Brønsted acid-catalysed enantioselective construction of axially chiral arylquinazolinones

Yong-Bin Wang1,2, Sheng-Cai Zheng1, Yu-Mei Hu1 & Bin Tan1

The axially chiral arylquinazolinone acts as a privileged structural scaffold, which is present in a large number of natural products and biologically active compounds as well as in chiral ligands. However, a direct catalytic enantioselective approach to access optically pure arylquinazolinones has been underexplored. Here we show a general and efficient approach to access enantiomerically pure arylquinazolinones in one-pot fashion catalysed by chiral phosphoric acids. A variety of axially chiral arylquinazolinones were obtained in high yields with good to excellent enantioselectivities under mild condition. Furthermore, we disclosed a method for atroposelective synthesis of alkyl-substituted arylquinazolinones involving Brønsted acid-catalysed carbon–carbon bond cleavage strategy. Finally, the asymmetric total synthesis of eupolyphagin bearing a cyclic arylquinazolinone skeleton was accomplished with an overall yield of 32% in six steps by utilizing the aforementioned methodology.
The axially chiral arylquinazolinones constitutes a privileged structural scaffold found in a large number of natural products and biologically active compounds as exemplified by those shown in Fig. 1a (refs 1-8). This motif represents a well-known class of therapeutics that displays hypnotic, anxiolytic, anticonvulsant and antitumor effects. For example, eupolyphagin1 and asperlicins2 are known as potent cholecystokinin antagonists; Erastin3 is an antitumor agent used for targeting selective tumor cells containing oncogenic RAS, which yields ferroptosis by changing the mitochondrial voltage-dependent anion channel gating thus allowing cations into the mitochondria, resulting to the release of oxidative species. In addition, this motif could also be used as chiral ligand for asymmetric catalysis9,10.

The significance of these privileged axially chiral skeletons has led to a great demand for efficient synthetic methods, particularly those producing enantiomerically pure arylquinazolinones. In this regard, there have only existed a few transformations for the construction of these structural skeletons, which usually employ either enantiopure starting materials or conventional resolution to construct the optically pure arylquinazolinone derivatives11,12. Levacher and co-workers developed a divergent stereoselective synthesis of bridged arylquinazolinones by using the popular Meyers’ diastereoselective lactamization under dehydrating conditions12. Miller reported a pioneering approach for accessing the enantioenriched arylquinazolinone via peptide-catalysed atroposelective bromination, providing a useful approach for accessing axially biaryldiols27. Recently, they also developed an enantiodivergent synthesis of axially chiral biaryls via asymmetric reductive amination catalysed by a chiral phosphoric acid28. Motivated by these successful examples and the previous efforts on phosphoric acid-catalysed asymmetric synthesis of dihydroquinazolinones35,36 via amidation37, we envisioned that chiral phosphoric acids may also be capable of facilitating the construction of axially chiral arylquinazolinones enantioselectively by accelerating the imine formation and the intramolecular nucleophilic addition to form hemiaminal followed by the oxidative dehydrogenation (Fig. 1c).

However, several challenges are associated with the direct asymmetric construction of the axially chiral arylquinazolinones.
in a one-pot fashion: The atroposelective construction of axially chiral arylquinazolinones has rarely been investigated in asymmetric catalysis; the previous reports on asymmetric synthesis of dihydroquinazolinones did not investigate the N-aryl anthranilamides; the concomitant control of the stereoselectivities of dihydroquinazolinones bearing a stereogenic carbon center and an axial chirality might be a great challenge; the development of a suitable oxidation condition for preserving the enantiopurity and structural (Fig. 1c). In addition, the phosphoric acid-catalysed oxidative central-to-axial chirality conversion strategy here we describe the results of the investigation on addressing the aforementioned challenges, leading to the phosphoric acid-catalysed highly enantioselective synthesis of axially chiral aryquinazolinones with high enantiopurity and structural diversity (Fig. 1c). In addition, the phosphoric acid-catalysed carbon–carbon bond cleavage for direct atroposelective construction of alkyl-substituted arylquinazolinones under mild conditions suggests an approach of great importance to medicinal chemistry and diversity-oriented synthesis.

Results
Optimization of reaction conditions. To validate the feasibility of the hypothesis, our initial investigations were carried out by using the reaction of N-aryl anthranilamides (1a) and benzaldehyde (2a) as the model substrates with 10 mol% of phosphoric acid CP1 in CHCl3 at 0 °C in the presence of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). Despite its high steric hindrance, the reaction proceeded cleanly to give the axially chiral aryquinazolinone (3a) with 68% ee, albeit with a low conversion (Table 1, entry 1). This preliminary result obviously demonstrated that the control of the axial chirality of aryquinazolinone by using chiral phosphoric acid-catalysed asymmetric cyclo-condensation and oxidative dehydrogenation is feasible. To improve the reactivity and stereoselectivity, we next turned our attention to evaluate the different phosphoric acid catalysts available. As shown in Table 1, the electron property and steric bulk on the aromatic ring, as well as the backbone displayed remarkable effects on the outcome of the reaction (Table 1, entries 2–8). Fortunately, we found the catalyst CP3 gave the best yield of 88% and enantioselectivity of 96% ee (Table 1, entry 3). It is worthy of note that the more acidic N-triflylphosphoramides CP7, which were first reported by Yamamoto and Nakashima, did not improve the results (entry 7). The solvent had an important role in the transformation, and CHCl3 was proved to be the best choice (Table 1, entries 9–12). Expectedly, the presence of 4 Å molecular sieves had a remarkable effect on the enantioselectivity because of the generation of water during the reaction (Table 1, entry 13). Further optimization of the conditions revealed that the reaction was complete to furnish

Entry	Catalyst	Solvent	Yield (%)	ee (%)
1	CP1	CHCl3	21	69
2	CP2	CHCl3	58	49
3	CP3	CHCl3	88	96
4	CP4	CHCl3	22	13
5	CP5	CHCl3	22	38
6	CP6	CHCl3	58	63
7	CP7	CHCl3	11	39
8	CP8	CHCl3	48	67
9	CP9	CH2Cl2	51	67
10	CP10	CCl4	67	91
11	CP11	Toluene	13	81
12	CP12	EA	8	58
13	CP13	CHCl3	86	74
14	CP14	CHCl3	99	93
15	CP15	CHCl3	96	96
16	CP16	CHCl3	95	96

*Unless otherwise specified, the reaction of 1a (0.1 mmol), 2a (0.2 mmol), DDQ (31.9 mg, 0.14 mmol), catalyst CP (10 mol%) and 4 Å MS was carried out in 4.0 ml solvent at 0 °C for 60 h under Ar.
†Isolated yield.
‡Determined by high-performance liquid chromatography analysis.
§Without 4 Å MS.
||Ar: 25 °C.
*The reaction was performed for 96 h.
#DDQ was added after 48 h and then the reaction was performed for additional 96 h.
configuration of 3a reactivity and stereoselectivity (Table 1, entry 16). The absolute cyclization reaction was accomplished without any effect on the demonstrated that the oxidant DDQ could be added after the first in 96% isolated yield with 96% ee (Table 1, entry 15). It was 3a in 96% isolated yield with 96% ee (Table 1, entry 15). It was demonstrated that the oxidant DDQ could be added after the first cyclization reaction was accomplished without any effect on the reactivity and stereoselectivity (Table 1, entry 16). The absolute configuration of 3a was determined as being (aR) by X-ray diffraction analysis (See Supplementary Fig. 1, CCDC 1509246) and those of other products were assigned by analogy.

Substrate scope. With the optimal reaction conditions in hand, we set out to explore the substrate generality of this transformation. First, we evaluated various substituted anthranilamides (1b–1m). Most reactions reached completion within 96 h and gave axially chiral arylquinazolinones (Table 2, 3b–3u) in high yields (90–99%) with good to excellent enantioselectivities (85–97% ee). The results revealed that both the position and electronic property of the substituents on the aromatic ring have a slight effect on the reaction efficiency and enantioselectivity of this transformation. With respect to the N-aryl group, it is noteworthy to point out that the ortho group is not only restricted to tert-butyl (tBu) group, and the bromo, iodo, phenyl or diphenyl phosphine oxide (Ph2OP) group at this position could also be suitable substrates that yielded the desired products (Table 2, 3n–3u) with good to excellent enantiocontrol (83–95% ee). Notably, the presence of Cl, Br or I substituent in the arylquinazolinone derivatives obtained is very important for setting up a compound library due to the high reactivity in many transition-metal-catalysed reactions.

Encouraged by these results, we, therefore, expanded the generality of the reaction with regard to the variation of the aldehydes. Various aromatic aldehydes were applicable and afforded the desired products with good yields and excellent enantioselectivities (Table 3). It was shown that the position and the electronic nature of the substituents on the aromatic ring have limited effect on the stereoselectivity. For example, aldehydes bearing electron withdrawing (R = F, Cl, Br) or electron-donating groups (R = Me, OMe) at different positions (para, meta, ortho) of the phenyl ring reacted efficiently to afford the corresponding

Table 2 | Substrates scope of N-aryl anthranilamides

R	R'	Rs	1b–1u	2a	3b–1u
Br	Ph	3b	95% yield, 97% ee		
I	Ph	3c	95% yield, 94% ee		
F, Cl, Br	Ph	3d	99% yield, 94% ee		
tBu	Ph	3e	90% yield, 91% ee		
F, Cl, Br	Ph	3f	93% yield, 85% ee†		
F, Cl, Br	Ph	3g	98% yield, 88% ee†		
F, Cl, Br	Ph	3h	96% yield, 85% ee‡		
Cl	Ph	3i	94% yield, 90% ee		
F, Cl, Br	Ph	3j	97% yield, 94% ee		
F, Cl, Br	Ph	3k	98% yield, 97% ee		
Cl	Ph	3l	97% yield, 92% ee†		
Cl	Ph	3m	97% yield, 92% ee†		
Cl	Ph	3n	93% yield, 97% ee		
Cl	Ph	3o	97% yield, 88% ee		
Cl	Ph	3p	99% yield, 85% ee‡		
Cl	Ph	3q	96% yield, 94% ee		
Cl	Ph	3r	98% yield, 93% ee		
Cl	Ph	3s	97% yield, 90% ee		
Cl	Ph	3t	97% yield, 83% ee		
Cl	Ph	3u	95% yield, 89% ee		

*Unless otherwise specified, the reaction of 1a (0.1 mmol), 2a (0.2 mmol), DDQ (31.9 mg, 0.14 mmol), CP3 (7.0 mg, 10 mol%) and 4 Å MS was carried out in 4.0 ml CHCl3 at 0 °C for 96 h under Ar.
†At 25 °C.
‡Performed in 1:1 Hexane:CHCl3.
products 4a–4j with 63–98% yields and 85–95% ee. Moreover, the 2-furaldehyde and 2-naphthaldehyde could be well tolerated without obviously affecting the reaction results (4k and 4l). When aliphatic aldehydes were investigated, the reaction proceeded very messy under the optimized conditions. To our delight, the expected arylquinazolinone (4m) was produced when DDQ was added after the first step was completed. In the meanwhile, an unexpected product 4n was obtained with excellent enantioselectivity (92% ee) using phenyliodinediacetate as oxidant. Disappointedly, although we tried our best to optimize the reaction conditions for linear aliphatic aldehydes, no good results were obtained.

C–C bond cleavage strategy. To further expand the generality to get alkyl-substituted arylquinazolinone, we were interested in a promising strategy via phosphorous acid-catalysed cyclocondensation and selective C–C bond cleavage to meet this challenge. As we all known, C–C bond cleavage is a topic of significant importance in organic synthesis. Despite significant advances in the past decades, it is still a big challenge to selectively cleave unstrained C–C bond by using an organocatalyst. In this regard, Zhou and co-workers developed an elegant approach to deliver quinazolinones involving organocatalytic reactions of ketoesters/diketones with 2-aminoenonamides and selective C–C bond cleavage. Inspired by this beautiful work, we envisioned that the axially chiral arylquinazolinone might be produced by using the reaction of N-aryl anthranilamides (1h) with ketoester or diketone under the catalysis of chiral phosphoric acids. To our disappointment, almost no desired product was obtained when ketoester was tested. After substantial optimization (for optimized details, see Supplementary Table 1), the axially chiral arylquinazolinone 6a was obtained with good results by treating the reaction with 4-methoxypentenone 5a and 1h catalysed by a more acidic N-triflylphosphoramides CP9 at 60 °C in a mixture of c-hexane and CHCl3 in the presence of MgSO4 (Table 4, product 6a). The absolute configuration of 3a was determined to be (aR) by X-ray diffraction analysis (Supplementary Fig. 2, CCDC 1509247).

Having identified the optimized conditions, we proceeded to investigate the substrate scope of the reaction. Several substituted N-aryl anthranilamides were successfully applied in the reaction with 4-methoxypentenone (Table 4). The corresponding axially chiral methyl-substituted arylquinazolinones 6a–6f were isolated with good chemical yields (75–95%) and enantioselectivities (83–95% ee). It should be noted that other diketone derivatives produce the corresponding products with poor results, which shows the limitation of the current method. However, the resultant product 6f can be further transformed into other diversely functionalized axially chiral arylquinazolinones 7a–7c.
without any erosion of enantioselectivities, thus expanding the substrate scope and compensating the limitation to some extent.

Asymmetric total synthesis of euplyphagin. The efficient construction of a series of functionalized axially chiral arylquinazolinones motivated our investigation of the asymmetric total synthesis of eupolyphagin (Fig. 2). Our primary concept is to construct the key axially chiral intermediate \(8c\) by using the above-mentioned approach and followed by construction of eight-member lactam \(8e\) via palladium-catalysed carbonylation of aryl halides. We started our investigation from the optimization of the construction of the key axially chiral intermediate \(8c\). After great efforts, the corresponding product was obtained with moderate enantioselectivity by treating the reaction with \(8b\) and 2-FmocNHPhCHO catalysed by \((S)-\text{CP3}\) at 40 \(^\circ\)C (other N-protected aldehydes and anthraniamides gave poor results. For details, see Supplementary Table 2). Fortunately, the enantio-purity of \(8c\) can be enriched to 95% ee by using recrystallization from dichloromethane (DCM)/ethyl acetate (EA). The free amine

Table 4 | Further expansion of the generality involving C–C bond cleavage strategy*.

R'	1	\(\text{CP9 (10 mol%) + }\)	5a	\(\text{c-hexane:CHCl}_3 = 1:1\)	\(\text{MgSO}_4, 60 \degree\)C, 96 h	8c
OMe	NH\(_2\)	85% yield in two steps	8b	95% yield, 58% ee	Recrystallization	95% yield, 58% ee
OMe	NH\(_2\)	91% yield, 95% ee	8d	95% yield, 95% ee		
H	8a	1) 2-NO\(_2\)-PhCOCl	8b	95% yield, 58% ee	44% yield, 95% ee	
2) SnCl\(_2\)H\(_2\)O						
OMe	NH\(_2\)	85% yield in two steps	8b	95% yield, 58% ee	Recrystallization	95% yield, 58% ee
OMe	NH\(_2\)	91% yield, 95% ee	8d	95% yield, 95% ee		
CO, Pd(dba\(_2\))	dppp, DIPEA	TBACl, toluene	8e	98% yield, 95% ee		
\(\text{rt, 24 h}\)		85 \degree\)C, 72 h	Eupolyphagin	Overall yield: 32% for 6 steps		

*Unless otherwise specified, the reaction of \(1h\) (0.1 mmol), \(5a\) (0.2 mmol), \(\text{CP9 (8.0 mg, 10 mol%) and MgSO}_4 (6.0 mg) was carried out in 4.0 ml mixed solvent (c-hexane:CHCl\(_3\) = 1:1) at 60 \degree\)C for 96 h under Ar.

Figure 2 | Asymmetric total synthesis of eupolyphagin. The natural product eupolyphagin was effectively synthesized in six steps from easily available starting material with overall yield of 32% in 95% ee.
CHCl₃, 0 °C, 96 h
MeBr

8e intermediate effect on the conversion of aryl iodide high carbon monoxide pressure that may have a strong

eupolyphagin as a white solid in 98% yield with 95% ee48. It

t our preliminary investigation by using eight-member lactam46. Considering the complicated catalyst and
derivatives, there was only one report for the construction of
vided a simple method that generated a range of carboxylic acid
Although palladium-catalysed carbonylation of aryl halides pro-
excellent yield without any effect on the enantioselectivity.

8e intermediate effect on the conversion of aryl iodide high carbon monoxide pressure that may have a strong

eupolyphagin as a white solid in 98% yield with 95% ee48. It

t our preliminary investigation by using eight-member lactam46. Considering the complicated catalyst and
derivatives, there was only one report for the construction of
vided a simple method that generated a range of carboxylic acid
Although palladium-catalysed carbonylation of aryl halides pro-
excellent yield without any effect on the enantioselectivity.

synthesis of this axially chiral natural product and the overall yield for the six steps is 32%.

Controlled experiments and proposed reaction processes. In order to get some insights of the reaction mechanism, we have
conducted several control experiments (Fig. 3). In the beginning, we performed a control experiment in the absence of oxidant and
successively isolated the key aminal intermediate 9a in 90% yield and 96% ee and only one diastereoisomer was detected
(dr > 20:1), indicating that the double chirality was controlled completely. The following oxidation of 9a with DDQ afforded the
desired product 3a with excellent yield and 94% ee (Fig. 3a). However, when we isolated another intermediate 9b, the crude-NMR clearly showed that the dr of 9b was 20:1. The two dia-
steroisomers yielded the corresponding axially chiral product 3t with opposite configuration (Fig. 3b). In addition, when we
attempted to isolate the intermediate 9c, we found that the two

Figure 3 | Control experiments proposed reaction processes. (a) The intermediate 9a was obtained as a single diastereoisomer (dr = 20:1) with good enantioselectivity. (b) Two diastereoisomers (dr = 20:1) of 9b was isolated. (c) The two diastereoisomers of 9c were inseparable and the following oxidative transformations gave 3p with slightly decrease of enantioselectivity. (d) The isolated intermediates 9d could be transformed to 6a successfully. (e) Proposed reaction processes.

8d was obtained by removing the Fmoc protection group in excellent yield without any effect on the enantioselectivity. Although palladium-catalysed carbonylation of aryl halides provided a simple method that generated a range of carboxylic acid derivatives, there was only one report for the construction of eight-member lactam46. Considering the complicated catalyst and high carbon monoxide pressure that may have a strong effect on the conversion of aryl iodide 8d to the key intermediate 8e, we selected Arndt’s modified procedure47. Our preliminary investigation by using tBu₃P as ligand and TBACl as chloride source afforded the desired 9c with moderate yield. Further optimization (for optimized details, see Supplementary Table 3) resulted in an improved protocol which could provide 8e in satisfactory isolated yield (95%) without any effect on enantioselectivity. Finally, the methyl protecting group was removed by using BBr₃ to obtain eupolyphagin as a white solid in 98% yield with 95% ee48. It should be emphasized that it represents the asymmetric total
diastereoisomers (dr = 3.6:1 in CDCl₃) cannot be separated on silica gel chromatography and only two peaks were detected by chiral high-performance liquid chromatography analysis. The transformation of this intermediate afforded the final product 3p with excellent yield and 81% ee (Fig. 3c). Based on these results, we deduced that the C–N bond can rotate freely in the intermediate 9c and the central chirality can be efficiently transferred into axial chirality during the oxidation. These results also indicated that the axial chirality of the final product was controlled in the cyclization step and the control of the central chirality was the key point for achieving good enantioselectivity. As for the synthesis of alkyl substituted arylquinazolinone, we have isolated the enamine 9d and failed to separate the cyclization intermediate due to the unstability. The final product 6a was isolated with 50% yield and 77% ee under standard condition (Fig. 3d). On the basis of above-mentioned control experiments and previous reports, we proposed tentative reaction processes. As shown in Fig. 3e, these reactions probably go through the typical Brønsted acid-catalysed aminal formation process. Initially, the imine or enamines were generated from the condensation of 1 with aldehyde or 4-methoxycyclohexene, respectively. Then N,N-aminic cyclization intermediates were produced via intramolecular amidation. Finally, the desired arylquinazolinones were obtained by dehydrogenation in the presence of an oxidant or the C–C bond cleavage under acidic condition. It is clear that the enantioselectivity is determined during the step of intramolecular nucleophilic attack under the catalysis of chiral Brønsted acid. At the current stage, the asymmetric induction and the chirality transfer from central to axial chirality remains unclear, which is ongoing in our laboratory.

Discussion

We have successfully developed a general and efficient approach to access enantioenergetically pure arylquinazolinones catalysed by chiral phosphoric acids. A series of axially chiral arylquinazolinones with potential biological activities were obtained in high yields (up to 99%) with good to excellent enantioselectivities (up to 97% ee) under mild conditions. To expand the reaction generality, we further disclosed a method of great importance for the atroposelective construction of alkyl-substituted arylquinazolinones using Brønsted acid-catalysed carbon–carbon bond cleavage strategy. Applying this methodology, the asymmetric total synthesis of axially chiral natural product eupolyphagin was achieved with an overall yield of 32% in six steps. We anticipate that this promising strategy could be applied to the synthesis of other natural products and the axially chiral arylquinazolinones may have further potential applications in asymmetric catalysis and drug discovery.

Methods

Procedure for the enantioselective synthesis of 3 and 4a–4l. To a dry Schlenk tube (10 ml), 400 mg activated 4 Å MS (molecular sieves) was added and then the MS was reactivated under reduced pressure for 15 min. After the tube was cooled down, N-aryl anthranilamides 1 (0.10 mmol), CP3 (7.0 mg, 0.01 mmol), DDQ (31.8 mg, 0.14 mmol) and anhydrous CHCl₃ (4.0 ml) was added under Ar. The resulting mixture was stirred for 10 min at 0 ºC, and then aromatic aldehyde 2 (0.2 mmol) was added in one portion. After stirred for 96 h at 0 ºC, the mixture was purified by flash column chromatography on silica gel (gradient elution with PE/EtOAc) to give the pure product.

Procedure for the enantioselective synthesis of 6. To a 10 ml dry Schlenk tube, N-aryl anthranilamides 1h, 1p or 1a-1y (0.10 mmol), Sr (22.8 mg, 0.2 mmol), MgSO₄ (6.0 mg), CP8 (8.0 mg, 0.01 mmol) and anhydrous C₆H₆CHCl₃ (1/1) (4.0 ml) was added under Ar. The resulting solution was heated to 60 ºC. After stirred for 96 h, the solution was cooled down to room temperature and then purified by flash column chromatography on silica gel (gradient elution with PE/EtOAc) to give the pure product.

For NMR spectra of the new compounds in this article, see Supplementary Figs 3–20. Full experimental details and characterization of compounds are given in Supplementary Notes 1–5.

Data availability. The X-ray crystallographic coordinates for structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 1509246, CCDC 1509247. Crystal data and structure refinement for 3a and 6f were displayed in Supplementary Tables 4 and 5. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

References

1. Jiang, H.-L. et al. New isocoumarins and alkaloids from Chinese insect medicine, Eupolyphagia sinensis Walker. Fitoterapia 83, 1275–1280 (2012).
2. Joshi, B. K., Gloor, J. B., Wicklow, D. T. & Dowd, P. F. Sclerotigenin: a new antifungal benzodiazepine from the sclerotia of Penicillium sclerotigenum. J. Nat. Prod. 62, 650–652 (1999).
3. Rahbek, L. & Reinholdt, J. Circumdatins D, E, and F: further fungal benzodiazepine analogues from Aspergillus oryzae. J. Nat. Prod. 62, 904–905 (1999).
4. Rahbek, L. & Reinholdt, J. Circumdatins D, E, and F: further fungal benzodiazepine analogues from Aspergillus oryzae. J. Nat. Prod. 62, 904–905 (1999).
5. Yagoda, N. et al. RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447, 865–869 (2007).
6. Dai, J.-R. et al. Circumdatin G, a new alkaloid from the fungus Aspergillus oryzae. J. Nat. Prod. 64, 125–126 (2001).
7. Sun, H. & Barrow, C. J., Sedlock, D. M., Gillum, A. M. & Cooper, R. Benzomalvins, new substance P inhibitors from a Penicillium sp. J. Antibiot. 47, 515–522 (1994).
8. Sun, H. H., Barrow, C. J., Sedlock, D. M., Gillum, A. M. & Cooper, R. Benzomalvin D, a new 1, 4- benzodiazepine atropisomer. J. Nat. Prod. 58, 1575–1580 (1995).
9. Gangadhara, N. M. & Stockwell, B. R. Chemical genetic approaches to probing cell death. Curr. Opin. Chem. Biol. 11, 83–87 (2007).
10. Dai, X., Wang, A. & Virgil, S. C. Synthesis and resolution of quinazoline atropisomeric phosphine ligands. J. Org. Chem. 63, 2597–2600 (1998).
11. Tokihiro, T. et al. Diastereoselective synthesis of atropisomeric 3-(2-substituted aryl)quinazolin-4-ones and their stereochemical properties. Heterocycles 70, 93–99 (2006).
12. Penhoat, M. et al. New development of Meyers’ methodology: stereoselective preparation of an axially chiral 5, 7-fused bicyclic lactam related to circumdatins/benzomalvins and asperlicins. Tetrahedron: Asymmetry 17, 281–286 (2006).
13. Diener, M. E., Metrano, A. J., Kusano, S. & Miller, S. J. Enantioselective synthesis of 3-(arylquinazolin-4-yl)ones via peptide-catalysed atroposelective bromination. J. Am. Chem. Soc. 137, 12369–12377 (2015).
14. Akiyama, T., Itoh, J., Yokota, K. & Fuchibe, K. Enantioselective Mannich-type reaction catalysed by a chiral Brønsted acid. Angew. Chem. Int. Ed. 43, 1566–1568 (2004).
15. Uraguchi, D. & Terada, M. Chiral Bronsted acid-catalysed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc. 126, 5356–5357 (2004).
16. Akiyama, T. Stronger Bronsted acids. Chem. Rev. 107, 5744–5758 (2007).
17. Terada, M. Binaphthol-derived phosphoric acid as a versatile catalyst for enantioselective carbon-carbon bond forming reactions. Chem. Commun. 2008, 4097–4112 (2008).
18. Ruening, M., Kuenkel, A. & Atodiresei, I. Chiral Bronsted acids in enantioselective carbonyl activations—activation modes and applications. J. Chem. Soc. Chem. Rev. 40, 4539–4549 (2011).
19. Parmar, D., Sugiono, E., Raja, S. & Ruening, M. Complete field guide to asymmetric BINOL-phosphate derived Bronsted acid and metal catalysis: history and classification by mode of activation; Bronsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem. Rev. 114, 9047–9153 (2014).
20. Gustafson, J. L., Lim, D. & Miller, S. J. Dynamic kinetic resolution of biaryl atropisomers via peptide-catalysed atroposelective bromination. Science 328, 1251–1255 (2010).
21. Garand, E. et al. Determination of noncovalent docking by infrared spectroscopy of cold gas-phase complexes. Science 335, 694–698 (2012).
22. Barrett, K. T., Metrano, A. J., Rahlen, P. R. & Miller, S. J. Spontaneous transfer of chirality in an atropisomERICALLY enriched two-axis system. Nature 509, 71–75 (2014).
23. Miyaji, R., Asano, K. & Matsubara, S. Bifunctional organocatalysts for the enantioselective synthesis of axially chiral isoquinoline N-Oxides. J. Am. Chem. Soc. 137, 6766–6769 (2015).
24. Lotter, D., Neuburger, M., Rickhaus, M., Häussinger, D. & Sarr, C. Stereoselective amines forming aldol condensation: synthesis of configurationally stable olio-1, 2-naphthylamines. Angew. Chem. Int. Ed. 55, 2920–2923 (2016).
25. Zheng, J., Cui, W.-J., Zheng, C. & You, S.-L. Synthesis and application of chiral spiro Cp ligands in rhodium-catalyzed asymmetric oxidative coupling of biaryl compounds. *J. Am. Chem. Soc.* **138**, 5242–5245 (2016).

26. Yu, C., Huang, H., Li, X., Zhang, Y. & Wang, W. Dynamic kinetic resolution of biaryl lactones via a bifunctional amine thiourea catalysed highly atropoenantioselective transesterification. *J. Am. Chem. Soc.* **138**, 6956–6959 (2016).

27. Mori, K. et al. Enantioselective synthesis of multisubstituted biaryl skeleton by chiral phosphoric acid catalysed desymmetrization/kinetic resolution sequence. *J. Am. Chem. Soc.* **135**, 3964–3970 (2013).

28. Mori, K., Itakura, T. & Akiyama, T. Enantiodivergent atroposelective synthesis of chiral biarylS by asymmetric transfer hydrogenation: chiral phosphoric acid catalysed dynamic kinetic resolution. *Angew. Chem. Int. Ed.* **55**, 11642–11646 (2016).

29. Li, G.-Q. et al. Design of chiral N-triflyl phosphoramide as a catalytic asymmetric arylboronate organocatalyst for dynamic kinetic resolution. *J. Org. Chem.* **81**, 10677 (2016).

30. De, C. K., Pesciaioli, F. & List, B. Catalytic asymmetric benzidine spiro Cp ligands in rhodium-catalyzed asymmetric oxidative coupling of biaryl compounds. *Angew. Chem. Int. Ed.* **55**, 11642–11646 (2016).

31. Zhang, H.-H. et al. Design of chiral N-triflyl phosphoramide as a catalytic asymmetric arylboronate organocatalyst for dynamic kinetic resolution. *J. Org. Chem.* **81**, 10677 (2016).

32. Chen, Y.-H. et al. Atroposelective synthesis of axially chiral biarylS via organocatalytic arylation of 2-naphthols. *J. Am. Chem. Soc.* **137**, 15062–15065 (2015).

33. Wang, J.-Z. et al. Symmetry in cascade chirality-transfer processes: a catalytic atroposelective direct arylation approach to BINOL derivatives. *J. Am. Chem. Soc.* **138**, 15786–15789 (2016).

34. Wang, J., Chen, M.-W., Ji, Y., Hu, S.-B. & Zhou, Y.-G. Kinetic resolution of axially chiral 5- or 8-substituted quinolines via asymmetric transfer hydrogenation. *J. Am. Chem. Soc.* **138**, 10413–10416 (2016).

35. Cheng, X., Vellalath, S., Goddard, R. & List, B. Direct catalytic asymmetric synthesis of cyclic amines from aldehydes. *J. Am. Chem. Soc.* **130**, 15786–15787 (2016).

36. Huang, D., Li, X., Xu, F., Li, L. & Lin, X. Highly enantioselective synthesis of dihydroquinazolinones catalysed by SPINOL-phosphoric acids. *ACS Catal.* **3**, 2244–2247 (2013).

37. Rowland, G. B. et al. Bronsted acid-catalyzed imine amidation. *J. Am. Chem. Soc.* **137**, 15696–15697 (2015).

38. Zhang, J.-W. et al. Discovery and enantiocontrol of axially chiral urazoles via organocatalytic tyrosine click reaction. *Nat. Commun.* **7**, 10677 (2016).

39. Quinonero, O. et al. Combining organocatalysis with central-to axial chirality conversion: atroposelective Hantzsch-type synthesis of 4-arylpyridines. *Angew. Chem. Int. Ed.* **55**, 1401–1405 (2016).

40. Raut, V. S. et al. Enantioselective syntheses of furan atropisomers by an oxidative central-to-axial chirality conversion strategy. *J. Am. Chem. Soc.* **139**, 2140–2143 (2017).

41. Nakashima, D. & Yamamoto, H. Design of chiral N-triflyl phosphoramide as a strong chiral Bronsted acid and its application to asymmetric Diels–Alder reaction. *J. Am. Chem. Soc.* **128**, 9626–9627 (2006).

42. Miyaura, N. & Suzuki, A. Palladium-catalysed cross-coupling reactions of organoboron compounds. *Chem. Rev.* **95**, 2457–2483 (1995).

43. Jun, C.-H. Transition metal-catalysed carbon–carbon bond activation. *Chem. Soc. Rev.* **33**, 610–618 (2004).

44. Chen, F., Wang, T. & Jiao, N. Recent advances in transition-metal-catalysed functionalization of unstrained carbon–carbon bonds. *Chem. Rev.* **114**, 8613–8661 (2014).

45. Li, Z. et al. Metal-and oxidant-free synthesis of quinazolinones from β-ketoesters with o-aminobenzenamides via phosphorous acid-catalysed cyclocondensation and selective C–C bond cleavage. *J. Org. Chem.* **80**, 9392–9400 (2015).

46. Lu, S.-M. & Alper, H. Intramolecular carbonylation reactions with recyclable palladium-complexed dendrimers on silica: synthesis of oxygen, nitrogen, or sulfur-containing medium ring fused heterocycles. *J. Am. Chem. Soc.* **127**, 14776–14784 (2005).

47. Que, S. J. & Arndtsen, B. A. A palladium-catalysed carbonylation approach to acid chloride synthesis. *J. Am. Chem. Soc.* **135**, 16841–16844 (2013).

48. Weiß, F. L. & Raymond, K. N. Specific sequestering agents for the actinides. 3. Polycatecholate ligands derived from 2,3-dihydroxy-5-sulfobenzoyl conjugates of diaz-and tetraazalkanes. *J. Am. Chem. Soc.* **102**, 2289–2293 (1980).

Acknowledgements

We are thankful for the financial support from the National Natural Science Foundation of China (Nos. 21572095), Shenzhen special funds for the development of biomedicine, internet, new energy, and new material industries (JCYJ20150430160022510). B.T. thanks the Thousand Young Talents Program for financial support. Dedicated to prof Scott J. Miller for his great contribution on construction of axially chiral compounds via peptide catalysis.

Author contributions

Y.-B.W. performed experiments and prepared the Supplementary Information. S.-C.Z. and Y.-M.H. helped with characterizing some new compounds. B.T. conceived and directed the project and wrote the paper.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Wang, Y.-B. et al. Bronsted acid-catalysed enantioselective construction of axially chiral arylquinazolinones. *Nat. Commun.* **8**, 15489 doi: 10.1038/ncomms15489 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.