COVID-19 broke out in the world in early December 2019 and rapidly turned into a pandemic. According to the World Health Organization (WHO) data, 227,940,972 people have been infected, while 4,682,899 people have been killed by the disease around the world until today [1]. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus which has caused COVID-19 pandemic [2]. Common symptoms of COVID-19 pandemic can be listed as fever, muscle pain, dry cough, head ache, a sore throat ve chest pain [3, 4]. Due to these symptoms, COVID-19 has been accepted as a respiratory tract disease. It may take these symptoms 2 to 14 days to appear in a person who has been infected with the virus [5]. Despite recent attempts at finding a treatment method, such as a drug or vaccine, against the disease, no viable solutions to COVID-19 have been found yet. Various medical imaging techniques such as X-ray and computed tomography (CT) can be considered as important tools in the diagnosis of COVID-19 cases [6, 7]. Coronavirus usually causes lung infections. Therefore, chest X-ray and CT images are widely used by physicians and radiologists for an accurate and quick diagnosis in the patients infected with the virus.

Polymerase chain reaction (PCR) test method is widely used for the diagnosis of COVID-19. However, the test is not always accessible at all healthcare points. It must
be also noted that compared to PCR tests, X-ray and CT-based imaging techniques are usually more reliable and accessible. When CT and X-ray methods are compared, X-ray machines are preferred more by radiologists and physicians because of their accessibility nearly in every location including remote rural areas, cost-effectiveness, and their capacity to perform imaging in a fairly short period of time [5]. However, it is also time-consuming for physicians and radiologists to evaluate the patients’ X-ray images. Furthermore, it also runs the risk of inaccurate diagnosis because the detection of infected areas in an image requires technical know-how and medical experience. Therefore, an accurate and quick computer-assisted diagnosis system is needed for COVID-19 cases. The following literature review indicated that deep learning (DL) algorithms were used in order to diagnose COVID-19 in X-ray images successfully [5, 8–12].

Introduced by Kononen [13] in 1998, tissue microarray (TMA) is an innovative and high-performance technique used for the analysis of multiple tissue samples. It is a high-end technology with a remarkable performance and has been used in the analysis of molecular identifiers recently. There is sufficient evidence to claim that epidermal growth factor receptor (EGFR) plays an important role in tumor development [14]. In parallel with this, it was also observed that EGFR played an important role in the initiation and progress of colorectal cancer [15].

The present study proposes a convolutional neural network (CNN) classification approach with optimized hyperparameters using gradient-based optimizer (GBO) algorithm [16]. CNN is the most widely used DL model. The proposed approach was used to classify COVID-19, normal, and viral pneumonia. In addition, it can also be used to classify other types such as epithelial and stromal regions in EFGR-colon in digitized tumor TMAs.

Real-world applications in many different fields such as medicine, agriculture, and engineering can be approached as an optimization problem. To this day, numerous optimization approaches have been developed in order to solve real-world problems in an effective way. However, high-performance optimization approaches are needed due to the fact that the difficulty of these optimization problems is increasing day by day. In this respect, metaheuristic algorithms (MAs), which are known as global optimization techniques, have been widely used to solve challenging optimization problems [17–22].

Artificial neural network (ANN) is an important machine learning approach inspired by the neural system in human mind. It involves an input layer, hidden layer, and output layer, and aims to adjust optimal values in relation with the weight of each neuron in ANN following a training process [23]. The performance of an ANN structure is heavily affected by the number and variety of training data. If an insufficient number of data is used in the training process, the performance of ANN is very likely to decrease. Various changes have been so far applied to ANN structure to design feedback and multi-layer model structures, which paved the way for the solution of non-linear problems. With the advent of multi-layer neural network models, the number of layers in an ANN structure has also increased and led to the development of CNN, which is a high-performance version of ANN models. Introduced during the 1990s, CNN was not preferred due to computer hardware incapacity in this period [23]. However, thanks to the technological developments in computer hardware and graphical processing unit (GPU) in the following years, CNN performances have also increased remarkably in recent years, and it became one of the most widely used machine learning approaches in various fields such as health, transportation, security, stock exchange, and law.

Various CNN architectures have been so far proposed in the existing literature, as manifested by several examples such as MobileNet-V2, ShuffleNet, GoogleNet, VGG-16, VGG-19, and AlexNet. In these CNN architectures, hyperparameters such as learning rate, solver, L2 regularization, gradient threshold method, and gradient threshold are known to affect CNN performance directly. Therefore, it is not surprising that various studies in the existing literature attempted to offer solutions to the optimization of these hyperparameters.

The present study benefited from AlexNet, DarkNet-19, Inception-v3, MobileNet, ResNet-18, and ShuffleNet architectures for the proposed approach, i.e., a COVID-19 and colon cancer diagnosis system with optimized hyperparameters using GBO. In order to optimize hyperparameters such as learning rate, solver, L2 regularization, gradient threshold method, and gradient threshold in these architectures, GBO algorithm proposed by Ahmadianfar et al. [16] was used in the present study. Inspired by Newton’s method, GBO is one of the most recent metaheuristic optimization approaches. The present study aims to optimize hyperparameters in AlexNet, DarkNet-19, Inception-v3, MobileNet, ResNet-18, and ShuffleNet and increase its classification performance.

The main contributions of the present study can be summarized as follows:

1) The present study proposes a high-performance approach which can classify both COVID-19 and colon cancer in TMAs. No approach which can classify both diseases has been so far proposed in the current literature.

2) The proposed COVID-CCD-Net approach benefits from GBO [16] algorithm proposed in 2020 in order to optimize hyperparameters in AlexNet, DarkNet-19, Inception-v3, MobileNet, ResNet-18, and ShuffleNet.

3) The present study aims to obtain a high level of accuracy with a low value of epoch in AlexNet, DarkNet-19,
Inception-v3, MobileNet, ResNet-18, and ShuffleNet architectures in the proposed COVID-CCD-Net approach. On the other hand, the non-optimized CNN methods obtained a much lower level of accuracy with the same value of epoch.

The organization of the present study is as follows: “Section 2” describes the related works. “Section 3” presents hyperparameter optimization techniques which benefit from genetic algorithm--based approaches are also likely to be problematic.

Lima [33] compared various hyperparameter optimization algorithms such as random search, simulated annealing, and tree-of-parzen estimators in order to find the most effective CNN architecture in the classification of benign and malignant small pulmonary nodules. Kumar and Hati [24] proposed the adaptive gradient optimizer--based deep convolutional neural network (ADG-dCNN) approach for bearing and rotor faults detection in squirrel cage induction motor. Ilievski et al. [40] used radial basis function (RBF) as a surrogate of hyperparameter optimization in order to reduce the complexity of original network. Talathi [41] proposed a simple sequential model based optimization algorithm in order to optimize hyperparameters in deep CNN architectures.

Rattanavorragant and Jewajinda proposed an approach using an island-based genetic algorithm in order to optimize hyperparameters in DNN automatically [42]. This approach involves two steps: hyperparameter search and a detailed DNN training. Navaneeth and Suchetha proposed the optimized one-dimensional CNN with support vector machine (1-D CNN-SVM) approach in order to diagnose chronic kidney diseases using PSO algorithm [43].

Compared to the literature review above, the main contribution of the present study is that the proposed COVID-CCD-Net approach can detect two important diseases: COVID-19 and colon cancer in TMA. In addition, the proposed approach benefits from GBO, which is a metaheuristic approach, for the optimization of CNN models to overcome various problems mentioned in the existing literature.

2.2 Deep learning approaches for COVID-19

In recent times, many studies focusing on the diagnosis of COVID-19 using CNN have been published [44–50]. The literature review indicates that some of these studies [45–47] focused on the diagnosis of COVID-19 in non-COVID cases. On the other hand, there are also studies which classified cases into three groups as COVID, normal, and pneumonia [48–50]. Within the framework of the present study, the proposed COVID-CCD-Net approach classifies chest X-ray images into three different groups as COVID, normal, and pneumonia.

Shi et al. [51] performed a detailed literature review regarding the state-of-the-art computer-assisted methods for the diagnosis of COVID-19 in X-ray and CT scans. Castiglioni et al. [52] benefited from two chest X-ray datasets containing 250 COVID-19 and 250 non-COVID cases in order to perform training, validation, and testing processes for Resnet-50.
Hemdan et al. [53] proposed a deep learning–based approach called COVIDX-Net in order to diagnose COVID-19 in chest X-ray images automatically. This study involved seven different deep architectures, namely MobileNetV2, VGG19, InceptionV3, DenseNet201, InceptionResNetV2, ResNetV2, and Xception. Khan et al. [54] proposed a CNN-based approach called CoroNet in order to diagnose COVID-19 using X-ray and CT scans based on Xception architecture. The experimental studies demonstrated that the proposed model yielded an overall accuracy rate of 89.6% in four different classes (COVID vs. pneumonia bacterial vs. pneumonia viral vs. normal) and an overall accuracy rate of 95% in three different classes (normal vs. COVID vs. pneumonia).

The proposed COVID-CCD-Net approach differs from other studies on the detection of COVID-19 using CNN models in that it improves classification performance by optimizing hyperparameters of CNN models thanks to GBO approach.

2.3 Computer-aided colon cancer detection approaches

As can be seen in various studies in the existing literature, the number of studies dealing with automatic diagnosis of colon cancer in TMAs is limited. Nguyen et al. [55] analyzed different ensemble approaches for colorectal tissue classification using highly efficient TMAs and proposed an ensemble deep learning–based approach with two different neural network architectures called VGG16 and CapsNet. Thanks to this approach, they classified colorectal tissues in highly efficient TMAs into three different categories, namely tumor, normal, and stroma/others.

Xu et al. [56] proposed a deep CNN approach in order to perform the segmentation and classification of epithelial ve stromal regions in TMAs. This study benefited from two different datasets containing breast and colorectal cancer images. Finally, Linder et al. [57] proposed an approach for an automatic detection of epithelial ve stromal regions in colorectal cancer TMAs thanks to texture features and a SVM classifier.

The proposed COVID-CCD-Net approach is superior to other studies on the detection of colon cancer in TMAs using CNN models in that it optimizes the hyperparameters of CNN models, which significantly increases the detection accuracy rates of colon cancer. The effective performance of CNN in image classification contributes to the present study to a higher extent compared to other studies using other approaches for the classification of colon cancer in TMAs in the existing literature.

3 Theoretical background

3.1 Gradient-based optimizer

Inspired by gradient-based Newton’s method, GBO was proposed by Ahmadianfar et al. [16] as one of the most recent metaheuristic algorithms. This algorithm is based on two main operators: gradient search rule (GSR) and local escaping operator (LEO). Main steps of GBO are described below.

![Flowchart of the GBO](image-url)
3.1.1 Initialization process

In GBO, each member of the population is called a “vector” and, as seen in Eq. 1, the population consists of N number of vectors in a D-dimension search space.

$$X_{n,d} = [X_{n,1}, X_{n,2}, \ldots, X_{n,D}], n = 1, 2, \ldots, N, d = 1, 2, \ldots, D$$ \hspace{1cm} (1)

As shown in Eq. 2, each vector in the initial population is created by assigning random values within the boundaries of search space.

$$X_n = X_{\min} + \text{rand}(0,1) \times (X_{\max} - X_{\min})$$ \hspace{1cm} (2)

Here, X_{\min} and X_{\max} are lower and upper boundaries in the search space, respectively, while rand(0,1) is a random number in a range of [0,1].

3.1.2 Gradient search rule

GSR operator is used in GBO in order to increase exploration ability, eliminate local minimum, and accelerate the convergence rate. Thus, optimal solutions can be obtained within the search space [16].
The position of a vector in the next iteration \((x_{n+1})\) is calculated using Eqs. 3 and 4 with: \(X_1^n, X_2^n,\) and \(x_n^n\), which denotes the current position of the vector.

\[
x_{n+1}^m = r_a \times (r_b \times X_1^n + (1 - r_b) \times X_2^n) + (1 - r_a) \times X_3^n
\]
(3)

\[
X_3^m = x_n^m - p_1 \times (X_2^n - X_1^n)
\]
(4)

\(r_a\) and \(r_b\) are random numbers in a range of \([0, 1]\). \(X_1^n\) and \(X_2^n\) in this equation are shown in the following equations:

\[
X_1^n = x_n^m - GSR + DM\]
(5)

\[
X_2^n = x_{\text{best}} - GSR + DM\]
(6)

Here, \(x_n^n\) and \(x_{\text{best}}\) are the current position and the best vector in the population, respectively. GSR denotes the gradient search rule, while DM represents the direction of movement. GSR enables GBO to assign randomly, improve its exploration ability and eliminate local minimal. GSR can be calculated as shown in the following equations [16]:

\[
\text{GSR} = \text{randn} \times p_1 \times \frac{2 \Delta x \times x_n}{(x_{\text{worst}} - x_{\text{best}} + \varepsilon)}
\]
(7)

\[
\Delta x = \text{rand} (1 : N) \times |\text{step}| \]
(8)

\[
\text{step} = \frac{(x_{\text{best}} - x_{n+1}^m) + \delta}{2}
\]
(9)

\[
\delta = 2 \times \text{rand} \times \left(\frac{|x_{r_1}^m + x_{r_2}^m + x_{r_3}^m + x_{r_4}^m - x_n^m|}{4}\right)
\]
(10)

Here, \(\text{rand}(1:N)\) is an \(N\)-dimensional random number, \(r_1, r_2, r_3,\) and \(r_4\) denote random integer numbers selected from a range of \([1, N]\), and finally, step represents the step size.

\[
DM = \text{rand} \times p_2 \times (x_{\text{best}} - x_n)
\]
(11)

Global exploration and local exploitation must be balanced in an algorithm in order to find solutions closer to a global optimal value. \(p_1\) and \(p_2\) parameters in Eqs. 4, 7, and 11 are used to balance exploration and exploitation in GBO [16]. These parameters are calculated using the following equations:

\[
p_1 = p_2 = 2 \times \text{rand} \times \alpha \times \alpha
\]
(12)

\[
\alpha = \left|\beta \times \sin\left(\frac{3\pi}{2} + \sin\left(\beta \times \frac{3\pi}{2}\right)\right)\right|
\]
(13)

\[
\beta = \beta_{\text{min}} + (\beta_{\text{max}} - \beta_{\text{min}}) \times \left(1 - \left(\frac{m}{M}\right)^3\right)^2
\]
(14)

Here, \(\beta_{\text{min}}\) and \(\beta_{\text{max}}\) are 0.2 and 1.2, respectively, and \(m\) denotes the current number of iteration. \(M\) represents the maximum number of iteration.
3.1.3 Local escaping operator

LEO is used to improve efficiency of GBO. It can change the position of x_n^{m+1} vector significantly. Thanks to LEO, X_{LEO}^m, which is a new vector, is created as shown in Eqs. 15 and 16, and assigned to x_n^{m+1} vector, as shown in Eq. 17.

$$X_{LEO}^m = x_n^{m+1} + f_1 \times (u_1 \times s_{best} - u_2 \times s_{n}) + f_2 \times p_1 \times \frac{u_1 \times (X_{2m}^m - X_{1m}^m) + u_2 \times (s_1^m - s_2^m)}{2}, \quad \text{if rand} < 0.5$$ \hspace{1cm} (15)

$$X_{LEO}^m = x_n^{m+1} + f_1 \times (u_1 \times s_{best} - u_2 \times s_{n}) + f_2 \times p_1 \times \frac{u_1 \times (X_{2m}^m - X_{1m}^m) + u_2 \times (s_1^m - s_2^m)}{2}, \quad \text{if rand} \geq 0.5$$ \hspace{1cm} (16)

Table 2 Accuracy, F1-score and Std. dev. results of validation and test for the COVID-19 dataset

	Validation						Test			
	Acc. (mean)	Acc. (max)	F1-score	Std. dev.	Acc. (mean)	Acc. (max)	F1-score	Std. dev.	Acc. (mean)	Acc. (max)
AlexNet	90.065	93.638	90.254	2.627	87.089	90.601	87.305	2.590		
DarkNet-19	93.189	95.269	93.292	1.833	91.149	94.125	91.309	1.526		
Inception-v3	89.233	93.964	89.291	3.610	86.436	90.601	86.631	3.171		
MobileNet	82.007	86.134	81.716	3.052	81.312	85.248	81.333	2.470		
ResNet-18	91.313	93.638	91.418	1.460	88.962	91.253	89.115	1.793		
ShuffleNet	88.679	94.454	88.665	4.035	86.449	90.339	86.535	3.075		
COVID-CCD-Net (AlexNet)	96.354	97.879	96.460	1.166	96.044	98.172	96.138	0.927		
COVID-CCD-Net (DarkNet-19)	97.553	98.532	97.654	0.631	97.369	98.303	97.458	0.496		
COVID-CCD-Net (Inception-v3)	95.718	97.553	95.830	1.139	94.791	96.736	94.900	1.736		
COVID-CCD-Net (MobileNet)	95.057	97.227	95.179	1.502	94.608	98.042	94.718	1.816		
COVID-CCD-Net (ResNet-18)	97.977	98.532	98.063	0.301	98.107	98.695	98.158	0.353		
COVID-CCD-Net (ShuffleNet)	96.223	96.900	96.312	0.424	96.730	98.172	96.805	0.623		
Quasi-Newton-based AlexNet	94.043	96.574	94.205	4.123	91.879	93.994	92.099	3.038		
Quasi-Newton-based DarkNet-19	96.807	97.226	96.914	0.373	94.072	95.430	94.225	1.399		
Quasi-Newton-based Inception-v3	94.266	95.432	94.331	0.868	91.051	93.733	91.179	2.554		
Quasi-Newton-based MobileNet	93.541	95.595	93.653	1.723	89.713	92.298	89.925	1.990		
Quasi-Newton-based ResNet-18	95.834	96.248	95.916	0.511	93.019	94.125	93.124	0.869		
Quasi-Newton-based ShuffleNet	95.050	95.759	95.142	1.055	90.551	93.081	90.731	2.336		

Fig. 4 Bar charts for the COVID-19 dataset
Here, f_1 and f_2 are random numbers generated in a range of $[-1, 1]$, and u_1, u_2, and u_3 are three randomly generated and different numbers, while x_k^m is a newly generated vector. u_1, u_2, u_3, and x_k^m are defined as shown in the following equations:

$$u_1 = \left\{ \begin{array}{ll} 2 \times \text{rand}, & \text{if } \mu_1 < 0.5 \\ 1, & \text{else} \end{array} \right. \quad (17)$$

$$u_2 = \left\{ \begin{array}{ll} \text{rand}, & \text{if } \mu_1 < 0.5 \\ 1, & \text{else} \end{array} \right. \quad (18)$$

$$u_3 = \left\{ \begin{array}{ll} \text{rand}, & \text{if } \mu_1 < 0.5 \\ 1, & \text{else} \end{array} \right. \quad (20)$$

$$x_k^m = \left\{ \begin{array}{ll} x_{\text{rand}}^m, & \text{if } \mu_1 < 0.5 \\ x_p^m, & \text{else} \end{array} \right. \quad (21)$$

Here, rand, μ_1, and μ_2 are random numbers in a range of $[0, 1]$, x_{rand}^m denotes a randomly generated new vector, and x_p^m is a vector randomly selected from the population [16]. Flowchart of the GBO is shown in Fig. 1.

3.2 Convolutional neural networks

Convolutional neural networks (CNN) is a special type of neural network inspired by the biological model of animal visual cortex [58, 59]. They are particularly used in the field

	Validation Before optimization	Validation After optimization	Performance improvement	Test Before optimization	Test After optimization	Performance improvement
AlexNet	90.065	96.354	6.289	87.089	96.044	8.955
DarkNet-19	93.189	97.553	4.364	91.149	97.369	6.22
Inception-v3	89.233	95.718	6.485	86.436	94.791	8.355
MobileNet	82.007	95.057	13.05	81.312	94.608	13.296
ResNet-18	91.313	97.977	6.664	88.962	98.107	9.145
ShuffleNet	88.679	96.223	7.544	86.449	96.73	10.281

Table 3 Validation and test accuracy before and after optimization with COVID-CCD-Net on the COVID-19 dataset
of image and sound processing due to their main advantage: the extraction of automatic and adaptive features during a training process [60]. In CNNs, the variable of the network structure (kernel size, stride, padding, etc.) and the network trained (learning rate, momentum, optimization strategies, batch size etc.) are known as hyperparameters [29], which must be adjusted accurately for a more effective CNN performance.

In the present study, learning rate, solver, L2 regularization, gradient threshold method, and gradient threshold value, which are among network trained hyperparameters of AlexNet, DarkNet-19, Inception-v3, MobileNet, ResNet-18, and ShuffleNet, were optimized using GBO algorithm. Learning rate, which is also known as step size, is decisive in terms of updating weights [61, 62]. Solver, on the other hand, represents the optimization method to be used such as Adam, Sgdm, or Rmsprop [63]. The L2 regularization, which is also called weight decay, is a simple regularization method that scales weights down in proportion to their current size [64, 65]. Gradient threshold method and gradient threshold value are parameters related to gradient clipping. If the gradient increases exponentially in magnitude, it means that the training is unstable and can diverge within a few iterations. Gradient clipping helps avoid the exploding gradient problem. If the gradient exceeds the value of gradient threshold, then the gradient is clipped according to gradient threshold method [66, 67].

Input image size in AlexNet architecture, developed by Krizhevsky et al. [68], is 227×227. It consists of 5 convolution and 3 fully connected layers, thus reaching a depth of 8 layers. DarkNet-19 has a depth of 19 layers and its input image size is 256×256 [69]. Introduced by Szegedy et al.

Table 4 Validation and test accuracy before and after optimization with COVID-CCD-Net on the Epistroma dataset

	Before Optimization	After Optimization	Performance Improvement
AlexNet	91.75	98.341	6.591
DarkNet-19	93.773	98.277	4.954
Inception-v3	92.477	99.705	7.228
MobileNet	92.886	95.318	2.432
ResNet-18	94.091	99.545	5.454
ShuffleNet	89.454	97.818	8.364

Table 5 Accuracy, F1-score, and Std. dev. result of validation and test for the Epistroma dataset

	Validation	Test						
	Acc. (mean)	Acc. (max)	F1-score	Std. dev.	Acc. (mean)	Acc. (max)	F1-score	Std. dev.
AlexNet	91.750	93.182	91.615	0.924	90.800	92.727	90.691	1.144
DarkNet-19	93.773	97.273	93.608	2.017	92.909	95.636	92.714	2.518
Inception-v3	92.477	95	92.264	1.255	93.073	96	92.870	1.481
MobileNet	92.886	94.545	92.727	1.066	92.145	94.909	92.009	1.641
ResNet-18	94.091	95	93.950	0.692	94.218	95.636	94.097	1.048
ShuffleNet	89.454	92.273	89.149	2.133	90.491	93.818	90.270	2.105
COVID-CCD-Net (AlexNet)	98.341	99.545	98.278	0.711	97.618	98.909	97.542	0.683
COVID-CCD-Net (DarkNet-19)	98.727	100	98.676	0.996	98.273	99.636	98.211	1.538
COVID-CCD-Net (Inception-v3)	99.705	100	99.692	0.424	98.964	99.636	98.924	0.476
COVID-CCD-Net (MobileNet)	95.318	98.636	95.161	3.561	94.255	97.455	94.094	3.752
COVID-CCD-Net (ResNet-18)	99.545	100	99.526	0.330	98.836	99.636	98.793	0.481
COVID-CCD-Net (ShuffleNet)	97.818	99.091	97.736	0.880	96.164	97.455	96.046	0.955
Quasi-Newton based AlexNet	95.636	97.727	95.505	2.286	95.491	97.455	95.362	2.337
Quasi-Newton based DarkNet-19	97.545	99.091	97.461	2.073	95.491	97.091	95.333	1.326
Quasi-Newton based Inception-v3	97.818	98.636	97.739	0.985	96.436	97.091	96.310	0.598
Quasi-Newton based MobileNet	95.545	96.364	95.407	1.132	93.964	95.273	93.802	0.913
Quasi-Newton based ResNet-18	98.001	99.091	97.929	1.944	96.655	98.182	96.541	1.530
Quasi-Newton based ShuffleNet	97.091	98.636	96.991	1.997	95.927	97.455	95.805	2.063
Inception-v3 model has a depth of 48 layers with an input image size of 299×299. ResNet-18, which has a depth of 18 layers and an input image size of 224×224, was developed by He et al. [71]. Zhang et al. [72] proposed ShuffleNet model with a depth of 50 layers and an input image size of 224×224. Finally, MobileNet, which was proposed by Sandler et al. [73], has a depth of 53 layers and an input image size of 224×224.

4 Hyperparameter optimization of CNN models using gradient-based optimizer

In the present study, hyperparameters of AlexNet, DarkNet-19, Inception-v3, MobileNet, ResNet-18, and ShuffleNet CNN models such as learning rate, solver, L2 regularization, gradient threshold method, and gradient threshold value were optimized using GBO algorithm in
order to classify COVID-19, normal, and viral pneumonia in chest X-ray images. In addition, other types such as epithelial and stromal regions in epidermal growth factor receptor (EGFR) colon in TMAs can also be classified. The proposed approach is called COVID-CCD-Net, as shown in the flowchart in Fig. 2.

In the proposed COVID-CCD-Net approach, initial parameters of GBO such as ε, the number of population and maximum number of iteration are adjusted. Then, an initial population is created by using vectors with randomly assigned values. Each vector consists of 5 dimensions which represent learning rate, solver, L2 regularization, gradient threshold method, and gradient threshold parameters of CNN models. Lower boundary (LB) and upper boundary (UB) values of these parameters are given in Table 1. Learning rate, L2 regularization, and gradient threshold are real values which are randomly generated between LB and UB values. If the solver value is 1, 2, or 3, “sgdm,” “adam,” and “rmsprop” optimization method is selected, respectively. If the gradient threshold method value is 1, 2, or 3, “l2norm,” “global-l2norm,” and “absolute-value” method is selected, respectively. In parallel with these boundaries, each vector

![Fig. 8 Confusion matrices of COVID-19 dataset](image-url)
in the initial population is generated using the formula in Eq. 22:

$$X_{n,i} = LB_i + \text{rand}(0, 1) \times (UB_i - LB_i), \quad n = 1, 2, \ldots, N \text{ and } i = 1, 2, \ldots, 5$$ \quad (22)

The following steps are taken in order to calculate the fitness value of each vector: Firstly, X_n vector whose fitness value will be calculated is sent to CNN model and the values of X_n vector are assigned to learning rate, solver, L2 regularization, gradient threshold method, and gradient threshold parameters of CNN model. Later, CNN model is

![Confusion matrices of Epistroma dataset](image)

Fig. 9 Confusion matrices of Epistroma dataset
trained using the training dataset. Following the training processes, validation accuracy value obtained from the training is sent back to GBO and assigned as the fitness value of X_n vector.

As shown in Fig. 2, each step of the algorithm is iterated until it reaches a maximum number of iterations. At the end, the vector with the most optimal fitness value is accepted as the solution of the problem.

5 Experiments and results

The present study proposes the COVID-CCD-Net approach in which learning rate, solver, L2 regularization, gradient threshold method, and gradient threshold parameters of AlexNet, DarkNet-19, Inception-v3, MobileNet, ResNet-18, and ShuffleNet were optimized using GBO. The classification performance of the proposed approach was tested using two different medical image classification datasets. Additionally, the results of this test were compared with those obtained from non-optimized AlexNet, DarkNet-19, Inception-v3, MobileNet, ResNet-18, and ShuffleNet CNN models. In addition, Quasi-Newton (Q-N) algorithm [74], one of the most fundamental optimization methods, was also used to optimize the hyperparameters of CNN models and compared with the proposed COVID-CCD-Net approach. The following sub-sections describe medical image classification datasets, experiment setup, and present comparative experimental findings.

5.1 Medical image classification datasets

COVID-19 [75, 76] and Epistroma [77] datasets were selected for the experimental studies. COVID-19 dataset consists of three classes, namely “Covid-19,” “Normal,” and “Viral Pneumonia,” with a total of 3829 images. Epistroma dataset, on the other hand, consists of two classes, namely “epithelium” and “stroma,” with a total of 1376 images. In both datasets, 80% and 20% images were used for training and testing processes, respectively and we have performed 5-fold cross-validation. Ten percent of the training data in each data set was also used for validation. Samples images from both datasets are shown in Fig. 3.

5.2 Experimental setup

All experimental studies were carried out on MATLAB R2020a platform. The number of vectors in GBO population
and the maximum number of iterations were selected as 10 in the proposed COVID-CCD-Net approach. In other words, the fitness function is called 100 times. Q-N algorithm performs search starting at a single point instead of a population-based search. For a healthier comparison with the proposed approach, the number of maximum iterations was selected as 100 in Q-N algorithm to call the fitness function 100 times. In addition, default MATLAB values for solver, L2 regularization, gradient threshold method, and gradient threshold parameters were selected as “sgdm,” “0.0001,” “l2norm,” and “Inf,” respectively for non-optimized CNN models. Values of epoch for all CNN models were selected as 2 for COVID-19 dataset as 5 for Epistroma dataset. Mini batch size was set to 25. Twenty independent experimental studies were conducted on these datasets for all CNN models, and the obtained mean accuracy, maximum accuracy, F1-score, and standard deviation values were compared to measure the performances of all models.

5.3 Experimental results

Mean accuracy, maximum accuracy, F1-score, and standard deviation values obtained from 20 different independent studies on COVID-19 and Epistroma datasets are given in Tables 2 and 5, respectively. The findings were also shown in bar charts in Figs. 4 and 5 to give a clearer picture of the overall findings.

The findings related to COVID-19 dataset demonstrated that in the training process, COVID-CCD-Net (ResNet-18) reached the highest mean validation accuracy, maximum validation accuracy, and F1-score values with 97.977, 98.532, and 98.063, respectively. The second highest values were yielded by COVID-CCD-Net (DarkNet-19) with 97.553, 98.532, and 97.654, while non-optimized MobileNet displayed a lower performance with 82.007, 86.134, and 81.716. In the testing process, COVID-CCD-Net (ResNet-18) classified test images with a mean accuracy rate of 98.107%, followed by Darknet-19 with a mean accuracy rate of 97.369%. MobileNet displayed the lowest performance in terms of training and testing. validation and test accuracy for COVID-19 dataset before and after optimization with COVID-CCD-Net are given in Table 3 and the results demonstrated that COVID-CCD-Net increased the classification performance of the non-optimized CNN models by 6.22–13.29%. The performance was improved when Q-N algorithm was used to optimize the hyperparameters.
of non-optimized CNN models. However the performance increased between 2.92 and 8.40%, demonstrating that GBO displays a higher performance in the hyperparameter optimization in COVID-19 dataset.

It can understand from the findings related to Epistroma dataset that in the training process, the highest mean accuracy, maximum accuracy, and F1-score values were obtained by COVID-CCD-Net (Inception-v3) with 99.705, 100, and 99.692, respectively. Similarly, COVID-CCD-Net (Inception-v3) also yielded the highest values in the testing process with 98.964, 99.636, and 98.924. It was followed by ResNet-18 with 99.545, 100, and 99.526 for the training and 98.836, 99.636, and 98.793 for the testing process. On the other hand, the lowest performance in the training and testing process was displayed non-optimized ShuffleNet with 89.454, 92.273, and 89.149 and 90.491, 93.818, and 90.270, respectively.

The receiver operating characteristic (ROC) curves of COVID-19 and Epistroma datasets are provided in Fig. 10 and Fig. 11 respectively, which showing the relationship between the false positive rate (FPR) and the true positive rate (TPR). It can be clearly seen, in COVID-19 dataset COVID-CCD-Net (ResNet-18) and in Epistroma dataset COVID-CCD-Net (Inception-v3) have higher true positive rates.

Table 6 and Table 7 compare the performance of the COVID-CCD-Net with several state-of-the art methods on COVID-19 and Epistroma datasets. It can be seen obviously; the the COVID-CCD-Net has the highest classification accuracy among the compared methods for both datasets.

Table 6: Comparison of the results with state-of-the-art CNN methods for COVID-19 dataset

Source	Models/methods	Number of classes	Overall acc (%)
Song et al. [78]	DRE-Net	2	86
		3	93
Ozturk et al. [79]	DarkCovidNet	3	87.02
		2	98.08
Wang et al. [80]	CNNS, transfer learning	2	89.5
Keidar et al. [81]	Data augmentation, segmentation and CNN	2	90.3
Wang et al. [50]	Customized CNN architecture	3	93.33
Zhang et al. [82]	COVID19XrayNet	2	91.92
Goel et al. [83]	OptCoNet	3	97.78
Proposed	COVID-CCD-Net	3	98.107

Table 7: Comparison of the results with state-of-the-art CNN methods for Epistroma dataset

Source	Models/methods	Number of classes	Overall acc (%)
Alinsaif and Lang [84]	Fine tuning CNN	2	98.84
Cascianelli et al. [85]	Dimensionality reduction strategies for CNN	2	94.7
Huang et al. [86]	CNNS, transfer learning	2	93.5
Bianconi et al. [87]	CNNS, Resnet50	2	97.3
Proposed	COVID-CCD-Net	2	98.96
6 Conclusion

In order to classify Covid-19, normal, and viral pneumonia in chest X-ray images as well as epithelial and stromal regions in TMA images accurately, the present study proposed the COVID-CCD-Net approach with the optimized hyperparameters of AlexNet, DarkNet-19, Inception-v3, MobileNet, ResNet-18, and ShuffleNet CNN models using GBO, which is one of the most recent metaheuristic optimization algorithms. Network-trained parameters of these CNN models such as learning rate, solver, L2 regularization, gradient threshold method, and gradient threshold were optimized and tuned using GBO algorithm. In the GBO, each vector of the population represents a set of CNN’s hyperparameters, and the algorithm searches for the hyperparameter values that help the model display the highest classification performance. Two different medical image classification datasets, i.e., COVID-19 and Epistroma, were used in the experimental study. While GBO hyperparameter optimization improved the performance of non-optimized CNN models in COVID-19 dataset by 6.22% to 13.29%, the contribution of Q-N algorithm did not exceed 2.92% to 8.40%. Similarly, GBO hyperparameter optimization improved the performance of non-optimized CNN models in Epistroma dataset by 2.11% to 6.81%. Q-N algorithm improved it only 1.81% to 4.53%. These results demonstrated that the proposed approach significantly improved the classification performance of AlexNet, DarkNet-19, Inception-v3, MobileNet, ResNet-18, and ShuffleNet CNN models and displayed a better performance compared to non-optimized CNN models. One of the main problems in CNN-based classification approaches is their need for a high number of high-quality images for a successful classification performance and optimal values for the hyperparameters of CNN architecture. In the present study, a sufficient number of images was used to complete training process for CNN architecture, and the proposed COVID-CCD-Net approach was used to optimize the hyperparameters of CNN architectures to overcome the above-mentioned problems. Future studies will focus on the optimization of different hyperparameters such as filter size, filter number, stride, and padding using various metaheuristic optimization algorithms.

References

1. WCOVID-19 Weekly epidemiological update data as received by WHO from national authorities, as of 21 September 2021
2. Of the International. C. S. G (2020) The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5(4):536
3. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506
4. El Asnaoui K, Chawkı Y (2021) Using X-ray images and deep learning for automated detection of coronavirus disease. J Biol Mol Struct Dyn 39(10):3615–3626
5. Nayak SR, Nayak DR, Sinha U, Arora V, Pachori RB (2021) Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: a comprehensive study. Biomed Signal Process Control 64:102365
6. Dong D, Tang Z, Wang S, Hui H, Gong L, Lu Y, Xue Z, Liao H, Chen F, Yang F, Jin R, Wang K, Liu Z, Wei J, Mu W, Zhang H, Jiang J, Tian J, Li H (2020) The role of imaging in the detection and management of COVID-19: a review. IEEE Rev Biomed Eng 14:16–29
7. Kanne JP, Little BP, Chung JH, Elicker BM, Ketai LH (2020) Essentials for radiologists on COVID-19: an update—radiology scientific expert panel. Radiology 296(2):E113–E114
8. Karakasis S, Leoniditis G (2021) Lightweight deep learning models for detecting COVID-19 from chest X-ray images. Comput Biol Med 130:101481
9. Ouchicha C, Ammòr O, Meknassi M (2020) CVDNet: a novel deep learning architecture for detection of coronavirus (Covid-19) from chest x-ray images. Chaos, Solitons Fractals 140:110245
10. Minee S, Kafeh R, Sonka M, Yazdani S, Souf GJ (2020) Deep-covid: predicting covid-19 from chest x-ray images using deep transfer learning. Med Image Anal 65:101794
11. Hussain E, Hasan M, Rahman MA, Lee I, Tamanna T, Parvez MZ (2021) CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images. Chaos Solitons Fractals 142:110495
12. Gupta A, Gupta S, Katarya R (2021) InstaCovNet-19: a deep learning classification model for the detection of COVID-19 patients using chest X-ray. Appl Soft Comput 99:106859
13. Kononen J, Bubendorf L, Kallioniemi A, Bärlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4(7):844–847
14. Spano JP, Lagorce C, Atlan D, Milano G, Domont J, Benamouzig R, Attar A, Benichou J, Martin A, Morere JF, Raphael M, Llorca FP, Breau JL, Fagard R, Khayat D, Wind P (2005) Impact of EGFR expression on colorectal cancer patient prognosis and survival. Ann Oncol 16(1):102–108
15. Markman B, Javier Ramos F, Capdevila J, Taberner J (2010) EGFR and KRAS in colorectal cancer. Adv Clin Chem 51:72
16. Ahmadianfar I, Bozorg-Haddad O, Chu X (2020) Gradient-based optimizer: a new metaheuristic optimization algorithm. Inf Sci 540:131–159
17. Yang XS (2010) Nature-inspired metaheuristic algorithms, 2nd edn. Luniver Press, UK
18. Beheshi Z, Shamsuddin SMH (2013) A review of population-based meta-heuristic algorithms. Int. J. Adv. Soft Comput. Appl 5(1):1–35
19. Albani RA, Albani VV, Neto AJ (2020) Source characterization of airborne pollutant emissions by hybrid metaheuristic/gradient-based optimization techniques. Environ Pollut 267:115618
20. Ramos-Figueroa O, Quiroz-Castellanos M, Meza-Romontes E, Schütze O (2021) Metaheuristics to solve grouping problems: a review and a case study. Swarm Evol Comput 53:100643
21. Taramasco C, Crawford B, Soto R, Cortés-Toro EM, Olivares R (2020) A new metaheuristic based on vapor-liquid equilibrium for solving a new patient bed assignment problem. Expert Syst Appl 158:113506
22. Latha M, Kavitha G (2021) Combined Metaheuristic Algorithm and Radiomics Strategy for the Analysis of Neuroanatomical Structures in Schizophrenia and Schizoaffective Disorders. IRBM 42(5):353–368
23. Lee WY, Park SM, Sim KB (2018) Optimal hyperparameter tuning of convolutional neural networks based on the parameter-setting-free harmony search algorithm. Optik 175:105456
24. Kumar P, Hati AS (2021) Deep convolutional neural network based on adaptive gradient optimizer for fault detection in SCIM. ISA transactions 111:350–359
25. Waheed A, Goyal M, Gupta D, Khanna A, Hassanien AE, Pandey HM (2020) An optimized dense convolutional neural network model for disease recognition and classification in corn leaf. Comput Electron Agric 175:105456
26. Bergstra JS, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyperparameter optimization. Advances in neural information processing systems. pp 2546–2554 (https://doi.org/10.5555/2986459.2986743)
27. Nguyen T, Nguyen G, Nguyen BM (2020) EO-CNN: an enhanced CNN model trained by equilibrium optimization for traffic transportation prediction. Procedia Comput Sci 176:800–809. https://doi.org/10.1016/j.procs.2020.09.075
28. Bochinsk E, Senst T, Sikora T (2017) Hyper-parameter optimization for convolutional neural network committees based on evolutionary algorithms. In 2017 IEEE International Conference on Image Processing (ICIP) (pp. 3924–3928). IEEE. https://doi.org/10.1109/ICIP.2017.8297018
29. Aszemi NM, Dominic PDD (2019) Hyperparameter optimization for convolutional neural network using genetic algorithms. Int J Adv Comput Sci Appl 10(6):269–278
30. Bergstra JS, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13:281–305 (https://doi.org/10.5555/2188385.2188395)
31. Wang Y, Zhang H, Zhang G (2019) EPSO-CNN: an efficient PSO-based algorithm for fine-tuning hyper-parameters of convolutional neural networks. Swarm Evol Comput 49:114–123. https://doi.org/10.1016/j.swevo.2019.06.002
32. Soon FC, Khaw HY, Chuah JH, Kanesan J (2018) Hyper-parameters optimisation of deep CNN architecture for vehicle logo recognition. IET Intell Transp Syst 12(8):939–946
33. Lima LL, Ferreira Junior JR, Oliveira MC (2021) Toward classifying small lung nodules with hyperparameter optimization of convolutional neural networks. Comput Intell 37(4):1599–1618
34. Dixit U, Mishra A, Shukla A, Triwar R (2019) Texture classification using convolutional neural network optimized with whale optimization algorithm. SN. Appl Sci 1(6). https://doi.org/10.1007/s42452-019-0678-y
35. Andonie R, Florea AC (2020) Weighted random search for CNN hyperparameter optimization. arXiv preprint arXiv:2003.13300
36. Mahdadi A, Moshoul S, Belgaidoum M (2021) EA-based hyperparameter optimization of hybrid deep learning models for effective drug-target interactions prediction. Expert Syst Appl 185:115525
37. Zhang M, Li H, Pan S, Lyu J, Ling S, Su S (2021) Convolutional neural networks-based lung nodule classification: A surrogate-assisted evolutionary algorithm for hyperparameter optimization. IEEE Transactions on Evolutionary Computation 25(5):869–882
38. Shahriari B, Swersky K, Wang Z, Adams RP, De Freitas N (2015) Taking the human out of the loop: a review of bayesian optimization. Proc IEEE 104:148–175. https://doi.org/10.1109/JPROC.2015.2494218
39. Fatyana S, Aritsu S (2021) An automatic convolutional neural network optimization using a diversity-guided genetic algorithm. IEEE Access 9:91410–91426
40. Iliivski I, Akhtar T, Feng J, Shoemaker C (2017) Efficient hyperparameter optimization for deep learning algorithms using deterministic rbf surrogates. In Proceedings of the AAAI Conference on Artificial Intelligence. 31(1):822–829
41. Talathi SS (2015) Hyper-parameter optimization of deep convolutional networks for object recognition. In 2015 IEEE International Conference on Image Processing (ICIP) (pp. 3982–3986). IEEE
42. Rattanavorrangrat R, Jewajinda Y (2019) A hyper-parameter optimization for deep neural network using an island-based genetic algorithm. In 2019 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 73–76). IEEE
43. Navaneeth B, Suchetha M (2019) PSO optimized 1-D CNN-SVM architecture for real-time detection and classification applications. Comput Biol Med 108:85–92
44. Elkorany AS, Elsharkawy ZF (2021) COVID-DetectionNet: A tailored COVID-19 detection from chest radiography images using deep learning. Optik 231
45. Brunese L, Merculdo F, Reginelli A, Santone A (2020) Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays. Comput Methods Prog Biomed 196:105608
46. Panwar H, Gupta PK, Siddiqui MK, Morales-Menendez R, Singh V (2020) Application of deep learning for fast detection of COVID-19 in X-rays using nCOVnet. Chaos Solitons Fractals 138:109944
47. Singh D, Kumar V, Kaur M (2020) Classification of COVID-19 patients from chest CT images using multi-objective differential evolution–based convolutional neural networks. Eur J Clin Microbiol Infect Dis 39(7):1379–1389
48. Apostolopoulos ID, Mpesiana TA (2020) Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Phys Eng Sci Med 43(2):635–640
49. Makris A, Kontopoulos I, Tespere K (2020) COVID-19 detection from chest X-rays using deep learning and convolutional neural networks. In 11th Hellenic Conference on Artificial Intelligence (pp. 60-66)
50. Wang L, Lin ZQ, Wong A (2020) Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. Sci Rep 10(1):1–12
51. Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, He K, Shi Y, Shen D (2020) Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19. IEEE Rev Biomed Eng 14:4–15
52. Castiglioni I, Ippolito D, Interlenghi M, Monti CB, Salvatore C, Schiaffino S, Polidori A, Gandola D, Messa C, Sardanelli F (2021) Machine learning applied on chest x-ray can aid in the diagnosis of COVID-19: a first experience from Lombardy, Italy. Eur Radiol Exp 5(1):1–10
53. Hemdan EED, Shouman MA, Karar ME (2020) Covid-xnet: a framework of deep learning classifiers to diagnose covid-19 in x-ray images. arXiv preprint arXiv:2003.11055
54. Khan AI, Shah JL, Bhat MM (2020) CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput Methods Prog Biomed 196:105581
55. Nguyen HG, Blank A, Dawson HE, Lugli A, Zlobec I (2021) Classification of colorectal tissue images from high throughput tissue microarrays by ensemble deep learning methods. Sci Rep 11(1):1–11
56. Xu J, Luo X, Wang G, Gilmore H, Madabhushi A (2016) A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 191:214–223
57. Linder N, Konsti J, Turkk I, Rahu E, Lundin M, Nordling S, Haglund C, Ahonen T, Pietikäinen M, Lundin J (2012) Identification of tumor epithelium and stroma in tissue microarrays using texture analysis. Diagn Pathol 7(1):1–11
58. Guo T, Dong J, Li H, Gao Y (2017). Simple convolutional neural network on image classification. In 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA) (pp. 721-724). IEEE
59. Nhat-Duc H, Nguyen QL, Tran VD (2018) Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network. Autom Constr 94:203–213

60. Yamashita R, Nishio M, Do RKG, Togashi K (2018) Convolutional neural networks: an overview and application in radiology. Insights Imaging 9(4):611–629

61. Yoo JH, Yoon HI, Kim HG, Yoon HS, Han SS (2019) Optimization of hyper-parameter for CNN model using genetic algorithm. In 2019 1st International Conference on Electrical, Control and Instrumentation Engineering (ICECIE) (pp. 1-6). IEEE

62. Mustafa EM, Elshafey MA, Fouad MM (2019) Accuracy enhancement of a blind image steganalysis approach using dynamic learning rate-based CNN on GPUs. In 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) (Vol. 1, pp. 28-33). IEEE

63. Jaworska T (2018) Image segment classification using CNN. In: International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets. Springer, Cham, pp 409–425

64. Zeng M, Nguyen LT, Yu B, Mengshoel OJ, Zhu J, Wu P, Zhang J (2014) Convolutional neural networks for human activity recognition using mobile sensors. In 6th International Conference on Mobile Computing, Applications and Services (pp. 197-205). IEEE

65. Si L, Xiong X, Wang Z, Tan C (2020) A deep convolutional neural network model for intelligent discrimination between coal and rocks in coal mining face. Math Probl Eng. 2020:1–12. https://doi.org/10.1155/2020/2616510

66. Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of training recurrent neural networks. In International conference on machine learning (pp. 1310-1318). PMLR.

67. Lin Y, Han S, Mao H, Wang Y, Dally WJ (2017) Deep gradient compression: Reducing the communication bandwidth for distributed training. arXiv preprint arXiv:1712.01187

68. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems (pp. 1097–1105)

69. Redmon J (2013) Darknet: Open source neural networks in C. http://pjreddie.com/darknet/. 2013–2016. Accessed 12 Aug 2020

70. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818-2826)

71. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-777)

72. Zhang X, Zhou X, Lin M, Sun J (2018) Shufflenet: an extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6848-6856)

73. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mobilenetv2: inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510-4520)

74. Nocedal J, Wright SJ (eds) (1999) Numerical optimization. Springer New York, New York

75. Rahman T, Chowdhury MEH, Khandakar A (2020) COVID-19 chest X-ray database. Kaggle Data, v3. https://www.kaggle.com/tawsifurrahman/covid19-radiography-database. Accessed 20 Dec 2020

76. Chowdhury MEH, Rahman T, Khandakar A, Mazhar R, Kadir MA, Mahbub ZB, Islam KR, Khan MS, Iqbal A, Emadi NA, Reaz MBI, Islam MT (2020) Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 8:132665–132676

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Soner Kiziloluk received the M.Sc. degree (2013) in electrical and electronic engineering at Muzurnuz University and the Ph.D. degree (2017) in Computer Engineering at Firat University. Currently he is assistant professor at Computer Engineering of Malatya Turgut Ozal University. His research interests include metaheuristic algorithms, optimization and data mining.

Eser Sert received the M.Sc. degree in 2010 and the Ph.D. degree in 2013, all in Computer Engineering at Trakya University, Turkey. Currently he is associate professor at Computer Engineering of Malatya Turgut Ozal University. His research interests include 3D modeling system, image processing, computer vision, field programmable gate arrays (FPGA) and artificial intelligence.