E8 LATTICE AND THE KODAIRA DIMENSION OF ORTHOGONAL MODULAR VARIETIES

SHOUHEI MA

ABSTRACT. We prove that for any even lattice L of signature $(2, n_0)$, the modular variety defined by the orthogonal group of the lattice $L \oplus mE_8$ is of general type when m is sufficiently large.

1. INTRODUCTION

The purpose of this article is to show that a certain series of modular varieties of orthogonal type tend to be of general type in higher dimension. Let L_0 be an even lattice of signature $(2, n_0)$. Consider the orthogonal sum $L_m = L_0 \oplus mE_8$ with m copies of the E_8-lattice. To the lattice L_m we can associate a Hermitian symmetric domain of type IV, say D_{L_m}, as either of the two connected components of the space

$$\{\mathbb{C}\omega \in \mathbb{F}(L_m \otimes \mathbb{C}) \mid (\omega, \omega) = 0, (\omega, \bar{\omega}) > 0\}.$$

Let $O^+(L_m)$ be the group of isometries of L_m which preserve the component D_{L_m}. The quotient space

$$\mathcal{F}(L_m) = O^+(L_m) \backslash D_{L_m}$$

is a quasi-projective variety of dimension $n_0 + 8m$. Our main result is the following.

Theorem 1.1. The modular variety $\mathcal{F}(L_m)$ is of general type for sufficiently large m.

The birational type of orthogonal modular varieties in higher dimension was first studied by Gritsenko-Hulek-Sankaran [8]. They proved general-type results as above for $L_0 = 2U$ and also for a natural covering of $\mathcal{F}(L_m)$ for $L_0 = 2U \oplus (-2d)$, with explicit bounds of m. Our study was much inspired by their work. In general, given the lattice L_0 explicitly in Theorem 1.1, it would be possible (though cumbersome) to calculate a bound of m explicitly. We have summarized in §4.3 the ingredients of such a computation.

Let us show an example of Theorem 1.1 which actually was our original motivation.

Supported by Grant-in-Aid for Scientific Research No.12809324 and No.22224001.
Example 1.2. Let D_i be the root lattice of type D_i for $1 \leq i \leq 8$, where $D_1 = (-4)$ by convention. Since $2U \oplus D_i \oplus 8m \cong 2U \oplus D_i \oplus mE_8$, it follows that $\mathcal{F}(2U \oplus D_k)$ is of general type for sufficiently large k. For $k \equiv 1 \pmod{8}$, this is essentially proved in [8].

Let $I_{2,n}$ be the odd unimodular lattice $2\langle 1 \rangle \oplus n\langle -1 \rangle$. The maximal even sublattice of $I_{2,n}$ is isometric to $2U \oplus D_{n-2}$. This induces a natural inclusion $O^*(I_{2,n}) \subset O^*(2U \oplus D_{n-2})$. Therefore $\mathcal{F}(I_{2,n})$ is of general type when n is sufficiently large.

The rest of the article is devoted to the proof of Theorem 1.1, which is a generalization of the argument in [8]. The outline is as follows. We first reduce the lattice L_0 to a simpler form. Then we take a nice toroidal compactification of $\mathcal{F}(L_m)$ as in [6], say X_m. Its canonical divisor is \mathbb{Q}-linearly equivalent to

$$K_{X_m} \sim \mathbb{Q} (n_0 + 8m) \mathcal{L} - \frac{1}{2} B - \Delta,$$

where \mathcal{L} is the \mathbb{Q}-line bundle of modular forms of weight 1, B the branch divisor of $D_{L_m} \to \mathcal{F}(L_m)$, and Δ the boundary divisor of the compactification. Since X_m has canonical singularity, it is sufficient to show that the right side of (1.1) is big. We will find a division

$$(n_0 + 8m) \mathcal{L} - B/2 - \Delta = ((k_0 + 4m) \mathcal{L} - \Delta) + ((l_0 + 4m) \mathcal{L} - B/2),$$

where $k_0 + l_0 = n_0$, such that some multiple of $(k_0 + 4m) \mathcal{L} - \Delta$ is effective and that $(l_0 + 4m) \mathcal{L} - B/2$ is big. The first property means the existence of a modular form of weight $\delta(k_0 + 4m)$ for some $\delta > 0$ which vanishes of order $\geq \delta$ along the boundary. We construct such a cusp form using the generalized Maass lifting by Gritsenko [5] and an operation of average product. Our key observation is roughly that the upper bound $k_0 + 4m$ of the “slope” of our cusp form grows slower than the weight $n_0 + 8m$ of the canonical divisor, so that we come to be left with sufficient weight $l_0 + 4m$ for the remaining divisor to be big as m grows. We then prove that $(l_0 + 4m) \mathcal{L} - B/2$ is big by a comparison of the Hirzebruch-Mumford volume ([7]) of $\mathcal{F}(L_m)$ with that of the branch divisors. We analyze those volumes as functions of m, using the formula of [7] and a sort of regularity of the branch divisors with respect to m.

Notation. Throughout the article E_8 will stand for the negative-definite even unimodular lattice of rank 8. U stands for the even unimodular lattice of signature $(1, 1)$. For an even lattice L, its dual lattice is denoted by L^\vee. By A_L we denote the discriminant form L' / L, whose quadratic form $A_L \to \mathbb{Q} / 2\mathbb{Z}$ is given by $\lambda + L \mapsto (\lambda, \lambda) + 2\mathbb{Z}$. The length of A_L as a finite abelian group is written as $l(A_L)$. mL denotes the orthogonal sum $L^{\oplus m}$, while $L(n)$ denotes the scaling of L by n.

2. Preliminaries

2.1. Reduction of the lattice. Before launching, let us make a simple reduction. This will be helpful in several places.

Reduction 2.1. In order to prove Theorem 1.1 it is sufficient to prove the assertion for even lattices of the form $L_0 = 2U \oplus M$ where M is negative-definite with $\text{rk}(M) \geq l(A_M) + 2$.

Proof. Let L_0 be the arbitrarily given lattice. We just see that $L_1 = L_0 \oplus E_8$ has the desired properties. Since $\text{rk}(L_1) \geq l(A_{L_1}) + 8$, we can find an even lattice M with $L_1 \cong 2U \oplus M$ by [11] Corollary 1.13.5. We then have

$$\text{rk}(M) = \text{rk}(L_0) + 4 \geq l(A_{L_0}) + 4 = l(A_M) + 4.$$

From now on we will prove Theorem 1.1 for lattices of the above form.

2.2. Regularity of the branch divisors. Let L_0 be a lattice as in Reduction 2.1. We regard L_0 as a sublattice of $L_m = L_0 \oplus mE_8$ in the natural way. As a preparation for the proof of Theorem 1.1, we here show that the branch divisors of the projection $\pi: D_{L_m} \to \mathcal{F}(L_m)$ behave regularly with respect to m, in a sense. A vector $l \in L_m$ is called **reflective** if it is primitive, $(l, l) < 0$, and the reflection with respect to l preserves L_m. By [6] Corollary 2.13, the ramification divisors of π are precisely the hyperplane sections $l^\perp \cap D_{L_m}$ for reflective vectors $l \in L_m$.

Lemma 2.2. Any primitive vector $l \in L_m$ with $(l, l) \neq 0$ can be transformed by the action of $O^+(L_m)$ into $L_0 \subset L_m$.

Proof. Let $K = l^\perp \cap L_m$. The overlattice $L_m \supset \mathbb{Z}l \oplus K$ is obtained from the graph of an anti-isometry $G_1 \to G_2$ for some $G_1 \subset A_{\mathbb{Z}l}$ and $G_2 \subset A_K$ (see [11] Proposition 1.5.1). Since G_1 is cyclic, we have

$$l(A_K) \leq l(A_{\mathbb{Z}l \oplus K}) \leq l(A_{L_m}) + 2 \leq \text{rk}(L_m) - 4 - 8m,$$

and hence $\text{rk}(K) \geq l(A_K) + 3 + 8m$. By [11] Corollary 1.13.5, we have an isometry $\gamma: K' \oplus mE_8 \to K$ for some lattice K'. We put $L' = \gamma(mE_8) \perp L_m$. By the unimodularity of E_8 we have the splitting $L_m = L' \oplus \gamma(mE_8)$ with $l \in L'$. Since L_0 is unique in its genus by [11] Corollary 1.13.4, L' is isometric to L_0. Then the component-wise isometry

$$L_m = L' \oplus \gamma(mE_8) \to L_0 \oplus mE_8 = L_m$$

of L_m maps l into L_0. We may arrange this isometry to be contained in $O^+(L_m)$, by using $-\text{id}_U$ of $U \subset L_0$ if necessary. \[\Box\]
Let
\[l_1, \ldots, l_r \in L_0 \]
be representatives for the equivalence classes of reflective vectors in \(L_0 \) under the action of \(O^*(L_0) \). We set \(K_i = l_i^\perp \cap L_0 \) and
\[
K_{i,m} = l_i^\perp \cap L_m = K_i \oplus mE_8.
\]
Notice that we have \(\text{rk}(K_i) \geq l(A_{K_i}) + 3 \) as in the proof of the lemma, and so \(K_i \) contains \(U \) and is unique in its genus by \([11]\).

Proposition 2.3. The vectors \(l_1, \ldots, l_r \in L_0 \subset L_m \) are representatives for the equivalence classes of reflective vectors in \(L_m \) under the action of \(O^+(L_m) \).

Proof. Let \(l \) be any reflective vector of \(L_m \). By the lemma there exists \(\gamma \in O^+(L_m) \) such that \(\gamma(l) \in L_0 \subset L_m \). Then \(\gamma(l) \) is also reflective as a vector of \(L_0 \) and hence equivalent to some \(l_i \) under \(O^+(L_0) \). Thus \(l \) is equivalent to \(l_i \) under \(O^+(L_0) \).

Conversely, suppose we have \(\gamma \in O(L_m) \) with \(\gamma(l_i) = l_j \). Then we obtain the second splitting \(K_{j,m} = \gamma(K_i) \oplus \gamma(mE_8) \) of \(K_{j,m} \). In particular, \(K_i \simeq K_j \). By \([11]\) Corollary 1.9.6, we can find an isometry \(\gamma' : K_j \rightarrow \gamma(K_i) \) such that the isometry \(\gamma'' = \gamma' \oplus (\gamma|mE_8) \) of \(K_{j,m} \) acts trivially on \(A_{K_{j,m}} \). Then \(\gamma'' \) extends to an isometry of \(L_m \) fixing \(l_j \). The composition \((\gamma'')^{-1} \circ \gamma \in O(L_m) \) maps \(l_i \) to \(l_j \) and preserves \(L_0 \). Thus \(l_i \) and \(l_j \) are \(O(L_0) \)-equivalent. As before, they are moreover \(O^+(L_0) \)-equivalent. \(\square \)

3. Comparison of the Hirzebruch-Mumford volumes

Let \(L_0 \) be an even lattice of signature \((2, n_0)\) as in Reduction 2.1. We study the Hirzebruch-Mumford volume of \(O^+(L_m) \) as a function of \(m \), and then compare its asymptotic behavior with that of \(O^+(K_{i,m}) \). Our conclusion in this section is Lemma 3.3, which will play a key role in §4.2.

3.1. The Hirzebruch-Mumford volume. Let \(L \) be a general even lattice of signature \((2, n)\). For a subgroup \(\Gamma \subset O^+(L) \) of finite-index, its Hirzebruch-Mumford volume \(\text{vol}_{HM}(\Gamma) \) was defined by Gritsenko-Hulek-Sankaran \([7]\) following the proportionality principle of Hirzebruch and Mumford. Let \(M_k(\Gamma) \) be the space of modular forms of weight \(k \in \mathbb{N} \) with respect to \(\Gamma \). Then \(\text{vol}_{HM}(\Gamma) \) appears in the leading term of the Hilbert polynomial of \(M_k(\Gamma) \) as
\[
\dim M_k(\Gamma) = \frac{2}{n!} \text{vol}_{HM}(\Gamma)k^n + O(k^{n-1}),
\]
where we restrict to even \(k \) if \(-1 \in \Gamma\). Although this is not the original definition of \(\text{vol}_{HM}(\Gamma) \), we may take it as like a definition in this article.
Gritsenko-Hulek-Sankaran calculated $\text{vol}_{HM}(O^+(L))$ out of various volume formulae concerning $O(L)$. When the lattice L contains U, they obtained in [7] §3 that

\begin{equation}
\text{vol}_{HM}(O^+(L)) = 4 \cdot |A_L|^{(\alpha+3)/2} \cdot \prod_{k=1}^{n+2} \pi^{-k/2} \Gamma(k/2) \cdot \prod_p \alpha_p(L)^{-1},
\end{equation}

where $\alpha_p(L)$ is the local density of the \mathbb{Z}_p-lattice $L \otimes \mathbb{Z}_p$ that is also denoted as $\alpha_p(L, L)$ in some literature.

We refer to [9] §5.6 (as in [7]) for the following formula of $\alpha_p(L)$. Let $L \otimes \mathbb{Z}_p = \oplus \mathbb{Z}_p N_{p,j}(p^l)$ be a Jordan decomposition where $N_{p,j}$ is unimodular of rank $n_{p,j} \geq 0$. Let s_p be the number of indices j with $N_{p,j} \neq 0$, and set

$$w_p = \sum_j j n_{p,j}\left(\frac{n_{p,j}+1}{2} + \sum_{k>j} n_{p,k}\right).$$

For an even unimodular \mathbb{Z}_p-lattice N of rank $r \geq 0$, we define $\chi(N)$ by $\chi(N) = 0$ if r is odd, $\chi(N) = 1$ if $N \simeq (r/2)U \otimes \mathbb{Z}_p$, and $\chi(N) = -1$ otherwise. Moreover, for a natural number l we put

$$P_p(l) = \prod_{k=1}^{l} (1 - p^{-2k}),$$

and $P_p(0) = 1$. Then for $p \neq 2$, we have

$$\alpha_p(L) = 2^{w_p-1} \cdot P_p^{w_p} \cdot \prod_j P_p([n_{p,j}/2]) \cdot \prod_j (1 + \chi(N_{p,j})p^{-n_{p,j}/2})^{-1},$$

where j ranges over indices with $N_{p,j} \neq 0$.

The 2-adic density $\alpha_2(L)$ is much more complicated. Consider a decomposition $N_{2,j} = N_{2,j}^+ \oplus N_{2,j}^-$ such that $N_{2,j}^+$ is even and $N_{2,j}^-$ is either 0 or odd of rank ≤ 2. Put $n_{2,j}^\pm = \text{rk}(N_{2,j}^\pm)$. We also set $q = \sum_j q_j$, where $q_j = 0$ if $N_{2,j}$ is even, $q_j = n_{2,j}$ if $N_{2,j}$ is odd and $N_{2,j+1}$ is even, and $q_j = n_{2,j} + 1$ if both $N_{2,j}$ and $N_{2,j+1}$ are odd. Here zero-lattice is counted as an even lattice. For those j with $N_{2,j} \neq 0$, we define $E_{2,j}(L)$ by $E_{2,j}(L) = 1 + \chi(N_{2,j}^+)2^{-n_{2,j}^+/2}$ if both $N_{2,j-1}$ and $N_{2,j+1}$ are even and $N_{2,j}^+ \neq \langle e_1, e_2 \rangle$ with $e_1 \equiv e_2 \text{ mod } 4$, and $E_{2,j}(L) = 1$ otherwise. We also let s_j^* be the number of indices j such that $N_{2,j} = 0$ and either $N_{2,j-1}$ or $N_{2,j+1}$ is odd. Then we have

$$\alpha_2(L) = 2^{n_{2,j}+w_2-q+s_2+s_2^*} \cdot \prod_j P_2(n_{2,j}^*/2) \cdot \prod_j E_{2,j}(L)^{-1},$$

where j runs over indices with $N_{2,j} \neq 0$.
3.2. Dependence on \(m \).

Now we substitute the lattice \(L_m = L_0 \otimes mE_8 \) into the formula (3.2) and express \(\text{vol}_{HM}(O^+(L_m)) \) as a function of \(m \). The final form will be presented in Lemma [3.1].

Our calculation, which is a generalization of the examples in [7] §3, is built upon the following observations.

- Since \(E_8 \) is unimodular, the discriminant form \(A_{L_m} \) does not change under \(m \).
- Since \(E_8 \otimes \mathbb{Z}_p \cong 4U \otimes \mathbb{Z}_p \) at each \(p \), we have \(L_m \otimes \mathbb{Z}_p \cong (L_0 \otimes \mathbb{Z}_p) \oplus 4m(U \otimes \mathbb{Z}_p) \).
- The lattices \(N_{p,j} \) for \(j > 0 \) do not change under \(m \), and \(N_{p,0} \) is added by \(4mU \otimes \mathbb{Z}_p \).
- For \(p = 2 \), the unimodular component \(N_{2,0} \) is always even. Since the lattices \(N_{2,j} \) for \(j > 0 \) do not change under \(m \), the numbers \(q, s'_2, n^2_j \) for \(j > 0 \), and \(E_{2,j} \) for \(j > 0 \) are independent of \(m \) too.

Below let us rewrite the unimodular component of \(L_0 \otimes \mathbb{Z}_p \) as \(N_p \), which is non-zero because \(L_0 \) contains \(U \). We put \(n_p = \text{rk}(N_p) \). Denote by \(d \) the discriminant of \(L_0 \), whose absolute value is \(|A_{L_0}| \).

Putting the above observations together, we obtain from (3.2) the following tentative form:

\[
\text{vol}_{HM}(O^+(L_m)) = C \cdot |d|^{4m} \cdot 2^{-8m} \cdot \prod_{k=1}^{n_0+2+8m} \pi^{-k/2} \Gamma(k/2) \\
\times \prod_p P_p([n_p/2] + 4m)^{-1} \\
\times \prod_{p>2} (1 + \chi(N_p)p^{-n_p/2-4m}) \cdot E_{2,0}(L_m).
\]

(3.3)

Here \(C \) is some constant that does not depend on \(m \). We are going to simplify this expression.

We first rewrite the second line \(\prod_p P_p^{-1} \). When \(p \nmid d \), \(L_0 \otimes \mathbb{Z}_p \) is unimodular and in particular \(n_p = n_0 + 2 \). As a correction term for \(p|d \) we consider the finite product

\[
F_m(L_0) = \prod_p (\prod_k (1 - p^{-2k})),
\]

(3.4)

where \(p \) runs over primes with \(p|d \) and \([n_p/2] \leq [n_0/2]\), and the range of \(k \) is \([n_p/2] + 4m + 1 \leq k \leq [n_0/2] + 4m + 1 \). We then have

\[
\prod_p P_p([n_p/2] + 4m)^{-1} = F_m(L_0) \cdot \prod_p P_p([n_0/2] + 4m + 1)^{-1} \\
= F_m(L_0) \cdot \prod_{k=1}^{[n_0/2]+4m+1} \zeta(2k),
\]

where \(\zeta(s) = \prod_p (1 - p^{-s})^{-1} \) is the Riemann zeta function.
Next we rewrite the third line

\[(3.5) \prod_{p \geq 2} \left(1 + \chi(N_p)p^{-n_p/2-4m}\right) \cdot E_{2,0}(L_m)\]

according to the parity of \(n_0\).

(A) Let \(n_0\) be odd. When \(p\) is odd with \(p \nmid d\), the unimodular lattice \(N_p = L_0 \otimes \mathbb{Z}_p\) has odd rank so that \(\chi(N_p) = 0\). Therefore (3.5) reduces to the finite product

\[(3.6) G_m(L_0) = \prod_{p \mid d, p > 2} \left(1 + \chi(N_p)p^{-n_p/2-4m}\right) \cdot E_{2,0}(L_m).\]

Notice that \(d\) must be even whenever \(n_0\) is odd.

(B) Let \(n_0\) be even. When \(p\) is odd with \(p \nmid d\), the unimodular \(\mathbb{Z}_p\)-lattice \(N_p = L_0 \otimes \mathbb{Z}_p\) is isometric to \((n_0/2 + 1)U \otimes \mathbb{Z}_p\) if and only if they have the same discriminant, namely \(d \equiv (-1)^{n_0/2+1} \mod \mathbb{Z}_p^\times(\mathbb{Z}_p^\times)^2\). If we put

\[d' = (-1)^{n_0/2+1}d,\]

this is equivalent to \([d'] \in \mathbb{F}_p^\times\) being square. Hence \(\chi(N_p)\) is given by the Legendre symbol \(\left(\frac{d'}{p}\right)\). Similarly, if \(p = 2\) with \(2 \nmid d\), \(\chi(N_2)\) is equal to the Kronecker symbol \(\left(\frac{d}{2}\right)\).

Since \(d' \equiv 0, 1 \mod 4\), we can factorize \(d'\) as

\[(3.7) d' = \ell^2D\]

with \(D\) a fundamental discriminant. If we denote by \(\chi_D\) the Kronecker symbol \(\left(\frac{D}{\ell}\right)\), which is the quadratic character for the field \(\mathbb{Q}(\sqrt{D})\), we thus obtain

\[\chi(N_p) = \chi_D(p) \quad \text{when} \quad p \nmid d.\]

We also notice that when \(d\) is odd, \(E_{2,0}(L_m)\) is given by \(1 + \chi_D(2)2^{-n_0/2-1-4m}\). Therefore, if we consider the finite product

\[H'_m(L_0) = \prod_{p \mid d, p > 2} \left(1 + \chi(N_p)p^{-n_p/2-4m}\right) \cdot \begin{cases} 1 & \text{d : odd,} \\ E_{2,0}(L_m) & \text{d : even,} \end{cases}\]

the expression (3.5) is equal to

\[H'_m(L_0) \cdot \prod_{p \mid d} \left(1 + \chi_D(p)p^{-n_0/2-1-4m}\right).\]

Since \(\chi_D(p) = \pm 1\) for \(p \nmid d\), this can be written as

\[H'_m(L_0) \cdot \prod_{p \mid d} \frac{1 - p^{-n_0-2-8m}}{1 - \chi_D(p)p^{-n_0/2-1-4m}}.\]
If we put

(3.8) \[H_m(L_0) = H'_m(L_0) \cdot \prod_{p \mid d} \frac{1 - \chi_D(p)p^{-n_0/2-1-4m}}{1 - p^{-n_0-2-8m}} \]

and consider the Dirichlet \(L \)-function \(L(s, \chi_D) = \prod \rho(1 - \chi_D(p)p^{-s})^{-1} \), we can then rewrite (3.5) as

\[H_m(L_0) \cdot \zeta(n_0 + 2 + 8m)^{-1} \cdot L(n_0/2 + 1 + 4m, \chi_D). \]

Now we combine the above calculations and use Euler’s formula

\[\zeta(2k) \cdot \Gamma(k) \cdot \pi^{-k} \cdot \Gamma(k + 1/2) \cdot \pi^{-k-1/2} = \frac{|B_{2k}|}{2k}, \]

where \(B_{2k} \) is the Bernoulli number. This simplifies (3.3) to the following form.

Lemma 3.1. Let \(F_m(L_0), G_m(L_0) \) and \(H_m(L_0) \) be the finite products defined in (3.4), (3.6) and (3.8) respectively. Let \(\chi_D \) be the quadratic character associated to \(\mathbb{Q}(\sqrt{D}) \) where \(D \) is as defined in (3.7). Then we can express \(\text{vol}_{HM}(O^+(L_m)) \) as follows.

(A) When \(n_0 \) is odd,

\[\text{vol}_{HM}(O^+(L_m)) = C \cdot F_m(L_0) \cdot G_m(L_0) \cdot |d/4|^{4m} \cdot \prod_{k=1}^{(n_0+1)/2+4m} \frac{|B_{2k}|}{2k}. \]

(B) When \(n_0 \) is even,

\[\text{vol}_{HM}(O^+(L_m)) = C \cdot F_m(L_0) \cdot H_m(L_0) \cdot \left| \frac{d}{4\pi} \right|^{4m} \cdot \prod_{k=1}^{n_0/2+4m} \frac{|B_{2k}|}{2k} \times (n_0/2 + 4m)! \cdot L(n_0/2 + 1 + 4m, \chi_D). \]

Here \(C \) denote some constants that do not depend on \(m \).

Remark 3.2. It is not difficult to trace back the way to see an explicit form of the constants \(C \) in the lemma. For those \(p \) dividing \(d \), we put

\[
C_p(L_0) = \begin{cases}
2^{1-\epsilon_p} p^{-w_p} \prod_{p < 0} P_p([n_{p,j}/2])^{-1} \cdot \prod_{p > 0} (1 + \chi(N_{p,j})) p^{-n_{p,j}/2} & \text{if } p > 2, \\
2^{1-\epsilon_2} \epsilon_2^{-w_2+q} \prod_{p < 0} P_2([n_{2,j}/2])^{-1} \cdot \prod_{p > 0} E_2,j(L_0) & \text{if } p = 2.
\end{cases}
\]

Then we have

\[
C = \begin{cases}
8 \cdot \frac{|d/4|^{(n_0+3)/2}}{|4\sqrt{\pi}|} \cdot \prod_{p \mid d} C_p(L_0) & n_0: \text{odd}, \\
8 \sqrt{\pi} \cdot \frac{|d/4\pi|^{(n_0+3)/2}}{|d/4\pi|^{(n_0+3)/2}} \cdot \prod_{p \mid d} C_p(L_0) & n_0: \text{even}.
\end{cases}
\]

We do not need this information in the proof of Theorem 1.1.

Note that in the calculation we used only the fact that \(L_0 \) contains \(U \). So Lemma 3.1 and Remark 3.2 actually hold for any such \(L_0 \).
3.3. **Comparison with \(K_{i,m} \).** We compare the Hirzebruch-Mumford volume of \(O^+(L_m) \) with that of \(O^+(K_{i,m}) \). See (2.1) for the definition of \(K_{i,m} \), but actually we need only the inequality \(\text{rk}(K_i) < \text{rk}(L_0) \). A formula for \(\text{vol}_{HM}(O^+(K_{i,m})) \) can be obtained by replacing \(L_0 \) with \(K_i \), \(n_0 \) with \(n_0 - 1 \), and \(d \) with the discriminant \(d_i \) of \(K_i \) in Lemma 3.1.

Lemma 3.3. For each \(1 \leq i \leq r \), the ratio

\[
\frac{\text{vol}_{HM}(O^+(K_{i,m}))}{\text{vol}_{HM}(O^+(L_m))}
\]

converges to 0 as \(m \to \infty \).

Proof. Below \(C \) stand for some constants that are independent of \(m \). We first consider the case when \(n_0 \) is even. By Lemma 3.1, the ratio (3.9) equals

\[
C \cdot \left| \frac{d}{d} \right|^{4m} \cdot \frac{F_m(K_i)G_m(K_i)}{F_m(L_0)H_m(L_0)} \cdot (n_0/2 + 4m)!^{-1} \cdot L(n_0/2 + 4m + 1, \chi_D)^{-1}.
\]

It is clear that \(F_m(K_i), G_m(K_i), F_m(L_0) \) and \(H_m(L_0) \) converge to 1 as \(m \to \infty \). We also have \(\lim_{n \to \infty} L(n, \chi_D) = 1 \). Then (3.9) converges to 0 by Stirling’s formula

\[
n! \sim \sqrt{2\pi n}^{n+1/2}e^{-n}.
\]

Next we consider the case when \(n_0 \) is odd. In this case, abbreviating \(n = (n_0 + 1)/2 + 4m \), the ratio (3.9) is written as

\[
C \cdot \left| \frac{d}{d} \right|^{4m} \cdot \frac{F_m(K_i)H_m(K_i)}{F_m(L_0)G_m(L_0)} \cdot (n - 1)! \cdot L(n, \chi_D) \cdot \frac{2n}{|B_{2n}|},
\]

where \(D_i \) is the fundamental discriminant for \((-1)^{(n_0+1)/2}d_i \). As before, the terms \(F_m(\cdot), G_m(\cdot), H_m(\cdot) \) and \(L(n, \chi_D) \) converge to 1. The remaining term is of the form

\[
C \cdot |d_i/\pi d|^{n} \cdot n! \cdot |B_{2n}|^{-1}.
\]

This converges to 0 in \(n \to \infty \) because of the asymptotic behavior (cf. [4])

\[
|B_{2n}| \sim 2(2\pi)^{-n}(2n)!.
\]

\(\square \)

4. **Proof of the theorem**

In this section we assume throughout that \(L_0 = 2U \oplus M \) is an even lattice of signature \((2, n_0)\) as in Reduction 2.1. We are going to prove Theorem 1.1 for such a lattice.

By [6] Theorem 2.1, when \(n_0 + 8m \geq 9 \), we can take a projective toroidal compactification of \(\mathcal{F}(L_m) \) that has only canonical quotient singularities and that has no branch divisor in the boundary. Moreover, the branch divisors
are defined by reflective vectors in L_m. We shall fix one such compactification and denote it by X_m. Let $\Delta \subset X_m$ be the boundary divisor and $B \subset X_m$ the branch divisor. Let \mathcal{L} be the (\mathbb{Q}-)line bundle over X_m of modular forms of weight 1. Then over the regular locus $(X_m)_{\text{reg}}$ the canonical divisor $K(X_m)_{\text{reg}}$ is \mathbb{Q}-linearly equivalent to the \mathbb{Q}-Cartier divisor

\[(n_0 + 8m)\mathcal{L} - B/2 - \Delta\]

(see, e.g., [6] §1). Since X_m has canonical singularity, in order to show that (a desingularization of) X_m is of general type it is sufficient to prove that the \mathbb{Q}-Cartier divisor (4.1) of X_m is big. In §4.1 we construct for each m a modular form of weight $\delta(k_0 + 4m)$ with respect to $O^+(L_m)$ which vanishes of order $\geq \delta$ along Δ, where δ and k_0 are some natural numbers independent of m. If we set $l_0 = n_0 - k_0$, then (4.1) is divided as

\[((k_0 + 4m)\mathcal{L} - \Delta) + ((l_0 + 4m)\mathcal{L} - B/2)\]

such that $\delta((k_0 + 4m)\mathcal{L} - \Delta)$ is effective. Hence Theorem 1.1 follows if we could show that the remaining divisor $(l_0 + 4m)\mathcal{L} - B/2$ is big when m is sufficiently large. We do this in §4.2, of which one key point has been prepared in Lemma 3.3. After finishing the proof of Theorem 1.1 we supplement in §4.3 a few words on the calculation of an explicit range of m where $\mathcal{F}(L_m)$ is of general type.

4.1. **Construction of cusp form.** We will construct a modular form with respect to $O^+(L_m)$ (Lemma 4.1). As the first step, for the lattice $L_0 = 2U \oplus M$ we choose an even overlattice M' of M that is maximal. Then the lattice

\[L'_m = 2U \oplus M' \oplus mE_8\]

is a maximal even overlattice of L_m. Let $\widetilde{O}^+(L_m)$, $\widetilde{O}^+(L'_m)$ be the subgroups of $O^+(L_m)$, $O^+(L'_m)$ that act trivially on the discriminant groups A_{L_m}, $A_{L'_m}$ respectively. Since any element of $\widetilde{O}^+(L_m)$ preserves the overlattice L'_m with trivial action on $A_{L'_m}$, we have a natural inclusion

\[\widetilde{O}^+(L_m) \subset \widetilde{O}^+(L'_m)\]

(4.2)

This inclusion is compatible with the canonical identification $\mathcal{D}_{L_m} = \mathcal{D}_{L'_m}$ of the symmetric domains. We first construct a cusp form with respect to $\widetilde{O}^+(L'_m)$ using the Jacobi lifting by Gritsenko [5], and then produce the desired modular form with respect to $O^+(L_m)$ by some general constructions.

We shall begin with recollection of Jacobi forms following [5]. Let

\[K = M'(-1),\]

which is a maximal even positive-definite lattice of rank $n_0 - 2$. A Jacobi form of weight $k \in \mathbb{N}$ and index 1 for K is a holomorphic function $\phi(\tau, Z)$
on $\mathbb{H} \times (K \otimes \mathbb{C})$ which satisfies the transformation laws

$$\phi\left(\gamma \tau, \frac{Z}{c \tau + d}\right) = (c \tau + d)^k \exp\left(\frac{\pi i c(Z, Z)}{c \tau + d}\right) \phi(\tau, Z), \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}),$$

$$\phi(\tau, Z + l \tau + m) = q^{-(l(l)/2)} \zeta^{-l} \phi(\tau, Z), \quad l, m \in K,$$

where $q = e^{2\pi i c}$ and $\zeta^l = e^{2\pi i (lZ)}$ for $l \in K$, and which has a Fourier expansion of the form

$$\phi(\tau, Z) = \sum_{n \in \mathbb{N}, \lambda \in K'} c(n, \lambda) q^n \zeta^l,$$

where $c(n, \lambda) \neq 0$ only when $(l, l) \leq 2n$. If $c(n, \lambda) = 0$ for any (n, λ) with $(l, l) = 2n$, ϕ is called a cusp form. We denote by $J_{k,1}(K)$ the space of Jacobi forms of weight k and index 1 for K. For $\lambda \in A_K$ consider the theta function

$$\theta^1_k(\tau, Z) = \sum_{l \in K + \lambda} q^{(l(l)/2)} \zeta^l.$$

Then a Jacobi form $\phi \in J_{k,1}(K)$ can be uniquely expanded as

$$\phi(\tau, Z) = \sum_{\lambda \in A_k} \phi(\lambda) \theta^1_k(\tau, Z)$$

for some $\mathbb{C}[A_k]$-valued holomorphic function $\Phi(\tau) = (\phi(\lambda))_{\lambda \in A_k}$ on \mathbb{H}. Let $\text{Mp}_2(\mathbb{Z})$ be the metaplectic double cover of $\text{SL}_2(\mathbb{Z})$ and

$$\rho_K : \text{Mp}_2(\mathbb{Z}) \rightarrow \text{U}(\mathbb{C}[A_k])$$

be the Weil representation attached to K, for which we follow the same convention as [2]. Comparing the transformation rule of $\phi(\tau, Z)$ under $\text{SL}_2(\mathbb{Z})$ with that of $(\theta^1_k)_{\lambda \in A_k}$ under $\text{Mp}_2(\mathbb{Z})$, we see that $\Phi(\tau)$ is a modular form of weight $k - (n_0 - 2)/2$ and type ρ^\vee_k for $\text{Mp}_2(\mathbb{Z})$. Furthermore, ϕ is a Jacobi cusp form if and only if Φ is a cusp form. Denote by $M_{K'}(\rho^\vee_K)$ for $K' \in \frac{1}{2}\mathbb{Z}$ the space of modular forms of weight k' and type ρ^\vee_K. Then this correspondence establishes the isomorphism

$$J_{k,1}(K) \rightarrow M_{k+1-n_0/2}(\rho^\vee_K), \quad \phi = \sum_{\lambda} \phi(\lambda) \theta^1_k(\tau, Z) = \Phi = (\phi(\lambda)),$$

which preserves the cusp forms. Notice that since $\rho^\vee_K = \rho_{M'}$ for $M' = K(-1)$, we may write $M_{K'}(\rho_{M'})$ in place of $M_{K'}(\rho^\vee_K)$.

Now we replace K with $K \oplus mE_8(-1)$. Since $K \oplus mE_8(-1)$ has the same discriminant form as K, from (4.3) we obtain for each m an isomorphism

$$M_{k+1-n_0/2}(\rho^\vee_K) \rightarrow J_{k+4m,1}(K \oplus mE_8(-1))$$

preserving the cusp forms. Note that the source space is independent of m. A dimension formula for $M_{K'}(\rho^\vee_K)$ is given in [2] p. 228 (see also [3] §2 in
case \(k' \equiv 1 - n_0/2 \mod 2 \). Looking it with the fact that the subspace of cusp forms in \(M_{k'}(\rho_K^{\vee}) \) has codimension at most
\[
\#(\lambda \in A_K(\lambda, \lambda) \in 2\mathbb{Z})/ \pm 1,
\]
we can find a cusp form \(\Phi_0 \) of weight \(k_0 + 1 - n_0/2 \) and type \(\rho_K^{\vee} \) for some natural number \(k_0 \). Then for each \(m \) we obtain a Jacobi cusp form \(\phi_m \) of weight \(k_0 + 4m \) and index 1 for \(K \oplus mE_8(-1) \), as the image of \(\Phi_0 \) by the isomorphism (4.4).

Next, using the generalized Maass lifting ([5] Theorem 3.1), from the Jacobi cusp form \(\phi_m \) we obtain a modular form \(f_m \) of weight \(k_0 + 4m \) with respect to \(\mathcal{O}^+(L_m) \). Since \(K \oplus mE_8(-1) \) is maximal, \(f_m \) is actually a cusp form. By the inclusion (4.2), we may regard \(f_m \) as a cusp form with respect to \(\mathcal{O}^+(L_m) \) of the same weight.

To obtain a modular form with respect to \(\mathcal{O}^+(L_m) \), we choose representatives \(\gamma_1, \cdots, \gamma_\delta \in \mathcal{O}^+(L_m) \) of the quotient group \(\mathcal{O}^+(L_m)/\mathcal{O}^+(L_m) \) where
\[
\delta := [\mathcal{O}^+(L_m) : \mathcal{O}^+(L_m)] = |\mathcal{O}(A_{L_m})|,
\]
the last equality being a consequence of the surjectivity of \(\mathcal{O}^+(L_m) \to \mathcal{O}(A_{L_m}) \) by [11]. We can consider the pullback \(f_m|_{\gamma_i} \) of the modular form \(f_m \) by \(\gamma_i \) as usual. It depends only on the class of \(\gamma_i \) modulo \(\mathcal{O}^+(L_m) \), and is a cusp form with respect to \(\gamma_i^{-1}\mathcal{O}^+(L_m)\gamma_i = \mathcal{O}^+(L_m) \). Then take the product
\[
(4.5)
F_m = \prod_{i=1}^{\delta} (f_m|_{\gamma_i}).
\]
This is a non-zero modular form of weight \(\delta k_0 + 4m \) with respect to \(\mathcal{O}^+(L_m) \). Moreover, since each \(f_m|_{\gamma_i} \) is a cusp form, \(F_m \) vanishes of order \(\geq \delta \) along each component of the boundary divisor \(\Delta \) (cf. Theorem 1.1 in [1] Chapter IV). Summing up, we have obtained

Lemma 4.1. Let \(\delta = |\mathcal{O}(A_{L_m})| \). We have a natural number \(k_0 \) such that for each \(m \) there exists a modular form of weight \(\delta k_0 + 4m \) with respect to \(\mathcal{O}^+(L_m) \) which vanishes of order \(\geq \delta \) along the boundary.

The construction (4.5), giving equality of “slopes” of cusp forms between \(\mathcal{F}(L_m) \) and \(\mathcal{O}^+(L_m)\mathcal{D}_{L_m} \), might be also useful for some similar problems of Kodaira dimension.

4.2. **Completion of the proof.** By Lemma 4.1, the proof of Theorem 1.1 is reduced to showing that the \(\mathbb{Q} \)-divisor \((l_0 + 4m)\mathcal{L} - B/2 \) of \(X_m \) is big, where \(l_0 = n_0 - k_0 \). Let \(B = \sum_{i=1}^{r} B_i \) be the irreducible decomposition such that \(B_i \) is defined by the reflective vector \(l_i \in L_m \) as in Proposition 2.3. Then the hyperplane section \(\mathcal{D}_{L_m} = l_i^+ \cap \mathcal{D}_{L_m} \) is one of the ramification divisors over \(B_i \). Let \(\Gamma_{i,m} \subset \mathcal{O}^+(L_m) \) be the stabilizer of \(l_i \), and \(\Gamma_{i,m} \subset \mathcal{O}^+(K_{i,m}) \) be
its natural image. For \(k, j \geq 0 \), the space \(H^0(k\mathcal{L} - jB/2) \) is identified with
the subspace of \(M_k(O^+(L_m)) \) consisting of modular forms of weight \(k \) that
vanish of order \(\geq j \) along each \(\mathcal{D}_{i,m}, 1 \leq i \leq r \). Notice that for \(k \) even, any
modular form in \(M_k(O^+(L_m)) \) must have zero of even order (\(\geq 0 \)) along \(\mathcal{D}_{i,m} \)
(cf. [8]). Indeed, consider the quasi-pullback
\[
H^0(k\mathcal{L} - jB/2) \rightarrow M_{k+j}(\Gamma_{i,m}), \quad F \mapsto (F/(l_i, \cdot)^j)_{|\mathcal{D}_{i,m}}.
\]
Its kernel is \(H^0(k\mathcal{L} - (j+1)B/2) \), and we have \(M_{k+j}(\Gamma_{i,m}) = 0 \) when \(k + j \) is
odd because \(-1 \in \Gamma_{i,m}\).

Now what we want to show is that when \(m \) is large enough (and fixed), we have the growth estimate
\[(4.6) \quad h^0(k(l_0 + 4m)\mathcal{L} - k/2B) = O(k^{n_0+8m})
\]
with respect to even \(k \). We assume first of all that \(l_0 + 4m > 0 \). By iteration
of quasi-pullback for \(j = 0, 2, 4, \ldots, k-2 \) as in [8] Proposition 4.1 (see also
[10] §9), we obtain the estimate
\[
h^0(k(l_0 + 4m)\mathcal{L} - k/2B) \geq \dim M_{k(l_0+4m)}(O^+(L_m)) - \sum_{i=1}^r \sum_{j=0}^r \dim M_{k(l_0+4m)+2j}(\Gamma_{i,m}).
\]
By the property (3.1) of the Hirzebruch-Mumford volume, the first term has the asymptotic estimate
\[
\dim M_{k(l_0+4m)}(O^+(L_m)) = \frac{2 \cdot \text{vol}_{HM}(O^+(L_m))}{(n_0 + 8m)!} \cdot (l_0 + 4m)^{n_0+8m} \cdot k^{n_0+8m} + O(k^{n_0+8m-1}).
\]

On the other hand, for each \(1 \leq i \leq r \), the second term is estimated as
\[
\sum_{j=0}^{k/2-1} \dim M_{k(l_0+4m)+2j}(\Gamma_{i,m})
\leq \sum_{j=0}^{k/2-1} \left\{ \frac{2 \cdot \text{vol}_{HM}(\Gamma_{i,m})}{(n_0 + 8m - 1)!} \cdot (l_0 + 4m + 1)^{n_0+8m-1} \cdot k^{n_0+8m-1} + O(k^{n_0+8m-2}) \right\}
\leq \sum_{j=0}^{k/2-1} \left\{ \frac{2 \cdot \text{vol}_{HM}(\Gamma_{i,m})}{(n_0 + 8m - 1)!} \cdot (l_0 + 4m + 1)^{n_0+8m-1} \cdot k^{n_0+8m-1} + O(k^{n_0+8m-2}) \right\}
= \frac{\text{vol}_{HM}(\Gamma_{i,m})}{(n_0 + 8m - 1)!} \cdot (l_0 + 4m + 1)^{n_0+8m-1} \cdot k^{n_0+8m} + O(k^{n_0+8m-1}).
\]

Then compare these two asymptotic estimates. Notice that \(r \) is independent
of \(m \) by Proposition 2.3. Hence the property (4.6) is satisfied if we can show
that for each $1 \leq i \leq r$, the ratio
\[
\frac{n_0 + 8m}{2l_0 + 8m} \cdot \left(\frac{l_0 + 4m + 1}{l_0 + 4m} \right)^{n_0 + 8m - 1} \cdot \frac{\text{vol}_{HM}(\Gamma_{i,m})}{\text{vol}_{HM}(O^+(L_m))}
\]
of the two leading coefficients above converges to 0 in $m \to \infty$. We first see that
\[
\lim_{m \to \infty} \frac{n_0 + 8m}{2l_0 + 8m} \left(\frac{l_0 + 4m + 1}{l_0 + 4m} \right)^{n_0 + 8m - 1} = 1 \cdot e^2.
\]
By the very definition of Hirzebruch-Mumford volume (see [7]), we have
\[
\text{vol}_{HM}(\Gamma_{i,m}) = [O^+(K_{i,m}) : \Gamma_{i,m}] \cdot \text{vol}_{HM}(O^+(K_{i,m})).
\]
Since $\Gamma_{i,m} \supset \widetilde{O}^+(K_{i,m})$, we have the estimate
\[
[O^+(K_{i,m}) : \Gamma_{i,m}] \leq [O^+(K_{i,m}) : \widetilde{O}^+(K_{i,m})] = |O(A_{K})|,
\]
where the last equality follows from the surjectivity of $O^+(K_{i,m}) \to O(A_{K_{i,m}})$ by [11]. Therefore we deduce from Lemma 3.3 that
\[
\lim_{m \to \infty} \frac{\text{vol}_{HM}(\Gamma_{i,m})}{\text{vol}_{HM}(O^+(L_m))} = 0.
\]
This proves the asymptotic behavior (4.6) when m is sufficiently large, and the proof of Theorem 1.1 is completed.

4.3. **Computation of a bound.** In our argument in §4.2, the modular variety $\mathcal{F}(L_m)$ is of general type when
\[
n_0 + 8m \geq 9, \quad l_0 + 4m > 0,
\]
and the sum of the ratios (4.7) over $1 \leq i \leq r$ is smaller than 1:
\[
\sum_{i=1}^{r} \frac{\text{vol}_{HM}(\Gamma_{i,m})}{\text{vol}_{HM}(O^+(L_m))} < \frac{2l_0 + 8m}{n_0 + 8m} \cdot \left(\frac{l_0 + 4m}{l_0 + 4m + 1} \right)^{n_0 + 8m - 1}.
\]
Let us conclude this article with remarks concerning how to compute an explicit range of m for these inequalities. The inputs required in the calculation are the following:

(I) the weight k_0 of which there exists a Jacobi cusp form of index 1 for $M'(-1)$, where M' is a maximal even overlattice of M for $L_0 = 2U \oplus M$ (actually, in view of [6] Theorem 4.2, we only need to choose M' so that any isotropic subgroup of $A_{M'}$ is cyclic),

(II) classification of the reflective vectors $l_1, \cdots, l_r \in L_0$ up to $O^+(L_0)$,

(III) the index $[O^+(K_{i,m}) : \Gamma_{i,m}]$, and

(IV) precise forms of $\text{vol}_{HM}(O^+(L_m))$ and $\text{vol}_{HM}(O^+(K_{i,m}))$.
At least in principle, these datum could be calculated or estimated explicitly as follows. See [8] for the model cases $L_0 = 2U, 2U \oplus \langle -2d \rangle$.

(I) This is equivalent to the weight $k_0 + 1 - n_0/2$ of which there exists a cusp form of type ρ_M for $Mp_2(\mathbb{Z})$. One can find such a weight by looking the dimension formula for $M'_k(\rho_M')$ presented in [2] p. 228 (which is worked out in [3] §2 in case $k' \equiv 1 - n_0/2 \mod 2$).

(II) This could be done, e.g., in the following steps:

(a) enumerate possible norms $-2d$ of reflective vectors l, which are either $-\text{div}(l)$ or $-2\text{div}(l)$;

(b) enumerate finite quadratic forms A of signature $[3-n_0] \in \mathbb{Z}/8\mathbb{Z}$ with gluings between A and $A_{(-2d)}$ that give rise to A_{L_0};

(c) construct even lattices K of signature $(2,n_0-1)$ with $A_K \cong A$, and the embeddings $K \oplus \langle -2d \rangle \subset L_0$ given by the gluings in (b); and

(d) exclude the cases where $\langle -2d \rangle$ is not reflective in L_0.

(III) Perhaps the estimate (4.8) might be sufficient.

(IV) The formula of $\text{vol}_{HM}(O^+(L_m))$ given in Lemma 3.1 consisted of the following terms:

(i) the constant C, whose explicit value is shown in Remark 3.2,

(ii) the elementary functions $F_m(L_0), G_m(L_0), H_m(L_0)$ and $(|A_{L_0}|/4)^{4m}$ or $(|A_{L_0}|/4\pi)^{4m}$;

(iii) the product $\prod_k (B_{2k}/2k)$; and

(iv) a special value of the L-function $L(s,\chi_D)$ with a factorial $n!$.

One can evaluate or estimate (iv) by referring to, e.g., [4] §10.2. The terms in (i) and (ii) could be worked out from the information of A_{L_0}, because the \mathbb{Z}_p-lattices $L_0 \otimes \mathbb{Z}_p$ are encoded in A_{L_0} and n_0. The Bernoulli numbers can be estimated by Stirling’s formula (see, e.g., [4] Chapter 9). Note that when comparing vol_{HM} between $O^+(L_m)$ and $O^+(K_{i,m})$, all but at most one Bernoulli numbers are canceled out.

References

[1] Ash, A.; Mumford, D.; Rapoport, M.; Tai, Y.-S. Smooth compactifications of locally symmetric varieties. Second edition. Cambridge University Press, 2010.

[2] Borcherds, R. The Gross-Kohnen-Zagier theorem in higher dimensions. Duke Math. J. 97 (1999), no. 2, 219–233.

[3] Bruinier, J. H. On the rank of Picard groups of modular varieties attached to orthogonal groups. Compositio Math. 133 (2002), no. 1, 49–63.

[4] Cohen, H. Number theory. Vol. II. GTM 240. Springer, 2007.

[5] Gritsenko, V. Modular forms and moduli spaces of abelian and K3 surfaces St. Petersburg Math. J. 6 (1995), no. 6, 1179–1208.

[6] Gritsenko, V. A.; Hulek, K.; Sankaran, G. K. The Kodaira dimension of the moduli of K3 surfaces. Invent. Math. 169 (2007), no. 3, 519–567.
[7] Gritsenko, V.; Hulek, K.; Sankaran, G. K. *The Hirzebruch-Mumford volume for the orthogonal group and applications*. Doc. Math. 12 (2007), 215–241.

[8] Gritsenko, V.; Hulek, K.; Sankaran, G. K. *Hirzebruch-Mumford proportionality and locally symmetric varieties of orthogonal type*. Doc. Math. 13 (2008), 1–19.

[9] Kitaoka, Y. *Arithmetic of quadratic forms*. Cambridge University Press, 1993.

[10] Kondō, S. *On the Kodaira dimension of the moduli space of K3 surfaces*. Compositio Math. 89 (1993), 251–299.

[11] Nikulin, V.V. *Integral symmetric bilinear forms and some of their applications*. Math. USSR Izv. 14 (1980), 103–167.

Graduate School of Mathematics, Nagoya University, Nagoya 464-8604, Japan

E-mail address: ma@math.nagoya-u.ac.jp