Higgs Doublets, Split Multiplets and Heterotic
$SU(3)_C \times SU(2)_L \times U(1)_Y$ Spectra

Ron Donagi1, Yang-Hui He2, Burt A. Ovrut2, and René Reinbacher3

1 Department of Mathematics, University of Pennsylvania
Philadelphia, PA 19104–6395, USA
2 Department of Physics, University of Pennsylvania
Philadelphia, PA 19104–6396, USA
3 Department of Physics and Astronomy, Rutgers University
Piscataway, NJ 08855-0849, USA

Abstract

A methodology for computing the massless spectrum of heterotic vacua with Wilson lines is presented. This is applied to a specific class of vacua with holomorphic $SU(5)$-bundles over torus-fibered Calabi-Yau threefolds with fundamental group \mathbb{Z}_2. These vacua lead to low energy theories with the standard model gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$ and three families of quark/leptons. The massless spectrum is computed, including the multiplicity of Higgs doublets.
An important goal of heterotic string theory is to demonstrate the existence of vacua consistent with low energy particle physics phenomenology. This has been discussed within the context of \(G \subset E_8\)-bundles on simply connected elliptic Calabi-Yau threefolds in \([1, 2, 3, 4]\). These vacua correspond to GUT theories with gauge groups such as \(SU(5)\) and \(Spin(10)\). However, to introduce Wilson lines one must extend these results to \(G\)-bundles on torus-fibered Calabi-Yau threefolds \(X\) with non-trivial fundamental group. This was done in \([5]\), where \(G = SU(5)\) bundles on Calabi-Yau spaces with \(\pi_1(X) = \mathbb{Z}_2\) were constructed. These vacua have low energy theories with standard model gauge group \(SU(3)_C \times SU(2)_L \times U(1)_Y\) and three families of quarks and leptons.

However, to complete the analysis of these vacua, it is essential to compute the entire massless spectra. This was done within the GUT context in \([6]\), where methods for determining the spectrum were introduced and used in an \(SU(5)\) example. An interesting result is that the non-chiral part of the spectrum was shown to jump on isolated subspaces of the \(G\)-bundle moduli space. In this paper, these methods are extended to vacua admitting Wilson lines. We show how one computes the massless spectrum, and give an explicit example using the \(SU(3)_C \times SU(2)_L \times U(1)_Y\) standard model vacuum introduced in \([5]\). Here, we simply outline our results, presenting the specific details in \([7]\).

A vacuum of heterotic string theory is determined by specifying a Calabi-Yau threefold \(X\) with fundamental group

\[
\pi_1(X) = F
\]

and a stable, holomorphic vector bundle \(V\) with structure group

\[
G \subset E_8.
\]

Denote by

\[
H = Z_{E_8}(G)
\]

the commutant of \(G\) in \(E_8\). \(V\) is constrained to satisfy the anomaly cancellation condition that

\[
c_2(TX) - c_2(V) \text{ is effective}
\]

and

\[
c_3(V) = 6,
\]

leading to three families of quark/leptons. When \(F \neq 1\), a Wilson line \(W\) can be introduced. A Wilson line is a flat \(H\)-bundle. The bundle

\[
V' = V \oplus W
\]
has structure group $G \times F$, which spontaneously breaks E_8 to the gauge group

$$S = Z_H(F) = Z_{E_8}(G \times F).$$

(7)

X can be constructed as the quotient

$$X = \tilde{X}/F,$$

(8)

where \tilde{X} is a simply connected Calabi-Yau threefold and F acts freely on \tilde{X}. V and V' coincide when pulled back to \tilde{X} and are denoted by \tilde{V}. The structure group of \tilde{V} is G, while (4) and (5) become

$$c_2(\tilde{X}) - c_2(\tilde{V}) \text{ effective, } c_3(\tilde{V}) = 6|F|$$

(9)

respectively. With respect to the subgroup $G \times H \subset E_8$, $\text{ad}\tilde{V}$ decomposes as

$$\text{ad}\tilde{V} = \bigoplus_i U_i(\tilde{V}) \otimes R_i,$$

(10)

where $U_i(\tilde{V})$ are the vector bundles associated with the irreducible representation U_i of G and R_i are the corresponding representations of H.

As discussed in [7], the massless spectrum is identified as

$$\ker(\mathcal{D}) = \bigoplus_{q=0,1} \bigoplus_i \left(H^q(\tilde{X}, U_i(\tilde{V})) \otimes R_i \right)^{\rho'(F)},$$

(11)

where \mathcal{D} is the Dirac operator on X, $\rho'(F)$ specifies the F action on both $H^q(\tilde{X}, U_i(\tilde{V}))$ and R_i and the superscript indicates the invariant part of the expression. Decomposing R_i in terms of its irreducible F-representations A_j,

$$R_i = \bigoplus_j (A_j \otimes B_{ij}),$$

(12)

expression (11) becomes

$$\ker(\mathcal{D}) = \bigoplus_{q=0,1} \bigoplus_{i,j} (H^q(\tilde{X}, U_i(\tilde{V})) \otimes A_j)^{\rho'(F)} \otimes B_{ij}.$$

(13)

Here, B_{ij} carries a representation of the gauge group S. Therefore, to compute the massless spectrum it suffices to determine the dimension of the space of F-invariants in $H^q(\tilde{X}, U_i(\tilde{V})) \otimes A_j$.

In this paper, we choose

$$F = \mathbb{Z}_2, \quad G = SU(5).$$

(14)
Then
\[H = SU(5) \]
and \((\mathbb{II})\) becomes
\[
\ker(\mathcal{D}) = \left(H^1(\tilde{X}, U_i(\tilde{V})) \otimes 1 \right)^{\rho'(\mathbb{Z}_2)} \oplus \left(H^0(\tilde{X}, \mathcal{O}_X) \otimes 24 \right)^{\rho'(\mathbb{Z}_2)} \oplus \left(H^1(\tilde{X}, \tilde{V}) \right)^{\rho'(\mathbb{Z}_2)} \oplus \left(H^0(\tilde{X}, \mathcal{O}_X \otimes 10) \right)^{\rho'(\mathbb{Z}_2)} \\
\oplus \left(H^1(\tilde{X}, \tilde{V}^*) \otimes 10 \right)^{\rho'(\mathbb{Z}_2)} \oplus \left(H^1(\tilde{X}, \wedge^2 \tilde{V}) \otimes 3 \right)^{\rho'(\mathbb{Z}_2)} \oplus \left(H^1(\tilde{X}, \wedge^2 \tilde{V}^*) \otimes 5 \right)^{\rho'(\mathbb{Z}_2)} \oplus \left(H^1(\tilde{X}, \wedge^2 \tilde{V}^*) \otimes 10 \right)^{\rho'(\mathbb{Z}_2)} \\
\oplus \left(H^1(\tilde{X}, \wedge^2 \tilde{V}^*) \otimes 5 \right)^{\rho'(\mathbb{Z}_2)} \rho'(\mathbb{Z}_2) \right)
\]
(16)

To determine the massless spectrum, one must compute the cohomology groups in \((\mathbb{II})\), the action of \(\mathbb{Z}_2\) on these groups and the action of \(\mathbb{Z}_2\) on each representation \(R_i\). Since the last of these is straightforward, we discuss it first.

For \(F = \mathbb{Z}_2\), \(W\) spontaneously breaks \(H\) to the standard model gauge group
\[S = SU(3)_C \times SU(2)_L \times U(1)_Y. \]
(17)

The action of \(\mathbb{Z}_2\) on each representation \(R_i\) of \(H\) is easily computed. For example, for \(R_i = 5\) expression \((\mathbb{II})\) is
\[5 = 1 \otimes (3, 1)_{-2} \oplus (-1) \otimes (1, 2)_{3}, \]
where \(\pm 1\) are the representations \(A_j\) of \(\mathbb{Z}_2\) while \((a, b)_w\) are representations of \(S\). For notational simplicity, we display \(w = 3Y\). The action of \(\mathbb{Z}_2\) on each representation \(R_i\) in \((\mathbb{II})\), as well as the corresponding representations \(B_{ij}\) of \(S\), are listed in Table \([\mathbb{II}]\).

To compute the cohomology groups in \((\mathbb{II})\), we must construct \(\tilde{X}\) and \(\tilde{V}\). Choose \(\tilde{X}\) to be the fiber product
\[\tilde{X} = B \times_{\mathbb{P}^1} B' \]
(19)
of two \(d\mathbb{P}^9\) surfaces \(B\) and \(B'\). \(\tilde{X}\) is elliptically fibered over both surfaces with the projections
\[\pi' : \tilde{X} \rightarrow B, \quad \pi : \tilde{X} \rightarrow B'. \]
(20)

\(B\) and \(B'\) are themselves elliptically fibered over \(\mathbb{P}^1\) with the maps
\[\beta : B \rightarrow \mathbb{P}^1, \quad \beta' : B' \rightarrow \mathbb{P}^1. \]
(21)

A \(\mathbb{Z}_2\) action \(\tau\) on \(\tilde{X}\) can be obtained as the lift
\[\tau = \tau_B \times_{\mathbb{P}^1} \tau_{B'} \]
(22)
of two involutions \(\tau_B\) and \(\tau_{B'}\) on \(B\) and \(B'\) respectively. It is sufficient to know that \(\tau_B\) acts on \(\mathbb{P}^1\) as
\[t_0 \rightarrow t_0, \quad t_1 \rightarrow -t_1, \]
(23)
Table 1: The decomposition of $H^q(X, \text{ad} V')$ where $G = SU(5)$ and $F = \mathbb{Z}_2$. The χ_{A_j} are the characters of the \mathbb{Z}_2 action on R_i. The a, b in $(a, b)_w$ are the representations of $SU(3)_C$ and $SU(2)_L$ respectively, whereas $w = 3Y$.

U_i	$H^q(\tilde{X}, U_i(\tilde{V}))$	R_i	χ_{A_j}	B_{ij}
24	$H^1(\tilde{X}, \text{ad} \tilde{V})$	1	0	$(1, 1)_0$
1	$H^0(\tilde{X}, \mathcal{O}_{\tilde{X}})$	24	0	$(8, 1)_0 \oplus (1, 3)_0 \oplus (1, 1)_0$
10	$H^1(\tilde{X}, \wedge^2 \tilde{V})$	5	0	$(3, 1)_{-2}$
10	$H^1(\tilde{X}, \wedge^2 \tilde{V}^*)$	5	0	$(\bar{3}, 1)_{2}$
5	$H^1(\tilde{X}, \tilde{V})$	10	0	$(3, 1)_4 \oplus (1, 1)_{-6}$
5	$H^1(\tilde{X}, \tilde{V}^*)$	10	0	$(\bar{3}, 1)_{-4} \oplus (1, 1)_6$

where t_0, t_1 are projective coordinates. This action has two fixed points, p_0 and p_∞. The fiber $f_0 = \beta^{-1}(p_0)$ is acted on freely by τ_B, whereas $f_\infty = \beta^{-1}(p_\infty)$ has four fixed points. The $\tau_{B'}$ action on B' has similar properties. In order for τ in (22) to act freely on \tilde{X}, one must “twist” the two \mathbb{P}^1 lines in (21) when identifying them in (19). This twist sets $p'_0 = p_\infty$ and $p'_\infty = p_0$.

Stable, holomorphic vector bundles \tilde{V} on \tilde{X} with structure group $G = SU(5)$ can be constructed as the extension

$$0 \to V_2 \to \tilde{V} \to V_3 \to 0$$

of two vector bundles

$$V_i = \pi'^* W_i \otimes \pi'^* L_i$$

with $\text{rk} V_i = i$ for $i = 2, 3$. W_2 and W_3 are vector bundles on B with rank 2 and 3 respectively, while L_2 and L_3 are line bundles on B'. We need to lift the \mathbb{Z}_2 action on \tilde{X} to an action on V_2, V_3 and \tilde{V}. For \tilde{V} to be \mathbb{Z}_2 invariant, it is necessary to restrict both V_2 and V_3 to be invariant. This is done by choosing W_i and L_i to be τ_B and $\tau_{B'}$ invariant respectively. There are many line bundles L_i that are invariant under $\tau_{B'}$. However, we now impose the
remaining constraint that \(\tilde{V} \) satisfy (16) with \(|F| = 2\). This restricts the allowed line bundles to be
\[
L_2 = \mathcal{O}_{B'}(3r'), \quad L_3 = \mathcal{O}_{B'}(-2r'),
\]
where \(r' \) is a specific divisor of \(B' \) with \(\deg(r') = 2 \) when restricted to a fiber. By construction, \(\tilde{V} \) corresponds to an extension class
\[
[\tilde{V}] \in \text{Ext}^1_{\tilde{X}}(V_3, V_2).
\]
(27)
Ext\(^1\)\(_{\tilde{X}}(V_3, V_2)\) is the direct sum of two subspaces which are invariant and anti-invariant under the action of \(\tau \). \(\tilde{V} \) will be invariant if \([\tilde{V}] \) lies in the invariant subspace.

We can now construct the cohomology groups in (16). However, one group, \(H^1(\tilde{X}, \text{ad}\tilde{V}) \), corresponding to vector bundle moduli, requires techniques beyond those developed in this paper and will not be discussed. Let us consider \(H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}) \). Since \(\mathcal{O}_{\tilde{X}} \) is the trivial bundle, it follows that
\[
H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}) \simeq \mathbb{C}.
\]
(28)
Note that since \(\mathcal{O}_{\tilde{X}} \) is independent of \(\tilde{V} \), \(\mathbb{Z}_2 \) acts trivially on \(H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}) \).

Next, we determine \(H^1(\tilde{X}, \tilde{V}) \). From the long exact sequence associated with (24), we find that
\[
H^1(\tilde{X}, \tilde{V}) \simeq H^1(\tilde{X}, V_2).
\]
(29)
Using (25) and pushing this down from \(\tilde{X} \) to \(\mathbb{P}^1 \) gives
\[
H^1(\tilde{X}, V_2) \simeq H^0(\mathbb{P}^1, R^1\beta_*W_2 \otimes \beta'_*L_2).
\]
(30)
We find that \(R^1\beta_*W_2 \simeq \mathcal{O}_{p_{\infty}} \). From (26) it follows that \(\beta'_*L_2 \) has degree 6 along \(f_0' \). We conclude that
\[
H^1(\tilde{X}, \tilde{V}) \simeq \mathbb{C} \otimes \mathbb{C}^6 = \mathbb{C}^6.
\]
(31)
Now consider \(H^1(\tilde{X}, \tilde{V}^*) \). This can be determined from (31) using the Atiyah-Singer index theorem which, together with Serre duality, gives
\[
h^1(\tilde{X}, \tilde{V}^*) = 6 + h^1(\tilde{X}, \tilde{V}),
\]
(32)
where we have used (16) with \(|F| = 2\). This and (31) then imply
\[
H^1(\tilde{X}, \tilde{V}^*) \simeq \mathbb{C}^{12}.
\]
(33)
We now turn to the computation of $H^1(\tilde{X}, \wedge^2 \tilde{V})$. One can show that $H^1(\tilde{X}, \wedge^2 \tilde{V})$ lies in the exact sequence

$$0 \to H^1(\tilde{X}, \wedge^2 V_2) \to H^1(\tilde{X}, \wedge^2 \tilde{V}) \to H^1(\tilde{X}, V_2 \otimes V_3) \xrightarrow{M^T} H^2(\tilde{X}, \wedge^2 V_2) \to \ldots$$ \hspace{1cm} (34)

To continue, we must compute the terms $H^i(\tilde{X}, \wedge^2 V_2)$, $i = 2, 3$ and $H^1(\tilde{X}, V_2 \otimes V_3)$, as well as the linear map M^T. Pushing $H^i(\tilde{X}, \wedge^2 V_2)$, $i = 2, 3$ down to \mathbb{P}^1, we find

$$H^1(\tilde{X}, \wedge^2 V_2) \simeq \bigoplus_5 H^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1})^* \quad \text{and} \quad H^2(\tilde{X}, \wedge^2 V_2) \simeq \bigoplus_7 H^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1})^* \oplus \bigoplus_5 H^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(1))^*. \quad \text{(35)} \quad \text{(36)}$$

It follows that

$$H^1(\tilde{X}, \wedge^2 V_2) \simeq \mathbb{C}^5, \quad H^2(\tilde{X}, \wedge^2 V_2) \simeq \mathbb{C}^{17}. \quad \text{(37)}$$

Calculating $H^1(\tilde{X}, V_2 \otimes V_3)$ is more difficult. Using (25) and pushing down to \mathbb{P}^1, we find

$$H^1(\tilde{X}, V_2 \otimes V_3) \simeq H^0(\mathbb{P}^1, R^1 \beta_*(W_2 \otimes W_3) \otimes \beta'_*(L_2 \otimes L_3)). \quad \text{(38)}$$

Here, we simply state that $R^1 \beta_*(W_2 \otimes W_3)$ is a sheaf supported at each of 12 points $p_r \in \mathbb{P}^1$, $r = 1, \ldots, 12$ and at p_{∞}. Specifically,

$$R^1 \beta_*(W_2 \otimes W_3) \simeq \bigoplus_{r=1}^{12} \mathcal{O}_{p_r} \oplus \bigoplus_{r}^{3} \mathcal{O}_{p_{\infty}}. \quad \text{(39)}$$

Furthermore, it follows from (25) that $\beta'_*(L_2 \otimes L_3)$ is a rank two vector bundle on \mathbb{P}^1. Combining these results, (38) becomes

$$H^1(\tilde{X}, V_2 \otimes V_3) \simeq \mathbb{C}^{15} \otimes \mathbb{C}^2 = \mathbb{C}^{30}. \quad \text{(40)}$$

Finally, we must know the rank of M^T. It follows from (37) and (40) that M^T is a 30×17 matrix. In addition, one can show it depends on 150 vector bundle moduli. At a generic point in moduli space, we find that

$$\text{rk}(M^T) = 17. \quad \text{(41)}$$

Putting (37), (40) and (41) into (34), we conclude that

$$H^1(\tilde{X}, \wedge^2 \tilde{V}) \simeq \mathbb{C}^{18}. \quad \text{(42)}$$
Finally, we need to compute $H^1(\tilde{X}, \wedge^2 \tilde{V}^*)$. Again, this is easily determined using the Atiyah-Singer index theorem. In this context, we find

$$h^1(\tilde{X}, \wedge^2 \tilde{V}^*) = 6 + h^1(\tilde{X}, \wedge^2 \tilde{V}).$$

(43)

Combining this with (42) yields

$$H^1(\tilde{X}, \wedge^2 \tilde{V}^*) \simeq \mathbb{C}^{24}.$$

(44)

Having computed all the cohomology groups in (16), we now determine the explicit action of \mathbb{Z}_2 on each of them. Let us begin with $H^1(\tilde{X}, \tilde{V})$, which was given in (31). To begin with, consider the second factor, \mathbb{C}^6. This can be shown to be parametrized by the polynomials

$$\{x_0^{3-i}x_1^i, yx_0^{1-j}x_1^j\},$$

(45)

where $i = 0, \ldots, 3$ and $j = 0, 1$. Here, x_0, x_1 and y are sections of specific bundles on the base \mathbb{P}^1, which transform as

$$x_0 \to x_0, \quad x_1 \to -x_1, \quad y \to y$$

(46)

under $\tau_{B'}$. Applying these transformations to (45), we see that \mathbb{C}^6 decomposes as $\mathbb{C}^3_{(+)} \oplus \mathbb{C}^3_{(-)}$ under the action of \mathbb{Z}_2. Since this is evenly split between + and −, the \mathbb{Z}_2 action on the first factor \mathbb{C} in (31) is irrelevant. We conclude that

$$H^1(\tilde{X}, \tilde{V}) \simeq \mathbb{C}^3_{(+)} \oplus \mathbb{C}^3_{(-)}.$$

(47)

We now compute the \mathbb{Z}_2 action on $H^1(\tilde{X}, \tilde{V}^*)$ in (33) using the Atiyah-Singer index theorem. First, consider the index theorem for V on $X = \tilde{X}/\mathbb{Z}_2$. Using (9) with $|F| = 2$, the fact that $H^q(\tilde{X}, \tilde{V})(+)$ = $H^q(X, V)$ for any q and Serre duality, we find

$$h^1(\tilde{X}, \tilde{V}^*)_{(+)} = 3 + h^1(\tilde{X}, \tilde{V})(+).$$

(48)

Using (9), Serre duality and (48), the index theorem for \tilde{V} on \tilde{X} becomes

$$h^1(\tilde{X}, \tilde{V}^*)_{(-)} = 3 + h^1(\tilde{X}, \tilde{V})(-).$$

(49)

It then follows from (47), (48) and (49) that

$$H^1(\tilde{X}, \tilde{V}^*) \simeq \mathbb{C}^6_{(+)} \oplus \mathbb{C}^6_{(-)}$$

(50)

under the action of \mathbb{Z}_2.

7
Now consider $H^1(\tilde{X}, \wedge^2 \tilde{V})$ in (42). It follows from (34) that to find the \mathbb{Z}_2 action on $H^1(\tilde{X}, \wedge^2 \tilde{V})$, one must determine its action on $H^i(\tilde{X}, \wedge^2 V_2)$, $i = 1, 2$ in (37), $H^1(\tilde{X}, V_2 \otimes V_3)$ in (40) and on the map M^T satisfying (41). Since the decomposition of each of these cohomology groups under \mathbb{Z}_2 is computed using methods similar to those leading to (47), we simply state the results. We find

$$H^1(\tilde{X}, \wedge^2 V_2) \simeq \mathbb{C}^3_{(+) \oplus \mathbb{C}^2_{(-)}}, \quad H^2(\tilde{X}, \wedge^2 V_2) \simeq \mathbb{C}^9_{(+) \oplus \mathbb{C}^8_{(-)}}$$

and

$$H^1(\tilde{X}, V_2 \otimes V_3) \simeq \mathbb{C}^{15}_{(+) \oplus \mathbb{C}^{15}_{(-)}}.$$

Furthermore, one can show that M^T can be taken to be invariant under \mathbb{Z}_2, corresponding to choosing $[\tilde{V}]$ to be in $\text{Ext}_{\tilde{X}}^1(\tilde{V}_3, \tilde{V}_2)_{(+)}. Then, it follows from (47) and (51) that

$$(\ker M^T)_{(+) = \mathbb{C}^6_{(+)}, \quad (\ker M^T)_{(-) = \mathbb{C}^7_{(-)}}.$$

Putting (51) and (53) into the exact sequence (34), we conclude that

$$H^1(\tilde{X}, \wedge^2 \tilde{V}) \simeq \mathbb{C}^9_{(+) \oplus \mathbb{C}^9_{(-)}}.$$

Finally, we can compute the \mathbb{Z}_2 action on $H^1(\tilde{X}, \wedge^2 \tilde{V}^*)$ using the Atiyah-Singer index theorem. This computation is very similar to that leading to (50), so we will simply state the result. We find that

$$H^1(\tilde{X}, \wedge^2 \tilde{V}^*) \simeq \mathbb{C}^{12}_{(+) \oplus \mathbb{C}^{12}_{(-)}}.$$

We now possess all of the ingredients necessary to compute the massless spectrum. Combining (47), (50) and (54)-(55) with the results in Table 1, one can determine the $\rho'(\mathbb{Z}_2)$ invariant subspace for each cohomology group in (16). The associated multiplets descend to $X = \tilde{X}/\mathbb{Z}_2$ to form the $SU(3)_C \times SU(2)_L \times U(1)_Y$ particle physics spectrum. The results are tabulated in Table 2.

To begin with, the spectrum contains one copy of vector supermultiplets transforming under $SU(3)_C \times SU(2)_L \times U(1)_Y$ as

$$(8, 1)_0 \oplus (1, 3)_0 \oplus (1, 1)_0.$$

Furthermore, it contains three families of quarks and lepton superfields, each family transforming as

$$(3, 2)_1, \quad (\overline{3}, 1)_{-4}, \quad (\overline{3}, 1)_2.$$
\[
R_i \quad (\chi_{H^q}, A_j) \quad (H^q(\bar{X}, U_i(\bar{V})) \otimes A_j)^{\rho(F)} \quad B_{ij}
\]

\(R_i\)	\((\chi_{H^q}, A_j)\)	\((H^q(\bar{X}, U_i(\bar{V})) \otimes A_j)^{\rho(F)}\)	\(B_{ij}\)
1			
24	\((0, 0)\)	\(C^1_{(+)}\)	
5	\((0, 0)\)	\(C^9_{(+)}\)	\((3, 1)_{-2}\)
	\((1, 1)\)	\(C^9_{(-)}\)	\((1, 2)_{3}\)
5	\((0, 0)\)	\(C^{12}_{(+)}\)	\((\overline{3}, 1)_{2}\)
	\((1, 1)\)	\(C^{12}_{(-)}\)	\((1, 2)_{-3}\)
10	\((0, 0)\)	\(C^3_{(+)}\)	\((3, 1)_{4} \oplus (1, 1)_{-6}\)
	\((1, 1)\)	\(C^3_{(-)}\)	\((\overline{3}, 2)_{-1}\)
10	\((0, 0)\)	\(C^6_{(+)}\)	\((\overline{3}, 1)_{-4} \oplus (1, 1)_{6}\)
	\((1, 1)\)	\(C^6_{(-)}\)	\((3, 2)_{1}\)

Table 2: The particle spectrum of the low-energy \(SU(3)_C \times SU(2)_L \times U(1)_Y\) theory. The \(\chi_{H^q}\) are the characters of the \(\mathbb{Z}_2\) representations on \(H^q(\bar{X}, U_i(\bar{V}))\). The \(U(1)\) charges listed are \(w = 3Y\).

and

\[(1, 2)_{-3}, \quad (1, 1)_{6}\] \hspace{1cm} (58)

respectively. However, there are additional chiral superfields in the spectrum. It follows from Table 2 that these occur as conjugate pairs of the \(SU(3)_C \times SU(2)_L \times U(1)_Y\) representations

\[(3, 1)_{-2}, \quad (1, 2)_{3}\] \hspace{1cm} (59)

and

\[(3, 1)_{4} \oplus (1, 1)_{-6}, \quad (\overline{3}, 2)_{-1}.\] \hspace{1cm} (60)

These multiplets arise as \(\mathbb{Z}_2\) invariants in the 5 and 10 representations of \(H = SU(5)\). The spectrum has

\[n_{(3, 1)_{-2}} = 9, \quad n_{(1, 2)_{3}} = 9\] \hspace{1cm} (61)

and

\[n_{(3, 1)_{4} \oplus (1, 1)_{-6}} = 3, \quad n_{(\overline{3}, 2)_{-1}} = 3\] \hspace{1cm} (62)

copies of (59) and (60) respectively. The multiplicity \(n_{(1, 2)_{3}}\) corresponds to the number of Higgs doublet conjugate pairs in the low energy spectrum. The remaining multiplets in (59) and (60) are exotic. Clearly, the number of Higgs doublets and the exotic multiplets is not
consistent with phenomenology. However, we emphasize that these results were computed within a specific context, which is but a small subset of the possible standard model heterotic vacua. These generalized vacua and their spectra will be presented in future publications.

Acknowledgements We are grateful to Volker Braun and Tony Pantev for enlightening discussions. R. D. would like to acknowledge conversations with Jacques Distler. This Research was supported in part by the Department of Physics and the Maths/Physics Research Group at the University of Pennsylvania under cooperative research agreement DE-FG02-95ER40893 with the U. S. Department of Energy and an NSF Focused Research Grant DMS0139799 for “The Geometry of Superstrings.” R. D. further acknowledges an NSF grant DMS 0104354. R. R. is also supported by the Department of Physics and Astronomy of Rutgers University under grant DOE-DE-FG02-96ER40959.

References

[1] R. Donagi, Principal bundles on elliptic fibrations *Asian J. Math.* Vol. 1 (1997), 214-223, [alg-geom/9702002](http://www.arxiv.org/abs/alg-geom/9702002).

[2] R. Friedman, J. Morgan, E. Witten, “Vector Bundles And F Theory,” *Commun.Math.Phys.* 187 (1997) 679-743. “Vector Bundles over Elliptic Fibrations,” [alg-geom/9709029](http://www.arxiv.org/abs/alg-geom/9709029).

[3] B. Ovrut, T. Pantev, R. Reinbacher, Torus-Fibered Calabi-Yau Threefolds with Non-Trivial Fundamental Group, UPR 1015-T, [hep-th/0212221](http://www.arxiv.org/abs/hep-th/0212221).
B. Ovrut, T. Pantev, R. Reinbacher, Invariant Homology on Standard Model Manifolds, UPR 1016-T, [hep-th/0303020](http://www.arxiv.org/abs/hep-th/0303020).
R. Donagi, B. A. Ovrut, T. Pantev and R. Reinbacher, “SU(4) instantons on Calabi-Yau threefolds with Z(2) x Z(2) fundamental group,” JHEP **0401**, 022 (2004) [arXiv:hep-th/0307273](http://www.arxiv.org/abs/hep-th/0307273).
Burt A. Ovrut, Tony Pantev, Jaemo Park, “Small Instanton Transitions in Heterotic M-Theory,” JHEP **0005**, 045 (2000), [hep-th/0001133](http://www.arxiv.org/abs/hep-th/0001133).
A. Lukas, B.A. Ovrut, and D. Waldram, Non-standard embedding and five-branes in heterotic M-Theory, *Nucl.Phys.* B552 (1999) 246-290.
A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, Heterotic M–theory in Five Dimensions, *Nucl.Phys.* B552 (1999) 246-290.
E. Buchbinder, R. Donagi and B. A. Ovrut, “Vector bundle moduli and small instanton transitions,” JHEP 0206, 054 (2002) [arXiv:hep-th/0202084].

Yang-Hui He, Burt A. Ovrut, and René Reinbacher, “The Moduli of Reducible Vector Bundles,” JHEP 0403, 043 (2004) [arXiv:hep-th/0306121].

[4] R. Thomas, Examples of bundles on Calabi-Yau 3-folds for string theory compactifications, Adv.Theor.Math.Phys. 4 (2000) 231-247.

B. Andreas, “N = 1 heterotic/F-theory duality,” Fortsch. Phys. 47, 587 (1999) [arXiv:hep-th/9808159].

Paul S. Aspinwall, Ron Y. Donagi, “The Heterotic String, the Tangent Bundle, and Derived Categories,” Adv.Theor.Math.Phys. 2 (1998) 1041-1074, [hep-th/9806094].

E. J. Copeland, J. Gray and A. Lukas, “Moving five-branes in low-energy heterotic M-theory,” Phys. Rev. D 64, 126003 (2001), [arXiv:hep-th/0106285].

J. Gray, A. Lukas and G. I. Probert, “Gauge five brane dynamics and small instanton transitions in heterotic models,” Phys. Rev. D 69, 126003 (2004), [arXiv:hep-th/0312111].

B. Andreas, G. Curio and A. Klemm, “Towards the standard model spectrum from elliptic Calabi-Yau,” Int. J. Mod. Phys. A 19, 1987 (2004) [arXiv:hep-th/9903052].

D. E. Diaconescu and G. Ionesei, “Spectral covers, charged matter and bundle cohomology,” JHEP 9812, 001 (1998) [arXiv:hep-th/9811129].

[5] R. Donagi, B. Ovrut, T. Pantev, and D. Waldram, Spectral involutions on rational elliptic surfaces, Adv.Theor.Math.Phys. 5 (2002) 499-561, [math.AG/0008011].

R. Donagi, B. Ovrut, T. Pantev, and D. Waldram, Standard-Model bundles, Adv.Theor.Math.Phys. 5 (2002) 563-615, [math.AG/0008010].

R. Donagi, B. Ovrut, T. Pantev, and D. Waldram, Standard-Model bundles on non-simply connected Calabi-Yau threefolds, JHEP, 0108 (2001) 053, [hep-th/0008008].

R. Donagi, B. Ovrut, T. Pantev, and D. Waldram, Standard Models from Heterotic M-theory, Adv.Theor.Math.Phys., 5 (2002) 93-137.

[6] R. Donagi, Y. H. He, B. A. Ovrut and R. Reinbacher, “Moduli dependent spectra of heterotic compactifications,” [arXiv:hep-th/0403291].

R. Donagi, Y. H. He, B. A. Ovrut and R. Reinbacher, “The particle spectrum of heterotic compactifications,” [arXiv:hep-th/0405014].

[7] R. Donagi, Y. H. He, B. A. Ovrut and R. Reinbacher, To appear.