Breakup of Air Bubbles in Water:
Memory and Breakdown of Cylindrical Symmetry

Nathan C. Keim,∗ Peder Møller, Wendy W. Zhang, and Sidney R. Nagel
James Franck Institute, University of Chicago, 929 E. 57th St., Chicago, IL 60637, USA
(Dated: August 11, 2021)

Using high-speed video, we have studied air bubbles detaching from an underwater nozzle. As a
bubble distorts, it forms a thin neck which develops a singular shape as it pinches off. As in other
singularities, the minimum neck radius scales with the time until breakup. However, because the
air-water interfacial tension does not drive breakup, even small initial cylindrical asymmetries are
preserved throughout the collapse. This novel, non-universal singularity retains a memory of the
nozzle shape, size and tilt angle. In the last stages, the air appears to tear instead of pinch.

PACS numbers: 47.55.db, 47.55.df, 02.40.Xx

The delightful tingling felt when drinking carbonated beverages, the glee of children blowing bubbles in a bath-
tub, and the importance of deep underwater fissures venting gasses into the oceans hint at the richness and sig-
nificance of bubble formation in determining the texture and composition of our world. However, the process by
which a bubble is formed is still full of surprises. A drop or bubble breaks up by forming a neck that thins to
atomic dimensions, a process described as an approach towards a singularity where physical quantities such as
stress or pressure grow infinitely large. Singularities of
ten organize the overall dynamical evolution of nonlinear systems. Each symmetry in nature implies an underlying
conservation law, so that the symmetries of the singularity associated with pinch-off naturally have important
consequences for its dynamics. It was previously believed [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] that the pinching neck
of any drop or bubble would become cylindrically (i.e. azimuthally) symmetric in the course of pinch-off. Re-
cently, pinching necks of air in water were observed to lose cylindrical symmetry in the course of detachment [13, 14].

Here we show that this loss of symmetry is caused by a new form of memory in singular dynamics: even a small
asymmetry in the initial conditions is preserved throughout bubble detachment. This novel singularity retains a
memory of the nozzle shape, size and tilt angle. The asymmetry can be made so great that the air appears to
tear. This symmetry breaking may be important in numerous applications [13, 14, 15], for understanding
other physical processes which are modeled as the formation of a singularity, such as star or black hole formation [15] and supernova explosions [16]. Thus our experimental observation of the breakdown of cylindrical symmetry in the air bubble demonstrates a new view of dynamical singularities that may be relevant even on a celestial scale.

Singularities govern the dynamics in many familiar break-up events, such as the dispersal of oil drops into
vinegar during the making of a salad dressing, or the dripping of water from a leaky faucet. For many fluid
pairs — for example, one viscous fluid breaking in a surrounding fluid of high viscosity [7, 8, 12] — the shape and
dynamics of the pinching neck depend solely on the fluid
parameters, as the breakup forgets its initial conditions
on approaching the singularity. Such universal behavior,
where the dynamics of pinch-off are dominated solely by
the singularity that lies at its end, was until recently
thought to be the only way in which a fluid could break
apart. However, Doshi et al. [20] discovered an excep-
tional form of pinch-off when an inviscid fluid pinches off
inside a viscous one. Here the axial curvature of the neck is preserved and a change in nozzle size is remembered
throughout breakup. That any memory of initial condi-
tions persists is surprising and raises new questions about
the possible types of dynamics near a singularity: during
pinch-off, how much and what kind of information can be
remembered about initial conditions, and how does this
memory influence the permanent structures that appear
after the singularity has been formed?

In this letter, we show that when an air bubble breaks
off from a submerged nozzle, not only does the pinching
neck of air retain an indelible imprint of its initial geometry,
but the initial azimuthal asymmetry alters the num-

*Electronic address: nkeim@uchicago.edu

FIG. 1: Pinch-off of an air bubble from a level underwater, circular nozzle with radius \( R_N = 4.1 \) mm. (a) The bubble appears dark, except for bright optical artifacts. (b) A magnified sequence of pinch-off. In the last frame, the single \( \sim 5 \) µm satellite bubble is circled. \( \Delta t \) gives the time between frames.
ber and subsequent trajectories of satellite bubbles. Extreme asymmetries in the initial shape of the air bubble result in a new, fully three-dimensional mode of pinch-off, in which the air tears apart in successive sharp jerks, instead of pinching at a point.

Normally, surface tension can be relied upon to restore the cylindrical symmetry of a pinching liquid neck even when the initial conditions are asymmetric. However, as first pointed out by Longuet-Higgins et al. [21] and subsequently elaborated by experiments and simulations [13, 14, 22, 23, 24, 25, 26], the detachment of an air bubble from a nozzle is not a collapse driven by surface tension, but rather is an implosion due to a pressure difference between the hydrostatic pressure in the water and the bubble pressure, $\Delta P = \Delta \rho g a$. Here $a$ is the linear size of the bubble:

$$a = \left( \frac{R_N \sigma}{g \Delta \rho} \right)^{1/3}$$

(1)

where $R_N$ is the nozzle radius, $\sigma$ is the surface tension, $\Delta \rho$ is the difference in the densities of the liquid and the air, and $g$ is the gravitational acceleration. [23]. The relevant experiment to indicate if surface tension plays a role in the asymptotic dynamics, is to measure the radius of the neck of air at its narrowest part, $h_{\text{min}}$, as a function of $\tau$, the time left to the singularity. If the implosion dynamics persist until breakup, then

$$h_{\text{min}} = \beta (a^3 g)^{1/4} \tau^{-\alpha_h}$$

(2)

where $\beta$ is a numeric prefactor and $\alpha_h = 1/2$.

Burton et al. [23] reported excellent experimental agreement with this result. We note here that surface tension sets the initial size of the bubble but plays no role in the dynamics. This therefore sets bubble detachment apart from all other breakup situations studied so far where one or both fluids are viscous, or where two inviscid fluids differ little in density, as well as from the inverse case of water in air. In those cases, the breakup is driven by surface tension and $\alpha_h \geq 2/3$ [3, 11, 12, 13, 14, 21, 22, 23]. Here we observe the consequences of a different driving mechanism on the breakup dynamics.

To create bubbles, we use a syringe pump to release air from circular underwater nozzles with radii $R_N$ from 1.5 mm to 4.1 mm. The nozzle and water tank rest on a precision two-axis tilting platform, which allows us to break and restore cylindrical symmetry. In contrast to Bergmann et al. [17], our bubbles from circular nozzles are produced quasi-statically (0.03 s$^{-1}$), and so neither the Froude nor Bond number is a control parameter. Oblong nozzles are also used to introduce more extreme asymmetries. Bubbles are back-lit, and photographed with a Vision Research “Phantom” Version 7 camera at rates up to 130,000 frames/s. For each video frame, a computer traces the neck profile and obtains $h_{\text{min}}$.

Burton et al. [23] reported the remarkable observation that instead of proceeding smoothly to zero radius, the neck of air abruptly breaks apart in what they term a “rupture” at $h_{\text{min}} \approx 25 \mu m$, which they attribute to a Kelvin-Helmholtz instability that is intrinsic to the dynamics. However, as shown in Fig. [1] when the nozzle is carefully leveled, we find that the pinch-off appears to be cylindrically symmetric and proceeds, without rupture, to scales below our camera resolution (~4 \mu m). Figure [2] shows $h_{\text{min}}$ versus $\tau$ for two nozzles. The data are well fit with a power law: $h_{\text{min}} \propto \tau^{\alpha_h}$, with $\alpha_h = 0.56 \pm 0.03$. This is consistent with simulations of Leppinen et al. who found $\alpha_h \approx 0.55$ [25] but exclude $\alpha_h = 0.50$ [21, 22, 23]. Our data cannot distinguish pure power-law behavior with $\alpha_h = 0.56$ (solid lines in Fig. [2]) from a power law $\alpha_h = 0.50$ with logarithmic corrections (dotted lines) that have been derived for Eq. [14, 24] — a limitation also encountered by Bergmann et al. at low Froude numbers. However, these corrections are derived by assuming a slender cylinder, which we believe is a poor approximation to our neck shape. The pure power-law prefactor scales approximately as $R_N^{2/3}$, as predicted by Eqs. [11] and [21]. In a forthcoming paper we will present a more detailed analysis of the dependence on $R_N$ and $\sigma$, and the scaling of the entire neck profile in both the radial and axial directions. [27]. Here the exponent $\alpha_h$ is considerably smaller than 2/3. We suggest that the neck of an air bubble could collapse so rapidly that the force due to surface tension would not keep pace with the evolving dynamics; hydrostatic pressure and Bernoulli pressure instead drive the breakup [21, 28]. We now show that, as break-up is approached, surface tension is indeed no longer effective at erasing cylindrical asymmetry and that this has

![Figure 2: Scaling of $h_{\text{min}}$ versus $\tau$ for bubbles released in water from circular nozzles of $R_N = 1.5$ mm (open circles) and 4.1 mm (closed circles). Solid lines show power-law fits with exponent $\alpha_h = 0.56$, and dashed lines show fits with logarithmic corrections [14, 24]. Data are taken from multiple pinchoffs, and only data for $\tau \leq 230 \mu s$ are used for fitting. Inset: For the tilted-nozzle image sequences shown in Fig. [3], the radial size of the neck scales differently in the “front” ($h_{\text{front}}$) and “side” ($h_{\text{side}}$) directions.](image)
For these pinch-offs, the nozzle’s tilt is indicated in the bottom-left frame; in the front images, it is tilted away from the camera. Front and side images are from separate sequences, but were selected to match length scales closely. (a) The neck is broadened before breakup, resembling a crimped and bent double cone. A pair of satellite bubbles ~15 μm in diameter is produced. Afterward, the tip of each interface is bifurcated. (b) In these 2 μs exposures, the final form of the neck is captured along with the initial positions of the satellite bubbles. The neck reaches zero thickness while it is still ~20 μm wide, resulting in a what appears to be a “rupture” instead of a smooth, symmetric pinch-off.

![Figure 3: “Front” and “side” views of pinch-off from an R_N = 4.1 mm nozzle tilted by 2°. The nozzle’s tilt is indicated in the bottom-left frame; in the front images, it is tilted away from the camera. Front and side images are from separate sequences, but were selected to match length scales closely. (a) The neck is broadened before breakup, resembling a crimped and bent double cone. A pair of satellite bubbles ~15 μm in diameter is produced. Afterward, the tip of each interface is bifurcated. (b) In these 2 μs exposures, the final form of the neck is captured along with the initial positions of the satellite bubbles. The neck reaches zero thickness while it is still ~20 μm wide, resulting in a what appears to be a “rupture” instead of a smooth, symmetric pinch-off.](image)

We can test for a memory of asymmetry by tilting the nozzle slightly away from the vertical axis. Figure 3 represents pinch-off for tilt angles ≥ 1°. Even this small tilt flattens the neck sufficiently to produce two satellite bubbles instead of the single one found with the leveled nozzle (as shown in the last panel of Fig. 1(b)); the interface has an increasingly bifurcated appearance after pinch-off; and the breakup event is no longer centered above the nozzle, but is shifted laterally away from the direction of tilt (i.e. rightward in the “side” views of Fig. 3). For these pinch-offs, h_{min} also scales as a power law, with \( \alpha_h = 0.59 \pm 0.02 \). Even deviations as small as 0.07° from the vertical axis give rise to visible lateral asymmetry in the interface profile ~100 μs after pinch-off. This smaller tilt corresponds to a displacement of only 10 μm at the rim of the \( R_N = 4.1 \) mm nozzle used in Fig. 3. The effects of tilting are most pronounced for the larger nozzle. The rupture observed by Burton et al. [22] resembles our photographs taken with a small tilt (Fig. 3). We have seen that by carefully leveling the nozzle we can delay rupture to scales below our resolution (4 μm); rupture is therefore unlikely to be caused by an intrinsic Kelvin-Helmholtz instability at ~25 μm as Burton et al. suggested.

![Figure 4: Pinch-off of a burst of air from a slot-shaped nozzle, displaying strong cylindrical asymmetry. (a) For slower bursts, the neck is broadened with a scalloped profile. In a series of discrete events, it “tears” iteratively from one or both sides. (b) For faster bursts, the neck is more ribbon-like. The ribbon thins until coalescence is initiated, creating a hole in the center of the neck. The remaining two columns of air quickly break. Each of the topological transitions creates one or more satellite bubbles. (c) Under the conditions for (b), we also see off-center tearing that combines aspects of (a) and (b).](image)

FIG. 3: “Front” and “side” views of pinch-off from an \( R_N = 4.1 \) mm nozzle tilted by 2°. The nozzle’s tilt is indicated in the bottom-left frame; in the front images, it is tilted away from the camera. Front and side images are from separate sequences, but were selected to match length scales closely. (a) The neck is broadened before breakup, resembling a crimped and bent double cone. A pair of satellite bubbles ~15 μm in diameter is produced. Afterward, the tip of each interface is bifurcated. (b) In these 2 μs exposures, the final form of the neck is captured along with the initial positions of the satellite bubbles. The neck reaches zero thickness while it is still ~20 μm wide, resulting in a what appears to be a “rupture” instead of a smooth, symmetric pinch-off.

FIG. 4: Pinch-off of a burst of air from a slot-shaped nozzle, displaying strong cylindrical asymmetry. (a) For slower bursts, the neck is broadened with a scalloped profile. In a series of discrete events, it “tears” iteratively from one or both sides. (b) For faster bursts, the neck is more ribbon-like. The ribbon thins until coalescence is initiated, creating a hole in the center of the neck. The remaining two columns of air quickly break. Each of the topological transitions creates one or more satellite bubbles. (c) Under the conditions for (b), we also see off-center tearing that combines aspects of (a) and (b).

That pinch-off is sensitive to small deviations from cylindrical symmetry suggests that gross asymmetry in initial conditions would lead to correspondingly dramatic outcomes. In addition, it could provide a visible example of a fully three-dimensional breakup. To test this, we used a nozzle with an oblong opening, a 9.6 mm × 1.6 mm slot with rounded ends. If the timescale of bubble inflation is shorter than that for capillary waves (~100 ms), pinch-off begins asymmetrically. To achieve rapid infla-
tion (40 ms), we operate a valve to make small bursts of air from the syringe. The resulting necks have no semblance of cylindrical symmetry, but are broadened in the same direction as the nozzle opening. Figure 4 shows three representative outcomes. At lower burst pressures, the neck is flattened and “tears” from its edges, resulting in a scalloped appearance that reflects a history of discrete events. At higher pressures, the neck becomes ribbon-like near pinch-off, thinning sufficiently to initiate coalescence near its center.

The pinch-off of air in water shows a radically new behavior: any cylindrical asymmetry is preserved throughout the breakup process. Others have examined the effect of initial conditions on the evolution of the neck in a coflowing air-water jet [24], and for very large bubbles and found that the scaling exponent $\alpha_h$ is non-universal [14]. Other singularities [1] have been shown to be sensitive to noise [2]. However, experiment and theory up to now have ignored cylindrical asymmetry [21, 22, 23, 24, 25, 26], or could not show it to be a generic feature of breakup [14]. We have shown that tilting the nozzle by just 0.07° detectably alters the outcome of breakup. When the initial asymmetry is strongly exaggerated, the neck tears in two.

Because of its sensitivity to cylindrical asymmetry, the pinch-off of air in water demonstrates a kind of memory previously unanticipated in fluid pinch-off. Without surface tension, the detachment dynamics no longer converge to a cylindrically symmetric solution. When other physical processes are modeled as the formation of a singularity, we often assume that the singularity-formation possesses all the symmetries allowed by the fundamental laws describing the physical process. However, it is not known whether such symmetries can be realized in the presence of arbitrary initial conditions. In the case of a detaching air bubble we see that the dynamics do not assume the full symmetry allowed and that the generic breakup is three-dimensional.

We thank Francois Blanchette, Justin Burton, Detlef Lohse, Peter Taborek, and Lei Xu for comments. This work was supported by NSF DMR-0352777 and MRSEC DMR-0213745.

[1] J. Eggers and T. F. Dupont, J. Fl. Mech. 262, 205 (1994).
[2] X. D. Shi, M. P. Brenner, and S. R. Nagel, Science 265, 219 (1994).
[3] J. Eggers, Rev. Mod. Phys. 69, 865 (1997).
[4] Y. J. Chen and P. H. Steen, J. Fl. Mech. 341, 245 (1997).
[5] R. F. Day, E. J. Hinch, and J. R. Lister, Phys. Rev. Lett. 80, 704 (1998).
[6] J. R. Lister and H. A. Stone, Phys. Fluids 10, 2758 (1998).
[7] W. W. Zhang and J. R. Lister, Phys. Rev. Lett. 83, 1151 (1999).
[8] I. Cohen, M. P. Brenner, J. Eggers, and S. R. Nagel, Phys. Rev. Lett. 83, 1147 (1999).
[9] I. Cohen and S. R. Nagel, Phys. Fluids 13, 3533 (2001).
[10] A. U. Chen, P. K. Notz, and O. A. Basaran, Phys. Rev. Lett. 88, 174501 (2002).
[11] D. Leppinen and J. R. Lister, Phys. Fluids 15, 568 (2003).
[12] A. Sierou and J. R. Lister, J. Fl. Mech. 497, 381 (2003).
[13] N. C. Keim, P. Möller, W. W. Zhang, and S. R. Nagel, Bull. Am. Phys. Soc. 50, (9) BD.00008 (2005).
[14] R. Bergmann, D. van der Meer, M. Stijnman, M. Sandtke, A. Prosperetti, and D. Lohse, Phys. Rev. Lett. 96, 154505 (2006).
[15] K. M. Sutherland, D. T. Pearson, and L. S. Gordon, Clin. Physiol. Physiol. Meas. 9, 97 (1988).
[16] J. Rubio, M. L. Souza, and R. W. Smith, Miner. Eng. 15, 139 (2002).
[17] K. Theander and R. J. Pugh, Coll. Surf. A 240, 111 (2004).
[18] S. L. Liebling and M. W. Choptuik, Phys. Rev. Lett. 77, 1424 (1996).
[19] T. Plewa, A. C. Calder, and D. Q. Lamb, ApJ 612, L37 (2004).
[20] P. Doshi, I. Cohen, W. W. Zhang, M. Siegel, P. Howell, O. A. Basaran, and S. R. Nagel, Science 302, 1185 (2003).
[21] M. S. Longuet-Higgins, B. R. Kerman, and K. Lunde, J. Fl. Mech. 230, 365 (1991).
[22] H. N. Oğuz and A. Prosperetti, J. Fl. Mech. 257, 111 (1993).
[23] J. C. Burton, R. Waldrep, and P. Taborek, Phys. Rev. Lett. 94, 184502 (2005).
[24] J. M. Gordillo, A. Sevilla, J. Rodríguez-Rodríguez, and C. Martínez-Bazán, Phys. Rev. Lett. 95, 194501 (2005).
[25] D. Leppinen, J. R. Lister, and J. Eggers, Bull. Am. Phys. Soc. 50, (9) BD.00006 (2005).
[26] S. T. Thoroddsen, E. G. Etoh, and K. Takehara, Bull. Am. Phys. Soc. 50, (9) BD.00002 (2005).
[27] N. C. Keim, W. W. Zhang, and S. R. Nagel, unpublished.
[28] A comparison of the Bernoulli pressure, which scales as $\rho h_{\text{min}}^2/\tau^2$ near breakup, and Laplace pressure, which scales as $\sigma/h_{\text{min}}$, shows that surfactant tension effects are relevant in the final breakup dynamics if and only if $h_{\text{min}}$ decreases as $\tau^{2/3}$ or slower.