Correlation induced memory effects in the transport properties of low dimensional systems

E. Perfetto, G. Stefanucci, and M. Cini

1Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome, Italy
2European Theoretical Spectroscopy Facility (ETSF)
3Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Unità Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy

We demonstrate the remnant presence of initial correlations in the steady-state electrical current flowing between low-dimensional interacting leads. The leads are described as Luttinger liquids and electrons can tunnel via a quantum point-contact. We derive an analytic result for the time-dependent current and show that ground-state correlations have a large impact on the relaxation and long-time behavior. In particular, the I-V characteristic cannot be reproduced by quenching the interaction in time. We further present a universal formula of the steady-state current j_s for an arbitrary sequence of interaction quenches. It is established that j_s is history dependent provided that the switching process is non-smooth.

PACS numbers: 72.10.Bg, 73.63.-b, 71.10.-w

Non-equilibrium phenomena in open nanoscale systems offer a formidable challenge to modern science[1]. Controlling the electron dynamics of a molecular device is the ultimate goal of nanoelectronics and quantum computation[2]; its microscopic description a problem at the forefront of statistical quantum physics[3]. Resorting to approximate methods is inevitable to progress.

Standard many-body techniques consider an initial state with no interaction and with no contact between the system and the baths (leads from now on), and then switch them on in time[4–6]. In fact, it is plausible to believe that starting from the true interacting and contacted state the long-time results would not change. To what extent, however, such belief is actually the truth? This question is of both practical and fundamental interest. It has been shown by us [7] and others [8] that for non-interacting electrons the initial contact plays no role at the steady-state [9] (theorem of equivalence). Allowing for interactions in the system only (non-interacting leads) Myöhänен et al. found that steady-state quantities are not sensitive to initial correlations either[10]. It is the purpose of this Letter to show that interacting leads change dramatically the picture: the switching process can indeed have a large impact on the relaxation and the steady-state behavior.

We consider two one-dimensional interacting leads described as Luttinger Liquids (LL)[11], see Fig. 1. It is known that a LL does not relax to the ground state after a sudden quench of the interaction [12–14] (thermalization breakdown). The implications of such important result in the context of time-dependent (TD) transport are totally unknown and will be here explored for the first time. We compare the dynamics of initially (a) contacted ($\eta_T = 1$) versus uncontacted ($\eta_T = 0$) and (b) interacting ($\eta_I = 1$) versus non-interacting ($\eta_I = 0$) LL when driven out of equilibrium by an external bias. Our main findings are that in (a) the system relaxes towards the same steady-state although with a different power law decay. In (b) the sudden quench of the interaction when $\eta_I = 0$ alters the steady-current j_s as well. This remains true for an arbitrary sequence of interaction quenches. We are able to write j_s as an explicit functional of the switching process and to establish that j_s is history dependent for non-smooth switchings.

The equilibrium Hamiltonian for the system of Fig. 1 reads

$$H_0 = H_R + H_L + \eta_I H_I + \eta_T H_T.$$ (1)

The one-body part of the left (L) and right (R) leads is $H_{R/L} = \mp iv_F \int_{-\infty}^{\infty} dx \psi^\dagger_{R/L}(x) \partial_x \psi_{R/L}(x)$, where the fermion field $\psi_{R/L}$ describes right/left moving electrons in lead R/L with Fermi velocity v_F (chiral leads). We take a density-density interaction of the form $H_I = \frac{1}{2} \int_{-\infty}^{\infty} dx [2g_2 \rho_R(x)\rho_L(x) + g_4 (\rho^2_R(x) + \rho^2_L(x))]$, where $\rho_{R/L} = \psi_{R/L}^\dagger \psi_{R/L}$ is (in standard notation) the fermionic density operator relative to the Fermi sea, and $g_{2/4}$ are the forward scattering couplings, corresponding to inter/intra lead interactions respectively. The two chiral liquids are linked at $x = 0$ via the tunneling term $H_T = \lambda \psi_{R}^\dagger(0) \psi_{L}(0) + H.c.$, which does not commute with

![FIG. 1. Sketch of the device. Two interacting leads hosting L and R movers are connected at $x = 0$ via a weak link. A bias voltage $V_L - V_R$ can be applied between the leads.](image-url)
the total number of electrons $N_{R/L}$ of each lead.

If a bias $V = V_L - V_R$ is applied at, say, time $t = 0$, a finite current $j(t)$ starts flowing across the link. The current operator (in atomic units) $J = dN_L/dt = -dN_R/dt$ reads $J = i\lambda\psi_R^\dagger(0)\psi_L(0) + \text{H.c.}$. At zero temperature the current $j(t)$ is the TD average of J over the ground state $|\Psi_0\rangle$ of H_0, i.e.,

$$j(t) = \langle \Psi_0|J_{H_1}(t)|\Psi_0\rangle,$$

where $J_{H_1}(t)$ is the J operator in the Heisenberg representation with respect to the interacting, contacted and biased Hamiltonian $H_1 = H_L + H_R + H_I + H_T + H_V$, $H_V = V_R N_R + V_L N_L$. Note that the factors η_I, η_T refer to times $t < 0$ and different values $\eta_I, \eta_T = 0, 1$, respectively different initial states $|\Psi_0\rangle$. At positive times the Hamiltonian is the same in all cases.

The exact non-interacting solution. We start our analysis by calculating $j(t)$ when $\eta_T = 0$ (initially uncontacted) and $g_2 = g_4 = 0$ (always non-interacting). In terms of the Fourier transform $\psi_{R/L}^\dagger$ of the original fermion fields, the current operator reads $J = (i\lambda/\alpha) \sum_{k,k'} \psi_{k'}^\dagger \psi_{k} + \text{H.c.}$, with α the usual short-distance cutoff. Its expectation value is then

$$j(t) = \lambda \alpha m \sum_{\alpha_0} \int_\pi \Gamma_{p\alpha}^\dagger(t) f_p \Gamma_{p\alpha}^\dagger(t) \prod_{\alpha=0} \prod_{\alpha_0} \sqrt{\pi} \gamma_\alpha(t)/\gamma_{\alpha_0}(t)$$

where the sum runs over $\alpha = R, L$, $f_p^{R/L} = f(\pm v_F p)$ is the Fermi function of lead R/L, and $\Gamma_{p\alpha}^\dagger(t) = -i\alpha f \int_\pi \psi_{\alpha_0} e^{-itH_1(t)\psi_{\alpha_0}} |\Psi_0\rangle$ is the sum of the probability amplitudes (retarded Green’s functions) for the transition $p \beta \rightarrow k_0$. From the Dyson equation it is straightforward to find $\Gamma_{p\alpha}^\dagger(t) = -ie^{i(\alpha v_F^p + V_c) t}/(1 + c^2)$ and $\Gamma_{p\alpha}^\dagger(t) = -ie^{i\gamma_\beta(t)/2}$, with $c = \lambda/(2v_F)$, and hence

$$j(t) = \frac{2e^2}{\pi(1 + c^2)^2} V.$$

The current is discontinuous in time; the steady-state value is reached instantaneously. This is due to the unbounded (relativistic) energy spectrum[5] and the lack of interactions, as discussed in detail in Ref. 15. As we shall see, when $H_I \neq 0$ the transient regime is more complex.

Current to lowest order in λ. The problem does not have an exact solution when both H_I and H_T are present. Below, we calculate $j(t)$ to lowest order in λ. In general, perturbative treatments in the tunneling amplitude are a delicate issue[16]. In our case $j(t)$ has a Taylor expansion with convergence radius $\lambda < 2v_F$ for $H_I = 0$, see Eq. (3). We, therefore, expect a finite convergence radius at least for small interaction strengths. Let the unperturbed Hamiltonian be $H_0 = H_R + H_L + \eta_I H_I$ in equilibrium ($t < 0$) and $H_I = H_R + H_L + \eta_I H_I$ at positive times. At zero temperature and lowest order in λ

$$j(t) = i\langle \tilde{\Psi}_0| \int_0^t ds \left[H_{T,R_0}(s), J_{R_0}(t)\right] - i\eta_I \int_0^{\infty} d\tau \left[H_{T,R_0}(\tau), J_{R_0}(t) + J_{R_0}(t)H_{T,R_0}(-\tau)\right]|\tilde{\Psi}_0\rangle,$$

with $\tilde{\Psi}_0$ the ground state of \tilde{H}_0. The first term in the r.h.s. is the standard Kubo formula. Such term alone describes the transient response when the contacts are switched on at $t = 0$ ($\eta_T = 0$). If, however, the equilibrium system is already contacted ($\eta_T = 1$) we must account for a correction; this is the physical content of the second term[17]. At any finite time initial correlation effects are visible in both terms due to the ground state dependence on η_I. When $t \rightarrow \infty$ only the Kubo term survives, which yields the steady-current j_s. The dependence of j_s on the ground state ($\eta_I = 0, 1$) will be addressed below.

The averages in Eq. (4) can be explicitly calculated by resorting to the bosonization method[11]. We introduce the scalar fields ϕ and θ from $\rho_R(x) + \rho_L(x) = \sqrt{\pi} \eta_I \phi(x) + \sqrt{\pi} \eta_I \theta(x)$, with $\kappa^{R/L}$ the anticommuting Klein factors. The scalar fields obey the commutation relation $[\phi(x), \theta(x')] = \text{sign}(x-x')/2$. In terms of ϕ and θ the Hamiltonian $H = H_R + H_L + H_I$ is a simple quadratic form $H = \frac{1}{2} \int_\pi \int_\pi \text{d}x \text{d}y (K^{-1}(\partial_x \phi(x))^2 + K\partial_y \phi(x)^2)$, where $v = \sqrt{(2\pi v_F - g_2)^2/\pi}$ the renormalized velocity and $K = \sqrt{2(2\pi v_F + g_4 + g_2)(2\pi v_F + g_4 + g_2)}$ a parameter which measures the interaction strength. Note that $0 < K \leq 1$ for repulsive interactions; $K = 1$ corresponds to the noninteracting case while small values of K indicate a strongly correlated regime.

By employing the gauge transformation[18] $\psi_{L,R} \rightarrow \psi_{L,R} e^{iV_c L/R}$ the problem of evaluating Eq. (4) is reduced to the calculation of different bosonic vacuum averages[11]. After some tedious algebra one finds

$$j(t) = \xi \text{Re} [\eta_T A_{\eta_I}(t) + B_{\eta_I}(t)],$$

where

$$A_0(t) = \sin(Vt) \int_0^{\infty} d\tau \gamma^2(t + i\tau),$$

$$B_0(t) = \int_0^t ds \sin[V(s-t)] \gamma^{2K}(s-t) \times |\gamma(s-t)|^{(1-K)^2} \left[\gamma^2(s-t)/\gamma(2t)\gamma(2s)\right]^{1-K^2},$$

for $\eta_I = 0$ and

$$A_1(t) = \sin(Vt) \int_0^{\infty} d\tau \gamma^{2K}(t + i\tau),$$

$$B_1(t) = \int_0^t ds \sin[V(s-t)] \gamma^{2K}(s-t)$$

for $\eta_I = 1$, and where $\gamma(z) = a/(a - ivz)$ and $\xi = \lambda^2/(16a^2)$. In all cases ($\eta_I, \eta_T = 0, 1$) $j(t)$ is an odd function of V, as it should be. We also notice that for noninteracting systems ($K = 1$) we recover the expected result $A_1 = A_0$ and $B_1 = B_0$. In this case the function $\xi \text{Re}[B_{1,a}]$ coincides with the current in Eq. (3) to lowest
order in λ. We can now provide a quantitative analysis of the TD current response for different preparative configurations.

Contacted versus uncontacted ground state. We consider an initially contacted ($\eta_T = 1$) and uncontacted ($\eta_T = 0$) correlated ground state ($\eta_L = 1$) and compare the corresponding TD currents $j_{T1} \equiv \xi \Re[A_1 + B_1]$ and $j_{T0} \equiv \xi \Re[B_1]$. The current $j_{T0}(t)$ has been recently computed in Ref. [19]. In the long time limit it returns the well known steady-state result

$$j_S(\beta) = \sin(\pi K)\kappa(\beta)\text{sgn}(V)|V|^\beta$$ \hspace{1cm} (8)

with $\kappa(\beta) = -\xi(a/v)^{\beta+1}\Gamma(-\beta)\sin(\beta\pi/2)$ and the exponent $\beta = 2K - 1$, obtained long ago by Kane and Fisher[20]. Since $A_1(t \to \infty) = 0$, j_{T1} approaches the same steady state. Note that the small bias limit is ill-defined for $K < 1/2$ due to the break down of the perturbative expansion in powers of $\lambda[18, 21]$. Even though $j_{T0}(t \to \infty) = j_{T1}(t \to \infty)$ the relaxation is different in the two cases, see Fig. 2. The function $j_{T0}(t)$ approaches the asymptotic limit with transient oscillations of frequency V and damping envelope proportional to t^{-2K} [19]. The more physical current j_{T1}, instead, decays much slower. The integral in $A_1(t)$ can be calculated analytically and yields

$$j_{T1}(t) - j_{T0}(t) = \xi a^{2K} \frac{\sin(Vt) \cos[(2K - 1)\arctan(vt/a)]}{2v(2K - 1)(a^2 + v^2t^2)^{K-1/2}},$$ \hspace{1cm} (9)

which for long times decays as t^{1-2K}. (Equation (9) provides an independent, TD evidence that the perturbation treatment breaks down for $K < 1/2$. Thus, an initially contacted state changes the power-law decay from $\sim t^{-2K}$ to the slower $\sim t^{1-2K}$. The amplitude of the transient oscillations is also significantly different, due to the factor $(2K - 1)^{-1}$ in Eq. (9). For $K = 0.75$, j_{T1} oscillates with an amplitude about 10 times larger than that of j_{T0}, see Fig. 2. The magnification of the oscillations was unexpected since for j_{T1} we only switch a bias while for j_{T0} also the contacts. This effect is not an artifact of the perturbative treatment: to support the validity of our results we checked that for $\eta_L = \eta_T = 1$ and zero bias the density matrix $\rho(t) = \langle \Psi_0 | \psi_R(t) \psi_{L,H}(t) | \Psi_0 \rangle$ does not evolve in time to first order in λ (this is obvious for the exact density matrix). The constant value $\rho(t) = \rho(0)$ is the result of a subtle cancellation of TD functions similar to $A_1(t)$ and $B_1(t)$.

Correlated versus uncorrelated ground state. Next we consider the effects of correlations in the ground state. We take $\eta_T = 1$ and compare the TD currents j_{T1} and j_{T0} resulting from Eq. (5) when $\eta_L = 1$ and $\eta_L = 0$ respectively. Note that $j_{T1} \equiv j_{T1}$ (already calculated above). The current $j_{T0} = \xi \Re[B_0]$ is the response to a sudden bias switching and interaction quench; at $t > 0$ the electrons start tunneling from L to R and at the same time forming interacting quasiparticles. The interaction quench has a dramatic impact on the transport properties, both in the transient and steady-state regimes. From Fig. 3 we clearly see that the relaxation behavior is different. The damping envelope of $j_{T0}(t)$ is proportional to $t^{-K^2 - 1} \sim t^{1-2K}$ of $j_{T1}(t)$. Notice that the exponent $-K^2 - 1 < 0$ for all K (first-order perturbation theory in λ is meaningful for all K).

In the long-time limit we find the intriguing result that $j_{T0}(t \to \infty)$ is exactly given by Eq. (8) with exponent $\beta = K^2$, thus suggesting that the structure of the formula (8) is universal. Below we will prove that this is indeed the case and that β is an elegant functional of the switching process. For now, we observe that ground state correlations are not reproducible by quenching the interaction. The system remembers them forever and steady-state quantities are inevitably affected. This behavior is reminiscent of the thermalization breakdown enlightened by Cazalilla[12] and others[13, 14]. Here, however,
above solution to systems initially interacting with the quenching times. We have been able to extend the and with \(\eta = \eta_T = 0 \) for the quench 1 \(\rightarrow K \) (dashed) and the quench sequence 1 \(\rightarrow \frac{1}{2}K \rightarrow K \) (dotted-dashed). Here \(K = 0.75 \) and \(V = 10^{-2} \) and the second quench occurs at \(t_1 = 1 \); same units as in Fig. (2).

we are neither in equilibrium nor close to it (the bias is treated to all orders). The non-equilibrium exponents \(\beta = 2K - 1 \) and \(\beta = K^2 \) refer to current-carrying states as obtained from the full TD Schrödinger equation with different initial states.

History dependence. We now address the question whether or not the physical steady-current \(j_S(2K - 1) \) of Eq. (8) is reproducible by more sophisticated switching processes of the interaction like, e.g., an adiabatic switching. Preliminary insight can be gained by calculating \(j(t) \) for a double quench: we first quench an interaction with \(K_1 = (1 + K)/2 \), let the system evolve, and then change suddenly \(K_1 \rightarrow K_2 = K \). The current is calculated along the same line of reasoning of Eq. (4), although the formulas become considerably more cumbersome. In Fig. 4 we compare the TD currents for initially uncontacted leads resulting from an interaction \(K \) (solid), a single quench 1 \(\rightarrow K \) (dashed), and the aforementioned double quench (dotted-dashed). We clearly see that in the latter case the steady-current is larger than \(j_S(K^2) \) (single-quench) and gets closer to \(j_S(2K - 1) \). Strikingly, the double-quench steady-current is again given by \(j_S(\beta) \) of Eq. (8) with \(\beta = \frac{1}{2}((1 + K_1^2)(1 + (\frac{K}{2})^2) - 1. This value of \(\beta \) depends only on the \(K \)-sequence and is independent of the quenching times. We have been able to extend the above solution to systems initially interacting with \(K_0 \) and then subject to an arbitrary sequence of quenches \(K_0 \rightarrow K_1 \rightarrow \ldots \rightarrow K_N = K \). We found the remarkable result that the formula (8) is universal, with the sequence dependent \(\beta \) given by

\[
\beta[K_n] = \frac{K_0}{2^{N-1}} \prod_{n=0}^{N-1} \left[1 + \left(\frac{K_{n+1}}{K_n} \right)^2 \right]^2 - 1. \tag{10}
\]

This formula yields the correct values of \(\beta \) for the single and double quench discussed above. Note that for a sequence of increasing interactions \(K_{n+1} \leq K_n \) it holds \(\beta \geq 2K - 1 \) with the equality valid only for \(K_0 = K_1 = \ldots = K_N = K \).

We now show that the special value \(\beta = 2K - 1 \) is also reproducible by an arbitrary (not necessarily adiabatic) **continuous \((N \to \infty)\)** sequential quenching. In this limit the variable \(x_n = n/N \) becomes a continuous variable and we can think of the \(K_n \) as the values taken by a differentiable function \(K(x) \) in \(x = x_n \), with \(K(0) = K_0 \) and \(K(1) = K \). Then, the quantity \(\beta \) becomes a functional of \(K(x) \) that we now work out explicitly. Approximating \(K(x_n+1) = K(x_n + \frac{1}{N}) \approx K(x_n) + \frac{1}{N}K'(x_n) \) and taking the logarithm of Eq. (10) we can write

\[
\log \left(\frac{\beta[K(x)] + 1}{2K(0)} \right) = \lim_{N \to \infty} \sum_{n=0}^{N-1} \log \left(1 + \frac{1}{N} \frac{K'(x_n)}{K(x_n)} \right)
= \int_0^1 dx \frac{K'(x)}{K(x)} = \log \frac{K(1)}{K(0)}, \tag{11}
\]

from which it follows the history independent result

\[
\beta[K(x)] = 2K - 1. \tag{12}
\]

The above result can easily be generalized to discontinuous switching functions \(K(x) \) for which, instead, the exponent \(\beta \) is history dependent.

Conclusions. In conclusion we studied the role of different preparative configurations in TD quantum transport between LLs. By using bosonization methods we showed that a sudden switching of the contacts does not change the steady-state but alters significantly the transient behavior, changing the damping envelope from \(\sim t^{-2K} \) to \(\sim t^{1-2K} \) and magnifying the amplitude of the oscillations. The effects of a sudden interaction quench is even more striking. Besides a different power law decay \(\sim t^{-2K} \) versus \(\sim t^{-K^2-1} \) damping envelope) the steady-current is also different; the I-V characteristic \(j_S \propto V^\beta \) changes from \(\beta = 2K - 1 \) to \(\beta = K^2 \). More generally we proved that for a sequence of interaction quenches the steady-current is a universal function of the exponent \(\beta \) which, in turn, is a functional of the switching process. It is only for smooth switchings that \(\beta \) is history independent and equals the value \(2K - 1 \) of the initially interacting LL. The explicit \(\beta \) functional derived in this Letter establishes the existence of intriguing memory effects that point to a complex entanglement between equilibrium and non-equilibrium correlations in strongly confined systems.

[1] H.-P. Breuer and F. Petruccione, *The Theory of Open Quantum Systems* (Oxford University Press, Oxford, New York, 2002).

[2] M. A. Nielsen and I. L. Chuang, *Quantum Computation and Quantum Information* (Cambridge University Press, Cambridge, England, 2000); M. Di Ventra, *Electrical Transport in Nanoscale Systems* (Cambridge University Press, 2008).

[3] F. M. Souza, Phys. Rev. B 76, 205315 (2007); J. Sirker et al., Phys. Rev. Lett. 103, 216602 (2009).

[4] C. Caroli et al., J. Phys. C 4, 916 (1971); Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).
[5] A.-P. Jauho et al., Phys. Rev. B 50, 5528 (1994).
[6] M. Pletyukhov et al., Phys. Rev. Lett. 104, 106801 (2010).
[7] M. Cini, Phys. Rev. B 22, 5887 (1980); G. Stefanucci and C. O. Almbladh, Phys. Rev. B 69, 195318 (2004).
[8] H. D. Cornean et al., Ann. H Poincaré 10, 61 (2009).
[9] This is true provided that no bound states are present, see G. Stefanucci, Phys. Rev. B 75, 195115 (2007).
[10] P. Myöhänen et al., EPL 84, 67001 (2008).
[11] T. Giamarchi, Quantum Physics in One Dimension (Clarendon, Oxford, 2004).
[12] M. A. Cazalilla, Phys. Rev. Lett. 97, 156403 (2006).
[13] E. Perfetto, Phys. Rev. B 74, 205123 (2006).
[14] S. R. Manmana et al., Phys. Rev. Lett. 98, 210405 (2007); M. Eckstein et al., Phys. Rev. Lett. 103 056403 (2009).
[15] T. L. Schmidt et al., Phys. Rev. B 78, 235110 (2008).
[16] J. W. Wilkins, Tunneling Phenomena in Solids (Plenum, New York, 1963), p. 333.
[17] Such term stems from first-order perturbation theory along the Matsubara time axis. It can be expressed with mixed Greens functions with one real and one imaginary time argument, see Refs. [7, 10].
[18] D. E. Feldman and Y. Gefen, Phys. Rev. B 67, 115337 (2003).
[19] M. J. Salvay et al., Phys. Rev. B 81, 125406 (2010).
[20] C. L. Kane and M. P. A Fisher, Phys. Rev. Lett. 68, 1220 (1992); Phys. Rev. B 46, 15233 (1992).
[21] A. Agarwal and D. Sen, Phys. Rev. B 76, 035308 (2007).