Interferon α Increases the Frequency of Interferon γ-producing Human CD4+ T Cells

By Volker Brinkmann, Thomas Geiger, Sefik Alkan, and Christoph H. Heusser

From Allergy/Immunology, Pharmaceuticals Research Division, Ciba-Geigy Limited, CH-4002 Basel, Switzerland

Summary

An increased ratio of T helper type 2 (Th2)- vs Th1-like cells contributes to the immune dysregulation in allergic disease situations and in many chronic infections, including AIDS. Th2-type immune responses are characterized by Th cells that produce increased levels of interleukin-4 (IL-4) and decreased levels of interferon γ (IFN-γ). The induction of either a Th1- or a Th2-like phenotype may be critically controlled by the antigen-presenting cells and their cytokines, e.g., IFN-α. In this study we have determined the frequencies of potential IL-4- and/or IFN-γ-producing T cells in the peripheral blood of randomly selected healthy individuals, and analyzed whether IFN-α controls IL-4 and/or IFN-γ production. Purified CD4+ or CD8+ T cells were stimulated for 24 h via the T cell receptor/CD3 complex in the presence or absence of IFN-α, and single IL-4- and IFN-γ-secreting cells were detected in enzyme-linked immunospot assays. In the absence of IFN-α, CD4 cells produced IFN-γ at frequencies of 1:50-300, and produced IL-4 at frequencies of 1:110-<1:100,000. Addition of IFN-α during the activation of CD4 cells increased the levels of IFN-γ mRNA. As a consequence, the numbers of IFN-γ-producing CD4 cells and the amounts of secreted IFN-γ increased 10-fold. In contrast, IFN-α did not increase the frequency of IL-4-secreting CD4 cells. In the absence of IFN-α, CD4 cells produced IFN-γ at frequencies of 1:50-300, and produced IL-4 at frequencies of 1:110-<1:100,000. Addition of IFN-α during the activation of CD4 cells increased the levels of IFN-γ mRNA. As a consequence, the numbers of IFN-γ-producing CD4 cells and the amounts of secreted IFN-γ increased 10-fold. In contrast, IFN-α did not increase the frequency of IL-4-secreting CD4 cells. In the absence of IFN-α, IFN-α production was reduced by 70%. However, in the presence of IFN-α, IL-4 did not display any suppressive effect. Compared with CD4 cells, CD8 cells produced IFN-γ more frequently (1:5-10) but IL-4 less frequently (1:5,300 to <1:100,000). IFN-α did not display any effect on the frequency of either IFN-γ or IL-4 production by CD8 cells. Taken together the results indicate that IFN-α increases the frequency of IFN-γ-secreting CD4 Th cells and antagonizes the suppressive effect of IL-4 on IFN-γ production. As a consequence, IFN-α may favor the induction and maintenance of Th1-like cells and thereby counteract Th2-driven allergic immune responses.

IFN-α has a wide range of immunomodulatory activities (1, 2). The cytokine has been used successfully for the treatment of viral infections (3-8), including AIDS (7, 8), and also displays beneficial effects in several tumor-associated diseases (9-12), and in allergic disorders (13, 14). Despite the broad indication range for IFN-α, the detailed mechanism of IFN-α action in vivo as well as its target cells have not been well defined. It has been found that IFN-α modulates the immunoglobulin isotype selection process, since it suppresses IgE production in an isotype-specific fashion in vitro (15) as well as in vivo (13, 16, 17). A direct effect of IFN-α on B cells is unlikely, since IFN-α does not inhibit IgG switching of human B cells upon physical interaction with preactivated helper cells in the absence of IFN-γ and in the presence of exogenously added IL-2 and IL-4 (18). It is tempting to speculate that IFN-α suppresses IgG production by modulating lymphokine expression by Th cells, since the immunoglobulin switch of B cells to IgE is induced by IL-4 (19-22), and antagonized by IFN-γ (15, 21, 22). This interpretation is supported by the finding that, in mice stimulated with a foreign anti-IgD antibody, IFN-α reduced the IgE and IgG1 response as well as the levels of splenic IL-4 mRNA, but increased the levels of splenic IFN-γ mRNA (16). However, since the mRNA levels were quantified in unfractionated spleen cells, it was not clear whether IFN-α acts on the level of IL-4 or IFN-γ gene expression, or whether the decreased levels of IL-4 mRNA reflect a selective accumulation of IFN-γ-producing cells in the spleen. With human cells it has been found that addition of IFN-α to cultures of PBMC before long-term T cell cloning favored the development of T cell clones that express a Th1, rather than a Th2, cytokine profile (23). Th1 cells mainly release IFN-γ and IL-2, while Th2 cells release IL-4, IL-5, and IL-10, the lymphokines involved in the control of allergic responses.
(24–29). The target cell as well as the mode of IFN-α action have not been clearly defined in either human or murine systems.

In this report we analyzed the effect of IFN-α on the expression of IL-4 and IFN-γ by freshly isolated human CD4+ Th cells and CD8+ cytotoxic-suppressive T cells. Since the secretion of IL-4 by Th cells is generally low, and IL-4 is barely detectable in the culture supernatants due to rapid consumption of the lymphokine by the growing cells, we have established enzyme-linked immunospot (ELISPOT)1 assays to detect single IL-4- and IFN-γ-secreting cells within 24 h of culture. Several reports from us and others have attested to the versatility of this methodological principle for enumerating cells that secrete antibody or lymphokines (30–35). We found that IFN-α increased the number of IFN-γ-secreting CD4 Th cells 10-fold within 24 h of culture, but that it did not regulate IFN-γ production by CD8 cells. Furthermore, IFN-α antagonized the suppressive effect of IL-4 on IFN-γ production, but did not affect the secretion of IL-4 by either CD4 or CD8 T cells. Based on this finding we propose that IFN-α favors Th1-driven immune responses by increasing IFN-γ production in the Th cell compartment.

Materials and Methods

IL4. Recombinant human IL-4 was purified by gel filtration from extracts of Escherichia coli cells transfected with the human IL-4 gene as described elsewhere (36). The specific activity of 2.5 × 10^6 U/mg was comparable to preparations commercially available.

IFN-α. Recombinant human IFN-α B (alpha 8; Ciba-Geigy, Basel, Switzerland) with a specific activity of 2.5 × 10^6 IU/mg was used in all experiments. HuIFN-α B was calibrated against the National Institutes of Health standard G 023-901-527 of HuIFN-α by determining plaque reduction of vesicular stomatitis virus Indiana serotype on human embryonic foreskin diploid cells (37, 38).

T Cell Separation. PBMC were isolated by Ficoll-Hypaque centrifugation (39). CD4+ or CD8+ T cells were negatively selected on FACS® (Becton Dickinson & Co., Mountain View, CA) by depleting cells that express either CD8 or CD4, respectively, as well as CD14, CD16, and CD19. The sorted populations were >98% pure. The antibodies used for staining (all from Becton Dickinson & Co.) were FITC-labeled Leu3a (anti-CD4), Leu2a (anti-CD8), LeuM3 (anti-CD14), Leu12 (anti-CD19), and Leu11c (anti-CD16).

Detection of Single IL-4-Secreting Cells (IL-4-SC) or IFN-γ-SC in ELISPOT Assays. mAbs to IL-4 (8F12, 3H4) (40, 41) and IFN-γ (23.9, 76.18) were produced in house. To perform ELISPOT assays, 96-well microtiter plates (Maxisorp; Nunc, Roskilde, Denmark) were coated with a mixture of anti-CD3 mAb OKT3 (American Type Culture Center; 1 µg/ml) plus either mouse anti-human IL-4 mAb 8F12 or mouse anti-human IFNγ mAb 23.9 (1 µg/ml). Plates were blocked with 2% BSA in PBS containing 0.05% NaN₃ (1 h, 37°C, 150 µl/well). Plates were washed, and isolated cells added in appropriate dilutions (10⁵ to 10⁶ cells/0.2 ml per well) into the coated ELISPOT plates. Plates were centrifuged (3 min, 50 g) and incubated at 37°C for 24 h to detect IFN-γ-SC and IL-4-SC. A longer incubation did not increase the numbers of either IL-4 or IFN-γ-spots. Cells were removed and developing antibodies added to the plates (IL-4: biotin-labeled mouse anti-human IL-4 mAb 3H4, 0.2 µg/well, 2 h, 37°C; IFN-γ: biotin-labeled mouse anti-human IFN-γ mAb 76.18, 0.2 µg/well, 2 h, 37°C). Plates were washed, and avidin-AP was added (0.2 µg/well, 2 h, 37°C; Zymed Labs., Inc., San Francisco, CA). After additional washing, substrate (bromo-4-chloro-3-indolylphosphat, 0.1 µg/well; Sigma Chemical Co., St. Louis, MO) was added, and the development of visible ELISPOTs followed microscopically. After 30–50 min, plates were rinsed with H₂O and air dried. ELISPOTs were counted either by microscopy or by using an automated ELISPOT counter (ASBA, Basel, Switzerland).

Detection of IFN-γ in Culture Supernatants by ELISA. 96-well microtiter plates (Maxisorp) were coated with mouse anti-human IFN-γ mAb 23.9 (1 µg/ml). All plates were blocked with 2% BSA in PBS containing 0.05% NaN₃ (1 h, 37°C, 150 µl/well). After washing with PBS, test samples or control human IFN-γ were added in blocking buffer (100 µl/well) and incubated for 16 h at room temperature. After washing, mouse anti-human IFN-γ mAb 76.18 was added (0.2 µg/well, 2 h, 37°C). Plates were washed and incubated with goat anti-mouse Ig coupled to alkaline phosphatase (0.1 µg/well; Tago, Inc., Burlingame, CA). Plates were washed and phosphatase substrate was added (0.1 mg/well; Sigma Chemical Co.).

PCR Analysis. 48-well culture plates were coated for 24 h with anti-CD3 mAb (OKT3, 50 µg/ml) and washed. CD4 T cells (2 × 10⁶/ml) were added and cultured for 12–48 h in the presence of IL-2 (50 U/ml) and various concentrations of IFN-α. Preactivated cells were lysed with 600 µl of guanidinium thiocyanate buffer (4 M guanidinium thiocyanate, 25 mM sodium citrate, pH 7, 0.5% sarcosyl, 0.1 M mercaptoethanol) and the cellular RNA was isolated by two cycles of acidic phenol extractions (42). The RNA pellet was dissolved in diethylpyrocarbonate-treated water and the concentration was determined by measuring the O.D₂₆₀ nm. The PCR amplifications were performed with the Gene Amp PCR kit (Perkin-Elmer Cetus, Norwalk, CT) and commercially available primers for IFN-γ and beta-Actin (Clontech, Palo Alto, CA) according to the manufacturer’s instructions. Briefly, 100 ng of total RNA were reverse transcribed with 5 U of reverse transcriptase (M-MLV; Perkin-Elmer, Norwalk, CT) at 37°C for 60 min. 1 µl of the reverse transcriptase reaction was added to the PCR mix. Amplifications were performed for 30 cycles (1 min at 60°C, 1 min at 72°C, 1 min at 94°C) using a thermal reactor from Hybaid®, Middlesex, UK. The amplified DNA was separated on a 1% agarose gel together with DNA size markers. The gel was stained with ethidium bromide and the bands were visualized by UV transillumination at 366 nM. The relative intensities of the bands were determined by scanning the polaroid picture of the gel with a video densitometer (Bio-Rad Laboratories, Richmond, CA) in the reflection mode. The values obtained with IFN-γ were standardized with respect to beta actin RNA levels, to correct for variations in RNA amount.

Northern Blot Analysis. 10 µg of RNA from each sample was separated on 1% agarose/6.6% formaldehyde gels (43) and transferred to gene screen membranes using a positive blotter (Stratagene Inc., La Jolla, CA). After baking the filters at 80°C for 2 h and prehybridization for 6 h, the filters were hybridized (43) with the labeled probes for IFN-γ and 28S ribosomal RNA for 12–16 h at 42°C. The probes were prepared using standard techniques (43). Labeling was carried out using the random primer technique (44). The filters were washed three times at 55°C in 0.1× SSPE, 0.1% sodium dodecyl sulfate (20× SSPE = 3.6 M sodium chloride, 0.2 M sodium phosphate, 0.02 M EDTA, pH 7.4) and exposed to Kodak

1 Abbreviations used in this paper: ELISPOT, enzyme-linked immunospot; SC, secreting cells.
plates were rinsed with H2O and air dried. ELISPOTS were counted either by microscopy or by using an automated ELISPOT counter.

Results

Detection of Single IL-4- and IFN-γ-secreting Cells by ELISPOT Assay. Allergic immune responses in vivo depend on activated Th2 cells that produce increased levels of IL-4 and decreased levels of IFN-γ (45-48). To determine the frequency of T cells present in the peripheral blood that are capable of secreting IL-4 or IFN-γ upon stimulation via the TCR/CD3 complex, we developed ELISPOT assays that allow the detection of single IL-4-SC and of IFN-γ-SC within 24 h of culture. CD4 or CD8 T cells (10^1-10^5/well) were activated for 24 h in ELISPOT plates coated with a mixture of anti-CD3 mAb plus either anti-IFN-γ or anti-IL-4 mAb. This approach allowed simultaneous stimulation of the T cells and binding of the secreted lymphokine to the plate. As demonstrated in Fig. 1, neither IL-4- nor IFN-γ-SC were detectable, if the plates were only coated with the activating anti-CD3 mAb in the absence of specific mAb to IL-4 or IFN-γ.

![Antibodies coated](image)

Antibodies Coated	No of IFNg-SC	No of IL-4-SC
no Ab		
αIL-4		
αIFNγ		
αCD3		
αIL-4 + αCD3		
αIFNγ + αCD3		
αIg + αCD3		

Figure 1. Detection of single IL-4-SC or IFN-γ-SC in ELISPOT assays. To detect IL-4-SC or IFN-γ-SC, ELISPOT plates were coated as indicated with a mixture of anti-CD3 mAb OX13 (1 μg/ml) plus either mouse anti-human IL-4 mAb 8F12 or mouse anti-human IFN-γ mAb 23.9 (1 μg/ml). Control culture wells were coated with either anti-IL-4, anti-IFN-γ, goat anti-human Ig, or anti-CD3 alone, or with a mixture of anti-CD3 plus goat anti-human Ig, or anti-CD3 alone, or with a mixture of anti-CD3 plus goat anti-human Ig. Plates were blocked with BSA. Purified CD4 cells were added in appropriate dilutions (10^-10^ 3 cells/0.2 ml per well). Plates were incubated at 37°C for 24 h. Cells were removed, developing antibodies added, and plates incubated for 2 h. (IL-4, biotin-labeled mouse anti-human IL-4 mAb 3H4, 0.2 μg; IFN-γ, biotin-labeled mouse anti-human IFN-γ mAb 76.18, 0.2 μg). Plates were washed, avidin-AP was added (0.2 μg), and plates were incubated for 2 h. Phosphatase substrate (bromo-4-chloro-3-indolylphospat, 0.1 μg) was added, and the development of visible ELISPOTs followed microscopically. After 30-50 min, plates were rinsed with H2O and air dried. ELISPOTs were counted either by microscopy or by using an automated ELISPOT counter.

XAR X-ray films for 12-16 h. The relative intensities of the bands were determined by scanning the autoradiograph with a densitometer.

XAR X-ray films for 12-16 h. The relative intensities of the bands were determined by scanning the autoradiograph with a densitometer.

XAR X-ray films for 12-16 h. The relative intensities of the bands were determined by scanning the autoradiograph with a densitometer.

1657 Brinkmann et al.
Table 1. Frequency of IL-4 and IFN-γ-secreting CD4 and CD8 T Cells in the Peripheral Blood

Exp.	Donor	Frequency of CD4+ T cells that produce:	Frequency of CD8+ T cells that produce:		
		IL-4	IFN-γ	IL-4	IFN-γ
1	1	1:110	1:80	1:5,000	1:5
2	1	1:300	1:90	1:5,000	1:5
3	1	1:230	1:110	1:6,200	1:6
4	2	1:150	1:50	1:3,300	1:4
5	3	1:8,000	1:100	<1:100,000	1:8

CD4+ or CD8-positive T cells were sorted by FACS from PBMC of individuals that had been preselected and mounted satisfactory IL-4 responses. Cells (10^6/10^5/well) were cultured for 24 h with IL-2 in ELISPOT plates coated with either anti-CD3 plus anti-IL-4, or with anti-CD3 plus anti-IFN-γ, to detect IL-4- or IFN-γ-secreting cells, respectively. After 24 h, cells were removed, and the lymphokine bound to the plate was detected as described in the legend to Fig. 1.

To determine whether IFN-α affects lymphokine production of T cells, we isolated CD4+ and CD8+ T cells by FACS, and cultured them (10^6/well) for 24 h with IL-2, but with or without CD14 monocytes (100/well) and/or IFN-α. Cultures were performed in plates coated with a mixture of anti-CD3 and anti-IFN-γ mAb. In the absence of IFN-α, IFN-γ production was more frequent in CD8 cells (1:5) than in CD4 cells (1:100; Fig. 2). In the presence of IFN-α, the number of IFN-γ-producing CD4 T cells increased 10-fold within 24 h. Addition of CD14 monocytes to the cultures had no effect. In contrast to CD4 cells, the frequency of IFN-γ-producing CD8 cells (1:5) was not changed by IFN-α. The results indicate that IFN-α increases IFN-γ production by CD4 but not by CD8 T cells.

IFN-α Does Not Increase the Number of IL-4-producing CD4 Cells. In the preceding section we have shown that IFN-α increases IFN-γ production in CD4 T cells. To test whether IFN-α also affects IL-4 production, we determined the number of IL-4-SC under identical conditions. As demonstrated in Fig. 3, IL-4 production occurred in 1:110 CD4 and in a 1:5,300 CD8 T cells. IFN-α did not increase the frequency of IL-4 producers within either the CD4 or the CD8 population. The results indicate that IFN-α favors the expression of the Th1 phenotype by T cells.

The Numbers of IFN-γ-SC Are Proportional to the Amounts of IFN-γ Secreted Into the Culture Supernatant. To analyze whether the increased number of IFN-γ-SC induced by IFN-α correlates to increased amounts of IFN-γ secreted into the culture supernatant, we stimulated T cells as described above in the presence of various concentrations of IFN-α. Cells were cultured at 10^4/0.2 ml per well to determine the number of IFN-γ-SC, and at 10^6/1 ml per well to determine the amount of IFN-γ secreted into the culture supernatant. As

![Figure 2](image)

Figure 2. IFN-α increases the frequency of IFN-γ-secreting CD4 but not CD8 T cells. Culture plates were coated with anti-CD3 plus anti-IFN-γ mAb. Purified CD4 or CD8 T cells (10^6/well) were added and cultured for 24 h with IL-2 (50 U/ml) with or without CD14 monocytes (100/well) in the presence or absence of IFN-α (10 ng/ml). After 24 h, cells were removed, and IFN-γ spots were developed as described in the legend to Fig. 1.

![Figure 3](image)

Figure 3. IFN-α does not increase the frequency of IL-4-secreting CD4 T cells. Culture plates were coated with anti-CD3 plus anti-IL-4 mAb. Purified CD4 or CD8 T cells (10^6/well) were added and cultured for 24 h with IL-2 (50 U/ml) with or without CD14 monocytes (100/well) in the presence or absence of IFN-α (10 ng/ml). After 24 h, cells were removed, and the IL-4 spots were developed as described in the legend to Fig. 1.
Figure 4. Correlation between the number of IFN-γ-SC and the amount of secreted IFN-γ. To determine the numbers of IFN-γ-SC, culture plates were coated with anti-CD3 plus anti-IFN-γ mAb. Purified CD4 T cells (10^4/well) were added and cultured for 24 h with IL-2 (50 U/ml) in the presence of increasing concentrations of IFN-α. After 24 h, cells were removed, and IFN-γ spots were developed as described in the legend to Fig. 1. To determine the amounts of IFN-γ secreted into the culture supernatant, CD4 T cells (10^6/ml) were cultured in IL-2 (50 U/ml) in the presence of increasing concentrations of IFN-α. After 24 h, culture supernatants were harvested and analyzed for IFN-γ by ELISA.

Shown in Fig. 4, IFN-α increased the numbers of IFN-γ-SC and the amounts of IFN-γ secreted into the culture supernatant ~10-fold and in a dose-dependent fashion. Single cells secreted ~0.4 pg/24 h of IFN-γ independent of the presence or absence of IFN-α. This indicates that IFN-α increases the frequency of IFN-γ-SC rather than increasing the rate of IFN-γ production per single cell.

IFN-α Increases the Expression of IFN-γ mRNA. In the preceding section we have shown that IFN-α specifically promotes the secretion of IFN-γ but not of IL-4 by CD4 T cells. To analyze whether IFN-α induces IFN-γ gene expression, we stimulated CD4 T cells by plate-bound anti-CD3 mAb in the presence or absence of IFN-α, and determined mRNA for IFN-γ by PCR (42) after 12-48 h (Fig. 5A). We found that anti-CD3 triggering induced expression of IFN-γ mRNA, and addition of IFN-α to the cultures prolonged the expression of IFN-γ message. Quantification of IFN-γ mRNA by Northern Blot analysis revealed that about three- to fourfold higher amounts of IFN-γ mRNA were present after 24 h stimulation in the presence of IFN-α (Fig. 5A). The results may indicate that IFN-α increases--stabilizes the expression of IFN-γ mRNA in CD4 T cells.

IFN-α Antagonizes the Suppressive Effect of IL-4 on the Secretion of IFN-γ. It has recently been demonstrated that IL-4 suppresses the production of IFN-γ by PBMC (49, 50). To analyze whether IFN-α could antagonize the suppressive activity of IL-4, we stimulated CD4 T cells (10^6/ml) for 24-72 h by plate-bound anti-CD3 mAb in the presence of either IL-4 or IFN-γ, or in the presence of IL-4 plus IFN-α. In the absence of exogenously added lymphokines, 4 ng of IFN-γ was produced within 72 h of culture (Fig. 6). Addition of IL-4 reduced IFN-γ production to 1 ng, whereas addition of IFN-α increased IFN-γ production to 10 ng. In the presence of IL-4 plus IFN-α, the levels of secreted IFN-γ were comparable to those observed in the presence of IFN-α alone. This demonstrates that IFN-α completely antagonizes the suppressive effect of IL-4 on IFN-γ secretion by CD4 T cells. We speculate that IFN-α may favor the generation of Th1-like cells by inducing IFN-γ and by antagonizing the suppressive effect of IL-4 on IFN-γ production.

IFN-α Increases IFN-γ Production by Allostimulated T Cells. In the preceding section we have shown that IFN-α critically increases the production of IFN-γ in CD4 T cells stimulated by plate-bound anti-CD3 mAb. To further prove the physiological relevance of the finding, we analyzed the effect of IFN-α in mixed lymphocyte culture. Therefore, PBMC of two different donors (2 x 10^6/ml) were cultured in the presence of increasing concentrations of IFN-α either separately without TCR triggering, or together to induce allostimulation. Culture supernatants were harvested after 24 h and analyzed for IFN-γ by ELISA. Without allostimulation, IFN-α did not increase IFN-γ production significantly (Fig. 5B).
mAb at low cell density and in the absence of accessory cells, cell-cell interactions in vitro, highly purified CD4⁺ and CD8⁺ T cells were stimulated by plate-bound anti-CD3 mAb coated plates with either IL-4 (50 ng/ml) or IFN-α (10 ng/ml) alone, or with IL-4 plus IFN-α. Culture supernatants were harvested after 24, 48, and 72 h, and analyzed for IFN-γ by ELISA (means of duplicates).

Discussion

In this study we have determined the relative frequency of potential IL-4- and IFN-γ-producing T cells present in the peripheral blood of healthy individuals, and analyzed the effect of IFN-α on the secretion of IFN-γ and IL-4. To minimize effects of endogenously produced lymphokines and cell–cell interactions in vitro, highly purified CD4⁺ and CD8⁺ T cells were stimulated by plate-bound anti-CD3 mAb at low cell density and in the absence of accessory cells, and lymphokine secretion was accessed during the initial 24 h of culture. Within randomly selected normal individuals, IFN-γ was produced by 1:50–300 CD4 cells and by 1:5–10 CD8 cells. The number of IL-4-SC ranged from undetectable levels to 1:110 in CD4 cells and to 1:5,300 in CD8 cells. Since it has been found that IFN-γ inhibits the clonal expansion of Th2-like cells in response to antigen (51), the relative constant number of IFN-γ-SC found in different healthy individuals may strictly control Th2-like cells and thereby counteract excessive IL-4 production. We do not favor a direct action of IFN-γ on the expression of the IL-4 gene, since exogenously added IFN-γ neither increased nor decreased the frequency of IL-4-SC (data not shown).

The signals inducing the production of either IL-4 or IFN-γ in T cells remain largely unknown. It has been suggested that unique cofactors are necessary for optimal stimulation of Th1 and Th2 clones, and that different cofactors may be produced by different antigen-presenting cells. It was found that B cells presenting OVA stimulated optimal proliferation of Th2 clones, whereas adherent cells stimulated optimal proliferation of Th1 cells (52). Since antigen-presenting macrophages but not B cells produce large amounts of IFN-α (53) and stimulate Th1 clones (52), we analyzed whether IFN-α would favor the expression of a Th1 phenotype in T cells. We found that IFN-α increased the expression of mRNA for IFN-γ and as a consequence the frequency of IFN-γ-producing CD4 T cells and the amounts of secreted IFN-γ. In contrast, IFN-α did not increase the frequency of IFN-γ-producing CD8 T cells. The fact that similar results were obtained with anti-CD3 or allostimulated T cells may point to the physiologic relevance of the immunomodulatory mechanism. The results strongly suggest that IFN-α favors the generation of IFN-γ-producing Th1-like cells. It is reasonable that, given the capacity of viruses and intracellular bacteria to stimulate macrophage production of IFN-α (53), Th cells may be simultaneously presented with processed antigen and IFN-α, which induces them to differentiate towards a Th1-like phenotype. It might be speculated that allergens inducing Th2 rather than Th1 cells (29) may be poor stimulators of IFN-α production by macrophages, or may rather be presented by APC, which do not produce IFN-α. Therefore, desensitization of allergic patients with allergen in combination with Th2-suppressive agents like IFN-α could induce allergen-specific Th1-like rather than Th2-like cells in vivo. It is likely that an allergen-specific Th1 memory would protect against future allergic reactions, since the increased levels of IFN-γ and the decreased levels of IL-4 produced by Th1 cells would reduce the clonal expansion of Th2 cells (51) as well as the switch of B cells to IgE (15, 19).

The described mode of action may also explain the beneficial effects of IFN-α in the treatment of HIV infection (7, 8). It has been discussed that the progression to AIDS is characterized by loss of IL-2 and IFN-γ production and increases in IL-4 and IL-10 (54). In contrast, many seronegative, HIV-exposed individuals generate strong Th1-type responses to HIV antigens. It is tempting to speculate that protective Th1 responses to HIV antigens may prevent secoconversion and the development of AIDS even after multiple exposures to HIV (54). Interestingly, HIV infection of monocytic–mac-
rophages results in a diminished production of IFN-α (55). From our data it may be concluded that the presentation of HIV to T cells by IFN-α-deficient macrophages would favor the development of HIV-specific Th2-like cells. Therefore, the progression of HIV infection to AIDS may at least be delayed with drugs like IFN-α that stabilize Th1 responses. Future vaccine protocols could aim on the specific induction of Th1 immune responses through vaccination with a cocktail of antigen plus agents like IFN-α, anti-IL-4 mAb, or soluble IL-4 receptor.

In our system, IFN-α increased the production of IFN-γ but not of IL-4 by CD4 T cells. However, it has been demonstrated in mice that IFN-α treatment during immunization with foreign anti-IgD antibodies reduces message for IL-4 and increases message for IFN-γ in total splenic T cells (17). In the light of our data, IFN-α may not deactivate the IL-4 gene, but may rather increase the relative number of IFN-γ-producing cells in the spleen by activating the IFN-γ gene in the CD4 Th helper cell compartment. The increased expression of IFN-γ would inhibit proliferation of Th2- but not of Th1-like cells (51), and thereby indirectly control the expression of IL-4. The profound effect of IFN-α on IFN-γ production by Th cells may also explain its suppressive effect on IgE production in vitro (15) as well as in vivo (13, 16, 17). It is unlikely that IFN-α displays a direct effect on the B cell level, since it does not block the IgE switch in human B cells that are stimulated by preactivated helper cells in the absence of IFN-γ and in the presence of exogenously added IL-2 and IL-4 (18).

Recently it has been described that a 15-kD protein that induces IFN-γ production is released by human monocytes and lymphocytes after IFN-α treatment (56). However, this protein should induce IFN-γ production in both CD4 and CD8 T cells, which was not observed (56). In our hands, IFN-α only acted on CD4 T cells, and addition of monocytes to purified CD4 or CD8 T cells did not alter their responsiveness to IFN-α.

From the data we conclude that IFN-α, which can be released in large amounts by antigen-presenting macrophages (52, 53), may favor the generation of TH1-like cells by activating the gene for IFN-γ in CD4 T cells, and by antagonizing the suppressive effect of IL-4 on IFN-γ production by these cells. The described mechanism may explain the beneficial effects of IFN-α in the treatment of allergic disease situations (13, 14) and of HIV infections (7, 8). These diseases are, at least at certain stages, characterized by a defective production of IFN-γ and/or an increased production of IL-4 (29, 47, 54, 57).

We gratefully acknowledge the excellent technical assistance of M. Noorani and J. Arnold, and thank Dr. G. Anderson for critically reading the manuscript.

Address correspondence to Dr. Volker Brinkmann, Ciba-Geigy Ltd., Pharmaceuticals Res. Div., Allergy/Immunology, R-1056.4.25, CH-4002 Basel, Switzerland.

Received for publication 15 April 1993 and in revised form 26 July 1993.

References

1. DeMaeyer, E., and J. DeMaeyer-Guignard. 1988. Interferons and Other Regulatory Cytokines. John Wiley & Sons Inc., New York. 498 pp.

2. Taylor-Papadimitriou, J., and E. Rozengurt. 1985. Interferons as regulators of cell growth and differentiation. In Interferon, J. Taylor-Papadimitriou, editor. Oxford University Press, Oxford. 81-91.

3. Hoofnagle, J.H. 1990. α-Interferon therapy of chronic hepatitis B. Current status and recommendations. J. Hepatol. (Amst.) 11:100.

4. Weck, P.K., S. Apperson, L. May, and N. Stebbings. 1991. Comparison of the anti-viral activities of various cloned human interferon alpha subtypes in mammalian cell cultures. J. Gen. Virol. 57:253.

5. DeMaeyer, E., and J. DeMaeyer-Guignard. 1988. The anti-viral effects of interferons. In Interferons and Other Regulatory Cytokines. E. DeMaeyer and J. DeMaeyer-Guignard, editors. John Wiley & Sons Inc., New York. 114-153.

6. Gresser, I. 1984. Role of interferon in resistance to viral infection in vivo. In Interferon 2: Interferons and Other Regulatory Cytokines. E. DeMaeyer and J. DeMaeyer-Guignard, editors. John Wiley & Sons Inc., New York. 221-252.

7. Kovacs, J.A., H.C. Lane, H. Masur, B. Herpin, T. Folks, J. Feinberg, and A.S. Fauci. 1987. A phase II, placebo controlled trial of recombinant alpha interferon in asymptomatic individuals seropositive for the acquired immunodeficiency syndrome virus. Clin. Res. 50:529.

8. Francis, M.L., M.S. Meltzer, and H.E. Gendelman. 1992. Interferons in the persistence, pathogenesis, and treatment of HIV infection. AIDS Res. Human Retroviruses. 8:199.

9. Gutterman, J.U., G.R. Blumenschein, R. Alexanian, H.Y. Yap, A.U. Buzdar, F. Cabanillas, E.N. Hortobagyi, E.M. Hersch, S.L. Rasmussen, M. Harmon, et al. 1980. Leukocyte interferon induced tumor regression in human metastatic breast cancer, multiple myeloma, and malignant myeloma. Ann. Intern. Med. 93:499.

10. Gutterman, J.U., S. Fine, J.R. Quesada, S. Harning, J.F. Levine, R. Alexanian, L. Bernhard, M. Kramer, H. Spiegel, W. Colburn, et al. 1982. Recombinant leucocyte A interferon: pharmacokinetics, single dose tolerance and biological effects in cancer patients. Ann. Intern. Med. 96:549.

11. Krown, S.E., F.X. Real, and A.I. Einzig. 1985. The interferon system. In Treatment of Kaposi's Sarcoma and Renal Cell Carcinoma with Recombinant Leucocyte A Interferon. H. Kirchner
12. DeMaeyer, E., and J. DeMaeyer-Guignard. 1988. The effects of interferons on tumor cells. In Interferons and Other Regulatory Cytokines. E. DeMaeyer and J. DeMaeyer-Guignard, editors. John Wiley & Sons, Inc., New York. 534–533.

13. Souillet, G., F. Rousset, and J.E. DeVries. 1989. Alpha interferon treatment of patient with hyper IgE syndrome. Lancet. i:1534.

14. Zieliński, R.M., and W.D. Lawrence. 1990 IFNα for the treatment of hyperesinophilic syndrome. Ann. Intern. Med. 113:716.

15. Pene, J., F. Rousset, F. Briere, I. Chretien, J.Y. Bonnefoy, H. Spitz, T. Yokota, N. Arai, K. Arai, J. Banchereau, et al. 1988. IG production by normal human lymphocytes is induced by interleukin 4 and suppressed by interferons gamma and alpha and by prostaglandin E2. Proc. Natl. Acad. Sci. USA. 85:6880.

16. Finkelman, F.D., J. Holmes, I.M. Katona, J.F. Eberl, M.P. Beckmann, L.S. Park, K.A. Schooley, R.L. Coffman, T.R. Mosmann, and W.E. Paul. 1990. Lymphokine control of in vivo immunoglobulin isotype selection. Annu. Rev. Immunol. 8:303.

17. Finkelman, F.D., A. Svetic, I. Gresser, C. Snapper, J. Holmes, S.P. Trotta, M. Katona, and W.C. Gause. 1991. Regulation by interferon α of immunoglobulin isotype selection and lymphokine production in mice. J. Exp. Med. 174:1179.

18. Brinkmann, V., J. Baer, C. Heusser, E. Kilchherr, and F. Erard. 1992. Interferon alpha suppresses the capacity of T cells to help antibody production by human B cells. J. Immunol. Res. 12:267.

19. Coffman, R.L., J. Ohara, M.W. Bond, J. Carty, A. Zlotnik, and W.E. Paul. 1986. B cell stimulatory factor-1 enhances the IgE response of lipopolysaccharide-activated B cells. J. Immunol. 151:1055.

20. Del Prete, G.F., E. Maggi, P. Parronchi, I. Chretien, A. Tiri, D. Macchia, M. Ricci, J. Banchereau, and J.E. De Vries. 1988. IL4 is an essential factor for the IgE synthesis induced in vitro by human T cell clones and their supernatants. J. Immunol. 150:5193.

21. Pene, J., F. Rousset, F. Briere, I. Chretien, X. Paliard, J. Banchereau, H. Spits, and J.E. De Vries. 1988. IgE production by normal human B cells induced by alloreactive T cell clones is mediated by IL-4 and suppressed by IFN-γ. J. Immunol. 151:1218.

22. Snapper, C.M., and W.E. Paul. 1987. Interferon gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science (Wash. DC). 235:949.

23. Parronchi, P., M. De Carli, R. Manetti, C. Simonelli, S. Sampognauro, M.-P. Piccinini, D. Macchia, E. Maggi, G. Del Prete, and S. Romagnani. 1992. IL-4 and IFN (α and γ) exert opposing regulatory effects on the development of cytolytic potential by TH1 or TH2 human T cell clones. J. Immunol. 149:2977.

24. Mosmann, T.R., H. Cherwinski, M.W. Bond, M.A. Giedlin, and R.L. Coffman. 1986. Two types of murine helper T cell clones. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 151:2498.

25. Mosmann, T.R., and R.L. Coffman. 1989. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7:150.

26. Mosmann, T.R. 1991. Cytokine secretion patterns and cross-regulation of T cell subsets. Immunol. Rev. 10:183.

27. Swain, S.L. 1991. Regulation of the development of helper T cell subsets. Immunol. Rev. 10:177.

28. Mosmann, T.R. 1991. Cytokines: is there biological meaning? Curr. Opin. Immunol. 3:511.
45. Coffman, R.L., B.W.P. Seymour, D.A. Lebman, D.D. Hiraki, J.A. Christiansen, B. Shrader, H.M. Cherwinski, H.F.J. Savelkoul, F.D. Finkelman, M.W. Bond, et al. 1988. The role of helper T cell products in mouse B cell differentiation and isotype regulation. *Immunol. Rev.* 102:5.

46. Stevens, T.L., A. Bossie, V.M. Sanders, R. Fernandez-Botran, R.L. Coffman, T.R. Mosmann, and E.S. Vitetta. 1988. Regulation of antibody isotype secretion by subsets of antigen specific T cells. *Nature (Lond.)*. 534:225.

47. Romagnani, S. 1990. Regulation and deregulation of human IgE synthesis. *Immunol. Today.* 11:516.

48. Heusser, C.H., V. Brinkmann, G. Delespesse, E. Kilchherr, K. Blaser, and G. LeGros. 1991. Current concepts of IgE regulation. *Allergy Clin. Immunol. News.* 3:52.

49. Peleman, R., J. Wu, C. Fargeas, and G. Delespese. 1989. Recombinant interleukin 4 suppresses the production of interferon γ by human mononuclear cells. *J. Exp. Med.* 170:1751.

50. Wagner, F., N. Fischer, C. Lersch, R. Hart, and H. Dangier. 1989. Interleukin 4 inhibits the Interleukin 2-induced production of its functional antagonist, interferon gamma. *Immunol. Lett.* 21:252.

51. Gajewski, T.F., and F. Fitch. 1988. Anti-proliferative effect of IFN-γ in immune regulation. I. IFN-γ inhibits the proliferation of TH2 but not TH1 murine helper T lymphocyte clones. *J. Immunol.* 150:5250.

52. Gajewski, T.F., M. Pinnas, T. Wong, and F.W. Fitch. 1991. Murine TH1 and TH2 clones proliferate optimally in response to distinct antigen-presenting cell populations. *J. Immunol.* 151:1750.

53. DeMaeyer, E., and J. DeMaeyer-Guignard. 1988. Macrophages as interferon producers and interferons as modulators of macrophage activity. In *Interferons and Other Regulatory Cytokines.* E. DeMaeyer and J. DeMaeyer-Guignard, editors. John Wiley & Sons, Inc., New York. 194–220.

54. Clerici, M., and G.M. Shearer. 1993. A TH1-TH2 switch is a critical step in the etiology of HIV infection. *Immunol. Today.* 14:107.

55. Gendelman, H.E., D.R. Skillman, and M.S. Meltzer. 1992. Interferon alpha (IFN)-macrophage interactions in human immunodeficiency virus (HIV) infection: role of IFN in the tempo and progression of HIV disease. *Intern. Rev. Immunol.* 8:53.

56. Recht, M., E.C. Borden, and K. Knight, Jr. 1991. A human 15-kDa IFN-α-induced protein induces the secretion of IFN-γ. *J. Immunol.* 152:2617.

57. Reinhold, U., W. Wehrmann, S. Kukel, and H.W. Kreisel. 1990. Evidence that defective interferon-γ production in atopic dermatitis patients is due to intrinsic abnormalities. *Clin. Exp. Immunol.* 79:524.