On algebras of gauge transformations in a general setting

G. Sardanashvily

Department of Theoretical Physics, Moscow State University, 117234 Moscow, Russia

Abstract We consider a Lagrangian system on a fiber bundle and its gauge transformations depending on derivatives of dynamic variables and gauge parameters of arbitrary order. We say that gauge transformations form an algebra if they generate a nilpotent BRST operator.

1 Introduction

In a general setting, one can say that a family of gauge transformations depending on parameters is an algebra if the Lie bracket of arbitrary two gauge transformations depending on different parameter functions is again a gauge transformation depending on some parameter function. The goal is to formulate this condition in strict mathematical terms. For instance, gauge transformations in gauge theory on a principal bundle form a finite-dimensional real (or complex) Lie algebra. Gauge transformations of a certain class of field theories constitute sh-Lie algebras [4]. It may happen that gauge transformations are not assembled into an algebra or form an algebra on-shell [6].

We consider a Lagrangian system on a smooth fiber bundle $Y \to X$ subject to gauge transformations depending both on derivatives of dynamic variables of arbitrary order and a finite family of gauge parameters and their derivatives of arbitrary order.

Let $J^r Y$, $r = 1, \ldots$, be finite order jet manifolds of sections of $Y \to X$. In the sequel, the index $r = 0$ stands for Y. Given bundle coordinates (x^λ, y^i) on Y, jet manifolds $J^r Y$ are endowed with the adapted coordinates $(x^\lambda, y^i, y^i_{\Lambda})$, where $\Lambda = (\lambda_k \ldots \lambda_1)$, $k = 1, \ldots, r$, is a symmetric multi-index. We use the notation $\lambda + \Lambda = (\lambda \lambda_k \ldots \lambda_1)$ and

$$d_\lambda = \partial_\lambda + \sum_{0 \leq |\Lambda|} y^i_{\lambda+\Lambda} \partial^\Lambda_i, \quad d_\Lambda = d_\lambda \circ \cdots \circ d_\lambda.$$

(1)

In order to describe gauge transformations depending on parameters, let us consider Lagrangian formalism on the bundle product

$$E = Y \times_X V,$$

(2)

where $V \to X$ is a vector bundle whose sections are gauge parameter functions [2]. Let $V \to X$ be coordinated by (x^λ, ξ^r). Then gauge transformations are represented by a differential operator

$$v = \sum_{0 \leq |\Lambda| \leq m} v^i_{r,\Lambda}(x^\lambda, y^i_{\Xi}) \xi^r \partial_i.$$

(3)
on E (2) which is linear on V and takes its values into the vertical tangent bundle VY of $Y \to X$. Given a section $\xi(x)$ of $V \to X$, the pull-back

$$\xi^* v = \sum_{0 \leq |\Lambda| \leq m} v^{i,\Lambda}_r(x^\lambda, y^i_{\Sigma}) d_{\Lambda}(x) \partial_i$$

(4)

of v (3) onto Y is a gauge transformation depending on a parameter function $\xi(x)$.

By means of a replacement of even gauge parameters ξ^r and their jets ξ^r_{Λ} with the odd ghosts c^r and their jets c^r_{Λ}, the operator (3) defines a graded derivation

$$v = \sum_{0 \leq |\Lambda| \leq m} v^{i,\Lambda}_r(x^\lambda, y^i_{\Sigma}) c^r_{\Lambda} \partial_i$$

(5)

of the algebra of the original even fields and odd ghosts. Its extension

$$v = \sum_{0 \leq |\Lambda| \leq m} v^{i,\Lambda}_r c^r_{\Lambda} \partial_i + u^r \partial_r$$

(6)

to ghosts is called the BRST transformation if it is nilpotent.

We say that gauge transformations (4) make up an algebra if they generate a BRST transformation (6). One can think of the nilpotency conditions (36) – (37) as being the generalized commutation relations and Jacobi identity, respectively. This definition is especially convenient for BRST theory and BV quantization [1].

2 Gauge systems on fiber bundles

In Lagrangian formalism on a fiber bundle $Y \to X$, Lagrangians and their Euler–Lagrange operators are represented by elements of the following graded differential algebra (henceforth GDA).

With the inverse system of jet manifolds

$$X \leftarrow \cdots \leftarrow J^{r-1}Y \leftarrow J^rY \leftarrow \cdots \leftarrow J^1Y \leftarrow Y$$

(7)

one has the direct system

$$\mathcal{O}^*X \xrightarrow{\pi^*} \mathcal{O}^*Y \xrightarrow{\pi^*_{r-1}} \cdots \xrightarrow{\pi^*_{r-1}} \mathcal{O}^*_rY \xrightarrow{\pi^*_{r-1}} \cdots$$

(8)

of GDAs \mathcal{O}^*_rY of exterior forms on jet manifolds J^rY with respect to the pull-back monomorphisms π^*_{r-1}. Its direct limit $\mathcal{O}^*_\infty Y$ is a GDA consisting of all exterior forms on finite order jet manifolds modulo the pull-back identification.

The projective limit $(J^\infty Y, \pi^\infty_r : J^\infty Y \to J^rY)$ of the inverse system (7) is a Fréchet manifold. A bundle atlas $\{(U_Y; x^\lambda, y^i)\}$ of $Y \to X$ yields the coordinate atlas

$$\{((\pi^\infty_0)^{-1}(U_Y); x^\lambda, y^i_{\Lambda})\}, \quad y^i_{\lambda+\Lambda} = \frac{\partial_{\nu} d_{\mu} y^i_{\lambda}}{\partial x^{x^\nu} x^{\lambda}}, \quad 0 \leq |\Lambda|,$$

(9)
of $J^\infty Y$, where d_μ are the total derivatives (1). Then $\mathcal{O}_\infty^* Y$ can be written in a coordinate form where the horizontal one-forms $\{dx^\lambda\}$ and the contact one-forms $\{\theta^i_\lambda = y^i_{\lambda+\Lambda} dx^\lambda\}$ are generating elements of the $\mathcal{O}_\infty^0 U_Y$-algebra $\mathcal{O}_\infty^* U_Y$.

There is the canonical decomposition $\mathcal{O}_\infty^* Y = \oplus \mathcal{O}^{k,m}_\infty Y$ of $\mathcal{O}_\infty^* Y$ into $\mathcal{O}_\infty^0 Y$-modules $\mathcal{O}_\infty^{k,m} Y$ of k-contact and m-horizontal forms together with the corresponding projectors $h_k : \mathcal{O}_\infty^* Y \to \mathcal{O}_\infty^{k,*} Y$ and $h^m : \mathcal{O}_\infty^* Y \to \mathcal{O}_\infty^{* m} Y$. Accordingly, the exterior differential on $\mathcal{O}_\infty^* Y$ is split into the sum $d = d_H + d_V$ of the nilpotent total and vertical differentials

$$d_H(\phi) = dx^\lambda \wedge d_\lambda(\phi), \quad d_V(\phi) = \theta^i_\lambda \wedge \partial^i_\lambda \phi, \quad \phi \in \mathcal{O}_\infty^* Y.$$

Any finite order Lagrangian $L = L_\omega : J^r Y \to \Lambda^n T^* X$, $\omega = dx^1 \wedge \cdots \wedge dx^n$, $n = \dim X$, (10) is an element of $\mathcal{O}_\infty^{0,n} Y$, while

$$\delta L = \epsilon_i \theta^i \wedge \omega = \sum_{0 \leq |\Lambda|} (-1)^{|\Lambda|} d_\Lambda(\partial^i_\Lambda L) \theta^i \wedge \omega \in \mathcal{O}_\infty^{1,n} Y$$

is its Euler–Lagrange operator taking values into the vector bundle

$$T^* Y \wedge^n T^* X = V^* Y \otimes^n T^* X.$$

A Lagrangian system on a fiber bundle $Y \to X$ is said to be a gauge theory if its Lagrangian L admits a family of variational symmetries parameterized by elements of a vector bundle $V \to X$ and its jet manifolds as follows.

Let $\mathfrak{d} \mathcal{O}_\infty^0 Y$ be the $\mathcal{O}_\infty^0 Y$-module of derivations of the \mathbb{R}-ring $\mathcal{O}_\infty^0 Y$. Any $\vartheta \in \mathfrak{d} \mathcal{O}_\infty^0 Y$ yields the graded derivation (the interior product) $\vartheta \lrcorner \phi$ of the GDA $\mathcal{O}_\infty^* Y$ given by the relations

$$\vartheta \lrcorner df = \vartheta(f), \quad f \in \mathcal{O}_\infty^0 Y,$$
$$\vartheta \lrcorner (\phi \wedge \sigma) = (\vartheta \lrcorner \phi) \wedge \sigma + (-1)^{|\phi|} \phi \wedge (\vartheta \lrcorner \sigma), \quad \phi, \sigma \in \mathcal{O}_\infty^* Y,$$

and its derivation (the Lie derivative)

$$L_\vartheta \phi = \vartheta \lrcorner d\phi + d(\vartheta \lrcorner \phi), \quad \phi \in \mathcal{O}_\infty^* Y,$$
$$L_\vartheta (\phi \wedge \phi') = L_\vartheta (\phi) \wedge \phi' + \phi \wedge L_\vartheta (\phi').$$

Relative to an atlas (9), a derivation $\vartheta \in \mathfrak{d} \mathcal{O}_\infty^0$ reads

$$\vartheta = \vartheta^\lambda \partial_\lambda + \vartheta_i \partial_i + \sum_{|\Lambda| > 0} \vartheta^i_\Lambda \partial^i_\Lambda,$$

3
where \(\{ \partial_\lambda, \partial_\Lambda^i \} \) is the dual to the basis \(\{ dx^\lambda, dy^i_\Lambda \} \) with respect to the interior product \(\lceil [5] \rceil \).

A derivation \(\vartheta \) is called contact if the Lie derivative \(L_\vartheta \) \((13)\) preserves the contact ideal of the GDA \(\mathcal{O}_\infty^* \mathcal{Y} \) generated by contact forms. A derivation \(\nu \) \((14)\) is contact iff

\[
\vartheta^i_\Lambda = d_\Lambda (\vartheta^i - y^i_\mu \vartheta^\mu), \quad 0 < |\Lambda|.
\]

Any contact derivation admits the horizontal splitting

\[
\vartheta = \vartheta^H + \vartheta^V = \vartheta^\lambda d_\lambda + \left(\sum_{0 < |\Lambda|} d_\Lambda \nu^i_\Lambda \partial^i_\Lambda \right), \quad \nu^i = \vartheta^i - y^i_\mu \vartheta^\mu.
\]

Its vertical part \(\vartheta^V \) is completely determined by the first summand

\[
\nu = \nu^i (x^\lambda, y^i_\Lambda) \partial_i, \quad 0 \leq |\Lambda| \leq k.
\]

This is a section of the pull-back \(VY \times J^k Y \to J^k Y \), i.e., a \(k \)-order \(VY \)-valued differential operator on \(Y \). One calls \(\nu \) \((17)\) a generalized vector field on \(Y \).

Proposition 1. The Lie derivative of a Lagrangian \(L \) \((10)\) along a contact derivation \(\vartheta \) \((16)\) fulfills the first variational formula

\[
L_\vartheta L = v \lceil [\delta L] + d_H (h_0(\vartheta | \Xi_L)) + \mathcal{L}_\nu (\vartheta^H | \omega),
\]

where \(\Xi_L \) is a Lepagean equivalent of \(L \) \([5]\).

A contact derivation \(\vartheta \) \((16)\) is called variational if the Lie derivative \((18)\) is \(d_H \)-exact, i.e., \(L_\vartheta L = d_H \sigma, \sigma \in \mathcal{O}_0^{0,n-1} \). A glance at the expression \((18)\) shows that: (i) \(\vartheta \) \((16)\) is variational only if it is projected onto \(X \); (ii) \(\vartheta \) is variational iff its vertical part \(\vartheta^V \) is well; (iii) it is variational iff \(v \lceil [\delta L] \) is \(d_H \)-exact.

By virtue of item (ii), we can restrict our consideration to vertical contact derivations \(\vartheta = \vartheta^V \). A generalized vector field \(\nu \) \((17)\) is called a variational symmetry of a Lagrangian \(L \) if it generates a variational contact derivation.

Turn now to the notion of a gauge symmetry \([2]\). Let us consider the bundle product \(E \) \((2)\) coordinated by \((x^\lambda, y^i, \xi^r)\). Given a Lagrangian \(L \) on \(Y \), let us consider its pull-back, say again \(L \), onto \(E \). Let \(\vartheta_E \) be a contact derivation of the \(\mathbb{R} \)-ring \(\mathcal{O}_\infty^0 E \), whose restriction

\[
\vartheta = \vartheta_E | \mathcal{O}_\infty^0 Y = \sum_{0 \leq |\Lambda|} d_\Lambda \nu^i_\Lambda \partial^i_\Lambda
\]

to \(\mathcal{O}_\infty^0 Y \subset \mathcal{O}_\infty^0 E \) is linear in coordinates \(\xi^r_\Xi \). It is determined by a generalized vector field \(\nu_E \) on \(E \) whose projection

\[
\nu : J^k E \xrightarrow{\nu_E} VE \to E \times VY
\]
is a linear \(VY \)-valued differential operator \(\upsilon \) on \(E \). Let \(\vartheta_E \) be a variational symmetry of a Lagrangian \(L \) on \(E \), i.e.,

\[
\upsilon_E \delta L = \upsilon \delta L = d_H \sigma.
\]

Then one says that \(\upsilon \) is a gauge symmetry of a Lagrangian \(L \).

Note that any differential operator \(\upsilon \) defines a generalized vector field \(\upsilon_E = \upsilon \) on \(E \) which lives in \(VY \) and, consequently, generates a contact derivation \(\vartheta_E = \vartheta \).

3 Graded Lagrangian systems

In order to introduce a BRST operator, let us consider Lagrangian systems of even and odd variables. We describe odd variables and their jets on a smooth manifold \(X \) as generating elements of the structure ring of a graded manifold whose body is \(X \). This definition reproduces the heuristic notion of jets of ghosts in the field-antifield BRST theory.

Recall that any graded manifold \((\mathfrak{A}, X) \) with a body \(X \) is isomorphic to the one whose structure sheaf \(\mathfrak{A}_Q \) is formed by germs of sections of the exterior product

\[
\wedge Q^* = \mathbb{R} \oplus Q^* \oplus \mathbb{R} \frac{1}{2} Q^* \oplus \cdots,
\]

where \(Q^* \) is the dual of some real vector bundle \(Q \to X \) of fiber dimension \(m \). In field models, a vector bundle \(Q \) is usually given from the beginning. Therefore, we consider graded manifolds \((X, \mathfrak{A}_Q) \) where the above mentioned isomorphism holds, and call \((X, \mathfrak{A}_Q) \) the simple graded manifold constructed from \(Q \). The structure ring \(\mathfrak{A}_Q \) of sections of \(\mathfrak{A}_Q \) consists of sections of the exterior bundle (21) called graded functions. Given bundle coordinates \((x^\lambda, q^a)\) on \(Q \) with transition functions \(q^b_a = \rho^a_b q^b \), let \(\{c^a\} \) be the corresponding fiber bases for \(Q^* \to X \), together with transition functions \(c^a_b = \rho^a_b c^b \). Then \((x^\lambda, c^a)\) is called the local basis for the graded manifold \((X, \mathfrak{A}_Q)\). With respect to this basis, graded functions read

\[
f = \sum_{k=0}^m \frac{1}{k!} f_{a_1 \cdots a_k} c^{a_1} \cdots c^{a_k},
\]

where \(f_{a_1 \cdots a_k} \) are local smooth real functions on \(X \).

Given a graded manifold \((X, \mathfrak{A}_Q)\), let \(\mathfrak{dA}_Q \) be the \(\mathfrak{A}_Q \)-module of \(\mathbb{Z}_2 \)-graded derivations of the \(\mathbb{Z}_2 \)-graded ring of \(\mathfrak{A}_Q \), i.e.,

\[
u(f f') = u(f)f' + (-1)^{|u||f|} f u(f'), \quad u \in \mathfrak{dA}_Q, \quad f, f' \in \mathfrak{A}_Q,
\]

where \([,]\) denotes the Grassmann parity. Its elements are called \(\mathbb{Z}_2 \)-graded (or, simply, graded) vector fields on \((X, \mathfrak{A}_Q)\). Due to the canonical splitting \(VQ = Q \times Q \), the vertical tangent bundle \(VQ \to Q \) of \(Q \to X \) can be provided with the fiber bases \(\{\partial_a\} \) which is the
are local graded functions. It acts on A by the rule

$$u(f_{a\ldots b}c^a\cdots c^b) = u^\lambda \partial_\lambda (f_{a\ldots b}) c^a\cdots c^b + u^d f_{a\ldots b} \partial_d (c^a\cdots c^b). \quad (22)$$

This rule implies the corresponding transformation law

$$u^\lambda = u^\lambda, \quad u^a = \rho^a \partial_\lambda (\rho^a) c^\lambda.$$

Then one can show [7, 8] that graded vector fields on a simple graded manifold can be represented by sections of the vector bundle $\mathcal{V}_Q \to X$ which is locally isomorphic to the vector bundle $\wedge Q^* \otimes_X (Q \otimes_X T_X)$.

Using this fact, we can introduce graded exterior forms on the graded manifold (X, \mathfrak{A}_Q) as sections of the exterior bundle $\wedge \mathcal{V}_Q^*$, where $\mathcal{V}_Q^* \to X$ is the $\wedge Q^*$-dual of \mathcal{V}_Q. Relative to the dual local bases $\{dx^a\}$ for T^*X and $\{dc^b\}$ for Q^*, graded one-forms read

$$\phi = \phi_\lambda dx^\lambda + \phi_a dc^a, \quad \phi'_a = \rho^{-1b} \phi_b, \quad \phi'_\lambda = \phi_\lambda + \rho^{-1b} \partial_\lambda (\rho^b) \phi_b c^\lambda.$$

The duality morphism is given by the interior product

$$u \cdot \phi = u^\lambda \phi_\lambda + (-1)^{[\phi]} |u^a \phi_a.$$

Graded exterior forms constitute the bigraded differential algebra (henceforth BGDA) C^*_Q with respect to the bigraded exterior product \wedge and the exterior differential d. The standard formulae of a BGDA hold.

Since the jet bundle $J^r Q \to X$ of a vector bundle $Q \to X$ is a vector bundle, let us consider the simple graded manifold $(X, \mathfrak{A}_{J^r Q})$ constructed from $J^r Q \to X$. Its local basis is $\{x^\lambda, c^a_{\lambda}\}$, $0 \leq |\lambda| \leq r$, together with the transition functions

$$c^a_{\lambda+\Lambda} = d_\lambda (\rho^a_{\lambda} c^\Lambda_{\lambda}), \quad d_\lambda = \partial_\lambda + \sum_{|\lambda| < r} c^a_{\lambda+\Lambda} \partial_a^\Lambda, \quad (23)$$

where ∂_a^Λ are the duals of c^a_{λ}. Let $C^*_{J^r Q}$ be the BGDA of graded exterior forms on the graded manifold $(X, \mathfrak{A}_{J^r Q})$. A linear bundle morphism $\pi_{r-1}^{-1} : J^r Q \to J^{r-1} Q$ yields the corresponding monomorphism of BGDAs $C^*_{J^{r-1} Q} \to C^*_{J^r Q}$. Hence, there is the direct system of BGDAs

$$C^*_Q \xrightarrow{\pi^*_1} C^*_Q \xrightarrow{\pi^*_2} \cdots \xrightarrow{\pi^*_r} C^*_Q \to \cdots \quad (24)$$

Its direct limit C^∞_Q consists of graded exterior forms on graded manifolds $(X, \mathfrak{A}_{J^r Q})$, $r \in \mathbb{N}$, modulo the pull-back identification, and it inherits the BGDA operations intertwined by the monomorphisms π^{-1}_{r-1}. It is a $C^\infty(X)$-algebra locally generated by the elements $(1, c^a_{\lambda}, dx^\lambda, \theta^a_\Lambda = dc^a_{\lambda} - c^a_{\lambda+\Lambda} dx^\lambda)$, $0 \leq |\lambda|$.
In order to regard even and odd dynamic variables on the same footing, let $Y \to X$ be hereafter an affine bundle, and let $\mathcal{P}_\infty^* Y \subset \mathcal{O}_\infty^* Y$ be the $C^\infty(X)$-subalgebra of exterior forms whose coefficients are polynomial in the fiber coordinates y^i_Λ on jet bundles $J^rY \to X$. Let us consider the product

$$S_\infty^* = C_\infty^* Q \wedge \mathcal{P}_\infty^* Y \quad (25)$$

of graded algebras $C_\infty^* Q$ and $\mathcal{P}_\infty^* Y$ over their common graded subalgebra \mathcal{O}_X^* of exterior forms on X [5]. It consists of the elements

$$\sum_i \psi_i \otimes \phi_i, \quad \sum_i \phi_i \otimes \psi_i, \quad \psi \in C_\infty^* Q, \quad \phi \in \mathcal{P}_\infty^* Y,$$

modulo the commutation relations

$$\psi \otimes \phi = (-1)^{\psi|\phi} \phi \otimes \psi, \quad \psi \in C_\infty^* Q, \quad \phi \in \mathcal{P}_\infty^* Y;$$

$$\begin{aligned}
(\psi \wedge \sigma) \otimes \phi &= \psi \otimes (\sigma \wedge \phi), \\
\sigma &\in \mathcal{O}_X^*.
\end{aligned} \quad (26)$$

They are endowed with the total form degree $|\psi| + |\phi|$ and the total Grassmann parity $[\psi]$. Their multiplication

$$(\psi \otimes \phi) \wedge (\psi' \otimes \phi') := (-1)^{\psi'|\phi} (\psi \wedge \psi') \otimes (\phi \wedge \phi').$$

obeys the relation

$$\begin{aligned}
\varphi \wedge \varphi' &= (-1)^{|\varphi|+|\varphi'|} \varphi' \wedge \varphi, \\
\varphi, \varphi' &\in S_\infty^*,
\end{aligned}$$

and makes S_∞^* (25) into a bigraded $C^\infty(X)$-algebra. For instance, elements of the ring S_∞^0 are polynomials of c^a_Λ and y^i_Λ with coefficients in $C_\infty^*(X)$.

The algebra S_∞^* is provided with the exterior differential

$$d(\psi \otimes \phi) := (d_C \psi) \otimes \phi + (-1)^{\psi} \psi \otimes (d_P \phi), \quad \psi \in C_\infty^*, \quad \phi \in \mathcal{P}_\infty^*, \quad (28)$$

where d_C and d_P are exterior differentials on the differential algebras $C_\infty^* Q$ and $\mathcal{P}_\infty^* Y$, respectively. It obeys the relations

$$d(\varphi \wedge \varphi') = d\varphi \wedge \varphi' + (-1)^{|\varphi|} \varphi \wedge d\varphi', \quad \varphi, \varphi' \in S_\infty^*,$$

and makes S_∞^* into a BGDA, which is locally generated by the elements

$$(1, c^a_\Lambda, \dot{y}^i_\Lambda, d x^\lambda, \theta^a_\Lambda = d c^a_\Lambda - c^a_{\lambda+\Lambda} d x^\lambda, \theta^i_\Lambda = d y^i_\Lambda - y^i_{\lambda+\Lambda} d x^\lambda), \quad 0 \leq |\Lambda|. \quad (29)$$

Hereafter, let the collective symbols s^a_Λ and θ^A_Λ stand both for even and odd generating elements c^a_Λ, y^i_Λ, θ^a_Λ, θ^i_Λ of the $C^\infty(X)$-algebra S_∞^* which, thus, is locally generated by $(1, s^A_\Lambda, d x^\lambda, \theta^A_\Lambda)$, $|\Lambda| \geq 0$. We agree to call elements of S_∞^* the graded exterior forms on X.

7
Similarly to O_∞^*Y, the BGDA S^*_∞ is decomposed into S_{∞}^0-modules $S_{\infty}^{k,r}$ of k-contact and r-horizontal graded forms together with the corresponding projections h_k and h^r. Accordingly, the exterior differential d on S^*_∞ is split into the sum $d = d_H + d_V$ of the total and vertical differentials

$$d_H(\phi) = dx^\lambda \wedge d_\lambda(\phi), \quad d_V(\phi) = \theta_A^\lambda \wedge \partial_\lambda^A \phi, \quad \phi \in S^*_\infty.$$

One can think of the elements

$$L = L\omega \in S_{\infty}^{0,n}, \quad \delta(L) = \sum_{|A|\geq 0} (-1)^{|A|} \theta_A^\lambda \wedge d_\lambda(\partial_\lambda^A L) \in S_{\infty}^{0,n}$$

as being a graded Lagrangian and its Euler–Lagrange operator, respectively.

4 BRST symmetry

A graded derivation $\vartheta \in \mathfrak{d}S^0_\infty$ of the \mathbb{R}-ring S^0_∞ is said to be contact if the Lie derivative L_ϑ preserves the ideal of contact graded forms of the BGDA S^*_∞. With respect to the local basis $(x^\lambda, s^A_\lambda, dx^\lambda, \theta_A^\lambda)$ for the BGDA S^*_∞, any contact graded derivation takes the form

$$\vartheta = \vartheta_H + \vartheta_V = \vartheta^\lambda d_\lambda + (\vartheta^A \partial_A + \sum_{|A|>0} d_\lambda \vartheta^A \partial_\lambda^A), \quad \text{(29)}$$

where ϑ^λ, ϑ^A are local graded functions [5]. The interior product $\vartheta | \phi$ and the Lie derivative $L_\vartheta \phi$, $\phi \in S^*_\infty$, are defined by the same formulae

$$\vartheta | \phi = \vartheta^\lambda \phi_\lambda + (-1)^{|\vartheta|\phi} \vartheta^A \phi_A, \quad \phi \in S^1_\infty,$n
$$\vartheta | (\phi \wedge \sigma) = (\vartheta | \phi) \wedge \sigma + (-1)^{|\vartheta|\phi} (\vartheta | \sigma) \wedge (\vartheta | \phi), \quad \phi, \sigma \in S^*_\infty.$n
$$L_\vartheta \phi = \vartheta | d_\phi + d(\vartheta | \phi), \quad L_\vartheta (\phi \wedge \sigma) = L_\vartheta (\phi) \wedge \sigma + (-1)^{|\vartheta|\phi} \phi \wedge L_\vartheta (\sigma).$$

as those on a graded manifold. One can justify that any vertical contact graded derivation ϑ (29) satisfies the relations

$$\vartheta | d_H \phi = -d_H (\vartheta | \phi), \quad L_\vartheta (d_H \phi) = d_H (L_\vartheta \phi), \quad \phi \in S^*_\infty. \quad \text{(30)}$$

Proposition 2. The Lie derivative $L_\vartheta L$ of a Lagrangian L along a contact graded derivation ϑ (29) fulfills the first variational formula

$$L_\vartheta L = \vartheta_V | \delta L + d_H (h_0 (\vartheta | \Xi_L)) + d_V (\vartheta_H | \omega) L, \quad \text{(31)}$$

where $\Xi_L = \Xi + L$ is a Lepagean equivalent of a graded Lagrangian L [5].
A contact graded derivation \(\vartheta \) is said to be variational if the Lie derivative (31) is \(d_H \)-exact. A glance at the expression (31) shows that: (i) A contact graded derivation \(\vartheta \) is variational only if it is projected onto \(X \), and (ii) \(\vartheta \) is variational iff its vertical part \(\vartheta_V \) is well. Therefore, we restrict our consideration to vertical contact graded derivations

\[
\vartheta = \sum_{0 \leq |\Lambda|} d_{\Lambda} v^{A} \partial^A_{\Lambda}.
\] (32)

Such a derivation is completely defined by its first summand

\[
v = v^{A}(x^\lambda, s^{A}_A) \partial_A, \quad 0 \leq |\Lambda| \leq k,
\] (33)

which is also a graded derivation of \(\mathcal{S}_{\infty}^0 \). It is called the generalized graded vector field. A glance at the first variational formula (31) shows that \(\vartheta (32) \) is variational iff \(v \right| \delta L \) is \(d_H \)-exact.

A vertical contact graded derivation \(\vartheta (32) \) is said to be nilpotent if

\[
\mathbf{L}_v (\mathbf{L}_v \phi) = \sum_{|\Sigma| \geq 0, |\Lambda| \geq 0} (v^{A}_B \partial^\Sigma_B (v^{A}_A) \partial^A_{\Lambda} + (-1)^{|\Lambda|} [v^A_B]_s v^{A}_A \partial^\Sigma_B \partial^A_{\Lambda}) \phi = 0
\] (34)

for any horizontal graded form \(\phi \in \mathcal{S}_{\infty}^{0,*} \) or, equivalently, \(\vartheta \circ \vartheta)(f) = 0 \) for any graded function \(f \in \mathcal{S}_{\infty}^0 \). One can show that \(\vartheta \) is nilpotent only if it is odd and iff the equality

\[
\vartheta(v^{A}) = \sum_{|\Sigma| \geq 0} v^{A}_B \partial^\Sigma_B (v^{A}) = 0
\] (35)

holds for all \(v^{A} \) [5].

Return now to the original gauge system on a fiber bundle \(Y \) with a Lagrangian \(L \) (10) and a gauge symmetry \(v \) (3). For the sake of simplicity, \(Y \to X \) is assumed to be affine. Let us consider the BGDA \(\mathcal{S}_{\infty}^* = C_{\infty}^* V \land \mathcal{P}_{\infty}^0 Y \) locally generated by \((1, e^r, dx^\lambda, y^i, \theta^r, \theta^i) \). Let \(L \in \mathcal{O}_{\infty}^{0,n} Y \) be a polynomial in \(y^i_{\Lambda}, 0 \leq |L| \). Then it is a graded Lagrangian \(L \in \mathcal{P}_{\infty}^{0,n} Y \subset \mathcal{S}_{\infty}^{0,n} \) in \(\mathcal{S}_{\infty}^* \). Its gauge symmetry \(v \) (3) gives rise to the generalized vector field \(v_E = v \) on \(E \), and the latter defines the generalized graded vector field \(v \) (33) by the formula (5). It is easily justified that the contact graded derivation \(\vartheta \) (32) generated by \(v \) (5) is variational for \(L \). It is odd, but need not be nilpotent. However, one can try to find a nilpotent contact graded derivation (32) generated by some generalized graded vector field (6) which coincides with \(\vartheta \) on \(\mathcal{P}_{\infty}^{0,n} Y \). We agree to call it the BRST operator.

In this case, the nilpotency conditions (35) read

\[
\sum_{\Sigma} d_{\Sigma} \left(\sum_{\Xi} v^{i,\Xi}_{r} e^r_{\Xi} \right) \sum_{\Lambda} \partial_i^\Sigma (v^{j,\Lambda}_{s} e^s_{\Lambda}) c^r_{\Lambda} + \sum_{\Lambda} d_{\Lambda}(u^r) v^{j,\Lambda}_{r} = 0,
\] (36)

\[
\sum_{\Lambda} \sum_{\Xi} d_{\Lambda}(u^r) e^r_{\Xi} \partial_i^\Lambda + d_{\Lambda}(u^r) \partial_r^\Lambda) u^q = 0
\] (37)
for all indices \(j \) and \(q \). They are equations for graded functions \(u^r \in \mathcal{S}_0^\infty \). Since these functions are polynomials

\[
\begin{align*}
 u^r &= u^r_{(0)} + \sum_{\Gamma} u^r_{(1)p} c^p_T + \sum_{\Gamma_1, \Gamma_2} u^r_{(2)p_1p_2} c^p_1 c^p_2 + \cdots
\end{align*}
\]

in \(c^s_\Lambda \), the equations (36) – (37) take the form

\[
\begin{align*}
 \sum_{\Sigma} d_{\Sigma}(\sum_{\Xi} v^r_{i_r} e^r_{\Xi}) \sum_{\Lambda} \partial_i^{\Sigma} (v^j_{s_r} c^s_\Lambda) c^s_\Lambda + \sum_{\Lambda} d_\Lambda(u^r_{(2)}) v^j_{s_r} &= 0, \\
 \sum_{\Lambda} d_\Lambda(u^r_{(k\neq 2)}) v^j_{s_r} &= 0, \\
 \sum_{\Sigma} d_\Lambda(v^r_{i_r} e^r_{\Xi}) \partial_i^{\Lambda} u^q_{(k-1)} + \sum_{m+n-1=k} d_\Lambda(u^r_{(m)}) \partial_i^{\Lambda} u^q_{(n)} &= 0.
\end{align*}
\]

If the equations (39) – (41) have a solution, i.e., the (nilpotent) BRST operator exists, one can think of the equalities (39) and (41) (and, consequently, the nilpotency conditions (36) – (37)) as being the generalized commutation relations and generalized Jacobi identities of gauge transformations, respectively.

Indeed, the relation (39) for components \(v^i_r \) takes the form of the familiar Lie bracket

\[
\sum_{\Sigma} [d_{\Sigma}(v^i_r) \partial_i^{\Sigma} v^j_q - d_{\Sigma}(v^j_q) \partial_i^{\Sigma} v^i_p] = -2u^r_{(2)pq} v^j_r,
\]

where \(-2u^r_{(2)pq}\) are generalized structure constants depending on dynamic variables \(y^i \) and their jets \(y^i_\Lambda \) in general. For instance, let us assume that all \(v^i_r \) are linear in \(y^i_\Lambda \). Then \(u^r_{(2)pq} \) are independent of these variables. Let \(u^r_{(m\neq 2)} = 0 \). In this case, the relation (41) reduces to the familiar Jacobi identity

\[
u^r_{(2)pq} u^j_{(2)rs} + u^r_{(2)qs} u^j_{(2)rp} + u^r_{(2)sp} u^j_{(2)rq} = 0.
\]

Let us note that any Lagrangian \(L \) have gauge symmetries. In particular, there always exist trivial gauge symmetries

\[
u = \sum_{\Lambda} T^j_{r,i} \mathcal{E}^r_j \mathcal{E}^r_i \partial_i, \quad T^j_{r,i} = -T^j_{r,i}.
\]

vanishing on-shell. In a general setting, one therefore can require that the nilpotency conditions (36) – (37) hold on-shell, i.e., gauge transformations form an algebra on-shell.

5 Example

Let us consider the gauge theory of principal connections on a principal bundle \(P \rightarrow X \) with a structure Lie group \(G \). These connections are represented by sections of the quotient

\[
C = J^1 P/G \rightarrow X.
\]
This is an affine bundle coordinated by \((x^\lambda, a^r_\lambda)\) such that, given a section \(A \rightarrow X\), its components \(A^r_\lambda = a^r_\lambda \circ A\) are coefficients of the familiar local connection form (i.e., gauge potentials). Let \(J^\infty C\) be the infinite order jet manifold of \(C \rightarrow X\) coordinated by \((x^\lambda, a^r_\lambda\Lambda\), \(0 \leq |\Lambda|\). We consider the GDA \(O^*_\infty C\).

Infinitesimal generators of one-parameter groups of automorphisms of a principal bundle \(P\) are \(G\)-invariant projectable vector fields on \(P \rightarrow X\). They are associated to sections of the vector bundle \(T_G P = TP/G \rightarrow X\). This bundle is provided with the coordinates\((x^\lambda, \hat{x}^\lambda, \xi^r)\) with respect to the fibre bases \(\{\partial_\lambda, e_r\}\) for \(T_G P\), where \(\{e_r\}\) is the basis for the right Lie algebra \(g\) of \(G\) such that \([e_p, e_q] = c_r^{pq} e_r\).

If \(u = u^\lambda \partial_\lambda + u^r e_r, \quad v = v^\lambda \partial_\lambda + v^r e_r, \quad (43)\)
are sections of \(T_G P \rightarrow X\), their bracket reads
\[[u, v] = (u^\mu \partial_\mu v^\lambda - v^\mu \partial_\mu u^\lambda)\partial_\lambda + (u^\lambda \partial_\lambda v^r - v^\lambda \partial_\lambda u^r + c_r^{pq} u^p v^q) e_r. \quad (44)\]

Any section \(u\) of the vector bundle \(T_G P \rightarrow X\) yields the vector field
\[u_C = u^\lambda \partial_\lambda + (c_r^{pq} a^p_\lambda u^q + \partial_\lambda u^r - a^r_\mu \partial_\lambda u^\mu)\partial_r \quad (45)\]
on the bundle of principal connections \(C\) \((42)\). It is an infinitesimal generator of a one-parameter group of automorphisms of \(C\) \([7]\). Let us consider the bundle product
\[E = C \times T_G P, \quad (46)\]
coordinated by \((x^\lambda, \tau^\lambda = \hat{x}^\lambda, \xi^r, a^r_\lambda)\). It can be provided with the generalized vector field
\[v_E = v = (c_r^{pq} a^p_\lambda \xi^q + \xi^r - a^r_\mu \tau^\mu - \tau^\mu a^r_\mu)\partial_r. \quad (47)\]

Following the procedure in Sections 3 – 4, we replace parameters \(\xi^r\) and \(\tau^\lambda\) with the odd ghosts \(c^r\) and \(c^\lambda\), respectively, and obtain the generalized graded vector field
\[v = (c_r^{pq} a^p_\lambda c^q + c^r_\lambda - a^r_\mu c^\mu - c^\mu a^r_\mu)\partial_r + \left(-\frac{1}{2} e_r^{pq} c^p c^q - c^r e^r_\mu\right) \partial_r + c^r_\lambda e^\mu \partial_\lambda \quad (48)\]
such that the vertical contact graded derivations \((32)\) generated by \(v\) \((48)\) is nilpotent, i.e., it is a BRST operator.

References

[1] G.Barnich, F.Brandt and M.Henneaux, Local BRST cohomology in gauge theories, *Phys. Rep.* 338, 439 (2000).
[2] D.Bashkirov, G.Giachetta, L.Mangiarotti and G.Sardanashvily, Noether’s second theorem in a general setting. Reducible gauge theories, *E-print arXiv*: math.DG/0411070.

[3] F.Brandt, Jet coordinates for local BRST cohomology, *Lett. Math. Phys.* 55, 149 (2001).

[4] R.Fulp, T.Lada and J.Stasheff, Sh-Lie algebras induced by gauge transformations, *Comm. Math. Phys.* 231, 25 (2002); *E-print arXiv*: math.QA/0012106.

[5] G.Giachetta, L.Mangiarotti and G.Sardanashvily, Lagrangian supersymmetries depending on derivatives. Global analysis and cohomology, *Commun. Math. Phys.* (accepted); *E-print arXiv*: hep-th/0407185.

[6] J.Gomis, J.París, J. and S.Samuel, Antibracket, antifields and gauge theory quantization, *Phys. Rep* 295, 1 (1995).

[7] L.Mangiarotti and G.Sardanashvily, *Connections in Classical and Quantum Field Theory* (World Scientific, Singapore, 2000).

[8] G.Sardanashvily, SUSY-extended field theory, *Int. J. Mod. Phys. A* 15, 3095 (2000).