Isolation and Molecular Identification of Endophytic Mold *Schizophillum commune* in Red Dahlia (*Dahlia* sp. L) Tuber as Producing Inulinases

Sunarti Sunarti*, Chrismis Novalinda Ginting², Sahna Ferdinand Ginting³

¹Department of Medical Science, Doctoral Program of Medicine, Prima Indonesia University, Medan, Indonesia; ²Department of Biomolecular, Faculty of Medicine, Prima Indonesia University, Medan, Indonesia; ³Department of Clinical Pathology, Faculty of Medicine, Prima Indonesia University, Medan, Indonesia

Abstract

**BACKGROUND:** Dahlia tuber as the source of isolates in endophytic mold produces Inulinases. Inulinase is used in industry to produce inulin to become fructose through an enzymatic reaction. Fructose from natural substances constitutes low calories used as diet in diabetes mellitus type 2 patients. An important phase is done obtain the inulinase enzyme through mold isolation.

**AIM:** The objective of this research was to isolate and identify the molecular of endophytic mold from red dahlia tuber which had the optimum inulinase activity.

**METHODS:** Mold isolation was done through the stage of surface sterilization and purification. Mold isolation which had the highest inulinase activity was identified in a molecular using the polymerase chain reaction technique with the internal transcribed spacers ITS region. DNA amplification used primer ITS 1 and ITS 4.

**RESULTS:** The result of the study showed that there was five-mold isolation with the result of screening high inulinase activity found in UD3 (++), UD4 (++), and UD5 (+++), the value of inulinase enzyme activity of UD3 was 0.582716049, UD4 was 0.330864198, and UD5 was 0.685185185. The result of identifying UD5 molecular in eight DNA tapes was successfully amplified with 660 pb. The result of identifying molecular based on BLAST analysis found *Schizophillum commune* species

**CONCLUSION:** It was found that the highest inulinase activity was the species *S. commune*, which added new variants of inulinase enzyme from red dahlia tuber which could be used by industry to yield fructose through an enzymatic reaction.

Introduction

*Dahlia* is a flower that has bulbs from the Asteraceae family. Dahlia is a raw material that is high in inulin, which is about 15–20%. Inulin is a natural dietary fiber and low glycemic index that have a fructosyl compound at the terminal. Inulin is a substrate and inducer for the production of inulinase. From this enzymatic process, the biotechnological potential of high inulin feedstock is explored for the production of various important industrial products. Raw materials high in inulin can be used for the production of fructooligosaccharides (FOS) and fructose. Fructose is a low-calorie sugar that can be used by people with diabetes mellitus [1].

The development of modern biotechnology currently has the opportunity for the enzyme industry to treat all types of agricultural waste that will be used as high-value products, for example, the availability of cheap and abundant inulin from dahlia tubers as agricultural waste can be processed through hydrolysis of inulin by targets on the β-2,1 linkage of inulin into fructose with D-fructose content is more than 95% [2]. Hydrolysis of inulin by one step using inulinase gives a yield of approximately 90–95% fructose better than conventional fructose production from starch requires at least three enzymatic steps involving amylase, glucoamylase, and glucose isomerase and yields only 45% fructose [3].

Inulin besides being able to be processed as an ingredient in high-fructose and FOS syrups; it can also be used for various products such as sorbitol, citric acid, single-cell oil, single cell protein, bioethanol, lactic acid, glutamic acid, and various other products [4].

Fructose and FOS are the main products of inulin. Inulin is a natural fiber that is low in calories, safe to use for diabetics, besides that it can improve the growth of intestinal flora, increase iron absorption in children, overcome digestive problems such as irritable bowel syndrome, obesity, lower cholesterol, and overcome other health problems [5].

Inulin content in addition to being found in dahlia tubers is also found in chicory, Jerusalem artichoke,
potato tuber Yaco´n, Asparagus, onion, garlic, wheat, and banana which can be processed pharmacologically as a prebiotic to improve the intestinal microbial environment, regulate blood sugar, regulate blood lipids, antioxidants, anticancer, immune regulation, and so on. Meanwhile, in the food industry, inulin can be used as thickeners, fat substitutes, sweeteners, and water-retaining agents [6].

The management of inulin can be done enzymatically by microbial inulinase. A number of microbial groups such as bacteria, fungi, and yeasts has been exploited for inulinase. It is of the several species that have the best growth against environmental and high osmotic conditions as producers of inulinase are fungi [7].

Inulinase is an enzyme produced by plants, animals, and microbial sources that are induced by inulin. Inulin is a substrate and an effective carbon source as a producer of inulinase. Potential sources of inulinase-producing microbes are bacteria, fungi, and yeasts. However, fungi can be the main choice because they can grow on better substrates and require lower costs. So that this enzymatic reaction is very beneficial because it produces various important industrial products from these inulinolytic enzymes such as fructose and FOS [8].

Inulinase was developed today because of its cheap and abundant supply. These inulinase-producing microorganisms can be cultured in an inulin-rich medium, wherein inulin from dahlias tubers can be used as an inducer and a carbon source for inulinase-producing. Fungal growth as an inulinase producer needs attention, especially in temperature and pH regulation. Temperature and pH play an important role in the best inulinase production, which is in the range of PH 4–6.5 [9].

The results of the previous studies found that plant materials containing inulin such as dahlia, garlic, and Jerusalem artichoke could be used as a carbon source to produce the best inulinase compared to the purified substrate. Inulinases produced from these plant materials have higher profits and lower production costs when compared to purified substrates [10].

Another study also found that chicory root as a substrate produced the highest inulinase in Aspergillus niger among of 12 the tested strains with a clear zone diameter on agar plates after hydrolysis of inulin used iodine solution was 40 mm and the value of inulinase activity was 102.3 U/mL [11].

An important phase should be done to obtain a big-scale inulinase enzyme through mold isolation. To isolate inulinase in a great amount from plants is somewhat difficult, so this research is important to do to find out the type of endophytic mold which had the highest inulinase activity through isolation and identification of endophytic mold molecular in red dahlia tuber. It was also aimed to get a new isolate of endophytic mold which had the highest inulin activity so that it could get a new variant of the inulinase enzyme which could be used in industry to produce fructose enzymatically.

**Materials and Methods**

This type of study is a descriptive study. Identification was carried out by morphological, microscopic, and molecular observations to determine the type of inulinase-producing endophytic mold in red dahlia. This study was performed in Mei 2021 at the Biology Molecular Laboratory of the Faculty of Medicine, Prima Indonesia University. This study has been approved by Health Research Ethics Committee from Prima Indonesia University.

**Isolation of inulinase producing endophytic mold**

Endophytic mold isolation producing inulinase obtained from red dahlia tuber from Berastagi, North Sumatera in Indonesia. The initial step is to sterilize dahlia tubers in stages, which is done twice in a row using 96% ethanol for 30 s, 1% NaOCl for 1 min, and 70% ethanol for 30 s. Dahlia tubers were then cut into small pieces, placed on a petri dish containing potato dextrose agar (PDA), and incubated at room temperature. The mycelium that grew from the dahlia tubers was then transferred to agar in a new PDA dish with a mixture of 1% inulin and 250 g cloramphenicol as an anti-bacterial, where each isolates with codes UD1, UD2, UD3, UD4, and UD5, and they were incubated at the room temperature of 30°C in 72 h or until pure cultures are obtained. Each pure culture of the fungus was observed for color and colony morphology macroscopically and microscopically.

**Inulinase activity screening**

Screening inulinase activity in the isolates was screened using PDA medium and 1% of inulin powder, after isolates were incubated at 28–30°C for 5–7 days; a qualitative inulinase test was carried out by adding Lugol’s solution to see the hydrolysis of inulin, Lugol iodine was poured into the petri dish for 3–5 min and removed after that aquabidest was poured to remove the remaining Lugol’s iodine. The clear zone indicated inulin hydrolysis by the mold. Positive results are indicated by the presence of a clear zone around the endophytic mold, while negative results are indicated by the absence of a clear zone [12].

Inulinase activity grouped into three categories: Low activity with the ratio of the area of clear zone toward the colony area of <1, was given a symbol (+),
moderate activity <1–2 (++), high activity with the ratio >2 (+++). The isolates with the highest inulinase activity were further identified molecularly [13].

**Isolation inulinase enzyme (Crude enzyme)**

Fermentation culture was prepared by taking a number of mold isolates dissolved in 25 ml of potato dextrose broth (PDB) medium at pH 5.0. It was incubated in a shaking incubator at the velocity of 160 rpm for 72 h at the temperature of 20°C. After that, it was centrifuged at the velocity of 13,000 rpm in 15 min. The supernatant was removed, and only its pellets were taken out. The pellets were washed with 500 µL TE buffer (with pH 8) and 300 µL extracted buffer. 150 µL of sodium acetate pH 5.2 was added after it was incubated at the temperature of 20°C within 10 min. After that, it was centrifuged again for 10 min, and its supernatant of 600 µL was taken out and moved into a new microtube. Isopropanol was added to the microtube containing supernatant with the same volume and centrifuged with a velocity of 13,000 rpm in 10 min. After that, DNA was washed with 500 µL of ETOH (70% ethanol) and dried up and dissolved with 20 µL of buffer TE, and kept in a freezer at the temperature of −20°C [17].

**Polymerase chain reaction (PCR) amplification and electrophoresis**

DNA was as a result of extraction was amplified using Esco Swift MaxPro thermal cycler. Gen internal transcribed spacers (ITSS) were amplified using ITS 1 Primer and ITS 4. Total volume PCR was made 50 µL consisted of containing 2 µL of DNA isolate, 10 µL of each primer concentrating 20 µmol, 5 µL dNTP concentrating 2 mM, 10 µL buffer + 5 µL MgCl₂, 7.75 µL H₂O, and 0.25 µL Go Taq DNA polymerase. The reaction begins with a hot star at 95°C for 5 min, denaturation at 94°C for 1.5 min, annealing process at a temperature of 53°C for 1 min, and an extension process at 72°C for 3 min. This PCR reaction process lasts for 35 cycles. The primer used was universal ITS 1/ITS 4 primer, ITS 1 as a reverse primer, and ITS 4 as forwarding primer. Primer ITS 1 is 5' (TCC GTA GGT GAA CCT GCG G) 3' and primer ITS 4 is 5' (TCC TCG CCT TAT TGA TAT GC) 3' [18].

Analysis of the amplified DNA was carried out by electrophoresis using 0.8% agarose gel for DNA extraction, while PCR amplification used 1.2% agarose gel. Electrophoresis was carried out by taking 3 µL of the sample as much as 3 µL, and put into wells in 1.2% agarose gel. The PCR product from the sample was then taken as much as 3 µL, and put into wells in 1.2% agarose gel, then electrophoresed for 30 min with a voltage of 110 volts. Then, the gel was soaked with ethidium bromide after the electrophoresis was completed and analyzed with a UV transilluminator [19].

**DNA sequencing**

The amplified DNA was used for DNA sequencing steps based on the dideoxy nucleotide chain termination method (Macrogen Inc., South Korea). The results of DNA sequencing were then compiled using the BLAST program and analyzed using the Biostar program using information from Genbank (http://www.ncbi.nlm.nih.gov) [20].
Result

The result of mold isolation of red dahlia tuber showed that five types of mold which were given their labels as UD1, UD2, UD3, UD4, and UD5 are shown in Figure 1. After the result had been obtained, each of the mold types was treated with pure breeding as stock culture. From the mold isolate, observation was done macroscopically and microscopically. Coloring with lactophenol cotton blue was done in microscopic observation Figure 2. The result of macroscopic and microscopic observation is shown in Table 1.

The result of screening of inulinase activity was done three repetitions with pure media dripped with Lugol iodine and cleaned up its remaining Lugol with aquadest so that inulinase activity measurement was obtained by measuring clear zone in the mold as it is shown in Table 2 below. It was followed by measuring inulinase activity in the mold isolate which had the highest inulinase: UD 3, UD 4, and UD 5 as they are shown in Table 3.

After the inulinase activity test had been done, it was followed by identifying the molecular with ITS primer. Primer used to amplify rDNA and the result of DNA sequencing with ITS 1 and ITS 4 is shown in Table 4 and Figure 3.

The result of identifying molecular is shown in Tables 5 and 6.

The result of measuring the highest inulinase in UD 5 was 0.685185185 and molecular identification was done with ITS 1 primer and ITS 4 primer which showed that UD 5 which had the highest inulinase activity was mold with species S. commune from the Schizophillaceae family.

Discussion

The endophytic mold isolated from red dahlia tubers had five isolates, each of which was labeled UD1, UD2, UD3, UD4, and UD 5. Each isolate had almost the same color, namely, white, and among the isolates, the isolates were white, which has the highest activity is UD 5, namely: 0.685185185, and from the results of molecular identification with the ITS1 and ITS4 regions, it was successful to identify the endophytic mold species S. commune (Figure 5).

This study explores the types of inulinase-producing endophytic molds that will be used by the industrial world to produce fructose and FOS through an enzymatic process so that inulinase is an important isolate in industry and pharmaceuticals as a basic ingredient for various foods and medicines.

Inulinase is a very important hydrolytic enzyme whose contents are composed of fructose monomer units with β-D-2,1 glycosidic linkages and have glucose moiety at the reducing end joined by an α-D-1,2 glycosidic linkage. Inulinase can be categorized into two types, namely, endoinulinase and exoinulinase. Exoinulinase cleaves β-2,1 bonds sequentially to produce fructose, while endoinulinase cleaves randomly and hydrolyzes internal bonds in inulin to produce FOS [21].

Fructose can be classified as a natural sweetener with low calories; it has a level of sweetness of 70% which is higher than sucrose so that it is safe to be consumed by diabetes patients. Fructose can also be used as an alternative sweetener as the substitute for artificial sweetener. Another important application of the inulinase enzyme, among others, is for prebiotic production such as inulooligosaccharides and FOS.
Table 1: Result of observation of macroscopic and microscopic endophytic mold morphology

| No | Types of Mold | Macroscopic Observation | Microscopic Observation |
|----|---------------|-------------------------|-------------------------|
| 1  | UD 1          | Upper part: Milky white hyphae, white meselium, yellowish spore, and thick colony | Septate hyphae, non-branchy meselium, transparent hyphae stem, and spore (+) |
|    |               | Reverse: Yellowish hyphae, browish spore, thick colony, and in order |
| 2  | UD 2          | Upper part: White hyphae, greenish spore, dense colony, and in order | Septate hyphae, branchy meselium, transparent stem, and conidium globosa |
|    |               | Reverse: Yellowish hyphae, brownish spore, thick colony, and in order |
| 3  | UD 3          | Upper part: White hyphae, black spore, dense colony, fibrous, and in order | Septate hyphae, branchy meselium, transparent stem, batang, and spore (-) |
|    |               | Reverse: Yellowish hyphae, black spore, dense colony, and in order |
| 4  | UD 4          | Upper part: White hyphae, green spore, dense colony, and in order | Non-setate hyphae, branchy meselium, conidium globusa, and spore (+) |
|    |               | Reverse: White hyphae, yellowish spore, thick colony, and in order |
| 5  | UD 5          | Upper part: Cottonish white hyphae, yellowish spore, thick colony, and in order | Non-setate hyphae, non-branchy meselium, transparent stem, and spore (+) |
|    |               | Reverse: Yellowish hyphae, yellowish spore, thick colony, and in order |

Table 2: Inulinase activity screening

| No | Types of Mold | Area of clear zone | Explanation |
|----|---------------|--------------------|-------------|
| 1  | UD 1          | >1–1               | (+) Low activity |
| 2  | UD 2          | >1–2               | (+) Low activity |
| 3  | UD 3          | >2–3               | (+++) Moderate activity |
| 4  | UD 4          | >3–4               | (+++) Moderate activity |
| 5  | UD 5          | >4                 | (++++) High activity |

The results of this study produced the highest inulinase enzyme at UD 5, from five isolates produced through isolation of red dahlia tuber molds labeled UD1, UD2, UD3, UD4, and UD5. The result of identifying molecular showed that the type of S. commune was found which indicated that it was a new isolate that would add a new variant of inulinase enzyme that could be used by industry to produce fructose enzymatically from the inulin powder of red dahlia tuber due to the importance of increasing beneficial food production for health by exploring the available local natural resources.

Table 3: Result of inulinase activity measurement

| Isolate Code | Absorbance Sample | Fructose Concentration | Inulinase Enzyme Activity |
|--------------|-------------------|-----------------------|---------------------------|
| UD1          | 1736              | 157.33333333          | 0.582716049               |
| UD4          | 1532              | 89.33333333           | 0.330864198               |
| UD5          | 1819              | 1819                  | 0.685185185               |

DNA amplification product fragments are sequenced in the ITS1 and ITS 4 regions. The nucleotide sequence in fungi can change because the ITS region has a high evolutionary rate. This situation can be used to determine the different species. Fungi with the same sequence of nucleotide bases can be concluded as the same species. Furthermore, the DNA sequencing Bioedit program will provide complete answers to these types of species by producing complete DNA sequences from the endophytic fungi. It is shown in Figure 4. So that the results of the study found S. commune which has a 99% similarity based on Genbank molecular information.

Table 4: Primer used to amplify rDNA in endophytic mold

| Sequencing Primer Name Primes Sequences | PCR Primer Name Primer Sequences |
|----------------------------------------|----------------------------------|
| ITS1 5’ (TCC GTA GGT GAA CTC GCG G) 3’ | ITS1 5’ (TCC GTA GGT TAT TGA TAT GC) 3’ |

A previous study found that endophytic mold from red dahlia tuber which had the highest activity was Aspergillus clavatus, the mold which had superiority in yielding the biggest inulinase enzyme and had better inulinase activity in inulin hydrolysis in the 3rd day within 30 h of 66.96% [23]. However, in this research, it was found that there was a new variant, S. commune, which had the highest inulinase activity of 0.685185185. Besides that, the previous research also found that S. commune had the potency of good antioxidant which could be the source of good nutraceuticals even though it contained 2.0 mg/g phenol [24].

Table 5: The identities of endophytic mold

| Subject | Description | Length | Start | End | Coverage | Bit | E-Value | Identities Match/TotalPct. (%) |
|---------|-------------|--------|-------|-----|----------|-----|---------|-------------------------------|
| AB365910.1 | Schizophyllum commune | 1194 | 0.0 | 651/653 | 0.0 | 65/653 | 99 |

In general, the produced inulinase activity was correlated with the amount of reducing sugar produced. The more amount of reducing sugar produced is the higher the inulinase activity and vice versa [25].

Table 6: The strain of endophytic mold

| Kingdom | Family | Genus | Species |
|---------|--------|-------|---------|
| Eukaryota | Schizophyllaceae | Schizophyllum | Schizophyllum commune |

The results of this study are different from the previous studies which found sources of inulinase from fungi such as the discovery of Aspergillus fimigatus [26], and Penicillium sp., as well as other sources of inulinase from bacteria such as Pseudomonas sp., Bacillus sp., and Arthrobacter sp, and source inulinase from yeasts such as Saccharomyces sp., Kluuyveromyces sp., and Candida sp. [27].

Whereas from the result of this research, it was found that new isolate which produced the
highest inulinase, *S. commune*, so that in the future, it is expected the industrial business can use the inulinase enzyme from mold in producing fructose and FOS from the inulin of red dahlia tuber in big scale.

**Acknowledgments**

The authors are grateful of this study was funded by the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia, on behalf of Prof. Dr. Chrismis Novalinda Ginting, M.Kes

**References**

1. Singh RS, Singh T, Larroche C. Biotechnological applications of inulin-rich feedstocks. Bioresour Technol. 2018;273:641-53. https://doi.org/10.1016/j.biortech.2018.11.031 PMid:30503580

2. Ilgin M, Germec M, Turha T. Inulinase production and mathematical modeling from carob extract by using *Aspergillus niger*. Biotehnol Prog. 2020;36(1):e2919. https://doi.org/10.1002/btpr.2919 PMid:31581350

3. Surti A, Mhatre S. Optimization of inulinase production by a fungal species isolated from rotten garlic samples. J Appl Biotechnol. 2021;8(2):164-217.

4. Singh RS, Chauhan K, Pandey A, Larroch C. Review biocatalytic strategies for the production of high fructose syrup from inulin. Bioreour Tehnol. 2018;260:395-403. https://doi.org/10.1016/j.biortech.2018.03.127 PMid:29636277

5. Mohan A, Flora B, Girhar M. Inulinase: An Important Microbial Enzyme in Food Industry. Berlin, Heidelberg: Springer Nature Singapore Pvt Ltd.; 2018.

6. Wan X, Guo H, Liang Y, Zhou C, Liu Z, Li K, et al. The physiological functions and pharmacological applications of inulin: A review. Carbohydr Polym. 2020. p. 237-48.

7. Sing RS, Chauhan K, Pandey A, Larroch C. Review biocatalytic strategies for the production of fungal inulinase from apple pomace. Bioresour Technol Rep. 2020. p. 100364

8. Singh RS, Singh T, Pandey A. Fungal endoinulinase production from raw *Asparagus* inulin for the production of fructooligosaccharides.
Bioresour Technol Rep. 2020;10:100417.

9. Paul I, Kumar G. Fungal biofactories as potential inulinase sources for production of fructooligosaccharides. Ch. 15. In: New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam, Netherlands: Elsevier; 2020. p. 183-210.

10. Othman Z, Selim A, Bayoumy S, Saber W. Inulinase production from plant materials by some local yeast strains. J Agric Chem Biotechnol. 2011;19:71-7.

11. Taleb KA, Amin SA, Ahmed AI. Production of exo-inulinase from Aspergillus niger and Candida oleophila for degradation of chicory root inulin and ethanol production Middle East J Agric Res. 2019;8(3):855-67.

12. Kusmiyati N, Sunarti S, Wahyuningrisih TD, Widodo W. Inulinase activity of extracellular protein of Lactobacillus casei AP in different growth conditions. Key Eng Mater. 2020;840:101-6. https://doi.org/10.4028/www.scientific.net/KEM.840.101

13. Silvera D, Luthfin I, Aulia A, Wahyu PN, Saryono S. Optimization of process parameters for inulinase production from endophytic fungi Fusarium solani LBKURCC67, Humicola fuscoatra LBKURCC68 and Fusarium oxysporum LBKURCC69. Res J Chem Environ. 2018;22(2):70-8.

14. Ali S, Khalid SW. Kinetic and parametric optimization for the enhanced production of a novel fungal exo-inulinase under liquid culture. Pak J Zool. 2020;52(5):1657-64. https://dx.doi.org/10.17582/journal.pjz/20180225180228

15. Ruswandti, Oktavia B, Azhar M. Determination of fructose levels resulting from inulin hydrolysis with DNS as an oxidizer. J Eksakta. 2018;14:14-23.

16. Romadhoni RP, Purbaningtias TE, Muhaimin, Fauziyah L. Determination of Reduction Sugar form Banana (Musa acuminata Musa balbisiana Colla) with Different Cooking Process by UV-Visible Spectrophotometer. Proceeding ISCE; 2017. p. 403-9.

17. Hasyati SN, Suprihadi A, Raharjo B, Dwianti K. Isolation and characterization of endophytic fungi from pegagan (Centella asiatica (L.) Urban). J Biol. 2017;6(2):86-74.

18. Suraya N, Piska F, Pratiwi NW, Ardi A, Saryono A. Molecular Reidentification of Endophytic Fungus LBKURCC40 Isolated from Dahlia's Tuber (Dahlia variabilis) Using the Sequence of ITS rDNA. IOP Conference Series: Materials Science and Engineering; 2019. p. 1-8.

19. Saryono S, Rakhrmana S, Rahayu F, Ardi A, Pratiwi WN, Titania T. Molecular identification of endophytic fungi isolated from the tuber of Dahlia variabilis and exploration of their ability in producing β galactosidase. Biodiversitas. 2017;18(1):145-52.

20. National Center for Biotechnology Information. BLAST: Basic Local Alignment Search Tool. National Center for Biotechnology Information, US National Library of Medicine; 2021.

21. Singh RS, Singh RP. Inulinases. Current Developments in Biotechnology and Bioengineering. Amsterdam, Netherlands: Punjabi University: Elsevier Science and Technology; 2017. p. 423-46.

22. Risky FU, Wijanarka, Puijanto S. Isolation of the yeast producing enzyme inulinase from cherry fruits (Muntingia calabura) and the effect of manganese micronutrients (Mn) on enzyme production. NICHE J Trop Biol. 2019;2(2):27-37.

23. Saryono, Fitriani, Ukun R, Soedjanaatmadja. Several microorganisms that produce inulinase enzymes, isolation and characterization of enzymes from Aspergillus flavus Gmn11.2 local strains. Chim Nat Acta. 2016;4(3):165-74.

24. Debnath S, Saha AK, Panna D. Biological activities of Schizophyllum commune Fr: A wild edible mushroom of Tripura, North East India. J Mycopathol Res. 2017;54(4):469-75.

25. Ma'rifatullah A, Azhar, M, Iryani. Determination of inulinase activity on inulin substrate A1-Kg from mesophilic bacteria rhizosphere Dahlia tuber (Dahlia sp). MENARA Ilmu. 2019;13(2):153-61.

26. Rawat HK, Soni H, Suryawanshi RK, Choukade R, Prajapati BP, Kango N. Exo-inulinase production from Aspergillus fumigatus NFCCI 2426: Purification, characterization, and immobilization for continuous fructose production. J Food Sci. 2021;86(5):1778-90. https://doi.org/10.1111/1750-3841.15681 PMid:33884619

27. Paul I, Kumar CG. Fungal biofactories as potential inulinase sources for production of fructooligosaccharides. Ch. In: New and Future Developments in Microbial Biotechnology and Bioengineering. India: Elsevier Science and Technology; 2020. p. 183-210.