A Block Lanczos with Warm Start Technique for Accelerating Nuclear Norm Minimization Algorithms

Zhouchen Lin · Siming Wei

Received: date / Accepted: date

Abstract Recent years have witnessed the popularity of using rank minimization as a regularizer for various signal processing and machine learning problems. As rank minimization problems are often converted to nuclear norm minimization (NNM) problems, they have to be solved iteratively and each iteration requires computing a singular value decomposition (SVD). Therefore, their solution suffers from the high computation cost of multiple SVDs. To relieve this issue, we propose using the block Lanczos method to compute the partial SVDs, where the principal singular subspaces obtained in the previous iteration are used to start the block Lanczos procedure. To avoid the expensive reorthogonalization in the Lanczos procedure, the block Lanczos procedure is performed for only a few steps. Our block Lanczos with warm start (BLWS) technique can be adopted by different algorithms that solve NNM problems. We present numerical results on applying BLWS to Robust PCA and Matrix Completion problems. Experimental results show that our BLWS technique usually accelerates its host algorithm by at least two to three times.

Keywords Lanczos Method · Singular Value Decomposition · Eigenvalue Decomposition · Rank Minimization · Nuclear Norm Minimization

1 Introduction

In recent years, there is a surge of applying rank minimization as a regularizer to various machine learning and signal processing problems [22, 5, 23, 25, 27, 17]...
In the mathematical models of these problems, the rank of some matrix is often required to be minimized. Typical models are Robust PCA (RPCA) \[22\]:

\[
\text{(RPCA)} \quad \min_{A,E} \text{rank}(A) + \lambda \|E\|_{l_0}, \quad \text{s.t.} \quad D = A + E, \quad (1)
\]

and Matrix Completion (MC) \[5\]:

\[
\text{(MC)} \quad \min_{A} \text{rank}(A), \quad \text{s.t.} \quad D = \pi_{\Omega}(A), \quad (2)
\]

where \(\|E\|_{l_0}\) is the number of nonzeros in \(E\), \(\Omega\) is the set of indices of known entries in \(A\) and \(\pi_{\Omega}\) is the restriction onto \(\Omega\). There are variations of RPCA \[23,6\] and MC \[4\], and there is also a combination of RPCA and MC \[3\].

Due to the effectiveness of rank minimization, many researchers have proposed various algorithms to solve rank minimization problems \[21,2,15,12,7,24,20,5\]. As rank minimization problems are usually NP hard, most of them aim at solving companion convex programs instead, by replacing the rank function with the nuclear norm \(\|\cdot\|_*\), i.e., the sum of the singular values, and the \(l_0\) norm with the \(l_1\) norm, i.e., the sum of the absolute values of the entries. This is suggested by the fact that the nuclear norm and \(l_1\) norm are the convex envelopes of the rank function \[19\] and the \(l_0\) norm, respectively. Some researchers have proven that for RPCA and MC problems solving the companion convex program can produce the same solution to the original problem at an overwhelming probability \[19,4,3\]. As a result, solving a rank minimization problem is often converted into solving a nuclear norm minimization (NNM) problem, in order to exploit the efficiency of convex programs.

Whichever of the existing methods that solve the NNM problems is used, one always has to solve the following subproblem:

\[
A_{i+1} = \arg\min_{A} \varepsilon_i \|A\|_* + \frac{1}{2} \|A - W_i\|_F^2, \quad (3)
\]

where \(\varepsilon_i\) and \(W_i\) change along iteration and \(\|\cdot\|_F\) is the Frobenius norm. Cai et al. \[2\] proved that the solution to \(3\) can be obtained by singular value thresholding:

\[
A_{i+1} = T_{\varepsilon_i}(W_i) \equiv U_i \Theta_{\varepsilon_i}(S_i) V_i^T, \quad (4)
\]

where \(\Theta_x(s) = \text{sgn}(x) \max(|x| - \varepsilon, 0)\) is a shrinkage operator and \(U_i S_i V_i^T\) is the singular value decomposition (SVD) of \(W_i\). Therefore, it is easy to see that NNM problems are usually computationally costly as they require solving SVDs multiple times and an SVD typically requires \(O(p^3)\) operations, where \(p = \min(m, n)\) and \(m \times n\) is the size of the matrix. Fortunately, it is apparent that all the singular values/vectors need not be computed because the singular values smaller than the threshold \(\varepsilon_i\) will be shrunk to zeros hence their associated singular vectors will not contribute to \(A_{i+1}\). This leads to a common practice in solving NNM problems, namely using PROPACK \[11\] to compute the partial SVD of \(W_i\), where only those leading singular values that are greater than \(\varepsilon_i\), and their associated singular vectors, are computed. This
significantly brings down the computation complexity from $O(p^3)$ to $O(rp^2)$, where r is the number of leading singular values/vectors computed.

Although computing the partial SVD instead already saves the computation significantly, the $O(rp^2)$ complexity is still too high for large scale problems. Therefore, any further savings in the computation are valuable when the problem scale becomes large. In this paper, we aim at exploiting the relationship between successive iterations to further bring down the computation cost. Our technique is called the block Lanczos with warm start (BLWS), which uses the block Lanczos method to solve the partial SVD and the block Lanczos procedure is initialized by the principal singular subspaces of the previous iteration. The number of steps in the block Lanczos procedure is also kept small. Our BLWS technique can work in different algorithms for NNM problems. Our numerical tests show that BLWS can speed up its host algorithm by at least two to three times.

To proceed, we first introduce how the partial SVD is computed in PROPACK.

2 The Lanczos Method for the Partial SVD

PROPACK uses the Lanczos method to compute the partial SVD. As the method is based on the Lanczos method for partial eigenvalue decomposition (EVD), we have to start with the partial EVD computation.

The Lanczos method for partial EVD is to find the optimal leading eigen-subspace of a symmetric matrix W in a Krylov subspace [8]:

$$K(W, q_1, k) = \text{span}\{q_1, Wq_1, \ldots , W^{k-1}q_1\}. \quad (5)$$

The orthonormal basis Q_k of $K(W, q_1, k)$ can be efficiently computed via a so-called Lanczos procedure shown in Algorithm 1. Accordingly, W can be approximated as $W \approx Q_kT_kQ_k^T$, where T_k is a tri-diagonal matrix:

$$T_k = \begin{pmatrix}
\alpha_1 & \beta_1 & \cdots & 0 \\
\beta_1 & \alpha_2 & \cdots & \\
\vdots & \ddots & \ddots & \\
0 & \cdots & \beta_{k-1} & \alpha_k
\end{pmatrix}. \quad (6)$$

The Lanczos procedure is actually derived by comparing the left and right hand sides of $WQ_k \approx Q_kT_k$ (cf. Section 4).

After the Lanczos procedure is iterated for $k - 1$ times, the EVD of T_k is computed: $T_k = V_kA_kV_k^T$. Then $W \approx (Q_kV_k)A_k(Q_kV_k)^T$. Suppose the eigenvalues in A_k is ordered from large to small. Then the r largest eigenvalues of W can be approximated by the first r eigenvalues in A_k (called the Ritz values of W) and the leading r eigenvectors of W can be approximated by the first r columns of Q_kV_k (called the Ritz vectors of W).

1 Actually it can also find the tailing eigen-subspace of W.
Algorithm 1 The Lanczos Procedure

Input: $m \times m$ symmetric matrix W, k.
1. Initialization: $r_0 = q_1; \beta_0 = 1; q_0 = 0; l = 0$.
2. for $l = 1 : k - 1$ do
 - $q_{l+1} = r_l/\beta_l; \lambda_l = q_l^T W q_l; \beta_l = \|r_l\|_2$;
 - $q_l = W q_l - \lambda_l q_l - \beta_{l-1} q_{l-1}$;
end for

Output: $Q_k = (q_1, \ldots, q_k)$ and T_k as (6).

When computing the partial SVD of a given matrix W, a critical relationship between the SVD of W and the EVD of the following augmented matrix

$$\tilde{W} = \begin{pmatrix} 0 & W \\ W^T & 0 \end{pmatrix}$$

is used. It is depicted by the following theorem \[8\].

Theorem 1 If the SVD of an $m \times n$ ($m \leq n$) matrix W is $W = U \Sigma V^T$, then the EVD of \tilde{W} is

$$\tilde{W} = \tilde{U} \begin{pmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{pmatrix} \tilde{U}^T,$$

where

$$\tilde{U} = \frac{1}{\sqrt{2}} \begin{pmatrix} U_1 & U_1 \sqrt{2} U_2 \\ V & -V \end{pmatrix} \text{ and } (U_1, U_2) = U. \tag{9}$$

So by computing the EVD of \tilde{W}, the SVD of W can be obtained.

When computing the SVD of W, the Lanczos method is actually implicitly applied to \tilde{W} with the initial vector \tilde{q}_1 being chosen as

$$\tilde{q}_1 = (u_1^T, 0^T)^T, \tag{10}$$

in order to exploit the special structure of \tilde{W}. Accordingly, W can be approximated as $W \approx U_k B_k V_k^T$, where columns of U_k and V_k are orthonormal and B_k is bi-diagonal. Then the approximate singular values/vectors of W can be obtained after computing the SVD of B_k. For more details, please refer to [11].

The Lanczos method has some important properties \[8\]. First, the Ritz values of W converge to the largest eigen/singular values of W quickly when k grows, so do the Ritz vectors. Second, as it only requires solving the EVD/SVD of a relatively small and banded matrix T_k/B_k, the partial EVD/SVD is usually faster than the full EVD/SVD when the required number r of eigen/singular vectors is relatively small (e.g., when $r < 0.25p$). Third, the Lanczos procedure terminates when an invariant subspace is found. Fourth, the orthogonality among the columns of Q_k is easily lost when the Lanczos procedure goes on. Hence, reorthogonalization is usually necessary when k is relatively large. Unfortunately, reorthogonalization is expensive. So PROPACK monitors the orthogonality among the columns of Q_k and only reorthogonalizes part of the columns whose orthogonalities with other columns deteriorate.

When computing the partial SVD of a given matrix W, a critical relationship between the SVD of W and the EVD of the following augmented matrix

$$\tilde{W} = \begin{pmatrix} 0 & W \\ W^T & 0 \end{pmatrix}$$

is used. It is depicted by the following theorem \[8\].

Theorem 1 If the SVD of an $m \times n$ ($m \leq n$) matrix W is $W = U \Sigma V^T$, then the EVD of \tilde{W} is

$$\tilde{W} = \tilde{U} \begin{pmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{pmatrix} \tilde{U}^T,$$

where

$$\tilde{U} = \frac{1}{\sqrt{2}} \begin{pmatrix} U_1 & U_1 \sqrt{2} U_2 \\ V & -V \end{pmatrix} \text{ and } (U_1, U_2) = U. \tag{9}$$

So by computing the EVD of \tilde{W}, the SVD of W can be obtained.

When computing the SVD of W, the Lanczos method is actually implicitly applied to \tilde{W} with the initial vector \tilde{q}_1 being chosen as

$$\tilde{q}_1 = (u_1^T, 0^T)^T, \tag{10}$$

in order to exploit the special structure of \tilde{W}. Accordingly, W can be approximated as $W \approx U_k B_k V_k^T$, where columns of U_k and V_k are orthonormal and B_k is bi-diagonal. Then the approximate singular values/vectors of W can be obtained after computing the SVD of B_k. For more details, please refer to [11].

The Lanczos method has some important properties \[8\]. First, the Ritz values of W converge to the largest eigen/singular values of W quickly when k grows, so do the Ritz vectors. Second, as it only requires solving the EVD/SVD of a relatively small and banded matrix T_k/B_k, the partial EVD/SVD is usually faster than the full EVD/SVD when the required number r of eigen/singular vectors is relatively small (e.g., when $r < 0.25p$). Third, the Lanczos procedure terminates when an invariant subspace is found. Fourth, the orthogonality among the columns of Q_k is easily lost when the Lanczos procedure goes on. Hence, reorthogonalization is usually necessary when k is relatively large. Unfortunately, reorthogonalization is expensive. So PROPACK monitors the orthogonality among the columns of Q_k and only reorthogonalizes part of the columns whose orthogonalities with other columns deteriorate.
3 Ideas to Improve

We notice that if we solve the partial SVD in each iteration independently, the Lanczos procedure has to start from a random initial vector q_1 as no apriori information is available. Random initialization makes the size k of B_k unpredictable. If q_1 is not good, k can be relatively large in order for the Ritz values/vectors to achieve a prescribed precision, making the partial SVD inefficient. Actually, during the iterations of optimization, as the matrices W_i and W_{i-1} are close to each other, any of the leading Ritz vectors of W_{i-1} should be good for initializing the Lanczos procedure of W_i. However, a risk of this strategy is that the Lanczos procedure may terminate quickly by outputting a small invariant subspace containing the previous Ritz vector because the previous Ritz vector is close to be a singular vector of W_i. Moreover, initializing with a vector q_1 neglects the fact that we are actually seeking optimal singular subspaces, not a number of individual singular vectors. A vector definitely cannot record all the information from the previous principal singular subspaces (left and right). So, ideally we should use the whole previous principal singular subspaces. This motivates us to adopt the block Lanczos method for partial SVD, where the block Lanczos procedure starts with the previous principal singular subspaces.

4 Block Lanczos with Warm Start

Again, we start with the block Lanczos with warm start (BLWS) for partial EVD. The block Lanczos method is a natural generalization of the standard Lanczos method by replacing the Krylov space $K(W,q_1,k)$ with

$$\tilde{K}(W,X_1,k) = \text{span}\{X_1, WX_1, \cdots, W^{k-1}X_1\}, \quad (11)$$

where X_1 is an orthonormal basis of an initial subspace. Accordingly, the Lanczos procedure is generalized to the block Lanczos procedure, which is to find an approximation of W: $W \approx Q_k T_k Q_k^T$, where T_k is a block tri-diagonal matrix \mathbf{S}:

$$T_k = \begin{pmatrix}
M_1 & B_1^T & \cdots & 0 \\
B_1 & M_2 & \cdots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & B_{k-1}^T & M_k
\end{pmatrix}, \quad (12)$$

$Q_k = (X_1, \cdots, X_k)$, and columns of Q_k are orthonormal. By comparing the left and right hand sides of $WQ_k \approx Q_k T_k$, we have

$$WX_l = X_{l-1} B_{l-1}^T + X_l M_l + X_{l+1} B_l, \quad l = 1, \cdots, k - 1, \quad (13)$$

2. Although in reality the Lanczos procedure seldom terminates due to numerical error, our numerical tests show that such choice of initial q_1 does not help speeding up.
where B_0 is defined to be 0. From the orthogonality among the columns of Q_k, we have that
\[M_l = X_l^T W X_l, \quad l = 1, \ldots, k. \] (14)

Moreover, if we define $R_l = W X_l - X_l M_l - X_l B_{l-1}^T$, then $X_{l+1} B_l$ is the QR decomposition of R_l. This leads to the block Lanczos procedure in Algorithm 2.

Algorithm 2 Block Lanczos Procedure

Input: $m \times m$ symmetric matrix W, $m \times r$ orthogonal matrix X_1, k.
1. Initialization: $M_1 = X_1^T W X_1$; $B_0 = 0$.
2. for $l = 1 : k - 1$ do
\quad $R_l = W X_l - X_l M_l - X_l B_{l-1}^T$;
\quad $(X_{l+1}, B_l) = qr(R_l)$; (The QR decomposition)
\quad $M_{l+1} = X_{l+1}^T W X_{l+1}$;
end for
Output: $Q_k = (X_1, \ldots, X_k)$ and T_k as in (12).

After the approximation $W \approx Q_k T_k Q_k^T$ is obtained, one may further compute the EVD of T_k: $T_k = U_k \Lambda_k U_k^T$, where the eigenvalues λ_i are ordered from large to small. Then the leading r eigenvalues and eigenvectors of W is approximated by $\lambda_1, \ldots, \lambda_r$, and $Q_k U_k(:, 1 : r)$, respectively. The whole process is summarized in Algorithm 3.

Algorithm 3 Block Lanczos for Partial EVD

Input: $m \times m$ symmetric matrix W, $m \times r$ orthogonal matrix X_1, k.
1. Compute Q_k and T_k by Algorithm 2.
2. Compute the EVD of T_k: $T_k = V_k \Lambda_k V_k^T$, where the eigenvalues on the diagonal of Λ_k are in a decreasing order.
Output: $U = Q_k V_k(:, 1 : r)$, $\Sigma = \Lambda_k(1 : r, 1 : r)$.

If we denote the block Lanczos for partial EVD (Algorithm 3) as $BL_{EVD}(W, X_1, k)$, then our BLWS can be written as:

$$(BLWS) \quad (U_i, \Sigma_i) = BL_{EVD}(W_i, U_{i-1}, k_i),$$

namely the principal eigen-subspace U_{i-1} of the previous iteration is used to initialize the block Lanczos procedure.

When using the block Lanczos method to compute the partial SVD of a matrix W, similarly the block Lanczos procedure is applied to \tilde{W} shown in (7). Note that \tilde{W} is of special structure. So the block Lanczos procedure can be done efficiently by skipping the zero sub-matrices of \tilde{W}. The details are trivial. So we omit them.

With BLWS, compared with the standard Lanczos method, the risk of terminating with a small invariant subspace is gone, and the principal eigen-subspace can be updated more efficiently. As a result, the whole optimization process can be sped up a lot.
4.1 More Tricks for Acceleration

Recall that in the standard Lanczos procedure, the orthogonality among the columns of Q_k is easily lost when k grows. So is the block Lanczos procedure. As reorthogonalization is expensive, we further require that the number k of performing the block Lanczos procedure is small, such that reorthogonalization can be waived. In our experiments, we typically set $k = 2$, namely the block Lanczos procedure is performed only once. Although such a fixed and small value of k cannot result in high precision principal singular subspaces when the block Lanczos procedure is randomly initialized, it does produce high precision principal singular subspaces when the block Lanczos procedure is initialized with the previous principal singular subspaces. This is because W_i is close to W_{i-1}. So the previous principal singular subspaces is already close to the principal singular subspaces of W_i. Then the block Lanczos procedure improves them and produce better estimated principal singular subspaces. Note that keeping k small has multiple advantages. First, it waives the necessity of expensive reorthogonalization. Second, it saves the computation in performing the block Lanczos procedure. Third, the SVD of B_k also becomes cheap because the size of B_k is small.

In the standard block Lanczos method for partial SVD, the initial subspace is chosen as $\tilde{X}_1 = (U_{i-1}, 0)^T$ or $\tilde{X}_1 = (0, V_{i-1})^T$ (cf. (10)), where U_{i-1} and V_{i-1} are the estimated left and right principal singular subspaces obtained in the previous iteration, respectively. However, such an initialization only utilizes half of the information provided by the previous iteration. So our BLWS technique uses $\tilde{X}_1 = \frac{1}{\sqrt{2}}(U_{i-1}, V_{i-1})^T$ as the initial subspace. In this way, the precision of obtained principal singular subspaces is higher when the block Lanczos procedure is performed for the same number of steps.

4.2 Handling Variant Dimensions of Principal Singular Subspaces

The above exposition assumes that the dimension r of the principal singular subspaces is known and fixed along iteration. In reality, r is unknown and has to be dynamically predicted before the partial SVD is computed [12, 21, 15]. Hence r actually varies along iteration. In this case, BLWS simply outputs Ritz values/vectors according to the predicted r in the current iteration and the block Lanczos procedure is still initialized with the principal singular subspaces output by last iteration. We have observed that for many NNM problems, the predicted r quickly stabilizes. So variant dimensions of principal singular subspaces at the early iterations do not affect the effectiveness of BLWS.

5 Experimental Results

Our BLWS technique is a general acceleration method. Given an algorithm to solve a NNM problem, a user only has to replace the SVD computation in the algorithm with BLWS and may obtain noticeable speedup.
Table 1 BLWS-ADM vs. ADM on different synthetic data. A and E are the computed low rank and sparse matrices and A is the ground truth.

m	method	$\|\hat{A} - A\|_F$	rank(\hat{A})	$\|E\|_{l0}$	#iter	time(s)
500	ADM	5.27e-006	50	25009	30	4.07
500	BLWS-ADM	9.64e-006	50	25008	30	2.07
1000	ADM	3.99e-006	100	100021	29	23.09
1000	BLWS-ADM	6.05e-006	100	100015	30	9.25
2000	ADM	2.80e-006	200	400064	28	154.80
2000	BLWS-ADM	4.30e-006	200	400008	30	53.37
3000	ADM	2.52e-006	300	900075	28	477.13
3000	BLWS-ADM	3.90e-006	300	900006	30	149.19

As examples, in this section we apply our BLWS technique to two popular problems: Robust PCA (RPCA) [22] and Matrix Completion (MC) problems [5]. For each problem, we compare the original chosen algorithm and its BLWS improved counterpart in the aspect of computation time. The accuracies of obtained solutions are also shown in order to ensure that the correct solutions are approached. All experiments are run on the same workstation with two quad-core 2.5GHz Intel Xeon E5540 CPUs, running Windows Server 2008 and Matlab (Version 7.7).

For the RPCA problem, we generate the synthetic data in the same way as that in [12]. Namely, A is generated according to the independent random orthogonal model [22], E is a sparse matrix whose support is independent and the entry values are uniformly distributed in $[-500, 500]$, and $D = A + E$. For simplicity, we only focus on $m \times m$ square matrices and the parameter λ is fixed at $1/\sqrt{m}$, as suggested by Wright et al. [22]. The value of m is chosen in $\{500, 1000, 2000, 3000\}$. The rank of A is chosen as $10\%m$, and the number of corrupted entries (i.e., $\|E\|_{l0}$) is $10\%m^2$. We choose the ADM method [24,12] to solve the PRCA problem.

The data for the MC problem is generated in the same way as that in [2]. Namely, an $m \times m$ matrix A with rank r is generated by first sampling two $m \times r$ factor matrices M_L and M_R independently, each having i.i.d. Gaussian entries, and then multiplying them: $A = M_L M_R^T$. Finally, the set of observed entries is sampled uniformly at random. We choose the SVT algorithm [2] to solve the MC problem.

Table 1 shows detailed comparison between ADM and BLWS accelerated ADM for solving the RPCA problem. We can see that BLWS-ADM roughly costs less than $1/3$ time of ADM, achieving the same accuracy, and the total number of iterations does not change or only increases slightly. Similar phenomenon can also be observed in Table 2, which lists the comparison results for solving the MC problem.
Table 2 BLWS-SVT vs. SVT on different synthetic data. \(\hat{A} \) is the recovered low rank matrix and \(A \) is the ground truth. \(m \) is the size of matrix and \(s \) is the number of sampled entries. \(d_r = r(2m - r) \) is the number of degrees of freedom in an \(m \times m \) matrix of rank \(r \).

\(m \)	\(r \)	\(s/d_r \)	\(s/m^2 \)	algorithm	time(s)	\#iter	\(\| \hat{A} - A \|_F \)	\(\| A \|_F \)
5000	10	6	0.024	SVT	72.57	125	1.73e-004	1.73e-004
5000	10	6	0.024	BLWS-SVT	20.02	123	1.74e-004	1.74e-004
5000	50	5	0.1	SVT	438.81	107	1.63e-004	1.63e-004
5000	50	5	0.1	BLWS-SVT	279.08	108	1.55e-004	1.55e-004
5000	100	4	0.158	SVT	1783.26	122	1.73e-004	1.73e-004
5000	100	4	0.158	BLWS-SVT	1175.91	122	1.74e-004	1.74e-004
10000	10	6	0.012	SVT	135.90	123	1.68e-004	1.68e-004
10000	10	6	0.012	BLWS-SVT	42.80	123	1.70e-004	1.70e-004
10000	50	5	0.050	SVT	1156.25	110	1.58e-004	1.58e-004
10000	50	5	0.050	BLWS-SVT	736.01	110	1.60e-004	1.60e-004
20000	10	6	0.006	SVT	251.13	123	1.74e-004	1.74e-004
20000	10	6	0.006	BLWS-SVT	101.47	124	1.68e-004	1.68e-004
30000	10	6	0.004	SVT	449.34	124	1.75e-004	1.75e-004
30000	10	6	0.004	BLWS-SVT	171.40	125	1.69e-004	1.69e-004

6 Discussions

Although we have presented numerical results to testify to the effectiveness of BLWS, currently we have not rigorously proved the correctness of BLWS. We guess that BLWS can work well for most NNM problems. This is due to Theorem 9.2.2 of [8], which implies that when there is sufficient gap between the \(r \)-th and the \((r+1) \)-th eigenvalues, the errors in the Ritz values can be well controlled. As NNM problems typically involve singular value thresholding (1), such a gap should exist. However, a rigorous proof is still under exploration.

7 Conclusions

In this paper, we introduce the block Lanczos with warm start technique to accelerate the partial SVD computation in NNM problems. Both the block Lanczos procedure and the initialization with the previous principal singular subspaces can take full advantage of the information from last iteration. Our BLWS technique can work in different algorithms that solve rank minimization problems. The experimental results indicate that our BLWS technique usually makes its host algorithm at least two to three times faster.

References

1. Batmanghelich, N., et al.: Application of trace-norm and low-rank matrix decomposition for computational anatomy. In: Proc. of IEEE Computer Society Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA) (2010)
2. Cai, J., Candès, E., Shen, Z.: A singular value thresholding algorithm for matrix completion. Preprint (2008)
3. Candès, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? Journal of the ACM (2010)
4. Candès, E., Plan, Y.: Matrix completion with noise. Proc. of the IEEE (2009)
5. Candès, E., Recht, B.: Exact low-rank matrix completion via convex optimization. In: Proc. of 46th Annual Allerton Conference on Communication, Control, and Computing, pp. 806–812 (2008)
6. Ganesh, A., et al.: Dense error correction for low-rank matrices via principal component pursuit. In: Proc. of IEEE International Symposium on Information Theory (ISIT) (2010)
7. Ganesh, A., Lin, Z., Wright, J., Wu, L., Chen, M., Ma, Y.: Fast algorithms for recovering a corrupted low-rank matrix. In: Proc. of International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) (2009)
8. Golub, G., Loan, C.: Matrix computations. The Johns Hopkins University Press (1996)
9. Ji, H., Liu, C., Shen, Z., Xu, Y.: Robust video denoising using low rank matrix completion. In: Proc. of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) (2010)
10. Karbasi, A., Oh, S., Parhizkar, R., Vetterli, M.: Ultrasound tomography calibration using structured matrix completion. In: Proc. of International Congress of Acoustics (2010)
11. Larsen, R.: Lanczos bidiagonalization with partial reorthogonalization. Department of Computer Science, Aarhus University, Technical report, DAIMI PB-357, code available at http://soi.stanford.edu/~rmunk/PROPACK/ (1998)
12. Lin, Z., Chen, M., Wu, L., Ma, Y.: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. UIUC Technical Report UILU-ENG-09-2215 (2009)
13. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In: Proc. of International Conference on Machine Learning (ICML) (2010)
14. Liu, Z., Vandenberghe, L.: Semidefinite programming methods for system realization and identification. In: Proc. of IEEE Conference on Decision and Control (CDC), pp. 4676–4681 (2009)
15. Ma, S., Goldfarb, D., Chen, L.: Fixed point and Bregman iterative methods for matrix rank minimization. Preprint (2009)
16. Meng, J., Yin, W., Houssain, E., Han, Z.: Collaborative spectrum sensing from sparse observations using matrix completion for cognitive radio networks. In: Proc. of International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2010)
17. Min, K., Zhang, Z., Wright, J., Ma, Y.: Decomposing background topics from keywords by principal component pursuit. In: Proc. of ACM International Conference on Information and Knowledge Management (CIKM) (2010)
18. Peng, Y., Ganesh, A., Wright, J., Ma, Y.: RASL: Robust alignment via sparse and low-rank decomposition. In: Proc. of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) (2010)
19. Recht, B., Fazel, M., Parrilo, P.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review 52(3), 471–501 (2010)
20. Cao, M., Yuan, X.: Recovering low-rank and sparse components of matrices from incomplete and noisy observations. Preprint (2009)
21. Toh, K., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Preprint (2009)
22. Wright, J., et al.: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In: Proc. of Neural Information Processing Systems (NIPS), pp. 2080–2088 (2009)
23. Wu, L., et al.: Robust photometric stereo via low-rank matrix completion and recovery. In: Proc. of Asian Conference on Computer Vision (2010)
24. Yuan, X., Yang, J.: Sparse and low-rank matrix decomposition via alternating direction methods. Preprint (2009)
25. Zhang, Z., Liang, X., Ganesh, A., Ma, Y.: TILT: Transform invariant low-rank textures. In: Proc. of Asian Conference on Computer Vision (2010)
26. Zhou, Z., et al.: Stable principal component pursuit. In: Proc. of IEEE International Symposium on Information Theory (ISIT) (2010)
27. Zhu, G., Yan, S., Ma, Y.: Image tag refinement towards low-rank, content-tag prior and error sparsity. In: Proc. of ACM Multimedia (2010)