Use of electroanalgesia and laser therapies as alternatives to opioids for acute and chronic pain management [version 1; peer review: 2 approved]

Paul F. White1-3, Ofelia Loani Elvir-Lazo3, Lidia Galeas4, Xuezhao Cao3,5

1P.O. Box 548, Gualala, CA 95445, USA
2The White Mountain Institute, The Sea Ranch, CA, USA
3Department of Anesthesiology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 95445, USA
4Orlando Family Medicine, Orlando, FL, USA
5First Hospital of China Medical University, Shenyang, China

Abstract

The use of opioid analgesics for postoperative pain management has contributed to the global opioid epidemic. It was recently reported that prescription opioid analgesic use often continued after major joint replacement surgery even though patients were no longer experiencing joint pain. The use of epidural local analgesia for perioperative pain management was not found to be protective against persistent opioid use in a large cohort of opioid-naïve patients undergoing abdominal surgery. In a retrospective study involving over 390,000 outpatients more than 66 years of age who underwent minor ambulatory surgery procedures, patients receiving a prescription opioid analgesic within 7 days of discharge were 44% more likely to continue using opioids 1 year after surgery. In a review of 11 million patients undergoing elective surgery from 2002 to 2011, both opioid overdoses and opioid dependence were found to be increasing over time. Opioid-dependent surgical patients were more likely to experience postoperative pulmonary complications, require longer hospital stays, and increase costs to the health-care system. The Centers for Disease Control and Prevention emphasized the importance of finding alternatives to opioid medication for treating pain. In the new clinical practice guidelines for back pain, the authors endorsed the use of non-pharmacologic therapies. However, one of the more widely used non-pharmacologic treatments for chronic pain (namely radiofrequency ablation therapy) was recently reported to have no clinical benefit. Therefore, this clinical commentary will review evidence in the peer-reviewed literature supporting the use of electroanalgesia and laser therapies for treating acute pain, cervical (neck) pain, low back pain, persistent post-surgical pain after spine surgery (“failed back syndrome”), major joint replacements, and abdominal surgery as well as other common chronic pain syndromes (for example, myofascial pain, peripheral neuropathic pain,}

Open Peer Review

Reviewer Status

Invited Reviewers

1

2

version 1

21 Dec 2017

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1. Charles Argoff, Albany Medical Center, Albany, USA
2. Stephan A. Schug, University of Western Australia, Perth, Australia

Any comments on the article can be found at the end of the article.
fibromyalgia, degenerative joint disease/osteoarthritis, and migraine headaches).

Keywords
Non-pharmacologic analgesic techniques, Opioid abuse, Acute Pain, Chronic Pain, Electroanalgesia, Cold laser therapy
Introduction
Pain is a common cause of disability and is extremely costly to society at large. The excessive reliance on opioid analgesics for treating both acute and chronic pain has contributed to the current global opioid epidemic. Recently, the Centers for Disease Control and Prevention (CDCP) reported that patients initially given a 1-day supply of opioid medication after surgery had a 6% likelihood of still using the drug a year later. However, that number rose to roughly 10% for patients given a 2-day supply and 45% for patients given a 40-day prescription. In light of the growing opioid crisis, we have emphasized the importance of using non-opioid analgesic drugs and techniques for acute and chronic pain management.

In 2007, a review article by international experts in pain management encouraged the more widespread use of opioid-containing analgesics for treating chronic pain by suggesting that “if only we (namely, physicians and nurses) could overcome our ‘opiophobia’, we would improve pain management”. In an accompanying editorial, we argued that “less may be more” with respect to the use of opioid (narcotic) analgesics for acute (and chronic) pain therapy. Currently, 5–8 million people in the USA use opioids for chronic pain management. It has become increasingly apparent that prolonged opioid use is a growing problem in previously opioid-naïve patients who receive narcotics for acute pain after a surgical procedure. Excessive reliance on opioid analgesics for postoperative pain control can lead to prolonged opioid dependence after both major and minor surgery. In a large retrospective study involving over 390,000 older outpatients undergoing minor ambulatory surgery procedures, older patients receiving prescription opioid analgesics within 7 days of discharge were 44% more likely to continue using opioids 1 year after surgery. More recently, Goesling et al. reported that for many patients taking opioid analgesics before major joint replacement surgery, as well as opioid-naïve patients undergoing arthroplasty procedures, opioid use persisted after surgery despite the absence of joint-related pain. More recently, Cauley et al. reported on a large cohort of opioid-naïve patients undergoing abdominal surgery who continued to use opioid analgesics 3–6 months after surgery. Moreover, adjunctive use of epidural local analgesia was not protective against persistent opioid use in this opioid-naïve population. Although opioid-related side effects (for example, nausea, vomiting, constipation, ileus, bladder dysfunction, pruritus, sedation, visual hallucinations, and ventilatory depression) are well known, there are growing concerns regarding long-term physical dependence and addiction liability with continued opioid use after surgical procedures.

Prolonged use of opioid analgesics is associated with an increased risk of more serious complications, including opioid use disorder, overdose, and death. Interestingly, no study of prolonged opioid use has ever demonstrated long-term benefits for the users. An epidemiological study by Eriksen et al. involving patients with chronic pain treated with opioids for 5 years provided compelling evidence that opioids were not a panacea for chronic pain. In fact, the patients’ quality of life failed to improve despite escalating doses of opioids over the 5-year study period. The authors concluded that “it is remarkable that opioid treatment of long-term/chronic non-cancer pain does not seem to fulfill any of the key outcome treatment goals, namely pain relief, improved quality of life and improved functional capacity”. More recent studies suggest that long-term opioid use can actually retard functional recovery. In a 2012 commentary, Sullivan and Ballantyne asked the rhetorical question, “what are we treating with long-term opioid therapy?” As the opioid epidemic continues to spread and deaths due to opioid overdoses increase, it is clear that the only “winners” are the pharmaceutical drug manufacturers.

A 2016 article in Time magazine described a new paradigm for treating opioid addiction. Predictably, the solution being offered by the pharmaceutical industry involves giving more drugs! The “new” drug touted as the solution to opioid dependency (Suboxone) is a combination of two old drugs, namely buprenorphine (a weak partial opioid agonist) and naloxone (an opioid antagonist). A more recent article describes the cost of the “follow on” drugs used to counteract opioid-related side effects (for example, nausea, constipation, and reduced testosterone levels) and overdoses. In 2016, US pharmaceutical companies had sales of $8.6 billion on 336 million opioid prescriptions. The “follow on” drug market is currently valued at more than $3 billion per year, and sales of drugs used to counteract opioid-induced constipation exceed $2 billion per year. It is time to seriously consider the use of “alternative” non-pharmacologic therapies for treating chronic pain rather than simply giving more opioid compounds and hoping for a different result.

Given the fact that the long-term use of opioid analgesics fails to improve the lives of patients suffering from chronic pain and costs the health-care system billions of dollars to treat opioid overdoses, it is somewhat surprising that the health-care practitioners (and third-party payers) have been reluctant to seriously consider the use of non-pharmacologic “alternative” therapies for managing pain. The use of non-pharmacologic modalities has been questioned by medical practitioners because of the perceived lack of prospective, randomized, double-blind sham-controlled studies supporting their use in clinical practice. Although this skepticism may be warranted for some so-called alternative pain therapies, there are in fact many well-controlled studies confirming the benefits of using electroanalgesia and laser therapy for improving acute and chronic pain management. Nevertheless, these non-pharmacologic analgesic modalities remain grossly under-utilized in clinical practice. In a 2006 clinical commentary regarding a study involving the use of complementary alternative therapies for reducing postoperative pain after open heart surgery, Oz and Olivo suggested that it was time to consider incorporating complementary and alternative medical practices into conventional medical treatments. Other studies have suggested that perioperative imagery, massage, and music can reduce pain and anxiety after surgery. A 2007 editorial on the potentially beneficial role of “alternative” therapies as part of a multimodal approach for reducing anxiety, pain, and emetic symptoms in the perioperative period suggested that it was time for practitioners to “get on board” by incorporating non-traditional medical therapies into their everyday clinical practices. Sadly, 10 years later in the face of an opioid epidemic, the emphasis of the medical
community remains on pharmacotherapy. In this F1000 Faculty Review, we discuss clinical studies describing the benefits of using electroanalgesia and laser therapy as adjuvants in the management of acute and chronic pain.

Electroanalgesia

Electroanalgesia is a form of neuromodulation therapy which encompasses electro-acupuncture (EA), ultrasound-guided acupotomy, percutaneous electrical nerve stimulation (PENS), transcutaneous electrical nerve stimulation (TENS), and peripheral nerve stimulation (PNS). Patients who experience significant improvement in pain and disability with PNS may be candidates for implantation of a spinal cord stimulator\(^ {10,21} \). However, the risk of mechanical failure, infection, and neurologic complications, as well as the high costs, are strong deterrents to using this highly invasive electro-analgesic technique. The less invasive forms of electroanalgesia (for example, TENS, EA, PENS, and PNS) have been reported to produce significant short-term reductions in the levels of acute and chronic pain and should be used prior to even considering the use of an implantable device.

Gan et al.\(^ {12} \) reported that TENS applied at acupoints reduced both postoperative pain and emesis, confirming earlier studies\(^ {22} – {30} \). TENS also reduced pain and improved patient satisfaction during minor office procedures\(^ {31} \). However, in a comparison of TENS and parasternal local anesthetic blocks for pain management after cardiac surgery\(^ {29} \), the local anesthetic-based technique was found to be significantly more efficacious. TENS produced modest short-term reductions in pain and improvements in physical activity in patients experiencing a variety of chronic pain syndromes (for example, low back pain\(^ {36} – {39} \), neck pain\(^ {40} \), osteoarthritis/gonarthritis\(^ {17,38} \), abdominal/pelvic pain\(^ {36} \), myofascial pain syndrome\(^ {41} \), and temporomandibular disorders\(^ {42} \)). However, a recent review of electrotherapy modalities for treating chronic rotator cuff diseases\(^ {43} \) concluded that, in contrast to more invasive electroanalgesia modalities (for example, EA), TENS was not consistently superior to placebo treatments. In patients undergoing total knee arthroplasty procedures, TENS offered no significant advantage with respect to improving pain control and functional recovery compared with placebo treatments\(^ {44} \). Finally, Salazar et al.\(^ {45} \) recently reported that there was only low-quality evidence supporting the effectiveness of TENS for pain relief in patients with fibromyalgia. However, these investigators found moderate-quality evidence for the effectiveness of EA in treating fibromyalgia-related pain\(^ {46} \). Thus, the current evidence suggests that TENS techniques are significantly less effective than electroanalgesia techniques such as EA and PENS, which involve the insertion of multiple acupuncture-like needles\(^ {47} \).

Sator-Katzenschlager et al.\(^ {48} \) and others\(^ {32} \) have reported on the short- and long-term benefits of EA in patients with chronic low back pain. In a recent study involving elderly patients undergoing spine surgery, Zhang et al.\(^ {49} \) found that preoperative EA (versus “sham” treatments) reduced both intraoperative anesthetic and analgesic requirements, levels of inflammatory mediators, and residual postoperative cognitive dysfunction in elderly surgical patients. These EA studies are consistent with studies involving the use of PENS in patients with chronic low back pain\(^ {47} \) and sciatica\(^ {45} \). Moreover, PENS was found to be significantly more effective than TENS and exercise therapy\(^ {50,47} \). In a recent comparative study, PENS was found to be more effective than “dry needling” in improving pain control in patients with myofascial chronic neck pain\(^ {46} \). A growing body of literature supports the short-term benefits of EA and PENS techniques when administered as an adjuvant to conventional medical approaches in the management of a wide variety of acute and chronic pain syndromes, including post-surgical pain, low back pain, sciatica, neck pain, knee osteoarthritis, headaches, peripheral neuropathic pain, and fibromyalgia\(^ {13,44,47–52} \). In a recent comparative study, EA was also found to be more effective in facilitating functional recovery in patients with knee osteoarthritis than the potent non-steroidal anti-inflammatory drug meloxicam\(^ {53} \). Interestingly, acupotomy EA was reported to be superior to conventional EA in patients with knee osteoarthritis with respect to pain control and functional recovery\(^ {54} \). Despite numerous controlled studies in the peer-reviewed literature supporting their clinical efficacy (Table 1), minimally invasive electroanalgesia techniques have failed to gain widespread clinical acceptance because they are time-consuming to perform and insurance reimbursement is extremely low compared with other medical procedures. Although there is some ‘cumulative’ benefit after a series of electroanalgesia treatments, maintenance therapy is typically required because the duration of pain relief after each treatment session is fairly short-lived (<48 hours).

Laser therapy

Compared with electroanalgesia and exercise therapy, laser therapy is a relatively recent development in medicine. The first cold laser was US Food and Drug Administration (FDA)-approved for treating pain in 2001, and low-level laser therapy (LLLT), also known as cold laser therapy, has been used in the USA since only 2002. High-intensity laser therapy (HILT), also known as laser heat therapy, is an even more recent development; initial publications appeared in 2011. Laser therapy involves a simple, non-invasive, “point-and-shoot” technique which can be performed by technicians. Cellular chromophores are presumed to be the receptor sites responsible for the beneficial effects of the laser light beam, including both cytochrome c oxidase (with absorption peaks in the near-infrared range) and photoactive porphyrins\(^ {55} \). Mitochondria are also thought to be a site for the therapeutic effects of infrared light, leading to increased ATP production, modulation of reactive oxygen species, and induction of transcription factors. These effects lead to increased cell proliferation and migration by fibroblasts; reduction in the levels of cytokines, growth factors, and inflammatory mediators; and increased tissue oxygenation, leading to enhanced control of the inflammatory process, reduced pain, and improved wound healing\(^ {56–59} \). Studies with laser therapy have confirmed enhanced wound healing in both diabetic\(^ {60} \) and non-diabetic\(^ {50,61,62} \) patients. Applying LLLT within the first 5 days of herpes zoster eruption also significantly reduced the incidence of post-herpetic neuralgia\(^ {49} \).

Many sham-controlled studies have reported that LLLT is effective in alleviating acute pain associated with a variety of superficial medical and surgical conditions (for example, oral
Percutaneous electroanalgesia techniques

Transcutaneous electrical nerve stimulation (TENS)
Acupoint-like transcutaneous electrical nerve stimulation

Electroacupuncture (EA)
Percutaneous electrical nerve stimulation (PENS)
Peripheral nerve stimulation

Non-invasive
Cutaneous pads (disposable)

Minimally invasive
Acupuncture needles inserted through skin

Limited short-term benefits (<24 hours)
Short-term and some longer-term benefits (24–72 hours)

Low (self-administered)
High (personnel required)

Minimal
More labor-intensive and time-consuming to perform

Acute postoperative pain, low back pain, neck pain, osteoarthritis/gonarthritis, abdominal/pelvic pain, myofascial pain syndrome, chronic rotator cuff diseases, and temporomandibular disorders
Acute post-surgical pain, low back pain, sciatica, neck pain, knee osteoarthritis, osteoarthritis/gonarthritis, headaches, peripheral neuropathic pain, and fibromyalgia

Several studies have described the use of LLLT for treating dental pain after oral surgery, with reduced orthodontic pain at 6 hours, 24 hours, 3 days, and even 1 week after surgery. Alan et al. reported that although LLLT reduced trismus and swelling after oral surgery, pain was only decreased on the 7th postoperative day. More recently, LLLT administered after maxillofacial surgery was reported to accelerate healing and enhance quality of life related to oral health. However, Chen et al. reported that LLLT had limited efficacy in reducing pain in patients with temporal-mandibular joint disorders. Although LLLT is reported to be more effective than “traditional procedures” in the management of oro-facial pain, it remains to be determined which power level and wavelength produce the optimal outcomes.

LLLT has been reported to be a useful adjunct treatment for oral mucositis in patients with cancer. However, in patients with breast cancer and unilateral lymphedema, LLLT failed to significantly improve their quality of life, pain scores, grip strength, or limb volume. In contrast, long-term beneficial effects have been reported with pulsed HILT in the treatment of post-mastectomy pain syndrome. A recent literature review suggested that LLLT might be a promising option for the management of cancer treatment-related side effects (for example, oral mucositis, radiodermatitis, lymphedema, and chemotherapy-induced peripheral neuropathic pain). Although LLLT has been reported to have a suppressive effect on cancer cells, studies using rodent models suggest that it might modify cancer cell behavior and actually lead to stimulation of dysplastic cells. For example, Rhee et al. reported that LLLT increased tumor size in rodents when thyroid cancer cells were directly exposed to photodynamic (laser) therapy. Clearly, additional studies with both LLLT and HILT are needed in patients with cancer.

In a sham-controlled, prospective safety and efficacy study of LLLT in patients with subacutec musculoskeletal back pain, Basford et al. concluded that LLLT produced a “moderate” reduction in pain while improving the patients’ perception of clinical benefit and level of functionality. Glazov et al. found evidence to support a short-term benefit of LLLT in treating low back pain in patients with a shorter duration of pain symptoms. However, these investigators suggested that greater pain-relieving benefits were achieved when higher laser dosages were administered (that is, HILT versus LLLT). This speculation was confirmed by Boyraz et al., who reported that HILT in combination with exercise produced significant functional improvements with longer-lasting beneficial effects than exercise therapy alone in patients with lumbar disc herniation. HILT also appeared to be an effective alternative to spine surgery for reducing pain and improving the performance of activities of daily living in patients with chronic back pain.

In a recent review, the authors stated that LLLT has only short-term benefits (versus sham) in treating rotator cuff disease; however, HILT was effective in minimizing pain and disability.
and increasing range of motion in patients with shoulder pain. Similarly, in a 2013 systematic review of LLLT in treating chronic neck pain, the authors reported that although the benefits observed were statistically significant, the differences failed to achieve a “minimally-important clinical difference”. In contrast, Alayat et al. found that HILT combined with exercise in patients with chronic low back and neck pain was more effective than exercise therapy alone and also had a more sustained effect in decreasing pain and functional disability (for example, improving range of motion), and beneficial effects lasted for up to 3 months. Chow et al. reported that laser therapy reduced pain immediately after treatment sessions in patients with acute neck pain and for up to 22 weeks after completion of a series of treatments in patients with chronic neck pain. Haladaj et al. demonstrated that HILT also produced clinically-significant analgesic efficacy in patients with cervical radicular pain syndrome and cervical spondylosis. Dundar et al. reported that HILT is an effective therapeutic method in the treatment of patients with myofascial pain syndrome of the trapezius muscle, a common cause of chronic neck pain.

Kim et al. and others reported that HILT was an effective non-surgical intervention for patients with knee osteoarthritis, reducing pain and improving their ability to perform activities of daily living. Alayat et al. reported that, in men with osteopenia and osteoporosis, HILT combined with exercise was more effective than exercise alone in reducing pain and improving quality of life after a series of treatments. Khoshie et al. and others have reported that HILT is significantly more effective than LLLT in treating chronic osteoarthritis-related pain. These findings with HILT (versus LLLT) were also confirmed in a study by Alayat et al. in patients with Bell’s palsy. HILT was also effective in the short-term management of pain and disability related to subacromial impingement syndrome, frozen shoulder and lateral epicondylitis. HILT at wavelengths of 830 and 1,064 nm was better than TENS in improving control of pain and paresthesias secondary to carpal tunnel syndrome. Analogous to LLLT, HILT has also been used to treat acute headache pain, degenerative joint conditions, neuropathic pain syndromes, and a wide variety of musculoskeletal disorders, including fibromyalgia.

A more powerful version of HILT has been introduced using class IV lasers producing more than 25 W of power (for example, the Phoenix Thera-Lase device) (Table 2). Huang et al. demonstrated that the beneficial outcomes of laser therapy were directly related to the amount of energy (power) administered. The energy density (in joules per square centimeter) or power (in watts) appears to be strongly related to the efficiency of laser radiation in reducing pain and inflammation. Power density represents the laser/light-emitting diode incident power in watts on the tissue spot size (that is, output power divided by the size of the irradiated area in watts per square meter). The higher power density is responsible for regulating or “speeding up” the

Applications for acute and chronic pain management	Low-level laser therapy (LLLT)	High-intensity laser therapy (HILT)
Superficial postoperative pain	Osteoarthritis	
Osteoarthritis	Hemophilic arthropathy	
Low back pain	Low back pain related to herpes virus	
Neck pain	Myofascial pain syndrome	
Plantar fasciitis	Shoulder pain	
Dental pain	Fibromyalgia-related pain	
Mucositis-associated pain	Opioid dependency	
Acute and chronic pain related to herpes virus		
Trigeminal neuralgia		
Wound repair		
The pain of muscle injury		
Shoulder pain		
Carpal tunnel syndrome		
Fibromyalgia-related pain		
Headache		
Opioid dependency		

Note: Several of the applications listed for low-level laser therapy have not been studied using high-intensity laser therapy devices. However, there is no reason to expect that they would not respond as well or better.
transport of electrons in the mitochondrial respiratory chain90. The World Association of Laser Therapy has established that target tissues need an energy density of 5–7 J/cm2 or higher to elicit a clinically significant biological cellular response139.

The more powerful HILT devices are also referred to as laser heat devices140. In addition, some of these powerful laser devices function at longer wavelengths; for example, the Phoenix Thera-Lase (Phoenix Thera-Lase Systems, Dallas, TX, USA), which produces up to 75 W of power, operates at a wavelength of 1,275 nm. Therefore, the laser beam produced by these devices can penetrate more deeply into the soft tissue because of their enhanced power and the reduced absorption of the laser beam by melanin and hemoglobin (Figure 1). The fibromyalgia case report suggests that the use of HILT at 42–75 W of power can produce more profound and lasting beneficial effects than standard treatment protocols utilizing LLLT79 and less powerful HILT devices140. Importantly, LLLT studies have reported that photobiomodulation therapy produced greater improvement in muscular performance and accelerating recovery when it is administered prior to exercising143,144. Although Foley \textit{et al.}145 reported that LLLT facilitated a faster recovery of injured university athletes, they failed to include either a control or an active comparator group.

Larger-scale studies are clearly needed to verify the benefits of HILT compared with both LLLT and electroanalgesia in decreasing acute and chronic pain and improving long-term clinical outcomes. Finally, determining the optimal power and wavelength for each clinical condition is critically important in optimizing both LLLT and HILT. For example, de Oliveria \textit{et al.}144 compared 100, 200, and 400 mW of power and found that with LLLT a higher power does not necessarily produce a better result with respect to improvement in muscle performance. These authors also recommended using a wavelength of 810 nm for achieving optimal results with LLLT. However, Bordvik \textit{et al.}146 reported that a 910 nm wavelength produced greater tissue penetration than 810 nm with a super-pulsed laser.

Super-pulsed class IIIB lasers (for example, Multi Radiance, Medical [Solon, Ohio], and Thera-Lase [Toronto, Ontario, Canada]) can produce a peak power of up to 100 W without causing tissue warming in contrast to the more powerful class IV lasers (for example, LightForce lasers [LiteCure, Newark, DE] produces 0.5–25 W at wavelengths of 980/810 nm and Phoenix Thera-Lase [Phoenix Thera-Lase Systems, Dallas, TX] produces 1–75 W at a wavelength of 1,275 nm). In a sham-controlled study, Leal-Junior and colleagues147 reported that a super-pulsed laser was effective in decreasing pain and improving the quality of

Figure 1. The absorption effect of different wavelengths of infrared light by water, hemoglobin, oxyhemoglobin, and melanin. This figure illustrates one of the effects of the wavelength differences between the Phoenix Thera-Lase and other commercially available high-intensity laser therapy devices (for example, LightForce/LiteCure, erbium-doped yttrium aluminium garnet laser [Er:YAG], and neodymium-doped YAG [Nd:YAG]) with respect to infrared light absorption. These spectra are available from online sources.
life in patients with non-specific knee pain. Of interest, a recent study by de Marchi et al.\(^{48}\) reported that low-powered ‘pulsed’ lasers produced superior effects with respect to delayed-onset muscle soreness and elevations in creatine kinase activity than both low- and high-powered continuous lasers. Notarnicola et al.\(^{49}\) reported that HILT with 5 W of power at wavelengths of 650 nm, 810 nm, and TRIAX (810/980/1,064 nm) reduces low back pain scores and disability at 1, 2, and 4 months post-treatment. The greatest efficacy in promoting nerve regeneration and modulating pain transmission was associated with the use of the longer wavelengths (810/980/1,064 nm versus 650 nm).

Discussion

In a recent “call to action” to end the opioid epidemic in this country\(^{50}\), the US Surgeon General pointed out that the annual number of overdose deaths involving prescription opioids has nearly quadrupled since 2000 and this increase parallels the marked growth in the quantity of opioid pain relievers being prescribed\(^{151}\). Prescription opioid addiction and misuse have also contributed to a resurgence in heroin use and the spread of HIV and hepatitis C\(^{152}\). In the “Turn the Tide” Rx Pocket card which the government recently mailed to all practicing clinicians in this country, there was no mention of non-pharmacologic approaches to treating pain. However, in the recent FDA response to the opioid crisis, Califf et al.\(^{153}\) emphasized that more “alternatives” to opioid analgesics are needed, including non-pharmacologic therapies. According to the FDA leadership, “non-pharmacologic approaches to pain treatment were identified as an urgent priority”\(^{153}\). The new Clinical Guidelines Committee of the American College of Physicians also endorsed the use of non-invasive treatments such as laser therapy for the treatment of acute, subacute, and chronic low back pain\(^{154}\). The CDCP has also recently emphasized the importance of finding non-pharmacologic alternatives to opioid analgesic medications for treating pain\(^{155}\). These authors reported that patients initially given a 1-day supply of opioid medication had a 6% likelihood of still using the drug a year later. However, that number rose to roughly 10% for patients given a 2-day supply and to 45% for patients given a 40-day prescription.

Of importance, Barnett et al.\(^{156}\), in a recent issue of the New England Journal of Medicine, reported that long-term opioid use was increased in previously opioid-naïve patients who received treatment in an emergency department from high (versus low) intensity opioid prescribers. Altering the prescribing habits of physicians and their surrogates will clearly help; however, in order to effectively deal with the current opioid crisis, more innovative non-pharmacologic approaches for treating acute and chronic pain are clearly needed\(^{157}\). In this review, we have described numerous clinical studies published within the last 5 years which support the use of non-pharmacologic electro-analgesic and laser therapies for managing both acute and chronic pain.

Conclusions

The consequences of the widespread reliance on opioid-containing medication for managing acute and chronic pain should not be surprising. Many different electro-analgesic and laser therapy techniques have been described in the peer-reviewed literature for treating acute and chronic pain. However, these “alternative” therapies have failed to achieve broad acceptance in the medical community because of lingering questions regarding their analgesic efficacy, a lack of long-term outcome studies, and low reimbursement by third-party payers to the health-care providers administering these non-traditional therapeutic modalities. Although the use of powerful HILT devices appears to produce more profound and sustained beneficial effects than electroanalgesia and LLLT in the treatment of acute and chronic pain, this therapeutic modality has also failed to achieve widespread acceptance in the medical community because of a lack of knowledge regarding the potential long-term benefits of HILT among health-care providers, low third-party reimbursement rates, and the high cost associated with purchasing these more powerful laser devices. The mechanism of action of both electroanalgesia and laser therapy appears to involve neuromodulation of peripheral nerves using low-level electrical currents\(^{158}\) and infrared light\(^{159,160}\), respectively. Acustimulation, a popular form of electroanalgesia, has been reported to trigger the release of neurotransmitters and endogenous opioid-like substances and to activate c-fos within the central nervous system (CNS). Laser photobiomodulation appears to induce direct inhibitory effects on peripheral nerves, which reduces acute pain input into the CNS. In chronic pain patients, laser-induced changes in the spinal cord produces longer-term suppression of pain in the CNS.

Given the current opioid crisis in the USA, it is time to seriously consider incorporating these “alternative” analgesic therapies into treatment protocols for managing acute and chronic pain rather than adding more “fuel to the fire” by administering even more opioid-related drugs (157). A simple, safe, and effective non-invasive pain therapy without side effects could significantly reduce the dependence on oral opioid-containing medications in the post-discharge period after surgery. These non-pharmacologic therapies would also be cost-effective alternatives to opioids for treating chronic pain not responding to non-opioid analgesic medications. It would appear that both electroanalgesia and laser therapy are safer and more cost-effective for managing chronic pain than the long-term use of opioid analgesics. Finally, HILT could prove to be a valuable therapy for treating patients who have become addicted to opioid-containing prescription medications.
References

1. White PF, Kehlet H: Improving pain management: are we jumping from the frying pan into the fire? Anesth Analg. 2007; 105(1): 10–20.
 Published Abstract | Publisher Full Text

2. White PF: Multimodal analgesia: its role in preventing postoperative pain. Curr Opin Investig Drugs. 2008; 9(1): 76–82.
 Published Abstract

3. White PF: What are the advantages of non-opioid analgesic techniques in the management of acute and chronic pain? Expert Opin Pharmacother. 2017; 18(4): 329–33.
 Published Abstract | Publisher Full Text

4. Brennan F, Carr DB, Cousins M: Pain management: a fundamental human right. Anesth Analg. 2007; 105(1): 209–21.
 Published Abstract | Publisher Full Text | F1000 Recommendation

5. Reuben DB, Alvarado AA, Ashikaga T, et al.: National Institutes of Health Pathways to Prevention Workshop: the role of opioids in the treatment of chronic pain. Ann Intern Med. 2015; 162(4): 295–300.
 Published Abstract | Publisher Full Text

6. Gosling J, Moser SE, Zaidi B, et al.: Trends and predictors of opioid use after total knee and total hip arthroplasty. Pain. 2016; 157(6): 1259–65.
 Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

7. Alam A, Gomes T, Zheng H, et al.: Long-term analgesic use after low-risk surgery: a retrospective cohort study. Arch Intern Med. 2012; 172(5): 425–30.
 Published Abstract | Publisher Full Text | F1000 Recommendation

8. Cauley CE, Anderson G, Haynes AB, et al.: Predictors of In-hospital Postoperative Opioid Overdose After Major Elective Operations: A Nationally Representative Cohort Study. Ann Surg. 2017; 265(7): 702–8.
 Published Abstract | Publisher Full Text

9. Ladh KA, Paterno E, Liu J, et al.: Impact of Perioperative Epidural Placement on Postdischarge Opioid Use in Patients Undergoing Abdominal Surgery. Anesthesiology. 2016; 124(2): 396–403.
 Published Abstract | Publisher Full Text | Free Full Text

10. Olsen Y: The CDC Guideline on Opioid Prescribing: Rising to the Challenge. JAMA. 2016; 315(15): 1577–9.
 Published Abstract | Publisher Full Text

11. Erikson J, Sjögren P, Bruera E, et al.: Critical issues on opioids in chronic non-cancer pain: an epidemiological study. Pain. 2006; 125(1–2): 172–9.
 Published Abstract | Publisher Full Text

12. Sullivan MD, Ballantyne JC: What are we treating with long-term opioid therapy? Arch Intern Med. 2012; 172(5): 433–4.
 Published Abstract | Publisher Full Text

13. Park A: A new paradigm for opioid addiction: more drugs. TIME magazine. 2016.
 Reference Source

14. Edwards HS: The Drug Cascade. TIME magazine. 2017.
 Reference Source

15. Khsetty VR, Carole LF, Heny SJ, et al.: Complementary alternative medical therapies for heart surgery patients: feasibility, safety, and impact. Ann Thorac Surg. 2006; 81(1): 201–5.
 Published Abstract | Publisher Full Text

16. Oz MC, Olvo EL: Invited commentary. Ann Thorac Surg. 2006; 81(1): 205–6.
 Published Abstract | Publisher Full Text

17. Tse MM, Chan MF, Benze IF: The effect of music therapy on postoperative pain, heart rate, systolic blood pressures and analgesic use following nasal surgery. J Pain Palliat Care Pharmacother. 2005; 19(3): 21–9.
 Published Abstract | Publisher Full Text

18. Sendelbach SE, Halm MA, Doran KA, et al.: Effects of music therapy on physiological and psychological outcomes for patients undergoing cardiac surgery. J Cardiacaes Nurs. 2006; 21(3): 194–200.
 Published Abstract

19. White PF: Use of alternative medical therapies in the perioperative period: is it time to get on board? Anesth Analg. 2007; 104(2): 251–4.
 Published Abstract | Publisher Full Text

20. Deogaonkar M, Slavin KV: Peripheral nerve field stimulation for neuropathic pain. Neurosurg Clin N Am. 2014; 25(1): 1–10.
 Published Abstract | Publisher Full Text

21. Chakravarthy K, Nava A, Christo PJ, et al.: Review of Recent Advances in Peripheral Nerve Stimulation (PNS). Curr Pain Headache Rep. 2016; 20(11): 60.
 Published Abstract | Publisher Full Text | F1000 Recommendation

22. Gan TJ, Jao KR, Zenn M, et al.: A randomized controlled comparison of electro-acupoint stimulation or ondansetron versus placebo for the prevention of postoperative nausea and vomiting. Anesth Analg. 2004; 99(4): 1070–5, table of contents.
 Published Abstract | Publisher Full Text

23. Wang B, Tang J, White PF, et al.: Effect of the intensity of transcutaneous acupoint electrical stimulation on the postoperative analgesic requirement.
 Published Abstract | Publisher Full Text

24. Chen L, Tang J, White PF, et al.: The effect of location of transcutaneous electrical nerve stimulation on postoperative opioid analgesic requirement: acupuncture versus nonacupuncture stimulation. Anesth Analg. 1998; 87(5): 1129–34.
 Published Abstract

25. Zorate E, Mingus M, White PF, et al.: The use of transcutaneous acupuncture electrical stimulation for preventing nausea and vomiting after laparoscopic surgery. Anesth Analg. 2001; 92(3): 629–35.
 Published Abstract | Publisher Full Text

26. Hamza MA, White PF, Ahmed HE, et al.: Effect of the frequency of transcutaneous electrical nerve stimulation on the postoperative opioid analgesic requirement and recovery profile. Anesthesiology. 1999; 91(5): 1232–8.
 Published Abstract

27. White PF, Hamza MA, Rezart A, et al.: Optimal timing of acustimulation for antiemetic prophylaxis as an adjunct to ondansetron in patients undergoing plastic surgery. Anesth Analg. 2005; 100(5): 367–72.
 Published Abstract | Publisher Full Text

28. Lison JF, Amer-Chuennia JI, Piquer-Martí S, et al.: Transcutaneous Nerve Stimulation for Pain Relief During Office Hysterectomy: A Randomized Controlled Trial. Obstet Gynecol. 2017; 129(2): 363–70.
 Published Abstract

29. Ozturk NK, Baki ED, Kavakli AS, et al.: Comparison of Transcutaneous Electrical Nerve Stimulation and Parasternal Block for Postoperative Pain Management after Cardiac Surgery. Pain Res Manag. 2016; 2016: 4261949.
 Published Abstract | Publisher Full Text | Free Full Text

30. Gadsby JY, Flowerdew MW: Transcutaneous electrical nerve stimulation and acupuncture-like transcutaneous electrical nerve stimulation for chronic low back pain. Cochrane Database Syst Rev. 2000; (2): CD000210.
 Published Abstract | Publisher Full Text

31. Sator-Katzenschlager SM, Scharbert G, Kozek-Langenecker SA, et al.: The short- and long-term benefit in chronic low back pain through adjutant electrical versus manual auricular acupuncture. Anesth Analg. 2004; 98(3): 1393–4, table of contents.
 Published Abstract | Publisher Full Text

32. Carteron CP, Slijordt BH: Acupuncture for chronic low back pain: a randomized placebo-controlled study with long-term follow-up. Clin J Pain. 2001; 17(4): 296–305.
 Published Abstract | Publisher Full Text

33. Ghoname EA, White PF, Ahmed HE, et al.: Percutaneous electrical nerve stimulation: an alternative to TENs in the management of sciatica. Pain. 1999; 83(2): 193–9.
 Published Abstract | Publisher Full Text

34. Jauregui JJ, Chernen JJ, Gwam CU, et al.: A Meta-Analysis of Transcutaneous Electrical Nerve Stimulation for Chronic Low Back Pain. Surg Technol Int. 2016; 28: 296–302.
 Published Abstract | F1000 Recommendation

35. Rajfur J, Pastermok M, Rajfur K, et al.: Efficacy of Selected Electrical Therapies on Chronic Low Back Pain: A Comparative Clinical Pilot Study. Med Sci Mont. 2017; 23: 85–100.
 Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

36. Chan DK, Johnson MI, Sun KO, et al.: Electrical acustimulation of the wrist for chronic neck pain: a randomized, sham-controlled trial using a wrist-ankle acustimulation device. Clin J Pain. 2009; 25(4): 320–6.
 Published Abstract | Publisher Full Text

37. Gochel B, Kager H, Pipam W, et al.: Analytische Effizienz von transkutaner elektrischer Nervenstimulation (TENS-Therapie) bei Patienten mit Gonarthrose. Eine prospektive, randomisierte, placebokontrollierte, doppelblindige Studie. Schmerz. 2010; 24(2): 494–500.
 Publisher Full Text

38. Zeng C, Li H, Yang T, Deng Z, et al.: Electrical stimulation for pain relief in knee osteoarthritis: systematic review and network meta-analysis. Osteoarthritis Cartilage. 2015; 23(2): 189–202.
 Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

39. Harvey MP, Watier A, Dufort Rouleau É, et al.: Optimal timing of short-term transcutaneous electrical nerve stimulation to decrease postoperative nausea and vomiting after total knee and total hip arthroplasty. J Foot Ankle Surg. 2017; 56(2): 291–6.
 Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

40. Azatcam G, Atalay NS, Akkaya N, et al.: Comparison of effectiveness of Transcutaneous Electrical Nerve Stimulation and Kinesio Taping added to exercises in patients with myofascial pain syndrome. J Back Musculoskelet Rehabil. 2017; 30(2): 281–6.
 Published Abstract | Publisher Full Text | F1000 Recommendation

41. Ferreira AP, Costa DR, Oliveira AL, et al.: Short-term transcutaneous electrical nerve stimulation reduces pain and improves the masticatory muscle activity in temporomandibular disorder patients: a randomized
controlled trial. J Apig Oral Sci. 2017; 25(2): 112–30.

Page MJ, Green S, Morick MA, et al.: Electrotherapy modalities for rotator cuff disease. Cochrane Database Syst Rev. 2016; (6): CD102225.

Page MJ, Green S, Full Text | F1000 Recommendation

42. Daramanan D, Sathok A, Kilia AK, et al.: The Use of Transcutaneous Electrical Nerve Stimulation After Total Knee Arthroplasty: A Prospective Randomized Controlled Trial. Surg Technol Internat. 2017; 30: 425–34.

Published Abstract | Publisher Full Text

43. Salazar AP, Stein C, Marchese RR, et al.: Laser therapy in wound healing associated with diabetes mellitus - Review. Medical Research (AHFMR). 1999; 1–23.

PubMed Abstract | Publisher Full Text

44. Page MJ, Green S, Mrocki MA, et al.: Electroacupuncture for low back pain: a randomized crossover study. JAMA. 1999; 281(9): 818–23.

Published Abstract | Publisher Full Text

45. Zhang Q, Li YN, Guo YY, et al.: Effects of preconditioning of electroacupuncture on postoperative cognitive dysfuncetion in elderly: A prospective, randomized, controlled trial. Medicine (Baltimore). 2017; 96(28): e7375.

Published Abstract | Publisher Full Text | F1000 Recommendation

46. Ghoneim EA, Craig WF, White PF, et al.: Percutaneous electrical nerve stimulation for low back pain: a randomized crossover study. JAMA. 1999; 281(9): 818–23.

Published Abstract | Publisher Full Text

47. White PF, Li S, Chu JW: Electroanalgesia: its role in acute and chronic pain management. Anesth Analg. 2001; 92(2): 505–13.

Published Abstract | Publisher Full Text

48. Geng J, Li Y, Wang H: Clinical efficacy comparison between electroacupuncture and meloxicam in the treatment of knee os-oeartthritis at the early and middle stage: a randomized controlled trial. Zhongguo Zhen Jiu. 2016; 36(5): 467–70.

Published Abstract | Publisher Full Text | F1000 Recommendation

49. Ding Y, Wang Y, Shi X, et al.: Effect of ultrasound-guided acupotomy vs electroacupuncture on knee osteoarthritis: a randomized controlled study. J Tradit Chin Med. 2016; 36(4): 450–5.

Published Abstract | Publisher Full Text

50. Ojio AR, Mada O, Neto RM, et al.: Beneficial Effects of Applying Low-Level Laser Therapy to Surgical Wounds After Bariatric Surgery. Photomed Laser Surg. 2016; 34(11): 880–4.

Published Abstract | Publisher Full Text

51. Flemming K, Cullum N: Systematic reviews of wound care management: Low-level laser therapy, therapeutic ultrasound, electrotherapy and electromagnetic therapy for the treatment of chronic wounds. Health Technol Assess. 2001; 5: 137–221.

Page 10 of 13

52. Schneider WL, Hailey D: Low level laser therapy for wound healing. Health Technology Assessment. HTA 19. Edmonton, AB: Alberta Heritage Foundation for Medical Research (AHFMR). 1999; 1–23.

Reference Source

53. Posten W, Wrone DA, Dover JS, et al.: Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg. 2005; 31(3): 334–40.

Published Abstract | Publisher Full Text | F1000 Recommendation

54. Sousa RG, Batista Kde N: Laser therapy in wound healing associated with diabetes mellitus - Review. An Bras Dermatol. 2016; 91(4): 489–93.

Published Abstract | Publisher Full Text | F1000 Recommendation

55. Hawkins D, Alabarema H: Phototherapy - a treatment modality for wound healing and pain relief. Afr J Biomed Res. 2007; 10(2): 99–109.

Published Full Text

56. Chen YT, Wang HHI, Wang TJ, et al.: Early application of low-level laser may reduce the incidence of postherpetic neuralgia (PHN). J Am Acad Dermatol. 2016; 75(3): 572–7.

Published Abstract | Publisher Full Text

57. Ten R, Gallesio G, Poo M, et al.: Effects of Superpulsed, Low-Level Laser Therapy on Neurosensory Recovery of the Inferior Alveolar Nerve. J Craniofac Surg. 2016; 27(5): 1215–9.

Published Abstract | Publisher Full Text | F1000 Recommendation

58. Pol R, Ruggiero T, Gallesio G, et al.: Efficacy of Anti-Inflammatory and Analgesic of Superpulsed Low Level Laser Therapy in Impacted Mandibular Third Molars Extractions. J Craniofac Surg. 2016; 27(3): 685–90.

Published Abstract | Publisher Full Text | F1000 Recommendation

59. Eshghpour M, Afrati F, Takaku M: Is Low-Level Laser Therapy Effective in the Management of Pain and Swelling After Mandibular Third Molar Surgery? J Oral Maxillofac Surg. 2016; 74(7): 1322.e1–8.

Published Abstract | Publisher Full Text | F1000 Recommendation

60. Coca KP, Marcano KO, Gamba MA, et al.: Efficacy of Low-Level Laser Therapy in Relieving Nipple Pain in Breastfeeding Women: A Triple-Blind, Randomized, Controlled Trial. Pain Manag Nurs. 2016; 17(4): 281–9.

Published Abstract | Publisher Full Text | F1000 Recommendation

61. Macias DM, Coughlin MJ, Zang K, et al.: Low-Level Laser Therapy at 635 nm for Treatment of Chronic Plantar Fasciitis: A Placebo-Blinded, Randomized Study. J Foot Ankle Surg. 2015; 54(5): 768–72.

Published Abstract | Publisher Full Text | F1000 Recommendation

62. Jastファー JR, Catena F, Doty JF, et al.: Low-Level Laser Therapy for the Treatment of Chronic Plantar Fasciitis: A Prospective Study. Foot Ankle Int. 2014; 35(6): 566–71.

Published Abstract | Publisher Full Text | F1000 Recommendation

63. Lima AC, Fernandes GA, Araújo Júnior RB, Lima AC, et al.: Low-intensity laser (660 NM) has analgesic effects on sternotomy of patients who underwent coronary artery bypass grafts. Ann Card Anaesth. 2017; 20(1): 52–6.

Published Abstract | Publisher Full Text | F1000 Recommendation

64. Lim AC, Fernandes GA, Gonzaga IC, et al.: Low-Level Laser and Light-Emitting Diode Therapy for Pain Control in Hyperglycemic and Normoglycemic Patients Who Underwent Coronary Bypass Surgery with Internal Mammary Artery Grafts: A Randomized, Double-Blind Study with Follow-Up. Photomed Laser Surg. 2016; 34(6): 245–53.

Published Abstract | Publisher Full Text | F1000 Recommendation

65. Fallah A, Mirzai A, Guiknecni N, et al.: Clinical effectiveness of low-level laser treatment on peripheral somatosensory neuropathy. Lasers Med Sci. 2017; 32(2): 419–28.

Published Abstract | Publisher Full Text

66. de Andrade AL, Bossini PS, Parizotto NA. Use of low level laser therapy to control neuropathic pain: A systematic review. J Photochem Photobiol B: 2016; 164: 36–42.

Published Abstract | Publisher Full Text

67. Basford JR, Malanga GA, Krause DA, et al.: A randomized controlled evaluation of low-intensity laser therapy: plantar fasciitis. Arch Phys Med Rehabil. 1998; 79(3): 249–54.

Published Abstract | Publisher Full Text

68. Baghri I, Bouaraoua M. Effects of low power laser and low dose amitriptyline therapy on clinical symptoms and quality of life in fibromyalgia: a single-blind, placebo-controlled trial. Rheumatol Int. 2002; 22(5): 186–93.

Published Abstract | Publisher Full Text

69. Gür A, Karakoç M, Nas K, et al., Efficacy of low power laser therapy in fibromyalgia: a single-blind, placebo-controlled trial. Lasers Med Sci. 2002; 17(1): 57–61.

Published Abstract

70. Vayyav E, Tok D, Turgut E, et al.: The effect of Laser and taping on pain, functional status and quality of life in patients with fibromyalgia syndrome: A placebo- randomized controlled clinical trial. J Musculoskelet Rehabil. 2016; 29(1): 77–83.

Published Abstract | Publisher Full Text

71. Estamipour F, Motamedi SR, Bagheri F: Ibuprofen and Low-Level Laser Therapy for Pain Control during Fixed Orthodontic Therapy: A Systematic Review of Randomized Trials and Meta-analysis. J Contemp Dent Pract. 2017; 18(6): 527–33.

Published Abstract | Publisher Full Text | F1000 Recommendation

72. Alan H, Yolcu Ü, Koparal M, et al.: Evaluation of the effects of the low-level laser therapy on swelling, pain, and trismus after removal of impacted lower third molar. Head Face Med. 2016; 12(1): 25.

Published Abstract | Publisher Full Text | F1000 Recommendation

73. Santinoni CD, Oliveira HF, Batista VE, et al.: Influence of low-level laser...
therapy on the healing of human bone maxillofacial defects: A systematic review. J Photochem Photobiol B. 2017; 163: 83–9.

82. Chen J, Huang Z, Ge M, et al.: Efficacy of low-level laser therapy in the treatment of TMJ: a meta-analysis of 14 randomized controlled trials. J Oral Rehabil. 2015; 42(4): 291–9.

83. Amadori F, Bardellini E, Conti G, et al.: Oral mucositis prevention by low-level laser therapy in head-and-neck cancer patients undergoing concurrent chemoradiotherapy: a phase III randomized study. Int J Radiat Oncol Biol Phys. 2012; 82(1): 270–5.

84. Oton-Leite AF, Elias LS, Morais MO, et al.: Use of 660-nm diode laser in the treatment of patients with knee osteoarthritis: a randomized controlled trial. Lasers Med Sci. 2016; 31(4): 687–94.

85. Gautam AP, Fernandes DJ, Vidyasagar MS, et al.: Efficacy of high-intensity laser therapy and ultrasound treatment in the patients with lumbar discopathy. Biomed Res Int. 2015; 2015: 304328.

86. Chen L, Liu D, Zou L, et al.: Efficacy of high intensity laser therapy in treatment of patients with lumbar disc protrusion: A randomized controlled trial. J Back Musculoskelet Rehabil. 2017.

87. Boyarz I, Yildiz A, Kos B, et al.: Comparison of high-intensity laser therapy and ultrasound on tumor volume in patients with painful osteosarcoma: A randomized controlled trial. J Orthop Sci. 2016; 21(4): 433–7.

88. Boyarz I, Yildiz A, Kos B, et al.: Comparison of high-intensity laser therapy and ultrasound on tumor volume in patients with painful osteosarcoma: A randomized controlled trial. J Orthop Sci. 2016; 21(4): 433–7.

89. Boyarz I, Yildiz A, Kos B, et al.: Comparison of high-intensity laser therapy and ultrasound on tumor volume in patients with painful osteosarcoma: A randomized controlled trial. J Orthop Sci. 2016; 21(4): 433–7.

90. Boyarz I, Yildiz A, Kos B, et al.: Comparison of high-intensity laser therapy and ultrasound on tumor volume in patients with painful osteosarcoma: A randomized controlled trial. J Orthop Sci. 2016; 21(4): 433–7.
123. Akkent E, Kucuksezer S, Yilmaz H, et al.: Long term effects of high intensity laser therapy in lateral epicondylitis patients. *Lasers Med Sci.* 2016; 31(2): 249–53. Published Abstract | Publisher Full Text

124. Casale R, Damiani C, Maestri R, et al.: Pain and electrophysiological parameters are improved by combined 830-1064 high-intensity LASER in symptomatic carpal tunnel syndrome versus Transcutaneous Electrical Nerve Stimulation. A randomized controlled study. *Eur J Phys Rehabil Med.* 2013; 49(2): 205–11. Published Abstract

125. Gottschling S, Meyer S, Gribow I, et al.: Laser acupuncture in children with headache: a double-blind, randomized, bicenter, placebo-controlled trial. *Pain.* 2008; 137(2): 405–12. Published Abstract | Publisher Full Text | F1000 Recommendation

126. Tomaz de Magalhães M, Núñez SC, Kato IT, et al.: Does addition of low-level laser therapy (LLLT) in conservative care of knee arthritis successfully postpone the need for joint replacement? *Lasers Med Sci.* 2015; 30(6): 1839–47. PubMed Abstract | Publisher Full Text | Free Full Text

127. Costantini D, Delogu G, Lo Bosco L, et al.: The treatment of cranio-facial pain by electroacupuncture and laser irradiation. *Ann Ital Chir.* 1997; 68(4): 505–9. Published Abstract

128. Nakamura T, Ebihara S, Ohkuni I, et al.: Low Level Laser Therapy for the treatment of lower limb muscle fatigue by light modulation analysis following the exercise. *Eur J Phys Rehabil Med.* 2014; 50(3): 364–70. PubMed Abstract | Publisher Full Text

129. Youssef EF, Musa AI, Sharab AB: Effect of Laser Therapy on Chronic Osteoarthritis of the Knee in Older Subjects. *J Lasers Med Sci.* 2016; 7(2): 112–9. Published Abstract | Publisher Full Text | Free Full Text

130. Visani T, Carnabba C, Mangone G: High intensity pulsed Nd: YAG laser in painful knee osteoarthritis: the biosimulation protocol. *Energy for Health.* 2012; 9: 18–22. Reference Source

131. Jo D: Does addition of low-level laser therapy (LLLT) in conservative care of knee arthrosis successfully improve pain? *Lasers Med Sci.* 2015; 30(9): 2335–9. Published Abstract | Publisher Full Text

132. Iijima K, Shiomaya N, Shiomaya M, et al.: Evaluation of analgesic effect of low-power He-Ne laser on postherpetic neuralgia using VAS and modified Mcgill pain questionnaire. *J Clin Laser Med Surg.* 1991; 9(2): 121–6. Published Abstract

133. Iijima K, Shiomaya N, Shiomaya M, et al.: Effect of repeated irradiation of low-power He-Ne laser in pain relief from postherpetic neuralgia. *Clin J Pain.* 1989; 5(3): 271–4. Published Abstract | Publisher Full Text

134. Zveren RV, Makarov DV, Khakhoukov AA, et al.: In vitro studies of the antinociceptive effect of photodynamic therapy. *Lasers Med Sci.* 2016; 31(5): 849–55. Published Abstract | Publisher Full Text

135. Vernon LF: Low-level laser for trigeminal neuralgia. *Practica Pain Management.* 2008; 56–63. Reference Source

136. Falafi F, Njeet AH, Dalinsani Z: The Effect of Low-level Laser Therapy on Trigeminal Neuralgia: A Review of Literature. *J Dent Res Dent Clin Dent Prospects.* 2014; 8(1): 1–5. Published Abstract | Publisher Full Text | Free Full Text

137. White PF, Efentis J, Elviro Lazo OL, et al.: Treatment of drug-resistant fibromyalgia symptoms using high-intensity laser therapy: a case-based review. *Rheumatol Int.* 2017; 1–7. Published Abstract | Publisher Full Text

138. Huang YY, Chan AG, Carroll JD, et al.: Biphasic dose response in low level light therapy. *Dose Response.* 2009; 7(4): 358–83. Published Abstract | Publisher Full Text | Free Full Text

139. Moore KC, Hira N, Cruickshank JA: The effect of infra-red diode laser irradiation on the duration and severity of postoperative pain: a double-blind trial. *Laser Ther.* 1992; 4(4): 145–9. Published Full Text

140. Pantel P, Simonac E, Williams K, et al.: Effects of Class IV laser therapy on fibromyalgia impact and function in women with fibromyalgia. *J Altern Complement Med.* 2013; 19(5): 445–52. Published Abstract | Publisher Full Text

141. White PF, Elviro Lazo OL, Hernandez H: A novel treatment for chronic opioid use after surgery. *J Clin Anesth.* 2017; 40: 51–3. Published Abstract | Publisher Full Text

142. White PF, Cao X, Elviro Lazo L, et al.: Effect of High-Intensity Laser Treatments on Chronic Pain Related to Osteoarthritis in Former Professional Athletes: A Case Series. *J Mol Biomark Diagn.* 2017; 8: 343. Published Full Text

143. Lasek-Junier EC, Varin AA, Miranda EF, et al.: Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. *Lasers Med Sci.* 2015; 30(2): 925–39. PubMed Abstract | Publisher Full Text

144. de Oliveira AR, Varin AA, Tomazoni SS, et al.: Pre-Exercise Infrared Photobiomodulation Therapy (810nm) in Skeletal Muscle Performance and Postexercise Recovery in Humans: What Is the Optimal Power Output? *Photomed Laser Surg.* 2017; 35(11): 595–603. PubMed Abstract | Publisher Full Text

145. Foley J, Vasily DB, Brade J, et al.: 830 nm light-emitting diode (led) phototherapy significantly reduced return-to-play in injured university athletes: a pilot study. *Laser Ther.* 2016; 25(1): 35–42. PubMed Abstract | Publisher Full Text | Free Full Text

146. Rondvik DH, Hassler S, Natenstj E, et al.: Penetration Time Profiles for Two Class 3B Lasers in In Situ Humain Achilles at Rest and Stretched. *Photomed Laser Surg.* 2017; 35(10): 546–54. PubMed Abstract | Publisher Full Text

147. Leat-Junier EC, Johnson DS, Saltmarche A, et al.: Adjunctive use of combination of super-pulsed laser and light-emitting diodes phototherapy on nonspecific knee pain: double-blinded randomized placebo-controlled trial. *Lasers Med Sci.* 2016; 31(6): 1157–64. PubMed Abstract | Publisher Full Text | F1000 Recommendation

148. Murthy VH. Ending the Epidemic of Heroin Abuse. *Energy for Health.* 2017; 37(5): 2413–5. PubMed Abstract | Publisher Full Text

149. Rudd RA, Aleshire N, Zibbell JE, et al.: Increases in Drug and Opioid Overdose Deaths—United States, 2000–2014. *MMWR Morb Mortal Wkly Rep.* 2016; 65(50–51): 1378–82. PubMed Abstract | Publisher Full Text

150. Compton WM, Jones CM, Baldwin GT. Relationship between Nonmedical Prescription-Opioid Use and Heroin Use. *N Engl J Med.* 2016; 374(2): 154–63. PubMed Abstract | Publisher Full Text

151. Catiff RM, Woodcock J, Oottsoo S: A Proactive Response to Prescription Opioid Abuse. *N Engl J Med.* 2016; 374(15): 1480–5. PubMed Abstract | Publisher Full Text

152. Qaseem A, Will TJ, McLear RM, et al.: Noninvasive Treatments for Acute, Subacute, and Chronic Low Back Pain: A Clinical Practice Guideline From the American College of Physicians. *Ann Intern Med.* 2017; 166(7): 514–30. PubMed Abstract | Publisher Full Text | F1000 Recommendation

153. Dowell D, Haegerich TM, Chou R. CDC Guideline for Prescribing Opioids for Chronic Pain—United States, 2016. *JAMA.* 2016; 315(15): 1624–45. PubMed Abstract | Publisher Full Text

154. Barnett ML, Olenksi AR, Jena AB: Opioid-Prescribing Patterns of Emergency Physicians and Risk of Long-Term Use. *N Engl J Med.* 2017; 376(7): 663–73. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

155. White PF. It is time to consider non-pharmacologic alternatives to opioid analgesics for treating chronic pain. *J Mol Biomark Diagn.* 2017; 8: 341–2. Published Full Text

156. Wang SM, Kain ZN, White P: Acupuncture analgesia: I. The scientific basis. *Anesth Analg.* 2008; 106(2): 602–10. PubMed Abstract | Publisher Full Text

157. Chow R, Armati PJ. Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review. *Photomed Laser Surg.* 2011; 29(6): 365–81. PubMed Abstract | Publisher Full Text

158. Chow RT, Armati PJ. Photobiomodulation: Implications for Anesthesia and Pain Relief. *Photomed Laser Surg.* 2016; 34(12): 599–609. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔️ ✔️

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

1. **Stephan A. Schug**
 Anaesthesiology, Pharmacology and Anaesthesiology Unit, University of Western Australia, Perth, WA, Australia
 Competing Interests: No competing interests were disclosed.

2. **Charles Argoff**
 Department of Neurology, Albany Medical Center, Albany, NY, USA
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com