ABSTRACT

Advancements in distributed ledger technologies are driving the rise of blockchain-based social media platforms such as Steemit, where users interact with each other in similar ways as conventional social networks. These platforms are autonomously managed by users using decentralized consensus protocols in a cryptocurrency ecosystem. The deep integration of social networks and blockchains in these platforms provides potential for numerous cross-domain research studies that are of interest to both the research communities. However, it is challenging to process and analyze large volumes of raw Steemit data as it requires specialized skills in both software engineering and blockchain systems and involves substantial efforts in extracting and filtering various types of operations. To tackle this challenge, we collect over 38 million blocks generated in Steemit during a 45 month time period from 2016/03 to 2019/11 and extract ten key types of operations performed by the users. The results generate SteemOps, a new dataset that organizes more than 900 million operations from Steemit into three sub-datasets namely (i) social-network operation dataset (SOD), (ii) witness-election operation dataset (WOD) and (iii) value-transfer operation dataset (VOD). We describe the dataset schema and its usage in detail and outline possible future research studies using SteemOps. SteemOps is designed to facilitate future research aimed at providing deeper insights on emerging blockchain-based social media platforms.

KEYWORDS

blockchain, social network, Steem, dataset

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

CODASPY '21, April 26–28, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnnn

1 INTRODUCTION

Rapid development of distributed ledger technologies is driving the rise of blockchain-based social media platforms, where users interact with each other in similar ways as conventional social networks. These platforms are autonomously managed by users using decentralized consensus protocols in a cryptocurrency ecosystem. Examples of such platforms include Steemit, Indorse, Sapien and SocialX. Among all these platforms, Steemit has kept its leading position since its launching in 2016/03 and its native cryptocurrency, STEEM, has the highest market capitalization among all cryptocurrencies issued by blockchain-based social networking projects. Today, Steemit is considered as one of the most successful blockchain-based applications.

Steemit enables the deep integration of social networks with the underlying blockchain infrastructure. In Steemit, users can perform various types of social-network operations as in Reddit and Quora, such as creating blog posts, upvoting posts or comments and following other users. Meanwhile, all data generated by Steemit users are stored in its backend Steem-blockchain based on Delegated Proof of Stake (DPoS) consensus protocol. Users perform witness-election operations to periodically elect block producers called witnesses, as well as value-transfer transactions to transfer cryptocurrencies as in Bitcoin and Ethereum. Interestingly, different types of operations often correlate with each

Chao Li
Beijing Key Laboratory of Security and Privacy in Intelligent Transportation
Beijing Jiaotong University
li.chao@bjtu.edu.cn

Balaji Palanisamy
School of Computing and Information
University of Pittsburgh
Pittsburgh, USA
bpalan@pitt.edu

Runhua Xu
IBM Almaden Research Center
San Jose, USA
runhua@ibm.com

Jinlai Xu
School of Computing and Information
University of Pittsburgh
Pittsburgh, USA
jinlai.xu@pitt.edu

Jingzhe Wang
School of Computing and Information
University of Pittsburgh
Pittsburgh, USA
jiw148@pitt.edu

1 https://steemit.com/
2 https://indorse.io/
3 https://beta.sapien.network/
4 https://socialx.network/
other. For instance, a user who aims at becoming a block producer may leverage the social network to advertise and promote himself or herself, as well as use cryptocurrencies to bribe important voters. As all relevant operations are stored in the Steem-blockchain, it is available to the public and hard to be manipulated. Therefore, the joint analysis of various types of operations in Steemit provides potential for numerous cross-domain research studies that are of interest to both the social networking and blockchain research communities [17, 20, 23, 24, 30].

Processing and analyzing large volumes of raw data in the Steem-blockchain for creating useful datasets involves several challenges. First, it requires sophisticated knowledge in understanding the Steem-blockchain, including but not limited to its DPoS consensus mechanism, cryptocurrency ecosystem and their associations with social behaviors in Steemit. As the white paper on Steemit only provides limited information, it is necessary to consult a large number of technical articles posted by the development team, investigate the source code of the platform and register a few real accounts to match the frontend operations with the backend data in the Steem-blockchain. Second, it involves substantial efforts in extracting and filtering various types of operations. The Steem-blockchain generates one block every three seconds and each block may contain over thirty different types of operations. While the billions of operations in the blockchain include a great deal of useless information, it is necessary though difficult to filter out undesirable operations.

To tackle this challenge, we collect over 38 million blocks generated in Steemit during a 45-month time period from 2016/03 to 2019/11 and extract ten key types of operations performed by the users. The results generate SteemOps, a new dataset that organizes over 900 million operations from Steemit into three sub-datasets: 1) social-network operation dataset (SOD); 2) witness-election operation dataset (WOD); 3) value-transfer operation dataset (VOD). We describe the dataset schema and its usage in detail and outline various potential research directions based on SteemOps. SteemOps is designed to facilitate future studies aimed at providing better insights on emerging blockchain-based social media platforms.

2 BACKGROUND

In this section, we introduce the background about the Steem-blockchain [3], including its key application Steemit, its implementation of the DPoS consensus protocol and its ecosystem in general.

In Steemit, users can create and share contents as blog posts. A blog post can get replied, reposted or voted by other users. Based on the weights of received votes, posts get ranked and the top ranked posts make them to the front page. Steemit uses the Steem-blockchain to store the underlying data of the platform as a chain of blocks. Every three seconds, a new block is produced, which includes all confirmed operations performed by users during the last three seconds. Steemit allows its users to perform more than thirty different types of operations. In Fig. 1, we display representative types of operations in Steemit. While post/vote and follower/following are common features offered by social sites, operations such as witness election and value transfer are features specific to blockchains.

Witnesses in Steemit are producers of blocks, who continuously collect data from the entire network, bundle data into blocks and append the blocks to the Steem-blockchain. The role of witnesses in Steemit is similar to that of miners in Bitcoin. In Bitcoin, miners keep solving Proof-of-Work (PoW) problems and winners have the right to produce blocks. However, with PoW, Bitcoin achieves a maximum throughput of 7 transactions/sec [7], which is too low for a social site. Hence, the Steem-blockchain adopts the Deligated Proof of Stake (DPoS) [21] consensus protocol to increase the speed and scalability of the platform without compromising the decentralized reward system of the blockchain. In DPoS systems, users vote to elect a number of witnesses as their delegates. In Steemit, each user can vote for at most 30 witnesses. The top-20 elected witnesses and a seat randomly assigned out of the top-20 witnesses produce the blocks. With DPoS, consensus only needs to be reached among the 21-member witness group rather than the entire blockchain network like Bitcoin, which significantly improves the system throughput.

The cryptocurrency ecosystem in Steemit includes some complex features. Like most blockchains, the Steem-blockchain issues its native cryptocurrencies called STEEM and Steem Dollars (SBD). To own stake in Steemit, a user needs to ‘lock’ STEEM/SBD in Steemit to receive Steem Power (SP) at the rate of 1 STEEM = 1 SP and each SP is assigned about 2000 vested shares (VESTS) of Steemit. A user may withdraw invested STEEM/SBD at any time, but the claimed fund will be automatically split into thirteen equal portions to be withdrawn in the next thirteen subsequent weeks.

3 STEEMOPS

In this section, we present SteemOps, a new dataset that organizes the key Operations in Steemit. The dataset is available at:

https://github.com/archerlclclc/SteemOps

3.1 Data Extraction

The Steem-blockchain offers an Interactive Application Programming Interface (API) for developers and researchers to collect and parse the blockchain data [15]. We collect blockchain data from block 1 (created at 2016/03/24 16:05:00) to block 38,641,150 (created at 2019/12/01 00:00:00). In the data collected, we recognized ten key types of operations that are most relevant and useful to research in
3.2 Organization of SteemOps

SteemOps organizes 904,388,432 operations into three sub-datasets corresponding to the three groups of operations in Table 1: 1) social-network operation dataset (SOD); 2) witness-election operation dataset (WOD); 3) value-transfer operation dataset (VOD). Next, we present our preliminary analysis and describe the dataset in detail.

3.3 Preliminary analysis

In Figure 2, Figure 3 and Figure 4, we plot the number of social-network operations, witness-election operations and value-transfer operations performed in different months, respectively. Among the three groups of operations, the social-network operations show the highest utilization rate, which indicates that users are using more social functions offered by Steemit than other functions. Among the three social-network operations, the vote operation is the most frequently used one. Among the four value-transfer operations, users perform the transfer operation more frequently. Finally, the number of performed witness-election operations is relatively small compared to the other two groups.

3.4 Social-network Operation Dataset (SOD)

The Social-network Operation Dataset (SOD) consists of 92,123,270 comment operations, 508,514,846 vote operations and 245,859,678 custom_json operations.

3.4.1 comment. This operation in SOD consists of the five fields in Table 2. Specifically, when both parent_author and parent_permlink are empty, the operation indicates a new post. In contrast, when both the two fields are not empty, the operation represents a comment to a post/comment.

3.4.2 vote. This operation in SOD includes the four fields in Table 3. It describes that a user has cast a vote with a certain weight to any value, such as following, reblog and mute. When it is

3.4.3 custom_json. This operation in SOD contains the four fields in Table 4. It provides a generic way to post any type of JSON data into the blockchain, such as following, reblog and mute. When it is
weighted witness election, a user may choose to perform a
wit-

The Value-transfer Operation Dataset (VOD) consists of 52,611,143
then, by sending a witness_update

The Witness-election Operation Dataset (WOD) consists of 852,896

deadlines, but transferring of Steem Power (VESTS) is not allowed. A

3.5 Witness-election Operation Dataset (WOD)
The Witness-election Operation Dataset (WOD) consists of 852,896

3.5.1 witness_update. This operation in WOD has the two fields

3.5.2 witness_vote. This operation in WOD consists of the four

3.5.3 witness_proxy. This operation in WOD includes the three

3.6 Value-transfer Operation Dataset (VOD)
The Value-transfer Operation Dataset (VOD) consists of 52,611,143

3.6.1 transfer. This operation in VOD includes the five fields

used for following, its payload in the json field includes information

Table 5: Schema of operation witness_update
Field name	Type	Description
block_no	Integer	the block recording this operation
owner	String	users who wish to become a witness

Table 6: Schema of operation witness_vote
Field name	Type	Description
block_no	Integer	the block recording this operation
account	String	voter’s account name
approve	String	appprove a new vote or revoke an old vote

Table 7: Schema of operation witness_proxy
Field name	Type	Description
block_no	Integer	the block recording this operation
account	String	sender’s account name
amount	String	the amount of transferred asset
memo	String	a memo string with 2048 bytes at most

Table 8: Schema of operation transfer
Field name	Type	Description
block_no	Integer	the block recording this operation
to	String	recipient’s account name
amount	String	the amount of vested asset

Table 9: Schema of operation transfer_to_vesting
Field name	Type	Description
block_no	Integer	the block recording this operation
delegator	String	delegator’s account name
delegatee	String	delegatee’s account name
vesting_shares	String	the amount of delegated VESTS

Table 10: Schema of operation delegate_vesting_shares
Field name	Type	Description
block_no	Integer	the block recording this operation
account	String	withdrawer’s account name
vesting_shares	String	the amount of VESTS to withdraw

Table 11: Schema of operation withdraw_vesting
Field name	Type	Description
block_no	Integer	the block recording this operation
from	String	sender’s account name
to	String	recipient’s account name
amount	String	the amount of withdrawn VESTS

sender can leave a short message in the memo field but one needs
to pay attention that the memo is plain-text.

3.6.2 transfer_to_vesting. This operation in VOD consists of the four fields in Table 9. It is used for converting STEEM into
VESTS at the current exchange rate. A user can either leave the to field empty to receive the VESTS, or set the to field to the recipient’s account name to transfer VESTS to another account. The latter usage of transfer_to_vesting allows faucets to pre-fund new accounts with VESTS.

3.6.3 delegate_vesting_shares. This operation in VOD is formed by the four fields in Table 10. It is used for delegating VESTS from one account (i.e., delegator) to the other (i.e., delegatee). It is worth emphasizing that the delegated VESTS are still possessed by the delegator, who can increase or decrease the amount of delegated VESTS at any time and even completely remove the delegation by setting the vesting_shares field to zero. Upon receiving delegated VESTS, the delegatee could leverage the amount of delegated VESTS to increase the power of votes to contents such as blogs and comments.

3.6.4 withdraw_vesting. This operation in VOD consists of the three fields in Table 11. It is used by users to withdraw their VESTS at any time. It is worth noting that the VESTS have to be withdrawn in the next thirteen subsequent weeks. For example, in day 1, Alice may invest 13 STEEM to Steemit that makes her vote obtain a weight of 13 SP (about 26000 VESTS). Later, in day 8, Alice may decide to withdraw her 13 invested STEEM. Here, instead of seeing her 13 STEEM in wallet immediately, her STEEM balance will increase by 1 STEEM each week from day 8 and during that period, her SP will decrease by 1 SP every week.
4 APPLICATIONS OF STEEMOPS AND RELATED WORK

The unique aspect of SteemOps, namely the deep integration of the underlying social network and blockchain, can support a diverse set of potential applications for researchers in both the communities and even in other domains such as economics [16, 18]. In this section, we present some notable research opportunities based on SteemOps and their related work.

4.1 Blockchain System Analysis

We first discuss three key research opportunities based on SteemOps on blockchain system analysis.

4.1.1 Decentralization analysis. Decentralization is a key indicator for the evaluation of public blockchains. Most existing works on decentralization in blockchains have focused on Bitcoin [2, 9, 10, 25]. These works pointed out that Bitcoin shows a trend towards centralization because of the emergence of mining pools. In [10], the authors proposed the notion of selfish mining, which reduces the bar for performing 51% attack to possessing over 33% of computational power in Bitcoin. Later, authors in [9] analyzed the mining competitions among mining pools in Bitcoin from the perspective of game theory and proposed that a rational mining pool may get incentivized to launch a block withholding attack to another mining pool. Besides Bitcoin, recent work has analyzed the degree of decentralization in Steem [23]. The work analyzed the process of witness election in Steem from the perspective of network analysis and concluded that the Steem network was showing a relatively low level of decentralization. Recently, there have been a few studies on comparing the level of decentralization between different blockchains, such as Bitcoin/Ethereum [12] and Bitcoin/Steem [20, 24]. Specifically, the degree of decentralization in Steem was computed among witnesses in [20], which may fail to reflect the actual degree of decentralization in a DPoS blockchain. Later, Li et al. [24] quantified the degree of decentralization in Steem from the perspective of stakeholders after analysis and measurements of the witness election. With the rich operations offered by SteemOps, the degree of decentralization in Steem blockchain could be further analyzed from more perspectives such as among voters, authors and proxies.

4.1.2 Cryptocurrency transfer analysis. In recent years, the cryptocurrency transferring networks have become the main resources for supporting a number of empirical studies. Yousaaf et al. [33] used data from ShapeShift platform and eight different blockchains to explore whether or not money can be traced as it moves across ledgers, and their results identified various patterns of cross-currency trades. Lee et al. [22] extracted cryptocurrency information related to Dark Web and analyzed their usage characteristics on the Dark Web. Chen et al. [5] analyzed the leaked transaction history of Mt. Gox Bitcoin exchange and concluded that there was serious market manipulation in Mt. Gox exchange and the cryptocurrency market must strengthen the supervision. Chen et al. [6] conducted a systematic investigation on the whole Ethereum ERC20 token ecosystem to characterize the token creator, holder, and transfer activity. SteemOps offers rich value-transfer operations, including transferring of STEEM, transferring to VESTS and delegating VESTS and thus facilitates various angles of analysis.

4.1.3 Performance benchmark. Many recent new blockchain systems such as Omnite ledger [19] and Monoxide [32] aim at improving the performance of blockchains, thus requiring real transaction data collected from existing blockchain systems to evaluate their solutions. For instance, Monoxide leveraged historical transaction data in Ethereum in its evaluation. To support such requirements, performance benchmarks such as Blockbench [8] have been proposed, but most of the existing benchmarks create workloads by simulating user behaviors, which may not well match with the real data and may decrease the accuracy of the evaluation results. In contrast, SteemOps provides a substantial number of well-processed operations that cover different aspects of a blockchain system including DPoS consensus protocol and cryptocurrency ecosystem. It is worth noting that the DPoS-powered Steemit social media platform leverages a small set of witnesses that are periodically elected by the entire stakeholder community to boost the transaction throughput and therefore, it can serve as a state-of-the-art workload for comparison in evaluation.

4.2 Social Network Analysis

Next, we identify some key research opportunities based on SteemOps on social network analysis.

4.2.1 Community and user behavior analysis. In the past few years, due to their rapid growth and consistent popularity, social media platforms have received significant attention from researchers. A great number of research papers have analyzed the community and user behavior in many popular social media platforms. Tan et al. [29] investigated user behavior in Reddit and found that users continually post in new communities. Singer et al. [27] observed a general quality drop of comments made by users during activity sessions. Hessel et al. [14] investigated the interactions between highly related communities and found that users engaged in a newer community tend to be more active in their original community. In [13], the authors studied the browsing and voting behavior of Reddit users and found that most users do not read the article that they vote on. Wang et al. [31] analyzed the Quora platform and found that the quality of Quora’s knowledge base is mainly contributed by its user heterogeneity and question graphs. Anderson et al. [1] investigated the Stack Overflow platform and observed significant assortativity in the reputations of co-answerers, relationships between reputation and answer speed. With SteemOps, especially its Social-network Operation Dataset (SOD), researchers without any blockchain system background can easily leverage the well-processed operations to analyze community and user behavior in Steemit and compare their results with that in other social media platforms. It would be also very interesting to understand the impacts that blockchains may bring on users’ social behavior.

4.2.2 Curation mechanism. In Steemit, users create content as posts that get curated based on votes from other users. The platform periodically issues cryptocurrency as rewards to creators and curators of popular posts. Thelwall et al. [30] analyzed the first posts made by 925,092 Steemit users to understand the factors that may drive the post authors to earn higher rewards. Their results suggest
that new users of Steemit start from a friendly introduction about themselves rather than immediately providing useful content. In a very recent work, Kiayias et al. [17] studied the decentralized content curation mechanism from a computational perspective. They defined an abstract model of a post-voting system, along with a particularization inspired by Steemit. Through simulation of voting procedure under various conditions, their work identified the conditions under which Steemit can successfully curate arbitrary lists of posts and also revealed the fact that selfish participant behavior may hurt curation quality. Compared with existing works, the rich historical data collected in SteemOps would offer researchers a deep and insightful view on the detailed stake-weighted voting procedure that determines the amount of curation authors earn.

4.2.3 Bot detection. The rise of social bots and the harm caused by them to the online ecosystems has been widely recognized [11]. In Steemit, although its reward system is originally driven by the desire to incentivize users to contribute high-quality content, the analysis of the underlying cryptocurrency transfer network on the blockchain in a recent work [23] reveals that more than 16% transfers of cryptocurrency in Steemit are sent to curators suspected to be bots. The study also finds the existence of an underlying supply network for the bots suggesting a significant misuse of the current reward system in Steemit. SteemOps offers rich data on detecting bots, such as memo information carried by transfer operations and correlations between accounts revealed by delegate_vesting_shares operations. The transparency of its social network and cryptocurrency network could facilitate a better understanding of bots in social media platforms.

5 CONCLUSION

This paper presents SteemOps, a new dataset that organizes over 900 million operations from Steemit into three sub-datasets: 1) social-network operation dataset (SOD); 2) witness-election operation dataset (WOD); 3) value-transfer operation dataset (VOD). In SteemOps, we collect over 38 million blocks generated during 45 months from 2016/03 to 2019/11 and extract ten key types of operations performed by Steemit users from blocks. We describe the dataset schema information and its usage in detail and outline various potential research directions based on SteemOps. We believe that SteemOps can facilitate impactful future studies and can support a diverse set of potential applications for researchers in both the social networking and blockchain research communities.

ACKNOWLEDGEMENT

Chao Li is partially supported by Fundamental Research Funds for the Central Universities (No. 2019RC038).

REFERENCES

[1] Ashton Anderson et al. Discovering value from community activity on focused question answering sites: a case study of stack overflow. In Proceedings of the 18th ACM SIGKDD, pages 850–858. ACM, 2012.
[2] Alireza Beikverdi and JooSeok Song. Trend of centralization in bitcoin’s distributed network. In 2015 IEEE/ACIS 16th SNPD, pages 1–6. IEEE, 2015.
[3] Steem blockchain [Internet]. Available from. https://developers.steem.io/. Accessed Oct. 2018.
[4] Vitalik Buterin et al. A next-generation smart contract and decentralized application platform. white paper, 2014.
[5] Weili Chen, Jun Wu, Zhibin Zheng, Chuan Chen, and Yuren Zhou. Market manipulation of bitcoin: evidence from mining the mt. gox transaction network.

In IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pages 964–972. IEEE, 2019.

[6] Weili Chen, Yao Zhang, Zhiquang Chen, Zhibin Zheng, and Yatong Lu. Traveling the token world: A graph analysis of ethereum erc20 token ecosystem. In Proceedings of the Web Conference 2020, pages 1411–1421, 2020.

[7] Kyle Cronan et al. On scaling decentralized blockchains. In International Conference on Financial Cryptography and Data Security, pages 106–125, 2016.

[8] Tian Yuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng-Ching Ooi, and Kian-Lee Tan. Blockbench: A framework for analyzing private blockchains. In Proceedings of the 2017 ACM International Conference on Management of Data, pages 1085–1100, 2017.

[9] Ittay Eyal. The miner’s dilemma. In 2015 IEEE Symposium on Security and Privacy, pages 89–103. IEEE, 2015.

[10] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. In International conference on financial cryptography and data security, pages 436–454. Springer, 2014.

[11] Emilio Ferrara et al. The rise of social bots. Communications of the ACM, 59(7):96–104, 2016.

[12] Adem Efe Gencer et al. Decentralization in bitcoin and ethereum networks. In International Conference on Financial Cryptography and Data Security, pages 439–457. Springer, 2018.

[13] Maria Glenski, Corey Pennycuff, and Tim Weninger. Consumers and curators: Browsing and voting patterns on reddit. In Transactions on Computational Social Systems, 4(4):196–206, 2017.

[14] Jack Hessel et al. Science, askscience, and badscience: On the coexistence of highly related communities. In ICWSM, pages 171–180, 2016.

[15] Interactive Steem API [Internet]. Available from. https://steem.esteem.ws/. Accessed Oct. 2018.

[16] Seungwon Eugene Jeong. Centralized decentralization: Does voting matter? simple economics of the dpos blockchain governance. Simple Economics of the DPoS Blockchain Governance (April 21, 2020).

[17] Aggelos andothers Kiayias. A puff of steem: Security analysis of decentralized content curation. arXiv preprint arXiv:1810.01719, 2018.

[18] Moon Soo Kim and Jee Yong Chung. Sustainable growth and token economy analysis of the steem. Sustainability, 11(11):167, 2019.

[19] Eleftherios Kokoris-Kogias et al. Omniledger: A secure, scale-out, decentralized blockchain. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), pages 583–598. IEEE, 2018.

[20] Yujin Kwon, Jun Liu, Minjeong Kim, Dawn Song, and Yongdae Kim. Impossibility of full decentralization in permissionless blockchains. In Proceedings of the 1st ACM Conference on Advances in Financial Technologies, pages 110–123, 2019.

[21] Daniel Larimer. Delegated proof-of-stake (dpos). Bitshare whitepaper, 2014.

[22] Seunghyoon Lee, Changhoon Yoon, Hteedo Kang, Yeonkeum Kim, Yongdae Kim, Dongshu Han, Soeol Son, and Seungwon Shin. Cybercriminal minds: an investiga-tive study of cryptocurrency abuses in the dark web. In Network and Distributed System Security Symposium, pages 1–15. Internet Society, 2019.

[23] Chao Li and Balaji Palanisamy. Incentivized blockchain-based social media platforms: A case study of steemit. In Proceedings of the 10th ACM Conference on Web Science, pages 145–154, 2019.

[24] Chao Li and Balaji Palanisamy. Comparison of decentralization in dpos and pow blockchains. In International Conference on Blockchain, pages 18–32. Springer, 2020.

[25] Qianwei Lin, Chao Li, Xifeng Zhao, and Xianhui Chen. Measuring decentralization in bitcoin and ethereum using multiple metrics and granularities. arXiv preprint arXiv:2101.10699, 2021.

[26] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[27] Philipp Singer, Emilio Ferrara, Farshad Kootii, Markus Strohmaier, and Kristina Lerman. Evidence of online performance deterioration in user sessions on reddit. PloS one, 11(8):e0161636, 2016.

[28] Greg Stoddard. Popularity and quality in social news aggregators: A study of reddit and hacker news. In Proceedings of the 24th WWW, pages 815–818. ACM, 2015.

[29] Chenhao Tan and Lillian Lee. All who wander: On the prevalence and characteristics of multi-community engagement. In Proceedings of the 24th WWW, pages 1056–1066, 2015.

[30] Mike Thebwall. Can social news websites pay for content and curation? the steemit cryptocurrency model. Journal of Information Science, page 01655515177748290, 2017.

[31] Gang Wang, Konarak Gill, Manish Mohanlal, Haitao Zheng, and Ben Y Zhao. Wisdom in the social crowd: an analysis of quora. In Proceedings of the 22nd international conference on World Wide Web, pages 1341–1352. ACM, 2013.

[32] Jiaping Wang and Hao Wang. Monoxide: Scale out blockchains with asynchro-nous consensus zones. In Proceedings of the 16th ACM Conference on Computer and Communications Security, pages 965–974. ACM, 2019.

[33] Haaroon Yousaf, George Kappos, and Sarah Meiklejohn. Tracing transactions across cryptocurrency ledgers. In 28th USENIX Symposium on Security ([USENIX] Security 19), pages 837–850, 2019.