AUDIOLOGY

Identifying congenital hearing impairment: preliminary results from a comparative study using objective and subjective audiometric protocols

A. Ciorba1, S. Hatzopoulos1, J. Petruccielli1, M. Mazzoli1, A. Pastore1, K. Kochanek3, P. Skarzynski3, A. Wlodarczyk3, H. Skarzynski3
1 ENT and Audiology Department, University of Ferrara, Italy; 2 Department of Mathematical Sciences, Worcester Polytechnic Institute, USA; 3 Institute of Pathology and Physiology of Hearing, Warsaw, Poland

SUMMARY
To compare objective and subjective protocols assessing hearing loss in young children and evaluate frequency-specific hearing impairment through a comparison between auditory steady state responses (ASSR), auditory brainstem responses (ABR), transient otoacoustic emissions and conditioned orientation reflex responses (COR). Thirty-five hearing-impaired children (20 male and 15 female), aged between 14 months and 4 years, participated in the study. Hearing threshold levels and peripheral auditory function were assessed by measurements of ABR, ASSR, otoacoustic emissions and COR. The analysis of the COR and ASSR variables showed significant correlations in the majority of tested frequencies. The data highlight a characteristic of the COR procedure, which is an underestimation of the hearing threshold in comparison to the ASSR estimate. The data show that the COR threshold assessment follows the pattern of the other two established electrophysiological methods (ABR, ASSR). The correlation analyses did not permit evaluation of the precision of these estimates. Considering that the ASSR variables show a better relationship with ABR (higher correlation values) than COR, it might be advantageous to utilize the ASSR to gain frequency-specific information.

KEY WORDS: Sensorineural hearing loss • Otoacoustic emissions (OAE) • Auditory steady state responses (ASSR) • Auditory brain-stem responses (ABR) • Conditioned orientation reflex (COR)

INTRODUCTION
The incidence of congenital hearing loss is estimated to be 1-3 cases per 1,000 live births 1-4. The guidelines for programmes aiming at early hearing detection and intervention (EHDI) suggest that the hearing evaluation of infants presenting congenital hearing loss should be conducted at the earliest possible age. The latter requires the use of testing procedures which can accurately assess and quantify the degree of hearing loss at different frequencies, especially in the range between 0.5 - 4.0 kHz 5-12. Assessing the infant population is a challenging task because there is no established consensus on the testing protocols that accurately measure hearing threshold. Information on the hearing level of infants presenting hearing deficits is of great importance for the effective early intervention programs.
Identifying congenital hearing impairment

A. Ciorba et al.

interest when selecting the proper characteristics of hearing aid amplification, which is necessary in order to assist the auditory and language development of these patients. In recent years, an increasing number of clinical studies has evaluated the role of auditory steady-state responses (ASSR) in the estimation of hearing threshold. While auditory brainstem responses (ABR) are induced by transient stimuli, ASSRs are evoked by continuously modulated tones which are frequency specific. ASSR responses were first reported in the literature decades ago by Galambos et al., and later by Kuwada et al. The ASSR protocols have advanced considerably, and at present it is possible to assess multiple frequencies (500, 1000, 2000, and 4000 Hz), in both ears simultaneously, even in cases presenting profound hearing loss (up to 120 dB HL). From the battery of electrophysiological tests assessing hearing status, the ABR, the ASSR, and otoacoustic emissions (OAEs) are considered as the most reliable procedures. However, in some cases (as in early infancy) these procedures are not always able to provide a complete or satisfactory assessment of hearing. To improve the level of information about the hearing status of an infant, subjective procedures such as the conditioned orientation reflex (COR) are often used. The theoretical basis of this technique is the following. During a COR session, an infant is exposed to acoustic stimuli transmitted via loudspeakers. When the infant identifies and localizes the source of the stimulus, he/she responds with a body movement, usually rotation of the head, towards the source of the stimulus (i.e., the loudspeaker). This response is recorded as a rotation of the head towards the direction of the sound source. Positive reinforcement, such as a lighting toy, was also employed to counteract any habitual responses that can occur after a number of acoustic stimuli. sensitive to infant hearing loss 12-13. Nevertheless, data obtained by COR may still be useful for diagnosis and follow-up of hearing impaired infants as they can contribute to: (i) information about low frequency hearing; (ii) information about the hearing of neurologically immature babies, where there may be doubts about the accuracy of the ABR and ASSR hearing assessment; and (iii) information on uncomfortable loudness levels in hearing aid fitting.

There are no data in the literature on the relationship between the COR procedure and standardized objective procedures such as OAEs, ABR and ASSR. The objective of this study was to shorten this information gap by investigating the relationship of the data obtained with the COR protocol and three clinical procedures in a population of young children. Additionally the performance of the COR procedure in assessing correctly hearing thresholds was compared to the ASSR, using hearing level data from the ABR as a reference point.

Materials and methods

Subjects and testing procedures

Thirty-five hearing-impaired children presenting sensorineural hearing losses (thresholds ≥ 40 dB HL according to a click-ABR assessment) participated in the study. The age of the participants varied from 14 to 48 months. These children were identified with hearing impairment in our EDHII (Early Detection of Hearing and Intervention) screening programme. Each subject was evaluated using three objective protocols (OAEs, ABR and ASSR) and one subjective test (COR). Transient otoacoustic emissions (TEAOEs) were acquired with a Chelodob device (Labat, SRL, Italy). TEAOEs were evoked by 80 μsec click stimuli following a linear protocol (i.e. all clicks in the stimulus train were of the same positive polarity). Details on the protocol and its advantages over other TEAOE protocols are described in previous publications. The stimulus level was set at 72 ± 3 dB SPL. The click rate was 50 per sec and post-stimulus analysis was in the range of 3.5 to 20 μsec. A total of 260 sweeps was averaged above the noise rejection level of 47 dB. A TEAOE response was considered valid (i.e. present) when the TEAOE amplitude was ≥ 6 dB above the level of the noise floor and the reproducibility value > 70%. TEAOE protocols were preferred over DPOAE (Distortion Product OAE) procedures to maximize data compatibility with the initial TEAOE measurements during the screening programme.

The ASSR responses were recorded by the ICS CHAPTER (GN Otometrics, Mercury, Italy). Testing was performed in an acoustically- and electrically-shielded room. Sleep was induced spontaneously without the need for sedation. Electrophysiological activity was recorded ipsilaterally to the stimulated ear using silver chloride cup electrodes, with the active and reference electrodes applied to the vertex and the mastoid, respectively. ABR recording stimuli were given mono-aurally using an earphone and consisted of 0.1 ms clicks with alternating polarity starting from a maximum intensity of 90 dB nHL (approximately 120 dB SPL). The ASSR responses were recorded using a similar set-up. Steady state otoacoustic emissions were evaluated at frequencies (i.e. 500, 1000, 2000, 4000 Hz), using a frequency modulated tone of 80 Hz. At each frequency an average time of 3 min was required. Additional details on the ABR, ASSR protocols can be found in previous publications. The COR evaluation was carried out in a soundproof booth equipped with an audiometer, a speaker and a variety of toys according to the age of the tested child. The examination was performed by two experienced audiometrists who worked together to best simulate the listening behaviour of the child: one audiometrist operated the audiometer, and the other monitored the child’s attention and interacted with him/her to avoid any distraction effects. In younger children (age of 6-12 months), it is possible to obtain a conditioned response that is validated by rotation of the hand towards the direction of the sound source. Positive reinforcement, such as a lighting toy, was also employed to counteract any habitual responses that can occur after a number of acoustic stimuli. In children between the ages of 12 and 36 months, a mixed protocol of visual and acoustic stimuli was used to initially attract the child’s attention. The intensity of the acoustic signal was progressively reduced to assess the threshold level, frequency by frequency.

Statistical analysis

In the following analyses, more emphasis was placed on the relationship between the ASSR and COR threshold estimates. The strength of association between COR measurements at five frequencies and ASSR, ABR and OAE measurements at four frequencies, and left and right ears, was measured by Pearson’s correlation. The OAE measurements were assigned a value of 1 for ‘RE’ and 0 for ‘PASS’. The data showed non-normal behaviour, and in particular it seemed that there was an upper boundary on one or both variables. Therefore, p-values for correlations (one-sided tests) were obtained by randomization (100,000 random permutations for each). These p-values were similar to those obtained from large-sample tests except for those obtained for the OAE correlations. The 60 p-values were adjusted by the step-down Bonferroni method. For all procedures, the level of significance was considered as p < 0.05. In order to evaluate the probability values from small samples, it is possible to use a randomization procedure, which by definition is the chance assignment of treatments to experimental units (the tested methods in the present case), in order to nullify the effects of unsuspected nuisance factors. For multiple comparisons, the Bonferroni procedure is the simplest to apply. The Bonferroni method uses the worst case scenario approach to estimate prediction intervals. The Bonferroni intervals are ideal for making a small number of pre-specified comparisons.

Fig. 1. Distribution of ASSR data (y-axis in all graphs) from right ears at 1000 Hz and all tested COR variables (x-axis in all graphs). The scatter plots show the relationships quantified by the estimated correlations.

Fig. 2. Distribution of ASSR data (y-axis in all graphs) from right ears at 2000 Hz and all tested COR variables (x-axis in all graphs). The scatter plots show the relationships quantified by the estimated correlations.

ASSR-COR

The distribution of the estimated hearing thresholds via the ASSR and COR protocols presented very different profiles at all tested frequencies. Figures 1 and 2 depict these differences at 100 and 2000 Hz. For example, in Figure 1 the ASSR distribution is shifted to the left while the COR distribution is shifted to the right and extends the threshold range to a value of 120 dB HL. This range-extension pattern was observed at all COR tested frequencies.
The relationship between the two protocols is shown in Tables I (right ear) and II (left ear). From a COR point of view, the correlation pattern with the ASSR frequencies, across the left and right ears, was not the same. For the left ear responses, the 1000 Hz COR values were significantly related to ASSR at 4 frequencies. For the right ear responses, all tested COR frequencies correlated with at least 2 ASSR frequencies.

From the ASSR point of view, the overall pattern was that the ASSR responses at 500 and 1000 Hz were significantly correlated with 5 of 5 COR tested frequencies. The left and right ear ASSR responses from the ASSR 2000 Hz data set showed significant correlation only with the COR responses from 4000 Hz. Interestingly, the responses from the ASSR 4000 Hz dataset (right ear) were significantly correlated only with the COR responses from 1000, 2000, and 4000 Hz. No significant correlations were observed for the ASSR left ear responses at 4000 Hz and any of the COR variables. This observation may implies a side effect (i.e., left, right) of the data.

ABR-COR
All values but the COR responses at 250 Hz and right ear ABRs were significantly correlated. The highest correlation values (0.675) was observed between the COR response at 4000 Hz and the right ear ABR response. No effects (i.e., preference) linked to the tested side (right or left) were observed. The data are shown in Table III and Figure 3.

Table III
COR (Hz)	ABR (Click)	Correlation	p-value
250	R	0.420	0.078
500	R	0.506	0.017
1000	R	0.629	0.001**
2000	R	0.604	0.003**
4000	R	0.675	0.001**

Discussion and conclusions
Auditory deterioration in infants and children with early hearing loss has been shown to be reduced by auditory intervention within 6 months after birth. As a result, the average age for cochlear implantation is decreasing. Obtaining precise and objective hearing information for a subject in order to guide forthcoming intervention strategies is becoming increasingly important.

Information on hearing status is commonly obtained by pure tone audiometry; however, for infants and young children it is not always possible to obtain reliable hearing information, as a result of a lack of cooperation and the inability to understand the testing procedure. Alternative approaches to assess hearing threshold in children include the ABR and the ASSR which provide frequency-specific information. In addition, visual reinforcement tools may contribute to information regarding low frequency hearing and uncomfortable loudness levels in the case of hearing aid fitting.

The present study investigated the relationship between the COR and the three standardized procedures in hearing assessment (OAEs, ABR, ASSR). Since a threshold gold standard was not available, the COR and ASSR threshold estimates were evaluated according to their relationship with the ABR threshold values. The analyses highlighted the following:

1. As expected, the data indicate that the threshold estimates obtained with the ASSR and ABR are highly correlated at all tested frequencies. This corroborates with findings in previous reports. The data, however, do not offer information on the precision and accuracy of the ASSR measurement.

2. The COR threshold values were correlated with the ABR data, but the observed relationships were not as strong as those observed in the ASSR-ABR dataset. The estimated correlation differences between (ABR-ASSR) and (ABR-COR) were not significant. This finding suggests that although the COR and the ASSR data are associated differently with the ABR threshold values, the observed ASSR threshold estimation errors are not statistically significant from the COR errors.

3. The analysis of the COR-OAE relationship indicated that the COR variables present a “preference” towards the right ear. For left ear measurements, no significant

Table IV
COR (Hz)	ASSR (Click)	Correlation	p-value
250	R	0.390	0.056
500	R	0.421	0.027
1000	R	0.460	0.017
2000	R	0.466	0.020
4000	R	0.496	0.012

Table V
COR (Hz)	ASSR (Click)	Correlation	p-value
250	L	0.361	0.056
500	L	0.344	0.095
1000	L	0.342	0.130
2000	L	0.347	0.130
4000	L	0.360	0.130

Discussion
Auditory deterioration in infants and children with early hearing loss has been shown to be reduced by auditory intervention within 6 months after birth. As a result, the average age for cochlear implantation is decreasing. Obtaining precise and objective hearing information for a subject in order to guide forthcoming intervention strategies is becoming increasingly important.

Information on hearing status is commonly obtained by pure tone audiometry; however, for infants and young children it is not always possible to obtain reliable hearing information, as a result of a lack of cooperation and the inability to understand the testing procedure. Alternative approaches to assess hearing threshold in children include the ABR and the ASSR which provide frequency-specific information. In addition, visual reinforcement tools may contribute to information regarding low frequency hearing and uncomfortable loudness levels in the case of hearing aid fitting.

The present study investigated the relationship between the COR and the three standardized procedures in hearing assessment (OAEs, ABR, ASSR). Since a threshold gold standard was not available, the COR and ASSR threshold estimates were evaluated according to their relationship with the ABR threshold values. The analyses highlighted the following:

1. As expected, the data indicate that the threshold estimates obtained with the ASSR and ABR are highly correlated at all tested frequencies. This corroborates with findings in previous reports. The data, however, do not offer information on the precision and accuracy of the ASSR measurement.

2. The COR threshold values were correlated with the ABR data, but the observed relationships were not as strong as those observed in the ASSR-ABR dataset. The estimated correlation differences between (ABR-ASSR) and (ABR-COR) were not significant. This finding suggests that although the COR and the ASSR data are associated differently with the ABR threshold values, the observed ASSR threshold estimation errors are not statistically significant from the COR errors.

3. The analysis of the COR-OAE relationship indicated that the COR variables present a “preference” towards the right ear. For left ear measurements, no significant
correlations were observed. This observation might be a direct consequence of how the COR technique is executed with the subject turning its head towards the sound stimulus, favouring one ear over the other.

4. The analysis of the COR and ASSR variables showed significant correlations in the majority of frequencies tested. The data presented in Figures 1 and 2 show another characteristic of the COR procedure, which is underestimation of the hearing threshold (in comparison to the ASSR estimate). The latter could have been influenced by a number of factors such as (i) the presentation of the stimulus (i.e. intensity of sound arriving at the ear); (ii) the age of the infant/child and its adaptive response to sound; and (iii) the evaluation of response by the operator. These factors are cumulative and can affect the COR assessment in multiple ways, but the mechanics and interactions of these factors were not evaluated in the present study.

The data show that the COR threshold assessment follows the pattern of the other two established electrophysiological methods (ABR, ASSR). The correlation analyses did not permit an evaluation of the precision of these estimates. Considering that the ASSR assessment shows a better relationship with ABR (higher correlation values) than COR, it might be advantageous to utilize such an approach to gain frequency-specific information. To fine-tune these findings, it is necessary to use a larger sample to eliminate the variability induced by the various techniques in the assessment of hearing threshold.

References

1. Parving A. Prevalence of congenital hearing impairment and risk factors. Neonatal hearing screening. In: Grandori F, Latuman M, editors. The European Consensus Development Conference on Neonatal Hearing Screening. Milan. 1998. p. 6-10.
2. Moseller MP. Early intervention and language development in children who are deaf and hard of hearing. Pediatrics 2000;106:43-51.
3. Hayes D. Newborn hearing screening: selected experience in the United States. Scand Audiol 2001;30(Suppl 53):29-32.
4. Yoshinaga-Itano C, Sedey AL, Coulter RA, et al. Language of early and later-identified children with hearing loss. Pediatr 1990;102:1168-71.
5. Apuzzo ML, Yoshinaga-Itano C. Early identification of infants with significant hearing loss and the Minnesota Child Development Inventory. Semin Hear 1995;16:124-39.
6. Molin E, Ricci G, Baronon, et al. Identifying congenital hearing impairment. Personal experience based on selective hearing screening. Acta Otorhinolaryngol Ital 2004;24:109-16.
7. Amonius C, Corbán A, Boro R, Trevisi P, et al. Hearing threshold assessment in young children with electrocochleography (ECochG) and auditory brainstem responses (ABR): experience at the University Hospital of Ferrara. Auris Nasus Laryn 2010;37:55-7.
8. Hatzopoulos S, Prasser S, Corbán A, et al. Threshold estimation in adult normal- and impaired-hearing subjects using auditory steady-state responses. Med Sci Monit 2010;16:21-7.
9. Hatzopoulos S, Corbán A, Petrucelli J, et al. Estimation of pure-tone thresholds in adults using extrapolated distortion product otoacoustic emission input/output functions and auditory steady state responses. Int J Audiol 2009;48:625-31.
10. Hatzopoulos S, Petrucelli J, Corbán A, et al. Optimizing otoacoustic emission protocols for a UNHS program. Audiol Neuroottol 2009;14:7-16.
11. Corbán A, Hatzopoulos S, Busi M, et al. The universal newborn hearing screening program at the University Hospital of Ferrara: focus on costs and software solutions. Int J Pediatr Otorhinolaryngol 2006;72:807-16.
12. Hatzopoulos S, Camurri L, et al. Neonatal newborn hearing screening: four years’ experience at Ferrara University Hospital (CMHAP projects): part I. Acta Otorhino- nolaryngol Ital 2007;27:10-6.
13. John MS, Picton TW. Human auditory steady-state responses to amplitude-modulated tones: phase and latency measurements. Hearing Research 2000;141:57-79.
14. Johnson BW, Weinberg H, Ribary U, et al. Topographic distribution of the 40 Hz auditory evoked-related potential in normal and aged subjects. Brain Topogr 1988;1:117-21.
15. Kankkunen A, Rosenhall U. Comparison between thresholds obtained with pure-tone audiometry and the 40 Hz middle latency response. Scand Audiol 1983;14:99-104.
16. Khanne SM, Tech MC. Spectral characteristics of the responses of primary auditory nerve fibres to frequency-modulated signals. Hear Res 1989;39:159-75.

Fig. 3. Distribution of click-evoked ABR thresholds from the right and left ears. Both distributions show asymmetries to the right.

Received: July 10, 2012 - Accepted: October 10, 2012

Address for correspondence: Stavros Hatzopoulos, ENT and Audiology Department, University Hospital of Ferrara, c/o Grovèca 203, 44100 Ferrara, Italy. Tel. +39 0532 237447. E-mail: sl1h1@unife.it