Transcriptional regulation and its misregulation in Alzheimer’s disease

Xiao-Fen Chen*, Yun-wu Zhang, Huaxi Xu and Guojun Bu*

Abstract

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by loss of memory and cognitive function. A key neuropathological event in AD is the accumulation of amyloid-β (Aβ) peptide. The production and clearance of Aβ in the brain are regulated by a large group of genes. The expression levels of these genes must be fine-tuned in the brain to keep Aβ at a balanced amount under physiological condition. Misregulation of AD genes has been found to either increase AD risk or accelerate the disease progression. In recent years, important progress has been made in uncovering the regulatory elements and transcriptional factors that guide the expression of these genes. In this review, we describe the mechanisms of transcriptional regulation for the known AD genes and the misregulation that leads to AD susceptibility.

Keywords: Alzheimer’s disease, Transcription factors, Transcriptional regulatory element, Polymorphism, Amyloid-β

Introduction

Alzheimer’s disease (AD) is an age-associated neurodegenerative disease and is the most common form of dementia in the elderly. Like many other geriatric disorders, AD appears to be multifactorial in its origin. Mounting evidence from genetic, pathological, and functional studies has shown accumulation of amyloid-β (Aβ) peptide in the aging brain [1,2]. Aβ aggregates in the forms of soluble Aβ oligomers and amyloid plaques trigger numerous pathophysiological changes that ultimately lead to cognitive dysfunction [3-5]. Aβ is a 40–42 amino-acid peptide that is generated through multiple proteolytic cleavages of the amyloid-β protein precursor (APP) [6]. The ‘amyloid hypothesis’ postulates Aβ as the common initiating factor in AD pathogenesis and thus places Aβ as the hot research focus in the past two decades [2]. Emerging evidences have indicated that an imbalance between production and clearance of Aβ in the brain leads to AD pathogenesis [3]. A large group of genes have been described to affect Aβ generation or clearance, which are part of the ‘AD genes’.

Although it is clear that expression levels of AD genes are important in AD etiology, much remains unknown about their specific regulation [7]. Studying the regulatory elements of disease genes and their corresponding transcription factors is therefore critically important for elucidation of the disease processes [8]. This review will discuss the mechanisms of transcriptional regulation for AD genes, and the misregulation that leads to AD susceptibility.

Transcription regulation of BACE1

Aβ is derived from sequential cleavage of APP by β- and γ-secretase [9]. The initiation of Aβ production by BACE1 and the disease-associated increase of BACE1 level places BACE1 in the central role of AD pathogenesis [10-13]. Numerous efforts have been devoted to inhibiting BACE1 expression and activity to reduce Aβ production and its associated neuronal toxicity [14]. BACE1 is an aspartyl protease which cleaves APP at the known β-secretase sites of Asp + 1 and Glu + 11 of Aβ [15]. BACE1 knockout mice do not produce Aβ and are free from AD-associated pathologies including memory deficits and neuronal loss [16,17]. However, detailed studies revealed specific behavioral and physiological alterations in the complete absence of BACE1 [18-20]. It was suggested that non-APP substrates that are subjected to BACE1 cleavage might be important for these specific behavioral and functional changes in BACE1-deficient mice [9].

The BACE1 gene spans about 30 kilobases (kb) on chromosome 11q23.2 and includes nine exons [14]. Ever since it was first cloned in 2003, the BACE1 gene promoter

* Correspondence: chenxf@xmu.edu.cn; BuGuojun@mayo.edu

Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, 361102 Xiamen, Fujian, People’s Republic of China.

© 2013 Chen et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
has attracted extensive studies [14,21]. This promoter lacks the typical CAAT and TATA boxes but has a very high GC content at its proximal region [21]. The first 600 bp of the promoter is highly conserved amongst rat, mouse and human, suggesting that this region contains important regulatory elements which modulate BACE1 transcriptional activity [21]. A large amount of evidence shows that the BACE1 promoter contains multiple transcription factor-binding sites and is typical of an inducible expression [14,21,22]. A number of transcription factors have been suggested to control BACE1 transcription, including specificity protein 1 (SP1), NF-κB, hypoxia inducible factor 1α (HIF-1α), and peroxisome proliferator-activated receptor-gamma (PPAR γ), amongst others. SP1 belongs to the Sp/KLF (Specificity protein/Krüppel-like factor) family and is amongst the first transcription factor identified to regulate BACE1 gene expression [23,24]. Deletion analysis of BACE1 promoter and the gel shifting assay demonstrated the functional binding site for Sp1 on the BACE1 promoter. Subsequently, Sp1 over-expression potentiated the activity of the wild-type, but not of the Sp1-binding-site-mutant BACE1 promoter, demonstrating an activator function for Sp1 in BACE1 expression. Furthermore, the lack of endogenous Sp1 protein in Sp1-knockout cells markedly reduces BACE1 promoter activity. These results clearly show that Sp1 modulates the endogenous BACE1 expression [24]. The crucial role of Sp1 in regulation of BACE1 expression was supported by different experimental approaches. Mithramycin A, which inhibits Sp1 binding to DNA, reduced BACE1 expression in a dose-dependent manner [24,25]. 12/15-Lipoxygenase (12/15-LO), an enzyme widely distributed in the central nervous system, elevated the levels of BACE1 mRNA and protein through a Sp1-mediated transcription control [26]. Considering the activation role of Sp1 for BACE1 expression, future studies are needed to illustrate the spatial and temporal expression patterns, and the transcriptional activity of Sp1 in distinct cell types of the brain. Importantly, Sp1 is known to interact with NF-κB which also regulates BACE1 expression level, it remains to be determined whether they regulate BACE1 gene expression in a synergistic manner [27,28].

NF-κB is a unique transcription factor that regulates BACE1 transcription in a cell type-specific manner [29]. A detailed analysis using BACE1 promoter constructs revealed that NF-κB acts as a repressor for BACE1 transcription in differentiated neuronal cultures and non-activated glial cultures, but as an activator for BACE1 transcription in activated astrocytic and Aβ-exposed neuronal cultures. The effects of NF-κB on the regulation of BACE1 transcription are mediated by the binding of distinct NF-κB subunits. The p50/c-Rel heterodimer acts as repressor, while p50/p65, p52/c-Rel or p52/p65 acts as activator when binding to BACE1 promoter-specific NF-κB site. Recently, it was found that NF-κB differently regulates Aβ production under physiological and supraphysiological Aβ concentrations by modulating secretase expression [30]. Under physiological conditions, NF-κB lowers the transcriptional activity of BACE1 promoter and triggers a repressive effect on Aβ production. However, NF-κB activates the transcription of BACE1 promoter and enhances Aβ production under pathological context. Thus, using compounds to modulate BACE1 expression based on NF-κB might lead to different outcomes under different conditions.

HIF-1 is a hetero-dimeric transcription factor composed of an oxygen-regulated alpha-subunit (HIF1α) and a constitutively expressed and stable beta-subunit (HIF1β) [31]. Under hypoxic conditions, HIF-1 binds to a hypoxia-responsive element (HRE) on a target gene promoter and activates gene expression [32]. A functional HRE was identified in human and mouse BACE1 gene promoter [33,34]. Indeed, hypoxia augments β-secretase cleavage of APP by increasing BACE1 gene transcription both in vivo and in vitro. The effect of hypoxia on BACE1 expression is presumably mediated by HIF-1α. Over-expression of HIF-1α increased BACE1 mRNA and protein levels, whereas down-regulation of HIF-1α reduced the level of BACE1 expression. Consistent with these results, BACE1 expression was reduced in the hippocampus and the cortex of HIF-1α conditional knock-out mice [34]. Additionally, hypoxia treatment markedly increased Aβ deposition and neuritic plaque formation and potentiated the memory deficit in Swedish mutant APP transgenic mice [33]. Recently, it was shown that hypoxia up-regulates BACE1 expression through two distinct mechanisms: an early release of reactive oxygen species from mitochondria and a late activation of HIF-1α [35]. Interestingly, salidroside, which has long been used in traditional Tibetan medicine to relieve high altitude sickness, is able to attenuate Aβ accumulation via HIF-1α-mediated reduction of BACE1 expression [36]. The link between hypoxia and BACE1 expression provides a molecular mechanism for increased incidence of AD following cerebral ischemic and stroke injuries.

Peroxisome proliferator-activated receptor-gamma (PPARγ) is a ligand-activated nuclear transcription factor that has two isoforms, PPARγ1 and PPARγ2 [37,38]. These isoforms are produced by alternative splicing of the same gene. PPARγ can form heterodimers with retinoid X receptors (RXR) and binds to PPAR-responsive element (PPRE) upon ligand activation [39]. The BACE1 gene promoter also contains PPRE and mutagenesis of the PPRE increased BACE1 gene promoter activity by abolishing PPARγ binding to PPRE [40]. Over-expression of PPARγ has been shown to reduce BACE1 gene promoter activity. These results suggest a repressive role of PPARγ on BACE1 expression. Interestingly, brain extracts from
AD patients showed that both PPARγ levels and binding to PPRE on the BACE1 gene promoter was decreased [40]. Pro-inflammatory cytokines decrease PPARγ mRNA level and this effect was suppressed by non-steroidal anti-inflammatory drugs (NSAIDs). Intriguingly, NSAIDs were shown to modulate BACE1 transcription by repressing its promoter activity specifically through PPARγ [40]. Indeed, epidemiological evidence suggests that a strong inflammatory reaction is present in AD brains and long-term treatments with NSAIDs decrease the risk for AD [41]. PPARγ could be herein a major regulatory factor for modulating inflammation. The activation of PPARγ by agonists such as certain NSAIDs could open a prospective avenue for AD therapy.

Transcription regulation of APOE

Apolipoprotein E (ApoE) is a major cholesterol carrier in the brain [42,43]. ApoE is primarily produced by astrocytes and its function is to deliver lipids to neurons through the binding of cell surface ApoE receptors [44]. Human ApoE exists as three polymorphic alleles: ε2, ε3 and ε4 [43]. These three isoforms differ from each other by a single amino acid, resulting in different protein structures, lipid association and receptor binding [45-47]. The ε4 allele of the ApoE is the strongest genetic risk factor for late-onset AD (LOAD) [48]. Individuals with one ε4 allele are 3-4 times more likely to develop AD than those without ε4 allele [49]. Interestingly, the rare ε2 allele has a protective effect against AD compared with the ε3 allele [50].

In addition to the polymorphisms at the ε2/ε3/ε4 locus, changes in APOE expression level have been reported to be associated with AD, although the results remain controversial [51]. ApoE levels have been found to be increased in the cerebrospinal fluid (CSF), plasma and frontal cortex of AD patients [52-54]. However, other studies have observed either no change or a decrease in the ApoE levels of AD patients [55-58]. Such discrepancies may be related to confounding factors interfering with sample handling and/or analyses, of which remains to be clarified. Indeed, one study pinpointed that the hydrophobic character of ApoE resulted in adsorption to different types of test tubes commonly used for collection of CSF at lumbar puncture, resulting in falsely low levels [58]. More recently, two groups showed consistent results that reducing human ApoE level attenuates amyloid deposition in mutant human APP transgenic mouse model, regardless of isoform status [59,60]. Thus, overall APOE expression level plays an important role in AD pathology, although the exact correlation remains controversial.

APOE expression is regulated by nutritional, developmental and hormonal factors which bind to its proximal promoter region [61-63]. In contrast to BACE1, the 5′-flanking sequence of APOE harbors a functional TATA box [64]. Multiple cis-acting positive and negative regulatory elements have been mapped to the 5′-flanking sequence of APOE, including AP-2, PPARγ and liver X receptor (LXR) [65-68].

AP-2 is an astrocyte-associated transcription factor whose expression can be strongly and rapidly induced by cyclic AMP (cAMP) [69]. Retinoic acid (RA) is also known to regulate the transcriptional activity of AP-2 gene [70]. Interestingly, the activity of the proximal APOE promoter in astrocytes is up-regulated by cAMP and RA synergistically [65]. Sequence analysis and footprinting technique revealed the existence of two binding sites for AP-2 in the APOE promoter which might mediate the stimulatory effect of cAMP and RA [65]. Mutations in these regions markedly impaired the trans-stimulatory effect of AP-2 on APOE expression [65]. These results indicate the existence of functional AP-2 sites in the promoter region of ApoE. The AP-2 transcription factor family consists of five isoforms (α, β, γ, δ and ε), with α- and β-isofroms abundantly expressed in the brain [71,72]. Interestingly, a recent study observed that Aβ induced a time-dependent increase in APOE mRNA in astrocytes which was mediated by AP-2 β [73]. The transcriptional up-regulation of APOE level by Aβ may be a neuro-protective response against Aβ-induced cytoxicity, consistent with ApoE’s role in cytoprotection.

Proliferator-activated receptor gamma (PPARγ) and liver X receptors (LXRs) form obligate hetero-dimers with retinoid X receptors (RXRs) and are reported to regulate APOE transcription [66,68]. Indeed, the LXR agonists GW3965 and TO901317 were reported to increase APOE expression in astrocytes, enhance Aβ clearance and ameliorate the memory deficit in amyloid mouse model [66,67]. Similar to LXRs, PPARγ agonists such as pioglitazone and ciglitazone can also induce APOE expression and rescue the behavioral deficits in AD mouse model [39,68]. In addition, RXR activation by numerous compounds has shown to increase APOE level, likely through activation of RXR and PPAR signaling pathways [74,75]. Owing to their ability to enhance APOE gene expression and promote Aβ degradation, LXRs, PPARs, and perhaps RXRs, serve as an attractive therapeutic target for AD.

While rarely-detected on the BACE1 gene promoter, polymorphisms within the proximal promoter of the APOE gene lead to changes in ApoE level by altering gene transcription [76]. Four promoter polymorphisms have been identified and their association with AD risk has been investigated, including −491 (A/T transversion), −427 (T/C transition), −219 (G/T transversion, also known as the Th1/E47cs polymorphism), +113 (C/G transversion, also termed IE1) [77-80]. These polymorphisms are proposed to affect the transcriptional activity of ApoE gene by altering the binding of transcription factors [81]. Among them, the −491 A/T polymorphism has been the most
thoroughly investigated and shown to robustly affect ApoE level. The A to T substitution at −491, and the T to G substitution at −219, resulted in a 63% decrease and a 169% increase of the APOE promoter activity, respectively [81]. Epidemiological studies have shown that the −491 T allele was associated with a decreased risk for AD, while the −219 T allele was associated with an increased risk for AD occurrence, independently of the ε2/ε3/ε4 polymorphism [82]. These data suggest that these promoter polymorphisms are functional in nature. In addition to the polymorphism within the coding region, uncovering the polymorphism within the APOE promoter might be also beneficial to predict AD risk.

Transcription regulation of other AD genes

APP belongs to the type I transmembrane proteins, encompassing a long extracellular domain, a hydrophobic transmembrane domain, and a short C-terminal intracellular domain [6]. The human APP gene is located on the long arm of chromosome 21 and contains at least 18 exons [83]. APP is abundantly expressed in the neuronal cells of the central nervous system; and the mechanisms controlling APP gene expression have been extensively studied [84-88]. The APP promoter is devoid of typical TATA and CAAT boxes, but contains a strong initiator element surrounding the major transcription start site [89]. The promoter sequences of APP gene are highly conserved among species, and share numerous binding sites for regulatory transcription factors [85,86,90,91]. The APP promoter activation is mainly governed by two GC-rich elements, the −93/−82 fragment (APBβ) which is bound by CCCCTC-binding factor (CTCF) and the −65/−41 fragment (APβx) which is bound by stimulating protein 1 (SP1) and the upstream stimulatory factor (USF) [92-96]. Further, numerous stress factors could activate APP transcription which is mediated by heat-shock factor 1 (HSF-1) binding to the heat-shock element (HSE) at position −317 [97]. Another transcription factor NF-κB was found to specifically recognize two identical sequences at −2250/−2241 and −1837/−1822 on APP promoter. In neural cells that were treated with either the inflammatory cytokine interleukin-1beta (IL-1β) or the excitatory amino-acid glutamate, NF-κB upregulated the transcriptional activity of the APP promoter [98,99]. Rac1, a member of the Rho family GTPases, was shown to stimulate the transcription of APP promoter in the region between −233 and −41 bp [100]. In primary hippocampal neurons, over-expression of the dominant-negative Rac1 mutant or the presence of Rac1 inhibitors decreased the levels of APP mRNA, indicating Rac1 could be a potential drug target for AD therapy [100]. Other regulatory elements include the binding sites for activator protein 1 (AP1), cAMP-responsive element-binding protein (CREB) and ‘GATA’ binding factor 1 (GATA1) [101].

Interestingly, copper depletion significantly reduced APP gene expression by acting on the region between −490 and +104 of APP promoter [102]. In addition, promoter polymorphisms have been found to modulate APP expression and therefore increase susceptibility to AD, including −877 T/C, −955A/G [103].

Presenilin genes (PSEN1 and PSEN2) encode highly homologous integral membrane proteins which are the catalytic subunits of γ-secretase [104-106]. PSEN mutations cause abnormal processing of APP and lead to early onset AD [107-109]. Therefore, PSEN gene regulation may play a crucial role in the development of AD. Both PSENs are expressed primarily in neurons [110,111]. Their promoters lack a TATA box but contain transcriptionally active GC boxes [112,113]. To date, most studies are focused on the transcriptional regulation of PSEN1; little is known about the transcriptional control of PSEN2. Deletion mapping of the human PSEN1 promoter delineated the most active region between −22 and −6 which controls over 90% of PSEN1 promoter activity [114]. Ets transcription factors bind to this region and activate PSEN1 transcription [115]. Intriguingly, co-activator p300 appears to interact with Ets transcription factors and co-activate PSEN1 transcription [115]. Zinc finger protein (ZNF237) and chromodomain helicase DNA-binding protein (CHD3) interact with Ets transcription factor ERM and inhibit PSEN1 transcription [116,117]. Since p300 has intrinsic histone acetyltransferase (HAT) activity and CHD3 is a component of the histone deacetylase (HDACs) complex, chromatin modification by acetylation and deacetylation may play a critical role for PSEN1 transcription regulation [118]. In a separate study, cAMP-responsive element-binding protein (CREB) was shown to bind PSEN1 promoter upon stimulation by N-Methyl-D-aspartate (NMDA) or brain-derived neurotrophic factor (BDNF), and enhance PSEN1 transcription [119]. Further, IL-1β and Aβ42 peptide synergistically activated PSEN1 gene expression and the effect could be enhanced by hypoxia. At least two promoter polymorphisms (−22C/T, −48C/T) have been found to modulate PSEN1 expression and AD risk [120,121]. On the PSEN2 promoter, a functional nerve growth factor (NGF) binds to its responsive element and leads to two-fold up-regulation of PSEN2 transcription [122]. Early growth response gene-1 (Egr-1) binds to PSEN2 promoter, and PSEN2 level is increased three-fold by over-expression of Egr-1, or by 12-O-tetradecanoylphorbol-13-acetate (TPA) which increases Egr-1 level [123].

Recently, studies from two independent groups of researchers suggested that rare variants in the TREM2 (triggering receptor expressed on myeloid cells 2) gene are associated with an increased risk of late-onset AD [124,125]. TREM2 encodes a single-pass type I membrane receptor that regulates cell activity through a
transmembrane signaling adapter protein called TYROBP (also called DAP12) [126]. In the brain, TREM2 is dominantly expressed in microglia and performs two important roles: suppresses inflammatory reactivity and mediates the phagocytosis of cell debris [127,128]. Impaired function of the TREM2 gene may therefore affect the inflammatory processes and the clearance of amyloid plaques, ultimately leading to increased risk for AD. Interestingly, TREM2 expression in microglia was reduced more than 8-fold after Aβ treatment [129], which indicates that increasing TREM2 level might be beneficial for AD therapy. Regulation of TREM2 expression especially in microglia remains largely unknown. Identifying the transcriptional regulators for TREM2 expression may therefore open a new avenue for AD therapy.

Conclusions
This present review summarizes the mechanisms of transcriptional regulation for several important AD genes and their misregulation that leads to AD susceptibility. Mounting evidence has emerged to support an important role of transcription regulation in the initiation and progression of AD. With a more thorough understanding of the changes for the gene expression profile, reciprocal drug targets can be developed to reverse the changes in transcription and alleviate AD symptoms. In addition, an alteration in gene expression presumably occurs in the early stage of the disease and accounts for the appearance of pathological hallmarks. Therefore, diagnostic techniques based on gene expression changes have the potential to detect the onset of AD before it is histologically obvious, thus allowing early treatment to prevent disease onset and provide long-lasting efficacy after discontinuation of the treatment [130].

AD therapy based upon the modulation of gene expression profiles relies heavily on a comprehensive understanding of the regulatory transcription factors and their responding elements on the promoter of AD genes. In recent years, important progress has been made in understanding the transcription regulation of BACE1, APOE, APP and PSEN promoters. The regulation of BACE1 promoter activity has been extensively studied and the derived knowledge has been guiding the identification of compounds to inhibit BACE1 expression through comprehensive drug screening. Regulation of APOE transcription is only partially investigated in the central nervous system and could be extremely complex. Human ApoE exists as three polymorphic alleles: e2, e3 and e4, special attention needs to be drawn to mechanisms of differential expression of the different ApoE isoforms. Aβ peptide generation depends largely on the amount of APP substrate. Therefore, the regulation of APP transcription plays an important role in AD susceptibility. Several studies have observed an increase of APP mRNA levels in AD brains which exacerbates Aβ deposition [8,131]. The up-regulated levels of APP could be attributed to the altered binding of transcription factors to their specific positive and negative cis-elements. Because presenilins are the catalytic subunits of γ-secretase, drugs developed to inhibit the transcription of PSENs could potentially reduce Aβ generation. However, presenilins cleave a large number of trans-membrane targets (such as Notch), significant side effects could be induced by down-regulating PSEN transcription or enzymatic activity [132-134]. Better understanding of the transcriptional properties of PSENs in the future could provide a mechanistic target to potentially alleviate AD pathology; with minimal side effects. Intriguingly, a recent study demonstrated that PSEN2, but not PSEN1, plays an important role in mediating Notch cleavage [135]. PSEN2-sparing γ-secretase inhibition was suggested to a novel and efficacious γ-secretase targeting strategy for AD. Therefore, transcription factors that specifically inhibit the expression of PSEN1, but not PSEN2, would be an effective and novel drug target for AD therapy. At this present time, researchers have also focused on polymorphisms within the AD gene promoter, since single-nucleotide changes have been documented to affect transcriptional activity of AD genes. These polymorphisms may affect transcription factor binding either by directly altering a transcription factor binding site, or by changing the structure of DNA thereby affecting the access of transcription factor to the binding site.

Recently, genome-wide expression studies have been performed to investigate the complex pathogenesis of AD by using transgenic AD animals, patient-derived cell lines, and post-mortem brain tissues [136]. Changes in the transcription levels of a group of genes have been identified, although the results have been discordant, and may be possibly due to different experimental approaches used [136]. With the development of array technologies especially the RNA-seq technique, more comprehensive and accurate transcriptome analysis could be derived to interpret the pathogenesis of AD. With the increasing number of AD genes being discovered, further analysis of the transcriptional regulation of these AD genes and the variants in their regulatory regions will not only help to elucidate AD etiology, but also guide targeted drug development for AD therapy.

Competing interests
The authors declared that they have no competing interests.

Authors’ contributions
All authors participated in developing and discussing the ideas, integrating the information, and writing the manuscript. All authors have read and approved the final manuscript.

Acknowledgements
Research by the authors is supported by a grant (81370459) from the National Natural Science Foundation of China. We also wish to sincerely thank Melissa Wren for language editing of this manuscript.
References
1. Biennoeck K, de Leon MJ, Zetterberg H: Alzheimer’s disease. Lancet 2006, 368:387–403.
2. Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002, 297:353–356.
3. Cavallucci V, D’Amelio M, Cecconi F: Abeta toxicity in Alzheimer’s disease. Mol Neurobiol 2012, 45:366–378.
4. Koffie RM, Hyman BT, Spikes-Jones TL: Alzheimer’s disease: synapses gone cold. Mol Neurodegener 2011, 6:63.
5. Jung CG, Uhm KD, Miura Y, Hosono T, Horike H, Khanna KK, Kim MJ, Michikawa M: Beta-amyloid increases the expression level of ATBF1 responsible for death in cultured cortical neurons. Mol Neurodegener 2011, 6:47.
6. Zheng H, Koo EH: Biology and pathophysiology of the amyloid precursor protein. Mol Neurodegener 2011, 6:27.
7. Ertel-Tanner N: Gene expression endophenotypes: a novel approach for gene discovery in Alzheimer’s disease. Mol Neurodegener 2011, 6:31.
8. Theunis J, van Broeckhoven C: Transcriptional regulation of Alzheimer’s disease genes: implications for susceptibility. Hum Mol Genet 2009, 18:2383–2394.
9. Zhang H, Ma Q, Zhang YW, Xu H: Proteolytic processing of Alzheimer’s beta-amyloid precursor protein. J Neurochem 2012, 120(Suppl 1):9–21.
10. Chami L, Checler F: Beta-secretase, have normal phenotype and abolished beta-amyloid formation in AD model. Mol Neurodegener 2011, 6:47.
11. Cole SL, Vassar R: The Alzheimer’s disease beta-secretase enzyme, BACE1. Mol Neurodegener 2007, 2:22.
12. Holstinger RM, McLean CA, Beyreuther K, Masters CL, Evin G: Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Ann Neurol 2002, 51:783–786.
13. Yang LB, Lindholm K, Yan R, Citron M, Xia W, Yang XL, Beach T, Sue L, Wong P, Price D, et al: Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med 2003, 9:3–4.
14. Rosssner S, Sastre M, Bourne K, Lichtenhaller SF: Transcriptional and translational regulation of BACE1 expression—implications for Alzheimer’s disease. Prog Neurobiol 2006, 79:95–111.
15. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendia EA, Denis P, Teplow DB, Ross S, Amarante P, Leoflor R, et al: Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999, 286:735–741.
16. Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, Fan W, Kha H, Zhang J, Gong Y, et al: Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and abolished amyloid-accumulating generation. Nat Neurosci 2001, 4:231–232.
17. Roberds SL, Anderson J, Basi G, Bienkowski MJ, Branstetter DG, Chen KS, Morris RG, Chen KS: BACE1 gene deletion: impact on behavioral function in a model of Alzheimer’s disease. Neurobiol Aging 2008, 29:865–873.
18. Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, Wen H, Chiang HC, Xu G, Kagotso VE, et al: BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci 2005, 25:11693–11709.
19. Rajapaksa TW, Eimer WA, Bozza TC, Vassar R: The Alzheimer’s beta-secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerular formation in the olfactory bulb. Mol Neurodegener 2011, 6:68.
20. Lange-Doehna C, Zeitschel U, Gauntz F, Perez-Polo J, Bigl V, Rossner S: Cloning and expression of the rat BACE1 promoter. J Neurosci Res 2011, 93:73–80.
21. Kwak YD, Wang R, Li J, Zhang YW, Xu H, Liao FF: Differential regulation of BACE1 expression by oxidative and nitrosative signals. Mol Neurodegener 2011, 6:17.
22. Waby JS, Bingle CD, Corfe BM: Post-translational control of sp-family transcription factors. Curr Genomics 2008, 9:301–311.
23. Christensen MA, Zhou W, Jing H, Lehran A, Philipson S, Song W: Transcriptional regulation of BACE1, the beta-amyloid precursor protein beta-secretase, by Sp1. Mol Cell Biol 2004, 24:865–874.
24. Letovsky J, Dynan WS: Measurement of the binding of transcription factor Sp1 to a single GC box recognition sequence. Nucleic Acids Res 1989, 17:2639–2653.
25. Chu J, Zhou JM, Pratico D: Transcriptional regulation of beta-secretase-1a by 12/15-lipoxygenase results in enhanced amyloidogenesis and cognitive impairments. Ann Neurol 2012, 71:57–67.
26. Perkins ND, Edwards NL, Duckett CS, Agrawal AB, Schmid RM, Nabel GJ: A cooperative interaction between NF-kappa B and Sp1 is required for HIV-1 enhancer activation. EMBO J 1993, 12:3551–3558.
27. Hiranaga F, Tanaka H, Hirano Y, Hiramoto M, Handa H, Makino I, Schieffer C, Functional interference of Sp1 and NF-kappaB through the same DNA binding site. Mol Cell Biol 1998, 18:1266–1274.
28. Boume KZ, Ferrari D, Lange-Doehna C, Rossner S, Wood TG, Perez-Polo J: Differential regulation of BACE1 promoter activity by nuclear factors-kappaB in neurons and glia upon exposure to beta-amyloid peptides. J Neurosci Res 2007, 85:1194–1204.
29. Chami L, Buggia-Pevat V, Duplan E, Delpretre D, Chami M, Peyron JF, Checler F: Nuclear factor-kappaB regulates betaAPP and beta- and gamma-secretases differently at physiological and supraphysiological Abeta concentrations. J Biol Chem 2012, 287:24573–24584.
30. Maxwell P, Salikhov K: HIV-1: an oxygen and metal responsive transcription factor. Cancer Biol Ther 2004, 3:29–35.
31. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML: Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 2002, 295:858–861.
32. Sun X, He G, Qing H, Zhou W, Dobie F, Cai F, Staudenfelder M, Huang LE, Song W: Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc Natl Acad Sci USA 2006, 103:18727–18732.
33. Zhang X, Zhou K, Wang R, Cui J, Lipton SA, Liao FF, Xu H, Zhang YW: Hypoxia-inducible factor Talpia (HIF1-Talpia)-mediated hypoxia increases BACE1 expression and beta-amyloid generation. J Biol Chem 2007, 282:10873–10880.
34. Guglielmotto M, Aragonio M, Autelli R, Giliberto L, Novo E, Colombatto S, Danni O, Parola M, Smith MA, Perry G, et al: The up-regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF-Talpia. J Neurochem 2009, 108:1045–1056.
35. Li QY, Wang HM, Wang ZQ, Mu JF, Ding DX, Chen SD: Saldiroside attenuates hypoxia-induced abnormal processing of amyloid precursor protein by decreasing BACE1 expression in SH-SY5Y cells. Neurosci Lett 2010, 481:154–158.
36. Klewer SA, Forman BM, Blumberg B, Ong ES, Borgmeyer U, Mangelsdorf DJ, Umesono K, Evans RM: Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci USA 1994, 91:7355–7359.
37. Tontonoz P, Hu E, Spiegelman BM: Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994, 78:1147–1156.
38. Mandrekar-Colucci S, Landreth GE: Nuclear receptors as therapeutic targets for Alzheimer’s disease. Expert Opin Ther Targets 2011, 15:1085–1097.
39. Sastre M, Dewachter I, Rossner S, Bogdanovic N, Rensen P, Boghrafi P, Erent EBO, Dumitrescu-Ozimek L, Thal DR, Landreth G, et al: Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc Natl Acad Sci USA 2006, 103:443–448.
40. McCue PL, McCue EG: Inflammation, autotoxicity and Alzheimer disease. Neurobiol Aging 2001, 22:799–809.
41. Mahley RW: Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988, 240:622–630.
42. Liu CC, Kanekiyo T, Xu H, Bu G: Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neuro 2013, 12:186–118.
43. Herz J, Chen Y: Reelin, lipoprotein receptors and synaptic plasticity. Nat Rev Neuro 2006, 7:560–569.
Chen J, Li Q, Wang J: Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. *Proc Natl Acad Sci USA* 2011, 108:14813–14818.

66. Garcia MA, Vazquez J, Gimenez C, Valdivieso F: Zafra F: Transcription factor AP-2 regulates human apolipoprotein E gene expression in astrocytoma cells. *J Neurosci* 1996, 16:7550–7556.

67. Jiang Q, Lee CY, Mandrekar S, Wilkinson B, Cramer P, Zelcer N, Mann K, Lamb B, Willson TM, Collins JL, et al: ApoE promotes the proteolytic degradation of Abeta. *Neuron* 2006, 50:801–809.

68. Terwilliger D, Steffen KR, Verghese PB, Kummer MP, Gustafsson JA, Holtzman DM, Heneka MT: Critical role of astroglial apolipoprotein E and liver X receptor-alpha expression for microglial Abeta phagocytosis. *J Neurosci* 2011, 31:7049–7059.

69. Yue L, Risoul N, Ranganathan G, Kern PA, Mazzone T: Divergent effects of peroxisome proliferator-activated receptor gamma agonists and tumor necrosis factor alpha on adipocyte ApoE expression. *J Biol Chem* 2004, 279:47626–47632.

70. Philipp J, Mitchell PJ, Malipiero U, Fontana A: Cell type-specific regulation of expression of transcription factor AP-2 in neuroectodermal cells. *Dev Biol* 1994, 165:602–614.

71. Luscher B, Mitchell PJ, Williams T, Tijan R: Regulation of transcription factor AP-2 by the morphogen retinoic acid and by second messengers. *Genes Dev* 1989, 3:1507–1517.

72. Eckert D, Buhl S, Weber S, Jager R, Schorle H: The AP-2 family of transcription factors. *Genome Biol* 2005, 6:242.

73. Damberg M: Transcription factor AP-2 and monoamineergic functions in the central nervous system. *J Neural Transm* 2005, 112:281–1296.

74. Nossello XS, Igbavboa O, Weissman GA, Sun GY, Wood WG: AP-2 beta regulates amyloid beta-protein stimulation of apolipoprotein E transcription in astrocytes. *Brain Res* 2012, 1444:87–95.
Alzheimer’s disease amyloid precursor-encoding gene in mouse. Gene 1992, 112:189–195.

Salbaum JM, Weidemann A, Lemaire HG, Masters CL, Beyreuther K: The promoter of Alzheimer’s disease amyloid A4 precursor protein. EMBO J 1988, 7:2807–2813.

LaFerla FJ, Lahiri DK, Salton SR, Robakis NK: Characterization of the 5′-end region and the first two exons of the beta-precursor gene. Biochem Biophys Res Commun 1989, 159:297–304.

Quitschke WW, Matthews JP, Kraus RJ, Vostrov AA: The initiator element and proximal upstream sequences affect transcriptional activity and start site selection in the amyloid beta-protein precursor promoter. J Biol Chem 1996, 271:22331–22239.

Quitschke WW, Goldgaber D: The amyloid beta-protein precursor promoter. A region essential for transcriptional activity contains a nuclear factor binding domain. J Biol Chem 1992, 267:17362–17368.

Song W, Lahiri DK: Functional identification of the promoter of the gene encoding the Rhesus monkey beta-amyloid precursor protein. Gene 1998, 217:165–176.

Polwwe P, Masters CL, Beyreuther K: The expression of the amyloid precursor protein (APP) is regulated by two GC-elements in the promoter. Nucleic Acids Res 1992, 20:63–68.

Quitschke WW: Two nuclear factor binding domains activate expression from the human amyloid beta-protein precursor promoter. J Biol Chem 1994, 269:21229–21233.

Vostrov AA, Quitschke WW: The zinc finger protein CTCF binds to the APPbeta domain of the amyloid beta-protein precursor promoter. Evidence for a role in transcriptional activation. J Biol Chem 1997, 272:33353–33359.

Dewji NN, Do C: Heat shock factor-1 mediates the transcriptional activation of Alzheimer’s beta-amyloid precursor protein gene in response to stress. Brain Res Mol Brain Res 1996, 39:325–328.

Grilli M, Goffi F, Mermo M, Spano P: Interleukin-1beta and glutamate activate the NF-kappaB/Rel binding site in the regulatory region of the amyloid precursor protein gene in primary neuronal cultures. J Biol Chem 1996, 271:15002–15007.

Grilli M, Ribola M, Alberti A, Valerio A, Mermo M, Spano P: Identification and characterization of a kappa B/Rel binding site in the regulatory region of the amyloid precursor protein gene. J Biol Chem 1995, 270:23734–23741.

Wang PL, Niidome T, Akaie A, Kihara T, Sugimoto H: Rac1 inhibition negatively regulates transcriptional activity of the amyloid precursor protein gene. J Neurosci 2009, 8:2105–2114.

Ge YW, Ghosh C, Song W, Maloney B, Lahiri DK: Mechanism of promoter activity of the beta-amyloid precursor protein gene in different cell lines: identification of a specific 30 bp fragment in the proximal promoter region. J Neurochem 2004, 90:1432–1444.

Bellington SA, Lahiri DK, Maloney B, La Fontaine S, Multhaup G, Camarkakis J: Copper depletion down-regulates expression of the Alzheimer’s disease amyloid-beta precursor protein gene. J Biol Chem 2004, 279:20378–20386.

Lv H, Jia L, Jia J: Promoter polymorphisms which modulate APP expression may increase susceptibility to Alzheimer’s disease. Neurobiol Aging 2008, 29:194–202.

Tomita T: Secretase inhibitors and modulators for Alzheimer’s disease treatment. Expert Rev Neurother 2009, 9:651–679.

Edbauer D, Winkler E, Regula JT, Pesold B, Steiner H, Haass C: Reconstitution of gamma-secretase activity. Nat Cell Biol 2003, 5:486–488.

Drooper SA, Gaff C, Graessner J, Dorski K, Helenius H, Gunhild G, Annen W, Vilja T: Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 1998, 391:387–390.

Sherrington R, Rogan E, Liang Y, Rogaea EA, Levesque G, Reda M, Chi H, Lin C, Li G, Holman K, et al: Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995, 375:754–760.

Leyv-Lahad E, Wasco W, Poorojk P, Romano DM, Osima J, Pettingell WH, Yu CE, Jondro PO, Schmidt SD, Wang K, et al: Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 1995, 269:973–977.

Uemura K, Farner KC, Nasser-Ghodsi N, Jones P, Beresovska O: Reciprocal relationship between APP positioning relative to the membrane and PS1 conformation. Mol Neurodegener 2011, 6:65.

Kovacs DM, Fauvet HJ, Page KJ, Kim TM, Moore RD, Meriem DA, Hollister RD, Hallmark OG, Mancini R, Felsenstein KM, et al: Alzheimer-associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nat Med 1996, 2:224–229.

Lee MK, Skunt HH, Martin LT, Thinakaran G, Kim G, Gandy SE, Seeger M, Kao E, Price DL, Sisodia SS: Expression of presenilin 1 and 2 (PS1 and PS2) in human and murine tissues. J Neurosci 1996, 16:513–7525.

Mitsuda N, Roses AD, Vitek MP: Transcriptional regulation of the mouse presenilin-1 gene. J Biol Chem 1997, 272:23489–23497.

Pihia G, Fulderer RA, Perez-Tur J, Lincoln S, Duff K, Crook R, Hardy J, Philips CA, Venter C, Talbot C, et al: Structure and alternative splicing of the presenilin-2 gene. Neuroreport 1996, 7:1680–1684.

Pastorcic M, Das HK: An upstream element containing an ETS binding site is crucial for transcription of the human presenilin-1 gene. J Biol Chem 1999, 274:24297–24307.

Pastorcic M, Das HK: Regulation of transcription of the human presenilin-1 gene by eto transcription factors and the p53 protooncogene. J Biol Chem 2000, 275:34938–34945.

Pastorcic M: Das HK: Analysis of transcriptional modulation of the human presenilin 1 gene promoter by ZNF237, a candidate binding partner of the Ets transcription factor ERM. Brain Res 2007, 1128:21–32.

Pastorcic M, Das HK: The C-terminal region of CHD3/ZFH interacts with the CIDD region of the Ets transcription factor ERM and represses transcription of the human presenilin 1 gene. FEBS J 2007, 274:1434–1448.

Das HK: Transcriptional regulation of the presenilin-1 gene: implications in Alzheimer’s disease. Front Biosci 2008, 13:882–832.

Mitsuda N, Ohkubo N, Tamatani M, Lee YD, Taniguchi M, Namikawa K, Kyama H, Yamaguchi A, Sato N, Sakata K, et al: Activated cAMP-response element-binding protein regulates neuronal expression of presenilin-1. J Biol Chem 2001, 276:6988–6998.

Theuns J, Remacle J, Killick R, Corsmit E, Vennekens K, Huylebroeck D, Cruts M, Van Broeckhoven C: Alzheimer-associated C allele of the promoter polymorphism -22C > T causes a critical neuron-specific decrease of presenilin 1 expression. Hum Genet 2003, 112:869–877.

Lambert JC, Mann DM, Harris JM, Charter-Harlin MC, Cumming A, Coates J, Lennon H, St Clair D, Iwatsubo T, Lendon C: The -84 C/T polymorphism in the presenilin 1 promoter is associated with an increased risk of developing Alzheimer’s disease and an increased Abeta load in brain. J Med Genet 2001, 38:353–355.

Penny packer KR, Fulderer R, Xu R, Hernandez H, Dawbarn D, Mehta N, Perez-Tur J, Baker M, Hutton M: Cloning and characterization of the presenilin-2 gene promoter. Brain Res Mol Brain Res 1998, 56:57–65.

Renbaum P, Beer R, Gabai E, Amiel M, Gall M, Ehrengruber MU, Leyv-Lahad E: Egr-1 upregulates the Alzheimer’s disease presenilin-2 gene in neuronal cells. Gene 2003, 318:113–124.

Guerreiro R, Wojtas A, Bras J, Carasquillo M, Rogaeva E, Majoeunie E, Crucchaga C, Sasapi C, Kauwe JS, Younkin S, et al: TREM2 variants in Alzheimer’s disease. N Engl J Med 2013, 368:117–127.

Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Hutton J, Leeve A, Lah J, et al: Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 2013, 368:107–116.

Kesney Tait J, Turnbull IR, Colonna M: The TREM receptor family and signal integration. Nat Immunol 2006, 7:126–1273.

Takahashi Y, Rockford CD, Neumann H: Clearance of apoptotic neurons by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 2005, 201:647–657.

Turnbull IR, Gilfillan S, Sella M, Ashby T, Miller M, Piccio L, Hernandez M, Colonna M: Cutting edge: TREM-2 attenuates macrophage activation. J Immunol 2006, 177:3520–3524.

Walker DG, Link J, Lue LF, Dalsing-Henderson JE, Boyes BE: Gene expression changes by amyloid beta-peptide-stimulated human postmortem brain
microglia identify activation of multiple inflammatory processes. J Leukoc Biol 2006, 79:596–610.

130. Das P, Verbeeck C, Minter L, Chakrabarty P, Felsenstein K, Kukar T, Maharvi G, Fauq A, Osborne BA, Golde TE: Transient pharmacologic lowering of Abeta production prior to deposition results in sustained reduction of amyloid plaque pathology. Mol Neurodegener 2012, 7:39.

131. Theuns J, Brouwers N, Engelbohrs S, Sleegers K, Bogaerts V, Corsmit E, De Poorter T, van Duijn CM, De Deyn PP, Van Broeckhoven C: Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. Am J Hum Genet 2006, 78:936–946.

132. Haapasalo A, Kovacs DM: The many substrates of presenilin/gamma-secretase. J Alzheimers Dis 2011, 25:3–28.

133. Milano J, McKay J, Dagenais C, Foster-Brown L, Pognan F, Gradent R, Jacobs RT, Zacco A, Greenberg B, Ciaccio PJ: Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci 2004, 82:341–358.

134. Tamayev R, D’Adamio L: Inhibition of gamma-secretase worsens memory deficits in a genetically congruous mouse model of Danish dementia. Mol Neurodegener 2012, 7:19.

135. Borgegard T, Gustavsson S, Nilsson C, Parpal S, Klintenberg R, Berg AL, Rosqvist S, Semeels L, Svensson S, Olsson F, et al: Alzheimer’s disease: presenilin 2-sparing gamma-secretase inhibition is a tolerable Abeta peptide-lowering strategy. J Neurosci 2012, 32:17297–17305.

136. Courtney E, Kornfeld S, Janitz K, Janitz M: Transcriptome profiling in neurodegenerative disease. J Neurosci Methods 2010, 193:189–202.

doi:10.1186/1756-6606-6-44

Cite this article as: Chen et al.: Transcriptional regulation and its misregulation in Alzheimer’s disease. Molecular Brain 2013 6:44.