Anticoagulant activities of piperlonguminine in vitro and in vivo

Wonhwa Lee¹,², Hayoung Yoo¹,³, Sae-Kwang Ku³,⁴, Jeong Ah Kim¹ & Jong-Sup Bae¹,*

¹College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, ²Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 702-701, ³Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University, Gyeongsan 712-715, Korea

Piperlonguminine (PL), an important component of Piper longum fruits, is known to exhibit anti-hyperlipidemic, anti-platelet and anti-melanogenic activities. Here, the anticoagulant activities of PL were examined by monitoring activated-partial-thromboplastin-time (aPTT), prothrombin-time (PT), and the activities of thrombin and activated factor X (FXa). The effects of PL on the expressions of plasminogen activator inhibitor type 1 (PAI-1) and tissue-type plasminogen activator (t-PA) were also tested in tumor necrosis factor-α (TNF-α) activated HUVECs. The results showed that PL prolonged aPTT and PT significantly and inhibited the activities of thrombin and FXa. PL inhibited the generation of thrombin and FXa in HUVECs. In accordance with these anticoagulant activities, PL prolonged in vivo bleeding time and inhibited TNF-α-induced PAI-1 production. Furthermore, PAI-1/t-PA ratio was significantly decreased by PL. Collectively, our results suggest that PL possesses antithrombotic activities and that the current study could provide bases for the development of new anticoagulant agents. [BMB Reports 2013; 46(10): 484-489]

INTRODUCTION

Coagulation is a major defense mechanism against bleeding. The coagulation system consists of a series of stepwise, coordinated reactions involving specific plasma proteins and blood cells that culminate in the formation of an insoluble clot (1). The coagulation system can be divided into the extrinsic and intrinsic pathway. Activation of the extrinsic pathway is generally considered to initiate both haemostasis and thrombosis. Haemostasis is initiated when blood is exposed to tissue factor located in the adventitia of blood vessels, and thrombosis is initiated when blood is exposed to tissue factor in the necrotic core of the ruptured atherosclerotic plaques, in the subendothelium of injured vessels and on the surface of activated leucocytes attracted to the damaged vessel (2). The final common mediator of both the intrinsic and extrinsic coagulation pathways is thrombin. Thrombin triggers platelet activation, as well as the production of factor V, VIII, and IX, and mediates the proteolytic cleavage of fibrinogen to fibrin and then it binds to fibrin where it remains active (3). The physiological function of the coagulation system is to prevent the loss of blood after injury. Given the central role of thrombin in the development of a thrombus, many strategies for preventing and treating thromboembolic events have focused on inhibiting thrombin generation or blocking its activity (2, 3).

The search for anticoagulant agents from natural herbal medicines is an area of considerable interest (4). Piper longum L. (Piperaceae) is a slender aromatic climber with perennial woody roots, occurring primarily in tropical regions. The fruits are used as a spice and also as a preservative in pickles. In traditional medicines, P. longum fruits have been attributed with the treatment of bronchial diseases, menstrual pain, tuberculosis, muscular pain, sleeping disorders, and certain forms of arthritis (5-7). The anticoagulant effects of extracts of the P. longum fruits have not been previously determined. During our continued search for natural products that modulate coagulation cascade, we found that the methanol extract of the P. longum fruits exhibited potent anticoagulant activity in both cell and animal models. The fruits of the P. longum have been shown to contain alkaloids and amides; pipericide, pipercine, piperlonguminine, piplartine, and aristolactams (8-11). Activity-guided purification of the extract of P. longum fruits resulted in isolation of one active principle, which was subsequently identified as piperlonguminine (PL). Piperlonguminine showed various biological properties including anti-hyperlipidemic, anti-platelet and anti-melanogenesis activities (12-15). However, to our knowledge, the anticoagulant functions of piperlonguminine have not been studied yet. Therefore, we sought to test the anticoagulant activities of PL by examining the inhibitory effects of PL on the generation of factor Xa (FXa) and thrombin and clotting time changes (PT and aPTT), and their fibrinolytic activities.
RESULTS AND DISCUSSION

The present study for the first time reports the anticoagulant effects of piperlonguminine (compound 1, PL), isolated from *P. longum* fruits, and the mechanisms responsible for these effects.

Effects of PL on aPTT and PT

Incubation of human plasma with PL changed coagulation properties. The anticoagulatory effects of PL were tested using aPTT and PT assays and human plasma (Table 1). Although the anticoagulatory activities of PL were weaker than those of heparin, aPTT and PT were significantly prolonged by PL at concentrations 20 μM and above. A prolongation of aPTT suggests inhibition of the intrinsic and/or the common pathway, whereas PT prolongation indicates that PL could also inhibit the extrinsic coagulation pathway. To confirm these in vitro results, tail bleeding times were determined. Assuming an average body weight of 20 g and an average blood volume of 2 ml, the test compounds administered (0.25 μg/mouse = 0.413 mg/kg) produced a concentration of approximately 30 μM in peripheral blood. As shown in Table 1, tail bleeding times were significantly prolonged by PL in comparison to the controls.

Effects of PL on thrombin-catalyzed platelet aggregation and fibrin polymerization

As shown in Fig. 1B, PL significantly inhibited mouse platelet aggregation induced by thrombin (final concentration: 3 U/ml) in a concentration dependent manner. The effects of PL on thrombin-catalyzed fibrin polymerization in human plasma were monitored as changes in absorbance at 360 nm, as described in Materials and Methods. The results (Fig. 1C) showed that incubation of human plasma with PL significantly decreased maximal fibrin polymerization rates. To eliminate the effect of pH all dilutions were made with 50 mM TBS (pH7.4). We also examined the effect of DMSO on human plasma at the same volume as in the case of PL, but no differences in coagulation properties were observed. We further characterized the influence of calcium by performing polymerization experiments without or with 1 mM CaCl2. Results showed that calcium had an influence on the fibrin polymerization by PL (data not shown). To exclude the possibility that the decrease in polymerization could be due to a direct effect on thrombin leading to decrease in fibrin production rather than polymerization of fibrin formed, reptilase-catalyzed polymerization assay was included. Results showed that PL significantly decreased repti-

![Fig. 1.](image)

Table 1. Anticoagulant activity of PL

Sample	Dose	aPTT (s)	PT (s)	PT (INR)
Control	Saline	30.3 ± 0.4	13.2 ± 0.3	1.00
PL	1 μM	31.8 ± 0.7	13.4 ± 0.7	1.03
	2 μM	31.7 ± 0.5	13.5 ± 0.5	1.05
	5 μM	31.4 ± 0.3	13.6 ± 0.4	1.07
	10 μM	37.8 ± 0.4b	15.7 ± 0.3b	1.46b
	20 μM	47.7 ± 0.7b	22.7 ± 0.7b	3.30b
	30 μM	55.3 ± 0.5b	24.3 ± 0.6b	3.83b
Heparin	0.5 (mg/ml)	87.6 ± 1.4b	35.7 ± 0.5b	8.94b

* Each value represents the means ± SD (n = 5). \(\ast \)P < 0.05 or \(\ast \ast \)P < 0.01 as compared to control.

![http://bmbreports.org](image)
lase-catalyzed polymerization (Fig. 1C). To test the cytotoxicity of PL, cellular viability assays were performed in HUVECs treated with PL for 24 h. At concentrations up to 100 μM, PL did not affect cell viability (Fig. 1D).

Effects of PL on the activities of thrombin and factor Xa (FXa)
To investigate the mechanism responsible for the inhibitory effects of PL on coagulation time, we measured the inhibitory effects of PL on thrombin and FXa using chromogenic substrates. The amidolytic activity of thrombin was inhibited dose-dependently by PL, showing that PL directly inhibited thrombin activity (Fig. 2A). We also investigated the effects of PL on FXa. As shown in Fig. 2B, the activity of FXa was inhibited dose-dependently by PL, showing that PL directly inhibited FXa activity. These results were consistent with the results of our antithrombin assays, and suggested that the mechanism responsible for the antithrombotic effects of PL is due to the inhibitions of fibrin polymerization and/or the intrinsic and extrinsic pathways.

Effects of PL on the secretory activity of PAI-1 and t-PA proteins
TNF-α appears to inhibit the fibrinolytic mechanism in HUVECs by inducing the production of PAI-I. Furthermore, the balance between t-PA and PAI-1 is known to determine procoagulant and hypofibrinolysis activities (19, 20). To examine the direct effect of PL on TNF-α stimulated PAI-1 secretion, HUVECs were cultured in media with or without PL in the presence and absence of TNF-α for 18 h. As shown in Fig. 3A, PL dose-dependently inhibited TNF-α induced PAI-1 secretion from HUVECs, and this decrease became significant at a PL dose of 10 μM.

Because TNF-α significantly did not affect t-PA production (21) and the balance between plasminogen activators and their inhibitors reflects net plasminogen-activating capacity (2, 3, 22), we sought to investigate the effects of TNF-α and PL on

![Fig. 2. Effects of PL on the inactivation and on the generation of thrombin and factor Xa.](image)

![Fig. 3. Effects of PL on the secretion of PAI-1 and t-PA.](image)
t-PA production in HUVECs. Our observation further endorse a previous observation whereby TNF-α is shown to modestly decreased t-PA production in HUVECs (23) and this decrease was not significantly altered by treatment with PL during the current study (Fig. 3B). Therefore, these results collectively indicate that the PAI-1/t-PA ratio was increased by TNF-α and significantly decreased by PL compared to TNF-α treated conditions (Fig. 3C).

In conclusion, this study shows that PL inhibits the extrinsic and intrinsic pathways of blood coagulation by inhibiting FXa and thrombin generation and that both inhibit TNF-α induced PAI-1 protein secretion by HUVECs. Based on the cellular viability assays, we believe that the antithrombotic and profibrinolytic activities of PL were not due to any cytotoxic effect. We hope this study will prove helpful to those involving in pharmacological strategies for the treatment or prevention of vascular diseases via the regulation of thrombosis production.

MATERIALS AND METHODS

Reagents
TNF-α was purchased from R&D Systems (Minneapolis, MN), and antistress factor antibody from Santa Cruz Biologics (Santa Cruz, CA). Factor V, VII, and VIII, FX, Fxa, prothrombin, and thrombin were from Haematologic Technologies (Essex Junction, VT, USA). aPTT assay reagent (APTT-XL) and PT (Thromboplastin-D) reagents were purchased from Thermo Scientific (UK), the chromogenic substrates S-2222 and S-2238 from Chromogenix AB (Sweden), and the PAI-1 and t-PA ELISA kits from American Diagnostica Inc (Stamford, CT, USA). Heparin was provided by Dr. Rezaie AR, The Edward A. Doisy Pharmacy, Yeungnam University.

Plant material, extraction, and isolation
Fruits of Piper longum L. (Piperaceae) were purchased from herbal market at Daegu, Korea, in February 2002. The plant material was identified by Dr. Seung Ho Lee at the College of Pharmacy, Yeungnam University, South Korea. A voucher specimen (SH02020) was deposited at herbarium, College of Pharmacy, Yeungnam University.

Dried fruits of P. longum (300 g) were crushed and extracted in MeOH at the room temperature for 7 days. After concentration the extract, the MeOH extract (23.9 g) was suspended in more than 5 volumes of water and partitioned in methylene chloride (MC) for three times. The MC-soluble fraction (9.2 g) was chromatographed on silica gel, eluting in EtOAc in n-hexane (0-100%), step-wise, yielding seven fractions (Fr 1-Fr 7). Fr 5 (520.0 mg) was subjected to reversed phase C-18 column chromatography, subsequently eluted in a gradient of MeOH-H2O (from 3 : 2 to 10 : 0), and fractionated (Fr 5-1-Fr 5-5). Fr 5-3 (120.1 mg) was washed in n-hexane, and insoluble part (48.3 mg) of the Fr 5-3 was purified by preparative HPLC (UV detection 254 nm) using an isocratic mixture of MeOH-H2O (4 : 1, 1.0 ml/min) as the solvent, furnishing a piperlonguminine (tR 27.8 min, 12.5 mg, 0.00417% w/w). The structure of compound 1 (Fig. 1A) was identified by a combination of spectroscopic methods and available literature data (9).

Anticoagulant activities of piperlonguminine

Anticoagulation assay

aPTT and PT were determined using a Thrombotimer (Behnk Elektronik, Germany), according to the manufacturer’s instructions as described previously (24-26). In brief, citrated normal human plasma (90 μl) was mixed with 10 μl of PL and incubated for 3 min at 37°C. aPTT assay reagent (100 μl) was added and incubated for 1 min at 37°C, and then 20 mM CaCl2 (100 μl) was added. Clotting times were recorded. For PT assays, citrated normal human plasma (90 μl) was mixed with 10 μl of PL stock and incubated for 3 min at 37°C. PT assay reagent (200 μl), which has been preincubated for 10 min at 37°C, was then added and clotting time was recorded. PT results are expressed in seconds and as International Normalized Ratios (INR), and aPTT results are expressed in seconds. INR = (PT sample / PT control)1/2. ISI = international sensitivity index.

Cell culture

Primary HUVECs were obtained from Cambrex Bio Science (Charles City, IA) and were maintained as described previously (27).

Platelet aggregation assay

Mouse platelets from platelet-rich plasma (PRP) were washed once with HEPES buffer (5 mM HEPES, 136 mM NaCl, 2.7 mM KC1, 0.42 mM NaH2PO4, 2 mM MgCl2, 5.6 mM glucose, 0.1% BSA (w/v), pH to 7.45). The platelet aggregation study was carried out according to a method previously reported (28). Washed platelets were incubated with indicated PL for 3 min, and then stimulated by thrombin (3 U/ml, Sigma) in 0.9% saline solution at 37°C for 5 min. Platelet aggregation was recorded using a aggregometer (Chronolog, Haverton, PA, USA).

Thrombin or reptilase-catalyzed fibrin polymerization

Thrombin or reptilase-catalyzed polymerization was followed by monitoring changes in turbidity at 360 nm every 6 s for 20 min using a spectrophotometer (TECAN, Switzerland) at ambient temperature. Control plasma and plasma samples incubated with PL were three-fold diluted in TBS (50 mM Tris-buffered physiological saline solution pH 7.4) and clotted with thrombin or reptilase (final concentration - 0.5 U/ml) with or without 1 mM CaCl2. Maximum polymerization rate (Vmax, ΔOD/min) was recorded for each absorbance maximum slope from the turbidity curve (29). All experiments were performed three times.

Factor Xa generation on the surfaces of HUVECs

TNF-α (10 ng/ml for 6 h in serum-free medium) stimulated confluent monolayers of HUVECs (preincubated with the indicated
concentrations of PL for 10 min) in a 96-well culture plate were incubated with FVIIa (10 nM) in buffer B (buffer A supplemented with 5 mg/ml BSA and 5 mM CaCl2) for 5 min at 37°C in presence or absence of anti-TF IgG (25 μg/ml). FX (175 nM) was then added to the cells (final reaction volume, 100 μl) and incubated for 15 min. The reaction was stopped by adding buffer A (10 mM HEPES, pH 7.45, 150 mM NaCl, 4 mM KCl, and 11 mM glucose) containing 10 mM EDTA and the amounts of FXa generated were measured by using a chromogenic substrate. Changes in absorbance at 405 nm over 2 min were monitored using a spectrophotometer (TECAN, Switzerland).

Anticoagulant activities of piperlonguminine

Wonhwa Lee, et al.

Thrombin generation on the surface of HUVECs

HUVECs were preincubated in 300 μl of a mixture containing PL in 50 mM Tris-HCl buffer, 100 mM FVAs, and 1 mM FXa for 10 min and prothrombin was added to a final concentration of 1 μM followed by calcium chloride (16.7 mM) to initiate the clotting reaction. After 10 min, duplicate samples (10 μl each) were transferred to a 96-well plate containing 40 μl of 0.5 M EDTA in Tris-buffered saline per well to terminate prothrombin activation. Activated prothrombin was determined by measuring the rate of hydrolysis of S2238 at 405 nm. Standard curves were prepared using known dilutions of purified human FXa.

Thrombin activity assay

PL was dissolved in physiological saline to the appropriate concentrations. Then, PL was mixed with 50 mM Tris-HCl buffer (pH 7.4) containing 7.5 mM EDTA and 150 mM NaCl. Heparin was used as a positive control. After incubation at 37°C for 2 min, thrombin solution (150 μl; 10 U/ml) was added to each well and incubated at 37°C for 1 min. S-2238 (150 μl; 1.5 mM) was then added and absorbance at 405 nm was monitored for 120 s using a spectrophotometer (TECAN, Switzerland).

Factor Xa (FXa) activity assay

This assay was performed in the same way as the thrombin activity assay, but factor Xa (1 U/ml) and substrate S-2222 were used instead of thrombin and S-2238, respectively.

Effect on bleeding time

Tail bleeding times were determined as described by Dejana et al (30). Briefly, male ICR mice were fasted overnight and PL in water was administered by oral gavage. One hour after administration, tails were transected 2 mm from their tips. Bleeding time was defined as the time elapsed until bleeding stopped. However, bleeding times that exceeded 15 min were recorded as 15 min for analyses. All animals were treated in accordance with the Guidelines for the Care and Use of Laboratory Animals issued by the Kyungpook National University.

ELISA for PAI-1 and t-PA

Concentrations of PAI-1 and t-PA in HUVEC supernatants were determined using ELISA kits (American Diagnostica Inc., CT, USA) according to the manufacturer’s recommended protocol.

Statistical analysis

Data are expressed as the means ± standard deviations of at least three independent experiments. Statistical significance between two groups was determined using the Student’s t-test. Statistical significance was accepted for P values < 0.05.

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) funded by the Korea government [MEST] (Grant No. 2012028835 and 2012-0009400).

REFERENCES

1. Dahlback, B. (2000) Blood coagulation. Lancet 355, 1627-1632.
2. Davie, E. W., Fujikawa, K. and Kisiel, W. (1991) The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 30, 10363-10370.
3. Davie, E. W. (1995) Biochemical and molecular aspects of the coagulation cascade. Thromb Haemost 74, 1-6.
4. Li, Y., Qian, Z. J., Ryu, B., Lee, S. H., Kim, M. M. and Kim, S. K. (2009) Chemical components and its antioxidant properties in vitro: an edible marine brown alga, Ecklonia cava. Bioorg. Med. Chem. 17, 1963-1973.
5. Huang, H., Morgan, C. M., Asokkar, R. N., Koivunen, M. E. and Marrone, P. G. (2010) Phytoxicity of sarmentine isolated from long pepper (Piper longum) fruit. J. Agric. Food Chem. 58, 9994-10000.
6. Manoj, P., Soniya, E. V., Banerjee, N. S. and Ravichandran, P. (2004) Recent studies on well-known spice, Piper longum Linn. Nat. Prod. Rad. 3, 222-227.
7. Rao, G. V., Rao, K. S., Mukhopadhyay, T. and Madhavi, M. S. L. (2012) Alkamides and their biological activity from Piper longum Linn. J. Pharm Res. 5, 165-168.
8. Parmar, V. S., Jain, S. C., Bish, K. S., Jain, R., Taneja, P., Jha, A., Tyagi, O. D., Prasad, A. K., Wengel, J., Olsen, C. E. and Boll, P. M. (1997) Phytochemistry of the genus Piper. Phytochemistry 46, 597-673.
9. Chatterjee, A. and Dutta, C. P. (1967) Alkaloids of Piper longum Linn. I. Structure and synthesis of piperlongumine and piperlonguminine. Tetrahedron 23, 1769-1781.
10. Desai, S. J., Prabhu, B. R. and Mulchandani, N. B. (1988) Aristolactams and 4,5-dioxoaraphines from Piper longum. Phytochemistry 27, 1511-1515.
11. Liu, J., Bi, Y., Luo, R. and Wu, X. (2011) Simultaneous UFLC-ESI-MS/MS determination of piperine and piperlonguminine in rat plasma after oral administration of alkaloids from Piper longum L.; application to pharmaco-kinetic studies in rats. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 879, 2885-2890.
12. Jin, Z., Borjihan, G., Zhao, R., Sun, Z., Hammond, G. B. and Uryu, T. (2009) Anthyperlipidemic compounds from the fruit of Piper longum L. Phytother Res. 23, 1194-1196.
13. Park, B. S., Son, D. J., Choi, W. S., Takeoka, G. R., Han, S. O., Kim, T. W. and Lee, S. E. (2008) Antiplatelet activ-
Anticoagulant activities of piperlonguminine
Wonhwa Lee, et al.

1. Anticoagulant activities of newly synthesized derivatives of piperlonguminine. Phytother Res. 22, 1195-1199.

2. Kim, K. S., Kim, J. A., Eom, S. Y., Lee, S. H., Min, K. R. and Kim, Y. (2006) Inhibitory effect of piperlonguminine on melatonin production in melanoma B16 cell line by downregulation of tyrosinase expression. Pigment. Cell Res. 19, 90-98.

3. Bezerra, D. P., Pessoa, C., Moraes, M. O., Alencar, N. M., Mesquita, R. O., Lima, M. W., Alves, A. P., Pessoa, O. D., Chaves, J. H., Silveira, E. R. and Costa-Lotufo, L. V. (2008) In vivo growth inhibition of sarcoma 180 by piperlonguminine, an alkaloid amide from the Piper species. J. Appl. Toxicol. 28, 599-607.

4. Sugo, T., Nakamikawa, C., Tanabe, S. and Matsuda, M. (1995) Activation of prothrombin by factor Xa bound to the membrane surface of human umbilical vein endothelial cells: its catalytic efficiency is similar to that of prothrombinase complex on platelets. J. Biochem. 117, 244-250.

5. Rao, L. V., Rapaport, S. I. and Lorenzi, M. (1988) Enhancement by human umbilical vein endothelial cells of factor Xa-catalyzed activation of factor VII. Blood 71, 791-796.

6. Ghosh, S., Ezban, M., Persson, E., Pendurthi, U., Hedner, U. and Rao, L. V. (2007) Activity and regulation of factor Vila analogs with increased potency at the endothelial cell surface. J. Thromb Haemost 5, 336-346.

7. Philip-Joet, F., Alessi, M. C., Philip-Joet, C., Aillaud, M., Barriere, J. R., Arnaud, A. and Juhan-Vague, I. (1995) Fibroinolytic and inflammatory processes in pleural effusions. Eur. Respir. J. 8, 1352-1356.

8. Schleef, R. R., Bevilacqua, M. P., Sawdey, M., Gimbrone, M. A. Jr. and Loskutoff, D. J. (1988) Cytokine activation of vascular endothelium. Effects on tissue-type plasminogen activator and type 1 plasminogen activator inhibitor. J. Biol. Chem. 263, 5797-5803.

9. Hamaguchi, E., Takamura, T., Shimizu, A. and Nagai, Y. (2003) Tumor necrosis factor-alpha and troglitazone regulate plasminogen activator inhibitor type 1 production through extracellular signal-regulated kinase- and nuclear factor-kappaB-dependent pathways in cultured human umbilical vein endothelial cells. J. Pharmacol. Exp. Ther. 307, 987-994.

10. Quinn, C., Hill, J. and Hassouna, H. (2000) A guide for diagnosis of patients with arterial and venous thrombosis. Clin. Lab. Sci. 13, 229-238.

11. Lopez, S., Peiretti, F., Bonardo, B., Juhan-Vague, I. and Nalbone, G. (2000) Effect of atorvastatin and fluvastatin on the expression of plasminogen activator inhibitor type-1 in cultured human endothelial cells. Atherosclerosis 152, 359-366.

12. Kim, T. H., Ku, S. K. and Bae, J. S. (2012) Antithrombotic and profibrinolytic activities of eckol and dieckol. J. Cell Biochem. 113, 2877-2883.

13. Lee, W., Yang, E. J., Ku, S. K., Song, K. S. and Bae, J. S. (2012) Anticoagulant activities of oleandric acid via inhibition of tissue factor expression. BMB Rep. 45, 390-395.

14. Kim, D. C., Ku, S. K. and Bae, J. S. (2012) Anticoagulant activities of curcumin and its derivative. BMB Rep. 45, 221-226.

15. Bae, J. S. and Rezaie, A. R. (2008) Protease activated receptor 1 (PAR-1) activation by thrombin is protective in human pulmonary artery endothelial cells if endothelial protein C receptor is occupied by its natural ligand. Thromb Haemost 100, 101-109.

16. Kim, S. Y., Kim, S., Kim, J. M., Jho, E. H., Park, S., Oh, D. and Yun-Choi, H. S. (2011) PKC inhibitors RO 31-8220 and Go 6983 enhance epinephrine-induced platelet aggregation in catecholamine hypo-responsive platelets by enhancing Akt phosphorylation. BMB Rep. 44, 140-145.

17. Nowak, P., Zbikowska, H. M., Ponczek, M., Kolodziejczyk, J. and Wachowicz, B. (2007) Different vulnerability of fibrinogen subunits to oxidative/nitrative modifications induced by peroxynitrite: functional consequences. Thromb Res. 121, 163-174.

18. Dejana, E., Callioni, A., Quintana, A. and de Gaetano, G. (1979) Bleeding time in laboratory animals. II - A comparison of different assay conditions in rats. Thromb Res. 15, 191-197.