Sulforaphane ameliorates lipid profile in rodents: An updated systematic review and meta-analysis

Kaili Du¹,², Yuxin Fan¹ and Dan Li¹,², #

¹Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.

²Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, qMI 48109, USA

Correspondence should be addressed to:
D. L. (Email: lidan@zjut.edu.cn)
Abstract

Sulforaphane (SFN) which is enriched in cabbage and broccoli, a naturally-occurring isothiocyanate, has been provided as food supplements to improve weight management and reduce lipid levels. However, its effects on serum lipid profile are contradictory. In this review, a meta-analysis and systematic review of SFN on lipids reduction and weight control is assessed with mice and rats fed with high-fat diet. The effects of SFN supplementation were evaluated by weighted mean difference (WMD) and the corresponding standard error of body weight, liver weight and concentrations of lipids. A random-effects model was chosen to estimate the overall summary effect. Our analytic results of the meta-analysis revealed that SFN can reduce body weight (WMD: -2.76 g, 95% CI: -4.19, -1.34) and liver weight (WMD: -0.93 g, 95% CI: -1.63, -0.23) significantly from ten trials. Its effects on serum total cholesterol (WMD: -15.62 mg/dL, 95% CI: -24.07, -7.18), low-density lipoprotein cholesterol (WMD: -8.35 mg/dL, 95% CI: -15.47, -1.24) and triglyceride (WMD: -40.85 mg/dL, 95% CI: -67.46, -14.24) were significant except for high-density lipoprotein cholesterol (WMD: 1.05 mg/dL, 95% CI: -3.44, 5.54). The subgroup analytic results from findings unveiled that classifying studies according to species, disease model, duration, SFN dosage as well as administration route could not explain the heterogeneity among studies and change the results. In summary, these findings provide new insights concerning preclinical strategies for treating diseases including obesity, diabetes, hypertension, non-alcoholic fatty liver disease as well as cardiovascular disease with SFN supplements.
Introduction

The prevalence of chronic non-communicable diseases and metabolic syndromes, involving obesity, diabetes, hypertension, hypercholesterolaemia, cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD), are increasing due to changes in lifestyle and dietary patterns, thereby triggered modifications in global nutritional and epidemiological characteristics. The lipid profile as well as obesity are risk factors for CVD. A balanced diet and the uptake of natural products supplements have been suggested to lower risks of metabolic syndrome by improving weight management and ameliorating lipid profile.

In the past decades, natural products derived from plant were applied to prevent obesity, diabetes and lipids-associated disorders. An epidemiological study including thousands of people suggested that supplementation of adequate plant-derived bioactive compound is beneficial in controlling body weight (BW) and reducing lipid accumulation. Sulforaphane (SFN), enriched in broccoli and cabbage, was reported to decrease levels of lipid both in vivo and in vitro models. Theses researches suggest SFN becomes a potential drug in therapy for dyslipidemia. SFN has also been effective in treatment of atherosclerosis, diabetes, and neurodegenerative diseases.

Two randomized clinical trials (RCTs) show that intake of broccoli sprouts can significantly reduce inflammatory markers and plasma low density lipoprotein cholesterol (LDL-C) of patients in the long term. Animal studies show that phase I & phase II metabolic enzymes and lipid metabolism-related enzymes/proteins can be regulated by SFN. Recent studies suggest that SFN plays a role in inducing adipocyte lipolysis and inhibiting adipocyte differentiation. Therefore, one of the possible mechanisms that SFN can improve lipid profile is by increasing adipocyte lipolysis and upregulating the activity of lipid metabolism-related enzymes/proteins.

There are only two RCTs of SFN on the serum lipid profile, so we have focused on the effect of SFN for lipid profile’s regulation in the preclinical studies (rats and mice). Particularly, there is no meta-analysis on SFN single drug effect of using SFN as a mono drug on lipid profile instead of using food. Hence, an update systematic review and a meta-analysis is put into practice to summarize the animal data of SFN effects on lipid profile after year 2013.

Material and method

Search strategy. To find related articles, we searched databases including: Web of science, PubMed, SCOPUS, medRxiv, bioRxiv and Google Scholar up to Sept. 2020. We searched those databases following MeSH and non-MeSH terms related to lipid profile and sulforaphane: “Lipoproteins, LDL”, “Low Density Lipoprotein...”
Cholesterol”, “Cholesterol LDL”, “LDL triacylglycerol”, “Triglycerides”, “Triacylglycerol”, “Triacylglycerols”, “Lipoproteins, HDL”, “HDL Lipoproteins”, “High Density Lipoproteins”, “High-Density Lipoproteins”, “Lipoproteins, High-Density”, “Lipoproteins, VLDL”, “Cholesterol”, “Cholesterol, VLDL”, “VLDL Cholesterol”, “Very Low Density Lipoprotein Cholesterol”, “Very-Low-Density Lipoproteins”, “Lipoproteins, Very-Low-Density”, “Very Low Density Lipoproteins”, “Lipoproteins VLDL”, “VLDL Lipoproteins”, “Lipoproteins, VLDL”, “total cholesterol”, “TC”, “LDL”, “HDL”, “VLDL”, “TG”, “Lipolysis” and “sulforaphane”24. Initially, we want to focus the research on the clinical trials of SFN. The search only finds two clinical papers of SFN relevant to lipid profile and the researches lack selection like language, dosage of drug, duration of treatment as well as route of administration. Hence, we concentrated on the preclinical studies of SFN which was evaluated in rodents (rats and mice) for lipid profile in this study.

Inclusion criteria. This systematic review and meta-analysis was conducted according to the PRISMA guidelines25. Researches with following criteria may be chosen in our meta-analysis: (i) Original articles; (ii) Focusing on rodent (rats and mice) models; (iii) Using SFN per se in intervention group; (iv) Evaluated systemic metabolic parameters such as lipid profile as an outcome.

Exclusion criteria. After reading the full text of selected articles, we excluded trials if they met the following criteria: A) Using food instead of SFN, B) Using other food supplements with SFN, C) No control group, D) Having unclear data, E) Not using rodents (rats and mice) model, F) Acute SFN action.

Data extraction. After reading the title, abstract and considering inclusion and exclusion criteria, eligible articles were selected. Detailed data includes: the name of the first author, publication year, species and sex, number of animals, age of animals, model method, duration, intervention (including SFN dose, mode of administration), the main outcomes, intergroup difference and results26.

Statistical analysis. Treatment effects were considered as weighted mean difference (WMD) and the corresponding standard error (SE) in BW, LW and concentrations of serum lipids (TC, LDL-C, HDL-C and TG). To estimate the overall summary effect, we used a random-effects model, previously described by DerSimonian and Laird, which considers both within and between-study heterogeneity27. Heterogeneity among the studies was estimated using the I^2 statistic, with values of 0-25%, 25.1-75%, and 75.1-100% representing a low, moderate, and
high degree of heterogeneity, respectively. When standard deviations or SEs were not shown in studies, they were calculated using 95% CI. In addition, when studies have reported median and interquartile range, they were converted to mean and SE using available formulas28. Statistical analyses were done using Stata, version 13 (Stata Corp., College Station, TX, USA). P-values less than 0.05 were considered statistically.

Results

Selection of articles.

A total of 654 studies were involved by our data base search. 279 duplicate articles were removed. After reading the title and abstract of papers, 20 articles were selected to read the full text after removing 355 studies. We considered inclusion and exclusion criteria and then excluded 10 studies owing to prescribing broccoli supplement or broccoli sprout extract instead of SFN (n = 3), acute SFN action (n = 2), RCTs (n = 2), rabbit model (n = 1), alcohol-induced liver steatosis model (n = 1) and lacking of clear data (n = 1) (Figure 1). Finally, this meta-analysis was conducted on ten trials of rodents29-38 (Table 1), including 5 batches of C57BL/6 mice, 4 batches of Wistar rats and 1 batch of Sprague Dawley rats. In terms of gender, all the trials selected male animals aged 4-10 weeks. The methods to build disease model were feeding mice or rats with high-fat diet, high-fructose diet and highly palatable diet or injecting of streptozotocin (STZ) into rodents. Specifically, four trials induced obesity by feeding with high-fat diet, one trial by feeding with high-fructose diet, one trial by feeding with high-fat high-sucrose diet, one trial by feeding with highly palatable diet, two trials adopted diabetes by feeding with high-fat diet and then injecting of STZ and one trial by injection of STZ. The animals were treated with SFN by oral administration, oral gavage, subcutaneous injection and intraperitoneal injection. The intervention duration was 3 to 16 weeks. The dosage of SFN was 0.5 mg/kg to 30 mg/kg.

Effects of SFN Supplementation on Body Weight.

The meta-analysis of BW included 6 publications with 6 effect sizes. We found that SFN supplementation was associated to BW (WMD: -2.76 g, 95% CI: -4.19, -1.34; P = 0.032, $I^2 = 58.9\%$) (Figure 2). In the subgroup analyses, the heterogeneity sources were not found when studies were stratified species, disease model, duration and SFN dosage and administration route (Table 2). However, heterogeneity was attenuated in oral administration subgroup ($I^2 = 0.0\%$), studies which lasted for >10 weeks ($I^2 = 0.0\%$), diabetes model subgroup ($I^2 = 12.2\%$), studies whose dosage of SFN ≤ 0.5 mg/kg/d ($I^2 = 12.2\%$) and rats subgroup ($I^2 = 24.8\%$). SFN supplementation significantly decreased BW in mice group (WMD: -2.93 g, 95% CI: -4.34, -1.52; P = 0.015, $I^2 = 76.3\%$), obesity model of rodents
(WMD: -3.30 g, 95% CI: -4.46, -2.14; P = 0.096, I² = 52.7%), studies which lasted for ≤10 weeks (WMD: -3.18 g, 95% CI: -4.60, -1.75; P = 0.037, I² = 64.6%), studies whose dosage of SFN >0.5 mg/kg/d (WMD: -3.46, -2.14; P = 0.096, I² = 52.7%), oral administration group (WMD: -3.96 g, 95% CI: -4.47, -3.14; P = 0.392, I² = 0.0%) and injection administration group (WMD: -1.33 g, 95% CI: -4.46, 1.80; P = 0.107, I² = 55.2%). However, BW significantly increased in rats group (WMD: 1.12 g, 95% CI: -6.87, 9.19; P = 0.265, I² = 24.8%) and diabetes model of rodents whose dosage of SFN ≤0.5 mg/kg/d (WMD: 1.09 g, 95% CI: -4.53, 6.72; P = 0.286, I² = 12.2%) (Table 2).

Effects of SFN Supplementation on Liver Weight.

The results of liver weight (LW) were calculated in 4 comparisons from 4 studies. As shown in Figure. 3, SFN significantly affected LW of rodents (WMD: -0.93 g, 95% CI: -1.63, -0.23; P = 0.000, I² = 93.0%). In subgroup analyses by the species, disease model, duration, SFN dosage and administration of rodents, it showed that SFN caused a reduction in levels of LW in obesity group treated with dosage of SFN >0.5 mg/kg/d by oral administration (WMD: -1.26 g, 95% CI:-2.31, -0.39; P = 0.000, I² = 95.2%), but its effect in diabetes group treated with dosage of SFN ≤0.5 mg/kg/d by injection (WMD: 0.00 g, 95% CI: -0.37, 0.37; P = 0.000, I² = 95.2%) was not significant (Table 2). Results revealed that classifying trails on the basis of species, disease model, duration, SFN dosage as well as administration route could not explain the heterogeneity among studies from the subgroup analysis (Table 2).

Effects of SFN Supplementation on Serum Total Cholesterol.

In total 6 publications with 6 effect sizes, serum total cholesterol concentrations were reported. Overall, it had been found that SFN caused a decrement in serum TC levels significantly from the quantitative meta-analysis (WMD: -15.62 mg/dL, 95% CI: -24.07, -7.18, P = 0.000, I² = 92.3%) (Figure. 4). Heterogeneity was eliminated in studies which lasted for >10 weeks (I² = 0.0%), however, the heterogeneity sources were not found when studies were stratified duration and other subgroups (Table 2). Moreover, in all studies, intake of SFN could lead to a significant decline in serum levels of total cholesterol, particularly in mice (WMD: -23.59 mg/dL, 95% CI: -60.48, 13.30, P = 0.000, I² = 97.3%), the dosage of SFN >0.5 mg/kg/d (WMD: -22.75 mg/dL, 95% CI: -40.46, -5.04; P = 0.000, I² = 95.1%) and ≤10 weeks’ intervention subgroups (WMD: -21.27 mg/dL, 95% CI: -34.67, -7.87; P = 0.000, I² = 92.5%) (Table 2).
Effects of SFN Supplementation on Serum Low-density Lipoprotein.

In total, the analysis of LDL-C involves 3 publications with 3 effect sizes. A statistically significant reduction effect of SFN supplementation on serum LDL-C (WMD: -8.35 mg/dL, 95% CI: -15.47, -1.24; P = 0.001, I² = 85.2%) was discovered (Fig. 5).

Effects of SFN Supplementation on Serum High-Density Lipoprotein.

Combining 5 effect sizes from 5 publications, we found SFN was not effective to the levels of serum HDL-C concentration (WMD: 1.05 mg/dL, 95% CI: -3.44, 5.54; P = 0.000, I² = 91.2%) (Fig. 6). In subgroup analyses, it suggested that SFN played a role in the increment of HDL-C significantly in diabetes subgroup which is injected with SFN (WMD: 4.00 mg/dL, 95% CI: 0.65, 7.35)\(^{13}\), but it had no significant effect in obesity group by oral administration (WMD: 0.40 mg/dL, 95% CI: -5.42, 6.22; P = 0.000, I² = 92.5%). In addition, SFN supplementation reduced the level of HDL-C significantly in mice subgroup (WMD: -8.30 mg/dL, 95% CI: -11.94, -4.66). The species, disease model, duration and SFN dosage and administration route of studies were not determined as sources of heterogeneity (Table 2).

Effects of SFN Supplementation on Serum Triglyceride.

There were five effect sizes from 5 publications which met the inclusion and exclusion criteria and were included in the analysis of serum triglyceride. Overall, levels of serum TG were reduced after supplementation of SFN with high degree of study heterogeneity showed by the quantitative meta-analysis (WMD: -40.85 mg/dL, 95% CI: -67.46, -14.24; P = 0.000, I² = 97.1%) (Fig. 7). The results of the subgroup analysis revealed that the heterogeneity among studies could not be explained when studies were divided by species, disease model, duration and SFN dosage and administration route. In these analysis results, the effect of reducing serum TG concentrations after intake of SFN was significant when researches were performed on rodents, those dosage of SFN ≤0.5 mg/kg/d (WMD: -132.41 mg/dL, 95% CI: -231.71, -33.12; P = 0.000, I² = 97.5%), with an intervention duration of >10 weeks (WMD: -103.25 mg/dL, 95% CI: -128.94, -77.56), and rats group (WMD: -33.14 mg/dL, 95% CI: -60.77, -5.51; P = 0.000, I² = 95.3%). In addition, SFN supplements were not statistically significant for other subgroups (Table 2).

Publication Bias and Sensitivity Analysis.

There were no evidence for publication bias through Funnel plots and Egger’s tests (BW Egger’s test: P = 0.201, LW Egger’s test: P = 0.386, TC Egger’s test: P = 0.055, LDL-C Egger’s test: P = 0.515, HDL-C Egger’s test: P = 0.836.
and TG Egger’s test: P = 0.230) (Supplementary Table S1 and Figure S1). Sensitivity analyses revealed that any particular study did not influence the summary effects on BW, LW, TC, LDL-C, HDL-C and TG (Supplementary Figure S2).

Discussion

In this updated meta-analysis, ten articles were contained to assess SFN supplementation’s effects on body weight and lipid profile in preclinical animal models. Our analytic results indicated that SFN supplementation significantly decreased BW, LW, TC as well as LDL-C levels apart from HDL-C. This meta-analytic study for the first time summarizes the function of SFN per se instead of mixtures like whole broccoli on lipid profile in rodents with metabolic syndrome. This study suggested that SFN is effective on BW, LW and lipid profile in animal models.

Our results revealed that different disease model (with or without STZ) did not influence the previous results of meta-analysis on lipid-related parameters and weight in rodents after supplementation with SFN. Changing duration and dosage of SFN and administration route has no effect on the result.

Although our research focuses on effect of SFN as a mono drug on lipid profile, almost all are clinical trials of broccoli and broccoli sprouts instead of SFN per se. However, clinical trials about intake of broccoli enriched with SFN can provide some auxiliary support for research on SFN effect. Take study of Adriana Conzatti et al. for example, clinical research of the supplement of broccoli revealed that broccoli sprouts intervention could improve these parameters related to lipid profile and blood glucose. In one study by Armah et al., plasma LDL-C was downregulated significantly after intake of high glucoraphanin broccoli from one clinical trial. In another study by Armah et al., the intervention group with a diet rich in high-glucoraphanin broccoli showed positive changes in lipid and amino acid metabolites. The intervention group with a diet rich in high glucose rapamycin cauliflower reduced changes in lipid and amino acid metabolites. However, according to the result of Sudini et al., intake of whole Broccoli sprouts lasting for half a week could not improve inflammation and oxidative stress markers although causing a remarkable increment in serum SFN levels. In all related clinical trials, the intervention of subjects was consumption of food like broccoli instead of SFN per se and the intervention needs to be taken for a longer time to get a positive effect for clinical trials.

At the animal and cellular level, cumulative research evidence shows that SFN can improve lipid-related metabolic indicators and cardiovascular disorders. Recently, SFN was reported to attenuate HFD-induced obesity through inhibiting lipogenesis via triggering the AMP-activated protein kinase (AMPK) pathway. Direct evidence has shown that AMPK is essential for the prevention of SFN-mediated cardiomyopathy induced by Type 2
diabetes. Specifically, the reason why SFN plays a positive role in cardiomyopathy is related to regulate antioxidative pathways mediated by NRF2 (nuclear factor, erythroid 2 like 2) and promote lipid metabolism mediated by AMPK. Evidence from clinical studies and animal experiments shows that SFN prevention of CVD may also be related to the regulation of Nrf2 activation mechanism. Apart from regulating systemic metabolic parameters, the present findings reveal that glycated hemoglobin as well as fasting blood glucose were reduced by SFN in type 2 diabetes patients. What's more, Fu et al.'s work showed that SFN supplement attenuated production of reactive oxygen species stimulated by glucose, and thereby decreased insulin secretion. Many researches showed the similar results that obesity and insulin resistance could be ameliorated by SFN.

It is the most meaningful point that is SFN may lower risks of metabolic syndrome by attenuating associated risk factors by improving weight management and ameliorating lipid profile of this meta-analysis. Our meta-analysis has the following advantages. Our meta-analysis is the first systematic review and meta-analysis that summarizes previous studies of SFN per se on lipid distribution in rodents of metabolic syndrome, rather than whole broccoli. Subgroup analysis has been done based on model method, age, SFN dosage, intervention duration and mode of administration. What’s more, the meta-analysis involved 10 studies containing different countries and animal models. It was no limitation on language that existed in our meta-analysis.

As there are no articles on female rats or mice, it is not clear how SFN differs between males and females. Female animals and male animals have different sex hormones, which may affect blood lipids. Therefore, SFN may have different effects on women's blood lipid status. It is necessary to conduct research to evaluate the effect of SFN on the lipid profile of men and women.

When interpreting the results of this meta-analysis, some limitations must be kept in mind. Firstly, it is not clear how SFN differs between males and females as there are seldom articles on female rats or mice. Female animals and male animals have different sex hormones, which may affect serum lipid concentration. It is necessary to conduct research to evaluate the effect of SFN on the lipid profile of males and females. Secondly, our meta-analysis is based on animal experiments rather than RCTs. Animal experimental research is not comprehensive because the results obtained through animal models are not necessarily applicable to humans. Lastly, there is only ten researches which meet our requirements. The number of studies of clear data about metabolic parameters is too small to hinder further subgroup analysis. Most articles were not exclusively on rodents fed with HFD, and using other food supplements with SFN was not as exclusion criteria.

Overwhelming results support that SFN supplements could have a certain effect on BW, LW and lipid profile such as TC, TG, LDL-C from this updated meta-analysis. However, the conclusion of the meta-analysis needs
to be further confirmed by clinical trials. In addition, it is necessary to perform more studies and evaluating assess more comprehensive indicators on patients with dyslipidemic, obesity, CVD, NAFLD and so on.
References

1. Truglio, J. et al. Global health and primary care: increasing burden of chronic diseases and need for integrated training. *The Mount Sinai journal of medicine, New York* **79**, 464-474, doi:10.1002/msj.21327 (2012).

2. Engin, A. The Definition and Prevalence of Obesity and Metabolic Syndrome. *Advances in experimental medicine and biology* **960**, 1-17, doi:10.1007/978-3-319-48382-5_1 (2017).

3. Cameron, A. J., Shaw, J. E. & Zimmet, P. Z. The metabolic syndrome: prevalence in worldwide populations. *Endocrinology and metabolism clinics of North America* **33**, 351-375, table of contents, doi:10.1016/j.ecl.2004.03.005 (2004).

4. Danaei, G. et al. The global cardiovascular risk transition: associations of four metabolic risk factors with national income, urbanization, and Western diet in 1980 and 2008. *Circulation* **127**, 1493-1502, 1502e1491-1498, doi:10.1161/circulationaha.113.001470 (2013).

5. Jokinen, E. Obesity and cardiovascular disease. *Minerva pediatrica* **67**, 25-32 (2015).

6. Araujo, J. R., Tomas, J., Brenner, C. & Sansonetti, P. J. Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before and after the onset of obesity. *Biochimie* **141**, 97-106, doi:10.1016/j.biochi.2017.05.019 (2017).

7. Trebaticky, B. et al. Natural polyphenols improve erectile function and lipid profile in patients suffering from erectile dysfunction. *Bratislavské lekarské listy* **120**, 941-944, doi:10.4149/bl_2019_158 (2019).

8. Chen, Q. et al. Effects of Natural Products on Fructose-Induced Nonalcoholic Fatty Liver Disease (NAFLD). *Nutrients* **9**, doi:10.3390/nu9020096 (2017).

9. Feng, W. W. et al. Natural products berberine and curcumin exhibited better ameliorative effects on rats with non-alcohol fatty liver disease than lovastatin. *Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie* **99**, 325-333, doi:10.1016/j.biopha.2018.01.071 (2018).

10. Fu, C., Jiang, Y., Guo, J. & Su, Z. Natural Products with Anti-obesity Effects and Different Mechanisms of Action. *J Agric Food Chem* **64**, 9571-9585, doi:10.1021/acs.jafc.6b04468 (2016).

11. Mirmiran, P., Bahadoran, Z., Golzarand, M., Shiva, N. & Azizi, F. Association between dietary phytochemical index and 3-year changes in weight, waist circumference and body adiposity index in adults: Tehran Lipid and Glucose study. *Nutrition & metabolism* **9**, 108, doi:10.1186/1743-7075-9-108 (2012).

12. Ferramosca, A., Di Giacomo, M. & Zara, V. Antioxidant dietary approach in treatment of fatty liver: New insights and updates. *World J Gastroenterol* **23**, 4146-4157, doi:10.3748/wjg.v23.i23.4146 (2017).

13. Conzatti, A., Froes, F. C., Schweigert Perry, I. D. & Souza, C. G. Clinical and molecular evidence of the consumption of broccoli, glucoraphanin and sulforaphane in humans. *Nutr Hosp* **31**, 559-569, doi:10.3305/nh.2015.31.2.7685 (2014).

14. Shehatou, G. S. & Suddek, G. M. Sulforaphane attenuates the development of atherosclerosis and improves endothelial dysfunction in hypercholesterolemic rabbits. *Experimental biology and medicine (Maywood, N.J.)* **241**, 426-436, doi:10.1177/1535370215609695 (2016).

15. Patel, B., Mann, G. E. & Chapple, S. J. Concerted redox modulation by sulforaphane alleviates
diabetes and cardiometabolic syndrome. *Free Radic Biol Med* **122**, 150-160, doi:10.1016/j.freeradbiomed.2018.02.004 (2018).

16 Kim, J. et al. Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways. *Mol Nutr Food Res* **61**, doi:10.1002/mnfr.201600194 (2017).

17 Armah, C. N. et al. Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: Evidence from randomised controlled trials. *Mol Nutr Food Res* **59**, 918-926, doi:10.1002/mnfr.201400863 (2015).

18 Lopez-Chillon, M. T. et al. Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. *Clin Nutr* **38**, 745-752, doi:10.1016/j.clnu.2018.03.006 (2019).

19 Hu, R. et al. Gene expression profiles induced by cancer chemopreventive isothiocyanate sulforaphane in the liver of C57BL/6 mice and C57BL/6/Nrf2 (-/-) mice. *Cancer letters* **243**, 170-192, doi:10.1016/j.canlet.2005.11.050 (2006).

20 Choi, K. M. et al. Sulforaphane inhibits mitotic clonal expansion during adipogenesis through cell cycle arrest. *Obesity (Silver Spring, Md.)* **20**, 1365-1371, doi:10.1038/oby.2011.388 (2012).

21 Kwon, J. S. et al. Sulforaphane inhibits restenosis by suppressing inflammation and the proliferation of vascular smooth muscle cells. *Atherosclerosis* **225**, 41-49, doi:10.1016/j.atherosclerosis.2012.07.040 (2012).

22 Jayakumar, T. et al. A novel antithrombotic effect of sulforaphane via activation of platelet adenylate cyclase: ex vivo and in vivo studies. *J Nutr Biochem* **24**, 1086-1095, doi:10.1016/j.jnutbio.2012.08.007 (2013).

23 Lee, J. H. et al. Sulforaphane induced adipolysis via hormone sensitive lipase activation, regulated by AMPK signaling pathway. *Biochemical and biophysical research communications* **426**, 492-497, doi:10.1016/j.bbrc.2012.08.107 (2012).

24 Haghighatdoost, F. & Hariri, M. Effect of resveratrol on lipid profile: An updated systematic review and meta-analysis on randomized clinical trials. *Pharmacological research* **129**, 141-150, doi:10.1016/j.phrs.2017.12.033 (2018).

25 Liberati, A. et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. *BMJ (Clinical research ed.)* **339**, b2700, doi:10.1136/bmj.b2700 (2009).

26 Wang, X. et al. Zinc supplementation improves glycemic control for diabetes prevention and management: a systematic review and meta-analysis of randomized controlled trials. *The American journal of clinical nutrition* **110**, 76-90, doi:10.1093/ajcn/nqz041 (2019).

27 DerSimonian, R. & Laird, N. Meta-analysis in clinical trials revisited. *Contemporary clinical trials* **45**, 139-145, doi:10.1016/j.cct.2015.09.002 (2015).

28 Hozo, S. P., Djulbegovic, B. & Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. *BMC Med Res Methodol* **5**, 13, doi:10.1186/1471-2288-5-13 (2005).

29 Choi, K. M. et al. Sulforaphane attenuates obesity by inhibiting adipogenesis and activating the AMPK pathway in obese mice. *J Nutr Biochem* **25**, 201-207, doi:10.1016/j.jnutbio.2013.10.007 (2014).

30 Tian, S. et al. Targeting PLIN2/PLIN5-PPARgamma: Sulforaphane Disturbs the Maturation of Lipid Droplets. *Mol Nutr Food Res* **63**, e1900183, doi:10.1002/mnfr.201900183 (2019).
Shawky, N. M., Shehatou, G. S. G., Suddek, G. M. & Gameil, N. M. Comparison of the effects of sulforaphane and pioglitazone on insulin resistance and associated dyslipidemia, hepatosteatosis, and endothelial dysfunction in fructose-fed rats. *Environ Toxicol Pharmacol* **66**, 43-54, doi:10.1016/j.etap.2018.12.008 (2019).

Shawky, N. M. *et al.* Sulforaphane improves dysregulated metabolic profile and inhibits leptin-induced VSMC proliferation: Implications toward suppression of neointima formation after arterial injury in western diet-fed obese mice. *J Nutr Biochem* **32**, 73-84, doi:10.1016/j.jnutbio.2016.01.009 (2016).

de Souza, C. G. *et al.* Sulforaphane ameliorates the insulin responsiveness and the lipid profile but does not alter the antioxidant response in diabetic rats. *Food Funct* **7**, 2060-2065, doi:10.1039/c5fo01620g (2016).

Souza, C. G. *et al.* Chronic sulforaphane oral treatment accentuates blood glucose impairment and may affect GLUT3 expression in the cerebral cortex and hypothalamus of rats fed with a highly palatable diet. *Food Funct* **4**, 1271-1276, doi:10.1039/c3fo60039d (2013).

Sun, Y. *et al.* Protective effects of sulforaphane on type 2 diabetes-induced cardiomyopathy via AMPK-mediated activation of lipid metabolic pathways and NRF2 function. *Metabolism* **102**, 154002, doi:10.1016/j.metabol.2019.154002 (2020).

Tian, S. *et al.* Sulforaphane Improves Abnormal Lipid Metabolism via Both ERS-Dependent XBP1/ACC &SCD1 and ERS-Independent SREBP/FAS Pathways. *Mol Nutr Food Res* **62**, e1700737, doi:10.1002/mnfr.201700737 (2018).

Yang, G., Lee, H. E. & Lee, J. Y. A pharmacological inhibitor of NLRP3 inflammasome prevents non-alcoholic fatty liver disease in a mouse model induced by high fat diet. *Sci Rep* **6**, 24399, doi:10.1038/srep24399 (2016).

Zhang, Z. *et al.* Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway. *J Mol Cell Cardiol* **77**, 42-52, doi:10.1016/j.yjmcc.2014.09.022 (2014).

Armah, C. N. *et al.* A diet rich in high-glucoraphanin broccoli interacts with genotype to reduce discordance in plasma metabolite profiles by modulating mitochondrial function. *The American journal of clinical nutrition* **98**, 712-722, doi:10.3945/ajcn.113.065235 (2013).

Sudini, K. *et al.* A Randomized Controlled Trial of the Effect of Broccoli Sprouts on Antioxidant Gene Expression and Airway Inflammation in Asthmatics. *The journal of allergy and clinical immunology. In practice* **4**, 932-940, doi:10.1016/j.jaip.2016.03.012 (2016).

Zhou, S. *et al.* Nrf2 expression and function, but not MT expression, is indispensable for sulforaphane-mediated protection against intermittent hypoxia-induced cardiomyopathy in mice. *Redox biology* **19**, 11-21, doi:10.1016/j.redox.2018.07.014 (2018).

Gu, J. *et al.* Metallothionein Is Downstream of Nrf2 and Partially Mediates Sulforaphane Prevention of Diabetic Cardiomyopathy. *Diabetes* **66**, 529-542, doi:10.2337/db15-1274 (2017).

Axelsson, A. S. *et al.* Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. *Science translational medicine* **9**, doi:10.1126/scitranslmed.abb477 (2017).
Deng, Z. *et al.* Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase. *Molecular therapy: the journal of the American Society of Gene Therapy* **25**, 1641-1654, doi:10.1016/j.ymthe.2017.01.025 (2017).

Bai, Y. *et al.* Sulforaphane Protects against Cardiovascular Disease via Nrf2 Activation. *Oxidative medicine and cellular longevity* **2015**, 407580, doi:10.1155/2015/407580 (2015).

Tubbs, E. *et al.* Sulforaphane improves disrupted ER-mitochondria interactions and suppresses exaggerated hepatic glucose production. *Molecular and cellular endocrinology* **461**, 205-214, doi:10.1016/j.mce.2017.09.016 (2018).

Fu, J. *et al.* Divergent effects of sulforaphane on basal and glucose-stimulated insulin secretion in β-cells: role of reactive oxygen species and induction of endogenous antioxidants. *Pharmaceutical research* **30**, 2248-2259, doi:10.1007/s11095-013-1013-8 (2013).

Naoto Nagata, L. X., Susumu Kohno, Yusuke Ushida, Yudai Aoki. Glucoraphanin ameliorates obesity and insulin resistance through adipose tissue browning and reduction of metabolic endotoxemia in mice.

Teng, W. *et al.* Sulforaphane Prevents Hepatic Insulin Resistance by Blocking Serine Palmitoyltransferase 3-Mediated Ceramide Biosynthesis. *Nutrients* **11**, doi:10.3390/nu11051185 (2019).

Xu, J., Kulkarni, S. R., Donepudi, A. C., More, V. R. & Slitt, A. L. Enhanced Nrf2 activity worsens insulin resistance, impairs lipid accumulation in adipose tissue, and increases hepatic steatosis in leptin-deficient mice. *Diabetes* **61**, 3208-3218, doi:10.2337/db11-1716 (2012).

Cuadrado, A. *et al.* Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. *Pharmacological Reviews* **70**, 348-383, doi:10.1124/pr.117.014753 (2018).

Lei, P. *et al.* Sulforaphane Improves Lipid Metabolism by Enhancing Mitochondrial Function and Biogenesis In Vivo and In Vitro. *Mol Nutr Food Res* **63**, e1800795, doi:10.1002/mnfr.201800795 (2019).
Table legends

Table 1. Description of included studies.

Table 2. Subgroup analysis to assess the effect of SFN supplement on lipid profile.
Table 1. Description of included studies.

First author, year	Species	No. of animals	Age (Weight)	Model method	Duration	Intervention	The main outcomes	Intergroup difference	Results	
Choi K.M. (2014)	C57BL/6N mice	10/10	4 weeks	High-fat diet (6w)	6 weeks	1 g/kg diet SFN, oral administration	1.BW 1.P<0.01 2.TC (Serum) 2.P<0.05 3.TG (Serum) 3.P>0.05 BW and serum TC, decreased significantly, but serum TG,			
Lei P. (2019)	Wistar rats	6/6	4-6 weeks	High-fat diet (160-200 g)	10 weeks	20 mg/kg, 3 days a week SFN, oral gavage	1.LW 1.P<0.05 2.TC (Serum) 2.P<0.05 3.TG (Serum) 3.P<0.05 TG and LDs decreased significantly, but serum HDL-C, and liver TC didn’t change in SFN group			
Study	Treatment	Model	Duration	Diet	Intervention	Parameters	p-Values	Notes		
-------------	--	------------	----------	-----------------------	-------------------------------	--	-----------	---		
Shawky N.M.	Male Sprague Dawley rats	8/10	8 weeks	High-fructose diet	0.5 mg/kg/day SFN, oral gavage	1.BW	p>0.05	SFN group		
(2019)		(150-200 g)		(9w)		2.AUC_{OGTT}	p<0.05	AUC_{OGTT}, HOMA-IR, serum		
						3.AUC_{ITT}	p<0.05	HDL-C and LDL-C ameliorated significantly, but BW, AUC_{ITT},		
								serum TC and TG didn't change in SFN group		
Shawky N.M.	Male C57BL/6 J mice	11/11	8 weeks	High-fat high-	0.5 mg/kg/day SFN, subcutaneous	1.BW	p<0.05	BW, HOMA-IR, AUC_{IPGTT}		
(2016)				sucrose diet		2.HOMA-IR	p<0.05	plasma TG, HDL-C, FFA and Non-HDL-C ameliorated		
				(8w)		3.AUC_{IPGTT}	p<0.05	significantly, but plasma TC,		
						4.TC (Plasma)	p>0.05			
	Male Wistar rats	8/7	8 weeks	injection of STZ	3 weeks	intraperitoneal injection	0.5 mg/kg/day SFN,	5. TG (Plasma)	5. P<0.05	LDL-C didn’t change in SFN group
---	---	---	---	---	---	---	---	---	---	---
5	Souza C.G. (2016)	8/7	8 weeks	injection of STZ	3 weeks	intraperitoneal injection	0.5 mg/kg/day SFN,	5. TG (Plasma)	5. P<0.05	LDL-C didn’t change in SFN group
								6. HDL-C (Plasma)	6. P<0.05	
								7. LDL-C (Plasma)	7. P>0.05	
								8. FFA (Plasma)	8. P<0.05	
								9. Non-HDL-C (Plasma)	9. P<0.05	

Serum TC, Non-HDL-C, TG, AUC IPIRT decreased significantly, but LW, HDL-C, ALT, and AST didn’t change in SFN group

	Male Wistar rats	7/7	8 weeks	Highly Palatable diet (24w)	16 weeks	oral gavage	1 mg/kg/day SFN,	1. BW	1. P<0.05	Lipid parameters didn’t change significantly in SFN group	
6	Souza C.G. (2013)	7/7	8 weeks	Highly Palatable diet (24w)	16 weeks	oral gavage	1 mg/kg/day SFN,	1. BW	1. P<0.05	Lipid parameters didn’t change significantly in SFN group	
								2. LW	2. P>0.05		
								3. TC (Serum) 4. HDL-C (Serum)	3. P>0.05		
								5. TAG (Serum)	4. P>0.05		
Study	Species	Gender	Number	Age	Treatment	Dose	Duration	Intervention	Outcome	P-Value	Notes
--------------	-------------	--------	--------	-------	-----------------------------------	-----------------------------	----------	---------------	----------	----------------	---
Sun Y. (2020)	C57BL/6 J	Male	5/5	8 weeks	High-fat diet	0.5 mg/kg, 5 days a week SFN,	12 weeks	injection of STZ	BW and Cardiac LDs didn’t change significantly in SFN group treated by HFD for 24 weeks, but both of them decreased significantly in SFN group treated by HFD for 12 weeks		
Tian S. (2017)	Wistar rats	Male	10/10	4-6 weeks	High-fat diet	5, 10, 20 mg/kg, 3 days a week SFN, oral gavage	10 weeks	oral gavage	Plasma TC, TG decreased significantly, but liver TC, TG didn’t change significantly in low-doses-SFN group; All of		
Study	Species	Gender	Age/Period	Diet/Condition	Treatment	Duration	Lipid Parameters				
----------------	-----------	--------	------------	----------------	-----------	----------	--				
Yang G. (2016)	C57BL/6	Male	8/8	5 weeks	High-fat diet	9 weeks	Plasma TC, TG, liver TC and TG decreased significantly in middle-doses SFN and high-doses SFN group				
Zhang Z. (2014)	C57BL/6J	Male	6/6	8–10 weeks	High-fat diet	16 weeks	Plasma TG and cardiac LDs decreased significantly, but				

Table Notes:
- LW: Liver Weight
- TC: Total Cholesterol
- TG: Triglycerides
- FFA: Free Fatty Acids
- ALT: Alanine Aminotransferase
- AST: Aspartate Aminotransferase
- HOMA-IR: Homeostatic Model Assessment of Insulin Resistance

Appendix:
- P<0.05
- P<0.0001
| of STZ | subcutaneous injection | 3. AUC_{IPGTT} | 3. P > 0.05 | plasma TC and AUC_{IPGTT} didn’t change significantly in SFN group |
|--------|------------------------|------------------------|------------|--|
| | | 4. LDs (Cardiac) | 4. P < 0.05| |

ALT, alanine aminotransferase; AST, aspartate aminotransferase; AUC, area under the curve; FFA, free fatty acids; GTT, glucose tolerance test; HOMA-IR: an index of insulin resistance; IP, intraperitoneally; IRT, the insulin responsiveness test; LDs, lipid droplets; O, oral; w, weeks.
Table 2. Subgroup analysis to assess the effect of SFN supplement on lipid profile.

	Effect size, n	WMD	95% CI	I-squared (%)	P for heterogeneity	P for between subgroup heterogeneity
Body weight						
Overall effect	6	-2.76	-4.19, -1.34	58.9	0.032	
Species						
Mice	3	-2.93	-4.34, -1.52	76.3	0.015	
Rats	3	1.12	-6.87, 9.10	24.8	0.265	
Disease model						
Obesity (without STZ)	4	-3.30	-4.46, -2.14	52.7	0.096	
Diabetes (with STZ)	2	1.09	-4.53, 6.72	12.2	0.286	
Duration						
≤10 weeks	4	-3.18	-4.60, -1.75	64.6	0.037	
>10 weeks	2	-0.45	-3.68, 2.79	0.0	0.37	
SFN dosage						
≤0.5 mg/kg/d	2	1.09	-4.53, 6.72	12.2	0.286	
>0.5 mg/kg/d	4	-3.30	-4.46, -2.14	52.7	0.096	
Administration route						
Oral	3	-3.96	-4.47, -3.14	0.0	0.392	
Injection	3	-1.33	-4.46, 1.80	55.2	0.107	

Liver weight

	Effect size, n	WMD	95% CI	I-squared (%)	P for heterogeneity	P for between subgroup heterogeneity
Overall effect	4	-0.93	-1.63, -0.23	93.0	0.000	
Species						
Mice	1	-0.54	-0.75, -0.33	\	\	
Rats	3	-1.11	-2.31, 0.09	95.2	0.000	
Disease model						
Obesity (without STZ)	3	-1.26	-2.13, -0.39	93.3	0.000	
Diabetes (with STZ)	1	0.00	-0.37, 0.37	\	\	
Duration

≤10 weeks	3	-0.93	-1.89, 0.03	94.9	0.000
>10 weeks	1	-1.00	-1.40, -0.60	\	\

SFN dosage

≤0.5 mg/kg/d	1	0.00	-0.37, 0.37	\	\
>0.5 mg/kg/d	3	-1.26	-2.13, -0.39	93.3	0.000

Administration route

Oral	3	-1.26	-2.13, -0.39	93.3	0.000
Injection	1	0.00	-1.63, -0.23	\	\

Total cholesterol

Overall effect

	6	-15.62	-24.07, -7.18	92.3	0.000

Species

Mice	2	-23.59	-60.48, 13.30	97.3	0.000
Rats	4	-12.77	-21.41, -4.14	89.2	0.000

Disease model

Obesity (without STZ)	4	-17.49	-30.34, -4.64	93.7	0.000
Diabetes (with STZ)	2	-12.92	-28.45, 2.61	94.3	0.000

Duration

≤10 weeks	4	-21.27	-34.67, -7.87	92.5	0.000
>10 weeks	2	-6.17	-9.01, -3.34	0.0	0.525

SFN dosage

≤0.5 mg/kg/d	3	-9.66	-20.10, 0.78	90.6	0.000
>0.5 mg/kg/d	3	-22.75	-40.46, -5.04	95.1	0.000

Administration route

Oral	4	-17.49	-30.34, -4.64	93.7	0.000
Injection	2	-12.92	-28.45, 2.61	94.3	0.000

HDL-C
Overall effect	5	1.05	-3.44, 5.54	91.2	0.000
Species					0.199
Mice	1	-8.30	-11.94, -4.66	\	\
Rats	4	3.31	-1.18, 7.80	88.0	0.000
Disease model					0.747
Obesity (without STZ)	4	0.40	-5.42, 6.22	92.5	0.000
Diabetes (with STZ)	1	4.00	0.65, 7.35	\	\
Duration					0.878
≤ 10 weeks	4	1.63	-6.44, 9.70	93.4	0.000
> 10 weeks	1	0.00	-0.40, 0.40	\	\
SFN dosage					0.102
≤ 0.5 mg/kg/d	2	8.26	-0.71, 17.22	85.9	0.008
> 0.5 mg/kg/d	3	-3.13	-8.38, 2.12	90.1	0.000
Administration route					0.747
Oral	4	0.40	-5.42, 6.22	92.5	0.000
Injection	1	4.00	0.65, 7.35	\	\

Triglyceride

Overall effect	5	-40.85	-67.46, -14.24	97.1	0.000
Species					0.659
Mice	2	-41.49	-161.29, 78.30	98.7	0.000
Rats	3	-33.14	-60.77, -5.51	95.3	0.000
Disease model					0.092
Obesity (without STZ)	3	-1.34	-18.69, 16.01	95.1	0.000
Diabetes (with STZ)	2	-212.55	-436.50, 11.40	97.1	0.000
Duration					0.898
≤ 10 weeks	4	-18.05	-42.06, 5.96	96.4	0.000
> 10 weeks	1	-103.25	-128.94, -77.56	\	\
SFN dosage					0.305
Administration route	Sample size	Mean difference	95% CI	Mean	p-value
----------------------	-------------	----------------	-----------	------	---------
≤0.5 mg/kg/d	3	-132.41	-231.71, -33.12	97.5	0.000
>0.5 mg/kg/d	2	4.85	-22.42, 32.13	97.1	0.000
Oral	3	-1.34	-18.69, 16.01	95.1	0.000
Injection	2	-212.55	-436.50, 11.40	94.9	0.000
Figure Legends

Figure 1. Flow diagram of database searches and study selection.

Figure 2. Forest plot showing effects of SFN on body weight levels

Figure 3. Forest plot showing effects of SFN on liver weight levels

Figure 4. Forest plot showing effects of SFN on serum total cholesterol.

Figure 5. Forest plot showing effects of SFN on serum low density lipoprotein levels.

Figure 6. Forest plot showing effects of SFN on Serum High-Density Lipoprotein.

Figure 7. Forest plot showing effects of SFN on Serum Triglyceride.
Figure 1. Flow diagram of database searches and study selection.

Study (yr)	WMD (95% CI)	Weight (%)
Souza C.G. (2013)	-4.00 (-12.41, 4.41)	2.70
Choi K.M. (2014)	-4.00 (-4.83, -3.17)	41.21
Souza C.G. (2016)	10.00 (-7.71, 27.71)	0.64
Shawky N.M. (2016)	-2.74 (-3.52, -1.96)	41.96
Shawky N.M. (2019)	4.89 (-7.82, 17.61)	1.22
Sun Y. (2020)	0.17 (-3.34, 3.68)	12.26
Overall (F = 58.9%, p = 0.032)	**-2.76 (-4.19, -1.34)**	**100.00**

Figure 2. Forest plot showing effects of SFN on body weight levels.
Figure 3. Forest plot showing effects of SFN on liver weight levels.

Study (yr)	WMD (95% CI)	Weight (%)
De Souza C. (2016)	0.00 (-0.37, 0.37)	25.61
GabskiY. (2016)	-0.54 (-0.75, -0.33)	26.93
De Souza C. (2016)	-1.00 (-1.40, -0.60)	25.34
Peng L. (2019)	-2.42 (-3.08, -1.76)	22.12
Overall (I² = 93.0%, p = 0.000)	-0.93 (-1.63, -0.23)	100.00

Figure 4. Forest plot showing effects of SFN on serum total cholesterol.

Study (yr)	WMD (95% CI)	Weight (%)
Souza C.G. (2013)	-7.00 (-10.81, -3.19)	17.95
Choi K.M. (2014)	-42.80 (-54.20, -31.40)	13.91
Zhang Z. (2014)	-5.15 (-9.39, -0.91)	17.80
Souza C.G. (2016)	-2.10 (-27.11, -14.89)	16.97
Shawky N.M. (2019)	-3.02 (-9.49, 3.45)	16.80
Lei P. (2019)	-20.67 (-27.58, -13.76)	16.57
Overall (I² = 92.3%, p = 0.000)	-15.62 (-24.07, -7.18)	100.00
Figure 5. Forest plot showing effects of SFN on serum low density lipoprotein levels.

Study (yr)	WMD (95% CI)	Weight (%)
Choi K.M. (2014)	-4.70 (-5.84, -3.56)	39.75
Shawky N.M. (2019)	-4.70 (-11.42, 2.02)	29.58
Lei P. (2019)	-16.61 (-22.86, -10.36)	30.67
Overall (I² = 85.2%, p = 0.001)	**-8.35 (-15.47, -1.24)**	**100.00**

Figure 6. Forest plot showing effects of SFN on serum high density lipoprotein levels.

Study (yr)	WMD (95% CI)	Weight (%)
Souza C.G. (2013)	0.00 (-0.40, 0.40)	23.32
Choi K.M. (2014)	-8.30 (-11.94, -4.66)	20.25
Souza C.G. (2016)	4.00 (0.65, 7.35)	20.67
Shawky N.M. (2019)	13.17 (7.30, 19.04)	16.69
Lei P. (2019)	-1.56 (-5.96, 2.84)	19.07
Overall (I² = 91.2%, p = 0.000)	**1.05 (-3.44, 5.54)**	**100.00**
Figure 7. Forest plot showing effects of SFN on serum triglyceride.
Author contributions statement: Writing—original draft preparation, D.L., Y.F., K.D.; Writing—review and editing, D.L., K.D.; Supervision, D.L.; Project administration, D.L.; Funding acquisition, D.L.. All authors have read and agreed to the published version of the manuscript.

Competing interests statement: The authors declare no conflict of interest. This work was supported by a NSFC grant (31600823 to D. L.). All the authors agree to submit the report for publication. The funding source has no involvement of submitting this publication.