Physiologically-Based Pharmacokinetic Modeling Analysis for Quantitative Prediction of Renal Transporter–Mediated Interactions Between Metformin and Cimetidine

Kotaro Nishiyama¹, Kota Toshimoto², Wooin Lee³, Naoki Ishiguro¹, Bojan Bister¹ and Yuichi Sugiyama²,*

Metformin is an important antidiabetic drug and often used as a probe for drug–drug interactions (DDIs) mediated by renal transporters. Despite evidence supporting the inhibition of multidrug and toxin extrusion proteins as the likely DDI mechanism, the previously reported physiologically-based pharmacokinetic (PBPK) model required the substantial lowering of the inhibition constant values of cimetidine for multidrug and toxin extrusion proteins from those obtained in vitro to capture the clinical DDI data between metformin and cimetidine.¹ We constructed new PBPK models in which the transporter-mediated uptake of metformin is driven by a constant membrane potential. Our models successfully captured the clinical DDI data using in vitro inhibition constant values and supported the inhibition of multidrug and toxin extrusion proteins by cimetidine as the DDI mechanism upon sensitivity analysis and data fitting. Our refined PBPK models may facilitate prediction approaches for DDI involving metformin using in vitro inhibition constant values.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔ Metformin is an important antidiabetic drug and a probe drug to predict drug–drug interactions (DDIs) mediated by renal transporters. The previously reported physiologically-based pharmacokinetic (PBPK) models required a substantial lowering of in vitro inhibition constant values to reproduce the observed DDI data, necessitating the development of PBPK models suitable for the bottom-up prediction of the DDI potential.

WHAT QUESTION DID THIS STUDY ADDRESS?
✔ This study aimed to develop a new PBPK model of metformin and to quantitatively predict DDI between metformin and cimetidine (an inhibitor of organic cation transporter 1/2 and multidrug and toxin extrusion proteins) using in vitro inhibition constant values.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔ The constructed PBPK model incorporated the metformin transport process driven by the membrane potential kept constant and achieved the quantitative prediction of DDI incurred by cimetidine using in vitro inhibition constant values. The simulation results also supported the inhibition of multidrug and toxin extrusion proteins by cimetidine as the DDI mechanism.

HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, AND/OR THERAPEUTICS?
✔ This metformin PBPK model represents an important advancement in quantitatively capturing the DDI mediated by renal transporters using middle-out approaches.

Metformin is a first-line therapy for type 2 diabetes, but its response varies substantially, with about 30% of patients failing to achieve glycemic control²,³ and the rare incidence of severe events of lactic acidosis.⁴ As such, it is important to understand the factors contributing to interindividual variation in metformin response and to quantitatively predict the potential for drug–drug interactions (DDIs) involving metformin.

The pharmacokinetics of metformin has been well characterized. The oral bioavailability of metformin is 50–60%.⁵–⁸ Metformin undergoes negligible hepatic metabolism, but it is mainly excreted intact into the urine; its renal clearance exceeds the glomerular filtration rate, indicating tubular secretion. With negligible plasma protein binding, metformin slowly distributes to erythrocytes.⁵,⁹ Metformin exists ionized at physiological pHs, relying on transporters for its translocation across cell membranes. Metformin is transported by the organic cation transporters (OCTs), particularly OCT1 in the liver¹⁰ and OCT2 in the kidney.¹¹ Multidrug and toxin extrusion proteins (MATEs), namely MATE1 and MATE2-K are also shown to mediate the extrusion of metformin from proximal
renal tubular cells to urine. These transporters harbor genetic variations, some of which can impact the pharmacokinetics and pharmacodynamics of metformin. 

Cimetidine is an inhibitor of OCT2 and MATEs and incurs DDIs with metformin; the coadministration of cimetidine increased the systemic exposure of metformin in plasma by ~50%, whereas it decreased the renal clearance of metformin by ~30%. The inhibition of OCT2 by cimetidine had been initially suspected as the DDI mechanism, but it was deemed unlikely as the reported values of the OCT2 inhibition constant (Ki) for cimetidine (ranging from 72.6–510 μM) are much higher than the maximal unbound plasma concentrations of cimetidine (Cmax; ranging from 7.67–9.48 μM after the oral administration of 400 mg cimetidine). The reported Ki values of cimetidine for MATEs range from 1.21–13.5 μM. Later, whole-body PBPK models were developed with the mechanistic components reflecting transporter-mediated processes (by OCT1, OCT2, and MATEs), namely, the conventional model and the “electrochemical model” driven by dynamically changing electrochemical modulation. To reproduce clinical DDI data, these models required a substantial lowering of the Ki values for OCT2 by cimetidine (ranging from 72.6–510 μM) and the lowering of the Ki values for OCT1 and OCT2 nearly by 500-fold, and for the electrochemical model, the lowering of the Ki values for OCT1, OCT2, and MATEs by 8–18-fold. Thus, there is a clear need to develop a PBPK model that can quantitatively predict DDIs involving metformin using Ki values obtained in vitro.

We developed a new metformin PBPK model by incorporating hepatic and renal transporter-mediated processes driven by the membrane potential, which is kept constant. Our PBPK model achieved quantitative prediction of DDIs between metformin and cimetidine using in vitro data, supporting the inhibition of MATEs as the major DDI mechanism.

**MATERIALS AND METHODS**

**Development of the metformin PBPK model.** We modified the previously reported model by adding erythrocyte compartments and implementing changes in the kidney and the liver (Figure 1a). The physicochemical and pharmacokinetic parameters of metformin are summarized in Table S1, and relevant physiological parameters are summarized in Tables S2 and S3. Adipose, muscle, and skin are incorporated considering their contribution to the distribution volume. Rapid equilibrium was assumed using the tissue-to-plasma concentration ratios predicted in silico by physicochemical properties.

**Erythrocyte compartments.** Considering its slow distribution to erythrocytes and time-dependent changes in blood-to-plasma concentration ratios, the systemic circulation and capillary vessels in all tissues were divided into plasma and erythrocyte compartments. The distribution processes between plasma and erythrocytes are defined in Eqs. 1 and 2.

\[
\frac{dX_{\text{erythro}}}{dt} = k_{\text{in,RBC}} * X_{\text{plasma}} - k_{\text{out,RBC}} * X_{\text{erythro}} 
\]

\[
\frac{dX_{\text{plasma}}}{dt} = -k_{\text{in,RBC}} * X_{\text{plasma}} + k_{\text{out,RBC}} * X_{\text{erythro}}
\]

where \( X_{\text{erythro}} \) and \( X_{\text{plasma}} \) are the amount of metformin in the erythrocyte and plasma compartment, respectively, and \( k_{\text{in,RBC}} \) and \( k_{\text{out,RBC}} \) are the partitioning rate constants of metformin from plasma to erythrocytes and from erythrocytes to plasma, respectively, and obtained in vitro by measuring time-dependent blood cell distribution of metformin using human blood (Table S1).

**Liver model.** A five-compartment liver model was used as similar to our previous report. Biliary excretion was not included in the model as clinical data indicated that metformin is not excreted into bile. Considering that OCT1 is a bidirectional transporter driven by the membrane potential, the OCT1-mediated transport is defined using Eq. 3, the Michaelis–Menten constant (\( K_{m,OCT1} \)), and the maximum rate (\( V_{\text{max,OCT1}} \)).

\[
\text{OCT1 transport} = PS_{\text{OCT1,in}} * C_{\text{EH}} - PS_{\text{OCT1,eff}} * C_{\text{HC}} = V_{\text{max,OCT1}} \left( \frac{C_{\text{EH}}}{K_{m,OCT1} + C_{\text{EH}}} - \frac{C_{\text{HC}}}{K_{m,OCT1} + C_{\text{HC}}} \right)
\]

where \( PS_{\text{OCT1,in}} \) and \( PS_{\text{OCT1,eff}} \) are the intrinsic OCT1-mediated clearance via influx into and efflux out of hepatocytes, respectively; \( C_{\text{HC}} \) and \( C_{\text{EH}} \) are the metformin concentrations inside and outside hepatocytes, respectively; \( R_{\text{OCT1,in/eff}} \) is the OCT1-mediated influx-to-efflux ratio; \( z, \Phi, F, R_i, \) and \( T \) are the valence, the membrane potential, Faraday’s constant, the gas constant, and the absolute temperature, respectively. The definitions for the other parameters are provided in the Supplemental Text.

**Kidney model.** The kidney model comprised the glomerulus, the proximal tubule (further divided into the S1, S2, and S3 regions), the distal tubule, and the collecting duct. The proximal tubule, the distal tubule, and the collecting duct were further divided into the three subcompartments representing the blood vessels, cells, and the urinary lumen, similar to the previous report. The active transport of metformin was assumed to occur only in the proximal tubule by OCT2 and MATEs at the basolateral and luminal sides, respectively. Reabsorption of metformin from the urinary lumen was assumed to be mediated by passive diffusion. Considering that OCT2 is a bidirectional transporter driven by the membrane potential, the transport process by OCT2 is defined using Eq. 5, the Michaelis–Menten constant (\( K_{m,OCT2} \)) and the maximum rate (\( V_{\text{max,OCT2}} \)).
where \( PS_{OCT2,inf} \) and \( PS_{OCT2,eff} \) are the OCT2-mediated intrinsic clearance via influx into and efflux out of renal cells, respectively; \( R_{OCT2,inf/eff} \) is the influx-to-efflux ratio of OCT2;

\[
OCT2_{\text{transport}} = PS_{OCT2,inf} \cdot C_r - PS_{OCT2,eff} \cdot C_{\text{rcell}} = V_{\text{max,OCT2}} \cdot \left( \frac{C_r}{K_{m,OCT2} + C_r} - \frac{C_{\text{rcell}}}{R_{OCT2,inf/eff} + K_{m,OCT2} + C_{\text{rcell}}} \right)
\]  

Figure 1 Structures of the physiologically-based pharmacokinetic models for metformin (a) and cimetidine (b). Erythrocyte compartments were incorporated into all the tissues in the metformin model (red boxes). CL\textsubscript{met}, metabolic clearance; p.o., per os.

As shown in Eq. 5, our model defined that the OCT2-mediated transport process is driven by a constant membrane potential, different from the previously reported PBPK model where the membrane potential changed in response to time-dependent changes in metformin concentrations. The transporter-mediated processes in the liver were similarly...
defined using the membrane potential kept constant. Intrinsic clearance by MATEs was defined using Eq. 6, the Michaelis–Menten constant ($K_{m,MATE}$) and the maximum rate ($V_{max,MATE}$).

$$PS_{MATE} = \frac{V_{max,MATE}}{K_{m,MATE}} + C_{in}.$$  

In the proximal tubule, based on the extended clearance concept, the parameters $CL_{int,sec}$, $\beta_{kidney}$, $R_{MATE/dif}$, $\gamma_r$, and $\gamma_{urine}$ were defined using Eqs. 7–14:

$$CL_{int,sec} = PS_{int,inf} \cdot \beta_{kidney} = PS_{int,inf} \cdot \frac{PS_{urine}}{PS_{trans,eff} + PS_{urine}}$$  

$$\beta_{kidney} = \frac{PS_{urine}}{PS_{trans,eff} + PS_{urine}}$$

$$R_{MATE/dif} = \frac{PS_{MATE}}{PS_{trans,eff,dif}}$$

$$\gamma_r = \frac{PS_{trans,inf}}{PS_{trans,eff}} = \frac{f_{union} + \lambda \cdot f_{ion}}{f_{union} + e^{N} \cdot \lambda \cdot f_{ion}} \approx \frac{1}{e^{N}} = 13.7$$

$$\gamma_{urine} = \frac{PS_{trans,inf}}{PS_{trans,eff,dif,eff}} = \frac{1}{e^{N}} = 12.3$$

$$PS_{int,inf} = PS_{OCT2,inf} + PS_{trans,inf}$$

$$PS_{int,eff} = PS_{OCT2,eff} + PS_{trans,eff}$$

$$PS_{urine} = PS_{MATE} + PS_{trans,eff,dif}$$

where $CL_{int,sec}$ is the intrinsic urinary secretion clearance; $PS_{int,inf}$ and $PS_{int,eff}$ are the intrinsic renal clearance via influx into and efflux out of renal cells, respectively; $PS_{urine}$ is the intrinsic efflux clearance from renal cells to the urinary lumen; $PS_{trans,inf}$ and $PS_{trans,eff}$ are the intrinsic passive clearance via influx into and efflux out of renal cells, respectively; $PS_{urine,inf}$ and $PS_{urine,eff}$ are the intrinsic passive clearance via influx into cells from the urinary lumen and efflux out of cells to the urinary lumen; $R_{MATE/dif}$ is the ratio of the intrinsic clearance of MATEs to the intrinsic passive diffusion clearance via efflux out of cells to the urinary lumen; $\gamma_r$ and $\gamma_{urine}$ are the passive influx-to-efflux ratio on the basolateral and luminal sides, respectively; $\lambda$ is the ratio of passive diffusion for the ionized form to that for the unionized form; $f_{union}$ and $f_{ion}$ are the extracellular fractions of the unionized and ionized forms, respectively; $f_{union}$ and $f_{ion}$ are the intracellular fractions of the unionized and ionized forms, respectively; $\beta_{kidney}$ is a hybrid parameter reflective of the major rate-limiting steps of $CL_{int,sec}$.

Metformin (pKa of 12.3) exists mainly ionized at physiological pHs (thus, $f_{union} = f_{union} = 0$ and $f_{ion} = f_{ion} = 1$), and $\gamma_r$ and $\gamma_{urine}$ were calculated using the Nernst equation.29 Passive diffusion clearances of each compartment in the kidney were calculated using permeability measured in a parallel artificial membrane permeability assay system, surface area, $\gamma_r$, and $\gamma_{urine}$ (Table S3).29,31

Optimization of model parameters. Other unknown parameters (absorption rate constant, $k_s$; transit rate constant from the transit compartment to the intestinal compartment, $k_{trans}$; and $R_{MATE/dif}$) were optimized by fitting to the two clinical data sets obtained after oral administration of metformin at 1,500 mg (time profiles of plasma and blood concentrations and urinary excretion)5 or 250 mg (DDI data between metformin and cimetidine).16 Because reliable $\beta_{kidney}$ was not estimated from the observed metformin pharmacokinetic data, four different $\beta_{kidney}$ values (0.1, 0.3, 0.5, and 0.8) were used to cover a wide range of rate-determining step situations. Unknown parameters were optimized with $\beta_{kidney}$ fixed (Table 1) and used as fixed values for DDI simulation. Under DDI conditions, the $\beta_{kidney}$ value was not fixed and allowed to change as the renal transport processes became inhibited. Upon oral dosing, metformin showed a less than dose-proportional increase of area under the curve (AUC), suggesting saturable intestinal absorption processes.32 To reflect such saturation, our PBPK model assumed that metformin is absorbed via first-order kinetics with the intestinal availability set as 0.57 and 0.84 for the metformin oral doses of 1,500 and 250 mg, respectively (back-calculated from the bioavailability data, Table S1). Between the two data sets (metformin oral doses of 250 mg and 1,500 mg), time of maximum concentration ($T_{max}$) values varied (3.3 and 1.5 hours, respectively). The reported $T_{max}$ values vary substantially even with the same doses,5,14,17 and the adjustment of $T_{max}$ was deemed necessary in analyzing the two data sets together. As the same formulation was used in the two clinical studies,6,16 the data of the 1,500 mg dose were used to obtain the optimized $k_s$ value, which was then used for the data of the 250 mg dose. The $k_{trans}$ and $R_{MATE/dif}$ values were optimized by fitting to the observed data after oral dosing of 250 mg metformin16 using varying $\beta_{kidney}$ values (0.1, 0.3, 0.5, and 0.8).

Development of the cimetidine PBPK model

The cimetidine PBPK model was developed by implementing several modifications to the metformin PBPK model (Figure 1b, Supplemental Text). At physiological pHs, cimetidine (pKa of 6.9) can exist as both ionized and unionized, and their fractions were calculated using the Henderson–Hasselbalch equation (Table S3).24,33 To calculate $\gamma_s$, $\gamma_r$, and $\gamma_{urine}$ of cimetidine using Eq. 10, $\lambda$ was set to be 0.1 as described previously.29

DDI simulation

DDI simulation was performed by combining the developed metformin and cimetidine PBPK models. Cimetidine was assumed to be a competitive inhibitor in the transport of metformin by OCT1, OCT2, or MATEs, as shown in Eq. 15:

$$PS_{act} (+I) = \frac{PS_{act} (control) \times \frac{1 + [I]}{K_I}}{1 + [I]/K_I}$$

where $PS_{act} (control)$ and $PS_{act} (+I)$ are the intrinsic active clearance of metformin in the absence and the presence of an inhibitor, respectively, and $I$ is the inhibitor concentration.

In vitro Ki (or half maximal inhibitory concentration (IC50)) values of cimetidine were obtained from the reports where
**Table 1** Optimized physiologically-based pharmacokinetic model parameters ($k_a$, $k_{\text{trans}}$, and $R_{\text{MATE/dif}}$) after fitting to the oral metformin doses of 1,500 and 250 mg using differing $\beta_{\text{kidney}}$ values

| 1,500 mg metformin | 0.1 | 0.3 | 0.5 | 0.8 |
|--------------------|-----|-----|-----|-----|
| $R_{\text{MATE/dif}}$ | – | 153 ± 18.1 | 213 ± 25.5 | 325 ± 39.2 | 814 ± 111 |
| $k_a$ (1/hour) | – | 0.21 ± 0.013 | 0.21 ± 0.013 | 0.21 ± 0.013 | 0.21 ± 0.013 |
| $k_{\text{trans}}$ (1/hour) | – | 2.4 ± 0.36 | 2.4 ± 0.36 | 2.4 ± 0.36 | 2.4 ± 0.36 |
| AUC$_{\text{O-24}}$ (mg•h/L) | 21.4 ± 3.18 | 20.1 | 20.1 | 20.2 | 20.2 |
| CLr (L/hour) | 23.0 ± 3.87 | 29.8 | 29.8 | 30 | 30 |

| 250 mg metformin | 0.1 | 0.3 | 0.5 | 0.8 |
|--------------------|-----|-----|-----|-----|
| $R_{\text{MATE/dif}}$ | – | 183 ± 30.1 | 261 ± 43.3 | 402 ± 66.3 | 1,143 ± 186 |
| $k_a$ (1/hour) | – | 0.21 | 0.21 | 0.21 | 0.21 |
| $k_{\text{trans}}$ (1/hour) | – | 0.61 ± 0.044 | 0.61 ± 0.044 | 0.61 ± 0.044 | 0.61 ± 0.044 |
| AUC$_{\text{O-12}}$ (mg•h/L) | 3.75 ± 1.43 | 4.12 | 4.12 | 4.12 | 4.12 |
| CLr (L/hour) | 31.6 ± 9.90 | 28.5 | 28.6 | 28.6 | 28.6 |
| Cmax (µg/L) | 590 ± 240 | 502 | 502 | 502 | 502 |
| T$_{\text{max}}$ (hour) | 3.3 ± 0.8 | 3.72 | 3.72 | 3.72 | 3.72 |
| AUC$_{\text{O-24}}$, area under the curve from 0–24 hours; AUC$_{\text{O-12}}$, area under the curve from 0–12 hours; CLr, renal clearance; Cmax, maximum plasma concentration; T$_{\text{max}}$, time of maximum concentration; $k_a$, absorption rate; $k_{\text{trans}}$, the rate from transit compartment to intestine compartment; $R_{\text{MATE/dif}}$, the ratio of the intrinsic passive diffusion clearance via efflux out of cells to the urinary lumen. |

**RESULTS**

**Metformin PBPK model**

The $k_a$, $k_{\text{trans}}$, and $R_{\text{MATE/dif}}$ were optimized by fitting the model to the time profiles of plasma and blood concentrations and urinary excretion of metformin after a single oral dose of 1,500 mg metformin at varying $\beta_{\text{kidney}}$ values (Table 1). Although the optimized $R_{\text{MATE/dif}}$ varied from 150–800 at different $\beta_{\text{kidney}}$ values, the optimized $k_a$ and $k_{\text{trans}}$ were 0.21 ± 0.01 hour$^{-1}$ and 2.4 ± 0.4 hour$^{-1}$, respectively, regardless of $\beta_{\text{kidney}}$ values. The use of these optimized parameters well reproduced the observed data, including the increase of blood-to-plasma ratios over time (likely from slow distribution of metformin to erythrocytes; Figure 2a–d, Figure S1). Next, the $k_{\text{trans}}$ and $R_{\text{MATE/dif}}$ were optimized by fitting the model to the plasma concentration-time profile after oral metformin dosing of 250 mg (intestinal availability adjusted to 0.84 as described in the Methods section) using differing $\beta_{\text{kidney}}$ values (Figure 2e–h, Table 1). The use of the optimized parameters yielded simulated T$_{\text{max}}$ (3.72 hours) and AUC$_{\text{O-12}}$ (4.12 mg•h/L) comparable with the observed values (3.3 ± 0.8 hours and 3.75 ± 1.43 mg•h/L, respectively) at all four $\beta_{\text{kidney}}$ values.

**Cimetidine PBPK model**

Parameters for the cimetidine PBPK model were from the reported data (Table S4) and used with no further optimization. Our PBPK model yielded the simulation results that well reproduced the observed data after a single oral administration of 400 mg cimetidine (Figure 2i). The simulated AUC (9.10 mg•h/L) was comparable with the observed value (10.4 ± 2 mg•h/L).

**DDI simulation**

The pharmacokinetic profiles under DDI conditions were simulated using the developed PBPK models for metformin and cimetidine and in vitro Ki values (geometric mean) of cimetidine for OCT1, OCT2, and MATEs at differing $\beta_{\text{kidney}}$ values. The simulated plasma concentrations of metformin were increased with coadministration of cimetidine at all $\beta_{\text{kidney}}$ values, but the extent of the changes showed some discrepancies between the simulated and observed values; the fold changes of AUC, Cmax, and CLr in the simulations were 1.07–1.23, 1.08–1.32, and 0.75–0.90, respectively, whereas the observed fold changes were 1.47, 1.72, and 0.72, respectively (Table 2, Figure S2).

**Sensitivity analysis for in vitro Ki values of cimetidine for OCT2 and MATEs**

As the reported in vitro Ki values of cimetidine for OCT2 and MATEs vary widely (Table 2), we conducted sensitivity analyses for Ki values. DDI simulations were initially conducted with three in vitro Ki values for OCT2 (72.6, 509, and 159 µM, corresponding to the smallest and largest
Table 2: Sensitivity analysis for AUC, C_max and CLR ratios between control and drug–drug interaction conditions using different Ki values for OCT2 and MATEs

| Ki for OCT2 (μM) | β_kidney = 0.1 | β_kidney = 0.3 | β_kidney = 0.5 | β_kidney = 0.8 |
|------------------|----------------|----------------|----------------|----------------|
| 72.6             | 1.23           | 1.23           | 1.23           | 1.23           |
| 159              | 1.19           | 1.19           | 1.19           | 1.19           |
| 509              | 1.14           | 1.14           | 1.14           | 1.07           |

The geometric mean of the reported values, respectively, whereas the Ki values for OCT1 and MATEs were fixed to the geometric means of 104 μM and 3.93 μM, respectively. The fold changes of AUC, C_max, and CLR were not impacted by the Ki values for OCT2 regardless of β_kidney values (Table 2). DDI simulations were also conducted with three in vitro Ki values for MATEs (1.22, 13.5, and 3.93 μM, corresponding to the smallest and largest values and the geometric mean of the reported values, respectively), whereas the Ki values of cimetidine for OCT1 and OCT2 were fixed to 104 μM and 159 μM, respectively. The fold changes in AUC, C_max, and CLR were impacted by the Ki values for MATEs (Table 2).

Estimation of the in vivo Ki value of cimetidine for MATEs

The in vivo Ki value of cimetidine for MATEs was estimated by fitting to clinical DDI data with k_trans and R_MATE/dif fixed to their optimized values at varying β_kidney values. Simulation using the estimated in vivo Ki values for MATEs at all four β_kidney values reproduced the observed fold changes in AUC, CLR, and C_max with less than 15% differences (Figure 3, Table 3). The good agreement between the simulated and observed profiles regardless of β_kidney values appears to be consistent with our initial trial on reliable β_kidney estimation by fitting to the clinical metformin pharmacokinetic data. The estimated in vivo Ki values for MATEs were in the range of the in vitro reported Ki values with β_kidney values of 0.1 and 0.3 but not with 0.5 and 0.8 (corresponding to 0.52- and 0.18-fold of the smallest in vitro reported Ki value (1.22 μM), respectively).

Sensitivity analysis of Ki values of cimetidine for MATEs

For comparison with the previously reported model,1 we examined the impact of changing Ki values for MATEs on the fold changes in plasma AUC, CLR, or AUC in the proximal tubule cell segment 1 under DDI conditions. Initially, the sensitivity analysis of our PBPK model (β_kidney of 0.1) was compared with that of the conventional and electrochemical models reported previously (Figure 4a–c). In our model, β_kidney values reflect the rate-determining step of renal secretion in proximal tubule cells. Upon additional sensitivity analysis using varying β_kidney values (Figure 4d–f), the sensitivity to changing Ki values for MATEs on plasma AUC, CLR, and AUC in proximal tubule segment 1 in our model tended to be greater than the previously reported model1 except for the extreme ends of the β_kidney ranges tested. For the plasma AUC of metformin, the observed fold change (1.47) under DDI conditions was recovered by lowering the Ki values for MATEs by ~1.5, 2.5, and 6-fold from the smallest in vitro Ki value with β_kidney values of 0.3, 0.5, and 0.8, respectively (Figure 4d). With a β_kidney of 0.1, the lowest reported Ki value (1.22 μM) yielded the observed 1.44-fold change in the plasma AUC, close to the observed value. For the CLR, the observed fold change (0.72) was recovered using the Ki values for MATEs that fell within the range of the previously reported model1 except for the extreme ends of the β_kidney ranges tested. For the AUC in proximal tubule segment 1, the fold change under DDI conditions was not available, but as β_kidney values increased, so did the sensitivity to changing Ki values.

PBPK Modeling Analysis for Quantitative Prediction
Nishiyama et al.

www.psp-journal.com
for MATEs increase (Figure 4f). Overall, the observed fold changes in the plasma AUC or CLR were reproduced using the Ki values for MATEs near and within the range of those obtained in vitro with \( \beta_{\text{kidney}} \) values of 0.1, 0.3, or 0.5 but not 0.8.

**DISCUSSION**

Metformin is a clinically important antidiabetic drug and often used as a probe drug to examine the potential DDI mediated by renal transporters. Thus, there is a clear need to establish and refine PBPK models that can accurately and quantitatively predict the DDI potential between metformin and other drugs using in vitro data. To this end, the previous metformin PBPK model ("electrochemical model")\(^1\) incorporated the transport process by OCTs driven by dynamically changing membrane potential in response to metformin levels. This electrochemical model reproduced the plasma concentration profile of metformin alone, but the extent of the fold changes in the plasma AUC under DDI conditions was recovered only when the Ki value for MATEs was set at 8.7-fold lower values than the geometric mean value of the reported in vitro Ki values (3.93 \( \mu M \)). Although in vitro Ki values can substantially vary, the 8.7-fold difference is rather substantial. To reconcile these differences, our model considered the electrogenic property of OCTs but kept the membrane potential constant. In the living cells and organisms, the electrochemical potential is regulated by concentration and permeability of multiple ions (e.g., potassium ion, sodium ion, chloride ion, typically at 100–200 mM) present at much higher concentrations.\(^3\) Thus, a reasonable assumption may be that drug-induced changes in the electrochemical potential at the therapeutically relevant level to be modest extent. Our current PBPK model yielded in vivo simulated Ki values within the reported in vitro Ki values when \( \beta_{\text{kidney}} \) was 0.1 or 0.3 (Table 3). In the sensitivity analysis, the observed plasma AUC change was reproduced within 15% difference (Table 2) with the lowest in vitro Ki values and observed CLR change was reproduced in the range of in vitro Ki values (1.22–5 \( \mu M \)) except for a \( \beta_{\text{kidney}} \) of 0.8 (Figure 4e). Overall, our model reproduced
PBPK Modeling Analysis for Quantitative Prediction
Nishiyama et al.

the clinical DDI data of metformin and cimetidine with in vitro Ki values when $\beta_{\text{kidney}}$ was 0.3 or less. In addition, the results from sensitivity analysis were comparable between the previous electrochemical model and our model with a $\beta_{\text{kidney}}$ of 0.8 (Figure 4b,d,e). These results suggest that the rate-determining step in the electrochemical model is likely the renal uptake, requiring one to greatly lower the Ki value for MATEs or OCT2 from in vitro Ki values to reproduce the observed DDI data. Thus, a $\beta_{\text{kidney}}$ of 0.3 or less is recommended for future efforts to predict the potential DDI using in vitro Ki values. Of note, we could not obtain reliable $\beta_{\text{kidney}}$ estimates by fitting to clinical metformin data.

Figure 3 Metformin plasma concentration-time profiles under control and drug–drug interaction conditions using fitted in vivo inhibition constant values for multidrug and toxin extrusion proteins after oral administration of 250 mg metformin and 400 mg cimetidine. For the control condition, the optimized parameters shown in Table 1 for $\beta_{\text{kidney}}$ value of 0.1 (a), 0.3 (b), 0.5 (c), or 0.8 (d) were used. For drug–drug interaction conditions, the optimized parameters were fixed, but the $\beta_{\text{kidney}}$ value was not fixed and allowed to change as the renal transport processes became inhibited. The black circles and blue triangles represent the observed plasma concentrations under control and drug–drug interaction conditions, respectively, and the black and blue lines represent the corresponding simulation results; $\beta_{\text{kidney}} = \text{PS}_{\text{ur}}/ (\text{PS}_{\text{ext}} + \text{PS}_{\text{ur}})$.

### Table 3 Observed and simulated AUC, C$_{\text{max}}$, and CL$_{\text{r}}$ ratios of metformin between control and drug–drug interaction conditions with fitted in vivo Ki value for MATEs at various $\beta_{\text{kidney}}$ values

| $\beta_{\text{kidney}}$ | Fitted in vivo Ki value for MATEs (μM) | Fold changes from simulations |
|-------------------------|----------------------------------------|-----------------------------|
|                         | AUC (1.47 ± 0.75)$^{16}$ | C$_{\text{max}}$ (1.72 ± 0.97)$^{16}$ | CL$_{\text{r}}$ (0.72 ± 0.32)$^{16}$ |
| 0.1                     | 1.71 ± 0.74                             | 1.40 | 1.52 | 0.63 |
| 0.3                     | 1.34 ± 0.60                             | 1.39 | 1.50 | 0.64 |
| 0.5                     | 0.64 ± 0.34                             | 1.42 | 1.54 | 0.61 |
| 0.8                     | 0.23 ± 0.12                             | 1.42 | 1.54 | 0.61 |

AUC, area under the curve; C$_{\text{max}}$, the maximum plasma concentration; CL$_{\text{r}}$, renal clearance; Ki, inhibition constant; MATEs, multidrug and toxin extrusion proteins.

*For the control condition, the $\beta_{\text{kidney}}$ value was set to 0.1, 0.3, 0.5, or 0.8, and the optimized parameters shown in Table 1 were used. For the drug–drug interaction conditions, the optimized parameters were fixed, but the $\beta_{\text{kidney}}$ value was not fixed and allowed to change as the renal transport processes became inhibited.*
PBPK Modeling Analysis for Quantitative Prediction

Nishiyama et al.

PBPK Modeling Analysis for Quantitative Prediction

Nishiyama et al.

(under control conditions). Our approach was to use a wide range of fixed $\beta_{\text{kidney}}$ values (to cover situations with differing rate-determining steps) under control conditions and to deduce optimal $\beta_{\text{kidney}}$ ranges from sensitivity analysis. This approach may represent another strategy to indirectly estimate $\beta_{\text{kidney}}$.

In understanding how our model was capable of reproducing the clinical DDI data using in vitro $K_i$ values and small $\beta_{\text{kidney}}$ values, a mechanistic interpretation of the $\beta_{\text{kidney}}$ values may shed some light on possible reasons. The extended clearance concept takes all intrinsic processes into account when assessing the overall elimination process. Incorporating the extended clearance concept, $\text{CL}_{\text{int,sec}}$ is described as $\text{PS}_{\text{OCT2,inf}}\times\beta_{\text{kidney}}$ (Eq. 7). By converting the parameters with Eqs. 5 and 8–14, $\text{CL}_{\text{int,sec}}$ can be transformed to Eq. 16.

$$\text{CL}_{\text{int,sec}} = \frac{\text{PS}_{\text{OCT2,inf}} + \text{PS}_{\text{dif,inf}}}{\text{PS}_{\text{MATE}} + \text{PS}_{\text{urine,eff}}}$$

When $\beta_{\text{kidney}}$ is 0.1, the values for individual parameters in Eq. 16 are as follows: $\text{PS}_{\text{OCT2,inf}}$ 732 L/hour; $\text{PS}_{\text{dif,inf}}$ 0.043 L/hour; $\text{PS}_{\text{dif,eff}}$ 0.0031 L/hour; $\text{PS}_{\text{MATE}}$ 4.47 L/hour; $\text{PS}_{\text{urine,dif,eff}}$ 0.024 L/hour; $e^{N/R}_{\text{OCT2,inf/eff}}$ 0.055. When the transport of metformin by MATEs becomes inhibited to 20% in the presence of cimetidine (i.e., $\text{PS}_{\text{MATE}}$ decreased to 0.89 L/hour), the $\beta_{\text{kidney}}$ is changed from 0.1 to 0.022, and $\text{CL}_{\text{int,sec}}$ is decreased from 73.5 to 16.3 L/hour, by ~4.5-fold when compared with the control condition. A similar calculation can be performed when $\beta_{\text{kidney}}$ is 0.8. The values for individual parameters in Eq. 16 are as follows: $\text{PS}_{\text{OCT2,inf}}$ 126 L/hour; $\text{PS}_{\text{dif,inf}}$ 0.043 L/hour; $\text{PS}_{\text{dif,eff}}$ 0.0031 L/hour; $\text{PS}_{\text{MATE}}$ 27.9 L/hour; $\text{PS}_{\text{urine,dif,eff}}$ 0.024 L/hour; $e^{N/R}_{\text{OCT2,inf/eff}}$ 0.055. When the transport of metformin by MATEs becomes inhibited to 20% in the presence of cimetidine (i.e., $\text{PS}_{\text{MATE}}$ decreased to 5.6 L/hour), $\beta_{\text{kidney}}$ is changed from 0.8 to 0.45, and $\text{CL}_{\text{int,sec}}$ is decreased from 101 to 56.4 L/hour, by ~1.8-fold when compared with the control condition. These calculation results indicate that as $\beta_{\text{kidney}}$ values become smaller, the inhibition of MATEs has a much greater impact on $\text{CL}_{\text{int,sec}}$.

\[ \text{CL}_{\text{int,sec}} = \frac{\text{PS}_{\text{OCT2,inf}} + \text{PS}_{\text{dif,inf}}}{\text{PS}_{\text{MATE}} + \text{PS}_{\text{urine,eff}}} \]
A number of DDI cases have been reported between metformin and other drugs that can inhibit both OCT2 and MATEs (e.g., pyrimethamine, dolasetravir, trimethoprim, and vandetanib). For pyrimethamine, in vitro Ki values for MATEs (0.059–0.15 μM) are much lower than those for OCT2 (4.1–23 μM). The observed Cmax values of unbound pyrimethamine in plasma range from 0.30–0.40 μM after a 50 mg oral pyrimethamine dose, suggesting the inhibition of MATEs as the likely DDI mechanism. In the case of dolasetravir, its in vitro Ki values for OCT2 and MATE1 are 1.9 and 6.3 μM, respectively. In a clinical DDI study, the coadministration of dolasetravir increased the plasma AUC of metformin by 79% and 145% when dolasetravir was coadministered as a single daily dose of 50 mg and two daily doses of 50 mg with a 12-hour interval. With its unbound Cmax values being much lower than the in vitro Ki values for OCT2 and MATE1, the inhibitions of OCT2 and MATE1 were deemed unlikely to explain the observed DDI, and the exact mechanism remains unknown. Our current PBPK model may aid the efforts to quantitatively predict the DDI and gain mechanistic insights into complex DDI cases between metformin and other drugs.

Our PBPK model for metformin may also have some utility in understanding the source of variable response and toxicity to metformin therapy. Drug concentrations in plasma or blood are often assumed to be associated with drug efficacy and toxicity. It is, however, increasingly recognized that it may not be the case if a drug is actively taken up into tissues or metabolized in the tissues. Although one third of patients did not respond to metformin, the metformin levels in plasma are not predictive of blood lactate concentrations and the risk for lactic acidosis. In addition, the diabetic patients carrying the MATE1 promoter variant (g.-66T→C) exhibit a greater response to metformin than those carrying the wildtype. By incorporating variables consistent with biologically plausible mechanisms (especially variables for transport processes by OCT1/2 and MATEs), it might be possible to gain mechanistic insights into interindividual variations in metformin response and side effects and to predict the pharmacokinetic profiles and clinical outcomes using the virtual clinical study method.

In conclusion, we developed a refined PBPK model for metformin that successfully reproduced the DDI between metformin and cimetidine with in vitro Ki values. Our results supported the fact that the DDI between metformin and cimetidine is likely mediated by the inhibition of MATEs by cimetidine rather than by OCT2 inhibition.

Supporting Information. Supplementary information accompanies this paper on the CPT: Pharmacometrics & Systems Pharmacology website (www.psp-journal.com).

Figure S1. Simulated (lines) and observed (open circles) time profiles of metformin urinary excretion after a single oral administration of 1,500 mg metformin using various $P_{\text{kidney}}$ values.

Figure S2. Metformin plasma concentration time profiles of control and drug–drug interaction conditions using the lowest and geometric mean of inhibition constant values of cimetidine at differing $P_{\text{kidney}}$ values after the administration of 250 mg metformin and 400 mg cimetidine.

Table S1. Various parameters used in the metformin physiologically-based pharmacokinetic model and reported in vitro Km values for transporters of metformin parameters used in the metformin physiologically-based pharmacokinetic model.

Table S2. Physiological parameters of blood volume, tissue volumes, hematocrit value, and blood flows.

Table S3. Physiological parameters, membrane potential, blood flow, and urinary flow in the kidney model.

Table S4. Parameters used in the cimetidine physiologically-based pharmacokinetic model.

Supplementary Material S1. Model code file.

Supplementary Material S2. Model equations for metformin.

Funding. No funding was received for this work.

Conflict of Interest. The authors declared no competing interests for this work.

Author Contributions. K.N., K.T., W.L., N.I., B.B., and Y.S. wrote the manuscript. K.N., K.T., and Y.S. designed the research. K.N., K.T., and Y.S. performed the research. K.N., K.T., and Y.S. analyzed the data.

1. Burt, H.J. et al. Metformin and cimetidine: physiologically based pharmacokinetic modelling to investigate transporter mediated drug-drug interactions. Eur. J. Pharm. Sci. 88, 70–82 (2016).
2. Graham, G.G. et al. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet. 50, 81–99 (2011).
3. Shikata, E. et al. Human organic cation transporter (OCT1 and OCT2) gene polymorphisms and therapeutic effects of metformin. J. Hum. Genet. 52, 117–122 (2007).
4. Lalau, J.D. & Race, J.M. Lactic acidosis in metformin-treated patients. Prognostic value of arterial lactate levels and plasma metformin concentrations. Drug Saf. 20, 377–384 (1999).
5. Pentikainen, P.J., Neuvonen, P.J. & Penttilä, A. Pharmacokinetics of metformin after intravenous and oral administration to man. Eur. J. Clin. Pharmacol. 16, 195–202 (1979).
6. Tucker, G.T., Casey, C., Phillips, P.J., Connor, H., Ward, J.D. & Woods, H.F. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br. J. Clin. Pharmacol. 12, 235–246 (1981).
7. Rena, G., Pearson, E.R. & Sakamoto, K. Molecular mechanism of action of metformin: old or new insights? Diabetologia 56, 1899–1906 (2013).
8. Stage, T.B., Bransen, K. & Christensen, M.M. A comprehensive review of drug–drug interactions with metformin. Clin. Pharmacokinet. 54, 811–824 (2015).
9. Xie, F., Ke, A.B., Bowers, G.D. & Zamek-Gliszczynski, M.J. Metformin’s intrinsic blood-to-plasma partition ratio (B/P): reconciling the perceived high in vivo B/P > 10 with the in vitro equilibrium value of unity. J. Pharmacol. Exp. Ther. 354, 225–229 (2015).
10. Umehara, K.I., Itatsubo, T., Noguchi, K. & Kamimura, H. Functional involvement of organic cation transporter 1 (OCT1/1011) in the hepatic uptake of organic cations in humans and rats. Xenobiota 37, 818–831 (2007).
11. Kimura, N., Okuda, M. & Inui, K. Metformin transport by renal basolateral organic cation transporter hOCT2. Pharm. Res. 22, 255–259 (2005).
12. Tanihara, Y., Masuda, S., Sato, T., Katsura, T., Ogawa, O. & Inui, K. Substrate specificity of MATE1 and MATE2-K: Human multidrug and toxin extrusions/H(+-)/organic cation antiporters. Biochem. Pharmacol. 74, 359–371 (2007).
13. Christensen, M.M. et al. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet. Genomics 21, 837–850 (2011).
14. Christensen, M.M. et al. A gene–gene interaction between polymorphisms in the OCT2 and MATE1 genes influences the renal clearance of metformin. Pharmacogenet. Genomics 23, 526–534 (2013).
15. Stocker, S.L. et al. The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin. Pharmacol. Ther. 93, 186–194 (2013).
16. Somogyi, A., Stockley, C., Keal, J., Rolan, P. & Bochner, F. Reduction of metformin renal tubular secretion by cimetidine in man. Br. J. Clin. Pharmacol. 23, 545–551 (1987).
406

17. Wang, Z.J., Yin, O.G., Tomlinson, B. & Chow, M.S. OCT2 polymorphisms and in-vivo renal functional consequences: studies with meftomin and cimetidine. Pharmacogenet. Genomics 18, 637–645 (2008).

18. Grahnén, A., von Bahr, C., Lindström, B. & Rosén, A. Bioavailability and pharmacokinetics of cimetidine. Eur. J. Clin. Pharmacol. 16, 335–340 (1979).

19. Somogyi, A., Thielscher, S. & Gugler, R. Influence of phenobarbital treatment on cimetidine kinetics. Eur. J. Clin. Pharmacol. 19, 343–347 (1981).

20. Elsby, R.

21. Ito, S.

22. Shen, H.

23. Watanabe, T., Kusuhara, H., Maeda, K., Shitara, Y. & Sugiyama, Y. Physiologically efficient transporter for creatinine and species-dependent renal tubular reabsorption of pravastatin in humans. Drug Metab. Dispos. 46, 749–757 (2018).

24. Rodgers, T., Leahy, D. & Rowland, M. Physiologically based pharmacokinetic modeling, and implications for the liver. Clin. Pharmacol. Ther. 94, 126–141 (2013).

25. Futfutsugi, A., Toshimoto, K., Yoshikado, T., Sugiyama, Y. & Kato, Y. Evaluation of alteration in hepatic and intestinal BCRP function in vivo from ABCG2 c.421C→A polymorphism based on PBPK analysis of Rosuvastatin. Drug Metab. Dispos. 46, 789–797 (2018).

26. Balimane, P.V. & Chong, S. Evaluation of permeability and P-glycoprotein interactions: industry outlook. In Biopharmaceutics Applications in Drug Development (eds. Krishna, R. and Yu, L.) 101–138 (Springer, New York, 2008).

27. Min, K.A., Zhang, X., Yu, J.Y. & Rosania, G.R. Computational approaches to analyse and predict small molecule transport and distribution at cellular and subcellular levels. Biopharm. Drug Dispos. 35, 15–32 (2014).

28. Yoshida, K., Maeda, K. & Sugiyama, Y. Hepatic and intestinal drug transporters: prediction of pharmacokinetic effects caused by drug-drug interactions and genetic polymorphisms. Annu. Rev. Pharmacol. Toxicol. 53, 581–612 (2013).

29. Yoshikado, T. et al. Comparison of methods for estimating unbound intracellular-to-medium concentration ratios in rat and human hepatocytes using statins. Drug Metab. Dispos. 45, 779–787 (2017).

30. Balimane, P.V. & Chong, S. Evaluation of permeability and P-glycoprotein interactions: industry outlook. In Biopharmaceutics Applications in Drug Development (eds. Krishna, R. and Yu, L.) 101–138 (Springer, New York, 2008).

31. Siener, R., Jahnen, A. & Hesse, A. Influence of a mineral water rich in calcium, magnesium and bicarbonate on urine composition and the risk of calcium oxalate crystallization. Eur. J. Clin. Nutr. 58, 270–275 (2004).

32. Hisaka, A. & Sugiyama, Y. Analysis of nonlinear and nonsteady state hepatic extraction with the dispersion model using the finite difference method. J. Pharmacokinet. Biopharm. 26, 495–519 (1998).

33. Masuda, S. et al. Identification and functional characterization of a new human kidney-specific H+/organic cation transporter, kidney-specific multidrug and toxin extrusion 2, J. Am. Soc. Nephrol. 17, 2127–2135 (2006).

34. Tsuda, M., Terada, T., Mizuno, T., Katsura, T., Shimakura, J. & Inui, K. Targeted disruption of the multidrug and toxin extrusion 1 (mate1) gene in mice reduces renal secretion of metformin. Mol. Pharmacol. 75, 1280–1286 (2009).

35. Müller, F. et al. N(1)-methylnicotinamide as an endogenous probe for drug interactions by renal cation transporters: studies on the metformin-trimethoprim interaction. Eur. J. Clin. Pharmacol. 71, 85–94 (2015).

36. Hodgkin, A.L. & Katz, B. The effect of sodium ions on the electrical activity of giant axon of the squid. J. Physiol. 108, 37–77 (1949).

37. Måler, A. & Bjercke, P. The effect of substrate dependent inhibition on renal organic cation transporters hOCT2 and MATE1/2-K mediated drug transport and intracellular accumulation. J. Pharm. Exp. Ther. 359, 401–410 (2016).

38. Mansor, S.M. et al. Single dose kinetic study of the triple combination metformine/sulphadoxine/pyrimethamine (Fansimef) in healthy male volunteers. Br. J. Clin. Pharmacol. 27, 381–386 (1989).

39. Chu, X. et al. Intracellular drug concentrations and transporters: measurement, modeling, and implications for the liver. Clin. Pharmacol. Ther. 94, 126–141 (2013).

40. Hermann, L.S., Scherstén, B., Bitzén, P.O., Kjellström, T., Lindgärde, F. & Melander, A. Therapeutic comparison of metformin and sulfonylurea, alone and in various combinations. A double-blind controlled study. Diabetes Care 17, 1100–1109 (1994).

41. Masuda, S. et al. Identification and functional characterization of a new human kidney-specific H+/organic cation transporter, kidney-specific multidrug and toxin extrusion 2, J. Am. Soc. Nephrol. 17, 2127–2135 (2006).

42. Tsuda, M., Terada, T., Mizuno, T., Katsura, T., Shimakura, J. & Inui, K. Targeted disruption of the multidrug and toxin extrusion 1 (mate1) gene in mice reduces renal secretion of metformin. Mol. Pharmacol. 75, 1280–1286 (2009).

43. Müller, F. et al. N(1)-methylnicotinamide as an endogenous probe for drug interactions by renal cation transporters: studies on the metformin-trimethoprim interaction. Eur. J. Clin. Pharmacol. 71, 85–94 (2015).

44. Hodgkin, A.L. & Katz, B. The effect of sodium ions on the electrical activity of giant axon of the squid. J. Physiol. 108, 37–77 (1949).

45. Masuda, S. et al. Identification and functional characterization of a new human kidney-specific H+/organic cation transporter, kidney-specific multidrug and toxin extrusion 2, J. Am. Soc. Nephrol. 17, 2127–2135 (2006).

46. Tsuda, M., Terada, T., Mizuno, T., Katsura, T., Shimakura, J. & Inui, K. Targeted disruption of the multidrug and toxin extrusion 1 (mate1) gene in mice reduces renal secretion of metformin. Mol. Pharmacol. 75, 1280–1286 (2009).

47. Müller, F. et al. N(1)-methylnicotinamide as an endogenous probe for drug interactions by renal cation transporters: studies on the metformin-trimethoprim interaction. Eur. J. Clin. Pharmacol. 71, 85–94 (2015).

48. Hodgkin, A.L. & Katz, B. The effect of sodium ions on the electrical activity of giant axon of the squid. J. Physiol. 108, 37–77 (1949).

49. Masuda, S. et al. Identification and functional characterization of a new human kidney-specific H+/organic cation transporter, kidney-specific multidrug and toxin extrusion 2, J. Am. Soc. Nephrol. 17, 2127–2135 (2006).

50. Tsuda, M., Terada, T., Mizuno, T., Katsura, T., Shimakura, J. & Inui, K. Targeted disruption of the multidrug and toxin extrusion 1 (mate1) gene in mice reduces renal secretion of metformin. Mol. Pharmacol. 75, 1280–1286 (2009).