The Role of Autonomous Wntless in Odontoblastic Differentiation of Mouse Dental Pulp Cells

Hwajung Choi, Tak-Heun Kim, Seung-O Ko, Eui-Sic Cho

Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, Korea

Purpose: Wnt signaling plays an essential role in the dental epithelium and mesenchyme during tooth morphogenesis. Deletion of the Wntless (Wls) gene in odontoblasts appears to reduce canonical Wnt activity, leading to inhibition of odontoblast maturation. However, it remains unclear if autonomous Wnt ligands are necessary for differentiation of dental pulp cells into odontoblast-like cells to induce reparative dentinogenesis, one of well-known feature of pulp repair to form tertiary dentin.

Materials and Methods: To analyze the autonomous role of Wls for differentiation of dental pulp cells into odontoblast-like cells, we used primary dental pulp cells from unerupted molars of Wls-floxed allele mouse after infection with adenovirus for Cre recombinase expression to knockout the floxed Wls gene or control GFP expression. The differentiation of dental pulp cells into odontoblast-like cells was analyzed by quantitative real-time polymerase chain reaction.

Result: Proliferation rate was significantly decreased in dental pulp cells with Cre expression for Wls knockout. The expression levels of Osterix (Osx), runt-related transcription factor 2 (Runx2), and nuclear factor I-C (Nfic) were all significantly decreased by 0.3-fold, 0.2-fold, and 0.3-fold respectively in dental pulp cells with Wls knockout. In addition, the expression levels of Bsp, Col1a1, Opn, and Alpl were significantly decreased by 0.7-fold, 0.3-fold, 0.8-fold, and 0.6-fold respectively in dental pulp cells with Wls knockout.

Conclusion: Wnt ligands produced autonomously are necessary for proper proliferation and odontoblastic differentiation of mouse dental pulp cells toward further tertiary dentinogenesis.

Key Words: Dental pulp; Reparative dentin; Wntless
Introduction

Dentinogenesis is the formation of dentin, a substance that forms the majority of teeth, and this process is performed by odontoblasts. Three types of dentinogenesis are commonly described, primary, secondary, and tertiary, although tertiary dentinogenesis only occurs under pathological conditions. The formation of tertiary dentin is distinguished by reactionary and reparative dentin. Dental pulp tissue responds to dentin injury by laying down reactionary dentin secreted by existing odontoblasts or reparative dentin elaborated by odontoblast-like cells that differentiated from precursor cells in the absence of inner dental epithelium and basement membrane.

Under pulp exposure resulting in the destruction of the underlying odontoblast layer, the dentin-pulp complex regenerates through progenitor cell recruitment and differentiation into secreting cells and the stimulation of reparative dentinogenesis. The main objective of this healing process is to form a barrier of mineralized tissue to protect the underlying pulp from bacterial or toxin leakage. The dental pulp of the unerupted molars is enriched in osteo-dentinogenic progenitors engaged in the formation of coronal and radicular odontoblasts.

Dental pulp cells, as the progenitor cells of odontoblasts, undergo a cascade of events involving migration, proliferation and differentiation into odontoblast-like cells by multiple cytokines and paracrine signal molecules. Clinically, the objectives of treatments such as direct pulp capping, partial pulpotomy, or the stepwise technique are to seal the pulp wound, induce odontoblast-like cell differentiation, and stimulate dentin secretion and mineralization in order to build a dentin bridge.

To improve the clinical outcome, knowledge of the molecular mechanisms involved in pulp healing must be better understood, and new biomaterials should be developed based on these results. Several aspects of the molecular mechanisms, including the progenitor cells and the odontoblast differentiation pathways, are still unclear.

Wnt/β-catenin signaling plays an essential role in the morphogenesis and cellular differentiation of many tissues including bone and tooth. Wntless (Wls) is required for the normal secretion of Wnt ligands from cells. Wls is highly specific for Wnt secretion, and, to date, Wnt-independent functions have not been reported. Although most Wnt family members are expressed in the dental epithelium during early tooth morphogenesis, some Wnts, such as Wnt5a and Wnt10a, as well as Wnt signaling mediators, Axin2 and Lef-1, are expressed in developing odontoblasts. Zhu et al. reported that tooth morphogenesis is arrested in tissue-specific ablation of Wls in the dental epithelium. We recently found that tissue-specific inactivation or constitutive stabilization of β-catenin (β-Cat) leads to disrupted odontoblast differentiation in roots or excessive dentin formation, respectively. In addition, deletion of the Wls gene in odontoblasts appears to reduce canonical Wnt activity, leading to inhibition of odontoblast maturation and root elongation. Although much evidence supports the possible roles of Wnt signaling in odontoblast differentiation and dentin formation, it remains unclear whether Wnt ligands secreted from pulp cells are involved in their odontoblastic differentiation and matrix formation. In this study, we analyzed the role of autonomous Wls in proliferation and odontoblastic differentiation of mouse dental pulp cells.

Materials and Methods

1. Primary Dental Pulp Cell Culture

All procedures were performed in accordance with the National Institutes of Health Guidelines on the Use of Laboratory Animal. Experimental protocols and animal care methods were approved by the Animal Welfare Committee of Chonbuk National University. Primary dental pulp cells were...
prepared from the coronal portions of pulps from unerupted first and second molar of 5- to 7-day-old Wls-floxed allele mouse as described previously17,18. Mouse dental pulp cells were cultured in \(\alpha \)-MEM containing 10\% FBS at 37\(^\circ\)C in a humidified atmosphere of 5\% CO\(_2\). Cells at passage 2 were treated with osteogenic medium (OM) consisting of growth media supplemented with 50 \(\mu \)g/ml ascorbic acid (Sigma-Aldrich, St. Louis, MO, USA) and 10 mM \(\beta \)-glycerophosphates (Sigma-Aldrich) to induce their differentiation/mineralization for additional days as indicated.

2. Adenoviral Infection for Cre Expression

To knockout the floxed gene with Cre expression, cells were infected with either adenovirus for Cre recombinase combined with GFP (Ad-Cre) or GFP expression (Ad-GFP) (Vector Biolabs, Philadelphia, PA, USA) at a multiplicity of infection of 500 for 24 hours. The expression of GFP and Cre fused with GFP were viewed under a model LSM510 confocal laser scanning microscope (Carl Zeiss, Ostalbkreis, Germany).

3. Immunofluorescence Staining

Cells were fixed in 4\% paraformaldehyde in phosphate buffered saline (PBS) at room temperature for 10 minutes. They were permeabilized by incubation in 0.2\% Triton X-100 for 10 minutes at room temperature and then quenched in 3\% H\(_2\)O\(_2\) in the dark to block endogenous peroxidase activity. After rinsing with PBS, cells were blocked with 5\% BSA in PBS for 30 minutes at room temperature. Cells were then treated with primary antibodies for Wls for 16 hours at 4\(^\circ\)C. Normal rabbit immunoglobulin G (IgG; Santa Cruz Biotechnology, Santa Cruz, CA, USA) for primary antibody was used as control. Alexa FluorTM dyes-conjugated second antibodies (Invitrogen, Carlsbad, CA, USA) were used for detection. DAPI (4',6-diamidino-2-phenylindol) was used for counterstaining. Cell staining was evaluated using a fluorescence microscope (Carl Zeiss).

4. Proliferation Assay

Proliferation rates of dental pulp cells were measured using the Cell Counting Kit-8 (Dojindo Laboratories, Kumamoto, Japan) according to the manufacturer’s instructions. In brief, cells were cultured in 24-multiwell plates and treated with

| Table 1. Primer sequences for real-time quantitative polymerase chain reaction |
|-----------------------------|-----------------------------|-----------------------------|
| Gene | Sense | Antisense |
| Acpt | CTCCTACCCCAACAGATCCAC | TCAGAAATCGGCCCACTTCTC |
| Runx2 | CCTCTGACTTCTGCCTGCTGG | TAAAGGTGGCTGGTGTAGTC |
| Alpl | AGGGCAATGAGGTCACATCC | GCATCTGTATCCGAGTACCAG |
| Bsp | AAGTGAAAGGAAACGGGACGA | GTTCCCTCTGACATGTCCT |
| Oc | AACCCTGGCTGCGCTGCTGCT | GATCGCGTTGAGGCGCTTCCA |
| Otx | TCTCCATCTGGGTGACCTTCT | AGGCTATGGCTTTCTTGTG |
| Dspp | AACAATCAGAAGAACGTCACTACA | TGACTCCGGAGCAGCTCCCATC |
| Wls | ACCGTATGATATGGTTTTCTC | TACACACACATATGAAAA |
| Axin2 | AAGAAAGGACGGCTACACAG | GTTCGCTGGTTAATTGTGGA |
| Nfia | GACCTGGTGCTGCTGCTGCT | CACACCTGGAGCTGAAAAAGTC |
| \(\beta \)-Cat | GCCATCTGTGCTCTTCTGCT | ACGACCTGGCTGATCCTTCC |
| Col1a1 | CCGGGAAGAATACGTATGAT | ACCAGAAGGACGGAGAGTC |
| Dmp1 | AGTTGAGTCATCAAGAAGGAGTCAAGC | CTATAGGTGCTGAGCTAGC |
| Opn | CCCGGTGAAGATGGTGAATCTC | ATGGCTCGTATGGGAAAGC |
| Gapdh | TGGGCGGAAGCTCATCCTC | GGTGGCTGCTGACCTTC |

J Korean Dent Sci 2016;9(1):9-18
10 µl/well of the kit solution. Absorbance was measured spectrophotometrically at 450 nm.

5. RNA Preparation and Real-Time Quantitative Polymerase Chain Reaction

Total RNA preparation, cDNA synthesis and real-time (RT) quantitative polymerase chain reaction (qPCR) were performed as described previously.19 The expression was normalized to that of the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (Gapdh). Specific primers sets used in the analysis are listed in Table 1.

6. Statistical Analysis

Data are presented as mean±standard errors from three separate experiments. Normal data with equal variance were analyzed using Student t-test. Significance was assigned for P-value ≤0.05 as indicated. All data were analyzed using SPSS statistical software (version 16.0; SPSS, Chicago, IL, USA).

Result

1. Odontogenic Gene Expression of Primary Dental Pulp Cells from Mouse Molars

Dental pulp cells are considered to be odontoblast progenitor cells that are capable of proliferation and
differentiation into odontoblast-like cells to produce new dentin20. To verify odontogenic differentiation of dental pulp cells, we investigated odontogenic gene expression of dental pulp cells. Cells were prepared from the coronal portions of pulps from unerupted first and second molars of 5- to 7-day-old mice and 90% confluent cells at passage 2 were treated with OM containing 50 µg/ml of ascorbic acid and 10 mM β-glycerophosphate up to 21 days. The patterns of expression of selected known markers for odontoblast differentiation were examined in these cultures at various time points by quantitative RT-PCR analyses. In cultures derived from molar dental pulp, highest levels of osteocalcin (Oc) mRNA were detected at day 7 with slight decreases but significantly expressed thereafter (days 14 and 21) (Fig. 1A). The expressions of testicular acid phosphatase (Acpt), tissue-nonspecific alkaline phosphatase (Alpl), and dentin sialoprotein (Dspp) were reduced at day 3, but increased at day 7 and gradually increased thereafter (Fig. 2B–D). The qPCR showed 64-fold increases in the level of Dspp at day 21 as compared to day 0 (P<0.01). The expression of Dspp in these cultures indicated the presence of odontoblast-like cells secreting dentin mineralized matrix.

2. Knockout of Wls Gene by the Expression of Cre Recombinase in Mouse Dental Pulp Cells

To determine the genetic role of autonomous Wls in dental pulp cells for odontoblastic differentiation, we used adenoviral Cre infection to inactivate Wls in primary dental pulp cells. The expression of Cre recombinase was detected in the nucleus of dental pulp cells infected with Ad-Cre after 24 hours of infection as shown by GFP expressed with Cre recombinase (Fig. 2F). The control cells infected with Ad-GFP had GFP expression (B) with strong Wls expression (A). (C, G, K) DAPI (4′,6-diamidino-2-phenylindol) was used for nuclear staining. Non-specific control immunoglobulin G was used for negative control (NC) in the cells infected with Ad-GFP (I–L). Scale bar=50 µm.
GFP expression (Ad-GFP) had strong expression of GFP at cytoplasm as well as nuclear (Fig. 2B). Wls expression was largely decreased in dental pulp cells infected with Ad-Cre after 24 hours of infection (Fig. 2E) when compared to the control (Fig. 2A), as shown by immunocytochemical staining. We also verified the specific staining of Wls in this experiment using non-specific control IgG, which are not bound to Wls in the cells infected with Ad-GFP (Fig. 2I).

3. The Role of Autonomous Wntless in Proliferation of Mouse Pulp Cells

To determine the role of autonomous Wls in dental pulp cells for cell proliferation, cell proliferation rates of dental pulp cells were measured for 24 hours after infection of Ad-Cre and Ad-GFP. As shown in Fig. 3, the proliferation rate dental pulp cells infected with Ad-Cre was significantly decreased to 66.6%±5.0% when compared with control Ad-GFP infected cells (100%±2.5%; P<0.05).

4. The Role of Autonomous Wntless in Odontogenic Differentiation of Mouse Pulp Cells

To confirm the knockout of Wls gene by the

![Graph showing cell proliferation rates of dental pulp cells infected with Ad-Cre and Ad-GFP.](image)

Fig. 3. The role of autonomous Wls in proliferation of mouse pulp cells. Cell proliferation rates of dental pulp cells were measured for 24 hours after infection of adenovirus for Cre recombinase (Ad-Cre) and adenovirus for GFP (Ad-GFP). *P<0.05 vs. control.

![Graph showing mRNA expression of Wnt-associated genes.](image)

Fig. 4. The role of autonomous Wls in odontogenic differentiation of mouse pulp cells. The expression of genes was analyzed by quantitative real-time polymerase chain reaction analyses in dental pulp cells after infection of adenovirus for Cre recombinase (Ad-Cre) and adenovirus for GFP (Ad-GFP) for 24 hours. (A) The expression levels of Wnt-associated genes including Wls, β-Cat, and Axin2 were confirmed. (B) The expression levels of major transcriptional factors in tooth development (Osx, Runx2, and Nfic) were examined. The expression levels of Bsp, Oc, Col1a1, Opn, Dmp1, and Alpl were analyzed. *P<0.05, **P<0.01 vs. control.
expression of Cre recombinase in dental pulp cells, we examined the expression levels of Wnt-associated genes including Wls, β-Cat, and Axin2 by RT qPCR. The expression levels of Wls and β-Cat were significantly decreased by 0.3-fold, and 0.4-fold respectively in dental pulp cells infected with adenovirus harboring Cre for 24 hours when compared to control (P<0.01) (Fig. 4A). However, the expression level of Axin2 was not changed with Wls knockout. The expression levels of Osterix (Osx), runt-related transcription factor 2 (Runx2), and nuclear factor I-C (Nfic), which were transcriptional factors regulating tooth development21, were all significantly decreased by 0.3-fold, 0.2-fold, and 0.3-fold respectively in dental pulp cells with Wls knockout (P<0.01) (Fig. 4B). Furthermore, we also examined the expression of matrix proteins and tissue nonspecific alkaline phosphatase (TNAP) as differentiation markers of odontoblasts by RT qPCR. The expression levels of Bsp, Col1a1, Opn, and Alpl were significantly decreased by 0.7-fold, 0.3-fold, 0.8-fold, and 0.6-fold respectively in dental pulp cells with Wls knockout (P<0.01, P<0.05 in Opn expression) (Fig. 4C). However, the expression level of Oc and Dmp1 were not changed at this stage with Wls knockout.

Discussion

In this study, we analyzed the role of Wls for production of autonomous Wnt ligands in differentiation of mouse dental pulp cells into odontoblast-like cells for reparative dentinogenesis. To knockout the floxed Wls gene, we infected primary-cultured pulp cells from the molars of Wls-floxed allele mouse with adenovirus for Cre recombinase expression. Proliferation rate was significantly decreased in dental pulp cells with Wls knockout. The expression levels of major transcriptional factors in tooth development such as Osx, Runx2, and Nfic were all largely decreased in these Wls-knockout dental pulp cells. In addition, as differentiation markers of odontoblasts, the expression levels of the genes associated with matrix proteins (Bsp, Col1a1, Opn) and TNAP (Alpl) were significantly decreased in dental pulp cells with Wls knockout. These results suggest a critical role of autonomous Wls in odontoblastic differentiation of mouse dental pulp cells for reparative dentin formation.

The response mechanisms for carious and traumatic dental injury are critical for pulp survival and involve a series of highly conserved processes. The most common and well-known feature of repairing response is the formation of tertiary dentin, which is distinguished by reactionary and reparative dentin12. Reparative dentin is produced by odontoblast-like cells, which are differentiated from pulp cells and replace necrotic odontoblasts after more severe injury, whereas reactionary dentin is secreted by surviving odontoblasts in response to moderate stimuli leading to an increase in metabolic activity. The formation of reparative dentin needs the recruitment and proliferation of pulp cells, which might be re-activated after injury. At the injured site, pulp cells needs to proliferate and differentiate into odontoblast-like cells22. The adult pulp contains a heterogeneous cell population including odontoblast progenitor cells and consisting of fibroblast-like cells, macrophages and other nerve or capillary cells20,23. The reparative process requires the collaborative efforts of cells of different lineage in the injured pulp. The behavior of each of the contributing cell types during the phases of proliferation, migration, and matrix synthesis is still unclear. Due to cellular heterogeneity and the absence of data for specific genes exclusively expressed in dental pulp cells, it is limited to demonstrate the role of specific genes and signaling pathways in dental pulp by gene targeting technology in vivo. This study specifically validates the importance of autonomous Wls in proliferation and differentiation of dental pulp cells by gene knockout methods with Cre recombinase in vitro,
showing that Wls-deficient pulp cells had a defect in proliferation and differentiation with significant reductions in the expression of key odontoblast differentiation regulators and target molecules. In general, injury activates the endogenous Wnt pathway24,25. In a recent pulp cavity animal model, the response to pulpal injury was similar as shown that elevating Wnt signaling by either removing a negative Wnt regulator or by providing exogenous WNT3A protein was sufficient to significantly improve the pulp cavity’s repair response22. In this model, pulp cells responded to the elevated Wnt stimulus by differentiating into secretory odontoblasts.

Little is known of the molecular mechanisms involved in dental repair and the recruitment and differentiation of pulp cells into odontoblast-like cells. A striking feature of the comparison between primary odontoblast and odontoblast-like cell differentiation is the absence of involvement of dental epithelium in the latter situation26. Despite of this critical importance, parallel molecular mechanisms may exist between dental repair and morphogenesis in the embryo, as suggested that some molecular mechanisms are common to dental development and repair27. The outcomes of these embryonic events show many similarities to the tissue-regenerative processes occurring during dental repair after injury. The exquisite regenerative capacity of the dentin-pulp complex offers many exciting challenges for the development of new biological approaches to dental tissue repair. Such approaches might lead to greater clinical emphasis on tissue regeneration in the tooth in the future.

Conclusion

Taken together, this study demonstrates that autonomously produced Wnt ligands are necessary for proper proliferation and odontoblastic differentiation of mouse dental pulp cells toward further tertiary dentinogenesis. These findings contribute to further understanding of the molecular mechanisms underlying odontoblastic differentiation of pulp cells and improving material science with it for a successive dental repair.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgement

We would like to thank Dr. Zunyi Zhang for Wls antibody. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2014R1A1A2056700 and 2015R1A6A3A01057093).

References

1. Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med. 2004; 15: 13-27.
2. Mitsiadis TA, Rahiotis C. Parallels between tooth development and repair: conserved molecular mechanisms following carious and dental injury. J Dent Res. 2004; 83: 896-902.
3. Balic A, Aguila HL, Caimano MJ, Francone VP, Mina M. Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars. Bone. 2010; 46: 1639-51.
4. Sagomonyants K, Mina M. Biphasic effects of FGF2 on odontoblast differentiation involve changes in the BMP and Wnt signaling pathways. Connect Tissue Res. 2014; 55(Suppl 1): 53-6.
5. Ricucci D, Loghin S, Lin LM, Spångberg LS, Tay FR. Is hard tissue formation in the dental pulp after the death of the primary odontoblasts a regenerative or a reparative process? J Dent. 2014; 42: 1156-70.
6. Schröder U. Effects of calcium hydroxide-containing pulp-capping agents on pulp cell migration, proliferation, and differentiation. J Dent Res. 1985; 64 Spec No: 541-8.
7. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004; 20: 781-810.
8. Bänziger C, Soldini D, Schütt C, Zipperlen P, Hausmann G, Basler K. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell. 2006; 125: 509-22.
9. Fu J, Jiang M, Miranda AJ, Yu HM, Hsu W. Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation. Proc Natl Acad Sci U S A. 2009; 106: 18598-603.
10. Yamashiro T, Zheng L, Shitaku Y, Saito M, Tsubakimoto T, Takada K, Takano-Yamamoto T, Thesleff I. Wnt10a regulates dentin sialophosphoprotein mRNA expression and possibly links odontoblast differentiation and tooth morphogenesis. Differentiation. 2007; 75: 452-62.
11. Lohi M, Tucker AS, Sharpe PT. Expression of Axin2 indicates a role for canonical Wnt signaling in development of the crown and root during pre- and postnatal tooth development. Dev Dyn. 2010; 239: 160-7.
12. Yokose S, Naka T. Lymphocyte enhancer-binding factor 1: an essential factor in odontoblastic differentiation of dental pulp cells enzymatically isolated from rat incisors. J Bone Miner Metab. 2010; 28: 650-8.
13. Lin M, Li L, Liu C, Liu H, He F, Yan F, Zhang Y, Chen Y. Wnt5a regulates growth, patterning, and odontoblast differentiation of developing mouse tooth. Dev Dyn. 2011; 240: 432-40.
14. Zhu X, Zhao P, Liu Y, Zhang X, Fu J, Ivy Yu HM, Qiu M, Chen Y, Hsu W, Zhang Z. Intra-epithelial requirement of canonical Wnt signaling for tooth morphogenesis. J Biol Chem. 2013; 288: 12080-9.
15. Kim TH, Lee JY, Baek JA, Lee JC, Yang X, Taketo MM, Jiang R, Cho ES. Constitutive stabilization of β-catenin in the dental mesenchyme leads to excessive dentin and cementum formation. Biochem Biophys Res Commun. 2011; 412: 549-55.
16. Kim TH, Bae CH, Lee JC, Ko SO, Yang X, Jiang R, Cho ES. β-catenin is required in odontoblasts for tooth root formation. J Dent Res. 2013; 92: 215-21.
17. Bae CH, Kim TH, Ko SO, Lee JC, Yang X, Cho ES. Wntless regulates dentin apposition and root elongation in the mandibular molar. J Dent Res. 2015; 94: 439-45.
18. Balic A, Aguila HL, Mina M. Identification of cells at early and late stages of polarization during odontoblast differentiation using pOBCol3.6GFP and pOBCol2.3GFP transgenic mice. Bone. 2010; 47: 948-58.
19. Choi H, Ahn YH, Kim TH, Bae CH, Lee JC, You HK, Cho ES. TGF-β signaling regulates cementum formation through osterix expression. Sci Rep. 2016; 6: 26046.
20. Rathinam E, Rajasekharan S, Chitturi RT, Martens L, De Coster P. Gene expression profiling and molecular signaling of dental pulp cells in response to tricalcium silicate cements: a systematic review. J Endod. 2016; 41: 1805-17.
21. Chen S, Gluhak-Heinrich J, Wang YH, Wu YM, Chuang HH, Chen L, Yuan GH, Dong J, Gay I, MacDougall M. Runx2, osx, and dspp in tooth development. J Dent Res. 2009; 88: 904-9.
22. Hunter DJ, Bardet C, Mouraret S, Liu B, Singh G, Sadoine J, Dhamdhere G, Smith A, Tran XV, Joy A, Rooker S, Suzuki S, Vuorinen A, Miettinen S, Chaussain C, Helms JA. Wnt acts as a prosurvival signal to enhance dentin regeneration. J Bone Miner Res. 2015; 30: 1150-9.
23. Moule AJ, Li H, Bartold PM. Donor variability in the proliferation of human dental pulp fibroblasts. Aust Dent J. 1995; 40: 110-4.
24. Beers MF, Morrisey EE. The three R’s of lung health and disease: repair, remodeling, and regeneration. J Clin Invest. 2011; 121: 2065-73.
25. Duan J, Gherge C, Liu D, Hamlett E, Srikantha L, Rodgers L, Regan JN, Rojas M, Willis M, Leask
A, Majesky M, Deb A. Wnt1/β-catenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J. 2012; 31: 429-42.

26. D’Souza RN, Bachman T, Baumgardner KR, Butler WT, Litz M. Characterization of cellular responses involved in reparative dentinogenesis in rat molars. J Dent Res. 1995; 74: 702-9.

27. Smith AJ, Lesot H. Induction and regulation of crown dentinogenesis: embryonic events as a template for dental tissue repair? Crit Rev Oral Biol Med. 2001; 12: 425-37.