Channel Ranking Based Spreading Factor Optimization for Multiuser Visible Light Communication OFDM-IDMA with Parallel Interference Cancellation

Kazushi Shimada1*, Seiya Hirano1, Mitsuki Takahashi1, Kazuki Maruta2 and Chang-Jun Ahn1**

1Graduate School of Engineering, Chiba University, Chiba 263–8522, Japan
2Academy for Super Smart Society, Tokyo Institute of Technology, Tokyo 152–8552, Japan
E-mail: *afaa2232@chiba-u.jp, **junny@faculty.chiba-u.jp

Abstract This paper proposes a channel ranking based spreading factor optimization for orthogonal frequency division multiple interleave division multiple access (OFDM-IDMA) on visible light communication (VLC) systems. VLC is under the global spotlight, since light emitting diode (LED) has recently become a part of building infrastructure and its functionality is quite easy by implementing communication components to LED lighting. To enhance the VLC capability, OFDM-IDMA was previously proposed as a multiple access method. It also employs a spectrum spreading, in which the symbol is orthogonally spread to a specified number of subcarriers. Here, an interleave pattern specific to the transmission signal of each user can improve the separation capacity of the source signal and therefore multiple access becomes possible in VLC-OFDM-IDMA. However, it requires a lower rate error correction code and a large spread factor to limit the throughput performance. To resolve this problem, we introduce a new channel ranking and allocate an appropriate spreading factor to each user according to their channel state. Overall, BER performance and throughput performance can be enhanced by optimising the spread code.

Keywords: visible light communication, OFDM, OVSF code, parallel interference cancellation

1. Introduction

With the recent development of wireless communication technology and the spread of wireless communication devices such as smartphones and tablets, the demand for high-speed and large-capacity communication is growing. However, the current spectrum used for wireless communication is limited and there is an impediment to the development of communication technology. A promising solution is visible light communication (VLC) [1], which is expected to be a new medium of communication. As a specific emitting element, light-emitting diodes (LED) [2] have become a possible candidate because they are widely used as lighting equipment. The use of LEDs is considered an economical and omnipresent communication device. Furthermore, LEDs are safe for the human body and secure because the light cannot penetrate the wall, whereas radio waves do the wall made of wood and gypsum board, etc [3]. Therefore, it can be considered as an advantageous communication technology. In VLC, intensity modulation and direct detection (IM/DD) [4] are used as a method for generating the transmission signal. The intensity of the LED light is modulated by the encoder, and the received signal is converted from optical to electrical signal by the photodiode. In VLC, optical signals transmitted by multiple users are mixed on the receiver side. In order to separate these mixed signals, an appropriate multiple access scheme is required. Typical multiple access methods are time division multiple access (TDMA), frequency division multiple access (FDMA), and code division multiple access (CDMA) [5][6].

Due to demand for high bandwidth efficiency, orthogonal frequency division multiplex (OFDM) based on interleaved multiple access division (IDMA) [7][8] has been previously proposed. IDMA can help to identify user data even in the field of signal amplitude, like VLC [18] by bit rearrangement models dedicated to each user. The joint application of OFDM and IDMA enables broadband communication [9][10] in VLC; its effectiveness has been clarified [11]. Since signal streams are spatially multiplexed in OFDM-IDMA, it has a limit in the number of capable users. To enhance system capability, parallel interference cancellation (PIC) is also essential [12]. Orthogonal spreading code is auxiliary applied to detect each user’s signal more accurately. It spreads a mapped symbol to a certain number of subcarriers with specified sequence which are orthogonal for every user. We previously disclosed that bit error rate (BER) performance of OFDM-IDMA can be improved in proportion to the increase of the spreading factor whereas the throughput performance
is reduced.

Orthogonal variable spread factor (OVSF) codes are capable of various code lengths with maintained orthogonality. By focusing on this property of OVSF codes, it is possible to improve the throughput of the system by optimizing the spread factor by maintaining the BER features. In order to achieve the above objective, this paper newly proposes a channel ranking based spreading factor optimization for VLC-OFDM-IDMA incorporating PIC [13]. The short spread factor is given to users in a good channel gain. Conversely, a large one is assigned to them in a weak channel gain. This paper expands the content of the conference paper [13] by examining a wider variety of propagation factors and we find that system throughput and BER performance can be improved. Interference cancellation based CDMA for multiuser detection with OVSF codes and channel ranking concepts were widely investigated in wireless and optical communication fields [14][15][16]. IM/DD merely deals with the amplitude of a signal. Phase and IQ modulations cannot be applied to the VLC unlike traditional wireless communication. It limits the application of spatial multiplexing approaches such as multiple output multiple entries (MIMO). Therefore, in IM/DD, signal multiplexing in the power domain is the possible approach to enhance the capability of the system under the limited spectral resource; CDMA is considered the promising solution [17]. To further improve interference mitigation performance (user separation), we used nonorthogonal techniques like IDMA and PIC. This paper discloses the unprecedented impact of incorporating the above technologies into VLC.

The rest of this paper is organized as follows. Section II describes the system model of VLC with LEDs, OFDM, IDMA, and interference cancellation, respectively. The proposed scheme is explained in Section III. Section IV presents the simulation results. Section V provides the conclusion of this paper.

2. System Model

2.1 Transmitter

The transmitter structure of the multiuser VLC-OFDM-IDMA system is shown in Fig. 1. Interleaving is performed after the forward error correction (FEC) code. Different interleaving patterns are applied per user to attain the signal separation for IDMA. After interleaving, OFDM modulation is performed using a quadrature phase shift keying (QPSK) symbol mapping. In VLC, since the propagation medium of information between the transmitter and the receiver is a visible light, the transceiver needs to make the signals only in the amplitude domain. After that, the transmit signal is generated by applying a bias current before LED input. The symbol of the \(u \)-th user \(X_u(k) \) \((k \in [0, 1, \cdots, N_c - 1], N_c \) is the number of subcarriers) generated by the QPSK mapping is converted to the time-domain signal sequence via inverse fast Fourier transform (IFFT) through a parallel-to-serial (P/S) conversion. Here, frequency-domain symbol sequence is rearranged according to the following conditions (also, see Fig. 2) to obtain the real-valued time-domain signals for intensity modulation (IM) as,

\[
X_u(2N_c - k) = X_u(k) \\
X_u(0) = X_u(N_c) = 0
\]

The output signal after IFFT is expressed by

\[
s_u(t) = \sum_{k=0}^{2N_c-1} X_u(k)e^{j2\pi(kt)/2N_c}
\]

where \(s_u(t) \) is a time-domain OFDM symbol which has only real values suitable for IM. The guard interval is inserted to the head of the OFDM symbol to prevent inter-symbol interference (ISI).

Figure 3 shows the circuit to drive the LED. The signal after OFDM modulation is converted to the current and the bias current is added in the electronic circuit. The generated current is used as a drive current of the LED. LEDs have the nonlinear characteristics. Details are explained in the next subsection.

2.2 Electric-optical domain interface

LEDs have a nonlinearity between input current and output power. The input current to the output power is defined as,

\[
P_{out}(t) = c_0 + c_1I_m(t) + c_2I_m^2(t)
\]

where \(c_0 = \beta, c_1 = 1, c_2 = -4\beta + 2 \), and \(\beta \) are parameters representing nonlinearity depending on various LEDs.
as shown in Table 1 [2]. The red LED has the strongest nonlinear characteristic while the white LED exhibits an almost linear one.

2.3 Receiver

The receiver structure is shown in Fig. 4. At the receiver, the optical signal is converted to current values by the photodetector. The OFDM demodulator removes the guard interval from the time-domain received signal to remove the ISI impact. FFT is then performed and channel estimation for each user is performed. This paper assumes the perfect knowledge of channel state information (CSI). After the channel estimation, expanded frames in the frequency-domain are converted to the original ones and (P/S) conversion is performed. The received symbol \(R(k) \) at the \(k \)-th subcarrier is given by,

\[
R(k) = \sum_{\ell=1}^{U} H_{\ell}(k) X_{\ell}(k) + n(k) \tag{5}
\]

where \(U \) is the number of users, \(H_{\ell}(k) \) is the channel coefficient of the \(k \)-th subcarrier and the \(\ell \)-th user. \(n(k) \) represents an additive white Gaussian noise (AWGN). Focusing on the \(u \)-th user, (5) can be rewritten as,

\[
R(k) = H_u(k)X_u(k) + \sum_{\ell \neq u} H_{\ell}(k)X_{\ell}(k) + n(k)
\]

\[
= H_u(k)X_u(k) + \zeta(k) \tag{6}
\]

where \(\zeta(k) \) represents an interference component called multiple access interference (MAI). MAI should be removed by the interference cancellation.

\[
\hat{X}_u(k) = \frac{R(k)}{H_u(k)} = X_u(k) + \frac{\zeta(k)}{H_u(k)}
\]

\[
= X_u(k) + \hat{\zeta}_u(k) \tag{7}
\]

Through the QPSK demapping, deinterleaving and decoding, transmitted bit sequence of the \(u \)-th user is recovered. However, (7) still contains MAI components. Symbol estimation accuracy can be improved by an iterative operation of PIC. The RGU is replica signal generation unit. Through re-encoding, interleaving and QPSK mapping, replica symbols \(\hat{X}(k) \) are regenerated by the RGU. After multiplying CSI, the interference replica signal can be obtained by superposing that for interfering users.

\[
\tilde{R}(k) = \sum_{\ell=1}^{U} H_{\ell}(k)\hat{X}_\ell(k) = H_u(k)\hat{X}_u(k) + \hat{\zeta}(k) \tag{8}
\]

Figure 5 depicts a schematic flow of the PIC to suppress MAI [19]. First, the received signal is individually equalized by CSI of each user. The obtained signal for the \(u \)-th user can be expressed as follows,
Symbol estimation is performed again by using CSI of each user as,

\[
\hat{X}_u = \frac{\hat{R}(k)}{\hat{H}_u(k)} = \hat{X}_u(k) + \frac{\hat{z}_u(k)}{\hat{H}_u(k)} = \hat{X}_u(k) + \tilde{\zeta}_u(k) \tag{9}
\]

Given the estimated symbol as \(\hat{X}_u(k)\), the difference between the two symbols can be calculated by

\[
\Delta X_u(k) = \hat{X}_u(k) - \tilde{X}_u(k) \tag{10}
\]

Received symbol is updated by using this difference component for the subsequent PIC step as,

\[
X_u(k) = \Delta X_u(k) + \hat{X}_u(k) \tag{11}
\]

Through the above series of processes, the detection accuracy of received signal can be gradually improved. As the number of users increases, the effect of the MAI term increases. FEC and orthogonal spreading code can improve the symbol estimation accuracy. However, these methods degrade the throughput performance due to their nonnegligible overheads. This study focuses on the spreading factor of the orthogonal codes and examines its optimization with observing the channel gain.

3. Proposed Scheme

3.1 Orthogonal variable spreading code

In the conventional scheme, the spreading code length was fixed to 8 [12]. The proposed scheme newly introduces the spreading factor of 4 and 16 to improve the system throughput performance as well as maintaining the BER performance. The generation diagram of OVSF codes is shown in Fig. 6 [20][21]. OVSF codes have a tree structure in which \(c(i, j)\) represents the \(j\)-th code of the \(i\)-th layer. OVSF codes are orthogonal to each other even with different spreading factors [22][23]. Let the number of information data bits and the spreading factor denote \(N_b\) and \(f\), respectively. The number of transmission bit length \(N_b\) is \(C = N_b \times f\). If \(f\) is halved, \(N_b\) becomes \(R \times f/2\); the information data bits can be increased to \(2N_b\) when transmitting the same frame length. We can increase the number of data bits by shortening the spreading factor. In contrast, the number of data bits is decreased when \(N\) is doubled, but the BER performance can be improved thanks to improved signal detection capability. Orthogonality is ensured only if the code assigned to each user is not on the path of the same route. Fig. 7 exemplifies a case in which codes \(c(3, 2), c(4, 1),\) and \(c(4, 7)\) are assigned. The codes \(c(2, 1), c(2, 2), c(3, 1),\) and \(c(3, 4)\) cannot be assigned to other users. In contrast, the codes \(c(3, 3), c(4, 2),\) and \(c(4, 8)\), etc. can be assigned. Priority can be given when the code length is shortened. However, the number of users is limited. Use of the large spreading factor reduces user restrictions [24][25]. The application of OVSF facilitates multiplexed signal separation because the cross-correlation between the symbols for different users is sufficiently low; the desired signal can be extracted without MAI [26][27]. However, CSI estimation error and the Doppler shift break its orthogonality and cause residual MAI components which should be eliminated by PIC.

3.2 Channel ranking

Orthogonal spreading codes can reduce the influence of MAI as the spreading factor becomes large, but there exists a trade-off between the MAI suppression capability and the achievable throughput performance [28]. This paper additionally introduces a channel ranking to prevent BER characteristics degradation from the use of shortened spreading factor, in order to enhance the system throughput performance. Its concept is drawn in Fig. 8. The key feature of our proposal is to shorten the spreading factor of users who experienced the larger channel gain, i.e. the less impact of MAI. On the other hand, enlarge the spreading factor of users who experienced the smaller channel
gain, i.e. strongly affected by MAI. Based on estimated CSI, these path gains are calculated and sorted in descending order. Here, we allocate short spreading factor (4 in this study) to the user having the larger channel gain, and large spreading factors (16) are allocated to the user having the smaller channel gain. The achievable throughput value of the better user can be doubled and thus overall throughput performance is expected to be enhanced. BER performance of the worst user can be improved. Therefore, overall system performance can be optimized.

4. Computer Simulation

4.1 Simulation parameters

Simulation parameters are shown in Table 2. This evaluation assumes the ideally linear characteristic of LED. The proposed method compares by assigning the different spreading factors as 4, 8 and 16, as described above. The number of terminal bits for the convolutional code is 64, hence the numbers of input data bits become 124, 376, and 880 for spreading factors of 16, 8, 4, respectively. The interleaver type is random and the simulation deploys 5 users. Static 3 path Rayleigh fading channel is assumed and is spatially uncorrelated among users [18]. Such multipath channel can be consistent even in the VLC systems assuming indoor scenario [29][30][31]. Perfect knowledge of channel state at the receiver is also assumed. Evaluations metrics are BER and throughput. As for the throughput calculation, 64 data symbols are regarded as one packet.

4.2 Simulation results

First, effectiveness of the channel ranking is disclosed. Figures 9, 10, and 11 show per user BER, average BER, and throughput performances, respectively. Figure 9 plots the BER performances of each user with ranking and that of average for all 5 users. Figure 10 shows comparison of average BER performances with and without channel ranking. In the proposed scheme, the spreading factor of 4 is assigned to one of the users who has the largest channel gain and 8 for remaining users. Even by shortening the spreading factor, BER performance of the best channel gain user is the best. Then BER characteristics of other users tend to deteriorate according to the order of ranking. Assigning a large spreading factor can compensate for the worst channel gain user. It will be presented in detail in the following evaluation. From Fig. 10, the proposed scheme achieves the best average BER performance. It can outperform the case where the long spreading factor $f = 8$ is used for all 5 users. As for the sum-throughput performance as shown in Fig. 11, it can be confirmed that higher throughput performance can be attained at a lower region of energy per bit to noise power spectral density ratio (E_b/N_0). As seen by the per-user-performance, its improvement is remarkable with the channel ranking. Following evaluation focuses on the average BER and sum-throughput performances, respectively.

Figures 12 and 13 present the comparison of average BER and sum-throughput performances to verify the effectiveness of the proposed scheme by optimizing spreading factors. In the conventional scheme, the spreading factor is fixed to 8 for all 5 users.

Here we examined five cases for channel ranking based spreading factor allocation in addition to the following case A [13];

A) $f = 4$ for the best channel gain user, $f = 8$ for remaining 4 users

B) $f = 4$ for the best channel gain user, $f = 8$ for 3 users, and $f = 16$ for the worst channel gain user

C) $f = 4$ for the best channel gain user, $f = 8$ for 2 users, and $f = 16$ for the worst channel gain 2 users

Table 2	Simulation parameters
Transmission scheme	VLC-OFDM
Modulation	QPSK
Transmission bandwidth	20 MHz
Number of subcarriers	128
FFT size	128
Guard Interval	16
Number of pilot symbols	2
Number of data symbols	64
Number of multipaths	3
Number of users	5
Number of PIC iterations	2
Error correction code	Convolutional code, rate 1/2
Spreading factor	4, 8, 16
Input data bits	880, 376, 124
Interleaver type	Random
Fig. 9 BER performances per user and 5 users averaged

Fig. 10 BER performances averaged

Fig. 11 Throughput performances per user and 5 users total

Fig. 12 Average BER performances with various spreading factor assignment cases for A, B and C

D) \(f = 4 \) for the best channel gain 2 users, \(f = 8 \) for 1 user, and \(f = 16 \) for the worst channel gain 2 users

E) \(f = 4 \) for the best channel gain 2 users, \(f = 16 \) for remaining 3 users

From Fig. 12, the BER performance of the case A has deteriorated by about 1.5 dB at the BER\(= 10^{-4} \), compared to the conventional scheme. Shortening the spreading factor is more susceptible to MAI than conventional one. It degrades the signal detection accuracy for the best channel gain user and is affected to overall BER performance. With the cases for B and C, which introduced spreading factor of 16 for the worst channel gain, can compensate such impact and improve BER performances by about 1.2 dB and 1.9 dB, respectively.

Observing Fig. 13, the case A can achieve the highest system throughput performance and it is 30% higher than the conventional case. It is because the combination of spreading factors is smallest in the case A. It should be noted that the improvement of the throughput is more than theoretical due to the terminal bit insertion. Halved
spreading factor surely contributed to raising the overall throughput value.

In case B, introducing the spreading factor of 16 reduces the system throughput performance but it is still better than the conventional case than 15%. Further, as described above, the case B is advantageous in terms of BER performance. When increasing the 16 spreading factor users to 2 (the case C), the maximum system throughput performance is equivalent to the conventional case. This case also provides good BER performance and hence the higher throughput can be obtained at lower Eb/No region. Figures 14 and 15 plot the results to compare the cases D and E, i.e. the spreading factor of 4 is assigned to 2 users according to the proposed channel ranking. The result for BER performance is equivalent (the Case D) or slightly improved by 1.0 dB (the Case E) compared to the conventional case. It is dependent on the number of users with a spreading factor of 16. As for the total system throughput performance shown in Fig. 15, the case D can achieve the highest value as same as the case A. Moreover, increase of the throughput value with Eb/No can be improved better than the Case A. In the Case E, sum-throughput can also be improved by about 15% and its increase is more rapid than the conventional case. Introducing large spreading factor such as \(f = 16 \) is more robust to detect the received signal in an accurate manner. It contributes to ensure good BER performance even in increasing shortened spreading factor users.

Although the respective throughput performance is distributed among users, overall system performance can be optimized by using the proposed approach. In VLC, the channel gain through which each user passes is considered to have a large impact on its ranking and spreading factor assignment. Since the channel environment in this evaluation has a Rayleigh distribution, there is a difference of about 10 dB gains depending on the situation. From Figs 12 to 15, cases D and E in the proposed scheme can be improved in terms of both BER and throughput characteristics compared to the conventional one. This results indicates that the effectiveness of applying variable spreading factors in a relative manner. Furthermore, the finding obtained in this study is that the combination of spreading factors that maximizes sum-throughput can be determined depending on Eb/No conditions. We can conclude that overall multiple access schemes including our proposal, i.e. OFDM-IDMA with channel ranking based spreading factor determination on PIC, could be one of the most effective solutions for spectrally efficient VLC.
means. Meanwhile, the combination of spreading factor is fixed in this paper. If the optimal spreading factor can be dynamically allocated according to the respective channel gain of individual users, further performance improvement can be expected. It should be investigated as our future work.

5. Conclusion

This paper proposed the channel ranking based orthogonal spreading factor optimization for VLC-OFDM-IDMA system with PIC, in order to improve the system throughput performance while maintaining the BER performance. Small spreading factor is assigned to the user who experienced the larger channel gain and vice versa. The proposed approach can realize balanced signal detection accuracy for PIC with minimizing overall spreading factors. Computer simulation verified that the proposed scheme improved throughput and BER performances compared to the case where a fixed spreading factor is assigned to all users. Future work includes to enhance our scheme such that dynamic spreading factor assignment according to the fluctuation of channel and more flexible adaptive modulation and coding.

References

[1] M. Z. Afgani, H. Haas, H. Elgala and D. Knipp: Visible light communication using OFDM, Proc. 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (TRIDENTCOM), pp. 129–134, March 2006.

[2] S. Ryu, J. Choi, J. Bok, H. Lee and H. Ryu: High power efficiency and low nonlinear distortion for wireless visible light communication, Proc. 2011 4th IFIP International Conference on New Technologies, Mobility and Security (NTMS), pp. 1–5, February 2011.

[3] L. Cheng, W. Bao and N. Liu: Study of propagation characteristics of outdoor-to-indoor channel in the 60-GHz band, Journal of Communications and Information Networks, Vol. 1, No. 2, pp. 93–101, August 2016.

[4] D. Xue, W. Li, Z. He, M. Luo, H. Li and X. Li: Performance improvement of IM-DD OFDM system by nonuniform DAC output levels, Proc. IEEE Asia Communications and Photonics Conference (ACP), pp. 1–3, December 2018.

[5] P. Wang, J. Xiao and L. Ping: Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems, IEEE Vehicular Technology Magazine, Vol. 1, No. 3, pp. 4–11, September 2006.

[6] F. Adachi, M. Sawahashi and H. Suda: Wideband CDMA for next generation mobile communication systems, IEEE Communications Magazine, Vol. 36, No. 9, pp. 56–69, September 1998.

[7] I. M. Mahafeno, C. Langlais and C. Jego: OFDM-IDMA versus IDMA with ISI cancellation for quasi-static Rayleigh fading multipath channels, Proc. 4th International Symposium on Turbo Codes & Related Topics; 6th International ITG-Conference on Source and Channel Coding (TURBOCODING), pp. 1–6, April 2006.

[8] J. Dang and Z. Zhang: Comparison of optical OFDM-IDMA and optical OFDMA for uplink visible light communications, Proc. 2012 International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6, October 2012.

[9] L. Ping, L. Liu, K. Wu and L. W. Kiu: Interleave division multiple-access, IEEE Transactions on Wireless Communications, Vol. 5, No. 4, pp. 938–947, April 2006.

[10] L. Ping: Interleave-division multiple access and chip-by-chip iterative multi-user detection, IEEE Communications Magazine, Vol. 43, No. 6, pp. S19–S23, June 2005.

[11] A. Kurihara, C. Ahn, T. Omori and K. Hashimoto: An application of OFDM-IDMA to uplink multiuser visible light communication system, Proc. 2015 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), pp. 412–416, November 2015.

[12] A. Kurihara and C. J. Ahn: Uplink multiuser VLC-OFDM-IDMA system with successive interference cancellation, Proc. IEICE International Symposium on Nonlinear Theory and Its Applications (NOLTA), pp. 550–553, December 2017.

[13] K. Shimada, M. Takahashi, K. Maruta and C. J. Ahn: Channel ranking based spread code optimization for visible light communication OFDM-IDMA systems, Proc. The 25th Asia-Pacific Conference on Communications (APCC), pp. 185–189, November 2019.

[14] R. Annavajjala, P. C. Cosman and L. B. Milstein: On source coding, channel coding and spreading tradeoffs in a DS-CDMA system operating over frequency selective fading channels with narrowband interference, IEEE Journal on Selected Areas in Communications, Vol. 23, No. 5, pp. 1034–1044, May 2005.

[15] Z. Guo and K. B. Letaief: Performance of multiuser detection in multirate DS-CDMA systems, IEEE Transactions on Communications, Vol. 51, No. 12, pp. 1979–1983, December 2003.

[16] N. G. Tarhuni, T. O. Korhonen, E. Mutafungwa and M. S. Elmusrati: Multiclass optical orthogonal codes for multiservice optical CDMA networks, Journal of Lightwave Technology, Vol. 24, No. 2, pp. 694–704, February 2006.

[17] S. D. Lausnay, L. D. Strycker, J. P. Goemaere, N. Stevens and B. Nauwelaers: Optical CDMA codes for an indoor localization system using VLC, Proc. International Workshop in Optical Wireless Communications (OWC), pp. 50–54, September 2014.

[18] T. Komine and M. Nakagawa: Fundamental analysis for visible-light communication system using LED lights, IEEE Transactions on Consumer Electronics, Vol. 50, No. 1, pp. 100–107, February 2004.

[19] L. Song, Z. Wang and X. Li: A new parallel interference cancellation algorithm for RAKE systems, Proc. 2009 Third International Conference on Genetic and Evolutionary Computing (ICEGC), pp. 806–809, October 2009.

[20] H. W. Feng, H. L. Chin, D. Shiung and Y. T. Chen: An OVSF code tree partition policy for WCDMA systems based on the multi-code approach, Proc. 2005 IEEE 62nd Vehicular Technology Conference (VTC), pp. 1212–1216, September 2005.

[21] T. Minn and K. Y. Siu: Dynamic assignment of orthogonal variable spreading factor codes in W-CDMA, IEEE Journal on Selected Areas in Communications, Vol. 18, No. 8, pp. 1429–1440, August 2000.

[22] D. S. Saini and S. V. Bhoosan: Code tree extension and performance improvement in OVSF-CDMA systems, Proc. 2007 International Conference on Signal Processing, Communications and Networking (ICSCN), pp. 316–319, February 2007.

[23] Y. R. Tsai and L. C. Lin: Quality-based OVSF code assignment and reassignment strategies for WCDMA systems, IEEE Transactions on Vehicular Technology, Vol. 58, No. 2, pp. 1027–1031, February 2009.
fluctuation of channel and more flexible adaptive modula-
that dynamic spreading factor assignment according to the
users. Future work includes to enhance our scheme such
the case where a fixed spreading factor is assigned to all
accuracy for PIC with minimizing overall spreading factors.
posed approach can realize balanced signal detection ac-
rials experienced the larger channel gain and vice versa. The pro-
Small spreading factor is assigned to the user who expe-
References
[1] M. Z. Afgani, H. Haas, H. Elgala and D. Knipp: Visible light
[2] S. Ryu, J. Choi, J. Bok, H. Lee and H. Ryu: High power e
[3] D. K. Sung, S. B. Park, Y. Jin, G. Koh, S. Park, M. Kim and S.
[4] K. M. Shrestha, K. H. Cho, H. Y. Lee and Y. H. Park: A new
[5] T. Minn and K. Y. Siu: Dynamic assignment of orthogonal variable
[6] F. Adachi, M. Sawahashi and H. Suda: Wideband CDMA for next
[7] V. V. R. Singaperumbudur, R. T. Talukder, S. J. F. H. Haas, D.
[8] J. Dang and Z. Zhang: Comparison of optical OFDM-IDMA and op-
[9] H. Akai, D. L. Schilling, N. Ito and Y. Tanaka: A new subcarrier
[10] Y. Yasuda, Y. Harada, T. Kato and T. Masui: Interference rejection
[11] K. Ito, T. Itoh, Y. Wada, H. Ueda and K. Takahashi: A novel
[12] T. Minn, K. Y. Siu and C. J. K. Y. Siu: Dynamic assignment of
[13] S. M. Ali, M. A. A. Amin and M. B. Ayoub: Performance evaluation
[14] R. Annavajjala, P. C. Cosman and L. B. Milstein: On source coding,
[15] S. D. Lausnay, L. D. Strycker, J. P. Goemaere, N. Stevens and B.
[16] M. A. S. Al-Adwany and M. B. Ayoub: Performance evaluation of
[17] L. Song, Z. Wang and X. Li: A new parallel interference cancel-
[18] T. J. Lim and J. H. Lee: A new algorithm for OVSF code assign-
[19] K. Vadde and H. Qam: A code assignment algorithm for nonblock-
ing OVSF codes in WCDMA, Telecommunication Systems, Vol. 25,
No. 3, pp. 417–431, March 2004.
[20] M. A. S. Al-Adwany and M. B. Ayoub: Performance evaluation of
nonblocking OVSF codes in WCDMA systems, Proc. IEEE Middle
East Conference on Antennas and Propagation (MECAP), pp. 1–6,
October 2010.
[21] M. Moinuddin, A. Zerguine and A. U. H. Sheikh: Multiple access
interference plus noise constrained least mean square (MNCLMS) al-
gorithm for CDMA systems, IEEE Transactions on Circuits and Sys-
tems, Vol. 55, No. 9, pp. 2870–2883, October 2008.
[22] C. H. Hsu and J. G. Proakis: Adaptive interference suppression for
direct sequence CDMA, IEEE Transactions on Information Theory,
Vol. 46, No. 1, pp. 197–210, January 1998.
[23] M. H. H. Chen and W. X. Meng: Channel modeling for visible
light communications-a survey, Wireless Communications and Mo-
Mobile Computing, Vol. 16, No. 14, pp. 2016–2034, February 2016.
[24] K. Lee, H. Park and J. R. Barry: Indoor channel characteristics for
visible light communications, IEEE Communications Letters, Vol. 15,
No. 2, pp. 217–219, December 2011.
Kazushi Shimada received the B.E. de-
gree in electrical and electronics engineer-
ing from Chiba University, Japan in 2019.
His research interests include OFDM, vis-
ible light communication and interference
cancellation. Currently, he is a master
course student at the Graduate School of
Engineering (M.E.), Chiba University. He
received the Best Paper Award at the 25-
th Asia-Pacific Conference on Communica-
tions (APCC2019).
Seiya Hirano received the B.E. degree
in electrical and electronics engineering
from Chiba University, Japan in 2020. His
research interests include OFDM, visible
light communication and its channel mod-
ing. Currently, he is a master course stu-
dent of the Graduate School of Engineering
(M.E.), Chiba University.
Mitsuki Takahashi received the B.E. and
M.E. degrees in electrical and electronics
engineering from Chiba University, Japan
2018 and 2020, respectively. His research interests include OFDM, visible
light communication and successive inter-
ference cancellation.
Kazuki Maruta received the B.E., M.E.,
and Ph.D. degrees in communica-
tion engineering from Kyushu Univer-
sity, Japan in 2006, 2008 and 2016, re-
spectively. From 2008 to 2017, he was
with NTT Access Network Service Sys-
tems Laboratories. Engaged in the
research and development of interfer-
ence compensation techniques for future
wireless communication systems. From
2017 to 2020, he was an Assistant Profes-
sor in the Graduate School of Engineer-
ing, Chiba University. He is currently a
Specially Appointed Associate Professor in the Academy for Super Smart
Society, Tokyo Institute of Technology. His research interests include
MIMO, adaptive array signal processing, channel estimation, medium
access control protocols and moving networks. He is a member of the
IEEE and the Institute of Electronics, Information and Communication
Engineers (IEICE). He received the IEICE Young Researcher’s Award
in 2012, the IEICE Radio Communication Systems (RCS) Active Re-
searcher Award in 2014, APMC2014 Prize, and the IEICE RCS Outstand-
ing Researcher Award in 2018. He was a co-recipient of the IEICE Best
Paper Award in 2018, SoftCOM2018 Best Paper Award and APCC2019
Best Paper Award.
Chang-Jun Ahn received the Ph.D. de-
gree from the Department of Information
and Computer Science from Keio Uni-
versity, Japan in 2003. From 2001 to 2003,
he was an Assistant Professor in the
Department of Information and Com-
puter Science, Keio University. From
2003 to 2006, he was with the Communi-
cation Research Laboratory, Independent
Administrative Institution (now the Na-
tional Institute of Information and Com-
munications Technology). In 2006, he
was on assignment at ATR Wave Engi-
neering Laboratories. In 2007, he was with the Faculty of Informa-
tion Sciences, Hiroshima City University as a Lecturer, Professor. Now,
he is working at the Graduate School of Engineering, Chiba University as
a professor. His research interests include OFDM, digital communication,
channel coding, and signal processing for telecommunications. He served
as an associate editor of the IEICE Trans. on Fundamentals. From 2005
to 2006, he was an expert committee member for emergency communi-
cation committee, Shikoku Bureau of Telecommunications, Ministry of
Internal Affairs and Communications (MIC), Japan. Dr. Ahn received the
ICF Research Grant Award for Young Engineer in 2002, the Funai In-
formation Science Award for Young Scientist in 2003, the Distinguished
Service Award from Hiroshima City in 2010, IEEE SoftCOM2018 Best
Paper Award in 2018, and IEEE APCC2019 Best Paper Award in 2019.
He is a senior member of IEICE and IEEE.

(Received July 27, 2020; revised November 5, 2020)