Differential cross section of $\gamma n \rightarrow K^+ \Sigma^-$ on bound neutrons with incident photons from 1.1 to 3.6 GeV

CLAS Collaboration

S. Anefalos Pereiraa,*, M. Mirazitaa, P. Rossia, E. De Sanctisa, G. Niculescub, I. Niculescub, S. Stepanyanc, K.P. Adhikaria,c, M. Aghasyana, M. Anghinolfif, H. Baghdasaryana,ac, J. Ballk, M. Battaglierii, B.L. Bermanr, A.S. Bisellio,1, C. Bookwalterq, D. Branfordn, W.J. Briscoee, W.K. Brooksaj,c, V.D. Burkertc, S.L. Carecciaa, D.S. Carmanc, P.L. Coles, P. Collinse,1, V. Credeq, A. D’Angelou,af, A. Danielab, N. Dashyanan, R. De Vitat, A. Deurc, B. Deyi, S. Dhamijap, R. Dicksoni, C. Djalaliah, D. Doughtyl,c, M. Duggere, R. Dupred, A. El Alaouid, P. Eugenioq, S. Feganak, T.A. Forests, M.Y. Gabrielyanp, G. Gavaliana, G.P. Gilfoyleae, K.L. Giovanettib, F.X. Goetzf, W. Gohnm, R.W. Gotheh, K.A. Griffioenam, M. Guidalv, N. Gulerac, L. Guoc,3, H. Hakobyanaj,an, C. Hanrettyq, N. Hassallak, K. Hicksab, M. Holtropz, Y. Ilievaah,r, D.G. Irelandak, B.S. Ishkhanovag, S.S. Jawalkaram, H.S. Jov, K. Joom,aj, D. Kellerab, M. Khandakerab, P. Khetarpala, W. Kimx, F.J. Kleinv, V. Kubarovskyc,ad, S.V. Kuleshovqj,w, V. Kuznetsovs, K. Livingstona, M. Mayerac, M.E. McCrackeni, B. McKinnonak, C.A. Meyeri, K. Mikhailovw, T. Mineevav, V. Mokeevag,c, B. Morenok, K. Moriyal, B. Morrisone, H. Moutardek, E. Munearl, P. Nadel-Turonskij,2, S. Niccolaivm, A.I. Ostrovidovq, K. Parkah,x,2, S. Parkq, E. Pasyuke, Y. Perriny, S. Pisanov, O. Pogorelkow, S. Pozdniakovw, J.W. Priceg, S. Procureurk, Y. Prokal,4, D. Protopopescuak, B.A. Rauep,c, G. Riccot, M. Ripanil, B.G. Ritchiee, G. Rosnerak, F. Sabatiék, M.S. Sainiq, J. Salamancas, C. Salgadoaa, R.A. Schumacheri, E. Sederm, H. Seraydaryanac, Y.G. Sharabianc, D.I. Soberj, D. Sokhann, S.S. Stepanyanx, P. Stolerad, I.I. Strakovskyi, S. Strauchah,r, D.J. Tedeschia, S. Tkachenkoac, B. Vernarskyi, M.F. Vineyardai, E. Voutiery, D.P. Wattsak,5, D.P. Weygandc, M.H. Woodah,ah, L. Zanaz, J. Zhangac, B. Zhaom,6

a INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
b James Madison University, Harrisonburg, VA 22807, United States
c Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, United States
d Argonne National Laboratory, Argonne, IL 60431, United States
e Arizona State University, Tempe, AZ 85287-1504, United States
f University of California at Los Angeles, Los Angeles, CA 90095-1547, United States
g California State University, Dominguez Hills, Carson, CA 90747, United States
h Canisius College, Buffalo, NY, United States
i Carnegie Mellon University, Pittsburgh, PA 15213, United States
j Catholic University of America, Washington, DC 20064, United States
k CEA, Centre de Saclay, Irfu/Service de Physique Nucléaire, 91191 GIF-sur-Yvette, France
l University of Connecticut, Storrs, CT 06269, United States
m University of Edinburg, Edinburgh EH9 3JZ, United Kingdom
n University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
o Fairfield University, Fairfield CT 06824, United States

* Corresponding author.
E-mail address: sergio.pereira@lnf.infn.it (S.A. Pereira).

1 Current address: Catholic University of America, Washington, DC 20064, United States.
2 Current address: Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, United States.
3 Current address: Los Alamos National Laboratory, Los Alamos, NM 87545, United States.
4 Current address: Catholic University of America, Washington, DC 20064, United States.
5 Current address: University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.
6 Current address: College of William and Mary, Williamsburg, VA 23187-8795, United States.

$^{0370-2693/}$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2010.04.028
A major goal of hadron physics is to study the structure of the nucleon and its excited states. However, understanding nucleon resonance excitation is a serious challenge due to the non-perturbative nature of QCD at low energies. This makes the situation for the excited states of the nucleon (N and Δ resonances) still unclear: many more states are predicted than observed and their ordering and decay properties are related to the residual quark–quark interaction.

The effective degrees of freedom in standard non-relativistic quark models are three equivalent valence quarks with one-gluon exchange interactions. A different class of models uses interactions that give rise to a quark–diquark clustering of the baryon [3]. If there is a tightly bound diquark, only two degrees of freedom are available at low energies; thus, fewer states are predicted. Furthermore, selection rules in the decay pattern may arise from the underlying degrees of freedom of the nucleon and to discriminate among different models.

The search for missing resonances requires more than the study of the hadronic mass spectrum. In fact, QCD cannot be directly tested against experimental N* mass spectra without a model for the production dynamics [8]. Thus, in addition to the s-channel contributions, important in the resonance region in order to reproduce the invariant mass spectra, the t- and u-channel meson and baryon exchanges are also necessary in the theoretical description. The former are needed in order to describe the diffractive part of resonances and meson production make it more difficult to separate the resonance contributions. A possible explanation for the missing resonance problem could be that pionic coupling to the intermediate N* or Δ* states is weak and that many of the missing states only become visible in other reaction channels. Photoproduction of non-strange resonances detected via decay into strange particles offers two benefits: (1) two-body KY (where Y denotes any hyperon) final states are easier to analyze than the three-body πN final states that dominate the decays at higher masses; (2) couplings of nucleon resonances to KY final states are expected to differ from those to πN and ππN final states [6]. Therefore, looking in the strangeness sector casts a different light on the resonance excitation spectrum, and thus, may emphasize resonances not revealed in πN scattering. To date, however, the PDG compilation [7] gives poorly known KΛ couplings for only five well-established resonances, and no KΣ couplings for any resonances. Mapping out the spectrum of excited states that decay into KY particles is therefore crucial to provide a deeper insight into the underlying degrees of freedom of the nucleon and to discriminate among different models.
the production, and u-channel diagrams are necessary to describe the back-angle production. Thus, measurements that can constrain the phenomenology for these reactions are just as important as finding one or more of the missing resonances.

A large amount of cross-section data of hyperon photoproduction on the proton has been published in recent years by the SAPHIR [9], CB-ELSA/TAPS [10,11], CLAS [12,13] and LEPS [14] collaborations from threshold up to $E_p \sim 3.8$ GeV over a wide angular range. The polarization of the recoil hyperon has also been measured by CLAS [15,13], SAPHIR [9] and GRAAL [16], while photon beam asymmetries have been measured by LEPS [17]. Despite this large body of data, theoretical ambiguities still exist. In fact, theorists have found conflicting evidence for resonances using isobar models [18], coupled-channel [19–21] and partial wave analysis [22] approaches.

In this situation the necessity of more data and from different channels is evident. In particular, for Y-photoproduction on the neutron, one can take full advantage of the isospin symmetry, adding significant constraints on the $γKNY$ coupling constants [23]. Unfortunately, data of hyperon photoproduction on neutrons are very scarce, with the only available data from LEPS [24], covering a limited photon energy range at very forward kaon angles.

In this Letter high-precision cross sections of the reaction $γd → K^+Σ^−(p)$ in a broad kinematic range are presented. The data were acquired using the CLAS detector [25] housed in Hall B at Jefferson Lab. A bremsstrahlung photon beam produced by a 3.776 GeV continuous electron beam hitting a 10^{-4} radiation-lengths gold foil was used [26]. Tagged photons, in the energy range from 0.8 to 3.6 GeV, were directed onto a liquid-deuterium target. With an electron beam current of ~ 25 nA, the photon flux incident on the deuterium target was $\sim 10^8 γ/s$.

The primary kaon, and the pion and neutron coming from the $Σ^-$ decay (with branching fraction $b_{Σ^-} \sim 100\%$) were detected by CLAS. The low-energy spectator proton was reconstructed using the missing-mass technique. Fiducial cuts were applied to both real and Monte Carlo simulated data in order to exclude regions where the detector acceptance was not well understood and the regions where the drift chambers or scintillator efficiencies were not well known. Neutral particles are identified in CLAS as clusters in the electromagnetic calorimeters that are not associated with any charged track in the drift chambers. Neutral clusters with $β > 0.9$ are then identified as photons, while clusters with $β < 0.9$ are associated with neutrons.

In order to identify good $γd → K^+π^-nX$ candidates, with the missing particle X consistent with a spectator proton, we first applied a cut on the missing momentum $P_X ≤ 0.25$ GeV/c. The remaining events, integrated over all angles, were divided into 100 MeV wide bins in photon energy. In each bin, the missing-mass distribution was used to select events consistent with a missing spectator proton.

The missing-mass distribution for the photon energy bin of 2.0–2.1 GeV in Fig. 1 shows a clear proton peak and a smaller structure at higher masses. The latter, that starts to appear at photon energies $≥ 2$ GeV, is due to photoproduction events of $Σ^∗(1385)^-$ and $K^*(892)^+$. The $Σ^∗(1385)^-$ decays into $Σ\pi$ with $b_{Σ\pi} \sim 12\%$ and the $K^*(892)^+$ decays into $K\pi$ with $b_{K\pi} \sim 100\%$. Each missing-mass distribution was fit with two Gaussian line shapes plus a polynomial curve. The total fit and each contribution separately are shown in Fig. 1. Events with a spectator proton were selected by applying a 3σ cut around the main peak. The background contribution coming from $Σ^∗(1385)^-$ and $K^*(892)^+$ events was estimated to be between 1 and 3% and then subtracted.

After the selection of $γd → K^+π^-n(p)$ candidates, we looked for evidence of the presence of $Σ^-$ particles in the invariant-mass distribution of the pion and neutron. The distribution obtained for data and MC for the photon-energy bin 2.0–2.1 GeV is shown in Fig. 2. A sharp peak consistent with the $Σ^-$ appears on top of a small, almost flat background. Each distribution was fit with a Lorentzian peak plus a second-order polynomial for the background (in Fig. 2 only the fit of the data is shown). The Lorentzian shape has been chosen because it reproduces the peak shape of both experimental and MC data better than the Gaussian. The final sample of $γd → K^+Σ^−(p)$ events was obtained by selecting events within $3Γ$ around the peak, where $Γ$ is the full width at half maximum of the Lorentzian. The background calculated by integrating the polynomial curve within the cuts was subtracted. The total background is generally increasing with the photon energy, and is between 2% and 25%.

Finally, the extracted yield was corrected for the CLAS detector acceptance. For this, $γd → K^+Σ^−p$ events were generated according to the Quark–Gluon Strings Model [27,28]. The Fermi motion of the neutron bound in the deuterium nucleus was described by the momentum distribution calculated from the Paris potential [29]. The generated events were processed through a GEANT-based Monte Carlo simulation of the CLAS detector, incorporating all of the known subsystem efficiencies and resolutions. The simulated data were analyzed by the same software used in the real data processing and analysis. The CLAS acceptance was computed as the ratio between the number of events passing all the analysis cuts.
Fig. 3. Differential cross sections of the reaction $\gamma d \rightarrow K^+ \Sigma^−(p)$ obtained by CLAS (full circles). The error bars represent the total (statistical plus systematic) uncertainty. LEPS data [24] (empty triangles) and a Regge-3 model prediction [30] (solid curve) are also shown. Notice the logarithmic scale for high energy plots.

and the number of generated events in each one of the 100-MeV wide photon energy bins and 0.1-wide $\cos \theta^\text{CM}$ bins.

The differential cross section for $K^+ \Sigma^−$ photoproduction on the neutron was calculated using the following relation:

$$\frac{d\sigma}{d\Omega} = \frac{A}{\rho x N_A} \frac{N^W_{\text{peak}} b_{\Sigma^−} (1 - B)}{N\gamma \Delta\Omega},$$

(1)

where N^W_{peak} is the number of the $\gamma d \rightarrow K^+ \Sigma^−(p)$ events weighted by the acceptance of the CLAS detector, $N\gamma$ is the number of incident photons, B is the fraction of background events, A is the target molecular weight, N_A is Avogadro’s number, and $\rho = 0.163$ g/cm3 and $x = 24$ cm are the target density and length, respectively. Photon absorption in the target was also calculated and found to be negligible. Systematic uncertainties of the final cross sections contain contributions from the photon flux calculation (4%), target length and density (0.5%), fiducial cuts (1–3%, depending on the bin), background subtraction (1–10%), neutron detection efficiency (0.7%) and the Monte Carlo event generator (1.7%). The total systematic uncertainty in our cross section measurements is estimated to be about 4.5–13.5%.

Our final results are shown as full circles in Fig. 3. For energies up to $E_\gamma = 2.1$ GeV, the results are shown in linear scale while for higher energies, logarithmic scale has been chosen in order to make more readable the behavior at the backward angles. The error bars represent the total (statistical plus systematic) uncertainties. This is the first high-precision determination of $\Sigma^−$ photoproduction on the neutron covering a broad kaon-angle and photon-energy range. At a photon energy of ~ 1.8 GeV, a clear forward peak starts to appear and becomes more prominent as the photon energy increases. This behavior, that is typically attributed to contributions from t-channel mechanisms, is not observed at lower energies, where the dominant contributions appear to be from s-channel mechanisms. Above ~ 2.1 GeV there are indications of a possible backward peak, which might suggest the presence of u-channel mechanisms.

The few LEPS data [24] available for energies 1.5–2.4 GeV and at forward angles are shown in Fig. 3. Since these data have been provided in 50-MeV wide energy bins, for comparison with our results the weighted average of two bins has been computed and reported in the figure. They are in good agreement with our results within the total uncertainties.

Also shown in Fig. 3 are the theoretical results of a Regge-based calculation (Regge-3 model) [30]. In this model, the reaction amplitude incorporates the exchange of K^+ and $K^*(892)^+$ Regge trajectories. By adding resonance contributions to the Regge amplitudes, the model is able to describe the Λ and Σ^0 photo- and electro-production data on the proton reasonably well [31–33]. The Regge-based model overestimates our results at forward and intermediate angles by about a factor of two. At backward angles
the calculated cross section is too small by an order or magnitude, which is a reflection of the lack of resonances in the model.

In conclusion, CLAS has provided the first precise determination of the $\gamma d \to K^+ \Sigma^-(p)$ cross section in a broad kinematic range where almost no data are available. Since Final State Interaction (FSI) can be estimated to be small (less than 10%) from calculations for the Λ on the proton [34,35], the cross section on the free neutron are not expected to be significantly different. A comprehensive treatment of FSI and the extraction of the neutron cross section will be given in the forthcoming longer paper. These results will significantly contribute to the improvement of the phenomenological analysis of meson photoproduction reactions at medium energies aiming to solve the missing resonance problem.

Acknowledgements

We would like to acknowledge the outstanding efforts of the staff of the Accelerator and the Physics Divisions at JLab that made this experiment possible. This work was supported in part by the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique and the Commissariat à l’Énergie Atomique, the U.S. Department of Energy and the National Science Foundation, the National Research Foundation of Korea, and the UK Science and Technology Facilities Council (STFC). The Southeastern Universities Research Association (SURA) operated the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under contract DE-AC05-84ER40150 during this work.

References

[1] N. Isgur, G. Karl, Phys. Rev. D 18 (1978) 4187;
N. Isgur, G. Karl, Phys. Rev. D 19 (1979) 2653;
N. Isgur, G. Karl, Phys. Rev. D 20 (1979) 1191.
[2] S. Capstick, W. Roberts, Prog. Part. Nucl. Phys. 45 (2000) 241;
A.J.C. Hey, R.L. Kelly, Phys. Reports 96 (1983) 71.
[3] M. Anselmino, et al., Rev. Mod. Phys. 65 (1993) 1199.
[4] R. Bijnker, et al., Ann. of Phys. 236 (1994) 69.
[5] N. Isgur, J. Paton, Phys. Rev. D 31 (1985) 2910.
[6] S. Capstick, W. Roberts, Phys. Rev. D 49 (1994) 4570;
S. Capstick, W. Roberts, Phys. Rev. D 57 (1998) 4301;
S. Capstick, W. Roberts, Phys. Rev. D 58 (1998) 7401.
[7] C. Amsler, et al., Particle Data Group, Phys. Lett. B 667 (2008) 1.
[8] T.S. Lee, T. Sato, in: B. Burkert, et al. (Eds.), Proceedings of the Λ^*2000 Conference, World Scientific, Singapore, 2001, p. 215;
T.S. Lee, T. Sato, Phys. Rev. C 66 (2002) 055212.
[9] K.-H. Gander, et al., Eur. Phys. J. A 19 (2004) 251.
[10] R. Casteljins, et al., Eur. Phys. J. A 35 (2008) 39.
[11] M. Nanova, et al., Eur. Phys. J. A 35 (2008) 333.
[12] R. Bradford, et al., Phys. Rev. C 73 (2006) 035202.
[13] M. McCracken, et al., CLAS Collaboration, Phys. Rev. C 81 (2010) 025201.
[14] M. Sumihama, et al., Phys. Rev. C 73 (2006) 035214.
[15] J.W.C. McNabb, et al., Phys. Rev. C 69 (2004) 035202.
[16] A. Lleres, et al., Eur. Phys. J. A 31 (2007) 79.
[17] H. Kohri, et al., Phys. Rev. Lett. 97 (2006) 082003.
[18] T. Mart, C. Bennhold, Phys. Rev. C 61 (1999) 012201.
[19] V. Shklyar, H. Lenske, U. Mosel, Phys. Rev. C 72 (2005) 015210.
[20] A.V. Anisovich, et al., Eur. Phys. J. A 34 (2007) 243.
[21] B. Julia-Diaz, et al., Nucl. Phys. A 755 (2005) 463.
[22] A.V. Sarantsev, et al., Eur. Phys. J. A 25 (2005) 441.
[23] T. Mart, C. Bennhold, C.E. Hyde-Wright, Phys. Rev. C 51 (1995) 1074(R).
[24] H. Kohri, et al., Phys. Rev. Lett. 97 (2006) 082003.
[25] B.A. Mecking, et al., Nucl. Instrum. Methods A 503 (2003) 444.
[26] D.J. Sober, et al., Nucl. Instrum. Methods A 440 (2000) 263.
[27] V.Yu. Grishina, et al., Eur. Phys. J. A 10 (2001) 355;
V.Yu. Grishina, et al., Eur. Phys. J. A 19 (2004) 117;
V.Yu. Grishina, et al., Eur. Phys. J. A 25 (2005) 141.
[28] V.Yu. Grishina, L. Kondratyuk, private communication.
[29] M. Lacombe, et al., Phys. Rev. C 21 (1980) 861.
[30] P. Vancraeyveld, L. De Cruz, J. Ryckebusch, T. Van Cauteren, Phys. Lett. B 681 (2009) 428.
[31] T. Corthals, J. Ryckebusch, T. Van Cauteren, Phys. Rev. C 73 (2006) 045207.
[32] T. Corthals, D.G. Ireland, T. Van Cauteren, J. Ryckebusch, Phys. Rev. C 75 (2007) 045204.
[33] T. Corthals, T. Van Cauteren, P. Vancraeyveld, J. Ryckebusch, D.G. Ireland, Phys. Lett. B 656 (2007) 186.
[34] M. Guidal, J.M. Laget, M. Vanderhaeghen, Nucl. Phys. A 627 (1997) 645.
[35] J.M. Laget, Phys. Rev. C 75 (2007) 014002.