CHEMISTRY IN DISKS. III. PHOTOCHEMISTRY AND X-RAY DRIVEN CHEMISTRY PROBED BY THE ETHENYL RADICAL (CCH) IN DM Tau, LkCa 15, AND MWC 480

Th. Henning1, D. Semenov1, St. Guilloteau2,3, A. Dutrey2,3, F. Hersant2,3, V. Wakelam2,3, E. Chapillon4, R. Launhardt1, V. Piétu5, and K. Schreyer6

1 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany; henning@mpia.de, semenov@mpia.de
2 Université de Bordeaux 1, Observatoire Aquitain des Sciences de l’Univers, 2 rue de l’Observatoire, BP 89, F-33271 Floirac Cedex, France
3 CNRS, UMR 5804, Laboratoire d’Astrophysique de Bordeaux, 2 rue de l’Observatoire, BP 89, F-33271 Floirac Cedex, France
4 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
5 IRAM, 300 rue de la piscine, F-38406 Saint Martin d’Hères, France
6 Astrophysikalisches Institut und Universitäts-Sternwarte, Schillerstraße 2-3, 07745 Jena, Germany

Received 2009 December 21; accepted 2010 March 29; published 2010 April 20

ABSTRACT

We studied several representative circumstellar disks surrounding the Herbig Ae star MWC 480 and the T Tauri stars LkCa 15 and DM Tau at (sub-)millimeter wavelengths in lines of CCH. Our aim is to characterize photochemistry in the heavily UV-irradiated MWC 480 disk and compare the results to the disks around cooler T Tauri stars. We detected and mapped CCH in these disks with the IRAM Plateau de Bure Interferometer in the C and D configurations in the (1–0) and (2–1) transitions. Using an iterative minimization technique, the CCH column densities and excitation conditions are constrained. Very low excitation temperatures are derived for the T Tauri stars. These values are compared with the results of advanced chemical modeling, which is based on a steady-state flared disk structure with a vertical temperature gradient, and a gas-grain chemical network with surface reactions. Both model and observations suggest that CCH is a sensitive tracer of the X-ray and UV irradiation. The predicted radial dependency and source-to-source variations of CCH column densities qualitatively agree with the observed values, but the predicted column densities are too low by a factor of several. The chemical model fails to reproduce high concentrations of CCH in very cold disk midplane as derived from the observed low excitation condition for both the (1–0) and (2–1) transitions.

Key words: astrochemistry – molecular processes – planetary systems – protoplanetary disks – stars: formation – stars: individual (DM Tau, LkCa 15, MWC 480)

Online-only material: color figures

1. INTRODUCTION

Our present understanding of the chemical composition and evolution of protoplanetary disks is far from being complete. Recent years have revealed increased interest in such studies as a necessary prerequisite to characterize the physical and chemical conditions for planet formation. Apart from CO and its isotopologues, and occasionally HCO+, CN, HCN, and CS, the molecular content of protoplanetary disks characterized by millimeter line observations remains poorly known (see reviews by Dutrey et al. 2007a; Bergin et al. 2007). Recently, infrared spectroscopy provided evidence for the presence of C2H2, HCN, H2O, OH, and CO2 in the inner regions of protoplanetary disks and indicated the importance of photochemistry (e.g., Lahuis et al. 2006; Carr & Najita 2008; Salyk et al. 2008; Pascucci et al. 2009). Molecular line data are limited in their sensitivity and spatial resolution, which implies that the spatial distribution of molecular abundances in disks remains poorly determined (e.g., Piétu et al. 2005; Semenov et al. 2005; Qi et al. 2006, 2008; Panić et al. 2009). Thus, a detailed comparison with existing chemical models is difficult and often based on global data (e.g., integrated line profiles), while for testing the validity of sophisticated models one has to include the thermal disk structure and the time-dependent chemical evolution together with line data and channel maps.

As part of the Heidelberg–Bordeaux “Chemistry In Disks” (CID) project, we are investigating the molecular content and physical properties of a sample of well-studied T Tauri and Herbig Ae disks of various age, followed by comprehensive physico-chemical modeling. In the first CID paper, we have presented the results of a deep search for N2H+ and HCO+ toward two T Tauri stars (DM Tau and LkCa 15) and one Herbig Ae star (MWC 480), see Dutrey et al. (2007b, CID1 paper hereafter). The N2H+ emission has been detected in LkCa 15 and DM Tau, with the N2H+ to HCO+ ratio of a few percent, similar to that of cold dense cores, and the disk ionization degree of ∼10−8, as predicted by chemical models.

In the second CID paper by Schreyer et al. (2008), we have found that the modeled and observed column densities of several key species relative to 13CO are lower for the Herbig AB Aur disk than the values measured in DM Tau, while the absolute amount of CO gas is similar in both disks. This has been interpreted as an indication of a poor molecular content of the Herbig A0e system compared to the disk around the M1e star DM Tau due to intense UV irradiation of the disk by the A0 star.

In this third CID paper, we report on the observations of CCH in three objects2: DM Tau, LkCa 15, and MWC 480. The CCH molecule has been selected because it should be sensitive to the UV radiation field and because its chemistry is relatively well studied, with many accurately determined relevant reaction rates (e.g., Woodall et al. 2007). Using the χ2-minimization technique in the uυ-plane as described in Guilloteau & Dutrey (1998), we

2 Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).
Tables 1 and 2 provide properties of the targets and protoplanetary disks, respectively.

2. OBSERVATIONS

2.1. Sample of Stars

The source properties and their coordinates are summarized in Table 1. All these systems are isolated and located in regions devoid of CO contamination. The disk sizes, masses, and ages are presented in Table 2 (see also Tables 1 and 2 in CID1).

2.2. PdBI Observations and Data Reduction

The Plateau de Bure observations of the C$_2$H(1–0) line in DM Tau were carried out in 1997 September & October and between 2002 October and 2003 March, mostly in compact configurations. The total observing time on source (equivalent to six antennas) is about 30 hr and the angular resolution (with natural weighting) is 5.5. The (1–0) line in LkCa 15 and MWC 480 was observed in track-sharing mode in 2004 December and 2005 April, with a total observing time on source of ~5 hr and an angular resolution of 3.8 × 2.5. The C$_2$H(2–1) line was observed in track-sharing mode for the three sources in D configuration in 2008 August & September. The total observing time on source with dual polarization receivers is 5 hr. The angular resolution is 2.8 × 2.5 (with natural weighting).

Data were reduced with the GILDAS package. Flux calibration was performed using MWC 349. The continuum was subtracted for the analysis. The channel width is 0.25 km s$^{-1}$ for the J = 1–0 line and 0.26 km s$^{-1}$ for the J = 2–1 line. Integrated spectra over a 7" × 7" region (for DM Tau) and 5" × 5" region (for MWC 480 and LkCa 15) are presented in Figure 1. We detected C$_2$H 1–0 emission from DM Tau and LkCa 15, but not from MWC 480. The weak J = 2–1 transition is detected in the T Tauri sources (see Figure 1). The apparent disagreement between the observed and modeled line profiles for the DM Tau and LkCa 15 spectra are due to the relatively low signal-to-noise level of our PdBI data.

Channel maps of the C$_2$H (1–0) emission in DM Tau are presented in Figure 2. Since the signal-to-noise ratio (S/N) of the C$_2$H (1–0) spectra from MWC 480 and LkCa 15 is low, we analyzed these data as in our study of N$_2$H$^+$ J = 1–0 in the same sources (Dutrey et al. 2007b). A filter to the spectra is applied, in which each velocity channel is weighted by the expected line intensity (obtained from the best-fit modeling), and the sum over the channels is normalized by the sum of the weights (a classical optimal filtering). The resulting S/N maps are presented in Figure 3, which illustrate marginal detection of C$_2$H (1–0) in LkCa 15 and MWC 480 (Dutrey et al. 2007b).

2.3. Derived Column Densities

The distribution of C$_2$H in DM Tau, LkCa 15, and MWC 480 was analyzed using a parametric disk model, in which the column density and excitation temperatures are power laws of the radius (see Piétu et al. 2007, for a more detailed description of the model). We used the geometric parameters (position, inclination, and Keplerian velocity law) derived from the CO isotopologues and HCO$^+$ (see Table 2). The χ2-minimization technique of Guilloteau & Dutrey (1998) was applied to constrain the CCH column densities and other disk parameters. The application of two C$_2$H lines allows us to recover the excitation conditions (within the limitations due to low signal-to-noise data). As the lines are relatively weak, the exponent of the excitation temperature is not well constrained. We find q = 0.4 ± 0.3 for DM Tau and assumed q = 0.4 for the other sources. Such a value is in agreement with results obtained from stronger lines, in particular HCO$^+$(Table 2). Consequently, the excitation temperature of the DM Tau disk is well constrained and poorly derived for LkCa 15. For MWC 480, we had to assume T = 14 K in the data analysis. The obtained column densities are insensitive to the choice of the temperature in a range between 10 and ~20 K at 100 AU and scale linearly with T for higher temperatures. The slope of the surface density distribution is constrained for DM Tau and LkCa 15. For MWC 480, we used a similar value. The derived temperature and column densities are summarized in Table 3.

3. DISK PHYSICAL AND CHEMICAL MODEL

We refrain from comparing deconvolved observed and simulated spectral maps and base our analysis on the observed
quantities derived with the χ^2-minimization method in the uv-plane (Guilloteau & Dutrey 1998). This allows us to exclude computationally expensive iterative fitting of the data using 2D line radiative transfer modeling.

For all sources, we adopted a flared 1+1D-disk model with a vertical temperature gradient similar to that of D'Alessio et al. (1999), see Figure 4. The α-parameter for all three disks is chosen such that the modeled disk masses are in accordance with the observed values. Input disk and stellar parameters are either determined by the χ^2-fitting or taken from previous works (Dutrey et al. 1997; Mannings & Sargent 1997; D'Alessio et al. 1999; Simon et al. 2000; Thi et al. 2004; Calvet et al. 2005; Piétu et al. 2007), see Table 2. The adopted viscosity parameter α is 0.01 for DM Tau, 0.03 for LkCa 15, and 0.02 for MWC 480. It is chosen such that the resulting disk masses are the same as derived from millimeter dust continuum measurements. The dust grains are modeled as compact spheres of uniform 0.12 μm radius made of amorphous silicates with olivine composition and the optical data taken from Draine & Lee (1984). The standard 1% dust-to-gas mass ratio is assumed. In addition, we consider a model of the DM Tau disk with bigger 1.0 μm grains.

The disks are illuminated by the UV radiation from the central star and by the interstellar UV radiation. The intensity of the
interstellar UV radiation field is \(\chi = 1 \) as derived by Draine (1978). The UV intensity at a given disk location is calculated as a sum of the stellar and interstellar components that are scaled down by the visual extinction in vertical direction and in direction to the central star (1D plane-parallel approximation). The non-thermal FUV radiation field from DM Tau and LkCa 15 is represented by the scaled ISRF, while that of MWC 480 is represented by the scaled radiation field of the Herbig A0 star (according to van Dishoeck 1988 and van Dishoeck et al. 2006). We model the attenuation of cosmic ray particles (CRP) by Equation (3) from Semenov et al. (2004). In the disk interior, ionization due to the decay of short-living radionuclides is taken into account, assuming an ionization rate of \(6.5 \times 10^{-19} \) s\(^{-1}\) (Finocchi & Gail 1997). The intensity and radial penetration of the stellar X-ray radiation are modeled using observational results of Glassgold et al. (2005) and the 2D Monte Carlo simulations of Igea & Glassgold (1999).

We did not find any relevant data regarding observed X-ray luminosities for our stars and used the following estimates: \(L_X = 10^{28} \) erg s\(^{-1}\) for MWC 480, and \(3 \times 10^{29} \) erg s\(^{-1}\) for DM Tau and for LkCa 15. The low value of the adopted X-ray luminosity of MWC 480 reflects the fact that Herbig Ae stars have weak surface magnetic fields due to their non-convective interiors and thus lack an \(\alpha \omega \) dynamo generation mechanism. Consequently, their coronal activity is lower and X-ray luminosities are 10–1000 times lower than that of T Tauri stars (Güdel & Naze 2009). Indeed, a few measurements of the strength of the longitudinal magnetic field in MWC 480 resulted in marginal detection of \(B = 87 \pm 22 \) G (Hubrig et al. 2004, 2006). For the T Tauri sources, we adopted a median value as recently measured with Chandra and XMM in the Orion Nebula Cluster and the Cepheus B star-forming region (Preibisch et al. 2005, Getman et al. 2009): \(\log(L_X/L_{bol}) \approx -3.5 \approx 3 \times 10^{29} \) erg s\(^{-1}\) (with uncertainty of an order of magnitude). To investigate the role of the stellar X-ray radiation for the CCH chemical evolution, we consider three additional models of the DM Tau disk with \(L_X = 0, 10^{29}, \) and \(10^{30} \) erg s\(^{-1}\).

We added a new class of the X-ray driven reactions to our chemical code leading to the formation of doubly-charged atoms (\(O^{++}, C^{++}, N^{++}, S^{++}, Fe^{++}, \) and \(Si^{++} \)) due to the Auger effect.
Secondary, electron impact ionization cross sections were taken from Meijerink & Spaans (2005). Neutralization reactions of these doubly charged ionized atoms by e^- and charge transfer reactions with molecules are adopted from Stäuber et al. (2005). The photoionization cross sections are taken from Verner et al. (1993), as described in Maloney et al. (1996). In addition, we duplicated a few tens reactions of CRP with molecules to get the same reaction set for the X-ray photons. The rate of CO was modified in order to take self-shielding properly into account according to the Equation (9) from Maloney et al. (1996).

The gas-grain time-dependent chemical model adopted in this study is mostly the same as in the CID2 paper. First, the osu.2007 network of gas-phase reactions\(^8\) is used. Second, we utilize a standard rate approach to the surface chemistry modeling but without H and H\(_2\) tunneling (Katz et al. 1999). The surface reactions together with desorption energies were adopted from the model of Garrod & Herbst (2006), which is mostly based on previous studies of Hasegawa et al. (1992) and Hasegawa & Herbst (1993). Finally, rates of several tens of photodissociation and photoionization reactions are updated according to van Dishoeck et al. (2006), using the UV spectral shape typical of a Herbig Ae star and ISM-like dust grain optical properties.

\(^8\) See https://www.physics.ohio-state.edu/~eric/research.html
and column densities due to relatively high densities and long evolutionary timescales of protoplanetary disks (see also Willacy et al. 2006).

4. RESULTS OF CHEMICAL MODELING

In Figure 5, the radial and vertical distributions of the absolute and relative C2H abundances (to the total amount of hydrogen) at 5 Myr are shown. The highest relative C2H abundance is only about 10^{-9} (in DM Tau and LkCa 15) and several times lower in MWC 480. In DM Tau and LkCa 15, the warm layer of ethynyl is located at ~ 1 pressure scale height, with a local peak toward $r = 10$ AU. Note that there is a second peak, better visible in relative concentration, which is located in the outer disk region and at higher disk heights ($r \gtrsim 500$ AU, $z/H_r \sim 1.5$), where the IS UV photons can penetrate. CCH is partly frozen out in all T Tau disk midplanes as its evaporation temperature is ~ 50 K. In the warmer disk of MWC 480 ethynyl reaches the highest relative abundance only in the outer disk region, at $H_r \sim 1$, while a peak in absolute CCH concentration is reached in the midplane around 100 AU. What is the reason for this chemical diversity of CCH in all three disks?

In essence, the chemical evolution of the ethynyl radical is determined by removal rates of carbon and oxygen into more complex molecules, e.g., CO, OH, and H2O, as well as by photoprocesses and freeze-out/evaporation, see Figure 7. Our chemical simulations begin with atomic initial abundances. Thus, light ionized hydrocarbons CH+\textsubscript{n} (n = 2...5) are the first molecular species produced by radiative association with H\textsubscript{2}, following hydrogen addition reactions: C+ \rightarrow CH\textsubscript{2} \rightarrow CH\textsubscript{3} \rightarrow C\textsubscript{2}H\textsubscript{2}. The protonated methane reacts with electrons, CO, C, OH, and more complex species at later stage and forms methane. The CH\textsubscript{3} molecules undergo reactive collisions with C+, producing C\textsubscript{2}H\textsubscript{2} and C\textsubscript{2}H\textsubscript{3}. An alternative way to produce C\textsubscript{2}H\textsubscript{2} is the dissociative recombination of CH\textsubscript{3} into CH\textsubscript{3} followed by reactions with C+. The C\textsubscript{2}H\textsubscript{3} ion is also formed by hydrogen addition to C\textsubscript{2}H\textsubscript{2}. Finally, C\textsubscript{2}H\textsubscript{2} and C\textsubscript{2}H\textsubscript{3} dissociatively recombine into CH\textsubscript{3}, C\textsubscript{2}H\textsubscript{2}, and C\textsubscript{2}H\textsubscript{3}. Another important formation channel for ethynyl is by surface hydrogenation of precursor species, C\textsubscript{2}H\textsubscript{2}.

The major removal pathway for C\textsubscript{2}H\textsubscript{2} is either the direct neutral–neutral reaction with O that forms CO or the same...
reaction but with heavier carbon chain ions that are formed from ethynyl by subsequent insertion of carbon. In upper disk regions, photodissociation of CCH into C₂ and H (with the rate constant $k = 5.1 \times 10^{-10}$ s$^{-1}$ and A_V exponent $\gamma = 1.9$) and photoionization ($k = 10^{-10}$ s$^{-1}$, $\gamma = 2.0$) are efficient (van Dishoeck 1988). At later times, in colder disk regions depletion and gas-phase reactions with more complex species may enter into this cycle. One can restore high concentrations of CCH obtained at early times, $t \lesssim 10$–100 years by destroying CO and enriching the gas with elemental carbon. In disk, it happens in the inner region either by reactions of CO with ionized helium atoms produced by the stellar X-ray radiation or directly upon irradiation of CO by UV photons. This second rise in the CCH concentration is typically reached only at very late times in our models, $t \gtrsim 1$ Myr.

The relative importance of X-ray and UV radiation is shown in Figure 6, using the disk around DM Tau as an example. The prominent intermediate layer of CCH almost disappears in the model without X-ray irradiation, and when grains grow beyond ~ 1 μm. The lower opacities in the model with “big” grains shifts the upper outer layer of CCH toward midplane, following the enhanced penetration of the dissociating interstellar UV radiation. Thus, CCH is indeed a sensitive tracer of the UV radiation field. The lack of X-ray irradiation results in a less “sharp” inner shape of the upper CCH layer (compare left and right panels in Figure 6) and low CCH abundances in the intermediate layer. In the absence of X-ray radiation, ionized helium is only produced by interactions with cosmic ray particles, and thus replenishment of C$^+$ and O into the gas upon destruction of CO by He$^+$ is lower. Still, there is an “island” of high CCH concentration in the intermediate layer at $r \sim 200$–300 AU in the model of DM Tau without X-rays.

MWC 480, as a Herbig Ae star, emits ~ 3 and ~ 15 times more UV photons than LkCa 15 and DM Tau, respectively, but has a weak X-ray luminosity (see Table 1). Consequently, the upper CCH layer is more noticeable in the MWC 480 disk, where a larger fraction of elemental carbon can be kept from being locked in CO and other species by photodissociation. Note that the molecular-poor atmosphere is slightly more extended in the MWC 480 disk compared to those of LkCa 15 and DM Tau (upper panel in Figure 5). The low X-ray luminosity of MWC 480 assumed in our modeling also leads to lower concentration of CCH in the inner warm molecular layer ($r \lesssim 50$ AU, ≈ 1 pressure scale height). However, there is a region around the midplane (50–200 AU, up to $z/H_r \approx 1$) where absolute abundances of CCH are high in the MWC 480 disk. Since the Herbig Ae disk is warm, surface processes involving heavy radicals are more active there, while volatile ices are nearly absent. Using our chemical analyzing software, we found that the oasis of CCH in MWC 480 is due to efficient surface hydrogenation of C₂ ice, and other surface reactions (e.g., photodissociation of C₂H₂ ice, and surface formation of C₂ from two C atoms). Temperature there ranges from 23 to 50 K, while densities are high, $n_H \approx 10^6$–10^8 cm$^{-1}$, resulting in fast accretion rates of precursor molecules to grain surfaces and sufficiently high desorption rate of CCH. Note that this oasis of ethynyl appears only after ≈ 1 Myr of evolution, due to slow surface chemistry. In both T Tau disks, photodissociation of CO
is effective in the outer upper disk region. Both DM Tau and LkCa 15 have non-negligible X-ray luminosity of $\sim 10^{30}$ erg s$^{-1}$ (Glassgold et al. 2005), and thus CCH can be re-formed toward LkCa 15.

The observed and modeled CCH column densities are compared in Figure 8 (left panel). The CCH column densities in the DM Tau disk computed with the model without X-ray radiation and the model with bigger 1 μm grains are depicted in Figure 8 (middle panel). The influence of the adopted stellar X-ray luminosity on the CCH column densities in the DM Tau disk is shown in the right panel. As we mentioned above, the X-ray photons enhance CCH abundances, leading to higher CCH column densities (by a factor of 3–10). In the model with micron-sized grains, CCH has high column density only in the very outer disk region, at radii larger than ~ 300 AU, while it drops quickly in the inner disk zone. Given the uncertainty of the modeled column densities (a factor of ≈ 3; see Wakelam et al. 2005; Vasyunin et al. 2008) and observational uncertainties (see error bars in Figure 8), our relatively simple steady-state disk model is in a moderate agreement with the observed quantities. In particular, the flat radial slope of the CCH column densities is reproduced by the simulations. Note that the column density of CCH in MWC 480 is lower compared to that of the DM Tau and LkCa 15 disks, and a similar trend exists in the observational data.

The effect of the stellar X-ray radiation field on the computed CCH column densities is such that the lower the adopted X-ray luminosity, the lower the resulting N(CCH); see Figure 8, right panel. Apparently, a transition from $L_X = 10^{30}$ erg s$^{-1}$ to 3×10^{29} erg s$^{-1}$ is less prominent in the CCH column densities than a transition from $L_X = 3 \times 10^{29}$ erg s$^{-1}$ to 10^{29} erg s$^{-1}$. Thus, indeed the ethynyl radical can serve as a sensitive probe of the impinging X-ray radiation field. In general, it is the stellar UV luminosity that affects the evolution of CCH globally, with X-ray radiation being only important in inner disk regions ($r \lesssim 50–200$ AU).

5. DISCUSSION

As we have shown in Schreyer et al. (2008), the stellar UV luminosity can be a crucial factor that makes the AB Aur system chemically poorer with respect to the disk of DM Tau. The same trend is found here for C$_2$H and the disks around MWC 480 and DM Tau. However, we also show that X-ray radiation plays an important role for high CCH concentration in the inner regions of T Tau disks. Furthermore, the results of the steady-state disk chemical model is in qualitative agreement with the CCH column densities obtained by χ^2-fitting of the spectral maps. In contrast to our CID1 paper (Dutrey et al. 2007b), where such a model could not fit well the radial slope of the N$_2$H$^+$ column densities, in the case of CCH the flat distribution is obtained both from the analysis of the interferometric data and chemical modeling.

Our chemical modeling predicts that two CCH molecular layers are located at elevated disk heights or in warm disk regions ($T \sim 35–75$ K). This is inconsistent with the very low excitation temperature of the CCH emission derived for DM Tau. The critical densities for the CCH (1–0) and CCH(2–1) lines to be thermalized are 2×10^5 cm$^{-3}$ and 7×10^5 cm$^{-3}$, respectively. The two layers of CCH have higher densities of $\sim 10^7$–10^8 cm$^{-3}$ in all studied sources (compare Figure 4 and Figure 5). Note that CCH layers are at higher densities in the MWC 480 disk compared to those around LkCa 15 and DM Tau. Hence, according to our model, CCH(1–0) and (2–1) should be thermalized in all considered sources, and sub-thermal excitation of these lines is unlikely.

Which factors that are not taken into account in our simplified chemical modeling could lead to a substantial concentration of CCH in the cold disk midplane of DM Tau and LkCa 15? As we have found in Semenov et al. (2006; and later confirmed by Aikawa 2007), turbulent transport can enhance the CO concentration in the DM Tau disk midplane such that 13CO (1–0) and (2–1) lines are indeed “cold” ($T_{ex} \lesssim 15$ K). Later, Hersant et al. (2009) have shown that the scattering of the stellar UV radiation by polycyclic aromatic hydrocarbons (PAHs) and dust grains in upper disk atmosphere can redirect a portion of these UV photons into the disk, allowing CO to efficiently desorb
from dust grains in the cold disk zone. Despite the fact that this assumption is not considered in our model, where desorption of surface molecules in the disk midplane is only due to the CRP-driven UV radiation and CRP heating, a non-negligible amount of CCH exists in the outer disk midplane at $T < 20$ K, see Figure 9 (left panel). The CCH column density in DM Tau at $T < 20$ K has a maximum value of 6×10^{11} cm$^{-2}$ at $r = 800$ AU, which rapidly decreases with radius. In warmer regions of the DM Tau disk, the CCH column density is about 5 times higher, $\approx 3 \times 10^{12}$ cm$^{-2}$, and has an almost flat profile. Thus, we expect that only $\lesssim 20\%$ of the CCH(1–0) and (2–1) line fluxes arise from the cold disk zone.

The amount of cold gases in disk midplanes can also be increased if gas-grain interactions are ineffective such that freeze-out is delayed toward late evolutionary times (e.g., Aikawa 2007). We did several test calculations with bigger grains of 1 μm and found that indeed neutral species become more abundant in cold disk region. The results for molecular chemistry in disks using a realistic grain evolutionary model will be reported in a separate publication. In essence, in evolving disks substantial amount of gas-phase molecules in very cold region can be produced and sustained by moderate grain growth and sedimentation of micron-sized and bigger grains toward the midplane, while a fraction of smaller grains and PAHs remains in the disk atmosphere and provides enough opacities to keep the disk interior cool (see, e.g., Aikawa & Nomura 2006; Jonkheid et al. 2007; Brauer et al. 2008; Birnstiel et al. 2009).

Finally, in our disk model dust thermal balance is used to compute the temperature distribution, which is assumed to be the same for the gas. In the disk atmosphere, gas will be hotter due to, e.g., photoelectric heating of small dust grains/PAHs by stellar/IS UV & X-rays photons. We do not take this effect into account. For CCH lines, it is of no concern as derived low excitation temperatures for the (1–0) and (2–1) transitions are indicative of a substantial amount of ethynyl being located in the cold disk zone around the midplane. In addition, our modeling results show that the majority of CCH is located at scale heights of $\lesssim 1$ for DM Tau and LkCa 15 and is even closer to the disk midplane for MWC 480 (Figure 5, bottom row). When compared to the corresponding disk density structures (Figure 4), it becomes apparent that the CCH molecular layers are within the disk regions having particle densities of several 10^{10}–10^{13} cm$^{-3}$. These regions are dense enough to allow effective coupling of gas and dust kinetic temperatures.

6. SUMMARY AND CONCLUSIONS

We observed protoplanetary disks around the Herbig Ae star MWC 480 and the T Tauri stars LkCa 15 and DM Tau in the (1–0) and (2–1) lines of CCH. We detected and mapped these disks in the CCH lines, using the IRAM Plateau de Bure Interferometer in the C and D configurations. Using the iterative minimization technique, the column densities of ethynyl are derived, which are lower in MWC 480 (N(CCH) $\lesssim 10^{13}$ cm$^{-2}$) than in DM Tau and LkCa 15 (N(CCH) $\sim 3 \times 10^{13}$ cm$^{-2}$). The derived excitation temperature of CCH in DM Tau is very low, $T_\text{ex} \sim 6$ K, which is along with previous detections of cold gas in this object (CO, HCO$^+$, CH, and HCN). The observed CCH column densities are compared with the results of advanced chemical modeling, which is based on a steady-state flared disk structure with a vertical temperature gradient, and a gas-grain chemical network with surface reactions. The CCH abundances in all disk models show two layers of high concentration. Overall, the disk around the Herbig Ae star MWC 480 has less CCH, which we explain by the strong UV radiation field of this object, and the lack of X-ray irradiation from the star. The modeled CCH column densities are in qualitative agreement with the observed values at an evolutionary time of a few million years. Altogether, our measurements and modeling support the observational trend that disks around Herbig Ae stars tend to be more molecule deficient compared to those surrounding T Tauri stars due to stronger UV irradiation and lower X-ray luminosities (affecting inner disk chemistry). Our model reproduces the radial slope of the CCH column densities. Yet, it fails to explain the low excitation temperature of the observed CCH lines as the modeled CCH molecular layers are located in disk regions dense enough to thermalize both transitions. The chemical simulations show that only $\lesssim 20\%$ of the CCH column densities are in the region of the DM Tau disk that is colder than 20 K. Other mechanisms (stronger photodesorption, dynamic processes, and grain growth) are required to enhance the abundance of CCH in the cold disk midplanes.

We acknowledge all the Plateau de Bure IRAM staff for their help during the observations. D.S. acknowledges support by the DeutscheForschungsGemeinschaft (DFG) through SPP 1385: “The first ten million years of the solar system—a planetary materials approach” (SE 1962/1-1). S.G., A.D., V.W., and V.P. are financially supported by the French program “Physique Chimie du Milieu Interstellaire” (PCMI). This research has made use of NASA’s Astrophysics Data System.

REFERENCES

Aikawa, Y. 2007, ApJ, 656, L93
Aikawa, Y., & Nomura, H. 2006, ApJ, 642, L159
Bergin, E., Calvet, N., D’Alessio, P., & Herczeg, G. J. 2003, ApJ, 591, L159
Bergin, E. A., Aikawa, Y., Blake, G. A., & van Dishoeck, E. F. 2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil (Tucson, AZ: Univ. Arizona Press), 751
Birnstiel, T., Dullemond, C. P., & Brauer, F. 2009, A&A, 503, L5
Brauer, F., Dullemond, C. P., & Henning, T. 2008, A&A, 480, 859
Calvet, N., et al. 2005, ApJ, 630, L185
Carr, J. S., & Najita, J. R. 2008, Science, 319, 1504
D’Alessio, P., Calvet, N., Hartmann, L., Lizano, S., & Canti, J. 1999, ApJ, 527, 893
Draine, B. T. 1978, ApJS, 36, 595
Draine, B. T., & Lee, H. M. 1984, ApJ, 285, 89
Dutrey, A., Guilloteau, S., & Ménard, F. 1997, A&A, 317, L55
Dutrey, A., Guilloteau, S., & Ho, P. 2007a, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil (Tucson, AZ: Univ. Arizona Press), 495
Dutrey, A., et al. 2007b, A&A, 464, 615
Finocchi, F., & Gail, H.-P. 1997, A&A, 327, 825
Garrod, R. T., & Herbst, E. 2006, A&A, 457, 927
Getman, K. V., Feigelson, E. D., Latham, K. L., Sicilia-Aguilera, A., Wang, J., & Garmire, G. P. 2009, ApJ, 699, 1454
Glassgold, A. E., Feigelson, E. D., Montmerle, T., & Wolk, S. 2005, in ASP Conf. Ser. 341, Chondrites and the Protoplanetary Disk, ed. A. N. Krot, E. R. D. Scott, & B. Reipurth (San Francisco, CA: ASP), 165
Guélin, M., & Nazé, Y. 2009, A&AR, 17, 309
Guilloteau, S., & Dutrey, A. 1998, A&A, 338, 467
Hasegawa, T. I., & Herbst, E. 1993, MRNAS, 263, 589
Hasegawa, T. I., Herbst, E., & Leung, C. M. 1992, ApJS, 82, 167
Hersant, F., Wakelam, V., Dutrey, A., Guilloteau, S., & Herbst, E. 2009, A&A, 493, L49
Hubrig, S., Schöller, M., & Yudin, R. V. 2004, A&A, 428, L1
Hubrig, S., Yudin, R. V., Schöller, M., & Pogodin, M. A. 2006, A&A, 464, 1089
Igea, J., & Glassgold, A. E. 1999, ApJ, 518, 848
Jonkheid, B., Dullemond, C. P., Hogerheijde, M. R., & van Dishoeck, E. F. 2007, A&A, 463, 203
Katz, N., Furman, I., Biham, O., Pirronello, V., & Vidalí, G. 1999, ApJ, 522, 305
Kurucz, R. 1993, ATLAS9 Stellar Atmosphere Programs and 2 km/s Grid, Kurucz, CD-ROM No. 13 (Cambridge, MA: Smithsonian Astrophysical Observatory), 13
Lahuis, F., et al. 2006, ApJ, 636, L145
Lee, H.-H., Roueff, E., Pineau des Forets, G., Shalabiea, O. M., Terzieva, R., & Herbst, E. 1998, A&A, 334, 1047
Maloney, P. R., Hollenbach, D. J., & Tielens, A. G. G. M. 1996, ApJ, 466, 561
Mannings, V., & Sargent, A. I. 1997, ApJ, 490, 792
Meijerink, R., & Spaans, M. 2005, A&A, 436, 397
Panić, O., Hogerheijde, M. R., Wilner, D., & Qi, C. 2009, A&A, 501, 269
Pascucci, I., Apai, D., Luhman, K., Henning, T., Bouwman, J., Meyer, M. R., Lahuis, F., & Natta, A. 2009, ApJ, 696, 143
Pétrit, V., Dutrey, A., & Guilloteau, S. 2007, A&A, 467, 163
Pétrit, V., Dutrey, A., Guilloteau, S., Chapillon, E., & Pety, J. 2006, A&A, 460, L43
Pétrit, V., Guilloteau, S., & Dutrey, A. 2005, A&A, 443, 945
Preibisch, T., et al. 2005, ApJS, 160, 401
Qi, C., Wilner, D. J., Aikawa, Y., Blake, G. A., & Hogerheijde, M. R. 2008, ApJ, 681, 1396
Qi, C., Wilner, D. J., Calvet, N., Bourke, T. L., Blake, G. A., Hogerheijde, M. R., Ho, P. T. P., & Bergin, E. 2006, ApJ, 636, L157
Salyk, C., Pontoppidan, K. M., Blake, G. A., Lahuis, F., van Dishoeck, E. F., & Evans, II, N. J. 2008, ApJ, 676, L49
Schreyer, K., et al. 2008, A&A, 491, 821
Semenov, D., Pavlyuchenkov, Y., Schreyer, K., Henning, T., Dullemond, C., & Bacmann, A. 2005, ApJ, 621, 853
Semenov, D., Wiebe, D., & Henning, T. 2004, A&A, 417, 93
Semenov, D., Wiebe, D., & Henning, T. 2006, ApJ, 647, L57
Simon, M., Dutrey, A., & Guilloteau, S. 2000, ApJ, 545, 1034
Stäuber, P., Doty, S. D., van Dishoeck, E. F., & Benz, A. O. 2005, A&A, 440, 949
Thi, W.-F., van Zadelhoff, G.-J., & van Dishoeck, E. F. 2004, A&A, 425, 955
van Dishoeck, E. F. 1988, in ASSL, Vol. 146: Rate Coefficients in Astrochemistry, ed. T. Millar & D. Williams (Dordrecht: Kluwer), 49
van Dishoeck, E. F., Jonkheid, B., & van Hemert, M. C. 2006, in Faraday Discussion, Vol. 133, Chemical Evolution of the Universe, ed. I. R. Sims & D. A. Williams (Cambridge: Royal Society of Chemistry), 231
Vasyunin, A. I., Semenov, D., Henning, T., Wakelam, V., Herbst, E., & Sobolev, A. M. 2008, ApJ, 672, 629
Verner, D. A., Yakovlev, D. G., Band, I. M., & Trzhashkovskaya, M. B. 1993, At. Data Nucl. Data Tables, 55, 233
Wakelam, V., Selsis, F., Herbst, E., & Caselli, P. 2005, A&A, 444, 883
Willacy, K., Langer, W., Allen, M., & Bryden, G. 2006, ApJ, 644, 1202
Woodall, J., Agúndez, M., Markwick-Kemper, A. J., & Millar, T. J. 2007, A&A, 466, 1197