Effects of alginate coating incorporated with *Bunium persicum* essential oil and Lactoperoxidase system on inoculated *Listeria monocytogenes* in chicken breast fillets

Hamid Didar¹, Saeid Khanzadi¹*, Mohammad Hashemi²*, Mohammad Azizzadeh³

¹ Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
² Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
³ Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

Corresponding author: Saeid Khanzadi, Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran. Tel: +985138805610; Email: Khanzadi@um.ac.ir

Received: 2018 January 27 Accepted: 2018 April 2

Abstract

Background: The present study aimed to evaluate the effect of alginate coating incorporated with *Bunium persicum* essential oil (BPEO) and Lactoperoxidase system (LPOS) individually and in combination to control the growth of inoculated *Listeria monocytogenes* in fresh chicken breast stored at 4±1°C.

Materials and Methods: In vitro antibacterial activity of *L. monocytogenes* was evaluated using the microdilution method. Chicken breast fillets were inoculated with a cocktail of *L. monocytogenes* culture, treated with BPEO (0.5 and 1% w/v) and LPOS (5% v/v) as natural antimicrobials, and counted during 20 days of storage at 4±1°C. The data were analyzed in SPSS software (Version 21) through repeated measure ANOVA followed by Bonferroni post-hoc tests. P-value less than 0.05 was considered statistically significant.

Results: Both individual and combinational use of BPEO and LPOS could significantly inhibit the growth of inoculated *L. monocytogenes*. However, the combinational use of them had higher effects, compared to control. The results also indicated that the application of alginate coating with no antimicrobial agent significantly supported the growth of inoculated *L. monocytogenes* on chicken breast samples at 4±1°C.

Conclusions: The combinational use of BPEO and LPOS can be practically applied to food systems, especially in the meat industry to ensure the safety of the product.

Keywords: Alginate, *Bunium persicum*, Chicken meat, Lactoperoxidase, *Listeria monocytogenes*

Introduction

Food safety is critically related to public health which has attracted increased attention in recent years. The consumption of foods contaminated with pathogenic bacteria, such as *Listeria monocytogenes* has a wide economic and public health impact worldwide (1). The symptoms of listeriosis are fairly variable and range from a mild-flu like illness to more serious complications, including meningitis, septicaemia, stillbirth, and abortion. There are many reports indicating a relatively high prevalence of contaminated raw chicken products by *L. monocytogenes* (1-2).

Therefore, the management of the contamination resulted from these pathogenic bacteria is important to decrease the outbreaks of the foodborne diseases (2). Various methods have been proposed to control post-process contamination of ready-to-eat (RTE) meat and poultry products by *L. monocytogenes*. These techniques include the utilization of thermal processing (i.e., hot water, steam, and radiant heat) and the inactivation of *L. monocytogenes* in RTE meat and poultry products (3-4).

Poultry meat is a very popular food commodity...
and its consumption has increased over the last decades in many countries (3). Modern trends for industries include the application of the hurdle technology concept and the use of natural food preservatives in order to schedule the process with the shortest time and ensure protection from both spoilage and pathogenic microorganisms (5). Meat product outbreaks are often due to inadequate cooking or cross-contamination from other foods; however, contamination may occur while the meat is being processed, cut, packaged, transported, sold, or handled (6).

Edible coatings are known for preserving food quality and shelf life extension, as they are selective barriers to moisture transfer, oxygen uptake, lipid oxidation, and the loss of volatile aromas and flavors (5). Natural antimicrobial agents may be incorporated into these solutions, adding functionality to them. Antimicrobials or antioxidant compounds incorporated into the polymer matrix may prevent the growth of spoilage and pathogenic microorganisms, delay rancidity and oxidation, prevent discoloration, and even improve the nutritional quality of coated foods (7).

Phenolic compounds in essential oils (EO), such as thymol, carvacrol, terpinene, and p-cymene are widely reported to possess strong antibacterial activity and applied to food in order to control pathogenic bacteria (8). Essential oils are regarded as “natural” alternatives to chemical preservatives and their utilization in foods meets the demand of consumers for minimally processed products (9). Bunnyum persicum is a known spice originated in the Middle East and obtained from the plant seeds. Several researchers have investigated the antibacterial and antifungal effect of B. persicum EO (BPEO) which is proposed to be due to its major component, namely cumin-aldehyde (10).

Despite the strong antimicrobial activity of EOs, their practical application is currently limited due to changing food product flavor (11) and their interaction with some food ingredients (8). Therefore, the desirable preservative effect of essential oils may be achieved using lower concentrations of essential oils in combination with other preservation ingredients, such as Lactoperoxidase system (LPOS) (11) or preservation technologies, such as low temperature (12).

The LPO is a natural single chain polypeptide with no antibacterial effect on its own which is secreted in milk, saliva, and tear. The LPOS consists of three compounds, namely the LPO enzyme, thiocyanate ion, and hydrogen peroxide (H2O2) (13).

With this background in mind, the aim of the present study was to determine phytochemical constituents of the BPEO and characterize antilisterial potency of the BPEO by determination of MIC and MBC values. Moreover, this study aimed at investigating the effect of alginate coating incorporated with B. persicum essential oil and the LPOS individually and in combination on growth inhibition of L. monocytogenes in fresh chicken breast fillets stored at 4 °C.

Materials and Methods

Microorganisms and materials

B. persicum essential oil obtained through steam distillation was purchased from the Iranian Institute of Medicinal Plants, Karaj, Iran. Four lyophilized strains of Listeria monocytogenes (ATCC: 7644, 7834, 10671, 82119) were purchased from Iranian Biological Resource Center, Tehran, Iran. All culture media were purchased from Merck (Merck, Darmstadt, Germany). All used reagents were of analytical grade and purchased from Sigma (Sigma-Aldrich Chemical Co. St. Louis, USA). The study protocol was approved by the Ethics Committee of Mashhad University of Medical Sciences, Mashhad, Iran (IR.MUMS.fm.REC.1395.155).

Gas chromatography/mass spectrometry analysis

The EO composition was determined by gas chromatography-mass spectrometry (GC-MS) (14). According to the provider, GC-MS apparatus was a Varian star 3400 GC equipped with a fused-silica column (DB-5, 30 m × 0.25 mm i.d., film thickness 0.25 μm), interfaced with a mass spectrometric detector. The operating conditions were as follows: oven temperature: 60-240°C with a rate of 3°C/min, injector temperature: 280°C, injector mode: split injection, carrier gas: Helium, flow rate: 2 ml/min, mass spectra: electronic impact, ionization potential 70 eV, ion source temperature: 250°C, ionization current 1000 IA, resolution 1000, and mass range of 40-300 u.

Preparation of bacteria

Four strains of L. monocytogenes were plated on PALCAM agar and incubated at 37 °C for 24 h and typical colonies of L. monocytogenes were then confirmed by biochemical tests.

Determination of minimum inhibitory concentration and minimum bactericidal concentration values

The microdilution method was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration
(MBC) of the BPEO against four strains of L. monocytogenes (14). Bacterial suspension of each strain was prepared in 9 ml of BHI broth and incubated at 37 °C for 24 h. The suspensions were adjusted to 0.5 McFarland standard turbidity (1.5×10⁶ CFU/ml) using a spectrophotometer (Optizen 2120 plus, South Korea) and diluted to the desired bacterial density (1.5×10⁶ CFU/ml). The BPEO was dissolved in 10% dimethyl sulfoxide in a concentration as a stock solution and later serial two-fold dilutions were made in a concentration range from 40 to 0.31 mg/ml in nutrient broth. Subsequently, 20μl of each inoculum with 20μl of different concentrations of the BPEO were added to the wells containing 160 μl of BHI broth to achieve a final volume of 200 μl. Wells without any bacteria (180 μl of BHI broth and 20 μl of the BPEO) and wells without any antibacterial agent (180 μl of BHI broth and 20 μl of each inoculum) were considered as a negative and positive control, respectively. The final concentration of the inoculums was approximately 1.5×10⁵ CFU/ml and the final concentration of the BPEO was in the range of 4 to 0.031 mg/ml. The microplates were incubated at 37 °C for 18- 24 h under constant shaking (50-100) rpm by a shaker incubator (GFL 3031, Burgwedel, Germany) and the lowest concentrations with no visible bacterial growth were regarded as the MIC values. The MBC values were determined by inoculation of non-turbid wells on BHI agar and incubation at 37 °C for 24 h. The lowest concentrations with no visible bacterial growth on the agar were regarded as the MBC values.

Preparation of Lactoperoxidase system

The LPOS was prepared according to the method previously described (15). Briefly, LPOS components (weight ratios: 1.00, 0.35, 108.70 and 1.09 for the LPO, glucose oxidase, D-(α)-glucose, potassium thiocyanate, and H2O2, respectively) were dissolved in phosphate buffer (50ml, pH 6.2) based on 15.5 mg of the LPO. The solution was filtered and incubated at 23 °C for 24 h under constant shaking (160 rpm) by a shaker incubator (GFL 3031, Burgwedel, Germany) in order to boost the antimicrobial activity of the LPOS.

Preparation of chicken breast fillets and bacterial inoculation

The fresh chicken breast meat was purchased from a local poultry market in Mashhad, Iran, in summer during 2016. Subsequently, the breast meat was filleted, washed, and dried. Afterward, the fillets were cut to pieces weighing 10±1 g, sprayed with ethanol, burnt, and trimmed to eliminate surface microorganisms. Aliquots of 100 μl of (~10⁷ CFU/ml) culture cocktail of 4 strains of L. monocytogenes were inoculated on each side of separate fillets to a final concentration of ~ 10⁵ CFU/g (16).

Preparation of coating solutions and treatments

Alginate solution was prepared by dissolving the alginate powder (3% w/v) (16) in sterilized distilled water. The solution was stirred until alginate was dissolved. Glycerol was applied as a plasticizer and added (2%) at a controlled temperature (70 °C) to coating solution and constantly stirred for 30 min to become clear (16). Sterilized calcium chloride (2% w/v, in distilled water) was utilized for gel-forming and cross-linking reactions. The activated LPOS (5%) and different concentrations (0.5 and 1%) of the BPEO were incorporated into the alginate-based edible coatings according to described treatments in Table 1. All formulations were mixed with a magnetic stirrer for 5 min to form emulsions. The BPEO were dissolved in the alginate solutions using tween 80 (0.2 g/g EO) at a controlled temperature (40 °C) and stirred for 30 min to create a uniform, stable, and clear solution. Inoculated chicken fillets were dipped in alginate-based formulations for 1 min and excess coating materials were allowed to drip off (20 min). They were then dipped in calcium chloride solution for

No	Treatment	Description
1	CDN	Control (samples without any coating solution)
2	ALG	Samples coated with alginate solution
3	EO 0.5%	Samples coated with alginate solution containing 0.5% (w/v) Bunium persicum essential oil
4	EO 1%	Samples coated with alginate solution containing 1% (w/v) Bunium persicum essential oil
5	LPOS	Samples coated with alginate solution containing 5% (v/v) Lactoperoxidase system
6	LPOS + EO 0.5%	Samples coated with alginate solution containing 0.5% (w/v) Bunium persicum essential oil and 5% (v/v) Lactoperoxidase system
7	LPOS + EO 1%	Samples coated with alginate solution containing 1% (w/v) Bunium persicum essential oil and 5% (v/v) Lactoperoxidase system
30 s, packed in UV-sterilized (45 min) plastic zip pack, stored at 4±1 °C for 20 days and analyzed over 5-day intervals (i.e., days 0, 5, 10, 15, and 20) (15, 16).

Enumeration of L. monocytogenes

Chicken samples (10 g) were brought to a final volume of 100 ml of sterile buffered peptone water (0.1% w/v) and homogenized in a stomacher (Seward Medical, UK) for 3 min. For each sample, appropriate serial dilutions (1:10) were prepared and 10μl (15, 17) of each sample was plated on PALCAM agar (16). PALCAM agar plates were incubated at 30 °C for 48 h (16).

Statistical analysis

All tests of the present study were performed in triplicate. The data were analyzed in SPSS software (Version. 21, IBM; Armonk, N. Y, USA). Moreover, all data were checked regarding normality using the Shapiro-Wilk test. Repeated measure ANOVA followed by Bonferroni post-hoc tests were used to determine the significant differences. P-value less than 0.05 was regarded statistically significant.

Results

GC-MS analysis

The chemical constituents of the BPEO are summarized in Table 2. The EO content was about 2.1% (v/w) based on dry weight and 17 compounds were characterized representing 94.54% of the total content of the BPEO. Its major components were P-Cumic aldehyde (38.39%), P-Cymene (18.36%), and 2-Caren-10-al (13.26%).

Table 2. The results of *Bunium persicum* essential oils by GC/MS

NO	RT	Compound	%
1	11.937	Cumene	4.69
2	14.355	Beta-Pinene	3.89
3	14.975	(+)-Camphene	0.50
4	15.478	Alpha-Terpine	0.36
5	16.059	P-Cymene	18.36
6	17.222	Gamma-Terpine	7.38
7	22.739	R-(+)-Pulegone	2.73
8	23.560	Alpha-Terpineol	0.34
9	24.033	3-Caren-10-al	0.14
10	25.737	P-Cumic aldehyde	38.39
11	26.171	Alpha-Thujenal	1.27
12	26.964	Phellandral	0.35
13	27.070	Isogeraniol	0.59
14	27.442	2-Caren-10-al	13.26
15	28.984	P-Cymene-7-ol	1.33
16	30.557	Carvacrol	0.91
17	35.307	Caryophyllen	0.05
			94.54

Minimum inhibitory concentration and minimum bactericidal concentration of the Bunium persicum essential oil

Table 3 summarizes the notable sensitivity of tested bacteria to the antibacterial effect of the BPEO. The MIC and MBC values of all tested strains of *L. monocytogenes* were 2 mg/ml and 4 mg/ml, respectively.

Enumeration of L. monocytogenes

Fig 1 represents the effect of the treatments on the growth of *L. monocytogenes* during 20 days of storage.

The initial mean count of *L. monocytogenes* was 5.24±0.02 log CFU/g which increased during the storage time in all groups. The lowest final counts were observed in LPOS+EO 1% (6.35±0.06 log CFU/g) and LPOS+EO 0.5% (6.56±0.09 log CFU/g) samples, respectively. The highest average reduction rate of *L. monocytogenes* count (0.94 log CFU/g) was also observed in the comparison of LPOS+EO 1% and ALG samples (P<0.05) when the average-throughout the storage-reduction rate of *L. monocytogenes* count for each treatment was compared to another (Table 4).

The results also revealed that the bacterial count in ALG samples was significantly (P<0.05) higher than that in CON samples. This indicates the protective effect of alginate coating with no antibacterial agents against cold storage condition for the growth of inoculated *L. monocytogenes* on the surface of chicken breast fillets stored in refrigeration condition.

Table 3. Antibacterial properties of *Bunium persicum* essential oil against four strains of *Listeria monocytogenes* using micro-dilution method

Strains	MIC (mg/ml)	MBC (mg/ml)
L. monocytogenes		
7644	2	4
7834	2	4
10671	2	4
82119	2	4

![Fig 1](image) Changes in the bacterial count (Log CFU/g) of chicken fillet samples inoculated with *L. monocytogenes* during storage (Means±SD)
Discussion

The major component of BPEO was P-Cumic aldehyde (38.39%). Several researchers investigated the phytochemicals of the BPEO (10, 14). According to the results, there is minor variation in the reported findings of the chemical composition of the BPEO which is due to the effect of several factors, such as climatic, seasonal, and geographical conditions (14).

According to Table 3, the MIC values of L. monocytogenes were similar regarding four tested strains. Based on this result and results of former studies on the LPOS (15, 18), the best concentrations were 0.5 and 1% for the BPEO and 5% for the LPOS to be added to the coating solutions.

The increment rate of L. monocytogenes count of all samples during storage is completely consistent with the results of former studies (15, 16, 19). The respective growth rate was significantly more rapid in ALG and CON samples, compared to other samples (P< 0.05) and reached 8.01±0.18 and 7.75±0.23 log CFU/g, respectively, at the end of storage time.

Higher antibacterial effects were observed in treatments with combinational use of BPEO and LPOS. Min et al. (2005b) reported similar results on the effect of the LPOS on growth decrement of L. monocytogenes (19). Moreover, several previous studies reported that the combinational use of antimicrobial agents was more effective against microbial growth than their individual use (16, 20, 21). However, the combinational use of antimicrobial agents may have antagonistic, synergistic, or additive effects based on the kind of antimicrobial agent and microorganism (22). Datta et al. (2008) conducted a study on the control of inoculated L. monocytogenes on the surface of smoked salmon coated with alginate coating containing oyster lysozyme and nisin. According to the results, the protective effect of alginate coating was reported with no antibacterial agents at cold storage condition for the growth of inoculated L. monocytogenes. The obtained result was completely consistent with the results of the present study (23). Similarly, Sharifi et al. (2017) conducted a study regarding the control of inoculated L. monocytogenes and Escherichia coli O157: H7 on the rainbow trout fillets coated with alginate coating containing the LPOS and Zataria multiflora EO and reported similar results (24).

Conclusion

The obtained results of this study indicated the potential of alginate coating enriched with the LPOS and the BPEO for control of L. monocytogenes in chicken breast fillets at 4°C. The utilization of these natural antimicrobial agents in alginate coating could significantly reduce the growth of L. monocytogenes in chicken breast fillets during storage time. In addition, the results revealed that LPOS+E0 1% had the greatest effect on growth inhibition of L. monocytogenes. However, alginate coating with no antibacterial agent had a supportive effect on its growth at 4°C, compared to control. Therefore, considering the producer and consumer preferences in terms of the utilization of natural additives in food, it is suggested that alginate coating solution containing the LPOS and BPEO can be practically applied to chicken breast fillets. This results in an increase in its safety against pathogenic bacteria, such as L. monocytogenes contamination. It should be noted that its effect would be greater if it is employed with other food preservation techniques.

Acknowledgements

The authors would like to thank Mrs. S. Khajenasiri for her laboratory support and kind cooperation.

Conflicts of Interest

The authors declare no conflict of interests.

Financial Support

This study was financially supported by Ferdowsi University of Mashhad, Mashhad, Iran.

Table 4. Mean reduction rate of the L. monocytogenes counts (Log CFU/g) regarding treatments when compared to each other during storage time (days: 0-20)

Mean Difference	Group (I)	ALG	EO 0.5%	EO 1%	LPOS	LPOS + EO 0.5%	LPOS + EO 1%
Group (I)	-0.32*	0.21*	0.36*	0.18*	0.52*	0.62*	
ALG	0.54*	0.69*	0.51*	0.84*	0.94*		
EO 0.5%	0.14	-0.03	0.30*	0.40*	0.25*		
EO 1%	-0.17	0.15	0.33*	0.43*			
LPOS	0.69	0.25	0.40	0.62			0.10
LPOS + EO 0.5%	0.36	0.18	0.52	0.62			

Asterisk (*) shows significant difference at the P<0.05.
Antibacterial effects of alginate coating

References

1. Juck G, Neetoo H, Chen H. Application of an active alginate coating to control the growth of Listeria monocytogenes on poached and deli turkey products. Int J Food Microbiol. 2010; 142(2):302-8. PMID: 20678824 DOI: 10.1016/j.ijfoodmicro.2010.07.006

2. Gandhi M, Chilindas ML. Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol. 2007; 113(1):1-15. PMID: 17010465 DOI: 10.1016/j.ijfoodmicro.2006.07.008

3. Janes ME, Kooshesh S, Johnson MG. Control of listeria monocytogenes on the surface of refrigerated, ready-to-eat chicken coated with edible Zein film coatings containing Nisin and/or calcium propionate. J Food Sci. 2002; 67(7):2754-7. DOI: 10.1111/j.1365-2621.2002.tb08810.x

4. Ingham SC, DeVita MD, Wadhera RK, Fanslau MA, Buege DR. Evaluation of small-scale hot-water postpackaging pasteurization treatments for destruction of Listeria monocytogenes on ready-to-eat beef snack sticks and natural-casing wieners. J Food Prot. 2005; 68(10):2059-67. PMID: 16245708

5. Choulara I, Savvaidis IN, Riganakos K, Kontominas MG. Shelf-life extension of vacuum-packaged sea bream (Sparus aurata) fillets by combined γ-irradiation and refrigeration: microbiological, chemical and sensory changes. J Sci Food Agr. 2005; 85(5):779-84. DOI: 10.1002/jsfa.2021

6. Dave D, Ghaly AE. Meat spoilage mechanisms and preservation techniques: a critical review. Am J Agr Biol Sci. 2011; 6(4):496-510.

7. Gennadios A, Hanna MA, Kurth LB. Application of edible coatings on meats, poultry and seafoods: a review. LWT Food Sci Technol. 1997; 30(4):337-50. DOI: 10.1016/S0023-6438(96)00202-2

8. Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol. 2004; 94(3):223-53. PMID: 15246235 DOI: 10.1016/j.ijfoodmicro.2004.03.023

9. Nychas GJ. Natural antimicrobials from plants. New methods of food preservation. New York: Springer; 1995. P. 58-89.

10. Moghtader M, Mansori AI, Salari HA, Farahmand A. Chemical composition and antimicrobial activity of the essential oil of Buniun persicum Boiss. seed. Iran J Med Aromatic Plants. 2009; 25(1):20-8.

11. Yamazaki K, Yamamoto T, Kawai Y, Inoue N. Enhancement of antilisterial activity of essential oil constituents by nisin and diglycerol fatty acid ester. Food Microbiol. 2004; 21(3):283-9. DOI: 10.1016/j.fm.2003.08.009

12. Fennema O. An over-all view of low temperature food preservation. Cryobiology. 1966; 3(3):197-213. PMID: 5339242

13. Jasour MS, Ehsani A, Mehryar L, Naghibi SS. Chitosan coating incorporated with the lactoperoxidase system as an active edible coating for fish preservation. J Sci Food Agric. 2015; 95(6):1373-8. PMID: 2560563 DOI: 10.10102/jsfa.6838

14. Ehsani A, Hashemi M, Naghibi SS, Mohammadi S, Khalili Sadaghiani S. Properties of Buniun Persicum essential oil and its application in Iranian white cheese against listeria monocytogenes and Escherichia Coli 0157: H7. J Food Safety. 2016; 36(4):563-70. DOI: 10.1111/jfs.12277

15. Shokri S, Ehsani A, Jasour MS. Efficacy of lactoperoxidase system-whey protein coating on shelf-life extension of rainbow trout fillets during cold storage (4C). Food Bioproc Technol. 2015; 8(1):54-62. DOI: 10.1007/s11947-014-1378-7

16. Raeisi M, Tabaraei A, Hashemi M, Behnampour N. Effect of sodium alginate coating incorporated with nisin, Cinnamomum zeylanicum, and rosemary essential oils on microbial quality of chicken meat and fate of Listeria monocytogenes during refrigeration. Int J Food Microbiol. 2016; 238(5):139-45. PMID: 27620825 DOI: 10.1016/j.ijfoodmicro.2016.08.042

17. Naghli H, Tajik H, Mardani K, Razavi Rouhani SM, Ehsani A, Zare P. Validation of drop plate technique for bacterial enumeration by parametric and nonparametric tests. Vet Res Forum. 2013; 4(3):179-83. PMID: 25653794

18. Min S, Harris LJ, Krochta JM. Antimicrobial effects of lactoferrin, lysozyme, and the lactoperoxidase system and edible whey protein films incorporating the lactoperoxidase system against Salmonella enterica and Escherichia coli 0157: H7. J Food Sci. 2005; 70(7):332-8. DOI: 10.1111/j.1365-2621.2005.tb11476.x

19. Min S, Harris LJ, Krochta JM. Listeria monocytogenes inhibition by whey protein films and coatings incorporating the lactoperoxidase system. J Food Sci. 2005; 70(7):m317-24. DOI: 10.1111/j.1365-2621.2005.tb11474.x

20. Ehsani A, Jasour MS, Hashemi M, Mehryar L, Khodayari M. Zataria multiflora Boiss essential oil and sodium acetate: how they affect shelf life of vacuum-packaged trout burgers. Int J Food Sci Technol. 2014; 49(4):1055-62. DOI: 10.1111/jfs.12400

21. Akhoundzadeh Basti A, Aminzare M, Razavi Rohani SM, Khanjari A, Noori N, Jebelli Javan A, et al. The combined effect of lysozyme and Zataria multiflora essential oil on Vibrio Parahaemolyticus. J Med Plants. 2014; 72(3):27-34. [Persian]

22. Fu Y, Zu Y, Chen L, Shi X, Wang Z, Sun S, et al. Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother Res. 2007; 21(10):989-94. PMID: 17562569 DOI: 10.1002/ptr.2179

23. Datta S, Janes ME, Xue QG, Losso J, La Peyre JF. Control of Listeria monocytogenes and Salmonella anatum on the surface of smoked salmon coated with calcium alginate coating containing oyster lysozyme and nisin. J Food Sci. 2008; 73(2):M67-71. PMID: 18298738 DOI: 10.1111/j.1750-3841.2007.00633.x

24. Sharifi F, Khanzadi S, Hashemi M, Azizzadeh M. Control of Listeria monocytogenes and Escherichia coli 0157: H7 inoculated on fish fillets using alginate coating containing lactoperoxidase system and Zataria multiflora boiss essential oil. J Aquatic Food Product Technol. 2017; 26(9):1014-21. DOI: 10.1080/10498850.2017.1375057

J Health Sci Technol. 2018 April 2(1): 9-14.