Small cell transformation of non-small cell lung cancer on immune checkpoint inhibitors: uncommon or under-recognized?

Kartik Sehgal 1, Andreas Varkaris, 1 Hollis Viray, 1 Paul A VanderLaan, 2 Deepa Rangachari, 1 Daniel B Costa 1

ABSTRACT

Background Histological transformation of oncogene-driven lung adenocarcinoma to small cell lung cancer (SCLC) following treatment with tyrosine kinase inhibitors (TKIs) is a well-described phenomenon. Whether a similar transformation may drive acquired resistance to immune checkpoint inhibitors (ICPIs) in non-SCLC (NSCLC) is uncertain. Hence, tissue biopsies are not universally recommended at progression of NSCLC on ICPIs, unlike TKIs.

Case presentation We report a case of a woman in her mid-60s with a 35 pack-years tobacco history and stage IV squamous cell lung carcinoma with no targetable genomic alterations, whose disease progressed within 4 months of first line carboplatin/gemcitabine therapy. Her treatment was switched to second line nivolumab monotherapy which resulted in sustained partial response lasting 21 months. She subsequently developed rapid, bulky progression of mediastinal disease. Biopsy showed transformation to SCLC. Comparison of genomic profiling results from the initial NSCLC diagnosis and SCLC transformation revealed near-identical tumor profiles. Her disease responded to next line carboplatin/etoposide, though lasting for only 10 months. She died 14 months after detection of neuroendocrine transformation of her NSCLC.

Systematic review We performed a systematic review of the literature to identify similar cases of NSCLC-to-small cell transformation on ICPIs. Nine patients, including our index case, were identified, with seven (77.8%) on nivolumab and two (22.2%) on pembrolizumab monotherapy. Median survival time since small cell transformation was 13.0 months (95% CI 2.0 to 16.0). Using our patient case as a framework, we further discuss the lack of consensus criteria to distinguish small cell transformation from de novo metachronous SCLC.

Conclusions Histological transformation to SCLC is a potential mechanism of acquired resistance to ICPIs in NSCLC. Repeat tissue biopsies should be considered at the time of progression, similar to oncogene-directed therapies. Prospective larger studies are warranted to further characterize NSCLC-to-small cell transformation on ICPIs using molecular fingerprinting with paired tumor genomic profiles, evaluation of neuroendocrine features at baseline and consideration of initial response.

BACKGROUND

Resistance to tyrosine kinase inhibitors (TKIs) in epidermal growth factor receptor (EGFR) mutated non-small cell lung cancer (NSCLC) is well established to be mediated by histological transformation to SCLC in 3%-14% of cases. 1-3 Similarly, transformation of prostate adenocarcinoma to small cell carcinoma on androgen-deprivation therapy is reported to occur at an incidence of 17% and is associated with poor survival outcomes. 4, 5 More recently, reports have emerged regarding SCLC transformation of NSCLC as a resistance mechanism to immune checkpoint inhibitors (ICPIs). However, unlike disease progression on TKIs, repeat tissue biopsies are not universally recommended at the time of NSCLC progression on ICPIs.

CASE PRESENTATION

In our practice, we cared for a patient who had small cell transformation of stage IV poorly differentiated squamous cell carcinoma of the lung after prolonged nivolumab monotherapy (figure 1). She was in her mid-60s with a history of 35 pack-years of smoking at the time of diagnosis of her lung cancer (metastatic to lungs, mediastinal lymph nodes and L1 vertebral body) with no targetable genomic alterations. After a short-lived response to first-line platinum-gemcitabine chemotherapy lasting less than 4 months, she had progression of her disease. She was then switched to nivolumab monotherapy, with sustained partial response for 21 months. On follow-up imaging, she was noted to have bulky mediastinal and right hilar lymphadenopathy; biopsy showed SCLC. Review of the biopsy at initial NSCLC diagnosis did not show any small cell component. Tumor genomic profiling performed at initial

To cite: Sehgal K, Varkaris A, Viray H, et al. Small cell transformation of non-small cell lung cancer on immune checkpoint inhibitors: uncommon or under-recognized? J Immunother Cancer 2020; 8:e000697. doi:10.1136/jitc-2020-000697

Accepted 19 May 2020
diagnosis and following disease progression on nivolumab showed nearly identical results (table 1). Treatment with carboplatin/etoposide led to near-complete response, however, lasting for only 10 months. Biopsy of the tumor again confirmed small cell histology. She was treated with concurrent nivolumab and radiotherapy to the chest, though ultimately elected to pursue comfort focused care and died 14 months after the detection of neuroendocrine transformation.

SYSTEMATIC REVIEW

We performed a systematic review of the literature, in accordance with Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines, to identify similar published reports of NSCLC-to-small cell transformation on ICPIs (figure 2). We searched PubMed, Embase and the American Society of Clinical Oncology/International Association for the Study of Lung Cancer virtual meeting library databases on 7 December 2019, using the keywords small cell transformation/neuroendocrine transformation with or without ICPIs/anti-PD-1/pembrolizumab/nivolumab/atezolizumab/durvalumab. Two investigators (KS and AV) independently reviewed abstracts and full-text articles. Patients with advanced NSCLC who had received molecularly targeted therapies prior to small cell transformation or non-lung primary cancers were excluded. Nine patients were identified from five articles (three case series 6–8 and two case reports 9–10) and one meeting abstract (index case).

All patients were on treatment with ICPIs at the time of detection of SCLC, with seven (77.8%) on nivolumab and two (22.2%) on pembrolizumab monotherapy. Five (55.6%) were male; median age was 68 years (range 65–75 years). All eight (100%) patients for whom smoking history was described had history of tobacco exposure. The median number of treatments received before ICPI was 1 (range 0–3). All (100%) patients had received chemotherapy before switch to either second line or maintenance ICPI. After detection of small cell transformation, seven (77.8%) patients received carboplatin/etoposide as the next immediate line of therapy. Among eight patients for whom survival data was available, median survival since detection of small cell transformation was 13.0 months (95% CI 2.0 to 16.0 months; Stata/IC V.15.1), which was comparable to 10.9 months (95% CI 8.0 to 13.7 months) previously reported with transformed EGFR-mutant lung adenocarcinoma on TKIs. 11–13 The full clinicopathological and tumor genomic details of these cases are summarized in table 1.

DISCUSSION AND CONCLUSIONS

No consensus guidelines exist on how to define NSCLC-to-small cell transformation and distinguish it from new primary SCLC. Absence of neuroendocrine features on initial biopsy, protracted response to nivolumab monotherapy and the near-identical genomic profile of the two tumors favored the diagnosis of histological transformation in our patient. Proof of transformation with molecular fingerprinting was described in only two of the other eight patients (table 1). The genomic profiles of ‘transformed small cell tumors’ in three patients were completely different from the ‘original’ NSCLC tumors, which raises the question of true treatment-induced transformation versus metachronous primary...
Table 1 Summary of clinical and tumor genomic characteristics of patients included in the review

Source	Age/sex at NSCLC dx	Smoking status at NSCLC dx	Histology/neuroendocrine features on initial bx	Genomic profile of original NSCLC	Treatment of NSCLC prior to ICPI	ICPI details	Initial best response to ICPI	Site of repeat biopsy showing SCLC	Genomic profile of SCLC	Treatment for SCLC	Site of PD of SCLC	Patient outcome post-SCLC dx	
Index case	Mid-60s F	Smoker (35 pack-years)	Poorly diff squamous/ no	TP53 mut (R183K*62 and G325), CDKN2A R61 mut, SOX2 amp, PIK3CA amp, ERBB4 amp, REL amp, KRAS amp, ZNF1703 amp, FGFR1 amp (Foundation Medicine)	CBDCA/GEM (4 cycles)	Nivo q2wk (second line, 47 cycles)	PR	Lung and level 7 and 4R mediastinal lymph nodes	TP53 R283K*62 mut, CDKN2A R56 mut, SOX2 amp, PIK3CA amp, PIK3CA E545K, CCND3 amp, MYCL1 amp, CSF3R amp, FGFR3 amp, FGFR6 amp, CT70F9b amp, KDM5A amp, PRKCQ amp, TERC amp, VEGF amp (FoundationOne CDx)	CBDCA/VP16 (1st line, 4 cycles) -> 8 month no therapy holiday	Nivo q2wk (3 cycles) + XRT to chest (2nd line)	Systemic	Died 14 mo post SCLC dx
Iams et al	75 F	Smoker (30 pack-years)	Adeno/ not specified	KRAS G12C mut	CBDCA/PEM/BEV (6 cycles) -> maint. PEM/BEV > 16 mo therapy holiday	Nivo q2wk (2nd line, 33 cycles) -> 11 mo therapy holiday	SD	Station 7 mediastinal lymph node	KRAS G12C mut, TP53 R273G mut	CBDCA/VP16 (1st line, 4 cycles) -> 4 mo therapy holiday	Not specified	Died 16 mo post SCLC dx	
Iams et al	67 F	Smoker (50 pack-years)	Adeno/ not specified	KRAS G12C mut	CBDCA/VEP/PTX (4 cycles) -> 17 mo therapy holiday	Nivo q2wk (2nd line, 36 cycles)	Response	Pericardial and pleural effusion	TP53 S355S frameshift mut, RB1 splice site mut	CBDCA/VP16 (1st line, 6 cycles) -> 2 mo therapy holiday	Not specified	Died 11 mo post SCLC dx	
Bar et al	70 F	Active Smoker	Squamous/ yes	TP53 mut (Arg249Ser and Arg196Ter)	Palliative XRT to D5 vertebral lesion -> CBDCA/GEM (1st line, 5 cycles) Single dose XRT to left lung hilum (3rd line)	Nivo q2wk (2nd line, 3 cycles); (5th line, 10 mo)	PseudopD	Adrenal gland	TP53 mut (Arg249Ser and Arg196Ter)	CBDCA/VP16 (1st line, 6 cycles) -> 2 mo therapy holiday	PTX (2nd line, 8 cycles)	CNS	Alive 9 mo post SCLC dx; then lost to follow-up
Bar et al	75 M	Past Smoker (>10 pack-years)	Squamous/ yes	TP53 mut (A3131T and Pro177Ser), FBW7 Arg441Phc mut	Palliative XRT to vertebral lesion -> CBDCA/GEM (5 mo) -> 3mo therapy holiday	Nivo q2wk (2nd line, 3 cycles); (5th line, 10 mo)	PR	Lung	TP53 Cyg238Phe mut	CBDCA/VP16 -> XRT to chest (1st line, 3–4 mo) -> 2 mo therapy holiday	Nivo (2nd line, 2 mo) OTX (3rd line, 1 mo), stopped 2/2 toxicity Gefitinib (4th line, 1 mo)	Not specified	Died 17 mo post SCLC dx
Abdallah et al	65 M	Smoker (35 pack-years)	Adeno/ limited specimen	Negative for EGFR/Alk alterations	CBDCA/PEM (6 cycles) -> maint. PBM (9 cycles)	Nivo (2nd line, 5 cycles)	PD	Lung	Not described	CBDCA/VP16 (2 cycles at the time of report)	Not described	Response to chemotherapy	
Abdallah et al	68 M	Not described	Two primaries (Squamous and poorly diff/ limited specimen)	Not described	Pembrolizumab/CBDCA/PTX PR (4 cycles) -> maint. Pembrolizumab (26 cycles)	Right hilar lymph node	Not described	Pembrolizumab/CBDCA/PTX PR (4 cycles) -> definitive XRT to chest	CBDCA/VP16 (4 cycles) -> definitive XRT to chest	NA	Alive with no evidence of disease 18 mo post SCLC dx		

Continued
Table 1

Source	Age/sex at NSCLC dx	Smoking status at NSCLC dx	Histology/neuroendocrine features on initial bx	Genomic profile of original NSCLC	Treatment of NSCLC prior to ICPI	ICPI details	Initial best response to ICPI	Site of repeat biopsy showing SCLC	Genomic profile of SCLC	Treatment for SCLC	Site of PD of SCLC	Patient outcome post-SCLC dx
Imakita et al												
75 M	Smoker (50 pack-years)	Poorly diff/no	Negative for EGFR, ALK alterations	DTX/BEV (2–3 cycles) -> 2–3 mo therapy holiday 2/2 toxicity	Nivo (2nd line, 3 cycles)	Pd	Pleural fluid and subcutaneous tumor of chest	Not described	Amrubicin	Systemic	Died 2 mo post-SCLC dx	
Okeya et al												
66 M | Smoker (45 pack-years) | Adeno/limited specimen | Indeterminate for EGFR mut, Negative for ALK alterations | CBDCA/PEM/BEV (4 cycles) -> maint. PEM/BBV (2 cycles) | Pembrol (2nd line, 2 cycles, 5 weeks) | HyperPD | Pleural fluid | Not described | CBDCA/VP16 (1st line, 3 cycles) | Amrubicin | (2nd line, 3 cycles) | Died 5 mo post SCLC dx |

Bold red font represents shared genomic alterations in initial NSCLC and transformed SCLC.

Bold red font: represents shared genomic alterations in initial NSCLC and transformed SCLC.

->, followed by; 2/2, secondary; adeno, adenocarcinoma; amp, amplification; BEV, bevacizumab; bx, biopsy; CBDCA, Carboplatin; CNS, central nervous system; diff, differentiated; DTX, Docetaxel; dx, diagnosis; EGFR, epidermal growth factor receptor; F, female; GEM, gemcitabine; ICPI, immune checkpoint inhibitor; Ipi, Ipilimumab; M, Male; maint., maintenance; mo, months; mut, mutation; NA, not applicable; Nivo, nivolumab; NSCLC, non-small cell lung cancer; PD, progressive disease; PEM, pemetrexed; Pembro, pembrolizumab; PR, partial response; PTX, paclitaxel; SCLC, small cell lung cancer; SD, stable disease; VP16, Etoposide; XR, Radiotherapy.

Table 1 Continued

Figure 2

PRISMA diagram detailing selection of published reports of small cell transformation of non-small cell lung cancer with immune checkpoint inhibitors. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-

analyses.

脚下K et al. J Immunother Cancer 2020;8:e000697. doi:10.1136/jitc-2020-000697

on September 16, 2023 by guest. Protected by copyright.http://jitc.bmj.com/ J Immunother Cancer: first published as 10.1136/jitc-2020-000697 on 23 June 2020. Downloaded from
lung adenocarcinoma and prostate adenocarcinoma may help direct further mechanistic investigations towards study of common cell-of-origin, drug-tolerant persistant state and stromal interactions. 2 3 15-13 In the meanwhile, we recommend that tissue biopsies should be considered at the time of NSCLC progression on ICPIs similar to TKIs, if safe and feasible from the patient perspective.

Twitter Kartik Sehgal @KartikSehgal_MD

Acknowledgements We acknowledge the support of team at Foundation Medicine Inc. for report of tumor genomic findings.

Contributors KS and DBC conceptualized and designed the study. KS and AV independently screened all the studies. All authors participated in the acquisition, analysis or interpretation of data, and in the drafting, critical revision, and approval of final version of the manuscript.

Funding This work was funded in part by the National Institutes of Health (NIH)/National Cancer Institute (NCI) (grant R37CA218707 awarded to DBC).

Disclaimer The funders/sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Competing interests PAVL reports personal fees (consulting fees and honoraria) from Gala Therapeutics, Fidation Health, Caris Life Sciences and Foundation Medicine; all outside the submitted work. DR reports non-financial support (institutional research support) from Bristol-Myers Squibb, Novocure, and Abbvie/Stemcentrx, all outside the submitted work. DBC reports personal fees (consulting fees and honoraria) and nonfinancial support (institutional research support) from Takeda/Millennium Pharmaceuticals, and AstraZeneca, and Pfizer, as well as nonfinancial support (institutional research support) from Merck Sharp and Doehme Corporation, Merrimack Pharmaceuticals, Bristol-Myers Squibb, Clovis Oncology, Spectrum Pharmaceuticals and Tesaro, all outside the submitted work.

Patient consent for publication Not required.

Ethics approval Patient information was collected from medical records in accordance with research protocols approved by the Beth Israel Deaconess Medical Center and Dana-Farber/Harvard Cancer Center institutional review boards.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD Kartik Sehgal http://orcid.org/0000-0003-4391-6943

REFERENCES
1 Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011;3:75ra26.
2 Oser MG, Niederst MJ, Sequist LV, et al. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. Lancet Oncol 2015;16:e165–72.
3 Farago AF, Plotrowska Z, Sequist LV. Unlocking the mystery of small-cell lung cancer transformations in EGFR mutant adenocarcinoma. J Clin Oncol 2017;35:2987–8.
4 Aggarwal R, Huang J, Alumkal JJ, et al. Clinical and genomic characterization of Treatment-Emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study. J Clin Oncol 2018;36:2492–503.
5 Volta AD, Cosentini D, Anttonelli A, et al. Transformation of prostate adenocarcinoma into small-cell neuroendocrine cancer under androgen deprivation therapy: much is achieved but more information is needed. J Clin Oncol 2019;37:350–1.
6 Iams WT, Beckermann KE, Almodovar K, et al. Small cell lung cancer transformation as a mechanism of resistance to PD-1 therapy in KRAS-mutant lung adenocarcinoma: a report of two cases. J Thorac Oncol 2019;14:e45–8.
7 Bar J, Ofek E, Barshack I, et al. Transformation to small cell lung cancer as a mechanism of resistance to immunotherapy in non-small cell lung cancer. Lung Cancer 2019;138:109–15.
8 Abdallah N, Nagasaka M, Abdullahat E, et al. Non-Small-cell to small-cell lung cancer on PD-1 inhibitors: two cases on potential histologic transformation. Lung Cancer 2018;9:85–90.
9 Imakita T, Fujita K, Kanai O, et al. Small cell lung cancer transformation during immunotherapy with nivolumab: a case report. Respir Med Case Rep 2017;21:52–5.
10 Okeya K, Kawagishi Y, Munakata E, et al. Hyperprogressive disease in lung cancer with transformation of adenocarcinoma to small-cell carcinoma during pembrolizumab therapy. Intern Med 2019;58:3295–8.
11 Marcoux N, Gettign SN, O’Kane G, et al. Egfr-Mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes. J Clin Oncol 2019;37:278–85.
12 Gettign SN, Wurtz A, Goldberg SB, et al. Clinical features and management of acquired resistance to PD-1 axis inhibitors in 26 patients with advanced non-small cell lung cancer. J Thorac Oncol 2018;13:831–9.
13 Lee J-K, Lee J, Kim S, et al. Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas. J Clin Oncol 2017;35:3065–74.
14 Mishra R, Haldar S, Placencio V, et al. Stromal epigenetic alterations drive metabolic and neuroendocrine prostate cancer reprogramming. J Clin Invest 2018;128:4472–84.
15 Beltran H, Hruszkewycz A, Scher HI, et al. The role of lineage plasticity in prostate cancer therapy resistance. Clin Cancer Res 2019;25:6924–38.

Sehgal K, et al. J Immunother Cancer 2020;8:e000697. doi:10.1136/jitc-2020-000697