Можливості ОФЕКТ головного мозку з перфузійними радіофармпрепаратами для кількісної оцінки когнітивних змін пацієнтів із гіпертензивною енцефалопатією

Ніколов М.О. 1,2, ORCID: 0000-0001-8716-6254, e-mail nikolka_@ukr.net
Залісна Ю.Д. 3, ORCID: 0000-0002-0726-0249, e-mail zyulianna@gmail.com
Новікова Т.Г. 4,5, ORCID: 0000-0001-9068-508X, e-mail novikova_tg@ukr.net
Макев С.С. 3, ORCID: 0000-0001-8716-6254, e-mail nikolka_@ukr.net
Дученко А.В. 1, ORCID: 0000-0001-6631-7157, e-mail aduchenko-ee24@lll.kpi.ua

1Національний технічний університет «Ігор Сікорський» Миністерства освіти і науки, м. Київ, Україна
2Державна установа «Інститут медичної праці імені Ю.І. Кундієва Національної академії медичних наук України», м. Київ, Україна
3Медична неврологічна клініка «Берн-Ю-Мед», м. Київ, Україна
4Державна установа «Інститут нейрохірургії імені академіка А.П. Ромоданова Національної академії медичних наук України», м. Київ, Україна
5Кафедра ядерної медицини, радіаційної медицини, радіаційної онкології та радіаційної безпеки «Національного університету охорони здоров’я України імені П.Л. Щупика Міністерства охорони здоров’я України», м. Київ, Україна

Possibilities of brain SPECT with perfusion radiopharmaceuticals for the quantitative assessment of cognitive changes in patients with hypertensive encephalopathy

Nikolov M.O. 1,2, ORCID: 0000-0001-8716-6254, e-mail nikolka_@ukr.net
Zalisna Yu.D. 3, ORCID: 0000-0002-0726-0249, e-mail zyulianna@gmail.com
Novikova T.G. 4,5, ORCID: 0000-0001-9068-508X, e-mail novikova_tg@ukr.net
Makeyev S.S. 3, ORCID: 0000-0001-6631-7157, e-mail usnm@ukr.net
Duchenko A.V. 1, ORCID: 0000-0001-6631-7157, e-mail aduchenko-ee24@lll.kpi.ua

1National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» of the Ministry of Education and Science of Ukraine, Kyiv, Ukraine
2State Institution «Kundiev Institute of Occupational Health of the National Academy of Medical Sciences of Ukraine», Kyiv, Ukraine
3Medical Clinic «Bern-Yu-Med», Kyiv, Ukraine
4State Institution «Romodanov Neurosurgery Institute of the National Academy of Medical Sciences of Ukraine», Kyiv, Ukraine
5Department of Nuclear Medicine, Radiation Medicine, Radiation Oncology and Radiation Safety of «Shupyk National Healthcare University of Ukraine of the Ministry of Health of Ukraine», Kyiv, Ukraine
Key words:
brain, perfusion, 99mTc-HMPAO, intrahemispheric symmetry, hypertensive encephalopathy, machine learning, neuropsychological test, cognitive functions.

For correspondence:
Nikolov Mykola Oleksandrovych
State Institution «Kundiev Institute of Occupational Health of the National Academy of Medical Sciences of Ukraine»;
75, Saksagansky Str., Kyiv, Ukraine, 01033;
e-mail: nicholay.nikolov@gmail.com;
nikolka_@ukr.net

© Nikolov M.O., Zalisna Yu.D., Novikova T.G., Makeyev S.S., Duchenko A.V., 2022

NPT были тесты: Монтгомери – Асберга (MADRS), тревоги Гамилtona (HARS), Шульте (SchulteTable), О. Лурія (O. Luria). Томографічні зображення ГМ були отримані на гамма-камері «E. Cam» (Siemens) з використанням перфузійного ліпофільного радіофармпрепарату (РФП) 99mTc-гексаметилпропіленаміноксимом (99mTc-GMPAO). Обробка та аналіз сцинтиграфічних зображень проводилися в оригінальному програмному забезпеченні «ScintiBrain», що реалізовано в середовищі Matlab-2018. Кількісними характеристиками накопичення та просторового розподілення РФП в ГМ були: питоме накопичення РФП (Upt) та параметр внутрішньопівкульових симетрії (ВПС) перфузії в сегментах ГМ. На основі машинного навчання, який за своєю суттю можна віднести до регресійних методів, дані НПТ співставлялися з відношеннями Upt та ВПС між різними сегментами мозку.

Результати та їх обговорення. У результаті машинного навчання із 190 відношень Upt та ВПС між різними сегментами ГМ з показниками НПТ були виділені відношення, найбільш інформативні з точки зору регресійного аналізу. Незалежність Upt та ВПС дає можливість підвищити точність розрахунків показників НПТ шляхом алгебраїчного усереднення розрахунків за відношеннями Upt та ВПС. Результати машинного навчання як за значеннями Upt, так і ВПС, мало порядок корелюючих змін, але зерність взаємозв'язку накопичення РФП відповідає не між 7–22%.

Висновки. Вперше розроблено методику кількісної оцінки нейропсихологічного та когнітивного стану пацієнтів на основі об'єктивного методу дослідження, а саме ОФЕКТ. Відносна похібка розрахунків еквівалентних значень НПТ знаходиться в межах 7–22%. При цьому показано, що нейропсихологічний та когнітивний стан пацієнтів, зокрема хворих на АТГЕ за аналізом ефективності перфузії ГМ відповідає не між 7–22%.

Оригінальні дослідження Original research

ABSTRACT

Background. Vascular diseases of the brain, which lead to encephalopathy, are a significant medical and social problem. The main clinical tool for diagnosing cognitive impairments is a neuropsychological testing. Its disadvantages are a big number of different tests, which are used in clinical institutions, and thus, make it extremely complicated to compare the data; in monitoring studies, patients can learn answers, which somewhat distorts the results; there is also a possibility of a non-objective doctor’s impact on the results of the conducted test. Therefore, the development of methods for assessing the neuropsychological and cognitive state of patients based on objective data is an urgent task. Besides, to this date, it is not completely known which segments of the brain directly or indirectly affect this or that cognitive function.

Purpose: – to develop a methodology for assessing the scores of neuropsychological testing (NPT) in patients with atherosclerotic hypertensive encephalopathy (ATHE) based on data from single-photon emission computed tomography (SPECT) with perfusion radiopharmaceuticals (PhP).

Materials and Methods. NPT and SPECT data of twenty patients with clinical diagnosis of atherosclerotic hypertensive encephalopathy were analyzed. The principal scales used during the study were the following: Montgomery – Asberg Depression Rating Scale (MADRS), Hamilton Anxiety Rating Scale (HARS), Schulte Table, O. Luria. Tomographic images of the brain were obtained on the gamma camera «E. Cam» (Siemens) using perfusion lipophilic radiopharmaceutical 99mTc-hexamethylpropyleneamineoxime (99mTc-HMPAO). Processing and analysis of the scintigraphic images were conducted in the original software «ScintiBrain», which is implemented in the Matlab-2018 environment. The quantitative characteristics of accumulation and spatial distribution of PhP in the brain were: specific accumulation of PhP (Upt) and parameter of intrahemispheric symmetry (IHS) of perfusion in the brain segments. Based on machine learning method, which can be attributed to regression methods, NPT data were compared with the ratio of Upt and IHS between different segments of the brain.

As a result of the analysis (machine learning) of 190 Upt and IHS ratios between different segments of the brain with NPT values, the most informative ratios in terms of regression analysis were highlighted. The independence of Upt and IHS makes it possible to increase the accuracy of calculations of NPT values by algebraic averaging of calculations by Upt and IHS ratios.
Український радіологічний та онкологічний журнал. 2022. Т. 30. № 1. С. 42–56
ISSN 2708-7166 (Print)
Ukrainian journal of radiology and oncology. 2022;30(1):42–56
ISSN 2708-7174 (Online)

Оригінальні дослідження

Original research

For citation:

Nikolov MO, Zalisna YuD, Novikova TG, Makeyev SS, Duchenko AV. Possibilities of brain SPECT with perfusion radio-pharmaceuticals for the quantitative assessment of cognitive changes in patients with hypertensive encephalopathy. Ukrainian journal of radiology and oncology. 2022;30(1):42–56. DOI: https://doi.org/10.46879/ukroj.1.2022.42-56

Зв’язок роботи з науковими програмами, планами і темами

Relationship with academic programs, plans and themes

The study was performed within the framework of the research project at the State Institution «Romodanov Neurosurgery Institute of the National Academy of Medical Sciences of Ukraine» «To analyze the structural and functional impairments of central nervous system in interim and long-term periods of a blast-induced mild traumatic brain injury». State registration number 0117U004278 using the data of the research project of Department of Neurology and Reflexology of Shupyk National Healthcare University of Ukraine of the Ministry of Health of Ukraine «Neurological, neuropsychological, neurovisual characteristics of the patients with hypertensive encephalopathy» (state registration number 0110V005690) which were included in the dissertation of Zalisna Yu.D. for the degree «Candidate of Medical Sciences» on the topic «Neurological, neuropsychological, neurovisual characteristics of the patients with hypertensive encephalopathy», 2015, Kyiv.

Вступ

Судинні захворювання головного мозку (ГМ), що призводять до енцефалопатичних розладів, є значною медико-соціальною проблемою. Вважається, що до найбільш важливих факторів, які призводять до нейро психологічних і когнітивних змін, є хронічні порушення кровообігу центральної нервової системи, артеріальна гіпертензія, атеросклероз, цукровий діабет, кардіологічна патологія, патології крові та ін. [1]. При цьому, під час прогресування хвороби спостерігаються дифузні та вогнищеві зміни мозку [2, 3]. Високоінформативним методом діагностики порушень гемодинаміки при таких змінах є однофотонна емісійна комп’ютерна томографія (ОФЕКТ) [4–6]. Однак, слід враховувати, що гіпертензивна енцефалопатія — це не тільки вогнищеві зміни тканин мозку. Порушення мікросхилування крові та відповідної церебральної функції спостерігаються у мозку в цілому [7–9].

Vascular diseases of the brain, which lead to encephalopathy, are a significant medical and social problem. The most significant factors that cause neuro-psychological and cognitive changes are thought to be: chronic blood circulation disorder of central nervous system, arterial hypertension, atherosclerosis, diabetes mellitus, cardiac pathology, blood pathologies, etc. [1]. At the same time, diffuse and focal changes in the brain are observed during the progression of the disease [2, 3]. In such cases, single-photon emission computed tomography (SPECT) is a high-informative method for diagnosing the hemo-dynamic disorders [4 – 6]. However, it should be taken into account that hypertensive encephalopathy is not only focal changes in the brain tissues. The disruption of blood microcirculation and respective cerebral functions are observed in the brain in general [7 – 9].
Церебральна ОФЕКТ рекомендована пацієнтам з енцефалопатіями для оцінки поширеності ураження ГМ. При виявленні вогнищевих змін таке дослідження стає показовим в оцінці ефективності терапії та нормалізації ефективної перфузії. Також перфузійні зображення ОФЕКТ ГМ є інформативними і при додементних розладах [10]. Так в [10] відмічається статистичний взаємозв’язок між показниками накопичення радіофармпрепарату (РФП) в структурно-функціональних блоках за О. Лурія з типом додементних когнітивних розладів.

Основним клінічним інструментом діагностики когнітивних порушень є нейропсихологічне тестування (НПТ) [11, 12]. Хоча, слід відзначити й можливості електроенцефалографії [13], її інтенсивно розвиваються методики функціональної магнітно-резонансної томографії (фМРТ), які дають можливість оцінити конкurentивність мозку – сумісність компонентів системи, їх синхронізації [14]. Недоліками НПТ є надто велика сукупність різних тестів, які використовуються в клінічних закладах, що вкрай ускладнює співставлення даних; при моніторингових дослідженнях пацієнти спроможні навчитися надавати свідомо чи несвідомо неправильні відповіді й спотворити результати тестів. Крім того, всі тести, наявні як вони спрямовані на діагностику конкретної когнітивної функції, так чи інакше активують цілій спектр різних груп нейронів, які «опосередковано» залучаються до процесів. Іншими словами, НПТ не дозволяє об’єктивно визначити фізіологічно обумовлені причини когнітивних змін. Тому була поставлена задача оцінити можливість кількісної оцінки когнітивних порушень, що еквівалентні основним тестам НПТ, на основі аналізу зображень ОФЕКТ ГМ за перфузійними препаратами.

Мета роботи – розробити методику оцінки показників нейропсихологічного тестування хворих з АТЕГ на основі даних ОФЕКТ з перфузійними радіофармпрепаратами, зокрема з 99mTc-гексаметил-пропіленаміноксимом (99mTc-ГМПАО).

Пациенти
Було обстежено 20 пацієнтів віком 45 – 60 років з діагнозом атеросклеротична гіпертензивна енцефалопатія (АТЕГ) II стадії з тривалістю захворювання 9 ± 4,2 років. Середній вік обстежених становив 53,1 ± 2,5 року. Діагноз встановлювався з урахуванням характеристики клініко-неврологічного синдрому відповідно до класифікації судинних захворювань головного мозку, рекомендованої МКБ-10. Всім хворим проводили такі дослідження: клініко-неврологічне обстеження в динаміці, нейропсихологічне тестування, оцінювали артеріальний тиск за даними добового моніторину, магнітно-резонансну томографію ГМ, ультразвукове дуплексне сканування судин голови і шиї, лабораторні дослідження, ОФЕКТ головного мозку.

Neuropsychological testing
In accordance with the purpose of the work the SPECT data were correlated with the following NPT methods: – MADRS (Montgomery–Asberg Depression Rating Scale); – MADRS (Montgomery–Asberg Depression Rating Scale) – a scale for measuring the severity of depression;
Сцинтиграфічні дослідження ГМ проводили на гамма-камері «E. Cam» (Siemens) з коліматором LEHR через 15–20 хвилин після введення 99mTc-ГМПАО. Томографічне дослідження включало збір 128 проекцій для матриці 128×128 (3 пацієнта) або 64 проекції для матриці 64×64 (17 пацієнтів); введена активність РФП становила 740 МБк.

ОФЕКТ зображения

Сцинтиграфічні дослідження ГМ проводили на гамма-камері «E. Cam» (Siemens) з коліматором LEHR через 15–20 хвилин після введення 99mTc-ГМПАО. Томографічне дослідження включало збір 128 проекцій для матриці 128×128 (3 пацієнта) або 64 проекції для матриці 64×64 (17 пацієнтів); введена активність РФП становила 740 МБк.

SPECT images

Scintigraphic examinations of the brain were performed on the gamma camera «E. Cam» (Siemens) with LEHR collimator 15–20 minutes after 99mTc-HMPAO administration. Tomographic examination included the collection of 128 projections for 128×128 matrix (3 patients) or 64 projections for 64×64 matrix (17 patients); the injected radiopharmaceutical activity amounted to 740 MBq.
Зареєстровані гамма-імпульси в зоні інтересу (Q) розраховувалося як відношення абсолютної кількості правої чи лівої півкулі відповідно.

де R, L – індекси приналежності зони інтересу (ЗІ) до мозочок) (R, L),

Сегментах ГМ, та питоме накопичення РФП у сегментах:

q_{i} – внутрішньопівкульова симетрія (ВПС) мозку ([17] у рамках «ScintiBrain» з інтерфейсом для користувача [16].

внутрішньопівкульова симетрія (ВПС) мозку ([17] у Matlab-2018 environment in the application with the user interface, created by the «ScintiBrain» developers [16].

де індекс

Питоме накопичення РФП у заданому сегменті (Upt) розраховувалося як відношення абсолютної кількості зареєстрованих гамма-імпульсів в зоні інтересу (Q) до її об’єму (V) в см³:

$$\text{Upt} = \frac{Q}{V},$$

де індекс i – порядковий номер сегментів ГМ (зони інтересу).

На відміну від показника ВПС, що зазначено та описано в публікаціях [12], в даний роботі для підвищення стійкості (зменшення варіабельності) розрахунку відповідного показника використовувалося нормування значення q:

$$\theta_i = \frac{\theta}{(V_{10} + V_{20})V_i},$$

де i – порядковий номер сегментів ГМ (ЗІ); індекси «19» та «20» відповідають лівій та правій півкулі.

Використання нормування (3) і (4) дозволило зменшити варіабельність розрахунків виходних даних: Upt – з 5–10% до 3–7%, θ – з 3–15% до 5–8%.

Ці варіабельності були оцінені на основі обробки сцинтиграфічних зображень пацієнтів п’ять разів без застосування автоматичного вибору параметрів згладжування та просторової орієнтації ГМ, застосовувався експертний метод оцінки якості попередньої обробки зображень.

Зазначимо, що на перших етапах дослідження замість показника Upt використовувались значення

Processing and analysis of the images were conducted in Matlab-2018 environment in the application with the user interface, created by the «ScintiBrain» developers [16].

The main calculation parameters were intrahemispheric symmetry (IHS) of the brain ([17] and specific accumulation of RPh in the brain segments:

Upt – from 5 – 17% to 3 – 8%.

q – from 5 – 10% to 3 – 7%.

Оригінальні дослідження Original research
ОМК за методиками розрахунку Лассена та за розробленим авторами методом [18, 19]. Однак, зазначені методи базуються на розрахунку співвідношення накопичення РФП у ЗІ до мозочка чи головного мозку в цілому. Тому, використання ОМК як базисного показника для реалізації наведеного в даній роботі метода недоцільно, оскільки потребує додаткових розрахунків зі своїми поглядами. Особливо це стосується ОМК за методом Лассена, тому що у даному випадку, як референтна зона, використовується накопичення РФП у ЗІ «мозочка», яка має низькі кореляційні взаємозв'язки з даними НПТ.

Методика співставлення даних ОФЕКТ з НПТ

На основі розрахованих значень накопичення РФП та ВПС у ЗІ для кожного пацієнта будувалась трикутна матриця співвідношень значень Upt та що між сегментами ГМ:

\[\begin{array}{c}
U_{ij}^{Upt} = \frac{U_{ij}^{Upt}}{U_{jj}} \\
U_{ij}^{\theta} = \theta_j \theta_i
\end{array} \]

де \(i,j \) – порядковий номер відношення між ЗІ; \(i = 1...(n-1), j = (i+1)...n \)

Після знаходження матриць відношень для кожного пацієнта були побудовані скатерограми між даними ОФЕКТ і результатами НПТ. Отримані скатерограми апроксимувались прямою:

\[y = ax + b \]

де \(x \) – дані ОФЕКТ, \(y \) – результати того чи іншого тесту НПТ, \(a, b \) – коефіцієнти рівняння апроксимації.

У результаті порівняння всіх відношень показників ОФЕКТ з даними НПТ було виділено ті скатерограми, де коефіцієнти кореляції (R) між ними були максимальними. Таким чином, пошук найкращих комбінацій показників ОФЕКТ, що характеризує нейрокогнітивний стан пацієнта, можна віднести до регресійних методів машинного навчання.

При цьому дани ОФЕКТ представляли собою відношення I, II, III ІV порядки, де

- відношення I порядку – безпосередні значення матриць відношень для Upt чи ВПС:
 \[x_{ij}^I = U_{ij} \]
- відношення II порядку – геометричне середне між Upt та Upt+z:
 \[x_{ij}^II = \sqrt{(U_{ij})^2 + (U_{ij+z})^2} \]
де \(k = 1..N-1, z = (k+1)..N \)
- відношення III порядку – геометричне середне між Upt, Upt+z та Upt+v:
 \[x_{ij}^III = \sqrt{(U_{ij})^2 + (U_{ij+z})^2 + (U_{ij+v})^2} \]
де \(k = 1..N-2, z = (k+1)..(N-1), v = (z+1)..N \)

Method for comparing SPECT and NPT data

Based on the calculated values of RFP accumulation and IHS in ROI, a triangular matrix of ratios of Upt to \(\theta \) values between the brain segments was built for every patient:

\[U_{ij}^{Upt} = \frac{U_{ij}^{Upt}}{U_{jj}} \] for Upt values

and

\[U_{ij}^{\theta} = \theta_j \theta_i \] for IHS values,

where \(i,j \) are ordinal numbers of ratios between ROI;

\(i = 1...(n-1), j = (i+1)...n \)

After finding the matrices of ratios, scatterograms between SPECT data and NPT results were built for every patient. The obtained scatterograms were approximated by the line:

\[y = ax + b \]

where \(x \) is SPECT data, \(y \) is the result of a certain test, \(a, b \) are equation approximation coefficients.

As a result of analyzing and comparing the ratios of SPECT values to NPT data, the scatterograms, in which correlation coefficients (R) between the approximation curve and values on the scatterogram were maximal, were highlighted. Thus, the search for the most optimal combinations of SPECT values that characterizes neurocognitive condition of the patients can be classified as regresional method of machine learning.

SPECT data represented relations of I, II, III and IV order, where

- relations of I order – proximate values of the matrices of ratios for Upt or IHS:
 \[x_{ij}^I = U_{ij} \]
- relations of II order – the geometric mean between Upt and Upt+z:
 \[x_{ij}^{II} = \sqrt{(U_{ij})^2 + (U_{ij+z})^2} \]
where \(k = 1..N-1, z = (k+1)..N \)
- relations of III order – the geometric mean between Upt, Upt+z and Upt+v:
 \[x_{ij}^{III} = \sqrt{(U_{ij})^2 + (U_{ij+z})^2 + (U_{ij+v})^2} \]
where \(k = 1..N-2, z = (k+1)..(N-1), v = (z+1)..N \).
Після машинного навчання, тобто перебору всіх відношень I–III порядку для питомого накопичення РФП та ВПС в змін і виділення наїбільш інформативних відношень між сегментами, були отримані лінійні залежності між даними ОФЕКТ та НПТ з коефіцієнтами кореляції (R) від 0,7 до 0,9. Для оцінки похибки та стаційності розрахунків, всі сцинтиграфічні зображення пацієнтів були оброблені повторно. Отримані дані підтвердили у визначені апроксімаційні залежності. Для підвищення стаційності та надійності розрахунків машинне навчання виконувалося на ОФЕКТ даних пацієнтів, що оброблялися двічі. Тобто результати машинного навчання співставлялися у визначені апроксімаційні залежності. Відповідно до зазначених, найбільш значимими показниками для оцінки нейропсіхічного стану пацієнтів є показники відношень, які характеризуються показниками L ∑7, Sh.

Кореляція (R) від 0,7 до 0,9. Для оцінки похибки та стаційності розрахунків, всі сцинтиграфічні зображення пацієнтів були оброблені повторно. Отримані дані підтвердили у визначенні апроксімаційні залежності. Для підвищення стаційності та надійності розрахунків машинне навчання виконувалося на ОФЕКТ даних пацієнтів, що оброблялися двічі. Тобто результати машинного навчання співставлялися у визначенні апроксімаційні залежності. Відповідно до зазначених, найбільш значимими показниками для оцінки нейропсіхічного стану пацієнтів є показники відношень, які характеризуються показниками L ∑7, Sh.

After machine learning, namely the analysis of relations of I–III order for specific RPh accumulation and IHS in ROI and selection of the most informative ratios between segments, linear dependences between SPECT and NPT data with correlation coefficients (R) from 0.7 to 0.9 were obtained. For assessing the error and stability of calculations all the scintigraphic images of the patients were processed for a second time. The obtained data were inserted in the determined approximate dependences. Machine learning was performed on SPECT of these patients, processed twice to increase the stability and reliability of the calculations. So, the final table of these patients consisted of 40 columns (total number of patients) instead of 20. The validation of calculations was performed on the third variant of SPECT processing.

It should be noted that the most significant factors for 3D SPECT images processing for the given method of calculation of NPT values which affect accuracy, are variability of filtering quality (smoothing) of the images and, most importantly, the accuracy of the segmentation. In Tables 2 – 4 the results of studying for Luria and Schulte memory and attention tests are given. The data are characterized by L ∑7, Sh, G1, and G2 indicators. However, these neurotests require repeated performance (Luria’s test is performed 7 times, Schulte’s one – 5 times). Repeated testing gives an opportunity to assess neurophysiological characteristics over time and take into account influence of fatigue and studying on the patients. The results of machine learning of comparing SPECT data to NPT results showed that, according to IHS values, a monotonic increase in correlation coefficient R of the approximation of the scatterograms for Luria’s tests was observed as the patient completed more tests, whereas according to RPh accumulation values, R values remained statistically similar. In Schulte’s tests the situation was different: as the patien completed more tests, R value monotonously increased for Upt indicators, whereas according to IHS values, no reliable trend was observed. These data are illustrated on Fig. 1.

The results of machine learning for $U^{1\text{Pr}}$ and U^0 values are given in Tables 2 and 3. The analysis of these data showed significant correlation coefficient R values between the ratios of $U^{1\text{Pr}}$ and U^0 to NPT scores; for the values of I order R was in the range of 0.38 – 0.71; for the values of II order – 0.52 – 0.74; for the values of III order – 0.60 – 0.78. So, with the increase in relation order the reliability of approximation was also increasing. Another observation concerned regions of interest which can be different for various relation orders for a separate NPT. It can be explained, first of all, by the...
Рис. 1. Гістограми зміни коефіцієнта кореляції R лінійної апроксимації скатерограм між показниками відношень I порядку в залежності від номера тесту О. Лур'ї (а) та Шульте (б): — для показників ВПС, — для Upt.

Fig. 1. Histograms of the change of correlation coefficient R of linear approximation of the scatterograms between the values of I-order relations depending on the number of the O. Luria’s (a) and Schulte’s (b) test: — for IHS values, — for Upt.

The reliability for all given R values according to t-criterion was p < 0.05

Таблиця 2. Результати машинного навчання за показниками ВПС

Характеристика апроксимації	Порядок відношення / Relation order	I	II	III
MADRS				
Рівняння / Equation	2237,62x + 13,32	12976,89x + 9,17	8551,7х + 5,79	
R	0,41	0,52	0,60	
D, бали/score	5,54	5,18	5,11	
3I/ROI	7-8	6-10; 9-10	3-5; 6-9; 6-10	
HARS				
Рівняння / Equation	13373,58x - 4,62	13686,41x - 5,83	20884,61x - 8,2	
R	0,71	0,74	0,78	
D, бали/score	5,02	4,80	4,50	
3I/ROI	4-19	4-19; 6-10	6-10; 1-19; 2-19	
Sh				
Рівняння / Equation	2701,78x + 71,71	-2056,09х + 74,76	-1835,7x + 75,7	
R	0,42	0,57	0,62	
D, бали/score	8,26	8,04	7,99	
3I/ROI	3-8	4-18; 8-10	4-18; 8-10; 4-8	
L				
Рівняння / Equation	9329,86x + 30,37	11544,6x + 27,25	11867,44x + 26,76	
R	0,47	0,62	0,65	
D, бали/score	5,03	4,67	4,65	
3I/ROI	4-9	4-9; 5-9	4-9; 5-9; 9-10	
G				
Рівняння / Equation	- 539,13x + 3,1	- 568,01х + 3,19	- 494,53x + 3,3	
R	0,38	0,58	0,63	
D, бали/score	0,33	0,32	0,32	
3I/ROI	4-10	4-10; 6-9	4-10; 6-9; 1-15	
G2				
Рівняння / Equation	13889,82x - 0,51	24178,24x + 0,93	17730,8x + 1,3	
R	0,64	0,71	0,75	
D, бали/score	6,33	5,83	5,46	
3I/ROI	4-19	3-14; 6-10	1-6; 2-19; 3-5	
Таблиця 3. Результати машинного навчання за показниками Upt

Характеристика апроксимації	Порядок відношення / Relation order	I	II	III
MADRS				
Рівняння / Equation	79,78x - 53,53	71,45x - 83,24	76,24x - 115,16	
R	0,58	0,67	0,73	
D, бали/score	4,78	4,35	4,02	
ЗІ/ROI	8/17	8/11; 8/18	8/11; 8/13; 14/18	
HARS				
Рівняння / Equation	78,62x - 61,81	- 104,28x + 179,06	- 173,65 x + 325,66	
R	0,48	0,57	0,67	
D, бали/score	6,99	6,51	5,90	
ЗІ/ROI	6/10	2/6; 17/19	2/6; 10/17; 17/19	
Sh				
Рівняння / Equation	29,49x + 25,43	126,95x - 128,01	112,82 x - 140,97	
R	0,58	0,67	0,71	
D, бали/score	7,47	6,81	6,44	
ЗІ/ROI	4/15	4/14; 174	4/14;10/19;14/19	
L_1				
Рівняння / Equation	- 91,х + 130,08	79,52x - 83,37	148,19x - 234,31	
R	0,46	0,53	0,64	
D, бали/score	5,14	4,93	4,48	
ЗІ/ROI	5/6	6/19;10/19	6/18; 10/20; 18/19	
G_1				
Рівняння / Equation	2,86x - 0,04	3,17x - 1,58	3,86 x - 4,10	
R	0,52	0,59	0,67	
D, бали/score	0,30	0,28	0,26	
ЗІ/ROI	4/6	4/14; 14/17	1/3;4/10;4/13	
G_2				
Рівняння / Equation	83,55x - 51,51	- 120,71x + 208,88	- 148,47x + 296,08	
R	0,50	0,61	0,65	
D, бали/score	7,48	6,81	6,59	
ЗІ/ROI	6/17	2/6; 17/19	2/3;3/6; 17/19	

можуть бути різними. Це пояснюється, по-перше, тим, що одна і таж когнітивна функція ГМ може бути охарактеризована різними співвідношеннями ефективної перфузії в сегментах ГМ; по-друге, коефіцієнт кореляції та якість лінійної апроксимації точок виміру залежить в великої мірою від діапазону їх значень, зокрема, по осі абсцис – дані ОФЕКТ. При збільшенні порядку відношення збільшується цей діапазон для оптимальних виділених пар; при цьому пара ЗІ, що входила в менший порядок відношення, далеко не завжди сприяла підвищенню відповідного діапазону.

Дані в табл. 2 і 3 показують, що результати машинного навчання як за значеннями відношення питомого накопичення РФП, так і ВПС, мали один порядок R та середньоквадратичну похибку D (останнє може виступати як критерій довірчого інтервалу). Це свідчить про приблизно одинакову діагностичну цінність кількісних критеріїв Upt та q. Тут слід підкреслити, що Upt є кількісною характеристикою накопичення РФП в ЗІ, а θ більшою мірою є характеристикою просторового розподілу РФП. Незалежність Upt та θ дає можливість підвищити точність розрахунків факту одного когнітивного функції може бути характеризована різними співвідношеннями ефективної перфузії в сегментах ГМ; по-друге, коефіцієнт кореляції та якість лінійної апроксимації точок виміру залежить в великої мірою від діапазону їх значень, зокрема, по осі абсцис – дані ОФЕКТ. При збільшенні порядку відношення збільшується цей діапазон для оптимальних виділених пар; при цьому пара ЗІ, що входила в менший порядок відношення, далеко не завжди сприяла підвищенню відповідного діапазону.

The data in Tables 2 and 3 show that results of machine learning according to both values of ratios of RPh accumulation and IHS values have the same R order and a mean squared error D (the latter can act as a criterion for a credible interval). It indicates a similar diagnostic value of quantitative criteria Upt and θ. It should be emphasized that Upt is a quantitative characteristic of RPh accumulation in ROI, whereas θ is mostly a characteristic of spatial distribution of RPh. The independence of Upt and θ makes it possible to increase the accuracy of calculations of NPT values by algebraic averaging of calculations by UUpt і Uθ ratios. The result of this
показників НПТ шляхом алгебраїчного усереднення розрахунків за відношеннями U_{up} і U_{t}. Результати цього усереднення наведено в табл. 4, де замість даних ОФЕКТ, що використовувались при навчанні, були взяті кількісні значення третього варіанту обробки сцинтиграфічних даних пацієнтів. Представлени результують свідчать про досягнули високу кореляційну залежність між даними ОФЕКТ та НПТ – R знаходиться в межах 0,75 – 0,93; середня відносна похибка знаходилась в межах 7–22%. Графічне представлення результатів машинного навчання відображено на рис. 2.

Таблиця 4. Оцінка якості розрахунку значень НПТ за даними ОФЕКТ при усередненні результатів навчання за ВПС і U_{up}.

НПТ / NPT	Корефіцієнт кореляції (R)	Середньоквадратична абсолютно похибка (D), бали
MADRS	0,93 ($p < 0,01$)	2,35
HARS	0,79 ($p < 0,01$)	2,92
Sh_{ins}	0,83 ($p < 0,01$)	4,78
L_{up}	0,82 ($p < 0,01$)	3,16
G_1	0,75 ($p < 0,01$)	0,19
G_2	0,85 ($p < 0,01$)	3,09

Наведемо деякі пояснення розрахунку показників НПТ за даними ОФЕКТ, зокрема, тесту MADRS:
1. У сегментах ГМ на основі ОФЕКТ зображень розраховуються показники ВПС та НПТ за формулами (3) та (4).
2. У відповідності до табл. 2 і 3 для показників III порядку розраховуються відношення та середньогеометричні їх значення:
 – для ВПС:

 $x_\text{up} = \sqrt{(\theta_1 - \theta_2)^2 + (\theta_2 - \theta_3)^2 + (\theta_3 - \theta_0)^2}$
 (чи у відповідності з нумерацією 3I)

 $x_\text{up} = \left(\theta_{\text{Parietal} - R} - \theta_{\text{Occipital} - R}\right)^2 + \left(\theta_{\text{Occipital} - L} - \theta_{\text{Temporal} - R}\right)^2 + \left(\theta_{\text{Insula} - L} - \theta_{\text{Thalamus} - R}\right)^2$

 Оцінка тесту MADRS за показниками ВПС становитиме:

 $MADRS^{\text{SPECT}} = 8551.71 x_\text{up} + 5.79$;

 – для U_{up}:

 $x_{\text{up}} = \left(\frac{U_{\text{up}_{\text{Parietal} - R}}}{U_{\text{up}_{\text{Temporal} - R}}}\right)^2 + \left(\frac{U_{\text{up}_{\text{Occipital} - L}}}{U_{\text{up}_{\text{Thalamus} - R}}}\right)^2 + \left(\frac{U_{\text{up}_{\text{Insula} - L}}}{U_{\text{up}_{\text{Pons} - L}}}\right)^2$
 (чи у відповідності до нумерації 3I)

 $x_{\text{up}} = \left(\frac{U_{\text{up}_{\text{Temporal} - R}}}{U_{\text{up}_{\text{Parietal} - R}}}\right)^2 + \left(\frac{U_{\text{up}_{\text{Thalamus} - R}}}{U_{\text{up}_{\text{Occipital} - L}}}\right)^2 + \left(\frac{U_{\text{up}_{\text{Pons} - L}}}{U_{\text{up}_{\text{Insula} - L}}}\right)^2$

 Оцінка тесту MADRS за показниками NPT становитиме:

 $MADRS^{\text{OFEKT}} = 76.24 x_{\text{up}} - 115.16$.

3. Усереднена оцінка MADRS становитиме:

 $MADRS^{\text{OFEKT}} = \frac{1}{2} \left(MADRS^{\text{SPECT}} + MADRS^{\text{OFEKT}} \right)$.

Таким чином, можна вважати, що вперше розроблено методику кількісної оцінки нейропсихологічного та когнітивного стану пацієнтів на основі об'єктивного averaging is given in Table 4, where instead of SPECT data, which were used in the learning, the quantitative values of the third variant of scintigraphic data processing of the patients were used. The given results indicate quite a high correlation dependence between SPECT and NPT data – R is in the range of 0.75 – 0.93; the average relative error – in the range of 7 – 22%. The graphic demonstration of the results of machine learning are shown in Fig. 2.
Рис. 2. Скатерограми між бальними оцінками тестів НПТ та відповідними результатами машинного навчання за даними ОФЕКТ:

- о – навчання за значеннями ВПС; × – навчання за Upt; • – усереднені результати навчання

Фіг. 2. Scatterograms between the scores of NPT tests and respective results of machine learning according to SPECT data:

- o – learning according to IHS values; × – learning according to Upt; • – averaged results of the learning

Методу дослідження. Відзначимо, що точність розрахунків може бути суттєво збільшена за рахунок мінімізації суб'єктивної оцінки якості попередньої обробки сцинтиграфічних зображень (в даний роботі ця операція навмисно була загрублена, для оцінки похибки розрахунків з урахуванням не досить великої кількості пацієнтів); підвищення точності сегментації 3D зображень ГМ; збільшення матриці проекційних кадрів ОФЕКТ z 64 до 128.

ВІСНОВКИ

Вперше розроблено методику кількісної оцінки нейропсихологічного та когнітивного стану пацієнтів на основі об'єктивного методу дослідження, а саме ОФЕКТ.

CONCLUSIONS

For the first time, the method of quantitative assessment of the neuropsychological and cognitive state of patients was developed on the basis of an objective
Видносна похібка розрахунку відповідних значень НПТ знаходиться в межах 7 – 22%. При цьому показано, що за нейропсихологічний та когнітивний стан пацієнтів, зокрема, хворих на АТГЕ, за аналізом ефективної перфузії ГМ, відповідає не один конкретний сегмент мозку, а насамперед з трьох взаємовідношень накопичення РФП у сегментах. Наявність достатньо високої кореляції між даними НПТ та показниками питомого накопичення РФП і ВПС у сегментах ГМ свідчить, що нейропсихологічний та когнітивний стан пацієнта залежить не тільки від інтенсивності накопичення РФП в сегментах, а й від просторового його розподілення.

Для точності обробки сцинтиграфічних даних, підвищення точності сегментнізacji 3D зображень та використовувати ОФЕКТ з матрицями 128×128, використовують розроби роботодавця. Основою для використання нейропсихологічного та когнітивного статистичного аналізу є присутність невеликих високоточних чисел, а також використання розробок використовувати ОФЕКТ при використанні нейропсихологічного та когнітивного стану пацієнтів доцільно максимальні автоматизувати процес попередньої обробки сцинтиграфічних даних, підвищити точність сегментації 3D зображень та використовувати ОФЕКТ з матрицями 128×128.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

1. Товжанянская Е. Л., Безуглова И. О., Ярош В. А. Гипертоническая энцефалопатия. Роль антигипертензивной терапии в профилактике и лечении. Международный неврологический журнал. 2014. № 2(24). С. 93–99.

2. Lass P., Buscombe J. R., Harber M., Davenport A., Hilton A. J. Cognitiv...
Розробка методики об’єктивізації оцінки зміни нейропсихоло-
гічного та когнітивного стану пацієнтів на основі даних ОФЕКТ.
Удосконалення програмного забезпечення обробки та аналізу
цинтиграфічних даних.

Development of a method of objectification of the assessment of
changes in the neuropsychological and cognitive state of patients
on the basis of SPECT data. Improvement of scintigraphic data processing and analysis software.

Neurologist of the highest category, Psychotheurapist of Medical
clinics «Bern-Yu-Med», 5, Ovrutska Str., Kyiv, Ukraine, 04050; e-mail: nikolka_@ukr.net
tel.: +38 (067) 246-68-17

Author's contribution: idea of the work, software develop-
ment, statistical analysis, writing the text of article.

Nikolov Mykola Oleksandrovych – Candidate of Technical
Sciences, Senior Researcher of National Technical University of
Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» of the Ministry
of Education and Science of Ukraine; 37, Peremohy Ave., Kyiv,
Ukraine, 03056; Associate Professor of Electronic Engineering
Department of State Institution «Kundiev Institute of Occupational
Health of the National Academy of Medical Sciences of Ukraine»;
75, Saksagansky Str., Kyiv, Ukraine, 01033; email: nikolka_@ukr.net
tel.: +38 (067) 246-68-17

Author's contribution: idea of the work, software develop-
ment, statistical analysis, writing the text of article.

Zalizna Yulianna Dmytrivna – candidate of Medical Sciences,
Neurologist of the highest category, Psychotherapist of Medical
Clinic «Berm-Yu-Med»; 5, Ovrutska Str., Kyiv, Ukraine, 04050; e-mail: zyuiliana@gmail.com
tel.: +38(063)233-10-98

Author's contribution: selection of primary clinical material,
neuropsychological testing of patients and clinical data analysis,
formation of groups of patients, participation in writing of the text of article.

Nikolov Mykola Oleksandrovych – Candidate of Technical
Sciences, Senior Researcher of National Technical University of
Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» of the Ministry
of Education and Science of Ukraine; 37, Peremohy Ave., Kyiv,
Ukraine, 03056; Associate Professor of Electronic Engineering
Department of State Institution «Kundiev Institute of Occupational
Health of the National Academy of Medical Sciences of Ukraine»;
75, Saksagansky Str., Kyiv, Ukraine, 01033; email: nikolka_@ukr.net
tel.: +38 (067) 246-68-17

Author's contribution: idea of the work, software develop-
ment, statistical analysis, writing the text of article.

Zalizna Yulianna Dmytrivna – candidate of Medical Sciences,
Neurologist of the highest category, Psychotherapist of Medical
Clinic «Berm-Yu-Med»; 5, Ovrutska Str., Kyiv, Ukraine, 04050; e-mail: zyuiliana@gmail.com
tel.: +38(063)233-10-98

Author's contribution: selection of primary clinical material,
neuropsychological testing of patients and clinical data analysis,
formation of groups of patients, participation in writing of the text of article.
Новікова Тетяна Григорівна – лікар відділу ядерної медицини Державної установи «Інститут нейрохірургії імені академіка А.П. Ромоданова Національної академії медичних наук України», вул. Платона Майбороди, буд. 32, м. Київ, Україна, 04050; e-mail: novikova_tg@ukr.net тел.: +38 (066) 878-65-77

Внесок автора: проведення сцинтиграфічних досліджень, участь у розробці сцинтиграфічного атласу головного мозку, клінічний аналіз даних.

Макеєв Сергій Сергійович – доктор медичних наук, завідувач відділу ядерної медицини Державної установи «Національний інститут нейрохірургії імені академіка А.П. Ромоданова Національної академії медичних наук України», вул. Платона Майбороди, буд. 32, м. Київ, Україна, 04050; e-mail: usnm@ukr.net тел.: +38 (050) 656-51-30

Внесок автора: проведення сцинтиграфічних досліджень, загальне керівництво, участь у написанні та редагуванні тексту статті.

Дученко Анна Вячеславівна – студентка Національного технічного університету «Київський політехнічний інститут ім. Ігоря Сікорського» Міністерства науки і освіти України, просп. Перемоги, буд. 37, м. Київ, Україна, 03056; e-mail: annaduchenko777@gmail.com

Внесок автора: участь в комп’ютерному аналізі даних.

Novikova Tetiana Grygorovna – Doctor of Department of Nuclear Medicine of State Institution «Romodanov Neurosurgery Institute of the National Academy of Medical Sciences of Ukraine»; 32, Platon Mayborody Str., Kyiv, Ukraine, 04050; email: novikova_tg@ukr.net tel.: +38 (066) 878-65-77

Author’s contribution: conduction of scintigraphic examinations, participation in the development of a scintigraphic atlas of the brain, clinical data analysis.

Makeev Serhiy Serhiyovych – Doctor of Medical Sciences, Head of Department of Nuclear Medicine of State Institution «Romodanov Neurosurgery Institute of the National Academy of Medical Sciences of Ukraine»; 32, Platon Mayborody Str., Kyiv, Ukraine, 04050; email: usnm@ukr.net tel.: +38 (050) 656-51-30

Author’s contribution: conduction of scintigraphic examinations, general management, participation in writing and editing the text of the article.

Duchenko Anna Vyacheslavivna – Student of National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» of the Ministry of Education and Science of Ukraine; 37, Peremogy Ave., Kyiv, Ukraine, 03056; e-mail: annaduchenko777@gmail.com

Author’s contribution: participation in computer data analysis.