Multiple triple-point fermions in Heusler compounds

Ranjan Kumar Barik, Ravindra Shinde and Abhishek K Singh

Materials Research Center, Indian Institute of Science, Bangalore 560012, India

E-mail: abhishek@iisc.ac.in

Received 24 March 2018, revised 6 July 2018
Accepted for publication 8 August 2018
Published 22 August 2018

Abstract

Using the density functional theoretical calculations, we report a new set of topological semimetals \(X_2YZ \) (\(X = \{ \text{Cu, Rh, Pd, Ag, Au, Hg} \} \), \(Y = \{ \text{Li, Na, Sc, Zn, Y, Zr, Hf, La, Pr, Pm, Sm, Tb, Dy, Ho, Tm} \} \) and \(Z = \{ \text{Mg, Al, Zn, Ga, Y, Ag, Cd, In, Sn, Ta, Sm} \} \)), which show the existence of multiple topological triple point fermions along four independent \(\tilde{C}_3 \) axes. These fermionic quasiparticles have no analogues elementary particle in the standard model. The angle-resolved photoemission spectroscopy is simulated to obtain the exotic topological surface states and the characteristic Fermi arcs. The inclusion of spin–orbit coupling splits the triple-point to two Dirac points. The triple-point fermions are exhibited on the easily cleavable (111) surface and are well separated from the surface \(\bar{\Gamma} \) point, allowing them to be resolved in the surface spectroscopic techniques. This intermediate linearly dispersive degeneracy between Weyl and Dirac points may offer prospective candidates for quantum transport applications.

Keywords: topological materials, triple point fermion, semimetals

(Some figures may appear in colour only in the online journal)
Thus, these materials are expected to show new topological phenomena, transport behaviors, and spectroscopic responses, not present in DSMs and WSMs.

The TP fermions having novel band crossings have triggered the search of quantum topological materials, mainly because of exotic topological properties. Many candidate materials in different space groups have been predicted to show this feature \cite{29}, specifically with the crystal structures having three-fold rotational symmetry. In this paper, we predict a set of Heusler topological materials \(X_2YZ \) with characteristic TP fermions, which are present even in the absence of SOC. With the inclusion of collinear spin SOC, the TP splits into two separate Dirac points. The two distinct observed TPs shift anti-parallel with the change in the row of constituent atoms offering tunability. The electronic structure and topological properties of a representative \(\text{Ag}_2\text{TmMg} \) material are described in detail here; the corresponding properties of rest of the materials are given in the supporting information (stacks.iop.org/JPhysCM/30/375702/mmedia).

1. Methodology

The calculations were performed using the first-principles density functional theory (DFT) \cite{33} as implemented in the Vienna \textit{ab initio} simulation package (VASP) \cite{34,35}. Projector augmented wave (PAW) \cite{36,37} potentials were used to represent the ion–electron interactions. The electronic exchange and correlation were approximated by the generalized gradient approximation (GGA) using Perdew–Burke–Ernzerhof (PBE) type of functionals \cite{38}. The wave functions were expanded in a plane wave basis with an energy cut-off of 400 eV and a \(\Gamma \)-centered \(12 \times 12 \times 12 \) Monkhorst–Pack \cite{39} \(k \)-grid Brillouin zone sampling. The calculations were done both with and without spin–orbit coupling. The Bloch spectral functions (see equation (1)) and the Fermi surfaces of the slab (constructed by stacking a number of principal layers) were calculated based on the iterative Green’s function method \cite{40} by obtaining the tight-binding Hamiltonian (see equation (2)) from the maximally localized Wannier functions \cite{41}, as implemented in the WannierTools package \cite{42}.

\[
A(k||,\omega) = -\frac{1}{\pi} \lim_{\eta \to 0^+} \text{ImTr} \left[G_1(k||,\omega + i\eta) \right] \tag{1}
\]

where, the slab’s Green’s function is given by \(G_1(k||,\omega + i\eta) \propto (\omega - \epsilon_k^s)^{-1} \). The tight-binding Hamiltonian for the slab is represented by \cite{42},

\[
H^{\text{slab}}_{\text{mn}}(k||) = \begin{pmatrix}
H_{\text{mn,11}}(k||) & H_{\text{mn,12}}(k||) & \cdots & H_{\text{mn,1n_b}}(k||) \\
H_{\text{mn,21}}(k||) & H_{\text{mn,22}}(k||) & \cdots & H_{\text{mn,2n_b}}(k||) \\
\vdots & \vdots & \ddots & \vdots \\
H_{\text{mn,n_b,1}}(k||) & H_{\text{mn,n_b,2}}(k||) & \cdots & H_{\text{mn,n_b,n_b}}(k||)
\end{pmatrix}
\tag{2}
\]

where, \(m \) or \(n \) denotes the atom-orbital index, \(k_b \) denotes the 2D-slab momentum, and \(n_b \) denotes the number of principle layers in the slab \cite{42}. The individual elements of the Hamiltonian are given by simple intra and interlayer tight-binding terms:

\[
H_{\text{mn,ij}}(k||) = \sum_{R=R_0} \Theta_{ij}(R) R H_{\text{mn}}(R).
\]

The WannierTools code employed here to obtain the tight-binding model requires orthogonal basis functions to construct the Hamiltonian. These orthogonal basis functions are taken from maximally localized Wannier functions (constructed from Bloch states by wannierization). Similar to any other Kohn–Sham Hamiltonian, this Hamiltonian will also lack screening and would affect the interlayer coupling in the slab.

2. Results and discussion

2.1. Crystal and electronic structure

\(\text{Ag}_2\text{TmMg} \) belongs to the face-centered cubic centrosymmetric crystal structure (figure 1(a) with \(\text{Fm}3\text{m} \) (No. 225) space group. Ag atoms occupy 8c \((1/4,3/4,1/4)\) and 8c \((1/4,1/4,1/4)\) Wyckoff positions, whereas, Mg and Tm atoms occupy 4b \((1/2,1/2,1/2)\) and 4a \((0,0,0)\) Wyckoff positions, respectively. The optimized lattice constant of this non-magnetic Heusler compound is 4.91 Å, with a \(-0.31 \) eV/atom formation energy. The dynamical stability of the structure was verified by computing the phonon dispersion (see supporting information). Figure 1(b) shows the bulk Brillouin zone and its projection on to the equivalent \((111)\) surface. This crystal structure has three-fold rotational symmetry \((C_3)\) along the \([111]\) direction, and there are four such equivalent directions. The structure also has a mirror symmetry plane \((\bar{M}_1)\). Due to the \(\bar{C}_1 \) rotation, the \(\bar{M}_1 \) plane is repeated twice. If \(\psi_1, \psi_2 \) and \(\psi_3 \) are the eigenvectors of the \(C_3 \) operator, only \(\psi_3 \) follows eigenvalue equation of \(\bar{M}_1 \) operator. Hence, \(\bar{C}_1 \) and \(\bar{M}_1 \) do not commute, implying that the two-fold band degeneracy can only be obtained if the eigenvalues for both \(\psi_1 \) and \(\psi_2 \) are the same. A triply-degenerate node occurs, when a singly-degenerate band \(\psi_3 \) and doubly-degenerate bands \((\psi_1 \text{ and } \psi_2)\) cross each other. The phonon dispersion (see figure 1(c)) also shows a peculiar crossing which is linearly dispersive as well as triply-degenerate. This indicates an occurrence of bosonic Weyl quasiparticles.

The band structure of \(\text{Ag}_2\text{TmMg} \) along high-symmetry lines in the absence of SOC is shown in figure 2(a). In the neighborhood of Fermi level, along the \(\Gamma-X \) direction, a non-degenerate band touches a doubly degenerate band at around \(-0.2 \) eV. The \(\Gamma \) point itself hosts a triply degenerate point at \(-0.05 \) eV as seen in the \(K-\Gamma-L \) segment of the band structure. When projected onto the \((111)\) surface, the TP observed at the \(\Gamma \) point merges with the \([111]\) axes, hence cannot be resolved experimentally. However, the other TPs, which are well separated from the \(\Gamma \) point, can be observed on this easily cleavable \((111)\) plane. This separation of TPs from the \(\Gamma \) point implies the observation of stronger Fermi arcs, leading to the easy detection in the angle-resolved photoemission spectroscopic (ARPES) experiments. Owing to mirror symmetry plane \(\bar{M}_1 \), three-fold rotational symmetry \((C_3)\) and the combination of time-reversal \((T)\) and inversion symmetry \((\bar{I})\), the TPs observed are replicated six-times in the
Brillouin zone, making a hexagonal pattern. With the inclusion of SOC, these TPs split into two Dirac point of type-I and type-II along $\Gamma-X$ as well as along $\Gamma-L$ direction, as shown in the figure 2(b), implying that TPs in this class of materials are observed only in the absence of SOC.

In the case of Ag$_2$TmMg, the lighter element Mg was replaced with the same group elements and its effect was observed on the position of the two distinct TPs. Figure 3(a) shows the change in the location of TPs in the Brillouin zone for the different compounds. The TP1 (observed along the $\Gamma-X$ segment) moves down with increasing row number of constituent elements, while TP2 moves upward. However, the variation is prominent in the binding energy of TP1 as compared to that of TP2. This is surprising because the majority of the orbital contribution to the TPs comes from Ag and Tm only. In the case of Ag$_2$InX (X = Pr, Sm, Tb, Dy and Lu) (see figure 3(b)), the binding energies of TP1 increases gradually with increase in atomic number of lanthanide elements, while the binding energy of TP2 remains at the Fermi level. Therefore, effectively, we can tune the position of TPs in the appropriately alloyed compound. Table 1 of supporting information shows the binding energies of TPs for each of the material studied. A wide variation is seen in the values of binding energies providing an avenue of composition-controlled tunable TPs.
2.2. Bloch spectral function and Fermi arcs

The surface-projected density of states (or Bloch spectral function) is calculated by iterative Green’s function method, by obtaining the tight-binding Hamiltonian from the maximally localized Wannier functions. This function simulates the experimental angle-resolved photoemission spectroscopy, giving valuable information about the surface states and nodal points. In figure 4(a), bright yellow lines indicate the contribution from the surface states, and the TP is seen at the -0.2 eV and the two-thirds of momenta along $\Gamma-X$ direction. These states are seen to merge on the linearly dispersing bands and crossing the TP. The corresponding surface-projected density of states in the neighbourhood of $\bar{\Gamma}$ in the $\bar{\Gamma}-\bar{\Gamma}$–$\bar{\Gamma}$ direction is as shown in figure 4(c). Slightly below the Fermi level, a TP is observed due to touching of non-linearly dispersing bands. This TP, however, cannot be resolved in surface measurements because of its location at the Γ point.

A three-fold rotational symmetry (C_3) along (1 1 1) direction is a crucial requirement for the existence of TPs. Since there are four such equivalent (1 1 1) directions, the TPs will appear in four pairs in the Brillouin zone. The SOC splits these TPs into two Dirac points of type-I and type-II along $\Gamma-X$ as well as along $\Gamma-L$ direction. The Dirac points, which are far away from Γ point (see figures 5(a), (b) and (d)) will form a hexagonal ring kind of fermi surface by repeating each Dirac point six times in the whole Brillouin-zone due to C_3 and inversion symmetry, whereas the Dirac point appearing at Γ point (see figure 5(c)) forms a Fermi surface in a circular ring shape.

The TPs can also be characterized by the Fermi arcs on the surface Bloch spectrum. Since there are four equivalent (1 1 1) directions, the Γ point projection coincides with one of the TPs on the (1 1 1) surface. Hence, three other TPs and their time-reversal counterparts will be seen in an hexagonal pattern on the (1 1 1) surface (see figure 4(b)). The Fermi arcs emanating from a given TP connect to the neighboring TPs forming a flower-like hexagonal Fermi surface. Again, this pattern is due to the three-fold rotational symmetry and time-reversal symmetry along the diagonal of the primitive unit cell. The Fermi surface corresponding to the Γ in the $K-\Gamma-L$ segment (see figure 4(d)) shows a bright spot at the center connected by the arcs and the nearby six TPs at the vertices of the hexagon.
Figure 5. Fermi surface of Dirac points at various chemical potentials (a) and (b) along Γ–X direction (c) at Γ and (d) along Γ–L.

3. Conclusion

In conclusion, we have theoretically predicted several new materials hosting peculiar triple-point fermions as quasiparticles. Also, they show signature hexagonal Fermi arcs connecting the vertices to the center and the nearest vertex. This set of materials and the slab were particularly chosen to maximize the number of TPs and easy experimental preparation. Since all the six TPs are well separated from each other and are away from the Brillouin zone center, it offers easy detection using surface sensitive spectroscopic methods. The two distinct TPs observed shift anti-parallel with the change in the row of the constituent lighter atom, whereas the binding energy of one of the TPs observed in the lanthanide series remains almost zero throughout. This study can guide the experimental observation of triple-point fermions, based on the location of Fermi arcs. An appropriate alloying offers a possibility of tuning the position of the TPs. Additionally, not only electronic bands show triply-degenerate crossings, but also the phonon bands exhibit this characteristic behaviour. The TP fermions cannot be characterized by the conventional topological invariants, elucidating the complexity of this new class of topological materials. The observation of triply-degenerate nodal points and the Fermi arcs presented in this study help in the characterization of these exotic new class of topological materials.

Acknowledgments

The authors thank Dr. Swaminathan Venkataraman for valuable discussions. RS acknowledges Science and Engineering Research Board, DST, India for a fellowship (PDF/2015/000466). This work is partly supported by the US Army Contract FA5209-16-P-0090. We also acknowledge Materials Research Center and Supercomputer Education and Research Center, Indian Institute of Science for providing computational facilities.

Supporting information

The list of materials, along with their phonon dispersion, band structures (with and without SOC) and the binding energies of TPFs are given in the supporting information.

ORCID iDs

Ranjan Kumar Barik @ https://orcid.org/0000-0002-6369-4130
Ravindra Shinde @ https://orcid.org/0000-0001-5182-1480
Abhishek K Singh @ https://orcid.org/0000-0002-7631-6744

References

[1] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757–61
[2] Moore J E 2010 Nature 464 194–8
[3] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[4] Yang K Y, Lu Y M and Ran Y 2011 Phys. Rev. B 84 075129
[5] Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
[6] Ojanen T 2013 Phys. Rev. B 87 245112
[7] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045–67
[8] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057–110
[9] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[10] Hsieh D et al 2009 Science 323 919–22
[11] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205
[12] Singh B, Sharma A, Lin H, Hasan M Z, Prasad R and Bansil A 2012 Phys. Rev. B 86 115208
[13] Weng H, Fang C, Fang Z, Bernevig A B and Dai X 2015 Phys. Rev. X 5 011029
[14] Xu S Y et al 2015 Science 349 613–7
[15] Xu S Y et al 2015 Science 347 294–8
[16] Huang S M et al 2015 Nat. Commun. 6 7373
[17] Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405
[18] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[19] Wang Z, Weng H, Wu Q, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
[20] Kim Y, Wieder B J, Kane C L and Rappe A M 2015 Phys. Rev. Lett. 115 036806
[21] Yu R, Weng H, Fang Z, Dai X and Hu X 2015 Phys. Rev. Lett. 115 036807
[22] Yu R, Fang Z, Dai X and Weng H 2017 Frontiers Phys. 12 127202
[23] Wieder B J, Kim Y, Rappe A M and Kane C L 2016 Phys. Rev. Lett. 116 186402
[24] Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J and Bernevig B A 2016 Science 353 6299
[25] Winkler G W, Wu Q S, Troyer M, Krogstrup P and Soluyanov A A 2016 Phys. Rev. Lett. 117 076403
[26] Weng H, Fang C, Fang Z and Dai X 2016 Phys. Rev. B 93 241202
[27] Zhu Z, Winkler G W, Wu S Q, Li J and Soluyanov A A 2016 Phys. Rev. X 6 031003
[28] Weng H, Fang C, Fang Z and Dai X 2016 Phys. Rev. B 94 165201
[29] Chang G et al 2017 Sci. Rep. 7 1688
[30] Zhang T T, Yu Z M, Guo W, Shi D, Zhang G and Yao Y 2017 J. Phys. Chem. Lett. 8 5792–7
[31] Xia Y and Li G 2017 Phys. Rev. B 96 241204
[32] Yang H, Yu J, Parkin S S P, Felser C, Liu C X and Yan B 2017 Phys. Rev. Lett. 119 136401
[33] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[34] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15–50
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169–86
[36] Blöchl P E 1994 Phys. Rev. B 50 17953–79
[37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758–75
[38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865–8
[39] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188–92
[40] Sancho M P L, Sancho J M L, Sancho J M L and Rubio J 1985 J. Phys. F 15 851–8
[41] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309–10
[42] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405–16