Substances Which Aggregate Neutrophils

Mechanism of Action

Joseph T. O'Flaherty, MD, Henry J. Showel, BS, Elmer L. Becker, MD, and Peter A. Ward, MD

Several agents which influence calcium fluxes in neutrophils were tested for their influence on human neutrophil aggregation. Formyl-methionyl-leucyl-phenylalanine, a synthetic chemotactic tripeptide, aggregated the cells. Cytochalasin B and high levels of extracellular calcium or phosphate enhanced this effect; 10^{-4} M to 10^{-4} M lanthanum inhibited it. In addition, the calcium ionophore A23187 aggregated the cells. Aggregation induced by the chemotactic factor and A23187 required extracellular calcium. These results correlate with the known or postulated ability of chemotactic factors, A23187, calcium, phosphate, lanthanum, and cytochalasin B to enhance or inhibit the influx and intracellular accumulation of the calcium ion. Transmembrane fluxes or intracellular levels of calcium may modulate PMN aggregation. Aggregation induced by the chemotactic tripeptide and A23187 also required extracellular magnesium. Since calcium and magnesium cannot substitute for each other in the aggregation response to the chemotactic factor or A23187, each bivalent cation must play a separate role in PMN aggregation. The role of magnesium is unknown. Since magnesium, unlike calcium, is known to be necessary for PMN adherence to glass, it may play a permissive role in PMN aggregation. Thus, magnesium may foster the formation of cell-cell adhesions. In addition to inhibiting chemotactic factor-induced aggregation at concentrations of 10^{-4} M to 10^{-4} M, lanthanum, at concentrations of 10^{-4} M to 10^{-4} M, aggregated the cells. Lanthanum-induced aggregation did not require extracellular calcium or magnesium. This aggregation may result from the formation of intercellular adhesions by the lanthanum ion directly. (Am J Pathol 92:155-166, 1978)

CHEMOTACTIC FACTORS stimulate various polymorphonuclear neutrophil (PMN) responses such as directed migration and degranulation. In evoking these responses, chemoattractants bind to the cell surface and, it has been postulated, induce the formation or the accumulation of an intracellular mediator which initiates or modulates various biochemical sequences involved in cellular and organelar motility. Ionized calcium may be such a mediator. Thus, the PMN can be viewed as a secretory or contracting cell, and Ca$^{2+}$ can be considered a coupler of membrane excitation to actinmyosin contraction, microtubule assembly, cyclic nucleotide forma-
tion, or organelle-surface–membrane fusion. These postulates have been strengthened by the finding that chemotactic factors enhance the transmembrane fluxes and exchangeable intracellular pool of Ca\(^{2+}\).

Recently, chemotactic factors have been shown to stimulate the aggregation of rabbit peritoneal and human blood PMNs. In this report we examine the influence of factors which modulate intracellular Ca\(^{2+}\) levels on human PMN aggregation.

Materials and Methods

Chemotactic Factor

The synthetic chemotactic tripeptide formyl–methionyl–leucyl–phenylalanine (FMLP) was obtained and used as previously described.

Reagents

Cytochalasin B (Aldrich Chemical Company, Milwaukee, Wis.) and FMLP were dissolved in dimethylsulfoxide. In the final concentrations used in this study (0.02% or less), the solvent did not influence PMN function. The bivalent cation ionophore A23187 was a generous gift of Dr. Robert Hamill of the Eli Lilly Company, Indianapolis, Indiana. The buffer was a modified Hanks’ balanced salt solution containing (mM): NaCl, 130; KCl, 5.5; Na\(_2\)HPO\(_4\), 0.6; NaH\(_2\)PO\(_4\), 0.6; glucose, 10; and tris, 25. For some experiments the phosphate salts were omitted from the buffer. Where indicated, La\(^{3+}\), Mg\(^{2+}\), or Ca\(^{2+}\) were added to the buffers in the form of chloride salts. Chemicals were of reagent grade or better, and buffers were adjusted to pH 7.4 before use.

Neutrophils

Normal human whole blood was centrifuged over Ficoll–Hypaque discontinuous gradients to obtain leukocyte populations containing greater than 96% PMNs.

Aggregation

PMNs were freed from contaminating erythrocytes by hypotonic lysis and then washed and suspended (4600 PMN/\(\mu\)l) in the appropriate buffer. One milliliter of the suspension was placed in a plastic vial and stirred continuously with a magnetic bar. For each experiment, an aggregating substance was added directly to the cell suspension and 25-\(\mu\)l samples were taken at 1/4, 1/2, 1, 2, 4, 8, and 15 minutes thereafter. Samples were immediately diluted in 10 ml of Isoton solution (Coulter Electronics, Hialeah, Fla.) and analyzed with a Coulter Counter, Model ZBI, equipped with a Volume Channelizer II. For each sample, the counter was set to enumerate the concentration of particles greater than 60 fl (called T) and greater than 520 fl (called A). Since human PMNs are approximately 330 fl, T is the total particle concentration and A is the large or aggregated particle concentration. When PMNs aggregate, T falls while A rises. To quantitate these changes, the percentage of large particles (100 \times A/T) for each sample and the aggregation index (the mean of the percentage of large particles found 1/4 and 1 minute after the addition of the aggregating substance minus the pre-addition percentage of large particles) for each experiment was calculated.
Enzyme Release

At 2 and 15 minutes after adding an aggregating substance to the PMN suspension, ½-
ml samples were taken, chilled in ice, and centrifuged at 4 C; their supernatant fluids were
analyzed for lysozyme, β-glucuronidase, and lactate dehydrogenase (LDH), as previously
described.4,18

Results

Influence of Cytochalasin B on PMN Aggregation

FMLP, as previously described,30 aggregated human PMNs. This effect
was reflected in an increase in the percentage of large particles formed
after adding 5×10⁻⁶ M FMLP to the suspension of PMNs (Text-figure 1, solid line). The magnitude of these changes was proportional to the
amount of FMLP added to the suspension over a range of 10⁻⁸ M to
5×10⁻⁴ M (not shown). Cytochalasin B, by itself, did not aggregate the
cells (Text-figure 1, dotted line) but did enhance FMLP-induced aggrega-
tion strikingly (Text-figure 1, dashed line). Concentrations of cytochalasin
B from 0.1 to 5.0 μg/ml enhanced FMLP-induced aggregation (not
shown). These results are similar to those found for rabbit peritoneal
PMNs.29

Influence of A23187 on PMN Aggregation

In concentrations of 10⁻⁷ M and 10⁻⁶ M the bivalent cation ionophore
A23187 aggregated the PMNs (Text-figure 2). Unlike chemotactic-factor-
induced aggregation which abated within 1 to 4 minutes and had a

Text-figure 1—Large particle percentage of PMN suspensions treated with cytochalasin B and/or
FMLP. The buffer contained 1.4 mM Ca²⁺, 0.7 mM Mg²⁺, and 1.2 mM PO₄³⁻.
steadily increasing, monophasic dose–response curve, A23187-induced aggregation progressively increased over 15 minutes and had a biphasic dose–response curve: 10^{-5} M A23187 induced much less aggregation than did 10^{-6} M (Text-figure 2). The cause for this biphasic dose–response curve is unknown. However, cells exposed to 10^{-5} M A23187 showed an 18.5% decrease in mean cell volume, rapidly degranulated (Table 1), and did not aggregate in response to FMLP (not shown). Therefore, high

Table 1—Enzyme Release in Neutrophils Exposed to Aggregating Substances for 2 or 15 minutes

Aggregating substance	Lysozyme	β-Glucuronidase	Lactate dehydrogenase	
None	3.6 ± 2.2* 6.0 ± 2.0	3.3 ± 1.3 5.5 ± 2.0	5.8 ± 3.7 10.3 ± 0.8	
FMLP (5 × 10⁻⁴ M)	4.8†	5.3	3.7	7.1
La⁺⁺ (1 × 10⁻⁴ M)	2.2	6.8	2.6	4.5
La⁺⁺ (1 × 10⁻³ M)	2.1	4.5	2.2	4.3
FMLP (5 × 10⁻⁴ M)	2.2	6.8	2.6	4.5
A23187 (1 × 10⁻⁴ M)	61.0	73.1	33.1	60.6
A23187 (1 × 10⁻³ M)	13.9	35.9	7.9	18.9
A23187 (1 × 10⁻⁵ M)	6.4	21.4	4.1	5.4
A23187 (1 × 10⁻⁶ M)	4.0	8.4	3.4	4.5
Cytochalasin B (5 μg/ml)	4.1	6.8	3.7	4.1
Cytochalasin B (5 μg/ml) + FMLP (5 × 10⁻⁴ M)	42.0	49.0	38.0	39.8

* Mean ± SD for four experiments, as percentage of total cellular enzyme
† Mean of two experiments, as percentage of total cellular enzyme
concentrations of A23187 may interfere with cell–cell adhesiveness either directly or by contracting or degranulating the cells.

Influence of La$^{3+}$ on PMN Aggregation

La$^{3+}$ easily precipitates with multivalent anions. Therefore, in these studies a buffer which omitted phosphates was used. In concentrations from 10^{-5} M to 10^{-3} M, La$^{3+}$ aggregated the PMNs (Text-figure 3). At 5×10^{-4} M and 10^{-3} M aggregation was intense (aggregation index, 47.4 ± 3.6 and 44.9 ± 1.7 SEM, respectively) and remained prominent even 15 minutes after the addition. At concentrations of 10^{-4} M and below, La$^{3+}$ did not aggregate the cells (Text-figure 3). At 10^{-6} M and 10^{-5} M, La$^{3+}$ inhibited FMLP-induced aggregation (Text-figure 4). At 10^{-5} M, La$^{3+}$ induced slight aggregation (aggregation index, 2.8 ± 0.9 SEM); FMLP, when added to these suspensions, did not aggregate (aggregation index, 2.2 ± 0.4 SEM) the cells above this slight background. Thus, at 10^{-5} M, La$^{3+}$ nearly totally inhibited aggregation induced by FMLP.

Influence of Phosphates on PMN Aggregation

FMLP-induced aggregation of PMNs suspended in the medium free of phosphates was significantly less than that found for PMNs suspended in the medium containing phosphates (aggregation index, 4.8 ± 0.4 and 9.9 ± 2.0 SEM, respectively, $P < 0.005$). Adding increasing amounts of phosphate (as pH 7.4 phosphate buffer) to PMN suspensions resulted in increasing enhancement of FMLP-induced aggregation (Text-figure 5).

![Text-Figure 3](image_url)

Text-Figure 3—Large particle percentage of PMN suspension treated with varying amounts of lanthanum chloride. The buffer contained 1.4 mM Ca$^{2+}$, 0.7 mM Mg$^{2+}$, and no PO$_4^{3-}$.
Influence of Ca\(^{2+}\) and Mg\(^{2+}\) on PMN Aggregation

Both Ca\(^{2+}\) and Mg\(^{2+}\) were required for A23187- and FMLP-induced aggregation (Text-figures 6 and 7); neither bivalent cation was required for La\(^{3+}\)-induced aggregation (Text-figure 7). Increases in Ca\(^{2+}\) with (Text-figure 6, upper panel) or without (Text-figure 6, center panel) equivalent increases in Mg\(^{2+}\) led to progressive increases in the magnitude of FMLP-induced aggregation. Increases in Mg\(^{2+}\) above 0.7 mM were not associated with these changes when Ca\(^{2+}\) was held constant at 1.4 mM (Text-figure 6, lower panel).

Influence of Aggregating Substances on Enzyme Release

The cytosolic enzyme LDH was not released from the PMN under any of the conditions studied (Table 1). Two aggregating substances, A23187 and FMLP (with cytochalasin-B–treated cells), induced prominent release of the granule-bound enzymes, β-glucuronidase and lysozyme, whereas two other aggregating substances, La\(^{3+}\) and FMLP (with PMNs not exposed to cytochalasin B), did not (Table 1). These results suggest that PMNs remain viable during the aggregation experiments. Apparently, aggregation can occur in the absence of prominent degranulation.

Discussion

Chemotactic factors and A23187 induce an influx of extracellular Ca\(^{2+}\) and an increase in the exchangeable pool of Ca\(^{2+}\) in the PMN.\(^ {13,16,17,19,25,26}\) High levels of extracellular Ca\(^{2+}\),\(^ {25,26}\) cytochalasin B,\(^ {26}\) and possibly extra-
cellular phosphates9 enhance these effects whereas La3+ inhibits them.16,19 Our studies suggest that Ca2+ influxes and the attendant increases in cell-associated Ca2+ trigger aggregation. Thus, the chemotactic tripeptide FMLP aggregates PMNs, and this effect is enhanced by high levels of extracellular Ca2+ (Text-figure 6, upper and center panels), cytochalasin B (Text-figure 1), and extracellular phosphates (Text-figure 5). A23187 also aggregates the cells (Text-figure 2). At 10-6 M and 10-5 M, La3+ inhibits FMLP-induced aggregation (Text-figure 4). Finally, FMLP- and A23187-induced aggregation requires extracellular Ca2+ (Text-figure 7).

Changes in Ca2+ fluxes and intracellular Ca2+ may also modulate PMN degranulation9,13-15,18,22,24,26 and chemotaxis.16-20,25,32 If Ca2+ changes do modulate all three cellular responses, then factors influencing the accumulation and fluxes of Ca2+ should have similar influences on each. This is not the case. For instance, concentrations of chemotactic factors above an optimal level inhibit maximal Boyden chamber chemotaxis6,16 but do not inhibit degranulation6-8 or aggregation.27-31 Second, high concentrations of extracellular Ca2+ inhibit chemotaxis17,21 and \(\beta\)-glucuronidase release14 but enhance lysozyme release14 and aggregation (Text-figure 6). Third, cytochalasin B in low concentrations enhances chemotaxis but in high

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{Influence of varying phosphate concentrations on the large particle percentage of PMN suspensions exposed to FMLP. The buffer contained 1.4 mM Ca2+ and 0.7 mM Mg2+.}
\end{figure}
concentrations inhibits chemotaxis; this agent can only enhance, not inhibit, degranulation and aggregation (Text-figure 1). Fourth, A23187 inhibits chemotaxis but stimulates degranulation (Table 1) and aggregation (Text-figure 2). Fifth, at concentrations above \(10^{-4}\) M, La\(^{3+}\) inhibits chemotaxis, does not influence degranulation (Table 1), and induces prominent cellular aggregation (Text-figure 3); from \(10^{-6}\) M to \(10^{-5}\) M, La\(^{3+}\) does not influence chemotaxis but inhibits degranulation and aggregation (Text-figure 4). In these examples, an agent frequently inhibits chemotaxis while stimulating or enhancing degranulation and aggregation. It may be that degranulation or aggregation interferes with chemotaxis. For instance, chemotactic factors, Ca\(^{2+}\), cytochalasin B, A23187, and La\(^{3+}\), in concentrations which inhibit chemotaxis, induce or promote sustained cellular aggregation. Aggregated cells may migrate poorly. If aggregation is responsible for the inhibition of chemotaxis, then events such as Ca\(^{2+}\) fluxes and accumulations may similarly influence all three PMN responses: aggregation could limit the detection of this stimulation in chemotactic assays.
La$^{3+}$ does not stimulate Ca$^{2+}$ influx, and its ability to aggregate PMNs is independent of extracellular Ca$^{2+}$ (Text-figure 7). Having a higher valency but similar ionic radius to Ca$^{2+}$, La$^{3+}$ may bind to Ca$^{2+}$ sites on surface membranes. Our data (Text-figure 3) suggest that, in concentrations of 10^{-4} M to 10^{-3} M, La$^{3+}$ binding may overcome the repulsive forces between cells and allow the formation of intercellular adhesions. At lower concentrations, i.e., 10^{-4} M to 10^{-3} M, La$^{3+}$ binding may block Ca$^{2+}$ influxes and, thereby, aggregation (Text-figure 4) and degranulation. Why chemotaxis is uninhibited by these levels of La$^{3+}$ is unknown.

Mg$^{2+}$ appears essential for chemotactic-factor–induced and A23187-induced aggregation (Text-figures 6 and 7). Since Mg$^{2+}$ is required for PMN adherence to glass surfaces, it also may be necessary for cell–cell adherence. La$^{3+}$, which does not require Mg$^{2+}$ to aggregate cells (Text-figure 7), may substitute for Mg$^{2+}$ in this role.

Although we suggest that intracellular Ca$^{2+}$ modulates PMN aggregation, as others suggest it modulates chemotaxis and degranulation, we are aware that the available evidence does not prove this. Thus, chemotactic factors and A23187 stimulate Ca$^{2+}$ efflux, K$^+$ efflux, Na$^+$ influx and efflux, and, perhaps, the transmembrane fluxes of other unmeasured and unidentified species. Any of these events may be important in modulating PMN function. Moreover, the aggregative response occurs before

![Text-Figure 7](image_url)

Text-Figure 7—Influence of Ca$^{2+}$ and Mg$^{2+}$ on the aggregation index of PMN suspensions exposed to La$^{3+}$, A23187, and FMLP. Aggregation indexes induced by FMLP were also studied on PMNs treated with cytochalasin B.
the changes in ionic fluxes and accumulations. Hence, ionic fluxes and accumulations may be epiphenomena reflecting surface membrane changes or other events which are more closely related to cell function. This area requires further study.

References

1. Schiffmann E, Corcoran BA, Wahl SM: N-Formylmethionyl peptides as chemotactic attractants for leucocytes. Proc Natl Acad Sci USA 72:1059–1062, 1975
2. Aswanikumar S, Schiffmann E, Corcoran BA, Wahl SM: Role of a peptidase in phagocyte chemotaxis. Proc Natl Acad Sci USA 73:2439–2442, 1976
3. Aswanikumar S, Corcoran B, Schiffmann E, Day AR, Freer RJ, Showell HJ, Becker EL, Pert CB: Demonstration of a receptor on rabbit neutrophils for chemotactic peptides. Biochem Biophys Res Commun 74:810–817, 1977
4. Day AR, Radding JA, Freer RJ, Showell HJ, Becker EL, Schiffmann E, Corcoran B, Aswanikumar S, Pert C: Synthesis and binding characteristics of an intrinsically radiolabeled chemotactic acyl tripeptide. FEBS Lett 77:291–294, 1977
5. Williams LT, Snyderman R, Pike MC, Lefkowitz RJ: Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes. Proc Natl Acad Sci USA 74:1204–1208, 1977
6. Showell HJ, Freer RJ, Zigmond SH, Schiffmann E, Aswanikumar S, Corcoran B, Becker EL: The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal enzyme secretion for neutrophils. J Exp Med 143:1154–1169, 1976
7. Becker EL: Some interrelations of neutrophil chemotaxis, lysosomal enzyme secretion, and phagocytosis as revealed by synthetic peptides. Am J Pathol 85:385–394, 1976
8. Becker EL: Some interrelations among chemotaxis, lysosomal enzyme secretion, and phagocytosis by neutrophils. Molecular and Biological Aspects of the Acute Allergic Reaction. Edited by SGO Johansson, K Strandberg, B Uvnäs. New York, Plenum Publishing Corp., 1976, pp 353–370
9. Goldstein IM, Horn JK, Kaplan HB, Weissmann G: Calcium-induced lysozyme secretion from human polymorphonuclear leukocytes. Biochem Biophys Res Commun 60:807–812, 1974
10. Goldstein I, Hoffstein S, Gallin J, Weissmann G: Mechanisms of lysosomal enzyme release from human leukocytes: Microtubule assembly and membrane fusion induced by a component of complement. Proc Natl Acad Sci USA 70:2916–2920, 1973
11. Chenoweth DE, Hugli TE: Initial characterization of the human polymorphonuclear (PMN) C5a receptor. Seventh International Complement Workshop, St. Petersburg Beach, Florida, 1977
12. Wilkinson PC: Surface and cell membrane activities of leukocyte chemotactic factors. Nature (Lond) 251:58–60, 1974
13. Smith RJ, Ignarro LJ: Bioregulation of lysosomal enzyme secretion from human neutrophils: Roles of guanosine 3′:5′-monophosphate and calcium in stimulus-secretion coupling. Proc Natl Acad Sci USA 72:108–112, 1975
14. Goldstein IM, Hoffstein ST, Weissmann G: Influence of divalent cations upon complement-mediated enzyme release from human polymorphonuclear leukocytes. J Immunol 115:665–670, 1975
15. Showell HJ, Naccache PH, Sha’afi RI, Becker EL: The effects of extracellular K+, Na+, Ca++ on lysosomal enzyme secretion from polymorphonuclear leukocytes. J Immunol 119:804–811, 1977
16. Boucek MM, Snyderman R: Calcium influx requirement for human neutrophil chemotaxis: Inhibition by lanthanum chloride. Science 193:905-907, 1976
17. Gallin JI, Rosenthal AS: The regulatory role of divalent cations in human granulocyte chemotaxis: Evidence for an association between calcium exchanges and microtubule assembly. J Cell Biol 62:594-609, 1974
18. Estensen RD, Reusch ME, Epstein ML, Hill HR: Role of Ca$^{2+}$ and Mg$^{2+}$ in some human neutrophil functions as indicated by ionophore A23187. Infect Immunol 13:146-151, 1976
19. Snyderman R, Pike MC: Pathophysiological aspects of leukocyte chemotaxis: Identification of a specific chemotactic factor binding site on human granulocytes and defects of macrophage function associated with neoplasia. Leukocyte Chemotaxis: Methodology, Physiology, Clinical Implications. Edited by JA Gallin, PG Quie. New York, Raven Press, 1978, pp 357-378
20. Wilkinson PC: Leucocyte locomotion and chemotaxis: The influence of divalent cations and cation ionophores. Exp Cell Res 93:420-426, 1975
21. Becker EL, Showell HJ: The effect of Ca$^{2+}$ and Mg$^{2+}$ on the chemotactic responsiveness and spontaneous motility of rabbit polymorphonuclear leukocytes. Z Immunforsch-Forsch 143:466-476, 1972
22. Koza EP, Wright TE, Becker EL: Lysosomal enzyme secretion and volume contraction induced in neutrophils by cytochalasin B, chemotactic factor and A23187. Proc Soc Exp Biol Med 149:476-479, 1975
23. Stossel TP, Pollard TD: Myosin in polymorphonuclear leukocytes. J Biol Chem 248:8288-8294, 1973
24. Zabucchi G, Soranzo MR, Rossi F, Romeo D: Exocytosis in human polymorphonuclear leukocytes induced by A23187 and calcium. FEBS Lett 54:44-48, 1975
25. Naccache PH, Showell HJ, Becker EL, Sha'afi RI: Transport of sodium, potassium, and calcium across rabbit polymorphonuclear leukocyte membranes: Effect of chemotactic factor. J Cell Biol 73:428-444, 1977
26. Naccache PH, Showell HJ, Becker EL, Sha'afi RI: Changes in ionic movements across rabbit polymorphonuclear leukocyte membranes during lysosomal enzyme release: Possible ionic basis for lysosomal enzyme release. J Cell Biol 75:635-649, 1977
27. O'Flaherty JT, Kreutzer DL, Ward PA: Neutrophil aggregation and swelling induced by chemotactic agents. J Immunol 119:232-239, 1977
28. O'Flaherty JT, Showell JH, Ward PA: The influence of extracellular Ca$^{2+}$ and Mg$^{2+}$ on chemotactic factor-induced neutrophil aggregation. Inflammation 2:265-276, 1977
29. O'Flaherty JT, Kreutzer DL, Showell HJ, Ward PA: Influence of inhibitors of cellular function on chemotactic factor-induced neutrophil aggregation. J Immunol 119:1751-1756, 1977
30. Craddock PR, Hammerschmidt D, White JG, Dalmasso AP, Jacob HS: Complement (C5a)-induced granulocyte aggregation in vitro: A possible mechanism of complement-mediated leukostasis and leukopenia. J Clin Invest 60:260-264, 1977
31. O'Flaherty JT, Kreutzer DL, Ward PA: Chemotactic factor influences on the aggregation, swelling, and foreign surface adhesiveness of human leukocytes. Am J Pathol 90:537-550, 1978
32. Becker EL: Enzyme activation and the mechanism of polymorphonuclear leukocyte chemotaxis. The Phagocytic Cell in Host Resistance. Edited by JA Bellanti, DH Dayton. New York, Raven Press, 1975, pp 1-11
33. Becker EL, Showell HJ: The ability of chemotactic factors to induce lysosomal enzyme release. II. The mechanism of release. J Immunol 112:2055-2062, 1974
34. Zurier RB, Hoffstein S, Weissmann G: Cytochalasin B: Effect on lysosomal enzyme release from human leukocytes. Proc Natl Acad Sci USA 70:844–848, 1973
35. Becker EL, Davis AT, Estensen RD, Quie PG: Cytochalasin B. IV. Inhibition and stimulation of chemotaxis of rabbit and human polymorphonuclear leukocytes. J Immunol 108:396–402, 1972
36. Weiss GB: Cellular pharmacology of lanthanum. Annu Rev Pharmacol 14:343–354, 1974
37. Kvarstein B: Effects of proteins and inorganic ions on the adhesiveness of human leukocytes to glass beads. Scand J Clin Lab Invest 24:41–48, 1969
38. Becker EL, Talley JV, Showell HJ, Nacchache PH, Sha’afi RI: Activation of the rabbit polymorphonuclear leukocyte membrane “Na+, K+,” ATPase by chemotactic factor. J Cell Biol (In press)