DA-9801 Promotes Neurite Outgrowth via ERK1/2-CREB Pathway in PC12 Cells

Jong Hoon Won, Kyong Hoon Ahn, Moon Jung Back, Hae Chan Ha, Ji Min Jang, Ha Hyung Kim, Sang-Zin Choi, Miwon Son, and Dae Kyong Kim*

Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University; 221 Huksuk-dong, Dongjak-gu, Seoul 156–756, South Korea; a Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University; 221 Huksuk-dong, Dongjak-ku, Seoul 156–756, South Korea; and b Phytomedicine & Functional Food Research, Pharmaceutical Product Research Laboratories, Research Center of Dong-A ST Co., Ltd., 21 Goeunhwa-ro, 105 Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 446–905, South Korea.

In the present study, we examined the mechanisms underlying the effect of DA-9801 on neurite outgrowth. We found that DA-9801 elicits its effects via the mitogen-activated protein kinase (MEK) extracellular signal-regulated kinase (ERK)/1-2/CAMP response element-binding protein (CREB) pathway. DA-9801, an extract from a mixture of Dioscorea japonica and Dioscorea nipponica, was reported to promote neurite outgrowth in PC12 cells. The effects of DA-9801 on cell viability and expression of neuronal markers were evaluated in PC12 cells. To investigate DA-9801 action, specific inhibitors targeting the ERK signaling cascade were used. No cytotoxicity was observed in PC12 cells at DA-9801 concentrations of less than 30 μg/mL. In the presence of nerve growth factor (NGF, 2 ng/mL), DA-9801 promoted neurite outgrowth and increased the relative mRNA levels of neurofilament-L (NF-L), a marker of neuronal differentiation. The Raf-1 inhibitor GW5074 and MEK inhibitor PD98059 significantly attenuated DA-9801-induced neurite outgrowth. Additionally, the MEK1 and MEK2 inhibitor SL327 significantly attenuated the increase in the percentage of neurite-bearing PC12 cells induced by DA-9801 treatment. Conversely, the selective p38 mitogen-activated protein kinase inhibitor SB203580 did not attenuate the DA-9801 treatment-induced increase in the percentage of neurite-bearing PC12 cells. DA-9801 enhanced the phosphorylation of ERK1/2 and CREB in PC12 cells incubated with and without NGF. Pretreatment with PD98059 blocked the DA-9801-induced phosphorylation of ERK1/2 and CREB. In conclusion, DA-9801 induces neurite outgrowth by affecting the ERK1/2-CREB signaling pathway. Insights into the mechanism underlying this effect of DA-9801 may suggest novel potential strategies for the treatment of peripheral neuropathy.

Key words DA-9801; diabetic peripheral neuropathy; neurite outgrowth; extracellular signal-regulated kinase 1/2; cAMP response element-binding protein (CREB)

Peripheral neuropathy is a common disease in diabetes patients. According to recent estimates, more than half of all diabetes patients develop diverse neuropathic symptoms.1,2 Diabetic peripheral neuropathy (DPN) is one of the most debilitating complications of Type 1 and Type 2 diabetes, and its histopathology is characterized by neuronal small fiber degeneration, demyelination, and atrophy.3–5 Hyperglycemia, a metabolic disruption known to increase oxidative stress in the peripheral nerves, is an important factor in the pathogenesis of DPN.6 In patients with diabetes, as well as those with local nerve compression that needs to be treated to prevent or repair permanent nerve damage, treatment of the underlying cause might result in partial or full pain relief.7

Nerve growth factor (NGF) itself has been considered as an option for the treatment of DPN. NGF restores the nociceptive threshold for thermal noxious stimuli,8 normalizes myelinated nerve fiber morphology,9 and reduces neurogenic vasodilatation10 in streptozotocin (STZ)-induced diabetic rats. Unfortunately, a recently concluded phase III trial failed to demonstrate the efficacy of NGF administration.11 The reasons for this failure include its limited delivery to the nervous system and an unwanted apoptotic effect elicited through the interaction with the p75NTR receptor.11–13 Additionally, the effectiveness of NGF application as a therapeutic intervention to treat brain injury is limited by the numerous unwanted side effects observed in both animals and patients, reflecting the diversity of cell types that react to NGF, both centrally and peripherally.14–16 To avoid the side effects, development of orally active small molecules that potentiate the expression and activity of NGF is warranted.17–19

The extracts of plants from the Dioscorea genus were reported to exhibit hypoglycemic,19 immunostimulatory,20 and anti-inflammatory effects,21 as well as anti-tumor22 and anti-osteoporotic activity.23 Dioscorea japonica Thunberg. (DJ) has been utilized in the treatment of hyperglycemia in Korea.24,25 Treatment with the extract of Dioscorea rhizome was shown to increase endogenous NGF levels in the salivary gland and sciatic nerve in mice.18 DA-9801 is an extract obtained from a mixture of DJ and Dioscorea nipponica Makino (DN). While the rhizome extracts showed a significant effect on neurite outgrowth and Trk-A phosphorylation in neurons, it remains to be determined whether DA-9801I possesses these neurotrophic properties.18,25

NGF is known to interact with two receptor proteins, TrkA and p75NTR.26,27 NGF signaling through TrkA elicits many of the classical neurotrophic actions ascribed to NGF.28 Binding of NGF stimulates the autophosphorylation of TrkA and induces a signal transduction cascade involving phosphoinositide 3-kinase (PI3K), extracellular-signal-regulated kinase (ERK), and Akt, leading to survival, regeneration, and

* To whom correspondence should be addressed. e-mail: proteinlab@hanmail.net

© 2015 The Pharmaceutical Society of Japan
determination of neurons. In PC12 cells, proteins of the Raf family mediate NGF signaling through phosphorylation (and thereby activation) of the dual-specificity mitogen-activated protein (MAP) kinase kinase (MEK1). MEK1 activation leads to the phosphorylation of two members of the MAP kinase family, ERK1/2. ERK1/2 are phosphorylated on threonine 202 and tyrosine 204 residues by MEK1, leading to activation and translocation of ERK1/2 into the nucleus. Additional transcription factors contribute to the regulation of c-fos transcription in response to NGF signaling.

In the present study, our aim was to examine the effects of DA-9801 on the promotion of neurite outgrowth in PC12 cells and elucidate the underlying mechanisms. Since several signal transduction molecules have been implicated in NGF-mediated induction of neurite outgrowth, we evaluated the effects of specific inhibitors of the ERK1/2 cellular signaling pathway on the enhancement of this particular effect of NGF by DA-9801. Our results indicate that DA-9801 potentiates the neuritogenesis-stimulating action of NGF through the ERK1/2-CREB signaling pathway.

MATERIALS AND METHODS

Materials RPNI-1640, fetal bovine serum (FBS), horse serum (HS), and trypsin-ethylenediaminetetraacetic acid (EDTA) were purchased from GIBCO (Grand Island, NY, U.S.A.). Bioclot poly-d-lysine-coated 6-, 24-, and 96-well microplates and 100-mm dishes were purchased from Becton Dickinson (Bedford, MA, U.S.A.). NGF was purchased from Enzo Life Sciences (Farmingdale, NY, U.S.A.). Cell Counting Kit-8 (CCK-8) was purchased from Dojindo (Kumamoto, Japan). GW5074 and PD98059 were purchased from Sigma Chemical Company (St. Louis, MO, U.S.A.). DA-9801 was graciously provided by Dong-A Pharmaceutical Company (Yong-in, Korea). DA-9801 was dissolved in sterile water to obtain a 50 mg/mL stock solution. Anti-glyceraldehyde-3-phosphate dehydrogenase (anti-GAPDH) antibody was purchased from Bethyl Laboratories (Montgomery, TX, U.S.A.). Anti-p42/44, anti-phospho-p42/44, anti-CREB, and anti-phospho-CREB antibodies were purchased from Cell Signaling Technology (Beverly, MA, U.S.A.). Extra pure grade methanol and ethanol was purchased from Duksan (Ansanhi, Kyonggi-do, Korea). Ultrapure Tris and EDTA disodium dihydrate was purchased from Duchefa (Haarlem, the Netherlands). GW5074, PD98059, SL327 and SB203580 were from cayman (Yong-in, Korea). DA-9801 was dissolved in sterile water at a concentration of 10 µg/mL. RPMI-1640 medium containing reduced serum levels (2% HS and 1% FBS) was purchased from Sigma. All inhibitors were dissolved in dimethyl sulfoxide (DMSO) for 72 h. GW5074, PD98059, SL327 and SB203580 also added. All inhibitors were dissolved in dimethyl sulfoxide (DMSO) with the final concentration of DMSO not exceeding 0.1%. The cell images were captured using Motic Images Plus 2.0 software (Motic Instruments Inc., Richmond, Canada). Cells with outgrowths longer than the cell body diameter were scored positive for neurites and their number was expressed as a percentage of the total cell number.

RNA Isolation and Quantitative Real-Time Reverse Transcription Polymerase Chain Reaction (RT-PCR) Analysis Total RNA was extracted using Trizol reagent (Invitrogen, Carlsbad, CA, U.S.A.). For real-time qPCR, 0.1 µg of total RNA was reverse transcribed using a SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen). PCR was performed in triplicate using the MyiQ Single-Color Real-Time PCR Detection System and iQ SYBR Green Supermix (Bio-Rad, Hercules, CA, U.S.A.). PCR amplification was performed using the Bio-Rad CFX Connect Real-Time System (Bio-Rad, Hercules, CA, U.S.A.) for 40 cycles. Thermal cycling conditions included pre-denaturation at 95°C for 5 min, denaturation at 95°C for 10 s, annealing at 57°C for 15 s, and extension at 72°C for 20 s. The primer sequences used were as follows: GAPDH, forward (5'-GGA TGC AGG GAT GAT GTT C-3') and reverse (5'-GGA TGC AGG GAT GAT GTT C-3').
neurofilament-L (NF-L), forward (5′-AGA CAT CAG CGC CAT GCA-3′) and reverse (5′-TTC GTG CTT CGC AGC TCA T-3′). Relative expression was normalized to GAPDH levels.

Western Blot Analysis Cells were homogenized by sonication at 0°C in homogenization buffer (25 mM Tris, 1.25 mM EDTA, and 0.1% Triton X-100, pH 7.5 (Amresco, Solon, OH, U.S.A.)) containing Protease Inhibitor Cocktail and PhosStop (Roche Diagnostics, Mannheim, Germany). Lysates were centrifuged at 2000 × g at 4°C for 10 min, and the supernatant was collected. Proteins in the lysates were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to a polyvinylidene difluoride (PVDF) membrane (GE Healthcare, Bio-Science, NJ, U.S.A.). The membrane was blocked for 1 h by using Tris-buffered saline containing 5% bovine serum albumin (BSA) (Bioworld, Dublin, OH, U.S.A.) and 0.1% Tween 20 (Amresco). Immunoblots were performed with anti-phospho-ERK1/2 (Thr 202/Tyr204; 1:1000 dilution), anti-ERK1/2 (1:1000), GAPDH (1:1000), anti-phospho-CREB (Ser 133), and anti-CREB antibodies (Cell Signaling Technology, Beverly, MA, U.S.A.) overnight at 4°C in the same buffer. Membranes were subsequently incubated with horseradish peroxidase-conjugated anti-rabbit or anti-mouse immunoglobulin G (IgG) (Cell Signaling Technology) for 2 h, and proteins were detected using the Enhanced Luminol Chemiluminescence system (GE Healthcare, Bio-Science, NJ, U.S.A.).

Statistical Analysis All data are expressed as means±S.E.M. Statistical differences between groups were analyzed by one-way ANOVA with subsequent Tukey’s tests. In all cases, p<0.05 was considered statistically significant.

RESULTS

Effect of DA-9801 on PC12 Cell Viability The viability of PC12 cells exposed to DA-9801 for 72 h was evaluated using CCK-8. DA-9801 showed a negative effect on cell viability at concentrations of 100 µg/mL and above. However, DA-9801 at concentrations of 30 µg/mL and below increased PC12 cell viability in a dose-dependent manner in the presence or absence of NGF in the media (Fig. 1D). Therefore, the maximum concentration tested in subsequent experiments was 30 µg/mL. We also conducted the cell viability assessment following 0-, 24-, and 48-h incubation with DA-9801. DA-9801 showed no immediate (0 h) toxicity. It reduced cell viability at concentrations of 500 and 200 µg/mL with 24-h and 48-h incubation, respectively (Figs. 1A–C).

Effect of DA-9801 on Neurite Outgrowth The effect of DA-9801 on neurite outgrowth was investigated in PC12 cells. After 72 h of exposure to DA-9801, PC12 cells showed a dose-dependent increase in the percentage of neurite-bearing cells.
cells in media containing 2 ng/mL of NGF (Figs. 2A, B). Conversely, treatment with DA-9801 alone did not induce neurite outgrowth in PC12 cells. NGF (2 ng/mL) plus DA-9801 (30 µg/mL) increased neurite outgrowth in PC12 cells 1.5-fold, compared to that observed with NGF (2 ng/mL) treatment alone (p < 0.05). NGF (2 ng/mL) plus DA-9801 (30 µg/mL) induced neurite sprouting to an extent equivalent to that achieved with 50 ng/mL NGF, suggesting that DA-9801 potentiates NGF-induced neurite outgrowth (Fig. 2B).

Effect of DA-9801 on NF-L Expression in PC12 Cells
The effect of DA-9801 on the mRNA expression of NF-L, a marker of neuronal differentiation, was investigated in PC12 cells. Compared to the control treatment, the incubation with 2 and 50 ng/mL NGF for 72 h resulted in 1.2- and 7.5-fold increases in the relative mRNA levels of NF-L, respectively (Fig. 3). To determine if the effect of DA-9801 is synergistic with that of NGF, NF-L gene expression was analyzed after 72 h of exposure to NGF plus DA-9801. Compared to the incubation with NGF (2 ng/mL) alone, incubation with NGF (2 ng/mL) plus DA-9801 (30 µg/mL) increased the expression of NF-L mRNA (p < 0.05; Fig. 3).

Effect of DA-9801 on the Raf-1/MEK/ERK1/2 Signaling Pathway in PC12 Cells
To identify the signaling mechanism by which DA-9801 induces neurite outgrowth, we focused on the Raf-1/MEK/ERK1/2 signaling cascade, one of the key signaling pathways associated with the control of neurite outgrowth. To further determine whether DA-9801-mediated neurite outgrowth is mediated by the Raf-1/MEK signaling pathway, GW5074 (a Raf-1 kinase inhibitor) and PD98059 (an MEK inhibitor), compounds known to inhibit the ERK1/2 pathway, were used. Compared to the treatment with NGF plus DA-9801 alone, GW5074 and PD98059 significantly at-
The MEK inhibitor, PD98059, potentiated NGF-induced activation of ERK1/2 (Fig. 5B). NGF, or both. Treatment of PC12 cells for 15 min with 30 µg/mL DA-9801 resulted in a 1.7-fold increase in the levels of Ser^{33} phosphorylated CREB protein (p < 0.05). Levels of total CREB and GAPDH proteins were unaffected (Fig. 6A). Treatment of PC12 cells with 2 ng/mL of NGF induced a 1.9-fold increase in the levels of Ser^{33} phosphorylated CREB at 5 min. The levels of Ser^{33} phosphorylated CREB remained elevated at 15 min (p < 0.05). Levels of total CREB and GAPDH proteins were unaffected (Fig. 6B). The effect of co-treatment with DA-9801 and NGF on the activation of CREB was investigated in PC12 cells. PC12 cells were treated with DA-9801, NGF, and a combination of both. DA-9801 and NGF stimulated the activation of CREB, respectively. NGF (2 ng/mL) plus DA-9801 (30 µg/mL) increased the phosphorylation of CREB in PC12 cells compared to the treatment with NGF (2 ng/mL) alone (p < 0.05; Fig. 6C).

PC12 cells were then pretreated with the MEK inhibitor, PD98059 (10 µM, 30 min), and stimulated with DA-9801 (30 µg/mL, 60 min) plus NGF (2 ng/mL, 15 min). The DA-9801-treated cells without PD98059 induced an increase in the levels of Ser^{33} phosphorylated CREB protein (p < 0.05). On the other hand, pretreatment with PD98059 blocked Ser^{33} phosphorylated CREB protein (p < 0.05). Similarly, PD98059 blocked the NGF (2 ng/mL) plus DA9801-induced the phosphorylation of CREB (p < 0.05). The protein level of CREB and GAPDH was unchanged from the control level after treatment with DA-9801 and NGF (Fig. 6D).

DISCUSSION

Treatment of neuropathic pain remains a challenge because a significant proportion of patients do not attain adequate pain relief with currently available therapy. The effectiveness of a number of drugs, including antidepressants (norepinephrine and serotonin reuptake inhibitors), calcium channel α2-δ ligands, opioid analgesics, and topical lidocaine, was consistently demonstrated in randomized controlled clinical trials and meta-analyses. While these agents are commonly administered for management of neuropathic pain, they are associated with a high incidence of side-effects.

DA-9801 is a herbal extract from *Dioscorea* species used in the prevention or treatment of DPN. Treatment with DA-9801 has been shown to improve sensory nerve conductivity velocity (SNCV), motor nerve conductivity velocity (MNCV), and thermal hyperalgesia in Type 2 db/db mice. In contrast to peptide neurotrophic factors, DA-9801 can be administered systemically and was demonstrated to improve nerve conduction velocity and facilitate recovery from neuronal degeneration. In the present study, DA-9801 elicited no cytotoxic effect in PC12 cells in the presence or absence of NGF at concentrations below 30 µg/mL (Fig. 1). PC12 cell viability was significantly reduced at 100 µg/mL DA-9801. Hence, in differentiation experiments using PC12 cells, the concentration of DA-9801 was kept below 30 µg/mL. DA-9801 showed no effect on neurite outgrowth in the absence of NGF (Fig. 2B), but modestly induced neurite outgrowth in PC12 cells cultured in low serum condition and in the presence of NGF (2 ng/
mL; Figs. 2A, B). A longer incubation (7 d) with DA-9801 was shown to have no effect on neurite outgrowth in the absence of NGF (data not shown). These findings suggest that DA-9801 itself does not elicit the observed neurotrophic effect, but rather enhances NGF signal transduction through the ERK1/2 pathway to activate CREB. This NGF-potentiating effect was also observed in PC12 cells stimulated by suramin in the presence of 1 ng/mL of NGF. Sialic acid derivative MCC-257, known to potentiate the action of neurotrophins on central and peripheral neurons, protects the neuronal cells from a number of fatal conditions. Upon exposure to NGF, PC12 cells cease division, extend neurites, become electrically excitable, and express neuronal markers. In this study, DA-9801 increased both proliferation and neurite outgrowth in the presence of NGF. In a previous study, the presence of NGF in the media improved the viability of PC12 cells and increased neurite length. Curcuminoids have multiple characteristics desirable in a neuroprotective drug, including antioxidant, anti-inflammatory, and anti-protein aggregation activities. Curcuminoids were previously shown to increase cell proliferation and neurite outgrowth in PC12 cells.

NF-L is a neuron-specific protein which exhibits elevated synthesis and axonal fast-transport during nerve regeneration and can serve as a useful indicator of PC12 cell differentiation. Upon exposure to NGF, PC12 cells cease division, extend neurites, become electrically excitable, and express neuronal markers. In this study, DA-9801 increased both proliferation and neurite outgrowth in the presence of NGF. In a previous study, the presence of NGF in the media improved the viability of PC12 cells and increased neurite length. Curcuminoids have multiple characteristics desirable in a neuroprotective drug, including antioxidant, anti-inflammatory, and anti-protein aggregation activities. Curcuminoids were previously shown to increase cell proliferation and neurite outgrowth in PC12 cells.

NF-L is a neuron-specific protein which exhibits elevated synthesis and axonal fast-transport during nerve regeneration and can serve as a useful indicator of PC12 cell differentiation. Upon exposure to NGF, PC12 cells cease division, extend neurites, become electrically excitable, and express neuronal markers. In this study, DA-9801 increased both proliferation and neurite outgrowth in the presence of NGF. In a previous study, the presence of NGF in the media improved the viability of PC12 cells and increased neurite length. Curcuminoids have multiple characteristics desirable in a neuroprotective drug, including antioxidant, anti-inflammatory, and anti-protein aggregation activities. Curcuminoids were previously shown to increase cell proliferation and neurite outgrowth in PC12 cells.

NF-L is a neuron-specific protein which exhibits elevated synthesis and axonal fast-transport during nerve regeneration and can serve as a useful indicator of PC12 cell differentiation. Upon exposure to NGF, PC12 cells cease division, extend neurites, become electrically excitable, and express neuronal markers. In this study, DA-9801 increased both proliferation and neurite outgrowth in the presence of NGF. In a previous study, the presence of NGF in the media improved the viability of PC12 cells and increased neurite length. Curcuminoids have multiple characteristics desirable in a neuroprotective drug, including antioxidant, anti-inflammatory, and anti-protein aggregation activities. Curcuminoids were previously shown to increase cell proliferation and neurite outgrowth in PC12 cells.
in the regulation of cell survival, growth, and proliferation.\(^{58}\)
Similarly, our data indicate that DA-9801 induced ERK1/2 phosphorylation within its modulatory effect on neurite outgrowth (Fig. 5). The DA-9801-induced process formation and branching of neurons were significantly reduced by the treatment with ERK1/2 inhibitor (Fig. 4).

Previous studies have shown that treatment of PC12 cells with NGF rapidly activates p38 MAP kinase and JNK. The p38 MAP kinase pathway is also critically involved in NGF-induced neuronal differentiation of PC12 cells.\(^{59-62}\) In our current study, p38 MAP kinase pathway was not involved in DA-9801-induced neurite outgrowth in PC12 cells (Fig. 4D).

Several signaling pathways, including those involving ERK and protein kinase C (PKC), have been associated with the regulation of \textit{de novo} protein synthesis in the context of synaptic plasticity, converging on the phosphorylation of CREB.
at Ser133 residue. Phosphorylated CREB protein recruits the transcriptional activator CREB-binding protein (CBP) to stimulate the transcription of CRE-regulated genes involved in the neurogenesis and neuritogenesis. DA-9801 enhanced the levels of Ser133-phosphorylated CREB protein. Additionally, concurrent treatment with DA-9801 and NGF elicited a higher phosphorylation of CREB compared to incubation with NGF alone (Fig. 6). DA-9801 was observed to sustain the phosphorylation of CREB.

We demonstrated that DA-9801 elicits its beneficial effects of stimulating neurite outgrowth through the ERK1/2-CREB pathway. However, further studies are needed to elucidate the exact molecular pathways involved in the effect of DA-9801. We conclude that DA-9801, a novel botanical drug, could therefore be a therapeutic option for the management or prevention of DPN.
Acknowledgment This work was supported by the MOTIE (Ministry of Trade, Industry and Energy) R&D program (Grant no. 10039303).

Conflict of Interest The authors declare no conflict of interest.

REFERENCES

1) Gordon Smith A, Robinson Singleton J. Idiopathic neuropathy, prediabetes and the metabolic syndrome. J. Neurol. Sci., 242, 9–14 (2006).
2) Argoft CE, Cole BE, Fishbain DA, Irving GA. Diabetic peripheral neuropathic pain: clinical and quality-of-life issues. Mayo Clin. Proc., 81 (Suppl.), S3–S11 (2006).
3) Calcott NA, Tomlinson DR, Willars GB, Keen P. Axonal transport of substance P-like immunoreactivity in ganglioneuroma-treated diabetic rats. J. Neurosci., 96, 283–291 (1990).
4) Vinik AI, Maser RE, Mitchell BD, Freeman RA. Diabetic autonomic neuropathy: Diabetes Care, 26, 1553–1579 (2003).
5) Kakinoki B, Sekimoto S, Yamagami T, Sejima M, Yamagami T, Kato Y, Karikura M. Antiosteoporotic activity of the water extract of Dioscorea nipponica M, Hayashi T. Isolation and hypoglycemic activity of dioscarins A, B, C, D, E, and F; glycans of Dioscorea nipponica rhizopores. Plant Med., 52, 168–171 (1986).
6) Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic complications. Diabetes Care, 38, 607–619 (2005).
7) Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol., 9, 807–819 (2010).
8) Fernoyngh P, Diemel LT, Hardy J, Brewer WJ, Mohiuddin L, Tomlinson DR. Human recombinant nerve growth factor increases deficient neurotrophic support in the diabetic rat. Eur. J. Neurosci., 7, 1107–1110 (1995).
9) Apfel SC, Arezzo JC, Brownlee M, Federoff H, Kessler JA. Nerve growth factor administration protects against experimental diabetic sensory neuropathy. Brain Res., 634, 7–12 (1994).
10) Bennett GS, Garrett NE, Diemel LT, Brain SD, Tomlinson DR. Neurogenic cutaneous vasodilatation and plasma extravasation in diabetic rats: effect of insulin and nerve growth factor. Br. J. Pharmacol., 124, 1573–1579 (1998).
11) Apfel SC, Schwartz S, Adornato BT, Freeman RA, Biton V, Rendell M, Vinik AI, Giuliani M, Stevens JC, Barbano R, Dyck PJ, Vinik A, Giuliani M, Stevens JC, Barbano R, Dyck PJ. Efficacy and safety of recombinant human nerve growth factor in patients with diabetic peripheral neuropathy: A randomized controlled trial. JAMA, 284, 2215–2221 (2000).
12) Spadinga M, Gressens P. Neurotrophins and cytokines in neuronal plasticity. Novartis Found. Symp., 289, 222–233, discussion, 233–240 (2008).
13) Liao KK, Wu ML, Chen PY, Huang SW, Chiu SJ, Ho CT, Yen JH. Curcuminoids promote neurite outgrowth in PC12 cells through MAPK/ERK- and PKC-dependent pathways. J. Agric. Food Chem., 60, 433–443 (2012).
14) Hao J, Ebendal T, Xu X, Wiesenfeld-Hallin Z, Eriksdotter Jonhagen M. Intracerebroventricular infusion of nerve growth factor induces pain-like response in rats. Neurosci. Lett., 286, 208–212 (2000).
15) Jonhagen ME. Nerve growth factor treatment in dementia. Alzheimer Dis. Assoc. Disord., 14 (Suppl. 1), S31–S38 (2000).
16) Winkler J, Ramirez GA, Thal LJ, Waite J. Nerve growth factor (NGF) augments cortical and hippocampal cholinergic function after p75NGF receptor-mediated deafferentation but impairs inhibitory avoidance and induces fear-related behaviors. J. Neurosci., 20, 834–844 (2000).
17) Price RD, Milne SA, Sharkey J, Matsuoka N. Advances in small molecules promoting neurotrophic function. Pharmacol. Ther., 115, 292–306 (2001).
18) Kin Y, Kim SH, Kim YJ, Kim JK, Nam MK, Rhim H, Yoon SK, Choi SZ, Son M, Kim SY, Kuh HJ. Neurotrophic activity of DA-9801, a mixture extract of Dioscorea japonica THUNB. and Dioscorea nipponica MAKINO, in vitro. J. Ethnopharmacol., 137, 312–319 (2011).
19) Hikino H, Konno C, Takahashi M, Murakami M, Kato Y, Karikura M, Hayashi T. Isolation and hypoglycemic activity of dioscorins A, B, C, D, E, and F; glycans of Dioscorea nipponica rhizopores. Planta Med., 52, 168–171 (1986).
20) Zhao GH, Kan JQ, Li ZX, Chen ZD. Structural features and immunological activity of a polysaccharide from Dioscorea opposita THUNB. roots. Carbohydr. Polym., 61, 125–131 (2005).
21) Kim MJ, Kim HN, Kang KS, Back NI, Kim DK, Kim YS, Jeon BH, Kim SH. Methanol extract of Dioscoreae Rhizoma inhibits pro-inflammatory cytokines and mediators in the synovocytes of rheumatoid arthritis. Int. Immunopharmacol., 4, 1489–1497 (2004).
22) Hu K, Yao X. The cytotoxicity of methyl protodioscin against human cancer cell lines in vitro. Cancer Invest., 21, 389–393 (2003).
23) Yim J, Tezuka Y, Kouda K, Tran QL, Miyahara I, Chen Y, Kadota S. Antioxidant activity of the water extract of Dioscorea spongiosa. Biol. Pharm. Bull., 18, 653–658 (2004).
24) Kim MW, Lee MH, Han HK, Choi SS, Lim SJ. The effect of H2O fraction of Dioscorea japonica THUNB. with vitamin E on lipid peroxidation in streptozotocin induced diabetic rats. FASEB J., 19, 1472–1477 (2005).
25) Kang TH, Choi SZ, Lee TH, Son MW, Park JH, Kim SY. Characteristics of antidiabetic effect of Dioscorea rhizome (2)—Prevention of diabetic neuropathy by NGF induction. The Korean Journal of Food and Nutrition, 21, 430–435 (2008).
26) Bothwell M. Functional interactions of neurotrophins and neurotrophin receptors. Annu. Rev. Neurosci., 18, 223–233 (1995).
27) Kaplan DR, Miller FD. Signal transduction by the neurotrophin receptors. Curr. Opin. Cell Biol., 9, 213–221 (1997).
28) Loeb DM, Maragos J, Martin-Zanca D, Chao MV, Parada LF, Greene LA. The trk proto-oncogene rescues NGF responsiveness in mutant NGF-nonresponsive PC12 cell lines. Cell, 66, 961–966 (1991).
29) Kaplan DR, Martin-Zanca D, Parada LF. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature, 350, 158–160 (1991).
30) Gill JS, Connolly DC, McManus MJ, Mahtie NJ, Windbank AJ. Suramin induces phosphorylation of the high-affinity nerve growth factor receptor in PC12 cells and dorsal root ganglion neurons. J. Neurochem., 66, 963–972 (1996).
31) Gundimeda U, McNeill TH, Schifman JE, Hinton DR, Gopalakrishna R. Green tea polyphenols potentiate the action of nerve growth factor to induce neuritogenesis. possible role of reactive oxygen species. J. Neurosci. Res., 88, 3644–3655 (2010).
32) Jaiswal RK, Moodie SA, Wolfram A, Landreth GE. The mitogen-activated protein kinase cascade is activated by B-Raf in response to nerve growth factor through interaction with p21ras. Mol. Cell. Biol., 14, 6944–6953 (1994).
33) Oshima M, Sithanandam G, Rapp UR, Guroff G. The phosphorylation of the neurotrophin receptor in PC12 cells and regulation by cyclic AMP. Mol. Cell. Biol., 14, 135–142 (1994).
34) Vaillancourt RR, Gardner AM, Johnson GL. B-Raf-dependent regulation of the MEK-1/mitogen-activated protein kinase pathway in PC12 cells and regulation by cyclic AMP. Mol. Cell. Biol., 14, 6522–6530 (1994).
35) Andrews MM, Alessandrini A, Erikson RL. Erks: their fifteen minutes has arrived. Curr. Opin. Cell Biol., 10, 31–37 (1998).
36) Vaillancourt RR, Gardner AM, Johnson GL. B-Raf-dependent regulation of the MEK-1/mitogen-activated protein kinase pathway in PC12 cells and regulation by cyclic AMP. Mol. Cell. Biol., 14, 6522–6530 (1994).
37) Crews CM, Alessandrini A, Erikson RL. Erks: their fifteen minutes has arrived. Curr. Opin. Cell Biol., 10, 31–37 (1998).
38) Crews CM, Erikson RL. Purification of a murine protein-tyrosine/
threonine kinase that phosphorylates and activates the Erk-1 gene product: relationship to the fission yeast bkl gene product. Proc. Natl. Acad. Sci. U.S.A., 89, 8205–8209 (1992).

39) Payne DM, Rossonando AJ, Martinio P, Erickson AK, Her JH, Shanbawitz J, Hunt DF, Weber MJ, Sturgill TW. Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBO J., 10, 885–892 (1991).

40) Chen RH, Sarnecki C, Blenis J. Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol. Cell. Biol., 12, 915–927 (1992).

41) Ginty DD, Bonni A, Greenberg ME. Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell, 77, 713–725 (1994).

42) Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem., 72, 609–642 (2003).

43) Nishimura T, Ishima T, Iyo M, Hashimoto K. Potentiation of nerve growth factor-induced neurite outgrowth by fluvoxamine: role of signal-1 receptors, IP3 receptors and cellular signaling pathways. PLoS ONE, 3, e2558 (2008).

44) Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling, neuroprotection, and neural repair. Annu. Rev. Neurosci., 24, 1217–1281 (2001).

45) White DM, Walker S, Brenneman DE, Gozes I. CREB contributes to the increased neurite outgrowth of sensory neurons induced by vasoactive intestinal polypeptide and activity-dependent neurotrophic factor. Brain Res., 868, 31–38 (2000).

46) Ghil SH, Kim BJ, Lee YD, Sub-Kim H. Neurite outgrowth induced by cyclic AMP can be modulated by the alpha subunit of Go. J. Neurochem., 74, 151–158 (2000).

47) Finnerup NB, Orto M, McQuay HJ, Jensen TS, Sindrup SH. Algorithm for neuropathic pain treatment: an evidence based proposal. Pain, 118, 289–305 (2005).

48) Dworkin RH, O’Connor AB, Backonja M, Farrar JT, Finnerup NB, Jensen TS, Kalso EA, Loeser JD, Miaskowski C, Nurmikko TJ, Portenoy RK, Rice AS, Stacey BR, Treede RD, Turk DC, Wallace MS. Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain, 132, 237–251 (2007).

49) O’Connor AB, Dworkin RH. Treatment of neuropathic pain: an overview of recent guidelines. Am. J. Med., 122 (Suppl.), S22–S32 (2009).

50) Dworkin RH, O’Connor AB, Audette J, Baron R, Gourlay GK, Haampa ML, Kent JL, Krane RJ, Lebel AA, Levy RM, Mackey SC, Mayer J, Miaskowski C, Raja SN, Rice AS, Schmader KE, Stacey B, Stanos S, Treede RD, Turk DC, Walco GA, Wells CD. Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clin. Proc., 85 (Suppl.), S3–S14 (2010).

51) Teive HA, Piovesan EJ, Kowacs PA, Munhoz RP, Werneck LC. Comment on AAN-EFNS guidelines on trigeminal neuralgia management. Eur. J. Neurol., 16, e105 (2009).

52) Choi S-Z, Son M-W. A novel botanical drug (DA-9801) for the treatment of diabetic neuropathy. Arch. Pharm. Res., 34, 865–867 (2011).

53) Yamada MK, Konishi Y, Kakinoki B, Ikegami K, Setou M. Enhancement of Trk signaling pathways by the cholestanamide conjugate MCC-257. J. Pharmacol. Sci., 108, 131–134 (2008).

54) Schimmelepfeng J, Weibezahn KF, Dertinger H. Quantification of NGF-dependent neuronal differentiation of PC12 cells by means of neurofilament-L mRNA expression and neuronal outgrowth. J. Neurosci. Methods, 139, 299–306 (2004).

55) Hashimoto K, Ishima T. A novel target of action of minocycline in NGF-induced neurite outgrowth in PC12 cells: translation initiation [corrected] factor eIF4A1. PLoS ONE, 5, e15430 (2010).

56) Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat. Rev. Neurosci., 4, 299–309 (2003).

57) Grewal SS, York RD, Stork PI. Extracellular-signal-regulated kinase signalling in neurons. Curr. Opin. Neurobiol., 9, 544–553 (1999).

58) Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev., 68, 320–344 (2004).

59) Muroi Y, Ishii T, Teramoto K, Hori M, Nishimura M. Calcineurin contributes to the enhancing effect of adenosine on nerve growth factor-induced neurite outgrowth via the decreased duration of p38 mitogen-activated protein kinase phosphorylation. J. Pharmacol. Sci., 95, 124–131 (2004).

60) Morooka I, Nishida E. Requirement of p38 mitogen-activated protein kinase for neuronal differentiation in PC12 cells. J. Biol. Chem., 273, 24285–24288 (1998).

61) Cowley S, Paterson H, Kemp P, Marshall CJ. Activation of MAP kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell, 77, 841–852 (1994).

62) Waetzig V, Herdegen T. The concerted signaling of ERK1/2 and JNKs is essential for PC12 cell neuritogenesis and converges at the level of target proteins. Mol. Cell. Neurosci., 24, 238–249 (2003).

63) Spencer JP, Vauzour D, Rendeiro C. Flavonoids and cognition: the molecular mechanisms underlying their behavioural effects. Arch. Biochem. Biophys., 492, 1–9 (2009).