The use of olive waste for development sustainable rigid pavement concrete material

M A Dahim¹, M Abuaddous², H Al-Mattarneh³, A E Alluqmani⁴ and R Ismail⁵

¹Faculty of Engineering, King Khalid University, Abha, Saudi Arabia
²Civil Engineering Department, Yarmouk University, Irbid, Jordan
³Civil Engineering Department, Yarmouk University, Irbid, Jordan
⁴Department of Civil Engineering, Islamic University, Madinah, Saudi Arabia
⁵Civil Engineering Department, Jadara University, Irbid, Jordan

Hashem Al-Mattarneh the corresponding author: drhashem2010@yahoo.com; hashem.mattarneh@yu.edu.jo

Abstract. Recycle and reuse of agriculture and industrial wastes becomes a big challenge in different parts of the world. The success in the waste recycle could lead to conserve the environment, reduce the use of cement, and improve health environment. This paper presents the potential use of fly ash from olive oil waste in Jordan to improve concrete material which could be used as a sustainable material for rigid pavement and building construction material. Olive oil ash was collected from olive oil mill and replace cement in producing concrete material. The range of cement replacement was 0% to 12.5% with increment 2.5%. The results indicate that olive oil reduces the workability of concrete material. The reduction of the slump of concrete increases with increasing olive ash content. Strength and durability of concrete improved and increased with increasing olive ash content in concrete up to 7.5 percent then the strength reduced. The results in this study show that the use of 7.5% was the optimum replacement of cement. This percent could produce concrete with higher strength and higher durability in comparison with the control concrete mix. Olive waste ash enhances both strength and durability because it reduces the effective water-cement ratio in concrete mix and filling the pore and void structure in concrete material. The benefits of this study could reduce the cost of concrete and recycle waste material and enhance concrete properties.

1. Introduction

Jordan is one of Mediterranean countries such as Spain, Italy, France Greece, Turkey, Tunisia, Syria, Lebanon. These countries have a vast olive tree plantation used to produce olive oil. The high demand for olive oil will continue to increase in the future leads to an increase in olive tree plantation. Jordan has large number of olive mills to produce olive oil. These mills produce a large amount of olive waste materials. Most of these wastes used in winter to produce heat and the by-product is olive oil waste fly ash. This ash is disposed in sanitary landfills. This may cause several environmental problems and pollute the ground water. Recycle these wastes may reduce these environmental problems and may also contribute to sustainable development of other construction materials such as concrete.

The concrete material is the most construction material used in the world. Concrete material mainly used in rigid pavement, road construction and as a building material. This material suffers from weak strength and very porous structure make it deteriorate due to inclusion of liquids and chemical
containing chloride. Several researchers investigate the use of additive to enhance its strength and durability. Fly ash used by many researchers to investigate its effect in improvement to the performance of concrete. If strength and durability of concrete enhanced using fly ash this could save a large amount of money in repair cost and rehabilitation of rigid payment and building constructed from concrete.

Fly ash is a by-product waste material produced from combustion of waste or combustion of materials to produce energy. Fly ash could be produced from coal combustion [1], municipal solid waste, burning of rice husk [2] and wheat straw ash [3] burning heavy oil [4]. Fly ash waste used to enhanced rigid pavement concrete material and building cement concrete material [5-7]. Fly ash waste used to enhance concrete durability [8]. In addition, fly ash waste used to enhanced asphalt flexible pavement material [9-18]. Limited studies were conducted to evaluate the effect of olive oil waste fly ash on the concrete properties. Olive oil waste fly ash used to improve properties of cement mortars [5,19], enhance alkali-Silica reaction of concrete material [20], and improve the performance of concrete exposed to elevated temperatures [21]. In addition, fly ash from industrial wastes was used to enhance properties of several types of concrete such as self-compacting concrete [22-24], light weight concrete [25-28] and geopolymer concrete [29-30].

To date, olive oil waste fly ash is dumped in sanitary land fill. This toxic fly ash is disposed of in landfills may leading to environmental problems. This study conducted to investigate the use of olive oil fly ash in rigid pavement concrete material on concrete performance such as workability, strength, and durability.

2. Materials and Methods
Olive oil waste was collected from Qumaym olive oil mill in Irbid, Jordan. The olive waste was burned in oven for two hours to ensure all wastes were converted to olive oil waste ash (OWA). The location of the olive wastes and the waste are shown in Figure 1. The OWA specific gravity was 2.05 and the diameter of the ash ranges from 1 to 10 µm. The chemical composition of the OWA is given in Table 1. Ordinary Portland cement was used to produced rigid pavement concrete material grade 30. The specific gravity of cement was 3.15. The chemical composition of cement is given in Table 1. Limestone aggregate with maximum aggregate size equal to 14 mm was used in this concrete. A control concrete mix was prepared with water cement ratio 0.5. Concrete control mix proportions were 360 kg/m³ cement, 180 kg/m³ water, 722 kg/m³ fine aggregate and 1098 kg/m³ coarse aggregate. The gradation of the aggregate is given in Figure 2. This particle size distribution of the aggregate meets the specification of ASTM 33-93.

![Figure 1. Source of olive oil waste; (a) Jordan map shows the location of olive waste in Irbid; (b) Olive waste before combustion.](image-url)
Table 1. Chemical composition of cement and olive oil waste ash (OWA).

Chemical Composition	Percentage in OWA (%)	Percentage in Cement (%)
SiO$_2$	21.0	20.5
Fe$_2$O$_3$	2.5	4.3
Al$_2$O$_3$	4.5	5.4
CaO	30.1	65.5
K$_2$O	30.0	-
Na$_2$O	0.4	-
SO$_3$	0.0	3.0
MgO	5.4	2.16
P$_2$O$_5$	6.0	-
LOI	2.81	3.0

Figure 2. Gradation of limestone aggregate used in this study.

To evaluate the effect of adding OWA, five concrete mixes were prepared by partially replacement of cement in the control mix. The replacement or OWA content range from 2.5 kg to 12.5 kg with increment 2.5 kg.

Six concrete mix proportioning were produced with different percentages of OWA using ACI method [31]. For each mix cube specimens were prepared in the laboratory according to the standard [32]. Slump of the fresh concrete for all mixes were measured according to appropriate standard [33]. The concrete specimens were cured in water until the day of testing [34]. At 28 days of curing the concrete cubes tested for compressive strength and water absorption according standard test [35-36].

3. Results and discussion

To evaluate the effect of OWA on fresh properties and hardened properties of concrete material, slump, compressive strength and absorption of concrete mixes were tested and analyzed. The results of these properties are presented in the following subsections.

3.1. Effect of OWA on slump
The slump test was performed for all mixes with OWA content from 0% to 12.5%. Samples of slump test are given in Figure 3. The results of slump of all mixes are presented in Figure 4. The results indicate that slump and workability of fresh concrete decreases with increasing OWA content. This may attribute to the smaller size of OWA and larger surface area. In addition, the specific gravity of OWA is less than specific gravity of cement. Replacement of cement by weight will lead to larger volume OWA which will consume more water from the mix. This will significantly reduce the workability as the slump reduced. Larger OWA content will cause a larger reduction in slump. The relationship between slump and OWA content could be modeled as a linear relationship and took the form:

\[
\text{Slump} = \beta_0 + \beta_1 x
\]

Where \(\beta_0\) and \(\beta_1\) are model parameters. \(X\) is the OWA content. The model parameters and correlation coefficients are given in Figure 4. The square correlation coefficient was 0.9844. This indicate a good fit of the results using linear regression model.

3.2. Effect of OWA on compressive strength
The compressive strength at different time of curing for all concrete mixes was evaluated. The results of compressive strength versus curing time at all OWA content are given in Figure 5. The results indicate that compressive strength increases with increasing OWA content up to 7.5 percent.
Compressive strength decreases when the OWA content above 7.5 percent. These trends were observed over all curing time. The result show that compressive strength reaches higher value at OWA content 7.5 percent. The improvement in compressive strength because OWA has specific gravity less than cement therefore, the volume of OWA is larger than the same weight of cement. In addition, OWA has a smaller particle size and these reasons could reduce the effective water cement ratio of concrete containing OWA. Water cement ratio (w/c) is the most factors affecting strength of concrete and OWA reduce w/c leads to increase compressive strength according to Abraham laws.

To better visualize the effect of OWA content on concrete compressive strength, the relationship between compressive strength of concrete and the OWA content was established using regression analysis. The results are shown in Figure 6. The best model to fit the result was quadratic formula given in equation 2.

\[
\text{Compressive Strength} = \beta_0 + \beta_1 x + \beta_2 x^2
\]

(2)

Where β_0, β_1, and β_2 are model parameters equal to 31.807, 1.3957, and -0.1309 respectively. X is the OWA content. The square correlation coefficients $R^2=0.8937$.
3.3. Effect of OWA on durability
The durability of concrete was measured using concrete absorption. The absorption of concrete incorporated OWA is presented in Figure 7. The results indicate that absorption of concrete decreases with increasing OWA content until 7.5% then the trend reverse. This is because the fine particle of OWA could fill the voids and porous structure of concrete specially the interfacial zone. Also, OWA reduces effective w/c ratio which reduces the pore structure of concrete. This lead to enhance the durability of concrete.

To better visualize the effect of OWA content on concrete absorption, the relationship between absorption of concrete and the OWA content was established using regression analysis. The best model to fit the result was quadratic formula given in equation 3.

\[
Absorption = \beta_0 + \beta_1 x + \beta_2 x^2
\]

Where \(\beta_0\), \(\beta_1\), and \(\beta_2\) are the model parameters equal to 1.5432, -0.0691 and 0.0059, respectively. \(x\) is the OWA content. The square correlation coefficients \(R^2=0.8261\). It is clear from the result that 7.5% of OWA is the optimum replacement content to enhance concrete durability.

4. Conclusions
The result in this study indicate the feasibility of using and recycling olive oil waste ash in concrete industry. Replacement of cement in concrete material used for rigid pavement and building construction could improve strength of concrete and enhance concrete durability. The results also indicate that 7.5 percent of olive waste ash is the optimum replacement of cement in concrete to achieve the best strength and durability. Olive waste ash enhance both strength and durability because it reduces the effective water cement ratio in concrete mix and filling the pore and void structure in concrete material. Olive oil waste ash content decrease the workability of concrete this problem could be solved by addition of superplasticizer to achieve the same concrete slump.

Funding statement
This research received no external funding.

Conflicts of interest
The authors declare that there is no conflict of interest regarding the publication of this paper.
References

[1] Leiva C, Vilches L F, Vale J, Fernández-Pereira C 2005 Influence of the type of ash on the fire resistance characteristics of ash-enriched mortars Fuel 84, 1433–1439.
[2] Khana M N, Jamil M, Karime M, Zain M 2014 Strength and durability of mortar and concrete containing rice husk ash: a review World Appl. Sci. J. 32 (5), 752–765.
[3] Al-Akhras N and Abu-Alfoul B, 2002 Effect of wheat straw ash on mechanical properties of autoclaved mortar, Cem. Concr. Res. 32 (6) 859–869.
[4] Al-Osta M A, Baig M G, Al-Malack M H and Al-Amoudi O S B 2016 Study of heavy fuel oil fly ash for use in concrete blocks and asphalt concrete mixes Advances in Concrete Construction 4 (2) 123-143. http://dx.doi.org/10.12989/acc.2016.4.2.123
[5] Alkheder S, Obaidat Y T and Tamneh M 2016 Effect of olive waste (Husk) on behavior of cement paste Case Studies in Construction Materials 5, 19–25.
[6] Hardjito D and Rangan B V 2005 Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete Research Report GCI, Faculty of Engineering, Curtin University of Technology, Perth.
[7] Chindaprasirpt, Chareerat T and Sirivivatnanon V 2007, Workability and strength of high calcium fly ash geopolymer Cement and Concrete Composites 29 (3), 224–229.
[8] Swaroop A H L, Venkateswararao K and Konandaramarao P 2013 Durability studies on concrete with Fly ash and Ggbs, Int. J. Eng. Res. Appl. (IJERA) 3 (4), 285–289 (ISSN: 2248-9622).
[9] Parvez M A, Al-Abdul Wahhab H I, Shawabkeh R A and Hussein I A 2014 Asphalt modification using acid treated waste oil fly ash Construction and Building Materials 70 , 201–209.
[10] Woszuk A, Bandura L and Franus W 2019 Fly ash as low cost and environmentally friendly filler and its effect on the properties of mix asphalt Journal of Cleaner Production 235, 493-502
[11] Hoy M, Horpibulsuk S, and Arulrajah A 2016 Strength development of Recycled Asphalt Pavement – Fly ash geopolymer as a road construction material Construction and Building Materials 117 (1), 209-219
[12] Pasandin A R, Pérez I, Ramirez A, and Cano M M 2016 Moisture damage resistance of hot-mix asphalt made with paper industry wastes as filler Journal of Cleaner Production 112 (1), 20853-862
[13] Laskar A I and Bhattacharjee R 2013 Effect of plasticizer and su-perplasticizer on rheology of fly-ash-based geopolymer concrete ACI Material Journal 110 (5), 513–518.
[14] Xiao F, Shivaprasad P and Amirkhanian S 2012 Low-volume road wma mixtures: moisture susceptibility of mixtures containing coal ash and roofing shingle with moist aggregate. Journal Material Civil Engineering 24 (1), 48–56
[15] Zimmer F V 1970 Fly ash as bituminous filler. Washington (DC): United States Department of Interior, Bureau of Mines
[16] Jeffry S N A, Ramadphansyah P J, Abdul Hassan N, Yaacob H, and Mohd Satar M K I 2018 Mechanical performance of asphalt mixture containing nano-charcoal carbon steel ash Construction and Building Materials 173, 40–48.
[17] Dahim M 2018 Enhancement the Performance of Asphalt Pavement Using Fly Ash Wastes in Saudi Arabia International Journal of Engineering & Technology 7 (3.32), 50-53
[18] Dahim, M. 2018, The use of heavy oil fly ash as a filler in asphalt pavement mixture, Urban Transitions 2018 25-27 November, Sitges, Barcelona, Spain.
[19] Al-Akhras N M and Abdulwahid M Y 2010 Utilization of olive waste ash in mortar mixes, Struct. Concr. J. 11 (4) 221–228 (Thomas Telford, UK).
[20] Al-Akhras N M 2012 Performance of olive waste ash concrete exposed to alkali-Silica reaction, Struct. Concr. J. 13 (4) 221–226 (Wiley Group, USA).
[21] Al-Akhras N M, Al-Akhras K M and Attom M F 2009 Performance of olive waste ash concrete
exposed to elevated temperatures *Fire Saf. J.* 44 370–375.

[22] Al-Qadi A, Mustapha N K, Al-Mattarneh H, Al-Kadi Q 2009 Central composite design models for workability and strength of self-compacting concrete *Journal of Engineering and Applied Science* 4 (3), 177-183.

[23] Narendra H, Muthu K U, Al-Mattarneh H M, Naidu N V R, Sowmya B S 2008 Optimization of self compacting concrete mixes using Taguchi method *International Conference on Construction and Building Technology*, Kuala Lumpur, Malaysia 1, 191-204.

[24] Mohammed B S, Nuruddin M F, Aswin M, Mahamood N, Al-Mattarneh H 2016 Structural behavior of reinforced self-compacted engineered cementitious composite beams *Advances in Materials Science and Engineering* 2016, 1-12. http://dx.doi.org/10.1155/2016/5615124

[25] Hassan A H, Al-Mattarneh H, Abdullahi M, Abu Hassan M, Mohammed B, Mustafa K 2008 Compressive Strength and Absorption of Concrete Composed of Natural and Palm Oil Clinker (POC) Aggregates *International Conference on Construction and Building Technology*, Kuala Lumpur, Malaysia 1, 93-100.

[26] Abdullahi M, Al-Mattarneh H M A, Mohammed B S 2009 A MATLAB program for diagnosis and adjustment of mix proportions of structural lightweight concrete European *Journal of Scientific Research* 31 (1), 106-123.

[27] Abdullahi M, Al-Mattarneh H M A, Mohammed B S 2009 Statistical modeling of lightweight concrete properties *European Journal of Scientific Research* 31 (1), 124-131.

[28] Alhasanat M B, Al-Qadi A N, Haddad H, Al-Mattarneh H 2016 Effect of Aggregate Size on the Properties of Palm Oil Clinker Concrete *GSTF Journal of Engineering Technology* (JET) 3 (4), 72-80.

[29] Nuruddin M, Malkawi A, Fauzi A, Mohammed B, Al-Mattarneh H Effects of alkaline solution on the microstructure of HCFA geopolymers, in: Zawawi N A (Ed.), Engineering Challenges for Sustainable Future: *Proceedings of the 3rd International Conference on Civil, Offshore and Environmental Engineering (ICCOEE)*, CRC Press, Taylor & Francis Group, London, 2016, pp. 501-505.

[30] Malkawi A B, Nuruddin M F, Fauzi A, Al-Mattarneh H, Mohammed B S Effect of plasticizers and water on properties of HCFA geopolymers *Key Engineering Materials* 733, 76-79.

[31] ACI Committee 211.1-1991 Standard Practice for Selecting Proportions for Normal, Heavyweight and Mass Concrete. Detroit, American Concrete Institute.

[32] BS 1881: Part 108: 1983. Method for making test cubes from fresh concrete. British Standards Institution, Her Majesty Stationery Office, London.

[33] BS 1881: Part 102: 1983. Method for determination of slump. British Standards Institution, Her Majesty Stationery Office, London.

[34] BS 1881: Part 111: 1983. Method of normal curing of test specimen. British Standards Institution, Her Majesty Stationery Office, London.

[35] BS 1881: Part 116: 1983. Method for determination of compressive strength of concrete cubes. British Standards Institution, Her Majesty Stationery Office, London.

[36] BS 1881: Part 122: 1983 Method for determination of water absorption. British Standards Institution, Her Majesty Stationery Office, London.

Acknowledgements

The authors thank several universities for helping and allowing the researchers to use the lab facilities including King Khalid University, Alzaytoonah University, Islamic University in Madinah and Yarmouk University.