Analysis of genetic polymorphisms for age-related macular degeneration (AMD) in Chinese Tujia ethnic minority group

Shengchun Liu¹,², Mingxing Wu¹, Bianwen Zhang¹, Xiaojing Xiong¹, Hao Wang¹ and Xiyuan Zhou¹*

Abstract

Background: Age-related macular degeneration (AMD) can cause vision loss or blindness in elderly. The associations between single nucleotide polymorphism (SNP) and AMD in Chinese Tujia ethnic minority group are still unclear.

Methods: A total of 2122 Tujia volunteers were recruited and 197 of them were diagnosed with AMD (either dry or wet type). Then the blood specimens of these 197 AMD patients and 404 controls from the remaining 1925 normal Tujia volunteers were collected to detect the frequencies of 39 chosen SNPs. The Bonferroni method was used to correct the *P* values from the Fisher’s exact test.

Results: The mean age of the 197 AMD patients (113 males and 84 females) was 68.4197 years old. No significant differences in allelic and genotypic frequencies were found for all the 39 SNPs between the patients and controls. However, weak correlations between 10 SNPs (CFH rs1329428 TT genotype, CFH rs3753394 CC genotype and T allele, CFH rs1410996 AA genotype, CFH rs800292 AA genotype, CFH rs800292 A allele, VEGF rs833061 TT genotype and C allele, VEGF rs2010963 CG genotype, VEGFR2 rs1531289 TT genotype, ARMS2 rs10490924 TT genotype, KCTD10 rs238104 GC genotype, rs1531289 T allele and ARMS2 rs10490924 T allele) and AMD were shown.

Conclusions: The effects of 39 SNPs have found no associations with the morbidity of AMD in Chinese Tujia ethnic minority group.

Keywords: Age-related macular degeneration, Single nucleotide polymorphism, Chinese Tujia ethnic minority group

Background

Age-related macular degeneration (AMD) is the main cause of blindness and vision loss in old people in developed countries [1]. The formation of deposits, inflammation and ultimately neurodegeneration in the macula are typical features of the disease. In general, AMD can be divided into two subtypes: the non-exudative (dry or atrophic) subtype and the exudative (wet or neovascular) subtype [2]. The development of the disease is a complex interplay of age, environmental, genetic, metabolic and many other factors [3].

Epidemiological and gene-mapping studies supported that the genetic factors played important roles in the pathogenesis of AMD [4, 5]. A genome-wide study reported 52 independently AMD associated variants by analyzing more than 15,000 patients and controls. The results also showed that rare variants could directly affect causal genes [6]. In addition, other researchers found that the loci 3p13 and 10q26 had a relationship with the complex basis of the AMD by analyzing 70 families and these genes were involved in immune response, inflammation and retina homeostasis [7]. Genome-wide association study had also been used to clarify the possible relationships between SNPs and outcomes of anti-vascular endothelial growth factor (VEGF) treatment for exudative AMD and the results showed that the age-related maculopathy susceptibility 2 (ARMS2/HTRA1) polymorphism rs10490924 might be a good marker to predict the effect of ranibizumab treatment [8].

* Correspondence: zhouxiyuan2002@163.com
1 Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, NO.74, Linjiang Road, Yuzhong District, Chongqing 400010, China
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
The Chinese Tujia ethnic minority group mainly live on the mountains in the middle of China. Due to the relative isolation of mountain, this ethnic minority group may have its own specific genome. The genetic analysis of Y chromosome in Chinese Tujia ethnic minority group demonstrated that the 17 Y-STR loci were highly polymorphic [9]. Previous studies conducted by Chinese epidemiologists reported that gene variants in CFH, ARMS2 and HTRA1 were related to an increased risk of AMD in a northern Chinese population, which was partially consistent with the results of the western world [10, 11]. However, the epidemiology analysis of AMD in Chinese Tujia ethnic minority group and its potential pathogenic mechanism had not been reported.

In this study, we calculated the morbidity of AMD in 2122 Tujia volunteers. Then we analyzed the frequencies of 39 AMD-associated SNPs in 197 AMD patients and 404 normal controls. Our goal was to identify the possible pathogenic SNPs of AMD in Chinese Tujia ethnic minority group.

Methods

Patients and data collection

Our study recruited 2122 individuals who belonged to Chinese Tujia ethnic minority group in the Second Affiliated Hospital of Chongqing Medical University from January 2009 to December 2016 (Chongqing, China). Diagnosis and grading for AMD followed the standard of clinical age-related maculopathy staging (CARMs) system and maculopathy could be classified into five grades. Grade 1: no drusen or 10 small drusen without pigment abnormalities. Grade 2: approximately 10 small drusen or 15 intermediate drusen. Grade 3: approximately 15 intermediate drusen or any large drusen. Grade 4: geographic atrophy with involvement of the macular center. Grade 5: exudative AMD. Volunteers with Grade 2 or above AMD (either unilateral eye or bilateral eyes) were recruited as the patients group [12]. The ethics committee of the Second Affiliated Hospital of Chongqing Medical University approved the study and the medical records and blood samples were obtained from volunteers with written informed consents.

Single nucleotide polymorphism (SNP) selection

Target genes and SNPs were chosen according to previously published studies [13–26]. As a result, 39 SNPs of 16 genes were selected and included 8 SNPs (rs1061170, rs800292, rs3753394, rs1410996, rs1329428, rs6677604, rs380390, rs10737680) of complement factor I(CFI), 2 SNPs (rs3732379, rs3732378) of C-X3-C motif chemokine receptor 1(CX3CR1), 4 SNPs (rs943080, rs3025039, rs833061, rs2010963) of VEGF, 4 SNPs (rs9554322, rs7337610, rs9582036, rs9499322) of vascular endothelial growth factor receptor (VEGFR), 1 SNP (rs1531289) of VEGFR2, 1 SNP (rs6987702) of tribbles pseudokinase 1(TRIB1), 2 SNPs (rs1800775, rs3764261) of cholesteryl ester transfer protein(CETP), 1 SNP (rs2338104) of potassium channel tetramerization domain containing 10(KCTD10), 2 SNPs (rs10033900, rs11728699, rs7439493, rs4698775) of complement factor H(CFH), 1 SNP (rs1883025) of ATP binding cassette subfamily A member 1(ABCA1), 1 SNP (rs11728699, rs7439493, rs4698775) of complement factor I(CFI), 2 SNPs (rs3732379, rs3732378) of C-X3-C motif chemokine receptor 1(CX3CR1), 4 SNPs (rs943080, rs3025039, rs833061, rs2010963) of VEGF, 4 SNPs (rs9554322, rs7337610, rs9582036, rs9499322) of vascular endothelial growth factor receptor (VEGFR), 1 SNP (rs1531289) of VEGFR2, 1 SNP (rs6987702) of tribbles pseudokinase 1(TRIB1), 2 SNPs (rs1800775, rs3764261) of cholesteryl ester transfer protein(CETP), 1 SNP (rs2338104) of potassium channel tetramerization domain containing 10(KCTD10), 1 SNP (rs8017304) of RAD51 paralog B (RAD51B) and 1 SNP (rs1883025) of ATP binding cassette subfamily A member 1(ABCA1).

DNA extraction and genotyping

Peripheral blood of AMD patients and the controls were subjected to genomic DNA extraction by using the QIAmp DNA Blood Mini Kit (Qiagen Inc., Valencia, CA, USA) and the DNAs were stored at −80°C. Genotype identifications of the 39 SNPs were conducted with the iPLEX Gold genotyping assay and Sequenom Mass ARRAY (Sequenom, CA, USA). Sequenom SNP Assay Design software (version 3.0) was used to design the primers of iPLEX reactions [27]. Primer sequences used were shown in Additional file 1: Table S1.

Statistical analysis

Hardy-Weinberg equilibrium (HWE) analysis was carried out in normal controls and no SNPs significantly deviated from HWE (P>0.05). Fisher’s exact test was applied to evaluate the differences in allele and genotype frequencies of all SNPs between patients and healthy controls by using SPSS (version 19.0; SPSS Inc., Chicago, IL). The Bonferroni method was conducted to perform correction for multiple comparisons whereby the P value was multiplied with the number of comparisons (P corrected (Pc)) [27]. It was considered to be significant when Pc was less than 0.05.

Results

A total of 2122 volunteers aged from 50 to 90 years old were recruited to our study. The fundus examination was used to diagnose and divided the volunteers into five grades according to the clinical age-related maculopathy staging (CARMs) system. The representative images of grade 2 to 5 AMD were shown in Fig. 1. Among the 2122 volunteers, we found that 197 cases (113 males and 84 females) could be diagnosed as AMD and the mean age was 68.4±6 years. We found AM (Table 1). Moreover, only 404 normal volunteers (245 males and 159 females, mean age was 63.5±4 normal volu) accepted the SNPs examinations and we assigned them to the normal control group.

Next, the blood specimens from AMD cases and controls were collected to detect the genome sequences. We
chose 39 SNPs covering 16 genes to figure out if these SNPs could be pathogenic factors for AMD in Chinese Tujia ethnic minority group. As a result, we found that all 39 SNPs of controls met the Hardy-Weinberg equilibrium. No significant differences in both allelic and genotypic frequencies were found for all the 39 SNPs between the patient and control groups according to the P_c values (Additional file 2: Table S2). However, the P values showed weak correlations between 10 SNPs of 5 genes and AMD (Table 2). Compared with the AMD patients, the frequencies of the CFH rs1329428 TT genotype ($P=0.023$, OR = 1.649 and 95% CI = 1.069–2.543), CFH rs3753394 CC genotype ($P=0.006$, OR = 1.738 and 95% CI = 1.164–2.594) and T allele ($P=0.029$, OR = 1.307 and 95% CI = 1.027–1.664), CFH rs1410996 AA genotype ($P=0.008$, OR = 1.814 and 95% CI = 1.164–2.826) and CFH rs800292 AA genotype ($P=0.009$, OR = 1.787 and 95% CI = 1.154–2.769) were decreased in the controls. On the contrary, the frequency of the CFH rs800292 A allele ($P=0.011$, OR = 0.730 and 95% CI = 0.571–0.932) was increased in the controls. Moreover, the frequencies of the VEGF rs833061 TT genotype ($P=0.020$, OR = 1.511 and 95% CI = 1.067–2.138) and C allele ($P=0.021$, OR = 1.390 and 95% CI = 1.051–1.837), VEGF rs2010963 CG genotype ($P=0.032$, OR = 1.462 and 95% CI = 1.033–2.071), VEGFR2 rs1531289 TT genotype ($P=0.040$, OR = 2.025 and 95% CI = 1.020–4.022), ARMS2 rs10490924 TT genotype ($P=0.002$, OR = 1.928 and 95% CI = 1.280–2.904) and KCTD10 rs238104 GC genotype ($P=0.019$, OR = 1.505 and 95% CI = 1.068–2.120) were decreased and the frequencies of VEGFR2 rs1531289 T allele ($P=0.012$, OR = 0.690 and 95% CI = 0.516–0.924) and ARMS2 rs10490924 T allele ($P=0.037$, OR = 0.687 and 95% CI = 0.482–0.978) were increased in the controls comparing with the AMD patients.

Discussion

In present study, we compared the frequencies of 39 SNPs of 16 genes between 193 AMD patients and 404 controls from Chinese Tujia ethnic minority group. It had reported that ARMS2 and CFH variants were associated with neovascular AMD in the Thai, Korean and Chinese Han population [28–30] and no previous studies focused on the associations between SNPs and AMD in Tujia ethnic minority group. Therefore, we designed this research to identify the potential associations. Finally, our results showed that no significant differences for these 39 SNPs were found between the two groups. However, the P value suggested that the AMD had weak correlations with CFH SNPs, VEGF family SNPs and ARMS2 SNP.

The major candidate genes for AMD pathogenesis were CFH and ARMS2 [31, 32]. Previous study reported gene variants in CFH and ARMS2 were related to increased risks of AMD in Chinese Han population [33].
Genes	SNPs	Total sample	Case	Control	HWE	P	Pc	OR	95%CI
CFH	rs1329428	197 404							
	CC	59 136	0.175	0.361	NS	0.842	0.583–1.217		
	CT	94 208	0.386	0.860	NS	0.612–1.209			
	TT	44 60	0.023	0.164	NS	1.069–2.543			
	C	212 480							
	T	182 328	0.065	0.796	NS	0.624–1.015			
CFH	rs3753394	197 404							
	CC	55 74	0.416	0.006	NS	1.738	1.164–2.594		
	CT	89 208	0.163	0.784	NS	0.558–1.104			
	TT	53 124	0.357	0.837	NS	0.573–1.223			
	C	199 356							
	T	195 456	0.029	1.307	NS	1.027–1.664			
CFH	rs1410996	190 386							
	GG	60 137	0.128	0.469	NS	0.873	0.603–1.262		
	GA	87 204	0.194	0.795	NS	0.562–1.125			
	AA	43 55	0.008	1.814	NS	1.164–2.826			
	G	207 478							
	A	173 319	0.056	0.786	NS	0.614–1.006			
CFH	rs800292	193 402							
	GG	54 140	0.190	0.095	NS	0.727	0.500–1.058		
	GA	95 205	0.686	0.932	NS	0.661–1.313			
	AA	44 57	0.009	1.787	NS	1.154–2.769			
	G	203 485							
	A	183 319	0.011	0.730	NS	0.571–0.932			
VEGF	rs833061	192 403							
	TT	113 196	0.881	0.020	NS	1.511	1.067–2.138		
	TC	67 171	0.079	0.727	NS	0.509–1.039			
	CC	12 36	0.261	0.680	NS	0.345–1.338			
	T	293 563							
	C	91 243	0.021	1.390	NS	1.051–1.837			
VEGF	rs2010963	189 396							
	CC	27 64	0.089	0.558	NS	0.865	0.531–1.408		
	CG	99 170	0.032	1.462	NS	1.033–2.071			
	GG	63 162	0.078	0.722	NS	0.502–1.038			
	C	153 298							
	G	225 494	0.349	1.127	NS	0.877–1.448			
VEGFR2	rs1531289	197 404							
	CC	118 275	0.181	0.048	NS	0.701	0.492–0.998		
	CT	62 111	0.310	1.212	NS	0.836–1.758			
	TT	17 18	0.040	2.025	NS	1.020–4.022			
	C	298 661							
	T	96 147	0.012	0.690	NS	0.516–0.924			
ARMS2	rs10490924	197 404							
	GG	57 137	0.625	0.213	NS	0.791	0.546–1.145		
However, our results showed negative correlation, which might be caused by the racial and sample size differences. Furthermore, VEGF gene played an important role in regulating angiogenesis and permeability [34]. The SNPs of VEGF were related to the formation of choroidal neovascularization in exudative AMD. Therefore, anti-VEGF agents had been widely used to treat the exudative AMD. The alleles in CFH, ARMS2, and VEGFA were associated with genetic anticipation and inadequate response to the anti-VEGF agents in AMD patients [35]. The relationship between the delayed functional and limited response to the injection of bevacizumab and the CFH gene polymorphism T1277C was also identified [36]. In our study, no associations were found between the SNPs of VEGF family genes and the morbidity of AMD. However, a stratified analysis had not been carried out and the relationships between SNPs of VEGF family genes and morbidity of exudative AMD were still unclear. In addition, the SNPs of VEGF family genes might affect the AMD by impacting the drug responses in Chinese Tujia ethnic minority group.

Our study had several limitations. We only chose SNPs that have been previously reported and no new SNPs were found. A genome-wide study should be carried out to find more pathogenic SNPs. Furthermore, the stratified analysis of different ages, genders or AMD types should also be used to deeply investigate the associations between the SNPs and the AMD morbidity in Chinese Tujia ethnic minority group. Last, we only recruited a very small sample size of patients in our study and the representativeness of our findings was limited. In the future, we would collect more patients to perform the SNP detections.

Conclusions
In sum, the chosen 39 SNPs had no associations with the morbidity of AMD in Chinese Tujia ethnic minority group.

Additional files

Additional file 1: Table S1. Primer sequences we used to detect the 39 SNPs were listed in the table. (XLSX 11 kb)

Additional file 2: Table S2. The distributions of allelic and genotypic frequencies for 39 SNPs were listed in the table. The details of HWE, \(P \) value, \(P_{\text{correct}} \) value, OR and 95% CI were also shown. (XLS 102 kb)

Abbreviations
AMD: Age-related macular degeneration; CARMS: Clinical age-related maculopathy staging; HWE: Hardy-Weinberg equilibrium; SNP: Single nucleotide polymorphism

Acknowledgements
Not applicable.

Funding
This study was supported by Epidemiological investigation of Han and Tujia AMD in Southwest China and study of related gene polymorphisms(cstc2015shmszx120058). The funding body was mainly used in the specimens collection and data analysis.

Availability of data and materials
The datasets used during the present study are available from the corresponding author upon reasonable request.

Authors’ contributions
XZ made substantial contributions to conception and designed the whole research; Acquisition of data and analysis and interpretation of data were mainly performed by SL, MW, BZ, XX and HW. All authors agreed to be

Genes	SNPs	Case	Control	HWE	\(P \)	\(P_{\text{correct}} \)	OR	95% CI
GT	86	200	0.169	NS	0.786	0.558–1.108		
TT	54	66	0.002	NS	1.928	1.280–2.904		
G	200	474						
T	194	332	0.008	NS	0.722	0.567–0.920		
Total sample	197	403						
GG	19	44	0.673	NS	0.633	0.871		
GC	110	184	0.019	NS	1.505	1.068–2.120		
CC	68	175	0.037	NS	0.687	0.482–0.978		
G	148	272						
C	246	534	0.193	NS	1.181	0.919–1.518		
Total sample	193	402						
AA	3	0	0.573	NS	0.034			
AG	12	22	0.714	NS	1.145	0.554–2.365		
GG	178	380	0.277	NS	0.687	0.348–1.356		
A	18	22						
G	368	782	0.084	NS	1.739	0.921–3.281		
accountable for all aspects of the work. The final version of the manuscript were approved all authors.

Ethics approval and consent to participate
The ethics committee of the Second Affiliated Hospital of Chongqing Medical University approved the study and the medical records and blood samples were obtained from volunteers with written informed consents.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, NO.74, Linjiang Road, Yuzhong District, Chongqing 400010, China. 2Chongqing Key Laboratory of Ophthalmology, Chongqing Medical University, NO.74, Linjiang Road, Yuzhong District, Chongqing 400010, China.

References
1. DeAngelis MM, Owen LA, Morrison MA, Morgan DJ, Li M, Shakoor A, Vitale A, Iyengar S, Stambolian D. Genetic variants associated with age-related macular degeneration in a northern Chinese population. Ophthalmic Genet. 2014;35(1):56–61.
2. Sundaresan P, Vashit P, Ravindran RD, Shanker A, Nitsch D, Nonyane BA, Smeeth L, Chakravarty U, Fletcher AE. Association between CFH, CFB, ARMS2, SERPINF1, VEGFR1 and VEGF polymorphisms and anatomical and functional response to ranibizumab treatment in neovascular age-related macular degeneration. Acta Ophthalmol. 2017;96(e201–12.
3. Maguire MG, Ying GS, Jaffe GI, Toth CA, Daniel E, Brantley MA Jr, Agarwal SG, Kovach JL, Scott WK, Liew G, Tan AG, Gopinath B, Merriam JC, Smith RT, Myers CE, Moore EL, Klein R, Hauser MA, Postel EA, Schwartz M, Heid IM. A large genome-wide association study of age-related macular degeneration. Nat Genet. 2016;48:134–43.

7. Majewski J, Schultz DW, Weleber RG, Schain MB, Edwards AO, Matise TC, McLeod AJ, Klein ML. Genetic associations with age-related macular degeneration. Neovascular age-related macular degeneration: a genome scan in extended families. Am J Hum Genet. 2003;73:540–50.
8. Yamashiro K, Morik K, Honda S, Kato M, Yanagi Y, Obama A, Sakurada Y, Satoh N, Nagai Y, Hikichi T, Kato Y, Hara C, Kosumi Y, Kozumi H, Yoshikawa M, Miyake M, Nakata L, Tsuzihashi T, Hori-Inoue K, Matsui-Miyasaka W, Ogawara M, Obata R, Yoneyama S, Matsumoto H, Ohrkina M, Kitame H, Sayangy K, Ootsu T, Sahara Y, Sugiyama Y, Honma T, Yamanishi J, Matuda F, Tsukawaka A, Negi A, Yoneya S, Itawa T, Yoshimura N. A prospective multicenter study on genome-wide associations to ranibizumab treatment outcome for age-related macular degeneration. Sci Rep. 2017:7:19196.
9. Yang YR, Jing YT, Zhang GD, Fong XD, Yan JW. Genetic analysis of 17 Y-chromosomal STR loci of Chinese Tuja ethnic group residing in Youyang Region of Southern China. Leg Med (Tokyo). 2014;16:173–5.
10. Zhang W, Li H, Liu Y, Zhao J, Li S, Xing W, Bai X, Li Z, Han Y, Zheng X. Association of specific genetic polymorphisms with age-related macular degeneration in a northern Chinese population. Ophthalmic Genet. 2014;35(1):56–61.
11. Sundaresan P, Vashit P, Ravindran RD, Shanker A, Nitsch D, Nonyane BA, Smeeth L, Chakravarty U, Fletcher AE. Association between CFH, CFB, ARMS2, SERPINF1, VEGFR1 and VEGF polymorphisms and anatomical and functional response to ranibizumab treatment in neovascular age-related macular degeneration. Acta Ophthalmol. 2017;96(e201–12.
12. Maguire MG, Ying GS, Jaffe GI, Toth CA, Daniel E, Brantley MA Jr, Agarwal SG, Kovach JL, Scott WK, Liew G, Tan AG, Gopinath B, Merriam JC, Smith RT, Myers CE, Moore EL, Klein R, Hauser MA, Postel EA, Schwartz M, Heid IM. A large genome-wide association study of age-related macular degeneration. Nat Genet. 2016;48:134–43.
22. Xiang W, Zhuang W, Chi H, Sheng X, Zhang W, Xue Z, Pan B, Liu Y. Evaluating VEGFR1 genetic polymorphisms as a predisposition to AMD in a cohort from northern China. Ophthalmic Genet. 2016;37:388–93.
23. Sharma NK, Gupta A, Prabhakar S, Singh R, Sharma S, Anand A. Single nucleotide polymorphism and serum levels of VEGFR2 are associated with age-related macular degeneration. Curr Neurovasc Res. 2012;9:256–65.
24. Restrepo NA, Spencer KL, Goodloe R, Garrett TA, Heiss G, Buzkova P, Jorgensen N, Jensen RA, Matise TC, Hindorff LA, Klein BE, Klein R, Wong TY, Cheng CY, Comes BK, Tai ES, Ritchie MD, Haines JL, Crawford DC. Genetic determinants of age-related macular degeneration in diverse populations from the PAGE study. Invest Ophthalmol Vis Sci. 2014;55:6839–50.
25. Chu XK, Maye A, Liang X, Chew EY, Chan CC, Tu J. In-depth analyses unveil the association and possible functional involvement of novel RAD51B polymorphisms in age-related macular degeneration. Age (Dordr). 2014;36:9627.
26. Wang Y, Wang M, Han Y, Zhang R, Ma L. ABCA1 rs1883025 polymorphism and risk of age-related macular degeneration. Graefes Arch Exp Ophthalmol. 2016;254:323–32.
27. Huang Y, Yu H, Cao Q, Deng J, Huang X, Klijstra A, Yang P. The Association of Chemokine Gene Polymorphisms with VKH and Behcet’s disease in a Chinese Han population. Biomed Res Int. 2017;2017:1274960.
28. Zhou TQ, Guan HJ, Hu JY. Genome-wide analysis of single nucleotide polymorphisms in patients with atrophic age-related macular degeneration in oldest old Han Chinese. Genet Mol Res. 2015;14:17432–8.
29. Ruamviboonsuk P, Tadarati M, Singhanetr P, Wattanapokayakit S, Kunhapan P, Wannitchanon P, Wichukchinda N, Mushroda T, Akayma M, Momozawa Y, Kubo M, Mahasirimongkol S. Genome-wide association study of neovascular age-related macular degeneration in the Thai population. J Hum Genet. 2017;62:957–62.
30. Woo SJ, Ahn J, Morrison MA, Ahn SY, Lee J, Kim KW, DeAngelis MM, Park KH. Analysis of genetic and environmental risk factors and their interactions in Korean patients with age-related macular degeneration. PLoS One. 2015;10:e012771.
31. Klein R, Myers CE, Meuer SM, Gangnon RE, Sivakumar TA, Iyengar SK, Lee KE, Klein BE. Risk alleles in CFH and ARMS2 and the long-term natural history of age-related macular degeneration: the beaver dam eye study. JAMA Ophthalmol. 2013;131:383–92.
32. Almeida LN, Mello-Carolinio R, Veloso CE, Pereira PA, Bastos-Rodrigues L, Sarubi H, Miranda DM, Soubrane G, De Marco L, Nehemy MB. Association analysis of CFH and ARMS2 gene polymorphisms in a Brazilian cohort with age-related macular degeneration. Ophthalmic Res. 2013;50:117–22.
33. Yang X, Hu J, Zhang J, Guan H. Polymorphisms in CFH, HTRA1 and CX3CR1 confer risk to exudative age-related macular degeneration in Han Chinese. Br J Ophthalmol. 2010;94:1211–4.
34. Batoglu F, Demirel S, Ozmen E, Abdullahayev A, Bilici S. Short-term outcomes of switching anti-VEGF agents in eyes with treatment-resistant wet AMD. BMC Ophthalmol. 2015;15:40.
35. Smallhoodzic D, Muetter PS, Chen J, Kwestro A, Zhang AY, Omar A, Van de Ven JP, Keunen JE, Kirchoff B, Hoyng CB, Kevering BJ, Koenekoop RK, Fauser S, den Hollander AI. Cumulative effect of risk alleles in CFH, ARMS2, and VEGF on the response to ranibizumab treatment in age-related macular degeneration. Ophthalmology. 2012;119:2304–11.
36. Medina FM, Alves Lopes da Motta A, Takahashi WY, Carricondo PC, dos Santos Motta MM, Mello MB, Vasconcellos JP. Pharmacogenetic effect of complement factor H gene polymorphism in response to the initial intravitreal injection of bevacizumab for wet age-related macular degeneration. Ophthalmic Res. 2015;54:169–74.