What are the metabolic precursors which increase the risk of pre-eclampsia and how could these be investigated further

DOI:
10.1016/j.placenta.2017.08.011

Document Version
Accepted author manuscript

Citation for published version (APA):
Myers, J. (2017). What are the metabolic precursors which increase the risk of pre-eclampsia and how could these be investigated further. Placenta. Advance online publication. https://doi.org/10.1016/j.placenta.2017.08.011

Published in:
Placenta

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
What are the metabolic precursors which increase the risk of pre-eclampsia and how could these be investigated further

Jenny E. Myers

PII: S0143-4004(17)31038-X
DOI: 10.1016/j.placenta.2017.08.011
Reference: YPLAC 3712

To appear in: Placenta

Received Date: 12 March 2017
Revised Date: 28 July 2017
Accepted Date: 22 August 2017

Please cite this article as: Myers JE, What are the metabolic precursors which increase the risk of pre-eclampsia and how could these be investigated further, Placenta (2017), doi: 10.1016/j.placenta.2017.08.011.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
What are the metabolic precursors which increase the risk of pre-eclampsia and how could these be investigated further

Jenny E Myers¹²

¹Maternal & Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre; ²St Mary’s Hospital, Central Manchester Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.

Address of correspondence:
Maternal & Fetal Health Research Centre
St Mary’s Hospital, 5th floor Research,
Oxford Rd
Manchester
M13 9PL
Jenny.myers@manchester.ac.uk

Abstract
Several maternal and pregnancy characteristics have been associated with an increased risk of preeclampsia in epidemiological studies. This review discusses metabolic risk factors in particular and their interaction with other maternal and/or pregnancy characteristics. Examples of research studies that have used data from women with specific characteristics or explored the interaction between risk factors are discussed. Suggestions for future research using large data sets and incorporating knowledge of cardiovascular disease and other metabolic diseases are also highlighted.

Introduction
Pre-eclampsia continues to be a leading cause of maternal and neonatal mortality and morbidity affecting 3-8% of pregnancies worldwide. Exact information on the worldwide incidence of the condition and temporal changes in incidence are not available from many countries. However, data from the USA has suggested that rates have increased in recent years; 2.4% between 1987-8 to 2.9% in 2003-4[1]. An increase was also reported in a Norwegian data set which documented rates of 3.7% between 1988-92 and 4.4% between 1998-2002[2]. There are many risk factors for the development of preeclampsia described in the literature, these include a prior history of gestational
hypertensive disease, nulliparity, family history, obesity, pre-existing medical disease, primipaternity, assisted reproduction and short duration of sperm exposure and extremes of maternal age[3]. The metabolic health of women of reproductive age has changed over the last few decades, such that obesity is now one of the most important risk factors for the development of preeclampsia. Moreover, assisted reproductive techniques have advanced dramatically over the same time period. This review will focus on the metabolic risk factors associated with preeclampsia and discuss what is already known and suggest potential avenues for future research. There are many cohort studies which have quantified the risk of preeclampsia associated with the development of preeclampsia and these have recently been synthesised by Bartsch et al[4] in a recent meta analysis in which 25,356,688 women from 40 studies in Europe and 30 studies in North America. Previous gestational hypertensive disease, chronic hypertension and antiphospholipid syndrome were demonstrated to be associated with the highest absolute risk. However, in terms of population attributable risk, obesity and nulliparity accounted for the largest population risk. Similar data have also been collated from low and middle income settings with data from 276,388 mothers and their infants analysed by investigators at the World Health Organisation[5]. The prevalence of preeclampsia/eclampsia in this study population was 4% and the odds ratio for development of the condition associated with BMI >=35, nulliparity and chronic hypertension were 3.90 [3.52-4.33], 2.04 [1.92-2.16] and 7.75 [6.77-8.87], respectively. This study confirms that across disparate geographical locations these risk factors appear to have the greatest impact on the risk of preeclampsia. The potential interplay between several risk factors and preeclampsia is illustrated in Figure 1. Whilst the identification of risk factors for pre-eclampsia has led to numerous avenues of research and hypothesis generation, it is frustrating that these epidemiological observations, which have been very consistently reported, have not led to major breakthroughs in our understanding of the condition. Despite the consistent associations between the risk factors and the development of pre-eclampsia, specific causative associations remain poorly understood. The absence of a definitive causative link is attributable, in part, to the fact that the number of women with any given risk factor not affected by the condition will always outweigh the number who will be affected. This was exemplified in the SCOPE cohort in which 5690 healthy nulliparous women were recruited [6]. Women with a BMI ≥30kg/m² were twice as likely to develop preeclampsia, however the number of women with a BMI ≥ 30kg/m² who did not develop preeclampsia outweighed those with the disease by 10:1. In addition, estimating an individual woman’s risk from the epidemiological data is currently not possible from the cohort data available, as despite their frequent coexistence in clinical practice,
the potential multiplicative effect of several risk factors has rarely been considered in cohort studies [4]. What can be learnt from these epidemiological risk factors, which might progress our understanding of the origins of this heterogeneous syndrome?

Obesity

Of the factors associated with preeclampsia obesity has been the most thoroughly studied with at least some attention to potential mechanisms. In this review it will serve as a model for the approach to understand the mechanisms associated with other risk factors.

Epidemiological considerations

The burden of obesity is increasing globally with many countries now having more than a third of adults and a fifth of adolescents classified as obese. Obesity is the leading attributable risk factor for the development of preeclampsia and appears to incur a dose-dependent relationship with the risk of developing preeclampsia with a continued increase in risk with higher categories of BMI [7]. In a large population study in Missouri, there was an incremental increase in the risk of preeclampsia with increasing BMI [8]. Whilst there was an increased risk of both early and late preeclampsia, the association between obesity and late preeclampsia was stronger. Different risks in women with equivalent BMIs have also been reported in women of different ethnicities [7].

Interaction between obesity and other biomarkers

Obesity is a risk factor for both cardiovascular disease and preeclampsia [9] and it is likely that the common risk features include components of the metabolic syndrome: hypertension, insulin resistance and dyslipidaemia [10]. In addition, obesity is likely to contribute to the pathophysiology of preeclampsia through altered inflammatory profiles [11]. It is has been estimated that around 30% of the association between preeclampsia and obesity is mediated through abnormal inflammatory profiles signified by elevated C-reactive protein (CRP) levels, an inflammatory mediator produced by the liver as well as adipocytes and implicated in cardiovascular morbidity [11, 12]. Research studies such as the study by Bodnar et al. [11], which aimed to dissect out the key pathways relevant for the development of preeclampsia in obese women may progress the research field more quickly than studies which include women with a multitude of different risk factors.

Another example of such a study was performed within the SCOPE cohort and interrogated biomarker profiles in obese women who subsequently developed preeclampsia compared to normal weight individuals [13]. A number of predictors were different between women in the different BMI groups. For example, blood pressure in early pregnancy was more strongly associated with preeclampsia in women with normal BMI than in those with obesity, in whom it was consistently raised independent of pregnancy outcome. Another key finding was that Placental growth factor...
(PlGF), a member of the vascular endothelial growth factor (VEGF) family, was more strongly predictive of preeclampsia in obese women who developed preeclampsia than their normal weight counterparts. In the full SCOPE cohort, low PlGF was a predictor for preeclampsia but only in women with preterm disease [6]. The stronger association between low PlGF in early pregnancy and preeclampsia in obese women is particularly intriguing as the majority of cases of preeclampsia among women with obesity were near term [14]. One possible explanation for this observation is that low PlGF in women with obesity may be a feature of adiposity, rather than placental function, and attributable to the effects of adipokines on extraplacental sites of synthesis [15] such as the vascular endothelium. Other studies have also identified abnormal angiogenic profiles in obese women. Lower levels of sFlt-1 and PlGF [16], lower levels of PlGF [17] and higher a sFlt-1/PGF ratio [18] have all been reported in the context of obesity and preeclampsia, indicating an anti-angiogenic milieu even in early pregnancy. Abnormal levels of the adipokines, leptin and adiponectin have also been implicated in cardiovascular disease, obesity [19] and preeclampsia [20] [21]. Furthermore, abnormal angiotensinogen production from adipocytes may contribute to abnormal vascular function in obese women through activation of the renin-angiotensin system [22] and increased production of free fatty acids may contribute to increased oxidative stress. Abnormal adipocyte function therefore offers a plausible component of the link between obesity and preeclampsia risk and further research in this area is essential.

Increased oxidative stress has long been linked to obesity and preeclampsia and lower levels of circulating antioxidants have been demonstrated in obese individuals who are not pregnant [23]. Whilst trials of antioxidants have not yielded positive results for the prevention of preeclampsia, evidence of increased oxidative stress both within the maternal vasculature and within the placenta are still thought to contribute the pathophysiology of preeclampsia [24, 25]. Another key pathway linking abnormal vascular function and obesity [26], and therefore potentially preeclampsia, is nitric oxide (NO) bioavailability (see Box 1). Increased concentrations of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthase, is a risk factor for cardiovascular disease and is associated with inflammation, insulin resistance and dyslipidaemia [26]. Furthermore, circulating ADMA has been shown to decrease with weight loss [27, 28]. ADMA is higher in women with hypertension [29], obesity and pre-eclampsia [23, 30] [31, 32]. Supplementation with arginine or L-citrulline (which is metabolised to arginine) improves vascular function by increasing the arginine/ADMA ratio thereby increasing NO availability[33]. A recent systematic review [34] reported encouraging benefits of L-arginine supplementation in pregnant women with established
hypertensive disease. More recently, L-Citrulline treatment in mid pregnancy has also been
associated with improved vascular and angiogenic profiles in obese pregnant women [35].

Obesity and other cardiovascular disease - potential clues to mechanism?

As highlighted above, there is obviously considerable overlap in the metabolic features associated
with obesity and the risk of preeclampsia and cardiovascular disease; it would therefore seem
reasonable to interrogate the cardiovascular and metabolic syndrome literature to identify possible
pathophysiological mechanisms which link obesity to preeclampsia risk. One such example is a study
by Fabbrini et al.[36] in which obese individuals with either normal or abnormal metabolic profiles,
defined by intra hepatic triglyceride (IHTG) content, were subjected to a metabolic challenge in the
form of weight gain. The hypothesis was that obese individuals, with a normal metabolic profile,
would be resistant to a weight gain challenge and there would be difference in the adipose tissue
response between the groups. In the metabolically abnormal group moderate weight gain
exacerbated several metabolic risk factors for cardiovascular disease, including increased blood
pressure, plasma triglyceride levels and VLDL apoB100, and decreased plasma adiponectin
concentrations and insulin sensitivity in the liver, skeletal muscle and adipose tissues. It therefore
seems plausible that obese women with abnormal metabolic health at the beginning of pregnancy
are most likely to develop preeclampsia. Efforts to identify metabolic ill health using available
markers [37] and biophysical characteristics may progress our understanding of the relationship
between obesity and preeclampsia.

Chronic hypertension

In a systematic review examining pregnancy outcomes amongst women with chronic hypertension,
the incidence of preeclampsia was 26% [38]. In absolute terms this makes chronic hypertension the
strongest risk factor for preeclampsia. Conversely, it is also the risk factor least well studied; a result
of the fact that several different underlying conditions contribute to a diagnosis of prepregnancy
hypertension, which may independently contribute to the risk of preeclampsia through different
underlying mechanisms. In a prospective study by Chappell et al., the risk factors identified as being
associated with preeclampsia amongst women with chronic hypertension were black ethnicity,
obesity and smoking [39]. Women with chronic hypertension appear to be at particularly high risk of
developing preterm preeclampsia, commonly associated with fetal growth restriction (FGR). This
observation would suggest that in women with chronic hypertension early placentation is often
abnormal, possibly as a result of chronic changes in the maternal vascular endothelium including
altered levels of inflammation and oxidative stress. Alternatively, increased resistance within the
small vessels, reflective of increased systemic pressure, may cause damage to the developing
placenta and increase the risk of preeclampsia and FGR. This hypothesis, however, is very difficult to
test and can only be inferred by indirect evidence that elevated blood pressure in the first trimester
in women with chronic hypertension is a consistent risk factor [39]. Given the very high risk of
preeclampsia in women with chronic hypertension, its increasing prevalence and the overlap with
older maternal age, obesity and the metabolic syndrome, further research investigating the
underlying mechanisms that lead to preeclampsia in this group should be a high priority. In keeping
with our increased knowledge of the heterogeneity of preeclampsia, attention to the different
mechanistic pathways leading to hypertension may reveal important pathways relevant to the
development of preeclampsia.

Maternal age

A recent meta analysis of 38 studies investigating the impact of advanced maternal age on
pregnancy outcome included data from over 10 million women with an overall preeclampsia rate of
3.2% [40]. There was a large degree of heterogeneity between the studies, but a consistent increase
in risk with increasing age was demonstrated with an overall OR for >35 years of 1.99 (95% CI 1.66-
2.36). The mechanism by which older maternal age contributes to an increased risk of preeclampsia
is poorly understood and most importantly the independent effect of age over the presence of other
comorbidities more frequent in older women, has not been satisfactorily explored. Future research
which is able to dissect out the factors associated with advanced maternal age that directly
contribute to the risk of preeclampsia, over and above obesity and hypertension, would provide
another significant advance.

ART/Nulliparity

Nulliparity has the largest population attributable risk factor for preeclampsia [4] and several
theories have suggested causal links, many of which relate to an immunological mechanism [41].
More recently, data have emerged from the assisted reproduction literature providing additional
epidemiological confirmation that perhaps ‘foreign’ antigen increases the risk of preeclampsia, with
the incidence of preeclampsia being higher in women conceiving after oocyte donation compared to
women conceiving with other assisted reproductive techniques [42]. The techniques associated with
in vitro fertilisation may also influence risk. For example, in a study of over 300,000 pregnancies
from the CoNARTS cohort across Sweden, Denmark and Norway there was a modest increase in the
number of pregnancies complicated by hypertensive disease (4.7-5.9%) [43] following IVF treatment.
The risk was further modified by the use of a fresh embryo transfer in comparison to a cycle using a
frozen embryo. In repeated cycles, frozen-frozen was associated with no change in risk, but in
women receiving a frozen embryo followed by fresh embryo there was a significant reduction in the
risk of preeclampsia, which was reversed in women who had a fresh cycle followed by frozen
embryo transfer. These data suggest that very early events related either to the embryo, the
intrauterine environment and/or hormonal status influence the risk of developing preeclampsia. In
concordance with older maternal age and chronic hypertension, the risk of preeclampsia associated
with assisted reproduction appears to be amplified by maternal obesity. In a study of over 10,000
pregnancies (348 with IVF) [44], the risk of preeclampsia was significantly higher in obese women
following IVF. In interaction analysis, there was evidence of departure from multiplicativity which
suggests that a high BMI interacts with IVF, although an additive effect of modification was not
confirmed. Using detailed data from assisted reproduction datasets and exploring the interactions
between maternal factors, and assisted reproduction techniques has the potential to identify
important mechanistic links for the development of preeclampsia.

Interaction and causality
One of the unanswered questions regarding the epidemiology of preeclampsia is an explanation for
the discrepancy in risk of recurrence in subsequent pregnancies. Whilst a history of preeclampsia is a
strong risk factor and the risk of recurrence is around 25% [45], more women do not develop
preeclampsia in a subsequent pregnancy than do. This is despite many of the traditional risk factors
becoming more prevalent in subsequent pregnancies, including older age, increasing BMI and
worsening hypertension resulting in worse metabolic health. The interaction between recurrent
disease and BMI has been investigated and in one study using registry data in Utah, obesity
appeared to have a stronger association with incident preeclampsia in first or second pregnancies
but was less strongly associated with recurrent preeclampsia [46]. This suggests that the
pathophysiology of recurrent preeclampsia may be different to isolated cases occurring in the
presence of risk factors such as obesity.

In summary it is clear that obesity, poor metabolic and vascular health have a strong associations
with the development of preeclampsia. These risk factors are potentially amplified by assisted
reproductive techniques and other risk factors such as ethnicity and maternal age. These risk factors
have been consistently reported and now future epidemiological and mechanistic studies need to
focus on studying potential mechanisms within at risk groups (e.g. poor metabolic health amongst
obese women) and the interaction between risk factor (e.g. IVF in high risk groups) to further
progress our understanding of the pathophysiology of this condition.
Acknowledgements

Presented at the 2016 Global Pregnancy Collaboration (CoLab) conference in Oxford, England. The Global Pregnancy Collaboration is part of the Pre-eclampsia-Eclampsia Monitoring, Prevention & Treatment (PRE-EMPT) initiative funded by the University of British Columbia, a grantee of the Bill & Melinda Gates Foundation.

Funding

JM is supported by a NIHR Clinician Scientist fellowship (NIHR-CS-011-020).
Box: Mechanisms linking obesity and preeclampsia

- Insulin resistance
- Leptin which correlates with insulin resistance but also has cytokine functions and activates monocytes
- Adiponectin with reduced insulin sensitivity and reduced fatty acid oxidation
- Altered lipids and FFA
- Pro-oxidant state
- Altered adipose tissue response to the metabolic challenge of pregnancy
- Altered baseline angiogenic state (outside pregnancy)
- Chronic low level inflammation – subtle increase in CRP
- ADMA levels
Figure 1 Metabolic precursors for preeclampsia and their interactions. This figure illustrates the interaction between the metabolic precursors to preeclampsia and their interaction with other components of the causative pathway. The figure is not intended to be comprehensive and includes only some of the major interactions.
References

[1] A.B. Wallis, A.F. Saftlas, J. Hsia, H.K. Atrash, Secular trends in the rates of preeclampsia, eclampsia, and gestational hypertension, United States, 1987-2004, American journal of hypertension 21(5) (2008) 521-6.

[2] B.L. Dahlstrom, M.E. Engh, G. Bukholm, P. Oian, Changes in the prevalence of pre-eclampsia in Akershus County and the rest of Norway during the past 35 years, Acta obstetricia et gynecologica Scandinavica 85(8) (2006) 916-21.

[3] J.A. Hutcheon, S. Lisonkova, K.S. Joseph, Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy, Best practice & research. Clinical obstetrics & gynaecology 25(4) (2011) 391-403.

[4] E. Bartsch, K.E. Medcalf, A.L. Park, J.G. Ray, Clinical risk factors for pre-eclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies, BMJ 353 (2016) i1753.

[5] V.L. Bilano, E. Ota, T. Ganchimeg, R. Mori, J.P. Souza, Risk factors of pre-eclampsia/eclampsia and its adverse outcomes in low- and middle-income countries: a WHO secondary analysis, PloS one 9(3) (2014) e91198.

[6] L.C. Kenny, M.A. Black, L. Poston, R. Taylor, J.E. Myers, P.N. Baker, L.M. McCowan, N.A. Simpson, G.A. Dekker, C.T. Roberts, K. Rodems, B. Noland, M. Raymundo, J.J. Walker, R.A. North, Early Pregnancy Prediction of Preeclampsia in Nulliparous Women, Combining Clinical Risk and Biomarkers: The Screening for Pregnancy Endpoints (SCOPE) International Cohort Study, Hypertension 64(3) (2014) 644-52.

[7] L.M. Bodnar, J.M. Catov, M.A. Klebanoff, R.B. Ness, J.M. Roberts, Prepregnancy body mass index and the occurrence of severe hypertensive disorders of pregnancy, Epidemiology 18(2) (2007) 234-9.

[8] A.K. Mbah, J.L. Kornosky, S. Kristensen, E.M. August, A.P. Alio, P.J. Marty, V. Belogolovkin, K. Bruder, H.M. Salihu, Super-obesity and risk for early and late pre-eclampsia, BJOG : an international journal of obstetrics and gynaecology 117(8) (2010) 997-1004.

[9] A. Jeyabalan, Epidemiology of preeclampsia: impact of obesity, Nutr Rev 71 Suppl 1 (2013) S18-25.

[10] R. Kaaja, Insulin resistance syndrome in preeclampsia, Seminars in reproductive endocrinology 16(1) (1998) 41-6.

[11] L.M. Bodnar, R.B. Ness, G.F. Harger, J.M. Roberts, Inflammation and triglycerides partially mediate the effect of prepregnancy body mass index on the risk of preeclampsia, American journal of epidemiology 162(12) (2005) 1198-206.

[12] M. Wolf, E. Kettyle, L. Sandler, J.L. Ecker, J. Roberts, R. Thadhani, Obesity and preeclampsia: the potential role of inflammation, Obstetrics and gynecology 98(5 Pt 1) (2001) 757-62.

[13] M.C. Vieira, L. Poston, E. Fyfe, A. Gillett, L.C. Kenny, C.T. Roberts, P.N. Baker, J.E. Myers, J.J. Walker, L.M. McCowan, R.A. North, D. Pasupathy, Clinical and biochemical factors associated with preeclampsia in women with obesity, Obesity (Silver Spring) 25(2) (2017) 460-467.

[14] J.E. Myers, L.C. Kenny, L.M. McCowan, E.H. Chan, G.A. Dekker, L. Poston, N.A. Simpson, R.A. North, Angiogenic factors combined with clinical risk factors to predict preterm pre-eclampsia in nulliparous women: a predictive test accuracy study, BJOG : an international journal of obstetrics and gynaecology 120(10) (2013) 1215-23.

[15] M. Dewerchin, P. Carmeliet, PlGF: a multitasking cytokine with disease-restricted activity, Cold Spring Harb Perspect Med 2(8) (2012).

[16] R.S. Milaj, C.B. Holzman, S. Rana, S.A. Karumanchi, J. Wang, A. Sikorski, Midpregnancy levels of angiogenic markers in relation to maternal characteristics, American journal of obstetrics and gynecology 204(3) (2011) 244 e1-12.

[17] S.K. Ghosh, S. Raheja, A. Tuli, C. Raghunandan, S. Agarwal, Serum placental growth factor as a predictor of early onset preeclampsia in overweight/obese pregnant women, Journal of the American Society of Hypertension : JASH 7(2) (2013) 137-48.
[18] J.M. Faupel-Badger, A.C. Staff, R. Thadhani, C.E. Powe, N. Potischman, R.N. Hoover, R. Troisi, Maternal angiogenic profile in pregnancies that remain normotensive, European journal of obstetrics, gynecology, and reproductive biology 158(2) (2011) 189-93.

[19] M.L. Correia, W.G. Haynes, Leptin, obesity and cardiovascular disease, Current opinion in nephrology and hypertension 13(2) (2004) 215-23.

[20] R.J. Teppa, R.B. Ness, W.R. Crombleholme, J.M. Roberts, Free leptin is increased in normal pregnancy and further increased in preeclampsia, Metabolism: clinical and experimental 49(8) (2000) 1043-8.

[21] S. Mazaki-Tovi, R. Romero, E. Vaisbuch, J.P. Kusanovic, O. Erez, F. Gotsch, T. Chaiworapongsa, N.G. Than, S.K. Kim, C.L. Nhan-Chang, C. Jodicke, P. Pacora, L. Yeo, Z. Dong, B.H. Yoon, S.S. Hassan, P. Mittal, Maternal serum adiponectin multimers in preeclampsia, Journal of perinatal medicine 37(4) (2009) 349-63.

[22] G. Giacchetti, E. Faloia, C. Sardu, M.A. Camilloni, B. Mariniello, C. Gatti, G.G. Garrapa, M. Guerrieri, F. Mantero, Gene expression of angiotensinogen in adipose tissue of obese patients, Int J Obes Relat Metab Disord 24 Suppl 2 (2000) S142-3.

[23] P. Dandona, A. Aljada, A. Chaudhuri, P. Mohanty, R. Garg, Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation, Circulation 111(11) (2005) 1448-54.

[24] L. Poston, L.C. Chappell, Is oxidative stress involved in the aetiology of pre-eclampsia?, Acta Paediatr Suppl 90(436) (2001) 3-5.

[25] J.M. Roberts, C.A. Hubel, Is oxidative stress the link in the two-stage model of pre-eclampsia?, Lancet 354(9181) (1999) 788-9.

[26] R.H. Boger, S.M. Bode-Boger, Asymmetric dimethylarginine, derangements of the endothelial nitric oxide synthase pathway, and cardiovascular diseases, Seminars in thrombosis and hemostasis 26(5) (2000) 539-45.

[27] H.M. Eid, H. Arnesen, E.M. Hjerkinn, T. Lyberg, I. Seljeflot, Relationship between obesity, smoking, and the endogenous nitric oxide synthase inhibitor, asymmetric dimethylarginine, Metabolism: clinical and experimental 53(12) (2004) 1574-9.

[28] K. Krzyzanowska, F. Mittermayer, H.P. Kopp, M. Wolzt, G. Scherntanher, Weight loss reduces circulating asymmetrical dimethylarginine concentrations in morbidly obese women, The Journal of clinical endocrinology and metabolism 89(12) (2004) 6277-81.

[29] A. Sonmez, G. Celebi, G. Erdem, S. Tapan, H. Genc, I. Tasci, C.N. Ercin, T. Dogru, S. Kilic, G. Uckaya, M.I. Yilmaz, M.K. Erbil, M. Kutlu; Plasma apelin and ADMA Levels in patients with essential hypertension, Clin Exp Hypertens 32(3) (2010) 179-83.

[30] M.D. Savvidou, A.D. Hingorani, D. Tsikas, J.C. Frolich, P. Vallance, K.H. Nicolaides, Endothelial dysfunction and raised plasma concentrations of asymmetric dimethylarginine in pregnant women who subsequently develop pre-eclampsia, Lancet 361(9368) (2003) 1511-7.

[31] R.H. Boger, A. Diemert, E. Schwedhelm, N. Luneburg, R. Maas, K. Hecher, The role of nitric oxide synthase inhibition by asymmetric dimethylarginine in the pathophysiology of preeclampsia, Gynecologic and obstetric investigation 69(1) (2010) 1-13.

[32] P.D. Speer, R.W. Powers, M.P. Frank, G. Harger, N. Markovic, J.M. Roberts, Elevated asymmetric dimethylarginine concentrations precede clinical preeclampsia, but not pregnancies with small-for-gestational-age infants, American journal of obstetrics and gynecology 198(1) (2008) 112 e1-7.

[33] M. Ochiai, T. Hayashi, M. Morita, K. Ina, M. Maeda, F. Watanabe, K. Morishita, Short-term effects of L-citrulline supplementation on arterial stiffness in middle-aged men, International journal of cardiology 155(2) (2012) 257-61.

[34] T. Dorniak-Wall, R.M. Grivell, G.A. Dekker, W. Hague, J.M. Dodd, The role of L-arginine in the prevention and treatment of pre-eclampsia: a systematic review of randomised trials, Journal of human hypertension 28(4) (2014) 230-5.

[35] R. Powers, T.L. Weissgerber, S. McConigal, A. Myerski, M. Gallacher, P.D. Speer, J.M. Roberts, A. Jeyabalan, C.A. Hubel, [7-OR]: L-Citrulline administration increases the arginine/ADMA ratio,
decreases blood pressure and improves vascular function in obese pregnant women, Pregnancy hypertension 5(1) (2015) 4.

[36] E. Fabbrini, J. Yoshino, M. Yoshino, F. Magkos, C. Tiemann Luecking, D. Samovski, G. Fraterrigo, A.L. Okunade, B.W. Patterson, S. Klein, Metabolically normal obese people are protected from adverse effects following weight gain, The Journal of clinical investigation 125(2) (2015) 787-95.

[37] C.M. Phillips, I.I. Perry, Does inflammation determine metabolic health status in obese and nonobese adults?, The Journal of clinical endocrinology and metabolism 98(10) (2013) E1610-9.

[38] K. Bramham, B. Parnell, C. Nelson-Piercy, P.T. Seed, L. Poston, L.C. Chappell, Chronic hypertension and pregnancy outcomes: systematic review and meta-analysis, Bmj 348 (2014) g2301.

[39] L.C. Chappell, S. Enye, P. Seed, A.L. Briley, L. Poston, A.H. Shennan, Adverse perinatal outcomes and risk factors for preeclampsia in women with chronic hypertension: a prospective study, Hypertension 51(4) (2008) 1002-9.

[40] S. Lean, H. Derricott, R. Jones, A. Heazell, Systematic Review and Meta-Analysis of Stillbirth and Related Complications in Advanced Maternal Age Provides a Rationale for Focussing on Placental Dysfunction in These Pregnancies.

[41] C.W. Redman, Immunology of preeclampsia, Semin Perinatol 15(3) (1991) 257-62.

[42] P. Masoudian, A. Nasr, J. de Nanassy, K. Fung-Kee-Fung, S.A. Bainbridge, D. El Demellawy, Oocyte donation pregnancies and the risk of preeclampsia or gestational hypertension: a systematic review and metaanalysis, American journal of obstetrics and gynecology 214(3) (2016) 328-39.

[43] S. Opdahl, A.A. Henningsen, A. Tiitinen, C. Bergh, A. Pinborg, P.R. Romundstad, U.B. Wennerholm, M. Gissler, R. Skjaerven, L.B. Romundstad, Risk of hypertensive disorders in pregnancies following assisted reproductive technology: a cohort study from the CoNARTaS group, Human reproduction 30(7) (2015) 1724-31.

[44] N. Dayan, L. Pilote, L. Opatrny, O. Basso, C. Messerlian, A. El-Messidi, S.S. Daskalopoulou, Combined impact of high body mass index and in vitro fertilization on preeclampsia risk: a hospital-based cohort study, Obesity (Silver Spring) 23(1) (2015) 200-6.

[45] G.A. Dildy, 3rd, M.A. Belfort, J.C. Smulian, Preeclampsia recurrence and prevention, Semin Perinatol 31(3) (2007) 135-41.

[46] N.S. Boghossian, E. Yeung, P. Mendola, S.N. Hinkle, S.K. Laughon, C. Zhang, P.S. Albert, Risk factors differ between recurrent and incident preeclampsia: a hospital-based cohort study, Ann Epidemiol 24(12) (2014) 871-7e3.
Highlights

- Obesity and nulliparity account for the largest population risk of preeclampsia
- Low placental growth factor in early pregnancy is more strongly associated with preeclampsia in obese women than in normal weight women
- There is an interaction between obesity and several other characteristics which amplifies the risk of preeclampsia e.g. assisted reproduction, ethnicity