Interaction between a drift and a fractional power of a Laplacian in semi-group theory

Rémi Léandre
Laboratoire de Mathématiques. Université de Franche-Comté. Route de Gray. 25030.
Besançon. FRANCE
E-mail: Remi.Leandre@univ-fcomte.fr

Abstract. We give an interaction between a drift and a fractional power of a degenerated Laplacian such that the involved semi-group has a density by using the Malliavin Calculus for boundary processes translated by ourself in semi-group theory in [1].

1. Introduction and statement of the main theorem
We consider m vector fields on \mathbb{R}^d with bounded derivatives at each order $X_1, ..., X_m$ and the diffusion generator

$$L = \frac{\partial}{\partial s} + \frac{1}{2} \sum_{i>0} (X_i)^2$$

(1)
on \mathbb{R}^{d+1}. We could add a drift in (1), but it is done to simplify the proof. We consider a vector field on $\mathbb{R}^d D$ with bounded derivatives at each order. Bismut [2] considers the generator

$$A = D - \frac{1}{2} \sqrt{-2L}$$

(2)

For the theory of fractional powers of Laplacian, we refer to the book of Yosida [3]. Let us recall quickly its definition. L generates a semi-group P_s acting on bounded continuous functions f on \mathbb{R}^{d+1}:

$$\frac{\partial}{\partial t} P_t f(s, x) = LP_t(s, x)$$

(3)

Then

$$\sqrt{-2L} = C \int_0^\infty s^{-3/2} (P_s - I) ds$$

(4)

A generates a Markovian semi-group $\exp[tA]$ acting on continuous functions f on \mathbb{R}^{1+d}:

$$\frac{\partial}{\partial t} \exp[tA] f(s, x) = A \exp[tA] f(s, x)$$

(5)

There is a stochastic representation of this semi-group (See [2]). Let $(B_1, ..., B_m, z_t)$ be a Brownian motion on \mathbb{R}^{m+1} starting from the origin. Let L_t be the local time associated to
\(z_t \) ([4]) and \(A_t \) its right inverse process. We introduce the stochastic differential equation in Stratonovitch sense issued from \(x \):

\[
dx_t = \sum_{i=1}^{m} X_i(x_t) dB_i + D(x_t) dL_t
\]

(6)

We consider the subordinated process \((x_{A_t}, A_t + s)\). Unlike \(x_t \), this process is not continuous but is still a Markov process. We have the main relation

\[
\exp[tA]f(s, x) = E[f(A_t + s, x_{A_t})]
\]

(7)

This paper follows the probabilistic intuition which comes from this stochastic representation of the semi-group. But in [2] and [5], only stochastic differential equations appear which explain that we can expulse the probabilistic language of [2] and [5].

The natural question is to know if the semi-group has an heat-kernel:

\[
\exp[tA]f(s, x) = \int_{\mathbb{R}^{d+1}} q_t(s, x, s', x') f(s', x') ds' dx'
\]

(8)

This problem was solved by Bismut by using the Malliavin Calculus and a stochastic representation of it ([2]) in the elliptic case. We applied Bismut’s technic to state an Hoermander theorem for fractional powers of Laplacians in [5] We have translated Malliavin Calculus of Bismut for Boundary processes in semi-group theory in [1] and state a regularity result for the semi-group associated to \(A \) in the elliptic case. We do now an Hoermander type hypothesis. We put

\[
G_1 Y = Y
\]

(9)

\[
G_l Y = \bigcup_{i \geq 0} \bigcup_{Z \in G_{l-1}} ([Z, X_i]) \cup G_{l-1} Z
\]

(10)

We put:

\[
E_l = \bigcup_{j \leq l} \bigcup_{i > 0} (G_j X_i)
\]

(11)

The following theorem was proved in [5] by using the Calculus of Boundary Process of Bismut. We prove it again by using the Malliavin Calculus of Bismut type in semi-group theory of [1]:

Theorem 1 Let us suppose that the uniform Hoermander’s hypothesis is checked:

\[
\inf_{x \in \mathbb{R}^d, \|f\|=1} \sum_{Y \in E_{l=1}} <Y, f>^2 + <D, Y>, f>^2 > C > 0
\]

(12)

Then the heat-kernel on \(\mathbb{R}^{d+1} \) \(q_t(0, x, s, y) \) exists.

Remark: It should be possible to show that \((s, y) \rightarrow q_t(0, x, s, y)\) is smooth.

Remark: It is possible to replace (12) by the general hypothesis (3.5) of [5].

2. The main ingredient of the proof

Let \(E_d = \mathbb{R}^{1+d} \times G_d \times M_d \) where \(G_d \) denotes the set of invertible matrices on \(\mathbb{R}^d \) and \(M_d \) the set of symmetric matrices on \(\mathbb{R}^d \). \((s, x, U, V)\) is the generic element of \(E_d \). \(V \) is called the Malliavin matrix.

On \(E_d \) we consider the vector fields:

\[
\hat{D} = (0, D, DD(x)U, 0)
\]

(13)

\[
\hat{X}_i = (0, X_i, DX_i(x)U, 0)
\]

(14)
\[\hat{Y} = (0, 0, 0, \sum_{i=1}^{m} < U^{-1} X_i, >^2) \] (15)

We consider the Malliavin generator \(\hat{L} \) on \(E_d \):

\[\hat{L} = \frac{\partial}{\partial s} + \frac{1}{2} \sum_{i=1}^{m} (\hat{X}_i)^2 + \hat{Y} \] (16)

and the square root associated \(\sqrt{-L} \). This semi-group on this bigger space is defined according the line of (5).

We consider \(\hat{A} = \hat{D} - 1/2 \sqrt{-2\hat{L}} \) (17) and the Malliavin semi-group \(\exp[t\hat{A}] \).

An adaptation of one of main result of Léandre [1] is the following:

Theorem 2 Let us suppose that the Malliavin condition is checked: for all \(p \in N \), all \(s > 0 \)

\[\exp[t\hat{A}][V^{-p}1_{[0,s]}](0, x, I, 0) < \infty \] (18)

then

\[\exp[tA]f(0, x) = \int_{R^{1+d}} f(s, y)q_t(s, y)dsdy \] (19)

where \(q_t(s, y) \geq 0 \).

Remark: The proof follows the proof of Theorem 2.1 of [1]. Following the general strategy of the Malliavin Calculus, it is enough to show the theorem to get integration by parts formulas. If \(f \) is with compact support

\[|\exp[tA](df)(s, x)| \leq C\|f\|_{\infty} \] (20)

where \(C \) depends only from the support of \(f \) and \(\|f\|_{\infty} \) denotes the supremum norm of \(f \). For that, we integrate by parts under the underlying diffusion \(P_s \) and the Brownian motions \(B_i \) as in part 3 of [1]. This allows to remove the space derivatives of \(f \). In order to remove the time derivatives in \(df(s, x) \), we integrate by parts on the subordinators \(A_t \) as it was done in part 4 of [1]. The main difference with [1] is that \(\hat{D} \) appears when we take the variation of the subordinated semi-group. It is the only change in the abstract theorem of part 5 of [1]. When we get this abstract theorem, the drift \(D \) will appear another time in the inversion of the Malliavin matrix \(V \).

3. Inversion of the Malliavin matrix in semi-group theory

Let be

\[F_l(x, U, \xi) = \sum_{Y \in G_l} < U^{-1} Y(x), \xi >^2 \] (21)

where \(\xi \) is of modulus one. A simple adaptation of Lemma 3 of [6] shows:

Lemma 3 Let us suppose that

\[\exp[t_0\hat{A}][1_{[0,s_0]}; F_l(I, ., \xi) > C\|U\|^m](0, x_0, U_0, 0) > C > 0 \] (22)

for all \(x_0 \in R^d \), \(\|U_0\| < t_0^{-\epsilon} \) for a small \(\epsilon \) and some positive \(\beta \). Then (22) remains true on an interval of length \(t_0^{\beta} \) for another \(\beta \).
Since \(\hat{A} \) is Markovian, \(\exp(t\hat{A}) \) is represented by a stochastic process \(X_t \) following the same line of the representation of \(\exp(tA) \) by a stochastic process. \(X_t \) is a Markov jump process. It has a Levy measure [7]. The main remark is the following: if the Levy measure of a jump process is enough concentrated in small jumps, there are a lot of small jumps. We get:

Definition 4 If \(f \) is a function from \(R^+ \) into \(R^+ \), we consider the Levy measure associated with the Malliavin matrix where \(\xi \) is of norm 1:

\[
\mu_\xi(f) = C \int_0^{s_0} \frac{ds}{s^{3/2}} P_s[f(V'((\xi)) - V(\xi))](0, x, U, V)
\]

(23)

We recall (See Lemma 3 of [6]):

Lemma 5 Let us suppose that \(F_1(x, U, \xi) \geq \rho \) for \(|U| + |U^{-1}| < \rho^{-\epsilon} \) for some small \(\epsilon \). Then \(\mu_\xi[z > \rho^\alpha] \geq C \rho^\beta \) for some positive \(\alpha \) and some negative \(\beta \).

The theorem will follow as in the proof of Theorem 1 (38), (39), (40) in [6] if we show the next proposition:

Proposition 6 Let us suppose that \(|U| + |U^{-1}| < \rho^{-\epsilon} \) for some small \(\epsilon \). There exists \(\alpha \) such that

\[
\exp[\rho^\alpha \hat{A}][F_1(x, U, \xi) \geq \rho; 1_{[0,s_0]}](0, x, U, 0) > C > 0
\]

(24)

We can state an analog of Lemma 2 of [6]:

Lemma 7 Let us suppose that

\[
\exp[\rho^\alpha \hat{A}][F_1(x, U, \xi) \geq \rho^\beta; 1_{[0,s_0]}](0, x_0, U_0, 0) > C > 0
\]

(25)

where \(|U_0| + |U_0^{-1}| < \rho^{-\epsilon} \) for some small \(\epsilon \). Then (25) remains true for \(l - 1 \) for others \(\alpha \) and \(\beta \).

By using this lemma, it is enough to show the following proposition in order to show Proposition 6:

Proposition 8 If we take \(l_0 + 2 \), (25) is checked if \(|U| + |U^{-1}| < \rho^{-\epsilon} \) for some small \(\epsilon \).

Proof of proposition 8 Let us suppose that

\[
F_{l_0}(x_0, U_0, \xi) \leq \rho^\beta
\]

(26)

and

\[
F_{l_0+2} \leq \rho^{\beta_1}
\]

(27)

By Hypothesis (12), we can find a \(Y \in E_{l_0} \) such that

\[
< [D, Y](x_0), \xi > > C > 0
\]

(28)

We choose \(C > 0 \) to simplify the exposition and we choose \(\epsilon = 0 \) in order to simplify the exposition of the proof.

We remark that if \(u < t \) and if \(\gamma < 1/2 \) that

\[
\exp[u \hat{A}][1_{[\gamma, \infty]}](0, x_0, U_0, 0) \leq Ct^\gamma
\]

(29)

for some \(r > 0 \). So it is enough to estimate

\[
\exp[u \hat{A}][F_{l_0}(\cdot, \cdot, \xi) \geq \rho^\alpha; 1_{[0,\gamma]}](0, x_0, U_0, 0)
\]

(30)

for some well chosen \(\alpha \). We put

\[
G(x, U, \xi) = < U^{-1}Y, \xi > g\left(\frac{F_{l_0+2}(x, U, \xi)}{\rho^{\beta_1}}\right)
\]

(31)
where \(g \) is a smooth function from \(R^+ \) into \([0, 1]\) equals to 1 in a neighborhood of 0 and to 0 in a neighborhood of the infinity.

Let us suppose that
\[
|x - x_0| + |U - U_0| < C \rho^{\beta/2}
\] (32)

Let us estimate for \(s' \leq t^{\gamma} \)
\[
\sqrt{-\hat{L}[G(.,.,\xi)1_{[0,t^{\gamma}]})](s', x, U, 0)} \leq \rho^{\beta/2} t^{\gamma/2} \rho - 2\beta t^{2\gamma/2}
\] (33)

For that we look at
\[
f(s) = \hat{P}_s[G(.,.,\xi)1_{[0,t^{\gamma}]})](s', x, U, 0)
\] (34)

where \(\hat{P}_s \) is the semi-group generated by \(\hat{L} \).
\[
f'(s) = \hat{P}_s[\hat{L}[G(x', U', \xi)1_{[0,t^{\gamma}]})](s', x, U, 0)
\] (35)

We distinguish if
\[
|x - x'| + |U - U'| < C \rho^{\beta/2}
\] (36)
or not. If yes
\[
\hat{L}[G(x', U', \xi)1_{[0,t^{\gamma}]})] \leq \rho^{\beta/2} 1_{[0,t^{\gamma}]}
\] (37)

If not we remark that
\[
\hat{P}_s||x - x'| + |U - U'| \geq \rho^{\beta/2})(s', x, U, 0) \leq C \rho^{-\beta}
\] (38)

In conclusion, we deduce that
\[
|\sqrt{-\hat{L}[G(.,.,\xi)1_{[0,t^{\gamma}]})](s', x, U, 0)}| \leq \rho^{\beta/2} t^{\gamma/2} + \rho^{-\beta} \rho - 2\beta t^{2\gamma/2}
\] (39)

Let us consider the case
\[
|x - x_0| + |U - U_0| > C \rho^{\beta/2}
\] (40)

In such a case
\[
|f'(s)| \leq C \rho^{-2\beta} 1_{[0,t^{\gamma}]}
\] (41)

Therefore
\[
|\sqrt{-\hat{L}[G(.,.,\xi)1_{[0,t^{\gamma}]})](s', x, U, 0)}| \leq C \rho^{-\beta} t^{\gamma/2} 1_{[0,t^{\gamma}]}
\] (42)

On the other hand
\[
|\sqrt{-\hat{L}[U' - U_0]^2} + |x' - x_0|^2; 1_{[0,t^{\gamma}]})](s', x, U, 0)|
\]
\[
\leq A1_{[0,t^{\gamma}]}) \int_0^{t^{\gamma}} ds \frac{s}{s^{3/2}} \leq C t^{\gamma/2} 1_{[0,t^{\gamma}]}
\] (43)

This shows that
\[
exp[u\hat{A}][U - U_0]^2 + |x - x_0|^2; 1_{[0,t^{\gamma}]})](0, x_0, U_0, 0) \leq C u t^{\gamma/2}
\] (44)

Therefore
\[
exp[u\hat{A}][U - U_0] + |x - x_0| > \rho^{\beta/2} 1_{[0,t^{\gamma}]})](0, x_0, U_0, 0) \leq ut^{\gamma/2} \rho^{-\beta}
\] (45)

By putting all together, we deduce that if \(\gamma < 1/2 \)
\[
|\exp[u\hat{A}][\sqrt{-\hat{L}[G(.,.,\xi)1_{[0,t^{\gamma}]})]}](0, x_0, U_0, 0)|
\]
\[
C(\rho^{\beta/2} t^{\gamma/2} + \rho^{-\beta} \rho - 2\beta t^{2\gamma/2} + ut^{\gamma/2} \rho^{-\beta})
\] (46)
Let us now estimate
\[
\exp[u\hat{A}][DG(x, U, \xi)1_{[0,t\gamma]}](0, x_0, U_0, 0)
\] (47)
We suppose first of all that
\[
|x - x_0| + |U - U_0| < C \rho^{\beta/2}
\] (48)
In such a case we have a lower bound in \(C > 0\) of the expression. If the previous inequality is not checked we have an estimate by using the previous considerations in \(C_{\beta/2} \rho - \beta \rho_1 - \beta\) By using the semi-group property for \(\exp[u\hat{A}]\) we deduce that if \(u < t\gamma\)
\[
g'(u) = \frac{\partial}{\partial u} \exp[u\hat{A}][G(., ., \xi)1_{[0,t\gamma]}](0, x_0, U_0, 0) \geq C - C't^{3\gamma/2}\rho^{-\beta_1}\rho^{-\beta} - C(\rho^{\beta/2}t^{\gamma/2} + \rho^{-\beta}t^{2\beta_1}t^{3\gamma/2})
\] (49)
We distinguish if
\[
|g(0)| < C \rho^{3\beta}
\] (50)
or not. If (50) is not checked, we can apply Lemma (7). If not we have \(\beta_1 < \beta\). We deduce that
\[
g(t) \geq Ct - C\rho^{3\beta} - C\rho^{-\beta}_1\rho^{-\beta}t^{1+3\gamma/2} - C\rho^{\beta/2}t^{1+\gamma/2}
\] (51)
We choose \(t = C_1\rho^3\) for a big \(C_1\). From (51), we deduce that
\[
g(C_1\rho^3) \geq C\rho^\beta - C\rho^{-\beta}_1\rho^{(1+3\gamma/2)}
\] (52)
to choose \(\gamma\) close from 1/2 and \(\beta_1\) very small in order to deduce that
\[
g(C_1\rho^3) \geq C\rho^\beta
\] (53)
We deduce that
\[
\exp[C_1\rho^3 \hat{A}][<U^{-1}Y(x), \xi >> C \rho^\beta](0, x_0, U_0) > C > 0
\] (54)
Therefore the result holds.
\(\Diamond\).

Remark: The principle of the proof is very simple: we establish a criterium in order to show that the Levy measure associated to \(V(\xi)\) is very concentrated in small jumps. If the Levy measure is very concentrated in small jumps, there are a lot of small jumps which obliges that \(V(\xi)\) to be not very small. If this criterium is not satisfied, another criterium will obliged it to be satisfied. In [6], this criterium comes from the interaction between two Levy measures. Here it come from the interaction between a Levy measure and the drift \(D\).

References
[1] Léandre R 2011, *Inter. Jour. of Diff. Equ.* article ID 575383.
[2] Bismut J.M. 1983 *Annales Scientifiques E.N.S.* 17 507.
[3] Yosida K 1977 *Functional analysis* (Berlin: Springer).
[4] Ikeda N and Watanabe S 1981 *Stochastic differential equations and diffusions processes* (Amsterdam: North-Holland)
[5] Léandre R 1984 *Une extension du théorème de Hoermander a divers processus de sauts* (PHD Thesis, Besançon, France: Université de Franche-Comté).
[6] Léandre R 2012 XII *International Carpathian control conference* (Podbanske), (IEEE ISBN 978-1-4577-1866-3; IEEE: Xplore), p 421.
[7] Ishikawa Y 2013 *Stochastic Calculus of variations for jump processes* (Berlin: De Gruyter)