Right Ventricular Assessment in Critically Ill COVID-19 Patients and its Prognostic Importance

Yahia Mohamad1*, Rania El-Sherif2, Mahmoud Adel Gawish2, Ibrahim Abdrabo2, Hatem Hossam Mowafy2

1Critical Care Department, Benha Fever Hospital, Benha, Egypt; 2Critical Care Department, Faculty of Medicine, Cairo University, Cairo, Egypt

Abstract

BACKGROUND: Cardiac injury is a prevalent complication and is associated with worse prognosis in COVID-19 patients. The increased cardiac workload resulting from respiratory failure and hypoxemia is a common mechanism of cardiac injury, and the right ventricle may bear the brunt of its impact.

AIM: The present study aimed to determine the incidence and prognostic value of right ventricular (RV) dysfunction in COVID-19 patients admitted to the intensive care unit using conventional echocardiography parameters.

METHODS: Patients were subjected to full history taking and clinical examination, computed tomography (CT) of the chest was done for all patients to assess the severity of lung infiltration, all patients received standard treatment according to Ministry of Health and Population COVID-19 treatment protocol recommendations. The echocardiographic assessment was done on all patients.

RESULTS: The mean age of the patients was 61.10 ± 9.64 years (range 42–80 years). There were 36 (60%) males and 24 (40%) females. The nonsurvivor group consisted of 28 patients (46.7%), and the survivors consisted of 32 patients (53.3%). There was a statistically significant association between mortality and RV function regarding tricuspid plane systolic excursion, fractional area change %, RV basal diameter, and expiratory positive airway pressure.

CONCLUSION: We concluded that in COVID-19 patients, RV function must be assessed and its prognostic importance recognized. RV dysfunction is not only a symptom of high pulmonary pressures, but it also contributes to cardiac insufficiency.

Introduction

The pandemic started starting December 2019, when a novel coronavirus, designated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. Due to its high infectivity and potentiality of severe disease and complications, it was addressed as “Public Health Emergency of International Concern” by the World Health Organization on January 30, 2020 [2]. On the cellular level, in the lungs, where the virus receptor, the SARS-CoV-2 affects host cells by binding the spike protein (protein S) expressed in the viral envelope with the membrane-bound angiotensin-converting enzyme 2 (ACE2). This will result in endocytosis of the SARS-CoV-2 and ACE2 complex, resulting in the viral entry into the cell [3]. Binding of the SARS-CoV-2 with ACE2 will produce RAAS imbalance affecting the blood pressure, cardiovascular, renal, immune, and neural systems homeostasis [4], [5]. One of the worst prognosis indices in COVID-19 is cardiac injury which can be explained by the increased cardiac workload from respiratory failure and hypoxemia, mainly affecting the right ventricle. Echocardiography is a widely available imaging tool for assessing cardiac function. Although both left ventricular (LV) dysfunction and right ventricular (RV) dysfunction are noted in hospitalized COVID-19 patients, the incidence of RV dysfunction is associated with more clinical deterioration (i.e., hemodynamic instability, cardiac deterioration, and respiratory deterioration) [6].

We aimed to determine the incidence and prognostic value of RV dysfunction in COVID-19 patients admitted to the intensive care unit (ICU) using conventional echocardiography parameters.

Methods

Study population

Our study included 60 patients (36 males and 24 females) above 18 years old, all patients were subjected to full history taking, and clinical examination, chest computed tomography. Broad-spectrum, antibiotics treatment was immediately initiated after...
clinical evaluation within 1 h of presentation and received standard treatment according to Ministry of Health and Population COVID-19 treatment protocol recommendations.

Our inclusion criteria included:

- Positive COVID-19 nasopharyngeal swab PCR result
- ICU admission criteria: (RR>30, SaO2<92% or PaO2/FiO2<200 despite oxygen therapy)
- Computed tomography CT chest showed more than 50% affection or progressive lesion within 24–48 h.

Our exclusion criteria included:

- Echocardiographic evidence of regional ischemia
- Previous infarction or significant valvular heart disease
- Echocardiographic evidence of ejection fraction of <50%
- Mechanical ventilation before the echocardiographic evaluation
- Any cause of pulmonary hypertension, e.g., Chronic obstructive pulmonary disease, interstitial lung disease, chronic thromboembolic disease, etc.
- Patients with poor echocardiographic windows.

Echocardiographic assessment

Assessment of the right side of the heart

Measurement of the tricuspid plane systolic excursion

![Figure 1: Measurement of the tricuspid plane systolic excursion](image1)

Tricuspid plane systolic excursion (TAPSE) was obtained by measuring the distance of systolic excursion of the RV annular segment along its longitudinal plane, from a standard apical four-chamber window using m-mode echocardiography. Normal values of TAPSE: (1.6–3 cm).

Measurement of the right ventricular area and calculation of the fractional area change (Figure 2).

![Figure 2: Measurement of the right ventricular area and calculation of the fractional area change](image2)

Right ventricular area and calculation of the fractional area change (RVFAC) were obtained from a four-chamber view by tracing the RV endocardium both in systole and diastole from the annulus, along the free wall to the apex, and then back to the annulus, along the interventricular septum.

RVFAC = RV end-diastolic area – RV end-systolic area/RV end-diastolic area

Normal values of RVFAC: 35%–63%.

Measurement of the right ventricular dimensions long) (basal, mid, and long) (Figure 3).

![Figure 3: Measurement of the right ventricular dimensions (basal, mid, and long)](image3)

From the apical four-chamber view, the basal diameter was measured in the basal one-third of the right ventricle, the mid cavity diameter measured in the middle-third of the right ventricle at the level of the LV papillary muscles, and the longitudinal diameter was drawn from the plane of the tricuspid annulus to the RV apex.

Normal values:

- (RV basal dimension: 2.4–4.2 cm)
- (RV mid dimension: 2–3.5 cm)
- (RV long dimension: 5.6–8.6 cm).
Systolic pulmonary artery pressure (Figure 4).

Pulmonary artery systolic pressure was estimated by calculating the systolic pressure gradient between RV and RA by continuous-wave Doppler of the tricuspid regurgitation jet. RV systolic pressure (RVSP) was determined from peak TR jet velocity, using the simplified Bernoulli equation and combining this value with an estimate of the RA pressure: RVSP = x4(V)² + RA pressure, where V is the peak velocity (in meters per second) of the tricuspid valve regurgitant jet, and RA pressure was estimated from central venous catheter pressure.

Assessment of the left side of the heart

Left ventricular dimensions
- LV end-diastolic diameter
- LV end-systolic diameter
- Septal wall thickness
- Posterior wall thickness.

Left ventricular EF %

LV ejection fraction will be calculated from LV end-diastolic volume (EDV) and LV end-systolic volume (ESV) estimates, using the following formula: EF = (EDV-ESV)/EDV. That was done using modified Simpson’s rule which was based on tracings of the blood-tissue interface on the apical four and apical two-chamber views at the end of systole and diastole.

Mitral inflow pattern
- Peak E (early diastolic) wave velocity
- Peak A (atrial filling) wave velocity
- E/A ratio.

Statistical analysis

Recorded data were analyzed using the Statistical Package for the Social Sciences, version 20.0 (SPSS Inc., Chicago, Illinois, USA). Quantitative data were expressed as mean ± standard deviation. Qualitative data were expressed as frequency and percentage. The following tests were done: Independent-sample t-test of significance was used when comparing between two means. Mann–Whitney U-test: For two-group comparisons in nonparametric data. Chi-square test of significance was used to compare proportions between qualitative parameters. p <0.05 was considered statistically significant. p < 0.001 was considered highly significant. p > 0.05 was considered insignificant.

Results

The mean age of the patients was 61.10 ± 9.64 years (range 42–80 years). There were 36 (60%) males and 24 (40%) females. The demographic data are shown in Table 1 and the echocardiographic data are shown in Table 2.

Demographic data	Total (n = 60)
Sex, n (%)	
Male	36 (60.0)
Female	24 (40.0)
Age (years)	
Range	42–80
Mean ± SD	61.10 ± 9.64

Echocardiography data	Mean ± SD
LV function	
EDD	4.94 ± 0.46
ESD	3.08 ± 0.48
EF %	64.58 ± 7.71
RV function	
TAPSE	2.01 ± 0.60
FAC %	35.42 ± 7.81
RV basal diameter	3.79 ± 0.95
EPAP	27.82 ± 8.04

Echocardiography data	Normal, n (%)	Abnormal, n (%)
TAPSE (N>1.6 cm)	35 (58.3)	25 (41.6)
FAC % (N>35%)	34 (56.6)	26 (43.3)
RV basal diameter (N>4.2 cm)	37 (61.6)	23 (38.3)
EPAP (N>35 mmHg)	45 (75)	15 (25)

TR	n (%)
No	2 (3.3)
Mild	30 (50)
Moderate	24 (40)
Severe	4 (6.7)
The nonsurvivor group consisted of 28 patients (46.7%), and the survivors consisted of 32 patients (53.3%). There was a statistically significant association between mortality and increased TLC (p = 0.008), lower Hb (p = 0.002), and decreased PLTs (p = 0.003); there was a highly statistically significant association between mortality and increased levels of aspartate aminotransferase (ALT), alanine aminotransferase (AST), lactate, proBNP, Patent Cooperation Treaty (PCT), C-reactive protein (CRP), ferritin, and D-dimer (p < 0.001), Table 3.

Table 3: Association between mortality and laboratory data

Laboratory data	Nonsurvivor (n = 28)	Survivors (n = 32)	p
TLC	9.68 ± 2.88	7.47 ± 2.15	0.008*
Hb	10.48 ± 2.24	12.06 ± 1.51	0.002*
Lymphocyte	1.03 ± 0.25	1.02 ± 0.28	0.978
PLTs	179.71 ± 51.93	251.91 ± 55.05	<0.001**
Creatinine (mg/dl)	1.83 ± 0.50	2.13 ± 0.62	0.063
ALT (U/L)	51.79 ± 13.86	36.69 ± 9.89	<0.001**
AST (U/L)	79.71 ± 20.10	59.13 ± 16.67	<0.001**
Lactate	5.62 ± 1.14	2.58 ± 0.56	<0.001**
Pro BNP (pg/ml)	189.75 ± 36.56	121.91 ± 30.99	<0.001**
PCT (ng/ml)	2.09 ± 0.59	0.98 ± 0.27	<0.001**
CRP (mg/l)	179.54 ± 26.91	114.31 ± 24.07	<0.001**
Ferritin (ng/ml)	355.18 ± 77.64	235.00 ± 54.30	<0.001**
LDH (U/L)	557.68 ± 105.83	510.94 ± 95.80	0.078
D-Dimer (mg/mL)	4.17 ± 1.18	8.87 ± 6.95	<0.001**

There was statistically significant association between mortality and RV function regarding TAPSE (p = 0.031), RV basal diameter (p = 0.022), and expiratory positive airway pressure (EPAP) (p = 0.038). There was a highly statistically significant association between mortality and FAC % (p < 0.001), Table 4.

Table 4: Association between mortality and echocardiography data (n = 60)

Echocardiography data	Nonsurvivor (n = 28)	Survivors (n = 32)	p
LV function, mean ± SD	63.64 ± 0.39	65.41 ± 0.79	0.381
EF %	0.82 ± 0.41	1.21 ± 0.62	0.001**
TAPSE	3.54 ± 0.95	2.98 ± 0.69	0.038*
RV basal diameter	4.09 ± 0.91	3.50 ± 0.92	0.001**
EPAP	11.30 ± 3.63	13.02 ± 4.69	0.163
TR, n (%):			
No	1 (3.6)	3 (1.1)	0.163
Mild	12 (42.9)	18 (56.3)	0.143
Moderate	11 (39.3)	13 (40.6)	0.143
Severe	12 (14.3)	0	0

In COVID-19 acute respiratory distress syndrome, Bleakley et al. [7] described the basic phenotype and clinical associations of RV impairment and ARDS. They found that the mean RV systolic function defined by RV FAC (28.9% ± 10.6%) was reduced while the mean TAPSE was (20 ± 4.8mm). Mechanisms underlying COVID-19-related RV damage include increased RV afterload and decreased RV contractility due to several factors such as acute respiratory distress syndrome, pulmonary vascular thrombosis, direct viral myocardial damage, hypoxia, inflammatory response, and autoimmune damage. Segmental wall motion abnormality or global hypokinesia at the right ventricle might develop in COVID-19 [8]. Right chambers tolerate preload augmentation worse than their left counterparts. Thus, high RV pressure produces RV myocardial stress and troponin release [9].

Discussion

In COVID-19 acute respiratory distress syndrome, Bleakley et al. [7] described the basic phenotype and clinical associations of RV impairment and ARDS. They found that the mean RV systolic function defined by RV FAC (28.9% ± 10.6%) was reduced while the mean TAPSE was (20 ± 4.8mm). Mechanisms underlying COVID-19-related RV damage include increased RV afterload and decreased RV contractility due to several factors such as acute respiratory distress syndrome, pulmonary vascular thrombosis, direct viral myocardial damage, hypoxia, inflammatory response, and autoimmune damage. Segmental wall motion abnormality or global hypokinesia at the right ventricle might develop in COVID-19 [8]. Right chambers tolerate preload augmentation worse than their left counterparts. Thus, high RV pressure produces RV myocardial stress and troponin release [9].

Puntnmann et al. [10] cohort study included 100 patients recently recovered from COVID-19 to explore the cardiovascular effects. They reported that patients with COVID-19 had a lower RV ejection fraction than healthy controls.

According to Li et al. [11], patients with COVID-19 pneumonia had slightly lower TAPSE. Furthermore, the TAPSE was slightly lower in critically ill patients (P = 0.0128) than in severely ill patients. A decreased TAPSE (<17 mm) was found in three (8.6%) moderate and five (35.7%) critically-severe patients [12]. The American Society of Echocardiography recommends routinely using (TAPSE) to evaluate the RV systolic function; a low TAPSE value may be considered an earlier manifestation of cardiac involvement or complications in COVID-19 patients [13].

When comparing alive and dead patients in D’Alto et al., [14] study investigated the prevalence and prognostic impact of right heart failure and RV-arterial uncoupling in COVID-19 complicated by ARDS. The mean TAPSE (mm) in alive was (25 ± 4) versus (19 ± 4) in dead.

In our study, there was a statistically significant association between mortality and total comorbidities (p = 0.038).

Furthermore, there was a significant association between clinical comorbidities and disease severity in Liaqat et al. [15] research aimed to investigate the myocardial injury patterns, ECG changes, echocardiographic parameters in COVID-19, which included diabetes, hypertension, obesity, and smoking (p < 0.001). Patients with COVID-19 disease who have comorbidities, such as hypertension or diabetes mellitus, are more likely to develop a more severe course and progression of the disease [16]. Comorbidity may also relate to reduced immune function. Downregulation of immune function may expect to occur in these patients and may increase the risk of mortality eventually [17].

Results of the present study showed a statistically significant association between mortality and increased TLC (p = 0.008), lower Hb (p = 0.002), and decreased PLTs (p = 0.003); there was a highly statistically significant association between mortality and increased levels of ALT, AST, lactate, proBNP, PCT;
CRP, ferritin, and D-dimer (p < 0.001).

Deaths had higher levels of white blood count (WBC), monocyte, d-dimer, ALT, complete bilirubin, lactate dehydrogenase, creatine kinase, blood urea nitrogen, creatinine, hypersensitive troponin I, and procalcitonin (all p < 0.05) in Zou et al., [18] retrospective observational cohort included 154 COVID-19 patients. Patients with COVID-19 pneumonia may have normal, low, or high leukocyte counts. Cytokine storm and the use of granulocyte colony-stimulating factor for the leukopenia associated with SARS-CoV-2 may worsen the condition [19]. Lymphopenia and increased WBC count may be associated with increased (CRP) and mortality [20].

In addition to liver involvement, AST also increases when other organs are involved, as well [21]. As a result, in addition to damaging the liver, an increased level of AST may indicate damage to other organs, making the patient experience even worse consequences when this enzyme rises. Thus, a worse prognosis can be expected in people with COVID-19 when AST is elevated in comparison to cases with elevated ALT [22].

Thrombocytopenia was associated with an increased risk of in-hospital mortality in patients with COVID-19 in the study by Yang et al. [23]. The lower the platelet count, the higher the mortality becomes. Platelets are believed to be the first responders in innate immunity and can interact with pathogens including bacteria and viruses through multiple platelet surface receptors. The decrease in platelet count was associated with poor respiratory function in critically ill patients. Platelets directly interact with viral pathogens through the pathogen recognition receptors such as protease-activated receptor 4 and glycoprotein IIIa, and this interaction can lead to platelet activation, which is associated with lung inflammation as well as the severity of viral infections, lung injury, and death [24].

Results of the current study showed statistically significant association between mortality and RV function regarding TAPSE (p = 0.031), RV basal diameter (p = 0.022), and EPAP (p = 0.038). There was a highly statistically significant association between mortality and FAC % (p < 0.001).

In agreement with our results, Li et al., [25] investigated the right heart function in (COVID-19) patients with acute respiratory distress syndrome (ARDS); they found that RVFAC and TAPSE were associated with higher mortality. Martha et al. [26] assessed the association between (TAPSE) and mortality in (COVID-19). Each 1% decrease in TAPSE was associated with increased mortality. TAPSE was shown to be associated with the occurrence of pulmonary embolism in patients with COVID-19 [26].

Diaz-Arocutipa et al. [27] found that RV dysfunction was independently associated with an almost threefold increase in mortality in COVID-19 patients; each 1% decrease in FAC was significantly associated with higher mortality.

Conclusion

In COVID-19 patients, RV function must be assessed and its prognostic importance recognized. RV dysfunction is not only a symptom of high pulmonary pressures, but it also contributes to cardiac insufficiency.

References

1. Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: What we know. Int J Infect Dis. 2020;94:44-8. https://doi.org/10.1016/j. ijid.2020.03.004
PMid:32171952
2. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382:1199-207.
3. Perico L, Benigni A, Remuzzi G. Should COVID-19 concern nephrologists? Why and to what extent? The emerging impasse of angiotensin blockade. Nephron. 2020;144(3):213-21. https://doi. org/10.1159/000507305
PMid:32203970
4. Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother. 2017;94:317-25. https://doi.org/10.1016/j.biopha.2017.07.091
PMid:28772209
5. Lanza K, Perez LG, Costa LB, Cordeiro TM, Palmeira VA, Ribeiro VT, et al. Covid-19: The renin-angiotensin system imbalance hypothesis. Clin Sci. 2020;134(11):1259-64. https://doi. org/10.1042/CS20200492
PMid:32507883
6. Zhang Y, Sun W, Wu C, Zhang Y, Cui L, Xie Y, et al. Prognostic value of right ventricular ejection fraction assessed by 3D echocardiography in COVID-19 patients. Front Cardiovasc Med. 2021;8:61. https://doi.org/10.3389/fcvm.2021.641088
PMid:33634177
7. Bleakley C, Singh S, Garfield B, Morosin M, Surkova E, Mandalia MS, et al. Right ventricular dysfunction in critically ill COVID-19 ARDS. Int J Cardiol. 2021;327:251-8. https://doi. org/10.1016/j.jcadi.2020.11.043
PMid:33242508
8. Akkaya F, Yenerçag FN, Kaya A, Şener YZ, Başcı A. Long term effects of mild severity COVID19 on right ventricular functions. Int J Cardiovasc Imaging. 2021;37(12):3451-7. https://doi. org/10.1007/s10554-021-02340-x
PMid:34251551
9. Ghidini S, Gasperetti A, Winterton D, Vicenzi M, Busana M, Pedrazzini G, et al. Echocardiographic assessment of the right ventricle in COVID-19: A systematic review. Int J Cardiovasc Imaging. 2021;37(12):3499-512.
10. Puntmann VO, Careen MT, Wieters I. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol.
Mohamad et al. Right ventricle in Covid-19 patients

2020;5(11):1265-73. https://doi.org/10.1001/jamaocardio.2020.3557
PMid:32730619

11. Li YL, Zheng JB, Jin Y, Tang R, Li M, Xiu CH, et al. Acute right ventricular dysfunction in severe COVID-19 pneumonia. Rev Cardiovasc Med. 2020;21(4):635-41. https://doi.org/10.31083/jrcm.2020.04.159
PMid:33388009

12. Nekludova GV, Avdeev SN, Tsareva NA, Trushenko NV, Ataman K. Using TAPSE (tricuspid annular plane systolic excursion) as a predictor of poor prognosis of COVID-19: Is it enough? Int J Infect Dis. 2021;107:164.

13. Zuin M, Rigatelli G, Roncon L, Zuliani G. Relationship between echocardiographic tricuspid annular plane systolic excursion and mortality in COVID-19 patients: A meta-analysis. Echocardiography. 2021;38(9):1579-85. https://doi.org/10.1111/echo.15175
PMid:34355816

14. D’Alto M, Marra AM, Severino S, Salzano A, Romeo E, De Rosa R, et al. Right ventricular-arterial uncoupling independently predicts survival in COVID-19 ARDS. Crit Care. 2020;24(1):1-10.

15. Liaqat A, Ali-Khan RS, Asad M, Rafique Z. Evaluation of myocardial injury patterns and ST changes among critical and non-critical patients with coronavirus-19 disease. Sci Rep. 2021;11(1):1-8.

16. Sanyauo A, Okorie C, Marinkovic A, Patidar R, Younis K, Desai P, et al. Comorbidity and its impact on patients with COVID-19. SN Compr Clin Med. 2020;11:1-8.

17. Biswas M, Rahaman S, Biswas TK, Haque Z, Ibrahim B. Association of sex, age, and comorbidities with mortality in COVID-19 patients: A systematic review and meta-analysis. Intervirology. 2021;64(1):36-47. https://doi.org/10.1159/000512592
PMid:33296901

18. Zou X, Li S, Fang M, Hu M, Bian Y, Ling J, et al. Acute physiology and chronic health evaluation II score as a predictor of hospital mortality in patients of coronavirus disease 2019. Crit Care Med. 2020;48(8):e657. https://doi.org/10.1097/CCM.0000000000004411
PMid:32697506

19. Selim S. Leukocyte count in COVID-19: An important consideration. Egypt J Bronchol. 2020;14(1):1-2.

20. Javanian M, Bayani M, Shokri M, Sadeghi-Hashadd-Zavareh M, Babazadeh A, Yeganeh B, et al. Clinical and laboratory findings from patients with COVID-19 pneumonia in Babol North of Iran: A retrospective cohort study. Rom J Intern Med. 2020;58(3):161-7. https://doi.org/10.2478/rjim-2020-0013
PMid:32396143

21. Su TH, Kao JH. The clinical manifestations and management of COVID-19-related liver injury. J Formos Med Assoc. 2020;119(6):1016. https://doi.org/10.1016/j.jfma.2020.04.020
PMid:32345544

22. Khoonsari M, Zamani F, Niya MH, Hemmasi G, Ajdarkosh H, Faraji A, et al. Liver dysfunction and inpatient deaths in COVID-19 hospitalized patients. Hepat Mon. 2020;20(11):e109076.

23. Yang X, Yang Q, Wang Y, Wu Y, Xu J, Yu Y, et al. Thrombocytopenia and its association with mortality in patients with COVID-19. J Thromb Haemost. 2020;18(6):1469-72. https://doi.org/10.1111/jth.14848
PMid:33202435

24. Zhu Y, Zhang J, Li Y, Liu F, Zhou Q, Peng Z. Association between thrombocytopenia and 180-day prognosis of COVID-19 patients in intensive care units: A two-center observational study. PLoS One. 2021;16(3):e0248671. https://doi.org/10.1371/journal.pone.0248671
PMid:33735911

25. Li Y, Li F, Zhu S, Xie Y, Wang B, He L, et al. Prognostic value of right ventricular longitudinal strain in patients with COVID-19. JACC Cardiovasc Imaging. 2020;13(11):2287-99. https://doi.org/10.1016/j.jcmg.2020.04.014
PMid:32654963

26. Martha JW, Pranata R, Wibowo A, Lim MA. Tricuspid annular plane systolic excursion (TAPSE) measured by echocardiography and mortality in COVID-19: A systematic review and meta-analysis. Int J Infect Dis. 2021;105:351-6. https://doi.org/10.1016/j.ijid.2021.02.029
PMid:33582370

27. Diaz-Arocutipa C, Saucedo-Chinchay J, Argulian E. Association between right ventricular dysfunction and mortality in COVID-19 patients: A systematic review and meta-analysis. Clin Cardiol. 2021;44(10):1360-70. https://doi.org/10.1002/clc.23719
PMid:34528706