NSPASES: CAN THOSE EXOGENOUS ENZYMES REALLY CONSTITUTE NATURAL GROWTH COFACTORS IN BROILER CHICKENS?

Sophia Derqaoui¹, Mohammed Oukessou² and Saadia Nassik¹

¹. Unit of Avian Pathology, Department of Veterinary Pathology and Public Health. Agronomy and Veterinary Medicine Institute Hassan II, Rabat, Morocco.
². Unit of Physiology and Therapeutics, Department of Veterinary Biological and Pharmaceutical Sciences. Agronomy and Veterinary Medicine Institute Hassan II, Rabat, Morocco.

Abstract

In the quest to improve public and animal health, white meat is considered to be one of the major causes of antibioresistance identified in medicine, through uncontrolled use of antibiotics in poultry farming as growth promoters (GPA). Thus, this use needs to be reconsidered at large scale. This reconsideration involves the substitution of GPAs by natural alternatives, particularly enzymes degrading non-starch polysaccharides (NSPases) which will allow: 1) modulation of the intestinal microbiota, to attenuate the anti-nutritional effects of insoluble NSPs, 2) reduction of the non-digested portion of the substrate and 3) improvement of the zootechnical performance of the chicken. Non-starch polysaccharides contain two main families, namely: water-insoluble NSPs including cellulose and partially water-soluble NSPs. However, despite the fact that these components constitute the major part of cereal dietary fiber, they have an anti-nutritional effect associated with the viscous nature of these polysaccharides and their interaction with the intestinal microflora due to the fact that poultry does not produce enough endogenous enzymes to hydrolyze NSPs. The use of NSPases produced mainly by fungi and bacteria allows counterbalancing the anti-nutritional properties of dietary fibers by increasing the digestibility of starch and improving the zootechnical performance of broilers, particularly the conversion index. Thus, this literature review aims to shed light on the effects of NSPases on the zootechnical parameters of chickens, the intestinal microflora as well as on nutritional digestibility in order to use them as alternatives to GPAs and limit the aggravation of the phenomenon of antibioresistance. This approach is therefore, part of the world famous concept of "one world one health" and which applies to the design and implementation of programs, policies, legislations and research for which several sectors communicate and collaborate to improve public health outcomes.

Corresponding Author: Sophia Derqaoui
Address: Unit of Avian Pathology, Department of Veterinary Pathology and Public Health. Agronomy and Veterinary Medicine Institute Hassan II, Rabat, Morocco.
Introduction:
In a world of perpetual scientific and intellectual evolutions, the awareness of today's consumer of the health risks of some foodstuffs, has led to the definitive abolition of some substances from production, in general, and the food industry, in particular. This approach has given way to a new concept: "the substitution" of these emblematic substances, subjected to intensive debates, by other substances of natural origin, having the same virtues without generating the same harmful effects. This approach extends to several sectors related to human food, including the poultry sector, as white meat is considered the cheapest and most consumed meat in the world. Indeed, its consumption has experienced an evolution of 58% in 20 years since it increased from 32.038 million tons in 2000 to 50.596 million tons in 2021 (FAO and OECD, 2020).

To meet the increasing human demand for white meat, the use of new farming techniques to intensify production has been imposed. The most commonly known is the use of growth-promoter antibiotics (GPA) in broiler farms (Chevalier, 2011). Thus, the rapid emergence of antibiotic resistance in human and animal health might be linked to the use of GPs in poultry farming. Previous studies have established a direct relationship between the excessive and uncontrolled use of antibiotics in poultry farming and the antibiotic resistance reported in humans. Indeed, when a bacterium involved is resistant to antibiotics, the animal-human passage of antibiotic-resistance is evident (Madec, 2013). In fact, the strain responsible for human salmonellosis was identified, for the first time, in cattle (Gayatri et al., 2017). Selection of resistant bacteria will be important as the number of simultaneously treated animals is greater (Sanders et al., 2017).

Therefore, thinking of GPs use in chicken feed is highly encouraged to come up with cofactors, of natural origin, to substitute GPs. Indeed, several alternatives to GPs have been identified such as enzymes, out of which the most widely used are the so-called non-starch polysaccharide degrading enzymes (NSPases).

According to the literature, NSPases are proteins with catalytic properties that metabolize non-amylaceous polysaccharides (NSP) mainly in viscous cereals (wheat, barley and triscale) into oligosaccharides millions of times faster than in their absence (Ravindranand Son, 2011; Pirgozliev and Bedford, 2013; Pirgozlievet al., 2019). Thus, this degradation allows poultry to metabolize cereal diets, based on an oligosaccharide and not a non-amylaceous polysaccharide (Bedford and Classen, 1992; Bedford and Schulze, 1998). As a result, the development and use of enzymes has gained momentum in poultry nutrition.

Definition And Classification Of Non-Amylaceous Polysaccharides
Dietary fiber is an important component of plants. Plant cell walls are highly ordered and consist of polysaccharides, polyphenolytics, glycoproteins and glycolipids. The components are arranged in three main patterns to give fibrillar polysaccharides (predominantly cellulose and arabinoxylans), matrix polysaccharides (predominantly arabinoxylans, pectin, and β-glucan) and encrusting substances (predominantly lignin) (Cone et al., 1996). The variation and structuring of these fibers are highly dependent on the type of plant, its stage of maturation and the part of the plant. Most poultry feed formulations are based on cereals and cereal-oil meal by-products, so they contain a significant amount of non-amylaceous polysaccharides (Ayoola et al., 2014).

Definition of NSP
Non-starch polysaccharides (NSP) are carbohydrate fractions except for starch and free sugars. They are polymeric carbohydrates whose composition and structure differ from starch and amylopectin. They are the plant structural analogues of the skeletal system in the animal kingdom (Sethy et al., 2015). The monosaccharide unit, namely glucose, is linked by α or β (1-4) bonds, with (1-6), β (1-3) and (1-4) bonds. The main characteristics that distinguish starch from NSP are the type, number, and position of these glucoside links (Hetland et al., 2004). These polymers have high molecular weights ranging from 8.10³ to 1.10⁶ (Sethy et al., 2015). They can be branched or linear, with or without charged groups (Cone et al., 1996). NSP content in plants varies not only with plant species, but also between genotypes and cultivars of the same species. In addition, agronomic growing conditions such as pre-harvest environmental factors and post-harvest storage conditions can influence this content (Sethy et al., 2015).

Thus, NSPs are defined and classified based on the following structural considerations (Choc, 1997):
1. The identity of the monosaccharides,
2. The monosaccharide ring forms (6-membered pyranose or 5-membered furanose),
3. The positions of the glycosidic bonds,
4. The configurations (α or β) of the glycosidic bonds,
5. The sequences of monosaccharide residues in the chain and
6. The presence or absence of non-carbohydrate substituents.

Most recent poultry feed formulations are based on cereals, cereal meal by-products, and oilseeds, so they contain a significant amount of NSPs. These are classified according to several factors (Ayoola et al., 2014).

Classification Of NSPs
The term non-starch polysaccharides (NSPs) covers a wide variety of polysaccharide molecules except α-glucans (starch). The classification of NSPs was originally based on their methodology of extraction and isolation. The remaining residue after series of alkaline extractions of cell wall materials is referred to as cellulose and the fraction of this residue solubilized by alkali is referred to as hemicellulose (Choct, 1997). Thus, NSPs are seriated according to their water solubility and on the basis of their linkage.

Based on their solubility
- Water-insoluble NSPs including cellulose (Choact, 2002) are polysaccharides of the β-D-glucan series. Their repeating unit is cellobiose which consists of two β-D-glucopyranoses (glucoses) in their 4C 1 chair conformation joined by a β1-4 glycosidic bond (Stage, 2002).
- NSPs partially soluble in water (Choact, 2002):
 - Non-cellulosic polysaccharides (also called hemicellulose): this is a mixture of non-cellulosic polymers-arabinoxylans, linked beta-glucans, mannans, galactans, xyloglucan, fructan.
 - Pectic polysaccharides: these are poly-galactouronic acids that can be substituted by arabinan, galactan and arabinogalactan.

On the basis of their linkage
- Water-soluble or partially water-soluble NSPs: glycosidic beta 1, 4 linkage backbones with beta 1, 3 linkages (Sethy et al., 2015).
- Water-insoluble NSPs: long 1, 4 glycosidic beta unit sequence (Sethy et al., 2015).

Commonly known NSPs
Although commonly referred to as NSPs, plant cell wall polysaccharides include a wide range of chemically distinct compounds in different combinations and proportions that are characteristic and variable among different plant species. Some of the common NSPs present in plant cell wall are classified as cellulosic, hemicellulosic, pectic, and/or galactosidic substances (Bailey 1973; Choct, 1997; Bach Knudsen, 2001; Johansson et al., 2004; Sethy et al., 2015; Singh and Kim, 2021) (Figure1).
Moreover, the non-amylaceous polysaccharide content of food ingredients varies among products (Table 1). From 10% to 30% of cereals are NSP-based, the majority of which are composed of arabinoxylans, cellulose and β-glucans. Nevertheless, cereal grains can be classified into two groups:

1. Viscous cereals: rye, wheat, barley, triticale and oats and
2. Non-viscous cereals: corn, sorghum, rice and millet.

This classification is based primarily on the amount of soluble NSPs present in the grain (Table 1)(Choct, 1997; Choct, 2015; Englyst, 1989; Graham and Aman, 2014).
Table 1: Concentration of non-cellulosic polysaccharide fractions in cereal grains [g/kg DM] (Rodehutscord et al., 2015).

Cereals	Type	Arabinobxylane	β-glucanes	Cellulose	Soluble NSP	Total NSP
Wheat	Soluble	13.9	2.0	-	19.1	98.2
	Total	63.7	6.1	14.4		
Barley	Soluble	9.7	24.1	-	50.6	172
	Total	77.4	46.7	27.5		
Rye	Soluble	30.9	6.6	-	41.2	139
	Total	85.4	20.1	11.9		
Triticale	Soluble	12.6	0.9	-	20.6	103
	Total	55.3	6.6	19.3		

Anti-Nutritional Properties Of Partially Water-Soluble NSPs

It is generally admitted that the main adverse effects of NSPs are associated with the viscous nature of these polysaccharides, their physiological and morphological effects on the gastrointestinal tract and their interaction with the gut microflora. These properties generate a considerable decrease in growth parameters of broiler chicken and are considered as anti-nutritional factors (Choct and Annison, 1992; Choct, 1997; Topping, 2007; Chutkan et al., 2012; Mateos et al., 2012; Choct, 2015). Indeed, the anti-nutritional effect of NSPs is due to the fact that poultry does not have the capacity to produce enough endogenous enzymes to hydrolyze the glycosidic bonds of its polysaccharides (Carré, 1993). Since polysaccharides are the major caloric substrate in poultry nutrition, its available metabolizable energy and impact on zootechnical parameters are directly related to the dietary level of NSPs (Santos et al., 2004a,b). In addition, NSPs undergo rapid fermentation in the gut and act as an energy source for anaerobic pathogens, including Clostridium perfringens, the bacillus responsible for necrotic enteritis in poultry, and aerobic agents, namely: Escherichia coli (Hetland et al., 2004; Józefiak et al., 2006; Timbermont et al., 2011; Sethy et al., 2015; Hashemipour et al., 2016). Thus, the anti-nutritive effects of non-amylaceous polysaccharides include:

Viscosity

The viscosity of the digest is one of the main factors influencing digestibility. Indeed, viscosity interferes with efficient diffusion of nutrients including fat-soluble vitamins and minerals, subsequently reducing their degradation by endogenous enzymes at the mucosal surface and their transport (Montagne et al., 2003; Bederska-Łojewska et al., 2017). Their poor absorption is probably due to a reduction in the formation of micelles mediating their transfer to the brush border of the intestinal epithelium for absorption. This process leads to a low metabolizable energy level of feed and consequently, reduced poultry growth (Kluth and Rodehutscord, 2007; Slominski, 2011; Chutkan et al., 2012; Latorre et al., 2015), which in turn, causes an increase in feed consumption to compensate for the lack of nutrients and therefore, an increase in the production cost (Boros et al., 1998; Goncharenko et al., 2011; Cordoso et al., 2014).

NSPs increase viscosity also by directly interfering with water molecules allowing the formation of a "cage" type structure that traps nutrients. At high concentrations, the NSP molecules interact with each other and become further entangled in a network consecutively increasing the viscosity of the digest (Simon, 1998; Mudgil and Barak, 2013). Thus, the viscosity and water retention capacity of soluble NSPs are relatively high compared to insoluble NSPs (Thebaudin et al., 1998; Sethy et al., 2015; Whiting et al., 2017). Indeed, supplementation with 15 g/kg of wheat arabinoxylan decreased the apparent average amino acid digestibility by 17% and increased the average of endogenous amino acid loss by 23.5 g/kg DM intake (Angkanaporn et al., 1994). Similarly, the loss of lysine and methionine in a low-fiber diet (Raw Fiber = 30 g/kg) was 0.4 and 0.17 g/kg, respectively, and 0.59 and 0.19 g/kg, respectively, in a high-fiber diet (FC = 80 g/kg) (Kluth and Rodehutscord, 2009). These properties of NSPs reduce digestion and nutrient absorption efficiencies.

Furthermore, the degree of solubility is directly related to that of branching and polymerization of the non-amylaceous polysaccharide, in that, the greater the branching is, the higher the viscosity and degree of water retention are (Sethy et al., 2015). In addition, soluble NSP generates sticky fecal material that increases moisture content of the litter and therefore promotes the development of pathogens in the chicken environment (Bach Knudsen, 2014). These conditions are so far favorable for the development of plantar pododermatitis causing intense pain in the musculoskeletal system reducing the individual’s movements for feed intake which ends into decreased
growth (Meluzzi et al., 2008). In addition to the viscosity, anNSP rich diet generates a high bacterial translocation to the portal system, causing systemic infections that can lead to death in the most severe cases (Latorre et al., 2015).

Gut microflora:
The microflora is a key link influencing the health status of poultry, especially intestinal development, digestion, nutrients’ absorption and immune system (Matin et al., 2012; Sánchez et al., 2017). It is present throughout the poultry tract, with a progressively increasing population along the intestines. The vast majority of which resides in the cecum, ranging from 10^{11} to 10^{12} Colony-Forming Units (CFU)/g of luminal content (Apajalahti et al., 2004). Therefore, it is crucial to maintain balanced populations of beneficial bacteria (Lactobacillus, Enterococcus, and Bifidobacterium) and potentially pathogens (Clostridium perfringens, Escherichia coli, Salmonella spp.) present in the gastrointestinal tract (Matin et al., 2012; Bederska-Lojewska et al., 2017).

Commensal bacteria in the gastrointestinal tract are able to ferment not digested nutrients by endogenous enzymes including those resulting from the digestion of NSPs. As a result, lactic acid and short chain fatty acids (SCFAs), mainly acetate, propionate and butyrate, are formed. These compounds play an important role as energy sources for chicken (Józefiak et al., 2004). In addition, SCFAs reduce the number of pathogenic bacteria by lowering the pH of the gastrointestinal tract, which creates unfavorable conditions for their proliferation, while such an environment promotes the development of the commensal anaerobic population (Bederska-Lojewska et al., 2017). Indeed, the ability of SCFAs to readily penetrate the lipid membrane is considered one of the mechanisms of antimicrobial action of SCFAs (Ricke, 2003; Singh and Kim, 2021). Studies have confirmed a reduction in the population of Salmonellatypimurium in poultry (Van der Wielen et al., 2000; Józefiak et al., 2004) and Campylobacter jejuni in broiler chicken (Guyard-Nicodème et al., 2016). Soluble dietary fiber has the ability to inhibit the adherence of C. difficile, enterotoxigenic E. coli, and Salmonella to the intestinal epithelium both in vitro and in vivo (Roberts et al., 2013).

However, there is no doubt that a high level of ileal viscosity slowing down the gastric passage rate and leading to impaired digestion, has a negative effect on the gut microbiota as undigested nutrients become a fertile ground for pathogen proliferation (Bedford and Cowieson, 2012). Indeed, the overgrowth of certain anaerobic organisms can lead to toxin production and the deconjugation of bile salts essential for fat digestion (Choct, 1997). In addition, when digestion is compromised, the flow of unabsorbed nutrients into the cecum increases dramatically (Choc et al., 1996) causing dramatic changes in bacterial population (Chen et al., 2010). The increase in the concentration of undigested substrates in the gastrointestinal tract generates proliferation of the local microflora, causing the competition phenomenon for nutrients with the host, thus accentuating the risk of microbial disruption if the balance is in favor of pathogen growth (Kiarie et al., 2013). Indeed, excessive levels of dietary NSPs can tip the balance of the host’s symbiotic commensal microflora towards the more pathogenic that ultimately harm gut health, animal welfare, and jeopardize the microbial safety of products (Ayoola et al., 2014). Furthermore, the host counteracts increased undigested substrates by increasing gut mass, which increases health and maintenance requirements and compromises growth efficiency resulting in increased cost price per kilogram of live weight (Ferrell, 1988; Agyekum et al., 2012).

The anti-nutrient effects of partially soluble NSPs depend on the polymeric nature of the considered NSPs, once the polymers are cleaved into smaller fragments, their activity is amply limited. Therefore, it is appropriate to ensure that these long-branched chains of non-starch polysaccharides are cleaved to better take advantage of their nutritional value (Singh and Kim, 2021). This denaturation is achieved through exogenous enzymes that help to amend the zootechnical performance of a healthy individual through improving digestibility or stabilizing the gut flora or maintaining a healthy environment for growth (Pirgozliev et al., 2019).

Definition Of Exogenous Enzymes
Enzymes are biological catalysts that activate reactions and act on specific substrates or reactants. Their effectiveness in poultry feeding depends on some criteria based on their mechanism of action (Bedford and Schulze, 1998).

Exogenous enzymes facilitate specific chemical reactions and target specific substrates. These enzymes are produced primarily by fungi and bacteria and have been used since the late 1970s (Ravn et al., 2016). They belong to the group of zootechnical feed additives that favorably affect poultry performance through improvement of digestibility or stabilization of gut flora (Pirgozlievetal, 2019). Enzymes widely used in feed industry are non-starch
polysaccharide cleaving enzymes (NSPases namely xylanase, β-glucanase, β-mannanase, α-galactosidase and pectinase) which are safe feed additives designed to improve average weight gain and feed conversion in poultry (Pirgozliev and Bedford, 2013; Ravn et al., 2016)

NSPase enzymes hydrolyze non-digestible bonds in plant substrates allowing improved digestibility (Bedford and Classen, 1993; Mathlouthi et al., 2002; Coppedge et al., 2012.). Indeed, the increase in gut viscosity causes alterations in the microflora and reduction in nutrient utilization; however, the use of a suitable NSPase counters these anti-nutritional properties (Chocht et al., 1999). Furthermore, the inclusion of NSPases in broiler diets also improves growth performance (Azaro et al., 2003; Meng and Slominski, 2005; Coppedge et al., 2012) and this can be attributed to an increase in apparent metabolizable energy, digestible ileal energy, and dry matter retention (Meng and Slominski, 2005; Leslie et al., 2007; Cowieson and Ravindran, 2008; Olukosi et al., 2010). The majority of diets contain a variety of NSPs; thus, the most effective means is supplementation with an enzyme cocktail that varies in specificity and mode of action. This approach has the advantage of increasing starch digestibility and improving broiler performance, especially feed conversion ratio (Meng and Slominski, 2005). Nevertheless, each substrate requires different enzymes and the enzymes required afterwards depend on the final objective namely: viscosity reduction or pre-biotic generation (Langfelder, 2014).

Effects Of Nspase Enzymes
Poultry is not fully capable of digesting fiber in plant-based feeds since this species does not produce enough digestive enzymes (Boros et al., 2004), supporting the major interest of using exogenous enzymes that increase fiber digestibility (Classen, 2014).

On nutritional digestibility
Insoluble NSPs constitute the essential component of total fiber present in the poultry diet. Indeed, they promote the evacuation of the gut and its maintenance in good health (Francesch et al., 2012; Mendes et al., 2012). Nevertheless, a high concentration of dietary fiber shortens the digest transit time leading to reduced digestion and consequently absorption (El-Wafa et al., 2013; Sethy et al., 2015). Thus, the use of NSPases in viscous grain diets has been almost ubiquitous for decades. Indeed, the low level of endogenous enzymes in poultry has led to the widespread adoption of exogenous enzyme supplementation to take full advantage of the nutritional value of each feed (Flores et al., 2019). NSPases prevent the accentuation of viscosity in the gastrointestinal tract and its associated problems (Santos et al., 2013; Munyaka et al., 2015; Tellez et al., 2015) which will allow better digestion and absorption of nutrients, reduced microbial proliferation and healthier gut (Pirgozliev et al., 2010; 2015; Abdulla et al., 2017). Indeed, when xylanase is used, for example, with rye, triticale, and wheat-based diets and glucanase with barley-based diets, the positive effect of enzyme supplementation is mainly due to the reduction of the viscosity of the digest and the partial hydrolysis of the soluble NSP fraction (Gao et al., 2007; Aftab, 2014). In addition, incorporation of a cocktail of NSPases namely xylanase, β-glucanase and pectinase resulted in a significant decrease in jejunal viscosity of digest in broilers fed a corn-based diet (Dunaway and Adedokun, 2021).

Due to their ability to partially hydrolyze polysaccharides, NSPases soften the "cage effect" of NSP (Pirgozliev and Bedford, 2013; Ravn et al., 2016) which allows pancreatic enzymes to better digest nutrients, and improve their absorption by intestinal villi, thereby increasing digestible energy rate and consequently, nutritional value of the grain (Masey O’Neil et al., 2014). Indeed, NSPases supplementation of 75g/ton of feed with a cocktail of 203 IU of xylanase, 60 IU of cellulase, and 53 IU of glucanase per kilogram of supplement improves the apparent ileal digestibility of polysaccharides and proteins by 2% and 23%, respectively (Woyengo et al., 2019). Similarly, the inclusion of NSPases, namely: α-galactosidase and xynalase significantly improved the total ileal digestibility of amino acids (aspartic acid, threonine, serine, glutamic acid, proline, glycine, alanine, cysteine, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, lysine, histidine, and tryptophan) by 3.8% compared to the unsupplemented group (Jasek et al., 2018). Also, supplementation with xylanase improves starch digestibility in the jejunum and ileum by 2.4%, leading to increased energy in broilers (Stefanello, 2015). An inclusion of this enzyme in the diet of laying hens reduces their intestinal viscosity allowing a better benefit from nutrients (Bederska-Łojewska et al., 2019).

Indeed, digestive viscosity was reduced with dietary supplementation with a mixture of 2500IU of xylanase and 250IU of β-glucanase per kilogram of feed as well as in jejunal digest viscosity to a greater extent in wheat-based diets (-31%) than in maize-based diets (-10%) compared to the group without enzymes. Starch digestibility was also higher in the supplemented diet group (3.5%) (Munyaka et al., 2015). In addition, supplementation of carbohydrase
in vitro, namely: xylanase and arabinofuranosidase increased digestibility of dry matter and solubilized arabinoxylan, in particular, from 6% to 41% (Vangsoe et al. 2020). Certainly, supplementation with NSPases improves total digestibility coefficient values by 9 to 11 units in broilers compared to both positive and negative controls (Maharjan et al., 2019).

On growth performance

In an attempt to reduce the anti-nutritive effects of NSPs, exogenous enzyme supplementation in poultry has been shown to be effective, especially in high fiber diets. This eternal quest concerns both nutritional digestibility and growth parameters of broilers.

Indeed, the administration of β-mannanase and NSPases (carbohydrate cocktail: xylanase, β-glucanase and α-galactosidase) at 363.2 g/t of feed (159.5 × 10^3 IU/g product) and 113.5 g/t feed (2700 IU/g product), respectively, in an energy-reduced diet (88 or 132 kcal/kg of apparent metabolizable energy (AME) depending on the growth stage) improves zootechnical performance and reduces broiler mortality to levels similar to those of the positive control (PC) (Williams et al., 2014).

In a similar context, supplementation of β-mannanase in an energy-reduced diet of 132 kcal/kg MEA in broilers reduces conversion index and increased body weight of individuals compared to CP while maintaining similar weight (Klein et al., 2015). Use of a 0.01% mixture of NSPases (cellulase, glucanase, and xylanase) in broilers significantly optimizes weight gain by 3.04% (Horvatovic et al., 2015).

Xylanase supplementation also appears to improve average daily gain in 20–25-day old broilers by 2.5 g/day and to decrease the conversion index by 6 points compared to the negative control (Singh and Kim, 2021). The same enzyme in combination with protease at 0.25g and 0.20g of a commercial product per kg of feed respectively, improved the conversion index as well as the body weight gain of broiler (Barekatain et al., 2012). Xynalase had as well a positive effect on zootechnical parameters as a whole as on apparent metabolizable energy in the finishing phase and this at 2000 IU/kg feed (Peron et al., 2012). Similarly, the incorporation of a commercial product at a rate of 500g/t of feed containing a cocktail of NSPases namely α-galactosidase, β-mannanase, protease, amylase, β-glucanase, xylanase and cellulose significantly improves the conversion index compared to the negative control (Bilal et al., 2016). Also, enzyme B supplementation (with 1500 IU/g of α-amylase and 300 IU/g of amylpectase) as well as administration in another group of individuals of enzyme C(with 1500 IU/g of α-amylase, 300 IU/g amylpectase and 10,000 IU/G protease) reduced body weight gain to a higher level than that displayed by broilers supplemented with enzyme A (with 1,500 IU/g α-amylase) or enzyme D (with 1,500 IU/g α-amylase, 300 IU/g amylpectase, 10,000 IU/G protease and 15,000 IU/g xylanase) (Yin et al., 2018).

On the gut microflora

The gastrointestinal tract hosts a variety of microbiota that play a critical role in the overall well-being of the chicken, in general, and its digestive health, in particular (Kiarie et al., 2013). In broilers, 16S rDNA gene sequence analysis revealed thirteen, eleven, fourteen, twelve, nine, and fifty-one operational taxonomic units in the proventriculus, gizzard, duodenum, jejunum, ileum, and cecum, respectively (Jong et al., 2007). The diversity and abundance of the gut microbiota is affected by the composition of the diet as well as its digestibility (Kiarie et al., 2013; Kiarie et al., 2014). NSPase supplementation improves digest transit and nutrient digestion rate, leading to fewer opportunities for pathogen-substrate interaction (Huyghebaert et al., 2011). Indeed, broilers supplemented with xylanase hosta negligible number of C. perfringens compared to control individuals (Chocq et al., 2006) as well as reduced numbers of coliforms and Salmonella in the ileum (Nian et al., 2011). Dietary supplementation with xylanase in broilers challenged with Salmonella spp. effectively induced a 61% reduction in Salmonella in positive cecal samples compared to the control group (Amerah et al., 2012). Similarly, the abundance of enterobactreacea was reduced in caeca following incorporation of NSPases into the cereal diet (Rosin et al., 2007; Jozefiak et al., 2011). NSPases are also able to decrease the susceptibility of broiler chicken to Salmonella, Campylobacter jejuni and Brachyspira intermediaceae (Montagne et al., 2003). Nevertheless, high numbers of Campylobacter, Helicobacter, Butyricicoccus, Anaerostipes Bifidobacterium, Sutterella and Odoribacter were detected in broilers aged between 16 and 23 days and supplemented with enzymes B (with 1500IU/g of α-amylase and 300IU/g of amylpectase), C (with 1500IU/g of α-amylase, 300IU/g of amylpectase and 10000 IU/g of protease), D (with 1500IU/g of α-amylase, 300IU/g of amylpectase, 10000 IU/g of protease and 15000 IU/g of xylanase) and E (with
In addition to their effects on pathogens, NSPases have an extensively researched pre-biotic effect. Indeed, the cleavage of non-starch polysaccharides by exogenous enzymes, including NSPases, allows the release of oligosaccharides into the gastrointestinal tract. When these compounds reach the cecum, they, selectively, stimulate growth and activity of intestinal bacteria such as Bifidobacterium and Lactobacillus (Thammarutwasik et al., 2009) to act as pre-biotics in the poultry gut (Masey O'Neill et al., 2014b; Choto, 2015). Xylanase, for example, does not produce pre-biotics certainly but rather a signaling molecule stimulating bacterial species that can degrade xylan to produce xylanases (Bedford, 2018). NSPase supplementation thus, influences ileal and cecal microbiota (Gonzalez-Ortiz et al., 2016) and results in increased cecal fermentation (Masey O'Neill et al., 2014a).

Economic Coating of NSPase

Current broiler strains are characterized by rapid growth and high feed conversion rates. To utilize this promising potential, it is imperative to adopt a balanced nutrition that allows expressing their full genetic potential (Kubis et al., 2020). However, the cost of grain feedstock is a critical component of production costs in poultry production (Zentek and Boroojeni, 2020). Indeed, feed costs for chickens account for up to 80% of total production costs (Zhang et al., 2020). Therefore, in order to maintain production profitability while ensuring product quality, it is crucial to improve utilization of nutrients contained in feeds through feed additives. (Kubis et al., 2020). The majority of feed costs (95%) is for energy and protein requirements, about 3 - 4% for minerals and vitamins and about 1 - 2% only is spent for various food additives (Zentek and Boroojeni, 2020).

In addition to the beneficial effects of NSPases, these enzymes save energy in feed formulations in poultry, contributing to reduce the AME content of corn-based diets by up to 100 kcal/kg, therefore saving about 7.00 USD per ton of feed (Gomes, 2016). Hence, a cocktail of xylanase, β-glucanase and phytase saved 0.045 USD per kilogram of weight gain even with very poor quality feed material (Olwood and Liu, 2012).

As discussed above, the effects of NSPases seem to be multidirectional. They limit the increase in digestive viscosity by hydrolyzing soluble polysaccharides, enhance the proliferation of beneficial microflora by providing substrates for fermentation, increase the availability of nutrients, thus improving the nutritional value of NSP-rich grains and ultimately increasing poultry performance while reducing production cost.

Conclusion:

Use of such exogenous enzymes is therefore an effective method to eliminate the nutrient encapsulation effect of plant cell walls, generate oligomers, support the gut microbiota, and limit the use of GPAs to maintain gut health in poultry (Singh and Kim, 2021). With the existing challenges of the anti-nutritional effect of non-amylaceous polysaccharides, further investigations are required to explore the possibilities of improving the utilization of these products to, thereby, limit extensive use of growth promoting antibiotics.

References:

1. Abdulla JM, Rose SP, Mackenzie AM & Pirgozliev VR (2017). Feeding value of field beans (Vicia faba L. var. minor) with and without enzyme containing tannase, pectinase and xylanase activities for broilers. Archives Anim. Nutri., 70(5): 350-363.
2. Aftab U (2014). NSP-degrading enzymes in non-viscous diets for poultry. In Vista (Ed) International non-starch polysaccharide forum. Inspire proceedings. 106 – 114.
3. Agyekum AK, Słominski BA & Nyachoti CM (2012). Organ weight, intestinal morphology, and fasting whole-body oxygen consumption in growing pigs fed diets containing distillers dried grains with solubles alone or in combination with a multi-enzyme supplement. J. Anim. Sci., 90: 3032–3040.
4. Amerah AM, Mathis G & Hofacre CL (2012). Effect of xylanase and a blend of essential oils on performance and Salmonell colonization of broiler chickens challenged with Salmonella heidelberg. Poult. Sci., 91: 943–947.
5. Angkanaporn K, Choot M, Bryden WL, Aninson EF & Aninson G (1994). Effects of wheat pentosans on endogenous amino acid losses in chickens. J. Sci. Food Agric., 66: 399–404.
6. Apajalahti J, Kettunen A & Graham H (2004). Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World’s Poult. Sci. J., 60: 223–232.
7. Ayoola AA, Grimes J, Kocix M & Ferket P (2014). Impact of Dietary Exogenous Enzyme Supplementation on Endogenous Secretion, Gastrointestinal Health, Nutrients Digestibility and Growth Performance of Poultry. PhD thesis. North Carolina State University, USA. ProQuest Dissertations Publishing, 2014. 3584278.
8. Bach Knudsen KE (2014). Fiber and non-starch polysaccharide content and variation in common crops used in broiler diets. Poultry Sci. Vol., 93: 2380–2393.
9. Bailey RW (1973). Structural carbohydrates. In: Butler G.W., Bailey R. W., (Eds), Chemistry and Biochemistry of Herbage. New York: Academic Press, I: 157–211.
10. Barektaim MR, Choc M, Antipatis C & IJI PA (2012). Use of protease and xylanase in broiler diets containing distillers’ dried grains with soluble. Aust. Poult. Sci. Symp., 23nd: 65-68.
11. Bederska-Lojewska D, Światkiewicz S, Arczewska-Włosek A & Schwarz T (2017). Rye non-starch polysaccharides: Their impact on poultry intestinal physiology, nutrients digestibility and performance indices, a review. Anim. Nutr. Sci., 17: 351-369.
12. Bederska-Lojewska D, Arczewska-Włosek A, Światkiewicz S, Orczewska-Dudek S, Schwarz T, Puchała M, Krawczyk J, Boros D, Fraś A, Micek P & Rajtar P (2019). The effect of different dietary levels of hybrid rye and xylanase addition on the performance end egg quality in laying hens. Brit. Poult. Sci., DOI: 10.1080/00071668.2019.1605149;
13. Bedford MR & Classen HL (1992). Reduction of intestinal viscosity through manipulation of dietary and pentosane concentration is effected through changes in the carbohydrate composition of the intestinal aqueous phase and results in improved growth rate and food conversion efficiency of broiler chicks. J. Nutr., 122: 560–569.
14. Bedford MR & Classen HL (1993). An in vitro assay for prediction of broiler intestinal viscosity and growth when fed rye-based diets in the presence of exogenous enzymes. Poult. Sci., 72: 137–143.
15. Bedford MR (2018). The evolution and application of enzymes in the animal feed industry: the role of data interpretation. Brit. Poult. Sci., 59(5): 486-493. DOI: 10.1080/00071668.2018.1484074.
16. Bedford MR & Cowieson AJ (2012). Exogenous enzymes and their effects on intestinal microbiology. Anim. Feed. Sci. Technol., 173: 76-85.
17. Bedford MR & Schulze H (1998). Exogenous enzymes for pigs and poultry. Nutr. Res. Rev., 11: 91–114.
18. Bilal MMA, Mirza1 M, Kaleem M, Saeed MD, Reyad-ul-Ferdous M & Abd El-Hack ME 2016. Significant effect of NSPase enzyme supplementation in sunflower meal-based diet on the growth and nutrient digestibility in broilers. J. Anim. Physiol. Nutr., 101: 222-228.
19. Boros D, Marquardt RR & Guenter W (1998). Site of exoenzyme action in gastrointestinal tract of broiler chicks. Can. J. Anim. Sci., 78: 599–602.
20. Boros D, Słominski BA, Guenter W, Campbell LD & Jones O (2004). Wheat by products in poultry nutrition. Part II. Nutritive value of wheat screenings, bakery by-products and wheat mill run and their improved utilization by enzyme supplementation. Can. J. Anim. Sci., 84: 429-435.
21. Cardoso V, Ferreira AP, Costa M, Ponte PIP, Falcão L, Freire JP, Lordelo MM, Ferreira LMA, Fontes CMGA & Ribeiro T (2014). Temporal restriction of enzyme supplementation in barley-based diets has no effect on broiler performance. Anim. Feed. Sci. Technol., 198: 186–195.
22. Chen KT, Malo MS, Moss AK, Zeller S, Johnson P, Ebrahimi F, Mostafa G, Alam S, Ramasamy S, Warren H, Hohmann Ed & Hodin R (2010). Identification of specific targets for the gut mucosal defense factor intestinal alkaline phosphatase. Am. J. Physiol. Gastrointest. LiverPhysiol., 299: 467-475.
23. Chevalier P (2011). Les antibiotiques en production animale: les promoteurs de croissance. Institut National de Santé Publique du Québec. Enligne:
24. www.dsest.umontreal.ca/documents/Webinaire20110118Presentation.pdf (12/01/2016).
25. Choct M (2002). Non-starch polysaccharides effect on nutritive value. In: McNab J et Neil Boorman (Edits) Poultry Feedstuffs: Supply, Composition and Nutritive Value (448p). Proceedings of the 26th Poultry Science Symposium, held in Peebles, Scotland, UK. July 2002, CABI Publishing, 221-226.
26. Choct M (1997). Feed non-starch polysaccharides: chemical structures and nutritional significance. Feed Mill. Int., 191:13-27.
27. Choct M (2015). Feed non-starch polysaccharides for monogastric animals: classification and function. Anim. Prod. Sc., 55: 1360-1366.
28. Choct M & Annison G (1992). Anti-nutritive effect of wheat pentosans in broiler chickens: roles of viscosity and gut microflora. Br. Poult. Sci., 33: 821-834.
30. Choc M, Hughes RJ & Bedford MR (1999). Effects of a xylanase on individual bird variation, starch digestion throughout the intestine, and ileal and caecal volatile fatty acid production in chickens fed wheat. Br. Poult. Sci., 40: 419-422.

31. Choc M, Hughes RJ, Wang J, Bedford MR, Morgan AJ & Annison G (1996). Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens. Br. Poult. Sci., 37: 609–621.

32. Choc M, Sinsae M, Al-Jassim RAM & Pettersson D (2006). Effects of xylanase supplementation on between-bird variation in energy metabolism and the number of Clostridium perfringens in broilers fed a wheat-based diet. Aust. J. Agric. Res., 57: 1017–1021.

33. Chutkan R, Fahey G, Wright WL & McRorie J (2012). Viscous versus nonviscous soluble fiber supplements: Mechanisms and evidence for fiber-specific health benefits. J. Am. Acad. Nurse Pract., 24: 476-487.

34. Classen HL (2014). The role of soluble and insoluble fiber in poultry nutrition. In Vista A.B. (Ed) Inspire Proceedings. International Non-Starch Polysaccharide Forum. A.B. Vista, a division of A.B. Agri Ltd, 35-41.

35. Cone H, Smiths M & Annison G (1996). Non-Starch plant polysaccharides in broiler nutrition towards a physiologically valid approach of their determination. World Poutry Sci. J., 52: 203 – 220.

36. Coppedge J, Oden L, Ratliff B, Brown B, Ruch F & Lee J (2012). Evaluation of non-starch polysaccharide degrading enzymes in broiler diets varying in nutrient and energy levels as measured by broiler performance and processing parameters. J. Appl. Poult. Res., 21: 226 – 234.

37. Cowsion AJ & Ravindran V (2008). Sensitivity of broiler starters to three doses of an enzyme cocktail in maize-based diets. Br. Poult. Sci., 49: 340–346.

38. Dunaway A & Adedokun SA (2021). Coccidia Vaccine Challenge and Exogenous Enzyme Supplementation in Broiler Chicken 1. Effect on Digesta Viscosity, Diet Energy Utilization, and Apparent Metabolizable Energy Value of Wheat. Animals, 11(3): 641.

39. El-Wafa AS, Shalash SM, Selim NA, Abdel-Khalik, Radwan AM & Abdel Salam AF (2013). Response of broiler chicks to xylanase supplementation of corn/rye containing diets varying in metabolizable energy. Int. J. Poult. Sci., 12: 705–713.

40. Elliot MA (2012). New concepts in layer nutrition. Aust. Poult. Sci. Symp., 23: 217-231.

41. Englyst H (1989). Classification and measurement of plant polysaccharides. Anim. Feed Sci. Tech., 23: 27–42.

42. OCDE/FAO (2020). Perspectives agricoles de l'OCDE et de la FAO 2020-2029, Éditions OCDE, Paris/FAO, Rome.

43. Ferrell CL (1988). Contribution of visceral organs to animal energy expenditures. J. Anim. Sci., 66: 23–34.

44. Flores CA, Duong T, Askelson TE, Dersjant-Li Y, Gibbs K, Awati A & Lee JT (2019). Effects of direct fed-microorganisms and enzyme blend co-administration on growth performance in broilers fed diets with or without antibiotics. Poult. Sci. Assoc. Inc., 28: 1181–1188.

45. Francesch M, Pérez-Vendrell AM & Broz J (2012). Effects of a mono-component endoxylanase supplementation on the nutritive value of wheat-based broiler diets. Brit. Poult. Sci., 53: 809–816.

46. Gao F, Jiang Y, Zhou GH & Han ZK (2007). The effect of xylanase supplementation on growth, digestion, circulating hormones and metabolite levels, immunity and gut microflora in cockerels fed wheat-based diets. Brit. Poult. Sci., 48: 480–488.

47. Gayatri S, Das RK, Brar SK, Rouissi T, Ramirez AA, Chorfi Y & Godbout S (2017). Alternatives to antibiotics in poultry feed: molecular perspectives. Critical Reviews in Microbiology, 44(3): 318–335.

48. Gomes G (2016). Selecting xylanases for consistent performance improvements. International Poultry Production, 23(8): 7 – 9.

49. Goncharenko AA, Timoshchenko AS, Berkutova NS, Ermakov SA, Makarov AV, Semenova TV, Tochilin VN, Lazareva EN, Tsygankova NV & Khakhalev SV (2011). Divergent selection for water extracts viscosity in winter rye. Russian Agric. Sci., 37: 273–279.

50. Gong J, Si W, Forster RJ, Huang R, Yu H, Yin Y, Yang C & Han Y (2007) 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiol Ecol., 59(1):147-57. DOI: 10.1111/j.1574-6941.2006.00193.x. PMID: 17233749.

51. Gonzalez-Ortiz G, Viennola K, Apajalahti J & Bedford MR (2016). Xylanase Supplementation Influences Performance and Intestinal Fermentation in Broiler Chickens. Proc. Gut Microbiology. 10th Symposium INRA-Rowett Seminar Series, Clermont-Ferrand, France. 128.

52. Graham H & Aman P (2014). Carbohydrate chemistry, analysis and nutrition. In: Walker T.R. (Ed.) ‘Proceedings of Poultry Feed Quality Conference’. Kuala Lumpur, Malaysia, 21 – 22 August 2014. (Asian Agribusiness: Singapore).
53. Guyard-Nicodème M, Keita A, Quesne S, Amelot M, Poezevara T, Le Berre B, Sánchez J, Vesseur P, Martin Á, Medel P&Chemaly M (2016). Efficacy of feed additives against Campylobacter in live broilers during the entire rearing period. Poultry Sci., 95: 298–305.

54. Hashemipour H, Khaksar V, Rubio LA, Veldkamp T&VanKrimpen MM (2016). Effect of feed supplementation with a thymol plus carvacrol mixture, in combination or not with an NSP-degrading enzyme, on productive and physiological parameters of broilers fed on wheat-based diets. Anim. Feed. Sci. Technol., 211: 117–131.

55. Hetland H, Choc M&Svihus B (2004). Role of insoluble non-starch polysaccharides in poultry nutrition. World’s Poultry Sci. J., 60: 415 – 422.

56. Horvatovic MP, Glamocic D, Zikic D&Hadnadjev TD (2015). Performance and some intestinal functions of broilers fed diets with different inclusion levels of sunflower meal and supplemented or not with enzymes. Brazi. J. Poult. Sc., 17(1): 25-30.

57. Huyghebaert G, Ducatelle R&Immerseel FV (2011). An update on alternatives to antimicrobial growth promoters for broilers. Vet. J., 187(2):182–188.

58. Jasek A, Latham RE, Mañón A, Llamas-Moya S, Adhikari R, Poureslami R& Lee JT (2018). Impact of a multienzyme polysaccharide containing α-galactosidase and xylanase on ileal digestible energy, crude protein digestibility and ileal amino acid digestibility in broiler chickens. Poult. Sci., 97: 3149–3155

59. Johannson L, Tuomainen P, Ylinen M, Ekholm P&Virkki L (2004). Structural analysis of water soluble and insoluble β-glucans of whole grain oats and barley. Carbohydr. Polym., 58: 267–274.

60. Józefiak D, Rutkowski A, Jensen BB& Engberg RM (2006). The effect of β-glucanase supplementation of barley and oat-based diets on growth performance and fermentation in broiler chicken gastrointestinal tract. Brit. Poult. Sci., 47: 57–64.

61. Józefiak D, Rutkowska A& Marti SA (2004). Carbohydrate fermentation in the avian caeca: A review. Anim. Feed. Sci. Technol., 113: 1–15.

62. Józefiak D, Rutkowski A, Kaczmarek S, Jensen BB, Engberg RM&HøjbergO(2010). Effect of β-glucanase and xylanase supplementation of barley- and rye-based diets on caecal microbiota of broiler chickens. Br. Poult. Sci., 51: 546–557.

63. Kiarie E, Romero LF&Nyachoti CM (2013). The role of added feed enzymes in promoting gut health in swine and poultry. Nutr Res Rev., 26(1): 71–88.

64. Kiarie E, Romero LF & Ravindran V (2014). Growth performance, nutrient utilization and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase. Poult Sci., 93(5): 1186–1196.

65. Klein J, Williams M, Brown B, Rao S& Lee JT (2015). Effects of dietary inclusion of a cocktail NSPase and β-mannanase separately and in combination in low energy diets on broiler performance and processing parameters. J. Appl. Poult. Res. 24:489–501.

66. Kluth H&Rodehutscord M (2009). Effect of inclusion of cellulose in the diet on the inevitable endogenous amino acid losses in the ileum of chicken. Poult. Sci., 88: 1199–1205.

67. Langfelder K(2014). Variation in enzyme characteristics and efficacy in xylanases. In VistaA.B. (Ed) Inspire Proceedings. International Non-Starch Polysaccharide Forum. A.B. Vista, a division of A.B. Agri Ltd, 88 – 93.

68. Latorre JD, Hernandez-Velasco X, Bielek LR, Vicente JL, Wolfenden R, Menconi A, Hargis BM& Tellez G (2015). Evaluation of a Bacillus direct-fed microbial candidate on digesta viscosity, bacterial translocation, microbiota composition and bone mineralization in broiler chickens fed on a rye-based diet. Brit. Poultry Sci., 56: 723–732.

69. Lázaro R, García M, Medel P&Mateos G (2003). Influence of enzymes on performance and digestive parameters of broilers fed rye-based diets. Poult. Sci., 82: 132–140.

70. Leslie M, Moran E& Bedford M (2007). The effect of phytase and glucanase on the ileal digestible energy of corn and soybean meal fed to broilers. Poult. Sci., 86:2350– 2357.

71. Madec JY (2013). Résistance aux antibio-tiques chez l’animal : quel risque pour l’Homme ?J. des Anti-infectieux, 15:178-186.

72. Maharjan P, Mayorga M, Hilton K, Weil J, Beitia A, Caldas J, England J& Coon C (2019). Non-cellulosic polysaccharide content in feed ingredients and ileal and total tract non-cellulosic polysaccharide digestibility in 21- and 42-day-old broilers fed diets with and without added composite enzymes. Poult. Sci., 98: 4048–4057.

73. Masey O’Neill HV, Smith JA& Bedford MR (2014a). Effects of exogenous xylanase on performance, nutrient digestibility, volatile fatty acid production and digestive tract thermal profiles of broilers fed on wheat- or maize-based diet. British Poult. Sci., 55: 351-359. DOI:10.1080/00071668.2014.898836
74. Masey O’Neil HV, Smith JA & Bedford MR (2014b). Multicarbohydrase enzymes for nonruminants.Asian-Australas. J. Anim. Sci., 2: 290–301.
75. Mateos GG, Jiménez-Moreno E, Serrano MP & Lázaro RP (2012). Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J. Appl. Poult. Res., 21: 156–174.
76. Mathlouthi N, Mallet S, Saulnier L, Quemener B & Labrier M (2002). Effects of xylanase and β-glucanase addition on performance, nutrient digestibility, and physicochemical conditions in the small intestine contents and caecal microflora of broiler chickens fed a wheat and barley-based diet. Anim. Res., 51: 395–406.
77. Matin HR, Saki AA, Aliarabi H, Shadmani M & Abyane HZ (2012). Intestinal broiler microflora estimation by artificial neural network. Neurol. Comp. Appl., 21: 1043–1047.
78. Meluzzi A, Fabbri C, Folegatti E & Sirri F (2008). Survey of chicken rearing conditions in Italy: effects of litter quality and stocking density on productivity, foot dermatitis and carcass injuries. British Poult. Sci., 49(3): 257-264.
79. Mendes AR, Ribeiro T, Correia BA, Bule P, Maças B, Falcão L, Freire JPB, Ferreira LMA, Fontes CMG & Lordelo M.M (2012). Low doses of exogenous xylanase improve the nutritive value of triticale-based diets for broilers. J. Appl. Poult. Res., 22: 92–99.
80. Meng X & Slominski B (2005). Nutritive values of corn, soybean meal, canola meal, and peas for broiler chickens as affected by a multicarbohydrase preparation of cell wall degrading enzymes. Poult. Sci., 84: 1242–1251.
81. Montagne L, Pluske JR & Hampson DJ (2003). A review of interactions between dietary fiber and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol., 108: 95–117.
82. Mudgil D & Barak S (2013). Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. Int. J. Biol. Macromol., 61: 1–6.
83. Munyaka PM, Nandha NK, Kiirie EC, Nyachoti M & Khafipour E (2015). Impact of combined β-glucanase and xylanase enzymes on growth performance, nutrients utilization and gut microbiota in broiler chickens fed corn or wheat-based diets. Poult. Sci., 95: 528–540. DOI: 10.3382/ps/pev333
84. Nian F, Guo YM, Ru YJ, Péron A & Li FD (2011). Effect of xylanase supplementation on the net energy for production, performance and gut microflora of broilers fed corn/soy-based diet. Asian-Aust. J. Anim. Sci., 24(9): 1282-1287.
85. Olnoode G & Liu YG (2012). Effect of multi-NSP enzymes and phytase combination on growth performance of broiler chickens fed with different quality grades of ingredients. Aust. Poult. Sci. Symp., 23rd: 287-290.
86. Olukosi O, Cowieson A & Adeola O (2010). Broiler responses to supplementation of phytase and admixture of carbohydrases and protease in maize–soya bean meal diets with or without maize Distillers’ Dried Grain with solubles. Br. Poult. Sci., 51:434–443.
87. Péron A, Selle PH, Cowieson AJ & Cadogan DJ (2012). Interaction between grain characteristics and xylanase supplementation in wheat-based diets for. Aust. Poult. Sci. Symp. 23rd: 93-96.
88. Pirgozliev V, Bedford MR & Acamovic T (2010). The effect of dietary xylanase on energy, amino acid and mineral metabolism and egg production and quality in laying hens. British Poultry Sci., 51: 639-647.
89. Pirgozliev V & Bedford MR (2013). Energy utilization and growth performance of chicken fed diets containing graded levels of supplementary bacterial phytase. British J. Nutri., 109: 248–253.
90. Pirgozliev V, Rose SP & Ivanova S (2019). Feed additives in poultry nutrition, Bulgarian J. Agri. Sci., 25(1): 8–11.
91. Pirgozliev V, Rose SP, Pellny T, Amerah AM, Wickramasinghe M, Ulker M, Rakszegi M, Bedo Z, Shewry PR & Lovegrove A (2015). Energy utilization and growth performance of chickens fed novel wheat inbred lines selected for different pentosan levels with and without xylanase supplementation. Poult. Sci., 94: 232–239.
92. Ravindran V & Son JH (2011). Feed enzyme technology: present status and future developments. Recent Patents on Food, Nutr. and Agri., 3(2): 102-109.
93. Ricke S (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Sci., 82: 632–639.
94. Roberts CL, Keita AV, Parsons BN, Prorok-Hamon M, Knight P, Winstanley C, O’Kennedy N, Söderholm JD, Rhodes JM & Campbell BJ (2013). Soluble plantain fibre blocks adhesion and M-cell translocation of intestinal pathogens. J. Nutr. Bioch. 24: 97–103.
95. Rodehutscord M, Rückert C, Maurer HP, Schenkel H, Schipprack W, Knudsen B, Schollenberger M, Laux M, Eklund M, Siegert W & Mosenthin R (2016). Variation in chemical composition and physical characteristics of cereal grains from different genotypes. Arch. Anim. Nutri., 70(2): 87-107. DOI: 10.1080/1745039X.2015.1133111
96. Rosin EA, Blank G, Slominski BA & Holley RA (2007). Enzyme supplements in broiler chicken diets: in vitro and in vivo effects on bacterial growth. J. Sci. Food. Agr., 87: 1009–1020.
97. Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Guéimonde M & Margolles A (2017). Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res., 61(1): 1600240. DOI: 10.1002/mnfr.201600240.
98. Sanders P, Perrin-Guyomard A & Moulin G (2017). Evolution de l'utilisation des antibiotiques en production animale. Cah. Nutr. Diététique, 52: 301-311. DOI: http://dx.doi.org/10.1016/j.cnd.2017.06.002.
99. Santos Jr AA, Ferket PR, Grimes JL & Edens FW (2004a). Dietary supplementation of endoxygenases and phospholipase for turkeys fed wheat-based rations. Int. J. Poult. Sci., 3: 20-32.
100. Santos Jr AA, Ferket PR, Grimes JL & Edens FW (2004b). Dietary pentosanase supplementation of diets containing different qualities of wheat on growth performance and metabolizable energy of turkey poults. Int. J. Poult. Sci., 3: 33–45.
101. Santos CI, Ribeiro T, Ponte PIP, Fernandes VO, Falcão L, Freire JP, Prates JAM, Ferreira LMA, Fontes CMGA & Lordelo MM (2013). The effects of restricting enzyme supplementation in rye-based diets for broilers. Anim. Feed. Sci. Technol., 186: 214–217.
102. Satge C (2002). Étude de nouvelles stratégies de valorisation de mono et polysaccharides. Thèse de Doctorat de L'Université de Limoges, France.
103. Sethy K, Mishra SK, Mohanty PP, Agarawal J, Meher P, Satapathy D, Sahoo JK, Panda S & Nayak SM (2015). An overview of non-starch polysaccharide. J. Anim. Nutri. Physio., 1: 17-22.
104. Simon O (1998). The mode of action of NSP hydrolyzing enzymes in the gastrointestinal tract. J. Anim. Feed Sci., 7: 115-123.
105. Singh AK & Kim WK (2021). Effects of Dietary Fiber on Nutrients Utilization and Gut Health of Poultry: A Review of Challenges and Opportunities. Animals, 11: 181-198.
106. Slominski BA (2011). Recent advances in research on enzymes for poultry diets. Poultry Sci., 90: 2013–2023. DOI: 10.3382/ps.2011-01372.
107. Stefanello C, Vieira SL, Santiago GO, Kindlein L, Sorbara JOB & Cowieson AJ (2015). Starch digestibility, energy utilization, and growth performance of broilers fed corn-soybean basal diets supplemented with enzymes. Poult. Sci., 94(10): 2472-2479.
108. Tellez G, Latorre JD, Kuttappan VA, Kogut MH, Wolfenden A, Hernandez-Velasco X, Hargis BM, Bottje WG, Bielke LR & Faulkner OB (2014). Utilization of rye as energy source affects bacterial translocation, intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens. Front. Genet., 5:339.
109. Thammarutwasik P, Hongpattarakere T, Chantachum S, Kijroongrojan K, Itharat A & Reanmongkol W (2009). Prebiotics – a review. Songklanakarin J. Sci. Tech., 31: 401–408.
110. Thebaudin JY, Lefebvre AC, Harrington M & Bourgeois CM (1997). Dietary fibers: nutritional and technological interest. Trends Food Sci. Technol., 8: 41–48.
111. Timbermont L, Haesebrouck F, Ducatelle R & Van Immerseel F (2011). Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathol., 40: 341–347.
112. Topping D (2007). Cereal complex carbohydrates and their contribution to human health. J. Cereal Sci., 46: 220–229.
113. Vander Wielen PW, Biesterfeld S, Notermans S, Hofstra H, Urlings BAP & Van Knapen F (2000). Role of volatile fatty acids in development of the caecal microflora in broiler chickens during growth. Appl. Env. Microbiol., 66: 2536–2540.
114. Vangsøe CT, Bonnin E, Joseph-Aime M, Saulnier L, Neugnot-Roux V & Bach Knudsen KE (2021). Improving the digestibility of cereal fractions of wheat, maize, and rice by a carbohydrate complex rich in xylanases and arabinofuranosidases: an in vitro digestion study. J. Sci. Food. Agric., 101(5): 1910-1919. doi.org/10.1002/jsfa.10806.
115. Whiting LM, Pirozzieliev V, Rose SP, Wilson J, Amerah AM, Ivanova SG, Staykova GP, Oluwatosin O & Oso AO (2017). Nutrient availability of different batches of wheat distillers dried grains with solubles with and without exogenous enzymes for broiler chickens. Poult. Sci., 96: 574–580.
116. Williams MP, Brown B, Rao S & Lee JT (2014). Evaluation of beta-mannanase and non-starch polysaccharide-degrading enzyme inclusion separately or intermittently in reduced energy diets fed to male broilers on performance parameters and carcass yield. J. Appl. Poult. Res. 23:715–723.
117. Woyengo TA, Jerez Bogota K, Nolland SL & Wilson J (2019). Enhancing nutrient utilization of broiler chickens through supplemental enzymes. Poult. Sci., 98: 1302–1309.
118. Yin D, Yin X, Wang X, Lei Z, Wang M, Guo Y, Aggrey SE, Nie W & Yuan J. 2018. Supplementation of amylase combined with glucoamylase or protease changes intestinal microbiota diversity and benefits for broilers fed a diet of newly harvested corn. J. Anim. SciBiotech., 9(24): 1-13.