Stability of Unlined Elliptical Tunnels in Rock Masses

Jim Shiau1 · Suraparb Keawsawasvong2 · Sorawit Seehavong2

Received: 14 July 2021 / Accepted: 4 July 2022 / Published online: 31 July 2022
© The Author(s) 2022

Highlights
• A state of art approach to evaluate the elliptical tunnel stability of Hoek–Brown rock mass.
• Rigorous upper bound and lower bound solutions of elliptical tunnel stability are derived using advanced finite element limit analysis.
• Comprehensive design tables and equations are proposed for stability evaluation.

Keywords Elliptical tunnels · Rock mass · Hoek–Brown · Finite element limit analysis · Design equation

1 Introduction

The application of elliptical or quasi-rectangular tunnel sections has received much attention in recent years due to the need to reduce the volume of soils excavated as well as to better utilize tunnel space. The spaces at the top and the bottom of circular tunnels are indeed unneeded as the trains are straight-edged in shape. Elliptical (oval-shaped) tunnels are, therefore, preferred, and a new “composite circular” shield tunneling machine was first developed with an adjustable cutter to bore the elliptical tunnel in the Fukutoshin Line, a new subway line in Tokyo in 2008 (Akagi 2004).

In recent years, a new quasi-rectangular earth pressure balance (EPB) shield machine has recently been developed for Ningbo railway transit in China (Liu et al. 2021). The machine consists of 4 arcs and the lining ring is divided into 11 pieces. As stated by Liu et al. (2021), the filling and diffusion process of synchronous grouting in the shield tail void is significantly different from a circular shield and the quality of the tail grouting has a dominant effect on the overall stability during the construction. Indeed, when comparing with other standard tunnel sections, elliptical tunnels are more challenging to construct and the stability evaluation is of paramount importance to ensure the safety of such a unique tunnel shape (Amberg 1983; Hochmuth et al. 1987; Wone et al. 2003; Miura 2003; Miura et al. 2003).

Very few studies were reported in relation to the stability study of elliptical tunnels. Only recently in soil stability, Yang et al. (2015, 2016) studied the stability of unlined elliptical tunnel using the numerical upper bound method. An extended work of the stability solutions of elliptical tunnels considering internal normal stress along the tunnel periphery was later presented by Zhang et al. (2017) and Bhattacharya and Dutta (2021) for cohesionless and cohesive-frictional soils. For elliptical tunnel excavations in rock masses, to the best of our knowledge, there is none. To fill the research gap, this paper proposes a stability study for elliptical tunnel stability in rock mass using advanced upper and lower bound analyses using finite elements and nonlinear programming techniques.

For rock stability study, the Hoek–Brown (HB) model (Hoek and Brown 1980; Hoek et al. 2002) is a well-recognized failure criterion that includes the nonlinearity of the minor principal (compressive) stress. The formula of the HB failure criterion is in the form of a power-law relationship between the major and minor principal stresses (i.e., σ_1 and σ_3). Taking tensile normal stresses as positive, Eq. (1) describes the HB failure criteria in a mathematical form:

$$\sigma_3 = \sigma_1 - \left(-m_b\sigma_1\sigma_3^{(1-a)/a} + s(-\sigma_3)^{1/a}\right)^a,$$

where σ_{ci} is the uniaxial compressive strength of intact rock mass and the parameters m_b, s, and a are expressed in Eqs. (2)–(4):
In Eqs. (2)–(4), the geological strength index (GSI) has typical values from 10 to 100 (extremely poor rock mass to a perfectly intact rock mass). DF represents the degree of disturbance and it has typical values from 0 (undisturbed in-situ rock masses) to 1 (extremely disturbing in-situ rock masses). The parameter m_i is a material constant that is related to the frictional strength of an intact rock mass and has typical values from 5 to 30. Noting that these empirical parameters have been widely adopted by the rock mechanics community, in spite that geological observations are not always in line with the semi-empirical criterion.

Several researchers have recently studied the stability of tunnels in rock masses obeying the HB failure criterion. The rock stability of unlined circular was investigated by Zhang et al. (2019) and Keawsawasvong and Ukritchon (2020), while unlined square and rectangular tunnels in rock mass were studied by Xiao et al. (2019, 2021) and Ukritchon and Keawsawasvong (2019a). Further, the rock stability of plane strain heading of tunnels was investigated by Ukritchon and Keawsawasvong (2019b). As stated before, the stability solutions of unlined elliptical tunnels in HB rock mass have never been presented in the literature. It is, therefore, the aim of this paper to produce useful stability charts and equations for geotechnical practitioners to estimate the stability of shallow unlined elliptical tunnels in rock masses obeying the Hoek–Brown failure criterion.

2 Problem Scope and Numerical Modelling

2.1 Statement of the Problem

Figure 1 shows the problem definition of an unlined elliptical tunnel in a rock mass. The tunnel has a cover depth of C. The shape of the tunnel is an ellipse with a horizontal dimension of B and a vertical dimension of D. The standard equation of an ellipse with center $(0,0)$ and major axis parallel to the x-axis is presented in the following equation:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$

where $B = 2a$ and $D = 2b$. Equation (5) was used to generate the tunnel geometry throughout the parametric study in the paper. Figure 2a–c presents three typical model geometry so generated for a depth ratio $C/D = 2$ and different values of $B/D = 0.5, 1, 2$, respectively. The rock mass has a unit weight of γ, and at the surface area of rock masses, a uniform surcharge pressure σ_s is applied over the area.

It is hypothesized that no disturbance in the surrounding rock mass during tunnel excavation and the undisturbed

![Fig. 1 Problem definition of an unsupported infinitely long elliptical tunnel in a rock mass](image)
in-situ condition is applicable to the HB model with the disturbance factor DF be set to zero. This leads to the six design parameters in this study (i.e., B, D, σ_{ci}, GSI, m_i, γ). Using the dimensionless output parameter (σ_s/σ_{ci}), where σ_s is the uniform surcharge at collapse, Eq. (6) defines the stability factor (σ_s/σ_{ci}) that can be written as a function of five dimensionless parameters:

$$\frac{\sigma_s}{\sigma_{ci}} = f \left(\frac{B}{D}, \frac{C}{D}, \frac{\sigma_{ci}}{\gamma D}, m_i, \text{GSI} \right),$$

where B/D is the width ratio and C/D denotes the cover depth ratio. $\sigma_s/\gamma D$ represents the normalized uniaxial compressive strength ratio. σ_s/σ_{ci} is the stability factor. The parametric ranges considered in the current stability study are: (1) the cover depth ratio of tunnels is $C/D = 1–5$; (2) the width ratio is $B/D = 0.5–2$; (3) the yield parameter m_i for the frictional strength of intact rock mass is $m_i = 5–30$;
The geological strength index is $GSI = 40–100$, and the dimensionless uniaxial compressive strength ratio $\sigma_{ci}/\gamma D$ is set to be $100–\infty$. Note that $\sigma_{ci}/\gamma D = \infty$ corresponds to a rock mass with extremely high strength (either σ_{ci} is very large or γ is very small). The practical ranges of dimensionless parameters were chosen by following the previous research in the stability of other tunnel shapes in rock masses (e.g., Keawsawasvong and Ukritchon 2020; Ukritchon and Keawsawasvong 2019a, b; Xiao et al. 2019, 2021; Zhang et al. 2019).

2.1.1 Limitations

The rock masses in this study are defined to obey the Hoek–Brown (HB) failure criterion version 2002 (Hoek et al. 2002), where the considered parameters and their ranges include the yield parameter $m_i = 5–30$, the geological strength index $GSI = 40–100$, and the dimensionless uniaxial compressive strength ratio $\sigma_{ci}/\gamma D = 100–\infty$. The study assumes an excellent quality-controlled blasting or excavation by tunnel boring machine (TBM) during the tunnel construction. In this aspect, the disturbance factor (DF) of the

![Typical adaptive meshes of unlined elliptical tunnel in rock mass](image-url)

Fig. 3 Typical adaptive meshes of unlined elliptical tunnel in rock mass

© Springer
confined rock mass surrounding a tunnel can be considered as very low or close to zero (DF = 0). More information on the guidelines for estimating the proper number of the disturbance factor (DF) can be found in Hoek et al. (2002). An example showing the effect of the disturbance factor on the tunnel stability can be found in Xiao et al. (2021).

In addition, the cover depth ratio of tunnels is limited to the cases of \(C/D = 1–5 \) and the width ratio is limited to the cases of \(B/D = 0.5–2 \) in this study. It should be also noted that, when the uniaxial compressive strength is very small (or almost zero), it corresponding to highly fractured rock masses and the HB failure criterion does present certain limitation in the present stability analysis.

2.2 FELA Modelling

The proposed computational limit analysis is based on the theoretical work presented in Sloan (2013). It employs plastic bounding theorems, finite element discretization, and nonlinear programming. The associated upper and lower bound theorems (UB and LB) follow a perfectly plastic material with an associated flow rule. It is expected that a true stability solution can be bracketed from above (UB) and below (LB). A new computer program OptumG2 (OptumCE 2020) has been widely used to solve several geotechnical stability problems (e.g., Shiah and Smith 2006; Shiah et al. 2006a, b, 2021, Shiah and Al-Asadi 2018; 2020a, b, c, 2021; Ukritchon and Keawsawasvong 2017; Keawsawasvong and Ukritchon 2020). The program is, therefore, selected in this paper to compute the active collapse of unlined elliptical tunnels in rock masses using the latest powerful adaptivity meshing technique.

Using the model domains under plane strain conditions (see Fig. 2), three typical FELA meshes are shown in Fig. 3. The symmetrical plane on the left-hand side has a boundary condition that allows vertical movement only. This boundary condition is also applied to the right-hand side boundary of the domain. At the bottom plane, the boundary condition is set to be no movements in both vertical and horizontal directions. It is important to ensure that no error occurred in the computed bound solutions due to the problem size. Therefore, the sizes of the domain are carefully chosen to be so large that there is no intersection of the plastic shear zone at the far side and the bottom boundaries. The nodes on the periphery of the tunnel are free to move and there is no internal pressure presented inside the tunnel. The mesh adaptivity feature proposed by Ciria et al. (2008) is employed in this study. Using this powerful feature, a large number of elements can be automatically generated in zones where plastic shear strains are high. Throughout the study of the paper, five iterations of mesh adaptivity and 10,000 elements for the final mesh were set for all analyses.

The compressive uniform surcharge \(\sigma_s \) is applied on the rock surface and it is the main objective function to be optimized at the active collapse state. The upper bound solution of the problem is obtained by solving the optimization problem that minimizes the surcharge pressure \(\sigma_s \) (i.e., the objective function) and is subjected to the kinematically admissible velocity constraints. For the calculations of a lower bound solution, it is achieved by solving the optimization problem that maximizes the surcharge pressure \(\sigma_s \) (i.e., the objective function), while subjecting to the statically admissible stress constraints including equilibrium equations within the elements and along stress discontinuities, stress boundary conditions, and nowhere violation of the HB failure criterion. Once the surcharge pressure \(\sigma_s \) is computed for each parametric analysis, Eq. (6) is then used to calculate the stability factor \(\sigma_s/\sigma_{ci} \).

3 Comparison of Results

Since the differences between UB and LB solutions obtained in this study are within an acceptable limit of 5%, all numerical results are hereafter presented as the average solutions (Ave) of the upper bound (UB) and lower bound (LB). In spite of this confidence in numerical results, Fig. 4 still shows a comparison of stability factor \(\sigma_s/\sigma_{ci} \) between the present study and that of Keawsawasvong and Ukritchon (2020). The selected cases for the comparison are: \(B/D = 1; \ mi = 20; \sigma_s/\gamma D = 100; \ C/D = 1, 2, 3, 4, 5; GSI = 40, 60, 80, 100 \). It is positive to see the excellent agreement between the two solutions, further giving great confidence before
Table 1 Stability factors σ_s/σ_{ci} for elliptical tunnels ($B/D = 0.5$)

σ_s/σ_{ci}	C/D	m_i	GSI = 40	GSI = 60	GSI = 80	GSI = 100
	1	5	0.313	0.762	1.756	4.127
	1	10	0.607	1.383	3.032	6.706
	1	20	1.213	2.632	5.569	11.910
	1	30	1.830	3.886	8.114	16.914
2	5	0.552	1.302	2.918	6.636	
	1	10	1.098	2.436	5.242	11.352
	1	20	2.220	4.713	9.858	20.652
	1	30	3.374	7.002	14.445	30.048
3	5	0.752	1.750	3.885	8.723	
	1	10	1.510	3.320	7.089	15.195
	1	20	3.071	6.459	13.438	28.101
	1	30	4.669	9.631	19.764	40.961
4	5	0.920	2.132	4.711	10.494	
	1	10	1.864	4.062	8.679	18.522
	1	20	3.794	7.974	16.499	34.504
	1	30	5.785	11.879	24.378	50.209
5	5	1.068	2.464	5.420	12.051	
	1	10	2.176	4.733	10.091	21.410
	1	20	4.451	9.292	19.196	40.102
	1	30	6.776	13.882	28.401	58.491
1000	1	5	0.331	0.780	1.778	4.134
	1	10	0.628	1.398	3.039	6.696
	1	20	1.236	2.647	5.598	11.905
	1	30	1.852	3.902	8.089	16.982
2	5	0.582	1.331	2.945	6.662	
	1	10	1.129	2.471	5.280	11.411
	1	20	2.251	4.752	9.881	20.757
	1	30	3.402	7.043	14.473	30.087
3	5	0.793	1.794	3.929	8.757	
	1	10	1.557	3.363	7.135	15.216
	1	20	3.118	6.502	13.491	28.168
	1	30	4.710	9.674	19.793	40.996
4	5	0.977	2.186	4.766	10.546	
	1	10	1.923	4.125	8.719	18.883
	1	20	3.860	8.030	16.552	34.547
	1	30	5.843	11.934	24.451	50.399
5	5	1.136	2.527	5.480	12.083	
	1	10	2.243	4.801	10.102	21.425
	1	20	4.512	9.367	19.275	40.148
	1	30	6.850	13.912	28.439	58.699
∞	1	5	0.333	0.782	1.776	4.144
	1	10	0.629	1.399	3.049	6.729
	1	20	1.233	2.651	5.576	11.939
	1	30	1.854	3.899	8.126	16.920
2	5	0.585	1.334	2.947	6.643	
	1	10	1.134	2.470	5.279	11.409
	1	20	2.262	4.758	9.861	20.733
	1	30	3.403	7.039	14.471	30.058
Table 1 (continued)

$\sigma_s/\gamma D$	C/D	m_i	GSI = 40	GSI = 60	GSI = 80	GSI = 100
3	5	0.797	1.791	3.931	8.762	
	10	1.561	3.359	7.141	15.252	
	20	3.125	6.513	13.455	28.125	
	30	4.712	9.685	19.801	40.980	
4	5	0.982	2.190	4.761	10.552	
	10	1.927	4.134	8.721	18.569	
	20	3.868	8.023	16.566	34.577	
	30	5.852	11.936	24.423	50.427	
5	5	1.143	2.537	5.501	12.095	
	10	2.254	4.798	10.140	21.435	
	20	4.524	9.356	19.261	40.179	
	30	6.839	13.935	28.467	58.655	

producing the comprehensive design charts, tables, and equations in the next section.

4 Stability Charts and Tables

A total of 1,200 computed solutions (Ave) of the stability factor (σ_s/σ_{ci}) are presented in Tables 1, 2, 3, 4, 5 for $B/D = (0.5, 0.75, 1, 1.333, \text{ and } 2)$. Numerical results of the stability factor are also presented graphically in Figs. 5, 6, 7, 8, 9 to study the individual effect of the considered parameters (e.g., B/D, C/D, $\sigma_s/\gamma D$, GSI, and m_i).

Figure 5a and b presents the effect of GSI on the stability factor (σ_s/σ_{ci}) for various values of B/D. The data of the plots are for $C/D = 3$, $\sigma_s/\gamma D = 1000$, and $m_i = 5$ and 30, respectively. Numerical results have shown an exponential relationship between GSI and σ_s/σ_{ci}, where an increase of GSI results in a nonlinear increase of σ_s/σ_{ci} for all B/D. This observation is compatible with the exponential function of the HB failure criterion in Eqs. (2)–(4).

The effect of m_i on σ_s/σ_{ci} is illustrated in Fig. 6a and b for the cases of GSI = 40 and 100, respectively. The plots are for ($C/D = 3$, $\sigma_s/\gamma D = 1000$) and for five different width ratios $B/D = (0.5, 0.75, 1, 1.333, \text{ and } 2)$. Numerical results have shown a linear relationship between σ_s/σ_{ci} and m_i. Figure 7a and b presents the effect of $\sigma_s/\gamma D$ on σ_s/σ_{ci} for $m_i = 5$ and 30, respectively. The plot is for the case of $C/D = 3$ and GSI = 80, and it is concluded that $\sigma_s/\gamma D$ has little to no effect on the stability factor σ_s/σ_{ci}. This is not dissimilar to the undrained stability problems in soils, in which the normalized strength ratio has a negligible effect on the overall stability of rock tunnels too (Shiau and Al-Asadi 2018). The effect of cover depth ratio C/D on σ_s/σ_{ci} is shown in Fig. 8a and b, respectively, for $m_i = 5$ and 30. A nonlinear relationship between C/D and σ_s/σ_{ci} exists. A larger C/D value results in greater stability (σ_s/σ_{ci}). Finally, Fig. 9a and b depicts the influence of B/D on σ_s/σ_{ci} for $m_i = 5$ and 30, respectively. The plots are for five different values of $C/D = 1–5$. Numerical results have shown a nonlinear decrease in the stability factor σ_s/σ_{ci} with the increasing B/D. A larger B/D ratio results in a smaller value of σ_s/σ_{ci}, which is in line with common engineering judgment.
Table 2 Stability factors σ_s/σ_{ci} for elliptical tunnels ($B/D = 0.75$)

σ_s/σ_{ci}	C/D	m_i	GSI = 40	GSI = 60	GSI = 80	GSI = 100
100	1	5	0.256	0.633	1.474	3.481
		10	0.491	1.134	2.501	5.584
		20	0.980	2.151	4.577	9.812
		30	1.480	3.169	6.625	13.909
2	5	0.479	1.142	2.593	5.929	
	10	0.953	2.129	4.616	10.036	
	20	1.923	4.109	8.663	18.141	
	30	2.915	6.108	12.599	26.309	
3	5	0.666	1.564	3.497	7.879	
	10	1.340	2.961	6.368	13.738	
	20	2.723	5.773	11.973	25.173	
	30	4.124	8.575	17.646	36.605	
4	5	0.825	1.928	4.285	9.585	
	10	1.673	3.672	7.866	16.798	
	20	3.412	7.189	14.896	31.207	
	30	5.196	10.673	21.960	45.513	
5	5	0.964	2.241	4.954	11.052	
	10	1.963	4.301	9.156	19.557	
	20	4.017	8.415	17.415	36.408	
	30	6.131	12.575	25.776	53.161	
1000	5	0.274	0.650	1.489	3.496	
	10	0.512	1.150	2.527	5.596	
	20	1.004	2.174	4.598	9.846	
	30	1.509	3.192	6.635	13.952	
2	5	0.512	1.172	2.618	5.938	
	10	0.987	2.160	4.642	10.058	
	20	1.959	4.145	8.711	18.208	
	30	2.954	6.145	12.600	26.289	
3	5	0.711	1.607	3.548	7.939	
	10	1.386	3.005	6.400	13.778	
	20	2.773	5.807	12.025	25.223	
	30	4.191	8.603	17.672	36.729	
4	5	0.883	1.985	4.338	9.625	
	10	1.731	3.728	7.929	16.856	
	20	3.451	7.233	14.960	31.281	
	30	5.257	10.733	22.042	45.539	
5	5	1.033	2.310	5.005	11.111	
	10	2.038	4.363	9.223	19.590	
	20	4.098	8.509	17.523	36.423	
	30	6.198	12.602	25.827	53.236	
∞	5	0.276	0.651	1.490	3.496	
	10	0.516	1.157	2.530	5.593	
	20	1.007	2.172	4.595	9.848	
	30	1.512	3.191	6.616	13.927	
2	5	0.514	1.175	2.621	5.948	
	10	0.993	2.159	4.637	10.062	
	20	1.957	4.154	8.651	18.174	
	30	2.951	6.150	12.620	26.350	
Table 2 (continued)

$\sigma_{ci}/\gamma D$	C/D	m_i	GSI = 40	GSI = 60	GSI = 80	GSI = 100
3	5	0.713	1.618	3.5515	7.933	
	10	1.389	3.004	6.409	13.754	
	20	2.777	5.821	12.058	25.257	
	30	4.195	8.603	17.025	36.732	
4	5	0.888	1.991	4.3425	9.630	
	10	1.738	3.733	7.916	16.870	
	20	3.483	7.243	14.934	31.296	
	30	5.262	10.746	22.041	45.584	
5	5	1.040	2.314	5.010	11.102	
	10	2.045	4.372	9.248	19.594	
	20	4.102	8.485	17.524	36.558	
	30	6.212	12.677	25.847	53.393	

Table 3 Stability factors σ_{s}/σ_{ci} for elliptical tunnels ($B/D = 1$)

σ_{s}/σ_{ci}	C/D	m_i	GSI = 40	GSI = 60	GSI = 80	GSI = 100
100	1	5	0.200	0.508	1.196	2.850
	10	0.387	0.905	2.022	4.515	
	20	0.796	1.701	3.647	7.865	
	30	1.158	2.513	5.294	11.200	
2	5	0.409	0.990	2.264	5.210	
	10	0.815	1.841	4.000	8.755	
	20	1.686	3.548	7.476	15.725	
	30	2.500	5.255	10.914	22.788	
3	5	0.584	1.392	3.136	7.110	
	10	1.180	2.629	5.664	12.226	
	20	2.449	5.101	10.662	22.433	
	30	3.652	7.576	15.689	32.598	
4	5	0.736	1.740	3.884	8.718	
	10	1.494	3.303	7.073	15.217	
	20	3.108	6.459	13.446	28.146	
	30	4.644	9.604	19.763	40.906	
5	5	0.866	2.035	4.528	10.118	
	10	1.770	3.895	8.320	17.771	
	20	3.695	7.634	15.870	33.143	
	30	5.526	11.369	23.344	48.338	
1000	1	5	0.219	0.523	1.211	2.867
	10	0.408	0.921	2.035	4.530	
	20	0.796	1.725	3.675	7.898	
	30	1.186	2.524	5.313	11.248	
2	5	0.443	1.022	2.291	5.218	
	10	0.850	1.870	4.037	8.775	
	20	1.686	3.582	7.506	15.768	
	30	2.538	5.294	10.962	22.802	
Figure 10 compares the failure mechanisms of three $B/D = 0.5, 1,$ and 2. In general, the failure zone of unlined elliptical tunnels is in the form of an elliptical shape beginning from the rock surface to the base of the tunnel. It is also interesting to see that, as B/D increases from 0.5 to 2, the ending point of the failure surface inside the tunnel has moved from the base of the tunnel to somewhere near the mid-height of the tunnel. Noting that the absolute values of shear dissipation are not important in such a perfect plasticity model, they are not presented in the figure. The depth ratio effects ($C/D = 1, 2, 4, 5$) on the overall failure mechanisms of the three various width ratios ($B/D = 0.5, 1,$ and 2) are shown in Figs. 11, 12, 13, respectively. The plots are for $\sigma_{ci}/\gamma D = 1000, GSI = 80,$ and $m_i = 20.$ A larger C/D results in a greater spreading of the failure zone around the tunnel, given the current study under the surcharge effects. For all cases presented, the failure zones extend to the base of tunnels when $C/D \geq 2.$
Table 4 Stability factors \(\sigma_s/\sigma_{ci} \) for elliptical tunnels
\((B/D = 1.333) \)

\(C/D \)	\(m_i \)	GSI = 40	GSI = 60	GSI = 80	GSI = 100
100	5	0.138	0.363	0.875	2.108
	10	0.268	0.643	1.454	3.291
	20	0.538	1.200	2.608	5.662
	30	0.809	1.774	3.767	8.028
2	5	0.325	0.808	1.867	4.342
	10	0.649	1.489	3.258	7.206
	20	1.320	2.870	6.086	12.945
	30	1.997	4.251	8.869	18.534
3	5	0.488	1.187	2.700	6.182
	10	0.987	2.228	4.836	10.508
	20	2.013	4.317	9.076	19.115
	30	3.047	6.433	13.313	27.746
4	5	0.627	1.509	3.402	7.713
	10	1.280	2.860	6.161	13.383
	20	2.630	5.597	11.660	24.465
	30	3.981	8.308	17.130	35.642
5	5	0.748	1.789	4.022	9.054
	10	1.536	3.416	7.349	15.782
	20	3.156	6.688	13.958	29.196
	30	4.804	9.980	20.435	42.571
1000	5	0.157	0.382	0.891	2.131
	10	0.290	0.663	1.472	3.304
	20	0.562	1.230	2.629	5.682
	30	0.839	1.803	3.779	8.039
2	5	0.360	0.839	1.897	4.359
	10	0.689	1.529	3.317	7.256
	20	1.361	2.904	6.119	12.938
	30	2.035	4.289	8.905	18.602
3	5	0.538	1.233	2.751	6.212
	10	1.041	2.279	4.880	10.595
	20	2.068	4.381	9.135	19.151
	30	3.123	6.478	13.357	27.777
4	5	0.689	1.570	3.462	7.772
	10	1.344	2.924	6.235	13.450
	20	2.688	5.644	11.707	24.551
	30	4.056	8.389	17.238	35.727
5	5	0.822	1.865	4.079	9.120
	10	1.616	3.481	7.412	15.865
	20	3.239	6.767	14.003	29.265
	30	4.894	10.045	20.564	42.601
\(\infty \)	5	0.137	0.383	0.893	2.129
	10	0.269	0.665	1.472	3.310
	20	0.566	1.236	2.632	5.673
	30	0.843	1.805	3.793	8.040
2	5	0.325	0.843	1.899	4.363
	10	0.650	1.533	3.317	7.260
	20	1.367	2.916	6.124	12.987
	30	2.053	4.302	8.916	18.574
A quick comparison of the stability factors σ_s/σ_{ci} for the different shapes of tunnels is shown in Fig. 14. Two published results are considered in the comparison, and they are for the square tunnel (Ukritchon and Keawsawasvong 2019a) and the plane strain heading (Ukritchon and Keawsawasvong 2019b). Together with our elliptical tunnels ($B/D = 0.5$ and 2) and circular tunnels ($B/D = 1$), numerical results have shown that the stability factors σ_s/σ_{ci} of plane strain heading is the largest, and it is then followed by the elliptical tunnel with $B/D = 0.5$, the circular tunnel $B/D = 1$, the square tunnel, and the elliptical tunnel with $B/D = 2$. This comparison figure is useful and is of great value to design practitioners in making engineering decisions.

4.1 Stability Equations

Using the average stability solutions (Ave) of upper and lower bounds and a curve fitting method, several design equations are developed to estimate the stability factor σ_s/σ_{ci} of shallow unlined horseshoe tunnels in Hoek–Brown rock masses. The mathematical form of approximate expressions based on Keawsawasvong and Ukritchon (2020) are expressed in the following equations:

$$\frac{\sigma_s}{\sigma_{ci}} = F_1 + F_2 m_i - F_3 \left(\frac{\gamma D}{\sigma_{ci}} \right),$$

(7a)

$$F_1 = GSI \left[b_1 + b_2 \frac{C}{D} + b_3 \left(\frac{C}{D} \right)^2 \right] + GSI^2 \left[c_1 + c_2 \frac{C}{D} + c_3 \left(\frac{C}{D} \right)^2 \right],$$

(7b)

$$F_2 = e_1 + e_2 \frac{C}{D} + GSI \left[f_1 + f_2 \frac{C}{D} + f_3 \left(\frac{C}{D} \right)^2 \right] + GSI^2 \left[g_1 + g_2 \frac{C}{D} \right] + GSI^3 \left(d_1 \frac{C}{D} \right),$$

(7c)

$$F_3 = a_1 + a_2 \frac{C}{D},$$

(7d)

where $(a_i, b_i, c_i, d_i, e_i, f_i, g_i)$ are constant coefficients for the equations. The least-square method proposed by Sauer (2014) was used to determine the optimal values of the constant coefficients. Sauer’s method can be used to minimize the sum of squares of the deviation (i.e., the error) in the stability factor (σ_s/σ_{ci}) between the computed Ave solutions and the approximate solutions (i.e., the predictions). The comprehensive constants so obtained for the design Eqs. (7a)–(7d) are shown in Table 6 for width ratios $B/D = 0.5, 0.75, 1, 1.33,$ and 2. The coefficient of determination (R^2) for each B/D equation is approximately 99.98%, indicating a very high precision of the developed constants and equations, which can be further used with great confidence by practitioners to estimate the stability factor σ_s/σ_{ci} of shallow unlined elliptical tunnels in rock masses.

γ/D	C/D	m_i	GSI = 40	GSI = 60	GSI = 80	GSI = 100
3	5	0.488	1.233	2.751	6.224	
	10	0.987	2.284	4.893	10.584	
	20	2.077	4.385	9.123	19.156	
	30	3.131	6.486	13.383	27.810	
4	5	0.627	1.573	3.472	7.784	
	10	1.280	2.925	6.230	13.448	
	20	2.696	5.653	11.717	24.542	
	30	4.072	8.373	17.242	35.706	
5	5	0.748	1.868	4.080	9.121	
	10	1.536	3.493	7.417	15.859	
	20	3.243	6.767	14.011	29.292	
	30	4.904	10.030	20.589	42.463	
Table 5 Stability factors σ_s/σ_{ci} for elliptical tunnels ($B/D = 2$)

σ_s/σ_{ci}	C/D	m_i	GSI = 40	GSI = 60	GSI = 80	GSI = 100
100	1	5	0.059	0.180	0.457	1.156
		10	0.117	0.312	0.726	1.701
		20	0.240	0.580	1.265	2.834
		30	0.355	0.849	1.840	3.971
	2	5	0.190	0.513	1.221	2.901
		10	0.387	0.944	2.108	4.708
		20	0.796	1.812	3.889	8.360
		30	1.146	2.685	5.652	11.960
	3	5	0.326	0.844	1.966	4.565
		10	0.668	1.581	3.482	7.672
		20	1.394	3.063	6.511	13.824
		30	2.102	4.564	9.515	19.931
	4	5	0.449	1.137	2.621	6.026
		10	0.931	2.152	4.701	10.282
		20	1.919	4.194	8.841	18.730
		30	2.980	6.242	12.962	27.042
	5	5	0.557	1.394	3.191	7.282
		10	1.161	2.654	5.770	12.557
		20	2.504	5.185	10.876	22.935
		30	3.410	7.704	15.997	33.311
1000	1	5	0.079	0.195	0.470	1.170
		10	0.141	0.329	0.750	1.716
		20	0.269	0.605	1.306	2.852
		30	0.398	0.875	1.861	4.001
	2	5	0.231	0.548	1.254	2.929
		10	0.437	0.983	2.148	4.748
		20	0.861	1.857	3.926	8.367
		30	1.293	2.738	5.685	11.979
	3	5	0.386	0.895	2.016	4.586
		10	0.741	1.641	3.534	7.740
		20	1.467	3.129	6.566	13.899
		30	2.209	4.631	9.573	19.987
	4	5	0.523	1.202	2.679	6.094
		10	1.013	2.217	4.765	10.349
		20	2.014	4.267	8.942	18.735
		30	3.041	6.329	13.022	27.140
	5	5	0.644	1.469	3.260	7.321
		10	1.253	2.733	5.847	12.626
		20	2.500	5.278	10.958	23.022
		30	3.777	7.806	16.076	33.412
∞	1	5	0.081	0.198	0.473	1.171
		10	0.143	0.333	0.751	1.708
		20	0.272	0.606	1.305	2.855
		30	0.405	0.878	1.861	3.998
	2	5	0.235	0.552	1.258	2.931
		10	0.441	0.989	2.148	4.752
		20	0.867	1.860	3.931	8.384
		30	1.298	2.737	5.702	11.991
The practical use of the proposed equations is best explained using an example. The selected example of an elliptical tunnel has a horizontal dimension \(B = 6\, \text{m}\), a vertical dimension \(D = 3\, \text{m}\), a cover depth \(C = 3\, \text{m}\). The rock is found to have \(\text{GSI} = 50\), \(m_i = 17\), \(\sigma_{ci} = 63\, \text{MPa}\), and \(\gamma = 22\, \text{kN/m}^3\). Determine the maximum surcharge pressure \(\sigma_s\) allowed before the tunnel reaches a collapse state.

1. Calculating \(\frac{B}{D} = 6/3 = 2\), \(\frac{C}{D} = 3/3 = 1\), and \(\frac{\gamma D}{\sigma_{ci}} = \frac{22 \times 3}{63,000} = 0.001\).
2. Based on the value of \(\frac{B}{D} = 2\), the constant coefficients including \(a_1, a_2, b_1, b_2, b_3, c_1, c_2, d_1, e_1, e_2, f_1, f_2, f_3, g_1,\) and \(g_2\) can be obtained using Table 6.
3. Substituted all parameters including \(\frac{C}{D}, \frac{\gamma D}{\sigma_{ci}}, \text{GSI}, m_i\), and \(a_j\) to \(g_2\) into Eqs. (7a)–(7d), \(\sigma_s/\sigma_{ci}\) can be then obtained as: \(\sigma_s/\sigma_{ci} = 0.372\).
4. The maximum surcharge pressure is calculated as \(\sigma_s = 120 \times 0.372 = 42.38\, \text{MPa}\).

6 Conclusions

To the best of the authors’ knowledge, there was no published stability solution for unlined elliptical tunnels in Hoek–Brown rock masses. With the advanced adaptive meshing technique, finite elements, and nonlinear programming, this paper has successfully studied the stability of unlined elliptical tunnel in Hoek–Brown rock mass under the effect of surcharge pressure. Both the upper and lower bound limit analyses were used to solve for the stability solutions of a wide range of geometrical and Hoek–Brown material parameters. Using the average bound solutions, new design equations for computing the stability factors were developed using a least-square method. The proposed design equations are accurate with the coefficient of determination \(R^2 = 99.98\%\). This paper provides information that can be used as a reference at the preliminary design stage.
Fig. 5 Influence of GSI on the stability factors σ_s/σ_{ci} ($C/D = 3$ and $\sigma_{ci}/\gamma D = 1000$)

Fig. 6 Influence of m_i on the stability factors σ_s/σ_{ci} ($C/D = 3$ and $\sigma_{ci}/\gamma D = 1000$)
Fig. 7 Influence of $\sigma_c/\gamma D$ on the stability factors σ_s/σ_c_i ($C/D = 3$ and GSI = 80).

Fig. 8 Influence of C/D on the stability factors σ_s/σ_c_i ($\sigma_c/\gamma D = 1000$ and GSI = 80).
Fig. 9 Influence of \(B/D \) on the stability factors \(\sigma_s/\sigma_{ci} \) \((\sigma_{ci}/\gamma D = 1000 \text{ and } \text{GSI} = 80)\)
Fig. 10 Shear dissipations of unlined elliptical tunnel in rock mass ($C/D=2$, $\sigma_c/\gamma D = 1000$, GSI = 80 and $m_1 = 20$)
Fig. 11 Shear dissipations of unlined elliptical tunnel in rock mass with $B/D = 0.5$ ($\sigma_{ci}/D = 1000$, GSI = 80 and $m_i = 20$)
Fig. 12 Shear dissipations of unlined elliptical tunnel in rock mass with $B/D = 1$ ($\sigma_{ci}/\gamma D = 1000$, GSI = 80 and $m_i = 20$)
Fig. 13 Shear dissipations of unlined elliptical tunnel in rock mass with $B/D = 2$ ($\sigma_{ci}/\gamma D = 1000$, GSI = 80 and $m_i = 20$)
Fig. 14 Comparison of the stability factors σ_s/σ_{ci} for different shapes of tunnels ($\sigma_s/\gamma D = 1000$ and GSI = 80)
Table 6 Optimal value of the constants for the design equations ($B/D = 0.5–2.0$)

Constants	B/D				
	0.50	0.75	1.00	1.33	2.00
a_1	−0.2247	−0.0888	−0.6843	−1.1022	−0.9402
a_2	−1.2896	−0.4498	−1.1308	−1.1149	−1.6978
b_1	0.0217	0.0233	0.0222	0.0217	0.0120
b_2	−0.03284	−0.0326	−0.0300	−0.0279	−0.0162
b_3	0.4917 × 10⁻²	0.4872 × 10⁻²	0.4404 × 10⁻²	0.3981 × 10⁻²	0.2068 × 10⁻²
c_1	−0.1816 × 10⁻³	−0.2130 × 10⁻³	−0.2220 × 10⁻³	−0.2379 × 10⁻³	−0.1454 × 10⁻³
c_2	0.4333 × 10⁻³	0.4347 × 10⁻³	0.4097 × 10⁻³	0.3881 × 10⁻³	0.2437 × 10⁻³
c_3	−0.6180 × 10⁻⁴	−0.6187 × 10⁻⁴	−0.5693 × 10⁻⁴	−0.5219 × 10⁻⁴	−0.2814 × 10⁻⁴
a_1	1.296 × 10⁻⁶	1.1745 × 10⁻⁶	1.0594 × 10⁻⁶	9.2465 × 10⁻⁷	7.0681 × 10⁻⁷
a_2	0.1663	0.1213	0.0770	0.0244	−0.0433
a_3	−0.1854	−0.1607	−0.1367	−0.1092	−0.0682
f_1	−0.7268 × 10⁻²	−0.5560 × 10⁻²	−0.3839 × 10⁻²	−0.1770 × 10⁻²	0.1214 × 10⁻²
f_2	0.0123	0.0109	0.9558 × 10⁻²	0.7967 × 10⁻²	0.5277 × 10⁻²
f_3	−0.1867 × 10⁻³	−0.1766 × 10⁻³	−0.1590 × 10⁻³	−0.1367 × 10⁻³	−0.6488 × 10⁻⁴
g_1	0.6635 × 10⁻⁴	0.4659 × 10⁻⁴	0.2800 × 10⁻⁴	0.5795 × 10⁻⁵	0.2281 × 10⁻⁴
g_2	−0.1891 × 10⁻³	−0.1683 × 10⁻³	−0.1485 × 10⁻³	−0.1254 × 10⁻³	−0.0828 × 10⁻³
R^2	99.98%	99.98%	99.98%	99.98%	99.98%

References

Akagi H (2004) Geotechnical aspects of current underground construction in Japan. Soils Found 44(1):1–24. https://doi.org/10.3208/sandf.44.1
Amberg R (1983) Design and construction of the Furka base tunnel. Rock Mech Rock Eng 16:215–231
Bhattacharya P, Dutta P (2021) Estimation of lining pressure for stability of elliptical tunnel in cohesive-frictional soils. Proc Natl Acad Sci India Sect A Phys Sci. https://doi.org/10.1007/s40010-021-00742-z
Ciria H, Peraire J, Bonet J (2008) Mesh adaptive computation of upper and lower bounds in limit analysis. Int J Numer Meth Eng 75:899–944
Hochmuth W, Kritschke A, Weber J (1987) Subway construction in Munich, developments in tunneling with shotcrete support. Rock Mech Rock Eng 20:1–38
Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Eng Div 106(9):1013–1035
Keawsawaspong S, Ukritchon B (2020) Hoek–Brown failure criterion—2002 edition. In: Proceedings of the North American rock mechanics society meeting in Toronto
Kawasawaspong S, Ukritchon B (2020) Design equation for stability of shallow unlined circular tunnels in Hoek–Brown rock masses. Bull Eng Geol Environ 79:4167–4190
Li J, Li P, Shi L, Fan J, Kou X, Huang D (2021) Spatial distribution model of the filling and diffusion pressure of synchronous grouting in a quasi-rectangular shield and its experimental verification. Undergr Space. https://doi.org/10.1016/j.undsp.2021.02.002
Miura K (2003) Design and construction of mountain tunnels in Japan. Tunn Undergr Space Technol 18:115–126
Miura K, Yagi H, Shiroma H, Takekuni K (2003) Study on design and construction method for the New Tomei–Meishin expressway tunnels. Tunn Undergr Space Technol 18:271–281
OptumCE (2020) OptumG2. Optum Computational Engineering, Copenhagen, Denmark. See https://optumce.com/
Sauer T (2014) Numerical analysis. Pearson Education Limited, London
