Hemolysin liberates bacterial outer membrane vesicles for cytosolic lipopolysaccharide sensing

Shouwen Chen¹, Dahai Yang¹,³, Ying Wen¹, Zhiwei Jiang¹, Lingzhi Zhang¹,⁴, Jiatiao Jiang¹,
Yaozhen Chen⁵, Tianjian Hu¹, Qiyao Wang¹,³, Yuanxing Zhang¹,³ & Qin Liu¹,²,³,*

¹ State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
² Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
³ Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
⁴ Department of Pathology and Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
⁵ Department of Transfusion Medicine, Xijing hospital, Xi’an 710032, China

*Correspondence author. Tel: 86-021-64253065; E-mail: qinliu@ecust.edu.cn
Abstract

Inflammatory caspase-11/4/5 recognize cytosolic LPS from invading Gram-negative bacteria and induce pyroptosis and cytokine release, forming rapid innate antibacterial defenses. Since extracellular or vacuole-constrained bacteria are thought to rarely access the cytoplasm, how their LPS are exposed to the cytosolic sensors is a critical event for pathogen recognition. Hemolysin is a pore-forming bacterial toxin, which was generally accepted to rupture cell membrane, leading to cell lysis. Whether and how hemolysin participates in non-canonical inflammasome signaling remains uncovered. Here, we show that hemolysin-overexpressed enterobacteria triggered significantly increased caspase-4 activation in human intestinal epithelial cells (IECs). Hemolysin promoted LPS cytosolic delivery from extracellular bacteria through dynamin-dependent endocytosis. Further, we revealed that hemolysin was largely associated with bacterial outer membrane vesicles (OMVs) and induced rupture of OMV-containing vacuoles, subsequently increasing LPS exposure to the cytosolic sensor. Accordingly, overexpression of hemolysin promoted caspase-11 dependent IL-18 secretion, gut inflammation, and enterocyte pyroptosis in orally-infected mice, which was associated with restricting bacterial colonization in vivo. Together, our work reveals a concept that hemolysin promotes noncanonical inflammasome activation via liberating OMVs for cytosolic LPS sensing, which offers insights into innate immune surveillance of dysregulated hemolysin via caspase-11/4 in intestinal antibacterial defenses.

Keywords: hemolysin, OMVs, noncanonical inflammasome, intestinal infection
Significance

Sensing of lipopolysaccharide (LPS) in the cytosol triggers non-canonical inflammasome-mediated innate responses. Recent work revealed that bacterial outer membrane vesicles (OMVs) enables LPS to access the cytosol for extracellular bacteria. However, since intracellular OMVs are generally constrained in endosomes, how OMV-derived LPS gain access to the cytosol remains unknown. Here, we reported that hemolysin largely bound with OMVs and entered cells through dynamin-dependent endocytosis. Intracellular hemolysin significantly impaired OMVs-constrained vacuole integrity and increased OMV-derived LPS exposure to the cytosolic sensor, which promoted non-canonical inflammasome activation and restricted bacterial gut infections. This work reveals the role of hemolysin in promoting non-canonical inflammasome activation and alerting host immune recognition, which provides insights into the more sophisticated biological functions of hemolysin upon infection.
Introduction

The host innate immune system can sense invading bacteria by detecting pathogen-associated molecular patterns (PAMPs) (Vance et al., 2009). Lipopolysaccharide (LPS), a component of the outer cell membrane of Gram-negative bacteria, is one of the strongest immune activators (Rosadini & Kagan, 2017). Extracellular and endocytosed LPS is recognized by the transmembrane protein Toll-like receptor 4 (TLR4), leading to gene transcriptional regulation in response to infection (Kagan et al., 2008). Recent studies showed that host can detect LPS in the cytosol via a second LPS receptor, caspase-11 in mice and caspase-4/5 in humans (Hagar et al., 2013; Kayagaki et al., 2013; Shi et al., 2014). Caspase-11/4/5 directly binds cytosolic LPS (Shi et al., 2014), leading to its own activation, which thus cleaves gasdermin D to induce pyroptotic cell death and activate non-canonical activation of NLRP3 to release interleukin-1β (IL-1β) or IL-18 (Shi et al., 2015; Yang et al., 2015). Therefore, compartmentalization of LPS receptors within cells allows host to respond differentially and sequentially to LPS at distinct subcellular locales, which function in concert to constitute host noncanonical inflammasome defenses.

Caspase-11/4/5, as cytosolic sensors, only recognize LPS that has entered the host cell cytoplasm; however, the mechanism by which LPS from invading bacteria gains access to the cytosolic sensors remains unclear. For intracellular bacteria, although some bacteria such as Burkholderia (Aachoui et al., 2013) are cytoplasm-residing and easily expose LPS to the cytosolic sensors, many other bacteria such as Salmonella typhimurium (Broz et al., 2012) or Legionella pneumophila (Case et al., 2013) are predominantly constrained in pathogen-containing vacuoles (PCVs), probably masking LPS from cytosolic innate sensing. In addition to vacuolar bacteria, many extracellular bacteria, including Escherichia coli (Kayagaki et al., 2011), Vibrio cholerae (Kailasan et al., 2014), Citrobacter rodentium (Meunier et al., 2014), and Haemophilus influenzae (Rathinam & Fitzgerald, 2016) are thought to rarely access the cytoplasm, but induce caspase-11 dependent pyroptosis and cytokine release in cells. Thus, LPS entry into cell cytoplasm is a critical event for recognition of vacuolar or extracellular bacteria by non-canonical inflammasome. First, vacuolar bacteria may shed their LPS from endosome into the cytosol (Garcia-del et al., 1997). Lipopolysaccharide-binding protein (LBP) is also implicated in facilitating intracellular
LPS delivery (Kopp et al, 2016). Alternatively, guanylate-binding protein 2 (GBP2) induces lysis of PCVs and promotes LPS leakage into the cytoplasm (Finethy et al, 2015; Meunier et al, 2014; Pilla et al, 2014). Recently, Vijay A.K. Rathinam and his colleagues improved the understanding of how non-canonical inflammasomes detect extracellular Gram-negative bacteria. Briefly, the outer membrane vesicles (OMVs) of extracellular bacteria enter cells by dynamin-dependent endocytosis, enabling LPS to access the cytosol by escaping from early endosomes (Vanaja et al, 2016). However, how OMVs gain access from early endosomes to the cytosol remains unknown.

Hemolysin belongs to the pore-forming protein family, rupturing the cell membrane and leading to cell lysis at high doses (Wiles & Mulvey, 2013). Recently, hemolysin was found to participate in modulating cell death pathways at sublytic concentrations (Bielaszewska et al, 2013; Ristow & Welch, 2016; Wiles & Mulvey, 2013), representing more sophisticated toxin activity in contrast to outright pore-forming function. Uropathogenic *Escherichia coli* (UPEC) isolate CP9 activates caspase-3/7 and stimulates rapid cell apoptotic death in vitro; this phenotype was lost in a ΔhlyA mutant (Russo et al, 2005), indicating the involvement of hemolysin in the cell apoptosis pathway. Recently, increasing evidence suggests that hemolysin promotes activation of inflammasome signals during infection. For example, entero-hemolysin of enterohemorrhagic *E. coli* (EHEC) O157:H7 triggered mature IL-1β secretion in human macrophages (Zhang et al, 2012), and α-hemolysin of UPEC CFT073 mediated NLRP3-dependent IL-1β secretion in mouse macrophages (Schaale et al, 2016). Strikingly, overexpression of hemolysin in UPEC UT189 activated significantly increased caspase-4 dependent cell death and IL-1α release than the controls (Nagamatsu et al, 2015). This is the first evidence demonstrating the relevance of hemolysin in caspase-4 activation, indicating that hemolysin might contribute to non-canonical inflammasome activation.

In this study, we first demonstrated that hemolysin in various enterobacteria significantly promoted caspase-4 dependent pyroptosis and IL-18 secretion in IECs. Further, we provided insights into the mechanism of hemolysin-mediated increase in the sensitivity of non-canonical inflammasome to invading bacteria. We showed that hemolysin internalizes into cells via binding to OMVs and promotes rupture of OMV-containing vesicles, thereby releasing OMV-derived LPS.
into the cytoplasm and eventually triggering significant activation of non-canonical inflammasomes in IECs. Oral infection of mice showed that abnormal expression of hemolysin in vivo alerts the immune system and induces caspase-11-dependent enterocyte pyroptosis and IL-18 secretion, which significantly constrains bacterial infection in the gut. Collectively, our results reveal that hemolysin enables OMV-mediated LPS cytosolic delivery for caspase-11/4 sensing, which alarms intestinal innate immune surveillance in vivo, providing insights into the manipulation of non-canonical inflammasome signals by invading bacteria.
Results

Hemolysin promotes caspase-4 dependent cell death and IL-18 secretion during infection.

To screen for bacterial factors involved in regulating non-canonical inflammasome activation, a gene-defined mutant library of *Edwardsallar tarda* (*E. tarda*), an enteric pathogen infecting hosts from fish to human (Chen *et al.*, 2017; Wang *et al.*, 2009), was used to identify mutants that induced significantly increased pyroprosis in HeLa cells. Compared to the wild-type strain (EIB202), one of the mutants (0909I) greatly increased LDH release (Fig. S1A and S1B) and IL-18 secretion (Fig. S1C), accompanied by significantly induced caspase-4 activity (Fig. S1D) in HeLa. To explore whether 0909I promotes caspase-4-dependent non-canonical inflammasome activation in IECs, we extended the bacterial infection experiments to the wild-type and Caspase-4^{−/−} Caco-2 and HT-29 cells. Robust pyroptosis (Fig. 1A and Fig. S1E) and significantly increased LDH release (Fig. 1B and Fig. S1F) and IL-18 secretion (Fig. 1C and Fig. S1G) were detected in wild-type cells infected with 0909I compared to those infected with EIB202, which were counteracted in Caspase4^{−/−} cells. These data indicate that *E. tarda* mutant 0909I promotes caspase-4 dependent inflammasome activation in non-phagocyte cells.

Next, bioinformatics analysis revealed that the transposon insert site within 0909I is located upstream of a non-RTX hemolysin-encoding gene, ethA (Wang *et al.*, 2010). In agreement with the upregulated transcription level of *ethA* (Fig. S2A), 0909I showed higher EthA expression (Fig. S2B) and bacterial hemolytic activity (Fig. S2C) than EIB202, which were abolished in the strain of 0909IΔ*ethA*. Further, deletion of *ethA* significantly impaired the ability of 0909I to increase caspase-4 activation in Caco-2 (Fig. 1A-1C) and HT-29 cells (Fig. S1E-S1G). These data suggest that 0909I promotes non-canonical inflammasome activation by increasing hemolysin expression.

To explore whether hemolysin also upregulates non-canonical inflammasome activation in other enteric bacteria, we expanded the investigation to the best-known RTX hemolysin, HlyA in UPEC, enterohemorrhagic *E. coli* (EHEC), enteropathogenic *E. coli* (EPEC) and *E. coli* K12. Similarly, the *E. coli* strains, containing HlyA expression plasmid, showed significantly higher hemolytic activity (Fig. S2D), which elicited a higher level of caspase-4 dependent LDH release.
Together, these results suggest that hemolysin plays critical roles in promoting caspase-4 activation during Gram-negative bacterial infection.

Hemolysin promotes LPS cytoplasmic release through dynamin-dependent endocytosis.

Host immunity senses bacterial LPS in the cytosol via caspase-11/4/5 (Hagar *et al.*, 2013; Kayagaki *et al.*, 2013; Shi *et al.*, 2014). Because extracellular LPS cannot simply diffuse across the membrane, and most Gram-negative bacteria are not cytosolic, delivery of LPS from bacteria to the cytoplasm is thus very critical for non-canonical inflammasome activation. Because our data demonstrated that hemolysin increased caspase-4 activation in IECs, it is reasonable to speculate that hemolysin may promote cytosolic release of bacterial LPS during infection. We extracted the cytosol of uninfected or infected Caco2 cells using digitonin and assessed LPS levels in a limulus amebocyte lysate (LAL) assay. Digitonin is commonly used to isolate cytosol (Ramsby & Makowski, 2011), and the use of an extremely low concentration of digitonin (0.005%) for a very short duration allows extraction of cytosol devoid of plasma membrane, early and late endosomes, and lysosomes (Vanaja *et al.*, 2016). The LAL assay showed that LPS was present in the cytosol of infected cells, but not in uninfected cells (Fig. 2A). Significantly higher levels of cytosolic LPS was detected in 0909I-infected cells than in EIB202-infected cells, and it was greatly reduced by deletion of *ethA* in 0909I (Fig. 2A). These data demonstrate that hemolysin promotes LPS delivery into the cytoplasm upon *E. tarda* infection.

Edwardsallar tarda is an intracellular pathogen, that replicates within a *E. tarda*-containing vacuole (ECV) (Cao *et al.*, 2018; Hou *et al.*, 2017; Vanaja *et al.*, 2016), and has no direct access to the cytoplasm. We explored how hemolysin promotes LPS delivery from this bacterium to the cytosol. First, *E. tarda* strains showed similar internalization capacities between 0909I, EIB202, and 0909IΔethA (Fig. S4A), indicating that hemolysin did not affect cellular uptake of *E. tarda*. GBP2-induced vacuole destabilization was reported to release vacuolar bacteria for cytosolic LPS recognition (Meunier *et al.*, 2014). However, no bacteria were recovered by agar plating in the cytosol extracted from *E. tarda*-infected cells, while *legionella pneumophila ΔsdhA* was used as a
control of vacuole-escaping bacteria (Fig. S4B), suggesting that hemolysin did not promote vacuole-constrained *E. tarda* to enter the cytosol. Further, to discriminate that hemolysin promotes LPS release to the cytoplasm from vacuolar or extracellular bacteria, three endocytosis inhibitors, cytochalasin D (CD), 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), and dynasore (Dyn) were used to inhibit the internalization of *E. tarda* in Caco-2 cells. Clearly, CD and EIPA inhibited the internalization of 0909I (Fig. 2B), but did not reduce either cytoplasmic LPS release (Fig. 2C) or caspase-4 activation (Fig. 2D and Fig. S5A), suggesting that hemolysin-mediated LPS delivery predominantly depends on extracellular bacteria. Unexpectedly, dynasore similarly inhibited cellular uptake of *E. tarda* (Fig. 2B), but significantly suppressed LPS delivery (Fig. 2C) and sensing by cytosolic caspase-4 (Fig. 2D and Fig. S5A), indicating that dynasore may block a pathway that delivers LPS from extracellular bacteria to the cytoplasm. Next, we investigated the effects of CD and Dyn in *E. coli*-infected Caco-2 cells. Dyn significantly repressed LPS cytosolic release (Fig. 2E), cell death (Fig. 2F) and IL-18 secretion (Fig. S5B) in cells, while CD showed no influence on them. These results suggest that hemolysin promotes LPS cytosolic release from extracellular bacteria through a dynamin-dependent endocytosis process.

Hemolysin-mediated caspase-4 activation is dependent on association with OMVs.

Outer membrane vesicles (OMVs) are spherical, bilayered nanostructures constitutively released by growing bacteria (Schwechheimer & Kuehn, 2015). The association of bacterial toxins with OMVs protects them from inactivation or degradation during infection, representing a highly efficient mechanism of bacteria modulating host defenses (Kaparakis-Liaskos & Ferrero, 2015). Bacterial hemolysins, such as HlyA in *E. coli* largely bind OMVs and enter cells by dynamin-dependent endocytosis (O'Donoghue & Krachler, 2016). To dissect the role of *E. tarda* hemolysin in promoting caspase-4 inflammasome activation, we first explored the localization of EthA in this bacterium. Here, blebbing and shedding of OMVs were observed in growing *E. tarda* (Fig. S6A) and produced in supernatants over time (Fig. S6B). We fractionated the bacterial culture into pellets, OMV-free supernatants and OMVs. Notably, over 60% of the total EthA was detected in the fraction of OMVs (Fig. 3A), indicating that OMV-associated EthA is the major form of this toxin in *E. tarda*. In accordance with the increased hemolytic activity in 0909I (Fig.
S2C), significantly higher levels of EthA and hemolytic activity were detected in 0909I OMVs than in EIB202 or 0909IΔethA OMVs (Fig. 3B). In contrast, when subject to proteinase K (PK) digestion, in which proteins inside OMVs are protected from degradation, OMV-associated EthA was completely degraded, which agrees with the decreased hemolytic activity (Fig. 3B), suggesting that EthA is exposed on the exterior of E. tarda OMVs.

A recent study suggested that OMVs were responsible for delivering LPS into the cytosol and activating caspase-11 inflammasome (Vanaja et al., 2016). Because E. tarda hemolysin was largely associated with OMVs and critically involved in caspase-4-dependent inflammasome activation, it raises the possibility that E. tarda employs hemolysin-associated OMVs to activate the non-canonical inflammasome during infection. Subsequently, purified E. tarda OMVs were incubated with wild-type or Caspase-4-/- cells. OMVs internalized and formed obvious specks within cells (Fig. S6C) at comparable level between EIB202, 0909I, and 0909IΔethA, which were significantly inhibited by treatment with Dyn, but not with CD or EIPA (Fig. 3C). Importantly, according to the higher hemolytic activity (Fig. 3B), 0909I OMVs induced obvious cell pyroptosis (Fig. 3D), and a higher level of LDH release (Fig. 3F) than EIB202 OMVs in wild-type cells, and this difference was counteracted in Caspase-4-/- cells (Fig. 3E). Further, hemolysin depletion by deleting ethA or pretreating OMVs with PK remarkably reduced 0909I OMV-induced caspase-4 activation (Fig. 3E). Simultaneously, treatment with dynasore to inhibit cellular uptake of 0909I OMVs reduced LDH release in wild-type cells (Fig. 3E). Similarly, purified E. coli HlyA+ OMVs significantly increased cell death than wild-type OMVs (Fig. 3F). These data suggest that hemolysin promotes OMV-mediated caspase-4 inflammasome activation in Gram-negative bacteria.

Hemolysin impairs OMVs-containing vacuole integrity for cytosolic access of LPS.

As LPS-enriched OMVs are internalized via endocytosis and restrained within endosomes (O'Donoghue & Krachler, 2016), it raises the question of how vacuole-contained OMVs achieve cytosolic localization of LPS. Because hemolysin is a type of bacterial pore-forming toxins, that leads to membrane permeabilization (Wiles & Mulvey, 2013), a possible explanation could be that...
hemolysin induces lysis of OMV-containing vacuoles (OCVs) and facilitates cytosolic exposure of LPS. Galectin-3 is a β-galactoside binding protein, that is specifically recruited to disrupted pathogen-containing vacuoles (Paz et al., 2010). We assessed the recruitment of GFP-tagged galectin-3 in cells incubated with OMVs. Indeed, 0909I OMVs induced more galectin-3 specks than EIB202 OMVs (Fig. S7A and Fig. 4A), and galectin-3 showed clearly association with OMV specks within wild-type cells (Fig. 4B). In contrast, removal of hemolysin from 0909I OMVs by proteinase K degradation or deleting ethA significantly decreased the intracellular galectin specks in wild-type cells (Fig. 4A). These data suggest that hemolysin promotes rupture of OMV-containing vacuoles.

Next, we explored the contribution of hemolysin to damaging the membrane of OCVs during *E. tarda* infection. As expected, 0909I triggered significantly increased signal of galectin aggregation in DMSO-treated cells, compared to EIB202 or 0909IΔ*ethA* (Fig. S7B and S7C). In the presence of EIPA, which inhibited the internalization of bacteria, but not OMVs into cells, 0909I induced obvious cytoplasmic galectin specks (Fig. S7B and S7C), indicating that 0909I-induced galectin aggregation is mainly associated with internalized OMVs rather than bacteria. Further, 0909I triggered a significant increase in cytoplasmic galectin signal, compared to EIB202 or 0909IΔ*ethA*, which was greatly suppressed by pretreating the cells with Dyn (Fig. S7B and S7C). These results indicate that hemolysin contributes to the destruction of OMV-residing vesicles during bacterial infection.

Because hemolysin triggered significant membrane rupture of OCVs within cells, we evaluated whether vesicle lysis facilitates LPS exposure to cytosolic sensors. We extracted the cytosol and quantified the cytosolic LPS in *Caspase-4^{−/−}* cells upon incubation with purified OMVs. Although EIB202, 0909I, and 0909IΔ*ethA* OMVs showed comparable LPS contents (Fig. 4C) and uptake efficiencies (Fig. 3C and 3D), significantly increased cytosolic LPS was detected in the cytosol of 0909I OMV-incubated cells than in the controls. This difference was remarkably reduced by either eliminating OMV-bound hemolysin or damping OMV internalization (Fig. 4D). Furthermore, purified OMVs from *E. coli* strains were incubated with *Caspase-4^{−/−}* cells for the cytosolic LPS assay. Accordingly, HlyA⁺ OMVs induced more LPS release into the cytoplasm than their...
correspondent wild-type OMVs (Fig. 4E), indicating that hemolysin promotes cytosolic release of OMV-LPS. Collectively, these data suggest that hemolysin-mediated membrane lysis of OCVs represents an important means to liberate OMV-LPS for cytosolic sensing in Gram-negative bacteria.

Hemolysin increases recognition of invading bacteria by caspase-11 inflammasome in vivo.

Intestinal epithelium cells are at the forefront of the host gut defense system. Accumulating data indicate the importance of IEC inflammasomes in shaping intestinal immune defense against bacterial infection via inducing IL-1α/β or IL-18 secretion or enterocyte pyroptosis (Sellin et al., 2015). As hemolysin was verified to promote non-canonical caspase-4 inflammasome activation in IECs, we further assessed the involvement of hemolysin in noncanonical inflammasome activation in vivo. C57BL/6 wild-type mice were orally infected with E. tarda strains. Compared to EIB202, 0909I showed significantly reduced bacterial burdens in the colon, cecum and lumen (Fig. 5A), but not at the systemic sites (Fig. S8A), indicating that over-expressed hemolysin restricts E. tarda colonization in the mouse gut. Subsequently, it is interesting to explore the in vivo relevance of hemolysin-mediated gut infection restriction with non-canonical inflammasome activation.

Caspase-11 is the murine ortholog of human caspase-4, which predominantly mediates IL-18 secretion and enterocyte pyroptosis (Knodler et al., 2014; Pallett et al., 2017) during intestinal infection. Notably, caspase-11 depletion counteracted the superiority of bacterial loads in wild-type mice infected with 0909I over EIB202 (Fig. 5A), suggesting the critical requirement of caspase-11 by hemolysin-triggered gut infection limitation.

Further, we demonstrated that 0909I induced remarkably higher mucosal and serum IL-18 level than EIB202 in wild-type mice (Fig. 5B and 5C). Tissue pathology analysis revealed that 0909I evoked prominent intestinal inflammation in wild-type mice, typically featured by focal filtration of inflammatory cells and epithelia cell shedding (Fig. S8B and S8C). In contrast, these phenotypes were largely neutralized in Caspase-11−/− mice. Recent studies reported that inflammasome-induced pyroptosis caused enterocyte extrusion, which facilitates bacterial clearance (Knodler et al., 2014; Pallett et al., 2017; Sellin et al., 2015). To probe the pyroptotic cells in the intestinal epithelia, we immunoblotted for the cytosolic gasdermin D (GSDMD) in the gut.
sections without permeabilization. Obvious GSDMD-positive signals were observed in the colon and cecum of 0909I-infected wild-type mice, but absent in Caspase-11+/− mice gut (Fig. 5D), indicating that 0909I induced membrane-rupturing pyroptosis in IECs and thus significantly increased enterocyte extrusion. Together, these results indicate that dysregulation of hemolysin in vivo alerts caspase-11 dependent intestinal defenses and restricts bacterial gut infection.
Discussion

Sensing of LPS in the cytosol by inflammatory caspase-11/4/5 has emerged as a central event of innate immune responses during Gram-negative bacterial infections (Hagar et al., 2013; Kayagaki et al., 2013; Shi et al., 2015). Vanaja et al. reported that OMVs of extracellular Gram-negative bacteria can deliver LPS into the host cell cytosol from early endosomes; however, the mechanism of LPS translocation remains unclear. Biological membrane characteristics inherent to OMVs may permit them to fuse with endosomal membranes, leading to LPS cytosolic access (Vanaja et al., 2016). Recently, it was reported that GBP5s were involved in OMV-dependent non-canonical inflammasome activation (Finethy et al., 2017; Santos et al., 2018). Mechanistically, GBP5s didn’t promote the entry of OMVs into the cytosol, but directly target cytosolic OMVs and facilitate the interaction of LPS with caspase-11. In addition to host factors, whether bacterial factors, such as OMV-associated bacterial components, are involved in promoting non-canonical inflammasome activation remains unknown. Here, we demonstrate that hemolysin binds OMVs and promotes the lysis of OMV-residing vesicles, which facilitates cytosolic release of OMV-LPS and eventually triggers significant non-canonical inflammasome signals (Fig. 6). Our results suggest that hemolysin represents a biologically important mechanism for releasing endosome-constrained OMV-LPS to cytosolic sensors. In addition to hemolysin, whether other pore-forming proteins produced by bacteria (Bischofberger et al., 2012) play roles in liberating pathogen-associated molecular patterns for immune detection requires further examination.

Outer membrane vesicles are extruded from the surface of living bacteria and may entrap some of the underlying periplas (Schwechheimer & Kuehn, 2015). In addition to outer membrane proteins, LPS, phospholipids, and periplasmic constituents, OMVs deliver various bacterial cargos, including toxins intracellularly and further in specific compartments to modulate host defenses during infection (Kaparakis-Liaskos & Ferrero, 2015). Thus, OMVs offer bacterial products specific access to otherwise inaccessible cellular or tissue compartments. Particularly, OMVs enable the cytosolic localization of LPS for caspase-11 sensing (Vanaja et al., 2016), which is thought to be an important mechanism in extracellular bacteria. In this work, in addition to \textit{E. coli} strains, the typical vacuolar bacterium, \textit{E. tarda} (Zhang et al., 2016) also depends on OMVs to
activate caspase-4 inactivation in IECs, indicating that OMV-mediated non-canonical inflammasome activation represents a more generalized mechanism for bacteria than previously thought. Moreover, because OMVs were linked to the translocation of diverse bacterial factors into host cells, it will be interesting to determine whether hemolysin also increases cytosolic recognition of other ligands such as DNA or flagellin by the AIM2 (Burckstummer et al., 2009) or NLRC4 (Zhao & Shao, 2015) inflammasome.

Hemolysin, as a class of pore-forming toxins, is known to disrupt the membrane of eukaryotic cells at high doses in vitro, which potentially facilitates bacterial invasion and dissemination during infection (Wiles & Mulvey, 2013). HlyA is the prototype member of the hemolysin family (Wiles & Mulvey, 2013). Only a very low percentage of nonpathogenic E. coli harbors HlyA, while ∼50% of UPEC strains harbor and express HlyA, presenting a close correlation between increased clinical E. coli pathogenesis with HlyA expression (Bielaszewska et al., 2014; Ristow & Welch, 2016; Wiles & Mulvey, 2013). In recent years, because it has been hypothesized that hemolysin is secreted at sublytic concentrations in vivo, there is increasing interest in understanding the more subtle effects of hemolysin on host cellular processes aside from outright lysis, including RhoA activation (Mansson et al., 2007), Akt signaling (Mansson et al., 2007), cell death pathway (Bielaszewska et al., 2013; Zhang et al., 2012) and protease degradation (Dhakal & Mulvey, 2012). Here, our study adds new findings to the scenario of hemolysin-mediated biological functions by identifying that abnormal expression of hemolysin in bacteria promotes host immune recognition of replicating pathogens via non-canonical inflammasomes and restricts bacterial colonization in vivo (Fig. 6). Because hemolytic proteins exhibit multilayered or even antagonistic roles in modulating host responses to infections, it is not surprising that bacteria have evolved complicated mechanisms to fine-tune the synthesis, maturation, and transport of hemolysin (Bielaszewska et al., 2014; Ristow & Welch, 2016; Wiles & Mulvey, 2013). Thus, studies of the spatiotemporal expression of hemolysin in vivo will be essential for understanding both host defense and bacterial survival.

Inflammasomes are activation platforms for inflammatory caspases, leading to pyroptosis and secretion of IL-1α, IL-1β, and IL-18 (Rathinam & Fitzgerald, 2016). The actions of
inflammasomes have been well-studied in myeloid cells, and accumulating evidence highlights their role in non-professional immune cells acting as an important antibacterial defense mechanism (Sellin et al., 2015). Recent studies demonstrated that IECs utilize both canonical and non-canonical inflammasomes to promote mucosal defense against enteric bacterial pathogens (Knodler et al., 2014; Pallett et al., 2017; Sellin et al., 2014). These independent studies showed that pyroptosis leads to extrusion of infected enterocytes, which promotes bacterial infection in vivo even in the absence of IL-1α, IL-1β, and IL-18. In our study, hemolysin overexpression significantly promoted caspase-11-dependent pyroptotic extrusion of enterocytes, correlating with decreased bacterial loads in vivo, supporting that cell intrinsic inflammasome-induced enterocyte extrusion is a generalized defense mechanism against acute bacterial infections. Further insights into whether enterocyte pyroptosis directly removes the replicative niches for pathogens or infectious agents released from pyroptotic cells leads to recruitment and priming of immune cells, ultimately contributing to pathogen clearance from the host, require future studies.
Materials and Methods

Cell culture and infections

Wild-type or Caspase-4−/− Caco-2, HT-29, and HeLa cells were incubated with indicated *E. tarda* or *E. coli* strains at a multiplicity of infection (MOI) of 25 or 50, respectively, or incubated with purified OMVs at 100 µg/10⁵ cells. Cell supernatants were harvested for IL-18 and LDH assays.

Galectin assay

The plasmid expressing GFP tagged galectin-3 was constructed and introduced into HeLa cells by lentivirus transfection. Transfected cells were challenged with different *E. tarda* strains at a MOI of 50 or incubated with purified OMVs at 100 µg/10⁵ cells. Galectin speck formation within cells was observed under a confocal microscope.

Cytosolic LPS quantification

Caspase-4−/− HeLa or Caco-2 cells post-incubation with the indicated strains or purified OMVs were treated with 0.005% digitonin. The extracted cytosol and residual fractions were subjected to the Limulus Amebocyte Lysate (LAL) assay to quantify LPS.

Mice and Infections

C57BL/6J wild-type and *Caspase-11−/−* knockout mice (6-8 weeks old), pretreated with streptomycin, were orally infected with *E. tarda* strains at 5×10⁷ CFU/g. At 24 hours post-infection, indicated tissues or organs were collected and detected for bacterial loads, IL-18 secretion, gut histopathology, and enterocyte pyroptosis.

A full description of methods used is provided in SI Methods

ACKNOWLEDGMENTS

We thank F. Shao for caspase-4 deficient HeLa cells and constructive suggestions, Y.F. Yao, D.P. Yan and M.A. Mulvey for providing *E. coli* strains. This work was supported by the National Natural Science Foundation of China No. 31622059 (Q.L.) and 31430090 (Y.Z.) and the
Fundamental Research Funds for the Central Universities No. 222201717019 and 222201718004. Dahai Yang was supported by the Young Elite Scientists Sponsorship Program by CAST No. 2016QNRC001, Shanghai Chenguang Program No.16CG33 and Talent Program of School of Biotechnology in East China University of Science and Technology.

Author contributions
Q.L. and S.C. designed research; S.C., D.Y., Y.W., Z.J., L.Z., T.H., J.J. and Y.C. performed research; Q.L., S.C., D.Y and Q.W. analyzed data; Q.L. and Y.Z. supervised research; and Q.L., S.C. and D.Y wrote the paper.

Conflict of interest
The authors declare no conflict of interest.
References

Aachoui Y, Leaf IA, Hagar JA, Fontana MF, Campos CG, Zak DE, Tan MH, Cotter PA, Vance RE, Aderem A, Miao EA (2013) Caspase-11 protects against bacteria that escape the vacuole. *Science* 339: 975-978

Bielaszewska M, Aldick T, Bauwens A, Karch H (2014) Hemolysin of enterohemorrhagic *Escherichia coli*: structure, transport, biological activity and putative role in virulence. *Int J Med Microbiol* 304: 521-529

Bielaszewska M, Ruter C, Kunsmann L, Greune L, Bauwens A, Zhang W, Kuczius T, Kim KS, Mellmann A, Schmidt MA, Karch H (2013) Enterohemorrhagic *Escherichia coli* hemolysin employs outer membrane vesicles to target mitochondria and cause endothelial and epithelial apoptosis. *Plos Pathog* 9: e1003797

Bischofberger M, Iacovache I, van der Goot FG (2012) Pathogenic pore-forming proteins: function and host response. *Cell Host Microbe* 12: 266-275

Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N, Dixit VM, Monack DM (2012) Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. *Nature* 490: 288-291

Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G, Jahn H, Planyavsky M, Bilban M, Colinge J, Bennett KL, Superti-Furga G (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. *Nat Immunol* 10: 266-272

Cao H, Yang C, Quan S, Hu T, Zhang L, Zhang Y, Yang D, Liu Q (2018) Novel T3SS effector EseK in Edwardsiella piscicida is chaperoned by EscH and EscS to express virulence. *Cell Microbiol* 20:e12790

Case CL, Kohler LJ, Lima JB, Strowig T, de Zoete MR, Flavell RA, Zamboni DS, Roy CR (2013) Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to *Legionella pneumophila*. *Proc Natl Acad Sci U S A* 110: 1851-1856

Chen H, Yang D, Han F, Tan J, Zhang L, Xiao J, Zhang Y, Liu Q (2017) The Bacterial T6SS Effector EvpP Prevents NLRP3 Inflammasome Activation by Inhibiting the Ca(2+)-Dependent MAPK-Jnk Pathway. *Cell Host Microbe* 21: 47-58

Dhakal BK, Mulvey MA (2012) The UPEC pore-forming toxin alpha-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. *Cell Host Microbe* 11: 58-69

Finethy R, Jorgensen I, Haldar AK, de Zoete MR, Strowig T, Flavell RA, Yamamoto M, Nagarajan UM, Miao EA, Coers J (2015) Guanylate binding proteins enable rapid activation of canonical and noncanonical inflammasomes in *Chlamydia*-infected macrophages. *Infect Immun* 83: 4740-4749
Finethy R, Luoma S, Orench-Rivera N, Feeley EM, Haldar AK, Yamamoto M, Kanneganti TD, Kuehn MJ, Coers J (2017) Inflammasome Activation by Bacterial Outer Membrane Vesicles Requires Guanylate Binding Proteins. *Mbio* 8:e01188-17

Garcia-del PF, Stein MA, Finlay BB (1997) Release of lipopolysaccharide from intracellular compartments containing Salmonella typhimurium to vesicles of the host epithelial cell. *Infect Immun* 65: 24-34

Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA (2013) Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. *Science* 341: 1250-1253

Hou M, Chen R, Yang D, Nunez G, Wang Z, Wang Q, Zhang Y, Liu Q (2017) Identification and functional characterization of EseH, a new effector of the type III secretion system of Edwardsiella piscicida. *Cell Microbiol* 19:e12638

Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R (2008) TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. *Nat Immunol* 9: 361-368

Kailasan VS, Rathinam VA, Atianand MK, Kalantari P, Skehan B, Fitzgerald KA, Leong JM (2014) Bacterial RNA:DNA hybrids are activators of the NLRP3 inflammasome. *Proc Natl Acad Sci U S A* 111: 7765-7770

Kaparakis-Liaskos M, Ferrero RL (2015) Immune modulation by bacterial outer membrane vesicles. *Nat Rev Immunol* 15: 375-387

Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, Liu PS, Lill JR, Li H, Wu J, Kummerfeld S, Zhang J, Lee WP, Snipas SJ, Salvesen GS, Morris LX, Fitzgerald L, Zhang Y, Bertram EM, Goodnow CC, Dixit VM (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. *Nature* 526: 666-671

Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takanura S, Miyake K, Zhang J, Lee WP, Roose-Girma M, Dixit VM (2011) Non-canonical inflammasome activation targets caspase-11. *Nature* 479: 117-121

Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takanura S, Miyake K, Zhang J, Lee WP, Muszynski A, Forsberg LS, Carlson RW, Dixit VM (2013) Noncanonical inflammasome activation by intracellular LPS independent of TLR4. *Science* 341: 1246-1249

Knodler LA, Crowley SM, Sham HP, Yang H, Wrande M, Ma C, Ernst RK, Steele-Mortimer O, Celli J, Vallance BA (2014) Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. *Cell Host Microbe* 16: 249-256

Kopp F, Kupsch S, Schromm AB (2016) Lipopolysaccharide-binding protein is bound and internalized by host cells and colocalizes with LPS in the cytoplasm: Implications for a role of LBP in intracellular LPS-signaling. *Biochim Biophys Acta* 1863: 660-672
Mansson LE, Kjall P, Pellett S, Nagy G, Welch RA, Backhed F, Frisan T, Richter-Dahlfors A (2007) Role of the lipopolysaccharide-CD14 complex for the activity of hemolysin from uropathogenic Escherichia coli. *Infect Immun* 75: 997-1004

Mansson LE, Melican K, Boekel J, Sandoval RM, Hautefort I, Tanner GA, Molitoris BA, Richter-Dahlfors A (2007) Real-time studies of the progression of bacterial infections and immediate tissue responses in live animals. *Cell Microbiol* 9: 413-424

Meunier E, Dick MS, Dreier RF, Schurmann N, Kenzelmann BD, Warming S, Roose-Girma M, Bumann D, Kayagaki N, Takeda K, Yamamoto M, Broz P (2014) Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. *Nature* 509: 366-370

Nagamatsu K, Hannan TJ, Guest RL, Kostakioti M, Hadjifrangiskou M, Binkley J, Dodson K, Raivio TL, Hultgren SJ (2015) Dysregulation of Escherichia coli alpha-hemolysin expression alters the course of acute and persistent urinary tract infection. *Proc Natl Acad Sci U S A* 112: E871-E880

O'Donoghue EJ, Krachler AM (2016) Mechanisms of outer membrane vesicle entry into host cells. *Cell Microbiol* 18: 1508-1517

Pallett MA, Crepin VF, Serafini N, Habibzay M, Kotik O, Sanchez-Garrido J, Di Santo JP, Shenoy AR, Berger CN, Frankel G (2017) Bacterial virulence factor inhibits caspase-4/11 activation in intestinal epithelial cells. *Mucosal Immunol* 10: 602-612

Paz I, Sachse M, Dupont N, Mounier J, Cederfur C, Enninga J, Leffler H, Poirier F, Prevost MC, Lafont F, Sansonetti P (2010) Galectin-3, a marker for vacuole lysis by invasive pathogens. *Cell Microbiol* 12: 530-544

Pilla DM, Hagar JA, Haldar AK, Mason AK, Degrandi D, Pfeffer K, Ernst RK, Yamamoto M, Miao EA, Coers J (2014) Guanylate binding proteins promote caspase-11-dependent pyroptosis in response to cytoplasmic LPS. *Proc Natl Acad Sci U S A* 111: 6046-6051

Ransby M, Makowski G (2011) Differential detergent fractionation of eukaryotic cells. *Cold Spring Harb Protoc* 2011: t5592

Rathinam VA, Fitzgerald KA (2016) Inflammasome Complexes: Emerging Mechanisms and Effector Functions. *Cell* 165: 792-800

Ristow LC, Welch RA (2016) Hemolysin of uropathogenic Escherichia coli: A cloak or a dagger? *Biochim Biophys Acta* 1858: 538-545

Rosadini CV, Kagan JC (2017) Early innate immune responses to bacterial LPS. *Curr Opin Immunol* 44: 14-19

Russo TA, Davidson BA, Genagon SA, Warholic NM, MacDonald U, Pawlicki PD, Beanan JM, Olson R, Holm BA, Knight PR (2005) E. coli virulence factor hemolysin induces neutrophil apoptosis and necrosis/lysis in vitro and necrosis/lysis and lung injury in a rat pneumonia model.
Santos JC, Dick MS, Lagrange B, Degrandi D, Pfeffer K, Yamamoto M, Meunier E, Pelczar P, Henry T, Broz P (2018) LPS targets host guanylate-binding proteins to the bacterial outer membrane for non-canonical inflammasome activation. *Embo J* 37:

Schaele K, Peters KM, Murthy AM, Fritzsche AK, Phan MD, Totsika M, Robertson AA, Nichols KB, Cooper MA, Stacey KJ, Ulett GC, Schroder K, Schembri MA, Sweet MJ (2016) Strain- and host species-specific inflammasome activation, IL-1beta release, and cell death in macrophages infected with uropathogenic Escherichia coli. *Mucosal Immunol* 9: 124-136

Schwechheimer C, Kuehn MJ (2015) Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. *Nat Rev Microbiol* 13: 605-619

Sellin ME, Maslowski KM, Maloy KJ, Hardt WD (2015) Inflammasomes of the intestinal epithelium. *Trends Immunol* 36: 442-450

Sellin ME, Muller AA, Felmy B, Dolowschiak T, Diard M, Tardivel A, Maslowski KM, Hardt WD (2014) Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. *Cell Host Microbe* 16: 237-248

Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. *Nature* 526: 660-665

Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. *Nature* 514: 187-192

Vanaja SK, Russo AJ, Behl B, Banerjee I, Yankova M, Deshmukh SD, Rathinam V (2016) Bacterial Outer Membrane Vesicles Mediate Cytosolic Localization of LPS and Caspase-11 Activation. *Cell* 165: 1106-1119

Vance RE, Isberg RR, Portnoy DA (2009) Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. *Cell Host Microbe* 6: 10-21

Wang Q, Yang M, Xiao J, Wu H, Wang X, Lv Y, Xu L, Zheng H, Wang S, Zhao G, Liu Q, Zhang Y (2009) Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. *Plos One* 4: e7646

Wiles TJ, Mulvey MA (2013) The RTX pore-forming toxin alpha-hemolysin of uropathogenic Escherichia coli: progress and perspectives. *Future Microbiol* 8: 73-84

Yang D, He Y, Munoz-Planillo R, Liu Q, Nunez G (2015) Caspase-11 Requires the Pannexin-1 Channel and the Purinergic P2X7 Pore to Mediate Pyroptosis and Endotoxic Shock. *Immunity* 43: 923-932

Zhang L, Ni C, Xu W, Dai T, Yang D, Wang Q, Zhang Y, Liu Q (2016) Intramacrophage Infection Reinforces the Virulence of Edwardsiella tarda. *J Bacteriol* 198: 1534-1542
Zhang X, Cheng Y, Xiong Y, Ye C, Zheng H, Sun H, Zhao H, Ren Z, Xu J (2012) Enterohemorrhagic Escherichia coli specific enterohemolysin induced IL-1beta in human macrophages and EHEC-induced IL-1beta required activation of NLRP3 inflammasome. Plos One 7: e50288

Zhao Y, Shao F (2015) The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus. Immunol Rev 265: 85-102
Figure Legends

Figure 1. Hemolysin-overexpressed strains promotes caspase-4 activation during infection. (A) Cell morphology with propidium iodide (PI) staining of wild-type Caco-2 cells infected with the indicated *E. tarda* strains (MOI = 25, 4 hpi). Scale bar, 20 μm; arrows, pyroptotic cells. (B-G) LDH release or IL-18 secretion detected in wild-type and *Caspase-4*-/- Caco-2 cells infected with the indicated *E. tarda* (MOI = 25, 4 hpi) (B and C) or *E. coli* strains (MOI = 50, 4 hpi) (D-G). Graphs show the mean and s.e.m. of triplicate wells and are representative of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001; NS, not significant (two-tailed t-test).

Figure 2. Hemolysin promotes LPS cytosolic release through Dynamin-dependent endocytosis. (A, C and E) LPS quantity by LAL assay in the cytosol extracted by digitonin fractionation from *Caspase-4*-/- Caco-2 cells incubated with indicated *E. tarda* strains (MOI = 25, 4 hpi) (A, C) or *E. coli* strains (MOI = 50, 4 hpi) (E) in the presence of CD (10 μM), EIPA (30 μM), Dyn (80 μM), or not. (B) Bacterial count by agar plating in the cell pellets from *Caspase-4*-/- Caco-2 cells incubated with indicated *E. tarda* 0909I (MOI = 25, 4 hpi), following treatment with 300 μg/mL gentamicin for 1 h to kill extracellular bacteria. (D, F) LDH release detected in wild-type Caco-2 infected with indicated *E. tarda* (MOI = 25, 4 hpi) (D) or *E. coli* strains (MOI = 50, 4 hpi) (F). Graphs show the mean and s.e.m. of triplicate wells and are representative of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001; NS, not significant (two-tailed t-test).

Figure 3. Hemolysin associates with OMVs to promote caspase-4 activation. (A and B) Immunoblots for EthA in different fractions of *E. tarda* culture at 10 h post-inoculation (A) and assay for hemolytic activity and immunoblots for EthA in OMVs, treated with PK (5 μg/mL, 5 min) or not (B). (C) Immunostaining for intracellular OMVs using anti-OmpA antibody and quantification of OMV speck-positive cells in HeLa cells incubated with indicated *E. tarda* OMVs (20 μg/1 × 10^5 cells, 4 h) in the presence of CD (10 μM), EIPA (30 μM), Dyn (80 μM), or not. Percentage of cells containing OMV specks was calculated for at least 500 cells. (E) Morphology of HeLa cells infected with indicated *E. tarda* OMVs (50 μg/1 × 10^5 cells, 16 h). Scale bar, 20 μm; arrows, pyroptotic cells. (D and F) LDH release detected in wild-type or *Caspase-4*-/- HeLa cells incubated with purified *E. tarda* OMVs (50 μg/1 × 10^5 cells, 20 h) pretreated with PK (5 μg/mL, 5 min), Dyn (80 μM), or not (D), or purified *E. coli* OMVs (50 μg/1 × 10^5 cells, 20 h) (F). Graphs show the mean and s.e.m. of triplicate wells and are representative of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001; NS, not significant (two-tailed t-test).
Figure 4. Hemolysin impairs OMVs-containing vacuole integrity for cytosolic access of LPS. (A) Quantification of galectin speck-positive cells in HeLa cells expressing GFP-tagged galectin-3, incubated with *E. tarda* OMVs (50 μg/1 × 10^5 cells, 20 h) treated by PK (5 μg/mL, 5 min) or not. Percentage of cells containing galectin specks was calculated for at least 500 cells. (B) Observation of intracellular galectin (green)-associated OMV specks using anti-OmpA antibody (red). Scale bar, 20 μm; the white box indicates the co-localized signal between galectin and OMVs. (C) LPS quantification by LAL assay in purified *E. tarda* OMVs. (D and E) LPS quantification by LAL assay in the cytosol extracted by digitonin fractionation from Caspase-4^-/- HeLa cells, incubated with *E. tarda* OMVs (50 μg/1 × 10^5 cells, 20 h) treated with PK (5 μg/mL, 5 min), Dyn (80 μM), or not (D), or *E. coli* OMVs (50 μg/1 × 10^5 cells, 20 h) (E). Graphs show the mean and s.e.m. of triplicate wells and are representative of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001; NS, not significant (two-tailed t-test).

Figure 5. Hemolysin increases recognition of invading bacteria by caspase-11 in vivo. (A) Bacterial counting by agar plating in the colon, caecum, and lumen of wild-type or Caspase-11^-/- mice orally-infected by EIB202 or 0909I (5 × 10^7 cfu/g) at 24 hpi. (B and C) Quantification of IL-18 in the colon, cecum (B) and serum (C) of the mice described in a. (D) Confocal laser scanning of pyroptotic cells in the gut sections stained by anti-GSDMD antibody (green) without permeabilizing cells. The actin was stained in red and nuclei in blue; magnification = 20 ×; the boxes indicate the details of GSDMD signals in the guts. Graphs depict 6–10 mice per genotype and are representative of two to three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001; NS, not significant (one-way ANOVA).

Figure 6. Model for bacterial hemolysin in regulating noncanonical inflammasome pathway. Hemolysin binds bacterial outer membrane vesicles (OMVs) and liberates OMV-associated LPS for caspase-4 sensing, which increases recognition of invading Gram-negative bacteria by non-canonical inflammasome and restricts bacterial gut infections.
Supplementary Information

Supplementary Materials and Methods

Bacterial strains and plasmids

0909I *E. tarda* was screened from *E. tarda* gene-defined mutant library. 0909Δ*ethA* was constructed by unmarked gene deletion. Hemolysin-overexpressing *E. coli* strains were constructed by introducing into the wild-type strain (EJB202, CCTCC M208068) the plasmid of pSF4000-*hlyBACD* (Dhakal & Mulvey, 2012) into UPEC UT189, EHEC EDL933 (Burgos *et al.*, 2009), EPEC (*E. coli* O26) (Schmidt *et al.*, 1995) and K12, respectively.
Hemolytic activity assay

Hemolytic activity was quantified using a microtiter assay developed previously (Aldick et al, 2007) with slight modifications. Indicated bacterial strains were cultured for 18–20 h and then pelleted, resuspended in PBS, and standardized at 600 nm to an OD of approximately 1.0. Next, 100 μL bacterial suspensions or OMV preparations were mixed with equal volumes of sheep erythrocytes in a 96-well plate. The plate was incubated at 37 °C with gentle shaking for the indicated time periods and erythrocytes were pelleted by centrifugation (400 × g, 5 min). Clear supernatants were transferred to a fresh plate and absorbance at 540 nm was measured using a microplate reader (Dynex Technologies, Chantilly, VA, USA). Suspension buffer containing 0.1% Triton X-100 was served as a total lysis control. The percentage of hemolysis was calculated as follows: % hemolysis = (OD$_{540}$ of samples - OD$_{540}$ of background)/(OD$_{540}$ of total - OD$_{540}$ of background) × 100.

Quantitative RT-PCR

RNA was extracted using an RNA isolation kit (Tiangen, Beijing, China). One microgram of each RNA sample was used for cDNA synthesis with the FastKing One Step RT-PCR Kit (Tiangen) and quantitative real-time PCR (RT-qPCR) was performed on an FTC-200 detector (Funglyn Biotech, Shanghai, China) using SuperReal PreMix Plus (SYBR Green) (Tiangen). The gene expression of bacterial ethA was evaluated for three biological replicates, and the data for each sample were expressed relative to the expression level of the 16S gene by using the 2$^{-\Delta \Delta CT}$ method.

Caspase-4$^{-/-}$ cell line establishment

sgRNA (Oligo1: GACCGGGTCATCTCTGGCGTACTCC; Oligo2: AAACGGAGTACGCCAGATGGACCC) was designed (http://zifit.partners.org) and cloned into LentiCRISPR v2 (AddGene, Cambridge, MA, USA; 52961), containing puromycin resistance. Lentiviral particles were prepared in HEK239T cells as previously described (van Zwicht et al, 2016). HT-29 or Caco-2 cells were prepared in approximately 30% density and infected with
lentiviral particles containing 10 µg/mL polybrene for 24 h. Transfected cells were selected with puromycin (2 µg/mL). Cells were diluted to 5 cells/mL and seeded to 96-well plates, followed by an expansion period to establish a new clonal cell line. The caspase-4-/- cell lines were confirmed by western blotting using anti-caspase-4 antibody.

Cell culture and infections

Wild-type or Caspase-4-/- Caco-2, HT-29 and HeLa cells were seeded and grown to a density of ~4×10^5 cells per well in 12-well plates or ~10^5 cells per well in 24-well plates. For bacterial infection, cells were incubated with indicated *E. tarda* or *E. coli* strains at a MOI of 25 or 50, respectively. Infection was initiated by centrifuging the plate at 600 ×g for 10 min. After 50-min incubation at 35°C for *E. tarda* strains or 37°C for *E. coli* strains, the plates were washed once with PBS and then transferred into fresh medium containing 100 µg/mL gentamicin (Gm) to kill extracellular bacteria. The time point after antibiotic treatment was recorded as 0 h after infection. For OMV infection, cells were seeded and grown to a density of ~10^5 cells per well in 24-well plates, and then incubated with purified OMVs at 100 µg/10^5 cells. Cell supernatants were harvested at the indicated time points for subsequent assays.

Cytokine and LDH release measurement

Aliquots of cellular supernatants were transferred into 96-well plates (round bottom) and centrifuged at 1000 ×g for 5 min. The supernatants were transferred to another 96-well plate (flat bottom), and the plate was subjected to the cytotoxicity assay using a CytoTox 96 assay kit (G1780, Promega, Madison, WI, USA) or an ELISA kit (eBioscience, San Diego, CA, USA) according to the manufacturer’s protocol. Each sample was tested in triplicate. Cytotoxicity was normalized to Triton X-100 treatment (100% of control), and LDH release from uninfected/untreated cells was used for background subtraction.

OMV isolation

OMVs were purified from *E. tarda* strains as described previously with minor modifications (Bielaszewska *et al*, 2014). Briefly, the bacterial strains were grown in 3000 mL of DMEM till
OD$_{600}$ of ~1.5 and the bacteria-free supernatant was collected by centrifugation at 5000 × g for 10 min at 4°C. This supernatant was further filtered through a 0.45 µm filter and concentrated using a spin concentrator (GE Healthcare, Little Chalfont, UK; molecular weight cut off = 30 kDa). Subsequently, OMVs were pelleted by ultracentrifugation at 284100 × g for 1.5 h at 4°C in a Beckman NVTTM65 rotor (Brea, CA, USA). Isolated OMVs were resuspended in PBS, transferred to the bottom of a 13-mL ultracentrifugation tube (Beckman Coulter) and adjusted to 45% OptiPrep (Sigma-Aldrich, St. Louis, MO, USA) in a final volume of 2 mL. Different OptiPrep/PBS layers were sequentially added as follows: 2 mL of 40%, 2 mL of 35%, 2 mL of 30%, 2 mL of 25% and 1 mL of 20%. Gradients were centrifuged (2 84000 × g, 16 h, 4°C) in a Beckman NVTTM65 rotor and the fractions of equal volumes (1 mL) were removed sequentially from the top. After removing the OptiPrep, OMVs were resuspended in 1000 µL sterile DMEM without phenol red. The protein content of purified OMVs was assessed by modified Bradford protein assay kit (Shenggong Biotech, Shanghai, China). OMV-free supernatants or OMVs, treated with proteinase K (Sigma) (5 µg/mL, 5 min) or not were separated by SDS-PAGE and immunoblotted with antibodies against OmpA, EthA, or RNAP.

OMV uptake assay

HeLa cells were seeded and grown to a density of ~7 × 104 cells per well in 24-well plates. Cells were pretreated with dyn (80 µM) or CD (1 µg/mL) for 30 min at 37°C and incubated with OMVs at 28 µg/105 cells for 4 h. Cells were then washed, fixed, and quenched, and permeabilized/blocked with PBS containing 1 mg/mL saponin 10% and goat serum. OMVs were stained with anti-OmpA antibody and Alexa Fluor 488-conjugated goat anti-rabbit IgG. Actin was counterstained with TRITC phalloidin (Yeasen Biotech, Shanghai, China) and nuclei with DAPI (Beyotime, Jiangsu, China). Fixed samples were observed under a confocal microscope (Nikon, Tokyo, Japan; A1R).

Galectin assay

The eukaryotic expression plasmid for GFP tagged galectin-3 was constructed and introduced into HeLa cells by lentivirus transfection (Bielaszewska et al., 2014). Briefly, HeLa cells were
seeded in 24-well plates at a density of 5×10^4 cells per well in antibiotic-free medium and
transfected with lentiviral particles for 24 h. Next, positively-transfected cells were pooled via
treating cells with 1.5 µg/mL of puromycin. The pooled cells were seeded and grown to a
density of $\sim 10^5$ cells per well in 24-well plates. For bacterial infection, transfected cells were
preincubated with EIPA (30 µM) or Dyn (80 µM) for 1 h before infection (DMSO
pre-treatment as a control) and then challenged with different $E.\ tarda$ strains at an MOI of 50.
After 2.5 h-incubation at 35°C, the specks of galectin recruitment were observed under a
confocal microscope (Nikon, A1R). For OMV infection, cells were incubated with purified
OMVs at 100 µg/10^5 cells. After 16-h incubation, the cells were washed twice with sterile
PBS and fixed with 4% paraformaldehyde (PFA) at 25°C for 2 h, then washed in PBS and
permeabilized with Triton X-100 (0.1% in PBS, 10 min at 25°C), and blocked in 5% bovine
serum albumin. After overnight incubation with OmpA antibody, the cells were incubated
with secondary fluorescent antibody for 1 h and DAPI was used for nuclear counterstaining.
Fixed samples were observed under a confocal microscope (Nikon, A1R)

Cytosol extraction and LPS quantification

Subcellular cell fractions were extracted by a digitonin-based fractionation with modifications
(Ramsby & Makowski, 2011). Briefly, Caspase-4−/− HeLa or Caco2 cells post incubation with
indicated strain or purified OMVs were washed with sterile cold PBS 6 times on a platform
shaker on ice to remove attached bacteria or OMVs. Subsequently, 250 or 100 µL of 0.005%
digitonin extraction buffer was added to the bacteria-incubated cells in 12-well plates or
OMV-incubated cells in 24-well plates, respectively. After 8 min, the supernatants were
collected by centrifugation as the fraction containing cytosol, and the residuals were
resuspended in 250 or 100 µL of 0.1% CHAPS buffer, respectively, as the fraction containing
cell membrane, organelles and nucleus. Cytosol and residual fractions were subjected to the
Limulus Amebocyte Lysate (LAL) assay (Associates of Cape Cod, East Falmouth, MA, USA)
according to the manufacturer’s instructions to quantify LPS.

Mice and infections
C57BL/6J wild-type and Caspase-11−/− mice from Jackson Lab (6–8 weeks old) were bred under specific pathogen-free conditions. For oral infections, water and food were withdrawn 4 h before per os (p.o.) treatment with 20 mg/100 µL streptomycin per mouse. Afterward, animals were supplied with water and food ad libitum. At 20 h after streptomycin treatment, water and food were withdrawn again for 4 h before the mice were orally infected with 5 × 10^7 CFU/g of EIB202 or 0909I suspension in 200 µL PBS, or treated with sterile PBS (control). Thereafter, drinking water ad libitum was offered immediately and food 2 h post-infection. At the indicated times points, mice were sacrificed and the tissue samples from the intestinal tracts, kidneys, spleens, and livers were removed for analysis.

Bacterial counts and histopathology analysis

Collected tissues or organs were homogenized in PBS (pH 7.4) and the dilutions were plated on Deoxycholate Hydrogen Sulfide Lactose (DHL) agar plates for CFU counting. The cecum and colon were collected in 10% neutral-buffered formalin for histological analyses. Tissue pathology was blindly scored by two researchers using hematoxylin and eosin-stained sections (6 μm). The scoring criteria for submucosal edema, PMN infiltration into the lamina propria, goblet cell loss and epithelial integrity was conducted as previously described by Barthel et al. (Barthel et al., 2014). In addition, inflammatory focal infiltration (IFI) within cross-section was scored at five levels (0, none; 1, inflammation occurrence, but without apparent IFI; 2, with apparent IFI; 3, more than one to three IFIs; 4, with more than three IFIs). The cumulative scoring range was 0–17.

Immunohistochemistry of gut sections

Cryosections (8 μm) of OCT (Leica)-embedded tissue samples from the cecum and colon of each animal were mounted on glass slides (Thermo Scientific, Waltham, MA, USA), fixed with 4% paraformaldehyde (PFA) at at 25°C for 2 h, washed in PBS, and blocked with blocked in 5% bovine serum albumin for 15 min. Next, the cryosections were incubated overnight with monoclonal rat anti-GSDMDC1 (1:50). Secondary fluorescent antibodies were added for 1 h, washed with PBS, TRITC phalloidin (Yeasen, Shanghai, China) was added for
30 min to counterstain actin, and DAPI was used for nuclear counterstaining. Fixed samples were observed under a confocal microscope (Nikon, A1R).

Mucosal and serum cytokine measurements

Cecal and colonic tissues were removed from mice 24 h after infection with *E. tarda* strains. Tissues were washed free of luminal contents and then incubated in DMEM (supplemented with penicillin and streptomycin at 1% and streptomycin at 1 mg/mL) for 6 h, and the supernatants, along with the serum samples, were collected for IL-18 detection by ELISA following the manufacturer’s protocols.

Antibodies

Rat anti-GSDMDC1 (1:50; sc-393656; Santa Cruz Biotechnology, Dallas, TX, USA) was used for immunohistochemistry of mice gut sections. Rabbit anti-*E. tarda* OmpA polyclonal antibody (1:500; custom-made; Genscript Biotech, Piscataway, NJ, USA), rabbit anti-*E. tarda* EthA polyclonal antibody (1:1000; custom-made; Genscript), and mouse anti-RNAP monoclonal antibody (1:5000; Santa Cruz Biotechnology) were used for western blotting or immunofluorescence.

References

Aldick T, Bielaszewska M, Zhang W, Brockmeyer J, Schmidt H, Friedrich AW, Kim KS, Schmidt MA, Karch H (2007) Hemolysin from Shiga toxin-negative Escherichia coli O26 strains injures microvascular endothelium. *Microbes Infect* 9: 282-290

Bielaszewska M, Aldick T, Bauwens A, Karch H (2014) Hemolysin of enterohemorrhagic Escherichia coli: structure, transport, biological activity and putative role in virulence. *Int J Med Microbiol* 304: 521-529

Burgos YK, Pries K, Pestana DCA, Beutin L (2009) Characterization of the alpha-haemolysin determinant from the human enteropathogenic Escherichia coli O26 plasmid pEO5. *Fems Microbiol Lett* 292: 194-202

Dhakal BK, Mulvey MA (2012) The UPEC pore-forming toxin alpha-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways.
Ramsby M, Makowski G (2011) Differential detergent fractionation of eukaryotic cells. *Cold Spring Harb Protoc* 2011: t5592

Schmidt H, Beutin L, Karch H (1995) Molecular analysis of the plasmid-encoded hemolysin of *Escherichia coli* O157:H7 strain EDL 933. *Infect Immun* 63: 1055-1061

van Zwicht BS, Crone MR, van Lith JM, Rijnders ME (2016) Group based prenatal care in a low-and high risk population in the Netherlands: a study protocol for a stepped wedge cluster randomized controlled trial. *BMC Pregnancy Childbirth* 16: 354
Chen et al., Figure 1
Chen et al., Figure 4
Chen et al., Figure 6
