Endophytes influence protection and growth of an invasive plant

George Newcombe,1,2 Alexey Shipunov,1,2,* S.D. Eigenbrode,2,3 Anil K.H. Raghavendra,1 H. Ding,3 Cort L. Anderson,2,4 R. Menjivar,5 M. Crawford6 and M. Schwarzländer2,3

1Department of Forest Resources; 2Center for Research on Invasive Species and Small Populations; 3Department of Plant, Soil and Entomological Sciences; 4Department of Fish and Wildlife; 5Department of Fish and Wildlife; 6Environmental Science Program, University of Idaho; Moscow, Idaho USA; 2INRES-Phytomedizin; Bonn, Germany

Key words: endophyte ecology, herbivory, flowering, seed germination

We investigated the symbiotic activities of fungal endophytes isolated from spotted knapweed, Centaurea stoebe. Previously, an analysis of community similarity had demonstrated differences in the endophyte communities of C. stoebe in its native and invaded ranges. Here, we found that specific endophytes can exert positive effects on their host, whereas others exert negative effects. Endophytes produced metabolites that inhibited germination of a competitor of C. stoebe. Endophytes also repelled a specialist insect herbivore, perhaps by producing biologically active volatiles. Yet other endophytes acted as cryptic pathogens of C. stoebe, suppressing its germination, reducing its growth, increasing the abundance of a generalist insect herbivore, and delaying or suppressing its flowering. Since, as reported here, endophytes are not functionally interchangeable, previously reported community differences could be contributing to the invasiveness of C. stoebe.

Recently we reported significant diversity in endophytic fungi in an invasive plant, Centaurea stoebe, or spotted knapweed.1 Communities in the invaded and native ranges differed according to an analysis of similarity. Preliminary experiments to investigate functional activities of endophytes suggest that differences in the presence or absence of key endophytes could affect the invasiveness of this plant that is native to Eurasia and invasive in North America and elsewhere.

Positive Effects

Culture filtrates of 12 endophytes (Experiments 1–3, Table 1) suppressed germination of Festuca idahoensis, a plant that competes with C. stoebe in its invaded range in western North America.2 This result demonstrated that specific endophytes produce allelopathic effects that might aid C. stoebe in competition with other plants.

Symbionts can also have positive or mutualistic effects on their hosts by protecting them. Two endophytes, Alternaria CID62 and Epicoccum CID66 (CID = Cultivation Identification Number, or endophyte isolate number. A complete list of our CIDs is here), appeared to protect C. stoebe from Larinus minutus, a seed-feeding weevil from the native range of C. stoebe, that was deliberately released in North America for biological control.3 In dual-choice laboratory bioassays (Experiments 4–9), mated Larinus minutus females spent more time on uninoculated, control flowerheads than on those inoculated with either Alternaria CID62 or Epicoccum CID66, and preferred flowerheads inoculated with Epicoccum CID66 to those inoculated with Alternaria CID62 (Fig. 1). A similar pattern occurred when the isolated fungi were applied to cottonflower mimics, except that the difference in preference for Epicoccum CID66 over Alternaria CID62 was not significant (Fig. 1).

The effects we have detected thus far are potentially mediated by chemical factors. We sampled each of 16 endophytes for their capacity to release volatile organic compounds (VOC) in pure culture (i.e., Experiment 10), following methods similar to those that have been used to detect biologically active VOC produced by an endophytic fungus.4 Fourteen of these isolates in pure liquid culture produced volatile sesquiterpenes. Total production of sesquiterpenes ranged from zero to 236.8 ng/0.5 h/20 ml sample of culture. Volatile sesquiterpenes are implicated in many interorganismal interactions.5

Negative Effects on Flowering

Although the endophytes reported thus far1 are not overt pathogens they could be cryptic pathogens.6 In Experiment 11, knapweed seedlings inoculated with Alternaria isolate ‘CID62’ produced fewer flowering heads than seedlings inoculated with Epicoccum CID66, Fusarium CID107, and an uninoculated, E- (i.e., endophyte-free) control (ANOVA F1,38 = 5.276, p = 0.03). In Experiment 12, seedlings inoculated with Alternaria CID123 and Fusarium CID124 flowered significantly later than E- controls (ANOVA F2,46 = 17.173, p < 0.001).

Negative Effects on Seed Germination

We also performed knapweed germination assays following inoculation with endophyte cultures (Experiments 13–15), or following treatment with liquid culture filtrates (Experiments 11–13); germination was 100% suppressed by Botrytis CID360, Alternaria CID120...
Endophytes influence protection and growth of an invasive plant

Communicative & Integrative Biology 2009; Vol. 2 Issue 1

Negative Effects on Growth of *C. stoebe*

Some seedlings survived if they were first germinated and then inoculated with *Fusarium* CID107 (Experiments 14–16), but survivors had fewer and shorter leaves (ANOVA F1,52 = 8.987, p = 0.004 for number of leaves and ANOVA F1,52 = 7.307, p = 0.009 for length of maximal leaves) during a forty-day period of growth, and fewer mature, dissected leaves (χ² test for independence, χ² = 4.103, p = 0.043) than E- controls. Final, aboveground biomass was lower for *Fusarium* CID107-inoculated plants (ANOVA F 1,50 = 11.292, p = 0.001) than E- controls.

Negative Effects on Protection of *C. stoebe*

Fusarium CID107 also attracted a generalist herbivore, the aphid, *Myzus persicae*, to plants it had infected. In Experiment 17, abundance of aphid infestations differed on E+ and E- knapweed seedlings (ANOVA F3,35 = 5.023, p = 0.005). *Fusarium* CID107-inoculated seedlings hosted aphid populations 6.3 times higher than plants inoculated with *Alternaria* CID62, *Epicoccum* CID66, or controls, although this difference eventually disappeared when aphid populations became very large on all treatments (ANOVA F3,36 = 0.951, p = 0.426).

Balance of Positive and Negative Effects

With both negative and positive effects on characters associated with fitness (Fig. 2), it seems likely that endophytes strongly influence the ecology and invasiveness of *C. stoebe*. The effects of endophytes were seen in all growth stages of *C. stoebe*, from germination to flowering. Increases in aboveground biomass due to endophytes have been observed in other plants, although not yet
Endophytes influence protection and growth of an invasive plant

in *C. stoebe* (Fig. 2). We expect that with further experimentation, we will discover many additional, biotic interactions mediated by endophytes in *C. stoebe*.

Acknowledgements

R. Menjivar’s participation in the project was supported by the Norman E. Borlaug International Agricultural Science and Technology Fellows Program

References

1. Shipunov A, Newcombe G, Raghavendra A, Anderson C. Hidden diversity of endophytic fungi in an invasive plant Amer J Bot 2008; 95:1089-108.
2. Callaway R, Aschehoug ET. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 2000; 290:521-3.
3. Seastedt TR, Gregory N, Buckner D. Effect of biocontrol insects on diffuse knapweed (*Centaurea diffusa*) in a Colorado grassland. Weed Science 2003; 51:237-45.
4. Strobel GA, Dirke E, Sears J, Markworth C. Volatile antimicrobials from *Macrophomina albus*, a novel endophytic fungus Microbiology 2001; 147:2943-50.
5. Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA. Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 2006; 311:812-5.
6. Redman RS, Dunigan DD, Rodriguez RJ. Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol 2001; 151:705-16.
7. Yuan Z-L, Dai C-C, Li X, Tian L-S, Wáng X-X. Extensive host range of an endophytic fungus affects the growth and physiological functions in rice (*Oryza sativa* L.). Symbiosis 2007; 43:21-8.
8. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, et al. The endophytic fungus *Periconiopsis indica* reprograms barley to salt-stress tolerance, disease resistance and higher yield. Proc Nat Acad Sci USA 2005; 102:13386-91.
9. Ernst M, Mendgen KW, Wirsel SGR. Endophytic fungal mutualists: seed-borne *Stagonospora* spp. enhance reed biomass production in axenic microcosms. Mol Plant-Microb Interact 2003; 16:580-7.
10. Omacini M, Eggers T, Bonkowski M, Gange AC. Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Funct Ecol 2006; 20:226-32.
11. Blair AC, Hanson BD, Brunk GR, Marrs RA, Westra P, Nissen SJ, et al. New techniques and findings in the study of a candidate allelochemical implicated in invasion success. Ecol Letts 2005; 8:1039-47.