Modeling coherence in ESOL learner texts

Helen Yannakoudakis & Ted Briscoe

University of Cambridge
Computer Lab

Building Educational Applications

NAACL 2012
Outline

1. Introduction
2. Dataset
3. System
4. Conclusions
The Task: Automated Text Scoring (ATS)

Automated Text Scoring (ATS)
Automatically analyse the quality of writing competence and assign a score to a text

Goal
Evaluate writing as reliably as human readers

Challenges
Imitate the value judgements that human readers make when they mark a text
Marking criteria

- Identify textual features that correlate with intrinsic features of human judgments
- Multiple factors influence the linguistic quality of texts
- Grammar, style, vocabulary usage, topic similarity, discourse coherence and cohesion, etc.
ATS systems

Marking criteria

- Identify textual features that correlate with intrinsic features of human judgments
- Multiple factors influence the linguistic quality of texts
- Grammar, style, vocabulary usage, topic similarity, **discourse coherence and cohesion**, etc.
Discourse coherence & cohesion

Mechanisms

- Cohesion: use of cohesive devices that can signal primarily suprasentential discourse relations between textual units (Halliday and Hasan, 1976)
 - Anaphora, discourse markers, etc.
- Local coherence: transitions between textual units
- Global coherence: sequence of topics
Discourse coherence & cohesion

Related work

- Coherence analysis on:
 - News texts
 - e.g., Lin et al. (2011), Elsner and Charniak (2008), Soricut and Marcu (2006), etc.
 - Extractive summaries
 - Pitler et al. (2010)
 - Learner data
 - Miltsakaki and Kukich (2004), Higgins and Burstein (2007), Burstein et al. (2010)
FCE Writing Component

- Upper-intermediate level assessment
- Two tasks eliciting free-text answers, each one between 120 and 180 words
 - e.g. ‘write a short story commencing ...’
- Answers annotated with mark (in the range 1–40), fitted to a RASCH model (Fischer and Molenaar, 1995)
- Manually error-coded using a taxonomy of ~80 error types (Nicholls, 2003)
Baseline system

- ATS system described in Yannakoudakis et al. (2011)
- Features focus on lexical and grammatical properties, as well as errors
- Discourse coherence ignored
- Vulnerable to subversion
- Extend with discourse coherence features
Baseline

Ranking SVMs

Models

Results

Machine Learning

Ranking SVMs

- Address ATS as a ranking learning problem (Joachims, 2002)
- Learn an optimal ranking function that explicitly models the grade relationships between scripts
- Model the fact that some scripts are better than others
‘Superficial’ proxies

- Number of pronouns
Models

‘Superficial’ proxies

- Number of pronouns
- Number of discourse connectives
 - Addition (e.g., additionally)
 - Comparison (e.g., likewise)
 - Contrast (e.g., whereas)
 - Conclusion (e.g., therefore)
‘Superficial’ proxies

- Number of pronouns
- Number of discourse connectives
 - Addition (e.g., additionally)
 - Comparison (e.g., likewise)
 - Contrast (e.g., whereas)
 - Conclusion (e.g., therefore)
- Word length
Models

Lemma/PoS cosine similarity

- Incorporate (syntactic) aspects of text coherence
- Represent sentences using vectors of lemma/PoS-tag counts
- Cosine similarity between adjacent sentences:
 \[
 \cos(\theta) = \frac{\mathbf{s}_i \cdot \mathbf{s}_{i+1}}{\|\mathbf{s}_i\| \|\mathbf{s}_{i+1}\|}
 \]
- Coherence of a text \(T \):
 \[
 \text{coherence}(T) = \frac{\sum_{i=1}^{n-1} \text{sim}(s_i, s_{i+1})}{n - 1}
 \]
Incremental Semantic Analysis (ISA)

- **Word space model** (Baroni et al., 2007)
- **Fully-incremental variation of Random Indexing** (Sahlgren, 2005)
- Similarity among words measured by comparing their context vectors
- Coherence of a text T:

 \[
 \text{coherence}(T) = \frac{\sum_{i=1}^{n-1} \max_{k,j} \text{sim}(s^k_i, s^j_{i+1})}{n - 1}
 \]

- Underlying idea: the degree of semantic relatedness between adjoining sentences serves as a proxy for local discourse coherence
IBM model 1

- Machine translation: the use of certain words in a source language is likely to trigger the use of certain words in a target language
- In texts: the use of certain words in a sentence tends to trigger the use of certain words in an adjoining sentence (Soricut and Marcu, 2006)
- Identification of word co-occurrence patterns across adjacent sentences
- Probability of a text T:

$$P_{\text{IBM}_{\text{dir}}} (T) = \prod_{i=1}^{n-1} \frac{\varepsilon}{\prod_{j=1}^{\left|s_{i+1}\right|}} \sum_{k=0}^{\left|s_i\right|} t(s_{i+1}^j | s_i^k)$$ (4)
IBM model 1

- Machine translation: the use of certain words in a source language is likely to trigger the use of certain words in a target language.
- In texts: the use of certain words in a sentence tends to trigger the use of certain words in an adjoining sentence (Soricut and Marcu, 2006).
- Identification of word co-occurrence patterns across adjacent sentences.
- Probability of a text T:

$$P_{IBM_{dir}}(T) = \prod_{i=1}^{n-1} \prod_{j=1}^{s_{i+1}} \frac{\varepsilon}{|s_i| + 1} \sum_{k=0}^{|s_i|} t(s_{i+1}^j|s_i^k)$$ \hspace{1cm} (4)

- Extend: identification of PoS co-occurrence patterns.
Entity-based coherence model

- Measures local coherence on the basis of sequences of entity mentions (Barzilay and Lapata, 2008)
- Learns coherence properties similar to those employed by Centering Theory (Grosz et al., 1995)
- Each text is represented by an entity grid that captures the distribution of discourse entities across sentences

```
LANGUAGE  - - X - - - - - -
COUNTRY   - - X - - - - - -
POINTS    - - X - - - - - -
CHILDREN  - - 0 X - - - - -
TV        - - X - - - - - -
PROGRAMMES- - S 0 - - - - -
```

1 2 3 4 5 6 7 8
Models

Pronoun coreference model

- Unsupervised generative model (Charniak and Elsner, 2009)
- Model each pronoun as generated by an antecedent somewhere in the previous 2 sentences
- Probability of a text: probability of the resulting sequence of pronoun assignments
Models

Discourse-new model

- Discourse-new classifier (Elsner and Charniak, 2008)
- Distinguish NPs whose referents have not been previously mentioned in the discourse from those that have
- Probability of a text: $\prod_{np:NPs} P(L_{np}|np)$
Bag-of-Words (BOW)

- Represent a text as a vector $d \in \mathbb{R}^V$
- Each word v_i is associated with a single vector dimension
- Histogram of word occurrences
- Unable to maintain any sequential information
- Unable to capture the semantic transition between different parts of the document
- Partial solution: use ngrams
Locally-Weighted Bag-of-Words (LoWBOw)

- LoWBOw: sequentially-sensitive alternative to BOW (Lebanon et al., 2007)
- A text is represented by a set of local histograms computed across the whole text, but centered on different locations
- Preserves local contextual information by modeling the text sequential structure
Locally-Weighted Bag-of-Words (LoWBOW) – cont.
Results – examination year 2000

Feature	r	ρ
0 Baseline	0.651	0.670
1 POS distr.	0.653	0.670
2 Disc. connectives	0.648	0.668
3 Word length	0.667	0.676
4 ISA	0.675	0.678
5 EGrid	0.650	0.668
6 Pronoun	0.650	0.668
7 Disc-new	0.646	0.662
8 LoWBOW_{lex}	0.663	0.677
9 LoWBOW_{POS}	0.659	0.674
10 IBM model_{lex}	0.649	0.668
11 IBM model_{lexb}	0.649	0.667
12 IBM model_{POS}	0.661	0.672
13 IBM model_{POSb}	0.658	0.669
14 Lemma cosine	0.651	0.667
15 POS cosine	0.650	0.665
16 5+6+7+10+11	0.648	0.665
17 All	0.677	0.671

Table: 5-fold cross-validation performance on texts from year 2000 when adding different coherence features on top of the baseline AA system.
Results – examination year 2001 & outlier scripts

	r	ρ
Baseline	0.741	0.773
ISA	0.749	0.790*
Upper-bound	0.796	0.792

Table: Performance on the exam scripts drawn from the examination year 2001. * indicates a significant improvement at $\alpha = 0.05$.

	r	ρ
Baseline	0.08	0.163
ISA	0.400	0.626

Table: Performance of the ISA AA model on outliers.
First systematic analysis of different models for assessing discourse coherence on learner data

Significant improvement over Yannakoudakis et al. (2011)

ISA, LOWBOW, the POS IBM model and word length are the best individual features

Local histograms are useful

Results specific to ESOL FCE texts

Investigate a wider range of (learner) texts and further coherence models (e.g., Elsner and Charniak (2011a) and Lin et al. (2011)).
Thank you!

Acknowledgments: we are grateful to Cambridge ESOL for supporting this research. We would like to thank Marek Rei, Øistein Andersen as well as the anonymous reviewers for their valuable comments and suggestions.