Conventional empirical law reverses in the phase transitions of 122-type iron-based superconductors

Zhenhai Yu1, Lin Wang1,2, Luhong Wang4, Haozhe Liu1,4, Jinggeng Zhao4, Chunyu Li1, Stanislav Sinogeikin5, Wei Wu6, Jianlin Luo6,7, Nanlin Wang7,8, Ke Yang9, Yusheng Zhao10 & Ho-kwang Mao1,5,11

1Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China, 2State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China, 3High Pressure Synergetic Consortium, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439, United States of America, 4Harbin Institute of Technology, Harbin 150080, China, 5High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Washington, Argonne, Illinois 60439, United States of America, 6Beijing National Lab for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China, 7Collaborative Innovation Center of Quantum Matter, Beijing, China, 8International Center for Quantum Matter, School of Physics, Peking University, Beijing 100871, China, 9Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201203, China, 10High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154, United States of America, 11Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015, United States of America.

Phase transition of solid-state materials is a fundamental research topic in condensed matter physics, materials science and geophysics. It has been well accepted and widely proven that isostructural compounds containing different cations undergo same pressure-induced phase transitions but at progressively lower pressures as the cation radii increases. However, we discovered that this conventional law reverses in the structural transitions in 122-type iron-based superconductors. In this report, a combined low temperature and high pressure X-ray diffraction (XRD) measurement has identified the phase transition curves among the tetragonal (T), orthorhombic (O) and the collapsed-tetragonal (cT) phases in the structural phase diagram of the iron-based superconductor AFe2As2 (A = Ca, Sr, Eu, and Ba). The cation radii dependence of the phase transition pressure (T → cT) shows an opposite trend in which the compounds with larger ambient radii cations have a higher transition pressure.
metal with room-temperature resistivity of $4 \times 10^{-4} \, \Omega \, \text{cm}$ which is more than 2 orders of magnitude higher than that of normal metals such as iron. The EuFe$_2$As$_2$ is paramagnet at room temperature. Similar to BaFe$_2$As$_2$ and SrFe$_2$As$_2$, Mössbauer and magnetic susceptibility studies revealed that EuFe$_2$As$_2$ undergoes two magnetic phase transitions at 200 and 20 K$^{20-21}$. The former is due to the antiferromagnetic transition in the iron sub-lattice. The latter arises from the antiferromagnetic ordering of the Eu$^{2+}$ magnetic moments. The temperature dependent X-ray diffraction (XRD) of EuFe$_2$As$_2$ has been previously investigated and revealed a structural phase transition from the ambient condition tetragonal ThCr$_2$Si$_2$-type phase to a low temperature orthorhombic β-SrRh$_2$As$_2$-type structure at 190 K22.

Previous studies have shown that the applied pressure plays an important role in tailoring the superconductivity transition temperature on the recently discovered iron-based superconductors$^{23-25}$. For example, a second superconducting phase suddenly reemerges above 11.5 GPa in iron chalcogenides after the T_c drops from the first maximum of 32 K at 1 GPa6. The T_c of EuFe$_2$As$_2$ shows a rapid increase between 4 and 10 GPa and reaches a maximum of 41 K near 10 GPa5. The pressure-induced valence change of europium in EuFe$_2$As$_2$ was studied by L.L. Sun et al. using X-ray absorption measurements$^{26-27}$. Some in situ high pressure XRD experiments on EuFe$_2$As$_2$ have also been performed. For example, synchrotron XRD analysis shows that the EuFe$_2$As$_2$ undergoes a $T \rightarrow cT$ structural phase transition around 8 GPa. The structural phase transitions in EuFe$_2$As$_2$ at low temperatures and high pressures have also been reported28. The $T \rightarrow O$ and $T \rightarrow cT$ structural phase transitions occurred at 4.3 GPa and 120 K, and at 11 GPa and 10 K, respectively.

The importance of the structural evolution of the AB$_2$X$_2$-type compounds was highlighted by the relationship among magnetism, superconductivity and lattice instabilities in the iron arsenide family of superconductors. Although great efforts have been devoted to understand the temperature/pressure-induced structural phase transitions in AFe$_2$As$_2$, the issue of first or second-order phase transition, phase transition temperature/pressure and the coexistence of phase have also been a matter of dispute. The crystal structure evolution in P-T domain of EuFe$_2$As$_2$ is still not fully known. To complement the above data, we have performed an XRD experiment with EuFe$_2$As$_2$ using a combined low temperature and high pressure XRD technique. Studies into the crystal structural evolution as a function of pressure were performed based on in situ high-pressure synchrotron XRD data and Rietveld refinement. This provides insights into the pressure effect on the crystal structures of the 122-type superconductor. Here we report details on the temperature- and pressure-induced structural phase transition in EuFe$_2$As$_2$. Additionally, the transition pressure in AFe$_2$As$_2$ follows a trend in which the larger ambient cation radii have higher transition pressures. This does not follow the conventional empirical law.

Results

The EuFe$_2$As$_2$ high quality single crystals used here were grown using the Sn-flux method. The single crystals were grown in a mortar to obtain a fine powder sample for angle dispersive XRD experiments. Apart from the diffraction peak (123) in EuFe$_2$As$_2$ splitting into (400) and (040) around 190 K reported in the literature6, we also observed Bragg diffraction peaks (112) splitting into (202) and (022) by taking advantage of the high resolution synchrotron XRD diffraction technique at 11 BM-B at APS of ANL as shown in the supplementary materials (Fig. S1).

The variation in crystallographic structure for EuFe$_2$As$_2$ under high pressure and ambient temperature was investigated using a symmetric DAC. Figure 1 presents the selected AD-XRD patterns of EuFe$_2$As$_2$ under various pressures at 12 K. The (110) Bragg diffraction peak is on the right of (103) under low pressure ($< 14.3 \, \text{GPa}$). This is shown by the red and blue arrows at the bottom of Figure 1. The (110) and (103) diffraction peaks merge into one peak (peak I) due to the limited resolution of the detector. As the pressure increases, the diffraction peaks (103) and (110) separate into two peaks (Peak II and III, on the top of Figure 1) due to the reverse movement. The relative intensity of the (103) Bragg diffraction peak is stronger than (110) across all pressures studied here. The Bragg diffraction peaks of (103) and (112) exhibit a movement to the higher diffraction angle as the pressure increases. On the contrary, the Bragg diffraction peaks (110) and (200) move to the lower diffraction angle (or higher d-spacing), which is clear evidence of the anomalous compression of the lattice parameter a in the tetragonal lattice.

The lattice parameters and atomic positions of EuFe$_2$As$_2$ under various pressures at 12 K were determined using Rietveld refinements (Figure 2a and 2b). The lattice parameters a and c of the T phase in EuFe$_2$As$_2$ show a normal decrease with pressure up to 9.5 GPa. At this juncture, a strong decrease is seen in the c lattice parameter to smaller values, after which a normal compression behavior is observed up to 31.5 GPa. However, as the pressure increases, anomalous compression effects were observed with the lattice parameter c expanding rapidly to around 25.2 GPa. Similar pressure-induced structural phase transition from a tetragonal to a collapsed tetragonal structure also occurs in EuFe$_2$P$_2$ under 9.8 GPa at ambient temperature29.

Figure 2c exhibits the measured pressure dependence of volume for EuFe$_2$As$_2$ up to 31.5 GPa at 12 K. The P-V data was fitted to a Birch-Murnaghan equation of state30. The fitted lattice volume is 1841.0 Å3 for the T phase and 1689.9 Å3 for the cT phase at 12 K, respectively. We found that this equation of state presents considerable decreases in compressibility between the tetragonal and the high-pressure collapsed tetragonal phase. This is seen in the variation of slope of the pressure-volume (P-V) curve separated by 12 GPa. This indicates that the cT phase has lower compressibility than that of the T phase. With B_0 fixed to be 4, we obtained ambient pressure isothermal bulk modulus of $B_0 = 58.1(2.3)$ and 160.0(3.0) GPa for the T and cT phase of the EuFe$_2$As$_2$, respectively. We only did the

![Figure 1](https://www.nature.com/scientificreports)
As ions to form a FeAs$_4$ tetrahedron. The tetrahedra are edge-linked down to 12 K as well as literature data 22,25,28. From Figure 3 we found dependence of the bond length of Fe-As (d_{Fe-As}), the bond angle As-Fe-As ($\angle_{As-Fe-As}$) and the polyhedral volume of FeAs$_4$ (V_{FeAs_4}) in EuFe$_2$As$_2$ (determined by the Rietveld refinement) are shown in Figure S2. It can be seen from Figure S2 (a) that the bond length of Fe-As first decreases before 7.7 GPa and then increases from 7.7 to 11.0 GPa. However, the bond length of Fe-As becomes less sensitive to applied pressure above 11.0 GPa. The pressure dependence of volume for FeAs$_4$ presents a similar behavior with increasing pressure as shown in Figure S2 (c). The variation in $\angle_{As-Fe-As}$ with increasing pressure is shown in Figure S2 (b). From the point of view of crystallography, the FeAs$_4$ tetrahedron in EuFe$_2$As$_2$ is similar to an ideal regular tetrahedron because the As-Fe-As angle (109.1$^\circ$ (×4), 110.1$^\circ$ (×2)) is close to 109.47$^\circ$ under ambient conditions. The polyhedron of FeAs$_4$ becomes much more distorted at increasing pressures (<7.7 GPa) because the tetrahedral angles ($\angle_{As-Fe-As}$) deviate from an ideal tetrahedron value of 109.47$^\circ$ with increasing pressure. However, the tetrahedron of FeAs$_4$ becomes less sensitive and is hardly distorted above 11.0 GPa. Our data are consistent that reported for the T_c as a function of pressure 25. This pressure effect on the 122-type EuFe$_2$As$_2$ is similar to that of other 122-type AFe$_2$As$_2$ (A = Ba, Sr) 11,35, 1111-type LaFeAsO35 and 111-type Na$_3$-FeAs39 systems.

Figure 3 presents the temperature and pressure phase diagram of EuFe$_2$As$_2$. These data include our measurements up to 31.5 GPa and down to 12 K as well as literature data 22,25,28. From Figure 3 we found that the transition pressure of $T \rightarrow cT$ in EuFe$_2$As$_2$ increases as the temperature decreases. Simultaneous compression and cooling could also increase the transition pressure. A similar phenomenon also appears in other AFe$_2$As$_2$ superconductors such as CaFe$_2$As$_2$ and BaFe$_2$As$_2$. Under ambient temperature, the pressure-induced $T \rightarrow cT$ phase transitions in CaFe$_2$As$_2$ and BaFe$_2$As$_2$ occur at 1.7 and 27 GPa, respectively 35. The phase transition from the T phase to the cT phase of CaFe$_2$As$_2$ and BaFe$_2$As$_2$ occur at 2 GPa, 40 K and 29 GPa, 33 K, respectively 35.

Several groups have used XRD and/or neutron diffraction to study the temperature-induced structural phase transition in AFe$_2$As$_2$, which is quite similar to the corresponding structural transformation observed in the undoped “1111” type RFeAsO superconductors. The transition temperatures of $T \rightarrow O$ in CaFe$_2$As$_2$, SrFe$_2$As$_2$, BaFe$_2$As$_2$ and EuFe$_2$As$_2$ are around 170 K3,6,37, 205 K$^{38–42}$, 140 K$^{43–46}$ and 190 K22,47, respectively. The structural phase transition of $T \rightarrow O$ is discontinuous and often hysteretic. The ambient condition is tetragonal and coexists with low temperature orthorhombic phases close to the structural phase transition point. These are all hallmarks of a first-order phase transition. The phase transition temperature of

Discussion

EuFe$_2$As$_2$ exhibits a quasi-two-dimensional structure characteristic under ambient conditions. Like the CuO$_2$ plane in copper oxide high-temperature superconductors, the Fe$_2$As$_2$ layers are conduction planes for the charge carriers. The other building blocks are the charge reservoir layers that dominate the carrier density or chemical potential. In the Fe$_2$As$_2$ layers, the Fe and As ions could constitute a FeAs$_4$ tetrahedron because of the smaller ionic radius of Fe versus As. The iron ions form a planar tetragonal lattice that is sandwiched by FeAs$_4$ tetrahedron because of the smaller ionic radius of Fe versus As.

In general the FeAs$_4$ tetrahedron is not an ideal normal tetrahedron because of the mismatch between the Fe-As planes for the charge carriers. The other building blocks are the charge reservoir layers that dominate the carrier density or chemical potential. The polyhedron of FeAs$_4$ becomes much more distorted at increasing pressures (\sim109.1$^\circ$ to 109.47$^\circ$), whereas the As atom is located at the 4e position. Hence, the applied pressure could affect its z atomic position. The pressure dependence of the bond length of Fe-As (d_{Fe-As}), the bond angle As-Fe-As ($\angle_{As-Fe-As}$) and the polyhedral volume of FeAs$_4$ (V_{FeAs_4}) in EuFe$_2$As$_2$ (determined by the Rietveld refinement) are shown in Figure S2. It can be seen from Figure S2 (a) that the bond length of Fe-As first decreases before 7.7 GPa and then increases from 7.7 to 11.0 GPa. However, the bond length of Fe-As becomes less sensitive to applied pressure above 11.0 GPa. The pressure dependence of volume for FeAs$_4$ presents a similar behavior with increasing pressure as shown in Figure S2 (c). The variation in $\angle_{As-Fe-As}$ with increasing pressure is shown in Figure S2 (b). From the point of view of crystallography, the FeAs$_4$ tetrahedron in EuFe$_2$As$_2$ is similar to an ideal regular tetrahedron because the As-Fe-As angle (109.1$^\circ$ (×4), 110.1$^\circ$ (×2)) is close to 109.47$^\circ$ under ambient conditions. The polyhedron of FeAs$_4$ becomes much more distorted at increasing pressures (<7.7 GPa) because the tetrahedral angles ($\angle_{As-Fe-As}$) deviate from an ideal tetrahedron value of 109.47$^\circ$ with increasing pressure. However, the tetrahedron of FeAs$_4$ becomes less sensitive and is hardly distorted above 11.0 GPa. Our data are consistent that reported for the T_c as a function of pressure 25. This pressure effect on the 122-type EuFe$_2$As$_2$ is similar to that of other 122-type AFe$_2$As$_2$ (A = Ba, Sr) 11,35, 1111-type LaFeAsO35 and 111-type Na$_3$-FeAs39 systems.

Figure 3 presents the temperature and pressure phase diagram of EuFe$_2$As$_2$. These data include our measurements up to 31.5 GPa and down to 12 K as well as literature data 22,25,28. From Figure 3 we found that the transition pressure of $T \rightarrow cT$ in EuFe$_2$As$_2$ increases as the

Figure 2 | The pressure dependence of the lattice parameters a (a), which is closely related to the shift of diffraction peak of (110), and c (b) for T and cT phase in EuFe$_2$As$_2$ at 12 K. (c) The pressure dependence of volume for EuFe$_2$As$_2$ at 12 K and the schematic crystal structures of T and cT phase for EuFe$_2$As$_2$.

Figure 3 | The crystal structure phase diagram of EuFe$_2$As$_2$ derived from the XRD results. The boundary line between T and cT phases shifted to higher pressure as the temperature decreasing. The data marked with solid spheres, open spheres, open triangles and open squares, were taken from the present work, Ref. 22, Ref. 25 and Ref. 28, respectively.
T → O in AFe$_2$As$_2$ and the experimental characterization are presented in Table S1.

The phase transition temperature of T → O in SrFe$_2$As$_2$ is higher than that of the other three AFe$_2$As$_2$ compounds (CaFe$_2$As$_2$, EuFe$_2$As$_2$ and BaFe$_2$As$_2$). For superconducting or magnetic materials, if the cation is Ca, Sr or Ba, the sample containing Sr shows the highest superconducting transition temperature or Curie temperature. In contrast, a Ca- or Ba-containing sample has a lower corresponding value. The phase transition temperature (T → O) in AFe$_2$As$_2$ also shows similar behavior. Previous studies have shown that the lattice parameter a of AFe$_2$As$_2$ is very similar (3.879 Å – 3.9625 Å), but the lattice parameter c has much more variability (11.740 Å – 13.0168 Å42,43,44,45). The lattice parameter c of BaFe$_2$As$_2$ is much longer than those of the other three isostructural compounds and may cause BaFe$_2$As$_2$ to be different from the other three AFe$_2$As$_2$ (A = Ca, Eu and Sr) compounds.

The phase transition pressures of T → cT in CaFe$_2$As$_2$, SrFe$_2$As$_2$, BaFe$_2$As$_2$ and EuFe$_2$As$_2$ are summarized in Figure 442,43,46. When comparing the phase transition pressures of T → cT for these four compounds, we found that the increase in the size of the alkaline earth metal or rare earth cations leads to an increase in the transition pressure. However, it is well known that isostructural compounds containing different cations will undergo similar phase transitions at progressively lower pressures as the cation radii increase. Thus, the pressure-induced transformation from fluorite-type to PbCl$_2$-type in CaF$_2$, SrF$_2$ and BaF$_2$ is 9.5 GPa, 5.0 GPa and 3.0 GPa, respectively. Similar phenomena have also been found in pressure-induced structural phase transition of CaO, SrO and BaO$^{1–4}$ (Figure 4, inset). Therefore, the cation as a function of phase transition pressure in ThCr$_2$Si$_2$-type iron-based superconductors did not follow the conventional empirical law. In most cases, pressure-induced structural phase transitions involve the variation of the space group and a combination of the Wyckoff position. We emphasize that in this pressure-induced structural phase transition, the AFe$_2$As$_2$ undergoes an isostructural phase transition without ionic variation of the space group and Wyckoff position. Pressure-induced isostructural phase transitions usually originate from electronic structural changes in the materials34. The "chemical inner stress" largely due to the increase in cation radii plays a major role in conventional empirical law. However, iron-based superconductors such as AFe$_2$As$_2$ are strongly correlated electronic systems, in which the electrons cannot be described effectively in terms of non-interacting entities. The "chemical inner stress" and electronic interactions seen here are coupled, and interplay in pressure-induced structural phase transition in the AFe$_2$As$_2$ system. In determining the pressure of phase transitions in AFe$_2$As$_2$, the electronic interactions show a dominant effect versus regular "chemical inner stress" effect. This causes the pressure-induced structural phase transition in AFe$_2$As$_2$ compounds exhibit anomalous pattern.

From Figure 4, we found that the transition pressure in EuFe$_2$As$_2$ and SrFe$_2$As$_2$ is very close. It is well known that the volume of Eu$^{2+}$ with a 4f2 electron shell is larger than that of Eu$^{3+}$ with a 4f4 electron shell. Thus, the application of pressure could drive a valence transition of the Eu ions in EuFe$_2$As$_2$ from divalent to trivalent. The Eu ions mean valence changes from 2.1 to 2.27 when the pressure increases from 2.1 to 9.8 GPa35. The ionic radius of Sr$^{2+}$ and Eu with mixed valence is very close. Therefore, the structural behavior of EuFe$_2$As$_2$ is very similar to that of SrFe$_2$As$_2$.

In summary, the transition pressure of T → cT in EuFe$_2$As$_2$ increases as the temperature decreases. We identified the phase lines corresponding to the phase transitions for the tetragonal, orthorhombic and collapsed tetragonal phases of EuFe$_2$As$_2$. We discuss the variation in geometry configuration as a function of pressure for the Fe$_2$As$_2$ layers in EuFe$_2$As$_2$. The transition pressures (T → cT) in AFe$_2$As$_2$ show a correlation with the size of the ionic radius under ambient conditions. The cationic radii as a function of phase transition pressure in a ThCr$_2$Si$_2$-type iron-based superconductor did not follow the conventional compression law.

Methods

High resolution synchrotron powder XRD patterns at low temperature and ambient pressure were collected at the beamline 11-BM-B at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The experiments were conducted with a monochromatic beam of 0.4124 Å. High pressure and low temperature angle-dispersive XRD (AD-XRD) patterns were collected at the High Pressure Collaborative Access Team (HPCAT) beamline 16-ID-B at APS of ANL using a MAR345 flat panel detector. The experiments were conducted with a monochromatic beam of 0.3697 Å. All the XRD results were confirmed with experiments performed at BL15U1 beamline at Shanghai Synchrotron Radiation Facility (SSRF) using a monochromatic beam of 0.6199 Å. A symmetric type diamond anvil cell (DAC) with a diamond culet size of 300 μm was used to apply the pressure. T301 stainless steel with a thickness of 300 μm and a pre-indentation thickness of 45 μm served as the gasket. The 120 μm diameter sample chamber was filled with a mixture of the EuFe$_2$As$_2$ compound, a ruby chip and silicone oil as the pressure transmitting medium. For high pressure and low temperature experiments, the DAC was cooled in a continuous He flow type cryostat. The pressure was measured with the in situ ruby fluorescence technique31. The diffraction patterns were integrated with the FIT2D computer code32. The XRD data was refined with the Rietveld method employed by the General Structure Analysis System (GSAS)33 based on the structural model used in prior reports34.

1. Jeanloz, R., Ahrens, T. J., Mao, H. K. & Bell, P. M. B1-B2 transition in calcium oxide from shock-wave and diamond-cell experiments. *Science* **266**, 829–830 (1979).
2. Mamme, J. F., Mao, H. K. & Bell, P. M. Equations of state of CaO under static pressure conditions. *Geophys. Res. Lett.* **18**, 140–142 (1991).
3. Sato, Y. & Jeanloz, R. Phase transition in SrO. *J. Geophys. Res.* **86**, 11773–11778 (1981).
4. Weir, S. T., Vohra, Y. K. & Ruoff, A. L. High-pressure phase transitions and the oxide from shock-wave and diamond-cell experiments. *Science* **289**, 829–830 (1982).
5. Gerwardt, L., Olsen, J. S., Steenstrup, S., Asbrink, S. & Wadskowska, A. X-ray diffraction investigations of CaF$_2$ at high pressure. *J. Appl. Crystallogr.* **25**, 578–581 (1992).
6. Kourkouli, G. A. & Anastassakis, F. Pressure-induced phase transition in SrFe$_2$X: A Raman study. *Phys. Rev. B* **34**, 1233–1237 (1986).
et al.

et al.