest across similar samples. If variable relations are reliable, results would be consistent in similar samples. Thus, in this study, we considered similar results in three or more of the four states to be considered reliable findings for variable relations. Multiple logistic regression analysis was conducted by state to assess the relationship separately between daily fruit consumption and diabetes status, and daily vegetable consumption and diabetes status, in middle-aged females while controlling for health status, health behaviors, demographic factors, and socioeconomic status. Four variables had 5% or more missing data. In order not to lose these participants in the final analysis, we created an additional category in each of those variables for missing data (see Table 1). We did not choose to add a “missing data” category for variables with less than 5% missing data because the category would not include enough participants to be of use in adjusted analysis. The resulting sample sizes per state for the adjusted analysis...
Table 1. Participant characteristics by state and diabetes status.

Variable	Arizona (N = 2609)	Florida (N = 3768)	Georgia (N = 1018)	Texas (N = 2092)
	Diabetes status	Diabetes status	Diabetes status	Diabetes status
	Yes (n = 379)	No (n = 2230)	Yes (n = 195)	No (n = 823)
Daily fruit				
Yes	63%	58%	61%	60%
No	37%	42%	39%	40%
Daily vegetables				
Yes	80%	82%	82%	77%
No	20%	18%	18%	23%
Health conditions*				
0	6%	4%	4%	5%
1	11%	13%	17%	13%
2 or more	78%	73%	74%	78%
Missing data	5%	10%	5%	3%
Weight status*				
Normal	13%	14%	10%	11%
Overweight	26%	22%	26%	20%
Obese	50%	55%	54%	59%
Missing data	11%	9%	10%	8%
Physical activity*				
Inactive	41%	48%	48%	53%
Insufficiently active	19%	18%	18%	19%
Active	14%	10%	16%	11%
Highly active	22%	20%	11%	13%
Missing data	4%	3%	5%	3%
Alcohol use				
None	699%	74%	70%	76%
Light	15%	11%	16%	13%
Moderate	9%	8%	8%	6%
Excessive	6%	7%	5%	3%
Tobacco use				
Never	56%	51%	58%	64%
Former	28%	25%	22%	19%
Current	16%	23%	21%	16%
General health status				
Good or better	51%	44%	56%	41%
Fair or poor	49%	55%	43%	58%
Age				
45–54	34%	36%	33%	33%
55–64	66%	64%	67%	66%
Ethnicity/race				
White	56%	64%	51%	41%
Hispanic	22%	12%	6%	4%
Other	20%	22%	41%	18%
Education level				
Graduated college	24%	21%	30%	22%
Did not	75%	79%	70%	78%
Employment status				
Employed	99%	99%	99%	100%
Retired	16%	14%	13%	17%

(Continued)
meet (and far exceed) the rule of thumb that has been supported for multiple logistic regression, which is events per variable (EPV) of 50 and formula n = 100 + 50i where i refers to number of independent variables in the model. Any observations with missing data for any variables that had missing without a “missing data” category were excluded from adjusted analysis. All analyses were conducted in STATA 15 (copyright 1985-2017 Statacorp, LLC).

Results

Participant characteristics

Table 1 lists participant characteristics for middle-aged females by diabetes status. Across states, relatively similar proportions of participants with diabetes and without diabetes reported daily fruit consumption (with: 58%–63%; without: 61%–68%) and daily vegetable consumption (with: 58%–63%; without: 61%–68%). All health-related variables differed by diabetes status in each state (all p’s < .05; not shown). Those with diabetes reported higher rates than those without for the following: fair or poor health (with: 43%–58%; without: 17%–24%), two or more health conditions (with: 51%–68%; without: 20%–24%), obesity (with: 50%–59%; without: 24%–30%), and physical inactivity (with: 51%–53%; without: 21%–23%). In addition, compared to those without diabetes, those with diabetes were more likely to report (all p’s < .05; not shown) no alcohol use, non-white race, and lower socioeconomic status (education, employment, and income).

Adjusted statistics

As shown in Table 2, the results of multiple logistic regression analysis for middle-aged females in Arizona, Florida, Georgia, and Texas indicated that after controlling for all other variables in the model, daily fruit consumption did not differ by diabetes status in any state, and daily vegetable consumption differed by diabetes status in only one out of four states (which does not meet our criteria listed in the Methods for a “reliable” finding).

Discussion

The purpose of this study was to determine whether fruit and vegetable consumption differed by diabetes status in middle-aged females in the US general population after controlling for health status, health behaviors, demographic factors, and socioeconomic status. The results of adjusted analysis indicated that neither daily fruit nor vegetable consumption differed significantly by diabetes status across similar samples in this target population. This may be the first study that specifically assesses differences in fruit and vegetable consumption for those with and without diabetes in middle-aged females in the general population as previous studies focused on fruit and vegetable consumption as related to risk of diabetes,3,4,10,11 differences in daily intake of sugars, carbohydrates, proteins, and fats between those with and without diabetes,18 and the contribution of a combined metric for fruits, vegetables, and legumes on cause of death for those with diabetes.19

In this study, females ages 45–64 across states reported relatively moderate levels of daily fruit consumption and relatively high levels of daily vegetable consumption. However, the vegetable consumption variable included “French fries,” which may not be considered a “vegetable” or healthy. This inclusion may have inflated the amount of participants considered to eat “healthy” in terms of vegetable consumption. Future research may consider asking specifically about raw fruits and vegetables. Moreover, the American Diabetes Association20 recommends eating fewer “starchy vegetables” such as potatoes, as they raise blood glucose.
Thus, it may be favorable for practitioners to inform diabetic middle-aged female patients about flavonoid-rich fruit and vegetables. Flavonoids that are found in fruit (including berries, apples, pears, and cherries) and vegetables (including celery, parsley, herbs, and soy) have been shown to regulate insulin secretion, insulin signaling, and glucose uptake in insulin-sensitive tissues through signaling pathways. Thus, flavonoids may be beneficial for diabetic patients as they help insulin secretion, reduce apoptosis, decrease oxidative stress in muscle and fat, and improve hyperglycemia. In addition, diabetic patients have an increased risk of developing further chronic diseases such as diabetic retinopathy, long-term vascular complications, cardiovascular disease, and cancer, so, consumption of flavonoid-rich foods may help prevent the onset of additional comorbidities.

Conclusion
The results of this study may be generalizable to middle-aged females 45–64 years old in primary care because this was a population-based sample. This target population reported moderate levels of daily fruit consumption and high levels of daily vegetable consumption, neither of which differed by diabetes status. However, the inclusion of French fries in the vegetable variable may have inflated the proportion of vegetable consumption. Providers should screen all female patients ages 45–64 for fruit and vegetable consumption and educate on the importance of eating fruits and vegetables daily. In addition, providers may consider sharing information about the health benefits of flavonoid-rich foods for diabetes.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval
The IRB of the University of North Texas Health Science Center gave this study exempt status (IRB Number: 2018-161) because we conducted a secondary data analysis of BRFSS data, which is de-identified data made accessible online by the CDC.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Jessica L. Hartos
https://orcid.org/0000-0003-0732-692X

Informed consent
We conducted a secondary data analysis of BRFSS data, which is de-identified data made accessible online by the CDC.

References
1. Peters SAE, Huxley RR and Woodward M. Diabetes as a risk factor for stroke in women compared with men: a systematic review and meta-analysis of 64 cohorts, including 775385 individuals and 12539 strokes. Lancet 2014; 383(9933): 1973–1980.
2. World Health Organization (WHO). Diabetes infographic, www.who.int/diabetes/global-report/WHD2016_Diabetes_Infographic_v2.pdf (2017, accessed 10 December 2018).
3. Cooper AJ, Forouhi NG, Ye Z, et al. Fruit and vegetable intake and type 2 diabetes: EPIC-Interact prospective study and meta-analysis. Eur J Clin Nutr 2012; 66(10): 1082–1092.
4. Li M, Fan Y, Zhang X, et al. Fruit and vegetable intake and risk of type 2 diabetes mellitus: Meta-analysis of prospective cohort studies. BMJ Open 2014; 4(11): e005497.
5. American Diabetes Association (ADA). Infographic: a snapshot of diabetes in America, http://www.diabetes.org/diabetes-basics/statistics/cdc-infographic.html (2014, accessed 10 December 2018).
6. Center for Disease Control Prevention (CDC). National diabetes statistics report, 2017: estimates of diabetes and its burden in the United States, https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf (2017, accessed 10 December 2018).
7. Center for Disease Control Prevention (CDC). Diabetes report card 2017, https://www.cdc.gov/diabetes/pdfs/library/diabetes-reportcard2017-508.pdf (2018, accessed 10 December 2018).
8. Tan X, Chapman CD, Cedernaes J, et al. Association between long sleep duration and increased risk of obesity and type 2 diabetes: A review of possible mechanisms. *Sleep Med Rev* 2018; 40: 127–134.

9. Huxley R, Lee CM, Barzi F, et al. Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus. *Arch Intern Med* 2009; 169(22): 2053–2063.

10. Wang PY, Fang JC, Gao ZH, et al. Higher intake of fruits, vegetables, or their fiber reduces the risk of type 2 diabetes: a meta-analysis. *J Diabetes Investig* 2016; 7(1): 56–69.

11. Carter P, Gray LT, Troughton J, et al. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: Systematic review and meta-analysis. *BMJ* 2010; 341: c4229.

12. Center for Disease Control Prevention (CDC). *About BRFSS*, https://www.cdc.gov/brfss/about/index.htm (2018, accessed 10 December 2018).

13. Center for Disease Control Prevention (CDC). *BRFSS Web analysis tool 2016 cross tabulation*, https://nccd.cdc.gov/weat/index.html#/crossTabulation/selection/2016 (2018, accessed 10 December 2018).

14. Center for Disease Control Prevention (CDC). *Calculated variables in the 2017 behavioral risk factor surveillance system*. https://www.cdc.gov/brfss/annual_data/2017/pdf/2017-calculated-variables-version4-508.pdf (2018, accessed 10 December 2018).

15. Center for Disease Control Prevention (CDC). *LLCP 2017 codebook report*, overall version data weighted with _LLCPWT, behavioral risk factor surveillance system*, https://www.cdc.gov/brfss/annual_data/2017/pdf/codebook17_llcp-v2-508.pdf (2018, accessed 10 December 2018).

16. Centers for Disease Control Prevention (CDC). *Alcohol and public health: frequently asked questions*, https://www.cdc.gov/alcohol/faqs.htm (2018, accessed 10 December 2018).

17. Bujang MA, Sa’at N, Sidik TMITAB, et al. Sample size guidelines for logistic regression from observational studies with large population: emphasis on the accuracy between statistics and parameters based on real life clinical data. *Malays J Med Sci* 2018; 25(4): 122–130.

18. Shimakawa T, Herrera-Acena MG, Colditz GA, et al. Comparison of diets of diabetic and nondiabetic women. *Diabetes Care* 1993; 16: 1356–1362.

19. Nothlings U, Schulze MB, Weikert C, et al. Intake of vegetables, legumes, and fruit, and risk for all-cause, cardiovascular, and cancer mortality in a European diabetic population. *J Nutr* 2008; 138(4): 775–781.

20. American Diabetes Association. *Grains and Starchy Vegetables*, http://www.diabetes.org/food-and-fitness/food/what-can-i-eat/making-healthy-food-choices/grains-and-starchy-vegetables.html (2017, accessed 7 June 2019).

21. Babu PV, Liu D and Gilbert ER. Recent advances in understanding the anti-diabetic actions of dietary flavonoids. *J Nutr Biochem* 2013; 24(11): 1777–1789.

22. Mahoney SE and Loprinzi P. Influence of flavonoid-rich fruit and vegetable intake on diabetic retinopathy and diabetes-related biomarkers. *J Diabetes Complications* 2014; 28(6): 767–771.