Influence of Ketorolac Supplementation on Pain Control for Knee Arthroscopy: A Meta-Analysis of Randomized Controlled Trials

Rui-jie Wan, MD1,2, Shao-fan Liu, MD2, Zhi-ping Kuang, MD1,2, Qiang Ran, MD2, Chen Zhao, MD1, Wei Huang, MD1

1Department of Orthopaedic Surgery, the First Affiliated Hospital of Chongqing Medical University and 2Department of Orthopaedic Surgery, Chongqing Traditional Chinese Medical Hospital, Chongqing, China

Introduction: The efficacy of ketorolac supplementation on pain control for knee arthroscopy remains controversial. We conduct a systematic review and meta-analysis to explore the impact of ketorolac supplementation on pain intensity after knee arthroscopy.

Methods: We search PubMed, EMBase, Web of science, EBSCO, and Cochrane library databases through September 2018 for randomized controlled trials (RCTs) assessing the effect of ketorolac supplementation vs placebo on pain management after knee arthroscopy. This meta-analysis is performed using the random-effect model.

Results: Ten RCTs involving 402 patients are included in the meta-analysis. Overall, compared with control group for knee arthroscopy, ketorolac supplementation is associated with notably reduced pain scores at 1 h (MD = −0.66; 95% CI = −1.12 to −0.21; P = 0.004) and 2 h (MD = −0.90; 95% CI = −1.74 to −0.07; P = 0.03), prolonged time for first analgesic requirement (MD = 1.94; 95% CI = 0.33 to 3.55; P = 0.02) and decreased number of analgesic requirement (RR = 0.41; 95% CI = 0.23 to 0.75; P = 0.003), but has no obvious impact on analgesic consumption (MD = −0.56; 95% CI = −1.14 to 0.02; P = 0.06), as well as nausea and vomiting (RR = 0.44; 95% CI = 0.12 to 0.21; P = 0.21).

Conclusions: Ketorolac supplementation is effective to produce pain relief for knee arthroscopy.

Key words: ketorolac supplementation; knee arthroscopy; meta-analysis; pain control; randomized controlled trials

Introduction

Knee arthroscopy has been widely accepted as the most important method to diagnose and treat knee diseases, and is characterized by sound diagnosis and minimal invasion during the surgery. Arthroscopic surgery of the knee is preferred by the majority of properly selected and well-informed patients. Postoperative stay after the surgery is significantly shorter in patients receiving local anesthesia than general anesthesia. However, a significant number of patients encounter the moderate to severe pain 24 h after knee arthroscopy, and this pain may become worst and affect patients’ sleep and activity levels. In addition, early recovery of these patients is significantly hindered by the obvious pain which can further increase the total cost of such procedures.

The presentation of pain after arthroscopic surgery is determined by the procedure of surgery and invasive procedures can result in moderate to severe pain. In order to provide better pain management after knee arthroscopy, many drugs (e.g. morphine and bupivacaine) have been developed to reduce postoperative pain intensity. Analgesic opioids are used widespread to control moderate and severe postoperative pain, but they do not alleviate patient discomfort and result in side effects in the dose-dependent range.
may reach good analgesia in the immediate postoperative onset of pain, and avoiding the need for additional drugs. It potential in reducing postoperative disability, preventing the articular injection. Intra-articular analgesia offer important have been reported to reduce postoperative pain via intra-

articular injection. With accumulating evidence, we therefore perform a systematic review and meta-analysis are conducted and reported in adherence to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)27.

Materials and Methods

Ethical approval and patient consent are not required because this is a systematic review and meta-analysis of previously published studies. The systematic review and meta-analysis are conducted and reported in adherence to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)27.

Study Eligibility Criteria (PICOS)
The inclusive selection criteria are as follows: (i) participants (P): patients undergoing knee arthroscopy; (ii) intervention (I): ketorolac supplementation; (iii) control (C): placebo; (iv) outcomes (O): the primary outcomes are pain scores at 1 h and 2 h; secondary outcomes include time for first analgesic requirement, number of analgesic requirement, analgesic consumption, nausea and vomiting; (v) study design (S): RCT.

Exclusion Criteria
The exclusion criteria include: (i) the history of using analgesics 24 h before surgery; (ii) the history of bleeding or coagulation problems during the last month before surgery; (iii) renal and liver failure; (iv) severe cardiopulmonary disease; (v) coagulopathy; (vi) intolerance or contraindications to ketorolac; (vii) pregnancy and lactation; and (viii) a history of drug and alcohol abuse.

Search Strategy and Study Selection
Two investigators have independently searched the following databases (inception to September 2018): PubMed, Embase, Web of science, EBSCO, and Cochrane library databases. The electronic search strategy is conducted using the combination keywords: “ketorolac” and “knee arthroscopy”. We also checked the reference lists of the screened full-text studies to identify other potentially eligible trials.

Data Extraction and Outcome Measures
We have extracted the following information: author, number of patients, age, gender, body weight and detail methods in each group. Data have been extracted independently by two investigators, and discrepancies are resolved by consensus. We also contact the corresponding author to obtain the data when necessary.

Quality Assessment in Individual Studies
Methodological quality of the included studies is independently evaluated using the modified Jadad scale28. There are three items for Jadad scale: randomization (0–2 points), blinding (0–2 points), dropouts and withdrawals (0–1 points). The score of Jadad Scale varies from 0 to 5 points. An article with Jadad score ≤ 2 is considered to be of low quality. If the Jadad score ≥ 3, the study is thought to be of high quality29.

Statistical Analysis
We estimate the standard mean difference (MD) with 95% confidence interval (CI) for continuous outcomes (pain scores at 1 h and 2 h, time for first analgesic requirement, and analgesic consumption) and risk ratio (RR) with 95% CIs for dichotomous outcomes (number of analgesic requirement, nausea and vomiting). A random-effects model is used regardless of heterogeneity. Heterogeneity is reported using the I^2 statistic, and $I^2 > 50\%$ indicates significant heterogeneity30. Whenever significant heterogeneity is present, we search for potential sources of heterogeneity via omitting one study in turn for the meta-analysis or performing subgroup analysis. All statistical analyses are performed using Review Manager Version 5.3 (The Cochrane Collaboration, Software Update, Oxford, UK).

Results

Literature Search, Study Characteristics and Quality Assessment
A detailed flowchart of the search and selection results is shown in Fig. 1. Seven hundred and seventy-nine potentially relevant articles are identified initially. Two hundred and forty-seven duplicates and 519 studies are removed after reading the titles/abstract. Three articles are excluded for not being RCT. Finally, ten RCTs that meet our inclusion criteria are included in the meta-analysis28,19,24–26,31–35.

The baseline characteristics of the 10 eligible RCTs in the meta-analysis are summarized in Table 1. The 10 studies
are published between 1992 and 2018, and sample sizes range from 30 to 60 with a total of 402. PICOS results are as follows: (i) participants (P): all patients undergo knee arthroscopy and have similar age, gender, body weight and operation time between two groups ($P > 0.05$); (ii) intervention (I): the ketorolac is administered by intra-articular or intravenous approaches before, during or after the surgery, and its doses range from 5 mg to 60 mg. Four RCTs report ketorolac as the adjunctive analgesic to bupivacaine18,34,35 or ropivacain25,; (iii) control (C): intra-articular ropivacaine, bupivacaine or placebo; (iv) outcomes (O): among the 10 studies included here, two studies report pain scores at 1 h and 2 h19,34, three studies report time for first analgesic requirement25,34,35, five studies report a number of analgesic requirements19,26,31,34,35, three studies report analgesic consumption24,34,35, and two studies report nausea and vomiting31,35; and (v) study design (S): all studies are RCTs. Jadad scores of the 10 included studies vary from three to five, and all 10 studies are considered to be high-quality ones according to quality assessment.

Primary Outcomes: Pain Scores at 1 h and 2 h

These outcome data are analyzed with the random-effects model, and compared to control group for knee arthroscopy, ketorolac supplementation results in significantly reduced pain scores at 1 h ($MD = −0.66; 95\% CI = −1.12 to −0.21; P = 0.004$) with no heterogeneity among the studies ($I^2 = 0\%$, heterogeneity $P = 0.32$) (Fig. 2), and 2 h ($MD = −0.90; 95\% CI = −1.74 to −0.07; P = 0.03$) with significant heterogeneity among the studies ($I^2 = 69\%$, heterogeneity $P = 0.07$) (Fig. 3).

Sensitivity Analysis

Significant heterogeneity is observed among the included studies for the pain scores at 2 h. Because there are just two RCTs included for the analysis of primary outcomes, we do not perform sensitivity analysis via omitting one study in order to detect the heterogeneity.

Secondary Outcomes

In comparison with control group for knee arthroscopy, ketorolac supplementation is associated with remarkably longer time for first analgesic requirement ($MD = 1.94; 95\% CI = 0.33 to 3.55; P = 0.02$; Fig. 4) and decreased number of analgesic requirement ($RR = 0.41; 95\% CI = 0.23 to 0.75; P = 0.003$; Fig. 5), but shows no important impact on analgesic consumption ($MD = −0.56; 95\% CI = −1.14 to 0.02$;
No.	Author and year	Sample size	Age (years)	Female (n)	Body weight (kg)	Operation time (min)	Methods	Ketorolac group	Control group	Sample size	Age (years)	Female (n)	Body weight (kg)	Operation time (min)	Methods	Outcomes	Jada scores
1	Solheim 2018	22	51.0 ± 13.3	12	—	—	intra-articular ketorolac (5 mg)	20	52.8 ± 12.1	11	—	—	—	placebo	analgesic consumption	4	
2	Rokhtabnak 2015	20	45.05 ± 13.6	6	76.45 ± 9.08	39.45 ± 9.6	intra-articular ketorolac (30 mg) and ropivacaine (150 mg) at the end of knee arthroscopic surgery	20	42.4 ± 12.2	3	83.35 ± 10.5	38.7 ± 9.7	intra-articular ropivacaine (150 mg)	time for first analgesic requirement	5		
3	Stalman 2009	20	41.7 ± 8.4	10	—	27.4 ± 9.7	2 mL of ketorolac (30 mg/mL in 8 mL of NaCl 9 mg/mL) before surgery	20	44.5 ± 8.8	13	32 ± 15.9	placebo	number of analgesic requirement	—	4		
4	Rao 2005	30	32.66 ± 8.86	4	62.9 ± 11.35	—	10 mL of 0.25% bupivacaine, 1 mL (30 mg) of ketorolac and 9 mL of saline intra-articularly	30	32.5 ± 10.08	3	61.2 ± 10.25	—	—	—	3		
5	Calmet 2004	20	—	—	—	—	postoperative injection of 60 mg intra-articular ketorolac	20	—	—	—	placebo	pain scores at 1 h and 2 h, number of analgesic requirement	—	3		
6	Gupta 1999	20	36.6 ± 15.1	6	—	—	60 mg intra-articular ketorolac	20	44.3 ± 16.4	3	—	placebo	number of analgesic requirement, nausea and vomiting	4			
7	Thwaites 1996	15	38.4 ± 14.5	5	—	—	intravenous ketorolac 60 mg 15 min after skin incision	15	34.3 ± 14.1	2	—	placebo	—	—	3		
8	Thwaites 1995	15	33.2 ± 11.7	7	—	—	intravenous ketorolac 60 mg 15 min after skin incision	15	39.2 ± 14	4	—	placebo	—	—	3		
9	Reuben 1995	20	41 ± 17	—	80 ± 22	50 ± 22	intra-articular 0.25% bupivacaine (28 mL) with ketorolac (60 mg)	20	46 ± 17	—	70 ± 10	47 ± 16	intra-articular 0.25% bupivacaine (30 mL)	pain scores at 1 h and 2 h, time for first analgesic requirement, number of analgesic requirement, analgesic consumption	4		
10	Smith 1992	19	42 ± 12	8	77 ± 17	38 ± 15	systemic ketorolac (60 mg) and intra-articular 0.5% bupivacaine (30 mL)	21	33 ± 13	9	84 ± 22	33 ± 11	intra-articular 0.5% bupivacaine (30 mL)	time for first analgesic requirement, number of analgesic requirement, analgesic consumption, nausea and vomiting	4		
Fig. 2 Forest plot for the meta-analysis of pain scores at 1 h.

Fig. 3 Forest plot for the meta-analysis of pain scores at 2 h.

Fig. 4 Forest plot for the meta-analysis of time for first analgesic requirement (min).

Fig. 5 Forest plot for the meta-analysis of number of analgesic requirement.

Fig. 6 Forest plot for the meta-analysis of analgesic consumption.
P = 0.06; Fig. 6), as well as nausea and vomiting (RR = 0.44; 95% CI = 0.12 to 0.21; P = 0.21; Fig. 7).

Discussion

Our meta-analysis suggests that compared to control intervention for knee arthroscopy, ketorolac supplementation can favorably reduce pain scores at 1 h and 2 h, prolong the time for first analgesic requirement, and decrease the number of analgesic requirements, with no significant influence on analgesic consumption. Regarding the sensitivity analysis, there is significant heterogeneity for the pain scores at 2 h. One included RCT reports postoperative injection of 60 mg intra-articular ketorolac vs placebo for pain relief 19, whereas the other included RCT involves intra-articular 0.25% bupivacaine (28 mL) with ketorolac (60 mg) vs intra-articular 0.25% bupivacaine (30 mL) 34. These indicate that the significant heterogeneity may be caused by the different combination of ketorolac, and the combination of ketorolac and bupivacaine may have synergistic effects for pain management.

Multimodal pain therapy has been strongly recommended for treatment of postoperative pain 36,37, and is theoretically supported by the additive or synergistic effects between different analgesics, and concomitant reduction of side effects because of lower doses of analgesics 38. For instance, ketorolac combined with morphine and ropivacaine is found to give a synergistic effect for pain relief after arthroscopic procedures 31. In one RCT, combining ketorolac and ropivacaine shows the beneficial effects on pain intensity, especially the pain on the movement up to 24 h postoperatively 25. In addition, ketorolac administered directly to sites is likely to produce high local tissue concentrations and leads to few systemic complications 39. There are different risk factors related to nausea and vomiting after surgery, and the type of anesthesia and the use of narcotics are regarded as the main factors that contribute to these issues. NSAIDs is found to attenuate the incidence of nausea and vomiting after surgery as compared with opioids 40. There is no increase in nausea and vomiting between ketorolac supplementation and control intervention based on the results of our meta-analysis.

This meta-analysis has several potential limitations. Firstly, our analysis is based on 10 RCTs, and all of them have a relatively small sample size (n < 100). Overestimation of the treatment effect was more likely in smaller trials compared with larger samples. Next, there is significant heterogeneity, and different doses, drug combination, and administration time of ketorolac may have some impact on the pooling results. Finally, some unpublished and missing data may lead to bias in the pooled effect.

Conclusion

Ketorolac supplementation can provide important benefits for pain control after knee arthroscopy.

Acknowledgements

None.

References

1. Wojahn RD, Bogunovic L, Brophy RH, et al. Opioid consumption after knee arthroscopy. J Bone Joint Surg Am, 2018, 100: 1629–1636.
2. Howard DH. Trends in the use of knee arthroscopy in adults. JAMA Intern Med, 2018, 178: 1557–1558.
3. Janvinsen TL, Sihvonen R, Englund M. Arthroscopy for degenerative knee—a difficult habit to break?. Acta Orthop, 2014, 85: 215–217.
4. Drosos GI, Stavropoulos NI, Katsis A, Kesidis K, Kazakos K, Veretass DA. Post-operative pain after knee arthroscopy and related factors. Open Orthop J, 2008, 2: 110–114.
5. Jacobson E, Forsblad M, Weidenheim L, Renstrom P. Knee arthroscopy with the use of local anesthesia—an increased risk for repeat arthroscopy? A prospective, randomized study with a six-month follow-up. Am J Sports Med, 2002, 30: 61–65.
6. Donell S. Arthroscopy in the management of knee osteoarthritis. Knee, 2014, 21: 351–352.
7. Shapiiro MS, Safran MR, Crockett H, Finerman GA. Local anesthesia for knee arthroscopy. Efficacy and cost benefits. Am J Sports Med, 1995, 23: 50–53.
8. Svensson I, Sjostrom B, Haljamae H. Assessment of pain experiences after elective surgery. Pain Symptom Manage, 2000, 20: 193–201.
9. Pavin DJ, Chen C, Penalazoa DA, Buckley FP. A survey of pain and other symptoms that affect the recovery process after discharge from an ambulatory surgery unit. J Clin Anesth, 2004, 16: 200–206.
10. Franceschi F, Rizzello G, Cataldo R, Denaro V. Comparison of morphine and ropivacaine following knee arthroscopy. Acta Anaesthesiol Scand, 2011, 55: 477–480.
11. Behera BK, Puri GD, Ghai B. Patient-controlled epidural analgesia with fentanyl and bupivacaine provides better analgesia than intravenous morphine patient-controlled analgesia for early thoracotomy pain. J Postgrad Med, 2008, 54: 86–90.
12. Xie DX, Zeng C, Wang YL, et al. A single-dose intra-articular morphine plus bupivacaine versus morphine alone following knee arthroscopy: a systematic review and meta-analysis. PLoS One, 2015, 10: e0140512.
13. Ersan O, Akkaya T, Arik E, Ates Y. Intra-articular levobupivacaine, lornoxicam and morphine analgesia after knee arthroscopy: a randomized controlled trial. Acta Orthop Traumatol Turc, 2012, 46: 411–415.
14. Hofer CK, Zollinger A, Buchi S, et al. Patient well-being after general anaesthesia: a prospective, randomized, controlled multi-Centre trial comparing intravenous and inhalation anaesthesia. Br J Anaesth., 2003, 91: 631–637.

15. Murphy JD, Paskaranaday J, Eisler LL, et al. Analgesic efficacy of continuous intravenous magnesium infusion as an adjuvant to morphine for postoperative analgesia: a systematic review and meta-analysis. Middle East J Anaesthesiol., 2013, 22: 11–20.

16. Perez-Unzur J, Granados-Soto V, Castaneda-Hernandez G, et al. Analgesic efficacy and bioavailability of ketorolac in postoperative pain: a probability analysis. Arch Med Res., 2000, 31: 191–196.

17. Gillis JC, Brogdon RN. Ketorolac: a reappraisal of its pharmacodynamic and pharmacokinetic properties and therapeutic use in pain management. Drugs, 1997, 53: 139–188.

18. Solheim N, Gregersen I, Halvorsen B, et al. Randomized controlled trial of intra-articular ketorolac on pain and inflammation after minor arthroscopic knee surgery. Acta Anaesthesiol Scand., 2018, 62: 829–838.

19. Rokhtabnak F, Ale Bouyeh MR, Seyed Siamdust A, Masoomshahi M, Aghajani M. Comparison of the effects of intra-articular sole ropivacaine and combined ketorolac and ropivacaine for pain control after knee arthroscopy surgery. Brit J Pain., 2015, 9: 149–156.

20. Stalman A, Tsai JA, Segerdahl M, Dingner E, Amer P, Fellander-Tsai L. Ketorolac but not morphine exerts inflammatory and metabolic effects in synovial membrane after knee arthroscopy: a double-blind randomized prospective study using the microdialysis technique. Reg Anesth Pain Med., 2009, 34: 557–564.

21. Calmet J, Esteve C, Boada S, Gine J. Analgesic effect of intra-articular ketorolac in knee arthroscopy: comparison of morphine and bupivacaine. Knee Surg Sports Traumatol Arthrosc., 2004, 12: 552–553.

22. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol., 2009, 62: 1006–1012.

23. Jaccard JR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary?. Control Clin Trials., 1996, 17: 1–12.

24. Kjaergard LL, Villumsen J, Gluud C. Reported Methodologic quality and discrepancies between large and small randomized trials in meta-analyses. Ann Intern Med., 2001, 135: 982–989.

25. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med., 2002, 21: 1539–1558.

26. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med., 2001, 135: 982–989.

27. Gupta A, Axelsson K, Alvin R, et al. Postoperative pain following knee arthroscopy: the effects of intra-articular ketorolac and/or morphine. Reg Anesth Pain Med., 1999, 24: 225–230.

28. Thwaites BK, Nigus DB, Bouska GW, Mongan PD, Ayala EF, Merrill GA. Intravenous ketorolac tromethamine worsens platelet function during knee arthroscopy under spinal anesthesia. Anesth Analg., 1996, 82: 1176–1181.

29. Thwaites BK, Nigus DB, Bouska GW, Mongan PD, Ayala EF, Merrill GA. Intravenous ketorolac tromethamine does not worsen platelet function during knee arthroscopy under general anesthesia. Anesth Analg., 1995, 81: 119–124.

30. Reuben SS, Connolly NR. Postoperative analgesia for outpatient arthroscopic knee surgery with intraarticular bupivacaine and ketorolac. Anesth Analg., 1995, 80: 1154–1157.

31. Smith I, Shively RA, White PF. Effects of ketorolac and bupivacaine on recovery after outpatient arthroscopy. Anesth Analg., 1992, 75: 208–212.

32. Hoofwijk DM, Fiddelers AA, Emans PJ, et al. Prevalence and predictive factors of chronic postsurgical pain and global surgical recovery 1 year after outpatient knee arthroscopy: a prospective cohort study. Medicine., 2015, 94: e2017.

33. Gulenc B, Kuyucu E, Bicer H, Genc SG, Yalcin S, Erdil M. Kinesiotaping reduces knee diameter but has no effect on differences pain and edema following knee Arthroscopy. Acta Chir Orthop Traumatol Cech., 2018, 85: 285–290.

34. Owen SG, Francis HW, Roberts MS. Disappearance kinetics of solutes from synovial fluid after intra-articular injection. Brit J Clin Pharmacol., 1994, 38: 349–355.

35. Vintar N, Rawal N, Veseliko M. Intraarticular patient-controlled regional anesthesia after arthroscopically assisted anterior cruciate ligament reconstruction: ropivacaine/morphine/ketorolac versus ropivacaine/morphine. Anesth Analg., 2005, 101: 573–578.

36. Rafiq S, Steinbruchel DA, Wanscher MJ, et al. Multimodal analgesia versus traditional opioid based analgesia after cardiac surgery, a randomized controlled trial. J Cardiath Surg., 2014, 9: 52.

37. Lee SK, Lee JW, Choy WS. Is multimodal analgesia as effective as postoperative patient-controlled analgesia following upper extremity surgery?. Orthop Traumatol Surg Res., 2013, 99: 895–901.

38. Ng HP, Nordstrom U, Axelsson K, et al. Efficacy of intra-articular bupivacaine, ropivacaine, or a combination of ropivacaine, morphine, and ketorolac on postoperative pain relief after ambulatory arthroscopic knee surgery: a randomized double-blind study. Reg Anesth Pain Med., 2006, 31: 26–33.

39. Lee SC, Rha DW, Chang WH. Rapid analgesic onset of intra-articular hyaluronic acid with ketorolac in osteoarthritis of the knee. J Back Musculoskel Rehabil., 2011, 24: 31–38.

40. Chandranutan A, Glass PS. Multimodal therapies for postoperative nausea and vomiting, and pain. Brit J Anaesth., 2011, 107: i27–i40.