An extremal problem for integer sparse recovery

Sergei Konyagin∗ Benny Sudakov†

Abstract

Motivated by the problem of integer sparse recovery we study the following question. Let A be an $m \times d$ integer matrix whose entries are in absolute value at most k. How large can be $d = d(m, k)$ if all $m \times m$ submatrices of A are non-degenerate? We obtain new upper and lower bounds on d and answer a special case of the problem by Brass, Moser and Pach on covering m-dimensional $k \times \cdots \times k$ grid by linear subspaces.

1 Introduction

Compressed sensing is a relatively new mathematical paradigm that shows a small number of linear measurements are enough to efficiently reconstruct a large dimensional signal under the assumption that the signal is sparse (see, e.g., [4] and its references). That is, given a signal $x \in \mathbb{R}^d$, the goal is to accurately reconstruct x from its noisy measurements $b = Ax + e$. Here, A is an underdetermined matrix $A \in \mathbb{R}^{m \times d}$, where m is much smaller than d, and $e \in \mathbb{R}^m$ is a vector modeling noise in the system. Since the system is highly underdetermined, it is ill-posed until one imposes additional constraints, such as the signal x obeying a sparsity constrain. We say x is s-sparse when it has at most s nonzero entries. Clearly, any matrix A that is one-to-one on 2s-sparse signals will allow reconstruction in the noiseless case when $e = 0$. However, compressed sensing seeks the ability to reconstruct efficiently and robustly even when one allows presence of noise. Motivated by this problem Fukshansky, Needell and Sudakov [5] considered the following extremal problem, which is of independent interest.

Problem 1.1. Given an integers k, m what is the maximum integer d such that there exists $m \times d$ matrix A with integer entries satisfying $|a_{ij}| \leq k$ such that all $m \times m$ submatrices of A are non-degenerate.

To see the connection of this question with integer sparse recovery let $s \leq m/2$ and consider s-sparse signal $x \in \mathbb{Z}^d$. We denote by $\|b\|$ the Euclidean norm of a vector $b = (b_1, \ldots, b_m) \in \mathbb{R}^m$ and by $\|b\|_\infty$ its l_∞-norm: $\|b\|_\infty = \max_{i=1,\ldots,m} |b_i|$. Suppose we wish to decode x from the noisy measurements $b = Ax + e$ where $\|e\|_\infty < \frac{1}{2}$ (in particular, this holds if $\|e\| < \frac{1}{2}$). Note that by definition of matrix A we have that for any m-sparse vector z, $Az \neq 0$ and therefore being integer vector has l_∞-norm at least one. So to decode x we can select the s-sparse signal $y \in \mathbb{Z}^d$ minimizing

∗Laboratory “High-dimensional approximation and applications”, Department of Mechanics and Mathematics, Moscow State University, Moscow, Russia; Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia. Email: konyagin@mi-ras.ru. Research supported by the grant of the Government of the Russian Federation (project 14.W03.31.0031).

†Department of Mathematics, ETH Zurich, Switzerland. Email: benjamin.sudakov@math.ethz.ch. Research supported in part by SNSF grant 200021-175573.
\[\| \mathbf{b} - \mathbf{A} \mathbf{y} \|. \] Then since \(\mathbf{x} \) satisfies \(\| \mathbf{b} - \mathbf{A} \mathbf{x} \|_{\infty} = \| \mathbf{e} \|_{\infty} < \frac{1}{2} \), it must be that the decoded vector \(\mathbf{y} \) satisfies this inequality as well. Therefore, \(\| \mathbf{A} \mathbf{y} - \mathbf{A} \mathbf{x} \|_{\infty} \leq \| \mathbf{b} - \mathbf{A} \mathbf{y} \|_{\infty} + \| \mathbf{b} - \mathbf{A} \mathbf{x} \|_{\infty} < 1. \) Since \(s \leq m/2 \), by definition \(\mathbf{x} - \mathbf{y} \) is an \(m \)-sparse vector, which guarantees that \(\mathbf{y} = \mathbf{x} \) so our decoding was successful. Note that if instead of error 1/2 we want to allow larger error \(C \) we can simply multiply all entries of \(\mathbf{A} \) by a factor of \(2C \).

Fukshansky, Needell and Sudakov [5] showed that a matrix \(\mathbf{A} \in \mathbb{R}^{m \times d} \) with integer entries \(|a_{ij}| \leq k \) and all \(m \times m \) submatrices having full rank must satisfy \(d = O(k^2 m) \). They also proved that such matrices exist when \(d = \Omega(\sqrt{km}) \). Their upper bound was improved by Konyagin [6] who showed that \(d \) must have order at most \(O(k(\log k) m) \) (all logarithms here and later in the paper are in base \(e \)) for \(m \geq \log k \) and at most \(O(k^{m/(m-1)} m^2) \) for \(2 \leq m < \log k \). Improving these results further, in this paper we obtain the following new upper bound.

Theorem 1.2. Let \(\mathbf{A} \) be an \(m \times d \) integer matrix such that \(|a_{ij}| \leq k \), \(m \geq \log k \), and all \(m \times m \) submatrices of \(\mathbf{A} \) have a full rank. If \(k \) is sufficiently large, then \(d \leq 100k\sqrt{\log k} m \) for \(m \geq \log k \) and \(d \leq 400k^{m/(m-1)} m^{3/2} \) for \(2 \leq m < \log k \).

The lower bound construction for Problem 1 uses random matrices and is based on a deep result of Bourgain, Vu and Wood [3] which estimates the probability that a random \(m \times m \) matrix with integer entries from \([-k, k]\) is singular. It is expected that their result is not tight and the probability of singularity for such matrix has order \(k^{-(1-o(1))m} \) as \(k \to \infty \). If this is the case then \(m \times d \) matrices, satisfying Problem 1 exist for \(d \) close to \(km \). This suggests that our new bound for \(m \geq \log k \) is not far from being optimal.

On the other hand, we get the following result.

Theorem 1.3. Let \(k \in \mathbb{N}, m \in \mathbb{N}, m \geq 2, \) and

\[m < d \leq \max(k + 1, k^{m/(m-1)}/2). \]

Then there is an \(m \times d \) integer matrix \(\mathbf{A} \) such that \(|a_{ij}| \leq k \) and all \(m \times m \) submatrices of \(\mathbf{A} \) have a full rank.

We observe that this theorem improves the lower bound from [5] for \(m = o(\sqrt{k}) \). Moreover, the existence of required matrices in [5] was proven by using probabilistic arguments, but the matrices in Theorem 1.3 are explicit and easily computable. Also we notice that upper and lower estimate for \(d \) in Theorems 1.2 and 1.3 differ by a factor \(O(m^{3/2}) \) depending on \(m \) only.

Our result can be also used to answer a special case of the problem by Brass, Moser and Pach. In [2] (Chapter 10.2, Problem 6) they asked, what is the minimum number \(M \) of \(s \)-dimensional linear subspaces necessary to cover \(m \)-dimensional \(k \times \cdots \times k \) grid \(K = \{x \in \mathbb{Z}^m : \|x\|\leq k\} \). Balko, Cibulko and Valtr [1] studied this problem and obtained upper and lower bounds for \(M \). In particular in the case when \(s = m - 1 \) they proved that

\[k^{m/(m-1) - o(1)} \leq M \leq C_m k^{m/(m-1)}. \]

Using Theorem 1.3 we obtain a new lower bound which is tight up to a constant factor.

Corollary 1.4. For \(k \geq m \geq 2 \) we have

\[M \geq k^{m/(m-1)/(2m - 2)}. \]

Indeed, suppose that we cover \(K \) by \(M \) hypersubspaces \(P_1, \ldots, P_M \). We consider the columns of the matrix \(\mathbf{A} \) constructed in Theorem 1.3. Since any \(m \) of them are linearly independent, every subspace \(P_i \) contains at most \(m - 1 \) of these columns. Thus, \(d \leq M(m - 1) \), and the corollary follows.
2 Proof of Theorem 1.2

Let \(t = \lfloor \log k \rfloor \) for \(m \geq \log k \) and \(t = m \) for \(2 \leq m < \log k \). In the first case we suppose that \(d > 100k \sqrt{tm} \) and in the second case we suppose that \(d > 400k^{m/(m-1)}m^{3/2} \). Let \(v_1, \ldots, v_t \) be the first \(t \) rows of the matrix \(A \). Take \(\Lambda = 9 \) if \(m \geq \log k \) and \(\Lambda = \lceil 25k^{1/(m-1)} \rceil \) otherwise. Given a vector of integer coefficients \(\lambda = (\lambda_1, \ldots, \lambda_t) \) such that \(0 \leq \lambda_i \leq \Lambda \) denote by \(v_\lambda \) a linear combination \(\sum_i \lambda_i v_i \). Our goal is to find two combinations \(\lambda \neq \lambda' \) such that corresponding vectors \(v_\lambda \) and \(v'_\lambda \) agree on at least \(m \) coordinates. This will show that a linear combination of first \(t \) rows of matrix \(A \) with coefficients \(\lambda - \lambda' \neq 0 \) has at least \(m \) zeros and therefore the \(m \times m \) submatrix of \(A \) whose columns correspond to these zeros is degenerate, since its first \(t \) rows are linearly dependent.

Consider \(\lambda \) chosen uniformly at random out of \((\Lambda + 1)^t\) possible vectors and look on a value of a fixed coordinate \(j \) of the vector \(v_\lambda \). This value is a random variable \(X \) which is a sum of the \(t \) independent random variable \(X_i \), where \(X_i \) is a value of the \(j \)-th coordinate of \(\lambda_i v_i \). Since \(|a_{ij}| \leq k \), we have that \(|X_i| \leq \Lambda k \) and therefore its variance \(\text{Var}(X_i) \leq \mathbb{E}(X_i^2) \leq \Lambda^2 k^2 \). This implies that \(\text{Var}(X) = \sum_i \text{Var}(X_i) \leq \Lambda^2 k^2 t \). Thus, by Chebyshev’s inequality, with probability at least \(3/4 \) the value of \(X \) belongs to an interval \(I \) of length \(4 \sqrt{\text{Var}(X)} \leq 4 \Lambda k \sqrt{t} \). Hence there are at least \(0.75 \cdot (\Lambda + 1)^t \) linear combinations \(v_\lambda \) whose \(j \)-th coordinate belongs to \(I \). For every integer \(s \) let \(h_j(s) \) be the number of linear combinations \(v_\lambda \) whose \(j \)-th coordinate is \(s \) and let \(h_j \) be the number of ordered pairs \(\lambda \neq \lambda' \) such that \(v_\lambda \) and \(v'_\lambda \) agree on \(j \)-th coordinate. By definition \(0.75 \cdot (\Lambda + 1)^t \leq \sum_{s \in I} h_j(s) \leq (\Lambda + 1)^t \) and \(h_j = \sum_{s} h_j(s)(h_j(s) - 1) \).

If \(m \geq \log k \) and \(\Lambda = 9 \) then using a Cauchy-Schwarz inequality, together with the fact that \(10^t > k^2 \gg k \sqrt{\log k} = k \sqrt{t} \) for sufficiently large \(k \), we have

\[
\begin{align*}
 h_j &= \sum_{s} h_j(s)(h_j(s) - 1) = \sum_{s} h_j^2(s) - \sum_{s} h_j(s) \\
 &\geq \frac{1}{4 \Lambda k \sqrt{t}} \left(\sum_{s \in I} h_j(s) \right)^2 - 10^t \\
 &\geq \frac{1}{80k \sqrt{t}} 10^{2t} - 10^t \\
 &\geq \frac{1}{100k \sqrt{t}} 10^{2t}.
\end{align*}
\]

Since the number of ordered pairs \(\lambda \neq \lambda' \) is at most \(10^{2t} \) and the number of coordinates \(j \) is \(d \), by averaging we obtain that there is a pair \(\lambda \neq \lambda' \) which agrees on at least

\[
\frac{\sum_{j=1}^{d} h_j}{10^{2t}} \geq \frac{d}{100k \sqrt{t}} \geq m
\]

coordinates. As we explain above, this implies that \(A \) has an \(m \times m \) degenerate submatrix.

Now we consider the case \(2 \leq m < \log k \). Then, due to the inequality

\[
\frac{(\Lambda + 1)^m}{8 \Lambda k \sqrt{m}} \geq \frac{25^m k^{m/(m-1)} \sqrt{m}}{200k^{m/(m-1)} \sqrt{m}} > 2,
\]

we have
\[h_j = \sum_s h_j(s)(h_j(s) - 1) = \sum_s h_j^2(s) - \sum_s h_j(s) \geq \sum_{s \in I} h_j^2(s) - (\Lambda + 1)^m \]
\[
\geq \frac{1}{4Ak\sqrt{m} + 1} \left(\sum_{s \in I} h_j(s) \right)^2 - (\Lambda + 1)^m
\]
\[
\geq \frac{1}{4Ak\sqrt{m} + 1} \left(0.75 \cdot (\Lambda + 1)^m \right)^2 - (\Lambda + 1)^m
\]
\[
\geq (\Lambda + 1)^m \left(\frac{(\Lambda + 1)^m}{8Ak\sqrt{m}} - 1 \right) \geq (\Lambda + 1)^{\frac{m}{16Ak\sqrt{m}}}.
\]

Since the number of ordered pairs \(\lambda \neq \lambda' \) is at most \((\Lambda + 1)^{2m}\) and the number of coordinates \(j \) is \(d \), by averaging we obtain that there is a pair \(\lambda = \lambda' \) which agrees on at least
\[
\frac{\sum_{j=1}^d h_j}{(\Lambda + 1)^{2m}} \geq \frac{d}{16Ak\sqrt{m}} \geq m
\]
coordinates as required. This completes the proof of the theorem. \(\square \)

3 Proof of Theorem 1.3

We have to construct required \(m \times d \) matrices with \(d \geq k + 1 \) provided that \(k \geq m \) and \(d \geq k^{m/(m-1)/2} \) provided that \(k^{m/(m-1)/2} > m \).

First we will construct an \(m \times d \) matrix with \(d \geq k + 1 \). There exists an odd prime \(d \) with \(k + 1 \leq d \leq 2k + 1 \). We define the matrix \(A \) by taking \(a_{i,j} \equiv j^{-1}(\text{mod } d) \) with \(|a_{i,j}| \leq (d-1)/2 \leq k \). Considering the matrix \(A \) modulo \(d \) we find that any submatrix of \(A \) of size \(m \times m \) is a Vandermonde matrix modulo \(d \). Hence, its determinant is not zero modulo \(d \). This implies that this submatrix has a full rank.

Next we will construct an \(m \times d \) matrix with \(d \geq k^{m/(m-1)/2} \). We can consider that \(k^{m/(m-1)/2} > k + 1 \) and, in particular, \(k \geq 3 \). There exists a prime \(d \) with \(k^{m/(m-1)/2} \leq d < k^{m/(m-1)} \). For \(u \in \mathbb{R} \) we denote by \(\lfloor u \rfloor \) the distance from \(u \) to the nearest integer. We consider the \(m \times d \) matrix \(A' \) with entries \(a'_{i,j} = j^{-1} \). Again, the determinant of any \(m \times m \) submatrix of \(A' \) is not zero modulo \(d \). The idea is to multiply the columns of \(A' \) by appropriate integers not divisible by \(d \) and to replace all entries by integers congruent modulo \(d \) with absolute values bounded by \(k \). Clearly, these operations preserve the above mentioned property of submatrices of the matrix.

Using Dirichlet’s theorem on simultaneous approximations (see, e.g., [7], Chapter 2, Theorem 1A and the remark after it), we find that for every \(j = 1, \ldots, d \) there is a positive integer \(l_j < d \) such that \(\lfloor l_j j^{-1} / d \rfloor \leq d^{-1/m} \) for \(i = 1, \ldots, m \). Hence, for any \(i \) there is an integer \(a_{i,j} \) such that \(a_{i,j} \equiv l_j j^{-1} (\text{mod } d) \) and \(|a_{i,j}| \leq d^{1-1/m} \leq k \) as required. This completes the proof of Theorem 1.3 \(\square \)

References

[1] M. Balko, J. Cibulka, and P. Valtr, Covering lattice points by subspaces and covering point–hyperplane incidences, Discrete Comput. Geom. 61 (2019), 325–354
[2] P. Brass, W. Moser and J. Pach, *Research problems in discrete geometry*, Springer, New York, 2005.

[3] J. Bourgain, V. Vu, P. M. Wood, On the singularity probability of discrete random matrices, *J. Funct. Anal.* 258 (2010), 559–603.

[4] S. Foucart and H. Rauhut, *A Mathematical Introduction to Compressive Sensing*, Springer, New York, 2013.

[5] L. Fukshansky, D. Needell, and B. Sudakov, An algebraic perspective on integer sparse recovery, *Applied Mathematics and Computation* 340 (2019), 31–42.

[6] S. V. Konyagin, On the recovery of an integer vector from linear measurements, *Mathematical Notes*, 104 (2018), 859–865.

[7] W. M. Schmidt, Diophantine approximation, *Lecture Notes in Mathematics*, 785, Springer–Verlag, Berlin–Heidelberg–New York, 1980.