DNA end resection: nucleases team up with the right partners to initiate homologous recombination

Cejka, Petr

Abstract: The repair of DNA double-strand breaks (DSBs) by homologous recombination commences by nucleolytic degradation of the 5'-terminated strand of the DNA break. This leads to the formation of 3'-tailed DNA, which serves as a substrate for the strand exchange protein Rad51. The nucleoprotein filament then invades homologous DNA to drive template-directed repair. In this review, I discuss mainly the mechanisms of DNA end resection in Saccharomyces cerevisiae, which includes short-range resection by Mre11-Rad50-Xrs2 and Sae2, as well as processive long-range resection by Sgs1-Dna2 or Exo1 pathways. Resection mechanisms are highly conserved between yeast and humans, and analogous machineries are found in prokaryotes as well.

DOI: https://doi.org/10.1074/jbc.R115.675942

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-112483
Accepted Version

Originally published at:
Cejka, Petr (2015). DNA end resection: nucleases team up with the right partners to initiate homologous recombination. Journal of Biological Chemistry, 290:22931-22938.
DOI: https://doi.org/10.1074/jbc.R115.675942
DNA end resection: nucleases team up with the right partners to initiate homologous recombination

Petr Cejka
Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
Tel: +41 44 635 4786; Email: cejka@imcr.uzh.ch

Abstract
The repair of DNA double-strand breaks (DSBs) by homologous recombination commences by nucleolytic degradation of the 5’-terminated strand of the DNA break. This leads to the formation of 3’-tailed DNA, which serves as a substrate for the strand exchange protein Rad51. The nucleoprotein filament then invades homologous DNA to drive template-directed repair. In this review, I discuss mainly the mechanisms of DNA end resection in Saccharomyces cerevisiae, which includes short-range resection by Mre11-Rad50-Xrs2 and Sae2, as well as processive long-range resection by Sgs1-Dna2 or Exo1 pathways. Resection mechanisms are highly conserved between yeast and humans, and analogous machineries are found in prokaryotes as well.

Introduction
Homologous recombination (HR) plays a central role in the repair of DNA double-strand breaks (DSBs) (1). In vegetative cells, recombination restores broken DNA to preserve genome integrity. In meiosis, HR promotes proper chromosome segregation and exchange of genetic information between maternal and paternal genomes, and thus contributes to generation of genetic diversity. Recombination is initiated upon the formation of single-stranded DNA (ssDNA) overhangs through a process termed DNA end resection. The nucleolytic processing of broken DNA ends is essential for all recombination mechanisms (Fig. 1). Resection of DSBs commits their repair to HR as it prevents ligation by the potentially more mutagenic non-homologous end-joining (NHEJ) pathway (2-4). Resected DNA is first coated by the ssDNA binding protein Replication Protein A (RPA). In most cases, RPA is subsequently replaced with the strand exchange protein Rad51, forming a nucleoprotein filament capable to invade homologous DNA. Repair can then proceed via either of two main recombination pathways, synthesis-dependent strand annealing (SDSA) or the canonical pathway that involves the formation of a double Holliday junction (DSBR) (Fig. 1). Single-strand annealing (SSA) is instead a Rad51-independent pathway that requires extensive resection of DNA between two repetitive sequences (Fig. 1).

1. DNA end resection: when and what to resect
DSBs can form accidentally in any phase of the cell cycle upon exposure to ionizing radiation, chemicals or as a result of abortive processing of nucleic acids. Most DSBs however occur in S-phase when a DNA replication fork runs into a nick. Furthermore, DSBs are sometimes introduced "intentionally" such in the prophase of the first meiotic division or during anti-cancer therapy regimens based on DNA damaging agents (5). Depending on the cellular context, cells must first "decide" whether or not to resect the breaks (3,4,6,7). DNA end resection commits the repair to HR and prevents NHEJ; therefore, it would be detrimental to resect DSBs in the G1 phase of the cell cycle when no sister chromatid DNA is available.
as a template for repair. Cells have thus developed regulatory control mechanisms that activate resection only during the S or G2 phases of the cell cycle, which will be introduced below (4,6-8).

Another critical parameter is the polarity of resection. It has been observed in vivo that the 5'-terminated strand of the dsDNA break is specifically resected (9,10). Although limited processing of the 3'-terminated strand has been observed as well (11), the preferential degradation of the 5'-terminated strand results in the formation of 3'-tailed DNA. This becomes a substrate for Rad51 and upon strand invasion the 3' end primes DNA synthesis, which is required for the downstream steps in the HR pathway (1). How the various DNA end processing machineries ensure the 5'→3' polarity of resection will be discussed.

2. DNA end resection: lessons from prokaryotes

In Escherichia coli, DNA end resection is carried out either by the RecBCD- or RecQ-dependent pathways (12). RecBCD is a vigorous nuclease-helicase complex with a strong affinity towards DNA ends. RecB has a helicase activity that unwinds DNA in a 3'→5' direction, which functions synergistically with the RecD helicase subunit. RecD translocates on the opposite strand than RecB with a 5'→3' polarity resulting in a net translocation in the same direction away from the DNA end (13-15). The RecB and RecD motors do not run at the same speed. The unique bidirectional translocation mechanism gives rise to a ssDNA loop that accumulates in front of the slower RecB subunit, and which is detectable by electron microscopy (15). Before encountering the regulatory Chi (crossover hotspot instigator) sequence within genomic DNA, the RecB subunit degrades both 5' and 3'-terminated DNA strands. Upon encountering Chi, the complex pauses and continues translocating at a reduced speed dependent on RecB, which becomes the lead motor (13). Importantly, the nucleolytic degradation of the 5'-terminated DNA is upregulated, while the degradation of the 3'-terminated strand is attenuated, which determines the polarity of DNA end resection (16). DNA without a Chi sequence is fully degraded by RecBCD, which contributes to prokaryotic defense mechanisms against invading DNA. Furthermore, RecBCD directly loads the strand exchange protein RecA on the arising 3'-tailed DNA, which facilitates recombination (17).

The RecQJ enzymes initiate a second major recombination pathway in E. coli, which also requires the RecFOR factors (12). RecQ, a founding member of the RecQ helicase family, unwinds dsDNA with a 3'→5' polarity, which generates ssDNA for the RecJ nuclease that degrades DNA 5'→3' in a manner stimulated by the ssDNA binding protein SSB (12,18). Therefore, unlike RecBCD, the activity of the RecQJ complex directly produces 3'-tailed DNA and the resection polarity is not regulated by the Chi sequence. As RecBCD, the RecFOR complex also loads RecA on the SSB-coated ssDNA at junctions of single and double-stranded DNA (19).

While the RecFOR pathway is conserved across prokaryotes, the RecBCD complex is only present in some bacteria that include gram-negative E. coli (20). In gram-positive Bacillus subtilis, RecBCD is replaced by the AddAB complex (20). AddAB has a single motor within the AddA subunit that unwinds DNA with a 3'→5' polarity, which is stimulated by the AddB subunit (21). While no Chi sequence has been detected in eukaryotes, variations of similar helicase-nuclease complexes that resect DSBs are conserved in evolution.

3. Two-step resection model: the relationship between short and long-range resection pathways

DNA end resection in eukaryotes is a two-step process in most cases (9,22,23). It is initiated by a nucleolytic processing step that is slow and limited to the vicinity of DNA ends (9,23). In S. cerevisiae, this first step is dependent on the Mre11-Rad50-Xrs2 (MRX) complex. MRX has an affinity for DNA ends, and was shown to be one of the first proteins recruited to DSBs (24,25). It has both catalytic and structural roles in DNA end processing. The intrinsic nuclease activity of Mre11 is capable to degrade 5'-terminated DNA in the vicinity of the DNA end. The structural role of MRX involves recruitment of components belonging to the second long-range processing step (9,23,26-
In yeast, these include two separate pathways dependent on either the Sgs1-Dna2 helicase-nuclease or the Exo1 nuclease (Fig. 2).

DSBs arise in multiple ways and thus are very diverse in structure (5). Some are chemically "clean" and may either be blunt-ended or have short 5' or 3' ssDNA overhangs. These stretches of ssDNA may form secondary structures that impede resection. Many DSBs are chemically "dirty", including those induced by ionizing radiation, which in addition to DNA breakage gives rise to oxidative DNA damage. Furthermore, DSBs can arise upon abortive topoisomerase reactions that may occur either spontaneously or upon drug treatment. E.g. the anti-cancer drug etoposide inhibits Topo II, which remains trapped at the 5'-terminated strand of the DSB (30). Finally, DSBs in meiosis are introduced by the Topo II-like enzyme Spo11, which also remains covalently attached to the 5' end of the broken DNA (31-33). The presence of secondary structures, chemical modifications or proteins at the DNA end represents a specific challenge to the resection machinery. It has been demonstrated that the short-range resection pathway, and specifically the nuclease of Mre11, is required for the processing of these non-canonical DNA ends (26,34,35).

The Mre11 nuclease activity is instead largely dispensable for the resection of endonuclease-induced "clean" DSBs (36) (Fig. 2). Similarly, the structural role of MRX is not essential, as Exo1 and Sgs1-Dna2 can initiate resection of clean DNA ends in MRX-independent manner however less efficiently (9,27-29,37).

Long-range resection pathways were initially identified using physical assays that measure the kinetics of ssDNA formation at various distances from an experimentally induced dsDNA break (9,23). In order to improve detection, these assays were performed in a rad51Δ background that does not allow the repair of the DSB. In addition, genetic assays based on SSA were utilized, in which long tracts of DNA must be resected to reveal a repeated sequence to allow repair (9,23). Together, these assays showed that Sgs1-Dna2 or Exo1 pathways are capable to resect very long stretches of DNA of more than 50,000 nts in length (9). Subsequent work revealed that these assays largely overestimated the length of DNA that is resected in vivo under normal conditions when repair is possible. In mitotic cells, it has been determined that ~2,000-4,000 nts are resected in allelic recombination and ~3,000-6,000 nts in ectopic recombination (38). In meiotic cells, where the long-range resection is largely dependent on Exo1, the resection tracks are even shorter (~800 nts) (39). In the sgs1Δ exo1Δ double mutant that is deficient in long-range resection, the degradation tracks are reduced to ~100-300 nts in mitotic cells and ~270 nts in meiotic cells (38,39).

Interestingly, the limited MRX and Sae2 dependent resection is sufficient for efficient joint molecule formation in meiosis, and results in only a moderate recombination defect in vegetative cells (30-50% reduction) (9,38). Therefore, long-range resection is largely dispensable for recombination in meiosis, and not strictly required for repair in vegetative cells, although it may be necessary for proper DNA damage checkpoint and maintenance. In gene targeting, elimination of the long-range resection pathways increased efficiency up to 600-fold (38). This demonstrated that Sgs1-Dna2 or Exo1 over-resected the transformed DNA. The short-range processing by MRX-Sae2 complex was sufficient for homology search and repair (38).

4. Short-range DNA end processing by MRX and Sae2: mechanism and regulation

The MRX complex likely functions as a dimer (40,41). It has a DNA binding activity with a preference towards DNA ends (24,42). The Rad50 subunit is an ATPase that controls conformation changes within the complex upon DNA binding, which regulates its functions in DNA end tethering, resection and DNA damage signaling (43-45).

In vitro, Mre11 is a manganese-dependent exonuclease that is moderately stimulated by Xrs2 (24). Mre11 also has a much weaker endonuclease activity on diverse secondary structures that is moderately promoted by Rad50 in the presence of ATP (46). However, the polarity of the Mre11 exonuclease (3'→5') was in disagreement with the polarity of resection observed in vivo (5'→3') as
well as with the DSB repair model that postulates that 3'-tailed ssDNA tails must be generated (46-48). To this point, it was shown that *P. furiosus* Mre11-Rad50 has a weak magnesium-dependent endonuclease activity on the 5'-terminated strand near a DNA end (49). Later, it was demonstrated with recombinant *S. cerevisiae* proteins that Sae2 strongly promotes the endonuclease of Mre11 within the MRX complex (50). Similarly as in the Hopkins and Paull study (49), the endonuclease activity was magnesium-dependent and showed a preference towards 5'-terminated DNA. The preferential cleavage of the 5'-terminated DNA ~15-25 nucleotides away from the end suggested that the Mre11 nuclease initiates DNA resection via its endonuclease, rather than exonuclease activity. Furthermore, the endonucleolytic 5' end clipping was strongly promoted by protein blocks at the DNA end, demonstrating a possible mechanism of processing non-canonical DNA ends that are refractory to exonucleases (50). Under physiological conditions, when magnesium concentrations strongly exceed those of manganese and when DNA ends are protected by a number of factors, the Mre11 exonuclease activity might be attenuated and MRX might preferentially function as a Sae2-promoted endonuclease (50).

The biochemical reconstitution experiments validated models that have been for a long time inferred from genetic studies. Specifically in meiosis, the Spo11 protein was found in complexes with oligonucleotide DNA molecules of ~12 and ~21-37 nucleotides in length (31,51). These DNA fragments were attached to Spo11 via their 5' end and had a free 3' DNA end, which suggested that the processing of meiotic DSBs is initiated by an endonucleolytic cut. The MRX complex was proposed as being the best candidate for the enigmatic nuclease. Subsequent studies revealed that end processing, at least in some cases, is initiated by a cut at a position more distant from the DNA end, up to ~100-300 nucleotides away (52). This collectively provided support for a bidirectional resection model, which posits that upon the initial endonuclease cleavage, the Mre11 exonuclease proceeds back towards the DNA end via its 3'→5' exonuclease activity (Fig. 2). At the same time, the endonuclease cut can create an entry point for the long-range resection enzymes. However, on the mechanistic level, it remains to be determined how the endonucleolytic cleavage by Mre11 is directed to the more distant sites away from the DNA break.

Genetic experiments also revealed that the Sae2 protein functionally integrates with the MRX complex (32). The phenotypes of *sae2Δ* cells resemble those of *mre11Δ* nuclease-deficient mutants in many genetic assays. In meiosis, *sae2Δ* strains are completely deficient in the processing of Spo11-bound DNA breaks; furthermore, *sae2Δ* also affects Mre11 nuclease function in mitotic cells (32,53-56). This led to the notion that Sae2 might activate the nuclease of Mre11, as later directly demonstrated by reconstitution experiments (50). In contrast, cells lacking *SAE2* are more sensitive than *mre11Δ* nuclease-dead mutants to DNA damaging agents (26). Thus, in addition to stimulating the Mre11 endonuclease, Sae2 has other, Mre11-nuclease independent roles. This may include its proposed function to remove MRX from DNA ends upon end processing to facilitate downstream repair, attenuate checkpoint signaling, counteract the NHEJ factor Ku and promote resection by Exo1 (26,29,57-59). Sae2 itself was also shown to possess a nuclease activity specific to secondary structures in DNA (60), although an enzymatic activity was not detected by other laboratories (27,50). Human and *S. pombe* Sae2 homologues (CtIP and Ctp1, respectively) were found to tetramerize, which was shown to be important for their function in vivo (61,62). Similarly, mutations that prevent oligomerization of Sae2 in vivo resulted in null phenotypes in several genetic assays (53). Intriguingly the nuclease of Sae2 has been suggested to be specific to its monomeric form (63). Taking together, the role of Sae2 in DNA metabolism is still only partially defined.

The Sae2 function in regulating the nuclease of Mre11 makes it an ideal target for control by posttranslational modifications (B). Indeed, Sae2 is phosphorylated in S/G2 phases of the cell cycle by the cyclin-dependent protein kinase (CDK) Cdc28 (4,6). The key CDK target site is likely S267, which must undergo phosphorylation to
allow resection both in vivo and in vitro (6,50). The phosphomimicking mutant Sae2 S267E partially rescues resection defect in the absence of CDK activity, while the non-phosphorylatable S267A mutant phenotype is comparable to that of sae2Δ cells (6). Therefore, the CDK-dependent regulation of Sae2 activity represents one of the key control mechanisms ensuring that resection only takes place in the S/G2 phase of the cell cycle when a homologous template is available for repair. In addition to CDK, Sae2 is also regulated by the Mec1 and Tel1 kinases in response to DNA damage (63-65). Phosphorylation of Sae2 was shown to affect its oligomeric state (63). Furthermore, mutations of Mec1/Tel1 target sites to non-phosphorylatable residues in Sae2 result in DNA damage sensitivity, showing that also phosphorylation under the control of DNA damage checkpoint is important for the function of Sae2 in vivo (63-65). As Sae2 has additional roles on top of controlling Mre11 (see above), it remains to be determined whether the Mec1/Tel1-dependent phosphorylation affects DSB resection or other functions of Sae2.

In higher eukaryotes, the homologue of MRX is the MRN complex, which consists of MRE11, RAD50 and NBS1 subunits (66,67). Similarly as in yeast, recombinant MRN has a manganese-dependent 3’→5’ exonuclease and a weaker endonuclease activity (47,48,68). The human counterpart of Sae2 is CtIP, though the sequence homology is restricted to its C-terminal part as CtIP is a much larger protein than Sae2 (69). Experiments based on small molecule inhibitors that target specifically the endonuclease or the exonuclease of human MRE11 revealed that the endonuclease precedes the exonuclease in resection (2). Thus, the bidirectional resection is likely conserved in evolution and not limited to meiosis. However, whether and how CtIP regulates the MRE11 endonuclease has not been directly established yet. In contrast to yeast however, the activity of MRN and CtIP in DNA end resection cannot be bypassed, as DNA end resection is generally dependent on the presence of CtIP and the nuclease activity of MRE11 (69).

5. Long-range DNA end processing by Sgs1-Dna2 or Exo1

While the involvement of MRX in the processing of DNA ends has been known for a long time (70), the pathways responsible for the long-range resection were identified much later. This is most likely due to that fact that long-range resection can be carried out by either of two non-overlapping pathways, dependent on the enzymatic activities of Sgs1-Dna2 or Exo1 (9,22,23). Inactivation of a single pathway results in only a minor resection defect, because the other pathway can effectively compensate. Major resection defects were only revealed when both pathways were inactivated simultaneously, e.g. in sgs1Δ exo1Δ double mutants (9,22,23).

5.1. Sgs1-Dna2 resection pathway

Both Sgs1 and Dna2 have separate functions unrelated to DNA end resection. Sgs1 is a vigorous DNA helicase belonging to the RecQ family (71,72), which functions together with Top3 and Rmi1 to dissolve double Holliday junctions into non-crossover products, thereby preventing sister-chromatid exchanges and chromosome instability (73,74). Dna2 is a bifunctional helicase-nuclease responsible for removing DNA flaps arising by strand displacement synthesis by DNA polymerase δ during lagging strand DNA synthesis (75). The Okazaki fragment processing function of Dna2 is essential, although the viability of dna2Δ mutants can be rescued by multiple mechanisms (76). Prior to the seminal work by Ira and colleagues (9), Sgs1 and Dna2 had not been implicated to function together.

The mechanism of DNA end resection by the Sgs1-Dna2 pathway was revealed by a combination of genetic and biochemical experiments. The helicase of Sgs1 unwinds dsDNA with a 3’→5’ polarity, which provides a substrate for the ssDNA-specific Dna2 nuclease (9,27,28). Dna2 must load on a free ssDNA end but then degrades DNA endonucleolytically resulting in degradation products of ~5-10 nucleotides in length (77). Dna2 was shown to possess both 3’→5’ and 5’→3’ nuclease activities (78), so its involvement in DNA end resection was initially puzzling. The issue was resolved later when it was demonstrated that RPA inhibits
the degradation of 3'-terminated ssDNA, while it stimulates the degradation of the 5'-terminated strand (27,28). Therefore, RPA is a crucial factor that enforces the correct polarity of DNA end resection by the Sgs1-Dna2 pathway, leading to the production of 3'-tailed DNA (Fig. 3a).

Dna2 also possesses a DNA helicase activity with a 5'-3' polarity. Unlike the nuclease of Dna2 that is essential for cell viability, helicase-deficient dna2 mutants are viable under certain growth conditions (76). The physiological role of the Dna2 helicase is not yet clear. The DNA unwinding activity of Dna2 is vigorous, comparable to the helicase capacity of Sgs1, yet it is cryptic and only becomes apparent upon inactivation of the Dna2 nuclease (79). It is tempting to think that the helicase of Dna2 functions in concert with that of Sgs1 (28). Both Sgs1 and Dna2 were shown to directly interact, which led to the model where Sgs1 translocates along one DNA strand in a 3'→5' direction and unwinds DNA, whereas Dna2 translocates with a 5'→3' polarity on the second DNA strand unwound by Sgs1, yet in the same general direction as Sgs1 (28). This mode of translocation and DNA degradation would be reminiscent of the resection complexes from bacteria such as RecBCD (14); though, it has not been substantiated biochemically. Specifically, in contrast to a bidirectional manner of DNA translocation by Sgs1-Dna2, the helicase activity of Dna2 was implied to be dispensable for DNA end resection (9). Similarly to the nuclease domain of B. subtilis AddA, also Dna2 contains a 4Fe-4S iron-sulfur cluster that appears to have a structural role, which further highlights the parallels between prokaryotic and eukaryotic resection complexes (21). More experiments are clearly needed to determine whether and how the helicase of Dna2 within the Sgs1-Dna2 heterodimeric complex promotes resection.

Several factors have been identified that stimulate DNA end resection by Sgs1-Dna2, which includes the MRX complex and the Top3-Rmi1 heterodimer (9,27,28). As discussed above, the nuclease of Mre11 is largely dispensable for the processing of clean DSBs, yet MRX was shown to have a structural role in promoting the resection by Sgs1-Dna2. In particular, Mre11 interacts with Sgs1 and stimulates its helicase activity (27,28,80). As the MRX complex localizes very early to DSBs (25), it has been proposed that it might recruit Sgs1-Dna2 to DNA ends (81). Furthermore, the Sgs1 helicase is known to form a complex with Top3-Rmi1 (72,82). Surprisingly both Top3 and Rmi1 were found to be required for DNA end resection by Sgs1 and Dna2 in vivo (9) as well as in vitro, independently of the topoisomerase activity of Top3 (27). The heterodimer strongly stimulates the Sgs1 helicase, which is especially apparent under physiological salt concentrations (27,28). The mechanism by which Top3-Rmi1 promote DNA unwinding by Sgs1 is not yet clear, though it is obvious that Sgs1-Top3-Rmi1 form a very integrated functional complex (82,83). Additionally, Sgs1 was described to interact with Rad51 (84). The functional significance of this interaction is not yet clear, however it is attractive to hypothesize that it might help loading Rad51 directly on resected ssDNA in analogous fashion to RecBCD- or RecFOR-mediated loading of RecA (17).

The mechanism of DNA end resection by Sgs1 and Dna2 is conserved in evolution. Human DNA2 forms a complex with the human Sgs1 homolog, the Bloom (BLM) helicase, and the resection by DNA2-BLM is similarly promoted by the human RPA, MRN and TopoIIα-RMI1-RMI2 proteins (85,86). In addition, DNA2 also interacts with another RecQ family helicase, Werner (WRN). Also BLM-WRN complex promotes resection in vivo and in vitro, showing a functional redundancy in DSB processing in human cells (87).

5.2. Exo1 resection pathway

Unlike the Dna2 nuclease that is specific for ssDNA, the nuclease activity of exonuclease 1 (Exo1) degrades 5'-terminated strand within dsDNA (88). Therefore, Exo1 does not require a helicase partner to unwind DNA, and directly produces the required 3'-tailed DNA (37,88) (Fig. 3b). In humans, the BLM protein was found to stimulate resection by EXO1 in a helicase-independent manner, but a similar mechanism was not detected in yeast (9,22,23,37,89,90).
Before Exo1’s role in DNA end resection was discovered, Exo1 had been known to play an important function in the postreplicative mismatch repair. Reconstitution experiments revealed that Exo1 nuclease is rather distributive and requires the support of the mismatch recognition complex MutSα to stimulate its processivity in the presence of a mismatch (91). Similarly, various factors were identified that promote the Exo1 nuclease in resection. As in the case of the Sgs1-Dna2 pathway, the MRX complex provides a structural role to stimulate Exo1 (37,81), which is further enhanced by Sae2 (29). However, efficient Exo1-dependent resection occurred even in the absence of the MRX complex in vivo, suggesting that other factors may promote the Exo1 nuclease (9,23). That may include the ssDNA binding proteins RPA or the Sensor of ssDNA complex 1 (SOSS1) (37,92,93). Furthermore, the 9-1-1 clamp was also found to promote long-range resection independently of its checkpoint signaling activity under certain conditions (94), which is conserved in human cells (95). Finally, PCNA was found to promote human EXO1 processivity by enhancing its association with DNA (85,96).

Acknowledgement:
I would like to thank to Alessandro Sartori, Elda Cannavo, Lucie Miejkova, Cosimo Pinto, Maryna Levikova, Lepakshi Ranjha and Roopesh Anand (all University of Zurich) for discussions and comments on the manuscript. This work was supported by Swiss National Science Foundation Grant (PP00P3 133636). I apologize to colleagues whose work could not be discussed here due to space limitation.

REFERENCES:

1. San Filippo, J., Sung, P., and Klein, H. (2008) Mechanism of eukaryotic homologous recombination. *Annu Rev Biochem* **77**, 229-257
2. Shibata, A., Moiani, D., Arvai, A. S., Perry, J., Harding, S. M., Genois, M. M., Maity, R., van Rossum-Fikkert, S., Kertokalio, A., Romoli, F., Ismail, A., Ismalaj, E., Petricci, E., Neale, M. J., Bristow, R. G., Masson, J. Y., Wyman, C., Jeggo, P. A., and Tainer, J. A. (2014) DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. *Mol Cell* **53**, 7-18
3. Symington, L. S., and Gautier, J. (2011) Double-strand break end resection and repair pathway choice. *Annu Rev Genet* **45**, 247-271
4. Ira, G., Pellicioli, A., Balijja, A., Wang, X., Fiorani, S., Carotenuto, W., Liber, G., Bressan, D., Wan, L., Hollingsworth, N. M., Haber, J. E., and Foiani, M. (2004) DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. *Nature* **431**, 1011-1017
5. Jackson, S. P., and Bartek, J. (2009) The DNA-damage response in human biology and disease. *Nature* **461**, 1071-1078
6. Huertas, P., Cortes-Ledesma, F., Sartori, A. A., Aguilera, A., and Jackson, S. P. (2008) CDK targets Sae2 to control DNA-end resection and homologous recombination. *Nature* **455**, 689-692
7. Huertas, P., and Jackson, S. P. (2009) Human CtpP mediates cell cycle control of DNA end resection and double strand break repair. *J Biol Chem* **284**, 9558-9565
8. Ferretti, L. P., Lafranchi, L., and Sartori, A. A. (2013) Controlling DNA-end resection: a new task for CDKs. *Front Genet* **4**, 99
9. Zhu, Z., Chung, W. H., Shim, E. Y., Lee, S. E., and Ira, G. (2008) Sgs1 helicase and two nuclease Dna2 and Exo1 resect DNA double-strand break ends. *Cell* **134**, 981-994

10. White, C. I., and Haber, J. E. (1990) Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. *Embo J* **9**, 663-673

11. Zierhut, C., and Diffley, J. F. (2008) Break dosage, cell cycle stage and DNA replication influence DNA double strand break response. *Embo J* **27**, 1875-1885

12. Persky, N. S., and Lovett, S. T. (2008) Mechanisms of recombination: lessons from *E. coli*. *Crit Rev Biochem Mol Biol* **43**, 347-370

13. Spies, M., Amitani, I., Baskin, R. J., and Kowalczykowski, S. C. (2007) RecBCD enzyme switches lead motor subunits in response to chi recognition. *Cell* **131**, 694-705

14. Dillingham, M. S., Spies, M., and Kowalczykowski, S. C. (2003) RecBCD enzyme is a bipolar DNA helicase. *Nature* **423**, 893-897

15. Taylor, A. F., and Smith, G. R. (2003) RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity. *Nature* **423**, 889-893

16. Anderson, D. G., and Kowalczykowski, S. C. (1997) The recombination hot spot chi is a regulatory element that switches the polarity of DNA degradation by the RecBCD enzyme. *Genes Dev* **11**, 571-581

17. Anderson, D. G., and Kowalczykowski, S. C. (1997) The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner. *Cell* **90**, 77-86

18. Lovett, S. T., and Kolodner, R. D. (1989) Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of *Escherichia coli*. *Proc Natl Acad Sci U S A* **86**, 2627-2631

19. Morimatsu, K., and Kowalczykowski, S. C. (2003) RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. *Mol Cell* **11**, 1337-1347

20. Rocha, E. P., Cornet, E., and Michel, B. (2005) Comparative and evolutionary analysis of the bacterial homologous recombination systems. *PLoS Genet* **1**, e15

21. Yeeles, J. T., and Dillingham, M. S. (2007) A dual-nuclease mechanism for DNA break processing by AddAB-type helicase-nucleases. *J Mol Biol* **371**, 66-78

22. Gravel, S., Chapman, J. R., Magill, C., and Jackson, S. P. (2008) DNA helicases Sgs1 and BLM promote DNA double-strand break resection. *Genes Dev* **22**, 2767-2772

23. Mimitou, E. P., and Symington, L. S. (2008) Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. *Nature* **455**, 770-774

24. Trujillo, K. M., Roh, D. H., Chen, L., Van Komen, S., Tomkinson, A., and Sung, P. (2003) Yeast xrs2 binds DNA and helps target rad50 and mre11 to DNA ends. *J Biol Chem* **278**, 48957-48964

25. Lisby, M., Barlow, J. H., Burgess, R. C., and Rothstein, R. (2004) Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. *Cell* **118**, 699-713

26. Mimitou, E. P., and Symington, L. S. (2010) Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2. *Embo J* **29**, 3358-3369
27. Niu, H., Chung, W. H., Zhu, Z., Kwon, Y., Zhao, W., Chi, P., Prakash, R., Seong, C., Liu, D., Lu, L., Ira, G., and Sung, P. (2010) Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. *Nature* **467**, 108-111

28. Cejka, P., Cannavo, E., Polaczek, P., Masuda-Sasa, T., Pokharel, S., Campbell, J. L., and Kowalczykowski, S. C. (2010) DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. *Nature* **467**, 112-116

29. Nicolette, M. L., Lee, K., Guo, Z., Rani, M., Chow, J. M., Lee, S. E., and Paull, T. T. (2010) Mre11-Rad50-Xrs2 and Sae2 promote 5’ strand resection of DNA double-strand breaks. *Nat Struct Mol Biol* **17**, 1478-1485

30. Chen, G. L., Yang, L., Rowe, T. C., Halligan, B. D., Tewey, K. M., and Liu, L. F. (1984) Nonintercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. *J Biol Chem* **259**, 13560-13566

31. Keeney, S., Giroux, C. N., and Kleckner, N. (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. *Cell* **88**, 375-384

32. Keeney, S., and Kleckner, N. (1995) Covalent protein-DNA complexes at the 5’ strand termini of meiosis-specific double-strand breaks in yeast. *Proc Natl Acad Sci U S A* **92**, 11274-11278

33. Bergerat, A., de Massy, B., Gadelle, D., Varoutas, P. C., Nicolas, A., and Forterre, P. (1997) An atypical topoisomerase II from Archaea with implications for meiotic recombination. *Nature* **386**, 414-417

34. Usui, T., Ohta, T., Oshiumi, H., Tomizawa, J., Ogawa, H., and Ogawa, T. (1998) Complex formation and functional versatility of Mre11 of budding yeast in recombination. *Cell* **95**, 705-716

35. Moreau, S., Ferguson, J. R., and Symington, L. S. (1999) The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. *Mol Cell Biol* **19**, 556-566

36. Llorente, B., and Symington, L. S. (2004) The Mre11 nuclease is not required for 5’ to 3’ resection at multiple HO-induced double-strand breaks. *Mol Cell Biol* **24**, 9682-9694

37. Cannavo, E., Cejka, P., and Kowalczykowski, S. C. (2013) Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection. *Proc Natl Acad Sci U S A* **110**, E1661-1668

38. Chung, W. H., Zhu, Z., Papusha, A., Malkova, A., and Ira, G. (2010) Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting. *PLoS Genet* **6**, e1000948

39. Zakharovitch, K., Ma, Y., Tang, S., Hwang, P. Y., Boiteux, S., and Hunter, N. (2010) Temporally and biochemically distinct activities of Exo1 during meiosis: double-strand break resection and resolution of double Holliday junctions. *Mol Cell* **40**, 1001-1015

40. Hopfner, K. P., Putnam, C. D., and Tainer, J. A. (2002) DNA double-strand break repair from head to tail. *Curr Opin Struct Biol* **12**, 115-122
41. Hohl, M., Kwon, Y., Galvan, S. M., Xue, X., Tous, C., Aguilera, A., Sung, P., and Petrini, J. H. (2011) The Rad50 coiled-coil domain is indispensable for Mre11 complex functions. *Nat Struct Mol Biol* **18**, 1124-1131

42. Lobachev, K., Vitriol, E., Stemple, J., Resnick, M. A., and Bloom, K. (2004) Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. *Curr Biol* **14**, 2107-2112

43. Deshpande, R. A., Williams, G. J., Limbo, O., Williams, R. S., Kuhnlein, J., Lee, J. H., Classen, S., Guenther, G., Russell, P., Tainer, J. A., and Paull, T. T. (2014) ATP-driven Rad50 conformations regulate DNA tethering, end resection, and ATM checkpoint signaling. *Embo J* **33**, 482-500

44. Bhaskara, V., Dupre, A., Lengsfeld, B., Hopkins, B. B., Chan, A., Lee, J. H., Zhang, X., Gautier, J., Zakian, V., and Paull, T. T. (2007) Rad50 adenylate kinase activity regulates DNA tethering by Mre11/Rad50 complexes. *Mol Cell* **25**, 647-661

45. Chen, L., Trujillo, K. M., Van Komen, S., Roh, D. H., Krejci, L., Lewis, L. K., Resnick, M. A., Sung, P., and Tomkinson, A. E. (2005) Effect of amino acid substitutions in the rad50 ATP binding domain on DNA double strand break repair in yeast. *J Biol Chem* **280**, 2620-2627

46. Trujillo, K. M., and Sung, P. (2001) DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50*Mre11* complex. *J Biol Chem* **276**, 35458-35464

47. Paul, T. T., and Gellert, M. (1998) The 3’ to 5’ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. *Mol Cell* **1**, 969-979

48. Trujillo, K. M., Yuan, S. S., Lee, E. Y., and Sung, P. (1998) Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. *J Biol Chem* **273**, 21447-21450

49. Hopkins, B. B., and Paull, T. T. (2008) The *P. furiosus* mre11/rad50 complex promotes 5’ strand resection at a DNA double-strand break. *Cell* **135**, 250-260

50. Cannavo, E., and Cejka, P. (2014) Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. *Nature* **514**, 122-125

51. Neale, M. J., Pan, J., and Keeney, S. (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. *Nature* **436**, 1053-1057

52. Garcia, V., Phelps, S. E., Gray, S., and Neale, M. J. (2011) Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. *Nature* **479**, 241-244

53. Kim, H. S., Vijayakumar, S., Reger, M., Harrison, J. C., Haber, J. E., Weil, C., and Petrini, J. H. (2008) Functional interactions between Sae2 and the Mre11 complex. *Genetics* **178**, 711-723

54. Prinz, S., Amon, A., and Klein, F. (1997) Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. *Genetics* **146**, 781-795

55. Lobachev, K. S., Gordenin, D. A., and Resnick, M. A. (2002) The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. *Cell* **108**, 183-193
56. Rattray, A. J., McGill, C. B., Shafer, B. K., and Strathern, J. N. (2001) Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1. Genetics 158, 109-122

57. Chen, H., Donnianni, R. A., Handa, N., Deng, S. K., Oh, J., Timashev, L. A., Kowalczykowski, S. C., and Symington, L. S. (2015) Sae2 promotes DNA damage resistance by removing the Mre11-Rad50-Xrs2 complex from DNA and attenuating Rad53 signaling. Proc Natl Acad Sci USA 112, E1880-1887

58. Bonetti, D., Villa, M., Gobbini, E., Cassani, C., Tedeschi, G., and Longhese, M. P. (2015) Escape of Sgs1 from Rad9 inhibition reduces the requirement for Sae2 and functional MRX in DNA end resection. EMBO Rep 16, 351-361

59. Puddu, F., Oelschlaegel, T., Guerini, I., Geisler, N. J., Niu, H., Herzog, M., Salguero, I., Ochoa-Montano, B., Vire, E., Sung, P., Adams, D. J., Keane, T. M., and Jackson, S. P. (2015) Synthetic viability genomic screening defines Sae2 function in DNA repair. Embo J

60. Lengsfeld, B. M., Rattray, A. J., Bhaskara, V., Ghirlanda, R., and Paull, T. T. (2007) Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol Cell 28, 638-651

61. Andres, S. N., Appel, C. D., Westmoreland, J. W., Williams, J. S., Nguyen, Y., Robertson, P. D., Resnick, M. A., and Williams, R. S. (2015) Tetrameric Ctp1 coordinates DNA binding and DNA bridging in DNA double-strand-break repair. Nat Struct Mol Biol 22, 158-166

62. Davies, O. R., Forment, J. V., Sun, M., Belotserkovskaya, R., Coates, J., Galanty, Y., Demir, M., Morton, C. R., Rzechorzek, N. J., Jackson, S. P., and Pellegrini, L. (2015) CtIP tetramer assembly is required for DNA-end resection and repair. Nat Struct Mol Biol 22, 150-157

63. Fu, Q., Chow, J., Bernstein, K. A., Makharashvili, N., Arora, S., Lee, C. F., Person, M. D., Rothstein, R., and Paull, T. T. (2014) Phosphorylation-regulated transitions in an oligomeric state control the activity of the Sae2 DNA repair enzyme. Mol Cell Biol 34, 778-793

64. Cartagena-Lirola, H., Guerini, I., Viscardi, V., Lucchini, G., and Longhese, M. P. (2006) Budding Yeast Sae2 is an In Vivo Target of the Mec1 and Tel1 Checkpoint Kinases During Meiosis. Cell Cycle 5, 1549-1559

65. Liang, J., Suhandynata, R. T., and Zhou, H. (2015) Phosphorylation of Sae2 Mediates Forkhead-associated (FHA) Domain-specific Interaction and Regulates Its DNA Repair Function. J Biol Chem 290, 10751-10763

66. Dolganov, G. M., Maser, R. S., Novikov, A., Tosto, L., Chong, S., Bressan, D. A., and Petrini, J. H. (1996) Human Rad50 is physically associated with human Mre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol Cell Biol 16, 4832-4841

67. Petrini, J. H., Walsh, M. E., DiMare, C., Chen, X. N., Korenberg, J. R., and Weaver, D. T. (1995) Isolation and characterization of the human MRE11 homologue. Genomics 29, 80-86

68. Paull, T. T., and Gellert, M. (1999) Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev 13, 1276-1288
69. Sartori, A. A., Lukas, C., Coates, J., Mistrik, M., Fu, S., Bartek, J., Baer, R., Lukas, J., and Jackson, S. P. (2007) Human CtIP promotes DNA end resection. *Nature* **450**, 509-514

70. Lee, S. E., Moore, J. K., Holmes, A., Umezou, K., Kolodner, R. D., and Haber, J. E. (1998) Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. *Cell* **94**, 399-409

71. Cejka, P., and Kowalczykowski, S. C. (2010) The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorous DNA helicase that preferentially unwinds homoduplex DNA. *J Biol Chem* **285**, 8290-8301

72. Gangloff, S., McDonald, J. P., Bendixen, C., Arthur, L., and Rothstein, R. (1994) The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. *Mol Cell Biol* **14**, 8391-8398

73. Cejka, P., Plank, J. L., Bachrati, C. Z., Hickson, I. D., and Kowalczykowski, S. C. (2010) Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3. *Nat Struct Mol Biol* **17**, 1377-1382

74. Wu, L., and Hickson, I. D. (2003) The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. *Nature* **426**, 870-874

75. Bae, S. H., Bae, K. H., Kim, J. A., and Seo, Y. S. (2001) RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. *Nature* **412**, 456-461

76. Kang, Y. H., Lee, C. H., and Seo, Y. S. (2010) Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes. *Crit Rev Biochem Mol Biol* **45**, 71-96

77. Kao, H. I., Campbell, J. L., and Bambara, R. A. (2004) Dna2p helicase/nuclease is a tracking protein, like FEN1, for flap cleavage during Okazaki fragment maturation. *J Biol Chem* **279**, 50840-50849

78. Bae, S. H., and Seo, Y. S. (2000) Characterization of the enzymatic properties of the yeast dna2 Helicase/endonuclease suggests a new model for Okazaki fragment processing. *J Biol Chem* **275**, 38022-38031

79. Levikova, M., Klaue, D., Seidel, R., and Cejka, P. (2013) Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity. *Proc Natl Acad Sci USA* **110**, E1992-E2001

80. Chiolo, I., Carotenuto, W., Maffioletti, G., Petrini, J. H., Foiani, M., and Liberi, G. (2005) Srs2 and Sgs1 DNA helicases associate with Mre11 in different subcomplexes following checkpoint activation and CDK1-mediated Srs2 phosphorylation. *Mol Cell Biol* **25**, 5738-5751

81. Shim, E. Y., Chung, W. H., Nicolette, M. L., Zhang, Y., Davis, M., Zhu, Z., Paull, T. T., Ira, G., and Lee, S. E. (2010) Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. *Embo J* **29**, 3370-3380

82. Mullen, J. R., Nallaseth, F. S., Lan, Y. Q., Slagle, C. E., and Brill, S. J. (2005) Yeast Rmi1/Nce4 controls genome stability as a subunit of the Sgs1-Top3 complex. *Mol Cell Biol* **25**, 4476-4487

83. Cejka, P., Plank, J. L., Dombrowski, C. C., and Kowalczykowski, S. C. (2012) Decatenation of DNA by the S. cerevisiae Sgs1-Top3-Rmi1 and RPA complex: a mechanism for disentangling chromosomes. *Mol Cell* **47**, 886-896
Characterization of nuclease-dependent functions of Exo1p in Saccharomyces cerevisiae. *DNA Repair (Amst)* **1**, 895-912.

91. Genschel, J., and Modrich, P. (2003) Mechanism of 5’-directed excision in human mismatch repair. *Mol Cell** **12**, 1077-1086.

92. Chen, H., Lisby, M., and Symington, L. S. (2013) RPA coordinates DNA end resection and prevents formation of DNA hairpins. *Mol Cell** **50**, 589-600.

93. Yang, S. H., Zhou, R., Campbell, J., Chen, J., Ha, T., and Paull, T. T. (2013) The SOSS1 single-stranded DNA binding complex promotes DNA end resection in concert with Exo1. *Embo J** **32**, 126-139.

94. Ngo, G. H., and Lydall, D. (2015) The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks. *Nucleic Acids Res** **43**, 5017-5032.

95. Tsai, F. L., and Kai, M. (2014) The checkpoint clamp protein Rad9 facilitates DNA-end resection and prevents alternative non-homologous end joining. *Cell Cycle** **13**, 3460-3464.

96. Chen, X., Paudyal, S. C., Chin, R. I., and You, Z. (2013) PCNA promotes processive DNA end resection by Exo1. *Nucleic Acids Res** **41**, 9325-9338.

Figure legends

Figure 1. DNA end resection is required for all recombination processes. The resection of the 5’-terminated DNA strand is required for all recombination pathways, including single strand annealing (SSA), synthesis-dependent strand annealing (SDSA) and canonical double strand break repair (DSBR) pathway. DNA end resection prevents mutagenic non-homologous end-joining (NHEJ). Microhomology-mediated end-joining (MMEJ) was omitted from the scheme and text for simplicity.
Figure 2. DNA end resection of free and blocked DNA ends. a, Resection of free (clean) DNA ends. The Mre11-Rad50-Xrs2 (MRX) complex is rapidly recruited to DNA ends upon break formation. The nuclease activity of Mre11 is not required for resection, but the MRX complex has a role to recruit components of the processive pathways that include either Sgs1-Dna2 or Exo1. In some cases the structural role of the MRX complex can be bypassed. DNA is subsequently resected by either Sgs1-Dna2 or Exo1 in a processive manner. Only a monomer of MRX is depicted for clarity reasons. b, Resection of blocked (dirty) DNA ends. The MRX complex is rapidly recruited to DNA ends, which is followed by Sae2. The nuclease activity of Mre11 is required, and it cleaves endonucleolytically the 5’-terminated DNA strand away from the end in a reaction stimulated by phosphorylated Sae2. Furthermore, MRX also likely recruits Sgs1-Dna2 or Exo1 to the endonuclease cut site. The endonuclease cut site provides an entry point for the Sgs1-Dna2 or Exo1 nucleases, which carry out long-range resection. The exonuclease of Mre11 then might degrade DNA in a 3’ → 5’ direction back towards the DNA break.

Figure 3. Mechanism of long-range DNA end resection by Sgs1-Dna2 or Exo1 pathways. a, DNA end resection by Sgs1-Dna2. Sgs1 translocates with a 3’ → 5’ polarity on one DNA strand and unwinds DNA. Unwound ssDNA is coated by RPA, which directs the nucleolytic activity of Dna2 towards the 5’-terminated DNA strand. Whether the 5’ → 3’ motor activity of Dna2 participates in DNA end resection to form a bidirectional helicase remains to be demonstrated. b, DNA end resection by Exo1. The Exo1 nuclease is specific for dsDNA and has a 5’ → 3’ polarity, which directly results in 3’ tailed DNA.
dsDNA break

dsDNA end resection

Invasion of homologous DNA

Non homologous end-joining (NHEJ)

Synthesis-dependent strand annealing (SDSA)

Rad51-dependent pathway

Canonical pathway via second end capture and double Holliday junction (DSBR)

Rad51-independent pathway

Single-strand annealing (SSA)
Cejka, Figure 2

a
Free end

- MRX recruited to DNA end
- Nuclease of Mre11 and Sae2 not required
- Sgs1-Dna2 or Exo1 recruitment by MRX
- **5’→3’** Sgs1-Dna2 or Exo1
- **3’→5’** Processive 5’→3’ resection by Sgs1-Dna2 or Exo1

b
Blocked end

- MRX recruited to DNA end
- Nuclease of Mre11 required: endonucleolytic cleavage away from DNA break
- Sgs1-Dna2 or Exo1 recruitment by MRX
- **5’→3’** Sgs1-Dna2 or Exo1
- **3’→5’** Processive 5’→3’ resection by Sgs1-Dna2 or Exo1
a) Dna2 (5'→3' nuclease) ssDNA nuclease

Sgs1-Top3-Rmi1
Sgs1 (3'→5' helicase) DNA unwinding

b) Exo1 (5'→3' nuclease) dsDNA nuclease
Minireview:
DNA end resection: nucleases team up with the right partners to initiate homologous recombination

Petr Cejka
J. Biol. Chem. published online July 31, 2015

Access the most updated version of this article at doi: 10.1074/jbc.R115.675942

Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites.

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/early/2015/07/31/jbc.R115.675942.full.html#ref-list-1