Coexistence of Pelviureteric Junction Obstruction and Vesicoureteral Reflux

Md. Asaduzzaman*, SM Abdullah2, Mohammad Abu Hanif3, Md. Hasanuzzaman4, Rifat Naureen Islam5, Shahnoor Islam6

Abstract

Introduction: The most common upper urinary tract problem in children is obstruction at the pelviureteric junction. It happens with varying degrees of seriousness. Ultrasonography and DTPA (Diethylene Triamine Penta-acetic Acid) renography are commonly used to detect it. Objective: To find out the coexistence of ipsilateral pelviureteric junction obstruction with vesicoureteral reflux. Materials and Methods: This prospective study was conducted in the Department of Paediatric Surgery, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh from January 2006 to May 2007 over a period of 1 year 5 months. Thirty-five patients with unilateral hydronephrosis due to PUJ obstruction were included in this study (age: 1 month-15 years). Results were analyzed using Statistical Package for Social Science (SPSS). Results: Incidence of Vesicoureteral reflux (VUR) among pelviureteric junction (PUJ) obstruction patients was 8.6%. Of them Grade-I VUR was 33.3% and grade-II VUR was 66.7%. Mean age of the patients was 4.71 ± 1.97 years and with VUR was 9.33 ± 4.93 years. Male to female ratio was 4:1. Only 5.7% mothers had regular antenatal checkup and 28.5% had irregular. Majority of the patients 28 (80%) were presented with painless loin mass, 6 (17.1%) with fever, 8 (22.9%) with loin pain and 8 (22.9%) with failure to thrive. Three patients (8.6%) showed abnormal R/M/E and all of the abnormal R/M/E samples showed positive culture. Conclusions: Incidence of Vesicoureteral reflux (VUR) among pelviureteric junction (PUJ) obstruction patients was 8.6%.

Keywords: Vesicoureteral reflux (VUR), Pelviureteric junction (PUJ).

Number of Tables: 07; Number of References: 22; Number of Correspondence: 07.

Introduction:

Obstruction at the pelviureteric junction is the commonest problem of the upper urinary tract in children. It occurs with all degrees of severity1,2. It is usually detected by ultrasonography and DTPA (DiethyleneTriaminePenta-acetic Acid) renography3. In most cases, a congenital intrinsic lesion is responsible for the pelviureteric junction obstruction4.

The overall incidence of pelviureteric junction (PUJ) obstruction approximates 1 in 1500. The ratio of male to female is 2:1 in the neonatal period, with left-sided lesions occurring in 60 percent5. Vesicoureteral reflux (VUR) is the common abnormal condition of the child's lower urinary tract. VUR is a dynamic event, the retrograde flow of urine from the bladder to the upper urinary tract. This anomaly is considered primary when there is no demonstrable urinary out flow obstruction7. Primary reflux results from mal development or delayed maturity of VUJ. PUJ may be distorted by changes in the bladder wall secondary to other pathology, called secondary reflux. In both situations the pathophysiological consequences of VUR are the same in exposing the kidneys to pressure changes and urine, normally confined to the bladder8.

In 2001, Yeung and colleagues9 have shown that low-grade reflux coexists with pelviureteric junction obstruction. When pelviureteric junction obstruction coexists with vesico ureteral reflux both operation may be necessary1.

Voiding cystourethrogram (VCUG) is the standard diagnostic investigation for VUR9. Nuclear cystogram can also be used as diagnostic tool. But conventional VCUG has some advantages over...
nuclear cystogram— it can also diagnose other VUR problems and posterior urethral valves; it yields other details of bladder anatomy and function that the nuclear cystogram does not; it stages the severity of reflux more accurately and it detects reflux in a duplex system.10.

A voiding cystourethrogram should always be obtained in case of PUJ obstruction to look for the presence or absence of vesicoureteral reflux. Sever reflux and subsequent ureteral ectasia may kink the PUJ and cause delayed drainage of the pelvis. Milder degrees of reflux may also be seen concomitant with PUJ obstruction.11.

Materials and Methods:

This prospective study was carried out in the Department of Paediatric Surgery, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh from January 2006 to May 2007 over a period of 1 year 5 months. Thirty-five patients with unilateral hydronephrosis due to PUJ obstruction were included in this study (age: 1 month-15 years). Patients suffering from parenchymal renal disease, bilateral hydronephrosis and patients with solitary kidney were excluded from this study. All the selected patients underwent voiding cystourethrography on the Radiology and Imaging Department of Bangabandhu Sheikh Mujib Medical University. Results were analyzed using Statistical Package for Social Science (SPSS).

Results:

Nineteen patients were <5 years (54.2%) and 45.7% were ≥ 5 years old. All of the VUR patients were ≥ 5 years old. Males were predominant than females. Male to female ratio was 4:1 (Table-I).

Table-I: Incidence of VUR in PUJ obstruction patients (N=35).

VUR	Frequency (n)	Percentage (%)
Present	3	8.6
Absent	32	91.4
Grade of VUR		
Grade-I	1	33.3
Grade-II	2	66.7

Incidence of Vesicoureteral reflux (VUR) among pelviureteric junction (PUJ) obstruction patients was 8.6%. Of them Grade-I VUR was 33.3% and grade-II VUR was 66.7%.

Table II: Demographic profile of the patient (N=35).

Age	Total	VUR	p-value	
<5	19 (54.2)	0 (0.0)	0 (0.0)	0.085
≥5	16 (45.7)	3 (100.0)	13 (40.6)	
Mean±SD	4.71 ± 1.97	9.33 ± 4.93	4.28 ± 1.70	<0.001
Min - max	0.08 - 15	6 - 15	0.08 - 9	
Gender				
Male	28 (80.0)	3 (100.0)	25 (78.1)	1.000
Female	7 (20.0)	0 (0.0)	7 (21.9)	

Left sided hydronephrosis was 66.7% and right sided 33.3% among VUR patients (Table-III).

Table -III: Side of hydronephrosis of the patient (N=35).

Side of hydronephrosis	Total	VUR	p-value	
Left	25 (71.4)	2 (66.7)	23 (71.9)	1.000
Right	10 (28.6)	1 (33.3)	9 (28.1)	

Ten mothers (28.5%) had history of irregular antenatal, 23 mothers (65.8%) had no antenatal checkup and only two mothers had regular antenatal checkup (5.7%) (Table-IV).

Table-IV: Antenatal checkup of the mother of the patient (N =35).

Frequency (n)	Percentage (%)	
No checkup	23	65.8
Irregular	10	28.5
Regular	2	5.7

Majority of the patients 28 (80%) were presented with painless loin mass, 6 (17.1%) with fever, 8 (22.9%) with loin pain and 8 (22.9%) with failure to thrive (Table-V).

Table -V: Clinical presentation of the patient (N =35).

Clinical presentation	Frequency (n)	Percentage (%)
Painless loin mass	28	80.0
Loin pain	8	22.9
Failure to thrive	8	22.9
Fever	6	17.1

Palpable kidney was the commonest physical finding (80.0%) followed by pallor (17.1%) and only one patient (2.9%) was associated with distal penile hypospadias (Table-VI).

Table -VI: Physical finding of study patients (n=35).

Physical findings	Frequency (n)	Percentage (%)
Palpable kidney	28	80.0
Pallor	6	17.1
Associate anomaly	1	2.9

Three patients (8.6%) showed abnormal R/M/E and all of the abnormal R/M/E samples showed positive culture. Rests of the 32 patients (91.4%) showed normal R/M/E and negative C/S (Table-VII).

Table-VII: Microscopic examination of urine and culture sensitivity (n=35).

Culture sensitivity	Frequency (n)	Percentage (%)
Urine R/M/E		
Normal	32	91.4
Abnormal	3	8.6
Urine C/S		
Negative	32	91.4
Positive	3	8.6

Discussion:

PUJ obstruction is the commonest cause of hydronephrosis in paediatric. It is usually diagnosed by ultrasonography and renal scan.

Nineteen study subjects were <5 years (54.2%) and 45.7% were ≥ 5 years old. All of the VUR patients were ≥ 5 years old. This finding is consistent with the findings of others12,13. Males were predominant than females. Male to female ratio was 4:1. In one series male to female ratio was 4.5:112.
Majority of the mothers (65.8%) of this study had no antenatal checkup at all, 10 (28.5%) had irregular checkup and only two mothers (5.7%) had regular antenatal checkup.

Majority of the patients of this study (80.0%) presented with a painless loin mass. This finding is not consistent with the findings of western countries where most of the cases were diagnosed by antenatal USG19. Here patients also had fever (17.1%), loin pain (22.9%) and failure to thrive (22.9%). This observation also matched with that of Rodriguez and his co-workers14.

In this study, 25 (71.4%) cases were of left sided and 10 (28.6%) cases were of right sided pelviureteric junction obstruction. It may indicate that congenital PUJ obstruction predominantly affects left sided kidney. This finding is consistent with other studies where 2/3rd of cases were left sided10,14. In the present study out of 3 patient 2 cases were of left-sided VUR and 1 case were of right sided. It may indicate that VUR with PUJ obstruction predominantly occur left-sided kidney. This finding is consistent with other studies where 2/3rd of cases were left sided16.

Among them, 3 showed features of UTI (pus cell > 10/HPF in R/M/E of urine) and their culture revealed, growth of E.coli (CFU>1x10⁵). In rest of the 32 cases urinalysis reports were normal. Urine became sterile after using a course of sensitive antibiotic in all the infected cases.

Incidence of Vesicoureteral reflux (VUR) among pelviureteric junction (PUJ) obstruction patients was 8.6%. Of them Grade-I VUR was 33.3% and grade-II VUR was 66.7%. This result indicates that PUJ obstruction co-exist with VUR. In one series the co-existence was 14.0%10 and another series that was 8.5%16-19.

This study demonstrates that Hydronephrosis due to pelviureteric junction obstruction coexist with VUR so voiding cystourethrogram is routinely recommended to detect vesico ureteral reflux is children with uretero pelvic junction obstruction20.22.

Conclusion:
From this study, it can be concluded that there is coexistence of pelviureteric junction obstruction with low grade ipsilateral VUR. And a routine voiding cystourethrogram can be recommended to detect VUR in children with uretero pelvic junction obstruction.

Conflict of Interest: None.

Acknowledgement:
We are grateful to Professor, Dr. Md. Ashraf Ul Huq, Professor and Head of the Department of Pediatric Surgery, Dhaka Medical College & Hospital to give us full support to complete this research work.

References:
1. Lebowitz RL, Blickman JG. The coexistence of ureteropelvic junction obstruction and reflux. American Journal of Roentgenology. 1983 Feb 1;140(2):231-8.
https://doi.org/10.2214/ajr.140.2.231
PMid:6603355
2. Wang Y, Puri P, Hassan J, Miyakata H, Reen DJ. Abnormal innervation and altered nerve growth factor messenger ribonucleic acid expression in ureteropelvic junction obstruction. The Journal of urology. 1995 Aug;154(2):679-83.
https://doi.org/10.1016/S0022-5347(01)67132-5
3. Imaji R, Dewan P.A. Calyx to parenchyma ratio in pelvi-ureteric junction obstruction. BJU International. 2002 Jan;89(1):73-7.
https://doi.org/10.1046/j.1464-410X.2002.02543.x
4. Hanna MK, Jeffs RD, Sturgess JM, Barkin M. Ureteral structure and ultrastructure. Part II. Congenital ureteropelvic junction obstruction and primary obstructive megaureter. The Journal of urology. 1976 Dec 1;116(6):725-30.
https://doi.org/10.1016/S0022-5347(17)58987-9
5. Peters, CA and Roth, JA. Congenital urine flow impairments of the upper urinary tract: Pathophysio logy and experimental studies, in JP Gearhart. CR Rink, PDE Mouriquand (eds). Pediatric urology. WB Saunders; USA. 2001; 3Q3-316.
6. Denes FT, Arap S. Vesicoureteral reflux in children. Jornal de pediatria. 1995;71(4):183-8.
https://doi.org/10.2223/JPED.775
PMid:14688999
7. Goonasekera, CDA and Abcysekera, CK. Vesicoureteric reflux & Reflux nephropathy. Indian Journal of Pediatrics. 2003;(70): 241-249.
https://doi.org/10.1007/BF02725592
PMid:12785297
8. Godley ML. Vesicourcteral Reflex; Pathophysiology and experimental studies in JP Gearhart. CR Rink & PDE Mouriquand (eds). Pediatric urology. Philadelphia, USA: WB Saunders company; 2001: 359-382.
9. Yeung, KC. Taphophysiology of Bladder dysfunction, in JP Gearhart. CR Rink, PDE Mouriquand (eds). Pediatric urology. USA: WB Saunders company; 2001: 453-469.
10. Churchill, BM and Feng. WC, Pelviureteric Junction Anomalies: congenital PUJ problems in children in JP Gearhart. CR Rink & PDE Mouriquand (eds). Pedialric urology. Philadelphia, US, WB Saunders company; 2001: 318-346.
11. Anderson, GF. Urinary tract obstruction. In: MM Ziegler, RG, Aziz Khan &TR Weber (eds). Operative pediatric surgery. USA: The McGraw-Hill Companies; 2003: 871-885.
12. Rashid, MA. A clinical study on presentation and management of hydrenephrosis in children, MS, Thesis, University of Dhaka; 1996: 75-79.
13. Hafez AT, McLorie G, Bägli D, Khoury A. Analysis of trends on serial ultrasound for high grade neonatal hydrenephrosis. The Journal of urology. 2002 Oct
accurately and it detects reflux in a duplex system.

cystogram does not; it stages the severity of reflux more
details of bladder anatomy and function that the nuclear
cystogram – it can also diagnose other VUR

ureteral ectasia may kink the PUJ and cause delayed drain-
of vesicoureteral reflux. Sever reflux and subsequent

Left sided hydronephrosis was 66.7% and right sided

Of them Grade-I VUR was 33.3% and grade-II VUR was

Incidence of Vesicoureteral reflux (VUR) among

Table-I: Incidence of VUR in PUJ obstruction patients

Materials and Methods:

From this study, it can be concluded that there is coexis-
tance of UTI (pus cell > 10/HPF

Majority of the patients 28 (80%) were presented with

Majority of the patients of this study (80.0%) presented

antenatal checkup at all, 10 (28.5%) had irregular checkup

Nineteen study subjects were <5 years (54.2%) and 45.7%

were excluded from this study. All the selected

Thirty-five patients with unilateral hydronephrosis due to

Discussion:

PMid:11176432

15.Hollowell JG, Altman HG, Snyder HM, Duckett JW. Coexisting ureteropelvic junction obstruction and vesico-
ureteral reflux: diagnostic and therapeutic implications. The Journal of urology. 1989 Aug;142(2 Part 2):490-3.
https://doi.org/10.1016/S0022-5347(17)38793-1

16.Kim YS, Do SH, Hong CH, Kim MJ, Choi SK, Han SW. Does every patient with ureteropelvic junction
obstruction need voiding cystourethrography?. The Journal of urology. 2001 Jun;165(6 Part 2):2305-7.
https://doi.org/10.1016/S0022-5347(05)66190-3

17. Kajbafzadeh AM, Tourchi A, Ebadi M. The outcome of initial endoscopic treatment in the management of concom-
itant vesicoureteral reflux and ureteropelvic junction obstruction. Urology. 2013 May 1;81(5):1040-6.
https://doi.org/10.1016/j.urology.2013.01.036
PMid:23608426

18. Sharma N, Bajpai M, Panda SS. Pelviureteric Junction
Obstruction Associated with Vesico-ureteric reflux and
Vesico-ureteric Junction Obstruction: challenges and. J
ProgPaediatr Urol. 2014 Jan;17(1):24-7.

19. Pastore V, Aceto G, Niglio F, Basile A, Cocomazzi R,
Faticato MG, et al. Clinical characteristics and management
of children with ureteropelvic junction obstruction and severe vesicoureteral reflux: preliminary results. Annals of Pediatric Surgery. 2013;9(3):114-6.
https://doi.org/10.1016/j.aps.0000430523.83127.93

20. Weitz M, Schmidt M. To screen or not to screen for
vesicoureteral reflux in children with ureteropelvic junction
obstruction: a systematic review. European journal of
pediatrics. 2017 Jan;176(1):1-9.
https://doi.org/10.1007/s00431-016-2818-3
PMid:27888411

21. Han W, Song H, Zhang W, Sun N, Huang C. The
experience of diagnosis and management in coexisting
ureteropelvic junction obstruction and nonreflux-
megaureter. Chinese Journal of Urology. 2017 Jan
1;38(2):95-8.

22. Hegde S, Menon P, Rao KL. Co-existing pediatric
ureteropelvic junction obstruction and vesicoureteric
reflux: Prevalence and implications. Journal of Indian
Association of Pediatric Surgeons. 2019 Apr;24(2):109.
https://doi.org/10.4103/jiaps.JIAPS_37_18
PMid:31105396 PMCid:PMC6417044