Response to Correspondence: Baricitinib – Impact on COVID-19 Coagulopathy?

Jorgensen et al.

Authors:

1. Boghuma K. Titanji, MD PhD, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States.
2. Monica M. Farley, MD, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States. Infectious Diseases, Atlanta Veterans Affairs Medical Center, Decatur Georgia.
3. Raymond F Schinazi, PhD, DSc, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.
4. Vincent C Marconi, MD, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Infectious Diseases, Atlanta Veterans Affairs Medical Center, Decatur Georgia; Department of Global Health, Emory University Rollins School of Public Health, Atlanta, Georgia; and The Emory Vaccine Center, Atlanta, Georgia.

Corresponding Author: Vincent. C. Marconi

Health Sciences Research Building
1760 Haygood Dr NE, Room W325
Atlanta, GA 30322, USA

Office +1-404-727-2343; Fax +1-404-712-4193

Email: vcmarco@emory.edu

Published by Oxford University Press for the Infectious Diseases Society of America 2020. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Dear Editor,

We read with interest the correspondence by Jorgensen et al. in response to our recent publication in Clinical Infectious Diseases (CID) on the use of baricitinib for treatment of patients with moderate to severe COVID-19. The authors raise concerns on the potential impact of JAK-inhibitors on COVID-19 coagulopathy, citing data on tofacitinib and baricitinib from the WHO Vigibase1. Several small cohort studies including cumulatively over 100 patients have reported on the use of the JAK1/2 inhibitors baricitinib and ruxolitinib for the treatment of patients with COVID-192-8. Treatment duration in these studies ranged from 1-14 days, with no short-term toxicities reported with ruxolitinib dosing of 10-15 mg/day4-6 and baricitinib dosing up to 8 mg/day2. The largest of these studies, a prospective longitudinal study in which 20 patients with COVID-19 received 4 mg baricitinib twice daily for 2 days followed by 4 mg daily for 7 days did not show a difference in the incidence of thrombotic events when compared to a control group of 56 individuals during the one-month follow-up period2. Furthermore, recently published extended observation safety data for baricitinib in the treatment of rheumatoid arthritis (RA) with follow-up of up to 8.4 years found incidence rates for venous thromboembolism events (VTE) events between baricitinib dose groups (2 mg and 4 mg) to be comparable to those reported in patients with RA9. It remains unclear why in pooled data from clinical trials of baricitinib in RA, 6 individuals in the treatment group developed VTE; however, the long-term observational data are reassuring that this potential risk may not persist overtime10. Baricitinib in combination with remdesivir is being evaluated in a randomized, placebo-controlled trial (ACTT2) of COVID-19 treatment (NCT04401579), which has completed recruitment of over 1,000 patients. VTE of any grade have been regularly monitored by the Data Safety and Monitoring Board (DSMB) for ACTT2. To date, the DSMB has not recommended unblinding or halting the trial, which is reassuring. This does not, however, preclude the possibility of an imbalance between arms that could emerge during the final trial analysis. Baricitinib through its immunomodulatory effects as highlighted by Jorgensen et al. may in fact be beneficial in terms of reducing coagulopathy in patients with COVID-19, which is thought to be primarily mediated by hyper-inflammation and endothelial damage. All of the cohort studies of baricitinib for COVID-19 treatment led to significant decline in inflammatory
markers for patients who received the drug2,3,8. We agree that in the pursuit of effective therapeutics against COVID-19, there is a need to balance the potential adverse effects of any intervention with its hypothesized benefits and to perform randomized, controlled trials. Regarding baricitinib, ACTT2 should provide clarity on the VTE issue in the near future and its role in the treatment of COVID-19 in moderate to severe patients.
Acknowledgements

Vincent Marconi and Raymond F Schinazi are partially funded by - Emory University Center for AIDS Research (AI050409). Raymond F Schinazi is funded in part by NIH grant 5-R01-MH116695.

Conflicts of Interest

Dr. Vincent C. Marconi has consulted or received research support from ViiV, Gilead, Lilly and Bayer. Dr. Raymond Schinazi served as an unpaid consultant for Eli Lilly whose drugs are being evaluated in the research described in this paper. In addition, Dr. Schinazi owns shares in Eli Lilly and Gilead, and is issued patents 20190134039, 10022378, and 9662332. The terms of this arrangement have been reviewed and approved by Emory University in accordance with its conflict of interest policies. All other authors do not have any conflicts to declare.
1. Vallejo-Yagüe E, Weiler S, Micheroli R, Burden AM. Thromboembolic safety reporting of Tofacitinib and Baricitinib: an analysis of the WHO VigiBase. Drug Saf. [Epub ahead of print] accessed July 23 2020, doi: 10.1007/s40264-020-00958-9.

2. Bronte V, Ugel S, Tinazzi E, et al. Baricitinib restrains the immune dysregulation in COVID-19 patients. medRxiv20135319 [preprint] June 30, 2020, [cited July 23, 2020]. Available from: https://doi.org/10.1101/2020.06.26.20135319

3. Cantini F, Niccoli L, Matarrese D, Nicastrì E, Stobbione P, Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect. [Epub ahead of print] accessed July 23, 2020 doi : 10.1016/j.jinf.2020.04.017.

4. Cao Y, Wei J, Zou L, et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol 2020; 146:137-46.e3.

5. Giudice V, Pagliano P, Vatrella A, et al. Combination of Ruxolitinib and Eculizumab for treatment of severe SARS-CoV-2-related acute respiratory distress syndrome: a controlled study. Front Pharmacol 2020; 11:857.

6. La Rosée F, Bremer HC, Gehrke I, et al. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation. Leukemia 2020;34:1805-15.

7. Stebbing J, Krishnan V, de Bono S, et al. Mechanism of baricitinib supports artificial intelligence-predicted testing in COVID-19 patients. EMBO Mol Med 2020:e12697.[Epub ahead of print] acessed July 23, 2010::doi: 10.15252/emmm.202012697.

8. Titanji BK, Farley MM, Mehta A, et al. Use of Baricitinib in patients with moderate and severe COVID-19. Clin Infect Dis 2020;[Epub ahead of print] accessed July 23, 2020. doi: 10.1093/cid/ciaa879.

9. Genovese MC, Smolen JS, Takeuchi T, et al. FRI0123 Safety profile of baricitinib for the treatment of rheumatoid arthritis up to 8.4 years: an updated integrated safety analysis. Annals of the Rheumatic Diseases 2020;79:642.

10. Taylor PC, Weinblatt ME, Burmester GR, et al. Cardiovascular safety during treatment with Baricitinib in rheumatoid arthritis. Arthritis & Rheumatology 2019;71:1042-55.