Nomograms for Predicting Medical Students’ Perceptions of the Learning Environment: Multicenter Evidence From Medical Schools in China

Zhitong Zhou 1,2,3†, Runzhi Huang 1,2,3†, Guoyang Zhang 7, Meiqiong Gong 5, Shuyuan Xian 3, Huabin Yin 6*, Tong Meng 6*, Xiaonan Wang 7*, Yue Wang 6*, Wenzhang Chen 6*, Chongyou Zhang 10*, Erbin Du 11*, Min Lin 12*, Xin Liu 13*, Qing Lin 14*, Shizhao Ji 15*, Hongbin Wu 16*, Zongqiang Huang 17* and Jie Zhang 1,2,3*

Medical students’ perceptions of the medical school learning environment (MSLE) have an important impact on their professional development, and physical and mental health. Few studies reported potential factors that influenced medical students’ perceptions of MSLE. Thus, the main goal of this study was to identify influencing factors for medical students’ perception levels of MSLE. The perception levels of MSLE were assessed by the Johns Hopkins Learning Environment Scale. The univariate and multivariate logistic regression analyses were performed to identify significant predictors for the perceptions of MSLE. The nomograms were established to predict medical students’ perception levels of MSLE. In the multivariate logistic regression model, gender, university category, grade, mother education level, learning environment of schools, interests in medicine, and Kolb learning experience were significantly associated with medical students’ perceptions of MSLE. Correspondently, the nomograms were built based on significant variables identified by the univariate logistic regression analysis. The validation of the nomograms showed that the model had promising predictive accuracy, discrimination, and accordance (area under the curve (AUC) = 0.751). This study identified influencing factors of medical students’ perceptions of MSLE. It is essential to implement corresponding interventions to improve medical students’ perceptions.

Keywords: medical students, perceptions, learning environment, nomograms, prediction
INTRODUCTION

Learning environment (LE) can be conceptualized as physical, social, and psychological contexts in which students learn (1). Students can perceive LE, and the perceptions will influence their behavior in the school (1). In the Standards for Accreditation of Medical Education Programs, the Liaison Committee on Medical Education (LCME) underscored the importance of the LE for the development of explicit and appropriate professional behaviors in medical students (2). Studies reported that a supportive LE can enhance medical students’ academic performance and wellbeing (3, 4). Furthermore, students supported in the psychological environment would be more likely to respond to academic stressors and challenges in positive ways (5). However, an unsupportive LE may cause burnout (6), emotional exhaustion, depersonalization, and lower quality of life for medical students (7). Thus, LE is an important determinant for the behavior of medical students. Medical students experience greater academic and psychological stress than their peers and the general people (8, 9), so a favorable medical school learning environment (MSLE) extremely matters for medical students’ learning and wellbeing.

One method for evaluating MSLE is to assess students’ perceptions of MSLE. The perceptions may be affected by many factors (10). Thus, studies investigating factors that affect medical students’ perceptions of MSLE are warranted to engage medical students’ learning, promote their academic development, and improve the quality of medical education. However, research to date has not yet explored predictive factors of MSLE based on a large sample of multiple centers in China.

The Johns Hopkins Learning Environment Scale (JHLES) is an approach to assessing students’ perceptions of MSLE (11). Items of the JHLES describe social, relational, and academic processes of medical school that support students’ professional formation (11). The nomogram is an important tool to estimate the prognosis of oncology and other diseases (12). Its primary advantage is that it can predict individualized risk based on patient and disease characteristics (12). The nomogram transforms the complex regression equation into a visual graph, making the results of the predictive model more readable.

Thus, the main purpose of this article is to determine significant predictors of medical students’ perceptions of MSLE. Then, the nomograms were built to predict medical students’ perception levels of MSLE.

MATERIALS AND METHODS

Sample Source and Data Extraction

This study was approved by the Ethics Committee of Tongji Hospital, Tongji University School of Medicine.

We launched a cross-sectional study from 11 universities in mainland China from 20 February 2020 to 31 March 2020. We randomly selected medical students from these universities, including 985 Project Universities (Peking University, Tongji University), 211 Project Universities (Zhengzhou University), military universities (Air Force Medical University), the First Batches of Medical Universities (Capital Medical University, Harbin Medical University, Fujian Medical University, Chongqing Medical University, and Southwest Medical University), the Second Batches of Medical Universities (Mudanjiang Medical College) and Non-985/211 Project Universities (Jinggangshan University).

Firstly, to evaluate the quality and readability of the questionnaire, 20 students in grades 4 and 5 of Tongji university school of medicine were randomly selected to conduct a pilot study, and the questionnaire was revised according to each student’s feedback. Then, we integrated questionnaire information into Wenjuanxing (https://www.wjx.cn/), an online tool for the questionnaire survey, and the link of the questionnaire was sent to corresponding heads of 11 medical schools of universities determined cooperative relationship. Finally, we performed a stratified cluster random sampling based on grade. In each grade, 1 to 2 classes were randomly selected by lottery, and all students in each class were selected to fill out the questionnaire. The questionnaires were issued in a unified format. After the questionnaires were collected, the questionnaires with outliers and missing values were eliminated and recorded as invalid questionnaires.

Instrument

In this study, Johns Hopkins Learning Environment Scale (JHLES) was utilized to assess medical students’ perceptions of MSLE (Supplementary Table S1). The scale consisted of seven subscales (Community of peers, Faculty relationships, Academic climate, Meaningful engagement, Mentoring, Inclusion and safety, and Physical space) and a total of 28 items, and we used a five-point Likert response scale that ranged from strongly disagree (1) to strongly agree (5) to assess each item (11). The higher score showed a more positive perception of MSLE. A previous study demonstrated that the scale had good reliability and validity (13). In this study, the scale also showed favorable internal reliability (total Cronbach’s α: 0.949; seven domains Cronbach’s α: 0.863–0.924) and structure validity (KMO value = 0.965, p < 0.001).

Statistical Analysis

For descriptive statistical analysis, continuous variables were presented as mean (standard deviation, SD) or median (interquartile range) and categorical variables as number (percentage). JHLES scores were divided into low and high groups following the median value. The univariate logistic regression was performed to screen significant variables associated with JHLES scores. Then, these significant variables were used to construct the multivariate logistic regression model. Finally, the nomograms were built to predict the probability of a high JHLES score. The discrimination and calibration performances of nomograms were evaluated by receiver operating characteristic (ROC) and calibration curves. Decision curve analysis (DCA) was used to assess the net benefit of medical students.

All statistical analyses were performed using R version 3.6.1 (Institute for Statistics and Mathematics, Vienna, Austria) and SPSS20.0 (SPSS Inc., Chicago, IL, USA). A two-sided p < 0.05 was considered statistical significance.
RESULTS

Sample Characteristics

We received 10,901 questionnaires, but a total of 10,576 questionnaires could be used for further analysis. The age of the students was mainly concentrated in the 16–25 years (98.79%). Males were 20.48% more than females. Most students majored in clinical medicine (79.15%). There were more students in grade 1 (35.19%), followed by grade 2 (18.78%). More than half of students had a 5-year educational system (69.74%). Most students’ parents had low education levels. Most students had good feelings about school LE (55.77% was good, 21.67% was excellent). Accommodation (33.77%) and assimilation (29.49%) were the preferred learning styles of medical students. Half of the students were interested in medicine (56.45%). About 54.46% of students had good perceptions of MSLE (Figure 1, Table 1).

The Univariate and Multivariate Logistic Regression Analysis

JHLES scores were divided into low and high groups following 104 score. First, we performed the univariate logistic regression analysis to select significant variables associated with JHLES score. Nine variables including gender, university category, only child, grade, native place, mother education level, current learning environment of schools, interest in medicine, Kolb learning experience showed statistical significance ($p < 0.05$) (Table 2). Then, nine variables were integrated into the multivariate logistic regression model. In the multivariate logistic regression model, males were associated with better perceptions of MSLE compared to females (odds ratio (OR) = 1.43, 95%CI = 1.31–1.57, $p < 0.001$).

Nomograms and Validation

The nomograms were established based on statistically significant variables in the univariate logistic regression analysis (Figure 2). The internal validation of the nomograms was assessed by ROC and calibration curves. The DCA indicated that medical students had higher net benefits when the high JHLES probability was >0.25 (Figure 3A). Additionally, the results also showed the nomograms model had potentially predictive accuracy and
TABLE 1 | Characteristics of 10,576 participants.

Variables	Number (percentage)
Age	
16–20	5,715 (54.04)
21–25	4,733 (44.75)
26–39	128 (1.21)
Gender	
Male	4,205 (39.76)
Female	6,371 (60.24)
University category	
211 Project Universities	692 (6.54)
985 Project Universities	853 (8.07)
Military University	526 (4.97)
Non–985/211 Project Universities	720 (6.81)
The First Batches of Medical Universities	6,473 (61.20)
The Second Batches of Medical Universities	1,312 (12.41)
University	
Air Force Medical University	526 (4.97)
Capital Medical University	334 (3.16)
Chongqing Medical University	2,219 (20.98)
Fujian Medical University	2,533 (23.95)
Harbin Medical University	853 (8.07)
Jilin University	706 (6.68)
Mudanjiang Medical College	1,304 (12.33)
Others	43 (0.41)
Peking University	369 (3.48)
Southwest Medical University	534 (5.05)
Tongji University	481 (4.55)
Zhengzhou University	674 (6.37)
Major	
Clinical medicine	8,371 (79.15)
Nursing	567 (5.36)
Phylaxiology	689 (6.52)
Preclinical medicine	652 (6.16)
Stomatology	297 (2.81)
Ethnicity	
Ethnic Han	9,893 (93.54)
Minority	683 (6.46)
Only child	
No	5,977 (56.51)
Yes	4,599 (43.49)
Grade	
Grade 1	3,722 (35.19)
Grade 2	1,986 (18.78)
Grade 3	1,639 (15.50)
Grade 4	1,843 (17.42)
Grade 5	1,254 (11.86)
Graduate	132 (1.25)
Native place	
Country	2,533 (23.95)
Municipality	1,484 (14.03)
Prefecture city	1,974 (18.67)

(Continued)

TABLE 1 | Continued

Variables	Number (percentage)
Provincial capital	1,088 (10.29)
Town	1,131 (10.69)
Village	2,366 (22.37)
Educational system	
Eight-year	1,281 (12.11)
Five-year	7,376 (69.74)
Other	1,639 (15.50)
Seven-year	280 (2.65)
GPA	
20–50%	3,744 (35.40)
5–20%	2,431 (22.99)
50–80%	2,640 (24.96)
80–100%	1,003 (9.48)
Top 5%	758 (7.17)
Father's education level	
Bachelor degree	1,235 (11.68)
Graduate degree	233 (2.20)
Junior college	1,104 (10.44)
Junior high school	3,721 (35.18)
Preliminary school	1,768 (16.73)
Senior high school	2,514 (23.77)
Father's occupation	
Civil servant	1,032 (9.76)
Company employee	1,057 (9.99)
Freelance work	2,062 (19.50)
Individual household	1,056 (9.98)
Professional/technical	1,103 (10.43)
Worker/peasant	4,266 (40.34)
Mother's education level	
Bachelor degree	910 (8.60)
Graduate degree	163 (1.54)
Junior college	977 (9.24)
Junior high school	3,241 (30.65)
Preliminary school	3,126 (29.56)
Senior high school	2,159 (20.41)
Mother's occupation	
Civil servant	599 (5.66)
Company employee	1,206 (11.40)
Freelance work	2,816 (26.63)
Individual household	770 (7.28)
Professional/technical	1,308 (12.37)
Worker/peasant	3,877 (36.66)
Learning environment of your schools	
Bad	116 (1.10)
Common	2,210 (20.89)
Excellent	2,292 (21.67)
Good	5,898 (55.77)
Terrible	60 (0.57)
Doctor-patient relationship in your hospitals	
Bad	117 (1.11)
Terrible	45 (0.42)
TABLE 1 | Continued

Variables	Number (percentage)
Common	2,753 (26.03)
Good	6,009 (56.82)
Excellent	1,652 (15.82)
Kolb learning experience	
Accommodating	3,572 (33.77)
Assimilating	3,119 (29.49)
Converging	1,734 (16.40)
Diverging	2,151 (20.34)
Interests of medicine	
Common	2,599 (24.57)
Extremely interested	1,781 (16.84)
Extremely uninterested	65 (0.62)
Interested	5,970 (56.45)
Uninterested	161 (1.52)
JHLES category	
High score (≥104)	5,760 (54.46)
Low score (<104)	4,816 (45.54)

GPA, grade point average; JHLES, Johns Hopkins Learning Environment Scale.

TABLE 2 | Univariate logistic regression analysis of JHLES scores.

Variables	OR (95% CI)	P-value
Age		
Gender		
Male	1.43 (1.31–1.57)	< 0.001*
Female	1.00 (reference)	
University category		
211 Project Universities	1.00 (reference)	
985 Project Universities	0.74 (0.59–0.92)	0.008*
Military University	1.13 (0.87–1.46)	0.363
Non-985/211 Project Universities	1.50 (1.19–1.90)	0.001*
Interests of medicine		
Common	1.00 (reference)	
Extremely uninterested	0.73 (0.38–1.34)	0.331
Uninterested	0.41 (0.26–0.62)	< 0.001*
Interested	2.02 (1.82–2.24)	< 0.001*
Extremely interested	4.45 (3.79–5.23)	< 0.001*
Kolb learning experience		
Accommodating	1.00 (reference)	
Assimilating	0.70 (0.63–0.78)	< 0.001*
Converging	0.78 (0.69–0.89)	0.003*
Diverging	0.83 (0.74–0.94)	< 0.001*

JHLES, Johns Hopkins Learning Environment Scale; OR, odds ratio; CI, confidence interval. *P < 0.05.

TABLE 3 | Multivariate logistic regression analysis of JHLES scores.

Variables	JHLES scores	
	OR (95% CI)	P-value
Gender		
Female	1.00 (reference)	
Male	1.43 (1.31–1.57)	< 0.001*
University category		
211 Project Universities	1.00 (reference)	
985 Project Universities	0.74 (0.59–0.92)	0.008*
Military University	1.13 (0.87–1.46)	0.363
Non-985/211 Project Universities	1.50 (1.19–1.90)	0.001*
Interests of medicine		
Common	1.00 (reference)	
Extremely uninterested	0.73 (0.38–1.34)	0.331
Uninterested	0.41 (0.26–0.62)	< 0.001*
Interested	2.02 (1.82–2.24)	< 0.001*
Extremely interested	4.45 (3.79–5.23)	< 0.001*

JHLES, Johns Hopkins Learning Environment Scale; OR, odds ratio; CI, confidence interval. *P < 0.05.

discrimination (AUC = 0.751) (Figure 3B). Moreover, the AUCs in the train set and test set were similar, it further showed the model had good predictive power. Furthermore, we found
that the nomograms were well-calibrated (Figure 3C), which suggested the predictive JHLES score had good accordance with the actual JHLES score.

DISCUSSION

MSLE plays an important role in medical students' learning outcomes. Favorable perceptions of MSLE may enhance academic achievement, empathy, wellbeing, and reduce burnout, and even distress of medical students (14). Thus, it is necessary to explore factors that affect medical students' perceptions of MSLE.

In this study, the JHLES was utilized to evaluate medical students' perceptions of MSLE. The univariate logistic regression analysis identified nine variables including gender, university category, only child, grade, native place, mother education level, learning environment of schools, interest in medicine, Kolb learning experience were associated with medical students’ perceptions of MSLE \((p < 0.05) \). Moreover, nine significant variables were integrated into the multivariable logistic regression model. The results indicated that the factors were beneficial for perceptions of MSLE, such as male, non-985/211 Project Universities, the Second Batches of Medical Universities, grade 5, common, good or excellent LE of school, and interested or extremely interested in medicine. Then, the nomograms were constructed based on nine variables to predict medical students’ perception levels of MSLE. Eventually, validation of the nomograms showed the model had promising predictive power \((AUC = 0.751) \) and accordance. What’s more, medical students had higher net benefits when the high JHLES probability was >0.25.

Students' perceptions of MSLE were not only influenced by the school characteristics, but also by the student characteristics and family characteristics (10, 15). Our results showed that males had better perceptions of MSLE compared to females. Related studies also reported that the males had more positive perceptions of LE (16, 17). Nevertheless, results that there was no difference or the females had better perceptions than males have also been reported (18, 19). Thus, the relationship between gender and perceptions of MSLE still needs further investigation. We found that the university category was also a factor influencing students’ perceptions. The students of 985 Project universities were more likely to have poor perceptions of MSLE. Relatively speaking, 985 universities in China mean high quality and high standards. Students have more competition and more pressure, which may lead to worse perceptions. In addition, compared to grade 1, students’ perceptions of MSLE in grade 4 were worse. When students transited to the clinical internship environment, their perceptions of MSLE will deteriorate (10). Moreover, students might face dual stress of postgraduate exams and clinical internships in the 4th year. When they balance internships and exams, they do not receive better LE support from medical schools, which may affect their perceptions. However, students' perceptions in grade 5 were better. During the 2-year clinical internships stage, the perceptions were different, which indicated that the needs of students were different at different stages, so teachers should pay more attention to the needs of students during these 2 years to help them improve their perceptions (20). The mother's educational level in preliminary school was a risk factor for students’ lower perception levels. Most students’ mothers had lower educational levels in this study. Lower maternal education was associated with poor school performance of children (21). Parents with a higher education level may pay more attention
FIGURE 3 | Validation of the nomograms. (A) DCA of the nomograms. Medical students had higher net benefit when high JHLES probability was >0.25. (B) The ROC curve of the nomograms. The ROC curve showed that the predictive model had potential predictive discrimination and accuracy (Total set AUC = 0.751, Train set AUC = 0.749, Test set AUC = 0.756). (C) The calibration curve of the nomograms. DCA, decision curve analysis; JHLES, Johns Hopkins Learning Environment Scale; ROC, receiver operating characteristic; AUC, area under the curve.

to the comprehensive training of their children. Moreover, maternal behaviors were more likely to have an impact on children’s behaviors and further affect their overall performance in the subsequent educational environment (22). The results showed individuals relatively subjectively believed that the better the LE of schools was, the better the perception was. In this study, we found that students who were more interested in medicine tended to have better perceptions of MSLE. Therefore, although some students who choose to study medicine may not be out of interest in medicine, it is also crucial for schools to provide a LE that is conducive to increasing students’ interest in medicine. Kolb divides learning styles into four types: Accommodating, Assimilating, Converging, and Diverging (23). Learning style was a learner’s preference for collecting, organizing and processing information and it was about how learners study (24, 25). Compared with other learning styles, accommodating was a style that medical students preferred in this study. Our studies also suggested that students with an accommodating learning style had better perceptions, followed by diverging learning styles. Accommodators studied by feeling and doing and prefer learning from “hands-on” experience (26). Besides, studies indicated that learning style can be related to medical students’ academic performance, and teaching methods that matched the learning style that students preferred can promote more effective learning (25, 27). For medical students, therefore, the university can modify teaching methods according to students’ learning styles to enhance their perception of MSLE and learning.
Our study determined predictors of medical students' perceptions of MSLE, providing a theoretical basis for elevating students' perceptions of MSLE, thereby improving students' academic performance and physical and mental health. For modifiable factors, such as grade, learning environment of schools, interests in medicine, and Kolb learning experience, investigating effective intervention strategies is necessary. Not only for medical students, but LE was also equally important for other majors students (28). In this study, despite we only explored factors affecting medical students' perceptions of LE, it also provided a reference value for evaluating students' perceptions of LE in other majors.

This study, up to now 20 May 2021, based on a search on PubMed and the Web of Science databases, is the first study to focus on predicting medical students’ perceptions of MSLE by constructing nomograms in China. Additionally, this is a large sample study based on multiple centers, so the results are represented to a certain extent. However, this study still has some limitations. Firstly, the establishment of the nomograms is based on the variables determined by the univariate logistic regression analysis, which may lead to overfitting. Secondly, this is a cross-sectional study, so it has certain limitations in verifying causality.

CONCLUSION

The construction of the nomograms provides help for teachers to assess medical students’ perception levels of MSLE. Gender, university category, grade, mother education level, learning environment of schools, interests in medicine, and Kolb learning experience are associated with medical students’ perceptions of MSLE in this study. More large-sample prospective studies should be further carried out to validate the causal relationship between these factors and medical students’ perceptions.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding authors.

ETHICS STATEMENT

This study was approved by the Ethics Committee of Tongji Hospital, Tongji University School of Medicine.

AUTHOR CONTRIBUTIONS

ZZ, RH, GZ, MG, SX, HY, TM, XW, YW, WC, CZ, ED, ML, XL, QL, SJ, HW, ZH, and JZ: conception, design, collection and assembly of data, data analysis and interpretation, manuscript writing, and final approval of manuscript.

FUNDING

This study was supported in part by the National Natural Science Foundation of China (Grant Nos. 81702659, 81772856, and 81801620); Youth Fund of Shanghai Municipal Health Planning Commission (Nos. 2017YQ054 and 2017Y0117); Interdisciplinary Program of Shanghai Jiao Tong University (No. YG2017MS26); Shanghai Talent Development Fund (No. 2018094); Shanghai Municipal Health Commission (No. 201940306); Henan medical science and technology research project (No. 201602031); and Key project of provincial and ministerial co-construction of Henan Medical Science and Technology (No. SBGJ202002031). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpubh.2022.825279/full#supplementary-material

REFERENCES

1. Genn JM. AMEE Medical Education Guide No. 23 (Part 1): curriculum, environment, climate, quality and change in medical education—a unifying perspective. Med Teach. (2001) 23:337–44. doi: 10.1080/01421590120063330
2. Liaison Committee on Medical Education. Functions and Structure of a Medical School. Available online at: https://lcme.org/standard.htm (accessed April 18, 2021).
3. Alotaibi KN. The learning environment as a mediating variable between self-directed learning readiness and academic performance of a sample of Saudi nursing and medical emergency students. Nurse Educ Today. (2016) 36:249–54. doi: 10.1016/j.nedt.2015.11.003
4. Helou MA, Keiser V, Feldman M, Santen S, Cyrus JW, Ryan MS. Student well-being and the learning environment. Clin Teach. (2019) 16:362–6. doi: 10.1111/tct.13070
5. Rashid M, Guo Q, Babenko O. The influence of students’ perceptions of learning environment on coping with academic challenges: a structural equation modeling study. Teach Learn Med. (2020) 32:204–17. doi: 10.1080/10401334.2019.1667241
6. Dyrbye LN, Thomas MR, Harper W, Massie FS Jr, Power DV, Eacker A, et al. The learning environment and medical student burnout: a multicentre study. Med Educ. (2009) 43:274–82. doi: 10.1111/j.1365-2923.2008.03282.x
7. Tackett S, Wright S, Lubin R, Li J, Pan H. International study of medical school learning environments and their relationship with student well-being and empathy. Med Educ. (2017) 51:280–9. doi: 10.1111/medu.13120
8. Dyrbye LN, Thomas MR, Shanafelt TD. Systematic review of depression, anxiety, and other indicators of psychological distress among US and Canadian medical students. Acad Med. (2006) 81:554–73. doi: 10.1097/00001888-200604000-00009
9. Almojali AL, Almalki SA, Alothman AS, Alaqeel MK. The prevalence and association of stress with sleep quality among medical students. J Epidemiol Glob Health. (2017) 7:169–74. doi: 10.1016/j.jegh.2017.04.005
10. Dunham L, Dekhtyar M, Gruener G, CichoskiKelly E, Deitz J, Elliott D, et al. Medical student perceptions of the learning environment in medical school change as students transition to clinical training.
in undergraduate medical school. *Teach Learn Med.* (2017) 29:383–91. doi: 10.1080/10401334.2017.1297712

11. Shochet RB, Colbert-Getz JM, Wright SM. The Johns Hopkins learning environment scale: measuring medical students’ perceptions of the processes supporting professional formation. *Acad Med.* (2015) 90:818–8. doi: 10.1097/ACM.0000000000000706

12. Balachandran VP, Gonen M, Smith JJ, DeMatteo RP. Nomograms in oncology: more than meets the eye. *Lancet Oncol.* (2015) 16:e173–80. doi: 10.1016/S1470-2045(14)71116-7

13. Damiano RF, Furtado AO, da Silva BN, Ezequiel ODS, Lucchetti AL, DiLalla LF, et al. Measuring students’ perceptions of the medical school learning environment: translation, transcultural adaptation, and validation of 2 instruments to the Brazilian portuguese language. *J Med Educ Curric Dev.* (2020) 7:2382120520902186. doi: 10.1777/23821205209

14. Karani R. Enhancing the medical school learning environment: a complex challenge. *J Gen Intern Med.* (2015) 30:1235–6. doi: 10.1007/s11606-015-3422-3

15. Skochelak SE, Stansfield RB, Dunham L, Dekhtyar M, Gruppen LD, Christianson C, et al. Medical student perceptions of the learning environment at the end of the first year: a 28-medical school collaborative. *Acad Med.* (2016) 91:1257–62. doi: 10.1097/ACM.00000000000001137

16. Ali AP, Mohammadnezhad M, May W, Kabir R. The perception of undergraduate dental students toward a clinical learning environment at school of dentistry and Oral Health, Fiji National University, Fiji. *J Int Soc Prev Community Dent.* (2021) 11:26–32. doi: 10.4103/jispcd.JISP_CD_333_20

17. Shah DK, Piryni S, Piryni RM, Islam MN, Jha RK, Deo GP. Medical students’ perceptions of their learning environment during clinical years at Chitwan Medical College in Nepal. *Adv Med Educ Pract.* (2019) 10:355–62. doi: 10.2147/AMEP.S203377

18. Nouth T, Anil S, Alanaazi A, Al-Shehri W, Alfaial N, Alfaris R, et al. Assessing correlation between students’ perception of the learning environment and their academic performance. *J Pak Med Assoc.* (2016) 66:1616–20.

19. Henning MA, Shulruf B, Hawken SJ, Pinnock R. Changing the learning environment: the medical student voice. *Clin Teach.* (2011) 8:83–7. doi: 10.1111/j.1743-498X.2011.00439.x

20. Williams BL, Dunlop AL, Kramer M, Dever BV, Hogue C, Jain L. Perinatal origins of first-grade academic failure: role of prematurity and maternal factors. *Pediatrics.* (2013) 131:693–700. doi: 10.1542/peds.2012-1408

21. Bagan G, Tur-Porcar AM, Llorca A. Learning and parenting in spanish environments: prosocial behavior, aggression, and self-concept. *Sustainability.* (2019) 11:5193. doi: 10.3390/su11195193

22. Collins CS, Nanda S, Palmer BA, Mohabbat AB, Schleck CD, Mandrekar JN, et al. A cross-sectional study of learning styles among continuing medical education participants. *Med Teach.* (2019) 41:318–24. doi: 10.1080/0142159X.2018.1464134

23. Mpwaya MF, Dockrat S. Assessing learning styles of undergraduate logistics students using Kolb’s learning style inventory: a cross-sectional survey. *South Afr J High Educ.* (2020) 34:210–28. doi: 10.20853/34-3-3338

24. Ilcin N, Tomruk M, Yesilyaprak SS, Karadibak D, Savci S. The relationship between learning styles and academic performance in turkish physiotherapy students. *BMC Med Educ.* (2018) 18:291. doi: 10.1186/s12909-018-1400-2

25. Adesunloye BA, Aladesanmi O, Henriques-Forsythe M, Ivonye C. The preferred learning style among residents and faculty members of an internal medicine residency program. *J Natl Med Assoc.* (2008) 100:172–5. doi: 10.1016/S0027-9684(15)31205-0

26. Wang R, Liu C. The relation of dental students’ learning styles to their satisfaction with traditional and inverted classroom models. *BMC Med Educ.* (2019) 19:315. doi: 10.1186/s12909-019-1749-x

27. Cho HJ, Zhao K, Lee CR, Runshe D, Kroussgrill C. Active learning through flipped classroom in mechanical engineering: improving students’ perception of learning and performance. *Int J STEM Educ.* (2021) 8:46. doi: 10.1186/s40594-021-00302-2

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Citation: Zhou Z, Huang R, Zhang G, Gong M, Xian S, Yin H, Meng T, Wang X, Wang Y, Chen W, Zhang C, Du E, Lin M, Liu X, Lin Q, Ji S, Wu H, Huang Z and Zhang J (2022) Nomograms for Predicting Medical Students’ Perceptions of the Learning Environment: Multicenter Evidence From Medical Schools in China. *Front. Public Health.* 10:825279. doi: 10.3389/fpubh.2022.825279

Copyright © 2022 Zhou, Huang, Zhang, Gong, Xian, Yin, Meng, Wang, Wang, Chen, Zhang, Du, Lin, Liu, Lin, Ji, Wu, Huang and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.