Prevalence of intestinal parasitic infections among schoolchildren in Phitsanulok Province, Northern Thailand

Raxsina Polseela, Apichat Vitta

Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000 Thailand

1. Introduction

Intestinal parasitosis is a major public health problem worldwide, especially among children of developing countries. World Health Organization estimated that in the year 2000 approximately 3.5 billion people all over the world were infected with intestinal parasites and around 450 million children were ill because of these infections. In 1997, it was reported that there were estimated 280 million of hookworm infections worldwide, 478 million of ascariasis and 347 million of trichuriasis cases. *Ascaris lumbricoides* (giant intestinal roundworm), and *Enterobius vermicularis* (*E. vermicularis*) (pinworm) were the two common intestinal parasites found in schoolchildren[1,2]. Approximately 320 million schoolchildren worldwide were infected with *Ascaris lumbricoides* and more than 614 million schoolchildren were needed treatment[2,3]. *Enterobius* infection is widespread among children because they are frequently exposed to crowded and inadequate sanitary conditions. Children are particularly vulnerable to infections, causing many nutritional problems, and consequently, resulting in physical and intellectual growth retardation. It is known that intestinal parasitosis can lead to various types of morbidity with the symptoms of bloody stool, chronic diarrhea and abdominal pain. The public health problem of helminthiasis has been neglected in rural areas where there remains a low level of hygiene and poor quality of water supply[4]. Generally, undernourished and weak schoolchildren are also infected with some protozoa with several species inhabited in intestine. Most of them are non-pathogenic...
protozoa such as *Entamoeba coli* (*E. coli*) and *Endolimax nana*, whilst some can cause human symptoms including *Giardia lamblia* (*G. lamblia*) and *Entamoeba histolytica*.5,6).

In Thailand, intestinal parasitosis is the most common infection of people living in rural areas.7,8,17 Children are more often infected than adults because they take less care of personal hygiene. Several studies on detection of parasites among schoolchildren in Thailand reported the range of prevalence varied from 4.24% to 75.1%.9-16 Although the treatments of parasitic infections in schoolchildren have been implemented for reducing the parasitic infections, the high prevalence of intestinal parasites in schoolchildren has been widely documented in many areas.9,14-16.

In Phitsanulok Province, few data of parasitic infections among children have been reported.17 The appropriate control program is necessary to estimate the current status of intestinal parasitic infections. Thus, the objective of this research was to study the prevalence of intestinal parasites among schoolchildren in Phitsanulok Province, Northern Thailand. In addition, Scotch-tape technique was used for detecting *Enterobius* eggs. The results of this study might be useful for the researchers and health authorities for planning and implementing control programs in the studied areas.

2. Materials and methods

The study was performed at six primary schools close to Naresuan University in Phitsanulok Province, Northern Thailand: three schools of Bang Rakam District (Wat Krab Phuang, Wat Wang Ped and Wat Tha Ko) and three schools of Mueang District (Wat Sao Hin, Wat Kung Waree and Wat Sakat Namman) during February 2009 to January 2010. The province is situated in the lower Northern Thailand (Figure 1) and is located 370 km to the north of Bangkok. The majority of people earned their daily lives by agriculture.

An oral description and instruction for handling and collection of fecal samples were given to all children and teachers. The clean containers were distributed to each student on the day before specimen collection. All fecal specimens were transported to the laboratory of Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, and fixed in 10% formalin before further processing. The formalin-ethyl acetate concentration method was used to detect any parasites presented in fecal samples as described by Garcia.18 The presence of intestinal parasites was microscopically determined by two parasitologists. In addition, the Scotch tape technique was used for detecting *Enterobius* eggs. The children were explained how to use the Scotch tape slides as described by Beaver et al.19 All infected children with parasites were treated with anthelminthic drugs and were explained about the transmission of parasites and how to prevent the parasitic diseases.

3. Results

A total of 352 fecal samples were collected from schoolchildren, 183 boys and 169 girls in the age range from 7-15 years old to check for their intestinal parasites. It was found that the overall prevalence of parasitic infection among schoolchildren was 5.4% (19/352). Among six species of intestinal parasites detected, two species belonged to protozoa (*E. coli* and *G. lamblia*) and other four species were nematodes (*E. vermicularis*, *Trichuris trichiura* (*T. trichiura*), *Strongyloides stercoralis* (*S. stercoralis*), and hookworm). There were no cestodes and trematodes presented in this study. The infection rate ranged from 0% to 18.7% in different schools, and the highest rate was observed in Wat Wang Ped School. The positive infection rates for boys and girls were 5.5% and 5.3%, respectively. *Strongyloides* infection (2.5%) was the most common (Table 1) whilst *E. coli* and *G. lamblia* were found in 0.6% each. Mixed infections were found between hookworm and *E. coli*, hookworm and *T. trichiura* and *S. stercoralis* and *E. coli* in 0.3%. Hookworm infection and...
trichuriasis were individually treated with mebendazole (100 mg) twice daily for three consecutive days.

Additionally, 576 children, 305 boys and 271 girls in the age range of 2-15 years old from four schools, namely, Wat Krab Phuang, Wat Kung Waree, Wat Sakat Namman and Wat Sao Hin were examined by the Scotch tape technique for the presence of Enterobius eggs. The overall infection rate was 14.1% (Table 2). The percentage of infected boys and girls was 15.7 and 12.2, respectively. Wat Sao Hin school had the highest infection rate (19.3%). All infected schoolchildren with parasites were individually treated.

Table 2
Prevalence of enterobiasis in schoolchildren of Phitsanulok Province examined by Scotch tape technique.

Schools	No. of positive/No. of examined (%)	Total
Wat Krab Phuang	14/71 (19.7) 8/70 (11.4)	22/141 (15.6)
Wat Kung Waree	15/73 (20.5) 4/64 (6.2)	19/137 (13.9)
Wat Sakat Namman	13/132 (9.8) 16/109 (14.7)	29/241 (12.0)
Wat Sao Hin	6/29 (20.7) 5/28 (17.8)	11/57 (19.3)
Total	48/305 (15.7) 33/271 (12.2)	81/576 (14.1)

4. Discussion

In the present study, the overall prevalence of intestinal parasites was rather low at 5.4% (19/352) in the studied areas of Phitsanulok Province. Saksirisampant et al. (2006) reported that schoolchildren were infected with intestinal parasites at 4.24% (44/1037) in Central Region of Thailand composed of Ang Thong, Ayutthaya and Suphanburi Provinces(12). In contrast to our study, higher prevalences were reported for Muang Pathum Thani (13.9%)(9), Narathiwat (75%)(11), Ratchaburi (61.1%)(15), Nakhon Prathom (12.6%)(14), and Kanchanaburi (15.6%-23.8%)(16). The lower prevalence of intestinal parasitosis among schoolchildren in Phitsanulok Province may be due to improvements of general living conditions and the easy accessibility to health care services. High humidity is one factor for parasitic viability in the Southern Thailand where there was high prevalence of soil-transmitted helminths. In addition, migration from Burmese might be one way to make high prevalence of parasites in Ratchaburi and Kanchanaburi. Single parasitic infection was found in 4.55% (16/352) whilst double infection was detected only 0.85% (3/352). Mixed infection of parasites in children was quite common as indicated by Wakaful et al.(20); 33% of schoolchildren from Nan Province were infected with more than one species of parasites.

A non-pathogenic amoeba, E. coli, was found in four children, and a pathogenic flagellate protozoa, G. lamblia, presented in two children. Generally, these two species were commonly detected in pre-school orphanages and children in primary schools(5,21,22). However, high infection rates can be also discovered in adults resulting in poor personal and community hygienës. The modes of Giardia infection may be due to domestic animals, contaminated food and drinking water.

In the present study, the soil-transmitted helminths found included hookworm, S. stercoralis and T. trichiura and S. stercoralis became the highest detected species with several previous studies at various sites in Thailand and other countries(14,16,22,23). However, high prevalence of some helminths such as T. trichiura and hookworm was found in Narathiwat Province which was located in the south of Thailand with high moisture and rains throughout the year(11).

The infection rate of enterobiasis among 352 children in six schools examined by formalin-ethyl acetate concentration method was low (0.6%), while the Scotch-tape technique results detected for enterobiasis among 576 children in four schools revealed 14.1%. This technique is suitable for detecting Enterobius eggs because the female worms deposit their eggs around anal area.

According to Nithikathkul et al. (2001) classification(4), there were three categories of prevalent rates: high (>27%), intermediate (20%-27%) and low (< 20%); the Enterobius prevalence in this study was low consistent with the results observed in other regions of Thailand: 19.7% in kindergarten of Thammasat University(25), and 18.7% in Phichit Province(26).

In contrast, Bunchu and colleagues (2011) reported higher prevalence (25.0%) of enterobiasis in children from five districts in Phitsanulok Province(27), and a high prevalence of this infection (41.6%) was found in children in Mae Suk sub-district in Karen hill tribe villages in Chiang Mai Province(27).

In conclusion, although the overall percentage of intestinal parasitic infection among schoolchildren of Phitsanulok was low, the measures for infection control are recommended for preventing the transmission of parasites. Enterobiasis remains a general public health problem among schoolchildren of Phitsanulok Province. An appropriate control of this parasite is needed. Further experiments concerning genotypes and modes of transmission are suggested to perform.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgments

This study was partially supported by Division of Academic Service and Asset Management, Naresuan University. We would like to thank staff of Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University for their technical supports. We also would like to thank Dr. Svetlana Kocherginskaya for editing English grammar in this manuscript.

References

[1] Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, et al. Soil-transmitted helminth infections: ascariasis, trichuriasis,
World Health Organization. Eliminating soil-transmitted helminthiasis as a public health problem in children. Geneva: World Health Organization; 2012. [Online] Available from: http://whqlibdoc.who.int/publications/2012/9789241503129_eng.pdf [Accessed on 20 March, 2015]

World Health Organization. Helminth control in school-age children: a guide for managers of control programmes. Geneva: World Health Organization; 2011. [Online] Available from: http://whqlibdoc.who.int/publications/2011/9789241548267_eng.pdf [Accessed on 20 March, 2015]

Salam RA, Maredia H, Das JK, Lassi ZS, Bhutta ZA. Community-based interventions for the prevention and control of helminth neglected tropical diseases. Infect Dis Poverty 2014; 3: 23.

Lobo ML, Augusto J, Antunes F, Celta J, Xiao L, Codices V, et al. Cryptosporidium spp., Giardia duodenalis, Enteroctozoon bieneusi and other intestinal parasites in young children in Lobata Province, Democratic Republic of São Tomé and Principe. PLoS One 2014; 9(5): e97708.

Silva MT, Santana J, Bragagnoli G, Marinho AM, Malagueño E. Prevalence of Entamoeba histolytica/Entamoeba dispar in the city of Campina Grande, in Northeastern Brazil. Rev Inst Med Trop Sao Paulo 2014; 56(5): 451-4.

Boonjarasipinyo S, Boonmars T, Kaewsamut B, Ekobol N, Laummaunwai P, Auukkanirat R, et al. A cross-sectional study on intestinal parasitic infections in rural communities, Northeast Thailand. Korean J Parasitol 2013; 51(6): 727-34.

Vitta A, Polseela R, Bunchu N, Waree P, Thongwat D, Chalemrut K, et al. A cross-sectional study of intestinal parasitic infections among schoolchildren in Nan Province, Northern Thailand. Southeast Asian J Trop Med Public Health 2002; 33: 218-23.

Boonjarasipinyo S, Boonmars T, Kaewsamut B, Ekobol N, Laummaunwai P, Auukkanirat R, et al. A cross-sectional study on intestinal parasitic infections in rural communities, Northeast Thailand. Southeast Asian J Trop Med Public Health 2002; 33: 218-23.

Kittavatchai S, Rhongbutsri P. Intestinal parasitic infections in suburban government schools, Lak Hok subdistrict, Muang Pathum Thani, Thailand. Asian Pac J Trop Med 2013; 6(9): 699-702.

Waikagul J, Jongkulsantigul P, Rattanawitoon U, Radomyos P, Radomyos B, Chalemrut K, Jonsukuntigul P, et al. A cross-sectional study of intestinal parasitic infections among schoolchildren in Nan Province, Northern Thailand. Southeast Asian J Trop Med Public Health 2002; 33: 218-23.