Two Interesting Properties of the Exponential Distribution

Robert W. Chen

Abstract

Let X_1, X_2, \ldots, X_n be n independent and identically distributed random variables, here $n \geq 2$. Let $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ be the order statistics of X_1, X_2, \ldots, X_n. In this note we proved that: (I) If X_1, X_2, \ldots, X_n are exponential random variables with parameter $c > 0$, then the "correlation coefficient" between $X_{(k)}$ and $X_{(k+t)}$ is strictly increasing in k from 1 to m, and then is strictly decreasing in k from m to $n-t$, here t is a fixed integer between 1 and $n-3$, and $m = (n-t)/2$ if $n-t$ is even, $m = (n-t+1)/2$ if $n-t$ is odd. We also proved that if $t = n-2$, then the "correlation coefficient" between $X_{(1)}$ and $X_{(n-1)}$ is greater than the "correlation coefficient" between $X_{(2)}$ and $X_{(n)}$. (II) The "correlation coefficient" between $X_{(k)}$ and $X_{(k+t)}$ for the exponential random variables is always less than the "correlation coefficient" between $X_{(k)}$ and $X_{(k+t)}$ for the uniform random variables for all k and t such that $k + t \leq n$. A combinatorial identity is also given as a bi-product.

MATHEMATICS SUBJECT CLASSIFICATION (2000): Primary 62E99, Secondary 62F99.

Key words and phrases: Exponential distribution, order statistics, correlation coefficient, combinatorial identity.

Robert W. Chen: Department of Mathematics, University of Miami, 1365 Memorial Drive, Coral Gables, FL 33124-4250.

email: chen@math.miami.edu
Let \(X_1, X_2, \ldots, X_n \) be \(n \) independent and identically distributed exponential random variables with parameter \(c > 0 \), here \(n \geq 2 \). Let \(X(1), X(2), \ldots, X(n) \) be the order statistics of \(X_1, X_2, \ldots, X_n \). Without loss of generality, we can and assume that \(c = 1 \). The joint probability density function of \(X(1), X(2), \ldots, X(n) \) is \(f(x_1, x_2, \ldots, x_n) = n! \exp\{-x_1 + x_2 + \cdots + x_n\} \), here \(0 \leq x_1 \leq x_2 \leq \cdots \leq x_n < \infty \). Now let \(X(1) = Y_1, X(2) = Y_1 + Y_2, \ldots, X(n) = Y_1 + Y_2 + \cdots + Y_n \). Then the joint probability density function of \(Y_1, Y_2, \ldots, Y_n \) is \(g(y_1, y_2, \ldots, y_n) = n e^{-ny_1}(n-1)e^{-(n-1)y_2}\cdots 2e^{-2y_n-1}e^{-y_n} \), where \(0 \leq y_i < \infty \) for all \(i = 1, 2, \ldots, n \). It is easy to see that \(Y_1, Y_2, \ldots, Y_n \) are mutually independent and \(Y_i \) is an exponential random variable with parameter \(1/(n+1-i) \) for all \(i = 1, 2, \ldots, n \). Since \(X(k) = \sum_{i=1}^k Y_i, \) \(E(X(k)) = E(\sum_{i=1}^k Y_i) = \sum_{i=1}^k \frac{1}{(n+1-i)} = \sum_{i=n+1-k}^n \frac{1}{i} \) and \(\text{Var}(X(k)) = \text{Var}(\sum_{i=1}^k Y_i) = \sum_{i=1}^k \frac{1}{(n+1-i)^2} = \sum_{i=n+1-k}^n \frac{1}{i^2} \) for all \(k = 1, 2, \ldots, n \). Also \(\text{Cov}(X(k), X(k+t)) = \text{Cov}(\sum_{i=1}^k Y_i, \sum_{i=1}^k Y_i + \sum_{i=k+1}^{k+t} Y_i) = \text{Cov}(\sum_{i=1}^k Y_i, \sum_{i=1}^k Y_i) + \text{Cov}(\sum_{i=1}^k Y_i, \sum_{i=k+1}^{k+t} Y_i) = \text{Var}(X(k)) + 0 = \text{Var}(X(k)) \) since \(\sum_{i=1}^k Y_i \) and \(\sum_{i=k+1}^{k+t} Y_i \) are independent, here \(1 \leq t \leq n-k \).

\[
E(X^2(n)) = \int_0^\infty x^2 n(1 - e^{-x})^{n-1} e^{-x} dx = n \sum_{j=0}^{n-1} \binom{n-1}{j} (-1)^j \frac{2}{(j+1)!} = 2 \left[\sum_{i=1}^n \frac{n}{i^2} + \frac{1}{\binom{n}{i}} \right]^2.\]

Therefore, we have the following combinatorial identity

\[
(1) \quad \sum_{i=1}^n \binom{n}{i} \frac{(-1)^{i+1}}{i^2} = \frac{1}{2} \left(\sum_{i=1}^n \frac{1}{i^2} + \frac{1}{\binom{n}{i}} \right)^2.\]

The following combinatorial identity

\[
(2) \quad \sum_{i=1}^n \binom{n}{i} \frac{(-1)^{i+1}}{i} = \sum_{i=1}^n \frac{1}{i}.\]

is known. However, it can be derived simply by computing \(E(X(n)) = \int_0^\infty nx(1 - e^{-x})^{n-1} e^{-x} dx = n \sum_{j=0}^{n-1} \binom{n-1}{j} (-1)^j \frac{1}{(j+1)!} = \sum_{i=1}^n \frac{1}{i} \) since \(E(X(n)) = \sum_{i=1}^n \frac{1}{i} \).

The combinatorial identity (1) might be new.

Let \(\rho_{k,t} \) be the "correlation coefficient" between \(X(k) \) and \(X(k+t) \), where \(1 \leq k \leq n-t \) and \(t \) is a fixed positive integer such that \(1 \leq t \) and \(k+t \leq n \). First we will prove that \(\rho_{k,t} \) is strictly increasing in \(k \) from 1 to \(m \) and then is strictly decreasing in \(k \) from \(m \) to \(n-t \). It is easy to check that \(\rho_{k,t} = \frac{[\sum_{i=n+1-k}^n \frac{1}{i}]}{[\sum_{i=n+1-k-t}^n \frac{1}{i}]} \) since \(\text{Cov}(X(k), X(k+t)) = \text{Var}(X(k)) \). Since \(t \) is fixed, we will let \(h(k) = \rho_{k,t}^2 \) and be interested in the function \(h(k) \) for \(k \) from 1 to \(n-t \). First we give a few examples.
Example 1: \(n = 5 \).

\(t = 1, \ h(1) \approx 0.390, h(2) \approx 0.480, h(3) \approx 0.461, h(4) \approx 0.317 \).

\(t = 2, \ h(1) \approx 0.187, h(2) \approx 0.221, h(3) \approx 0.146 \).

\(t = 3, \ h(1) \approx 0.086, h(2) \approx 0.070 \).

\(t = 4, \ h(1) \approx 0.027 \).

Example 2: \(n = 6 \).

\(t = 1, \ h(1) \approx 0.410, h(2) \approx 0.520, h(3) \approx 0.540, h(4) \approx 0.491, h(5) \approx 0.329 \).

\(t = 2, \ h(1) \approx 0.213, h(2) \approx 0.281, h(3) \approx 0.265, h(4) \approx 0.162 \).

\(t = 3, \ h(1) \approx 0.115, h(2) \approx 0.138, h(3) \approx 0.087 \).

\(t = 4, \ h(1) \approx 0.056, h(2) \approx 0.045 \).

\(t = 5, \ h(1) \approx 0.019 \).

Example 3: \(n = 8 \).

\(t = 1, \ h(1) \approx 0.434, h(2) \approx 0.565, h(3) \approx 0.615, h(4) \approx 0.624, h(5) \approx 0.599, \)

\(h(6) \approx 0.526, h(7) \approx 0.345 \).

\(t = 2, \ h(1) \approx 0.245, h(2) \approx 0.347, h(3) \approx 0.384, h(4) \approx 0.374, h(5) \approx 0.315, \)

\(h(6) \approx 0.182 \).

\(t = 3, \ h(1) \approx 0.151, h(2) \approx 0.217, h(3) \approx 0.230, h(4) \approx 0.197, h(5) \approx 0.109 \).

\(t = 4, \ h(1) \approx 0.094, h(2) \approx 0.130, h(3) \approx 0.121, h(4) \approx 0.068 \).

\(t = 5, \ h(1) \approx 0.056, h(2) \approx 0.068, h(3) \approx 0.042 \).

\(t = 6, \ h(1) \approx 0.030, h(2) \approx 0.024 \).
Example 4: \(n = 9 \).

\[
\begin{align*}
t = 1, & \quad h(1) \approx 0.441, h(2) \approx 0.578, h(3) \approx 0.635, h(4) \approx 0.656, h(5) \approx 0.650, \\
& \quad h(6) \approx 0.617, h(7) \approx 0.537, h(8) \approx 0.351. \\
t = 2, & \quad h(1) \approx 0.355, h(2) \approx 0.367, h(3) \approx 0.417, h(4) \approx 0.426, h(5) \approx 0.401, \\
& \quad h(6) \approx 0.331, h(7) \approx 0.188. \\
t = 3, & \quad h(1) \approx 0.162, h(2) \approx 0.241, h(3) \approx 0.271, h(4) \approx 0.263, h(5) \approx 0.215, \\
& \quad h(6) \approx 0.116. \\
t = 4, & \quad h(1) \approx 0.106, h(2) \approx 0.157, h(3) \approx 0.167, h(4) \approx 0.141, h(5) \approx 0.075. \\
t = 5, & \quad h(1) \approx 0.069, h(2) \approx 0.097, h(3) \approx 0.090, h(4) \approx 0.050. \\
t = 6, & \quad h(1) \approx 0.043, h(2) \approx 0.052, h(3) \approx 0.031. \\
t = 7, & \quad h(1) \approx 0.022, h(2) \approx 0.018. \\
t = 8, & \quad h(1) \approx 0.008.
\end{align*}
\]

From these examples, we can see that for a fixed \(t \), \(h(k) \) is strictly increasing and then strictly decreasing for \(k \) from 1 to \(n - t \), except that when \(t = n - 2 \), then \(h(1) > h(2) \) (when \(t = n - 2 \), \(k \) can be 1 or 2 only).

Theorem 1:

(I) For any fixed \(t \) between 1 and \(n - 3 \), \(h(k) \) is strictly increasing for \(1 \leq k \leq m \) and is strictly decreasing for \(m \leq k \leq n - t \), where \(m = (n - t)/2 \) if \(n - t \) is even \(= (n + 1 - t)/2 \) if \(n - t \) is odd.

(II) For \(t = n - 2 \), then \(h(1) > h(2) \).

Before we prove "Theorem 1", we state a "Lemma" without a proof since it is easy to check.
Lemma: Assume that a, b, c, and d are positive numbers,
(a) If \(\frac{a}{a+b} > \frac{c}{d} \), then \(\frac{a}{a+b} > \frac{(a+c)}{(a+b+d)} > \frac{c}{d} \).
(b) If \(\frac{a}{a+b} < \frac{c}{d} \), then \(\frac{a}{a+b} < \frac{(a+c)}{(a+b+d)} \).

Now we start to prove "Theorem 1".

(I) For a fixed \(t \) between 1 and \(n - 3 \), \(m \geq 2 \). We first will show that
\[
\frac{(n - m - t)^2}{(n - m)^2} > \frac{n^2 + (n + 1 - m)^2 + 2n(n + 1 - m)(m - 1)}{2n^2(n + 1 - m)^2}.
\]
Also it is easy to check that
\[
\frac{D}{2n^2} < \int_{n+1-m-t}^{n} \frac{1}{2(n+1-m-t)^2} \left(x - \frac{1}{2} \right)^2 dx = \frac{2}{2n+1-2m-2t} - \frac{2}{2n+1} \]
\[
= \frac{4(m + t)}{(2n + 1)(2n + 1 - 2m - 2t)}.
\]
To prove that \(h(m) = N/D > (n - m - t)^2/(n - m)^2 \), it is sufficient to show that
\[
\frac{(2n + 1)(2n + 1 - 2m - 2t)[n^2 + (n + 1 - m)^2 + 2n(n + 1 - m)(m - 1)]}{8(m + t)n^2(n + 1 - m)^2} > \frac{(n - m - t)^2}{(n - m)^2}
\]
since \(h(m) = N/D > \)
\[
\frac{(2n + 1)(2n + 1 - 2m - 2t)[n^2 + (n + 1 - m)^2 + 2n(n + 1 - m)(m - 1)]}{8(m + t)n^2(n + 1 - m)^2}.
\]

Since all numbers involved are positive numbers, it is sufficient to show that

\[
(3) \quad (2n + 1)(2n + 1 - 2m - 2t)[n^2 + (n + 1 - m)^2 + 2n(n + 1 - m)(m - 1)](n - m)^2
- 8(m + t)n^2(n + 1 - m)^2(n - m - t)^2 > 0.
\]

There are two cases to be considered:

(a) \(n = 2m + t \).

Then to prove the inequality (3) is equivalent to prove the following inequality

\[
(4) \quad (4m + 2t + 1)(2m + 1)(m + t)^2[(2m + t)^2 + (m + t + 1)^2 + 2(2m + t)(m + t + 1)(m - 1)]
- 8(m + t)m^2(m + t + 1)^2(2m + t)^2 > 0.
\]

After simplification, we have the following inequality:

\[
(5) \quad (16t - 14)m^5 + (48t^2 - 8t + 1)m^4 + (53t^3 + 24t^2 + 4t + 4)m^3
+ (24t^4 + 24t^3 + 5t^2 + 10t + 1)m^2 + (4t^5 + 6t^4 + 2t^3 + 8t^2 + 2t)m
+ t^2(2t + 1) > 0
\]

since \(t \geq 1 \) and \(m \geq 2 \). Hence \(h(m) > (n - m - t)^2/(n - m)^2 \) when \(n = 2m + t \).

(b) \(n = 2m + t - 1 \).

Then to prove the inequality (3) is equivalent to prove the following inequality

\[
(6) \quad (4m + 2t - 1)(2m - 1)(m + t - 1)^2[(2m + t - 1)^2 + (m + t)^2 + 2(2m + t - 1)(m + t)(m - 1)]
- 8(m + t)^3(2m + t - 1)^2(m - 1)^2 > 0.
\]

After simplification, the left hand side of the inequality (6) is

\[
(7) \quad (48t - 14)m^5 + (144t^2 - 120t + 47)m^4 + (156t^3 - 256t^2 + 128t - 60)m^3
\]
\[+ (72t^4 - 216t^3 + 155t^2 - 80t + 36)m^2 + (12t^5 - 74t^4 + 86t^3 - 42t^2 + 28t - 10)m \\
+ (-8t^5 + 16t^4 - 10T63 + 5t^2 - 4t + 1). \]

We have to re-arrange (7) by using the fact that \(m \geq 2 \) to show that

\[
(8) \ (48t - 14)m^5 + (144t^2 - 120t + 47)m^4 + (156t^3 - 256t^2 + 128t - 60)m^3 \\
+ (72t^4 - 216t^3 + 155t^2 - 80t + 36)m^2 + (12t^5 - 74t^4 + 86t^3 - 42t^2 + 28t - 10)m \\
+ (-8t^5 + 16t^4 - 10T63 + 5t^2 - 4t + 1) \geq 14(t - 1)m^5 + 26(t - 1)^2m^4 \\
+ [67t(t - 1)^2 + 18(t - 1)]m^3 + 19t^2(t - 1)^2m^2 \\
+ (8t^5 + 32t^4 + 81t^3 + 230t^2 + 98t + 62)m + (16t^4 + 5t^2 + 1) > 0 \]

since \(t \geq 1 \) and \(m \geq 2 \). Hence the inequality (6) holds and \(h(m) > \frac{(n-m-t)^2}{(n-m)^2} \).

By the "Lemma", we can conclude both cases that \(h(m) > h(m+1) > \frac{(n-m-t)^2}{(n-m-1)^2} \). Therefore, \(h(m+1) > h(m+2) \). By this process, we have proved that \(h(k) \) is strictly decreasing in \(k \) from \(m \) to \(n-t \), here \(t \) is a fixed integer between 1 and \(n-3 \).

Now we have to prove that

\[h(m-1) = [\sum_{i=n+2-m}^{n} \frac{1}{i^2}] / [\sum_{i=n+2-m-t}^{n} \frac{1}{i^2}] < \frac{(n+1-m-t)^2}{(n+1-m)^2}. \]

As above let \(N = \sum_{i=n+2-m}^{n} \frac{1}{i^2} \) and \(D = \sum_{i=n+2-m-t}^{n} \frac{1}{i^2} \). It is easy to see that

\[
N < \int_{n+2-m}^{n+1} \frac{1}{(x-0.5)^2} dx = \frac{2}{(2n+3-2m)} - \frac{2}{(2n+1)} = \frac{4(m-1)}{(2n+1)(2n+3-2m)}. \]

Also it is easy to check that

\[
D > \frac{[n^2 + (n+2-m-t)^2 + 2n(n+2-m-t)(m+t-2)]}{[2n^2(n+2-m-t)^2]}.
\]

To prove that \(h(m-1) < \frac{(n+1-m-t)^2}{(n+1-m)^2} \), it is sufficient to show that
\[
\frac{8(m - 1)n^2(n + 2 - m - t)^2}{(2n + 1)(2n + 3 - 2m)[n^2 + (n + 2 - m - t)^2 + 2n(n + 2 - m - t)(m + t - 2)]]
< \frac{(n + 1 - m - t)^2}{(n + 1 - m)^2}.
\]

As above, it is equivalent to show that
\[
(10) (2n+1)(2n+3-2m)[n^2+(n+2-m-t)^2+2n(n+2-m-t)(m+t-2)](n+1-m-t)^2
- 8(m - 1)n^2(n + 2 - m - t)^2(n + 1 - m)^2 > 0.
\]

There are also two cases to be considered.

\(c\) \(n = 2m + t. \)

Then to prove the inequality (10) is equivalent to prove the following inequality
\[
(11) (4m+2t+1)(2m+2t+3)(m+1)^2[(2m+t)^2+(m+2)^2+2(2m+t)(m+2)(m+t-2)]
- 8(m - 1)(m + 2)^2(2m + t)^2(m + t + 1)^2 > 0.
\]

After simplification, the inequality (11) becomes
\[
(12) (48t - 14)m^5 + (96t^2 + 242t - 21)m^4 + (60t^3 + 444t^2 + 472t + 20)m^3
+ (12t^4 + 256t^3 + 695t^2 + 290t + 59)m^2 + (48t^4 + 332t^3 + 282t^2 + 20t + 44)m
+ (52t^4 + 72t^3 - t^2 + 8t + 12) > 0
\]
since \(t \geq 1 \) and \(m \geq 2. \)

\(d\) \(n = 2m + t - 1. \)

Then the inequality (10) becomes
\[
(13) m^2(4m+2t-1)(2m+2t+1)[(m+1)^2+(2m+t-1)^2+2(2m+t-1)(m+1)(m+t-2)]
\]
\[-8(m - 1)(m + 2)(2m + t)^2(m + t - 1)^2 > 0.\]

After simplification, the inequality (13) becomes

\[
(14) \ (16t - 14)m^5 + (32t^2 + 2t + 25)m^4 + (20t^3 + 36t^2 + 52t - 4)m^3 \\
+ (4t^4 + 32t^3 + 53t^2 - 56t + 2)m^2 + (8t^4 + 32t^3 - 56t^2 + 16t)m + 8t^2(t - 1)^2 > 0 \\
\]

since \(t \geq 1\) and \(m \geq 2\). Hence \(h(m - 1) < \frac{(n+1-m-t)^2}{(n+1-m)^2}\) and \(h(m - 1) < h(m)\).

Now we have to show that \(h(k)\) is strictly increasing in \(k\) from 1 to \(m\). Suppose not, then there exists a \(k\) such that \(h(k) \geq h(k+1)\), where \(1 \leq k \leq m - 2\) since \(h(m - 1) < h(m)\). If \(h(k) = h(k+1)\), then \(h(k) = \frac{(n-k-t)^2}{(n-k)^2}\) and \(h(k) = h(k+1) > \frac{(n-1-k-t)^2}{(n-1-k)^2}\).

By the "Lemma", then \(h(k+1) > h(k+2) > ... > h(m-1) > h(m)\) and we get a contradiction. If \(h(k) > h(k+1)\), then \(h(k+1) > h(k+2) > ... > h(m-1) > h(m)\) and we get a contradiction again. Hence \(h(k)\) is strictly increasing in \(k\) from 1 to \(m\). The part (I) of the "Theorem 1" is proved.

To complete the proof of the "Theorem 1", now we have to prove the part (II) of the "Theorem 1".

When \(t = n-2\) and \(n \geq 3\), \(k\) can be 1 or 2 only. Now we will show that \(h(1) > h(2)\).

\[h(1) = \frac{1}{n^2 \sum_{i=2}^{n-1} i^2},\]

for \(h(1) > h(2)\), we only need to show \(\frac{1}{n^2 \sum_{i=2}^{n-1} i^2} > \frac{1}{(n-1)^2}\). It is easy to see that

\[
(15) \ \sum_{i=2}^{n} \frac{1}{i^2} < \int_{2}^{n+1} \frac{1}{(x - 0.5)} = \frac{2}{3} - \frac{2}{2n+1} = \frac{4(n-1)}{3(2n+1)}.
\]

If \(\frac{4(n-1)}{3(2n+1)} < \frac{(n-1)^2}{n^2}\), then \(\sum_{i=2}^{n} \frac{1}{i^2} < \frac{(n-1)^2}{n^2}\). Hence \(\frac{4(n-1)}{3(2n+1)} < \frac{(n-1)^2}{n^2}\) if \(3(2n+1)(n-1) - 4n^2 > 0\). \(3(2n+1)(n-1) - 4n^2 = 2(n-1)^2 + (n-3) > 0\) since \(n \geq 3\). Therefore, \(h(1) > h(2)\) and the proof of the "Theorem 1" now is complete.

By the same process, we also get an upper bound for \(h(m)\). Hence we have the following inequality.

\[
\frac{(2n+1)(2n+1-2m-2t)[n^2 + (n+1-m)^2 + 2n(n+1-m)(m-1)]}{8n^2(n+1-m)^2(m+t)} < h(m)
\]

9
\[
\frac{8n^2(n + 1 - m - t)^2m}{(2n + 1)(2n + 1 - 2m)(n^2 + (n + 1 - m - t)^2 + 2n(n + 1 - m - t)(m + t - 1))}.
\]

Suppose that \(t = \lfloor nx \rfloor \), here \(\lfloor nx \rfloor \) is the largest integer \(\leq nx \) and \(t \leq n - 3 \). Since \(h(m) = \rho_{m,t}^2 \) and by the "Lemma", \(h(m) < \frac{(n+1-m-t)^2}{(n+1-m)^2} \), we have the following inequality for \(\rho_{m,t} \)

\[
\frac{n - m - t}{n - m} < \rho_{m,t} < \frac{n + 1 - m - t}{n + 1 - m}.
\]

Substitute \(\lfloor nx \rfloor \) for \(t \), if \(n - \lfloor nx \rfloor \) is even, we have the following inequality for \(\rho_{m,t} \)

\[
\frac{n - \lfloor nx \rfloor}{n + \lfloor nx \rfloor} < \rho_{m,t} < \frac{n - \lfloor nx \rfloor + 2}{n + \lfloor nx \rfloor + 2}.
\]

And if \(n - \lfloor nx \rfloor \) is odd, we have the following inequality for \(\rho_{m,t} \)

\[
\frac{n - \lfloor nx \rfloor - 1}{n + \lfloor nx \rfloor - 1} < \rho_{m,t} < \frac{n - \lfloor nx \rfloor + 1}{n + \lfloor nx \rfloor + 1}.
\]

Further more if \(\lfloor nx \rfloor = nx \) i.e., \(nx \) is an integer, then if \(n - nx \) is even we have we the following inequality for \(\rho_{m,t} \)

\[
\frac{1 - x}{1 + x} < \rho_{m,t} < \frac{1 - x + \frac{2}{n}}{1 + x + \frac{2}{n}}.
\]

And if \(n - nx \) is odd we have the following inequality for \(\rho_{m,t} \)

\[
\frac{1 - x - \frac{1}{n}}{1 + x - \frac{1}{n}} < \rho_{m,t} < \frac{1 - x + \frac{1}{n}}{1 + x + \frac{1}{n}}.
\]

If \(n \) is large, the lower bound and the upper bound are so close, and \(\rho_{m,t} \approx \frac{(1-x)}{(1+x)} \).

In fact, if we replace \(m \) by \(k \) for \(k \) from 1 to \(n - 3 \), we have upper and lower bounds for \(h(k) \) as follows:

\[
(16) \frac{(2n + 1)(2n + 1 - 2k - 2t)[n^2 + (n + 1 - k)^2 + 2n(n + 1 - k)(k - 1)]}{8n^2(n + 1 - k)^2(k + t)} < h(k)
\]

\[
< \frac{8n^2(n + 1 - k - t)^2k}{(2n + 1)(2n + 1 - 2k)[n^2 + (n + 1 - k - t)^2 + 2n(n + 1 - k - t)(k + t - 1)]}.
\]
It is very easy to compute the lower and upper bounds for $\rho_{k,t}$ for any k and t, here t is fixed and is between 1 and $n-3$, $k+t \leq n$ even just with a hand calculator. Also the both bounds are very close to the exact value of $\rho_{k,t}$. However, even moderate n, it needs some software like Maple or Mathematica to compute $\rho_{k,t}$.

Now suppose that X_1, X_2, \ldots, X_n are n independent and identically distributed uniform random variables over the interval $[0,1]$ here $n \geq 2$. Let $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ be the order statistics of X_1, X_2, \ldots, X_n. It is well-known that the "correlation coefficient" between $X_{(k)}$ and $X_{(k+t)}$ is equal to $\sqrt{\frac{k(n+1-k-t)}{(k+t)(n+1-k)}}$. It is easy to see that it is strictly increasing in k from 1 to m and then strictly decreasing in k from m to $n-t$ if $n-t$ is odd. However, if $n-t$ is even, then it is strictly increasing in k from 1 to m and then strictly decreasing in k from $m+1$ to $n-t$. For $k = m$ and $k = m+1$, they are the same. It is different from the case for the exponential random variables. Further more the "correlation coefficient" between $X_{(1)}$ and $X_{(n-1)}$ is greater than the "correlation coefficient" between $X_{(2)}$ and $X_{(n)}$ for the exponential random variables, but the "correlation coefficient" between $X_{(1)}$ and $X_{(n-1)}$ is equal to the "correlation coefficient" between $X_{(2)}$ and $X_{(n)}$ for the uniform random variables, both of them are equal to $\sqrt{\frac{2}{n(n-1)}}$.

From our computation, we observed that the "correlation coefficient" between $X_{(k)}$ and $X_{(k+t)}$ for the exponential random variables is always less than the "correlation coefficient" between $X_{(k)}$ and $X_{(k+t)}$ for the uniform random variables, here k, t are positive integers and $k+t \leq n$, $n \geq 2$. We have the following theorem.

Theorem 2:

The "correlation coefficient" between $X_{(k)}$ and $X_{(k+t)}$ for the exponential random variables is always less than the "correlation coefficient" between $X_{(k)}$ and $X_{(k+t)}$ for the uniform random variables, here k, t are positive integers and $k+t \leq n$, $n \geq 2$.

It is sufficient to show that $h(k)$ is less than $\frac{k(n-k)}{(k+1)(n+1-k)}$. There are three cases to discuss.

Case I: When $t = 1$.

\[
\frac{\sum_{n-k}^{n-1-k} \frac{1}{i^2}}{\sum_{n-k}^{n-1-k} \frac{1}{i^2}} < \frac{k(n-k)}{(k+1)(n+1-k)}.
\]
It is equivalent to show that
\[(n - k)^2 \sum_{n-k}^{n} \frac{1}{i^2} < \frac{(k + 1)(n + 1 - k)}{n + 1}.\]

After simplification, we have \((2n + 1)(2n + 1 - 2k) - 4(n + 1)(n - k) = 2k + 1 > 0\) since \(k \geq 1\).

Case II: When \(k = 1\).

It is equivalent to show that
\[(18) \frac{1}{\sum_{n-t}^{n} \frac{1}{i^2}} < \frac{n(n-t)}{t + 1}.\]

Since \(\sum_{n-t}^{n} \frac{1}{i^2} > \frac{n^2 + (n-t)^2 + 2n(n-t)t}{2n^2(n-t)^2}\), it is sufficient to show that \(n^2 + (n-t)^2 + 2n(n-t)t - 2n(n-t)(t+1) > 0\). After simplification, we have \(t^2 > 0\) since \(t \geq 1\).

From now on we will assume that \(k, t \geq 2\). Hence \(n \geq 4\). Recall that
\[h(k) = \frac{N}{D} = \frac{\sum_{n+1-k}^{n} \frac{1}{i^2}}{\sum_{n+1-k-t}^{n} \frac{1}{i^2}}\]

\[N = \sum_{n+1-k}^{n} \frac{1}{i^2} < \frac{(2n + 1)(2n + 3 - 2k) + 4(n + 1 - k)^2(k - 1)}{(2n + 1)(2n + 3 - 2k)(n + 1 - k)^2}.\]

And
\[D = \sum_{n+1-k-t}^{n} \frac{1}{i^2} > \frac{n^2 + (n + 1 - k - t)^2 + 2n(n + 1 - k - t)(k + t - 1)}{2n^2(n + 1 - k - t)^2}.\]

Hence
\[h(k) < \frac{2n^2(n + 1 - k - t)^2[(2n + 1)(2n + 3 - 2k) + 4(k - 1)(n + 1 - k)^2]}{(2n + 1)(2n + 3 - 2k)(n + 1 - k)^2[n^2 + (n + 1 - k - t)^2 + 2n(n + 1 - k - t)(k + t - 1)]}.\]
To show $h(k) < \frac{k(n+1-k-t)}{(k+t)(n+1-k)}$, it is sufficient to show that
\[
\frac{k(n + 1 - k - t)}{(k + t)(n + 1 - k)} > \frac{2n^2(n + 1 - k - t)^2[(2n + 1)(2n + 3 - 2k) + 4(k - 1)(n + 1 - k)^2]}{(2n + 1)(2n + 3 - 2k)(n + 1 - k)^2[n^2 + (n + 1 - k - t)^2 + 2n(n + 1 - k - t)(k + t - 1)]},
\]

From now on we will let $n = k + t + x$, where x is a non-negative integer. To show that
\[
\frac{k(n + 1 - k - t)}{(k + t)(n + 1 - k)} > \frac{2n^2(n + 1 - k - t)^2[(2n + 1)(2n + 3 - 2k) + 4(k - 1)(n + 1 - k)^2]}{(2n + 1)(2n + 3 - 2k)(n + 1 - k)^2[n^2 + (n + 1 - k - t)^2 + 2n(n + 1 - k - t)(k + t - 1)]},
\]

it is equivalent to show that
\[
k(n+1-k-t)(2n+1)(2n+3-2k)(n+1-k)^2[n^2+(n+1-k-t)^2+2n(n+1-k-t)(k+t-1)]
-2(k+t)(n+1-k)n^2(n+1-k-t)^2[(2n+1)(2n+3-2k)+4(k-1)(n+1-k)] > 0.
\]

Replace n by $k + t + x$, we obtain the following polynomial in x

\[
(19) \quad p(x) = [8k^2 + 8k(t-1) - 8t]x^7 + [16k^3 + (24 + 56t)k^2 + 8(5t^2 - 2t - 5)k - 40(t^2 + t)]x^6
+ [8k^4 + 72(t+1)k^3 + (144t^2 + 188t - 6)k^2 + (80t^3 + 36t^2 - 182t - 74)k - (80t^3 + 176t^2 + 78t)]x^5
+ [8(3t + 5)k^4 + (120t^2 + 296t + 114)k^3 + (176t^3 + 480t^2 + 140t - 100)k^2
+ (80t^4 + 144t^3 - 278t^2 - 386t - 54)k - (80t^4 + 304t^3 + 298t^2 + 74t)]x^4
\]
\[+[(24t^2 + 100t + 78)k^4 + (88t^3 + 436t^2 + 444t + 61)k^3 + (104t^4 + 552t^3 \\
+ 492t^2 - 172t - 144)k^2 + (40t^5 + 176t^4 - 130t^3 - 655t^2 - 338t + 5)k \\
- (40t^5 + 256t^4 + 434t^3 + 240t^2 - 34t)]x^3 \]

\[[(8t^3 + 80t^2 + 156t + 740)k^4 + (24t^4 + 272t^3 + 560t^2 + 276t - 21)k^3 + (24t^5 \\
+ 296t^4 + 576t^3 + 52t^2 - 316t - 84)k^2 + (8t^6 + 95t^5 + 58t^4 - 440t^3 - 545t^2 \\
- 110t + 27)k - (8t^6 + 104t^5 + 294t^4 + 282t^3 + 90t^2 + 6t - 4)]x^2 \]

\[+[(20t^3 + 90t^2 + 108t + 34)k^4 + (60t^4 + 276t^3 + 307t^2 + 44t - 33)k^3 \\
+(60t^5 + 266t^4 + 198t^3 - 168t^2 - 160t - 28)k^2 + (20t^6 + 64t^5 - 89t^4 - 312t^3 \\
- 178t^2 + 9)k - (16t^6 + 88t^5 + 140t^4 + 78t^3 + 12t^2 - 8t - 8)]x \]

\[+[(12t^3 + 34t^2 + 28t + 6)k^4 + (36t^4 + 92t^3 + 53t^2 - 12t - 9)k^3 \\
(36t^5 + 74t^4 - 2t^3 - 64t^2 - 24t)k^2 + (12t^6 + 8t^5 - 51t^4 - 66t^3 - 18t^2 - 1)k \\
- (8t^6 + 24t^5 + 22t^4 + 6t^3 - 4t^2 - 8t - 4)] \]

\[\geq [8k^2 + 8k(t - 1) - 8t]x^7 + [16k^3 + (40t^2 + 96t + 8)k - (40t^2 + 40t)]x^6 \]

\[+[8k^4 + 72(t + 1)k^3 + (80t^3 + 324t^2 + 194t - 86)k - (80t^3 + 176t^2 + 78t)]x^5 \]

\[+[8(3t + 5)k^4 + (120t^2 + 296t + 114)k^3 + (80t^4 + 496t^3 + 682t^2 - 106t - 254)k \\
- (80t^4 + 304t^3 + 298t^2 + 74t)]x^4 \]

\[+[(24t^2 + 100t + 78)k^4 + (88t^3 + 436t^2 + 444t + 61)k^3 \\
+(40t^5 + 384t^4 + 974t^3 + 329t^2 - 682t - 283)k - (40t^5 + 256t^4 + 434t^3 + 240t^2 - 34t)]x^3 \]
\[+ [(8t^3 + 80t^2 + 156t + 740)k^4 + (24t^4 + 272t^3 + 560t^2 + 276t - 21)k^3 + (8t^6 + 143t^5 \\
+ 650t^4 + 712t^3 - 441t^2 - 742t - 141)k - (8t^6 + 104t^5 + 294t^4 + 282t^3 + 90t^2 + 6t - 4)]x^2 \\
+ [(20t^3 + 90t^2 + 108t + 34)k^4 + (60t^4 + 276t^3 + 307t^2 + 44t - 33)k^3 + (20t^6 + 184t^5 + 443t^4 \\
+ 84t^3 - 514t^2 - 320t - 47)k - (16t^6 + 88t^5 + 140t^4 + 78t^3 + 12t^2 - 8t - 8)]x \\
+ [(12t^3 + 34t^2 + 28t + 6)k^4 + (36t^4 + 92t^3 + 53t^2 - 12t - 9)k^3 + (12t^6 + 80t^5 + 97t^4 - 70t^3 \\
- 146t^2 - 48t - 1)k - (8t^6 + 24t^5 + 22t^4 + 6t^3 - 4t^2 - 8t - 4)] > 0 \\
\]

since \(k, t \geq 2 \) and \(x \) is a non-negative integer. The proof of Theorem 2 now is complete.

Theorem 1 tells us that the "correlation coefficient" between \(X(k) \) and \(X(k+t) \) is largest when \(k = \frac{n-t}{2} \) if \(n - t \) is even, and \(k = \frac{n-t+1}{2} \) if \(n - t \) is odd, also the "correlation coefficient" between \(X(1) \) and \(X(n-1) \) is larger than the "correlation coefficient" between \(X(2) \) and \(X(n) \) for the exponential random variables. From our computation, this theorem does not hold for the random variables with the probability density function \(f(x) = 2x \) for \(0 \leq x \leq 1 \). When \(n = 3 \), the "correlation coefficient" between \(X(1) \) and \(X(2) \) is less than the "correlation coefficient" between \(X(2) \) and \(X(3) \). Also when \(n = 7 \) and \(t = 1 \), the "correlation coefficient" between \(X(k) \) and \(X(k+1) \) is largest when \(k = 4 > \frac{n-t}{2} \). However, when \(n = 6 \), the "correlation coefficient" between \(X(k) \) and \(X(k+1) \) is largest when \(k = 3 = \frac{n-t+1}{2} \). For the random variables with the probability density function \(f(x) = 2(1-x) \) for \(0 \leq x \leq 1 \), Theorem 1 seems to hold. So we have the following conjecture:

Conjecture I:

Theorem 1 holds if the probability density function is strictly decreasing. Theorem 1 must be modified as the "correlation coefficient" between \(X(k) \) and \(X(k+t) \) is largest when \(k = m = \frac{n-t+1}{2} \) when \(n - t \) is odd, and the "correlation coefficient" between \(X(k) \) and \(X(k+t) \) is largest when \(k = m+1 = \frac{n-t}{2} + 1 \) when \(n - t \) is even if the probability density function is strictly increasing. We do not have any idea about the case that the probability density is increasing and then decreasing.
Suppose that Y_1, Y_2, \ldots, Y_n be n independent and identically distributed negative exponential random variables, here $n \geq 2$. Let $Y_{(1)}, Y_{(2)}, \ldots, Y_{(n)}$ be the order statistics of Y_1, Y_2, \ldots, Y_n. Let $Y_i = -X_{n+1-i}$ for all $i = 1, 2, \ldots, n$, then X_1, X_2, \ldots, X_n are n independent and identically distributed exponential random variables, and $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ be the order statistics of X_1, X_2, \ldots, X_n. The "correlation coefficient" between $Y_{(i)}$ and $Y_{(i+t)}$ is the same as the "correlation coefficient" between $X_{(n+1-i)}$ and $X_{(n+1-i-t)}$. So the "correlation coefficient" between $Y_{(i)}$ and $Y_{(i+t)}$ is strictly increasing in i from 1 to m, and is strictly decreasing in i from m to $n-t$, if $n-t$ is odd and here $m = \frac{n+1-t}{2}$. And the "correlation coefficient" between $Y_{(i)}$ and $Y_{(i+t)}$ is strictly increasing in i from 1 to $m+1$, and is strictly decreasing in i from $m+1$ to $n-t$, if $n-t$ is even and here $m = \frac{n+2-t}{2}$. The correlation coefficient" between $X_{(1)}$ and $X_{(n-1)}$ is larger than the "correlation coefficient" between $X_{(2)}$ and $X_{(n)}$. So the "correlation coefficient" between $Y_{(1)}$ and $Y_{(n-1)}$ is less than the "correlation coefficient" between $Y_{(2)}$ and $Y_{(n)}$.

Theorem 2 tells us the "correlation coefficient" between $X_{(k)}$ and $X_{(k+t)}$ of the exponential random variables is always less than the "correlation coefficient" between $X_{(k)}$ and $X_{(k+t)}$ of the uniform random variables. From our computation of a few continuous random variables, it looks like this property seems to hold. So we make the following conjecture.

Conjecture II:

Theorem 2 holds for any continuous random variables, i.e., the "correlation coefficient" between $X_{(k)}$ and $X_{(k+t)}$ of any continuous random variables is always less than the "correlation coefficient" between $X_{(k)}$ and $X_{(k+t)}$ of the uniform random variables, here k, t are positive integers and $k+t \leq n$, $n \geq 2$.

References

[1] Arnold, B.C., Balakrishnan,N. and Nagaraja, H.N. (1992), *A First Course in Order Statistics* John Wiley and Sons Inc.

[2] Balakirinan, N. and Basu, A.P. (1995) *The Exponential Distribution, Theory, Methods and Applications* Gordon and Breach Publishers.

[3] David, H.A. and Nagaraja, H.N. (2003) *Order Statistics, Third Edition* John Wiley, New York, An encyclopedic reference - a dense treatment.