Intravenous therapy device labeling in Intensive Care Units: an integrative review

Rotulagem de dispositivos de terapia intravenosa em Unidades de Terapia Intensiva: revisão integrativa
Etiquetado de dispositivos de terapia intravenosa en Unidades de Cuidados Intensivos: revisión integradora

ABSTRACT
Objectives: to synthesize the evidence on intravenous device labeling used to identify medications administered to patients in Intensive Care Units, with a view to preventing medication errors. Methods: an integrative review, in the LILACS, IBECS, Embase, MEDLINE, Scopus, Web of Science and CINAHL databases, from November to December 2021, using descriptors and selection criteria. Data were collected in 11 articles and subsequently classified, summarized and aggregated. Results: pre-designed labels, with pre-defined colors and information, help to prevent medication identification errors. There is still a lack of standardization in the practice of labeling syringes, intravenous lines, infusion pumps and saline solution bags. There are errors related to the lack of labeling devices or to their performance with incomplete information. Conclusions: device labeling is a barrier to defending the medication system safety and should be standardized.

Descriptores: Infusions, Intravenous; Drug Labeling; Critical Care; Patient Safety; Nursing.

RESUMO
Objetivos: sintetizar as evidências sobre a rotulagem de dispositivos intravenosos utilizada para a identificação de medicamentos administrados nos pacientes em Unidades de Terapia Intensiva, com vistas à prevenção dos erros de medicação. Métodos: revisão integrativa, nas bases de dados LILACS, IBECS, Embase, MEDLINE, Scopus, Web of Science e CINAHL, no período de novembro-dezembro de 2021, com uso de descritores e emprego de critérios de seleção. Os dados foram coletados em 11 artigos e, posteriormente, classificados, sumarizados e agregados. Resultados: rótulos pré-desenhados, com cores e informações pré-definidas contribuem para prevenir os erros de identificação dos medicamentos. Persiste a falta de padronização da prática de rotulagem em seringas, linhas intravenosas, bomba infusoras e bolsas de soro. Há erros relacionados à ausência de rotulagem dos dispositivos ou à sua realização com informações incompletas. Conclusões: a rotulagem dos dispositivos é uma barreira para a defesa da segurança do sistema de medicação, devendo ser padronizada.

Descritores: Infusões Intravenosas; Rotulagem de Medicamentos; Cuidados Críticos; Segurança do Paciente; Enfermagem.

RESUMEN
Objetivos: sintetizar las evidencias sobre el etiquetado de dispositivos intravenosos utilizados para identificar medicamentos administrados a pacientes en Unidades de Cuidados Intensivos, con el objetivo de prevenir errores de medicación. Métodos: revisión integradora, en las bases de datos LILACS, IBECS, Embase, MEDLINE, Scopus, Web of Science y CINAHL, de noviembre a diciembre de 2021, utilizando descriptores y criterios de selección. Los datos fueron recolectados en 11 artículos y posteriormente clasificados, resumidos y agregados. Resultados: etiquetas prediseñadas, con colores e información predefinidos, ayudan a prevenir errores de identificación de medicamentos. Todavía hay una falta de estandarización en la práctica de etiquetado de jeringas, líneas intravenosas, bombas de infusión y bolsas de suero. Hay errores relacionados con la falta de etiquetado de los dispositivos o con su realización con información incompleta. Conclusiones: el etiquetado de los dispositivos es una barrera para defender la seguridad del sistema de medicamentos y debe ser estandarizado.

Descripciones: Inyecciones Intravenosas; Etiquetado de Medicamentos; Cuidados Críticos; Seguridad del Paciente; Enfermería.
INTRODUCTION

Among healthcare-associated incidents, those involving medication therapy are common in institutions, likely to occur at all stages of the medication system, from prescribing, dispensing, preparing and administering the medication to monitoring, with possibilities of serious harm and even death of patients[1,2].

These medication incidents that cause harm to patients are called adverse medication events, which have medication errors as one of their causes[1]. Medication errors are any preventable events that can cause or induce medication misuse and even harm while the medication is under the control of the patient, health care provider, or consumer[3].

In 2017, the World Health Organization reinforced its concern about medication incidents with the launch of the 3rd Global Patient Safety Challenge – Medication Without Harm, whose goal is to reduce serious and preventable medication-related harm by 50% by the year from 2022[4].

Medication errors are considered a public health concern, being present in various care scenarios[5-6]. In the context of Intensive Care Units (ICUs), in particular, such a problem may be even greater, since they are units that receive patients with acute and severe clinical situations[7]. They are patients who depend on multiple medications administered concomitantly aiming at maintaining the hemodynamic balance of their clinical status, especially through intravenous (IV) medication administration. Therefore, due to the critical nature of their diseases and the great need for medication interventions, the occurrence of medication errors in this group can have very serious consequences[7].

In the specificity of errors involving IV medications administered to ICU patients, we highlight, in this research, those related to identification, which involve the identification of syringes, infusion pumps, saline solution bags, IV routes and lines. The absence, incompleteness and/or misidentification of these devices can cause changes in the infused dosage, change in medication administration, change in IV bolus solution, among other possibilities, with potential risks to patient safety.

An example of these errors is seen in the cases of failures in the identification of routes and IV lines. Multiple IV medications given to critically ill patients lead to more IV bags, infusion pumps and IV lines. This situation causes visual disarray and intertwining of IV lines, making it difficult to quickly and correctly identify what is being infused, especially in situations of complications. Thus, the chances of errors in the handling of IV lines increase, an aspect that has been pointed out by the literature[8-9].

A study conducted with 40 nurses in a simulated ICU setting aimed to identify the risks associated with multiple IV infusions and the ability to administer them safely. Among the findings, 7.7% of errors were identified in the screening of IV lines during the identification of infusions[10].

Research reviewed the reporting reports of medication errors in Pennsylvania from 2004 to 2013. In this analysis, 907 errors related to IV-line handling were identified. The most common mistakes were the inclusion of setting infusion rates, changes when handling disordered IV lines, and IV lines not connected to patients. Potentially dangerous medications were involved in 71% of errors associated with IV lines, and heparin was the most commonly found medication, an error that can lead patients to death[11].

Given this scenario, identification errors can be minimized with the adoption of barriers that contribute to the medication and route identification, such as label/labeling use. The term label is defined as the display of written, printed, or graphic material in a container. Labeling is defined as all labels and other printed, written or graphic materials on any article or any container[12].

The term medication labeling is linked to using written, printed or graphic materials in a medication container or packaging, and may include effects, duration, dose, routes, warnings, among other relevant information[13]. Thus, it is understood in this research that medication labeling refers to label content and type of material used in devices used to administer a particular medication, such as syringes, saline solution bags, bottles, infusion pumps and IV lines.

Device labeling emerged in the area of anesthesia, created by the International Society of Anesthesia and, currently, different shapes and colors associated with the medication class are used, in addition to visibly adequate texts and sources[13,14].

The International Organization for Standardization (ISO) 26825 publication was considered a milestone regarding labeling practices, as it established guidelines for standardizing this care. However, the publication of this standard is aimed at the anesthetic area and the syringe device. Although its use can be extended to other areas, such as intensive care, and to other devices, this is not a practice validated by the regulatory agencies themselves. Thus, labeling practices vary throughout the world and are commonly established by the hospital and/or professional institution itself, which impacts the way medications are identified in their devices[13-14].

In Brazil, the recommendations regarding labeling refer to medication bottles[15], however, in the case of lines IV, the researchers’ practical experience shows that these are still frequently identified with handwritten, non-standardized adhesive tapes, with differences according to institutional policies.

Based on the above, it is assumed that labeling has the potential to promote numerous benefits for the team and patients, such as: rapid and correct identification of IV infusion; reduced connection errors between syringes and IV lines; and signaling of an exclusive route for medications considered to be of high risk, in order to avoid handling or performing inappropriate flushing. Given the need to understand how labeling has been used in ICU settings, with a view to thinking about strategies for the prevention of medication errors that can cause irreversible damage to patients, this review is justified.

OBJECTIVES

To synthesize the evidence on intravenous device labeling used to identify medications administered to patients in Intensive Care Units, with a view to preventing medication errors.

METHODS

Study design

This is an integrative literature review, a research method that comprises the search, critical assessment and synthesis of relevant research on a given topic[16]. The methodological approach adopted...
for developing this review was composed of six phases, namely: theme identification and hypothesis or research question selection; establishment of inclusion and exclusion criteria for studies; definition of the information that would be extracted from the included studies/study categorization; assessment of studies included in the integrative review; interpretation of results; and review report. The PRISMA tool was used to support the presentation of this review.

Methodological procedures

After identifying the focus theme of this review, in the first phase of the method, the review question, the descriptors and the bases that served as a source of search for scientific articles were defined. The guiding question was structured through the mnemonic strategy PCC (Problem, Concept and Context), proposed by Joanna Briggs Institute (17), in which: P (medication errors); C (medication labeling); C (critical care), which gave rise to the following question: what is the evidence on labeling IV therapy devices for medication identification and prevention of medication errors in the ICU? This question guided the choice of descriptors and keywords referred to in each language (Portuguese, English and Spanish), which were defined as shown in Chart 1.

The chosen databases were Latin American and Caribbean Literature (LILACS), National Library of Medication (MEDLINE via PubMed), Cumulative Index to Nursing and Allied Health Literature (CINAHL), Spanish Bibliographic Index of Health Sciences (IBEGS), SciVerse Scopus (Scopus), Embase and Web of Science. The data search was carried out from November 1 to December 31, 2021, through online and direct access to each database via the CAPES portal.

Search strategies in databases that had vocabulary control, such as LILACS, MEDLINE, CINAHL and Embase, composed a cross of indexed and standardized descriptors in each base, plus additional keywords customized for the target language. In the IBEGS, Scopus and Web of Science databases, due to the fact that the descriptors applied in the other databases are not standardized for these, it was decided to carry out the crossings using only keywords already standardized in their indexes, which were chosen according to the PCC strategy adopted.

In compliance with the PRISMA tool recommendation, Chart 2 details the strategy of crossing the terms used in one of the databases (MEDLINE), as an example of the methodological procedures adopted to capture the articles in the research.

The second phase was to outline the criteria for selecting the research corpus and its application in the research process. Thus, the following inclusion criteria were adopted: scientific articles, results of primary studies; published in English, Portuguese, or Spanish; period from 2008 to 2021, time frame established by the start of publication of guidelines on labeling of devices IV; full text available in selected databases; refer to labeling IV devices in ICU settings. Articles that did not establish links with patient safety were excluded.

In the selection process, after crossing the descriptors and keywords in each chosen base, initial filters of full text, article design and language were applied. Then, with the help of Mendeley, duplicate references were excluded. After this step, the articles found were first submitted to an exploratory reading of title and/or abstract. Those that did not comply with the theme were pre-selected for the reading phase in full. In the full text assessment, articles were assessed regarding their eligibility considering the answer to the research question. This phase of article selection was carried out by two researchers, with disagreements about the final inclusion of the article being decided jointly.

Chart 1 - Descriptors adopted to carry out search strategies

Type	Problem	Concept	Context
DeCS	“Segurança do Paciente” OR “Prevenção de Acidentes” OR “Erros Médicos” OR “Erros de Medicación”	“Rotulagem de Medicamentos”	“Cuidados Críticos” OR “Enfermagem de Cuidados Críticos”
MeSH	“Patient Safety” OR “Accident Prevention” OR “Medical Errors” OR “Medication Errors”	“Drug Labeling”	“Critical Care” OR “Critical Care Nursing”
CINAHL Subject Headings	“Patient Safety” OR “Adverse Drug Event” OR “Medication Errors” OR “Health Care Errors” OR “Treatment Errors”	“Drug Labeling” OR “Product Labeling”	“Critical Care” OR “Critical Care Nursing” OR “Intensive Care Units”
Emtree	“Patient safety”/de OR “Accident Prevention”/de OR “Medical Error”/de OR “Medication Error”/de OR “Potentially Inappropriate Medication”/de	“Drug Labeling”/de	“Intensive Care”/de OR “Intensive Care Nursing”/de

Chart 2 - Example of search strategy applied in the MEDLINE database

("Patient Safety"[MeSH Terms] OR "Accident Prevention"[MeSH Terms] OR "Medical Errors"[MeSH Terms] OR "Medication Errors"[MeSH Terms] OR safety[Title/Abstract] OR error[Title/Abstract] OR errors[Title/Abstract] OR "adverse event"[Title/Abstract] OR "adverse events"[Title/Abstract] AND "Drug Labeling"[MeSH Terms] OR "labeling"[Title/Abstract] OR "labels"[Title/Abstract] OR labelling[Title/Abstract] OR labelling[Title/Abstract] OR "sticker"[Title/Abstract] OR stickers[Title/Abstract] OR "adhesive"[Title/Abstract] OR "adhesives"[Title/Abstract] AND "drugs"[Title/Abstract] OR drug[Title/Abstract] OR "medication"[Title/Abstract] OR medications[Title/Abstract] OR medicines[Title/Abstract] OR medicine[Title/Abstract]) AND ("Critical Care"[MeSH Terms] OR "Critical Care Nursing"[MeSH Terms] OR "intensive care"[Title/Abstract] OR "intensive unit"[Title/Abstract] OR "critical care"[Title/Abstract] OR "critical unit"[Title/Abstract])

Data collection, organization and analysis

Data collection in the articles corresponded to the third step of the method, which was based on an instrument previously prepared by the authors that contained the information defined for data extraction, such as identification of author and article, objective, methodological characteristics and results, in addition to a section for assessment regarding clarity and scope in relation to the study theme. These data, after collected, were summarized in a table that gathers the main information related to the research question. The selected studies received the letter “S”, for Study, followed by the Arabic number.

In the fourth phase, the critical analysis of included studies took place, taking into account the problem and the research...
The selected articles were organized in Chart 3, which presents the synthesis of the relevant findings for the study.

Title	Country/Year	Objective	Design	Conclusion
51st Title	Brazil/2019	Analyze the opinion of nursing professionals about the design, practicality of use and usefulness of color-coded labeling in a pediatric ICU.	Cross-sectional, quantitative Total number of participants: 42	The labeling technology was considered appropriate for the design and practicality for all devices, as well as useful in preventing medication errors, reducing the average time developing labeling tasks.
52nd Title	Canada/2019	Assess the impact of interventions performed by participants in four different conditions in a simulated ICU scenario: current practice; using IV-line labels and infusion organizers; with infusion pump; and with an infusion route lighting system.	Experimental, quantitative Each participant should perform two tasks in each condition: correctly identify and disconnect an infusion. Total number of participants: 40	Using IV-line labels and infusion organizers may increase accuracy and efficacy in the correct identification of IV medication infusion.
53rd Title	USA/2009	Compare a color-coded label for high-risk medications with the current labeling practice in a simulated ICU scenario.	Quasi-experimental, quantitative Total number of participants: 61	Using color code improved identifying bags and IV lines, facilitated the identification of errors and decreased the average time in tasks. The task of color-coding the syringe did not show a significant difference when compared to the control scenario, as participants reported difficulty in handling syringe labels.
54th Title	Germany/2012	Investigate whether standardized medication syringe labeling is used in ICUs, whether these standards are similar in other countries, and whether intensivists expect standardized medication syringe labeling to be provided by the pharmaceutical industry.	Survey type, multinational, quantitative Total number of participants: 482	The adoption of standardized syringe labeling in terms of color, design and structure is still lacking among many ICUs, leading to variability in labeling policies between sectors within the same hospital and between hospitals in the same region. This failure can induce professionals to misidentify medications.

Chart 3 - Synthesis of selected articles on intravenous device labeling
Title/country/year	Objective	Design	Conclusion
Multiple Intravenous Infusions Phase 2a: Ontario Survey	Investigate practices or policies that can help identify and prevent risks in patient safety.	Prospective, quantitative study	Inconsistencies between policies and practices were found in some units. It was concluded that these non-conformities in label use can lead to erroneous handling of continuous infusions, erroneous disconnection of infusion, difficulty in administering medications through IV lines in the scenario of clinical emergencies.
Variability of intravenous medication preparation in Australian and New Zealand Intensive Care Units	Examine variability in the preparation of continuous infusion medications.	Survey-type study, quantitative	There was little variability in device labeling among the investigated ICUs. Labeling, whether for syringes or medication bags, is color-coded and the medication name is handwritten.
Variability in the concentrations of intravenous medication infusions prepared in a critical care unit	Check if there is a relationship between syringe label quality and medication preparation.	Audit study N=149 syringes	Better labeled syringes were more likely to contain the medication at the correct concentration.
Errors associated with IV infusions in critical care	Determine the most frequent type of error with IV medications.	Observational, prospective, quantitative study N=1,882 infusions	Incomplete labeling of IV lines was the most common error and posed a risk to patient safety.
An investigation of errors: the preparation and administration of parenteral medications in an intensive care unit of a tertiary teaching hospital in Malaysia	Investigate type, incidence and factors related to errors with IV medications.	Prospective observational study N= 122 IV medications prepared by 39 nurses	Not labeling the syringe is supposed to be an indicator for medication preparation failure, with more chances of dose errors.
Erros no preparo de medicação intravenosa em uma unidade de terapia intensiva neonatal	Analyze the occurrence of errors in IV medication preparation in the neonatal ICU.	Observational, quantitative study N= 70 medication doses	Labeling has not been commonly used in care practice.
Utilização de barreiras de segurança no preparo de drogas vasoativas e sedativos/ analgésicos em terapia intensiva pediátrica	Analyze safety barrier use in vasoactive medication and sedative/analgesic preparation in a pediatric ICU.	Observational, quantitative study N=17 professionals in 204 observations on medication preparation	Labeling practice has been carried out incompletely.

The synthesis constructed after the aggregation of the selected research results indicated that the evidence on IV device labeling was organized into three units.

Label types and effects on prevention of medication errors in intensive care

The data from this synthesis unit provide indications of the potential benefits of the characteristics of labels for IV lines, syringes, infusion pumps and IV bags in preventing medication errors. Among the impacts of using labeling evidenced in the studies, in S1(13) and S2(18), using color coding for IV lines helped to distinguish which medications were infused, increasing effectiveness in correctly identifying medication infusion and providing greater ease in handling multiple infusion pumps and lines. Using color code also improved the identification of bags, reducing the average time developing labeling tasks, facilitating the identification of errors and reducing the average time of tasks in general (S1(13), S3(22)).

Moreover, in S2(18), participants who used electronic medication identification through the medication library of infusion pumps required more time to handle IV lines when compared to participants who handled pumps in common use, in association with using labels on IV lines.
Regarding the characteristics of label types, it is noteworthy that, in S11(25) and S3(12), the labels were differentiated by color codes according to the pharmacological class, according to the ISO 26825 standard, being used for IV-line syringes, infusion pumps and saline solution bags. In S1(13), writing the medication name was differentiated using CAPITAL LETTER when names were similar. Specific labels for potentially dangerous medications have also been standardized with white background and red letters. In both S1(13) and S3(12), the label was printed with the medication name, and the other information was filled in manually. In S2(18), the IV-line label did not use colors for pharmacological classes, but used a white background in its manufacture. The label was adhesive and printed with the medication name, with visualization on both sides of the device, and fixation occurred 8 cm below the continuous infusion pumps and at the end of each IV line.

In S7(21), discarded medication labels were analyzed (midazolam, insulin, magnesium, nor-epinephrine), measuring the concentration of residual solutions present in the syringes. The syringe label should contain the medication name, dose, concentration, diluent, patient name and location, initials of the person who prepared it, initials, day and time. Of 149 syringes, 61 were correctly labeled; 51% of labels did not have the medication concentration; and 47.6% had no information about the diluent. From the analysis of the 149 discarded syringes, the authors found that the best labeled syringes were more likely to contain the medication at the correct concentration. Magnesium syringes were the least likely to be labeled correctly, and insulin syringes were the most correctly labeled. In S9(22), the results were similar to those of S7(21): in 15% of the doses observed, the syringes were not labeled correctly. The syringe label should contain the medication name and dose information. Poorly labeled syringes had more errors per dose (1.9 times more) when compared to well-labeled syringes (1.1 times). The authors attributed these rates to the absence of a specific label for the syringe, since, in the scenario studied, there were only pre-printed labels for bags.

Medication identification errors in labeling intravenous devices by professionals in the Intensive Care Unit

It was found that, in ICU settings, professionals make medication errors related to their labeling practice, when they do not label a device or when they label it incompletely, without identifying the medication route, concentration, dilution, name. These situations were considered in the studies as medication errors. In S10(24), of 70 doses observed that were prepared by nursing professionals, 65.7% did not receive any label on the devices in which they were inserted. Among those containing the label, only 11.4% were complete. This absence of information filled out by professionals on the labels was a practice commonly observed in other studies, such as S5(14), S8(22) and S11(25).

In S11(25), for instance, of the 204 medications administered by saline solution bags, 12.2% were not labeled by professionals. Identification with patients’ full name was present in only 3.4% of labels; 99.4% of devices were labeled without a route description; the label was fixed on only 17.3% of medications and, even so, there was no compliance regarding the fixation place.

These results were in line with those obtained in S5(14) and S8(22). In S8(22), 5,641 errors were identified. Incomplete labeling of IV lines comprised 31.5% of all errors, and incorrect labeling, 26.8%, representing a risk to patient safety. Discrepancies in labeling IV lines were more common during day shifts. Finally, in S5(14), 95% of participants reported not performing IV-line labeling. There were disagreements about how these labels should be filled and exchanged. Some participants reported that some labels were too small for use.

Variability in labeling practice for the identification of devices in the Intensive Care Unit

Overall, there was great variability in studies regarding the label structure, which could be printed labels (S2(16) and S5(14)), with information related to the previously printed medication; preprinted (S1(13), S3(12), S5(14) and S11(25)), previously printed content, with space to fill in other information manually; and completion only handwritten (S5(14) and S6(19)).

As for the content for IV devices, the information that appeared most frequently was the medication name in seven studies and the dose in three studies. Labels that contained more information were the syringes and saline solution bags, mainly the medication name, dose, concentration, diluent, patient name and location, initials of the person who prepared it, initials, day and time. IV line and infusion pump labels presented less information, with emphasis on the medication name and route (central or peripheral), in the case of the lines. Infusion pump labels were found only in two articles, containing the medication name, infusion dose/volume and color related to the medication's therapeutic class according to ISO 26825(13-14).

Regarding the evidence about lack of standardization, in S5(14), 29.6% of participants mentioned that there is no standard practice where they work in relation to IV-line labeling. This result was repeated in S4(19) in relation to syringes, when only 39% reported that standardized medication labeling on the syringe was used in the ICU where they work and 30% of participants reported using ISO 26825 (in its original form). In S6(19), there was a lower degree of variability in labeling practice among the ICUs of the institutions studied in Australia and New Zealand, particularly for syringes and saline solution bags, which should be made with color code and with the medication name handwritten.

DISCUSSION

The results found on labeling IV therapy devices in the ICU indicated: absence of a uniform pattern of structuring the labels in terms of content; color and design applied to different infusion devices; positive effects of labeling on patient safety and on better performance of activities by nursing professionals, especially studies that used pre-designed labels, with pre-defined colors and information or with spaces to be filled in handwritten form; and low compliance with IV device labeling (syringes and IV lines) or their performance with incomplete information by nursing professionals, aspects that are configured in medication identification errors.

Regarding this last result related to non-labeling or incomplete labeling of IV devices, it is pointed out that, in critical patient
Intravenous therapy device labeling in Intensive Care Units: an integrative review
Nunes GK, Campos JF, Silva RC.

Intravenous therapy device labeling in Intensive Care Units: an integrative review
Nunes GK, Campos JF, Silva RC.

Intravenous therapy device labeling in Intensive Care Units: an integrative review
Nunes GK, Campos JF, Silva RC.

Intravenous therapy device labeling in Intensive Care Units: an integrative review
Nunes GK, Campos JF, Silva RC.

Intravenous therapy device labeling in Intensive Care Units: an integrative review
Nunes GK, Campos JF, Silva RC.

Intravenous therapy device labeling in Intensive Care Units: an integrative review
Nunes GK, Campos JF, Silva RC.

Intravenous therapy device labeling in Intensive Care Units: an integrative review
Nunes GK, Campos JF, Silva RC.

Intravenous therapy device labeling in Intensive Care Units: an integrative review
Nunes GK, Campos JF, Silva RC.

Intravenous therapy device labeling in Intensive Care Units: an integrative review
Nunes GK, Campos JF, Silva RC.

Intravenous therapy device labeling in Intensive Care Units: an integrative review
Nunes GK, Campos JF, Silva RC.

Intravenous therapy device labeling in Intensive Care Units: an integrative review
Nunes GK, Campos JF, Silva RC.

Intravenous therapy device labeling in Intensive Care Units: an integrative review
Nunes GK, Campos JF, Silva RC.

Intravenous therapy device labeling in Intensive Care Units: an integrative review
Nunes GK, Campos JF, Silva RC.

Intravenous therapy device labeling in Intensive Care Units: an integrative review
Nunes GK, Campos JF, Silva RC.
that it occurs in the daily work of nursing in a safe way, since these professionals are responsible for medication preparation in the ICU. This strategy can contribute to modifying problems related to low compliance with labeling in intensive care settings, which leads to lack of information or transcription errors; avoid errors related to handling IV lines, changing syringes or IV bags; and provide greater safety of medication administration in emergency situations.

The evidence presented in this research on labeling IV devices reiterated the importance of this practice for patient safety, i.e., when performed properly, it contributes to reducing medication errors and increasing professional safety in providing nursing care. Thus, this practice can be considered an important barrier to defending the medication system safety.

From the conceptual perspective of safety, the weaknesses of the health system (failures) can be compared to the holes in a Swiss cheese, in which, for an incident to happen, the alignment between the holes in the cheese must occur. In view of this, we seek to propose barriers that prevent this alignment of the holes and that the damage affects patients.

Therefore, based on the understanding that labeling improves the identification of information about the medication and visually indicates the pharmacological class to which it belongs, it can be configured as the last barrier before administering a medication. It alone does not guarantee that a medication is prepared correctly, as if a medication has been prepared incorrectly and labelled correctly, the label will not fit what will actually be administered. But if a medication has been prepared correctly and mislabelled, unlabeled or with incorrect information, it may be administered to another patient as well as there may be under-dosage or overdose.

An example of these situations is seen in the research that, from the errors identified in the handling of IV lines of potentially dangerous medications, presented three real cases: a) a patient was using fentanyl and was requested for a bolus of physiological saline solution, however, the saline and fentanyl lines were mixed up and a bolus of fentanyl was given instead of saline; b) tracing the IV lines of heparin and nitroglycerin caused nitroglycerin to be administered at 30 ml/h, when, in fact, it should be set at 1.5 ml/h. Heparin was infused at 1.5 ml/h instead of 30 ml/h as a consequence of the error; and c) phenylephrine bag was on the line in which IV fluid was programmed at 150 ml/h, leading patients to death.

Study limitations

The limitation of this study was related to the lack of detail in some studies of information on the characteristics of the labels used in the studies, which limited the in-depth analysis of the findings in the synthesis of knowledge presented in this review.

Contributions to nursing and health

Medication errors are currently the most common causes of morbidity and mortality in patients in the context of patient safety. In turn, the costs related to these errors represent an important burden on the health system and an important source of waste. This reinforces the need for preventive measures that envision effective impacts on patient safety at all stages of the medication system and that maximize the offer to patients of care permeated by safe actions.

The synthesis of knowledge obtained in this study about labeling IV therapy devices in ICU settings contributes to the development of actions aimed at creating barriers to prevent medication errors related to the identification of devices for medication administration, as well as to reduce the costs associated with them, thus bringing potential benefits to patient safety.

CONCLUSIONS

The results indicated that pre-designed labels, with colors and predefined information for bags of saline solution, IV lines, infusion pumps and syringes, contribute to prevent errors in medication identification. Moreover, they showed that well-labeled syringes had lower chances of medication dosing errors. Despite these effects on patient safety, there is still a lack of standardization of labeling practice to identify medications in syringes, infusion pumps, IV lines and IV bags in institutions, both in terms of content, structure and color. Additionally, it was found that there is a low compliance with labeling IV devices or its performance with incomplete information in practice by nursing professionals, which configured an error in the identification of medications.

Based on these results, further studies are recommended to develop proposals for labels to identify medication delivery devices and to test their applicability in practice, in order to adopt a standard of information visualization. Standardization of labels across institutions can lead to faster and more effective patient interventions in administering, monitoring, and removing IV infusions in critically ill patients. In addition to this, it can contribute to the nursing team’s work in the correct identification of these infusions and, thus, minimize medication errors, such as connections and disconnections of infusions, flushing in wrong routes, among others. In this way, both patients benefit, when receiving medication therapy without interruptions and errors, and professionals, when they feel safer in the handling of such devices.

FUNDING

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

REFERENCES

1. World Health Organization (WHO). Medication without harm: WHO global patient safety challenge [Internet]. Geneva: WHO; 2017 [cited 2020 Aug 20]. Available from: http://apps.who.int/iris/bitstream/10665/255263/1/WHO-HIS-SDS-2017.6-eng.pdf?ua=1
2. Santos PRA, Rocha FLR, Sampaio CSJC. Actions for safety in the prescription, use and administration of medications in emergency care units. Rev Gaucho Enferm. 2019;40(esp):20180347. http://doi.org/10.1590/1983-1447.2019.20180347

3. National Coordinating Council for Medication Error Reporting and Prevention. About medication errors [Internet]. New York: NCC MERP; 2019 [cited 2019 Aug 16]. Available from: https://www.nccmerp.org/about-medication-errors

4. Gracia JE, Serrano RB, Garrido JF. Medication errors and drug knowledge gaps among critical-care nurses: a mixed multi-method study. BMC Health Serv Res. 2019;19(1):640. http://doi.org/10.1186/s12913-019-4481-7

5. Tully AP, Hammond DA, Li C, Jarrell AS, Krueer RM. Evaluation of medication errors at the transition of care from an ICU to non-ICU location. Crit Care Med. 2019;47(4):543-9. http://doi.org/10.1097/CCM.0000000000003633

6. Zipke KG, Seta B, Gholap S, Aurangabadi K, Gurav SK, Deshmukh AM, et al. Incidence of medication error in critical care unit of a tertiary care hospital: where do we stand? Indian J Crit Care Med. 2020;24(9):799–803. http://doi.org/10.4018/jp-journals-10071-23556

7. Ferretti- Rebustini REL, Bispo NS, Alves WS, Dias TN, Santoro CM, Padilha KG. Level of acuity, severity and intensity of care of adults and older adults admitted to the Intensive Care Unit. Rev Esc Enferm USP. 2019;53:e03416. http://doi.org/10.1590/S1980-220X2017051403416

8. Pinkney S, Fan M, Chan K, Koczmarz C, Colvin C, Sasangohar F, et al. Multiple intravenous infusions phase 2b: laboratory study. Ont Health Technol Assess Ser [Internet]. 2014 [cited 2019 Aug 16]; 14(5):1-163. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC459602/

9. Wollitz A, Grissinger M. Aligning the lines: Analysis of IV line errors. Pa Patient Saf Advis [Internet]. 2014 [cited 2019 Aug 16];11(1):1-7. Available from: http://patientsafety.pa.gov/ADVISORIES/Pages/201403_01.aspx

10. Food and Drug Administration. Device Labelling [Internet]. EUA: FDA; 2020 [cited 2021 Feb 10]. Available from: https://www.fda.gov/medical-devices/overview-device-regulation/device-labelling.

11. National Library of Medicine. Definition of “Drug Labelling” [Internet]. EUA: NIH; 2021 [cited 2021 Feb 10]. Available from: https://www.ncbi.nlm.nih.gov/mesh/?term=drug+labeling

12. Porat N, Bitan Y, Shefi D, Donchin Y, Rozenbaum H. Use of colour-coded labels for intravenous high-risk medications and lines to improve patient safety. Qual Saf Health Care. 2009;18(6):505-9. http://doi.org/10.1136/qshc.2007.025726

13. Nayaran MSG, Silva VM, Lopes MVO, Diniz CM, Ferreira GL. Evaluation of color-coded drug labeling to identify endovenous medicines. Rev Bras Enferm. 2019;72(3):715-20. http://doi.org/10.1590/0034-7167-2018-0242

14. Fan M, Koczmarz C, Masino C, Cassano-Piché A, Trbovich P, Easty A. Multiple intravenous infusions phase 2a: Ontario survey. Ont Health Technol Assess Ser [Internet]. 2014 [cited 2019 Aug 16];14(4):1-141. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4522693/

15. Ministério da Saúde (BR), Agência Nacional de Vigilância Sanitária. Assistência Segura: uma reflexão teórica aplicada à prática [Internet]. Brasilia: Ministério da Saúde; 2013 [cited 2020 Aug 20]. 168p. Available from: http://www20.anvisa.gov.br/segurancadopaciente/index.php/publicacoes/item/caderno-1-assistencia-segura-uma-reflexao-teorica-aplicada-a-pratica

16. Mendes KDS, Silveira RDCP, Galvão CM. Revisão integrativa: método de pesquisa para a incorporação de evidências na saúde e na enfermagem. Texto Contexto Enferm. 2008;17(4):758-64. http://doi.org/10.1590/S0104-0702008000400018

17. Stephenson M, Riitano D, Wilson S, Leonard-Jee J, Mabire C, Cooper K, et al. Chapter 12: Systematic reviews of measurement properties. In: Aromataris E, Munz Z (Editors). JBI Manual for Evidence Synthesis. JBI; 2020. https://doi.org/10.46658/JBIMES-20-13

18. Pinkney SJ, Fan M, Koczmarz C, Trbovich PL. Untangling infusion confusion: a comparative evaluation of interventions in a simulated intensive care setting. Crit Care Med. 2012;40(7):e597-e601. http://doi.org/10.1097/CCM.0b013e31823f7b9d

19. Bailer F, Wickboldt N, Spies C, Walder B, Gonnerut J, Citerio G, et al. Standardised drug labelling in intensive care: results of an international survey among ESICM members. Intensive Care Med. 2012;38(8):1298-305. http://doi.org/10.1007/s00134-012-2569-1

20. Levkovich BJ, Bui T, Bovell A, Wattersson J, Egan A, Poole SG, et al. Variability of intravenous medication preparation in Australian and New Zealand intensive care units. J Evid Clin Pract. 2022;22(6):965-970. http://doi.org/10.1111/jep.12574

21. Wheeler DW, Degnan BA, Sehmi JS, Burnstein RM, Menon DK, Gupta AK. Variability in the concentrations of intravenous drug infusions prepared in a critical care unit. Intensive Care Med. 2008;34(8):1441-7. http://doi.org/10.1007/s00134-008-1113-9

22. Summa-Sorgini C, Fernandes V, Lubchansky S, Mehta S, Hallett D, Bailie T, et al. Medication errors and drug knowledge gaps among critical-care nurses: a mixed multi-method study. BMC Health Serv Res. 2019;19(1):640. http://doi.org/10.1186/s12913-019-4481-7

23. Yiu TS, Said MM, Rahman RA, Taha NAB. An investigation of errors: the preparation and administration of parenteral medications in an intensive care unit of a tertiary teaching hospital in Malaysia. Int J Pharm Pharm Sci [Internet]. 2016 [cited 2020 Aug 19];8(3):325-29. Available from: https://innovareacademics.in/journals/index.php/ijpps/article/view/10098

24. Holland CBC, Galva MAM. Erros no preparo de medicação intravenosa em uma unidade de terapia intensiva neonatal. Nursing [Internet]. 2018 [cited 2020 Aug 19];21(241):2223-28. Available from: http://www.revistanursing.com.br

25. Julca CSM, Rocha PK, Tomazoni A, Manzo BF, Souza S, Anders JC. Use of safety barriers in the preparation of vasoactive drugs and sedatives/analgesics in pediatric intensive care. Cogntif Enf末r. 2018; (23):43; e54247. http://doi.org/10.5380/cc.v23i4.54247

26. Alves BMCS, Andrade TNG, Santos SC, Goes AS, Santos AS, Lyra Júnior DPL, et al. Harm prevalence due to medication errors involving high-alert medications: a systematic review. J Patient Saf. 2021;17(1):e1-e9. http://doi.org/10.1097/PTS.0000000000000649

27. Aseeri M, Banasser G, Baduhduh O, Baksh S, Ghahibi N. Evaluation of medication error incident reports at a tertiary care hospital. Pharmacy. 2020;8(2):69. http://doi.org/10.3390/pharmacy8020069
28. Emergency Care Research Institute. Top 10 health technology hazards for 2015 [Internet]. USA: ECRI; 2014 [cited 2021 Nov 16]. Available from: https://www.ecri.org/Resources/Whitepapers_and_reports/Top_Ten_Technology_Hazards_2015.pdf

29. Estock JL, Murray WA, Miszah MT, Mangione MP, Goode Jr JS, Eibling DE. Label design affects medication safety in a operating room crisis: a controlled simulation study. J Patient Saf. 2018;14(2):101-106. http://doi.org/10.1097/PTS.0000000000000176

30. Bowdle TA, Jelacic S, Nair B, Togashi K, Caine K, Bussey L, et al. Facilitated self-reported anaesthetic medication errors before and after implementation of a safety bundle and barcode-based safety system. Br J Anaesth. 2018;121(6):1338-45. http://doi.org/10.1016/j.bja.2018.09.004

31. Moreira ME, Hernandez C, Stevens AD, Jones S, Sande M, Blumen JR, et al. Color-Coded prefilled medication syringes decrease time to delivery and dosing error in simulated emergency department pediatric resuscitations. Ann Emerg Med. 2015;66(2):97-106.e3. http://doi.org/10.1016/j.ajem.2014.12.035

32. Ministério da Saúde (BR). Agência Nacional de Vigilância Sanitária. Protocolo de Segurança na prescrição, uso e administração de medicamentos [Internet]. Brasília: ANVISA; 2013 [cited 2021 Nov 16]. Available from: https://www20.anvisa.gov.br/segurancadopaciente/index.php/publicacoes/item/seguranca-na-prescricao-uso-e-administracao-de-medicamentos

33. Instituto para Práticas Seguras no Uso de Medicamentos. Medicamentos potencialmente perigosos de uso hospitalar – lista atualizada 2019 [Internet]. Brasil: ISMPb; 2019 [cited 2021 Nov 16]. Available from: https://www.ismp-brasil.org/site/wp-content/uploads/2019/02/615-boletim-ismp-fevereiro-2019.pdf

34. Dhawana I, Tewari A, Sehgal S, Sinha AC. Medication errors in anesthesia: unacceptable or unavoidable? Rev Bras Anestesiol. 2017;67(2):184-92. http://doi.org/10.1016/j.bjane.2015.09.006