Fractional power-law behavior and its origin in iron-chalcogenide and ruthenate superconductors: Insights from first-principles calculations

Z. P. Yin, K. Haule, and G. Kotliar
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854.
(Dated: May 1, 2014)

We perform realistic first-principles calculations of iron chalcogenides and ruthenate based materials to identify experimental signatures of Hund’s coupling induced correlations in these systems. We find that FeTe and K$_2$Fe$_2-x$Se$_2$ display unusual orbital dependent fractional powerlaw behavior in their quasiparticle self energy and optical conductivity, a phenomena first identified in SrRuO$_3$. Strong incoherence in the paramagnetic state of these materials results in electronic states hidden to angle-resolved photoemission spectroscopy which reemerge at low temperatures. We identify the effective low energy Hamiltonian describing these systems and show that these anomalies are not controlled by the proximity to a quantum critical point but result from coexistence of fast quantum mechanical orbital fluctuations and slow spin fluctuations.

INTRODUCTION

The study of the Hund’s coupling effects in solids has a long history. Van der Marel and Sawatsky [1] pointed out that unlike the Hubbard $U$ which is strongly screened, the atomic Hund’s $J_H$, persists essentially unrenormalized in the solids and increases the splittings between the lower and the upper Hubbard bands for a half filled shell, while decreases it away from half filling. The Hund’s term was also shown to have important consequences on the low energy physics of quasiparticles, when a transition metal impurity is screened in metallic host. The Hund’s coupling was shown to dramatically reduce the value of the Kondo temperature [2, 3]. Recent interest in this problem arose from dynamical mean field theory [4] (DMFT) investigations of the recently discovered iron pnictide superconductors. It was proposed that in these materials strong correlations arise from the Hund’s rule coupling $J_H$ [5] rather than from the Hubbard $U$, resulting in large mass enhancements. These calculations [5] showed that for a reasonable value of the Hubbard $U$, the mass enhancement due to interactions is very small when $J_H=0$, whereas it is exponentially enhanced by the Hund’s rule coupling. Optical spectroscopy studies have shown that in both iron pnictides and chalcogenides the optical masses are many times larger than the band masses [6–9]. The trend in mass enhancements is well accounted for by DMFT combined with density functional theory (DFT+DMFT) calculations [10]. Since the strength of correlations in these solids is almost entirely due to the Hund’s coupling, these materials are dubbed Hund’s metals [10]. The role of Hund’s coupling in iron pnictides and chalcogenides has been addressed from different perspectives in the literature. [10–26] Powerlaw behavior in quasiparticle self energy of model Hamiltonians with Hund’s coupling was discovered in Ref. [27] and related to observations in ruthenates [28, 29]. Many anomalous properties of ruthenates [30] and other 4d compounds were shown to be governed by Hund’s physics. [31]

While at low energies and low temperatures Hund’s metals are describable by Fermi liquid theory, the physical properties in their incoherent regime are anomalous and surprising. In the iron pnictides and chalcogenides there is a strong tendency towards orbital differentiation [10], and the large mass enhancement can occur even though no clear Hubbard band exist in the one particle spectra of these Hund’s metals [32].

In this article, we use first principles methods and model Hamiltonians to search for experimental signatures of Hund’s physics in iron chalcogenides and ruthenates which are the subject of current intensive experimental studies. We show how the incoherence in iron chalcogenides above the Néel temperature can blur portions of the Fermi surface rendering them dark to photoemission spectroscopy. We show that fractional powerlaw behavior in optical conductivity that received significant attention in the ruthenates also takes place in the FeTe system, deepening the analogies between these systems. We compare the powerlaw exponents in optical conductivity extracted from first principles DFT+DMFT calculations with experiments in a broad class of materials, and elucidate the control parameters that govern this behavior. The fractional powerlaw behavior is characteristic of an intermediate regime where the orbital degrees of freedom are quenched but the spin degrees of freedom are not. This physics is most pronounced at the special valence of one unit of charge away from the half-filling.

RESULTS

DFT+DMFT results

We first show results of our realistic DFT+DMFT calculation [33, 34] for three compounds currently under extensive investigations: ruthenates Sr$_2$RuO$_4$, and iron chalcogenides FeTe and K$_2$Fe$_2-x$Se$_2$. In all the DFT+DMFT calculations, we use the same Coulomb repulsion $U=5.0$ eV and Hund’s $J_H=0.80$ eV, as determined from ab initio in Ref. [32] and used in our previous work [10, 12]. Notice that we include all the electronic states in a large energy window (−10 eV to 10 eV) as opposed to 3- or 5-band model calculations, thus the Hubbard $U$ appropriate for our calculations is much less screened compared to those studies. The electronic charge is computed self-consistently...
fractional powerlaws are however very uncommon.

From the quantum chemistry perspective, both iron chalcogenides and ruthenates share a common theme: they contain correlated electrons with the \( d \) valence of one unit charge away from half-filling. In iron pnictides/chalcogenides, the Fe-ion is surrounded by a tetrahedron of pnictogen/chalcogen, and the resulting crystal field splittings are very small compared to Fe-pnictogen hybridization [2] hence all 5 Fe 3d orbitals are active. Their average occupancy is close to \( d^9 \), one unit of charge away from the half-filled \( d^8 \). For the ruthenates, the coordination of the Ru is octahedral, and the oxygen ligands induce a large \( t_{2g} \) splitting, with only the \( t_{2g} \) orbitals active, containing approximately 4 electrons in three \( t_{2g} \) orbitals, one electron more than the half filled shell.

The values of the apparent powerlaw exponents differ from material to material and deviate even for different orbitals of the same material, which is connected to the orbital occupancy. As shown in Fig. 1(a), the \( xx/yz \) orbitals of SrRuO\(_4\) show an exponent of 0.5, while the more correlated \( xy \) orbital, which is closer to half-filling, show a smaller exponent of 0.42. In iron pnictides and chalcogenides, the average occupancy per orbital is even closer to half-filling (only 1/3 away, as opposed to 1/3 in ruthenates). As we will show below by a model study, one expects stronger electronic correlations in this case and a smaller powerlaw exponent. Indeed, the \( xx/yz \) orbitals in FeTe show exponent of \( \sim 0.36 \) whereas for the more strongly correlated \( xy \) orbital, the exponent is only \( \approx 0.24 \). Iron vacancies in the K\(_x\)Fe\(_{2-y}\)Se\(_2\) makes the compound even more correlated than FeTe, and the powerlaw exponent is further reduced to 0.27 for the \( zz/yz \) orbital, and only 0.07 for the \( xy \) orbital.

The powerlaw behavior of the self-energy manifests itself in optical conductivity studies. In a simplified treatment, the optical conductivity can be approximated by

\[
\sigma(\omega) \sim \text{Re}(1/\omega + \Sigma(\omega) + \sum_{\text{other}}(\omega - \sum_{\text{other}}(\omega = 0)))
\]

In Fig. 1(b), we present experimental data on FeTe\(_{0.91}\) and FeTe\(_{0.79}\)Se\(_{0.3}\), ref. [12] for Fe\(_{1.06}\)Fe\(_{0.88}\)Se\(_{0.14}\), ref. [28] for Sr\(_3\)Ru\(_4\)O\(_4\), and ref. [29] for SrRuO\(_3\).

\[\sigma \sim \omega^{-\alpha}\]

on DFT+DMFT electronic density. The quantum impurity problem is solved by the continuous time quantum Monte Carlo (CTQMC) method [35, 36], using Slater form of the Coulomb repulsion in its fully rotational invariant form. We use the experimentally determined lattice structures, including the internal positions of the atoms for Sr\(_2\)RuO\(_4\) [37], FeTe [38], K\(_x\)Fe\(_{2-y}\)Se\(_2\) [39], and FeSe [40].

We show in Fig. 1(a) the imaginary part of the self-energy of the \( t_{2g} \) orbitals in Sr\(_2\)RuO\(_4\), FeTe and K\(_x\)Fe\(_{2-y}\)Se\(_2\) on the imaginary axis, plotted in \( \log \omega \) scale. In the intermediate energy range from a low energy cutoff \( \sim 0.1 \) eV, below which the materials gain coherence, to roughly Hund’s \( J_H \sim 0.8 \) eV, the imaginary part of the self-energy clearly shows a fractional powerlaw behavior, i.e., \( \Im \Sigma(\omega) \sim -\omega^{-\alpha} \). For the normal Fermi liquid, this exponent is unity, and at finite temperature correlated materials have additional constant scattering rate. The

\[\sigma \sim \omega^{-\alpha}\]

FIG. 1: (color online) Fractional powerlaw in (a) theoretical self-energy and (b) experimental optical conductivity in iron chalcogenides and ruthenates. Experimental data are taken from ref. [42] for FeTe\(_{0.91}\) and FeTe\(_{0.79}\)Se\(_{0.3}\), ref. [13] for Fe\(_{1.06}\)Fe\(_{0.88}\)Se\(_{0.14}\), ref. [28] for Sr\(_3\)Ru\(_4\)O\(_4\), and ref. [29] for SrRuO\(_3\).
shell, the \( xy \) orbital has the lowest coherence temperature. In Fig. 2 we show the gradual evolution of the Fe \( t_{2g} \) orbitals from very incoherent state at high temperature to partially coherent state at lower temperature in paramagnetic (PM) state of FeTe. We display the momentum/orbital resolved density of electronic states at temperatures of 387 K, 232 K, 116 K and 58 K. For comparison, we also show momentum resolved density of state of PM FeSe at 116 K, where all electronic states are quite coherent. The buildup of coherence in orbitally resolved spectra of FeTe is seen as a gradual buildup of the quasiparticle peak from a broad hump at elevated temperature to sharper peak at lower temperature in Figs. 2(e-f). In momentum space, the coherence is achieved more unevenly. While some bands can be identified at 116K, and become pretty sharp at 58K, other bands are barely noticeable even at 58K. In particular, the band of primarily \( xy \) character circled by blue ellipse, has enormous scattering rate at 58K and should be hard to be detected by ARPES. The missing Fermi surface is drawn in Fig. 2k as large red pocket centered at \( \Gamma \) point, which is very incoherent above \( T_N \), hence missing in the photoemission of the paramagnetic FeTe, in strong contrast to paramagnetic FeSe (Fig. 2i, see also Ref. [77]). Our calculation shows that K-intercalated FeSe (\( K_2Fe_{2−x}Se_2 \)) is even more correlated than FeTe, has smaller powerlaw exponents, and lower coherence temperature than FeTe. This is in agreement with recent angle-resolved photoemission spectroscopy (ARPES) experiments on \( A_xFe_{2−x}Se_2 \) compounds (\( A=K, Rb, Cs \)) where orbital dependent incoherence-coherence crossover was observed by Yi, Shen and collaborators [49].

**Low energy Hamiltonian**

To gain some understanding of the Hund’s physics in these systems, we derive below a low energy Hamiltonian of the three band Hubbard model, the simplest model which shows powerlaw behavior of the self-energy. The starting Hubbard Hamiltonian is \( H = H_0 + H_I \), with the hopping term \( H_0 = \sum_{\alpha ab \sigma \sigma'} f^\dagger_{a \sigma} f_{b \sigma'} \) and Coulomb term \( H_I = \frac{1}{2} \sum_{\alpha \beta \sigma \sigma'} U[a, b, c, d] (f^\dagger_{a \sigma} f_{b \sigma'} f^\dagger_{c \sigma'} f_{d \sigma}) \). Here \( a, b, c, d \) are orbital (site) indices, and \( \sigma \) stands for the spin. The hopping term is taken to be locally SU(6) symmetric (no crystal fields), while the Coulomb interaction is set to \( U[a, b, c, d] = U \delta_{ab} \delta_{cd} + J \delta_{ad} \delta_{bc} \), which reduces the symmetry to SU(3)×SU(2). Within DMFT, this model maps to a SU(3)×SU(2) impurity Hamiltonian. To understand why the Hund’s rule coupling has such a dramatic effect on the physical properties, we first perform Schrieffer-Wolff transformation (for derivation see appendix) to obtain Kondo-like Hamiltonian, of the form \( H^{Kondo}_{eff} = H_0 + H_I + H_2 + H_3 \), with the potential scattering term \( H_0 = \sum_{\alpha \sigma} \psi^\dagger_{\alpha \sigma} (0) \psi_{\alpha \sigma} (0) \), the spin-spin Kondo part \( H_I = J_1 \sum_{\alpha \beta \sigma \sigma'} \sigma_\alpha \sigma_\beta \psi^\dagger_{\alpha \sigma} (0) \psi_{\beta \sigma} (0) \), the orbital-Kondo part \( H_2 = J_2 \sum_{\alpha \sigma} \frac{1}{2} \sigma_\alpha \sigma_\beta \psi^\dagger_{\alpha \sigma} (0) \psi_{\beta \sigma} (0) \), and the coupled spin-orbital part \( H_3 = J_3 \sum_{\alpha \beta \sigma \sigma'} \sigma_\alpha \sigma_\beta \psi^\dagger_{\alpha \sigma} (0) \psi_{\beta \sigma} (0) \).

\[
\begin{align*}
J_3 \sum_{\alpha \sigma \beta \sigma'} T^{\alpha \sigma} S^{\beta \sigma} \sum_{\epsilon \epsilon'} \psi^\dagger_{\epsilon \sigma} (0) \lambda^{\alpha \beta}_{\epsilon \epsilon'} \psi_{\epsilon' \sigma} (0).
\end{align*}
\]

Here \( S^{\sigma} = \sum_{\alpha \sigma' \epsilon} f^\dagger_{\epsilon \sigma'} \psi_{\epsilon \sigma} (0) \) are spin, and \( SU(3) \) orbital operators acting on the impurity site, \( \psi (0) \) are field operators of the conduction electrons coupled to the impurity, while \( \sigma^{\alpha \sigma'} \) are Pauli matrices and the Gell-Mann \( 3 \times 3 \) matrices of the \( SU(3) \) group, respectively.

Notice that in our picture the same electrons carry both orbital and spin degrees of freedom, in contrast to the point of view of Ref. [10] which emphasizes the spin and orbital degrees of freedom being carried by different type of electrons, i.e., \( t_2g \) the spin, and \( eg \) the orbital.

While the form of the low energy impurity model is dictated by symmetry considerations, the exchange couplings \( J_1, J_2, J_3 \) depend crucially on the impurity valence and Hund’s coupling \( J_H \). For the half-filled shell and large \( J_H \), only the spin-spin term \( J_1 \) survives, and a well
known reduction of the $J_1$ Kondo coupling for a factor of $(2l+1)$ was derived in Refs.\cite{2,3} compared to a corresponding one band model. Consequently, a huge reduction of the Kondo temperature for a factor of $(2l+1)^2$ in the exponent was derived in Ref.\cite{3}. This regime is relevant for half-filled $d^6$ shell realized in the Hund’s insulators LaMnPO\cite{50}.

For the above Hund’s metals, the relevant valence of transition metal ion is one unit of charge away from half-filling. When $J_H$ is negligible, the Hamiltonian is SU(6) symmetric, and all three Kondo couplings $J_1, J_2, J_3$ are positive (antiferromagnetic). For the valence $n_{imp}=2$ (or $n_{imp}=4$), their numerical values are $J_1 = J_0/3$, $J_2 = J_0/4$, and $J_3 = J_0/2$, where $J_0 = V^2/(2U + \varepsilon_f)$ (or $J_0 = V^2/(3U + \varepsilon_f)$) is a positive number, which depends on the corresponding Anderson impurity model parameters, i.e., hybridization $V$ and impurity level $\varepsilon_f$. The ground state is a Fermi liquid, because antiferromagnetic couplings between conduction electrons and impurity degrees of freedom ensure complete quenching of both the orbital and spin moments. On the other hand, when $J_H$ is large, the spin–spin Kondo coupling $J_1$ changes sign to ferromagnetic, while the orbit $J_2$ and spin-orbit $J_3$ remain positive. In the three band SU(2)$\times$SU(3) model and large $J_H$, their numerical values are $J_1 = -J_0/9$, $J_2 = J_0/3$, and $J_3 = J_0/3$, where $J_0 = V^2/(2U - 2J_H + \varepsilon_f) > 0$ (or $J_0 = V^2/(3U + J_H + \varepsilon_f) > 0$) for valence $n_{imp}=2$ (or $n_{imp}=4$). This change of sign is due to the orbital blocking mechanism\cite{10}, that allows only those virtual charge excitations which go through orbital singlet intermediate state (see appendix). We note that for valence $d^9$ in iron pnictides/chalcogenides, the correct low energy Hamiltonian has three terms, but not just spin-spin term, as proposed earlier\cite{51}. It is however the spin-spin $J_1$ term that changes sign in the limit of large $J_H$, and impedes quenching of the spin degrees of freedom (termed spin freezing in Ref.\cite{27}). This substantially reduces coherence temperature, however, the $J_3$ term, which couples spin and orbital, is positive and gives rise to the Fermi liquid state at very low temperature.

**Model Hamiltonian calculations**

To demonstrate the above picture, we numerically solve a simplified three band model with the nearest neighbor diagonal hopping $t_{\alpha\alpha} = 0.4$, and the next nearest neighbor hopping $t_{\alpha\beta} = 0.4$ and $t_{\phi\beta} = 0.2$, which gives a total bandwidth of the tight binding model $W \approx 3.5$. We take $U = 6$ and large Hund’s coupling $J_H=2$ and $J_H = 1$ for powerlaw to extend over a larger frequency range.

In Fig.\ref{fig3}, we show the imaginary part of the quasiparticle self energies for $J_H=2$. At the intermediate temperature $T=0.01$, the self energies of $n_d=2.00$ and 2.26 display finite values at zero frequency by extrapolation, which suggests incoherent properties at this temperature. However, at a lower temperature $T=0.00125$, the corresponding self energies clearly display Fermi liquid behavior at low frequencies. Therefore there is an incoherence-coherence crossover with decreasing temperature. We determine the coherence temperature as the temperature at which the renormalized scattering rate is equal to the temperature, i.e., $-\frac{\partial \text{Im} \Sigma(i\omega - i\varepsilon_i, T)}{\partial \varepsilon_i} = k_B T^*$, where $1/z = 1 - \frac{\partial \text{Im} \Sigma(i\omega - i\varepsilon_i, T^*)}{\partial \omega}$ and $k_B$ is the Boltzmann constant. We show the coherent temperature in Fig.\ref{fig4}, as a function of electron occupation $n_d$. We reached 8-times lower temperature than previous studies\cite{27} to access the Fermi liquid state at filling far beyond $n_d = 2$, and map out the coherence incoherence crossover temperature $T^*$.

A good powerlaw fit to the self-energy, as shown in Fig.\ref{fig3}, is obtained only in a limited range of frequency between the low energy cutoff proportional to the Fermi liquid scale ($\varepsilon_0^*$ in Fig.\ref{fig3}) and the high energy cutoff ($\varepsilon_1^*$), which is always smaller than the Hund’s coupling. The range of frequencies at which the powerlaw is valid ($\tilde{\varepsilon}_0 < \omega_n < \varepsilon_1^*$, as indicated by arrows in Fig.\ref{fig3}) is largest at valence $n_d = 2$, where the exponent is close to 1/2, as previously reported in Ref.\cite{27}. Much lower temperature reached in this work show that exponent $\alpha$ decreases monotonically with increasing $n_d$ (see Fig.\ref{fig3}) and Figs.\ref{fig5} and \ref{fig6} in appendix), in contrast to Ref.\cite{27}, hence stronger correlations approaching the Mott state at $n_d = 3$ lead to smaller exponent at low temperature, in qualitative agreement with our realistic calculations for Fe and Ru compounds. Most importantly, there is
FIG. 4: (color online) (a) The coherent temperature; and (b) the spin and orbital susceptibility, as a functional of \( n_d \) for a three band model with \( J_H = 2.0 \) (solid lines) and \( J_H = 1.0 \) (dash lines).

no signature of quantum phase transition to non-Fermi liquid spin-frozen state around valence \( n_d = 2 \), where the powerlaw exponents are found, and the crossover temperature scale does not follow the powerlaw behavior \( T^* \sim (x - x_c)^{2\nu} \) expected in a quantum critical scenario. Hence we can exclude the possibility that the exponents are due to the proximity to the quantum phase transition, as proposed in Ref. [27, 52].

DISCUSSIONS

The powerlaw exponents are found in the temperature and frequency regime where the spin degrees of freedom are very slow and unquenched (spin susceptibility has Curie-Weiss form and large static value) while the orbital degrees of freedom are very fast and quenched (orbital susceptibility is Pauli-like, but enhanced).(see Fig. 4b and Fig. 7 in appendix) This is a novel regime in which two degrees of freedom behave in different ways, one fluctuates very fast (positive \( J_2 \)), the other one fluctuates very slowly (negative \( J_1 \)), and both coupled by a third antiferromagnetic coupling \( J_3 \). This situation is similar to the intermediate phase of the extended Hubbard model study of Ref. [53], where similar continuously varying exponents were shown to exists in the metallic non-Fermi liquid phase in which there was a quenched spin-degree of freedom and an unquenched charge degree of freedom. Notice that at \( n_d = 3 \) only the large spin state is possible, hence the orbital degrees of freedom are gapped, and exponents disappear, while the effect is maximal one unit of charge away from half-filling, i.e., \( n_d = 2 \).

CONCLUSIONS

In conclusions, we have shown in this paper that the Hund’s rule coupling has a strong impact on the electronic states in valence of one unit of charge away from half-filling. The strongly correlated state in such materials can have very low coherence temperature, and the self-energy and optical conductivity show fractional powerlaw at intermediate energy. We have derived the effective low energy Hamiltonian describing these systems and identified a negative Kondo coupling in the spin-spin part of the corresponding low energy Kondo model. We have shown that these anomalies are not controlled by the proximity to a quantum critical point but result from coexistence of fast quantum mechanical orbital fluctuations and slow spin fluctuations. This is relevant for ruthenates and iron chalcogenides, as well as many other materials with similar valence and sizable Hund’s coupling.

ACKNOWLEDGEMENTS

We thank Dimitri Basov, Antoine Georges, Jernej Mravlje, Philipp Werner and Andrew Millis for fruitful discussions. ZPY and GK were supported by NSF DMR-0906943, KH was supported by NSF DMR-0746395.

APPENDIX

Schrieffer-Wolff transformation

We start our discussion with the three band Hubbard model \( H = H_t + H_U \), with the hopping term

\[
H_t = \sum_{i,j,\sigma,a,b} t_{ij}^{ab} f_{ia\sigma}^\dagger f_{jb\sigma} \tag{1}
\]

and the Coulomb repulsion term

\[
H_U = \frac{1}{2} \sum_{i\sigma,abcd} U[i, b, c, d] f_{i\sigma}^{a\dagger} f_{i\sigma}^{b\dagger} f_{i\sigma}^{c\dagger} f_{i\sigma}^{d}. \tag{2}
\]

Here index \( a \) runs over the three orbitals, \( i, j \) over lattice sites, and \( \sigma \) over spin. The hopping term is taken to be locally SU(6) symmetric, while the Coulomb interaction is set to \( U[i, b, c, d] = U_{\delta a\delta b}^{\delta c\delta d} + J_{\delta a\delta b}^{\delta c\delta d} \), which reduces the symmetry to SU(3) × SU(2).

Within the Dynamical Mean Field Theory, this model maps to the SU(3) × SU(2) impurity Hamiltonian of the form \( H_{\text{imp}} = H_{\text{bath}} + H_{\text{hyb}} + H_{\text{local}} \)

\[
H_{\text{bath}} = \sum_{\mathbf{k},\sigma} \epsilon_{\mathbf{k}\sigma} \tilde{\psi}_{\mathbf{k}\sigma}^\dagger \tilde{\psi}_{\mathbf{k}\sigma} \tag{3}
\]

\[
H_{\text{hyb}} = \sum_{\mathbf{k},\sigma} V_{\mathbf{k}\sigma} \tilde{\psi}_{\mathbf{k}\sigma}^\dagger f_{\sigma} + h.c. \tag{4}
\]

\[
H_{\text{local}} = \sum_{\mathbf{k},\sigma} \epsilon f_{\sigma}^\dagger f_{\sigma}\tilde{\psi}_{\mathbf{k}\sigma} + H_U \tag{5}
\]
To gain further insights into the low energy degrees of freedom of this Hamiltonian, we perform the Schrieffer-Wolff transformation, which takes the form

$$H_{\text{eff}} = P_n H_{\text{hyb}} P_{n+1} \sum_{\Delta E} H_{\text{hyb}} P_n,$$  \hspace{1cm} (6)

where $P_n$ is the projector to the impurity ground state multiplet, and $\Delta E$ is the energy cost for the charge excitation from the ground state multiplet to the $n \pm 1$ lowest energy multiplet states, and is always negative.

Here we will limit our discussion to the case of a ground state valence $n_f = 2$ and virtual charge excitations into valence $n_f = 3$. A direct way of evaluating this effective Hamiltonian is to perform exact diagonalization of $H_{\text{local}}$, then expressing matrix elements of $f_{\sigma}$ operators in terms of atomic eigenstates $(F^d_{\sigma})_{m_1 m_2} = (m_1 | f_{\sigma}| m_2)$, and finally evaluating all terms which appear in the sum

$$H_{\text{eff}} = \sum_{\text{k}\text{c} \alpha \beta \alpha' \beta'} \frac{V_{\text{k}\text{c} \alpha \beta} V_{\text{k}\text{c} \alpha' \beta'}}{\Delta E} \psi_i^\dagger(0) \psi_j(0) P_n f_k P_{n+1} f^\dagger_k P_n \delta(i, k) \delta(j, l),$$  \hspace{1cm} (7)

Here $m_2$ runs over the ground state multiplet at valence $n + 1$, while $m_1$ and $m_3$ run over ground state multiplet at valence $n$. Finally we need to express the impurity degrees of freedom in terms of the impurity operators such as is the total spin $S$ and the orbital isospin operator $T$.

This tedious derivation can be circumvented by a trick. We Fourier transform the bath operators $V^2 \psi_i^\dagger(0) = \sum_{\text{k}\text{c}} V_{\text{k}\text{c} \alpha \beta} \psi_{\text{k}\text{c} \alpha \beta}$ and introduce the combined spin-orbit index $i \equiv (a \sigma)$, which can then rewrite the effective Hamiltonian for charge excitations from valence $n$ to valence $n + 1$ as

$$H_{\text{eff}} = \sum_{ijkl} \frac{V^2}{\Delta E} \psi_i^\dagger(0) \psi_j(0) P_n f_k P_{n+1} f^\dagger_k P_n \delta(i, k) \delta(j, l).$$  \hspace{1cm} (8)

We next find a complete orthonormal basis in the space of spin and orbit degrees of freedom $(\text{Tr}(\Gamma^{a} J^B)) = \delta_{aB}$, in which the completeness relation takes the form

$$\delta(i, k) \delta(j, l) = \sum_{a} (\Gamma^a)^i_j (\Gamma^a)^{kl}.$$  \hspace{1cm} (9)

Here matrices $\Gamma^a$ form a complete basis for the SU(3)×SU(2) group. For the SU(2) and SU(3) group we use Pauli $2 \times 2$ matrices $\sigma$, and Gell-Mann $3 \times 3$ matrices $\lambda$. In terms of these, the complete basis $\Gamma^a$ is

$$\Gamma^a = \left\{ \frac{1}{\sqrt{4}} \begin{array}{cc} 1 & \sigma \hfill \\
\sigma & 1 \hfill \end{array}, \frac{1}{\sqrt{2}} \begin{array}{cc} 1 & \lambda \hfill \\
\lambda & 1 \hfill \end{array}, \frac{1}{\sqrt{2}} \begin{array}{cc} 1 & i \sigma \hfill \\
i \lambda & 1 \hfill \end{array} \right\}.$$  \hspace{1cm} (10)

The normalization factors come from the fact that $\text{Tr}(\sigma \lambda) = 2\delta(\alpha, \beta)$ and $\text{Tr}(\sigma \lambda) = 2\delta(\alpha, \beta)$. We can then simplify the low energy Hamiltonian by

$$H_{\text{eff}} = \sum_{ijkl} \frac{V^2}{\Delta E} (\Gamma^a)^i_j (\Gamma^a)^{kl} P_n f_k P_{n+1} f^\dagger_k P_n \psi_i^\dagger(0) (\Gamma^a)^i_j \psi_j(0).$$  \hspace{1cm} (11)

Next we realize that even in the presence of an arbitrary projector, the local operators keep the same form of the expansion in terms of the electron field operator

$$\sum_{kl} (1 \otimes \sigma^B)_{kl} P_n f_k P_{n+1} f^\dagger_k P_n \propto -S^a$$  \hspace{1cm} (12)

$$\sum_{kl} (\lambda^a \otimes 1)_{kl} P_n f_k P_{n+1} f^\dagger_k P_n \propto -T^a$$  \hspace{1cm} (13)

$$\sum_{kl} (\lambda^a \otimes \sigma^B)_{kl} P_n f_k P_{n+1} f^\dagger_k P_n \propto -T^a \otimes S^a$$  \hspace{1cm} (14)

but the proportionality constants need to be determined by an explicit calculation. Notice that just like in the Wigner-Eckart theorem, we only need to consider one matrix element to determine proportionality constant, which greatly simplifies this derivation.

Now we can recognize that the first term in Eq. (10) gives rise to potential scattering of the form

$$H_0 = J_p \sum_{a \sigma} \psi_i^\dagger(0) \psi_{a \sigma}(0)$$  \hspace{1cm} (15)

the second term in Eq. (10) gives the spin-Kondo part

$$H_1 = J_1 \sum_{a \sigma \sigma'} \psi_i^\dagger(0) \sigma^a \sigma' \psi_{a \sigma'}(0)$$  \hspace{1cm} (16)

the third gives orbital-Kondo part

$$H_2 = J_2 \sum_{a \alpha \beta} \psi_i^\dagger(0) \lambda^a \alpha \beta \psi_{(0) \beta \sigma}$$  \hspace{1cm} (17)

and the last gives spin-orbit Kondo part

$$H_3 = J_3 \sum_{a \alpha \beta} \psi_i^\dagger(0) \lambda^a \alpha \beta \psi_{(0) \beta \sigma}$$  \hspace{1cm} (18)

The Kondo-couplings $J_1, J_2, J_3$ depend on the valence $n_f$ and type of the projector $P$. We first consider the SU(6) symmetric case, which is realized in the absence of Hund’s rule coupling. In this case, the projector $P$ is irrelevant, since all states at some valence have equal energy. The local operators are then simply given by

$$\sum_{a \sigma \sigma'} f_{a \sigma} g_{a \sigma'} f^\dagger_{a \sigma} = -2S^a$$  \hspace{1cm} (19)

$$\sum_{a \alpha \beta} \lambda^a \alpha \beta f_{a \alpha \beta} f^\dagger_{a \alpha \beta} = -T^a$$  \hspace{1cm} (20)

$$\sum_{a \alpha \beta} \lambda^a \alpha \beta \sigma^B f_{a \sigma} f^\dagger_{a \sigma} = -2T^a S^a,$$

and the Kondo couplings become $J_1 = 2/6$ $J_0 = J_0/3$, $J_2 = J_0/4$ and $J_3 = 2/4$ $J_0$, where $J_0 = \frac{V^2}{\Delta E + \Delta E} > 0$. Notice that all Kondo-couplings are positive (minus sign comes from $\Delta E$ and from the proportionality constant) and hence antiferromagnetic couplings ensures complete quenching of the spin and orbital moment. The ground state is thus Fermi liquid.

In the limit of large Hund’s coupling, the projector $P_{n+1}$ projects to the subspace of high-spin states only,
which in the case of the three band model and \( n_f = 3 \), take the following form

\[
\begin{align*}
|1\rangle & \equiv |↓↓↓\rangle \quad (19) \\
|2\rangle & \equiv \frac{1}{\sqrt{3}}(|↓↓↑\rangle + |↓↑↓\rangle + |↑↓↓\rangle) \quad (20) \\
|3\rangle & \equiv \frac{1}{\sqrt{3}}(|↓↑↑\rangle + |↑↓↑\rangle + |↑↑↓\rangle) \quad (21) \\
|4\rangle & \equiv |↑↑↑\rangle \\
|5\rangle & \equiv |↓0\downarrow\rangle \quad (23) \\
|6\rangle & \equiv |0\downarrow\downarrow\rangle \quad (24) \\
|7\rangle & \equiv |↓↓0\rangle \quad (25) \\
|8\rangle & \equiv \frac{1}{\sqrt{2}}(|↓0\uparrow\rangle + |↑0\downarrow\rangle) \quad (26) \\
|9\rangle & \equiv \frac{1}{\sqrt{2}}(|0\uparrow\uparrow\rangle + |0\uparrow\downarrow\rangle) \quad (27) \\
|10\rangle & \equiv \frac{1}{\sqrt{2}}(|↓↓0\rangle + |↑↑0\rangle) \quad (28) \\
|11\rangle & \equiv |↑0\uparrow\rangle \quad (29) \\
|12\rangle & \equiv |0\uparrow\uparrow\rangle \quad (30) \\
|13\rangle & \equiv |↑↑0\rangle \quad (31)
\end{align*}
\]

Projection to the ground state multiplet \( P_n \) is achieved by projecting to the following states

\[
\begin{align*}
P_0 &= \frac{1}{\sqrt{3}}(\sum_n P_n/a_{\sigma\sigma}^0 a_{\sigma\sigma}^0, P_n + 1, a_{\sigma\sigma}^f)P_n = \frac{2}{3}S^0 \\
\sum_{a\sigma} P_n f_{a\sigma} \sigma_{a\sigma}^\alpha P_{n+1} f_{a\sigma}^\dagger P_n = -\frac{4}{3}T^\alpha \\
\sum_{ab\sigma\sigma'} P_n f_{a\sigma} \sigma_{a\sigma}^\alpha \sigma_{b\sigma'}^\beta P_{n+1} f_{a\sigma'}^\dagger P_n = -\frac{4}{3}T^\alpha S^\beta
\end{align*}
\]

We can finally determine the Kondo couplings in the limit of large Hund’s coupling. Their value is \( J_1 = -2/3 \ast 1/6J_0 = -J_0/9 \), \( J_2 = 4/3 \ast 1/4J_0 = J_0/3 \) and \( J_3 = 4/3 \ast 1/4J_0 = J_0/3 \). Here \( J_0 = \frac{2}{\alpha^2} \frac{1}{\pi} > 0 \).

The crucial result of this calculation is that the spin-kondo coupling \( J_1 \) changes sign when Hund’s coupling is strong. This comes from the fact that the spin operator in the projected subspace \( \sum_{a\sigma\sigma'} P_n f_{a\sigma} \sigma_{a\sigma}^\alpha P_{n+1} f_{a\sigma'}^\dagger P_n = \frac{2}{3}S^n \) has very different expansion in terms of electron field operator than in non-projected case \( \sum_{a\sigma\sigma'} f_{a\sigma} \sigma_{a\sigma}^\alpha f_{a\sigma'}^\dagger P_n = -2S^n \). The origin of this sign change is in the orbital blocking mechanism, that ensures that the intermediate state at \( n_f = 3 \) is a high spin-state (in this case \( S=1 \)) but is orbitally a singlet state, such as states 19, 22, 12, 11, 13. Orbital blocking is a restriction in the Hilbert space imposed by the large Hund’s rule coupling. It modifies the Kondo couplings away from their SU(N) symmetric values \( (J_1 = J_0/3, J_2 = J_0/4, J_3 = J_0/2) \). This blocking results in different Kondo couplings in different valences. For the half-filled shell (relevant for Mn\(^{2+}\)) it results in \( J_2 = 0, J_3 = 0, and a strong reduction of the value of \( J_1 \), first recognized by Schrieffer [2]. For the valence of one unit of charge away from half-filling (relevant for Fe\(^{2+}\) and Ru\(^{4+}\)), orbital blocking results in the sign reversal of \( J_1 \).

Results for the three band Hubbard Model

![Quasiparticle self energy for JH=2.0](image)

FIG. 5: (color online) Quasiparticle self energy for \( J_H=2.0 \). The imaginary part of the quasiparticle self energy in log\(_{10}\)-log\(_{10}\) scale as a function of electron occupation \( n_x \) for \( U=6.0 \) and \( J_H=2.0 \). Note the data are shifted along the \( y \)-axis for better illustration. The linear dispersion of the self energy in the plot indicates the powerlaw behavior exists in the intermediate frequency region as indicated by the arrows.

Using our numerical methods of quantum Monte Carlo, we can not obtain high precision real axis self-energy, however, we can infer its analytic properties from imaginary axis analogs. The fractional exponent in scattering rate on the real axis \( (\text{Im} \Sigma(\omega) \propto \omega^n) \) leads to the same powerlaw on imaginary axis for the imaginary part \( (\text{Im} \Sigma(i\omega_n) \propto -i\omega_n^n) \). The real part, on the other hand, shows the powerlaw only when scattering rate is very asymmetric around zero frequency. For example, \( \Sigma'(\omega > 0) = A|\omega|^\alpha \) and \( \Sigma''(\omega < 0) = B|\omega|^\alpha \), the real part on imaginary axis is \( \text{Re} \Sigma(i\omega_n) \propto (A-B) \int_0^\Lambda x|\omega_f|/\omega_f^2 \) \( dx \) (where \( \Lambda \) is the upper cutoff for the powerlaw), and does not show powerlaw in the symmetric \( A = B \) case. Our calculation shows that the real part does not show very clear powerlaw on imaginary axis, hence we...
infer that the scattering rate is quite symmetric at low frequency on real axis.

Figure 5 and 6 show the imaginary part of the quasiparticle self energy in log\textsubscript{10} scale as a function of electron occupation \(n_d\) for \(U=6.0\) and \(J_H=2.0\) and 1.0, respectively. The linear dispersion of the self energy in the plots indicates the powerlaw behavior exists in the intermediate frequency region as indicated by the arrows. For both values of \(J_H\), the powerlaw exponent \(\alpha\) decreases monotonically with increasing \(n_d\) towards half filling, i.e., \(n_d=3\). The upper energy cutoff \(\varepsilon_1^*\) drops rapidly for \(n_d > 2.0\), suggesting the powerlaw behavior is vanishing quickly when \(n_d\) goes away from 2 to half filling. Compared to \(J_H=2.0\), the powerlaw behavior for \(J_H=1.0\) is valid in a smaller frequency region and the corresponding powerlaw exponent is larger, suggesting the important role of Hund’s coupling in giving rise to the powerlaw behavior. Therefore the powerlaw behavior is most visible at electron occupation one unit of charge away from half-filling, in this case, \(n_d = 2\).

Figure 7 shows the local spin, orbital and charge susceptibility at zero frequency as a function of temperature for \(n_d=1.75, 2.00, 2.26\) and \(U=6.0, J_H=2.0\). The spin susceptibility has large static values and takes the Curie-Weiss form while the orbital susceptibility is Pauli-like and enhanced at intermediate temperature and around \(n_d=2.0\). Note the charge susceptibility is two orders of magnitude smaller than the orbital susceptibility thus doesn’t play an important role.

* Electronic address: yinzping@physics.rutgers.edu

[1] D. van der Marel and G. A. Sawatzky, Phys. Rev. B 37, 10674 (1988).
[2] J. R. Schrieffer, J. Appl. Phys. 38, 1143 (1967).
[3] I. Okada and K. Yosida, Prog. Theor. Phys. 49, 1483 (1973).
[4] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
[5] K. Haule and G. Kotliar, New J. Phys. 11, 025021 (2009).
[6] M. M. Qazilbash et al., Nat. Phys. 5, 647-650 (2009).
[7] Z. G. Chen, R. H. Yuan, T. Dong, and N. L. Wang, Phys. Rev. B 81, 100520(R) (2010).
[8] L. Degiorgi, New J. Phys. 13, 023011 (2011).
[9] A. A. Schafgans et al., *Phys. Rev. Lett.* **108**, 147002 (2012).
[10] Z. P. Yin, K. Haule, and G. Kotliar, *Nat. Mater.* **10**, 932-935 (2011).
[11] K. Haule, J. H. Shim, G. Kotliar, *Phys. Rev. Lett.* **100**, 226402 (2008).
[12] Z. P. Yin, K. Haule, and G. Kotliar, *Nat. Phys.* **7**, 294-297 (2011).
[13] M. D. Johannes and I. I. Mazin, *Phys. Rev. B* **79**, 220510(R) (2009).
[14] G. T. Wang, Y. M. Qian, G. Xu, X. Dai, and Z. Fang, *Phys. Rev. Lett.* **104**, 047002 (2010).
[15] P. Hansmann, R. Arita, A. Toschi, S. Sakai, G. Sangiovanni, and K. Held, *Phys. Rev. Lett.* **104**, 197002 (2010).
[16] S. Zhou and Z. Q. Wang, *Phys. Rev. Lett.* **105**, 096401 (2010).
[17] W.-G. Yin, C.-C. Lee, and W. Ku, *Phys. Rev. Lett.* **105**, 107004 (2010).
[18] A. Liebsch, *Phys. Rev. B* **84**, 180505 (2011).
[19] E. Abrahams and Q. Si, *J. Phys.: Condens. Matter* **23**, 223201 (2011).
[20] L. Craco, M. S. Laad, and S. Leoni, *Phys. Rev. B* **84**, 224520 (2011).
[21] T. Schickling et al., *Phys. Rev. Lett.* **108**, 036406 (2012).
[22] J. Ferber, K. Foyevtsova, R. Valentí, and H. O. Jeschke, *Phys. Rev. B* **85**, 094505 (2012).
[23] T. Misawa, K. Nakamura, and M. Imada, *Phys. Rev. Lett.* **108**, 177007 (2012).
[24] N. L. Wang et al., *J. Phys.: Condens. Matter* **24**, 294202 (2012).
[25] W.-C. Lee and P. W. Phillips, arXiv:1110.5917.
[26] W.-G. Yin, C.-C. Lee, and W. Ku, *Supercond. Sci. Technol.* **25**, 084007 (2012).
[27] P. Werner, E. Gull, M. Troyer, and A. J. Millis, *Phys. Rev. Lett.* **101**, 166405 (2012).
[28] T. Katsufuji, M. Kasai, and Y. Tokura, *Phys. Rev. Lett.* **101**, 126 (1996).
[29] Y. S. Lee et al., *Phys. Rev. B* **67**, 113101 (2003).
[30] J. Mravlje et al., *Phys. Rev. Lett.* **106**, 096401 (2011).
[31] L. de Medici, J. Mravlje, and A. Georges, *Phys. Rev. Lett.* **107**, 256401 (2011).
[32] A. Kutepov, K. Haule, S. Y. Savrasov, and G. Kotliar, *Phys. Rev. B* **82**, 045105 (2010).
[33] G. Kotliar et al., *Rev. Mod. Phys.* **78**, 865 (2006).