DNA Methylation Signature on Phosphatidylethanol, not Self-Reported Alcohol Consumption, Predicts Hazardous Alcohol Consumption in Two Distinct Populations

Xiaoyu Liang1,2, Amy C. Justice2,3, Kaku So-Armah4, John H. Krystal1,2, Rajita Sinha1,5,6 and Ke Xu1,2

1Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; 2VA Connecticut Healthcare System, West Haven, CT, USA; 3Yale University School of Medicine, New Haven Veterans Affairs Connecticut Healthcare System, New Haven, CT, USA; 4Boston University School of Medicine, Boston, MA, USA; 5Child Study Center, Yale School of Medicine, New Haven, CT, USA; 6Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA

All corresponding to

Ke Xu, MD, PhD

Associate Professor of Psychiatry

Yale School of Medicine

Email: ke.xu@yale.edu
ABSTRACT

The process of diagnosing hazardous alcohol drinking (HAD) is based on self-reported data and is thereby vulnerable to bias. There has been an interest in developing epigenetic biomarkers for HAD that might complement clinical assessment. Because alcohol consumption has been previously linked to DNA methylation (DNAm), here, we aimed to select DNAm signatures in blood to predict HAD from two demographically and clinically distinct populations ($N_{\text{total}}=1,549$). We first separately conducted an epigenome-wide association study (EWAS) for phosphatidylethanol (PEth), an objective measure of alcohol consumption, and for self-reported alcohol consumption in Cohort 1. We identified 102 PEth-associated CpGs, including 32 CpGs previously associated with alcohol consumption or alcohol use disorders. In contrast, no CpG reached epigenome-wide significance on self-reported alcohol consumption. Using a machine learning approach, two subsets of CpGs from EWAS on PEth and on self-reported alcohol consumption from Cohort 1 were separately tested for the prediction of HAD in Cohort 2. We found that a subset of 130 CpGs selected from the EWAS on PEth showed an excellent prediction of HAD with area under the ROC curve (AUC) of 91.31% in training set and 70.65% in validation set of Cohort 2. However, CpGs preselected from the EWAS on self-reported alcohol consumption showed a poor prediction of HAD with AUC 75.18% in the training set and 57.60% in the validation set. Our results demonstrate that an objective measure for alcohol consumption is a more informative phenotype than self-reported data for revealing epigenetic mechanism. The PEth-associated DNAm signature in blood is a robust biomarker for alcohol consumption.
INTRODUCTION

Hazardous alcohol drinking (HAD) is detrimental to health and is highly correlated with medical comorbidities and psychiatric diseases \(^1\), \(^2\). Diagnosing HAD is challenging due to a lack of stable and objective measures for chronic heavy alcohol consumption \(^3\).

Phosphatidylethanol (PEth) is a lipid metabolite of ethanol formed from phosphatidylcholine in erythrocytes and has been proposed as a biomarker for alcohol consumption. Compared with self-reported data, PEth reliably detects ethanol levels up to 21 days after the last drink \(^4\), and the PEth level is highly correlated with alcohol consumption \(^5\). However, the clinical applicability of PEth is limited because its half-life is approximately 4–7 days \(^6\). Thus, other more stable biomarkers for alcohol consumption are needed to inform clinical practice.

Epigenetic signatures have emerged as attractive biomarkers for complex diseases such as cancers and neurodegenerative diseases \(^7\). Epigenetic markers may reflect environmental exposures, including alcohol consumption. Among these epigenetic markers, DNA methylation (DNAm) biomarkers are particularly attractive because they are relatively stable and capture an early stage of pathophysiological changes \(^8\), \(^9\). A recent longitudinal study on DNAm showed that most DNA methylome changes occurred 80-90 days before clinically detectable glucose elevation \(^10\), suggesting that DNAm is involved in an early stage of diabetes. Finally, epigenetic modifications can be reliably detected in noninvasive fluids and biospecimens \(^11\). Thus, the utility of epigenetic alterations has motivated the biomarker research field to develop epigenetic signatures derived from easily accessible cells for clinical use \(^12\)-\(^14\).
DNAm markers are emerging as diagnostic biomarkers in many areas of medicine and are applied to predict complex diseases 15. For example, DNAm markers on the promoters of several genes, including \textit{BMP3, NDRG4,} and \textit{SPEPT9,} in blood or stool samples have been approved by the Food and Drug Administration as biomarkers for colorectal cancer screening 16. DNAm markers on \textit{APP, BACE1,} and \textit{LEP1} in erythrocytes have been applied in predicting the prognosis of Alzheimer's disease 17. DNAm markers also distinguish smokers and nonsmokers 18, 19. However, we do not yet have validated DNAm biomarkers for the diagnosis of HAD.

Recent studies have shown that alcohol consumption modifies DNAm 20 in animals and in the human epigenome from blood, liver, and saliva cells 18, 21-25. Epigenome-wide association studies (EWAS) have identified hundreds of DNAm cytosine-phosphate-guanine sites (CpGs) from blood samples that are associated with alcohol consumption 26-29, alcohol use disorders 30, 31, stress-related alcohol consumption 32, and fetal alcohol syndrome 33-36. A large number of CpGs in the human leukocyte DNA methylome have recently been reported to have associations with dietary folate and alcohol intake 37. Some CpGs have been found to be associated with alcohol consumption in different cell types, ethnic groups, and phenotypic assessments 29, 30, 38. Among the reported CpGs for alcohol consumption, more than a dozen CpGs have been replicated. For example, cg11376147 on \textit{SLC43A1} has been linked to alcohol consumption and HAD diagnosis in several studies 18, 29, 30. Thus, DNAm in blood has been proposed as a diagnostic and prognostic biomarker of alcohol consumption for clinic use 39. For this purpose, a previous study identified a panel of
114 CpGs as biomarkers for alcohol consumption. However, these CpGs have not been validated in independent studies.

One of the limitations of previous EWAS is that alcohol consumption was assessed by self-report, which may lead to inaccurate assessment and introduce bias. A self-reported phenotype may, in part, explain the discrepancy of EWAS findings on alcohol consumption or alcohol use-related phenotypes observed in previous studies. Objective measures such as PEth may improve the association signals for alcohol consumption in EWAS because PEth-associated DNAm markers are more proximal to the biological changes and pathological processes underlying HAD.

In this study, we hypothesized that the DNAm signatures associated with PEth would be a more robust predictor of HAD than self-reported drinking data. We conducted a 2-stage study with the goal of identifying PEth-associated DNAm CpGs and then linking the PEth-associated methylation features to HAD (\(N_{\text{total}} = 1,549\)). We compared the findings of DNAm markers for PEth with those for self-reported alcohol consumption. The first stage included an EWAS for PEth in a discovery sample and in a replication sample from Cohort 1. An EWAS of self-reported Alcohol Use Disorders Identification Test-Consumption (AUDIT-C, first 3-items of AUDIT) score in the same individuals of Cohort 1 were also conducted in comparison of the EWAS findings on PEth. In the second stage, we applied a recently developed machine learning method, elastic net regularization (ENR), to select CpGs for predicting HAD defined by a self-reported 10-item AUDIT measurement in a demographic and clinically independent sample (Cohort 2). The preselected PEth-associated CpGs from the EWAS of PEth in Cohort 1 were optimized to predict HAD in Cohort 2. Using the same analytic approach,
the HAD predicting procedure using the preselected CpGs from the EWAS on AUDIT-C score was also performed. The analytical strategy is presented in Figure 1.

MATERIALS AND METHODS

Sample descriptions

Cohort 1 (N=1,047): The DNA samples in Cohort 1 were from the Veterans Aging Cohort Study (VACS). The VACS is a longitudinal cohort of HIV-positive and HIV-negative participants seen in infectious disease and general medical clinics. The study is funded primarily by the National Institute on Alcohol Abuse and Alcoholism at the National Institutes of Health. Data were obtained from the patients after they provided written consent; data were collected via telephone interviews, focus groups, and full access to the national Veterans Affairs (VA) electronic medical record system. All subjects in this subset of the VACS cohort were men.

Samples in Cohort 1 were divided into a discovery set (N=580) and a replication set (N=467) for EWAS and for predicting HAD. A majority of discovery samples were HIV-positive (~85.34%), and all replication samples were HIV-positive. HIV Viral Load (VL) was measured per standard of care by polymerase chain reaction as copies per milliliter. The adherence to antiretroviral therapy (ART adherence) was obtained by a survey in the same time window as the blood draw for the measurement of DNA methylation. Genomic DNA was extracted from whole blood using a standard method.
Cohort 2 (N=502): We recruited 502 HIV-negative healthy community volunteers who responded to advertisements placed either online or in local newspapers and at a community center in New Haven, CT. The subjects were 18–50 years old. We excluded subjects who met the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IVTR) (American Psychiatric Association, 1994) criteria for substance dependence on any drug or alcohol other than nicotine. Subjects with head injury or those who used prescribed medications for any psychiatric or medical disorders were also excluded. Women on oral contraceptives, women who were peri- and postmenopausal, women who had a prior hysterectomy and women who were pregnant, or lactating were excluded. Participants also received a physical examination during a separate session by a research nurse who assessed cardiovascular, renal, hepatic, pancreatic, hematopoietic, and thyroid functions to ensure that all participants were in good health. A breathalyzer test and urine toxicology screens were conducted at each appointment to ensure a drug-free status among participants. Cohort 2 was divided into a training set and a testing set for machine learning prediction of HAD. Genomic DNA was extracted from whole blood using a standard method.

All phenotypic data in Cohort 1 and Cohort 2 were obtained in the same time window as the blood draws for DNA methylation profiling. The study was approved by the committee of the Human Research Subject Protection at Yale University and the IRB committee of the Connecticut Veteran Healthcare System.

Phosphatidylethanol (PEth) measurement

In this study, PEth was only measured in Cohort 1 using dried blood spot samples derived from frozen peripheral blood mononuclear cells stored at -80°C. PEth can be
detected at concentrations as low as 2 ng/ml. A study showed that the PEth value is linearly related to alcohol consumption. In forensics, 20 ng/ml of PEth was used as a cutoff to detect harmful alcohol use. The sensitivity of PEth has been reported to be 99%, with several studies showing the assay to have perfect specificity, including in the presence of liver disease and hypertension. We previously reported that PEth was highly correlated with the AUDIT-C score from electronic records.

Definition of hazardous alcohol drinking (HAD)

In Cohort 1, HAD was defined by a PEth level greater than 20 ng/ml and an AUDIT-C score greater than 4. In Cohort 2, HAD was defined by a 10-item AUDIT score greater than 8 for men and greater than 7 for women. Demographic and clinical variables for HAD versus non-HAD participants in Cohort 1 and Cohort 2 are presented in Table 1.

DNA methylation and data quality control

In Cohort 1, DNAm for the discovery sample was profiled by using the Illumina Infinium HumanMethylation450 Beadchip (Illumina HM450K) (San Diego, CA, USA). DNAm for the replication sample was assessed by using the Illumina Infinium MethylationEPIC Beadchip (Illumina EPIC) (San Diego, CA, USA). In Cohort 2, DNAm was measured by using Illumina HM450K. All samples in Cohorts 1 and 2 were processed at the Yale Center for Genomic Analysis.

Methylation raw data were retrieved using the minfi R package (version 1.18.1), and downstream analyses were performed using minfi and R. We performed the probe normalization and batch-correction procedure using the pipeline reported by Lehne et al. We removed CpGs on sex chromosomes and CpGs within 10 base pairs of single
nucleotide polymorphisms. In Cohort 1, only common CpGs between the Illumina HM450K and Illumina EPIC array were analyzed in meta-analyses. After QC, a total of 408,583 CpGs remained for analysis. We also compared the predicted sex with self-reported sex. All samples were matched as male. In Cohort 2, we applied the same QC criteria. A total of 437,722 CpGs remained for analysis. Methylation inferred sex matched with self-reported sex data in this cohort.

Six cell types (CD4+ T cells, CD8+ T cells, NK T cells, B cells, monocytes, and granulocytes) in the blood were estimated in each sample for both cohorts using the method described by Houseman et al. 48, 49.

Discovery and replication EWAS in Cohort 1

EWAS were separately performed to test the association of each CpG methylation with PEth and AUDIT-C score in the discovery and replication samples. To adjust for significant global confounding factors, we followed a comprehensive analysis pipeline developed by Lehne et al. 47. The primary EWAS model used a DNAm β-value (the ratio of methylated probe intensity divided by the overall intensity) as the response variable and the continuous natural logarithm of PEth as the predictor variable of interest. Since previous studies have shown that a large number of CpGs were significantly associated with age 50, smoking status 13, race 51, HIV status and HIV-1 VL 12, these variables were adjusted in the models. The cell proportions of 6 cell types were also adjusted in the models. The log10 of viral load (\(\log_{10} VL\)) and ART adherence were adjusted in the replication sample. The same models were also used for EWAS on AUDIT-C score in discovery and replication samples, where the AUDIT-C score was a response variable.
Epigenome-wide significance was set at a false discovery rate (FDR) < 0.05 in the discovery sample. Significance in the replication sample was set at a nominal $p < 0.05$.

1. **First generalized linear model**

 We performed a linear model to adjust for the confounders mentioned above in both the discovery and replication models.

 For discovery,

 $$
 \beta \sim \ln(PEth) + HIV \text{ status} + Smoker + Race + Age + WBC + CD8T + CD4T \\
 + \text{Granulocyte} + NK + B \text{ cell} + \text{Monocyte} + PC1_{\text{control-probes}} + \cdots \\
 + PC30_{\text{control-probes}}
 $$

 For replication,

 $$
 \beta \sim \ln(PEth) + \log_{10} VL + ART \text{ adherence} + Smoker + Race + Age + WBC + CD8T \\
 + CD4T + \text{Granulocyte} + NK + B \text{ cell} + \text{Monocyte} + PC1_{\text{control-probes}} \\
 + \cdots + PC30_{\text{control-probes}}
 $$

2. **Principal component analysis (PCA) of intermediary residuals**

 We then performed a PCA on the resulting regression residuals. The top five principal components on the residuals (PCs) ($PC1_{\text{residuals}}, \ldots, PC5_{\text{residuals}}$) were adjusted in the final model.

3. **A final generalized linear model for identifying differential methylation**

 We performed a final generalized linear regression analysis for each methylation marker predicting the β as a function of the natural logarithm of the PEth value adjusted for technical and biological factors and the top 5 PC residuals derived from the model above.
Meta-analysis of EWAS in Cohort 1

An EWAS meta-analysis was conducted by combining the discovery sample and the replication samples. For each CpG, we obtained effect size estimates and p-values from the two samples and weighted the effect size estimates by their estimated standard errors. Then, the summary statistics of the two samples were combined using a sample-size weighted meta-analysis using the METAL program 52. Epigenome-wide significance was set at a FDR <0.05.

PolyGenic Methylation Score (PGMS)

We constructed a PGMS for each individual as a weighted sum of the individual CpG β values using the effect size estimated from the EWAS as weights 14. In detail, the PEth-related CpGs identified in the meta-analysis were chosen to construct the PGMS. Then, the PGMS was applied to establish a prediction model for HAD in Cohort 2.

$$\bar{M}_i = \sum_{j=1}^{q} \hat{a}_j \beta_{ij}$$

\bar{M}_i: the PGMS of individual i;

\hat{a}_j: the estimated coefficient for CpG probe j;

β_{ij}: the methylation β-value for individual i at CpG probe j.

Adjusted R^2 and incremental adjusted R^2

We used the adjusted R^2 to estimate the phenotypic variances explained by the DNA methylation. The adjusted R^2 accounted for the number of predictors in the model. The adjusted R^2 represented the percentage of variation explained by only the independent
variables that affected the dependent variable. Here, the adjusted R^2 was the proportion of the variance of the PEth values or AUDIT-C scores that was explained by the PGMS or the individual CpG methylation.

We applied the incremental adjusted R^2 (incremental R^2) as one of the parameters for feature selection as described below. The incremental R^2 was used to determine whether a new predictor increases the predictive ability above and beyond that provided by an existing model. It was calculated for each selected CpG or the linear combination of selected CpGs.

Feature selection using elastic net regularization (ENR)

CpG features were separately preselected from the EWAS results on PEth and on AUDIT-C in Cohort 1. Using the ENR method, we performed a 10-fold cross-validation for feature selection in the training sample of Cohort 2. Here, we randomly selected 80% of the samples in Cohort 2 and cross-validated them to obtain the values for the ENR tuning parameters. The following steps were taken to select the CpG features and to evaluate their performance.

Step 1. Preselection CpGs. Because DNAm of CpGs under the epigenome-wide significance threshold may collectively account for phenotype variation and may improve prediction of a phenotype, we preselected PEth-associated CpGs with a meta $p < 1E-04$ from the meta-EWAS in Cohort 1 for both PEth and AUDIT-C. The preselected CpGs were used to establish the predictive model in the training set of Cohort 2.

Step 2. Importance ranking CpGs. In the training set of Cohort 2, we performed an ENR for feature selection among the preselected CpGs. We extracted the
coefficients for the model with the lambda value corresponding to the minimum mean cross-validated error. This procedure was repeated N times. We excluded the CpGs with percentage of zero coefficients larger than 95%. All selected CpGs were reranked according to the summation of the absolute value of the N coefficients.

Step 3. **Model building by ENR in the training set.** CpG features were selected based on the area under the receiver operating characteristic curve (AUC), prediction accuracy, and the incremental R^2 for different numbers of CpG sets. The model with the best performance was determined, and the optimal values of the parameters in the best model were found by performing cross-validation in ENR.

Step 4. **Model performance testing in the testing set.** The performance of the CpG features selected from the training set were evaluated in the testing set using AUC, prediction accuracy, and the incremental R^2.

All analyses were performed using R software (https://www.r-project.org/). ENR was performed using the function “cv.glmnet” in the “glmnet” package.

Biological interpretation of the prediction model

Gene enrichment analysis was performed using the CpGs from the final prediction model to understand the underlying biological significance. We applied the web-accessible, gene annotation term-based Database for Annotation, Visualization and Integrated Discovery (DAVID) for gene enrichment analysis (http://david.niaid.nih.gov)\(^{53}\). The expanded DAVID Knowledgebase integrates almost all major and well-known public bioinformatics resources \(^{54}\). A significant pathway was set as a nominal $p < 1.00E-02.$
RESULTS

EWAS identifies new DNA methylation CpGs for PEth but not for self-reported alcohol consumption

Two analyses of EWAS on PEth values and on the AUDIT-C scores were separately conducted in Cohort 1. Phenotypically, as expected, PEth level and AUDIT-C score were highly correlated ($r = 0.45$, $p < 2.00E-16$) (Figure S1a). Compared to the non-HAD group, the HAD group had a greater AUDIT-C score and a higher level of PEth ($p = 3.47E-33$) (Figure S1b).

In the discovery sample, the HAD group included more African Americans (AAs), had a higher rate of tobacco smokers and a lower level of ART adherence compared to the non-HAD group ($p < 5.00E-02$). In the replication sample, the prevalence of smoking in the HAD group was higher than in the non-HAD group, but this difference did not reach statistical significance (Table 1). Smoking status was still adjusted in the model to address potential smoking effects.

Discovery EWAS on PEth and on AUDIT-C

We identified 9 epigenome-wide significant CpGs on PEth (FDR $p = 1.22E-04$~$4.68E-02$) (Figure S2a, Table S1). The EWAS analysis showed minimal inflation ($\lambda = 1.093$) (Figure S2b). The 9 significant CpGs were located on 7 genes: SLC7A11 (solute carrier family 7 member 11), DYRK2 (dual specificity tyrosine phosphorylation regulated kinase 2), FOXP1 (forkhead box P1), SLC43A1 (solute carrier family 43 member 1), WDR1 (WD repeat domain 1), ABAT (4-aminobutyrate aminotransferase),
and CCDC71 (coiled-coil domain containing 71). Six of 9 CpGs were negatively associated with PEth while 3 of 9 were positively associated with PEth.

We found no CpGs that reached an epigenome-wide significance threshold for self-reported AUDIT-C scores. Six of the 9 CpGs associated with PEth showed nominal association with AUDIT-C (nominal p ranged from 3.50E-03 to 4.76E-02): cg06690548 (SLC7A11), cg17962756, cg13442969 (DYRK2), cg11376147 (SLC43A1), cg00220102 (ABAT), and cg18590502 (CCDC71). It is noteworthy that all 9 CpGs associated with PEth showed the same direction as the associations with the AUDIT-C scores in the discovery set.

Replication EWAS on PEth and on AUDIT-C scores

In the replication sample, we found 3 epigenome-wide significant CpGs associated with PEth: cg20414364 (LOC728613), cg10988872 (LRCH4), and cg01434144 (STXB5-AS1) (FDR = 3.62E-02 ~ 4.01E-02) (Figure S3). For the 9 PEth-associated CpGs identified in the discovery sample, we found that 6 of 9 CpGs showed nominal significance for PEth, although they did not reach epigenome-wide significance (nominal p ranged from 2.26E-06 to 2.80E-02) (Table S1). The 6 CpGs were located on 5 genes: cg06690548 (SLC7A11), cg17962756, cg13442969 (DYRK2), cg11376147 (SLC43A1), cg26689780 (WDR1), and cg18590502 (CCDC71).

As expected, the analysis of the EWAS on AUDIT-C scores revealed no CpG reaching epigenome-wide significance in the replication sample. Only 2 of 9 CpGs associated with PEth were nominally associated with AUDIT-C scores (cg11376147 in
SLC43A1 with \(t = -3.69 \) and \(p = 2.71E-04 \), cg26689780 in WDR1 with \(t = 2.07 \) and \(p = 3.92E-02 \) and showed the same direction as the association of PEth.

Meta-analysis

A meta-analysis revealed 102 epigenome-wide significant CpGs on PEth (FDR = 1.39E-06 ~ 4.89E-02) (Table 2 and Figure 2a). A majority of these CpGs (83 out of 102 CpGs) were in a gene region, including 24 CpGs in the promoter, 2 CpGs in the first exon, and 12 CpGs in the UTR regions. With a stringent significant threshold, 13 CpGs showed a Bonferroni adjusted \(p < 5.00E-02 \). These 13 CpGs mapped to 9 genes, including 6 novel genes for alcohol consumption (DYRK2, PAK1, LOC728613, ATG7, TRA2B, and FBLN2) and 3 genes (SLC7A11, SLC43A1, and WDR1) previously reported to be related to alcohol consumption 29, 30, 55.

Interestingly, even with an increased sample size in the meta-analysis, we found no epigenome-wide significant CpG site of the meta-EWAS on AUDIT-C scores (Figure 2b).

We further tested the correlation between the \(\beta \)-values of the 13 CpGs with Bonferroni significance and PEth. All 13 CpGs were significantly correlated with PEth levels after the model was adjusted for confounding factors (Figure 2c), four of the 13 CpGs were positively correlated with PEth, and the remaining 9 CpGs were negatively correlated with PEth.

PEth-associated CpG sites improves the prediction of HAD in Cohort 1

Because PEth itself was highly correlated with AUDIT-C scores and differed significantly between the HAD and the non-HAD groups, we were interested in whether PEth-
associated CpG DNAm improved the prediction of HAD compared to the prediction of HAD using PEth alone. We found that the AUC was 74.2% for PEth alone, 76.9% with the 13 Bonferroni significant CpGs and PEth, and 88.3% with the 102 epigenome-wide significant CpGs and PEth (Figure S4). Thus, DNAm features improved the prediction of hazardous alcohol consumption compared to PEth alone in the same cohort.

PGMS derived from 102 PEth-associated CpGs is correlated with alcohol consumption in an independent sample

To be consistent with the analysis in Cohort 1, we performed an EWAS on AUDIT-C score in Cohort 2. We found no epigenome-wide significant CpG for AUDIT-C. An EWAS for a full scale of AUDIT score also revealed no significant CpG.

We found that a PGMS constructed from the 102 PEth-associated CpGs was highly correlated with the self-reported 10-item AUDIT score in Cohort 2 ($r = 0.40, p < 8.09E-20$). The incremental R^2 of the association between the PGMS corresponding to 102 PEth-related CpGs and the full AUDIT score was 0.1002, which implied that the PGMS explained 10.02% of the variance of the full AUDIT score in an independent population (Figure S5a).

We further tested whether the PGMS derived from the PEth-associated CpGs was separately correlated with self-reported alcohol consumption (AUDIT-C, first 3-items of AUDIT) and self-reported problem alcohol drinking behaviors (AUDIT-P, item 4-10 of full AUDIT). We found that the PGMS was significantly correlated with AUDIT-C score ($r = 0.37, p = 4.60E-16$) (Figure S5b) and AUDIT-P score ($r = 0.35, p = 3.70E-$).
11) (Figure S5c). The correlation of the PGMS was slightly stronger with the AUDIT-C score than with the AUDIT-P score.

PEth-associated DNA methylation CpG sites predict HAD in Cohort 2

Notably, we found no statistically significant difference in the characteristics between the training set and the testing set in Cohort 2 (Table S2). Using the ENR method, we preselected PEth-associated CpGs with meta $p < 1E-04$ from the meta-EWAS in Cohort 1. A total of 302 CpGs were preselected to build a predictive model in the training set of Cohort 2. After excluding the CpGs with a percentage of zero coefficients larger than 95% using ENR, a total of 249 CpGs remained for model construction. All 249 CpGs were ranked according to the summation of the absolute value of the β coefficients. As shown in Figure 3a, a panel of 130 CpGs showed the greatest AUC with 91.31% and the highest incremental R^2 with 21.29% in the training set. Therefore, a model derived from these 130 CpGs was validated in the testing set.

In the testing set, we found that the model with the 130 CpGs showed an AUC of 70.60%, a balanced accuracy of 60.00%, and an incremental R^2 of 3.79% (Figure 3b). The results show that the 130 selected PEth-associated CpGs enabled the good prediction of HAD. Notably, the panel of 130 CpGs included 48 epigenome-wide significant CpGs for meta-EWAS on PEth in Cohort 1. We summarized the information of the 130 selected CpGs in Table S3.

Using the same approach for the analysis of feature selection of AUDIT-C-associated CpGs from Cohort 1 to predict HAD in Cohort 2, a panel of 18 CpGs were selected from 54 CpGs with $p < 1E-04$. In the training set, the AUC was 70.13%, and
the incremental R^2 was 2.18%. In the testing set, the AUC was 57.6% (46.1%-69.1%), and the incremental R^2 was 1.07%.

Biological interpretation of the 130 identified PEth-associated CpGs

The 130 CpGs from the final predictive model were annotated on 111 genes. Gene enrichment analysis using the 111 genes yielded 28 significant annotation terms ($p < 1.00E-02$, **Figure S6**). The top significant pathways included GO:0048519~negative regulation of biological process ($p=2.63E-05$); GO:0048523~negative regulation of cellular process ($p = 1.80E-04$; GO:0030155~regulation of cell adhesion ($p = 1.00E-03$); GO:0010605~negative regulation of macromolecule metabolic process ($p = 2.00E-03$); GO:0009892~negative regulation of metabolic process ($p = 2.00E-03$); GO:0010629~negative regulation of gene expression ($p = 3.00E-03$); GO:0065009~regulation of molecular function ($p = 3.00E-03$), and GO:0044093~positive regulation of molecular function ($p = 3.00E-03$).

DISCUSSION

Using samples from two distinct populations, we have demonstrated that an objective phenotype, PEth, is a robust phenotype for identifying DNAm in blood associated with HAD and that PEth-associated CpGs are predictive of HAD. We revealed 102 CpGs associated with PEth, while none of the CpGs were associated with self-reported alcohol consumption. A PGMS derived from the 102 CpGs explained 10.02% of the variance of alcohol consumption in a demographically and clinically independent sample. We further showed that the 102 CpGs combined with PEth improved 14% of
AUC of predicting HAD compared to the AUC of predicting HAD by PEth alone. Importantly, we identified a panel of 130 CpGs, that were relevant to PEth levels in a mostly HIV-positive sample and that predicted self-reported HAD in an HIV-negative sample. The 130 CpGs included 18 CpGs that were previously included in the DNAm biomarker panel for prediction of alcohol consumption by Liu et al. However, a panel of CpGs related to self-reported AUDIT-C score showed poor predictive performance for HAD. Together, these findings suggest that PEth-associated DNAm features, but not DNAm for self-reported alcohol consumption, is a robust biomarker to predict hazardous alcohol consumption that may have potential clinical utility.

Emerging evidence suggests that a set of epigenetic modification markers across different tissues is more stable and reproducible than we previously expected. In this study, we replicated 32 CpGs that had previously reported associations with alcohol consumption or alcohol use disorders. For example, three promoter CpGs, cg19731612 on *NSD1* (FDR = 3.91E-03), cg03044573 on *SNORD78* (FDR = 1.96E-02), and cg23579062 on *DNAI1* (FDR = 2.34E-02) that were associated with alcohol consumption in previous studies were also significantly associated with PEth in our study. In addition, we revealed multiple new PEth-associated CpGs that are located on the genes involved in tyrosine autophosphorylation, catalyzed phosphorylation of histones H3 and H2B (*DYRK2*) and the serine/threonine p21-activating kinases (*PAK1*), modulation of the p53-dependent cell cycle pathways during prolonged metabolic stress (*ATG7*), sequence-specific serine/arginine splicing factor (*TRA2B*) functions, and extracellular matrix protein (*FBLN2*). These results suggest that alcohol consumption alters DNA methylation on the genes involved in the cellular process and epigenetic
programming. Although the findings do not elucidate the etiology of alcohol drinking behavior in brain, the significant CpGs suggest a peripheral mechanism of how alcohol consumption changes the epigenome in peripheral cells, which may lead to alcohol use-related medical disorders.

The 102 PEth-associated CpGs identified in a mostly HIV-positive population collectively explained 10.02% of the variance of HAD in an HIV-negative population, suggesting the stability of the DNAm effect of alcohol exposure. Notably, the 10.02% effect size of the PGMS in our study is comparable with the previously reported 12%~13.8% effect size of a PGMS in a study with a 10-fold larger sample size (N = 13,317) than this study. We further showed that PGMS was not only significantly associated with recent alcohol consumption (AUDIT-C score) ($r = 0.37, p = 4.60E-16$) but was strongly associated with the problematic consequences of alcohol use (AUDIT-P score) ($r = 0.35, p = 3.70E-11$), further indicating that DNAm is a relatively stable marker for the long-term effects of alcohol consumption. Future studies evaluating DNAm marker stability for alcohol consumption using longitudinal DNAm measurements are needed.

The reproducible CpGs suggest a robust, consistent epigenetic response to alcohol consumption that can serve as biomarkers for clinical use. Using a machine learning approach, we identified a set of 130 CpGs that enables the distinction of HAD and non-HAD individuals. One of the common challenges for machine learning prediction is model overfitting. We took several steps to address this concern: 1) feature preselection and selection were conducted in two different cohorts; 2) the processes of feature selection and model evaluation were carried out in the same cohort but in
different sets without overlapping samples; and 3) we applied a newly developed
machine learning ENR method to select features in a combination of 10-fold cross-
validation. Compared to two traditional penalized regression methods, Ridge \(^{57}\) and the
least absolute shrinkage and selection operator (LASSO) \(^{58}\), ENR has the advantage of
selecting informative features without compromising predictive accuracy and has been
shown to outperform both the Ridge and LASSO methods \(^{59}\). With these strengths of
the analytical approach, we showed that a panel of 130 CpGs performed fairly well with
an AUC of 70.60\%, a balanced accuracy of 60.00\%, and an incremental \(R^2\) of 3.79\% in
the testing sample set. Although the AUC in our study was less than the previously
reported AUC of 0.90-0.99 with 144 CpGs \(^{30}\), our result is less likely to be inflated
because of our analytical approach to avoid data overfitting. In the previous study, the
model building and evaluation were performed using the same sample set while we
performed the prediction analysis in the training and testing set separately.

Several limitations should be considered in interpreting the current findings. 1) There was a lack of power to detect sex-specific associations between CpGs and HAD. It is well known that HAD in men and women is epidemiologically and mechanistically
different. The individuals in Cohort 1 were all men and approximately 50\% of the
individuals in Cohort 2 were women. These samples are insufficient to seek sex-specific
DNAm markers. 2) The DNAm signatures were identified from whole blood samples that
lacked cell-type specific profiles. Future analyses using cell-type-specific CpGs may
improve the prediction performance. 3) The 130 CpGs in the DNAm signature were
preselected from an HIV-positive sample, while the prediction model was built and
validated in an HIV-negative sample. We expect to improve the predictive efficiency in a
relatively homogenous sample in future studies. 4) Validation of the prediction panel on other alcohol use-related phenotypes, e.g., alcohol use disorder, is necessary to confidently claim the predictive performance and accuracy for clinical use.

In summary, to the best of our knowledge, this is the first study to demonstrate that PEth is a robust phenotype for detecting subtle DNAm changes associated with alcohol consumption compared to self-reported alcohol use data. PEth-associated DNAm markers predicted HAD with a good accuracy. These findings suggest that DNAm signatures may have clinical utility as biomarkers for alcohol consumption, and further development and testing of these biomarkers are warranted.
ACKNOWLEDGMENTS

The authors appreciate the support of the Veterans Aging Study Cohort Biomarker Core and the Yale Center of Genomic Analysis.

CONFLICT OF INTEREST

The authors (except JHK) declare no conflict of interest.

The following competing interests for John H. Krystal:

(1) Consultant: note: The Individual Consultant Agreements listed below are less than $10,000 per year: AstraZeneca Pharmaceuticals; Biogen, Idec, MA; Biomedisyn Corporation; Bionomics, Limited (Australia); Boehringer Ingelheim International; Concert Pharmaceuticals, Inc.; Epipolyne, Inc.; Heptares Therapeutics, Limited (UK); Janssen Research & Development; L.E.K. Consulting; Otsuka America Pharmaceutical, Inc.; Perception Neuroscience Holdings, Inc.;

Spring Care, Inc.; Sunovion Pharmaceuticals, Inc.; Takeda Industries; Taisho Pharmaceutical Co., Ltd; (2) Scientific Advisory Board: Bioasis Technologies, Inc.; Biohaven Pharmaceuticals; BioXcel Therapeutics, Inc. (Clinical Advisory Board); Cadent Therapeutics (Clinical Advisory Board); PsychoGenics, Inc.; Stanley Center for Psychiatric research at the Broad Institute of MIT and Harvard; Lohoco Research Corporation; (3) Stock: ArRETT Neuroscience, Inc.; Biohaven Pharmaceuticals; Sage Pharmaceuticals; Spring Care, Inc. (4) Stock Options: Biohaven Pharmaceuticals
Medical Sciences; BlackThorn Therapeutics, Inc.; Storm Biosciences, Inc. (5) Income Greater than $10,000: Editorial Board

Editor - Biological Psychiatry; Patents and Inventions: Seibyl JP, Krystal JH, Charney DS. Dopamine and noradrenergic reuptake inhibitors in treatment of schizophrenia. US Patent #:5,447,948. September 5, 1995; Vladimir, Coric, Krystal, John H, Sanacora, Gerard – Glutamate Modulating Agents in the Treatment of Mental Disorders US Patent No. 8,778,979 B2 Patent Issue Date: July 15, 2014. US Patent Application No. 15/695,164: Filing Date: 09/05/2017; Charney D, Krystal JH, Manji H, Matthew S, Zarate C., - Intranasal Administration of Ketamine to Treat Depression United States Application No. 14/197,767 filed on March 5, 2014; United States application or Patent Cooperation Treaty (PCT) International application No. 14/306,382 filed on June 17, 2014; Zarate, C, Charney, DS, Manji, HK, Mathew, Sanjay J, Krystal, JH, Department of Veterans Affairs “Methods for Treating Suicidal Ideation”, Patent Application No. 14/197.767 filed on March 5, 2014 by Yale University Office of Cooperative Research; Arias A, Petrakis I, Krystal JH. – Composition and methods to treat addiction.

Provisional Use Patent Application no.61/973/961. April 2, 2014. Filed by Yale University Office of Cooperative Research; Chekroud, A., Gueorguieva, R., & Krystal, JH. “Treatment Selection for Major Depressive Disorder” [filing date 3rd June 2016, USPTO docket number Y0087.70116US00]. Provisional patent submission by Yale University; Gihyun, Yoon, Petrakis I, Krystal JH – Compounds, Compositions and Methods for Treating or Preventing Depression and Other Diseases. U. S. Provisional Patent Application No. 62/444,552, filed on January10, 2017 by Yale University Office of Cooperative Research OCR 7088 US01; Abdallah, C, Krystal, JH, Duman, R,
Sanacora, G. Combination Therapy for Treating or Preventing Depression or Other Mood Diseases. U.S. Provisional Patent Application No. 047162-7177P1 (00754) filed on August 20, 2018 by Yale University Office of Cooperative Research OCR 7451 US01.

NON-Federal Research Support: AstraZeneca Pharmaceuticals provides the drug, Saracatinib, for research related to NIAAA grant “Center for Translational Neuroscience of Alcoholism [CTNA-4]

FUNDING

The project was supported by the National Institute on Drug Abuse [R03DA039745 (Xu), R01 DA038632 (Xu), R01DA047063 (Xu and Aouizerat), R01DA047820(Xu and Aouizerat)], R01-013892 (Sinha), PL1-DA09586 (Sinha) and the National Center for Post-Traumatic Stress Disorder, USA.

AVAILABILITY OF DATA AND MATERIALS

Demographic variables, clinical variables and methylation status for the VACS samples were submitted to the GEO dataset (GSE117861) and are available to the public. All codes for analysis are also available upon a request to the corresponding author.

AUTHORS’ CONTRIBUTIONS
XL was responsible for the bioinformatics data processing and statistical analysis. ACJ provided DNA samples and clinical data and contributed to the interpretation of findings and manuscript preparation. KS contributed to the manuscript preparation. JHK contributed to the interpretation of findings and manuscript preparation. RS provided DNA samples and clinical data and contributed to manuscript preparation. KX was responsible for the study design, study protocol, sample preparation, data analysis, interpretation of findings, and manuscript preparation. All authors read and approved the final manuscript.
Tables and Figures

Table 1. Demographic and clinical characteristics for Cohort 1 and Cohort 2

Table 2. Significant epigenome-wide DNA methylation sites associated with Phosphatidylethanol (PEth) in meta-analysis of Cohort 1 (False Discovery Rate < 5.00E-02 in meta-analysis)

Figure 1. Study design for the epigenome-wide association study for alcohol consumption.

Figure 2. Meta-analysis of epigenome-wide association studies of alcohol consumption.

a. Manhattan plot of chromosomal locations of $-\log_{10}(p)$ for the association between Phosphatidylethanol (PEth) and 408,583 CpGs in the meta-analysis.

b. Manhattan plot of chromosomal locations of $-\log_{10}(p)$ for the association between Hazardous Alcohol Drinking (HAD) and 408,583 CpGs in the meta-analysis. The red line represents the threshold for Bonferroni-corrected p-value. The blue line represents the threshold for false discovery rate (FDR)-corrected p-value.

c. Scatterplots of the adjusted β-values of the 13 CpGs against the natural logarithm of the PEth value. All 13 CpGs were significantly correlated with the natural logarithm of the PEth value with $p < 1.00E-03$.

Figure 3. Feature selection using elastic net regularization (ENR).

a. The area under the receiver operating characteristic curve (AUC) and the incremental adjusted R^2 (incremental R^2) of the selected CpG sites using ENR method (pre-selection CpG sites cutoff $p < 1.00E-04$ in the training set of Cohort 2). Incremental R^2 denotes the difference in adjusted R^2 between the model with the predicted variable and the model without the predicted variable.

b. The receiver operating characteristic (ROC) curve for
Hazardous Alcohol Drinking (HAD) prediction in the testing set of Cohort 2 using 130 out of 302 CpGs with $p < 1E-04$ in the meta-analysis.

Supplemental Tables and Figures

Table S1. Significant epigenome-wide DNA methylation sites associated with Phosphatidylethanol (PEth) in discovery of Cohort 1 (False Discovery Rate < 5E-02 in discovery of Cohort 1)

Table S2. Demographic and clinical characteristics for the feature selection set (training) and validation set (testing) in Cohort 2

Table S3. The 130 selected CpGs for predicting Hazardous Alcohol Drinking (HAD) using elastic net regularization (ENR)

Figure S1. Correlation between Phosphatidylethanol (PEth) and Alcohol Use Disorders Identification Test-Consumption items (AUDIT-C) score in Cohort 1. a. Scatter plot showing significant association between the ln(PEth) value and the AUDIT-C score (The Pearson correlation between ln(PEth) and AUDIT-C is 0.45 (95% CI: 0.39, 0.51) with $p < 2.00E-16$). b. Violin plot showing significant difference of the ln(PEth) value between non-Hazardous Alcohol Drinking (non-HAD) (AUDIT-C >= 4) participants and HAD participants. The P-value of two sample t-test for non-HAD and HAD is 3.47E-33, which indicates that the biomarker PEth and alcohol consumption are significantly correlated.

Figure S2. Manhattan plot and quantile-quantile (QQ) plot for the discovery set of Cohort 1. a. Manhattan plot of the chromosomal locations of $-\log_{10}(p)$ for the
epigenome-wide association in 437,722 CpGs among the 580 males in the discovery sample set. The red line represents the threshold for Bonferroni-corrected p-value. The blue line represents the threshold for false discovery rate (FDR)-corrected p-value.

b. QQ plot for association at all 437,722 CpGs. $\lambda = 1.093$ in the discovery epigenome-wide association analysis.

Figure S3. Manhattan plot and quantile-quantile (QQ) plot for the replication set of Cohort 1.

a. Manhattan plot of the chromosomal locations of $-\log_{10}(p)$ for the epigenome-wide association in 846,604 CpGs among the 467 males in the replication sample set. The red line represents the threshold for Bonferroni-corrected p-value. The blue line represents the threshold for false discovery rate (FDR)-corrected p-value.

b. QQ plot for the association at all 846,604 CpGs. $\lambda = 1.146$ in the replication epigenome-wide association analysis.

Figure S4. Receiver Operating Characteristic (ROC) curve for predicting Hazardous Alcohol Drinking (HAD). ROC curve for predicting HAD by Phosphatidylethanol (PEth) alone, PEth with 13 CpGs (Bonferroni corrected p-value less than 5.00E-02), and PEth with 102 CpGs (false discovery rate (FDR)-corrected p-value less than 5.00E-02) for samples in Cohort 1.

Figure S5. Scatterplots for alcohol-related phenotype vs. PolyGenic Methylation Score (PGMS) constructed by 102 Phosphatidylethanol (PEth)-related CpGs.

a. Scatterplots of Alcohol Use Disorders Identification Test (AUDIT) score vs. PGMS.

b. Scatterplots of Alcohol Use Disorders Identification Test-Consumption items (AUDIT-C) vs. PGMS.

c. Scatterplots of Alcohol Use Disorders Identification Test-Problem items (AUDIT-P) score vs. PGMS.
Figure S6. Database for Annotation, Visualization and Integrated Discovery (DAVID) pathway analysis for the 130 CpGs selected by elastic net regularization (ENR).
	Cohort 1:	Cohort 1:	Cohort 2									
	Discovery Sample	Replication Sample	HAD	non-HAD	HAD	non-HAD	Men: AUDIT >= 8	Women: AUDIT >= 7	HAD	non-HAD	Men: AUDIT < 8	Women: AUDIT < 7
	PEth >= 20 (N = 166)	PEth < 20 (N = 414)	PEth >= 20 (N = 135)	PEth < 20 (N = 332)								
Age (year)	49.28 ± 7.25	49.25 ± 8.13	47.50 ± 7.08	48.18 ± 8.03	26.77 ± 7.08	29.61 ± 9.38^a						
Sex (male, %)	100	100	100	100	64.67	35.74^b						
Race (AA, %)	90.36	79.71^c	82.22	81.02	12.08	22.22^c						
Smoker (%)	70.91	53.92^d	63.64	54.91	39.33	13.21^d						
Alcohol (AUDIT-C)	4.73 ± 2.65	2.57 ± 2.40^a	4.80 ± 2.30	2.28 ± 2.24^a	NA	NA						
HIV-infection (%)	88.55	84.54	100	100	NA	NA						
VL (log10)	2.85 ± 1.24	2.6 ± 1.2	2.69 ± 1.20	2.68 ± 1.24	NA	NA						
ART adherence (%)	69.23	81.69^f	72.73	77.2	NA	NA						
CD4+ T (%)	0.06 ± 0.06	0.07 ± 0.06	0.10 ± 0.05	0.09 ± 0.04	0.18 ± 0.05	0.18 ± 0.05						
CD8+ T (%)	0.17 ± 0.09	0.16 ± 0.09	0.18 ± 0.09	0.18 ± 0.08	0.10 ± 0.04	0.09 ± 0.04						
NK (%)^h	0.07 ± 0.05	0.08 ± 0.06	0.09 ± 0.03	0.08 ± 0.03	0.03 ± 0.03	0.03 ± 0.03						
B cell (%)^h	0.08 ± 0.05	0.09 ± 0.05^d	0.08 ± 0.03	0.08 ± 0.04	0.07 ± 0.03	0.07 ± 0.03						
Monocyte (%)^h	0.12 ± 0.04	0.11 ± 0.04	0.11 ± 0.04	0.11 ± 0.03	0.08 ± 0.02	0.08 ± 0.02						
Granulocyte (%)^h	0.53 ± 0.12	0.53 ± 0.14	0.50 ± 0.11	0.50 ± 0.12	0.58 ± 0.09	0.59 ± 0.09						

AA: African American, AUDIT: Alcohol Use Disorders Identification Test, AUDIT-C: first three questions of the Alcohol Use Disorders Identification Test, VL: viral load, ART: antiretroviral therapy

^a two-sample t-test P-value = 2.83E-04
^b chi-square test P-value = 5.94E-09
^c chi-square test P-value < 1.27E-02
^d chi-square test P-value < 2.65E-04
^e two-sample t-test P-value < 3.50E-14
^f chi-square test P-value = 3.69E-03
^g two-sample t-test P-value = 2.34E-02
^h Cell type compositions estimated by methylation
Table 2. Significant epigenome-wide DNA methylation sites associated with Phosphatidylethanol (PEth) in meta-analysis of Cohort 1 (False Discovery Rate < 5.00E-02 in meta-analysis)

Probe	CHR	Position	Gene	Group	Incremental adjusted R^2	Discovery	Replication	Meta-analysis	Reference										
cg11376147	11	57261198	SLC43A1	Body	4.31%	-5.14	3.90E-07	-4.80	2.26E-06	-6.95	3.79E-12	1.39E-06	29, 30						
cg13442969	12	68044208	DYRK2	5UTR	4.94%	-5.52	5.34E-08	-4.25	2.70E-05	-6.86	6.81E-12	1.39E-06	30						
cg06690548	4	139162808	SLC7A11	Body	6.63%	-6.44	2.80E-10	-2.59	1.01E-02	-6.45	1.14E-10	1.55E-05	29, 30						
cg26689780	4	10079554	WDR1	Body	4.30%	5.12	4.29E-07	3.90	1.13E-04	6.37	1.89E-10	1.94E-05	29						
cg17962756	5	172769199	NA	NA	5.42%	-5.83	9.51E-09	-2.70	7.34E-03	-6.06	1.35E-09	1.11E-04	29, 30						
cg13866253	11	77093001	PAK1	Body	2.16%	-3.70	2.43E-04	-4.28	2.41E-05	-5.53	3.30E-08	2.22E-03							
cg20414364	5	1608614	LOC728613	Body	0.94%	2.49	1.30E-02	5.59	4.28E-08	5.50	3.80E-08	2.22E-03							
cg03589820	3	11585825	ATG7	Body	3.39%	4.56	6.35E-06	3.08	2.23E-03	5.42	5.89E-08	2.96E-03							
cg25998756	8	142028625	NA	NA	2.98%	-4.34	1.68E-05	-3.36	8.69E-04	-5.40	6.80E-08	2.96E-03	29						
cg12825509	3	185648568	TRA2B	Body	3.34%	-4.55	6.68E-06	-3.01	2.76E-03	-5.35	8.70E-08	3.09E-03	30, 38						
cg15705813	2	70297499	NA	NA	2.54%	-3.94	9.21E-05	-3.65	3.03E-04	-5.33	9.83E-08	3.09E-03	29, 30						
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---		
13	cg25221975	3	13663444	FBLN2	Body	3.72%	4.82	1.88E-06	2.69	7.41E-03	5.33	9.83E-08	3.09E-03						
14	cg19825437	3	169383292	NA	NA	3.71%	-4.76	2.47E-06	-2.63	8.85E-03	-5.28	1.27E-07	3.70E-03	29, 30					
15	cg27376514	17	17058422	MPRIP	Body	2.82%	4.17	3.53E-05	3.29	1.11E-03	5.26	1.40E-07	3.81E-03						
16	cg19731612	5	176559334	NSD1	TSS1500	1.88%	-3.45	6.02E-04	-4.10	4.95E-05	-5.25	1.53E-07	3.91E-03	29, 30					
17	cg02583484	12	54677008	HNRNPA1; HNRPA1L-2	Body	2.25%	-3.74	2.06E-04	-3.71	2.41E-04	-5.22	1.82E-07	4.37E-03	29, 30, 60					
18	cg07167185	1	24120017	LYPLA2	Body	2.44%	3.23	1.33E-03	4.24	2.82E-05	5.20	1.99E-07	4.52E-03						
19	cg00294109	3	3219781	CRBN	Body	2%	3.53	4.61E-04	3.87	1.26E-04	5.17	2.28E-07	4.91E-03						
20	cg24351003	10	88013210	GRID1	Body	2.33%	-3.82	1.50E-04	-3.53	4.61E-04	-5.16	2.53E-07	5.17E-03						
21	cg18590502	3	49203081	CCDC71	5UTR	3.99%	-4.96	9.64E-07	-2.21	2.80E-02	-5.14	2.79E-07	5.42E-03	30					
22	cg00944421	16	68269483	ESRP2	Body	2.97%	-4.26	2.41E-05	-2.92	3.72E-03	-5.11	3.28E-07	6.09E-03						
23	cg24238409	10	93998677	CPEB3	Body	3.37%	4.50	8.31E-06	2.58	1.03E-02	5.09	3.64E-07	6.46E-03						
24	cg02256576	16	66995192	CES3	5UTR	2.50%	-3.93	9.78E-05	-3.20	1.46E-03	-5.04	4.71E-07	7.96E-03	29, 30					
25	cg19869698	17	80058686	NA	NA	3.64%	4.74	2.72E-06	2.29	2.24E-02	5.03	4.87E-07	7.96E-03						
26	cg08250921	16	88111009	NA	NA	3.67%	4.73	2.83E-06	2.24	2.54E-02	5.01	5.33E-07	8.38E-03						
27	cg23090529	1	51442133	NA	NA	2.41%	-3.87	1.24E-04	-3.16	1.71E-03	-4.96	7.10E-07	1.07E-02	30, 60					
---	---	---	---	---	---	---	---												
28	cg23482898	3	12658887	CAND2	Body	2.01%	3.58	3.75E-04	3.42	6.96E-04	4.89	1.00E-06	1.46E-02						
29	cg01425762	16	81666633	CMIP	Body	1.03%	2.61	9.30E-03	4.48	9.91E-06	4.87	1.11E-06	1.56E-02						
30	cg11704631	21	36395663	RUNX1	Body	2.74%	-4.13	4.25E-05	-2.73	6.59E-03	-4.86	1.15E-06	1.57E-02						
31	cg08616943	7	130552600	NA	NA	2.11%	-3.64	3.00E-04	-3.26	1.23E-03	-4.85	1.26E-06	1.66E-02						
32	cg23028286	15	51614521	CYP19A1	5UTR	3.39%	-4.58	5.72E-06	-2.17	3.04E-02	-4.84	1.32E-06	1.66E-02						
33	cg21550372	14	100908908	WDR25	Body	2.56%	-3.97	8.12E-05	-2.83	4.87E-03	-4.83	1.35E-06	1.66E-02						
34	cg13966547	1	2406284	PLCH2	TSS1500	1.36%	-2.96	3.19E-03	-4.00	7.47E-05	-4.83	1.38E-06	1.66E-02						
35	cg00220102	16	8806756	ABAT	TSS200	4.12%	-5.02	6.98E-07	-1.62	1.06E-01	-4.81	1.49E-06	1.74E-02						
36	cg00166216	3	194407860	FAM43A	1stExon	2.40%	-3.87	1.23E-04	-2.93	3.60E-03	-4.81	1.54E-06	1.75E-02						
37	cg03044573	1	173835265	GAS5; SNORD78; SNORD44; SNORD80; SNORD79	TSS1500	1.53%	-3.14	1.80E-03	-3.73	2.22E-04	-4.77	1.81E-06	1.96E-02						
38	cg14395885	9	130700923	DPM2	TSS200	0.78%	-2.32	2.05E-02	-4.66	4.43E-06	-4.77	1.82E-06	1.96E-02						
39	cg24135793	19	13122567	NFIX	Body	1.92%	-3.48	5.53E-04	-3.31	1.01E-03	-4.77	1.88E-06	1.96E-02						
40	cg06925984	17	77767242	NA	NA	2.02%	-3.56	4.07E-04	-3.21	1.45E-03	-4.76	1.92E-06	1.96E-02						
41	cg03840289	4	2262318	MXD4	Body	1.85%	3.42	6.83E-04	3.36	8.54E-04	4.75	1.99E-06	1.98E-02						
	Gene ID	Chr	Position	Gene	TSS Type	Gene ID	Chr	Position	Gene	TSS Type	Fold	p-value	Fold	p-value	Fold	p-value			
---	----------	-----	-----------	-------	----------	----------	-----	-----------	-------	----------	------	----------	------	----------	------	----------			
42	cg11846968	20	31823545	PLUNC	TSS1500	0.90%	-2.50	1.28E-02	-4.45	1.12E-05	-4.75	2.03E-06	1.98E-02	29, 30					
43	cg10692140	6	30496072	NA	NA	1.54%	-3.18	1.54E-03	-3.66	2.91E-04	-4.74	2.15E-06	2.05E-02	29, 30					
44	cg23747342	12	25539794	NA	NA	1.06%	2.65	8.40E-03	4.17	3.73E-05	4.71	2.54E-06	2.27E-02	29, 30					
45	cg05303280	15	51632611	GLDN	TSS1500	3.77%	-4.85	1.65E-06	-1.69	9.23E-02	-4.70	2.58E-06	2.27E-02	29, 30					
46	cg10891521	17	81047941	METRNL	Body	0.94%	2.53	1.18E-02	4.32	2.00E-05	4.70	2.63E-06	2.27E-02	29, 30					
47	cg27477373	19	56879645	ZNF542	TSS200	1.88%	-3.45	6.08E-04	-3.25	1.27E-03	-4.70	2.66E-06	2.27E-02	29, 30					
48	cg17521665	6	106546704	PRDM1	TSS200	1.56%	-3.15	1.71E-03	-3.55	4.25E-04	-4.69	2.76E-06	2.27E-02	29, 30					
49	cg13548452	14	22573606	NA	NA	2.06%	-3.62	3.18E-04	-3.05	2.42E-03	-4.69	2.77E-06	2.27E-02	29, 30					
50	cg23352030	20	62198469	PRIC285	1stExon	1.31%	2.95	3.36E-03	3.84	1.43E-04	4.69	2.78E-06	2.27E-02	29, 30					
51	cg13610455	20	37054900	LOC288796;SNORA71B	TSS1500	1.43%	3.03	2.56E-03	3.69	2.52E-04	4.68	2.84E-06	2.27E-02	29, 30					
52	cg06059663	1	245319431	KIF26B	Body	2.19%	-3.67	2.72E-04	-2.92	3.74E-03	-4.67	2.93E-06	2.29E-02	29, 30					
53	cg21845080	3	196065306	TM4SF19	TSS200	0.51%	1.95	5.14E-02	4.93	1.22E-06	4.67	3.01E-06	2.29E-02	29, 30					
54	cg09801924	11	65425948	RELA	Body	1.40%	3.01	2.73E-03	3.70	2.42E-04	4.67	3.08E-06	2.29E-02	29, 30					
55	cg00970435	17	66380327	ARSG	Body	1.17%	-2.78	5.62E-03	-3.98	8.36E-05	-4.67	3.08E-06	2.29E-02	29, 30					
56	cg23579062	9	34457500	C9orf25;DNAI1	TSS1500	1.50%	-3.06	2.34E-03	3.58	3.88E-04	-4.66	3.20E-06	2.34E-02	29, 30					
No.	Chromosome	Position	Gene/Feature	Feature	57CGO22267	58CG20970380	59CG00717678	60CG14817906	61CG27653384	62CG22537604	63CG20732160	64CG01883662	65CG24366564	66CG03394159	67CG06906869	68CG10440877	69CG17840178	70CG00966482	71CG15033653
-----	-------------	----------	--------------	---------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------
57	cg04202267	2	LASS6	Body	2.38%	3.81	1.56E-04	2.71	7.01E-03	4.65	3.33E-06	2.39E-02							
58	cg20970380	1	C1orf161	3UTR	3.76%	-4.80	2.04E-06	-1.59	1.12E-01	-4.63	3.61E-06	2.54E-02							
59	cg00717678	17	PRPF8; RILP	TSS1500	3.33%	4.54	7.13E-06	1.90	5.79E-02	4.63	3.70E-06	2.56E-02							
60	cg14817906	2	CNNM4	Body	2.73%	4.08	5.14E-05	2.36	1.89E-02	4.62	3.92E-06	2.63E-02							
61	cg27653384	22	PPM1F	Body	0.71%	2.26	2.42E-02	4.51	8.62E-06	4.62	3.93E-06	2.63E-02							
62	cg22537604	19	CD177	TSS1500	3.14%	-4.38	1.43E-05	-2.02	4.37E-02	-4.61	4.01E-06	2.64E-02							
63	cg20732160	3	PFKFB4	Body	2.62%	-4.02	6.68E-05	-2.42	1.59E-02	-4.60	4.24E-06	2.75E-02							
64	cg01883662	3	TM4SF19	TSS200	0.57%	2.04	4.14E-02	4.67	4.16E-06	4.57	4.80E-06	3.07E-02							
65	cg24366564	17	RAP1GAP2	Body	1.58%	3.17	1.63E-03	3.34	9.26E-04	4.56	5.13E-06	3.18E-02							
66	cg03394159	8	DUSP4	Body	2.02%	3.60	3.50E-04	2.89	4.02E-03	4.56	5.13E-06	3.18E-02							
67	cg06906869	13	NEK3	TSS1500	1.10%	2.72	6.81E-03	3.87	1.27E-04	4.55	5.38E-06	3.28E-02							
68	cg10440877	2	NA	NA	1.54%	-3.14	1.78E-03	-3.32	9.84E-04	-4.52	6.13E-06	3.64E-02							
69	cg17840178	6	FLOT1	Body	2.78%	-4.14	4.05E-05	-2.17	3.05E-02	-4.52	6.15E-06	3.64E-02							
70	cg00966482	6	HERV-FRD; LOC221710	5UTR	3.87%	4.90	1.26E-06	1.33	1.84E-01	4.51	6.43E-06	3.74E-02							
71	cg15033653	12	CCDC42B	TSS200	2.77%	4.11	4.55E-05	2.16	3.17E-02	4.51	6.50E-06	3.74E-02							
	Gene ID	Chromosome	Start Position	Gene Symbol	Feature	Percentage	FDR 1	FDR 2	FDR 3	FDR 4	FDR 5	FDR 6	FDR 7	FDR 8	FDR 9	FDR 10			
---	-----------	------------	----------------	-------------	---------	------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------			
72	cg09635954	7	29605624	PRR15	5UTR	0.79%	-2.35	1.93E-02	-4.23	2.98E-05	-4.50	6.72E-06	3.82E-02						
73	cg26841068	1	203456691	PRELP	3UTR	2.76%	-4.16	3.70E-05	-2.15	3.24E-02	-4.50	6.83E-06	3.82E-02						
74	cg19939130	1	158978468	IFI16	TSS1500	2.24%	-3.78	1.73E-04	-2.58	1.01E-02	-4.49	7.03E-06	3.88E-02						
75	cg14728380	17	80280330	SECTM1	Body	2.11%	3.66	2.79E-04	2.68	7.58E-03	4.48	7.51E-06	4.01E-02						
76	cg06983052	1	90288099	LRRC8D	5UTR	2.02%	-3.56	4.03E-04	-2.77	5.90E-03	-4.48	7.54E-06	4.01E-02						
77	cg24136754	22	37403978	C2orf33	TSS200	1.76%	3.31	9.93E-04	3.03	2.64E-03	4.48	7.59E-06	4.01E-02						
78	cg21366673	6	30459512	HLA-E	Body	3.37%	-4.59	5.68E-06	-1.63	1.03E-01	-4.47	7.66E-06	4.01E-02						
79	cg23598378	6	42072986	C6orf132	Body	0.95%	2.53	1.17E-02	3.95	9.34E-05	4.47	7.83E-06	4.05E-02						
80	cg11826008	20	34249284	CPNE1; RBM12	5UTR	2.13%	-3.68	2.56E-04	-2.65	8.43E-03	-4.46	8.03E-06	4.10E-02						
81	cg24136700	17	17696044	RAI1	5UTR	0.59%	2.07	3.92E-02	4.46	1.10E-05	4.46	8.30E-06	4.15E-02						
82	cg06937549	5	179046350	HNRNPH1	Body	2.07%	-3.61	3.33E-04	-2.70	7.34E-03	-4.46	8.32E-06	4.15E-02						
83	cg20699548	8	71060638	NCOA2	Body	2.48%	-3.96	8.64E-05	-2.30	2.21E-02	-4.44	8.83E-06	4.35E-02						
84	cg18568145	1	155225764	FAM189B	TSS1500	2.51%	-3.96	8.55E-05	-2.27	2.39E-02	-4.44	9.01E-06	4.38E-02						
85	cg11302401	6	6688847	NA	NA	2.45%	-3.96	8.42E-05	-2.32	2.10E-02	-4.43	9.26E-06	4.45E-02						
86	cg13706315	9	134724316	NA	NA	0.92%	2.51	1.25E-02	3.91	1.08E-04	4.43	9.57E-06	4.47E-02						
---	---	---	---	---	---	---	---	---	---	---									
87	cg22503354	12	7341644	PEX5	TSS1500	2.69%	4.06	5.64E-05	2.10	3.64E-02	4.43	9.59E-06	4.47E-02						
88	cg22496559	3	196065318	TM4SF19	TSS200	1.08%	2.65	8.26E-03	3.71	2.42E-04	4.42	9.71E-06	4.47E-02						
89	cg23684449	16	46919194	GPT2	5UTR	1.48%	-3.08	2.17E-03	-3.23	1.33E-03	-4.42	9.73E-06	4.47E-02						
90	cg23144445	8	57471162	NA	NA	2.52%	-3.97	8.29E-05	-2.23	2.64E-02	-4.42	9.88E-06	4.48E-02						
91	cg17206604	3	150088779	NA	NA	1.52%	3.09	2.10E-03	3.17	1.67E-03	4.41	1.03E-05	4.60E-02						
92	cg10447615	1	109506805	CLCC1	TSS1500	2.34%	3.79	1.69E-04	2.37	1.83E-02	4.41	1.04E-05	4.60E-02						
93	cg19536127	2	47404286	CALM2	TSS1500	1.86%	3.40	7.14E-04	2.81	5.28E-03	4.40	1.07E-05	4.62E-02						
94	cg01304182	16	30409908	ZNF48	Body	1.19%	2.80	5.29E-03	3.53	4.66E-04	4.40	1.08E-05	4.62E-02						
95	cg02003183	14	103415882	CDC42BPB	Body	2.03%	3.55	4.21E-04	2.64	8.65E-03	4.40	1.09E-05	4.62E-02						
96	cg22994830	7	623846	PRKAR1B	Body	2.10%	3.62	3.23E-04	2.57	1.06E-02	4.40	1.09E-05	4.62E-02						
97	cg22274745	2	182451537	CERKL	Body	1.42%	3.01	2.75E-03	3.26	1.23E-03	4.40	1.10E-05	4.62E-02						
98	cg27155460	10	45420821	TMEM72	Body	2.71%	4.11	4.70E-05	2.03	4.29E-02	4.39	1.11E-05	4.65E-02						
99	cg14718379	7	71806067	CALN1	Body	0.97%	-2.55	1.10E-02	-3.78	1.80E-04	-4.38	1.17E-05	4.85E-02						
100	cg03329019	1	221051117	NA	NA	1.93%	-3.48	5.42E-04	-2.70	7.27E-03	-4.38	1.20E-05	4.87E-02						
101	cg11599718	12	123357128	VPS37B	Body	1.24%	2.85	4.52E-03	3.44	6.46E-04	4.38	1.20E-05	4.87E-02						
Figure 1. Study design for the epigenome-wide association study for alcohol consumption.
Figure 2. Meta-analysis of epigenome-wide association studies of alcohol consumption.

a. Manhattan plot of chromosomal locations of $-\log_{10}(p)$ for the association between Phosphatidylethanol (PEth) and 408,583 CpGs in the meta-analysis. b. Manhattan plot of chromosomal locations of $-\log_{10}(p)$ for the association between Hazardous Alcohol Drinking (HAD) and 408,583 CpGs in the meta-analysis. The red line represents the threshold for Bonferroni-corrected p-value. The blue line represents the threshold for false discovery rate (FDR)-corrected p-value. c. Scatterplots of the adjusted β-values of the 13 CpGs against the natural logarithm of the PEth value. All 13 CpGs were significantly correlated with the natural logarithm of the PEth value with $p < 1.00E-03$.
Figure 3. Feature selection using elastic net regularization (ENR). a. The area under the receiver operating characteristic curve (AUC) and the incremental adjusted R^2 (incremental R^2) of the selected CpG sites using ENR method (pre-selection CpG sites cutoff $p < 1.00E-04$ in the training set of Cohort 2). Incremental R^2 denotes the difference in adjusted R^2 between the model with the predicted variable and the model without the predicted variable. b. The receiver operating characteristic (ROC) curve for Hazardous Alcohol Drinking (HAD) prediction in the testing set of Cohort 2 using 130 out of 302 CpGs with $p < 1E-04$ in the meta-analysis.
REFERENCES

1. Pomerleau J, McKee M, Rose R, Haerpfer CW, Rotman D, Tumanov S. Hazardous alcohol drinking in the former Soviet Union: a cross-sectional study of eight countries. Alcohol & alcoholism 2008; 43(3): 351-359.

2. Jeanblanc J. Comorbidity between psychiatric diseases and alcohol use disorders: Impact of adolescent alcohol consumption. Current Addiction Reports 2015; 2(4): 293-301.

3. Vonghia L, Michielsen P, Dom G, Francque S. Diagnostic challenges in alcohol use disorder and alcoholic liver disease. World Journal of Gastroenterology: WJG 2014; 20(25): 8024.

4. Schröck A, Thierauf-Emberger A, Schürch S, Weinmann W. Phosphatidylethanol (PEth) detected in blood for 3 to 12 days after single consumption of alcohol—a drinking study with 16 volunteers. International journal of legal medicine 2017; 131(1): 153-160.

5. Justice AC, McGinnis KA, Tate JP, Xu K, Becker WC, Zhao H et al. Validating Harmful Alcohol Use as a Phenotype for Genetic Discovery Using Phosphatidylethanol and a Polymorphism in ADH 1B. Alcoholism: Clinical and Experimental Research 2017; 41(5): 998-1003.
6. Hahn JA, Anton RF, Javors MA. The Formation, Elimination, Interpretation and Future Research Needs of Phosphatidylethanol (PEth) for Research Studies and Clinical Practice. *Alcoholism, clinical and experimental research* 2016; **40**(11): 2292.

7. Herceg Z, Hainaut P. Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. *Molecular oncology* 2007; **1**(1): 26-41.

8. Jin Z, Liu Y. DNA methylation in human diseases. *Genes & diseases* 2018; **5**(1): 1-8.

9. Mikeska T, Craig J. DNA methylation biomarkers: cancer and beyond. *Genes* 2014; **5**(3): 821-864.

10. Chen R, Xia L, Tu K, Duan M, Kukurba K, Li-Pook-Than J *et al.* Longitudinal personal DNA methylome dynamics in a human with a chronic condition. *Nat Med* 2018; **24**(12): 1930-1939.
11. Thomas M, Marcato P. Epigenetic modifications as biomarkers of tumor development, therapy response, and recurrence across the cancer care continuum. *Cancers* 2018; 10(4): 101.

12. Zhang X, Hu Y, Justice AC, Li B, Wang Z, Zhao H et al. DNA methylation signatures of illicit drug injection and hepatitis C are associated with HIV frailty. *Nature communications* 2017; 8(1): 2243.

13. Joubert BR, Håberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. *Environmental health perspectives* 2012; 120(10): 1425-1431.

14. Linnér RK, Marioni RE, Rietveld CA, Simpkin AJ, Davies NM, Watanabe K et al. An epigenome-wide association study meta-analysis of educational attainment. *Molecular psychiatry* 2017; 22(12): 1680.

15. McCartney DL, Hillary RF, Stevenson AJ, Ritchie SJ, Walker RM, Zhang Q et al. Epigenetic prediction of complex traits and death. *Genome Biol* 2018; 19(1): 136.

16. Food US, Drug A. FDA approves first non-invasive DNA screening test for colorectal cancer. *Parsippany, NJ: US Food and Drug Administration* 2014.
17. Cacabelos R. Epigenetics of brain disorders: the paradigm of Alzheimer’s disease. *J Alzheimers Dis Parkinsonism* 2016; 6(229): 2161-0460.

18. McGinnis KA, Justice AC, Tate JP, Kranzler HR, Tindle HA, Becker WC et al. Using DNA methylation to validate an electronic medical record phenotype for smoking. *Addict Biol* 2019; 24(5): 1056-1065.

19. Zhang X, Hu Y, Aouizerat BE, Peng G, Marconi VC, Corley MJ et al. Machine learning selected smoking-associated DNA methylation signatures that predict HIV prognosis and mortality. *Clin Epigenetics* 2018; 10(1): 155.

20. Sakharkar AJ, Kyzar EJ, Gavin DP, Zhang H, Chen Y, Krishnan HR et al. Altered amygdala DNA methylation mechanisms after adolescent alcohol exposure contribute to adult anxiety and alcohol drinking. *Neuropharmacology* 2019; 157: 107679.

21. Shukla SD, Lim RW. Epigenetic effects of ethanol on the liver and gastrointestinal system. *Alcohol research: current reviews* 2013; 35(1): 47.

22. Zakhari S. Alcohol metabolism and epigenetics changes. *Alcohol research: current reviews* 2013; 35(1): 6.
23. Enberg N, Alho H, Loimaranta V, Lenander-Lumikari M. Saliva flow rate, amylase activity, and protein and electrolyte concentrations in saliva after acute alcohol consumption. *Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology* 2001; 92(3): 292-298.

24. Gangisetty O, Sinha R, Sarkar DK. Hypermethylation of Proopiomelanocortin and Period 2 Genes in Blood Are Associated with Greater Subjective and Behavioral Motivation for Alcohol in Humans. *Alcohol Clin Exp Res* 2019; 43(2): 212-220.

25. Xu K, Montalvo-Ortiz JL, Zhang X, Southwick SM, Krystal JH, Pietrzak RH et al. Epigenome-wide DNA Methylation Association Analysis Identified Novel Loci in Peripheral Cells for Alcohol Consumption among European American Male Veterans. *Alcohol Clin Exp Res* 2019.

26. Fransquet PD, Hutchinson D, Olsson CA, Wilson J, Allsop S, Najman J et al. Perinatal maternal alcohol consumption and methylation of the dopamine receptor DRD4 in the offspring: the Triple B study. *Environmental epigenetics* 2016; 2(4).

27. Ouko LA, Shantikumar K, Knezovich J, Haycock P, Schnugh DJ, Ramsay M. Effect of alcohol consumption on CpG methylation in the differentially methylated
regions of H19 and IG - DMR in male gametes—Implications for fetal alcohol spectrum disorders. Alcoholism: Clinical and Experimental Research 2009; 33(9): 1615-1627.

28. Sharp GC, Arathimos R, Zuccolo L, Pace C. Maternal alcohol consumption during pregnancy and offspring epigenome-wide DNA methylation: findings from six general population-based birth cohorts. BioRxiv 2017: 167791.

29. Wilson LE, Xu Z, Harlid S, White AJ, Troester MA, Sandler DP et al. Alcohol and DNA Methylation: An Epigenome-Wide Association Study in Blood and Normal Breast Tissue. American journal of epidemiology 2019; 188(6): 1055-1065.

30. Liu C, Marioni RE, Hedman ÅK, Pfeiffer L, Tsai P-C, Reynolds LM et al. A DNA methylation biomarker of alcohol consumption. Molecular psychiatry 2018; 23(2): 422.

31. Lohoff FW, Sorcher JL, Rosen AD, Mauro KL, Fanelli RR, Momenan R et al. Methylomic profiling and replication implicates deregulation of PCSK9 in alcohol use disorder. Molecular psychiatry 2018; 23(9): 1900.

32. Gatta E, Grayson DR, Auta J, Saudagar V, Dong E, Chen Y et al. Genome-wide methylation in alcohol use disorder subjects: implications for an epigenetic
regulation of the cortico-limbic glucocorticoid receptors (NR3C1). *Mol Psychiatry* 2019.

33. Lussier AA, Morin AM, Maclsaac JL, Salmon J, Weinberg J, Reynolds JN *et al.* DNA methylation as a predictor of fetal alcohol spectrum disorder. *Clinical epigenetics* 2018; 10(1): 5.

34. Masemola ML, Merwe Lvd, Lombard Z, Viljoen D, Ramsay M. Reduced DNA methylation at the PEG3 DMR and KvDMR1 loci in children exposed to alcohol in utero: a South African Fetal Alcohol Syndrome cohort study. *Frontiers in genetics* 2015; 6: 85.

35. Mason S, Zhou FC. Genetics and epigenetics of fetal alcohol spectrum disorders. *Frontiers in genetics* 2015; 6: 146.

36. Cobben JM, Krzyzewska IM, Venema A, Mul AN, Polstra A, Postma AV *et al.* DNA methylation abundantly associates with fetal alcohol spectrum disorder and its subphenotypes. *Epigenomics* 2019; 11(7): 767-785.

37. Perrier F, Viallon V, Ambatipudi S, Ghantous A, Cuenin C, Hernandez-Vargas H *et al.* Association of leukocyte DNA methylation changes with dietary folate and alcohol intake in the EPIC study. *Clinical epigenetics* 2019; 11(1): 57.
38. Dugué P-A, Wilson R, Lehne B, Jayasekara H, Wang X, Chol-Hee J et al. Alcohol consumption is associated with widespread changes in blood DNA methylation: analysis of cross-sectional and longitudinal data. bioRxiv 2018: 452953.

39. Clark SL, Costin BN, Chan RF, Johnson AW, Xie L, Jurmain JL et al. A Whole Methylome Study of Ethanol Exposure in Brain and Blood: An Exploration of the Utility of Peripheral Blood as Proxy Tissue for Brain in Alcohol Methylation Studies. Alcoholism: Clinical and Experimental Research 2018; 42(12): 2360-2368.

40. Devaux M, Sassi F. Social disparities in hazardous alcohol use: self-report bias may lead to incorrect estimates. The European Journal of Public Health 2015; 26(1): 129-134.

41. Del Boca FK, Darkes J. The validity of self-reports of alcohol consumption: state of the science and challenges for research. Addiction 2003; 98: 1-12.

42. Justice AC, Dombrowski E, Conigliaro J, Fultz SL, Gibson D, Madenwald T et al. Veterans aging cohort study (VACS): overview and description. Medical care 2006; 44(8 Suppl 2): S13.
43. Xu K, Zhang X, Wang Z, Hu Y, Sinha R. Epigenome-wide association analysis revealed that SOCS3 methylation influences the effect of cumulative stress on obesity. *Biol Psychol* 2018; **131**: 63-71.

44. Aradottir S, Asanovska G, Gjerss S, Hansson P, Alling C. Phosphatidylethanol (PEth) concentrations in blood are correlated to reported alcohol intake in alcohol-dependent patients. *Alcohol and alcoholism* 2006; **41**(4): 431-437.

45. Stewart SH, Reuben A, Brzezinski WA, Koch DG, Basile J, Randall PK *et al.* Preliminary evaluation of phosphatidylethanol and alcohol consumption in patients with liver disease and hypertension. *Alcohol & Alcoholism* 2009; **44**(5): 464-467.

46. Schrock A, Wurst FM, Thon N, Weinmann W. Assessing phosphatidylethanol (PEth) levels reflecting different drinking habits in comparison to the alcohol use disorders identification test - C (AUDIT-C). *Drug Alcohol Depend* 2017; **178**: 80-86.

47. Lehne B, Drong AW, Loh M, Zhang W, Scott WR, Tan S-T *et al.* A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves
data quality and performance in epigenome-wide association studies. *Genome biology* 2015; **16**(1): 37.

48. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH *et al.* DNA methylation arrays as surrogate measures of cell mixture distribution. *BMC Bioinformatics* 2012; **13**: 86.

49. Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. *Genome Biol* 2014; **15**(2): R31.

50. Jung M, Pfeifer GP. Aging and DNA methylation. *BMC biology* 2015; **13**(1): 7.

51. Zhang FF, Cardarelli R, Carroll J, Fulda KG, Kaur M, Gonzalez K *et al.* Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood. *Epigenetics* 2011; **6**(5): 623-629.

52. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. *Bioinformatics* 2010; **26**(17): 2190-2191.

53. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nature protocols* 2009; **4**(1): 44.
54. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic acids research 2007; 35(suppl_2): W169-W175.

55. McBride WJ, Schultz JA, Kimpel MW, McClintick JN, Wang M, You J et al. Differential effects of ethanol in the nucleus accumbens shell of alcohol-preferring (P), alcohol-non-preferring (NP) and Wistar rats: a proteomics study. Pharmacology Biochemistry and Behavior 2009; 92(2): 304-313.

56. Gonzalez-Jaramillo V, Portilla-Fernandez E, Glisic M, Voortman T, Bramer W, Chowdhury R et al. The role of DNA methylation and histone modifications in blood pressure: a systematic review. J Hum Hypertens 2019.

57. Hoerl AE, Kennard RW. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970; 12(1): 55-67.

58. Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 1996; 58(1): 267-288.
59. Zou H, Hastie T. Regularization and variable selection via the elastic net. *Journal of the royal statistical society: series B (statistical methodology)* 2005; 67(2): 301-320.

60. Philibert R, Dogan M, Noel A, Miller S, Krukow B, Papworth E et al. Genome-wide and digital polymerase chain reaction epigenetic assessments of alcohol consumption. *American Journal of Medical Genetics Part B: Neuropsychiatric Genetics* 2018; 177(5): 479-488.