Simulated Annealing with Noisy or Imprecise Energy Measurements*

by

Saul B. Gelfand¹ and Sanjoy K. Mitter²

Abstract

The annealing algorithm [1] is modified to allow for noisy or imprecise measurements of the "energy" cost function. This is important when the energy cannot be measured exactly or when it is computationally expensive to do so. Under suitable conditions on the noise/imprecision, it is shown that the modified algorithm exhibits the same convergence in probability to the globally minimum energy states as the annealing algorithm [2]. Since the annealing algorithm will typically enter and exit the minimum energy states infinitely often with probability one, the minimum energy state visited by the annealing algorithm is usually tracked. The effect of using noisy or imprecise energy measurements on tracking the minimum energy state visited by the modified algorithms is examined.

* Research reported here has been supported under contracts AFOSR-85-0227, DAAG-29-84-K-0006, DAAL-03-86-K-0171, and a Purdue Research Initiation Grant.
¹School of Electrical Engineering, Purdue University, West Lafayette, IN 47907.
²Center for Intelligent Control Systems and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139.
1. Introduction

Motivated by hard combinatorial optimization problems such as arise in computer design and operations research, Kirkpatrick, Gelatt, and Vecchi [1] and independently Cerny [3] have proposed a random optimization algorithm called simulated annealing. The annealing algorithm stands in contrast to heuristic methods based on iterative improvement in which only decreases in the cost function are allowed at each iteration. In the annealing algorithm increases in the cost function are allowed with certain probability. This probability is slowly decreased to zero. Simulated annealing is based on an analogy to a physical system which is first melted and then cooled or "annealed" into a low energy state. In this analogy the cost of the optimization problem is identified with the energy of an imaginary physical system; see [1]. The annealing algorithm has been applied with mixed success to a variety of difficult problems [4]-[7]. In addition, the annealing algorithm has sparked considerable theoretical interest, and investigations into its convergence have generated fundamentally new results in the theory on nonstationary Markov chains; see [2], [8]-[10] and [11] for a review.

The annealing algorithm may be described as follows. Let Σ be a finite set and $U(\cdot)$ a real-valued function on Σ, the cost or energy function. The goal is to find an element of Σ which minimizes or nearly minimizes $U(\cdot)$. Let $\{T_k\}$ be a sequence of positive numbers, the temperature schedule. T_k will tend to zero at a suitably slow rate. Let $Q = [q_{ij}]$ be a $\Sigma \times \Sigma$ stochastic matrix. Typically Q is irreducible and may also satisfy a reversibility condition such as $q_{ij} = q_{ji}$ for all $i, j \in \Sigma$. The annealing algorithm consists of simulating a random process $\{X_k\}$ which takes values in Σ, and whose successive values are determined in the following manner. Suppose $X_k = i$. Then select a candidate state j with probability q_{ij}. If $U(j) - U(i) \leq 0$ set $X_{k+1} = j$; if $U(j) - U(i) > 0$ set $X_{k+1} = j$ with probability $\exp \left(- \frac{U(j) - U(i)}{T_k} \right)$; otherwise set $X_{k+1} = i$. It is seen that $\{X_k\}$ is in fact a nonstationary Markov chain with 1-step transition probabilities

$$P\{X_{k+1} = j | X_k = i\} = \begin{cases} q_{ij} \exp \left(- \frac{U(j) - U(i)}{T_k} \right) & \text{if } U(j) - U(i) > 0 \\
q_{ij} & \text{if } U(j) - U(i) \leq 0 \end{cases} \quad (1.1)$$

for all $i, j \in \Sigma$ with $j \neq i^\dagger$. We shall call $\{X_k\}$ the annealing chain. Note that $T_k > 0$ implies that the annealing chain can with positive probability make transitions to higher energy states and so escape from local minima of the energy function. Note also that since $T_k \to 0$ the probability of the annealing chain making a transition to a higher energy state tends to zero. Intuitively, if T_k is decreased to zero at a suitably slow rate then the annealing chain eventually spends most of its time amongst and hopefully converges in an appropriate probabilistic sense to the minimum energy states.

†This also specifies $P\{X_{k+1} = i | X_k = i\}$ when $P\{X_k = i\} > 0$; similar definitions will be made in the sequel without further comment.
Much of the theoretical interest in the annealing algorithm has focused on setting conditions on the temperature schedule such that the annealing chain converges in probability to the set of minimum energy states, i.e., setting conditions on \(\{T_k\} \) such that
\[
\lim_{k \to \infty} P\{X_k \in S\} = 1 \quad \text{where} \quad S = \{i \in \Sigma : U(i) \leq U(j) \quad \forall \ j \in \Sigma\}.
\]
Under a reversibility condition on \(Q \) Hajek [2] has given a characterization of monotone decreasing temperature schedules which obtain convergence in probability, and Tsitsiklis [10], [11] later removed the reversibility condition (see Theorem 3.1).

In this paper we consider modifications of the annealing algorithm to allow for noisy (i.e. with random error) or imprecise (i.e. with deterministic error) measurements of the energy differences which are used in selecting successive states. This is important when the energy differences cannot be computed exactly or when it is simply too costly to do so. Grover [12] has applied such a modified algorithm to a circuit design problem and achieved significant reductions in computational load with comparable quality solutions. Here we shall rigorously describe and analyze these modified algorithms. Our approach will involve formulating the modified algorithms in such a way as they also involve simulating Markov chains. We then show that under suitable conditions on the noise/imprecision and temperature schedule, the 1-step transition probabilities of the modified chains and annealing chain are asymptotically equivalent, and using results from [10], obtain that the modified chains converge in probability to the minimum energy states if and only if the annealing chain does. Since in general the annealing chain will only converge in probability to the minimum energy states, it will enter and exit the minimum energy states infinitely often with probability one. Hence in applying the annealing algorithm one usually keep track of the minimum energy state visited up to the current time; this may be done recursively since the energy differences are computed at each iteration. We examine the effect of using noisy or imprecise measurements of the energy differences on tracking the minimum energy state visited by the modified algorithms.

This paper is organized as follows. In Section 2 we describe the annealing algorithm modified for noisy or imprecise energy measurements. In Section 3 after reviewing a result from [10], we analyze the convergence in probability of the modified algorithms. In Section 4 we examine the problem of tracking the minimum energy state visited by the modified algorithms. In Section 5 we conclude with a brief discussion.

2. Modification of the Annealing Algorithm

We first describe the annealing algorithm modified for noisy measurements of the energy differences used to select successive states (by noisy we mean with random error). The annealing algorithm with noisy measurements consists of simulating a random process \(\{Y_k\} \) which takes values in \(\Sigma \). The successive values of \(\{Y_k\} \) are obtained in the same fashion as the annealing chain \(\{X_k\} \) (see Section 1) except that at each time \(k \) the energy difference \(U(j) - U(i) \) between the candidate state \(j \) and the current state \(i \) is replaced by \(U(j) - U(i) + W_k \) where \(W_k \) is a real-valued random variable. More
precisely, we define \(\{Y_k\} \) as follows. Given that \(Y_1 \) is defined, let \(W_1 \) be a real-valued random variable with

\[
P\{W_1 \leq \lambda \mid Y_1 \} = F_1(\lambda) \quad \forall \ \lambda \in \mathbb{R}.
\]

Given that \(Y_1, \ldots, Y_k, W_1, \ldots, W_k \) have been defined, let \(Y_{k+1} \) be a \(\Sigma \)-valued random variable with

\[
P\{Y_{k+1} = j \mid Y_1, \ldots, Y_{k-1}, Y_k = i, W_1, \ldots, W_{k-1}, W_k = \lambda\} = \begin{cases}
q_{ij} \exp \left(-\frac{U(j) - U(i) + \lambda}{T_k} \right) & \text{if } U(j) - U(i) + \lambda > 0 \\
q_{ij} & \text{if } U(j) - U(i) + \lambda \leq 0
\end{cases} \quad (2.1)
\]

for all \(i, j \in \Sigma \) with \(j \neq i \) and all \(\lambda \in \mathbb{R} \), and let \(W_{k+1} \) be a real-valued random variable with

\[
P\{W_{k+1} \leq \lambda \mid Y_1, \ldots, Y_{k+1}, W_1, \ldots, W_k\} = F_{k+1}(\lambda) \quad \forall \ \lambda \in \mathbb{R} \quad (2.2)
\]

Proceeding in this way we inductively define a sequence of random variables \(\{Y_k, W_k\} \).

It is easy to show that \(\{Y_k\} \) defined as above is a Markov chain with 1-step transition probabilities given by

\[
P\{Y_{k+1} = j \mid Y_k = i\} = \mathbb{E}\{P\{Y_{k+1} = j \mid Y_k, W_k\} \mid Y_k = i\} = \begin{cases}
\mathbb{E}\{P\{Y_{k+1} = j \mid Y_k = i, W_k\}\} \\
\int_{\lambda > U(i)-U(j)} q_{ij} \exp \left(-\frac{U(j) - U(i) + \lambda}{T_k} \right) dF_k(\lambda) \\
q_{ij} F_k(U(i) - U(j)) \end{cases} \quad \forall \ j \neq i. \quad (2.3)
\]

In the sequel we shall only consider the case where \(W_k \) is Gaussian with mean 0 and variance \(\sigma_k^2 > 0 \). Hence (2.3) can be written as

\[
P\{Y_{k+1} = j \mid Y_k = i\} = \int_{U(i)-U(j)}^\infty q_{ij} \exp \left(-\frac{U(j) - U(i) + \lambda}{T_k} \right) dN(0,\sigma_k^2)(\lambda) \\
+ q_{ij} N(0,\sigma_k^2)(-\infty, U(i) - U(j)) \quad \forall \ j \neq i \quad (2.4)
\]

where \(N(m,a)(\cdot) \) denotes one-dimensional normal measure with mean \(m \) and variance \(a \). We shall refer to \(\{Y_k\} \) as the \textit{annealing chain with noisy measurements}.

We next describe the annealing algorithm modified for \textit{imprecise} measurements of the energy differences used to select successive states (by imprecise we mean with
deterministic error). The annealing algorithm with imprecise measurements consists of simulating a random process \(\{Z_k\} \) which takes values in \(\Sigma \). The successive values of \(\{Z_k\} \) are obtained in the same fashion as the annealing chain \(\{X_k\} \) (see Section 1) except that at each time \(k \) the energy difference \(U(j) - U(i) \) between the candidate state \(j \) and current state \(i \) is replaced by \(U(j) - U(i) + \beta_k \) where \(\beta_k \) is a number. It is seen that the process \(\{Z_k\} \) is a Markov chain with 1-step transition probabilities

\[
P\{Z_{k+1} = j | Z_k = i\} = \begin{cases}
 q_{ij} \exp\left(-\frac{U(j) - U(i) + \beta_k}{T_k}\right) & \text{if } U(j) - U(i) + \beta_k > 0 \\
 q_{ij} & \text{if } U(j) - U(i) + \beta_k \leq 0
\end{cases}
\]

(2.5)

for all \(i, j \in \Sigma \) with \(j \neq i \). We shall refer to \(\{Z_k\} \) as the annealing chain with imprecise measurements.

3. Convergence of the Modified Algorithms

In this section we shall give conditions such that the modified annealing chains converge in probability to the set of globally minimum energy states. We first state a result from [10] on the convergence of a class of nonstationary Markov chains.

Theorem 3.1 [10]: For each \(\epsilon \in [0,1) \) let \(\{N'_k\} \) be a Markov chain with state space \(\Sigma \) which satisfies

\[
c_1 \epsilon \alpha(i,j) \leq P\{N'_{k+1} = j | N'_k = i\} \leq c_2 \epsilon \alpha(i,j)
\]

(3.1)

for all \(i, j \in \Sigma \) with \(j \neq i \), where \(\alpha(i,j) \in [0,\infty] \) and \(c_1, c_2 \) are positive constants. Suppose that \(\{N'_k\} \) is irreducible for all \(\epsilon > 0 \) and the irreducible components of \(\{N'_k\} \) are aperiodic. Let \(\{\epsilon_k\} \) be a sequence of numbers with \(\epsilon_k \in (0,1) \) and \(\epsilon_k \downarrow 0 \), and \(\{N_k\} \) be a Markov chain with state space \(\Sigma \) which satisfies

\[
P\{N_{k+1} = j | N_k = i\} = P\{N'_{k+1} = j | N'_k = i\} \quad \forall \ j \neq i.
\]

Let \(\wedge \subset \Sigma \). Then there exists a \(\delta' \in [0,\infty] \) depending only on \(\alpha(\cdot,\cdot) \) and \(\wedge \) such that

\[
\lim_{k \to \infty} P\{N_k \in \wedge\} = 1 \iff \sum_{k=1}^{\infty} \epsilon_k^{\delta'} = \infty.
\]

Remarks:

1. The statement of Theorem 3.1 in [10] assumes that (3.1) holds for all \(i, j \in \Sigma \), but it is enough that (3.1) hold only for \(j \neq i \) as stated above.

2. For each \(T \geq 0 \) let \(\{X^T_k\} \) be the constant temperature \((T_k = T) \) annealing chain. Suppose \(Q \) is irreducible. Then \(\{X^T_k\} \) is irreducible for all \(T > 0 \) and the irreducible components of \(\{X^T_k\} \) must be aperiodic. Let \(\epsilon = \exp(-1/T) \), \(\epsilon_k = \exp(-1/T_k) \),
and
\[\alpha(i,j) = \begin{cases} \max\{0, U(j) - U(i)\} & \text{if } q_{ij} > 0 \\ \infty & \text{if } q_{ij} = 0 \end{cases} \]
for all \(i, j \in \Sigma \) with \(j \neq i \). Then Theorem 3.1 may be applied with \(N_k = X_k^T \), \(N_k = X_k \), and \(\wedge = S \) to obtain: there exists a \(\delta^* \in [0, \infty] \) such that \(\lim_{k \to \infty} P\{X_k \in S\} \to 1 \) iff
\[
\sum_{k=1}^{\infty} \exp\left(-\frac{\delta^*}{T_k} \right) = \infty.
\]
(3.2)

If \(Q \) satisfies a certain reversibility condition it may be shown that \(\delta^* < \infty \) and has a simple interpretation as the maximum "depth", suitably defined, of all local minima of \(U(\cdot) \) which are not global minima; see [2].

We next apply Theorem 3.1 to the modified annealing chains \(\{Y_k\} \) and \(\{Z_k\} \). We shall treat \(\{Y_k\} \) in detail and then state the corresponding results for \(\{Z_k\} \) without proof.

Proposition 3.1: Suppose that \(T_k \to 0 \) and
\[\sigma_k = o(T_k) \text{ as } k \to \infty. \]
Then
\[
P\{Y_{k+1} = j | Y_k = i\} \sim P\{X_{k+1} = j | X_k = i\} \text{ as } k \to \infty
\]
(3.3)

for all \(i, j \in \Sigma \) with \(j \neq i \).

Proof: Fix \(i, j \in \Sigma \) with \(j \neq i \) and \(q_{ij} > 0 \). Let
\[
\alpha_k = \int_{U(i) - U(j)}^{\infty} q_{ij} \exp\left(-\frac{U(j) - U(i) + \lambda}{T_k} \right) \, dN(0, \sigma_k^2)(\lambda),
\]
so that (2.4) becomes
\[
P\{Y_{k+1} = j | Y_k = i\} = \alpha_k + b_k.
\]
(3.4)

Since \(\sigma_k = o(1) \) we have
\[
\lim_{k \to \infty} \alpha_k = 0 \quad \text{if } U(j) - U(i) < 0, \quad (3.5)
\]
\[
\lim_{k \to \infty} b_k = q_{ij} \quad \text{if } U(j) - U(i) < 0. \quad (3.6)
\]

Also
\[
\lim_{k \to \infty} b_k = \frac{q_{ij}}{2} \quad \text{if} \quad U(j) - U(i) = 0. \tag{3.7}
\]

We make the following claim:

Claim:
\[
a_k \to \frac{q_{ij}}{2} \quad \text{if} \quad U(j) - U(i) = 0 \tag{3.8}
\]
\[
a_k \sim q_{ij} \exp \left(-\frac{U(j) - U(i)}{T_k} \right) \quad \text{if} \quad U(j) - U(i) > 0 \tag{3.9}
\]
\[
b_k = o \left(\exp \left(-\frac{U(j) - U(i)}{T_k} \right) \right) \quad \text{if} \quad U(j) - U(i) > 0 \tag{3.10}
\]
as \(k \to \infty\).

Suppose the Claim is true. Then combining (3.4)-(3.10) gives (3.3) as required. It remains to prove the Claim.

Proof of Claim:

We have
\[
a_k = q_{ij} \exp \left(-\frac{U(j) - U(i)}{T_k} \right) \int_{(U(i) - U(j))/T_k}^{\infty} e^{-\lambda} dN(0, \sigma_k^2/T_k)(\lambda) \tag{3.11}
\]
after a change of variable. Observe that \(\sigma_k = o(T_k)\) implies \(N(0, \sigma_k^2/T_k)(\cdot)\) converges weakly to the unit measure concentrated at the origin. It follows that
\[
\lim_{k \to \infty} \int_{(U(i) - U(j))/T_k}^{\infty} e^{-\lambda} dN(0, \sigma_k^2/T_k)(\lambda) = \begin{cases}
1/2 & \text{if} \quad U(j) - U(i) = 0 \\
1 & \text{if} \quad U(j) - U(i) > 0.
\end{cases} \tag{3.12}
\]
Combining (3.11), (3.12) gives (3.8), (3.9). Finally, if \(U(j) - U(i) > 0\) then since \(\sigma_k = o(T_k)\)
\[
b_k = q_{ij} \quad \text{as} \quad k \to \infty
\]
where we have used the standard estimate \(N(0,1)(x,\infty) \leq \exp(-x^2/2)\) for \(x \geq 0\). This proves (3.10) and hence the Claim and the Proposition. \(\Box\)
Corollary 3.1: Suppose that Q is irreducible, $T_k \downarrow 0$, and
$$\sigma_k = o(T_k) \quad \text{as} \quad k \to \infty.$$ Then
$$\lim_{k \to \infty} P\{Y_k \in S\} = 1 \quad \text{iff} \quad \lim_{k \to \infty} P\{X_k \in S\} = 1.$$

Proof: In the second remark following Theorem 3.1, we showed that Theorem 3.1 may be applied to $\{X_k\}$ to obtain that $\lim_{k \to \infty} P\{X_k \in S\} = 1$ iff (3.2) holds. In view of Proposition 3.1, Theorem 3.1 may also be applied to $\{Y_k\}$ to obtain that $\lim_{k \to \infty} P\{Y_k \in S\} = 1$ iff (3.2) holds with the same value of δ^*. □

Remark: It is not possible to assert in general that $P\{Y_{k+1} = i | Y_k = i\} \sim P\{X_{k+1} = i | X_k = i\}$. For example, if $q_{ii} = 0$ and $q_{ij} = 0$ for all $j \in \Sigma$ with $U(j) - U(i) > 0$, then $P\{X_{k+1} = i | X_k = i\}$ is zero but $P\{Y_{k+1} = i | Y_k = i\}$ is strictly positive, corresponding to the positive probability of not making a transition to a state with the same or lower energy. This is why we must only require (3.1) holds for $j \neq i$ in Theorem 3.1 to obtain Proposition 3.1 and hence Corollary 3.1.

The corresponding results for $\{Z_k\}$ are as follows.

Proposition 3.2: Suppose that $T_k \to 0$ and
$$\beta_k = o(T_k) \quad \text{as} \quad k \to \infty.$$ Then
$$P\{Z_{k+1} = j | Z_k = i\} \sim P\{X_{k+1} = j | X_k = i\} \quad \text{as} \quad k \to \infty$$
for all $i, j \in \Sigma$ with $j \neq i$.

Corollary 3.2: Suppose that Q is irreducible, $T_k \downarrow 0$ and
$$\beta_k = o(T_k) \quad \text{as} \quad k \to \infty.$$ Then
$$\lim_{k \to \infty} P\{Z_k \in S\} = 1 \quad \text{iff} \quad \lim_{k \to \infty} P\{X_k \in S\} = 1.$$

4. Tracking the Minimum Energy State
As pointed out above, when implementing the annealing algorithm one normally keeps track of the minimum energy state visited by the annealing chain up to the current time. The reason for this is that only convergence in probability of the annealing chain to the set S of minimum energy states can be guaranteed, and typically the annealing chain will enter and leave S infinitely often (with probability one). The
energy differences which are used to select the successive states of the annealing chain may also be used to recursively compute the minimum energy state visited by the annealing chain. For the modified algorithms, noisy or imprecise measurements of the energy differences are used to select the successive states of the modified chains. In this Section we examine the effect of using these same noisy or imprecise measurements on computing the minimum energy state visited by the modified chains.

We introduce the following notation. For every \(m \geq n \) let

\[
i(n,m) = \arg \min_{n \leq k \leq m} \left[U(X_k) - U(X_n) \right]
\]

\[
j(n,m) = \arg \min_{n \leq k \leq m} \left[U(Y_k) - U(Y_n) + \sum_{\ell=n}^{k-1} W_{\ell} 1_{\{Y_{\ell+1} \neq Y_\ell\}} \right]
\]

\[
k(n,m) = \arg \min_{n \leq k \leq m} \left[U(Z_k) - U(Z_n) + \sum_{\ell=n}^{k-1} \beta_{\ell} 1_{\{Z_{\ell+1} \neq Z_\ell\}} \right],
\]

and

\[
x_{n,m} = X_{i(n,m)}, \quad y_{n,m} = Y_{j(n,m)}, \quad z_{n,m} = Z_{k(n,m)},
\]

and

\[
x_{m} = x_{1,m}, \quad y_{m} = y_{1,m}, \quad z_{m} = z_{1,m}.
\]

In words, \(x_{n,m} \) is the minimum energy state visited by \(X_k \) between times \(m \) and \(n \), while \(y_{n,m} \) and \(z_{n,m} \) are estimates of the minimum energy states visited by \(Y_k \) and \(Z_k \), respectively, between times \(m \) and \(n \). Note that \(\{x_{n,m}\}_{m \geq n} \) may be computed recursively from the values of the energy differences \(U(X_{k+1}) - U(X_k) \) which are generated in simulating \(\{X_k\} \), and that \(\{y_{n,m}\}_{m \geq n} \) and \(\{z_{n,m}\}_{m \geq n} \) may be computed recursively from the values of the noisy/imprecise energy differences \(U(Y_{k+1}) - U(Y_k) + W_k \) and \(U(Z_{k+1}) - U(Z_k) + \beta_k \) which are generated in simulating \(\{Y_k\} \) and \(\{Z_k\} \), respectively. Note also that the noise/imprecision on self-transitions of \(\{Y_k\} \) and \(\{Z_k\} \) is ignored since it is known when a self-transition is made.

If \(\lim_{k \to \infty} P\{X_k \in S\} = 1 \) then \(\lim_{n \to \infty} P\{x_k \in S \forall \ k \geq n\} = 1 \), or equivalently, \(x_k \in S \) for large enough \(k \) with probability one. It is also clear that this implication does not hold in general with \(X_k, x_k \) replaced by \(Y_k, y_k \) or \(Z_k, z_k \). The problem is that large initial noise/imprecision can result in \(y_k \notin S \) or \(z_k \notin S \) for all \(k \) with positive probability. A less useful but still relevant result is that if \(\lim_{k \to \infty} P\{X_k \in S\} = 1 \) then \(\lim_{n \to \infty} P\{x_{n,k} \in S \forall \ k \geq n\} = 1 \). We shall show that under suitable conditions this implication holds with \(X_k, x_k \) replaced by \(Y_k, y_k \) or \(Z_k, z_k \). As in Section 3 we treat \(\{Y_k\} \) in detail and then give the corresponding results for \(\{Z_k\} \) which require little proof.

Let

\[
M_{n,k} = \sum_{\ell=n}^{k-1} W_\ell 1_{\{Y_\ell+1 \neq Y_\ell\}} \quad \forall \ k \geq n.
\]

Intuitively, if \(P\{Y_n \in S\} \) is large and \(\min_{k>n} M_{n,k} \geq 0 \) with large probability, then
P\{y_{n,k} \in S \quad \forall \quad k \geq n\} should be large. If the indicator functions in (4.2) were absent then since the \{W_k\} are independent, \{M_{n,k}\}_{k \geq n} would be a martingale. However, it is not hard to see that the presence of the indicator functions biases \(M_{n,k}\) towards negative values (see (2.1)). Let \(\mathcal{F}_{n,k}\) be the \(\sigma\) field generated by \(\{Y_n,...,Y_k, W_n,...,W_{k-1}\}\) for \(k \geq n\). Also let \(P_n\{\cdot\} = P\{\cdot | Y_n \in S\}\) and \(E_n\{\cdot\} = E\{\cdot | Y_n \in S\}\) (assume that \(P\{Y_n \in S\} > 0\)).

Lemma 4.1: \(\{M_{n,k}\}_{k \geq n}\) is an \((\{\mathcal{F}_{n,k}\}_{k \geq n}, P_n\) supermartingale.

Proof: First observe that if \(\{M_{n,k}\}_{k \geq n}\) is an \((\{\mathcal{F}_{n,k}\}_{k \geq n}, P)\) supermartingale then clearly \(E_n\{M_{n,k}\} < \infty\) and for \(A \in \mathcal{F}_{n,k}\)

\[
E_n\{M_{n,k+1} 1_A\} \leq \frac{E\{M_{n,k+1} 1_A \cap \{Y_n \in S\}\}}{P\{Y_n \in S\}} = E_n\{M_{n,k} 1_A\}
\]

since \(\{Y_n \in S\} \in \mathcal{F}_{n,k}\), and so \(\{M_{n,k}\}_{k \geq n}\) is an \((\{\mathcal{F}_{n,k}\}_{k \geq n}, P_n)\) supermartingale.

We show that \(\{M_{n,k}\}_{k \geq n}\) is an \((\{\mathcal{F}_{n,k}\}_{k \geq n}, P)\) supermartingale. Clearly \(M_{n,k}\) is \(\mathcal{F}_{n,k}\) measurable and \(E\{M_{n,k}\} < \infty\). Furthermore

\[
E\{M_{n,k+1} - M_{n,k} | \mathcal{F}_{n,k}\} = E\{W_k 1_{\{Y_{k+1} \neq Y_k\}} | Y_n,...,Y_k, W_n,...,W_{k-1}\} = E\{W_k P\{Y_{k+1} \neq Y_k, Y_n,...,Y_k, W_n,...,W_{k-1}\} | Y_n,...,Y_k, W_n,...,W_{k-1}\}
\]

\[
= E\{W_k P\{Y_{k+1} = Y_k | Y_k, W_k\} | Y_n,...,Y_k, W_n,...,W_{k-1}\}
\]

\[
= E\{W_k P\{Y_{k+1} \neq Y_k | Y_k, W_k\}\} = \int_0^\infty \lambda(P\{Y_{k+1} \neq Y_k | Y_k, W_k = \lambda\} - P\{Y_{k+1} \neq Y_k | Y_k, W_k = -\lambda\}) \, dN(0, \sigma^2)(\lambda)
\]

\[
\leq \frac{1}{2} E\{W_k\} \sup_{\lambda \geq 0} \left[P\{Y_{k+1} \neq Y_k | Y_k, W_k = \lambda\} - P\{Y_{k+1} \neq Y_k | Y_k, W_k = -\lambda\}\right]
\]

\[
\leq 0 \quad \text{w.p. 1}
\]

Here the third equality follows from (2.1), the fourth equality from (2.2), and the final inequality from (2.1). Hence \(\{M_{n,k}\}_{k \geq n}\) is indeed an \((\{\mathcal{F}_{n,k}\}_{k \geq n}, P)\) supermartingale and so an \((\{\mathcal{F}_{n,k}\}_{k \geq n}, P_n)\) supermartingale. \(\square\)
Proposition 4.1: Suppose that
\[\sum_{k=1}^{\infty} \sigma_k < \infty. \]
Under this condition, if \(\lim_{k \to \infty} P\{Y_k \in S\} = 1 \) then
\[\lim_{n \to \infty} P\{y_{n,k} \in S \quad \forall \quad k \geq n\} = 1. \]

Proof: Let
\[\gamma = \min_{j \in S \setminus S} U(j) - \min_{j \in S} U(i). \] \hspace{1cm} (4.3)
Then for \(m \geq n \)
\[P\{y_{n,k} \in S \quad \forall \quad n \leq k \leq m\} \]
\[\geq P\{Y_n \in S, \min_{n < k \leq m} [U(Y_k) - U(Y_n) + M_{n,k}] > 0\} \]
\[\geq P\{Y_n \in S, \min_{n < k \leq m} M_{n,k} > -\gamma\} \]
\[\geq P\{Y_n \in S, \min_{n < k \leq m} M_{n,k} > -\gamma\} \]
\[= P\{Y_n \in S\} P_n\{\min_{n < k \leq m} M_{n,k} > -\gamma\}. \] \hspace{1cm} (4.4)
Now by Lemma 4.1 \(\{M_{n,k}\}_{k \geq n} \) is a \(P_n \)-supermartingale. Hence by the supermartingale inequality ([13, Thm. 35.2])
\[P_n\{\min_{n < k \leq m} M_{n,k} > -\gamma\} \geq 1 - \frac{1}{\gamma} E_n\{M_{n,m}\} \]
\[= 1 - \frac{1}{\gamma} E_n\{\sum_{k=n}^{m-1} W_k 1_{\{Y_{k+1} \neq Y_k\}}\} \]
\[\geq 1 - \frac{1}{\gamma} \sum_{k=n}^{m-1} E_n^{1/2} \{W_k^2 1_{\{Y_{k+1} \neq Y_k\}}\} \]
\[\geq 1 - \frac{1}{\gamma} \sum_{k=n}^{m-1} \sigma_k. \] \hspace{1cm} (4.5)
Combining (4.4), (4.5) and letting \(m \to \infty \) gives
\[P\{y_{n,k} \in S \quad \forall \quad k \geq n\} \geq P\{Y_n \in S\} (1 - \frac{1}{\gamma} \sum_{k=n}^{\infty} \sigma_k) \]
and so
\[\lim \inf_{n \to \infty} P\{y_{n,k} \in S \quad \forall \quad k \geq n\} \geq \lim \inf_{n \to \infty} P\{Y_{n} \in S\} \]

and the Proposition follows. □

The corresponding result for \(\{Z_{k}\} \) is as follows.

Proposition 4.2: Suppose that
\[\sum_{k=1}^{\infty} |\beta_{k}| < \infty. \]
Under this condition, if \(\lim_{k \to \infty} P\{Z_{k} \in S\} = 1 \) then \(\lim_{n \to \infty} P\{z_{n,k} \in S \quad \forall \quad k \geq n\} = 1. \)

Proof: Let \(\gamma \) be given by (4.3). It is easy to see that
\[P\{z_{n,k} \in S \quad \forall \quad k \geq n\} = P\{Z_{n} \in S\} \quad \text{if} \quad \sum_{k=n}^{\infty} |\beta_{k}| < \gamma \]
and so
\[\lim \inf_{n \to \infty} P\{z_{n,k} \in S \quad \forall \quad k \geq n\} = \lim \inf_{n \to \infty} P\{Z_{n} \in S\} \]
and the Proposition follows. □

5. **Conclusion**

We have considered modifications of the annealing algorithm which allow for noise or imprecision in the measurements of the energy differences which are used to select successive states. These modified algorithms like the annealing algorithm involve the simulation of nonstationary Markov chains. We showed that under suitable conditions these modified chains exhibit the same convergence in probability to the minimum energy states as the annealing chain. We also investigated the effect of using the noisy or imprecise energy differences to track the minimum energy state visited by the modified chains.

We believe that our results may be relevant to implementing the annealing algorithm in a semi-parallel fashion. For example, consider the problem of updating the state of a finite lattice, each site of which has a number associated with it (this situation arises in the problem of image reconstruction from noisy observations where the sites are pixels and the numbers correspond to grey levels; c.f. [4]). There are many ways to update the state. It may be done *asynchronously* with the sites updated sequentially in either a fixed or random order, or it may be done *synchronously* with the sites updated in parallel. Our results suggest that if the state is updated synchronously but with sufficiently many asynchronous updates (as time tends to infinity and temperature tends to zero), then the same convergence to the global minima is obtained as with a purely asynchronous implementation. It is known that in the zero-temperature algorithm the
asymptotic behavior of asynchronous and synchronous implementations is different (in the synchronous case there may not even be convergence to a local minimum; c.f. [14]). Furthermore, it is not clear in the zero-temperature algorithm whether sparse asynchronous updates are sufficient for convergence to a local minimum. It seems that the randomness in the annealing algorithm is helpful in this way.

6. References

[1] Kirkpatrick, S., C.D. Gelatt, and M. Vecchi: "Optimization by Simulated Annealing," Science 220 (1983) 621-680.
[2] Hajek, B.: "Cooling Schedules for Optimal Annealing," Submitted to Mathematics of Operations Research (1985).
[3] Cerny, V.: "A Thermodynamical Approach to the Travelling Salesman Problem: An Efficient Simulation Algorithm," Preprint, Inst. of Phys. and Biophys., Comenius Univ., Bratislava (1982).
[4] Geman, S. and D. Geman: "Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images," IEEE Trans. PAMI 6 (1984), 721-741.
[5] Golden B. and C. Skiscim: "Using Simulated Annealing to Solve Routing and Location Problems," Naval Res. Log. Quarterly 33 (1986) 261-279.
[6] Johnson, D.S., C.R. Aragon, L.A. McGeoch, and C. Schevon: "Optimization by Simulated Annealing: An Experimental Evaluation," Preprint (1985).
[7] El Gamal, A., L. Hemachandra, I. Shperling, and V. Wei: "Using Simulated Annealing to Design Good Codes," IEEE Trans. Inf. Theory, IT-33 (1987) 116-123.
[8] Gidas, B.: "Nonstationary Markov Chains and Convergence of the Annealing Algorithm," J. Stat. Phys. 39 (1985) 73-131.
[9] Mitra, D., F. Romeo, and A. Sangiovanni-Vincentelli: "Convergence and Finite-Time Behavior of Simulated Annealing," Adv. App. Prob. (1986).
[10] Tsitsiklis, J.: "Markov Chains with Rare Transitions and Simulated Annealing," Submitted to Mathematics of Operations Research (1985).
[11] Tsitsiklis, J.: "A Survey of Large Time Asymptotics of Simulated Annealing Algorithms," Preprint, Lab for Info. and Decision Systems, M.I.T., Cambridge, MA (1986).
[12] Grover, L.: "Simulated Annealing Using Approximate Calculations," submitted to IEEE Trans. on CAD (1986).
[13] Billingsley, P.: Probability and Measure, Wiley (1978).
[14] Goles, E., and G. Vichniac, "Lyapunov Functions for Parallel Neural Networks," AIP Conf. on Neural Networks for Computing, Snowbird, Utah (1986) 165-181.