Variational and Potential Formulation for Stochastic Partial Differential Equations

Á. G. Muñoz S., J. Ojeda, D. Sierra P., T. Soldovieri

Laboratorio de Astronomía y Física Teórica (LAFT). Departamento de Física. Facultad de Ciencias. La Universidad del Zulia. Maracaibo, 4004. Venezuela
Centro de Estudios Matemáticos y Físicos (CeMaFi). Departamento de Matemática y Física. La Universidad del Zulia. Maracaibo, 4004. Venezuela

There is recent interest in finding a potential formulation for Stochastic Partial Differential Equations (SPDEs). The rationale behind this idea lies in obtaining all the dynamical information of the system under study from one single expression. In this Letter we formally provide a general Lagrangian formalism for SPDEs using the Hojman et al. method. We show that it is possible to write the corresponding effective potential starting from an s-equivalent Lagrangean, and that this potential is able to reproduce all the dynamics of the system, once a special differential operator has been applied. This procedure can be used to study the complete time evolution and spatial inhomogeneities of the system under consideration, and is also suitable for the statistical mechanics description of the problem.

PACS numbers: 45.20.Jj; 02.50.-r; 02.50.Ey.

Keywords: stochastic partial differential equations, variational formulation, effective potential.

The inverse problem of variational calculus have been used by Hojman et al. [1] in the study of systems associated with first and second order deterministic differential equations. The proposed method permits to obtain all the dynamical information of the system allowing the quantization in terms of conserved quantities prescribed for the differential equation. On the other hand, a variational formalism has been devised by Gambár and Márkus (see for example [2, 3, 4]) as groundwork for proposing a field theory for non-equilibrium thermodynamical systems, giving valuable information about the entropy in terms of current density and thermodynamic forces. Effective actions can be found by means of the Martin-Siggia-Rose formalism [5], a perturbative procedure that makes use of both physical and “conjugate” (auxiliary) fields. Also, Hochberg et al. have proposed in a series of papers [6, 7, 8] a “direct” approach, finding effective actions and potentials for SPDEs using a functional integral formalism similar in structure to those of quantum field theory. Last year Ao [9] has reported a worth consulting novel approach for constructing potentials associated with first order SPDEs. All this efforts conduct to the idea that the variational formalism, in its direct or inverse form, could be the mathematical mechanism with the necessary tools for exploring the inherent dynamics of physical, biological and chemical systems. In particular, structural development in cosmology and biology, pattern-formation, symmetry breaking, population dynamics, chemical chaos and turbulence [10, 11, 12, 13, 14, 15], are a few cases of a wide spectrum of phenomena for which self-regulation, oscillation, adaptiveness and multi-equilibrium behaviours can be adequately modeled by means of SPDEs. In a more recent paper [16] Hochberg et al. have reported that their effective potential does not provide information about the time evolution and spatial inhomogeneities of the system under consideration, and the effective action is very difficult to calculate exactly.

We will use in this Letter the Hojman et al. [1] procedure, which enables to construct the Lagrangean for any regular mechanical system as a linear combination of its own equations of motion. This particular construction is much wider than the traditional definition \(L = T - V \), which is only true when the “forces” involved are derivable from position-dependent potentials, therefore it may be used for general non-conservative systems. Its application to the study of SPDEs may provide additional understanding of the internal structure of these phenomena and also enables the use of a well known mathematical machinery to find conserved quantities, equilibria and stability cases, and other dynamical properties. For an example of the application of this method to self-regulated systems, refer to [17].

The goal of this Letter is to establish a variational and effective potential formalisms for the study of SPDEs with arbitrary noise function. This approach have the particular advantages that it provides Lagrange-Hamilton functionals in a very direct way starting from the equations of motion, and that the
effective potential deduced is able to take account of the stability and equilibria conditions, temporal evolution, anisotropies and inhomogeneities of the system.

We will consider in this work SPDEs that can be written as

\[\Box \psi^i - \Phi^i(\psi^j) - \xi^i = 0 \] (1)

for \(i, j = 1, \ldots, m \) where \(m \) is the number of degrees of freedom, \(\psi^i \equiv \psi^i(q^j, t) \) denotes the components of a vector field whose arguments are, in the general case, spatial coordinates \(q^j \) and time \(t \); \(\Box \) is an arbitrary linear space or time (or both) differential operator that does not depend on the field \(\psi^i \); \(\Phi^i(\psi^j) \) is any, usually non-linear, deterministic forcing term and \(\xi^i \equiv \xi^i(q^j, t) \) is a random function of its arguments describing the stochastic force (noise) in the system. In Table 1 some particular cases of \(\Box \) operators and \(\Phi^i \) functions are presented (\(a_p \) are the coefficients of the polynomial of order \(p \) while \(\kappa \) and \(\omega \) are real scalars; for details see [2] and references therein). Hereafter, Einstein summation convention and Euclidian metric tensor are assumed. The noise functions to be considered here are completely arbitrary.

It is important to bear in mind that even when it is true that different sorts of noise and different behaviours of the underlying deterministic partial differential equations (hyperbolic, parabolic, linear or nonlinear) require different techniques to find the corresponding solutions, those may be unnecessary, as we will presently show, for obtaining a variational/effective potential formulation of the problem.

Operator:	\(\Box \)	Function:	\(\Phi^i(\psi^j) \)
D’Alembertian	\(\partial^2_t - \nabla^2 \)	Polynomial	\(a_p \psi^i \)
Diffusion	\(\partial_t - \kappa \nabla^2 \)	Burgers (noisy)	\(\frac{1}{2} \left(\nabla \psi^i \right)^2 \)
Temporal	\(\partial_t \)	Purely Dissipative	\(-\frac{\delta H(\psi^i)}{\delta \psi^i} \)

Table 1. Some Operators and Dissipation Functions.

The equation of motion for a mechanical system arises from a set of \(m \) differential equations. For conceptual reasons, it is suitable to rewrite [11] as equations of motion in the variational sense

\[G^i \equiv \ddot{\psi}^i - F^i \left(\dot{\psi}^j, \partial_k \psi^j, \psi^j, t \right) = 0 \] (2)

where \(F^i \) behaves as “forces” (both deterministic and stochastic) divided by unitary mass and may include spatial derivatives of the field; the dot stands for total temporal derivative.

In the Inverse Problem of the Variational Calculus the Lagrangean \(L \left(\dot{\psi}^j, \psi^j, t \right) \) is constructed such that relations [2] can be effectively deduced via Euler-Lagrange equations. The existence of such a Lagrangean is studied using the Helmholtz conditions [13]

\[
\begin{align*}
\frac{\partial G^i}{\partial \psi^j} + \frac{\partial G^j}{\partial \psi^i} &= 0 \\
\frac{\partial G^i}{\partial \psi^j} - \frac{\partial G^j}{\partial \psi^i} &= \frac{1}{2} \frac{d}{dt} \left(\frac{\partial G^i}{\partial \psi^j} - \frac{\partial G^j}{\partial \psi^i} \right)
\end{align*}
\]

(3)

Nevertheless, these conditions do not give any warranty about uniqueness. Two Lagrangeans are said to be solution-equivalent (or s-equivalent) if they differ only by a global multiplicative constant, \(\eta \), and a total time derivative of some gauge \(\Lambda \left(\dot{\psi}^j, \psi^j, t \right) \):

\[\eta L = \tilde{L} - \frac{d\Lambda}{dt} \] (4)

The different systems of equations they provide, however, have exactly the same equations of motion.

The Hojman et al. method enables us to write \(\tilde{L} \) as a linear combination of the known equations of motion; then for \(i, j = 1, \ldots, m \),

\[\tilde{L} = \mu_i \left[\dot{\psi}^j - F^j \right] \] (5)

where

\[
\mu_i \left(\dot{\psi}^j, \psi^j, t \right) = D_1 \frac{\partial D_2}{\partial \psi^j} + \ldots + D_{2m-1} \frac{\partial D_{2m}}{\partial \psi^j}
\]

(6)

In equation (6) the quantities under partial derivative \((D_{2m}) \) are constants of motion of the system, while the corresponding coefficients \((D_{2m-1}) \) are arbitrary functions whose arguments are constants of motion. There are plenty of ways to write these \(D_{2m} \) functions. For instance, one possible form for the \(D_{2m-1} \) functions, given the \(D_{2m} \) conserved quantities, is presented in reference [19].

When the conserved quantities are unknown the problem is reduced to find \(\mu_i \) such that the following system

\[
\begin{align*}
\frac{\partial \mu_i}{\partial \psi^j} &= \frac{\partial \mu_j}{\partial \psi^i}
\end{align*}
\]

(8)

is satisfied, and

\[
\det \left[\frac{\partial}{\partial \psi^{j}} \left(\frac{d}{dt} \mu_1 + \mu_k \frac{\partial F^k}{\partial \psi^j} \right) + \frac{\partial \mu_1}{\partial \psi^{j}} \right] \neq 0
\]

(9)
where the on-shell derivative \(\frac{d}{dt} \) is defined such that it behaves as an usual total time derivative taking into consideration that, on the shell, equation (2) is always true.

It is important to remark that this method is useful for both second-order and first-order differential equations. For further details the reader is exhorted to review [1, 19] and the references therein.

By virtue of equation (5), the general Lagrangean for SPDEs of the form (1) can be written as

\[
\tilde{L} = \mu_i (\Box \dot{\psi}^i - \Phi^i - \xi^i)
\]

where the \(\mu_i \) parameters must be determined for each case in study.

It can be shown that the 2m constants of motion of equation (10) can be formally cast in

\[
D^{(2i-1)} = \dot{\psi}^i - \int \dot{\psi}^i dt
\]

\[
D^{(2i)} = \dot{\psi}^i - \int F^i dt
\]

It is clear that equations (11) and (12) must satisfy conditions (8)-(9) of the Hojman et al. method.

Once the Lagrangean (10) is completely determined, the corresponding Hamiltonian can be found trivially by the usual Legendre transformation, and, as will be shown in the following lines, also the effective potential can be written straightforwardly.

Let us define now the following differential operator

\[
\nabla_i \equiv \frac{1}{\psi^i} \frac{d}{dt}
\]

Then, let require that the effective potential, \(V_{eff} \), be such that

\[
\nabla_i V_{eff} = -F_i
\]

Note that in this case the on-shell derivative takes the form

\[
\frac{d}{dt} = \frac{\partial}{\partial t} + \dot{\psi}^i \frac{\partial}{\partial \psi^i} + F^i \frac{\partial}{\partial \psi^i}
\]

and thus, in the conservative case, \(V_{eff} \equiv V_{eff}(\psi) = V \), equation (13) provides (from now on the symbol \(\nabla \) indicates that the relation is valid only in special cases)

\[
\nabla_i V_{eff} \nabla_i \equiv \frac{\partial V}{\partial \psi^i} = -F_i
\]

which is equivalent to the standard relation \(\nabla_i V = -F_i \) when the vector field \(\psi^i \) coincides with the spatial coordinate \(q^i \).

Now, we are interested in finding a gauge \(\Lambda = \lambda \) such that equations (10) and (5) provide an s-equivalent Lagrangean, \(L \), that can be written as the difference between some function (kinetic energy) \(T_{eff} \) and the effective potential \(V_{eff} \). In consequence (for the sake of simplicity, \(\eta = 1 \))

\[
V_{eff} = T_{eff} - \mu_i (\Box \dot{\psi}^i - \Phi^i - \xi^i) + \frac{d\lambda}{dt}
\]

For a general non-conservative system, \(T_{eff} \) can be written as

\[
T_{eff} \equiv \alpha A (\dot{\psi}^i) + \beta B (\dot{\psi}^i, \dot{\psi}^j) + \gamma G (\dot{\psi}^i, \dot{\psi}^j, \dot{\psi}^k)
\]

and thus, it is necessary to determine the scalars \(\alpha, \beta, \gamma \) and the functions \(A (\dot{\psi}^i), B (\dot{\psi}^i, \dot{\psi}^j), G (\dot{\psi}^i, \dot{\psi}^j, \dot{\psi}^k) \) to completely define \(V_{eff} \).

It should be useful to write the kinetic energy of the system in the traditional quadratic form

\[
T_{eff} \equiv \frac{1}{2} \dot{\psi}^i \dot{\psi}_i
\]

In order to do so, it is necessary to find the corresponding gauge first. Equation (14) provides the necessary constraint; thus, by taking the nabla-star derivative at both sides of equation (17) we obtain, for on-shell trajectories,

\[
\nabla_i \left[\frac{d\lambda}{dt} - \mu_j (\Box \dot{\psi}^j - \Phi^j - \xi^j) \right] = -2F_i
\]

Solving this equation for the time derivative of the gauge \(\lambda \), we have

\[
\frac{d\lambda}{dt} = -2 \int \dot{\psi}^i F_i dt + \mu_i (\Box \dot{\psi}^i - \Phi^i - \xi^i) + V_0
\]

where \(V_0 \) is an arbitrary constant of integration. Consequently, following equation (17)

\[
V_{eff} \equiv V_0 + \frac{1}{2} \dot{\psi}^i \dot{\psi}_i - 2 \int \dot{\psi}^i F_i dt
\]

which is the general effective potential for equation (1) given the choice (19) for the kinetic energy.

In summary, we have presented in this Letter a novel way to provide both variational and effective potential formulations for general SPDEs with arbitrary noise function. There are several useful applications of this
result. Once the Hamiltonian is obtained, for example, quantization of systems described by equation (11) follows straightforwardly. Also, the Hamilton-Jacobi approach may help to solve the equations of motion of a system via a convenient, if possible, variable separation.

The effective potential (17) is constructed such that it contains all the dynamical information of the system. In general, it may have explicit dependence on time, on the field itself and on the derivatives of the field; certainly, the nabla-star operator identifies the contribution of each functional dependence by means of specific terms, as can be seen in equation (15).

As reported [9, 16], in other approaches the effective potential is useful only for stationary or static regimes; the approach presented here can be used to study those cases, the complete temporal evolution of (11) and also the equilibria and stability states. The present potential formulation is based on a classical mechanics approach, there is no need of auxiliary or ghost fields. Nor Fokker-Planck equations neither special assumptions about the noise function are invoked in the construction.

The important relation between the effective potential (17) and the statistical mechanics deserves a detailed discussion, and it will be treated elsewhere. However, it can be shown that this potential appears in the steady state solution of the corresponding Fokker-Planck equation (or even the Klein-Kramers equation) [12], a Boltzmann-Gibbs distribution

$$
\psi_0(\psi) = \frac{1}{Z} \exp \left(-V_{eff}(\psi) \right)
$$

(23)

with Z as the partition function.

A detailed application of this procedure to several particular cases of SPDEs, such as Langevin, inhomogeneous Klein-Gordon, and diffusion equations from a mechanical, statistical and quantum point of view is in course of preparation.

[1] Hojman, R., et al., Phys. Rev. D, 28, 6, 1333-1336 (1983).
[2] K. Gambá, F. Márkus, Phys. Rev. E, 50, 2, 1227-1231 (1994).
[3] F. Márkus, K. Gambá, F. Vázquez, J. Antonio del Rio, Physica A, 268, 482-498 (1999).
[4] K. Gambá, F. Márkus, Physica A, 320, 193 203 (2003).
[5] Martin, P.C., Siggia, E.D., Rose, H.A., Phys. Rev. A, 8, 423-437 (1973).
[6] Hochberg, D., Molina-Paris, C., Pérez-Mercader, J., Visser, M., Phys. Rev. E, 60, 3643-3660 (1999).
[7] Hochberg, D., Molina-Paris, C., Pérez-Mercader, J., Visser, M., J. Statist. Phys., 99, 903-941 (2000).
[8] Hochberg, D., Molina-Paris, C., Pérez-Mercader, J., Visser, M., Phys Lett. A, 278, 177-183 (2001).
[9] Ao, P., Journ. Phys. A, 37, L25-L30 (2004).
[10] Förster, D., Nelson, D.R., Stephen, M.J., Phys. Rev. A, 8, 423-508 (1973).
[11] Frisch, U., Turbulence (Cambridge University Press, Cambridge, England, 1995).
[12] van Kampen, N.G., Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 1992).
[13] Nicolis, G. and Prigogine, I., Self-organization in Nonequilibrium Systems: From Dissipative Structure to Order through Fluctuations (Wiley, New York, 1977).
[14] Murray, J.D., Mathematical Biology (2nd Edition, Springer Verlag, Berlin, 1993).
[15] Thompson, D.W., On Growth and Form (Revised Edition, Dover Pub., New York, 1992).
[16] Hochberg, D., Molina-Paris, C., Visser, M., Phys. Rev. E, 63, 036132 (2001).
[17] Muñoz S., A. G., Sierra P., D., Soldovieri, T. et al., Rev. Mex. Fís., (in press) (2005).
[18] Pardo, F., J. Math. Phys., 30, No. 9, 2054-2061 (1989).
[19] Hojman, S., Urrutia, L.F., J. Math. Phys., 22, 1896 (1981).
[20] Goldstein, H., Classical Mechanics, 2nd Edition, (Adison-Wesley, London, 1980).