Effect of Silica Addition on Mechanical Properties of Eggshell-Derived Hydroxyapatite

Fatma¹, Desnelli¹, Fahma Riyanti¹², Mustafa Kamal³, Muhammad Ramdan Abdul Mannan⁴, Poedji Loekitowati Hariani¹²*¹

¹ Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, Indonesia; ² Research Centre of Advanced Material and Nanocomposite, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, Indonesia; ³ Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, Indonesia; ⁴ Bachelor Program of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, Indonesia

*Corresponding author email: puij_lukitowati@mipa.unsri.ac.id

Received : August 1, 2021
Accepted : September 17, 2021
Online : September 18, 2021

Abstract—Eggshell is a solid waste that is available in abundance but is being left unused. Eggshell containing calcium in a high amount. Calcium can be used as a precursor for hydroxyapatite (HAp). Modification of HAp with SiO₂ is expected to improve its low mechanical properties for biomedical applications. In this study, HAp is synthesized from the eggshell. Then, it was modified by adding SiO₂ utilizing the coprecipitation method with concentrations of 10%, 20%, 30%, and 40%, respectively. The HAp and HAp/SiO₂ were characterized using X-ray diffraction and Fourier transform infrared spectroscopy. The analysis HAp and HAp/SiO₂ were density, compressive strength, and hardness. The best mechanical properties of HAp/SiO₂ were obtained with SiO₂ of 30% and 40% with similar values.

Keywords: Eggshell, hydroxyapatite, SiO₂, mechanical properties

Introduction

Hydroxyapatite (HAp) is one of the materials that has received considerable attention for its potential to apply in various applications, including biomedical products (Gomes et al., 2019), drug delivery (Taha et al., 2020), and skin regeneration (Pal et al., 2020). Besides, it is also promising in waste treatment (Ibrahim et al., 2020; Hariani et al., 2020) and heterogeneous catalysts (Saha et al., 2018). HAp has the molecular formula Ca₁₀(PO₄)₆(OH)₂, which belongs to the type of apatite material compound [M₁₀(XO₄)₆Z₂], which has a crystal phase of the most stable polycrystalline calcium phosphate compound (Wang et al., 2017). The molar ratio of calcium to phosphorus (Ca/P) is about 1.67.

HAp is also beneficial for bone tissue engineering applications such as bio-scaffolds (Xiao et al., 2019), bioactive glasses (Bazli et al., 2017), bioceramics (Hubadillah et al., 2020), and implants (Shakir et al., 2018). It is similar to human bones and teeth in crystal structure and composition (Xu et al., 2004; Amaechi et al., 2019). HAp is applicable in biomedicine because it has high biocompatibility (Aktug et al., 2017), osteoconductivity (Bovand et al., 2019), and bioactivity (Szczes et al., 2017), and is non-inflammatory, non-immunogenic, and non-
toxic (Dan et al., 2019; Coelho et al., 2019). Its ability to absorb hydrophilic and hydrophobic compounds is vital in drug delivery and environmental applications (Barbosa et al., 2020). However, HAp has shortcomings, especially in the medical field. It has low mechanical properties, namely the low strength due to the influence of the applied compressive and tensile forces (Noviyanti et al., 2021), its relatively slow reactivity, and integration with cells (Bohner, 2009; Latifi, 2012). Synthetic HAp has mechanical properties poorer than human cortical bone's (Hsu et al., 2021). The application of HAp in the medical field must meet certain standard parameters, including good mechanical properties (Chakravaty et al., 2020). Structural modifications such as substituting or incorporating other materials can increase mechanical strength (Noviyanti et al., 2021) and improve the quality of tissue repair. Several researchers have modified HAp with other materials such as magnesium (Noviyanti et al., 2021), chitosan (Pighinelli and Kucharska, 2015), chloride (Hsu et al., 2021), and zirconia (Es-saddik et al., 2021).

Several researchers have modified HAp by adding silica. The addition of silica can improve Hap's mechanical properties and increase in vivo bioactivity (Latifi, 2012). Silica is biocompatible and non-toxic (Sadeghazade et al., 2015; Thian et al., 2006). Latifi (2012) reported synthesizing HAp/SiO2 with silica with 20% and 40% concentrations and finding that increasing SiO2 concentration can decrease crystallinity. Hydroxyapatite is synthesized from the reaction of phosphoric pentoxide with calcium nitrate tetrahydrate in an alcohol medium. The other research that synthesized HAp/SiO2 by mechanical alloying followed by sintering showed that increasing SiO2 concentration increased densification, mechanical properties, and in vitro bioactivity of HAp/SiO2 nanocomposite sintered at 900 °C (Taha et al., 2020).

Hydroxyapatite can be synthesized from raw materials or solid wastes that are readily available in quantity, such as fish bones (Pamungkas et al., 2019), clamshells (Pu’ad et al., 2019), eggshells (Noviyanti et al., 2021), camel bones (Alqodami et al., 2018), and animal bones (Obada et al., 2020). One of the potential sources for HAp is chicken eggshells. Chicken eggs are usually used in large quantities in the food industry, restaurants, households, and even the pharmaceutical industry (Curtkovic et al., 2017). An eggshell, which accounts for about 11% of the egg's weight, is almost always disposed of as solid waste. The main element is calcium carbonate (95–97 wt%) with a minor amount of calcium phosphate, magnesium carbonate, organic, strontium, sodium, iron, potassium, and chlorine (Witoon, 2011; Curtkovic et al., 2017). The high calcium content in chicken eggshells is the potential to be used as HAp material.

In this study, HAp was synthesized with CaO that originated from chicken eggshells. The reaction of CaO with H3PO4 produces HAp. Later, HAp was modified with SiO2 at various concentrations with the coprecipitation method. This method is a simple, inexpensive, and high-success (Curtkovic et al., 2017). The resulting HAp and HAp/SiO2 were characterized using XRD, FTIR, and SEM-EDS. The effect of SiO2 concentration was determined by the density and mechanical tests, including compressive strength and hardness.

Materials and Methods

Materials

The materials used were chicken eggshells (Hyline brown chicken) from local chicken farmers in Palembang city, chemicals including H3PO4, TEOS (C8H8O8Si), NH4OH obtained from Sigma Aldrich (Germany), and distilled water.

HAp Preparation

Eggshells were cleaned using distilled water until free of impurities. The clean eggshells were boiled for ±1 hour, separated from the membrane, and dried in the sun for a day. After being dried, they were mashed with a grinding machine to be a fine powder of ±100 mesh. A total of 100 g of the eggshell powder obtained was calcined at around 900 °C for 3 hours at a speed of 10⁴/min to change the CaCO3 phase into CaO. The calcined CaO was added with 250 mL of deionized water, stirred using a magnetic stirrer for 30 minutes. Then, 250 mL of 1 M H3PO4 was added slowly while being stirred. The reaction produced HAp. The HAp produced was dried at a temperature of 105°C using an oven for 1 hour (Harani et al., 2020; Asadipour et al., 2019).

HAp/SiO2 Preparation

The preparation of HAp/SiO2 in this study refers to the procedure reported by Asadipour et al. (2019). In preparing HAp/SiO2, TEOS was used as a precursor with different weights to obtain SiO2 with 10%, 20%,
30%, and 40% concentrations. Each mixture of HAp and TEOS solutions was added with 1 M ammonia solution gradually until the pH of the solution lies between 9-11 while stirred with a magnetic stirrer and given a stream of nitrogen gas. The mixture was allowed to stand for about 96 hours, then filtered and washed with deionized water. The powder obtained was dried using an oven at 40 °C for 72 hours.

The reaction of calcium hydroxide with phosphoric acid produced HAp, as follows (Curkovic et al., 2017):

\[
\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \quad (1)
\]

\[
\text{CaO} + \text{H}_2\text{O} \rightarrow \text{Ca(OH)}_2 \quad (2)
\]

\[
10\text{Ca(OH)}_2 + 6\text{H}_3\text{PO}_4 \rightarrow \text{Ca}_{10} (\text{PO}_4)_2(\text{OH})_2 + 18\text{H}_2\text{O} \quad (3)
\]

The reaction of SiO\text{2} formation from the precursor TEOS was as follows:

\[
\text{Si(OC}_2\text{H}_5\text{)}_4 + 2\text{H}_2\text{O} \rightarrow \text{SiO}_2 + 4\text{C}_2\text{H}_5\text{OH} \quad (4)
\]

Characterization of HAp and HAp/SiO\text{2}

The HAp and HAp/SiO\text{2} were characterized using X-ray diffraction (XRD Malvern Panalytical) using Cu-Kα = 0.154 nm, in the range 2θ of 5-80°. The HAp and HAp/SiO\text{2} functional groups were identified using the Fourier transform infrared (FTIR Prestige 21) instrument at a wavenumber of 400-4000 cm\text{1}. A scanning electron microscope-energy dispersive spectrometer (SEM-EDS JOEL JSM 6510 LA) was used to observe the morphology and composition of the elements.

Analysis of Density, Compressive Strength, and Hardness

Density (ρ) was analyzed using the ratio of mass divided by total volume m/v (g/cm\text{3}), while the compressive strength was tested used the Autograph SHIMADZU AG-10 TE, Vickers Hardness Test (Leco M-400-H1).

Results

Characterization of HAp/SiO\text{2} using XRD and FTIR

Figure 1 shows the XRD spectra of HAp and HAp/SiO\text{2}, with varying concentrations of SiO\text{2}. The XRD analysis was performed at 2θ = 5-80°. The crystallite size HAp and HAp/SiO\text{2} were determined using Scheerer’s equation, according to the following formula:

\[
D = \frac{K \lambda}{\beta \cos \theta} \quad (5)
\]

Where D is the crystallite size (nm), K is the Scherrer constant (0.91), λ is the wavelength of X-rays (1.54056Å), β is the value of Full Width at Half Maximum (rad), and θ is the diffraction angle (FWHM) (rad). Table 1 shows Crystallite sizes of HAp and HAp/SiO\text{2}. From the table, it can be seen that the greater the concentration of SiO\text{2}, the smaller the crystallite size. Figure 1 shows the diffractograms of HAp and HAp/SiO\text{2}.

SiO\text{2} content (%)	The average crystallite size (nm)
0	51.8
10	47.8
20	39.4
30	35.7
40	34.8
Figure 1. XRD patterns of HAp and HAp/SiO$_2$

Figure 2 shows the FTIR spectra of HAp and HAp/SiO$_2$ at wavenumbers 400-4000 cm$^{-1}$. All peaks indicate the similarity of phosphate functional groups observed at wavenumbers 900-1200 cm$^{-1}$ (Hariani et al., 2020). There are OH groups on a wide peak at wavenumbers 3280-3600 cm$^{-1}$ (Balamurugan et al., 2013). Symmetric stretching vibrating bands of Si-O-Si were observed at a wavenumber of about 800 cm$^{-1}$. The addition of SiO$_2$ causes changes in peak intensity, especially those identified at wavenumbers below 800 cm$^{-1}$.

Figure 2. FTIR spectra of HAp dan HAp/SiO$_2$

Density, Compressive Strength, Hardness of HAp and HAp/SiO$_2$

Figure 3 shows the density of HAp and HAp/SiO$_2$ that decreased along with the addition of SiO$_2$. Compressive strength and hardness are critical properties of a material to be compatible with biomedical biomaterials. Figures 4 and 5 indicate the compressive strength and hardness values of HAp and HAp/SiO$_2$.
Figure 3. The density of HAp and HAp/SiO$_2$ at different SiO$_2$ content

Figure 4. Compressive strength of HAp and HAp/SiO$_2$ at different SiO$_2$ content

Figure 5. The hardness of HAp and HAp/SiO$_2$ at different SiO$_2$ content
SEM-EDS Characterization of HAp and HAp/SiO$_2$

In this study, SEM-EDS analysis was performed on HAp and HAp/SiO$_2$ (30%). HAp/SiO$_2$ (30%) was selected because both HAp/SiO$_2$ (30%) and HAp/SiO$_2$ (40%) show the best result with similar mechanical properties. Figure 6 shows the morphologies of HAp and HAp/SiO$_2$ with the addition of 30% SiO$_2$ as measured by a magnification of 5000 x. The compositions of HAp and HAp/SiO$_2$ based on EDS results are presented in Table 2.

![Figure 6. Morphologies of (a) HAp and (b) HAp/SiO$_2$ (30%)](image)

Table 2. Compositions of elements of HAp dan HAp/SiO$_2$ (30%)

Elements	Percentage (%)	
	HAp	HAp-SiO$_2$ (30%)
O	45.16	46.08
P	17.36	12.70
Ca	37.48	27.45
Si	-	13.77

Discussion

Characterization of HAp and HAp/SiO$_2$ using XRD and FTIR

According to JCPDS No. 09-432, HAp has a major peak at 2θ 25.879°, 31.773°, 32.196°, 32.902°, and 49.468°. The HAp manufactured from chicken eggshells appears to agree with these data, namely at 2θ angles at 25.52° (201), 31.94° (211), 32.22° (112), 32.98° (300), and 49.66° (213). The addition of SiO$_2$ caused the peaks to widen and the intensity to decrease, as seen at the 2θ around 31-32° (Figure 1). The amorphous nature of silica causes silica peaks not to be observed. Silica peaks should be observed at 2θ around 23° (Hariani et al., 2020). The increasing silica content in HAp brought the crystallite size to decrease, indicating the amorphous silica phase in the composite (Latifi, 2012), which caused a decrease in intensity. Table 1 shows the average crystallite sizes of HAp and HAp/SiO$_2$ calculated based on Scherrer’s equation. Based on the table, the higher the SiO$_2$ content, the smaller the crystallite size. The research by Hanora et al. (2021) showed that the greater the concentration of SiO$_2$ (25%, 30%, 40%, and 50%), the smaller the crystal size. In this study, the crystallite sizes of HAp and HAp/SiO$_2$ are small (< 100 nm).

The characterization of HAp and HAp/SiO$_2$ using FTIR shows the peaks of HAp and HAp added with SiO$_2$ of 10%, 20%, 30%, and 40% contained OH groups, as identified at wavenumbers 3421.7 cm$^{-1}$, 3435.2 cm$^{-1}$, 3431.6 cm$^{-1}$, 3435.2 cm$^{-1}$, and 3431.4 cm$^{-1}$. These hydroxypatite structures containing OH groups. Besides that, OH groups could also be from water molecules absorbed. The peak also strengthened the presence of H$_2$O in HAp at 1622.4 cm$^{-1}$. The presence of phosphate groups (PO$_4^{2-}$) in HAp could be identified at wavenumbers 1032.8 cm$^{-1}$, 960.5 cm$^{-1}$, and 565.1 cm$^{-1}$. The peak also appeared in HAp/SiO$_2$, but the intensity
Density, compressive strength, and hardness of HAp and HAp/SiO$_2$

The statistical tests using ANOVA and LSD showed that the density of HAp was significantly different from that of HAp/SiO$_2$ while HAp/SiO$_2$ with the addition of 10-40% of SiO$_2$ was not significantly different. Theoretically, the density of HAp is 3.156 g/cm3 (Ramesh et al., 2013). Taha et al. (2020) reported that the density of SiO$_2$ was 2.65 g/cm3, and that of HAp prepared by the mechanochemical synthesis method was 3.15 g/cm3. Jouda et al. (2021) obtained a density of HAp from the cow bone of 2.982 g/cm3 and was considered compatible with biomedical applications. The density values of HAp and HAp/SiO$_2$ are similar to previous researchers, namely between 2.957-3.152 g/cm3.

The mechanical properties determined included compressive strength and hardness, as shown in Figures 4 and 5. In Figures 4 and 5, it can be seen that the addition of SiO$_2$ to HAp increased both compressive strength and hardness. The statistical tests using ANOVA and LSD test showed that the compressive strength of HAp/SiO$_2$ with variations in SiO$_2$ concentration also showed significant differences. The nature of silica can improve the brittleness of hydroxyapatite (Kailasanathan and Gangadharan, 2016). The compressive strength values for human compact bone are in the range of 170-193 MPa. HAp/SiO$_2$ with concentrations of 30% and 40% met these criteria. The compressive strength values were included in the compressive strength value of cortical bone, ranging from 100 to 230 MPa (Ficai et al., 2011). In this study, the compressive strength of HAp/SiO$_2$ with concentrations of 30% and 40% were 180.44 ± 2.55 MPa and 186.5 ± 3.12 MPa, respectively.

The hardness of materials that will experience frictional force and plastic deformation should be known. Plastic deformation is the condition of a material in which the microstructure of the material cannot return to its original shape when given a force. The HAp and HAp/SiO$_2$ hardness tests showed that the addition of SiO$_2$ increased the hardness (Figure 5). The SiO$_2$ added filled the HAp pores. If the porosity is too high, the biomaterial will be easily porous because many pore cavities are formed.

In contrast, low porosity will inhibit the intake of nutrients from the blood vessels to the bones. According to Jouda (2021), the value of hardness is highly dependent on density and porosity. Hardness values of cortical bones range from 53.7 to 77.9 VHN (Ahn et al., 2001; Rho et al., 1997). In this study, the hardness values of HAp/SiO$_2$ with SiO$_2$ compositions of 30% and 40% met these criteria. The statistical tests using ANOVA and LSD test showed that HAp with the addition of SiO$_2$ of 30% and 40% were not significantly different obtained 54.56 ± 0.83 VHN and 56.43 ± 0.98 VHN, respectively. The best properties of the compressive strength and hardness values of HAp/SiO$_2$ were achieved at 30% and 40%.

Characterization of HAp and HAp/SiO$_2$ using SEM-EDS

HAp and HAp/SiO$_2$ with the addition of 30% SiO$_2$ were analyzed using SEM-EDS, as shown in Figure 6. The results of EDS are presented in Table 2. The surface morphologies of HAp and HAp/SiO$_2$ are different from each other. HAp has an oval shape; its surface becomes tighter with the addition of SiO$_2$ because SiO$_2$ fills the pores of HAp. The molar ratio of calcium to phosphorus in HAp was 1.673, close to the theoretical ratio of 1.67, indicating the synthesis of HAp has been successful. The addition of SiO$_2$ by 30% increase the Si element and decreased the P and Ca elements with a molar ratio of Ca/P = 1.670. The elements of HAp/SiO$_2$ was O=43.08, P = 12.70, Ca = 27.45 and Si= 13.77%.

Conclusion

The synthesis of hydroxyapatite (HAp) from eggshells and its modification by SiO$_2$ with concentrations of 10%, 20%, 30%, and 40% have been carried out. The HAp obtained had a Ca/P ratio of 1.673. The addition of SiO$_2$ reduced the average crystallite size and density. The modification also improved the mechanical properties of HAp by increasing its compressive strength and hardness. The concentration of SiO$_2$ for the best mechanical properties were achieved at 30% and 40% with a similar value. It can be reckoned that eggshell-derived HAp with SiO$_2$ modification has the potential as a biomaterial for biomedical applications.
Acknowledgment
The research was funded by DIPA of Universitas Sriwijaya (Hibah Kompetitif Universitas Sriwijaya of 2021 with Contract No.0010/UN9/SK.LP2M.PT/2021).

References
Ahn, E.S., Gleason, N.J. Nakahira, A. and Ying, I.Y. 2001. Nanostructure processing of hydroxyapatite-based bioceramics. Nano Letters, 1(3): 1325-1330.
Aktug, S.L., Durdu, S. Yalcin, E. Cavusoglu, K. and Usta, M. 2017. Bioactivity and biocompatibility of hydroxyapatite-based bioceramic coatings on zirconium by plasma electrolytic oxidation. Materials Science and Engineering: C, 71: 1020-1027.
Alqadami, A.A., Khan, M.A. Otero, M. Siddiqui, M.R. Jeon, B.H. and Batoo, K.M. 2018. A magnetic product nanocomposite produced from camel bones for efficient adsorption of toxic metals from water. Journal of Cleaner Production, 178: 293-304.
Amaechi, B.T., AbdulAzeees, P.A. Alshareif, D.O. Shehata, M.A. Lima, P.P.de.C.S, AbdulAzees, P.A. Alshareif, D.O. Shehata, M.A. Lima, P.P.de.C.S, AbdolGomes, D.S., Santos, A.M.C. Neves, G.A. and Ficai, D. 2011. Advances in Composite Materials for Medicine and Nanotechnology In book: Advances in Composite Materials for Medicine and Nanotechnology, 1-32.

Ficai, A., Andronescu, E. Voicu, G. and Ficai, D. 2011. Advances in Composite Materials for Medicine and Nanotechnology In book: Advances in Composite Materials for Medicine and Nanotechnology, 1-32.
Gomes, D.S., Santos, A.M.C. Neves, G.A. and Menezes, A. 2019. A brief review on hydroxyapatite production and use in biomedicine. Ceramica, 65: 282-302.
Hanora, A. and Mostafa, M.M. 2021. Synthesis of silica/hydroxyapatite nanocomposite by mechanochemical method. Research Square, 1-15.
Hariani, P.L., Muryati, and Said, M. 2019. Kinetic and thermodynamic adsorption of nickel (II) onto hydroxyapatite prepared from snakehead (Channa striata) fish bone. Mediterranean Journal of Chemistry, 9(2): 85-94.

Hariani, P.L., Riyani, F. Fatma, Rachmat, A. and Herbanu, A. 2020. Removal of Pb(II) using hydroxyapatite from Golden Snail shell (Pomacea canaliculata L.) modified with silica. Molekul, 15(2): 130-139.

Hubadillah, S.K., Othman, M.H.D. Tai, Z.S. Jamalludin, M.R. Yusuf, N.K. Ah, mad, A. Rahman, M.A. Jaafar, J., Kadir, S.H.S.A. and Harun, Z. 2020. Novel hydroxyapatite-based bioceramic hollow fiber membrane derived from waste cow bone for textile wastewater treatment. Chemical Engineering Journal, 379: 1-12.

Hsu, C.S., Haag, S.L. Bernard, M.T. and Li, Q. 2021. Effect of chloride substitution on physical, mechanical, and biological properties of hydroxyapatite. Ceramic International, 47: 13207-13215.

Ibrahim, M., Labaki, M. Giraudon, J.M. and Lamonier, J.F. 2020. Hydroxyapatite a multifunctional material for air, water and soil pollution control: a review. Journal of Hazardous Materials, 383: 1-18.

Jouda, N.S. and Essa, A.F. 2021. Preparation and study of the structural, physical and mechanical properties of hydroxyapatite nanocomposite. Materials Today: Proceedings, 1-7

Kailasanathan, C. and Gangadharan, T. 2016. Influence of Bio Inert Silica on Mechanical Properties and their dependence on Porosity of Nanocrystalline based Hydroxyapatite/Gelatin Composites Synthesized by coprecipitation Method. Journal of the Australian Ceramic Society. 52(2): 52 – 61.

Latifi, S.M. 2012. Preparation and characterization of hydroxyapatite-silica composite nanopowder. International Journal of Modern Physics: Conference Series, 5: 630-637.

Noviyanti, A.R., Rahayu, I. Fauzia, R.P. and Risdiana. 2021. The effect of Mg concentration to mechanical strength of hydroxyapatite derived from eggshell. Arabian Journal of Chemistry, 14: 1-7.

Obada, D.O., Dauda, E.T. Abifarin, J.K. and Bansod, N.D. 2020. Mechanical properties of natural hydroxyapatite using low cold compaction pressure: effect of sintering temperature. Materials Chemistry and Physics, 239: 1-9.

Pal, A., Hadagalli, K. Bhat, P. Goel, V. and Mandal, S. 2019. Hydroxyapatite—a promising sunscreen filter. Journal of the Australian Ceramic Society, 56: 345-351.

Pamungkas, A., Dhelika, R. and Saragih, A.S. 2019. Synthesis of hydroxyapatite from tenggiri (Scomberomorus commersonii) fish bone: finding on experiment and processes. AIP Conference Proceedings, 2092: 2-10.

Pighinelli, L. and Kucharska, M. 2013. Chitosan-hydroxyapatite composites. Carbohydrate Polymers, 93: 256-262.

Pu’ad, N.M., Koshy, P. Abdullah, H. and Idris, M. 2019. Syntheses of hydroxyapatite from natural source. Heliyon, 5(5): 1-14.

Ramesh, S., Aw, K.I. Toluuei, Amiriyan, M. Tan, C.Y. Hamdi, M. Purbolaksono, J. hassan, M.A. and Teng W.D. 2013. Sintering properties of hydroxyapatite powder prepared using different methods. Ceramic Internasional, 39: 111-119.

Rho, J.Y., Tsui, T.Y. and Pharr, G.M. 1997. Elastic properties of humancortical and trabecular lamellar bone measured by nanoindentation. Biomaterials, 18: 1325-1330.

Sadeghzade, S., Emadi, R. and Ghomi. 2015. Mechanical alloying synthesis of forsterite-diopside nanocomposites powder for using in tissue engineering. Ceramic Silikaty, 59(1): 1-5.

Saha, B., Yadav, S.K. and Sengupta, S. 2018. Synthesis of nano-Hap prepared through green route and its application in oxidation in oxidative desulfurization. Fuel, 222: 743-752;

Shakir, M., Jolly, R. Khan, A.A. Ahmed, S.S. Alam, S. Rauf, M.A. Owais, M. and Farooqi, M.A. 2018. Resol based chitosan/nano-hydroxyapatite nanoensemble for effective bone tissue engineering Carbohydrate Polymers, 179: 317-327.

Szczes,A., Holysz, L. Chibowski, E. 2017. Synthesis of hydroxyapatite for biomedical applications. Advances in Colloid and Interface Science, 249: 321-330.

Taha, M.A., Youness, R.A. and Ibrahim, M. 2020. Biocompatibility, Physico-chemical and mechanical properties of hydroxyapatite-based silicon dioxide nanocomposite for biomedical applications. Ceramics Internasional, 46: 23599-23610.
Thian, E.S., Huang, J. and Best, S.M. 2006. The response of osteoblasts to nanocrystalline silicon-substituted hydroxyapatite thin film. Biomaterials, 27: 2692-2698
Xiao, H., Huang, W. Xiong, K. Ruan, S. Yuan, C. Mau, G. Tian, R. Zhou, S. She, R. and Ya, P. 2019. Osteodral repair using scaffolds with gradient pore size constructed with silk fibroin, chitosan, and nano-hydroxyapatite. International Journal of Nanomedicine, 14: 2011-2027.
Xu, H.K.K., Smith, D.T. and Simon, C.G. 2004. Strong and bioactive composites containing nano-silica-fused whiskers for bone repair. Biomaterials, 25: 4615-4626.
Wang, K., Wang, M. Wang, Q. Lu, X. and Zhang, X. 2017. Computer simulation of proteins adsorption on hydroxyapatite surfaces with calcium phosphate ions. Journal of the European Ceramic Society, 37(6): 2509-2520.
Witoon, T. 2011. Characterization of Calcium Oxide Derived from Waste Eggshell and Its Application as CO$_2$ Sorbent. Ceramics International, 37: 3291-3298.