BGK MODEL OF THE MULTI-SPECIES UEHLING-UHLENBECK EQUATION

GI-CHAN BAE
Department of mathematics, Sungkyunkwan University
Suwon 16419, Republic of Korea

CHRISTIAN KLINGENBERG
Department of mathematics, Würzburg University
Emil Fischer Str. 40, 97074 Würzburg, Germany

MARLIES PIRNER
Department of mathematics, Vienna University
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

SEOK-BAE YUN
Department of mathematics, Sungkyunkwan University
Suwon 16419, Republic of Korea

(Communicated by Miguel Escobedo)

Abstract. We propose a BGK model of the quantum Boltzmann equation for gas mixtures. We also provide a sufficient condition that guarantees the existence of equilibrium coefficients so that the model shares the same conservation laws and H-theorem with the quantum Boltzmann equation. Unlike the classical BGK for gas mixtures, the equilibrium coefficients of the local equilibriums for quantum multi-species gases are defined through highly nonlinear relations that are not explicitly solvable. We verify in a unified way that such nonlinear relations uniquely determine the equilibrium coefficients under the condition, leading to the well-definedness of our model.

1. Introduction.

1.1. Quantum Boltzmann equation for gas mixture. The quantum modification of the celebrated Boltzmann equation was made in [61, 62] to incorporate the quantum effect that cannot be neglected for light molecules (such as Helium) at low temperature. Quantum Boltzmann equation is now fruitfully employed not just for low temperature gases, but in various circumstances such as the study of carrier mobility in various electronic devices. When the gas is composed of several...
The momentum distribution function \(f \) phase point \((x, p, t) \) denotes the number density at the phase point \((x, p) \in \Omega_x \times \mathbb{R}^3_p \) at time \(t \). The collision operator \(Q_{ij} \) \((i, j = 1, 2) \) takes the following form:

- Fermion-Fermion \((-\), Boson-Boson \(+)\).

\[
Q_{ij}(f_i, f_j) = \int_{\mathbb{R}^3} \int_{\mathbb{R}^2} B_{ij} \left(\left| \frac{p}{m_i} - \frac{p_j}{m_j} \right| \cdot w \right) \left\{ f_i' f_{j, *}^\prime (1 \pm f_i) (1 \pm f_{j, *}) \right\} \, dp df_{j, *},
\]

- Fermion \((f_1)\)-Boson \((f_2)\) interaction:

\[
Q_{ij}(f_i, f_j) = \int_{\mathbb{R}^3} \int_{\mathbb{R}^2} B_{ij} \left(\left| \frac{p}{m_i} - \frac{p_j}{m_j} \right| \cdot w \right) \left\{ f_i' f_{j, *}' (1 + \tau(i)f_i)(1 + \tau(j)f_{j, *}) \right\} \, dp df_{j, *},
\]

where \(\tau(1) = -1, \tau(2) = 1 \). We assume \(B_{12} (., w) = B_{21} (., w) \) for both cases, and we used the abbreviated notation:

\[
f_i = f_i(x, p, t), \quad f_{i, *} = f_i(x, p, t), \quad f_{i, *}' = f_i(x, p', t), \quad f_{i, *}' = f_i(x, p', t), \quad i = 1, 2.
\]

The relation between the pre-collisional momenta \((p, p_\ast)\), and the post-collisional momenta \((p', p_\ast')\) in \(Q_{ij} \) \((i, j = 1, 2) \) can be derived from the local conservation laws:

\[
\begin{align*}
p' + p_\ast' &= p + p_\ast, \\
\frac{|p'|^2}{2m_i} + \frac{|p_\ast'|^2}{2m_j} &= \frac{|p|^2}{2m_i} + \frac{|p_\ast|^2}{2m_j}.
\end{align*}
\]

in the following explicit forms:

\[
\begin{align*}
p' &= p - \frac{2m_i m_j}{m_i + m_j} w \left(\left(\frac{p}{m_i} - \frac{p_\ast}{m_j} \right) \cdot w \right), \\
p_\ast' &= p_\ast + \frac{2m_i m_j}{m_i + m_j} w \left(\left(\frac{p}{m_i} - \frac{p_\ast}{m_j} \right) \cdot w \right).
\end{align*}
\]

The collision operator has 5 collision invariants \((1, p, |p|^2)\) for \(k = 1, 2\):

\[
\begin{align*}
\int_{\mathbb{R}^3} Q_{kk}(f_k, f_k) \left(1, p, \frac{|p|^2}{2m_k} \right) \, dp &= 0, \\
\int_{\mathbb{R}^3} Q_{12}(f_1, f_2) \, dp &= \int_{\mathbb{R}^3} Q_{21}(f_2, f_1) \, dp = 0, \\
\int_{\mathbb{R}^3} \{Q_{12}(f_1, f_2) + Q_{21}(f_2, f_1)\} \, pdp &= 0, \\
\int_{\mathbb{R}^3} \left\{ Q_{12}(f_1, f_2) \frac{|p|^2}{2m_1} + Q_{21}(f_2, f_1) \frac{|p|^2}{2m_2} \right\} \, dp &= 0,
\end{align*}
\]

Different types of molecules (gas mixture), the quantum Boltzmann equation takes the form (For simplicity, we restrict ourselves to two species case):

\[
\begin{align*}
\partial_t f_1 + \frac{p}{m_1} \cdot \nabla_x f_1 &= Q_{11}(f_1, f_1) + Q_{12}(f_1, f_2), \\
\partial_t f_2 + \frac{p}{m_2} \cdot \nabla_x f_2 &= Q_{22}(f_2, f_2) + Q_{21}(f_2, f_1).
\end{align*}
\]

(1)
which leads to the conservation of total mass, momentum and energy:

\[
\frac{d}{dt} \int_{T^3 \times \mathbb{R}^3} f_1 dx dp = 0, \quad \frac{d}{dt} \int_{T^3 \times \mathbb{R}^3} f_2 dx dp = 0,
\]

\[
\frac{d}{dt} \left(\int_{T^3 \times \mathbb{R}^3} f_1 px dp + \int_{T^3 \times \mathbb{R}^3} f_2 px dp \right) = 0,
\]

\[
\frac{d}{dt} \left(\int_{T^3 \times \mathbb{R}^3} f_1 \frac{|p|^2}{2m_1} dx dp + \int_{T^3 \times \mathbb{R}^3} f_2 \frac{|p|^2}{2m_2} dx dp \right) = 0.
\]

Upon defining the velocity distribution function \(\bar{f}_i(x, v, t) \) by the following relation with respect to the momentum distribution \(f_i(x, p, t) \):

\[
\bar{f}_i(x, v, t) = m_i^2 f_i(x, p, t), \quad \left(v = \frac{p}{m_i} \right)
\]

we can recover the usual conservation laws as in \([26, 30, 40]\). (See Appendix). The collision operator \(Q_{ij} \ (i, j \in \{1, 2\}) \) also satisfies the following entropy dissipation property:

\[
\int_{\mathbb{R}^3} \ln \frac{f_1}{1 + \tau(1)f_1} Q_{11}(f_1, f_1) dp \leq 0, \quad \int_{\mathbb{R}^3} \ln \frac{f_2}{1 + \tau(2)f_2} Q_{22}(f_2, f_2) dp \leq 0,
\]

\[
\int_{\mathbb{R}^3} \ln \frac{f_1}{1 + \tau(1)f_1} Q_{12}(f_1, f_2) dp + \int_{\mathbb{R}^3} \ln \frac{f_2}{1 + \tau(2)f_2} Q_{21}(f_2, f_1) dp \leq 0.
\]

where \(\tau(i) = -1 \) when \(f_i \) denotes distribution of fermion and \(\tau(i) = +1 \) when \(f_i \) denotes distribution of boson.

Such dissipation implies the celebrated \(H \)-theorem for quantum mixture:

- Fermion-Fermion interaction (–), Boson-Boson (+):

\[
\frac{d}{dt} H(f_1, f_2) = \int_{\mathbb{R}^3} \ln \frac{f_1}{1 + f_1} Q_{11}(f_1, f_1) dp + \int_{\mathbb{R}^3} \ln \frac{f_2}{1 + f_2} Q_{22}(f_2, f_2) dp
\]

\[
+ \int_{\mathbb{R}^3} \ln \frac{f_1}{1 + f_1} Q_{12}(f_1, f_2) dp + \int_{\mathbb{R}^3} \ln \frac{f_2}{1 + f_2} Q_{21}(f_2, f_1) dp \leq 0,
\]

- Fermion \((f_1)\)-Boson \((f_2)\):

\[
\frac{d}{dt} H(f_1, f_2) = \int_{\mathbb{R}^3} \ln \frac{f_1}{1 - f_1} Q_{11}(f_1, f_1) dp + \int_{\mathbb{R}^3} \ln \frac{f_2}{1 + f_2} Q_{22}(f_2, f_2) dp
\]

\[
+ \int_{\mathbb{R}^3} \ln \frac{f_1}{1 - f_1} Q_{12}(f_1, f_2) dp + \int_{\mathbb{R}^3} \ln \frac{f_2}{1 + f_2} Q_{21}(f_2, f_1) dp \leq 0,
\]

where \(H(f_1, f_2) \) denotes the \(H \)-functional:

- Fermion-Fermion interaction:

\[
H(f_1, f_2) = \int_{\mathbb{R}^3} f_1 \ln f_1 + (1 - f_1) \ln(1 - f_1) dp + \int_{\mathbb{R}^3} f_2 \ln f_2 + (1 - f_2) \ln(1 - f_2) dp.
\]

- Boson-Boson interaction:

\[
H(f_1, f_2) = \int_{\mathbb{R}^3} f_1 \ln f_1 - (1 + f_1) \ln(1 + f_1) dp + \int_{\mathbb{R}^3} f_2 \ln f_2 - (1 + f_2) \ln(1 + f_2) dp.
\]

- Fermion \((f_1)\)-Boson \((f_2)\) interaction:

\[
H_{FB}(f_1, f_2) = \int_{\mathbb{R}^3} f_1 \ln f_1 + (1 - f_1) \ln(1 - f_1) dp + \int_{\mathbb{R}^3} f_2 \ln f_2 - (1 + f_2) \ln(1 + f_2) dp.
\]

The r.h.s of (1) vanishes if and only if \(f_1 \) and \(f_2 \) are quantum equilibrium:
• Fermion-Fermion (+), Boson-Boson interaction (−):

\[f_1(x, p, t) = \frac{1}{e^{m_1 a(x, t) \left| \frac{c}{m_1} - b(x, t) \right|^2} + c_1(x, t) + 1}, \]

\[f_2(x, p, t) = \frac{1}{e^{m_2 a(x, t) \left| \frac{c}{m_2} - b(x, t) \right|^2} + c_2(x, t) + 1}. \]

• Fermion \((f_1)\)-Boson \((f_2)\) interaction

\[f_1(x, p, t) = \frac{1}{e^{m_1 a(x, t) \left| \frac{c}{m_1} - b(x, t) \right|^2} + c_1(x, t) + 1}, \]

\[f_2(x, p, t) = \frac{1}{e^{m_2 a(x, t) \left| \frac{c}{m_2} - b(x, t) \right|^2} + c_2(x, t) - 1}. \]

1.2. Quantum BGK model for gas mixture. In this paper, we propose a BGK type relaxation model of (1):

\[\partial_t f_1 + \frac{p}{m_1} \cdot \nabla_x f_1 = R_{11} + R_{12}, \]

\[\partial_t f_2 + \frac{p}{m_2} \cdot \nabla_x f_2 = R_{21} + R_{22}, \]

where \(R_{ij}\) denotes the relaxation operator for the interactions of \(i\)th and \(j\)th component. More explicitly, they are defined as follows:

• Fermion-Fermion interaction \((i \neq j)\):

\[R_{ii} = F_{ii} - f_i, \quad R_{ij} = F_{ij} - f_i, \quad (i = 1, 2) \]

where \(F_{ii}\) denotes the Fermi-Dirac distribution for same-species interaction:

\[F_{11} = \frac{1}{e^{m_1 a_1 \left| \frac{c}{m_1} - b_1 \right|^2} + c_1 + 1}, \quad F_{22} = \frac{1}{e^{m_2 a_2 \left| \frac{c}{m_2} - b_2 \right|^2} + c_2 + 1}, \]

and \(F_{ij}\) denote Fermi-Dirac distribution for inter-species interactions:

\[F_{12} = \frac{1}{e^{m_1 a \left| \frac{c}{m_1} - b \right|^2} + c_{12} + 1}, \quad F_{21} = \frac{1}{e^{m_2 a \left| \frac{c}{m_2} - b \right|^2} + c_{21} + 1}. \]

• Boson-Boson interaction \((i \neq j)\):

\[R_{ii} = B_{ii} - f_i, \quad R_{ij} = B_{ij} - f_i, \quad (i = 1, 2) \]

where \(B_{ii}\) denotes the Bose-Einstein distribution for same-species interaction:

\[B_{11} = \frac{1}{e^{m_1 a_1 \left| \frac{c}{m_1} - b_1 \right|^2} + c_1 - 1}, \quad B_{22} = \frac{1}{e^{m_2 a_2 \left| \frac{c}{m_2} - b_2 \right|^2} + c_2 - 1}, \]

while \(B_{ij}\) denote Bose-Einstein distribution for inter-species interactions:

\[B_{12} = \frac{1}{e^{m_1 a \left| \frac{c}{m_1} - b \right|^2} + c_{12} - 1}, \quad B_{21} = \frac{1}{e^{m_2 a \left| \frac{c}{m_2} - b \right|^2} + c_{21} - 1}. \]

• Fermion \((f_1)\)-Boson \((f_2)\) interaction:

\[R_{11} = F_{11} - f_1 \quad R_{22} = B_{22} - f_2, \]

and

\[R_{12} = F_{12} - f_1 \quad R_{21} = B_{21} - f_2. \]
For later convenience, and to unify the proof, we introduce the following notation for quantum equilibriums:

- **The quantum equilibrium** M_{ij}

Next, we will make statements on the equilibrium distributions in the relaxation operators that correspond to F_{ij} in the fermion case and B_{ij} in the boson case. In order not to list all different cases separately, we denote the equilibrium distribution by M_{ij} which is equal to a Fermi-Dirac or a Bose-Einstein distribution depending on the case we consider:

1. Fermion-Fermion interaction
 \[M_{ij} = F_{ij}. \quad (i, j = 1, 2) \]

2. Boson-Boson interaction
 \[M_{ij} = B_{ij}. \quad (i, j = 1, 2) \]

3. Fermion (f_1) - Boson (f_2) interaction
 \[M_{1j} = F_{1j}, \quad M_{2j} = B_{2j}. \quad (j = 1, 2) \]

The excessive computational cost has already been a very serious obstacle even for the classical Boltzmann equation. Since the difficulty mostly lies in the computation of the collision operator, various efforts to approximate the complicated collision process with a numerically more amenable model have been made. The BGK model is introduced in [7] as a result of such efforts, and now become the most popular approximate model of the Boltzmann equation because it provides a very reliable results in a wide range of kinetic-fluid regime covering much of the practical problems at relatively low computational costs.

As in the classical case, the quantum BGK models are widely used in place of the quantum Boltzmann equation. However, the quantum BGK model for mixture has not been rigorously studied yet. More precisely, whether the relaxation operator can be soundly defined in a rigorous manner so that it satisfies the same conservation laws and the H-theorem as the quantum Boltzmann has never been rigorously verified in the literature. The well-definedness of such equilibrium coefficients for M_{11} and M_{22} follows directly from the relevant results for the one-species quantum BGK model in [3, 4, 21, 42, 47]. Thus, we focus on the determination of the equilibrium coefficients for the mixture equilibrium M_{12} and M_{21}.

1.3. Determination of M_{ij} ($i, j = 1, 2$)

The quantum BGK model may be far more amenable in terms of numerical computation, but the highly non-linear nature of the QBGK model gives rise to various difficulties in the analysis of the model. As such, it turns out that the requirement that the QBGK model must share the conservation laws and H-theorem with the quantum Boltzmann equation, leads to a set of very complicated nonlinear relations for the equilibrium coefficients (See Section 2.2). Moreover, they involve different conditions of solvability according to the nature of the interactions: Fermion-Fermion interaction, Fermion-Boson interaction, Boson-Boson interaction.

In this paper, we explicitly derive the nonlinear relations among the equilibrium coefficients of M_{11}, M_{22}, M_{12}, M_{21} that arise from the physical requirement of the equation, and verify in a unified way that those nonlinear relations uniquely determined the coefficients under certain conditions.
First, we note that we need to determine the mixture local equilibrium M_{ij} in such way that the relaxation operator in the r.h.s of (6) satisfies the same cancellation properties as (3) and the entropy dissipation in (5) are determined by following conservation laws.

To be more specific, let N_i, P_i and E_i ($i = 1, 2$) denote

$$
N_i = \int_{\mathbb{R}^3} f_i \, dp, \quad P_i = \int_{\mathbb{R}^3} f_i p \, dp, \quad E_i = \int_{\mathbb{R}^3} f_i \frac{|p|^2}{2m_i} \, dp.
$$

Assuming that the r.h.s of (6) satisfies the same identities in (3), we arrive at the following identities:

$$
\int_{\mathbb{R}^3} M_{ii} \, dp = N_i, \quad \int_{\mathbb{R}^3} M_{ii} p \, dp = P_i, \quad \int_{\mathbb{R}^3} M_{ii} \frac{|p|^2}{2m_i} \, dp = E_i, \quad (i = 1, 2) \quad (7)
$$

and

$$
\int_{\mathbb{R}^3} M_{12} \, dp = N_1, \quad \int_{\mathbb{R}^3} M_{21} \, dp = N_2, \\
\int_{\mathbb{R}^3} M_{12} p \, dp + \int_{\mathbb{R}^3} M_{21} p \, dp = P_1 + P_2, \quad (8)
$$

Our goal is to show that, for each fixed N_i, P_i, E_i ($i = 1, 2$), the relations in (7) and (8) completely and uniquely determine M_{ij}, which is stated in Theorem 2.1.

1.4. Literature review: Quantum BGK models. The quantum modification of the celebrated Boltzmann equation, which is often called Uehling-Uhlenbeck equation or Nordheim equation in the literature, was made in [25, 37, 61, 62] and soon recognized as a fundamental equation to describe quantum particles at mesoscopic level. But due to the complexity of the collision operator, which is a serious obstacle to practical application of the equation, and relaxation time approximations, or quantum BGK models are widely used to understand the transport phenomena and compute transport coefficients for semi-conductor device and crystal lattice [2, 20, 33, 34, 35, 36, 44, 50, 51] and various flow problems involving quantum effects [15, 22, 23, 33, 45, 55, 56, 58, 63, 64]. For the development of numerical methods for quantum BGK model, we refer to [15, 22, 23, 46, 52, 56, 59, 63, 64, 65]. We mention that the prototype of relaxation type models in quantum theory can be traced back to the Drude model [18, 19] which successfully explained the fundamental transport property of electrons such as the Ohm’s law or Hall effect.

Mathematical study on the quantum BGK model is in its initial state. Nouri studied the existence of weak solutions for a stationary quantum BGK model with a discretized condensation term in [47]. Braukhoff [11, 12] established the existence of analytic solutions and studied its asymptotic behaviour for a quantum BGK type model describing the dynamics of the ultra-cold atoms in an optical lattice. Bae and Yun considered the existence and asymptotic stability of a fermionic quantum BGK model near a global Fermi-Dirac distribution in [4].

BGK models for gas mixtures: There are many BGK models for gas mixtures proposed in the literature. Examples include the model of Gross and Krook [29], the model of Hamel [32], the model of Greene [27], the model of Garzo, Santos
and Brey [26], the model of Sofonea and Sekerka [57], the model by Andries, Aoki and Perthame [1], the model of Brull, Pavan and Schneider [13], the model of Klingenberng, Pirner and Puppo [40], the model of Haack, Hauck, Murillo [31] and the model of Bobylev, Bisi, Groppi, Spiga [10]. BGK models have also been extended to ES-BGK models, polyatomic molecules or chemically reactive gas mixtures; see for example [8, 9, 14, 28, 38, 39, 41, 49, 60]. BGK models are often used in applications because they give rise to efficient numerical computations as compared to models with Boltzmann collision terms [5, 6, 16, 17, 24, 48, 53, 54].

In the following Section 2.1, we state our main result. In Section 2.2, we derive a set of nonlinear functional relations and show that the equilibrium coefficients can be uniquely determined to satisfy the conservation laws of mass, momentum and energy. In Section 2.3, the BGK model defined with the equilibrium coefficients derived in Section 2.2, also satisfies the H-theorem.

2. Determination of the relaxation operators for quantum mixture.

2.1. Main result for general quantum-quantum interaction. We now state our main result stating that the equilibrium coefficients, under appropriate assumptions on N_i, P_i and E_i, can be uniquely determined. To simplify the presentation, we introduce $h_{\pm 1}, j_{\pm 1}, k_{\tau,\tau'}$ by

$$h_{\pm 1}(x) = \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + x} \pm 1} dp, \quad j_{\pm 1}(x) = \frac{\int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + x} \pm 1} dp}{\left(\int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + x} \pm 1} dp \right)^{3/5}},$$

and

$$k_{\tau,\tau'}(x, y) = \frac{m_1^2 \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + x + \tau}} dp}{\left(m_1^2 \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + y + \tau}} dp \right)^{3/5} + m_2^2 \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + y + \tau}} dp} \left(m_1^2 \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + y + \tau}} dp + m_2^2 \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + y + \tau}} dp \right)^{3/5},$$

where the pair (τ, τ') is chosen as follows:

$$ (\tau, \tau') = \begin{cases} (+, +1) & \text{(fermion-fermion)} \\ (-, -1) & \text{(boson-boson)} \\ (+, -1) & \text{(fermion-boson)} \end{cases} $$

Using h_\pm and $k_{\tau,\tau'}$, we define $g_{\tau,\tau'}$, which is defined as a composite function of $k_{\tau,\tau'}$ and h_\pm^{-1}, as follows:

$$g_{\tau,\tau'}(x) = k_{\tau,\tau'}(x, y(x)) = \frac{m_1^2 \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + x + \tau}} dp}{\left(m_1^2 \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + y + \tau}} dp \right)^{3/5} + m_2^2 \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + y + \tau}} dp} \left(m_1^2 \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + y + \tau}} dp + m_2^2 \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + y + \tau}} dp \right)^{3/5}, \quad (9)$$

where $y(x)$ denotes

$$y(x) = h_{+1}^{-1} \left(\frac{m_2^2 N_2}{m_1^2 N_1} h_+(x) \right).$$

Note that h_{+1}^{-1} always exist since h_{+1} is strictly decreasing. For simplicity of notation, we define $l : \{+1, -1\} \to [-\infty, \infty]$ by

$$l(x) = \begin{cases} l(+1) = -\infty, \\ l(-1) = 0. \end{cases}$$
In the following theorem, \(j_{+1}(\infty) \) is understood in the following sense:
\[
j_{+1}(\infty) = \lim_{x \to -\infty} j_{+1}(x).
\]
We note from [3, 4, 43] that
\[
\lim_{x \to -\infty} j_{+1}(x) = \frac{(4\pi)^{\frac{5}{2}}}{3}.
\]

Theorem 2.1. (1) Assume,
\[
\frac{N_1}{(2m_1E_1 - P_1^2/N_1)^\frac{3}{2}} \leq j_\tau(l(\tau)), \quad \frac{N_2}{(2m_2E_2 - P_2^2/N_2)^\frac{3}{2}} \leq j_{\tau'}(l(\tau')).
\]
Then, we can define \(c_i \quad (i = 1, 2) \) as the unique solution of
\[
\frac{N_1}{(2m_1E_1 - |P_1|^2/N_1)^\frac{3}{2}} \leq j_{\tau}(c_1), \quad \frac{N_2}{(2m_2E_2 - |P_2|^2/N_1)^\frac{3}{2}} \leq j_{\tau'}(c_2).
\]
With \(c_1, c_2 \) obtained above, we then define \(a_i \quad (i = 1, 2) \) by
\[
a_1 = m_1 \left(\int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + c_1 + \tau}} dp \right)^{\frac{3}{2}} N_1^{-\frac{3}{2}}, \quad a_2 = m_2 \left(\int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + c_2 + \tau'}} dp \right)^{\frac{3}{2}} N_2^{-\frac{3}{2}},
\]
and
\[
b_1 = \frac{P_1}{m_1N_1}, \quad b_2 = \frac{P_2}{m_2N_2}.
\]
Then, with such choice of \(a_i, b_i \) and \(c_i, M_{11} \) and \(M_{22} \) satisfies (7).

(2) Assume further that
\[
\frac{N_1}{(2E_1 + 2E_2 - \frac{|P_1 + P_2|^2}{m_1N_1 + m_2N_2})^{\frac{3}{2}}} \leq g_{\tau, \tau'} \left(\max \left\{ l(\tau), h_\tau^{-1} \left(\frac{m_1^2 N_1}{m_2^2 N_2} h_{\tau'}(l(\tau')) \right) \right\} \right).
\]
Then \(c_{12}, c_{21} \) are defined as a unique solution of the following relations:
\[
\frac{m_1^2 h_{\tau}(c_{12})}{m_2^2 h_{\tau}(c_{21})} = N_1 N_2, \quad k_{\tau, \tau'}(c_{12}, c_{21}) = \frac{N_1}{(2E_1 + 2E_2 - \frac{|P_1 + P_2|^2}{m_1N_1 + m_2N_2})^{\frac{3}{2}}}.
\]
With such \(c_{12} \) and \(c_{21} \), we define \(a \) and \(b \) by
\[
a = \left(\frac{m_1^2 \int_{\mathbb{R}^3} \frac{|p^2}{e^{m_1^2 + 21 + \tau}} dp + m_2^2 \int_{\mathbb{R}^3} \frac{|p^2}{e^{m_2^2 + 21 + \tau'}} dp}{2E_1 + 2E_2 - \frac{|P_1 + P_2|^2}{m_1N_1 + m_2N_2}} \right)^{\frac{3}{2}}, \quad b = \frac{P_1 + P_2}{m_1N_1 + m_2N_2}.
\]
Then, with these choices of equilibrium coefficients, our quantum BGK model for gas mixture \(6 \) satisfies (8).

(3) With the choice of equilibrium coefficients as in (1), (2), the quantum BGK model for gas mixture \(6 \) satisfies the H-theorem. The equality in the H-Theorem is characterized by \(f_1 \) and \(f_2 \) being two Fermion distributions in the Fermion-Fermion case, two Bose distributions in the Boson- Boson case and a Fermion distribution and a Bose distribution in the Fermion-Boson case. In all the cases, these equilibrium distributions have the same \(a \) and \(b \).
2.2. Proof of Theorem 2.1 (1), (2). The proof for (1) can be found in [3]. Therefore, we start with the proof of (2). An explicit computation from (8) gives

\[P_1(x, t) + P_2(x, t) = \int \frac{p}{e^{\frac{p}{m_1} + b^2 + c_{11}} + \tau} + \int \frac{p}{e^{\frac{p}{m_2} + b^2 + c_{21}} + \tau'} dp \]

\[= \int \frac{m_1 b}{e^{\frac{m_1 b}{m_1} + b^2 + c_{11}} + \tau} + \int \frac{m_2 b}{e^{\frac{m_2 b}{m_2} + b^2 + c_{21}} + \tau'} dp \]

\[= b(m_1 N_1(x, t) + m_2 N_2(x, t)). \]

This gives the explicit presentation of \(b \):

\[b(x, t) = \frac{P_1(x, t) + P_2(x, t)}{m_1 N_1(x, t) + m_2 N_2(x, t)}. \quad (10) \]

On the other hand, we have from (8) that:

\[N_1(x, t) = \int \frac{1}{e^{\frac{p}{m_1} + b^2 + c_{11}} + \tau} dp = m_1 a^{-\frac{3}{2}} \int \frac{1}{e^{\frac{p}{m_2} + b^2 + c_{21}} + \tau} dp, \]

\[N_2(x, t) = \int \frac{1}{e^{\frac{p}{m_2} + b^2 + c_{21}} + \tau} dp = m_2 a^{-\frac{3}{2}} \int \frac{1}{e^{\frac{p}{m_2} + b^2 + c_{21}} + \tau} dp, \quad (11) \]

and from (8):

\[E_1(x, t) + E_2(x, t) = \frac{1}{2} \int \frac{|p|^2}{e^{\frac{p}{m_1} + b^2 + c_{11}} + \tau} dp + \frac{1}{2} \int \frac{|p|^2}{e^{\frac{p}{m_2} + b^2 + c_{21}} + \tau'} dp \]

\[= \frac{1}{2} m_1 a^{-\frac{3}{2}} \int \frac{|p|^2}{e^{\frac{m_1 b}{m_1} + b^2 + c_{11}} + \tau} dp + \frac{1}{2} m_2 a^{-\frac{3}{2}} \int \frac{|p|^2}{e^{\frac{m_2 b}{m_2} + b^2 + c_{21}} + \tau'} dp + \frac{1}{2} (m_1 N_1 + m_2 N_2) b^2(x, t). \quad (12) \]

Plugging (10) into (12), we get

\[2E_1 + 2E_2 = \int \frac{|P_1 + P_2|^2}{m_1 N_1 + m_2 N_2} dp \]

\[= a^{-\frac{3}{2}} \left(m_1 a^{-\frac{3}{2}} \int \frac{|p|^2}{e^{\frac{m_1 b}{m_1} + b^2 + c_{11}} + \tau} dp + m_2 a^{-\frac{3}{2}} \int \frac{|p|^2}{e^{\frac{m_2 b}{m_2} + b^2 + c_{21}} + \tau'} dp \right). \quad (13) \]

We then deduce from (13) and (11) that

\[\frac{N_1}{\left(2E_1 + 2E_2 - \frac{|P_1 + P_2|^2}{m_1 N_1 + m_2 N_2} \right)^{\frac{3}{2}}} \]

\[= \frac{m_1 a^{\frac{3}{2}} \int \frac{1}{e^{\frac{m_1 b}{m_1} + b^2 + c_{11}} + \tau} dp}{\left(m_1 a^{\frac{3}{2}} \int \frac{|p|^2}{e^{\frac{m_1 b}{m_1} + b^2 + c_{11}} + \tau} dp + m_2 a^{\frac{3}{2}} \int \frac{|p|^2}{e^{\frac{m_2 b}{m_2} + b^2 + c_{21}} + \tau'} dp \right)^{\frac{3}{2}}}. \quad (14) \]

On the other hand, we can factor out \(a \) by dividing the two relations in (11):

\[\frac{N_1}{N_2} = \frac{m_1 a^{\frac{3}{2}} \int \frac{1}{e^{\frac{m_1 b}{m_1} + b^2 + c_{11}} + \tau} dp}{m_2 a^{\frac{3}{2}} \int \frac{1}{e^{\frac{m_2 b}{m_2} + b^2 + c_{21}} + \tau'} dp} = \frac{m_1 h_{e^2}(c_{11})}{m_2 h_{e^2}(c_{21})}. \quad (15) \]
and hence:

\[c_{21} = h_{r'}^{-1} \left(\frac{m_2^2 N_2}{m_2^2 N_1} h_r(c_{12}) \right), \quad (16) \]

from the monotonicity of \(h_r \). Now, considering that \(a \) is obtained from (13) once \(c_{12} \) and \(c_{21} \) are chosen, it remains, under the assumption of Theorem 2.1, that (14) and (15) uniquely determine \(c_{12} \) and \(c_{21} \). In turn, in view of (14) and (16), we see that \(c_{12} \) and \(c_{21} \) can be uniquely determined once we prove the monotonicity of \(g_{r,r'} \), which is stated in the following lemma.

Lemma 2.2. Recall the definition of \(g_{r,r'} \) given in (9):

\[g_{r,r'}(x) = \frac{m_2^2}{m_1^2} \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2+x+r}+\tau} dp \left(m_1^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2+y(x)}+\tau} dp + m_2^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2+y(x)+r}+\tau} dp \right)^{\frac{3}{2}}, \]

where

\[y(x) = h_{r'}^{-1} \left(\frac{m_2^2 N_2}{m_2^2 N_1} h_r(x) \right). \quad (17) \]

Then \(g_{r,r'}(x) \) is strictly monotone decreasing function when

\[x \geq \max \left\{ l(\tau), h_{r'}^{-1} \left(\frac{m_2^2 N_1}{m_2^2 N_2} h_{r'}(l(\tau')) \right) \right\}. \]

Proof. **Claim:** We claim that the following identity holds:

\[m_1^2 D_r(x) + m_1^2 m_2^2 \int_0^1 \frac{1}{e^{r^2+x+\tau}+dr} D_{r'}(y(x)) \]

\[g_{r,r'}'(x) = 8\pi^2 \left(m_1^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2+x}+\tau} dp + m_2^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2+y(x)}+\tau} dp \right)^{\frac{3}{2}}, \quad (18) \]

where

\[D_r(x) = \frac{9}{5} \int_0^\infty \frac{r^2}{e^{r^2+x}+\tau} dr \int_0^\infty \frac{r^2}{e^{r^2+x}+\tau} dr - \int_0^\infty \frac{r^4}{e^{r^2+x}+\tau} dr \int_0^\infty \frac{1}{e^{r^2+x}+\tau} dr. \]

• Proof of (18): By an explicit computation, we have

\[\frac{\partial g(x)}{\partial x} \]

\[= \left(m_1^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2+x}+\tau} dp + m_2^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2+y(x)}+\tau} dp \right)^{-\frac{3}{2}} \]

\[\times \left[\left(m_1^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2+x}+\tau} dp + m_2^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2+y(x)}+\tau} dp \right)^{\frac{3}{2}} \right] m_2 \partial_x \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2+x}+\tau} dp \]

\[- \frac{3}{5} \left(m_1^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2+x}+\tau} dp + m_2^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2+y(x)}+\tau} dp \right)^{\frac{3}{2}} \]

\[\times \partial_x \left(m_1^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2+x}+\tau} dp + m_2^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2+y(x)}+\tau} dp \right) m_2 \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2+x}+\tau} dp. \]
We then multiply $2/5$ power of
\[
m_1^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2 + x} + \tau} \, dp + m_2^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2 + y(x)} + \tau} \, dp
\]
on numerator and denominator:
\[\frac{\partial g(x)}{\partial x}\]
\[
= \left(m_1^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2 + x} + \tau} \, dp + m_2^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2 + y(x)} + \tau} \, dp \right)^{-\frac{2}{5}}
\times
\left(m_1^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2 + x} + \tau} \, dp + m_2^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2 + y(x)} + \tau} \, dp \right) \frac{1}{\partial x} \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + x} + \tau} \, dp
\]
\[= \left(\frac{4}{5} \right) \left(m_1^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2 + x} + \tau} \, dp + m_2^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2 + y(x)} + \tau} \, dp \right)^{-\frac{2}{5}} \times I,
\]
where
\[I = \left(m_1^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2 + x} + \tau} \, dp + m_2^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2 + y(x)} + \tau} \, dp \right) \frac{1}{\partial x} \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + x} + \tau} \, dp.
\]

We then carry out the following two integrations
\[
\frac{1}{\partial x} \int_{\mathbb{R}^3} \frac{1}{e^{|p|^2 + x} + \tau} \, dp = \int_{\mathbb{R}^3} \frac{-e^{|p|^2 + x}}{(e^{|p|^2 + x} + \tau)^2} \, dp
\]
\[
= 4\pi \int_0^\infty \frac{-r^4 e^{r^2}}{(e^{r^2} + \tau)^2} \, dr
\]
\[
= -2\pi \int_0^\infty \frac{1}{e^{r^2} + \tau} \, dr
\]
(19)
where we used the following integration by parts : $u' = \frac{2x e^{r^2 + x}}{e^{r^2 + x} + \tau}$, $v = \frac{1}{2} r$, and
\[
\frac{1}{\partial x} \left(m_1^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2 + x} + \tau} \, dp + m_2^2 \int_{\mathbb{R}^3} \frac{|p|^2}{e^{|p|^2 + y(x)} + \tau} \, dp \right)
\]
\[
= m_1^2 \int_{\mathbb{R}^3} \frac{-|p|^2 e^{|p|^2 + x}}{(e^{|p|^2 + x} + \tau)^2} \, dp + m_2^2 \int_{\mathbb{R}^3} \frac{-|p|^2 e^{|p|^2 + y(x)}}{(e^{|p|^2 + y(x)} + \tau)^2} \, dp
\]
\[= 4\pi m_1^2 \int_0^\infty \frac{-r^4 e^{r^2 + x}}{(e^{r^2 + x} + \tau)^2} \, dr + 4\pi m_2^2 \int_0^\infty \frac{-r^4 e^{r^2 + y(x)}}{(e^{r^2 + y(x)} + \tau)^2} \, dr
\]
\[= -6\pi m_1^2 \int_0^\infty \frac{r^2}{e^{r^2 + x} + \tau} \, dr - 6\pi m_2^2 \int_0^\infty \frac{r^2}{e^{r^2 + y(x)} + \tau} \, dr
\]
(20)
where we used similar integration by parts : $u' = \frac{2x e^{r^2 + x}}{e^{r^2 + x} + \tau}$, $v = \frac{1}{2} r^3$ for
\[
\int_0^\infty \frac{r^4 e^{r^2 + c}}{(e^{r^2 + c} + \tau)^2} \, dr = \frac{3}{2} \int_0^\infty \frac{r^2}{e^{r^2 + c} + \tau} \, dr.
\]
Using (19) and (20), we rewrite I as

$$I = -8\pi^2 \left(m_1^3 \int_0^\infty \frac{r^4}{e^{r^2+x}+\tau} dr + m_2^3 \int_0^\infty \frac{r^4}{e^{r^2+y(x)}+\tau'} dr \right) \times m_1^2 \int_0^\infty \frac{1}{e^{r^2+x}+\tau} dr + \frac{72\pi^2}{5} \left(m_1^2 \int_0^\infty \frac{r^2}{e^{r^2+x}+\tau} dr + m_2^2 \frac{\partial y(x)}{\partial x} \int_0^\infty \frac{r^2}{e^{r^2+y(x)}+\tau'} dr \right)$$

(21)

We then recall $D_\tau(x)$ as

$$D_\tau(x) = -\int_0^\infty \frac{r^4}{e^{r^2+x}+\tau} dr \int_0^\infty \frac{1}{e^{r^2+x}+\tau} dr + \frac{9}{5} m_1^3 \int_0^\infty \frac{r^2}{e^{r^2+x}+\tau} dr \int_0^\infty \frac{r^2}{e^{r^2+y(x)}+\tau'} dr < 0,$$

and express (21) as follows: So subtracting $D_\tau(x)$ on each sides gives

$$\frac{I}{8\pi^2} - m_1^3 D_\tau(x) = -m_1^2 m_2^2 \int_0^\infty \frac{r^4}{e^{r^2+x}+\tau} dr \int_0^\infty \frac{1}{e^{r^2+x}+\tau} dr + \frac{9}{5} m_1^2 m_2^3 \frac{\partial y(x)}{\partial x} \int_0^\infty \frac{r^2}{e^{r^2+x}+\tau} dr \int_0^\infty \frac{r^2}{e^{r^2+y(x)}+\tau'} dr.$$

(22)

Now we compute $\frac{\partial y(x)}{\partial x}$. Recall

$$y(x) = h^{-1}_v \left(\frac{m_1^2 N_2}{m_2^2 N_1} h_\tau(x) \right),$$

and compute

$$\frac{dy(x)}{dx} = (h^{-1}_v)' \left(\frac{m_1^2 N_2}{m_2^2 N_1} h_\tau(x) \right) \times \frac{d}{dx} \frac{m_1^2 N_2}{m_2^2 N_1} h_\tau(x).$$

Then, since the differentiation rule for inverse function gives

$$(h^{-1}_v)' \left(\frac{m_1^2 N_2}{m_2^2 N_1} h_\tau(x) \right) = \frac{1}{h'_\tau(y(x))},$$

we get

$$\frac{dy(x)}{dx} = m_1^3 N_2 \frac{h'_\tau(x)}{m_2^3 N_1 h'_\tau(y(x))}.$$

Finally, we use

$$h'_\tau(x) = \int_{\mathbb{R}^2} \frac{-e^{p^2+x}}{(e^{p^2+x}+\tau)^2} dp = 4\pi \int_0^\infty \frac{-r^2 e^{r^2+x}}{(e^{r^2+x}+\tau)^2} dr = -2\pi \int_0^\infty \frac{1}{e^{r^2+x}+\tau} dr,$$

to obtain the following expressions for $\frac{dy}{dx}$:

$$\frac{dy(x)}{dx} = \frac{m_1^2 N_2}{m_2^2 N_1} \int_0^\infty \frac{1}{e^{r^2+x}+\tau} dr.$$
Inserting this into (22)
\[\frac{I}{8\pi^2} - m_1^3 D_\tau(x) \]
\[= -m_1^3 m_2^2 \int_0^\infty \frac{1}{e^{r^2+y(x)} + \tau} \, dr \int_0^\infty \frac{1}{e^{r^2+y(x)} + \tau} \, dr
+ \frac{9}{5} m_1^3 N_2 \int_0^\infty \frac{r^2}{e^{r^2+y(x)} + \tau} \, dr \int_0^\infty \frac{y^2}{e^{r^2+y(x)} + \tau} \, dr \]
\[= -m_1^3 \int_0^\infty \frac{1}{e^{r^2+x} + \tau} \, dr \left(\frac{m_2^3}{2} \int_0^\infty \frac{r^2}{e^{r^2+y(x)} + \tau} \, dr
- \frac{9}{5} m_1^3 N_2 \int_0^\infty \frac{r^2}{e^{r^2+y(x)} + \tau} \, dr \int_0^\infty \frac{y^2}{e^{r^2+y(x)} + \tau} \, dr \right). \]

Finally, we use
\[\frac{N_2}{N_1} = \frac{m_2^3 h_\tau'(y(x))}{m_1^3 h_\tau(x)} = \frac{m_2^3 \int_{R^3} \frac{1}{e^{r^2+y(x)} + \tau} \, dp}{m_1^3 \int_{R^3} \frac{1}{e^{r^2+y(x)} + \tau} \, dp} = \frac{m_2^3 \int_0^\infty \frac{r^2}{e^{r^2+y(x)} + \tau} \, dr}{m_1^3 \int_0^\infty \frac{y^2}{e^{r^2+y(x)} + \tau} \, dr}, \]
to derive
\[\frac{I}{8\pi^2} - m_1^3 D_\tau(x) \]
\[= -m_1^3 m_2^2 \int_0^\infty \frac{1}{e^{r^2+x} + \tau} \, dr \]
\[\times \left(\int_0^\infty \frac{r^4}{e^{r^2+y(x)} + \tau} \, dr - \frac{9}{5} \int_0^\infty \frac{r^2}{e^{r^2+y(x)} + \tau} \, dr \int_0^\infty \frac{y^2}{e^{r^2+y(x)} + \tau} \, dr \right) \]
\[= m_1^3 m_2^2 \int_0^\infty \frac{r^4}{e^{r^2+y(x)} + \tau} \, dr \left(\frac{9}{5} \int_0^\infty \frac{r^2}{e^{r^2+y(x)} + \tau} \, dr \int_0^\infty \frac{y^2}{e^{r^2+y(x)} + \tau} \, dr
- \int_0^\infty \frac{r^4}{e^{r^2+y(x)} + \tau} \, dr \int_0^\infty \frac{1}{e^{r^2+y(x)} + \tau} \, dr \right) \]
\[= m_1^3 m_2^2 \int_0^\infty \frac{r^4}{e^{r^2+y(x)} + \tau} \, dr \int_0^\infty \frac{1}{e^{r^2+y(x)} + \tau} \, dr D_\tau'(y(x)), \]
which complete the proof of the claim.

- **Proof of the Lemma 2.2:** We first observe that \(h(x) \) is strictly decreasing function on \(x \in [0, \infty) \) for \(\tau = -1 \) and \(x \in (-\infty, \infty) \) for \(\tau = +1 \):
\[h_\tau'(x) = -\int_{R^3} \frac{e^{y^2+x+\tau}}{(e^{y^2+x+\tau})^2} \, dp < 0. \]
Therefore, our restriction on \(x \): \(x \geq \frac{m_2^3}{m_1^3} \left(\frac{N_2}{N_1} \right) h_\tau'(1(\tau')) \) combined with the definition of \(y \) given in (17), leads to
\[y(x) \equiv h_\tau^{-1}\left(\frac{m_2^3}{m_1^3} \frac{N_2}{N_1} h_\tau(x) \right) \]
\[h^{-1} \left(\left(\frac{2}{m_1^2 N_2} \right)^{h^{-1} \left(\left(\frac{2}{m_2^2 N_1} \right)^{h^{-1} \left(l(\tau') \right)} \right)} \right) = l(\tau'). \]

Thus, we have
\[y(x) \geq l(\tau'). \]

On the other hand, from the assumption, \(x \) satisfies
\[x \geq l(\tau). \]

Therefore, we have
\[D_\tau(x) < 0 \quad \text{and} \quad D_{\tau'}(y(x)) < 0, \]

since we already know
\[D_{+1}(x) < 0 \quad \text{on} \quad x \in (-\infty, \infty), \quad D_{-1}(x) < 0 \quad \text{on} \quad x \in [0, \infty). \]

(See [42] for boson case (+1) and [4, 43] for fermion case (−1)). Inserting this into (18), we can conclude the proof of the Lemma.

2.3. Proof of Theorem 2.1 (3)

It remains to prove the H-theorem to conclude Theorem 2.1 (3).

Proposition 1. Let \(f_i < 1 \) only when \(f_i \) is the distribution function for fermion components, then we have
\[
\int_{\mathbb{R}^3} \ln \frac{f_1}{1 - \tau f_1} \left\{ (M_{11} - f_1) + (M_{12} - f_1) \right\}
+ \ln \frac{f_2}{1 - \tau' f_2} \left\{ (M_{22} - f_2) + (M_{21} - f_2) \right\} dp \leq 0.
\]

Proof. The proof for
\[
\int_{\mathbb{R}^3} \ln \frac{f_1}{1 - f_1} (M_{11} - f_1) dp + \int_{\mathbb{R}^3} \ln \frac{f_2}{1 - f_2} (M_{22} - f_2) dp \leq 0, \quad (23)
\]
can be found in [63]. So we only prove
\[
S = \int_{\mathbb{R}^3} \ln \frac{f_1}{1 - \tau f_1} (M_{12} - f_1) dp + \int_{\mathbb{R}^3} \ln \frac{f_2}{1 - \tau' f_2} (M_{21} - f_2) dp \leq 0.
\]

First, we observe that
\[
I = \int_{\mathbb{R}^3} \ln \frac{M_{12}}{1 - \tau M_{12}} (M_{12} - f_1) dp + \int_{\mathbb{R}^3} \ln \frac{M_{21}}{1 - \tau' M_{21}} (M_{21} - f_2) dp = 0,
\]
which follows from an explicit computation using the conservation laws (8):
\[
I = - \int_{\mathbb{R}^3} \left(a m_1 \left\{ \frac{p}{m_1} - b \right\}^2 + c_{12} \right) (M_{12} - f_1) dp
- \int_{\mathbb{R}^3} \left(a m_2 \left\{ \frac{p}{m_2} - b \right\}^2 + c_{21} \right) (M_{21} - f_2) dp
= a \int_{\mathbb{R}^3} \left(\frac{|p|^2}{m_1} f_1 + \frac{|p|^2}{m_2} f_2 - \frac{|p|^2}{m_1} M_{12} - \frac{|p|^2}{m_2} M_{21} \right) dp
- 2ab \cdot \int_{\mathbb{R}^3} (f_1 + f_2 - M_{12} - M_{21}) dp
= 0.
\]
From this, we find
\[
S - I = \int_{\mathbb{R}^3} \left(\ln \frac{f_1}{1 - \tau f_1} - \ln \frac{M_{12}}{1 - \tau M_{12}} \right) (M_{12} - f_1) dp \\
+ \int_{\mathbb{R}^3} \left(\ln \frac{f_2}{1 - \tau f_2} - \ln \frac{M_{21}}{1 - \tau M_{21}} \right) (M_{21} - f_2) dp \leq 0,
\]

since \(\ln \frac{x}{1 - x} \) is an increasing function for \(x \in [0, \infty) \), and \(\ln \frac{x}{1 - x} \) is an increasing function when \(0 < x < 1 \). Here, we have equality if and only if \(f_1 = M_{12} \) and \(f_2 = M_{21} \). This completes the proof. \(\Box \)

Remark 1. The equality in the H-Theorem is characterized by two distributions with the same value for \(a \) and \(b \). Due to the fact that \(b \) is equal to pressure over the density, this leads to \(P_1 = \frac{N_1}{N_2} P_2 \).

Therefore, to complete the proof of Theorem 2.1 (3), it remains to prove that \(f_i < 1 \) in the case of fermions.

Lemma 2.3. Let \(f_i \) be a distribution function for fermions and \(f_i(x, p, 0) < 1 \). Then we have \(f_i(x, p, t) < 1 \) for \(t \geq 0 \).

Proof. Integrating (6) along the characteristic, we get the mild form :
\[
f_i(x, p, t) = e^{-2t} f_i(x - pt, p, 0) + \int_0^t e^{2(\tau - t)} (\mathcal{F}_{ii} + \mathcal{F}_{ij})(x + (\tau - t)p, p, \tau) d\tau,
\]
for \(j \neq i \). Since \(\mathcal{F}_{ii} < 1 \) and \(\mathcal{F}_{ij} < 1 \) for all \((x, p, t)\) by definition, we have
\[
f_i(x, p, t) \leq e^{-2t} f_i(x - pt, p, 0) + \int_0^t e^{2(\tau - t)} d\tau = e^{-2t} f_i(x - pt, p, 0) + (1 - e^{-2t}) < 1.
\]
\(\Box \)

3. **Appendix.** In this section, we present a proof for (3) for readers’ convenience. The proof is standard but we couldn’t locate them in the literature. We also present the relation between the conservation laws w.r.t the momentum distribution function \(f(x, p, t) \) and the conservation laws w.r.t the velocity distribution function \(f(x, v, t) \). We start with the computation of Jacobian:

Lemma 3.1. The Jacobian of the change of variables \((p, p_*) \leftrightarrow (p', p'_*)\) is
\[
\det J = \det \frac{\partial (p', p'_*)}{\partial (p, p_*)} = -1.
\]

Proof. A direct computation gives
\[
J = \frac{\partial (p', p'_*)}{\partial (p, p_*)} = \begin{bmatrix}
\delta_{ij} - \frac{2m_1 m_2 w_i w_j}{m_1 + m_2 w_i w_j} & \frac{2m_1 m_2 w_i w_j}{m_1 + m_2 w_i w_j} \\
\frac{2m_1 m_2 w_i w_j}{m_1 + m_2 w_i w_j} & \delta_{ij} - \frac{2m_1 m_2 w_i w_j}{m_1 + m_2 w_i w_j}
\end{bmatrix}.
\]

Adding the 4th-6th row of \(J \) to the 1st-3rd row of \(J \), respectively, then subtracting the 1st-3rd column of \(J \) from the 4th-6th column of \(J \), respectively gives
\[
\det J = \det \begin{bmatrix}
\frac{2m_1 m_2 w_i w_j}{m_1 + m_2 w_i w_j} & 0 & \frac{2m_1 m_2 w_i w_j}{m_1 + m_2 w_i w_j}
\frac{2m_1 m_2 w_i w_j}{m_1 + m_2 w_i w_j} & \delta_{ij} - \frac{2m_1 m_2 w_i w_j}{m_1 + m_2 w_i w_j}
\frac{2m_1 m_2 w_i w_j}{m_1 + m_2 w_i w_j}
\end{bmatrix}.
\]

Thus we have
\[
\det J = \det \left(\delta_{ij} - \frac{2m_1 m_2 w_i w_j}{m_1 + m_2 w_i w_j} - \frac{2m_1 m_2 w_i w_j}{m_1 + m_2 w_i w_j} \right) = \det (\delta_{ij} - 2w_i w_j) = -1.
\]
\(\Box \)
Lemma 3.2. For $i, j, k = 1, 2$, and $i \neq j$, we have

\[
(1) \quad \int_{\mathbb{R}^3} (\phi(p)Q_{kk}(f_k, f_k) - \phi'(p') - \phi'(p')) dp = \frac{1}{4} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \int_{S^2} (\phi(p) + \phi(p')) dp d\theta \frac{1}{w_m} \frac{f_k^2}{f_{k, \ast}^2} (1 \pm f_k, 1 \pm f_{k, \ast}) \cdot \{ f_{k, \ast}^2 (1 \pm f_k, 1 \pm f_{k, \ast}) - f_k f_{k, \ast} (1 \pm f_k, 1 \pm f_{k, \ast}) \} d\theta d\phi,
\]

\[
= \frac{1}{4} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \int_{S^2} (\phi(p) + \phi(p')) dp d\theta \frac{1}{w_m} \frac{f_k^2}{f_{k, \ast}^2} (1 \pm f_k, 1 \pm f_{k, \ast}) \cdot \{ f_{k, \ast}^2 (1 \pm f_k, 1 \pm f_{k, \ast}) - f_k f_{k, \ast} (1 \pm f_k, 1 \pm f_{k, \ast}) \} d\theta d\phi.
\]

where $\tau(i) = -1$ when f_i denotes the distribution of fermion and $\tau(i) = +1$ when f_i denotes the distribution of boson.

Proof. Taking the change of variables $(p, p_\ast) \leftrightarrow (p_\ast, p)$ and $(p, p_\ast) \leftrightarrow (p', p'_\ast)$, together with Lemma 3.1, gives (1). To prove (2), we first observe that the collision kernel B_{ij} is invariant under the change of variables $(p, p_\ast) \leftrightarrow (p', p'_\ast)$ since

\[
\left| \frac{p' - p'}{m_i} - \frac{p' - p'}{m_j} \right| = \left| \frac{p - p}{m_i} - \frac{p - p}{m_j} - 2w \left(\frac{p - p}{m_i} - \frac{p - p}{m_j} \right) \cdot w \right| = \left| \frac{p - p}{m_i} - \frac{p - p}{m_j} \right|.
\]

Therefore, applying the change of variables $(p, p_\ast) \leftrightarrow (p', p'_\ast)$ together with Lemma 3.1 gives the desired results. \square

Remark 2. We note that the exchange $(p, p_\ast) \leftrightarrow (p_\ast, p)$ does not lead to $(p', p'_\ast) \leftrightarrow (p'_\ast, p')$ in the collision operators Q_{12} and Q_{21} unless $m_1 = m_2$. For example, if we change the notation $(p, p_\ast) \leftrightarrow (p_\ast, p)$ in Q_{12}, we get

\[
p' = p - \frac{2m_1 m_2}{m_1 + m_2} \left(\frac{p}{m_1} - \frac{p}{m_2} \right) \cdot w \rightarrow p + \frac{2m_1 m_2}{m_1 + m_2} \left(\frac{p}{m_2} - \frac{p}{m_1} \right) \cdot w,
\]

which is not equal to p'_\ast of Q_{12}. This is why Q_{ij} ($i \neq j$) do not have the full symmetry as in (1).

Proof of (3): We only consider the last identity in (3), since other identities can be treated in a similar and simpler manner. In view of the fact that the post collisional variables (p', p'_\ast) in Q_{12} and Q_{21} take different forms, we use the notation $\{p'_1\}_{12}, \{p'_2\}_{12}$ and $\{p'_1\}_{21}, \{p'_2\}_{21}$ to denote p' and p'_\ast in Q_{12} and Q_{21}, respectively. We substitute $\phi(p) = \frac{|p|^2}{2m_1}$ in Q_{12} and use Lemma 3.2 (2) to get

\[
\int_{\mathbb{R}^3} Q_{12}(f_1, f_2) \frac{|p|^2}{2m_1} dp = \frac{1}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \int_{S^2} \frac{1}{2m_1} \left(\frac{|p'|_{12}^2}{2m_1} - \frac{|p'|_{12}^2}{2m_1} \right) B_{12} \left(\frac{p}{m_1} - \frac{p}{m_2} \right) \cdot w \d\theta d\phi,
\]

\[
= \frac{1}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \int_{S^2} \frac{1}{2m_1} \left(\frac{|p'|_{12}^2}{2m_1} - \frac{|p'|_{12}^2}{2m_1} \right) B_{12} \left(\frac{p}{m_1} - \frac{p}{m_2} \right) \cdot w \d\theta d\phi.
\]
Similarly, substituting \(\phi(p) = \frac{|p|^2}{2m_2} \) in \(Q_{21} \) gives

\[
\int_{\mathbb{R}^3} Q_{21}(f_2, f_1) \frac{|p|^2}{2m_2} dp = \frac{1}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \left(\frac{|p|^2}{2m_2} - \frac{|(p')_{21}|^2}{2m_2} \right) B_{21} \left(\frac{p}{m_2} - \frac{p_*}{m_1}, w \right) \times \{f_2((p')_{21})f_1((p')_{21})(1 + \tau(2)f_2(p))(1 + \tau(1)f_1(p_*)) - f_2(p)f_1(p_*)(1 + \tau(2)f_2((p')_{21}))(1 + \tau(1)f_1((p')_{21})) \} \, dp_*, dp.
\]

(25)

We then note that the exchange of variables \((p, p_*) \leftrightarrow (p_*, p)\) in (25) yields

\[
\{p'\}_{21} = p - \frac{2m_2m_1}{m_2 + m_1} w \left(\frac{p}{m_2} - \frac{p_*}{m_1} \right) \cdot w \\
\rightarrow p_* + \frac{2m_1m_2}{m_2 + m_1} w \left(\frac{p}{m_1} - \frac{p_*}{m_2} \right) \cdot w = \{p'\}_{12},
\]

\[
\{p'\}_{21} = p_* + \frac{2m_2m_1}{m_2 + m_1} w \left(\frac{p}{m_2} - \frac{p_*}{m_1} \right) \cdot w \\
\rightarrow p - \frac{2m_1m_2}{m_2 + m_1} w \left(\frac{p}{m_1} - \frac{p_*}{m_2} \right) \cdot w = \{p'\}_{12},
\]

so that

\[
\int_{\mathbb{R}^3} Q_{21}(f_2, f_1) \frac{|p|^2}{2m_2} dp = \frac{1}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \left(\frac{|p_*|^2}{2m_2} - \frac{|(p')_{12}|^2}{2m_2} \right) B_{21} \left(\frac{p}{m_2} - \frac{p_*}{m_1}, w \right) \times \{f_2((p')_{12})f_1((p')_{12})(1 + \tau(2)f_2(p_*))(1 + \tau(1)f_1(p)) - f_2(p)f_1(p_*)(1 + \tau(2)f_2((p')_{12}))(1 + \tau(1)f_1((p')_{12})) \} \, dp_*, dp.
\]

Now, we combine (24) and (25) and recall \(B_{12} = B_{21} \) to obtain

\[
\int_{\mathbb{R}^3} Q_{12}(f_1, f_2) \frac{|p|^2}{2m_1} dp + \int_{\mathbb{R}^3} Q_{21}(f_2, f_1) \frac{|p|^2}{2m_2} dp = \frac{1}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \left(\frac{|p|^2}{2m_1} + \frac{|p|^2}{2m_2} - \frac{|(p')_{12}|^2}{2m_1} - \frac{|(p')_{12}|^2}{2m_2} \right) B_{12} \left(\frac{p}{m_1} - \frac{p_*}{m_2}, w \right) \times \{f_1((p')_{12})f_2((p')_{12})(1 + \tau(1)f_1(p))(1 + \tau(2)f_2(p_*)) - f_1(p)f_2(p_*)(1 + \tau(1)f_1((p')_{12}))(1 + \tau(2)f_2((p')_{12})) \} \, dp_*, dp.
\]

The r.h.s vanishes due to the microscopic energy conservation law (2) with \((i, j) = (1, 2)\), which gives desired result.

3.1. Conservation laws: \(v \) vs \(p \)

Let \(\tilde{f}(x, v, t) \) denote the velocity distribution function and \(f(x, p, t) \) denote the momentum distribution function. Then we can reconcile the conservation laws w.r.t the velocity distribution \(\tilde{f}(x, v, t) \) and the conservation laws w.r.t \(f(x, p, t) \) upon imposing \((i = 1, 2)\)

\[
\tilde{f}_i(x, v, t) = \tilde{f}_i \left(x, \frac{p}{m_i}, t \right) = m_i^3 f_i(x, p, t).
\]
This relation, together with the change of variable $m_i v = p$ gives
\[
\int \tilde{f}_i(x, v, t) dx dv = \int \tilde{f}_i \left(x, \frac{p}{m_i}, t \right) dx dv \\
= \int \frac{1}{m_i^3} \tilde{f}_i \left(x, \frac{p}{m_i}, t \right) dx dp = \int \tilde{f}_i(x, p, t) dx dp.
\]
Similarly, we have
\[
\int \tilde{f}_i(x, v, t) \left(\frac{m_i v}{2 m_1 |v|^2} \right) dx dv = \int \tilde{f}_i \left(x, \frac{p}{m_i}, t \right) \left(\frac{p}{2 m_1 |p|^2} \right) dx dv \\
= \int \frac{1}{m_i^3} \tilde{f}_i \left(x, \frac{p}{m_i}, t \right) \left(\frac{p}{2 m_1 |p|^2} \right) dx dp \\
= \int \tilde{f}_i(x, p, t) \left(\frac{p}{2 m_1 |p|^2} \right) dx dp.
\]

REFERENCES

[1] P. Andries, K. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures, J. Statist. Phys., 106 (2002), 993–1018.

[2] N. W. Ashcroft and N. D. Mermin, Solid State Physic, Holt, Rinehart and Winston, New York, USA. 1976.

[3] G.-C. Bae and S.-B. Yun, Stationary quantum BGK model for bosons and fermions in a bounded interval, J. Stat. Phys., 178 (2020), 845–868.

[4] G.-C. Bae and S.-B. Yun, Quantum BGK model near a global Fermi-Dirac distribution, SIAM J. Math. Anal., 52 (2020), 2313–2352.

[5] M. Bennoune, M. Lemou and L. Mieussens, Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics. J. Comput. Phys., 227 (2008), 3781–3803.

[6] F. Bernard, A. Iollo and G. Puppo, Accurate asymptotic preserving boundary conditions for kinetic equations on Cartesian grids, J. Sci. Comput., 65 (2015), 735–766.

[7] P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases, Physical Review, 94 (1954), 511.

[8] M. Bisi and M. J. Cáceres, A BGK relaxation model for polyatomic gas mixtures, Commun. Math. Sci., 14 (2016), 297–325.

[9] M. Bisi, M. Groppi and G. Spiga, Kinetic Bhatnagar-Gross-Krook model for fast reactive mixtures and its hydrodynamic limit, Physical Review E, 81 (2010), 036327.

[10] A. V. Bobylev, M. Bisi, M. Groppi, G. Spiga and I. F. Potapenko, A general consistent BGK model for gas mixtures, Kinet. Relat. Models, 11 (2018), 1377–1393.

[11] M. Braukhoff, Semiconductor Boltzmann-Dirac-Benney equation with a BGK-type collision operator: Existence of solutions vs. ill-posedness, Kinet. Relat. Models, 12 (2019), 445–482.

[12] M. Braukhoff, Global analytic solutions of the semiconductor Boltzmann-Dirac-Benney equation with relaxation time approximation, Kinet. Relat. Models, 13 (2020), 187–210. preprint, arXiv:1803.06379.

[13] S. Brull, V. Pavan and J. Schneider, Derivation of a BGK model for mixtures, Eur. J. Mech. B Fluids, 33 (2012), 74–86.

[14] S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases. An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge university press, 1990.

[15] N. Crouseilles and G. Manfredi, Asymptotic preserving schemes for the Wigner-Poisson-BGK equations in the diffusion limit, Comput. Phys. Commun., 185 (2014), 448–458.

[16] G. Dimarco, L. Mieussens and V. Rispoli, An asymptotic preserving automatic domain decomposition method for the Vlasov-Poisson-BGK system with applications to plasmas, J. Comput. Phys., 274 (2014), 122–139.

[17] G. Dimarco and L. Pareschi, Numerical methods for kinetic equations, Acta Numer., 23 (2014), 369–520.
[18] P. Drude, Zur elektronentheorie der metalle, Annalen der physik., 306 (1900), 566–613.
[19] P. Drude, Zur elektronentheorie der metalle: II. Teil. galvanomagnetische und thermomagnetische effecte, Annalen der physik., 308 (1900), 369–402.
[20] F. Duan and J. Guojun, Introduction to Condensed Matter Physics, Volume 1, World Scientific Publishing Company, 2005.
[21] M. Escobedo, S. Mischler and M. A. Valle, Entropy maximisation problem for quantum relativistic particles, Bull. Soc. Math. France, 133 (2005), 87–120.
[22] F. Filbet, J. Hu and S. Jin, A numerical scheme for the quantum Boltzmann equation efficient in the fluid regime, preprint, arXiv:1009.3352.
[23] F. Filbet, J. Hu and S. Jin, A numerical scheme for the quantum Boltzmann equation with stiff collision terms, ESAIM Math. Model. Numer. Anal., 46 (2012), 443–463.
[24] F. Filbet and S. Jin, A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources, J. Comput. Phys., 229 (2010), 7625–7648.
[25] R. H. Fowler and L. Nordheim, Electron emission in intense electric fields, Proceedings of the Royal Society A, 119 (1928), 173–181.
[26] V. Garzó, A. Santos and J. J. Brey, A kinetic model for a multicomponent gas, Physics of Fluids A: Fluid Dynamics, 1 (1989), 380–383.
[27] J. M. Greene, Improved Bhatnagar–Gross–Krook model of electron–ion collisions, The Physics of Fluids, 16 (1973), 2022–2023.
[28] M. Groppi, S. Monica and G. Spiga, A kinetic ellipsoidal BGK model for a binary gas mixture, EPL (Europhysics Letters), 96 (2011), 64002.
[29] E. P. Gross and M. Krook, Model for collision processes in gases: Small-amplitude oscillations of charged two-component systems, Physical Review, 102 (1956), 593.
[30] S.-Y. Ha, S. E. Noh, and S. B. Yun, Global existence and stability of mild solutions to the Boltzmann system for gas mixtures, Quart. Appl. Math., 65 (2007), 757–779.
[31] J. R. Haack, C. D. Hauck and M. S. Murillo, A conservative, entropic multispecies BGK model, J. Stat. Phys., 168 (2017), 826–856.
[32] B. B. Hamel, Kinetic model for binary gas mixtures, The Physics of Fluids, 8 (1965), 418–425.
[33] J. Hu and S. Jin, On kinetic flux vector splitting schemes for quantum Euler equations, Kinet. Relat. Models, 4 (2011), 517–530.
[34] T. Ihn, Electronic Quantum Transport in Mesoscopic Semiconductor Structures, Springer Tracts in Modern Physics, Vol. 192, Springer, New York, NY, 2004.
[35] A. Jüngel, Transport Equations for Semiconductors, Lecture Notes in Physics, Vol. 773, Springer, Berlin, Heidelberg, 2009.
[36] I. M. Khalatnikov, An Introduction to the Theory of Superfluidity, CRC Press, 2018.
[37] S. Kikuchi and L. Nordheim, Über die kinetische fundamentalgleichung in der quantenstatistik, Zeitschrift für Physik A Hadrons and nuclei, 60 (1930), 652–662.
[38] C. Klingenberg and M. Pirner, Existence, uniqueness and positivity of solutions for BGK models for mixtures, J. Differential Equations, 264 (2018), 702–727.
[39] C. Klingenberg, M. Pirner and G. Puppo, A consistent kinetic model for a two-component mixture of polyatomic molecules, Commun. Math. Sci., 17 (2019), 149–173.
[40] C. Klingenberg, M. Pirner and G. Puppo, A consistent kinetic model for a two-component mixture with an application to plasma, Kinet. Relat. Models, 10 (2017), 445–465.
[41] C. Klingenberg, M. Pirner and G. Puppo, Kinetic ES-BGK models for a multi-component gas mixture, Theory, Numerics and Applications of Hyperbolic Problems. II, 195-208, Springer Proc. Math. Stat., Vol. 237, Springer, Cham, 2018.
[42] X. Lu, A modified Boltzmann equation for Bose-Einstein particles: Isotropic solutions and long-time behavior, J. Statist. Phys., 98 (2000), 1335–1394.
[43] X. Lu, On spatially homogeneous solutions of a modified Boltzmann equation for Fermi-Dirac particles, J. Statist. Phys., 105 (2001), 353–388.
[44] P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna, 1990.
[45] A. J. H. McGaughey and M. Kaviany, Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation, Physical Review B, 69 (2004), 094303.
[46] B. P. Muljadi and J.-Y. Yang, Simulation of shock wave diffraction by a square cylinder in gases of arbitrary statistics using a semiclassical Boltzmann–Bhatnagar–Gross–Krook equation solver, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 468 (2012), 651–670.
[47] A. Nouri, An existence result for a quantum BGK model, Math. Comput. Modelling, 47 (2008), 515–529.
[48] S. Pieraccini and G. Puppo, Implicit-explicit schemes for BGK kinetic equations, J. Sci. Comput., 32 (2007), 1–28.
[49] M. Pirner, A BGK model for gas mixtures of polyatomic molecules allowing for slow and fast relaxation of the temperatures, J. Stat. Phys., 173 (2018), 1660–1687.
[50] A. Rapp, S. Mandt and A. Rosch, Equilibration rates and negative absolute temperatures for ultracold atoms in optical lattices, Physical review letters., 105 (2010), 220405.
[51] P.-G. Reinhard and E. Suraud, A quantum relaxation-time approximation for finite fermion systems, Ann. Physics, 354 (2015), 183–202.
[52] C. Ringhofer, Computational methods for semiclassical and quantum transport in semiconductor devices, Acta numerica, 6 (1997), 485–521.
[53] G. Russo, P. Santagati and S.-B. Yun, Convergence of a semi-Lagrangian scheme for the BGK model of the Boltzmann equation, SIAM J. Numer. Anal., 50 (2012), 1111–1135.
[54] G. Russo and S.-B. Yun, Convergence of a semi-Lagrangian scheme for the ellipsoidal BGK model of the Boltzmann equation, SIAM J. Numer. Anal., 56 (2018), 3580–3610.
[55] U. Schneider, L. Hackermüller, J. P. Ronzheimer, S. Will, S. Braun, T. Best, I. Bloch, E. Demler, S. Mandt, D. Rasch and A. Rosch, Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms, Nature Physics., 8 (2012), 213–218.
[56] Y.-H. Shi and J. Y. Yang, A gas-kinetic BGK scheme for semiclassical Boltzmann hydrodynamic transport, J. Comput. Phys., 227 (2008), 9389–9407.
[57] V. Sofonea and R. F. Sekerka, BGK models for diffusion in isothermal binary fluid systems, Physica A: Statistical Mechanics and its Applications, 299 (2001), 494–520.
[58] A. C. Sparavigna, The Boltzmann equation of phonon thermal transport solved in the relaxation time approximation-I-Theory, Mechanics, Materials Science & Engineering Journal, 2016 (2016), 34–35.
[59] N.-D. Suh, M. R. Feix and P. Bertrand, Numerical simulation of the quantum Liouville-Poisson system, Journal of Computational Physics, 94 (1991), 403–418.
[60] B. N. Todorova and R. Steijl, Derivation and numerical comparison of Shakhov and ellipsoidal statistical kinetic models for a monoatomic gas mixture, Eur. J. Mech. B Fluids, 76 (2019), 390–402.
[61] E. A. Uehling and G. E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases. I, Physical Review, 43 (1933), 552–561.
[62] E. A. Uehling, Transport phenomena in Einstein-Bose and Fermi-Dirac gases. II, Physical Review, 46 (1934), 917–929.
[63] L. Wu, J. Meng and Y. Zhang, Kinetic modelling of the quantum gases in the normal phase, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 468 (2012), 1799–1823.
[64] J.-Y. Yang and L.-H. Hung, Lattice Uehling-Uhlenbeck Boltzmann-Bhatnagar-Gross-Krook hydrodynamics of quantum gases, Physical Review E, 79 (2009), 056708.
[65] R. Yano, Fast and accurate calculation of dilute quantum gas using Uehling-Uhlenbeck model equation, J. Comput. Phys., 330 (2017), 1010–1021.

Received February 2020; revised July 2020.
E-mail address: gcbae02@skku.edu
E-mail address: klingen@mathematik.uni-wuerzburg.de
E-mail address: marlies.pirner@mathematik.uni-wuerzburg.de
E-mail address: sbyun01@skku.edu