It has been suggested that only a minority of patients successfully complete their full course of anti-tuberculosis (TB) chemotherapy without significant side-effects. There is also an opposing view that most patients with TB complete their treatment without serious adverse effects. What is the truth? Modern anti-TB chemotherapy regimens have been in use for >30 years. However, the frequency of severe complications is not well known, probably due to lack of notification and under-reporting. It is clear that many patients have adverse reactions which complicate treatment and have an influence on treatment outcomes. However, it is difficult to measure the efficacy or toxicity of a particular drug, since anti-TB drugs are usually administered in combination regimens of several drugs. Therefore, any care provider treating a TB patient is assuming a public health function that includes not only prescribing an appropriate regimen, but also ensuring adherence to the regimen and monitoring of the treatment, including the side-effects of drugs until treatment is completed.

Glossary

Symbol	Drug Name
Amk	Amikacin
Cm	Capreomicin
Cs	Cycloserine
E	Ethambutol
H	Isoniazid
Et	Ethionamide
Km	Kanamycin
O	Ofloxacin
Pas	Para-aminosalicylic acid
R	Rifampicin
S	Streptomycin
Tha	Thioacetazone
Z	Pyrazinamide
Table 1 Adverse effects of essential anti-TB drugs

Drug	Main effects	Rare effects
H	Peripheral neuropathy	Convulsions
	Skin rash	Psychosis
	Hepatitis	Arthralgia
	Sleepiness and lethargy	Anaemia
R	Gastrointestinal: abdominal pain, nausea, vomiting	Osteomalacia
	Hepatitis	Pseudomembranous colitis
	Generalised cutaneous reactions	Pseudoaldrenal crisis
	Thrombocytopenic purpura	Acute renal failure
Z	Arthralgia	Haemolytic anaemia
	Hepatitis	Cutaneous reactions
	Gastrointestinal	Sideroblastic anaemia
E	Retrobulbar neuritis	Generalised cutaneous reactions
		Arthralgia
		Peripheral neuropathy
		Hepatitis (very rare)
S	Vestibular and auditory nerve damage	Pain, rash, induration at injection site
	Renal damage	Numbness around the mouth and tingling soon after the injection
Tha	Skin rash, sometimes with mucosal involvement	Acute hepatic failure
		Exfoliative dermatitis

*: risk increases with intermittent regimens or large intervals between regimens; #: most hepatotoxic; ¶: contraindicated for young children who cannot be tested for impaired visual acuity; §: contraindicated in pregnant women and patients with myasthenia gravis; #: most frequent in adults >35 years and can be fatal; ##: many be more common and fatal in HIV-infected patients and, therefore, Tha is contraindicated.

Table 2 Adverse effects of reserve anti-TB drugs

Drug	Main effects	Rare effects
Km	Vestibular (vertigo) and auditory nerve damage	Cutaneous hypersensitivity
Am	Nephrotoxicity	Clinical renal failure
Cm		
Et	Gastrointestinal: anorexia, nausea, diarrhoea, abdominal pain	Convulsion
	Hepatotoxicity	Mental symptoms
		Impotence
		Gynaecomastia
Fluoroquinolones	Gastrointestinal: anorexia, nausea, vomiting	Anxiety
		Dizziness
		Headache
		Convulsion
		Rupture of the Achilles tendon
Cs	Dizziness	Suicide
	Headache	Generalised hypersensitivity
	Depression	Hepatitis
	Psychosis	
	Convulsion	
Pas	Gastrointestinal: anorexia, nausea, vomiting	Hypothyroidism
	Hypersensitivity reactions	Haematological reactions
	(fever, rash, pruritus)	

*: contraindicated in pregnant women; #: contraindicated in growing children; #: should be avoided in patients with epilepsy, mental illness and alcoholism; #: patients with diabetes, liver disease, alcoholism or mental disease should be carefully monitored.
Adverse effects of anti-TB drugs

Essential anti-TB drugs are those used in as first-line therapy. The adverse effects of essential anti-TB drugs are given in table 1.

Reserve anti-TB drugs are those used in 2nd-line (drug-resistant TB) treatment. The adverse effects of reserve anti-TB drugs are given in table 2.

What to do if symptoms of adverse effects occur

If symptoms of adverse effects occur the following should be done:

- the dose of drugs should be checked
- all other causes of symptoms should be excluded
- the seriousness of the adverse effects should be estimated
- the adverse effects should be registered
- the drugs should eventually be reintroduced gradually when symptoms disappear
- the development of drug resistance should be avoided.

Symptom-based approach to the management of adverse effects

The following tables give a brief description of how adverse effects should be managed when the effect are minor (table 3) and major (table 4).

Management of hepatotoxicity

Hepatotoxicity is the most common cause of iatrogenic disease in TB treatment. Anti-TB drugs can induce various degrees of hepatotoxicity, from a transitory asymptomatic rise in transaminases (which in extreme cases may lead to interruption of TB treatment), to acute liver failure (ALF) (when hepatic encephalopathy occurs and prothrombine time is <50%, usually leading to the need for liver transplantation or even death). The frequency of hepatotoxicity in different countries varies 1–10%.

Hepatotoxicity due to isoniazid is most common, as isoniazid has been used for TB treatment (both latent and active TB) since 1952. However, pyrazinamide is the most hepatotoxic among essential anti-TB drugs, in particular at doses of >30 mg per kg per day. Rifampicin has a low hepatotoxicity. However, due to its enzyme-
inducer effect it may increase the toxicity of isoniazid when the two drugs are combined.

Mild hepatotoxicity (a rise in transaminases of 3–5 times the normal level) does not require any modification in treatment, only more frequent visits and laboratory tests. In cases of moderate hepatotoxicity (a rise in transaminases of between 3–5 and 10 times the normal level), chemotherapy should be stopped as soon as possible, controlling for the risk of ALF should be started and patients should be hospitalised if necessary. However, the risk of ALF is low.

Severe hepatotoxicity (a rise in transaminases >10 times the normal level) occurs in one out of every 1,000 cases treated, and is associated with a high fatality rate of ~2.5%. Hepatitis is the usual clinical manifestation at this degree of toxicity and the risk of ALF is high. Spontaneous survival after ALF is <10%. The only treatment that increases survival is liver transplantation (survival rates >80%).

Management of severe rash: reintroduction of anti-TB drugs

Itching/skin rash is also a very common major adverse effect of anti-TB chemotherapy, which requires a quick response. Table 5 provides a guide to how a patient should be managed in this situation.

Life-threatening adverse effects

Life-threatening adverse effects include anaphylaxis, severe toxic, allergic reactions (exfoliative dermatitis, syndrome Steeven-Johnson), severe gastritis with bleeding, severe hepatitis and renal failure. In such circumstances, treatment must be stopped. If the offending drug is unknown then all drugs must be continued and the emergency department contacted.

The influence of side-effects on the outcomes of anti-TB treatment

One concern when considering side-effects is whether they prevent patients from taking medication and, hence, influence the outcomes of anti-TB treatment. In the cohort year of 2002, the global success rate of treatment with standardised anti-TB chemotherapy with 1st-line drugs was 82% and the WHO European region success rate was 76% [1]. In the results from five DOTS-plus projects (Estonia, Latvia, Ore, Philippines, and Tomsk), only 2% of 924 patients stopped treatment, although 30% did require removal of the suspected drug from the regime due to adverse effects. The five most-common reported effects included: nausea/vomiting (32.8%), diarrhoea (21.1%), arthralgia (16.4%), dizziness/vertigo (14.3%) and hearing disturbances (12.0%) [2]. Hence, side-effects of anti-TB chemotherapy need not necessarily adversely effect outcomes.

Conclusions

In conclusion, the main adverse effects of anti-TB drugs usually occur during the first 2–3 weeks of treatment. If these side-effects are not recognised on time and managed properly they can lead to treatment interruption or can even can be life threatening. Proper monitoring has to be carried out during the whole treatment course, including patient education, clinical examination, laboratory tests, etc.
Adverse effects are manageable in TB treatment provided that appropriate management approaches are applied, including altering dosages when appropriate, ancillary drugs to treat adverse events, discontinuation of drugs if needed, special training for staff on adverse events and standard protocols for registration. A patient-centred, individualised approach to treatment support is a core element of all TB control efforts.

Educational questions
Which of the following statements are correct?
1. Anti-TB drugs have the following side-effects
 a) All. b) None. c) Few. d) Many.
2. This drug is contraindicated in young children:
 a) Isoniazid. b) Pyrazinamide. c) Ethambutol. d) Ofloxacin.
3. This drug is contraindicated in pregnant women:
 a) Streptomycin. b) Cycloserin. c) Ethionamide. d) Rifampicin.
4. This drug is contraindicated for HIV/AIDS patients:
 a) Rifampicin. b) Thiocetazone. c) Ethionamide. d) Pas.
5. Minor adverse effects include:
 a) Deafness. b) Anorexia and other gastrointestinal symptoms. c) Jaundice. d) Neither a, b or c.
6. Major adverse effects include:
 a) Arthralgia. b) Orange/red urine. c) Nausea. d) Dizziness.
7. Severe hepatotoxicity occurs if there is a rise in transaminases:
 a) >10 times the normal level. b) 3–5 times the normal level.
 c) From 3–5 to 10 times the normal level. d) Does not depend on the rise in transaminases.
8. Severe hepatotoxicity is associated with:
 a) Low mortality rate. b) High mortality rate. c) Acute liver failure. d) Neither a, b or c.
9. Life-threatening adverse effects include:
 a) Abdominal pain. b) Burning in the feet. c) Exfoliative dermatitis. d) Renal failure.
10. Most of adverse effects of anti-TB drugs are:
 a) Manageable. b) Irreversible. c) Life threatening. d) Incurable.
11. Adverse effects of anti-TB drugs can be life threatening:
 a) Never. b) If they are not managed properly. c) During the first 2–3 weeks. d) If caused by reserved drugs.

Suggested further reading
World Health Organization. Treatment of Tuberculosis. Guidelines for National Programmes. 3rd Edn. Geneva, Switzerland, World Health Organization, WHO /CDS/TB/2003.313; pp. 57–60, 87–104.
World Health Organization. Toman’s Tuberculosis: Case Detection, Treatment, and Monitoring – questions and answers. 2nd Edn. Geneva, Switzerland, World Health Organization, WHO /HTM/TB/2004.334; pp. 110–121, 152–161.
Enarson DA, Rieder HL, Arnadottir T, Trebucq A. Management of Tuberculosis. A Guide for Low Income Countries. 5th Edn. Paris, International Union Against Tuberculosis and Lung Disease, 2000; pp. 19–21.
World Health Organization: Guidelines for Establishing DOTS-Plus Pilot Projects for the Management of Multidrug-Resistant Tuberculosis (MDR-TB). Geneva, Switzerland, World Health Organization, WHO /CDS/TB/2000.279; pp. 49–52, 54–65, 68–70, 73, 75–83.
World Health Organization. TB/HIV. A Clinical Manual. 2nd Edn. Geneva, Switzerland, World Health Organization, WHO /HTM/TB/2004.329; pp. 129–136.
Clinical Tuberculosis. 3rd ed. Davies PDO, ed. London, Arnold, 2003; pp. 200–202.
Crofton J, Home N, Miller F. Clinical Tuberculosis. 2nd ed. MacMillan Press Limited, London, 1999; pp. 172–174, 186–188.
Leimane V, Riekstina V, Holtz T, et al. Clinical outcome of individualized treatment of multidrug-resistant tuberculosis in Latvia: a retrospective cohort study. Lancet 2005; 365: 318–326.
Tost JR, Vidal R, Cayla J, et al. Severe hepatotoxicity due to anti-tuberculosis drugs in Spain. Int J Tuberc Lung Dis 2005; 9: 534–540.
American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America. Treatment of tuberculosis. Am J Respir Crit Care Med 2003; 167: 603–662.
Girling DJ. Adverse effects of tuberculosis drugs. Drugs 1982; 23: 56–74.

Suggested answers
1. a
2. c
3. a and c
4. b
5. b
6. d
7. a
8. b and c
9. c and d
10. a
11. b