Modularized Bayesian analyses and cutting feedback in likelihood-free inference

Atlanta Chakraborty · David J. Nott · Christopher C. Drovandi · David T. Frazier · Scott A. Sisson

Abstract

There has been much recent interest in modifying Bayesian inference for misspecified models so that it is useful for specific purposes. One popular modified Bayesian inference method is “cutting feedback” which can be used when the model consists of a number of coupled modules, with only some of the modules being misspecified. Cutting feedback methods represent the full posterior distribution in terms of conditional and sequential components, and then modify some terms in such a representation based on the modular structure for specification or computation of a modified posterior distribution. The main goal of this is to avoid contamination of inferences for parameters of interest by misspecified modules. Computation for cut posterior distributions is challenging, and here we consider cutting feedback for likelihood-free inference based on Gaussian mixture approximations to the joint distribution of parameters and data summary statistics. We exploit the fact that marginal and conditional distributions of a Gaussian mixture are Gaussian mixtures to give explicit approximations to marginal or conditional posterior distributions so that we can easily approximate cut posterior analyses. The mixture approach allows repeated approximation of posterior distributions for different data based on a single mixture fit. This is important for model checks which aid in the decision of whether to “cut”. A semi-modular approach to likelihood-free inference where feedback is partially cut is also developed. The benefits of the method are illustrated on two challenging examples, a collective cell spreading model and a continuous time model for asset returns with jumps.

Keywords Approximate Bayesian computation · Model misspecification · Modularization · Semi-modular inference · Synthetic likelihood

1 Introduction

Statisticians are increasingly using complex models which can be thought of as a collection of coupled modules. The modules represent different aspects of our knowledge of the problem, and in a Bayesian analysis each module consists of likelihood terms for different data sources and hierarchical prior terms for parameters or latent variables. There is much recent interest in ways to modify Bayesian inference so that it is fit for purpose when the model is misspecified, and for modularized Bayesian analyses so-called “cutting feedback” methods are common. The main goal of such methods is to ensure that inference about parameters of interest is not contaminated by misspecified modules. Cutting feedback approaches consider representations of the conventional Bayesian posterior distribution in terms of con-
ditional or sequential components, but then modify certain terms for specification or computation of a modified posterior distribution. Existing cutting feedback methods have been developed in the context where the likelihood is tractable, and the purpose of this work is to develop suitable methods for intractable likelihood settings.

To understand the motivation for cutting feedback methods, it is helpful to consider their use in pharmacokinetic/pharmacodynamic (PK/PD) modelling (Bennett and Wakefield 2001; Lunn et al. 2009). This is one of the areas in which cutting feedback methods were first used and formalized. In PK/PD applications, models with a two module structure are often considered. One of the modules is a pharmacokinetic (PK) model describing the evolution of a drug concentration in the blood stream, and the other is a pharmacodynamic (PD) model which describes the effects of the drug on the body. There are module-specific data sources informing corresponding module parameters, and the output of the PK module is used as an input to the PD module. Often it can be difficult to specify the PD module adequately. This can result in contamination of inferences of interest due to the misspecification, as parameters of the PK module adapt to accommodate the misspecification in the PD module. Cutting feedback methods have been used to prevent harmful effects arising from misspecification in a situation like this, while still appropriately propagating uncertainty. There are many other applications of cutting feedback methods – see Liu et al. (2009) and Jacob et al. (2017) for further discussion of these and modularized Bayesian analyses more generally. Pompe and Jacob (2021) and Frazier and Nott (2022) have recently studied the theoretical behaviour of the cut posterior distribution.

One way of formulating cutting feedback involves the modification of the steps of an MCMC sampling algorithm, where the cut posterior distribution is defined implicitly as the stationary distribution of the sampler. The “cut” function in the WinBUGS and OpenBUGS packages (see Lunn et al. (2009) for details) is one way to make this operational. For a Gibbs sampling approach, the modified MCMC sampler draws parameter blocks from distributions obtained by removing some terms in the conventional posterior full conditional distributions. Removing misspecified terms when forming some of the full conditionals reduces the influence of misspecified components on the final inference. The modified full conditional distributions are not in general consistent with any well-defined joint distribution (see for example Clarté et al. (2020) and Rodrigues et al. (2020) for a discussion of Gibbs sampling for inconsistent conditionals in the likelihood-free inference setting). When exact Gibbs sampling is intractable, it is natural to use Metropolis-within-Gibbs steps in detailed balance with the modified conditional distributions. In this case, the stationary distribution of the resulting Markov chain may depend on the proposal distribution used (Woodard et al. 2013; Plummer 2015). To clarify the idea of cutting feedback, Plummer (2015) and several other authors have considered cutting feedback for a certain “two module” system discussed further in Sect. 2, which is general enough to cover many applications of interest. In this case, it is possible to characterize the cut posterior distribution explicitly. This cut posterior distribution is not easy to sample from in most cases, due to the need to calculate or approximate a difficult normalizing constant.

In this work we develop cutting feedback for likelihood-free inference. Likelihood-free inference methods are used with complex models where computation of the likelihood is impractical, but where it is possible to simulate data under the model for any given value of the parameter. We discuss these methods further in Sect. 3. To address the computational challenges of cutting feedback in the likelihood-free setting, we use Gaussian mixture approximations to the joint distribution of parameters and data summary statistics. We exploit the fact that marginal and conditional distributions of a Gaussian mixture are Gaussian mixtures to give explicit approximations to marginal or conditional posterior distributions for any summary statistic value based on a single fitted mixture model, so that we can easily approximate cut posterior analyses and perform appropriate diagnostics. To the best of our knowledge, our work is the first time that cutting feedback methods have been considered for likelihood-free inference. A semi-modular inference approach where feedback is partially cut is also developed, extending work by Carmona and Nicholls (2020) and Nicholls et al. (2022) to the case of likelihood-free inference.

In the next section we discuss cutting feedback for the two module system discussed in Plummer (2015). This is followed by a discussion of mixture approximations for likelihood-free inference. Section 4 describes how mixture approximations used in likelihood-free inference are able to address some of the computational difficulties of cutting feedback. Use of these mixture approximations for semi-modular inference methods is then discussed, and our methodology is applied to two challenging examples in Sect. 6, a collective cell spreading model and a continuous time model for asset returns with jumps. Section 7 gives some concluding discussion.

2 Cutting feedback

To describe cutting feedback methods and clarify previous “implicit” definitions of cutting feedback in terms of modified MCMC algorithms, Plummer (2015) considered the two module system represented graphically in Fig. 1. Our work considers only this two module case, which is general enough to cover many applications of interest. For a discussion of cutting feedback in a more general context, see Lunn et al.
which rejects the feedback from module 2 about φ. We can write

$$p(\varphi, \eta | y) = p(\varphi | y) p(\eta | \varphi, y)\quad \propto p(\varphi | z) p(w | \varphi) p(\eta | \varphi, w).$$

(1)

We have used the conditional independence of η and z given w and φ in the first line above, and the conditional dependence of w and z given φ in the second line. In (1) the term $p(w | \varphi)$ is the “feedback” term which modifies the marginal posterior density for φ from $p(\varphi | z)$ to account for the information about φ in the second module. If the second module is suspect, we might drop this term to obtain the so-called “cut” posterior distribution

$$p_{\text{cut}}(\varphi, \eta | y) = p(\varphi | z) p(\eta | \varphi, y) = p(\varphi | z) p(\eta | \varphi, w)$$

(2)

which rejects the feedback from module 2 about φ while propagating uncertainty about φ from module 1 for making inferences about η. The red line in the figure indicates the cut.

Computation for the cut posterior distribution is challenging. We can write

$$p_{\text{cut}}(\varphi, \eta | y) \propto p(\varphi) p(z | \varphi) p(\eta | \varphi) p(w | \eta, \varphi) \frac{p(w | \varphi)}{p(w | \varphi)}$$

(3)

but implementing an MCMC sampler is not easy from the likelihood and prior specification, because of the $p(w | \varphi)$ term on the right-hand side above which is usually not tractable. A number of computationally intensive methods for dealing with the intractable normalizing factor have been suggested (Plummer 2015; Jacob et al. 2020; Liu and Goudie 2020). Yu et al. (2021) and Carmona and Nicholls (2022) consider variational inference methods which do not require approximation of the normalizing constant. However, these previous works were concerned with the case where the likelihood is tractable, and our main interest is in applications of cutting feedback to models with intractable likelihoods, where likelihood-free methods are used.

3 Mixture approximations for likelihood-free inference

The approach we use for likelihood-free inference will now be introduced, which allows us to easily approximate cut posterior analyses. Write y for the data and θ for the parameters and we consider Bayesian inference with prior density $p(\theta)$. If the likelihood $p(y | \theta)$ is impractical to compute, then conventional Bayesian computation methods are inapplicable. However, there is now a large literature on likelihood-free inference methods able to perform Bayesian inference using only model simulation, with approximate Bayesian computation (ABC) (Sisson et al. 2018b) and synthetic likelihood (Wood 2010; Price et al. 2018) being the traditional approaches. More recently, approaches using flexible classification and regression methods from machine learning (Gutmann and Corander 2016; Raynal et al. 2018; Hermans et al. 2020; Thomas et al. 2022; Pacchiardi and Dutta 2022) are increasingly used.

3.1 Mixture modelling of parameters and summaries

Here we will use an approach to likelihood-free inference based on mixture modelling of the joint distribution of the parameters and some summary statistics of the data. This approach is developed in Bonassi et al. (2011), where they consider induced conditional distributions from a mixture model as a form of nonlinear regression adjustment. The method has been refined within a sequential Monte Carlo framework in Bonassi and West (2015), although this extension is not helpful for the application considered here where we require analytic forms for marginal and conditional posterior densities. Other authors have considered mixture models in likelihood-free inference as well, such as Fan et al. (2013) who consider mixture of experts approximations to marginal summary statistics and copulas to approximate the likelihood, and Forbes et al. (2021) who consider mixture posterior approximations to define suitable functional discrepancy measures for ABC algorithms. Papamakarios and
Murray (2016), Lueckmann et al. (2017) and Greenberg et al. (2019) have considered machine learning approaches based on mixture density networks. He et al. (2021) have recently developed mixture variational posterior approximations for likelihood-free inference using a population Monte Carlo algorithm.

The simple mixture approach of Bonassi et al. (2011) will be used here, since the ability to approximate arbitrary marginal and conditional distributions from a single mixture fit given any subset of the summary statistics, and for any values of those summary statistics, is crucial for the cutting feedback applications we describe. The more sophisticated mixture methods mentioned above either do not lead to closed form expressions for posterior approximations or require expensive additional computations for each new posterior distribution to be approximated, or both. The method of Bonassi et al. (2011) uses the following approach. First, we suppose that we have some summary statistics of the data \(S = S(y) \) available which are informative about the model parameters. The observed value of \(S \) is written as \(S_{\text{obs}} = S(y_{\text{obs}}) \), where \(y_{\text{obs}} \) is the observed value of \(y \). We approximate \(p(\theta|y_{\text{obs}}) \) by \(p(\theta|S_{\text{obs}}) \). If \(S \) is a sufficient statistic then \(p(\theta|y_{\text{obs}}) \) and \(p(\theta|S_{\text{obs}}) \) are the same, but a low-dimensional sufficient statistic is rarely available in likelihood-free inference applications. It is important that \(S \) is low-dimensional if we are to estimate the distribution of \(S \) from simulated data. Having chosen \(S \), we simulate samples \((\theta_i, S_i), i = 1, \ldots, n \) from \(p(\theta)p(S|\theta) \). Next, we fit a Gaussian mixture model to the simulated data. Writing \(U = (\theta, S) \), this gives an estimate \(\tilde{p}(u) = \tilde{p}(\theta, S) \) for the joint density. The posterior density \(p(\theta|S_{\text{obs}}) \) is just the conditional density of \(\theta \) given \(S = S_{\text{obs}} \) in \(p(\theta, S) \), which we can approximate by the corresponding conditional density in the mixture model, \(\tilde{p}(\theta|S = S_{\text{obs}}) \).

An observation which is crucial later is that any marginal density of \(\tilde{p}(u) \) is a Gaussian mixture model, and any conditional distribution is also a Gaussian mixture. So from the mixture approximation \(\tilde{p}(u) \), we can obtain a closed form approximation to any marginal or conditional posterior density conditional on any subset of summary statistics, and we can do this for any value of the summary statistics based on a single mixture model fit. To make this explicit, suppose our mixture approximation is

\[
\tilde{p}(u) = \sum_{j=1}^{J} w_{j,u} \phi_{j,u}(u),
\]

where \(J \) is the number of mixture components, \(w_{j,u}, j = 1, \ldots, J \) are non-negative mixing weights summing to 1, and \(\phi_{j,u}(u) \) is a multivariate normal component density with mean \(\mu_{j,u} \) and covariance matrix \(\Sigma_{j,u}, j = 1, \ldots, J \). Consider a subvector \(V = (X, W) \) of \(U \) where \(X \) and \(W \) are disjoint. In our later applications to cutting feedback, where we approximate marginal and conditional posterior densities, \(X \) will be a subset of the model parameters, and \(W \) can consist of both parameters and summary statistics. Write the marginal density of \(V \) for the mixture component \(\phi_{j,u}(u) \) as \(\mu_{j,v}(v) \), which is multivariate normal with mean vector \(\mu_{j,v} \) and covariance matrix \(\Sigma_{j,v}, j = 1, \ldots, J \). Write \(\mu_{j,v} \) in partitioned form as \(\mu_{j,v} = (\mu_{j,x}^{T}, \mu_{j,w}^{T})^{T} \), and

\[
\Sigma_{j,v} = \begin{bmatrix}
\Sigma_{j,x} & \Sigma_{j,x,w} \\
\Sigma_{j,x,w}^{T} & \Sigma_{j,w}
\end{bmatrix},
\]

where the partitioning is conforming to the partition of \(V \) as \((X, W) \). We also write the marginal density of \(W \) for component \(j \) of the mixture as \(\phi_{j,w}(w), j = 1, \ldots, J \). The conditional density of \(X|W \) is a Gaussian mixture,

\[
\tilde{p}(x|w) = \sum_{j=1}^{J} w_{j,x|w} \phi_{j,x|w}(x),
\]

where

\[
w_{j,x|w} = \frac{w_{j,u} \phi_{j,u}(w)}{\sum_{l=1}^{J} w_{l,u} \phi_{l,u}(w)},
\]

and \(\phi_{j,x|w}(x) \) is multivariate normal with mean and covariance matrix

\[
\mu_{j,x|w} = \mu_{j,w} + \Sigma_{j,x,w} \Sigma_{j,w}^{-1} (w - \mu_{j,w}),
\]

and

\[
\Sigma_{j,x|w} = \Sigma_{j,x} - \Sigma_{j,x,w} \Sigma_{j,w}^{-1} \Sigma_{j,x|w}^{T},
\]

respectively.

3.2 Mixture approximations and cutting feedback

Now we consider the issue of cutting feedback for likelihood-free inference. Suppose the summary statistics are partitioned as \(S = (S_{1}^{T}, S_{2}^{T})^{T} \), and write the corresponding partition of \(S_{\text{obs}} \) as \(S_{\text{obs}} = (S_{\text{obs},1}^{T}, S_{\text{obs},2}^{T})^{T} \). We wish to base inference about parameters \(\phi \) only on \(S_{1} \), because we are worried that the summaries \(S_{2} \) adversely affect inference about \(\phi \). The information in \(S_{2} \), however, may be valuable for inference about the remaining parameters \(\eta \). Example 5 of Sisson et al. (2018a, p.28) illustrates a simple situation where model mis-specification can lead to summary statistics with conflicting information. In most likelihood-free inference applications there is no graphical structure to the model such as in Fig. 1, and if we regard \(S_{1} \) and \(S_{2} \) as data sources associated with two modules, there is no conditional independence between them given the parameters. However, similar to (2) it is still
useful to define a cut posterior which ignores S_2 in inference about φ. For any value of S, we write

$$p_{\text{cut}}(\theta|S) = p(\varphi|S_1)p(\eta|\varphi, S). \quad (4)$$

As discussed in the last section, given a mixture approximation $\tilde{p}(\theta, S)$ to $p(\theta, S)$, an analytic form for the conditional densities for $\varphi|S_1$ and $\eta|\varphi, S$ can be written down. Then (4) can be approximated by

$$\tilde{p}_{\text{cut}}(\theta|S) = \tilde{p}(\varphi|S_1)\tilde{p}(\eta|\varphi, S), \quad (5)$$

where $\tilde{p}(\varphi|S_1)$ and $\tilde{p}(\eta|\varphi, S)$ are the conditional densities induced from $\tilde{p}(\theta, S)$. Monte Carlo summarization of the cut posterior approximation (5) is easy, since we just need to do sequential simulation from two Gaussian mixture models. In the next subsection we discuss methods for deciding whether or not to cut, where it is required to compute certain posterior distributions repeatedly for different data simulated under a reference distribution; the mixture approach can perform the required computations based on only a single mixture model fit.

An interesting case of the framework above is when $S = y$, and the likelihood is tractable but we wish to base inference about φ only on a low-dimensional summary statistic S_1 for which $p(S_1|\varphi)$ is not analytically available. The approximate Bayesian forecasting approach considered in Frazier et al. (2019) falls into this framework, where the authors consider inferring the parameter φ in a state space model using ABC with summary statistics, and then for ABC draws for φ they sample the conditional posterior distribution of latent states η given y using a particle filter in order to produce forecasts. Only filtering, and not smoothing, is needed for predictive inference. Here there is no need for ABC approximations in inferring the conditional posterior distribution of the states $p(\eta|\varphi, y)$, but ABC methods can be useful for inferring the parameters φ. Frazier et al. (2019) use predictive criteria for the choice of summary statistics, which might be particularly beneficial in the case of misspecification.

3.3 Deciding whether or not to cut

When considering the use of cut methods we may need to decide whether to use the cut or conventional posterior. It is easy to see that the Kullback-Leibler divergence between the cut posterior distribution (4) and the full posterior distribution is the Kullback-Leibler divergence between their marginal posterior distributions for φ:

$$\text{KL}(p(\theta|S)\|p_{\text{cut}}(\theta|S)) = \text{KL}(p(\varphi|S)\|p(\varphi|S_1)).$$

This follows from the fact that the conditional posterior distribution for η given φ is the same in both distributions. For a proof of this see Lemma 1 of Yu et al. (2021). Let us write

$$G(S_2|S_1) = \text{KL}(p(\varphi|S)\|p(\varphi|S_1)) \quad (6)$$

The statistic $G(S_2|S_1)$ can be thought of as a prior-to-posterior divergence, in the situation where S_1 is known when forming the prior but before we know S_2. Nott et al. (2020) consider prior-data conflict checks based on such prior-to-posterior divergences, and Yu et al. (2021) consider the use of these checks for deciding whether or not to cut feedback in a Bayesian analysis with tractable likelihood. Similar conflict checks were developed in likelihood-free inference in Chakraborty et al. (2023), although Chakraborty et al. (2023) do not consider cutting feedback methods.

We can approximate (6) by replacing $p(\varphi|S)$ and $p(\varphi|S_1)$ by $\tilde{p}(\varphi|S)$ and $\tilde{p}(\varphi|S_1)$ respectively. Since both of these densities are Gaussian mixtures, we can also make use of closed form approximations to Kullback-Leibler divergences between mixtures (Hershey and Olsen 2007, Section 7) to obtain an approximation $\tilde{G}(S_2|S_1)$ to $G(S_2|S_1)$. For more details, see Chakraborty et al. (2023). To decide whether or not to cut, we compare the statistic $\tilde{G}(S_{\text{obs},2}|S_{\text{obs},1})$ to the distribution of $\tilde{G}(S_1'|S_{\text{obs},1})$, where S_1' is a draw from $p(S_1|S_{\text{obs},1})$, the conditional prior predictive for S_1 given $S_{\text{obs},1}$. Simulation from $p(S_1|S_{\text{obs},1})$ can be approximated by simulation from $\tilde{p}(S_1|S_{\text{obs},1})$ if necessary. If $\tilde{G}(S_{\text{obs},2}|S_{\text{obs},1})$ lies out in the tails of this distribution, it says that the cut posterior distribution has changed an unusually large amount from the full posterior distribution if the model is correct for the observed S_2. Precisely, we consider the tail probability

$$p = P(\tilde{G}(S_1'|S_{\text{obs},1}) \geq \tilde{G}(S_{\text{obs},2}|S_{\text{obs},1})), \quad (7)$$

where $S_1' \sim p(S_1|S_{\text{obs},1})$. If this tail probability is small, the change from the cut posterior distribution to the full posterior distribution is unusually large for the observed data compared to what is expected if the model is correct. In approximating (7) by Monte Carlo simulation, computation of the approximate Kullback-Leibler divergence between the full and cut marginal posterior distributions for φ can be done for repeated simulated summary statistics S_2 under the reference distribution based on the same single mixture fit that was used for the cut model computations for the observed summary statistics.

4 Semi-modular inference

As a generalization of cut posterior approaches, Carmona and Nicholls (2020) introduced semi-modular inference, which gives a mechanism for partially cutting feedback. They consider the two module system of Fig. 1, and suggest using...
some of the full module structure in making inference about \(\varphi \). An influence parameter \(\gamma \in [0, 1] \) tempers the influence of the possibly misspecified module on inference about \(\varphi \), whereas the conditional posterior distribution for \(\eta \) given \(\varphi \) is that of the full posterior.

The construction of Carmona and Nicholls (2020) considers a two-stage approach. First, a “power posterior distribution” is constructed for inference about \(\varphi \) and an auxiliary replicate parameter \(\tilde{\eta} \) of \(\eta \), given the data \(z \) and \(w \). The use of similar power posterior distributions (Bissiri et al. 2016; Grünwald and van Ommen 2017; Miller and Dunson 2019) for robust Bayesian inference originates outside the modular inference context. Following Carmona and Nicholls (2020), we use the notation \(p_{\text{pow}, \gamma}(\varphi, \tilde{\eta}|y) \) for the power posterior for \((\varphi, \tilde{\eta}) \) with influence parameter \(\gamma \), and this is defined to be

\[
p_{\text{pow}, \gamma}(\varphi, \tilde{\eta}|y) \propto p(z|\varphi)p(w|\varphi, \tilde{\eta})^\gamma p(\varphi, \tilde{\eta}).
\]

The influence parameter tempers the likelihood term from the second module, reducing its influence. Next, the semi-modular posterior distribution is defined as

\[
p_{\text{smi}, \gamma}(\varphi, \eta|z, w) = p_{\text{pow}, \gamma}(\varphi, \tilde{\eta}|z, w)p(\eta|w, \varphi),
\]

and inference about \(\theta = (\varphi, \eta) \) is achieved by integrating out \(\tilde{\eta} \). Setting \(\gamma = 0 \), the cut posterior for \(\theta \) is obtained, and setting \(\gamma = 1 \) gives the full posterior. Hence the semi-modular approach interpolates between the cut and full posterior distributions. Carmona and Nicholls (2020) suggest choosing \(\gamma \) using predictive methods. More recently, Nicholls et al. (2022) consider validity of semi-modular inference in a generalized Bayesian inference framework, and consider alternative forms of semi-modular inference. We consider one more alternative below for the likelihood-free setting.

4.1 Likelihood-free semi-modular inference

We now develop an alternative semi-modular posterior construction for the likelihood-free setting, using a method for constructing marginal inferences for \(\varphi \) inspired by linear opinion pooling (Stone 1961). Linear opinion pooling combines distributions representing opinions of different experts using a mixture model. We define a semi-modular marginal posterior density for \(\varphi \) as a mixture between the cut and full marginal posterior densities with mixing weight \(\gamma \). Such an approach is natural when mixture approximations are used for computation. In that case, the cut marginal posterior approximation for \(\varphi \) and the full marginal posterior approximation for \(\varphi \) are Gaussian mixtures, and a mixture of them is also a Gaussian mixture. This makes it easy to approximate our proposed semi-modular posterior density with an explicit form, and we suggest a convenient way to choose the influence parameter \(\gamma \) based on calculations similar to those used for the prior-data conflict checks in Sect. 3.3.

Define

\[
p_{\gamma}(\varphi|S) = \gamma p(\varphi|S) + (1 - \gamma) p(\varphi|S_1). \tag{8}
\]

where \(\gamma \in [0, 1] \) is the influence parameter. We define a semi-modular posterior distribution for \(\theta = (\varphi, \eta) \) by

\[
p_{\text{smi}, \gamma}(\theta|S) = p_{\gamma}(\varphi|S)p(\eta|\varphi, S). \tag{9}
\]

Using the mixture posterior approximations of Sect. 3 for computation, the approximations to the posterior densities of \(\varphi \) given \(S_1 \) and \(\varphi \) given \(S \) respectively are written

\[
\tilde{p}(\varphi|S_1) = \sum_{j=1}^{J} w_{j, \varphi|S_1} \phi_{j, \varphi|S_1}(\varphi), \tag{10}
\]

and

\[
\tilde{p}(\varphi|S) = \sum_{j=1}^{J} w_{j, \varphi|S} \phi_{j, \varphi|S}(\varphi). \tag{11}
\]

Similarly, write the mixture approximation to the density of \(\eta|\varphi, S \) as

\[
\tilde{p}(\eta|\varphi, S) = \sum_{j=1}^{J} w_{j, \eta|\varphi, S} \phi_{j, \eta|\varphi, S}(\eta).
\]

We approximate (8) by

\[
\tilde{p}_{\gamma}(\varphi|S) = \gamma \tilde{p}(\varphi|S) + (1 - \gamma) \tilde{p}(\varphi|S_1), \tag{12}
\]

and the semi-modular posterior (9) by

\[
\tilde{p}_{\gamma}(\varphi|S) \text{ is itself a Gaussian mixture, with } 2J \text{ components, and component densities}
\]

\[
\{\phi_{j, \varphi|S_1}(\varphi), \phi_{j, \varphi|S}(\varphi) : j = 1, \ldots, J\}
\]

and corresponding mixing weights

\[
\{\gamma w_{j, \varphi|S}, (1 - \gamma) w_{j, \varphi|S_1} : j = 1, \ldots, J\}.
\]

Hence both terms on the right-hand side of (13) are Gaussian mixtures. Similar to the cutting feedback case of Sect. 3.2, Monte Carlo summarization of the semi-modular approximation is easy, involving sequential simulation from two mixture models.
4.2 Choosing the influence parameter

We now outline a convenient approach to the choice of the influence parameter γ. We write

$$G_\gamma(S) = \text{KL}(p_\gamma(\phi|S))\|p(\phi|S_1))$$

for the Kullback-Leibler divergence between the semi-modular marginal posterior distribution for ϕ and $p(\phi|S_1)$. If $\gamma = 1$, then this is the conflict checking statistic $G(S_2|S_1)$ considered in Sect. 3.3. Similar to the discussion of Sect. 3.3, we can replace $p_\gamma(\phi|S)$ and $p(\phi|S_1)$ by their mixture approximations $\tilde{p}_\gamma(\phi|S)$ and $\tilde{p}(\phi|S_1)$, and use a closed-form approximation to Kullback-Leibler divergences between mixtures (Hershey and Olsen 2007, Section 7) to obtain an approximate statistic $\tilde{G}_\gamma(S)$ that is easy to compute.

Define a tail probability

$$p(\gamma) = P(\tilde{G}(S_2|S_{obs,1}) \geq \tilde{G}(S_{obs})),$$

(14)

where $S_2^i \sim p(S_2|S_{obs,1})$. Simulation of S_2 can be approximated by simulation from $\tilde{p}(S_2|S_{obs,1})$ if needed. We propose to choose γ as the largest value γ' such that $p(\gamma') > \alpha$, where α is a cutoff for a measure of surprise such as 0.05. Finding γ' can be done by computing $p(\gamma)$ for γ on a grid. The intuitive meaning of choosing γ in this way is the following. If there is no conflict at level α according to the check of Sect. 3.3, then we choose $\gamma = 1$ and we use the full posterior. If there is a conflict, then we back off from $\gamma = 1$ to a smaller value such that the conflict would be avoided if $\tilde{p}_\gamma(\phi|S)$ had been the full posterior marginal for ϕ. The idea is to use as much of the full posterior information as possible, subject to retaining an interpretation for the inference that is not in conflict with that based only on the summary S_1.

5 Examples

We consider two examples. The first concerns a collective cell spreading model. A common use for cutting feedback methods is to explore whether misspecification of one module impacts inference about certain parameters. If cut and full posterior inferences have a similar interpretation, this might be reassuring that inferences of interest are not sensitive to the misspecification. In the cell spreading model it has been noted in past work by Frazier and Drovandi (2021) that the cell interaction component fails to capture some aspects of the observed data, and for this example we use cutting feedback to demonstrate that this inadequacy does not affect inference about cell proliferation. The example also illustrates the usefulness of the mixture modelling approach for exploring the informativeness of summary statistics for inference about different parameters in a computationally thrifty way. Our second example considers time series models for asset returns with jumps. We start by considering a continuous time model and explore cutting feedback so that jump parameters are estimated using only summary statistics on high frequency intra-day returns. This results in different inferences about the jump parameters compared to the ordinary posterior where summary statistics incorporate both information from both daily and intra-day returns. A similar discrete-time model is then discussed, where the performance of full, cut and semi-modular posterior distributions are explored for forecasting purposes.

5.1 Collective cell spreading

Our first example considers a model developed in Browning et al. (2018) for collective cell-spreading. Their model is useful in applications to understanding skin cancer growth and wound healing. Misspecification for this model was discussed in the supplementary material of Frazier and Drovandi (2021), and we apply cutting feedback methods to understand the effect of this misspecification on inference. The model has three unknown parameters, $\theta = (m, \rho, \gamma_b)^T$. The rates of motility (cell movement) and proliferation (cell birth) are given by m and ρ, respectively. The parameter γ_b is part of a Gaussian kernel used to measure the closeness of cells. The prior distribution for θ has independent uniform components, $m \sim U(0, 10), \rho \sim U(0, 0.1)$ and $\gamma_b \sim U(0, 20)$. The reader is referred to Browning et al. (2018) for a detailed discussion of the model.

The summary statistics used, following Frazier and Drovandi (2021), are:

1. The number of cells at 12, 24 and 36 hours (S_1).
2. The pair correlation computed at 12, 24 and 36 hrs (S_2).

The summary statistic vector S_1 is intended to be informative about ρ, and S_2 is intended to be informative about m and γ_b. It is reasonable to suspect that the observed number of cells can be recovered for appropriate values of the model parameter. However, it is more challenging to capture the spatial dependence of the cell population, i.e. how the cells interact with each other. Accurate estimation of ρ is important as cell proliferation drives cancer growth, and cancer treatments would aim to reduce this parameter. Therefore, there is an interest in inferring ρ in a way that is robust to potential misspecification of the cell interaction component of the model. We consider a simulated dataset first where the model is correctly specified, using $\theta = (1, 0.04, 5)$. For the real data, Frazier and Drovandi (2021) show that the model does not capture the way that the observed pair correlation changes over time.
We generate $N = 10^5$ simulations from the prior predictive distribution. In an effort to improve the Gaussian mixture model (GMM) fit, we first transform each marginal summary statistic and parameter distribution using the probability integral transform to uniform, and then push the transformed samples through the standard normal quantile function. For the prior distribution of the parameters, the distribution function has an analytic form. For the summary statistics, the distribution function is estimated by kernel density estimation, and so the marginal distribution of the transformed summaries is only approximately standard normal. The kernel bandwidth used was the optimal one for Gaussian densities (see Bowman and Azzalini (1997, Section 2.4.2), for example). Based on Fig. 2, even after transforming the marginal distributions, the dependence structure is complex, both between parameters and summary statistics, and between the summary statistics themselves. Hence this represents a challenging application for the GMM approach.

A GMM with 10 components was fitted to the transformed prior predictive samples. We also ran the method with 15 components and obtained qualitatively similar results. In the GMM we assumed unrestricted component covariance matrices, and estimation was performed using an EM algorithm. The EM algorithm was run for a maximum of 100,000 iterations and was terminated if the tolerance based on the log-likelihood fell below 10^{-10}. The estimation was repeated for 100 random initialisations, and the run with the largest log-likelihood returned. MATLAB was used to implement all computations. The fitted GMM was used to approximately sample the posterior density $p(\theta|S_1, S_2)$ and the cut posterior density $p_{\text{cut}}(\theta|S_1, S_2) = p(\rho|S_1)p(m, \gamma_b|\rho, S_1, S_2)$. The parameter samples generated from the fitted GMM were passed through the inverse transform to generate samples from the approximate posterior distributions on the original parameter space.

The marginal posterior estimates for the simulated and real datasets are shown in Figs. 3 and 4, respectively. We also include the estimates from Frazier and Drovandi (2021) using their robust Bayesian synthetic likelihood (BSL) method with variance inflation. These estimates should be robust to potential misspecification of the spatial dependence of cells, in the sense that it can reduce the influence of summaries that the

![Fig. 2 Marginal densities and bivariate scatterplots based on the joint distribution of parameters and summary statistics generated from prior predictive distribution (after a marginal transformation of the parameters and summary statistics)]
Fig. 3 Estimates of marginal posterior densities for m, ρ and γ_b obtained using robust Bayesian synthetic likelihood with variance inflation (R-BSL-V), GMM approximation to the full posterior (GMM) and GMM approximation to the cut posterior (GMM cut) for the simulated data for collective cell spreading model. The dashed vertical lines indicate the true parameter values.

Fig. 4 Estimates of marginal posterior densities for m, ρ and γ_b obtained using robust Bayesian synthetic likelihood with variance inflation (R-BSL-V), GMM approximation to the full posterior (GMM) and GMM approximation to the cut posterior (GMM cut) for the real data for collective cell spreading model.

model is not compatible with. It can be seen that the cutting feedback GMM posterior approximation does not differ greatly from the GMM posterior approximation, even for the real data. This is consistent with the results obtained in Frazier and Drovandi (2021). This indicates that the inability to recover S_2 is not adversely affecting inference about ρ. A referee observes that the marginal posterior density for ρ seems to differ more between the cut and full posteriors than for the other parameters, for both real and simulated data. The difference between the posterior location for the cut and full posterior is still small compared to the posterior variability. We suspect the difference that is observed is due to the limitations of the GMM approximation. This GMM posterior approximation is surprisingly accurate given the greatly reduced number of model simulations used compared to BSL here. The BSL method required roughly 2.5 million
model simulations, whereas the GMM approach required only 100,000. However, the fitting of the mixture model once the simulations are obtained requires substantial computation in addition to the model simulations, and more than ten mixture components would be required as well as a larger training set if high accuracy is needed. It is too computationally intensive to use many more components than we have, and numerically much more difficult to find the MLE.

Another potential advantage of the GMM approach is that we can thriftily explore the sensitivity of different summary statistic choices on each parameter. Figure 5 illustrates this using the simulated data, where marginal posterior densities for \(m, \rho \) and \(\gamma_b \). The different lines in each plot are estimates obtained by conditioning on different scalar summary statistics.

5.2 Continuous time model for asset returns with jumps

Our next example considers a continuous time model for asset returns with jumps and illustrates the use of our conflict checking approach for deciding whether or not to cut feedback, as well as our proposed semi-modular method. Here the use of a cut posterior distribution results in different inferences to those of the full posterior distribution. Let \(P_t \) denote the instantaneous price of an asset at time \(t \geq 0 \). For \(p_t = \ln P_t \), suppose that \(p_t \) evolves according to the bivariate jump-diffusion process

\[
dp_t = \mu_p \, dt + \exp\left(\frac{V_t}{2}\right) \, dW^P_t + dJ^P_t \tag{15}
\]

\[
dV_t = \kappa (\alpha - V_t) \, dt + \sigma_v \, dW^v_t \tag{16}
\]

\[
dJ^p_t = Z_t \, dN_t, \quad Z_t \sim N\left(\mu_z, \sigma_z^2\right) \tag{17}
\]

where \(dW^j_t, j \in \{v, p\} \), are correlated Brownian motion processes, with instantaneous correlation \(\rho \). \(N_t \) is a counting process, \(V_t \) is a latent volatility process, and \(dJ^P_t \) is a process of unobservable jumps, and \(\mu_p, \kappa, \alpha, \sigma_v, \mu_z \) and \(\sigma_z \) are unknown parameters.

The above model is similar to the stochastic volatility jump-diffusion model studied in Creel and Kristensen (2015) and Frazier and Renault (2020). However, we model the jump process via a conditionally deterministic Hawkes process (Aït-Sahalia et al. 2015; Maneesoonthorn et al. 2017) for which

\[
\Pr(dN_t = 1) = \delta_t \, dt + o(1), \quad d\delta_t = (d + \beta \delta_t) \, dt + \tau \, dN_t, \tag{18}
\]

where \(d, \beta \) and \(\tau \) are positive unknown parameters. We refer to (15) as the returns model, (16) as the volatility model, and (17) and (18) as the jump model. The unknown parameters are collected as \(\theta = (\varphi^T, \eta^T)\), where

\[
\varphi = (\mu_z, \sigma_z, d, \beta, \tau)^T, \quad \eta = (\mu_p, \kappa, \alpha, \sigma_v, \rho)^T.
\]
The parameters φ control the jump dynamics, while the parameters η are those appearing in the returns and volatility models.

For a general value of θ, and a given sequence of observed log-returns $\{r_t = p_t - p_{t-1} : t \geq 1\}$, the likelihood associated with the model in (15)–(18) is intractable. This intractability is due to the presence of the unobservable state variables V_t, the latent volatilities, and J_t, the unobservable jumps. These variables must be integrated out of the measurement equation for the observables to obtain a likelihood that depends only on the observable data. This integration is made even more difficult by the fact that the transition equations for the latent states do not admit closed-form densities, due to their continuous-time evolution, and must generally be approximated. In contrast, simulation-based methods bypass calculation of the likelihood function by simulating data directly from the model.

We consider the case where the researcher is uncertain of the error specification in the volatility/returns equations, and/or the specification of the jump dynamics. Let us focus on the jump dynamics as a single module, and the volatility/returns specification as a separate module. If intra-day returns are available, inference on the parameters φ governing the jump dynamics can proceed by “cutting” the link with the returns and volatility equations. We observe daily log returns $r_t = p_t - p_{t-1}$ at integer times $t = 1, \ldots, T$, and, for each t, we observe M equally spaced intra-day returns $r_{t,i}$, with $i = 1, \ldots, M$. Define bipower variation, BV_t, and jump-variation, JV_t, as

$$BV_t := \frac{\pi}{2} \left(\frac{M}{M-1} \right) \sum_{i=2}^{M} |r_{t,i}r_{t,(i-1)}|,$$

$$JV_t := \max \{RV_t - BV_t, 0\},$$

where RV_t denotes realized volatility $RV_t = \sum_{i=1}^{M} r_{t,i}^2$. ABC inference on the jump-dynamics can be carried out using the following summary statistics (Frazier et al., 2019):

$$S_{1,1} := \frac{1}{T} \sum_{t=1}^{T} \text{sgn} (r_t) \sqrt{JV_t},$$

$$S_{1,2} := \frac{1}{T} \sum_{t=1}^{T} (JV_t - \overline{JV}_t)^2,$$

$$S_{1,3} := \frac{1}{T} \sum_{t=2}^{T} (JV_t - \overline{JV}_t)(\overline{JV}_{t-1} - \overline{JV}_t),$$

where $\overline{JV}_t = T^{-1} \sum_{i=1}^{T} JV_t$. We also define $S_{1,4}$ and $S_{1,5}$ as the sample skewness and kurtosis respectively of log BV_t.

The summary statistic vector S_1 used for inference on φ in the “cut” posterior is $S_1 = (S_{1,1}, S_{1,2}, S_{1,3}, S_{1,4}, S_{1,5})^T$.

The unknown parameters in the return and volatility equations can be identified using several possible auxiliary models, including those that explicitly capture the relationship between volatility, realized variance, and bipower variation, or various combinations of these components. However, for reasons of parsimony, we only specify an auxiliary model for returns and volatility. In particular, we follow (Frazier et al. 2019) and use a TARCH-T auxiliary model (threshold GARCH auxiliary model with student-t errors).

$$r_t = \sigma_t \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0,1),$$

$$\sigma_t^2 = \gamma_1 + \gamma_2 (r_{t-1} - \gamma_0)^2$$

$$+ \gamma_3 \mathbb{I}[r_{t-1} < 0] (r_{t-1} - \gamma_0)^2 + \gamma_4 \sigma_{t-1}^2$$

with $\gamma = (\gamma_1, \ldots, \gamma_4, \nu)'$, and where $\mathbb{I}[A]$ denotes the indicator function on the set A. The summary statistics S_2 are obtained by evaluating the score vector for the auxiliary model, evaluated at the quasi maximum likelihood estimate (QMLE) for the observed data.

5.2.1 Simulation of the Model

Simulating data from the model can be done using an Euler discretization scheme with step size $1/I$ and I large. Write $p_{t,i}/I = p_{t,i+1}/I$, and define $V_{t,i}/I$ and $\delta_{t,i}/I$ similarly. Define $\Delta N_{t,i}/I = N_{t,i+1}/I - N_{t,i}/I$. We discretize the system and generate data recursively: for each day t, and each intra-day time $i = 1, \ldots, I$, data are simulated according to

$$p_{t,(i+1)/I} = p_{t,i}/I + \frac{1}{I}$$

$$+ \exp \left(V_{t,i}/I/2 \right) \epsilon_{t,i}^p \frac{1}{\sqrt{I}},$$

$$+ Z_{t,i} \Delta N_{t,i}/I$$

$$V_{t,(i+1)/I} = V_{t,i}/I + \kappa (\alpha - V_{t,i}/I) \frac{1}{I}$$

$$+ \frac{\sigma_v}{\sqrt{I}} \left(\rho \epsilon_{t,i}^p + \sqrt{1 - \rho^2} \epsilon_{t,i}^v \right),$$

where ϵ^p, ϵ^v are bivariate standard normal random variables, $Z_{t,i} \sim \mathcal{N}(\mu_z, \sigma_z^2)$ and $\Delta N_{t,(i+1)/I}/I$ is 1 with probability $I^{-1} \delta_{t,(i+1)/I}$, and zero otherwise. Given a trajectory $p_{t,i}/I$ define $r_{t,i}/I = p_{t,i}/I - p_{t,i-1}/I$, $i = 1, \ldots, I$. Then by downsampling these values to a sequence of M equally spaced values (assuming I is an integer multiple of M) we obtain $r_{t,i}$, $i = 1, \ldots, M$, corresponding to the M intraday returns on day t for the observed data.
5.3 Real data analysis

We consider daily returns data on the S&P500 index from 26 February 2010 to 7 February 2017. There are 1750 daily observations, and the most recent 250 observations are reserved for out-of-sample predictive assessments using a related, but more parsimonious, model described in the next subsection. These data were also used in Frazier et al. (2019). Uniform priors are used for each parameter with lower and upper bounds for each parameter given in Table 1. The prior specification reflects the empirically relevant values for these parameters (see Frazier and Renault 2020 for relevant point estimates using a similar dataset), and is similar to the prior specification used in the continuous-time model analyzed by Creel and Kristensen (2015).

Figure 6 shows the marginal posterior densities for the parameters φ in the jump process, and the corresponding “cut” and semi-modular marginal posterior densities. The influence parameter γ in the semi-modular approach is chosen as described in Sect. 4.1, which results in the value $\gamma = 0.41$. The parameters μ_z and σ_z in the jump model, which represent the (average) magnitude and variability of the jumps respectively, are estimated quite differently in the full and cut posterior distributions; the interpretation is that cutting feedback suggests that the magnitude of the jumps in daily returns are smaller (i.e., closer to zero) than under the full posterior, and that the variability of the jump size is smaller than under the full posteriors.

We speculate that the more pronounced distinction between the cut and full posteriors for (μ_z, σ_z) relative to the remaining jump parameters (d, τ, β), is precisely due to the fact that inference for (μ_z, σ_z) is based only on S_1, which only depends on J^V_t and B^V_t, and is therefore not directly influenced by returns or volatility. In particular, there is no feedback between the magnitude of the jumps, measured by μ_z, and the mean of the return series μ_p, so that μ_z can be estimated more precisely using S_1 alone, rather than S_1 and S_2; similarly, by cutting the link between the parameters that impact volatility of returns, i.e., the variability of returns, and the parameters that govern jump variability, we are able to disentangle variability in the returns series from that due to jumps, which is measured by σ_z^2. Conversely, the statistics that influence the remaining parameters, (d, τ, β), which all govern the dependence structure of the jumps series, are not influenced by parameters that impact either volatility or returns: the only component that impacts the dependence structure of jumps is the previous jump realization, which is independent of both returns and volatilities.

The marginal posterior densities were estimated by fitting a Gaussian mixture model to 50,000 simulations from

Parameter	μ_p	κ	α	σ_v	ρ	μ_z	σ_z	d	τ	β
Lower	-0.1	0.05	-1.0	0.001	-0.70	-1.0	0.0	0.01	0.001	0.5
Upper	0.1	0.50	3.0	1.99	0.0	1.0	3.0	0.2	0.2	1- τ

Fig. 6 Marginal densities for jump parameters in asset pricing model with jumps for the full, cut and semi-modular posterior densities
Fig. 7 Observed statistic for conflict check $\tilde{G}(S_{obs,2}|S_{obs,1})$ (left), shown by the red line, within the reference distribution for the check and the tail probability $p(\gamma)$ as γ varies for the semi-modular approach (right), for the asset pricing example.

Figure 7 (left) shows the location of the observed checking statistic $\tilde{G}(S_{obs,2}|S_{obs,1})$ (shown by the red line) within its corresponding reference distribution, demonstrating that the tail probability (7) is very small, and hence that the cut and full posterior distributions are surprisingly different under the reference distribution for the check, supporting the decision to cut. Figure 7 (right) shows how the tail probability (14) varies with γ in the semi-modular approach.

Figure 8 shows how the semi-modular posterior for the various parameters in the jump process change with γ. Our chosen value of γ was 0.41 here, and the figure confirms that for larger values of γ the posterior inference is very different for the corresponding semi-modular and full posterior, particularly for μ_z and σ_z.

While the continuous-time model in Eqs. (15)–(17) yields parameters that have meaningful structural interpretations, it is well-known that forecasts for returns obtained from continuous-time models are often outperformed by more parsimonious discrete-time models. Furthermore, the use of continuous-time models in forecasting is hindered by their computational complexity. Producing forecast densities from continuous-time models requires sequentially approximating the transition density for the states in continuous time, and the conditional density for the observable variables given the states. This approximation is carried out by discretization of the process over a very fine grid, and then simulating forward the process to accurately capture the dynamics. This procedure must then be repeated each time one wishes to produce a forecast. We also note that such an approximation yields a discretization error at each step, which can add additional noise to the resulting forecasts.

Consequently, in order to produce accurate forecasts, we follow Frazier et al. (2019) and consider a more parsimonious discrete-time analogue of the continuous-time model, with likelihood-free inference using summary statistics employed...
to produce the posterior for θ, and a particle filter being used for estimation of the latent states in the production of the forecasts. The resulting model has a similar structural interpretation to the continuous-time model in (15)–(18) but is computationally much simpler to simulate, and does not require any discretization to produce predictive densities.

5.4 Discrete time model

With similar notations to the previous subsection, and following Frazier et al. (2019), we consider the following discrete time model for daily logarithmic returns and bipower variation:

$$ r_t = \exp \left(\frac{h_t}{2} \right) \epsilon_t + \Delta N_t Z_t, $$

$$ \epsilon_t \sim N(0, 1), \quad Z_t \sim N(\mu_z, \sigma_z^2), $$

$$ \log BV_t = \psi_0 + \psi_1 h_t + \sigma_{BV} \zeta_t, $$

$$ \zeta_t \sim N(0, 1), $$

$$ h_t = \omega + \rho h_{t-1} + \sigma_h \eta_t, $$

$$ \eta_t \sim S(\alpha, -1, 0, 1), $$

where $S(\alpha, \beta, \mu, \sigma)$ denotes the α-stable distribution with stability parameter α, skewness β, location μ and scale σ, and

$$ P(\Delta N_t = 1 | \mathcal{F}_{t-1}) = \delta_t = d + \beta \delta_{t-1} + \tau \Delta N_{t-1}, $$

where \mathcal{F}_t denotes the σ-field generated by the observations up to time t and ΔN_t plays a similar role to the continuous time jump process δN_t in (17). The above model has a similar motivation and structure to the continuous-time model, but as discussed earlier it is more convenient for forecasting. It includes an additional measurement equation (20) which depends on intra-day returns, through $\ln BV_t$. We fix the parameter ψ_0 to 0, since this parameter is hard to identify. While Frazier et al. (2019) do infer this parameter, the resulting posteriors are essentially uninformative, and largely resemble the prior. Hence, if the prior is $N(0, 1)$, choosing to fix this value at 0 will have little impact on the resulting predictive exercise. Since our goal is prediction, and not inference, we do not believe this choice has a material impact on the results. The set of unknown parameters is $\theta = (\varphi^\top, \eta^\top)^\top$, where $\varphi = (\mu_z, \sigma_z, d, \beta, \tau)^\top$ are the parameters in the jump module and $\eta = (\psi_0, \psi_1, \sigma_{BV}, \omega, \rho, \sigma_h)^\top$ are the parameters in the return/volatility module. Our prior distributions are the same as those in Frazier et al. (2019), except for the fixed parameter ψ_0.

Once again write the summary statistics as $S = (S_1^\top, S_2^\top)^\top$, where S_1 is informative about φ. Our summary statistics are related to those used in Frazier et al. (2019) for their TARCH-T auxiliary model, which performed best for forecasting in their work. These summary statistics were also the motivation for those used in our continuous-time model, but must be modified here, since the jumps-variation JV cannot be computed. The reason is that the discrete-time model above only generates the summary of intra-day returns $\log BV_t$ directly, without generating the intra-day returns themselves which would be needed to compute the realized volatility. We consider for S_1 the summary statistics obtained from the TARCH-T auxiliary model, so that S_1 contains 5 summary statistics. The jump process appears only in the model for the daily returns (19) in the discrete model, and so it is sensible to use the TARCH-T auxiliary model fitted to the daily returns data to summarize the information about the jump process. For S_2, we consider summaries based on $\log BV_t$. We consider the mean, variance and skewness of both $\log BV_t$, and $\log BV_t − \log BV_{t-1}$, as well as the correlation of $\log BV_t$ and $\log BV_{t-1}$, so that S_2 contains 7 summary statistics.

Similar to Fig. 6 for the continuous-time model, Fig. 9 shows the marginal posterior densities for the parameters φ in the jump process for the discrete time model, and the corresponding “cut” and semi-modular marginal posterior densities. Once again, the influence parameter γ in the semi-modular approach is chosen as described in Sect. 4.1, resulting in $\gamma = 0.01$ so that the SMI posterior is nearly identical to the cut posterior. The marginal posterior densities for d and σ_z in the cut posterior suggest the presence of fewer jumps with less variation around the average jump magnitude. The marginal posterior densities were estimated by fitting a Gaussian mixture model to 50,000 simulations from the prior for parameters and summary statistics. Once again, variables are transformed to be marginally univariate normal before fitting the mixture, and the mclust package (Scrucca et al. 2016) was used to choose the number of mixture components up to a maximum of 10 by BIC, considering different covariance structures for the components. The final model had 9 mixture components, with distinct and unrestricted component covariance matrices.

To assess the forecast performance, we first estimate the posterior distribution of θ based on the training set observations. This estimate is then kept fixed throughout the forecast period, and a bootstrap filter (Gordon et al. 1993) is used to estimate the latent states h_t, ΔN_t, conditional on the data up to time t. We write this data as $r_{1:T} = (r_{1}, \ldots, r_{T})^\top$, $BV_{1:T} = (BV_1, \ldots, BV_T)^\top$. Write $y_t = (r_{1:T}, BV_{1:T})^\top$. We use 5, 000 particles in the particle filter. To obtain a one-step ahead forecast at time T, write $h_{T,p}, \Delta N_{T,p}$ for the values for particle p of $h_T, \Delta N_T$ for posterior parameter sample θ^p, $s = 1, \ldots, S$, $p = 1, \ldots, P$. Write $\delta_{T,p}$ for the corresponding values of δ_t. We use $S = 1,000$. The one-step ahead
Fig. 9 Marginal densities for jump parameters in discrete time asset pricing model with jumps for the full, cut and semi-modular posterior densities. The cut and semi-modular posterior densities are similar in all panels.

Table 2

Outcome	\(\gamma = 0 \)	\(\gamma = 0.2 \)	\(\gamma = 0.4 \)	\(\gamma = 0.6 \)	\(\gamma = 0.8 \)	\(\gamma = 1.0 \)
\(r_t \)	LS -0.670	-0.673	-0.677	-0.682	-0.686	-0.690
	QS 0.612	0.615	0.615	0.616	0.616	0.617
\(\log BV_t \)	CRPS -0.259	-0.259	-0.260	-0.260	-0.260	-0.260
	LS -3.894	-3.877	-3.914	-3.909	-3.926	-3.924
	QS -0.231	-0.231	-0.232	-0.228	-0.228	-0.228
	CRPS -1.801	-1.806	-1.819	-1.823	-1.833	-1.840

Forecast density is approximated by

\[
\tilde{p}(y_{T+1}|y_{1:T}) \approx \frac{1}{S \times P} \sum_{s=1}^{S} \sum_{p=1}^{P} p(y_{T+1}|h_{T+1}^s) = \Delta N_{T+1}^s = \Delta N_{T+1}^{s, \theta},
\]

where \(h_{T+1, s}^p \) and \(\Delta N_{T+1}^s \) are obtained by simulating from (21)–(22) with \(h_T = h_T^s \) and \(\delta_T = \delta_T^s \), and \(p(y_{T+1}|h_T, \Delta N_T, \theta) \) is defined from equation (19). Similar to Frazier et al. (2019), out-of-sample predictive performance for the one-step ahead forecasts are assessed by average predictive log score, quadratic score, and continuous ranked probability score, with results shown in Table 2.

Although the largest logarithmic and CRPS score values occur for small values for \(\gamma \) for both outcomes, the differences in forecasting performance between methods are minor in any practical sense.

6 Discussion

Cutting feedback methods are useful in applications involving multi-modal models, where they can be used both as a diagnostic for understanding misspecification and posterior sensitivity as well as an alternative to using the full posterior for predictive inference when the development of an alternative model is infeasible. As far as we are aware, the use of cutting feedback methods has so far been restricted in the lit-
erature to models with tractable likelihood. The extension to the intractable likelihood setting discussed here can be useful when it is desired to restrict the information used for inference about a subset of the parameters to that obtained from a subset of the summary statistics only. Our proposed Gaussian mixture model approach to estimation of the posterior distribution makes the cutting feedback computations easy to perform. It facilitates model checks which can help guide the decision of whether or not to cut, and allows a semi-modular inference extension where feedback is partially cut.

The use of cutting feedback methods in likelihood-free inference is particularly helpful since model misspecification is known to negatively impact common likelihood-free inference procedures. In the case of ABC, Frazier et al. (2020) demonstrate that if the model is misspecified, then the ABC posterior does not produce valid inferences and can be ill-behaved. Frazier et al. (2021) show that similar problems occur for Bayesian synthetic likelihood approaches. Hence a benefit of cutting feedback is that it can be used to hedge against the potential consequences of using misspecified models in likelihood-free inference. Recently, Pacchiaridi and Dutta (2021) consider a generalized Bayesian approach to likelihood-free inference based on scoring rules which can deal with misspecification.

There has been renewed interest recently in the idea of robustifying Bayesian inference by conditioning on an insufficient data summary to exclude information (Li et al. 2017; Lewis et al. 2021). This is interesting regardless of whether the likelihood is tractable or not, and the consideration of complex data summaries for conditioning leads to possible applications of likelihood-free inference methods in models with tractable likelihood when misspecification is a concern. Another recent work which is relevant to the likelihood-free inference literature is Miller and Dunson (2019), where the authors make a connection between inference for a “coarsened” version of the data, which is reminiscent of ABC methods, and the use of posterior distributions. In traditional ABC methods the ABC kernel can be interpreted in terms of an allowance for model misspecification (Wilkinson 2013), and an interesting avenue for future research might be to pursue ABC approaches to the semi-modular inference framework making use of this interpretation as a way of partially cutting feedback. This seems related to the kernel-smoothing δ-SMI approach discussed in Nicholls et al. (2022).

Acknowledgements DTF is supported by the Australian Research Council. CD is supported by the Australian Research Council through the Future Fellowship scheme (FT210100260). SAS is supported by the Australian Research Council through the Discovery Project scheme (FT170106079) and the ARC Centre of Excellence in Mathematical and Statistical Frontiers (ACMS; CE140100049). We thank an anonymous referee and the editorial team for comments which greatly improved the manuscript.

References

Ait-Sahalia, Y., Cacho-Diaz, J., Laeven, R.J.: Modeling financial contagion using mutually exciting jump processes. J. Financ. Econ. 117(3), 585–606 (2015)

Bennett, J., Wakefield, J.: Errors-in-variables in joint population pharmacokinetic/pharmacodynamic modeling. Biometrics 57(3), 803–812 (2001)

Bissiri, P.G., Holmes, C.C., Walker, S.G.: A general framework for updating belief distributions. J. Royal Stat. Soc.: Series B (Stat. Methodol.) 78(5), 1103–1130 (2016)

Bonassi, F.V., West, M.: Sequential Monte Carlo with adaptive weights for approximate Bayesian computation. Bayesian Anal. 10(1), 171–187 (2015)

Bonassi, F.V., You, L., West, M.: Bayesian learning from marginal data in bionetwork models. Stat. Appl. Genet. Mol. Biol. 10(1), (2011)

Bowman, A.W., Azzalini, A.: Applied Smoothing Techniques for Data Analysis. Oxford University Press, New York (1997)

Browning, A.P., McCue, S.W., Binny, R.N., et al.: Inferring parameters for a lattice-free model of cell migration and proliferation using experimental data. J. Theor. Biol. 437, 251–260 (2018)

Carmona, C., Nicholls, G.: Semi-modular inference: enhanced learning in multi-modular models by tempering the influence of components. In: Chiappa S, Calandra R (eds) Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, vol 108. PMLR, pp 4226–4235, (2020)

Carmona, C., Nicholls, G.: Scalable semi-modular inference with variational meta-posteriors, (2022). arXiv:2204.00296

Chakraborty, A., Nott, D.J., Evans, M.: Weakly informative priors and prior-data conflict checking for likelihood-free inference. Stat. Interface, To appear, (2023)

Clarté, G., Robert, C.P., Ryder, R.J., et al.: Componentwise approximate Bayesian computation via Gibbs-like steps. Biometrika 108(3), 591–607 (2020)

Creel, M., Kristensen, D.: ABC of SV: limited information likelihood inference in stochastic volatility jump-diffusion models. J. Empir. Financ. 31, 85–108 (2015)

Fan, Y., Nott, D.J., Sisson, S.A.: Approximate Bayesian computation via regression density estimation. Stat 2(1), 34–48 (2013)

Forbes, F., Nguyen, H.D., Nguyen, T.T. et al.: Approximate Bayesian computation with surrogate posterior distributions. Inria technical report, hal-03193256, (2021), https://hal.archives-ouvertes.fr/hal-03193256v2/file/GilliM-ABC_v2_4HALApril2021.pdf

Frazier, D.T., Drovandi, C.: Robust approximate Bayesian inference with synthetic likelihood. J. Comput. Graph. Stat. 30(4), 958–976 (2021)

Frazier, D.T., Nott, D.J.: Cutting feedback and modularized analyses in generalized bayesian inference, (2022). arXiv:2202.09968

Frazier, D.T., Renault, E.: Indirect inference with (out) constraints. Quant. Econ. 11(1), 113–159 (2020)

Frazier, D.T., Maneesoonthorn, W., Martin, G.M., et al.: Approximate Bayesian forecasting. Int. J. Forecast. 35(2), 521–539 (2019)

Frazier, D.T., Robert, C.P., Rousseau, J.: Model misspecification in approximate Bayesian computation: consequences and diagnostics. J. Royal Stat. Soc.: Series B (Stat. Methodol.) 82(2), 421–444 (2020)

Frazier, D.T., Drovandi, C., Nott, D.J.: Synthetic likelihood in misspecified models: Consequences and corrections, (2021). arXiv preprint arXiv:2104.03436

Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F (Radar Signal Proc.) 140(2), 107–113 (1993)

Greenberg, D.S., Nonnenmacher, M., Macke, J.H.: Automatic posterior transformation for likelihood-free inference. In: Chaudhuri
