The Heritability of Kidney Function Using an Older Australian Twin Population

Julia Jefferis1, Anita Pelecanos2, Vibeke Catts3 and Andrew Mallett4,5,6

1Department of Renal Medicine, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia; 2Statistics Unit, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; 3Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia; 4Institute for Molecular Bioscience and Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia; 5Department of Renal Medicine, Townsville University Hospital, Douglas, Queensland, Australia; and 6College of Medicine and Dentistry, James Cook University, Douglas, Queensland, Australia

Introduction: Twin studies are unique population models which estimate observed rather than inferred genetic components of complex traits. Nonmonogenic chronic kidney disease (CKD) is a complex disease process with strong genetic and environmental influences, amenable to twin studies. We aimed to assess the heritability of CKD using twin analysis and modeling within Older Australian Twin Study (OATS) data.

Methods: OATS had 109 dizygotic (DZ) and 126 monozygotic (MZ) twin pairs with paired serum creatinine levels. Heritability of kidney function as estimated glomerular filtration rate (eGFR CKD Epidemiology Collaboration [CKD-EPI]) was modeled using the ACE model to estimate additive heritability (A), common (C), and unique (E) environmental factors. Intratwin pair analysis using mixed effects logistic regression allowed analysis of variation in eGFR from established CKD risk factors.

Results: The median age was 69.71 (interquartile range 78.4–83.0) years, with 65% female, and a mean CKD-EPI of 82.8 ml/min (SD 6.7). The unadjusted ACE model determined kidney function to be 33% genetically determined (A), 18% shared genetic-environmental (C), and 49% because of unique environment (E). This remained unchanged when adjusted for age, hypertension, and sex. Hypertension was associated with eGFR; however, intertwin variance in hypertension did not explain variance in eGFR. Two or more hypertension medications were associated with decreased eGFR ($P = 0.009$).

Conclusion: This study estimates observed heritability at 33%, notably higher than inferred heritability in genome-wide association study (GWAS) (7.1%–18%). Epigenetics and other genomic phenomena may explain this heritability gap. Difference in antihypertension medications explains part of unique environmental exposures, though discordance in hypertension and diabetes does not.

Kidney Int Rep (2022) 7, 1819–1830; https://doi.org/10.1016/j.ekir.2022.05.012

KEYWORDS: eGFR; heritability; kidney function; twin study

© 2022 International Society of Nephrology. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
triglycerides, and body mass index had significant environmental correlation with kidney function. Thus, family studies can assess both genetic and environmental factors in CKD.

The field of genetics in CKD is expanding our understanding of disease processes, from classic Mendelian and monogenic inheritance to polygenic complex traits analysis identifying new genes and pathways of interest. Autosomal dominant polycystic kidney disease and Alport syndrome are well-described monogenic disorders. Autosomal dominant polycystic kidney disease involves single mutations in PKD1 or PKD2 with significant phenotypic variation. Of people with CKD, 10% have identifiable genetic abnormalities underpinning their disease process, using whole exome sequencing data from a 625-gene panel. The most common cause of CKD in children is nephronophthisis, an autosomal recessive ciliopathy, which is associated with at least 25 genes. Nephronophthisis exhibits significant variability, even within families, and genetic diagnosis has furthered our understanding in adult CKD. APOL1 G1/G2 have been linked with progression to end-stage kidney disease with focal segmental glomerulosclerosis and lupus nephritis in African American populations. Genes involved in biological pathways contributing to the major risk factors for progression of CKD such as hypertension and diabetes are of particular interest. A meta-analysis of 23 studies with 7918 cases and 6905 controls found that AGTR1 A1166C, a polymorphism in a gene involved in the renin-angiotensin system and significantly implicated in hypertension, was not associated with incidence of CKD, although more data in the South Asian populations are required. A 2005 meta-analysis of 14,727 subjects supports a genetic association in the ACE gene locus with diabetic nephropathy. Two single nucleotide polymorphisms (SNPs) in SLC19A3, an intracellular thiamine transporter, seem to be protective against microvascular complications including retinopathy and nephropathy in type 1 diabetics. GWAS have estimated the genetic contribution to kidney function between 7% and 19.6%, with higher estimates in more targeted groups such as those with diabetes mellitus. These examples highlight the important interplay between genetic variation and environmental factors leading to kidney disease, in addition to and outside the traditional and more deterministic modes of Mendelian inheritance.

Twin studies are able to determine heritability, the amount of phenotypic variation in trait in a population attributable to genetic differences. Heritability is estimated using data from MZ (identical genetic background) and DZ (sibling models with 50% shared genetic material) twins. The identified genetic determination of kidney function varies between GWAS and familial studies, and studies in elderly populations are often missing from GWAS data sets. Twin study analyses in populations with elderly cohorts which have inherently more time opportunity for experiencing comorbidities, senescence, and kidney phenotypes are lacking. This study aims to determine the genetic contribution to kidney function through a twin study of older people and to determine the potential influence of high-risk medical conditions such as hypertension and diabetes.

METHODS

Participant Recruitment
Twin aged ≥65 years were recruited by the OATS through the Twins Research Australian as described previously. The inclusion criteria were age ≥65 years, ability to consent, having a consenting co-twin, having completed education in English, and being at least of low-average intelligence quotient. The exclusion criteria included diagnosis of malignancy or other life-threatening medical illness and current diagnosis of acute psychotic disorder. Participants provided written informed consent.

Clinical Assessment
Sociodemographic data, medical and psychiatric history, detailed family history, and risk factor schedule were collected, and a standard medical examination was performed. Medication lists were collected on a per patient basis and categorized into number of antihypertensives, oral hypoglycemics, or insulin. The lowest of 3 clinic systolic and diastolic BP measures was included for analysis. Only twin pairs who donated a blood sample for clinical chemistry were included in the analysis. Kidney function was calculated using the CKD-EPI equation from serum creatinine, age, gender, and ethnicity data. Of the OATS participants, 77% were included in the analysis.

Analysis
Twin studies were paired and labeled as MZ or DZ. Twins who did not have both serum creatinine collected were excluded from the analysis. There were 470 twins (126 MZ pairs, 109 DZ pairs) with paired serum creatinine available. Data were analyzed in STATA 15 (StataCorp, 2017, College Station, TX). Statistical significance was indicated at a $P < 0.05$.

The ACE classical twin model for quantitative traits was used to establish concordance and heritability. Linear mixed effect models were run, 1 for MZ only and 1 for DZ twins only with twin pair as a random effect, 1 for all twins with twin pair as a random effect, and 1 for all twins where separate effects for MZ and DZ twins
were included where twin number was nested within twin pair. Models were also adjusted for age and sex based on clinical reasoning and separately adjusted for age and hypertension based on a backward elimination variable selection process. Intraclass correlations, DZ covariance, and ACE variance components were derived from these unadjusted and adjusted models. Nested models were compared using the likelihood ratio test.

To determine the genetic and environmental determinants of kidney function, the following 3 analyses were run: “initial multivariable” analysis to determine significant factors for eGFR in our population; “intrapair” analysis to assess differences within twin sets; and “intra- and interpair” analysis to consider if twin pairs, considered separately and together, are different from other paired twins. The “initial multivariable” analysis was performed using mixed effects models with twin pair ID as a random effect to identify whether variables were associated with eGFR. These models of eGFR were performed using age, sex, weight, height, diabetes, and hypertension status as covariates or using age, sex, weight, height, diabetes medication, and hypertension medications as covariates. These covariates are to kidney function as measured by eGFR (CKD-EPI).

As a part of the “intrapair” analysis, the difference in the outcome of eGFR between twins and the difference between covariates between twins were computed, resulting in 1 record per twin pair. The same covariates used in the “initial multivariable” analysis were computed except for age, as it was reasonably assumed that there would be no variability in ages within twins. These “difference” covariates (excluding age) were then used to model the “difference” in GFR between twin pairs using multivariable linear regressions. Zygosity was not accounted for in these models.

“Intrapair and interpair” analysis was used to examine twins as paired sets and considers the impact of each factor, that is, each twin’s hypertensive status, on the paired twin eGFR. This analysis models eGFR including both the twin pair mean and the twin pair difference from the twin pair mean for each covariate in the model. All covariate twin pair means and differences were calculated and included in the analysis, except for the twin pair difference in age, owing to twin pairs sharing the same age. The analyses presented used mixed effects models with twin pair as a random effect.

Ethics

The OATS has been approved prospectively by the University of New South Wales Human Research Ethics Committee (approval HC17414), and the data request for this specific project was approved by the OATS governance committee. This specific project was

Variables	\(n = 252 \)	\(n = 218 \)
Sex, \(n (%) \)	252	218
Male/male	48 pairs (18.1)	14 pairs (12.8)
Female/female	78 pairs (61.9)	56 pairs (51.4)
Male/female	0 pairs (0.0)	39 pairs (35.8)
Age, median (IQR)	69.7 (66.7–74.2)	69.7 (66.8–74.1)
BMI, \(\text{kg/m}^2 \), median (IQR)	26.1 (23.7–28.5)	26.2 (23.8–28.9)
Type 2 diabetes, \(n (%) \)	252	217
0	234 (92.9)	201 (92.2)
1	13 (5.2)	11 (6.0)
2	5 (2.0)	3 (1.4)
3	0 (0.0)	3 (1.4)
eGFR, mean (SD)	252	218
0	82.4 (6.8)	83.2 (6.6)
SBP, mean (SD)	245	207
0	132.2 (19.3)	132.6 (18.7)
DBP, mean (SD)	245	207
0	77.6 (11.0)	78.1 (10.9)
Hypertension, \(n (%) \)	250	216
0	134 (53.6)	114 (52.8)
No. hypertension medications, \(n (%) \)	252	218
0	138 (54.8)	109 (50.0)
1	49 (19.4)	58 (26.6)
2	41 (16.3)	31 (14.2)
3	15 (6.0)	14 (6.4)
4	8 (3.2)	4 (1.8)
5	1 (0.4)	2 (0.9)

BMI, body mass index; DBP, diastolic blood pressure; DZ, dizygotic; eGFR, estimated glomerular filtration rate; IQR, interquartile range; MZ, monozygotic; SBP, systolic blood pressure.
further approved by the Royal Brisbane and Women’s Hospital Human Research Ethics Committee (approval LNR/2018/QRBW/44085).

RESULTS

Table 1 illustrates the baseline demographics of MZ and DZ twins. This was an older population, with a median age of 69.7 years. The population had a high female prevalence in both MZ (61.9%) and DZ (69.3%) twins. Within the DZ twins, 12.8% were male/male, 51.4% female/female, and 35.8% male/female. Only 9.5% of MZ and 10.1% of DZ twins had type 2 diabetes, whereas more than half of the twins had hypertension (MZ 53.6%, DZ 52.8%).

Concordance

As expected, estimated eGFR was more similar between MZ than DZ twins (Figure 1). The correlation in MZ twins (0.51 [95% CI 0.41–0.65]) was less than twice that of DZ twins (0.35 [95% CI 0.22–0.56]) (Table 2), indicating additive genetic effects contributing to eGFR.18

Comparisons of unadjusted models for all twins and all twins with separate effects for MZ and DZ twins indicated a significant difference between MZ and DZ correlations ($P = 0.044$), which remained after adjustment for sex and hypertension ($P = 0.032$) and adjustment for sex and age ($P = 0.044$). The ACE model (Figure 2, Table 3) determined unadjusted heritability at $A = 0.33$, $C = 0.18$, and $E = 0.49$, which did not change markedly when adjusted for sex and hypertension or sex and age. All unadjusted and adjusted comparisons of ACE and AE models resulted in P values < 0.001, indicating the ACE model is most appropriate.

Genetic and Environmental Determinants of eGFR

Two linear mixed effect models (models 4.1 and 4.2; Table 4) were run to evaluate the association between established risk factors and kidney function. Model 4.1 (included age, weight, height, gender, hypertension, and type 2 diabetes) identified hypertension as statistically significantly associated with a decrease in eGFR ($\beta = -1.59$ [95% CI -2.82 to -0.36, $P = 0.011$]). For kidney function, model 4.2 (included age, weight,

Table 2. Correlation and covariance of eGFR between twins by zygosity

Model	Zygotic covariance (95% CI)	ICC (95% CI)	Zygotic covariance (95% CI)	ICC (95% CI)	Zygotic covariance (95% CI)	ICC (95% CI)
	Unadjusted	Sex and hypertension adjusted	Sex and age adjusted		Sex and hypertension adjusted	Sex and age adjusted
MZ twins only	23.6 (16.2–34.5)	0.52 (0.39–0.64)	22.8 (15.5–33.5)	0.52 (0.39–0.65)	22.2 (15.1–32.7)	0.50 (0.38–0.63)
DZ twins only	14.5 (8.0–26.0)	0.34 (0.19–0.52)	12.9 (6.9–24.2)	0.31 (0.17–0.50)	13.3 (7.1–24.6)	0.32 (0.18–0.50)
All twins—no MZ/DZ effects	19.5 (14.2–26.9)	0.44 (0.34–0.54)	18.2 (13.0–25.3)	0.43 (0.32–0.53)	18.2 (13.1–25.3)	0.42 (0.32–0.53)
All twins—MZ/DZ effects						

MZ, monozygotic; DZ, dizygotic; eGFR, estimated glomerular filtration rate; ICC, intraclass correlation; MZ, monozygotic. Covariance models first consider “MZ only” or “DZ only” twin pairs, then consider “All twins—no MZ/DZ effects,” which does not consider for zygosity, and “All twins—MZ/DZ effects,” which incorporates zygosity into the modeling.
height, gender, number of hypertension medications, and type 2 diabetes medications) revealed that taking >2 hypertension medications was significantly associated with a decrease in estimated eGFR ($\beta = -1.96$ [95% CI -3.42 to -0.49], $P = 0.009$), although diabetes medications were not ($P = 0.69$). The number of medications was included as a marker of exposure level for hypertension and diabetes. A third model was run combining hypertension, hypertension medications, diabetes status, and diabetes medications that did not reveal any further significant associations with eGFR (results not presented).

Table 5 outlines the results of the intrapair analysis, where the twin pair difference in GFR is modeled by the twin pair differences in covariates. Hypertension and diabetes status (model 5.1) were modeled separately to antihypertensive and diabetes medication (model 5.2). The multivariable linear regressions (Table 5) did not identify any significant relationship between intratwin pair variation in eGFR and intratwin pair differences in height, weight, hypertension, diabetes, or medications.

An intratwin and intertwin analysis, as found in Table 6, similarly did not identify any associations between the twin pair mean or twin pair difference covariates and eGFR.

Table 7 illustrates the heritability estimates for kidney function from 9 twin studies. Measures of eGFR estimates varied across populations, including Sweden, Hungary, California, Australia, and Vietnam.

Figure 2. ACE model. A refers to additive genetic effects, which are considered 100% in monozygotic twins and 50% in dizygotic twins. C refers to common environment effects, presumed shared environment until age 18 years. E refers to unshared environmental effects, such as difference in smoking status.

Model	Unadjusted	Sex and hypertension adjusted	Sex and age adjusted			
	Covariance (95% CI)	Prop. variance (95% CI)	Covariance (95% CI)	Prop. variance (95% CI)	Covariance (95% CI)	Prop. variance (95% CI)
	A 14.8 (4.5-48.2)	0.33 (0.07-0.74)	15.9 (5.3-47.3)	0.37 (0.08-0.77)	14.7 (4.5-47.9)	0.37 (0.08-0.77)
	C 8.0 (1.2-53.9)	0.18 (0.01-0.65)	5.8 (0.4-76.5)	0.14 (0.004-0.69)	6.7 (0.7-63.2)	0.14 (0.004-0.69)
	E 21.6 (17.0-27.4)	0.49 (0.37-0.61)	20.9 (18.4-28.6)	0.49 (0.37-0.61)	21.6 (17.0-27.4)	0.49 (0.37-0.61)
	A 22.8 (16.8-30.9)	0.51 (0.40-0.63)	21.7 (15.8-29.7)	0.51 (0.39-0.63)	21.3 (15.8-29.3)	0.51 (0.39-0.63)
	E 21.6 (17.0-27.4)	0.49 (0.37-0.60)	20.9 (18.4-28.6)	0.49 (0.37-0.61)	21.5 (17.0-27.3)	0.49 (0.37-0.61)

A, additive genetic; C, common environment; E, unique environment; eGFR, estimated glomerular filtration rate.

The partitioning of the total variance of kidney function as eGFR into variance components for A, C, and E effects where the proportion of variance because of A, C, and E is also listed. All unadjusted and adjusted comparisons of ACE and AE models resulted in $P < 0.001$.
DISCUSSION

In a population of Australian twins >65 year of age, we estimate heritability of kidney function at 33%, 49% determined by unique environmental factors and 18% from shared environment. Correlation was higher in MZ than DZ twins, which suggests additive genetic effects contributing to eGFR. Results suggest that hypertension and >2 antihypertensive medications were associated with eGFR. Intrapair analysis, evaluating for differences between pairs, suggested that a trend toward hypertension status contributing to differences in eGFR, although not statistically significant, is an area for future exploration with a larger sample size. Analysis between twin pairs found no association with diabetes status, although the overall number of participants with diabetes was low. “Intra- and intertwin models” assess twins both as pairs and at a population level. Our analysis suggested that number of hypertension medications, which may represent severity of hypertension exposure, accounts for significant variance in eGFR between twins. Together, these analyses are in keeping with previous research that hypertension is a modifiable environmental factor that influences eGFR. In a broader context, we found that heritability estimates from twin studies are greater than those found in GWAS and highlight the importance of twin studies to understand the interplay between environmental and genetic factors.

Correlation of CKD-EPI between MZ twins (0.52) was higher than DZ twins (0.35), which indicates a genetic component with additive genes and a shared environment. When DZ correlation is more than half of the MZ correlation, this suggests both additive genetic effects and shared environmental effects. Other studies estimate correlation of kidney function in MZ twins at 0.50 to 0.57 and DZ twins at 0.24 to 0.31, which is similar to our results, and supports that eGFR is

Table 4. Relationship of environmental factors to eGFR-initial modeling using mixed effect models

Variable	Model 4.1	P value	Model 4.2	P value
	β (95% CI)		β (95% CI)	
Age	−0.13 (−0.27 to 0.01)	0.070	−0.13 (−0.26 to 0.01)	0.070
Weight	−0.04 (−0.10 to 0.01)	0.13	−0.04 (−0.09 to 0.01)	0.13
Height	0.01 (−0.08 to 0.10)	0.90	−0.003 (−0.09 to 0.09)	0.95
Sex				
Female	Ref		Ref	
Male				
Hypertension				
No				
Yes	−1.58 (−3.51 to 0.36)	0.11	−1.22 (−3.12 to 0.68)	0.21
Type 2 diabetes				
No				
Yes	−1.59 (−2.82 to −0.36)	0.011		
Hypertension medications				
0				
1	−1.08 (−2.53 to 0.37)	0.14		
2+	−1.96 (−3.42 to −0.49)	0.009		
Diabetes medications				
No				
Yes	−0.47 (−2.79 to 1.84)	0.69		

Table 5. Multivariable linear regression of twin pair difference (twin 2−twin 1) in eGFR

Twin pair difference covariate	Model 5.1	P value	Model 5.2	P value
	β (95% CI)		β (95% CI)	
Age	−0.01 (−0.09 to 0.06)	0.75	−0.01 (−0.09 to 0.06)	0.71
Weight	−0.01 (−0.14 to 0.13)	0.94	−0.03 (−0.16 to 0.11)	0.69
Sex	−1.29 (−4.46 to 1.87)	0.42	−0.56 (−3.63 to 2.52)	0.72
Hypertension	−1.51 (−3.20 to 0.19)	0.081		
Type 2 diabetes	−1.21 (−4.02 to 1.61)	0.40		
Hypertension medications			−0.76 (−1.71 to 0.19)	0.12
Diabetes medications			0.60 (−2.39 to 3.60)	0.69

eGFR, estimated glomerular filtration rate; Ref, reference.
genetically determined. In female-only twin analysis, correlation of creatinine clearance in MZ (0.77) and DZ twins (0.52) was higher than our study, which may reflect the younger age (<50 years) of the cohorts and average normal kidney function, with median calculated creatinine clearance >90 ml/min. Our population was older with more variation in kidney function, although all participants had an eGFR >60 ml/min per 1.73 m², limiting assessment of CKD. A key assumption of twin modeling is shared environment until age 18 years. The prevalence of kidney disease rises dramatically in older populations, from 7.9% in 55 to 64 years to 20.9% in 65 to 74 years, which our twins all had preserved kidney function limits

Table 6. Within pair and between pair analysis

Covariate	Model 6.1	Model 6.2	
	β	(95% CI)	P value
Age (mean)	−0.13	(−0.28 to 0.01)	0.069
Weight (mean)	−0.08	(−0.14 to 0.02)	0.14
Weight (dif)	−0.02	(−0.10 to 0.05)	0.59
Height (mean)	0.003	(−0.12 to 0.13)	0.96
Height (dif)	0.01	(−0.13 to 0.14)	0.92
Sex (mean)	−1.32	(−3.83 to 1.18)	0.30
Sex (dif)	−1.62	(−4.70 to 1.46)	0.30
Hypertension (mean)	−1.74	(−3.60 to 0.12)	0.067
Hypertension (dif)	−1.40	(−3.06 to 0.25)	0.097
T2DM (mean)	0.28	(−2.81 to 3.38)	0.86
T2DM (dif)	−1.57	(−4.32 to 1.18)	0.26

Hypertension medications (mean) | −1.13 | (−2.28 to 0.01) | 0.052 |
Hypertension medications (dif) | −0.82 | (−1.75 to 0.11) | 0.086 |
Diabetes medications (mean) | −3.25 | (−6.96 to 0.46) | 0.086 |
Diabetes medications (dif) | 1.17 | (−1.73 to 4.07) | 0.43 |

T2DM, type 2 diabetes mellitus.
*Mean indicates mean of twin pairs, dif indicates difference of twin pair from twin mean.
*This model analyzes eGFR variation within and between twin pairs and includes both the twin pair mean and the twin pair difference from the twin pair mean for each covariate in the model.

Table 7. Twin study heritability estimates of kidney function in different age groups

Population	Twins	Mean age (yr)	Gender (% female)	Renal function estimate (mean)	Heritability (A)	Shared environment (C)	Unique environment (E)
Australian NHMRC registry	Total 412	23.1	51	Serum creatinine (μmol/l) 84.9	0.47 (SEM 0.17)	0.21	0.40
MZ 170	DZ 242						
Southern California twin registry	Total 741	41.7 (SEM 0.5)	73	Modification of diet in renal disease (ml/min) 92.2	0.776 (SEM 0.034)	—	—
MZ 374	DZ 258						
Hungarian twin population	Total 202	47.4 (SD 16.5)	73	Modification of diet in renal disease (ml/min) 70	0.623 (95% CI 0.449-0.784)	0 (95% CI 0.0-0.562)	0.377 (95% CI 0.216-0.539)
MZ 63	DZ 138						
St Thomas’ UK Adult Twin registry	Total 304	48.3 (SD 13.3)	100	Modification of diet in renal disease (ml/min) 93.9	0.63 (95% CI 0.54-0.72)	0.18 (95% CI 0.10-0.26)	0.19 (95% CI 0.16-0.22)
MZ 151	DZ 153						
Emory Twin Study (Vietnam Era Twin registry)	Total 515	55 (SD 3.0)	0	Modification of diet in renal disease (ml/min) 88.3	0.51 (95% CI 0.39-0.61)	—	0.49 (95% CI 0.39-0.61)
MZ 304	DZ 206						
TwinGene	Total 10,882	65 (SD 8)	52	Modification of diet in renal disease (ml/min) —	0.38 (95% CI 0.23-0.52)	—	—
MZ 2499	DZ 8183						
Older Australian Twin Study	Total 470	71.06 (SD 6.13)	65	Modification of diet in renal disease (ml/min) 82.4	0.33 (95% CI 0.07-0.74)	0.18 (95% CI 0.01-0.65)	0.49 (95% CI 0.37-0.61)
MZ 252	DZ 218						
Origins of variance in the old-old octogenarian twins	Total 432	84.4 (range 81–95 yr)	64	Modification of diet in renal disease (ml/min) 91.8	0.18 (95% CI 0.0-0.55)	0.02 (95% CI 0.0-0.33)	0.52 (95% CI 0.40-0.68)
MZ 192	DZ 240						

CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; DZ, dizygotic; MZ, monozygotic.
Heritability estimates (h²) for kidney function were extracted from published twin studies.
modeling of CKD, but variation in eGFR between twins still enables study of determinants of healthy kidney function.1

Our adjusted twin modeling estimates that 37% of kidney function at a median cohort age of 69 years is based on genetic factors, 14% because of shared environment, and 49% because of unique environmental exposures. These values are in keeping with male twins from Vietnam, who at age 55 years had heritability of eGFR at 48% and 52% from environmental factors.21 The largest study with 10,682 twins at age 65 years had estimated heritability at 38%, similar to our study and higher than the heritability estimates found using GWAS SNP models (32%).20 A younger female twin population had estimated genetic contribution of 63%, 18% shared environment, and 19% unique factors.22 Table 7 summarizes the estimated narrow sense heritability (h^2), in a variety of populations, with varying estimates of eGFR. eGFR reduces with age of the population, and as such, studying h^2 estimates in these populations may reflect disease status over the life time. As the average population age increases, the h^2 diminishes, such that by the eighth decade of life, approximately 18% of kidney function is attributed to genetics.25 Tarnoki et al.25 modeled kidney size in twins, finding that kidney length was 50% heritable, whereas kidney width was primarily driven by environmental factors. Together, these twin studies suggest that a proportion of kidney function is genetically determined, with increasing influence of environmental determinants over the lifespan.

Decline in kidney function is considered a normal part of aging, and accurately estimating kidney function and its clinical significance in this process of physiological senescence is complex. In a population of adults aged >65 years with treated hypertension, the rate of decline in eGFR was associated with increased mortality.28 Healthy populations with a lower eGFR at 50 years had more preserved eGFRs at older ages, whereas unhealthy groups with higher eGFRs at younger ages had lower eGFRs at older ages. Interestingly, preserved eGFR at older ages was not associated with better health in older age.29 This highlights the complexities of using eGFR as a measure of health status in populations which include elderly participants. It may be that our standard measure is not the most informative. Cystatin C may be more accurate than creatinine for measuring eGFR in elderly populations.30 Furthermore, higher measures of eGFR (>97.5 centile) can represent renal hyperfiltration, typically associated with diabetes mellitus, cardiovascular risk, and mortality outcomes in both healthy and unhealthy populations.31,32 Renal hyperfiltration has similar cardiovascular mortality to CKD stage 3a.33 Fluctuations in kidney function over time can represent both healthy and unhealthy aging, and a comparison of rate of decline of eGFR is warranted.
Narrow sense h^2 is the estimate of the additive genetic effects and is well suited to study polygenic traits including kidney function. Broad sense h^2 includes dominant and environmental impacts on genetics, illustrated in Figure 3. Classic twin modeling reports h^2 and excludes dominant genetics effects (i.e., autosomal dominant conditions such as autosomal dominant polycystic kidney disease) and interactions between genes (i.e., epigenetic factors). GWAS only account for h^2 as they use SNPs that can only be modeled as additive genetic effects. Additive genetic traits models are generally sufficient to model human traits, and when MZ correlation is < 2 DZ correlation, this suggests contributing environmental factors. That MZ is < 2 DZ suggests that in our population, kidney function has important environmental determinants. A criticism of twin models is shared environmental factors are stronger between MZ than between DZ twins, which can overestimate the narrow sense heritability. Our study may overestimate heritability; however, the fact that we still see stronger correlation between MZ than DZ twins supports the important genetic contribution to kidney function, in addition to the influence of shared environment. In studying human disease, heritability estimates are useful to provide a measure of risk between genes. In polygenic traits, this is less clear cut, and studying families could help guide risk factor management, such as management of CKD and hypertension based on a familial risk calculator or polygenic risk scores.

The estimated heritability of kidney function (proportion of kidney function caused by underlying genetics) is much greater from family and twin studies compared with GWAS owing to this being an observed rather than inferred phenomena. A GWAS of > 1 million patients found 309 SNPs that explained 7.1% of the variance of eGFR and 19.6% of heritability. A study of 122 SNPs associated with kidney function found that eGFR was 15% heritable in nondiabetes, nonhypertensive, non-Hispanic individuals and 13% heritable in non-Hispanic Blacks. The Hong Kong Diabetes Registry has 8000 patients with diabetic nephropathy and using a GWAS analysis found the heritability of eGFR was 7%, CKD was 23%, and end-stage kidney disease was 31%. A study of 10,682 twins from the Swedish TwinGene project compared classic twin models with the SNP model of heritability. Traditional twin analysis estimated eGFR h^2 as 0.35, where SNP based h^2 was 0.32, with 84% of the traditional twin model heritability explained by SNPs. Heritability estimates derived from family studies, including twin studies described previously, are much greater. A higher GWAS derived h^2 of 0.36 for kidney function was found when related families were included. In a study of siblings in 310 families with diabetes mellitus, heritability of eGFR was 0.69 and heritability of urine albumin creatinine ratio was 0.40. A GWAS in 1703 patients with type 1 diabetes found that heritability for rate of decline of eGFR was 0.36. The differences in heritability estimates could be attributed to epigenetic interactions with risk factor genes that drive pathogenesis of CKD. Families have higher degree of shared environment exposures which could confound heritability estimates. An example of modifiable risk is high salt diets, which potentiates CKD in certain populations.

Epigenetic markers may account for differences in heritability estimates found between GWAS and family/twin studies and as markers of environmental determinants of disease. Epigenetic modifications are acquired in utero, throughout early childhood (which may be shared within twin pairs) and even into older adulthood. Interestingly, 81% of female twins have the same X inactivation methylation pattern, which is higher than would be expected randomly. A recent meta-analysis of DNA methylation age correlation in twins over the life span found that DNA methylation age is not similar at birth and increases in adolescence and adulthood, most notably in MZ twins, potentially reflecting the shared environment. When genome-wide average methylation was used as a measure of methylation, there was a high degree of correlation in DNA methylation in twins at birth (0.8), which was not different between MZ and DZ twins, suggesting methylation was determined by environmental (in utero) rather than genetic factors. In adolescence, concordance between twins reduces and plateaus in adulthood. The OATS group genome-wide average methylation correlation was 0.31. Older twins (>65 years) exhibit differences in expression of 5-methylcytosine DNA and histone acetylation, markers of epigenetic modifications. Epigenetic changes may explain discordant disease states, as found with twins with differing activities of lupus and rheumatoid arthritis related to DNA methylation patterns. In CKD, established epigenetic markers include microRNAs that prognosticate progression of diabetic nephropathy. MicroRNAs miR-17, miR-21, miR-150, miR-126, miR-196a, and miR-9 are associated with progression of CKD. The epigenetic contribution to kidney function is an exciting area of future research.

We found that hypertension and 2+ hypertension medications were associated with eGFR, which is consistent with hypertension as an established risk for CKD (Table 4). Using number of antihypertensives, we found that the twin mean number of antihypertensive medications was trending toward significantly being associated with eGFR ($P = 0.052$). This trend could
reflect that twins on higher numbers of antihypertensive agents had more challenging hypertension associated with a higher decline in eGFR, or that better controlled hypertension had less risk of CKD. This could indicate that hypertension and hypertension medications may influence eGFR, which can be both environmental and genetic. That this is not statistically significant could be because of our relatively small study sample, with well controlled hypertension (average measured BP 132/78 mm Hg). Use of antihypertensive medication with an elevated BP is associated with a slower eGFR decline. The heritability of kidney function in hypertensive families in the Seychelles was 0.41 to 0.82 and suggests that kidney impairment is higher in patients with 2 first-degree relative with hypertension. Heritability of hypertension in GWAS is estimated at 0.263, although the heritability estimate also diminishes with age, similar to what we have found with kidney function. A GWAS found that genetic proxies, which are drug target genetic variants, for angiotensin-converting enzymes and calcium channel blockers were associated with higher eGFRs, where beta-blocker–associated proxies were associated with lower levels of kidney function.

Kidney function and hypertension have a complex relationship, and a recent Mendelian analysis using GWAS data was able to reveal that higher kidney function is associated with lower BP, where BP did not influence kidney function. Hypertension is a well-established risk factor for CKD, is known to be heritable within families, and may reflect a modifiable factor which interplays with genetic determinants of kidney function. These studies suggest that kidney function has genetic determinants which are contributors to hypertension, with a genetic susceptibility, and targeting kidney health may reduce hypertension and associated disease burden.

Diabetes status and number of diabetes medications did not account for differences found in kidney function. In our population, 9.8% had diabetes, although only 24 people took 1 diabetes medication and 11 took >1, suggesting reasonable diabetic control. Relatively low numbers of twins were discordant for diabetes mellitus in our study, limiting analysis. The DISCO-TWIN consortium has pooled 32,000 twins, including our OATS population, and found that only 5.9% of MZ twins and 8% of DZ twins were discordant for diabetes. There is 87% concordance of diabetes between MZ twins. Studying these rare discordant twin sets will offer insight into the pathogenesis of diabetes, and proteomic analysis is underway.

Identifying polygenic contributors to human disease is an exciting area of future research, and understanding diseases with a significant degree of heritability warrants development of genetic risk prediction tools. Polygenic risk scores have recently been validated in major diseases, including coronary artery disease, type 2 diabetes, and breast cancer. This landmark study found, using polygenic risk, that 8% of the population has a 3-fold higher risk for coronary artery disease, based on polygenic risk scores. Several polygenic risk scores have been calculated for kidney function and will further our understanding of CKD as a complex trait.

Limitations of this study include the small sample size, Caucasian population-limiting generalizability, and relatively preserved kidney function, although the kidney function is more variable than other twin studies. Data including urine protein/creatinine ratio or Hba1c were not collected in this data set. We also used single measures of eGFR and have no temporal information regarding rate of decline in eGFR. Our strengths were use of CKD-EPI, mixed genders, and the focus on older twins.

We found in an older population of Caucasian twins that the kidney function as modeled by eGFR has both significant genetic and environmental determinants. This study highlights the heritability gap between genetic arrays and family-based studies. In the genomic era, family studies are still powerful models to further our understanding of human disease and offer insights into both genetic predisposition and significant environmental risk factors and the interplay between these. Further studies using family history to inform of disease risk and modifiable risk factors are intriguing, including establishing polygenic risk scores.

DISCLOSURE

All the authors declared no competing interests.

ACKNOWLEDGMENTS

The authors acknowledge the contribution of the OATS research team (https://cheba.unsw.edu.au/project/older-australian-twins-study) to this study. The OATS study has been funded by a National Health and Medical Research Council (NHMRC) and Australian Research Council (ARC) Strategic Award Grant of the Ageing Well, Ageing Productively Program (ID No. 401162); NHMRC Project (seed) Grants (ID No. 1024224 and 1025243); NHMRC Project Grants (ID No. 1045325 and 1085606); and NHMRC Program Grants (ID No. 568986 and 1093083). We thank the participants for their time and generosity in contributing to this research.

This research was facilitated through access to Twins Research Australia, a national resource supported by a Centre of Research Excellence Grant (ID No. 1079102) from the National Health and Medical Research Council.
AJM was supported by an RACP Jacquot Research Establishment Fellowship and a MNHHS Clinical Research Fellowship.

SUPPLEMENTARY MATERIAL

Supplementary File (PDF)

STROBE Statement.

REFERENCES

1. Australian Government, Australian Institute of Health and Welfare. Chronic kidney disease. Australian Government, Australian Institute of Health and Welfare. Updated 2020. Accessed May 10, 2022. https://www.aihw.gov.au/reports/australias-health/chronic-kidney-disease

2. Goldfarb DS, Avery AR, Beara-Lasic L, et al. A twin study of genetic influences on nephrolithiasis in women and men. *Kidney Int Rep.* 2019;4:535–540. https://doi.org/10.1016/j.ekir.2018.11.017

3. Skrunes R, Svarstad E, Reisaeter AV, Vikse BE. Familial clustering of ESRD in the Norwegian population. *Clin J Am Soc Nephrol.* 2014;9:1692–1700. https://doi.org/10.10221/CJN.01680214

4. Song YM, Sung J, Lee K. Longitudinal relationships of metabolic syndrome and obesity with kidney function: healthy twin study. *Clin Exp Nephrol.* 2015;19:887–894. https://doi.org/10.1007/s10258-015-0893-5

5. Gabow PA, Johnson AM, Kaehny WD, et al. Factors affecting the progression of renal disease in autosomal-dominant polycystic kidney disease. *Kidney Int.* 1992;41:1311–1319. https://doi.org/10.1016/2002.02019.015

6. Groopman EE, Marasa M, Cameron-Christie S, et al. Diagnostic utility of exome sequencing for kidney disease. *N Engl J Med.* 2019;380:142–151. https://doi.org/10.1056/NEJMoaa1806891

7. McConnnachie DJ, Stow JL, Mallett AJL, Cillipathies and the kidney: a review. *Am J Kidney Dis.* 2021;77:410–419. https://doi.org/10.1053/j.ajkd.2020.08.012

8. Hudson R, Patel C, Hawley CM, et al. Adult-diagnosed non-syndromic nephronophthisis in Australian families caused by biallelic NPHP4 variants. *Am J Kidney Dis.* 2019;76:282–287. https://doi.org/10.1053/j.ajkd.2019.08.031

9. Freedman BI, Langefeld CD, Andringa KK, et al. End-stage renal disease in African Americans with lupus nephritis is associated with APOL1. *Arthritis Rheumatol.* 2014;66:390–396. https://doi.org/10.1002/art.38220

10. Chang HF, Hsiao PJ, Hsu YJ, et al. Association between angiotensin II receptor type 1 A1168C polymorphism and chronic kidney disease. *Oncotarget.* 2018;9:14444–14455. https://doi.org/10.18632/oncotarget.24469

11. Ng DPK, Tai BC, Koh D, et al. Angiotensin-I converting enzyme insertion/deletion polymorphism and its association with diabetic nephropathy: a meta-analysis of studies reported between 1994 and 2004 and comprising 14,727 subjects. *Diabetologia.* 2005;48:1008–1016. https://doi.org/10.1007/s00125-005-1726-2

12. Porta M, Toppila I, Sandholm N, et al. Variation inSLC19A3 and protection from microvascular damage in type 1 diabetes. *Diabetes.* 2016;65:1022–1030. https://doi.org/10.2337/db15-1247

13. Wuttke M, Li Y, Li M, et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. *Nat Genet.* 2019;51:957–972. https://doi.org/10.1038/s41588-019-0407-x

14. Hellwege JN, Velez Edwards DR, Giri A, et al. Mapping eGFR loci to the renal transcriptome and phenotype in the VA Million Veteran Program. *Nat Commun.* 2019;10:3842. https://doi.org/10.1038/s41467-019-11704-w

15. Sachdev PS, Lammel A, Trollor JN, et al. A comprehensive neuropsychiatric study of elderly twins: the older Australian twins study. *Twin Res Hum Genet.* 2009;12:573–582. https://doi.org/10.1375/twin.12.6.573

16. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. *Ann Intern Med.* 2009;150:604–612. https://doi.org/10.7326/0003-4819-150-9-20090505-00006

17. Zypurh MJ, Zhang Z, Barsky AP, Li W. An ace in the hole: twin family models for applied behavioral genetics research. *Leadersh Q.* 2013;24:572–594. https://doi.org/10.1016/j.leaqua.2013.04.001

18. Mayhew AJ, Meyre D. Assessing the heritability of complex traits in humans: methodological challenges and opportunities. *Curr Genomics.* 2017;18:332–340. https://doi.org/10.2174/1389202918666170161450

19. Jeremendy G, Horváth T, Littvay L, et al. Effect of genetic and environmental influences on cardiometabolic risk factors: a twin study. *Cardiovasc Diabetol.* 2011;10:96. https://doi.org/10.1186/1475-2840-10-96

20. Chen X, Kuja-Halkola R, Rahman I, et al. Dominant genetic variation and missing heritability for human complex traits: insights from twin versus genome-wide common SNP models. *Am J Hum Genet.* 2015;97:708–714. https://doi.org/10.1016/j.ajhg.2015.10.004

21. Raggi P, Su S, Karohl C, et al. Heritability of renal function and inflammatory markers in adult male twins. *Am J Nephrol.* 2010;32:317–323. https://doi.org/10.1159/000319449

22. Hunter DJ, De Lange M, Snieder H, et al. Genetic contribution to renal function and electrolyte balance: a twin study. *Clin Sci (Lond).* 2002;103:259–265. https://doi.org/10.1042/CS200200529

23. Pasha DN, Davis JT, Rao F, et al. Heritable influence of DBH on adrenergic and renal function: twin and disease studies. *PLoS One.* 2013;8:e82956. https://doi.org/10.1371/journal.pone.0082956

24. Rao F, Wessel J, Wen G, et al. Renal albumin excretion: twin studies identify influences of heredity, environment, and adrenergic pathway polymorphism. *Hypertension.* 2007;49:1015–1031. https://doi.org/10.1161/HYPERTENSNAH.106.081679

25. Whitfield JB, Martin NG. The effects of inheritance on constituents of plasma: a twin study on some biochemical variables. *Ann Clin Biochem.* 1984;21:176–183. https://doi.org/10.1177/000456328402100303

26. Nilsson SE, Read S, Berg S, Johansson B. Heritabilities for renal function and electrolyte balance: a twin study. *Twin Res Hum Genet.* 2009;12:573–582. https://doi.org/10.1375/twin.12.6.573

27. Tarnoki DL, Tarnoki AD, Littvay L, et al. Genetic and environmental variance of renal parenchymal thickness: a twin
28. Chowdhury EK, Langham RG, Ademi Z, et al. Rate of change in renal function and mortality in elderly treated hypertensive patients. *Clin J Am Soc Nephrol*. 2015;10:1154–1161. https://doi.org/10.2215/CJN.07370714

29. Eriksen BO, Palsson R, Ebert N, et al. GFR in healthy aging: an individual participant data meta-analysis of iohexol clearance in European population-based cohorts. *J Am Soc Nephrol*. 2020;31:1602–1615. https://doi.org/10.1681/ASN.2020020151

30. Shlipak MG, Katz R, Kestenbaum B, et al. Rate of kidney function decline in older adults: a comparison using creatinine and cystatin C. *Am J Nephrol*. 2009;30:171–178. https://doi.org/10.1159/000212381

31. Park M, Yoon E, Lim Y-H, et al. Renal hyperfiltration in healthy aging: an individual participant data meta-analysis of iohexol clearance in the general population. *Kidney Int*. 2020;97:1426–1433. https://doi.org/10.1016/j.kint.2020.04.044

32. Weil EJ, Kobes S, Jones LI, Hanson RL. Glycemia affects glomerular filtration rate in people with type 2 diabetes. *BMC Nephrol*. 2019;20:397–397. https://doi.org/10.1186/s12882-019-1584-7

33. Dupuis M-E, Nadeau-Fredette A-C, Madore F, et al. Association of glomerular hyperfiltration and cardiovascular risk in middle-aged healthy individuals. *JAMA Network Open*. 2020;3:e202377. https://doi.org/10.1001/jamanetworkopen.2020.2377

34. Polderman TJ C, Benyamin B, De Leeuw CA, et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. *Nat Genet*. 2015;47:702–709. https://doi.org/10.1038/ng.3285

35. Guo S-W. Does higher concordance in monozygotic twins than in dizygotic twins suggest a genetic component? *Hum Hered*. 2001;51:121–132. https://doi.org/10.1159/000053333

36. Jiang G, Tam CHT, Luk AO, et al. Estimation of heritability for diabetic complications based on genomewide association study in Chinese population. *Diabetologia*. 2017;60:S174.

37. Moulin F, Ponte B, Pruijm M, et al. 5C.09: Heritability of renal function parameters and electrolyte levels in the SWISS individual participant data meta-analysis of iohexol clearance study. *Clin J Am Soc Nephrol*. 2020;31:1602–1615. https://doi.org/10.1002/bies.201700067

38. Fraga MF, Ballestar E, Paz MF, et al. From The Cover: epigenetic differences arise during the lifetime of monozygotic twins. *Proc Natl Acad Sci U S A*. 2005;102:10604–10609. https://doi.org/10.1073/pnas.0500398102

39. Valo E, Sandholm N, Toppila I, et al. Heritability of renal function decline measured by the rate of eGFR loss in type 1 diabetes. *Diabetologia*. 2016;59:S21–S22.

40. Gu D, Kelly TN, Hixson JE, et al. Genetic variants in the renin-angiotensin-aldosterone system and salt sensitivity of blood pressure. *J Hypertens*. 2010;28:1210–1220. https://doi.org/10.1097/1HJH.0b013e328338653

41. Bourrat P, Lu Q, Jablonka E. Why the missing heritability might not be in the DNA. *BioEssays*. 2017;39:1700067. https://doi.org/10.1002/bies.201700067

42. Li S, Nguyen TL, Wong EM, et al. Genetic and environmental causes of variation in epigenetic aging across the lifespan. *Clin Epigenetics*. 2020;12:158. https://doi.org/10.1186/s13548-020-00950-1

43. Talens RP, Christensen K, Putter H, et al. Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. *Aging Cell*. 2012;11:694–703. https://doi.org/10.1111/j.1474-9726.2012.00835.x

44. Javierre BM, Fernandez AF, Richter J, et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. *Genome Res*. 2010;20:170–179. https://doi.org/10.1101/gr.100289.109

45. Webster AP, Plant D, Ecker S, et al. Increased DNA methylation variation in rheumatoid arthritis-discordant monozygotic twins. *Genome Med*. 2018;10:84. https://doi.org/10.1186/s13073-018-0575-9

46. Wang G, Ouyang J, Li S, et al. The analysis of risk factors for diabetic nephropathy progression and the construction of a prognostic database for chronic kidney diseases. *J Transl Med*. 2019;17:264. https://doi.org/10.1186/s12882-019-0160-y

47. Yoo Q, Chen Y, Zhou X. The roles of microRNAs in epigenetic regulation. *Curr Opin Chem Biol*. 2019;51:11–17. https://doi.org/10.1016/j.cobp.2019.01.024

48. Erskine BO, Stefansson VTN, Jenssen TG, et al. Blood pressure and age-related GFR decline in the general population. *BMC Nephrol*. 2017;18:77–77. https://doi.org/10.1186/s12882-017-0496-7

49. Bochud M, Elston RC, Maillard M, et al. Heritability of renal function in hypertensive families of African descent in the Seychelles (Indian Ocean). *Kidney Int*. 2005;67:61–69. https://doi.org/10.1111/j.1523-1755.2005.00055.x

50. Ge T, Chen C-Y, Neale BM, et al. Phenome-wide heritability analysis of the UK Biobank. *PLoS Genet*. 2017;13:e1006711. https://doi.org/10.1371/journal.pgen.1006711

51. Zhao JV, Schooling CM. Using Mendelian randomization study to assess the renal effects of antihypertensive drugs. *BMC Med*. 2021;19:79. https://doi.org/10.1186/s12916-021-01951-4

52. Lu Q, Jablonka E. The missing heritability might not be in the DNA. *Nat Genet*. 2018;50:1219–1224. https://doi.org/10.1038/s41588-018-0183-z

53. Khera AV, Chaffin M, Aragam KG, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. *Nat Genet*. 2018;50:1219–1224. https://doi.org/10.1038/s41588-018-0183-z

54. Sinnott-Armstrong N, Tanigawa Y, Amar D, et al. Genetics of diabetic complications based on genomewide association study in the International twin registers: the discordant twin (DISCOTWIN) consortium. *Twin Res Hum Genet*. 2015;18:S771. https://doi.org/10.1177/1201039015619771

55. Ritchie SC, Lambert SA, Arnold M, et al. Integrative analysis of the plasma proteome and polygenic risk of cardiometabolic diseases. *Nat Metab*. 2021;3:1476–1483. https://doi.org/10.1038/s42255-021-00478-5