Life cycle based alternatives assessment (LCAA) for chemical substitution

Fantke, Peter; Huang, Lei; Overcash, Michael R.; Griffing, Evan; Jolliet, Olivier

Published in:
Green Chemistry

Link to article, DOI:
10.1039/D0GC01544J

Publication date:
2020

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Fantke, P., Huang, L., Overcash, M. R., Griffing, E., & Jolliet, O. (2020). Life cycle based alternatives assessment (LCAA) for chemical substitution. Green Chemistry, 22, 6008-6024.
https://doi.org/10.1039/D0GC01544J
This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Life cycle based alternatives assessment (LCAA) for chemical substitution

Peter Fantkea, Lei Huangb, Michael Overcashc,d, Evan Griffingc, and Olivier Jollietb

aQuantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark

bEnvironmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA

cEnvironmental Clarity, Inc. 2505 Fauquier Lane, Reston, VA, 20191.

dEnvironmental Genome Initiative, 2908 Chipmunk Lane, Raleigh, NC, 27607

*Corresponding author:

ORCID: https://orcid.org/0000-0001-7148-6982

Tel.: +45 45254452, fax: +45 45933435. E-mail: pefan@dtu.dk
Abstract

The world faces an increasing need to phase out harmful chemicals and design sustainable alternatives across various consumer products and industrial applications. Alternatives assessment is an emerging field focusing on identifying viable solutions to substitute harmful chemicals. However, current methods fail to consider trade-offs from human and ecosystem exposures, and from impacts associated with chemical supply chains and product life cycles. To close this gap, we propose a life cycle based alternatives assessment (LCAA) framework for consistently integrating quantitative exposure and life cycle impact estimates in the substitution process. We start with a pre-screening based on function-related decision rules, followed by three progressive tiers from (1) rapid risk screening of all alternatives for the consumer use stage, to (2) an assessment of chemical supply chain impacts for selected alternatives with substantially different synthesis routes, and (3) an assessment of product life cycle impacts for alternatives leading to substantially different product life cycles. Each tier focuses on relevant impacts and uses streamlined assessment methods. While the initial risk screening will be sufficient for evaluating chemicals with similar supply chains, each additional tier helps further restricting the number of viable solutions, while avoiding unacceptable trade-offs. We test our LCAA framework in a proof-of-concept case study for identifying suitable alternatives to a harmful plasticizer in household flooring. Results show that the use stage dominates human health impacts across alternatives, supporting that a rapid risk screening is sufficient unless very different supply chains or a broader set of alternative materials or technologies is considered. Combined with currently used indicators for technical and economic performance, our LCAA framework is suitable for informing function-based substitution at the level of chemicals, materials and product applications to foster green and sustainable chemistry solutions.

Keywords: Chemical substitution; Hazardous chemicals; Life cycle impacts; Exposure quantification; Chemical supply chain; Vinyl flooring plasticizer
Introduction

Background

In a world of rapidly growing consumption of resources, diversity in consumer goods, and production quantities across economic sectors, we face an increasing pressure on essential biological, geochemical and hydrological systems that are relevant to sustain our current and future societies.\(^1,2\) To meet national and international sustainable development goals (SDGs), reducing the use of harmful chemicals in consumer products and production processes along with managing chemical pollution is pivotal.\(^3-5\)

The emerging and solutions-oriented field of Chemical Alternatives Assessment is well-suited to inform product design as well as to phase out and substitute hazardous chemicals by identifying and evaluating viable alternatives in various product applications. However, current frameworks suffer from inconsistencies in data and models applied, from relying on qualitative or semi-quantitative indicators, and from the lack of effectively and efficiently addressing exposure and life cycle impacts.\(^4,6-10\) More specifically, quantifying exposure to chemicals in consumer products, and evaluating life cycle impacts associated with for example climate change, human and ecosystem toxicity, and water resources use, are commonly considered too complex and time-consuming.\(^11,12\)

History shows that ignoring the quantification of the various exposures and life cycle impacts may leave important trade-offs and problem-shifting unaddressed and can thus lead to *regrettable substitutions*.\(^4,13\) An example for problem-shifting is the substitution of antiknock agents in gasoline to increase fuel compression ratios, where tetraethyl lead showing high neurotoxicity potential was replaced by methyl tert-butyl ether contaminating groundwater due to high water solubility—in this case, the problem is shifted from human toxicity to groundwater pollution.\(^14\) Another popular problem-shifting example is the substitution of pesticide active ingredients in agricultural seed coating formulations to control insects like flea beetles damaging oilseed and other crops, where the organochlorine insecticide γ-
hexachlorocyclohexane being toxic and potentially carcinogenic to humans was replaced by the neonicotinoid imidacloprid that has been linked to colony losses of pollinating insects.15

These and other examples highlight the urgent need to complement currently considered aspects by a more quantitative yet rapid substitution approach that includes relevant exposures and life cycle impacts.13 How can such a quantification of exposure and life cycle impacts be consistently and efficiently included in the current substitution process? We seek to answer this question, and propose a roadmap for effectively integrating the quantitative assessment of exposure and life cycle impacts in Chemical Alternatives Assessment based on the following specific objectives: (a) to identify the key elements required for addressing multiple exposures and life cycle impacts, (b) to propose a tiered Life Cycle based Alternatives Assessment (LCAA) approach for quantitative screening of alternatives, and (c) to test the proposed approach in a proof-of-concept case study of plasticizers in vinyl flooring.

Chemical and product life cycles

The scope of an assessment is defined by the environmental and health implications of a chemical of interest and potential alternative(s) in a given product application. This requires taking a life cycle perspective of the chemical in its specific application context.16 Both chemical of interest and the related product come with their own life cycle. Fig. 1 illustrates how these life cycles are interconnected, with multiple chemicals (and their distinct supply chains) being incorporated into the same product to fulfill different functions, such as plasticizers, pigments, fillers and stabilizers.
Fig. 1 Conceptual relationship between the life cycle of an individual chemical used in a specific product application and the related life cycle of the entire product as well as environmental impacts associated with different life cycle stages.

Chemical life cycles span the entire supply chain for harvesting resources, synthesizing, and processing a chemical, and related waste handling. Product life cycles do not only cover the considered and other chemicals included in the same product with their respective supply chains, but also include resources used and emissions related to energy converted during, for example, product manufacturing, product use, and product end-of-life handling (e.g. recycling). While life cycles are widely assessed at the level of product systems (e.g. in product life cycle assessment17), chemical and product life cycles are not commonly
considered in Chemical Alternatives Assessment. However, in many cases, it will be relevant
to address the life cycle of the chemical of interest (and related alternatives) as well as the life
cycle of the related product application, where amount of chemical in the product as well as
the choice of alternatives are driven by the chemical function.

Key requirements for addressing exposure and life cycle impacts

From analyzing current substitution practice and limitations summarized in recent
reviews and state-of-the-art guidance documents, we identify how the current
substitution process can be structured and propose a framework to systematically address
quantitative exposure and life cycle impacts. There are commonly three components assessed
to identify, compare and select alternatives, namely chemical hazard, technical feasibility, and
economic viability. To consider potential trade-offs that might occur between costs or
technical performance and exposure or risks for humans and ecosystems at the different life
cycle stages of the given chemical-product combination, these components need to be
complemented by assessing relevant exposures and life cycle impacts. However, human
exposure and a wider realm of impacts on humans and the environment in a life cycle
perspective are usually not considered in substitution practice. When addressed, indirect
or qualitative exposure metrics are applied, such as dispersive potential or volume in
commerce. Such metrics are not well suited to analyzing trade-offs across chemicals with
different properties, across exposure pathways of different populations (industry workers,
product consumers or users, the general public) or across chemical and product life cycle
stages (resources extraction, manufacturing, product use, end-of-life treatment). Hence,
exposure should be systematically quantified in Chemical Alternatives Assessment, especially
exposure in near-field environments, which refers to consumer exposure during product use
and occupational exposure along chemical supply chains. Occupational and consumer
exposure estimates should be aligned with assessing far-field (i.e. environmentally-mediated)
exposures considered in life cycle based assessments. Exposure finally will have to be further aligned with considering additional impacts, such as climate change and water use, to uncover relevant trade-offs along supply chains of alternatives.

When extending chemical substitution by exposure and life cycle impacts, it should be considered that practitioners do not usually have the resources to conduct detailed quantitative assessments. Thus, time- and resource-efficient approaches are needed, building on high-throughput methods to integrate enhanced exposure, hazard and life cycle data, and taking advantage of increasingly available big datasets for chemicals in consumer products. Such approaches need to start from the chemical in-product function, build on consistent mass balances, include realistic product composition and use information, consider competing fate and exposure processes and pathways, use efficient data curation and extrapolation methods as well as data analysis and visualization techniques. Finally, a single assessment level where impacts are aggregated and an overall score is calculated (as e.g. done in life cycle assessment) is not appropriate, since some trade-offs are not acceptable when substituting harmful chemicals, such as optimizing energy-intensive processes at the expense of introducing a carcinogen. Hence, a tiered approach is required where first toxicity-related aspects during the product use stage are considered in a rapid screening assessment, before extending the scope to other life cycle stages and impacts where necessary.

Assessment framework

We propose a life cycle-based alternatives assessment (LCAA) framework that consists of four different assessment steps (Fig. 2). We first identify relevant impact categories in cases where this is not known a priori, pre-screening the considered product to identify which chemical to target for substitution. Three tiers are then proposed with increasing coverage. Tier 1 focuses on toxicity impacts in the consumer use stage.
mandatory rapid risk screening step to screen out unacceptable candidates among a large set of possible alternatives. Tier 2 addresses the wider chemical supply chain as optional step to compare chemicals with substantial differences in their supply chains. Finally, Tier 3 covers the entire product life cycle as optional step to identify unacceptable trade-offs across substantially different life cycles of selected alternatives, with focus on the most important impact categories and those that are not correlated with chemical toxicity to cover a different, relevant dimension. Among possible impact categories, we propose to include climate change impacts (carbon footprint) and fine particulate matter (PM$_{2.5}$) impacts. Climate change is always included in product life cycle assessments, and is a data-rich indicator that is strongly correlated with many other impacts but not with chemical toxicity, which makes it very complementary.32 Exposure to PM$_{2.5}$ is the most important contributor to human disease burden according to the Global Burden of Disease study series33 that is representative for outdoor emissions, whereas major exposures during consumer use are associated with indoor releases. Hence, these two impact categories complement our central focus areas, namely toxicity on humans and ecosystems.

To finally compare and rank suitable alternatives at any given assessment tier as input for substitution decisions, impact profiles of target chemical and alternatives can be presented at the level of detail required for the decision, from disaggregated detailed results for each chemical and life cycle stage, to single scores per focus area, such as human health, climate change and ecosystem quality.
Fig. 2 Overview of the tiered life cycle based alternatives assessment (LCAA) framework to identify suitable alternatives for substituting hazardous chemicals in products and processes.

Optional pre-screening and framing: Identifying target chemicals

Starting from the chemical function in a given product application, we define relevant impact categories, instead of considering all possible impacts. We identify whether the chemical function requires bioactive chemicals (e.g. biocides, for which toxicity and ecotoxicity impacts are relevant) or a high product weight contribution (e.g. plasticizers, for which energy-related impacts are important). This is in line with suggestions to focus in the higher assessment Tiers 2 and 3 on respective major contributors to the variation in chemical supply chain and product life cycle impacts.34

These pre-screening considerations frame the overall scope of the subsequent assessment steps, where each of three tiers in Fig. 2 comes with a specific scope, set of elements, including assessment focus (e.g. human toxicity), metrics and methods used for
impact characterization, and interpretation for the given decision context. An overview of the specific assessment elements for each tier is provided in Table 1a-c. The elements constitute an aligned set of quantitative and life cycle-based data, models, indicators, pathways and receptors that we propose to use in order to improve and extend the current scope and approach for addressing human and environmental impacts in Chemical Alternatives Assessment, using big data and tools already able to assess thousands of chemical-product combinations. To facilitate an efficient process across assessment tiers with different scopes, we propose to combine complementary indicators from both risk assessment and life cycle impact assessment, in line with earlier recommendations.35

Tier 1: Direct human risk and ecotoxicity of target chemicals and alternatives

In Tier 1, which is always mandatory, we first need to understand the reasons, why a certain chemical is of concern and for identifying potential alternatives. We then propose to follow a best-in-class approach for identifying most suitable options among a large set of possible alternatives. Focus in this rapid screening step is on human health risks and ecotoxicity of target chemicals and alternatives related to the chemical in a given product use context. Alternatives are only considered suitable when performing substantially better than the target chemical regarding these impacts. For all other considerations and performance criteria, where the identified or given target chemical is not “of concern”, performance results of alternatives might well be in the same order of magnitude as long as these are not substantially worse. Any possible alternative that introduces unacceptable trade-offs will be screened out, such as carcinogens.

Table 1a presents the quantitative methods proposed to assess exposure in Tier 1. We multiply the chemical amount in the given product by the product intake fraction (PiF) to yield consumer exposure doses via all relevant exposure pathways.8,23,24 Heat maps displaying exposure doses as a function of the product category-specific factors driving variability in
exposure, can be used to identify a suitable space of alternatives. For an efficient yet quantitative approach, resulting intakes are combined with cancer slope factors and reference doses to respectively characterize cancer risk probability for carcinogenic effects and hazard quotients for non-carcinogenic effects. For ecotoxicity, the chemical in product is multiplied by a cumulative transfer fraction to the relevant ecosystem environment, in order to determine fractions of disappeared ecological species and related ecotoxicity impact scores for the product use stage (Table 1a).

Tier 2: Optional assessment of chemical supply chain impacts

Once product use related impacts have been screened for target chemical and possible alternatives, we broaden the assessment scope in Tier 2 to their respective supply chains, to compare chemicals with substantial differences in their supply chains. We propose to characterize cumulative long-term impacts related to supply chain emissions affecting workers, the general population and ecosystems (Table 1b), and compare results against use stage scores from Tier 1. Further, we propose to assess relevant chemical supply chain impacts from exposure to PM$_{2.5}$ used as benchmark for toxicity-related impacts, impacts on climate change correlated with energy use and various impact categories other than chemical toxicity, and impacts identified to be relevant in the related environmental product declarations (EPD). This allows screening out unsuitable alternatives based on capturing relevant trade-offs between, for example, reduced consumer risk and more complex chemical synthesis and related greenhouse gas emissions from increased energy demand.

While generic or regional inventory data exist for various product life cycles, specific and high-resolution chemical supply chain data are rather rare. Here, the Environmental Genome of Industrial Processes (EGIP) constitutes a sound starting point to link chemical supply chain impacts to inventory data. EGIP, builds on the publicly available literature to identify for target chemicals and alternatives the industrial routes, reactants,
process equipment, process conditions (temperatures, pressures), and ancillary chemicals like solvents and catalysts. An industrially relevant route is chosen and the reactants for the assessed chemical become the next target, until arriving at elements or materials acquired directly from natural resources (e.g. ores, water, air, or crude oil). EGIP datasets determine the mass of reactants needed to produce each chemical at the necessary purity, and provide related quantities of environmental emissions at every process step. The assessment of supply chain worker exposure relies on measured workplace concentrations either from first hand data when available for the production of target chemical and alternatives, or from existing databases combined with life cycle input-output data to cover the entire supply chain.

Tier 3: Optional assessment of product life cycle impacts

In the presence of substantially different life cycles of selected alternatives, we finally characterize and compare in Tier 3 for the target chemical and the remaining alternatives the impacts from emissions and resources used over the full product life cycle, with focus on those impact categories that are considered relevant for a given target chemical function (Table 1c). The scope for environmental impacts is broadened towards considering a wider range of impacts on human health, ecosystem quality and natural resources, relating these impacts to the given chemical function in the product use context. Considering that consumer and worker safety are important aspects to consider, consumer and occupational exposure can be evaluated at the level of product life cycle as complementary to population-level exposure from environmental emissions, of which the latter is commonly included in life cycle impact assessment (LCIA). This enables to consider relevant impacts over the whole life cycle and quantify the contribution of the target chemical on overall product impacts with both life cycle and direct (consumer and occupational) impacts. The same type of indicators and characterization factors as in Tier 2 can be used, though for a wider range of relevant impact
categories, in order to uncover relevant trade-offs across substantially different life cycles of alternatives, for example, related to differences in end-of-life handling.
Table 1a Focus areas and detailed elements of a life cycle based alternatives assessment (LCAA) for the Tier 1 assessment of direct impacts of target chemical and possible alternatives on user health and ecosystems.
Scope level	Focus areas	Assessment elements(b)	Interpretation and decision making
[Tier 1]	Product-related chemical use(a)	**Human toxicity** related to **consumer** use stage	If needed, identify target chemical in given product application.
	Focus	Determine chemical content in product	Discuss, if target chemical is relevant for human toxicity, and screen large number of alternatives and identify suitable sub-set
	Metric	Mass of chemical in product application	
	Method	\(m_p = M_p \times w_f \)	
		\(w_f \) is driven by chemical function, whereas \(m_p \) is selected to provide the same amount of product function across alternatives	
		\(P(F_{u,x}) = \frac{m_p}{m_p \times PIF_{u,x}} \)	**Criteria**
		\(D_{u,x} = \frac{N_u \times BW_u}{m_p} \)	Cancer:
		Cancer:	\(R_{u,x} = D_{u,x} \times CSF_x \)
		Non-cancer:	\(HQ_{u,x} = \frac{D_{u,x} \times POD_x}{RFD_x} \)
		Characterize cancer risk probability for carcinogenic effects and hazard quotients for non-carcinogenic effects	If \(R_{u,x} \) alternative \(> R_{u,x} \) target, if yes, still OK.
		Disease incidence risk	If \(HQ_{u,x} \) alternative \(< 1 \)? If yes, OK.
[Tier 1]	Ecotoxicity related to **consumer** use stage	**Ecotoxicity** related to consumer use stage	Discuss, if target chemical is relevant for ecotoxicity, and screen large number of alternatives and identify suitable sub-set
	Focus	Determine chemical content in product	**Criteria**
		Determine relevant fate pathways and receptor populations	Cancer:
		Determine relevant ecosystem endpoints and ecological species	\(ETS_{u,x} < ETS_{u,x}^{alternative} \)? If yes, OK.
	Metric	Mass of chemical in product application	Impact score for exposed ecosystems
	Method	\(m_p = M_p \times w_f \)	
		\(w_f \) is chemical weight fraction in product application	
		\(FF_{P\rightarrow r} = \frac{TF_{P\rightarrow r}^{sum}}{\sum k_{loss}^{r}} \times XF_r \)	
		Characterize ecotoxicity impacts	
		\(EF_r = \frac{0.2}{HC20_r^{E10}} \)	
		\(ETS = m_p \times \sum_r FF_{P\rightarrow r} \times EF_r \)	

(a) Includes consumer use (e.g. use of detergents in private households) or professional use (e.g. use of detergents by facility cleaning company).

(b) \(m_p \): mass of target or alternative chemical (for pre-screening: mass of product constituents) in product application \(P \) [mg_in_product/d]; \(M_p \): mass of product application \(P \) [mg_product/d]; \(w_f \): chemical weight fraction in product application \(P \) [mg_in_product/mg_product]; \(PIF_{u,x} \): product intake fraction for user group \(u \) (e.g. children) via exposure route \(x \)
intake of chemical by user group u via exposure pathway e (e.g. drinking water ingestion) that belongs to exposure route x

$\text{mg ingestion/d per mg product/d}^{24}$, f_{consumer}: intake of chemical by user group u via exposure pathway e (e.g. drinking water ingestion) that belongs to exposure route x

CSF_x: cancer slope factor $[1/(\text{mg intake/kg BW/d})]$, which can be obtained from $TD50_x$ when based on animal test data (default) or from $f_q \times q_x^*$ as $1/q^*$ to $ED50$ conversion factor $[-]^{43}$ and q_x^* as carcinogenic low-dose slope factor $[\text{mg BW/d mg intake}]$ when epidemiological data are available; $TD50_x$: daily dose inducing an effect in 50% of exposed individuals via exposure route x

f_{IA}: interspecies extrapolation factor $[-]^{44}$ (Table 3); f_{t}: extrapolation factor from given test exposure duration to chronic exposure $[-]$ with $f_t = 5$ for (sub-)acute tests and $f_t = 2$ for sub-chronic tests45; RD_x: reference dose for exposure route x $[\text{mg intake/kg BW/d}]$; POD_x: point of departure (e.g. no-observable adverse effect level, NOAEL) for exposure route x $[\text{mg intake/kg BW/d}]$; UF: intra- and interspecies uncertainty factors $[-]^{42}$; f_{t}: cancer risk probability for exposure route x $[-]$; N_u: number of persons belonging to user group u [capita]; BW_u: body weight of a person belonging to user group u $[\text{kg BW/capita}]$; HQ_x: hazard quotient for exposure route x $[-]$; FF_{P-r}: environmental fate factor from product application P to environmental receptor compartment r (e.g. freshwater) $[\text{mg bioavailable per mg product/d}]$; TF_{cum}: cumulative chemical transfer fraction from product application P to environmental receptor compartment r $[\text{mg transferred/d per mg product/d}]$; k_{r}^{loss}: overall removal rate from environmental receptor compartment r $[d^{-1}]$; XF_r: fraction of chemical mass in environmental receptor compartment r that is bioavailable $[\text{mg bioavailable/mg transferred}]$; EF_r: ecological effect factor for ecosystems in environmental receptor compartment r $[\text{PDF m}^3/mg_{\text{bioavailable}}]$ with PDF representing the potentially disappeared fraction of ecological species; $HC20_r^{EC10}$: chemical hazard concentration at which 20% of the exposed ecological species show a response above their specific EC10 (effect concentration at which 10% of individuals of an ecological species show a response over background) in environmental receptor compartment r $[\text{mg bioavailable/m}^3$ compartment$]^{17}$; ETS: use stage related ecotoxicological impact score $[\text{PDF m}^3\text{d}]$.
Table 1b Focus areas and detailed elements of a life cycle based alternatives assessment (LCAA) for the Tier 2 assessment of chemical supply chain impacts.

Scope level	Focus areas	Assessment elements(b)	Interpretation and decision making
[Tier 2] Chemical supply chain and resources impacts from chemical emissions and resources use along chemical supply chain	**Focus**	Derive process tree of chemical synthesis integration stages \(38\)	Discuss if chemical supply chain impacts dominate compared to consumer use impacts; check if target chemical is of concern for workers in the supply chain
	Metric	Mass of reactants needed to produce target chemical in product application	
	Method	\(m_i\)	
	Inventory analysis	General public, ecosystems: \(E_{ij}^{sc} = m_i^{anc} \times e_{m,j}\)	
		\(t_x = u t_{x,u} \times c_u\)	
	Impact assessment	General public, ecosystems: \(CF_j = FF_j \times \sum_x X F_{j,x} \times EF_{j,x,e}\)	
		Workers: \(CF_j = C_{j,x} \times BR_{x,tot} \times \sum_x EF_{j,x,e}\)	
		Climate change: \(46\) \(CF_j = G WP_{100,j}\)	
	Impact quantification	Chemical supply chain: \(IS^{sc} = \sum_i E_{ij}^{sc} \times CF_j\)	
		Workers: \(IS^{work} = \sum_i t_x \times CF_{ij}\)	
		Consumer use: \(HTS^{use} = m_p \times \sum_{u,e} P F_{u,xx} \times EF_{e,p}\)	
		\(ETS^{use} = m_p \times \sum_j F F_{p,r} \times EF_r\)	

\(1\)For alternatives other than substitute chemicals (e.g. alternative materials or technologies), the respective supply chain is considered.

\(2\)Chemical supply chain impacts are linked to the product functional unit (FU), which could either be 'one day of service offered by the considered product' (e.g. installed flooring in a household), or 'a single overall product application' (e.g. flooring area installed in a household over a given time period); \(m_i^{anc}\): mass of ancillary chemical reactant \(i\) that is required in the process supply chain of a target chemical produced for a functional unit \([\text{mg}_{\text{ancillary chemical}}/\text{FU}]\); \(E_{ij}\): inventory flow \(j\) (substance emission or resource use to a
specific environmental compartment) for the supply chain of ancillary chemical used per functional unit (mg emitted/FU); emission factor for inventory flow per unit mass of the ancillary chemical (mg emitted/mg ancillary chemical); blue-collar worker hours per functional unit worked in sector (hr/FU); costs in manufacturing sector per functional unit ($/FU); impact characterization factor for inventory flow for any impact category (e.g. climate change) (impact/mg emitted); environmental fate factor for inventory flow for any impact category (e.g. human exposure) (mg in compartment per mg emitted/d); exposure factor for a receptor (e.g. humans) relating inventory flow to exposure route in a given exposure compartment (e.g. ingestion) (mg/kg intake); air concentration of chemical in worker environments of sector (kg/m³); breathing rate of all exposed workers in sector (m³/hr); effect factor for effect (e.g. cancer) of chemical on workers per kg intake (impact/kg); process supply chain impact score (impact/FU); global warming potential for inventory flow based on IPCC 2013 with climate feedback (mg CO₂-equivalents/mg emitted); worker impact score (impact/FU); terms in consumer use (incl. disposal) human toxicity scores (HTS) (health impacts/FU) and ecotoxicity scores (ETS) (ecosystem impacts/FU) are detailed in Table 1a.
Table 1c Focus areas and detailed elements of a life cycle based alternatives assessment (LCAA) for the Tier 3 assessment of impacts along the full product life cycle.

Scope level	Focus areas	Assessment elements^(c)	Interpretation and decision making
[Tier 3] Product life cycle^(a)	Selected human, ecosystem and resources impacts^(b) from chemical emissions and resources use along full product life cycle	**Focus**^(c)	Discuss the contribution of consumer use and chemical supply chain impacts of target chemical and alternatives on overall product life cycle impacts
Metric	Mass of constituent in the given product per functional unit	**Inventory analysis**^(c)	Identification of key factors influencing product life cycle impacts and quantification of the reduction in impacts provided by alternatives
Method	\(m_i^{cons} \)	**Impact assessment**^(c)	
	General public, ecosystems: \(E_i^j = m_i^{cons} \times em_{i,j} \) \(t_e = ut_{x,u} \times c_u \)		
	General public, ecosystems: \(CF_j = FF_j \times \sum_{j,e} XF_j,e \times EF_j,e \) \(CF_j = GW_{P_{100}} \times EF_j,e \)		
	Workers: \(CF_j = C_j \times BR_{x,\text{tot}} \times \sum_{j,e} EF_j,e \)		

^(a)Focus on those life cycle stages that differ between the product containing the harmful chemical versus the same product containing an alternative.

^(b)Focus on those impact categories that are relevant for the given chemical: if bioactive (e.g. biocidal) or colorant, consider human toxicity and ecotoxicity; if large mass contribution to formulation/material (e.g. filler or plasticizer), consider climate change impacts, energy use and exposure to fine particulate matter.

^(c)Life cycle emission for inventory flow \(j \) (substance emission or resource use to a specific environmental compartment) across constituent \(i \) (e.g. PVC) per product functional unit (FU) \([mg_{emitted}/FU] \); \(em_{i,j} \); emission factor for inventory flow \(j \) per unit mass of product constituent \(i \) \([mg_{emitted}/mg_{constituent}] \); \(m_i^{cons} \); amount of product constituent \(i \) required per product functional unit \([mg_{constituent}/FU] \); \(EF_{j,e} \); effect factor inventory flow \(j \) for climate change impacts \([impacts/kg_{CO2-equivalent}] \); terms in blue-collar worker hours \(t_e \) \([hr/FU] \), characterization factors \(CF \) \([impact/mg_{emitted}] \) for emissions and \([impact/hr] \) for worker exposure, and product life cycle impact scores \(IS_{e}^{e} \) \([impacts/FU] \) are detailed in Table 1b.
Proof-of-concept case study

We applied our proposed LCAA framework and the assessment process shown in Fig. 2 in a proof-of-concept case study to screen quantitative exposures and life cycle impacts for a hazardous plasticizer (identified target chemical) and potential chemical alternatives in a household building material (product use context). We start with a focus on risk for consumers and ecotoxicity impacts directly related to chemicals in the given product use context, followed by considering additional impacts along the chemical supply chain and wider product life cycle. Assessment elements including metrics and approaches followed at each tier are detailed in Table 1a-c.

Product application

As building material, we selected a homogeneous, single layer vinyl flooring with details on chemical composition provided in the Electronic Supplementary Information, ESI (Table S1†). As functional unit (FU) defining the basis for screening and comparing target chemical with alternatives, we used 100 m² of flooring area per average household in OECD countries usable for 15 years. This allows us to compare flooring constituents as well as different alternatives to an identified target chemical on a functional basis.

Pre-screening of product use-related risks

There might be cases where the most relevant target constituent in a product is not known a priori. In such cases, we first screen as optional step all flooring constituents for exposure and hazard associated with the flooring use. During the use stage, flooring chemicals can expose consumers via various routes, including inhalation, ingestion (of e.g. dust) and dermal uptake. This also includes flooring installation-related impacts as the use stage starts at first day of the flooring installed in the household. Flooring mass per 100 m² household is 450 kg. For screening exposure to use stage emissions, we consider residents of
the household where the flooring is installed, and the general population and ecosystems exposed to chemical mass emitted to the outdoor environment. Disposal stage-related emissions are associated with residues in the landfilled flooring after 15 years of household use. Exposure estimates23 are multiplied by the initial substance mass in flooring to yield exposure doses, and further combined with cancer slope factors and predicted reference doses51 respectively yielding cancer risks and hazard quotients (Table 1a). Cumulative transfers from flooring to freshwater are combined with initial mass in flooring and ecotoxicity effect information to yield ecotoxicity impact scores. Additional details about pre-screening inventory analysis and impact assessment are provided in ESI (Section S-1†).

Results of the optional pre-screening are presented in Fig. 3, with additional details given in ESI (Section S-6†). Results indicate that DEHP is the main contributor to consumer risk for cancer (cancer risk probability of 2×10^{-3} for children and 3×10^{-4} for adults) and non-cancer effects (unitless hazard quotient of 19 for children and 3 for adults), closely followed by vinyl chloride for cancer. Population impacts from chemical mass reaching the environment as emission during product use are consistently several orders of magnitude lower than consumer-related (i.e. household users) impacts. For ecotoxicity impacts on freshwater ecosystems, DEHP is again the dominating contributor among vinyl flooring constituents, with an impact score that is at least two orders of magnitude higher than that of other constituents. Ecotoxicity impacts for DEHP are dominated by the waste disposal stage; thus, it is important to already account in the pre-screening step for emissions and related ecotoxicity impacts during product disposal. Risks or ecotoxicity impacts could not be quantified for some constituents due to missing effect information (indicated with “no data” in Fig. 3). Based on this analysis, we selected as suspected target chemical di(2-ethylhexyl) phthalate (DEHP), used as plasticizer in vinyl flooring52 and widely acknowledged as a chemical of concern.53 Physicochemical properties of DEHP are given in ESI (Table S2†).
Fig. 3 Pre-screening product use related (a) non-cancer hazard quotients, (b) cancer risk probability, and (c) freshwater ecotoxicity impact scores for chemical constituents in 100 m² vinyl flooring, with population risks shown on the 2nd y-axis. Filler (calcium carbonate) and resin polymer (PVC) are excluded as they are assumed not to emit from the flooring material.

VCM: vinyl chloride monomer, TiO₂: titanium dioxide, C₈H₁₀: ethylbenzene, C₉H₁₂: 1,2,4-trimethylbenzene, C₈H₁₈O₃: diethylene glycol diethyl ether.

Tier 1: Selection and screening of possible alternatives based on use stage impacts

Possible, functionally equivalent alternatives to DEHP in vinyl flooring include three phthalate-based plasticizers, namely di(isoheptyl)phthalate (DIHP), butyl benzyl phthalate (BBP), dibutyl phthalate (DBP), and six other plasticizers, namely di(ethylhexyl) adipate (DEHA), hexanadidioic acid, di-C7-9-branched and linear alkyl esters (97A), dibutyl sebacate (DBS), butane ester 2,2,4-trimethyl 1,3-pentanediol diisobutyrate (TXIB), o-acetyl...
tributyl citrate (ATBC), and di(2-ethylhexyl) phosphate (DEHPA). Physiochemical properties of these substances and their substitution factors relating material hardness properties of alternatives to those of DEHP are given in ESI (Table S3†). We screened the identified possible alternatives against DEHP for emissions, and related exposure and hazard associated with the use stage of the flooring product following the approach described in the pre-screening. Additional details are provided in ESI (Section S-1†).

Screened health risks and ecosystem impacts associated with possible plasticizer alternatives during product use are presented in Fig. 4, with additional details given in ESI (Section S-7†). Hazard quotients of all alternatives are lower than that of DEHP, except for BBP, DBP and ATBC. Among phthalates, DIHP has hazard quotients that are at least a factor 50 lower than for other phthalates. Among non-phthalate plasticizers, 97A and DBS show lowest hazard quotients. For evaluating cancer risk, we used the most extensive carcinogenic potency databased worldwide, considering all tested substances for carcinogenic effects and containing both positive and negative chronic tests, which is much broader than the lists of declared carcinogenic substances. Yet, cancer risk could only be evaluated for DEHP, BBP and DEHA, with DEHA showing a cancer risk of 3×10^{-4}, which is one order of magnitude lower than that of DEHP, whereas BBP cancer risks are higher than those of DEHP. We indicated missing information on cancer potency as “no data” in Fig. 4b. For considering a given chemical with missing cancer data as potential alternative, it is recommended to conduct a systematic review to identify if any information on carcinogenicity is available, to first assess the likelihood that the chemical is carcinogenic. Reviewing cancer information for DIHP yielded a state-of-the-science report from Environment Canada, stating that its cancer potency is evaluated as likely limited at environmentally relevant doses, which we indicated in Fig. 4b. Population impacts are again consistently much lower than consumer-related impacts, confirming the focus of Tier 1 on the product users and co-residents. Population impacts, however, might be substantial for very persistent and bioaccumulating
chemicals, such as perfluorinated alkylated substances (PFASs).57 Ecotoxicity impacts are lowest for DEHA, being at least a factor 20 lower than for other alternatives, DIHP being just slightly lower than DEHP. Ecotoxicity impacts on freshwater ecosystems are dominated by the waste disposal stage of the landfilled flooring product after 15 years of use for all plasticizers except DEHPA. This again highlights the importance of considering product disposal-related emissions and ecotoxicity impacts in Tier 1. When aggregating results into single scores for cancer risk, non-cancer risk and ecosystem impacts (ESI, Fig. S1†), we find that only DIHP and DEHA perform better than DEHP across all three aspects. Based on these screening results, we identify DIHP (phthalate) and DEHA (non-phthalate) as suitable alternatives to DEHP in this illustrative example. To demonstrate the feasibility of our approach beyond this mandatory rapid risk screening step, we investigate the suitability of these two alternatives in Tier 2, with focus on their chemical supply chain.
Fig. 4 Tier 1 product use related (a) non-cancer hazard quotients, (b) cancer risk probability, and (c) freshwater ecotoxicity impact scores for different plasticizer alternatives in 100 m² vinyl flooring, with population risks shown on the 2nd y-axis.

Tier 2: Comparison of supply chain impacts for selected alternatives

In an optional step, we evaluated the chemical supply chain impacts of target chemical and selected alternatives. Emissions of chemicals used in the supply chain of the target chemical and its two selected alternatives were derived from the Environmental Genome of Industrial Processes (EGIP), which is further detailed in ESI (Section S-8). The flows represented in an EGIP dataset are illustrated in Fig. 5 for DEHP as example chemical, with additional details given for DEHP and the two selected alternatives in ESI (Fig. S2 to Fig. S4†). These results illustrate that even for a relatively simple molecule, several synthesis steps are needed, requiring various natural resources and ancillary chemicals, each of which comes with chemical and other losses to the environment.

Fig. 5 Chemical supply chain inventory for di(2-ethylhexyl) phthalate (DEHP) with reactant mass flows from left to right side required for producing 1000 kg of DEHP target chemical
mass and related emissions into the environment, with nodes representing the different chemical synthesis integration stages. Losses <10 kg are not shown.

Chemical supply chain emissions were characterized in terms of damages on human health, ecosystem quality, and climate change by combining chemical-specific emissions with respective characterization factors expressed as potential impacts per unit emission (Table 1b). For climate change, we used IPCC global warming potentials (GWP), expressed in kg CO$_2$-equivalents per kg chemical emitted, summed over all chemicals. For toxicity-related impacts, we used the scientific consensus model USEtox, which is widely used in comparative assessments. For ecotoxicity, species loss is expressed as potentially disappeared fraction (PDF) of ecosystem species exposed over a given time and freshwater volume per unit mass emitted. For human toxicity and exposure to fine particulate matter, lifetime loss is expressed as disability-adjusted life years (DALY), consistently combining for the latter information for population exposure and exposure-response slopes. Toxicity-related impacts on workers for the plasticizer supply chain were evaluated using an input-output matrix-based approach. Additional details are provided in ESI (Section S-1†).

Chemical supply chain impacts expressed as toxicity and air pollution (i.e. PM$_{2.5}$) related damages on human health, climate change impacts and ecotoxicity-related damages associated with the three selected plasticizers are presented in the plasticizer-related left-side part of Fig. 6 (where chemical supply chain impacts are shown as integral part of the wider flooring life cycle impacts). Human toxicity-related health impacts are dominated by the use stage for all three plasticizers, followed by impacts related to PM$_{2.5}$ exposure and supply chain impacts on workers that are 2-4 orders of magnitude lower than use stage impacts (Fig. 6b, with further details in ESI, Fig. S5†). When aggregated into single scores, human health impacts for DIHP and DEHA are respectively more than a factor 50 and 30 lower than for DEHP (ESI, Fig. S6†). Ecotoxicity impacts are dominated by the waste disposal stage for
DEHP and DIHP, and by supply chain impacts (including related waste) for DEHA. When aggregated, DEHA shows overall lowest ecotoxicity impacts; however, the difference across the three plasticizers is less than a factor of five. Climate change impacts show a similar picture with lowest impacts for DIHP, but with marginal differences across all three alternatives. In summary, DIHP and DEHA are still suitable alternatives to DEHP when including impacts along their chemical supply chains. To finally capture any potential impact trade-offs along the entire flooring life cycle, we again broaden the assessment scope in Tier 3 to include the entire vinyl flooring life cycle for these three plasticizers.

Tier 3: Assessment of product life cycle impacts

Assessing life cycle emissions and impacts for the selected alternatives is mainly needed for considering distinct types of alternatives (e.g. chemicals vs. materials vs. technologies). However, to demonstrate the feasibility of our approach to address full product life cycle impacts, we also cover this most comprehensive tier in our case study. We included in this step the life cycle impacts of the remaining vinyl flooring constituents for comparison.

Emission inventory information over the entire life cycle of the vinyl flooring are derived from EGIP, ecoinvent, and the MOCLA model. The full inventory data are given in ESI (Section S-10†). Life cycle impacts on climate change, human health and ecosystem quality were calculated following the same approach as for chemical supply chain impacts (Table 1c). To evaluate the contribution of climate change impacts on human health as compared to toxicity and PM$_{2.5}$-related impacts, climate change impacts were also translated into DALY/kg emitted. Additional details are provided in ESI (Section S-1†).

Flooring life cycle impacts are presented for human toxicity, climate change, air pollution, and ecotoxicity in Fig. 6, keeping life cycle stages separate to best contrast the contribution of each stage. Toxicity-related life cycle impacts on human health are consistently dominated by the use stage for most vinyl flooring constituents including the
three alternative plasticizers, followed by plasticizer waste impacts and flooring supply chain impacts on workers, of which 16% is related to plasticizer supply chain impacts on workers.

In case of DEHP, the plasticizer dominates human toxicity-related impacts, contributing up to 81% to overall human toxicity impacts from the flooring life cycle. DEHP alternatives contribute between 7% (DIHP) and 11% (DEHA) to flooring life cycle impacts on humans, which are in these scenarios dominated by finish components. PVC resin dominates climate change and air pollution related impacts on humans, together with plasticizers, with negligible differences across the three plasticizer alternatives. Highest ecotoxicity impacts are dominated by the three equally damaging plasticizers. However, while waste-related impacts on ecosystems dominate for DEHP and DIHP, related impacts for DEHA are dominate by its more complex supply chain. For vinyl flooring, climate change and air pollution impacts on humans only contribute between <1% (DEHP) and 8% (DIHP) to overall human health damages. In line with ecotoxicity impact results, this renders toxicity the main impact type when evaluating alternative plasticizers, which is especially problematic since plasticizers also have high product weight fractions. For all considered impacts, plasticizers are among the dominating flooring components along its life cycle, indicating a substantial potential to improve the entire product’s environmental performance when identifying suitable alternatives to DEHP as plasticizer.

When there are relevant trade-offs between target chemical and alternatives, considering the entire life cycle is crucial to understand which of these trade-offs matter, and to put such trade-offs into perspective of overall product performance. When differences in the life cycle are rather restricted as in our present example, this step could be omitted or is primarily used to understand how much the improvement matters for the overall product performance.
Fig. 6 Tier 3 product life cycle impacts for (a) human toxicity damages on human health, (b) climate change and air pollution (exposure to fine particulate matter) damages on human health, and (c) ecotoxicity damages on ecosystem quality for three alternative plasticizers in 100 m² vinyl flooring, and for all other relevant vinyl flooring constituents. Tier 3 covers the entire flooring life cycle including chemical supply chain and waste-related impacts. Climate change damages on human health are also shown as CO₂-equivalents. VCM: vinyl chloride monomer, TiO₂: titanium dioxide, PVC: polyvinyl chloride, CaCO₃: calcium carbonate, C₈H₁₀: ethylbenzene, C₉H₁₂: 1,2,4-trimethylbenzene, C₈H₁₈O₃: diethylene glycol diethyl ether.

Across case study tiers, we have presented results at a high level of detail, allowing for best-possible interpretation of individual impact contributors. However, to facilitate a more user-friendly support of substitution decisions, impact results at any tier might also be aggregated into single scores per focus area. Fig. 7 illustrates this by summarizing Tier 3 life
cycle impact results into a simple comparison of the three plasticizer alternatives among each other and with the rest of the vinyl flooring. In this aggregated figure, product use stage related damages on human health account for >98% across plasticizers and cumulatively for all other flooring ingredients. For climate change impacts, the supply chain dominates at the level of plasticizers and product, with >95% contribution. For ecotoxicity impacts, we see a more differentiated picture, with waste-related impacts dominating with 90-96% for the two phthalate plasticizers, while supply chain impacts dominate for DEHA (>99%) and cumulatively for all other flooring ingredients (82%).

When comparing Fig. 7 with aggregated single scores for Tier 1 and 2 (see ESI, Fig. S1 and S6†), there is a clear overall tendency across tiers that DIHP and DEHA perform slightly better than DEHP. Considering the uncertainties in our impact results (1-3 orders of magnitude for toxicity and ecotoxicity impacts), differences of less than two orders of magnitude across alternatives do not seem high. This indicates that more fundamentally different plasticizers are needed and rather challenging the use of any existing plasticizer alternative to fulfill the related function in vinyl flooring without substantial impacts.
Fig. 7 Aggregated life cycle impacts for (a) human toxicity damages (*including air pollution) on human health, (b) climate change damages on human health, and (c) ecotoxicity damages on ecosystem quality for three alternative plasticizers in 100 m² vinyl flooring, and for the rest of the vinyl flooring material.

Discussion

Applicability and limitations of our approach

Quantitative screening tools are becoming available to cover thousands of chemical-product combinations, integrating at each assessment level exposure to target and alternative chemicals in products with the wider set of chemical supply chain and product life cycle impacts. The presented approach enables the practitioner to (a) identify a target chemical if this is not known \textit{a priori}, (b) rapidly screen a large set of alternatives, (b) efficiently account for worker and population exposure associated with chemicals, (c) to identify other types of life cycle impacts such as climate change impacts based on chemical function and product use.
context, and (d) consistently broaden the assessment scope where needed, to uncover relevant
trade-offs.

Our case study demonstrates the feasibility of our approach and suggests that (a) vinyl
flooring plasticizer is a main issue for both human and ecotoxicological impacts, highlighting
the importance of a consistent screening of both aspects, (b) alternatives to DEHP enable a
reduction of human health impacts by a factor 30 to 50, which is a minimum difference
required considering the related uncertainty, (c) plasticizers due to their general high mass
contribution to flooring have also important climate change impacts with alternatives only
offering minimal improvement or rather similar scores, and (d) further research is needed to
identify chemicals from different families to offer further improvements.

For a function-based substitution, starting from the chemical function is key for
determining the chemical amount used for a given functional unit. The functional unit thereby
provides a consistent comparison basis, and mainly depends on the product application
context rather than on the chemical function. For both product-oriented and receptor- or risk-
oriented approaches, it is advantageous to scale the functional unit to the amount that
corresponds to the actual amount that a person is exposed to (daily dose), such as using 100
m² of a typical household in our case study.

Our approach also has several limitations. The nature of a screening assessment
requires several assumptions. We used for various inputs (e.g. chemical flooring composition,
household settings, population heterogeneity and use patterns) generic or default values,
which should be adapted whenever case-specific information is available. For child exposure,
we have on the one hand chosen a high-end hypothesis assuming there is always 1 child in the
household, while on the other hand we did not use children adjustment factors to correct
childhood exposure for lifetime cancer risk.67

Several chemicals lack cancer potency data. Such missing data should be
comprehensively discussed in any substitution study according to current guidelines.68 More
generally, we propose the following approach for addressing missing data: first conduct a
systematic review to identify potential information, as was carried out for DIHP showing that
its cancer potency is likely limited at environmentally relevant doses. This is especially
important for carcinogenic effects, were a judgement on the likelihood that the chemical is
carcinogenic is first required before applying any extrapolation approaches. Second,
imputation and extrapolation techniques can be applied or further developed. For non-cancer
effects, both a regression approach providing a point estimate and a non-parametric analysis
providing distributions are proposed, whereas other imputation techniques are applicable
when distributions are well-defined. We applied results from such regression techniques to
estimate diffusion and material-air partition coefficients used as input for our exposure model
(see ESI, Section S-4†). Recent advances in machine learning, such as random forest
algorithms or neural networks, offer improved performance compared to pure regression, and
were used in our study to estimate ecotoxicity effects and non-cancer human effects. Additional estimation approaches are urgently needed that account for both positive and
negative carcinogenicity indications.

While such approaches allow to evaluate a wider range of alternatives and aspects,
they introduce additional uncertainty. For example, when applying QSAR for ecotoxicity for
DEHP, we would yield significantly higher effects than with currently available effect data.
Using generic chemical supply chain and product life cycle worker impacts across plasticizers
is another limitation, where we recommend to use product and chemical-specific supply chain
information in cases where worker impacts dominate overall impact profiles. Further, among
our considered target chemical and screened alternatives, only DEHP and DBP are included
in the list of 235 organic substances contributing to worker impacts, whereas no measured
workplace concentrations for the other alternatives are currently available, leading to potential bias.
Despite its limitations, our framework is nonetheless useful to indicate relevant differences in performance profiles across alternatives. Finally, our framework requires a solid understanding of the substitution context to define relevant life cycle impacts, gather chemical supply chain information and apply different quantitative methods in a rapid-screening context.

Future research needs and way forward

To derive the chemical mass used for an equal functional performance across alternatives, substitution factors are required, but often not available. Such substitution factors need to related to a proper function for comparing alternatives for a given product application.

On the exposure assessment side, our framework already contains several product categories (e.g. building materials, toys, food contact materials, cosmetics, personal care products, cleaning and home maintenance products, and pesticide active ingredients), but various product categories still need to be introduced (e.g. electronics, textiles). Furthermore, our models needs to be parameterized for additional exposure scenarios to capture relevant consumer and occupational settings (e.g. to better capture worker exposure during flooring installation) and processes (e.g. modeling abrasion and subsequent transfer to dust removed by vacuum cleaning, where relevant).

Human toxicity and ecotoxicity estimates for the various chemicals relevant for Chemical Alternatives Assessment are often lacking, especially for inorganic substances, and need to be complemented with high-throughput estimates. This requires additional efforts, building on stochastic tools, which also provide information on model applicability domain and uncertainty.

Finally, in support of reducing the use of harmful chemicals in consumer products and production processes, it is essential to promote further efforts for including metrics to measure progress against targets for a sustainable development and a circular economy.
Conclusions

We proposed a tiered, quantitative LCAA framework for assessing human (consumer, worker, general population) and ecological exposures, and a wider realm of life cycle impacts for application in alternatives assessment and chemical substitution. With our framework, we address an important limitation of current substitution approaches, and identify relevant trade-offs across exposure settings and life cycle stages, based on consistently combining indicators from both risk assessment and life cycle impact assessment. We demonstrate that it is crucial and possible to include chemical supply chain and life cycle impacts into the assessment scope to pinpoint potential impact hotspots in a given substitution context, which can help to avoid introducing unacceptable trade-offs. However, further research is needed to cover emission inventories and toxicity-related impacts for the wide range of presently used chemical-product combinations. The assessment of exposure, risks and life cycle impacts should be incorporated into existing substitution frameworks, to combine our indicators with indicators for technical and economic feasibility, and identify related trade-offs in a decision analysis context as proposed in state-of-the-art Alternatives Assessment guidelines.21 It is important that these trade-offs are also analyzed at the product level. With that, our LCAA framework is suitable for informing function-based substitution at the level of chemical, material and product application, and is also applicable to identify chemicals that should be prioritized for substitution.

Acknowledgements

We thank P. Hou, W. Chiu, Y.-J. Chen, and K. Stylianou for their respective inputs on ecotoxicity, human toxicity, worker exposure, and life cycle inventory data. The present work was supported by the ‘Global Best Practices on Emerging Chemical Policy Issues of Concern under UN Environment’s Strategic Approach to International Chemicals Management
(SAICM)’ (grant no. S1-32GFL-000632), and by the ‘Safe and Efficient Chemistry by Design
(SafeChem)’ project funded by the Swedish Foundation for Strategic Environmental
Research, MISTRA (grant no. DIA 2018/11).

Conflicts of interest

There are no conflicts to declare.
References

1. Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C., The trajectory of the Anthropocene: The great acceleration. *Anth. Rev.* **2**, 81-98 (2015).

2. Rockström, J. et al., A safe operating space for humanity. *Nature* **461**, 472-475 (2009).

3. Matlin, S.A., Mehta, G., Hopf, H. & Krief, A., The role of chemistry in inventing a sustainable future. *Nat. Chem.* **7**, 941-943 (2015).

4. Fantke, P., Weber, R. & Scheringer, M., From incremental to fundamental substitution in chemical alternatives assessment. *Sustain. Chem. Pharm.* **1**, 1-8 (2015).

5. Zimmerman, J.B. & Anastas, P.T., Toward substitution with no regrets. *Science* **347**, 1198-1199 (2015).

6. Jacobs, M.M., Malloy, T.F., Tickner, J.A. & Edwards, S., Alternatives assessment frameworks: Research needs for the informed substitution of hazardous chemicals. *Environ. Health Perspect.* **124**, 265-280 (2016).

7. Lavoie, E.T. et al., Chemical alternatives assessment: Enabling substitution to safer chemicals. *Environ. Sci. Technol.* **44**, 9244-9249 (2010).

8. Greggs, B. et al., Qualitative approach to comparative exposure in alternatives assessment. *Integr. Environ. Assess. Manage.* **15**, 880-894 (2019).

9. Tickner, J. et al., Advancing alternatives assessment for safer chemical substitution: A research and practice agenda. *Integr. Environ. Assess. Manage.* **15**, 855-866 (2019).

10. Tickner, J. et al., Lessons from the 2018 International Symposium on Alternatives Assessment: Advances and reflections on practice and ongoing needs to build the field. *Integr. Environ. Assess. Manage.* **15**, 909-916 (2019).

11. Geiser, K., Tickner, J., Edwards, S. & Rossi, M., The architecture of chemical alternatives assessment. *Risk Anal.* **35**, 2152-2161 (2015).

12. Whittaker, M.H., Risk assessment and alternatives assessment: Comparing two methodologies. *Risk Anal.* **35**, 2129-2136 (2015).

13. Oguzcan, S., Kruopiene, J. & Dvarioniene, J., Approaches to chemical alternatives assessment (CAA) for the substitution of hazardous substances in small- and medium-sized enterprises (SMEs). *Clean Technol. Environ. Pol.* **19**, 361-378 (2017).

14. Stout, S.A., Douglas, G.S. & Uhler, A.D., in Environmental Forensics: Contaminant Specific Guide. (eds. R.D. Morrison & B.L. Murphy) 465-531 (Academic Press, Burlington; 2006).

15. Budge, G.E. et al., Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape. *Sci. Rep.* **5**, 12574 (2015).

16. Fantke, P. & Illner, N., Goods that are good enough: Introducing an absolute sustainability perspective for managing chemicals in consumer products. *Curr. Opin. Green Sustain. Chem.* **15**, 91-97 (2019).

17. Hauschild, M.Z., Assessing environmental impacts in a life-cycle perspective. *Environ. Sci. Technol.* **39**, 81A-88A (2005).

18. Tickner, J.A., Schifano, J.N., Blake, A., Rudisill, C. & Mulvihill, M.J., Advancing safer alternatives through functional substitution. *Environ. Sci. Technol.* **49**, 742-749 (2015).

19. Organisation for Economic Co-operation and Development, 2013. Current practice of alternatives assessment practice: A meta review, (Paris; 2013).

20. National Research Council, 2014. A Framework to Guide Selection of Chemical Alternatives, (Washington, D.C.; 2014).

21. Department of Toxic Substances Control, 2017. Alternatives Analysis Guide, version 1.0, (Sacramento, CA; 2017).

22. Ögmundarson, Ó., Sukumara, S., Herrgård, M.J. & Fantke, P., Combining environmental and economic performance for bioprocess optimization. *Trends Biotechnol.*, doi:10.1016/j.tibtech.2020.04.011 (2020).
23. Fantke, P., Ernstoff, A.S., Huang, L., Csiszar, S.A. & Jolliet, O., Coupled near-field and far-field exposure assessment framework for chemicals in consumer products. *Environ. Int.* **94**, 508-518 (2016).

24. Jolliet, O., Ernstoff, A.S., Csiszar, S.A. & Fantke, P., Defining product intake fraction to quantify and compare exposure to consumer products. *Environ. Sci. Technol.* **49**, 8924-8931 (2015).

25. Ernstoff, A.S. et al., Multi-pathway exposure modelling of chemicals in cosmetics with application to shampoo. *Environ. Int.* **92-93**, 87-96 (2016).

26. Cowan-Ellsberry, C.E. & Robison, S.H., Refining aggregate exposure: Example using parabens. *Regul. Toxicol. Pharm.* **55**, 321-329 (2009).

27. Huang, L., Ernstoff, A., Fantke, P., Csiszar, S. & Jolliet, O., A review of models for near-field exposure pathways of chemicals in consumer products. *Sci. Total Environ.* **574**, 1182-1208 (2017).

28. Grondin, C.J. et al., Advancing exposure science through chemical data curation and integration in the comparative toxicogenomics database. *Environ. Health Perspect.* **124**, 1592-1599 (2016).

29. Aurisano, N., Albizzati, P.F., Hauschild, M. & Fantke, P., Extrapolation factors for characterizing freshwater ecotoxicity effects. *Environ. Toxicol. Chem.* **38**, 2568-2582 (2019).

30. Csiszar, S.A., Ernstoff, A.S., Fantke, P., Meyer, D.E. & Jolliet, O., High-throughput exposure modeling to support prioritization of chemicals in personal care products. *Chemosphere* **163**, 490-498 (2016).

31. Lanters, C.A. & Fantke, P., Structuring complex results using network maps and hierarchical charts. *Procedia CIRP* **69**, 441-446 (2018).

32. Laurent, A., Olsen, S.I. & Hauschild, M.Z., Limitations of carbon footprint as indicator of environmental sustainability. *Environ. Sci. Technol.* **46**, 4100-4108 (2012).

33. Cohen, A.J. et al., Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. *Lancet* **389**, 1907-1918 (2017).

34. Douziech, M. et al., Confronting variability with uncertainty in the ecotoxicological impact assessment of down-the-drain products. *Environ. Int.* **126**, 37-45 (2019).

35. Csiszar, S.A. & Meyer, D.E., in Encyclopedia of Sustainable Technologies. (ed. M.A. Abraham) 243-251 (Elsevier, Oxford; 2017).

36. Henderson, A.D. et al., USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: Sensitivity to key chemical properties. *Int. J. Life Cycle Assess.* **16**, 701-709 (2011).

37. Owlsianik, M. et al., in Global Guidance on Environmental Life Cycle Impact Assessment Indicators: Volume 2. (eds. R. Frischknecht & O. Jolliet) 138-172 (UNEP/SETAC Life Cycle Initiative, Paris, France; 2019).

38. Wernet, G. et al., The ecoinvent database version 3 (part I): Overview and methodology. *Int. J. Life Cycle Assess.* **21**, 1218-1230 (2016).

39. Overcash, M., Environmental genome of industrial products (EGIP): The missing link for human health. *Green Chem.* **18**, 3600-3606 (2016).

40. Jimenez-Gonzalez, C. & Overcash, M.R., The evolution of life cycle assessment in pharmaceutical and chemical applications - a perspective. *Green Chem.* **16**, 3392-3400 (2014).

41. Kijko, G., Margni, M., Partovi-Nia, V., Doudrich, G. & Jolliet, O., Impact of occupational exposure to chemicals in life cycle assessment: A novel characterization model based on measured concentrations and labor hours. *Environ. Sci. Technol.* **49**, 8741-8750 (2015).
42. Kijko, G., Jolliet, O. & Margni, M., Occupational health impacts due to exposure to organic chemicals over an entire product life cycle. *Environ. Sci. Technol.* **50**, 13105-13114 (2016).

43. Huijbregts, M.A.J., Rombouts, L.J.A., Ragas, A.M.J. & van de Meent, D., Human-toxicological effect and damage factors of carcinogenic and noncarcinogenic chemicals for life cycle impact assessment. *Integr. Environ. Assess. Manage.* **1**, 181-244 (2005).

44. Vermeire, T., Pieters, M., Rennen, M. & Bos, P., 2001. Probabilistic Assessment Factors for Human Health Risk Assessment. RIVM Rapport 601516005, TNO report V3489, (Bilthoven, The Netherlands; 2001).

45. Dorne, J.L.C.M. & Renwick, A.G., The refinement of uncertainty/safety factors in risk assessment by the incorporation of data on toxicokinetic variability in humans. *Toxicol. Sci.* **86**, 20-26 (2005).

46. Bulle, C. et al., IMPACT World+: A globally regionalized life cycle impact assessment method. *Int. J. Life Cycle Assess.* **24**, 1653-1674 (2019).

47. Verones, F. et al., LC-IMPACT: A regionalized life cycle damage assessment method. *J. Ind. Ecol.*, doi:10.1111/jiec.13018 (2020).

48. Frischknecht, R. & Rebitzer, G., The ecoinvent database system: A comprehensive web-based LCA database. *The ecoinvent database system: A comprehensive web-based LCA database* **13**, 1337-1343 (2005).

49. Rosenbaum, R.K. et al., USEtox - The UNEP-SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. *Int. J. Life Cycle Assess.* **13**, 532-546 (2008).

50. Myhre, G. et al., in Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (ed. IPCC Intergovernmental Panel on Climate Change) 659-740 (Cambridge University Press, Cambridge, UK; 2013).

51. Wignall, J.A. et al., Conditional toxicity value (CTV) predictor: An *in silico* approach for generating quantitative risk estimates for chemicals. *Environ. Health Perspect.* **126**, 057008 (2018).

52. Toxics Use Reduction Institute, 2006. Five Chemicals Alternatives Assessment Study, (Lowell, MA; 2006).

53. Eliason, P. & Morose, G., Safer alternatives assessment: The Massachusetts process as a model for state governments. *J. Clean. Prod.* **19**, 517-526 (2011).

54. Gold, L.S. (University of California, Berkeley; Lawrence Berkeley National Laboratory; National Library of Medicine, 2011).

55. Rosenbaum, R.K. et al., USEtox human exposure and toxicity factors for comparative assessment of toxic emissions in life cycle analysis: Sensitivity to key chemical properties. *Int. J. Life Cycle Assess.* **16**, 710-727 (2011).

56. Environment Canada, 2015. State of the Science Report - Part 1. Phthalate Substance Grouping Medium-Chain Phthalate Esters2015).

57. Holmquist, H. et al., An (eco)toxicity life cycle impact assessment framework for per- and polyfluoroalkyl substances. *Environ. Sci. Technol.* **54**, 6224-6234 (2020).

58. Westh, T.B. et al., The USEtox story: A survey of model developer visions and user requirements. *Int. J. Life Cycle Assess.* **20**, 299-310 (2015).

59. Fantke, P. et al., Advancements in life cycle human exposure and toxicity characterization. *Environ. Health Perspect.* **126**, 125001 (2018).

60. Fantke, P. et al., Toward harmonizing ecotoxicity characterization in life cycle impact assessment. *Environ. Toxicol. Chem.* **37**, 2955-2971 (2018).

61. Verones, F. et al., LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. *J. Cleaner Prod.* **161**, 957-967 (2017).
62. Murray, C.J.L. et al., Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. *Lancet* **380**, 2197-2223 (2012).

63. Fantke, P. et al., Health effects of fine particulate matter in life cycle impact assessment: Conclusions from the Basel guidance workshop. *Int. J. Life Cycle Assess.* **20**, 276-288 (2015).

64. Fantke, P. et al., Characterizing aggregated exposure to primary particulate matter: Recommended intake fractions for indoor and outdoor sources. *Environ. Sci. Technol.* **51**, 9089-9100 (2017).

65. Fantke, P. et al., Global effect factors for exposure to fine particulate matter. *Environ. Sci. Technol.* **53**, 6855-6868 (2019).

66. Kjeldsen, P. & Christensen, T.H., A simple model for the distribution and fate of organic chemicals in a landfill: MOCLA. *Waste Manage. Res.* **19**, 201-216 (2001).

67. United States - Environmental Protection Agency, 2005. Supplemental guidance for assessing susceptibility from early-life exposure to carcinogens, (Washington, D.C.; 2005).

68. Rossi, M., Tickner, J. & Geiser, K., 2006. Alternatives Assessment Framework of the Lowell Center for Sustainable Production, Version 1.0, (Lowell, MA; 2006).

69. Evans, J.S. & Baird, S.J.S., Accounting for missing data in noncancer risk assessment. *Hum. Ecol. Risk Assess.* **4**, 291-317 (1998).

70. Hou, P., Jolliet, O., Zhu, J. & Xu, M., Estimate ecotoxicity characterization factors for chemicals in life cycle assessment using machine learning models. *Environ. Int.* **135**, 105393 (2020).

71. Huang, L. & Jolliet, O., A parsimonious model for the release of chemicals encapsulated in products. *Atmos. Environ.* **127**, 223-235 (2016).

72. Aurisano, N., Huang, L., Jolliet, O., Mila i Canals, L. & Fantke, P., Chemicals of concern in plastic toys. *Environ. Sci. Technol.*, (in review) (2020).

73. Ernstoff, A.S., Fantke, P., Huang, L. & Jolliet, O., High-throughput migration modelling for estimating exposure to chemicals in food packaging in screening and prioritization tools. *Food Chem. Toxicol.* **109**, 428-438 (2017).

74. Ernstoff, A. et al., Challenges of including human exposure to chemicals in food packaging as a new exposure pathway in life cycle impact assessment *Int. J. Life Cycle Assess.* **24**, 543-552 (2019).

75. Csizsar, S.A., Ernstoff, A.S., Fantke, P. & Jolliet, O., Stochastic modeling of near-field exposure to parabens in personal care products. *J. Expos. Sci. Environ. Epidemiol.* **27**, 152-159 (2017).

76. Fantke, P. & Jolliet, O., Life cycle human health impacts of 875 pesticides. *Int. J. Life Cycle Assess.* **21**, 722-733 (2016).

77. Kirchhübel, N. & Fantke, P., Getting the chemicals right: Toward characterizing toxicity and ecotoxicity impacts of inorganic substances. *J. Cleaner Prod.* **227**, 554-565 (2019).

78. Frischknecht, R. & Jolliet, O., Global Guidance on Environmental Life Cycle Impact Assessment Indicators: Volume 2. (UNEP/SETAC Life Cycle Initiative, Paris, France; 2019).

79. Tickner, J.A. & Becker, M., Mainstreaming green chemistry: The need for metrics. *Curr. Opin. Green Sustain. Chem.* **1**, 1-4 (2016).