The Best Strategy for Nasogastric Tube Removal in Patients with Acute Appendicitis Complicated with Ileus: A Case Report and Review.

Yu-Ju Tseng
National Taiwan University Hospital
https://orcid.org/0000-0002-7411-7098

Pei-Yin Huang
National Taiwan University Hospital

Po-Chu Lee
National Taiwan University Hospital

Tzu-Hsin Lin
jslin555@ntuh.gov.tw
National Taiwan University Hospital

Rey-Heng Hu
National Taiwan University Hospital

Case report

Keywords: Appendicitis, complicated appendicitis, laparoscopic appendectomy, peritonitis, ileus, nasogastric tube, Urogran study, enhanced recovery after surgery (ERAS)

DOI: https://doi.org/10.21203/rs.3.rs-117529/v1

License: ☒ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Acute appendicitis is one of the most common causes of the acute abdomen. However, acute appendicitis complicated with ileus is uncommon. By presenting this case, we aim to give some suggestions on the postoperative care, especially an algorithm for the insertion and removal of nasogastric tube.

Case presentation

A 20-year-old man presenting with left lower abdominal pain and symptoms of ileus was diagnosed with acute appendicitis complicated with ileus by computed tomography scan. A nasogastric tube was inserted for the ileus preoperatively. He underwent laparoscopic appendectomy, during which periappendiceal abscess with local peritonitis was noted. The nasogastric tube was removed on the first postoperative day, but symptoms of ileus developed again. Urografin study revealed contrast media retaining in the small bowel, so nasogastric tube reinsertion was performed. The nasogastric tube was removed on the ninth postoperative day after the recovery from ileus. The patient was discharged on the thirteenth postoperative day.

Conclusion

Patients of acute appendicitis with ileus should be assessed carefully. Nasogastric tubes shouldn't be removed until the following requirements are satisfied: Firstly, symptoms of abdominal distention and nausea relieve. Secondly, no more hypoactive bowel sounds are found. And finally, nasogastric tube drainage becomes less than 200mL per day, or the passage of flatus or stool presents.

Background

Acute appendicitis is one of the most common causes of the acute abdomen, with incidence about 233 in 100,000 population per year \([1]\). The clinical presentations, laboratory studies and the imaging pictures vary widely, making early diagnosis of patients with atypical presentation difficult.

Acute appendicitis complicated with bowel obstruction is uncommon. The ileus could be classified into four types by its pathophysiology: mechanical obstruction, paralytic ileus, ischemia or strangulation \([2]\). Paralytic ileus, which is mainly caused by a ruptured appendicitis, and subsequent peritonitis, is the most common type among the four \([2]\).

By this case presentation, we not only want to make a brief review of the diagnosis and management of acute appendicitis complicated with ileus, but also review the definition, pathophysiology and the management of postoperative ileus, and further propose an algorithm for the insertion and removal of nasogastric (NG) tubes.
Case Presentation

A 20-year-old man without underlying disease presented to our emergency room (ER) because of progressive intermittent abdominal pain at the left lower quadrant (LLQ) for hours. Accompanied symptoms included abdominal distension and decreased frequency of defecation. No other symptoms, such as nausea, vomiting or fever were reported. Physical examination disclosed LLQ tenderness without other specific signs, such as peritoneal signs, psoas sign, obturator sign, Rovsing's sign, or McBurney's point tenderness. Laboratory data reported leukocytosis with neutrophil predominance (white blood cell count: 14.25 × 10⁹/L, segmented neutrophil percentage: 82%). Abdominal radiography showed prominent bowel gas with some fecal materials. Abdominal and pelvic computed tomography (CT) scan on that day revealed no significant intra-abdominal lesions. Bowel stimulation with oral Metoclopramide and Bisacodyl suppository were prescribed, and the patient was discharged on the same day.

The patient's symptoms persisted after he was discharged. Moreover, progression of abdominal distention and diarrhea for six times developed on the next day. The patient visited our ER again three days later. At the triage, the body temperature was 38.1˚C. Physical examination revealed similar tenderness at the left lower abdomen, with extension to the middle abdomen. There were no peritoneal signs, psoas sign, obturator sign, Rovsing's sign, or McBurney's point tenderness. Laboratory data showed similar leukocytosis with neutrophil predominance (white blood cell count: 14.65 × 10⁹/L, segmented neutrophil percentage: 87%). Abdominal ultrasonography revealed enteropathy with suspected extra-enteric abscess formation at the lower abdomen, and fluid retention in the colon and small bowel. Standing abdominal radiography showed no free air, but prominent bowel gas with diffuse bowel dilatation, suggestive of ileus (Fig. 1a). Besides, abdominal and pelvic CT scan disclosed enhancing appendiceal wall with an intra-luminal fecalith, and diffuse dilatation of the small bowel on the same day (Fig. 1b). Under the impression of acute appendicitis complicated with ileus was impressed, a decompressive NG tube was inserted, and empirical intravenous Ceftriaxone was prescribed. General surgeon was consulted on the same day of his re-visit, and emergent laparoscopic appendectomy was conducted.

During the surgery, inflamed and erosive appendix with turbid ascites, periappendiceal abscess and periappendiceal adhesion was noted. The appendix was transected with auto-suture (Endo GIA; Medtronic, Minneapolis, MN, United States). A 7 mm combination waste vent (CWV) drainage tube was placed in the Douglas pouch at the end of the operation.

After the operation, the patient was admitted to general ward. The antibiotics was adjusted to empirical Flomoxef. On the first postoperative day (POD1), the NG tube showed minimal drainage amount, so the patient tried oral intake with water oral water ingestion, resulting in no nausea or vomiting. The NG nasogastric tube was removed on POD1. The flatus passed on POD2, and the stool passed on POD3.

On POD2, the patient complained about abdominal distention with intermittent dull pain, which persisted despite usage of intravenous Morphine. Physical examination revealed decreased frequency of bowel
movement, so prokinetics including Bisacodyl suppository and intravenous Metoclopramide were prescribed.

Abdominal radiography was taken for persistent abdominal distention on POD4, disclosing even more prominent gas in the bowel loops in comparison to the preoperative period (Fig. 2a). On the same day, Urograin study was performed to evaluate the cause of the ileus, showing retention of contrast medium in the small bowel 24 hours after Urograin intake (Fig. 2b).

The patient suffered from severe abdominal colic pain on the next day after Urograin study (POD5), and there had been no stool or flatus passage since POD3 despite all the efforts of bowel stimulants. Physical examination showed a hard and distended abdomen, with the percussion revealing hyper-tympanic sounds and hypoactive bowel sounds. Episodic vomiting with bile-like content for about 250 mL took place on POD6. For suspected postoperative ileus, oral intake was hindered, the treatment of Bisacodyl suppository and intravenous Metoclopramide was continued, and a decompressive NG tube was inserted on POD6. A large amount of bile-like content for about 1400 mL was drained in the first 8 hours after the insertion of the NG tube. The following abdominal radiography on POD7 revealed persistent bowel loops distention, with some contrast medium entered into the ascending colon (Fig. 2c).

On POD7, two days after the NG tube insertion, the amount of the NG tube drainage decreased gradually from 350 mL to 150 mL in every 8 hours (Fig. 3), and the abdominal distension improved. Flatus passage with defecation was also noted. The patient resumed liquid diet since POD8. The NG tube was clamped on the third day (POD8), and removed after the abdominal radiography showing residual focal bowel loops distention with the passage of Urograin to the rectum on the fourth day after insertion (POD9) (Fig. 4). The CWV drain was removed due to minimal drainage amount, and Flomoxef was replaced by oral Cefixime on POD13. The patient was discharged on POD13.

Discussions

Acute appendicitis is a usual cause of acute abdomen, and the clinical pictures vary from patient to patient. Patients with suspicious appendicitis are preliminarily evaluated by the Alvarado score to assess the risk of appendicitis [3]. The score is composed of history, results of physical examination and laboratory data [3]. The patient with a higher Alvarado score possesses a higher likelihood of appendicitis. Further imaging studies are indicated in patients with Alvarado score greater than 4, and have at least intermediate probability of acute appendicitis [4, 5].

In this presented case, he had no specific symptoms and signs except for leukocytosis at first, with the Alvarado score 3. The CT scan also disclosed negative results. However, more symptoms developed after he was discharged from the ER. At the time of his revisiting ER, the Alvarado score reached 4, and repeated CT scan revealed appendicitis with ileus. Though some reports suggested that leukocytosis as well as elevated C-reactive protein achieve satisfactory sensitivity in setting up the diagnosis, neither of the two test results can confirm or rule out acute appendicitis [6]. Back to our patient, there was no supportive evidence to start the treatment for acute appendicitis at the first visit. However, it might be
reasonable to keep the patient observed in the ER. If his condition deteriorated or the calculated Alvarado score increased gradually, repeated CT scan was reasonable to achieve a definite diagnosis.

The classification of acute appendicitis is important as the treatment strategies may differ [4]. Traditionally, surgeons divide acute appendicitis into two groups: simple or complicated. For the former, which is defined as an inflamed appendix without signs of gangrene, perforation, intra-peritoneal purulent fluid, contained phlegmon or intra-peritoneal abscess, appendectomy remains a golden standard of the treatment [4]. Despite the fact that some opposing clinicians propose the potential benefits of non-operative initial management for simple appendicitis, there is still no satisfactory quality evidence to support sole antibiotics treatment for appendicitis [7, 8]. As to the treatment of complicated appendicitis, firm conclusions fail to be drawn [4]. Some studies claim that operation is associated with more complications, and that non-operative treatment is a better option [9, 10], while others advocate aggressive operation, assuming that non-operation treatment leads to higher recurrent rate [11].

Acute appendicitis complicated with small bowel obstruction is uncommon, which could be classified into four types: mechanical obstruction, paralytic ileus, ischemia and strangulation [2]. The adhesion from the peri-appendicular inflammation is the culprit of mechanical obstruction. Paralytic ileus is the result of perforated appendicitis, which leads to generalized or localized peritonitis. The thromboembolic event happening in the ileal artery and its branches following the appendicitis leads to the ischemic type [12]. Moreover, the inflamed appendix wrapped around a long loop of small bowel creates a closed loop obstruction which is strangulated [13]. Early surgical intervention is important in patients of appendicitis with bowel obstruction. Whichever features of intestinal obstruction predominate, midline vertical incision was suggested, for the reason that the exact pathological type is nearly impossible to be determined beforehand. McBurney's incision may be enough if the obstruction is paralytic or mechanical. However, it would be dangerous to incise at the McBurney's point when strangulation or mesenteric ischemia presents, as these pathological changes are likely to be overlooked through a small and lateral approach [2]. There were no convincing studies comparing the outcome of open surgery and laparoscopic approach, but a case report proposed that laparoscopic surgery should be performed if the etiology of bowel obstruction other than appendicitis was suspected [14].

Postoperative ileus (POI) is a frequent complication after abdominal surgery; however, the definition and the diagnosis of the disease underlie wide variation. Some reports define it as no passage of flatus or stool and tolerance of an oral diet on the postoperative day 3 (POD3). They also name the patient with “prolonged” POI if two or more of the following five conditions presented since POD4: nausea or vomiting; inability to tolerate an oral diet for more than 24 h; absence of flatus for more than 24 h; abdominal distension, and radiologic confirmation [15]. However, different experts characterize it by different duration and clinical parameters [16, 17]. Furthermore, there is no consensus on the necessary diagnostic tools. Some experts preferred plain films, while others order CT scan or water-soluble contrast studies such as Urografin study, or even the combination of various tests [18, 19].
Urografin study is widely reported to play both diagnostic and therapeutic parts in adhesive small bowel obstruction [20]. The study acts as similar roles in patients with POI. By Urografin study, surgeons are able to differentiate paralytic ileus with mechanical intestinal obstruction, and to distinguish those who need emergent surgery [21]. Moreover, the high osmolarity of the water-soluble contrast medium is theoretically believed to reduce bowel wall edema, which further increase the luminal diameter and subsequently relieve the symptoms of POI [22]. Nevertheless, the study only shows benefits in patients with lower gastrointestinal symptoms [22]. Besides, in terms of the timing of the study, it was suggested to be done once surgeons assess the patients and suspect prolonged POI clinically since POD4 by some convincing clinical trials [22, 23].

Venara et.al. divide the pathophysiology of POI into three phases. The first one is neurological phase, which is involved by the activation of sympathetic tone, and the subsequently activated CycloOxygenase-2 (COX 2). The second phase is described as inflammatory phase. The phase was predominated by the inflammatory process, which may be disseminated from a localized inflammatory site, such as appendix, to surrounding peritoneal cavity. The increase of bowel wall permeability in this phase may induce bacterial translocation. Last but not least, the third phase, called vagal phase, is the recovery phase, which is caused by the elevation of vagal tone, the effects of acetylcholine and serotonin, and its anti-inflammatory effects [24]. Once the inflammation resolves, the swelling of the bowel walls will relieve, and the bowel motility will recover gradually.

In this case, the localized peritonitis not merely caused paralytic ileus preoperatively, but also acts as risk factor for POI [25], which can be attributed to the second phase of pathophysiology. Besides, the more complicated the appendicitis is, the larger extent of the peritoneum tends to be damaged during the surgery, and the damaged peritoneum will further enhance the inflammation [25]. While we were managing our patient, the probability of the POI should be kept in mind, and took actions earlier once the symptoms presented.

Most of the treatments and preventions of POI are well-established. Non-medical management, such as fluid optimization and chewing gum [26], as well as medications, such as prokinetics and nonsteroidal anti-inflammatory drugs (NSAIDs) are the examples [18]. However, there has been no consensus about the timing of insertion and removal of the NG tube. Lots of the experts insert NG tubes when the patients have abdominal distension or tenderness and vomiting over 500 ml, and some remove the NG tube when the patients feel hungry subjectively [18].

The trend of postoperative care followed the concept of “Enhanced Recovery After Surgery (ERAS)” nowadays, advocating to remove the inserted tubes, including NG tubes, as well as commence oral feeding as soon as possible, and to reserve the use of opioids for pain control [27]. The concept was initially adopted in elective surgeries; however, it was also confirmed to decrease the complications and fasten the recovery of bowel motility after emergent abdominal surgeries in recent studies [28]. Early removal of NG tubes after the elective surgeries tends to decrease the risk of complications, accelerate the return to oral feeding, and significantly reduce patients’ discomfort [29]. Furthermore, in patients who
underwent surgeries for small bowel obstruction, early removal of NG tubes was also proven to lower the risk of POI, and cause no severe complications [30].

In this case, the NG tube was removed on POD1 because of the minimal drainage amount. However, the patient suffered from abdominal distention and vomiting since POD2, and confirmed POI diagnosis by abdominal radiography and Urograin study on POD7. The conditions improved after the reinsertion of the NG tube. After the experience of managing such a case, we suggested that the NG tube should be left in situ after the surgery until decompression amount decreased to less than 200 mL per day or the presence of flatus or stool passage [32], and the NG tube should be reinserted immediately once the patient vomits. Intravenous Morphine should be limited, or better replaced by NSAIDs. Furthermore, Urograin study should be held until NG tube was inserted and recorded a fair amount. Thus, the passage of contrast medium can both achieve the therapeutic effect and the adequate diagnostic value. The suggested algorithm of insertion or removal of NG tubes is shown in Fig. 5 [31, 32].

Conclusions

Early removal of NG tubes and to commence oral feeding soon after operation becomes a trend of postoperative care nowadays. However, it is not routinely suitable for patients with ileus. We suggests that patients of acute appendicitis or other minor diseases complicated with ileus should be assessed carefully. NG tubes shouldn't be removed until the following requirements are satisfied: Firstly, symptoms of abdominal distention and nausea relieve. Secondly, no more hypoactive bowel sounds are found. And finally, NG tube drainage becomes less than 200 mL per day, or the passage of flatus or stool presents.

Abbreviations

ER
Emergency room
CT
Computed tomography
NG tube
Nasogastric tube
CWV drain
combination waste vent drain
POD
Postoperative day
POI
Postoperative ileus
ERAS
Enhanced Recovery After Surgery
NSAIDs
Nonsteroidal anti-inflammatory drugs
Declarations

Ethics approval and consent to participate

Since this is a case report, the ethics approval from institution review board (IRB) and the consent to participate are not required in our hospital.

Consent for publication

Consent to publish the case was obtained from our patient.

Availability of data and materials

Not applicable

Competing interests

The authors declare that they have no competing interests.

Funding

The authors declare that there are no funding sources in this article.

Authors' contributions

YJ Tseng and PY Huang contributed to this paper equally.

PY Huang and TH Lin took charge of the emergency surgery. PY Huang and TH Lin took care of the patient in the ward. YJ Tseng and PY Huang were responsible for writing the manuscript and edited the figures; PC Lee, TH Lin and RH Hu revised the paper.

All authors have read and approved the manuscript.

All authors have agreed both to be personally accountable for the author's own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature.

Acknowledgements

Not applicable

Additional information

Affiliations
Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan

Department of Traumatology, National Taiwan University Hospital, Taipei, Taiwan

Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan

Yu-Ju Tseng

Pei-Yin Huang

Po-Chu Lee

Tzu-Hsin Lin

Rey-Heng Hu

Corresponding author

Correspondence to Tzu-Hsin Lin.

References

1. Addiss DG, Shaffer N, Fowler BS, Tauxe RV. The epidemiology of appendicitis and appendectomy in the United States. Am J Epidemiol. 1990 Nov;132(5):910–25.

2. Bhandari L, Mohandas P. Appendicitis as a cause of intestinal strangulation: a case report and review. World J Emerg Surg. 2009 Oct;10:4:34.

3. Alfredo Alvarado. A Practical Score for the Early Diagnosis of Acute Appendicitis. Ann Emerg Med. 1986;15(5):557–64.

4. Gorter RR, Eker HH, Gorter-Stam MA, Abis GS, Acharya A, Ankersmit M, et al. Diagnosis and management of acute appendicitis. EAES consensus development conference 2015. Surg Endosc. 2016 Nov;30(11):4668–4690.

5. Tan WJ, Pek W, Kabir T, Goh YC, Chan WH, Wong WK, et al. Alvarado score: a guide to computed tomography utilization in appendicitis. ANZ J Surg. 2013 Oct;83(10):4668–4690.

6. Atema JJ, Gans SL, Beenen LF, Toorelvliet BR, Laurell H, Stoker J, et al. Accuracy of White Blood Cell Count and C-reactive Protein Levels Related to Duration of Symptoms in Patients Suspected of Acute Appendicitis. Acad Emerg Med. 2015 Sep;22(9):1015–24.

7. Varadhan KK, Neal KR, Lobo DN. Safety and efficacy of antibiotics compared with appendectomy for treatment of uncomplicated acute appendicitis: meta-analysis of randomised controlled trials. BMJ. 2012 Apr;5:344:e2156.

8. Wilms IM, de Hoog DE, de Visser DC, Janzing HM. Appendectomy versus antibiotic treatment for acute appendicitis. Cochrane Database Syst Rev. 2011 Nov 9;(11):CD008359.
9. Andersson RE, Petzold MG. Nonsurgical treatment of appendiceal abscess or phlegmon: a systematic review and meta-analysis. Ann Surg. 2007 Nov;246(5):741–8.

10. Simillis C, Symeonides P, Shorthouse AJ, Tekkis PP. A meta-analysis comparing conservative treatment versus acute appendectomy for complicated appendicitis (abscess or phlegmon). Surgery. 2010 Jun;147(6):818–29.

11. Deelder JD, Richir MC, Schoorl T, Schreurs WH. How to treat an appendiceal inflammatory mass: operatively or nonoperatively? J Gastrointest Surg. 2014 Apr;18(4):641–5.

12. O'Donnell ME, Sharif MA, O’Kane A, Spence RA. Small bowel obstruction secondary to an appendiceal tourniquet. Ir J Med Sci. 2009 Mar;178(1):101–5.

13. Bose SM, Talwar BL. Appendicitis causing acute intestinal obstruction with strangulation. Aust N Z J Surg. 1973 Jul;43(1):56–7.

14. Al-Qallaf A, Shuaib A, Al-Sharaf K, Behbehani A. Acute appendicitis as a rare cause of mechanical small bowel obstruction case report. Qatar Med J. 2017 Jul 3;2017(2):4.

15. Vather R, Trivedi S, Bissett I. Defining postoperative ileus: results of a systematic review and global survey. J Gastrointest Surg. 2013 May;17(5):962–72.

16. Wattchow DA, De Fontgalland D, Bampton PA, Leach PL, McLaughlin K, Costa M. Clinical trial: the impact of cyclooxygenase inhibitors on gastrointestinal recovery after major surgery - a randomized double blind controlled trial of celecoxib or diclofenac vs. placebo. Aliment Pharmacol Ther. 2009 Nov;15(10):987–98. 30(.

17. Adamakis I, Tyritzis SI, Koutalellis G, Tokas T, Stravodimos KG, Mitropoulos D, et al. Early removal of nasogastric tube is beneficial for patients undergoing radical cystectomy with urinary diversion. Int Braz J Urol. 2011 Jan-Feb;37(1):42–8.

18. Gero D, Gié O, Hübner M, Demartines N, Hahnloser D. Postoperative ileus: in search of an international consensus on definition, diagnosis, and treatment. Langenbecks Arch Surg. 2017 Feb;402(1):149–58.

19. Frager DH, Baer JW, Rothpearl A, Bossart PA. Distinction between postoperative ileus and mechanical small-bowel obstruction: value of CT compared with clinical and other radiographic findings. AJR Am J Roentgenol. 1995 Apr;164(4):891–4.

20. Burge J, Abbas SM, Roadley G, Donald J, Connolly A, Bissett IP, et al. Randomized controlled trial of Gastrografin in adhesive small bowel obstruction. ANZ J Surg. 2005 Aug;75(8):672–4.

21. Zer M, Kaznelson D, Feigenberg Z, Dintsman M. The value of Gastrografin in the differential diagnosis of paralytic ileus versus mechanical intestinal obstruction: a critical review and report of two cases. Dis Colon Rectum. 1977 Oct;20(7):573–9.

22. Vather R, Josephson R, Jaung R, Kahokehr A, Sammour T, Bissett I. Gastrografin in Prolonged Postoperative Ileus: A Double-blinded Randomized Controlled Trial. Ann Surg. 2015 Jul;262(1):23–30.

23. Biondo S, Miquel J, Espin-Basany E, Sanchez JL, Golda T, Ferrer-Artola AM, et al. A Double-Blinded Randomized Clinical Study on the Therapeutic Effect of Gastrografin in Prolonged Postoperative
Ileus After Elective Colorectal Surgery. World J Surg. 2016 Jan;40(1):206–14.

24. Venara A, Neunlist M, Slim K, Barbieux J, Colas PA, Hamy A, et al. Postoperative ileus: Pathophysiology, incidence, and prevention. J Visc Surg. 2016 Dec;153(6):439–46.

25. Tseng CJ, Sun DP, Lee IC, Weng SF, Chou CL. Factors Associated With Small Bowel Obstruction Following Appendectomy: A Population-Based Study. Medicine (Baltimore). 2016 May;95(18):e3541.

26. van den Heijkant TC, Costes LM, van der Lee DG, Aerts B, Osinga-de Jong M, Rutten HR, et al. Randomized clinical trial of the effect of gum chewing on postoperative ileus and inflammation in colorectal surgery. Br J Surg. 2015 Feb;102(3):202–11.

27. Ljungqvist O, Scott M, Fearon KC. Enhanced Recovery After Surgery: A Review. JAMA Surg. 2017 Mar 1;152(3):292–298.

28. Hajibandeh S, Hajibandeh S, Bill V, Satyadas T. Meta-analysis of Enhanced Recovery After Surgery (ERAS) Protocols in Emergency Abdominal Surgery. World J Surg. 2020 May;44(5):1336–48.

29. Vermeulen H, Storm-Versloot MN, Busch OR, Ubbink DT. Nasogastric intubation after abdominal surgery: a meta-analysis of recent literature. Arch Surg. 2006 Mar;141(3):307–14.

30. Delestre M, Berge P, Aubé C, Hamy A, Hamel JF, Paisant A, et al. Nasogastric tube after small bowel obstruction surgery could be avoided: a retrospective cohort study. Eur J Trauma Emerg Surg. 2020 Oct 23; doi: 10.1007/s00068-020-01529-4. [Epub ahead of print].

31. James B, Kelly B. The abdominal radiograph. Ulster Med J. 2013;82(3):179–87.

32. Ichida H, Imamura H, Yoshimoto J, Sugo H, Ishizaki Y, Kawasaki S. Randomized Controlled Trial for Evaluation of the Routine Use of Nasogastric Tube Decompression After Elective Liver Surgery. J Gastrointest Surg. 2016 Jul;20(7):1324–30.

Figures
Figure 1

(a) Standing abdominal X-ray film on the second visit to ER showed prominent bowel gas with diffuse bowel dilatation (arrows). (b) Abdominal and pelvic CT scan on the second visit to ER showed enhancing appendiceal wall with an intra-luminal fecalith (circled by the line).

Figure 2

(a) Abdominal radiography on POD4 showed more prominent gas in the bowel loops (parallel arrows), compared with Fig.1a. (b) Urografin study on POD4 to POD5 showed contrast retention in the small bowel (upward arrows) 24hr after the intake of the contrast medium. (c) Abdominal radiography on POD7 showed similarly distended bowel loops (white arrows), with little contrast medium entered into the ascending colon (dotted-lined arrows).
Figure 3

NG decompression amount since the re-insertion of NG tube: The decompression amount from the NG tube re-inserted since POD6. The NG tube was clamped on POD8, and removed on POD9.
Figure 4

Abdominal radiography done on POD9 showed residual focal bowel loops distention with the passage of contrast medium into the colon (arrows) and the rectum (dotted-lined arrows).
Figure 5

Postoperative NG insertion and removal in patients of appendicitis complicated with ileus: (a) Ileus pattern on abdominal radiography: Dilated loops of bowels, which are generalized or localized, with the diameters of small bowels exceeding 3cm, colon exceeding 6cm or cecum exceeding 9cm. (b) The rule of thumb from the surgeons of our hospital.