Scavenging of caffeine from aqueous medium through optimized H₃PO₄-activated Acacia mangium wood activated carbon: Statistical data of optimization

Mohammed Danish a,**, Janine Birnbach b, Mohamad Nasir Mohamad Ibrahim c,*, Rokiah Hashim d

a Green Chemistry & Sustainable Engineering Technology Research Cluster, Malaysian Institute of Chemical and Bioengineering Technology (MICET), Universiti Kuala Lumpur, Lot 1988, Kawasan Perindustrian Bandar Vendor, Tabin Namping, 78000, Alor Gajah, Melaka, Malaysia
b Department of Chemistry and Biotechnology, Chemistry Faculty, Hochschule Niederrhein University of Applied Sciences, Adlerstraße 28-32, 47798, Krefeld, Germany
c Industrial Chemistry Section, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
d School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia

A R T I C L E I N F O

Article history:
Received 26 February 2019
Received in revised form 6 December 2019
Accepted 17 December 2019
Available online 24 December 2019

Keywords:
Activated carbon
Acacia mangium wood
Caffeine
Optimization
Response surface methodology

A B S T R A C T

The optimization data presented here are part of the study planned to remove the caffeine from aqueous solution through the large surface area optimized H₃PO₄-activated Acacia mangium wood activated carbon (OAMW-AC). The maximum adsorption capacity of the OAMW-AC for caffeine adsorption was achieved (30.3 mg/g) through optimized independent variables such as, OAMW-AC dosage (3.0 g/L), initial caffeine concentration (100 mg/L), contact time (60 min), and solution pH (7.7). The adsorption capacity of OAMW-AC was optimized with the help of rotatable central composite design of response surface methodology. Under the stated optimized conditions for maximum adsorption capacity, the removal efficiency was calculated to be 93%. The statistical significance of the data set was tested through the analysis of variance (ANOVA) study. Data confirmed the statistical model for caffeine adsorption was significant. The regression coefficient (R²) of curve fitting through the
quadratic model was found to be 0.9832, and the adjusted regression coefficient was observed to be 0.9675.

© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Data

Based on the earlier reported results on caffeine adsorption [5–8], it was observed that caffeine adsorption parameters such as contact time, adsorbent dosage, initial concentration, and solution pH were not optimized by the previous researchers. In this data article, the optimized parameters with their statistical significance are reported. The experimental variables and their response with ranges and standard deviations are illustrated in Table 1. The dataset contains results of rotatable central composite design of design of experiment software version 6. The experiments were conducted in batch mode, after each experiment the residual caffeine
concentrations were calculated using UV–Vis spectroscopy (Hitachi U2000) at λ_{max} 274 nm. Table 2 describes the experimental plan for different combinations of independent variables and their corresponding results on adsorption capacity. As a result, the adsorption capacity varied from 3.7 to 40.0 mg/g with a standard deviation of 8.8 mg/g. Fig. 1 contains six contour plot, each plot depicts the change in adsorption capacity of OAMW-AC when two independent variables changes simultaneously, while other two independent variables kept constant. The adsorption capacity lines shown in the contour plot is above and below of the optimized independent variables, therefore, the values are less than the optimized response (adsorption capacity 30.3 mg/g).

A correlation matrix of regression coefficient and a correlation matrix of factors (Pearson’s r) were generated and displayed in Table 3 and Table 4; ‘A’ is the contact time (min), ‘B’ is the adsorbent dose (g/L), ‘C’ is the adsorbate concentration (mg/L), and ‘D’ is the pH of the solution.

Table 1
Variables, ranges, standard deviation, and response design summary.

Name	Units	Type	Std. Dev.	Low	High
Contact time	min	Factor	1	60	175
OAMW-AC dosage	g/L	Factor	0.6066	3	7
Initial caffeine concentration	mg/L	Factor	8.7	50	100
pH	Factor		0.38	4	8
Adsorption capacity	mg/g	Response	8.7861	4.9	40.3

Table 2
Parameters and design layout for planned design of experiments.

Sdt	Run	Variables	Adsorbent dose (g/L)	Adsorbate concentration (mg/L)	pH	Response Adsorption capacity (mg/g)
15	1	60.0	7.0	100	8.0	12.6
9	2	60.0	3.0	50	8.0	14.4
17	3	2.5	5.0	75	6.0	13.3
28	4	117.5	5.0	75	6.0	11.1
30	5	117.5	5.0	75	6.0	11.4
13	6	60.0	3.0	100	8.0	30.1
7	7	60.0	7.0	100	4.0	12.3
10	8	175.0	3.0	50	8.0	14.0
22	9	117.5	5.0	125	6.0	21.9
24	10	117.5	5.0	75	6.0	13.3
20	11	117.5	9.0	75	6.0	7.4
29	12	117.5	5.0	75	6.0	13.7
25	13	117.5	5.0	75	6.0	13.5
3	14	60.0	7.0	50	4.0	6.4
21	15	117.5	5.0	25	6.0	4.9
14	16	117.5	3.0	100	8.0	29.5
1	17	60.0	3.0	50	4.0	14.4
11	18	60.0	7.0	50	8.0	6.3
26	19	117.5	5.0	75	6.0	13.5
27	20	117.5	5.0	75	6.0	13.3
8	21	175.0	7.0	100	4.0	13.1
23	22	117.5	5.0	75	2.0	12.0
4	23	175.0	7.0	50	4.0	6.4
2	24	175.0	3.0	50	4.0	14.8
12	25	175.0	7.0	50	8.0	6.4
6	26	175.0	3.0	100	4.0	30.0
18	27	232.5	5.0	75	6.0	13.6
19	28	175.0	1.0	75	6.0	40.3
5	29	60.0	3.0	100	4.0	30.2
16	30	175.0	7.0	100	8.0	12.9
Fig. 1. Contour plots showing change in the adsorption capacity of OAMW-AC with changing two variables simultaneously.
Furthermore, the variance inflation factor (VIF) and the power at 5% alpha level for effect of $\frac{1}{2}$, 1, and 2 standard deviations were determined (Table 5). The degrees of freedom can be found in Table 6. Additionally, the leverages derived from the $(XX)^{-1}$ are stated in Table 7. Fig. 2 shows the perturbation of the StdErr of design.

Table 3
Correlation matrix of the regression coefficient.

	Intercept	A	B	C	D	A²	B²	C²
Intercept	1.000							
A	1.000	−0.000	1.000					
B	1.000	−0.000	−0.000	1.000				
C	1.000		−0.000	−0.000	1.000			
D	1.000			−0.000	−0.000	1.000		
A²	1.000				−0.000	−0.000	−0.000	1.000
B²	1.000					−0.000	−0.000	−0.000
C²	1.000						−0.000	−0.000
D²	1.000							−0.000

Table 4
Correlation matrix of factors.

	A	B	C	D	A²	B²	C²
A	1.000						
B	1.000						
C	1.000						
D	1.000						
A²	1.000						
B²	1.000						
C²	1.000						
D²	1.000						

Table 5

Table 6

Correlation matrix of factors.
The model was analyzed through a sequential model sum of squares (Table 8), a lack of fit test (Table 9) and model summary statistics (Table 10). The data of the analysis of variance is described in Table 11. There is a 0.01% chance that this model could occur due to noise and an 21.5% chance that the F-value of lack of fit occurs due to noise. The adeq. Precision for the design of experiment is 31.6. Table 12 shows the factors for the equation to predict the adsorption capacity and Table 13 represented the diagnostics case in statistical design. In addition to the normal plot of residuals. Fig. 3 illustrate the studentized residuals [a] depending on the predicted [b], run number [c], contact time [d], OAMW-AC dosage [e], initial caffeine concentration [f] and pH [g]. Fig. 4 shows the Outlier t [a], Cook's Distance [b] and leverage [c] against run number and the predicted against actual [d]. The box-cox plot for power transforms can be seen in Fig. 5.

Finally, the optimum independent variables for caffeine adsorption, outcome response as adsorption capacity, and propagation of error in the results due to deviations in the independent variables are represented in Fig. 6. The descriptive plot for propagation error in the adsorption capacity owing to deviations in the independent variables, considering two variables at a time, is represented through six plots as shown in Fig. 7.

2. Experimental design, materials, and methods

The Experimental Design was calculated through the software Design Expert (version 6.0.6 Stat-Ease Inc. Minneapolis, USA). The activated carbon was produced from wood sawdust of Acacia mangium by the method described by Danish et al., 2014 [9]. The flow diagram of the experiment conducted to generate this data set is shown in Fig. 8. Effect of contact time on the caffeine adsorption was studied at the time interval of 2.5 min, 60 min, 117.5 min, 175 min, and 232.5 min. The initial concentration of caffeine varies at 25.00 (±0.35) mg/L, 50.00 (±1.92) mg/L, 75.00 (±2.73) mg/L, 100.00 (±1.71) mg/L, and 125.00 (±3.99) mg/L; and the effect of pH on OAMW-AC were studied at five different pH levels: 2.0 (±0.08), 4.0 (±0.15), 6.0 (±0.11), 8.0 (±0.08), and 10.0 (±0.10) mg/L.
Table 7
Measures derived from \((X'X)^{-1}\) matrix.

Std	Leverage	Point Type
1	0.5833	Fact
2	0.5833	Fact
3	0.5833	Fact
4	0.5833	Fact
5	0.5833	Fact
6	0.5833	Fact
7	0.5833	Fact
8	0.5833	Fact
9	0.5833	Fact
10	0.5833	Fact
11	0.5833	Fact
12	0.5833	Fact
13	0.5833	Fact
14	0.5833	Fact
15	0.5833	Fact
16	0.5833	Fact
17	0.5833	Axial
18	0.5833	Axial
19	0.5833	Axial
20	0.5833	Axial
21	0.5833	Axial
22	0.5833	Axial
23	0.5833	Axial
24	0.5833	Axial
25	0.1667	Center
26	0.1667	Center
27	0.1667	Center
28	0.1667	Center
29	0.1667	Center
30	0.1667	Center
Average	0.5000	

Fig. 2. Perturbation plots for the statistical design.
Table 8
Sequential model sum of squares.

Source	Sum of Squares	DF	Mean Square	F Value	Prob > F
Mean	6961.63	1	6961.63		
Linear	1775.47	4	443.87	32.73	<0.0001
2FI	85.18	6	14.20	1.06	0.4183
Quadratic	218.26	4	54.56	22.98	<0.0001
Cubic	28.68	8	3.58	3.62	0.0538
Residual	6.94	7	0.99		
Total	9076.16	30	302.54		

Table 9
Lack of fit tests.

Source	Sum of Squares	DF	Mean Square	F Value	Prob > F
Linear	332.18	20	16.61	12.08	0.0058
2FI	247.00	14	17.64	12.83	0.0054
Quadratic	28.74	10	2.87	2.09	0.2151
Cubic	0.066	2	0.033	0.024	0.9765
Pure Error	6.88	5	1.38		

Table 10
Model summary statistics.

Source	Std. Dev.	R-Squared	Adjusted R-Squared	Predicted R-Squared	PRESS
Linear	3.68	0.8397	0.8140	0.7597	508.18
2FI	3.68	0.8799	0.8167	0.7923	439.13
Quadratic	1.54	0.9832	0.9674	0.9170	175.46
Cubic	1.00	0.9967	0.9864	0.9908	19.38

Table 11
Analysis of variance (ANOVA).

Source	Sum of Squares	DF	Mean Square	F value	Prob > F
Model	2078.91	14	148.49	62.54	<0.0001
A	0.042	1	0.042	0.018	0.8964
B	1159.26	1	1159.26	488.21	<0.0001
C	616.11	1	616.11	259.47	<0.0001
D	0.060	1	0.060	0.025	0.8758
A²	0.88	1	0.88	0.37	0.5517
B²	211.85	1	211.85	89.22	<0.0001
C²	0.76	1	0.76	0.32	0.5795
D²	0.012	1	0.012	0.005	0.9445
AB	0.25	1	0.25	0.11	0.7501
AC	0.000	1	0.000	0.000	0.9745
AD	0.16	1	0.16	0.067	0.7987
BC	84.64	1	84.64	35.65	<0.0001
BD	0.12	1	0.12	0.052	0.8234
CD	0.010	1	0.010	0.000	0.9491
Residual	35.62	15	2.37		
Lack of Fit	28.74	10	2.87	2.09	0.2151
Pure Error	6.88	5	1.38		
Cor Total	2114.53	29			
For caffeine; by using 50 mg, 150 mg, 250 mg, 350 mg, and 450 mg in 50 mL of caffeine solution. The solutions of caffeine were prepared by diluting a stock solution (0.5 g in 1 L flask). Each solution was measured by a UV–Vis spectrometer at \(\lambda_{\text{max}} \) (maximum wavelength) 274 nm before the adsorption of caffeine to determine the exact initial concentration. Thirty experiments were conducted under the conditions which are shown in Table 2, after the adsorption had occurred, the

| Table 12 |
| Factors for the equation. |

Factor	Coefficient Estimate	DF	Standard Error	95% Cl Low	95% Cl High	VIF
Intercept	12.75	1	0.63	11.41	14.09	
A	0.042	1	0.31	-0.63	0.71	1.00
B	-6.95	1	0.31	-7.62	-6.28	1.00
C	5.07	1	0.31	4.40	5.74	1.00
D	0.050	1	0.31	-0.62	0.72	1.00
A^2	0.18	1	0.29	-0.45	0.81	1.05
B^2	2.78	1	0.29	2.15	3.41	1.05
C^2	0.17	1	0.29	-0.65	0.61	1.05
D^2	-0.021	1	0.29	-0.70	0.95	1.00
AB	0.012	1	0.39	-0.81	0.83	1.00
AC	-0.10	1	0.39	-0.92	0.72	1.00
BC	0.088	1	0.39	-3.12	-1.48	1.00
CD	0.025	1	0.30	-0.80	0.85	1.00

| Table 13 |
| Diagnostics case statistics. |

Standard Order	Actual Value	Predicted Value	Residual	Leverage	Student Residual	Cook’s Distance	Outlier t	Run order
1	14.40	15.50	-1.10	0.583	-1.102	0.113	-1.110	17
2	14.80	15.50	-0.70	0.583	-0.708	0.047	-0.696	24
3	6.40	5.77	0.63	0.583	0.633	0.037	0.619	14
4	6.40	6.28	0.12	0.583	0.121	0.001	0.117	23
5	30.20	30.15	0.046	0.583	0.046	0.000	0.045	29
6	30.00	30.21	-0.21	0.583	-0.214	0.004	-0.207	26
7	12.30	11.23	1.07	0.583	1.077	0.108	1.083	7
8	13.10	11.79	1.31	0.583	1.320	0.163	1.356	21
9	14.40	15.57	-1.17	0.583	-1.177	0.129	-1.194	2
10	14.00	15.18	-1.18	0.583	-1.185	0.131	-1.203	8
11	6.30	6.20	0.10	0.583	0.105	0.001	0.101	18
12	6.40	6.30	0.096	0.583	0.096	0.001	0.093	25
13	30.10	30.33	-0.23	0.583	-0.230	0.005	-0.223	6
14	29.50	29.99	-0.49	0.583	-0.490	0.022	-0.477	16
15	12.60	11.75	0.85	0.583	0.850	0.067	0.842	1
16	12.90	11.91	0.99	0.583	0.993	0.092	0.992	30
17	13.30	13.38	-0.083	0.583	-0.084	0.001	-0.081	3
18	13.60	13.55	0.050	0.583	0.050	0.000	0.049	27
19	40.30	37.77	2.53	0.583	2.547	0.605	3.266	28
20	7.40	9.97	-2.57	0.583	-2.580	0.621	-3.343	11
21	4.90	3.28	1.62	0.583	1.625	0.247	1.730	15
22	21.90	23.55	-1.65	0.583	-1.659	0.257	-1.773	9
23	12.00	12.57	-0.57	0.583	-0.570	0.030	-0.556	22
24	13.30	12.77	0.53	0.583	0.536	0.027	0.523	10
25	13.50	12.75	0.75	0.167	0.533	0.004	0.520	13
26	13.50	12.75	0.75	0.167	0.391	0.002	0.380	20
27	11.10	12.75	-1.65	0.167	-1.173	0.018	-1.189	4
28	13.70	12.75	0.95	0.167	0.675	0.006	0.663	12
29	11.40	12.75	-1.35	0.167	-0.960	0.012	-0.957	5
Fig. 3. Plot of the studentized residuals [a] depending on, predicted value of adsorption capacity [b], run number [c], contact time [d], OAMW-AC dosage [e], initial caffeine concentration [f] and solution pH [g].
OAMW-AC was filtrated, and the caffeine concentration was determined again. The adsorption capacity \(q_e (\text{mg/g}) \) was calculated using the following equation [10–12]:

\[
q_e = \frac{(C_i - C_e)}{C_{AC}}
\]

Fig. 4. Outlier t [a], Cook’s Distance [b] and leverage [c] against run number and the predicted against actual [d].

Fig. 5. Box-Cox plot for power transforms.
Fig. 6. Adsorption capacity optimization output for selected parameters taken within the range.

Fig. 7. The propagation of error in the adsorption capacity of OAMW-AC.
where, \(C_i \) is the initial concentration of caffeine (mg/L), \(C_e \) the concentration of caffeine after adsorption (mg/L) and \(C_{AC} \) the dosage of added OAMW-AC (g/L). For the calibration, five standards were measured within the linear range of 0.1–0.8 at the same wavelength. The average of the linear regression coefficient for all conducted calibrations was 0.999.

Acknowledgments

Authors are thankful to Malaysian Institute of Chemical and Bioengineering Technology (MICET), Universiti Kuala Lumpur (UniKL), and School of Chemical Sciences and School of Industrial Technology, Universiti Sains Malaysia (USM) for providing research facilities during the experiment. Special thanks also for Prof. Dr. Farook Adam for letting us using his furance. We are also acknowledging USM Research University Grant: 1001/PKIMIA/801170 and DAAD RISE fellowship to Janine Birnbach.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.105045.

References

[1] M. Moradi, M. Heydari, M. Darvishmotevalli, K. Karimyan, V.K. Gupta, Y. Vasseghian, H. Sharafi, Kinetic and modeling data on phenol removal by iron-modified scoria powder (FSP) from aqueous solution, Data Breif 20 (2018) 957–968.

[2] M. Heydari, K. Karimyan, M. Darvishmotevalli, A. Karami, Y. Vasseghian, N. Azizi, M. Ghayebzadeh, M. Moradi, Data for efficiency comparison of raw pumice and manganese-modified pumice for removal phenol from aqueous environments–Application of response surface methodology, Data Breif 20 (2018) 1942–1954.
[3] V. Hariram, A. Bose, S. Seralathen, Dataset on optimized biodiesel production from seeds of Vitis vinifera using ANN, RSM and ANFIS, Data Brief 25 (2019) 104298.

[4] A. Yadav, V. Khandegar, Dataset on statistical reduction of highly water-soluble Cr(VI) into Cr (III) using RSM, Data Brief 22 (2019) 1074–1080.

[5] M.F. Oliveira, M.G.C. da Silva, M.G.A. Vieira, Equilibrium and kinetic studies of caffeine adsorption from aqueous solutions on thermally modified Verde-Iodo bentonite, Appl. Clay Sci. 168 (2019) 366–373.

[6] Y.M. Correa-Navarro, L. Giraldo, J.C. Moreno-Piraján, Dataset for effect of pH on caffeine and diclofenac adsorption from aqueous solution onto fique bagasse biochars, Data Brief 25 (2019) 104111.

[7] A. Gil, L. Santamaría, S.A. Korili, Removal of caffeine and diclofenac from aqueous solution by adsorption on multiwalled carbon nanotubes, Colloid Interface Sci. Commun. 22 (2018) 25–28.

[8] K.K. Beltrame, A.L. Cazetta, P.S.C. de Souza, L. Spessato, T.L. Silva, V.C. Almeida, Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves, Ecotoxicol. Environ. Saf. 147 (2018) 64–71.

[9] M. Danish, R. Hashim, M.N.M. Ibrahim, O. Sulaiman, Optimization study for preparation of activated carbon from Acacia mangium wood using phosphoric acid, Wood Sci. Technol. 48 (2014) 1069–1083, https://doi.org/10.1007/s00226-014-0647-y.

[10] A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, Removal and recovery of chrysoidine Y from aqueous solution by waste materials, J. Colloid Interface Sci. 344 (2) (2010) 497–507.

[11] V.K. Gupta, I. Ali, T.A. Saleh, M.N. Siddiqui, S. Agrawal, Chromium removal from water by activated carbon developed from waste rubber tires, Environ. Sci. Pollut. Res. 20 (3) (2013) 1261–1268.

[12] V.K. Gupta, C.K. Jain, I. Ali, S. Chandra, S. Agarwal, Removal of lindane and malathion from wastewater using bagasse fly ash- a sugar industry waste, Water Res. 36 (10) (2002) 2483–2490.