Transition-metal-free approach to quinolines via direct oxidative cyclocondensation reaction of N,N-dimethyl enaminones with o-aminobenzyl alcohols

Kairui Rao†, Zhangmengjie Chai†, Pan Zhou†, Donghan Liu, Yulin Sun and Fuchao Yu*

Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China

A transition-metal-free method for the construction of 3-substituted or 3,4-disubstituted quinolines from readily available N,N-dimethyl enaminones and o-aminobenzyl alcohols is reported. The direct oxidative cyclocondensation reaction tolerates broad functional groups, allowing the efficient synthesis of various quinolines in moderate to excellent yields. The reaction involves a C(sp³)-O bond cleavage and a C=N bind and a C=C bond formation during the oxidative cyclization process, and the mechanism was proposed.

KEYWORDS quinolines, N,N-dimethyl enaminones, o-aminobenzyl alcohols, oxidative cyclocondensation reaction, transition-metal-free

Introduction

Quinolines represent an important class of heterocyclic compounds, which widely occur as a core structural motif in natural products (McCormick et al., 1996; Subbaraju et al., 2004; McCauley et al., 2020), pharmaceuticals (Gorka et al., 2013; Kokatla et al., 2013; Jentsch et al., 2018), functional materials (Tong et al., 2003; Kim et al., 2005; Zhang et al., 2014), organocatalysis or ligands (Biddle et al., 2007; Zhang and Sigman., 2007; Esteruelas et al., 2016), and valuable building blocks (Wan et al., 2016; Duan et al., 2018; Wang et al., 2019; Ankade et al., 2021). Due to their great importance, considerable efforts have been focused on the development of efficient synthetic methods to their structures and modifications over the past years. Classical methodologies (Bharate et al., 2015; Li et al., 2017; Harry et al., 2020), such as Camps, Combes, Conrad–Limpach, Doebner, Friedländer, Knorr, Pfitzinger, Pavorov, Skraup synthesis, and others, are known for the construction of quinoline rings; however, these reactions usually suffer from some limitations, such as harsh reaction conditions, tedious workup procedures, and special substrate designs (prefunctionalized anilines). Recently, many elegant strategies toward quinolone rings, such as using new building blocks (Jin et al., 2016; Tiwari et al., 2017; Wu et al., 2017; Trofimov et al., 2018) and multicomponent reactions (Chen et al., 2018; Wang et al., 2019; Ankade et al., 2021).
et al., 2018; Zhao et al., 2019; Yang and Wan., 2020), have been developed to construct substituted quinolines. Despite these advances, the development of easy and efficient approaches for the construction of substituted quinolines remains to be explored. Recently, o-aminobenzyl alcohols are versatile intermediates which have attracted increasing attention in organic synthesis owing to their high reactivity in the construction of N-heterocycles (Makarov et al., 2018; Wang et al., 2018; Xie et al., 2018; Yang and Gao., 2018), especially
quinolines. In this regard, two strategies have been developed to construct the quinoline framework from \(o\)-aminobenzyl alcohols: acceptorless dehydrogenative coupling (ADC) reactions and \([4 + 2]\)-cycloaddition reactions. The types of ADC reactions of \(o\)-aminobenzyl alcohols with ketones or secondary alcohols or nitriles to the construction of quinolines by the release of \(H_2\) and \(H_2O\) are not products have been well-developed (Scheme 1).

In 2016, a KOH-promoted regioselective synthesis of quinolones via \([4 + 2]\)-cycloaddition of aza-\(o\)-QMs with internal alkynes was disclosed by Vermala and co-workers (Saunthwal et al., 2016) (Scheme 1b). In 2018, Shi and co-workers established chiral phosphoramide catalytic asymmetric \([4 + 2]\)-cycloaddition of aza-\(o\)-QMs with \(o\)-hydroxystyrenes to afford chiral tetrahydroquinolines (Li et al., 2018) (Scheme 1c). This \([4 + 2]\)-cycloaddition protocol enriched the partners of aza-\(o\)-QMs to construct quinolones.

In spite of these powerful works, there is still a demand for new protocols for generation of quinolines from \(o\)-aminobenzyl alcohols. As our ongoing interest in quinoline synthesis (Lu et al., 2017; Zhou et al., 2018) and enaminone

Table 1: Optimization of the reaction conditions

Entry	Acid [eq.]	Oxidant [eq.]	Solvent	\(T\) [°C]	Yield [%]
1	AcOH (1.0)	DMSO	100	n.d	
2	PivOH (1.0)	DMSO	100	n.d	
3	ZnCl₂ (1.0)	DMSO	100	n.d	
4	TFA (1.0)	DMSO	100	25	
5	CSA (1.0)	DMSO	100	15	
6	TsOH (1.0)	DMSO	100	32	
7	TsOH (1.0)	Oxone (1.0)	DMSO	100	68
8	TsOH (1.0)	TBHP (1.0)	DMSO	100	37
9	TsOH (1.0)	Fe₃O₄ (1.0)	DMSO	100	46
10	TsOH (1.0)	AgNO₃ (1.0)	DMSO	100	59
11	TsOH (1.0)	DDQ (1.0)	DMSO	100	32
12	TsOH (1.0)	m-CPBA (1.0)	DMSO	100	40
13	TsOH (1.0)	K₂S₂O₈ (1.0)	DMSO	100	82
14	TsOH (1.0)	K₂S₂O₈ (1.0)	DMF	100	53
15	TsOH (1.0)	K₂S₂O₈ (1.0)	Toluene	100	27
16	TsOH (1.0)	K₂S₂O₈ (1.0)	MeCN	reflux	58
17	TsOH (1.0)	K₂S₂O₈ (1.0)	1,4-Dioxane	100	38
18	TsOH (1.0)	K₂S₂O₈ (1.0)	EtOH, reflux	62	
19	TsOH (1.0)	K₂S₂O₈ (1.0)	H₂O	100	59
20	TsOH (0.5)	K₂S₂O₈ (1.0)	DMSO	100	54
21	TsOH (1.5)	K₂S₂O₈ (1.0)	DMSO	100	79
22	TsOH (1.0)	K₂S₂O₈ (0.5)	DMSO	100	51
23	TsOH (1.0)	K₂S₂O₈ (1.5)	DMSO	100	81
24	TsOH (1.0)	K₂S₂O₈ (1.0)	DMSO	80	28
25	TsOH (1.0)	K₂S₂O₈ (1.0)	DMSO	120	67

The bold values are designed to highlight the optimal reaction conditions.

Rao et al. 10.3389/fchem.2022.1008568

Frontiers in Chemistry frontiersin.org
chemistry (Yu et al., 2011; Yu et al., 2013; Xu et al., 2016; Zhou et al., 2017; Fu et al., 2020; Chen et al., 2021; Huang and Yu., 2021; Yu et al., 2021; Zhang et al., 2021; Fu et al., 2022; Liu et al., 2022; Ying et al., 2022), herein, we report a transition-metal-free direct oxidative cyclocondensation strategy of o-aminobenzyl alcohols with N,N-dimethylanilines to synthesize 3-substituted or 3,4-disubstituted quinoline derivatives in moderate to excellent yields (Scheme 1d).

Results and discussion

Our investigation started with the reaction of readily available N,N-dimethylanilines 1 (0.5 mmol), aryl methyl ketones 2 (0.5 mmol), TsOH (0.5 mmol), and K2S2O8 (0.5 mmol) in 3.0 ml DMSO at 100°C for 1.0 h. Various acids were screened, such as pivalic acid (PivOH), ZnCl2, trifluoroacetic acid (TFA), 10-camphorsulfonic acid (CSA), and p-toluenesulfonic acid (TsOH), which suggested that TsOH was the most suitable acid for this reaction in 32% yield. A series of oxidants showed positive effects for the reaction (entries 7–13). To our delight, K2S2O8 was found to be the most effective one to give the desired quinolone 3a for greatly increasing the yield to 82% (entry 13). Further experiments also showed that DMSO was the first choice for solvents; other solvents, such as DMF, toluene, MeCN, 1,4-dioxane, EtOH, and water, were inferior (entries 14–19). With respect to the acid and oxidant loading, 1.0 equiv of TsOH and 1.0 equiv of K2S2O8 were found to be optimal (entries 20–23). The reaction temperature was also screened, and the results showed that 100°C was still with giving the best yield (entries 24–25).

Under the optimized reaction conditions, we next investigated the substrate scope of this direct oxidative cyclocondensation reaction (Table 2). A wide range of N,N-dimethylanilines 1 bearing different substituents could be used in this transformation. For example,
N,N-dimethyl enaminones bearing electron-rich (4-OMe, 4-Me, and 2-Me), electron-neutral (4-H), halogenated (4-Cl, 2-Cl, and 4-F), and electron-deficient (4-CF₃ and 4-NO₂) groups at the aryl ring were tolerated, affording the corresponding 3-substituted quinoline products in good to excellent yields (71–84%, 3a–3i). Subsequently, 4-biphenyl and 1-naphthyl N,N-dimethyl enaminones were also well compatible with the reaction, giving the expected product in excellent yields (81–84%, 3j–3k). Furthermore, various heteroaryl N,N-dimethyl enaminones, including 4-pyridyl, 2-furanyl, and 2-thienyl, were well tolerated in this reaction, affording the corresponding products in excellent yields (83–87%, 3l–3n). The phenylethyl enamamine worked well for the reaction, furnishing the corresponding product in 61% yield. The o-aminobenzyl alcohol scope was also examined. Bearing halogenation (5-Cl) was well tolerated on the phenyl ring of the o-aminobenzyl alcohols, furnishing the corresponding 3-substituted quinoline products in good to excellent yields (78–89%, 3p–3x). Notably, 1-(o-aminobenzyl) ethanol and o-aminobenzhydrol were also employed, affording 3,4-disubstituted quinolines in moderate to excellent yields (68–91%, 3y–3c'). Moreover, the structure of 3j was unambiguously confirmed by X-ray crystallographic analysis (CCDC 1846910, Figure 1).

To further understand the reaction mechanism, some control experiments were carried out, and the results are presented in Scheme 2. When N,N-dimethyl enaminone 1b was reacted with o-aminobenzyl alcohol 2a in the absence of K₂S₂O₈, the N-aryl enaminone intermediate product 4 was obtained in 68% yield by a transamination process (Scheme 2). Next, product 3b was obtained in 75% yield by the intramolecular cyclization reaction of intermediate 4 under optimized reaction conditions. However, the intramolecular
cyclocondensation reaction could also proceed smoothly without the addition of TsOH, affording product 3b in 73% yield (Scheme 2). When N,N-dimethyl enaminone 1b was reacted with 2-aminobenzaldehyde 5 under the standard conditions or in the absence of K$_2$S$_2$O$_8$, product 3b was, respectively, isolated in 78 and 73% yields (Scheme 2). Additionally, the reaction was unaffected completely by adding the radical inhibitors Tempo and BHT (Scheme 2). These results revealed that N-aryl enamino 4 and 2-aminobenzaldehyde 5 were important intermediates for this reaction, and the reaction was not a free-radical process.

Based on the above results and previous studies (Zhou et al., 2018), a possible mechanism for this transformation is proposed (Scheme 3). N,N-dimethyl enamino 1 reacted with o-aminobenzyl alcohols 2 promoted by TsOH to furnish the N-aryl enamino intermediate 6 via a transamination process. Next, intermediate 6 underwent K$_2$S$_2$O$_8$-assisted oxidation to form the ketone intermediate 7, which was then converted into intermediate 8 through intramolecular cyclization reaction. Finally, quinolone products 3 were obtained via elimination of a molecule of H$_2$O and oxidative aromatization.

Conclusion

In conclusion, we have developed a concise protocol for the synthesis of 3-substituted or 3,4-disubstituted quinolines with moderate to excellent yields using readily available N,N-dimethyl enamino and o-aminobenzyl alcohols promoted by TsOH/K$_2$S$_2$O$_8$. This direct oxidative cyclocondensation reaction enriched the quinoline synthesis method from o-aminobenzyl alcohols.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Materials; further inquiries can be directed to the corresponding author.

References

Ankade, S. B., Shahade, A. B., Soni, V., and Punji, B. (2021). Unactivated alkyl halides in transition-metal-catalyzed C–H bond alkylation. ACS Catal. 11, 3266–3292. doi:10.1021/acscatal.0c03580

Barmar, M. K., Jana, A., and Majia, B. (2018). Phosphine-free NNN-manganese complex catalyzed alkylation of ketones with primary alcohols and Friedländer quinoline synthesis. Adv. Synth. Catal. 360, 3233–3238. doi:10.1002/adsc.201800380

Bharate, J. B., Vishwakarma, R. A., and Bharate, S. B. (2015). Metal-free domino one-pot protocols for quinoline synthesis. RSC Adv. 5, 42020–42053. doi:10.1039/c5ra07794b

Biddle, M. M., Lin, M., and Scheidt, K. A. (2007). Catalytic enantioselective synthesis of flavanones and chromanones. J. Am. Chem. Soc. 129, 3830–3831. doi:10.1021/ja070394v

Chen, L., Huang, R., Kong, L.-B., Lin, J., and Yan, S.-J. (2018). Facile route to the synthesis of 1, 3-diaza-hetero-cyclic-fused [1, 2-a]quinoline derivatives via cascade reactions. ACS Omega 3, 1126–1136. doi:10.1021/acsomega.7b01856

Chen, X.-B., Huang, S.-T., Li, J., Yang, Q., Yang, L., and Yu, F. (2021). Highly regioselective and chemoselective [3+3] annulation of enamino with ortho-fluoronitrobenzenes. Divergent synthesis of aposafranones and their N-oxides. Org. Lett. 23, 3032–3037. doi:10.1021/acs.orglett.0c00710

Das, J., Singh, K., Vellakkaran, M., and Banerjee, D. (2018). Nickel-catalyzed hydrogen-borrowing strategy for α-alkylation of ketones with alcohols. A new route to branched gem-boo(alkyl) ketones. Org. Lett. 20, 5587–5591. doi:10.1021/acs.orglett.8b02256

Author contributions

FY designed the project. KR, ZC, PZ, DL, and YS performed the experiments. FY supervised the work and prepared the manuscript. All authors contributed to the article and approved the submitted version.

Funding

This research was financially supported by the National Natural Science Foundation of China (21961018), the Natural Science Foundation of Yunnan Province (201901T070302 and 202202AG050008), and the Plan of Funding Outstanding Young Talents of Yunnan Province.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2022.1008568/full#supplementary-material
Das, K., Mondal, A., Pal, D., and Srirmani, D. (2019). Sustainable synthesis of quinoline and 2-aminoquinoline via dehydrogenative coupling of 2-amino-2-methylpropene and C2=CH-OH catalyzed by phosphine-free manganese pincer complex. Org. Lett. 21, 3232–3235. doi:10.1021/acs.orglett.9b00939

Das, S., Maiti, D., and Sarkar, S. D. (2018). Synthesis of polysubstituted quinolines from 2-aminoaryl alcohols via Nickel-catalyzed dehydrogenative coupling. J. Org. Chem. 83, 2309–2316. doi:10.1021/acs.joc.8b01319

Duan, Y., Liu, Y., and Wan, J.-P. (2018). Copper-catalyzed one-pot N-acetylation and C5-olation of 8-aminoquinolines. The dual role of acyl halides. J. Org. Chem. 83, 3403–3408. doi:10.1021/acs.joc.8b00668

Estebanuas, M. A., Larramona, C., and Onate, E. (2016). Osmium-mediated direct C–H bond activation at the 8-position of quinolines. Organometallics 35, 1597–1600. doi:10.1021/acs.organomet.6b00264

Fu, L., Xu, W., Pu, M., Wu, T., Liu, Y., and Wan, J.-P. (2022). Rh-Catalyzed [4 + 2] annulation with a removable monodentate structure toward imidopyrroles and pyrimidines by C–H annulation. Org. Lett. 24, 3003–3008. doi:10.1021/acs.lett.2c00912

Fu, L., Xu, Z., Wan, J.-P., and Liu, Y. (2020). The domino chromosome annihilation and a transient halogenation-mediated C–H allylation toward 3- vinyl chromones. Org. Lett. 22, 9518–9523. doi:10.1021/acs.orglett.0c03548

Genc, S., Arslan, B., Gulcema, S., Gunuz, S., Cetinayka, B., and Gulcema, D. (2019). Iridium(iii)-catalyzed C-C and C–N bond formation reactions via the borrowing hydrogen strategy. J. Org. Chem. 84, 6266–6267. doi:10.1021/acs.joc.9b00862

Harry, N. A., Ujwalde, S. M., and Anilkumar, G. (2020). Recent advances and prospects in the metal-free synthesis of quinolines. Org. Biomol. Chem. 18, 9775–9790. doi:10.1039/d0ob02004a

Huang, K., and Yang, J. Y. (2017). Organocatalytic phosphorylation of in situ formed o-quinone methides. Org. Lett. 19, 5988–5991. doi:10.1021/acs.orglett.7b03019

Huang, J., and Yu, F. (2021). Synthesis-Struttgart, 587–610. doi:10.1555s- 0040-1707328Recent advances in organic synthesis based on N, N-dimethyl enaminesynthesis. J. Synthesis.

Jentsch, N. G., Hart, A. P., Hume, J. D., Sun, J., McNeely, K. A., Lama, C., et al. (2018). Synthesis and evaluation of aryl quinolines as HIV-1 integrase multimerization inhibitors. ACS Med. Chem. Lett. 9, 1007–1012. doi:10.1021/acsmedchemlett.8b00269

Jin, H., Tian, B., Song, X., Xie, J., Rudolph, M., Rominger, F., et al. (2016). Gold-catalyzed synthesis of quinolines from propargyl alcohols and anilines through the umpolung of a gold carbene carbon. Angew. Chem. Int. Ed. 55, 12688–12692. doi:10.1002/anie.201606043

Kim, J. I., Shin, I.-S., Kim, H., and Lee, J.-K. (2018). Efficient electrogenduced chemiluminescence from cyclometalated Iridium(III) complexes. J. Am. Chem. Soc. 127, 1614–1615. doi:10.1021/jacs.8b03721x

Kotta, H. P., Sil, D., Madhav, S. S., Babalakshina, R., Hermanson, A. R., Fox, L. M., et al. (2013). Exquisite selectivity for human toll-like receptor 8 in substituted furano [2, 3-]quinolines. J. Med. Chem. 56, 6871–6885. doi:10.1021/jm400649d

Lee, A., Zhu, J. L., Feoktistova, T., Brueckner, A. C., Cheong, P. H.-Y., and Scheidt, N. G. (2017). Functionalization of saturated ketones with anthranils via Cu-catalyzed sequential dehydrogenation/aza-Michael addition/cascade cyclation reactions in one-pot. Chem. Commun. 53, 5302–5305. doi:10.1039/c7cc0115d

Tiwari, D. K., Phanindrudu, M., Wakade, S. B., Nanubolu, J. B., and Tiwari, D. K. (2017). Functionalization of saturated ketones with anthranils via Cu-catalyzed sequential dehydrogenation/aza-Michael addition/cascade cyclation reactions in one-pot. Chem. Commun. 53, 5302–5305. doi:10.1039/c7cc0115d

Tong, H., Wang, L., Jing, X., and Wang, F. (2003). “Turn-on” conjugated polymer fluorescent chemosensor for fluoride ion. Macromolecules 36, 2584–2586. doi:10.1021/ma2058612

Trofimov, B. A., Belyaeva, K. V., Nikitina, L. P., Malkina, A. G., Afinon, A. V., Ushakov, I. A., et al. (2018). Transition metal-free one-pot double C–H functionalization of quinolines with disubstituted electron-deficient acetylenes. Chem. Commun. 54, 5863–5866. doi:10.1039/c3cc53269f

Wan, J.-P., Li, Y., and Liu, Y. (2016). Annulation based on 8-aminooquinoline assisted C–H activation: An emerging tool in N-heterocyclic construction. Org. Chem. Front. 3, 768–772. doi:10.1039/c6qo00077k

Xu, W., Li, Z.-L., Shi, Y., Wu, H., Cao, X.-N., Zhai, X., Zhao, X.-M., et al. (2019). NNN pincer RuII-catalyzed dehydrogenative coupling of 2-aminopyrroliodinomethane with nitrites for the construction of quinolines. Tetrahedron 75, 2697–2705. doi:10.1016/j.tet.2019.03.046

Wang, B.-Q., Zhang, C.-H., Tian, X.-X., Lin, J., and Yan, S.-J. (2018). Cascade reaction of isatins with 1,1-enediamines: Synthesis of multisubstituted quinoline-4-carboxamides. Org. Lett. 20, 660–663. doi:10.1021/acs.orglett.7b03726

Wang, H.-Q., Ma, W., Sun, A., Sun, X.-Y., Jiang, C., Zhang, Y.-C., et al. (2021). (4 + 2) cyclization of azo-o-quinone methides with azlactones: Construction of biologically important dihydroquinolinone frameworks. Org. Biomol. Chem. 19, 1334–1343. doi:10.1039/d0ob03284d

Wang, J., Zhou, R., Zhang, S., and Wu, A. (2018). Acid-mediated four-component tandem cyclization: Access to multifused 1, 3-benzoxazine frameworks. Tetrahedron 74, 7282–7289. doi:10.1016/j.tet.2018.09.059

Wang, R., Fan, H., Zhao, W., and Li, F. (2016). Acceptors dehydrogenative cyclization of o-amino-benzyl alcohol with ketones to quinolines in water catalyzed by water soluble metal-ligand bifunctional catalyst [Cy[6, 6'- (OH)]2bpy][H2O]] (OTf)2. Org. Lett. 18, 3558–3561. doi:10.1021/acs.orglett.6b01518

Wang, Y., Dong, B., Wang, Z., Cong, X., and Bi, X. (2019). Silver-catalyzed reduction of quinolines in water. Org. Lett. 21, 3633–3634. doi:10.1021/acs.orglett.9b01055

Wei, D., Dorcet, Y., Darcel, C., and Sortais, J.-B. (2019). Synthesis of quinolines through acceptorless dehydrogenative coupling catalyzed by Rhenium PN[H]P complexes. ChemSusChem 12, 3078–3082. doi:10.1002/cssc.201802636
Wu, X., Geng, X., Zhao, P., Zhang, J., Gong, X., Wu, Y.-D., et al. (2017). I2-Promoted Povarov-type reaction using 1, 4-dithane-2, 5-diol as an ethylene surrogate: Formal [4 + 2] synthesis of quinolines. Org. Lett. 19, 1550–1553. doi:10.1021/acs.orglett.7b00361

Xie, F., Chen, Q.-H., Xie, R., Jiang, H.-F., and Zhang, M. (2018). MOF-derived nanocobalt for oxidative functionalization of cyclic amines to quinoxalinoines with 2-aminomethylthanol. ACS Catal. 8, 5869–5874. doi:10.1021/acscatal.8b01366

Xu, H., Zhou, B., Zhou, P., Zhou, J., Shen, Y., Yu, F., et al. (2016). Insights into the unexpected chemoselectivity in brønsted acid catalyzed cyclization of isatins with enaminones: Convenient synthesis of pyrrolo[3, 4-c]quinolin-1-ones and spirooxindoles. Chem. Commun. 52, 8002–8005. doi:10.1039/c6cc02659a

Yang, B., and Gao, S. (2018). Recent advances in the application of Diels–Alder reactions involving o-quinodimethanes, aza-o-quinone methides and o-quinone methides in natural product total synthesis. Chem. Soc. Rev. 47, 7926–7953. doi:10.1039/c7cs00274f

Yang, L., and Wan, J.-P. (2020). Ethyl lactate-involved three-component dehydrogenative reactions: Biomass feedstock in diversity-oriented quinoline synthesis. Green Chem. 22, 3074–3078. doi:10.1039/d0gc00738b

Ying, J., Liu, T., Liu, Y., and Wan, J.-P. (2021). Metal-free C(sp 2)-H perfluoroalkylsulfonilation and configuration inversion: Stereoselective synthesis of α-perfluorooalkylsulfonyle-enaminones. Chin. Chem. Lett. 32, 3514–3517. doi:10.1016/j.ccl.2021.04.037

Zhang, B., Liu, D., Sun, Y., Zhang, Y., Feng, J., and Yu, F. (2021). Preparation of thiazole-2-thiones through TBFB-promoted oxidative cascade cyclization of enamines with elemental sulfur. Org. Lett. 23, 3076–3082. doi:10.1021/acs. orglett.1c00751

Zhang, Y., and Sigman, M. S. (2007). Palladium(II)-catalyzed enantioselective aerobic dialkylation of 2-propanol phenols: A pronounced effect of copper additives on enantioselectivity. J. Am. Chem. Soc. 129, 3076–3077. doi:10.1021/ja067026u

Zhang, Z., Shi, Y., Pan, Y., Cheng, X., Zhang, L., Chen, J., et al. (2014). Quinoline derivative-functionalized carbon dots as a fluorescent nanosensor for sensing and intracellular imaging of Zn2+. J. Mat. Chem. B 2, 5020–5027. doi:10.1039/c4tb00677a

Zhang, P., Wu, X., Zhou, Y., Geng, X., Wang, C., Wu, Y.-D., et al. (2019). Direct synthesis of 2, 3-diaroyl quinolines and pyridazino[4, 5-b]quinolines via an I2-promoted one-pot multicomponent reaction. Org. Lett. 21, 2708–2711. doi:10.1021/acs.orglett.9b00685

Zhou, P., Hu, B., Li, L., Rao, K., Yang, J., and Yu, F. (2017). Mn(OAc)3-Promoted oxidative Csp3-P bond formation through Csp2-Csp2 and P-H bond cleavage: Access to β-ketophosphonates. J. Org. Chem. 82, 13268–13276. doi:10.1021/acs.joc.7b02391

Zhou, P., Hu, B., Rao, K., Yang, J., and Gao, C., et al. (2018). Chemoselective synthesis of N-aryl-enaminones and 5-aryl quinolines via temperature and amount of catalyst synergistic control. Synlett 29, 519–524. doi:10.1055/s-0036-1590950

Zhou, P., Hu, B., Wang, Y., Zhang, Q., Li, X., Yan, S., et al. (2018). Convenient synthesis of quinoline-4-carboxylic derivatives through the Bi(OTf)3-catalyzed domino cyclization/esterification reaction of isatins with enamines in alcohols. Eur. J. Org. Chem. 2018, 4527–4535. doi:10.1002/ejoc.201800734

Zhou, P., Hu, B., Zhao, S., Zhang, Q., Wang, Y., Li, X., et al. (2018). An improved Pfaltzinger reaction for the direct synthesis of quinoline-4-carboxylic esters/acid mediated by TMSCl. Tetrahedron Lett. 59, 3116–3119. doi:10.1016/j.tetlet.2018.07.006