Deep Reinforcement Learning

Qiwen Cui Xinqi Wang Runlong Zhou
Supervised Learning

- Data: (x, y)
- Goal: Learn a function f(x)=y
- Examples: Classification, Regression, ...
Self-supervised Learning

• Data: \(x \)

• Goal: Learn underlying structure of the data

• Examples: Representation Learning, Contrastive Learning, Autoregressive Pretraining
Reinforcement Learning

- Goal: Learn a policy to maximize reward
- Examples: Chess, Go, Poker, Self-driving
Markov Decision Process

- Agent
- Environment
- Action
- State
- Reward

• Goal: Collect as much reward as possible.
Markov Decision Process

State:
\[s_{t+1} \sim P(\cdot | s_t, a_t) \]

Reward:
\[r_{t+1} = r(s_t, a_t) \]

Action:
\[a_t = \pi(s_t) \]

Maximize total discounted reward \(\sum \gamma^t r_t \).
Markov Decision Process

• Policy: $\pi(s) = a$.
• Discount factor: $\gamma \in (0,1)$.
• Value function: $V^\pi(s_0) = \mathbb{E}_\pi[\sum_t \gamma^t r_t]$, where $s_0, a_0, r_0, s_1, a_1, r_1, \ldots$ is a trajectory sampled by using policy π.
• Q function: $Q^\pi(s_0, a_0) = \mathbb{E}_\pi[\sum_t \gamma^t r(s_t, a_t)]$.
• Optimal policy: $\pi^* = \text{argmax}_\pi V^\pi(s)$.
• There exists an optimal policy that achieves the argmax for all s simultaneously!
Optimal Q Function

• Optimal Q function: $Q^{\pi^*}(s_0, a_0) = \mathbb{E}_{\pi^*}[\sum_t \gamma^t r(s_t, a_t)]$.

• Property: $\pi^*(s) = \text{argmax}_a Q^{\pi^*}(s, a)$.

• If we know Q^*, we know π^*.
If we know \(r(s, a) \) and \(P(s' \mid s, a) \), we can use dynamic programming to solve the optimal policy.

How to learn the optimal policy **without** the knowledge of \(r(s, a) \) and \(P(s' \mid s, a) \)?

Collect **samples**!
• 3^{361} possible board configurations in Go.
• Impossible to enumerate.

• Theorem: $\Omega(SA)$ samples are necessary for learning MDP without structures, where S is # of states and A is # of actions.
Function Approximation

- Challenge in RL: large state and action space.
- Many states and actions are similar and have similar Q^{π^*}.
- Use a function class $\mathcal{F} = \{f_\theta\}$ to approximate Q function.

- Suppose we have a dataset $\mathcal{D} = \{Q^{\pi^*}(s, a)\}$, then we can fit a f_θ to approximate Q^{π^*}:

$$
\theta^* = \arg\min_\theta \sum_{(s,a)\in \mathcal{D}} \left(f_\theta(s, a) - Q^{\pi^*}(s, a)\right)^2.
$$
Offline Reinforcement Learning

• Dataset: trajectories $s_0, a_0, r_0, s_1, a_1, r_1, \ldots, s_T$ sampled from some behavior policy π_b.

• Challenge: unknown $Q^{\pi^*}(s, a)$.

• Reminder: Markov-Decision Process (MDP)

State:
\[s_{h+1} = P(\cdot | s_h, a_h) \]

Reward:
\[r_{h+1} = r(s_h, a_h) \]
Q-learning

• Value-based method:
 • Evaluate all the states, then find the action leading to the best state.
• Reminder: Value function and Q function:

 • \(V_{\pi}(s) = E_{\pi}[\sum_h \gamma^h r_h \mid s] \)

 • We need to know which action leads to the given reward:

 • \(Q_{\pi}(s, a) = E_{\pi}[\sum_h \gamma^h r_h \mid s, a] \)
Q-learning

Q-function:

\[Q_\pi(s, a) = E_\pi \left[\sum_h \gamma^h r_h \mid s, a \right] \]

• Target: derive the Q function for the optimal policy \(\pi^*, Q^* \)

• How to solve this system?

• Of course, we can use Monte Carlo’s Method to estimate Q function.

• But it takes \(\Omega(SA^h) \) sample trajectories.

• Can we do better?
Q-learning: Tabular learning

Q-function:

\[Q_\pi(s, a) = E_\pi \left[\sum_h \gamma^h r_h \mid s, a \right] \]

- Notice that Q function should satisfy the successor relationship;
- Bellman's Equation:
 - \(Q^*(s, a) = r(s, a) + \gamma E_\pi^* [V^*(s') \mid s, a] \)
 - \(V^*(s) = \max_a Q^*(s, a) \)

- Then we can solve it with polynomial samples!
Q-learning: Tabular learning

• First, initialize $Q(\cdot) = 0$;
• Then we do iterative DP:
 • Until convergency, do:
 • For $(s, a) \in S \times A$:
 • Update Q: $Q(s, a) \leftarrow \frac{1}{N_{s,a}} \sum_{s_i = s, a_i = a} (r_i + \gamma V(s_{i+1}))$
 • For $s \in S$:
 • Update V: $V(s) \leftarrow \max_a Q(s, a)$

Here $N_{s,a}$ is the counter of (s,a) in dataset.
Deep Q Network (DQN)

• When we combine Deep Learning with Q-learning, we get DQN.

• Reminder: function approximation
 • Structure/function class: MLP, CNN, Transformer, etc.
 • Solve the Bellman's Equation with gradient descent!
 • $Q^*(s, a) = r(s, a) + \gamma E_{\pi^*}[V^*(s') | s, a]$
 • $V^*(s) = \max_a Q^*(s, a)$

• Loss function:

$L(\theta) = E_\theta[(Q_\theta(s, a) - r(s, a) - \gamma E[V_\theta(s') | s, a])^2]$
Deep Q Network (DQN)

• Loss function:

\[L(\theta) = \mathbb{E}_\theta [(Q_\theta(s, a) - r(s, a) - \gamma \mathbb{E}[V_\theta(s') | s, a)]^2] \]

• Estimated loss:

\[\mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} [Q_\theta(s_i, a_i) - r_i - \gamma \max_{a'} Q_\theta(s_i', a')]^2 \]

• Other tricks:
 1. Double network trick for stronger stability;
 2. Replay buffer for higher sample efficiency.
DQN: double network structure

\[L(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left[Q_\theta(s_i, a_i) - r_i - \gamma \max_{a'} Q_\theta(s'_i, a') \right]^2 \]

- Evaluate network: trained network \(\theta \)
 - Updated in each iteration
 - The first Q is the evaluate network
- Target network: temporal copy of evaluate network \(\theta' \)
 - Updated at regular intervals
 - The second Q is fixed to be target network
- Avoid overfitting problem;
- Don’t need to solve a max problem in each iteration;
- Stabilize the training process.
DQN: experience replay

\[\mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} [Q_{\theta}(s_i, a_i) - r_i - \gamma \max_{a'} Q_{\theta}(s'_i, a')]^2 \]

• Problem: batch size is very small compared with the dataset
 • Each batch may only contain the transitions from a single trajectory
 • Not mutually independent!

• Notice that we only need transitions \(\{s_i, a_i, r_i, s'_i\} \), instead of complete trajectories.

• Solution: In each iteration, we randomly sample data from the replay buffer to form the training batch.

• The replay buffer can be the offline dataset, or the data collected with latest policy, which gives better sample efficiency.
Policy-Gradient

• Sometimes we don't want to estimate the Value function!
 • Value function approximation can be extremely tricky;
 • Empirical experiments tell us simpler algorithm leads to better performance;
 • We need to solve an argmax/max problem for each update, which can be very expensive.

\[\pi(s) \leftarrow \arg \max \left\{ \mathbb{E}_\pi \left[\sum_a \gamma^h r_h \mid s, a \right] \right\} \]

• Policy-Gradient(PG) directly optimize the policy!
• Directly approximate \(\pi^*(\cdot) \) with DNN.
 • Now we use \(\pi_\theta \) to denote the policy learnt.
• Denote the probability of getting a certain trajectory τ as $P(\tau, \theta)$, and the corresponding reward as $R(\tau)$.

$$P(\tau, \theta) = \prod_h \pi_\theta(a_h \mid s_h)$$

$$R(\tau) = \sum_h \gamma^h r_h$$

• Target: maximize $J(\theta) = E_{\pi_\theta} [\sum_h \gamma^h r_h] = \sum_h P(\tau, \theta) R(\tau)$

• Gradient ascent: $\theta \leftarrow \theta + \eta \nabla_\theta J(\theta)$

• Great so far!

• The problem lies in the estimation of $\nabla_\theta J(\theta)$.

Policy-Gradient
Policy-Gradient

- Target: maximize $J(\theta) = E_{\pi_{\theta}}[\sum_{h} \gamma^{h} r_{h}] = \sum_{h} P(\tau, \theta) R(\tau)$
- Gradient ascent: $\theta \leftarrow \theta + \eta \nabla_{\theta} J(\theta)$
- Directly calculation of the gradient of empirical reward gives:
 $$J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} R(\tau_{i}),$$
 $$\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \left[\frac{1}{N} \sum_{i=1}^{N} R(\tau_{i}) \right]?$$
- Remember that $R(\tau)$ doesn’t depend on θ directly:
 - $P(\tau, \theta) = \prod_{h} \pi_{\theta}(a_{h} \mid s_{h})$
 - $R(\tau) = \sum_{h} \gamma^{h} r_{h}$
• Target: maximize $J(\theta) = E_{\pi_\theta} \left[\sum_h \gamma^h r_h \right] = \sum_{\tau} P(\tau, \theta) R(\tau)$
• Directly calculation of the gradient of empirical reward gives:

$$J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} R(\tau_i),$$

$$\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \left[\frac{1}{N} \sum_{i=1}^{N} R(\tau_i) \right]$$

• Problem: We are not calculating the exact reward with probability, but with sampling!
 • Therefore, we cannot backpropagate the gradient to DNN;
 • (Sad news, can’t leave differential to loss.backward() this time)
Policy-Gradient

- Target: maximize $J(\theta) = E_{\pi_{\theta}} [\sum_h \gamma^h r_h] = \sum_h P(\tau, \theta)R(\tau)$

\[
\nabla_\theta J(\theta) = \sum_\tau \nabla_\theta P(\tau, \theta)R(\tau)
\]

\[
= \sum_\tau \frac{P(\tau, \theta)}{P(\tau, \theta)} \nabla_\theta P(\tau, \theta)R(\tau)
\]

\[
= \sum_\tau P(\tau, \theta) \frac{\nabla_\theta P(\tau, \theta)}{P(\tau, \theta)} R(\tau)
\]

\[
= \sum_\tau P(\tau, \theta) \nabla_\theta \log P(\tau, \theta) R(\tau)
\]

\[
= E_{\pi_{\theta}} [R(\tau) \nabla_\theta \log P(\tau, \theta)]
\]

- Good! The gradient can be also understood as an expectation!

- Therefore, the empirical update function is:

\[
\theta \leftarrow \theta + \frac{\eta}{N} \sum_{i=1}^{N} R(\tau_i) \nabla_\theta \log P(\tau_i, \theta)
\]
Language modeling: autoregressive conditional sequence modeling

- Predict next token (≈ word) with some probability
 \[P(\text{“you”}|[\text{“How”}, “”, “are”, “”}) \]

- **Autoregressive:** sample, and predict next
 \[P(\text{“?”}|[\text{“How”}, “”, “are”, “”, “you”}) \]

- Just like **policy** in RL!
 \[\pi(a_t|s_1, a_1, r_1, ..., s_t) \]
• Offline dataset:
 • Consider deterministic reward, finite horizon H, and discount $\gamma = 1$
 \[D = \left\{ \tau^i = (s_0^i, a_0^i, r_0^i; s_1^i, a_1^i, r_1^i; \ldots; s_H^i, a_H^i, r_H^i) \right\}_{i=1}^N \]

• Decision Transformers:
 • Return-to-go: $\hat{R}_t = \sum_{h=t}^{H} r_h$
 \[D = \left\{ \tau^i = (\hat{R}_0^i, s_0^i, a_0^i; \hat{R}_1^i, s_1^i, a_1^i; \ldots; \hat{R}_H^i, s_H^i, a_H^i) \right\}_{i=1}^N \]
Decision Transformers for Offline RL

• Decision Transformers:
 • Return-to-go (RTG): $\hat{R}_t = \sum_{h=t}^{H} r_h$
 \[D = \left\{ \tau^i = (\hat{R}^i_0, s^i_0, a^i_0; \hat{R}^i_1, s^i_1, a^i_1; \cdots; \hat{R}^i_H, s^i_H, a^i_H) \right\}_{i=1}^{N} \]
• Decision Transformers:
 • Return-to-go (RTG):
 \[\hat{R}_t = \sum_{h=t}^{H} r_h \]
 \[D = \{ \tau^i = (\hat{R}^i_0, s^i_0, a^i_0; \hat{R}^i_1, s^i_1, a^i_1; \ldots; \hat{R}^i_H, s^i_H, a^i_H) \}_{i=1}^N \]

```python
# main model
def DecisionTransformer(R, s, a, t):
    # compute embeddings for tokens
    pos_embedding = embed_t(t)  # per-timestep (note: not per-token)
    s_embedding = embed_s(s) + pos_embedding
    a_embedding = embed_a(a) + pos_embedding
    R_embedding = embed_R(R) + pos_embedding

    # interleave tokens as (R_1, s_1, a_1, ..., R_K, s_K)
    input_embeds = stack(R_embedding, s_embedding, a_embedding)

    # use transformer to get hidden states
    hidden_states = transformer(input_embeds=input_embeds)

    # select hidden states for action prediction tokens
    a_hidden = unstack(hidden_states).actions

    # predict action
    return pred_a(a_hidden)
```

self.embed_timestep = nn.Embedding(max_ep_len, hidden_size)
self.embed_return = torch.nn.Linear(1, hidden_size)
self.embed_state = torch.nn.Linear(self.state_dim, hidden_size)
self.embed_action = torch.nn.Linear(self.act_dim, hidden_size)
Training

• Minibatch of sequence with length K
 • Context length K: use previous K steps to predict next action
 • Slice τ^i into $\tau^i_{[\max\{j-K+1,1\}:j]}$ for $j = 1,2,...,H$

 \[
 \tau^i_{[l:r]} = (\hat{R}^i_l, s^i_l, a^i_l; ...; \hat{R}^i_r, s^i_r, a^i_r)
 \]

 \[
 \tilde{\tau}^i_{[l:r]} = (\hat{R}^i_l, s^i_l, a^i_l; ...; \hat{R}^i_r, s^i_r)
 \]
Training

• Loss function

 • **Cross-entropy loss** for discrete action space
 \[
 \mathcal{L}_{\text{decision}} = \sum_{i=1}^{N} \sum_{j=1}^{H} - \log \pi(a_j^i | \tilde{r}_{[\max\{j-K+1,1]\}:j})
 \]

 • **L2 loss** for continuous action space
 \[
 \mathcal{L}_{\text{decision}} = \sum_{i=1}^{N} \sum_{j=1}^{H} \mathbb{E}_{a \sim \pi(\cdot | \tilde{r}_{[\max\{j-K+1,1]\}:j})} (a_j^i - a)^2
 \]

 # training loop
 for (R, s, a, t) in dataloader: # dims: (batch_size, K, dim)
 a_preds = DecisionTransformer(R, s, a, t)
 loss = mean((a_preds - a)**2) # L2 loss for continuous actions
 optimizer.zero_grad(); loss.backward(); optimizer.step()
• Set an **initial RTG** (large enough)
• Run the DT and subtract the current return-to-go with the observed reward
• Crop the sequence to length K

```python
# evaluation loop
target_return = 1  # for instance, expert-level return
R, s, a, t, done = [target_return], [env.reset()], [], [1], False
while not done:  # autoregressive generation/sampling
    # sample next action
    action = DecisionTransformer(R, s, a, t)[-1]  # for cts actions
    new_s, r, done, _ = env.step(action)

    # append new tokens to sequence
    R = R + [R[-1] - r]  # decrement returns-to-go with reward
    s, a, t = s + [new_s], a + [action], t + [len(R)]
R, s, a, t = R[-K:], ...  # only keep context length of K
```
Results

- Possible to outperform the best trajectory in dataset
Results

Dataset	Environment	DT (Ours)	CQL	BEAR	BRAC-v	AWR	BC
Medium-Expert	HalfCheetah	86.8 ± 1.3	62.4	53.4	41.9	52.7	59.9
Medium-Expert	Hopper	107.6 ± 1.8	111.0	96.3	0.8	27.1	79.6
Medium-Expert	Walker	108.1 ± 0.2	98.7	40.1	81.6	53.8	36.6
Medium-Expert	Reacher	89.1 ± 1.3	30.6	-	-	-	73.3
Medium	HalfCheetah	42.6 ± 0.1	44.4	41.7	46.3	37.4	43.1
Medium	Hopper	67.6 ± 1.0	58.0	52.1	31.1	35.9	63.9
Medium	Walker	74.0 ± 1.4	79.2	59.1	81.1	17.4	77.3
Medium	Reacher	51.2 ± 3.4	26.0	-	-	-	48.9
Medium-Replay	HalfCheetah	36.6 ± 0.8	46.2	38.6	47.7	40.3	4.3
Medium-Replay	Hopper	82.7 ± 7.0	48.6	33.7	0.6	28.4	27.6
Medium-Replay	Walker	66.6 ± 3.0	26.7	19.2	0.9	15.5	36.9
Medium-Replay	Reacher	18.0 ± 2.4	19.0	-	-	-	5.4
Average (Without Reacher)		74.7	63.9	48.2	36.9	34.3	46.4
Average (All Settings)		69.2	54.2	-	-	-	47.7

- CQL: conservative Q-learning
- BEAR: off-policy Q-learning
- BRAC-v: behavior regularized offline RL
- AWR: advantage-weighted regression
- BC: behavior cloning
Pretraining DTs on Language Tasks

- Use a pretrained language model (GPT2) as initialization
Pretraining DTs on Language Tasks

- Use MLP for embedding

\[
\begin{align*}
 & u(x_t) = W_x^{(1)} \text{GELU}(W_x^{(0)} x_t) + \omega(t), x \in \{\hat{R}, s, a\} \\
 & \text{GELU}(x) = xP(X \leq x) = x\Phi(x) = x \cdot \frac{1}{2} \left[1 + \text{erf}(x/\sqrt{2}) \right] \\
 & X \sim \mathcal{N}(\mu = 0, \sigma^2 = 1)
\end{align*}
\]
Pretraining DTs on Language Tasks

• Parameter Efficient Finetuning (PEFT): Low-rank Adaptation (LoRA)
 • High efficiency
 • Avoid overfitting in full finetuning
Pretraining DTs on Language Tasks

- Language prediction as an auxiliary objective
 - WikiText dataset
 - $\mathcal{L}_{\text{language}} = \sum_i -\log T(w_{i+1}|w_1, ..., w_i)$
 - $\mathcal{L} = \mathcal{L}_{\text{decision}} + \lambda \mathcal{L}_{\text{language}}$
Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems* 30 (2017).

Chen, Lili, et al. "Decision transformer: Reinforcement learning via sequence modeling." *Advances in neural information processing systems* 34 (2021): 15084-15097.

Zheng, Qinqing, Amy Zhang, and Aditya Grover. "Online decision transformer." *International Conference on Machine Learning*. PMLR, 2022.

Shi, Ruizhe, et al. "Unleashing the Power of Pre-trained Language Models for Offline Reinforcement Learning." *arXiv preprint arXiv:2310.20587* (2023).

Brandfonbrener, David, et al. "When does return-conditioned supervised learning work for offline reinforcement learning?" *Advances in Neural Information Processing Systems* 35 (2022): 1542-1553.

Zhou, Zhaoyi, et al. "Free from Bellman Completeness: Trajectory Stitching via Model-based Return-conditioned Supervised Learning." *arXiv preprint arXiv:2310.19308* (2023).