Effects of methanandamide on human periodontal ligament cells

CURRENT STATUS: UNDER REVISION

BMC Oral Health ■ BMC Series

Fengqiu Zhang
Beijing Stomatological Hospital

Burcu Özdemir
Gazi Universitesi

Phuong Quynh Nguyen
Medizinische Universität Wien

Oleh Andrukhov trail.Oleh.Andrukhov@meduniwien.ac.at
University Clinic of Dentistry, Vienna
Corresponding Author
ORCiD: 0000-0002-0485-2142

Xiaohui Rausch-Fan
Medizinische Universität Wien

DOI: 10.21203/rs.2.11614/v1

SUBJECT AREAS
Dentistry

KEYWORDS
methanandamide, cell proliferation, cytokines, chemokines, periodontal ligament
Abstract

Background

Endocannabinoid system is involved in the regulation of periodontal tissue homeostasis. Synthetic cannabinoid methanandamide (Meth-AEA) has an improved stability and affinity to cannabinoid receptors compared to its endogenous analogue anandamide. In the present study, we investigated the effect of methanandamide on the production of pro-inflammatory mediators in primary human periodontal ligament cells (hPdLCs).

Methods

hPdLCs were treated with Meth-AEA for 24 h and resulting production of interleukin (IL)-6, IL-8, and monocyte chemotactic protein (MCP)-1 was measured under normal condition as well as under inflammatory conditions mimicked by the presence of Porphyromonas gingivalis lipopolysaccharide (LPS). Additionally, the effect of Meth-AEA on the proliferation/viability of hPdLCs was measured by MTT method.

Results

Methanandamide at concentration of 10 µM significantly inhibited P. gingivalis LPS induced production of IL-6, IL-8, and MCP-1. Basal production of IL-6 and IL-8 was slightly enhanced by 10 µM Meth-AEA. No effect of Meth-AEA on the basal production of MCP-1 was observed. Proliferation/viability of hPdLCs was not affected by Meth-AEA in concentrations up to 10 µM and was significantly inhibited by 30 µM Meth-AEA.

Conclusion

Our study supports the influence of cannabinoid system on the inflammatory processes in periodontal tissue and its potential involvement in the progression of periodontal disease.

Background

Periodontitis is a plaque biofilm-induced chronic inflammatory disease, which affects teeth
supporting structures including the gingival tissue, periodontal ligament and alveolar bone [1]. Clinical signs of periodontitis are gingival inflammation, periodontal pocket formation, periodontal tissue destruction and in advanced cases periodontitis might lead to the alveolar bone resorption and tooth loss [2]. Gram negative anaerobic bacteria Porphyromonas gingivalis (P. gingivalis) is thought to be one of the primary etiological agents of periodontitis [3,4]. P. gingivalis possess multiple virulence factors that could either induce periodontal tissue inflammation or subvert host immune system [4,5]. Lipopolysaccharide (LPS) is one of the most important virulence factors of P. gingivalis [6,7]

The endocannabinoid (EC) system consists of endocannabinoids and cannabinoid receptor proteins. Endocannabinoids are a family of endogeneous lipid neurotransmitter which activates cannabinoid receptors. Several endocannabinoids have been discovered, the most characterized ones are the anandamide (AEA) and 2-arachidonoylglycerol (2-AG) [8], which might be produced by various cells like osteoblasts, osteoclasts, and endothelial cells [9,10]. Cannabinoid receptors a transmembrane G-protein coupled receptor family. The major endocannabinoid receptors cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2) are expressed in various cells and tissues and particularly in dental tissues [11]. EC system is thought to regulate several brain processes; however, actual studies suggest its involvement in the regulation of bone physiology and immune response [12,13].

Since endocannabinoid system is involved in the regulation of bone formation and immune response, several studies of last years investigated a mutual role of this system in the homeostasis of periodontal tissue under healthy and inflammatory conditions. Both AEA and 2-AG are detectable in gingival crevicular fluid and their level seem to be increased in periodontally diseased individuals [14,15]. There are some controversies about the
changes in the expression of CB1 and CB2 receptors in periodontitis. One study suggests that the expression of CB1 and CB2 is upregulated under pathological conditions[14]. In contrast, other study shows that bacterial inflammation results in the decrease of CB1 expression and the increase of CB2 expression[16]. Activation of EC system promotes survival and neuronal differentiation of periodontal ligament stem cells [17]. However, the exact role of EC system into progression of periodontal disease still remains unknown.

A mutual role of EC system in homeostasis of periodontal tissue is investigated by several experimental studies. In vitro studies show that anandamide stimulates proliferation of human gingival fibroblasts[15] and diminish cytokine production by these cells in response to stimulation with P. gingivalis LPS [14]. Our recent study shows that AEA and 2-AG have different effect on P. gingivalis LPS induced production of interleukin (IL)-6, IL-8, and monocyte chemoattractant protein (MCP)-1[18]. Particularly, P. gingivalis LPS induced response was inhibited by AEA and enhanced by 2-AG [18]. In vivo study using ligature periodontitis model in rat shows that the local application of AEA decreases the content of tumor necrosis factor alpha and IL-1β in gingival tissue [19]. The effect of AEA was abolished by simultaneous application of CB1 and CB2 inhibitors [19].

One of the major problems of application of EC, and particularly AEA, in research is their low aqueous stability, which might doubt the quality of obtained results [20]. This problem can be solved by development of synthetic analogues of ECs [21]. Methanandamide (Meth-AEA), a synthetic analogue of AEA, has a four-fold higher affinity to receptor than AEA itself and additionally exists a high resistance to enzymatic hydrolysis [22]. In comparison with AEA, Meth-AEA is suggested to be more selective for CB1 receptor and less selective for CB2 receptor [23]. Compared to ECs, the information about the effect of Meth-AEA on periodontal tissue is very limited. Only one report investigated the effect of topical application of Meth-AEA in LPS induced periodontitis model in rats to date [24]. This study
shows that Meth-AEA significantly diminishes the alveolar bone loss in this periodontitis model. However, the ability of Meth-AEA to influence the inflammatory response in human cells of periodontium is still unknown. Therefore, in the present study we investigated the effect of Meth-AEA on the basal and *P. gingivalis* LPS induced production of some pro-inflammatory mediators by primary human periodontal ligament cells (hPdLCs).

Methods

Cell culture and reagents

hPdLCs were isolated from periodontal ligament tissue obtained from wisdom molars extracted for orthodontic reason in healthy individuals similarly to method described earlier[25]. All donors were systematically healthy, aged from 18 to 22 y.o. Periodontal ligament tissue was scraped from the teeth root surface with a scalpel, cut into small pieces and placed into Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% fetal bovine serum (FBS), streptomycin (50 µg/ml) and penicillin (100 U/ml) under humidified air atmosphere of 5% CO$_2$ at 37°C. Outgrowing cells were collected and further grown in DMEM medium. hPdLCs between the third and sixth passages were used in the experiments.

Commercially available LPS from *P. gingivalis* (Invivogene, San Diego, CA, USA), (R)-(+)-Meth-AEA (Tocris Bristol, UK), and human soluble CD14 (Sigma, St. Louis, MO, USA) were used in the present study.

Cell proliferation/viability assay

Cell proliferation/viability was measured by MTT method as described in our previous study [18]. hPdLCs were seeded in 24 well plate at a density of 2×10^4 cells in 500µL of DMEM supplemented with 10% FBS. After 24 h, the media were replaced with DMEM
supplemented with 1% FBS and containing meth-AEA at concentrations of 0.03, 0.1, 0.3, 1, 3, 10, 30μM. The hPdLCs were treated with different meth-AEA concentrations for 24 h, untreated cells were used as a control. After treatment with Meth-AEA, 100 μl of MTT reagent (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, Sigma, St. Louis, MO, USA) were added to each well and plates were incubated at 37°C for 2 h. After incubation, media were discarded, 500 μl of dimethylsulfoxid were added into each well to solve formed formazan crystals and OD₅₅₀ values were measured on microplate reader (Molecular Devices, Sunnyvale, CA, USA). Cell proliferation/viability experiments were repeated at least 3 times for each donor with hPDLCs isolated from 5 different donors.

Effect of meth-AEA on the production of IL-6, IL-8, and MCP-1 by hPDLCs.

The hPdLCs were seeded in 24 well plate at a density of 5×10⁴ cells in 500μL of DMEM supplemented with 10% FBS. After 24 h, the media were replaced with DMEM supplemented with 1% FBS and containing Meth-AEA at concentrations of 0.1, 1, 10 μM. The hPdLCs were treated with different Meth-AEA concentrations for 24 h, untreated cells were used as a control. In some experiments, hPdLCs treatment was performed in the presence of 1 μg/ml of <i>P. gingivalis</i> LPS and 0.25 μg/ml soluble CD14. As shown by our recent study, sCD14 enhances the response of periodontal ligament cells to bacterial LPS [26] After 24 h stimulation, the expression of IL-6, IL-8, and MCP-1 in hPdLCs was measured by real time PCR and the content of corresponding protein in conditioned media was assayed by ELISA similarly to the methods described previously [18,27].

Isolation of mRNA from hPdLCs, subsequent transcription to cDNA, and amplification was performed using commercially available TaqMan Gene Expression Cells-to-CT kit (Ambion/Applied Biosystems, Foster City, CA, USA), which provides good accuracy and
superior sensitivity of gene-expression analysis [28]. qPCR was performed on an ABI StepOnePlus device (Applied Biosystems, Foster City, CA, USA) in paired reactions using the Taqman gene expression assays with following ID numbers (all from Applied Biosystems, Foster City, CA, USA): IL-6, Hs00985639_m1; IL-8, Hs00174103_m1; MCP-1, Hs00234140_m1; β2-microglobulin, Hs99999907_m1. Real time PCR reactions were performed in triplicate in 96-well plates using the following thermocycling conditions: 95°C for 10 min; 40 cycles, each for 15 s at 95°C and at 60°C for 1 min. The point at which the PCR product was first detected above a fixed threshold (cycle threshold, Ct), was determined for each sample. Changes in the expression of target genes were calculated using the $2^{-ΔΔCt}$ method [29], where $ΔΔCt = (C_{t}^{target}-C_{t}^{β2-microglobulin})_{sample} - (C_{t}^{target}-C_{t}^{β2-microglobulin})_{control}$, taking an untreated sample as a control.

Content of IL-6, IL-8, and MCP-1 proteins in conditioned media was measured by commercially available ELISA Ready-Set-Go kits (eBioscience, San Diego, CA, USA) according to manufacturer’s instruction. Each measurement was performed in duplicates. For measurement of IL-6 and MCP-1, samples were not diluted, whereas for measurements of IL-8, samples were diluted 1:10.

Statistical analysis

The normal distribution of all data was tested with Kolmogorov-Smirnov test. After confirming normal distribution, the statistical differences between different groups were analyzed by one-way analysis of variance (ANOVA) for repeated measures followed by t-test. All statistical analyses were performed using statistical program SPSS 21.0 (SPSS, Chicago, IL, USA). Data are expressed as mean ± S.E.M of 5 different donors. Differences were considered to be statistically significant at $p < 0.05$.

Results

Effect of Meth-AEA on proliferation/viability of hPdLCs

The effect of Meth-AEA on the proliferation/viability of hPdLCs after 24 hours stimulation is shown in the Figure 1. It can be seen that no significant effect of Meth-AEA at the concentrations ranging from 0.03-10 µM on the proliferation/viability of hPdLCs was observed. A significant decrease in hPdLCs proliferation/viability was observed after treatment with Meth-AEA at a concentration of 30 µM (p < 0.001).

Effect of Meth-AEA on gene expression of IL-6, IL-8 and MCP-1 in hPdLCs

Figure 2 shows the effect of Meth-AEA (0.1-10 µM) on gene expression levels of IL-6, IL-8 and MCP-1. No significant effect of Meth-AEA in all tested concentrations on the gene expression levels of IL-6 and MCP-1 was observed. Gene expression level of IL-8 was not significantly changed by Meth-AEA in concentrations 0.1-1 µM and was significantly increased by Meth-AEA in concentration 10 µM.

Effect of Meth-AEA on protein production of IL-6, IL-8 and MCP-1 by hPDLCs

The effect of Meth-AEA on production of IL-6, IL-8 and MCP-1 proteins by hPDLCs is shown in the Figure 3. As can be seen, no significant effect of Meth-AEA in concentrations 0.1-10 µM on production of all investigated proteins by hPdLCs was observed. Noteworthy, the content of IL-6 and IL-8 in conditioned media was increased by about 55-60 % upon stimulation with 10 µM Meth-AEA, but this effect did not reach statistical significance (p=0.069 for IL-6; p=0.051 for IL-8).

Effect of Meth-AEA on P. gingivalis LPS induced gene expression of IL-6, IL-8 and MCP-1 in hPdLCs
The effect of Meth-AEA in concentrations 0.1-10 µM on *P. gingivalis* LPS induced gene expression of IL-6, IL-8, and MCP-1 in hPdLCs is shown in Figure 4. *P. gingivalis* LPS induced a significant increase in gene expression levels of all pro-inflammatory mediators. *P. gingivalis* LPS induced gene expression levels of IL-6, IL-8, and MCP-1 were significantly decreased by 10 µM Meth-AEA and were not affected by Meth-AEA in lower concentrations.

Effect of Meth-AEA on protein production of IL-6, IL-8 and MCP-1 in hPdLCs with *P. gingivalis* LPS stimulation

The content of IL-6, IL-8, and MCP-1 in conditioned media of hPdLCs upon stimulation with *P. gingivalis* LPS and different concentrations of Meth-AEA is shown in the Figure 5. The content of all three proteins in the conditioned media were significantly increased by *P. gingivalis* LPS. Meth-AEA at concentration of 10 µM significantly diminished *P. gingivalis* LPS induced production of IL-8 and MCP-1 by hPdLCs, whereas lower Meth-AEA concentration have no significant effect. *P. gingivalis* LPS induced IL-6 production by hPdLCs was not significantly affected by Meth-AEA in any tested concentration.

Discussion

Meth-AEA is a highly stable synthetic analogue of AEA and therefore is widely used in the research on cannabinoid system [21,22]. In the present study, we investigated for the first time the effect of Meth-AEA on proliferation viability and inflammatory response in primary hPdLCs in order to further clarify a potential role of EC system in periodontitis. Inflammatory response was assessed by measuring production of IL-6, IL-8, and MCP-1, which are involved in progression of periodontal disease [30-32]. We have focused on these pro-inflammatory mediators, because their production in hPdLCs is strongly increased by bacterial LPS [26,33], whereas production of other cytokines like IL-1β or tumor necrosis factor α by hPdLCs in response to LPS stimulation is rather low [34].
Proliferation/viability of hPdLCs was not significantly affected by Meth-AEA in concentrations up to 10 µM and was inhibited in concentration of 30 µM. The effect of Meth-AEA on hPdLCs proliferation/viability differs from that observed for AEA. In our previous study we found that AEA slightly stimulates proliferation/viability of hPdLCs [18]. The exact reason for this discrepancy is not clear, but it can be due to the different stability of Meth-AEA and AEA in aqueous solutions. Our data on Meth-AEA are in line with a study on prostate cancer cell line showing that Meth-AEA inhibits proliferation of these cells [35].

Under resting conditions, Meth-AEA in concentration of 10 µM significantly increased gene expression level of IL-8. Moreover, similar concentration of Meth-AEA induced small albeit non-significant increase in the production of IL-6 and IL-8 protein. In agreement with this finding a study on prostate cancer cell line also describes stimulation of IL-6 production by Meth-AEA [35]. Interestingly, our previous study shows that IL-6 production by hPdLCs is slightly increased by 2-AG and not influenced by AEA. Under inflammatory conditions, Meth-AEA at concentration of 10 µM induced significant decrease of P. gingivalis LPS induced production of IL-6, IL-8, and MCP-1. This effect of Meth-AEA was similar to that of AEA observed in our previous study. A fact that production of pro-inflammatory mediators is slightly stimulated by Meth-AEA under resting conditions and inhibited under inflammatory conditions suggests a multifaceted role of cannabinoid in the homeostasis of periodontal tissue. Increase in the production of IL-8 by Meth-AEA under resting conditions could be important for the basal activity of innate immune system, which can in turn play an important role in the controlling the bacteria growth. Under inflammatory conditions, Meth-AEA can potentially diminish production of pro-inflammatory mediators by host cells and thus contribute to the protection of host tissues from collateral damages by excessive inflammatory response.
There are several signaling pathways, which could be potentially involved in the biological effects of Meth-AEA. A biochemical study shows that Meth-AEA exhibits high affinity for CB1 receptor, whereas its affinity for CB2 receptor is rather low [23]. Particularly, this study reports that affinity of Meth-AEA is about 20 nM for CB1 and about 900 nM for CB2 receptor. In our study, the effects of Met-AEA were observed only for concentrations of 10 μM, whereas no significant effect was observed for Meth-AEA concentrations up to 1 μM. Thus, it seems that the effects of Meth-AEA could also be contributed to the activation of CB2 receptor. Interestingly, one study shows that Meth-AEA induces IL-6 secretion by prostate cancer cells and this effect is inhibited by CB2 receptor antagonist SR144528 and not by CB1 receptor antagonist rimonabant [35]. An anti-inflammatory role of CB2 receptor activation in periodontitis is recently confirmed by a study of LPS-induced periodontitis in rats [36]. Here, topical application of CB2 receptor agonist HU-308 significantly attenuates the bone loss and inflammatory parameters in this rat model. A recent study shows that different CB-2 receptors agonist have anti-inflammatory effect in human periodontal fibroblasts [37].

A possibility of CB1-independent mechanisms in the biological effects of Meth-AEA cannot be totally excluded. A study using CB1 receptor knockout mice shows that Meth-AEA exerts physiological effect even in this mice model, which suggests existence of CB1-independent effects of Meth-AEA [38]. The most investigated CB1-independent effect of Meth-AEA is its ability to activate the transient receptor potential vanilloid type-1 receptor (TRPV1). A contribution of this mechanism into anti-inflammatory effect of Meth-AEA cannot be neglected because an ablation of TRPV1 in mice results in exacerbated immune response [39]. However, there are also some CB1-independent and TRPV1 independent effects of Meth-AEA [40]. Particularly, Meth-AEA is shown to interact with the muscarinic acetylcholine receptors [41]. Nevertheless, the role of CB1-independent mechanisms in
the effect of Meth-AEA in hPdLCs is not known and must be further clarified.

Our results on Meth-AEA provide further evidences of the involvement of EC system into progression of periodontal disease. Our data are in line with a study on rats showing that Meth-AEA reduces the clinical parameters in LPS-induced periodontitis [24]. Similarly, a local injection of AEA reduced ligature induced periodontitis in rats [19]. An involvement of EC system in periodontitis is also suggested by studies on cannabinoid receptor expression in periodontal tissue. In vivo study on human periodontal biopsies shows that periodontitis is associated with a decreased expression of CB1 receptor and an increased expression of CB2 receptor [11]. Another study shows an increased expression of CB1 and CB2 receptors in inflamed gingival tissue. All these data suggest that EC system plays an important role in periodontitis.

EC system can be speculated to mediate a link between stress and periodontitis. Stress is an important risk factor influencing immune system and potentially contributing to the progression of periodontitis [42,43]. EC system plays an important role in the stress response [44]. Recently, EC system is suggested as an important part of neuroimmunoendocrine response in periodontal disease [45]. Our data as well as data of previous studies [11,14,15,18,19] suggest that EC system regulates host response in periodontitis. Emotional stress is associated with the increased salivary levels of IL-6 and IL-8 [46]. Acute psychological stress is associated with the decreased tissue content of AEA in brain, which is presumably due to an increased AEA hydrolysis [47]. It can be hypothesized that stress can also influence the levels of endocannabinoids in periodontal tissues and thus modulate their effect on inflammatory response. However, the exact role of EC system in the association between stress and periodontal disease should be further investigated.

Declarations
Ethics approval and consent to participate

The study protocol was approved by the Ethics Committee of the Medical University of Vienna (ethical approval number: 1694/2015). The methods were carried out in accordance with the relevant guidelines and regulations; all patients got informed before the surgical procedure and gave their written consent.

Consent for publication

Not applicable

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request

Competing interests

The authors declare that they have no conflicts of interest.

Funding

The study was supported by Authors Institutions. No external funding was received

Authors’ contributions

F.Z., B.Ö., O.A., designed experiments; F.Z., B.Ö. P.Q.N. performed experiments; O.A., X.R. analysed results; F.Z., B.Ö., O.A., X.R. wrote the manuscript; all authors approved the manuscript.

Acknowledgements

Not applicable

Abbreviations

LPS, lipopolysaccharide; Meth-AEA; methanandamide; hPdLCs, human periodontal ligament cells; IL, interleukin; MCP, monocyte chemoattractant protein; AEA, anandamide; 2-AG, 2-arachidonoylglycerol; EC, endocannabinoid; CB1, cannabinoid receptor type 1; CB2, cannabinoid receptor type 2; DMEM, Dulbecco’s modified Eagle’s medium; FBS, fetal
bovine serum.

References

1. Kinane DF, Attstrom R (2005) Advances in the pathogenesis of periodontitis. Group B consensus report of the fifth European Workshop in Periodontology. J Clin Periodontol 32 Suppl 6: 130-131.

2. Kinane DF, Stathopoulou PG, Papapanou PN (2017) Periodontal diseases. Nat Rev Dis Primers 3: 17038.

3. Socransky SS, Haffajee AD (2005) Periodontal microbial ecology. Periodontol 2000 38: 135-187.

4. Hajishengallis G (2015) Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol 15: 30-44.

5. Holt SC, Kesavalu L, Walker S, Genco CA (1999) Virulence factors of Porphyromonas gingivalis. Periodontol 2000 20: 168-238.

6. Bainbridge BW, Coats SR, Darveau RP (2002) Porphyromonas gingivalis lipopolysaccharide displays functionally diverse interactions with the innate host defense system. Ann Periodontol 7: 29-37.

7. How KY, Song KP, Chan KG (2016) Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line. Front Microbiol 7: 53.

8. Kreitzer FR, Stella N (2009) The therapeutic potential of novel cannabinoid receptors. Pharmacol Ther 122: 83-96.

9. Bab I, Ofek O, Tam J, Rehnelt J, Zimmer A (2008) Endocannabinoids and the regulation of bone metabolism. J Neuroendocrinol 20 Suppl 1: 69-74.

10. Opitz CA, Rimmerman N, Zhang Y, Mead LE, Yoder MC, et al. (2007) Production of the endocannabinoids anandamide and 2-arachidonoylglycerol by endothelial progenitor cells. FEBS Lett 581: 4927-4931.
11. Konermann A, Jager A, Held SA, Brossart P, Schmole A (2017) In vivo and In vitro Identification of Endocannabinoid Signaling in Periodontal Tissues and Their Potential Role in Local Pathophysiology. Cell Mol Neurobiol.

12. Idris AI, Ralston SH (2010) Cannabinoids and bone: friend or foe? Calcif Tissue Int 87: 285-297.

13. Cabral GA, Rogers TJ, Lichtman AH (2015) Turning Over a New Leaf: Cannabinoid and Endocannabinoid Modulation of Immune Function. J Neuroimmune Pharmacol 10: 193-203.

14. Nakajima Y, Furuichi Y, Biswas KK, Hashiguchi T, Kawahara K, et al. (2006) Endocannabinoid, anandamide in gingival tissue regulates the periodontal inflammation through NF-kappaB pathway inhibition. FEBS Lett 580: 613-619.

15. Kozono S, Matsuyama T, Biwasa KK, Kawahara K, Nakajima Y, et al. (2010) Involvement of the endocannabinoid system in periodontal healing. Biochem Biophys Res Commun 394: 928-933.

16. Nazir MA (2017) Prevalence of periodontal disease, its association with systemic diseases and prevention. Int J Health Sci (Qassim) 11: 72-80.

17. Lanza Cariccio V, Scionti D, Raffa A, Iori R, Pollastro F, et al. (2018) Treatment of Periodontal Ligament Stem Cells with MOR and CBD Promotes Cell Survival and Neuronal Differentiation via the PI3K/Akt/mTOR Pathway. Int J Mol Sci 19.

18. Ozdemir B, Shi B, Bantleon HP, Moritz A, Rausch-Fan X, et al. (2014) Endocannabinoids and inflammatory response in periodontal ligament cells. PLoS One 9: e107407.

19. Rettori E, De Laurentiis A, Zorrilla Zubilete M, Rettori V, Elverdin JC (2012) Anti-inflammatory effect of the endocannabinoid anandamide in experimental periodontitis and stress in the rat. Neuroimmunomodulation 19: 293-303.
20. Jarho P, Urtti A, Jarvinen K, Pate DW, Jarvinen T (1996) Hydroxypropyl-beta-cyclodextrin increases aqueous solubility and stability of anandamide. Life Sci 58: PL 181-185.

21. Palmer SL, Khanolkar AD, Makriyannis A (2000) Natural and synthetic endocannabinoids and their structure-activity relationships. Curr Pharm Des 6: 1381-1397.

22. Abadji V, Lin S, Taha G, Griffin G, Stevenson LA, et al. (1994) (R)-methanandamide: a chiral novel anandamide possessing higher potency and metabolic stability. J Med Chem 37: 1889-1893.

23. Goutopoulos A, Fan P, Khanolkar AD, Xie XQ, Lin S, et al. (2001) Stereochemical selectivity of methanandamides for the CB1 and CB2 cannabinoid receptors and their metabolic stability. Bioorg Med Chem 9: 1673-1684.

24. Ossola CA, Surkin PN, Pugnaloni A, Mohn CE, Elverdin JC, et al. (2012) Long-term treatment with methanandamide attenuates LPS-induced periodontitis in rats. Inflamm Res 61: 941-948.

25. Andrukhov O, Andrukhova O, Hulan U, Tang Y, Bantleon HP, et al. (2014) Both 25-hydroxyvitamin-D3 and 1,25-dihydroxyvitamin-D3 reduces inflammatory response in human periodontal ligament cells. PLoS One 9: e90301.

26. Andrukhov O, Andrukhova O, Ozdemir B, Haririan H, Muller-Kern M, et al. (2016) Soluble CD14 Enhances the Response of Periodontal Ligament Stem Cells to P. gingivalis Lipopolysaccharide. PLoS One 11: e0160848.

27. Andrukhov O, Hong JS, Andrukhova O, Blufstein A, Moritz A, et al. (2017) Response of human periodontal ligament stem cells to IFN-gamma and TLR-agonists. Sci Rep 7: 12856.

28. Van Peer G, Mestdagh P, Vandesompele J (2012) Accurate RT-qPCR gene expression
analysis on cell culture lysates. Sci Rep 2: 222.

29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(ΔΔC(T)) Method. Methods 25: 402-408.

30. Nibali L, Fedele S, D’Aiuto F, Donos N (2012) Interleukin-6 in oral diseases: a review. Oral Dis 18: 236-243.

31. Kurtis B, Tuter G, Serdar M, Akdemir P, Uygur C, et al. (2005) Gingival crevicular fluid levels of monocyte chemoattractant protein-1 and tumor necrosis factor-alpha in patients with chronic and aggressive periodontitis. J Periodontol 76: 1849-1855.

32. Finoti LS, Nepomuceno R, Pigossi SC, Corbi SC, Secolin R, et al. (2017) Association between interleukin-8 levels and chronic periodontal disease: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 96: e6932.

33. Blufstein A, Behm C, Nguyen PQ, Rausch-Fan X, Andrukhov O (2018) Human periodontal ligament cells exhibit no endotoxin tolerance upon stimulation with Porphyromonas gingivalis lipopolysaccharide. J Periodontal Res.

34. Albiero ML, Amorim BR, Martins L, Casati MZ, Sallum EA, et al. (2015) Exposure of periodontal ligament progenitor cells to lipopolysaccharide from Escherichia coli changes osteoblast differentiation pattern. J Appl Oral Sci 23: 145-152.

35. Olea-Herrero N, Vara D, Malagarie-Cazenave S, Diaz-Laviada I (2009) The cannabinoid R+ methanandamide induces IL-6 secretion by prostate cancer PC3 cells. J Immunotoxicol 6: 249-256.

36. Ossola CA, Surkin PN, Mohn CE, Elverdin JC, Fernandez-Solari J (2016) Anti-Inflammatory and Osteoprotective Effects of Cannabinoid-2 Receptor Agonist HU-308 in a Rat Model of Lipopolysaccharide-Induced Periodontitis. J Periodontol 87: 725-734.

37. Abidi AH, Presley CS, Dabbous M, Tipton DA, Mustafa SM, et al. (2018) Anti-inflammatory activity of cannabinoid receptor 2 ligands in primary hPDL fibroblasts.
Arch Oral Biol 87: 79-85.

38. Baskfield CY, Martin BR, Wiley JL (2004) Differential effects of delta9-tetrahydrocannabinol and methanandamide in CB1 knockout and wild-type mice. J Pharmacol Exp Ther 309: 86-91.

39. Wang Y, Wang DH (2013) TRPV1 ablation aggravates inflammatory responses and organ damage during endotoxic shock. Clin Vaccine Immunol 20: 1008-1015.

40. Roberts LA, Ross HR, Connor M (2008) Methanandamide activation of a novel current in mouse trigeminal ganglion sensory neurons in vitro. Neuropharmacology 54: 172-180.

41. Christopoulos A, Wilson K (2001) Interaction of anandamide with the M(1) and M(4) muscarinic acetylcholine receptors. Brain Res 915: 70-78.

42. Warren KR, Postolache TT, Groer ME, Pinjari O, Kelly DL, et al. (2014) Role of chronic stress and depression in periodontal diseases. Periodontol 2000 64: 127-138.

43. Haririan H, Andrukhov O, Bottcher M, Pablík E, Wimmer G, et al. (2017) Salivary Neuropeptides, Stress and Periodontitis. J Periodontol: 1-15.

44. Riebe CJ, Wotjak CT (2011) Endocannabinoids and stress. Stress 14: 384-397.

45. Rettori E, De Laurentiis A, Dees WL, Endruhn A, Rettori V (2014) Host neuro-immuno-endocrine responses in periodontal disease. Curr Pharm Des 20: 4749-4759.

46. Shields GS, Kuchenbecker SY, Pressman SD, Sumida KD, Slavich GM (2016) Better cognitive control of emotional information is associated with reduced pro-inflammatory cytokine reactivity to emotional stress. Stress 19: 63-68.

47. Morena M, Patel S, Bains JS, Hill MN (2016) Neurobiological Interactions Between Stress and the Endocannabinoid System. Neuropsychopharmacology 41: 80-102.

Figures
Figure 1

Effect of Meth-AEA on proliferation/viability of hPDLCs hPDLCs were stimulated by different Meth-AEA concentrations for 24 h and the proliferation/viability was measured by the MTT method. OD values measured at 570 nm upon stimulation with Meth-AEA are normalized to OD values measured in the control group (ratio = 1, shown as horizontal grey line). Data are shown as the mean ± s.e.m of 5 different donors. * means significantly different vs. control group (p<0.05)
Figure 2

Effect of Meth-AEA on the gene expression of IL-6, IL-8, and MCP-1 in hPdLCs

Gene expression of IL-6, IL-8, and MCP-1 was measured in hPdLCs upon 24 h stimulation with different concentrations of Meth-AEA using qPCR method. Y-axes show n-fold expression levels (2-ΔΔCt values) of target in relation to non-stimulated control (n=1). Data are shown as mean ± s.e.m. of 5 different donors.

* means significantly different vs. control group (p<0.05)
Effect of Meth-AEA on the production of IL-6, IL-8, and MCP-1 by hPdLCs. The content of IL-6, IL-8, and MCP-1 in conditioned media was measured after 24h stimulation with different concentrations of Meth-AEA by commercially available ELISA. Data are shown as mean ± s.e.m. of 5 different donors.
Effect of Meth-AEA on P. gingivalis LPS induced gene expression of IL-6, IL-8, and MCP-1 in hPdLCs

Gene expression of IL-6, IL-8, and MCP-1 was measured in hPdLCs after 24 h stimulation with P. gingivalis LPS and different concentrations of Meth-AEA using qPCR method. Y-axes show n-fold expression levels (2-ΔΔCt values) of target in relation to non-stimulated control (n=1). Data are shown as mean ± s.e.m. of 5 different donors. * means significantly different vs. control group (p<0.05) # means significantly different vs. P. gingivalis LPS group (p<0.05)
Figure 5

Effect of Meth-AEA on P. gingivalis LPS induced production of IL-6, IL-8, and MCP-1 by hPdLCs. The content of IL-6, IL-8, and MCP-1 in conditioned media was measured after 24 h stimulation with P. gingivalis LPS and different concentrations of Meth-AEA by commercially available ELISA. Data are shown as mean ± s.e.m. of 5 different donors. * means significantly different vs. control group (p<0.05) # means significantly different vs. P. gingivalis LPS group (p<0.05)