Leukocyte- and Platelet-Derived Microvesicle Interactions following In Vitro and In Vivo Activation of Toll-Like Receptor 4 by Lipopolysaccharide

Jing Xiong1,2, Virginia M. Miller2,3*, Larry W. Hunter2, Yunman Li1*, Muthuvel Jayachandran3

1 Department of Physiology, China Pharmaceutical University, Nanjing, Jiangsu, China, 2 Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America, 3 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America

Abstract

Background: Pro-coagulant membrane microvesicles (MV) derived from platelets and leukocytes are shed into the circulation following receptor-mediated activation, cell-cell interaction, and apoptosis. Platelets are sentinel markers of toll-like receptor 4 (TLR4) activation. Experiments were designed to evaluate the time course and mechanism of direct interactions between platelets and leukocytes following acute activation of TLR4 by bacterial lipopolysaccharide (LPS).

Methodology/Principal Findings: Blood from age-matched male and female wild type (WT) and TLR4 gene deleted (dTLR4) mice was incubated with ultra-pure E. coli LPS (500 ng/ml) for up to one hour. At designated periods, leukocyte antigen positive platelets, platelet antigen positive leukocytes and cell-derived MV were quantified by flow cytometry. Numbers of platelet- or leukocyte-derived MV did not increase within one hour following in vitro exposure of blood to LPS. However, with LPS stimulation numbers of platelets staining positive for both platelet- and leukocyte-specific antigens increased in blood derived from WT but not dTLR4 mice. This effect was blocked by inhibition of TLR4 signaling mediated by My88 and TRIF. Seven days after a single intravenous injection of LPS (500 ng/mouse or 20 ng/gm body wt) to WT mice, none of the platelets stained for leukocyte antigen. However, granulocytes, monocytes, and apoptotic bodies stained positive for platelet antigens.

Conclusions/Significance: Within one hour of exposure to LPS, leukocytes exchange surface antigens with platelets through TLR4 activation. In vivo, leukocyte expression of platelet antigen is retained after a single exposure to LPS following turn over of the platelet pool. Acute expression of leukocyte antigen on platelets within one hour of exposure to LPS and the sustained expression of platelet antigen on leukocytes following a single acute exposure to LPS in vivo explains, in part, associations of platelets and leukocytes in response to bacterial infection and changes in thrombotic propensity of the blood.

Introduction

Acute and chronic infection, especially that induced by Gram-negative bacteria is associated with increased risk of thrombosis and atherosclerotic disease [1,2,3,4,5]. Little is known about the underlying cellular mechanisms responsible for these risks. Lipopolysaccharide (LPS), a component of the cell wall of Gram-negative bacteria, is an antigen which initiates inflammation and innate immune responses by interacting with Toll-like receptor 4 (TLR4). TLR4 is expressed on the surface of cells, including leukocytes and platelets [6,7,8]. Under physiological conditions, platelets and leukocytes circulate in quiescent state and do not interact with each other. However, once activated under pathophysiological conditions such as those associated with infection, platelets change shape, secrete prothrombogenic inflammatory and cellular adhesion molecules from alpha- and dense-granules which cause the platelets to adhere to each other or to leukocytes and/or vascular endothelium [9,10,11,12]. The physiological consequences of stimuli associated with infection, like LPS stimulation, are acute but can be sustained. For example, half-life of platelets was shortened and the activation state of newly formed platelets from bone marrow megakaryocytes increased within seven days following a single acute intravenous injection of LPS in mice [13,14]. However, cellular events, specifically those occurring among blood elements, contributing to the shortened half-life and increased activation state of platelets remains to be clarified.

One mechanism offered to explain how infection contributes to the onset and progression of cardiovascular diseases is through increased production of proinflammatory cytokines [1,3]. However, this explanation does not address how the production of inflammatory cytokines might proceed nor does it identity the cell types which are targets for the LPS stimulation. Platelets may represent one of the first blood borne elements to react to LPS...
stimulation as changes in platelet reactivity via TLR4 seems to occur prior to sustained changes in circulating levels of cytokines [14]. Alternatively, comparable activation of leukocyte as well as platelet result in formation of cell-derived microvesicles (MV) which may contribute to increased thrombogenic propensity of the blood, pro-inflammatory immune processes and thus cardiovascular risk [15,16,17,18,19,20,21,22]. Clarifying the interactions of these blood elements (platelets and leukocytes) in the setting of TLR4 activation might provide insight into how infection initiates or facilitates progression of cardiovascular disease.

MV are cell membrane-derived vesicles ranging in size from 0.1 to 1 micron in diameter which are shed in response to cellular activation, cell-cell interaction and apoptosis [23,24,25,26,27]. These cell-derived vesicles are an interface of activation between cellular components of the blood with the vascular wall and between soluble components of the blood associated with immunity including response to infection [24,28,29]. For example, phosphatidylserine (PS) on the surface of MV provides catalytic sites for prothrombinase complex to generate thrombin needed for clotting. Furthermore, exposure of diluted blood to LPS leads to increased production of platelet-derived as well as tissue factor from each paired aliquots of blood. At designated time points (5, 30, and 60 minutes) after addition of vehicle or LPS, 10 mL whole blood from each aliquot was diluted into 990 mL saline containing LPS (500 ng/ml final concentration). For in vivo experiments, anticoagulated blood was aliquoted into pairs of tubes within 30 min after collection so that measurements from a vehicle-treated control tubes and LPS-treated tube could be analyzed from each mouse at each time point. Vehicle (saline) or LPS (500 ng/mL) was added to one of each pair of aliquots of blood.

Experimental design and blood collection

Blood was collected from the retro-orbital sinus plexus (250–300 µL/mouse) of wild type and dTLR4 mice through siliconized capillary tubes coated with hirudin (thrombin inhibitor) and soybean trypsin inhibitor (STI, Factor Xa inhibitor) into 1.5 mL polypropylene tubes containing 20 µL of 100 µM hirudin and 1 mM STI [13]. For in vitro experiments, antiaggregated blood was subjected to two-color analysis to differentiate leukocytes positive for phosphatidylserine and platelet antigen (annexin-V-FITC vs CD41-PE) from leukocytes negative for phosphatidylserine and platelet antigen (annexin-V-PE) by flow cytometry. PE- or FITC-conjugated Annexin-V and matched isotype control antibodies were purchased from BD PharMingen International, San Diego, CA. All other reagents and solvents used in this study were of analytical/reagent grade.

Materials and Methods

Animals

Four to eight month old, male and female C57BL10Snj mice (wild type, WT) and C57BL10ScN mice homozygous for deletion of TLR4 (dTTLR4) were obtained from the Jackson Laboratory, Bar Harbor, Maine. These mice do not express the IL-12Rβ2 mutation that was originally described for this strain [35]. Mice of each sex and age were used randomly in each of the various protocols. Mice were housed in a temperature-controlled environment (22±2°C; 55±5% relative humidity), 12/12 light/dark cycle, and fed standard chow. Experiments were approved by the Institutional Animal Care and Use Committee, Mayo Clinic, Rochester, MN.

Reagents

Ultra-pure E.coli lipopolysaccharide (LPS, 0111:B4 strain-TLR4 ligand, product number 321-pelpl, pepinh-MyD (product number 183-pimyr) inhibitory peptide (InviBioGen, San Diego, CA) were prepared as suggested by the supplier. Mouse thrombin and bovine serum albumin were purchased from Sigma Chemical Co., St. Louis, MO, USA. Cellular origin of antigens was determined using platelet (rat anti-mouse CD41 antibody) and total leukocyte (rat anti-mouse CD45 antibody) membrane specific fluorescein conjugated {Phycocerythrin (PE)- or fluorescein isothiocyanate (FITC)-} antibodies by flow cytometry. PE- or FITC-conjugated Annexin-V and matched isotype control antibodies were purchased from BD PharMingen International, San Diego, CA. All other reagents and solvents used in this study were of analytical/reagent grade.

Imaging mouse platelets

A blood sample from each mouse was diluted into two 100 µl aliquots; one was diluted with 100 µl saline (control), the other with 100 µl saline containing LPS (500 ng/ml final concentration). Samples were incubated at 25°C. At time-points 0 (prior to LPS or vehicle), 30 and 60 min, a 20 µl aliquot was removed from each sample, diluted in 20 µl 2% paraformaldehyde and incubated for an additional 30 min. Each sample was then diluted in 250 µl PBS (0.1 µm pore membrane-filtered) and centrifuged at 45×g for 12 min. The supernate, which contained platelets, was removed, placed into a new vial and used for imaging analysis. An aliquot of each platelet suspension was diluted 1:4 in PBS, and a 25 µl drop was placed on a glass slide, cover-slipped and sealed with glue. Platelets were then imaged in dark-field mode using a light microscope (Olympus BX41 with a 100× oil-immersion lens) coupled to a CytoViva illumination system (CytoViva, Inc., Auburn, AL). Scanning from a corner of each cover-slip, platelets
in each field were counted until 100 were totaled. Platelets were
categorized according to shape morphology (discoid, irregular,
flattened, pseudopodia) or whether exhibiting membrane granules
or in aggregates (each aggregate was counted as 1). The number of
platelets in each category was expressed as percentage of total 100
platelets counted.

Analysis of whole blood from in vitro experiments
Diluted (1:100) whole blood (100 μL) was incubated with PE-
conjugated platelet- and leukocyte-specific antibodies (CD41 and
CD45, respectively), or separately with annexin V-FITC (binding
to phosphatidylserine) for 30 min, after which 1% paraformalde-
hyde (400 μL) was added. Matched fluorescein conjugated isotype
control antibodies were used simultaneously staining to set the
threshold and exclude nonspecific binding. Interactions between
cell (platelets or leukocytes) and cell-derived MV and PS
expression on both platelets and leukocytes were analyzed by
flow cytometry (FACSCalibur™ and FACSCanto™, BD Biosci-
ences, San Jose, CA). Platelets were identified by forward and side
scatter and with fluorescein conjugated CD41 antibody until
20,000 events gated for each sample, respectively (Figure 1A).

Microvesicles isolation and analysis
All buffers and antibodies were filtered twice through 0.2 μm
membrane (Millipore) filters for MV analysis. Platelet free plasma
(PFP) was prepared by double centrifugation at 3000 × g for 15 min.
PFP was diluted (15 μL PFP + 85 μL HEPES/HANKS’ buffer) and
incubated with 4 μL FITC-conjugated annexin-V and PE-conju-
gated CD41 or CD45 antibodies for 30 min in dark, at which time
350 μL HANKS’ balanced salts buffer (pH 7.4) with 2.5 mM
CaCl₂ was added. Matched isotype control antibodies were used to
set threshold and exclude nonspecific binding. MV were quantified
based on counts of calibration beads (TruCOUNT™ beads) added
immediately to the samples prior to analysis by flow cytometry
(FACSCanto™, BD Biosciences, San Jose, CA) as previously
described [25,26,31]. In this study, MV were defined as events of
<1 μm in diameter using size calibration beads and positive for
annexin-V and platelet- and leukocyte-specific markers.

Analysis of TLR4 intracellular signaling pathway
LPS stimulated TLR4 signaling was analyzed by introducing
MyD88 or TRIF inhibitory peptides as described in other studies
[36,37]. Anticoagulated blood from WT mice was aliquoted into
six tubes and treated with pepinh-control (vehicle), pepinh-MyD
(100 μM, MyD88 inhibitory peptide which binds to MyD88 to
block TLR4 stimulated MyD88 signaling) and/or pepinh-TRIF
(100 μM which binds to TRIF to block TLR4 stimulated TRIF
signaling) alone or in combination for 30 min after which either
saline or LPS (500 ng/mL) was added for one hour. At this time,
an aliquot was diluted for analysis by flow cytometry to measure
cellular origin of MV and platelet positive leukocyte antigen and
leukocyte positive platelet antigen.

Data analyses
Data are presented as percentage or fold increase from the
paired vehicle and LPS treated blood samples at each time point.
All data are presented as mean ± SEM; n = number of animals
used in each experiment. Statistical significance was evaluated by
paired or unpaired two-tailed Student’s t-test. Statistically
significance was accepted at P<0.05.

Figure 1. Identification of platelets and leukocytes positive for dual cell-specific antigens. A. Representative scatter plot of the gate used
to identify platelets by size. B. Quadrants derived from platelet gate of blood stained with CD41-PE plus IgG-FITC (matched isotype control). C.
Quadrants derived from platelet gate of blood stained with CD41-PE plus CD45-FITC (leukocyte-specific antibody). D & E. Cumulative data of platelets
expressing leukocyte antigen (D) and leukocytes expressing platelet antigen (E) after incubation of blood with LPS (500 ng/mL) for up to 60 minutes.
Data are derived from positive quadrants of platelet and leukocytes gates of scatter plots. WT mice (open bars); dTLR4 mice (closed bars). Data are
expressed as mean ± SEM (n = 8/group) of fold increases from the vehicle-treated group at the same time point. *P<0.05 vs. saline-treated group at
the same time point.

doi:10.1371/journal.pone.0025504.g001
Results

In vitro experiments

Prior to addition of LPS, platelets from WT mice were discoid, formed few aggregates and did not have extended pseudopodia (Figure 2). Surface expression of PS on platelets or leukocytes was similar in WT and dTLR4 mice. Within each group of mice, expression of PS was significantly lower on leukocytes than on platelets (Table 1).

During the first hour of incubation of the blood with LPS, platelets from WT mice underwent a shape change, extended pseudopodia and formed aggregates (Figure 2). Within this first hour, neither surface expression of PS on either platelets or leukocytes or numbers of platelet- or leukocyte-derived MV changed significantly in WT mice or dTLR4 mice (Table 1). However, the number of platelets positive for leukocyte-specific antigen (defined by the platelet-gate on the flow cytometer, Figure 1) increased significantly in a time-dependent manner in blood of WT mice, but not dTLR4 mice (Figures 1). Using the total leukocyte specific antibody (CD45-APC) to define total leukocytes, numbers of platelet-derived MV did not change significantly in either WT or dTLR4 mice (Figure 1).

In blood from WT mice, the percentage of platelets positive for leukocyte antigen (CD45) was reduced significantly and to the same extent by MyD88 and TRIF (Figure 3). The combination of MyD88 with TRIF did not reduce the percentage of aggregates to a greater extent than either alone (from 3.83±0.48 to 1.38±0.08).

In vivo experiments

Seven days following a single intravenous injection of a sentinel dose of LPS (20 ng/gm body weight which is 500 ng/mouse), none of the platelets were positive for leukocyte antigen. On the contrary, compared to leukocytes obtained from animals treated with vehicle or a week before LPS injection in the same mouse, granulocytes and monocytes were significantly positive for platelet antigen seven days after the single LPS injection (Figure 4). Apoptotic bodies also stained positive for platelet antigen (Figure 4).

Discussion

Understanding how infection alters cell-cell interactions and release of MV from specific blood borne elements may help to identify new targets for reducing cardiovascular/thrombotic risk with infection. This study demonstrates the acute, immediate interaction of platelets and leukocytes after incubation of whole blood with a sentinel dose of LPS through TLR4 signaling. Exchange of antigens and associations of specific cell-derived MV among cells is a mechanism for the transfers signaling molecules to specific cells. For example, MV derived from neutrophils induced platelet activation by binding to platelets GPIba (Glycoprotein 1bα) via activated αMβ2 on MV [38], while platelet-derived MV mediate leukocyte-leukocyte aggregation, activate leukocyte phagocytic properties and amplify leukocyte-mediated tissue injury in thrombotic and inflammatory disorders [39]. Results from the present study demonstrate that the number of platelets positive for leukocyte antigen increased within 60 min of exposure to LPS. This increase was not accompanied by increased expression of PS on cell or MV surface. Because expression of the leukocyte antigen on platelets was defined using the platelet size gate and platelet specific marker CD41 on the flow cytometry, larger leukocytes would be excluded. Therefore, these leukocyte antigens may represent a membrane exchange during platelet-leukocyte adhesion or adhesion of leukocyte-derived MV to the platelets. The half-life of whole platelet-leukocyte aggregates may be shorter and therefore, we did not determine whole platelet-leukocyte aggregates in this study.

With agonist binding, the TLR4 dimerizes and undergoes a conformational change required for the recruitment of signaling molecules [40], such as the adaptor molecules myeloid differentiation protein 38 (MyD88) and Toll-interleukin-1(IL-1) receptor...
domain containing adaptor inducing interferon-β (TRIF), which mediate MyD88 dependent or independent pathway respectively [41,42]. LPS activates both MyD88 and TRIF pathways, which are important in the TLR4 mediated intracellular signaling [42]. The acute effects of LPS on platelet and leukocyte activation were most likely mediated through activation of TLR4 as platelet positive leukocyte antigen was not observed in blood from dTLR4 mice. Furthermore, leukocyte antigen expression on platelet was reduced by inhibition of MyD88- and TRIF-dependent pathways alone or in combination. These signaling pathways may be potential molecular targets to inhibit infection/inflammation induced interactions among formed elements in the blood.

A single TLR4 sentinel dose injection of LPS, such as used in this study, shortened platelet half-life and increased platelet production without increases in cytokine production within 3 hours of stimulation [14]. Although in vivo interaction of platelet- and leukocyte-aggregates with the vascular wall could stimulate or exacerbate proinflammatory immune responses [43,44], the half-life of these cell aggregates is not known. A significant finding of the present in vivo study is that leukocytes sustain or retain platelet antigen seven days after an in vivo injection of LPS. This time point corresponds to turnover of the platelet pool and is consistent with observations that changes in platelet half-life and increases in platelet turnover are dependent on the concentration of agonist, i.e. LPS, activation [13,14].

Quantification of dual-positive events is usually not considered in studies of cellular or MV quantification with LPS stimulation. Results from the present study, therefore, suggest that platelet-leukocyte antigen could be used as an additional biomarker of cellular activation for diagnostic or prognostic purposes in settings of sub-clinical or asymptomatic exposures to infective agents.

Monocytes showed the greatest expression of platelet antigen following LPS injection. Since monocytes are considered to be the primary leukocytic cell involved with development of atherosclerotic lesions [45,46,47], the present results provide insight into a mechanism linking low to moderate levels of infection to progression of cardiovascular disease.

To our knowledge, results of the present study represent the first to examine time-dependent changes in production of MV/ exchange of cell-specific antigens in cells derived from whole blood incubated with LPS. In diluted blood, addition of LPS (500 ng or 1 µg/mL) increased the number of MV from platelets and those positive for tissue factor but only after four hours of incubation [34]. Because the blood was diluted, unlike the present study, cell-cell interactions were most likely attenuated and no evaluation was performed relative to interaction with leukocytes which could have indirectly affected platelet activation and production of cytokines.

Unexpectedly, PS expression on platelets (or leukocytes) did not increase significantly with acute exposure to LPS. PS is expressed in the inner leaflet of plasma membrane but rapidly inverts to outer surface following activating stimuli [48,49,50]. Exposure of PS to the outer membrane surface also occurs with release of MV [51]. Results of the present study are consistent with reports that production of MV is not accompanied by PS expression on cell of origin but might be restricted to that portion of the membrane undergoing MV blebbing [52].

Conclusion

Within one hour of exposure of whole blood to a concentration of LPS that has threshold effect on cytokine production in vivo, platelets become positive for leukocyte antigen. Platelet-leukocyte interactions require TLR4 signaling as the dual antigen positivity of platelets was observed in blood derived from wild type but not dTLR4 mice. Furthermore, peptide inhibitors of TLR4 signaling molecules blocked the interaction. These events occur within
1 hour after the initial exposure to LPS. In addition, effects of LPS stimulation are sustained at least up to 7 days past the initial LPS exposure, as leukocytes express platelet antigen at this time point. Collectively, these results identify an acute and rapid signaling mechanism by which sentinel-grade acute infection through TLR4 alters blood hemostasis and sustained leukocyte activation which may contribute to progression of cardiovascular diseases.

References

1. Kalvegren H, Majeed M, Bengtsson T (2003) Chlamydia pneumoniae binds to platelets and triggers P-selectin expression and aggregation: a causal role in cardiovascular disease? Arterioscler Thromb Vase Biol 23: 1677–1683.

2. Lee N, Hui D, Wu A, Chai P, Cameron P, et al. (2003) A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 349: 1986–1994.

3. Pasceri V, Pati G, Cammarota G, Pristipino C, Richichi G, et al. (2006) Virulent strains of Helicobacter pylori and vascular diseases: a meta-analysis. Am Heart J 151: 1213–1222.

4. Willershausen B, Kasaj A, Willershausen I, Zahorka D, Bisenko B, et al. (2009) Association between chronic dental infection and acute myocardial infarction. J Endod 35: 626–630.

5. Smeeth L, Thomas SL, Hall AJ, Hubbard R, Farrington P, et al. (2004) Risk of myocardial infarction and stroke after acute infection or vaccination. N Engl J Med 351: 2611–2618.

6. Zhang G, Han J, Welch EJ, Ye RD, Voyno-Yasenetskaya TA, et al. (2009) Platelet response as a sentinel marker of toll-like receptor 4 activation in mice. Thrombosis Research 126: 414–417.

7. Andonegui G, Kerfoot SM, McNagny K, Ebbert KVJ, Patel KD, et al. (2005) Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TRL4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol 170: 7997–8004.

8. de Vos AF, Pater JM, van den Pangaart PS, de Kruif MD, van ‘t Veer C, et al. (2001) Virulent strains of Helicobacter pylori and vascular diseases: a meta-analysis. Am Heart J 151: 1213–1222.

9. Seizer P, Gawaz M, May AE (2008) Platelet-monocyte interactions–a dangerous liaison linking thrombosis, inflammation and atherosclerosis. Curr Med Chem 15: 1976–1980.

10. May AE, Langer H, Seizer P, Bigdke B, Lindemann S, et al. (2007) Platelet-leukocyte interactions in inflammation and atherothrombosis. Semin Thromb Hemost 33: 123–127.

11. Turgut B, Turgut N, Celik Y, Tekgunduz E, Pamuk GE, et al. (2011) Differences in platelet-leukocyte aggregates among subtypes of acute cerebral ischemia. J Neurol Sci 305: 126–130.

12. Cerfetti C, de Gaetano G, Lorenz R (2010) Platelet - leukocyte interactions: multiple links between inflammation, blood coagulation and vascular risk. Mediterr J Hematol Infect Dis 2: e2010023.

13. Jayachandran M, Brunn GJ, Cannick K, R. M. S., Owen WG, et al. (2007) In vivo effects of lipopolysaccharide and TLR4 on platelet production and activity: Implications for thrombotic risk. J Appl Physiol 102: 429–433.

14. Jayachandran M, Miller VM, Brunn GJ, Owen WG (2010) Platelet response as a sentinel marker of toll-like receptor 4 activation in mice. Thrombosis Research 126: 414–417.

15. Jayachandran M, Litwiler RD, Lahr BD, Bailey KR, Owen WG, et al. (2011) Alterations in Platelet Function and Cell-Derived Microvesicles in Recently Menopausal Women: Relationship to Metabolic Syndrome and Atherogenic Risk. J Cardiovasc Transl Res; DOI 101007/s12265-011-9296-9.

16. Mostefai HA, Andriantsitohaina R, Martinez MC (2008) Plasma membrane microparticles in angiogenesis: role in ischemic diseases and in cancer. Physiol Res 57: 311–320.

17. Nieuwland R, Berekman RJ, McGregor S, Boing AN, Romijn FP, et al. (2000) Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 95: 930–935.

18. Joop K, Berekman RJ, Nieuwland R, Berkhoult J, Romijn FP, et al. (2001) Microparticles from patients with multiple organ dysfunction syndrome and sepsis: source and procoagulant activity. Mediators Inflamm 2001: 545–552.

19. Brogan PA, Shah V, Brachet C, Harnden A, Munt D, et al. (2004) Endothelial and platelet microparticles in vasculitis of the young. Arthritis Rheum 50: 927–936.

20. Bernal-Mizrachi L, Jy W, Fierro C, Macdonough R, Velazquez HA, et al. (2004) Endothelial microparticles correlate with high-risk angiographic lesions in acute coronary syndromes. Int J Cardiol 97: 439–446.
Loiarro M, Sette C, Gallo G, Ciacci A, Fanto N, et al. (2005) Peptide-mediated pathophysiology and clinical implications. Blood Reviews 21: 157–171.

Xiong J, Miller VM, Li Y, Jayachandran M (2011) Microvesicles at the crossroads between infection and cardiovascular diseases. J Cardiovasc Pharmacol 54: 53–62.

Ratajczak MZ (2009) Megakaryocyte-derived microvesicles, please stand up! J Thromb Haemost 7: 1092–1098.

Hashimoto K, Jayachandran M, Owen WG, Miller VM (2009) Aggregation and microparticle production through toll-like receptor 4 activation in platelets from recently menopausal women. J Cardiovasc Pharmacol 54: 53–62.

Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, et al. (2002) Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol 30: 430–439.

Varon D, Shai E (2009) Role of platelet-derived microparticles in angiogenesis and tumor progression. Discov Med 8: 237–241.

Ratajczak MZ (2009) Megakaryocyte-derived microvesicles, please stand up! Blood 113: 981–982.

Jayachandran M, Preston CC, Hunter LW, Jahanpur A, Owen WG, et al. (2010) Loss of estrogen receptor β decreases mitochondrial energetic potential and tumor properties of microvesicles from bacterial cell wall of Pantoea agglomerans. Ann Agric Environ Med 15: 153–161.

Corli R, Hutter R, Badimon JJ, Fuster V (2004) Evolving concepts in the triad of atherosclerosis, inflammation and thrombosis. J Thromb Thrombolysis 17: 35–44.

Kotenko P, Schlegel RA (1996) Back and forth: the regulation and function of CD40 ligands. Eur J Immunol 40: 162–171.

Mach F, Schonbeck U, Sukhova GK, Bourcier T, Bonnefoy J-Y, et al. (1997) Expression, activation, and function of integrin αMβ2 (Mac-1) on neutrophil-derived microparticles. Blood 112: 2327–2335.

Li X, Cong H (2009) Platelet-derived microparticles and the potential of glycoprotein IIb/IIIa antagonists in treating acute coronary syndrome. Tex Heart Inst J 36: 134–139.

Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4: 499–511.

Zhong H, Heidenreich CA, Joo M, Xipei G, Knezevic N, et al. (2010) MYD88-dependent and independent activation of TLR4-1α specific TLR ligands. Eur J Immunol 40: 162–171.

Premkumar V, Dey M, Dorn R, Raskin I (2010) MyD88-dependent and independent pathways of Toll-Like Receptors are engaged in biological activity of Triptolide in ligand-stimulated macrophages. BMC Chemical Biology 10.

Obregon C, Rothen-Rutishauser B, Gitahi SK, Gehr P, Nicod LP (2006) Exovesicles from human activated dendritic cells fuse with resting dendritic cells, allowing them to present alloantigens. Am J Pathol 169: 2127–2136.

Spirvak R, Dukiewicz J (2008) In vitro study of pro-inflammatory and anti-tumour properties of microvesicles from bacterial cell wall of Pantocea agglomerans. Ann Agric Environ Med 15: 153–161.

Corti R, Hutter R, Badimon JJ, Fuster V (2004) Evolving concepts in the triad of atherosclerosis, inflammation and thrombosis. J Thromb Thrombolysis 17: 35–44.

Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Rosenvold DE, et al. (2008) Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117: 379–387.

Mach F, Schonbeck U, Sukhova GK, Bourcier T, Bonnefoy J-Y, et al. (1997) Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: Implications for CD40-CD40 ligand signaling in atherosclerosis. Proc Natl Acad Sci 94: 1931–1936.

Williamson P, Schlegel RA (1994) Back and forth: the regulation and function of transblayer phospholipid movement in eukaryotic cells. Mol Mem Bioil 11: 199–216.

Comfurius P, Williamson P, Smeets EF, Schlegel RA, Bevers EM, et al. (1996) Reconstitution of phospholipid scramblase activity from human blood platelets. Biochemistry 35: 7631–7634.

Duchary-Prigent J, Pasquet JM, Freysinet JM, Norden AT (1995) Calcium involvement in aminophospholipid exposure and microparticle formation during platelet activation: a study using Ca2+-ATPase inhibitors. Biochemistry 34: 11625–11634.

Weerheim AM, Kolb AM, Stork A, Niculand R (2002) Phospholipid composition of cell-derived microparticles determined by one-dimensional high-performance thin-layer chromatography. Anal Biochem 302: 191–198.

VanWijk MJ, VanBavel L, Stork A, Niculand R (2003) Microparticles in cardiovascular diseases. Cardiovasc Res 59: 277–287.