On a Hamiltonian form of an elliptic spin
Ruijseenaars-Schneider system

F. Soloviev

August 29, 2008

1 Introduction

An elliptic Ruijsenaars-Schneider (RS) model \cite{1} is a Hamiltonian system of \(N \) interacting particles with a Hamiltonian

\[
H = \sum_{j=1}^{N} e^{p_j} \prod_{s \neq j} \left(\frac{\sigma(x_j - x_s + \eta)\sigma(x_j - x_s - \eta)}{\sigma^2(x_j - x_s)} \right)^{1/2}
\]

and the canonical symplectic form \(\omega = \sum \delta p_i \wedge \delta x_i \), where \(p_i = \dot{x}_i \).

The equations of motions are

\[
\ddot{x}_i = \sum_{s \neq i} \dot{x}_i \dot{x}_s (V(x_s - x_i) - V(x_i - x_s)),
\]

where \(V(x) = \zeta(x + \eta) - \zeta(x) \), and \(\zeta(x) \) is a Weierstrass zeta function.

The limit when one or two periods of the elliptic curve go to infinity yields a trigonometric or rational system. A RS system is a relativistic generalization of the Calogero-Moser model.

A spin generalization of RS system was suggested in \cite{2}. Each particle additionally carries two \(l \)-dimensional vectors \(a_i \) and \(b_i \) that describe the internal degrees of freedom and affect the interaction. Remarkably, the equations of motion remain integrable and are given by the formulas

\[
\begin{align*}
 \dot{f}_{ij} &= \sum_{k \neq j} f_{ik} f_{kj} V(x_j - x_k) - \sum_{k \neq i} f_{ik} f_{kj} V(x_k - x_i) \\
 \dot{x}_i &= f_{ii},
\end{align*}
\]

where \(f_{ij} = b_i^T a_j \).

It was shown in \cite{3} using the universal symplectic form (proposed in \cite{4}) that a spin elliptic RS system is Hamiltonian. An expression of a symplectic form (or Poisson structure) in explicit coordinates is known only in the rational and trigonometric limits (see \cite{7}).

The aim of this paper is to compute \(\omega \) in the original coordinates \(x_i \) and \(f_{ij} \) in the simplest elliptic case of 2 particles, \(N = 2 \). We compare the obtained 2-form with a symplectic form for a system without spin and with a Poisson structure found in \cite{7} in the rational case.
The general procedure developed by Krichever and Phong in \cite{4} allows to construct action-angle variables for an elliptic RS system and its spin generalization. It was done in \cite{3}. The upshot of the procedure is the following.

A Lax representation with a spectral parameter for an elliptic RS system has been found in \cite{2}. A Lax matrix is

\[L_{ij} = f_i \Phi(x_i - x_j - \eta), \text{ where } \Phi(x, z) = \frac{\sigma(z + x + \eta)}{\sigma(z + \eta) \sigma(x)} \left[\frac{\sigma(z - \eta)}{\sigma(z + \eta)} \right]^{x/2\eta}. \quad (4) \]

The spectral parameter \(z \) is defined on an elliptic curve \(\Gamma_0 \) with a cut between points \(z = \eta \) and \(z = -\eta \).

The universal symplectic form is given by the formula

\[\omega = -\frac{1}{2} \sum_{q \in I} \text{res}_q \text{Tr} (\Psi^{-1} L^{-1} \delta L \wedge \delta \Psi - \Psi^{-1} \delta \Psi \wedge K^{-1} \delta K) \, dz, \quad (5) \]

where the sum is taken over the poles of \(L \) and zeroes of \(\det L \). \(\Psi \) is a matrix composed of eigenvectors of \(L \), which has poles \(\tilde{\gamma}_s \) on the spectral curve \(\tilde{\Gamma} \): \(\det (L - kI) = 0 \) due to normalization of eigenvectors. \(k \) is a meromorphic function on \(\tilde{\Gamma} \) and the matrix \(K = \text{diag}(k_1, \ldots, k_N) \) is composed of values of \(k \) on different sheets of \(\tilde{\Gamma} \).

\(\omega \) doesn’t depend on the gauge transformations \(L \rightarrow gLg^{-1} \) and the normalization of eigenvectors on the leaves where the form \(\delta \ln k \, dz \) is holomorphic. \(\text{Tr} (...) \, dz \) is a meromorphic differential, and the sum of all its residues is zero. Using these facts, one can show that on the leaves

\[\omega = \sum_s \delta \ln k(\tilde{\gamma}_s) \wedge \delta z(\tilde{\gamma}_s). \quad (6) \]

Computations performed in \cite{3} for Lax matrix \cite{4} show that

\[\omega = \sum_i \delta \ln f_i \wedge \delta x_i + \sum_{i \neq j} V(x_i - x_j) \delta x_i \wedge \delta x_j, \quad (7) \]

where

\[f_i = e^{p_i} \prod_{s \neq i}^N \left(\frac{\sigma(x_i - x_s + \eta) \sigma(x_i - x_s - \eta)}{\sigma^2(x_i - x_s)} \right)^{1/2} \]

and the Hamiltonian for system \cite{2} is \(H = \sum_{i=1}^N f_i \).

A Lax representation with a spectral parameter for an elliptic spin RS system \cite{3} has been found in \cite{4}. The Lax matrix is \(L_{ij} = f_{ij} \Phi(x_i - x_j - \eta) \). Formally, equations \cite{3} are Hamiltonian with \(H = \sum_{i=1}^N f_{ii} \) and symplectic form \cite{4} (see \cite{3} for details). The goal of this paper is to compute form \cite{4} in the original coordinates \(x_i \) and \(f_{ij} \).
After the gauge transformation by a diagonal matrix \(g = \text{diag}(\Phi(x_1, z), \lambda \Phi(x_2, z)) \) with an appropriate choice of \(\lambda \), the matrix \(L_{ij} \) becomes

\[
L = \begin{pmatrix}
-f_1 \frac{\sigma(z)}{\sigma(\eta)} & f_2 \frac{\sigma(z - x_1 + x_2)\sigma(z + x_1 + \eta)\sigma(x_2)}{\sigma(x_2 - x_1 - \eta)\sigma(x_2 - x_1 - \eta)\sigma(x_2)} \\
-f_3 \frac{\sigma(z - x_1 + x_2)\sigma(z + x_1 + \eta)\sigma(x_2)}{\sigma(x_2 - x_1 - \eta)\sigma(x_2 - x_1 - \eta)\sigma(x_2)} & 1 \\
\end{pmatrix}
\]

where \(f_1 \equiv f_{11}, f_2 \equiv f_{22} \) and \(f_3 \equiv \sqrt{f_{12}f_{21}} \).

The matrix \(L \) is defined on a curve \(\Gamma \) of genus \(g = 2 \), which is a 2-sheeted cover of the elliptic curve \(\Gamma_0 \) with 2 branch points \(z = \eta \) and \(z = -\eta \).

The spectral curve \(\hat{\Gamma} \) of \(L \) is defined by the equation \(R = \det(L_{ij} - k) = 0 \).

The set \(I \) in (5) is \(I = \{ \gamma_0, 0, \pm z_0 \} \), where \(z_0 \) is defined by the equation \(\det(L_{ij}) = 0 \), or

\[
f_1 f_2 \sigma^2(z_0) - f_3^2 \sigma(z_0 - x_1 + x_2)\sigma(z_0 - x_1 + x_2) = 0.
\]

Notice, that we can use variables \((x_1, x_2, f_1, f_2, z_0)\) instead of \((x_1, x_2, f_1, f_2, f_3)\).

Theorem 1. In the case \(N = 2 \) the elliptic spin RS system is Hamiltonian with a symplectic form

\[
\omega = -\delta \ln f_1 \wedge \delta x_1 - \delta \ln f_2 \wedge \delta x_2 + 2 \hat{V}(x_1 - x_2) \delta x_1 \wedge \delta x_2
\]

and Hamiltonian \(H = f_1 + f_2 \), where \(\hat{V}(x) = \zeta(x + z_0) - \zeta(x) \). The spinless case corresponds to \(z_0 = 0 \).

Proof. The eigenvector \(\psi \) of \(L \) in any normalization is a meromorphic function on \(\Gamma \) and it has \(\hat{g} + 1 = 6 \) poles \(\hat{\gamma}_s \). The proof of formula (6) in [6] assumes that the situation is in general position, i.e. projections of points \(\hat{\gamma}_i \) don’t coincide with \(\gamma_0 \).

Most appropriate normalization here is \(\psi_1 \equiv 1 \), because it easily allows us to find poles \(\hat{\gamma}_s \) of \(\psi \). Two of them \((s = 1, 2)\) lie above the point \(z = x_1 - x_2 \), and the other are above \(z = -x_1 - \eta \) \((s = 3, 4, 5, 6)\). This is not the case of general position, but it turns out that the same formula (6) still holds.

The proof in [5] and [6] implies that 2-form (5) in the normalization \(\psi_1 \equiv 1 \) equals to \(\omega_0 = \sum_{s=1}^2 \delta \ln k(\hat{\gamma}_s) \wedge \delta z(\hat{\gamma}_s) \).
A change of normalization of Ψ from $\psi_1 \equiv 1$ to $\sum \psi_i \equiv 1$ (the last one is in "general position") corresponds to the transformation $\tilde{\Psi} = \Psi V$, where

$$V = \begin{pmatrix} \frac{L_{12}}{k_1 - L_{11} + L_{12}} & 0 \\ \frac{L_{12}}{k_2 - L_{11} + L_{12}} & \frac{L_{12}}{k_1 - L_{11} + L_{12}} \end{pmatrix}.$$

According to the computations in [6],

$$\omega = \omega_0 + \sum_{q \in \mathcal{I}} \text{res}_q \text{Tr} \left(K^{-1} \delta K \wedge \delta VV^{-1} \right) dz.$$

Since ω has to be restricted to the leaves where $\delta \ln kdz$ is holomorphic (which is equivalent to 2 conditions: $\delta \eta = 0$ and $\delta z_0 = 0$), the only non-zero residue in the second term is at the point $z(\gamma_i) = -x_1 - \eta$. After computing the residue, we get that $\omega = \omega_0 + \sum_{s=3}^6 \delta \ln k(\tilde{\gamma}_s) \wedge \delta z(\tilde{\gamma}_s)$, i.e. effectively formula (6) holds in both normalizations.

Substituting $\tilde{\gamma}_s$ in (6), we find that

$$\omega = -\delta \ln f_1 \wedge \delta x_1 - \delta \ln f_2 \wedge \delta x_2 + 2\tilde{V}(x_1 - x_2)\delta x_1 \wedge \delta x_2,$$

where $\tilde{V}(x) = \zeta(x + z_0) - \zeta(x)$.

The Hamiltonian $H = f_1 + f_2$ defines the flow

$$\begin{cases} \dot{f}_1 = -f_1 f_2 (\zeta(x_1 + x_2) - \zeta(x_0 - x_1 + x_2) - 2\zeta(x_1 - x_2)) \\ \dot{f}_2 = f_1 f_2 (\zeta(x_1 + x_2) - \zeta(x_0 - x_1 + x_2) - 2\zeta(x_1 - x_2)) \\ \dot{x}_1 = f_1 \\ \dot{x}_2 = f_2. \end{cases}$$

Using identities for Weierstrass σ-functions, namely,

$$\sigma(a + c)\sigma(a - c)\sigma(b + d)\sigma(b - d) - \sigma(a + d)\sigma(a - d)\sigma(b + c)\sigma(b - c) = \sigma(a + b)\sigma(a - b)\sigma(c + d)\sigma(c - d),$$

and

$$\zeta(a) + \zeta(b) + \zeta(c) - \zeta(a + b + c) = \frac{\sigma(a + b)\sigma(b + c)\sigma(a + c)}{\sigma(a)\sigma(b)\sigma(c)\sigma(a + b + c)},$$

it follows from the definition of z_0 that

$$f_1 f_2 (2\zeta(x_1 - x_2) + \zeta(z_0 - x_1 + x_2) - \zeta(z_0 + x_1 - x_2)) = f_3^2 (2\zeta(x_1 - x_2) + \zeta(\eta - x_1 + x_2) - \zeta(\eta + x_1 - x_2)).$$

With the help of this identity, we can show that the above equations are equivalent to

$$\begin{cases} \dddot{x}_1 = f_3^2 (2\zeta(x_1 - x_2) + \zeta(\eta - x_1 + x_2) - \zeta(\eta + x_1 - x_2)) \\ \dddot{x}_2 = -f_3^2 (2\zeta(x_1 - x_2) + \zeta(\eta - x_1 + x_2) - \zeta(\eta + x_1 - x_2)), \end{cases}$$

which is an RS system.

The spinless case occurs when $f_3^2 = f_1 f_2$ and $z_0 = \eta$ as one can observe from [6].
Remark. A Poisson structure was found in [7] in the rational limit for arbitrary \(N \) (see formula (3.31) in [7]). In the case of 2 particles it is non-degenerate and defined on a 6-dimensional space \((f_{11}, f_{12}, f_{21}, f_{22}, x_1, x_2)\). The corresponding 2-form is defined on the same space and coincides with \(\delta z_0 = 0 \) and after reduction with respect to the action \(f_{12} \rightarrow f_{12}/\lambda, f_{21} \rightarrow f_{21}/\lambda \).

3 Acknowledgments

I am very grateful to I.Krichever for many helpful and interesting discussions.

References

[1] S.N.M. Ruijsenaars, H. Schneider, A new class of integrable systems and its relation to solitons, Ann. Phys. (NY) 170 (1986), 370-405.

[2] I.M. Krichever, A.V. Zabrodin, Spin generalization of the Ruijsenaars-Schneider model, non-abelian 2D Toda chain and representations of Sklyanin algebra, Uspekhi Mat. Nauk 50 (1995), no.6, 3-56.

[3] I.M. Krichever, Elliptic solutions to difference non-linear equations and nested Bethe ansatz equations, solv-int/9804016.

[4] I.M. Krichever, D.H. Phong, On the integrable geometry of soliton equations and \(N=2 \) supersymmetric gauge theories, J. Differential Geometry 45 (1997), 349-389.

[5] I.M. Krichever, Vector bundles and Lax equations on algebraic curves, Comm. Math. Phys. 229 (2002), no.2, 229-269.

[6] I.M. Krichever, Integrable Chains on Algebraic Curves, Geometry, topology and mathematical physics, Amer. Math. Soc. Transl. Ser.2, 212 (2004), 219-236.

[7] G.E. Arutyunov, S.A. Frolov, On the Hamiltonian structure of the spin Ruijsenaars-Schneider model, J. Phys. A 31 (1998), no.18, 4203-4216.