Supplementary Materials for

Apolipoprotein E, low-density lipoprotein receptor, and immune cells control blood-brain barrier penetration by AAV-PHP.eB in mice

Bao-Shu Xie¹,4#, Xin Wang²#, Yao-Hua Pan¹#, Gan Jiang³, Jun-Feng Feng¹, and Yong Lin¹*

These authors contributed equally to this work.

* To whom correspondence should be addressed:

Yong Lin, MD, PhD, Department of Neurological Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P.R. China. Tel: +86 (21) 6838 3982. Email: yonglin1996@hotmail.com

This PDF file includes: Figures S1 to S6
A

	Striatum	Cortex1	CA1	CA2	Dentate gyrus	Thalamus1
C57BL/6 wild-type	![Image](image1)	![Image](image2)	![Image](image3)	![Image](image4)	![Image](image5)	![Image](image6)
Apoe^{−/−}	![Image](image7)	![Image](image8)	![Image](image9)	![Image](image10)	![Image](image11)	![Image](image12)
Ldr^{−/−}	![Image](image13)	![Image](image14)	![Image](image15)	![Image](image16)	![Image](image17)	![Image](image18)

B

Roles of ApoE and LDLR in C57BL/6 mouse in AAV-PHP.eB transduction

![Graph showing fluorescence intensity in different areas of the central nervous system](image)

- **Different areas of the central nervous system:**
 - Striatum
 - Cortex1
 - CA1
 - CA2
 - Dentate gyrus
 - Thalamus1
 - Hypothalamus
 - Midbrain
 - Pons
 - Medulla
 - Cerebellum
 - Spinal cord

- **Statistics:**
 - C57BL/6 wild-type: p = 0.016, p = 0.024
 - Apoe^{−/−}: p = 0.035
 - Ldr^{−/−}: p = 0.041, p = 0.022
Figure S1 | Transduction of intravenous AAV-PHP.eB into various brain regions of C57BL/6 wild-type, Apoe^{−/−} and Ldlr^{−/−} mice. (A) Representative fluorescent images of the indicated tissues in the indicated mice following intravenous administration of AAV-PHP.eB. The blue fluorescence indicates Hoechst nuclear staining. (B) Quantification of the red fluorescence intensity in the indicated mice and brain regions 3 weeks after the AAV-PHP.eB administration (n = 4 for each group). For the comparison of C57BL/6 wild-type with either Apoe^{−/−} or Ldlr^{−/−} mice, p values were determined by Tukey post-hoc test (medulla) or Games-Howell post-hoc test (all other regions). Data are mean ± s.e.m.
Figure S2 | Brain and liver transduction of AAV-PHP.eB and AAV-9 and effect of AAV-PHP.eB on the permeability of the blood-brain barrier in mice. (A)

Representative images of the AAV-PHP.eB and AAV-9 transduction in the indicated tissues in the indicated mice. While transducing to both the brain and the liver (red fluorescence) in wild-type C57BL/6 mice, AAV-PHP.eB is able to transduce only the
liver cells in *Apoe^{−/−}* or *Ldlr^{−/−}* mice (n = 3 for each group). In contrast, AAV-9 transduces the liver cells, but fails to transduce brain cells in all three mouse genotypes (n = 3 for each group). **(B)** Evaluation on the permeability of the blood-brain barrier after the AAV-PHP.eB injection. Intravenously injected AAV-PHP.eB does not significantly increase the barrier permeability, measured by Evans Blue infiltration, in C57BL/6 mice (n = 4 for each group).
Figure S3 | Effect of plasma on the central nervous system transduction of intravenous AAV-PHP.eB in Apoe^{−/−} mice. (A) Schematic showing plasma isolation from wild-type mouse blood and preparation of AAV-PHP.eB expressing the mScarlet gene mixed with plasma. Thirty minutes after being mixed with ApoE-containing plasma prepared from either C57BL/6 or BALB/c mice, AAV-PHP.eB was administered intravenously to Apoe^{−/−} mice. (B) Representative images showing transduction in the medulla regions 3 weeks after systemic delivery of AAV-PHP.eB.
plus plasma. Images from an $Apoe^{-/-}$ mouse which was not treated with plasma are
shown as a negative control. (C) Quantification of the fluorescence intensity of the
indicated brain regions. The p values were determined by one-way ANOVA. The
means ± s.e.m are indicated (n = 4 for each group).
Figure S4 | Comparison of the local transduction of AAV-PHP.eB in the brains in *Apoe^{−/−}* and *Ldlr^{−/−}* mice. Representative fluorescent images (red, A and D) of the hippocampi (B and E) in *Apoe^{−/−}* (A-C) and *Ldlr^{−/−}* (D-F) mice following the stereotactic microinjection of AAV-PHP.eB into the dentate gyrus. A and B are merged in C, and D and E in F. The blue fluorescence indicates Hoechst nuclear staining. n = 2 for each group.
Figure S5 | Transduction of intravenous AAV-PHP.eB to the brain of in C.B-17 SCID mice lacking both T and B cells. (A) Representative images of the indicated tissues, 3 weeks after the intravenous AAV-PHP.eB administration to BALB/c wild-type and C.B-17 SCID mice. The blue fluorescence indicates Hoechst nuclear staining. magn: magnification. (B) Analyses of the AAV-PHP.eB transduction in the indicated areas of BALB/c (n = 3) and C.B-17 SCID mice (n = 4), 3 weeks after the AAV-PHP.eB injection; the p value was determined by two-tailed Student's t-test. Data are mean ± s.e.m.
Figure S6 | Lymphocyte and B cell populations in the spleens of ldlr^{-/-} and ldlr^{+/+} mice. (A-C) Flow cytometry analyses of lymphocytes in the spleen (A) and of B cells in ldlr^{-/-} (B) and ldlr^{+/+} (C) mice. (D) Quantification of the ratios of CD3⁻B220⁺ B cells to CD45⁺ lymphocytes. The means ± s.e.m are indicated (n = 4 for each group). The p values > 0.05 (two-tailed Student's t-test).