浸炭焼入れしたSAE4320鋼における内部起点剥離寿命に及ぼす残留オーステナイトの影響

金谷 康平1)・三上 剛1)・潮田 浩作2)

Effect of Retained Austenite on Sub-surface Initiated Spalling during Rolling Contact Fatigue in Carburized SAE4320 Steel

Kohei Kanetani, Tsuyoshi Mikami and Kohsaku Ushioda

1. 緒言

近年、地球環境の保護に対する意識が世界的に高まってきており、転がり転受においても、省エネルギー化や省資源化に貢献するため、小型・軽量化が要求されている。転がり転受は、点接触や線接触で荷重を支持する機械部品であり、局所的に数GPaの高い接触応力が作用するため、構成要素である軸受軸や転動体には高強度の鉄鋼材料が使用されている。転受の小型・軽量化に伴い、接触状態は過酷化してきているため、従来よりも優れた転動疲労（Rolling Contact Fatigue: RCF）特性を発揮する鉄鋼材料の開発、およびそれを実現するためのミクロ組織の制御が求められている。

転受の転動疲労による損傷、その発生プロセスの違いによって内部起点剥離と表面起点剥離に分けられる。このうち、表面起点剥離は、潤滑剤への硬質異物の混入や潤滑不良に起因して発生する破壊形態である。特に、硬質異物が軌道軸と転動体の間に入り込み、軌道に圧痕を形成することによって生じる圧痕起点剥離については、ミクロ組織との関係を明らかにした研究結果が多数報告されている1-6)。これらは、焼入れした軸受用鋼の主なミクロ組織であるマルテンサイト、残留オーステナイト（以降、γR）、炭（窒）化物のうち、軟質なγRを活用することによって、圧痕起点剥離寿命が向上すると説明している。そのメカニズムは、転動中における応力集中を低減するように圧痕形状を制御するという考え3)と、転動中にγRをマルテンサイトに加工誘起変態させることでミクロ組織の疲労を抑制するという考え4)が主である。

一方、内部起点剥離は、鋼中に存在する非金属介在物が起点となって発生する破壊形態である。そのため、非金属介在物を小さく、少なくすることで清浄度を向上させることが、内部起点剥離の発生を抑制する主方策となり6)、材料の製鋼段階で対策が講じられる。しかしながら、近年では、製鋼技術の進歩によって清浄度は上限に達してきており、清浄度化による内部起点剥離寿命の向上は頭打ちとなっている6,7)。そこで、非金属介在物の周囲のミクロ組織を強化し、き裂の発生や進展を抑制することが、内部起点剥離寿命の向上に貢献すると考えられる。転動面下の剥離の起点となる領域では、繰り返し応力によって疲労が進行し、局所的にミクロ組織が変化する8)ため、内部起点剥離寿命の向上には、この組織変化を抑制することが求められる。これには、従来から知られているように、材料成分の調整8,9)と熱処理によるミクロ組織の最適化の両方が有効である。材料成分の調整については、Si、Cr、Mo等を添加することで焼戻しマルテンサイトの軟化抵抗を高め、組織変化を抑制する取組みがある。しかしながら、これらは鋼材
の加工性を低下させる元素として知られており、さらにCr, Mo等は希少合金元素であるため、これらの添加に頼らない長寿命化方策が要求されている。したがって、熱処理においてミクロ組織を最適化することにより、疲労強度を向上させることが必要である。

ミクロ組織のうち、γ_bについては、鉄鋼材料における様々な分野で強度と特性を向上させる組織として知られており、代表的な例に、変態誘起塑性：TRIP[10]を利用したTRIP鋼がある。また、γ_bが転向疲労に及ぼす影響については、内部起点剥離寿命を低下させる[11]もしくは直接関係しない[12]という報告がある一方で、向上させるという報告[13-15]が多数を占め、γ_bの有用性が広く認識されるつつある。内部起点剥離寿命を低下させるという報告[16]では、γ_bが寿命を低下させる具体的な要因に言及していないが、直接影響しないという報告[17]に関しては、後ののような非金属介在物への応力集中を緩和するという考えに基づき、近年の清浄度が高い材料ではγ_bによる寿命向上の効果が小さくなってきていると説明している。一方で、内部起点剥離寿命を向上させるという観点では様々なメカニズムが提案されている。Shikoら[18]は、転向疲労に伴うマッスルサイトの分解過程によって、γ_bがマッスルサイトの加工誘起変態し、疲労の進行を促進させることで寿命を向上させると推察している。同様に、Zhuら[19]、Dommarcoら[20]もマッスルサイトの加工誘起変態について言及している。ShojiとEguchi[21]は、軟質なγ_bの存在により転向衝撃面の塑性変形が増大し、実質的な接触応力が低下することで寿命が向上する可能性について言及している。ただし、実験的この現象は否定されており、転動中にγ_bがマッスルサイトに変態することで寿命を向上させると説明している。Yajimaら[22]は、基本的にはマッスルサイトの性質が寿命に影響を及ぼすものの、γ_bも補助的に寿命を向上させる効果があるとし、き裂の伝播を促進させることや、マッスルサイトの焼戻しの進行を停滞させることなどがメカニズムとして推察されている。また、Murata[23]は、き裂発生の起点となる非金属介在物の周囲に軟質のγ_bが存在することによって、非金属介在物への応力集中が緩和され、寿命が向上すると説明している。内部起点剥離に及ぼすγ_bの影響については以上の様々な報告がなされ、圧痕起点剥離に及ぼす影響とは異なり、統一的な見解が得られていない。また、γ_bによる寿命向上のメカニズムはいずれも推測であり、実験結果に基づく十分な説明が長年にわたりなされていないのが現状である。

本研究では、内部起点剥離に焦点を絞り、転向疲労に及ぼすγ_bの影響を明らかにするため、γ_b量を意図的に変えた試験片を作製し、転向疲労試験を行うことで、γ_b量と内部起点剥離寿命の関係を明らかにすることを目的とした。さらに、転向に伴うγ_bの挙動がミクロ組織の変化に及ぼす影響を明らかにし、組織的観点からγ_bが内部起点剥離寿命に及ぼす効果を考察することを目的とした。

2. 実験方法

2.1 試料

γ_bが内部起点剥離寿命に及ぼす影響を調査するため、γ安定化元素であるNiの含有量が1.7 mass%（以下、%と略記）と多く、熱処理によってγ_b量を容易に調整できるSAE4320（0.2%C鋼）を用いた。化学成分をTable 1に示す。実製造されたSAE4320の熱間圧延棒材（直径26 mm）を切削加工し、以下に述べる熱処理を施した後、研削により直径20 mm、高さ36 mmの円柱形状に仕上げた。熱処理は、浸炭、焼入れおよびそれに続く焼戻しを基本としており、焼戻し後のサブゼロ処理の有無、およびサブゼロ処理温度を調整することにより、γ_b量を意図的に変えた試料を作製した。まず、上記の円柱形状の試料を、表層の炭素濃度が約1.1%になるように、960℃の浸炭雰囲気中に24 h保持することで浸炭した。次に、冷却された試料を820℃まで昇温し、70 min保持した後、80℃の油で焼入れを行った。焼戻しは180℃で2 h保持することと行った。このようなプロセスで作製した試料は、焼戻しマッスルサイトを基本組織としており、これ以外にγ_bとセメントライトを含む複合組織となっている。γ_b量を低減させる試料は、焼入れと焼戻しの間に、-50℃、-80℃および-196℃で1 h保持するサブゼロ処理を行い、非変態オーステナイトをマッスルサイトに変態させた。このようにγ_bの量を大きく変化させた試料を転向疲労試験に供した。なお、転向疲労に及ぼすミクロ組織の影響を見極めるために、内部起点剥離においてき裂発生の起点とされる非金属介在物の状態を同等とする目的で、全ての試料を同一チャージの材料から作製した。

2.2 転向疲労試験

転向疲労試験に用いた試験機の概略をFig.1に示す。本試験機は、3つの従動ロールに支持された2つのJIS-SU2製鋼球（直径31.75 mm）に、試料（直径20 mm、幅36 mm）を押し付けながら回転させる機構となっており、潤滑油は駆動ロールを伝って試料表面に供給される。試験条件をTable 2に示す。ベルツの最大接触面圧が5.8 GPa、内部起点剥離寿命に影響を及ぼすと考えられる直交せん断応力が最大となる深さ（d）が0.24 mmとなるように試験荷重を設定した。各試料について8回の寿命試験を行い、寿命の短い順に並べ替え、メジアンランクを割り付けた標本寿命をワイルド回帰することで得られた推定母集団から、破損確率

Table 1. Chemical composition of steel used (mass%).

C	Si	Mn	P	S	Cu	Ni	Cr	Mo	O
0.20	0.19	0.55	0.018	0.006	0.10	1.70	0.53	0.21	0.0009

59
が10%となる寿命（L_{10}）を算出した。

2.3 疲労組織解析

γ_{f}の違いが転動に伴うミクロ組織の変化に及ぼす影響を評価するために、転動疲労試験にて剥離が発生する前の所定の時間において試験を停止し、マルテンサイトのX線回折強度半価幅（以降、半価幅）、残留応力、γ_{f}量、ミクロ組織および硬さの調査を行った。マルテンサイト半価幅、残留応力、γ_{f}量は、試料の転がり接触面に電解研磨を行った後、X線回折（XRD：X-Ray Diffraction）および、X線を転動方向に照射することで測定した。マルテンサイト半価幅はα (211) ピークから算出し、残留応力は、同様に得られたα (211) ピークからsin^{2}ψ法により算出した。γ_{f}量は、α (200), α (211), γ (200), γ (220) のピーク積分強度比から算出した。ミクロ組織は、試料を転がり方向と垂直方向に切断し、断面を鏡面研磨した後、ナイタール（95%メタノール－5%硝酸）を用いて腐食し、光学顕微鏡で観察した。硬さは、ミクロ組織観察した断面において、ビッカース硬度計を用いて、試験荷重300gfにて測定した。

また、一部の試料について、転動方向と平行な断面を観察する試料を作製し、走査電子顕微鏡（SEM：Scanning Electron Microscope）によるミクロ組織観察を行った。断面観察試料は、コロイダルシリカを用いて鏡面研磨を行った後、ナイタールで腐食することで作製した。

さらに、透過電子顕微鏡（TEM：Transmission Electron Microscope）を用いた試料の組織解析を行った。TEM観察用薄膜は、転がり接触面から深さz_{0}の位置において、精密切断機を用いて転動方向と平行な断面になるように採取した後、電解研磨法によって作製した。電解研磨はツインジェット電解研磨装置を用いて行い、電解液は、10%過塩素酸－10%メタノール－水酢酸を使用した。

3. 実験結果

3.1 初期組織のγ_{f}量と硬さ

Table 3に示すように、サブゼロ処理温度を変化させて作製した試料のγ_{f}量は、サブゼロ処理未実施（S_{0}) で39%、−50℃のサブゼロ処理（S_{60}) で21%、−80℃のサブゼロ処理（S_{80}) で12%、−196℃のサブゼロ処理（S_{96}) で6%であった。これ以外の組織は主に焼戻しマルテンサイトであり、わずかにセメントイトを含む構成となっている。また、硬さはγ_{f}量の増加に伴って低下しており、γ_{f}が焼戻しマルテンサイトより軟質であることが示唆される。

3.2 転動疲労試験

得られた転動疲労試験結果のワイル・プロットをFig.2に示す。試料に生じた剥離はすべて、外観から内部起点剥離と判断した。各試料のL_{10}寿命はそれぞれ、S_{0}が1.9×10^{6}回、S_{21}が13.8×10^{6}回、S_{60}が33.3×10^{6}回、S_{96}が120.0×10^{6}回であり、γ_{f}量の増加とともに向上する。

得られたL_{10}寿命を、深さz_{0}位置における初期のγ_{f}量で整理した結果をFig.3に示す。この結果からもわかるよう
に、初期のγ₆の多い試料は長寿命になっている。すなわち、転動疲労試験前のγ₆の違いに起因したミクロ組織構成が転動疲労寿命に影響を及ぼしていると考えられるため、以下で述べる調査を行い、影響因子の解明を試みた。

3.3 転動疲労に伴うマルテンサイト半幅の変化

一般的に、XRDで得られる半幅幅（Full Width at Half Maximum：FWHM）は転位密度と関係し、応力繰り返し数の増加とともに大きくなることが知られている60）。一方で、焼入れした鋼の転動疲労過程においては、炭素を適宜に固溶したマルテンサイトからの炭化物が析出するため、マルテンサイトの最も高い転位密度が次第に減少し、マルテンサイト半幅幅が小さくなることが報告されている23-28）。この現象を利用することで、転動疲労における疲労度解析のパラメータとしてマルテンサイト半幅幅がよく用いられており、本研究においても、ミクロ組織構成の違いが内部起点密着寿命に及ぼす影響について疲労度の観点から考察するため、半幅幅の測定を試みた。

代表として、S₉について評価した結果をFig.4に示す。S₉のL₀寿命に近い応力繰り返し数3.7×10⁶回の転動疲労後（after RCF）のマルテンサイト半幅幅について、転がり接触面直下から内部に向かって分布を測定し、転動疲労前の（before RCF）の結果とあわせて示した。なお、特に断りがない限り、前後の転動疲労後の組織解析も、同様に3.7×10⁶回のものを用いて実施した。マルテンサイト半幅幅は、転動に伴い深さz₀近傍で減少しており、マルテンサイトの疲労が進行していることを示している。同様にその他の試料について測定を行い、深さz₀位置のマルテンサイト半幅幅で整理した結果をFig.5に示す。転動疲労前は、サブゼロ処理温度の違いによってマルテンサイトの体積分率は異なるが、いずれの試料も同様のマルテンサイト半幅幅を示している。また、転動疲労後に、すべての試料上でマルテンサイト半幅幅が2.5 deg程度減少しており、試料による明らかな差異がないことがわかる。以上のように、γ₆量の増加によって内部起点密着寿命が向上する要因を、マルテンサイト半幅幅で評価した疲労度から解明を試みたが、疲労度では説明できないことが明らかとなった。

なお、転動疲労に伴い、γ₆も何らかの組織変化をすると予想されるが、特にγ₆が少ない試料においては、γ₆のX線回折強度が小さく、その半幅幅を厳密に測定することができないため、γ₆の半幅幅は評価していない。過去の疲労度解析の例で23-28）においても、γ₆量が通常10%以下と少ないSU23の焼入れ焼き返し組織を対象とした研究が主であるため、半幅幅の観点からγ₆の疲労度を解析した例はない。

3.4 転動疲労に伴う残留応力の変化

各試料について測定した転動疲労前と転動疲労後の残留応力をFig.6に示す。Fig.6(a)より、転動疲労前は、試料により同等的圧縮残留応力が付与されていることがわかる。転動疲労後においては、Fig.6(b)に示すように、ある一定の深さを中心に、塑性変形に起因する圧縮残留応力が付与される。圧縮残留応力が最大になる深さは直交せん断応力が最大となる深さz₀よりも深い位置に存在しているが、これは主せん断応力が最大になる深さに対応するというわれている27-28）。Fig.6(b)から明らかに十分、転動疲労後の残留応力分布は、圧縮残留応力の最大値および最大に

Fig.3. Relationship between volume fraction of γ₆ and L₀ life.

Fig.4. Change in α(211) full width at half maximum with depth from surface of S₉ due to RCF (N=3.7×10⁶).

Fig.5. Relationship between initial volume fraction of γ₆ and Change in α(211) full width at half maximum at z₀ (N=3.7×10⁶).
3.5 転動疲労に伴うミクロ組織の変化

各試料について、光学顕微鏡で観察した転動疲労後のミクロ組織をFig.7に示す。転がり方向は紙面に垂直方向である。代表としてFig.7 (a) に破線で示すように、転がり接触面直下の深さ2位置を中心に、従来から報告されてい
る、ナイタールで腐食されやすい黒色組織 (Dark Etching Area: DEA) が確認できる。DEAは、転動疲労の進行に
伴い、マルテンサイトが局的に塑性変形することで発生
することが知られる。しかし、Fig.7の光学顕微鏡による観
察結果では、すべての試料において応力繰り返し数3.7×
10^{6}回の時点で既にDEAが発生しており、その発生領域は
ほぼ同等で明確な差が認められない。したがって、試料に
よってマルテンサイトの疲労の進行に明確な差がないこと
が示唆される。S_{c}のL_{10}生命は1.9×10^{6}回であるため、Fig.7

![Fig. 6. Residual stress depth distribution (a) before RCF and (b) after RCF (N=3.7×10^{6}).](image)

![Fig. 7. Optical micrographs showing dark etching areas (DEA) under the track due to RCF (N=3.7×10^{6}) of (a) S_{39}, (b) S_{21}, (c) S_{12} and (d) S_{6}. The area enclosed by white dotted line in (a) stands for DEA.](image)
のDEAが発生する前、もしくは発生して間もなく剥離が生じたと考えられる。一方、表面寿命が120.0×10⁶回であるS₆は、DEAが発生してからも、おおよそ30倍以上の応力負荷を繰り返しても剥離せずに転動している。すなわち、転動疲労の進行に対応した、光学顕微鏡で確認できるDEAの発生と内部起点剥離寿命に相関がないことがわかる。

3・6 転動疲労に伴う硬さおよびγₖ量の変化

各試料について、転動疲労後の硬さおよびγₖ量を測定し、転動疲労前からの変化を整理した。Fig.8に、代表として、S₉をS₆の転がり接触面直下から内部に向かう硬さとγₖ量の変化を示す。硬さおよびγₖ量は、試料によって変化の大きさは異なるが、深さz₀近傍において最も大きく変化していることがわかる。この現象は、図示しないものの、S₉とS₁₀においても確認された。すなわち、γₖは減少し、硬さは上昇した。Fig.9に、各試料の深さz₀位置の測定で得られた、転動疲労によるγₖ量の変化（Δγₖ）と硬さの変化（ΔHV）の関係を示す。本結果から、γₖの減少が大きいほど硬さの上昇が大きく、過去に報告されている結果⁹,¹⁵と同様の傾向を示した。これは、γₖが転動中にマルテンサイトに加工誘起変態した結果と理解される。Fig.10に、各試料

Fig. 8. Change in Vickers hardness of (a) S₉ and (b) S₆, and γₖ volume fraction of (c) S₉ and (d) S₆ due to RCF as a function of depth from surface (N=3.7×10⁶).

Fig. 9. Relationship between change in volume fraction of γₖ (Δγₖ) and Vickers hardness (ΔHV) before and after RCF at z₀ (N=3.7×10⁶).

Fig. 10. Relationship between volume fraction of γₖ and Vickers hardness before and after RCF at z₀ (N=3.7×10⁶).
の転動疲労前後の深さ*z位置の硬さとγ%量の関係を示す。転動疲労前は、試料により異なるγ%量と、それに応じた異なる硬さを有していた。しかし、転動疲労後にはおおよそ等の硬さ（882〜891 HV）とγ%量（1〜7%）に変化したことがわかる。このように、S6のLcm寿命相当である応力繰返し数3.7×10^6回において、硬さおよびγ%量がおおよそ等であるにも関わらず、初期のγ%量が多い試料ほど、その後の内部裂缺陷に至るまでの応力繰返し数増大することが明らかなった。この実験結果は、光学顕微鏡では確認できなかった応力繰返し数3.7×10^6回までのミクロ組織の変化挙動の違いが、その後の寿命に影響を及ぼしている可能性を示唆する。すなわち、転動疲労前のγ%量が多いほど、応力繰返し数3.7×10^6回までのγ%量の減少および硬さの上昇が大きく、γ%の加工誘起変態を通じてマルテンサイトが新たに生成することで、疲労強度を向上させたと推定される。

4. 考察
4・1 γ%がDEAの微視構造に及ぼす影響
転動に伴うγ%の加工誘起マルテンサイト変態が、転動疲労寿命を向上させる可能性があることを述べたが、これを明らかにするために、SEMによる詳細なミクロ組織観察を行った。観察は、γ%量が最も大きく異なるS6とS39について行い、それぞれ転動疲労前および転動疲労後の深さ*z位置における微視組織を比較した。断面観察試料は、転動方向に対して平行方向に切り出して作製した。観察結果をFig.11に示す。転動疲労前のS6のミクロ組織（Fig.11 (a)）は、主として焼戻しマルテンサイトから構成されており、図中に代表して示すように、他にわずかに球状セメントサイト（globular cementite）が存在している。XRDにより6%程度のγ%の存在が確認され、ここでは明確に確認されなかった。一方、転動疲労前のS39のミクロ組織（Fig.11 (b)）は、S6に見られた焼戻しマルテンサイトと球状セメントサイト以外に、平坦な組織（flat structure）が確認された。この平坦組織は、図中に代表して示す橙色線で囲んだ領域以外にも全体にわたって存在が確認でき、S6との組織構成の違いからγ%に対応していると判断できる。
転動疲労前後のミクロ組織を比較することにより、次のような微視組織変化の様子が確認できる。まず、転動疲労後のS6のミクロ組織（Fig.11 (c)）においては、全体にわたって扁状の組織が形成されていることがわかる。この縦
状組織は、ナイタールで腐食したときに顕在化する組織である。その観察をSmejkalらにより報告されているelongated grainであると考えられる。このelongated grainは、転動疲労後のSₙのミクロ組織（Fig.11 d）にも確認されるが、部分的に顕在化しているのみであり、Sₙ発生状況とは異なり、elongated grainが顕在化していない領域に合目すると、主に転動疲労前に存在した平坦組織に類似した組織が存在することがわかる。Elongated grainの形態に関する研究は十分に進んでいないものの、転動疲労中の炭化物の析出によるマルテンサイトの軟化も一つの要因となっており、転動に伴うせん断変形により形成された線状の組織と推察される。Sₙの転動疲労前の平坦組織に対応するγₙは、転動に伴うフレッシュなマルテンサイトに加工誘起変態することで、Fig.8 (c) に示したようにγₙ量は7%程度となり、かなりの部分がマルテンサイトとなる。このようなフレッシュなマルテンサイトはFig.8 (a) に示したように著しく硬さを上昇させるため、せん断変形に対する抵抗が高くなり、焼戻しマルテンサイトの領域において優先的にせん断変形が生じたと考えられる。以上の観察から、初期のγₙとして存在した平坦組織は、転動に伴ってせん断変形に対する抵抗が高いためマルテンサイトに加工誘起変態し、これが焼戻しマルテンサイト中に分散することにより組織全体として塑性変形が抑制され、長寿命になったと推察した。一方で、フレットとマルテンサイトから成る二相（Dual Phase：DP）鋼が疲労特性に優れる機構による。すなわち、マルテンサイトの存在によるき裂進展の遅滞・迂回効果と類似した現象があり、初期のγₙを多量に含み、転動中に硬質なフレッシュなマルテンサイトに変態する材料においても発現している可能性が考えられる。本研究におけるγₙによる疲労特性向上機構の詳細は、今後の検討課題としている。そこで、転動疲労前に存在した平坦組織は、転動疲労後には次のいずれかの状態になっていると予想する。すなわち、①転動疲労後もγₙとして残存する、②加工誘起変態によってフレッシュなマルテンサイトに変態する、という二つの組み合わせである。しかしながら、SEMではこれらを断定することができないため、次節でTEMによる組織解析を行った結果について述べる。なお、SEM-EBSDによる組織解析結果は、γₙによる疲労特性向上機構とあわせて、次報以降で述べる。

4.2 γₙを起源とするDEA中の平坦組織のTEMによる解析

転動疲労後に存在するγₙを起源とした平坦組織の構造を明らかにするため、Sₙの転動疲労後についてTEMによる組織観察を行った。TEM観察用薄膜は、深さ2位置の転動方向と平行な面で、電解研磨により作製した。観察結果をFig.12に示す。SEM観察によって得られた組織と同様に、elongated grainに対応すると思われる線状組織と数μm程度の大きさの平坦組織が観察された。まず、線状組織の構造を解析するため、Fig.13に示すように線状組織のみを高倍率で観察し、制限視野で電子線回折を行った。回折領域は、Fig.13 (a) に示す直径150 μm (X) と直径500 μm (Y) の2本で実施した。その結果、Fig.13 (b) (c) に示すように、(KX) の解析範囲ではbcc構造を示していることがわかった。さらに、Fig.13 (d) に示すように、(KY) の範囲で解析を行うと、回折スポットが同心円状に広がっており、超微細に多結晶化したbcc構造であることがわかった。ここで、(X) の解析範囲が示すように、線状組織はbcc構造を有する微細組織であることがわかった。焼戻しマルテンサイトの転動疲労後の組織を詳細にTEM観察した結果については、既に報告された例がある。Shikouらは、転動中にマルテンサイトの焼戻しに類似した現象が進行しており、微細炭化物の析出を伴うことを明らかにしている。しかししながら、同時に確認される白い斜状の相は、当時のTEMの分解能に限界があり、結晶構造が同定されていない。Suginoらは、転動中にbcc炭化物の析出を伴いながら、マルテンサイトがrod状をし、polygon状の微細粒に変化していると述べており、初期の焼戻しマルテンサイトよりも硬さが低下していることから、この粒はフェライトであると推測している。最近、Furukawaらによるアトムプロープを使用した原子濃度分析により、転動疲労後の組織を解析した結果が報告されている。これによると、転動疲労後の組織は、炭化物の分解と成長が生じることで、転動疲労前の焼戻しマルテンサイトよりも炭素固溶量が低下していると報告している。

Fig.12. TEM image showing microstructure in DEA of Sₙ after RCF (N=3.7×10⁸). (Online version in color.)
Fig. 13. (a) TEM bright field image of elongated grains (high magnification of Fig.12) in DEA of S_{39} after RCF ($N=3.7 \times 10^6$), (b) selected area diffraction pattern (SADP) of region (X), (c) indexed diffraction patterns of (b), (d) SADP of region (Y) and (e) dark field image produced from diffraction spot indicated by arrow in (d). (Online version in color.)

Fig. 14. (a) TEM bright field image of flat structure (high magnification of Fig.12) in DEA of S_{39} after RCF ($N=3.7 \times 10^6$), (b) SADP, (c), (d) indexed diffraction patterns of (b) indicating α phase and γ phase, respectively. (Online version in color.)
る転動中の炭素の挙動を明確にするには、別途TEMやアトムプローブによる詳細な検討を行う必要がある。

次に、転動疲労後の平坦組織部を高倍率で観察した結果をFig.14に示す。Fig.14 (a) に示す直径500nmの制限視野で電子線回折を行った結果 (Fig.14 (b) (c) (d))，転動疲労後の平面組織は，γ₇に応じるfcc構造とbcc構造の混合組織であることがわかった。さらに、Fig.13に示した繊細組織においては塑性形変を受けて多結晶化していることが確認されたが、平坦組織においてはbcc構造の2重回折が見られるものの多結晶化しておらず、繊細組織と比較して大きな塑性形変を受けていない組織であることが示唆された。

以上の結果から、本研究で、従来研究を示唆されてきた転動中におけるγ₇の加工誘起変態を、直接的な組織観察によって実証したといえる。すなわち、これらまではFig.9に示したようなγ₇の減少と硬さの上昇の対応関係から、転動中の加工誘起変態を予測するものが主であったが、転動疲労後のγ₇粒子をSEMとTEMで詳細に解析することにより、γ₇中に微細に分散する、加工誘起変態によって生成したマルテンサイトの存在を明らかにした。このように転動中に生成したフレッシュなマルテンサイトが組織中に分散することにより、組織全体の塑性変形を抑制し、長寿命化すると推察する。γ₇の加工誘起変態が発生する役割は、さらにEBSDやアトムプローブを用いて転動中の組織変化を詳細に解析し、別途で議論したい。

5. 結論

SAE4320鋼を用いて、熱処理によりγ₇量を大幅に変化させた試料を作製し、転動疲労実験に供した。γ₇が内部起点剥離寿命に及ぼす影響について検討を行い、以下の結論を得た。

(1) 初期のγ₇量が多いほど、内部起点剥離寿命が向上する。

(2) 転動に伴い、直交せん断応力が最大になる深さを中心にγ₇が減少し、硬さが上昇する。同一の繰り返し数（3×10⁶回）の転動後におけるγ₇量と硬さは、寿命特性に関わらずおおよそ同等であったことから、これらでの変化挙動が寿命特性に影響を及ぼすと推測した。

(3) 剥皮しマルテンサイトは、転動に伴う塑性変形により繊細組織となり微細多結晶化する。一方で、γ₇はマルテンサイトに加工誘起変態した後も平坦組織を維持し、微細多結晶化は確認されない。転動に伴う塑性変形は、剥皮しマルテンサイトで優先的に生じると考えられる。

(4) 加工誘起変態によって生成したフレッシュな硬質マルテンサイトが組織中に分散することで、内部起点剥離寿命を向上させると推察した。

なお、本論文では転動疲労中の組織変化に焦点を当てる研究を行った成果をまとめた。組織変化とき裂の発生、伝播挙動との関係については詳細な実験および考察が行われず、今後の課題とする。

文 献

1) K.Toda, T.Mikami and T.Hoshino: J. Jpn. Inst. Met., 58 (1994), 1473 (in Japanese).
2) Y.Murakami, N.Mitamura and K.Furumura: NSK Tech. J., 652 (1992).
3) K.Hiraoka, T.Katsura, H.Yamagata and T.Koike: Sanyo Tech. Rep., 9 (2002), 35 (in Japanese).
4) K.Kanetani, T.Mikami and T.Sada: JITEK Eng. J., 1016 (2018), 22 (in Japanese).
5) For example, A.Korenaga: J. Jpn. Soc. Tribol., 46 (2001), 680 (in Japanese).
6) K.Maeda: Mach. Des., 39 (1995), 48.
7) N.Tsushima: Bull. Jpn. Inst. Met., 23 (1984), 50 (in Japanese).
8) S.Shiko, K.Obamoto and S.Watanabe: Tetsu-to-Hagané, 54 (1968), 1353 (in Japanese).
9) T.Hoshino, K.Amano, Y.Yamamoto, A.Ohta and M.Gotoh: Materia Jpn., 37 (1998), 516 (in Japanese).
10) For example, I.Tamura: Tetsu-to-Hagané, 56 (1970), 429 (in Japanese).
11) D.Scott and J.Brackwell: Wear, 18 (1971), 19.
12) N.Tsushima and K.Kameda: Nippon Tutsu, 32 (1992), 43 (in Japanese).
13) D.Zhu, F.Wang, Q.Cai, M.Zheng and Y.Cheng: Wear, 105 (1985), 223.
14) R.C.Dommarco, K.J.Kozaczek, P.C.Bastias, G.T.Hahn and C.A.Rubin: Wear, 257 (2004), 1081.
15) S.Shiba and T.Ishigaki: Tetsu-to-Hagané, 71 (1990), S464 (in Japanese).
16) E.Yajima, T.Miyazaki, T.Sugiyama and H.Terajima: J. Jpn. Inst. Met., 126 (1972), 711 (in Japanese).
17) H.Muro, Y.Sadaoka, SITO and N.Tsushima: Proc. 12th Japan Congress on Materials Research-Metallic Materials, The Society of Materials Science, Japan, Tokyo, (1969), 74.
18) T.Yamamoto: Bull. Jpn. Inst. Met., 11 (1972), 419 (in Japanese).
19) S.Taira and K.Honda: Trans. Jpn. Soc. Mech. Eng., 26 (1960), 926 (in Japanese).
20) M.Hishiki, T.Hori, H.Kohno, H.Kawabe and M.Uemura: J. Jpn. Soc. Precis. Eng., 44 (1978), 1321 (in Japanese).
21) M.Kurita and H.Ibara: J. Soc. Mater. Sci. Jpn., 34 (1985), 91 (in Japanese).
22) K.Furumura, S.Shirata and A.Fujii: NSK Bearing J., 643 (1983), 1.
23) K.Furumura, S.Shirata and A.Fujii: NSK Bearing J., 644 (1984), 1.
24) T.Hirota and K.Shimizu: Fujikoshi Giho, 43 (1987), 43 (in Japanese).
25) N.Tsushima, H.Yamada and K.Kameda: ASLE Trans., 30 (1987), 465.
26) N.Oguma: Koyo Eng. J., 161 (2002), 26 (in Japanese).
27) T.Fujita, N.Kamura and T.Sasaki: J. Jpn. Soc. Des. Eng., 52 (2017), 144 (in Japanese).
28) T.Fujita, N.Kamura and T.Sasaki: Mach. Des., 62 (2018), 39.
29) H.Muro: J. Jpn. Soc. Tribol., 39 (1994), 668 (in Japanese).
30) V.Mitov, F.Wang, L.Wang, H.Holwege and J.Mayer: Int. J. Fatigue, 98 (2017), 142.
31) K.Sumino, K.Miyamoto, M.Nagumo and K.Aoki: Tetsu-to-Hagané, 55 (1960), S200 (in Japanese).
32) H.Fu, W.Huang, E.Galind-Nava and P.E.J.Rivera-Díaz-del-Castillo: Acta Mater., 139 (2017), 163.
33) M.Mizui and M.Takahashi: Proc. Mechanical Working and Steel Processing (MWSPP) Conference, ISS, Warrendale, PA, 1992, 31.