Dynamic SUMO modification regulates mitotic chromosome assembly and cell cycle progression in *Caenorhabditis elegans*

Federico Pelisch¹, Remi Sonneville¹,†, Ehsan Pourkarimi¹,†, Ana Agostinho¹,†, J. Julian Blow¹, Anton Gartner¹ & Ronald T. Hay¹

The small ubiquitin-like modifier (SUMO), initially characterized as a suppressor of a mutation in the gene encoding the centromeric protein MIF2, is involved in many aspects of cell cycle regulation. The dynamics of conjugation and deconjugation and the role of SUMO during the cell cycle remain unexplored. Here we used *Caenorhabditis elegans* to establish the contribution of SUMO to a timely and accurate cell division. Chromatin-associated SUMO conjugates increase during metaphase but decrease rapidly during anaphase. Accumulation of SUMO conjugates on the metaphase plate and proper chromosome alignment depend on the SUMO E2 conjugating enzyme UBC-9 and SUMO E3 ligase PIASGEI-17. Deconjugation is achieved by the SUMO protease ULP-4 and is crucial for correct progression through the cell cycle. Moreover, ULP-4 is necessary for Aurora B AIR-2 extraction from chromatin and relocation to the spindle mid-zone. Our results show that dynamic SUMO conjugation plays a role in cell cycle progression.
Small ubiquitin-related modifier (SUMO) conjugation is essential for development in mammals and in the nematode Caenorhabditis elegans (C. elegans). Mammals contain three different SUMO proteins, whereas, in C. elegans, there is one SUMO orthologue, SMO-1 (hereafter, SUMO). Sumoylation occurs through the action of an E1-activating enzyme (the Sae1/Sae2 heterodimer in humans, AOS-1/UBA-2 in worms), an E2-conjugating enzyme (Ubc9 in humans, UBC-9 in worms) and SUMO-specific E3 ligases. The most studied type of SUMO E3 ligase is the SP-RING E3 ligase family, which includes PIAS proteins in vertebrates and their yeast homologues Siz1, Siz2 (refs 9,10). Regulation is also achieved at the level of desumoylation by SUMO-specific isopeptidases: SENP1, 2, 3, 5, 6 and 7 in vertebrates. Post-translational protein modifications including phosphorylation, ubiquitylation and sumoylation are essential for mitotic progression. Although phosphorylation has been particularly well studied, ubiquitylation also controls mitotic progression, either by facilitating proteasome-mediated degradation of proteins or by regulating protein extraction from chromatin.

Early data demonstrated that the SUMO system is involved in cell cycle progression. SUMO was initially characterized as a suppressor of a mutation in the gene encoding the centromeric protein MIF2 (refs 18,19), and the characterized as a suppressor of a mutation in the gene involved in cell cycle progression. SUMO was initially characterized as a suppressor of a mutation in the gene encoding the centromeric protein MIF2 (refs 18,19), and the SUMO conjugating enzyme Ubc9 as well as the SUMO protease Ulp1 regulates cell cycle progression in yeast. Later on, several studies showed essential roles for sumoylation in controlling chromosome condensation and cohesion, kinetochore assembly and function, and spindle dynamics.

The C. elegans embryo is a powerful model system for studying mitoan cell division and it has provided important mechanistic insights into cell cycle progression, particularly related to kinetochore function. SUMO has been shown to play many roles in C. elegans including gonadal and vulval development, translesion synthesis DNA polymerase POLH-1 stability, cytoplasmic intermediate filament assembly and Hox gene expression. In C. elegans the SUMO and Ubc9 orthologues are smo-1 and ubc-9, while the PIAS and mms21 orthologues are GEI-17 (ref. 41) and ZK1248.11.1 (hereafter MMS-21), respectively. Four SUMO proteases (ubiquitin-like proteases, ULPs) ULP-1, ULP-2, ULP-4 and ULP-5 have been recognized in C. elegans, while ULP-3 is the putative Nedd8 protease (NEDP1) orthologue. As the detailed dynamics of conjugation and deconjugation and the mechanisms of action of sumoylation during mitosis remain unexplored, we took advantage of C. elegans to establish the contribution of SUMO to a timely and accurate cell division. We report here that SUMO conjugation increases during metaphase but decreases rapidly during anaphase. The accumulation of SUMO on the metaphase plate and proper chromosome alignment depend on the SUMO E2 conjugating enzyme UBC-9 and SUMO E3 ligase GEI-17. Deconjugation is achieved by the SUMO protease ULP-4 and is crucial for correct progression through the cell cycle. Our results show that highly regulated and dynamic SUMO conjugation plays a major role in cell cycle progression.

Results

The sumoylation pathway affects chromosome dynamics. The primary advantage of C. elegans embryo is that the architecture of the syncytial gonad makes it possible to use RNAi to generate oocytes whose cytoplasm is reproducibly depleted of a defined target protein. The depleted oocytes can then be analysed as they attempt their first mitotic division following fertilization. We took advantage of this feature and used the C. elegans first embryonic division to study the role of sumoylation in cell cycle progression. Figure 1a provides a timeline for the first embryonic mitosis and highlights some of its key features. We analysed the first mitotic division using embryos expressing GFP-H2B and GFP-γ-tubulin, allowing visualization of chromatin and centrosomes. Depletion of smo-1 leads to chromosome mis-alignment and anaphase bridges (Fig. 1b and Supplementary Movie 1). We next depleted ubc-9 and the SUMO proteases ulp-1, 2, 4 and 5 in embryos expressing GFP-H2B and GFP-γ-tubulin. Depletion of ubc-9 blocked SUMO conjugation (Supplementary Fig. 1a), while depletion of all the SUMO proteases, but ulp-5, increased the presence of SUMO conjugates (Supplementary Fig. 1b). Depletion of ubc-9 led to chromosome mis-alignment at metaphase (Fig. 1c, right panel). Knockdown of the SUMO protease ulp-4 also led to chromosome misalignment (Fig. 1c, middle panel). After the pronuclei meet, the nuclear-centrosome complex moves to the centre of the embryo and rotates to align with the long anterior-to-posterior (A-P) axis of the embryo.

In the case of ulp-4(RNAi) there was a noticeable rotation defect, spindle rotation was delayed and complete alignment of the spindle with the A-P axis was not observed until anaphase onset (Fig. 1c). In addition, the amplitude of spindle oscillations was increased (Supplementary Fig. 1a). Ubc-9 knockdown also lead to the metaphase being improperly oriented, but the phenotype was less severe with lower penetrance (n = 4/40, data not shown) and the amplitude of spindle oscillations was diminished (Supplementary Fig. 2a). Spindle pole separation in both ubc-9(RNAi) and ulp-4(RNAi) embryos was diminished compared with wild-type embryos (Supplementary Fig. 2b). By late anaphase/telophase, the length of ulp-4(RNAi) embryos was significantly longer than both wild type and ubc-9(RNAi) (Supplementary Fig. 2b). A more detailed image of chromosome structure in metaphase and anaphase for the different RNAi utilized is provided in Fig. 1d, using embryos expressing mcCherry-H2B. In addition to the alignment defect, we noticed that the degree of chromatin condensation was altered (Fig. 1d). Depleting ulp-4 caused chromosomes to segregate twofold faster and led to an increase in the distance between chromosomes between 30 and 100 s after anaphase onset (Fig. 1e). Ubc-9 depletion slowed chromosome segregation by 1.7-fold and led to a decrease in the distance between chromosomes between 30 and 70 s after anaphase onset (Fig. 1e). Ulp-4 knockdown was accompanied by a delay in mitotic exit, as determined by the time from anaphase onset to chromatin decondensation (Fig. 1f). These results provide evidence that the sumoylation pathway regulates chromosome dynamics in C. elegans.

We then analysed whether kinetochore protein recruitment was affected by the knockdown of the SUMO conjugation/deconjugation pathway. In contrast to localized centromeres of vertebrates, C. elegans chromosomes are holocentric with kinetochores forming along their entire length. Nonetheless, the structure and composition of C. elegans kinetochores is similar to that of metazoans (Supplementary Fig. 3a). We analysed the recruitment of an upstream protein in the kinetochore assembly cascade, kinetochore-null (KNL)-2 (ref. 44). GFP-KNL-2 association with chromatin was unaffected by the knockdown of smo-1, ubc-9 or ulp-4 as analysed by time-lapse microscopy (Supplementary Fig. 3b). This is consistent with the fact that knockdown of the components of the SUMO pathway does not lead to KNL phenotype. We then turned our attention to two downstream kinetochore proteins: MIS-12 and HCP-1. GFP-HCP-1 was still recruited to kinetochore after knocking down smo-1 and ubc-9 (Supplementary Fig. 3c), whereas GFP-MIS-12 recruitment was unaffected by knocking down ubc-9 and ulp-4 (Supplementary Fig. 3d). These data indicate that no apparent defect with kinetochore protein recruitment takes place on perturbation of the SUMO conjugation pathway. Still, defects...
in kinetochore proteins other than recruitment and not detected by these assays could be taking place.

SUMO localization pattern during mitosis. Having established the need for both SUMO conjugating and deconjugating enzymes in chromosome dynamics, we sought to study SUMO localization by immunostaining. To achieve this, we developed three specific mouse monoclonals and a sheep polyclonal antibody against the only *C. elegans* SUMO orthologue, SMO-1 (Supplementary Fig. 4). SUMO localized to the metaphase plate and also to the centrosomal region (Fig. 2a,b and Supplementary Fig. 5). SUMO also localized to segregating chromosomes at the beginning of anaphase (Fig. 2a). At late anaphase and telophase, SUMO staining was observed in the spindle midzone and in the two daughter nuclei (Fig. 2a). To study the dynamics of SUMO localization in the *C. elegans* embryo, we generated N-terminally fluorescently labelled processed SMO-1 (‘mCherry-SUMO’) under the control of the *pie-1* promoter driving expression in the germline and embryo. mCherry-SUMO was enriched in nuclei and released to the cytoplasm with nuclear envelope breakdown (Fig. 2c and Supplementary Movie 2). In agreement with the behaviour of the endogenous protein, mCherry-SUMO intensity readily increased on chromatin by metaphase (Fig. 2c, red arrowhead). Centrosome staining was also apparent (Fig. 2c, yellow arrowheads). mCherry-SUMO intensity decreased as anaphase progressed and then increased again in the nuclei of daughter cells (Fig. 2c and Supplementary Movie 2). We then performed the same analysis in embryos expressing mCherry-SUMO and GFP-β-tubulin. As observed previously, mCherry-SUMO intensity increased sharply by metaphase and early anaphase, and decreased as anaphase progressed (Fig. 2d).

Figure 1 | The SUMO conjugation pathway is essential for mitotic chromosome segregation. (a) Schematic of the different stages during the first *C. elegans* embryonic cell cycle. (b) Knockdown of smo-1 leads to chromosome alignment and segregation defects. Embryos expressing GFP-H2B and GFP-γ-tubulin were analysed by live imaging. Insets show a × 4 magnification of the DNA mass in both wild type and smo-1(RNAi) embryos. Scale bar, 10 μm. The times indicated in the top right of each image of the stack are relative to anaphase onset (mins). (c) Knockdown of ubc-9 and ulp-4 also leads to chromosome alignment and segregation defects. Embryos expressing GFP-H2B and GFP-γ-tubulin were analysed by live imaging. Scale bar, 10 μm. The times indicated in the top right of each image of the stack are relative to NEBD (mins). (d) Knockdown of smo-1, ubc-9 and ulp-4 leads to chromosome alignment defect and to the presence of anaphase bridges. Embryos expressing mCherry-H2B were analysed by live imaging. Red arrowheads indicate the chromosome bridges. Scale bar, 5 μm. (e) Chromosome segregation was analysed from wild type, ubc-9(RNAi) and ulp-4(RNAi) embryos. Data are represented as mean and s.d. for each time point (n = 7 for each condition). (f) The time between anaphase onset and mitotic exit was measured and results are shown as a boxplot. Centre lines show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles. ***P < 0.0001 (ANOVA).
midzone (Fig. 2d). mCherry–SUMO localization from metaphase to telophase is depicted with greater detail in Fig. 2e. These results highlight the dynamic nature of SUMO localization during the first embryonic cell cycle in C. elegans.

SUMO conjugation is dynamically regulated in mitosis. To establish whether SUMO staining depends on actual conjugation, we knocked down the SUMO E2 *ubc-9*. This led to the complete loss of the mCherry-SUMO signal at metaphase chromosomes (Fig. 3a,b and Supplementary Movie 3) but not within pronuclei or nuclei (Fig. 3a). UBC-9 protein levels were reduced by ≥80% in embryonic extracts as analysed by western blot (Fig. 3c). Immunostaining with an antibody against UBC-9 localized the protein to the nuclear envelope and on DNA. Specificity of the antibody was confirmed by the lack of fluorescence in *ubc-9*(RNAi) embryos (Fig. 3d). Importantly, knockdown of *ubc-9* also abolished endogenous SUMO staining at metaphase (Fig. 3e).

SUMO conjugation is mediated by the SUMO E3 ligase GEI-17. Driven by the precisely timed appearance of SUMO conjugates that takes place during mitosis, we turned our attention to putative SUMO E3 ligases. We focused in the PIAS orthologue, GEI-17, and the component of the SMC-5/6 complex, MMS-21. The metaphase- and spindle midzone-specific SUMO conjugation was completely abolished in *gei-17*(RNAi) embryos (Fig. 3f and Supplementary Movie 4). In contrast, *mms-21*(RNAi) embryos behaved like wild-type embryos (Fig. 3f and Supplementary Movie 5). To establish that GEI-17 is a functional orthologue of the Siz/PIAS SUMO E3 ligases, its ability to catalyse the formation of SUMO chains in vitro was determined. A fragment of GEI-17 isoform f (aa 133–509) bearing the SP-RING efficiently forms SUMO chains (Fig. 3g). Mutation of leucine 362 within the SP-RING (equivalent to I363A in yeast) decreased in chain formation (Fig. 3g, ‘GEI-17 L/A’). Immunostaining showed that, like SUMO, GEI-17 is localized to the metaphase plate (Fig. 3h). Importantly, the GEI-17 signal was specific as it was abolished by the *gei-17* RNAi (Fig. 3i). To provide further evidence that the specific SUMO localization is due to the presence of SUMO conjugates and not due to non-covalent association, we showed that the fluorescently labelled non-conjugatable version of SUMO (‘GA’) fails to accumulate on mitotic chromosomes at metaphase (Fig. 3j). Altogether, SUMO conjugates accumulate on chromatin during metaphase in a manner dependent on not only UBC-9 but also on the E3 ligase GEI-17. However, the accumulation of SUMO is transient, being removed after ~50 s.
SUMO is deconjugated by the SUMO protease ULP-4^{SEN6/7}. Given the phenotypes observed for <i>ulp-4(RNAi)</i> in Fig. 1 and the rapid decrease in SUMO conjugation during anaphase, we tested whether SUMO proteases are active at this stage of the cell cycle. To analyse the role of individual SUMO proteases in the accumulation and removal of SUMO from mitotic chromosomes, the expression of each of the four proteases was inhibited by RNAi and the chromatin association of mCherry-SUMO conjugates was followed by time-lapse microscopy. None of the RNAi treatments resulted in a significant increase in SUMO conjugates at metaphase (Fig. 4a,b). Consistent with the data on Fig. 1, SUMO conjugation decreased to a similar extent during anaphase progression in wild type, <i>ulp-1</i>-, <i>ulp-2</i>- and <i>ulp-5</i>-depleted embryos (Fig. 4a,b). In contrast, SUMO was less efficiently removed from its association with chromatin after depletion of <i>ulp-4</i> between 20–50 s after anaphase onset (Fig. 4a,b and Supplementary Movies 6 and 7). The ULP-4 catalytic domain is most closely related to those in the mammalian chain-editing enzymes SENP6/7 and, like SENP6/7, ULP-4 was unable to process immature SUMO, although this version of SUMO was efficiently processed by the catalytic domain of human SENP1 (Fig. 4c). ULP-4 actively depolymerizes purified SUMO chains formed by GEI-17 <i>in vitro</i> (Fig. 4d). Given its important role during the cell cycle, we sought to determine the localization of ULP-4 by immunostaining. We developed rabbit polyclonal antibodies and showed that its distribution was more diverse than its mammalian orthologue SENP1. In contrast, ULP-1 (orthologue of mammalian SENP1) localization was similar to that of SENP1 (Fig. 4e).
SUMO conjugation affects AIR-2 localization. We based our search for putative SUMO substrates on the available data for mitotic SUMO substrates or to proteins exhibiting a similar pattern of localization. A strong candidate was the Aurora B orthologue air-2 (refs 47–50). Analysis of endogenous SUMO and AIR-2 by immunostaining showed that they co-localize perfectly on aligned metaphase chromosomes and at anaphase onset (Fig. 5a). Translocation of AIR-2 from chromosomes to the spindle midzone was paralleled by the decrease of SUMO staining on DNA (Fig. 5a). To analyse the dynamic behaviour in more detail, embryos expressing GFP-AIR-2 and mCherry-SUMO were analysed. While AIR-2 localized to DNA during prometaphase (Supplementary Movie 8) and metaphase and then translocated to the spindle midzone (Fig. 5b), SUMO co-localized with AIR-2 when chromosomes are aligned on the metaphase plate and in early anaphase (Fig. 5b). Some degree of co-localization was also observed in the spindle mid-zone in late anaphase/telophase (Fig. 5b). AIR-2 translocation to the spindle mid-zone coincided with the loss of SUMO staining during anaphase (Fig. 5b,c, Supplementary Movies 12 and 13).

Translocation of AIR-2 from chromosomes to the spindle midzone was paralleled by the decrease of SUMO staining on DNA (Fig. 5a). To analyse the dynamic behaviour in more detail, embryos expressing GFP-AIR-2 and mCherry-SUMO were analysed. While AIR-2 localized to DNA during prometaphase (Supplementary Movie 8) and metaphase and then translocated to the spindle midzone (Fig. 5b), SUMO co-localized with AIR-2 when chromosomes are aligned on the metaphase plate and in early anaphase (Fig. 5b). Some degree of co-localization was also observed in the spindle mid-zone in late anaphase/telophase (Fig. 5b). AIR-2 translocation to the spindle mid-zone coincided with the loss of SUMO staining during anaphase (Fig. 5b,c, Supplementary Movies 12 and 13).

Depletion of ulp-2 prevented AIR-2 from localizing to the spindle midzone (Fig. 5b,c, Supplementary Movies 12 and 13). While ulp-4 depletion impaired the localization of AIR-2 in the spindle, depletion of ubc-9 increased AIR-2 levels in the spindle midzone (Fig. 6d). Detailed analysis of AIR-2 localization throughout mitosis in ulp-4(RNAi) embryos showed that, although AIR-2 fails to localize to the spindle midzone during anaphase, it accumulates in the midbody during telophase, which would explain the lack of apparent cytokinesis defect (Supplementary Fig. 8).

Figure 4 | SUMO deconjugation during anaphase is carried out by the SUMO protease ULP-4. (a) The effect of knocking down the four putative C. elegans SUMO proteases was analysed in mCherry-SUMO(GG) and GFP-tagged H2B expressing embryos. Scale bar, 5 μm. The times indicated in the top right for the wild-type embryo and the bottom right for ulp-4(RNAi) embryo are relative to NEBD (min:s). No difference is observed in this timing between wild type and either ulp-1(RNAi), ulp-2(RNAi) and ulp-5(RNAi). SUMO intensity quantitation is shown in (b). Data represent the mean intensity and s.d. of four independent embryos per condition. *P<0.05; **P<0.01 (two-tailed Student’s t-test). (c) C-terminal hydrolase activity of ULP-4 catalytic domain (’ULP-4 CD’), as assayed using full-length C. elegans SUMO with an HA-tag after the C-terminal diglycine. Green arrowhead, unprocessed SUMO; red arrowhead, processed SUMO. The catalytic fragment of human SENP1 (’SENP1 CD’) was used as a positive control. (d) SUMO chains assembled on GEI-17 are processed by ULP-4. The black arrowhead denotes free SUMO. Brackets mark the SUMO chains assembled on GEI-17. The western blot was developed with a sheep anti-SUMO-1 antibody. The lower panel shows a longer exposure to highlight the presence of free SUMO. (e) Immunostaining of ULP-4 was performed using an affinity-purified antibody. Images on the left correspond to metaphase, while images on the right, to anaphase. DNA was visualized with Hoechst 33258. Red arrowhead mark centrosomes, white arrowhead marks the metaphase plate, and yellow arrowheads points at the spindle midzone. Scale bar, 5 μm.

AIR-2 is SUMO-modified in vitro in a GEI-17-dependent manner. In vitro conjugation reactions showed that AIR-2, like its orthologue Aurora B, is modified by SUMO and the modification

SEN1/2) shows no specific enrichment neither at the spindle nor on DNA, but, like SEN1/2 (ref. 25), is enriched in the nuclear envelope (Supplementary Fig. 6).
is stimulated by GEI-17 in a dose–response manner (Fig. 6e). Moreover, the L/A mutation of the SP-RING within GEI-17 drastically diminishes its SUMO E3 activity. The AIR-2 orthologue in mammals, Aurora B, was previously shown to be modified by SUMO at Lys 207 in mice and Lys 202 in humans\(^53,54\). As shown in Fig. 6f, not only did we detect SUMO conjugation at Lys 155 (equivalent to Lys 202/207 in Aurora B\(^53,54\)), but also at Lys 168 (equivalent to Lys 215/220 in Aurora B). Mutation of the two sites decreases the GEI-17-stimulated conjugation by \(75\%\) (Fig. 6e, ‘K155/168R’ versus ‘wild type’). This putative new SUMO conjugation site resides within an inverted SUMO consensus motif\(^55\).

Discussion

We have shown that during the first embryonic cell cycle in *C. elegans*, SUMO is predominantly nuclear at the pronuclear migration stage. Following NEBD and proceeding to metaphase, SUMO is rapidly conjugated to substrates including AIR-2 in an UBC-9- and GEI-17-dependent manner. SUMO is rapidly removed by ULP-4, coincident with AIR-2 localization to the spindle midzone. The summary of the localization of SUMO as well as the enzymes of the sumoylation pathway is depicted in Fig. 7. The dynamic changes in SUMO conjugation are important for chromosome alignment, segregation and, ultimately, for a proper cell cycle progression. Given the previous observation that retention of Aurora B on chromatin leads to a delay in mitotic exit\(^16\), the mitotic exit delay observed in *ulp-4* depleted embryos could be explained by AIR-2 desumoylation leading to chromatin accumulation. Whether the chromosome alignment and segregation phenotypes are related mechanistically to each other remains to be determined. Also, the effect of SUMO on chromatin condensation and how this affects chromosome dynamics during mitosis will be crucial issues to address in the future. It is worth noting that, in human cells, SUMO proteases have been shown to regulate chromosome behaviour in mitosis\(^30,33\).

In spite of being unable to directly detect AIR-2 sumoylation in worms, the available evidence suggests that AIR-2 is indeed modified by SUMO. First, AIR-2 and SUMO co-localize and SUMO localization depends on AIR-2 (Fig. 5a). Second, AIR-2 is modified in vitro and, like mammalian Aurora B\(^33\), this modification is stimulated by the PIAS-like SUMO E3 GEI-17 (Fig. 6e,f). Third, GEI-17 localizes to the metaphase plate, the exact same place of the AIR-2/SUMO co-localization. Fourth, the use of the PLA in *C. elegans* embryos demonstrates that AIR-2 and SUMO are within \(30/40 \text{ nm}\) of each other\(^31,32\). Most strikingly, during anaphase some degree of SUMO/AIR-2 co-
Localization is observed through conventional immunostaining (Fig. 5a), but no PLA signal is detected (Fig. 5g). Considering the difficulties associated with detecting SUMO conjugation occurring in a specific localization and for time intervals as small as seconds, the PLA assay is an extremely powerful tool that provides visual proof that two proteins are in very close proximity.

Figure 6 | Sumoylation affects AIR-2 Aurora B localization during anaphase. (a) mCherry-SUMO(GG) and GFP-tagged H2B expressing embryos were fed with bacteria containing the indicated RNAi. Only air-2 depletion causes a significant decrease in the SUMO signal (red column). Data represent mean and s.d. from three embryos. Scale bar, 10 μm. (b) ULP-4 is required for AIR-2 translocation from chromatin to the spindle midzone. Embryos expressing mCherry-H2B and GFP-AIR-2 were analysed. (c) Kymographs prepared from the same movies as the images in (b). (d) UBC-9 and ULP-4 exert opposite effects on AIR-2 localization to the midzone. Localization was quantified as the AIR-2 fluorescence intensity in the midzone relative to the intensity on DNA. *P < 0.05 (two-tailed Student’s t-test, n = 5). (e) AIR-2 in vitro sumoylation reactions were performed. For the GEI-17 dose-response, UBC-9 was used at 200 nM and GEI-17 at 50, 100 and 250 nM. (f) Sequence alignment of C. elegans AIR-2 and its human and mouse orthologs, Aurora B, bearing the two putative SUMO modification sites (highlighted in red). In vitro sumoylation reactions were performed as in (e), with limiting amounts of UBC-9 and using 100 and 250 nM GEI-17 using wild-type AIR-2 and mutants.

Figure 7 | Model. Schematic summarizing the localization of the studied sumoylation pathway components highlighting the dynamic behaviour of SUMO conjugation and the contribution of the SUMO E3 ligase GEI-17PIAS and the SUMO protease ULP-4SENP6/7.
proximity. Given the additional evidence mentioned previously, the most likely explanation for this close proximity is that AIR-2 is conjugated to SUMO, although alternative explanations would be consistent with these data. PLA assays are likely to be a useful tool in C. elegans, a system not always amenable to biochemical characterization of protein interactions and modifications.

The precise mechanism by which Aurora B/AIR-2 is extracted from chromatin during anaphase has been a matter of controversy. Culin-3 has been shown to be necessary for ubiquitylation of Aurora B and to regulate translocation of the chromosomal passenger complex from chromosomes to the spindle midzone in anaphase41,42. In addition, p97/Cdc48 binds to ubiquitylated Aurora B and extracts it from chromatin, allowing chromatin decondensation and nuclear envelope formation46. In nematodes, CDC-48.3 binds directly to AIR-2 and inhibits its kinase activity from metaphase through telophase45. Whilecdc-48.3 was identified as a suppressor of embryonic lethality of a temperature-sensitive allele of air-2 (ref. 56), we have found thatgei-17 RNAI rescues the embryonic lethality of a air-2 temperature-sensitive mutant at the restrictive temperature (data not shown). As this mutant AIR-2 remains bound to chromatin during anaphase, and considering our data that both ube-9 andgei-17 depletions increase AIR-2 accumulation in the spindle, it is plausible thatgei-17 depletions allow for AIR-2 to localize to the spindle. The fact that SUMO plays a role in AIR-2 chromatin extraction is indeed interesting in light of previous results showing that the Cdc48 co-factor, Ufd1, bears not only ubiquitin-binding domains but also SIMs57,58. Although SUMO conjugation is not necessary for AIR-2 localization to chromatin (data not shown), it is plausible that SUMO-modified AIR-2 recruits other downstream proteins involved in chromosome condensation and segregation. Sumoylation might force AIR-2 to be retained in the chromatin during anaphase by stabilizing its interaction with chromatin-bound proteins and/or by inhibiting its spindle localization. The fact that the SUMO protease ULP-4 is found in the spindle midzone might suggest that SUMO modification of AIR-2 (or another protein) releases AIR-2 from the spindle allowing it to bind to chromatin. Recently, C. elegans dosage compensation complex components were shown to be SUMO substrates, and a SUMO-SIM network was suggested to play a role in the complex assembly59. SUMO conjugation to AIR-2 could play a role in recruiting/stabilizing other proteins associated with chromatin such as the condensin I component, CAPG-1, known to require AIR-2 for its localization at metaphase chromatin47. SUMO may play separate roles in the regulation of chromosome congression/alignment, regulation of chromosome segregation and regulation of spindle dynamics. These processes could be linked and share common substrates allowing SUMO conjugation and deconjugation to fine-tune protein function and localization in a spatially and timely regulated manner.

In human cells, the microtubule motor protein CENP-E is modified by SUMO-2/3 and binds to SUMO-2/3 chains, and this is essential for kinetochore localization33. C. elegans lacks an apparent CENP-E orthologue, but the CENP-F-like proteins HCP-1 and HCP-2 recruit the conserved kinetochore- and microtubule-associated proteins clasp-1 and clasp-2 to kinetochores40. However, perturbation of SUMO conjugation in C elegans does not significantly alter the recruitment of HCP-1 to kinetochores. While Zhang et al.33 reported that SUMO-1 and SUMO-2 modification of different proteins regulate distinct processes, C. elegans possesses only SUMO protein, SMO-1, that closely resembles mammalian SUMO-1. In fact, unlike SUMO2/3, SMO-1 is unable to form unanchored chains in vitro (data not shown). In contrast, the SUMO protease SENP6 regulates the CENP-H/I/K complex in human cells30. Again, components of the CENP-H/I/K appear to be lost in C. elegans during evolution, raising the question as to how ULP-4 (the nematode ortholog of SENP6/7) affects mitotic progression. Interestingly, we have shown that ULP-4 localizes to metaphase chromatin and to the spindle midzone, so future efforts will focus on these regions and putative substrate proteins. Our findings suggest that in C. elegans sumoylation does not drastically affect kinetochore assembly but rather chromosome condensation. We favour a model in which dynamic sumoylation is essential for proper cell cycle progression through the fine-tuning of different processes, without being absolutely required for the embryo to progress through the first mitotic divisions. The precise role of SUMO conjugation and deconjugation and a detailed scrutiny of the substrates remain to be fully understood.

Importantly, most of the SUMO pathway worm mutants or RNAi treatments lead to severe defects, namely embryonic arrest36. The defects caused by altering the fine balance between SUMO conjugation and deconjugation does not lead to mitotic arrest during the first embryonic mitotic division. As spindle checkpoint in the embryo is strongly related to worm61, we favor the hypothesis that the consequences of repeated cycles of chromosome segregation defects would ultimately result in an irreparable DNA damage. This work, together with previous data22,25,30,33, stress the importance of a tightly regulated SUMO conjugation and deconjugation balance during mitosis.

Methods

Worms. C. elegans were maintained according to standard procedures62. All transgenic worms were generated by particle bombardment63. To generate the GFP-tagged fusion protein, the respective full-length CDNAs were amplified from N2 worms and cloned into PIE-1 regulatory element in a pCI26 vector64. Worms expressing mCherry-Histone were derived from OD56 (ref. 64).

Strains. Strain genotypes are listed in Supplementary Table 3. Smo-1 genomic DNA was amplified with a reverse primer engineered to delete the last codon (F), as to express a ‘processed’ form of SMO-1 ending in GG. The last codon was mutated to alanine to generate SMO-1(GA). Both sequences were cloned in the SpeI sites of pCI26 for GFP or PAAM4 for mCherry. The resulting clones were sequenced and integrated into DP38 [unc-119 (ed3)] worms by ballistic bombardment with a PDS-1000/He Biolistic Particle Delivery System (Bio-Rad)65. Two colour strains were generated by mating. Males were generated by incubation of L4 worms expressing one fluorescent protein at 31 °C for 8 h and subsequently crossed with hermaphrodite worms expressing the second marker. Double homozygotes were screened under a fluorescent microscope66. For a complete list of strains used in this study see Supplementary Table 3.

RNAs. Bacterial (HT115) clones expressing dsRNA for feeding strains were obtained from a commercial library48. Bacteria were grown at 37°C to OD600 = 0.8, shifted to 20 °C, supplemented with 1 mM IPTG and further incubated for 2 h. Then, they were spread on 6-cm nematode growth media plates supplemented with 1 mM IPTG and incubated for 12 h at 20 °C. L4 worms were then added to plates and fed for 24–32 h before analysis. See Supplementary Table 1.

Generation of antibodies. Monoclonal antibodies against SMO-1 were generated by Dundee Cell Products. SMO-1 was conjugated in vitro to mRf2 and the colour was used to immunize mice. After selection of SMO-1 reactive sera by ELISA and dot blot, five different lines were isolated and characterized. High titre tissue culture supernatants were obtained with the CElLine CL 1000 Bioreactor (Sartorius). All clones were tested for specificity and the antibody does not recognize neither IRF2 nor UBC9. For GEI-17, UIP-4(catalytic domain) and full-length AIR-2 were used to immunize rabbits (Moravian Biotech). Best responding sera were used for affinity purification using NHS beads coupled to the antigenic peptide/protein after adsorbing the sera with HT1115 bacterial lysate coupled NHS beads. AIR-2 peptide antibodies were produced by Moravian Biotech using a previously described peptide (COKIEIKSLRNH). UBC-9 and SMO-1-modified mRf2 were used to immobilize sheep (Scottish antibody production unit/Scottish National Blood Transfusion Service). For a UBC-9 antibody, the serum was passed through an HT1115 bacterial lysate column and then affinity purification was performed with UBC-9 coupled NHS beads. In the case of sheep anti-SMO-1, murine IRF2 was used as a substrate in an in vitro conjugation reaction and the reaction was injected in sheep and serum was first ran through an IRF2 column and then affinity purified using recombinant SMO-1. Affinity-purified peptide antibodies against ULP-1
(1.2) and ULP-4 (4.1) were generated in rabbits (Genescript). For all affinity purifications, pre-immune and post-immune sera were first tested for specificity and sensitivity by dot blot using recombinant proteins.

Microscopy. Embryos were dissected and mounted in M9 buffer on 2% agarose pads, and images were produced using a widefield DeltaVision Core microscope mounted on a microscope (IX71; Olympus) with a × 60/1.40 Plan Apochromat oil immersion lens (Olympus), a camera (CoolSNAP HQ; Photometrics), and softWoRx software. The exposure time was 0.25 s, and binning was 2 × 2. Movie files were generated as reported7. For immunostaining, worms were placed on 4 μl of M9 worm buffer in a poly-D-lysine (Sigma, P1024)-coated slide and a coverslip was gently laid on top. Once the worms extruded the embryos, slides were placed on a metal block on dry ice for >10 min, the coverslip taken off with a scalpel blade, and the samples were fixed in methanol at −20 °C. Embryos were stained using standard procedures with mouse monoclonal antibodies for SMO-1 (clones 6F2/D1 and 8A1/D10), sheep polyclonal antibody for SMO-1, mouse monoclonal antibody for z-tubulin (DM1A; Sigma-Aldrich), rabbit polyclonal Anti-Phospho-Histone H3 Ser 10 (Millipore), rabbit polyclonal Anti-ULP-4. See Supplementary Table 2 for antibody concentrations. Secondary antibodies were anti-zein, anti-mouse or anti-rabbit Alexa Fluor 488, 594, or 647 (Invitrogen). DNA was visualized with Hoechst 33258 (Life Technologies, 1.5 μg ml−1 final concentration in PBS, 0.05% Tween-20). Embryos were mounted in 4% n-propyl-gallate (Sigma), 90% glycerol, in PBS and were imaged using a DeltaVision Core microscope (see above). Each embryo shown is representative of the experiments. Images were captured with a × 40/1.3 NA objective (Olympus), a camera (Cascade II; Photometrics), spinning-disk microscope (see above). Each embryo shown is representative of the experiments.

Quantification of SUMO and AIR-2 signal on DNA. An area of interest was drawn around the DNA (using H2B2 as a guide). The corresponding GFP image was then used to determine the mean values for DNA and cytoplasm. Background intensity was taken in the cytoplasm. For AIR-2 translocation, the midzone/chromatin ratio was taken in the cytoplasm. For AIR-2 translocation, the midzone/chromatin ratio was determined as follows: ratio = (DNA—background)/(midzone—background). The sample was then mounted on a microscope (IX71; Olympus) with a × 60/1.45 Plan Apochromat oil immersion lens (Olympus), a camera (Cascade II; Photometrics), spinning-disk head (CSU-X; Yokogawa Electric Corporation) and MetaSwich software (Molecular Devices).

Plasmids. C. elegans smo-1, ubc-9, ulp-4, gei-17 and air-2 cDNAs were cloned in pHISTEV30a using HindIII and NcoI and HindIII. A fragment of the PIAS orthologue used for SUMO processing assays contained 150 mM NaCl, 0.5 mM TCEP, 50 mM Tris and 100 nM SENP1 or ULP-4 recombinant catalytic domains, and reactions were incubated at 30 °C for 60 min. Conjugation assays contained 5 mM dithiothreitol, 5 mM MgCl2, 2 mM ATP, 100 ng of SAE1/SAE2, 1 and 2 μM UBC-9 (reduced to 200 nM for GEI-17-dependent AIR-2 conjugation), 1 μg of substrate protein, and 5 μg of SUMO-1 and were incubated at 37 °C for 4 h. Chain editing assays were performed by adding 0.5, 1, and 4.5 μM of the catalytic domain of ULP-4 (aa 145–333 in NP_495703.2) for the indicated times, whereas SMO-1 processing was performed for 2 h at 37 °C using 1 μM ULP-4 CD. For the chain editing assays, SMO-1 chains were formed in the presence of GEI-17 and purified by size exclusion chromatography (Superdex 200).

Duolink in situ PLA. PLA was performed using primary antibodies directly coupled to the PLA probes or using secondary antibody PLA probes (Sigma-Aldrich). For the direct PLA, ~35 worms were placed on a drop of 4 μl of M9 worm buffer in a poly-D-lysine-coated slide and a coverslip was gently laid on top. Once the worms extruded the embryos, slides were freeze-cracked: placed on a metal block on dry ice for >10 min, the coverslip taken off with a scalpel blade, and the samples were fixed in methanol at −20 °C for 30 min. After sequential washes (5 min each) with PBS 0.5% Triton X-100, PBS 0.1% Tween-20 and PBS, slides were incubated with the monoclonal z-SMO-1 (6F2/D1, 10 μM ml−1) and z-AIR-2 (10 μM ml−1), both previously coupled to the PLA oligonucleotide arms using the Duolink in situ Probenmaker overnight at 4 °C. Ligation and amplification were performed as detailed by the manufacturer. Controls omitting either of the antibodies gave no PLA signal. For indirect PLA, the same primary antibodies were used (unlabelled) and after an overnight incubation at 4 °C slides were incubated with anti-mouse and anti-rabbit secondary antibodies coupled to the PLA oligonucleotide probes. Ligation and amplification were performed as detailed by the manufacturer. In both cases, slides were incubated in Hoechst 33258 at 1.5 μg ml−1 in PBS 0.1% Tween-20 for 5 min. Slides were mounted in 4% n-propyl-gallate, 90% glycerol, in PBS and were imaged using a DeltaVision Elite microscope.

References

1. Nacerridine, K. et al. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev. Cell 9, 769–779 (2005).
2. Wang, L. et al. SUMO is essential while SUMO3 is dispensable for mouse embryonic development. EMBO Rep. 15, 878–885 (2014).
3. Fernandez, A. G. et al. New genes with roles in the C. elegans embryo revealed using RNAi of ovary-enriched ORFeome clones. Genome Res. 15, 250–259 (2005).
4. Jones, D., Crowe, E., Stevens, T. A. & Candido, E. P. Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol. 3, RESEARCH0002 (2002).
5. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).
6. Kim, J. F. et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res. 14, 2162–2164 (2004).
7. Flotho, A. & Melchior, F. Sumoylation: a regulatory protein modification in health and disease. Annu. Rev. Biochem. 82, 357–385 (2013).
8. Gareau, J. R. & Lima, C. D. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat. Rev. Mol. Cell Biol. 11, 861–871 (2010).
9. Yunus, A. A. & Lima, C. D. Structure of the Siz/Pias SUMO E3 ligase Siz1 and determinants required for SUMO modification of PCNA. Mol. Cell 35, 669–682 (2009).
10. Johnson, E. S. & Gupta, A. A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106, 735–744 (2001).
11. Hay, R. T. SUMO-specific proteases: a twist in the tail. Trends Cell Biol. 17, 370–376 (2007).
12. Mukhopadhyay, D. & Dasso, M. Modification in reverse: the SUMO proteases. Trends Biochem. Sci. 32, 286–295 (2007).
13. Dantuma, N. P. & Hoppe, T. Growing sphere of influence: Cdc48/p97 orchestrates ubiquitin-dependent extraction from chromatin. Nat. Rev. Mol. Cell Biol. 15, 106, 286–295 (2007).
14. Maek, S. et al. The Cull-KLH-L23 ubiquitin ligase targets aurora B to midzone microtubules in anaphase and is required for cytokinesis. J. Cell Biol. 187, 791–800 (2009).
15. Maiti, M. & Lindon, C. Substrate targeting by the ubiquitin-proteasome system in mitosis. Semin. Cell Dev. Biol. 23, 482–491 (2012).
16. Ramadan, K. et al. Cdc48/p97 promotes reformation of the nucleus by Cdc48/p97. Nature 450, 1258–1262 (2007).
20. Li, S. J. & Hochstrasser, M. A new protease required for cell-cycle progression.

25. Bylebyl, G. R., Belichenko, I. & Johnson, E. S. The SUMO isopeptidase.

22. Azuma, Y., Arnaoutov, A., Anan, T. & Dasso, M. PIASy mediates SUMO-2 conjugation.

19. Meluh, P. B. & Koshland, D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C.

21. Seufert, W., Futcher, B. & Jentsch, S. Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins.

35. Ward, J. D.

36. Broday, L.

38. Kaminsky, R.

28. Fukagawa, T., Regnier, V. & Ikemura, T. Creation and characterization of centromere protein CENP-C.

17. Sumara, I.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6485 ARTICLE

11

© 2014 Macmillan Publishers Limited. All rights reserved.
agreement 297881) and is a career investigator of the Argentinean research council (CONICET), also supported by a fellowship from CONICET (Res. N° 4771/12). Some nematode strains were provided by the CGC, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). A.G. is a Wellcome Trust Senior Biomedical Research Fellow. R.T.H. and J.J.B. are Senior Investigators of the Wellcome Trust.

Author contributions

F.P. conceived the project; performed the cloning and generated all strains, antibodies and recombinant proteins; designed, performed and interpreted experiments; and wrote the manuscript. R.S. designed, performed and interpreted experiments and assisted with microscopy techniques. E.P. assisted with general worm techniques and performed initial bombardments. A.A. assisted with general worm techniques and carried out initial immunostaining experiments. J.J.B. contributed tools and reagents. A.G. supervised the project and provided advise on general *C. elegans* work. R.T.H. designed and interpreted experiments, supervised the project and wrote the manuscript. All authors commented on the manuscript.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Pelisch, F. *et al.* Dynamic SUMO modification regulates mitotic chromosome assembly and cell cycle progression in *Caenorhabditis elegans*. Nat. Commun. 5:5485 doi: 10.1038/ncomms6485 (2014).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Erratum: Dynamic SUMO modification regulates mitotic chromosome assembly and cell cycle progression in *Caenorhabditis elegans*

Federico Pelisch, Remi Sonneville, Ehsan Pourkarimi, Ana Agostinho, J Julian Blow, Anton Gartner & Ronald T. Hay

Nature Communications 5:5485 doi: 10.1038/ncomms6485 (2015); Published 5 Dec 2014; Updated 12 Feb 2015

This Article contains errors in the legends to Supplementary Movies 9–11, which attribute fluorescence to cells expressing mCherry-H2B/GFP-AIR-2. These cells express mCherry-SMO-1(GG)/GFP-H2B. There is also an error in Fig. 1e that was introduced during the production process and resulted in the error bars for the 100 s time point being displaced to an incorrect position. The correct version of this figure appears below.
Figure 1