1. Introduction

Let G be a finite group and k a field of characteristic p. Let $C^*(BG;k)$ be the cochains on the classifying space BG. Using the machinery of Elmendorf, Kříž, Mandell and May [8], one can regard $C^*(BG;k)$ as a strictly commutative S-algebra over the field k. The derived category $D(C^*(BG;k))$ has thus a structure of a tensor triangulated category via the left derived tensor product $-\otimes L C^*(BG;k) -$. The unit for the tensor product is $C^*(BG;k)$.

In this paper we apply techniques and results from [3–6] to classify the localising subcategories of $D(C^*(BG;k))$. More precisely, there is a notion of stratification for triangulated categories via the action of a graded commutative ring which implies that the localising subcategories are parameterised by sets of homogeneous prime ideals [4]. For $D(C^*(BG;k))$ we use the natural action of the endomorphism ring of the tensor identity which is isomorphic to the cohomology algebra $H^*(G,k)$ of the group G.

Theorem 1.1. The derived category $D(C^*(BG;k))$ is stratified by the ring $H^*(G,k)$. This yields a one to one correspondence between the localising subcategories of $D(C^*(BG;k))$ and subsets of the set of homogeneous prime ideals of $H^*(G,k)$.

The research of the second author was undertaken during a visit to the University of Bielefeld, supported by a research prize from the Humboldt Foundation, and by NSF grant DMS 0903493.

E-mail addresses: iyengar@math.unl.edu (S.B. Iyengar), hkrause@math.uni-bielefeld.de (H. Krause).
It is proved in [6] that there is an equivalence of tensor triangulated categories between $D(C^*(BG; k))$ and the localising subcategory of $K(K\text{ln}kG)$ generated by the tensor identity. Here, $K(K\text{ln}kG)$ is the homotopy category of complexes of injective (= projective) kG-modules, studied in [6,9].

The main theorem of [5] states that $K(K\text{ln}kG)$ is stratified as a tensor triangulated category by $H^*(G, k)$. Theorem 1.1 is a consequence of a more general result concerning tensor triangulated categories, which is described below.

Let $(T, \otimes, \mathbb{1})$ be a compactly generated tensor triangulated category, as described in [3, §8], and R a graded commutative Noetherian ring acting on T via a homomorphism $R \to \text{End}_T^*(\mathbb{1})$. In this case, for each homogeneous prime ideal p of R there exists a local cohomology functor $\Gamma_p: T \to T$; see [3]. The support of an object X in T is then defined to be

$$\text{supp}_R X = \{ p \in \text{Spec} R \mid \Gamma_p X \neq 0 \}.$$

The condition that T is stratified by the action of R means that assigning a subcategory S of T to its support

$$\text{supp}_R S = \bigcup_{X \in S} \text{supp}_R X$$

yields a bijection between tensor ideal localising subcategories of T and subsets of the homogeneous prime ideal spectrum $\text{Spec} R$ contained in $\text{supp}_T T$; see [4, Theorem 4.2]. Theorem 1.1 is thus a special case of the result below that relates tensor ideal localising subcategories of T and the localising subcategories of $\text{Loc}_T(\mathbb{1})$, the localising subcategory of T generated by the tensor unit. We note that $\text{Loc}_T(\mathbb{1})$ is a compactly generated tensor triangulated category in its own right and that R acts on it as well.

Theorem 1.2. Suppose that the Krull dimension of R is finite. If T is stratified by R as a tensor triangulated category, then so is $\text{Loc}_T(\mathbb{1})$, and there is a bijection

$$\begin{align*}
\{ \text{Tensor ideal localising subcategories of } T \} & \sim \{ \text{Localising subcategories of } \text{Loc}_T(\mathbb{1}) \}.
\end{align*}$$

It assigns each tensor ideal localising subcategory S of T to $S \cap \text{Loc}_T(\mathbb{1})$.

Remark 1.3. The theorem is not true without the assumption that T is stratified by R. For example, let T be the derived category of quasi-coherent sheaves on the projective line \mathbb{P}^1. The tensor unit is \mathcal{O}. In this example there are no proper localising subcategories of $\text{Loc}_T(\mathcal{O})$ since $\text{End}_T^*(\mathcal{O}) = k$, while there are many tensor ideal localising subcategories of T.

Remark 1.4. The assumption that the Krull dimension of R is finite is artificial, and is used only to ensure that for each $X \in T$ and $p \in \text{Spec} R$ the object $\Gamma_p X$ belongs to $\text{Loc}_T(X)$. One can replace this condition by, for instance, the assumption that T arises as the homotopy category of a Quillen model category [10, §6].

2. Localising subcategories of $\text{Loc}_T(\mathbb{1})$

In this section T is a triangulated category with set-indexed coproducts and the tensor product \otimes provides a symmetric monoidal structure with unit $\mathbb{1}$ on T, which is exact in each variable and preserves set-indexed coproducts.

The proof of Theorem 1.2 is based on a sequence of elementary lemmas. The first one describes the tensor ideal localising subcategory of T which is generated by a class C of objects; we denote this by $\text{Loc}_{C^\otimes}(T)$.

Lemma 2.1. Let C be a class of objects of T. Then

$$\text{Loc}_{C^\otimes}(T) = \text{Loc}_T(\{ X \otimes Y \mid X \in C, Y \in T \}).$$

Proof. Set $S = \text{Loc}_T(\{ X \otimes Y \mid X \in C, Y \in T \})$. It suffices to show that S is tensor ideal. This means that $FS \subseteq S$ for each tensor functor $F = - \otimes Y$, which is an immediate consequence of Lemma 2.2 below. □

Lemma 2.2. Let $F: U \to V$ be an exact functor between triangulated categories that preserves set-indexed coproducts. If C is a class of objects of U, then

$$F \text{ Loc}_U(C) \subseteq \text{Loc}_V(FC).$$

Proof. The preimage $F^{-1} \text{ Loc}_V(FC)$ is a localising subcategory of U containing C. Thus it contains $\text{Loc}_U(C)$, and one gets

$$F \text{ Loc}_U(C) \subseteq FF^{-1} \text{ Loc}_V(FC) \subseteq \text{Loc}_V(FC).$$
Lemma 2.3. Let \(\Gamma : T \to T \) be a colocalisation functor that preserves set-indexed coproducts. Then for any \(X \in T \) and \(Y \in \text{Loc}_T(\mathbb{1}) \), there is a natural isomorphism
\[
\Gamma X \otimes Y \sim \Gamma (X \otimes Y).
\]

Remark 2.4. There is an analogous result for a localisation functor \(L : T \to T \) that preserves set-indexed coproducts: For any \(X \in T \) and \(Y \in \text{Loc}_T(\mathbb{1}) \), there is a natural isomorphism \(L(X \otimes Y) \sim L(X \otimes Y) \).

Proof of Theorem 1.2. A colocalisation functor \(\Gamma \) comes with a natural morphism \(\Gamma X \to X \). Tensoring this with an object \(Y \in \text{Loc}_T(\mathbb{1}) \) gives a morphism \(\Gamma X \otimes Y \to X \otimes Y \) that factors through the natural morphism \(\Gamma (X \otimes Y) \to X \otimes Y \). Here, one uses that \(\Gamma X \otimes Y \) belongs to \(\Gamma T \), since the objects \(Y' \in T \) with \(\Gamma X \otimes Y' \in \Gamma T \) form a localising subcategory containing \(\mathbb{1} \). The induced morphism \(\phi_Y : \Gamma X \otimes Y \to \Gamma (X \otimes Y) \) is an isomorphism. To see this, observe that the objects \(Y' \in T \) such that \(\phi_Y \) is an isomorphism form a localising subcategory containing \(\mathbb{1} \).

Proposition 2.5. Suppose that the unit \(\mathbb{1} \) is compact in \(T \) and let \(\Gamma : T \to \text{Loc}_T(\mathbb{1}) \) denote the right adjoint of the inclusion \(\text{Loc}_T(\mathbb{1}) \to T \). If \(S \) is a localising subcategory of \(\text{Loc}_T(\mathbb{1}) \), then
\[
\text{Loc}_T^\otimes(S) \cap \text{Loc}_T(\mathbb{1}) = \Gamma(\text{Loc}_T^\otimes(S)) = S.
\]

Proof. We verify each of the following inclusions
\[
S \subseteq \text{Loc}_T^\otimes(S) \cap \text{Loc}_T(\mathbb{1}) \subseteq \Gamma(\text{Loc}_T^\otimes(S)) \subseteq S.
\]
The first one is clear. Composing the functor \(\Gamma \) with the inclusion \(\text{Loc}_T(\mathbb{1}) \to T \) yields a colocalisation functor that preserves set-indexed coproducts, since \(\mathbb{1} \) is compact. For an object \(X \) in \(\text{Loc}_T^\otimes(S) \cap \text{Loc}_T(\mathbb{1}) \), we have \(\Gamma X \cong X \). This gives the second inclusion. Applying Lemma 2.3 together with the description of \(\text{Loc}_T^\otimes(S) \) from Lemma 2.1 yields the third inclusion.

Corollary 2.6. Suppose that the unit \(\mathbb{1} \) is a compact object in \(T \). Assigning each localising subcategory \(S \) of \(\text{Loc}_T(\mathbb{1}) \) to \(\text{Loc}_T^\otimes(S) \) gives a bijection
\[
\left\{ \text{Localising subcategories } \text{of } \text{Loc}_T(\mathbb{1}) \right\} \sim \left\{ \text{Tensor ideal localising subcategories of } T \text{ generated by objects from } \text{Loc}_T(\mathbb{1}) \right\}.
\]

Proof. The inverse map sends \(U \subseteq T \) to \(U \cap \text{Loc}_T(\mathbb{1}) \).

We are now ready to prove Theorem 1.2. Note that in this \(T \) is a compactly generated tensor triangulated category, which entails a host of additional requirements; see [3, §8] for a list.

Proof of Theorem 1.2. It follows from Proposition 2.5 that the assignment
\[
S \mapsto \text{Loc}_T^\otimes(S)
\]
is an injective map from the localising subcategories of \(\text{Loc}_T(\mathbb{1}) \) to the tensor ideal localising subcategories of \(T \). In general, it is not bijective, as the example of Remark 1.3 shows. However, since \(T \) is stratified by \(R \) as a tensor triangulated category, it follows from [4, §7] that each tensor ideal localising subcategory is generated by a set of objects of the form \(\Gamma_p \mathbb{1} \). Since \(R \) has finite Krull dimension, [4, Theorem 3.4] yields that \(\Gamma_p \mathbb{1} \) is in \(\text{Loc}_T(\mathbb{1}) \). Therefore, given a tensor ideal localising subcategory \(U \) of \(T \), the localising subcategory
\[
U' = \text{Loc}_T((\Gamma_p \mathbb{1} \mid p \in \text{Supp}_R U)) \subseteq \text{Loc}_T(\mathbb{1})
\]
satisfies \(\text{Loc}_T^\otimes(U') = U \). This proves the surjectivity of the assignment. Moreover, we have shown that each localising subcategory of \(\text{Loc}_T(\mathbb{1}) \) is generated by objects of the form \(\Gamma_p \mathbb{1} \), so \(\text{Loc}_T(\mathbb{1}) \) is stratified by the action of \(R \); see [4, Theorem 4.2].

3. The cohomological nucleus

Let \(T(\otimes, \mathbb{1}) \) be a compactly generated tensor triangulated category and let \(R \) be a graded commutative Noetherian ring acting on \(T \) via a homomorphism \(R \to \text{End}_T(\mathbb{1}) \). Suppose in addition that \(R \) has finite Krull dimension.

We define the cohomological nucleus of \(T \) as the set of homogeneous prime ideals \(p \) of \(R \) such that there exists an object \(X \in T \) satisfying \(\text{Hom}_T(\mathbb{1}, X) = 0 \) and \(\Gamma_p X \neq 0 \). This definition is motivated by work of Benson, Carlson, and Robinson in the context of modular group representations [2].

For \(p \) in \(\text{Spec } R \) consider the tensor ideal localising subcategory
Proposition 3.1. Let \(p \) be a homogeneous prime ideal of \(R \). The following conditions are equivalent:

1. Every object \(X \) in \(T \) with \(\text{Hom}_\Gamma^1(\mathbb{1}, X) = 0 \) satisfies \(I_p X = 0 \).
2. One has \(\text{Loc}_T(I_p \mathbb{1}) = I_p T \).
3. Every localising subcategory of \(I_p T \) is a tensor ideal of \(T \).

Proof. The Krull dimension of \(R \) is finite, so \(I_p X \) is in \(\text{Loc}_T(X) \) for each \(X \) in \(T \), by [4, Theorem 3.4]. This fact is used without further comment.

(1) \(\Rightarrow \) (2): Set \(S = \text{Loc}_T(I_p \mathbb{1}) \). Note that \(S \subseteq I_p T \); we claim that equality holds. Indeed, \(S \subseteq \text{Loc}_T(\mathbb{1}) \) and also \(\text{Loc}_\Gamma^0(S) = I_p T \), since \(I_p = I_p \mathbb{1} \otimes \mathbb{1} \). Thus, for any \(X \) in \(I_p T \) from Proposition 2.5 one gets an exact triangle \(G X \rightarrow X \rightarrow X' \rightarrow \) with \(G X \in S \) and \(\text{Hom}_\Gamma^0(\mathbb{1}, X) = 0 \). Then (1) implies \(X' = 0 \) and hence \(X \in S \).

(2) \(\Rightarrow \) (3): Let \(S \) be a localising subcategory of \(I_p T \). Using (2) and the fact that \(I_p T \) is a tensor ideal of \(T \), one has \(\text{Loc}_\Gamma^0(S) \subseteq \text{Loc}_\Gamma(\mathbb{1}) \). Then it follows, again from Proposition 2.5, that \(S \) is a tensor ideal of \(T \).

(3) \(\Rightarrow \) (1): Assume \(\text{Hom}_\Gamma^1(\mathbb{1}, X) = 0 \); then \(\text{Hom}_\Gamma^1(\mathbb{1}, I_p X) = 0 \), as \(\mathbb{1} \) is compact. Condition (3) implies that \(\text{Loc}_T(I_p \mathbb{1}) = I_p T \). Thus \(I_p X \) belongs to \(\text{Loc}_T(I_p \mathbb{1}) \) and therefore also to \(\text{Loc}_T(X) \). So one obtains \(\text{Hom}_\Gamma^1(I_p X, I_p X) = 0 \), which implies \(I_p X = 0 \). □

Consider as an example for \(T \) the stable module category \(\text{StMod}kG \) of a finite group \(G \) with the canonical action of \(R = H^\ast(G, k) \). We refer to \([1,2]\) for the discussion of two variations of the nucleus, namely the group theoretic and the representation theoretic nucleus. There it is shown that \(\text{Loc}_T(\mathbb{1}) = T \) if and only if the centraliser of every element of order \(p \) in \(G \) is \(p \)-nilpotent and every block is either principal or semisimple, where \(p \) denotes the characteristic of the field \(k \).

It is convenient to define for any class \(C \) of objects of \(T \)

\[
\text{C}^\perp = \{ Y \in T \mid \text{Hom}_\Gamma^0(X, Y) = 0 \text{ for all } X \in C \}, \\
\uparrow C = \{ X \in T \mid \text{Hom}_\Gamma^0(X, Y) = 0 \text{ for all } Y \in C \}.
\]

Now let \(S = \text{Loc}_T(\mathbb{1}) \). The representation theoretic nucleus is by definition

\[
\bigcup_{X \in \uparrow S \cap T} \text{supp}_R X.
\]

Clearly, this is contained in the cohomological nucleus. It is a remarkable fact that the representation theoretic nucleus is non-empty if \(S \neq \emptyset \); this is proved in [1,2]. Moreover, Question 13 of [7] asks whether \(S = \uparrow(S^\perp \cap T) \). Note that \(S = \uparrow(S^\perp) \) follows from general principles.

Acknowledgements

It is a pleasure to thank Greg Stevenson for helpful comments on this work.

References

[1] D.J. Benson, Cohomology of modules in the principal block of a finite group, New York J. Math. 1 (1994/1995) 196–205, electronic.
[2] D.J. Benson, J.F. Carlson, G.R. Robinson, On the vanishing of group cohomology, J. Algebra 131 (1) (1990) 40–73.
[3] D.J. Benson, S.B. Iyengar, H. Krause, Local cohomology and support for triangulated categories, Ann. Scient. Éc. Norm. Sup. (4) 41 (2008) 575–621.
[4] D.J. Benson, S.B. Iyengar, H. Krause, Stratifying triangulated categories, J. Topol. 4 (2011) 641–666.
[5] D.J. Benson, S.B. Iyengar, H. Krause, Stratifying modular representations of finite groups, Ann. of Math. 174 (2011), in press.
[6] D.J. Benson, H. Krause, Complexes of injective \(kG \)-modules, Algebra Number Theory 2 (2008) 1–30.
[7] J.F. Carlson, The thick subcategory generated by the trivial module, in: Infinite Length Modules, Bielefeld, 1998, in: Trends in Mathematics, Birkhäuser, Basel, 2000, pp. 285–296.
[8] A.D. Elmendorf, I. Kříž, M.A. Mandell, J.P. May, Rings, Modules and Algebras in Stable Homotopy Theory, Surveys and Monographs, vol. 47, American Mathematical Society, 1996.
[9] H. Krause, The stable derived category of a Noetherian scheme, Compos. Math. 141 (2005) 1128–1162.
[10] G. Stevenson, Support theory via actions of tensor triangulated categories, arXiv:1105.4692v1.