Identify the degradation of cruciate ligaments is frequently observed in degenerative joint diseases, such as osteoarthritis (OA). The present study aimed to identify the differently expressed microRNAs (miRNAs or miRs) in knee anterior cruciate ligament (ACL) tissues derived from patients with OA and in health subjects (non-OA). By using Affymetrix miRNA 4.0 microarrays, a total of 22 miRNAs (including let-7f-5p, miR-26b-5p and miR-146a-5p) were found to be upregulated, while 17 (including miR-18a-3p, miR-138-5p and miR-485-3p) were downregulated in the osteoarthritic ACL tissues (fold change ≥2, P-value <0.05). The expression levels of 12 miRNAs were validated by quantitative PCR, and the corresponding results revealed an excellent correlation with the microarray data (R²=0.889). Genes (such as a disintegrin and metalloproteinase domain with thrombospondin type-1 motifs, bone morphogenetic protein-2, runt related transcription factor-2, collagen-1A1 and 2, interleukin-6 and transforming growth factor-β) involved in cartilage development and remodeling, collagen biosynthesis and degradation, inflammatory response and extracellular matrix homeostasis were predicted as potential targets of the dysregulated miRNAs. Moreover, a large set of putative genes were enriched in OA pathogenesis-associated pathways (such as mitogen-activated protein kinase and vascular endothelial growth factor signaling pathway). Collectively, the data from our study provides novel insight into the ligament injury-related miRNA dysregulation in patients with OA.

Abstract. The degradation of cruciate ligaments is frequently observed in degenerative joint diseases, such as osteoarthritis (OA). The present study aimed to identify the differently expressed microRNAs (miRNAs or miRs) in knee anterior cruciate ligament (ACL) tissues derived from patients with OA and in health subjects (non-OA). By using Affymetrix miRNA 4.0 microarrays, a total of 22 miRNAs (including let-7f-5p, miR-26b-5p and miR-146a-5p) were found to be upregulated, while 17 (including miR-18a-3p, miR-138-5p and miR-485-3p) were downregulated in the osteoarthritic ACL tissues (fold change ≥2, P-value <0.05). The expression levels of 12 miRNAs were validated by quantitative PCR, and the corresponding results revealed an excellent correlation with the microarray data (R²=0.889). Genes (such as a disintegrin and metalloproteinase domain with thrombospondin type-1 motifs, bone morphogenetic protein-2, runt related transcription factor-2, collagen-1A1 and 2, interleukin-6 and transforming growth factor-β) involved in cartilage development and remodeling, collagen biosynthesis and degradation, inflammatory response and extracellular matrix homeostasis were predicted as potential targets of the dysregulated miRNAs. Moreover, a large set of putative genes were enriched in OA pathogenesis-associated pathways (such as mitogen-activated protein kinase and vascular endothelial growth factor signaling pathway). Collectively, the data from our study provides novel insight into the ligament injury-related miRNA dysregulation in patients with OA.

Introduction

Osteoarthritis (OA) is a degenerative joint disease characterized by the destruction of articular cartilage, intraarticular inflammation and pathological alterations in peri-articular and subchondral bone (1,2). Various factors are involved in the pathogenesis of OA, including age (3), a history of diabetes, cancer or cardiovascular diseases (4), mechanical influences (5) and genetic factors (6). There is no disease-modifying treatment for the onset or progression of OA and associated structural damage, and the current treatments aim at relieving the symptoms (7). Therefore, the identification of novel molecules involved in the pathogenesis of OA is urgently required, and will provide basis for the development of therapies for OA.

MicroRNAs (miRNAs or miRs) are a category of non-coding RNAs 22-25 nt in length (8). As the key gene regulators, miRNAs directly bind to their target messenger RNAs (mRNAs) in a sequence-specific manner to facilitate degradation of the transcripts and to inhibit the protein translation (8). Differential expression profiles of certain miRNAs in cancers at different stages suggests that miRNAs are novel biomarkers for disease diagnostics (9). The application of microarray technology enables the detection of the expression levels of thousands of miRNAs simultaneously within tens of samples processed in a single experiment (10). The dysregulation of miRNAs has been found in tissue samples derived from patients with OA in a number of previous studies, including let-7 family miRNAs (11), miR-149 (12), miR-21 (13) and miR-24 (14). Most of the earlier studies compared miRNA expression in the injured cartilage and synovium between patients with OA and normal controls (15-17); however, changes in cruciate ligament have been less studied. The cruciate ligament is a collagenous tissue for structural support and provides proprioception to the body by mediating knee kinesthesia (18). Of note, the degradation of the cruciate ligaments frequently occurs in osteoarthritic knees (18,19). The present study was therefore conducted to analyze the miRNA expression profiles in anterior cruciate ligament (ACL) tissues surgically removed from patients with OA and control subjects by using miRNA microarray analysis. In addition, the biological functions and
pathways affected by the differentially expressed miRNAs were analyzed.

Materials and methods

Sample recruitment and RNA extraction. Osteoarthritic ACL samples were surgically removed from 3 patients (64.67±3.06 years of age, Kellgren-Lawrence grade III-IV) during knee replacement surgery at Shengjing Hospital of China Medical University, Shenyang, China. Samples derived from 3 patients without OA who encountered ACL rupture were used as controls. The present research protocol was approved by the Institutional Review Board of China Medical University, and written informed consent was obtained from each participant prior to obtaining the samples. Total RNA was extracted from the ACL tissue samples using the total RNA purification kit (Norgen Biotek Corp., Thorold, ON, Canada), quantified on a NanoDrop ND-2100 spectrophotometer (Thermo Fisher Scientific, Inc., Pittsburgh, PA, USA), and assessed on an Agilent 2100 Bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA, USA).

miRNA microarray procedures. The RNA samples were tailed with Poly(A) and labeled with biotin using FlashTag™ biotin HSR ligation mix (Affymetrix, Inc., Santa Clara, CA, USA) according to the manufacturer's instructions. The labeled RNA samples were hybridized onto the Affymetrix miRNA 4.0 arrays on a hybridization oven 645, washed and stained on fluidics station 450, and then scanned with a Scanner 3000 (all from Affymetrix, Inc.).

Data analysis. Array images were analyzed with GeneChip Command Console software (version 4.0; Affymetrix, Inc.) to generate raw data. The obtained raw data were first normal-
Quantitative PCR. Quantitative PCR was performed on cDNA synthesized from the same RNA samples used in the prior microarray analysis. Primers used in this study were listed in Table I. The expression levels of 6 upregulated miRNAs (hsa-let-7f-5p, hsa-miR-146a-5p, hsa-miR-146b-3p, hsa-miR-26b-5p and hsa-miR-335-5p) and 6 downregulated miRNAs (hsa-miR-18a-3p, hsa-miR-485-3p, hsa-miR-665, hsa-miR-675-5p, hsa-miR-1207-5p and hsa-miR-138-5p) were identified by evaluating the fold change (FC). miRNAs with an FC ≥2 and a P-value <0.05 (t-test) were considered as differentially expressed. Hierarchical clustering was performed to analyze the distinguishable miRNA expression patterns among the samples. Genes targeted by the identified differentially expressed miRNAs were shown as the intersection of Targetscan, PITA and microRNA.org databases (GeneSpring software, version 12.5). These putative target genes were subjected to Gene Ontology (GO) biological process annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using FunNet algorithm.

Results

PCA distinguishes patients with OA from control subjects. PCA was performed in the 6 knee ACL tissues based on the microarray data, and the corresponding results revealed that the ACL samples from the patients with OA could be distinguished from those of the control subjects (Fig. 1). The above results provided useful information for us to understand how cruciate ligament injuries develop in OA patients.

Identification of differentially expressed miRNAs in knee ACL tissues. Our data indicated that 22 miRNAs were upregulated and 17 miRNAs were downregulated in the osteoarthritic ACL tissues (FC ≥2 and P-value <0.05). Twelve miRNAs were selected for further validation regarding their expression levels (such as hsa-miR-138-5p, hsa-miR-26b-5p, hsa-miR-665), their previous correlations with OA (such as hsa-miR-146a-5p, hsa-let-7g-5p, hsa-miR-1207-5p), or data from the following analysis (such as hsa-miR-1207-5p, hsa-miR-146b-5p, hsa-miR-146b-3p). Log2 results of the miRNA expression levels from the microarray analysis and the quantitative PCR analysis revealed an excellent correlation (R²=0.889; Fig. 2A). All analyzed human miRNAs were presented in a volcano plot (Fig. 2B), and the dysregulated ones were assessed via hierarchical clustering analysis (Fig. 2C).

Microarray-based GO and KEGG pathway annotations. Three data bases predicted a total of 5,356 genes as putative targets for the differentially expressed miRNAs (Fig. 3A). Genes involved in cartilage remodeling (21), collagen biosynthesis (22), extracellular matrix (ECM) homeostasis (23) and inflammation (24) are summarized in Table II. Moreover, the GO annotation (at the biological process level) and KEGG pathway analysis of all putative genes revealed that these genes were enriched in 41 GO items and 23 KEGG pathways (data not shown). As indicated in Table III, several essential biological processes, including DNA-dependent regulation of transcription, signal transduction, multicellular organismal development, were affected by the differentially expressed miRNAs. Additionally, a large set of genes implicated in mitogen-activated protein kinase (MAPK), vascular endothelial growth factor (VEGF), protein kinase C (PKC)-mitogen-activated protein kinase (MEK), phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), as well as the WNT signaling pathway were mediated by the dysregulated miRNAs (Fig. 3B and C; pathway ID, 05200 for Fig. 3C). The above results provided useful information for us to understand how cruciate ligament injuries develop in OA patients.
Establishment of miRNA-gene regulatory network. A large set of genes were predicted as targets for the differentially expressed miRNAs through the Targetscan, PITA and microRNA.org data bases. In order to visualize and integrate the interactions between the dysregulated miRNAs and their targets, a miRNA-gene regulatory network was established by
using Cytoscape software (Fig. 4). Our results revealed that the differentially expressed miRNAs may function in combination to exert effects on their target genes.

Discussion

miRNAs play crucial roles in mediating chondrogenesis, and are considered to link to the pathogenesis of cartilage-related diseases, including OA (25). In this study, miRNA microarray was performed to compare the miRNA expression levels in knee ACL tissues from patients with OA to those of the controls. Appropriate grouping of the 6 ACL samples was confirmed by PCA and heatmap data. We found that 22 miRNAs were upregulated and 17 were downregulated in the osteoarthritic ACL tissues. Additional bioinformatics was performed to analyze the biological processes and pathways that were affected by the identified differentially expressed miRNAs. The obtained data enhanced our understanding of the roles of the dysregulated miRNAs in OA pathogenesis.

Reportedly, let-7 miRNAs can regulate skeletal development by orchestrating the proliferation and differentiation of chondrocytes (11). The enforced overexpression of Lin28a, a let-7 inhibitor, has been shown to accelerate cartilage regrowth in a model of tissue injury (26). It is likely that the abnormal upregulation of let-7 miRNAs contributes to the degeneration of articular cartilage. In this study, to the best of our knowledge, we demonstrate for the first time that the expression of let-7f-5p and let-7g-5p was increased by 2.04- and 1.68-fold (log₂ FC) in the osteoarthritic ACL tissues, respectively. Though all let-7 family members share the identical seed
region (GAGGUAG) (27), only these two let-7 members were identified to be dysregulated in OA-affected ligaments. Bone morphogenetic protein (BMP)2 has been reported to promote osteogenesis (28). Apart from its role in bone formation, the pre-injection of recombinant human BMP2 in the semitendinosus tendon enables successful ACL reconstruction following injury (29), suggesting a beneficial role of BMP2 in ligament injury. miR-140-5p is a potent regulator of BMP2 (30), and its expression is markedly reduced in osteoarthritic articular cartilage tissues (31), but not in ACL tissues, as evidenced by our microarray data. Of note, we found that BMP2 is a possible target for let-7f/7g-5p (Table II), although the interaction between them has not been entirely clarified. Moreover, apart from BMP2, other factors related to collagen biosynthesis and degradation and inflammatory response, such as transforming growth factor β receptor 1 (TGFβR1), various types of collagens (COL1A1 and COL1A2) and interleukins (IL)-6 were also putative targets for let-7f/7g-5p. To address the roles of let-7f/7g in osteoarthritic ligament lesion, their targets should also be taken into consideration.

Table II. Prediction of target genes potentially related to osteoarthritis.

miRNAs	Gene symbols	Function
hsa-let-7f/7g-5p	BMP2, COL1A1, COL1A2, COL3A1, COL4A1, COL4A6, COL5A2, COL14A1, COL15A1, COL24A1, ADAMTS19, ADAMTS28, IL6, IL10, IL13, HMG1A1, HMG1A2	Cartilage development and remodeling
hsa-miR-10a-5p	ADAMTS4	Collagen biosynthesis and degradation
hsa-miR-26b-5p	CILP, COL1A2, COL9A1, COL10A1, COL11A1, ADAMTS19, HMG1A1, HMG2A, IL6, IL1RAP	
hsa-miR-138-5p	MMP16, ADAMTS13, IL6R, IL1RAP	
hsa-miR-146a-5p	CCL5, CXCR7, ADAMTS3, ADAMTS18	
hsa-miR-146b-3p	COL11A1, MMP24, VEGFA	
hsa-miR-335-5p	COL5A1, COL6A3, COL19A1, ADAMTS19, CCL5	ECM homeostasis
hsa-miR-542-5p	ADAMTS8	
hsa-miR-485-3p	COL12A1, TGFB3, MMP20, ADAMTS3	
hsa-miR-572	COL7A1	
hsa-miR-665	COL8A2, TGFB1, TGFB2, ADAMTS8, CXCL11, CXCL12	
hsa-miR-1207-5p	COL9A2, TGFB1, ADAMTS10, ADAMTS19	
hsa-miR-1254	RUNX2, TGFB3, ADAMTS15	

OA, osteoarthritis; miRNAs, microRNAs; BMP, bone morphogenetic protein; RUNX, runt related transcription factor; COL, collagen; CILP, cartilage intermediate layer protein; HMG1A, high mobility group AT-hook; IL, interleukin; ADAMTS, a disintegrin and metalloproteinase domain with thrombospondin type-1 motifs; CCL, chemokine (C-C motif) ligand; CXCL, chemokine (C-X-C motif) ligand; CXCR, chemokine (C-X-C motif) receptor; TGFβ, transforming growth factor β; TGFβR, TGFβ receptor; MMP, matrix metalloproteinase.

Table III. Identified biological process GO terms for the differentially expressed miRNAs (top 10).

GO ID	GO term	List hits	P-value
GO:0006355	Regulation of transcription, DNA-dependent	491	5.38E-09
GO:0007165	Signal transduction	289	8.11E-05
GO:0007275	Multicellular organisational development	237	5.38E-05
GO:0006351	Transcription, DNA-dependent	166	1.24E-08
GO:0006468	Protein phosphorylation	153	1.25E-08
GO:0007155	Cell adhesion	151	3.54E-05
GO:0045944	Positive regulation of transcription	138	4.43E-06
	from RNA polymerase II promoter		
GO:0007399	Nervous system development	131	8.66E-10
GO:0007049	Cell cycle	121	5.31E-06
GO:0007411	Axon guidance	114	4.42E-12

GO, Gene Ontology; miRNAs, microRNAs; list hits, the number of genes annotated by the GO biological process category or annotation cluster within the analyzed list of target genes; P-value, the significance P-value of the gene enrichment in the GO biological process category or annotation cluster, calculated with the unilateral Fisher's exact test and corrected with the false discovery rate (FDR).
Formation and degradation of collagens and ECM proteins are mediated by miR-26 family members (32). miR-26b is suggested to contribute to rheumatoid arthritis regarding to its elevation in IL-17 producing T cells (33). Such findings indicate that miR-26b may participate in inflammatory diseases in the joints. A significant upregulation of miR-26b-5p (previously miR-26b) was found in osteoarthritic ACL tissues in the present study. Although several putative targets of miRNA-26b, such as high mobility group AT-hook 1 (HMGA1 and HMGA2), cartilage intermediate layer protein (CILP), as well as a variety of collagens (COLs) are implicated in the development and progression of OA (34-36), the direct correlation of miRNA-26b dysregulation with OA has not been fully elucidated, and requires for further exploration.

miR-146a controls knee joint homeostasis by balancing inflammatory responses in cartilage (37). Its expression is increased in articular cartilage and/or synovium derived from patients with OA (38,39). Our results were consistent with these earlier findings by showing a significant upregulation of miR-146a-5p (previously miR-146a) in osteoarthritic knee ACL tissues. Studies on the correlation between OA pathogenesis and miR-146b-3p are limited. Our data indicated that miR-146b-3p was also overexpressed in osteoarthritic ACL tissues. Several genes associated to ECM homeostasis and inflammation such as matrix metalloproteinase (MMP)24 and VEGFA in OA (40,41) were predicted as targets for miR-146b-3p.

A disintegrin and metalloproteinase domain with thrombospondin type-1 motifs (ADAMTS) are a new family of metalloproteases that play important roles in physiological and pathological conditions (42,43). Previous studies have demonstrated that ADAMTS7 overexpression leading to the increased expression of tumor necrosis factor (TNF)-α and MMPs contributes OA development (44), while the knockdown or knockout of ADAMTS4 and/or ADAMTS5 prevents OA progression (45,46). These studies suggest that ADAMTS may be the potential molecular targets for the prevention and treatment of OA. In this study, we found that ADAMTS3, 4, 8, 10, 18, 19, ADAMTS-like-3, -5 were the putative targets for several differentially expressed miRNAs, including let-7f/7g-5p, miR-146a-5p, miR-1207-5p (Table II). Investigations of the interaction between these dysregulated miRNAs and their target ADAMTS will help to understand the mechanisms through which OA develops and progresses.

Several essential biological processes, such as the DNA-dependent regulation of transcription, signal transduction and multicellular organismal development, are affected by miRNAs with differential expression levels in OA as indicated in GO annotation. To provide an overall understanding of
the association between the dysregulated miRNAs and OA pathogenesis, KEGG pathway analysis was further performed. We found that several pathways enriched by the putative target genes were essential for OA pathogenesis. For instance, a study from Prasadam et al demonstrated that p38 MAPK phosphorylation was decreased in OA-affected chondrocytes as compared to normal chondrocytes, and that the inactivation of p38 signaling leads to OA-like changes in rats (47). In addition, activation of VEGF signaling has been suggested to contribute to synovial inflammation during the progression of OA (48).

In conclusion, our study revealed that 39 miRNAs were differentially expressed in knee ACL tissues from patients with OA. The functional bioinformatic analyses suggest that the dysregulated miRNAs may regulate cartilage development and remodeling, collagen biosynthesis and degradation, ECM homeostasis and pathology by interacting with their targets. Collectively, our study provides novel insight into the ligament injury-related miRNA dysregulation in patients with OA.

Acknowledgements

The present study was supported by grants from the Natural Science Foundation of Liaoning Province (no. 2014020101) and the National Natural Science Foundation of China (no. 81171716).

References

1. Goldring MB and Goldring SR: Osteoarthritis. J Cell Physiol 213: 626-634, 2007.
2. Johnson K, Zhu S, Tremblay PS, Fayette JN, Wang J, Bouchez LC, Meeussen S, Althage A, Cho CY, Wu X, et al.: A stem cell-based approach to cartilage repair. Science 336: 717-721, 2012.
3. Buckwalter JA and Martin JA: Osteoarthritis. Adv Drug Deliv Rev 58: 150-167, 2006.
4. Näesch E, Dieppe P, Reichenbach S, Williams S, Iff S and Jüni P: All cause and disease specific mortality in patients with knee or hip osteoarthritis: population based cohort study. BMJ 342: d1165, 2011.
5. Riordan EA, Little C and Hunter D: Pathogenesis of post-traumatic OA with a view to intervention. Best Pract Res Clin Rheumatol 28: 137-151, 2014.

16. Mrazekhammadi F, Paiaianou G and Kobayashi T: MicroRNAs in cartilage development, homeostasis, and disease. Curr Osteoporos Rep 12: 410-419, 2014.
17. Qi Y, Ma N, Yan F, Yu Z, Wu G, Qiao Y, Han D, Xiang Y, Li F, Wang W, et al.: The expression of intrinsic miRNAs, miR-483 and miR-485, and their host gene, fsg, in murine osteoarthritic cartilage. Int J Biol Macromol 61: 43-49, 2013.
18. Rajopal V, Vasdev N, Pathak A, Gautam D and Vasdev A: Histological changes and neural elements in the posterior cruciate ligament in osteoarthritic knees. J Orthop Surg (Hong Kong) 22: 142-145, 2014.
19. Svoboda SJ: ACL injury and posttraumatic osteoarthritis. Clin Sports Med 33: 633-640, 2014.
20. Ringnér M: What is principal component analysis? Nat Biotechnol 26: 303-304, 2008.
21. Li Y and Xu L: Advances in understanding cartilage remodeling. FEBS Lett 500: 1-6, 2002.
22. Buckwalter JA and Martin JA: Osteoarthritis. Adv Drug Deliv Rev 58: 150-167, 2006.
23. Näesch E, Dieppe P, Reichenbach S, Williams S, Iff S and Jüni P: All cause and disease specific mortality in patients with knee or hip osteoarthritis: population based cohort study. BMJ 342: d1165, 2011.
24. Berenbaum F, Eymard F and Houard X: Osteoarthritis, inflammation and obesity. Curr Opin Rheumatol 25: 114-118, 2013.
25. Wang X, Liu H and Zhou Y: Roles of microRNAs in prenatal chondrogenesis, postnatal chondrogenesis and cartilage-related diseases. J Cell Mol Med 17: 1515-1524, 2013.
26. Shyh-Chang N, Zhu H, Yvanca de Soysa T, Shinoda G, Seligson MT, Tsanov KM, Nguyen L, Asara JM, Cantley LC and Daley GQ: Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 155: 778-792, 2013.
27. Yang X, Rutnam ZJ, Jiao C, Wei D, Xie Y, Du J, Zhong L and Yang BB: An anti-let-7 sponge decays and decays endogenous let-7 functions. Cell Cycle 11: 3097-3108, 2012.
28. Gugala Z, Davis JR, Foulouet-Dilling CM, Gannon FH, Lindsey RW and Olmsted-Davis EA: Adenovirus BMP-2-induced osteogenesis in combination with collagen carriers. Biomaterials 28: 4469-4479, 2007.
29. Hashimoto Y, Yoshida G, Toyoda H and Takaoka K: Generation of tendon-to-bone interface 'enthesis' with use of recombinant BMP-2 in a rabbit model. J Orthop Res 25: 1415-1424, 2007.
30. Hwang S, Park SK, Lee HY, Kim SW, Lee JS, Choi EK, You D, Kim CS and Suh N: miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells. PLoS ONE 8: e69720, 2013.
31. Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, Kato Y, Takemoto F, Nakasa T, Yamashita S, et al: MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev 24: 1173-1185, 2010.
32. Li Z, Hassan MQ, Jafferji M, Ageilian RI, Garzon R, Croce CM, van Wijnen AJ, Stein JL, Stein GS and Lian JB: Biological functions of mir-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem 284: 15676-15684, 2009.
33. Niimoto T, Nakasa T, Ishikawa M, Okahara A, Izumi B, Deie M, Suzuki O, Adachi N and Ochi M: MicroRNA-146a expresses in interdigital-17 producing tendon cells in rheumatoid arthritis patients. BMC Musculoskelet Disord 11: 209, 2010.
34. Valdes AM, Van Oene M, Hart DJ, Surdulescu GL, Loughlin J, Doherty M and Spector TD: Reproducible genetic associations between candidate genes and clinical knee osteoarthritis in men and women. Arthritis Rheum 54: 533-539, 2006.
35. Amin AR and Islam AB: Genomic analysis and differential expression of HMG and S100A family in human arthritis: upregulated expression of chemokines, IL-8 and nitric oxide by HMGBl. DNA Cell Biol 33: 550-565, 2014.
36. Geracini V, De Gori M, Papparella E, Chieffari E, Brunetti A and Galasso O: Functional relationship between high mobility group A1 (HMGA1) protein and insulin-like growth factor-binding protein 3 (IGFBP-3) in human chondrocytes. Arthritis Res Ther 14: R207, 2012.
37. Li X, Gibson G, Kim JS, Kwon J, Xu S, van Wijnen AJ and Im HJ: MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis. Gene 480: 34-41, 2011.
38. Jin L, Zhao J, Jing W, Yan S, Wang X, Xiao C and Ma B: Role of miR-146a in human chondrocyte apoptosis in response to mechanical pressure injury in vitro. Int J Mol Med 34: 451-463, 2014.

39. Yamasaki K, Nakasa T, Miyaki S, Ishikawa M, Deie M, Adachi N, Yasunaga Y, Asahara H and Ochi M: Expression of microRNA-146a in osteoarthritic cartilage. Arthritis Rheum 60: 1035-1041, 2009.

40. Leijten JC, Bos SD, Landman EB, Georgi N, Jahr H, Meulenbelt I, Post IN, van Blitterswijk CA and Karperien M: GREM1, FRZB and DKK1 mRNA levels correlate with osteoarthrosis and are regulated by osteoarthritis-associated factors. Arthritis Res Ther 15: R126, 2013.

41. Borgonio Cuadra VM, González-Huerta NC, Romero-Córdoba S, Hidalgo-Miranda A and Miranda-Duarte A: Altered expression of circulating microRNA in plasma of patients with primary osteoarthritis and in silico analysis of their pathways. PLoS One 9: e97690, 2014.

42. Cal S, Obaya AJ, Llamazares M, Garabaya C, Quesada V and López-Otín C: Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene 283: 49-62, 2002.

43. Durham TB, Klimkowski VJ, Rito CJ, Marimuthu J, Toth JLI, Liu C, Durbin JD, Stout SL, Adams L, Swearingen C, et al: Identification of potent and selective hydantoin inhibitors of aggrecanase-1 and aggrecanase-2 that are efficacious in both chemical and surgical models of osteoarthritis. J Med Chem 57: 10476-10485, 2014.

44. Lai Y, Bai X, Zhao Y, Tian Q, Liu B, Lin EA, Chen Y, Lee B, Appleton CT, Beier F, et al: ADAMTS-7 forms a positive feedback loop with TNF-α in the pathogenesis of osteoarthritis. Ann Rheum Dis 73: 1575-1584, 2014.

45. Majumdar MK, Askew R, Schelling S, Stedman N, Blanchet T, Hopkins B, Morris EA and Glasson SS: Double-knockout of ADAMTS-4 and ADAMTS-5 in mice results in physiologically normal animals and prevents the progression of osteoarthritis. Arthritis Rheum 56: 3670-3674, 2007.

46. Chu X, You H, Yuan X, Zhao W, Li W and Guo X: Protective effect of lentivirus-mediated siRNA targeting ADAMTS-5 on cartilage degradation in a rat model of osteoarthritis. Int J Mol Med 31: 1222-1228, 2013.

47. Prasad I, Mao X, Wang Y, Shi W, Crawford R and Xiao Y: Inhibition of p38 pathway leads to OA-like changes in a rat animal model. Rheumatology (Oxford) 51: 813-823, 2012.

48. Almasry SM, Soliman HM, El-Tarhouny SA, Algaidi SA and Ragab EM: Platelet rich plasma enhances the immunohistochemical expression of platelet derived growth factor and vascular endothelial growth factor in the synovium of the meniscectomized rat models of osteoarthritis. Ann Anat 197: 38-49, 2015.