Plant Interactions with Changes in Coverage of Biological Soil Crusts and Water Regime in Mu Us Sandland, China

Shuqin Gao1, Xu Pan1,3, Qingguo Cui1, Yukun Hu1,3, Xuehua Ye1,*, Ming Dong1,3

1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China, 2 Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, China, 3 University of Chinese Academy of Sciences, Beijing, China

Abstract

Plant interactions greatly affect plant community structure. Dryland ecosystems are characterized by low amounts of unpredictable precipitation as well as by often having biological soil crusts (BSCs) on the soil surface. In dryland plant communities, plants interact mostly as they compete for water resources, and the direction and intensity of plant interaction varies as a function of the temporal fluctuation in water availability. Since BSCs influence water redistribution to some extent, a greenhouse experiment was conducted to test the hypothesis that the intensity and direction of plant interactions in a dryland plant community can be modified by BSCs. In the experiment, 14 combinations of four plant species (Artemisia ordosica, Artemisia sphaerocephala, Chloris virgata and Setaria viridis) were subjected to three levels of coverage of BSCs and three levels of water supply. The results show that: 1) BSCs affected plant interaction intensity for the four plant species: a 100% coverage of BSCs significantly reduced the intensity of competition between neighboring plants, while it was highest with a 50% coverage of BSCs in combination with the target species of A. sphaerocephala and C. virgata; 2) effects of the coverage of BSCs on plant interactions were modified by water regime when the target species were C. virgata and S. viridis; 3) plant interactions were species-specific. In conclusion, the percent coverage of BSCs affected plant interactions, and the effects were species-specific and could be modified by water regimes. Further studies should focus on effects of the coverage of BSCs on plant-soil hydrological processes.

Introduction

Plant interactions can greatly affect plant community structure. Dryland ecosystems are characterized by low amounts of unpredictable precipitation as well as by often having biological soil crusts (BSCs) on the soil surface. In dryland plant communities, plants interact mostly as they compete for water resources, and the direction and intensity of plant interaction varies as a function of the temporal fluctuation in water availability. Since BSCs influence water redistribution to some extent, a greenhouse experiment was conducted to test the hypothesis that the intensity and direction of plant interactions in a dryland plant community can be modified by BSCs. In the experiment, 14 combinations of four plant species were subjected to three levels of percent BSCs coverage and three levels of water supply. The results show that: 1) BSCs affected plant interaction intensity for the four plant species: a 100% coverage of BSCs significantly reduced the intensity of competition between neighboring plants, while it was highest with a 50% coverage of BSCs in combination with the target species of A. sphaerocephala and C. virgata; 2) effects of the coverage of BSCs on plant interactions were modified by water regime when the target species were C. virgata and S. viridis; 3) plant interactions were species-specific. In conclusion, the percent coverage of BSCs affected plant interactions, and the effects were species-specific and could be modified by water regimes. Further studies should focus on effects of the coverage of BSCs on plant-soil hydrological processes.

Copyright: © 2014 Gao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was founded by CAS Knowledge Innovation Project (BSCX2-EW-J-1) and National Basic Research Program of China (2010CB951304-2). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: xuehua@ibcas.ac.cn
Materials and Methods

Study site

We conducted a greenhouse experiment at the Ordos Sandland Ecological Station (OSES) (39°02′N, 109°21′E), Institute of Botany, Chinese Academy of Sciences, located in the Mu Us Sandland, China. This semiarid area has a typical continental climate with a mean annual precipitation of ca. 300 mm, occurring mostly (60–70%) between July and September. The annual mean temperature is 6.2–8.5°C, with monthly means of 22°C in July and –1°C in January [25–27].

Study species

Artemisia ordosica Krasch. (Asteraceae) is a dominant shrub species in the fixed and semi-fixed sand dunes with plumose, linearly lobate leaves. Its branch roots are mainly distributed in the upper 30 cm of the sand soil profile, while its primary roots may reach 1–3 m deep [28]; *Artemisia sphaerocephala* Krasch. (Asteraceae) is one of the most important pioneer plants on the moving and semi-fixed sand dunes, with strong resistance to drought, cold and saline-alkaline soil conditions [29]. *Chloris virgata* Swartz (Poaceae) and *Setaria viridis* (L.) Beauv. (Poaceae) are annual grass species, widely distributed in roadides, abandoned land and sandy soils.

Seeds for the experiment were collected near the OSES as they matured in September 2007 for *C. virgata* and *S. viridis* and in November 2007 for *A. ordosica* and *A. sphaerocephala*.

Experimental design and measurements

A total of 882 containers (15 cm diameter and 13 cm height) were prepared; each was filled with 1,100 ml sand which had been collected near the OSES, and sieved to remove the soil’s seed bank. We planted 5–10 seeds of the four species in these pots on June 12, 2008. Fifteen days later, we selected similar sized seedlings for our experiment and removed any large or small plants. Fourteen species combinations were set up as follows: four had a single seedling of one of the four test species in one pot, four had two seedlings of one of the test species in one pot, and the other six combinations had two seedlings, with one seedling of each of two different species in one pot. For each of these 14 species combinations, three levels of water supply and three levels of BSCs coverage were set up for a total of 126 treatment types, each with seven replicates or a grand total of 882 test pots. The three water levels were 80 ml, 120 ml and 160 ml every 3 days, and three levels of BSCs coverage were set up; each was filled with 1,100 ml sand which had been prepared; each was filled with 1,100 ml sand which had been collected near the OSES, and sieved to remove the soil’s seed bank. We planted 5–10 seeds of the four species in these pots on June 12, 2008. Fifteen days later, we selected similar sized seedlings for our experiment and removed any large or small plants. Fourteen species combinations were set up as follows: four had a single seedling of one of the four test species in one pot, four had two seedlings of one of the test species in one pot, and the other six combinations had two seedlings, with one seedling of each of two different species in one pot. For each of these 14 species combinations, three levels of water supply and three levels of BSCs coverage were set up for a total of 126 treatment types, each with seven replicates or a grand total of 882 test pots. The three water levels were 80 ml, 120 ml and 160 ml every 3 days, and three levels of BSCs coverage were set up; each was filled with 1,100 ml sand which had been

Table 1. F-values of three-way ANOVA for effects of water regime (WR), percent coverage of biological soil crusts (BSCs), neighboring plants (NP) and their interactions on the relative interaction index (RII) of the target species of *Artemisia ordosica*, *Artemisia sphaerocephala*, *Chloris virgata* and *Setaria viridis*.

Effects	A. ordosica	A. sphaerocephala	C. virgata	S. viridis				
	F	P	F	P	F	P	F	P
WR	1.545	0.216	16.809	<0.001	14.417	<0.001	2.009	0.139
BSCs	0.849	0.430	8.931	<0.001	7.183	<0.001	5.242	0.007
NP	47.051	<0.001	55.538	<0.001	69.595	<0.001	36.697	<0.001
WR * BSCs	1.318	0.265	5.467	<0.001	9.608	<0.001	6.925	<0.001
WR * NP	2.657	0.017	2.780	0.013	1.182	0.319	2.396	0.032
BSCs * NP	2.185	0.047	2.630	0.019	1.641	0.139	0.862	0.525
WR * BSCs * NP	1.655	0.081	1.777	0.056	0.759	0.692	3.700	<0.001

P<0.05 is shown in boldface as significant.

doi:10.1371/journal.pone.0087713.t001

Figure 1. Relative interaction index (RII) (mean ± SE, n = 84) of *Artemisia ordosica*, *Artemisia sphaerocephala*, *Chloris virgata* and *Setaria viridis* in different treatments of biological soil crusts (BSCs) coverage. The plant interaction is (positive) facilitative as RII>0, (negative) competitive as RII<0 and neutral as RII=0. A greater absolute value of RII indicates a greater intensity of plant interaction. Different letters indicate significant difference at P<0.05.

doi:10.1371/journal.pone.0087713.g001
calculated an RII as a measure of plant interaction intensity and direction [24]. RII has strong mathematical and statistical properties, which overcome problems experienced with other frequently used indices [30], Equation (1) was used:

\[RII = (B_w - B_o) / (B_w + B_o) \]

(1)

where \(B_w \) is the biomass of target plant growing with a neighbor, noting that the neighbor plants may be either the same or a different species in our experiment, and the mean value is used while the neighbor plants belong to the same species; \(B_o \) is the biomass of a target plant growing in absence of inter- or intra-specific interactions, that is, the biomass of a single seedling planted by itself in our experiment.

The target plant is said to have experienced a (positive) facilitative effect from a neighbor plant if RII>0 and a (negative) competitive effect if RII<0. A greater absolute value of RII indicates a greater intensity of plant interaction.

Statistical analyses

Three-way ANOVA was used to test effects of BSCs coverage, water regime and neighboring plants on RII of each target plant species. Two-way ANOVA was used to analyze the effects of BSCs coverage and water regime on RII of each target plant species. The effects of percent BSCs coverage on RII, the effects of neighboring plants on RII, and the effects of percent BSCs coverage on biomass of each target plant species were analyzed separately using one-way ANOVA. Data were transformed to meet normality and homogeneity of ANOVA, if necessary. All statistical analyses were performed using SPSS 17.0 (SPSS, Chicago, IL, USA).

Results

Effects of BSCs coverage on plant interactions

The percent coverage of BSCs had a significant effect on RII value of three target species, \textit{A. sphaerocephala}, \textit{C. virgata} and \textit{S. viridis}, but not for \textit{A. ordosica} (Table 1). BSCs coverage did not change the direction of plant interactions between the four plant species studied here; however, RII was significantly influenced by coverage of BSCs for \textit{A. sphaerocephala} and \textit{C. virgata} (Figure 1). A coverage of BSCs of 100% significantly increased the RII value for \textit{A. sphaerocephala} as well for \textit{C. virgata} (Figure 1). Also, the RII value of \textit{C. virgata} was the lowest with 50% coverage of BSCs (Figure 1).

Interactive effect between BSCs coverage and water regime on plant interactions

Water regime and BSCs coverage had a significant interactive effect on the RII value for \textit{A. sphaerocephala}, \textit{C. virgata} and \textit{S. viridis} (Figure 2). Under low and high simulated rainfall conditions, BSCs coverage decreased the RII value for \textit{C. virgata}, while it significantly increased the RII value under medium simulated rainfall condition (Figure 2); BSCs coverage also decreased the RII value for \textit{S. viridis} under high simulated rainfall condition, but no significant effect was observed under low and medium simulated rainfall conditions. Furthermore, under medium simulated rainfall condition, neighbor plant had a facilitative effect for \textit{C. virgata} when BSCs coverage was 100% (RII>0) (Figure 2).

![Figure 2. Relative interaction index (RII) (mean ± SE, n = 28) of Artemisia ordosica, Artemisia sphaerocephala, Chloris virgata and Setaria viridis in different treatments of simulated rainfall and biological soil crusts (BSCs) coverage.](https://plosone.org/figures-transgenic.png)
Plant inter- and intra-specific interactions

For all the pairwise combinations of the four plant species studied here, neighbor plant species had significant influences on the RII value (Table 1), while they had no effect on plant interaction direction except for inter-specific interaction between plants of *C. virgata* and the neighbor plant *S. viridis* (Figure 3). As a neighbor species, *A. sphaerocephala* had a minor effect on all four target plant species as indicated by a higher RII value, while *C. virgata* intensified the competitive effect on the four target species except for *A. sphaerocephala* with the lowest RII value (Figure 3).

Effect of BSCs coverage on plant biomass

Coverage of BSCs significantly reduced total biomass in all four plant species grown without any neighbor plant (Figure 4). Biomass of *S. viridis* was smallest; while *C. virgata* had the highest biomass (Figure 4).

Discussion

BSCs coverage can play an important role in affecting individual plants at different stages of their life history, including seed germination [31,32], seedling survival and establishment [33,34] and plant growth [35]. Our results showed that percent BSCs coverage had a strong effect on plant interactions (Table 1). Percent BSCs coverage in our experiment did not benefit the growth of individual plants (Figure 4); instead it behaved like a stress factor. This might occur because BSCs sealed the soil surface, inhibiting plant root respiration and reducing water availability. Other studies have shown that stress factors can moderate inter-specific competition intensity [36,37]. This was partially supported by our results. In our experiment, RII of all four target plant species except *A. ordosica* were significantly affected by BSCs coverage (Table 1). High level of BSCs coverage generally reduced inter-specific competition levels for *A. sphaerocephala* while medium level of BSCs coverage had no significant effects (Figure 1). For the other species (*C. virgata*), effects of BSCs were more complex and did not fit well with the prediction that increased stress caused by BSCs would result in inter-specific interactions being more neutral and less negative. For example, inter-specific competition levels were greatest for *C. virgata* plants with medium BSCs coverage relative to high levels and no BSCs coverage (Figure 1).

Results showed that there were significant interactions between water regime and BSCs coverage when the target species were *A. sphaerocephala*, *C. virgata* or *S. viridis* (Table 1), and high level of BSCs coverage shifted the inter-specific competition to facilitation for *C. virgata* under medium simulated rainfall (Figure 2). Some of the results supported our hypothesis that the effects of BSCs coverage on plant interactions can be modified by water regime. Since BSCs coverage can promote water shortages [38] and increased abiotic stress may shift plant-plant interactions from competitive to facilitative [16,21], we suspect that annual variation in rainfall amount and variation in BSCs coverage have the potential to produce varied plant-plant interactions. BSCs coverage increased the intensity of competition from neighboring plants for *C. virgata* under both the low and high simulated rainfall conditions, but decreased competition under the medium simulated rainfall conditions (Figure 2). Our current study did not investigate the mechanism (such as plant-soil hydrological processes) of the effects of BSCs coverage.

Size-asymmetric competition appears likely in the experimental plantation [39], because target plant species’ competitive stress

Figure 3. Relative interaction index (RII) (mean ± SE, n = 63) of Artemisia ordosica, Artemisia sphaerocephala, Chloris virgata and Setaria viridis with different neighboring plant species. The plant interaction is (positive) facilitative as RII> 0, (negative) competitive as RII< 0 and neutral as RII = 0. A greater absolute value of RII indicates a greater intensity of plant interaction. Different letters indicate significant difference at P< 0.05.

doi:10.1371/journal.pone.0087713.g003
appeared related to the size of the neighboring plants in our experiment. Neighboring plant species significantly influenced the neighboring plant’s competitive intensity or target plant species’ competitive stress, and plant interaction was species-specific (Figure 3). When the neighboring plant species was *S. viridis*, which had the smallest plant size due to its low rate of biomass accumulation during the experiment (Figure 4), all four target plant species had lower competitive stress (Figure 3). In contrast, pots with *C. virgata* consistently had negative effects on all target plant species (Figure 3). This strong competitive effect is likely the result of *C. virgata* having the largest plant size of species tested here (Figure 4). This result was consistent with previous research [40,41], and it fits with the belief that competition can be scaled to the grams of the competitor.

In conclusion, percent coverage of BSCs often had significant effect on plant interactions in our experiment. Also, this effect was species-specific and could be modified by simulated rainfall conditions. Further studies are needed to focus on plant-soil hydrological processes to show how BSCs coverage works ecologically.

Author Contributions

Conceived and designed the experiments: SG XY MD. Performed the experiments: SG QC XY. Analyzed the data: SG XY QC MD YH. Contributed reagents/materials/analysis tools: SG XY XP MD. Wrote the paper: SG XY MD. Manuscript revision: SG XY XP MD.

References

1. Brooker RW (2006) Plant-plant interactions and environmental change. New Phytol 171: 271–284.
2. Callaway RM (1995) Positive interactions among plants. Bot Rev 61: 306–349.
3. Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Ecol 9: 191–193.
4. Lehman CL, Tilman D (2000) Biodiversity, stability, and productivity in competitive communities. Am Nat 156: 534–552.
5. Tilman D, Lehman CL, Thomson KT (1997) Plant diversity and ecosystem productivity: Theoretical considerations. P Natl Acad Sci USA 94: 1857–1861.
6. Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111: 1119–1144.
7. Vanandel J, Bakker JP, Grootsen AP (1993) Mechanisms of vegetation succession: a review of concepts and perspectives. Acta Bot Neerl 42: 413–433.
8. Holzapfel C, Mahall BE (1999) Bidirectional facilitation and interference between shrubs and annuals in the Mojave Desert. Ecology 80: 1747–1761.
9. Roughgarden J, Diamond J (1986) The role of species interactions in community ecology. In: Diamond J, Case TJ, editors. Community ecology. NY, , US: Harper & Row Publishers Inc. pp. 333–343.
10. McCluney KE, Belnap J, Collins SL, Gonzalez AL, Hagen EM, et al. (2012) Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change. Biol Rev 87: 563–582.
11. Holmgren M, Scheffer M, Huston MA (1997) The interplay of facilitation and competition in plant communities. Ecology 78: 1966–1975.
12. Choler P, Michalewski R, Callaway RM (2003) Facilitation and competition on gradients in alpine plant communities. Ecology 82: 3295–3308.
13. Armas C, Pugnaire FI (2005) Plant interactions govern population dynamics in a semi-arid plant community. J Ecol 93: 978–989.
14. Leisk MC, Breshears DD, Lasenworth WK, Belnap J (2004) A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 141: 269–281.
15. Rodriguez-Inurbe I, D’Odorico P, Porporato A, Ridolfi L (1999) On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resour Res 35: 3709–3722.
16. Schwinning S, Sala OE (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141: 211–220.
17. Sher AA, Goldberg DE, Novoplansky A (2004) The effect of mean and variance in resource supply on survival of annuals from Mediterranean and desert environments. Oecologia 141: 353–362.
18. Bowker MA (2007) Biological soil crust rehabilitation in theory and practice: An underexplored opportunity. Restor Ecol 15: 13–23.
19. Deines L, Rosenzweig R, Eldridge DJ, Serpe MD (2007) Germination and seedling establishment of two annual grasses on lichen-dominated biological soil crusts. Plant Soil 295: 23–35.
20. Huang ZY, Guterman Y (1998) Artemisia monosperma germination in sand: effects of sand depth, sand/water content, cyanobacterial sand crust and temperature. J Arid Environ 38: 27–43.
21. Langhans TM, Storm C, Schwabe A (2009) Biological soil crusts and their microenvironment: impact on emergence, survival and establishment of seedlings. Flora 204: 157–168.
22. Li XR, Jia XH, Long EQ, Zerbe S (2005) Effects of biological soil crusts on seed bank, germination and establishment of two annual plant species in the Tengger Desert (N China). Plant Soil 277: 375–385.
23. Pendleton RL, Pendleton BK, Howard GL, Warren SD (2003) Growth and nutrient content of herbaceous seedlings associated with biological soil crusts. Arid Land Res Manag 17: 273–281.
24. Pugnaire FI, Haase P, Puigdefabregas J (1996) Facilitation between higher plant species in a semiarid environment. Ecology 77: 1420–1426.
25. Gao SQ, Ye KH, Chu Y, Dong M (2010) Effects of biological soil crusts on profile distribution of soil water, organic carbon and total nitrogen in Mu Us Sandland, China. J Plant Ecol-Uk 3: 279–284.
26. Zhang XS (1994) Principles and optimal models for development of Maowusu sandy grassland. Acta Phytoecol Sin 18: 1–16.
27. Li SL, Yu FH, Werner MJA, Dong M, Zuidema PA (2011) Habitat-specific demography across dune fixation stages in a semi-arid sandland: understanding the expansion, stabilization and decline of a dominant shrub. J Ecol 99: 610–620.
28. Deines L, Rosenzweig R, Eldridge DJ, Serpe MD (2007) Germination and seedling establishment of two annual grasses on lichen-dominated biological soil crusts. Plant Soil 295: 23–35.
29. Zhang XS (1994) Principles and optimal models for development of Maowusu sandy grassland. Acta Phytoecol Sin 18: 1–16.
30. Li SL, Yu FH, Werner MJA, Dong M, Zuidema PA (2011) Habitat-specific demography across dune fixation stages in a semi-arid sandland: understanding the expansion, stabilization and decline of a dominant shrub. J Ecol 99: 610–620.
31. Yang XJ, Baskin CC, Baskin JM, Liu GZ, Huang ZY (2012) Seed mucilage improves seedling emergence of a sand desert shrub. PloS One 7: e34597.
32. Oksanen L, Sammul M, Magi M (2006) On the indices of plant-plant competition and their pitfalls. Oikos 112: 149–155.
33. Li XR, Jia XH, Long EQ, Zerbe S (2005) Effects of biological soil crusts on seed bank, germination and establishment of two annual plant species in the Tengger Desert (N China). Plant Soil 277: 375–385.
34. Pendleton RL, Pendleton BK, Howard GL, Warren SD (2003) Growth and nutrient content of herbaceous seedlings associated with biological soil crusts. Arid Land Res Manag 17: 273–281.
35. Pugnaire FI, Haase P, Puigdefabregas J (1996) Facilitation between higher plant species in a semiarid environment. Ecology 77: 1420–1426.
36. Gao SQ, Ye KH, Chu Y, Dong M (2010) Effects of biological soil crusts on profile distribution of soil water, organic carbon and total nitrogen in Mu Us Sandland, China. J Plant Ecol-Uk 3: 279–284.
37. Poorter H, Dalling JW, Jansen V, Bongers F, Ruhe-Möltgen D (2006) Neighborhood effects and size-asymmetric competition in a tree plantation varying in diversity. Ecology 90: 321–327.
38. Lortie CJ, Turkington R (2008) Species-specific positive effects in an annual plant community. Oikos 117: 1511–1521.
39. Wiegelt A, Steinlein T, Breschlag W (2002) Does plant competition intensity rather depend on biomass or on species identity? Basic Appl Ecol 3: 85–94.