Association between coffee consumption and all-sites cancer incidence and mortality

Junya Sado,1 Tetsuhisa Kitamura,1 Yuri Kitamura,1 Tomotaka Sobue,1 Yoshikazu Nishino,2 Hideo Tanaka,3 Tomio Nakayama,4 Ichiro Tsuji,2 Hidemi Ito,2 Takaichiro Suzuki,4 Kota Katanoda,6 and Suketami Tominaga2 for the Three-Prefecture Cohort Study Group

Key words Cancer incidence, cancer mortality, coffee consumption, cohort, epidemiology

Correspondence
Yuri Kitamura, Division of Environmental Medicine and Population Sciences, Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan.
Tel: +81-6-6879-3922; Fax: +81-6-6879-3929; E-mail: ytkitamura@envi.med.osaka-u.ac.jp

Funding information Ministry of Education, Culture, Sports, Science and Technology of Japan.

Received April 17, 2017; Revised July 17, 2017; Accepted July 21, 2017

Cancer Sci 108 (2017) 2079–2087
doi: 10.1111/cas.13328

Coffee is one of the most widely consumed beverages and almost 40% of adults drink coffee daily in Japan. Coffee contains a number of bioactive compounds, and its anti-inflammatory effect, mediated by caffeine and chlorogenic acid, is well recognized. Research indicates that regular coffee consumption over a lifetime may have a beneficial effect for health.

The International Agency for Research on Cancer Monograph working group has been discussing the association between coffee consumption and carcinogenicity, but the association of coffee consumption with all-sites cancer mortality remains controversial. Indeed, preceding meta-analysis or cohort studies have reported that coffee consumption was associated with both reduced risk and non-increased risk of all-sites cancer mortality. However, its association with the risk of site-specific cancer incidence, such as breast cancer, lung cancer and respiratory diseases, has been previously described. Briefly, the study areas were urban/rural areas in Miyagi Prefecture, Aichi Prefecture, and Osaka Prefecture, Japan. The study participants were all residents aged ≥40 years. A total of 117 029 self-administered questionnaires in sealed envelopes were distributed by hand to target individuals in cooperation with the municipal government in each area between 1983 and 1985. The total number of respondents was 104 567; of these, 100 629 were eligible subjects, excluding participants who duplicatedly answered a questionnaire or did not provide details of their name/sex/date of birth, as

The Three-Prefecture Cohort Study was originally a prospective observational study that targeted almost 100 000 inhabitants with a 15-year follow-up. We evaluated the association of coffee consumption with all-sites cancer incidence and mortality. Our hypothesis was that high frequent coffee consumption was associated with a reduced risk of all-sites cancer incidence and mortality among the Japanese population.

Materials and Methods

Study design, settings, and patients. The Three-Prefecture Cohort Study was originally a prospective observational study to assess the long-term effects of air pollution on mortality from lung cancer and respiratory diseases. Details of this target population and baseline survey method have been previously described. Briefly, the study areas were urban/rural areas in Miyagi Prefecture, Aichi Prefecture, and Osaka Prefecture, Japan. The study participants were all residents aged ≥40 years. A total of 117 029 self-administered questionnaires in sealed envelopes were distributed by hand to target individuals in cooperation with the municipal government in each area between 1983 and 1985. The total number of respondents was 104 567; of these, 100 629 were eligible subjects, excluding participants who duplicatedly answered a questionnaire or did not provide details of their name/sex/date of birth, as

© 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
investigators could not follow the outcome data. We undertook this study in accordance with the Declaration of Helsinki and ethical guidelines for epidemiological research. The study was approved by the institutional review board of the National Cancer Center (Tokyo, Japan) and the Ethics Committee of Osaka University School of Medicine (Osaka, Japan). The agreement or permission for the baseline survey involving municipality residents was obtained from the municipal government with collaborators. Response to the questionnaire was deemed to represent agreement to participate in the survey.

In this study, we defined the study cohort as individuals aged 40–79 years at baseline, with a follow-up period ≥1 day, and providing information on frequency of coffee consumption. We excluded the following: 19 persons whose date of beginning of follow-up was unified in each area after various dates of individual response to the questionnaire, 3568 persons aged ≥80 years, and 14,233 persons who did not answer the question on coffee consumption. Finally, our study population consisted of 82,809 persons (39,685 men and 43,124 women; Fig. 1).

Follow-up. The follow-up period was defined as 15 years from the baseline survey in each study area. Vital status, date of death, and date of move from the study area were confirmed from the baseline survey in each study area. Vital status, date of death, and date of move from the study area were confirmed from the baseline survey to the first event occurring out of the following: date of death, date of move-out from the study area, or the end of follow-up. For cancer incidence rates, date of diagnosis of the first primary cancer was added to the above list. A multivariate Cox proportional hazard regression model was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between coffee consumption and all-sites cancer incidence/mortality.

The model was adjusted for potential confounders as follows: age group (40–49, 50–59, 60–69, and 70–79 years); area (Miyagi Prefecture rural, Miyagi Prefecture urban, Aichi Prefecture rural, Aichi Prefecture urban, Osaka Prefecture rural, and Osaka Prefecture urban); body mass index (men: 14.02–20.19, 20.20–21.79, 21.80–23.14, 23.15–24.79, and 24.80–39.76 kg/m², or unknown; women: 14.02–19.99, 20.00–24.19, 21.50–23.00, 23.07–24.99, and 25.00–40.00 kg/m², or unknown); history of smoking (never, past, current [0–19 pack-years, 20–39 pack-years, and ≥40 pack-years, or unknown]); frequency of alcohol consumption (never, past, occasional, or almost every day, and unknown); rice consumption (0–1, 2, 3, 4, 5, and 6–25 cups/day, or unknown); consumption of food items, such as bread, meat, fish, egg, milk, green and yellow vegetables, non-green and non-yellow vegetables, fruit, miso soup, pickled vegetables (almost never, 1–2 times/month, 1–2 times/week, 3–4 times/week, almost every day, or unknown); beverages, such as black tea or green tea (almost never, sometimes, 1–2, 3–4, and ≥5 cups/day, or unknown); job type (professional, technical, civil, managerial, clerical, sales, agricultural, forestry and fisheries, construction, transport and communications, craftsman, production process personnel, laborer, security personnel, service personnel, unemployed, or unknown); history of smoking (current, past, never, or unknown); history of hypertension (current, past, never, or unknown); history of diabetes (current, past, never, or unknown); history of stroke (current, past, never, or unknown); and history of heart disease (current, past, never, or unknown). Subgroup analysis according to smoking history (current, never) was carried out using the multivariable Cox proportional hazard model for all-sites cancer incidence or mortality, to check the effect of residual confounding and/or the effect modification by smoking. To evaluate reverse causation, we estimated the risk of mortality excluding participants who died within 3 years from baseline. The effect modification was evaluated by P-values for the association with smoking status. In addition, we evaluated the association between all-sites cancer and coffee consumption frequency in each prefecture as a sensitivity analysis. All analyses were undertaken with STATA version 13 MP (Stata Corp., College Station, TX, USA) and the statistical significance level was set at 0.05.

Results

Tables 1 and 2 show baseline characteristics of the study cohort by coffee consumption frequency and sex. Compared with men who did not drink coffee, those who consumed high amounts of coffee were more likely to be young, smoke...
cigarettes, and eat foods such as bread and meat; they were less likely to be current drinkers of alcoholic beverages, eat foods such as rice, fish, green and yellow vegetables, non-green and non-yellow vegetables, and miso soup, and drink beverages such as milk and green tea. Similar trends were observed among women. In addition, Table S2 shows the coffee consumption frequency by prefecture and sex. In both sexes, the proportion of participants with coffee consumption ≥5 cups/day was high in Osaka Prefecture and the proportion of participants who never consumed coffee was high in Miyagi Prefecture.

Table 3 shows HRs of all-sites cancer incidence by coffee consumption frequency and sex. The risk of all-sites cancer incidence significantly decreased with increasing coffee consumption frequency among men (P for trend < 0.001) and women (P for trend = 0.020). The adjusted HR was significantly lower among men with coffee consumption ≥5 cups/day than among those with who never consumed coffee (adjusted HR, 0.74 [95% CI, 0.62–0.88]). The adjusted HRs were marginally lower in women with coffee consumption ≥5 cups/day than among those who never consumed coffee (adjusted HR, 0.76 [95% CI, 0.58–1.02]). Table S3 shows HRs of all-sites cancer incidence by coffee consumption frequency and sex in each prefecture. The risk of all-sites cancer incidence tended to be lower in the coffee consumption group than in the non-coffee consumption group in each prefecture.

The adjusted HRs of all-sites cancer mortality rates by coffee consumption frequency and sex are presented in Table 4. An inverse association was observed between coffee consumption frequency and all-sites cancer mortality rates among men (P for trend < 0.001) and women (P for trend = 0.047). In men with high frequency of coffee consumption, a lower HR was observed for all-sites cancer mortality (adjusted HR for ≥5 cups/day vs never, 0.71 [95% CI, 0.58–0.88]). In women, adjusted HRs of all-sites cancer mortality were marginally lower among those with a coffee consumption ≥5 cups/day than among those who never consumed coffee (adjusted HR, 0.77 [95% CI, 0.54–1.10]). In addition, in an analysis to
exclude subjects who died within 3 years from baseline, a similar inverse association was observed between coffee consumption frequency and all-sites cancer mortality among men (P for trend = 0.002) but not among women (P for trend = 0.299).

For subgroup analysis by smoking status, the adjusted HRs between coffee consumption frequency and all-sites cancer incidence, according to sex and smoking status, are presented in Table 5. Among current smokers of both sexes, increased coffee consumption frequency was significantly associated with a reduced risk of all-sites cancer incidence (P for trend = 0.002); however, this association was not found in men or women with no history of smoking. The interaction between coffee consumption frequency and smoking status was statistically significant for women (P for interaction = 0.025).

The adjusted HRs between coffee consumption frequency and all-sites cancer mortality by sex and smoking status are also shown in Table 6. Higher coffee consumption frequency was significantly associated with lower all-sites cancer mortality among current male smokers (P for trend = 0.005), but no significant association was found for men with no history of smoking. Higher coffee consumption frequency in women was significantly associated with lower all-sites cancer mortality among women with current smoking (P for trend = 0.003), but was not associated with lower all-sites cancer mortality among women who never smoked. The interaction between coffee consumption frequency and smoking status was marginally significant for women (P for interaction = 0.055).

Discussion
In the Three-Prefecture Cohort Study, there was an inverse association between coffee consumption frequency and the risk of all-sites cancer incidence and mortality, among men and women. The association between a greater frequency of coffee consumption and reduced all-sites cancer incidence was similar to the results from a previous meta-analysis of 40 prospective studies, with a pooled HR of 0.71 (95% CI: 0.67-0.76) for a one-cup increase in coffee consumption per day. However, the association was stronger among men than among women, with HRs of 0.63 (95% CI: 0.56-0.71) and 0.78 (95% CI: 0.65-0.94) for men and women, respectively. The association was also stronger among current smokers than among never smokers, with HRs of 0.58 (95% CI: 0.48-0.71) and 0.79 (95% CI: 0.62-0.99) for current smokers and never smokers, respectively. The association was weaker among men who never smoked than among current smokers, with HRs of 0.88 (95% CI: 0.72-1.07) and 0.71 (95% CI: 0.63-0.80) for men who never smoked and current smokers, respectively. The association was stronger among women who never smoked than among current smokers, with HRs of 0.62 (95% CI: 0.48-0.79) and 0.53 (95% CI: 0.41-0.68) for women who never smoked and current smokers, respectively. The association was weaker among men with a history of smoking than among never smokers, with HRs of 0.81 (95% CI: 0.65-1.01) and 0.67 (95% CI: 0.55-0.82) for men with a history of smoking and never smokers, respectively. The association was stronger among women with a history of smoking than among never smokers, with HRs of 0.64 (95% CI: 0.50-0.82) and 0.49 (95% CI: 0.39-0.61) for women with a history of smoking and never smokers, respectively. The association was weaker among men with a history of smoking than among current smokers, with HRs of 0.79 (95% CI: 0.67-0.94) and 0.71 (95% CI: 0.63-0.80) for men with a history of smoking and current smokers, respectively. The association was stronger among women with a history of smoking than among current smokers, with HRs of 0.56 (95% CI: 0.43-0.74) and 0.53 (95% CI: 0.41-0.68) for women with a history of smoking and current smokers, respectively.

The lack of association between coffee consumption frequency and all-sites cancer mortality among never smokers is consistent with previous studies, which have shown a decreased risk of all-sites cancer mortality among current smokers but not among never smokers. The weaker association among men with a history of smoking than among current smokers is consistent with previous studies, which have shown a decreased risk of all-sites cancer mortality among current smokers but not among men with a history of smoking. The stronger association among women with a history of smoking than among current smokers is consistent with previous studies, which have shown a decreased risk of all-sites cancer mortality among current smokers but not among women with a history of smoking.

The weaker association among men who never smoked than among current smokers is consistent with previous studies, which have shown a decreased risk of all-sites cancer mortality among current smokers but not among men who never smoked. The stronger association among women who never smoked than among current smokers is consistent with previous studies, which have shown a decreased risk of all-sites cancer mortality among current smokers but not among women who never smoked. The weaker association among men with a history of smoking than among never smokers is consistent with previous studies, which have shown a decreased risk of all-sites cancer mortality among never smokers but not among men with a history of smoking. The stronger association among women with a history of smoking than among never smokers is consistent with previous studies, which have shown a decreased risk of all-sites cancer mortality among never smokers but not among women with a history of smoking.

The stronger association among women than among men is consistent with previous studies, which have shown a decreased risk of all-sites cancer mortality among women but not among men. The stronger association among men with a history of smoking than among never smokers is consistent with previous studies, which have shown a decreased risk of all-sites cancer mortality among never smokers but not among men with a history of smoking. The stronger association among women with a history of smoking than among never smokers is consistent with previous studies, which have shown a decreased risk of all-sites cancer mortality among never smokers but not among women with a history of smoking.

The weaker association among men who never smoked than among current smokers is consistent with previous studies, which have shown a decreased risk of all-sites cancer mortality among current smokers but not among men who never smoked. The stronger association among women who never smoked than among current smokers is consistent with previous studies, which have shown a decreased risk of all-sites cancer mortality among current smokers but not among women who never smoked. The weaker association among men with a history of smoking than among never smokers is consistent with previous studies, which have shown a decreased risk of all-sites cancer mortality among never smokers but not among men with a history of smoking. The stronger association among women with a history of smoking than among never smokers is consistent with previous studies, which have shown a decreased risk of all-sites cancer mortality among never smokers but not among women with a history of smoking.

The stronger association among women than among men is consistent with previous studies, which have shown a decreased risk of all-sites cancer mortality among women but not among men. The stronger association among men with a history of smoking than among never smokers is consistent with previous studies, which have shown a decreased risk of all-sites cancer mortality among never smokers but not among men with a history of smoking. The stronger association among women with a history of smoking than among never smokers is consistent with previous studies, which have shown a decreased risk of all-sites cancer mortality among never smokers but not among women with a history of smoking.
Table 3. Hazard ratios (HR) and 95% confidence intervals (CI) of all-sites cancer incidence according to coffee consumption category and sex in a Japanese cohort

	No Coffee (Ref)	1–2 cups/day	3–4 cups/day	≥5 cups/day	P-value for trend	
	HR (95% CI)	P-value	HR (95% CI)	P-value	HR (95% CI)	P-value
Men						
Participants						
(n = 39,480)						
Person-years						
(n = 411,341)						
Cases						
(n = 4244)						
Model 1 adjusted HRs (95% CI)	0.88 (0.80–0.97)	0.009	0.91 (0.83–1.00)	0.046	0.90 (0.79–1.01)	0.074
Model 2 adjusted HRs (95% CI)	0.89 (0.81–0.99)	0.031	0.86 (0.78–0.96)	0.006	0.83 (0.73–0.95)	0.005
Women						
Participants						
(n = 42,913)						
Person-years						
(n = 472,433)						
Cases						
(n = 4244)						
Model 1 adjusted HRs (95% CI)	1.02 (0.92–1.13)	0.682	0.93 (0.83–1.04)	0.184	1.02 (0.85–1.21)	0.848
Model 2 adjusted HRs (95% CI)	1.03 (0.92–1.15)	0.642	0.89 (0.79–1.01)	0.083	0.95 (0.79–1.15)	0.613

Model 1, adjusted for age-group, sex, and region. Model 2, adjusted for age-group, sex, region, history of hypertension, history of diabetes mellitus, body mass index, smoking status, alcohol drinking, type of job, rice consumption, bread consumption, meat consumption, fish consumption, egg consumption, milk consumption, green and yellow vegetable consumption, non-green and non-yellow vegetable consumption, fruit consumption, miso soup consumption, pickled vegetable, black tea consumption, and green tea consumption. Ref., reference.

Table 4. Hazard ratios (HR) and 95% confidence interval (CI) of all-sites cancer death according to coffee consumption frequency and sex in a Japanese cohort

	No Coffee (Ref)	1–2 cups/day	3–4 cups/day	≥5 cups/day	P-value for trend	
	HR (95% CI)	P-value	HR (95% CI)	P-value	HR (95% CI)	P-value
Men						
Participants						
(n = 39,685)						
Person-years						
(n = 461,699)						
Cases						
(n = 4244)						
Model 1 adjusted HRs (95% CI)	0.82 (0.74–0.91)	<0.001	0.83 (0.74–0.92)	0.001	0.85 (0.74–0.98)	0.026
Model 2 adjusted HRs (95% CI)	0.85 (0.76–0.96)	0.006	0.79 (0.70–0.90)	<0.001	0.78 (0.67–0.92)	0.002
Model 3 adjusted HRs (95% CI)	0.85 (0.75–0.96)	0.010	0.80 (0.70–0.91)	0.001	0.77 (0.65–0.91)	0.003
Women						
Participants						
(n = 43,124)						
Person-years						
(n = 527,319)						
Cases						
(n = 4244)						
Model 1 adjusted HRs (95% CI)	0.98 (0.86–1.11)	0.777	0.92 (0.80–1.06)	0.268	1.03 (0.82–1.30)	0.781
Model 2 adjusted HRs (95% CI)	0.99 (0.86–1.14)	0.918	0.86 (0.74–1.01)	0.070	0.93 (0.73–1.18)	0.558
Model 3 adjusted HRs (95% CI)	0.98 (0.84–1.15)	0.847	0.87 (0.77–1.08)	0.295	0.96 (0.74–1.25)	0.758

Model 1, adjusted for age-group, sex, and region. Model 2, adjusted for age-group, sex, region, history of hypertension, history of diabetes mellitus, body mass index, smoking status, alcohol drinking, type of job, rice consumption, bread consumption, meat consumption, fish consumption, egg consumption, milk consumption, green and yellow vegetable consumption, non-green and non-yellow vegetable consumption, fruit consumption, miso soup consumption, pickled vegetable, black tea consumption, and green tea consumption. Model 3, adjusted for age-group, sex, region, history of hypertension, history of diabetes mellitus, body mass index, smoking status, alcohol drinking, type of job, rice consumption, bread consumption, meat consumption, fish consumption, egg consumption, milk consumption, green and yellow vegetable consumption, non-green and non-yellow vegetable consumption, fruit consumption, miso soup consumption, pickled vegetable, black tea consumption, and green tea consumption. Men and women who had all-cause death within the first 3 years of follow-up were excluded. Ref., reference.
Table 5. Subgroup analysis of associations between coffee consumption and all-sites cancer incidence in a Japanese cohort

	Never smoker	Sometimes	1-2 cups/day	3-4 cups/day	≥5 cups/day	P for trend	P for interaction	
			HR 95% CI	P-value	HR 95% CI	P-value	HR 95% CI	P-value
Men Never smoker								
Cases (n = 438), n	92	193	1.04 (0.81–1.33)	0.778	1.01 (0.76–1.33)	0.970	0.88 (0.55–1.39)	0.579
Model 1 adjusted HRs (95% CI)	Ref.							
Model 2 adjusted HRs (95% CI)	Ref.							
Current smoker								
Cases (n = 2723), n	349	793	1.14 (0.87–1.51)	0.347	1.15 (0.84–1.57)	0.384	1.03 (0.63–1.67)	0.917
Model 1 adjusted HRs (95% CI)	Ref.							
Model 2 adjusted HRs (95% CI)	Ref.							
Women Never smoker								
Cases (n = 1838), n	407	752	1.05 (0.93–1.19)	0.420	0.95 (0.83–1.08)	0.415	1.09 (0.88–1.35)	0.436
Model 1 adjusted HRs (95% CI)	Ref.							
Model 2 adjusted HRs (95% CI)	Ref.							
Current smoker								
Cases (n = 356), n	68	103	0.86 (0.63–1.18)	0.358	0.80 (0.59–1.09)	0.159	0.66 (0.43–1.02)	0.060
Model 1 adjusted HRs (95% CI)	Ref.							
Model 2 adjusted HRs (95% CI)	Ref.							

Model 1, adjusted for age-group, sex, and region; Model 2, adjusted for age-group, sex, region, history of hypertension, history of diabetes mellitus, body mass index, smoking status, alcohol drinking, type of job, rice consumption, bread consumption, meat consumption, fish consumption, egg consumption, milk consumption, green and yellow vegetable consumption, non-green and non-yellow vegetable consumption, fruit consumption, miso soup consumption, pickled vegetable, black tea consumption, and green tea consumption. CI, confidence interval; HR, hazard ratio; Ref., reference.
Table 6. Subgroup analysis of associations between consumption frequency and all-sites cancer death in a Japanese cohort

Smoking status	Men	Women												
	Never	Sometimes	1-2 cups/day	3-4 cups/day	≥5 cups/day	P for trend	P for interaction							
	HR	95% CI	P-value	HR	95% CI	P-value	HR	95% CI	P-value					
Never smoker	65	137	0.824	0.97	0.69-1.36	0.862	1.01	0.58-1.76	0.975	0.84	0.39-1.84	0.666	0.712	
Case (n=299), n	Model 1 adjusted HRs (95% CI) Ref.	1.03	0.77-1.39	<0.001	0.97	0.69-1.36	0.862	1.01	0.58-1.76	0.975	0.84	0.39-1.84	0.666	0.712
Current smoker	743	1553	1.15	0.78-1.69	0.479	1.26	0.70-2.28	0.436	1.01	0.44-2.31	0.980	0.644		
Case (n=4788), n	Model 1 adjusted HRs (95% CI) Ref.	0.76	0.66-0.88	<0.001	0.73	0.63-0.84	<0.001	0.75	0.63-0.89	0.001	0.67	0.53-0.85	0.001	<0.001
Model 2 adjusted HRs (95% CI) Ref.	0.82	0.70-0.96	0.011	0.77	0.65-0.90	0.001	0.80	0.67-0.97	0.020	0.69	0.54-0.88	0.003	0.005	
Never smoker	278	437	0.857	0.76-1.08	0.254	1.16	0.88-1.53	0.301	1.13	0.74-1.72	0.565	0.950		
Case (n=1089), n	Model 1 adjusted HRs (95% CI) Ref.	0.99	0.85-1.15	0.857	0.90	0.76-1.08	0.254	1.16	0.88-1.53	0.301	1.13	0.74-1.72	0.565	0.950
Current smoker	285	285	1.18	0.88-1.59	0.259	1.18	0.88-1.59	0.259	1.12	0.72-1.72	0.618	0.789		
Case (n=806), n	Model 1 adjusted HRs (95% CI) Ref.	1.05	0.88-1.24	0.591	0.93	0.77-1.14	0.501	1.18	0.88-1.59	0.259	1.12	0.72-1.72	0.618	0.789
Model 2 adjusted HRs (95% CI) Ref.	0.93	0.65-1.32	0.674	0.83	0.58-1.18	0.293	0.69	0.41-1.17	0.168	0.52	0.24-1.11	0.090	0.041	
Model 2 adjusted HRs (95% CI) Ref.	0.89	0.59-1.32	0.555	0.68	0.45-1.02	0.064	0.56	0.32-0.99	0.045	0.41	0.18-0.91	0.028	0.003	

Model 1, adjusted for age-group, sex, and region. Model 2, adjusted for age-group, sex, region, history of hypertension, history of diabetes mellitus, history of stroke, history of heart disease, body mass index, smoking status, alcohol drinking, type of job, rice consumption, bread consumption, meat consumption, fish consumption, egg consumption, milk consumption, green and yellow vegetable consumption, non-green and non-yellow vegetable consumption, fruit consumption, miso soup consumption, pickled vegetable, black tea consumption, and green tea consumption. CI, confidence interval; HR, hazard ratio; Ref., reference.
cohort studies, suggesting that coffee drinking had no harmful effect and that coffee consumption frequency was inversely associated with the risk of all-sites cancer. Our results showing the inverse association between coffee consumption frequency and all-sites cancer incidence and mortality provide valuable information for the prevention of cancer incidence and mortality in the general Japanese population. Importantly, our results also indicated that coffee consumption did not negatively affect cancer incidence in the Japanese population.

Our results showed that the risk of all-sites cancer mortality decreased among men and women who had a higher frequency of coffee consumption. However, the association between coffee consumption frequency and all-sites cancer mortality may differ by the cancer site. For example, coffee consumption frequency has been reported to be a protective factor for liver cancer. Therefore, we also undertook a subgroup analysis excluding liver cancer incidence and mortality. The results for all-sites cancer mortality among men and all-sites cancer mortality among women were similar to those in model 2 (Table 4). In contrast, the International Agency for Research on Cancer Monograph working group reported that coffee was classified as “possibly carcinogenic to humans” (Group 2B) in 1991, but it was evaluated as unclassifiable as to its carcinogenicity to humans (Group 3) in 2016. Thus, the balance of benefit and carcinogenicity by coffee consumption should be considered. The conclusion regarding the effect of coffee consumption on all-site cancer incidence and mortality would be also confirmed by further meta-analysis and pooled analysis using large-scale cohorts including our results.

The potential mechanism underlying the effect of coffee consumption on cancer incidence and mortality could be partly explained by the fact that coffee contains high concentrations of chlorogenic acid, which might have a beneficial effect on inflammatory diseases. An increase in plasma antioxidant levels and a reduction in the biomarkers of oxidative stress have been reported after drinking coffee. Long-term inflammation in the body could be attributable to carcinogens, and high frequency of coffee consumption could decrease the risk of all-sites cancer incidence by inhibiting inflammation. Furthermore, in a previous study, the study subjects who did not consume coffee had a higher proportion of history of hypertension or diabetes than those with a high coffee intake. Therefore, the baseline health status of participants who never consumed coffee could be worse than that of participants with a high coffee intake, and the effect of coffee consumption may be greater among heavy coffee drinkers. However, subgroup analysis, excluding cases of death occurring within 3 years from baseline, indicated that coffee consumption frequency was, nevertheless, significantly associated with a reduced risk of all-sites cancer mortality among men.

We carried out a subgroup analysis according to smoking status to determine any residual confounding by smoking. If smoking status were a residual confounder, the risk reduction with coffee consumption would be greater among non-smokers than among smokers. However, there was strong inverse effect on all-sites cancer incidence among smokers, and there was weak inverse effect or no effect on all-sites cancer incidence among never smokers. A potential explanation for this interaction is the following mechanism. Caffeine stimulates the production of cytochrome P450 enzymes, such as CYP1A2 or NAT2 in the liver, and these enzymes increase the metabolic activation of carcinogens, such as polycyclic aromatic hydrocarbons, in cigarette smoking. Therefore, caffeine may modify the increased all-sites cancer incidence risk caused by smoking. In addition, other factors, including sex, dietary components of food, beverages, and fitness level, also interact with caffeine metabolism. Although we could not explain the detailed mechanisms from our results, bioactive components as presented above may suggest the possibility of a strong decreasing effect among smokers.

Limitations. This study has several limitations. First, the three prefectures did not use the same questionnaire to assess coffee consumption, and the estimated coffee consumption would be higher than reported because the categories were combined. In the sensitivity analysis by prefecture, we also assessed the difference in the risk between prefectures; the risk of all-sites cancer incidence tended to be lower in the coffee consumption group than in the non-coffee consumption group in each prefecture. Thus, this difference by prefecture was small but the category combination was a limitation. Second, this study followed participants until 2000 and the lifestyles of this study might differ from current lifestyles in 2016. However, coffee consumption in Japan has remained at the same level since 2000. Finally, we could not adjust for unknown confounding factors affecting the association between coffee consumption and cancer incidence and mortality.

In this cohort, increasing coffee consumption resulted in a decreased risk of all-sites cancer incidence and mortality.

Acknowledgements

We sincerely thank the staff within each study area for their time and efforts in the collection and processing of data. We also express our gratitude to all study participants. This study was supported by a Grant-in-Aid for Scientific Research (25460752) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Disclosure Statement

The authors have no conflict of interest.

References

1 Freedman ND, Park Y, Abnet CC et al. Association of coffee drinking with total and cause-specific mortality. *N Engl J Med* 2012; 366: 1981–90.

2 Saito E, Inoue M, Sawada N et al. Association of coffee intake with total and cause-specific mortality in a Japanese population: the Japan Public Health Center-based Prospective Study. *Am J Clin Nutr* 2015; 101: 1029–37.

3 Tamakoshi A, Lin Y, Kawado M et al. Effect of coffee consumption on all-cause and total cancer mortality: findings from the JACC study. *Eur J Epidemiol* 2011; 26: 285–93.

4 Gomez-Ruiz JA, Leake DS, Ames JM. In vitro antioxidant activity of coffee compounds and their metabolites. *J Agric Food Chem* 2007; 55: 6962–9.

5 O’Keefe JH, Bhatti SK, Patil HR et al. Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all-cause mortality. *J Am Coll Cardiol* 2013; 62: 1043–51.

6 Loomis D, Gayton KZ, Grosse Y et al. Carcinogenicity of drinking coffee, mate, and very hot beverages. *Lancet Oncol* 2016; 17: 877–8.

7 Sugiyama K, Kuriyama S, Akhter M et al. Coffee consumption and mortality due to all causes, cardiovascular disease, and cancer in Japanese women. *J Nutr* 2010; 140: 1007–13.

8 Lutfi Field E, Freedman ND, Gaudio B et al. Association of coffee consumption with overall and cause-specific mortality in a large US Prospective Cohort Study. *Am J Epidemiol* 2015; 182: 1010–22.

9 Gardner H, Rundek T, Wright CB et al. Coffee and tea consumption are inversely associated with mortality in a multiethnic urban population. *J Nutr* 2013; 143: 1299–308.
Table S3. Hazard ratios (HR) and 95% confidence intervals (CI) of all-sites cancer according to coffee consumption category and sex in three Japanese prefectures.