A Quench Detection and Monitoring System for Superconducting Magnets at Fermilab

D. Orris, G. Chlachidze, T. Cummings, S. Feher, A. Galt, A. Hocker, M. Lamm, A. Makulski, J. Nogiec, M. Tartaglia

Abstract — A quench detection system was developed for protecting and monitoring the superconducting solenoids for the Muon-to-Electron Conversion Experiment (Mu2e) at Fermilab. The quench system was designed for a high level of dependability and long-term continuous operation and is based on three tiers: Tier-I, FPGA-based Digital Quench Detection (DQD); Tier-II, Analog Quench Detection (AQD); and Tier-III, quench controls and data management system. The Tier-I and Tier-II are completely independent and fully redundant systems. The Tier-III system is based on National Instruments (NI) C-RIO and provides the user interface for quench controls and data management. It is independent from Tiers I & II. The DQD provides both quench detection and quench characterization (monitoring) capability. Both DQD and AQD have built-in high voltage isolation and user programmable gains and attenuations. The DQD and AQD also includes user configured current dependent thresholding and validation times.

A 1st article of the three-tier system was fully implemented on the new Fermilab magnet test stand for the HL-LHC Accelerator Upgrade Project (AUP). It successfully provided quench protection and monitoring for a cold superconducting bus test in November 2020 and later for the AUP magnets. A detailed description of the system along with results from the AUP superconducting bus test and the pre-series magnet tests will be presented.