The constant of recognizability is computable for primitive morphisms

Fabien Durand
Laboratoire Amiénois de Mathématiques Fondamentales et Appliquées,
CNRS-UMR 7352,
Université de Picardie Jules Verne,
33 rue Saint Leu, 80000 Amiens,
France
fabien.durand@u-picardie.fr

Julien Leroy
Institut de mathématique,
Université de Liège
Allée de la découverte 12 (B37)
4000 Liège,
Belgium
J.Leroy@ulg.ac.be

Abstract
Mossé proved that primitive morphisms are recognizable. In this paper we give a computable upper bound for the constant of recognizability of such a morphism. This bound can be expressed only using the cardinality of the alphabet and the length of the longest image under the morphism of a letter.

1 Introduction
Infinite words, i.e., infinite sequences of symbols from a finite set, usually called alphabet, form a classical object of study. They have an important representation power: they provide a natural way to code elements of an infinite set using finitely many symbols, e.g., the coding
of an orbit in a discrete dynamical system or the characteristic sequence of a set of integers. A rich family of infinite words, with a simple algorithmic description, is made of the words obtained by iterating a morphism $\sigma : A^* \to A^*$ [2], where A^* is the free monoid generated by the finite alphabet A.

If σ is prolongable on some letter $a \in A$, that is, if $\sigma(a) = au$ for some non-empty word u and $\lim_{n \to +\infty} |\sigma^n(a)| = +\infty$, then $\sigma^n(a)$ converges to an infinite word $x = \sigma^\omega(a) \in A^\mathbb{N}$ that is a fixed point of σ. Two-sided fixed points are similarly defined as infinite words of the form $\sigma^\omega(a \cdot b) \in A^\mathbb{Z}$, where $\sigma(a) = ua$ and $\sigma(b) = bv$ with $u, v \in A^+$ and $\lim_{n \to +\infty} |\sigma^n(a)| = \lim_{n \to +\infty} |\sigma^n(b)| = +\infty$. Such a fixed point is said to be admissible if ab occurs in $\sigma^n(c)$ for some $n \in \mathbb{N}$ and some $c \in A$. When the morphism is primitive, i.e., there exists $k \in \mathbb{N}$ such that b occurs in $\sigma^k(c)$ for all $b, c \in A$, then x is uniformly recurrent: any finite word that occurs in x occurs infinitely many times in it and with bounded gaps [15]. The converse almost holds true: if $x = \sigma^\omega(a)$ is uniformly recurrent, then there exist a primitive morphism $\varphi : B^* \to B^*$, a letter $b \in B$ and a morphism $\psi : B^* \to A^*$ such that $x = \psi(\varphi^\omega(b))$ [3]. We let $\mathcal{L}(x)$ denote the set of factors of x, i.e., $\mathcal{L}(x) = \{u \in A^* \mid \exists p \in A^*, w \in A^\mathbb{N} : x = puw\}$ (with a similar definition of two-sided fixed points).

Recognizability is a central notion when dealing with fixed point of morphisms. It is linked to existence of long powers u^k in $\mathcal{L}(x)$ [12]. An infinite word $x \in A^\mathbb{Z}$ is said to be k-power-free if there is no non-empty word u such that u^k belongs to $\mathcal{L}(x)$. We refer, for example, to [4, 7, 1, 6]. It roughly means that any long enough finite word that occurs in $\sigma^\omega(a)$ has a unique pre-image under σ, except for a prefix and a suffix of bounded length which is called the constant of recognizability. A fundamental result concerning recognizability is due to Mossé who proved that aperiodic primitive morphisms (i.e., primitive morphisms with aperiodic fixed points) are recognizable [13, 14]. In this paper, we present a detailed proof of this result. This allows us to give a bound on the constant of recognizability.

2 Recognizability

Given a morphism $\sigma : A^* \to A^*$, we respectively define $|\sigma|$ and $\langle \sigma \rangle$ by

$$|\sigma| = \max_{a \in A} |\sigma(a)|, \quad \text{and}, \quad \langle \sigma \rangle = \min_{a \in A} |\sigma(a)|.$$

Assuming that σ has an admissible fixed point $x \in A^\mathbb{Z}$, for all $p \in \mathbb{N}$, we let $f_x^{(p)}$ denote the function

$$f_x^{(p)} : \mathbb{Z} \to \mathbb{Z}, i \mapsto f_x^{(p)}(i) = \begin{cases} |\sigma^p(x[i,0])| & \text{if } i > 0, \\ 0 & \text{if } i = 0, \\ |\sigma^p(x[i,0])| & \text{if } i < 0. \end{cases}$$

We set $E(x, \sigma^p) = f_x^{(p)}(\mathbb{Z})$. When it is clear from the context, we simply write $f^{(p)}$ instead of $f_x^{(p)}$.

2
Given two integers i, j with $i \leq j$, we let $x_{[i,j]}$ and $x_{[i,j]}$ respectively denote the factors $x_ix_{i+1}\cdots x_j$ and $x_ix_{i+1}\cdots x_{j-1}$ (with $x_{[i,i]} = \varepsilon$, where ε is the empty word, i.e., the neutral element of A^*).

\textbf{Definition 1.} We say that σ is \textit{recognizable} on x if there exists some constant $L > 0$ such that for all $i, m \in \mathbb{Z}$,

$$(x_{[m-L,m+L]} = x_{[f^{(1)}(i)-L,f^{(1)}(i)+L]}) \Rightarrow (\exists j \in \mathbb{Z})((m = f^{(1)}(j)) \land (x_i = x_j)).$$

The smallest L satisfying this condition is called the \textit{constant of recognizability} of σ for x. When σ is recognizable on all its admissible fixed points, we say that it is recognizable and its constant of recognizability is the greatest one.

\textbf{Lemma 2.} If $\sigma : A^* \to A^*$ is recognizable on the admissible fixed point $x \in A^\mathbb{Z}$ and if L is the constant of recognizability of σ for x, then for all $k > 0$, x is also an admissible fixed point of σ^k and σ^k is recognizable on x and its constant of recognizability for x is at most $L|\sigma|^k-1$.

\textbf{Proof.} The result holds by induction on $k > 0$. The infinite word x is obviously an admissible fixed point of σ^k. With $L' = L|\sigma|^k-1$, let us show that for all $i \in \mathbb{Z}$, the word

$$x_{[f^{(k)}(i)-L',f^{(k)}(i)+L']}$$

uniquely determines the letter x_i.

By recognizability, the word $x_{[f^{(k)}(i)-L',f^{(k)}(i)+L']} \Rightarrow x_{[f^{(k)}(i)-L',f^{(k)}(i)+L']} \Rightarrow x_{[f^{(k)}(i)-L'',f^{(k)}(i)+L'']}$, where $L'' = L|\sigma|^k-1$. \hfill \Box

\textbf{Theorem 3.} Let $\sigma : A^* \to A^*$ be an aperiodic primitive morphism and let $x \in \mathbb{Z}$ be an admissible fixed point of σ.

1. [13] There exists $M > 0$ such that, for all $i, m \in \mathbb{Z}$,

$$x_{[f^{(1)}(i)-M,f^{(1)}(i)+M]} = x_{[m-M,m+M]} \Rightarrow m \in E(x,\sigma).$$

2. [14] There exists $L > 0$ such that, for all $i, j \in \mathbb{Z}$,

$$x_{[f^{(1)}(i)-L,f^{(1)}(i)+L]} = x_{[f^{(1)}(j)-L,f^{(1)}(j)+L]} \Rightarrow x_i = x_j.$$
By a careful reading of the proofs of Mossé’s results, we can improve it as follows. The proof is given in Section 3. For an infinite word \(x \in A^\mathbb{Z} \), we let \(p_x : \mathbb{N} \rightarrow \mathbb{N} \) denote the complexity function of \(x \) defined by \(p_x(n) = |\mathcal{L}_n(x)| \) where \(\mathcal{L}_n(x) = (\mathcal{L}(x) \cap A^n) \).

Theorem 4. Let \(\sigma : A^* \rightarrow A^* \) be a morphism with an admissible fixed point \(x \in A^\mathbb{Z} \). If \(x \) is \(k \)-power-free and if there is some constant \(N \) such that for all \(n \in \mathbb{N} \), \(|\sigma^n| \leq N(\sigma^n) \), then \(\sigma \) is recognizable on \(x \) and its constant of recognizability for \(x \) is at most \(R|\sigma^dQ| + |\sigma^d| \), where

- \(R = \lceil N^2(k + 1) + 2N \rceil \);
- \(Q = 1 + p_x(R) \left(\sum_{\frac{N}{2} \leq i \leq RN + 2} p_x(i) \right) \);
- \(d \in \{1, 2, \ldots, \#A\} \) is such that for any words \(u, v \in \mathcal{L}(x) \), we have
 \[\sigma^{d-1}(u) \neq \sigma^{d-1}(v) \Rightarrow \forall n, \sigma^n(u) \neq \sigma^n(v). \]

Then, we give some computable bounds for \(N, R, k, Q \) and \(d \) in the case of primitive morphisms. These bounds are not sharp but can be expressed only using the cardinality of the alphabet and the maximal length \(|\sigma| \). The proof is given in Section 4.

Theorem 5. Any aperiodic primitive morphism \(\sigma : A^* \rightarrow A^* \) that admits a fixed point \(x \in A^\mathbb{Z} \) is recognizable on \(x \) and the constant of recognizability for \(x \) is at most

\[
2|\sigma|^{6(\#A)^2 + 6(\#A)|\sigma|^{28(\#A)^2} + |\sigma|^{(\#A)}).
\]

The bound given in the previous theorem is far from being sharp. When the morphism \(\sigma \) is injective on \(\mathcal{L}(x) \) (which is decidable, see [5]), we can take \(d = 1 \) in Theorem 4 and the computation in the proof of Theorem 5 gives the bound

\[
2|\sigma|^{6(\#A)^2 + 6|\sigma|^{28(\#A)^2} + |\sigma|}.
\]

The notion of recognizability is also known as circularity in the terminology of D0L-systems [9]. Assume that \(\sigma : A^* \rightarrow A^* \) is non-erasing and that \(a \in A \) is a letter such that the language \(\text{Fac}(\sigma, a) \) defined as the set of factors occurring in \(\sigma^n(a) \) for some \(n \) is infinite. Given a word \(u = u_1 \cdots u_{|u|} \in \mathcal{L}(a) \), we say that a triplet \((p, v, s)\) is an interpretation of \(u \) if \(\sigma(v) = \text{pus} \). Two interpretations \((p, v, s), (p', v', s')\) are said to be synchronized at position \(k \) if there exist \(i, j \) such that \(1 \leq i \leq |v|, 1 \leq j \leq |v'| \) and

\[
\sigma(v_1 \cdots v_i) = pu_1 \cdots u_k \quad \text{and} \quad \sigma(v'_1 \cdots v'_j) = p'u_1 \cdots u_k.
\]

The word \(u \) has a synchronizing point (at position \(k \)) if all its interpretations are synchronized (at position \(k \)). The pair \((\sigma, a)\) is said to be circular if \(\sigma \) is injective on \(\text{Fac}(\sigma, a) \) and if there is a constant \(C \), called the synchronizing delay of \(\sigma \), such that any word of length at least \(C \) has a synchronizing point. Thus, despite some considerations about whether we deal with fixed points or languages, recognizability and circularity are roughly the same notion and the synchronizing delay \(C \) is associated with the constant of recognizability \(L \) through the equation \(C = 2L + 1 \). Using the terminology of D0L-systems, Klouda and Medková obtained the following result which greatly improves our bounds, but for restricted cases.
Theorem 6 ([10]). If \#A = 2 and if \((\sigma, a)\) is circular with \(\sigma : A^* \rightarrow A^*\) a \(k\)-uniform morphism for some \(k \geq 2\), then the synchronizing delay \(C\) of \((\sigma, a)\) is bounded as follows:

1. \(C \leq 8\) if \(k = 2\),
2. \(C \leq k^2 + 3k - 4\) if \(k\) is an odd prime number,
3. \(C \leq k^2 \left(\frac{k}{d} - 1\right) + 5k - 4\) otherwise,

where \(d\) is the least divisor of \(k\) greater than 1.

3 Proof of Theorem 4

Like in Mossé’s original proof, the proof of Theorem 4 goes in two steps.

As a first step, we express the constant \(M\) of Theorem 3 in terms of the constants \(N, R, k\) and \(Q\) of Theorem 4. This is done in Proposition 8 with a proof following the lines of the proof of [11, Proposition 4.35]. The difference is that we take care of all the needed bounds to express the constant of recognizability.

As a second step, we show that the constant \(L\) of Theorem 3 can be taken equal to \(M' + |\sigma^d|\), where \(d\) is as defined in Theorem 4 and \(M'\) is such that for all \(i, m \in \mathbb{Z}\),

\[
x[f^{(d)}(i) - M', f^{(d)}(i) + M'] = x|m - M, m + M| \implies m \in E(x, \sigma^d).
\]

We first start with the following lemma.

Lemma 7. Let \(\sigma : A^* \rightarrow A^*\) be a non-erasing morphism, \(u \in A^*\) be a word and \(n\) be a positive integer. If \(v = v_0 \cdots v_{t+1} \in A^*\) is a word of length \(t + 2\) such that \(\sigma^n(v[1, t])\) is a factor of \(\sigma^n(u)\), and \(\sigma^n(u)\) is a factor of \(\sigma^n(v)\), then

\[
\frac{|\sigma^n|}{|\sigma^n|} |u| - 2 \leq t \leq \frac{|\sigma^n|}{\langle \sigma^n \rangle} |u|.
\]

Proof. Indeed, since \(\sigma^n(v[1, t])\) is a factor of \(\sigma^n(u)\) we have \(t \langle \sigma^n \rangle \leq |\sigma^n(v[1, t])| \leq |\sigma^n(u)| \leq |u|/\langle \sigma^n \rangle\). Hence \(t \leq |u|/\langle \sigma^n \rangle\). Similarly, since \(\sigma^n(u)\) is a factor of \(\sigma^n(v)\), we have \(|u| \leq (t + 2)|\sigma^n|/\langle \sigma^n \rangle\). We thus have

\[
|u| \frac{\langle \sigma^n \rangle}{\sigma^n} - 2 \leq t \leq |u| \frac{\sigma^n}{\sigma^n}.
\]

\[
\square
\]

Proposition 8. Let \(\sigma : A^* \rightarrow A^*\) be a morphism with an admissible fixed point \(x \in A^\mathbb{Z}\). Assuming that \(x\) is \(k\)-power-free and that there is some constant \(N\) such that for all \(n \in \mathbb{N}\), \(|\sigma^n| \leq N\langle \sigma^n \rangle\), we consider the constants
• \(R = \lceil N^2(k+1) + 2N \rceil \);

• \(Q = 1 + p_x(R) \left(\sum_{\# \leq RN+2} p_x(i) \right) \).

The constant \(M = R|\sigma^Q| \) is such that for all \(i,m \in \mathbb{Z} \),

\[
x_{[f^{(1)}(i)-M, f^{(1)}(i)+M]} = x_{[m-M, m+M]} \implies m \in E(x, \sigma).
\]

(1)

Proof. We follow the lines of the proof of Theorem 3 that is in [11]. Obviously, if \(l \) satisfies (1), then so does \(l' \) whenever \(l' \geq l \). Let us show that such an \(l \), with \(R|\sigma^Q| \), exists.

We proceed by contradiction, assuming that for all \(l \), there exist \(i,j \) such that \(x_{[i-l,i+l]} = x_{[j-l,j+l]} \) with \(i \in E(x, \sigma) \) and \(j \notin E(x, \sigma) \). For any integer \(p \) such that \(0 < p \leq Q \), we consider the integer \(l_p = R|\sigma^p| \). Let \(i_p \) and \(j_p \) be some integers such that

\[
x_{[i_p-l_p, i_p+l_p]} = x_{[j_p-l_p, j_p+l_p]} \text{ with } i_p \in E(x, \sigma) \text{ and } j_p \notin E(x, \sigma).
\]

We let \(r_p \) and \(s_p \) denote the smallest integers such that

\[
\text{Card} ([i_p-r_p, i_p] \cap E(x, \sigma^p)) = \left\lceil \frac{R}{2} \right\rceil \quad \text{and} \quad \text{Card} ([i_p, i_p+s_p] \cap E(x, \sigma^p)) = \left\lfloor \frac{R}{2} \right\rfloor + 1.
\]

There is an integer \(i'_p \) such that

\[
f^{(p)}(i'_p) = i_p - r_p \quad \text{and} \quad f^{(p)}(i'_p + R) = i_p + s_p.
\]

We set

\[
u_p = x_{[i'_p, i'_p + R]}.
\]

We have \(\sigma^p(u_p) = x_{[i_p-r_p, i_p+s_p]} \).

Notice that any interval of length \(l_p \) contains at least \(R-1 \) elements of \(E(x, \sigma^p) \). We thus have \(i_p - l_p \leq i_p - r_p \leq i_p + s_p \leq i_p + l_p \). Consequently we also have

\[
x_{[j_p-l_p, j_p+s_p]} = \sigma^p(u_p).
\]

(2)

However \(j_p - r_p \) does not need to belong to \(E(x, \sigma^p) \). Let \(j'_p \) and \(t_p \) denote the unique integers such that

\[
f^{(p)}(j'_p) < j_p - r_p \leq f^{(p)}(j'_p + 1);
\]

\[
f^{(p)}(j'_p + t_p + 1) \leq j_p + s_p < f^{(p)}(j'_p + t_p + 2).
\]

(3)

Consequently \(\sigma^p(x_{[j'_p+1, j'_p+t_p+1]}) \) is a factor of \(\sigma^p(u_p) \) and \(\sigma^p(u_p) \) is a factor of \(\sigma^p(x_{[j'_p+1, j'_p+t_p+1]}) \).

By Lemma 7, we have

\[
R \left\langle \frac{\sigma^p}{|\sigma^p|} \right\rangle - 2 \leq t_p \leq R \left\langle \frac{\sigma^p}{|\sigma^p|} \right\rangle.
\]

(4)
Hence

\[\frac{R}{N} - 2 \leq t_p \leq RN. \]

Let \(v_p = x[j'_p, j'_p + t_p + 1] \). The number of possible pairs of words \((u_p, v_p)\) is at most

\[p_x(R) \left(\sum_{R / N - 2 \leq i \leq RN + 2} p_x(i) \right) < Q. \]

Therefore, there exist \(p \) and \(q \) in \([1, Q]\) such that \(p < q \) and \((u_p, v_p) = (u_q, v_q)\). In particular we also have \(t_p = t_q \). We write

\[t = t_p, \quad u = u_p, \quad v = v_p, \quad \tilde{v} = x[j'_p + 1, j'_p + t]. \]

Using the above notation we recall that we have

\[u = x[i'_p, i'_p + R], \quad v = x[j'_p, j'_p + t + 1]. \]

Let \(A_p, B_p, A_q \) and \(B_q \) be the words

\[A_p = x[j_p - r_p, f(j'_p + 1)], \quad B_p = x[f(j'_p + t + 1), j_p + s_p], \quad A_q = x[j_q - r_q, f(j'_q + 1)], \quad B_q = x[f(j'_q + t + 1), j_q + s_q]. \]

We thus have

\[x[j_p - r_p, j_p + s_p| = A_p \sigma^p(\tilde{v}) B_p \quad \text{and} \quad x[j_q - r_q, j_q + s_q| = A_q \sigma^q(\tilde{v}) B_q. \]

with, using (3),

\[\max\{ |A_p|, |B_p| \} \leq |\sigma^p| \quad \text{and} \quad \max\{ |A_q|, |B_q| \} \leq |\sigma^q|. \]

From (2) and (7), we obtain

\[\sigma^{q-p}(A_p) \sigma^q(\tilde{v}) \sigma^{q-p}(B_p) = A_q \sigma^q(\tilde{v}) B_q. \]

We claim that

\[A_q = \sigma^{q-p}(A_p) \quad \text{(and hence \(B_q = \sigma^{q-p}(B_p) \)).} \]

If not, the word \(\sigma^q(\tilde{v}) \) has a prefix which is a power \(w^r \) with \(r = \left\lfloor \frac{|\sigma^q(\tilde{v})|}{||A_q| - |\sigma^{q-p}(A_p)||} \right\rfloor \). Since, using (4) and (8),

\[|\sigma^q(\tilde{v})| \geq t(\sigma^q) \geq \left(\frac{R}{N} - 2 \right) \langle \sigma^q \rangle \quad \text{and} \quad ||A_q| - |\sigma^{q-p}(A_p)|| \leq |\sigma^q|, \]

...
we deduce from the choice of R that $r \geq k + 1$, which contradicts the definition of k. We thus have $A_q = \sigma^{q-p}(A_p)$ and $B_q = \sigma^{q-p}(B_p)$.

We now show that

$$[j_q - r_q, j_q + s_q] \cap E(x, \sigma) = ([i_q - r_q, i_q + s_q] \cap E(x, \sigma)) - (i_q - j_q). \quad (10)$$

This will contradict the fact that i_q belongs to $E(x, \sigma)$ and j_q does not.

By (6), we have

$$\sigma^p(v) = x[\sigma^p(j_q), \sigma^p(j_q + t + 2)] = x[\sigma^p(j_q), \sigma^p(j_q + t + 2)].$$

Since $\sigma^p(u)$ is a factor of $\sigma^p(v)$, we deduce from (3) that there exists $m_q \in \mathbb{Z}$ such that

$$f^{(p)}(j_q') < m_q - r_p < m_q + s_p < f^{(p)}(j_q' + t + 2) \quad (11)$$

and

$$x_{[m_q - r_p, m_q + s_p]} = \sigma^p(u) = A_p \sigma^p(\tilde{\nu}) B_p.$$

By applying σ^{q-p}, we obtain

$$x_{[f^{(q-p)}(m_q - r_p), f^{(q-p)}(m_q + s_p)]} = A_q \sigma^q(\tilde{\nu}) B_q,$$

and, from (11),

$$f^{(q)}(j_q') < f^{(q-p)}(m_q - r_p) < f^{(q-p)}(m_q + s_p) < f^{(q)}(j_q' + t + 2).$$

As we also have

$$x_{[j_q - r_q, j_q + s_q]} = A_q \sigma^q(\tilde{\nu}) B_q$$

with, by (3),

$$f^{(q)}(j_q') < j_q - r_q \leq f^{(q)}(j_q' + 1) \leq f^{(q)}(j_q' + t + 1) \leq j_q + s_q < f^{(q)}(j_q' + t + 2),$$

we apply the same argument as to show (9) and get $j_q - r_q = f^{(q-p)}(m_q - r_p)$ (hence $j_q + s_q = f^{(q-p)}(m_q + s_p)$). We thus get that $j_q - r_q$ belongs to $E(x, \sigma^{q-p}) \subset E(x, \sigma)$. Since we also have

$$x_{[f^{(1)}(j_q - r_q), f^{(1)}(j_q + s_q)]} = \sigma^{q-p-1}(x_{[m_q - r_p, m_q + s_p]}) = \sigma^{q-p-1}(A_p \sigma^p(\tilde{\nu}) B_p),$$

$$x_{[f^{(1)}(i_q - r_q), f^{(1)}(i_q + s_q)]} = \sigma^{q-p-1}(x_{[i_q', i_q' + r_q]}) = \sigma^{q-p-1}(A_p \sigma^p(\tilde{\nu}) B_p),$$

we get

$$x_{[f^{(1)}(j_q - r_q), f^{(1)}(j_q + s_q)]} = x_{[f^{(1)}(i_q - r_q), f^{(1)}(i_q + s_q)]}$$

with $j_q - r_q, i_q - r_q$ belonging to $E(x, \sigma)$. By applying σ to these two word, we thus obtain (10), which ends the proof. \qed
In Proposition 8, we compute a constant such that any long enough word can be cut into words in \(\sigma(A)\) in a unique way except for a prefix and a suffix of bounded length. However, it does not give information on the letters in \(A\) that the words in \(\sigma(A)\) come from. A key argument in Mossé’s original proof is to prove the existence of an integer \(d\) such that for all \(a, b \in A\), if \(\sigma^n(a) = \sigma^n(b)\) for some \(n\), then \(\sigma^d(a) = \sigma^d(b)\). We then prove that the constant \(L\) of Theorem 3 can be taken equal to \(M + |\sigma^{d+1}|\), where \(M\) is the constant of Proposition 8 associated with \(\sigma^{d+1}\). Theorem 9 below ensures that we can take \(d = \#A - 1\), which ends the proof of Theorem 4.

Theorem 9 ([5, Theorem 3]). Let \(\sigma : A^* \to A^*\) be a morphism such that \(\sigma(A) \neq \{\varepsilon\}\). For any words \(u, v \in A^*\), we have

\[
\sigma^{\#A-1}(u) \neq \sigma^{\#A-1}(v) \Rightarrow \forall n, \sigma^n(u) \neq \sigma^n(v).
\]

We give the proof of Mossé’s second step result for the sake of completeness.

Proposition 10. Let \(\sigma : A^* \to A^*\) be a morphism with an admissible fixed point \(x \in A^\mathbb{Z}\). Let \(d \in \{1, 2, \ldots, \#A\}\) be such that for any words \(u, v \in \mathcal{L}(x)\),

\[
\sigma^{d-1}(u) \neq \sigma^{d-1}(v) \Rightarrow \forall n, \sigma^n(u) \neq \sigma^n(v).
\]

If \(M\) is a constant such that for all \(i, m \in \mathbb{Z}\),

\[
x[f^d(i) - M, f^d(i) + M] = x[m - M, m + M] \implies m \in E(x, \sigma^d),
\]

then \(\sigma\) is recognizable on \(x\) and its constant of recognizability for \(x\) is at most \(M + |\sigma^d|\).

Proof. Let \(i, m \in \mathbb{Z}\) such that

\[
x[f^{(1)}(i) - M - |\sigma^d|, f^{(1)}(i) + M + |\sigma^d|] = x[m - M - |\sigma^d|, m + M + |\sigma^d|].
\]

By definition of \(M\), there exists \(j \in \mathbb{Z}\) such that \(m = f^{(1)}(j)\). Our goal is to show that \(x_i = x_j\).

There exists \(k \in \mathbb{Z}\) such that

\[
f^{(1)}(i) - |\sigma^d| < f^{(d)}(k) \leq f^{(1)}(i) < f^{(d)}(k + 1) \leq f^{(1)}(i) + |\sigma^d|.
\]

In particular, this implies that \(f^{(d-1)}(k) \leq i < f^{(d)}(k + 1)\).

Consider \(c = f^{(1)}(i) - f^{(d)}(k)\) and \(d = f^{(d)}(k + 1) - f^{(1)}(i)\). We have

\[
x[f^{(d)}(k) - M, f^{(d)}(k) + M] = x[f^{(1)}(j) - c - M, f^{(1)}(j) - c + M];
\]

\[
x[f^{(d)}(k+1) - M, f^{(d)}(k+1) + M] = x[f^{(1)}(j) - d - M, f^{(1)}(j) + d + M].
\]

By definition of \(M\), there exists \(l \in \mathbb{Z}\) such that

\[
f^{(d)}(l) = f^{(1)}(j) - c \quad \text{and} \quad f^{(d)}(l + 1) = f^{(1)}(j) + d.
\]
We thus have \(f^{(d-1)}(l) \leq j < f^{(d-1)}(l + 1) \), and,

\[
x[f^{(d)}(k), f^{(d)}(k + 1)] = x[f^{(d)}(l), f^{(d)}(l + 1)].
\]

Hence \(\sigma^d(x_k) = \sigma^d(x_l) \). By definition of \(d \), we also have \(\sigma^{d-1}(x_k) = \sigma^{d-1}(x_l) \). Hence

\[
x[f^{(d-1)}(k), f^{(d-1)}(k + 1)] = x[f^{(d-1)}(l), f^{(d-1)}(l + 1)].
\]

Since we have \(f^{(1)}(i) - f^{(d)}(k) = f^{(1)}(j) - f^{(d)}(l) \), we also have \(i - f^{(d-1)}(k) = j - f^{(d-1)}(l) \). Hence \(x_i = x_j \).

\section{Proof of Theorem 5}

In this section, we show that the constants appearing in Theorem 4 can all be bounded by some computable constants. In all what follows, we assume that \(\sigma : A^* \to A^* \) is a primitive morphism. By taking a power of \(\sigma \) if needed, we can assume that it has an admissible fixed point \(x \in A^\mathbb{Z} \). Furthermore, we have \(\mathcal{L}(x) = \mathcal{L}(y) \) for all admissible fixed points \(y \) of \(\sigma \). We let \(\mathcal{L}(\sigma) \) denote this set. The constants appearing in Theorem 4 are thus the same whatever the admissible fixed point we consider and the morphism is recognizable.

With the morphism \(\sigma \), one associates its incidence matrix \(M_\sigma \) defined by \((M_\sigma)_{a,b} = |\sigma(b)|_a \), where \(|u|_a \) denotes the number of occurrences of the letter \(a \) in the word \(u \).

\begin{lemma} [\cite{8}] \end{lemma}

A \(d \times d \) matrix \(M \) is primitive if, and only if, there is an integer \(k \leq d^2 - 2d + 2 \) such that \(M^k \) contains only positive entries.

Given an infinite word \(x \in A^\mathbb{Z} \) and a word \(u \in \mathcal{L}(x) \), a return word to \(u \) in \(x \) is a word \(r \) such that \(ru \) belongs to \(\mathcal{L}(x) \), \(u \) is a prefix of \(ru \) and \(ru \) contains exactly two occurrences of \(u \). The infinite word \(x \) is linearly recurrent if it is recurrent (all words in \(\mathcal{L}(x) \) appear infinitely many times in \(x \)) and there exists some constant \(K \) such that for all \(u \in \mathcal{L}(x) \), any return word to \(u \) has length at most \(K|u| \). The set of return words to \(u \) in \(x \) is denoted \(R_{x,u} \).

The next two results give bounds on the constants appearing in Theorem 4.

\begin{theorem} [\cite{4}] \end{theorem}

If \(x \in A^\mathbb{Z} \) is a aperiodic and linearly recurrent sequence (with constant \(K \)), then \(x \) is \((K + 1)\)-power-free and \(p_x(n) \leq Kn \) for all \(n \).

\begin{proposition} [\cite{3}] \end{proposition}

Let \(\sigma : A^* \to A^* \) be an aperiodic primitive morphism and \(x \) be one of its admissible fixed points. Then we have

\[
|\sigma^n| \leq |\sigma|^{(\#A)^2} < |\sigma|^{(\#A)^2}
\]

for all \(n \) and \(x \) is linearly recurrent for some constant

\[
K_\sigma < |\sigma|^{4(\#A)^2}.
\]

10
Proof. Durand [3] showed that the constant of linear recurrence K_σ is at most equal to $RN|\sigma|$, where

- N is a constant such that $|\sigma^n| \leq N(\sigma^n)$ for all n;
- R is the maximal length of a return word to a word of length 2 in $L(\sigma)$.

We only prove here that $N \leq |\sigma|^{|A|^2}$ and $R \leq 2|\sigma|^{|A|^2}$. The constant of linear recurrence is thus at most $2|\sigma|^{1+3(#A)^2} < |\sigma|^{4(#A)^2}$.

Let us write $d = \#A$. By Lemma 11, the matrix M_{d^2} contains only positive entries. For all $n \geq 0$ and all $a \in A$, we have $|\sigma^{n+d^2}(a)| = \sum_{b \in A} |\sigma^{d^2(a)}(a)| |\sigma^n(b)| \geq |\sigma^n|$. Since this is true for all a, we get $|\sigma^n| \leq (\sigma^{n+d^2}) \leq |\sigma^2| |(\sigma^n)|$, so $N \leq |\sigma^d|$.

Let $a \in A$ such that σ is prolongable on a. Thus for all n, any word that occurs in $\sigma^n(a)$ also occurs in $\sigma^{n+1}(a)$. Let us show that for all $n > d^2$, any word $u \in L(\sigma)$ of length 2 occurs in $\sigma^n(a)$. For all n, the words of length 2 that occur in $\sigma^{n+1}(a)$ occur in images under σ of the words of length 2 that occur in $\sigma^n(a)$. As any word occurring in $\sigma^n(a)$ also occurs in $\sigma^{n+1}(a)$, the words of length 2 that occurs in $\sigma^n(a)$ are those that occur in $\sigma^n(a)$ together with those occurring in the images under σ of these words. Thus, if there is a word of length 2 that does not occur in $\sigma^n(a)$, there is a sequence (u_1, u_2, \ldots, u_n) of words of length 2 in $L(\sigma)$ such that for all $i \leq n$, u_i occurs in $\sigma^i(a)$ and does not occur in $\sigma^{i-1}(a)$. Hence all words u_1, \ldots, u_n are distinct. For $n > d^2$, this is a contradiction since there are at most d^2 words of length 2 on the alphabet A. Thus, for any letter $b \in A$, all words $u \in L(\sigma)$ of length 2 occur in $\sigma^{2d^2}(b)$. We deduce that $R \leq 2|\sigma|^{2d^2}$.

\begin{proof}[Proof of Theorem 5] We just have to make the computation. Using Theorem 12, Proposition 13 and the notation of Theorem 4, we can take $d = \#A$ and we successively have

\begin{align*}
N & \leq 1 + K_\sigma \leq |\sigma|^{4d^2}, \\
R & = \lfloor N^2(k+1) + 2N \rfloor \leq |\sigma|^{2d^2}(|\sigma|^{4d^2} + 1) + 2|\sigma|^{d^2} \leq 2|\sigma|^{6d^2}, \\
Q & = 1 + p_\sigma(R), \quad \left(\sum_{\frac{-N}{d} \leq i \leq RN+2} p_\sigma(i) \right) \leq K_\sigma 2|\sigma|^{6d^2} \left(\sum_{0 \leq i \leq 2+2|\sigma|^{d^2}} i K_\sigma \right) \leq 6|\sigma|^{28d^2}
\end{align*}

We finally get that the constant of recognizability of σ is at most

\[2|\sigma|^{|d^2|} |\sigma|^{6d|\sigma|^{28d^2}} + |\sigma|^d = 2|\sigma|^{6d^2+6d|\sigma|^{28d^2} + |\sigma|^d}. \]
\end{proof}

References

[1] V. Canterini and A. Siegel, Geometric representation of substitutions of pisot type, *Trans. Amer. Math. Soc.* 353 (2001), 5121–5144.
[2] C. Choffrut and J. Karhumäki, Combinatorics of words. In *Handbook of formal languages, Vol. 1*, pp. 329–438. Springer, Berlin, 1997.

[3] F. Durand, A characterization of substitutive sequences using return words, *Discrete Math.* **179** (1998), 89–101.

[4] F. Durand, B. Host, and C. Skau, Substitutive dynamical systems, Bratteli diagrams and dimension groups, *Ergod. Th. & Dynam. Sys.* **19** (1999), 953–993.

[5] A. Ehrenfeucht and G. Rozenberg, Simplifications of homomorphisms, *Inform. and Control* **38**(3) (1978), 298–309.

[6] N. P. Fogg, *Substitutions in dynamics, arithmetics and combinatorics*, Vol. 1794 of *Lecture Notes in Mathematics*, Springer-Verlag, Berlin, 2002. Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel.

[7] C. Holton and L. Q. Zamboni, Descendants of primitive substitutions, *Theory Comput. Systems* **32** (1999), 133–157.

[8] R. A. Horn and C. R. Johnson, *Matrix analysis*, Cambridge University Press, Cambridge, 1990. Corrected reprint of the 1985 original.

[9] L. Kari, G. Rozenberg, and A. Salomaa, *L* systems. In *Handbook of formal languages, Vol. 1*, pp. 253–328. Springer, Berlin, 1997.

[10] K. Klouda and K. Medková, Synchronizing delay for binary uniform morphisms, *Theoret. Comput. Sci.* **615** (2016), 12–22.

[11] P. Kürka, *Topological and symbolic dynamics*, Vol. 11 of *Cours Spécialisés [Specialized Courses]*, Société Mathématique de France, Paris, 2003.

[12] F. Mignosi and P. Séébold, If a DOL language is k-power free then it is circular. In *Automata, languages and programming (Lund, 1993)*, Vol. 700 of *Lecture Notes in Comput. Sci.*., pp. 507–518. Springer, Berlin, 1993.

[13] B. Mossé, Puissances de mots et reconnaissabilité des points fixes d’une substitution, *Theoret. Comput. Sci.* **99** (1992), 327–334.

[14] B. Mossé, Reconnaissabilité des substitutions et complexité des suites automatiques, *Bull. Soc. Math. France* **124** (1996), 329–346.

[15] M. Queffélec, *Substitution dynamical systems—spectral analysis. Second Edition*, Vol. 1294 of *Lecture Notes in Mathematics*, Springer-Verlag, Berlin, 2010.