How to approach and treat viral infections in ICU patients

Theodoros Kelesidis1, Ioannis Mastoris2, Aliki Metsini2 and Sotirios Tsiodras2*

Abstract
Patients with severe viral infections are often hospitalized in intensive care units (ICUs) and recent studies underline the frequency of viral detection in ICU patients. Viral infections in the ICU often involve the respiratory or the central nervous system and can cause significant morbidity and mortality especially in immunocompromised patients. The mainstay of therapy of viral infections is supportive care and antiviral therapy when available. Increased understanding of the molecular mechanisms of viral infection has provided great potential for the discovery of new antiviral agents that target viral proteins or host proteins that regulate immunity and are involved in the viral life cycle. These novel treatments need to be further validated in animal and human randomized controlled studies.

Introduction
The prevalence of viral diseases has increased due to the availability of modern diagnostic tests that allow rapid detection of viruses [1]. Viral diseases may additionally be associated with significant morbidity and mortality as is the case with some emerging viral diseases, such as the Middle East Respiratory Syndrome coronavirus or avian influenza [2,3]. Patients with severe viral infections are often hospitalized in intensive care units (ICUs); on the other hand recent studies have underlined the frequency of virus detection in ICU patients [4-6]. The majority of viral infections that require ICU care involve the respiratory tract or the central nervous system. However, other organ systems, such as the gastrointestinal tract, may be severely affected by viruses and require support or close monitoring. The reported incidence of viral infections reported in the ICU varies widely across studies and geographic regions and has changed over the recent years based on the epidemiology of emerging viral infections such as human metapneumovirus and adenovirus infections [7,8]. Improved molecular detections methods have also significantly changed the epidemiology of viral infections in the ICU over the last years [7]. Multi-institutional databases and time-series models may be useful tools to characterize and forecast the burden of severe viral infections at the local and institutional levels [9,10]. Clinical signs and symptoms are rarely sufficient to make a specific diagnosis of a viral infection. Often a combination of the appropriate clinical syndrome together with epidemiologic clues but more importantly specific laboratory tests is used to reach the diagnosis [11]. Viral infections can cause severe morbidity and mortality in certain hosts such as immunocompromised patients (Table 1) [12-52]. Herein, we review the literature on the role of viruses in ICU in adults [excluding Human Immunodeficiency Virus (HIV)] with a focus on treatment of these infections.

Review
Respiratory infections
In recent years, viruses have been identified as an increasingly frequent cause of community-acquired pneumonia (CAP) [53], because of the availability of new diagnostic tools, such as Polymerase Chain Reaction (PCR). On the other hand the emergence of the pandemic influenza virus in 2009 as well as the emergence of viruses with pandemic potential such as the avian influenza viruses or new coronaviruses has emphasized the role of viruses in severe community acquired pneumonia in places where these viruses are endemic [54]. Viral nosocomial pneumonia [hospital-acquired, healthcare-associated pneumonia (HCAP) or ventilator-associated pneumonia (VAP)] have been described but the pathogenicity and the roles of viruses recovered from the lower respiratory tract in patients with pneumonia...
Table 1 Etiologies and treatment of viral syndromes in the ICU
Syndrome/presentation
RESPIRATORY FAILURE
Hypoxic respiratory failure-pneumonia
Hypercapnic-hypoxic respiratory failure
Asthma/COPD exacerbation
Adult Respiratory Distress Syndrome (ARDS)
Without lung disease (restrictive disease): Guillain-Barré syndrome (GBS)
Neurological syndromes
Encephalitis, meningitis, meningocencephalitis, myelitis, polyradiculo-neuropathy, Guillain-Barré syndrome (GBS)
Clinical presentation: usually as altered mental status, seizures, coma, neuropathies
Influenza (encephalitis is very uncommon complication of seasonal influenza infections but because influenza itself is common 4-19% of patients with severe or fatal H1N1 reported neurologic complications
Antivirals:
Acyclovir: Early aggressive antiviral therapy with acyclovir for HSV, VZV improves mortality and reduces subsequent cognitive impairment
Ganciclovir: CMV encephalitis
Virus related shock

Foscarnet: HHV-6, combination therapy with foscarnet and ganciclovir is recommended for CMV encephalitis
Oseltamivir: Severe influenza
Pleconaril: severe Enterovirus infections
Corticosteroids: Complicated HSV encephalitis (data based on retrospective studies), VZV encephalitis (for inflammatory vasculopathy), uncomplicated zoster (variable results), severe influenza, WNV (case report) [33], postinfectious encephalitis
Immunotherapies: Immunomodulatory therapy with either intravenous immune globulin or plasma exchange for patients with postinfectious encephalitis who fail corticosteroid treatment (data based on case series) or for WNV encephalitis (Case reports) [34,35].
Others: Vitamin A for severe measles [31]
Cardiogenic shock
Rifampin: For RSV myocarditis [36]
Pleconaril: severe Enterovirus infections
Oseltamivir: Severe influenza
ART: HIV-1
Corticosteroids: do not reduce mortality (data based on small RCT of poor quality) [37]
Immunotherapies: IVIG (data based on in vitro data, case series, limited RCT) [38-40]. Combination therapy of IVIG with rifampin has been described in case series [36]
Others: Herbal medicines [41], mechanical ventricular assist devices until resolution or cardiac transplantation is available, novel therapies e.g pleconaril
Myocarditis
Passive transfer of antibodies (plasma, IVIG) may be of value in Bunyaviruses [45], Junin virus [42], Lassa virus [43], Hantavirus HF [17,44], Flaviviruses (Yellow fever, Dengue HF) [45-47]
Antivirals: ribavirin for CCHF [17,48], Lassa virus [17,49], Hantavirus HF [17,44]
Ribavirin plus interferon may be considered for Lassa virus [50]
Hypovolemic/distributive shock in the setting of acute liver failure secondary to viral hepatitis
Supportive: hemodynamic management, ventilation, prevention and treatment of hemorrhage, dialysis, therapy of co-existent sepsis and electrolyte disturbance, and management of intracranial pressure
Orthotopic liver transplantation
Antivirals may be used for acute flare up of chronic viral hepatitis e.g. in immunocompromised patients.
Table 1 Etiologies and treatment of viral syndromes in the ICU (Continued)

Hypovolemic/distributive shock in the setting of acute pancreatitis	Mumps (the most common virus associated with pancreatitis, occurring even in the absence of parotitis), Enteroviruses (Coxsackie B), cytomegalovirus, varicella zoster, HSV-1, Epstein-Barr virus, influenza A, Parainfluenza, adenovirus, measles. In fulminant hepatic failure due to hepatitis A (HAV) or hepatitis E (HEV) pancreatitis occurs in up to 34% of the cases [51]	Supportive Antivirals
Shock in the setting of adrenal insufficiency caused by viral infection (rare)	CMV in HIV-1 infection [52]	Treatment of CMV itself is generally not warranted, unless there is evidence of CMV disease elsewhere. However, it is critical to treat the underlying human immunodeficiency virus infection with antiretroviral agents to attempt immune restitution [52]
Rhabdomyolysis	Influenza A and B, Parainfluenza virus, CMV, EBV, VZV, measles, adenovirus, enteroviruses	Supportive Antivirals
Supportive, antivirals, corticosteroids	Oseltamivir: Severe influenza	Plecanova: severe Enterovirus infections
Ganciclovir: VZV	Acyclovir: VZV	

Abbreviations: ADEM acute disseminated encephalomyelitis, Adult Respiratory Distress Syndrome (ARDS), CMV Cytomegalovirus, CCHF Chirimean Congo Hemorrhagic Fever, COPD Chronic Obstructive Pulmonary Disease, DIC disseminated intravascular coagulopathy, EBV Epstein Barr virus, Guillain-Barré syndrome (GBS), HAV hepatitis A virus, HBV hepatitis B virus, HCV hepatitis C virus, or HEV hepatitis E virus, HIV human Immunodeficiency virus, HHF-6 Herpes Virus 6, HHF-8 Herpes Virus 8, HF Hemorrhagic Fever, HSV Herpes Simplex Virus, NAIs Neuraminidase inhibitors, ICU Intensive Care Unit, JEV Japanese Encephalitis Virus, MVEV Murray Valley encephalitis virus, PTLD post-transplant lymphoproliferative disorder, RCT Randomized Controlled trials, RSV Respiratory Syncytial Virus, SARS Severe Acute Respiratory Syndrome, TBEV tick-borne encephalitis virus, STELF St. Louis Encephalitis Virus, VZV Varicella-Zoster Virus, WMW West Nile virus.

remains controversial. Severe viral infections such as influenza, severe acute respiratory syndrome (SARS) may cause respiratory failure which may rapidly progress to acute respiratory distress syndrome (ARDS) and multi-organ failure [55-58]. Except for pneumonia, acute respiratory failure can occur in patients with chronic obstructive pulmonary disease (COPD) and lead to hospitalization and the need for mechanical ventilation [55-58]. In addition, viruses can cause ARDS and neurogenic respiratory failure (for example through development of Guillain-Barré Syndrome) [55-58].

Causes of viral pneumonia

Respiratory viruses are the most common cause of viral CAP

Although severe community-acquired pneumonia is usually caused by bacteria, viruses account for approximately 3-10% of cases in large series [59-65]. The most common cause of viral pneumonia in adults is influenza virus type A and B [32,53,65-73]. Immunocompromised patients are more likely to have viral pneumonias caused by respiratory syncytial virus (RSV), cytomegalovirus (CMV), herpes simplex virus (HSV), varicella-zoster virus (VZV), adenovirus and rarely measles (21-35). Recent molecular diagnostic methods have significantly changed the epidemiology of viral pneumonias in the ICU over the last years with the increasing detection of viruses such as human metapneumovirus and adenovirus infections [7,8]. Radiographic findings are variable and not virus specific; an “atypical” pneumonia presentation is often seen in otherwise healthy individuals while on the other hand severe lobar or bilateral pneumonia can be seen in immunocompromised hosts. All the reported respiratory viruses can cause severe pneumonia with acute respiratory distress syndrome (ARDS) requiring mechanical ventilation, but the frequency of this complication is not known [55-58].

Respiratory viruses may be the cause of HCAP

Viral pneumonias may be nosocomially acquired, especially during peak respiratory periods and in immunocompromised patients [74-76]. In a recent retrospective study, 34% of the 134 HCAP patients had at least one respiratory virus recovered either in the lower respiratory tract or the nasopharyngeal swab [77], with the most frequent being rhinovirus, parainfluenza virus, human Metapneumovirus and influenza. Patients with viral HCAP or bacterial VAP had the same mortality rate [77].
Mostly latent viruses, particularly Herpesviridae, are identified in patients with VAP

Although data on viral nosocomial pneumonia are scarce, the role of respiratory viruses as a cause of nosocomial pneumonia is probably limited. In two studies in ICU patients, <5.5% of mechanically ventilated patients with VAP had a respiratory sample positive for respiratory viruses [6,72,78] and in many of these cases the mechanical ventilation duration before virus detection may have indicated carriage before ICU admission. Latent viruses such as Herpesviridae including herpes simplex virus (HSV) and cytomegalovirus (CMV) are known to be a cause of pneumonia or systemic disease in immunocompromised patients [79] but are often reactivated in non-immunocompromised ICU patients. ICU patients are known to experience immunoparalysis since an initial proinflammatory is followed by an anti-inflammatory response; this immunological state is responsible for nosocomial infections and latent virus reactivation [80,81]. In most patients, viral detection reflects viral reactivation without lung parenchymal involvement. However, viral lung disease may develop, usually in patients with prolonged mechanical ventilation [6,82,83]. Mimivirus, an emergent virus, has also been described as a possible cause for nosocomial VAP [84-88]. Although patients with high HSV and CMV viremia often have worse prognosis, the exact significance of detection of HSV, CMV or mimivirus in the lower respiratory tract of ventilated non-immunocompromised ICU patients is unclear [4-6,72,82,83,89]. Further clinical research work is needed to elucidate the role of these viruses in the pathogenesis of nosocomial viral pneumonia.

Treatment of viral respiratory infections

Treatment of viral CAP remains largely supportive

Influenza is the only virus for which Food and Drug Administration (FDA)-approved therapeutic agents are available for adults. The most effective measure against influenza remains vaccination, particularly for the elderly or high-risk individuals [90]. Antivirals for the treatment of influenza include the M2 channel inhibitors and the neuraminidase inhibitors [91]. Although treatment with neuraminidase inhibitors (oseltamivir or zanamivir) is recommended in all patients with suspected or confirmed influenza requiring hospitalization [92] their use in non-severe influenza could be more harmful than beneficial because of the possibility of selection of resistant mutants [93]. Thus, it would be appropriate to use them only for patients with severe disease presentation, for example, severe pneumonia, requiring mechanical ventilation or patients at high risk for influenza associated complications e.g immunocompromised individuals. Alternatively it can be used in all suspect cases in areas endemic for a strain with high mortality e.g. an avian influenza strain. Higher dosing regimens such as 150 mg twice daily may be safe and well tolerated [94-98], have been used to treat seriously ill patients [58,99,100] and may have a benefit for treatment of Influenza B [101], some influenza A strains with reduced susceptibility [12,102-106] as well as infection sites with limited drug penetration (eg, central nervous system, as in some H5N1 cases) [96,98,107,108]. However, overall supportive evidence is lacking [91,94,95,99,101,102,109-111] and antiviral resistance may emerge even with higher doses of oseltamivir [112].

Novel antivirals can be considered for treatment of respiratory viral infections

Two new neuraminidase inhibitors have recently been described: peramivir and laninamivir octanoate. Peramivir, which can be given as a single intravenous dose, was authorized for a short period by the US Food and Drug Administration (FDA) for emergent intravenous use in hospitalized patients with the 2009 H1N1 pandemic influenza virus [113]. Laninamivir is given as a single inhaled dose for the treatment of seasonal influenza in adults and may also treat oseltamivir-resistant virus [113]. In addition, new therapeutics for the treatment of influenza A virus infections are under development [13-15,18,28,39,50,114-195]. In this regard, the drug, favipiravir (T-705) has been shown to inhibit a variety of influenza viruses, including highly pathogenic avian influenza H5N1 viruses. Finally, numerous antivirals such as entry inhibitors, nucleoside analogues such as cidofovir, viral enzyme inhibitors (such as terminase and helicase enzyme inhibitors), and translation inhibitors may be utilized in an off-label indication for treatment of viral infections [13,113].

Combination antiviral therapy can be used for treatment of resistant influenza

Except for HIV, hepatitis C and hepatitis B, combination drug therapies are not established for other viruses, such as HSV and influenza. Triple and dual drug combinations may be synergistic in their antiviral action [196]. The efficacy of oseltamivir-zanamivir combinations for seasonal influenza was established in a randomized controlled clinical study [188]. However, clinical antagonism between oseltamivir and zanamivir was suggested in another study [188,193].

Other therapies for treatment of influenza

Low-dose systemic corticosteroids may be used for septic shock related to severe influenza [58] since evidence from RCTs suggests that corticosteroids may be associated with delayed clearance of viruses [21-23] and invasive fungal infections [197]. Case control studies and a
RCT suggested that plasma and hyperimmune globulin have demonstrated favorable responses in patients with severe avian influenza A (H5N1) and H1N1pdm09 infection compared with controls [27,28,198]. Further evaluation of novel treatments with RCTs is needed.

Viral infections of the nervous system in the ICU

Several viruses may infect the central nervous system (CNS) and cause inflammation of the meninges and brain parenchyma causing meningitis, encephalitis, seizures, coma and respiratory failure, secondary to aspiration, neuromuscular weakness and increasing atelectasis [32].

The etiology of meningoencephalitis is often not identified

Several viruses may cause infectious and postinfectious complications in the nervous system (Table 1). Despite advances in molecular techniques a specific cause is found in less than half of the cases [32].

Modern ICU care has significantly improved prognosis of viral nervous system infections

Acyclovir has significantly improved the prognosis of HSV encephalitis. Although without treatment, the mortality was more than 70% and has now decreased to <20% [32], many of the survivors have persisting neurological deficits. The prognosis of other viral encephalitides is generally comparable to that of HSV encephalitis [32].

Treatment of viral infections of the nervous system

Supportive therapy is the mainstay of treatment of viral nervous system infections

Neurologic and systemic complications may exacerbate brain damage and should be identified and treated early with supportive therapy to optimize neurologic recovery (Table 1). Evidence from RCTs is lacking and thus corticosteroids should not be used routinely; they may be used in selected cases with significant edema, in postinfectious encephalitis and in VZV encephalitis [32].

Early administration of antivirals is key for treatment of herpetic viral infections

The drug of choice for the treatment of HSV encephalitis is high-dose intravenous acyclovir which should be administered as early as possible for 14 to 21 days. A clinical trial is currently assessing longer courses of therapy using oral valacyclovir [32]. There are no clinical trials regarding the use of antivirals for VZV encephalitis [32] but acyclovir for up to 3 weeks is recommended for severe infections like encephalitis. A longer course of therapy may be considered for immunocompromised patients. Foscarnet is the preferred agent against HHV-6 whereas combination therapy with foscarnet and ganciclovir is recommended as initial treatment of CMV encephalitis (Table 1).

The use of antivirals is limited in non-herpetic viral nervous system infections

Antivirals have not been proven effective for enterovirus encephalitis. The drug pleconaril is an inhibitor of viral replication and may be an option for patients with severe Enterovirus infections [32]. Use of oseltamivir is appropriate for severe influenza. There is also no specific treatment for most causes of encephalitis although experimental therapies may be considered [13,113].

Viral causes of shock in the ICU

Viral myocarditis can cause cardiogenic shock

Numerous viruses can cause viral myocarditis, including Coxsackie viruses group A and B (Table 1) [41]. Most patients recover, but persistent cardiac dysfunction is associated with 20% one-year mortality [199]. The majority of patients with acute myocarditis have evidence of heart failure. In severe cases mechanical ventricular assist device support is necessary until resolution or cardiac transplantation is available [199]. Although immunosuppressive medicines including corticosteroids were applied in many studies with viral myocarditis, meta-analyses have shown that their effects remain controversial since they do not reduce mortality [37]. In a systematic review, the use of intravenous immunoglobulins (IVIGs) in viral myocarditis was not recommended [38]. Experimental strategies for treatment of viral myocarditis have been developed [13,113,200].

Viral Hemorrhagic Fevers (VHF) can cause distributive shock

Viral hemorrhagic fevers (VHF) are caused by RNA viruses. The main vectors involved in transmission are rodents or arthropods (Table 1). The clinical syndrome of hemorrhagic fever is secondary to capillary leakage due to increased vascular permeability. Other clinical manifestations depend on the virus involved and include, hepatitis, encephalitis, and/or nephropathy as well as multiorgan failure. Disseminated intravascular coagulopathy (DIC) is one of the common characteristic findings to many but not all of these viruses. There is a wide range of case-fatality rates that may vary from 1% to 90% [113]. Immediate isolation is critical for effective infection control and prevention of transmission in suspect cases. Close collaboration with local and national public health authorities is necessary to alert the community of a possible outbreak [113]. Since there are no effective therapeutic interventions for most of the viruses the care is largely supportive. No corticosteroids should be used. There are no antiviral drugs available for the treatment of hemorrhagic fever viruses, and there is only one vaccine widely available, i.e. the yellow fever 17D vaccine. Ribavirin has been reported to be an
effective therapy for Lassa fever [49], but not against other hemorrhagic fever virus infections in humans [113]. Specific immune human plasma has been successful in treating certain hemorrhagic fevers such as the Argentinian hemorrhagic fever [42]. Emerging therapies with activity against VHF including Ebola have been described and are under development [13,113,201,202].

Other important considerations regarding treatment of viral infections in the ICU

Infection control measures have a major role in the management of viral infections in the ICU

The primary factor responsible for transmission of viral infections in the ICU seems to be inadequate training in or compliance with infection control procedures [203,204]. The use of nebulizers, open suctioning of respiratory secretions, the use of Bi-PAP, endotracheal intubation, outdated ventilation systems may also lead to spread of viral infections in the ICU setting [203,204]. Infection control measures should include airborne, droplet and contact precautions. Disinfectants are highly active against many viruses [203,204].

Vaccines are not adequate in preventing the spread of many viral infections in the ICU

Vaccination is possible to prevent infections with some viruses: influenza A and B viruses, HBV, varicella-zoster virus, Yellow fever virus and poliovirus. However vaccines are not available for major viral infections such as herpes simplex virus (HSV) and antiviral therapy is needed to control viral infections that cannot be prevented by vaccination.

Numerous antiviral drugs are undergoing clinical trials

The emergence of resistant viruses underlines the need to find novel antiviral. A few novel strategies have been introduced for antiviral research but further research is needed before they can be used for treatment of drug-resistant viral infections [13,113].

Targeting latency may lead to complete treatment of chronic latent infections

Despite effective antiviral therapy for certain chronic viral infection (e.g. Hepatitis B), the virus can integrate its genome into the host cell and become latent. Therefore, new therapies that can completely remove viral components integrated in host cells are needed [13,113].

Conclusion

Patients with severe viral infections are often hospitalized in intensive care units (ICUs). Viral infections can cause severe morbidity and mortality in certain hosts (Table 1) [4-6]. The mainstay of therapy of viral infections is supportive care. Antiviral therapy is available for a limited number of infections including influenza and herpetic infections. Novel antiviral treatments that target viral proteins (mostly involved in enzymatic activities or in the viral replication machinery) or host proteins that regulate immunity or other cellular processes in host cells and are involved in the viral life cycle need to be further validated in animal and human randomized controlled studies.

Competing interests

The authors report no competing interests. ST is a principal investigator in a multinational, multicenter clinical study evaluating zanamivir vs oseltamivir, sponsored by GSK.

Authors’ contributions

TK and ST conceived and designed the paper and wrote the first draft. TK, IM, AM and ST reviewed the available literature and summarized the data in table formats. All authors have read, critically revised the different versions and approved the final submitted version of the manuscript.

Author details

1Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. 24th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens School of Medicine, 1 Rimini Street, GR-12462 Haidari, Athens, Greece.

References

1. Luyt CE: Virus diseases in ICU patients: a long time underestimated; but be aware of over-estimation. Intensive Care Med 2006, 32:969–970.
2. Beigel JH, Farar J, Han AM, Hayden FG, Hyer R, de Jong MD, Lochdarat S, Nguyen TK, Tran TH, Tran TH, Nicoll A, Touch S, Yuen KY: Avian influenza A (H5N1) infection in humans. N Engl J Med 2005, 353:1374–1385.
3. Peiris JS, Yuan KY, Osterhaus AD, Stohr K: The severe acute respiratory syndrome. N Engl J Med 2003, 349:2431–2441.
4. Bayrouseels P, Jorrens S, Geunet H, Goossens H, Pattyn SR, Elseviers MW, Weyler J, Bossaert L, Mentens Y, Leven M: Herpes simplex virus in the respiratory tract of critical care patients: a prospective study. Lancet 2003, 362:1536–1541.
5. Org GM, Lowry K, Mahajan S, Wyatt DE, Simpson C, O’Neill HJ, McCaughey C, Cote RV: Herpes simplex type 1 shedding is associated with reduced hospital survival in patients receiving assisted ventilation in a tertiary referral intensive care unit. J Med Virol 2004, 72:121–125.
6. Luyt CE, Combes A, Deback C, Aubriot-Lorton MH, Nieszkowska A, Trouillet JL, Capron F, Agut H, Gibert C, Chastre J: Herpes simplex virus lung infection in patients undergoing prolonged mechanical ventilation. Am J Respir Crit Care Med 2007, 175:935–942.
7. Spadea MC, Custer JW, Bembela MA, Agana DO, Song X, Scafidi S: A multicenter outcomes analysis of children with severe viral respiratory infection due to human metapneumovirus. Pediatr Crit Care Med 2013, 14:268–272.
8. Spadea MC: Severe adenoviral respiratory infection in children. Intensive Care Med 2013, 39:1157–1158.
9. Spadea MC, Fackler JC: Time series model to predict burden of viral respiratory illness on a pediatric intensive care unit. Med Decis Making 2011, 31:494–499.
10. Ghelani SJ, Spadea MC, Pastor W, Spurrey CF, Klugman D: Demographics, trends, and outcomes in pediatric acute myocarditis in the United States, 2006 to 2011. Circ Cardiovasc Qual Outcomes 2012, 5:622–627.
11. Greenberg SB: Infections in the immunocompromised hematologic patient. Crit Care Clin 2002, 18:931–956.
12. Hayden F: Developing new antiviral agents for influenza treatment: what does the future hold? Clin Infect Dis 2009, 48(Suppl 1):S53–S13.
13. De Clercq E: A Cutting-Edge View on the Current State of Antiviral Drug Development. Med Res Rev 2013, [in press].
14. Furuta T, Takahashi K, Shiraki K, Sakamoto K, Smeed DF, Barnard DL, Gowen BB, Julander JG, Money JD: T-705 (favipiravir) and related compounds.
Novel broad-spectrum inhibitors of RNA viral infections. Antiviral Res 2009, 82:95–102.
15. Furuta Y, Gowen BB, Takahashi K, Shiraiki K, Smeek DF, Bamard DL: Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res 2010, 86:104–154.
16. Taber LH, Wright V, Gilbert BE, McCung HW, Wilson SZ, Norton HI, Thurson JM, Gordon WH, Atmar RL, Schudt WR: Ribavirin aerosol treatment of bronchiolitis associated with respiratory syncytial virus infection in infants. Pediatrics 1983, 72:63–168.
17. De Clercq E: Another ten stories in antiviral drug discovery (part C): "Old" and "new" antivirals, strategies, and perspectives. Med Res Rev 2009, 29:611–645.
18. De Clercq E: The next ten stories on antiviral drug discovery (part D): advances, adventures, and advances. Med Res Rev 2011, 31:18–160.
19. Esmonde TF, H pumpkin HA, Anderson G: Chickenpox pneumonia: an association with pregnancy. Thorax 1989, 44:812–815.
20. Hecht DW, Snyderman DR, Crumpacker CS, Werner BG, Heinze-Lacey B: Ganciclovir for treatment of renal transplant-associated primary cytomegalovirus pneumonia. J Infect Dis 1987, 157:187–190.
21. Buckingham SC, Jafri HS, Bush AJ, Carubelli CM, Sheeran P, Hardy RD, Puhakka T, Makela MJ, Malmstrom K, Uhari M, Savolainen J, Terho EO, Pulkkinen M, Ruuskanen O: Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet 2002, 360:1831–1837.
22. So LK, Lau AC, Yam LY, Cheung TM, Poon E, Yung RW, Yuen KY: Development of a standard treatment protocol for severe acute respiratory syndrome. Lancet 2003, 361:1615–1617.
23. Mer M, Richards QA: Corticosteroids in life-threatening varicella pneumonia. Chest 1989, 114:426–431.
24. Hung IF, To KK, Lee CK, Lee KL, Chan K, Yan WW, Liu R, Watt CL, Chan WM, Lai KY, Koo CK, Buckley T, Chow FL, Wong KK, Chan HS, Ching CK, Tang BS, Lai KY, Wu L, Lau AS, Luk W, Lau YL, ShortridgeKF, Gordon S, Guan Y, Peiris JS: Induction of proinflammatory cytokines in human macrophages by influenza A (H3N1) viruses: a mechanism for the usual severity of human disease? Lancet 2002, 360:1831–1837.
25. So LK, Lau AC, Yung RW, Yuen KY: Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis 2011, 52:447–456.
26. Hung IF, To KK, Lee CK, Lee KL, Yan WW, Chan K, Chan WM, Ngai CW, Law KI, Chow FL, Liu R, Lai KY, Lau CC, Liu SH, Chan KH, Lin CK, Yuen KY: Hyperimmune IV immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A (H1N1) infection. Chest 2013, 144:464–473.
27. Reed EC, Bowden RA, Dandlikar PS, Liley KE, Meyers JD: Treatment of cytomegalovirus pneumonia with ganciclovir and intravenous cytomegalovirus immunoglobulin in patients with bone marrow transplants. Ann Intern Med 1988, 109:769–788.
28. Schmidt GM, Kovacs A, Zaia JA, Horak DA, Blume KG, Nadermanee AP, O'Donnell MR, Snyder DS, Forman SJ: Ganciclovir/immunoglobulin combination therapy for the treatment of human cytomegalovirus-associated interstitial pneumonia in bone marrow allograft recipients. Transplantation 1988, 46:205–207.
29. Huskja JF, Bernstein JM, Douglass RG Jr, Hall CB: Effects of ribavirin on respiratory syncytial virus in vitro. Antimicrob Agents Chemother 1980, 12:770–775.
30. Chen HS, Wang W, Wu SN, Liu JP: Corticosteroids for viral myocarditis. Cochrane Database Syst Rev 2013, 10:CD004471.
31. Robinson JL, Hartling L, Crumley E, Vandermeer B, Klassen TP: A systematic review of intravenous gamma globulin for therapy of acute myocarditis. BMC Cardiovasc Disord 2009, 5:12.
32. Dettner R, Velthuis S, Schalla S, Eurlings L, van Sooylen RJ, van Paasen P, Tenaert J, Wolffs P, Goossens VI, Bruggeman C, Wulbenreijer J, Crijns HJ, Heymans S: Intravenous immunoglobulin therapy for patients with idiopathic cardiomyopathy and endomyocardial biopsy-proven high PVB19 viral load. Antivir Ther 2010, 15:199–201.
33. Wildenbeest JG, Wolthers KC, Straver B, Pajert D: Successful IVIG treatment of human parvovirus-associated dilated cardiomyopathy in an infant. Pediatrics 2013, 132:e243–e247.
34. Liu ZL, Liu ZJ, Liu JP, Kwong JS: Herbal medicines for viral myocarditis. Cochrane Database Syst Rev 2013, 8:CD003711.
35. Enria DA, Maiztegui JI: Antiviral treatment of Argentine hemorrhagic fever. Antiviral Res 1994, 23:23–31.
36. Janharing PB, Frame JD, Moordenck JB, Monson MH: Endemic Lassa fever in Liberia. IV. Selection of optimally effective plasma for treatment by passive immunization. Trans R Soc Trop Med Hyg 1985, 79:380–384.
37. Huguenin JW, Hsiang CM, Coisgriff TM, Guang MY, Smith J, Wu ZD, LeDuc JW, Zheng ZM, Meegan JM, Wang QN: Prospective, double-blind, concurrent, placebo-controlled clinical trial of intravenous ribavirin therapy of hemorrhagic fever with renal syndrome. J Infect Dis 1991, 164:1119–1127.
38. Saatoo G, Marinci N, Gorini G, Clementi M, Bunioni R: Possible future monoclonal antibody (mAb)-based therapy against arbovirus infections. Biomed Res Int 2013, 2013:388491.
39. Gould EA, Buckley A, Barrett AD, Cammack N: Neutralizing (54 K) and non-neutralizing (54 K and 48 K) monoclonal antibodies against structural and non-structural yellow fever virus proteins confer immunity in mice. J Gen Virol 1986, 67(Pt 3):891–895.
40. Ray D, Shl PY: Recent advances in flavivirus antiviral drug discovery and vaccine development. Recent Pat Antinfect Drug Discov 2006, 1:155–158.
41. Fisher-Hoch SP, Khan JA, Rehman S, Mizra S, Khurshid M, McCormick JB: Crimean Congo-haemorrhagic fever treated with oral ribavirin. Lancet 1995, 346:472–475.
42. McCormick JB, King UJ, Webb PA, Scriber CL, Craven RB, Johnson KM, Elliott LH, Belmonset-Williams R: Lassa fever. Effective therapy with ribavirin. N Engl J Med 1986, 314:260–26.
43. De Clercq E: Yet another ten stories on antiviral drug discovery (part D): paradigms, paradoxes, and paradigms. Med Res Rev 2010, 30:667–707.
44. Moleta DB, Kakitani FT, Lima AS, Franca JC, Raboni SM: Acute pancreatitis associated with acute viral hepatitis: case report and review of literature. Rev Inst Med Trop Sao Paulo 2009, 51:349–351.
45. Alexits EM, Surababi FA, Jordan RM, Peiris AN: Inflammatory causes of adrenal insufficiency. South Med J 2003, 96:888–890.
46. Ruuskanen O, Lahti E, Jennings LC, Murdoch DR: Viral pneumonia. Lancet 2011, 377:1264–1275.
47. Assini A, McGeer A, Perl TM, Price CS, Al Rabeelah AA, Cummings DA, Alabdollatun ZN, Asad A, Almuhaim A, Alhamdoon H, Madani H, Alhaikem R, Al-Tawfiq JA, Cotten M, Watson SJ, Kellam P, Zumla AI, Memish ZA: Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med 2013, 367:406–416.
48. Chan PK, Chan MC, Cheung JL, Lee N, Leung TF, Yeung AC, Wong MC, Ngai KI, Nelson EA, Hui DS: Influenza B lineage circulation and hospitalization rates in a subtropical city, Hong Kong, 2000-2010. Clin Infect Dis 2013, 56:677–684.
49. Peiris JS, Yu WC, Leung CW, Cheung CY, Ng WJ, Nichols JM, Ng TK, Chan KH, Lai SI, Lim WL, Yuen KY, Guan Y: Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 2004, 363:617–619.
50. Lee N, Hui D, Wu A, Chan P, Cameron P, joynt GM, Ahuja A, Yung MY, Leung CB, To KF, Liu SF, Satoo CC, Chung S, Sung JJ: A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 2003, 348:1986–1994.
51. Baust A, Choiptayauranondh T, Gao Z, Harper SP, Shaw M, Uyeki TM, Zaki SR, Hayden FG, Hui DS, Kettner JD, Kumar A,Lim M, Shindo N, Penn C, Nicholson KG: Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection. N Engl J Med 2010, 362:708–719.
52. Greenberg SB: Viral pneumonia. Infect Dis Clin North Am 1991, 5:603–621.
53. Rello J, Diaz E: Pneumonia in the intensive care unit. Crit Care Med 2003, 31:2544–2551.
105. Wang D, Sleeman K, Huang W, Nguyen HT, Levine M, Cheng Y, Li X, Tan M, Xing X, Xu X, Klimov AI, Gubareva LV, Shu Y: Neuraminidase inhibitor susceptibility testing of influenza type B viruses in China during 2010 and 2011 identifies viruses with reduced susceptibility to oseltamivir and zanamivir. Antiviral Res 2013, 97:240–244.

106. Garg S, Moore Z, Lee N, Mchelina J, Bishai F, Fleischauer A, Springs CB, Nguyen HT, Sheu T, Sleeman K, Finelli L, Gubareva LV, Fy AM: A cluster of patients infected with I221V influenza B virus variants with reduced susceptibility to neuraminidase inhibitors – North Carolina and South Carolina, 2010-2011. J Infect Dis 2013, 207:966–973.

107. Lee N, Wong CK, Chan PK, Lindegardh N, White NJ, Hayden FG, Wong EH, Wong KS, Cockram CS, Sung JH, HS: Acute encephalopathy associated with influenza A infection in adults, Emerg Infect Dis 2010, 16:139–142.

108. Jhee SS, Yen M, Ereshefsky L, Leibowitz M, Schulte M, Kaeser B, Boaz L, Patel A, Hoffmann G, Prinsen EP, Rayner CR: Low penetration of oseltamivir and its carboxylate into cerebrospinal fluid in healthy Japanese and Caucasian volunteers. Antimicrob Agents Chemother 2008, 52:3687–3693.

109. South East Asia Influenza Disease Clinical Research Network: Effect of double dose oseltamivir on clinical and virological outcomes in children and adults admitted to hospital with severe influenza: double blind randomised controlled trial. BMJ 2013, 346:f3039.

110. Lee N, Chan PK, Wong KT, Choi KW, Lam P, Chan MC, Wong BC, Lui GC, Sin WW, Wong RY, Lam WY, Yeung AC, Leung TF, So HY, Yung AW, Sung JH, HS: Viral clearance and inflammatory response patterns in adults hospitalized for pandemic 2009 influenza A(H1N1) virus pneumonia. J Clin Virol Ther 2011, 56:487–492.

111. Centers for Disease Control and Prevention (CDC): Update: Recommendations for Middle East respiratory syndrome coronavirus (MERS-CoV). MMWR Morb Mortal Wkly Rep 2013, 62:557.

112. Centers for Disease Control and Prevention (CDC): Oseltamivir-resistant novel influenza A (H1N1) virus infection in two immunosuppressed patients – Seattle, Washington, 2009. MMWR Morb Mortal Wkly Rep 2009, 58:891–896.

113. De Clercq E: Antivirals: past, present and future. Biochem Pharmacol 2013, 85:23–774.

114. Malakhot MP, Aschenbrenner LM, Smeef DF, Wadersee MK, Sidwell RW, Gubareva LV, Mishin VP, Hayden FG, Kim DH, Inge A, Campbell ER, Yu M, Fang T: Sialidase fusion protein as a novel broad-spectrum inhibitor of influenza virus infection. Antimicrob Agents Chemother 2006, 50:1470–1479.

115. Smeef DF, Hurst BL, Wong MH: Effects of TheraMax on influenza virus infections in cell culture and in mice. Antivir Res Chemother 2011, 56:213–237.

116. Smeef DF, Bailey KW, Wong MH, O’Keefe BR, Gustafson KR, Mishin VP, Gubareva LV: Treatment of influenza A (H1N1) virus infections in mice and ferrets with cyanovin-ant. Antivir Res 2008, 80:266–271.

117. Selvam P, Kimnadugan N, Chandramohan M, Sidwell RW, Wadersee MK, Smeef DF: Antivirus activity of influenza virus activities of 4-(1,2-dihydro-2-oxo-3H-indol-3-ylidene)(N4-6-dimethyl-2-pyrimidin-2-yl) benzeneisophthalamide and its derivatives. Antivir Chem Chemother 2006, 17:269–274.

118. Ullibas R, Jolad SD, Bruening RC, Kerman MR, King SR, Sesin DF, Barrett M, Stoddard CA, Faster T, Kuo J, Ayala F, Meza E, Castanel M, McKeown D, Roshon E, Tempesta MS, Barnard D, Huffman J, Smeef D, Sidwell R, Soke K, Biafri A, Safin S, Orlando R, Kenny PT, Berova N, Nakashima K, SP-303, an oligomeric antiviral prodrug synthesized in the latent of Croton lechleri (Sangre de Drago). Phytomedicine 1994, 1:77–106.

119. Shigeta S, Mori S, Kodama E, Kodama J, Takahashi K, Yamase T: Broad spectrum anti-RNA virus activities of titanium and vanadium substituted polyoxotungstates. Antivir Res 2003, 58:265–271.

120. Shigeta S, Mori S, Yamase T, Yamamoto N, Yamazato M: Anti-RNA virus activity of polyoxometalates. Bioinorganic Pharmacol 2006, 60:211–219.

121. Ono L, Wollinger W, Rocco IM, Coimbra TL, Gorin PA, Sierakowski MR: In vitro and in vivo antiviral properties of sulfated galactomannan against yellow fever virus (BeH11 strain) and dengue 1 virus (Hawaii strain). Antivir Res 2003, 60:201–208.

122. Krajczyk A, Kulinka K, Kulinski T, Hunt BL, Day CW, Smeef DF, Ostrowski T, Januszczyn P, Zeidler J: Antivirally active ribavirin analogues - 4,5-disubstituted 1,2,3-triazole nucleosides: biological evaluation against certain respiratory viruses and computational modelling. Antivir Chem Chemother 2014, 23:161–171.

123. Sidwell RW, Bailey KW, Wong MH, Barnard DL, Smeef DF: In vitro and in vivo influenza virus-inhibitory effects of viramidine. Antivir Res 2005, 68:10–17.

124. Smeef DF, Wadersee MK, Wong MH, Bailey KW, Sidwell RW: Treatment of mannan-enhanced influenza B virus infections in mice with oseltamivir, ribavirin and viramidine. Antivir Chem Chemother 2004, 15:261–268.

125. Gilbert BE, Wilson SZ, Knight V, Couch RB, Quares JM, Dure L, Hayes N, Wills G: Ribavirin small-particle aerosol treatment of infections caused by influenza virus strains A/Victoria/7/83 (H3N1) and B/Texas/1/84. Antimicrob Agents Chemother 1985, 27:309–313.

126. Huggins J, Zhang ZX, Bray M: Antiviral drug therapy of flavivirus infections: 5-adenosylhomocysteine hydrolase inhibitors inhibit Ebola virus in vitro and in a lethal mouse model. J Infect Dis 1999, 179(Suppl 1):S240–S247.

127. Tam RC, Lau JY, Hong Z: Mechanisms of action of ribavirin in antiviral therapies. Antivir Chem Chemother 2001, 12:261–272.

128. Sookosan S, Castano G, Fiechtner D, Cell D: Effects of ribavirin on cytokine production of recall antigens and pyrrolohemaglutinin-stimulated peripheral blood mononuclear cells. (Inhibitory effects of ribavirin on cytokine production), Ann Hepatol 2004, 3:104–107.

129. Kumaki Y, Day CW, Smeef DF, Morrey JD, Barnard DL: In vitro and in vivo efficacy of fluoroexocytidine analogs against highly pathogenic avian influenza H5N1, seasonal, and pandemic H1N1 virus infections. Antivir Res 2011, 92:259–340.

130. McCown M, Diamond MS, Pekoz A: The utility of siRNA transcripts produced by RNA polymerase ii in down regulating viral gene expression and replication of negative- and positive-strand RNA viruses. Virology 2003, 313:514–524.

131. Bank S: siRNA for Influenza Therapy, Viruses 2010, 2:1448–1457.

132. Truong NP, Gu W, Prasadam I, Zia C, Crawford R, Xiao Y, Monteiro MJ: An influenza virus-inspired polymer system for the timed release of siRNA. Nat Commun 2013, 4:1902.

133. Mollaei HR, Moravan SH, Arbabzadeh SA, Shamsi-Shahrabadi M, Farzalpour M, Asfar RW: RNAi and miRNA in Viral Infections and Cancers. Asian Pac J Cancer Prev 2013, 14:705–706.

134. Rossignol JF, La FS, Chiappa L, Ciucci A, Santoro MG: Thiazolides, a new class of anti-influenza molecules targeting viral hemagglutinin at the post-translational level. J Biol Chem 2009, 284:2979–2980.

135. Maddy BA, Chen X, Jonsson CB, Ananthan S, Madder J, Smee DF, Noah JW, Dux X, Jia F, Maddox S, Sosa M, White EL, Severson WE: Discovery of novel benzozquinolizones and thiazolomidazoles, inhibitors of influenza H5N1 and H1N1 viruses, from a cell-based high-throughput screen. J Biomed Screen 2011, 16:735–81.

136. Rao JR, Jha AK, Rawal RK, Sharad A, Day CW, Barnard DL, Smeef DF, Chu CK: (&)-Carbocine: enantioselective synthesis and in vitro antiviral activity against various strains of influenza virus including H5N1 (avian influenza) and novel 2009 H1N1 (swine flu), Bioorg Med Chem Lett 2009, 20(12):2601–2604.

137. Selvam P, Chandramohan M, Hurst BL, Smeef DF: Activity of astinine-sulfamidine derivatives against 2009 pandemic H1N1 influenza virus in cell culture. Antivir Chem Chemother 2010, 21:143–146.

138. Selvam P, Vyayalkhimi P, Smeef DF, Goven BB, Jalander JD, Day CW, Barnard DL: Novel 3-sulphonamido-quinazolin-4(3H)-one derivatives: microave-
assisted synthesis and evaluation of antiviral activities against respiratory and biodefense viruses. Antivir Chem Ther 2007, 18:301–305.
148. Takeda S, Munakata R, Abe S, Mii S, Suzuki M, Kashiwada T, Azuma A, Yamamoto Patel P, Nandwani V, Vanchiere J, Conrad SA, Scott LK: High-dose N-acetylcysteine therapy for novel H1N1 influenza pneumonia. Ann Intern Med 2010, 152:687–688.
149. Garozzo A, Tempera G, Ungheri D, Timpanaro R, Castro A: Novel pyrazolo[3,4-d]pyrimidine nucleoside analogs with broad-spectrum antiviral activity. Antimicrob Agents Chemother 1987, 31:1554–1551.
150. Lai KY, Ng WY, Oshurba Chan PK, Wong KF, Cheng F: High-dose N-acetylcysteine therapy for novel H1N1 influenza pneumonia. Antivir Chem Ther 2007, 18:301–305.
151. Mata M, Morcello E, Gircono C, Cortijo J: N-acetyl-L-cysteine (NAC) induces mucin synthesis and pro-inflammatory mediators in alveolar type II epithelial cells infected with influenza virus A and B and with respiratory syncytial virus (RSV). Biochem Pharmacol 2011, 82:548–555.
152. Geiler J, Michaels M, Nack P, Leutz A, Langer K, Doerr HW, Cinatl Jr: N-acetyl-L-cysteine (NAC) inhibits virus replication and expression of pro-inflammatory molecules in A549 cells infected with highly pathogenic H5N1 influenza A virus. Biochem Pharmacol 2010, 79:413–420.
153. Murray JL, McDonald NJ, Sheng J, Shaw MW, Hodge TW, Rubin DH, O’Brien WA, Smeed DF: Inhibition of influenza A virus replication by antagonism of a PI3K-AKT-mTOR pathway member identified by gene-trap insertional mutagenesis. Antivir Chem Ther 2012, 22:205–215.
154. Takeda S, Munakata R, Abe S, Mi S, Suzuki M, Kashiwada T, Azuma A, Yamamoto T, Germon A, Tanaka K: Hypercytotoxicity with 2009 pandemic H1N1 (H1N1pdm) influenza successfully treated with polymyxin B-immobilized fiber column hemoperfusion. Intensive Care Med 2010, 36:906–907.
155. Patel P, Nandwani V, Vanchiere J, Conrad SA, Scott LK: Use of therapeutic plasma exchange as a rescue therapy in 2009 pH1N1 influenza A-an associated respiratory failure and hemodynamic shock. Pediatr Crit Care Med 2011, 12:e67–e69.
156. Chung JL, Sapari S, Kuan YC: A case of acute respiratory distress syndrome associated with novel H1N1 treated with intravenous immunoglobulin G. J Microbiol Immunol Infect 2011, 44:319–322.
157. Kubota-Koketu R, Yunoki M, Okuno Y, Kuta K: Significant neutralizing activities against H2N2 influenza A viruses in human intravenous immunoglobulin lots manufactured from 1993 to 2010. Biologics 2012, 6:245–247.
158. Nath A, Tyler KL: Novel approaches and challenges to treatment of central nervous system viral infections. Ann Neurol 2013, 74:412–422.
159. Yasuda S, Huffman JH, Smeed DF, Sidwell RW, Miyata K: Spectrum of virus inhibition by consensus interferon Y643. Antivir Chem Chemother 2003, 14:307–311.
160. Moseley GE, Webster RG, Aldridge JR: Peroxisome proliferator-activated receptor and AMP-activated protein kinase antagonists protect against lethal influenza virus challenge in mice. Influenza Other Respir Viruses 2010, 4:307–311.
161. Carey MA, Bradbury JA, Seubert LM, Langenbach R, Zelden CR, Geomelec DR: Contrast effects of cyclooxygenase-1 (COX-1) and COX-2 deficiency on the host response to influenza A viral infection. J Immunol 2005, 175:6878–6884.
162. Carey MA, Bradbury JA, Rebolloso BD, Graves JP, Zelden CR, Geomelec DR: Pharmacologic inhibition of COX-1 and COX-2 in influenza A viral infection in mice. PLoS One 2010, 5:e1610.
163. Lee SM, Gai WW, Cheung TP, Peris JS: Antiviral effect of a selective COX-2 inhibitor on H5N1 influenza infection in vitro. Antivir Res 2011, 91:330–334.
164. Lee SM, Gai WW, Cheung TP, Peris JS: Antiviral activity of a selective COX-2 inhibitor NS-398 on avian influenza H5N1 infection. Influenza Other Respir Viruses 2011, 5(Suppl 1):230–232.
165. Zheng BJ, Chan KW, Lin YP, Zhao CY, Chan C, Zhang HJ, Chen HL, Wong WS, Lau SK, Woo PC, Chan KH, Jin DY, Yuen KY: Delayed antiviral plus immunomodulator treatment still reduces mortality in mice infected by high inoculum of influenza A/H5N1 virus. Proc Natl Acad Sci U S A 2008, 105:8091–8096.
166. Aspord C, Laurin D, Richard MJ, Ve H, Chaperot L, Plumas J: Induction of antiviral cytotoxic T cells by plasmacytoid dendritic cells for adoptive immunotherapy of posttransplantation diseases. Am J Transplant 2011, 11:2613–2626.
167. Wu CC, Hayashi T, Takabayashi K, Saber M, Smeed DF, Guiney DD, Cottam HB, Carson DA: Immunotherapeutic activity of a conjugate of a Toll-like receptor 7 ligand. Proc Natl Acad Sci U S A 2007, 104:3990–3995.
168. Sidwell RW, Smeed DF, Huffman JH, Bailey KW, Warren RP, Burger RA, Penney CL: Antiviral activity of an immunomodulatory lipophilic desmaramyl dileptide analog. Antiviral Res 1995, 26:145–159.
169. Hayden FG, Douglas RG Jr, Simons R: Enhancement of activity against influenza viruses by combinations of antiviral agents. Antimicrob Agents Chemother 1980, 18:530–541.
170. Wilson SZ, Knight V, Wyde PR, Drake S, Couch RB: Amantadine and ribavirin aerosol treatment of influenza A and B infection in mice. Antivir Med Chem 1998, 17:642–648.
171. Goel S, Gupta S, Sahu DK, Giri R, Singhal R, et al: Combined action of ribovarin and rimantadine in experimental myxovirus infection. Exp Ther Med 2013, 5:905–909.
172. Dey S, Dey S, Dey S, Dey S, Dey S: Combination of permivarin and rimantadine demonstrate synergistic antiviral effects in sub-lethal influenza A (H3N2) virus mouse model. Antivir Res 2010, 88:276–280.
173. Gupta S, Gupta S, Gupta S, Gupta S, Gupta S: Neuraminidase inhibitor-rimantadine combinations exert additive and synergistic anti-influenza virus effects in MDCX cells. Antimicrob Agents Chemother 2004, 48:4855–4863.
174. Miyashina NA, Hoffmann E, Salomon R, Webster RG, Govaerts EA: Amantadine-oltsamivir combination therapy for H5N1 influenza virus infection in mice. Antivir Ther 2007, 12:363–370.
175. Smeed DF, Wong MH, Bailey KW, Sidwell RW: Activities of oseltamivir and ribavirin used alone and in combination against infections in mice with recent isolates of influenza A (H1N1) and B viruses. Antivir Chem Chemother 2006, 17:185–192.
Ilyushina NA, Hay A, Yilmaz N, Boon AC, Webster RG, Govorkova EA: Oseltamivir-ribavirin combination therapy for highly pathogenic H5N1 influenza virus infection in mice. Antimicrob Agents Chemother 2008, 52:3889–3897.

Smee DF, Bailey KW, Morrison AC, Sidwell RW: Combination treatment of influenza A virus infections in cell culture and in mice with the cyclopentane neuraminidase inhibitor RWJ-270201 and ribavirin. Chemotherapy 2002, 48:88–93.

Smee DF, Hurst BL, Wong MH, Tarbet EB, Babu YS, Klumpp K, Morrey JD: Combinations of oseltamivir and peramivir for the treatment of influenza A (H1N1) virus infections in cell culture and in mice. Antiviral Res 2010, 88:38–44.

Duval X, van der Werf S, Blanchon T, Mornier A, Bouscambert-Duchamp M, Tili A, Enouf V, Charlois-Ou C, Vincent C, Andreoletti L, Tubach F, Lina B, Mentre F, Leport C. Efficacy of oseltamivir-zanamivir combination compared to each monotherapy for seasonal influenza: a randomized placebo-controlled trial. PLoS One 2011, 6:e29778.

Nguyen JT, Snee DF, Barnard DL, Julander JG, Gross M, de Jong MD, Went GT: Efficacy of combined therapy with amantadine, oseltamivir, and ribavirin in vivo against susceptible and amantidine-resistant influenza A viruses. PLoS One 2012, 7:e31036.

Nguyen JT, Snee DF, Barnard DL, Julander JG, Gross M, de Jong MD, Went GT: Triple combination of amantadine, oseltamivir, and ribavirin impedes the selection of drug-resistant influenza A virus. Antimicrob Agents Chemother 2009, 53:4115–4126.

Hoopes JD, Driebe EM, Kelley E, Engeltalher DM, Keim PS, Peelison AS, Rong L, Went GT, Nguyen JT: Triple combination antiviral drug (TCAD) composed of amantadine, oseltamivir, and ribavirin impedes the selection of drug-resistant influenza A virus. J Antimicrob Chemother 2010, 65:2090–2096.

Laing FC, Cao Y, Gao Y, Yu H, Guan Y: Oseltamivir-ribavirin combination therapy for highly pathogenic H5N1 influenza virus infection in mice. Antiviral Res 2011, 91:132–139.

Smee DF, Smee DF, Bailey KW, Morrison AC, Sidwell RW: Combination treatment of influenza A virus infections in cell culture and in mice with the cyclopentane neuraminidase inhibitor RWJ-270201 and ribavirin. Chemotherapy 2002, 48:88–93.

Smee DF, Hurst BL, Wong MH, Tarbet EB, Babu YS, Klumpp K, Morrey JD: Combinations of oseltamivir and peramivir for the treatment of influenza A (H1N1) virus infections in cell culture and in mice. Antiviral Res 2010, 88:38–44.

Duval X, van der Werf S, Blanchon T, Mornier A, Bouscambert-Duchamp M, Tili A, Enouf V, Charlois-Ou C, Vincent C, Andreoletti L, Tubach F, Lina B, Mentre F, Leport C. Efficacy of oseltamivir-zanamivir combination compared to each monotherapy for seasonal influenza: a randomized placebo-controlled trial. PLoS One 2011, 6:e29778.

Nguyen JT, Snee DF, Barnard DL, Julander JG, Gross M, de Jong MD, Went GT: Efficacy of combined therapy with amantadine, oseltamivir, and ribavirin in vivo against susceptible and amantidine-resistant influenza A viruses. PLoS One 2012, 7:e31036.

Nguyen JT, Hoopes JD, Le MH, Snee DF, Patrick AK, Faix DJ, Blair PJ, de Jong MD, Prichard MN, Went GT: Triple combination of amantadine, ribavirin, and oseltamivir is highly active and synergistic against drug resistant influenza virus strains in vitro. PLoS One 2010, 5:e9332.

Nguyen JT, Hoopes JD, Snee DF, Prichard MN, Driebe EM, Engeltalher DM, Le MH, Keim PS, Spence RP, Went GT: Triple combination of oseltamivir, amantadine, and ribavirin displays synergistic activity against multiple influenza virus strains in vitro. Antimicrob Agents Chemother 2009, 53:4115–4126.

Tarbet EB, Vollmer AH, Hurst BL, Barnard DL, Furuta Y, Snee DF: In vitro activity of favipiravir and neuraminidase inhibitor combinations against oseltamivir-sensitive and oseltamivir-resistant pandemic influenza A (H1N1) virus. Arch Virol 2014, 159(6):1279–1291.

Tarbet EB, Maekawa M, Furuta Y, Babu YS, Morrey JD, Snee DF: Combinations of favipiravir and peramivir for the treatment of pandemic influenza A/California/04/2009 (H1N1) virus infections in mice. Antiviral Res 2012, 94:103–110.

Smee DF, Hurst BL, Wong MH, Bailey KW, Tarbet EB, Morrey JD, Furuta Y: Effects of the combination of favipiravir (T-705) and oseltamivir on influenza A virus infections in mice. Antimicrob Agents Chemother 2010, 54:2126–2133.

Smee DF, von Itzstein M, Bhatt B, Tarbet EB: Exacerbation of influenza virus infections in mice by intranasal treatments and implications for evaluation of antiviral drugs. Antimicrob Agents Chemother 2012, 56:3238–3233.

Lat A, Bhadelia N, Miko B, Furuya EY, Thompson GR III: Invasive aspergillosis after pandemic (H1N1) 2009. Emerg Infect Dis 2010, 16:971–973.

Zhou B, Zhong N, Guan Y. Treatment with convalescent plasma for influenza A (H5N1) infection. N Engl J Med 2007, 357:1450–1451.

Khan Z, Martin T, Opavsky MA, Pennington J: Viral myocarditis: balance between viral infection and immune response. Can J Cardiol 1996, 12:935–943.

De Clercq E. Antiviral drug discovery: ten more compounds, and ten more stories (part B). Med Res Rev 2009, 29:571–610.

Sejersen T, Warfelld KL, Wells J, Enterlein S, Smith M, Ruther G, Yunus AS, Kinch MS, Goldblatt M, Aman MJ, Bavi S. Antiviral activity of a small-molecule inhibitor of filovirus infection. Antimicrob Agents Chemother 2010, 54:2152–2159.

Cite this article as: Kelesidis et al.: How to approach and treat viral infections in ICU patients. BMC Infectious Diseases 2014;14:321.