Abstract. Single nucleotide polymorphisms associated with lipid metabolism and energy balance are implicated in the weight loss response caused by nutritional interventions. Diet-induced weight loss is also associated with differential global DNA methylation. DNA methylation has been proposed as a predictive biomarker for weight loss response. Personalized biomarkers for successful weight loss may inform clinical decisions when deciding between behavioral and surgical weight loss interventions. The aim of the present study was to investigate the association between global DNA methylation, genetic variants associated with energy balance and lipid metabolism, and weight loss following a non-surgical weight loss regimen. The present study included 105 obese participants that were enrolled in a personalized weight loss program based on their allelic composition of the following five energy balance and lipid metabolism-associated loci: Near insulin-induced gene 2 (INSIG2); melanocortin 4 receptor; adrenoceptor β2; apolipoprotein A5; and G-protein subunit β3. The present study investigated the association between a global DNA methylation index (GDMI), the allelic composition of the five energy balance and lipid metabolism-associated loci, and weight loss during a 12 month program, after controlling for age, sex and body mass index (BMI). The results demonstrated a significant association between the GDMI and near INSIG2 locus, after adjusting for BMI and weight loss, and significant trends were observed when stratifying by gender. In conclusion, a combination of genetic and epigenetic biomarkers may be used to design personalized weight loss interventions, enabling adherence and ensuring improved outcomes for obesity treatment programs. Precision weight loss programs designed based on molecular information may enable the creation of personalized interventions for patients, that use genomic biomarkers for treatment design and for treatment adherence monitoring, thus improving response to treatment.

Introduction

Obesity is a major public health concern, and contributes to morbidity and mortality rates via associations with chronic diseases (1,2), including type 2 diabetes mellitus, cardiovascular diseases, osteoarthritis and certain types of cancer (3). Although weight loss through dietary regimes and exercise is commonly prescribed, there is minimal insight into the molecular basis of weight loss, particularly concerning disparities in the extent of weight loss among individuals (4,5). The observed differences in weight loss among individuals is an important issue for clinicians and patients, and these differences are predominantly observed between males and females undergoing the same treatment courses (6).

The current understanding of the etiology of obesity and weight loss involves environmental, genetic and epigenetic factors (4,7,8). External factors in the pathogenesis of obesity include diet, physical exercise and stress. Previous studies
indicate that single nucleotide polymorphisms (SNPs) are also important determinants of weight loss (8,9). It is accepted that genetic factors partially determine individual susceptibility to weight gain and obesity, however, the established genetic variants only partially explain the variation observed. As a result, interest in understanding the potential role of epigenetics as a mediator of gene-environment interactions in obesity development has increased (10). Previous studies have investigated gene-environment interactions associated with the development of obesity (4,11-13). The initial studies focused on the associations between obesity and global DNA methylation (14-16). Global DNA methylation refers to the overall level of methylcytosine in the genome as a percentage of total cytosine, while gene-specific methylation refers to the methylation status of a specific site. While numerous studies have reported a complex association between global DNA methylation and body mass index (BMI), there is no consistent evidence for an association between global DNA methylation and obesity, which may be due to the lack of a gold standard method of measuring global DNA methylation (14,17-22). Genome-wide arrays have demonstrated a concurrent loss of methylation in the non-coding areas of the genome and gain of methylation in CpG islands located on promoter regions of obese patients with a high BMI, compared with patients with a low BMI. The studies also identified multiple obesity-associated differentially methylated sites, primarily in blood cells (23-26).

Cytosine methylation in SNPs (allele-specific methylation) has previously been successfully investigated in weight loss (9). Accumulating evidence indicates that the tendency towards adult obesity has early developmental origins, which are associated with a ‘nutritional memory response’ that can take form in epigenetic modifications during a lifetime. Associations between methylation marks at birth and later life obesity were reported (14,27-36). However, to the best of our knowledge, the potential genetic and epigenetic interactions associated with weight loss have not previously been investigated (37-41).

The present study aimed to investigate the genetic and epigenetic alterations associated with weight loss in a population of obese patients participating in a personalized weight loss program, which was designed based on genetic information. Personalized weight loss diets and lifestyle modification plans were provided to study participants according to the combined SNP profiles of five genes associated with energy balance and lipid metabolism. The five loci selected for this intervention are collectively associated with energy balance, lipolysis control, lipid metabolism homeostasis and exercise-induced weight loss (43-65).

Materials and methods

Study participants. The patients were referred to the Clinical Genetics laboratory of CGC (Madrid Spain) between January 2009 and June 2010, by either an endocrinologist or a dietitian in order to establish a healthy lifestyle intervention based on the risk of obesity inherent to each polymorphism investigated. Upon arrival at the clinic, the patients answered a questionnaire regarding previous health issues, including surgery, pathologies, diabetes and cardiovascular disease, and their height and present weight was recorded. The Institutional Review Boards of the Johns Hopkins University School of Medicine (Baltimore, MD, USA) approved the protocol for the present study. All participants signed an informed consent form where it was specifically stated that the samples may be used for anonymized research studies and for publications.

Personalized weight reduction program. The patients participated in a personalized weight reduction program guided by their genotypic profile, which included SNP-associated dietary recommendations, for 12 months. The BMI in kg/m² was calculated for each participant prior to and after completion of the personalized weight reduction program. Adult obesity was defined as a BMI of ≥30 kg/m², and patients were classified as overweight if they had a BMI between 25 and 29.9 kg/m². The participants underwent a personalized weight reduction program based on their genotypic profile. This method utilized SNP data to develop dietary recommendations. Participants also provided data regarding age at maximum weight recorded, previous dietary interventions and maximum weight loss. Additionally, women provided details regarding age at menarche and pregnancy history, in addition to height and weight prior to and following menarche and pregnancy. The polymorphisms were investigated in our laboratory and the results were disclosed in a post-test genetic counseling session.

The dietary and lifestyle interventions were subsequently tailored to the genotype of each patient by their endocrinologist/dietitian, following the general recommendations provided by the laboratory, as described in Table I. Genetic information and lifestyle modification recommendations were provided during the initial counseling session and adherence was determined at follow-up by the referring endocrinologist/dietitian. Patients were provided with a personalized weight reduction program, with primary and preferential lifestyle interventions, together with supplemental activities for each SNP of the five loci in the panel. The descriptions of sequence variants presented in Table I follow the Human Genome Variation Society 2016 recommended format (42). The five loci selected for this intervention are collectively associated with energy balance and lipid metabolism in ≥1 of the following metabolic pathways or conditions: Development of obesity, high BMI, hyperphagia, hyperinsulinemia, lipolysis control, lipid metabolism homeostasis and exercise-induced weight loss (43-65).

Information on the well-established associations between each SNP and the risk of obesity was also provided to each patient. Each patient received up to three personalized dietary/lifestyle recommendations, based on their individual genotypic mosaic, which included a combination of physical activity and diets low in calories, carbohydrates and/or lipids.

DNA isolation. DNA was extracted from peripheral blood mononuclear cell (PBMC) samples obtained from all participants, and all samples were kept at -80°C until analysis. Blood was collected in 4 ml vacutainer tubes containing EDTA
Whole blood was centrifuged at 300 x g for 10 min and the leukocyte layer was separated, adding the same volume of PBS (0.01 M PO4, 0.15 M NaCl, pH 7.2). The resulting mixture was carefully placed on Ficoll-Paque, followed by centrifugation at 700 x g for 30 min. The corresponding leukocyte portion was separated in another tube and centrifuged at 300 x g for 10 min. The supernatant was discarded and the material precipitated was washed with 1 ml PBS (0.01 M PO4, 0.15 M NaCl, pH 7.2) by centrifugation at 300 x g for 10 min and resuspended in 200 µl NET 100 (5 M NaCl, 1 M Tris-HCl, 0.5 M EDTA, pH 8.0) to be stored at -20˚C. The concentration of cells was determined by manual cell counting using a Neubauer chamber and divided into three equal aliquots.

Table I. Recommended diet and lifestyle interventions for overweight patients with specific variants of five loci associated with energy balance and lipid metabolism.

Gene (SNP) and variants	Diet	Physical activity	Low calorie	Low carbohydrate	Low lipid	HGVS name	MAF/minor allele count	Health effects	
Near INSIG2 (rs7566605)	NC_000002.12: g.118078449C>G	CC	0.2859/1432 (1000 Genomes project)	0.2798/8146 (TOPMed)	Obesity, dyslipidemia, control of lipid synthesis				
GG and GC CC		b	a	d	NI	NI	NI	NI	
MC4R (rs17782313)	NC_000018.10: g.60186834T>C	A	0.2400/1202 (1000 Genomes project)	0.2503/7289 (TOPMed)	Obesity, obesity-related quantitative traits				
TT		d	c	d	NI	NI	NI	NI	
CT		d	c	d	NI	NI	NI	NI	
CC		c	b	a	NI	NI	NI	NI	
ADRB2 (rs1042714)	NC_000005.10: g.148826910G>C	G	0.3166/38431 (ExAC)	0.2043/1023 (1000 Genomes project)	Obesity, susceptibility to metabolic syndrome				
CC		d	d	d	NI	NI	NI	NI	
CG		c	b	d	NI	NI	NI	NI	
GG		b	a	d	NI	NI	NI	NI	
APOA5 (rs662799)	NC_000011.10: g.116792991G>A	G	0.1629/816 (1000 Genomes project)	0.1043/3038 (TOPMed)	Obesity, triglyceride metabolism, cardiovascular disease				
AA		b	a	d	NI	NI	NI	NI	
AG and GG		c	b	d	NI	NI	NI	NI	
GNB3 (rs5443)	NC_000012.12: g.6845711C>T	T	0.3598/43631 (ExAC)	0.4498/5850 (GO-ESP)	Plasma triglyceride regulation, essential hypertension				
CC		a	d	d	NI	NI	NI	NI	
CT		c	b	d	NI	NI	NI	NI	
TT		b	a	c	NI	NI	NI	NI	

The description of sequence variants follows the HGVS 2016 recommended format. All are genomic sequences. Recommended as primary intervention; recommended as preferential intervention; recommended as primary supplemental activity; recommended as supplemental activity.

BD Biosciences, Franklin Lakes, NJ, USA. Whole blood was centrifuged at 300 x g for 10 min and the leukocyte layer was separated, adding the same volume of PBS (0.01 M PO4, 0.15 M NaCl, pH 7.2). The resulting mixture was carefully placed on Ficoll-Paque (17-1440-02), followed by centrifugation at 700 x g for 30 min. The corresponding leukocyte portion was separated in another tube and centrifuged at 300 x g for 10 min. The supernatant was discarded and the material precipitated was washed with 1 ml PBS (0.01 M PO4, 0.15 M NaCl, pH 7.2) by centrifugation at 300 x g for 10 min and resuspended in 200 µl NET 100 (5 M NaCl, 1 M Tris-HCl, 0.5 M EDTA, pH 8.0) to be stored at -20˚C. The concentration of cells was determined by manual cell counting using a Neubauer chamber and divided into three equal aliquots.
PBMC DNA samples were sent to the Head and Neck Cancer Research Laboratory of Johns Hopkins School of Medicine where they were digested with 50 µg/ml proteinase K in the presence of 1% sodium dodecyl sulfate at 48°C for 3 days, which was followed by phenol/chloroform extraction and ethanol precipitation, and finally dissolved in 30 µl LoTE (2.5 mmol/l EDTA and 10 mmol/l Tris-HCl), as previously described (66).

Global DNA methylation assays. In total, sufficient DNA levels were obtained from 95 samples for the global DNA methylation analysis. The global DNA methylation levels were determined with an ELISA-based commercial kit (Imprint Methylated DNA Quantification kit; cat no. MDQ1; Sigma-Aldrich, St Louis, MO, USA), according to the manufacturer's protocol. The MDQ1 kit is a high-throughput molecular biology kit, which employs a 96-well plate format to provide accurate differential global DNA methylation absorbance readings with as little as 50 ng genomic DNA. In the present study, 2 µl DNA at a concentration of 100 ng/µl was diluted with 28 µl lysis and binding buffers, and incubated at 37°C for 60 min. The samples were incubated with capture and detection antibodies and absorbance was read at 450 nm. Quantification of global DNA methylation was performed by calculating the amount of methylated cytosine (5-methylcytosine) in the sample relative to the global cytidine (5-methylcytosine + deoxycytosine) in a positive control that had been previously methylated. All samples were analyzed in duplicate.

SNP analysis. DNA was genotyped using made-to-order TaqMan SNP Genotyping Assays with the following cat no. 4351379 and assay IDs: C_29404113_20 (near INSIG2-rs7566605); C_32667060_10 (APOA5); C_2184734_10 (GNB3-rs5443) (Thermo Fisher Scientific, Inc., Waltham, MA, USA). The following probe sequences were used in each respective genotyping assay: i) rs7566605 (near INSIG2) consensus sequence-Chr2: 118078449 on GrCh38: 5'-AAGTACTTA ACAATGGATTTTGTAT[C/G] GTGGTCCTTTAGGTCTG TACCAGGG-3'; ii) rs17782313 (MC4R) consensus sequence-Chr18: 60183864 on GrCh38: 5'-TGCGCCGGAC AGAGATTGTATCC[C/T]GATGGAAATGACAAGAAAA GCTTCA-3'; iii) rs2084765_20 (ADRB2-rs1042714); C_2310403_10 (APOA5-rs662799); C_2184734_10 (GNB3-rs5443) (Thermo Fisher Scientific, Inc., Waltham, MA, USA).

The following probe sequences were used in each respective genotype assay: i) rs7566605 (near INSIG2) consensus sequence-Chr2: 118078449 on GrCh38: 5'-AAGTACTTA ACAATGGATTTTGTAT[C/G] GTGGTCCTTTAGGTCTG TACCAGGG-3'; ii) rs17782313 (MC4R) consensus sequence-Chr18: 60183864 on GrCh38: 5'-GTGTTAAAAGCAGG AGAGATTGTATCC[C/T]GATGGAAATGACAAGAAAA GCTTCA-3'; iii) rs2084765_20 (ADRB2-rs1042714); C_2310403_10 (APOA5-rs662799); C_2184734_10 (GNB3-rs5443) (Thermo Fisher Scientific, Inc., Waltham, MA, USA).

The two probes for each locus were identical apart from the region highlighted in square brackets, where the nucleotide in this position differed between the two probes, as indicated.

Quantitative polymerase chain reactions (PCR) were performed with two allele-specific TaqMan MGB probes for each of the five SNPs tested on an ABI 7,500 Real-Time PCR instrument. Duplicate reactions were run for each assay using a 25 µl reaction volume on a 96-well plate. PCR was performed with 20 ng input DNA, 1 µmol/l each primer, 0.25 µmol/l each probe and 1x TaqMan master mix (cat no. 4371355: Thermo Fisher Scientific, Inc., Waltham, MA, USA). The cycling program was one cycle of 50°C for 2 min, one cycle of 95°C for 10 min, followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min. The ROX passive reference provides an internal reference to which the reporter-dye signal can be normalized during data analysis. The Taqman master mix contained AmpliTaq Gold® DNA Polymerase, Ultra Pure (UP) Deoxyribonucleotide triphosphates (dNTPs), ROX passive reference and buffer components optimized for tight endpoint fluorescence clusters, reproducible allelic discrimination and bench top stability. Fluorescence intensities (arbitrary units) of the two probes were plotted and genotype calling was performed using predefined calling parameters.

Statistical analysis. The SNPassoc package (https://CRAN.R-project.org/package=SNPassoc) in R (version 1.9-2) was employed to examine the association between global DNA methylation and five energy balance and lipid metabolism-associated loci. R is a language and environment for statistical computing and graphics, which is similar to the S language and environment (https://www.r-project.org/about.html).

Univariate and multivariate analyses were performed to investigate the association between each SNP and global DNA methylation adjusting for sex, age, BMI and weight loss using the association function in the SNPassoc package in R. This function carries out an association analysis between a single SNP and a dependent variable (phenotype) under five different genetic models (inheritance patterns): co-dominant, dominant, recessive, over-dominant and log-additive. The only significant association between global DNA methylation and an SNP, adjusted by BMI and weight loss, was obtained when using the log additive model. P<0.05 was considered to indicate a statistically significant difference. All samples were analyzed in duplicate.

Results

Participant characteristics. The characteristics of the study participants are listed in Table II. The majority of the participants were females (57%). The average age of males and females was 45 and 42 years old, respectively. The obese to overweight ratio among males (73% obese and 27% overweight) was different to that observed for female participants (61% obese and 39% overweight). The mean age was 43.5 years old with a standard error of the mean (SEM) of 1.29, the median age was 45 years old, the age range was 11-67 years old and the interquartile range was 15. The mean weight was 85.6 kg with a SEM of 1.89, the median weight was 84.8 kg, the weight range was 55-139 kg and the interquartile range was 25.3. The mean height was 167.5 cm with a SEM of 0.92, the median height was 166 cm, the height range was 149-139 cm and the interquartile range was 25.3. The mean weight loss was 11.4 kg with a SEM of 1.02, the median

Statistical analysis. The SNPassoc package (https://CRAN.R-project.org/package=SNPassoc) in R (version 1.9-2) was employed to examine the association between global DNA methylation and five energy balance and lipid metabolism-associated loci. R is a language and environment for statistical computing and graphics, which is similar to the S language and environment (https://www.r-project.org/about.html).

Univariate and multivariate analyses were performed to investigate the association between each SNP and global DNA methylation adjusting for sex, age, BMI and weight loss using the association function in the SNPassoc package in R. This function carries out an association analysis between a single SNP and a dependent variable (phenotype) under five different genetic models (inheritance patterns): co-dominant, dominant, recessive, over-dominant and log-additive. The only significant association between global DNA methylation and an SNP, adjusted by BMI and weight loss, was obtained when using the log additive model. P<0.05 was considered to indicate a statistically significant difference. All samples were analyzed in duplicate.

Results

Participant characteristics. The characteristics of the study participants are listed in Table II. The majority of the participants were females (57%). The average age of males and females was 45 and 42 years old, respectively. The obese to overweight ratio among males (73% obese and 27% overweight) was different to that observed for female participants (61% obese and 39% overweight). The mean age was 43.5 years old with a standard error of the mean (SEM) of 1.29, the median age was 45 years old, the age range was 11-67 years old and the interquartile range was 15. The mean weight was 85.6 kg with a SEM of 1.89, the median weight was 84.8 kg, the weight range was 55-139 kg and the interquartile range was 25.3. The mean height was 167.5 cm with a SEM of 0.92, the median height was 166 cm, the height range was 149-139 cm and the interquartile range was 25.3. The mean weight loss was 11.4 kg with a SEM of 1.02, the median

Statistical analysis. The SNPassoc package (https://CRAN.R-project.org/package=SNPassoc) in R (version 1.9-2) was employed to examine the association between global DNA methylation and five energy balance and lipid metabolism-associated loci. R is a language and environment for statistical computing and graphics, which is similar to the S language and environment (https://www.r-project.org/about.html).

Univariate and multivariate analyses were performed to investigate the association between each SNP and global DNA methylation adjusting for sex, age, BMI and weight loss using the association function in the SNPassoc package in R. This function carries out an association analysis between a single SNP and a dependent variable (phenotype) under five different genetic models (inheritance patterns): co-dominant, dominant, recessive, over-dominant and log-additive. The only significant association between global DNA methylation and an SNP, adjusted by BMI and weight loss, was obtained when using the log additive model. P<0.05 was considered to indicate a statistically significant difference. All samples were analyzed in duplicate.

Results

Participant characteristics. The characteristics of the study participants are listed in Table II. The majority of the participants were females (57%). The average age of males and females was 45 and 42 years old, respectively. The obese to overweight ratio among males (73% obese and 27% overweight) was different to that observed for female participants (61% obese and 39% overweight). The mean age was 43.5 years old with a standard error of the mean (SEM) of 1.29, the median age was 45 years old, the age range was 11-67 years old and the interquartile range was 15. The mean weight was 85.6 kg with a SEM of 1.89, the median weight was 84.8 kg, the weight range was 55-139 kg and the interquartile range was 25.3. The mean height was 167.5 cm with a SEM of 0.92, the median height was 166 cm, the height range was 149-139 cm and the interquartile range was 25.3. The mean weight loss was 11.4 kg with a SEM of 1.02, the median
Furthermore, significant associations between the GDMI and \textit{INSIG2}, after adjusting for BMI and weight loss (P<0.05), and significant trends when stratifying by gender (P<0.05) were also observed (data not shown). The frequency of genotypes for near \textit{INSIG2} (rs7566605; 50.53, 41.05 and 8.42% for GG, GC and CC, respectively) and the boxplots for \textit{INSIG2} genotype and their corresponding GDMI values are presented in Fig. 2. No significant associations between global DNA methylation and the other genes were observed (data not shown). The frequency of genotypes for the other four genes were as follows: \textit{ADRB2} (rs1042714), 50.53, 34.74 and 14.74% for CC, CG and GG, respectively; \textit{APOA5} (rs662799), 88.42, 10.53 and 1.05% for AA, AG and GG, respectively; \textit{GNB3} (rs5443), 41.05, 50.53 and 8.42% for CC, CT and TT, respectively; and \textit{MC4R} (rs17782313), 97.89, 1.05 and 1.05% for GG, AG and AA, respectively (Table III). Boxplots of GDMI values stratified by genotype for \textit{ADRB2}, \textit{GNB3}, \textit{APOA5} and \textit{MC4R} are presented in Fig. 3.

\textbf{Discussion}

The present study demonstrated an inverse association between global DNA methylation and weight loss; as weight loss increased, global DNA methylation decreased. However, no associations between global DNA methylation and weight at baseline, BMI, sex or age were observed. Therefore, global DNA methylation may have potential as a marker for weight loss potential from personalized weight reduction programs based on genotypic profiles. The association between near \textit{INSIG2} (rs7566605) and global DNA methylation indicates that genetic variants may interact with epigenetic events that are ultimately associated with weight loss potential. The present study investigated the association between global DNA methylation and the allelic composition of five genetic loci associated with energy balance and lipid metabolism, and weight loss among participants, in a personalized weight reduction program designed on the basis of genotypic information. These five loci, near \textit{INSIG2} (rs7566605), \textit{MC4R} (rs17782313), \textit{ADRB2} (rs1042714), \textit{APOA5} (rs662799) and \textit{GNB3} (rs5443), are among the most well-characterized SNPs regarding their roles in obesity, energy balance and lipid metabolism.

\textit{INSIG2} is located at 2q14.2. The protein product of this gene has a high degree of similarity with the protein encoded by \textit{INSIG1}, both of which are endoplasmic reticulum proteins that inhibit sterol regulatory element binding proteins (SREBP) processing. \textit{INSIG1/2} impair the processing of SREBPs as they bind to SREBP cleavage-activating protein (SCAP), which prevents SCAP from assisting the transport of SREBPs to the Golgi apparatus. Variations in \textit{INSIG2} are reported to be associated with weight gain in certain ethnic subgroups (43,67). The SNP that was investigated in the present study, which is in close proximity to \textit{INSIG2}, is present in 10% of the population and predisposes to the development of obesity in the general population. The CC single SNP predisposes to the development of obesity, is associated with a higher BMI and increases the probability of developing obesity by 40% (44-46). \textit{MC4R} is located at 18q22. The protein product of this gene is a membrane-bound receptor and a member of the melanocortin receptor family.

\textbf{Table II. Patient characteristics in DNA methylation study that examined the association between global DNA methylation levels and SNPs.}

Sex	F (%)	60 (57%)	
Age	<34	23	
	35-39	8	
	40-44	21	
	45-49	23	
	50+	30	
Mean (SEM)	43.5 (1.29)		
Median (range)	45 (11-67)		
Interquartile range	15		
Weight (kilograms)	85.6 (1.89)		
Height (centimeters)	167.5 (0.92)		
BMI	Mean (SE)	30.1 (0.68)	
	Median (range)	30 (17-47)	
Diet	Yes (%)	82 (78)	
	No (%)	22 (21)	
Unknown (%)	1 (1)		

Weight loss was 12 kg, the range of weight loss observed was 0-64 kg and the interquartile range was 9. The mean BMI was 30.1 with a SEM of 0.68, the median BMI was 30, the BMI range was 17-47 and the interquartile range was 7. Furthermore, substantial weight loss was observed across the study (median average, 12 kg) however, marginally higher weight loss was observed in female (median average, 13 kg) compared with male participants (median average, 12 kg). BMI within the obese range was 30 on average, with a difference of 2 points between an average BMI of 29 for females and 31 for males.

\textbf{Associations between GDMI values and loci associated with energy balance and lipid metabolism.} The present study did not identify any associations between global DNA methylation and weight at baseline, BMI, sex or age (data not shown). However, an inverse association between global DNA methylation and weight loss (P<0.05; Fig. 1) was demonstrated.
MC4R is primarily expressed in the central nervous system in areas where energy intake is controlled. The absence of this receptor leads to hyperphagia, hyperinsulinemia and obesity. The protein interacts with adrenocorticotropic and melanocyte-stimulating hormones, and is mediated by G-proteins. Variations in this gene are thought to be associated with waist circumference and insulin resistance, fat mass and obesity (47,48). Heterozygotes (CT) and homozygotes (TT) exhibit a higher energy expenditure, increased glucose oxidation, reduced levels of free fatty acids, a lower BMI and almost half the probability of developing obesity. For these reasons, **MC4R** variants are considered to be protective factors in obesity (49,50,68,69).

ADRB2 is located at 5q31-q32. This gene encodes the β2-adrenergic receptor, which is a member of the G-protein-coupled receptor superfamily. **ADRB2** has an
important role in the regulation of energy balance as it leads to increases in lipolysis and thermogenesis (51). Variants in ADRB2 are associated with obesity, chronic obstructive pulmonary disease and responses to asthma treatment (70-72). The ADRB2 rs1042714 polymorphism was reported to regulate diet-induced alterations in body weight and composition; women with the CG variant that consumed diets rich in carbohydrates exhibited a 2.5-fold higher risk of developing obesity (52). Furthermore, the ADRB2 rs1042714 allele is reported to be associated with increased BMI, body fat mass, fat cell volume and waist: hip ratio, in addition to associations with type II diabetes and the inhibition of lipid oxidation (54,55,73-75).

APOA5 is located at chromosome 11q23. This protein is an apolipoprotein that is involved in the regulation of plasma triglyceride levels, is associated with the levels of high-density lipoprotein cholesterol and the susceptibility to coronary artery disease (56,57,76,77). It is a component of high-density lipoprotein and accelerates the catalysis of low-density lipoprotein via the activation of the lipase protein. APOA5 enhances the catabolism of triglyceride-rich lipoproteins and reduces the production of very-low-density lipoprotein, which is the primary triglyceride carrier. The presence of one of its variants in heterozygosity (AG variant) or homozygosity (GG variant) is associated with an increased risk of cardiovascular disease and metabolic syndrome, which may lead to the development of diabetes and obesity (58-60,78). Additionally, the rs662799 SNP of APOA5, which was included in the present study, was associated with weight loss following short-term dieting (61).

GNB3 is located at 12p13. This gene is a heterotrimeric guanine nucleotide-binding protein and is also a member of the G protein-coupled receptor superfamily. The GNB3 SNP rs5443 was reported to be a predictor of successful weight loss under sibutramine therapy (62). This variant has also been associated with various metabolic conditions, including obesity, coronary artery disease, insulin resistance and diabetes, and hypertension. Female carriers of the TT variant were reported to have a 6-fold higher risk of becoming overweight in the postpartum period, though the risk was markedly reduced in women who exercised regularly (63-65,79,80). In addition, associations between rs5443 and patient responses to sildenafil have been reported (81,82).

Epigenetic alterations occur over time and throughout the lifetime of individuals. Examples of these alterations include DNA methylation (83,84) and histone modifications (85,86), which are associated with factors such as diet (87), stress (88) and other modifiable lifestyles, including smoking (89) and alcohol consumption (90). Global DNA methylation levels, measured in PBMCs with Long Interspersed Nucleotide Elements-1 (LINE)-1 as a surrogate endpoint, was reported to be significantly higher in participants with a higher degree of weight loss compared with those who exhibited low responses (<8%) to energy-restricted treatment (91). LINE-1 was reported to be positively associated with healthy energy and micronutrient intake, and inversely associated with body fat mass (92).

It has been demonstrated that weight loss induced by a hypocaloric diet in humans altered the DNA methylation status of certain genes. Baseline DNA methylation patterns

Table III. Frequency and percentage of alleles and genotypes at five loci associated with energy balance and lipid metabolism in study participants.

Gene (SNP) and variants	Frequency	Percentage
ADRB2 (rs1042714)		
C	129	67.89
G	61	32.11
APOA5 (rs662799)		
A	178	93.68
G	12	6.32
GNB3 (rs5443)		
C	126	66.32
T	64	33.68
Near INSIG2 (rs7566605)		
G	135	71.05
C	55	28.95
MC4R (rs17782313)		
C	187	98.42
T	3	1.58

A. Frequency and percentage of alleles for each locus in study participants

Gene (SNP) and variants	Frequency	Percentage
ADRB2 (rs1042714)		
CC	48	50.53
CG	33	34.74
GG	14	14.74
APOA5 (rs662799)		
AA	84	88.42
AG	10	10.53
GG	1	1.05
GNB3 (rs5443)		
CC	39	41.05
CT	48	50.53
TT	8	8.42
Near INSIG2 (rs7566605)		
GG	48	50.53
GC	39	41.05
CC	8	8.42
MC4R (rs17782313)		
CC	93	97.89
TC	1	1.05
TT	1	1.05

B. Frequency and percentage of genotypes for each locus in study participants

SNP, single nucleotide polymorphism; ADRB2, adrenoceptor β2; APOA5, apolipoprotein A5; GNB3, G-protein subunit β3; INSIG2, insulin-induced gene 2; MC4R, melanocortin 4 receptor.
have previously been employed as epigenetic markers that may allow the degree of weight loss to be predicted in obese patients (52). In another study, epigenetic scores were used to predict alterations in body weight (7), and also identified five genes (aquaporin 9, dual specificity phosphatase 22, homeodomain-interacting protein kinase 3, troponin T1 slow skeletal type and troponin I3 cardiac type) that were differentially methylated between participants with high and low responses to a weight loss intervention program. The study also reported that subjects with the highest methylation in these regions exhibited a significantly enhanced response to the weight loss treatment program. While these studies demonstrate that differential methylation at specific loci may have an effect on weight loss, the results of the present study also demonstrate that global differential DNA methylation may also be associated with weight loss.

Global and gene-specific DNA methylation alterations, which vary with age, sex and socioeconomic status, may also be predictive biomarkers of weight loss response to intervention programs (91). Global DNA methylation and inflammatory gene promoter hypermethylation are reported to be early biomarkers of adiposity and metabolic alterations (93). Global DNA methylation and hydroxymethylation may functions as biomarkers in obesity and associated comorbidities. DNA methylation patterns are reported to behave differently depending on the choice of intervention in obesity (diet or surgery) (94).

The major strength of the present study is the simultaneous analysis of SNP loci and DNA methylation in the context of weight loss in obese patients. Interactions between germline variants of genes with somatic changes in epigenetic modifications may provide insights into pathologic causality in obesity and weight loss. The present study also demonstrates that non-invasive methods of assaying molecular biomarkers, such as those employed in the current study, may translate well in the clinic. Additionally, as global DNA methylation does not appear to be associated with initial BMI, initial weight, sex or age, further studies of this type should consider including additional weight-associated variable measurements that may be associated with global and gene-specific DNA methylation levels.

The results of the current study indicate that precision weight loss programs designed based on genetic and epigenetic information, which involve the creation of personalized interventions for individuals, may be beneficial for obese patients (95,96). These personalized programs may incorporate data from previous studies that have identified associations between DNA methylation, diet and weight loss. At present, it is difficult to interpret how the interaction between INSIG2 and global DNA methylation modulates the weight loss response. Therefore, additional studies should consider the concurrent associations of established and unknown energy balance and lipid metabolism SNPs to improve the understanding of the role of DNA methylation in obesity and the weight loss responses.

Acknowledgements

The present study was supported by the National Cancer Institute (grant nos. K01-CA164092 and U01-CA8498).
References

1. Jiang Y, Chen Y, Manuel D, Morrison H and Mao Y: Obesity Working Group: Quantifying the impact of obesity category on major chronic diseases in Canada. ScientificWorldJournal 7: 1211-1221, 2007.
2. Huxley R, James WP, Barzi F, Patel JV, Lear SA, Sunohara JAP, P. Janus E, Caterson I, Zammet P, Prabhakaran D, et al: Ethnic comparisons of the cross-sectional relationships between measures of body size with diabetes and hypertension. Obes Rev 9 (Suppl 1): S53-S61, 2008.
3. Obesity in Asia Collaboration: Is central obesity a better discriminator of the risk of hypertension than body mass index in ethnically diverse populations? J Hypertens 26: 169-177, 2008.
4. Goni L, Milagro FI, Cuervo M and Martinez JA: Single-nucleotide polymorphisms and DNA methylation markers associated with central obesity and regulation of body weight. Nutr Rev 72: 673-690, 2014.
5. Lau DC, Douketis JD, Morrison KM, Hramiak IM, Sharma AM and Ur E: Obesity Canada Clinical Practice Guidelines Expert Panel: 2006 Canadian clinical practice guidelines on the management and prevention of obesity in adults and children (summary). CMAJ 176: S1-S3, 2007.
6. Stroh C, Kröckerling F, Weiner R, Horbach T, Ludwig K, Dressler M, Lange V, Loermann P, Wolff S, Schmidt U, et al: Are there gender-specific aspects of sleeve gastrectomy-data analysis from the quality assurance study of surgical treatment of obesity in Germany. Obes Surg 22: 1214-1219, 2012.
7. Molares M, Tobi EW, Milagro FI, Marcos A, Campoy C, Garagorri JM, Gómez-Martínez S, Martinez JA, Azcona-Sanjulián MC and Martí A: EVASYON Study Group: Differential DNA methylation patterns between high and low responders to a weight loss intervention in overweight or obese adolescents: The EVASYON study. FASEB J 27: 2504-2512, 2013.
8. Bouchard L, Rabasa-Lhoret R, Faraj M, Lavoie ME, Mill J, Pérusse L and Vohl MC: Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction. Am J Clin Nutr 91: 329-S320, 2010.
9. Mansego ML, Milagro FI, Zulet MA and Martinez JA; SH2B1 CpG-SNP is associated with body weight reduction in obese subjects following a dietary restriction program. Ann Nutr Metab 66: 1-9, 2015.
10. van Dijk SJ, Tellam RL, Morrison JL, Muhlhauser BS and Molloy PL: Recent developments on the role of epigenetics in obesity and metabolic disease. Clin Epigenetics 7: 66, 2015.
11. Campión J, Milagro FI, Goyenechea E and Martinez JA: TNF-alpha promoter methylation as a predictive biomarker for weight-loss response. Obesity (Silver Spring) 17: 1293-1297, 2009.
12. Lehto S, Kallio-Huhtala J, Viikari-Juntura E, Gissler JT, Granit SF, Zhao H, Hakonarson H and Price RA: A genome-wide association study on obesity and obesity-related traits. PLoS One 6: e18939, 2011.
13. Mansego ML, García-Lacarte M, Milagro FI, Martí A and Martínez JA; GENOMI members: DNA methylation of miRNA coding sequences putatively associated with childhood obesity. Pediatr Obes 12: 19-27, 2017.
14. van Dijk SJ, Molloy PL, Varini H, Morrison JL and Muhlhauser BS; Members of EpISCOPE: Epigenetics and human obesity. Int J Obes (Lond) 39: 85-97, 2015.
15. Youngson NA and Morris MJ: What obesity research tells us about epigenetic mechanisms. Philos Trans R Soc Lond B Biol Sci 368: 2010337, 2013.
16. Na YK, Hong HS, Lee DH, Lee WK and Kim DS: Effect of body mass index on global DNA methylation in healthy Korean women. Mol Cells 37: 467-472, 2014.
17. Nomura Y, Lambertini L, Rialdi A, Lee M, Mystyl EY, Grabie M, Manaster I, Huynh N, Finik J, Davey M, et al: Global DNA methylation in the placenta and umbilical cord blood from pregnancies with maternal gestational diabetes, preeclampsia, and obesity. Reprod Sci 21: 131-137, 2014.
18. BLUEPRINT consortium: Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat Biotechnol 34: 726-737, 2016.
19. Crary-Dooley FK, Tam ME, Dunaway KW, Hertz-Picciotto I, Schmidt RJ and LaSalle JM: A comparison of existing global DNA methylation assays to low-coverage whole-genome bisulfite sequencing for epidemiological studies. Epigenetics 12: 206-214, 2017.
20. Peng W, Mora-Plazas M, Marín C, Rozek LS, Baylin A and Villamor E: A prospective study of LINE-1DNA methylation and development of adiposity in school-age children. PLoS One 10: e0125857, 2015.
21. Pearce MS, McConnell JC, Potter C, Barrett LM, Parker L, Mathers JC and Relton CL: GLOBAL LINE-1 DNA methylation is associated with blood glycaemic and lipid profiles. Int J Epidemiol 41: 210-217, 2012.
22. Duggan C, Xiao L, Terry MB and McTiernan A: No effect of weight loss on LINE-1 DNA methylation levels in peripheral blood leukocytes from postmenopausal overweight women. Obesity (Silver Spring) 22: 2091-2096, 2014.
23. Demerath EW, Guan W, Grove ML, Aslibekyan S, Mendelson M, Zhou YH, Hedman ÅK, Sandling JK, Li LA, Irvin MR, et al: Epigenome-wide association study (EWAS) of BMI change and waist circumference in African American adults identifies multiple replicated loci. Hum Mol Genet 24: 4464-4479, 2015.
24. Aslibekyan S, Demerath EW, Mendelson M, Zhi D, Guan W, Liang L, Sha J, Pankow JS, Lu C, Irvin MR, et al: Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference. Obesity (Silver Spring) 23: 1493-1501, 2015.
25. Dick KJ, Nelson CP, Tasprouni L, Sandling JK, Aitii S, Wahl S, Meduri E, Morange PE, Gagnon F, Grallert H, et al: DNA methylation and body-mass index: A genome-wide analysis. PLoS One 9: e99833, 2014-1990-1996.
26. Kaz AM, Wong CJ, Varadan V, Willis JE, Chak A and Grady WM: Global DNA methylation patterns in Barrett's esophagus, dysplastic Barrett's and esophageal adenocarcinoma are associated with BMI, gender, and tobacco use. Clin Epigenetics 8: 111, 2016.
27. Lillycrop K, Murray R, Cheong C, Teh AL, Clarke-Harris R, Barton S, Costello P, Garratt E, Cook E, Titcombe P, et al: ANRIL promoter DNA methylation: A perinatal marker for later adiposity. EBioMedicine 19: 60-72, 2017.
28. Lumen LH, Terry MB, Delgado-Cruzata L, Liao Y, Wang Q, Susser E, McKeague I and Santalla RM: Adult global DNA methylation in relation to pre-natal nutrition. Int J Epidemiol 41: 116-123, 2012.
29. Tobi EW, Slicker RC, Stein AD, Buchman HE, Slagboom PE, van Zwet EW, Heijmans BT and Lumeij LH: Early gestations and the critical time-window for changes in the prenatal environment to affect the adult human blood methylome. Int J Epidemiol 44: 1211-1223, 2015.
30. Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, Slicker RC, Stok AF, Thijssen PE and Müller F: DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 5: 5592, 2014.
31. Agha G, Hajj H, Rifas-Shiman SL, Just AC, Hivert MF, Burris HH, Lin X, Litonjua AA, Oken E, DeMeo DL, et al: Birth weight-for-gestational age is associated with DNA methylation at multiple sites and in childhood. Clin Epigenetics 8: 118, 2016.
32. Kupers LK, Xu X, Jankipersadsing SA, Vaez A, la Bastide-van Aslibekyan S, Scholten S, Nolte IM, Richard RC, Relton CL, Felix JE, et al: DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. Int J Epidemiol 44: 1224-1237, 2015.
33. Kresovich JK, Zheng Y, Cardenas A, Joyce BT, Rifas-Shiman SL, Oken E, Gillman MW, Baccarelli AA and Hou L: Cord blood DNA methylation and adiposity measures in early and mid-childhood. Clin Epigenetics 9: 118, 2016.
34. Godfrey KM, Sheppard A, Grooman PD, Lillycrop KA, Burris GC, McLean C, Rodford J, Slater-Jefferies JL, Garrant E, Crozier SR, et al: Epigenic gene promoter methylation at birth is associated with child's later adiposity. Diabetes 60: 1528-34, 2011.
35. Richmond SA, Rothman L, Buliung R, Schwartz N, Larsen K and Howard A: Exploring the impact of a dedicated streetcar right-of-way on pedestrian motor vehicle collisions: A quasi experimental design. Accid Anal Prev 71: 222-227, 2014.
36. Stel J and Legler J: The role of epigenetics in the latent effects of early life exposure to obesogenic endocrine disrupting chemicals. Environ Toxicol Pharmacol 156: 3466-3474, 2015.
37. Do C, Shearer A, Suzuki M, Terry MB, Gelenter J, Greally JM and Tycko B: Genetic-epigenetic interactions in cis: A major focus in the post-fGWAS era. Genome Biol 18: 120, 2017.
38. Do C, Lang CF, Lin J, Darby G, Bruske J, Gaba A, Petukhova L, Vogelstein J, Garraway LA, et al: Mechanisms and disease associations of haplotype-dependent allele-specific DNA methylation. Am J Hum Genet 98: 934-955, 2016.
39. Cole SA: Epigenetic studies of perinatal determinants of later obesity link important, but previously unrelated, genetic and epidemiological findings. EBioMedicine 20: 15-16, 2017.

40. Nishida H, Mehta V, Lee J, Kim JW, Garg A, LA, Campbell LE, Benjamin TR, Roust LR, De Filippis EA, Mardini L and Colleta DK: Potential epigenetic biomarkers of obesity-related insulin resistance in human whole-blood. Epigenetics 12: 254-263.

41. Aronica L, Levine AJ, Brennan K, Mi J, Gardiner C, Haile RW and Hitchins MP: A systematic review of studies of DNA methylation in the context of a weight loss intervention. Epigenomics 9: 769-787, 2017.

42. den Dunnen JT, Dalglish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, Roux AF, Smith T, Amati GR, Fahy VR and Fudenberg G: The description of sequence variants: 2016 update. Hum Mutat 37: 564-569, 2016.

43. Le Hellard S, Theisen FM, Haberhausen M, Raeder MB, Fernõ J, Gebhardt S, Hinney A, Remschmidt H, Krieg JC, Mehler-Wex C and Fleischer K: Association between the insulin-induced gene 2 (INSIG2) and weight gain in a German sample of antipsychotic-treated schizophrenic patients: Perturbation of SREBP-controlled lipogenesis in drug-related metabolic adverse effects? Mol Psychiatry 14: 308-317, 2009.

44. Prakash J, Mittal B, Aparva S, Shally A, Pranjal S and Neena S: Common genetic variant of insulin insensitivity polymorphism is associated with severe obesity in north India. Iranian J Biomed 21: 261-269, 2017.

45. Apalasamy YD, Moy FM, Rampal S, Bulgiba A and Mohamed Z: Genetic associations of the INSIG2 rs7566605 polymorphism with obesity-related metabolic traits in malaysian malays. Genes Mol Res 13: 4904-104, 2014.

46. Kaulfers AM, Deka R, Dolan L and Martin LJ: Association of INSIG2 polymorphism with overweight and LDL in children. PLoS One 10: e016340, 2015.

47. Chambers JC, Elliott PJ, Zhang W, Li Y, Froguel P, Bulpin RD, Appleby P, Bingham SA, Hoving E, van der Schouw YT, Vrijkotte TG, van der Meulen JP and Borekx MN: The paradox of ApoA5 modulation of triglycerides: Evidence from clinical and basic research. Clin Biochem 46: 12-19, 2013.

48. Abele J, Evans D, Beil FU and Seedorf U: A polymorphism in the apolipoprotein A5 gene is associated with weight loss after short-term diet. Clin Genet 68: 152-154, 2005.

49. Hauner H, Meier M, Jöckel KH, Frey UH and Siffert W: Prediction of successful weight reduction under sibutramine therapy through genotyping of the G-protein beta3 subunit gene (GNB3) C825T polymorphism. Pharmacogenetics 13: 453-459, 2003.

50. Hsiao TJ, Hwang Y, Liu CH, Chang HM and Lin E: Association of the C825T polymorphism in the GNB3 gene with obesity and metabolic phenotypes in a Taiwanese population. Genes Nutr 8: 137-144, 2013.

51. Mazzotti C, Chantziraki K, Kokkoris P, Papadogiannis D, Andreou C, Tsiofis C, Vaiopoulos G and Stefanadis C: The AGT and the GNB3 polymorphisms and insulin resistance in prehypertension. Hormones (Athens) 13: 79-86, 2014.

52. Michalsen A, Knoblach NT, Lehmann N, Grossman P, Kerkhoff G, Wilhelm FH, Moebus S, Kontamvides S, Binder L and Heusch G: Effects of lifestyle modification on the progression of coronary atherosclerosis, autonomic function and angina-the role of GNB3 C825T polymorphism. Am Heart J 151: 870-877, 2006.

53. Hoque MO, Lee CC, Cairns P, Schoenberg M and Sidransky D: Genome-wide genetic characterization of bladder cancer: A comparison of high-density single-nucleotide polymorphism arrays and PCR-based microsatellite analysis. Cancer Res 63: 2216-2222, 2003.

54. Smith AJ, Cooper JA, Li HK and Humphries SE: INSIG2 gene polymorphism is not associated with obesity in Caucasian, Afro-Caribbean and Indian subjects. Int J Obes (Lond) 31: 1753-1755, 2007.

55. Granell S, Serra-Juhé C, Martos-Moreno GÁ, Díaz F, Pérez-Jurado LA, Bärdin G and Argente J: A novel melanocortin-4 receptor gene polymorphism interacts with diet and physical activity and severe obesity has increased propensity to be ubiquitinated in the ER in the face of correct folding. PLoS One 7: e50894, 2012.

56. Corella D, Ortega-Azorin C, Sorlí JV, Covas M, Carrasco P, Salas-Salvadó J, Martínez-González MA, Arós F, Lapetra J, Serra-Majem L, et al: Statistical and biological gene-lifestyle interactions of MC4R and FTO with diet and physical activity. PLoS One 7: e52344, 2012.

57. Feigelson HS, Teras LR, Diver WR, Tang W, Patel AV, Stevens VL, Calle EE, Thun MJ and Retnakaran R: Genetic variation in candidate obesity genes ADRB2, ADRB3, MC4R and HSD11B1, IRS1, IRS2 and SHC1 and risk for breast cancer in the cancer prevention study II. Breast Cancer Res 10: R57, 2008.

58. Brügger J, Steen VM, Eiken HG, Gulsvik A and Bakke P: Genetic association between COPD and polymorphisms in TNF, ADRB2 and EPHX1. Eur Respir J 27: 668-682, 2006.

59. Park HW, Yang MG, Park CS, Kim TB, Moon HB, Min KU, Kim YY and Cho SH: Additive role of tiotiaprim in severe asthmatics and Arg16Gly in ADRB2 as a potential marker to predict the outcome. Allergy 64: 779-783, 2009.

60. González Sánchez JL, Proenza AM, Martínez Larrad MT, Ramis JM, Fernández Pérez C, Palou A and Serrano Ríos M: The glutamine 27 glutamic acid polymorphism of the beta2-adrenoceptor gene is associated with abdominal obesity and greater risk of impaired glucose tolerance in men but not in women: A population-based study in Spain. Clin Endocrinol (Oxf) 59: 476-481, 2003.
74. Kawaguchi H, Masuo K, Katsuya T, Sugimoto K, Rakugi H, Ogihara T and Tuck ML: Beta2- and beta3-Adrenoceptor polymorphisms relate to subsequent weight gain and blood pressure elevation in obese normotensive individuals. Hypertens Res 29: 951-959, 2006.

75. Masuo K, Katsuya T, Kawaguchi H, Fu Y, Rakugi H, Ogihara T and Tuck ML: Beta2-adrenoceptor polymorphisms relate to obesity through blunted leptin-mediated sympathetic activation. Am J Hypertens 19: 1084-1091, 2006.

76. Maasz A, Kisfali P, Jaromi L., Horvatóvich K, Szolnoki Z, Csongei Z, Safrany E, Sipéky C, Hadaritis F and Melegh B: Apolipoprotein A5 gene IVS3+G476A allelic variant confers susceptibility for development of ischemic stroke. Circ J 72: 1065-1070, 2008.

77. Maasz A, Kisfali P, Szolnoki Z, Hadaritis F and Melegh B: Apolipoprotein A5 gene C56G variant confers risk for the development of large- vessel associated ischemic stroke. J Neurol 255: 649-654, 2008.

78. Elousa R, Cupples LA, Fox CS, Polak JF, D’Agostino RA Sr, Wolf PA, O’Donnell CJ and Ordovas JM: Association between well-characterized lipoprotein-related genetic variants and carotid intimal medial thickness and stenosis: The framingham heart study. Atherosclerosis 189: 222-228, 2006.

79. Casiglia E, Tikhonoff V, Boschetti G, Bascelli A, Saugo M, Guglielmi G, Caufi S, Rigoni G, Giordano N, Grasselli C, et al.: The C825T GNB3 polymorphism, independent of blood pressure, predicts cerebrovascular risk at a population level. Am J Hypertens 25: 451-457, 2012.

80. Frey UH, Moebus S, Möhlenkamp S, Kälsh C, Bauer M, Lehmann N, Nöthen M, Mühlens TN, Stang A and Erbel R, et al.: GNB3 gene 825 TT variant predicts hard coronary events in the population-based HEINZ NIXDORF RECALL study. Atherosclerosis 237: 437-442, 2014.

81. Nishimura R, Tanabe N, Sekine A, Kasai H, Suda R, Kato F, Juno T, Sugiura T, Shigeta A, Sakao S and Tatsumi K: Synergistic effects of ACE Insertion/deletion and GNB3 C825T polymorphisms on the efficacy of PDE-5 inhibitor in patients with pulmonary hypertension. Respiration 91: 132-140, 2016.

82. Sperling H, Eisenhardt A, Virchow S, Hauck E, Lenk S, Porst H, Lebron C, Witter FR, Apelberg BJ, Hernández-Roaystacher M, Jaffe A, Halden RU and Sidrinsky D: Global DNA hypomethylation is associated with in utero exposure to cotinine and perfluorinated alkyl compounds. Epigenetics 5: 539-546, 2010.

83. Chater-Diehl EJ, Laufer BL, Castellani CA, Alberby BL and Singh SM: Alteration of gene expression, DNA methylation and histone methylation in free radical scavenging networks in adult mouse hippocampus following fetal alcohol exposure. PLoS One 11: e0154836, 2016.

84. Garcia-Lacarte M, Milagro FI, Zulet MA, Martinez JA and Mansego ML: LINE-1 methylation levels, a biomarker of weight loss in obese subjects, are influenced by dietary antioxidant capacity. Redox Rep 21: 67-74, 2016.

85. Marques-Rocha JL, Milagro FI, Mansego ML, Mourot AM, Martinez JA and Bressan J: LINE-1 methylation is positively associated with healthier lifestyle but inversely related to body fat mass in healthy young individuals. Epigenetics 11: 49-60, 2016.

86. Wu X, Cao N, Fenech M and Wang X: Role of sirtuins in maintenance of genomic stability: Relevance to cancer and healthy aging. DNA Cell Biol 35: 542-575, 2016.

87. Perg W, Villamor E, Shroff MR, Nettleton JA, Pilsner JR, Liu Y and Diez-Roux AV: Dietary intake, plasma homocysteine and repetitive element DNA methylation in the Multi-Ethnic Study of Atherosclerosis (MESA). Nutr Metab Cardiovasc Dis 24: 614-622, 2014.

88. Needham BL, Smith JA, Zhao W, Wang X, Mukherjee B, Kardia SL, Shively CA, Seeman TE, Liu Y and Diez Roux AV: Life course socioeconomic status and DNA methylation in genes related to stress reactivity and inflammation: The multi-ethnic study of atherosclerosis. Epigenetics 10: 958-969, 2015.

89. Guerrero-Preston R, Goldman LR, Brebi-Mievile P, Ili-Cangas G, Lebron C, Witter FR, Apelberg BJ, Hernández-Royostracher M, Jaffe A, Halden RU and Sidrinsky D: Global DNA hypomethylation is associated with in utero exposure to cotinine and perfluorinated alkyl compounds. Epigenetics 5: 539-546, 2010.

90. Stroh C, Weiner R, Wolff S, Knoll C and Manger T: Obesity Surgery Working Group; Competence Network Obesity: Antidiabetic efficacy of obesity surgery in Germany: A quality assurance nationwide survey. Obes Surg 24: 1625-1633, 2014.