ON THE CONTRIBUTION OF GAMMA-RAY BURSTS TO THE GALACTIC INVENTORY OF SOME INTERMEDIATE-MASS NUCLEI

JASON PRUET,1 REBECCA SURMAN,2,3 AND GAIL C. MCLAUGHLIN3

Received 2003 September 26; accepted 2004 January 12; published 2004 February 11

ABSTRACT

Light curves from a growing number of gamma-ray bursts (GRBs) indicate that GRBs copiously produce radioactive Ni moving outward at fractions of the speed of light. We calculate nuclear abundances of elements accompanying the outflowing Ni under the assumption that this Ni originates from a wind blown off of a viscous accretion disk. We also show that GRBs likely contribute appreciably to the Galactic inventory of 42Ca, 45Sc, 46Ti, 49Ti, and 63Cu, and may be an important site for the production of 64Zn.

Subject headings: accretion, accretion disks — gamma rays: bursts — nuclear reactions, nucleosynthesis, abundances

1. INTRODUCTION

In this Letter we consider the contribution of gamma-ray bursts (GRBs) to the Galactic inventory of some Fe-group elements. Our study is motivated by mounting evidence that a fair fraction of GRBs are associated with the production of a sizable amount of 56Fe moving out with near-relativistic velocities (Price et al. 2003; Stanek et al. 2003; Hjorth et al. 2003; Patat et al. 2001; Iwamoto et al. 1998; Woosley & Heger 2003; Maeda et al. 2003). The 56Fe to which the radioactive Ni decays is not important for the present-day inventory of that element. As we discuss, however, other isotopes synthesized in the unique outflow producing 56Ni likely are important for Galactic chemical evolution.

Although there are other possibilities, we assume that GRBs are produced by a viscous black hole accretion disk formed after the collapse of a rotating massive star (Woosley 1993; MacFadyen & Woosley 1999). Within the context of this collapsar model there are two possible origins for the observed Ni. As in “successful” supernovae (SNe), Ni may be synthesized explosively as a strong shock traverses the stellar mantle and explodes the star. Maeda & Nomoto (2003) have discussed nucleosynthetic consequences of this picture. Those authors show that a very energetic shock driven by bipolar jets synthesizes a peculiar abundance pattern that may be responsible for anomalies observed in extremely metal-poor stars.

The second possibility is that observed Ni comes from a vigorous wind blown from the accretion disk (MacFadyen 2003; MacFadyen & Woosley 1999; Pruet, Thompson, & Hoffman 2004). We discuss implications of this scenario, which is qualitatively different from shock-driven nucleosynthesis. Rather than develop a theory describing the disk wind, we simply begin with the assumption that a wind is responsible for observed Ni. As we show, this is sufficient to allow interesting statements about nucleosynthesis. However, it should be kept in mind that the origin of the Ni and the nature of the GRB central engine remain uncertain. It should also be emphasized that if a wind is responsible for observed Ni, there is likely still interesting explosive nucleosynthesis occurring in the collapsar. Both explosive synthesis and the disk wind will contribute to the enrichment of the interstellar medium.

2. NUCLEI ACCOMPANYING Ni IN A DISK WIND

Nucleosynthesis in the disk wind is sensitive to the dynamic timescale τdyn, characterizing the expansion of the wind, the entropy per baryon s in the wind, and the neutron-to-proton ratio (n/p) in the wind. To a large degree these parameters are constrained by observation. These constraints follow in part from the observations that Ni is ejected relativistically. Also, the efficiency for Ni production cannot be too low, because the disk can eject at most 1 or 2 M_\odot of fast and initially hot material. In order to account for the $\sim 1/4 M_\odot$ of Ni inferred from the light curves of SN 1998bw and SN 2003dh, the mass fraction of Ni in the wind must satisfy $Y_{\text{Ni}}(x^{56}\text{Ni}) \approx 1/4$ if only 1 or 2 M_\odot of material are ejected from the disk.

The presence of any 56Ni implies that $Y_{\text{e}} > 0.485$ (Hartmann, Woosley, & El Eid 1985). Here the electron fraction $Y_{\text{e}} = p/(n + p)$. A high efficiency for Ni production [$X(\text{Ni}) > 0.25$] implies $Y_{\text{e}} \approx 1/2$, with the exact value depending on the other outflow parameters.

Detailed estimates of the electron fraction cannot be made without reference to a specific disk/outflow model. This is because the temperature and density in the disk are high enough that weak interactions determine the composition of the disk (Popham, Woosley, & Fryer 1999; Pruet, Woosley, & Hoffman 2003; Beloborodov 2003; Surman & McLaughlin 2004) and the composition of the wind flowing off the disk. Pruet et al. (2004) employed a steady state wind picture to model the disk outflow and found asymptotic electron fractions anywhere in the range 0.50–0.55, with the value depending sensitively on the accretion rate and viscosity of the disk. Surman & McLaughlin (2004) studied the influence of charged-current neutrino capture and found that neutrino capture can increase the electron fraction by a considerable fraction if the neutrino luminosity of the disk is large. Charged-current neutrino capture is expected to increase the asymptotic electron fraction in outflows from a “canonical” disk with viscosity $\alpha = 0.1$, mass accretion rate $M = 0.1 M_\odot$ s$^{-1}$, and Kerr parameter $a = 0.95$ by as much as $\delta Y_{\text{e}} \approx 0.05$. For other trajectory/disk models the effect may be larger. The largest Y_{e} consistent with efficient Ni production is $Y_{\text{e}} \approx 0.60$, with the exact value again depending on other outflow parameters.

Uncertainty in the electron fraction is somewhat of a hindrance to the present study. However, as we will show, certain

1 Lawrence Livermore National Laboratory, N-Division, L-414, Livermore, CA 94550; pruet1@llnl.gov.
2 Department of Physics, Union College, Schenectady, NY 12308; surmanr@union.edu.
3 Department of Physics, North Carolina State University, Box 8202, Raleigh, NC 27695-8202; gail_mclaughlin@ncsu.edu.
nuclei will have substantial overproduction factors as long as $0.505 < Y$. The special case of $0.50 < Y < 0.505$ will be mentioned, but not emphasized, because it seems unlikely that the electron fraction in the bulk of the outflow should be within 1% of the minimum value for efficient Ni production. By contrast, in explosive burning Y_e is set not by weak interactions, but by the initial nearly isospin symmetric composition of the burning shell.

To make inferences about the dynamic timescale and entropy in the wind, we assume that the wind is coasting at the low temperatures important for nucleosynthesis. The assumption that the wind is not accelerating at $T_e \approx T/10^9 \text{K} < 5$ seems plausible, since an accelerating wind generally expands too quickly for efficient Ni synthesis. In addition, there is little enthalpy left for driving acceleration at such low temperatures. The great kinetic energy of the wind, and small radii at which the wind achieves low temperatures, argue that outflows from the disk are not decelerated significantly before nuclear recombination. However, the assumption of a coasting wind will have to be tested against numerical simulations that include expulsion of the stellar mantle in a consistent way.

Mass conservation determines the evolution of coasting winds through $M = 4\pi r^2 \rho v_j$, where ρ is the density, v_j is the asymptotic velocity, and M is an effective spherical mass outflow rate. For these winds the dynamic timescale is conveniently expressed in terms of the entropy and

$$\beta \equiv \frac{M_{\text{ej}}}{v_{j1}}. \quad (1)$$

Here $M_{\text{ej}} = M/0.1 M_\odot$ s$^{-1}$ and $v_{j1} = v/0.1c$. To make inferences about β and s, note that efficient Ni production implies that $\beta \approx 3$ if $s = 50$, and $\beta \approx 0.6$ if $s = 50$ (see Fig. 3 in Pruet et al. 2004). In addition, if the Ni outflow is to be relativistic ($v_{j1} \approx 1$), β cannot be larger than about 20.

With estimates for Y_e and the expected range of β and s, we can calculate nucleosynthesis in the disk wind. The reaction network used here was developed with proton-rich burning in X-ray bursts in mind and has recently been described in Woosley et al. (2004). We use a fixed (rather than adaptive) network that includes elements with $Z = 1–52$. For elements with $13 < Z < 41$ we typically include all isotopes with $-30 < Z - N < 9$, which is a large enough network to contain the nuclear flow.

In Figure 1 we show the results of nucleosynthesis calculations for different assumptions about the wind parameters. These assumptions are thought to approximately bracket the expected range of conditions in those accretion disk outflows that synthesize 56Ni with modest or high efficiencies. The unnormalized overproduction factor for nucleus j is defined here as $X_j/X_{j,pp}$, where X_j is the mass fraction of the nucleus j in the wind, and $X_{j,pp}$ is the mass fraction of the nucleus in the Sun. Although the finer details of nucleosynthesis depend on the wind parameters, there are some interesting features of the nucleosynthesis that do not. In particular, 42Ca, 45Sc, 46Ti, 49Ti, 63Cu, and 65Zn are all overproduced by large factors independent of the wind parameters. The abundance pattern is quite different from the abundance yields obtained in an explosive burning scenario (see Table 2). This is not surprising, since relativistic winds and explosive shock-burning are very different events.

The influence of Y_e on the nuclear abundances is addressed in Table 1. In this table, production factors for several nuclei are shown for a wind described by $\beta = 4$ and $s = 30$. Here the production factor for nucleus j is defined as

$$O(j) = \frac{M_j}{X_{j,pp}} = \frac{M^{\text{wind}}}{M^{\odot}} \frac{X_j}{X_{j,pp}}, \quad (2)$$

where M_j is the total mass of the nucleus j ejected in the wind, $M^{\text{wind}} \approx 1–2 M_\odot$ is the total mass coming from the disk in the form of a wind, and $M^{\odot} \approx 10–20 M_\odot$ is the total mass ejected in the supernova explosion.

As can be seen from Table 1, changing Y_e from 0.50 to 0.505 results in dramatic changes in the nucleosynthesis. For $0.51 < Y_e < 0.60$, 42Ca, 45Sc, 46Ti, and 49Ti have production fac-
from collapsars. In particular, if half or more of the production factors are generally most sensitive to if weak interactions somehow conspire to set the electron fraction within 1% of $Y_e = 0.50$. As can be seen, an electron fraction very close to $\frac{1}{2}$ might have interesting implications for 64Zn.

For definiteness we focus on parameters that are between the more extreme cases shown in Figure 1, such as $s = 30$, $\beta = 4$, and $Y_e = 0.51$. In Table 2 we show the production factors for nuclei synthesized in this wind. For reference and to underscore the importance of a detailed understanding of conditions in collapsar outflows, we also show production factors for two somewhat slower winds ($\beta = 16$) with $s = 30$ and 50. The last column in Table 2 gives production factors for the SN explosion of a 20 M_\odot star as calculated by Woosley & Weaver (1995). Note that the production factors for the reference supernova are of an order of 10, which is the typical value required to explain the presence of nuclei attributed to Type II SNe (Mathews, Bazan, & Cowan 1992). By contrast, the production factors for the collapsar wind are 100 or greater in some cases. To connect this with Galactic chemical evolution, note that the “SN-equivalent production factor” for collapsars is

$$O^\text{equiv} = O_f,$$

where O_f is the fraction of core collapse SNe that become collapsars.

The fraction of SNe that become collapsars is not well known. Observationally, the GRB rate is $\sim 1/100$ the SN rate (e.g., Frail et al. 2001). This implies the rough lower limit $f_c \approx 0.01$. The true fraction is likely larger, because special conditions must be met in order for a collapsar to be observed as a GRB. For example, the hydrogen envelope of the progenitor star must have been blown off in order for a jet to make its way out of the star (e.g., the SN must be of Type Ib/c). Heger et al. (2003) estimate that f_c could be as large as 0.1, depending on the metallicity and initial mass function for stellar formation.

Nuclei with $O_f \approx 5–10$ will have significant contributions from collapsars. In particular, if $f_c \approx 1/80$, half or more of the Galactic abundance of 45Sc will come from collapsars if $O(^{45}$Sc $\sim 400)$. If $f_c \approx 0.02–0.1$ then the abundances of 42Ca, 43Sc, 45Sc, 49Ti, 51V, 65Cu, and 64Zn can have significant contributions from collapsars. A detailed discussion of implications of nucleosynthesis in collapsars is beyond the scope of this Letter. Here we discuss some interesting implications that can be inferred from the work of Woosley & Weaver (1995) and Timmes, Woosley, & Weaver (1995):

42Ca.—In SNe this isotope is made during explosive oxygen burning in sufficient quantities to explain the observed solar abundance. 40Ca is about 100 times more abundant than 42Ca in SN ejecta. In the present calculations, however, 42Ca and 40Ca are ejected with similar abundances. Future observation of comparable 42Ca and 40Ca abundances in a metal-poor star might indicate enrichment by a collapsar.

43Sc.—This is the only stable Sc isotope. Chemical evolution studies show that at low metallicities, Sc is underproduced by about a factor of 1.5 relative to observation. Our calculations indicate that collapsars can synthesize sufficient Sc to explain the discrepancy if the electron fraction in the disk wind is larger than about 0.51.

49Ti.—This isotope is underproduced by about a factor of 2 in chemical evolution studies. Collapsars can explain the discrepancy if $f_c \approx 1/60$ and $Y_e \approx 0.505$.

64Zn.—The origin of this isotope is a mystery, since it is underproduced by about a factor of 5 in chemical evolution studies. One possible site for the origin of this isotope is the modest entropy early-time neutrino-driven wind occurring after core bounce in SNe (Woosley & Hoffman 1992). Collapsars may be another if the electron fraction in the disk wind is less than about 0.51.

In addition to implications for chemical evolution and abundances in metal-poor stars, the scenario we discuss also has implications for recently observed X-ray emission lines that have been interpreted as iron (e.g., Piro et al. 1999, 2000; Antonelli et al. 2000; for a review see Boettcher 2002). It has been suggested that these lines may instead be nickel; for example, either nickel produced in the disk that lines the falls of the hole left over from the jet, or small amounts of nickel that

\begin{table}[h]
\centering
\caption{Dependence of the Nucleosynthesis on the Wind Entropy and Dynamic Timescale}
\begin{tabular}{|c|c|c|c|c|}
\hline
Nucleus & $O_f (\beta = 4, s = 30)$ & $O_f (\beta = 16, s = 30)$ & $O_f (\beta = 16, s = 50)$ & O_f (S25A) \\
\hline
39Cl [25] & 6 & 7 & 8 & 13 \\
30K [93] & 4 & 6 & 7 & 6 \\
40Ca [0.65] & 152 & 119 & 77 & 15 \\
40Sc [100] & 383 & 371 & 232 & 5 \\
40Ti [8.0] & 175 & 238 & 167 & 11 \\
40Ti [5.5] & 328 & 311 & 390 & 7 \\
55V [99.7] & 99 & 98 & 119 & 7 \\
40Cr [4.3] & 27 & 12 & 6 & 12 \\
40Mn [100] & 6 & 6 & 5 & 6 \\
40Fe [92] & 17 & 22 & 15 & 5 \\
50Co [100] & 55 & 18 & 9 & 7 \\
44Ni [26] & 39 & 50 & 36 & 5 \\
40Cu [69] & 55 & 14 & 5 & 26 \\
60Ni [49] & 95 & 140 & 85 & 3 \\
\hline
\end{tabular}
\end{table}

Note.—Dependence of the nucleosynthesis on the wind entropy and dynamic timescale is calculated assuming a total wind mass of 1 M_\odot and a total stellar ejecta mass of 20 M_\odot. All results here are for $Y_e = 0.51$.

\begin{itemize}
\item a Values shown in brackets are the percent contribution of each isotope to the total abundance of that element in the Sun (Anders & Grevesse 1989). Only isotopes with a production factor larger than 0.5 are shown. Nuclei not shown here have production factors smaller than $\sim 1/50$ the production factors of the most overproduced nuclei in the wind.
\item b As a reference point, in this model 40Ca has a production factor of 1.3.
\item c From model S25A of Woosley & Weaver (1995).
\end{itemize}
have been ejected at rapid velocities behind the jet (McLaughlin et al. 2002; McLaughlin & Wijers 2002). As we have discussed, if a disk wind is responsible for 56Ni production, then Ni is by far the most abundantly produced element in the wind. The second most abundant element by mass (generally Zn) typically contributes at the $\leq 5\%$ level. Therefore, if this is the mechanism for producing the observed X-ray line features, one would expect an initial strong line or lines from the nickel, with much weaker lines from other elements such as zinc. Explosive burning, on the other hand, produces considerable nickel, but also with large mass fractions of light elements such as 24Mg. Such light elements will also be present in the stellar envelope above the wind. Furthermore, if both a disk wind and explosive nucleosynthesis occur, then one may be able to observe lines from the combination of elements produced in each.

3. SUMMARY

Observations of 56Ni associated with GRBs hint at the occurrence of a unique nucleosynthesis event. Massive, modest entropy, relativistic winds may be responsible for production of observed Ni. If so, GRBs are important for Galactic chemical evolution and can make important contributions to the abundances of 42Ca, 43Sc, 44Ti, 45Ti, 49Ti, 64Zn, and 66Zn.

J. P. gratefully acknowledges Stan Woosley for guidance and many helpful suggestions. We are also indebted to Rob Hoffman for help with nucleosynthesis calculations and to Keiichi Maeda for carefully reading the Letter and providing many insightful comments. This research has been supported through a grant from the US DOE Program for Scientific Discovery through Advanced Computing (SciDAC; DE-FC02-01ER41176). This work was performed under the auspices of the US DOE by the University of California Lawrence Livermore National Laboratory under contract W-7405-ENG-48. G. C. M. acknowledges support from US DOE under grant DE-FG02-02ER41216.

REFERENCES

Anders, E., & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197
Antonelli, L. A., et al. 2000, ApJ, 545, L39
Beloborodov, A. M. 2003, ApJ, 588, 931
Boettcher, M. 2002, preprint (astro-ph/0212034)
Frail, D., et al. 2001, ApJ, 562, L55
Hartman, D., Woosley, S. E., & El Eid, M. 1985, ApJ, 297, 837
Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H. 2003, ApJ, 591, 288
Hjorth, J., et al. 2003, Nature, 423, 847
Iwamoto, K., et al. 1998, Nature, 395, 672
MacFadyen, A. I. 2003, in From Twilight to Highlight: The Physics of Supernovae, ed. W. Hillebrandt & B. Leibundgut (Berlin: Springer), 97
MacFadyen, A. I., & Woosley, S. E. 1999, ApJ, 524, 262
Maeda, K., Mazzali, P., Deng, J., Nomoto, K., Yoshii, Y., Tomita, H., & Kobayashi, Y. 2003, ApJ, 593, 931
Maeda, K., & Nomoto, K. 2003, ApJ, 598, 1163
Mathews, G. J., Bazan, G., & Cowan, J. J. 1992, ApJ, 391, 719
McLaughlin, G. C., & Wijers, R. A. M. J. 2002, ApJ, 580, 1017
McLaughlin, G. C., Wijers, R. A. M. J., Brown, G. E., & Bethe, H. A. 2002, ApJ, 567, 454
Patat, F., et al. 2001, ApJ, 555, 900
Piro, L., et al. 1999, ApJ, 514, L73
———. 2000, Science 290, 955
Price, P. A., et al. 2003, ApJ, 589, 838
Pruet, J., Thompson, T. A., & Hoffman, R. D. 2004, ApJ, in press
Pruet, J., Woosley, S. E., & Hoffman, R. D. 2003, ApJ, 586, 1254
Stanek, K. Z., et al. 2003, ApJ, 591, L17
Surman, R., & McLaughlin, G. C. 2004, ApJ, in press (astro-ph/0308004)
Timmes, F. X., Woosley, S. E., & Weaver, T. A. 1995, ApJS, 98, 617
Woosley, S. E. 1993, ApJ, 405, 273
Woosley, S. E., & Heger, A. 2003, ApJ, submitted (astro-ph/0309165)
Woosley, S. E., & Hoffman, R. D. 1992, ApJ, 395, 202
Woosley, S. E., & Weaver, T. A. 1995, ApJS, 101, 181
Woosley, S. E., et al. 2004, ApJS, 151, 75