UNRAMIFIED GODEMENT-JACQUET THEORY FOR THE SPIN SIMILITUDE GROUP

AARON POLLACK

Abstract. Suppose \(F \) is a non-archimedean local field. The classical Godement-Jacquet theory is that one can use Schwartz-Bruhat functions on \(n \times n \) matrices \(M_n(F) \) to define the local standard \(L \)-functions on \(\text{GL}_n \). The purpose of this partly expository note is to give evidence that there is an analogous and useful “approximate” Godement-Jacquet theory for the standard \(L \)-functions on \(\text{SO}(V) \): One replaces \(\text{GL}_n(F) \) with \(\text{GSpin}(V)(F) \) and \(M_n(F) \) with \(\text{Clif}(V)(F) \), the Clifford algebra of \(V \). More precisely, we explain how a few different local unramified calculations for standard \(L \)-functions on \(\text{SO}(V) \) can be done easily using Schwartz-Bruhat functions on \(\text{Clif}(V) \).

1. Introduction

Following Braverman-Kazhdan [BK99, BK00, BK02], a topic of interest in automorphic forms is extending the classical Godement-Jacquet theory for the standard \(L \)-function on \(\text{GL}_n \) to other reductive groups and \(L \)-functions. Such a program has received a lot of attention recently, and from many different perspectives, for instance in [Laf14, Ngo14, BNS16, Sak16, Get14, Cas16], to name only a few. Recall that, if \(F \) is a \(p \)-adic local field, \(\pi \) is an unramified irreducible representation of \(\text{GL}_n(F) \), and \(v_0, v_\vee \) are spherical vectors in \(\pi \) and its contragredient normalized so that \(\langle v_\vee, v_0 \rangle = 1 \), the so-called Godement-Jacquet [Tam63, GJ72] integral for the Standard \(L \)-function of \(\pi \) is

\[
 L(\pi, \text{Std}, s - \frac{n-1}{2}) = \int_{\text{GL}_n(F)} \Phi(g) \langle v_\vee, \pi(g)v_0 \rangle |\det(g)|^s \, dg.
\]

Here \(\Phi \) is the characteristic function of \(M_n(O_F) \) and \(\langle \cdot, \cdot \rangle \) is the canonical pairing between \(\pi \) and its contragredient. The purpose of this note is to explain how (1) has an analogue for quasisplit groups \(\text{GSpin}(n) \), and to give a few easy applications of this analogue.

Continue to assume that \(F \) is a \(p \)-adic local field. Suppose \(G \) is a reductive \(F \)-group, \(\pi \) is an unramified irreducible representation of \(G(F) \), and \(v_0, v_\vee \) are spherical vectors in \(\pi \) and its contragredient with \(\langle v_\vee, v_0 \rangle = 1 \). Suppose \(\rho : kG \to \text{GL}_N(\mathbb{C}) \) is a representation of the Langlands dual group of \(G \). It follows from the Satake isomorphism that there is a unique function \(\Delta^s_{\rho} : G(F) \to \mathbb{C} \) that is bi-invariant under a fixed maximal compact and that satisfies

\[
 L(\pi, \rho, s) = \int_{G(F)} \Delta^s_{\rho}(g) \langle v_\vee, \pi(g)v_0 \rangle \, dg.
\]

One can give explicit expressions for the \(\Delta^s_{\rho} \) [Li16, Sak14], which however are typically complicated. Since these expressions are complicated, they can be difficult to use in certain computations.

The doubling integrals of Piatetski-Shapiro and Rallis [GPSR87] give relatively simple expressions for \(\Delta^s_{\rho} \) when \(\rho \) is the standard representation of the dual group of a classical group. For example, consider the case of split \(\text{SO}(2n) \), the group of \(g \in \text{GL}_{2n} \) that satisfy \(g \left(\begin{smallmatrix} 1_n & 1_n \\ 1_n & -1_n \end{smallmatrix} \right) g^t = \left(\begin{smallmatrix} 1_n & 1_n \\ 1_n & -1_n \end{smallmatrix} \right) \).

This work partially supported by the NSF through grant DMS-1401858.

\[1\] For instance, it would seem to be difficult to use such expressions in Lemma below, which is then used in section 6.
For \(g \in \text{SO}(2n) \), define the function \(\Delta_s(g) \) as follows. By the Cartan decomposition, \(g = k_1t k_2 \), with \(k_1, k_2 \) in the maximal compact \(K \) and \(t = \text{diag}(t_1, t_2, \ldots, t_n, t_1^{-1}, t_2^{-1}, \ldots, t_n^{-1}) \), with the \(t_i \in \mathcal{O}_F \). Now set
\[
(2) \quad \Delta_s(g) = |t_1 \cdots t_n|^s, \quad \text{when} \quad g = k_1t k_2, \ t = \text{diag}(t_1, t_2, \ldots, t_n, t_1^{-1}, t_2^{-1}, \ldots, t_n^{-1}), \ t_i \in \mathcal{O}_F.
\]
Here \(| \cdot |\) is the normalized \(p \)-adic absolute value on \(F \). It is proved in \cite{GPSR87} that
\[
(3) \quad \frac{L(\pi, \text{Std}, s + 1 - n)}{A(s)} = \int_{\text{SO}(V)(F)} \Delta_s(g)\langle v_0^\nu, \pi(g)v_0 \rangle \, dg
\]
where \(A(s) \) is a certain explicit product of abelian \(L \)-functions that don’t depend on the Satake parameters of \(\pi \).

By contrast, the \(\Delta_s^\rho \) can be quite non-trivial outside of the case of standard representations of classical groups. For example, such is the case for the degree 7 “Standard” \(L \)-function on \(G_2 \) \cite{GS15}, or the degree 8 “Spin” \(L \)-function on \(GSp_6 \) \cite{PS15}, and this nontriviality leads to the principal difficulty that must be overcome in the papers \cite{GS15} \cite{PS15}. Suppose now that \((V, q) \) is a quadratic space, i.e., that \(V \) is a finite-dimensional \(F \) vector space and \(q \) is a non-degenerate quadratic form on \(V \). The purpose of this note is to explain how a simple observation regarding the function \(\Delta_s \) from (2) can make calculations involving the standard \(L \)-function on orthogonal groups easier. First, recall the group \(GSp(V) \), which is a central \(GL_1 \)-extension of \(\text{SO}(V) \),
\[
(4) \quad 1 \to GL_1 \to GSp(V) \to \text{SO}(V) \to 1.
\]
The group \(GSp(V) \) may be defined concretely inside the even Clifford algebra \(\text{Clif}(V, q) \) constructed from \(V, q \); see section \ref{sec:2.4}. It has a similitude character \(\nu : GSp(V) \to GL_1 \), the kernel of which is the group \(\text{Spin}(V) \). The observation about which this paper centers is the following. Fix a maximal integral \(\mathcal{O}_F \) lattice \(\Lambda \) in \(V \), which is specified precisely in subsection \ref{sec:2.4} below. Then we may form the Clifford algebra \(\text{Clif}(\Lambda, q) \), a finite \(\mathcal{O}_F \)-module, and one has \(\text{Clif}(V, q) = \text{Clif}(\Lambda, q) \otimes_{\mathcal{O}} F \). Define \(\Phi \) to be the characteristic function of \(\text{Clif}(\Lambda, q) \), i.e., for \(g \) in \(GSp(V) \), define \(\Phi(g) \) to be 1 if \(g \in \text{Clif}(\Lambda, q) \) and 0 otherwise.

Lemma 1. Suppose \(F \) is a \(p \)-adic local field, \(V \) is such that \(\text{SO}(V) \) is quasisplit, \(\dim(V) \geq 2 \), and \(\pi \) is a spherical representation of \(GSp(V) \). Under these assumptions, \(L(\pi, \text{Std}, s) \) is defined, and for \(\text{Re}(s) \) sufficiently large, one has
\[
(5) \quad \frac{L(\pi, \text{Std}, s + 1 - \dim(V)/2)}{d^V(s)} = \int_{GSp(V)(F)} \Phi(g)|\nu(g)|^s\langle v_0^\nu, \pi(g)v_0 \rangle \, dg
\]
where
\[
d^V(s) = \prod_{2 \leq j \leq \dim V - 2; j \equiv 0(2)} \zeta(\omega, 2s - j).
\]
Here \(\omega_\pi \) is the central character of \(\pi \) and \(\zeta(\omega, s) = (1 - \omega_\pi(\varpi)|\varpi|^s)^{-1} \), where \(\varpi \) is a uniformizer of \(F \). Due to the presence of the abelian zeta functions \(d^V(s) \), we say that \(|\nu(g)|^s\Phi(g) \) gives an “approximate” local \(L \)-function on \(GSp(V) \), as opposed to an “exact” local \(L \)-function, which would not have the \(\zeta(\omega, s) \) factors in the denominator.

Once formulated, Lemma 1 essentially follows immediately from the above result (3) of Piatetski-Shapiro and Rallis, by integrating over the center \(GL_1 \subseteq GSp(V) \). (In the case of \(GSp_5 = GSp_4 \), Lemma 1 goes back at least to Shimura \cite{Shi63} and Satake \cite{Sat63} Appendix 1.) Since the proof of (3) in \cite{GPSR87} is a little involved, and our objective is to show the usefulness of considering the function \(\Phi(g)|\nu(g)|^s \), we give a simple direct proof of Lemma 1 in section 4. The similarity of (5) with the case (1) of \(GL_n \) is clear: \(GL_n \) is replaced with \(GSp(V) \), \(\det : GL_n \to GL_1 \) with \(\nu : GSp(V) \to GL_1 \), and \(M_n(F) \) replaced by \(\text{Clif}(V) \). We remark that lifting from \(\text{SO}(V) \) to
GSpin(\(V\)), which has the similitude character \(\nu : \text{GSpin}(V) \to \text{GL}_1\), comports with the philosophy of [BK00, Ngo14]. We should point out, however, that one important difference with this setup compared with the case of \(\text{GL}_n\) is that \(\text{GSpin}(V)\) is not Zariski open in \(\text{Clif}(V)\) or \(\text{Clif}^+(V)\).

Since the function \(\nu^V(s)\) of Lemma 1 depends only upon the central character of \(\pi\), it is an easy matter to replace \(\Phi(g)\) by a function \(\Phi'(g)\) so that \(|\nu(g)|^s\Phi'(g)\) gives an exact local \(L\)-function. Since these “basic functions” \(\Phi'(g)\) have become of interest [Cas16, Li16, Sak14], we mention now the explicit formula for \(\Phi'\). Choose a uniformizer \(\varpi\) for \(F\), set \(q = |\varpi|^{-1}\), and denote by \(\Phi_n\) the characteristic function of \(\varpi^n \text{Clif}(\Lambda) \setminus \varpi^{n+1} \text{Clif}(\Lambda)\), so that \(\Phi = \sum_{n \geq 0} \Phi_n\). Define polynomials \(p_{V,M}(t)\) by the generating series

\[
\sum_{M \geq 0} p_{M,V}(t)X^M = \prod_{0 \leq j \leq \dim(V) - 2; j \equiv 0(2)} (1 - t^jX)^{-1},
\]

and set \(\Phi'(g) = \sum_{M \geq 0} p_{V,M}(q)\Phi(M).\) Then one deduces from Lemma 1 that

\[
L(\pi, \text{Std}, s + 1 - \dim V/2) = \int_{\text{GSpin}(V)/(F)} \Phi'(g)|\nu(g)|^s(v_0^\vee, \nu, \pi_0)\, dg.
\]

See Remark 10. Since we only use the “approximate” \(L\)-function \(\Phi(g)|\nu(g)|^s\) below, and not the “exact” \(L\)-function \(\Phi'(g)|\nu(g)|^s\), we have not attempted to deduce the expression (6) from [BK02, Sak14], or [Li16].

The body of this paper consists of showing how one can apply Lemma 1 together with the pullback formula [Gar89, Shi97] (reviewed in section 5), to prove somewhat efficiently that various Rankin-Selberg integrals on \(\text{SO}(V)\) represent its standard \(L\)-function. We give three old examples, and one new example. The three old examples are (a) (b), and (c) of the following list, while the new example is (d).

(a) The doubling integral [GPSR87], in which one puts cusp forms on \(\text{SO}(n) \times \text{SO}(n)\) and a Siegel Eisenstein series on \(\text{SO}(2n)\);

(b) The integral of Murase-Sugano [MS94], which is vastly generalized in [GPSR97], in which one puts a cusp form on \(\text{SO}(n)\) and a certain Eisenstein series on \(\text{SO}(n + 1)\);

(c) The integral of Sugano [Sug85], in which one puts a cusp form on \(\text{SO}(n)\) and a certain Eisenstein series on \(\text{SO}(n - 1)\);

(d) A generalization of the integral of Kohnen-Skoruppa [KS89] (see also [PS]) from \(\text{GSp}_4 = \text{GSpin}_5\) to \(\text{GSpin}(V)\), \(\dim V \geq 4\). This integral involves a cusp form, an Eisenstein series, and a special function all on \(\text{GSpin}(V)\).

For (a) (resp. (b)), one could instead proceed as efficiently by using the result (3) of Piatetski-Shapiro and Rallis (resp. the result (3) and the pullback formula). In examples (c) and (d) one seems to obtain a genuine advantage by using Lemma 1.

The above-mentioned computations may be contrasted with those of Braverman-Kazhdan [BK02, Section 7]. The authors of loc. cit. give an exact expression for \(\Delta_{\text{Std}}^s\) on classical groups (including \(\text{GSpin}(V)\)), which is well-suited to computing with the doubling integral of Piatetski-Shapiro–Rallis. Furthermore, they use this expression to reprove the analytic properties of the global \(L\)-function \(L(\pi, \text{Std}, s)\) via the method of Godement-Jacquet. The main point of this note is that by using the approximate Godement-Jacquet function \(\Phi(g)|\nu(g)|^s\) instead of the exact function of [BK02], one can more easily compute in a wider variety of scenarios (albeit with weaker results.)

We emphasize that not much in this paper consists of proofs of new theorems; the standard \(L\)-functions of automorphic forms on orthogonal groups are very well understood, for example from [GPSR97]. Our goal is simply to impress upon the reader the similarity between \(\text{GL}_n\) and \(\text{GSpin}(V)\) in the context of Godement-Jacquet theory, and to show the usefulness of using Schwartz-Bruhat functions on \(\text{Clif}(V)\) to compute with the standard \(L\)-function on \(\text{SO}(V)\). It is an interesting
question to see if some other aspects of Godement-Jacquet theory on GL_n can be extended to $SO(V)$ using Schwartz-Bruhat functions on $Clif(V)$. The reader should see [Get14] for some global aspects, and also the paper [Li15] for some different local aspects.

We now give a summary of the layout of the paper. In section 2, we give a few preliminaries on the group $GSpin(V)$, including its definition and the definition of the standard L-function. In section 3, we give two lemmas that are used in rest of the paper. In section 4 we prove Lemma 1 and in section 5 we review the pullback formula. Finally, in section 6 we explain how the pullback formula and Lemma 1 can be used to quickly calculate the four global integrals mentioned above.

Acknowledgments We thank Nadya Gurevich for enlightening conversations at MSRI in 2014. We also thank William Casselman, James Cogdell, Paul Garrett, Jayce Getz, Wen-Wei Li, and Shrenik Shah for their helpful comments on an earlier version of this manuscript.

2. Preliminaries

In this section we give some preliminaries on the group $GSpin(V)$ and its standard L-function.

2.1. The group $GSpin(V)$. Suppose V,q is a quadratic space. For $v_1,v_2 \in V$ we set $(v_1,v_2) = q(v_1 + v_2) - q(v_1) - q(v_2)$ the induced symmetric bilinear form on V.

The group $GSpin(V)$ may be defined concretely as follows. Set $Clif(V,q)$ the Clifford algebra of (V,q), the quotient of the tensor algebra $T(V)$ of V by the two-sided ideal generated by $v^2 - q(v)$, for $v \in V$. We frequently write $Clif(V)$ for $Clif(V,q)$, because the quadratic form q will be fixed. The map $V \rightarrow T(V)$ induces a canonical injection $V \rightarrow Clif(V)$. Denote $Clif^\pm(V,q)$ the even and odd degree parts, so that $Clif(V) = Clif^+(V) \oplus Clif^-(V)$. The Clifford algebra $Clif(V,q)$ has an involution, $y \mapsto y^*$, induced by reversing the order of products in the tensor algebra $T(V)$: If $v_j \in V$, $(v_1 \cdots v_r)^* = v_r \cdots v_1$. The algebraic group $GSpin(V)$ is defined as

$$GSpin(V) = \{(g,\nu) \in Clif^+(V) \times GL_1 : g^* g = \nu \text{ and } g^* V g \subseteq V\}.$$

Note that $g^{-1} = \nu^{-1}(g)g^*$. The character $\nu : GSpin(V) \rightarrow GL_1$ is called the similitude, and $Spin(V)$ is the subgroup of $GSpin(V)$ where $\nu = 1$. Note that if $V' \rightarrow V$ is an isometric inclusion of quadratic spaces, this inclusion induces maps $Clif(V') \rightarrow Clif(V)$, $Clif^\pm(V') \rightarrow Clif^\pm(V)$, and $GSpin(V') \rightarrow GSpin(V)$.

The conjugation action of $GSpin(V)$ on the embedded $V \subseteq Clif^-(V)$, $v \cdot g = g^{-1}vg$, defines a map $GSpin(V) \rightarrow GL(V)$ whose image is immediately seen to land in the orthogonal group $O(V)$. Set $Z_V \simeq GL_1 \subseteq GSpin(V)$ to be the group of $(t,t^2) \in Clif^+(V) \times GL_1$, which is clearly in the center of $GSpin(V)$. This conjugation action of $GSpin(V)$ on V gives rise to the sequence

$$1 \rightarrow Z_V \rightarrow GSpin(V) \rightarrow SO(V) \rightarrow 1,$$

exhibiting $GSpin(V)$ as a central GL_1-extension of $SO(V)$. Note that we always let $GSpin(V)$ and $SO(V)$ act on the right of V.

2.2. Parabolic subgroups. Suppose $U : U_1 \subseteq U_2 \subseteq \cdots \subseteq U_r$ is a chain of totally isotropic subspaces of V. Define P_U to be the subgroup of $SO(V)$ or $GSpin(V)$ (depending on context) that stabilizes this isotropic flag. Then P_U is a parabolic subgroup, and every parabolic subgroup arises in this way.

If U is an isotropic subspace, then P_U is a maximal parabolic subgroup. The unipotent radical N_U of P_U has a two-step filtration $N_U \supseteq N'_U \supseteq 1$. The exponential map $exp : U^1 \otimes U \rightarrow N_U$ identifies $\Lambda^2 U \simeq N_U^2$ and $(U^+ / U) \otimes U$ with N_U / N'_U. If U is 1-dimensional, then $N'_U = 1$, while if $dim(V)$ is even and $dim(U) = dim(V)/2$, $N_U = N'_U$. In all other cases, both N_U/N'_U and N'_U are nontrivial.
We now make some special notation for the parabolic $P = P_{Ff_1}$ that stabilizes the isotropic line Ff_1. First, denote by $V_1 \subset V$ the perpendicular space to $Ff_1 \oplus Ff_1$, so that $V = Ff_1 \oplus V_1 \oplus Ff_1$. Write N for the unipotent radical of P and for the Levi subgroup of P that stabilizes the decomposition $V = Ff_1 \oplus V_1 \oplus Ff_1$. The map $n : V_1 \to N$, $x \mapsto n(x) = 1 + f_1x$ identifies V_1 with N. The map $m : \text{GL}_1 \times \text{GSpin}(V_1) \to M$ defined by $m(\lambda, y) = m_1^1(\lambda)y = (e_1f_1 + \lambda f_1e_1)y$ identifies the Levi subgroup M with $\text{GL}_1 \times \text{GSpin}(V_1)$. Here and below, multiplications such as f_1x and e_1f_1 take place inside the $\text{Clif}(V)$.

Represent elements of V as triples (α, v, δ) according to the decomposition $V = Ff_1 \oplus V_1 \oplus Ff_1$. We compute

$$(\alpha, v, \delta) \cdot (x, \eta, y) = (\alpha \delta \cdot v + \eta \cdot \delta f_1) \cdot (x, \eta, y).$$

One has $\nu(m(\lambda, y)) = \nu(y)$, and

$$e_1 \cdot m(\lambda, y) = \lambda e_1; \quad v \cdot m(\lambda, y) = v \cdot y; \quad f_1 \cdot m(\lambda, y) = \lambda^{-1} f_1.$$

Suppose $\dim V = 2n + 1$ is odd. Then $\text{SO}(V)$ (and thus $\text{GSpin}(V)$) is quasisplit precisely when it is split, which occurs when V has an isotropic subspace of dimension n. When $\dim V = 2n + 2$ is even, then $\text{SO}(V)$ and $\text{GSpin}(V)$ are quasisplit when V has an n-dimensional isotropic subspace, say U. Then $V = U^\vee \oplus V_E \oplus U$, where

- U^\vee is also isotropic, and is canonically isomorphic to $\text{Hom}_F(U, F)$ under the symmetric pairing;
- V_E is orthogonal to $U^\vee \oplus U$;
- there is a (unique) quadratic étale F-algebra E so that V_E with its induced quadratic form $q|_{V_E}$ is isometric with E and its norm form: $n_{E/F} : E \to F$.

The group $\text{GSpin}(V)$ is split precisely when $E = F \times F$ is the split quadratic étale F-algebra. Below, we abuse language and say that V is split or quasisplit if $\text{SO}(V)$ (and thus $\text{GSpin}(V)$) is so.

2.3. Maximal torus. Suppose $V = U^\vee \oplus V_E \oplus U$ is quasisplit, so that E is a quadratic étale extension of F if $\dim(V) = 2n + 2$ is even, and is F if $\dim(V) = 2n + 1$ is odd. Write $N_{E/F} : E \to F$ for the norm map when E is quadratic over F and for the map $t \mapsto t^2$ when $E = F$. Let e_1, \ldots, e_n be a basis of U^\vee and f_1, \ldots, f_n the dual basis of U so that $(e_i, f_j) = \delta_{ij}$. Denote by T the subgroup of $\text{GSpin}(V)$ that preserves the decomposition $V = Ff_1 \oplus \cdots \oplus Ff_n \oplus V_E \oplus Ff_1$. Then T is a maximal torus of $\text{GSpin}(V)$, and is a maximal split torus of $\text{GSpin}(V)$ when V is split.

For $i = 1, 2, \ldots, n$, define $m_i : \text{GL}_1 \to \text{GSpin}(V)$ via $m_i(t) = te_i f_i + f_i e_i$ and $m_i^*(t) = (m_i(t))^* = e_i f_i + t f_i e_i$. Furthermore, define $z : \text{GL}_1 \to \mathbb{Z}_V \subseteq \text{GSpin}(V)$ via $z(t) = t$. One has $m_i m_i^* = z$, and m_1, \ldots, m_n and z land in T. If $\dim(V) = 2n + 1$ is odd, the cocharacters z, m_1, \ldots, m_n form a basis of the cocharacters of T.

If E is as above, $\text{GSpin}(E)$ is canonically isomorphic with E^x, as the following lemma shows.

Lemma 2. Suppose $E = F$ or E is a quadratic étale extension of F, and write V_E for the quadratic space E with quadratic form given by the norm form of E. Write $\iota_1 : V_E \to \text{Clif}(V_E)$ for the standard inclusion. Then the map $\iota_0 : E \to \text{Clif}^+(V_E)$ defined by $\iota_0(\lambda) = \iota_1(1)\iota_1(\lambda)$ is an algebra isomorphism, with $\iota_0(\lambda)\iota_0(\lambda)^* = N_{E/F}(\lambda)$. It follows that ι_0 restricts to an isomorphism $E^x \simeq \text{GSpin}(V_E)$. Furthermore, ι_0 restricts to an isomorphism $\mathcal{O}_E \to \text{Clif}^+(\mathcal{O}_E)$.

Proof. It is clear that ι_0 is a linear isomorphism, and that is has the stated property about norms. Since E is a composition algebra, the ring isomorphism follows. The integrality statement is also clear.

Since $V_E = \iota_1(V_E) = \text{Clif}^-(V_E)$ in both cases $\dim E = 1$ or $\dim E = 2$, the condition $g^* V_E g \subseteq V_E$ on $\text{GSpin}(V_E)$ is automatically satisfied. The isomorphism $\iota_0 : E^x \to \text{GSpin}(V_E)$ follows. □
Let \(z_E : E^\times \to \text{GSpin}(V_E) \to T \subseteq \text{GSpin}(V) \) denote the cocharacter of \(T \) induced by the map \(t_0 \) of Lemma 2. In both the case of \(\dim(V) \) even or odd, one has a direct product \(T = m_1 \times m_2 \times \cdots m_n \times z_E \). (When \(\dim(V) \) is odd, \(z_E = z_V \) is the central cocharacter.)

2.4. **Maximal compact and \(L \)-function.** Suppose \(F \) is a \(p \)-adic local field. Let \(e_i, f_j \) and \(E \) be as above. Define the lattice \(\Lambda \subseteq V \) as

\[
\Lambda = \mathcal{O}_F e_1 \oplus \cdots \oplus \mathcal{O}_F e_n \oplus \mathcal{O}_F f_n \oplus \cdots \oplus \mathcal{O}_F f_1,
\]

where \(V_{\mathcal{O}_F} \subseteq V_E \) is the submodule identified with \(\mathcal{O}_E \) under the fixed identification of \(V_E \) with \(E \). Set \(K \) to be the subgroup of \(\text{GSpin}(V) \) that stabilizes the \(\mathcal{O}_F \)-lattice \(\Lambda \). Then \(K \) is a maximal compact subgroup of \(\text{GSpin}(V)(F) \) [HS83], and one has an Iwasawa decomposition \(\text{GSpin}(V)(F) = B(F)K \), where \(B \) is the Borel subgroup of \(\text{GSpin}(V) \) that stabilizes the isotropic flag \(U_1 \subseteq \cdots \subseteq U_n \), where \(U_j = F f_j \oplus \cdots \oplus F f_1 \).

Suppose that \(\pi \) is an irreducible \(K \)-spherical representation of \(\text{GSpin}(V)(F) \). We recall the standard \(L \)-function of \(\pi \). Such a \(\pi \) is the spherical subrepresentation of \(\text{Ind}_B^{\text{GSpin}(V)}(\omega_B^{1/2} \alpha) \) (non-normalized induction) for an unramified character \(\alpha : T(F) \to \mathbb{C}^\times \). If \(\pi \) is such, define

\[
L(\pi, \text{Std}, s) = L_{E,s}(\alpha_E, s) \prod_{1 \leq i \leq n} L(\alpha_i, s) L(\alpha'_i, s)
\]

where

- \(\alpha_E : E^\times \to \mathbb{C}^\times \), \(\alpha_i : F^\times \to \mathbb{C}^\times \), \(\alpha'_i : F^\times \to \mathbb{C}^\times \) are the pullbacks of \(\alpha \) via the maps \(z_E : E^\times \to T(F) \), \(m_i : F^\times \to T(F) \), and \(m'_i : F^\times \to T(F) \);
- \(L(\alpha_i, s) \) and \(L(\alpha'_i, s) \) are the usual Tate local \(L \)-functions. That is, \(L(\alpha_i, s) = (1 - \alpha_i(\varpi)|\varpi|^s)^{-1} \) for a uniformizer \(\varpi \) of \(F \) and similarly for \(L(\alpha'_i, s) \);
- \(L_{E,s}(\alpha_E, s) \) is defined to be the usual Tate local \(L \)-function \(L_E(\alpha_E, s) \) of \(\alpha_E \) if \(E/F \) is quadratic, and is defined to be 1 if \(E = F \). This is, if \(E \) is a quadratic field extension of \(F \), \(L_{E,s}(\alpha_E, s) = (1 - \alpha_E(\varpi)|\varpi|^{2s})^{-1} \), and if \(E = F \times F \) with uniformizers \(\varpi_1, \varpi_2 \), \(L_{E,s}(\alpha_E, s) = (1 - \alpha_E(\varpi_1)|\varpi_1|^s)^{-1}(1 - \alpha_E(\varpi_2)|\varpi_2|^s)^{-1} \).

2.5. **A filtration on \(\text{Clif}(V) \).** The results in this subsection will only be used in section 5. Suppose \(U \subseteq V \) is an isotropic subspace. Associated to \(U \), one can define an increasing filtration \(W^U_k \) on \(\text{Clif}(V) \) as follows. First define an increasing filtration on \(V \) via \(W^U_1 V = U \), \(W^U_0 V = U^\perp \), and \(W^U_1 V = V \). The filtration \(W^U \) on \(V \) induces a filtration on \(\text{Clif}(V) \) via

\[
W^U_k \text{Clif}(V) = \{ x \in \text{Clif}(V) : x = \sum x_1 x_2 \cdots x_r, x_i \in W^U \alpha_i V, \alpha_1 + \cdots + \alpha_r \leq k \}.
\]

Note that the filtered pieces \(W^U_k \text{Clif}(V) \) are stable under the involution \(* \). We will see momentarily that the filtration \(W^U \) on \(\text{Clif}(V) \) restricts to the filtration \(W^U \) on \(V \).

First, choose \(V_0, U^\vee \) so that \(V = U^\vee \oplus V_0 \oplus U \) and \(U^\perp = V_0 \oplus U \). Denote by \(h_U : \text{GL}_1 \to \text{GSpin}(V) \) the map satisfying \(\nu(h_U(t)) = t \) and

\[
h_U(t)^{-1} vh_U(t) = \begin{cases} t v & \text{if } v \in U^\vee \\ v & \text{if } v \in V_0 \\ t^{-1} v & \text{if } v \in U. \end{cases}
\]

(One can explicitly construct such an \(h_U \) using the maps \(m_i(t) \) of subsection 2.3 and thus \(h_U \) exists. It is unique by (7).) Now, the fact that the filtration \(W^U \) on \(\text{Clif}(V) \) restricts to the filtration \(W^U \) on \(V \) follows by considering the conjugation action of this cocharacter on the expressions in (8).

Definition 3. For \(U, W^U \) as above, define \(P(U, V) = W^U_0 \text{Clif}(V) \) and \(N(U, V) = W^U_{-1} \text{Clif}(V) \).
One has the following lemma. Recall that P_U denotes the (maximal) parabolic subgroup of $GSpin(V)$ that stabilizes the isotropic subspace U of V and N_U denotes its unipotent radical.

Lemma 4. The space $P(U,V)$ is an algebra, and $N(U,V)$ is a two-sided ideal of $P(U,V)$. Furthermore, the parabolic subgroup $P_U = P(U,V) \cap GSpin(V)$, and its unipotent radical $N_U = (1 + N(U,V)) \cap GSpin(V)$.

Proof. Since $W_j Clif(V) \cdot W_k Clif(V) \subseteq W_{j+k} Clif(V)$, it is clear that $P(U,V)$ is an algebra and $N(U,V)$ a two-sided ideal of $P(U,V)$.

For the second part, suppose $g \in P(U,V) \cap GSpin(V)$, and $u \in U$. Then $g^* ug = v$ for some $v \in V$. But the left-hand-side of this equality is in W_{-1}, and thus $v \in V \cap W_{-1} Clif(V) = U$. Hence $g \in P_U$.

Conversely, suppose $g \in P_U = M_U N_U$, where M_U is the Levi subgroup stabilizing the decomposition $V = U^V \oplus V_0 \oplus U$. Then $g = mn$ with $n \in \exp(U^+ \cdot U) \subseteq W_0 Clif(V)$ and $m \in M_U$. But, by the definition of h_U, m commutes with $h_U(t)$. By using the linear isomorphism $Clif(V) = \wedge^* (U^V) \otimes Clif(V_0) \otimes \wedge^* (U)$, one sees that this implies $m \in W_0 Clif(V)$ as well.

The inclusion $N_U \subseteq (1 + N(U,V)) \cap GSpin(V)$ follows from the fact that $N_U = \exp(U^+ \cdot U)$. Conversely, suppose $n = 1 + x$ is in $GSpin(V)$, with $x \in N(U,V)$. Then $\nu(n) = 1$, and if $v \in V$, $v \cdot n = (1 + x^*)v(1 + x) = v + x^*v + vx + x^*x$. Hence $v \cdot n$ has the same image in the associated graded of W_U^* on V that v does, so $n \in N_U$. \hfill \Box

3. Two Lemmas

In this section, we give two lemmas which will be utilized in other sections. We state and prove these lemmas now so that section 7 and section 8 may be read briskly. However, the reader may wish to proceed directly to other sections and then come back to this section when needed.

We require the following definition.

Definition 5. Suppose F is a p-adic local field, the lattice $\Lambda \subseteq V$ is fixed, and $y \in GSpin(V)$. Then, there is a unique integer k so that $y = \varpi^k y_0$ with $y_0 \in Clif(\Lambda)$ and y_0 has nonzero reduction in $Clif(\Lambda/\varpi \Lambda)$. We set $val(y) = k$ and $||y|| = |\varpi|^{val(y)} = |\varpi|^k$.

We set $q = \#O_F/\varpi = |\varpi|^{-1}$.

3.1. A volume calculation. Let V be as above, and V_1 the span of e_i, f_j with $j \geq 2$ and V_E, so that $V = F e_1 \oplus V_1 \oplus F f_1$. Set $\Lambda_1 = \Lambda \cap V_1$, and for $y \in GSpin(V_1)$ define

$$U_y = \{ x \in V_1 : xy \in Clif(\Lambda_1) \}.$$

Lemma 6. Suppose F is a p-adic local field and V is quasi-split. Let y in $GSpin(V_1)$ be equal to $\varpi^k y_0$, with $\text{val}(y_0) = 0$. Normalize an additive Haar measure on V_1 by setting Λ_1 to have measure 1. Then the measure of U_y is

$$q^{k \dim V_1} |\nu(y_0)|^{-1} = (q^k)^{\dim V_1 - 2} |\nu(y)|^{-1} = ||y||^{2 \dim V_1} |\nu(y)|^{-1}.$$

Proof. First, one reduces immediately to the case of $k = 0$. Now, assume $k = 0$ for the rest of the proof, so that $y = y_0$ has val(y) = 0. Let $K_1 \subseteq GSpin(V_1)$ be the maximal compact defined by Λ_1. If $k \in K_1$, then $U_{y_k} = U_y$. Moreover, the map $x \mapsto x \cdot k = k^{-1} x k$ defines a bijection $U_{y_k} \rightarrow U_y$. Since this linear map on V_1 is measure-preserving, we deduce that the function $y \mapsto \text{meas}(U_y)$ is a K_1 bi-invariant function on $GSpin(V_1)$. Thus, we map apply the Cartan decomposition to simplify the computation.

Now, we may write Λ_1 as an orthogonal direct sum of lattices $\Lambda^i = O_F e_i \oplus O_F f_1$ and V_{O_F}, which is free of rank 1 or 2 over O_F. Applying the Cartan decomposition, we may assume $y = \prod y_i$, with $\text{val}(y_i) = 0$ and $y_i \in GSpin(\Lambda^i \otimes F) \subseteq GSpin(V_1)$. Since the val($y_i$) are all 0, one checks easily that $U_y = U_{y_1} \times \cdots \times U_{y_j}$. Hence we have reduced to the case where dim $V_1 = 1$ or 2.
Hence we deduce \(y = \{ x \in C(V_E)^- : xy \in \text{Clif}((\Lambda)^-) \}. \) Hence the measure of \(U_y \) is \(|\det(y : \text{Clif}(V_E)^-)|^{-1}, \) the inverse of the absolute value of the determinant of \(y \) acting by multiplication on \(\text{Clif}(V_E)^- \). But via the map \(i_0 \) of Lemma \(\ref{lemma} \) this map is the right multiplication of \(E^x \) on \(V_E \simeq E \), so its determinant is \(n_{E/F}(i_0^{-1}(y)) = \nu(y) \), as desired.

3.2. A Fourier coefficient calculation. In this subsection, \(F \) remains a \(p \)-adic local field, and \(V \) quasisplit. Recall that \(P = MN \) is the parabolic subgroup that stabilizes the line \(Ff_1 \). Recall the function \(\Phi \), which is the characteristic function of \(\text{Clif}(\Lambda) \subseteq \text{Clif}(V) \), and suppose \(T \in V_1 \) has \(q(T) \neq 0 \). Define

\[
S_T(\Phi)(m) = \int_{V_1} \psi((T,x)) \Phi(n(x)m) \, dx,
\]

the \(T \)th Fourier coefficient of \(\Phi \). Here \(\psi : F \to \mathbb{C}^\times \) is an additive character with conductor \(\mathcal{O}_F \). In this subsection we compute \(S_T(\Phi)(m,\lambda,y) \).

Claim 7. One has \(\Phi(n(x)m(\lambda,y)) = \text{char}(y,\lambda y) \text{char}(xy) \). That is, \(n(x)m(\lambda,y) \) is in \(\text{Clif}(\Lambda) \) if and only if \(y, \lambda y \) and \(xy \) are in \(\text{Clif}(\Lambda_1) \).

Proof. First note that since \(f_1 e_1 f_1 = f_1 \) and \(f_1^2 = 0 \), \(f_1 \text{char}(\lambda y) = f_1 xy = -xyf_1 \). Hence

\[
n(x)m(\lambda,y) = (1 - x f_1)m(\lambda,y) = m(\lambda,y) - xf_1 m(\lambda,y) = m(\lambda,y) - xyf_1 = (e_1 f_1 + \lambda y f_1)y - xyf_1.
\]

Thus if \(y, \lambda y \), and \(xy \) are in \(\text{Clif}(\Lambda_1) \), \(n(x)m(\lambda,y) \) is in \(\text{Clif}(\Lambda) \).

Conversely, suppose \(n(x)m(\lambda,y) = (e_1 f_1)y + (f_1 e_1)(\lambda y) - (xy)f_1 \) is in \(\text{Clif}(\Lambda) \). Then multiplying on the right by \(f_1 \) proves that \(f_1(\lambda y) \in \text{Clif}(\Lambda) \), and multiplying on left by \(f_1 \) proves that \(f_1 y \) is in \(\text{Clif}(\Lambda) \). Multiplying by \(e_1 \) and subtracting proves that \((xy)f_1 \) is in \(\text{Clif}(\Lambda) \). Finally, the identity \(r = (rf_1)e_1 \pm e_1(rf) \) for \(r \in \text{Clif}(\Lambda_1) \) gives that \(y, \lambda y \) and \(xy \) are in \(\text{Clif}(\Lambda_1) \), finishing the proof of the claim.

From Claim \(\ref{claim} \) we obtain

\[
S_T(\Phi)(m(\lambda,y)) = \int_{V_1(F)} \psi((T,x)) \Phi(n(x)m(\lambda,y)) \, dx = \text{char}(y,\lambda y) \int_{V_1(F)} \psi((T,x)) \text{char}(xy) \, dx.
\]

Thus the set of \(x \) for which \(\Phi(n(x)m) \neq 0 \) is an abelian group.

Define

\[
\Lambda_1^\vee = \{ v \in V_1(F) : (v, x) \in \mathcal{O}_F \text{ for all } x \in \Lambda_1 \}.
\]

Note that for \(S_T(\Phi) \) to be nonzero, one needs \(T \in \Lambda_1^\vee \). Assume \(T \notin p\Lambda_1^\vee \). Then one sees immediately that for \(S_T(\Phi)(m(\lambda,y)) \) to be nonzero, we need \(\text{val}(y) = 0 \). Hence, since \(\lambda y \) must also be integral for \(S_T(\Phi)(m(\lambda,y)) \) to be nonzero, we deduce \(\lambda \in \mathcal{O}_F \) as well.

We claim that \(T \cdot y = y^{-1}Ty \) must be in \(\Lambda_1^\vee \) for \(S_T(\Phi)(m(\lambda,y)) \neq 0 \). To see this, make a variable change \(x \mapsto yxy^{-1} \). Then, \(S_T(\Phi) \) becomes

\[
S_T(\Phi)(m(\lambda,y)) = \int_{V_1(F)} \psi((T,yxy^{-1})) \text{char}(yx) \, dx
\]

\[
= \int_{V_1(F)} \psi((y^{-1}Ty,x)) \text{char}(yx) \, dx.
\]

Hence we deduce \(y^{-1}Ty \in \Lambda_1^\vee \) as well, for the Fourier coefficient \(S_T(\Phi) \) to be nonzero.
Summarizing the above argument, we have proved the first part of the following proposition.

Lemma 8. Assume $T \in \Lambda_1^\vee$ but not in $p\Lambda_1^\vee$. For $S_T(\Phi)(m(\lambda, y))$ to be nonzero, one needs $\text{val}(y) = 0$, $\lambda \in \mathcal{O}_F$, and $y^{-1}Ty = T \cdot y$ in Λ_1^\vee. Furthermore assume that Λ_1 is self-dual, i.e., that $\Lambda_1^\vee = \Lambda_1$. Then if these conditions are satisfied, $S_T(\Phi)(m(\lambda, y)) = |\nu(y)|^{-1}$.

Proof. We still must prove the second part of the lemma. Suppose then that $\text{val}(y) = 0$, $T \in \Lambda_1^\vee \setminus p\Lambda_1^\vee$, $\lambda \in \mathcal{O}_F$, and $y^{-1}Ty \subseteq \Lambda_1^\vee$. Then we claim that $xy \in \text{Clif}(\Lambda_1)$ integral implies (T, x) in \mathcal{O}_F. Indeed, this follows from the identity

$$(T, x)y = (Tx + xT)y = T(xy) + (xy)(y^{-1}Ty) \in \Lambda_1^\vee \text{Clif}(\Lambda_1) + \text{Clif}(\Lambda_1)\Lambda_1^\vee$$

since then $(T, x)y \in \text{Clif}(\Lambda_1)$, which implies $(T, x) \in \mathcal{O}_F$ since $\text{val}(y) = 0$.

Thus $S_T(\Phi)(m(\lambda, y))$ is the measure of the set $\{x \in V_1(F) : xy \in \text{Clif}(\Lambda_1)\}$. But this measure was computed in Lemma 6, completing the proof. □

4. **Proof of Lemma 1**

The purpose of this section is to give a direct proof of Lemma 1. Recall that we assume that V is quasi-split, $\dim(V) = 2n + 1$ or $\dim(V) = 2n + 2$, and we keep notation as in section 2. Recall that B is a Borel subgroup, $T \subseteq B$ is a maximal torus, $\alpha : T(F) \to \mathbb{C}^\times$ is an unramified character, and $\tau = \text{Ind}_B^{\text{GSpin}(V)}(\delta_B^{1/2} \alpha)$ is K-spherical. We denote by ϕ_α the spherical vector in this induction, so that $\phi_\alpha : \text{GSpin}(V) \to \mathcal{C}$ satisfies $\phi_\alpha(bk) = \alpha(b)$. To prove Lemma 1 we must compute the integral

$$I(\alpha, s) = \int_{\text{GSpin}(V)(F)} \phi_\alpha(g)\Phi(g)|\nu(g)|^s \, dg.$$

Finally, recall that $P = MN$ denotes the parabolic subgroup of $\text{GSpin}(V)$ that stabilizes the line F_1. We write $\tau = \text{Ind}_B^M(\delta_M^{-1/2} \delta_B^{1/2} \alpha)$ for the K_1-spherical representation of M so that $\text{Ind}_P^G(\delta_M^{1/2} \tau) = \pi$.

The proof of Lemma 1 is by induction on the rank of $\text{GSpin}(V)$, by comparing $\text{GSpin}(V)$ with $\text{GSpin}(V_1)$. We first dispose of the cases when $n = 0$, so that $V = V_E$ with $E = F$ or E a quadratic étale extension of F. Recall that if $\dim(V) \geq 2$, we define

$$d^V(s) = \prod_{2 \leq j \leq \dim(V) - 2j \text{ even}} \zeta(\omega_\pi, 2s - j).$$

Note that $d^V(s) = 1$ if $\dim(V) = 2$ or 3. When $\dim(V) = 1$, we define $d^V(s) = \zeta(\omega_\pi, 2s) - 1$. With this definition, one has $d^V(s) = \zeta(\omega_\pi, 2s - 2)d^{V_1}(s - 1)$ if $\dim(V) \geq 3$, and Lemma 1 is also true in the case $\dim(V) = 1$. Thus we may use $V = V_E$, $E = F$ or E a quadratic extension of F, as our base cases for the induction.

Claim 9. Lemma 1 is true when $V = V_E$.

Proof. In this case $\phi_\alpha = \alpha$ is an unramified character. Furthermore, by Lemma 2, $\text{GSpin}(V)(F) = E^\times$, Φ is the characteristic function of \mathcal{O}_E, and $\nu = N_{E/F}$ the norm map if E over F is quadratic, and $\nu(t) = t^2$ if $E = F$. Thus

$$I(\alpha, s) = \int_{E^\times} \alpha(t) \text{char}(t \in \mathcal{O}_E)|N_{E/F}(t)|^s \, dt,$$

a Tate local integral. Comparing with the definition of the L-function in subsection 2.4 gives the claim in both cases. □
4.1. Case of GSp₄. To make clear the ideas, we first write out a proof of Lemma 1. In the case of GSpin₅ = GSp₄, the subgroup of \(g \in \text{GL}_4 \) with \(g \left(\begin{array}{cc} -1_2 & 1 \\ 1 & -1_2 \end{array} \right) \). Denote by \(\tau \) the representation of \(M = \text{GL}_1 \times \text{GL}_2 \) defined by \(\tau = \text{Ind}_M^\text{GL}_1 \left(\left(\begin{array}{cc} -1/2 & 1/2 \\ 1 & -1/2 \end{array} \right) \right) \). We parametrize \(M \) by \(m(\lambda, y) \), with this pair corresponding to the matrix \(m(\lambda, y) = \left(\begin{array}{cc} \lambda y^t & \nu(y) \\ \nu(y) & -\lambda y \end{array} \right) \), where \(y^t = \det(y)^t y^{-1} \). Applying the Iwasawa decomposition, we have

\[
I(\alpha, s) = \int_M \delta_p^{-1/2}(m) \lambda \det(y)|\lambda|^{s-3/2} \text{char}(y, \lambda y') \phi_\tau(m) \left(\int_U \text{char}(uy) \, du \right) \, dm
\]

Note that \(\delta_p(m) = |\lambda|^3 \). Also, we set

\[
\alpha_1 = \alpha(\text{diag}(p, p, 1, 1)); \quad \alpha_2 = \alpha(\text{diag}(p, 1, 1, 1)); \quad \alpha_3 = \alpha(\text{diag}(1, p, 1, p)); \quad \alpha_4 = \alpha(\text{diag}(1, 1, p, p))
\]

and denote \(\mu(\lambda) = \alpha(m(\lambda, 1)) \).

We now integrate over the \(\text{GL}_1 \) bit of \(M \). For \(y \in \text{GL}_2 \), set \(\text{val}(y) = k \) if \(y = p^k y_0 \) with \(y_0 \in M_2(\mathcal{O}_F) \backslash p M_2(\mathcal{O}_F) \), and write \(\text{dim}(y) = |\tau|^{\text{val}(y)} \). Integrating over \(\lambda \) now yields an inner integral of

\[
\int_{\text{GL}_1} |\lambda|^{s-3/2} \text{char}(\lambda y) \mu(\lambda) \, d\lambda = |y|^{-(s-3/2)} \mu(\tau)^{-\text{val}(y)} \zeta(m, s - 3/2).
\]

Thus

\[
I(\alpha, s) = \zeta(m, s - 3/2) \int_{\text{GL}_2} |y|^{-(s-1/2)} \mu(\tau)^{-\text{val}(y)} |\det(y)|^{-1} \text{char}(y) \phi_\tau(y) \, dy
\]

\[
= \zeta(m, s - 3/2) \int_{\text{GL}_2} \text{char}(y) \phi_\tau(y) \, dy \int_{\text{GL}_1} |t|^{-s+1/2} \mu(t)^{-1} |t|^{2s-2} \omega(t) \, dt
\]

\[
= \zeta(m, s - 3/2) \zeta(\omega, 2s - 2) \int_{\text{GL}_2} \text{char}(y) \phi_\tau(y) \, dy.
\]

But now by Godement-Jacquet theory for \(\text{GL}_2 = \text{GSpin}_3 \), the \(\text{GL}_2 \) integral is \(\zeta(m, s - 3/2) \zeta(m, s - 3/2) \). Hence

\[
I(\alpha, s) = \frac{L(\pi, \text{Spin}, s - 3/2)}{L(\omega, 2s - 2)},
\]

as desired. (The “Standard” \(L \)-function on \(\text{GSpin}_5 \) is the “Spin” \(L \)-function of \(\text{GSpin}_4 \).)

4.2. General case. We now go back to the general case. Recall \(P = MN \) with \(N \cong V_1 \) and \(M \cong \text{GL}_1 \times \text{GSpin}(V_1) \). We begin the computation of the Satake transform of \(\Phi \) by computing an inner integral over \(N \). Recall that for \(y \) in \(\text{GSpin}(V_1) \), we set

\[
U_y = \{ x \in V_1 : xy \in \text{Cliff}(\Lambda_1) \}.
\]

In Lemma 5, we computed the measure of \(U_y \) to be \(|y|^{2 \cdot \text{dim}(V_1)} |\nu(y)|^{-1} \).

Now we compute the Satake transform. Recall that \(\phi_\alpha \) is induced from the \(K_1 \)-spherical representation \(\tau \) on \(M \), and denote by \(\mu \) the character of \(\text{GL}_1 \) that is the restriction of \(\tau \) to \(m(\lambda, 1) \).

Note that \(\delta_p(m(\lambda, y)) = |\lambda|^\text{dim} V_1 \), and \(\Phi(m(\lambda, y)) = \text{char}(y, \lambda y) \). We obtain

\[
I(\alpha, s) = \int_M \delta_p^{-1/2}(m) \phi_\tau(m) \nu(m) |\lambda|^{s-1} \text{char}(y, \lambda y) \nu(y) |y|^{-2 \cdot \text{dim} V_1} |\nu(y)|^{-1} \, dm
\]

\[
= \int_{\text{GSpin}(V_1)} \phi_\tau(m(1, y)) \nu(y) |y|^{s-1} |y|^{-2 \cdot \text{dim} V_1} \, dy \int_{\text{GL}_1} \text{char}(y) \text{char}(\lambda y) \, d\lambda.
\]
The inner integral is
\[\mu(\overline{\omega}) - \text{val}(y)|||y|||\dim V_1/2 - s \zeta(\mu, s - \dim V_1/2). \]
Thus
\[I(\alpha, s) = \zeta(\mu, s - \dim V_1/2) \int_{\text{GSpin}(V_1)} \mu(\overline{\omega}) - \text{val}(y) \phi_\tau(m(1, y)) \text{char}(y)|\nu(y)|^{s-1}|||y|||\dim V_1/2 - s \, dy \]
\[= \zeta(\mu, s - \dim V_1/2) \int_{\text{GSpin}(V_1)} \text{char}(y) = 0 \phi_\tau(y)|\nu(y)|^{s-1} \, dy \]
\[\times \int_{\text{GL}_1} \text{char}(t)(\mu(t)^{-1})(\omega_\tau(t)|t|^{-2s-2})|t|^{-\dim V_1/2 - s} \, dt \]
\[= \zeta(\mu, s - \dim V_1/2) \zeta(\omega_\tau, \mu, s - \dim V_1/2) \int_{\text{GSpin}(V_1)} \phi_\tau(y)|\nu(y)|^{s-1} \, dy \]
\[= \frac{\zeta(\mu, s - \dim V_1/2) \zeta(\omega_\tau, \mu, s - \dim V_1/2)}{\zeta(\omega_\tau, 2s-2)} I_{V_1}(\tau, s - 1). \]

Since \(d^V(s) = \zeta(\omega_\tau, 2s-2) d^{V_1}(s - 1) \), Lemma \(\Box \) follows.

Remark 10. It is easy to remove the denominator \(d^V(s) \) from Lemma \(\Box \) as follows. For \(g \in \text{Clif}(V) \), define \(\Phi_{\geq n}(g) = \Phi(\overline{\omega}^{-n}g) = \text{char}(\text{val}(g) \geq n) \), the characteristic function of those \(g \in \text{Clif}(V) \) for which \(\text{val}(g) \geq n \), or equivalently, the characteristic function of \(\overline{\omega}^n \text{Clif}(V) \). Similarly, define \(\Phi_n(g) = \Phi_{\geq n}(g) - \Phi_{\geq n+1}(g) = \text{char}(\text{val}(g) = n) \). Note that, if \(f \) is a function on \(\text{GSpin}(V) \), then
\[(9) \quad \int_{\text{GSpin}(V)} f(g)|\nu(g)|^s \langle v_0', \pi(g)v_0 \rangle \, dg = \int_{\text{GSpin}(V)} f(\overline{\omega}^{-n}g)|\nu(g)|^s \langle v_0', \pi(g)v_0 \rangle \, dg. \]

Now, set \(q = |\overline{\omega}|^{-1} \), and for \(N \geq 0 \) define polynomials \(p_{V,N}(q) \) by the generating series
\[\prod_{2 \leq j \leq \dim(V)/2 - 2j = 0(2)} (1 - q^j X)^{-1} = \sum_{N \geq 0} p_{V,N}(q) X^N. \]
Set \(\Phi'(g) = \sum_{N \geq 0} p_{V,N}(q) \Phi_{\geq N}(g) \). Then it follows from Lemma \(\Box \) and \(9 \) that
\[L(\pi, \text{Std}, s + 1 - \dim(V)/2) = \int_{\text{GSpin}(V)(F)} \Phi'(g)|\nu(g)|^s \langle v_0', \pi(g)v_0 \rangle \, dg. \]
Equivalently, \(\Phi'(g) = \sum_{M \geq 0} p'_{V,M}(q) \Phi_{M}(g) \) with the polynomials \(p'_{V,M} \) defined by the generating series
\[\sum_{M \geq 0} p'_{V,M}(q) X^M = (1 - X)^{-1} \sum_{N \geq 0} p_{V,N}(q) X^N = \prod_{0 \leq j \leq \dim(V)/2 - 2j = 0(2)} (1 - q^j X)^{-1}. \]

As in [Get14], one can also get rid of the denominator \(d^V(s) \) by putting Schwartz-Bruhat functions on auxiliary copies of \(\text{GL}_1 \).

5. The Pullback Formula

In this section we give a quick review of the pullback formula, due to Garrett [Gar84, Gar89] and Shimura [Shi97], in the special case of orthogonal groups. Analogous results [Gar89, Shi97] hold for symplectic and unitary groups. The setup is as follows. We have two quadratic spaces \(V_0 \hookrightarrow V \), with \(V = U^\lor \oplus V_0 \oplus U \). Here \(U \) is isotropic and \(U^\lor \oplus U \) is \(V_0^\perp \) inside of \(V \). Out of this data, one constructs another quadratic space \(W = V \oplus V_0^\perp \), where here \(V_0^\perp \) means the space \(V_0 \) as a vector space but with quadratic form the negative of that of \(V_0 \). The space \(W \) is split; it
has maximal isotropic subspace $X = \Delta(V_0) \oplus U$ with $\Delta(V_0) = \{(0, v, 0), v \in W : v \in V_0\}$. We write P_X for the maximal (Siegel) parabolic subgroup of $SO(W)$ that stabilizes X, and P_U for the maximal parabolic subgroup of $SO(V)$ that stabilizes the isotropic subspace U of V.

Suppose α is an automorphic cusp form on $SO(V_0^\perp)$, and Φ is a Schwartz-Bruhat function on the spinor module $S_X(W) := (X \text{Clif}(W)) \setminus \text{Clif}(W)$. Here $X \text{Clif}(W) \subseteq \text{Clif}(W)$ is the right ideal generated by X. Denote by 1_X the image of 1 from $\text{Clif}(W)$ in $X \text{Clif}(W) \backslash \text{Clif}(W)$. Out of Φ one defines a Siegel Eisenstein series on $SO(W)$: One sets

$$f_X(g, \Phi, s) = |\nu(g)|^s \int_{\text{GL}_1(\mathbb{A})} \Phi(t1_X g)|t|^{2s} dt$$

and $E_X(g, \Phi, s) = \sum_{\gamma \in \Gamma(1)} \text{Tr} \Phi(\gamma g, \Phi, s)$. One can pull back the Siegel Eisenstein series $E_X(g, \Phi, s)$ to the product $SO(V) \times SO(V_0^\perp)$, and integrate against the cusp form α on $SO(V_0^\perp)$ to get an automorphic function on $SO(V)$. The pullback formula says that this construction yields an Eisenstein series on $SO(V)$ for the parabolic P_U with data given by α.

We now explain this more precisely. First, we give the requisite properties of the function $f_X(g, \Phi, s)$. If $p \in P_X$, then the image of $p \in SO(W)$ is of the form $\left(\begin{smallmatrix} m(p) & \ast \\ \ast & (m(p)^t)^{-1} \end{smallmatrix}\right)$ for a matrix $m(p) \in \text{GL}(W/X)$. We have the following lemma.

Lemma 11. If $p \in P_X$, then $1_{XP} = \alpha(p)1_X$ in $S_X(W) = (X \text{Clif}(W)) \setminus \text{Clif}(W)$ for a character $\alpha : P \rightarrow \text{GL}_1$. This character α satisfies $\alpha(p)^2/\nu(p) = \det(m(p))^{-1}$. Consequently, the section $f_X(g, \Phi, s)$ satisfies

$$f_X(pg, \Phi, s) = |\det(m(p))|^s f_X(g, \Phi, s) = \delta_{P_X} (p)^{-\frac{\dim(W)}{2}} f_X(g, \Phi, s)$$

for all $p \in P_X$, where δ_{P_X} is the modulus character of P_X and $n = \dim(X)$.

Proof. Recall the filtration W_\bullet^X on $\text{Clif}(W)$ defined in subsection 2.5. The filtration W^X induces one W_\bullet^X on $S_X(W)$, and 1_X spans all of W_0^X. It thus follows from Lemma 4 that 1_X is an eigenvector for all of P_X, i.e., that there exists $\alpha : P_X \rightarrow \text{GL}_1$ with $1_{XP} = \alpha(p)1_X$ for all $p \in P_X$.

Choose a basis x_1, x_2, \ldots, x_n for X, and set $x = x_1 \cdots x_n$ in $\text{Clif}(W)$. Then on the one hand, if $p \in P_X$, then $p^{-1}xp = \det(m(p))^{-1}x$. On the other hand, since $p \in \alpha(p) + X \text{Clif}(W)$, $p^{-1}xp = \nu(p)^{-1}p^*xp = \alpha(p)^2/\nu(p)^{-1}(p)x$. The lemma follows. □

It follows from the lemma that $E_X(g, \Phi, s)$ is in fact defined and is a Siegel Eisenstein series. Now, the decomposition $W = V \oplus V_0^\perp$ gives rise to maps $\text{GSpin}(V) \rightarrow \text{GSpin}(W)$, $\text{GSpin}(V_0^\perp) \rightarrow \text{GSpin}(W)$ and an injection

$$(\text{GSpin}(V) \times \text{GSpin}(V_0^\perp))/\{(z, z^{-1}) : z \in \text{GL}_1\} \rightarrow \text{GSpin}(W).$$

For $g \in \text{GSpin}(V)$, set

$$f_U(g, \Phi, \alpha, s) = |\nu(g)|^s \int_{\text{GSpin}(V_0^\perp)(\mathbb{A})} \Phi(1_X(g, h))\alpha(h)|\nu(h)|^s dh$$

$$= \int_{\text{SO}(V_0^\perp)(\mathbb{A})} f_X((g, h), \Phi, s)\alpha(h) dh.$$
for some element $m(p) \in \text{GL}(W/U^\perp)$, and one has $f_U(pg, \Phi, \alpha, s) = |\det(m(p))|^s f(g, \Phi, \alpha, s)$. Thus one can define an Eisenstein series $E_U(g, \Phi, \alpha, s) = \sum_{\gamma \in P_U(F) \setminus \text{GSpin}(V)(F)} f_U(\gamma g, \Phi, \alpha, s)$.

The following proposition is the pullback formula.

Proposition 12 (Garrett [Gar84], Shimura [Shi97]). Suppose α is cuspidal and V_0 is anisotropic. Then one has the identity

$$E_U(g, \Phi, \alpha, s) = \int_{\text{GSpin}(V_0^-)(F) \setminus \text{GSpin}(V_0)(A)} E_X((g, h), \Phi, s)\alpha(h) \, dh.$$

Furthermore, assume τ is a cuspidal automorphic representation of $SO(V_0)$, and α is a cusp form in the space of τ. Then the section $f_U(g, \Phi, \alpha, s)$ satisfies the normalization property

$$f_U(1, \Phi, \alpha, s) = \frac{L^S(\tau, \text{Std}, s + 1 - \dim(V_0)/2)}{d^{10}(s)} \int_{\text{GSpin}(V_0)(A_S)} \Phi_S(1_X(1, h))\alpha(h)|\nu(h)|^{s} \, dh$$

for a sufficiently large finite set of places S. Here $\Phi = \Phi^S \otimes \Phi_S$ is a factorization of Φ into Schwartz-Bruhat functions away from S and at the finite set of places S, and $A_S = \prod_{v \in S} F_v$.

The pullback formula holds more generally than when V_0 is anisotropic, but for simplicity we just consider this case. We begin with the following lemma.

Lemma 13. Suppose F is a nonarchimedean local field. Denote by $\Lambda(V)$ a maximal lattice in V, and similarly $\Lambda(V_0), \Lambda(U), \Lambda(U^\vee)$ lattices in $V_0, U,$ and U^\vee, and assume $\Lambda(V) = \Lambda(U^\vee) \oplus \Lambda(V_0) \oplus \Lambda(U)$. Set $\Lambda(W) = \Lambda(V) \oplus \Lambda(V_0^-)$, where $\Lambda(V_0^-) = \Lambda(V_0)$, except considered inside V_0^-. Suppose Φ_X is the characteristic function of the image of $\text{Clif}(\Lambda(W))$ inside $S_X(W)$. Then $\Phi_X(1_X(1, h)) = \Phi_{\Lambda(V_0^-)}(h)$, where $\Phi_{\Lambda(V_0^-)}$ denotes the characteristic function of $\text{Clif}(\Lambda(V_0^-))$ inside $\text{Clif}(V_0^-)$. Similarly, $\Phi_X(1_X(1, h)) = \Phi_{\Lambda(V_0)}(h)$.

Proof. Clearly if $\Phi_{\Lambda(V_0^-)}(h) \neq 0$, then $\Phi_X(1_X(1, h)) \neq 0$. Conversely, suppose $\Phi_X(1_X(1, h)) \neq 0$. Then there is $g_0 \in \text{Clif}(\Lambda(W))$ so that $h - g_0 \in X \text{Clif}(W)$. Since $W = U^\vee \oplus V_0^- \oplus X$ and $\Lambda(W) = \Lambda(U^\vee) \oplus \Lambda(V_0^-) \oplus \Lambda(X)$, one has $\text{Clif}(\Lambda(W)) = \text{Clif}(\Lambda(U^\vee)) \otimes \text{Clif}(\Lambda(V_0^-)) \otimes \text{Clif}(\Lambda(X))$. Hence there is $g_1 \in \text{Clif}(\Lambda(U^\vee)) \otimes \text{Clif}(\Lambda(V_0^-))$ so that $h - g_1 \in X \text{Clif}(W)$. But $(\text{Clif}(U^\vee) \otimes \text{Clif}(V_0^-)) \cap (X \text{Clif}(W)) = 0$ inside $\text{Clif}(W)$. Hence $h - g_0 = 0$, i.e. $h \in \text{Clif}(V_0^-) \cap \text{Clif}(\Lambda(U^\vee)) \otimes \text{Clif}(\Lambda(V_0^-))$. It follows that $h \in \text{Clif}(\Lambda(V_0^-))$, i.e., that $\Phi_{\Lambda(V_0^-)}(h) \neq 0$. \qed

Proof of Proposition 12. We sketch the proof. Set $H = SO(V) \times SO(V_0^-)$. First, one computes the double coset $P_X(F) \setminus \text{SO}(W)(F)/H(F)$. When V_0^- is anisotropic, this double coset is a singleton, as proved in Lemma 13 below. Furthermore, the stabilizer of the element $1 \in \text{SO}(W)(F)$ is the subgroup $P_U^\Delta H$, which consists of the elements $(p, h) \in \text{SO}(V) \times \text{SO}(V_0^-)$ where $p \in P_U$ and p acts on $V_0 = U^\perp/\perp \text{U}$ via the element $h \in \text{SO}(V_0)$. Hence,

$$E_X((g, h), \Phi, s) = \sum_{\gamma \in P_U^\Delta(H)(F) \setminus H(F)} f_X(\gamma(g, h), \Phi, s).$$
and thus
\[
\int_{\text{SO}(V_0^-)} E_X((g,h),\Phi,s)\alpha(h)dh = \int_{\text{SO}(V_0^-)} \sum_{\gamma \in P_0^F(F) \setminus H(F)} f_X(\gamma(g,h),\Phi,s)\alpha(h)dh
\]
\[= \sum_{\gamma \in P_U(F) \setminus \text{SO}(V)(F)} \int_{\text{SO}(V_0^-)(A)} f_X(\gamma(g,h),\Phi,s)\alpha(h)dh
\]
\[= \sum_{\gamma \in P_U(F) \setminus \text{SO}(V)(F)} f_U(\gamma g,\Phi,\alpha,s)
\]
\[= E_U(g,\Phi,\alpha,s).
\]

This proves the first part of the proposition.

The second part of the proposition follows by Lemma [13, Lemma 1] and the method of “non-unique functional” integral representations. This method is explained, for example, in [BFG95, Theorem 1.2].

\[\square\]

Lemma 14. Set \(H = \text{SO}(V) \times \text{SO}(V_0^-) \) and suppose \(V_0 \) is anisotropic. Then \(P_X(F) \setminus \text{SO}(W)(F)/H(F) \) is a singleton.

Proof. We want to understand the \(\text{SO}(V) \times \text{SO}(V_0^-) \) action on the maximal isotropic subspaces of \(W \). Suppose \(Y \) is a maximal isotropic subspace of \(W \). We will show that there is \(\gamma \in H(F) \) moving \(Y \) to \(X \).

The key idea is this: Set
\[pr_V(Y) = \{ v \in V : \exists v' \in V_0^- \text{ s.t. } (v,v') \in Y \} \]
and similarly define \(pr_{V_0^-}(Y) \). Then \(Y \) defines a map
\[\alpha_Y : pr_V(Y)/(Y \cap V) \to pr_{V_0^-}(Y)/(Y \cap V_0^-) \].

If \(v \in pr_V(Y) \) then \(\alpha_Y(v) \) is the image in \(pr_{V_0^-}(Y)/(Y \cap V_0^-) \) of any \(v_0 \) for which \((v,v_0) \) is in \(Y \).

The fact that \(Y \) is isotropic implies \(\alpha_Y \) is an isometry. One also sees easily that \(\alpha_Y \) is a linear isomorphism.

Note one also has the exact sequence
\[0 \to Y \cap V \to Y \to pr_{V_0^-}(Y) \to 0. \]
Suppose \(\dim Y = \dim(V_0) + \delta \). Then
\[\dim(V_0) + \delta - \dim(Y \cap V) = \dim pr_{V_0^-}(Y) \leq \dim V_0 \]
and hence \(\dim(Y \cap V) \geq \delta \). So when \(V_0 \) anisotropic, we get \(\dim(Y \cap V) = \delta \) since \(\delta \) is the Witt index of \(V \).

Thus, one can move \(Y \cap V \) to \(U \) via an element of \(H(F) \). Now using the fact that \(\alpha_Y \) is an isometry, one can move the isotropic space \(Y \) to \(X \) via another element of \(H(F) \). This finishes the proof.

\[\square\]

6. Global integrals

In this section we show how a few local computations that arise in Rankin-Selberg integrals for the standard \(L \)-function on \(\text{SO}(V) \) can be quickly dispensed with by using Lemma [11] (proved in section [4]) and the pullback formula (reviewed in section [5]).
6.1. The doubling integral. In this subsection, we reconsider the doubling integral of Piatetski-Shapiro and Rallis [GPSR87]. Here the situation is as follows. One has a quadratic space V, and a cuspidal representation π on $\SO(V)$. Denote V^- the negative of the space of V. That is, $V^- = V$ as a vector space, but the quadratic form on V^- is the negative of that of V. Now set $W = V \oplus V^-$ so that $X = \{(v,v)\}$ is a maximal isotropic subspace of W. Denote by P_X the (Siegel) parabolic subgroup of $\SO(W)$ stabilizing X. Suppose F is a nonarchimedean local field for which V is quasisplit. Then the local integral that must be computed is

$$
\int_{\SO(V)(F)} f_X((g, 1), s) \langle v_0^\vee, \pi(g)v_0 \rangle \, dg,
$$

(10)

where f_X is a K-spherical section for the induction from P_X to $\SO(W)$, and v_0, v_0^\vee are K-spherical vectors in π and π^\vee, respectively.

As explained in section 5 one can explicitly construct a section $f_X((g, 1), s)$ using a Schwartz-Bruhat function Φ_X on $S_X := (X \Clif(W)) \backslash \Clif(W)$. In the notation of section 5 $U = 0$ and $V_0 = V$. Using this section, the local integral (10) is

$$
\int_{\GSpin(V)(F)} \Phi_X(1_X(g, 1)) |\nu(g)|^s \langle v_0^\vee, \pi(g)v_0 \rangle \, dg.
$$

(11)

Applying Lemma 13, it follows that when Φ_X is the characteristic function of the image of $\Clif(A(W))$ in $S_X(W)$, (11) is equal to

$$
\int_{\GSpin(V)(F)} |\nu(g)|^s \Phi(g) \langle v_0^\vee, \pi(g)v_0 \rangle \, dg.
$$

By Lemma 1 this is $L(\pi, \text{Std, } s + 1 - \dim(V)/2)$, as desired.

6.2. The period integral. In this subsection we discuss what can be called the “period” integral for cusp forms on $\SO(V)$, because this global Rankin-Selberg convolution unfolds to a period of the cusp form in question. The integral uses a cusp form on $\SO(V)$, and a certain Eisenstein series on $\SO(V')$, where $\dim(V') = \dim(V) + 1$. This integral goes back to Murase-Sugano [MS92], and was vastly generalized by the book [GPSR97]. As will be clear in a moment, this integral is closely connected to the doubling integral above.

We now give the details. Let V be an orthogonal space, and choose an F-line T in V with $q(T) \neq 0$. Then $V = V_0 \oplus T$ where $V_0 = T^\perp$. For simplicity, we assume V_0 is anisotropic. Set $V' = V \oplus T^- = (T \oplus T^-) \oplus V_0$. Choose an isotropic basis e, f for $T \oplus T^-$, so that $(e, f) = 1$. Then $V' = Fe \oplus V_0 \oplus Ff$. The Eisenstein series used on V' is associated to the parabolic P_f that stabilizes the line Ff, and has data on the $SO(V_0)$ part of the Levi.

More precisely, this Eisenstein series on $\SO(V')$ may be constructed via the pullback formula. Setting $U = Ff$, then in the notation of section 6 the Eisenstein series on V' is $E_U(g, \Phi, \alpha, s)$ for α a cusp form on $SO(V_0)$ and Φ_X a Schwartz-Bruhat function on $S_X = (X \Clif(W)) \backslash \Clif(W)$. Suppose π is a cuspidal representation of $\SO(V)$ and ϕ is a cusp form in the space of π. The global integral is

$$
I(\phi, \alpha, s) = \int_{\SO(V)(F) \backslash \SO(V)(A)} \phi(g) E_U(g, \alpha, \Phi_X, s) \, dg
$$

$$
= \int_{\SO(V) \times \SO(V_0^-)} \phi(g) E_X((g, h), \Phi_X, s) |\alpha(h)| \, dh \, dg.
$$

(Again, see section 5 for the notation.)

2That this period integral yields the standard L-function of cuspidal representations π on $\SO(V)$ essentially follows directly from the doubling integral and the pullback formula.
We now unfold the integral. Define $SO(V_0)^A \simeq SO(V_0)$ to be the elements $(g, h) \in SO(V) \times SO(V_0^-)$ for which g fixes T and acts on V_0 by h. One obtains

$$I(\phi, \alpha, s) = \int_{[SO(V) \times SO(V_0^-)]} \phi(g) E_X((g, h), \Phi_X, s) \alpha(h) \, dh \, dg$$

$$= \int_{SO(V_0)^A \setminus (SO(V) \times SO(V_0^-))} \phi(g) f_X((g, h), \Phi_X, s) \alpha(h) \, dh \, dg$$

$$= \int_{SO(V_0)^A \setminus (SO(V) \times SO(V_0^-))} \phi(hg) f_X((g, 1), \Phi_X, s) \alpha(h) \, dh \, dg$$

$$= \int_{SO(V)} \phi_\alpha(g) f_X((g, 1), \Phi_X, s) \, dg.$$

Here

$$\phi_\alpha(g) = \int_{SO(V_0^A) \setminus SO(V_0)} \alpha(h) \phi(hg) \, dh$$

is the period integral of the cusp form ϕ mentioned above. The definition of $f_X(g, \Phi_X, s)$, one obtains

$$I(\phi, \alpha, s) = \int_{GSpin(V)^A} |\nu(g)|^s \phi_\alpha(g) \Phi_X(1 X (g, 1)) \, dg.$$

But $\Phi_X(1 X (g, 1)) = \Phi(g)$ for some Schwartz-Bruhat function Φ on $Clif(V)$. Hence

$$I(\phi, \alpha, s) = \int_{GSpin(V)^A} |\nu(g)|^s \phi_\alpha(g) \Phi(g) \, dg$$

which by Lemma 1 yields the L-factor $\frac{\text{L}(\pi, \text{Std}, s+1, -\text{dim}(V)/2)}{\text{d}^\alpha(s)}$ almost everywhere. Thus the global integral $I(\phi, \alpha, s)$ yields the partial Standard L-function of ϕ.

6.3. The Bessel integral. In this subsection we consider what may be called a Bessel integral for cusp forms ϕ on $SO(V)$, because the global Rankin-Selberg convolution unfolds to a Bessel functional of the cusp form in question. This integral goes back to Sugano [Sug85]. One uses an Eisenstein series on an orthogonal group $SO(V)$, where $\text{dim}(V') = \text{dim}(V) - 1$.

We now give the details. First, take a quadratic space V_0, and an anisotropic vector T in V_0. Write V_1 for the perpendicular space to T inside V_0. Set $V = Fe \oplus V_0 \oplus Ff$ and $V' = Fe \oplus V_1 \oplus Fe$, so that $V' \subseteq V$ as T^\perp. Here, as usual, e, f are isotropic vectors with $\langle e, f \rangle = 1$ and both e, f are perpendicular to V_0. The integral involves an Eisenstein series on V', for the parabolic that stabilizes the line Ff, with automorphic data on the Levi $GL_1 \times SO(V_1)$.

This Eisenstein series on $SO(V')$ may be constructed from the pull-back formula. More precisely, set $W = V' \oplus V_1^\perp$, and let α be cusp form on $SO(V_1)$. As in section 5 let $X \subseteq W$ consist of the elements $\{(x + \lambda f, x) : x \in V_1, \lambda \in F\}$, so that X is a maximal isotropic subspace of W. Denote by Φ_X a Schwartz-Bruhat function on $S_X = (X \text{ Clif}(W)) \setminus \text{Clif}(W)$. The Eisenstein series on $SO(V')$ is then

$$E_U(g, \Phi_X, \alpha, s) = \int_{[SO(V_1^-)]} E_X((g, h), \Phi_X, s) \alpha(h) \, dh$$

where here $U = Ff$ and one uses the inclusion $SO(V') \times SO(V_1^-) \subseteq SO(W)$.

Suppose π is a cuspidal representation of $SO(V)$, and ϕ a cusp form in the space of π. The global integral is then

$$I(\phi, s, \alpha) = \int_{[SO(V')]^A} \phi(g) E_U(g, \Phi_X, \alpha, s) \, dg.$$
Denote by $P' = M'N'$ the parabolic subgroup of $\text{SO}(V')$ or $\text{GSpin}(V')$ that stabilizes the line Ff inside V', and $P = MN$ the parabolic that stabilizes the line Ff inside $\text{SO}(V)$ or $\text{GSpin}(V)$. The Levi M' is defined to be the one that fixes the decomposition $V' = Fe \oplus V_1 \oplus Ff$ and similarly for M. Recall the maps $n : V \simeq N$ and $m : \text{GL}_1 \times \text{GSpin}(V') \simeq M'$ from subsection 2.2. Define

$$\phi_T(g) = \int_{N(F) \setminus N(A)} \psi^{-1}((T, x))\phi(n(x)g)\,dx$$

and

$$\phi_{T,\alpha}(g) = \int_{\text{SO}(V_1)(F) \setminus \text{SO}(V_1)(A)} \alpha(h)\phi_T(hg)\,dh.$$

A straightforward unfolding gives that

$$I(\phi, \alpha, s) = \int_{N'(A) \setminus \text{SO}(V')(A)} \phi_{T,\alpha}(g)f_X((g, 1), \Phi_X, s)\,dg = \int_{N'(A) \setminus \text{GSpin}(V')(A)} \phi_{T,\alpha}(g)|\nu(g)|^s\Phi_X(1_X((g, 1))\,dg.$$

Suppose now F is a nonarchimedean local field for which V is quasisplit, and $\pi = \pi_p$ is a spherical representation of $\text{SO}(V)(F)$ with space V_π. Denote by $L : V_\pi \to \mathbb{C}$ a linear functional satisfying $L(n(x) \cdot v) = \psi((T, x))L(v)$ for all $v \in V_\pi$, and let v_0 be a spherical vector in V_π. To relate $I(\phi, \alpha, s)$ to the partial L-function $L^S(\pi, \text{Std}, s)$, it suffices to compute the local integrals

$$I_p(L, v_0, s) = \int_{M'(F)} \delta_p^{-1}(m)|\nu(m)|^s\Phi_X(1_X(m, 1))L(m \cdot v_0, m)\,dm.$$

Now $M' = \text{GL}_1 \times \text{GSpin}(V_1)$, and we parametrize the elements of M' by $m(\lambda, y)$ as in subsection 2.2. In order for $L(m(\lambda, y) \cdot v_0)$ to be nonvanishing, one finds $\lambda \in \mathcal{O}_F$. Applying Lemma 13, one finds that almost everywhere, the condition $\Phi_X(1_X(m, 1)) \neq 0$ becomes $y \in \text{Clif}(\Lambda')$, where $\Lambda' \subseteq V'$ is the ϖ-adic completion of a fixed global lattice. Finally, $\delta_p(m(\lambda, y)) = |\lambda|^{\dim V_1}$. Hence almost everywhere, one must compute the integrals

$$I_p(L, v_0, s) = \int_{\text{GL}_1(F) \times \text{GSpin}(V_1)} |\lambda|^{-\dim(V_1)}|\lambda\nu(y)|^s\text{char}(\lambda, y)L(m(\lambda, y) \cdot v_0)\,d\lambda\,dy.$$

In order to understand $I_p(L, v_0, s)$ in terms of $L(\pi, \text{Std}, s)$, we will relate the integral I_p to an integral over $M = \text{GL}_1 \times \text{GSpin}(V_0) \subseteq \text{GSpin}(V)$. To do this, we use the following lemma.

Lemma 15. Assume $\dim V \geq 3$, and suppose $v \in \Lambda_{V_0}$ and $\varpi \nmid 2q(v)$. Then if $v' \in \Lambda_{V_0}$ and $q(v) = q(v')$, there is an element of $K(\Lambda_{V_0}) = \text{SO}(\Lambda_{V_0})$ that moves v to v'.

Proof. One simply applies Witt’s theorem to the reduction $\Lambda_{V_0}/\varpi\Lambda_{V_0}$.

It follows from the lemma that almost everywhere, one has an equality of sets

$$\{y \in \text{GSpin}(V_0) : y \in \text{Clif}(\Lambda_{V_0}), T \cdot y \in \Lambda_{V_0}\} = \{y \in \text{GSpin}(V_1) : y \in \text{Clif}(\Lambda_{V_1})\}K(\Lambda_{V_0}).$$

(One applies Lemma 15 to the elements $T \cdot y$ and T.) Finally, note that

$$\delta_p(m(\lambda, y))^{-1}|\nu(y)|^{-1}|\lambda\nu(y)|^{s+1} = |\lambda|^{-\dim(V_1)}|\lambda\nu(y)|^s.$$

Hence (almost everywhere) $I_p(L, v_0, s)$ is equal to

$$\int_{\text{GL}_1 \times \text{GSpin}(V_0)} \text{char}(\lambda, T \cdot y)|\nu(y)|^{-1}\delta_p^{-1}(m(\lambda, y))|\lambda\nu(y)|^{s+1}L(m(\lambda, y) \cdot v_0)\,d\lambda\,dy.$$

In the next subsection, we will relate this last integral to $L(\pi, \text{Std}, s)$.
6.4. **The Kohnen-Skoruppa integral.** In this subsection we describe a generalization of the integral [KS89] (see also [PS]) of Kohnen-Skoruppa. The integral in [KS89] and [PS] is on $\text{GSp}_4 = \text{GSpin}_5$. Gritsenko in [Gr90] made an analogous construction on $\text{GU}(2,2)$, which is essentially quasi-split GSpin_6. We give an integral on $\text{GSpin}(V)$ with $\dim(V) \geq 4$ that extends these constructions.\footnote{Just as the period and doubling integrals are closely connected, so too are the Bessel and Kohnen-Skoruppa integrals.} When $\dim(V) = 5$, the proof we give essentially reduces to that in [PS], with the caveat that below we make simplifying assumptions that are not made in [PS]. The reader looking to understand a more complete theory of this integral when $\dim(V) = 5$ should see [PS].

We now describe the global Rankin-Selberg convolution. Suppose (V_0, q_0) is an anisotropic quadratic space over the number field F, and U is 2-dimensional F vector space. We set $V = U^\vee \oplus V_0 \oplus U$ with the quadratic form q defined by $q(\alpha, v_0, \delta) = \alpha(\delta) + q_0(v_0)$. Fix a basis e_1, e_2 of U^\vee and the dual basis f_1, f_2 of U. The assumption that V_0 is anisotropic is made for simplicity. The global integral will involve three functions on $\text{SO}(V)$: a cuspidal form, an Eisenstein series for the parabolic P_U stabilizing U, and a special function P^β_T.

The Eisenstein series used is constructed via the pullback formula. In the notation of section\footnote{Just as the period and doubling integrals are closely connected, so too are the Bessel and Kohnen-Skoruppa integrals.} it is $E_U(g, \Phi_X, \alpha, s)$ for a cuspidal form α on $\text{SO}(V_0)$. To define the special function, choose an auxiliary nonzero vector T in V_1, and for simplicity assume that $q(T)$ is not in $q_0(V_0)$; in particular, T is not isotropic. Furthermore, choose a Schwartz-Bruhat function β on $V(A)$. Then

$$P^\beta_T(g) := \sum_{\gamma \in \text{Stab}(T)(F) \backslash \text{SO}(V)(F)} \beta(T\gamma g)$$

where $\text{Stab}(T)$ denotes the stabilizer of T in $\text{SO}(V)$. Suppose π is a cuspidal representation on $\text{SO}(V)$ and ϕ is a cuspidal form in the space of π. The global integral is

$$I(\phi, \Phi_X, \alpha, s) = \int_{[\text{SO}(V)]} \phi(g)E_U(g, \Phi_X, \alpha, s)P^\beta_T(g) \, dg.$$

The integral does depend on the data T, β, but we drop these from the notation. By the pullback formula, the global integral is also

$$I(\phi, \Phi_X, \alpha, s) = \int_{[\text{SO}(V)] \times [\text{SO}(V_0^\perp)]} P^\beta_T(g_1)\phi(g_1)E_X((g_1, g_2), \Phi_X, s)\alpha(g_2) \, dg_1 \, dg_2. \tag{14}$$

6.4.1. **Coset decompositions.** To unfold the integral $I(\phi, \alpha, \Phi_X, s)$, we prepare by making some coset decompositions. Set $H = \text{SO}(V) \times \text{SO}(V_0^\perp)$. It was proved in Lemma\footnote{Just as the period and doubling integrals are closely connected, so too are the Bessel and Kohnen-Skoruppa integrals.} that $P_X(F) \backslash \text{SO}(W)(F) / H(F)$ is a singleton. This enables one to easily unfold the Eisenstein series $E_X(g, \Phi_X, \alpha, s)$. To unfold the function $P^\beta_T(g)$, one requires an additional orbit calculation, which we now give.

Lemma 16. Suppose $T \in V_1$ is such that $q(T)$ is not in $q(V_0)$. One has the following.

1. The subspace of V_1 orthogonal to T is anisotropic.
2. The stabilizer $\text{Stab}(T)$ acts transitively on the two-dimensional isotropic spaces in $V = F \oplus V_1 \oplus F$, where $V_1 = F \oplus V_0 \oplus F$.

Proof. We first prove part (1). We have $V_1 = F \oplus V_0 \oplus F$. In coordinates, write $T = (\alpha, h, \delta)$, i.e., $T = \alpha e_2 + h + \delta f_2$ with $h \in V_0$. Since $q(T) \notin q(V_0)$, α and δ are nonzero. Suppose $T' = (a', b', c') \in V_1$ is isotropic and nonzero. Since V_0 is anisotropic, $a'c' \neq 0$. It follows that there exists $\lambda \in F^\times$ so that $T + \lambda T' = (0, *, *)$. Now suppose $(T, T') = 0$. Then $q(T) = q(T + \lambda T') = q((0, *, *)) \in q(V_0)$, contradicting the assumption on T. Thus the subspace of V_1 orthogonal to T is indeed anisotropic.

Now consider part (2). Suppose u_1, u_2 span an isotropic two-dimensional space in V. By part (1), one checks that we cannot have both u_i orthogonal to T. Hence we may assume $(u_2, T) \neq 0$, and then by linearity that $(u_1, T) = 0$. Since $(u_1, T) = 0$, one may move u_1 to f_1 by $\text{Stab}(T)$.
(This is because \(\text{Stab}(T) \) acts transitively on the isotropic lines in \(T^\perp \subseteq V \).) Now by linearity and the fact that \((u_1, u_2) = 0 \), we may assume \(u_2 \in V_1 \). Scaling \(u_2 \), we may write \(u = T + y' \), with \((y', T) = 0 \) and \(q(y') = -q(T) \). Since \(q(y') = -q(T) \) is determined, there is a single orbit under \(\text{Stab}(T) \).

The next thing to do is to compute \(\text{Stab}(T) \cap P_U \). Suppose in coordinates \(T = (\alpha, h, \delta) \), i.e. \(T = \alpha e_2 + h + \delta f_2 \) with \(h \in V_0 \). If \(\gamma \) in \(\text{Stab}(T) \cap P_U \), then \(f_1 \gamma = x f_1 + y f_2 \). But then

\[
0 = (f_1 \gamma, T) = (x f_1 + y f_2, T) = \alpha y,
\]

Thus \(y = 0 \), since under our assumptions \(\alpha \neq 0 \). Hence \(\text{Stab}(T) \cap P_U \) stabilizes the line spanned by \(f_1 \). So we only must check which elements of \(P := P_{F, T} \) stabilize \(T \) and take \(f_2 \) to \(U \).

One finds the following. Write \(P = MN \) for the Levi decomposition of \(P \), and recall the maps \(n : V_1 \simeq N \) and \(m : \text{GL}_1 \times \text{SO}(V_1) \simeq M \).

Lemma 17. Inside \(\text{SO}(V) \), \(\text{Stab}(T) \cap P_U = \text{SO}(V_0)' m((\lambda, 1)) n(x) \) where \((x, T) = 0, \lambda \in \text{GL}_1 \), and \(\text{SO}(V_0)' \simeq \text{SO}(V_0) \). More precisely, \(\text{SO}(V_0)' \) consists of the elements

\[
\text{SO}(V_0)' = \{m_0 n(x_0) : m_0 \in \text{SO}(V_0) \text{ and } h \cdot m_0 + \alpha x_0 = h\}.
\]

That is, \(x_0 = h \cdot (1 - m_0) / \alpha \) is uniquely determined by \(m_0 \). Recall here that \(T = (\alpha, h, \delta) \).

Proof. First note that since \((f_1, T) = 0 \) but \((f_2, T) \neq 0 \), if \(g \in \text{Stab}(T) \cap P_U \), then \(g \) stabilizes the line spanned by \(f_1 \), i.e., \(g \in P \). The lemma now follows by an easy computation. \(\square \)

6.4.2. Unfolding. With the above orbit and stabilizer calculations, we can unfold the global integral \(I(\phi, \Phi_X, \alpha, s) \). Recall \(H = \text{SO}(V) \times \text{SO}(V_0) \). Define

\[
\phi_T(g) = \int_{V_1(F) \backslash V_1(A)} \psi^{-1}((T, x)) \phi(n(x)g) \, dx
\]

and

\[
\phi_{T, \alpha}(g) = \int_{\text{SO}(V_0)'(F) \backslash \text{SO}(V_0)'(A)} \alpha(h) \phi_T(hg) \, dh.
\]

Finally, set \(N_T \subseteq N \) to be \(n \{ x \in V_1 : (x, T) = 0 \} \), and define

\[
\phi_{N_T}(g) = \int_{N_T(F) \backslash N_T(A)} \phi(n(x)g) \, dx.
\]

One has

\[
I(\phi, \Phi_X, \alpha, s) = \int_{H(F) \backslash H(A)} P_T^2(g_1) \phi(g_1) E_X(g, s, \Phi_X) \alpha(g_2) \, dg
= \int_{((\text{Stab}(T) \cap P_U) \times \text{pr}(*)) (F) \backslash H(A)} \beta(Tg_1) \phi(g_1) f_X(g, s, \Phi_X) \alpha(g_2) \, dg
= \int_{(\text{GL}_1(F) \times \text{SO}(V_0)'(F)) \times \text{pr}(*)(F) N_T(A) \backslash H(A)} \beta(Tg_1) \phi_{N_T}(g_1) f_X(g, s, \Phi_X) \alpha(g_2) \, dg
= \int_{(\text{SO}(V_0)'(F)) \times \text{pr}(*)(F) N_T(A) \backslash Z(A) \backslash H(A)} \beta(Tg_1) \phi_T(g_1) f_X(g, s, \Phi_X) \alpha(g_2) \, dg
= \int_{\Delta(\text{SO}(V_0))(A) N_T(A) \backslash H(A)} \beta(Tg_1) \phi_{T, \alpha}(g_1) f_X(g, s, \Phi_X) \, dg
\]

where the \(\text{pr}(* \) projects \(\text{SO}(V_0)' \) to \(\text{SO}(V_0) \) and \(\Delta(\text{SO}(V_0)) = \{(h', h) \in \text{SO}(V_0)' \times \text{SO}(V_0)\} \).
Hence,
\[
I(\phi, \Phi_X, \alpha, s) = \int_{N_T(A) \backslash SO(V)(A)} \beta(Tg)\phi_{T,\alpha}(g)f_X((g,1), s, \Phi_X) \, dg
\]
\[
(15)
= \int_{N_T(A) \backslash GSpin(V)(A)} \beta(Tg)\phi_{T,\alpha}(g)|\nu(g)|^s\Phi_X(1_X \cdot (g,1)) \, dg.
\]

6.4.3. Unramified computation. We now give the unramified computation corresponding to the unfolded integral \((15)\). Suppose then that \(F\) is a nonarchimedean local field for which \(V\) is quasisplit, and \(\pi\) is a spherical representation of \(SO(V)(F)\) with space \(V\). As in the case of the Bessel integral, denote by \(L : V_\pi \to \mathbb{C}\) a linear functional satisfying \(L(n(x) \cdot v) = \psi((T,x))L(v)\) for all \(v \in V_\pi\), and let \(v_0\) be a spherical vector in \(V_\pi\). The local integral that must be computed is
\[
I(L, v_0, s) = \int_{N_T(F) \backslash GSpin(V)(F)} \beta(Tg)L(g \cdot v_0)|\nu(g)|^s\Phi_X(1_X \cdot (g,1)) \, dg
\]
where \(\beta\) and \(\Phi_X\) are now assumed to be the characteristic functions of fixed lattices.

We first simplify the integral \((16)\), and then relate this simplification to \(L(\pi, Std, s)\) by an application of Lemma 8.

The first step is to compute the integral
\[
\beta_T(g) := \int_{N_T(F) \backslash N(F)} \psi((T,x))\alpha(Tn(x)g) \, dx.
\]
Denote by \(\Lambda_1\) the fixed maximal lattice in \(V_1\).

Lemma 18. If \(m = m(\lambda, y)\) then \(\beta_T(m) = |\lambda| \text{char}(\lambda \in O_F) \text{char}(T \cdot y \in \Lambda_1)\).

Proof. The first step is to evaluate \(Tn(x)m\), where \(m \in M \subseteq P\), the parabolic stabilizing the line spanned by \(f_1\). If
\[
m = \begin{pmatrix} \lambda & y \\ -1 & \lambda \end{pmatrix}
\]
in block form via the decomposition \(V = Fe_1 \oplus V_1 \oplus Ff_1\), then \(Tn(x)m = (0, T \cdot y, -(T, x)/\lambda)\).

Hence,
\[
\beta_T(m) = |\lambda| \text{char}(\lambda \in O_F) \text{char}(T \cdot y \in \Lambda_1),
\]
completing the computation. \(\square\)

Note that the above \(m\) is the image of \(m(\lambda, y)\) from \(GSpin(V)\). We conclude
\[
I(L, v_0, s) = \int_{N_T(F) \backslash GSpin(V)(F)} \beta(Tg)L(g \cdot v_0)|\nu(g)|^s\Phi_X(1_X \cdot (g,1)) \, dg
\]
\[
= \int_{N(F) \backslash GSpin(V)(F)} \beta_T(g)L(g \cdot v_0)|\nu(g)|^s\Phi_X(1_X \cdot (g,1)) \, dg
\]
\[
= \int_{M(F)} \delta_P^{-1}(m)|\lambda| \text{char}(\lambda, T \cdot y)L(m \cdot v_0)|\nu(m)|^s\Phi_X(1_X \cdot (m,1)) \, dm
\]
\[
= \int_{M(F)} \delta_P^{-1}(m)|\nu(y)|^{-1} \text{char}(\lambda, T \cdot y)L(m \cdot v_0)|\nu(m)|^{s+1}\Phi_X(1_X \cdot (m,1)) \, dm.
\]
Here, \(m = m(\lambda, y)\).

Next, we evaluate \(\Phi_X(1_X \cdot m(\lambda, y))\).

Lemma 19. At almost all finite places, one has \(\text{char}(T \cdot y)\Phi_X(1_X \cdot m(\lambda, y)) = \text{char}(y, T \cdot y)\).
Proof. First, note that
\[m(\lambda, y) = (ef + \lambda fe)y = (ef + fe - fe + \lambda fe)y = y + f(\lambda e - e)y. \]
Since \(f \in X \), the image of \(1_X \cdot m(\lambda, y) \) in the spinor module \(S_X \) is the same as the image of \(y \). Now by \([12]\), in the presence of the condition \(\text{char}(T \cdot y) \), we may assume \(y \) is in the subspace of \(V_1 \) orthogonal to \(T \). The lemma now follows by an application of Lemma \([13]\). \qed

Thus applying Lemma \([13]\) we get
\[
I(L, v_0, s - 1) = \int_{M(F)} \delta_P^{-1}(m) |\nu(m)|^{-1} \text{char}(\lambda, T \cdot y, y)L(m \cdot v_0)|\nu(m)|^s \; dm.
\]
Comparing to \([13]\), observe that this is the same local integral that arose from the Bessel integral, so our manipulations below will also complete the unramified computation for that integral.

For later use, we note that
\[
I(L, v_0, s - 1) = \zeta(\omega_T, 2s - 2) \int_{M(F)} \delta_P^{-1}(m) |\nu(m)|^{-1} \text{char}(\lambda, T \cdot y, \text{val}(y) = 0)L(m \cdot v_0)|\nu(m)|^s \; dm
\]
by integrating out the center.

6.4.4. Φ Fourier coefficient. To complete the unramified computation, we will apply Lemma \([8]\). One has
\[
L(v_0) \frac{L(\pi, \text{Std}, s + 1 - \dim(V)/2)}{d^V(s)} = L(v_0) \int_{G_{\text{Spin}(V)(F)}} \Phi(g) |\nu(g)|^s \langle v_0^\vee, \pi(g)v_0 \rangle \; dg
\]
\[
= \int_{G_{\text{Spin}(V)(F)}} \Phi(g) |\nu(g)|^s L(g \cdot v_0) \; dg
\]
\[
= \int_{M(F)} \delta_P^{-1}(m) |\nu(m)|^s S_T(\Phi)(m)L(m \cdot v_0) \; dm.
\]
Applying Lemma \([8]\) this becomes
\[
\int_{M(F)} \delta_P^{-1}(m) |\nu(y)|^{-1} |\nu(m)|^s \text{char}(\lambda, \text{val}(y) = 0, T \cdot y)L(m \cdot v_0) \; dm.
\]
Comparing to \([13]\), we conclude
\[
I(L, v_0, s - 1) = L(v_0) \zeta(\omega_T, 2s - 2) \frac{L(\pi, \text{Std}, s + 1 - \dim(V)/2)}{d^V(s)}
\]
\[
= \frac{L(v_0)}{d^V(s)} L(\pi, \text{Std}, s + 1 - \dim(V)/2).
\]

References

[BFG95] Daniel Bump, Masaaki Furusawa, and David Ginzburg, Non-unique models in the Rankin-Selberg method, J. Reine Angew. Math. 468 (1995), 77–111.

[BK99] Alexander Braverman and David Kazhdan, On the Schwartz space of the basic affine space, Selecta Math. (N.S.) 5 (1999), no. 1, 1–28.

[BK00] A. Braverman and D. Kazhdan, γ-functions of representations and lifting, Geom. Funct. Anal. (2000), no. Special Volume, Part I, 237–278. With an appendix by V. Vologodsky, GAFA 2000 (Tel Aviv, 1999).

[BK02] Alexander Braverman and David Kazhdan, Normalized intertwining operators and nilpotent elements in the Langlands dual group, Mosc. Math. J. 2 (2002), no. 3, 533–553, Dedicated to Yuri I. Manin on the occasion of his 65th birthday. MR 1988971

[BNS16] A. Bouthier, B. C. Ngô, and Y. Sakellaridis, On the formal arc space of a reductive monoid, Amer. J. Math. 138 (2016), no. 1, 81–108. MR 3462881

[Cas16] William Casselman, Symmetric powers and the satake transform, Preprint (2016).
Paul B. Garrett, *Pullbacks of Eisenstein series; applications*, Automorphic forms of several variables (Katata, 1983), Progr. Math., vol. 46, Birkhäuser Boston, Boston, MA, 1984, pp. 114–137. MR 763012

Paul B. Garrett, *Integral representations of Eisenstein series and L-functions*, Number theory, trace formulas and discrete groups (Oslo, 1987), Academic Press, Boston, MA, 1989, pp. 241–264. MR 993320

J. R. Getz, *A summation formula for the Rankin-Selberg monoid via the circle method*, ArXiv e-prints (2014).

Roger Godement and Hervé Jacquet, *Zeta functions of simple algebras*, Lecture Notes in Mathematics, Vol. 260, Springer-Verlag, Berlin-New York, 1972. MR 0342495

Stephen Gelbart, Ilya Piatetski-Shapiro, and Stephen Rallis, *Explicit constructions of automorphic L-functions*, Lecture Notes in Mathematics, vol. 1254, Springer-Verlag, Berlin, 1987.

D. Ginzburg, I. Piatetski-Shapiro, and S. Rallis, *L functions for the orthogonal group*, Mem. Amer. Math. Soc. 128 (1997), no. 611, viii+218. MR 1357823

V. A. Gritsenko, *Jacobi functions and Euler products for Hermitian modular forms*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 183 (1990), no. Modul. Funktsii i Kvadrat. Formy. 1, 77–123, 165–166, 167–168.

Nadya Gurevich and Avner Segal, *The Rankin-Selberg integral with a non-unique model for the standard L-function of G2*, J. Inst. Math. Jussieu 14 (2015), no. 1, 149–184.

W.-W. Li, *Zeta integrals, Schwartz spaces and local functional equations*, ArXiv e-prints (2015).

Atsushi Murase and Takashi Sugano, *Shintani function and its application to automorphic L-functions for classical groups. I. The case of orthogonal groups*, Math. Ann. 299 (1994), no. 1, 133–152. MR 1273075

Bao Chau Ngo, *On a certain sum of automorphic L-functions*, Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro, Contemp. Math., vol. 614, Amer. Math. Soc., Providence, RI, 2014, pp. 337–343.

A. Pollack and S. Shah, *On the Rankin-Selberg integral of Kohnen and Skoruppa*, Math. Res. Lett (To appear).

Y. Sakellaridis, *Inverse Satake transforms*, ArXiv e-prints (2014).

Goro Shimura, *On modular correspondences for Sp(n, Z) and their congruence relations*, Proc. Nat. Acad. Sci. U.S.A. 49 (1963).

Tsuneo Tamagawa, *On the ζ-functions of a division algebra*, Ann. of Math. (2) 77 (1963), 387–405.