Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases

Ferenc Sipos, Gábor Firneisz, Györgyi Műzes

Ferenc Sipos, Gábor Firneisz, Györgyi Műzes, 2nd Department of Internal Medicine, Semmelweis University, H-1088 Budapest, Hungary

Author contributions: Sipos F, Firneisz G and Műzes G contributed to the writing, editing and revising of this paper.

Conflict-of-interest statement: All authors declare no conflict of interest.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Ferenc Sipos, MD, PhD, 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi Street 46., H-1088 Budapest, Hungary. dr.siposf@gmail.com
Telephone: +36-1-2660926
Fax: +36-1-2660816

Received: July 7, 2016
Peer-review started: July 11, 2016
First decision: July 29, 2016
Revised: August 4, 2016
Accepted: August 23, 2016
Article in press: August 23, 2016
Published online: September 21, 2016

Abstract

Colonic inflammation is required to heal infections, wounds, and maintain tissue homeostasis. As the seventh hallmark of cancer, however, it may affect all phases of tumor development, including tumor initiation, promotion, invasion and metastatic dissemination, and also evasion immune surveillance. Inflammation acts as a cellular stressor and may trigger DNA damage or genetic instability, and, further, chronic inflammation can provoke genetic mutations and epigenetic mechanisms that promote malignant cell transformation. Both sporadical and colitis-associated colorectal carcinogenesis are multi-step, complex processes arising from the uncontrolled proliferation and spreading of malignantly transformed cell clones with the obvious ability to evade the host's protective immunity. In cells upon DNA damage several proto-oncogenes, including c-MYC are activated in parallel with the inactivation of tumor suppressor genes. The target genes of the c-MYC protein participate in different cellular functions, including cell cycle, survival, protein synthesis, cell adhesion, and microRNA expression. The transcriptional program regulated by c-MYC is context dependent, therefore the final cellular response to elevated c-MYC levels may range from increased proliferation to augmented apoptosis. Considering physiological intestinal homeostasis, c-MYC displays a fundamental role in the regulation of cell proliferation and crypt cell number. However, c-MYC gene is frequently deregulated in inflammation, and overexpressed in both sporadic and colitis-associated colon adenocarcinomas. Recent results demonstrated that endogenous c-MYC is essential for efficient induction of p53-dependent apoptosis following DNA damage, but c-MYC function is also involved in and regulated by autophagy-related mechanisms, while its expression is affected by DNA-methylation, or histone acetylation. Molecules directly targeting c-MYC, or agents acting on other genes involved in the c-MYC pathway could be selected for combined regiments. However, due to its context-dependent cellular function, it is clinically essential to consider which cytotoxic drugs are used in combination with c-MYC targeted agents in various tissues. Increasing our knowledge about MYC-dependent pathways might provide direction to novel anti-inflammatory and colorectal cancer therapies.
Key words: c-MYC; Therapy; Apoptosis; Autophagy; Colon; Inflammation; Colorectal cancer

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The c-MYC gene is frequently deregulated in colonic inflammation, and overexpressed in both sporadic and colitis-associated colon adenocarcinomas. Endogenous c-MYC is essential for efficient induction of p53-dependent apoptosis following DNA damage, moreover its function is also involved in and regulated by autophagy-related mechanisms, and its expression is affected by DNA-methylation, or histone acetylation. Increasing our knowledge about MYC-dependent pathways might provide direction to novel colonic anti-inflammatory and anti-cancer strategies.

Sipos F, Firneisz G, Műzes G. Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases. *World J Gastroenterol* 2016; 22(35): 7938-7950 Available from: URL: http://www.wjgnet.com/1007-9327/full/v22/i35/7938.htm DOI: http://dx.doi.org/10.3748/wjg.v22.i35.7938

INTRODUCTION

Chronic, non-inflammatory inflammatory and cancerous colonic diseases currently represent a major threat to human health worldwide. Inflammation is required to fight microbial infections, heal wounds, and maintain tissue homeostasis, however, it could lead to cancer. As the seventh hallmark of cancer it may affect all phases of tumor development, including tumor initiation, promotion, invasion and metastatic dissemination, and also evasion immune surveillance[1]. Inflammation acts as a cellular stressor and may trigger DNA damage or genetic instability, and, further, chronic inflammation can provoke genetic mutations and epigenetic mechanisms that promote malignant cell transformation[2]. Both sporadic and colitis-associated colorectal carcinogenesis are multistep, complex processes arising from the uncontrolled proliferation and spreading of malignantly transformed cell clones with the obvious ability to evade the host’ s protective immunity[3,4]. Therefore to develop more effective therapeutic strategies for colorectal cancer (CRC) it is quite challenging due to its heterogeneity and phenotypic diversity.

The MYC-family of cellular proto-oncogenes encodes three highly related nuclear phosphoproteins, namely c-MYC, N-MYC, and L-MYC[5]. c-MYC is a basic-helix-loop-helix-leucine zipper protein with a proto-oncogene function, being involved in cell proliferation, transformation, and death[6]. Data from chromatin immunoprecipitation studies demonstrate that c-MYC protein occupies regulatory regions of up to 15% of all genes, and can both activate or repress the expression of several target genes[7,8] (Figure 1A). The target genes of c-MYC participate in different cellular functions, including cell cycle, survival, protein synthesis, cell adhesion, and microRNA (miRNA) expression[7] (Figure 1B). The transcriptional program regulated by c-MYC is context dependent, therefore the final cellular response to elevated c-MYC levels may range from raised proliferation to augmented apoptosis[7]. In the absence of c-MYC cell cycle kinetics is strongly reduced[9].

As a result of synergistic or sequential damage of DNA in normal colonic epithelial cells, several proto-oncogenes, including c-MYC are activated in parallel with the inactivation of tumor suppressor genes, leading finally to the alteration of DNA repair systems and apoptosis regulation. Accumulation of the damaged DNA may ultimately cause cellular transformation. In this article we try to summarize the complex interactions of c-MYC-signaling within physiological intestinal epithelial homeostasis, inflammatory and cancerous colonic diseases, and the related therapeutic aspects.

CONTROL AND EFFECTS OF MYC GENE EXPRESSION

During recent years, several basic cellular functions of MYC have been established[10]. MYC plays a master regulator role of cell growth and proliferation, and it also controls stemness by maintaining pluripotency and self-renewal. On the other hand, MYC can sensitize cells to apoptosis, regulate cellular senescence, and is involved in DNA damage responses[10].

As a central, dual-faced regulator gene, MYC is controlled by several different mechanisms. Growth factor-dependent signals have been identified to control MYC expression. Growth factors like Ets-1 or E2F1 enhance transcription from the MYC promoter[11]. The β-catenin/TCF site also mediates the induction of the MYC promoter in regards to the Wingless type (Wnt)-signaling pathway[12]. Additionally, growth factor-dependent pulse of phosphoinositol (PI)3-kinase protects c-MYC protein from proteosomal degradation[13]. In contrast, the Smad and E2F4 containing repressor complex which forms on the MYC promoter after transforming growth factor (TGF)-β stimulus suppresses MYC expression and enhances the anti-proliferative effects of TGF-β[14,15].

Elevated levels of c-MYC protein strongly sensitize epithelial cells toward proapoptotic stimuli like DNA damage[16]. As a result, downregulation of c-MYC is necessary for cell cycle arrest, and survival of cells in response to DNA damage[17]. Since in the presence of strong mitogenic signals the downregulation of MYC-expression is required for proto-oncogene-induced cellular senescence[18], c-MYC may be involved in tumor-suppressive mechanisms as well. In case of epithelial and mesenchymal stem cells, however, MYC-

http://www.wjgnet.com/1007-9327/full/v22/i35/7938.htm
expression can be restricted even in the presence of several growth factors and cytokines[19]. These observations indicate that MYC-expression plays a dual-faced role regarding cellular survival and tissue homeostasis.

In physiological circumstances, negative feedback regulatory loops also play an important role in decreasing cellular c-MYC levels[20]. Negative feedback regulation is frequently disturbed in the course of tumorigenic transformation, permitting transformed cells to overexpress MYC[20]. Epigenetic factors, such as miRNAs, are also involved in downregulation of MYC in response to DNA damaging agents[17]. Regarding the colon, the protein kinase MK5 have been also identified as a negative regulator of MYC expression[15]. Expression of MK5 itself is regulated by MYC, since MYC binds to the promoter of the MK5 gene, therefore activates its expression. As a result, MYC and MK5 form a negative feedback loop, in which FoxO proteins have been identified as key mediators[15].

c-MYC IN PHYSIOLOGICAL INTESTINAL HOMEOSTASIS

Considering intestinal homeostasis, c-MYC expressed in the entire intestinal tract displays a fundamental role[21]. In the small intestine c-MYC regulates the appropriate number of epithelial cells within the crypts[9]. Muncan et al[9] reported that upon conditional deletion of c-MYC gene crypt epithelial cells become smaller as compared to normal ones. Moreover, in the absence of c-MYC protein epithelial cell proliferation became reduced[9]. On the other hand, it was unexpectedly found in mice that conditional deletion of c-Myc in adult intestinal epithelium by utilizing a Cre-estrogen receptor fusion transgene driven by the intestine-specific villin promoter did not induce an overt phenotype[22]. According to this result the proliferation and expansion of intestinal epithelial progenitors can occur in a Myc-independent manner, as well. The difference between the studies of Muncan et al[9] and Bettess et al[22] most likely relates to deletion efficiency accomplished with the different Cre transgenes in the earliest crypt progenitors. Regarding apoptotic cell death, c-MYC does not influence epithelial apoptotic rate in the small intestine, it induces apoptosis only in the colon[9,21].

In the intestine cell proliferation and differentiation are under the tight control of the Wnt/\(\beta\)-catenin signaling[24]. In mice c-MYC is a critical downstream effector of cellular proliferation induced by the Wnt/\(\beta\)-catenin pathway[25,26]. Following epithelial injury,
the c-Myc 3’Wnt responsive DNA elements (WRE)-dependent regulation of the expression of the c-Myc gene seems to be essential for maintaining intestinal homeostasis and regeneration[27].

In colonic epithelial cells, c-MYC-induced apoptosis can be either p53-dependent or independent[28-30]. Basically, in cells the level of p53 expression is low, but its expression is elevated upon stress responses[31,32]. By promoting proteosome degradation mouse double minute (Mdm)-2 is a negative regulator of the p53 protein[33]. As a regulatory loop, p53 transcriptionally upregulates Mdm2[33]. Alternative reading frame (Arf) also has a role in this regulatory mechanism, since it inhibits the function of Mdm2 and c-MYC[33,34]. By increasing Arf expression, c-MYC protein displays a prominent role in p53 regulation leading finally to p53-dependent apoptosis[35]. The crosstalk between c-MYC and p53 is essential in inducing pro-survival or pro-death responses to apoptotic stimuli.

Upon modulating apoptotic signals c-MYC is able to regulate intrinsic apoptosis independently from p53, as well[36,37]. c-MYC can also alter the balance between the pro- and antiapoptotic members of the Bcl2 (B-cell/lymphoma 2)-family[16,38]. Bcl2 can inhibit c-MYC mediated apoptosis, however, on the other hand, c-MYC overexpression suppresses the antiapoptotic Bcl2 protein and mRNA levels[39]. To suppress the antiapoptotic Bcl2 expression the DNA-binding activity of c-MYC is required[40]. In mice, c-MYC may induce apoptosis via the activation of the proapoptotic protein, Bax[41]. c-MYC also participates in the extrinsic apoptotic pathways[38,42,43]. Therefore, it is difficult to predict which c-MYC target genes are responsible for the final biological effects. It is likely that the current status of cell physiology ultimately influences the outcome of c-MYC overexpression, and affects c-MYC regulating the apoptotic process in colonic epithelial cells.

c-MYC IN COLONIC INFLAMMATION

As a hallmark of cancer, inflammation may lead to tumor formation. Acute and chronic colonic inflammation disrupts the integrity of the epithelial layer, moreover can lead to regenerative cell proliferation, and even fibrosis. In animal colitis models the use of glycogen synthase kinase (GSK)3β inhibitors mitigated disease symptoms by reducing pro-inflammatory immune response[44]. It has been shown, that during the recovery phase of dextran sulfate sodium (DSS)-induced colitis GSK3β inhibition by lithium chloride promotes colonic regeneration. The explanation of this effect is that lithium treatment increased the expression of Myc transcripts, MYC proteins, and the expression of several Wnt/MYC target genes in the colonic epithelium[45].

Additionally, in humans the steady-state levels of several nuclear proto-oncogenes including c-MYC and N-MYC were demonstrated to be lower in epithelial cells from involved or uninvolved inflammatory disease bowel (IBD) samples than in normal epithelial cells from either sporadic colon cancer or diverticulitis patients[46]. In active inflammation the downexpression of c-MYC in IBD epithelium may result in attenuated cell proliferation, therefore may contribute to mucosal ulceration. On the other hand, c-MYC may also be involved in epithelial regeneration after inflammatory damage by altering apoptotic cell death.

It is a known fact, that patients with chronic, longstanding IBD have an increased risk for developing colitis-associated cancer (CAC). By using whole-exome sequencing analysis it has been recently demonstrated that -among others- the MYC genomic locus is more frequently amplified in CAC than sporadic colorectal cancers[47]. Moreover, genomic alterations observed in CAC are distinct form those found in sporadic CRCs, and vary by type of IBD[48]. Proteomic network analyses have identified proteins related to mitochondria, oxidative activity, calcium-binding proteins, and c-MYC that play roles in early and late stage colitis-associated neoplastic progression, respectively[49]. c-MYC is often overexpressed in dysplastic cells in chronic longstanding ulcerative colitis, the precursor to CAC[50,51]. Taking together these data, it seems that the complex role and final effects of c-MYC in inflammatory colon mucosa are context- and microenvironment dependent.

c-MYC IN COLORECTAL CANCER

The c-MYC oncogene is frequently deregulated in human cancers and is overexpressed in up to 70%-80% of colon adenocarcinomas[52]. Since c-MYC is a downstream target of the APC (adenomatous polyposis coli) gene, and APC itself is inactivated in most colorectal cancers[53], it is not surprising that in early and advanced stages of colorectal carcinogenesis c-MYC is overexpressed at both the mRNA and protein levels[54,55].

The imbalance of cell proliferation and apoptosis is a key component in initiation of colorectal tumorigenesis. Basically, overexpression of c-MYC could lead to apoptosis[38], indicating its crucial role for determining cell survival and/or apoptotic pathways[36]. Under pathological conditions deregulated Wnt/β-catenin signaling promotes CRC by activating the expression of c-MYC[56]. Moreover, c-MYC-triggered apoptosis provides an inherent “fail-safe” program to check unlimited cell growth. The extent of apoptotic cell death is in correlation with the level of c-MYC expression[57].

In case of early to late colorectal adenomas significant correlation of nuclear β-catenin and c-MYC nuclear expression was found with the size of colon adenomas, but not with their cellular proliferative activity[38]. This phenomenon implies a dose-dependent function of β-catenin. Without nuclear β-catenin, T-cell factor family (TCF) proteins are bound by a co-
repressor, and this complex acts as transcriptional repressor of the target genes. DNA damage sensing proteins (e.g., ATM, H2AX) compete with the co-repressor for TCF binding in a dose-dependent manner. In colorectal cancer cells the disruption of β-catenin/TCF-4 activity induces a rapid G1 arrest and blocks the physiologically active genetic program in the proliferative compartment of colonic crypts. Simultaneously, an intestinal differentiation program is induced, in which c-MYC plays a switch role by direct repression of the p21CIP1/WAF1 promoter. Following disruption of β-catenin/TCF-4 activity, the decreased expression of c-MYC results in p21CIP1/WAF1 transcription, which in turn mediates G1 arrest and differentiation.

Figure 2 Schematic illustration of the relation of c-MYC to p53 following DNA damage in the intestine.

Though several in vitro studies proved that c-MYC has the ability to sensitize or induce apoptosis, its role in apoptotic cell-death is not well established and unclear in vivo. In a recent article, Phesse et al demonstrated for the first time in an in vivo model that endogenous c-MYC is essential for efficient induction of p53-dependent apoptosis following DNA damage. It has been long known that p53 serves a key element in the development of sporadic colorectal cancer, and further, it is also involved in colitis-associated carcinogenesis. Until now, in the gut c-MYC was considered as a fundamentally expressed gene responsible for epithelial regeneration and the regulation of the number of crypt cells. Phesse et al concluded that c-MYC serves as a universal regulator of apoptosis in vivo systems suggesting an important and new aspect of colorectal carcinogenesis (Figure 2). On the other hand, the exact mechanisms linking c-MYC levels to Mdm2 expression still remain unclear. In accordance with recent results, one can speculate that c-MYC may directly inhibit Mdm2 transcription. The induction of the c-MYC-dependent apoptosis program requires c-MYC expression to exceed a threshold, which is defined by Bcl2 family proteins in a cell-, tissue type and milieu-specific fashion. In the colon, however, the different behaviour of the apoptosis regulator Bax, controlled by c-MYC may suggest the existence of a different apoptotic program of epithelial cells.

A recent report has demonstrated a role of AMBRA1 (activating molecule in Beclin-1 regulated autophagy) in both the autophagic pro-survival response and Beclin-1-dependent autophagy in embryonic stem cells. AMBRA1 has been shown to be a crucial regulator of autophagy and apoptosis in colorectal cancer cells that maintains the balance between these cellular mechanisms. AMBRA1 promoted dephosphorylation and degradation of c-MYC, and favors the interaction between c-MYC and PP2A (a c-MYC phosphatase), leading finally reduced cell division rate. AMBRA1 has been recently characterized as a target of mTOR (mammalian target of rapamycin) in the autophagy process. Furthermore, the AMBRA1/PP2A-mediated regulation of c-MYC is also under mTOR control, indicating the key role of mTOR in regulating cellular fate by interfering with its metabolic status (Figure 3).

The MKS kinase regulates the translation of c-MYC, since it is required for the expression of miR-34b/c that bind to the 3’UTR of MYC. The MKS-MYC negative regulatory feedback loop has been found to be disrupted during colorectal tumorigenesis. Two changes may explain the disruption of this regulatory circuit. First, silencing of the miR-34b/c gene promoters by DNA methylation. Second, the expression of MKS is downregulated in colorectal tumors by a currently unknown mechanism. Depletion of MKS regulates Ephrin B1, a MYC-repressed gene that is involved in the progression of p53-deficient colorectal tumors.

ANTI-INFLAMMATORY THERAPEUTIC ASPECTS OF c-MYC IN THE COLON

Mesenchymal stem cell transplantation (MSCT) has been reported effective in the treatment of IBD as it can restore epithelial barrier integrity, induce immune suppression, and stimulate regeneration of endogenous host progenitor cells. Mesenchymal stem cells can be engrafted into the damaged mucosa and even differentiated into colonic interstitial cells. The pathobiologic background of this reparative process, however, is not well known. In an IBD-MSCT rat model, when intestinal epithelium was inflamed, the canonical Wnt signaling was found to be activated by Wnt3a and inhibited by GSK-3β and APC. Shortly after MSCT, the elevated c-Myc and downregulated APC gene expressions facilitate mesenchymal stem cell proliferation, and then differentiation into intestinal epithelial cells in the anaphase, by reducing the expression of c-Myc. These changes promoted intestinal stem cell proliferation and repaired the intestinal mucosa. Though, MSCT is a useful therapeutic possibility in IBD models, the parallel use of GSK3β inhibitors after MSCT may be therapeutically useful to enhance MYC-signaling, hence promoting regenerative cell proliferation.

Traditionally, the pathomechanism of Crohn’s...
Potential pathways/agents

26S proteasomal pathway (aspirin)

AMBRA1 links autophagy to cell proliferation by facilitating c-MYC demolition. AMBRA1 promotes c-MYC phosphorylation and proteasomal degradation, therefore prevents hyperproliferation and tumorigenesis. mTORC1 negatively controls the function of AMBRA1, thus finally supporting c-MYC-driven cell proliferation. Arrows represent stimulation or increase; blocked arrows represent inhibition; broken lines represent indirect effects. AMBRA1: Activating molecule in Beclin-1 regulated autophagy; mTORC1: Mammalian target of rapamycin complex 1; PP2A: Protein phosphatase 2A.

Figure 3 Interplay of AMBRA1, c-MYC and mTOR in colorectal cancer cells. AMBRA1 links autophagy to cell proliferation by facilitating c-MYC demolition. AMBRA1 promotes c-MYC phosphorylation and proteasomal degradation, therefore prevents hyperproliferation and tumorigenesis. mTORC1 negatively controls the function of AMBRA1, thus finally supporting c-MYC-driven cell proliferation. Arrows represent stimulation or increase; blocked arrows represent inhibition; broken lines represent indirect effects. AMBRA1: Activating molecule in Beclin-1 regulated autophagy; mTORC1: Mammalian target of rapamycin complex 1; PP2A: Protein phosphatase 2A.

Table 1 Therapeutic options based on c-MYC targeting are represented by various strategies in inflammatory and cancerous colonic disorders

Main mode of action	Potential pathways/agents
Inflammatory colonic disorders	
Upregulation of c-MYC expression	GSK inhibitors ± MSCT
Inhibition of c-MYC signaling (suppression of Th1 function)	BET inhibitors ± c-MYC inhibitors
Cancerous colonic diseases	
Downregulation of c-MYC expression	
	dose-dependent gene and protein expression suppression; PPAR-γ (5-ASA, mesalazine)
	suppressing protein expression by UDCA
	crosstalk with integrins
	E2F1 inhibition (downregulating GCN5 expression)
	FGFR kinase inhibition
	epigenetic regulation by miR-320b
	siRNAs blocking of ABC-transporters
	IncRNAs (blocking of PARROT or CCAT1-L)
	siRNAs using PEI-PGMA platform
	modified ODC promoter
Promoting c-MYC degradation	26S proteasomal pathway (aspirin)
	SIRT2 inhibition
Inhibition of c-MYC signaling	
	Omomyc
	BET (+ Wnt/MAPK) inhibitors

GSK: Glycogen synthase kinase; MSCT: Mesenchymal stem cell transplantation; PPAR-γ: Peroxisome proliferator-activated receptor-γ; 5-ASA: 5-aminosalicylate; UDCA: Ursodeoxycholic acid; E2F1: E2F transcription factor 1; GCN5: Histone acetyltransferase; FGFR: Fibroblast growth factor receptor; miR-320b: Micro-ribonucleic acid-320b; siRNA: Small interfering ribonucleic acid; ABC: Adenosine triphosphate-binding cassette; IncRNA: Long noncoding ribonucleic acid; PARROT: Proliferation associated RNA and regulator of translation; CCAT1-L: Longer isoform of colon cancer associated transcript 1; PEI-PGMA: Polyethileneimine-polyglycidal methacrylate; ODC: Ornithine decarboxylase; SIRT2: Sirtuin2; BET: Bromo- and extra-terminal domain; MAPK: Mitogen-activated protein kinase.

Table 1 Therapeutic options based on c-MYC targeting are represented by various strategies in inflammatory and cancerous colonic disorders

Cancer cells have been reported to display cell cycle arrest, differentiation, senescence or cell death after MYC inhibition via different molecular mechanisms (Table 1).

ANTI-CANCER THERAPEUTIC ASPECTS OF c-MYC IN THE COLON

Cancer cells have been reported to display cell cycle arrest, differentiation, senescence or cell death after MYC inhibition via different molecular mechanisms (Table 1).

5-aminosalicylic acid has been identified as an agonist of peroxisome proliferator-activated receptor (PPAR)-γ[81]. Activation of PPAR-γ induces apoptosis by downregulating c-MYC[82,83]. Regrading aspirin the involvement of the 26S proteasomal pathway has been found in decreasing c-MYC expression in a concentration-dependent fashion[84]. Due to its oncogenic activities including cell growth, proliferation, angiogenesis, genomic instability and blocking differentiation, the downregulation of c-MYC would be expected to have important clinical implications[85].

Ursodeoxycholic acid (UDCA) displays chemopreventive action against chemical and colitis-associated colonic carcinogenesis[86]. One possible explanation of this effect is the inhibition of cell proliferation by suppressing c-MYC protein expression and, as a consequence, cell cycle regulatory molecules including cyclin-dependent kinase-4 and -6[86]. According to this result, c-MYC is a target molecule of UDCA in colon carcinoma cells. However, mapping the benefits of UDCA administration for CRC chemoprevention at population level needs further studies.

Integrins, containing noncovalently associated α/β heterodimers provide dynamic cell to cell linkage and cell attachment to matrix molecules. While in normal human intestinal epithelium α1/11 integrins are usually expressed in the lower third of crypts[87],

disease has been associated with Th1 cytokine profile. In an experimental autoimmune inflammation model it was demonstrated that inhibiting the functions of BET (bromo and extra-terminal domain)-family proteins during early T-cell differentiation resulted in long-lasting suppression of the pro-inflammatory functions of Th1 cells[80]. These effects were mimicked by an inhibitor of c-MYC function, as well, implicating reduced expression of c-Myc as one avenue by which BET-inhibitors suppressed the inflammatory functions of T-cells. Hypothetically, BET and c-MYC inhibition may have therapeutic potential in Crohn’s disease (Table 1).
in colorectal cancers and colon cancer cell lines integrin-α1 is expressed up to 65% of cases. c-MYC regulates several integrin subunits, thus influences various functions of integrins regarding colon cancer cell proliferation, migration, and survival. A combination of anti-MYC and -integrin targeted therapies hence may represent novel aspects of anti-tumor strategies in colon cancers.

Ablation kinase activation originated from mutation, amplification, or translocation can drive growth and survival in several human cancers. In gastric cancer, the crosstalk between fibroblast growth factor receptor (FGFR2) and CD44 has been found to maintain cancer stemness by reciprocally regulating their expression via differentially regulating c-MYC transcription. Since FGFR2 has been found to be amplified in the NCI-H716 colorectal cancer cell line, this result suggests that emerging FGFR inhibitor therapeutics may have efficacy in a subset of colon cancer driven by FGFR2 amplification.

It has been shown that the inhibition of BET protein family impairs the proliferation of several cancer cell lines. These effects are partly mediated by c-MYC repression. In a recent study of Tögel et al. the authors investigated the effect of BET inhibitors on proliferation and c-MYC expression within 20 CRC cell lines. They have found that JQ1, a BET inhibitor, administered together with Wnt or MAPK inhibitors sufficiently downregulates the expression of c-MYC, thus inhibits CRC cell proliferation. Based on these results, this kind of combined therapy seems to be effective in CRC treatment.

Upon recent results, targeting c-MYC can also be considered as a promising anti-cancer therapeutic strategy. c-MYC inhibition with a protein fragment called Omomyc has been shown to be very effective to repress epithelial cell-derived tumors in mice models. Omomyc has been found to be a pan-MYC family (c-, N- and L-MYC) inhibitor, potentially useful for cancers carrying any MYC family member amplification.

In case of cancers in which cell growth is not dependent on amplified MYC family genes, MYC suppression alone is not enough for a sufficient therapeutic effect. In animal models of Myc-driven cancers, reversion of the tumor by Myc suppression has been impeded by the parallel repression of TP53 or retinoblastoma-1 proteins underlining the relevance of these pathways to be intact for the treatment of cancers by MYC targeting.

Using a focused RNA interference library for genes involved in epigenetic regulation, sirtuin2 (SIRT2), an NAD(+)-dependent deacetylase, has been identified as a modulator of the therapy response to EGFR inhibitors in colon and lung cancers. Thiomirystoyl lysine compound (TM), a SIRT2 inhibitor with high potency and specificity, has broad anti-cancer activity. SIRT2 inhibition was found to promote c-MYC ubiquitination and degradation, hence it may be a potential target for c-MYC-driven cancers including colorectal carcinoma.

Recent studies have suggested that the elevated expression of general control nonrepressed protein 5 (GCN5), a histone acetyltransferase can often be detected in human cancers. GCN5 expression is elevated in colon cancer, and its overexpression is regulated by c-MYC. By suppressing GCN5 human colon cancer cell growth can be inhibited. Furthermore, the suppression of the proapoptotic transcription factor EZF1-induced GCN5 transcription facilitates EZF1-induced cell death, implying a negative feedback in apoptosis regulation. According to these results, GCN5 seems to be a potential therapeutic target for human colon cancers.

Regarding transcription factor-based therapies of tumorous diseases inhibition of c-MYC may also represent a promising option. Numerous cytotoxic agents, and ionizing radiation have been shown to induce apoptosis following DNA damage. Since most of the anti-cancer drugs are used in combination with the potential of genotoxicity, it is of importance to further assess the role of c-MYC in response to DNA damage.

Therapeutic approaches that would allow the reprogramming and returning of altered c-MYC activity within tumor cells are also promising therapeutic strategies. RNA interference technology is one of these modalities. MiRNAs are key post-transcriptional regulators of genetic networks. Single-stranded mature miRNAs associated with Argonaute proteins form the core of a gene regulatory complex (i.e. RNA-induced silencing complex (RISC)). MiRNA-RISC-mediated gene inhibition can be materialized by three processes: (1) site-specific cleavage; (2) enhanced mRNA degradation; and (3) translational inhibition. Evidences indicate that post-transcriptional miRNA-mediated gene expression regulation can act as tumor suppressor or onogene in CRC. Currently, miR-320b has been found to be significantly down-regulated in CRC tumor tissues. In addition, miR-320b overexpression has been found to correlate with decreased cell growth both in vitro and in vivo. Moreover, it has been also demonstrated that miR320b directly targets c-MYC, and its overexpression in SW-480, SW-620, HCT-116, LoVo, and HK293 CRC cell lines decreases c-MYC expression at gene and protein level as well. According to these results, increasing miR-320b gene expression may represent a potential therapeutic approach in CRC.

Colorectal cancer stem cells (CSCs) has an important role in tumor initiation, progression, and recurrence. c-MYC was found to be highly expressed in CD133+ colon CSCs. The overexpression of ATP-binding cassette (ABC) transporters in cancer cells can result in therapy resistance by exporting anti-tumor drugs. Recently, c-MYC expression has been effectively blocked on mRNA and protein level by c-MYC small interfering RNA (siRNA), moreover c-MYC...
silencing sensitized CD133+ CSCs to chemotherapy-induced cytotoxicity by downregulating the expression of ABC transporter proteins\(^{[120]}\). In eukaryotic cells a vast number of noncoding RNA species are transcribed. Among them, long noncoding RNAs (lncRNAs) have been widely implicated in post-transcriptional gene expression regulation. The expression level of lncRNAs is usually very low and tissue-specific\(^{[123]}\). c-MYC can regulate the expression of lncRNAs, some of these may also contribute to the transcription of c-MYC target genes\(^{[122]}\). It has been reported that proliferation associated RNA and regulator of translation (PARROT), an lncRNA dynamically expressed in both transformed and normal cells contributes to proliferation in senescence and cancer. PARROT has been also identified as an upstream regulator of c-MYC. Its depletion results in the depletion of c-MYC mRNA and protein expression, subsequently altering cell growth and proliferation\(^{[121]}\).

In gastric cancer c-MYC activates the expression of colon cancer associated transcript 1 (CCAT1) lncRNA, leading to an increased proliferation and migration of cancer cells\(^{[123]}\). CCAT1-L, a longer isoform of CCAT1, has been reported to regulate MYC expression in colon cancer. It is supposed that CCAT1-L allows the interaction between the enhancer and the c-MYC promoter thus promotes tumorigenesis\(^{[124]}\).

Achieving effective intracellular delivery of therapeutic RNA interfering molecules such as siRNAs or short hairpin RNAs (shRNAs) is quite challenging. In a recent study, spherical nucleic acid-gold nanoparticle conjugates have been shown to selectively induce apoptosis in glioma cells \(in vivo\)^{[125]}. However, the used 21 base siRNA duplexes were quite unstable. ShRNAs with a transient period of expression are better suited for long-term effectiveness, due to their ability to produce siRNAs continuously within cancer cells, thus resulting in prolonged suppression of target genes\(^{[126]}\). Until today, shRNAs have been delivered effectively \(in vivo\) using viral vectors. Among nonviral vectors, polyethylenimine (PEI) is the most widely used, gold-standard agent\(^{[127]}\). However, the major disadvantage of PEI is its cytotoxicity\(^{[128]}\). On the other hand, it has been demonstrated that anchoring multiple PEI chains to macromolecule polyglycidal methacrylate (PGMA) nanoparticles dramatically reduces their cytotoxicity, while achieving efficient nanoparticle endocytosis\(^{[129]}\).

Using the PGMA platform effective delivery of small oligos (anti-miRs and mimics) and larger encoding shRNAs were performed in a wide variety of cancer cell lines including colorectal ones. Furthermore, the effectiveness of this therapy was validated for \(in vivo\) tumor suppression using transgenic mouse models. It was found that oral delivery of the c-Myc-conjugated nanoparticles to an Apc-deficient crypt progenitor colon cancer model resulted in an increased host survival and re-entered intestinal tissue to a non-Wnt-deregulated state\(^{[126]}\). According to these results, it seems that careful design of nonviral nanoparticles may help to made RNA interference technology an affordable and amenable therapy for CRC.

Regarding tumor-specific cytotoxicity, viral-directed enzyme prodrug therapy may also represent an ideal alternative\(^{[130]}\). However, the viruses used to deliver cDNAs encoding prodrug-activating enzymes can transduce normal cells, not just tumor cells. To achieve tumor-specific expression of the delivered cDNAs is to regulate transcription of the prodrug-activating enzyme with a promoter that is preferentially activated by tumor cells. MYC-responsive, modified ornithine decarboxylase (ODC) promoter/enhancer sequences have been identified that upregulate target protein expression in SW480 an HT29 colon cancer cells overexpressing the c-MYC protein. The modified ODC promoter may be useful in achieving tissue-specific expression of target proteins in cancers overexpress c-MYC\(^{[131]}\).

CONCLUSION

The incidence of inflammatory colonic disorders is increasing worldwide. Though inflammation is required to heal infections, wounds, and maintain tissue homeostasis, as the seventh hallmark of cancer, however, it may affect all stages of tumor development. c-MYC, with its dual-faced role in cell proliferation and death, is implicated in several aspects of inflammatory tissue damage and repair. Since the therapeutic potential of c-MYC influencing therapies has not studied yet in the clinic, additional studies are needed to determine whether long-term treatment with c-MYC targeting agents can therapeutically suppress ongoing inflammation.

Colorectal carcinogenesis is a complex, multistep process that is driven by the accumulation of multiple genetic alterations. c-MYC is overexpressed in several types of malignant tumors including colorectal cancer, and is necessary for the uncontrolled proliferation of cancer cells. Single or combined therapies based on c-MYC targeting are represented by various strategies. Molecules directly targeting c-MYC, or agents acting on other genes involved in the c-MYC pathway could be selected for combined regimens. However, due to its context-dependent cellular function, it is clinically essential to consider which cytotoxic drugs are used in combination with c-MYC targeted agents in various tissues. Noncoding small RNAs have been recently implicated in anti-cancer therapies\(^{[132]}\). Regardless of the therapy applied, it is important to first determine the molecular pathways underlying the agents to inform the therapy design. Combining c-MYC-targeting agents with specific noncoding RNAs may lead to the development of novel colorectal cancer therapies.

REFERENCES

1. Lazebnik Y. What are the hallmarks of cancer? Nat Rev Cancer 2010; 10: 232-233 [PMID: 20355252 DOI: 10.1038/nrc2827]
Inflammatory bowel disease and cancer: The role of inflammation, immunosuppression, and cancer treatment. *World J Gastroenterol* 2016; 22: 4794-4801 [PMID: 27239106 DOI: 10.3748/wjg.v22.i47.4794]

Mukherjee B, Morgenbesser SD, DePinho RA. Myc family oncoproteins function through a common pathway to transform normal cells in culture: cross-interference by Max and trans-acting dominant mutants. *Genes Dev* 1992; 6: 1480-1492 [PMID: 1644290 DOI: 10.1101/gad.6.8.1480]

Hermeking H, Eick D. Mediation of c-Myc-induced apoptosis by p53. *Science* 1994; 265: 2091-2093 [PMID: 8901232 DOI: 10.1126/science.8901232]

Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Othrus RC, Li F. The c-Myc target gene network. *Semin Cancer Biol* 2006; 16: 253-264 [PMID: 16094903 DOI: 10.1016/j.semcancer.2006.07.014]

He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW. Identification of c-Myc as a target of the APC pathway. *Science* 1998; 281: 1509-1512 [PMID: 9729777 DOI: 10.1126/science.281.5382.1509]

Muncan V, Sansom OJ, Tertoolen L, Phesse TJ, Begthel H, Sancho E, Cole AM, Gregoireff A, de Alborn AM, Clevers H, Clarke AR. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/TCF-4 target gene c-Myc. *Mol Cell Biol* 2006; 26: 8418-8426 [PMID: 16954380 DOI: 10.1128/MCB.00821-06]

Carroll JD, Castor O, Dunaevsky A, Vervoorts J, Henriksson M, Schmitt CA. FoxO transcription factors suppress Myc-driven tumorigenesis. *Genes Dev* 2000; 14: 2501-2514 [PMID: 11018017 DOI: 10.1101/gad.836800]

Chen CR, Kang Y, Siegel PM, Massague J. E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. *Cell* 2002; 111: 19-32 [PMID: 12150994 DOI: 10.1016/S0092-8674(02)00912-1]

Kress TR, Cannell IG, Brenchman AB, Samans B, Gaestel M, Roepman P, Burgering BM, Bushell M, Rosenwald A, Eilers M. The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis. *Mol Cell* 2011; 44: 445-457 [PMID: 21329882 DOI: 10.1016/j.molcel.2011.01.023]

Maclean KH, Kellner UB, Rodriguez-Galindo C, Nilsson JA, Cleveland JL. c-Myc augments gamma irradiation-induced apoptosis by suppressing Bcl-XL. *Mol Cell Biol* 2003; 23: 7256-7270 [PMID: 14517295 DOI: 10.1128/MCB.23.20.7256-7270.2003]

Cannell IG, Kong YW, Johnston SJ, Chen ML, Collin HM, Dobbyn HC, Elia A, Kress TR, Dickens M, Clemens MJ, Heery DM, Gaestel M, Eilers M, Willis AE, Bushell M. p38 MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication. *Proc Natl Acad Sci USA* 2010; 107: 5375-5380 [PMID: 20212154 DOI: 10.1073/pnas.0910015107]

Hydrybin P, Bahram F, Su Y, Tronniersjo S, Högstrand K, von der Lehr N, Sharifi HR, Liisichek R, Hein N, Wu S, Vervoort V, Henricksen M, Grandien A, Lüscher B, Larsson LG. Phosphorylation by CdK2 is required for Myc to repress Ras-induced senescence in cotransformation. *Proc Natl Acad Sci USA* 2010; 107: 58-63 [PMID: 19966300 DOI: 10.1073/pnas.090121106]

Laurenti E, Wilson A, Tormapp A. Myc’s other life: stem cells and beyond. *Curr Opin Cell Biol* 2009; 21: 844-854 [PMID: 19386223 DOI: 10.1016/j.celbio.2009.09.006]

Penn LJ, Brooks W, Lauffer EM, Land H. Negative autoregulation of c-myc transcription. *EMBO J* 1990; 9: 1113-1121 [PMID: 2182320]

Sipos F, Basht M, Krakowka J, Majerus S, Kappeler D, Tornovszky PT, Schwabe MW, Scharenberg AM, Sharpless NE. The regulation of INK4/ARF in cancer. *Exp Cell Res* 2010; 316: 1429-1437 [PMID: 20382143 DOI: 10.1016/j.yexcr.2010.03.025]

Roussel MF, Davis JN, Cleveland JL. c-Myc augments gamma irradiation-induced apoptosis by suppressing Bcl-x. *Cell* 1994; 79: 405-415 [PMID: 8290253]

van de Wetering M, Sancho E, Verweij C, de Lauw W, Oving I, Hurlstone A, van der Hor K, Battel E, Couderie D, Haramis AP, Tjon-Pon-Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medeva R, Clevers H. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. *Cell* 2002; 111: 241-250 [PMID: 12408868 DOI: 10.1016/S0092-8674(01)01440-9]

Sears R, Nuckolls F, Haura E, Taya Y, Tamaki K, Nevins JR. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. *Genes Dev* 2000; 14: 2501-2514 [PMID: 11018017 DOI: 10.1101/gad.836800]

Chen CR, Kang Y, Siegel PM, Massague J. E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. *Cell* 2002; 111: 19-32 [PMID: 12150994 DOI: 10.1016/S0092-8674(02)00912-1]

Kress TR, Cannell IG, Brenchman AB, Samans B, Gaestel M, Roepman P, Burgering BM, Bushell M, Rosenwald A, Eilers M. The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis. *Mol Cell* 2011; 44: 445-457 [PMID: 21329882 DOI: 10.1016/j.molcel.2011.01.023]

Maclean KH, Kellner UB, Rodriguez-Galindo C, Nilsson JA, Cleveland JL. c-Myc augments gamma irradiation-induced apoptosis by suppressing Bcl-XL. *Mol Cell Biol* 2003; 23: 7256-7270 [PMID: 14517295 DOI: 10.1128/MCB.23.20.7256-7270.2003]
protein expression in benign colorectal lesions correlates with the degree of dysplasia. *Anticancer Res* 1992; 12: 171-175 [PMID: 1567165]

Erisman MD, Rothberg PG, Di nihil RE, Morse CC, Spandorfer JM, Astrin SM. Deregression of c-myc gene expression in human colon carcinoma is not accompanied by amplification or rearrangement of the gene. *Mol Cell Biol* 1985; 5: 1969-1976 [PMID: 3837853 DOI: 10.1128/MCB.5.8.1969]

Fearon ER. Molecular genetics of colorectal cancer. *Ann Rev Pathol* 2011; 6: 479-507 [PMID: 21090969 DOI: 10.1146/annurev-pathol-011110-103255]

Imaseki H, Hayashi H, Taira M, Ito Y, Tabata Y, Osuda S, Isono K, Tatsibana M. Expression of c-myc oncogene in colorectal polyps as a biological marker for monitoring malignant potential. *Cancer* 1989; 64: 704-709 [PMID: 2743265 DOI: 10.1002/1097-0142(199804)64:4<704::AID-JBC2820640323>3.0.CO;2-S]

Erisman MD, Scott JK, Watt RA, Astrin SM. The c-myc protein is constitutively expressed at elevated levels in colorectal carcinoma cells. Oncogene 1988; 2: 367-378 [PMID: 3283655]

Shah M, Remnoll SA, Raup-Konsavage WM, Yochum GS. A dynamic exchange of TCF3 and TCF4 transcription factors controls MYC expression in colorectal cancer cells. *Cell Cycle* 2015; 14: 323-332 [PMID: 25659031 DOI: 10.4161/cc.25135.2014.980643]

Evans GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC. Induction of apoptosis in fibroblasts by c-myc protein. *Cell* 1992; 69: 119-128 [PMID: 1555236 DOI: 10.1002/0092-8674(92)90123-T]

Brahlietz T, Herrmann K, Jung A, Faller G, Kirchner T. Expression of nuclear beta-catenin and c-myc is correlated with tumor size but not with proliferative activity of colorectal adenomas. *Am J Pathol* 2000; 156: 865-870 [PMID: 10702403 DOI: 10.1016/S0002-9440(10)69455-3]

Cavallo RA, Cox RT, Moline MM, Roose J, Polevoj GA, Clevers H, Peifer M, Bezsovec A. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. *Nature* 1998; 395: 604-608 [PMID: 9783556 DOI: 10.1038/269892]

Rooste J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H, Moorer P, van de Wetering M, Destrie O, Clevers H, Xenopus Wnt effector Xtc-f-3 interacts with Groucho-related transcriptional repressors. *Nature* 1998; 395: 608-612 [PMID: 9783557 DOI: 10.1038/269899]

Jun P, Hueber AO, Littlewood T, Evan G. c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. *Genes Dev* 1999; 13: 1367-1381 [PMID: 10364155 DOI: 10.1101/gad.13.11.1367]

You Z, Madrid LV, Sains D, Sedivy J, Wang CY. c-Myc sensitizes cells to tumor necrosis factor-mediated apoptosis by inhibiting nuclear factor kappa B transactivation. *J Biol Chem* 2002; 277: 36671-36677 [PMID: 12149248 DOI: 10.1074/jbc.M202132000]

Phesse TJ, Myant KB, Cole AM, Ridgway RA, Pearson H, Muncan V, van den Brink GR, Voudsen KH, Sears R, Vassiliev LT, Clarke AR, Sanson OJ. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo. *Cell Death Differ* 2014; 21: 956-966 [PMID: 24583641 DOI: 10.1038/cdd.2014.15]

Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. *Cell* 1990; 61: 759-767 [PMID: 2188735 DOI: 10.1016/0092-8674(90)90186-I]

Itzkowitz SH, Yio X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. *Am J Physiol Gastrointest Liver Physiol* 2004; 287: G7-17 [PMID: 15194558 DOI: 10.1152/ajpgi.0079.2004]

Slack A, Chen Z, Tonelli R, Pule M, Hunt L, Pension A, Shohet JM. The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma. *Proc Natl Acad Sci USA* 2005; 102: 731-736 [PMID: 15644444 DOI: 10.1073/pnas.0405495102]

Saxena A, Rorrie CJ, Dimitrova D, Daniely Y, Borowiec JA. Nucleolin inhibits Hdm2 by multiple pathways leading to p53 stabilization. *Oncogene* 2006; 25: 7274-7288 [PMID: 16751805 DOI: 10.1038/sj.onc.1209714]
Sipos F et al. c-MYC in colonic diseases

68 Finnia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Picciatelli M, Chowdhury K, Cecconi F. Ambral regulates autophagy and development of the nervous system. Nature 2007; 447: 1121-1125 [PMID: 17589064]

69 Gu W, Wan D, Qian Y, Bi H, He Z, Gu Y, Wang L, He S. Ambral is an essential regulator of autophagy and apoptosis in SW620 cells: pro-survival role of Ambral. PLoS One 2014; 9: e90151 [PMID: 24587252 DOI: 10.1371/journal.pone.0090151]

Cianfanelli V, Fuoco C, Lorente M, Salazar M, Quendamato F, Gherardini PF, De Zio D, Nazzo F, Antonioli M, D’Orazio M, Skobt T, Bordi M, Rohde M, Dalla Valle L, Helmer-Citterich M, Grettmeier C, Dengjel J, Finnia GM, Picciatelli M, Di Bartolomeo S, Velasco G, Cecconi F. AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat Cell Biol 2015; 17: 706.

70 Nazzo F, Strazzannon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, Grettmeier C, Dengjel J, Picciatelli M, Finnia GM, Cecconi F. mTOR inhibitors autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 2013; 15: 406-416 [PMID: 23524951 DOI: 10.1038/ncb2708]

71 Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shimoura Y, Tokino T. Epigenetic silencing of microRNA-34b/c and B-cell lymphoma 22 (BCL22) in colorectal cancer. Cancer Res 2002; 62: 513-520 [PMID: 11950812 DOI: 10.1158/0008-5472.CAN-01-1507]

72 Battle E, Henderson JT, Beghtel H, van den Born MM, Sancho J, Yabana T, Armbrust A, Tanaka H, Goto A, Hosokawa M, Nagaishi K, Toyota M, Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, Grettmeier C, Dengjel J, Piacentini M, Fimia GM, Cecconi F. AMBRA1 regulates autophagy and development of the nervous system. Nature 2007; 447: 1121-1125 [PMID: 17589064]

73 Peirowski-Osborne B, Konopliannikov AG, Kniazev OV, Parfenov AI, Skobo T, Bordi M, Rohde M, Dalla Valle L, Helmer-Citterich M, Grettmeier C, Dengjel J, Finnia GM, Picciatelli M, Di Bartolomeo S, Velasco G, Cecconi F. AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat Cell Biol 2015; 17: 706.

74 Sipos F, Jégou P, Pouliot M, Pouliot L, Pouliot D, Pouliot G. Selective inhibition of mTOR-AMBA1 downregulates c-Myc expression in human colon cancer cells. A key to its chemopreventive action? Aliment Pharmacol Ther 2007; 25: 1443-1449 [PMID: 17599844 DOI: 10.1111/j.1365-2036.2007.03336.x]

75 Al G, Dachini M, Rousey M, Tumala H, Bhat GJ. Aspirin and salicylic acid decrease c-Myc expression in cancer cells: a potential role in chemoprevention. Tumour Biol 2016; 37: 1727-1738 [PMID: 26314861 DOI: 10.1007/s13277-015-3599-0]

76 Beaulieu JF. Differential expression of the VLA family of integrins in the intestinal epithelium by controlling the expression of EphB4/ephrinB. Cell 2002; 111: 251-263 [PMID: 12408869 DOI: 10.1016/s0006-8472(02)01015-2]

77 Yang J, Armbrust A, Tanaka H, Goto A, Hosokawa M, Nagaishi K, Toyota M, Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, Grettmeier C, Dengjel J, Piacentini M, Fimia GM, Cecconi F. AMBRA1 regulates autophagy and development of the nervous system. Nature 2007; 447: 1121-1125 [PMID: 17589064]

78 Battelli E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G, Meeldijk J, Robertson J, van de Wetering M, Pawson T, Clevers H. Beta-catenin and TCF mediate cell positioning in colorectal cancer. Cell 2012; 148: 1443-1452 [PMID: 22631486 DOI: 10.1016/j.cell.2012.02.018]

79 Soo IA, Dachini M, Rousey M, Tumala H, Bhat GJ. Aspirin and salicylic acid decrease c-Myc expression in cancer cells: a potential role in chemoprevention. Tumour Biol 2016; 37: 1727-1738 [PMID: 26314861 DOI: 10.1007/s13277-015-3599-0]

80 Beaulieu JF, Gauthier R, Jean D, Beaulieu JF. Integrin integrin subunit in colorectal cancers correlates with c-Myc expression. A key to its chemopreventive action? Aliment Pharmacol Ther 2007; 25: 1443-1449 [PMID: 17599844 DOI: 10.1111/j.1365-2036.2007.03336.x]

81 Boujadia S, Carrier JC, Beaulieu JF. Integrin integrin subunit is up-regulated in colorectal cancer. Biomark Res 2013; 1: 16 [PMID: 24252313 DOI: 10.1186/2050-7771-9-16]

82 Ni H, Dydensborg AB, Herring F, Basora N, Gagné D, Vachon PH, Beaulieu JF. Upregulation of a functional form of the beta4 integrin subunit in colorectal cancers correlates with c-Myc expression. Oncogene 2005; 24: 6820-6829 [PMID: 16007143 DOI: 10.1038/sj.onc.1208848]

83 Groulx JF, Giroux V, Beauséjour M, Boujadia S, Basora N, Carrier JC, Beaulieu JF. Integrin integrin subunit regulates proliferation and the B7/8-catenin pathway in human colorectal cancer cells. Carcinogenesis 2014; 35: 1217-1227 [PMID: 24403311 DOI: 10.1093/carcin/bgu006]

84 Dydensborg AB, Teller IC, Groulx JF, Basora N, Paré F, Herring E, Gauthier R, Jean D, Beaulieu JF. Integrin integrin inhibits colon cancer cell proliferation and c-Myc activity. BMC Cancer 2009; 9: 223 [PMID: 19586553 DOI: 10.1186/1471-2407-9-223]

85 Boujadia S, Carrier JC, Groulx JF, Beaulieu JF. Integrin integrin expression is controlled by c-MYC in colorectal cancer cells. Oncogene 2016; 35: 1671-1678 [PMID: 26906932 DOI: 10.1038/onc.2015.231]

86 Untawale S, Zorbas MA, Hodgson CP, Coffey RJ, Gallick GE, North SM, Wildrick DM, Olive M, Bick M, Yeoman LC. Transforming growth factor-alpha production and autoinduction in a colorectal carcinoma cell line (DiFi) with an amplified epidermal growth factor receptor gene. Cancer Res 1993; 53: 1630-1636 [PMID: 8453634]

87 Ooi A, Takehana T, Li X, Suzuki S, Kunitomo K, Iino H, Fujii H, Takeda Y, Dobashi Y. Protein overexpression and gene amplification of HER-2 and EGFR in colorectal cancers: an immunohistochemical and fluorescent in situ hybridization study. Mod Pathol 2004; 17: 895-904 [PMID: 15143334 DOI: 10.1038/
Park J, Kim SY, Kim HJ, Kim KM, Choi EY, Kang MS. A reciprocal regulatory circuit between CD44 and FGFR2 via c-myc controls gastric cancer cell growth. Oncotarget 2016; 7: 26619-26633 [PMID: 27107424 DOI: 10.18632/oncotarget.8764]

Mathur A, Ware C, Davis L, Gazdar A, Pan BS, Lutterbach B. FGFR2 is amplified in the NCI-H716 colorectal cancer cell line and is required for growth and survival. Plas One 2014; 9: e95815 [PMID: 24968263 DOI: 10.1371/journal.pone.0098515]

Puisaing A, Frum M, Alexe G, Bassil CF, Qi J, Chesi M, Schinzel AC, McKeown MR, Hefferan TP, vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kang AL, Bradner JE, Mietzis SA. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146: 904-917 [PMID: 21889194 DOI: 10.1016/j.cell.2011.08.017]

Filipakopoulos P, Qi J, Picard S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro AL, Bradner JE, Sauer S, Ørom UA. The long non-coding RNA PARROT binding cassette transporter reverses chemoresistance in CD133(+) and dipeptidyl-peptidase IV (CD26) are indicators of colorectal cancer stem cells. J Genet Genomics 2015; 42: 560-574 [PMID: 25973297]

Bajpe PK, Prahalad A, Horlings H, Nagtegaal I, Beijersbergen R, Bernards R. A chromatin modifier genetic screen identifies SIRT2 as a modulator of response to targeted therapies through the regulation of MEK kinase activity. Oncogene 2015; 34: 531-536 [PMID: 24460059 DOI: 10.1038/onc.2013.588]

Jing H, Hu J, He B, Negrón Abril VL, Stupinski J, Weiser K, Carbono M, Chiang YL, Southard T, Giannakakou P, Weiss RS, Lin H. A SIRT2-Selective Inhibitor Promotes c-Myc Oncoprotein Degradation and Exhibits Broad Anticancer Activity. Cancer Cell 2016; 29: 607-617 [PMID: 27070708 DOI: 10.1016/j.ccell.2016.03.011]

Chen L, Wei T, Si X, Wang Q, Li Y, Leng Y, Deng A, Chen J, Wang G, Zhu S, Kang J. Lysine acetyltransferase GCN5 potentiates the growth of non-small cell lung cancer via promotion of EZF1, cyclin D1, and cyclin E expression. J Biol Chem 2013; 288: 14516-14521 [PMID: 23554373 DOI: 10.1074/jbc.M113.485737]

Yin YW, Jin HJ, Zhao W, Gao B, Fang J, Wei J, Zhang DD, Zhang J, Fang D. The Histone Acetyltransferase GCN5 Expression Is Elevated and Regulated by c-Myc and EZF1 transcription Factors in Human Colon Cancer. Gene Expr 2015; 16: 187-196 [PMID: 26637399 DOI: 10.3727/105221615X14399878166230]

Hurler LH, Von Hoff DD, Siddiqui-Jain A, Yang D. Drug targeting of the c-Myc promoter to repress gene expression via a G-quadruplex linker element. Semin Oncol 2006; 33: 498-512 [PMID: 16898084 DOI: 10.1053/j.semincancer.2006.04.012]

Gu S, Kay MA. How do miRNAs mediate translational repression? Silence 2010; 1: 1-11 [PMID: 20459656 DOI: 10.1186/1757-7759-1-11]

Liu M, Chen H. The role of microRNAs in colorectal cancer. J Genet Genomics 2010; 37: 347-358 [PMID: 20621017 DOI: 10.1016/S1673-8527(09)60053-9]

Wang H, Cao F, Li X, Miao H, E J, Xing J, Fu CG. miR-320b suppresses cell proliferation by targeting c-Myc in human colorectal cancer cells. BMC Cancer 2015; 15: 748 [PMID: 26847644 DOI: 10.1186/s12885-015-1728-5]

Grunt TW, Hebar A, Laffer S, Wagner R, Peter B, Herrmann H, Graf A, Bilban M, Posch M, Hoermann G, Mayerhofer M, Eisenwort G, Zielinski CC, Selzer E, Valent P. Prominin-1 (CD133, AC133) and dipetidyl-peptidase IV (CD26) are indicators of infinite growth in colon cancer cells. Am J Cancer Res 2015; 5: 560-574 [PMID: 25973297]

Suresh PK, Varadarajah VA, Mathiyazhagan J. ABC transporters in anticancer drug transport - Lessons for Therapy, Drug Development and Delivery Systems. Int J Drug Dev Res 2015; 7: 127-136

Zhang HL, Wang P, Lu MZ, Zhang SD. [c-Myc regulation of ATP-binding cassette transporter reverses chemoresistance in CD33(+) colon cancer stem cells]. Sheng Li Xue Bao 2016; 68: 171-178 [PMID: 27108904]

Vučević D, Gehre M, Dhamija S, Friis-Hansen L, Meierhofer D, Sauer S, Orom UA. The long non-coding RNA PARROT is an upstream regulator of c-Myc and affects proliferation and translation. Oncotarget 2016; 7: 20802-20813 [PMID: 26960653 DOI: 10.18632/oncotarget.8826]

Wang F, Xue X, Bi J, Zheng L, Zhi K, Gu Y, Fang G. Long noncoding RNA CAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma. J Cancer Res Clin Oncol 2013; 139: 437-445 [PMID: 23143645 DOI: 10.1007/s00432-012-1324-x]

Xiang JF, Yin QF, Chen T, Zhang Y, Zhang XO, Wu Z, Zhang S, Wang HB, Ge J, Lu X, Yang L, Chen L. Human colorectal cancer-specific CAT1-1. IncRNA regulates long-range chromatin
interactions at the MYC locus. *Cell Res* 2014; **24**: 513-531 [PMID: 24662484 DOI: 10.1038/cr.2014.35]

125 **Jensen SA**, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI, Daniel WL, Scott AW, Rotz MW, Meade TJ, Giljohann DA, Mirkin CA, Stegh AH. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. *Sci Transl Med* 2013; **5**: 209ra152 [PMID: 24174328 DOI: 10.1126/scitranslmed.3006839]

126 **Tangudu NK**, Verma VK, Clemons TD, Beevi SS, Hay T, Mahidhara G, Raja M, Nair RA, Alexander LE, Patel AB, Jose J, Smith NM, Zdyrko B, Bourdoncle A, Luzinov I, Iyer KS, Clarke AR, Dinesh Kumar L. RNA Interference Using c-Myc-Conjugated Nanoparticles Suppresses Breast and Colorectal Cancer Models. *Mol Cancer Ther* 2015; **14**: 1259-1269 [PMID: 25695957 DOI: 10.1158/1535-7163.MCT-14-0970]

127 **Boussif O**, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. *Proc Natl Acad Sci USA* 1995; **92**: 7297-7301 [PMID: 7638184 DOI: 10.1073/pnas.92.16.7297]

128 **Meghimi SM**, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. *Mol Ther* 2005; **11**: 990-995 [PMID: 15922971 DOI: 10.1016/j.ymthe.2005.02.010]

129 **Iyer KS**, Zdyrko B, Malz H, Pirotteck J, Luzinov I. Polystyrene Layers Grafted to Macromolecular Anchoring Layer. *Macromolecules* 2003; **36**: 6519-6526 [DOI: 10.1021/ma034460z]

130 **Meck MM**, Wierdl M, Wagner LM, Burger RA, Guichard SM, Krull EJ, Harris LC, Potter PM, Danks MK. A virus-directed enzyme prodrg therapy approach to purging neuroblastoma cells from hematopoietic cells using adenovirus encoding rabbit carboxylesterase and CPT-11. *Cancer Res* 2001; **61**: 5083-5089 [PMID: 11431345]

131 **Iyengar RV**, Pawlik CA, Krull EJ, Phelps DA, Burger RA, Harris LC, Potter PM, Danks MK. Use of a modified ornithine decarboxylase promoter to achieve efficient c-MYC- or N-MYC-regulated protein expression. *Cancer Res* 2001; **61**: 3045-3052 [PMID: 11306486]

132 **Huang H**, Weng H, Zhou H, Qu L. Attacking c-Myc: targeted and combined therapies for cancer. *Curr Pharm Des* 2014; **20**: 6543-6554 [PMID: 25341931 DOI: 10.2174/1381612820666140826153203]

P- **Reviewer**: Lakatos PL, Kadiyska TK, Shimoyama S, Yochum GS
S- **Editor**: Gong ZM
L- **Editor**: A
E- **Editor**: Ma S
