SUPPLEMENTARY MATERIALS

Supplementary Methods

Study Design

From January 2015 to March 2017, consecutive patients who were scheduled to undergo prostate needle biopsy for the first time at each institution were enrolled after written consent was obtained. DNA was extracted from the patient’s blood drawn before biopsy. Genotyping of common variants and target sequencing of the eight prostate cancer-associated genes was performed. PRS was calculated and combined with known clinical parameters to evaluate the predictive performance of the combined models in PCa diagnosis. The cohort was followed up until October 2019, and final follow-up data, including data on re-biopsy after initial negative biopsy, were collected. After data clean-up, the data were finalized in December 2019.

Clinical data acquisition

Pre-biopsy and follow-up patient data were entered into the electronic data capture (EDC) system specifically designed for the study. The clinical data collected included digital rectal exam findings, PSA, prostate volume, family history of prostate cancer, number of prostate biopsy cores, number of PCa-positive cores, total PCa-positive core length, Gleason score, clinical stage, and MRI findings for those who underwent pre-biopsy MRI. Prostate volume was measured either by ultrasound or MRI, and PSA density (PSAD) was calculated
by dividing PSA value by prostate volume. MRI was evaluated by local radiologists, and only the findings that were highly suspicious for PCa, which translates into PI-RADS 4 or 5 in the Prostate Imaging Reporting and Data System version 2 (PIRADS-v2), were considered positive findings. All the input data were inspected at the data center at the Institute for Advancement of Clinical Translational Science (iACT), Kyoto University Hospital, and any missing data were queried.

DNA extraction

Two milliliters of blood were drawn before the prostate needle biopsy. The blood samples were anonymized and collected by Bio Medical Laboratories, Inc., and DNA was extracted using standard procedures. The extracted DNA was stored at −20 °C at the Laboratory for Genotype Development, RIKEN Center for Integrative Medical Sciences.

Genotyping of common variants

The list of the common variants genotyped can be found in Supplementary Table 8. We used a two-step PCR method to construct DNA libraries. Multiplex PCR (25 cycles) was performed using primers targeting each region followed by the 2nd PCR (4 cycles) where 8-bp barcodes and adapter sequences were added using primers targeting shared 5’ overhangs introduced during the 1st PCR. The pooled libraries were sequenced by 2 × 150-bp paired-end reads on a HiSeq 2500 (Illumina, San Diego, CA, USA) instrument. Sequence reads allocated
to each individual were aligned to the human reference sequence (hg19) using Burrows-Wheeler Aligner (version.0.7.12)[1] and processed using the Genome Analysis Tool kit (GATK, ver. 3.4-46)[2]. For quality control, we selected individuals in which more than 98% of the target region was covered with 20 or more sequencing reads. Genotypes of all individuals were jointly determined for each variant based on the sequencing read ratios of the reference and alternative alleles. We assigned homozygotes of the reference allele, heterozygotes, or homozygotes of the alternative allele, when the alternative allele frequency fell in the range of 0–0.15, 0.25–0.75, or 0.85–1, respectively. The SNPs that could not be analyzed by multi-index sequencing were genotyped separately using multiplex PCR-based invader assay[3].

Target genome sequencing

All transcripts registered in Consensus CDS (CCDS) release 152 for each gene were analyzed. The total length of the target region was 37,982 bp. Single nucleotide variants (SNVs) and insertions or deletions (INDELs) of each individual were called separately using UnifiredGenotyper and HaplotypeCaller of GATK, as described previously[4]. Variants with call rates <98% were excluded. Finally, we identified 328 genetic variants in 1387 samples, and 99.8% of the target region was covered by ≥20 sequence reads.

Age-specific absolute risk estimation
The age-specific absolute risk[5, 6] was estimated for the percentile categories of the PRS distribution: [0–10%], (10–20%], (30–40%], (40–60%], (60–70%], (70–80%], (80–90%], (90–99%], and (99–100%]. Note that “(”, “[”, and “]” indicate “greater than”, “greater than or equal to”, and “less than or equal to”, respectively. The absolute risk values at each age were calculated recursively as in Olama et al.[7] and Conti D et al.[8]. Japanese age-specific prostate cancer incidence data were extracted from the Cancer Registry and Statistics (2016–2017) (Cancer Information Service, National Cancer Center, Japan), and age-specific mortality rates in 2017 were available from the website of the Ministry of Health, Labour and Welfare, Japan.

References

1. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25(14):1754-60.
2. DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011;43(5):491-8.
3. Ohnishi Y, Tanaka T, Ozaki K, et al. A high-throughput SNP typing system for genome-wide association studies. J Hum Genet 2001;46(8):471-7.
4. Momozawa Y, Iwasaki Y, Hirata M, et al. Germline pathogenic variants in 7,636 Japanese patients with prostate cancer and 12,366 controls. J Natl Cancer Inst 2019;112(4):369-376.
5. Gaynor JJ, Feuer EJ, Tan CC, et al. On the Use of Cause-Specific Failure and Conditional Failure Probabilities: Examples From Clinical Oncology Data. Journal of the American Statistical Association 1993;88(422):400-409.
6. Gail MH. Personalized estimates of breast cancer risk in clinical practice and public health. Stat Med 2011;30(10):1090-104.
7. Amin Al Olama A, Benlloch S, Antoniou AC, et al. Risk Analysis of Prostate Cancer in PRACTICAL, a Multinational Consortium, Using 25 Known Prostate Cancer Susceptibility Loci. Cancer Epidemiol Biomarkers Prev 2015;24(7):1121-9.
8. Conti DV, Darst BF, Moss LC, et al. Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction.
Nat Genet 2021;53(1):65-75.
Supplementary Tables

Supplementary Table 1. Case control analysis of the 16 SNPs included in polygenic risk score

Chr	rs number	Position	Gene	Allele (risk/no-risk)	Case Risk homo	Case Hetero	Non-risk homo	Control Risk homo	Control Hetero	Non-risk homo	Total	Armitage's trend P^a	OR (95% CI)
2	rs13385191	20888265	C2orf43	G/A	259	396	146	163	269	103	1336	0.46	1.06 (0.91 to 1.24)
2	rs11693801	43590329	THADA	C/T	394	335	72	257	221	57	1336	0.44	1.07 (0.90 to 1.26)
3	rs9284813	87152169	3p12	G/A	62	301	437	28	199	308	1335	0.12	1.16 (0.97 to 1.38)
5	rs12653946	1895829	IRX4	T/C	204	417	180	115	255	165	1336	<0.001 b	1.28 (1.10 to 1.50)
6	rs1983891	41536427	FOXP4	T/C	161	389	251	79	262	194	1336	0.009	1.23 (1.06 to 1.45)
6	rs339331	117210052	RFX6/GPRC6A	T/C	332	366	103	212	242	81	1336	0.29	1.09 (0.93 to 1.28)
8	rs1512268	23526463	NNX3.1	T/C	143	382	276	70	257	208	1336	0.02	1.21 (1.03 to 1.42)
8	rs10086908	128011937	8q24(block1)	T/C	550	225	26	352	161	22	1336	0.22	1.13 (0.93 to 1.38)
8	rs1456315	128103937	8q24(block2/region2)	T/C	444	308	48	243	233	58	1334	<0.001 b	1.44 (1.21 to 1.70)
8	rs620861	128335673	8q24(block3/region3)	G/A	255	366	180	147	275	113	1336	0.45	1.06 (0.91 to 1.24)
8	rs6983267	128413305	8q24(block4/region3)	G/T	110	384	307	71	235	229	1336	0.20	1.11 (0.95 to 1.31)
8	rs7837688	128539360	8q24(block5/region1)	T/G	39	251	511	14	130	391	1336	<0.001 b	1.49 (1.21 to 1.84)
10	rs10993994	51549496	MSMB	T/C	236	366	199	127	266	142	1336	0.07	1.16 (0.99 to 1.35)
13	rs9600079	73728139	13q22	T/G	135	387	279	74	266	195	1336	0.23	1.10 (0.94 to 1.29)
17	rs7501939	36101156	HNF1B	C/T	439	309	53	261	225	49	1336	0.02	1.24 (1.04 to 1.47)
22	rs5759167	43500212	TTLL1/BIK	G/T	359	358	84	224	241	70	1336	0.14	1.13 (0.96 to 1.33)

*a All statistical tests were 2-sided. Chr = chromosome, rs = reference single nucleotide polymorphism, A = adenine, T = thymine, C = cytosine, G = guanine, homo = homozygous, hetero = heterozygous, OR = odds ratio, CI = confidence interval
Statistically significant after Bonferroni correction ($P < 0.003$)
Supplementary Table 2. Patient characteristics and the results of initial biopsy a

Characteristic	PCa (+)	PCa (-)	Total
Total No. of patients (%)	778 (58.2)	558 (41.8)	1336 (100.0)
Age, years			
Mean (SD)	70.6 (7.20)	66.1 (8.10)	68.7 (7.91)
Median (Min , Max)	71.0 (47, 90)	67.0 (37, 91)	69.0 (37, 91)
Digital rectal exam, No. (%)			
PCa suspected	279 (36.0)	44 (7.9)	323 (24.2)
PCa not suspected	497 (64.0)	513 (92.1)	1010 (75.6)
N/A	2	1	3
PSA, ng/ml			
Mean (SD)	82.5 (583.8)	7.4 (4.7)	51.1 (446.9)
Median (Min , Max)	8.8 (0.034, 14426)	6.0 (0.7, 42.7)	7.3 (0.034, 14426)
Prostate volume, m3			
Mean (SD)	32.0 (17.9)	41.0 (19.8)	35.8 (19.2)
Median (Min , Max)	28.00 (7.3, 175)	37.1 (5.7, 186)	31.00 (5.7, 186)
PSA density			
Mean (SD)	2.04 (11.11)	0.21 (0.16)	1.28 (8.98)
Median (Min , Max)	0.341 (0.002, 265.672)	0.173 (0.027, 1.640)	0.247 (0.002, 265.672)
Family history, No. (%)			
Yes	42 (5.7)	40 (7.6)	82 (6.5)
No	698 (94.3)	486 (92.4)	1184 (93.5)
N/A	38	32	70
Suspicion of PCa on MRI, No. (%)			
Yes	395 (87.6)	171 (57.8)	566 (75.8)
No	56 (12.4)	125 (42.2)	181 (24.2)
N/A	327	262	589
No. of biopsy cores			
Median (Min , Max)	12.0 (2, 20)	12.0 (8, 22)	12.0 (2, 22)

a PCa = prostate cancer; PSA = prostate specific antigen; MRI = magnetic resonance imaging; N/A = not available; SD = standard deviation.
Supplementary Table 3. Patient characteristics of the patients with PSA 2-10 ng/ml

Characteristic	PCa (+)	PCa (−)	Total
Total No. of patients (%)	446 (50.2)	443 (49.8)	889 (100)
Age, years			
Mean (SD)	69.1 (6.5)	65.6 (8.0)	67.3 (7.5)
Median (Min, Max)	69 (47, 84)	67 (37, 91)	68 (37, 91)
Digital rectal exam, No. (%)			
PCa suspected	96 (21.6)	36 (8.1)	132 (14.9)
PCa not suspected	349 (78.4)	407 (91.9)	756 (85.1)
N/A	1	0	1
PSA, ng/ml			
Mean (SD)	6.3 (1.7)	5.9 (1.7)	6.1 (1.7)
Median (Min, Max)	6.1 (2.7, 10.0)	5.5 (2.1, 10.0)	5.8 (2.1, 10.0)
Prostate volume, ml³			
Mean (SD)	29.2 (14.5)	40.1 (19.1)	34.6 (17.8)
Median (Min, Max)	26 (8, 175)	36.4 (5.7, 186)	30.0 (5.7, 186)
PSA density			
Mean (SD)	0.25 (0.12)	0.17 (0.09)	0.21 (0.11)
Median (Min, Max)	0.24 (0.04, 0.98)	0.16 (0.03, 0.70)	0.19 (0.03, 0.98)
Family history, No. (%)			
Yes	32 (7.6)	33 (8.0)	65 (7.8)
No	390 (92.4)	382 (92.0)	772 (92.2)
N/A	24	28	52
Suspicion of PCa on MRI, No. (%)			
Yes	205 (85.4)	130 (57.0)	335 (71.6)
No	35 (14.6)	98 (43.0)	133 (28.4)
N/A	206	215	421
No. of biopsy core			
Median (Min, Max)	12 (8,20)	12 (8,22)	12 (8,22)

PCa = prostate cancer; PSA = prostate specific antigen; MRI = magnetic resonance imaging; N/A = not available; SD = standard deviation.
Supplementary Table 4. Odds ratio by polygenic risk score category (model validation cohort in the previous study: number of cases = 3,294, number of controls = 6,281)

PRS category	OR\(^a\) (95% CI)
0-10%	0.39 (0.32-0.47)
10-20%	0.59 (0.49-0.71)
20-30%	0.57 (0.48-0.69)
30-40%	0.72 (0.60-0.86)
40-60%	1.00 (reference)
60-70%	1.37 (1.16-1.62)
70-80%	1.47 (1.24-1.73)
80-90%	1.83 (1.56-2.16)
90-100%	3.22 (2.73-3.81)
99-100%	3.43 (2.21-5.31)

\(^a\)Odds ratio (OR) is calculated by logistic regression analysis with presence of prostate cancer as the objective variable and polygenic risk score (PRS) category and age as explanatory variables. CI = confidence interval. PRS = polygenic risk score.
Supplementary Table 5. Logistic regression analysis incorporating PSAD, age, PRS, and DRE

Parameter	Log worth effect	OR\(^a\) (95% CI)
PSAD as a continuous variable		
PSAD (continuous variable)	24.46	3289.16 (583.75 to 18532.8)
age (continuous variable)	11.05	1.07 (1.05 to 1.10)
PRS (continuous variable)	8.96	1.89 (1.52 to 2.34)
DRE positive (negative as reference)	2.48	1.96 (1.24 to 3.08)
PSAD as a categorical variable		
PSAD >0.2 (≦ 0.2 as reference)	17.00	3.60 (2.66 to 4.86)
age (continuous variable)	10.87	1.07 (1.05 to 1.10)
PRS (continuous variable)	9.72	1.93 (1.56 to 2.39)
DRE positive (negative as reference)	3.24	2.15 (1.38 to 3.35)

\(^a\) Odds ratio (OR) is calculated by logistic regression analysis with presence of prostate cancer as the objective variable and PSAD, MRI, PRS, DRE findings and age as explanatory variables. PSAD = prostate specific antigen density; PRS = polygenic risk score; DRE = digital rectal exam; CI = confidence interval.
Supplementary Table 6. Logistic regression analysis incorporating MRI, PSAD, age, PRS, and DRE

Parameter	Log worth effect size	OR\(^a\) (95% CI)
PSAD as a continuous variable		
PSAD (continuous variable)	13.6	3765.2 (343.0 to 41334.3)
MRI positive (negative as reference)	4.54	2.90 (1.74 to 4.83)
age (continuous variable)	4.48	1.06 (1.03 to 1.10)
PRS (continuous variable)	4.3	23.64 (4.78 to 116.9)
DRE positive (negative as reference)	1.59	1.93 (1.07 to 3.49)
PSAD as a categorical variable		
PSAD >0.2 (≤0.2 as reference)	9.01	3.70 (2.41 to 5.68)
MRI positive (negative as reference)	4.51	2.83 (1.72 to 4.65)
age (continuous variable)	4.27	1.06 (1.03 to 1.09)
PRS (continuous variable)	4.38	1.77 (1.33 to 2.35)
DRE positive (negative as reference)	2.00	2.10 (1.18 to 3.73)

\(^a\) Odds ratio (OR) is calculated by logistic regression analysis with presence of prostate cancer as the objective variable and PSAD, MRI, PRS, DRE findings and age as explanatory variables.

PSAD = prostate specific antigen density; PRS = polygenic risk score; DRE = digital rectal exam; MRI = magnetic resonance imaging; CI = confidence interval.
Supplementary Table 7. Distribution of high-risk patients by different PRS cutoffs in the PCSSNP and model creation cohort

Cohort	Total No. of patients	PRS \geq 3		PRS \geq 2.5		PRS \geq 2.0	
		No. of patients	% of all samples	No. of patients	% of all samples	No. of patients	% of all samples
PCSSNP cohort	1333	48	3.6	82	6.2	175	13.1
Model creation cohort	11013	371	3.4	600	5.4	1073	9.7

aPRS = polygenic risk score; PCSSNP = Prostate Cancer Susceptibility Single Nucleotide Polymorphism.
Supplementary Table 8. PRS risk and age at diagnosis^a

PRS cutoff for defining high risk	PCa (+)	PCa (-)	Mean age for cases with PCa (SE), y		
	Median age, y	No. of patients	Median age, y	No. of patients	
Cutpoint 2					
PRS ≥ 2	70	138	67	37	69.5 (0.67)
PRS < 2	71	663	67	498	70.8 (0.27)
Cutpoint 2.5					
PRS ≥ 2.5	68.5	70	66	12	68.6 (0.96)
PRS < 2.5	71	731	67	523	70.7 (0.26)
Cutpoint 3					
PRS ≥ 3	68	43	68	5	68.8 (1.20)
PRS < 3	71	758	67	530	70.7 (0.25)

^aPRS = polygenic risk score; PCa = prostate cancer; SE = standard error.
Supplementary Table 9. Prevalence of pathogenic rare variants in the eight genes

Gene	PCSSNP cohort, No. (%)	BioBank Japana, No. (%)
	All patients (N=1336)	PCa (+) (n=801) PCa (-) (n=535) PCa (+) (n=7636) PCa (-) (n=12366)
ATM	4 (0.30) 3 (0.37) 1 (0.19) 37 (0.5) 21 (0.2)	
BRCA2	10 (0.75) 7 (0.87) 3 (0.56) 83 (1.1) 24 (0.2)	
BRIP1	3 (0.22) 2 (0.25) 1 (0.19) 6 (0.1) 7 (0.1)	
CHEK2	1 (0.07) 1 (0.12) 0 (0) 12 (0.2) 8 (0.1)	
HOXB13	6 (0.45) 5 (0.62) 1 (0.19) 61 (0.8) 21 (0.2)	
NBN	2 (0.15) 1 (0.12) 1 (0.19) 3 (0.0) 4 (0.0)	
PALB2	1 (0.07) 1 (0.12) 0 (0) 4 (0.1) 4 (0.0)	
All (excluding duplicate)	26 (1.95) 19 (2.37) 7 (1.31) 219 (2.9) 99 (0.8)	

aMomozawa Y et al. 2019 (4). PCa = prostate cancer; PCSSNP = Prostate Cancer Susceptibility Single Nucleotide Polymorphism
Supplementary Figures

Patient cohort

registered: 1394 patients
 ↓
failed quality check or no DNA sample: 7 patients
 ↓
genotyped: 1387 samples
 ↓
no biopsy: 41 patients
 ↓
1346 patients
 ↓
duplicate registration: 10 patients
 ↓
complete clinical and genomic data: 1336 patients
(3 patients had missing genomic data in one of the 16 SNPs)

Supplementary Figure 1. Schema explaining the PCSSNP cohort. SNP = single nucleotide polymorphism; PCSSNP = Prostate Cancer Susceptibility Single Nucleotide Polymorphism.
Supplementary Figure 2. Diagnostic performance of PRS for predicting biopsy positivity in all patients (right) and in patients with PSA 2–10 ng/mL (left) evaluated by ROC analysis. AUC is presented along with 95% confidence intervals in parentheses. AUC = area under the curve; PSA = prostate specific antigen.
Supplementary Figure 3. Box plots showing distribution of PRS in non-clinically significant and clinically significant PCa (A), and non-high risk PCa and high risk PCa (C). The upper and lower error bars in the box plots in (A) and (C) represent 1.5 x 1st and 3rd quartile, respectively. The ROC curves for discriminating between non-clinically significant and clinically significant PCa (B), and non-high risk PCa and high risk PCa (D) by PRS are drawn in the right with AUC (95% confidence interval). PRS = polygenic risk score; AUC = area under the curve.
Supplementary Figure 4. Sensitivity analysis focusing on the result of initial biopsy. Diagnostic performance of logistic regression models incorporating clinical parameters and PRS. ROC analysis was performed for each combination of clinical parameters and PRS, and AUC (95% confidence interval) were calculated. Panels B–D can be directly compared to those in Figure 1. PSA = prostate specific antigen; PRS = polygenic risk score; DRE = digital rectal exam; AUC = area under the curve.
Supplementary Figure 5. Diagnostic performance of logistic regression models incorporating clinical parameters and PRS. ROC analysis was performed for each combination of clinical parameters and PRS, and AUC (95% confidence interval) were calculated. The panels can be directly compared to those in Figure 1. PSA = prostate specific antigen; PRS = polygenic risk score; DRE = digital rectal exam; AUC = area under the curve.
Supplementary Figure 6. Absolute risk for a given age for each PRS category based on the age-specific prostate cancer incidence and age-specific mortality rates of Japanese. Y axis shows the absolute risk, and X axis shows age in years. The different colored lines show PRS categories. PRS = polygenic risk score.