Favourable outcome of severe COVID-19 patients in hyperinflammatory phase with high dose dexamethasone pulse therapy: A series of 10 cases

Swetalina Pradhan¹, Shyama Sharma², Anup Kumar³, Prabhat Kumar Singh⁴

Departments of ¹Dermatology, ²Medicine, ³Orthopedics and ⁴Anaesthesiology, All India Institute of Medical Sciences, Patna, Bihar, India

ABSTRACT

The hyperinflammatory phase of COVID-19 occurring because of cytokine storm is the leading cause of mortality and morbidity in the affected patients. Various drugs with no definite cure are being tried to tackle the cytokine storm. Recently high dose corticosteroids are being used to arrest the surge of cytokines. In the current case series, we will be discussing the outcome of high dose dexamethasone pulse therapy in 10 cases of COVID-19 in hyperinflammatory phase who were cured of the disease along with improvement in laboratory parameters without any complications to the therapy.

Keywords: Case series, high dose dexamethasone pulse therapy, hyperinflammatory phase, outcome, severe COVID-19

Introduction

Globally, by 15 May 2021, there have been 161,513,458 confirmed cases of COVID-19, including 3,352,109 deaths, with 24,372,907 confirmed cases from India.[1] The disease course of COVID-19 has been divided into three phases: A first phase characterized by a viral infection in the respiratory tract; a secondary pulmonary phase characterized by lung infection with a non-hypoxic stage (phase IIA) and leads into a hypoxic stage (phase IIB); and a third hyper-inflammatory phase.[2] The third phase or hyperinflammatory phase occurs because of cytokine storm due to activation of both the innate and adaptive immune responses in the body is believed to be the cause of ARDS, MODs and even death.[3] Several inflammatory markers such as procalcitonin, C-reactive protein, neutrophils, interleukin (IL) 6, Lactate dehydrogenase (LDH) and ferritin have been found to be significantly elevated in severe COVID-19 cases indicating poor prognosis.[4-9] Clinically the disease severity has been classified into 3 categories, mild: Individuals with various signs and symptoms of COVID-19 but without breathlessness or hypoxia, moderate: Individuals with respiratory rate ≥24/min having an oxygen saturation (SpO₂) ≤93% on room air and severe: Individuals with respiratory rate >30/min and SpO₂ <90% on room air.[10]

Various drugs are being tried in COVID-19 include hydroxychloroquine, ivermectin, doxycycline, remdesivir, favipiravir, dexamethasone, tocilizumab, along with vitamin, zinc and other nutritional supplements.[11] Remdesivir is the only FDA approved drug for hospitalized COVID-19 patients on supplemental oxygen.[12] In many settings Tocilizumab (TCZ), a recombinant humanized anti-human IL-6 receptor monoclonal
antibody is used to tackle the cytokine storm in COVID patients, though found unsuccessful. In addition, it is costly and has availability issues. Systemic corticosteroids have been demonstrated to be effective in the treatment of severe COVID-19 in a number of recent investigations. Recently high dose pulse methylprednisolone has been found beneficial in tackling the severe COVID-19.

In this series we’d like to present our experience of using high-dose dexamethasone pulse treatment in 10 patients of COVID 19 with severe disease.

Cases

We are presenting here, 10 cases aged 31 to 62 years admitted in the general COVID ward of our institute. Table 1 shows the demographics, presenting signs/symptoms, concomitant co-morbidities, vitals, and oxygen need on the day of admission. Baseline routine haematological investigations and inflammatory marker levels (serum Lactate dehydrogenase LDH, C-reactive protein CRP, interleukin 6 IL 6 and ferritin) and Chest X-ray were done in all cases. The inflammatory markers were high, with infiltration affecting >50% of lung field in Chest X-ray of all the cases suggestive of hyperinflammatory phase [Figure 1a and 1b]. The patients received various treatments in the form of supplemental oxygen, injectable/oral antibiotics, oral dexamethasone, oral Ivermectin, injection Remdesivir, therapeutic subcutaneous low-molecular-weight heparin, cough syrup, steam inhalation, awake proning, multivitamins, paracetamol, zinc and vitamin C as per requirements and the institute protocol [Table 1]. Remdesivir was not given to case 3, 6 and 10 due to deranged liver enzymes. The patients with <15 lit oxygen demand to maintain saturation above 94 were put on non-rebreathing mask (NRM) and those not maintaining saturation on 15 lit NRM were put on high flow nasal canula (HFNC). Those requiring oxygen below 5 litres were put on nasal prong (NP).

On the second or third day of hospitalisation, despite sufficient oxygen support and standard treatment, all the patients worsened, with increasing respiratory distress and oxygen requirement. Based on clinical deterioration and high inflammatory markers, patients were prescribed high dose dexamethasone pulse therapy (HDDPT) –100 mg Dexamethasone in 500 ml of 5% dextrose solution (D5) slow IV (45 drops/min) for three consecutive days. In patients of diabetes mellitus 8 Unit regular insulin was added to D5 solution. Before giving dexamethasone pulse normal serum electrolytes and ECG were ensured in all patients. Breathlessness and oxygen requirement decreased in all cases after dexamethasone pulse. The duration required to maintain saturation on room air from the day of initiation of high dose dexamethasone pulse ranged from 5 to 18 days. The total duration of hospital stay ranged from 9 to 22 days [Table 2]. Subjective improvement was achieved in all cases post dexamethasone pulse [Table 2]. The inflammatory marker levels and amount of opacities in chest X-ray also improved with dexamethasone pulse [Table 3] [Figure 1c and 1d]. Except transient rise in blood sugar level in cases 2, 3, and 7 no other side effect were found in any of the patient. Raised blood sugar was managed with a basal-bolus regimen of insulin therapy.

Discussion

Glucocorticoids are being used widely nowadays in COVID patients because of their immunosuppressive and anti-inflammatory properties. Immunosuppressive effects are exhibited through transactivation, and induction of gene transcription and protein synthesis of NF-κB inhibitors and lipocortin-1. Inhibition of NF-κB signalling, results in downregulation of IL-1, IL-6, granulocyte-macrophage colony-stimulating factor, and inducible cyclooxygenase-2 production. GCs also inhibit the Th1 and macrophage-based pro-inflammatory cytokines IL-1β, IL-2, IL-6, TNF-α, and IL-17. Because of the above effects GCs are thought to be useful in combating the hyperinflammatory phase of COVID-19. Recently studies have found beneficial effects of systemic corticosteroids on mortality of COVID-19 patients. Dexamethasone, a corticosteroid, has been found to improve survival in hospitalized patients who require supplemental oxygen, with the greatest benefit observed in patients who require mechanical ventilation. Recently in a prospective observational study, high-dose corticosteroid pulse therapy (HDCPT) using methylprednisolone or dexamethasone equivalent was found to increase COVID-19 survival rates in patients at risk of developing a COVID-19 hyper-inflammatory response. In another multicentre retrospective cohort study high dose corticosteroid (methylprednisolone) pulse was found to reduce mortality significantly in severe COVID-19 patients.

In the current series all severe COVID patients were in hyperinflammatory phase. Despite receiving all the authorised medications in accordance with protocol and receiving...
Table 1: Patient demographic details, presenting complaints, oxygen requirement and treatment details on the day of admission

Detail parameters	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8	Case 9	Case 10
Age/sex	38/M	58/F	55/M	62/M	39/M	48/M	62/M	57/M	43/F	39/M
Symptoms	Fever	Fever	Fever	Fever	Cough	Fever	Fever	Dysnea	Dysnea	Dysnea
Dysnea	Myalgia	Myalgia	Rhinorrhea	Anosmia	Dysnea	Cough	Dysnea	Dysnea	Dysnea	Dysnea
Myalgia	Headache	Rhinorrhea	Rhinorrhea	Anosmia	Cough	Anosmia	Anosmia	Anosmia	Anosmia	Anosmia
Vital signs	RR‑32/min	RR‑38/min	RR‑33/min	RR‑35/min	RR‑41/min	RR‑36/min	RR‑31/min	RR‑30/min	RR‑36/min	RR‑40/min
	PR‑123/min	PR‑120/min	PR‑118/min	PR‑121/min	PR‑112/min	PR‑116/min	PR‑110/min	PR‑109/min	PR‑109/min	PR‑112/min
	BP‑122/78 mmHg	BP‑132/86 mmHg	BP‑114/80 mmHg	BP‑128/82 mmHg	BP‑110/78 mmHg	BP‑130/84 mmHg	BP‑126/86 mmHg	BP‑110/78 mmHg	BP‑120/78 mmHg	BP‑116/84 mmHg
Oxygen Requirement on day of admission (litres)	10	15	9	10	15	15	10	10	8	15
Known Co-morbidities	NO	HTN Hypothyroid	NO	NO	No	NO	Diabetes	NO	NO	NO
Drugs History	NO	Amlodipine 10 mg	NO	NO	Metformin 500 mgOD Glimepiride 1 mg	NO	NO	NO	NO	

Drugs given for COVID	All received IV Antibiotics, Enoxaparin sc (therapeutic dose), Zinc, Vit C, PCM
Dexa 6 mg	Remdesivir, Ivermectin, Cough syp, Dexamethasone, Zinc, Vit C, Remdesivir, Dexamethasone 6 mg
DEXA 6 mg OD	Remdesivir, Ivermectin, Dexamethasone, Zinc, Vit C, Remdesivir, Cough syp
Remdesivir, Ivermectin, Cough syp	Remdesivir, Ivermectin, Dexamethasone, Zinc, Vit C, Remdesivir, Dexamethasone 6 mg
Remdesivir, Ivermectin, Dexamethasone 6 mg	Remdesivir, Ivermectin, Dexamethasone, Zinc, Vit C, Remdesivir, Cough syp

Drug dosing details: Dexa (dexamethasone) 6 mg oral OD, Injection Remdesivir 200 IV on day 1 followed by 100 mg IV OD for next 4 days, PCM (paracetamol) 650 mg TID, Vitamin C 100 mg/day till discharge, oral Ivermectin (200 mcg/Kg) once a day for 5 days, Enoxaparin Subcutaneous 60 mg BD till discharge. BP‑ blood pressure, PR‑ pulse rate, RR‑ respiratory rate, NRM‑ Non‑rebreathing mask, HTN‑ hypertension

Appropriate oxygen support, the patients’ condition worsened, clinically warranting high dose dexamethasone pulse. There was objective improvement in clinical parameters in the form of relief in respiratory distress and decreased oxygen demand post pulse therapy. The patients maintained saturation on room air within 5 to 18 days of pulse therapy. All the patients were cured of severe COVID-19 with hospital stay duration ranging from 9 to 22 days. Subjective improvement in the capacity to eat comfortably and go to the bathroom without oxygen was seen in all post-pulse treated patients. The inflammatory markers also started decreasing after first dose of 100 mg dexamethasone and came down to normal/lower side 5 days post pulse therapy. Three cases had transient elevation in blood sugar level which was managed with insulin. All cases had a transient increase in leukocyte counts with neutrophilia after receiving high dosage dexamethasone, since corticosteroids are known to produce leukocytosis with neutrophilia.[20] Corticosteroids can cause hypernatremia and hypokalaemia with volume expansion due to mineralocorticoid action.[21]

Among all the corticosteroids dexamethasone is long acting, highly potent steroid with minimal mineralocorticoid action. Hence chances of dyselectrolytemia are minimal with dexamethasone and it is usually reserved for short term use in severe acute conditions.[21] We verified appropriate electrolyte levels in all our patients before administering high-dose dexamethasone pulse and none of them developed dyselectrolytemia post dexamethasone pulse.

Conclusion

High-dose dexamethasone pulse therapy for three days can be a safer and less expensive way to treat COVID-19 hyper-inflammatory phase and prevent the illness from progressing further. This medication is a good alternative for treating severe COVID patients and will be helpful for the physicians to tackle the cases of severe COVID-19 in a resource-constrained setting with a limited number of beds in intensive care units (ICU).
Parameters	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8	Case 9	Case 10
O₂ requirement on the DOA	8 lit	15 lit	7 lit	6 lit	13 lit	10 lit	10 lit	8 lit	9 lit	12 lit
Day of starting dexona pulse from DOA	NRM	HFNC	2lit	NRM						
O₂ req.	10	20 lit	9	10	15	15	10	10	9	15
1ˢᵗ day post DP O₂	4	15	5	10	15	10	10	7	8	
5ᵗʰ day	RA	6	NRM	6	NRM	5	4	6	2	
Of post DP O₂			NRM							
Subjective Improvement										
D1 post DP	Able to eat comfortably	able to eat comfortably off O₂ for 5 to 7 min	able to eat comfortably off O₂	able to eat comfortably off O₂ for 5 to 7 min	able to eat comfortably off O₂ for 5 to 7 min	able to eat comfortably off O₂ for 5 to 7 min	able to eat comfortably off O₂ for 5 to 7 min	able to eat comfortably off O₂ for 5 to 7 min	able to eat comfortably off O₂ for 5 to 7 min	able to eat comfortably off O₂ for 5 to 7 min
D5 post DP										
Days required to maintain saturation in room air from DP (without O₂) (days)	5	13	5	13	14	15	13	9	18	
Total Duration of hospital Stay (days)	9	17	10	18	17	18	18	17	12	22
Complications to DP	Nil	Single Episode	Raised RBS	Nil	Raised RBS	Nil	Raised RBS	Nil	Nil	
Outcome	Cured									

O₂ - oxygen, NRM - Non-rebreathing mask, HFNC - High flow nasal canula, NP - Nasal prong, DOA - day of admission, DP - dexamethasone pulse
Table 3: Routine investigations and Inflammatory markers pre and post high dose dexamethasone pulse therapy

Investigation Parameters	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8	Case 9	Case 10
CBC	Pre DP-WNL	10,200	WNL							
	DP-WNL	N-89%	N-91%	N-76%	N-78%	N-78%	N-78%	N-78%	N-78%	N-78%
	D1 post DP-WNL	14,000	TLC-WNL	TLC-10,700	WNL	WNL	WNL	WNL	WNL	WNL
	TLC-11,820	N-86%	N-82%	N-74%	N-82%	N-82%	N-82%	N-82%	N-82%	N-82%
	D5 post DP-WNL	17,200	TLC-WNL	TLC-11,200	TLC-10,100	TLC-10,600	12,100	TLC-10,500	TLC-10,600	WNL
	WNL	N-96%	N-88%	N-80%	N-95.5%	N-95%	N-95%	N-87%	N-79%	N-79%
LFT	Pre DP-WNL	WNL								
	SGOT-256.2	74.68	SGOT-73.3	SGOT-58.9	SGOT-150.2	SGOT-29.1	SGOT-48.1	WNL	WNL	WNL
	SGPT-38.3	91.56	SGPT-15.1	SGPT-88.5	SGPT-124	SGPT-102.3	SGPT-120.1	WNL	WNL	WNL
	SGPT-212.3	102.28	SGPT-36	SGPT-60	SGPT-135	SGPT-78.9	SGPT-88.1	WNL	WNL	WNL
	SGPT-37	157.1	SGPT-112	SGPT-96.8	SGPT-54.2	SGPT-66	SGPT-234.1	WNL	WNL	WNL
	SGPT-157.1	345.7	SGPT-27	SGPT-59	SGPT-59.7	WNL	WNL	WNL	WNL	WNL
	SGPT-59	240	197	598	741.6	1518.6	966	1207	1234.5	1247
	SGPT-27	1044	598	741.6	1518.6	966	1207	1234.5	1247	
	RBS	Pre DP-WNL	WNL							
	D1 post DP-WNL	1070	567	580	270.3	1353.1	561.3	991.3	838.8	1141.7
	D5 post DP-WNL	641.7	341.4	432.8	221	785.4	480	540.1	347.3	543.2
	Discharge-WNL	345.7	241.6	297.5	211.5	431.9	368.3	442.7	321.8	410.4
	CRP (mg/l) Pre DP-2648.98	345.7	241.6	297.5	211.5	431.9	368.3	442.7	321.8	410.4
	Ref range (230-460)	91.56	102.28	82	98.76	96.8	169	270	80.99	113.9
	D1 post DP-12.33	58	9.4	9.1	7.5	23.1	21.4	60.12	63.9	6.7
	D5 post DP-12.33	6.8	2.8	3.5	2.1	7.3	5.9	6.3	11.7	2.8
	Discharge-CRP	3.1	2.8	2.8	2.1	3.6	3.7	2.9	4.2	2.8
	IL6 (pg/ml) Pre DP-32	49.5	17.8	27.6	43.5	39.4	67.8	51	58.2	24.2
	Ref range (0-5)	12.9	3.1	2.8	5.8	6.1	5.3	5.6	7.4	2.8
	D1 post DP-7.4	2.8	<2.8	<2.8	<2.8	<2.8	<2.8	<2.8	<2.8	<2.8
	D5 post IL6	1.6	<2.8	<2.8	<2.8	<2.8	<2.8	<2.8	<2.8	<2.8

Contd...
Table 3: Contd...

Investigation Parameters	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8	Case 9	Case 10
Ferritin (ng/ml)	Pre DP >1650	1487.6	1098.3	1256.8	1079	>1650	1570.4	1607.3	1478.9	>1650
Ref range (22-322)	D1 post DP-763	759	232.4	457.8	407	1231.2	1163.8	1143.1	1231.6	1231.6
	D5 post DP-345.6	297.1	223.7	315.9	326.8	647.1	597.8	645.1	594.8	843.9
	Discharge-WNL	89.7	227.6	189.5	227	421.8	379.6	387.5	431.6	541.4
D-dimer <0.2 microgram/ml	Pre DP-0.32	D1	1.7	0.42	0.69	0.5	1.60	0.63	2.02	0.88
	Post DP-0.2	0.6	<0.2	0.3	0.5	0.61	<0.2	0.81	0.37	0.40
	D5 post DP-0.2	<0.2	0.3	<0.2	0.32	0.41	<0.2	0.65	<0.2	0.3
	Discharge <0.2	0.3	<0.2	0.3	0.32	0.41	<0.2	0.65	<0.2	0.3

CvC - Complete blood count. TLC- total leucocyte count. LFT- liver function test. RFT- renal function test. DP - Dexamethasone pulse, CRP - C-reactive protein, LDH - Lactate dehydrogenase, IL-6 - interleukin 6. RBS - random blood sugar, WNL - Within normal limit.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1. Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant 2020;39:405-7.
2. López Zúñiga MÁ, Moreno-Moral A, Ocaña-Granados A, Padilla-Moreno FA, Castillo-Fernández AM, Guillamón-Fernández D, et al. High-dose corticosteroid pulse therapy increases the survival rate in COVID-19 patients at risk of hyper-inflammatory response. PloS One 2021;16:e0243964.
3. Guohua L, Ling L, Min H, Haibiao L, Peifeng K, Zishao Z, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708-20.
4. Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: The current evidence and treatment strategies. Front Immunol 2020;11:1708.
5. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020;130:2620-9.
6. Guohua L, Ling L, Min H, Haibiao L, Peifeng K, Zishao Z, et al. Value of various inflammatory markers combined with lymphocyte subsets on clinical diagnosis of different clinical types of COVID-19. J Chong Med Univ 2020. doi: 10.13406/j.cnki.cyxh.002465.
7. Henry BM, Aggarwal G, Wong J, Benoist S, Vikse J, Plebani M, et al. Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: A pooled analysis. Am J Emerg Med 2020;38:1722-6.
8. Gómez-Pastora J, Weigand M, Kim J, Wu X, Strayer J, Palmer AF, et al. Hyperferritinemia in critically ill COVID-19 patients: Is ferritin the product of inflammation or a pathogenic mediator? Clin Chim Acta 2020;509:249-51.
9. https://www.mohfw.gov.in/pdf/UpdatedClinicalManagementProtocolforCOVID19dated03072020.pdf.
10. https://www.covid19treatmentguidelines.nh.gov.in/therapeutic-management/. [Last accessed on 2021 May 15].
11. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Sterne JAC, Murthy S, Diaz JV, Slutsky AS, Villar J, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: A meta-analysis. JAMA 2020;324:1048-57.
12. Spinner CD, Gottlieb RL, Criner GJ, López JRA, Cattelan AM, Viladomiu AS, et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: A randomized clinical trial. JAMA 2020;324:1048-57.
13. Salama C, Han J, Yau L, Reiss WG, Kramer B, Neidhart JD, et al. Tocilizumab in patients hospitalized with Covid-19 pneumonia. N Engl J Med 2021;384:20-30.
14. RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med 2021;384:693-704.
15. Almawi W, Meledmedjian O. Negative regulation of nuclear factor-kappaB activation and function by glucocorticoids. J Mol Endocrinol 2002;28:69-78.
mortality. Mediators Inflamm 2021;2021:6637227.
20. Ronchetti S, Ricci E, Migliorati G, Gentili M, Riccardi C. How glucocorticoids affect the neutrophil life. Int J Mol Sci 2018;19:4090.

21. Liu D, Ahmet A, Ward L, Krishnamoorthy P, Mandelcorn ED, Leigh R, et al. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin Immunol 2013;9:30.