Evaluation of the performance of MALDI-TOF MS and DNA sequence analysis in the identification of mycobacteria species

IŞIN AKYAR
CENGİZ ÇAVUŞOĞLU
MELTEM AYAŞ
SÜHEYLA SÜRÜCÜOĞLU
ZEYNEP ARZU İLKİ

See next page for additional authors

Follow this and additional works at: https://journals.tubitak.gov.tr/medical

Part of the Medical Sciences Commons

Recommended Citation
AKYAR, IŞIN; ÇAVUŞOĞLU, CENGİZ; AYAŞ, MELTEM; SÜRÜCÜOĞLU, SÜHEYLA; İLKİ, ZEYNEP ARZU; KAYA, DENİZ ECE; and BEŞLİ, YEŞİM (2018) "Evaluation of the performance of MALDI-TOF MS and DNA sequence analysis in the identification of mycobacteria species," Turkish Journal of Medical Sciences: Vol. 48: No. 6, Article 37. https://doi.org/10.3906/sag-1801-198
Available at: https://journals.tubitak.gov.tr/medical/vol48/iss6/37

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Medical Sciences by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
Evaluation of the performance of MALDI-TOF MS and DNA sequence analysis in the identification of mycobacteria species

Authors
IŞIN AKYAR, CENGİZ ÇAVUŞOĞLU, MELTEM AYAŞ, SÜHEYLA SÜRÜCÜOĞLU, ZEYNEP ARZU İLKİ, DENİZ ECE KAYA, and YEŞİM BEŞLİ

This article is available in Turkish Journal of Medical Sciences: https://journals.tubitak.gov.tr/medical/vol48/iss6/37
Evaluation of the performance of MALDI-TOF MS and DNA sequence analysis in the identification of mycobacteria species

Işın AKY AR1,2,*, Cengiz ÇAVUŞOĞLU3, Meltem AYAŞ1, Süheyla SÜRUCÜOĞLU4, Arzu İLKİ2, Deniz Ece KAYA3, Yeşim BEŞLİ1

1Department of Medical Microbiology, School of Medicine, Acıbadem University, İstanbul, Turkey
2Acıbadem Labmed Medical Laboratories, İstanbul, Turkey
3Department of Medical Microbiology, School of Medicine, Ege University, İzmir, Turkey
4Department of Medical Microbiology, School of Medicine, Celal Bayar University, Manisa, Turkey
5Department of Medical Microbiology, School of Medicine, Marmara University, İstanbul, Turkey

* Correspondence: isinakyar@gmail.com

Background/aim: Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry is an alternative way of identifying mycobacteria via the analysis of biomolecules. It is being increasingly used in routine microbiology practice since it permits early, rapid, and cost-effective identification of pathogens of clinical importance. In this study, we aimed to evaluate the efficacy of phenotypic identification of mycobacteria by the MALDI-TOF MS MBT Mycobacteria Library (ML) 4.0 (Bruker, Daltonics) compared to standard sequence analysis.

Materials and methods: A total of 155 Mycobacterium clinical and external quality control isolates, comprising nontuberculous mycobacteria (NTM) (n = 95) and the Mycobacterium tuberculosis complex (MTC) (n = 60), were included in the study.

Results: Identification by MBT ML4.0 was correctly performed in 100% of MTC and in 91% of NTM isolates. All of the MTC isolates were correctly differentiated from NTM isolates.

Conclusion: Based on our results, MBT ML4.0 may be used reliably to identify both NTM and MTC.

Key words: MALDI-TOF MS, identification, Mycobacterium, Mycobacterium tuberculosis complex, nontuberculous mycobacteria

1. Introduction

Mycobacterium species constitute an important group of microorganisms that thrive in different natural environments. The taxonomy of Mycobacterium consists of more than 177 species, which have been evolving continuously in the recent past, and some species in the genus are human pathogens. The Mycobacterium tuberculosis complex (MTC) is responsible for tuberculosis infection, which is associated with high morbidity and mortality rates (1). The MTC includes species such as Mycobacterium tuberculosis, Mycobacterium africanum, and Mycobacterium bovis. Other less known species within the MTC are Mycobacterium caprae, Mycobacterium microti, Mycobacterium pinnipedi, Mycobacterium mungi, Mycobacterium suricattae, Mycobacterium oryxis, and Mycobacterium canetti (2). By contrast, nontuberculous mycobacteria (NTM) are a group of Mycobacterium species commonly found in the environment, although some NTM species are opportunistic pathogens that can cause critical infectious diseases (3). The mycobacterial species associated with NTM disease are Mycobacterium avium-intracellulare, Mycobacterium chelonae, Mycobacterium fortuitum, Mycobacterium kansasii, Mycobacterium xenopi, Mycobacterium marinum, Mycobacterium scrofulaceum, and Mycobacterium szulgai (1,3–6). Discriminating between MTC and NTM species is crucial for infection control and guidance of antimicrobial therapy and species-level identification of clinical NTMs is recommended by the American Thoracic Society (ATS) in order to anticipate the clinical features, permit epidemiological analysis, and guide both infection control strategies and therapeutic options (7,8).

Until recently, Mycobacterium species have been identified by traditional methods based on biochemical profiling, morphological characteristics, growth rates, and other phenotypic techniques (5,6). However,
identification based on these phenotypic traits is time-consuming, meaning that the final diagnosis may be delayed until after therapy has started, and may result in misidentification (6,9). Molecular methods involving PCR-based hybridization and sequencing are routinely used in advanced laboratories and have become the new gold standard for mycobacterial identification. Although these techniques offer a fast and specific way to identify major Mycobacterium species, they remain expensive and require high-level technical expertise (1). On the other hand, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is accepted as a simple, powerful, rapid, and cost-effective tool for the routine identification of microorganisms in clinical laboratories. Furthermore, multiple studies have corroborated the fact that MALDI-TOF MS can effectively identify mycobacteria. The limitations of current methods have led some authors to suggest that MALDI-TOF MS is an alternative that is well worth considering (1,9–11).

Recently, a new enhanced database for mycobacteria identification to use with the MALDI Biotyper, the Mycobacteria Library, has been introduced. The newly enhanced database for mycobacteria identification with the MALDI Biotyper, the Mycobacteria Library 4.0 (ML4.0), covers as many as 159 of the 169 mycobacteria species currently known (12). In this study, our aim was to evaluate the diagnostic performance of MALDI-TOF MS utilizing the MBT ML 4.0 Library and to compare the results with sequence analysis with respect to discriminating between MTC and NTM isolates, and allowing species-level identification of NTMs.

2. Materials and methods

2.1. Mycobacterium isolates

In this study, 155 mycobacteria strains consisting of 60 MTC and 95 NTM isolates were analyzed. The 155 mycobacteria isolates consisted of 74 clinical strains that had been isolated in four different centers (Acibadem Labmed Medical Laboratories, Ege University School of Medicine, Celal Bayar University School of Medicine, and Marmara University School of Medicine) between 2007 and 2017 and that could be successfully recovered from frozen stocks, 79 external quality control strains, ATCC 25177/H37Ra, and M. fortuitum ATCC 6842.

2.2. Growth conditions and identification

Archived mycobacteria strains were subcultured in solid medium (Lowenstein–Jensen). After 21 days of incubation at 37 °C, specific mycobacteria colonies were grown and processed. Gram staining was also performed to ensure lack of any microbial contamination.

Initially, the MPT64 immunochromatographic test (SD Bioline, Yongin, Korea), which has been reported to possess a sensitivity and specificity above 98% and 95%, respectively, was used to differentiate the M. tuberculosis complex from the NTM species (13). Afterwards, identification to species level was performed by using MALDI-TOF MS (Microflex LT, Bruker Daltonics, Germany) and by DNA sequencing of genes encoding 16S rRNA and the 65-kDa heat-shock protein (hsp65) using the AB3500 DNA sequencer (Applied Biosystems, Foster City, CA, USA).

2.3. MycoEX (mycobacteria extraction) protocol for MALDI-TOF MS

Fresh culture from Lowenstein medium with sufficient biomass was used to undertake the process. The grown colonies were transferred to a microcentrifuge tube with 300 µL of water (HPLC grade) in a class II type A2 biological safety cabinet (Heraeus, Germany) under biosafety level III. Then they were inactivated by boiling for 30 min at 100 °C in a thermoblock. Next, 900 µL of 100% ethanol was added to the microcentrifuge tube and mixed with the contents, then centrifuged at 13,500 rpm for 2 min. The supernatant was discarded and the pellet was left to dry for 5 min, with the tube open, to ensure complete removal of the ethanol. Silica beads (BioSpec Products Inc., Bartlesville, OK, USA) and 20–50 µL (according to the strength of the pellet) of pure acetonitrile were added to the microcentrifuge tube, which was vortexed thoroughly for 1 min. Then 70% formic acid (with the same volume of acetonitrile) was added to the microcentrifuge tube and centrifuged at 13,500 rpm for 2 min. One microliter of each supernatant was then placed in three of the 96 spots of the steel target plate and they were allowed to dry at room temperature. Finally, 1 µL of HCCA matrix solution (α-cyano-4-hydroxycinnamic acid) was added to each of the spots and left to dry before further analysis by MALDI-TOF MS (14). Each sample was analyzed in duplicate.

2.4. MALDI-TOF MS analysis

Spectra were acquired in linear positive ion mode at a laser frequency of 60 Hz across a mass/charge ratio (m/z) of 2000 to 20,000 Da using the Microflex LT MALDI-TOF MS (Bruker Daltonik GmbH, Bremen, Germany). The protein profile was obtained by the software FlexControl 3.4 (Bruker Daltonik GmbH) and analyzed by the application FlexAnalysis 3.4 (Bruker Daltonik GmbH). The MBT ML 4.0 Library, representing 159 species, was also used (12,15).

2.5. 16S rDNA and hsp65 sequencing

Double-stranded DNA sequences from the strains included in the study were determined using BigDye Terminator chemistry on an AB3500 DNA sequencer (Applied Biosystems) following the standard protocol of the supplier. The 1524-bp fragment of the 16S rRNA gene was sequenced by using
primers P1 (5'-AGAGTTTGATCCTGGCTCAG-3'; corresponding to positions 8–28) and P2 (5'-TGGCACAACAGGGCTGAG-3'; corresponding to positions 1046–1026) and primers P3 (5'-GGTGCTTCCCTTGCCTTG-3'; corresponding to positions 830–847) and P4 (5'-CAAGAGGTGACAGGCGCA-3'; corresponding to positions 1542–1522). The 441-bp fragment of the hsp65 gene was sequenced by using primers Tb11 (5'-ACCAACGATGGTGTCTCCAT-3') and Tb12 (5'-CTGGTGGAAACCGGCTACCCT-3'). Afterwards, the sequences thus obtained were compared with reference sequences in the GenBank database using the Finch TV and BLAST programs (16,17).

3. Results
Analysis of the results obtained here according to 16S rRNA and hsp65 sequence analysis reveals that MALDI-TOF MS in conjunction with the MBT ML4.0 library was successful in identifying 94% of the mycobacteria isolates and in differentiating 100% of MTC isolates from NTM isolates. MBT ML4.0 managed to identify 91% of NTM isolates to the species level and also to identify 82% of MAC isolates. All the results are shown in the Table.

4. Discussion
MALDI-TOF MS is in use by clinical laboratories for the identification of bacteria as it is successful, rapid, user-friendly, and cost-effective to implement. The profitable outcomes obtained with this technique have attracted researchers' interest in utilizing this technology to identify mycobacterial species (18). In this study, we compared the usefulness of the newly enhanced database for mycobacteria identification with MBT ML4.0. Our results show that MBT ML4.0 was successful in identifying all of the MTC isolates as such by 16S rRNA and hsp65 sequence analysis. With regard to the NTM isolates, MBT ML4.0 achieved the identification of 91% of the isolates identified as such by 16S rRNA and hsp65 sequence analysis. Identification by MBT ML 4.0 was performed accurately for 100% of MTC isolates. However, while all of the MTC isolates were correctly differentiated from the NTM isolates and positively identified as M. tuberculosis complex, subspecies of the isolates could not be defined by this method. The MTC encompasses 10 different species, but MBT ML4.0 contains only five of them (M. tuberculosis, M. africanum, M. bovis, M. caprae, M. microti) (12). The mass spectra of MTC member species have similarity. This similarity prevents successful discrimination between subspecies of MTC.

The identification results of 5% of the NTM isolates by MBT ML4.0 were not in accord with 16S rRNA and hsp65 sequence analysis. This result was due to the close relatedness of these isolates, such as Mycobacterium avium-intracellulare, the Mycobacterium chelonae-Mycobacterium abscessus complex, Mycobacterium gordonae, Mycobacterium paragordonae, Mycobacterium peregrinum, and Mycobacterium genavense. The complexity of the differentiation between phylogenetically close species, which, in any case, remains unresolved by standard methods, explains the difficulty in identifying these species (19–36). The M. avium-intracellulare complex (MAC) consists of M. avium, M. intracellulare, M. arosiens, M. bouchedurhonense, M. chimaera, M. colombiense, M. marcellense, M. timonense, M. vulneris, and M. yongonense. M. avium, M. intracellulare, and M. chimaera are apart from the others in being the most significant human pathogens. For demonstrating sources, revealing pathogenicity traits, and observing differences in treatment outcome between MAC species, identification to the species level has particular importance. Nonetheless, it is hard to differentiate between the many species and subspecies in most laboratories (19–23). In the present study, MBT ML4.0 was apparently successful in identifying M. avium species, while it failed to identify M. intracellulare chimaera, which is one of the subspecies of the MAC. The M. chelonae-M. abscessus complex is currently accepted as including six species: M. chelonae; M. abscessus with three subspecies, M. abscessus subsp. abscessus, M. abscessus subsp. massiliense, and M. abscessus subsp. bolletii; M. immunogenum; M. salmoniphilum; M. franklinii; and M. saapaulense (24–33). MBT ML4.0 includes M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. chelonae (15). MBT ML4.0 accurately identified all of the M. chelonae isolates and 91% of M. abscessus isolates. Not only MBT ML4.0 but also the older versions are capable of identifying correctly both M. chelonae and M. abscessus species (37,38). Mycobacterium gordonae, which is usually considered a laboratory contaminant and only rarely is a proven human pathogen, was also included in this study (39). MBT ML4.0 yielded identification of 17 of 18 M. gordonae isolates and failed to identify at subspecies level only one of the 18 M. gordonae isolates. Nevertheless, this isolate was defined as Mycobacterium sp. nontuberculous (confidence score ≥ 2.0). M. gordonae used to be difficult to identify confidently using the older databases, but the procedure has been greatly improved by using updated libraries, such as Mycobacteria Library v3.0 and ML4.0, the results from which are outlined in this study (37–40). Mycobacterium paragordonae was identified by Kim et al. in 2014 as a novel species, phenotypically and genetically clearly related to M. gordonae, but with some dissimilarity in terms of certain phenotypic characteristics (34). Accordingly, only ML4.0, the latest database, includes the reference spectra of M. paragordonae, which then allowed us to identify 4 out of 5 M. paragordonae isolates (12). As for
Table.
Comparison of identification results of MBT Mycobacteria Library ver 4.0 with mycobacterial DNA sequencing.

bsp65/16S rDNA Sequencing	Total of isolates (n)	MBT Mycobacteria Library ver 4.0									
	Score ≥2	Score 1.9–1.7	Score <1.7 (no identification)								
	n	%	n	%	n	%	n	%	n	%	
M. tuberculosis complex	60	56	93	4	7	0	0	0	0	60	100
M. gordonae	18	14	77	3	17	0	0	0	0	6	17
M. avium intracellular complex (MAC)	11	8	73	1	9	2	18	0	0	9	82
M. avium	4	3	75	1	25	0	0	0	0	4	100
M. intracellular chimaera	2	1	50	0	0	1	0	0	1	50	94
M. chimaera	2	2	100	0	0	0	0	0	2	100	
M. avium intracellular	1	1	100	0	0	0	0	0	1	100	
M. avium intracellular/M. panintracellular (100%)	1	1	100	0	0	0	0	0	1	100	
M. intracellular (100%), M. indicus pranii (100%), Mycobacterium sp. MOTT36Y (100%), M. chimaera (99%)	1	0	0	0	0	1	0	0	0	0	
M. yongonense/M. panintracellular (100%)	1	0	0	0	0	1	0	0	0	0	
M. tuberculosis complex	11	8	73	2	18	1	9	0	0	10	91
M. kansasi	8	8	100	0	0	0	0	0	0	8	100
M. chelonae	7	4	57	3	43	0	0	0	0	7	100
M. fortuitum	6	4	66	1	17	0	0	0	0	17	5
M. simiae	6	4	67	2	33	0	0	0	0	6	100
M. panguoni	5	3	60	1	20	1	20	0	0	4	80
M. lentiflavum	4	3	75	1	25	0	0	0	0	4	100
M. peregrinum	4	2	50	0	0	0	0	0	0	2	50
M. szulzi	3	3	100	0	0	0	0	0	0	3	100
M. marinum	2	2	100	0	0	0	0	0	0	2	100
M. mucogenicum phocaicum group	2	2	100	0	0	0	0	0	0	2	100
M. canariasense	1	1	100	0	0	0	0	0	0	1	100
M. cerefiavum	1	1	100	0	0	0	0	0	0	1	100
M. nonchromogenicum	1	0	0	1	100	0	0	0	0	1	100
M. porcinum	1	1	100	0	0	0	0	0	0	1	100
M. scrofulaceum	1	1	100	0	0	0	0	0	0	1	100
M. shimoidei	1	1	100	0	0	0	0	0	0	1	100
M. senegalenese	1	1	100	0	0	0	0	0	0	1	100
M. genavense	1	0	0	0	0	0	0	0	1	100	
Total	155	127	82	19	12	4	3	5	3	146	94

n: Number. a: One isolate identified as Mycobacterium sp. nontuberculous (score: 2.2). b: One isolate identified as M. chimaera-intracellular group (score: 2.17). c: One isolate identified as M. chimaera-intracellular group (score: 2.18). d: One isolate identified as M. septicum (score: 2.04). e: One isolate identified as M. septicum (score: 2.32) and other one identified as M. porcinum (score: 2.31). f: One isolate identified as M. lentiflavum (score: 2.13).
the other species, such as *M. canariasense*, *M. cerefilavum*, *M. nonchromogenicum*, *M. porcinum*, *M. scrofulaceum*, *M. shimoidei*, *M. senegalense*, and *M. genavense*, it is hard to conclude that MALDI-TOF MS was effective in identifying these isolates due to the limited number of isolates in the present study.

In the identification of microorganisms by MALDI-TOF MS, the cutoff score is another substantial issue in interpreting the results. Identification results scoring at least 2.0 are recommended to allow identification at the species level in bacteriology, while results with lower scores are reported to be in accordance with the gold standard methods for identifying mycobacteria (41, 42). It is worth noting that higher confidence scores did not, however, correlate with a higher rate of correct identification, and mycobacteria isolates for which lower confidence scores (1.7–2.0) were obtained had a similar concordance rate with nucleic acid sequencing results to those with higher scores (>2.0). Actually, the exact concordance rate depends on the reference library used (43). In this study, by using MBT ML4.0, concordant identification with nucleic acid sequencing for MTC isolates was 93% with scores of ≥2.0 and 100% with scores of ≥1.7. Ultimately, MBT ML4.0 covering 159 of the currently known 169 *Mycobacterium* species provided us with high sensitivity in mycobacteria identification (12).

In conclusion, our results proved that MALDI-TOF MS, which has already been used in routine laboratory practice as a rapid and cost-effective tool in the long term, represents a reliable identification technique and is the method of choice for the identification of clinically important *Mycobacterium* species for a routine laboratory. The MALDI-TOF MS Biotype library, MBT ML4.0, which was under evaluation, was 100% successful in identifying MTC species with regard to DNA sequencing. Rapid and accurate diagnosis of mycobacterial infections is essential for commencing early treatment and the prevention of disease spread from person to person. The results of this study show that MBT ML4.0 can be used reliably to identify both MTC and NTM.

References

1. Leyer C, Gregorowicz G, Mougari F, Raskine L, Cambau E, De Briel D. Comparison of Saramis 4.12 and IVD 3.0 Vitek MS matrix-assisted laser desorption ionization–time of flight mass spectrometry for identification of Mycobacteria from solid and liquid culture media. J Clin Microbiol 2017; 55: 2045-2054.

2. Esteban J, Muñoz-Egea MC. Mycobacterium bovis and other uncommon members of the Mycobacterium tuberculosis complex. Microbiol Spectr. 2016; 4: TM17-0021-2016.

3. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM, Horsburgh R, Huiitt G, Iademarco MF et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007; 175: 367-416.

4. Troesch A, Nguyen H, Miyada CG, Desvarenne S, Gingeras TR, Kaplan PM, Bros P, Mabilat C. Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays. J Clin Microbiol 1999; 37: 49-55.

5. Balážová T, Makovcová J, Šedo O, Slaný M, Faldyna M, Zdráhal Z. The influence of culture conditions on the identification of Mycobacterium species by MALDI-TOF MS profiling. FEMS Microbiol Lett 2014; 353: 77-84.

6. Springer B, Stockman L, Teschner K, Roberts GD, Böttger EC. Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods. J Clin Microbiol. 1996; 34: 296-303.

7. Khosravi AD, Hashemzadeh M, Hashemi Shahraei A, Teimoori A. Differential identification of mycobacterial species using high-resolution melting analysis. Front Microbiol 2017; 8: 2045.

8. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM, Horsburgh R, Huiitt G, Iademarco MF et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007; 175: 367-416.

9. El Khéchine A, Couderc C, Flaudrops C, Raoult D, Drancourt M. Matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry identification of mycobacteria in routine clinical practice. PLoS One 2011; 6: e24720.

10. Clark AE, Kaleta EJ, Arora A, Wolk DM. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 2013; 26: 547-603.

11. Tran A, Alby K, Kerr A, Jones M, Gilligan PH. Cost savings realized by implementation of routine microbiological identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2015; 53: 2473-2479.

12. Bruker Daltonics. Mycobacteria Library V4.0 (Bead Method) Release Notes: 1-10. Bremen, Germany: Bruker Daltonik GmbH; 2016.

13. Yin X, Zheng L, Lin L, Hu Y, Zheng F, Hu Y, Wang Q. Commercial MPT64-based tests for rapid identification of Mycobacterium tuberculosis complex: a meta-analysis. J Infect 2013; 6: 369-377.

14. Bruker Daltonics. Standard Operating Procedure Mycobacteria Extraction (Mycoex) Method Revision 3. Bremen, Germany: Bruker Daltonik GmbH; 2014.
15. Bruker Daltonics. MBT Library BDAL 6903 Species List: 1-25. Bremen, Germany: Bruker Daltonik GmbH; 2017.

16. Telenti A, Marchesi F, Balz M, Bally F, Botterg EC, Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol 1993; 31: 175-178.

17. Edwards U, Rogall T, Blocker H, Emde M, Botterg EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989; 17: 7843-7853.

18. Kodana M, Tarumoto N, Kawamura T, Saito T, Ohno H, Maesaki S, Ikebuchi K. Utility of the MALDI-TOF MS method to identify nontuberculous mycobacteria. J Infect Chemother 2016; 22: 32-35.

19. Davies L, Stiff R, Davies E, Shankar AG, Jenkins S, Mason BW. A patient notification exercise for Mycobacterium chimaera infection associated with cardiac bypass surgery: the Welsh perspective. Public Health 2017; 153: 61-63.

20. Wallace RJ Jr, Iakhiaeva E, Williams MD, Brown-Elliott BA, Vasireddy S, Vasireddy R, Lande L, Peterson DD, Sawicki J, Kwait R et al. Absence of Mycobacterium intracellulare and presence of Mycobacterium chimaera in household water and biofilm samples of patients in the United States with Mycobacterium avium complex respiratory disease. J Clin Microbiol 2013; 51: 1747-1752.

21. Koh WJ, Kwon OJ, Lee KS. Nontuberculous mycobacterial pulmonary diseases in immunocompetent patients. Korean J Radiol 2002; 3: 145-57.

22. Boyle DP, Zembower TR, Reddy S, Qi C. Comparison of clinical features, virulence, and relapse among Mycobacterium avium complex species. Am J Respir Crit Care Med 2015; 191: 1310-1317.

23. Boyle DP, Zembower TR, Qi C. Relapse versus reinfection of Mycobacterium avium complex pulmonary disease patient characteristics and macrolide susceptibility. Ann Am Thorac Soc 2016; 13: 1956-1961.

24. Kasunoki S, Ezaki T. Proposal of Mycobacterium peregrinum sp. nov., nov. rev. and elevation of Mycobacterium chelonae-Mycobacterium abscessus subsp. abscessus (Kubica et al.) to species status: Mycobacterium abscessus comb. nov. Int J Syst Bacteriol 1992; 42: 240-245.

25. Leao SC, Tortoli E, Viana-Nier C, Ueki SY, Lima KV, Lopes ML, Yubero J, Menendez MC, Garcia MJ. Characterization of mycobacteria from a major Brazilian outbreak suggests that revision of the taxonomic status of members of the Mycobacterium chelonae-M. abscessus group is needed. J Clin Microbiol 2009; 47: 2691-2698.

26. Leao SC, Tortoli E, Euzéby JP, Garcia MJ. Proposal that Mycobacterium massiliense and Mycobacterium bolletii be united and reclassified as Mycobacterium abscessus subsp. bolletii comb. nov., designation of Mycobacterium abscessus subsp. abscessus subsp. nov. and emended description of Mycobacterium abscessus. Int J Syst Evol Microbiol 2011; 61: 2311-2313.

27. Tortoli E, Kohl TA, Brown-Elliott BA, Trovato A, Leão SC, Garcia MJ, Vasireddy S, Turene CY, Griffith DE, Philley JV et al. Emended description of Mycobacterium abscessus, Mycobacterium abscessus subsp. abscessus and Mycobacterium abscessus subsp. boltelii and designation of Mycobacterium abscessus subsp. massiliense comb. nov. Int J Syst Evol Microbiol 2016; 66: 4471-4479.

28. Wilson RW, Steingrube VA, Böttger EC, Springer B, Brown-Elliott BA, Vincent J, Jost KC Jr, Zhang Y, Garcia MJ, Chiu SH et al. Mycobacterium immunogenum sp. nov., a novel species related to Mycobacterium abscessus and associated with clinical disease, pseudo-outbreaks and contaminated metalworking fluids: an international cooperative study on mycobacterial taxonomy. Int J Syst Evol Microbiol 2001; 51: 1751-1764.

29. Ross AJ. Mycobacterium salmoniphilum sp. nov. from salmonid fishes. Am Rev Respir Dis 1960; 81: 241-250.

30. Whippis CM, Butler WR, Pourahmad F, Watral VG, Kent ML. Molecular systematics support the revival of Mycobacterium salmoniphilum (ex Ross 1960) sp. nov., nov. rev., a species closely related to Mycobacterium chelonae. Int J Syst Evol Microbiol 2007; 57: 2525-2531.

31. Simmons KE, Brown-Elliott BA, Ridge PG, Kurtschi JD, Mann LB, Slehta ES, Steigerwalt AG, Moser BD, Whitney AM, Brown JM et al. Mycobacterium chelonae-abscessus complex associated with sinopulmonary disease, Northeastern USA. Emerg Infect Dis 2011; 17: 1692-1700.

32. Nogueira CL, Whippis CM, Matsumoto CK, Chimara E, Droz S, Tortoli E, de Freitas D, Cnockaert M, Palomino JC, Martin A et al. Mycobacterium saapaulense sp. nov., a rapidly growing mycobacterium closely related to members of the Mycobacterium chelonae-Mycobacterium abscessus group. Int J Syst Evol Microbiol 2015; 65: 4403-4409.

33. Nogueira CL, de Almeida LGP, Menendez MC, Garcia MJ, Digiampietri LA, Chimara E, Cnockaert M, Palomino JC, Portela F, Martin A et al. Characterization of Mycobacterium chelonae-like strains by comparative genomics. Front Microbiol 2017; 8: 789.

34. Kim BJ, Hong SH, Kook YH, Kim BJ. Mycobacterium paragordoniae sp. nov., a slowly growing, scotochromogenic species closely related to Mycobacterium gordoniae. Int J Syst Evol Microbiol 2014; 64: 39-45.

35. Niobe SN, Bebear CM, Clerc M, Pellegrin JL, Bebear C, Maugein J. Disseminated Mycobacterium lentiflavum infection in a human immunodeficiency virus-infected patient. J Clin Microbiol 2001; 39: 2030-2032.

36. Hamid ME. Current perspectives on Mycobacterium farcinogenes and Mycobacterium senegalense, the causal agents of bovine farcy. Vet Med Int 2014; 2014: 247906.

37. Mediavilla-Gradolph MC, De Toro-Peinao I, Bermúdez-Ruiz MP, Garcia-Martínez Mde L, Ortega-Torres M, Montiel Quezel-Guerraz N, Palop-Borrás B. Use of MALDI-TOF MS for identification of nontuberculous Mycobacterium species isolated from clinical specimens. Biomed Res Int 2015; 2015: 854078.
38. Rodríguez-Sánchez B, Ruiz-Serrano MJ, Ruiz A, Timke M, Kostrzewa M, Bouza E. Evaluation of MALDI Biotyper Mycobacteria Library v3.0 for identification of nontuberculous mycobacteria. J Clin Microbiol 2016; 54: 1144-1147.

39. Simner PJ, Woods GL, Wengenack NL. Mycobacteria. Microbiol Spectr 2016; 4: DMIH2-0016-2015.

40. Neuschlova M, Vladarova M, Kompanikova J, Sadlonova V, Novakova E. Identification of Mycobacterium species by MALDI-TOF mass spectrometry. Adv Exp Med Biol 2017; 1021: 37-42.

41. Balada-Llasat JM, Kamboj K, Pancholi P. Identification of mycobacteria from solid and liquid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry in the clinical laboratory. J Clin Microbiol 2013; 51: 2875-2879.

42. van Eck K, Faro D, Wattenberg M, de Jong A, Kuipers S, van Ingen J. Matrix assisted laser desorption ionization-time of flight mass spectrometry fails to identify nontuberculous mycobacteria from primary cultures of respiratory samples. J Clin Microbiol 2016; 54: 1915.

43. Buchan BW, Riebe KM, Timke M, Kostrzewa M, Ledeboer NA. Comparison of MALDI-TOF MS with HPLC and nucleic acid sequencing for the identification of Mycobacterium species in cultures using solid medium and broth. Am J Clin Pathol 2014; 141: 25-34.