Please use Adobe Acrobat Reader to read this book chapter for free.
Just open this same document with Adobe Reader.
If you do not have it, you can download it here.
You can freely access the chapter at the Web Viewer here.
The Cholera Toxin as a Biotechnological Tool
Noelia Olivera, Maia Cédola and Ricardo M Gómez
Instituto de Biotecnología y Biología Molecular, CONICET La Plata
Argentina

1. Introduction
It was as early as 1886 when Robert Koch proposed that the symptoms caused by Vibrio cholerae were initiated by a “poison” produced by the pathogen. However, it was not until 1959 that this postulate could be demonstrated by reproducing the disease in an animal model [De, 1959]. Today, cholera toxin (CT) is known to exhibit toxic effects in human cells and produces dehydrating diarrhea in humans. It is produced almost exclusively by few serogroups of V. cholerae, however, sometimes may be naturally produced by other organisms, as the opportunistic pathogen V. mimicus [Nishibuchi and Seidler, 1983; Spira and Fedorka-Cray, 1984].

CT has important immunological properties and for that reason it has been extensively used as a systemic and mucosal adjuvant because it enhances the immunogenicity of most antigens fused or co-administered with the toxin [Sanchez and Holmgren, 2008]. The aim of this chapter will be to describe the biotechnological utilities of CT, with special attention to its adjuvant effect as well as its application in the treatment of autoimmune diseases through its ability to generate oral tolerance.

2. Structure
CT belongs to the family of AB5-type toxins, since it is composed of two subunits in a 1:5 ratio. The A subunit (CTA), of 28 kDa, is a heterodimer associated non-covalently to a homopentamer formed by the subunits B (CTB) of 56 kDa [Merritt et al., 1994; Vanden Broeck et al., 2007]. CTA is responsible for the biological activity and CTB binds to the cell membrane receptor [Holmgren et al., 1973; Lonnroth and Holmgren, 1973] (Fig. 1.).

CTA comprises 240 amino acids, and the 11.6 kDa B subunit monomers each have 103 amino acids. CTA is synthesized as a single polypeptide chain and is post-translationally modified through the action of a V. cholerae protease at position R192 [Mekalanos et al., 1979]. The cleavage of this amino acid, found in an exposed loop that extends from C187 to C199 residues, generates two fragments named CTA1 and CTA2, which remain linked by a disulfide bridge [Lencer and Tsai, 2003; Tsai et al., 2001]. The toxic activity (enzymatic ADP-ribosylating) activity of CTA resides in CTA1, whereas CTA2 serves to insert CTA into the CTB pentamer [Sanchez and Holmgren, 2011]. The C-terminal hydrophobic region including residues 162-192 of CTA1, plays a key role in toxicity. It triggers the ER-associated degradation (ERAD) mechanism (see section 3) and facilitates interaction with...
Cholera

The remarkable stability of pentameric CTB is attributed to non-covalent interactions including 130 hydrogen bonds, 20 salt bridges, as well as tight packing of subunits via hydrophobic and pentamer-pentamer interactions. Consequently, the CTB pentamer is held together and remains as a complex unless boiled or monomerized by acidification at pH below 3 [Sanchez and Holmgren, 2008].

Fig. 1. Cholera toxin structure. A) Schematic model of cholera toxin. A subunit contains the toxic activity while B subunits bind to cells. B) Model based on X-ray crystallography analysis. Each subunit is represented by a different color. Adapted from Zhang et al 2005.

3. Binding and mechanism of action

CT is secreted through the outer membrane of *V. cholerae* and its toxic action begins when its B subunit binds to the high-affinity monoganglioside GM1 receptor. GM1 is a glycolipid commonly found in caveolae, organized membrane structures enriched in glycolipids, cholesterol and caveolin, involved in endocytosis and transcytosis, cellular transport and signal transduction [Shin and Abraham, 2001]. These membrane structures are present in various cell types, including immune cells [Thomas et al., 2004]. Each B subunit monomer has a binding site for GM1, however, the CTB pentamer has a much higher binding affinity for the receptor due to the important role played by a single amino acid from an adjacent B subunit that enhances this action [Merritt et al., 1994]. After binding to the receptor, CT enters human intestinal cells through endocytosis and is transported from early endosomes to the Golgi. Endocytosis of CT may follow one of three pathways: (i) lipid raft/caveolae mediated endocytic pathway, (ii) clathrin mediated endocytic pathway, or (iii) non-caveolar clathrin-independent pathway [Chinnapen et al., 2007]. GM1 is the vehicle for retrograde transport of the CT holotoxin from the plasma membrane to the ER [Fujinaga et al., 2003]. In the ER, the disulfide bond that links CTA1 and CTA2 to CTB is reduced and a protein disulfide isomerase mediates the dissociation of CTA1 from CTA2/CTB. CTA1 moves from the ER to the cytosol by the ERAD dislocation mechanism, which recognizes misfolded proteins in the ER and exports them to the cytosol for degradation by the 26S proteasome [Massey et al., 2009]. Once inside the host cells, CTA1 catalyzes the transfer of an ADP-ribosylation factors (ARFs) that serve as allosteric activators of CTA1 [Teter et al., 2006].
The Cholera Toxin as a Biotechnological Tool

131

ribose unit from NAD
+ oxidizing agent to an arginine residue of Gs protein. This covalent modification leads to the loss of GTPase activity of the Gs protein, which remains attached to GTP, keeping the adenylate cyclase (AC) enzyme active that will produce increasing amounts of cAMP. Over 100 times the normal concentration of cAMP, the intestinal mucosa cells open a Cl-
- channels in the cytoplasmic membrane, resulting in an influx of ions and water to the gut lumen that causes the characteristic acute diarrhea of cholera [Spangler, 1992]. As little as 5 µg of purified CT administered orally is sufficient to induce significant diarrhea in human volunteers while ingestion of 25 µg of CT elicits a full 20 litres cholera purge [Levine et al., 1983].

4. Immune properties

Adjuvants are substances that have the ability to enhance the immune response when co-administered with poor immunogenic molecules. CT is a bacterial immunogen with a great function as an adjuvant to a variety of antigens when given by systemic and mucosal route whether these are linked to or simply mixed with the toxin, generating a long-term immune response (Elson 1989; Vajdy and Lycke 1992).

These properties may be explained by three main characteristics of the molecule. First, CT is remarkably stable to proteases, bile salts and other compounds in the intestine. Secondly, its high affinity to GM1 ganglioside receptor, which is present on most mammalian cells including the M cells covering the Peyers patches, as well as all antigen-presenting cells (APC), facilitates the uptake and presentation of the toxin to the gut mucosal immune system. Finally, CT has strong inherent adjuvant and immunomodulating activities that depend both on its cell binding capability and its enzymatic ADP-ribosylating function (Sanchez and Holmgren 2008).

Pioneer studies carried out in 1972 showed that CT delivered by the intravenous route with a foreign antigen behaved as an adjuvant [Northing and Fauci, 1972], a fact confirmed later by several groups using a number of unrelated antigens of little immunogenicity [Bianchi et al., 1990; Elson and Ealding, 1984]. Additional studies revealed that upon co-administration of CT and antigen through parenteral, mucosal, and transcutaneous routes resulted in substantial enhancement of mucosal immunoglobulin A (IgA) and serum IgG responses to the co-administered antigen [Chen and Strober, 1990; Drew et al., 1992; Reuman et al., 1991]. In addition to enhancing humoral immune responses, CT also augmented cellular immune responses to co-administered antigens enhancing induction of CD4

+ T helper (Th) and class I-restricted cytotoxic T lymphocyte responses [Nurkkala et al.; Simmons et al., 1999]. In most cases, CT induced a Th2 bias response [Lavelle et al., 2004; Okahashi et al., 1996]. However, other studies have reported Th1 [Sasaki et al., 2003; Taniguchi et al., 2008] or mixed Th1/Th2 responses following oral, sublingual and intranasal immunization with antigens in the presence of CT [Cuburu et al., 2007; Fecek et al., 2010]. More importantly, subsequent studies showed that CT elicited a long-term memory response and thus was detectable long after the initial immune response [Soenawan et al., 2004; Vajdy and Lycke, 1992].

CT also acts as mucosal adjuvant against a variety of pathogens. Examples include, tetanus toxoid [Jackson et al., 1993], Helicobacter felis [Jiang et al., 2003], Schistosoma japonicum [Kohama et al., 2010], Helicobacter pylori [Raghavan et al., 2002], and Sendai virus [Liang et al., 1988]. There are many other examples where it was shown that CT has significant potential...
5. Mechanism of adjuvant activity

The mechanism of adjuvanticity of CT is still unclear but is has been related to: (i) the induction of increased permeability of the intestinal epithelium leading to enhanced uptake of co-administered antigens; (ii) the induction of enhanced antigen presentation by various APC; (iii) the promotion of isotype differentiation in B cells leading to increased IgA formation; and (iv) exhibition of complex stimulatory as well as inhibitory effects on T cell proliferation and cytokine production. Among these many effects, those leading to enhanced antigen presentation by various APC are probably of the greatest importance [Sanchez and Holmgren, 2011].

As mentioned before, the polarity of the immune response generated by CT is a matter of debate. Some studies indicate that CT primes naïve T cells in vitro and drives them towards a Th2 phenotype, with production of interleukins IL-4 (a cytokine needed for B cell differentiation), IL-5, IL-6 and IL-10, but little IFN-\(\gamma\) (a cytokine needed to evoke Th1 responses) and suppression of IL-12 production by dendritic cells [Braun et al., 1999; Klimpel et al., 1995; Wilson et al., 1991]. Moreover, after immunization of animals with CT co-administered antigens, IL-4 levels were significantly elevated in gut-associated tissues and in spleen, while the levels of IFN-\(\gamma\) either decreased or remained static [Akhiani et al., 1997; Marinaro et al., 1995]. These results are supported by evidence of increased secretory IgA, serum IgA and IgE levels [Adel-Patient et al., 2005; Bourguin et al., 1991], and higher titers of IgG1 than IgG2a [Glenn et al., 1998; Lycke et al., 1990].

In contrast, others have reported that CT induces a mixed Th1/Th2 type of immune response with the production of IFN-\(\gamma\) and IL-4 [Fromantin et al., 2001; Imaoka et al., 1998]. In addition, it has been shown that CT induces strong Th17-type responses after intranasal delivery [Datta et al.; Lee et al., 2009]. Furthermore, CT markedly increased antigen-presentation by DC, macrophages, and B cells [Bromander et al., 1991; George-Chandy et al., 2001]. Also, CT upregulates the expression of MHC/HLA-DR molecules, CD80/B7.1 and CD86/B7.2 co-stimulatory molecules, as well as chemokine receptors CCR7 and CXCR4, on both murine and human DC, among other APC [Cong et al., 1997; Gagliardi et al., 2000]. Importantly, CT also induced the secretion of IL-1\(\beta\) from both DC and macrophages. IL-1\(\beta\) not only induces the maturation of DC, but also acts as an efficient mucosal adjuvant when co-administered with protein antigens and might mediate a significant part of the adjuvant activity of CT [Staats and Ennis, 1999]. Treatment with CT has been demonstrated to induce maturation and mobilization of DC [Lavelle et al., 2003]. Also, CT interferes with the differention of monocytes into DC, giving rise to a distinct population (Ma-DC), which displays an activated macrophage-like phenotype, induces a strong allogeneic and antigen specific response, and promotes the polarization of naïve CD4\(^+\) T lymphocytes toward a Th2 profile [Raghuam et al., 2010]. In addition, CT enhanced IL-6 secretion by peritoneal mast cell [Leal-Berumen et al., 1996] and production of IL-1\(\beta\), IL-6, and IL-10 together with inhibition of IL-12, TNF-\(\alpha\), and nitric oxide in macrophages [Cong et al., 2001], depleted the CD8\(^+\) intraepithelial lymphocyte population [Flach et al., 2005], and induced isotype differentiation of B cells acting synergistically with IL-4 [Salmond et al., 2002]. Recent studies show that CT enhances STAT3 gene expression.
Fig. 2. Proposed mechanism of action by CT as a mucosal adjuvant. CT induces increased permeability of the intestinal epithelium leading to 1) enhanced uptake of co-administered antigens and 2) enhanced antigen-presentation by various APC. 3) It causes the depletion of CD8$^+$ lymphocyte population that may produce inhibitory cytokines, and 4) induces maturation and mobilization of DC. In addition, 5) CT promotes a strong Th2 dominant response to bystander antigens, and can either 6) induce or inhibit a Th1 response. Moreover, 7) CT induces strong Th17-type responses. Furthermore, 8) mucosal epithelial cells contribute to the adjuvant activity of CT by secreting a number of chemokines and acting on polymorphonuclear leukocytes, macrophages, eosinophils and T cells.
Cholera in murine B cells, and may critically modulate immune responses in both a pro-inflammatory and anti-inflammatory direction, depending on the circumstances and the types of cells involved. Sjoblom-Hallen et al., (2010).

It has been suggested that mucosal epithelial cells may also play a role in adjuvanticity. Human epithelial cells express and secrete high levels of the chemoattractant cytokines IL-8, GROǂ, GROǃ, GRO=DŽ, and ENA-78 in response to stimulation with TNF-ǂ, IL-1ǃ, or infection with enteroinvasive microorganisms. These chemokines attract and activate polymorphonuclear leukocytes. Activated epithelial cells also secrete MCP-1, MIP-1ǃ, MIP-1ǂ, and RANTES, which variably act on monocytes/macrophages, eosinophils, and subpopulations of T-cells [Freytag and Clements, 2005]. One possibility is that CT interacts with epithelial cells triggering expression of one or more immunomodulatory factors that recruit APC and immune effector cells or both [Lopes et al., 2000; Soriani et al., 2002].

A proposed mechanism of action of CT as adjuvant is shown in Fig. 2.

6. Genetic modifications of CT

The inherent enterotoxicity of CT has limited its widespread use as a vaccine component and adjuvant. In dogs, protection due to CT occurred only with doses that caused transient, sometimes severe, diarrhea [Pierce et al., 1982]. Moreover, murine models demonstrated that intranasal sensitization with CT as adjuvant led to increased lung inflammation with a massive recruitment of macrophages as well as accumulation in the olfactory nerves, epithelium and the olfactory bulbs of mice after binding to GM1 gangliosides [Fischer et al., 2005]. These limitations have led to mucosal strategies involving nontoxic mutants and purified B subunits.

Although early reports showed that mutants without the ADP-ribosyltransferase activity lack their adjuvant properties [Lycke et al., 1992], later studies showed that non-toxic mutants retained their adjuvant and immunogenic properties [Douce et al., 1997; Yamamoto et al., 1997] without central nervous system (CNS) toxicity [Hagiwara et al., 2006]. This suggests that the ADP-ribosyltransferase activity is not essential for its immunogenic properties, though it contributes to the adjuvant effect.

In a different approach, the CTA1 fragment linked to a synthetic analogue of Staphylococcus aureus protein A, the D fragment with affinity for APC, [Agren et al., 1997], proved to be non-toxic [Eriksson et al., 2004]. The fusion protein CTA1-DD binds specifically to immunoglobulins on the surface of antigen-presenting B cells through the DD polypeptide, and induces the ADP ribosylation by CTA1. Although this produces a good immune response when administered intranasally, it has been shown not to work as well after oral administration. This limitation was overcome by fusing CTA1-DD with immunostimulating complexes, such as ISCOMs (lipophilic immune stimulating complexes), producing both Th1/Th2 responses at systemic and mucosal levels [Andersen et al., 2007]. A recent report showed that CTA1 potently enhances a GeneGun-delivered DNA prime for human and simian immunodeficiency viruses antigens boost in macaques and mice [Bagley et al., 2011].
Several studies using different conditions and routes of administration have described that CTB has several immunomodulatory properties opening many perspectives for future therapeutic and biotechnological applications. In this regard, intranasal immunization of women with CTB resulted in the production of long-lasting IgG and IgA anti-CTB in serum, nasal and vaginal secretions in a dose-dependent manner [Bergquist et al., 1997]. However, its capacity as mucosal adjuvant has proven to be much less than that of the toxin when given together with non-coupled antigens by the oral route [Sanchez and Holmgren, 2008]. Recombinant CTB has been successfully used as a mucosal adjuvant in vaccines for human use such as the cholera vaccine itself [Quiding et al., 1991], and the vaccine against enterotoxigenic *E. coli* that causes diarrhea [Peltola et al., 1991; Qadri et al., 2000]. Analogously, CTB proved to be good adjuvant for a *Streptococcus pneumoniae* cellular vaccine [Malley et al., 2004] and a severe acute respiratory syndrome-associated coronavirus vaccine [Qu et al., 2005] when administered intranasally in mice.

Given the potential of CTB as a regulator of the immune response, this subunit has been produced in various biological systems such as *Vibrio cholerae* [Sanchez and Holmgren, 1989], *Escherichia coli* [Arimitsu et al., 2009], *Bacillus brevis* [Goto et al., 2000], *Lactobacillus paracasei* and *plantarum* [Slos et al., 1998], in the yeasts *Hansenula polymorpha* [Song et al., 2004] and *Saccharomyces cerevisiae* [Mohsen and Rezae, 2005], and in silkworm [Gong et al., 2005]. In addition, CTB has been expressed successfully in tomato [Jani et al., 2002], lettuce [Young-Sook Kim, 2006], rice [Oszvald et al., 2008], tobacco [Hein et al., 1996], carrots [Kim et al., 2009], banana [Renuga et al., 2010] and potato transgenic plants, [Arakawa et al., 1997] where ubiquitin fusion enhances CTB expression [Mishra et al., 2006]. CTB may induce systemic immune responses in mice after gavage of the animals with the transgenic vegetal [Jiang et al., 2007]. The advantage of this approach is that plants present a low-cost agricultural-based effective production system. Different formulations, such as encapsulation in liposomes or microspheres with antigens [Seo et al., 2002] or combined with vesicles or liposomes containing antigens [Harokopakis et al., 1998; Lian et al., 1999] were also successfully tested.

CTB is a useful carrier protein for induction of mucosal IgA antibodies against chemically coupled antigens. In this regard, mice immunized intraduodenally with the horseradish peroxidase (HRP) covalently coupled to CTB showed a 33–120 fold higher level of IgA anti-HRP in intestinal washes as well as increased levels of serum IgG anti-HRP [McKenzie and Halsey, 1984]. In addition, CTB chemically conjugated to the protein I/II of *Streptococcus mutans* when administered in mice by oral [Russell and Wu, 1991], intranasal [Wu and Russell, 1998], and intragastric routes [Wu and Russell, 1993] results in the production of antistreptococcal IgG and IgA in serum and mucosa, as well as the presence of large numbers of antibody-secreting cells in salivary glands, mesenteric lymph nodes, and spleens. Similar results were found with CTB conjugated to human gamma globulin (HGG) and the recombinant *Neisseria gonorrhoeae* transferrin binding proteins, TbpA and TbpB. Vaginal and intranasal immunizations with CTB-HGG resulted in high levels of anti-HGG antibodies [Johansson et al., 1998], while rCTB-TbpA and rCTB-TbpB administered intranasally induced antibody responses in the serum and genital tract [Price et al., 2005]. Moreover, CTB was chemically conjugated to type III capsular polysaccharide from...
Another way of using CTB as an adjuvant is in genetic constructions based on the toxin and heterologous antigens. In general, these hybrid molecules are composed of antigens fused to the amino [Laloi et al., 1996; Song et al., 2004] or carboxyl [Kim et al., 2004; Wang et al., 2010] terminus of CTB, being GM1-binding much more efficient in the latter case [Liljeqvist et al., 1997], but also protein epitopes have been introduced at internal positions in CTB.
The Cholera Toxin as a Biotechnological Tool

Some examples of genetic incorporation of epitopes to CTB include triple glutamic acid decarboxylase [Gong et al., 2009], dodecapeptide repeat of the serine-rich Entamoeba histolytica protein [Zhang et al., 1995] and human insulin B-chain [Sadeghi et al., 2002]. There are many studies showing the induction of immune responses through immunization of mice with CTB fused to soluble antigens expressed both in bacteria [Larsson et al., 2004; Lee et al., 2003; Sun et al., 1999; Tsuji et al., 2003] and in transgenic plants [Jani et al., 2004; Matsumoto et al., 2009]. In all cases there was generation of IgG and IgA antigen-specific antibodies and, in some cases, protection. Some examples of the adjuvant action of CTB are shown in Table 1.

One of the strategies for using CTB as an adjuvant genetically fused to antigens has been described by Arêas et al., and is based on the expression vector called pAEctxB (Fig. 3.). In the generation of the vector, the gene ctxB was modified to ensure that the codons were those most frequently used by E. coli, L. casei and S. typhimurium [Areas et al., 2002]. The genetically engineered ORF was then cloned into the expression vector pAE [Ramos et al., 2004] and includes two consecutive restriction sites MluI and HindIII. The resulting vector allows expression, under the control of a T7 promoter, of proteins fused to the C-terminus of CTB with 6 histidine residues at the N terminus, which facilitate protein purification by immobilized metal ion affinity chromatography.

The pAE-ctxB plasmid was used to clone the pneumococcal surface adhesin A (PspA) [Areas et al., 2004], the Leptospira interrogans protein LipL32 [Habarta et al., 2010], the fatty-acid binding protein from Schistosoma mansoni S14 [Henrique Roman Ramos, 2010], and the Bordetella pertussis type III secretion system effector protein Bsp22 (Olivera et al., unpublished results). Intradermal immunization with CTB-PspA induced high titers of anti-PspA IgG and partially protected mice after challenge with S. pneumoniae [Areas et al., 2005]. Moreover, intranasal immunization with CTB-PspA protected mice against colonization with S. pneumoniae without alteration of the natural oral or nasopharyngeal microbiota of mice [Pimenta et al., 2006]. CTB-Sm14 itself was not able to reduce Schistosoma mansoni worm burden on intranasally immunized BALB/c mice, but reduced the hepatic granulomas around trapped eggs. CTB-LipL32 generated higher specific titers in mice immunized without external adjuvant than co-administration of CTB with LipL32, supporting CTB-LipL32 as a promising antigen for use in the control and study of leptospirosis.

8. CTB for mucosal immunotherapy

Mucosal administration by the oral, sublingual or nasal routes of many antigens can induce peripheral tolerance. Mucosal-induced tolerance has been recognized for a long time as a promising approach to prevent or treat allergic or autoimmune disorders and is characterized by a decreased immune response to systemic immunization with the same antigen [Sun et al., 2009; Sun et al., 1994]. In this regard, promising results have been obtained with auto-antigen coupled to CTB in order to induce oral tolerance. Although not known the mechanism by which CTB conjugated to antigens has the ability to potentiate the induction of oral tolerance, it is believed that in addition to the processes already mentioned before for CT, it may result in selected DC subsets with increased ability to induce different types of TGF-β-expressing suppressor T cells including CD4+CD25+Tr cells [Holmgren et al., 2005] and a direct depletion of effector T cells since CTB induces CD4+ and CD8+ T cell apoptosis [Christelle Basset, 2010].
Oral delivery of CTB conjugated to myelin basic protein protected mice [Sun et al., 1996; Yuki et al., 2001] and rats [Sun et al., 2000b] against the development of experimental autoimmune encephalomyelitis. It was proposed that the inhibitory effect was a result of both the induction of TGF-β-producing Tr cells and down-regulation of IFN-γ, IL-12, TNF-α, MCP-1 and RANTES in the CNS [Wang et al., 2009].

Oral administration of a CTB-insulin conjugate prevented diabetes in non-obese diabetic (NOD) mice [Arakawa et al., 1998; Bergerot et al., 1997; Gong et al., 2007; Petersen et al., 2003; Ploix et al., 1999], which was associated with a reduction in IFN-γ production and Tr cell migration into pancreatic islets [Aspord et al., 2002; Sobel et al., 1998]. On the other hand, oral administration of CTB-proinsulin fusion protein showed an increased expression of IL-4 and IL-10 in the pancreas of NOD-treated mice, suggesting that Th2 lymphocyte-mediated oral tolerance is a likely mechanism for the prevention of pancreatic insulitis [Ruhlman et al., 2007].

Oral delivery of CTB conjugated to a 60 kDa heat-shock protein derived peptide prevented mucosal induced uveitis in rats, an effect that was associated with enhanced IL-10 and TGF-β, and reduced IL-12 and IFN-γ production [Phipps et al., 2003]. Furthermore, a I/II phase clinical trial of the same peptide conjugated to CTB administered orally to 8 patients allowed the withdrawal of all immunosuppressive drugs in 5 of the 8 patients without a relapse of uveitis [Stanford et al., 2004].

In addition, oral administration of CTB in mice inhibits the induction of trinitrobenzene sulfonic acid-induced colitis and reverses such colitis after it has been established. This inhibition is associated with suppression of IL-12 and IFN-γ production [Boirivant et al., 2001; Coccia et al., 2005]. In a recent clinical trial, 40% of patients with active Crohn's disease responded to treatment with CTB [Stal et al., 2010].
CTB conjugates were also effective in the induction of tolerance to type II collagen, leading to a suppression of chondritis in a model of autoimmune ear disease [Kim et al., 2001]. Oral administration of allogeneic antigen linked to CTB induced immunological tolerance against allograft rejection [Sun et al., 2000a]. Finally, transconjunctival immunotherapy using CTB could suppress clinical effects for experimental allergic conjunctivitis in guinea pigs [Oikawa et al., 2011].

9. Conclusion

CT has been studied for over 40 years. Both CT and its non-toxic derivatives or its B subunit, have shown to be excellent mucosal adjuvants. The possibility to use them as biotechnological tools in the development of new vaccines is being intensively studied in the present. In recent years, the prospect to use CTB fused to different protein antigens became relevant because these proteins can be expressed in high levels in a soluble form and directly purified in their active form, requiring only one fermentation step. In addition, several reports have shown that CTB can generate oral tolerance to different conjugated antigens, opening ways for the treatment of autoimmune diseases. Hopefully, future studies will focus on the use of CTB in such important issues.

10. Acknowledgements

This work was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) PICT 07-00642 and PICT 07-00028 (RMG).

11. References

Abraham E, Robinson A. 1991. Oral immunization with bacterial polysaccharide and adjuvant enhances antigen-specific pulmonary secretory antibody response and resistance to pneumonia. Vaccine 9(10):757-764.

Adel-Patient K, Bernard H, Ah-Leung S, Creminon C, Wal JM. 2005. Peanut- and cow’s milk-specific IgE, Th2 cells and local anaphylactic reaction are induced in Balb/c mice orally sensitized with cholera toxin. Allergy 60(5):658-664.

Agren LC, Ekman L, Lowenadler B, Lycke NY. 1997. Genetically engineered nontoxic vaccine adjuvant that combines B cell targeting with immunomodulation by cholera toxin A1 subunit. J Immunol 158(8):3936-3946.

Akhiani AA, Nilsson LA, Ouchterlony O. 1997. In tranasal administration of Schistosoma mansoni adult worm antigen in combination with cholera toxin induces a Th2 cell response. Parasite Immunol 19(4):183-190.

Andersen CS, Dietrich J, Agger EM, Lycke NY, Lovgren K, Andersen P. 2007. The combined CTA1-DD/ISCOMs vector is an effective intranasal adjuvant for boosting prior Mycobacterium bovis BCG immunity to Mycobacterium tuberculosis. Infect Immun 75(1):408-416.

Arakawa T, Chong DK, Merritt JL, Langridge WH. 1997. Expression of cholera toxin B subunit oligomers in transgenic potato plants. Transgenic Res 6(6):403-413.
Elson CO, Ealding W. 1984. Cholera toxin feeding did not induce oral tolerance in mice and abrogated oral tolerance to an unrelated protein antigen. J Immunol 133(6):2892-2897.

Eriksson AM, Schon KM, Lycke NY. 2004. The cholera toxin-derived CTA1-DD vaccine adjuvant administered intranasally does not cause inflammation or accumulate in the nervous tissues. J Immunol 173(5):3310-3319.

Fecek RJ, Marcondes Rezende M, Ha ssing I, Pieters R, Cuff CF. 2010. Enteric reovirus infection stimulates peanut-specific IgG2a responses in a mouse food allergy model. Immuno biology 215(12):941-948.

Fischer R, McGhee JR, Vu HL, Atkinson TP, Jackson RJ, Tome D, Boyaka PN. 2005. Oral and nasal sensitization promote distinct immune responses and lung reactivity in a mouse model of peanut allergy. Am J Pathol 167(6):1621-1630.

Flach CF, Lange S, Jennische E, Lonnroth I, Holmgren J. 2005. Cholera toxin induces a transient depletion of CD8+ intraepithelial lymphocytes in the rat small intestine as detected by microarray and immunohistochemistry. Infect Immun 73(9):5595-5602.

Freytag LC, Clements JD. 2005. Mucosal adjuvants. Vaccine 23(15):1804-1813.

Fromantin C, Jamot B, Cohen J, Piroth L, Pothier P, Kohli E. 2001. Rotavirus 2/6 virus-like particles administered intranasally in mice, with or without the mucosal adjuvants cholera toxin and Escherichia coli heat-labile toxin, induce a Th1/Th2-like immune response. J Virol 75(22):11010-11016.

Fujinaga Y, Wolf AA, Rodighiero C, Wheeler H, Tsai B, Allen L, Jobling MG, Rapoport T, Holmes RK, Lencer WI. 2003. Gangliosides that associate with lipid rafts mediate transport of cholera and related toxins from the plasma membrane to endoplasmic reticulum. Mol Biol Cell 14(12):4783-4793.

Gagliardi MC, Sallusto F, Marinaro M, Langan kamp A, Lanzavecchia A, De Magistris MT. 2000. Cholera toxin induces maturation of human dendritic cells and licenses them for Th2 priming. Eur J Immunol 30(8):2394-2403.

George-Chandy A, Eriksson K, Lebens M, Nordstrom I, Schon E, Holmgren J. 2001. Cholera toxin B subunit as a carrier molecule promotes antigen presentation and increases CD40 and CD86 expression on antigen-presenting cells. Infect Immun 69(9):5716-5725.

Glenn GM, Scharton-Kersten T, Vassell R, Mallett CP, Hale TL, Alving CR. 1998. Transcutaneous immunization with cholera toxin protects mice against lethal mucosal toxin challenge. J Immunol 161(7):3211-3214.

Gong Z, Jin Y, Zhang Y. 2007. Suppression of diabetes in non-obese diabetic (NOD) mice by oral administration of a cholera toxin B subunit-insulin B chain fusion protein produced in silk worm. Vaccine 25(8):1444-1451.

Gong Z, Long X, Pan L, Le Y, Liu Q, Wang S, Guo J, Xiao B, Zhou M, Mei D. 2009. Cloning, expression, purification and characterizat ion of the cholera toxin B subunit and triple glutamic acid decarboxylase epitop es fusion protein in Escherichia coli. Protein Expr Purif 66(2):191-197.

Gong ZH, Jin HQ, Jin YF, Zhang YZ. 2005. Express ion of cholera toxin B subunit and assembly as functional oligomers in silkworm. J Biochem Mol Biol 38(6):717-724.
The Cholera Toxin as a Biotechnological Tool

Goto N, Maeyama J, Yasuda Y, Isaka M, Matano K, Kozuka S, Taniguchi T, Miura Y, Ohkuma K, Tochikubo K. 2000. Safety evaluation of recombinant cholera toxin B subunit produced by Bacillus brevis as a mucosal adjuvant. Vaccine 18(20):2164-2171.

Guo L, Zheng M, Ding Y, Li D, Yang Z, Wang H, Chen Q, Sui Z, Fang F, Chen Z. 2010. Protection against multiple influenza A virus subtypes by intranasal administration of recombinant nucleoprotein. Arch Virol 155(11):1765-1775.

Gupta RK, Taylor DN, Bryla DA, Robbins JB, Szuc SC. 1998. Phase 1 evaluation of Vibrio cholerae O1, serotype Inaba, polysaccharide-cholera toxin conjugates in adult volunteers. Infect Immun 66(7):3095-3099.

Habarta A, Abreu PA, Olivera N, Hauk P, Cedola MT, Ferrer MF, Ho PL, Gomez RM. 2010. Increased immunogenicity to LipL32 of Leptospira interrogans when expressed as a fusion protein with the cholera toxin B subunit. Curr Microbiol 62(2):526-531.

Hagiwara Y, Kawamura YI, Kataoka K, Rahima B, Jackson RJ, Komase K, Dohi T, Boyaka PN, Takeda Y, Kiyono H, McGhee JR, Fujihashi K. 2006. A second generation of double mutant cholera toxin adjuvants: enhanced immunity without intracellular trafficking. J Immunol 177(5):3045-3054.

Harokopakis E, Hajishengallis G, Michalek SM. 1998. Effectiveness of liposomes possessing surface-linked recombinant B subunit of cholera toxin as an oral antigen delivery system. Infect Immun 66(9):4299-4304.

Hein MB, Yeo TC, Wang F, Sturtevant A. 1996. Expression of cholera toxin subunits in plants. Ann N Y Acad Sci 792:50-56.

Henrique Roman Ramos PAM, Celso Raul Romero Ramos, Ana Paula de Mattos Arêas, Toshie Kawano and Paulo Lee Ho. 2010. A Genetic Fusion between Sm14 and CTB does not Reduce Schistosoma mansoni Worm Burden on Intranasally Immunized BALB/c Mice. J Vaccin Vaccinat 1(3):doi: 10.4172/2157-7560.1000111.

Hervouet C, Luci C, Cuburu N, Cremel M, Bekri S, Vimeux L, Maranon C, Czerkinsky C, Hosmalin A, Anjuere F. 2010. Sublingual immunization with an HIV subunit vaccine induces antibodies and cytotoxic T cells in the mouse female genital tract. Vaccine 28(34):5582-5590.

Holmgren J, Adamsson J, Anjuere F, Clemens J, Czerkinsky C, Eriksson K, Flach CF, George-Chandy A, Harandi AM, Lebens M, Lehner T, Lindblad M, Nygren E, Raghavan S, Sanchez J, Stanford M, Sun JB, Svennerholm AM, Tengvall S. 2005. Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA. Immunol Lett 97(2):181-188.

Holmgren J, Lonnroth I, Svennerholm L. 1973. Tissue receptor for cholera exotoxin: postulated structure from studies with GM1 ganglioside and related glycolipids. Infect Immun 8(2):208-214.

Imaoka K, Miller CJ, Kubota M, McChesney MB, Lohman B, Yamamoto M, Fujihashi K, Someya K, Honda M, McGhee JR, Kiyono H. 1998. Nasal immunization of nonhuman primates with simian immunodeficiency virus p55gag and cholera toxin adjuvant induces Th1/Th2 help for virus-specific immune responses in reproductive tissues. J Immunol 161(11):5952-5958.

www.intechopen.com
Cholera

Isaka M, Yasuda Y, Mizokami M, Kozuka S, Taniyama T, Matano K, Maeyama J, Mizuno K, Morokuma K, Ohkuma K, Goto N, Tochikubo K. 2001. Mucosal immunization against hepatitis B virus by intranasal co-administration of recombinant hepatitis B surface antigen and recombinant cholera toxin B subunit as an adjuvant. Vaccine 19(11-12):1460-1466.

Jackson RJ, Fujihashi K, Xu-Amano J, Kiyono H, Elson CO, McGhee JR. 1993. Optimizing oral vaccines: induction of systemic and mucosal B-cell and antibody responses to tetanus toxoid by use of cholera toxin as an adjuvant. Infect Immun 61(10):4272-4279.

Jani D, Meena LS, Rizwan-ul-Haq QM, Singh Y, Sharma AK, Tyagi AK. 2002. Expression of cholera toxin B subunit in transgenic tomato plants. Transgenic Res 11(5):447-454.

Jani D, Singh NK, Bhattacharya S, Meena LS, Singh Y, Upadhyay SN, Sharma AK, Tyagi AK. 2004. Studies on the immunogenic potential of plant-expressed cholera toxin B subunit. Plant Cell Rep 22(7):471-477.

Jhon Carlos Castaño Osorio JSP. 2002. Inmunización intranasal de ratones con la proteína Sag2 de Toxoplasma gondii asociada con la toxina colérica. Rev Cubana Invest Biomed 1:35-45.

Jiang W, Baker HJ, Smith BF. 2003. Mucosal immunization with helicobacter, CpG DNA, and cholera toxin is protective. Infect Immun 71(1):40-46.

Jiang XL, He ZM, Peng ZQ, Qi Y, Chen Q, Yu SY. 2007. Cholera toxin B protein in transgenic tomato fruit induces systemic immune response in mice. Transgenic Res 16(2):169-175.

Johansson EL, Rask C, Fredriksson M, Eriksson K, Czerkinsky C, Holmgren J. 1998. Antibodies and antibody-secreting cells in the female genital tract after vaginal or intranasal immunization with cholera toxin B subunit or conjugates. Infect Immun 66(2):514-520.

Kang SM, Yao Q, Guo L, Compans RW. 2003. Mucosal immunization with virus-like particles of simian immunodeficiency virus conjugated with cholera toxin subunit B. J Virol 77(18):9823-9830.

Kim N, Cheng KC, Kwon SS, Mora R, Barbieri M, Yoo TJ. 2001. Oral administration of collagen conjugated with cholera toxin induces tolerance to type II collagen and suppresses chondritis in an animal model of autoimmune ear disease. Ann Otol Rhinol Laryngol 110(7 Pt 1):646-654.

Kim TG, Gruber A, Langridge WH. 2004. HIV-1 gp120 V3 cholera toxin B subunit fusion gene expression in transgenic potato. Protein Expr Purif 37(1):196-202.

Kim YS, Kim MY, Kim TG, Yang MS. 2009. Expression and assembly of cholera toxin B subunit (CTB) in transgenic carrot (Daucus carota L.). Mol Biotechnol 41(1):8-14.

Klimpel GR, Asuncion M, Haithcoat J, Niesel DW. 1995. Cholera toxin and Salmonella typhimurium induce different cytokine profiles in the gastrointestinal tract. Infect Immun 63(3):1134-1137.

Kohama H, Harakuni T, Kikuchi M, Nara T, Takemura Y, Miyata T, Sato Y, Hirayama K, Arakawa T. 2010. Intranasal administration of Schistosoma japonicum paramyosin induced robust long-lasting systemic and local antibody as well as delayed-type...
Nishibuchi M, Seidler RJ. 1983. Medium-dependent production of extracellular enterotoxins by non-O-1 Vibrio cholerae, Vibrio mimicus, and Vibrio fluvialis. Appl Environ Microbiol 45(1):228-231.

Northrup RS, Fauci AS. 1972. Adjuvant effect of cholera enterotoxin on the immune response of the mouse to sheep red blood cells. J Infect Dis 125(6):672-673.

Nurkkala M, Wassen L, Nordstrom I, Gustavsson I, Slavica L, Josefsson A, Eriksson K. Conjugation of HPV16 E7 to cholera toxin enhances the HPV-specific T-cell recall responses to pulsed dendritic cells in vitro in women with cervical dysplasia. Vaccine 28(36):5828-5836.

Oikawa A, Shoji J, Inada N, Sawa M. 2011. Transconjunctival immunotherapy using cholera toxin B to treat experimental allergic conjunctivitis in a mouse model. Jpn J Ophthalmol 55(5):534-540.

Okahashi N, Yamamoto M, Vancott JL, Chatfield SN, Roberts M, Bluethmann H, Hiroi T, Kiyono H, McGhee JR. 1996. Oral immunization of interleukin-4 (IL-4) knockout mice with a recombinant Salmonella strain or cholera toxin reveals that CD4+ Th2 cells producing IL-6 and IL-10 are associated with mucosal immunoglobulin A responses. Infect Immun 64(5):1516-1525.

Oszvald M, Kang TJ, Tomoskozi S, Jenes B, Kim TG, Cha YS, Tamas L, Yang MS. 2008. Expression of cholera toxin B subunit in transgenic rice endosperm. Mol Biotechnol 40(3):261-268.

Pascale JM, Shaw MM, Durant PJ, Amador AA, Bartlett MS, Smith JW, Gregory RL, McLaughlin GL. 1999. Intranasal immunization confers protection against murine Pneumocystis carinii lung infection. Infect Immun 67(2):805-809.

Peltola H, Siitonen A, Kyronseppa H, Simula I, Mattila L, Oksanen P, Kataja MJ, Cadoz M. 1991. Prevention of travellers' diarrhoea by oral B-subunit/whole-cell cholera vaccine. Lancet 338(8778):1285-1289.

Petersen JS, Bregenholt S, Apostolopolous V, Homann D, Wolfe T, Hughes A, De Jongh K, Wang M, Dyrberg T, Von Herrath MG. 2003. Coupling of oral human or porcine insulin to the B subunit of cholera toxin (CTB) overcomes critical antigenic differences for prevention of type I diabetes. Clin Exp Immunol 134(1):38-45.

Phipps PA, Stanford MR, Sun JB, Xiao BG, Holmgren J, Shinnick T, Hasan A, Mizushima Y, Lehner T. 2003. Prevention of mucosally induced uveitis with a HSP60-derived peptide linked to cholera toxin B subunit. Eur J Immunol 33(1):224-232.

Pierce NF, Cray WC, Jr., Sacci JB, Jr. 1982. Oral immunization of dogs with purified cholera toxin, crude cholera toxin, or B subunit: evidence for synergistic protection by antitoxic and antibacterial mechanisms. Infect Immun 37(2):687-694.

Pimenta FC, Miyaji EN, Areas AP, Oliveira ML, de Andrade AL, Ho PL, Hollingshead SK, Leite LC. 2006. Intranasal immunization with the cholera toxin B subunit-pneumococcal surface antigen A fusion protein induces protection against colonization with Streptococcus pneumoniae and has negligible impact on the nasopharyngeal and oral microbiota of mice. Infect Immun 74(8):4939-4944.

Ploix C, Bergerot I, Durand A, Czerkinsky C, Holmgren J, Thivolet C. 1999. Oral administration of cholera toxin B-insulin conjugates protects NOD mice from...
Sadeghi H, Bregenholt S, Wegmann D, Peters en JS, Holmgren J, Lebens M. 2002. Genetic fusion of human insulin B-chain to the B-subunit of cholera toxin enhances in vitro antigen presentation and induction of bystander suppression in vivo. Immunology 106(2):237-245.

Salmond RJ, Luross JA, Williams NA. 2002. Immune modulation by the cholera-like enterotoxins. Expert Rev Mol Med 4(21):1-16.

Sanchez J, Holmgren J. 1989. Recombinant system for overexpression of cholera toxin B subunit in Vibrio cholerae as a basis for vaccine development. Proc Natl Acad Sci U S A 86(2):481-485.

Sanchez J, Holmgren J. 2008. Cholera toxin structure, gene regulation and pathophysiological and immunological aspects. Cell Mol Life Sci 65(9):1347-1360.

Sanchez J, Holmgren J. 2011. Cholera toxin - a foe & a friend. Indian J Med Res 133(2):153-163.

Sasaki K, Kato M, Takahashi T, Ochi S, Ichinose Y, Shiraki K, Asano Y, Iwanaga M, Tsuji T. 2003. Live varicella vaccine polarizes the mucosal adjuvant action of cholera toxin or its B subunit on specific Th1-type helper T cells with a single nasal coadministration in mice. J Med Virol 70(2):329-335.

Seo JY, Seong SY, Ahn BY, Kwon IC, Chung H, Jeong SY. 2002. Cross-protective immunity of mice induced by oral immunization with pneumococcal surface adhesin a encapsulated in microspheres. Infect Immun 70(3):1143-1149.

Shen X, Lagergard T, Yang Y, Lindblad M, Fredriksson M, Holmgren J. 2000. Systemic and mucosal immune responses in mice after mucosal immunization with group B streptococcus type III capsular polysaccharide-cholera toxin B subunit conjugate vaccine. Infect Immun 68(10):5749-5755.

Shin JS, Abraham SN. 2001. Cell biology. Caveolae—not just craters in the cellular landscape. Science 293(5534):1447-1448.

Simmons CP, Mastroeni P, Fowler R, Ghaem-maghami M, Lycke N, Pizza M, Rappuoli R, Dougan G. 1999. MHC class I-restricted cytotoxic lymphocyte responses induced by enterotoxin-based mucosal adjuvants. J Immunol 163(12):6502-6510.

Sjoblom-Hallen A, Marklund U, Nerstedt A, Schon K, Ekman L, Bergqvist P, Lowenadler B, (2010) Lycke NY. Gene expression profiling identifies STAT3 as a novel pathway for immunomodulation by cholera toxin adjuvant. Mucosal Immunol 3(4):374-386.

Slos P, Dutot P, Reymund J, Kleinpeter P, Prozzi D, Kieny MP, Delcour J, Mercenier A, Hols P. 1998. Production of cholera toxin B subunit in Lactobacillus. FEMS Microbiol Lett 169(1):29-36.

Sobel DO, Yankelevich B, Goyal D, Nelson D, Mazumder A. 1998. The B-subunit of cholera toxin induces immunoregulatory cells and prevents diabetes in the NOD mouse. Diabetes 47(2):186-191.

Soenawan E, Srivastava I, Gupta S, Kan E, Janani R, Kazzaz J, Singh M, Shreedhar V, Vajdy M. 2004. Maintenance of long-term immunological memory by low avidity IgM-secreting cells in bone marrow after mucosal immunizations with cholera toxin adjuvant. Vaccine 22(11-12):1553-1563.

Song H, Zhou L, Fang W, Li Y, Wang X, Fang H, Li X, Wu M, Qiu B. 2004. High-level expression of codon optimized foot-and-mouth disease virus complex epitopes and www.intechopen.com
Teter K, Jobling MG, Sentz D, Holmes RK. 2006. The cholera toxin A1 subdomain is essential for interaction with ADP-ribosylation factor 6 and full toxic activity but is not required for translocation from the endoplasmic reticulum to the cytosol. Infect Immun 74(4):2259-2267.

Thomas S, Preda-Pais A, Casares S, Brumeanu TD. 2004. Analysis of lipid rafts in T cells. Mol Immunol 41(4):399-409.

Tsai B, Rodighiero C, Lencer WI, Rapoport TA. 2001. Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104(6):937-948.

Tsuji N, Suzuki K, Kasuga-Aoki H, Isobe T, Arakawa T, Matsumoto Y. 2003. Mice intranasally immunized with a recombinant 16-kilodalton antigen from roundworm Ascaris parasites are protected against larval migration of Ascaris suum. Infect Immun 71(9):5314-5323.

Vajdy M, Lycke NY. 1992. Cholera toxin adjuvant promotes long-term immunological memory in the gut mucosa to unrelated immunogens after oral immunization. Immunology 75(3):488-492.

Vanden Broeck D, Horvath C, De Wolf MJ. 2007. Vibrio cholerae: cholera toxin. Int J Biochem Cell Biol 39(10):1771-1775.

Wang BN, Yang Y, Kuang Y, Cao K, Li MY, Li WY. 2010. Construction eukaryotic plasmids of the ureI and ctB-ureI and profile its expression in cell. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 26(8):764-766.

Wang J, Lu ZH, Gabius HJ, Rohowsky-Kochan C, Ledeen RW, Wu G. 2009. Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. J Immunol 182(7):4036-4045.

Wang L, Kedzierski L, Wesselingh SL, Coppel RL. 2003. Oral immunization with a recombinant malaria protein induces conformational antibodies and protects mice against lethal malaria. Infect Immun 71(5):2356-2364.

Wilson AD, Bailey M, Williams NA, Stokes CR. 1991. The in vitro production of cytokines by mucosal lymphocytes immunized by oral administration of keyhole limpet hemocyanin using cholera toxin as an adjuvant. Eur J Immunol 21(10):2333-2339.

Wu HY, Russell MW. 1993. Induction of mucosal immunity by intranasal application of a streptococcal surface protein antigen with the cholera toxin B subunit. Infect Immun 61(1):314-322.

Wu HY, Russell MW. 1998. Induction of mucosal and systemic immune responses by intranasal immunization using recombinant cholera toxin B subunit as an adjuvant. Vaccine 16(2-3):286-292.

Yamamoto S, Takeda Y, Yamamoto M, Kurazono H, Imaoka K, Fujihashi K, Noda M, Kiyono H, McGhee JR. 1997. Mutants in the ADP-ribosyltransferase cleft of cholera toxin lack diarrheagenicity but retain adjuvanticity. J Exp Med 185(7):1203-1210.

Yang P, Tang C, Luo D, Zhan Z, Xing L, Duan Y, Jia W, Peng D, Liu X, Wang X. Cross-clade protection against HPAI H5N1 influenza virus challenge in BALB/c mice intranasally administered adjuvant-combined influenza vaccine. Vet Microbiol 146(1-2):17-23.
Cholera, a problem in Third World countries, is a complicated diarrheal disease caused by the bacterium Vibrio cholerae. The latest outbreak in Haiti and surrounding areas in 2010 illustrated that cholera remains a serious threat to public health and safety. With advancements in research, cholera can be prevented and effectively treated. Irrespective of "Military" or "Monetary" power, with one's "Own Power", we can defeat this disease.

The book "Cholera" is a valuable resource of power (knowledge) not only for cholera researchers but for anyone interested in promoting the health of people. Experts from different parts of the world have contributed to this important work thereby generating this power. Key features include the history of cholera, geographical distribution of the disease, mode of transmission, Vibrio cholerae activities, characterization of cholera toxin, cholera antagonists and preventive measures.
