Supplemental Material

Sox4 links tumor suppression to accelerated aging in mice by modulating stem cell activation

Miguel Foronda, Paula Martínez, Stefan Schoeftner, Gonzalo Gómez-López, Ralph Schneider, Juana M. Flores, David G. Pisano and Maria A. Blasco

Supplemental Text

Supplemental Experimental Procedures

Supplemental Figure Legends

Supplemental References

Supplemental Figures S1-S6

Supplemental Tables S1-S5
Supplemental Experimental Procedures

Adenoviral Transduction

For inducing Cre-mediated recombination, we seeded target cells at a density of 0.8x10^6 cells per 10cm dish and let them attach for 2h; then we added the adenoviral particles (Provided by the University of Iowa, US) resuspended into 2ml of DMEM at a density of 100MOI (100 viral particles per cell), ensuring 100% transduction. After 1.5 at 37ºC with gentle shaking, we added 10ml of complete DMEM medium and let the cells reach confluence. Cells were then split for functional analysis.

Transfection and retroviral transduction

Transfection into 293T cells was performed using XtremeGene reagent following manufacturer’s instructions. Retroviral transduction was performed following standard procedures. Briefly, 293T cell supernatant was collected 48h after transfection with the cDNA of interest and pCL-Eco ecotropic packaging vector at a 1:1 ratio. Supernatants were filtered through 0.45µm filters and diluted 1/3 in complete DMEM medium in the presence of 8µg/ml Polybrene. Diluted supernatant was added to target cells, previously seeded at a 0.8x10^3 cells per 10cm dish. Supernatant addition was repeated three times every 12h, and target cells were selected in 2µg/ml Puromycin for 48h prior to the functional assays.

QFISH on skin sections

Skin was collected and processed as described for IHC, and after antigen retrieval samples were hybridized with a telomeric (CCCTAA)_6 probe coupled to
Cy3 as described (Samper et al., 2000). Images were captured using a confocal SP5 Leica Microscope by performing stacks of 1μm section thickness for a total of 10μm, using a 63X oil immersion objective. At least 100-300 nuclei were analyzed per skin region and mouse, and replicates arise from averaged values among mice (n). Maximum projection images were analyzed using TFL-Telo software, a kind gift of Peter Landsorp, for quantification of individual fluorescence intensity of telomeres.

HTQFISH in PBMCs

100μl of peripheral blood were collected from the submaxilar vein of restrained animals from the indicated ranges of age onto EDTA-containing tubes. Erythrocyte lysis was performed with QIAGEN RBC lysis buffer following manufacturer’s instructions and PBMCs were plated onto Poly-L-Lysine pre-coated Greiner 96 well plates for 2-4h at 37ºC. HTQFISH was then performed as described (Canela et al., 2007) by using the Opera-Acapella system (BD) for image acquisition and analysis. At least 5000 telomeres were analyzed per mouse and condition, and mean telomere length was used for comparison and for obtaining average values per group of mice.

Quantitative Real-Time RTPCR (qPCR)

Total RNA isolation and DNA digestion was done with RNA later, RNEasy and DNase I kits (QIAGEN) following manufacturer’s instructions. For cDNA synthesis, 0.5ng of total RNA were retro-transcribed with Advanced iScript and assayed using Power SYBR Green PCR Master Mix (Applied Biosystems). Samples were measured in technical triplicates and average values were used
for obtaining the biological replicates (n=number of mice in all cases). GAPDH and Actin were used as references for normalization and results were represented as relative to GAPDH levels. The primers used are listed in Supplemental Table 5.

Two-step skin carcinogenesis protocol with DMBA/TPA

TPA and DMBA treatment was performed as described (Gonzalez-Suarez et al., 2000). Briefly, 6-8 age-matched (6-10 week-old) mice were clipped and a single dose of DMBA was applied topically (20µg in 200µl). During the next 15 weeks, mice were administered topical TPA twice weekly (12.5µg in 200µl per dose). All the animals were monitored for a total of 35 weeks for tumor burden with the help of a caliper and sacrificed whenever signs of morbidity were appreciated.

Label-Retaining Cells (LRCs) assays

LRC tracing with BrdU was performed as described (Braun et al., 2003; Flores et al., 2005). In brief, P10 mice were injected with 50mg/Kg BrdU in PBS every 12h for a total of four injections. After a chase period of 70 days, mice were culled and tail skin collected and incubated during 4h at 37°C in 5mM EDTA in PBS. Epidermis was peeled-off gently with forceps and fixed in 4% paraformaldehyde for 2h at RT. After 3x5min washes in PBS, epidermal sheets were permeabilised with PB buffer (0.5% Triton-X100, 0.25% fish skin gelatin (SIGMA), 0.5% milk powder, in PBS), denatured in 2M HCl for 30min at 37°C, washed overnight at 4°C in PB buffer and then incubated in anti-BrdU antibody and DAPI and processed as described (Braun et al., 2003). Images were
captured in a SP5 Leica Confocal Microscope (15-20 follicles were quantified per mouse and values averaged for comparison among mice as number of LRC per follicle) by using a 40X objective, and performing 1µm sections projected into z-stacks spanning 30-40µm.

Hair plucking and wound healing

Hair plucking and wound healing were performed as described (Flores and Blasco, 2009; Flores et al., 2005). For hair plucking mice were anesthetized in 2.5% Isofluorane (kept during the whole procedure) and were intraperitoneally-administered Buprex solution as analgesic. A 1cm² dorsal patch of hair was removed by manual plucking with tweezers and tape-stripping. Hair regeneration was assessed with ImageJ; briefly, images were taken from a fixed distance including a caliper for distance calculation, and regenerated hair was calculated as percentage of Anagen skin at the indicated time point over the initial plucked area. Each mouse was quantified independently and values were used for comparison (n=number of mice). For wound healing, mice were anesthetized; 4-6cm² of dorsal hair was removed with depilatory cream (Veet) and rinsed with distilled water. Parallel, double full-thickness wounds were performed under anesthesia conditions 24h later in the upper region of the dorsal skin of the mice with a 4mm biopsy punch device (PFM, Köln, Germany). Subsequent wounds were performed following a head-to-tail progression along the back skin of the mice every 3 days and wound size assessed with a caliper and ImageJ in a similar manner to that of hair regeneration (percentage of remaining wound at the indicated times, with respect to initial wound area). At least 2 wound were
quantified per mouse, and averaged values were used for generating biological replicates (n).

In vitro transformation and foci formation

MEFs were isolated from E13.5 mouse embryos following standard procedures. After AdCre infection, 0.8x10⁶ low passage MEFs (P2) were seeded onto 10 cm dishes and retrovirally transduced with pLPC-\textit{E1a-IRES-HRas}^{G12V}-puro (Fernandez-Marcos et al., 2010; Palmero and Serrano, 2001) supernatant produced in 293T cells. Cells were selected in 2µg/ml puromycin for 48h. Infected cells were then seeded at a low density (2x10³ cells per 100mm dish) in triplicates and grown in DMEM 10% FBS for 2 weeks. Cells were fixed in 10% Formaldehyde 30 min at RT and stained with Giemsa. Dishes were scanned and colony size and frequency was assessed with ImageJ.
Supplemental Figure Legends

Figure S1. Accelerated aging in Sox4 hypomorphic (Sox4^{lox/lox}) mice, related to Figure 1

(A) Mendelian ratios in the indicated mating settings, of Sox4^{lox/lox}, Sox4^{+/lox} and Sox4^{+/+} pups at early (E13.5) and late (E18.5) developmental stages and P21 (Weaning). P values were calculated using Fisher’s exact test.

(B) Relative size of embryos (E18.5), pups (P2) and young (P90) mice of the indicated genotypes.

(C) Weight gain during the postnatal life of mice from the indicated genotypes.

(D) DEXA images of adult male Sox4^{+/+} and Sox4^{lox/lox} mice.

(E) Fat mass (%) in mice from the indicated genotypes

(F) Weight (grams) of lean mass in Sox4^{+/+} and Sox4^{lox/lox} mice.

(G) Kaplan-Meyer plots of male (left) and female (right) mice from Sox4^{+/+}, Sox4^{+/lox} and Sox4^{lox/lox} cohorts. Mean life span is shown as intersection with the dashed red line. Log-rank test was used for comparison.

N=number of mice studied per genotype; Student’s t test was used unless otherwise specified.

Figure S2. Sox4 hypomorphic mice show normal Sox11/12 expression levels and display delayed hair follicle morphogenesis, related to Figure 1

(A) GFP IHC in tail skin sections from Sox4^{+/+} and Sox4^{lox/lox} mice.

(B) Variation in the Sox4 mRNA expression in adult tail skin from the indicated genotypes.
(C) Sox11 and Sox12 qPCR in the indicated tissues from Sox4^{+/+} and Sox4^{lox/lox} mice.

(D) (Left) CK14 and Sox9 IHC in E18.5 embryos of the indicated genotypes. Magn, magnification. (Right) Quantification of the numbers of HF in mice of the indicated genotypes at E18.5.

N=number of mice. Student’s t test was used for comparison (indicated when significant) and depicted is average and SEM.

Figure S3. K5-Cre transgenesis does not influence lifespan, Sox11/Sox12 expression or weight, related to Figure 2

(A) Sox11 and Sox12 qPCR from tail epidermis of Sox4^{WT} and Sox4^{cKO} mice.

(B) Kaplan-Meyer survival curves of the depicted cohorts, comparing the different genotypes with or without the K5Cre transgene (Top, Sox4^{+/+}; middle, Sox4^{+/lox}; bottom panels, Sox4^{lox/lox}). Log-rank test was used for comparison.

(C) Weight plots (grams, g) in mice of the indicated genotypes at different time points.

(D) Tail skin hyperpigmentation in adult (6 months old) Sox4^{WT} and Sox4^{cKO} mice.

N=number of mice studied per genotype. Unless otherwise specified, Student’s t test was used for comparison. Depicted is average and SEM.

Figure S4. Reduced differentiation capabilities in vitro and normal number of LRC in Sox4^{cKO} skin, related to Figures 3 and 4
(A) (Left) Brightfield and Giemsa-stained adult (P180) primary mouse keratinocytes undergoing differentiation. Images are representative of 2 mice per genotype. Red arrowheads mark differentiated colonies and yellow arrowheads depict small, undifferentiated clones. (Right) Total number (large, differentiated and small, undifferentiated) colonies in differentiating newborn (P1) and adult (P180) mouse keratinocyte clonogenic assays.

(B) (Left) LRCs, as assessed by BrdU staining after a 70day-chase period on tail skin whole-mounds from the indicated genotypes. (Right) Quantification of the amount of LRCs per HF.

N=number of mice per genotype, Student’s t test was used for comparison.

Figure S5. Telogen and Anagen skin microarrays show preferential downregulation in immune/metabolic pathways or HFSC pathways, respectively, in the absence of Sox4; related to Figure 5

(A) Heat map showing the top-50 DEGs during Telogen skin in the indicated genotypes.

(B) qPCR validation of some of the DEGs found in (A)

(C) GSEA of the indicated pathways, in Sox4WT and Sox4cKO mice during Telogen.

(D) Heat maps for the Sox4, Sox9 and Sox5 signatures (see Main Figure 6C). The top-twenty differentially regulated genes are shown (red=high expression levels; blue=low expression levels, referred to Sox4WT mice).

(E) Telogen skin qPCR analysis of the DEGs found in the Anagen microarray.

(F) qPCR analysis of the Wnt/Ctnnb1 signature in Telogen skin.
(D) Proposed model for Sox4 modulation of canonical Wnt pathway during HFSC activation upon plucking.

Figure S6. Early and late carcinogenesis are prevented by reduced proliferation and HFSC activation in the absence of Sox4, related to Figure 6

(A) Macroscopic aspect of mice from the indicated genotypes, at 10 and 15 weeks of treatment during the TPA/DMBA carcinogenesis protocol.

(B) Ki67 IHC in skin from Sox4^{WT} and Sox4^{cKO} mice, 6 weeks after initiation of DMBA/TPA treatment. Note the reduced Ki67-positive cells in Sox4-depleted mice. Magn, magnification.

(C) IFE thickness and hair follicle length after 6 weeks of TPA treatment.

(D) Loricrin, Cytokeratin 6 (CK6), p53 and phospho-Histone 3 (P-H3) IHC in benign lesions after 6 weeks of TPA treatment, in Sox4^{WT} and Sox4^{cKO} mice. Insets show magnification; yellow arrowheads, pan-nuclear P-H3-positive cells; red arrowheads, dotted P-H3.

N=number of mice per group, Student’s t test was used for comparison.
Supplemental References

Braun, K.M., Niemann, C., Jensen, U.B., Sundberg, J.P., Silva-Vargas, V., and Watt, F.M. (2003). Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development 130, 5241-5255.

Canela, A., Vera, E., Klatt, P., and Blasco, M.A. (2007). High-throughput telomere length quantification by FISH and its application to human population studies. Proc Natl Acad Sci U S A 104, 5300-5305.

Fernandez-Marcos, P.J., Pantoja, C., Gonzalez-Rodriguez, A., Martin, N., Flores, J.M., Valverde, A.M., Hara, E., and Serrano, M. (2010). Normal proliferation and tumorigenesis but impaired pancreatic function in mice lacking the cell cycle regulator sei1. PLoS One 5, e8744.

Flores, I., and Blasco, M.A. (2009). A p53-dependent response limits epidermal stem cell functionality and organismal size in mice with short telomeres. PLoS One 4, e4934.

Flores, I., Cayuela, M.L., and Blasco, M.A. (2005). Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309, 1253-1256.

Gonzalez-Suarez, E., Samper, E., Flores, J.M., and Blasco, M.A. (2000). Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet 26, 114-117.

Jensen, K.B., Driskell, R.R., and Watt, F.M. (2010). Assaying proliferation and differentiation capacity of stem cells using disaggregated adult mouse epidermis. Nat Protoc 5, 898-911.
Martinez, P., Thanasoula, M., Munoz, P., Liao, C., Tejera, A., McNees, C., Flores, J.M., Fernandez-Capetillo, O., Tarsounas, M., and Blasco, M.A. (2009). Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev 23, 2060-2075.

Palmero, I., and Serrano, M. (2001). Induction of senescence by oncogenic Ras. Methods Enzymol 333, 247-256.

Samper, E., Goytisolo, F. A., Slijepcevic, P., van Buul, P. P., and Blasco, M. A. (2000) Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep. 1(3):244-52.
Supplemental Figures

Figure S1: Accelerated aging in Sox4 hypomorphic (Sox4\(^{lox/lox}\)) mice, related to Figure 1.

Figure S2: Sox4 hypomorphic mice show normal Sox11/12 expression levels and display delayed hair follicle morphogenesis, related to Figure 1.

Figure S3: K5-Cre transgenesis does not influence lifespan, Sox11/Sox12 expression or weight, related to Figure 2.

Figure S4: Reduced differentiation capabilities in vitro and normal number of LRC in Sox4\(^{cKO}\) skin, related to Figures 3 and 4.

Figure S5: Telogen and Anagen skin microarrays show preferential downregulation in immune/metabolic pathways or HFSC pathways, respectively, in the absence of Sox4; related to Figure 5.

Figure S6: Early and late carcinogenesis are prevented by reduced proliferation and HFSC activation in the absence of Sox4, related to Figure 6.
Figure S1

A

Mendelian Ratios

Sox4^{lox/lox} x Sox4^{lox/lox}	Sox4^{lox/lox} x Sox4^{lox/lox}	Sox4^{lox/lox} x Sox4^{lox/lox}
Expected	Observed	
Sox4^{lox/lox}	Sox4^{lox/lox}	Sox4^{lox/lox}
n=12	n=22	n=123
ns	ns	ns

E13.5 | E18.5 | Weaning (P21)

B

Images showing the stages of development:

- E18.5
- P2
- P90

C

Weight (grams)

Sox4^{lox/lox}	Sox4^{lox/lox}
n=8	n=14
n=182	n=182

E18.5 | 2 weeks | 4 weeks

D

Images showing genetic outcomes:

- Sox4^{+/+}
- Sox4^{lox/lox}

E

Fat Mass

Sox4^{lox/lox}	Sox4^{+/+}
n=8	n=14
n=6	n=6

p=0.001

F

Lean Mass

Sox4^{lox/lox}	Sox4^{lox/lox}
n=6	n=6

p=0.0004

G

Survival curves for males and females:

- Male
- Female

Survival (%) vs. Age (Weeks)

Male:

- Green circles: Sox4^{+/+} (n=34)
- Yellow circles: Sox4^{lox/lox} (n=40) p<0.001
- Blue circles: Sox4^{lox/lox} (n=139) p=0.19

Female:

- Green circles: Sox4^{+/+} (n=34)
- Yellow circles: Sox4^{lox/lox} (n=28) p<0.001
- Blue circles: Sox4^{lox/lox} (n=106) p=0.60

ns = not significant

*** p<0.001

** p=0.004

** p=0.001
Figure S2

A

Magnification
GFP
Sox4^+/+
Sox4^lox/lox

50µm

IFE Bulge/Pr Bulb SG

B

Sox4

mRNA expression levels (Normalized to GAPDHx10^-3)
Sox4^+/+ (n=4)
Sox4^lox/lox (n=5)

Tail skin

C

Sox11

mRNA levels (relative to GAPDH x 10^-3)

Intest. Skin Panc. Spleen Kidn. Brain Liver

Sox12

mRNA expression levels

Intest. Skin Panc. Spleen Kidn. Brain Liver

D

Sox4^+/+ Sox4^lox/lox

CK14	Magn	Sox9

E18.5

Hair Follicle morphogenesis

p=0.0086
Figure S3

A

Sox11

Sox12

mRNA fold

$\text{Sox}4^{\text{WT}} (n=2)$
$\text{Sox}4^{\text{cKO}} (n=3)$

B

Survival (%)

Age (Weeks)

$\text{Sox}4^{\text{lox/lo}};K5\text{Cre}^+/+ (n=79) p=0.89$

$\text{Sox}4^{\text{lox/lo}};K5\text{Cre}^+/+ (n=68)$

Male and Female

C

Weight (g)

$\text{Sox}4^{\text{WT}} (n=5)$

$\text{Sox}4^{\text{cKO}} (n=13) p<0.001$

D

Sox11 mRNA fold

$\text{Sox}11 (p=0.8)$

Sox12 mRNA fold

$\text{Sox}12 (p=0.6)$

Male and Female

$\text{Sox}4^{\text{lox/lo}};K5\text{Cre}^+/+ (n=246) p=0.93$

$\text{Sox}4^{\text{lox/lo}};K5\text{Cre}^+/+ (n=245)$

$\text{Sox}4^{\text{WT}} (n=2)$
$\text{Sox}4^{\text{cKO}} (n=3)$

$\text{Sox}4^{\text{lox/lo}};K5\text{Cre}^+/+ (n=79) p=0.89$

$\text{Sox}4^{\text{lox/lo}};K5\text{Cre}^+/+ (n=68)$

$\text{Sox}4^{\text{lox/lo}};K5\text{Cre}^+/+ (n=79) p=0.89$

$\text{Sox}4^{\text{lox/lo}};K5\text{Cre}^+/+ (n=68)$

$\text{Sox}4^{\text{lox/lo}};K5\text{Cre}^+/+ (n=75) p=0.731$
Figure S4

A

Sox4

WT

cKO

BrdU

cells/HF

LRCs

Magn.

Total colonies

Treatment	P1	P180
Sox4**WT**	20	10
Sox4**cKO**	15	5
Sox4**lox/lox**	10	5

p-values:

- P1: 0.40
- P180: 0.16

n-values:

- Sox4**WT**: 5
- Sox4**cKO**: 2
- Sox4**lox/lox**: 6

B

Sox4

** WT**

cKO

BrdU

DAPI

SG

Bulge

BrdU

cells/HF

LRCs

n-values:

- Sox4**WT**: 3
- Sox4**cKO**: 2

p-values:

- Sox4**WT** vs. Sox4**cKO**: 0.26
Figure S5

A: Heatmap showing DEGs in Telogen for Sox4 WT (n=3) and Sox4 cKO (n=3).

B: DEGs in Telogen with FDR values.

C: Cttnb1-sensitive and Sox9 signature.

D: Sox4 Targets:
- Sox4 WT
- Sox4 cKO

E: Anagen DEGs in Telogen skin.

F: Cttnb1-sensitive signature in Telogen skin.
Figure S6

10 weeks post-DMBA

15 weeks post-DMBA

6 weeks post-DMBA

6 weeks post-DMBA

30 weeks post-DMBA
Supplemental Tables

Table S1: Main histopathological findings in Sox4WT and Sox4lox/lox mice at humane end point, related to Figure 1 and Figure S1.

Table S2: Gene Set Enrichment Analysis (GSEA) showing the pathways differentially regulated in Sox4cKO vs Sox4WT mice in Telogen skin, related to Figure 5 and S5.

Table S3: Differentially Expressed Genes (DEGs) in Sox4cKO vs Sox4WT mice undergoing hair regeneration, 12 days after plucking, at a FDR<0.05, related to Figure 5 and S5.

Table S4: Gene Set Enrichment Analysis (GSEA) showing the pathways differentially regulated in Sox4cKO vs Sox4WT mice undergoing hair regeneration, 12 days after plucking, at a FDR<0.05, related to Figure 5 and S5.

Table S5: List of primers used for qPCR and genotyping, related to Figures 1, 5 and S5.
Table S1. Main histopathological findings in Sox4 hypomorphic (Sox4^{lox/lox}) mice compared to their wild type counterparts (Sox4^{+/+}) at humane end point, related to Figures 1 and S1

Parameter	Category	Sox4^{+/+} n=24	Sox4^{lox/lox} n=22	Fisher’s exact test
Sex	Male	12 (50.0%)	14 (63.6%)	p=0.39
	(%)			
Age at H. E. P. (Weeks)	Mean	106.9 (72-139)	53.8 (17-81)	p<0.001
	(Range)			
Diaphragmatic hernia	Affected	1 (4.1%)	16 (72.7%)	p<0.001
	(%)			
Dilated Cardiomyopathy and heart hypertrophy	Affected	3 (12.5%)	8 (36.4%)	p=0.086
	(%)			
Pyometra	Affected	0 (0%)	4 (50.0%)	p=0.02
	(% of Female)			
Intestinal failure (oedema, amiloidosis, hyperthropic caecum, etc)	Affected	3 (12.5%)	7 (31.8%)	p=0.16
	(%)			
Renal failure (chronic glomerulonephritis, amiloidosis, calculus, etc)	Affected	7 (29.1%)	5 (22.7%)	p=0.74
	(%)			
Hepatic failure (necrosis, chronic hepatitis, amiloidosis, congestion, steatosis, etc)	Affected	9 (37.5%)	12 (54.5%)	p=0.38
	(%)			
Skin atrophy	Affected	8 (33.3%)	8 (36.4%)	p=1
	(%)			
Skin hyperpigmentation	Affected	1 (4.2%)	5 (22.7%)	p=0.09
	(%)			
Table S2

Ranked list of all gene sets significantly changed in *Sox4^{KO} vs. Sox4^{WT} telogen mouse skin (FDR<0.05), related to Figures 5 and S5

Gene Set Name	# Genes	FDR q-val	Source	Status		
CHOLESTEROL BIOSYNTHESIS	19	< 1E-05	REACTOME	DOWN ↘		
GENERATION OF SECOND MESSENGER MOLECULES	20	< 1E-05	REACTOME	DOWN ↘		
GLUCOSE METABOLISM	77	< 1E-05	REACTOME	UP ↗		
METABOLISM OF CARBOHYDRATES	100	< 1E-05	REACTOME	UP ↗		
ELECTRON TRANSPORT CHAIN	62	< 1E-05	REACTOME	UP ↗		
GLUCONEOGENESIS	33	< 1E-05	REACTOME	UP ↗		
IMMUNOREGULATORY INTERACTIONS BETWEEN A LYMPHOID AND A NON-LYMPHOID CELL	46	4.42E-04	REACTOME	DOWN ↘		
PARKINSON'S DISEASE	110	8.54E-04	KEGG	UP ↗		
CITRIC ACID CYCLE (TCA CYCLE)	18	0.001	REACTOME	UP ↗		
BIOSYNTHESIS OF STEROIDS	23	0.001	KEGG	DOWN ↘		
GLYCOLYSIS.GLUCONEOGENESIS	53	0.003	KEGG	UP ↗		
NATURAL KILLER CELL MEDIATED CYTOTOXICITY	118	0.004	KEGG	DOWN ↘		
ANDROGEN AND ESTROGEN METABOLISM	34	0.004	KEGG	DOWN ↘		
PRIMARY IMMUNODEFICIENCY	35	0.005	KEGG	DOWN ↘		
GRAFT-VERSUS-HOST DISEASE	21	0.005	KEGG	DOWN ↘		
TCR_PATHWAY:TCR SIGNALING IN NAIVE CD4⁺ T CELLS	61	0.006	NCI	DOWN ↘		
CITRATE CYCLE (TCA CYCLE)	30	0.007	KEGG	UP ↗		
GLYCOLYSIS	22	0.008	REACTOME	UP ↗		
PI3KCIPATHWAY:CLASS I PI3K SIGNALING EVENTS	44	0.008	NCI	DOWN ↘		
T CELL RECEPTOR SIGNALING PATHWAY	95	0.019	KEGG	DOWN ↘		
CD8TCRPATHWAY:TCR SIGNALING IN NAIVE CD8⁺ T CELLS	49	0.02	NCI	DOWN ↘		
INSULIN SIGNALING PATHWAY	133	0.021	KEGG	UP ↗		
ALZHEIMER'S DISEASE	157	0.031	KEGG	UP ↗		
HEMATOPOIETIC CELL LINEAGE	79	0.032	KEGG	DOWN ↘		
ARGinine AND PROline METABOLISM	33	0.036	KEGG	UP ↗		
FRUCTOSE AND MANNOSE METABOLISM	38	0.039	KEGG	UP ↗		
OXIDATIVE PHOSPHORYLATION	110	0.04	KEGG	UP ↗		
STARCH AND SUCROSE METABOLISM	33	0.041	KEGG	UP ↗		
CALCIUM SIGNALING PATHWAY	179	0.045	KEGG	UP ↗		
Symbol	Name	log₂FC	p value	Annotated Diseases	GO ID	Biological/Molecular GO term
------------	---	--------	---------	---	-------------------	--
Sox4	SRY (Sex Determining Region Y)-Box 4	4.90	2.26E-09	Neuritisis, Splenic marginal zone lymphoma, Adenoid cystic carcinoma, Endometrial	GO:0001841	neural tube formation
				adenocarcinoma, Ependymoma, Mantle cell lymphoma, Colorectal cancer, Melanoma,	GO:0002328	pro-B cell differentiation
				Hepatitis, Breast cancer, Lung cancer, Prostate cancer, Obesity, Myeloma,	GO:0003211	cardiac ventricle formation
				Hepatocellular carcinoma, Adenocarcinoma, Glioblastoma, Medulloblastoma, Bladder	GO:0006355	regulation of transcription, DNA-dependent
				carcinoma	GO:0068284	positive regulation of cell proliferation
					GO:0035019	somatic stem cell maintenance
					GO:009263	canonical Wnt signaling pathway
Mex3a	Mex-3 RNA Binding Family Member A	2.13	1.53E-05	NA	GO:0003723	RNA binding
					GO:0005515	protein binding
					GO:0008270	zinc ion binding
BC005764	Plasticity-Related Gene 2	1.94	3.59E-07	Melanoma, Pancreatitis	GO:0003824	catalytic activity
					GO:0005515	protein binding
					GO:0008195	phosphatidate phosphatase activity
Evl	Ena/VASP-Like Protein	1.39	1.28E-05	Splanic abcess, Esophageal varix, Hypersplenism, Portal hypertension, Wiskott-	GO:0007015	actin filament organization
				aldrich syndrome, Liver cirrhosis, Hypertension, Esophagtitis, Colorectal cancer,	GO:0007166	cell surface receptor signaling pathway
				Gastric cancer, Endothelitis, Breast cancer	GO:0007399	nervous system development
					GO:0007411	axon guidance
					GO:0008154	actin polymerization or depolymerization
Tead2	TEA Domain Family Member 2	1.07	2.08E-05	Patulous eustachian tube, Alpha-mannosidosis, Plasmodium falciparum malaria, Pharyngitis, Neuronitis	GO:0001570	vasculogenesis
					GO:0001843	neural tube closure
					GO:0003143	embryonic heart tube morphogenesis
					GO:0006355	transcription initiation from RNA pol II
					GO:0006367	regulation of transcription, DNA-dependent
Testis Derived Transcript	Toxocariasis, Clonorchiasis, Syphilis, Pneumothorax, Gastric cancer, Glioblastoma, Ovarian cancer, Squamous cell carcinoma, Prostate cancer, Melanoma				GO:0008270	zinc ion binding
					GO:0008285	negative regulation of cell proliferation
Zfp184	Zinc Finger Protein 184 (Kruppel-Like)	1.21	6.42E-05	Choriocarcinoma, Schizophrenia	GO:0006351	transcription, DNA-dependent
					GO:0006355	regulation of transcription, DNA-dependent
Nme4	NME/NM23 Nucleoside Diphosphate Kinase 4	1.16	1.37E-04	Diffuse astrocytoma, Lactic acidosis, Cystic fibrosis, Tuberculosis, Myelodysplastic syndromes, Pneumonia, Colon cancer, Pancreatitis, Prostatitis	GO:0006165	nucleoside diphosphate phosphorylation
					GO:0006183	GTP biosynthetic process
					GO:0006228	UTP biosynthetic process
					GO:0006241	CTP biosynthetic process
					GO:0009116	nucleoside metabolic process
					GO:0015949	nucleobase-containing small molecule interconverrs
					GO:0044281	small molecule metabolic process
					GO:0055086	nucleobase-containing small molecule metabolism
Dbn1	Drebrin 1	1.11	1.48E-04	Mantle cell lymphoma, Down syndrome, Alzheimer's disease, Dementia, Schizophrenia, Bipolar disorder, Neuronitis, Acute lymphoblastic leukemia, Neuroblastoma, Breast cancer	GO:0007015	actin filament organization
					GO:0007399	nervous system development
					GO:0010643	cell communication by chemical coupling
					GO:0010644	cell communication by electrical coupling
					GO:0032507	maintenance of protein location in cell

Table S3. Annotated ranked list of the top-20 genes significantly downregulated in Sox4ΔKO vs. Sox4ΔWT mice undergoing hair regeneration 12 days after plucking, related to Figures 5 and S5.
Symbol	Name	log2FC	p value	Annotated Diseases	GO ID	Biological/Molecular GO term
Cck	Cholecystokinin	0.96	2.40E-04	Cholecystitis, biliary dyskinesia, dyspepsia, bile reflux, irritable bowel syndrome, gallbladder disease, alcoholic pancreatitis, cholelithiasis, neuroepithelioma, gastroparesis, bladder disease, duodenal ulcer, neuron migration	GO:0001764	
				release of cytochrome c from mitochondria	GO:0001836	
				apoptotic process	GO:0006915	
				activation of caspas	GO:0006919	
Atp1a4	ATPase, Na+/K+ Transporting, Alpha 4 Polypeptide	0.89	4.30E-04	diabetic neuropathy, pharyngitis, neuropathy, hypertension, pancreatitis, hepatitis	GO:0000166	nucleotide binding
				sodium:potassium-exchanging ATPase activity	GO:0005391	
				ATP binding	GO:0005524	
				monovalent cation transmembrane transporter	GO:015077	
Zfp422	Zinc Finger Protein 422	0.8	5.32E-04	sipple syndrome, tooth agenesis, multiple endocrine neoplasia, retinoblastoma, leukemia	GO:0006351	
				transcription, DNA-dependent regulation of transcription, DNA-dependent odontogenesis	GO:0006355	
				anti-inflammation	GO:0042476	
Samd14	Sterile Alpha Motif Domain Containing 14	0.83	5.39E-04	lung adenoma, adenoma, colorectal cancer, adenocarcinoma	GO:0005515	protein binding
Hist3h2ba	3, H2ba, Pseudogene	1.01	5.75E-04		GO:0005783	endoplasmic reticulum
				integral to membrane	GO:0016021	
Tmem98	Transmembrane Protein 98	0.96	6.11E-04	adenosquamous carcinoma	GO:0005783	
				integral to membrane	GO:0016021	
Aoah	Acyloxyacyl Hydrolase	1.06	7.39E-04	osteochondrosis, common cold, mastitis, asthma, hepatitis b, gastric cancer, hepatitis	GO:0006351	
				lipid metabolic process	GO:0006629	
				inflammatory response	GO:0006629	
				lipopolysaccharide metabolic process	GO:0008653	
				negative regulation of inflammatory response	GO:0050728	
Krt8	Keratin 8	1.297	0.00035906	keratinizing squamous cell carcinoma, neuroendocrine carcinoma, spindle cell sarcoma, chondroblastoma, craniohypophygioma, pleomorphic carcinoma, sweat gland carcinoma, cervical intraepithelial neoplasia, cervical adenocarcinoma, cervical squamous cell carcinoma	GO:0006629	
				apoptotic process	GO:0006915	
				cytoskeleton organization	GO:0007010	
				modulation by virus of host physiology	GO:0019048	
				TNF-mediated signaling pathway	GO:0033209	
				sarcomere organization	GO:0045214	
Dio3	Deiodinase, Iodothyronine, Type III	0.97	7.97E-04	thyrotoxicosis, birth defects, lipodystrophy, hepatocellular carcinoma, osteoarthritis, type 1 diabetes, myocardial infarction, hepatitis, choriocarcinoma, hypothyroidism, hemangiom	GO:0006629	
				thyroxine 5'-deiodinase activity	GO:0004800	
Marcksl1	Macrophage Myristoylated Alanine-Rich C Kinase Substrate	0.99	8.52E-04	anencephaly, neural tube defects, achondroplasia, nephropathy, lung cancer, hepatitis b, endometriosis, breast cancer, prostate cancer, prostatitis, neuritis	GO:0007010	
				actin binding	GO:0003779	
				calmodulin binding	GO:0005516	
				positive regulation of cell proliferation	GO:0008284	
Klk15	Kallikrein-Related Peptidase 15	1.24	8.71E-04	bronchogenic carcinoma, peripheral vascular disease, prostate cancer, prostatitis, meningioma, breast cancer, alzheimer's disease, ovarian cancer, thyroiditis, leukemia	GO:0003824	catalytic activity
				serine-type endopeptidase activity	GO:0004252	
				serine-type peptidase activity	GO:0008236	
Gene Set Name	# Genes	FDR q-val	Source	Status		
---------------	---------	-----------	--------	--------		
M PHASE	94	< 1E-05	REACTOME	DOWN		
CELL CYCLE, MITOTIC	317	< 1E-05	REACTOME	DOWN		
MITOTIC PROMETAPHASE	90	< 1E-05	REACTOME	DOWN		
G2-M CHECKPOINTS	45	< 1E-05	REACTOME	DOWN		
ACTIVATION OF THE PRE-REPLICATIVE COMPLEX	29	< 1E-05	REACTOME	DOWN		
DNA REPLICATION	35	< 1E-05	REACTOME	DOWN		
PLK1_PATHWAY:PLK1 SIGNALING EVENTS	40	< 1E-05	NCI	DOWN		
DNA STRAND ELONGATION	29	1.88E-04	REACTOME	DOWN		
ACTIVATION OF ATR IN RESPONSE TO REPLICATION STRESS	35	2.20E-04	REACTOME	DOWN		
EXTENSION OF TELOMERES	22	6.93E-04	REACTOME	DOWN		
CELL CYCLE	108	0.001	KEGG	DOWN		
FANCONI_PATHWAY:FANCONI ANEMIA PATHWAY	42	0.001	NCI	DOWN		
DOUBLE-STRAND BREAK REPAIR	31	0.003	REACTOME	DOWN		
CENTROSOME MATURATION	90	0.003	REACTOME	DOWN		
LOSS OF PROTEINS REQUIRED FOR INTERPHASE MICROTUBULE ORGANIZATION FROM THE CENTROSOME	81	0.003	REACTOME	DOWN		
GENERATION OF SECOND MESSENGER MOLECULES	20	0.003	REACTOME	DOWN		
HOMOLOGOUS RECOMBINATION REPAIR	26	0.003	REACTOME	DOWN		
ELONGATION OF INTRON-CONTAINING TRANSCRIPTS AND CO-TRANSCRIPTIONAL MRNA SPlicing	129	0.004	REACTOME	DOWN		
LOSS OF NLP FROM MITOTIC CENTROSOMES	81	0.004	REACTOME	DOWN		
GAP-FILLING DNA REPAIR SYNTHESIS AND LIGATION IN GG-NER	16	0.004	REACTOME	DOWN		
G2-M TRANSITION	97	0.004	REACTOME	DOWN		
DNA REPAIR	98	0.004	REACTOME	DOWN		
ELONGATION AND PROCESSING OF CAPPED TRANSCRIPTS	129	0.004	REACTOME	DOWN		
E2F TRANSCRIPTIONAL TARGETS AT G1-S	22	0.004	REACTOME	DOWN		
HOMOLOGOUS RECOMBINATION REPAIR OF REPLICACTION-INDEPENDENT DOUBLE-STRAND BREAKS	26	0.004	REACTOME	DOWN		
E2F MEDIATED REGULATION OF DNA REPLICATION	37	0.004	REACTOME	DOWN		
FORMATION AND MATURATION OF MRNA TRANSCRIPT	146	0.004	REACTOME	DOWN		
LAGGING STRAND SYNTHESIS	19	0.004	REACTOME	DOWN		
CELL CYCLE CHECKPOINTS	116	0.004	REACTOME	DOWN		
GAP-FILLING DNA REPAIR SYNTHESIS AND LIGATION IN TC-NER	16	0.004	REACTOME	DOWN		
HEDGEHOG_2PATHWAY:SIGNaling EVENTS MEDIATED BY THE HEDGEHOG FAMILY	22	0.004	NCI	DOWN		
METABOLISM OF NON-CODING RNA	17	0.005	REACTOME	DOWN		
DNA REPLICATION	96	0.005	REACTOME	DOWN		
ATR_PATHWAY:ATR SIGNALING PATHWAY	37	0.005	NCI	DOWN		
MITOTIC SPINDLE CHECKPOINT	22	0.005	REACTOME	DOWN		
BASE EXCISION REPAIR	17	0.006	REACTOME	DOWN		
INHIBITION OF THE PROTEOLYTIC ACTIVITY OF APC-C REQUIRED FOR THE ONSET OF ANAPHASE BY MITOTIC SPINDLE CHECKPOINT COMPONENTS	21	0.008	REACTOME	DOWN		
APC-C:CDC20 MEDIATED DEGRADATION OF CYCLIN B	30	0.008	REACTOME	DOWN		
INACTIVATION OF APC-C VIA DIRECT INHIBITION OF THE APC-C COMPLEX	21	0.008	REACTOME	DOWN		
APC-CDC20 MEDIATED DEGRADATION OF NEK2A	27	0.009	REACTOME	DOWN		

Table S4. Ranked list of all gene sets significantly changed in Sox4\(^{\text{cKO}}\) vs. Sox4\(^{\text{WT}}\) mice undergoing hair regeneration 12 days after plucking (FDR<0.05), related to Figures 5 and S5.
Table S4 (Cont.). Ranked list of all gene sets significantly changed in *Sox4*KO vs. *Sox4*WT mice undergoing hair regeneration 12 days after plucking (FDR<0.05), related to Figures 5 and S5

Gene Set Name	# Genes	FDR q-val	Source	Status
E2F-ENABLED INHIBITION OF PRE-REPLICATION COMPLEX FORMATION	15	0.009	REACTOME	DOWN ‡
MRN COMPLEX RELOCALIZES TO NUCLEAR FOCI	16	0.009	REACTOME	DOWN ‡
BASE EXCISION REPAIR	33	0.011	KEGG	DOWN ‡
HOMOLOGOUS RECOMBINATION	27	0.011	KEGG	DOWN ‡
ATM MEDIATED RESPONSE TO DNA DOUBLE-STRAND BREAK	17	0.012	REACTOME	DOWN ‡
CONVERSION FROM APC-C:CDC20 TO APC-C:CDH1 IN LATE ANAPHASE	19	0.012	REACTOME	DOWN ‡
ASSEMBLY OF THE RAD50-MRE11-NBS1 COMPLEX AT DNA DOUBLE-STRAND BREAK	16	0.012	REACTOME	DOWN ‡
BARD1PATHWAY:BARD1 SIGNALING EVENTS	27	0.014	NCI	DOWN ‡
BASAL CELL CARCINOMA	55	0.014	KEGG	DOWN ‡
PYRIMIDINE METABOLISM	89	0.015	KEGG	DOWN ‡
MISMATCH REPAIR	22	0.016	KEGG	DOWN ‡
DOWNSTREAM TCR SIGNALING	51	0.016	REACTOME	DOWN ‡
ATM MEDIATED PHOSPHORYLATION OF REPAIR PROTEINS	17	0.016	REACTOME	DOWN ‡
G1-S TRANSITION	109	0.018	REACTOME	DOWN ‡
COLLAGEN-MEDIATED ACTIVATION CASCADE	16	0.019	REACTOME	DOWN ‡
FORMATION OF THE EARLY ELONGATION COMPLEX	32	0.019	REACTOME	DOWN ‡
SYSTEMIC LUPUS ERYTHEMATOSUS	87	0.019	KEGG	DOWN ‡
DNA REPLICATION PRE-INITIATION	75	0.019	REACTOME	DOWN ‡
FOXM1PATHWAY:FOXM1 TRANSCRIPTION FACTOR NETWORK	39	0.02	NCI	DOWN ‡
GLYCOSPHINGOLIPID BIOSYNTHESIS - LACTO AND NEOACTO SERIES	24	0.02	KEGG	DOWN ‡
CYTOSOLIC TRNA AMINOACYLATION	27	0.022	REACTOME	DOWN ‡
GLOBAL GENOMIC NER (GG-NER)	34	0.022	REACTOME	DOWN ‡
HEDGEHOG_GLIPATHWAY:HEDGEHOG SIGNALING EVENTS MEDIATED BY GLI PROTEINS	47	0.029	NCI	DOWN ‡
CELL SURFACE INTERACTIONS AT THE VASCULAR WALL	93	0.031	REACTOME	DOWN ‡
HEDGEHOG SIGNALING PATHWAY	53	0.031	KEGG	DOWN ‡
IMMUNOREGULATORY INTERACTIONS BETWEEN A LYMPHOID AND A NON-LYMPHOID CELL	46	0.033	REACTOME	DOWN ‡
NUCLEOTIDE EXCISION REPAIR	50	0.035	REACTOME	DOWN ‡
RHOA_PATHWAY:RHOA SIGNALING PATHWAY	43	0.036	NCI	UP †
COLLAGEN ADHESION VIA ALPHA 2 BETA 1 GLYCOPROTEIN	16	0.041	REACTOME	DOWN ‡
APC-C-MEDIATED DEGRADATION OF CELL CYCLE PROTEINS	84	0.043	REACTOME	DOWN ‡
NUCLEOTIDE EXCISION REPAIR	40	0.044	KEGG	DOWN ‡
MICRORNA BIOGENESIS	17	0.049	REACTOME	DOWN ‡
Table S5. List of primer sequences used for qPCR and genotyping, related to figures 1, 5 and S5

Gene	Forward	Reverse
GenotSox4-F1	5’ CCA GCA TCT CTA ACC TGG TCT TC 3’	NA
GenotSox4-F2	5’ TTG GAG CAC GGA AAG CAG AT 3’	NA
GenotSox4-R	5’ CAG GCC AGC TCT ATG CAC TTT 3’	NA
GAPDH	5’ GCA CAG TCA AGG CCG AGA AT 3’	5’ GCC TTC TCC ATG GTG GTG AA 3’
Actin	5’ GGC ACC ACA CCT TCT ACA ATG 3’	5’ GTG GTG GTG AAG ATG TAG CC 3’
Sox4	5’ GCC TCC ATC TTC GTA CAA CC 3’	5’ AGT GAA GCG GTG CTA CTC GT 3’
Sox11	5’ ATC AAG CGG CCC ATG AAC 3’	5’ TGC CCA GCC TCT TGG AGA T 3’
Sox12	5’ GAG CGG AGA AAA ATC ATG GA 3’	5’ CGA GGC CCG TAC TTG TAG TC 3’
GATA3	5’ TAC CAC CTA TCC GCC CTA TG 3’	5’ AGG ATG TCC CTG CTC TCC TG 3’
Tcf3	5’ GGA TTG CCA CTG GCT CCG 3’	5’ GCC TTC TCC ATG GTG GTG AA 3’
Tcf4	5’ GCC ACC ACA CCT TCT ACA ATG 3’	5’ GTG GTG GTG AAG ATG TAG CC 3’
Sox9	5’ GCC TCC ATC TTC GTA CAA CC 3’	5’ GCC TTC TCC ATG GTG GTG AA 3’
c-Myc	5’ GCC ACC TGC GCC CGA GAA T 3’	5’ AAA GCC CCA GCC AAG ATG G 3’
mTERT	5’ GGA TTG CCA CTG GCT CCG 3’	5’ TGCCTGACCTCCTCTTGGTAC 3’
Mex3a	5’ TCTACAAAAAGCGCGAGCTG 3’	5’ CTCGCACAGGTGTCTTGATG 3’
Zfp184	5’ GGCAATCACAATTTCCCTCCCTG 3’	5’ ATACCTGAGGAGCTTGTTT 3’
Tes	5’ GGGGGTGACGTGAAATGGTTCC 3’	5’ GCCCTTTCAGCATAAGATGGC 3’
Tead2	5’ TGATGCAGAGGTTGTTGGA 3’	5’ TCACTGAGATGTAACAAGGC 3’
Evl	5’ AGGGATTCAAGGCGGTACACTA 3’	5’ ACTGATGGAAGTGAGGTTT 3’
Top2A	5’ GCTGCTGATAACAAACAAAGGG 3’	5’ TAGCCATTTCGACCAACACTGT 3’
Chk2	5’ CGGAGCTTTATGGGAAGGC 3’	5’ AGCCATTTTACTCCCAAC 3’
Wifi	5’ GATTTCAGAAAGCAGCCTAC 3’	5’ GAGGCAGGACAGAGAACAC 3’
Bach2	5’ GGATCATCTTCAGGAAGCA 3’	5’ GTTCCTGGGAAGGTCTGTA 3’
Cncd1	5’ CCCAACAACTTCCTTCTCCTG 3’	5’ TCCAGAAGGGGTTCATCTG 3’
Cdc20	5’ GCCAGCTTCTCTTTAGCAA 3’	5’ CCTCACTCAAAACCGGTTT 3’
Tcf7	5’ GCCAGAAGAAGGAGGTAC 3’	5’ ACTGGGCACAGTCAGATGT 3’
Plk1	5’ GGTCATTCAGAGGGACACTCA 3’	5’ ACTGTGCTCTTTTGTCTGCA 3’
Gli1	5’ CCTACGGCCATCTCTCATT 3’	5’ GCTAGACATGTCCCTTCCA 3’