Incidence, Mortality, and Survival Trends of Primary CNS Tumors in Cali, Colombia, From 1962 to 2019

Ivy Riano, MD1; Pablo Bravo, MD2; Luis Eduardo Bravo, MD2; Luz Stella Garcia, MPH2; Paola Collazos, MSSE2; and Edwin Carrascal, MD2

abstract

PURPOSE Global studies have shown varying trends of CNS tumors within geographic regions. In Colombia, the epidemiologic characteristics of CNS neoplasms are not well elucidated. We aimed to provide a summary of the descriptive epidemiology of primary CNS tumors among the urban population of Cali, Colombia.

METHODS We conducted a time-trend study from 1962 to 2019 using the Population-Based Cali Cancer Registry. The age-standardized rates per 100,000 person-years were obtained by direct method using the world standard population. Results were stratified by sex, age group at diagnosis, and histologic subtype. We used Joinpoint regression analysis to detect trends and obtain annual percentage change (APC) with 95% CIs. We estimated 5-year net survival using the Pohar-Perme method.

RESULTS During 1962 to 2016, 4,732 new cases of CNS tumors were reported. From 1985 to 2019, a total of 2,475 deaths from malignant CNS tumors were registered. A statistically significant increase in the trends of incidence (APC, 2.8; 95% CI, 2.1 to 3.5) and mortality (APC, 1.5; 95% CI, 1.1 to 2.0) rates was observed during the study. The most common malignant CNS tumor was glioblastoma (17.8% of all tumors), and the most frequent benign tumor was meningioma (17.2%). Malignancy was more common in males than in females. Unspecified malignant neoplasms represented 32% of all cases. The highest 5-year net survival was 31.4% during 2012 to 2016.

CONCLUSION Our findings demonstrate an increasing burden of primary CNS tumors for the last 60 years, with a steady rate from the early 2010s. There was an improvement of 5-year net survival for the last decade. Males had higher mortality than did females. Additional efforts are needed to fully explore the geographic, environmental, and genetic contributors of CNS malignancies within the region.

INTRODUCTION

Primary CNS tumors represent a heterogeneous group of benign and malignant tumors arising mainly from the brain and less frequently from the spinal cord, cranial nerves, and meninges.1 Histologically, brain tumors encompass a wide collection of neoplasms.2 Compared with other malignancies, brain and CNS tumors are rare in adults, yet they are a significant burden of morbidity and mortality.3 According to GLOBOCAN 2018, brain and CNS malignancies were the 14th cause of cancer morbidity and 10th cause of cancer mortality, representing 2.1% (29,539) of new cases and 3.3% (22,312) of deaths from all primary malignancies in Latin America and the Caribbean.4

Incidence rates of CNS tumor, despite its rarity, showed an increasing trend from the 1970s to the early 1990s in high-income countries. This variation was partly attributable to the advent of high-throughput diagnostic markers and tools—for example, introduction of computed tomography scan in the 1970s and magnetic resonance imaging in the mid-1980s, and the development of specialized medical care.5,6 Nevertheless, whereas some cancer registries continue to report an increase in incidence rates since the end of the 1990s, others have shown a downturn.6,7 The etiology of intracranial neoplasms is poorly understood. Trends of incidence and mortality have been helpful to characterize CNS tumor morphology and clinical behavior related to age.8,9 Moreover, the distribution of histologic types also varies according to sex.9 Thus, increasing the epidemiologic characterization of CNS cancers might elucidate disease patterns within a geographic region.

The Population-Based Cali Cancer Registry (PCCR) started in 1962 as a research program of the Department of Pathology of the Universidad del Valle...
School of Medicine in Cali, Colombia. Currently, PCCR is recognized by the International Agency for Research on Cancer (IARC), an entity of WHO. PCCR uses quality assurance procedures based on IARC guidelines to validate the quality of cancer registration. It is estimated that the reporting is at least 95% complete. The registry has been an advisor to the Colombian government, contributing significantly to different aspects of cancer control in Colombia. \(^{10,11}\)

In this study, we used data registered from 1962 to 2019 in the PCCR to provide a population-based description of trends in incidence, mortality, and survival rates of primary CNS tumors in Cali, Colombia, presented by age at diagnosis, sex, and histologic type. We aimed to provide a more complete understanding of these malignancy variations within the region.

METHODS

Patient Population

We conducted a population-based study to describe the incidence, mortality, and survival rates of primary brain and other CNS tumors reported to the PCCR in Cali, Colombia, from 1962 to 2019. In this study, we retrieved incidences of cases collected by PCCR from 1962 to 2016, and mortality data between 1985 and 2019. Tumors of benign behavior were included since 1992. Cancer registries record cancer cases, not patients; therefore, case reports were obtained continuously through an active search by visiting all sources of information, including hospitals, clinics, pathology departments, and oncology facilities—approximately 165—located in the urban area of Cali. Retrieval of new death registries was performed periodically from death certificates shared by the Cali Municipal Office of Vital Statistics. The information was integrated into the PCCR database using international standards of good practice.\(^{10,12}\)

Cali is the third-largest city in Colombia and the most densely inhabited city in the Colombian Southwest. According to the 2018 census of the National Administrative Department of Statistics of Colombia, the population of Cali was 2,227,642: 52.8% were female and 47.2% male, and 26.2% self-identified as Black.\(^{13}\) Overall life expectancy at birth was 74.4 years.\(^{14}\) In this study, the total population of Cali was obtained from the official census data provided by the National Administrative Department of Statistics of Colombia during 1964, 1973, 1983, 1993, and 2005.

CNS Tumor Definition

Primary malignant CNS tumors were coded using the International Classification of Diseases (ICD) for Oncology, 3rd edition, by IARC/WHO.\(^{15}\) Three ICD versions were used throughout the registration period: 8th (1962 to 1978), 9th (1979 to 1998), and 10th revision (1998 to present). The IARCtools program was used in 1998 to convert codes between ICD versions.

Histologic types were clustered by their tissue of origin using the ICD for Oncology, 3rd edition, morphology codes and were classified according to major WHO categories for brain and CNS tumors as follows: tumors of neuroepithelial tissue, tumors of the meninges, tumors of the paraspinal nerves, tumors of the sellar region, germ cell tumors, lymphomas, and malignant tumors not otherwise specified (NOS). On the basis of their biologic behavior, CNS neoplasms fall into two categories: nonmalignant (previously called benign /0/ and borderline /1/) and malignant (/3/). There is no /2/ code—neoplasia in situ—in the CNS morphology classification.\(^{16}\) The study population was stratified by sex and age at diagnosis into broad groups: children (0 to 14 years), teenagers (15 to 19 years), adults (20 to 64 years), and older adults (65 years or older).

Statistical Analysis

The crude and age-standardized incidence and mortality rates were reported as the number of cases per 100,000 person-years at risk using the urban standard population of Cali, Colombia, for each year. For every 5-year study period, an age-standardized rate (ASR) per 100,000 person-years was assessed by the direct method using the standard world population. Joinpoint regression
analysis was used to detect changes in rate trends and obtain the annual percentage change (APC) in incidence and mortality rates with 95% CIs. APC was considered statistically significant if the 95% CI did not include 0. For this analysis, we used SEER*Stat software (National Cancer Institute).

We estimated the 5-year net survival for adults (age 15 to 99 years) who were diagnosed with malignant brain tumors using the Pohar-Perme method. This estimator allows for an unbiased estimate of net survival—for example, the probability for patients to survive their cancer up to a given time since diagnosis—after controlling for other causes of death.17 Exclusion, failure, and survival time criteria were previously described.12 Estimation of 15-year survival analysis was obtained by combining the cohort analyses for the intervals 2000 to 2004 and 2005 to 2009 as well as the period analysis for the interval 2012 to 2016. Survival possibilities were estimated by applying the extended life table method.18 Life tables of all-cause mortality in the general population of Cali were constructed from the number of deaths and the population by single year of age, sex, and calendar year.19 Age standardization used International Cancer Survival Standard-2 weights.20

RESULTS

Incidence

A total of 4,732 new cases of malignant and nonmalignant primary brain and other CNS tumors were reported in Cali, Colombia, from 1962 to 2016. During the last period, 2012 to 2016, CNS tumors represented 3.6% of all primary cancers in males and 3.2% in females. For the first period in the study (1962 to 1966), the annual age-adjusted incidence rate of all malignant and benign CNS tumors was 3.6 per 100,000 person-years, whereas for the last period of the study, 2012 to 2016, the rate increased to 7.8 per 100,000 person-years. The major increase in the

TABLE 1. Trends in Incidence (1962-2016) and Mortality (1985-2019) Rates for All Primary Brain and Other CNS Tumors Grouped by Age of Diagnosis and Sex

Period	Age at Diagnosis, Years	Sex	Age-Specific Rate	Male	ASR	Female	ASR	Both	ASR
	0-14 15-19 20-64 ≥ 65		No.	CR	ASR	No.	CR	ASR	
Incidence									
1962-1966			52	3.6	5.0	29	1.8	2.5	81
1967-1971			56	3.2	3.7	29	1.4	1.7	85
1972-1976			49	2.3	2.8	49	2.0	2.6	98
1977-1981			80	3.2	4.1	59	2.1	2.4	139
1982-1986			87	2.9	3.6	83	2.5	3.0	170
1987-1991			124	3.6	4.5	112	2.9	3.6	236
1992-1996			233	6.0	7.3	249	5.7	6.7	482
1998-2001			295	6.9	7.9	386	8.1	8.6	681
2002-2006			338	7.1	7.8	455	8.6	8.6	793
2007-2011			419	7.9	8.3	540	9.4	8.6	959
2012-2016			439	7.8	7.7	569	9.3	7.9	1,008
APC (95% CI)			2.4* (1.9 to 2.9)		1.8*(1.3 to 2.3)		2.8*(2.1 to 3.5)		
Mortality									
1985-1989			63	1.9	2.6	71	1.9	2.6	134
1990-1994			88	2.4	3.2	85	2.0	2.5	173
1995-1999			143	3.5	4.4	102	2.2	2.6	245
2000-2004			152	3.4	3.9	168	3.3	3.4	320
2005-2009			222	4.3	4.8	242	4.3	4.0	464
2010-2014			269	4.9	4.9	272	4.5	3.9	541
2015-2019			294	5.1	4.8	304	4.8	3.8	598
APC (95% CI)			1.5* (0.9 to 2.0)		1.6* (1.0 to 2.2)		1.5* (1.1 to 2.0)		

NOTE. Data from the Population-Based Cali Cancer Registry, Cali, Colombia. Abbreviations: APC, annual percent change; ASR, age-standardized rate per 100,000 person-years (world population); CR, crude rate.
*APC statistically different from zero ($P < .05$).
TABLE 2. Age-Standardized Incidence Rate (per 100,000 person-years) for All Primary CNS Tumors Categorized by Behavior (benign, borderline, malignant) and Sex, 1962-2016

Period	Both	Male	Female	Both	Male	Female	Both	Male	Female
1962-1966	0.5	0.4	0.5	0.0	0.1	0.0	3.2	4.5	2.1
1967-1971	0.1	0.2	0.0	0.0	0.0	0.0	2.6	3.5	1.7
1972-1976	0.0	0.0	0.1	0.1	0.1	0.1	2.6	2.7	2.5
1977-1981	0.0	0.0	0.0	0.0	0.0	0.0	3.1	4.0	2.4
1982-1986	0.0	0.0	0.0	0.0	0.0	0.0	3.3	3.6	2.9
1987-1991	0.0	0.0	0.0	0.0	0.0	0.0	4.0	4.5	3.6
1992-1996	2.0	1.6	2.3	0.7	0.6	0.8	4.3	5.1	3.6
1997-2001	2.2	1.1	3.1	1.1	0.8	1.3	5.0	6.0	4.2
2002-2006	2.1	1.1	2.9	1.0	1.0	1.1	5.1	5.8	4.6
2007-2011	2.1	1.2	2.9	1.2	1.3	1.1	5.1	5.7	4.6
2012-2016	1.9	1.2	2.5	0.9	0.9	0.9	5.1	5.7	4.5

NOTE. Data from the Population-Based Cali Cancer Registry, Cali, Colombia. Abbreviation: ASR, age-standardized rate per 100,000 person-years (world population).

Mortality

Altogether, a total of 2,475 deaths from primary malignant brain and other CNS tumors were registered from 1985 to 2019. The annual mortality rate was 2.6 per 100,000 person-years during 1985 to 1989 compared with 4.2 per 100,000 person-years during 2015 to 2019 (Table 1). Males had greater mortality rates than did females throughout the study time—for example, ASR was 4.8 versus 3.8 per 100,000 person-years, respectively, during the 2015 to 2019 period (the mortality male:female ratio was 1.3:1; Fig 2). Trends analysis revealed a statistically significant increase in mortality between 1985 and 2019 (APC, 1.5; 95% CI, 1.1 to 2.0).

Histologic Types

The distribution of all brain and other CNS tumors by histology and age at diagnosis is presented in Table 3. The most common of all malignant CNS tumors was glioblastoma (17.8% of all tumors; n = 840). This malignancy was most frequent in the population age 15 years or older and less common in children. Meningioma was the second most frequently reported CNS histology (17.2%; n = 812) and the most common benign tumor overall (Table 3). For children (age 0 to 14 years), the largest group of CNS tumors was diffuse astrocytoma followed by medulloblastoma (16.6% and 14.5%, respectively). Other frequent CNS tumors in children were pilocytic astrocytoma (9.7%), glioblastoma (8.6%), and ependymoma (8.2%; Table 3), yet 27.7% represented unclassified tumors in this age group.

Among major histology groupings, tumors of neuroepithelial tissue (43.4%) and tumors of the meninges (17.6%) were more common, followed far behind by tumors of paraspinal nerves (1.8%), lymphomas (0.9%), germ cell tumors (0.2%), and tumors of the sellar region (0.04%). Nonetheless, the proportion of unspecified neoplasms was 36.0% of all cases (Table 3). The overlapping lesion of brain and the CNS represented only 2% (n = 100 cases).

The most prevalent glioma subtype was that of astrocytic origin—diffuse astrocytoma, anaplastic astrocytoma, glioblastoma, oligodendroglioma, anaplastic oligodendroglioma, oligoastrocytoma—accounting for 36.1% of all tumors. The most recurrent benign nerve sheath tumor was schwannoma (Table 3).
TABLE 3. Histologic Types of Brain and Other CNS Tumors Ordered By Age at Diagnosis, 1962-2016

Histology	ICD-O-3 Histology and Behavior Code	Age at Diagnosis, Years, No.	%
Tumors of neuroepithelial tissue			
Diffuse astrocytic and oligodendrogial tumors			
Diffuse astrocytoma	9400; 3	227	1,710
Anaplastic astrocytoma	9401/3	14	153
Glioblastoma*	9440; 3; 9441; 3; 9442/3	48	792
Oligodendroglioma	9450/3	12	113
Anaplastic oligodendroglioma	9451/3; 9460/3	3	21
Oligoastrocytoma	9382/3	3	31
Other astrocytic tumors	9421/3; 9425/3; 9384/1; 9424/3; 9411/3; 9420/3	54	79
Ependymal tumors			
Ependymoma	9391/3	46	92
Other tumorsz	9392/3; 9383/1; 9394/1; 9393/3	32	76
Choroid plexus tumors	9390; 1	14	16
Other neuroepithelial tumors	9444/1; 9431/1; 9430/3	14	5
Neuronal and mixed neuronal-glial tumors			
Ganglioglioma	9505/1	4	10
Other tumorsx	9505/3; 9509/1; 9506/1; 9505/1	4	9
Tumor of the pineal region	9361/1; 9362/1; 9395/3	4	10
Embryonal tumors			
Mesenchymal, nonmeningeothelial tumors	8815; 0; 9161; 3; 9120; 3; 9140; 3; 9364; 3; 8850; 3; 8810; 3; 8890; 3; 8900; 3; 9220; 0; 9220; 0; 9180; 0; 9210; 0; 9180/3	418	54
Melanocytic tumors			
Tumor of the sellar region			
Craniopharyngioma and other tumors	9350/1; 9351/1; 9352/1; 9582/0; 9432/1; 8290/0	600	80
Germ cell tumors			
Germinoma	9064/3	4	4
Other tumorsx	9070/3; 9100/3; 9071/3; 9080/3; 9080/1; 9084/3; 9085/3	21	3

(Continued on following page)
With respect to diagnostic methods, 74.4% (n = 3,519) of all brain and CNS tumors had microscopic confirmation during the study period (1962 to 2016), whereas 20.0% (n = 947) were radiographically confirmed, and 5.6% (n = 266) were obtained from death certificates (n = 28). All histologic behaviors were included.

Survival

The highest 5-year net survival after the diagnosis of malignant brain tumors among adults (age 15 to 99 years) was 31.4%, occurring during the 2012 to 2016 period. There was variation in survival estimates upon the calendar period of diagnosis: Five-year net survival was lower for the period 2000 to 2004 (23.4%) and increased during 2005 to 2009 (28.2%; Fig 3).

DISCUSSION

Overall, new cases of brain and other CNS tumors increased steadily between 1962 and 2016 in both males and females across all ages. The highest burden of new diagnoses was observed predominantly since the early 1990s. Upward trends may reflect the development of enhanced diagnostic practices and more readily available access to health care services in Colombia, rather than a true change in the natural history of CNS cancers.21-24 It is also reasonable that, given the lack of diagnostic imaging during the first decades, there was an underdiagnosis of CNS tumors.21

However, an alternative interpretation is that exposures to harmful environmental agents might contribute to TABLE 3. Histologic Types of Brain and Other CNS Tumors Ordered By Age at Diagnosis, 1962-2016 (Continued)

Histology	ICD-O-3 Histology and Behavior Code	0-14	≥ 15	Total	%
Lymphomas	9680/3	0	42	42	0.9
Diffuse large B-cell lymphoma of the CNS	9686/1; 9712/3; 9714/3; 9702/3; 9699/3	0	38	38	
Other lymphomas	9702/3	0	4	4	
Unclassified tumors, NOS	155	1,549	1,704	36.0	
Total		559	4,173	4,732	100.0

NOTE. Data from the Population-Based Cali Cancer Registry, Cali, Colombia. Behavior codes are as follows: /0 benign; /1 borderline; /3 malignant. Abbreviations: ICD-O-3: International Classification of Diseases for Oncology, 3rd Edition; NOS, not otherwise specified.

* Includes giant cell glioblastoma, gliosarcoma, and epithelioid gliosarcoma.

† Includes pilocytic astrocytoma, subependimal giant cell astrocytoma, pleomorphic xanthoastrocytoma, gemistocytic astrocytoma, and fibrillary astrocytoma.

‡ Includes subependymoma, mixopapillary ependymoma, anaplastic ependymoma, and papillary ependymoma.

§ Includes choroid plexus papilloma, atypical choroid plexus papilloma, and choroid plexus carcinoma.

∥ Includes astroblastoma, glioma of the 3rd ventricle, and angiocentric glioma.

© Includes anaplastic ganglioglioma, desmoplastic infantile astrocytoma and ganglioglioma, papillary giallioneurocytoma, and Rosette-forming giallioneurocytoma of 4th ventricle.

¶ Includes pineocytoma, pineal parenchymal tumor, pineoblastoma, and papillary tumor.

** Includes CNS neuroblastoma, medulloepithelioma, atypical teratoid, and CNS ganglioleioblastoma.

†† Includes hemangioleblastoma, angiosarcoma, Kaposi sarcoma, Ewing sarcoma, liposarcoma, leiomyoma, leiomyosarcoma, rhabdomyosarcoma, osteoma, osteochondroma, and osteosarcoma.

‡‡ Includes granular cell tumor of neurohypophysis, spindle cell oncocytoma of adenohypophysis, and pituicytoma.

§§ Includes embryonal carcinoma, Yolk sac tumor, choriocarcinoma, teratoma, teratoma with malignant transformation, and mixed germ cell tumor.

− Includes immunodeficiency-associated CNS lymphoma, intravascular large B-cell lymphoma, T-cell and NK-cell lymphoma, anaplastic large cell lymphoma, and MALT lymphoma.

With respect to diagnostic methods, 74.4% (n = 3,519) of all brain and CNS tumors had microscopic confirmation during the study period (1962 to 2016), whereas 20.0% (n = 947) were radiographically confirmed, and 5.6% (n = 266) were obtained from death certificates (n = 28). All histologic behaviors were included.
a measurable change in incidence rates on the timescale of decades. Known risk factors, such as ionizing radiation, are uncommon and explain only a small percentage of incidences of intracranial malignancies. It is difficult to disentangle the specific environmental causes that could lead to the increased incidence observed in this study; however, during the time the data were collected, no dramatic changes were observed in Cali that suggest a single factor is causally associated with the rates described above.

One intriguing possibility is that pesticide exposure during agriculture activities might be related to an increase in CNS malignancies. The agricultural sector has traditionally been of key importance to the Colombian economy and pesticides are intensively used within the country. Although our description involved only the urban population, additional research is necessary to explore the effects of occupational exposure with regard to CNS cancers recorded in rural areas.

Furthermore, other factors can affect incidence rates over time, such as demographic shifts, changes in pathology classification (histologic interpretation of specific CNS lesion, development of molecular markers, etc.), and coding completeness of cancer registries, that are not related to real changes in the incidence of CNS cancers. For instance, tumors of benign behavior were recorded in the PCCR until the early 1990s, which explains the burden of CNS tumors noted for females from this particular period.

Although mortality across all malignant brain and other CNS tumors had a statistically significant increase over the study period, it showed a steady improvement for the last decade. In a Colombian nationwide study, a statistically significant increasing trend in CNS mortality was also observed (APC, 3.0; 95% CI, 2.7 to 3.4 in males; and APC, 3.4; 95% CI, 3.0 to 3.8 in females) during 1984 to 2008. This pattern is similar to the one observed in our study during the same period of time.

For patients who were diagnosed during 2012 to 2016, 5-year survival was 31.4%, which is the highest rate reported historically for Cali, Colombia. Countries with survival rates ranging between 30% and 40% during 2010 to 2014 were the United States, Canada, Nordic countries, and Germany, according to the CONCORD-3 study. This finding was also consistent with the Central Brain Tumor Registry of the United States, which informed a 5-year survival of 35.8% between 2012 and 2016. Of note, survival increased by 8% from 2000 to 2016 in Cali, Colombia. Improvement in socioeconomic development has been associated with decreasing mortality ratios.

Our findings also reveal gender disparities. The mortality rate of malignant CNS tumors was higher among males. Conversely, incidence of benign tumors was more frequently reported in females. Our local trends are consistent with worldwide tendencies. Differences in genetic features and hormonal profiles have been suggested as causative factors. Moreover, a higher occupational exposure to environmental factors—for example, pesticides—has been reported for males. Nevertheless, on the basis of the nature of our data, we cannot make any assumptions.

In terms of tumor morphology, a similar distribution of histologic subtypes was also consistent with previous studies, with astrocytic tumors being the most common. The unclassified neoplasms-NOS comprised a substantial proportion of all CNS tumors (approximately 30%), despite the fact that approximately 75% of all NOS tumors had a microscopic confirmation. The high percentage of
unspeciﬁed malignancies likely reﬂects the difﬁculty in making an accurate diagnosis in certain subtypes of brain tumors, a limitation that has been widely recognized in the neuropathology arena.7,33 Optimal diagnosis of CNS tumors entails surgery, with the exception of some unresectable cancers with distinctive radiographic ﬁndings and poor clinical outcomes independent of the grade, where biopsies are not recommended—for example, brainstem tumors and inﬁltrative astrocytomas.34

Our study is not without limitations. First, some benign tumors were included in the PCCR from 1992; therefore, the difference in descriptive trends warrants a cautious interpretation. Second, our data do not provide demographic information, such as race/ethnicity, which is an important factor in the incidence of some cancers. One third of the Cali population self-identify as Black. Thus, we are not able to determine the role of environmental factors and their interplay with genetic makeup. Another limitation is the lack of diagnosis harmonization with the latest WHO classiﬁcation (2016) guidance, which incorporates molecular markers. In addition, PCCR has information about the cause of death through death certificates, but in some cases it can be difﬁcult to determine whether cancer is the basic cause of death. Nonetheless, our ﬁndings contribute to the understanding of geographic variations in morbidity, mortality, and survival over time.

This epidemiologic description of primary brain and other CNS tumors, despite their rarity, provides an overview of their incidence and mortality burden in Cali, Colombia, over the last 60 years. Our ﬁndings demonstrate an increasing mortality trend for malignant CNS tumors, although with steady rates from the early 2010s and improvement of 5-year net survival for the last decade. Overall characteristics of primary CNS cancers described in our study were consistent with those of other studies worldwide.6,35,36 Nonetheless, comparison of data should be cautiously interpreted, considering differences in data collection methods and the quality of different cancer registries. Moreover, there is a mandatory reporting system established since 2014 by the Colombian government; however, this registry is in the consolidation process and correlations can bias the results.37 Comparisons of the rates observed in this study with other registries in Colombia—Bucaramanga, Medellin, and Pasto—and other Latin American countries are limited by the lack of information published over a comparable period. We encourage improving uniﬁed diagnosis and report among pathologists from Colombia and the region. As a result, this study will provide a baseline for future comparison analysis with other cancer registries in the region for a better understanding of CNS cancers. Additional epidemiologic investigations are needed, particularly in light of the exposures and factors associated with increased risk of CNS cancers in the region.

AFFILIATIONS
1 Department of Internal Medicine, MetroWest Medical Center, Tufts University School of Medicine, Framingham, MA
2 Population-Based Cali Cancer Registry, Department of Pathology, Universidad del Valle School of Medicine, Cali, Colombia

CORRESPONDING AUTHOR
Luis Eduardo Bravo, MD, Department of Pathology, Universidad del Valle School of Medicine, Cali, Colombia, Calle 4B #36-00, Ediﬁcio 116, Oficina 4009, Universidad del Valle, Cali, Colombia; e-mail: luis.bravo@correounivalle.edu.co.

PRIOR PRESENTATION
Presented at the ESMO Virtual Congress 2020, September 19-21, 2020.

AUTHOR CONTRIBUTIONS
Conception and design: Ivy Riano, Pablo Bravo, Luis Eduardo Bravo, Luz Stella Garcia, Edwin Carrascal
Provision of study materials or patients: Paola Collazos
Collection and assembly of data: Ivy Riano, Luis Eduardo Bravo, Luz Stella Garcia, Paola Collazos, Edwin Carrascal
Data analysis and interpretation: Ivy Riano, Pablo Bravo, Luis Eduardo Bravo, Luz Stella Garcia, Edwin Carrascal

REFERENCES
1. Louis DN, Ohgaki H, Wiestler OD, et al: The 2007 WHO classiﬁcation of tumours of the central nervous system. Acta Neuropathol 114:97-109, 2007
2. Louis DN, Perry A, Reifenberger G, et al: The 2016 World Health Organization classiﬁcation of tumors of the central nervous system: A summary. Acta Neuropathol 131:803-820, 2016

Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conﬂict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/go/site/misc/authors.html.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

No potential conﬂicts of interest were reported.

ACKNOWLEDGMENT
The authors thank all the people that during more than 55 years have maintained the Population-Based Cali Cancer Registry with international standards, and have made possible the existence of this invaluable source of descriptive epidemiology in Colombia.
3. Siegel R, Naishadham D, Jemal A: Cancer statistics, 2013. CA Cancer J Clin 63:11-30, 2013
4. International Agency for Research on Cancer: GLOBOCAN 2018: Latin America and the Caribbean. http://gco.iarc.fr/today/data/factsheets/populations/904-latin-america-and-the-caribbean-factsheets.pdf
5. Legler JM, Ries LA, Smith MA, et al: Cancer surveillance series (corrected): Brain and other central nervous system cancers: Recent trends in incidence and mortality. J Natl Cancer Inst 91:1382-1390, 1999 (Erratum: J Natl Cancer Inst 91:1693, 1999)
6. Pouchieu C, Gruber A, Berteaud E, et al: Increasing incidence of central nervous system (CNS) tumors (2000-2012): Findings from a population based registry in Gironde (France). BMC Cancer 18:653, 2018
7. Piñeros M, Sierra MS, Izarzugaza MI, et al: Descriptive epidemiology of brain and central nervous system cancers in Central and South America. Cancer Epidemiol 44:S141-S149, 2016 (suppl 1)
8. McNeil KA: Epidemiology of brain tumors. Neurol Clin 34:981-998, 2016
9. Ostrom QT, Gittleman H, Liao P, et al: CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncol 16:v1-63, 2014 (suppl 4)
10. Bravo LE, Collazo T, Collazo P, et al: Trends of cancer incidence and mortality in Cali, Colombia. 50 years experience. Colomb Med (Cali) 43:246-255, 2012
11. Waterhouse J, Muier C, Correa P, et al: Cancer Incidence in Five Continents, Vol III. IARC Scientific Publications No. 15. Lyon, France, International Agency for Research on Cancer, 1976
12. García LS, Bravo LE, Collazo P, et al: Cali cancer registry methods. Colomb Med (Cali) 49:109-120, 2018
13. Departamento Administrativo Nacional de Estadísticas: Censo Nacional de Población y Vivienda 2012. Estimaciones de población ajustada por cobertura censal. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/centro-nacional-de-poblacion-y-vivienda-2012
14. Pan American Health Organization: Salud en las Américas. Informe de país: Colombia. https://www.paho.org/es/colombia
15. World Health Organization: International Classification of Diseases for Oncology, 3rd Edition. https://www.who.int/classifications/icd/adaptations/oncology/en/
16. National Cancer Institute: Non-malignant CNS equivalent terms and definitions. https://seer.cancer.gov/tools/solidtumor/Non_Malignant_CNS_STM.pdf
17. Perme MP, Stare J, Estève J: On estimation in relative survival. Biometrics 68:113-120, 2012
18. Spika D, Bannon F, Bonaventure A, et al: Life tables for global surveillance of cancer survival (the CONCORD programme): Data sources and methods. BMC Cancer 17:159, 2017
19. Allemani C, Matsuda T, Di Carlo V, et al: Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 391:1023-1075, 2018
20. Corazieri I, Quinn M, Capocaccia R: Standard cancer patient population for age standardising survival ratios. Eur J Cancer 40:2307-2316, 2004
21. DeAngelis LM: Brain tumors. N Engl J Med 344:114-123, 2001
22. Davis FG, Bruner JM, Surawicz TS: The rationale for standardized registration and reporting of brain and central nervous system tumors in population-based cancer registries. Neuroepidemiology 16:308-316, 1997
23. Wrensch M, Minn Y, Chew T, et al: Epidemiology of primary brain tumors: Current concepts and review of the literature. Neuro-oncol 4:278-299, 2002
24. Inskip PD, Linet MS, Heineman EF: Etiology of brain tumors in adults. Epidemiol Rev 17:382-414, 1995
25. Van Maele-Fabry G, Hoet P, Lison D: Parental occupational exposure to pesticides as risk factor for brain tumors in children and young adults: A systematic review and meta-analysis. Environ Int 56:19-31, 2013
26. Organisation for Economic Co-operation and Development: OECD Review of Agricultural Policies: Colombia 2015. https://www.oecd.org/colombia/oecd-review-of-agricultural-policies-colombia-2015-9789264227644-en.htm
27. Bray F, Engholt G, Hakulinen T, et al: Trends in survival of patients diagnosed with cancers of the brain and nervous system, thyroid, eye, bone, and soft tissues in the Nordic countries 1964-2003 followed up until the end of 2006. Acta Oncol 49:673-693, 2010
28. Piñeros M, Gamboa O, Hernández-Suárez G, et al: Patterns and trends in cancer mortality in Colombia 1984-2008. Cancer Epidemiol 37:233-239, 2013
29. Ostrom QT, Ciof
30. GBD 2016 Brain and Other CNS Cancer Collaborators: Global, regional, and national burden of brain and other CNS cancer, 1990-2016: A systematic analysis of global burden of disease study 2016. Lancet Neurol 18:376-393, 2019
31. Miranda-Filho A, Piñeros M, Soerjomataram I, et al: Cancers of the brain and CNS: Global patterns and trends in incidence. Neuro-oncol 19:270-280, 2017
32. McKinley BP, Michalek AM, Fenstermaker RA, et al: The impact of age and sex on the incidence of gial tumors in New York state from 1976 to 1995. J Neurosurg 93:932-939, 2000
33. Davis FG, Malmer BS, Aldape K, et al: Issues of diagnostic review in brain tumor studies: From the Brain Tumor Epidemiology Consortium. Cancer Epidemiol Biomarkers Prev 17:484-489, 2008
34. Prados MD, Berger MS, Wilson CB: Primary central nervous system tumors: Advances in knowledge and treatment. CA Cancer J Clin 48:331-360, 321, 1998
35. Dobes M, Shadbolt B, Khurana VG, et al: A multicenter study of primary brain tumor incidence in Australia (2000-2008). Neuro-oncol 13:783-790, 2011
36. Caldarella A, Crocetti E, Paci E: Is the incidence of brain tumors really increasing? A population-based analysis from a cancer registry. J Neurooncol 104:589-594, 2011
37. Osipina ML, Huertas JA, Montaño JL, et al: Observatorio Nacional de Cáncer Colombia. Rev Fac Nac Salud Pública. 33:262-276, 2015