Syntax-Based Alignment: Supervised or Unsupervised?

Hao Zhang and Daniel Gildea

Computer Science Department
University of Rochester
Tree-based Alignment

IP

⇒

IP

⇒

IP

NP

wo

dui

ni

jiang

⇒

NP

VP

⇒

NP

VP

⇒

NP

VP

I

tell

you

Zhang and Gildea
Two Examples of Syntax-Based Alignment Models

- Stochastic Inversion Transduction Grammars (Wu 1997)
 - Synchronous parsing
 - Binary bracketing grammar
 - Either straight or inverted

- Tree-to-String transformation (Yamada and Knight 2001, 2002)
 - Fixed parse on one side
 - Penn Treebank grammar
 - All possible re-orderings
Training of ITG

\[N_s \]

\[N_t \]

you

tell

I

wo dui ni jiang

Z'

Y'

I

Z

[wo dui ni jiang]

Zhang and Gildea
One Parse for One Alignment
The Unambiguous Inversion Bracketing Grammar

- 4 Nonterminals: S, A, B, C
- S, the dedicated root symbol
- C, the dedicated preterminal
- A, for straight rules
- B, for inverted rules
- A and B alternate on the right
An Example of ITG Parse Tree
Training of Tree-to-String Model

\[
\begin{align*}
N & \quad \downarrow \quad l \\
& \quad \downarrow \quad k \\
& \quad \downarrow \quad 1 \\
A_1 & \quad A_2 & \quad A_3 & \quad A_4
\end{align*}
\]
Of the six possible re-orderings of the three terminals, the two are not allowed.
Allow Subtrees to be “Cloned”

Constituents of sentence can move to arbitrary locations, at a cost in probability.
Categorisation of Alignment Parameters

	ITG	Tree-to-String		
lexical translation	$P(C' \rightarrow e_i/f_j)$	$P_t(f	e)$	
insertion	$P(C' \rightarrow \epsilon/f_j)$	$P_{\text{ins}}(\text{left}, \text{right}, \text{none}	\epsilon)$, $P_t(f	\text{NULL})$
cloning		$P_{\text{ins}}(\text{clone}	\epsilon)$, $P_{\text{clone}}(\epsilon_i	\text{clone} = 1)$
deletion	$P(C' \rightarrow e_i/\epsilon)$	$P_t(\text{NULL}	e)$	
re-ordering	$P(A \rightarrow [AB])$	$P_{\text{order}}(\rho	\epsilon \Rightarrow \text{children}(\epsilon))$	
	$P(B \rightarrow \langle BA\rangle)$			
	...			
Experiments

	Training Data	Evaluation Data	Cross-Validation Data
English-Chinese	18,773	48	49
English-French	20,000	447	37

\[
AER = 1 - \frac{|A \cap G_P| + |A \cap G_S|}{|A| + |G_S|}
\]

\[
G = G_S = G_P \text{ for English-Chinese gold standard alignments}
\]
ITG Training Curve

- Perplexity vs. Iterations
- AER
Result: English-Chinese

Model	Precision	Recall	Alignment Error Rate
IBM Model 1	.56	.42	.52
IBM Model 4	.67	.43	.47
Inversion Transduction Grammar	.68	.52	.40
Tree-to-String w/ Clone	.65	.43	.48
Tree-to-String w/o Clone	.63	.41	.50
Result: Chinese-English

Method	Precision	Recall	Alignment Error Rate
IBM Model 4	.56	.59	.42
Inversion Transduction Grammar	.68	.52	.40
Tree-to-String, automatic parses	.61	.48	.46
Tree-to-String, gold parses	.61	.52	.44
Result: English-French

Method	Precision	Recall	Alignment Error Rate
IBM Model 1	.63	.71	.34
IBM Model 4	.83	.83	.17
Inversion Transduction Grammar	.82	.87	.16
Tree-to-String w/ Clone	.84	.85	.15

Zhang and Gildea
Punctuation Raising

We see them.

Nous les voyons.
Aditional Results: Tree2String Without Punctuation Raising

	Precision	Recall	Alignment Error Rate
Tree-to-String w/ Clone	.84	.85	.15
Tree-to-String w/ Clone w/o PR	.71	.75	.27
Additional Results: Using Ambiguous ITG

	Precision	Recall	Alignment Error Rate
unambiguous grammar	.82	.87	.16
ambiguous, single constituent grammar	.80	.87	.18
Summary

- Trees can help alignment
- Loosening constraints necessary

Future Work

- Synchronous parsing using realistic grammars
- Looking at large pieces of tree
Thanks

Rebecca Hwa
Mary Swift
Big-Picture Seminar @ URCS