Abstract

From radial curvature geometry’s standpoint, we prove a sphere theorem of the Grove-Shiohama type for a certain class of compact Finsler manifolds.

1 Introduction

Beyond a doubt, one of the most beautiful theorems in global Riemannian geometry is the diameter sphere theorem of Grove and Shiohama \[GS\]. In their proof, Toponogov’s comparison theorem (TCT) was very first applied seriously together with the critical point theory, introduced by themselves, of distance functions. That is, if a point \(x\) in a complete Riemannian manifold is a critical point of the distance function \(d_p\) to a point \(p\) in the manifold, then \(x\) is the cut point of \(p\), and hence \(d_p\) is not differentiable at \(x\). However, they overcame the analytical obstruction by applying the original TCT to the triangle \(\triangle(pxy)\) with the interior angle \(\angle(pxy) \leq \pi/2\). That’s the point, i.e., they took the manifold into their hands by directly drawing segments on it.

Our purpose of this article is to prove a sphere theorem of the Grove-Shiohama type for a certain class of forward complete Finsler manifolds whose radial flag curvatures are bounded below by 1. Of course, our major tools to prove it are a TCT for such a class and the critical point theory, more precisely, Gromov’s isotopy lemma \([G]\). Such a TCT is easily proved by modifying the TCT established in \[KOT1\] (see Section \(2\) in this article), and the isotopy lemma holds from a similar argument to the Riemannian case. The fact that, compared with the Riemannian case, there are few theorems on the relationship between the topology and the curvature of a Finsler manifold is the worthy of note. E.g., Shen’s finiteness theorem \([S1]\), Rademacher’s quarter pinched sphere theorem \([R]\), the Gauss-Bonnet formula for surfaces with non-constant indicatrix of Itoh, Sabau, and Shimada \([ISS]\), Ohta’s splitting theorem \([O2]\), and the finiteness of topological type and a diffeomorphism theorem to Euclidean spaces of the author with Ohta and Tanaka in \[KOT2\].
To state our sphere theorem of the Grove-Shiohama type in Finsler case, we will introduce several notions in the geometry and radial curvature geometry: Let \((M, F, p)\) denote a pair of a forward complete, connected, \(n\)-dimensional \(C^\infty\)-Finsler manifold \((M, F)\) with a base point \(p \in M\), and \(d : M \times M \rightarrow [0, \infty)\) denote the distance function induced from \(F\). Remark that the reversibility \(F(-v) = F(v)\) is not assumed in general, and hence \(d(x, y) \neq d(y, x)\) is allowed.

For a local coordinate \((x^i)_{i=1}^n\) of an open subset \(\mathcal{O} \subset M\), let \((x^i, v^j)_{i,j=1}^n\) be the coordinate of the tangent bundle \(T\mathcal{O}\) over \(\mathcal{O}\) such that

\[
v := \sum_{j=1}^n v^j \frac{\partial}{\partial x^j} |_x, \quad x \in \mathcal{O}.
\]

For each \(v \in T_xM \setminus \{0\}\), the positive-definite \(n \times n\) matrix

\[
(g_{ij}(v))_{i,j=1}^n := \left(\frac{1}{2} \frac{\partial^2(F^2)}{\partial v^i \partial v^j}(v)\right)_{i,j=1}^n
\]

provides us the Riemannian structure \(g_v\) of \(T_xM\) by

\[
g_v \left(\sum_{i=1}^n a^i \frac{\partial}{\partial x^i} |_x, \sum_{j=1}^n b^j \frac{\partial}{\partial x^j} |_x\right) := \sum_{i,j=1}^n g_{ij}(v)a^ib^j.
\]

This is a Riemannian approximation of \(F\) in the direction \(v\). For two linearly independent vectors \(v, w \in T_xM \setminus \{0\}\), the flag curvature is defined by

\[
K_M(v, w) := \frac{g_v(R^v(w, v)v, w) - g_v(v, v)g_v(w, w)}{g_v(v, v)g_v(w, w)},
\]

where \(R^v\) denotes the curvature tensor induced from the Chern connection. Remark that \(K_M(v, w)\) depends on the flag \(\{sv + tw \mid s, t \in \mathbb{R}\}\), and also on the flag pole \(\{sv \mid s > 0\}\).

Given \(v, w \in T_xM \setminus \{0\}\), define the tangent curvature by

\[
T_M(v, w) := g_x \left(D^v_X Y(x) - D^w_X Y(x), X(x) \right),
\]

where the vector fields \(X, Y\) are extensions of \(v, w\), and \(D^w_X X(x)\) denotes the covariant derivative of \(X\) by \(v\) with reference vector \(w\). Independence of \(T_M(v, w)\) from the choices of \(X, Y\) is easily checked. Note that \(T_M \equiv 0\) if and only if \(M\) is of Berwald type (see [S2] Propositions 7.2.2, 10.1.1]). In Berwald spaces, for any \(x, y \in M\), the tangent spaces \((T_xM, F|_{T_xM})\) and \((T_yM, F|_{T_yM})\) are mutually linearly isometric (cf. [BCS] Chapter 10). In this sense, \(T_M\) measures the variety of tangent Minkowski normed spaces.

Let \(\hat{M}\) be a complete 2-dimensional Riemannian manifold, which is homeomorphic to \(\mathbb{R}^2\) if \(\hat{M}\) is non-compact, or to \(S^2\) if \(\hat{M}\) is compact. Fix a base point \(\hat{p} \in \hat{M}\). Then, we call the pair \((\hat{M}, \hat{p})\) a model surface of revolution if its Riemannian metric \(d\hat{s}^2\) is expressed in terms of the geodesic polar coordinate around \(\hat{p}\) as

\[
d\hat{s}^2 = dt^2 + f(t)^2 d\theta^2, \quad (t, \theta) \in (0, a) \times S^1_{\hat{p}},
\]
where $0 < a \leq \infty$, $f : (0, a) \rightarrow \mathbb{R}$ denotes a positive smooth function which is extensible to a smooth odd function around 0, and $S^1_a := \{ v \in T_p\tilde{M} \mid ||v|| = 1 \}$. Define the radial curvature function $G : [0, a) \rightarrow \mathbb{R}$ such that $G(t)$ is the Gaussian curvature at $\tilde{\gamma}(t)$, where $\tilde{\gamma} : [0, a) \rightarrow \tilde{M}$ is any (unit speed) meridian emanating from \tilde{p}. Note that f satisfies the differential equation $f'' + Gf = 0$ with initial conditions $f(0) = 0$ and $f'(0) = 1$. It is clear that, if $f(t) = t, \sin t, \sinh t$, then $\tilde{M} = \mathbb{R}^2, S^2, \mathbb{H}^2(-1)$, respectively. We call (\tilde{M}, \tilde{p}) a von Mangoldt surface if G is non-increasing on $(0, a)$. A round sphere is the only compact, ‘smooth’ von Mangoldt surface, i.e., f satisfies $\lim_{t \uparrow a} f'(t) = -1$. If a von Mangoldt surface has the property $a < \infty$ and if it is not a round sphere, then $\lim_{t \uparrow a} f(t) = 0$ and $\lim_{t \uparrow a} f'(t) > -1$. Therefore, such a surface (\tilde{M}, \tilde{p}) has a singular point, say $\tilde{q} \in \tilde{M}$, at the maximal distance from $\tilde{p} \in \tilde{M}$ such that $d(\tilde{p}, \tilde{q}) = a$, and hence \tilde{M} is an Alexandrov space. Its shape can be understood as a ‘balloon’.

Example 1.1 ([KT Example 1.2]) Set $f(t) := \frac{t(1-t) \tanh t}{11t^2 - 125t^4 + 11}$. Then, the compact surface of revolution (\tilde{M}, \tilde{p}) with $ds^2 = dt^2 + f(t)^2 d\theta^2$ is of von Mangoldt type and has a singular point at $t = 1$. In particular, $-\infty < \lim_{t \uparrow 1} G(t) < 0$.

Paraboloids and 2-sheeted hyperboloids are typical examples of non-compact von Mangoldt surfaces. An atypical example of such a surface is as follows.

Example 1.2 ([KT Example 1.2]) Set $f(t) := e^{-t^2} \tanh t$ on $[0, \infty)$. Then, the non-compact surface of revolution (\tilde{M}, \tilde{p}) with $ds^2 = dt^2 + f(t)^2 d\theta^2$ is of von Mangoldt type, and G changes the sign. Indeed, $\lim_{t \downarrow 0} G(t) = 8$ and $\lim_{t \rightarrow \infty} G(t) = -\infty$.

We say that a Finsler manifold (M, F, p) has the radial flag curvature bounded below by that of a model surface of revolution (\tilde{M}, \tilde{p}) if, along every unit speed minimal geodesic $\gamma : [0, l) \rightarrow M$ emanating from p, we have

$$K_M(\dot{\gamma}(t), w) \geq G(t)$$

for all $t \in [0, l)$ and $w \in T_{\gamma(t)}M$ linearly independent to $\dot{\gamma}(t)$. Also, we say that (M, F, p) has the radial tangent curvature bounded below by a constant $\delta \in (-\infty, 0]$ if, along every unit speed minimal geodesic $\gamma : [0, l) \rightarrow M$ emanating from p,

$$T_M(\dot{\gamma}(t), w) \geq \delta$$

for all $w \in T_{\gamma(t)}M$.

Our main result is now stated:

Theorem 1.3 Let (M, F, p) be a compact connected n-dimensional C^∞-Finsler manifold whose radial flag curvature is bounded below by 1 and radial tangent curvature is equal to 0. Assume that

1. $F(w)^2 \geq g_v(w, w)$ for all $x \in B^+_\frac{1}{2}(p), v \in G_p(x)$, and $w \in T_xM$,

2. $g_v(w, w) \geq F(w)^2$ for all $x \in M \setminus \overline{B^+_\frac{1}{2}(p)}, v \in G_p(x)$ and $w \in T_xM$,
(3) the reverse curve $\bar{c}(s) := c(a-s)$ of c is geodesic and $L_m(c) \leq \text{rad}_p$ for all minimal geodesic segments $c : [0,a] \to M \setminus \{p\}$.

If $\text{rad}_p > \pi/2$, then M is homeomorphic to the sphere \mathbb{S}^n.

In Theorem 1.3 we set $B^+_r(p) := \{x \in M \mid d(p,x) < r\}$,

\begin{equation}
G_p(x) := \{\dot{\gamma}(l) \in T_x M \mid \gamma \text{ is a minimal geodesic segment from } p \text{ to } x\},
\end{equation}

where $l := d(p,x)$, $L_m(c) := \int_0^a \max\{F(\dot{c}), F(-\dot{c})\} \, ds$, and $\text{rad}_p := \sup_{x \in M} d(p,x)$. The assumptions (1) and (2) are the 2-uniform convexities with the sharp constant (see [OT]), but only for special points x and directions v, respectively. The sharpness means that (1) and (2) hold for all $(x,v) \in TM \setminus \{0\}$ only if F is Riemannian. One may construct non-Riemannian spaces satisfying (1) and (2) (see [KOT1]). The geodesic property on \bar{c} in the (3) and $T_M(\dot{\gamma}(t), w) = 0$ just only imply $g_\gamma(D_{\dot{\gamma}} \dot{c}, \dot{\gamma}) = 0$. Note that $D_{\dot{\gamma}} \dot{c} \neq 0$ in general. The (3) holds, if F is reversible and $\text{rad}_p = \text{diam}(M) := \sup_{x,y \in M} d(x,y)$. Note that $\text{diam}(M) \leq \pi$ from the Bonnet-Myers theorem ([BCS, Theorem 7.7.1]). If F is of Berwald type, the geodesic property on \bar{c} in the (3) and $T_M(\dot{\gamma}(t), w) = 0$ are automatically satisfied. In particular, Theorem 1.3 contains the diameter sphere theorem as a special case.

Remark 1.4 In the (3) of Theorem 1.3 we can replace $L_m(c) \leq \text{rad}_p$ with the following weaker assumption:

\[
L_m(c) < \pi \quad \text{for } c \text{ satisfying } c([0,a]) \cap (M \setminus B^+_\pi(p)) \neq \emptyset,
\]

\[
\leq \text{rad}_p \quad \text{for } c \text{ emanating from } q \in \partial B^+_{\text{rad}_p}(p) \text{ to any point in } B^+_\pi(p).
\]

Note that $\partial B^+_{\text{rad}_p}(p) = \{q\}$ (see Lemma 3.4).

Remark 1.5 Probably, one can generalize Theorem 1.3 to a wider class of metrics than those described in it, that is, by employing a von Mangoldt surface of the balloon type satisfying $f'(\rho) = 0$ for unique $\rho \in (0,a)$, $\lim_{t \to a} f(t) = 0$, $\lim_{t \to a} f'(t) > -1$, and $\text{rad}_p > \rho$. Of course, more assumptions would be demanded to generalize it than those in Theorem 1.3. In the Riemannian case, see [KOT, Theorem A].

Acknowledgements. I would like to thank Professor M. Tanaka for helpful discussions.

2 TCTs

To prove Theorem 1.3 we need Toponogov’s comparison theorems (TCT) in Finsler geometry. In [KOT1], we recently established a TCT for a certain class of Finsler manifolds whose radial flag curvatures are bounded below by that of a von Mangoldt surface. In this section, we modify the TCT in the case where a model surface is the unit sphere.
2.1 Angles, triangles, and a counterexample

Let \((M, F, p)\) be a forward complete, connected \(C^\infty\)-Finsler manifold with a base point \(p \in M\), and denote by \(d\) its distance function. It follows from the Hopf-Rinow theorem that the forward completeness guarantees that any two points in \(M\) can be joined by a minimal geodesic segment. Owing to \(d(x, y) \neq d(y, x)\) generally, we need a distance with the symmetric property to define the ‘angles’: Define

\[d_m(x, y) := \max\{d(x, y), d(y, x)\}.\]

Since \(|d(p, x) - d(p, y)| \leq d_m(x, y)\), we may define the angles with respect to \(d_m\) as follows.

Definition 2.1 (Angles) Let \(c : [0, a] \rightarrow M\) be a unit speed minimal geodesic segment (i.e., \(F(\dot{c}) \equiv 1\)) with \(p \notin c([0, a])\). The forward and the backward angles \(\xrightarrow{\rightarrow} \angle (pc(s)c(a)), \xrightarrow{\leftarrow} \angle (pc(s)c(0)) \in [0, \pi]\) at \(c(s)\) are defined via

\[
\cos \xrightarrow{\rightarrow} \angle (pc(s)c(a)) := -\lim_{h \downarrow 0} \frac{d(p, c(s + h)) - d(p, c(s))}{d_m(c(s), c(s + h))} \quad \text{for } s \in [0, a),
\]
\[
\cos \xrightarrow{\leftarrow} \angle (pc(s)c(0)) := \lim_{h \downarrow 0} \frac{d(p, c(s)) - d(p, c(s - h))}{d_m(c(s - h), c(s))} \quad \text{for } s \in (0, a].
\]

Remark 2.2 The limits in Definition 2.1 exist in \([-1, 1]\) (see [KOT1, Lemma 2.2]).

Definition 2.3 (Forward triangles) For three distinct points \(p, x, y \in M\),

\[\triangle(p \xrightarrow{\rightarrow} x, p \xrightarrow{\leftarrow} y) := (p, x, y; \gamma, \sigma, c)\]

will denote the forward triangle consisting of unit speed minimal geodesic segments \(\gamma\) emanating from \(p\) to \(x\), \(\sigma\) from \(p\) to \(y\), and \(c\) from \(x\) to \(y\). Then the corresponding interior angles \(\xrightarrow{\rightarrow} \angle x, \xrightarrow{\leftarrow} \angle y\) at the vertices \(x, y\) are defined by

\[\xrightarrow{\rightarrow} \angle x := \xrightarrow{\rightarrow} \angle (pc(0)c(a)), \quad \xrightarrow{\leftarrow} \angle y := \xrightarrow{\leftarrow} \angle (pc(a)c(0)),\]

respectively, where \(a := d(x, y)\).

Definition 2.4 (Comparison triangles) Fix a model surface of revolution \(\tilde{M}, \tilde{p}\). Given a forward triangle \(\triangle(p \xrightarrow{\rightarrow} x, p \xrightarrow{\leftarrow} y) = (p, x, y; \gamma, \sigma, c) \subset M\), a geodesic triangle \(\triangle(p \tilde{x} \tilde{y}) \subset \tilde{M}\) is called its comparison triangle if

\[\tilde{d}(\tilde{p}, \tilde{x}) = d(p, x), \quad \tilde{d}(\tilde{p}, \tilde{y}) = d(p, y), \quad \tilde{d}(\tilde{x}, \tilde{y}) = L_m(c)\]

hold, where \(L_m(c) = \int_0^{d(x, y)} \max\{F(c), F(-c)\} ds\).

There are many forward triangles admitting their comparison triangles, but TCT does **not** always hold for all of them:
Example 2.5 ([KO2]) For an even number \(q \), let \(M \) be \(\mathbb{R}^2 \) with the \(\ell^q \)-norm. Then, \(M \) is Minkowskian. Take a forward triangle \(\triangle(\overrightarrow{x}, \overrightarrow{y}) \subset M \), where \(p := (0, 0), x := (1, 0), y := (0, 1) \in M \), and let \(c(t) := (1 - t, t) \) denote the side of \(\triangle(\overrightarrow{x}, \overrightarrow{y}) \) joining \(x \) to \(y \). Assume that \(q \) is sufficiently large. Then, we observe that both angles \(\angle x \) and \(\angle y \) are nearly 0, respectively. We are able to think of \((\mathbb{R}^2, \rho) \) as a reference surface for \(M \), because flag curvature \(K_M \equiv 0 \). It is clear that \(\triangle(\overrightarrow{x}, \overrightarrow{y}) \) admits its comparison triangle \(\triangle(\overrightarrow{x}, \overrightarrow{y}) \subset \mathbb{R}^2 \). Since \(\triangle(\overrightarrow{x}, \overrightarrow{y}) \) is nearly equilateral, \(\triangle(\overrightarrow{x}, \overrightarrow{y}) \) holds. Hence, \(\angle x < \angle \overrightarrow{x} \) and \(\angle y < \angle \overrightarrow{y} \). Therefore, TCT does not hold for the \(\triangle(\overrightarrow{x}, \overrightarrow{y}) \).

2.2 Modified TCTs

From Example 2.5, we understand that some strong conditions are demanded to establish a TCT in Finsler geometry. Taking this into account, we have the following:

Theorem 2.6 ([KOT1 Theorem 1.2]) Assume that \((M, F, p) \) is a forward complete, connected \(C^\infty \)-Finsler manifold whose radial flag curvature is bounded below by that of a von Mangoldt surface \((\overline{M}, \overline{p}) \) satisfying \(f'(\rho) = 0 \) for unique \(\rho \in (0, \infty) \). Let \(\triangle(\overrightarrow{x}, \overrightarrow{y}) = (p, x, y; \gamma, \sigma, c) \subset M \) be a forward triangle satisfying that, for some open neighborhood \(\mathcal{N}(c) \) of \(c \),

1. \(c([0, d(x, y)]) \subset M \setminus B^+_\overline{p}(p) \),
2. \(g_w(w, w) \geq F(w)^2 \) for all \(z \in \mathcal{N}(c), v \in G_p(z) \) and \(w \in T_zM \),
3. \(T_M(v, w) = 0 \) for all \(z \in \mathcal{N}(c), v \in G_p(z) \) and \(w \in T_zM \), and the reverse curve \(\overline{c}(s) := c(d(x, y) - s) \) of \(c \) is also geodesic.

If such \(\triangle(\overrightarrow{x}, \overrightarrow{y}) \) admits a comparison triangle \(\triangle(\overrightarrow{x}, \overrightarrow{y}) \subset \overline{M} \), then we have \(\overline{\angle x} \geq \overrightarrow{x} \) and \(\overline{\angle y} \geq \overrightarrow{y} \).

Remark 2.7 In Theorem 2.6, \(f'(t) > 0 \) on \((\rho, \infty) \).

Corollary 2.8 Assume that \((M, F, p) \) is a compact connected \(C^\infty \)-Finsler manifold whose radial flag curvature is bounded below by 1. Let \(\triangle(\overrightarrow{x}, \overrightarrow{y}) = (p, x, y; \gamma, \sigma, c) \subset M \) be a forward triangle satisfying that, for some open neighborhood \(\mathcal{N}(c) \) of \(c \),

1. \(c([0, d(x, y)]) \subset M \setminus B^+_\overline{p}(p) \),
2. \(g_w(w, w) \geq F(w)^2 \) for all \(z \in \mathcal{N}(c), v \in G_p(z) \) and \(w \in T_zM \),
3. \(T_M(v, w) = 0 \) for all \(z \in \mathcal{N}(c), v \in G_p(z) \) and \(w \in T_zM \), and the reverse curve \(\overline{c}(s) := c(d(x, y) - s) \) of \(c \) is also geodesic.

If such \(\triangle(\overrightarrow{x}, \overrightarrow{y}) \) admits a comparison triangle \(\triangle(\overrightarrow{x}, \overrightarrow{y}) \subset (S^2, \overline{p}) \), then we have \(\overline{\angle x} \geq \overrightarrow{x} \) and \(\overline{\angle y} \geq \overrightarrow{y} \). Here, \((S^2, \overline{p}) \) denotes the unit sphere, i.e., its Riemannian metric \(ds^2 \) is expressed as \(ds^2 = dt^2 + f(t)^2d\theta^2 \), \((t, \theta) \in (0, \pi) \times S^1_p \), such that \(f(t) = \sin t \).
Proof. Since \(f'(t) = \cos t < 0 \) on \((\pi/2, \pi)\) and \(f'(\pi/2) = 0 \) for unique \(\pi/2 \in (0, \pi) \), the corollary is immediate from Theorem 2.6.

Lemma 2.9 Assume that \((M, F, p)\) is a compact connected \(C^\infty\)-Finsler manifold whose radial flag curvature is bounded below by 1. Let \(\triangle(p\tilde{x}, p\tilde{y}) = (p, x, y; \gamma, \sigma, c) \subset M \) be a forward triangle satisfying that, for some open neighborhood \(\mathcal{N}(c) \) of \(c \),

1. \(c([0, d(x, y)]) \subset B^+_x(p) \setminus \{p\} \),
2. \(F(w)^2 \geq g_v(w, w) \) for all \(z \in \mathcal{N}(c) \), \(v \in G_p(z) \) and \(w \in T_zM \),
3. \(T_M(v, w) = 0 \) for all \(z \in \mathcal{N}(c) \), \(v \in G_p(z) \) and \(w \in T_zM \), and the reverse curve \(\tilde{c}(s) := c(d(x, y) - s) \) of \(c \) is also geodesic.

If such \(\triangle(p\tilde{x}, p\tilde{y}) \) admits a comparison triangle \(\triangle(p\tilde{x}\tilde{y}) \in (S^2, \tilde{p}) \), then we have \(\tilde{\angle} \geq \angle \tilde{x} \) and \(\tilde{\angle} \geq \angle \tilde{y} \).

Proof. Set \(\lambda := \max\{F(w), F(-w)\} \). The assumption (2) yields \(\lambda^2 \geq g_v(w, w) \). Hence, one can prove this lemma by the almost similar argument as that in [KOT1]. See Section 4 in this article for a detailed explanation of that.

Remark 2.10 As a corollary to Lemma 2.9, a TCT holds for forward complete, connected \(C^\infty\)-Finsler manifolds \((M, F, p)\) whose radial flag curvatures are bounded below by a non-positive constant, because, roughly speaking, the index forms on the models are positive. In the TCT, the assumptions (2) and (3) in Lemma 2.9 are demanded (owing to our theory), but we do not need to assume the (1) from their metric properties of the models. We shall discuss its applications, to extend the classic theorems in global Riemannian geometry, elsewhere.

3 Proof of Theorem 1.3

Let \((M, F, p)\) be the same as that in Theorem 1.3. Hence, our model surface as a reference surface is the unit sphere \((S^2, \tilde{p})\), i.e., its Riemannian metric \(d\tilde{s}^2 \) is expressed as \(d\tilde{s}^2 = dt^2 + f(t)^2 d\theta^2 \), \((t, \theta) \in (0, \pi) \times S^1_p \), such that \(f(t) = \sin t \).

Lemma 3.1 The set \(S^2 \setminus B_t(p) \) is strictly convex for all \(t \in (\pi/2, \pi) \), i.e., for any distinct two points \(\tilde{x}, \tilde{y} \in \partial B_t(p) \) and minimal geodesic segment \(\tilde{c} : [0, a] \rightarrow S^2 \) between them, we have \(\tilde{c}((0, a)) \subset S^2 \setminus B_t(p) \), where \(a := \tilde{d}(\tilde{x}, \tilde{y}) \).

Proof. Use the second variation formula.

Hereafter, by the Bonnet-Myers theorem ([BCS Theorem 7.7.1]), we may assume, without loss of generality,

\[(3.1) \quad \text{rad}_p < \pi.\]
Lemma 3.2 (Key Lemma) For any distinct two points \(x, y \in M \setminus \overline{B}_\pi^+(p)\), then

\[c([0, d(x, y)]) \cap \partial B_\pi^+(p) = \emptyset \]

holds for all minimal geodesic segments \(c\) emanating from \(x\) to \(y\).

Proof. Suppose that \(c([0, d(x, y)]) \cap \partial B_\pi^+(p) \neq \emptyset\) for some minimal geodesic segment \(c\) emanating from \(x\) to \(y\). Then, we consider five cases:

Case 1: Assume that there exist \(s_0, s_1, s_2 \in [0, d(x, y)]\) with \(0 \leq s_0 < s_1 < s_2\) such that

\[c([s_0, s_1]) \subset M \setminus \overline{B}_\pi^+(p), \quad c([s_1, s_2]) \subset \partial B_\pi^+(p). \]

For sufficiently small \(\varepsilon > 0\) with \(\varepsilon < s_1 - s_0\), take the forward triangle \(\triangle(p\overline{c(s_0)}, p\overline{c(s_1 - \varepsilon)})\) \(\subset M\). Note that \(c([s_0, s_1 - \varepsilon]) \subset M \setminus \overline{B}_\pi^+(p)\). Since \(d(p, c(s_0)) > \pi/2\) and \(d(p, c(s_1 - \varepsilon)) > \pi/2\), we have, by the assumption and (3.1), that

\[|d(p, c(s_0)) - d(p, c(s_1 - \varepsilon))| \leq d_m(c(s_0), c(s_1 - \varepsilon)) \leq L_m(c) < \pi < d(p, c(s_0)) + d(p, c(s_1 - \varepsilon)), \]

and hence \(\triangle(p\overline{c(s_0)}, p\overline{c(s_1 - \varepsilon)})\) admits a comparison triangle \(\triangle(\overline{p\overline{c(s_0)}}c\overline{(s_1 - \varepsilon)})\) \(\subset \mathbb{S}^2\). By Corollary 2.8, we have \(\angle(\overline{p\overline{c(s_0)}}c\overline{(s_1 - \varepsilon)}) \geq \angle\overline{c(s_1 - \varepsilon)}\). It follows from [TS, Proposition 2.1] that

\[\frac{\pi}{2} = \angle(\overline{p\overline{c(s_0)}}c\overline{(s_1 - \varepsilon)}) \geq \lim_{\varepsilon \downarrow 0} \angle(\overline{p\overline{c(s_0)}}c\overline{(s_1 - \varepsilon)}) \geq \angle\overline{c(s_1)}. \]

Set \(\triangle(\overline{p\overline{c(s_0)}}\overline{c(s_1)}):=\lim_{\varepsilon \downarrow 0} \triangle(\overline{p\overline{c(s_0)}}c\overline{(s_1 - \varepsilon)}),\) and let \(\overline{\mu} : [0, d(c(s_0), c(s_1))] \rightarrow \mathbb{S}^2\) denote the side of \(\triangle(\overline{p\overline{c(s_0)}}\overline{c(s_1)})\) joining \(c(s_0)\) to \(c(s_1)\). If \(\angle\overline{c(s_1)} = \pi/2\), then

\[\overline{\mu}([0, d(c(s_0), c(s_1))]) \subset \partial B_\pi^+(\overline{p}), \]

because \(\partial B_\pi^+(\overline{p})\) is geodesic. This contradicts \(d(\overline{p}, c(s_0)) > \pi/2\). If \(\angle\overline{c(s_1)} < \pi/2\), then there exists \(a \in (0, d(c(s_0), c(s_1)))\) such that \(\overline{\mu}(a) \in \partial B_\pi^+(\overline{p})\). This contradicts the structure of the cut locus of \(\mathbb{S}^2\) because \(\angle(\overline{\mu}(a)\overline{p\overline{c(s_1)}) < \pi\) and \(\partial B_\pi^+(\overline{p})\) is geodesic.

Case 2: Assume that there exist \(s_3, s_4, s_5 \in [0, d(x, y)]\) with \(0 < s_3 < s_4 < s_5\) such that

\[c([s_3, s_4]) \subset \partial B_\pi^+(p), \quad c([s_4, s_5]) \subset M \setminus \overline{B}_\pi^+(p). \]

Consider the forward triangle \(\triangle(\overline{p\overline{c(s_4 + \varepsilon)}}, \overline{p\overline{c(s_5)}}) \subset M\), where \(\varepsilon > 0\) is sufficiently small with \(\varepsilon < s_5 - s_4\). Applying the similar limit argument in Case 1 to \(\triangle(\overline{p\overline{c(s_4 + \varepsilon)}}p\overline{c(s_5)})\), we have the triangle \(\triangle(\overline{p\overline{c(s_4)}}\overline{c(s_5)}) := \lim_{\varepsilon \downarrow 0} \triangle(\overline{p\overline{c(s_4 + \varepsilon)}}\overline{c(s_5)})\) satisfying \(\angle\overline{c(s_4)} \leq \pi/2\). The angle condition yields the same contradiction as that in Case 1.

Case 3: Assume that there exist \(s_0, s_1, s_2 \in [0, d(x, y)]\) with \(s_0 < s_1 < s_2\) such that

\[c([0, d(x, y)]) \cap \partial B_\pi^+(p) = \{c(s_1)\}, \quad c((s_0, s_1)) \subset M \setminus \overline{B}_\pi^+(p). \]
Then, we get a contradiction from the same argument as Case 1, or Case 2.

Case 4: Assume that there exist \(s_0, s_1 \in (0, d(x, y)) \) with \(s_0 < s_1 \) such that

\[
c((s_0, s_1)) \subset B^+_\frac{\pi}{2}(p) \setminus \{p\}, \quad c(s_0), c(s_1) \in \partial B^+_\frac{\pi}{2}(p),
\]

and that

\[
(3.2) \quad \triangle (pc(s_0)c(s_1)) < \frac{\pi}{2}, \quad \triangle (pc(s_1)c(s_0)) < \frac{\pi}{2}.
\]

Take a subdivision \(r_0 := s_0 < r_1 < \cdots < r_{k-1} < r_k := s_1 \) of \([s_0, s_1] \) such that \(\triangle (pc(r_{i-1}), pc(r_i)) \) admits a comparison triangle \(\tilde{\Delta}^i := \triangle (\tilde{pc}(r_{i-1})c(r_i)) \subset \mathbb{S}^2 \) for each \(i = 1, 2, \ldots, k \). Applying Lemma 2.9 to \(\triangle (pc(r_{i-1}), pc(r_i)) \), but for each \(i = 2, 3, \ldots, k-1 \), we have

\[
(3.3) \quad \triangle (r_{i-1}) \geq \angle (\tilde{pc}(r_{i-1})c(r_i)), \quad \triangle (r_i) \geq \angle (\tilde{pc}(r_i)c(r_{i-1})).
\]

For sufficiently small \(\varepsilon, \delta > 0 \) with \(\varepsilon < r_1 - r_0 \) and \(\delta < r_k - r_{k-1} \), take two forward triangles \(\triangle (pc(r_0 + \varepsilon), pc(r_1)), \triangle (pc(r_k - \delta), pc(r_k)) \subset M \). Note that these two triangles admit their comparison triangles \(\tilde{\Delta}_\varepsilon := \triangle (\tilde{pc}(r_0 + \varepsilon)c(r_1)), \tilde{\Delta}_\delta := \triangle (\tilde{pc}(r_k - \delta)c(r_k)) \subset \mathbb{S}^2 \), respectively. Without loss of generality, we may assume \(\tilde{\Delta}^1 = \lim_{\varepsilon, \delta \downarrow 0} \tilde{\Delta}_\varepsilon \) and \(\tilde{\Delta}^k = \lim_{\varepsilon, \delta \downarrow 0} \tilde{\Delta}_\delta \) because \(\lim_{\varepsilon, \delta \downarrow 0} \tilde{\Delta}_\varepsilon \) and \(\lim_{\varepsilon, \delta \downarrow 0} \tilde{\Delta}_\delta \) are isometric to \(\tilde{\Delta}^1 \) and \(\tilde{\Delta}^k \), respectively. By Lemma 2.9,

\[
(3.4) \quad \frac{\pi}{2} > \angle (\tilde{pc}(r_0 + \varepsilon)c(r_1)), \quad \angle (\tilde{pc}(r_k)c(r_{k-1})).
\]

and that

\[
(3.5) \quad \triangle (r_{k-1}) \geq \angle (\tilde{pc}(r_{k-1})c(r_k)), \quad \angle (\tilde{pc}(r_k)c(r_{k-1})).
\]

Starting from \(\tilde{\Delta}^1 \), we inductively draw a geodesic triangle \(\tilde{\Delta}^{i+1} \subset \mathbb{S}^2 \) which is adjacent to \(\tilde{\Delta}^i \) so as to have a common side \(\tilde{pc}(r_i) \), where \(0 := \theta(c(r_0)) \leq \theta(c(r_1)) \leq \cdots \leq \theta(c(r_k)) \).

Since \(\angle (\tilde{pc}(r_i)c(r_{i+1})) \leq \pi \) for each \(i = 1, 2, \ldots, k-1 \), we obtain, by (3.3), (3.4), (3.5),

\[
(3.6) \quad \angle (\tilde{pc}(r_i)c(r_{i+1})) + \angle (\tilde{pc}(r_i)c(r_{i-1})) \leq \pi.
\]

Let \(\tilde{\xi} : [0, L_m(c|_{[s_0, s_1]}]) \rightarrow \mathbb{S}^2 \) denote the broken geodesic segment consisting of minimal geodesic segments from \(\tilde{c}(r_{i-1}) \) to \(\tilde{c}(r_i) \), \(i = 1, 2, \ldots, k \). Set \(\tilde{\xi}(s) := (t(\tilde{\xi}(s)), \theta(\tilde{\xi}(s))) \).

By (3.0), we have the unit speed, but not necessarily minimal in this moment, geodesic \(\tilde{\eta} : [0, a] \rightarrow \mathbb{S}^2 \) emanating from \(c(r_0) \) to \(c(r_k) \) and passing under \(\tilde{\xi}([0, L_m(c|_{[s_0, s_1]}]) \), i.e., \(\theta(\tilde{\eta}) \in [0, \theta(c(r_k)) \] on \([0, a] \) and \(t(\tilde{\xi}(s)) > t(\tilde{\eta}(u)) \) for all \((s, u) \in (0, L_m(c|_{[s_0, s_1]})) \times (0, a) \) with \(\theta(\tilde{\xi}(s)) = \theta(\tilde{\eta}(u)) \). Since \(a \leq L_m(c|_{[s_0, s_1]} < \pi \) by the assumption and (3.1), \(\tilde{\eta} \) is
minimal with $\angle(\tilde{n}(0) \tilde{p}, \tilde{n}(a)) < \pi$. This contradicts the structure of the cut locus of S^2 because $\partial B^+_{\mathfrak{T}}(\tilde{p})$ is geodesic.

Case 5: Assume that c is passing through p. Take a sequence $\{c_i : [0, l_i] \rightarrow M \setminus \{p\}\}_{i \in \mathbb{N}}$ of minimal geodesic segments c_i emanating from $x = c_i(0)$ convergent to c. Applying the same argument as that in Case 4 to each c_i for sufficiently large i, we get a contradiction. Note that $\lim_{i \to \infty} L_m(c_i) = L_m(c) \leq \text{rad}_p$, but $x, y \in M \setminus \overline{B^+_{\mathfrak{T}}(p)}$.

Therefore, $c([0, d(x, y)]) \cap \partial B^+_{\mathfrak{T}}(p) = \emptyset$ holds for all minimal geodesic segments c emanating from x to y.

Lemma 3.3 The set $M \setminus B^+_{\mathfrak{T}}(p)$ is convex.

Proof. Take any distinct two points $x, y \in M \setminus \overline{B^+_{\mathfrak{T}}(p)}$, and let c denote a minimal geodesic segment emanating from x to y. Since $|d(p, x) - d(p, y)| \leq L_m(c) < d(p, x) + d(p, y)$, the forward triangle $\triangle(\tilde{p} \tilde{x}, \tilde{p} \tilde{y}) \subset M$ admits its comparison triangle $\triangle(\tilde{p} \tilde{x}, \tilde{p} \tilde{y}) \subset S^2$. Thanks to Lemma 3.2, we may apply Corollary 2.8 to $\triangle(\tilde{p} \tilde{x}, \tilde{p} \tilde{y})$. Combining Lemma 3.1 with Corollary 2.8 we get the assertion. \hfill \square

Lemma 3.4 The function $d(p, \cdot)$ attains its maximum at a unique point $q \in M$. In particular, $M \setminus B^+_{\mathfrak{T}}(p)$ is a topological disk.

Proof. Suppose that there exist two distinct points $x, y \in \partial B^+_{\text{rad}_p}(p)$. Then, the forward triangle $\triangle(\tilde{p} \tilde{x}, \tilde{p} \tilde{y}) \subset M$ admits its comparison triangle $\triangle(\tilde{p} \tilde{x}, \tilde{p} \tilde{y}) \subset S^2$. Let $c : [0, d(x, y)] \rightarrow M$ and $\tilde{c} : [0, L_m(c)] \rightarrow S^2$ be sides of $\triangle(\tilde{p} \tilde{x}, \tilde{p} \tilde{y})$ and $\triangle(\tilde{p} \tilde{x}, \tilde{p} \tilde{y})$ emanating from x to y and from \tilde{x} to \tilde{y}, respectively. By Corollary 2.8 and Lemma 3.1 $d(p, c(s)) > \text{rad}_p$ holds for all $s \in (0, d(x, y))$. This contradicts the definition of rad_p. The second assertion follows from Lemma 3.3. \hfill \square

We say that a point $x \in M$ is a (forward) critical point for $p \in M$ if, for every $w \in T_x M \setminus \{0\}$, there exists $v \in \mathcal{G}_p(x)$ such that $g_p(v, w) \leq 0$ (see (1.1) for the definition of $\mathcal{G}_p(x)$). Then, we may prove Gromov’s isotopy lemma [G] by similar arguments to the Riemannian case:

Lemma 3.5 Given $0 < r_1 < r_2 \leq \infty$, if $\overline{B^+_{\mathfrak{T}}(p)} \setminus B^+_{r_1}(p)$ has no critical point for $p \in M$, then $\overline{B^+_{\mathfrak{T}}(p)} \setminus B^+_{r_1}(p)$ is homeomorphic to $\partial B^+_{r_1}(p) \times [r_1, r_2]$.

Lemma 3.6 There are no critical point for p in $\overline{B^+_{\mathfrak{T}}(p)} \setminus \{p\}$. In particular, $\overline{B^+_{\mathfrak{T}}(p)}$ is a topological disk.

Proof. By Lemma 3.3, $\partial B^+_{\mathfrak{T}}(p)$ has no critical point for p. Suppose that there exists a critical point $x \in B^+_{\mathfrak{T}}(p) \setminus \{p\}$ for p. Let $q \in M$ be the same as that in Lemma 3.1 such that $d(p, q) = \text{rad}_p$, and $c : [0, a] \rightarrow M$ a unit speed minimal geodesic segment emanating from q to x, where $a := d(q, x)$. Then, $c([0, a]) \cap \partial B^+_{\mathfrak{T}}(p) \neq \emptyset$. From the cases in the proof of Lemma 3.2 and Lemma 3.3 it is sufficient to consider the case where $c([0, a]) \cap \partial B^+_{\mathfrak{T}}(p)$ is one point, say

$\{q_1\} := c([0, a]) \cap \partial B^+_{\mathfrak{T}}(p)$.

10
Since both $q = c(0)$ and $x = c(a)$ are critical points for p, we have

\begin{equation}
\widehat{Z}(pc(0)c(a)) \leq \frac{\pi}{2}, \quad \widehat{Z}(pc(a)c(0)) \leq \frac{\pi}{2}.
\end{equation}

Note that c does not pass through p, because, by the definition of critical points, there exist at least two minimal segments emanating from p to x and c is minimal. Now, take a subdivision $s_0 := 0 < s_1 < \cdots < s_k - 1 < s_k := a$ of $[0, a]$ such that $c(s_1) = q_1 \in \partial B_\mathbb{T}^+(p)$ and that $\Delta(p(c(s_{i-1}), pc(s_i)))$ admits a comparison triangle $\tilde{\Delta}^i := \Delta(pc(s_{i-1})c(s_i)) \subset \mathbb{S}^2$ for each $i = 2, 3, \ldots, k$. Note that $\Delta(pc(s_0), pc(s_1))$ admits its a comparison triangle $\tilde{\Delta}^1 := \Delta(pc(s_0)c(s_1)) \subset \mathbb{S}^2$. Applying Lemma 2.9 to $\Delta(pc(s_{i-1}), pc(s_i))$ for each $i = 3, 4, \ldots, k$.

\begin{equation}
\tilde{Z}(c(s_{i-1})) \geq \angle(\tilde{pc}(s_{i-1})c(s_i)), \quad \tilde{Z}(c(s_i)) \geq \angle(\tilde{pc}(s_i)c(s_{i-1})).
\end{equation}

In particular, by (3.7) and (8.8), we have

\begin{equation}
\angle(\tilde{pc}(s_k)c(s_{k-1})) \leq \frac{\pi}{2}.
\end{equation}

In cases where $i = 1, 2$, it follows from the limit argument by using [15 Proposition 2.1], which is the technic in the proof of Lemma 3.2 that

\begin{equation}
\tilde{Z}(c(s_0)) \geq \angle(\tilde{pc}(s_0)c(s_1)), \quad \tilde{Z}(c(s_1)) \geq \angle(\tilde{pc}(s_1)c(s_0)),
\end{equation}

and that

\begin{equation}
\tilde{Z}(c(s_1)) \geq \angle(\tilde{pc}(s_1)c(s_2)), \quad \tilde{Z}(c(s_2)) \geq \angle(\tilde{pc}(s_2)c(s_1)).
\end{equation}

In particular, by (3.7) and (3.10), we have

\begin{equation}
\angle(\tilde{pc}(s_0)c(s_1)) \leq \frac{\pi}{2}.
\end{equation}

Starting from $\tilde{\Delta}^1$, we inductively draw a geodesic triangle $\tilde{\Delta}^{i+1} \subset \mathbb{S}^2$ which is adjacent to $\tilde{\Delta}^i$ so as to have a common side $\tilde{pc}(s_i)$, where $0 := \theta(c(s_0)) \leq \theta(c(s_1)) \leq \cdots \leq \theta(c(s_k))$. Since $\tilde{Z}(c(s_i)) + \tilde{Z}(c(s_i)) \leq \pi$ for each $i = 1, 2, \ldots, k - 1$, we obtain, by (8.8), (3.10), (3.11),

\begin{equation}
\angle(\tilde{pc}(s_i)c(s_{i-1})) + \angle(\tilde{pc}(s_i)c(s_{i+1})) \leq \pi.
\end{equation}

Let $\hat{\xi} : [0, L_m(c)] \rightarrow \mathbb{S}^2$ denote the broken geodesic segment consisting of minimal geodesic segments from $c(s_{i-1})$ to $c(s_i)$, $i = 1, 2, \ldots, k$. Set $\hat{\xi}(r) := (t(\hat{\xi}(r)), \theta(\hat{\xi}(r)))$.

By (3.13), we have the unit speed geodesic $\tilde{c} : [0, b] \rightarrow \mathbb{S}^2$ emanating from $\tilde{\eta}(0) = c(s_0)$ to $\tilde{\eta}(b) = \tilde{c}(s_k)$ and passing under $\hat{\xi}([0, L_m(c)])$, i.e., $\theta(\tilde{\eta}) \in [0, \theta(c(s_k))]$ on $[0, b]$ and $t(\hat{\xi}(r)) > t(\tilde{\eta}(u))$ for all $(r, u) \in (0, L_m(c)) \times (0, b)$ with $\theta(\hat{\xi}(r)) = \theta(\tilde{\eta}(u))$. Since $b \leq L_m(c) < \pi$ by (3.11), $\tilde{\eta}$ is minimal with $\angle(\hat{\gamma}(0), \hat{\sigma}(0)) < \pi$, where $\hat{\gamma}$ and $\hat{\sigma}$ denote minimal geodesic segments (i.e., sub-meridians) emanating from \tilde{p} to $c(s_0)$ and from p to $\tilde{c}(s_k)$, respectively. Since $\tilde{\eta}$ lives under $\hat{\xi}([0, L_m(c)])$, we have, by (3.9) and (3.12)

\begin{equation}
\angle(\tilde{\eta}(0), \hat{\gamma}(d(\tilde{p}, c(s_0)))) \leq \frac{\pi}{2}, \quad \angle(\tilde{\eta}(b), \hat{\sigma}(d(\tilde{p}, c(s_k)))) \leq \frac{\pi}{2}.
\end{equation}
Since $\tilde{d}(\tilde{p}, c(s_0)) > \pi/2 > \tilde{d}(\tilde{p}, c(s_k))$, there exists $b_0 \in (0, b)$ such that $\tilde{\eta}(b_0) \in \partial B_2^+(\tilde{p})$. Note that the three points $\tilde{p}, \tilde{\eta}(0), \tilde{\eta}(b)$ are not contained in the same great circle, because of (3.14). Let $\tilde{\eta} : [0, \pi] \rightarrow S^2$ be an extension of $\tilde{\eta}$ to the antipodal point $c(s_0)_\pi$ to $c(s_0) = \tilde{\eta}(0)$, and set $\tilde{\eta}(u) := (t(u), \theta(u))$. Since $S^2 \setminus B_u(\tilde{\eta}(0))$ is strictly convex for all $u \in (\pi/2, \pi)$ (by the same proof of Lemma 3.1), $\angle(\tilde{\eta}(\text{rad}_p), (\partial/\partial t)|_{\tilde{\eta}(\text{rad}_p)}) > \pi/2$ holds. This implies

\begin{equation}
(3.15)
t'(\text{rad}_p) < 0,
\end{equation}

where note that $\tilde{\eta}$ emanates from $c(s_0)$ to $c(s_0)_\pi$. Since $\tilde{\eta}((b_0, \text{rad}_p)) \subset B_2^+(\tilde{p})$ and $f'(t) = \cos t > 0$ on $(0, \pi/2)$, it follows from [SST] (7.1.15) that

\begin{equation}
(3.16)
t''(u) = f(t(u))f'(t(u))\theta'(t(u))^2 > 0
\end{equation}

holds on (b_0, rad_p). Hence, by (3.15) and (3.16), $t(u)$ is decreasing on $[b_0, \text{rad}_p]$. Since $b \in (b_0, \text{rad}_p)$,

$$
\angle(\tilde{\eta}(b), \hat{\sigma}(t(b))) > \frac{\pi}{2}.
$$

This contradicts the right inequality in (3.14). Therefore, $\overline{B_2^+(\tilde{p}) \setminus \{p\}}$ has no critical point for p. By Lemma 3.5, $B_2^+(\tilde{p})$ is a topological disk. □

By Lemmas 3.4 and 3.6, M is homeomorphic to S^n. □

4 Appendix: Proof of Lemma 2.9

Let (M, F, p) be a forward complete, connected C^∞-Finsler manifold with a base point $p \in M$, and let d denote its distance function and $\text{Cut}(p)$ the cut locus of p. Set $B_2^-(x) := \{y \in M \mid d(y, x) < r\}$. Take a point $q \in M \setminus (\text{Cut}(p) \cup \{p\})$ and small $r > 0$ such that $B_{2r}(q) \cap (\text{Cut}(p) \cup \{p\}) = \emptyset$ and that $B_2^-(q) := B_2^+(q) \cap B_2^-(q)$ is geodesically convex (i.e., any minimal geodesic joining two points in $B_2^-(q)$ is contained in $B_2^+(q)$). Given a unit speed minimal geodesic segment $c : (-\varepsilon, \varepsilon) \rightarrow B_2^+(q)$, we consider the C^∞-variation

$$
\varphi(t, s) := \exp_p \left(\frac{t}{l} \exp_p^{-1} (c(s)) \right), \quad (t, s) \in [0, l] \times (-\varepsilon, \varepsilon),
$$

where $l := d(p, c(0))$. Since $x := c(0) \notin \text{Cut}(p)$, there is a unique minimal geodesic segment $\gamma : [0, l] \rightarrow M$ emanating from p to x. By setting $J(t) := \frac{\partial \varphi}{\partial s}(t, 0)$, we get the Jacobi field J along γ with $J(0) = 0$ and $J(l) = \dot{c}(0)$. Note that $J(t) \neq 0$ on $(0, l]$ from the minimality of γ, and that

\begin{equation}
(4.1)
J^\perp(t) := J(t) - \frac{g_{\gamma(t)}(\dot{\gamma}(l), \dot{c}(0))}{l}t\dot{\gamma}(t), \quad t \in [0, l],
\end{equation}

is the g_{γ}-orthogonal component $J^\perp(t)$ to $\dot{\gamma}(t)$ (see [KOT], Lemma 3.2)). Moreover, since γ is unique, it follows from the proof of [KOT] Lemma 2.2] that

\begin{equation}
(4.2)
- \cos \overrightarrow{\gamma}(p x c(\varepsilon)) = \cos \overrightarrow{\gamma}(p x c(-\varepsilon)) = \lambda^{-1} g_{\gamma(0)}(\dot{\gamma}(l), \dot{c}(0)),
\end{equation}
where $\lambda := \max\{1, F(-\dot{c}(0))\}$. Hence, $\pi - \overrightarrow{\mathcal{Z}}(pxc(\varepsilon)) = \overrightarrow{\mathcal{Z}}(pxc(-\varepsilon))$. In the following discussion, we set

$$\omega := \pi - \overrightarrow{\mathcal{Z}}(pxc(\varepsilon)) = \overrightarrow{\mathcal{Z}}(pxc(-\varepsilon)).$$

Hereafter, we assume that the radial flag curvature of (M, F, p) is bounded below by 1. Hence, its model surface is the unit sphere (S^2, \tilde{p}) with its metric $d\tilde{s}^2 = dt^2 + f(t)^2d\theta^2$, $(t, \theta) \in (0, \pi) \times S^1_\tilde{p}$, such that $f(t) = \sin t$. For small $\delta > 0$ with $\delta < 1$, we set

$$f_\delta(t) := \frac{1}{\sqrt{1-\delta}} \sin(\sqrt{1-\delta}t)$$
on $[0, \pi/\sqrt{1-\delta}]$. Then, f_δ satisfies $f''_\delta + (1-\delta)f_\delta = 0$ with $f_\delta(0) = 0$, $f'_\delta(0) = 1$. Thus, we have a new sphere $(S^2_\delta, \tilde{\circ})$ with the metric $d\tilde{s}_\delta^2 = dt^2 + f_\delta(t)^2d\theta^2$ on $(0, \pi/\sqrt{1-\delta}) \times S^1_\tilde{p}$. Since the curvature $1-\delta$ of $(S^2_\delta, \tilde{\circ})$ is less than 1, we may also employ $(S^2_\delta, \tilde{\circ})$ as a reference surface for M.

Let c, $x = c(0)$, γ and $l = d(p, x)$ be the same in the above. Fix a point $\tilde{x} \in S^2_\delta$ with $\tilde{d}_\delta(\tilde{\circ}, \tilde{x}) = l$, where \tilde{d}_δ denotes the distance function induced from $d\tilde{s}_\delta^2$. Let $\tilde{\gamma} : [0, l] \longrightarrow S^2_\delta$ be the minimal geodesic segment from $\tilde{\circ}$ to \tilde{x}, and take a unit parallel vector field \tilde{E} along $\tilde{\gamma}$ orthogonal to $\dot{\tilde{\gamma}}$. Define the Jacobi field \tilde{X} along $\tilde{\gamma}$ by

$$\tilde{X}(t) := \frac{1}{f_\delta(l)} f_\delta(t) \tilde{E}(t).$$

Lemma 4.1 ([KOT1] Lemma 3.4) For any Jacobi field X along γ which is g_γ-orthogonal to $\dot{\gamma}$ and satisfies $X(0) = 0$ and $g_\gamma(0)(X(l), X(l)) = 1$, we have

$$\tilde{I}_l(\tilde{X}, \tilde{X}) \geq I_t(X, X) + \frac{\delta}{f_\delta(t)^2} \int_0^l f_\delta(t)^2 dt.$$

Here, I_t and \tilde{I}_l denote the index forms with respect to $\gamma|_{[0, t]}$ and $\tilde{\gamma}|_{[0, l]}$, respectively.

Fix a geodesic $\tilde{c} : (-\varepsilon, \varepsilon) \longrightarrow S^2_\delta$ with $\tilde{c}(0) = \tilde{x}$ such that

$$\angle(\tilde{\gamma}(l), \dot{\tilde{c}}(0)) = \omega, \quad \|\dot{\tilde{c}}\| = \lambda := \max\{1, F(-\dot{c}(0))\},$$

where ω is as that in (4.3). Consider the geodesic variation

$$\tilde{\varphi}(t, s) := \exp_{\tilde{c}(s)} \left(\frac{t}{l} \exp_{\tilde{c}(s)}^{-1} (\tilde{c}(0)) \right), \quad (t, s) \in [0, l] \times (-\varepsilon, \varepsilon).$$

By setting $\tilde{J}(t) := \frac{\partial}{\partial s}(\tilde{\varphi}(t, 0), 0)$, we get the Jacobi field \tilde{J} along $\tilde{\gamma}$ with $\tilde{J}(0) = 0$ and $\tilde{J}(l) = \dot{\tilde{c}}(0)$. And the Jacobi field

$$\tilde{J}^+(t) := \tilde{J}(t) - \frac{\langle \dot{\tilde{\gamma}}(l), \dot{\tilde{c}}(0) \rangle}{l} t \tilde{\gamma}(t)$$

along $\tilde{\gamma}$ is orthogonal to $\dot{\tilde{\gamma}}(t)$ on $[0, l]$.

Lemma 4.2 Assume that
(1) $B_{2r}(q) \subset B^+_p(p)$,

(2) $F(v)^2 \geq g_{\tilde{g}(l)}(v, v)$ for all $v \in T_qM$.

If $\omega \in (0, \pi)$, then there exists $\delta_1 := \delta_1(f, r) > 0$ such that, for any $\delta \in (0, \delta_1)$,

$$\tilde{I}_l(J^\perp, \tilde{J}^\perp) - I_l(J^\perp, J^\perp) \geq \delta C_1 g_{\tilde{g}(l)}(J^\perp(l), J^\perp(l)) > 0$$

holds, where $C_1 := \frac{1}{2f(l)(t)^2} \int_0^{l_0} f(t)^2 \, dt$ and $l_0 := d(p, q)$.

Proof. By the assumption (2) in this lemma,

$$\lambda^2 \geq g_{\tilde{g}(l)}(\dot{c}(0), \dot{c}(0)).$$

Indeed, (4.5) is immediate in the case where $\lambda = 1$. If $\lambda = F(-\dot{c}(0))$, then

$$1 \geq g_{\tilde{g}(l)} \left(\frac{-\dot{c}(0)}{F(-\dot{c}(0))}, \frac{-\dot{c}(0)}{F(-\dot{c}(0))} \right) = \frac{1}{F(-\dot{c}(0))^2} g_{\tilde{g}(l)}(\dot{c}(0), \dot{c}(0)).$$

By (4.2) and (4.3), $g_{\tilde{g}(l)}(\dot{\gamma}(l), \dot{c}(0)) = \lambda \cos \omega$. Then, $\tilde{J}^\perp(l) = \pm \lambda \sin \omega \cdot \tilde{X}(l)$ holds, where \tilde{X} is the same as that in (4.3). Since both \tilde{J}^\perp and \tilde{X} are Jacobi fields on S^3, $\tilde{J}^\perp(t) = \pm \lambda \sin \omega \cdot \tilde{X}(t)$ on $[0, l]$. Hence

$$\tilde{I}_l(\tilde{J}^\perp, \tilde{J}^\perp) = (\lambda \sin \omega)^2 \tilde{I}_l(\tilde{X}, \tilde{X}).$$

On the other hand, it follows from (4.1) and (4.5) that

$$g_{\tilde{g}(l)}(J^\perp(l), J^\perp(l)) = g_{\tilde{g}(l)}(\dot{c}(0), \dot{c}(0)) - (\lambda \cos \omega)^2 \leq (\lambda \sin \omega)^2.$$

Then, we get a constant $a := (\lambda \sin \omega)^2 - g_{\tilde{g}(l)}(J^\perp(l), J^\perp(l)) \geq 0$. Since $g_{\tilde{g}(l)}(J^\perp(l), J^\perp(l)) > 0$ for $\omega \in (0, \pi)$, we have, by Lemma 4.1

$$\tilde{I}_l(\tilde{X}, \tilde{X}) \geq \frac{I_l(J^\perp, J^\perp)}{g_{\tilde{g}(l)}(J^\perp(l), J^\perp(l))} + \frac{\delta}{f_\delta(l)^2} \int_0^{l_0} f_\delta(t)^2 \, dt,$$

hence

$$-I_l(J^\perp, J^\perp) \geq -g_{\tilde{g}(l)}(J^\perp(l), J^\perp(l)) \left\{ \tilde{I}_l(\tilde{X}, \tilde{X}) - \frac{\delta}{f_\delta(l)^2} \int_0^{l_0} f_\delta(t)^2 \, dt \right\}$$

$$= \{a - (\lambda \sin \omega)^2\} \tilde{I}_l(\tilde{X}, \tilde{X}) + \frac{\delta \cdot g_{\tilde{g}(l)}(J^\perp(l), J^\perp(l))}{f_\delta(l)^2} \int_0^{l_0} f_\delta(t)^2 \, dt.$$

By (4.6) and (4.7),

$$\tilde{I}_l(\tilde{J}^\perp, \tilde{J}^\perp) - I_l(J^\perp, J^\perp) \geq a \tilde{I}_l(\tilde{X}, \tilde{X}) + \frac{\delta \cdot g_{\tilde{g}(l)}(J^\perp(l), J^\perp(l))}{f_\delta(l)^2} \int_0^{l_0} f_\delta(t)^2$$

$$\geq \frac{\delta \cdot g_{\tilde{g}(l)}(J^\perp(l), J^\perp(l))}{f_\delta(l)^2} \int_0^{l_0} f_\delta(t)^2,$$

where note that $a \geq 0$, and that $\tilde{I}_l(\tilde{X}, \tilde{X}) = \frac{\sqrt{1 - \delta}}{\tan(\sqrt{1 - \delta})} > 0$, because $l < \pi/2 < \pi/2\sqrt{1 - \delta}$ by the assumption (1) in this lemma. Since $|l - l_0| \leq \max\{d(q, x), d(x, q)\} < r$, and since $l, l_0 < \pi/2$ (from the (1)), taking smaller $\delta_1(f, r) > 0$ if necessary, we get the desired assertion in this lemma for all $\delta \in (0, \delta_1)$. \hfill \Box
Lemma 4.3 Assume that

1. \(B_{2r}(q) \subset B_{2s}^{\pm}(p) \),
2. \(F(v)^2 \geq g_{\gamma(0)}(v,v) \) for all \(v \in T_xM \),
3. \(\mathcal{T}_M(\gamma(l),\delta(0)) = 0 \).

For each \(\delta \in (0,\delta_1) \), \(\theta \in (0,\pi/2) \), if \(\omega \in [\theta,\pi-\theta] \), then there exists \(\varepsilon' := \varepsilon'(M,l,f,\varepsilon,\delta,\theta) \) \(\in (0,\varepsilon) \) such that \(L(s) \leq \widetilde{L}(s) \) holds for all \(s \in [-\varepsilon',\varepsilon'] \). Here, \(L(s) := d(p,c(s)) \) and \(\widetilde{L}(s) := d_\delta(\delta,\widetilde{c}(s)) \).

Proof. We will state the outline of the proof, since the proof is very similar to \[\text{KOT1}, \text{Lemma 3.6}\] thanks to Lemma 4.2. Set \(\mathcal{R}(s) := L(s) - \{L(0) + L'(0)s + L''(0)s^2/2\} \). Then, there exists \(C_2 := C_2(M,l) > 0 \) such that

\[
L(s) = L(0) + L'(0)s + \frac{1}{2}L''(0)s^2 + \mathcal{R}(s) \leq l + sL \cos \omega + \frac{s^2}{2}I(J^{\perp}) + C_2|s|^3.
\]

Note that \(L'(0) = \lambda \cos \omega \) and \(L''(0) = I(J^{\perp}) \) hold by \[\text{KOT1}, \text{Lemma 3.3}\], \[4.2\], \[4.3\], and the assumption (3) in this lemma. Similarly,

\[
\widetilde{L}(s) \geq l + sL \cos \omega + \frac{s^2}{2}I(\overline{J}^{\perp}) - C_3|s|^3
\]

for some \(C_3 := C_3(f,l) > 0 \) and all \(s \in (-\varepsilon,\varepsilon) \). Since \(g_{\gamma(0)}(J^{\perp}(l),J^{\perp}(l)) > 0 \) for all \(\omega \in [\theta,\pi-\theta] \), there exists \(C_4 := C_4(M,\theta) > 0 \) such that \(g_{\gamma(0)}(J^{\perp}(l),J^{\perp}(l)) > C_4 > 0 \). From Lemma 4.2, \(\widetilde{L}(s) - L(s) \geq s^2\{C_1C_4 - 2(C_2 + C_3)s\}/2 \) holds. Therefore, we get \(L(s) \leq \widetilde{L}(s) \) for all \(s \in [-\varepsilon',\varepsilon'] \), if \(\varepsilon' := \min \{\varepsilon,\delta C_1C_4/2(C_2 + C_3)\} \).

Thanks to Lemma 4.3 and the structure of \(S^2_b \), we may prove Lemma \[2.9\] by the same arguments in Sections 4, 5, and 6 in \[\text{KOT1}\].

Remark 4.4 Although we do not consider cases of \(\omega = 0 \), or \(\pi \) in Lemma 4.3, Lemma \[2.9\] holds in cases of \(\overrightarrow{x} = \pi, \overrightarrow{y} = 0 \), or \(\overrightarrow{x} = 0, \overrightarrow{y} = \pi \) because the reverse curve \(\overline{c} \) of the geodesic segment \(c \) is geodesic.

References

[BCS] D. Bao, S.-S. Chern, and Z. Shen, An introduction to Riemann-Finsler geometry, Springer, New York (2000).

[G] M. Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv. \textbf{56} (1981), 179–195.

[GS] K. Grove and K. Shiohama, A generalized sphere theorem, Ann. of Math. (2) \textbf{106} (1977), 201–211.
[ISS] J. Itoh, S.V. Sabau, and H. Shimada, A Gauss-Bonnet Type Formula on Riemann-Finsler surfaces with non-constant indicatrix volume, Kyoto J. Math. 50 (2010), 165–192.

[K] K. Kondo, Radius sphere theorems for compact manifolds with radial curvature bounded below, Tokyo J. of Math, 30 (2007), 465–475.

[KO1] K. Kondo and S. Ohta, Topology of complete manifolds with radial curvature bounded below, Geom. Funct. Anal. 17 (2007), 1237–1247.

[KO2] K. Kondo and S. Ohta, Private communications in 2012.

[KOT1] K. Kondo, S. Ohta, and M. Tanaka, A Toponogov type triangle comparison theorem in Finsler geometry, Preprint (2012). Available at arXiv:1205.3913

[KOT2] K. Kondo, S. Ohta, and M. Tanaka, Topology of complete Finsler manifolds with radial flag curvature bounded below, Preprint (2012). Available at arXiv:1210.1774

[KT] K. Kondo and M. Tanaka, Total curvatures of model surfaces control topology of complete open manifolds with radial curvature bounded below. I, Math. Ann. 351 (2011), 251–266.

[O1] S. Ohta, Uniform convexity and smoothness, and their applications in Finsler geometry, Math. Ann. 343 (2009), 669–699.

[O2] S. Ohta, Splitting theorems for Finsler manifolds of nonnegative Ricci curvature, Preprint (2012). Available at arXiv:1203.0079

[R] H.-B. Rademacher, A sphere theorem for non-reversible Finsler metrics, Math. Ann. 328 (2004), 373–387.

[S1] Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Adv. Math. 128 (1997), 306–328.

[S2] Z. Shen, Lectures on Finsler geometry, World scientific publishing co., Singapore, 2001.

[SST] K. Shiohama, T. Shioya, and M. Tanaka, The geometry of total curvature on complete open surfaces, Cambridge Tracks in Math. 159, Cambridge University Press, Cambridge, 2003.

[TS] M. Tanaka and S. V. Sabau, The cut locus and distance function from a closed subset of a Finsler manifold, Preprint (2012). Available at arXiv:1207.0918

K. Kondo,
Department of Mathematics, Tokai University,
Hiratsuka City, Kanagawa Pref. 259-1292, Japan
e-mail: keikondo@keyaki.cc.u-tokai.ac.jp