Antibacterial Activity of Three Parmotrema Species from Western Ghats of Karnataka against Clinical Isolates of Burn and Dental Caries

Vivek MN, Yashoda Kambar, Manasa M and Prashith Kekuda TR

P.G. Department of Studies and Research in Microbiology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga-577203, Karnataka, India

Abstract

The present study was conducted to evaluate the antibacterial efficacy of methanol extract of three species of macrolichen Parmotrema (Parmeliaceae) viz., P. tinctorum (Nyl.) Hale, P. grayanum (Hue.) Hale and P. praesorediosum (Nyl.) Hale from Western Ghats of Karnataka against clinical isolates of burn and dental caries. Identification of lichens was done by morphological, anatomical and color tests. The powdered lichen materials were extracted using methanol in soxhlet apparatus. Inhibitory potential of lichen extracts was evaluated against two isolates of Staphylococcus aureus (Sa-01 and Sa-02 from burn subjects) and two isolates of Streptococcus mutans (Sm-01 and Sm-02 from dental caries) by agar well diffusion assay. Lichen extracts were found inhibitory against all clinical isolates and the inhibitory activity was dose dependent. Among S. aureus and S. mutans isolates, Sa-02 and Sm-02 were inhibited to higher extent respectively by lichen extracts. Extract of P. praesorediosum inhibited S. aureus isolates to higher extent. Extracts of P. praesorediosum and P. tinctorum inhibited S. mutans isolates to higher extent. The lichens of this study were found promising sources for development of agents active against clinical isolates. The observed activity of extracts could be ascribed to the presence of secondary metabolites.

Keywords: Western Ghats, Parmotrema, Antimicrobial activity, Burn, Dental caries

Article Information

Article History:
Received : 28-12-2013
Revised : 16-02-2014
Accepted : 23-02-2014

Copyright@2014 STAR Journal. All Rights Reserved.

INTRODUCTION

Lichens represent a symbiotic association between an alga/cyanobacterium (photobiont) and a fungus (mycobiont). These lichens are distributed in almost all types of ecological habitats and are known to occur in different growth forms viz., crustose, foliose and fruticose. Lichens are considered as valuable resources of various countries. Lichens are eaten by people in North America, Europe, Asia and Africa. Lichens are often merely famine foods and are eaten only in times of their needs. Lichens are used in folk medicine in India and other countries. The Ayurveda and Unani system of medicine describe the use of lichens (Vinayaka et al., 2011; Vinayaka and Krishnamurthy, 2012; Kekuda et al., 2012; Kekuda et al., 2013). The central Western Ghats of Karnataka, known locally as ‘Sahyadri’, represents a long mountain chain along the west coast of India and encompass districts viz., Chikmagalur, Shivamogga, Udupi, Dakshina Kannada, Uttara Kannada, Hassan and Coorg. Ethno-lichenological studies of Karnataka revealed the utilization of lichens for various purposes such as treatment of common infections, flavoring food, healing wounds and others (Vinayaka et al., 2011; Vinayaka and Krishnamurthy, 2012). Macrolichens of Western Ghats of Karnataka are shown to exhibit various bioactivities such as antimicrobial, antioxidant, insecticidal, anthelmintic, cytotoxic, enzyme inhibitory (Vinayaka et al., 2009; Kumar et al., 2011; Kekuda et al., 2011; Kekuda et al., 2012; Pavithra et al., 2013; Kekuda et al., 2013). The objective of the study was to find out inhibitory potential of three species of Western Ghat macrolichen Parmotrema (Parmeliaceae) viz., P. tinctorum (Nyl.) Hale, P. grayanum (Hue.) Hale and P. praesorediosum (Nyl.) Hale against bacterial isolates from burn, dental caries and urinary tract infection.

MATERIALS AND METHODS

Collection of Lichens

P. grayanum (saxicolous) was collected at Guliguli Shankara, Hosanagara taluk, Shivamogga district, Karnataka. P. tinctorum (corticolous) and P. praesorediosum (saxicolous) were collected at Maragalaile, Thirthahalli taluk of Shivamogga district, Karnataka. The lichens were collected during September 2013.

Identification of Lichens

Morphological, anatomical and chemical tests were used to identify lichens. Color tests were done on cortex and medulla by using 10% potassium hydroxide (K), Steiner’s stable paraphenylenediamine solution (P) and...
Calcium hypochlorite solution (C). Thin layer chromatography (TLC) was done using solvent system A (Benzene:1.4-Dioxane:Acetic acid in the ratio 90:25:4). The spots were marked, Rf values were calculated and the compounds were identified (Awasthi, 2000; Culberson and Kristinsson, 1970; Culberson, 1972).

Extraction

The lichens were powdered in a blender. A known quantity (25g) of each lichen material was extracted using methanol (HiMedia, Mumbai) in a Soxhlet assembly. After extraction, the contents were filtered through sterile Whatman No. 1 filter paper and concentrated in vacuum under reduced pressure (Kekuda et al., 2012).

Test Bacteria

Two isolates of *Staphylococcus aureus* (Sa-01 and Sa-02) isolated from pus of burn patients and two isolates of *Streptococcus mutans* (Sm-01 and Sm-02) isolated from plaque of dental caries subjects were used to screen their susceptibility to lichen extracts.

Preparation of Bacterial Inocula

The isolates of *S. mutans* and *S. aureus* were inoculated into sterile Brain heart infusion broth (HiMedia, Mumbai) and Nutrient broth (HiMedia, Mumbai) tubes respectively. The plates were incubated at 37°C for 24 hours (Vivek et al., 2013).

Antibacterial Activity of Lichen Extracts

Agar well diffusion assay was performed to investigate antibacterial efficacy of lichen extracts. The brain heart infusion broth cultures of *S. mutans* and nutrient broth cultures of *S. aureus* were swabbed uniformly on sterile Brain heart infusion agar (HiMedia, Mumbai) and Nutrient agar (HiMedia, Mumbai) plates respectively. Using sterile agar (HiMedia, Mumbai) and Nutrient agar (HiMedia, Mumbai) plates respectively. Using sterile cork borer, wells of 6mm diameter were punched in the plates and 100μl of lichen extracts (10 and 20mg/ml of 25% dimethyl sulfoxide [DMSO; HiMedia, Mumbai]), reference antibiotic (Chloramphenicol, 1mg/ml of sterile water) and DMSO (25%, in sterile water) were transferred into labelled wells. The plates were incubated at 37°C for 24 hours in upright position and zones of inhibition were measured (Vivek et al., 2013).

Statistical Analysis

The experiment was conducted in triplicate. Results are represented as Mean±Standard deviation (SD).

Table 1: Details of thallus morphology, colour test and TLC of selected lichens

Lichen	Thallus	Colour test	TLC
P. tinctorum	Large loosely adnate, membranous, broad, lobes irregular, rotund; margins crenate, ecleite; upper surface grey, smooth, isidate; lower surface minutely wrinkled, rough, black, erihizinate; rhizines sparse, coarse at the centre	Cortex K* yellow; Medulla K*, C* red, KC* red, Pd	Atranorin, Lecanoric acid, Orsellinic acid
P. grayanum	Adnate; lobes rotund; margins ascending, crenate, ciliate; clia dense and thick; upper surface ashy grey; lower surface wrinkled, black, erihizinate, rhizinate at the centre; rhizines sparse, black and simple	Cortex K* yellow; Medulla K*, C, KC, Pd	Atranorin, Protolichesterinic acid
P. praesorediosum	Thallus coriaceous, adnate to substratum; lobes rotund; margins crenate; upper surface grey, smooth; lower surface minutely wrinkled, black; rhizines sparse, simple	Cortex K* yellow; Medulla K*, C, KC, Pd	Atranorin, Protopraesorediosic acid, Chloroatranorin, Praesorediosic acid

RESULTS

The lichen specimens were identified on the basis of morphological, anatomical and color tests. The lichen substances (secondary metabolites) were detected by TLC. The information about the thallus characteristics, color test results and secondary metabolites in the lichens is given in Table 1.

Table 2 and Figure 1 shows the inhibitory effect of Parmotrema extracts against clinical isolates. Lichen extracts were found effective against all tested clinical isolates. The inhibitory potential was found to be concentration dependent. Among *S. aureus* isolates, isolate Sa-02 was inhibited to maximum extent than Sa-01 by lichen extracts. In case of *S. mutans* isolates, isolate Sm-02 was inhibited to higher extent than Sm-01 by lichen extracts. Similar inhibitory effect was observed in case of standard antibiotic also. Extract of *P. praesorediosum* inhibited *S. aureus* isolates to higher extent followed by extract of *P. grayanum* and *P. tinctorum*. Extracts of *P. praesorediosum* and *P. tinctorum* inhibited *S. mutans* isolates to maximum extent when compared to extract of *P. grayanum*. Inhibition caused by antibiotic was higher than that of lichen extracts. There was no inhibition of bacteria in case of DMSO (not shown in table).

DISCUSSION

Infectious agents viz., bacteria, fungi, viruses and parasites have threatened mankind throughout history and caused millions of deaths. Discovery of antibiotics during 20th century is one of the significant milestones in the history of preventive chemotherapy. The use of these wonder drugs saved countless lives during past years. However, overuse and abuse of these miracle drugs resulted in the development of resistance in pathogens. *Staphylococcus aureus*, *Streptococcus pneumoniae*, *Pseudomonas aeruginosa*, *Escherichia coli*, *Enterococcus faecalis*, *Mycobacterium tuberculosis*, *Candida albicans* and *Cryptococcus neoformans* are among the important drug resistant pathogens. The development of antimicrobial resistance presents a major threat to public health as it reduces the effectiveness of treatment, resulting in increased morbidity, mortality, and health care expenditure. Moreover, these pathogens have the ability to acquire and transmit resistance (Smith &
High cost, possible side effects and development of resistance in pathogens against antibiotics stimulated researchers to investigate antimicrobials from natural sources. Lichens are among the promising sources of chemotherapeutic agents that are active against pathogenic organisms including clinical and drug resistant strains (Kekuda et al., 2012; Chauhan and Abraham, 2013; Javeria et al., 2013). Studies have shown that these lichens and the substances referred as lichen substances which seldom occur in other organisms. These substances possess a wide range of biological activities (Oh et al., 2006). The secondary metabolites present in the Parmotrema species were detected by TLC. Atranorin was detected in all three specimens. Lecanoric acid and orsellinic acid were present in P. tinctorum. Protolichenic acid was shown to possess antibacterial activity against bacteria and yeasts (Turk et al., 2006). Lecanoric acid was found inhibitory to bacteria (Verma et al., 2011). Protolichysterinic acid was shown to possess antibacterial activity (Turk et al., 2003; Ingolfsdottir et al., 2004; Verma et al., 2011). Chloroatranorin, Protopraesorediosic acid and Praesorediosic acid were present in P. praesorediosum. Studies have shown that these secondary metabolites of lichens exhibit antimicrobial activity. Atranorin was shown to exhibit antibacterial activity (Thadhani et al., 2012; Yilmaz et al., 2004; Verma et al., 2011). Chloroatranorin is found to exhibit inhibitory activity against bacteria and yeasts (Turk et al., 2006). Lecanoric acid was found inhibitory to bacteria (Verma et al., 2011). Protolichysterinic acid was shown to possess antibacterial activity (Turk et al., 2003; Ingolfsdottir et al., 1997).

CONCLUSION

In the present study, the antibacterial effect methanol extracts of three Parmotrema species collected at Western Ghats of Karnataka, India was determined against four clinical isolates. Lichen extracts showed dose dependent inhibitory activity and were found promising as potential sources of bioactive agents against clinical isolates. The observed inhibitory potential could be ascribed to the presence of secondary metabolites in the lichen extracts. Further studies on isolation of active principles from lichens and determination of their inhibitory activity against clinical isolates are to be conducted.

Table 2: Inhibitory activity of Parmotrema species against clinical isolates.
Treatment
P. tinctorum
P. grayanum
P. praesorediosum
Antibiotic

Lichens are known to produce characteristic secondary metabolites referred as lichen substances which seldom occur in other organisms. These metabolites possess a wide range of biological activities (Oh et al., 2006). The secondary metabolites present in the Parmotrema species were detected by TLC. Atranorin was detected in all three specimens. Lecanoric acid and orsellinic acid were present in P. tinctorum. Protolichenic acid was shown to possess antibacterial activity against bacteria and yeasts (Turk et al., 2006). Lecanoric acid was found inhibitory to bacteria (Verma et al., 2011). Protolichysterinic acid was shown to possess antibacterial activity (Turk et al., 2003; Ingolfsdottir et al., 1997).

CONCLUSION

In the present study, the antibacterial effect methanol extracts of three Parmotrema species collected at Western Ghats of Karnataka, India was determined against four clinical isolates. Lichen extracts showed dose dependent inhibitory activity and were found promising as potential sources of bioactive agents against clinical isolates. The observed inhibitory potential could be ascribed to the presence of secondary metabolites in the lichen extracts. Further studies on isolation of active principles from lichens and determination of their inhibitory activity against clinical isolates are to be conducted.

CONCLUSION

In the present study, the antibacterial effect methanol extracts of three Parmotrema species collected at Western Ghats of Karnataka, India was determined against four clinical isolates. Lichen extracts showed dose dependent inhibitory activity and were found promising as potential sources of bioactive agents against clinical isolates. The observed inhibitory potential could be ascribed to the presence of secondary metabolites in the lichen extracts. Further studies on isolation of active principles from lichens and determination of their inhibitory activity against clinical isolates are to be conducted.
Vivek et al.,

ACKNOWLEDGEMENTS

Authors are thankful to Dr. N. Mallikarjun, Associate Professor and Chairman, P.G. Dept. of Studies and Research in Microbiology & Principal, Sahyadri Science College (Autonomous), Kuvempu University for providing all facilities and moral support to conduct work. Authors also thank Dr. Vinayaka K.S, Department of Botany, Kumadvathi First Grade College, Shikaripura, Karnataka, India for assisting in identification of lichen specimens.

REFERENCES

Awasthi, D.D. (2000). A compendium of the macrolichens from India, Nepal and Sri Lanka. Bishen Singh Mahendra Pal Singh, Dehra Dun, India.

Balaji, P., Hariharan, G.N. (2007). In vitro antimicrobial activity of Parmotrema pseudotinctorum thallus extracts. Research Journal of Botany 2(1): 54-59.

Benatti, M.N., Gernert, M., Schmitt, I. (2013). Parmotrema hydrium, a new species of Parmeliaceae in southeastern Brazil. Acta Botanica Brasilica 27(4): 810-814.

Chauhan, R., Abraham, J. (2013). Invitro antimicrobial potential of the lichen Parmotrema sp. extracts against various pathogens. Iranian Journal of Basic Medical Sciences 16(7):882-885.

Culberson, C.F., Kristinsson, H. (1970). A standardized method for the identification of lichen products. Journal of Chromatography 46: 85-93.

Culberson, C.F. (1972). Improved conditions and new data for the identification of lichen products by a standardized thin layer chromatographic method. Journal of Chromatography 72: 113-125.

Davies, J., Davies, D. (2010). Origins and evolutions of antibiotic resistance. Microbiology and Molecular Biology Reviews 74(3): 417-433.

Divakar, P.K., Upeti, D.K. (2005). Parmeloid lichens in India. Bishen Singh and Mahendra Pal Singh, Dehra Dun, India.

Giedraitiene, A., Vitkauskiene, A., Naginiene, R., Pavilonis, S. (2011). Antibiotic resistance mechanisms of clinically important bacteria. Medicina (Kaunas) 47(3): 137-146.

Ingolfsdottir, K., Hjalmarssdottir, H.A., Sigurdsson, A., Gudjonsdottir, G.A., Brynjolfsdottir, A., Steingrimsson, O. (1997). In vitro susceptibility of Helicobacter pylori to protonicheroticin from the lichen Cetraria islandica. Antimicrobial agents and Chemotherapy 41(1): 215-217.

Javeria, S., Shahi, S.K., Shahi, M.P., Uperti, D.K. (2013). Parmotrema nigerrense: potential antimicrobial activity against drug resistant pathogens. International Journal of Microbial Resource Technology 2(1): 38-40.

Jayalal, U., Divakar, P.K., Joshi, S., Oh, S., Koh, Y., Hur, J. (2013). The lichen genus Parmotrema in South Korea. Mycobiology 41(1): 25-36.

Kekuda, P.T.R., Junaud, S., Dileep, N., Rakesh, K.N., Vinayaka, K.S. (2013). Anticaries activity of Usnea pictoides G. Awasthi-A macrolichen from Western Ghats of Karnataka, India. Science Technology and Arts Research Journal 2(4): 87-90.

Kekuda, P.T.R., Raghavendra, H.L., Swathi, D., Venugopal, T.M., Vinayaka, K.S. (2012). Antifungal and cytotoxic activity of Everniastrum cirrhatum (Fr.) Hale. Chiang Mai Journal of Science 39(1): 76-83.

Kekuda, P.T.R., Vinayaka, K.S., Swathi, D., Suchitha, Y., Venugopal, T.M., Mallikarjun N. (2011). Mineral composition, total phenol content and antioxidant activity of a macrolichen Everniastrum cirrhatum (Fr.) Hale (Parmeliaceae). E-Journal of Chemistry 8(4): 1886-1894.

Sci. Technol. Arts Res. J., Jan-March 2014, 3(1): 132-135

Kumar, A.H.S., Kekuda, P.T.R., Vinayaka, K.S., Swathi, D., Venugopal, T.M. (2011). Anti-obesity (Pancreatic lipase inhibitory) activity of Everniastrum cirrhatum (Fr.) Hale (Parmeliaceae). Pharmacognosy Journal 3(19): 65-68.

Kumar, S.V.P., Kekuda, P.T.R., Vinayaka, K.S., Sudharshan, S.J., Mallikarjun, N., Swathi, D. (2010). Studies on antibacterial, anthelmintic and antioxidant activities of a macrolichen Parmotrema pseudotinctorum (des. Abb.) Hale (Parmeliaceae) from Bhadra wildlife sanctuary, Karnataka. International Journal of PharmTech Research 2(2): 1207-1214.

Oh, S., Jeon, H., Lim, K., Koh, Y., Hur, J. (2006). Antifungal activity of lichen-forming fungi isolated from Korean and Chinese lichen species against plant pathogenic fungi. Plant Pathology Journal 22(4): 381-385.

Pavithra, G.M., Vinayaka, K.S., Rakesh, K.N., Junaid, S., Dileep, N., Kekuda, P.T.R., Siddiqua, S., Naik, A.S. (2013). Antimicrobial and antioxidant activities of a macrolichen Usnea pictoides G. Awasthi (Parmeliaceae). Journal of Applied Pharmaceutical Science 8(8): 154-160.

Singh, S.N., Biswas, M. (2011). Evaluation of antibacterial activity of some lichen from Ravangla, Sikkim, India. International Journal of Pharma and Bio Sciences 2(4): B23-B28.

Smith, R.D., Coast, J. (2002). Antimicrobial resistance: a global response. Bulletin of the World Health Organization 80(2): 126-133.

Thadhani, V.M., Choudhary, I.M., Khan, S., Karunaratne, V. (2012). Antimicrobial and toxicological activities of some depsides and depsidones. Journal of the National Science Foundation Sri Lanka 40(1): 43-48.

Turk, A.O., Yilmaz, M., Kivan, M., Turk, H.(2003). The antimicrobial activity of extracts of the lichen Cetraria aculeata and its protolichesterinic acid constituent. Zeitschrift fur Naturforschung 58c: 850-854.

Turk, H., Yilmaz, M., Tay, T., Turk, A.O., Kivanc, M. (2006). Antimicrobial activity of extracts of chemical races of the lichen Pseudevernia furfuracea and their physodic acid, chloroaatranorin, atranorin, and olivetoric acid constituents. Zeitschrift fur Naturforschung61c: 499-507.

Verma, N., Behera, B.C., Parizadeh, H., Sharma, B.O. (2011). Bactericidal activity of some lichen secondary compounds of Cladonia ochrochroa, Parmotrema nilgherrensis and Parmotrema angeli. International Journal of Drug Development & Research 3(3): 222-232.

Vinayaka, K.S., Krishnamurthy, Y.L., Kekuda, P.T.R., Kumar, P.S.V., Sudharshan, S.J., Chinmayaya, A. (2009). Larvicidal and wromidal efficacy of methanolic extracts of five macrolichens collected from Bhadra wildlife sanctuary. Biomedicine 29(4): 327-331.

Vinayaka, K.S., Krishnamurthy, Y.L. (2012). Ethnolichenological studies of Shimoga & Mysore districts, Karnataka, India. Advances in Plant Sciences 25(1): 265-267.

Vinayaka, K.S., Shetty, S., Krishnamurthy, Y.L. (2011). Utilization of lichens in the central Western Ghats area of Karnataka. British Lichenological Society Bulletin 109: 56-62.

Vivek, M.N., Manasa, M., Pallavi, S., Swamy, S.H.C., Kekuda, P.T.R. (2013). Antibacterial potential of cashew apple (Anacardium occidentale L.) juice against clinical isolates of Staphylococcus aureus and Streptococcus mutans. Science Technology and Arts Research Journal 2(3): 144-146.

Yilmaz, M., Turk, A.O., Tay, T., Kivanc, M. (2004). The antimicrobial activity of extracts of the lichen Cladonia foliacea & its (–)-usnic acid, atranorin & fumarprotocetraric acid constituents. Zeitschrift fur Naturforschung 59c: 249-254.