2. Adelic constructions for direct images of differentials and symbols

Denis Osipov

2.0. Introduction

Let X be a smooth algebraic surface over a perfect field k.

Consider pairs $x \in C$, x is a closed point of X, C is either an irreducible curve on X which is smooth at x, or an irreducible analytic branch near x of an irreducible curve on X. As in the previous section 1 for every such pair $x \in C$ we get a two-dimensional local field $K_{x,C}$.

If X is a projective surface, then from the adelic description of Serre duality on X there is a local decomposition for the trace map $H^2(X, \Omega^2_X) \to k$ by using a two-dimensional residue map $\text{res}_{K_{x,C}/k(x)}: \Omega^2_{K_{x,C}/k(x)} \to k(x)$ (see [P1]).

From the adelic interpretation of the divisors intersection index on X there is a similar local decomposition for the global degree map from the group $CH^2(X)$ of algebraic cycles of codimension 2 on X modulo the rational equivalence to \mathbb{Z} by means of explicit maps from $K_2(K_{x,C})$ to \mathbb{Z} (see [P3]).

Now we pass to the relative situation. Further assume that X is any smooth surface, but there are a smooth curve S over k and a smooth projective morphism $f: X \to S$ with connected fibres. Using two-dimensional local fields and explicit maps we describe in this section a local decomposition for the maps

$$f_*: H^n(X, \Omega^2_X) \to H^{n-1}(S, \Omega^1_S), \quad f_*: H^n(X, \mathcal{K}_2(X)) \to H^{n-1}(S, \mathcal{K}_1(S))$$

where \mathcal{K} is the Zariski sheaf associated to the presheaf $U \to K(U)$. The last two groups have the following geometric interpretation:

$$H^n(X, \mathcal{K}_2(X)) = CH^2(X, 2 - n), \quad H^{n-1}(S, \mathcal{K}_1(S)) = CH^1(S, 2 - n)$$

where $CH^2(X, 2 - n)$ and $CH^1(S, 1 - n)$ are higher Chow groups on X and S (see [B1]). Note also that $CH^2(X, 0) = CH^2(X)$, $CH^1(S, 0) = CH^1(S) = \text{Pic}(S)$, $CH^1(S, 1) = H^0(S, \mathcal{O}_S^\ast)$.
Let $s = f(x) \in S$. There is a canonical embedding $f^*: K_s \to K_{x,C}$ where K_s is the quotient of the completion of the local ring of S at s.

Consider two cases:

1. $C \neq f^{-1}(s)$. Then $K_{x,C}$ is non-canonically isomorphic to $k(C)_x((t_C))$ where $k(C)_x$ is the completion of $k(C)$ at x and t_C is a local equation of C near x.

2. $C = f^{-1}(s)$. Then $K_{x,C}$ is non-canonically isomorphic to $k(x)((u))((t_s))$ where $\{u = 0\}$ is a transversal curve at x to $f^{-1}(s)$ and $t_s \in K_s$ is a local parameter at s, i.e. $k(s)((t_s)) = K_s$.

2.1. Local constructions for differentials

Definition. For $K = k((u))((t))$ let $U = u^i k[[u,t]][d k[[u,t]] + t^i k((u))][[t]]$ be a basis of neighbourhoods of zero in $\Omega^1_{k((u))[[t]]/k}$ (compare with 1.4.1 of Part I). Let $\Omega^1_{K/K} \equiv \Omega^1_{K/k} / (K \cdot \cap U)$ and $\hat{\Omega}^n_{K} = \wedge^n \hat{\Omega}^1_{K}$. Similarly define $\hat{\Omega}^n_{K_s}$. Note that $\hat{\Omega}^2_{K_s, C}$ is a one-dimensional space over $K_{x,C}$; and $\hat{\Omega}^n_{K_s, C}$ does not depend on the choice of a system of local parameters of $\hat{\Omega}_x$, where $\hat{\Omega}_x$ is the completion of the local ring of X at x.

Definition. For $K = k((u))((t))$ and $\omega = \sum_i \omega_i(u) \wedge t^i dt = \sum_i u^i du \wedge \omega'_i(t) \in \hat{\Omega}^2_{K}$ put

$$\text{res}_t(\omega) = \omega_{-1}(u) \in \hat{\Omega}^1_{k((u))},$$

$$\text{res}_u(\omega) = \omega'_{-1}(t) \in \hat{\Omega}^1_{k((t))}.$$

Define a relative residue map

$$f^x_{*}: \hat{\Omega}^2_{K_s, C} \to \hat{\Omega}^1_{K_s}$$

as

$$f^x_{*}(\omega) = \begin{cases}
\text{Tr}_{k(C)_x/K_s} \text{res}_{t_C}(\omega) & \text{if } C \neq f^{-1}(s) \\
\text{Tr}_{k(x)((t_s))/K_s} \text{res}_{u}(\omega) & \text{if } C = f^{-1}(s).
\end{cases}$$

The relative residue map doesn’t depend on the choice of local parameters.

Theorem (reciprocity laws for relative residues). Fix $x \in X$. Let $\omega \in \hat{\Omega}^2_{K_s}$ where K_x is the minimal subring of $K_{x,C}$ which contains $k(X)$ and $\hat{\Omega}_x$. Then

$$\sum_{C \supset x} f^x_{*}(\omega) = 0.$$
Fix \(s \in S \). Let \(\omega \in \widetilde{\Omega}_K^2 \) where \(K_F \) is the completion of \(k(X) \) with respect to the discrete valuation associated with the curve \(F = f^{-1}(s) \). Then
\[
\sum_{x \in F} f_{x,F}^*(\omega) = 0.
\]

See [O].

2.2. The Gysin map for differentials

Definition. In the notations of subsection 1.2.1 in the previous section put

\[
\Omega^1_{k,S} = \{(f_s dt_s) \in \prod_{s \in S} \tilde{\Omega}_K^1, \quad v_s(f_s) \geq 0 \text{ for almost all } s \in S \}
\]

where \(t_s \) is a local parameter at \(s \), \(v_s \) is the discrete valuation associated to \(t_s \) and \(K_s \) is the quotient of the completion of the local ring of \(S \) at \(s \). For a divisor \(I \) on \(S \) define

\[
\Omega^1_{k,S}(I) = \{(f_s) \in \Omega^1_{k,S} : v_s(f_s) \geq -v_s(I) \text{ for all } s \in S \}.
\]

Recall that the \(n \)-th cohomology group of the following complex

\[
\Omega^1_{k(S)/k} \oplus \Omega^1_{k,S}(0) \rightarrow \Omega^1_{k,S} \rightarrow f_0 + f_1.
\]

is canonically isomorphic to \(H^n(S, \Omega^1_S) \) (see [S, Ch.II]).

The sheaf \(\Omega^2_X \) is invertible on \(X \). Therefore, Parshin’s theorem (see [P1]) shows that similarly to the previous definition and definition in 1.2.2 of the previous section for the complex \(\Omega^2(A_X) \)

\[
\Omega^2_{A_0} \oplus \Omega^2_{A_1} \oplus \Omega^2_{A_2} \rightarrow \Omega^2_{A_{01}} \oplus \Omega^2_{A_{02}} \oplus \Omega^2_{A_{12}} \rightarrow \Omega^2_{A_{012}}
\]

\[
(f_0, f_1, f_2) \rightarrow (f_0 + f_1, f_2 - f_0, -f_1 - f_2) \quad (g_1, g_2, g_3) \rightarrow g_1 + g_2 + g_3
\]

where

\[
\Omega^2_{A_i} \subset \Omega^2_{A_{ij}} \subset \Omega^2_{A_{012}} = \Omega^2_{A_X} = \prod_{x \in C} \tilde{\Omega}^2_{K_{x,c}} \subset \prod_{x \in C} \tilde{\Omega}^2_{K_{x,c}}
\]

there is a canonical isomorphism

\[
H^n(\Omega^2(A_X)) \simeq H^n(X, \Omega^2_X).
\]

Using the reciprocity laws above one can deduce:
Theorem. The map $f_\ast = \sum_{C \ni x, f(x) = s}^\ast f_\ast^{x,C}$ from $\Omega^2_{A_X}$ to $\Omega^1_{A_S}$ is well defined. It maps the complex $\Omega^2(A_X)$ to the complex

$$0 \to \Omega^1_{k(S)/k} \oplus \Omega^1_{k_S}(0) \to \Omega^1_{k_S}.$$

It induces the map $f_\ast : H^n(X, \Omega^2_X) \to H^{n-1}(S, \Omega^1_S)$ of 2.0.

See [O].

2.3. Local constructions for symbols

Assume that k is of characteristic 0.

Theorem. There is an explicitly defined symbolic map

$f_\ast(, , x,C) : K^*_x,C \times K^*_x,C \to K^*_S$

(see remark below) which is uniquely determined by the following properties

$$N_{k(x)/k(s)} t_{K_x,C}(\alpha, \beta, f^*(\gamma)) = t_{K_s}(f_\ast(\alpha, \beta)_x,C, \gamma) \quad \text{for all } \alpha, \beta \in K^*_x,C, \gamma \in K^*_s$$

where $t_{K_x,C}$ is the tame symbol of the two-dimensional local field K_x,C and t_{K_s} is the tame symbol of the one-dimensional local field K_s (see 6.4.2 of Part I);

$$\text{Tr}_{k(x)/k(s)}(\alpha, \beta, f^*(\gamma))|_{K_x,C} = (f_\ast(\alpha, \beta)_x,C, \gamma)|_{K_s} \quad \text{for all } \alpha, \beta \in K^*_x,C, \gamma \in K_s$$

where $(\alpha, \beta, \gamma)_{K_x,C} = \text{res}_{K_x,C/k(x)}(\gamma d\alpha/\alpha \wedge d\beta/\beta)$ and

$(\alpha, \beta)_{K_s} = \text{res}_{K_s/k(s)}(\alpha d\beta/\beta)$.

The map $f_\ast(, , x,C)$ induces the map

$f_\ast(, , x,C) : K_2(K_x,C) \to K_1(K_s)$.

Corollary (reciprocity laws). Fix a point $s \in S$. Let $F = f^{-1}(s)$.

Let $\alpha, \beta \in K^*_F$. Then

$$\prod_{x \in F} f_\ast(\alpha, \beta)_x,F = 1.$$

Fix a point $x \in F$. Let $\alpha, \beta \in K^*_x$. Then

$$\prod_{C \ni x} f_\ast(\alpha, \beta)_x,C = 1.$$

Remark. If $C \neq f^{-1}(s)$ then $f_\ast(, , , x,C) = N_{k(C)/k_x} t_{K_x,C}$ where $t_{K_x,C}$ is the tame symbol with respect to the discrete valuation of rank 1 on K_x,C.

If $C = f^{-1}(s)$ then $f_\ast(, , , x,C) = N_{k(x)/k(s)}(, ,)_f$ where $(,)_f^{-1}$ coincides with Kato’s residue homomorphism [K, §1]. An explicit formula for $(,)_f$ is constructed in [O, Th.2].
2.4. The Gysin map for Chow groups

Assume that \(k \) is of arbitrary characteristic.

Definition. Let \(K'_2(A_X) \) be the subset of all \((f_{x,C}) \in K_2(K_{x,C}), \ x \in C \) such that
(a) \(f_{x,C} \in K_2(\mathcal{O}_{x,C}) \) for almost all irreducible curves \(C \) where \(\mathcal{O}_{x,C} \) is the ring of integers of \(K_{x,C} \) with respect to the discrete valuation of rank 1 on it;
(b) for all irreducible curves \(C \subset X \), all integers \(r \geq 1 \) and almost all points \(x \in C \)
\[
f_{x,C} \in K_2(\mathcal{O}_{x,C}, M_C) + K_2(\widehat{\mathcal{O}}_x[t_C^{-1}]) \subset K_2(K_{x,C})
\]
where \(M_C \) is the maximal ideal of \(\mathcal{O}_{x,C} \) and \(K_2(A, J) = \ker(K_2(A) \to K_2(A/J)) \).

This definition is similar to the definition of [P2].

Definition. Using the diagonal map of \(K_2(K_C) \) to \(\prod_{x \in C} K_2(K_{x,C}) \) and of \(K_2(K_x) \) to \(\prod_{C \ni x} K_2(K_{x,C}) \) put
\[
K'_2(A_{01}) = K'_2(A_X) \cap \text{image of } \prod_{C \ni x} K_2(K_{C}),
\]
\[
K'_2(A_{02}) = K'_2(A_X) \cap \text{image of } \prod_{x \in X} K_2(K_x),
\]
\[
K'_2(A_{12}) = K'_2(A_X) \cap \text{image of } \prod_{x \in C} K_2(\mathcal{O}_{x,C}),
\]
\[
K'_2(A_0) = K_2(k(X)),
\]
\[
K'_2(A_1) = K'_2(A_X) \cap \text{image of } \prod_{C \ni x} K_2(\mathcal{O}_C),
\]
\[
K'_2(A_2) = K'_2(A_X) \cap \text{image of } \prod_{x \in X} K_2(\widehat{\mathcal{O}}_x)
\]
where \(\mathcal{O}_C \) is the ring of integers of \(K_C \).

Define the complex \(K_2(A_X) \):
\[
k_2(A_0) \oplus k_2(A_1) \oplus k_2(A_2) \to k_2(A_{01}) \oplus k_2(A_{02}) \oplus k_2(A_{12}) \to k_2(A_{012})
\]
\[
(f_0, f_1, f_2) \mapsto (f_0 + f_1, f_2 - f_0, -f_1 - f_2)
\]
\[
(g_1, g_2, g_3) \mapsto g_1 + g_2 + g_3
\]
where \(k_2(A_{012}) = k_2(A_X) \).

Using the Gersten resolution from \(K \)-theory (see [Q, §7]) one can deduce:
Theorem. There is a canonical isomorphism
\[H^n(K_2(\mathbb{A}_X)) \simeq H^n(X, \mathcal{K}_2(X)). \]

Similarly one defines \(K'_1(\mathbb{A}_S) \). From \(H^1(S, \mathcal{K}_1(S)) = H^1(S, \mathcal{O}_S^*) = \text{Pic}(S) \) (or from the approximation theorem) it is easy to see that the \(n \)-th cohomology group of the following complex
\[
K_1(k(S)) \oplus \sum_{s \in S} K_1(\widehat{\mathcal{O}}_s) \rightarrow K'_1(\mathbb{A}_S)
\]
is canonically isomorphic to \(H^n(S, \mathcal{K}_1(S)) \) (here \(\widehat{\mathcal{O}}_s \) is the completion of the local ring of \(C \) at \(s \)).

Assume that \(k \) is of characteristic 0.

Using the reciprocity law above and the previous theorem one can deduce:

Theorem. The map \(f_* = \sum_{C \ni x, f(x)=s} f_*(\cdot, x, C) \) from \(K_2(\mathbb{A}_X) \) to \(K'_1(\mathbb{A}_S) \) is well defined. It maps the complex \(K_2(\mathbb{A}_X) \) to the complex
\[
0 \rightarrow K_1(k(S)) \oplus \sum_{s \in S} K_1(\widehat{\mathcal{O}}_s) \rightarrow K'_1(\mathbb{A}_S).
\]

It induces the map \(f_*: H^n(X, \mathcal{K}_2(X)) \rightarrow H^{n-1}(S, \mathcal{K}_1(S)) \) of 2.0.
If \(n = 2 \), then the last map is the direct image morphism (Gysin map) from \(CH^2(X) \) to \(CH^1(S) \).

References

[B] S. Bloch, Algebraic K-theory, motives and algebraic cycles, ICM90, p.43–54.
[K] K. Kato, Residue homomorphism in Milnor K-theory, Galois groups and their representations (Nagoya 1981), Advanced Studies in Pure Math., vol. 2, North-Holland, Amsterdam-New York 1983, p.153–172.
[O] D. V. Osipov, Adele constructions of direct images of differentials and symbols, Mat. Sbornik (1997); English translation in Sbornik: Mathematics 188:5 (1997), 697–723; slightly revised version in e-print [alg-geom/9802113].
[P1] A. N. Parshin On the arithmetic of two-dimensional schemes. I. Repartitions and residues, Izv. Akad. Nauk SSSR Ser. Mat. 40(4) (1976), p.736–773; English translation in Math. USSR Izv. 10 (1976).
Part II. Section 2. Adelic constructions for direct images

[P2] A. N. Parshin, Abelian coverings of arithmetical schemes, DAN USSR, v.243 (1978), p.855–858; English translation in Soviet. Math. Doklady 19 (1978).

[P3] A. N. Parshin, Chern classes, adeles and L-functions, J. reine angew. Math. 341(1983), 174–192.

[Q] D. Quillen, Higher algebraic K-theory 1, Lecture Notes Math. 341, Algebraic K-theory I, Springer-Verlag, Berlin etc., 85–147.

[S] J.-P. Serre, Groupes algébriques et corps de classes, Hermann, Paris, 1959.

Department of Algebra, Steklov Mathematical Institute, Ul. Gubkina, 8, Moscow, GSP-1, 117966, Russia

Email: d_osipov@mail.ru