Estimation of bacterial hydrogen sulfide production in vitro

Amina Basic*, Susanne Blomqvist, Anette Carlén and Gunnar Dahlén

Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Oral bacterial hydrogen sulfide (H2S) production was estimated comparing two different colorimetric methods in microtiter plate format. High H2S production was seen for *Fusobacterium* spp., *Treponema denticola*, and *Prevotella tannerae*, associated with periodontal disease. The production differed between the methods indicating that H2S production may follow different pathways.

Keywords: bacterial metabolites; hydrogen sulfide; oral bacteria; cysteine; methylene blue; bismuth sulfide; periodontitis; *Fusobacterium* spp

*Correspondence to: Amina Basic, Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Box 450, SE-405 30 Gothenburg, Sweden, Email: Amina.Basic@gu.se

Received: 9 April 2015; Revised: 28 May 2015; Accepted: 29 May 2015; Published: 29 June 2015

*Periodontal disease is believed to be associated with an anaerobic and proteolytic bacterial metabolism but the pathogenesis is still largely unknown. Hydrogen sulfide (H2S) is a toxic, bacterial waste product in the subgingival pocket and up to 1.9 mM H2S has been detected in gingival crevicular fluid (1, 2). Due to its proinflammatory properties, it has been suggested that H2S may participate in the bacteria-induced inflammatory response in the periodontal diseases (3–6).

Previous studies have reported bacterial H2S production from various species, for example, *Fusobacterium* spp., by the degradation of cysteine (7), homocysteine (8), and glutathione (9) and from *Parvimonas micra*, *Tannerella forsythia* and *Filifactor alocis* (1). More research is, however, needed to elucidate the rate and the amount of H2S produced by various species/strains under various conditions both in vitro and in vivo.

The H2S-producing capacity is commonly tested by blackening of lead acetate paper (10) or with gas chromatography (1, 11) and sensors (12–14). These methods are either rough or require complex equipment and are therefore expensive. Simple chair-side methods for semi-quantification of bacterial H2S, which could further facilitate the investigation of H2S production and presence, are lacking.

The aim of the present study is to examine oral bacterial H2S production in vitro comparing two colorimetric methods in microtiter plate format.

The bacterial species tested for H2S-producing capacity are given in Table 1. The species were grown on appropriate agar plates under optimal conditions.

The bismuth sulfide (BS) method introduced by Yoshida et al. (8) was modified to using a 5 mM concentration of bismuth(III)chloride. Bacteria were diluted in peptone solution to 10⁹ cells/mL. Aliquots (100 μl) of the bacterial suspension were mixed with an equal amount of newly prepared bismuth solution (0.4 M triethanolamine-HCl, pH 8.0; 10 mM bismuth(III)chloride; 20 mM pyridoxal 5-phosphate monohydrate, 20 mM EDTA and 40 mM L-cysteine) in microtiter plates. In the presence of H2S, black BS is precipitated. Three technical staff members measured the precipitation by scoring the color of the well using a visual scale, from no color production (0) to maximum black color production (5) every hour between 0 and 7 and also after 24 h (Fig. 1a). In addition to the visual scale (median), BS precipitation was determined (mean) by measuring the optical density (OD405).

For the methylene blue (MB) method, adapted after Cline (15), bacterial colonies from the agar plates were incubated in broth with 20 mM L-cysteine until approximately 10⁹ cells/mL were obtained. Thereafter, 10 μl was transferred to 72 μl of distilled water (pH 9.6 + 0.1 mM diethylenetriaminepentaacetic acid) (16) in a microtiter well. A volume of 18 μl of a solution (17.1 mM *N*-diethylamine-*N*-dimethyl-p-phenylenediamine sulfate salt and 37.0 mM FeCl₃ in 6 M HCl) was immediately added (17). The MB
method measures the \(\text{H}_2\text{S} \) produced during bacterial growth in the broth and the formation was measured 30 min after the addition of the solution (17) (Fig. 1b). Similar to the BS method, visual-scale estimations (median) and optical density (OD\(_{668}\)) measurements (mean) were performed.

Table 1. Bacterial hydrogen sulfide \((\text{H}_2\text{S}) \) production from cysteine measured with two colorimetric methods in microtiter plate format, recorded as black bismuth sulfide \((\text{BS}) \) precipitation and methylene blue \((\text{MB}) \) formation

Species	Strain	BS method	MB method
Aggregatibacter actinomycetemcomitans	ATCC\(^b\) 43718	+	–
Actinomyces naeslundii	ATCC 12104	–	–
Actinomyces odontolyticus	ATCC 17929	–	–
Actinomyces oris	ATCC 15987	–	–
Bifidobacterium dentium	ATCC 11863	–	–
Eikenella corrudens	ATCC 23834	+	–
Enterococcus faecalis	ATCC 19433	+	–
Fililactic alocis	ATCC 35896	–	–
Fusobacterium necrophorum	ATCC 51357	+ + + +	+ + + +
Fusobacterium necrophorum	CCUG\(^c\) 48192	+ + + +	+ + + +
Fusobacterium nucleatum	ATCC 10953	+ + + +	+ + + +
Fusobacterium periodonticum	ATCC 33693	+ + + +	+ + + +
Lactobacillus casei	CCUG 31610	–	–
Lactobacillus gasseri	ATCC 33323	–	–
Lactobacillus rhamnosus	ATCC 7469	–	–
Lactobacillus salivarus	CCUG 55845	–	–
Parvimonas micra	ATCC 33270	+ + +	+
Porphyromonas endodontalis	OMGS\(^d\) 1205	–	+
Porphyromonas gingivalis 381F	OMGS 2860	+	+ + +
Porphyromonas gingivalis WB3	OMGS 197	+	+
Prevotella intermedia	ATCC 25611	+	–
Prevotella nigrescens	ATCC 33563	–	–
Prevotella tannerae	ATCC 51259	+	+ + + +
Rothia dentocariosa	CCUG 17835	+	–
Staphylococcus aureus	OMGS 3871	–	–
Streptococcus anginosus	ATCC 12395	+	–
Streptococcus gordoni	ATCC 33399	–	–
Streptococcus intermedius	ATCC 27335	–	–
Streptococcus oralis	ATCC 35037	–	–
Streptococcus mitis	ATCC 49456	–	–
Streptococcus mutans	ATCC 25175	–	–
Streptococcus salivarus	ATCC 7073	–	–
Streptococcus sanguinis	ATCC 10556	–	–
Streptococcus sobrinus	CCUG 27507	–	–
Tannerella forsythia	ATCC 43037	–	–
Treponema denticola	OMGS 3271\(^e\)	+ + +	+ + + +
Veillonella parvula	ATCC 10790	+	–

\(^a\)Visual color change, scored from no color production (–) to maximum black or blue color production (+ + + + +) by three individuals.
The results of the bismuth method are shown after 7 h of incubation in the bismuth solution. Data shown are median values of triplicate wells for three repetitions of the experiment.

\(^b\)American Type Culture Collection.
\(^c\)Culture Collection University of Gothenburg.
\(^d\)Oral Microbiology Gothenburg Sweden.
\(^e\)Originally received from Dr. R. Ellen, University of Toronto, Toronto, Canada.
To test the sensitivity of the methods, different concentrations of sodium hydrosulfide (NaHS) were mixed with the BS and MB solutions. In both cases, a linear correlation between the color intensity and the HS\(^{-}/\text{S}^{2-}\) ion concentration was found with the spectrophotometric and the visual determination (Fig. 2). The visual detection limit for H\(_2\)S was 0.6 mM for the BS method and 2 mM for the MB method.

The most rapid H\(_2\)S production was seen for *Fusobacterium* spp. reaching the maximum color production (Fig. 3). *Treponema denticola, P. micra,* and *Streptococcus anginosus* also showed changes in OD, while *Lactobacillus casei* and both strains of *Porphyromonas gingivalis* failed to do so. Also, the highest production was seen for *Fusobacterium* spp. (Table 1). *T. denticola* showed a clear color change with both methods but at a slower rate. Interestingly, *Prevotella tanneriae* had a high capacity to produce H\(_2\)S reaching a concentration of approximately 3 mM according to both methods. To our knowledge, this strain has not previously been tested for its H\(_2\)S-producing capacity. Also, *P. micra* and *P. gingivalis* produced H\(_2\)S but the color production differed between the BS and MB methods and between the two *P. gingivalis* strains tested. Although *P. gingivalis* W83 is believed to be more virulent than 381F (18, 19), the latter showed higher H\(_2\)S production in broth (MB method). This could result from more proteins being available for degradation in the broth than in the BS solution. A preference for proteins before amino acids as source of nutrients (20) may also be true for *P. endodontalis.* The results indicate that H\(_2\)S production may follow different pathways in the two methods.

Both methods, based on BS precipitation and MB formation, respectively, had a high reproducibility, reliability, and simplicity. The highest rate to maximal detectable production of H\(_2\)S was found for *Fusobacterium* spp. Different findings from the two methods for some bacteria may reflect different pathways used for H\(_2\)S production and, therefore, the BS and MB methods may complement one another. The BS method was more sensitive than the MB method and may be suitable for in vivo estimation of H\(_2\)S production, using, for example, plaque samples from bacterial infections, such as in the periodontal pockets and other anaerobic infection sites. The production of H\(_2\)S is complex and needs more attention in future studies to enhance the knowledge of the mechanisms involved in H\(_2\)S production and its impact in vivo.

Conflict of interest and funding

This study was supported by TUA-Grant (TUAGBG-67191) and by grants from Göteborgs Tandläkare Sällskap (GTS). Special thanks to Gunilla Hjort and Lisbeth
Fig. 3. Bacterial H2S production was determined by BS precipitation and optical density (OD405) measurements up to 7 h at different time points. The bacteria were analyzed at a concentration of approximately 5 x 10^8 cells/mL. Data shown are mean values for triplicate wells for three repetitions of the experiment.

References

1. Persson S, Edlund MB, Claesson R, Carlsson J. The formation of hydrogen sulfide and methyl mercaptan by oral bacteria. Oral Microbiol Immunol 1990; 5: 195–201.
2. Persson S. Hydrogen sulfide and methyl mercaptan in periodontal pockets. Oral Microbiol Immunol 1992; 7: 378–9.
3. Rizzo AA. The possible role of hydrogen sulfide in human periodontal disease. I. Hydrogen sulfide production in periodontal pockets. Periodontics 1967; 7: 233–6.
4. Morhart RE, Mata LJ, Sinskey AJ, Harris RS. A microbiological and biochemical study of gingival crevice debris obtained from Guatemalan Mayan Indians. J Periodontol 1970; 41: 644–9.
5. Horowitz A, Folke LEA. Hydrogen sulfide production in the periodontal environment. J Periodontol 1973; 44: 390–5.
6. Chen W, Kajiya M, Giro G, Ouhara K, Mackler HE, Mawardi H, et al. Bacteria-derived hydrogen sulfide promotes IL-8 production from epithelial cells. Biochem Biophys Res Commun 2010; 391: 645–50.
7. Pianotti R, Lachette S, Dills S. Desulfuration of cysteine and methionine by Fusobacterium nucleatum. J Dent Res 1986; 65: 913–17.
8. Yoshida A, Yoshimura M, Ohara N, Yoshimura S, Nagashima S, Takehara T, et al. Hydrogen sulfide production from cysteine and homocysteine by periodontal and oral bacteria. J Periodontol 2009; 80: 1845–51.
9. Carlsson J, Larsen JT, Edlund MB. Peptostreptococcus micros has a uniquely high capacity to form hydrogen sulfide from glutathione. Oral Microbiol Immunol 1993; 8: 42–5.
10. Lennette E, Balows A, Hausler W, Shadowy H. Manual of clinical microbiology, fourth ed. Washington, DC: American Society for Microbiology; 1985. p. 385.

Bengtsson for visual scale scoring. There is no conflict of interest in the present study for any of the authors.