ON GROUPS ACTING ON CONTRACTIBLE SPACES WITH STABILIZERS OF PRIME POWER ORDER

IAN J. LEARY AND BRITA E. A. NUCINKIS

Abstract. Let \(\mathcal{F} \) denote the class of finite groups, and let \(\mathcal{P} \) denote the subclass consisting of groups of prime power order. We study group actions on topological spaces in which either (1) all stabilizers lie in \(\mathcal{P} \) or (2) all stabilizers lie in \(\mathcal{F} \). We compare the classifying spaces for actions with stabilizers in \(\mathcal{F} \) and \(\mathcal{P} \), the Kropholler hierarchies built on \(\mathcal{F} \) and \(\mathcal{P} \), and group cohomology relative to \(\mathcal{F} \) and to \(\mathcal{P} \). In terms of standard notations, we show that \(\mathcal{F} \subset H_1 \mathcal{P} \subset H_1 \mathcal{F} \), with all inclusions proper; that \(H_2 \mathcal{F} = H_2 \mathcal{P} \); that \(H^*(G; -) = \mathcal{P} H^*(G; -) \); and that \(E_\mathcal{P} G \) is finite-dimensional if and only if \(E_\mathcal{F} G \) is finite-dimensional and every finite subgroup of \(G \) is in \(\mathcal{P} \).

1. Introduction

Let \(\mathcal{F} \) denote a class of groups, by which we mean a collection of groups which is closed under isomorphism and taking subgroups. A \(G \)-CW-complex \(X \) is said to be a model for \(E_\mathcal{F} G \), the classifying space for actions of \(G \) with stabilizers in \(\mathcal{F} \), if for each \(H \leq G \), one has that the fixed point set \(X^H \) is contractible for \(H \in \mathcal{F} \) and is empty for \(H \notin \mathcal{F} \). The most common classes considered are the class of trivial groups and the class \(\mathcal{F} \) consisting of all finite groups. In these cases \(E_\mathcal{F} G \) is often denoted \(EG \) and \(EG \) respectively. Note that \(EG \) is the total space of the universal principal \(G \)-bundle, or equivalently the universal covering space of an Eilenberg-Mac Lane space for \(G \). The space \(EG \) is called the classifying space for proper actions of \(G \). Recently there has been much interest in finiteness conditions for the spaces \(E_\mathcal{F} G \), especially for \(EG \). Milnor and Segal’s constructions of \(EG \) both generalize easily to construct models for any \(E_\mathcal{F} G \), and one can show that any two models for \(E_\mathcal{F} G \) are naturally equivariantly homotopy equivalent.

For some purposes the structure of the fixed point sets for subgroups in \(\mathcal{F} \) is irrelevant. For example, a group is in Kropholler’s class \(h_1 \mathcal{F} \) if there is any finite-dimensional contractible \(G \)-CW-complex \(X \) with

The first named author was partially supported by NSF grant DMS-0804226 and by the Heilbronn Institute.
all stabilizers in \(\mathcal{F} \). The class \(\mathbf{h}_1 \mathcal{F} \) is the first stage of a hierarchy whose union is Kropholler’s class \(\mathbf{h} \mathcal{F} \) of hierarchically decomposable groups \([10]\). (These definitions were first considered for the class \(\mathfrak{F} \) of all finite groups, but work for any class \(\mathcal{F} \).)

A priori, the class \(\mathbf{h}_1 \mathcal{F} \) may contain groups \(G \) that do not admit a finite-dimensional model for \(E_\mathcal{F} G \), and we shall give such examples in the case when \(\mathcal{F} = \mathfrak{P} \), the class of groups of prime power order. By contrast, in the case when \(\mathcal{F} = \mathfrak{F} \), no group \(G \) is known to lie in \(\mathbf{h}_1 \mathfrak{F} \) without also admitting a finite-dimensional model for \(E G \). A construction due to Serre shows that every group \(G \) in \(\mathbf{h}_1 \mathfrak{F} \) that is virtually torsion-free has a finite-dimensional \(E G \) \([4]\), and the authors have given examples of \(G \) for which the minimal dimension of a contractible \(G \)-CW-complex is lower than the minimal dimension of a model for \(E G \) \([14]\). These examples \(G \) also have the property that they admit a contractible \(G \)-CW-complex with finitely many orbits of cells, but that they do not admit any model for \(E G \) with finitely many orbits of cells.

Throughout this paper, \(\mathfrak{F} \) will denote the class of finite groups, and \(\mathfrak{P} \) will denote the class of finite groups of prime power order. We compare the classifying space for \(G \)-actions with stabilizers in \(\mathfrak{P} \) with the more well-known \(E \mathfrak{F} G \), and we compare the Kropholler hierarchies built on \(\mathfrak{F} \) and \(\mathfrak{P} \). We show that a finite group \(G \) that is not of prime power order cannot admit a finite-dimensional \(E_\mathfrak{P} G \), but that every finite group is in \(\mathbf{h}_1 \mathfrak{P} \). We also construct a group that is in \(\mathbf{h}_1 \mathfrak{F} \) but not in \(\mathbf{h}_1 \mathfrak{P} \), and we show that \(\mathbf{h} \mathfrak{P} = \mathbf{h} \mathfrak{P} \).

In the final section we shall contrast this with cohomology relative to all finite subgroups. The relative cohomological dimension can be viewed as a generalisation of the virtual cohomological dimension, since for virtually torsion free groups these are equal, see \([17]\). By a result of Bouc \([2, 12]\) it follows that groups belonging to \(\mathbf{h}_1 \mathfrak{F} \) have finite relative cohomological dimension, but the converse it not known. In contrast to our results concerning classifying spaces, we show that cohomology relative to subgroups in \(\mathfrak{F} \) is naturally isomorphic to cohomology relative to subgroups in \(\mathfrak{P} \).

2. Classifying spaces for actions with stabilizers in \(\mathfrak{P} \)

Theorem 2.1. Let \(G \) be a finite group. Then \(G \) has a finite dimensional model for \(E_\mathfrak{P} G \) if and only if \(G \) has prime power order.

Proof. If \(G \) has prime power order, then a single point may be taken as a model for \(E_\mathfrak{P} G \). Now let \(G \) be an arbitrary finite group, let \(p \) be a prime dividing the order of \(G \), and assume that there is a \(p \)-subgroup
$P < G$, such that $N_G(P)$ is not a p-group. Then the Weyl-group $WP = N_G(P)/P$ contains a subgroup H of order prime to p. Assume G has a finite dimensional model for $E_{\mathfrak{P}}G$, X say. Then the augmented cellular chain complex of the P-fixed point set, X^P, is a finite length resolution of \mathbb{Z} by free H-modules. This gives a contradiction, since \mathbb{Z} has infinite projective dimension as an H-module for any non-trivial finite group H.

Therefore we may suppose that for each subgroup $P \leq G$ which lies in \mathfrak{P}, the normalizer $N_G(P)$ is also in \mathfrak{P}. It follows from the Frobenius normal p-complement theorem [7, 5.26] that G has a normal p-complement for each prime p. Hence G is nilpotent and equal to the direct product of its Sylow subgroups. If P is a non-trivial Sylow subgroup of G, it follows that $G = N_G(P)$ is in \mathfrak{P}. □

Remark 2.2. The above proof was suggested to the authors by Yoav Segev. It is considerably shorter than our original proof, which did not quote the Frobenius normal p-complement theorem.

Corollary 2.3. For a group G, the following are equivalent.

(i) G admits a finite-dimensional $E_{\mathfrak{P}}G$;
(ii) Every finite subgroup of G is in \mathfrak{P} and G admits a finite-dimensional E_G.

□

Remark 2.4. We conclude the section with a remark on the type of $E_{\mathfrak{P}}G$. It can proved analogously to Lück’s proof for E_G [15] that a group G admits a finite type model for $E_{\mathfrak{P}}G$ if and only if G has finitely many conjugacy classes of groups of prime power order and the Weyl-groups $N_G(P)/P$ for all subgroups P of prime power order are finitely presented and of type FP_∞. Hence any group admitting a finite type E_G also admits a finite type $E_{\mathfrak{P}}G$. Recall that a finite extension of a group admitting a finite model for EG always has finitely many conjugacy classes of subgroups of prime power order [4, IX.13.2]. Hence the groups exhibited in [14, Example 7.4] are groups admitting a finite type $E_{\mathfrak{P}}G$ which do not admit a finite type E_G.

This behaviour is in stark contrast to that of $E_{\mathcal{VC}}G$, the classifying space with virtually cyclic isotropy. Any group admitting a finite dimensional model for $E_{\mathcal{VC}}G$ admits a finite dimensional model for E_G, see [16] and the converse also holds for a large class of groups including all polycyclic-by-finite and all hyperbolic groups [8, 16]. Furthermore, any group admitting a finite type model for $E_{\mathcal{VC}}G$ also admits a finite type model for E_G [9], but it is conjectured [8] that any group admitting a finite model for $E_{\mathcal{VC}}G$ has to be virtually cyclic. This has been
shown for a class of groups containing all hyperbolic groups [8] and for elementary amenable groups [9].

3. The hierarchies \mathcal{H} and \mathcal{P}

Proposition 3.1. Let X be a finite dimensional contractible G-CW-complex such that all stabilizers are finite. If there is a bound on the orders of the stabilizers then there exists a finite dimensional contractible G-CW-complex Y and an equivariant map $f : Y \to X$ such that $Y^H = \emptyset$ if H is not a p-group.

Proof. Using the equivariant form of the simplicial approximation theorem, we may assume that X is a simplicial G-CW-complex. To simplify notation the phrase ‘G-space’ shall mean ‘simplicial G-CW-complex’ and ‘G-map’ will mean ‘G-equivariant simplicial map’ throughout the rest of the proof. The space Y will be a G-space in this sense and the map $f : Y \to X$ will be a G-map in this sense. The G-space Y is constructed in two stages. Firstly, for each finite $K \leq G$ we build a finite-dimensional contractible K-space Y_K with the property that all simplex stabilizers in Y_K lie in \mathcal{P}.

Suppose for now that each such K-space Y_K has been constructed. Using the G-equivariant form of the construction used in [11, Section 8] the space Y is constructed as follows. Let I be an indexing set for the G-orbits of vertices in X. For each $i \in I$, let v_i be a representative of the corresponding orbit, and let K_i be the stabilizer of v_i. Let X^0 denote the 0-skeleton of X. Define a G-space Y^0 by

$$Y^0 = \coprod_{i \in I} G \times_{K_i} Y_{K_i},$$

and define a G-map $f : Y^0 \to X^0$ by $f(g, y) = g.v_i$ for all $i \in I$, for all $g \in G$ and for all $y \in Y_{K_i}$. For each vertex w of X, let $Y(w) = f^{-1}(w) \subset Y^0$. Each $Y(w)$ is a contractible subspace of Y^0, and the stabilizer of w acts on $Y(w)$.

Now for $\sigma = (w_0, \ldots, w_n)$ an n-simplex of X, define a space $Y(\sigma)$ as the join

$$Y(\sigma) = Y(w_0) * Y(w_1) * \cdots * Y(w_n).$$

Each vertex of $Y(\sigma)$ is already a vertex of one of the $Y(w_i)$, and so the map $f : Y^0 \to X^0$ defines a unique simplicial map $f : Y(\sigma) \to \sigma$. By construction, whenever τ is a face of σ, the space $Y(\tau)$ is identified with a subspace of $Y(\sigma)$. This allows us to define Y and $f : Y \to X$ as the colimit over the simplices σ of X of the subspaces $Y(\sigma)$, and to define $f : Y \to X$, which is a G-map of G-spaces. Since each $Y(\sigma)$ is
contractible, it follows that f is a homotopy equivalence, and hence Y is also contractible (see [11, Corollary 8.6]).

It remains to build the K-space Y_K for each finite group $K \leq G$. In the case when $K \in \Psi$ we may take a single point to be Y_K, and so we may suppose that $K \notin \Psi$. Fix such a subgroup K, and suppose that we are able to construct a finite-dimensional contractible K-space Z_K in which each stabilizer is a proper subgroup of K. We may assume by induction that for each $L < K$ we have already constructed the L-space Y_L. The K-space Y_K can now be constructed from Z_K and the spaces Y_L using a process similar to the construction of Y from X and the spaces Y_K. It remains to construct the K-space Z_K.

An explicit construction of an K-space Z_K with the required properties is given in [13]. We therefore provide only a sketch of the argument. We may assume that K is not in Ψ. Let S be the unit sphere in the reduced regular complex representation of K, so that S is a topological space with K-action such that the stabilizer of every point of S is a proper subgroup of K. Since K is not in Ψ, there are K-orbits in S of coprime lengths. Using this property, it can be shown that the sphere S admits an K-equivariant self-map $g : S \to S$ of degree zero. The K-space Z_K is defined to be the infinite mapping telescope (suitably triangulated) of the map g. □

Corollary 3.2. If G is in $h_1\mathfrak{F}$ and there is a bound on the orders of the finite subgroups of G, then G is in $h_1\Psi$. □

Remark 3.3. In Proposition 3.1, the bound on the orders of the stabilizers of X is used only to give a bound on the dimensions of the spaces Y_K. In Theorem 3.8 we shall show that $h_1\mathfrak{F} \neq h_1\Psi$.

Remark 3.4. The construction in Proposition 3.1 does not preserve cocompactness, because for most finite groups K, the space Y_K used in the construction cannot be chosen to be finite. A result similar to Proposition 3.1 but preserving cocompactness can be obtained by replacing Ψ by a larger class \mathfrak{O} of groups. Here \mathfrak{O} is defined to be the class of Ψ-by-cyclic-by-Ψ-groups. A theorem of Oliver [20] implies that any finite group K that is not in \mathfrak{O} admits a finite contractible K-CW-complex Z'_K in which all stabilizers are proper subgroups of K. Applying the same argument as in the proof of Proposition 3.1, one can show that given any contractible G-CW-complex X with all stabilizers in \mathfrak{F}, there is a contractible G-CW-complex Y' with all stabilizers in \mathfrak{O} and a proper equivariant map $f' : Y' \to X$. (By proper, we mean that the inverse image of any compact subset of X is compact.)
For X a G-CW-complex with stabilizers in \mathfrak{P}, and p a prime, let $X_{\text{sing}(p)}$ denote the subcomplex consisting of points whose stabilizer has order divisible by p. For G a group and p a prime, let $S_p(G)$ denote the poset of non-trivial finite p-subgroups of G.

Proposition 3.5. Suppose that X is a finite-dimensional contractible G-CW-complex with all stabilizers in \mathfrak{P}. For each prime p, the mod-p homology of $X_{\text{sing}(p)}$ is isomorphic to the mod-p homology of the (realization of the) poset $S_p(G)$.

Proof. Fix a prime p, and let S denote the realization of the poset $S_p(G)$. For P a non-trivial p-subgroup of G, let X^P denote the points fixed by P, and let $S_{\geq P}$ denote the realization of the subposet of $S_p(G)$ consisting of all p-subgroups that contain P. By the P. A. Smith theorem [3], each X^P is mod-p acyclic. Each $S_{\geq P}$ is contractible since it is equal to a cone with apex P. Let P and Q be p-subgroups of G, and let $R = (P, Q)$, the subgroup of G generated by P and Q. If R is a p-group then $X^P \cap X^Q = X^R$, and otherwise $X^P \cap X^Q$ is empty. Similarly, $S_{\geq P} \cap S_{\geq Q} = S_{\geq R}$ if R is a p-group and $S_{\geq P} \cap S_{\geq Q}$ is empty if R is not a p-group.

Since each X^P is mod-p acyclic, the mod-p homology $H_*(X_{\text{sing}(p)})$ is isomorphic to the mod-p homology of the nerve of the covering $X_{\text{sing}(p)} = \bigcup P X^P$. Similarly, the mod-$p$ homology $H_*(S)$ is isomorphic to the mod-p homology of the nerve of the covering $S = \bigcup P S_{\geq P}$. By the remarks in the first paragraph, these two nerves are isomorphic. \square

Proposition 3.6. Let k be a finite field, and let G be the group of k-points of a reductive algebraic group over k, whose commutator subgroup has k-rank n. (For example, $G = SL_{n+1}(k)$, or $GL_{n+1}(k)$.) Any finite-dimensional contractible G-CW-complex with stabilizers in \mathfrak{P} has dimension at least n.

Proof. The hypotheses on G imply that G acts on a spherical building Δ of dimension $n - 1$ [1, 5, Appendix on algebraic groups]. Any such building is homotopy equivalent to a wedge of $(n - 1)$-spheres. Quillen has shown that Δ is homotopy equivalent to the realization of $S_p(G)$, where p is the characteristic of the field k [21, Proposition 2.1 and Theorem 3.1]. It follows that $S_p(G)$ is homotopy equivalent to a wedge of $(n - 1)$-spheres, and in particular the mod-p homology group $H_{n-1}(S_p(G))$ is non-zero.

Now suppose that X is a finite-dimensional contractible G-CW-complex with stabilizers in \mathfrak{P}. Using Proposition 3.5, one sees that
the mod-p homology group $H_{n-1}(X_{\text{sing}(p)})$ is non-zero. It follows that X must have dimension at least n. □

Remark 3.7. In [22] it is shown that if G is a finite simple group of Lie type, of Lie rank n, then any contractible G-CW-complex of dimension strictly less than n contains a point fixed by G. (Theorem 1 of [22] contains the additional hypothesis that the G-CW-complex should be finite, but this is not used in the proof.) A similar argument to that used in [22, Theorem 2] was used in [13] to show that when $G = SL_{n+1}(\mathbb{F}_p)$, every contractible G-CW-complex without a global fixed point has dimension at least n. Note that Proposition 3.6 applies in greater generality than these results. For example, the Conner-Floyd construction [6] shows that whenever the multiplicative group of k does not have prime-power order, there is, for any $n \geq 1$, a 4-dimensional contractible $GL_n(k)$-CW-complex without a global fixed point.

Theorem 3.8. There are the following strict containments and equalities between classes of groups:

(i) $\mathfrak{F} \subseteq H_1 \mathfrak{P}$;
(ii) $H_1 \mathfrak{P} \subseteq H_1 \mathfrak{F}$;
(iii) $H_\mathfrak{F} = H_\mathfrak{P}$.

Proof. Corollary 3.2 shows that $\mathfrak{F} \subseteq H_1 \mathfrak{P}$. The free product of two cyclic groups of prime order is in $H_1 \mathfrak{P}$ and is not finite. The claim that $H_\mathfrak{F} = H_\mathfrak{P}$ follows from the inequalities $\mathfrak{P} \subseteq \mathfrak{F} \subseteq H_1 \mathfrak{P}$, and the claim $H_1 \mathfrak{P} \subseteq H_1 \mathfrak{F}$ follows from $\mathfrak{P} \subseteq \mathfrak{F}$.

It remains to exhibit a group G that is in $H_1 \mathfrak{F}$ but not in $H_1 \mathfrak{P}$. Let $G = SL_\infty(\mathbb{F}_p)$, the direct limit of the groups $G_n = SL_n(\mathbb{F}_p)$, where G_n is included in G_{n+1} as the ‘top corner’. As a countable locally-finite group, G acts with finite stabilizers on a tree. (Explicitly, the vertex set V and edge set E are both equal as G-sets to the disjoint union of the sets of cosets $G/G_1 \cup G/G_2 \cup \cdots$, with the edge gG_i joining the vertex gG_i to the vertex gG_{i+1}.) It follows that $G \in H_1 \mathfrak{F}$. By Proposition 3.6, G cannot be in $H_1 \mathfrak{P}$. □

Remark 3.9. Let G be a group in $H_\mathfrak{F}$ that is also of type FP_∞. By a result of Kropholler [10], there is a bound on the orders of finite subgroups of G, and Kropholler-Mislin show that G is in $H_1 \mathfrak{F}$ [11]. Corollary 3.2 shows that G is in $H_1 \mathfrak{P}$.

4. Cohomology relative to a class of groups

Let Δ denote a G-set, and let $\mathbb{Z}\Delta$ denote the corresponding G-module. For $\delta \in \Delta$, we write G_δ for the stabilizer of δ. A short
exact sequence $A \inject B \onto C$ of G-modules is said to be Δ-split if and only if it splits as a sequence of G_δ-modules for each $\delta \in \Delta$. Equivalently, the sequence is Δ-split if and only if the following sequence of $\mathbb{Z}G$-modules splits: $A \otimes \mathbb{Z} \Delta \inject B \otimes \mathbb{Z} \Delta \onto C \otimes \mathbb{Z} \Delta$ [18].

We say a G module is Δ-projective if it is a direct summand of a G-module of the form $N \otimes \mathbb{Z} \Delta$, where N is an arbitrary G-module. Δ-projectives satisfy analogue properties to ordinary projectives. Furthermore, for each δ, and each G_δ-module M, the induced module $\text{Ind}_{G_\delta}^G M$ is Δ-projective. Given two Δ-sets Δ_1 and Δ_2 and a G-map $\Delta_1 \rightarrow \Delta_2$ then Δ_1-projectives are Δ_2-projective and Δ_2-split sequences are Δ_1-split. For more detail the reader is referred to [18].

Now suppose that \mathcal{F} is a class of groups closed under taking subgroups. We consider G-sets Δ satisfying the following condition, for all $H \leq G$:

\[\Delta^H \neq \emptyset \iff H \in \mathcal{F}. \]

There are G-maps between any two G-sets satisfying condition (*), and so we may define an \mathcal{F}-projective module to be a Δ-split module for any such Δ. Similarly, an \mathcal{F}-split exact sequence of G-modules is defined to be a Δ-split sequence. If Δ satisfies (*) and M is any G-module, the module $M \otimes \mathbb{Z} \Delta$ is \mathcal{F}-projective and admits an \mathcal{F}-split surjection to M. This leads to a construction of homology relative to \mathcal{F}. An \mathcal{F}-projective resolution of a module M is an \mathcal{F}-split exact sequence

\[\cdots \rightarrow P_{n+1} \rightarrow P_n \rightarrow \cdots \rightarrow P_0 \rightarrow M \rightarrow 0, \]

where all P_i are \mathcal{F}-projective. Group cohomology relative to \mathcal{F}, denoted $\mathcal{F}H^*(G; N)$ can now be defined as the cohomology of the cochain complex $\text{Hom}_G(P_\bullet, N)$, where P_\bullet is an \mathcal{F}-projective resolution of \mathbb{Z}.

We say that a module M is of type $\mathcal{F}\text{FP}_n$ if M admits an \mathcal{F}-projective resolution in which P_i is finitely generated for $0 \leq i \leq n$. It has been shown that modules of type $\mathcal{F}\text{FP}_n$ are of type FP_n [18]. We will say that a group G is of type $\mathcal{F}\text{FP}_n$ if the trivial G-module \mathbb{Z} is of type $\mathcal{F}\text{FP}_n$.

We now specialize to the cases when $\mathcal{F} = \mathfrak{F}$ and $\mathcal{F} = \mathfrak{P}$.

Theorem 4.1. The following properties hold.

(i) A short exact sequence of G-modules is \mathfrak{F}-split if and only if it is \mathfrak{P}-split.

(ii) A G module is \mathfrak{F}-projective if and only if it is \mathfrak{P}-projective.

(iii) $\mathfrak{F}H^*(G, -) \cong \mathfrak{P}H^*(G, -)$

Proof: (i) It is obvious that any \mathfrak{F}-split sequence is \mathfrak{P}-split, and the converse follows from a standard averaging argument. Let H be an
arbitrary finite subgroup of G. Then $|H| = \prod_{i=1}^{n} p_i^{a_i}$ where p_i are distinct primes and $0 < a_i \in \mathbb{Z}$. For each i, let n_i be the index $n_i = [H : P_i]$. Now consider a \mathcal{P}-split surjection $A \twoheadrightarrow B$. Let σ_i be a P_i-splitting of π, and define a map s_i by summing σ_i over the cosets of P_i:

$$s_i(b) = \sum_{t \in H/P_i} t \sigma_i(t^{-1}b).$$

For each P_i we obtain a map $s_i : B \rightarrow A$, such that $\pi \circ s_i = n_i \times id_B$. There exist $m_i \in \mathbb{Z}$ so that $\sum_i m_i n_i = 1$, and the map $s = \sum_i m_i s_i$ is the required H-splitting.

(ii) It is obvious that a \mathcal{P}-projective module is \mathfrak{C}-projective. Now let P be \mathfrak{C}-projective. We may take a \mathcal{P}-split surjection $M \twoheadrightarrow P$ with M a \mathcal{P}-projective. By (i) this surjection is \mathfrak{C}-split, and hence split. Thus P is a direct summand of a \mathcal{P}-projective and so is \mathcal{P}-projective.

(iii) now follows directly from (i) and (ii). \Box

Proposition 4.2. A group G is of type $\mathfrak{C}FP_0$ if and only if G has only finitely many conjugacy classes of subgroups of prime power order.

Proof: Suppose that G has only finitely many conjugacy classes of subgroups in \mathcal{P}. Let I be a set of representatives for the conjugacy classes of \mathcal{P}-subgroups and set

$$\Delta_0 = \bigsqcup_{P \in I} G/P.$$

This G-set satisfies condition (\ast) for \mathcal{P} and therefore the surjection $\mathbb{Z}\Delta_0 \twoheadrightarrow \mathbb{Z}$ is \mathfrak{C}-split and also $\mathbb{Z}\Delta_0$ is finitely generated.

To prove the converse we consider an arbitrary \mathfrak{C}-split surjection $P_0 \twoheadrightarrow \mathbb{Z}$ with P_0 a finitely generated \mathfrak{C}-projective. As in [18, 6.1] we can show that P_0 is a direct summand of a module $\bigoplus_{\delta \in \Delta_f} \text{Ind}^G_{G_\delta} P_\delta$, where Δ_f is a finite G-set, the G_δ are finite groups and P_δ are finitely generated G_δ-modules. Therefore we might assume from now on that P_0 is of the above form. Since there is a G-map $\Delta_f \rightarrow \Delta$, where Δ satisfies condition (\ast) the \mathfrak{C}-split surjection $P_0 \twoheadrightarrow \mathbb{Z}$ is also Δ_f-split [18]. Consider now the following commutative diagram:

$$\begin{array}{ccc}
P_0 & \overset{\varepsilon}{\longrightarrow} & \mathbb{Z} \\
\downarrow{\alpha} & & \downarrow{\beta} \\
\mathbb{Z}\Delta_f & \overset{\varepsilon_f}{\longrightarrow} & \mathbb{Z}
\end{array}$$
That we can find such an α follows from the fact that ε is Δ_f-split, and β exists since P_0 is Δ_f-projective being a direct sum of induced modules, induced from G_δ, $(\delta \in \Delta_f)$ to G.

As a next step we’ll show that ε_f is \mathfrak{F}-split. Take an arbitrary finite subgroup H of G and show that ε_f splits when restricted to H. Since ε is split by s, say, when restricted to H we can define the required splitting by $\beta \circ s$.

Now let P be an arbitrary p-subgroup of G. Since the module $\mathbb{Z}[G/P]$ is \mathfrak{F}-projective, there exists a G-map φ, such that the following diagram commutes:

\[
\begin{array}{ccc}
\mathbb{Z}\Delta_f & \xrightarrow{\varepsilon_f} & \mathbb{Z} \\
\varphi \downarrow & & \downarrow \\
\mathbb{Z}[G/P] & \longrightarrow & \mathbb{Z}
\end{array}
\]

The image $\varphi(P)$ of the identity coset P is a point of $\mathbb{Z}\Delta$ fixed by the action of P. If H is any group and $\mathbb{Z}\Omega$ is any permutation module, then the H-fixed points are generated by the orbit sums $H.\omega$. Hence P must stabilize some point of Δ_f, since otherwise we would have that p divides $\varepsilon_f\varphi(P) = \varepsilon\alpha(P) = 1$, a contradiction. It follows that P is a subgroup of G_δ for some $\delta \in \Delta_f$. \qed

Note that being of type $\mathfrak{F}\text{FP}_0$ does not imply that there are finitely many conjugacy classes of finite subgroups. In fact, the authors have examples with infinitely many conjugacy classes of finite subgroups, see [14]. Nevertheless this gives rise to the following conjecture:

Conjecture 4.3. A group G is of type $\mathfrak{F}\text{FP}_\infty$ if and only if G is of type FP_∞ and has finitely many conjugacy classes of p-subgroups.

It is shown in [18] that any G of type $\mathfrak{F}\text{FP}_\infty$ is of type FP_∞, which together with Proposition 4.2 proves one implication in the above conjecture.

References

[1] P. Abramenko and K. S. Brown, *Buildings: Theory and Applications*, Graduate Texts in Mathematics **248**, Springer Verlag (2008).

[2] S. Bouc, Le complexe de chaînes d’un G-complexe simplicial acyclique, *J. Algebra*, **220**, (1999), 415–436.

[3] G. E. Bredon, *Introduction to compact transformation groups*, Pure and Applied Math. **46**, Academic Press (1972).

[4] K. S. Brown, *Cohomology of groups*, Graduate Texts in Mathematics **87**, Springer Verlag (1982).

[5] K. S. Brown, *Buildings*, Springer Verlag (1989).
[6] P.E. Conner and S.E. Floyd, Differentiable periodic maps, *Bull. Am. Math. Soc.* 68, (1962), 76–86.

[7] I.M. Isaacs, *Finite group theory*, Graduate Studies in Mathematics 92, Providence, RI: American Mathematical Society (AMS) (2008).

[8] D. Juan-Pineda and I. J. Leary, On classifying spaces for the family of virtually cyclic subgroups, *Recent developments in algebraic topology* Contemporary Mathematics 407, 135-145 (2006).

[9] D. H. Kochloukova, C. Martínez-Pérez and B.E.A. Nucinkis, Cohomological finiteness conditions in Bredon cohomology, preprint 2008.

[10] P. H. Kropholler, On groups of type FP_{∞}, *J. Pure Appl. Algebra* 90 (1993), 55–67.

[11] P. H. Kropholler and G. Mislin, Groups acting on finite dimensional spaces with finite stabilizers, *Comment. Math. Helv.* 73 (1998), 122–136.

[12] P. H. Kropholler and C. T. C. Wall A theorem of Bouc concerning finite group actions on finite dimensional acyclic spaces, preprint.

[13] I. J. Leary, On finite subgroups of groups of type VF, *Geom. Topol.* 9 (2005), 1953–1976.

[14] I. J. Leary and B. E. A. Nucinkis, Some groups of type VF, *Invent. Math.* 151 (2003), 135–165.

[15] W. Lück, The type of the classifying space for a family of subgroups, *J. Pure Appl. Algebra* 149 (2000), 177-203.

[16] W. Lück and M. Weiermann, On the classifying space of the family of virtually cyclic subgroups, arXiv:math.AT/0702646v1, 2007.

[17] C. Martínez-Pérez and B. E. A.Nucinkis, Cohomological Dimension of Mackey Functors for Infinite Groups, *J. London Math. Soc. (2)* 74 (2006), no. 2, 379–396.

[18] B. E. A. Nucinkis, Cohomology relative to a G-set and finiteness conditions, *Top. Appl.* 92, (1999), 153–171.

[19] B. E. A. Nucinkis, Is there an easy algebraic characterisation of universal proper G-spaces?, *Manuscripta Math.* 102, (2000), 335–345.

[20] R. Oliver, Fixed-point sets of group actions on finite acyclic complexes, *Comment. Math. Helvetici* 50 (1975), 155–177.

[21] D. Quillen, Homotopy properties of the poset of non-trivial p-subgroups of a group, *Advances in Math.* 28, (1978), 101–128.

[22] Y. Segev, On the action of finite simple groups of Lie type and characteristic p on finite \mathbb{Z}_p-acyclic simplicial complexes, *Topology* 32 (1993) 665–675.

[23] J. Tits, On buildings and their applications, *Proc. Int. Cong. Mathematicians*, Vancouver, 1974.

DEPARTMENT OF MATHEMATICS, THE OHIO STATE UNIVERSITY, 231 W 18TH AVE, COLUMBUS OHIO 43210

HEILBRONN INSTITUTE, UNIVERSITY OF BRISTOL, ROYAL FORT ANNEXE, BRISTOL BS8 1TW

E-mail address: leary@math.ohio-state.edu

SCHOOL OF MATHEMATICS, UNIVERSITY OF SOUTHAMPTON, SOUTHAMPTON SO17 1BJ, UK

E-mail address: B.E.A.Nucinkis@soton.ac.uk