Multilayer OMIC Data in Medullary Thyroid Carcinoma Identifies the STAT3 Pathway as a Potential Therapeutic Target in RET^{M918T} Tumors

Veronika Mancikova, Cristina Montero-Conde, Javier Perales-Patón, Agustín Fernandez, María Santacana, Karolina Jodkowska, Lucia Inglada-Pérez, Esmeralda Castelblanco, Salud Borrego, Mario Encinas, Xavier Matias-Guiu, Mario Fraga, and Mercedes Robledo

Abstract

Purpose: Medullary thyroid carcinoma (MTC) is a rare disease with few genetic drivers, and the etiology specific to each known susceptibility mutation remains unknown. Exploiting multilayer genomic data, we focused our interest on the role of aberrant DNA methylation in MTC development.

Experimental Design: We performed genome-wide DNA methylation profiling assessing more than 27,000 CpGs in the largest MTC series reported to date, comprising 48 molecularly characterized tumors. mRNA and miRNA expression data were available for 33 and 31 tumors, respectively. Two human MTC cell lines and 101 paraffin-embedded MTCs were used for validation.

Results: The most distinctive methylation was observed for RET^{M918T}-related tumors. Integration of methylation data with mRNA and miRNA expression data identified genes negatively regulated by promoter methylation. These in silico findings were confirmed in vitro for PLCB2, DKK4, MMP20, and miR-10a, -30a, and -200c. The mutation-specific aberrant methylation of PLCB2, DKK4, and MMP20 was validated in 25 independent MTCs by bisulfite pyrosequencing. The methylene and transcriptome data underscored JAK/Stat pathway involvement in RET^{M918T} MTCs. Immunostaining [immunohistochemistry (IHC)] for the active form of signaling effector STAT3 was performed in a series of 101 MTCs. As expected, positive IHC was associated with RET^{M918T}-bearing tumors (P < 0.02). Pharmacologic inhibition of STAT3 activity increased the sensitivity to vandetanib of the RET^{M918T} positive MTC cell line, MZ-CRC-1.

Conclusions: Multilayer OMIC data analysis uncovered methylation hallmarks in genetically defined MTCs and revealed JAK/Stat signaling effector STAT3 as a potential therapeutic target for the treatment of RET^{M918T} MTCs. Clin Cancer Res; 23(5). 1334–45. ©2016 AACR.

Introduction

Medullary thyroid carcinoma (MTC) is a malignant tumor of the thyroid gland. It is composed of C cells and accounts for up to 2% of all thyroid cancers (1). Around 25% of MTCs arise due to germline mutations in the "rearranged during transfection" (RET) gene as part of multiple endocrine neoplasia type 2 syndrome, whereas the remaining forms are sporadic. The genomic landscape of recurrent driver alterations found in sporadic disease seems to be mainly restricted to activating mutations affecting the RET (2) or RAS oncogenes (3, 4). There is a distinct genotype-phenotype correlation for each of these alterations (3, 5, 6). The RET^{M918T} mutation seems to trigger the most aggressive disease, showing poor prognosis with a higher prevalence of distant metastases during follow-up (5, 7). MTC cases with advanced disease are treated with tyrosine kinase inhibitors (TKI), such as vandetanib or cabozantinib, which have shown to have therapeutic benefits. However, many patients suffer secondary toxicities that lead to dose reductions or treatment interruption (8, 9).

A comprehensive understanding of the molecular mechanisms driving the different genetic classes of this disease is required to identify new therapeutic opportunities for these patients. High-throughput technologies have already been used to define genomic signatures linked to particular driver mutations in cell lines and other thyroid cancer subtypes (10–15), uncovering molecular events associated with progression and recurrence. However, data on MTC are scarce due to the disease’s low prevalence and, in consequence, the difficulty in collecting an informative sample set. On top of that, C cells represent less than 1% of the thyroid gland, and therefore it is very challenging to...
Medullary thyroid carcinoma (MTC) is a rare disease with few genetic drivers that, when diagnosed at advanced stage, remains incurable. Because of its rarity, its genomic dissection has not been comprehensively explored. This multilayer genomic study, considering the transcriptome, miRNAome and methylome, is the first of its kind and has uncovered genes negatively regulated by methylation. Functional annotation enrichment analysis identified the JAK/Stat pathway as a specific hallmark of RET^{M918T}-bearing MTCs. In vitro studies with MTC cell models point to a RET^{M918T} genetic class-specific proliferative dependency on Stat3 activity. Remarkably, the inhibition of Stat3 increases the sensitivity of RET^{M918T}-bearing MTC cells to the FDA-approved RET inhibitor Vandetanib. This combinational treatment could potentially overcome the adverse effects encountered in clinical practice when Vandetanib monotherapy is applied.

Some of the differentially expressed genes identified in the previous profiling studies are undoubtedly regulated by aberrant methylation. However, explorations of this epigenetic mechanism in MTC, the deregulation of which is a well-known hallmark of cancer, have been limited, either focused on specific candidate genes, such as RAS association domain family protein 1 (RASSF1; ref. 22) and Sprouty 1 (SPRY1; ref. 23) or exploring the whole methylome in very few samples (15). Thus, it remains poorly characterized.

Therefore, we studied the role of aberrant DNA methylation in the pathology of genetic subtypes of MTC. We quantitatively profiled the largest cohort of MTCs published to date, composed of 48 samples, on the basis of the DNA methylation levels of more than 27,000 CpGs across the genome. We observed significant differences between the methylation patterns among the samples carrying distinct mutations. Taking advantage of multilayer genomic data consisting of the transcriptome, miRNAome, and methylome, we uncovered genes negatively regulated by methylation. Moreover, pathway enrichment analysis underscored JAK/Stat pathway involvement in the RET^{M918T}-driven tumors. Using a series of 101 formalin-fixed, paraffin-embedded (FFPE) MTC samples, we observed that phosphorylation of the JAK/Stat pathway effector Stat3 (Tyr705) was more evident among RET^{M918T}-positive tumors. In vitro pharmacologic inhibition of Stat3 phosphorylation in 2 human MTC cell lines (MZ-CRC-1 and TT) revealed a higher dependency of the RET^{M918T}-mutated MZ-CRC-1 cell line on Stat3 signaling. Furthermore, we observed an apparently synergistic effect between the action of Stat3 inhibitor and Vandetanib, which could be exploited to treat patients with MTC.

Materials and Methods

Human MTC tissue samples

Forty-eight fresh-frozen MTC tumor samples were collected at the Spanish National Cancer Research Center (CNIO) in collaboration with the CNIO Tumor Bank. Written informed consent was obtained from all study participants, and the study was approved by the relevant institutional review board (Comité de Bioética y Bienestar Animal of the Instituto de Salud Carlos III). Sections of each sample were evaluated by a pathologist. Only samples in which at least 80% of cells were cancerous were used in this study, and cases with high amyloid content were excluded. A total of 101 paraffin-embedded (FFPE) MTC samples from unrelated individuals were used for validation studies. Twenty-five were used for the validation of DNA functional methylation markers, and the entire collection was used for an immunohistochemical (IHC) study. Hematoxylin and eosin–stained sections of each FFPE tumor sample were examined by a pathologist to select MTC areas representative of each tumor and these were used to construct tissue microarrays (TMA). Three TMAs containing 2 cores from each of 94 tumor samples were constructed. The remaining 7 tumors were evaluated as complete sections.

Cell lines and culture conditions

MZ-CRC-1 and TT cell lines were provided by Dr. James Fagin (Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Centre, New York, NY) and authenticated by RET sequencing. The MZ-CRC-1 cell line is derived from a metastatic MTC and harbors the RET^{M918T} mutation, whereas TT cell line harbors a mutation in the 634th codon of RET. MZ-CRC-1 and TT were cultured in DMEM GlutaMAX (Invitrogen) and F12 Nut Mix medium with GlutaMAX (Invitrogen), respectively, supplemented with 10% (v/v) FBS (PAA Laboratories), 1% (v/v) penicillin/streptomycin, and 0.6% (v/v) Fungizone (Gibco).

DNA, RNA, and protein extraction

Genomic DNA from all samples (frozen and FFPE tumors and cell lines) was extracted using the DNeasy Blood and Tissue Kit (Qiagen) according to the manufacturer’s protocol. Total RNA was extracted from 5 × 10⁶ of MZ-CRC-1 and TT cells and 1 mL of TRIzol (Life Technologies) using the standard conditions. For immunoblotting, cells lysates were produced in RIPA lysis buffer (Sigma) containing protease inhibitor mixture (Sigma) and Phosphatase Inhibitor Cocktail 2&3 (Sigma).

Mutation analysis

All samples were screened for hotspot mutations in exons 8, 10, 11, 13, 14, 15, and 16 of RET by Sanger sequencing. If negative, the hotspot codons 12, 13, and 61 of exons 2 and 3 of all RAS genes were screened using the same technique. Primer sequences and examples of the identified mutations can be found in Supplementary Table S1. Tumors were classified as “wild-type” (WT) if no mutation was found.

DNA methylation assay, data processing, and data analysis

Genomic DNA was bisulfite-converted using the EZ DNA Methylation Kit (Zymo Research) following the manufacturer’s recommended procedures. Genome-wide promotor DNA methylation was determined using the Illumina Infinium Human Methylation 27K Platform (Illumina) as described previously (24). This assay generates DNA methylation data for 27,578 CpG dinucleotides covering 14,473 genes. For each CpG site,
methylation levels were quantified using β-values, which represent the proportion of methylation, calculated as \(M/(M + U) \), where \(M \) is the methylated probe intensity and \(U \) is the unmethylated probe intensity. β-values range from 0 to 1, with 0 being completely unmethylated and 1 being completely methylated. We excluded probes designed for sequences on either the X or the Y chromosome (1,085 or 7 probes, respectively), as well as 46 probes with missing value in at least one sample. The data used in these analyses have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE72729 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72729). The applied analysis workflow is schematically depicted in Supplementary Fig. S1.

Unsupervised hierarchical clustering was carried out using Cluster 3.0 software with "average linkage" (Pearson correlation, uncentered metrics). The clusters were subsequently visualized using Treeview (http://rana.stanford.edu/software). Principal component analysis (PCA) was performed using R CRAN version 2.15.3 (R, 2013). Differences in DNA methylation status among tumor groups (based on the driver mutations present in the samples) were tested using POMELO II, applying linear models (limma; ref. 25). Only groups containing at least 5 tumors were considered. Each genetic class was compared with WT tumors and with each of the other classes. To account for multiple hypothesis testing, \(P \) values were adjusted using Benjamini and Hochberg false discovery rate (FDR) correction. We de-

For the assessment of expression of the selected protein-coding genes, 1 μg of total RNA was reverse-transcribed using Superscript II (Invitrogen) and an oligo d\(T \)\(_{14}\) primer following manufacturer's instructions. The amounts of DKK4, Mmp20, and PLCB2 mRNA were quantified by real-time PCR with QuantStudio 6 Flex Real-Time PCR system (Applied Biosystems), using primers designed to be specific for the 3 genes (Supplementary Table S3) and probes from the Universal PreLibrary Set, Human (Roche). Normalization was carried out with the internal standard β-actin (ACTB).

For miRNA gene expression quantification, 10 ng of total RNA was used for first-strand cDNA synthesis using the mirCURY LNA Universal RT miR PCR System (Exiqon), and LNA mir-PCR primer/SYBR Green Mix (Exiqon) was used for subsequent quantification of miR-10a, 30a, and -200c according to the manufacturer’s recommendations. miR-16 was selected as the reference gene for normalization. Negative controls were included in all PCR series and assays were carried out in triplicate. The Δ\(ΔC_{\text{t}} \) method was used for the calculation of mRNA/miRNA content (28).

Methylation status validation

Three of the most differentially methylated probes, all showing negative correlation with expression of the corresponding protein-coding gene, and with biologic functions potentially relevant to MTC were selected for validation. The technical validation of microarray results in a subset of the original discovery series (comprising 6 RET\(^{M916T}\), 6 RET\(^{G634}\), 3 RAS, 2 WT tumors, and 6 tumors bearing other RET mutations) was performed using bisulfite sequencing, as described elsewhere (12). The candidate functional methylation markers were then validated by pyrosequencing in 25 independent FFPE MTC samples (8 RET\(^{M916T}\), 4 RET\(^{G634}\), 3 RAS, and 10 WT tumors).

The region of interest, including the CpG assessed by the Infinium array, was first amplified from the bisulfite-treated DNA by a set of primers designed using the PyroMark assay design software (version 2.0.01.15). Following PCR amplification, pyrosequencing was performed using PyroMark Q24 reagents, vacuum prep workstation, equipment, and software (Qiagen). The primers used in these steps are listed in Supplementary Table S3.

IHC study

Three paraffin-embedded TMAs and 7 complete sections were used for the evaluation of a JAK/Stat pathway effector pSTAT3 (Tyr705). Monoclonal antibody was obtained from Cell Signaling Technology (#9145). Two independent experienced pathologists (X. Matias-Guiu and M. Santacana) evaluated the staining by visual examination under a microscope. Since each TMA included 2 different tumor cores from each case, IHC scoring was done after

This treatment was repeated every 48 hours over 6 days and then the cells were collected for RNA and DNA extraction.

DNA methylation level assessment

Bisulfite sequencing of MTC cell lines using the primers listed in Supplementary Table S3 was carried out according to protocols described elsewhere (12) to assess methylation level of the selected promoters (belonging to 3 protein-coding genes and 3 miRNA genes).

qRT-PCR

For the assessment of expression of the selected protein-coding genes, 1 μg of total RNA was reverse-transcribed using Superscript II (Invitrogen) and an oligo d\(T \)\(_{14}\) primer following manufacturer's instructions. The amounts of DKK4, Mmp20, and PLCB2 mRNA were quantified by real-time PCR with QuantStudio 6 Flex Real-Time PCR system (Applied Biosystems), using primers designed to be specific for the 3 genes (Supplementary Table S3) and probes from the Universal PreLibrary Set, Human (Roche). Normalization was carried out with the internal standard β-actin (ACTB).

For miRNA gene expression quantification, 10 ng of total RNA was used for first-strand cDNA synthesis using the mirCURY LNA Universal RT miR PCR System (Exiqon), and LNA mir-PCR primer/SYBR Green Mix (Exiqon) was used for subsequent quantification of miR-10a, 30a, and -200c according to the manufacturer’s recommendations. miR-16 was selected as the reference gene for normalization. Negative controls were included in all PCR series and assays were carried out in triplicate. The Δ\(ΔC_{\text{t}} \) method was used for the calculation of mRNA/miRNA content (28).

Methylation status validation

Three of the most differentially methylated probes, all showing negative correlation with expression of the corresponding protein-coding gene, and with biologic functions potentially relevant to MTC were selected for validation. The technical validation of microarray results in a subset of the original discovery series (comprising 6 RET\(^{M916T}\), 6 RET\(^{G634}\), 3 RAS, 2 WT tumors, and 6 tumors bearing other RET mutations) was performed using bisulfite sequencing, as described elsewhere (12). The candidate functional methylation markers were then validated by pyrosequencing in 25 independent FFPE MTC samples (8 RET\(^{M916T}\), 4 RET\(^{G634}\), 3 RAS, and 10 WT tumors).

The region of interest, including the CpG assessed by the Infinium array, was first amplified from the bisulfite-treated DNA by a set of primers designed using the PyroMark assay design software (version 2.0.01.15). Following PCR amplification, pyrosequencing was performed using PyroMark Q24 reagents, vacuum prep workstation, equipment, and software (Qiagen). The primers used in these steps are listed in Supplementary Table S3.

IHC study

Three paraffin-embedded TMAs and 7 complete sections were used for the evaluation of a JAK/Stat pathway effector pSTAT3 (Tyr705). Monoclonal antibody was obtained from Cell Signaling Technology (#9145). Two independent experienced pathologists (X. Matias-Guiu and M. Santacana) evaluated the staining by visual examination under a microscope. Since each TMA included 2 different tumor cores from each case, IHC scoring was done after
examining both samples. When the 2 cores gave inconsistent results, the complete section of the corresponding tumor was evaluated. Samples were scored from 0 (no immunostaining) to 300 (intensive immunostaining) depending on both the intensity and extension of staining.

Inhibitor treatment and cell proliferation assay

For the study of proliferation inhibition by TKI and the inhibition of the phosphorylation of STAT3, vandetanib (Selectchem) and LLL12 (EMD Millipore; ref. 29) were made up as a stock solution of 5 mmol/L in DMSO. MZ-CRC-1 and TT cells were plated in 200 μL of medium at concentrations of 2 × 10^4 cells per well. After 36 hours, cells were treated with increasing concentrations of the indicated compounds (0, 0.005, 0.05, 0.1, 0.5, 1, 2.5, 5 μmol/L). A concentration of 0.1% DMSO was used in all conditions. This treatment was repeated every 4 days. Proliferation was measured at 10 days using a cell proliferation kit (WST-1 reagent, Roche). The concentration that led to 50% growth inhibition (IC_{50}) was calculated using GraphPad Prim. All experiments were performed in triplicate. For the combinational treatment, we also used the above-mentioned experimental scheme. A fixed concentration of 0.04 μmol/L of LLI12 was combined with increasing concentrations of vandetanib (0, 0.005, 0.05, 0.1, 0.5, 1, 2.5, 5 μmol/L). The suboptimal LLI12 concentration (0.04 μmol/L) used causes only 10% growth inhibition of MZ-CRC-1 cells. For Western blot analysis, MZ-CRC-1 cells were treated with increasing concentrations of vandetanib (0.01, 0.1, 0.5 μmol/L). 0.04 μmol/L LLI12, and a combination of LLI12 and vandetanib (0.04 and 0.1 μmol/L, respectively) for 24 hours. Cells were then washed with ice-cold PBS, collected by scraping, and cell lysates were prepared using the above-mentioned protocol. The following primary antibodies were used for immunoblotting: p-ERK, pAKT, pSTAT3, and GAPDH (Cell Signaling; #9101, #4060, #9145, and #2118, respectively). Absolute band intensities of the indicated proteins were captured and quantified with the Image Lab software v4.1 (BioRad). GAPDH was used as loading control normalizer.

Figure 1.

Methylome of the discovery series. Unsupervised hierarchical cluster analysis of 48 medullary tumors divided the sample set into 2 main clusters. “Cluster A” was composed mostly of RET^{M918T}-related samples. “Cluster B” included the majority of RET^{C634} and wild-type cases. Color codes used are as follows: red = RET^{M918T} mutation, black = RET^{C634} mutation, yellow = RAS mutation, transparent = other RET mutation, green = WT.
Data were expressed in relative units using the control condition as reference.

Results

Molecular characterization of the MTC discovery series

Among the tumors whose genome-wide DNA methylation levels were measured, 36 (75%) harbored a \ RET\(^{M918T}\) mutation (13 carried the \ RET\(^{M918T}\) mutation, 14 \ RET\(^{C634}\), and 9 less frequent \ RET\ mutations) and 6 (12.5%) tumors harbored a \ RAS\ mutation. The remaining 6 tumors (12.5%) did not carry any alteration in the studied genes and were considered WT. The results of the mutational screening together with the main clinicohistopathologic characteristics of the samples are summarized in Supplementary Table S4.

Figure 2.

Identification of differentially methylated probes. **A**, Volcano plots, from each of the supervised analysis carried out, identifying differentially hypomethylated (green) and hypermethylated (red) probes, defined on the basis of FDR < 0.05 and |\(\Delta\beta\)-value| ≥ 0.2. **B**, Venn diagram showing the overlap between the identified mutational-specific hyper- and hypomethylated probes from comparisons with WT tumors. **C**, Number of probes hypermethylated and hypomethylated, by location with respect to CpG islands; gene targeted by PolyComb repressive complex; loci that are heavily methylated in embryonic stem cells.
MTC methylation profiles relate closely to RET mutational status

We identified 11,915 probes that were constitutively unmethylated ($\beta < 0.2$) in all samples. According to DAVID functional enrichment analysis (30), the majority (97.5%) of these were located within CpG islands adjacent to housekeeping genes (Benjamini–Hochberg adjusted $P = 7.1 \times 10^{-10}$). On the other hand, 179 probes were constitutively methylated (β-values > 0.8 for all samples). Both constitutively unmethylated and methylated probes were excluded from further analyses. A PCA of the remaining 14,346 probes (belonging to 9,216 consensus coding sequences) did not identify any batch effects affecting the data (Supplementary Fig. S2).

Unsupervised hierarchical analysis using the 851 probes with the variance >0.2 identified 2 principal clusters that differed in their underlying genetics (Fig. 1). Only 2 samples did not fall into
either cluster. Interestingly, cluster B showed higher levels of methylation when compared with cluster A \((P = 3.0 \times 10^{-3})\) and was enriched with WT cases and those harboring the \(\text{RET}_{\text{C634}}\) mutation, whereas cluster A was composed mostly of \(\text{RET}_{\text{M918T}}\)-positive tumors \((P < 0.02)\). We did not observe any clear clustering of the \(\text{RAS}\)-mutated samples.

Supervised analysis according to driver mutation allowed us to identify a list of differentially methylated probes associated with specific mutations, which was especially long for \(\text{RET}_{\text{M918T}}\)-related tumors. These findings confirmed those from the unsupervised clustering as, in this group, there were more hypomethylated probes (Fig. 2A and B and Supplementary Table S5). The protein-coding gene \(\text{DKK4}\) (Dickkopf WNT signaling pathway inhibitor 4), previously described to be upregulated in \(\text{RET}_{\text{M918T}}\)-related MTCs \((18)\), was one of the genes affected by hypomethylation among \(\text{RET}_{\text{M918T}}\)-positive carcinomas. Also consistent with the unsupervised clustering result, the lists of differentially methylated probes characteristic of the other genetic conditions \((\text{RET}_{\text{C634}}\) and \(\text{RAS}\)-related tumors) when comparing to WT, were considerably shorter (Fig. 2B). Nevertheless, hypomethylation of \(\text{GAL}\) was detected among \(\text{RET}_{\text{C634}}\)-positive tumors when comparing with WT, and this event could cause the increased expression of this molecule reported elsewhere \((18)\).

Hypermethylation more frequently affected probes located within CpG islands \((P = 0.0014)\) as well as those located near stem cell PolyComb Group target genes \((P < 0.0001)\). Hypomethylated probes, on the other hand, were enriched with CpGs that are heavily methylated in embryonic stem cells \((P < 0.0001;\) Fig. 2C).

OMIC data integration reveals potentially functional DNA methylation changes in MTC

The above findings indicated that some epigenetic changes can have a functional consequence, which encouraged us to systematically explore genes (protein and miRNA coding) regulated by methylation at their promoters (see Supplementary Fig. S1 for further details). mRNA expression data were available for more than 91% of protein-coding genes that were differentially methylated on the basis of tumor genotype. A negative correlation between expression and methylation was observed for 5% of these (Supplementary Fig. S3). \(\text{PLCB2}, \text{DKK4},\) and \(\text{MMP20}\) were selected for further study, as they have been previously described.
to have a role in the promoting tumor growth (18, 31–33). Moreover, a genome-wide assessment of methylation and miRNA expression of matching samples identified 5 miRNA genes (6.9%) showing negative correlation [Supplementary Fig. S3]. miR-10a was also found as differentially methylated in the previously supervised analyses and was selected for further studies. Two additional miRNA genes (miR-30a and -200c) showing negative correlation between expression and methylation, and a tendency toward differential methylation (FDR < 0.15) in supervised clustering, were also studied further due to their biologic function (21, 34, 35). As assessed by bisulphite sequencing, the levels of methylation of the 6 genes (3 protein-coding and 3 microRNAs) differed between the 2 available MTC cell lines (Fig. 3A). Apart from 2 genes that were not expressed by either of the cell lines (MMP20 and miR-30a), the expression of the other 4 genes confirmed the results of in silico predictions of inverse correlation between DNA methylation and gene expression (Fig. 3B). Because MZ-CRC-1 showed systematically higher levels of DNA methylation of these 6 loci, we treated it with the demethylating agent 5-aza-2′-deoxycytidine. A higher expression of all genes in the MZ-CRC-1 cell line was detected in the treated condition as compared with untreated one (Fig. 3C), further confirming the functional effect of these epigenetic changes.

Validation of aberrant methylation of candidate oncogenes

CpGs from the promoters of 3 differentially methylated genes (DKK4, MMP20, PLCB2) were selected for validation. These genes also showed a negative correlation between DNA methylation levels and gene expression (Supplemental Fig. S3). As depicted in Fig. 4, the results of bisulphite sequencing in a subset of the original series revealed a high correlation with the array-based measures (R^2 ranging from 0.66 to 0.80). Moreover, we were able to replicate the findings by bisulphite pyrosequencing of an independent series of 25 FFPE MTCs (Fig. 4), although the difference between the DNA methylation levels of the compared groups was smaller, probably because the DNA source was paraffin tissue.

MultiOMIC data and pathway enrichment analyses uncover JAK/Stat pathway involvement in RETM918T MTCs

Functional annotation clustering by DAVID (30) of the genes with aberrant methylation (Supplementary Fig. S4) and by Gene Set Enrichment Analysis (GSEA) of differentially expressed genes (18) among RETM918T-positive carcinomas uncovered a significant enrichment for signaling pathways such as cytokine–cytokine receptor interaction ($P = 1.5 \times 10^{-7}$) and JAK/Stat ($P = 2.3 \times 10^{-7}$). STAT3 is a JAK/Stat pathway effector and a putative downstream target of RET (36). Thus, we assessed by IHC its active phosphorylated form (at Tyr705) in 101 MTC samples. RETM918T-related tumors were more frequently and intensively positively stained than the other genetic classes ($P < 0.02$, Fig. 5A) confirming activation of the JAK/Stat cascade and the in situ prediction. We aimed to exploit these differences to study in vitro the functional relevance of STAT3 activation in MTC. As revealed by proliferation assay, MZ-CRC-1 cells were more sensitive to inhibition of STAT3 phosphorylation than TT cells [IC$_{50}$ (MZ-CRC-1) = 0.06 μmol/L, IC$_{50}$ (TT) = 0.23 μmol/L, Fig. 5B]. In fact, the RETM918T-mutated cell line showed a higher sensitivity to this treatment than to the standard of care, TKI vandetanib [IC$_{50}$ (MZ-CRC-1) = 0.62 μmol/L, Fig. 5B]. Because STAT3 is a downstream point of convergence for many growth factor pathways, synergy may be expected when combined with other inhibitors (37). A suboptimal dose of pSTAT3 inhibitor, when combined with vandetanib, apparently showed a synergistic effect on cell growth inhibition of RETM918T-positive cells (Fig. 5C). Moreover, treatment with vandetanib produced a dose-dependent inhibition of pSTAT3 in MZ-CRC-1 and suboptimal combinational treatment of the 2 drugs (0.04 μmol/L/LLL12 with 0.1 μmol/L/vandetanib) potentiated the inhibitory effect on both canonical (pERK, pAKT) and noncanonical (pSTAT3) effectors of RET downstream signaling (Fig. 5D).

Discussion

The current genomic era offers great opportunities to answer many clinically relevant questions concerning various types of cancer through comprehensive and integrative analyses of OMIC data. Some cancer types are being neglected by these efforts, generally due to their low prevalence, and thus small overall public health impact. MTC is one of the least prevalent subtypes of thyroid cancer but is responsible for a large proportion of thyroid cancer–related deaths (38), mainly because treatment with cytotoxic drugs and/or standard radiotherapy has been proven to be ineffective (39).

Using the largest cohort of MTC samples reported to date, we have applied a multilayer OMIC data integration focused on the effects of DNA methylation in the etiology of this tumor. The current work is the first to report not only that underlying genetics relates closely to genome-wide DNA methylation fingerprints but also that the aberrant methylation events affect specific genomic loci (e.g., PolyComb targets) pointing to the existence of an epigenetic progenitor cell signature in MTC (40). Furthermore, we identify both protein-coding and microRNA genes, the expression of which is negatively correlated with the methylation status of their promoters, and we confirm some of these findings in MTC cell lines. We propose promoter methylation of MMP20, DKK4, and PLCB2 as functional epigenetic markers of MTC genetic classes. The integrative approach allowed us to uncover the involvement of the JAK/Stat pathway in RETM918T-related MTCs, which apparently sustains the proliferative features of the MTC cell model for this genetic class.

DNA methylation is traditionally believed to be a regulator of gene expression. In the case of protein-coding genes, the classical view of the negative effect of methylation on expression is being challenged by recent technical advances. Many cancer-orientated studies, including the current one, report a surprisingly low percentage of genes for which this inverse relationship applies (26). The situation with microRNAs is even more complex, given the difficulties with identifying their promoter regions (41). Recently, a methodology became available that recognizes putative promoter regions of miRNAs using both sequence- and histone-based techniques (27). By integrating this strategy in our analysis, we were able to identify CpGs belonging to additional putative miRNA promoters included on the 27K array. The overall portion of miRNA genes for which a negative correlation between methylation and expression was observed was similar to that for protein-coding genes. Nevertheless, for the majority of the genes selected for validation of the inverse correlation between expression and methylation in MTC cell lines, we were able to functionally
IC₅₀ (µmol/L)	95% CI (µmol/L)
MZ-CRC-1 | 0.62 | 0.48–0.79
TT | 0.09 | 0.05–0.16

IC₅₀ (µmol/L)	95% CI (µmol/L)
MZ-CRC-1 | 0.06 | 0.05–0.08
TT | 0.23 | 0.21–0.25

MZ-CRC-1 Proliferation

% Proliferation

Concentration (µmol/L)	0	0.05	0.1	0.25	1
Control	100	100	100	100	100
0.01 µmol/L Vandetanib	88	75	50	25	0
0.1 µmol/L Vandetanib	64	50	37	25	12
0.5 µmol/L Vandetanib	37	25	12	0	0
LL12	91	63	43	25	0
LL12 + Vandetanib	91	63	43	25	0

Mancikova et al.

Clinical Cancer Research
confirm the in silico predictions. One of these genes, DKK4, has previously been linked to MTC pathogenesis [18], and here we propose aberrant methylation as the regulatory mechanism responsible for its overexpression in RETM918T-related tumors. On the other hand, PLCB2 plays a role in multiple transmembrane signal transduction pathways involving inositol lipid metabolism. In cancer, its overexpression has been associated with mitosis promotion, migration, and poor outcome [31, 42]. Our finding of hypomethylation in the RETM918T-positive tumor samples, which was negatively associated with increased PLCB2 expression, is consistent with this gene having a cancer-promoting role. Even though the prognostic utility of MMP20, a member of the family of metalloproteinases, has already been demonstrated in cancer [32], we did not detect its expression in the studied cell lines. Nevertheless, its validation in an independent series of MTC carcinomas confirms its potential utility as a methylation marker of RETM918T-related tumors.

Regarding miRNA genes, the expression of miR-200c has been recently described as causative of the metastatic potential of human MTCs [21]. Interestingly, according to our results in MTC cell lines, the aberrant methylation of the putative promoter of miR-200c could underlie its differential expression among patients with distinct disease outcomes. Mir-10a mostly exerts an oncogenic effect [43, 44] and we found little DNA methylation of its promoter in both MTC cell lines. There is evidence from hepatocellular carcinoma that mir-10a is negatively regulated by DNA methylation [45], which was further validated by our findings. Mir-30a warrants further study due to its tumor-suppressive features [34, 35]. PROM1, a cancer stem cell marker found overexpressed in RETM918T-positive tumors [18], is one of its predicted targets, according to targetscan tool (http://www.targetscan.org/). Our findings indicate that a hypermethylation-driven downregulation of miR-30a could lead to an upregulation of its target PROM1.

Our integrated analysis pointed to the involvement of signaling networks such as cytokine–cytokine interaction and JAK/Stat in RETM918T tumors. These pathways have previously been related to malignant tumor behavior, which is consistent with the observation that these patients with MTC have the worst clinical outcomes [5]. The genetic class-specific implication of JAK/Stat pathways was confirmed by IHC in a large number of human tumors. This is in line with previous in vitro findings from 293T cells transfected with WT RET or RETM918T, where only the latter induced constitutive phosphorylation of STAT3. On top of that, RETM918T was far more efficient in recruiting STAT3 protein than both RETC634 and wild-type RET in vitro [46]. Constitutive activation of STAT3 has been reported at high frequency in large numbers of malignant cell lines, in vivo animal models, and human tumors (reviewed in ref. 37). In general, activation of STAT3 is associated with a worse prognosis due to its role in uncontrollable proliferation and modulation of microenvironment (reviewed in ref. 47). Thus, STAT3 is a very attractive molecule for targeted therapies (reviewed in ref. 48). Indeed, while no drug has shown promising results in clinical trials [49], it has been suggested that inhibition of STAT3 signaling in combination with other therapies (targeted therapies or radiotherapy) could lead to clinical benefit [50]. We found that low doses of the inhibitor of pSTAT3 increased the sensitivity of MTC cells to vandetanib treatment. This could have an important impact on the management of patients with MTC, as vandetanib treatment leads to frequent toxicities, which require dose reductions or even discontinuation [8].

In summary, this comprehensive integrative genomic study performed using the largest cohort of MTC samples reported to date, provides insights into the involvement of DNA methylation in the etiology of this disease. We confirmed the regulatory role of DNA methylation for DKK4, PLCB2, MMP20, mir-10a, miR-30a, and miR-200c using MZ-CRC-1 and TT cell lines. Moreover, hypomethylation may induce activation of key pathways related to the malignant behavior of RETM918T-related MTCs. Inhibition of one of these—the STAT3 signaling pathway—sensitizes RETM918T-mutated MTC cells to standard vandetanib treatment.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: V. Mancikova, C. Montero-Conde, M. Robledo
Development of methodology: V. Mancikova, C. Montero-Conde, J. Perales-Paton, E. Castellblanco, X. Matias-Guiu, M. Robledo
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): V. Mancikova, C. Montero-Conde, K. Jodkowski, E. Castellblanco, S. Borrego, M. Encinas, X. Matias-Guiu, M. Robledo
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): V. Mancikova, C. Montero-Conde, J. Perales-Paton, A. Fernandez, M. Santacana, L. Inglada-Perez, X. Matias-Guiu, M. Fraga, M. Robledo
Writing, review, and/or revision of the manuscript: V. Mancikova, C. Montero-Conde, K. Jodkowski, L. Inglada-Pwiska, X. Matias-Guiu, M. Fraga, M. Robledo
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): V. Mancikova, X. Matias-Guiu, M. Robledo
Study supervision: M. Robledo

Figure 5.
STAT3 signaling in RETM918T-related MTC. A, IHC study of 101 MTC samples. Staining was scored according to both extent and intensity. Each point represents one tumor staining result; bars represent the median value in a given genetic class. The most intense positive staining was detected among RETM918T-positive MTCs (P = 0.014). B, Effects of TKI and inhibitor of phosphorylation of STAT3 on MTC cell proliferation. MZ-CRC-1 and TT cell lines were treated with increasing concentrations of vandetanib (TKI) or LLL12 (inhibitor of phosphorylation of STAT3) for 10 days. At day 10, the proliferation was assessed using WST-1 reagent. Average values of triplicated experiments are presented with error bars representing the SD. Concentration (listed in μmol/L) leading to 50% of growth inhibition (IC50) and the 95% confidence interval (CI) were determined using GraphPad Prism. C, LLL12 sensitized MZ-CRC-1 cells to vandetanib treatment. MZ-CRC-1 cells were treated with a fixed sub-IC50 concentration of LLL12 (0.04 μmol/L) combined with increasing concentrations of vandetanib, and the results were compared with vandetanib and LLL12 monotherapy. The average values of triplicated experiments with the corresponding SD clearly showed an apparently synergistic effect of the 2 inhibitors. D, Western blot analysis of canonical (AKT, ERK) and noncanonical (STAT3) targets of RET signaling. Cell lysates from untreated MZ-CRC-1 cells and those treated with increasing concentrations of vandetanib (0.01, 0.1, 0.5 μmol/L), 0.04 μmol/L LLL12, and a combination of LLL12 and vandetanib (0.04 and 0.1 μmol/L, respectively) were subjected to Western blot analyses for pERK, pAKT, pSTAT3, and GAPDH (loading control). Combined treatment with sub-IC50 concentrations of the 2 drugs potentiates the inhibition of effectors of RET downstream signaling.
Acknowledgments
We thank Manuel Añonente and María Jesús Artiga from the Spanish National Tumor Bank Network (CNIO) for their hard work collecting the tumor samples used in this study. We also thank Magdolna Djurec and Teresa Blasco for their help with the Western blot analysis. The genotyping service was carried out at CEGEN-PBR2-ISICII, it is supported by grant PT13/0001, ISCIII-SGECIF/FEDER.

Grant Support
This work was supported by the Fondo de Investigaciones Sanitarias (FIS) project PI14/00240, cofinanced by FEDER, and the Comunidad de Madrid (Grant S2011/BMD-2328 TIRONET) to M. Robledo. L. Inglada-Pérez is supported by the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER). V. Mancikova was supported by a predoctoral fellowship from the “la Caixa”/CNIO international PhD programme. C. Montero-Conde is supported by a postdoctoral fellowship from the Fundación AECC.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received April 13, 2016; revised August 5, 2016; accepted August 24, 2016; published OnlineFirst September 12, 2016.

References
1. DeLellis RA, Lloyd RV, Heitz PI, Eng C, World Health Organization Classification of Tumours. Tumours of endocrine organs. Lyon, France: IARC Press, 2004.
2. Leboulleux S, Baudin E, Travagl JP, Schlumberger M. Medullary thyroid carcinoma. Clin Endocrinol (Oxf) 2004;61:299–310.
3. Ciampi R, Mian C, Fugazzola I, Cosci B, Rumi C, Barollo S, et al. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in a new treatment practice in advanced medullary thyroid carcinoma. J Clin Endocrinol Metab 2011;96:E863–8.
4. Elisei R, Cosci B, Romei C, Bottici V, Renzini G, Molinaro E, et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab 2008;93:682–7.
5. Romei C, Elisei R, Pinchera A, Ceccherini I, Molinaro E, Mancusi F, et al. Somatic mutations of the reprotooncogene in sporadic medullary thyroid carcinoma are not restricted to exon 16 and are associated with tumor recurrence. J Clin Endocrinol Metab 1996;81:1619–22.
6. Mourier MA, Caraco BM, Pinto AE, Leite V. High prevalence of RAS mutations in RET-negative sporadic medullary thyroid carcinomas. J Clin Endocrinol Metab 2011;96:9518–21.
7. Schilling T, Burck J, Sinn HP, Clemens A, Otto HF, Hoppner W, et al. Prognostic value of codon 918 (ATG→AGC) RET proto-oncogene mutations in sporadic medullary thyroid carcinoma. Int J Cancer 2001;95:62–6.
8. Durante C, Paciaroni A, Plasmati K, Trulli F, Filetti S. Vandetanib: opening a new treatment practice in advanced medullary thyroid carcinoma. J Cancer Res Clin Oncol 2011;137:2573–8.
9. Kurzrock R, Sherman SI, Ball DW, Forastiere AA, Cohen RB, Mebrah R, et al. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol 2011;29:2660–6.
10. Giordano TJ, Kuisk R, Thomas DC, Misek DE, Vinco M, Sanders D, et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene 2005;24:6464–56.
11. Housi D, Liou D, Xing M. Genome-wide alterations in gene methylation by the BRAF V600E mutation in papillary thyroid cancer cells. Endocr Relat Cancer 2011;18:687–97.
12. Mancikova V, Buí R, Castelblanco E, Inglada-Pérez L, Diez A, de Cubas AA, et al. DNA methylation profiling of well-differentiated thyroid cancer uncovers markers of recurrence free survival. Int J Cancer 2014;135:598–610.
13. Mancikova V, Castelblanco E, Pineda-Yanez E, Perales-Paton J, de Cubas AA, Inglada-Pérez L, et al. MicroRNA deep-sequencing reveals master regulators of follicular and papillary thyroid tumors. Mod Pathol 2015;28:748–57.
14. Montero-Conde C, Martin-Campos JM, Lerma E, Gimenez G, Martinez-Guitarte JL, Combalia N, et al. Molecular profiling related to poor prognosis in thyroid carcinoma. Combining gene expression data and biological information. Oncogene 2008;27:1544–61.
15. Rodriguez-Rodero S, Fernandez AF, Fernandez-Morera JL, Castro-Santos P, Bayon GF, Ferrero C, et al. DNA methylation signatures identify biologically distinct thyroid cancer subtypes. J Clin Endocrinol Metab 2013;98:2811–21.
16. Amurri N, Lacroix I, Rouan S, Roux V, Broutin S, Talbott M, et al. Aggressive inherited and sporadic medullary thyroid carcinomas display similar oncogenic pathways. Endocr Relat Cancer 2009;16:1261–72.
17. Jain S, Watson MA, Delledemetti MK, Hiraki Y, Moley JF, Milbrandt J. Expression profiles provide insights into early malignant potential and skeletal abnormalities in multiple endocrine neoplasia type 2B syndrome tumors. Cancer Res 2004;64:3507–13.
18. Maliszewskia A, Leandro-R Garcia LI, Castelblanco E, Macia A, de Cubas A, Gomez-Lopez G, et al. Differential gene expression of medullary thyroid carcinoma reveals specific markers associated with genetic conditions. Am J Pathol 2013;182:350–62.
19. Abraham D, Jackson N, Gandara JS, Zhao J, Gill AI, Delbridge L, et al. MicroRNA profiling of sporadic and hereditary medullary thyroid carcinoma identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets. Clin Cancer Res 2011;17:4772–81.
20. Nikiforov NA, Tseng CC, Steward D, Driuio D, Nikiforov YE. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab 2008;93:1600–8.
21. Santarpia L, Calin GA, Adam L, Ye L, Fusco A, Giunti S, et al. A miRNA signature associated with human metastatic medullary thyroid carcinoma. Endocr Relat Cancer 2013;20:809–23.
22. Schagdarsurengiin UL, Gimm O, Hoang-Vu C, Drahle H, Pfeifer GP, Dammann R. Frequent epigenetic silencing of the CpG island promoter of RASSF1A in thyroid carcinoma. Cancer Res 2002;62:6368–701.
23. Macia A, Gallego P, Vaqueru M, Gou-Fabregas M, Santacana M, Maliszewska A, et al. Sprouty1 is a candidate tumor-suppressor gene in medullary thyroid carcinoma. Oncogene 2012;31:3961–72.
24. Bibikova M, Le J, Barnes B, Saedina-Melnyk S, Zhou L, Shen R, et al. Genome-wide DNA methylation profiling using InfiniUM(R) assay. Epigenomics 2009;1:177–200.
25. Morrissey ER, Diaz-Urrutia R, Pomello I. Finding differentially expressed genes. Nature Reviews Cancer 2009;9:37–51.
26. Selamat SA, Chung BS, Girard L, Zhang W, Zhang Y, Campan M, et al. Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with miRNA expression. Genome Res 2012;22:1197–211.
27. Mancuso A, Huska MR, Lasserre J, Hu H, Yusacvic D, Mutsahl A, et al. PROMiRNA: a new miRNA promoter recognition method uncovers the complex regulation of intronic miRNAs. Genome Biol 2013;14:R84.
28. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402–8.
29. Lin L, Hutzen B, Li PK, ball S, Zuo M, DeAngelis S, et al. A novel small molecule, LLL12, inhibits STAT3 phosphorylation and activities and exerts potent growth-suppressive activity in human cancer cells. Neoplasia 2010;12:39–50.
30. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44–57.
31. Bertagnolli V, Benedusi M, Brugnoli F, Lanupi P, Marchisio M, Querzoli P, et al. Phospholipase C-beta 2 promotes mitosis and migration of human breast cancer-derived cells. Carcinogenesis 2007;28:1638–45.
32. Liu Y, Li Y, Liu Z, Zhang L, Anniko M, Duan M. Prognostic significance of matrix metalloproteinase-20 overexpression in laryngeal squamous cell carcinomas. Acta Otolaryngol 2011;131:769–73.
33. Takeuchi S, Wada K, Toyooka T, Shinomiya N, Shimazaki H, Nakanishi K, et al. Overexpression of Tumours of endocrine organs. Lyon, France: IARC Press, 2004.
34. Santarpia L, Calin GA, Adam L, Ye L, Fusco A, Giunti S, et al. A miRNA signature associated with human metastatic medullary thyroid carcinoma. Endocr Relat Cancer 2013;20:809–23.
35. Schagdarsurengiin UL, Gimm O, Hoang-Vu C, Drahle H, Pfeifer GP, Dammann R. Frequent epigenetic silencing of the CpG island promoter of RASSF1A in thyroid carcinoma. Cancer Res 2002;62:6368–701.
36. Macia A, Gallef P, Vaqueru M, Gou-Fabregas M, Santacana M, Maliszewska A, et al. Sprouty1 is a candidate tumor-suppressor gene in medullary thyroid carcinoma. Oncogene 2012;31:3961–72.
34. Cheng CW, Wang HW, Chang CW, Chu HW, Chen CY, Yu JC, et al. MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res Treat 2012;134:1081–93.

35. Kumarswamy R, Mudduluri G, Ceppi P, Muppala S, Kozlowski M, Niklinski J, et al. MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer. Int J Cancer 2012;130:2044–53.

36. de Groot JW, Links TP, Plukker JT, Lips CJ, Hofstra RM. RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocr Rev 2006;27:535–60.

37. Wang X, Crowe PJ, Goldstein D, Yang JL. STAT3 inhibition, a novel approach to enhancing targeted therapy in human cancers (review). Int J Oncol 2012;41:1181–91.

38. Roman S, Lin R, Sosa JA. Prognosis of medullary thyroid carcinoma: demographic, clinical, and pathologic predictors of survival in 1252 cases. Cancer 2006;107:2134–42.

39. Orlandi F, Caraci P, Mussa A, Saggiorato E, Pancani G, Angelì A. Treatment of medullary thyroid carcinoma: an update. Endocr Relat Cancer 2001;8:135–47.

40. Zhuang J, Jones A, Lee SH, Ng E, Fiegl H, Zikan M, et al. The dynamics and prognostic potential of DNA methylation changes at stem cell gene loci in women's cancer. PLoS Genet 2012;8:e1002517.

41. Yuan ZL, Guan YJ, Wang L, Wei W, Kane AR, Chin YE. Central role of the threonine residue within the p+1 loop of receptor tyrosine kinase in STAT3 constitutive phosphorylation in metastatic cancer cells. Mol Cell Biol 2004;24:9390–400.

42. Thomas SJ, Snowden JA, Zeidler MP, Danson SJ. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br J Cancer 2015;113:365–71.

43. Debnath B, Xu S, Neamati N. Small molecule inhibitors of signal transducer and activator of transcription 3 (Stat3) protein. J Med Chem 2012;55:6645–68.

44. Bendell JC, Hong DS, Buxris HA3rd, Naing A, Jones SF, Falchook G, et al. Phase 1, open-label, dose-escalation, and pharmacokinetic study of STAT3 inhibitor OPB-31121 in subjects with advanced solid tumors. Cancer Chemother Pharmacol 2014;74:125–30.

45. Lo HW, Cao X, Zhu H, Ali-Osman F. Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and alkylators. Clin Cancer Res 2008;14:6042–54.