HEAT KERNEL ESTIMATES FOR NON-SYMMETRIC STABLE-LIKE PROCESSES

PENG JIN

Abstract. Let $d \geq 1$ and $0 < \alpha < 2$. Consider the integro-differential operator

$$L f(x) = \int_{\mathbb{R}^d \setminus \{0\}} \left[f(x+h) - f(x) - \chi_{\alpha}(h) \nabla f(x) \cdot h \right] \frac{n(x,h)}{|h|^{d+\alpha}} \, dh + 1_{\alpha>1} b(x) \cdot \nabla f(x),$$

where $\chi_{\alpha}(h) := 1_{\alpha>1} + 1_{\alpha=1} 1_{|h| \leq 1}$, $b : \mathbb{R}^d \to \mathbb{R}^d$ is bounded measurable, and $n : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is measurable and bounded above and below respectively by two positive constants. Further, we assume that $n(x,h)$ is Hölder continuous in x, uniformly with respect to $h \in \mathbb{R}^d$. In the case $\alpha = 1$, we assume additionally $\int_{\partial B_r} n(x,h) \, dS_r(h) = 0$, $\forall r \in (0,\infty)$, where dS_r is the surface measure on ∂B_r, the boundary of the ball with radius r and center 0. In this paper, we establish two-sided estimates for the heat kernel of the Markov process associated with the operator L. This extends a recent result of Z.-Q. Chen and X. Zhang.

1. Introduction

In probability theory, stable distributions play a very important role. They appear naturally when one studies the limits of the sum of suitably rescaled independent and identically distributed random variables. A stable distribution is firstly characterized by an index $\alpha \in (0,2]$, which is called the index of stability. Stable distributions with index $\alpha = 2$ are nothing but the Gaussian ones, while those with index $\alpha \in (0,2)$ have heavy tails and are particularly interesting for applications, see, e.g., [20]. One feature of stable distributions is their analytical tractability, which is due to the simple form of their characteristic functions. In particular, density estimates for stable distributions with index $\alpha \in (0,2)$ were done in [12] for the one-dimensional case, and the higher dimensional analogues were obtained in [6, 16, 24].

A Lévy process whose distribution is α-stable is called an α-stable process. Due to [16, 24], density estimates of α-stable processes with $\alpha \in (0,2)$ have been well-understood. Moreover, as shown in [23, 14, 15], many other Lévy processes, whose Lévy measure resembles that of an α-stable processes, possess similar or slightly different density estimates.

2010 Mathematics Subject Classification. primary 60J35, 47G20, 60J75.

Key words and phrases. Stable-like process, heat kernel, integro-differential operator, martingale problem, Levi's method.
Stable-like processes are extensions of stable processes and refer to Markov processes that behave, at each point of the state space, like a single stable process. In the literature there are different definitions of these processes, see, e.g., [1, 16, 8, 3, 5]. Symmetric stable-like processes can be defined through the corresponding symmetric Dirichlet forms, as done in [8]. Note that sharp heat kernel estimates for symmetric stable-like processes have been obtained in [8]. Compared to the symmetric case, non-symmetric stable-like processes are usually given as solutions of the martingale problem for stable-like operators. Following [5], a stable-like symmetric case, non-symmetric stable-like processes are usually given as solutions of symmetric stable-like processes. We will consider an integro-differential operator that is more general given in (1.1). Let $d \geq 1$ and $0 < \alpha < 2$. Consider the operator

$$
\mathcal{L} f(x) = \int_{\mathbb{R}^d \setminus \{0\}} \left[f(x + h) - f(x) - \chi_\alpha(h) \nabla f(x) \cdot h \right] \frac{n(x, h)}{|h|^{d+\alpha}} \mathrm{d}h + \mathbf{1}_{\{\alpha > 1\}} b(x) \cdot \nabla f(x),
$$

(1.2)

where $\chi_\alpha(h) := \mathbf{1}_{\alpha > 1} + \mathbf{1}_{\alpha = 1} \mathbf{1}_{\{|h| \leq 1\}}$, the vector field $b : \mathbb{R}^d \to \mathbb{R}^d$ and the function $n : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ are measurable. Throughout this paper, we assume the following assumptions:

Assumption 1.1. The function n satisfies $0 < \kappa_0 \leq n(x, h) \leq \kappa_1$ for all $x, h \in \mathbb{R}^d$, where κ_0 and κ_1 are constants. Further, there exist constants $\theta \in (0, 1)$ and $\kappa_2 > 0$ such that

$$
|n(x, h) - n(y, h)| \leq \kappa_2 |x - y|^\theta, \quad \forall x, y, h \in \mathbb{R}^d.
$$

(1.3)

In the case $\alpha = 1$, we assume additionally

$$
\int_{\partial B_r} n(x, h) h \mathrm{d}S_r(h) = 0, \quad \forall r \in (0, \infty),
$$

(1.4)

where dS_r is the surface measure on ∂B_r, the boundary of the ball with center 0 and radius r.

Remark 1.2. Note that we don’t assume the symmetry of $n(x, h)$ in h, i.e., it is possible that $n(x, h) \neq n(x, -h)$ for some $x, h \in \mathbb{R}^d$.

Assumption 1.3. There exists a constant $\kappa_3 > 0$ such that $|b(x)| \leq \kappa_3$ for all $x \in \mathbb{R}^d$.

According to [19, Proposition 3], the martingale problem for \mathcal{L} is well-posed under Assumptions 1.1 and 1.3. In spite of the presence of the drift term $b \cdot \nabla$ in \mathcal{L}, we will call the Markov process associated with \mathcal{L} a stable-like process. The main result of this paper is as follows:

Theorem 1.4. Suppose that the operator \mathcal{L} defined in (1.2) satisfies Assumptions 1.1 and 1.3. Let $(X,(L^x))$ be the Markov process associated with \mathcal{L}, i.e., L^x is the unique solution to the martingale problem for \mathcal{L} starting from $x \in \mathbb{R}^d$ and $X = (X_t)$ is the canonical process on $D([0,\infty);\mathbb{R}^d)$. Then $(X,(L^x))$ has a jointly continuous transition density $l(t,x,y)$ such that $L^x (X_t \in E) = \int_E l(t,x,y) dy$ for all $t > 0$, $x \in \mathbb{R}^d$ and $E \in \mathcal{B}(\mathbb{R}^d)$. Moreover, for each $T > 0$, there exists a constant $C_1 = C_1(d,\alpha,\kappa_0,\kappa_1,\kappa_2,\theta,\kappa_3,T) \in (1,\infty)$ such that

$$C_1^{-1} \left(\frac{t}{|x-y|^{d+\alpha}} \wedge t^{-d/\alpha} \right) \leq l(t,x,y) \leq C_1 \left(\frac{t}{|x-y|^{d+\alpha}} \wedge t^{-d/\alpha} \right)$$

for all $x,y \in \mathbb{R}^d$ and $0 < t \leq T$. For the case $1 < \alpha < 2$, there exists also a constant $C_2 = C_2(d,\alpha,\kappa_0,\kappa_1,\kappa_2,\theta,\kappa_3,T) > 1$ such that

$$|\nabla_x l(t,x,y)| \leq C_2 t^{-1/\alpha} \left(\frac{t}{|x-y|^{d+\alpha}} \wedge t^{-d/\alpha} \right), \quad \forall x,y \in \mathbb{R}^d, \quad t \in (0,T].$$

To prove Theorem 1.4, we will use the same approach as in [9], namely, we will apply the parametrix method of Levi. However, we have to overcome two main difficulties. The first one is, surprisingly, that sharp two-sided density estimates for a jump-type Lévy process with Lévy measure $K(h)|h|^{\frac{d-\alpha}{2}} dh$, where $K(\cdot)$ is bounded from above and below by two positive constants, are not completely known. To solve this problem, we will start with the upper bounds derived in [23], then use the rescaling argument in [4, Proposition 2.2] and some ideas from [5]. The second difficulty is due to the fact that $n(x,h)$ is not symmetric in h, which makes some rescaling arguments in [9] fail to work. As a result, in the case $\alpha = 1$, we obtain some estimates that are weaker than those in [9] (see, e.g., Lemma 3.6 below and [9, Theorem 2.4]). However, these weaker forms of estimates don’t essentially effect the proof of Theorem 1.4.

The rest of the paper is organized as follows. After a short section on preliminaries, in Section 3 we derive the two-sided density estimates for jump-type Lévy processes, whose Lévy measure is comparable to that of a rotationally symmetric α-stable process. In Section 4 we construct the transition density of $(X,(L^x))$, with the additional assumption that the drift b in \mathcal{L} is identically 0. In Section 5 we treat the case where $1 < \alpha < 2$ and the drift term $b \cdot \nabla$ in \mathcal{L} is present. Section 6 is devoted to the proof of Theorem 1.4.

Finally, we give a few remarks on the notation for the constants appearing in the statements or proofs of the results. The letter c with subscripts will only appear in proofs and denote positive constants whose exact value is unimportant. The labeling of the constants $c_1, c_2, ...$ starts anew in the proof of each result. We write $C(d,\alpha,...)$ for a positive constant C that depends only on the parameters $d, \alpha, ...$.
2. Preliminaries

2.1. Notation. The inner product of \(x\) and \(y\) in \(\mathbb{R}^d\) is written as \(x \cdot y\). We use \(|v|\) to denote the Euclidean norm of a vector \(v \in \mathbb{R}^m, m \in \mathbb{N}\). We use \(B_r(x)\) for the open ball of radius \(r\) with center \(x\) and simply write \(B_r\) for \(B_r(0)\). The boundary of \(B_r(x)\) is denoted by \(\partial B_r(x)\).

For a bounded function \(g\) on \(\mathbb{R}^d\) we write \(|g| := \sup_{x \in \mathbb{R}^d} |g(x)|\). Let \(C^2_0(\mathbb{R}^d)\) denote the class of \(C^2\) functions such that the function and its first and second order partial derivatives are bounded.

Let \(D = D([0, \infty); \mathbb{R}^d)\), the set of paths in \(\mathbb{R}^d\) that are right continuous with left limits, be endowed with the Skorokhod topology. Set \(X_t(\omega) = \omega(t)\) for \(\omega \in D\) and let \(\mathcal{D} = \sigma(X_t : 0 \leq t < \infty)\) and \(\mathcal{F}_t := \sigma(X_r : 0 \leq r \leq t)\). A probability measure \(\mathbb{P}\) on \((D, \mathcal{D})\) is called a solution to the martingale problem for \(\mathcal{L}\) starting from \(x \in \mathbb{R}^d\), if \(\mathbb{P}(X_0 = x) = 1\) and under the measure \(\mathbb{P}\), \(f(X_t) - \int_0^t \mathcal{L}f(X_u)du, \ t \geq 0\), is an \(\mathcal{F}_t\)-martingale for all \(f \in C^2_0(\mathbb{R}^d)\).

2.2. Rescaling. Instead of \(\mathcal{L}\), we first consider the operator

\[
\mathcal{A}f(x) := \int_{\mathbb{R}^d \setminus \{0\}} [f(x + h) - f(x) - \chi_\alpha(h)h \cdot \nabla f(x)] \frac{n(x, h)}{|h|^{d+\alpha}} dh.
\]

(2.1)

It turns out that the the Markov process associated with \(\mathcal{A}\) has the following rescaling property, which is analogous to [4, Proposition 2.2].

Lemma 2.1. Consider the operator \(\mathcal{A}\) defined in (2.1) with \(n(\cdot, \cdot)\) satisfying Assumption 1.1. Let \((X, (\mathbb{P}^x))\) be the Markov process associated with the operator \(\mathcal{A}\), i.e., \(\mathbb{P}^x\) is the unique solution to the martingale problem for \(\mathcal{A}\) starting from \(x \in \mathbb{R}^d\) and \(X = (X_t)\) is the canonical process on \(D([0, \infty); \mathbb{R}^d)\). Let \(a > 0\). Define \(\tilde{\mathbb{P}}^x = \mathbb{P}^{x/a}\) and \(Y_t := aX_{a^{-t}}\), \(t \geq 0\). Then \(\tilde{\mathbb{P}}^x(Y_0 = x) = 1\) and \(f(Y_t) - \int_0^t \tilde{\mathcal{A}}f(Y_u)du, \ t \geq 0\), is a \(\tilde{\mathbb{P}}^x\)-martingale for all \(f \in C^2_0(\mathbb{R}^d)\), where

\[
\tilde{\mathcal{A}}f(x) := \int_{\mathbb{R}^d \setminus \{0\}} [f(x + h) - f(x) - \chi_\alpha(h)h \cdot \nabla f(x)] \frac{\tilde{n}(x, h)}{|h|^{d+\alpha}} dh
\]

with \(\tilde{n}(x, h) := n(x/a, h/a)\).

Proof. In view of (1.4), the proof of [4, Proposition 2.2] works also here without any changes. \(\square\)

Remark 2.2. In Lemma 2.1, after the transformation \(\tilde{n}(x, h) = n(x/a, h/a)\), we have

\[
|\tilde{n}(x, h) - \tilde{n}(y, h)| = \left| n\left(\frac{x}{a}, \frac{h}{a}\right) - n\left(\frac{y}{a}, \frac{h}{a}\right)\right| \leq \kappa_2 \left|\frac{x}{a} - \frac{y}{a}\right|^{\theta} = \kappa_2 a^{-\theta}|x - y|^\theta
\]

for all \(x, y\) and \(h \in \mathbb{R}^d\).

2.3. Estimate of the first exit time from a ball.

Lemma 2.3. Let \(\mathcal{A}\) and \((X, (\mathbb{P}^x))\) be as in Lemma 2.1. Then there exists a constant \(C_3 > 0\) not depending on \(x\) such that for all \(r > 0\) and \(t > 0\),

\[
\mathbb{P}^x(\tau_{B_r(x)} \leq t) \leq C_3 tr^{-\alpha},
\]

where \(\tau_{B_r(x)} := \inf \{t \geq 0 : X_t \notin B_r(x)\}\).
Proof. The proof is essentially identical to that of [3, Proposition 3.1]. Let $f \in C^2_0(\mathbb{R}^d)$ be a non-negative function that is equal to $|x|^2$ for $|x| \leq 1/2$, which equals 1 for $|x| \geq 1$. Let $r > 0$ and $x_0 \in \mathbb{R}^d$ be arbitrary. Define $u(x) := r^2 f\left(r^{-1}(x - x_0)\right)$, $x \in \mathbb{R}^d$. Then $u \in C^2_0(\mathbb{R}^d)$, and $\|u\| \leq c_1 r^2$, $\|\nabla u\| \leq c_1 r$ and $\|D^2 u\| \leq c_1$ for some positive constant c_1. As shown in the proof of [3, Proposition 3.1], there exists a constant $c_2 > 0$ such that

$$\left| \int_{|h|\leq r} \left[u(x + h) - u(x) - h \cdot \nabla u(x) \right] \frac{n(x,h)}{|h|^{d+\alpha}} dh \right| \leq c_2 r^{2-\alpha} \tag{2.2}$$

and

$$\left| \int_{|h|> r} \left[u(x + h) - u(x) \right] \frac{n(x,h)}{|h|^{d+\alpha}} dh \right| \leq c_2 r^{2-\alpha}. \tag{2.3}$$

We now distinguish between the following three cases:

(i) $1 < \alpha < 2$. Since

$$\left| \int_{|h|> r} h \cdot \nabla u(x) \frac{n(x,h)}{|h|^{d+\alpha}} dh \right| \leq c_1 r \left| \int_{|h|> r} \frac{n(x,h)}{|h|^{d+\alpha-1}} dh \right| \leq c_3 r^{2-\alpha},$$

we get from (2.2) and (2.3) that $\|Au\| \leq c_4 r^{2-\alpha}$. (ii) $\alpha = 1$. In view of (1.4), it follows directly from (2.2) and (2.3) that $\|Au\| \leq c_2 r^{2-\alpha}$. (iii) $0 < \alpha < 1$. We have

$$\left| \int_{|h|\leq r} \left[u(x + h) - u(x) \right] \frac{n(x,h)}{|h|^{d+\alpha}} dh \right| \leq \|\nabla u\| \left| \int_{|h|\leq r} \frac{n(x,h)}{|h|^{d+\alpha-1}} dh \right| \leq c_5 r^{2-\alpha},$$

which together with (2.3) implies $\|Au\| \leq c_6 r^{2-\alpha}$.

Further, it was shown in [3, Proposition 3.1] that

$$r^2 P_{x_0}^T \left(\tau_{B_r(x_0)} \leq t \right) \leq E_{x_0} \left[u \left(X_{t \wedge \tau_{B_r(x_0)}} \right) \right]$$

$$= E_{x_0} \left[\int_0^{t \wedge \tau_{B_r(x_0)}} A u(X_s) ds \right] \leq c_7 t r^{2-\alpha}, \tag{2.4}$$

which implies the assertion. \hfill \Box

Lemma 2.4. Assume $1 < \alpha < 2$. Let \mathcal{L} and $(X, (\mathcal{L}^x))$ be as in Theorem 1.4. Define $\tau_{B_r(x)}$ as in Lemma 2.3. Then for each $T > 0$, there exists a constant $C_4 > 0$ not depending on x such that for all $0 < r < T$ and $t > 0$,

$$\mathcal{L}^x \left(\tau_{B_r(x)} \leq t \right) \leq C_4 t r^{-\alpha} \tag{2.5}$$

Proof. Let the function u be as in the proof of Lemma 2.3. Note that $\mathcal{L} u = A u + b \cdot \nabla u$ and $\|Au\| \leq c_1 r^{2-\alpha}$, $r > 0$, which was already proved in proof of Lemma 2.3. Then we obtain from $\|b \cdot \nabla u\| \leq c_2 \kappa_2 r$ that $\|Lu\| \leq c_3 (r^{2-\alpha} + r)$, $r > 0$. Similarly to (2.4), we get

$$r^2 P_{x_0}^T \left(\tau_{B_r(x_0)} \leq t \right) \leq c_4 t (r^{2-\alpha} + r) \leq c_5 r^{2-\alpha}, \quad 0 < r < T.$$

So (2.5) follows. \hfill \Box
2.4. Some inequalities and estimates. Let $\gamma > 0$ be a constant. It follows from [9, p.277, (2.9)] that for $|z| \leq (2t^{1/\alpha}) \lor (|x|/2)$,

$$
\left(t^{1/\alpha} + |x| + z \right)^{-\gamma} \leq 4^\gamma \left(t^{1/\alpha} + |x| \right)^{-\gamma}.
$$

(2.6)

Following the notation in [9], we write

\[
\hat{g}_i^\alpha(t, x) := t^{\gamma/\alpha}(|x|^\beta \land 1) \left(t^{1/\alpha} + |x| \right)^{-d-\alpha}, \quad (t, x) \in (0, \infty) \times \mathbb{R}^d.
\]

As shown in [9], the following convolution inequalities hold.

Lemma 2.5. ([9, Lemma 2.1]) (i) For all $\beta \in [0, \alpha/2]$ and $\gamma \in \mathbb{R}$, there exists some constant $C_5 = C_5(d, \alpha) > 0$ such that

\[
\int_{\mathbb{R}^d} \hat{g}_i^\alpha(t, x) dx \leq C_5 t^{\frac{\gamma + \beta}{\alpha}}, \quad (t, x) \in (0, 1) \times \mathbb{R}^d.
\]

(2.7)

(ii) For all $\beta_1, \beta_2 \in [0, \alpha/4]$, and $\gamma_1, \gamma_2 \in \mathbb{R}$, there exists some constant $C_6 = C_6(d, \alpha) > 0$ such that for all $0 < s < t \leq 1$ and $x \in \mathbb{R}^d$,

\[
\begin{align*}
\int_{\mathbb{R}^d} \hat{g}_1^\beta(t-s, x-z) \hat{g}_2^\beta(s, z) dz & \leq C_6 \left((t-s)^{\frac{\gamma_1 + \beta_1 + \beta_2 - \alpha}{\alpha}} + (t-s)^{\frac{\gamma_2 + \beta_2 - \alpha}{\alpha}} \right) \hat{g}_0^\beta(t, x) \\
& + C_6(t-s)^{\frac{\gamma_1 + \beta_1 + \beta_2 - \alpha}{\alpha}} \hat{g}_1^\beta(t, x) + C_6(t-s)^{\frac{\gamma_2 + \beta_2 - \alpha}{\alpha}} \hat{g}_1^\beta(t, x).
\end{align*}
\]

(2.8)

(iii) For all $\beta_1, \beta_2 \in [0, \alpha/4]$, $\gamma_1 + \beta_1 > 0$ and $\gamma_2 + \beta_2 > 0$, there exists some constant $C_7 = C_7(d, \alpha) > 0$ such that for all $0 < s < t \leq 1$ and $x \in \mathbb{R}^d$,

\[
\int_0^1 \int_{\mathbb{R}^d} \hat{g}_1^\beta(t-s, x-z) \hat{g}_2^\beta(s, z) dz ds \\
\leq C_7 B \left(\frac{\gamma_1 + \beta_1}{\alpha}, \frac{\gamma_2 + \beta_2}{\alpha} \right) \left(\hat{g}_{\gamma_1+\gamma_2+\beta_1+\beta_2}^0 + \hat{g}_{\gamma_1+\gamma_2+\beta_2}^0 + \hat{g}_{\gamma_1+\gamma_2+\beta_1}^0 \right)(t, x),
\]

(2.9)

where $B(\gamma, \beta)$ is the Beta function with parameters $\gamma, \beta > 0$.

For $\lambda > 0$, define $u_\lambda(x) := \int_0^\infty e^{-\lambda t} \hat{g}_0^\alpha(s, x) ds$, $x \in \mathbb{R}^d$. According to [7, Lemma 3, Lemma 7 and Theorem 8], there exist constants $C_8 = C_8(d, \alpha) > 1$ and $C_9 = C_9(d, \alpha) > 1$ such that for all $\lambda > 0$ and $x, y, z \in \mathbb{R}^d$,

\[
C_8^{-1} \left(\lambda^{(d-\alpha)/\alpha} \lor |x|^{\alpha-d} \right) \land \left(\lambda^{-2} |x|^{-d-\alpha} \right) \\
\leq u_\lambda(x) \leq C_8 \left(\lambda^{(d-\alpha)/\alpha} \lor |x|^{\alpha-d} \right) \land \left(\lambda^{-2} |x|^{-d-\alpha} \right)
\]

(2.10)

and

\[
u_\lambda(x-z) \land u_\lambda(z-y) \leq C_9 u_\lambda(x-y).
\]

(2.11)

Lemma 2.6. Assume $1 < \alpha < 2$. Define $k_\lambda(x) := \int_0^\infty e^{-\lambda t} \hat{g}_{\alpha-1}^0(s, x) ds$, $x \in \mathbb{R}^d$. Then there exist constants $C_{10} = C_{10}(d, \alpha) > 0$ and $C_{11} = C_{11}(d, \alpha) > 0$ such that

\[
k_\lambda(x) \leq C_{10} \left(|x|^{\alpha-d-1} \lor \left(\lambda^{-2+1/\alpha} |x|^{-d-\alpha} \right) \right), \quad \lambda > 0, x \in \mathbb{R}^d.
\]

(2.12)
and
\[\int_{\mathbb{R}^d} u_\lambda(x-z)k_\lambda(z-y)dz \leq C_{11}(1 + 1/\alpha)u_\lambda(x-y), \quad \lambda > 0, \ x, y \in \mathbb{R}^d. \quad (2.13) \]

Proof. It is easy to see that \(k_\lambda(x) = \lambda^{(d+1)/\alpha}k_1(\lambda^1/\alpha)x \). So it suffices to show (2.12) for \(\lambda = 1 \). For \(x \in \mathbb{R}^d \), we have
\[k_1(x) \leq \int_0^{1/\alpha} e^{-t} t^{1-1/\alpha} dt + \int_{1/\alpha}^{\infty} e^{-t} t^{(d+1)/\alpha} dt. \]
Therefore, for \(|x| > 1 \),
\[k_1(x) \leq c_1 |x|^{-d-\alpha} + |x|^{-d-1} \int_{1/\alpha}^{\infty} e^{-t} dt \leq c_1 |x|^{-d-\alpha} + |x|^{-d-1} \leq c_2 |x|^{-d-\alpha}; \]
for \(|x| \leq 1 \),
\[k_1(x) \leq |x|^{-d-\alpha} \int_0^{1/\alpha} t^{1-1/\alpha} dt + \int_{1/\alpha}^{1} t^{(d+1)/\alpha} dt \leq c_3 |x|^{-d+\alpha-1}. \]
So (2.12) is true. To show (2.13), we proceed in the same way as in the proof of [7, Lemma 17]. Set \(w_\lambda(x) := (\lambda^{-(d-\alpha)/\alpha} |x|^{\alpha-1}) \). It follows from (2.10) and (2.12) that \(k_\lambda(x) \leq c_4 w_\lambda(x)u_\lambda(x) \) for all \(\lambda > 0 \) and \(x \in \mathbb{R}^d \). So
\[\int_{\mathbb{R}^d} u_\lambda(x-z)k_\lambda(z-y)dz \]
\[\leq \int_{\mathbb{R}^d} u_\lambda(x-y) \int_{\mathbb{R}^d} w_\lambda(z-y)u_\lambda(z-y)u_\lambda(x-y)dz \]
\[\leq c_4 u_\lambda(x-y) \int_{\mathbb{R}^d} w_\lambda(z-y)(u_\lambda(x-z) \vee u_\lambda(z-y))dz \]
\[\leq c_4 u_\lambda(x-y) \int_{\mathbb{R}^d} [(w_\lambda(x-z)u_\lambda(x-z)) \vee (w_\lambda(z-y)u_\lambda(z-y))]dz \quad (2.14) \]
\[\leq c_4 u_\lambda(x-y) \int_{\mathbb{R}^d} [(w_\lambda(x-z)u_\lambda(x-z)) + (w_\lambda(x-z)u_\lambda(z-y))]dz \]
\[\leq 2c_4 u_\lambda(x-y) \int_{\mathbb{R}^d} w_\lambda(z)u_\lambda(z)dz, \quad (2.15) \]
where in (2.14) we used the fact that \(w(z-y) \) and \(u_\lambda(z-y) \) are decreasing in \(|z-y| \). By (2.10) and the definition of \(w_\lambda \), we have
\[w_\lambda(z)u_\lambda(z) \leq c_5 (|z|^{\alpha-\alpha} + \lambda^{-2+1/\alpha}|z|^{-\alpha}), \quad \lambda > 0, \ z \in \mathbb{R}^d. \]
Thus
\[\int_{\mathbb{R}^d} w_\lambda(z)u_\lambda(z)dz \leq c_5 \int_{|z| \leq 1/\alpha} |z|^{\alpha-\alpha} dz + c_5 \int_{|z| \leq 1/\alpha} \lambda^{-2+1/\alpha}|z|^{-\alpha} dz \]
\[\leq c_5 \lambda^{-1+1/\alpha}. \quad (2.16) \]
So (2.13) follows by (2.15) and (2.16). \(\square \)
3. Stable-like Lévy processes and their density estimates

Consider a Lévy process $Z = (Z_t)_{t \geq 0}$ with $Z_0 = 0$ a.s., which is defined on some probability space (Ω, \mathcal{A}, P) and whose characteristic function is given by

$$E[e^{iZ_t u}] = e^{-t\psi(u)}, \quad u \in \mathbb{R}^d,$$

$$\psi(u) = -\int_{\mathbb{R}^d \setminus \{0\}} (e^{iu \cdot h} - 1 - \chi_\alpha(h)iu \cdot h)K(h)dh.$$

Throughout this section we assume that the function $K: \mathbb{R}^d \to \mathbb{R}$ satisfies

$$\frac{\kappa_0}{|h|^{d+\alpha}} \leq K(h) \leq \frac{\kappa_1}{|h|^{d+\alpha}}, \quad h \in \mathbb{R}^d,$$ \hspace{1cm} (3.1)

where $\kappa_1 > \kappa_0 > 0$ are the constants appearing in Assumption 1.1. In the case $\alpha = 1$, we assume in addition to (3.1) that

$$\int_{\partial B_r} K(h)z dS_r(h) = 0, \quad \forall r \in (0, \infty).$$ \hspace{1cm} (3.2)

In view of (3.1), we call Z a stable-like Lévy process. The aim of this section is to establish some estimates for the density functions of Z. To this end, we follow the same idea as in [9]. Define $\tilde{K}: \mathbb{R}^d \to \mathbb{R}$ by $\tilde{K}(h) := K(h) - \kappa_0/(2|h|^{d+\alpha})$, $z \in \mathbb{R}^d$. So

$$\frac{2^{-1}\kappa_0}{|h|^{d+\alpha}} \leq \tilde{K}(h) \leq \frac{\kappa_1 - 2^{-1}\kappa_0}{|h|^{d+\alpha}}, \quad h \in \mathbb{R}^d.$$ \hspace{1cm} (3.3)

Note that if $\alpha = 1$, then

$$\int_{\partial B_r} \tilde{K}(h)z dS_r(h) = 0, \quad \forall r \in (0, \infty).$$ \hspace{1cm} (3.4)

Let

$$\tilde{\psi}(u) := -\int_{\mathbb{R}^d \setminus \{0\}} \left(e^{iu \cdot h} - 1 - \chi_\alpha(h)iu \cdot h\right)\tilde{K}(h)dh, \quad u \in \mathbb{R}^d,$$ \hspace{1cm} (3.5)

and $\tilde{Z} = (\tilde{Z}_t)_{t \geq 0}$ be a stable-like Lévy process with the characteristic exponent $\tilde{\psi}$. Without loss of generality, we assume that the process (\tilde{Z}_t) is also defined on (Ω, \mathcal{A}, P).

We can write

$$\psi(u) = -\int_{\mathbb{R}^d \setminus \{0\}} \left(e^{iu \cdot h} - 1 - \chi_\alpha(h)iu \cdot h\right)\left(\frac{\kappa_0}{2|h|^{d+\alpha}} + \tilde{K}(h)\right)dh$$

$$= C_{12}|u|^\alpha + \tilde{\psi}(u),$$

where $C_{12} = C_{12}(d, \alpha, \kappa_0) > 0$ is a constant. It holds

$$e^{-t\Re(\psi(u))} = |e^{-t\psi(u)}| = |e^{-t(C_{12}|u|^\alpha + \tilde{\psi}(u))}| = e^{-tC_{12}|u|^\alpha}e^{-t\tilde{\psi}(u)} \leq e^{-tC_{12}|u|^\alpha},$$ \hspace{1cm} (3.6)

where $\Re(x)$ denotes the real part of $x \in \mathbb{C}$. Therefore, we get

$$\Re(\psi(u)) \geq C_{12}|u|^\alpha, \quad u \in \mathbb{R}^d, \quad t \geq 0.$$ \hspace{1cm} (3.7)
By (3.6) and the inversion formula of Fourier transform, the law of \(Z_t \) has a density (with respect to the Lebesgue measure) \(f_t \in L^1(\mathbb{R}^d) \cap C_b(\mathbb{R}^d) \) that is given by

\[
f_t(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-iu \cdot x} e^{-t\psi(u)} du, \quad x \in \mathbb{R}^d, \quad t > 0.
\]

(3.8)

Similarly, we define

\[
g_t(x) := \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-iu \cdot x} e^{-tC_{12}|u|^\alpha} du
\]

(3.9)

and

\[
\tilde{f}_t(x) := \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-iu \cdot x} e^{-t\tilde{\psi}(u)} du
\]

for \(x \in \mathbb{R}^d, \quad t > 0 \). Then \(g_t \) and \(h_t \) are densities of some rotationally symmetric \(\alpha \)-stable process \((S_t) \) and the stable-like Lévy process \((\tilde{Z}_t) \), respectively. It is clear that \(f_t = g_t \ast \tilde{f}_t \). Since \(g_t \) is the density of a rotationally symmetric \(\alpha \)-stable process, we have the following scaling property of \(g_t \): for all \(x \in \mathbb{R}^d \) and \(t > 0 \),

\[
g_t(x) = t^{-d/\alpha} g_1(t^{-1/\alpha}x).
\]

(3.10)

It is well-known that the following estimates for \(g_t \) hold: there exists some constant \(C_{13} = C_{13}(d, \alpha, \kappa_0) > 0 \) such that

\[
C_{13}^{-1} t \left(t^{1/\alpha} + |x| \right)^{-d-\alpha} \leq g_t(x) \leq C_{13} t \left(t^{1/\alpha} + |x| \right)^{-d-\alpha},
\]

(3.11)

for all \(x \in \mathbb{R}^d \) and \(t > 0 \). Moreover, for each \(k \in \mathbb{N} \), we can find a constant \(C_{14} = C_{14}(d, \alpha, \kappa_0, k) > 0 \) such that

\[
|\nabla^k g_t(x)| \leq C_{14} t \left(t^{1/\alpha} + |x| \right)^{-d-\alpha-k}
\]

(3.12)

for all \(x \in \mathbb{R}^d \) and \(t > 0 \), see [9, Lemma 2.2].

We next show that the same estimate as in (3.11) is also true for the density \(f_t \). For \(|\nabla f_t| \) we shall derive an estimate that is slightly worse than the estimate on \(|\nabla g_t| \) given in (3.12). As the first step, we have the following upper estimate that is actually a special case of [23, Theorem 1].

Lemma 3.1. ([23]) Let \(f_t \) be as in (3.8). Then there exists some constant \(C_{15} = C_{15}(d, \alpha, \kappa_0, \kappa_1) > 0 \) such that

\[
f_t(x) \leq C_{15} \left(1 \wedge |x|^{-d-\alpha} \right), \quad x \in \mathbb{R}^d.
\]

(3.13)

Proof. Note that (3.7) is true. The assertion thus follows by [23, Theorem 1]. Indeed, to apply [23, Theorem 1], we only need to take \(\mu \) as the surface measure \(dS_1 \) on \(\partial B_1 \), \(q(\cdot) \equiv \kappa_1, \phi(\cdot) \equiv 1, \beta = \alpha, \gamma = d, \) and \(k_1 = k_2 = 1 \) there. Then we obtain

\[
f_1(x + v) \leq c_1 \left(1 \wedge |x|^{-d-\alpha} \right), \quad \forall x \in \mathbb{R}^d,
\]

(3.14)
Proof. Let \(x \) be as in Lemma 3.1. Then we have

\[
f_t(x) \leq C_{15} t \left(t^{1/\alpha} + |x| \right)^{-d-\alpha}, \quad x \in \mathbb{R}^d, \ t > 0. \tag{3.15}
\]

Moreover, there exists some constant \(C_{16} = C_{16}(d, \alpha, \kappa_0, \kappa_1) > 0 \) such that

\[
|\nabla f_t(x)| \leq C_{16} t^{-1/\alpha} \left(t^{1/\alpha} + |x| \right)^{-d-\alpha} \tag{3.16}
\]

for all \(x \in \mathbb{R}^d \) and \(t > 0 \).

Proof. Let \(a > 0 \) and define \(Y_t := aZ_{\alpha^{-1}t}, \ t \geq 0 \). Then \((Y_t) \) is a Lévy process and for \(u \in \mathbb{R}^d \),

\[
\mathbb{E}[e^{iy_t \cdot u}] = \mathbb{E}[e^{ia_{\alpha^{-1}} t u \cdot y_t}] = \exp \left(ta^{-\alpha} \int_{d\{0\}} \left(e^{iu \cdot h} - 1 - \chi_\alpha(h) iu \cdot h \right) K(h)dh \right).
\]

By (3.2) and a change of variables, we obtain

\[
\mathbb{E}[e^{iy_t \cdot u}] = \exp \left(\int_{d\{0\}} \left(e^{iu \cdot h} - 1 - \chi_\alpha(h) iu \cdot h \right) a^{-d-\alpha} K(a^{-1}h)dh \right), \quad u \in \mathbb{R}^d.
\]

Set \(M(h) := a^{-d-\alpha} K(a^{-1}h), \ h \in \mathbb{R}^d \). Then the function \(M \) satisfies

\[
\frac{\kappa_0}{|h|^{d+\alpha}} \leq M(h) \leq \frac{\kappa_1}{|h|^{d+\alpha}}, \quad h \in \mathbb{R}^d, \tag{3.17}
\]

where the positive constants \(\kappa_0 \) and \(\kappa_1 \) are the same as in (3.1). Therefore, \((Y_t) \) is also a stable-like Lévy process. Let \(\rho(x), \ x \in \mathbb{R}^d \), be the probability density of \(Y_1 \). By choosing \(a \) such that \(a^{-\alpha} = t \), we obtain \(Y_t = t^{-1/\alpha} Z_t \), which implies \(\rho(x) = td^{1/\alpha} f_t(t^{1/\alpha} x), \ x \in \mathbb{R}^d \). It follows from Lemma 3.1 that \(td^{1/\alpha} f_t(t^{1/\alpha} x) \leq C_{15} (1 \wedge |x|^{-d-\alpha}), \ x \in \mathbb{R}^d \). So (3.15) is true.

Next, we will use the fact that \(f_t = g_t \ast \hat{f}_t \) to show (3.16). Since \(\hat{f}_t \) is the density of \(\tilde{L}_t \) and \(\tilde{L}_t \) is a stable-like Lévy process with the jump kernel \(\hat{K} \) that satisfies (3.3) and (3.4), we obtain, using (3.15), the existence of a constant \(\hat{C}_{15} = \hat{C}_{15}(d, \alpha, \kappa_0, \kappa_1) > 0 \) such that

\[
\hat{f}_t(x) \leq \hat{C}_{15} t \left(t^{1/\alpha} + |x| \right)^{-d-\alpha}, \quad x \in \mathbb{R}^d, \ t > 0. \tag{3.18}
\]
Note that $\nabla f_t = (\nabla g_t) \ast \tilde{f}_t$. By (3.12), we get that for all $x \in \mathbb{R}^d$ and $t > 0$,

$$|\nabla f_t(x)| \leq \int_{\mathbb{R}^d} |\nabla g_t(x - h)| \tilde{f}_t(h) dh$$

$$\leq C_{14} C_{15} \int_{\mathbb{R}^d} t^{(1/\alpha + |x - h|)^{-d-\alpha-1}} \left(t^{1/\alpha} + |h| \right)^{-d-\alpha} dh$$

$$\leq C_{16} t^{1-\alpha} \left(t^{1/\alpha} + |x| \right)^{-d-\alpha}.$$

This completes the proof. \qed

By (3.15) and the same argument as in [9, Lemma 2.3], we easily obtain the following corollary.

Corollary 3.3. There exists a constant $C_{17} = C_{17}(d, \alpha, \kappa_0, \kappa_1) > 0$ such that

$$|f_t(x) - f_t(x')| \leq C_{17} \left((t^{-1/\alpha}|x - x'|) \wedge 1 \right) \{ g_0^0(t, x) + g_0^0(t, x') \}$$

(3.19)

for all $x, x' \in \mathbb{R}^d$ and $t > 0$.

Lemma 3.4. There exists some constant $C_{18} = C_{18}(d, \alpha, \kappa_0, \kappa_1) > 0$ such that

$$f_t(x) \geq C_{18} t \left(t^{1/\alpha} + |x| \right)^{-d-\alpha}, \quad \forall x \in \mathbb{R}^d, \ t > 0.$$

Proof. We will use the fact that $f_t = g_t \ast \tilde{f}_t$ to show this lemma. According to Lemma 2.3, there exists some constant $c_1 = c_1(d, \alpha, \kappa_0, \kappa_1) > 0$ such that

$$\mathbb{P}(\tilde{\tau}_{B_r} \leq t) \leq c_1 \, t r^{-\alpha}, \quad \forall r > 0,$$

(3.20)

where $\tilde{\tau}_{B_r} := \inf \left\{ t \geq 0 : \tilde{Z}_t \notin B_r \right\}$. Choose $c_2 > 0$ such that

$$(2^{-1} c_2)^\alpha = 2 c_1.$$

(3.21)

If $|x| \leq c_2 t^{1/\alpha}$, then

$$f_t(x) \geq \int_{B_{2c^2 t^{1/\alpha}}(x)} g_t(x - y) \tilde{f}_t(y) dy \geq c_3 t^{-d/\alpha} \int_{B_{2c^2 t^{1/\alpha}}(x)} \tilde{f}_t(y) dy$$

$$\geq c_3 t^{-d/\alpha} \int_{B_{c^2 t^{1/\alpha}}} \tilde{f}_t(y) dy = c_3 t^{-d/\alpha} \mathbb{P}(\tilde{Z}_t \in B_{c^2 t^{1/\alpha}})$$

$$\geq c_3 t^{-d/\alpha} \mathbb{P} \left(\sup_{0 \leq s \leq t} |\tilde{Z}_s| < c_2 t^{1/\alpha} \right) = c_3 t^{-d/\alpha} \left(1 - \mathbb{P} \left(\sup_{0 \leq s \leq t} |\tilde{Z}_s| \geq c_2 t^{1/\alpha} \right) \right)$$

$$= c_3 t^{-d/\alpha} \left(1 - \mathbb{P}(\tilde{\tau}_{B_{c^2 t^{1/\alpha}}} \leq t) \right)^{(3.20)} \geq c_3 t^{-d/\alpha} \left(1 - c_1 t \left(c_2 t^{1/\alpha} \right)^{-\alpha} \right)$$

$$\overset{(3.21)}{=} c_4 t^{-d/\alpha}. $$
If $|x| > c_2 t^{1/\alpha}$, then
\[
f_t(x) \geq \int_{\mathbb{R}^d \setminus B_{2-1/\alpha}(x)} g_t(x - y) \tilde{f}_t(y) dy \geq c_5 \int_{\mathbb{R}^d \setminus B_{2-1/\alpha}(x)} \frac{t}{|x - y|^{d + \alpha}} \tilde{f}_t(y) dy
\]
\[
\geq c_5 \int_{\mathbb{R}^d \setminus B_{2-1/\alpha}(x)} \frac{t}{|x - y|^{d + \alpha}} \tilde{f}_t(y) dy \geq c_5 \int_{B_{2-1/\alpha}(x)} \frac{t}{|x - y|^{d + \alpha}} \tilde{f}_t(y) dy
\]
\[
\geq c_6 \frac{t}{|x|^{d + \alpha}} \int_{B_{2-1/\alpha}(x)} \tilde{f}_t(y) dy = c_6 \frac{t}{|x|^{d + \alpha}} \left(1 - c_1 t \left(2^{-1} c_2 t^{1/\alpha} \right) - \alpha \right). \tag{3.21}
\]
This completes the proof. \qed

Next, we derive some useful estimates for f_t. In the subsequent proofs we will use very often the following identities: for $t > 0$ and $x, h \in \mathbb{R}^d$,
\[
g_t(x + h) - g_t(x) = \int_0^1 \nabla g_t(x + rh) \cdot h dr, \tag{3.22}
\]
\[
g_t(x + h) - g_t(x) - h \cdot \nabla g_t(x) = \int_0^1 \left(\int_0^1 \nabla^2 g_t(x + rr' h) \cdot r dr' \right) \cdot h dr. \tag{3.23}
\]

For each $\alpha \in (0, 2)$, it was proved in [9, p. 282] that there exists some constant $C_{19} = C_{19}(d, \alpha) > 0$ such that for all $0 < t \leq 1$ and $x \in \mathbb{R}^d$,
\[
\int_{\mathbb{R}^d} \left(\left(t^{-2/\alpha} |h|^2 \right) \wedge 1 \right) \left(\rho_0^0(t, x + h) + \rho_0^0(t, t, x) \right) \cdot |h|^{-d - \alpha} dh \leq C_{19} \rho_0^0(t, x). \tag{3.24}
\]

Lemma 3.5. Assume $\alpha \neq 1$. Then there exists constant $C_{20} = C_{20}(d, \alpha, \kappa_0, \kappa_1) > 0$ such that for all $0 < t \leq 1$ and $x \in \mathbb{R}^d$,
\[
\int_{\mathbb{R}^d} |f_t(x + h) - f_t(x) - \chi_\alpha(h) h \cdot \nabla f_t(x) \cdot |h|^{-d - \alpha} dh \leq C_{20} \rho_0^0(t, x). \tag{3.25}
\]

Proof. The idea of proof is borrowed from [9, Theorem 2.4]. If we can find a constant $\tilde{C}_{20} = \tilde{C}_{20}(d, \alpha, \kappa_0, \kappa_1) > 0$ such that for all $0 < t \leq 1$ and $x \in \mathbb{R}^d$,
\[
\int_{\mathbb{R}^d} |g_t(x + h) - g_t(x) - \chi_\alpha(h) h \cdot \nabla g_t(x) | \cdot |h|^{-d - \alpha} dh \leq \tilde{C}_{20} \rho_0^0(t, x), \tag{3.26}
\]
then the assertion follows from $f_t = g_t * \tilde{f}_t$ and
\[
\int_{\mathbb{R}^d} \rho_0^0(t, x - y) \tilde{f}_t(y) dy \leq c_1 t^{-1} \int_{\mathbb{R}^d} \tilde{f}_t(x - y) \hat{f}_t(y) dy
\]
\[
= c_1 t^{-1} \hat{f}_2(t) \leq c_2 \rho_0^0(t, x).
\]

Next, we proceed to prove (3.26).
(i) We first consider the case 0 < α < 1. If |h| ≤ 1, then
\[
|g_1(x + h) - g_1(x)| \leq c_5 (|h| \wedge 1) \left(\frac{t^{1/\alpha}}{|h|^{\alpha}} + 1 \right) \left(g_0^0(t, x + h) + g_0^0(t, x) \right).
\] (3.27)

By (3.10), we get
\[
|g_t(x + h) - g_t(x)| \leq c_5 \left((1 + |x|^{1/\alpha}) \wedge 1 \right) \left(g_0^0(t, x + h) + g_0^0(t, x) \right).
\]

Therefore,
\[
\int_{\mathbb{R}^d} |g_t(x + h) - g_t(x)| \cdot |h|^{-d-\alpha} \, dh
\leq c_5 \int_{\mathbb{R}^d} \left((1 + |x|^{1/\alpha}) \wedge 1 \right) g_0^0(t, x + h) \cdot |h|^{-d-\alpha} \, dh
\]
\[
+ c_5 \int_{\mathbb{R}^d} \left((1 + |x|^{1/\alpha}) \wedge 1 \right) g_0^0(t, x) \cdot |h|^{-d-\alpha} \, dh =: I_1 + I_2.
\]

We have
\[
I_1 \leq c_5 t^{1-1/\alpha} \int_{|h| \leq t^{1/\alpha}} g_0^0(t, x + h) \cdot |h|^{-d-\alpha} \, dh
\]
\[
+ c_5 \int_{|h| > t^{1/\alpha}} g_0^0(t, x + h) \cdot |h|^{-d-\alpha} \, dh =: I_{11} + I_{12}.
\]

Further,
\[
I_{11} \leq c_6 t^{1-1/\alpha} \int_{|h| \leq t^{1/\alpha}} \left(1 \wedge |x|^{1/\alpha} \right) \left(\frac{t^{1/\alpha}}{|h|^{\alpha}} + |x| \right)^{-d-\alpha} \cdot |h|^{-d-\alpha} \, dh
\]
\[
\leq c_6 t^{1-1/\alpha} \int_{|h| \leq t^{1/\alpha}} |h|^{-d-\alpha} \, dh \leq c_7 g_0^0(t, x).
\] (2.6)

If |x| ≤ 2t^{1/\alpha}, then
\[
I_{12} \leq c_9 t \int_{|h| > t^{1/\alpha}} \left(1 \wedge |x|^{1/\alpha} \right) \left(\frac{t^{1/\alpha}}{|h|^{\alpha}} + |x| \right)^{-d-\alpha} \cdot |h|^{-d-\alpha} \, dh
\]
\[
\leq c_9 t^{-d/\alpha} \int_{|h| > t^{1/\alpha}} |h|^{-d-\alpha} \, dh \leq c_8 t^{-1 - d/\alpha} \leq c_9 g_0^0(t, x);\]
if \(|x| > 2t^{1/\alpha}\), then

\[
I_{12} \leq c_5 \left(\int_{|t^{1/\alpha} < |h| \leq \frac{|x|}{2}} \frac{\theta^0_\alpha(t, x + h) \cdot |h|^{-d-\alpha}}{h} \, dh + \int_{|h| > \frac{|x|}{2}} \frac{\theta^0_\alpha(t, x + h) \cdot |h|^{-d-\alpha}}{h} \, dh \right)
\]

\[
\leq c_5 t \int_{|t^{1/\alpha} < |h| \leq \frac{|x|}{2}} \left(t^{1/\alpha} + |x + h| \right)^{-d-\alpha} \cdot |h|^{-d-\alpha} \, dh + c_{10} |x|^{-d-\alpha} \int_{|h| > \frac{|x|}{2}} \frac{\theta^0_\alpha(t, x + h) \cdot |h|^{-d-\alpha}}{h} \, dh
\]

\[
\leq c_{11} t \left(t^{1/\alpha} + |x| \right)^{-d-\alpha} \int_{|t^{1/\alpha} < |h| \leq \frac{|x|}{2}} |h|^{-d-\alpha} \, dh + c_{12} |x|^{-d-\alpha} \leq c_{14} \theta^0_\alpha(t, x).
\]

For \(I_2\), by setting \(\tilde{h} := t^{-1/\alpha} h\), we have

\[
I_2 = c_5 \theta^0_\alpha(t, x) \int_{\mathbb{R}^d} \left(|\tilde{h}| \wedge 1 \right) \cdot |t^{1/\alpha} \tilde{h}|^{-d-\alpha} \tilde{t}^{d/\alpha} \, d\tilde{h}
\]

\[
= c_5 t^{-1} \theta^0_\alpha(t, x) \int_{\mathbb{R}^d} \left(|\tilde{h}| \wedge 1 \right) \cdot |\tilde{h}|^{-d-\alpha} \, d\tilde{h} \leq c_{15} \theta^0_\alpha(t, x).
\]

Summarizing the above estimates for \(I_{11}, I_{12}\) and \(I_2\), we obtain (3.26).

(ii) Let \(1 < \alpha < 2\). For \(|h| > 1\), we have

\[
|g_1(x + h) - g_1(x) - \chi_\alpha(h) h \cdot \nabla g_1(x)| \leq g_1(x + h) + |h| \cdot |\nabla g_1(x)| \leq c_{16} \left(\theta^0_\alpha(1, x + h) + \theta^0_\alpha(1, x) \right) + c_{17} |h| \theta^0_{\alpha - 1}(1, x).
\]

For \(|h| \leq 1\), we have

\[
|g_1(x + h) - g_1(x) - \chi_\alpha(h) h \cdot \nabla g_1(x)| \leq |h|^2 \int_0^1 \int_0^1 |\nabla^2 g_1(x + rr'h)| \, dr \, dr
\]

\[
\leq c_{18} |h|^2 \int_0^1 \int_0^1 (1 + |x + rr'h|)^{-d-\alpha - 2} \, dr \, dr
\]

\[
\leq c_{19} |h|^2 (1 + |x|)^{-d-\alpha - 2} \leq c_{19} |h|^2 (1 + |x|)^{-d-\alpha}.
\]

So

\[
|g_1(x + h) - g_1(x) - \chi_\alpha(h) h \cdot \nabla g_1(x)| \leq c_{20} \left(|h|^2 \wedge 1 \right) \left(\theta^0_\alpha(1, x + h) + \theta^0_\alpha(1, x) \right) + c_{21} 1_{(|h| > 1)} |h| \theta^0_{\alpha - 1}(1, x).
\]
By (3.10), we get
\[|g_t(x + h) - g_t(x) - \chi_\alpha(h) h \cdot \nabla g_t(x)| \]
\[= t^{-d/\alpha} \left| g_t(t^{-1/\alpha} x + t^{-1/\alpha} h) - g_t(t^{-1/\alpha} x) - t^{-1/\alpha} h \cdot \nabla g_t(t^{-1/\alpha} x) \right| \]
\[\leq c_{20} \left(\left(t^{-2/\alpha} |h|^2 \right) \wedge 1 \right) (\mathcal{g}^0_\alpha(t, x + h) + \mathcal{g}^0_\alpha(t, x)) + c_{21} 1_{\{|h| > t^{1/\alpha}\}} |h| \mathcal{g}^0_{\alpha-1}(t, x). \] (3.30)

Since
\[\int_{|h| > t^{1/\alpha}} |h| \mathcal{g}^0_{\alpha-1}(t, x)|h|^{-d-\alpha} \, dh \leq c_{22} \mathcal{g}^0_\alpha(t, x), \]
the assertion now follows from (3.24) and (3.30).

Lemma 3.6. Assume \(\alpha = 1 \). Then there exists a constant \(C_{21} = C_{21}(d, \alpha, \kappa_0, \kappa_1) > 0 \) such that for all \(0 < t \leq 1 \) and \(x \in \mathbb{R}^d \),
\[\int_{\mathbb{R}^d} \left| f_t(x + h) - f_t(x) - \chi_\alpha(h) h \cdot \nabla f_t(x) \right| \cdot \frac{1}{|h|^{d+\alpha}} \, dh \leq C_{21} (1 + \ln (t^{-1})) \mathcal{g}^0_\alpha(t, x). \] (3.31)

Proof. Note that \(\chi_\alpha(h) = 1_{\{|h| \leq 1\}} \) when \(\alpha = 1 \). Similarly to (3.28), we have that for \(|h| \leq 1 \),
\[|g_t(x + h) - g_t(x) - \chi_\alpha(h) h \cdot \nabla g_t(x)| \leq c_1 |h|^2 (1 + |x|)^{-d-\alpha}. \]

For \(|h| > 1 \), we have
\[|g_t(x + h) - g_t(x) - \chi_\alpha(h) h \cdot \nabla g_t(x)| \leq c_2 \left(\mathcal{g}^0_\alpha(1, x + h) + \mathcal{g}^0_\alpha(1, x) \right). \]

So
\[|g_t(x + h) - g_t(x) - \chi_\alpha(h) h \cdot \nabla g_t(x)| \leq c_3 \left(|h|^2 \wedge 1 \right) \left(\mathcal{g}^0_\alpha(1, x + h) + \mathcal{g}^0_\alpha(1, x) \right). \] (3.32)

By the scaling property \(g_t(x) = t^{-d/\alpha} g_1(t^{-1/\alpha} x) \), we obtain
\[|g_t(x + h) - g_t(x) - \chi_\alpha(h) h \cdot \nabla g_t(x)| \]
\[= t^{-d} \left| g_1(t^{-1} x + t^{-1} h) - g_1(t^{-1} x) - t^{-1} \chi_1(h) h \cdot \nabla g_1(t^{-1} x) \right| \]
\[= t^{-d} \left| g_1(t^{-1} x + t^{-1} h) - g_1(t^{-1} x) - \chi_1(t^{-1} h) t^{-1} h \cdot \nabla g_1(t^{-1} x) \right| \]
\[- 1_{\{t < |h| \leq 1\}} (h) t^{-1} h \cdot \nabla g_1(t^{-1} x) \]
\[\leq c_{34} \left(|t^{-1} h|^2 \wedge 1 \right) \left(\mathcal{g}^0_\alpha(t, x + h) + \mathcal{g}^0_\alpha(t, x) \right) \]
\[+ c_4 1_{\{t < |h| \leq 1\}} (h) t^{-1} (1 + |t^{-1} x|)^{-d-2} |h| \]
\[\leq c_3 \left(|t^{-1} h|^2 \wedge 1 \right) \left(\mathcal{g}^0_\alpha(t, x + h) + \mathcal{g}^0_\alpha(t, x) \right) + c_4 1_{\{t < |h| \leq 1\}} (h) \mathcal{g}^0_\alpha(t, x)|h|. \] (3.33)

Note that
\[\int_{\mathbb{R}^d} 1_{\{t < |h| \leq 1\}} (h) |h| \cdot \frac{1}{|h|^{d+1}} \, dh = \int_{\{t < |h| \leq 1\}} \frac{1}{|h|^d} \, dh = c_5 \ln (t^{-1}). \] (3.34)

Combining (3.24), (3.33) and (3.34), we obtain (3.31).
For a function f on \mathbb{R}^d we define the function δ_f on \mathbb{R}^{2d} by

$$\delta_f(x, x') := f(x) - f(x'), \quad x, x' \in \mathbb{R}^d.$$

Lemma 3.7. Assume $\alpha \neq 1$. Then there exists a constant $C_{22} = C_{22}(d, \alpha, \kappa_0, \kappa_1) > 0$ such that for all $0 < t \leq 1$ and $x, x' \in \mathbb{R}^d$,

$$\int_{\mathbb{R}^d} |\delta_{f_1}(x + h, x' + h) - \delta_{f_1}(x, x')| - \chi_\alpha(h)h \cdot \delta_{\nabla f_1}(x, x')| \cdot |h|^{-d-\alpha}dh$$

$$\leq C_{22} \left(\left(t^{-1/\alpha} |x - x'| \right)^{\wedge} 1 \right) \{(\delta_t(t, x) + \delta_t(t, x')) \}.$$

(3.35)

Proof. As in Lemma 3.5, we only need to prove that for all $0 < t \leq 1$ and $x, x' \in \mathbb{R}^d$,

$$\int_{\mathbb{R}^d} |\delta_{g_1}(x + h, x' + h) - \delta_{g_1}(x, x') - \chi_\alpha(h)h \cdot \delta_{\nabla g_1}(x, x')| \cdot |h|^{-d-\alpha}dh$$

$$\leq \tilde{C}_{22} \left(\left(t^{-1/\alpha} |x - x'| \right)^{\wedge} 1 \right) \{(\delta_t(t, x) + \delta_t(t, x')) \},$$

where $\tilde{C}_{22} = \tilde{C}_{22}(d, \alpha, \kappa_0, \kappa_1) > 0$ is a constant.

(i) We first consider the case $\alpha > 1$. If $|h| \leq 1$ and $|x - x'| \leq 1$, then

$$|\delta_{g_1}(x + h, x' + h) - \delta_{g_1}(x, x') - \chi_\alpha(h)h \cdot \delta_{\nabla g_1}(x, x')|$$

$$\leq c_1 |h|^2 |x - x'| \int_0^1 \int_0^1 \int_0^1 \left| \nabla^3 g_1(x + rr'h + rr''(x - x')) | \cdot \chi_\alpha(h)h \cdot \delta_{\nabla g_1}(x, x') | \cdot |h|^{-d-\alpha}dh$$

$$\leq c_2 |h|^2 |x - x'| |1 + |x + rr'h + rr''(x - x')|)^{-d-\alpha-3} dh$$

$$\leq c_3 |h|^2 |x - x'| (1 + |x|)^{-d-\alpha-3} \leq c_3 |h|^2 |x - x'| \delta_\alpha^0(1, x). \hspace{1cm} (3.36)$$

If $|h| > 1$ and $|x - x'| \leq 1$, then

$$|\delta_{g_1}(x + h, x' + h) - \delta_{g_1}(x, x') - \chi_\alpha(h)h \cdot \delta_{\nabla g_1}(x, x')|$$

$$\leq |x - x'| \int_0^1 |\nabla^2 g_1(x + r(x' - x))| dr$$

$$+ |x - x'| \int_0^1 |\nabla g_1(x + r(x' - x))| dr$$

$$+ |h| \cdot |x - x'| \int_0^1 |\nabla^2 g_1(x + r(x' - x))| dr$$

$$\leq c_4 |x - x'| (1 + |x + h|)^{-d-\alpha-1} + c_4 |x - x'| (1 + |x|)^{-d-\alpha-1}$$

$$+ c_4 |h| \cdot |x - x'| (1 + |x|)^{-d-\alpha-2}. \hspace{1cm} (3.37)$$
In view of (3.29), we thus get
\[
|\delta_{g_1}(x+h, x'+h) - \delta_{g_1}(x, x') - \chi_\alpha(h)h \cdot \delta_{\nabla g_1}(x, x')| \\
\leq c_5 \left(|x-x'| \land 1 \right) \left(|h|^2 \land 1 \right) \left((\mathcal{Q}_\alpha(1, x+h) + \mathcal{Q}_\alpha(1, x) + \mathcal{Q}_\alpha(1, x'+h) + \mathcal{Q}_\alpha(1, x')) \right) \\
+ c_6 1_{\{|h|>1\}} |h| \left(|x-x'| \land 1 \right) \left((\mathcal{Q}_\alpha(1, x) + \mathcal{Q}_\alpha(1, x')) \right).
\]

Then we can proceed in the same way as in the proof of Lemma 3.5 to obtain (3.35).

(ii) Let $0 < \alpha < 1$. Similarly to (3.36), we have that for $|h| \leq 1$ and $|x-x'| \leq 1$,
\[
|\delta_{g_1}(x+h, x'+h) - \delta_{g_1}(x, x')| \leq c_7 |h| \cdot |x-x'| \delta_0(1, x);
\]
Similarly to (3.37), for $|h| > 1$ and $|x-x'| \leq 1$, we obtain
\[
|\delta_{g_1}(x+h, x'+h) - \delta_{g_1}(x, x')| \leq c_8 |x-x'| \left((\mathcal{Q}_\alpha(1, x) + \mathcal{Q}_\alpha(1, x+h) \right).
\] (3.38)

Noting (3.27), we thus get
\[
|\delta_{g_1}(x+h, x'+h) - \delta_{g_1}(x, x')| \\
\leq c_9 \left(|x-x'| \land 1 \right) \left(|h| \land 1 \right) \left((\mathcal{Q}_\alpha(1, x+h) + \mathcal{Q}_\alpha(1, x) + \mathcal{Q}_\alpha(1, x'+h) + \mathcal{Q}_\alpha(1, x') \right).
\]

The rest of the proof is completely similar to Lemma 3.5. We omit the details. □

Lemma 3.8. Assume $\alpha = 1$. Then there exists a constant $C_{23} = C_{23}(d, \alpha, \kappa_0, \kappa_1) > 0$ such that for all $0 < t \leq 1$ and $x, x' \in \mathbb{R}^d$,
\[
\int_{\mathbb{R}^d} |f_t(x+h, x'+h) - f_t(x, x') - \chi_\alpha(h)h \cdot \nabla f_t(x, x')| \cdot \frac{1}{|h|^{d+\alpha}} dh \\
\leq C_{23} \left(1 + \ln(t^{-1}) \right) \left((t^{-1/\alpha}|x-x'|) \land 1 \right) \left((\mathcal{Q}_\alpha(1, x) + \mathcal{Q}_\alpha(t, x') \right).
\] (3.39)

Proof. By (3.36), (3.38) and (3.32), we have
\[
|\delta_{g_1}(x+h, x'+h) - \delta_{g_1}(x, x') - \chi_\alpha(h)h \cdot \nabla g_1(x, x')| \\
\leq c_1 \left(|x-x'| \land 1 \right) \left(|h|^2 \land 1 \right) \left((\mathcal{Q}_\alpha(1, x+h) + \mathcal{Q}_\alpha(1, x) + \mathcal{Q}_\alpha(1, x'+h) + \mathcal{Q}_\alpha(1, x') \right).
\]

Similarly to (3.36), if $t^{-1}|x-x'| \leq 1$, then
\[
|\nabla g_1(t^{-1}x) - \nabla g_1(t^{-1}x')| \leq c_2 t^{-1}|x-x'| (1 + |t^{-1}x|)^{-d-3}.
\]

Noting (3.12), we thus get
\[
|\nabla g_1(t^{-1}x) - \nabla g_1(t^{-1}x')| \\
\leq c_3 \left((t^{-1}|x-x'|) \land 1 \right) \left((1 + |t^{-1}x|)^{-d-2} + (1 + |t^{-1}x'|)^{-d-2} \right).
\]

The rest of the proof goes in the same way as in Lemma 3.6. □
4. Transition density of the Markov process associated with \(\mathcal{A} \)

In this section we will use Levi’s method (parametrix) to construct the transition density of the Markov processes that corresponds to the generator \(\mathcal{A} \), where

\[
\mathcal{A}f(x) = \int_{\mathbb{R}^d \setminus \{0\}} \left[f(x + h) - f(x) - \nabla f(x) \cdot \chi_\alpha(h)h \right] \frac{n(x, h)}{|h|^{d+\alpha}} \, dh. \tag{4.1}
\]

Throughout this section, we assume that \(n(\cdot, \cdot) \) satisfies Assumption 1.1.

Levi’s method has been applied in [9] and [16] to construct transition densities of stable-like processes that are similar to what we consider here. In the sequel we will follow closely the approach of [9].

According to Assumption 1.1, for each \(y \in \mathbb{R}^d \), \(h \mapsto n(y, h)|h|^{-d-\alpha} \) is a function that satisfies (3.1) and (3.2). Let \(f_t^y(\cdot) \), \(t > 0 \), be the density functions of the stable-like Lévy process with the jump kernel \(n(y, h)|h|^{-d-\alpha} \), namely,

\[
f^y_t(x) := \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-iux} e^{-i\psi^y(u)} \, du, \quad x \in \mathbb{R}^d, \quad t > 0, \tag{4.2}
\]

where

\[
\psi^y(u) = -\int_{\mathbb{R}^d \setminus \{0\}} (e^{iu \cdot h} - 1 - \chi_\alpha(h)iu \cdot h) \frac{n(y, h)}{|h|^{d+\alpha}} \, dh. \tag{4.3}
\]

Define the operator \(\mathcal{A}^y \) by

\[
\mathcal{A}^y f(x) := \int_{\mathbb{R}^d \setminus \{0\}} \left[f(x + h) - f(x) - \nabla f(x) \cdot \chi_\alpha(h)h \right] \frac{n(y, h)}{|h|^{d+\alpha}} \, dh. \tag{4.4}
\]

Remark 4.1. In view of Assumption 1.1, all the estimates that we established in Lemmas 3.2 – 3.8 are also true for \(f^y_t \) (in place of \(f_t \)).

The following Lemma is analogous to [9, Theorem 2.5].

Lemma 4.2. Suppose \(\gamma \in (0, \alpha/4) \). Then there exists some constant \(C_{24} = C_{24}(d, \alpha, \kappa_0, \kappa_1, \kappa_2, \gamma) > 0 \) such that for all \(0 < t \leq 1 \) and \(x, x' \in \mathbb{R}^d \),

\[
|f^y_t(x) - f^y_t(x')| \leq C_{24} \left(|y - y'|^\gamma + 1 \right) \left(\hat{\eta}_{\alpha - \gamma} + \check{\eta}_{\alpha - \gamma} \right) (t, x), \tag{4.5}
\]

\[
|\nabla_x f^y_t(x) - \nabla_x f^y_t(x')| \leq C_{24} \left(|y - y'|^\gamma + 1 \right) \left(\hat{\eta}_{\alpha - 1} + \check{\eta}_{\alpha - 1} \right) (t, x), \tag{4.6}
\]

and

\[
\int_{\mathbb{R}^d} \left| \left(f^y_t - f^y_t \right)(x + h) - \left(f^y_t - f^y_t \right)(x) - \chi_\alpha(h)h \cdot \nabla \left(f^y_t - f^y_t \right)(x) \right| \cdot |h|^{-d-\alpha} \, dh \leq C_{24} \left(|y - y'|^\gamma + 1 \right) \left(\hat{\eta}_{\alpha} + \check{\eta}_{\alpha} \right) (t, x). \tag{4.7}
\]

Proof. The proof is almost the same as that of [9, Theorem 2.5], and we only need to verify that for \(t > 0 \), \(x, y, y' \in \mathbb{R}^d \),

\[
f^y_t(x) - f^y_t(x) = \int_0^t \int_{\mathbb{R}^d} \left(f^y_{t-s}(z) - f^y_{t-s}(x) \right) \left(\mathcal{A}^y - \mathcal{A}^y \right) (f^y_t(y - \cdot))(z) \, dz \, ds. \tag{4.8}
\]

By (4.2) and (4.4), we have

\[
(\mathcal{A}^y - \mathcal{A}^y)(f^y_t(y - \cdot))(z) = -\frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \left(\psi^y(u) - \psi^y(u) \right) e^{-iu\cdot(y-z)} \, du.
\]
Note that \(\int_{\mathbb{R}^d} (A^v - A^{v'}) (f^v_{\varepsilon}(x - \cdot)) (z) \, dz = 0 \). By the Fubini’s theorem, we have that for \(0 < \varepsilon < t \),

\[
\int_{\varepsilon}^{t} \int_{\mathbb{R}^d} (f^v_{t-s}(z) - f^v_{t-s}(x)) (A^v - A^{v'}) (f^v_{\varepsilon}(x - \cdot)) (z) \, dz \, ds
\]

\[
= \int_{\varepsilon}^{t} \int_{\mathbb{R}^d} f^v_{t-s}(z) (A^v - A^{v'}) (f^v_{\varepsilon}(x - \cdot)) (z) \, dz \, ds
\]

\[
= -\frac{1}{(2\pi)^d} \int_{\varepsilon}^{t} \int_{\mathbb{R}^d} f^v_{t-s}(z) \left(\int_{\mathbb{R}^d} (\psi^v(u) - \psi^v(u)) e^{-s\psi^v(u)} e^{-iuv_z} \right) \, du \, dz \, ds
\]

\[
= -\frac{1}{(2\pi)^d} \int_{\varepsilon}^{t} \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} (\psi^v(u) - \psi^v(u)) e^{-s\psi^v(u)} e^{-iuv_z} \right) e^{-iu\psi^v(w)} \, du \, dz \, ds
\]

\[
= \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-iu\psi^v(w)} \left(e^{-iu\psi^v(w)} - e^{-\epsilon\psi^v(u)} e^{\epsilon\psi^v(u)} \right) \, du
\]

\[
= f^v_{t}(x) - \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-iu\psi^v(w)} \, du. \tag{4.9}
\]

By (2.8), (3.6), (3.19) and the dominated convergence theorem, we can let \(\varepsilon \to 0 \) in (4.9) to obtain (4.8). \(\square \)

For \(t \in (0, 1] \) and \(x, y \in \mathbb{R}^d \), define

\[
q(t, x, y) := f^v_{t}(y - x) \tag{4.10}
\]

and

\[
F(t, x, y) := (A - A^v) q(t, \cdot, y)(x)
\]

\[
= \int_{\mathbb{R}^d \setminus \{0\}} \left[q(t, x + h, y) - q(t, x, y) \right. \\
- \chi_\alpha(h) h \cdot \nabla_x q(t, x, y) \left. \right] \frac{(n(x, h) - n(y, h))}{|h|^{d+\alpha}} \, dh.
\]

For functions \(\varphi_1, \varphi_2 \) on \((0, 1] \times \mathbb{R}^d \times \mathbb{R}^d \), we introduce the notation \(\varphi_1 \otimes \varphi_2 \) by

\[
\varphi_1 \otimes \varphi_2(t, x, y) := \int_{0}^{t} \int_{\mathbb{R}^d} \varphi_1(t - s, x, z) \varphi_2(s, z, y) \, dz \, ds, \quad t \in (0, 1], \, x, y \in \mathbb{R}^d.
\]

Next, we study the convergence of the series \(\sum_{n=1}^{\infty} F^{\otimes n} \), where \(F^{\otimes 1} := F \) and \(F^{\otimes n} := F \otimes (F^{\otimes (n-1)}) \). Recall that the constant \(\theta \) is given in (1.3). In the rest of this paper, let \(\tilde{\theta} := \theta \wedge (\alpha/4) \).

Lemma 4.3. (i) Define

\[
\Phi(t, x, y) := \sum_{n=1}^{\infty} F^{\otimes n}(t, x, y), \quad (t, x, y) \in (0, 1] \times \mathbb{R}^d \times \mathbb{R}^d. \tag{4.11}
\]

Then the series on the right-hand side of (4.11) converges locally uniformly on \((0, 1] \times \mathbb{R}^d \times \mathbb{R}^d \). Moreover, \(\Phi \) is continuous on \((0, 1] \times \mathbb{R}^d \times \mathbb{R}^d \), and there exists a constant \(C_{26} := C_{26}(d, \alpha, \kappa_0, \kappa_1, \kappa_2, \theta) > 0 \) such that for all \((t, x, y) \in (0, 1] \times \mathbb{R}^d \times \mathbb{R}^d \),

\[
|\Phi(t, x, y)| \leq C_{26} \left(g^0_{\tilde{\theta}}(t, x - y) + g_0^{\tilde{\theta}}(t, x - y) \right). \tag{4.12}
\]
(ii) Given $\gamma \in (0, \hat{\theta})$, there exists a constant $C_{27} = C_{27}(d, \alpha, \kappa_0, \kappa_1, \kappa_2, \gamma) > 0$ such that for all $t \in (0, 1]$ and $x, x', y \in \mathbb{R}^d$,
\[|\Phi(t, x, y) - \Phi(t, x', y)| \leq C_{27} \left(|x - x'|^{\beta-\gamma} \wedge 1\right) \left\{ \left(\gamma + \gamma_{\gamma-\theta}^0\right)(t, x - y) + \left(\gamma + \gamma_{\gamma-\theta}^0\right)(t, x' - y) \right\}.\]

Proof. In view of Lemma 3.2 – Lemma 4.2 and Remark 4.1, the proof is essentially the same as in [9, Theorem 4.1]. We omit the details. \[\Box\]

By (2.9), (3.15) and (4.12), there exists a constant $C_{28} = C_{28}(d, \alpha, \kappa_0, \kappa_1, \kappa_2, \theta) > 0$ such that
\[q \otimes \Phi(t, x, y) \leq C_{28} \left(q_{\alpha + \theta}^0 + q_{\alpha}^0\right)(t, x - y), \quad t \in (0, 1], \ x, y \in \mathbb{R}^d. \quad (4.13)\]

It follows that
\[p(t, x, y) := q(t, x, y) + q \otimes \Phi(t, x, y), \quad (t, x, y) \in (0, 1] \times \mathbb{R}^d \times \mathbb{R}^d, \quad (4.14)\]
is well-defined.

Proposition 4.4. There exists a constant $C_{29} = C_{29}(d, \alpha, \kappa_0, \kappa_1, \kappa_2, \theta) > 0$ such that
\[|p(t, x, y)| \leq C_{29}q_{\alpha}^0(t, x - y), \quad (t, x, y) \in (0, 1] \times \mathbb{R}^d \times \mathbb{R}^d. \quad (4.15)\]
Moreover, the function $(t, x, y) \mapsto p(t, x, y)$ is continuous on $(0, 1] \times \mathbb{R}^d \times \mathbb{R}^d$.

Proof. The estimate (4.15) is a simple consequence of (3.15) and (4.13). By (3.6) and Assumption 1.1, there exists a constant $c_1 = c_1(d, \alpha, \kappa_0) > 0$ with
\[|\exp(-iu \cdot x - t\psi^\nu(u))| \leq \exp(-c_1t|u|^\alpha), \quad \forall t > 0, \ x, y, u \in \mathbb{R}^d,
\]
where ψ^ν is given in (4.3). The continuity of $(t, x, y) \mapsto q(t, x, y)$ now follows from (4.10), (4.2) and the dominated convergence. Since $q(t, x, y)$ and $\Phi(t, x, y)$ are both continuous, again by dominated convergence, the function $(0, 1] \times \mathbb{R}^d \times \mathbb{R}^d \ni (t, x, y) \mapsto p(t, x, y)$ is also continuous. \[\Box\]

In the remaining part of this section we will show that $p(t, x, y)$ is the transition density of the Markov process associated with \mathcal{A}. The ideas for the proof of the next two propositions come from [13, Chap. 1, Theorems 4 - 5].

Proposition 4.5. Suppose that the function $\varphi : (0, 1] \times \mathbb{R}^d \to \mathbb{R}$ is continuous and such that for all $x, x' \in \mathbb{R}^d$ and $t \in (0, 1]$,
\[|\varphi(t, x)| \leq c_{\varphi}t^{-1+\theta/\alpha} \quad (4.16)\]
and
\[|\varphi(t, x) - \varphi(t, x')| \leq c_{\varphi}t^{-1+\gamma/\alpha} \left(|x - x'|^{\theta-\gamma} \wedge 1\right), \quad (4.17)\]
where $c_{\varphi} > 0$ and $\gamma \in (0, \hat{\theta})$ are constants. Consider the function V defined by
\[V(t, x) := \int_0^t \int_{\mathbb{R}^d} q(t - s, x, z)\varphi(s, z)dzds, \quad (t, x) \in (0, 1] \times \mathbb{R}^d. \quad (4.18)\]
Then for each \(t \in (0, 1] \), \(\mathcal{A}V(t, \cdot) \) is well-defined and

\[
\mathcal{A}V(t, \cdot)(x) = \int_0^t \int_{\mathbb{R}^d} \mathcal{A}q(t-s, \cdot, z)(x)\varphi(s, z)dz\,ds, \quad x \in \mathbb{R}^d. \tag{4.19}
\]

We also have the estimate

\[
|\mathcal{A}V(t, \cdot)(x)| \leq C_{30} \left(1 + \ln \left(\frac{t}{s} \right) \right) t^{-1}, \quad \forall x \in \mathbb{R}^d, \ t \in (0, 1], \tag{4.20}
\]

where \(C_{30} = C_{30}(d, \alpha, \kappa_0, \kappa_1, \theta, \gamma, c_\varphi) > 0 \) is a constant.

Proof. Let \(0 < s < t \leq 1 \) and \(x \in \mathbb{R}^d \) be arbitrary. By (3.15) and (4.16), we have

\[
\int_{\mathbb{R}^d} |q(t-s, x, z)| \varphi(s, z)|dz| \leq c_1 \int_{\mathbb{R}^d} \tilde{g}_0^0(t-s, x-z)s^{-1+\theta/\alpha}dz \tag{2.7} \leq c_2 s^{-1+\theta/\alpha}. \tag{4.21}
\]

So the function \(V \) in (4.18) is well-defined. Let

\[
J(t, s, x) := \int_{\mathbb{R}^d} q(t-s, x, z)\varphi(s, z)dz. \tag{4.22}
\]

By (3.16), (3.25) and (3.31), we obtain that for \(|x-x_0| \leq (t-s)^{1/\alpha} \),

\[
|\nabla_x q(t-s, x, z)| \leq c_3 \tilde{g}^0_{\alpha-1}(t-s, x-z) \leq c_4 \tilde{g}^0_{\alpha-1}(t-s, x_0-z). \tag{2.6}
\]

So it is easy to see that for \(0 < s < t \leq 1 \) and \(x \in \mathbb{R}^d \),

\[
\nabla_x J(t, s, x) = \int_{\mathbb{R}^d} \nabla_x q(t-s, x, z)\varphi(s, z)dz. \tag{4.23}
\]

Similarly, we have

\[
|\mathcal{A}q(t-s, \cdot, z)(x)| \leq c_5 \left(1 + \ln \left(\frac{t}{s} \right) \right) \tilde{g}^0_0(t-s, x-z) \tag{4.24}
\]

and

\[
\mathcal{A}J(t, s, \cdot)(x) = \int_{\mathbb{R}^d} \mathcal{A}q(t-s, \cdot, z)(x)\varphi(s, z)dz. \tag{4.25}
\]

Let \(y \in \mathbb{R}^d \) be arbitrary. We now write

\[
J(t, s, x) = \int_{\mathbb{R}^d} q(t-s, x, z) (\varphi(s, z) - \varphi(s, y))dz + \varphi(s, y) \int_{\mathbb{R}^d} \left(q(t-s, x, z) - f^p_{t-s}(z-x) \right)dz + \varphi(s, y). \tag{4.26}
\]

We will complete the proof in two steps.

"Step 1": We show that if \(\alpha \geq 1 \), then

\[
\nabla_x V(t, x) = \int_0^t \nabla_x J(t, s, x)ds, \quad (t, x) \in (0, 1] \times \mathbb{R}^d. \tag{4.27}
\]
By (4.10), (4.16), (4.17) and (4.26), we have
\[|\nabla_x J(t, s, x)| \leq \left| \int_{\mathbb{R}^d} \nabla_x \left(f^x_{t-s}(z-x) \right) \left(\varphi(s, z) - \varphi(s, y) \right) dz \right| + |\varphi(s, y)| \cdot \left| \int_{\mathbb{R}^d} \left(\nabla_x \left(f^y_{t-s}(z-x) \right) - \nabla_x \left(f^y_{t-s}(z-x) \right) \right) dz \right| \]
\[\leq c_5 \int_{\mathbb{R}^d} s^{-1+\gamma/\alpha} \left(|y-z|^{\theta-\gamma} \wedge 1 \right) \theta_0^0(t-s, s-x) dz + c_6 \int_{\mathbb{R}^d} \left(|y-z|^{\theta} \wedge 1 \right) \left(\theta_0^0 + \theta_0^{\gamma-\gamma} \right) (t-s, s-x, z) dz, \]
(4.28)
where the constants c_5 and c_6 are independent of y. Choosing $y = x$ in (4.28), we get
\[|\nabla_x J(t, s, x)| \leq c_5 \int_{\mathbb{R}^d} s^{-1+\gamma/\alpha} (t-s)^{\theta-\gamma} + c_6 s^{-1+\theta/\alpha} (t-s)^{\theta-1}. \]
(4.29)
If $\alpha \geq 1$, then the right-hand side of (4.29), as a function with the variable s, is integrable on $[0, \ell]$. The equation (4.27) now follows by the dominated convergence theorem.

"Step 2": We consider a general $\alpha \in (0, 2)$ and show that $AV(t, x)J(t, s, x)$ is well-defined and (4.19) holds. For $h \in \mathbb{R}^d$ and $h \neq 0$, it follows from (4.27) that
\[V(t, x + h) - V(t, x) - \chi_0(h)h \cdot \nabla_x V(t, x) \]
\[= \int_0^1 [J(t, s, x + h) - J(t, s, x) - \chi_0(h)h \cdot \nabla_x J(t, s, x)] ds. \]
(4.30)
By (4.10), (4.16), (4.17) and (4.26), we get
\[|J(t, s, x + h) - J(t, s, x) - \chi_0(h)h \cdot \nabla_x J(t, s, x)| \]
\[\leq c_{10} \int_{\mathbb{R}^d} |f^x_{t-s}(z-x-h) - f^x_{t-s}(z-x) - \chi_0(h)h \cdot \nabla_x \left(f^{y}_{t-s}(z-x) \right)| s^{-1+\gamma/\alpha} \]
\[\times \left(|y-z|^{\theta-\gamma} \wedge 1 \right) dz + c_{11} s^{-1+\theta/\alpha} \int_{\mathbb{R}^d} \left| f^y_{t-s}(z-x-h) - f^{y}_{t-s}(z-x-h) \right| \]
\[- f^z_{t-s}(z-x) + f^{R}_{t-s}(z-x) - \chi_0(h)h \cdot \nabla_x \left(f^y_{t-s}(z-x) \right) \]
\[+ \chi_0(h)h \cdot \nabla_x \left(f^y_{t-s}(z-x) \right) dz. \]
(4.31)
It follows from (3.25), (3.31), (4.7), (4.31) and the Fubini’s theorem that
\[I(t, s, x) := \int_{\mathbb{R}^d \setminus \{0\}^d} \left| J(t, s, x + h) - J(t, s, x) - \chi_0(h)h \cdot \nabla_x J(t, s, x) \right| \frac{n(x, h)}{|h|^{d+\alpha}} dh \]
\[\leq c_{12} \left(1 + \ln \left((t-s)^{-1} \right) \right) \int_{\mathbb{R}^d} \theta_0^0(t-s, s-x) s^{-1+\gamma/\alpha} \left(|y-z|^{\theta-\gamma} \wedge 1 \right) dz \]
\[+ c_{13} s^{-1+\theta/\alpha} \left(1 + \ln \left((t-s)^{-1} \right) \right) \int_{\mathbb{R}^d} \left(|y-z|^{\theta} \wedge 1 \right) \left(\theta_0^0 + \theta_0^{\gamma-\gamma} \right) (t-s, s-x, z) dz. \]
(4.32)
Choosing $y = x$ in (4.32) and applying (2.7), we get
\[
I(t, s, x) \leq c_{14} \left(1 + \ln \left((t-s)^{-1} \right) \right) s^{-1+\gamma/\alpha} (t-s)^{(\delta-\gamma-\alpha)/\alpha}
+ c_{15} \left(1 + \ln \left((t-s)^{-1} \right) \right) s^{-1+\theta/\alpha} (t-s)^{(\delta-\alpha)/\alpha}
\]
\[
\gamma \leq c_{16} \left(1 + \ln \left((t-s)^{-1} \right) \right) s^{-1+\gamma/\alpha} (t-s)^{(\delta-\gamma-\alpha)/\alpha},
\]
which implies
\[
\int_0^t I(t, s, x) ds \leq c_{16} \int_0^t \left(1 + \ln \left((t-s)^{-1} \right) \right) s^{-1+\gamma/\alpha} (t-s)^{(\delta-\gamma-\alpha)/\alpha} ds
\leq c_{17} \left(1 + \ln (t^{-1}) \right) t^{(\delta-\alpha)/\alpha} + c_{17} t^{-1+\gamma/\alpha} (t-\gamma)/(2\alpha)
\leq c_{18} \left(1 + \ln (t^{-1}) \right) t^{-1}.
\]
So $A^t V(t, q)$ is well-defined and (4.20) is true. By (4.25), (4.30) and the Fubini's theorem, we obtain
\[
A^t V(t, q) = \int_0^t A J(t, s, q)(x) ds = \int_0^t \int_{\mathbb{R}^d} A q(t-s, \cdot, z)(x) \varphi(s, z) dz ds.
\]
This completes the proof. \(\square\)

Proposition 4.6. Let φ and V be as in Proposition 4.5. Then for all $t \in (0, 1]$ and $x \in \mathbb{R}^d$, $\partial_t V(t, x)$ exists and satisfies
\[
\partial_t V(t, x) = \varphi(t, x) + \int_0^t \int_{\mathbb{R}^d} A^t q(t-s, \cdot, z)(x) \varphi(s, z) dz ds.
\]
Moreover, for each $x \in \mathbb{R}^d$, $t \mapsto \partial_t V(t, x)$ is continuous on $(0, 1]$.

Proof. Let J be the same as in (4.22). It is easy to verify that $\partial_t J(t, s, x)$ exists for $0 < s < t \leq 1$ and $x \in \mathbb{R}^d$.

Let $x \in \mathbb{R}^d$ be fixed. We only consider the case with $0 < t < 1$, $h > 0$ and $t + h \leq 1$, since the argument we will use works similarly when $0 < t - h < t \leq 1$. We have
\[
h^{-1} (V(t+h, x) - V(t, x))
= h^{-1} \int_0^{t+h} J(t+h, s, x) ds - h^{-1} \int_0^t J(t, s, x) ds
= h^{-1} \int_t^{t+h} J(t+h, s, x) ds + \int_0^t h^{-1} [J(t+h, s, x) - J(t, s, x)] ds
= h^{-1} \int_t^{t+h} [J(t+h, s, x) - \varphi(t, x)] ds + \varphi(t, x) + \int_0^t J_1(t^*, s, x) ds,
\]
where $J_1(t, s, x) := \partial_t J(t, s, x)$ and $t^* \in [t, t+h]$.
We will complete the proof in several steps. "Step 1": We show that
\[\lim_{h \to 0} h^{-1} \int_{t}^{t+h} |J(t + h, s, x) - \varphi(t, x)| \, ds = 0. \] (4.37)

For \(s \in (t, t + h) \), we have
\[
|J(t + h, s, x) - \varphi(t, x)| \\
= \left| \int_{\mathbb{R}^d} \left[q(t + h - s, x, z) - f^c_{t+h-s}(z - x) \right] \varphi(s, z) \, dz + \sum_{\beta = 1}^{m} f^c_{t+h-s}(z - x) \right| \, ds \]
\[
\leq \int_{\mathbb{R}^d} \left| f^c_{t+h-s}(z - x) - f^c_{t+h-s}(z - x) \right| \, ds \]
\[
= I_1 + I_2. \] (4.38)

For \(I_1 \), by (4.5), (4.16) and noting that \(s \in (t, t + h) \), we have
\[
I_1 \leq c_1 s^{-1+\hat{\gamma}/\alpha} \int_{\mathbb{R}^d} \left(|z - x|^{\hat{\gamma}} \wedge 1 \right) \left(g_0^0 + g_{\alpha}^\gamma \right) (t + h - s, z - x) \, dz \]
\[
\leq c_2 t^{-1+\hat{\gamma}/\alpha} (t + h - s)^{\hat{\gamma}/\alpha} \leq c_2 t^{-1+\hat{\gamma}/\alpha} h^{\hat{\gamma}/\alpha}. \] (4.39)

For \(I_2 \) and \(n \in \mathbb{N} \), by (3.15), (4.16) and noting that \(s \in (t, t + h) \), we have
\[
I_2 \leq c_3 \int_{|z - x| \geq 1/n} g_0^0 (t + h - s, z - x) \cdot |\varphi(s, z) - \varphi(t, x)| \, dz \]
\[
+ c_3 \int_{|z - x| \leq 1/n} g_0^0 (t + h - s, z - x) \cdot |\varphi(s, z) - \varphi(t, x)| \, dz \]
\[
\leq c_4 t^{-1+\hat{\gamma}/\alpha} \int_{|z - x| \geq 1/n} g_0^0 (t + h - s, z - x) \, dz \]
\[
+ c_3 \int_{|z - x| \leq 1/n} g_0^0 (t + h - s, z - x) \cdot |\varphi(s, z) - \varphi(t, x)| \, dz. \] (4.40)

For any given \(\varepsilon > 0 \), by the continuity of \(\varphi \), we can find \(n_0 \in \mathbb{N} \) and \(h_0 > 0 \) such that
\[
|\varphi(s, z) - \varphi(t, x)| < \varepsilon, \quad \forall s \in (t, t + h_0), \, |z - x| \leq \frac{1}{n_0}. \] (4.41)
By (4.40) and (4.41), we get that for $t < s < t + h < t + h_0$,

$$
I_2 \leq c t^{-1+\hat{\beta}/\alpha} \int_{\{|z-x| \geq 1/n_0\}} \varphi_0^h(t+h-s, z-x)dz + c_5 \varepsilon
$$

$$
= c t^{-1+\hat{\beta}/\alpha} \int_{\{|z| \geq 1/n_0\}} \varphi_0^h(t+h-s, z)dz + c_5 \varepsilon
$$

$$
= c t^{-1+\hat{\beta}/\alpha} \int_{\{|z'| \geq (t+s-h)^{-1/\alpha}/n_0\}} \varphi_0^h(1, z')dz' + c_5 \varepsilon
$$

$$
\leq c t^{-1+\hat{\beta}/\alpha} \int_{\{|z'| \geq h^{-1/\alpha}/n_0\}} \varphi_0^h(1, z')dz' + c_5 \varepsilon. \quad (4.42)
$$

Combining (4.38), (4.39), and (4.42) yields

$$
\lim_{h \downarrow 0} h^{-1} \int_t^{t+h} |J(t+h, s, x) - \phi(t, x)| ds \leq c_5 \varepsilon.
$$

Since $\varepsilon > 0$ is arbitrary, the convergence in (4.37) follows.

"Step 2": We evaluate the integral $\int_0^t \partial_t J(t^*, s, x)ds$. If $t > s$, then

$$
\partial_t J(t, s, x) = \int_{\mathbb{R}^d} \partial_t q(t-s, x, z) \psi(s, z) dz
$$

$$
= \int_{\mathbb{R}^d} A^c q(t-s, z, x) \psi(s, z) dz
$$

$$
= \int_{\mathbb{R}^d} (A^c - A) q(t-s, z, x) \psi(s, z) dz
$$

$$
+ \int_{\mathbb{R}^d} A q(t-s, z, x) \psi(s, z) dz
$$

$$
=: I_3 + I_4. \quad (4.44)
$$

For III, by (3.25), (3.31) and (4.16), we have

$$
|I_3| \leq c_6 s^{-1+\beta/\alpha} \left(1 + \ln \left((t-s)^{-1}\right)\right) \int_{\mathbb{R}^d} \varphi_0^h(t-s, z-x) dz
$$

$$
\leq c_7 s^{-1+\beta/\alpha} \left(1 + \ln \left((t-s)^{-1}\right)\right) (t-s)^{-1+\hat{\beta}/\alpha}. \quad (4.45)
$$

The term I_4 has already been treated in Proposition 4.5, see (4.25) and (4.33). Altogether we obtain

$$
|\partial_t J(t, s, x)| \leq c_8 s^{-1+\gamma/\alpha} \left(1 + \ln \left((t-s)^{-1}\right)\right) (t-s)^{-1+(\hat{\beta}-\gamma)/\alpha}. \quad (4.46)
$$

Consider

$$
H := \int_0^t J_1(t^*, s, x)ds - \int_0^t J_1(t, s, x)ds.
$$

Note that for $0 < s < t$ and $t^* \in [t, t+h]$, it holds that

$$
|J_1(t^*, s, x) - J_1(t, s, x)| \leq 2c_8 s^{-1+\gamma/\alpha} \left(1 + \ln \left((t-s)^{-1}\right)\right) (t-s)^{-1+(\hat{\beta}-\gamma)/\alpha}. \quad (4.47)
$$
Since for \(s < t \leq t^* \leq t + h \), \(\lim_{h \to 0} J_1(t^*, s, x) = J_1(t, s, x) \), by (4.47) and dominated convergence, we obtain
\[
\lim_{h \to 0} \int_0^t |J_1(t^*, s, x) ds - J_1(t, s, x)| ds = 0.
\]
So we get \(\lim_{h \to 0} |H| = 0 \). By (4.36), (4.37) and (4.43), we obtain (4.35).

“Step 3”: To see that the function \(t \mapsto \partial_t V(t, x) \) is continuous, we can argue as above, namely, for \(h \in (0, \delta) \),
\[
\int_0^{t+h} \int_{\mathbb{R}^d} \mathcal{A}^2 q(t + h - s, \cdot, z)(x) \varphi(s, z) dz ds
\]
\[
= \int_0^t \int_{\mathbb{R}^d} \mathcal{A}^2 q(t + h - s, \cdot, z)(x) \varphi(s, z) dz ds
\]
\[
+ \int_t^{t+h} \int_{\mathbb{R}^d} \mathcal{A}^2 q(t + h - s, \cdot, z)(x) \varphi(s, z) dz ds,
\]
where the second term on the right-hand side goes to 0 as \(h \to 0 \), since by (4.46),
\[
\lim_{h \to 0} \int_0^{t+h} |J_1(t + h, s, x)| ds
\]
\[
\leq \lim_{h \to 0} \int_0^{t+h} s^{-1+\gamma/\alpha} \left(1 + \ln \left((t + h - s)^{-1} \right) \right) (t + h - s)^{-1+(\theta-\gamma)/\alpha} ds = 0,
\]
while the first term converges to \(\int_0^t \int_{\mathbb{R}^d} \mathcal{A}^2 q(t - s, \cdot, z)(x) \varphi(s, z) dz ds \) by (4.43), (4.46) and dominated convergence.

Corollary 4.7. Let \(\varphi \) and \(V \) be as in Proposition 4.5. Then the function \((t, x) \mapsto V(t, x) \) is bounded continuous on \([0, 1] \times \mathbb{R}^d \).

Proof. According to (4.21), the function \(V \) is obviously bounded on \((0, 1] \times \mathbb{R}^d \).
Let \((t_0, x_0) \in (0, 1] \times \mathbb{R}^d \) be fixed. Choose \(\epsilon > 0 \) such that \(\epsilon < t_0 \). In view of (4.43) and (4.46), we obtain for \(s < t \) and \(x \in \mathbb{R}^d \),
\[
\left| \int_{\mathbb{R}^d} \mathcal{A}^2 q(t - s, \cdot, z)(x) \varphi(z) dz \right|
\]
\[
\leq c_1 s^{-1+\gamma/\alpha} \left(1 + \ln \left((t - s)^{-1} \right) \right) (t - s)^{-1+(\theta-\gamma)/\alpha}.
\]
Arguing as in (4.34), we get
\[
\left| \int_0^t \int_{\mathbb{R}^d} \mathcal{A}^2 q(t - s, \cdot, z)(x) \varphi(z) dz ds \right| \leq c_2 \left(1 + \ln \left(t^{-1} \right) \right) t^{-1}, \quad t \in (0, 1], x \in \mathbb{R}^d.
\]
By (4.35), we see that \(\partial_t V(t, x) \) is bounded on \([\epsilon, 1] \times \mathbb{R}^d \). Therefore, for \((t, x) \in [\epsilon, 1] \times \mathbb{R}^d \),
\[
|V(t, x) - V(t_0, x_0)| \leq |V(t, x) - V(t_0, x)| + |V(t_0, x) - V(t_0, x_0)| \leq c_3 |t - t_0| + |V(t_0, x) - V(t_0, x_0)|.
\]
By (4.23), \(J(t, s, x) \) is continuous in \(x \). Since \(V(t, x) = \int_0^t J(t, s, x) ds \), it follows from (4.21) and dominated convergence that for each \(t \in (0, 1] \), the function \(x \mapsto \)
$V(t, x)$ is continuous. In view of (4.48), we get $\lim_{(t, x) \to (t_0, x_0)} V(t, x) = V(t_0, x_0)$. □

Next, we show that $p(t, x, y)$ defined in (4.14) is the fundamental solution to the Cauchy problem of the equation $\partial_t u = Au$.

Proposition 4.8. Let $\phi \in C^\infty_0(\mathbb{R}^d)$. Define $u(t, x) := \int_{\mathbb{R}^d} p(t, x, y) \phi(y) dy$, $t \in (0, 1]$, and $u(0, x) := \phi(x)$, where $x \in \mathbb{R}^d$. Then $u \in C_0([0, 1] \times \mathbb{R}^d)$ and

$$\partial_t u(t, x) = Au(t, \cdot)(x), \quad t \in (0, 1], \ x \in \mathbb{R}^d. \quad (4.49)$$

Moreover, for each $x \in \mathbb{R}^d$, $t \mapsto \partial_t u(t, x)$ is continuous on $(0, 1]$; for each $t \in (0, 1]$, $x \mapsto \partial_t u(t, x)$ is continuous on \mathbb{R}^d.

Proof. Set

$$I_1(t, x) := \int_{\mathbb{R}^d} q(t, x, y) \phi(y) dy$$

and

$$I_2(t, x) := \int_0^t \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} q(t - s, x, z) \Phi(s, z, y) \phi(y) dy dz ds$$

$$= \int_0^t \int_{\mathbb{R}^d} q(t - s, x, z) \varphi(s, z) dz ds,$$

where $\varphi(s, z) := \int_{\mathbb{R}^d} \Phi(s, z, y) \phi(y) dy$. Then φ satisfies (4.16) and (4.17).

By Proposition 4.5, $AI_2(t, \cdot)(x)$ is well-defined for all $t \in (0, 1]$ and $x \in \mathbb{R}^d$, and it holds that

$$Au(t, \cdot)(x) = \int_{\mathbb{R}^d} A q(t, \cdot, y)(x) \phi(y) dy$$

$$+ \int_0^t \int_{\mathbb{R}^d} \partial_z A q(t - s, \cdot, z)(x) \varphi(s, z) dz ds. \quad (4.50)$$

For $t \in (0, 1]$ and $x \in \mathbb{R}^d$, we have

$$\partial_t I_1(t, x) = \int_{\mathbb{R}^d} A^v q(t, \cdot, y)(x) \phi(y) dy,$$ \quad (4.51)

and, by Proposition 4.6,

$$\partial_t I_2(t, x) = \varphi(t, x) + \int_0^t \int_{\mathbb{R}^d} A^z q(t - s, \cdot, z)(x) \varphi(s, z) dz ds. \quad (4.52)$$
So for \(t \in (0,1] \) and \(x \in \mathbb{R}^d \),
\[
\varphi(t,x) = \int_{\mathbb{R}^d} \Phi(t,x,y)\phi(y)dy \\
\quad = \int_{\mathbb{R}^d} F(t,x,y)\phi(y)dy \\
\quad + \int_{\mathbb{R}^d} \left(\int_0^t \int_{\mathbb{R}^d} F(t-s,x,z)\Phi(s,z,y)dzds \right) \phi(y)dy
\]
\[
= \int_{\mathbb{R}^d} (A - A^q) q(t,\cdot,y)(x)\phi(y)dy \\
\quad + \int_0^t \int_{\mathbb{R}^d} (A - A^q) q(t-s,\cdot,z)(x)\varphi(s,z)dzds. \tag{4.53}
\]
Combining (4.50), (4.51), (4.52) and (4.53), we arrive at (4.49).

By Corollary 4.7, we see that \(u(0,t,x) = u(t,x) \) at \((t,x) = (0,x_0) \), where \(x_0 \in \mathbb{R}^d \). We have
\[
\|u(t,x) - u(0,x_0)\| \leq \|u(t,x) - u(0,x)\| + \|\phi(x) - \phi(x_0)\|.
\]
So it suffices to show that \(\lim_{t \to 0} u(t,x) = u(0,x) \), and the convergence is uniform with respect to \(x \in \mathbb{R}^d \). Noting that \(\|\phi(y) - \phi(x)\| \leq c_2 (1 \wedge |x - y|^{\alpha/2}) \), we obtain
\[
|I_1(t,x) - \phi(x)| \leq \left| \int_{\mathbb{R}^d} q(t,x,y) [\phi(y) - \phi(x)] dy \right|
\]
\[
\quad + \left| \int_{\mathbb{R}^d} q(t,x,y)\phi(y)dy - \phi(x) \right|
\]
\[
\quad \leq c_2 \int_{\mathbb{R}^d} \phi_\alpha^{\alpha/2}(t,y-x)dy + \left| \phi(x) \int_{\mathbb{R}^d} [f_1^n(y-x) - f_1^n(y-x)] dy \right|
\]
\[
\quad \leq c_4 t^{1/2} + c_4 t^{\theta/\alpha}, \tag{4.5}
\]
which shows that \(\lim_{t \to 0} \sup_{x \in \mathbb{R}^d} |I_1(t,x) - \phi(x)| = 0 \). Finally, it follows from (4.21) that \(\lim_{t \to 0} \sup_{x \in \mathbb{R}^d} |I_2(t,x)| = 0 \). So \(u(t,x) \to u(0,x) \) uniformly in \(x \in \mathbb{R}^d \) as \(t \to 0 \).

Since \(\partial_t u(t,x) = \partial_t I_1(t,x) + \partial_t I_2(t,x) \), the continuity of \(t \mapsto \partial_t I_1(t,x) \) follows easily by (4.51), (4.52) and Proposition 4.6. Noting that \(x \mapsto A^q(t,\cdot,y)(x) \) is continuous and for \(|x - x_0| \leq t^{1/\alpha} \),
\[
|A^q(t,\cdot,\cdot)(x)| \leq c_5 \hat{g}_0(t,x - z) \tag{2.6}
\]
the continuity of \(x \mapsto \partial_t I_1(t,x) \) follows by (4.51) and dominated convergence. Similarly, \(x \mapsto \partial_t I_2(t,x) \) is also continuous. So the continuity of \(x \mapsto \partial_t u(t,x) \) follows. This completes the proof. \(\square \)

Proposition 4.9. Let \((X, (P^x))\) be the Markov process associated with the operator \(A \) defined in (4.1). Then the function \(p(t,x,y) \), \((t,x,y) \in (0,1] \times \mathbb{R}^d \), is the transition density of \((X, (P^x))\), namely, for each \(0 < t \leq 1 \) and \(x \in \mathbb{R}^d \),
\[
P^x (X_t \in E) = \int_E p(t,x,y)dy, \quad \forall E \in \mathcal{B}(\mathbb{R}^d),
\]
Proof. Let $0 < t \leq 1$ be fixed. Consider $\phi \in C_0^\infty(\mathbb{R}^d)$ that is arbitrary. Define $u(s, x) := \int_{\mathbb{R}^d} p(s, x, y) \phi(y) \, dy$, $s > 0, x \in \mathbb{R}^d$, and $u(0, \cdot) = \phi$. Let
\[
\tilde{u}(s, x) := u(t - s, x), \quad 0 \leq s \leq t, x \in \mathbb{R}^d.
\]
By Theorem 4.8, $\tilde{u} \in C_b([0, t] \times \mathbb{R}^d)$ and
\[
\partial_\nu \tilde{u}(s, x) + A\tilde{u}(s, x) = 0, \quad 0 \leq s < t, x \in \mathbb{R}^d, \quad \tilde{u}(t, x) = \phi(x). \tag{4.54}
\]
Let $(\rho_n)_{n \in \mathbb{N}}$ be a mollifying sequence in \mathbb{R}^d. Set
\[
\tilde{u}_n(s, \cdot) := \tilde{u}(s, \cdot) * \rho_n.
\]
Then for $0 < \varepsilon < t$, we have $\tilde{u}_n \in C^{1,2}_b([0, t - \varepsilon] \times \mathbb{R}^d)$. Indeed, for $(s, x) \in [0, t - \varepsilon] \times \mathbb{R}^d$,
\[
\partial_s \tilde{u}_n(s, x) = \int_{\mathbb{R}^d} \partial_s \tilde{u}(s, x - y) \rho_n(y) \, dy.
\]
Note that for each $x \in \mathbb{R}^d$, $s \mapsto \partial_s \tilde{u}(s, x)$ is continuous, which implies that for each $x \in \mathbb{R}^d$, $s \mapsto \partial_s \tilde{u}_n(s, x)$ is continuous. Since, by (4.20), (4.50) and (4.54), $\partial_s \tilde{u}(s, x)$ is bounded on $[0, t - \varepsilon] \times \mathbb{R}^d$, it follows that $\partial_s \tilde{u}_n(s, x)$ is Lipschitz in x, uniformly with respect to $s \in [0, t - \varepsilon]$. Similarly to Corollary 4.7, we conclude that $\partial_s \tilde{u}_n \in C_b([0, t - \varepsilon] \times \mathbb{R}^d)$. It is obvious that
\[
\partial_t \tilde{u}_n(s, x) = \int_{\mathbb{R}^d} \partial_t \rho_n(x - y) \tilde{u}(s, y) \, dy
\]
\[
= \int_{\mathbb{R}^d} \tilde{u}(s, x - y) \partial_t \rho_n(y) \, dy \in C_b([0, t - \varepsilon] \times \mathbb{R}^d).
\]
The cases for second order derivatives are similar. So $\tilde{u}_n \in C^{1,2}_b([0, t - \varepsilon] \times \mathbb{R}^d)$.

According to [22, Theorem (1.1)], the process
\[
\tilde{u}_n(s, X_s) - \int_0^s (\partial_r + A)\tilde{u}_n(r, X_r) \, dr, \quad s \in [0, t - \varepsilon],
\]
is a \mathbb{P}^x-martingale. So
\[
\mathbb{E}^x[\tilde{u}_n(t - \varepsilon, X_{t-\varepsilon})] - \mathbb{E}^x[\tilde{u}_n(0, X_0)] = \mathbb{E}^x \left[\int_0^{t-\varepsilon} (\partial_r + A)\tilde{u}_n(r, X_r) \, dr \right].
\]
As $n \to \infty$, it is clear that $\partial_s \tilde{u}_n(s, x) \to \partial_s \tilde{u}(s, x)$, since for each $s \in [0, t - \varepsilon]$, $x \mapsto \partial_s \tilde{u}(s, x)$ is continuous; moreover, according to (4.34),
\[
A\tilde{u}_n(s, x) = A \left(\int_{\mathbb{R}^d} \tilde{u}(s, x - y) \rho_n(y) \, dy \right)
\]
\[
= \int_{\mathbb{R}^d} A\tilde{u}(s, \cdot - y)(x) \rho_n(y) \, dy \to A\tilde{u}(s, x),
\]
where we used the fact that for each $s \in [0, t - \varepsilon]$, $x \mapsto A\tilde{u}(s, \cdot)(x)$ is continuous. So $(\partial_r + A)\tilde{u}_n(r, X_r)$ converges boundedly and pointwise to $(\partial_r + A)\tilde{u}(r, X_r)$. By dominated convergence, we obtain
\[
\mathbb{E}^x[\tilde{u}(t - \varepsilon, X_{t-\varepsilon})] - \mathbb{E}^x[\tilde{u}(0, X_0)] = \mathbb{E}^x \left[\int_0^{t-\varepsilon} (\partial_r + A)\tilde{u}(r, X_r) \, dr \right] = 0.
\]
So

\[\mathbb{E}^x[u(\varepsilon, X_{t-\varepsilon})] = \tilde{u}(0, x) = u(t, x). \]

Letting \(\varepsilon \to 0 \), we get

\[u(t, x) = \mathbb{E}^x[u(0, X_{t-})] = \mathbb{E}^x[u(0, X_t)] = \mathbb{E}^x[\phi(X_t)], \]

at least for \(t \in I := \{ t \in (0, 1] : X_{t-} = X_t, \text{ P}_x\text{-a.s.} \} \). By [11, Chap. 3, Lemma 7.7], the set \((0, 1] \setminus I \) is at most countable. Then by the right continuity of \(t \mapsto X_t \) and the continuity of \(t \mapsto u(t, x) \), we obtain for all \(t \in (0, 1] \),

\[\mathbb{E}^x[\phi(X_t)] = u(t, x) = \int_{\mathbb{R}^d} p(t, x, y)\phi(y)dy, \quad \forall \phi \in C^\infty_0(\mathbb{R}^d). \]

This means that \(p(t, x, \cdot) \) is the density function of the distribution of \(X_t \) under \(\text{P}^x \).

□

The next proposition is about a gradient estimate on \(p(t, x, y) \) for the case \(1 < \alpha < 2 \).

Proposition 4.10. Suppose that \(1 < \alpha < 2 \). Then there exists a constant \(C_{31} = C_{31}(d, \alpha, \kappa_0, \kappa_1, \kappa_2, \theta) > 0 \) such that for all \((t, x, y) \in (0, 1] \times \mathbb{R}^d \times \mathbb{R}^d \),

\[|\nabla_x p(t, x, y)| \leq C_{31} t^{1-1/\alpha} \left(t^{1/\alpha} + |x| \right)^{-d-\alpha}. \]

Proof. Recall that \(p = q + q \otimes \Phi \). By (3.16) and Remark 4.1, we obtain

\[|\nabla_x q(t, x, y)| \leq c_1 \delta_{0-1}^0(t, x - y), \quad (t, x, y) \in (0, 1] \times \mathbb{R}^d \times \mathbb{R}^d. \] (4.55)

Since

\[\nabla_x (q \otimes \Phi(t, x, y)) = \int_0^t \int_{\mathbb{R}^d} \nabla_x q(t-s, x, z)\Phi(s, z, y)dzds, \]

we get that for \((t, x, y) \in (0, 1] \times \mathbb{R}^d \times \mathbb{R}^d \),

\[|\nabla_x (q \otimes \Phi(t, x, y))| \]

\[\leq c_2 \int_0^t \int_{\mathbb{R}^d} \delta_{0-1}^0(t-s, x-z) \left\{ \delta_{0-1}^0(s, z-y) + \delta_{0-1}^0(s, z-y) \right\} dzds \]

\[\leq c_3 \delta_{0+\alpha-1}^0(t, x, y) + c_4 \delta_{0-1}^0(t, x, y) \leq c_5 \delta_{0-1}^0(t, x, y). \] (4.56)

Now, the assertion follows by (4.55) and (4.56). □

We conclude this section with the following theorem.

Proposition 4.11. Consider the operator \(A \) given in (4.1) and assume that \(n(\cdot, \cdot) \) satisfies Assumption 1.1. Then for the Markov process \((X, (\text{P}^x))\) associated with \(A \), there exists a jointly continuous transition density \(p(t, x, y) \) such that for all \(t > 0, x \in \mathbb{R}^d \) and \(E \in \mathcal{B}(\mathbb{R}^d) \),

\[\text{P}^x(X_t \in E) = \int_E p(t, x, y)dy. \]

Moreover, for each \(T > 0 \), there exists a constant \(C_{32} = C_{32}(d, \alpha, \kappa_0, \kappa_1, \kappa_2, \theta, T) > 0 \) such that

\[p(t, x, y) \leq C_{32} t^{(t^{1/\alpha} + |x-y|)^{-d-\alpha}}, \quad x, y \in \mathbb{R}^d, \quad 0 < t \leq T. \] (4.57)
For the case $1 < \alpha < 2$, there exists also a constant $C_{33} = C_{33}(d, \alpha, \kappa_0, \kappa_1, \kappa_2, \theta, T) > 0$ such that
\[
|\nabla_x p(t, x, y)| \leq C_{33} t^{1-1/\alpha} \left(t^{1/\alpha} + |x - y| \right)^{-d-\alpha}, \quad x, y \in \mathbb{R}^d, \quad 0 < t \leq T. \tag{4.58}
\]

Proof. Let $T > 0$ be fixed and set $a := T^{-1/\alpha}$. Define $\tilde{P}_x = P_{x/a}$ and $Y_t := aX_{a^{-t}}$, $t \geq 0$. By Lemma 2.1, Remark 2.2, and Propositions 4.4 and 4.9, the Markov process $\left(Y, \left(\tilde{P}_x\right)\right)$ has a jointly continuous transition density $\tilde{p}(t, x, y)$, $(t, x, y) \in (0, 1] \times \mathbb{R}^{2d}$. Moreover, there exists a constant $c_1 = c_1(d, \alpha, \kappa_0, \kappa_1, \kappa_2, \theta) > 0$ such that
\[
\tilde{p}(t, x, y) \leq c_1 t \left(t^{1/\alpha} + |x - y| \right)^{-d-\alpha}, \quad t \in (0, 1], \ x, y \in \mathbb{R}^d. \tag{4.59}
\]

It follows that for each $t \in (0, T]$ and $x \in \mathbb{R}^d$, the law of X_t under P_x is absolutely continuous with respect to the Lebesgue measure and thus has a density function $p(t, x, \cdot)$. Since
\[
\tilde{p}(t, x, y) \, dy = \tilde{P}_x(Y_t \in dy) = P_{x/a}(aX_{a^{-t}} \in dy) = a^{-d} p\left(a^{-t} x/a, a^{-t} y/a\right) \, dy,
\]
we obtain
\[
p(t, x, y) = a^d \tilde{p}(a^\alpha t, ax, ay) \tag{4.59} \leq c_1 a^d a^\alpha t \left((a^\alpha t)^{1/\alpha} + |ax - ay| \right)^{-d-\alpha} \\
= c_1 t \left(t^{1/\alpha} + |x - y| \right)^{-d-\alpha}, \quad \forall x, y \in \mathbb{R}^d, \quad 0 < t \leq T.
\]
Moreover, by the continuity of $\tilde{p}(t, x, y)$, the function $(t, x, y) \mapsto p(t, x, y)$ is continuous on $(0, T] \times \mathbb{R}^d \times \mathbb{R}^d$. In view of Proposition 4.10, the estimate (4.58) can be similarly proved. This completes the proof. \(\square\)

Remark 4.12. Let $p(t, x, y)$ be as in Proposition 4.11. It follows from (4.14), (4.13) and Lemma 3.4 that there exist $t_0 = t_0(d, \alpha, \kappa_0, \kappa_1, \kappa_2, \theta) \in (0, 1)$ and $C_{34} = C_{34}(d, \alpha, \kappa_0, \kappa_1, \kappa_2, \theta) > 0$ such that
\[
p(t, x, y) \geq C_{34} t^{-d/\alpha}, \quad \forall t \in (0, t_0], \ |x - y| \leq t^{1/\alpha}. \tag{4.60}
\]

5. Transition density of the Markov process associated with \mathcal{L}

In this section we assume $1 < \alpha < 2$. In this case, we still need to handle the extra term $b(x) \cdot \nabla f(x)$ in the definition of $\mathcal{L} f$. Throughout this section we assume Assumptions 1.1 and 1.3 are true.

Let $p(t, x, y)$ be as in Proposition 4.11. It follows from the continuity of $p(t, x, y)$ and the Markov property that
\[
\int_{\mathbb{R}^d} p(s, x, z)p(t, z, y)dz = p(t+s, x, y), \quad t, s > 0, \ x, y \in \mathbb{R}^d. \tag{5.1}
\]

By (5.1) and Theorem 4.11, there exists a constant $C_{35} = C_{35}(d, \alpha, \kappa_0, \kappa_1, \kappa_2, \theta) > 0$ such that for all $t > 0$ and $x, y \in \mathbb{R}^d$,
\[
p(t, x, y) \leq C_{35} e^{C_{35} t} \left(t^{1/\alpha} + |x - y| \right)^{-d-\alpha} \tag{5.2}
\]
and
\[|\nabla_x p(t, x, y)| \leq C_{35} e^{C_{35} t} t^{1-1/\alpha} \left(t^{1/\alpha} + |x - y|\right)^{-d-\alpha}. \tag{5.3}\]

For \(t > 0 \) and \(x, y \in \mathbb{R}^d \), let \(l_0(t, x, y) := p(t, x, y) \). Then
\[
\int_0^t \int_{\mathbb{R}^d} |l_0(t-s, x, z)b(z) \cdot \nabla_z p(s, z, y)| dz \, ds \\
\leq \kappa_3 C_{35}^2 e^{C_{35} t} \int_0^t \int_{\mathbb{R}^d} \phi_0^0(t-s, x-z) \phi_{\alpha-1}^0(s, z-y) dz \, ds \\
\leq \kappa_3 C_{35}^2 e^{C_{35} t} B\left(1, 1-\alpha^{-1}\right) \phi_{\alpha-1}^0(t, x, y).
\]

So
\[
l_1(t, x, y) := \int_0^t \int_{\mathbb{R}^d} l_0(t-s, x, z)b(z) \cdot \nabla_z p(s, z, y) dz \, ds, \quad t > 0, \ x, y \in \mathbb{R}^d, \tag{5.4}\]
is well-defined. Similarly, we can define recursively
\[
l_n(t, x, y) := \int_0^t \int_{\mathbb{R}^d} l_{n-1}(t-s, x, z)b(z) \cdot \nabla_z p(s, z, y) dz \, ds, \quad t > 0, \ x, y \in \mathbb{R}^d. \tag{5.5}\]

By induction, we easily get that for \(t > 0 \) and \(x, y \in \mathbb{R}^d \),
\[
|l_n(t, x, y)| \\
\leq C_{35} (\kappa_3 C_{35} C_{35})^n e^{C_{35} t} \prod_{i=1}^n \mathcal{B}\left(\frac{\alpha + (i-1)(\alpha - 1)}{\alpha}, \frac{\alpha - 1}{\alpha}\right) \phi_{\alpha+n(\alpha-1)}^0(t, x, y) \\
= C_{35} (\kappa_3 C_{35} C_{35} \Gamma(1-\alpha^{-1}))^n e^{C_{35} t} \frac{\prod_{i=1}^n \mathcal{B}\left(\frac{i(\alpha - 1)}{\alpha}, \frac{\alpha - 1}{\alpha}\right) \phi_{\alpha+n(\alpha-1)}^0(t, x, y)}{\Gamma(1+n(1-\alpha^{-1}))} \\
\tag{5.6}
\]
and
\[
|\nabla_x l_n(t, x, y)| \\
\leq C_{35} (\kappa_3 C_{35} C_{35})^n e^{C_{35} t} \prod_{i=1}^n \mathcal{B}\left(\frac{i(\alpha - 1)}{\alpha}, \frac{\alpha - 1}{\alpha}\right) \phi_{\alpha+n(\alpha-1)}^0(t, x, y) \\
= C_{35} (\kappa_3 C_{35} C_{35})^n \left(\frac{\Gamma(1-\alpha^{-1})}{\Gamma((1+n)(1-\alpha^{-1}))}\right)^{n+1} e^{C_{35} t} \frac{\prod_{i=1}^n \mathcal{B}\left(\frac{i(\alpha - 1)}{\alpha}, \frac{\alpha - 1}{\alpha}\right) \phi_{\alpha+n(\alpha-1)}^0(t, x, y)}{\Gamma((1+n)(1-\alpha^{-1}))}. \tag{5.7}\]

Remark 5.1. Similarly as above, for \((t, x, y) \in (0, \infty) \times \mathbb{R}^d \times \mathbb{R}^d\), define \(|l|_0(t, x, y) := p(t, x, y)\) and then recursively
\[
|l|_n(t, x, y) := \int_0^t \int_{\mathbb{R}^d} |l|_{n-1}(t-s, x, z)b(z) |\nabla_z p(s, z, y)| dz \, ds.
\]

In view of Lemma 2.6, we can follow the same argument as in \([7, \text{p. 191, (40)}]\) to obtain the existence of \(\lambda_0 > 0\) and \(C_{36} = C_{36}(d, \alpha, \kappa_0, \kappa_1, \kappa_2, \theta, \kappa_3) > 0\) such that
\[
\sum_{n=0}^{\infty} \int_0^\infty e^{-\lambda t} |l|_n(t, x, y) dt \leq C_{36} u_\lambda(x - y), \quad \forall \lambda > \lambda_0, \ x, y \in \mathbb{R}^d, \tag{5.8}\]
where \(u_\lambda\) is defined in Sect. 2.4.
Proposition 5.2. Assume $1 < \alpha < 2$. Let \mathcal{L} and $(X, (\mathcal{L}_t^x))$ be as in Theorem 1.4, and l_n be as in (5.5). Then $(X, (\mathcal{L}_t^x))$ has a jointly continuous transition density $l(t, x, y)$ given by

$$l(t, x, y) := \sum_{n=0}^{\infty} l_n(t, x, y), \quad (t, x, y) \in (0, \infty) \times \mathbb{R}^d \times \mathbb{R}^d,$$

(5.9)

where the series on the right-hand side of (5.9) converges locally uniformly on $(0, \infty) \times \mathbb{R}^d \times \mathbb{R}^d$. Moreover, it holds that for all $(t, x, y) \in (0, \infty) \times \mathbb{R}^d \times \mathbb{R}^d$,

$$l(t, x, y) = p(t, x, y) + \int_0^t \int_{\mathbb{R}^d} l(\tau, x, z)b(z) \cdot \nabla_z p(t - \tau, z, y) dz d\tau.$$

(5.10)

Proof. Let $T > 1$ be fixed. By (5.6), we get for $t \in (0, T]$ and $x, y \in \mathbb{R}^d$,

$$|l_n(t, x, y)| \leq \frac{C_{35} \left(\kappa_3 C_7 C_{35} T(1 - \alpha^{-1}) \Gamma \left(1 - \alpha^{-1} \right) \right)^n e^{C_{35} T}}{\Gamma(1 + n(1 - \alpha^{-1}))} \delta_{a}^0(t, x, y).$$

(5.11)

The local uniform convergence of $\sum_{n=0}^{\infty} l_n(t, x, y)$ follows from (5.11). It is also easy to see that (5.10) is true. By induction and a similar argument as in [7, Lemma 14], we see that $l_n(t, x, y)$ is jointly continuous in $(t, x, y) \in (0, \infty) \times \mathbb{R}^d \times \mathbb{R}^d$, which, together with the local uniform convergence, implies the joint continuity of $l(t, x, y)$.

For $\lambda > C_{35} \lor \lambda_0$ and $f \in B_0(\mathbb{R}^d)$, define

$$R^\lambda f(x) := \int_0^\infty \int_{\mathbb{R}^d} e^{-\lambda t} p(t, x, y)f(y) dy dt, \quad x \in \mathbb{R}^d,$$

and

$$S^\lambda f(x) := \int_0^\infty \int_{\mathbb{R}^d} e^{-\lambda t} l(t, x, y)f(y) dy dt, \quad x \in \mathbb{R}^d.$$

(5.12)

Note that S^λ in (5.12) is well-defined by (5.8). If f is bounded measurable, then

$$S^\lambda f(x) - R^\lambda f(x) = \int_0^\infty \int_{\mathbb{R}^d} e^{-\lambda t} f(y) \left(\int_0^t \int_{\mathbb{R}^d} l(\tau, x, z)b(z) \cdot \nabla_z p(t - \tau, z, y) dz d\tau \right) dy dt.$$

(5.13)

Since (5.2), (5.3) and (5.8) hold, we can apply Fubini’s theorem to get

$$S^\lambda f(x) - R^\lambda f(x) = \int_0^\infty \int_{\mathbb{R}^d} e^{-\lambda t} l(\tau, x, z) \left[b(z) \cdot \nabla z \left(\int_0^\infty \int_{\mathbb{R}^d} e^{-\lambda(t - \tau)} p(t - \tau, z, y)f(y) dy dt \right) \right] dz d\tau,$$

namely,

$$S^\lambda f(x) - R^\lambda f(x) = S^\lambda B R^\lambda f,$$

(5.14)

where $B R^\lambda f := b \cdot \nabla R^\lambda f$. Applying (5.13) i times, we get

$$S^\lambda g = \sum_{k=0}^{i} R^k(B R^\lambda)^k g + S^\lambda(B R^\lambda)^{i+1} g, \quad \forall \lambda > C_{35} \lor \lambda_0, \ g \in B_0(\mathbb{R}^d).$$

(5.15)

It follows from (5.3) that

$$\| B R^\lambda g \| \leq N_\lambda \| b \| \cdot \| g \| \leq \kappa_3 N_\lambda \| g \|, \quad g \in B_0(\mathbb{R}^d),$$
where $N_\alpha > 0$ is a constant with $N_\alpha \downarrow 0$ as $\alpha \uparrow \infty$. So we can find $\lambda_1 > C_{35} \vee \lambda_0$ such that $N_\alpha < 1/\kappa_3$ for all $\alpha > \lambda_1$. It follows from (5.8) and (5.15) that
\[
\lim_{\alpha \to \infty} \|S^{\lambda}(BR^{\lambda})^{i+1}g\| = 0 \text{ for all } \alpha > \lambda_1.
\] Therefore,
\[
S^{\lambda}g = \sum_{k=0}^{\infty} R^{\lambda}(BR^{\lambda})^{k}g, \quad \forall \lambda > \lambda_1, \ g \in B_b(\mathbb{R}^d). \tag{5.16}
\]

Next, we show that $l(t, x, y)$ is the transition density of $(X, (L^x))$. Let $x \in \mathbb{R}^d$ be fixed. For $\lambda > 0$ and $f \in B_b(\mathbb{R}^d)$, define
\[
V^{\lambda}f := E_{L^x}\left[\int_0^\infty e^{-\lambda t} f(X_t) dt \right].
\]
For $f \in C_b^2(\mathbb{R}^d)$, we know that
\[
f(X_t) - f(X_0) - \int_0^t Lf(X_u) du, \quad t \geq 0,
\]
is a L^x-martingale. So
\[
E_{L^x}\left[f(X_t) \right] = f(x) = E_{L^x}\left[\int_0^t Lf(X_u) du \right]. \tag{5.17}
\]
Multiplying both sides of (5.17) by $e^{-\lambda t}$, integrating with respect to t from 0 to ∞ and then applying Fubini’s theorem, we get for $f \in C_b^2(\mathbb{R}^d)$,
\[
E_{L^x}\left[\int_0^\infty e^{-\lambda t} f(X_t) dt \right] = \frac{1}{\lambda} f(x) + \frac{1}{\lambda} E_{L^x}\left[\int_0^\infty e^{-\lambda u} Lf(X_u) du \right]. \tag{5.18}
\]
We now claim
\[
\lambda V^{\lambda}f = f(x) + V^{\lambda}(L^x f), \quad \forall f \in C^{\alpha+\beta}(\mathbb{R}^d), \tag{5.19}
\]
where $0 < \beta < 2 - \alpha$ (see [17, Sect. 3.1] for the definition of the Hölder space $C^{\alpha+\beta}(\mathbb{R}^d)$). Indeed, if $f \in C^{\alpha+\beta}(\mathbb{R}^d)$, by convolution with mollifiers, we can find a sequence $(f_n) \subset C^\infty_c(\mathbb{R}^d)$ such that $f_n \to f$ in $C^{\alpha+\beta}(K)$, for any compact set $K \subset \mathbb{R}^d$ and $0 < \beta' < \beta$. Moreover, $\|f_n\|_{C^{\alpha+\beta}(\mathbb{R}^d)} \leq \|f\|_{C^{\alpha+\beta}(\mathbb{R}^d)}$. For details the reader is referred to [21, p. 438]. Noting that for $|h| \leq 1$,
\[
|f_n(x+h) - f_n(x) - \nabla f_n(x) \cdot h| = \left| \int_0^1 (\nabla f_n(x+rh) - \nabla f_n(x)) \cdot h dr \right|
\leq c_1 \|f_n\|_{C^{\alpha+\beta}(\mathbb{R}^d)} |h|^\alpha |h|^{\beta-1} \leq c_1 \|f\|_{C^{\alpha+\beta}(\mathbb{R}^d)} |h|^\alpha |h|^{\beta-1},
\]
by dominated convergence, we see that $Lf_n \to Lf$ boundedly and pointwise as $n \to \infty$. Since (5.19) is true for f_n by (5.18), the passage to the limit gives (5.19).

Given $g \in C^2(\mathbb{R}^d)$, it follows from [2, Proposition 7.4] and [2, Theorem 7.2] that there exists $f \in C^{\alpha+\beta}(\mathbb{R}^d)$ such that $(\lambda - A)f = g$, where $\lambda > 0$. For this f, as in (5.19) we have $\lambda R^{\lambda}f = f + R^{\lambda}(Af)$, which implies $f = R^{\lambda}g$. Substituting this f in (5.19), we obtain
\[
V^{\lambda}g = R^{\lambda}g(x) + V^{\lambda}(BR^{\lambda}g), \quad g \in C^\beta(\mathbb{R}^d). \tag{5.20}
\]
After a standard approximation procedure, the equality (5.20) holds for any $g \in C_b(\mathbb{R}^d)$. Then we can use a monotone class argument to extend (5.20) to all $g \in B_b(\mathbb{R}^d)$.
Similarly to (5.14), we obtain from (5.20) that
\[V^\lambda g = \sum_{i=0}^{k} R^\lambda(B R^\lambda)^i g(x) + V^\lambda(B R^\lambda)^{k+1} g, \quad g \in \mathcal{B}_0(\mathbb{R}^d). \] (5.21)

For \(\lambda > \lambda_1 \), by (5.15) and the definition of \(\lambda_1 \), we obtain
\[V^\lambda g = \sum_{i=0}^{\infty} R^\lambda(B R^\lambda)^i g(x), \quad \forall \lambda > \lambda_1, \quad g \in \mathcal{B}_0(\mathbb{R}^d). \] (5.22)

It follows from (5.16) and (5.22) that for all \(\lambda > \lambda_1 \) and \(g \in \mathcal{B}_0(\mathbb{R}^d) \),
\[E_{L^\infty} \left[\int_0^\infty e^{-\lambda t} g(X_t) dt \right] = \int_0^\infty \int_{\mathbb{R}^d} e^{-\lambda t} l(t, x, y) g(y) dy dt. \]

Note that for \(g \in \mathcal{B}_b(\mathbb{R}^d) \), the function \(t \mapsto \int_{\mathbb{R}^d} l(t, x, y) g(y) dy \) is bounded continuous on \((0, T)\) for any \(T > 0 \). By the uniqueness of the Laplace transform, we obtain
\[E_{L^\infty} [g(X_t)] = \int_{\mathbb{R}^d} l(t, x, y) g(y) dy, \quad \forall g \in \mathcal{B}_b(\mathbb{R}^d), \quad t > 0. \]

This implies that \(l(t, x, \cdot) \) is the density function of the law of \(X_t \) under the measure \(L^x \). □

Remark 5.3. Let \(l(t, x, y) \) be as in Proposition 5.2. By (4.60), (5.9) and (5.6), there exist \(t_0 = t_0(d, \alpha, \kappa_0, \kappa_1, \kappa_2, \theta, \kappa_3) \in (0, 1) \) and \(C_{37} = C_{37}(d, \alpha, \kappa_0, \kappa_1, \kappa_2, \theta, \kappa_3) > 0 \) such that
\[l(t, x, y) \geq C_{37} t^{-d/\alpha}, \quad \forall t \in (0, t_0], \quad |x-y| \leq t^{1/\alpha}. \]

6. Proof of Theorem 1.4

Finally, we give the proof of our main result.

Proof of Theorem 1.4. By Propositions 4.11 and 5.2, we get the existence of a jointly continuous transition density \(l(t, x, y) \) for \((X, (L^x))\). The claimed upper bounds of \(l(t, x, y) \) and \(|\nabla_x l(t, x, y)|\) follow from (4.57), (5.6), (5.7) and Proposition 5.2.

We now prove the lower bound of \(l(t, x, y) \) by following [9, Sect. 4.4]. Arguing in the same way as in [9, p. 306-307] (see also the proof of [4, Prop. 2.3]), we conclude that if \(A \) and \(B \) are bounded Borel subsets of \(\mathbb{R}^d \) with \(B \) being closed and having a positive distance from \(A \), then
\[\sum_{s \leq t} 1_A(X_{s-}) 1_B(X_s) \left(\int_0^t 1_A(X_s) \left(\int_B \frac{n(X_s, y - X_s)}{|y - X_s|^{d+\alpha}} dy \right) ds \right. \]

is a \(L^x \)-martingale.

Let \(T > 0 \) be fixed. By Remarks 4.12 and 5.3, there exist constants \(t_0 \in (0, 1) \) and \(c_1 > 0 \) such that
\[l(t, x, y) \geq c_1 t^{-d/\alpha}, \quad \forall t \in (0, t_0], \quad |x-y| \leq t^{1/\alpha}. \]

As in (5.1), \(l(t, x, y) \) satisfies also the Chapman-Kolmogorov’s equation. Iterating \([T/t_0] + 1\) times, we obtain
\[l(t, x, y) \geq c_2 t^{-d/\alpha}, \quad \forall t \in (0, T], \quad |x-y| \leq 3c_3 t^{1/\alpha}, \]
where \(c_2, c_3 > 0\) are constants. By Lemmas 2.3 and 2.4, there is a constant \(\lambda \in (0, 1/2)\) such that for all \(t \in (0, T)\) and \(x \in \mathbb{R}^d\),

\[
L^x (\tau_{B_{c_3 t^{1/\alpha}}(x)} < \lambda t) \leq \frac{1}{2}.
\]

Below, assume \(0 < t \leq T\) and \(|x - y| > 3c_3 t^{1/\alpha}\). Set \(A_1 := B_{c_3 t^{1/\alpha}}(x)\) and \(A_2 := B_{c_3 t^{1/\alpha}}(y)\). Let \(\overline{A}_i\) the closure of \(A_i\), \(i = 1, 2\). Similarly to [9, p. 309, (4.36)], we have

\[
L^x (X_{\lambda t} \in B_{c_3 t^{1/\alpha}}(y)) \geq \frac{1}{2} L^x (X_{\lambda t} \wedge \tau_{A_1} \in \overline{A}_2),
\]

where \(\tau_{A_1} := \inf\{t \geq 0 : X_t \notin A_1\}\). Since

\[
1_{X_{\lambda t} \wedge \tau_{A_1} \in \overline{A}_2} = \sum_{s \leq \lambda t \wedge \tau_{A_1}} 1_{\tau_{A_1}}(X_s) 1_{\overline{A}_2}(X_s),
\]

by (6.1) and optional sampling, we have

\[
L^x (X_{\lambda t} \wedge \tau_{A_1} \in \overline{A}_2) = E_{L^x} \left[\int_0^{\lambda t \wedge \tau_{A_1}} 1_{\tau_{A_1}}(X_s) \left(\int_{\overline{A}_2} \frac{n(X_s, y - X_s)}{|y - X_s|^{d+\alpha}} \, dy \right) \, ds \right]
\]

\[
= E_{L^x} \left[\int_0^{\lambda t \wedge \tau_{A_1}} \int_{\overline{A}_2} \frac{n(X_s, y - X_s)}{|y - X_s|^{d+\alpha}} \, dy \, ds \right].
\]

The rest of the proof is then the same as in [9, p. 310]. So we get

\[
l(t, x, y) \geq c_4 t |x - y|^{-d-\alpha}, \quad \forall t \in (0, T], \ |x - y| > 3c_3 t^{1/\alpha}.
\]

The theorem is proved. \(\square\)

References

[1] Bass, R.F.: Uniqueness in law for pure jump Markov processes. Probab. Theory Related Fields 79(2), 271–287 (1988).
[2] Bass, R.F.: Regularity results for stable-like operators. J. Funct. Anal. 257(8), 2693–2722 (2009).
[3] Bass, R.F., Kassmann, M.: Harnack inequalities for non-local operators of variable order. Trans. Amer. Math. Soc. 357(2), 837–850 (2005).
[4] Bass, R.F., Levin, D.A.: Harnack inequalities for jump processes. Potential Anal. 17(4), 375–388 (2002).
[5] Bass, R.F., Tang, H.: The martingale problem for a class of stable-like processes. Stochastic Process. Appl. 119(4), 1144–1167 (2009).
[6] Blumenthal, R.M., Getoor, R.K.: Some theorems on stable processes. Trans. Amer. Math. Soc. 95, 263–273 (1960).
[7] Bogdan, K., Jakubowski, T.: Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Comm. Math. Phys. 271(1), 179–198 (2007)
[8] Chen, Z.Q., Kumagai, T.: Heat kernel estimates for stable-like processes on \(d\)-sets. Stochastic Process. Appl. 108(1), 27–62 (2003).
[9] Chen, Z.Q., Zhang, X.: Heat kernels and analyticity of non-symmetric jump diffusion semigroups. Probab. Theory Related Fields 165(1-2), 267–312 (2016).
[10] Chen, Z.Q., Zhang, X.: Uniqueness of stable-like processes. arXiv preprint arXiv:1604.02681 (2016)
[11] Ethier, S.N., Kurtz, T.G.: Markov processes: Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York (1986).
[12] Feller, W.: An introduction to probability theory and its applications. Vol. II. Second edition. John Wiley & Sons, Inc., New York-London-Sydney (1971)
[13] Friedman, A.: Partial differential equations of parabolic type. Prentice-Hall Inc., Englewood Cliffs, N.J. (1964)
[14] Kaleta, K., Sztonyk, P.: Upper estimates of transition densities for stable-dominated semigroups. J. Evol. Equ. 13(3), 633–650 (2013).
[15] Kaleta, K., Sztonyk, P.: Estimates of transition densities and their derivatives for jump Lévy processes. J. Math. Anal. Appl. 431(1), 260–282 (2015).
[16] Kolokoltsov, V.: Symmetric stable laws and stable-like jump-diffusions. Proc. London Math. Soc. (3) 80(3), 725–768 (2000).
[17] Krylov, N.V.: Lectures on elliptic and parabolic equations in Hölder spaces, Graduate Studies in Mathematics, vol. 12. American Mathematical Society, Providence, RI (1996).
[18] Mikulevicius, R., Pragarauskas, H.: On the Cauchy problem for integro-differential operators in Hölder classes and the uniqueness of the martingale problem. Potential Anal. 40(4), 539–563 (2014).
[19] Mikulevičius, R., Pragarauskas, H.: On the Cauchy problem for integro-differential operators in Sobolev classes and the martingale problem. J. Differential Equations 256(4), 1581–1626 (2014).
[20] Nolan, J.: Stable Distributions: Models for Heavy-Tailed Data. Springer New York (2016).
[21] Priola, E.: Pathwise uniqueness for singular SDEs driven by stable processes. Osaka J. Math. 49(2), 421–447 (2012).
[22] Stroock, D.W.: Diffusion processes associated with Lévy generators. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32(3), 209–244 (1975).
[23] Sztonyk, P.: Transition density estimates for jump Lévy processes. Stochastic Process. Appl. 121(6), 1245–1265 (2011).
[24] Watanabe, T.: Asymptotic estimates of multi-dimensional stable densities and their applications. Trans. Amer. Math. Soc. 359(6), 2851–2879 (electronic) (2007).

Peng Jin: Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42119 Wuppertal, Germany
E-mail address: jin@uni-wuppertal.de