Antiphospholipid syndrome may induce non-thrombus internal jugular vein stenosis - Two cases report and literature review

Song Si-ying
Xuanwu Hospital

Rajah Gary
University at Buffalo School of Medicine and Biomedical Sciences

Ding Yu-chuan
Wayne State University school of medicine

Ji Xun-ming
Xuanwu Hospital

Ran Meng victor65@126.com
xuanwu hospital, capital medical university
Corresponding Author
ORCiD: 0000-0003-4505-4742

DOI: 10.21203/rs.2.17965/v1

SUBJECT AREAS Neurobiology of Disease

KEYWORDS Antiphospholipid syndrome, non-thrombus internal jugular vein stenosis, neuroimaging, case report
Abstract

Background: Antiphospholipid syndrome (APS) is associated with artery or venous thrombosis. However, non-thrombus venous stenosis is rarely reported.

Case presentation: This study described two young women with APS-related internal jugular vein stenosis (IJVS) and reviewed current literatures on this issue, including clinical features, diagnosis and treatment.

Conclusions: IJVS is a rather rare complication of APS. This is first report of non-thrombus venous stenosis resulted from aPL mediated vessel wall damage. High titer of aPL could induce stenosis without thrombosis formation due to long-term standardized anticoagulation. Follow-up of autoantibodies are necessary to be done dynamically. Treatment for patients with IJVS of autoimmune etiology should be concomitant use of anticoagulants and steroids.

Background

Antiphospholipid syndrome (APS) is characterized by venous or arterial thrombosis in young adults with persistent laboratory evidence of high titer of antiphospholipid antibodies (aPL)[1-3]. However, APS induced cerebral venous damage may present various entities, such as thrombosis and non-thrombus venous stenosis. Herein, we reported two cases of APS with non-thrombus internal jugular vein stenosis (IJVS) inducing intracranial hyper-pressure. We presumed that APS might trigger autoimmune inflammatory damage, leading to edema and thickening of the venous wall, and eventually resulting in non-thrombus IJVS. However, there was no thrombus formation in IJV during long term standardized anticoagulation of these two patients. To our knowledge, this is the first report about this issue up to now.
We believed this report can provide an important reference for physicians.

Case Presentation

Case 1

A 33-year-old woman complained of a history of five-year worsening blurry vision, intermittent headache on temporal regions and nocturnal bilateral tinnitus. She also reported progressive memory loss for six months on the day of presentation. There was no history of nausea and vomiting, no weakness or sensory symptoms in the face and limbs, no sphincter incontinence and loss of consciousness or seizures. Comorbid medical issues included a 5-year history of APS (confirmed primary APS at Beijing Union Hospital) and deep vein thrombosis (DVT) in the left leg. From then on, she underwent corticosteroid for one year combined with continuously standardized anticoagulation till this admission. She denied the family history of thrombotic diseases. On physical examination, her body temperature was 37.0°C, blood pressure was 128/78 mmHg, heart rate was 79 beats/minute and respiratory rate was 20 breath/minute. Her Body mass index (BMI) was 31.1. No focal neurological signs were found.

Both the platelet count (373*10^9/L) and plateletcrit (0.36%) were above the normal-cutoff levels in her baseline peripheral blood test. Protein C exceeded the normal upper limit (155%) a little. Other items related to coagulation showed no positive significance. All the results of serological tests including aPL, antinuclear antibodies (ANA), antineutrophil cytoplasmic antibodies (ANCA) and complements C3 and C4 were negative. The lumbar puncture opening pressure was 250 mmH_2O with a normal cerebrospinal fluid profile. Funduscopic examination revealed bilateral optic disc edema (Frisén score = 2).
Color Doppler ultrasound revealed venous valve insufficiency involving bilateral common femoral veins, right deep femoral vein and left superficial femoral vein. Transcranial Doppler (TCD) and Carotid ultrasound showed no abnormalities. However, jugular vein ultrasound revealed a small diameter in the upper segment (J3) of the right IJV with decreased flow volume (Table 1). Contrast-enhanced magnetic resonance venography (CE-MRV) of brain and neck identified the stenosis located at left transverse sigmoid sinus junction (Figure 1: a, b) and the upper segment (J3) of the left IJV (Figure 1: c, d). No thrombus was found in either cerebral venous sinus or IJV in the Black-blood thrombus image (BBTI) (Figure 2). Digital subtraction angiography (DSA) further confirmed severe non-thrombus stenosis in left IJV. All the aforementioned symptoms and signs attenuated after her undergoing 14 days of corticosteroid (25mg/day of oral prednisone) treatment. Her standardized anticoagulation (20 mg of oral rivaroxaban daily) was continued.

Case 2

A 32-year-old woman presented with two-week progressively aggravated pains in her head and neck accompanied by nausea and vomiting, and three-days of visual disorder (double vision) after she was recovered from pneumonitis. She once had similar symptoms two years ago. Her lumbar puncture opening pressure (LPOP) was 330 mmH$_2$O at that time measured in a local hospital, and she was diagnosed as idiopathic intracranial hypertension (ICH) and underwent mannitol and corticosteroid. Her intracranial pressure (ICP) was decreased to 150 mmH$_2$O at lumbar puncture follow-up before discharge. However, two weeks prior to this admission, her symptoms reappeared. Her LPOP was over 400 mmH$_2$O at local hospital. Mannitol could not attenuate her symptoms.
On this admission, she presented with severe headache in a spasmodic manner, especially on the left, accompanied by persistent nausea, sometimes, vomiting undigested food. She also described the impaired vision, such as objects being blurry and doubled horizontally. Ophthalmologic examination revealed papilledema (Frisén score = 4) with small local bleeding spots. Her vital signs were as follows: body temperature, 36.5°C; blood pressure, 115/68mmHg; heart rate, 78 beats/minute; and respiratory rate, 20 breath/minute. Her BMI was 20.1.

Neurological examination revealed partially left abduces palsy.

Peripheral blood and cerebral spinal fluid examination results were summarized in Supplementary Table 1. Dynamic changes of abnormal laboratory results were shown in Figure 3. Platelet count decreased dramatically to 39*10^9/L on the first day and was gradually back to normal level in one week. The activated partial thromboplastin time (APTT) was 80.3 seconds (normal range: 25–43.5 sec). Protein S was lower than the normal lower limit (35%). The level of serum IgG increased (16.7 g/L), while the levels of serum complements C3 and C4 were below normal ranges (C3: 0.79–1.52; C4: 0.16–0.38). Anti-β2-glycoprotein 1 (anti-β2GPI) antibody (50.0 RU/mL) was positive significance (normal range: 0.0–20.0 RU/mL). ANA and ANCA were negative. In terms of neuroimaging, we confirmed the left IJV stenosis and excluded both arterial and venous thrombosis via computed tomography venography (Figure 4) and BBTI (Figure 5: a, b). She underwent oral rivaroxaban 10mg/day after admission. A lumbar puncture followed up after the platelet count turned to normal showed that ICP was more than 330 mmH2O (three weeks after onset). Finally, local stenosis at J3-segment of left IJV was confirmed by DSA and corrected by stenting (Figure 5: c, d). The headache and visual disorder mitigated immediately after stenting, whereas, LPOP was still more than 330 mmH2O. She
then underwent rivaroxaban 10 mg/day combined with prednisone 30mg/day. The dose of prednisone was gradually reduced to 5mg/day afterward. About one month after admission (two months after onset), the patient presented with diarrhea for four days. She reported headaches and double vision were not as severe as before. Follow-up BBTI could not find thrombus (Figure 5: e, f). ICP detected by lumbar puncture was 210 mmH$_2$O. Immunological tests revealed constantly positive anti-β2GPI antibodies (47 RU/mL) and low titers of serum complements C3 and C4. As every onset of high ICP is associated with infection and high titers of immunological items, we presumed that the stenosis may result from autoimmune-mediated inflammation. In a repeated serological test, anti-β2GPI antibodies were still positive while ANA turned positive for the first time (1:320). A confirmatory diagnosis was made as primary APS. She then underwent immunomodulatory therapy with prednisone at 5mg/day and hydroxychloroquine at 5mg bid as well as rivaroxaban at 10 mg/day and aspirin 100mg/day to prevent thrombi formation. Six months of outpatient neuroimaging follow-up including CT, BBTI, CE-MRV, DWI, TCD, and carotid ultrasound) showed no abnormalities in both cerebral arteries and veins (Figure 5: g, h). No CVST and/ or IJV thrombus was found. Former symptoms of headache and diplopia were no longer reported. The APTT decreased to 48.5 seconds. Levels of serum complements C3 and C4 remained lower than the normal range. The clinical course was summarized in Figure 3.

Discussion

Our previous work demonstrated that the etiologies of IJVS included non-thrombus and non-osseous compressive entities, such as venous wall lesion[4]. It is well
known that venous thrombosis is the most common complication of APS[4]. To our
knowledge, this study reported non-thrombus IJVS as a complication of APS for the
first time. Whereby, this report is of great significance to understand the
relationship between IJVS and APS.

With regard to the pathogenesis of APS, resent studies indicated that most aPL was
directly targeted at phospholipid-binding proteins[2]. Although aPL is a
heterogeneous group of antibodies, anti-β2GPI antibodies play a central role in the
development of APS. They recognize β2GPI on the surface of endothelial cells and
immobilized platelets, then leading to cellular activation and expression of
procoagulant activity[5]. Furthermore, the effect of lupus anticoagulants (LA) is also
realized through β2GPI or anti-β2GPI antibodies[6, 7]. Anti-β2GPI antibodies are
associated with a higher risk of thrombosis than anticardiolipin (aCL) or anti-
prothrombin antibodies[6, 7]. Other mechanisms implicate that aPL is also related
to interfering with the function of coagulation factors[8–10] and complement-
mediated neutrophil activation[11, 12]. In sum, the interaction between aPL and
endothelial cells, coagulation cascade (primary and secondary), and inflammatory
cells could result in vessel wall lesions, contributing to thrombosis and/or stenosis.

The evaluation of thrombotic risk in patients with APS was usually based on the
level of plasma aPL[13], however, some patients with previously positive aPL profile
would turn negative, which then became a challenge for the physicians to evaluate
the thrombotic risk. Besides, Bazzan et al found that despite appropriate
anticoagulant treatment, the thrombotic recurrence rate in APS has been reported
as high as 7.5/100 patient-years in the first 5 years after the first thrombotic
event[14]. Nevertheless, sometimes there are exceptions, such as the case-2 in this
study, whose aPL levels were in a persistently moderate tilter (>40 RU/mL) but
without thrombotic event recurrence. Based on the clinical processes of the two cases, we speculated that this exception might be due to their long-term preventive anticoagulation. Although standardized anticoagulation successfully prevented thrombosis formation, the risk of non-thrombosis IJVS, which might result from irreversible immune damages of vascular endothelium caused by aPL, was still existed. Then, IJVS might lead to ICH.

Compared with case-1, case-2 did not receive corticosteroid for APS intervention before referred to our department. And her persistent moderate level of anti-β2GPI antibodies could cause more severe damage to the vessel wall, which might explain her symptoms recurrence and refractory high ICP.

A combination of anti-Xa inhibitor (rivaroxaban) and corticosteroid (prednisolone) was prescribed to the two patients. A previous study indicated that stenting was a promising therapeutic option for focal stenosis of IJV[4]. However, we did not perform stenting/balloon angioplasty in case 1, as her stenosis of IJV was moderate, and the risk of stenosis aggravation was lower under her stable low titer of aPL. There is still controversy on the choice of anticoagulation. The vitamin K antagonist (VKA), most commonly warfarin, is widely used for APS-mediated thrombus [2]. Whereas, VKA has many limitations in practical use, such as its interaction with food and drug, bleeding complications and need for frequent monitoring. Moreover, aPL may affect thromboplastin reagents, tending to affect the international normalized ratio measurement. Rivaroxaban is an effective and safe alternative to warfarin in patients with atrial fibrillation and venous thromboembolism. However, a prospective randomized trial evaluated the efficacy of rivaroxaban (20mg/day) in high-risk APS patients (with triple aPL-positive level), which showed that rivaroxaban was associated with an increased arterial thrombotic risk of events
compared with warfarin (www.clinicaltrials.gov; NCT02157272)[15]. A suboptimal drug concentration may account for the thromboembolic complications during this trial. Therefore, we prescribed rivaroxaban at its relatively low dose (20mg/day) to test the optimal dose for the patient with negative aPL. Although her symptoms improved, long-term outcome still need to be followed up. Moreover, several studies have shown the benefit of immunosuppressive drugs, especially steroids. Rodriguez et al discovered that the materno-fetal prognosis could be improved by the addition of low-dose prednisolone during the first trimester of pregnancy in women with APS [16]. Cervera et al summarized the clinical approach to treat catastrophic APS as a combination of anticoagulation plus steroids plus plasma exchange or intravenous immunoglobulins[17]. Sugie et al reported one case of CVST in APS was treated successfully by the combined use of rivaroxaban and prednisolone [18]. However, to avoid deterioration of IJVS and the occurrence of new-onset venous thrombosis due to steroid-induced hypercoagulability, we administered low-dose prednisone (equivalent to 0.35mg/kg and 0.55 mg/kg in case 1 and case 2, respectively).

To sum up, these two cases reminded us that firstly, except for thrombotic events, there was non-thrombus venous stenosis resulted from aPL mediated vessel wall damage. IVJS may be a rare complication of APS, with clinical features similar to high intracranial pressure syndrome. Secondly, high titer of aPL could induce vessel wall damage despite long-term standardized anticoagulation for thrombosis prevention. Thus, follow-up of autoantibodies should be done dynamically. Thirdly, concomitant use of anticoagulants and steroids is suggested as the mainstay therapy. Long-term preventive anticoagulation might only inhibit thrombotic event and corticosteroid might attenuate aPL-mediated venous wall damage. The last but not least, the BBTI was a very useful imaging tool on confirming intravenous
thrombus as well as non-thrombus stenosis induced by immune mediated inflammation. A combination of CE-MRV and BBTI may be the first option to identify non-thrombus IJVS precisely and non-invasively, although DSA is still as the golden standard to make a confirmatory diagnosis. We highly suggest future studies could shed more attention on early diagnose and treatment in patients with IJVS of autoimmune etiology.

Conclusion

IJVS is a rather rare complication of APS. This is first report of non-thrombus venous stenosis resulted from aPL mediated vessel wall damage. High titer of aPL could induce stenosis without thrombosis formation due to long-term standardized anticoagulation. Follow-up of autoantibodies are necessary to be done dynamically. Treatment for patients with IJVS of autoimmune etiology should be concomitant use of anticoagulants and steroids.

Declarations

Availability of Data and Materials

The data and materials related to these two cases are available on request to the corresponding author.

Acknowledgments

We would like to thank these two patients for allowing us to publish their medical experience for scientific use.

Authors’ contributions

MR: manuscript drafting and revision, and study concept and design. S-SY: manuscript drafting and revision, study concept and design, collection, assembly,
and interpretation of the data. MR, S-SY, D-YC, RG: manuscript writing and final approval of manuscript. RG and D-YC deeply edited the revised version and contributed critical revision.

Funding

This study was sponsored by the National Key R&D Program of China (2017YFC1308400), the National Natural Science Foundation (81371289), and the Project of Beijing Municipal Top Talent for Healthy Work of China (2014-2-015).

Ethics approval and content to participate

Not applicable

Consent for publication

Not applicable

Competing interests

All authors report no conflicts of interest.

Abbreviations

APS: Antiphospholipid syndrome; IJVS: internal jugular vein stenosis; aPL: antiphospholipid antibodies; BMI: Body mass index; ANA: antinuclear antibodies; ANCA: antineutrophil cytoplasmic antibodies; TCD: Transcranial Doppler; MRV: magnetic resonance venography; BBTI: Black-blood thrombus image; DSA: Digital subtraction angiography; ICP: intracranial pressure; APTT: activated partial thromboplastin time; LPOP: lumbar puncture opening pressure; aCL: anticardiolipin; VKA: vitamin K antagonist; anti-β2GPI: Anti-β2-glycoprotein–1; IIH: idiopathic intracranial hypertension; ICP: intracranial pressure

References
1. Lim, W., *Antiphospholipid syndrome*. Hematology Am Soc Hematol Educ Program, 2013. **2013**: p. 675-80.

2. Chaturvedi, S. and K.R. McCrae, *The antiphospholipid syndrome: still an enigma*. Hematology Am Soc Hematol Educ Program, 2015. **2015**: p. 53-60.

3. Ruiz-Irastorza, G., et al., *Antiphospholipid syndrome*. The Lancet, 2010. **376**(9751): p. 1498-1509.

4. Zhou, D., et al., *Intracranial hypertension induced by internal jugular vein stenosis can be resolved by stenting*. Eur J Neurol, 2018. **25**(2): p. 365-e13.

5. McNeil, H.P., C.N. Chesterman, and S.A. Krilis, *Immunology and clinical importance of antiphospholipid antibodies*. Adv Immunol, 1991. **49**: p. 193-280.

6. Galli, M., et al., *Clinical significance of different antiphospholipid antibodies in the WAPS (warfarin in the antiphospholipid syndrome) study*. Blood, 2007. **110**(4): p. 1178-83.

7. Devreese, K., K. Peerlinck, and M.F. Hoylaerts, *Thrombotic risk assessment in the antiphospholipid syndrome requires more than the quantification of lupus anticoagulants*. Blood, 2010. **115**(4): p. 870-8.

8. Rand, J.H., et al., *Detection of antibody-mediated reduction of annexin A5 anticoagulant activity in plasmas of patients with the antiphospholipid syndrome*. Blood, 2004. **104**(9): p. 2783-90.

9. Hulstein, J.J., et al., *beta2-Glycoprotein I inhibits von Willebrand factor dependent platelet adhesion and aggregation*. Blood, 2007. **110**(5): p. 1483-91.

10. Levine, J.S., D.W. Branch, and J. Rauch, *The antiphospholipid syndrome*. N Engl J Med, 2002. **346**(10): p. 752-63.

11. Giannakopoulos, B. and S.A. Krilis, *The pathogenesis of the antiphospholipid
12. Redecha, P., et al., *Neutrophil activation by the tissue factor/Factor VIIa/PAR2 axis mediates fetal death in a mouse model of antiphospholipid syndrome*. J Clin Invest, 2008. 118(10): p. 3453-61.

13. Medina, G., et al., *Antiphospholipid antibodies disappearance in primary antiphospholipid syndrome: Thrombosis recurrence*. Autoimmun Rev, 2017. 16(4): p. 352-354.

14. Bazzan, M., et al., *Patients with antiphospholipid syndrome and thrombotic recurrences: A real world observation (the Piedmont cohort study)*. Lupus, 2016. 25(5): p. 479-85.

15. Pengo, V., et al., *Rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome*. Blood, 2018. 132(13): p. 1365-1371.

16. Rodriguez Garcia, J.L. and M.A. Khamashta, *Clinical advances of interest in the diagnosis and treatment of patients with antiphospholipid syndrome*. Rev Clin Esp (Barc), 2013. 213(2): p. 108-13.

17. Cervera, R., et al., *Antiphospholipid syndrome: clinical and immunologic manifestations and patterns of disease expression in a cohort of 1,000 patients*. Arthritis Rheum, 2002. 46(4): p. 1019-27.

18. Sugie, M., et al., *Cerebral Venous Thromboembolism in Antiphospholipid Syndrome Successfully Treated with the Combined Use of an Anti-Xa Inhibitor and Corticosteroid*. Intern Med, 2015. 54(23): p. 3051-6.

Figures
Figure 1

Magnetic resonance venography images of the head (a, b) and neck (c, d) in Case
Figure 2

Non-contrast enhanced (a, c) and contrast enhanced (b, d) black-blood thrombus.
Figure 3

Dynamic changes of laboratory results and clinical process of the Case 2.
Figure 4

3D-computed tomography venography images (CTV) (a-c) and 3D-CTV (d-f) with bone remodeling of the head and neck in Case 2. 3D-CTV with bone remodeling excluded possibility of IJV-related location to bone compression.
Figure 5

Non-contrast enhanced (a, c, e, g, h) and contrast enhanced (b, d, f) black-blood thrombus images of ...

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

Supplementary tables.docx
CARE-checklist-English-2013.pdf