Phylogenetic Diversity and Single-Cell Genome Analysis of “Melainabacteria”, a Non-Photosynthetic Cyanobacterial Group, in the Termite Gut

YUNIAR DEVI UTAMI1, HIROKAZU KUWAHARA1, TAKUMI MURAKAMI1, TAKAHIRO MORIKAWA1, KAITO SUGAYA1, KUMIKO KIHARA1, MASAHIRO YUKI2, NATHAN LO3, PINSURANG DEEVONG4, SASITORN HASIN5, WARIN BOONRIAM6, TETSUSHI INOUE7, AKINORI YAMADA7,7, MORIYA OHKUMA7,7, and YUICHI HONGO1,7,*

1Department of Biological Sciences, Tokyo Institute of Technology, Tokyo 152–8550, Japan; 2Biomass Research Platform Team, RIKEN Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Tsukuba 305–0074, Japan; 3School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia; 4Department of Microbiology, Kasetsart University, Bangkok 10900, Thailand; 5College of Innovative Management, Valaya Alongkorn Rajabhat University under the Royal Patronage, Pathum Thani 13180, Thailand; 6School of Biology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; 7Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852–8521, Japan; and 8Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba 305–0074, Japan.

(Received September 1, 2017—Accepted December 1, 2017—Published online February 8, 2018)

Termite guts harbor diverse yet-uncultured bacteria, including a non-photosynthetic cyanobacterial group, the class “Melainabacteria”. We herein reported the phylogenetic diversity of “Melainabacteria” in the guts of diverse termites and conducted a single-cell genome analysis of a melainabacterium obtained from the gut of the termite Termes propinquus. We performed amplicon sequencing of 16S rRNA genes from the guts of 60 termite and eight cockroach species, and detected melainabacterial sequences in 48 out of the 68 insect species, albeit with low abundances (0.02–1.90%). Most of the melainabacterial sequences obtained were assigned to the order “Gastranaeoaphilales” and appeared to form clusters unique to termites and cockroaches. A single-cell genome of a melainabacterium, designated phylotype Tpq-Mel-01, was obtained using a fluorescence-activated cell sorter and whole genome amplification. The genome shared basic features with other melainabacterial genomes previously reconstructed from the metagenomes of human and koala feces. The bacterium had a small genome (~1.6 Mb) and possessed fermentative pathways possibly using sugars and chitobiose as carbon and energy sources, while the pathways for photosynthesis and carbon fixation were not found. The genome contained genes for flagellar components and chemotaxis; therefore, the bacterium is likely motile. A fluorescence in situ hybridization analysis showed that the cells of Tpq-Mel-01 and/or its close relatives are short rods with the dimensions of 1.1±0.2 μm by 0.5±0.1 μm; for these bacteria, we propose the novel species, “Candidatus Gastranaeoaphilus termitcola”. Our results provide fundamental information on “Melainabacteria” in the termite gut and expand our knowledge on this underrepresented, non-photosynthetic cyanobacterial group.

Key words: symbiosis, insect, gut bacteria, single-cell genomics, cyanobacteria

The termite gut is an environment that is populated by microbes, comprising protists, bacteria, archaea (6), and viruses (15, 31). Most of these microbes are unique to termites and extremely fastidious to cultivate (29). Extensive molecular ecological studies have been conducted to identify these uncultured microorganisms (13). Among them, 16S rRNA phylotype Rs-H34 (AB089123) was reported from the gut of the termite Reticulitermes speratus. This bacterium was phylogenetically related to Gloeobacter violaceus, a basal species in the phylum Cyanobacteria (12).

The phylum Cyanobacteria has been characterized primarily by the ability of its representatives to perform photosynthesis using H2O as the electron donor and generating oxygen (25). However, the discovery of cyanobacterial 16S rRNA genes from aphotic environments such as termite guts (12) and a bovine rumen (40) implied the presence of cyanobacteria with no photosynthetic capability. The presence of non-photosynthetic cyanobacteria was finally proven by Di Rienzi et al. (9); the authors reconstructed genomes phylogenetically related to cyanobacteria from the metagenomes of human fecal and groundwater samples. Soo et al. (2014) subsequently reconstructed several genomes closely related to those reported by Di Rienzi et al. (9) from the metagenomes of koala fecal samples and activated sludge and methanogenic sludge samples (36).

The candidate name “Melainabacteria” (“Greek nymph of dark water”) has been proposed for these bacteria, including phylotype Rs-H34 from the termite gut, in order to reflect their aphotic habitat (9). Since the 16S rRNA genes of these bacteria showed <85% sequence similarities with known phyla, “Melainabacteria” was initially considered to be a sister phylum of Cyanobacteria (9). However, Soo et al. (2014) demonstrated a robust phylogenetic relationship between Cyanobacteria and “Melainabacteria”; thus, they proposed “Melainabacteria” as a class within the phylum Cyanobacteria, sister to the class Oxyphotobacteria that comprises all photosynthetic cyanobacteria (36).

The latest study on this expanded Cyanobacteria phylum proposed three classes: Oxyphotobacteria, “Melainabacteria”, and “Sericytochromatia”, with the latter two lacking photosynthetic machinery (38). The only known cultivable species of “Melainabacteria” is Vampirovibrio chlorellavorus, which is a predator of Chlorella vulgaris and has been mistakenly

* Corresponding author. E-mail: yhongo@bio.titech.ac.jp; Tel: +81-3–5734–2865; Fax: +81-3–5734–2946.
classified to *Proteobacteria* (37). Four candidate orders have been proposed for the non-photosynthetic “Melainabacteria” class: “*Vampirovibrionales*”, “*Obscuribacterales*”, “*Gastranaerophilales*”, and “*Caenarcanphilales*”, with the former two being microaerophilic and the latter two being strictly anaerobic groups (38).

Despite the discovery of melainabacterial 16S rRNA genes from termite guts (12, 44), previous studies did not focus on this bacterial group in the termite gut ecosystem. We herein investigated the distribution and phylogenetic diversity of “Melainabacteria” among various termite species and analyzed a single-cell genome of a melainabacterium obtained from the gut of the interface-feeding higher termite *Termes propinquus* (family Termitidae; subfamily Termitinae). Our results provide fundamental information on melainabacteria in the termite gut and expand our knowledge of this still underrepresented bacterial group.

Materials and Methods

Sample collection and DNA extraction

Seventy-seven samples consisting of 60 termite and eight cockroach species were collected from six different districts (Table S1). The entire guts of 5 to 20 workers were removed with sterilized forceps for each termite sample and placed in a 1.5-mL tube on ice. DNA was extracted using a combination of the Isolop II Kit (Nippon Gene, Tokyo, Japan) and DNeasy Tissue or Plant Kit (Qiagen, Hilden, Germany) as described previously (42). Regarding cockroach specimens, the entire gut was removed from one adult insect. Due to the large gut size, it was divided into three parts (foregut, midgut, and hindgut), except for *Blattella germanica* cockroach specimens, the entire gut was removed from one adult insect. DNA extraction from each part was performed in the same manner as in termites, and DNA samples were then mixed.

In addition to morphological characteristics, the mitochondrial cytochrome oxidase II (COII) gene was used to identify the host insect species. PCR amplification with the primers COII-FW-A-tLeu and COII-RV-B-tLys (Table S2) and Sanger sequencing of the products were performed as described previously (16).

Amplicon sequencing of 16S rRNA genes

The concentration of purified DNA samples was adjusted to 2 ng μL⁻¹ with TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA), and samples were used as templates for PCR at a final concentration of 0.2 ng μL⁻¹. 16S rRNA genes were amplified by PCR with the *Bacteria*-specific 341F and 806R primer set (Table S2), which targets the V3 and V4 regions (approx. 400 bp). PCR conditions and the purification of amplicons were as described previously (16). Paired-end sequencing was conducted on the Illumina MiSeq platform with the MiSeq Reagent Kit V2 and Sanger sequencing of the products were performed as described previously (16).

Whole genome amplification (WGA) and taxonomic identification of products

WGA was performed according to Sato et al. (34) using the Illustra GenomiPhi V2 Kit (GE Healthcare, Chicago, IL, USA). A stored 96-well plate with sorted single cells was thawed and briefly centrifuged. One microliter of lysis buffer (0.4 M KOH, 10 mM EDTA, 100 mM diethiothreitol) was added to each well, followed by brief centrifugation and an incubation on ice for 10 min. One microliter of neutralization buffer (0.4 M HCl, 0.6 M Tris-HCl, pH 7.5) was then added. Samples were centrifuged and mixed with 3.5 μL of Sample Buffer in the kit. A reaction mixture (0.5 μL enzyme solution and 4.5 μL Reaction Buffer in the kit) was added to the samples, which were then incubated at 30°C for 20 h in a PCR thermal cycler. All these reagents were UV-treated before use (46). Thereafter, an incubation at 65°C for 10 min was performed to inactivate the enzyme. An aliquot of each WGA product was diluted 100-fold with TE buffer and used as a template for PCR amplification of the 16S rRNA gene. PCR was performed using Takara EX Taq DNA polymerase (Takara Bio, Otsu, Japan) with the *Bacteria*-specific 27F-mix and 1390R primer set (Table S2). The PCR program was as follows: initial denaturation at 95°C for 1 min, 25 cycles of denatur-
“Melainabacteria” in the Termite Gut

ablation at 95°C for 15 s, annealing at 50°C for 30 s, elongation at 72°C for 1 min, and a final extension at 72°C for 5 min. Sanger sequencing was performed as described previously (16). The degree of contamination was judged from the quality of the 16S rRNA sequence as an initial screening, as described previously (49).

Single-cell genome sequencing, assembly, and purity check

Among the surveyed single-cell genomes, a WGA product from a “Melainabacteria” cell was found and designated phylotype Tpq-Mel-01. A sequencing library for this sample was prepared using the TruSeq DNA Sample Preparation Kit according to its protocol for low DNA input (Illumina, San Diego, CA, USA). Sequencing was performed on the Illumina MiSeq platform with its Reagent Kit V3. Sequence reads were processed for adapter and quality trimming using the cutadapt (22) and PrinSeq programs (35). Qualified reads were assembled using SPAdes 3.5.0 to construct contigs (5).

Gene finding was conducted using the MiGAP (http://www.migap.org/) and RAST server (4). Contigs that contained one or more protein-coding sequences (CDS) showing the highest amino acid sequence similarity to those of known melainabacterial genomes (9, 36) in BLASTp searches against the NCBI non-redundant (nr) protein sequence database were retained for further analyses as “trusted” contigs. In addition, a tetranucleotide frequency-based emergent self-organizing map (ESOM) analysis was conducted as described previously (10) using the tetramerFreqs program (https://github.com/tetramerFreqs) with default settings, except for the min. length=500 bp and window size=5,000 bp. Since putatively contaminating contigs were closely related to either Eubacterium siraeum (NC_021011) or Paenibacillus mucilaginosus (NC_015690), based on a BLASTn search result against the NCBI nr nucleotide database, these genomes were selected as reference sequences. Only contigs that clustered with the “trusted” contigs in the ESOM analysis were retained.

Characterization of genomes and phylogenomics

The functional annotation of genes was conducted using the MiGAP and RAST server, and metabolic pathways were reconstructed with the KEGG automatic annotation server (KAAS) (24). The results obtained were manually checked by BLASTp searches against the NCBI nr protein sequence database. Genome size and completeness were estimated based on the presence of 83 single copy gene markers conserved in the known Melainabacteria genomes (36). These genes were identified using HMMER 3.1.2 software (http://hmmer.org/). The overall nucleotide sequence similarity between the Tpq-Mel-01 genome and other known melainabacterial genomes was calculated using the Genome-to-Genome Distance Calculator with formula 2 for draft genomes (3). The identification of genes coding for secretion systems or type IV pili was achieved using TXSScan (1).

A maximum likelihood tree was constructed using FastTree v2.1.9 (32) based on the concatenated amino acid sequences of a subset of the above 83 single copy gene markers, detected using AMPHORA2 software (48). Concatenated sequences were then aligned using MUSCLE and edited using Gblocks.

Fluorescence in situ hybridization (FISH)

A probe, MelTqp-646 (Table S2), specific to the 16S rRNA of phylotype Tqp-Mel-01, was designed using ARB and labeled with Texas Red at the 5’ end. The probe has at least three mismatches against sequences in the SILVA database. The entire guts were removed from two T. propinquis workers, and gut contents were suspended in solution U and incubated at room temperature for 30 min in order to precipitate and remove large particles. The supernatant was collected into a new tube and fixed with 4% paraformaldehyde at 4°C for 5 h. The mixture was centrifuged at 12,000 × g for 10 min, and the pellet was washed three times with sterile DDW during centrifugation. The pellet was resuspended in 100 μL DDW, spotted onto MAS-GP slide glasses (Matsunami, Osaka, Japan), and air-dried. Subsequent procedures were as described previously (27) with hybridization at 55°C for 1 h. Specimens were enclosed with the SlowFade™ Gold Antifade Mountant with 4,6-diamidino-2-phenylindole (DAPI) (Thermo Fisher Scientific). Observations were conducted under an Olympus BX51 epifluorescence microscope (Olympus, Tokyo, Japan). Cell sizes were measured with ImageJ software (https://imagej.nih.gov/ij/).

Database accession numbers

The Tpq-Mel-01 genome assembly has been deposited at the DDBJ under accession numbers BEIT01000001–165. Representative sequences of the melainabacterial OTUs of the 16S rRNA gene will appear under accession numbers LC322338–421.

Results and Discussion

Abundance and phylogenetic diversity of “Melainabacteria” in termite guts

The 16S rRNA genes of “Melainabacteria” were detected in 48 out of the 77 analyzed termite and cockroach gut samples (Fig. 1 and Table S1). These included 45 out of 60 termite and three out of eight cockroach species. A total of 81 melainabacterial OTUs were identified, 79 were affiliated with a strictly anaerobic group, order “Gastranaerophilales”, and two were classified to a microaerophilic group, order “Obscuribacterales” (Fig. S1, S2, and S3). The relative abundance of these melainabacterial OTUs was consistently low, ranging between 0.02% and 1.90% (Fig. 1). Melainabacterial sequences were found from all of the six termite families, including five higher termite subfamilies, examined in the present study (Fig. 1 and Table S1).

Most of the melainabacterial OTUs from the termites and cockroaches appeared to cluster together and have never been detected from other environments (Fig. S1 and S2); these melainabacteria may specifically inhabit termite and cockroach guts. One to five OTUs were identified from each termite or cockroach species (Table S1). Multiple OTUs from a single host species did not necessarily form a monophyletic cluster (Fig. S2); one host species accommodates distantly related melainabacteria.

Each of sixty-nine out of the 81 melainabacterial OTUs was identified only from a single termite or cockroach species, implying that most melainabacterial OTUs were unique to respective termite or cockroach species. As exceptions, the remaining 12 OTUs were detected in two different termite or cockroach species (Fig. S2). Among them, OTU-00856 and 02378 were identified from two of the three Hospitalitermes species, and OTU-06201 was from two Reticulitermes species. Closely related termite species were likely to possess closely related melainabacterial OTUs, although the short sequence reads did not resolve the relationships with reliable bootstrap confidence values (Fig. S2). Other than the aforementioned, the other nine OTUs that were identified from two phylogenetically distinct termite or cockroach species (Fig. S2) may have been derived from the artificial “cross-talk” of the index reads on the Illumina sequencing platform (47) or the contamination of DNA during experiments. In these cases, the number of termite and cockroach species with melainabacteria detected may decrease from 48 to 44.
Genomic features of phylotype Tpq-Mel-01 and its phylogenetic relationships to known melainabacteria

The total sequence length of the single-cell genome of phylotype Tpq-Mel-01 was 960,865 bp, packed in 165 contigs. The GC content was 42.5%, and the largest contig size was 45,799 bp. The estimated genome completeness and predicted genome size were 61% and 1.6 Mbp, respectively. The conserved single copy marker genes used for the estimation had no sequence variations; there were no signs of contaminating sequences in the final contig set. This draft Tpq-Mel-01 genome encoded 1,079 putative CDSs, a single rRNA operon, and 22 tRNAs. The genome had a higher GC content and smaller predicted size than the genomes of other “Gastranaerophilales” members (Table 1). The average nucleotide sequence similarity of alignable genome regions between Tpq-Mel-01 and other genome-reconstructed melainabacteria was lower than 93% (Table S3). A phylogenomic tree showed that Tpq-Mel-01 was a sister to the monophyletic group comprising sequences from human and koala fecal samples in the order “Gastranaerophilales” (Fig. 2). Although the 16S rRNA gene sequence of phylotype Tpq-Mel-01 was not recovered by amplicon sequencing from the T. propinquus gut sample, possibly due to its very low abundance, it formed a monophyletic cluster with sequences from several higher-termite species, including T. propinquus (Fig. S2).

Predicted functions of phylotype Tpq-Mel-01

The Tpq-Mel-01 genome shared many features with other members of “Gastranaerophilales”. As representatives of the known “Gastranaerophilales” members (Fig. 2), the genomes of “Candidatus Gastranaerophilus phascolarctosicola” from koala feces (36) and the melainabacterium, MEL.A1, from human feces (9) were selected, based on their high genome completeness, for comparisons with the Tpq-Mel-01 genome. The gene sets required for photosynthesis, CO2 fixation, and respiratory chains were not found in the Tpq-Mel-01 draft genome, as observed in the other two genomes (Fig. 3). Similarly, only partial gene components of the tricarboxylic acid (TCA) cycle were found. However, the three genomes retained the rpaA and rpaB genes that regulate circadian rhythms in photosynthetic cyanobacteria, as reported previously (9). The genomes shared genes involved in the biosynthesis of the Gram-negative-type cell wall and S-layer-like components (9, 36).

Table 1. Genome features of phylotype Tpq-Mel-01 and other melainabacteria.

Proposed taxonomic name	GC (%)	CDS	Completeness	Genome size (Mbp)	Origin	Ref.
Tpq-Mel-01 (“Ca. Gastranaerophilus termiticola”)	42.5	1,079	61%	0.96 (~1.6)	termite gut	this study
“Ca. G. phascolarctosicola”	38.5	1,838	100%	1.8	koala gut	36
MEL.A1	32.9	1,879	100%	1.9	human gut	9
AC2D0	33.5	2,455	100%	2.7	aquifer	9
“Ca. Caenarcanum bioerctoricola”	27.5	1,917	99%	5.5 (~5.6)	bioreactor	36
“Ca. Obscuribacter phosphatis”	49.4	4,392	99%	3.0	parasite of Chlorella	37
Vampirovibrio chlorovorum	51.4	2,844	100%			

a Genome completeness was estimated based on 83 single copy gene markers proposed by Soo et al. (37)

b Predicted genome size in parentheses.
"Melainabacteria" in the Termite Gut

Previous studies suggested that members of “Gastranaerophilales” possess (NiFe) and (FeFe) hydrogenases (9, 36). Genes coding for a trimeric (FeFe) hydrogenase (HydABC), a monomeric (FeFe) hydrogenase, and maturase units (HydE and HydG) were found in the Tpq-Mel-01 genome. Although the hydG gene was split into two parts by a frameshift and the hydA gene was split into three by a frameshift and inversion, difficulties are associated with discriminating a pseudogene from an artifact caused during WGA in single-cell genomics (20).

Previously reported genomes of “Gastranaerophilales” contained partial gene sets for the construction of flagella and pili (9, 36), whereas photosynthetic cyanobacteria lack flagella and utilize secreted polysaccharides and type IV pili for motility (45). Di Rienzi et al. (2013) suggested that melainabacteria from human fecal samples have the ability to move with flagella (9), whereas Soo et al. (2014) inferred that those from koala feces are non-motile due to the incompleteness of the flagella gene set (36). In the case of Tpq-Mel-01, its genome encoded more genes for flagellar assembly and chemotaxis than previously reported melainabacteria (Fig. S5); thus, it is highly possible that the bacterium moves using flagella. In addition, the Tpq-Mel-01 genome contained genes related to type IV pili twitching motility: pilA for pilin, pilB, pilC, and pilD for the inner membrane motor subcomplex, and pilID for processing prepilin (Fig. S6) (14).

FISH analysis of phylotype Tpq-Mel-01

FISH analyses using the probe MelTpq-646 rarely, but successfully detected cells in the gut content of T. propinquus; two examples are shown in Fig. 4. We checked the specificity of the probe against melainabacterial OTUs obtained by amplicon sequencing in the present study, and found that it also completely matched the sequence of OTU-12005-PRC with the termite Procapritermes sp. in addition to phylotype Tpq-Mel-01. Furthermore, the probe contained only one mismatch with the corresponding 16S rRNA gene region of three OTUs that constituted a monophyletic cluster with phylotype Tpq-Mel-01: OTU-07911-HOSp from Hospitalitermes sp., OTU-14642-Pn from Pericapritermes nitobei, and OTU-19367-Tpq from T. propinquus (Fig. S2). Sequence similarities among Tpq-Mel-01 and these three OTU sequences ranged between 96.7 and 99.4%, and the probe hybridized with all of them under the FISH conditions used in the present study according to in silico predictions with the DINAMelt web server (http://unafold.rna.albany.edu/?q=DINAMelt). Thus, it is possible that the detected cells were either of Tpq-Mel-01 or OTU-19367-Tpq, which shared 96.7% sequence identity.

The morphological characteristics of the detected cells were described below. This is, to the best of our knowledge, the first detection of cells of “Gastranaerophilales” members by a FISH analysis. Based on genome sequence and FISH data, we propose the novel species, “Candidatus Gastranaerophilus termiticola”, for phylotype Tpq-Mel-01 and its close relatives.

Description of “Candidatus Gastranaerophilus termiticola”

Gastranaerophilus termiticola (ter.mi.ti’co.la, L. gen. n. termitis, termite; L. suffix–cola inhabitant, dweller); G. termiticola, a bacterium from genus Gastranaerophilus living in termite guts. Cells are rod shaped with dimensions of

Fig. 2. Phylogenetic position of phylotype Tpq-Mel-01 based on concatenated amino acid sequences of single copy genes conserved among the dataset. A maximum likelihood tree was constructed with the LG+G substitution model and 100 bootstrap resamplings. A total of 1,910 amino acid sites were used. Bootstrap confidence values ≥50% are shown by open circles and ≥70% by closed circles. Chloroflexus aurantiacus (GCF_000018865), Roseiflexus castenholzii (GCF_000017805), and Anaerolinea thermophila (GCF_000017805) of the phylum Chloroflexi and Anaerolinea thermophila (GCF_000017805) of the phylum Chloroflexi were used as the outgroup and omitted from the tree.
1.0±0.2 μm by 0.5±0.1 μm (n=7). Potentially motile with flagella and type IV pili. The bacterium may ferment sugars and chitobiose to H₂, ethanol, and D-lactate. It specifically inhabits the termite gut. This assignment is based on the 16S rRNA gene sequence, which was found in a contig (BEIT01000002), and specific hybridization with the oligo-nucleotide probe MelTpq-646 (Table S2).

Conclusion

Melainabacteria were rare, but commonly present in the guts of diverse termite species. The relationship with the termite host is mostly specific; this minor group may be vertically transmitted via proctodeal trophallaxis as suggested in protists and dominant bacterial groups in the termite gut (2, 13, 23, 28, 39). In our single-cell genome analysis of “Ca. Gastranaerophilus termiticola” phylotype Tpq-Mel-01, no evidence was found to support the bacterium being directly involved in the hydrolysis of cellulose or hemicellulose, nitrogen fixation, the recycling of uric acids, reductive acetogenesis, or hydrogen oxidation, which are considered to be critical roles of gut bacteria for mutualism with the termite host (6, 13, 19, 30). Thus, melainabacteria in the termite gut appear to be commensal, but still comprise a part of the microbiota specific to the guts of termites and cockroaches.

Acknowledgements

We thank Osamu Kitade, Tomonori Kume, Kiyoto Maekawa, Shigeharu Moriya, Christian Nalepa, Michael Neal, Savitri Trakulnaleamsai, and Charunee Vongkaluang for assisting with our termite and cockroach collection. We also thank Jun-ichi Inoue, Masato Kochi, Takako Mabuchi, Kei Matsushima, and Yuto Mochizuki for assisting with experiments. Sanger sequencing was performed at the Biomaterial Analysis Center of the Tokyo Institute of Technology or RIKEN BSI. This work was financially supported by a MEXT scholarship to YDU, and NEXT and KAKENHI grants from JSPS to YH (GS009, 26650158, 16H04840), YH and MO (23117003), and AY (25850104). This work was also supported by JST-CREST (14532219) to YH.
References

1. Abney, S.S., J. Curry, J. Guglielmini, B. Néron, M. Touchon, and E.P.C. Rocha. 2016. Identification of protein secretion systems in bacterial genomes. Sci. Rep. 6:e23080.

2. Abdul Rahman, N., D.H. Parks, D.L. Willner, A.L. Engelbrektson, S.K. Goffredi, F. Warnecke, R.H. Scheffrahn, and P. Hugenholtz. 2015. A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome 3:e65.

3. Auch, A.F., M. von Jan, H. Klenk, and M. Göker. 2010. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand. Genomic Sci. 4:171–174.

4. Aziz, R.K., D. Bartels, A.A. Best, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:e75.

5. Bankevich, A., S. Nurk, D. Antipov, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19:45–61.

6. Brune, A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12:168–180.

7. Callahan, B.J., P.J. McMurdie, M.J. Rosen, A.W. Han, A.J.A. Johnson, and S.P. Holmes. 2013. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 10:52–58.

8. Callahan, B.J., P.J. McMurdie, and S.P. Holmes. 2017. Exact sequence variant variants should replace operational taxonomic units in microbial genome sequence signatures. Genome Biol. 10:R85.

9. Edgar, R.C. 2010. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 38:121–128.

10. Hongoh, Y., M. Okumura, and T. Kudo. 2003. Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol. Ecol. 44:231–242.

11. Hongoh, Y. 2011. Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol. Life Sci. 68:1311–1325.

12. Hoshpenthal, M.K., T.R.D. Costa, and G. Waksman. 2017. A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nat. Rev. Microbiol. 15:365–379.

13. Izawa, K., H. Kuwahara, K. Kihara, M. Yuki, N. Lo, T. Itoh, M. Ohkuma, and Y. Hongoh. 2016. Comparison of intracellular ‘Ca. Endomicrobium trichonymphae’ genovar genomes illuminates the requirement and decay of defense systems against foreign DNA. Genome Biol. Evol. 8:3099–3107.

14. Izawa, K., H. Kuwahara, K. Sugaya, N. Lo, M. Ohkuma, and Y. Hongoh. 2017. Discovery of ectosymbiotic Endomicrobium lineages associated with protists in the gut of stolotermite mites. Environ. Microbiol. Rep. 9:411–418.

15. Kumar, S., G. Stecher, D. Peterson, and K. Tamura. 2012. MEGA-CC: Computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics 28:2685–2686.

16. Kumar, S., G. Stecher, and K. Tamura. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870–1874.

17. Kuwahara, H., M. Yuki, K. Izawa, M. Okumura, and Y. Hongoh. 2017. Genome of ‘Ca. Desulfovibrio trichonymphae’ in a tripartite symbiotic system within a protist cell in the termite gut. ISME J. 11:766–776.

18. Lasken, R.S., and T.B. Stockwell. 2007. Mechanism of chimera formation during the multiple displacement amplification reaction. BMC Biotechnol. 7:e16.

19. Ludwig, W., O. Strunk, R. Westram, et al. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32:1363–1371.

20. Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBOlet J. 17:10–12.

21. Miyake, N., A. Dietrich, T. Köhler, M. Poulsen, D. Sillam-Dusses, and A. Brune. 2015. Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol. Ecol. 24:5284–5295.

22. Moriya, Y., M. Itoh, S. Okuda, A.C. Yoshizawa, and M. Kanehisa. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35:182–185.

23. Mulkidjanian, A.Y., E.V. Koonin, K.S. Makarova, et al. 2006. The cyanobacterial genome core and the origin of photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 103:13126–13131.

24. Murakami, T., T. Segawa, R. Dial, N. Takeuchi, S. Kohshima, and Y. Hongoh. 2017. Bacterial microbiota associated with the glacier ice worm is dominated by both worm-specific and glacier-derived facultative lineages. Microbes Environ. 32:32–39.

25. Noda, S., T. Inoue, Y. Hongoh, M. Kawai, C.A. Nalepa, C. Vongkaluang, T. Kudo, and M. Ohkuma. 2006. Identification and characterization of ectosymbionts of distinct lineages in Bacteroides attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ. Microbiol. 8:11–20.

26. Noda, S., O. Kitade, T. Inoue, et al. 2007. Coexistence in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol. Ecol. 16:1257–1266.

27. Ohkuma, M., and A. Brune. 2011. Diversity, structure, and evolution of the termite gut microbial community. p. 413–438. In D.E. Bignell, Y. Roisin, and N. Lo. (eds.), Biology of Termites: A Modern Synthesis. Dordrecht, Springer.

28. Ohkuma, M., S. Noda, S. Hattori, T. Iida, M. Yuki, D. Stams, J. Inoue, A.C. Darby, and Y. Hongoh. 2015. Alcoolemia from H2 plus CO2 and nitrogen fixation by an endosymbiotic prokaryote of a termite gut-ultracellulolytic protist. Proc. Natl. Acad. Sci. U.S.A. 112:10224–10230.

29. Pramono, K.A., H. Kuwahara, T. Itoh, A. Toyoda, A. Yamada, and Y. Hongoh. 2017. Discovery and complete genome sequence of a bacteriophage from an obligate intracellular symbiont of a cellulosylolytic protist in the termite gut. Microbes Environ. 32:112–117.

30. Price, M.N., P.S. Dehal, and A.P. Arkin. 2010. FastTree–2–approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490.

31. Pruesse, E., J. Peplies, and F.O. Glöckner. 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829.

32. Sató, T., H. Kuwahara, K. Fujita, et al. 2014 Intracellular verrucomicrobial symbionts and evidence of lateral gene transfer to the host protist in the termite gut. ISME J. 8:1008–1019.

33. Schmieder, R., and R. Edwards. 2011. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864.

34. Soo, R.M., C.T. Skennerton, Y. Sekiguchi, et al. 2014. An expanded genomic representation of the phylum Cyanobacteria. Genome Biol. Evol. 6:1031–1045.

35. Soo, R.M., B.J. Woodcroft, D.H. Parks, G.W. Tyson, and P. Hugenholtz. 2015. Back from the dead; the curious tale of the predatory cyanobacterium Vampirovibrio chlorellavorus. PeerJ 3:e968.

36. Tajima, K., S. Arii, K. Ogata, T. Nagamine, H. Matsu, M. Nakamura, R.I. Aminov, and Y. Benno. 2000. Rumen bacterial community transition after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 50:568–577.

37. Trager, W. 1983. Trichomonas termopsidis, and of certain other termite protozoa. Bull. 66:182–190.

38. Warnecke, F., and P. Luginbühl, N. Ivanova, et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565.

39. Wilde, A., and C.W. Mullineaux. 2015. Motility in cyanobacteria: polymeric tracks tracks and Type IV pilus motors. Mol. Microbiol. 98:998–1001.
46. Woyke, T., A. Sczyrba, J. Lee, C. Rinke, D. Tighe, S. Clingenpeel, R. Malmstrom, R. Stepanauskas, and J.F. Cheng. 2011. Decontamination of MDA reagents for single cell whole genome amplification. PLoS One 6:e26161.

47. Wright, E.S., and K.H. Vetsigian. 2016. Quality filtering of Illumina index reads mitigates sample cross-talk. BMC Genomics 17:e876.

48. Wu, M., and A.J. Scott. 2012. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28:1033–1034.

49. Yuki, M., H. Kuwahara, M. Shintani, K. Izawa, T. Sato, D. Starns, Y. Hongoh, and M. Ohkuma. 2015. Dominant ectosymbiotic bacteria of cellulolytic protists in the termite gut also have the potential to digest lignocellulose. Environ. Microbiol. 17:4942–4953.