ON THE U_p OPERATOR IN CHARACTERISTIC p

BRYDEN CAIS

ABSTRACT. For a perfect field κ of characteristic $p > 0$, a positive integer N not divisible by p, and an arbitrary subgroup Γ of $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$, we prove (with mild additional hypotheses when $p \leq 3$) that the U-operator on the space $M_k(\mathcal{P}_1/\kappa)$ of (Katz) modular forms for Γ over κ induces a surjection $U : M_k(\mathcal{P}_1/\kappa) \twoheadrightarrow M_k'(\mathcal{P}_1/\kappa)$ for all $k \geq p + 2$, where $k = (k - k_0)/p + k_0$ with $2 \leq k_0 \leq p + 1$ the unique integer congruent to k modulo p. When $\kappa = \mathbb{F}_p$, $p \geq 5$, $N \neq 2, 3$, and Γ is the subgroup of upper-triangular or upper-triangular unipotent matrices, this recovers a recent result of Dewar [Dew12].

1. Introduction

Fix a prime p, an integer $N > 0$ with $p \nmid N$, and a subgroup Γ of $\text{GL}_2(\mathbb{Z}/N\mathbb{Z})$. Let $\tilde{\Gamma}$ be the preimage in $\text{SL}_2(\mathbb{Z})$ of $\Gamma := \Gamma \cap \text{SL}_2(\mathbb{Z}/N\mathbb{Z})$, and write $\tilde{M}_k(\tilde{\Gamma})$ for the space of weight k mod p modular forms for $\tilde{\Gamma}$ (in the sense of Serre [Ser73, §1.2]). When $N = 1$, a classical result of Serre [Ser73, §2.2, Théorème 6] asserts that the U_p operator is a contraction: for $k \geq p + 2$, the map $U_p : \tilde{M}_k(\tilde{\Gamma}(1)) \to \tilde{M}_k(\tilde{\Gamma}(1))$ factors through the subspace $\tilde{M}_{k'}(\tilde{\Gamma}(1))$ for some $k' < k$ satisfying $pk' \leq k + p^2 - 1$. In fact, Serre’s result may be generalized and significantly sharpened:

Theorem 1.1. Let κ be a perfect field of characteristic p and denote by $M_k(\mathcal{P}_1/\kappa)$ the space of weight k Katz modular forms for Γ over κ (see §3). Let k_0 be the unique integer between 2 and $p + 1$ congruent to k modulo p, and if $p \leq 3$, assume that $N > 4$ and that Γ_0 is a subgroup of the upper-triangular unipotent matrices. Then for $k \geq p + 2$, the U-operator (see §3) acting on $M_k(\mathcal{P}_1/\kappa)$ induces a surjection $U : M_k(\mathcal{P}_1/\kappa) \twoheadrightarrow M_{k'}(\mathcal{P}_1/\kappa)$, for $k' := (k - k_0)/p + k_0$.

When $\tilde{\Gamma} = \Gamma_*(N)$ for $* = 0, 1$ and $\kappa = \mathbb{F}_p$, the endomorphism U coincides with the usual Atkin U_p operator U_p (see Corollary 3.3). In particular, if $p \geq 5$, so $\tilde{M}_k(\tilde{\Gamma}) \simeq M_k(\mathcal{P}_1/\mathbb{F}_p)$ (by Theorems 1.7.1, and 1.8.1–1.8.2 of [Kat73]) and $N \neq 2, 3$, Theorem 1.1 is due to Dewar [Dew12]. Both Serre’s original result and Dewar’s refinement of it rely on a delicate analysis of the interplay between the operators U_p, V_p, and θ acting on mod p modular forms. In the present note, we take an algebro-geometric perspective, and show how Theorem 1.1 follows immediately from a (trivial extension of a) general theorem of Tango [Tan72] on the behavior of vector bundles under the Frobenius map. In this optic, the contractivity of U_p in characteristic p is simply an instance of the “Dwork Principle” of analytic continuation along Frobenius. In particular, we use neither the θ-operator, nor the notion of “filtration” of a mod p modular form.

Date: May 21, 2013.
2010 Mathematics Subject Classification. Primary: 11F33, 11G18.
Key words and phrases. Mod p modular forms, Atkin U_p-operator.
During the writing of this paper, the author was partially supported by an NSA Young Investigator grant (H98230-12-1-0238). We are very grateful to David Zureick-Brown for many helpful conversations.

1Tango’s paper, which appeared the year prior to Serre’s [Ser73], is perhaps not as well-known as it should be.
2. Tango’s Theorem

Fix a perfect field κ of characteristic p, and write $\sigma : \kappa \to \kappa$ for the p-power Frobenius automorphism of κ. Let X be a smooth, proper, and geometrically connected curve over κ of genus g. Attached to X is its Tango number:

\[(2.1) \quad n(X) := \max \left\{ \sum_{x \in X(\kappa)} \left[\frac{\text{ord}_x(df)}{p} \right] : f \in \kappa(X) \setminus \kappa(X)^p \right\},\]

where $\kappa(X)$ is the function field of X_{κ}. As in Lemma 10 and Proposition 14 of [Tan72], it is easy to see that $n(X)$ is well-defined and is an integer satisfying $-1 \leq n(X) \leq [(2g - 2)/p]$, with the lower bound an equality if and only if $g = 0$.

Proposition 2.1 (Tango). Let $S \neq X$ be a reduced closed subscheme of X with corresponding ideal sheaf $\mathcal{I}_S \subseteq \mathcal{O}_X$, and let \mathcal{L} be a line bundle on X. If $\deg \mathcal{L} > n(X)$ then the natural σ-linear map

\[(2.2) \quad F^* : H^1(X, \mathcal{L}^{-1} \otimes \mathcal{I}_S) \to H^1(X, \mathcal{L}^{-p} \otimes \mathcal{I}_S)\]

induced by pullback by the absolute Frobenius of X is injective, and the natural σ^{-1}-linear “trace map”

\[(2.3) \quad F_* : H^0(X, \Omega^1_{X/\kappa}(S) \otimes \mathcal{L}^p) \to H^0(X, \Omega^1_{X/\kappa}(S) \otimes \mathcal{L})\]

given by the Cartier operator ([Car57], [Ser58, §10]) is surjective.

Proof. First note that the formation of (2.2) and (2.3) is compatible, via σ- (respectively σ^{-1}-) linear extension, with any scalar extension $\kappa \to \kappa'$ to a perfect field κ'; we may therefore assume that κ is algebraically closed. As the two assertions are dual\footnote{Note that κ-linear duality interchanges σ-linear maps with σ^{-1}-linear ones.} by Serre duality [Ser58, §10, Proposition 9], it suffices to prove the injectivity of (2.2). The case $S = \emptyset$ is Tango’s Theorem\footnote{Strictly speaking, Tango requires $g > 0$; however, by tracing through Tango’s argument—or by direct calculation—one sees easily that the result holds when $g = 0$ as well.} [Tan72, Theorem 15]. We reduce the general case to this one as follows: using that $\deg(\mathcal{L}) > 0$ and that $\mathcal{O}_X/\mathcal{I}_S^p$ is a skyscraper sheaf for all $j > 0$, one finds a commutative diagram with exact rows

\[
\begin{array}{ccccccccc}
0 & \to & H^0(X, \mathcal{O}_X/\mathcal{I}_S) & \to & H^1(X, \mathcal{L}^{-1} \otimes \mathcal{I}_S) & \to & H^1(X, \mathcal{L}^{-1}) & \to & 0 \\
& & F^* \downarrow & & F^* \downarrow & & F^* \downarrow & & \\
0 & \to & H^0(X, \mathcal{O}_X/\mathcal{I}_S^p) & \to & H^1(X, \mathcal{L}^{-p} \otimes \mathcal{I}_S^p) & \to & H^1(X, \mathcal{L}^{-p}) & \to & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & H^0(X, \mathcal{O}_X/\mathcal{I}_S) & \to & H^1(X, \mathcal{L}^{-p} \otimes \mathcal{I}_S) & \to & H^1(X, \mathcal{L}^{-p}) & \to & 0 \\
\end{array}
\]

in which the lower vertical arrows are induced by the inclusion of ideal sheaves $\mathcal{I}^p_S \subseteq \mathcal{I}_S$. Using that $\kappa = \kappa_p$ and identifying $H^0(X, \mathcal{O}_X/\mathcal{I}_S)$ with κ^S, the left vertical composite is easily seen to coincide with the map $\oplus_S \sigma : \kappa^S \to \kappa^S$ which is σ on each factor; it is therefore injective. As the right vertical composite map is injective by Tango’s Theorem, an easy diagram chase finishes the proof. \(\blacksquare\)
3. Modular forms mod \(p \) as differentials on the Igusa curve

In order to apply Tango’s Theorem to prove Theorem 1.1, we must recall Katz’s geometric definition of mod \(p \) modular forms, and Serre’s interpretation of them as certain meromorphic differentials on the Igusa curve.

Let us write \(R_{\Gamma} := (\mathbb{Z}[\zeta_N])^{\det(\Gamma)} \), and for any \(R_{\Gamma} \)-algebra \(A \) denote by \(\mathcal{P}_{\Gamma}/A \) the moduli problem \((\Gamma(N)/\Gamma)_{\text{R}_{\Gamma}-\text{can}} \otimes_{\mathbb{R}_\delta} A\) on \((\text{Ell} / A)\) (see §3.1, §7.1, 9.4.2, and 10.4.2 of [KM85]) and by \(M_k(\mathcal{P}_{\Gamma}/A) \) the space of weight \(k \) Katz modular forms for \(\mathcal{P}_{\Gamma}/A \) (e.g. [Ulm90, §6]) that are holomorphic at \(\infty \) in the sense of [Kat73, §1.2]. Equivalently, \(M_k(\mathcal{P}_{\Gamma}/A) \) is the \(A \)-submodule of level \(N \), weight \(k \) modular forms in the sense of [DR73, VII.3.6] that are invariant under the natural action of \(\Gamma_0 \). Viewing \(C \) as an \(R_{\Gamma} \)-algebra via \(\zeta_N \mapsto \exp(2\pi i / N) \), we remark that \(M_k(\mathcal{P}_{\Gamma}/C) \) is the “classical” space of weight \(k \) modular forms for \(\Gamma \) over \(C \) defined via the transcendental theory [DR73, VII.4].

Now fix a ring homomorphism \(R_{\Gamma} \to \kappa \) with \(\kappa \) a perfect field of characteristic \(p \). From here until the end of the section we will assume that \(\mathcal{P}_{\Gamma}/\kappa \) is representable and that \(-1\) acts without fixed points on the space of cusp-labels for \(\Gamma \) (see [KM85, §10.6] and c.f. [KM85, 10.13.7–8]). We will later explain how to relax these hypotheses to those of Theorem 1.1. We write \(Y_{\Gamma} \) (respectively \(X_{\Gamma} \)) for the associated (compactified) moduli scheme; by [KM85, 10.13.12], one knows that \(X_{\Gamma} \) is a proper, smooth, and geometrically connected curve over \(\kappa \). Writing \(\rho : \mathcal{E} \to Y_{\Gamma} \) for the universal elliptic curve, our hypothesis that \(-1\) acts without fixed points ensures that the line bundle \(\omega_{\Gamma} := \rho_*(\Omega^1_{\mathcal{E}/Y_{\Gamma}}) \) on \(Y_{\Gamma} \) admits a canonical extension, again denoted \(\omega_{\Gamma} \), to a line bundle on \(X_{\Gamma} \) [KM85, 10.13.4, 10.13.7]. By definition, \(M_k(\mathcal{P}_{\Gamma}/\kappa) = H^0(X_{\Gamma}, \omega_{\Gamma}^k) \).

Let \(I_{\Gamma} \) be the Igusa curve of level \(p \) over \(X_{\Gamma} \); by definition, \(I_{\Gamma} \) is the compactified moduli scheme associated to the simultaneous problem \([\mathcal{P}_{\Gamma}/\kappa, [\mathcal{E} / \kappa]]\) on \((\text{Ell} / \kappa)\) [KM85, §12]. By [KM85, 12.7.2], the Igusa curve is proper, smooth, and geometrically connected, and the natural map \(\pi : I_{\Gamma} \to X_{\Gamma} \), is finite étale and Galois with group \((\mathbb{Z}/p\mathbb{Z})^\times\) outside the supersingular points, and totally ramified over every supersingular point. We define \(\omega := \pi^*\omega_{\Gamma} \), and recall [KM85, 12.8.2–3] that there is a canonical section \(q \in H^0(I_{\Gamma}, \omega) \) which has \(q \)-expansion equal to \(1 \), vanishes to order \(1 \) at each supersingular point, and on which \(\delta \in (\mathbb{Z}/p\mathbb{Z})^\times \) acts (via its action on \(I_{\Gamma} \)) through \(\chi^{-1} \), for \(\chi : (\mathbb{Z}/p\mathbb{Z})^\times = \mathbb{F}_p^\times \to \mathbb{F}_p^\times \) the mod \(p \) Teichmüller character. The following is a straightforward generalization of a theorem of Serre; see [KM85, §12.8] and c.f. Propositions 5.7–5.10 of [Gro90].

Proposition 3.1. Fix an integer \(k \geq 2 \) and let \(k_0 \leq k \) be any integer with \(2 \leq k_0 \leq p + 1 \). The map \(f \mapsto f/a^{k_0-2} \) induces an natural isomorphism of \(\kappa \)-vector spaces

\[
M_k(\mathcal{P}_{\Gamma}/\kappa) \simeq H^0(I_{\Gamma}, \Omega^1_{I_{\Gamma}/\kappa}(\text{cusps} + \delta_{k_0} : \text{ss})) \otimes \omega^{k-k_0}(\kappa^{k_0-2}),
\]

where \(\delta_{k_0} = 1 \) when \(k_0 = p + 1 \) and is zero otherwise; here, ss, cusps are the reduced supersingular and cuspidal divisors, respectively.

Proof. The proof is a straightforward adaptation of Propositions 5.7–5.10 of [Gro90]; for the convenience of the reader, we sketch the argument. Thanks to [KM85, 10.13.11], the Kodaira-Spencer map [KM85, 10.13.10] provides an isomorphism of line bundles \(\omega_{I_{\Gamma}}^2 \simeq \Omega^1_{X_{\Gamma}/\kappa}(\text{cusps}) \) on \(X_{\Gamma} \) which, after pullback along \(\pi \), gives an isomorphism

\[
\omega^2 \simeq \Omega^1_{I_{\Gamma}/\kappa}(-p - 2)\text{ss} \oplus \text{cusps}
\]

of line bundles on \(I_{\Gamma} \) as \(\pi \) is étale outside ss and totally (tamely) ramified at each supersingular point.

Since \(a \in H^0(I_{\Gamma}, \omega) \) has \(p \)-zeroes at the supersingular points, via (3.2) any global section \(f \) of \(\omega^2_{I_{\Gamma}} \) induces a global section \(\pi^*f/\omega^{k_0-2} \) of \(\Omega^1_{I_{\Gamma}/\kappa}(\text{cusps} + \delta_{k_0} : \text{ss}) \otimes \omega^{k-k_0} \) on which \((\mathbb{Z}/p\mathbb{Z})^\times \) acts through

\(^4 \)Here, we follow the notation of [KM85, §9.4]: By definition \(\mathbb{Z}[\zeta_N] \) is the finite free \(\mathbb{Z} \)-algebra \(\mathbb{Z}[X]/\Phi_N(X) \), where \(\Phi_N \) is the \(N \)-th cyclotomic polynomial and \(\zeta_N \) corresponds to \(X \), equipped with its natural Galois action of \((\mathbb{Z}/N\mathbb{Z})^\times \).
\(\chi^{k_0-2} \); thus the map (3.1) is well-defined. Since the \(q \)-expansion of \(a \) is 1 and \(I_r \) is geometrically connected, the \(q \)-expansion principle then shows that (3.1) is injective. To prove surjectivity, observe that by (3.2), a global section of \(\Omega_{1_r}^{1/k} \) (cusps + \(\delta_{k_0} \cdot ss \)) \(\otimes \omega^{k-k_0} \) gives a meromorphic section \(h \) of \(\omega^{k-k_0+1} \) satisfying \(\text{ord}_x(h) \geq -(p-1) \) at each supersingular point \(x \), with equality possible only when \(k_0 = p + 1 \). If \(h \) lies in the \((k_0-2) \)-eigenspace of the action of \((\mathbb{Z}/p\mathbb{Z})^\times \), then \(f := a^{k_0-2}h \) descends to a meromorphic section of \(\omega^k \) over \(X_r \) satisfying

\[
(p-1) \text{ord}_x(f) = \text{ord}_x(h) + k_0 - 2 \geq k_0 - p - 1
\]

at each supersingular point \(x \in X_r(\bar{\kappa}) \), with equality possible only when \(k_0 = p + 1 \). Since the left side is a multiple of \(p-1 \) and \(k_0 \geq 2 \), we must have \(\text{ord}_x(f) \geq 0 \) in all cases, and \(f \) is a global (holomorphic) section of \(\omega^k \) over \(X_r \) with \(\pi^*f/a^{k_0-2} = h \).

Using Proposition 3.1, the Cartier operator \(F_\tau \) on meromorphic differentials induces, by “transport of structure”, a \(\sigma^{-1} \)-linear endomorphism \(U : M_k(\mathcal{M}_{\Gamma}/\kappa) \to M_k(\mathcal{M}_{\Gamma}/\kappa) \). If \(G \) is any group of automorphisms of \(X(\Gamma) \), then the action of \(G \) commutes with \(F_\tau \) (ultimately because the \(p \)-power map in characteristic \(p \) commutes with all ring homomorphisms), and we likewise obtain a \(\sigma^{-1} \)-linear endomorphism \(U \) of \(M_k(\mathcal{M}_{\Gamma}/\kappa)^G \). This allows us to define \(U \) even when \(\mathcal{M}_{\Gamma}/\kappa \) is not representable as follows. Choose a prime \(\ell > 3N \), and let \(\Gamma' \) be the unique subgroup of \(\text{GL}_2(\mathbb{Z}/N\mathbb{Z}) \) projecting to the trivial subgroup of \(\text{GL}_2(\mathbb{Z}/\ell\mathbb{Z}) \) at \(\Gamma \). Then for any perfect field \(\kappa' \) of characteristic \(p \) admitting a map from \(R_{\Gamma'} \), the moduli problem \(\mathcal{M}_{\Gamma'}/\kappa' \) is representable, there is a natural action of \(G := \text{SL}_2(\mathbb{Z}/\ell\mathbb{Z}) \) on \(M_k(\mathcal{M}_{\Gamma'}/\kappa') \), and one has \(M_k(\mathcal{M}_{\Gamma'}/\kappa') = M_k(\mathcal{M}_{\Gamma'/\kappa'})^G \) (c.f. [DR73, VII.3.3] and [Kat73, §1.2]). Since \(M_k(\mathcal{M}_{\Gamma}/\kappa) \otimes_{\kappa} \kappa' \simeq M_k(\mathcal{M}_{\Gamma'/\kappa'}) \), we obtain the desired endomorphism \(U \) of \(M_k(\mathcal{M}_{\Gamma}/\kappa) \) by descent, and it is straightforward to check that it is independent of our initial choices of \(\ell \) and \(\kappa' \).

By post-composition with the \(\sigma \)-linear isomorphism

\[
M_k(\mathcal{M}_{\Gamma}/\kappa) \simeq M_k(\mathcal{M}_{\Gamma'}/\kappa')
\]

induced by the “exotic isomorphism” of moduli problems \(\mathcal{M}_{\Gamma}/\kappa \simeq \mathcal{M}_{\Gamma'}/\kappa' \) [KM85, 12.10.1] we obtain a \(\kappa \)-linear map \(U^\#: M_k(\mathcal{M}_{\Gamma}/\kappa) \to M_k(\mathcal{M}_{\Gamma'}/\kappa') \). When \(\mathcal{M}_{\Gamma} \) is defined over \(\mathbb{F}_p \), in the sense that \(R_{\Gamma} \) admits a (necessarily unique) surjection to \(\mathbb{F}_p \), one has canonically \(\mathcal{M}_{\Gamma}/\mathbb{F}_p = \mathcal{M}_{\Gamma}/\mathbb{F}_p \) as problems on \((\mathbb{E}_l/\mathbb{F}_p) \), and \(U^\# \) is an endomorphism of \(M_k(\mathcal{M}_{\Gamma}/\mathbb{F}_p) \). The maps \(U \) and \(U^\# \) are natural generalizations of Atkin’s \(U_p \)-operator:

Proposition 3.2. Suppose that \(\mathcal{M}_{\Gamma}/\kappa \) is representable and let \(c \) be any cusp of \(X(\Gamma) \) defined over \(\kappa \). Then \(q^{1/e} \) is a uniformizing parameter at \(c \) for some divisor \(e \) of \(N \), and for any \(f \in M_k(\mathcal{M}_{\Gamma}/\kappa) \), the formal expansions of \(Uf \) at \(c \) and of \(U^\#f \) at \(c^{e^{-1}} \) are given by

\[
Uf = \sum_{n \geq 0} \sigma^{-1}(a_{np})q^{n/e} \quad \text{and} \quad U^\#f = \sum_{n \geq 0} a_{np}q^{n/e}
\]

respectively, where \(f = \sum_{n \geq 0} a_nq^{n/e} \).

Proof. Using the well-known local description of the Cartier operator on meromorphic differentials (e.g. [Ser58, §10, Proposition 8]), the result follows easily from the arguments of Propositions 2.8 and 5.7 of [Gro90]; see also (the proof of) [Gro90, Proposition 5.9].

Corollary 3.3. Suppose that \(\Gamma = \Gamma(N) \) for \(s = 0, 1 \). Then \(R_{\Gamma} = \mathbb{Z} \) and the resulting endomorphisms \(U \) and \(U^\# \) of \(M_k(\mathcal{M}_{\Gamma}/\mathbb{F}_p) \) coincide with the Atkin operator \(U_p \), whether or not \(\mathcal{M}_{\Gamma}/\mathbb{F}_p \) is representable.

Proof. That \(R_{\Gamma} = \mathbb{Z} \) is clear, as \(\text{det}(\Gamma) = (\mathbb{Z}/N\mathbb{Z})^\times \). By the discussion above, we may reduce to the representable case, and the result then follows from Proposition 3.2 and the \(q \)-expansion principle.

5Explicitly, this isomorphism sends \(f \in M_k(\mathcal{M}_{\Gamma}/\kappa) \) to the modular form \(f^* \) defined by \(f^*(E, \alpha) := (E^* \alpha^*) \)

6A sufficient condition for this to happen is that \(\text{det}(\Gamma) \) contain the residue class of \(p \) mod \(N \).
4. Proof of Theorem 1.1

We now prove Theorem 1.1. Fix k and let k_0 and k' be as in the statement of Theorem 1.1. First suppose that $\mathcal{P}_\Gamma \otimes_{\mathcal{R}_k} \kappa$ is representable and that -1 acts without fixed points on the cusp-labels of Γ. Using (3.2) and the fact that a has simple zeroes along ss we compute (c.f. [KM85, 12.9.4])

$$\deg \omega = \frac{2g - 2}{p} + \frac{1}{p} \deg(\text{cusps}) \geq \left\lfloor \frac{2g - 2}{p} \right\rfloor \geq n(I_\Gamma)$$

where g is the genus of I_Γ. Applying Proposition 2.1 with $X = I_\Gamma$, $S = \text{cusps} + \delta_{k_0} \cdot \text{ss}$, and $\mathcal{L} = \omega$, we conclude from (2.3) and the relation $k - k_0 = p(k' - k_0)$ that the Cartier operator

$$F_* : H^0(I_\Gamma, \Omega^1_{I_\Gamma/\kappa}(\text{cusps} + \delta_{k_0} \cdot \text{ss}) \otimes \omega^{k-k_0}) \longrightarrow H^0(I_\Gamma, \Omega^1_{I_\Gamma/\kappa}(\text{cusps} + \delta_{k_0} \cdot \text{ss}) \otimes \omega^{k' - k_0})$$

is surjective whenever $k - k_0 \geq p$. Passing to χ^{k_0-2}-eigenspaces for $(\mathbb{Z}/p\mathbb{Z})^\times$ and appealing to Proposition 3.1 and Corollary 3.3 then completes the proof in this case.

Now when $p \leq 3$, the hypotheses $N > 4$ and $\Gamma \subseteq \Gamma_1(N)$ of Theorem 1.1 ensure that $\mathcal{P}_\Gamma \otimes_{\mathcal{R}_k} \kappa$ is representable (as it maps to the moduli problem $[\Gamma_1(N)]$, which is representable for $N \geq 4$ by [KM85, 10.9.6]) and that -1 acts without fixed points on the cusp-labels of Γ [KM85, 10.7.4]. If $p \geq 5$, we may choose a prime $\ell > 3N$ with $\ell \not\equiv 0, \pm 1 \mod p$, so that $p \nmid | \text{SL}_2(\mathbb{Z}/\ell\mathbb{Z})|$. Then for $N' := N\ell$ and $\Gamma' := 1 \times \Gamma \subseteq \text{SL}_2(\mathbb{Z}/\ell\mathbb{Z}) \times \text{SL}_2(\mathbb{Z}/N\mathbb{Z}) = \text{SL}_2(\mathbb{Z}/N\ell\mathbb{Z})$, we have (after passing to an appropriate extension κ' of κ) that $\mathcal{P}_{\Gamma'} \otimes_{\mathcal{R}_{\kappa'}} \kappa'$ is representable with -1 acting freely on the cusp-labels of Γ' [KM85, 10.7.1, 10.7.3]. We conclude that the U-operator induces a surjection of $\kappa[\text{SL}_2(\mathbb{Z}/\ell\mathbb{Z})]$-modules $M_k(\mathcal{P}_{\Gamma'}/\kappa') \twoheadrightarrow M_k(\mathcal{P}_{\Gamma}/\kappa')$. Our choice of ℓ ensures that the ring $\kappa[\text{SL}_2(\mathbb{Z}/\ell\mathbb{Z})]$ is semisimple, so passing to $\text{SL}_2(\mathbb{Z}/\ell\mathbb{Z})$-invariants is exact. As the space of $\text{SL}_2(\mathbb{Z}/\ell\mathbb{Z})$-invariant weight k modular forms for Γ' coincides with $M_k(\mathcal{P}_{\Gamma'}/\kappa')$ (c.f. the definition of U in §3), passing to invariants and descending from κ' to κ then completes the proof of Theorem 1.1 in the general case.

References

[Car57] Pierre Cartier, Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris 244 (1957), 426–428.

[Dew12] Michael Dewar, The image and kernel of Atkin’s U_p operator modulo p, Proc. Amer. Math. Soc. 140 (2012), no. 6, 1931–1938.

[DR73] P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1973, pp. 143–316. Lecture Notes in Math., Vol. 349.

[Gro90] Benedict H. Gross, A tameness criterion for Galois representations associated to modular forms (mod p), Duke Math. J. 61 (1990), no. 2, 445–517.

[Kat73] Nicholas M. Katz, p-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1973, pp. 69–190. Lecture Notes in Mathematics, Vol. 350.

[KM85] Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985.

[Ser58] Jean-Pierre Serre, Sur la topologie des variétés algébriques en caractéristique p, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 24–53.

[Ser73] ______, Formes modulaires et fonctions zéta p-adiques, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), Springer, Berlin, 1973, pp. 191–268. Lecture Notes in Math., Vol. 350.

[Tan72] Hiroshi Tango, On the behavior of extensions of vector bundles under the Frobenius map, Nagoya Math. J. 48 (1972), 73–89.

[Ulm90] D. L. Ulmer, On universal elliptic curves over Igusa curves, Invent. Math. 99 (1990), no. 2, 377–391.

University of Arizona, Tucson
Current address: Department of Mathematics, 617 N. Santa Rita Ave., Tucson AZ. 85721
E-mail address: cais@math.arizona.edu