Serum paraoxonase-1 activity is inversely related to free thyroxine in euthyroid subjects: The PREVEND Cohort Study

Lynnda J. N. van Tienhoven-Wind1 | Eke G. Gruppen1 | Richard W. James2 | Stephan J. L. Bakker1 | Rijk O. B. Gans1 | Robin P. F. Dullaart1

1Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
2Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland

Abstract
Background: Low-normal thyroid function within the euthyroid range has been suggested to enhance atherosclerosis susceptibility. Paraoxonase-1 (PON-1) may protect against atherosclerotic cardiovascular disease development by attenuating oxidative stress. We evaluated relationships of PON-1 with thyroid stimulating hormone (TSH), free T4, free T3, lipids and apolipoprotein (apo)A-I in euthyroid subjects, and assessed whether such relationships are modified in the context of the metabolic syndrome (MetS).

Materials and methods: Serum PON-1 activity (arylesterase activity), TSH, free T4, free T3, lipids and apoA-I was measured in 2206 euthyroid subjects (aged 28-75 years; 1138 men (age 49 ± 13 years) and 1068 women (age 46 ± 12 years), recruited from the general population (PREVEND cohort).

Results: In age- and sex-adjusted analysis, PON-1 activity (divided into tertiles) was positively related to TSH (β = -0.045, P = .036) and inversely to free T4 (β = -0.042, P = .050) but not to free T3 (β = -0.027, P = .20). PON-1 activity was positively related to total cholesterol, non-HDL cholesterol and triglycerides, as well as to HDL cholesterol and apoA-I (P < .01 to <.001). The inverse relationship of PON-1 activity with free T4 remained present after adjustment for lipids and other potential confounders (β = -0.065, P = .002), but the positive relationship with TSH lost significance (β = 0.034, P = .11). The inverse relationship of PON-1 activity with free T4 was not different in subjects with vs without MetS (P = .94), nor modified by the presence of its individual components (P ≥ .22 for each).

Conclusions: Serum PON-1 activity is inversely associated with free T4 in euthyroid subjects, suggesting that low-normal thyroid function may affect PON-1 regulation.

KEYWORDS
free thyroxine, high-density lipoproteins, metabolic syndrome, paraoxonase-1, thyroid function

1 | INTRODUCTION

Low-normal thyroid function, as indicated by a higher thyroid stimulating hormone (TSH) or lower thyroid hormone levels within the euthyroid reference range, may contribute to the development of atherosclerotic cardiovascular disease (CVD).1–4 The mechanisms responsible for the association of (subclinical) atherosclerosis with low-normal thyroid function...
function are still incompletely understood. Low-normal thyroid function is associated with a modest increase in plasma total cholesterol, low-density lipoprotein (LDL) cholesterol and triglycerides.4,7 Low-normal thyroid function may also attenuate high-density lipoproteins (HDL) function, such as its ability to protect against oxidative stress.4,8

Accumulating evidence supports the hypothesis that systemic oxidative stress, as at least in part reflected by enhanced oxidative modification of LDL, may contribute to the development of atherosclerosis.9-11 In this context, it is relevant that LDL oxidation in vitro is exaggerated in both hypothyroidism and hyperthyroidism.12,13 Moreover, increased circulating oxidized LDL levels have been demonstrated in euthyroid subjects with higher TSH levels.14 Paraoxonase-1 (PON-1) is a HDL-associated hydrolytic enzyme with important anti-oxidative properties.15 PON-1 hydrolyzes lipid peroxides, thereby preventing their accumulation in LDL particles.15,16 Studies in rodent models and humans have suggested that the anti-atherogenic effects of the HDL fraction are to a considerable extent attributable to PON-1 activity.16 Paraoxonase-1 (PON-1) activity has been shown to be impaired in patients with metabolic syndrome (MetS), type 2 diabetes mellitus (T2DM) and hypercholesterolaemia.15,17-19 Furthermore, lower serum PON-1 activity may predict increased risk of coronary events,20,21 although the association of PON-1 activity with increased CVD risk was not independent of HDL cholesterol.22

The effect of thyroid dysfunction on serum PON-1 activity has only been determined in a limited number of studies.23-27 Remarkably, PON-1 activity was found to be impaired in both hypothyroidism and hyperthyroidism.23 In addition, PON-1 activity was decreased in (subclinical) hypothyroidism in some,24,25 but not in other studies.26,28 No data are currently available concerning the association of serum PON-1 activity in the context of variations in thyroid hormone levels within the euthyroid range.

Against this background, we performed this study to evaluate the relationships of serum PON-1 activity with thyroid function in euthyroid subjects. In view of decreased PON-1 activity in MetS15 and potential alterations in thyroid hormones in MetS,4 we also determined the extent to which such a relationship is modified by the presence of MetS and its individual components.

2 | SUBJECTS AND METHODS

2.1 | Subjects

Reporting of the study conforms to STROBE (STrengthening the Reporting of OBServational studies in Epidemiology) statement along with references to STROBE statement and the broader EQUATOR guidelines.29

The study population consisted of a random subset of participants of the PREVEND (Prevention of Renal and Vascular End Stage Disease) cohort, aged 28-75 years, living in the city of Groningen, the Netherlands. Participants were predominantly of Caucasian origin (94.2%). The protocol of this study has been described in detail elsewhere.30,31 The local medical ethical committee approved the study; all participants gave written informed consent. For the current analysis, we excluded subjects not being euthyroid, subjects using thyroid hormones, antithyroid drugs, amiodarone and lithium carbonate. Euthyroidism was defined as TSH, free T\textsubscript{4} and free T\textsubscript{3} levels each within the respective reference range as provided by the manufacturer (see Laboratory Analyses). We additionally excluded subjects with positive antithyroid peroxidase autoantibodies (cut-off value: see Laboratory Analyses). Information on self-reported medication use was combined with information from a pharmacy-dispensing registry, which has complete information on drug of >95% of subjects in the PREVEND study. Applying these selection criteria, 2206 subjects were eligible for the current analyses. The presence of a self-reported history of myocardial infarction, percutaneous coronary intervention, coronary artery bypass surgery, stroke or the diagnosis of narrowing of one or both carotid arteries was defined as CVD. Type 2 diabetes mellitus (T2DM) was defined as a fasting serum glucose concentration >7.0 mmol/L, a nonfasting plasma glucose concentration >11.1 mmol/L, a self-report of a physician diagnosis or the use of glucose-lowering drugs. To categorize subjects with the metabolic syndrome (MetS), 3 or more of the following criteria were required: waist circumference >102 cm for men and >88 cm for women, hypertension (blood pressure ≥ 130/85 mm Hg or use of antihypertensive drugs), fasting plasma triglycerides ≥ 1.70 mmol/L, fasting glucose ≥ 5.6 mmol/L (or use of glucose-lowering drugs) and HDL cholesterol < 1.03 mmol/L for men and < 1.29 mmol/L for women applying NCEP ATP III criteria.32

Patient characteristics including age, sex, alcohol use, smoking status, body mass index (BMI), waist circumference, systolic and diastolic blood pressure were obtained. The participants were instructed to let venous blood samples be drawn after an overnight fast for measurement of, glucose, total cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, TSH, free T\textsubscript{4} and free T\textsubscript{3} and PON-1 activity. Urinary albumin excretion (UAE) was documented as the mean of two 24-hour urine collections. Body mass index (BMI) was defined as weight (kg) by height (m) squared. Waist circumference (WC) was measured on bare skin between the 10th rib and iliac crest. Alcohol consumption was recorded with one drink being assumed to contain 10 g of alcohol. Smoking was categorized into current, former and never. Estimated glomerular filtration rate (eGFR) was calculated with the use of the
combined creatinine-cystatin C-based Chronic Kidney Disease Epidemiology Collaboration equation.33

2.2 | Laboratory analyses

Heparinized plasma samples were stored at \(-80^\circ\text{C}\) until analyses. Sera were stored at \(-80^\circ\text{C}\) until analyses. Serum TSH (Architect; Abbott Laboratories, Abbott Park, IL, USA; reference range 0.35-4.94 mU/L), free T\(_4\) (AxSYM; Abbott Laboratories; reference range 9.14-23.81 pmol/L) and free T\(_3\) (AxSYM; Abbott Laboratories; reference range; 2.23-5.35 pmol/L) were measured by microparticle enzyme immunoassays. Antithyroid peroxidase autoantibodies were determined using commercially available automated enzyme-linked immunoassays (Abbott Laboratories; kit number 5F57). Antithyroid peroxidase autoantibodies were considered positive using a cut-off value as indicated by the supplier (\(\geq 12\) kU/L).

Serum PON-1 enzymatic activity was measured as its arylesterase activity, that is, as the rate of hydrolysis of phenyl acetate into phenol, as described.34 The interassay CV was 8\%. arylesterase activity, measured with this assay, is positively correlated with PON-1 enzymatic activity towards paraoxon as well as with PON-1 mass.35

Total serum cholesterol and plasma glucose were measured using Kodak Ektachem dry chemistry (Eastman Kodak, Rochester, NY, USA). Serum triglycerides were measured enzymatically. High-density lipoproteins (HDL) cholesterol was measured with a homogeneous method (direct HDL, AEROSET system; Abbott Laboratories; no. 7D67). Non-HDL cholesterol was calculated as the difference between total cholesterol and HDL cholesterol. Serum apoA-I was determined by nephelometry applying commercially available reagents for Dade Behring nephelometer systems (BN II; Dade Behring, Marburg, Germany; apoA-I test kit, code no. OUED).

Serum creatinine was measured by an enzymatic method on a Roche Modular analyser (Roche Diagnostics, Mannheim, Germany). Serum cystatin C was measured by Gentian cystatin C immunoassay (Gentian AS, Moss, Norway) on a Modular analyser (Roche Diagnostics). Urinary albumin concentration was measured by nephelometry with a threshold of 2.3 mg/L (Dade Behring Diagnostic, Marburg, Germany).

2.3 | Statistical analyses

Data analysis was performed using IBM spss software (version 23.0, SPSS Inc. Chicago, IL, USA). Normally distributed data are given as mean \(\pm\) SD, and nonparametrically distributed data are presented as median (interquartile range). Categorical variables are given as percentages. Differences in PON-1 activity between men and women were determined by Mann-Whitney \(U\) test. Clinical and laboratory characteristics of the study population are presented according to sex-stratified tertiles of PON-1 activity. Differences in proportions of dichotomous variables across tertiles of PON-1 activity were determined by multinomial chi-square tests. Multivariable linear regression analyses, adjusted for age and sex, were used to test for linear trends between tertiles of PON-1 activity. Age- and sex-adjusted multivariable linear regression analyses were also used to determine the extent to which PON-1 activity (as continuous variable) was related to thyroid function parameters (TSH, free T\(_4\), free T\(_3\)) taking clinical and laboratory covariates into account. Paraoxonase-1 (PON-1) activity, TSH, triglycerides and UAE were natural logarithm (loge) transformed to achieve approximately normal distributions. Interaction terms were calculated as the product term of TSH or free T\(_4\) with sex or the presence of MetS or its component of interest. To account for outliers, the individual TSH or free T\(_4\) values were centred to the mean by subtracting the group mean value from individual values.\textsupersert{36,37} Interaction terms were considered statistically significant at \(P\)-values <.10, as recommended by Selvin.\textsupersert{38} Otherwise, two-sided \(P\)-values <.05 were considered significant.

3 | RESULTS

Mean age of the 2206 participants was 48 \(\pm\) 13 years. A total of 1138 participants (52.6\%) were men (age 49 \(\pm\) 13 years) and 1068 (47.4\%) were women (age 46 \(\pm\) 12 years). Serum PON-1 activity amounted to 56.1 (46.1-68.1) U/L in the whole population and was 60.0 (46.7-70.5) U/L in women vs 54.9 (45.8-66.0) U/L in men (\(P = .002\)). Clinical and laboratory characteristics of the study population are, therefore, shown according to sex-stratified tertiles of PON-1 activity (Table 1). One hundred two participants (4.6\%) reported a previous cardiovascular event, 65 subjects (2.9\%) had T2DM and 418 (19\%) subjects fulfilled the criteria for MetS. A history of CVD (\(P = .002\)) and the presence of MetS (\(P = .013\)) were more prevalent in subjects categorized in the lowest tertile of PON-1 activity, but diabetes status did not significantly vary according to the PON-1 categories (\(P = .096\)) (Table 1). Oral glucose-lowering drugs were used by 36 subjects, lipid-modifying drugs (mainly statins) by 113 participants and antihypertensives by 274 subjects. Oral contraceptives were used by 283 women. The use of oral glucose-lowering drugs (\(P < .002\), antihypertensives (\(P < .001\)) was more prevalent in the subjects belonging to the lowest tertile of PON-1 activity, whereas the use of oral contraceptives was more prevalent in the women belonging to the highest tertile of PON-1 activity (\(P < .001\)) (data not
across tertiles of PON-1 activity (P = .17). Accordingly, serum PON-1 activity was lower in subjects using oral glucose-lowering drugs (45.9 [39.5-56.8 U/L] vs 56.2 [46.3-68.4] U/L, P < .001), in subjects using antihypertensives (52.6 [41.8-64.7 U/L] vs 56.7 [46.8-68.8 U/L], P < .001) and in women using oral contraceptives (62.9 [52.2-76.7 U/L] vs 55.2 [45.7-66.7 U/L], P < .001) but was not different in subjects using lipid-lowering drugs compared to those who did not (56.5 [46.6-64.2 U/L] vs 56.1 [46.1-67.5] U/L, P = .10). Serum PON-1 activity was inversely related to age. In age- and sex-adjusted analysis, PON-1 activity was positively related to systolic and diastolic blood pressure (Table 1). Paraoxonase-1 (PON-1) activity was unrelated to BMI, waist circumference, glucose, eGFR and UAE, and did not vary significantly according to smoking status and alcohol consumption. Additionally, PON-1 activity was positively related to total cholesterol, non-HDL cholesterol, triglycerides, as well as to HDL cholesterol and apoA-I (Table 1). Of note, in age- and sex-adjusted analysis, PON-1 activity was positively related to TSH and inversely to free T4, but not to free T3 (Table 1). Figure 1 shows TSH, free T4 and free T3 levels according to sex-stratified tertiles of PON-1 activity. There were no interactions of sex with TSH, free T4 or free T3 on PON-1 activity (P = .52 to P = .64; data not shown).

We then tested whether the relationships of PON-1 activity (as continuous variable) with TSH and free T4 remained present after adjustment for relevant clinical and laboratory covariates (Table 2). In age- and sex-adjusted multivariable linear regression analysis including free T4 and TSH together, PON-1 activity was positively associated with TSH and inversely with free T4 (Table 2, model 1). In analysis with free T4 and TSH together, there was no significant independent association of PON-1 activity with free T3 (β = −0.029, P = .18; data not shown). The inverse relationship of PON-1 activity with free T3 remained present after additional adjustment for non-HDL cholesterol, HDL cholesterol and triglycerides, although the positive relationship of PON-1 activity with TSH lost significance (Table 2, model 2). Likewise, PON-1 activity was inversely related to free T4 in an alternative model which included apoA-I instead of HDL cholesterol (β = −0.055, P = .01; data not shown). An inverse relationship of PON-1 activity with free T4 was also found after additional adjustment for systolic and diastolic blood pressure, UAE, eGFR, alcohol consumption, smoking, a previous history of cardiovascular disease and diabetes status (Table 2, model 3), and finally after further adjustment for oral glucose-lowering drugs, lipid-lowering medication, antihypertensives and oral contraceptives (Table 2, model 4). The inverse relationship of PON-1 activity with free T4 was not different in subjects with vs without MetS (P = .94), nor modified by the presence of its individual components (low HDL cholesterol: P = .58; elevated triglycerides: P = .96; enlarged waist circumference: P = .57; elevated blood pressure: P = .31; elevated glucose: P = .22).

Secondary analyses were performed after exclusion of subjects with a previous history of CVD and T2DM (n = 2051, Table 3, model 1), as well as after exclusion of subjects using oral glucose-lowering drugs, lipid-lowering drugs, antihypertensives and oral contraceptives (n = 1596, Table 3, model 2). In both analyses, PON-1 activity remained inversely associated with free T4 (β = −0.047 to −0.049, P = .035-.049) taking account of age, sex, non-HDL cholesterol, HDL cholesterol, triglycerides, systolic and diastolic blood pressure, alcohol consumption and smoking status (data not shown). In these analyses, PON-1 activity was also positively related to HDL cholesterol (β = 0.236-0.217, P < .001).

4 | DISCUSSION

In this large population-based study among strictly euthyroid subjects, we have shown to our knowledge for the first time that serum PON-1 activity is positively related to TSH and inversely to free T4 in age- and sex-adjusted analysis. In multivariable logistic regression analysis in which we included TSH, free T4 and free T3 together and adjusted for lipoproteins and other potentially important covariates, the inverse association of PON-1 activity with free T4 remained present. The inverse relationship of PON-1 activity with free T4 was not different between subjects with and without MetS nor modified by the presence of its individual components. Our current results are, therefore, in agreement with the hypothesis that variations in thyroid function within the euthyroid range may affect serum PON-1 activity.

In the interpretation of the results, it is relevant that serum PON-1 activity was assayed with phenyl acetate as substrate. Arylesterase activity, as measured with this type of assay, is widely used in large-scale studies and has the advantage of an approximately normal distribution, making it suitable for multivariable modelling. Moreover, PON-1 activity towards phenyl acetate is less variable between individuals compared to its activity towards paraoxon (overviewed in 18). As expected, PON-1 activity was positively related to HDL cholesterol and apoA-I. Its correlation with non-HDL cholesterol and triglycerides is probably explained by an association of PON-1 with very low-density lipoproteins which are able to act as a vector for its cellular secretion. Such relations of PON-1 activity with circulating lipoproteins together with the effect of low-normal thyroid function to increase plasma cholesterol and triglycerides underscores the necessity to adjust for.
Apo, apolipoprotein; BMI, body mass index; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; HDL, high-density lipoproteins; MetS, metabolic syndrome; T2DM, type 2 diabetes mellitus; UAE, urinary albumin excretion. β, standardized regression coefficient.
Data in mean ± SD or in median (interquartile range). For continuous variables, P-values for linear trend are adjusted for age and sex, except for age which was adjusted for sex only. Data with respect to smoking and alcohol consumption are missing in 10 (0.5%) and 11 (0.5%) of the subjects, respectively. Triglycerides, UAE and TSH are loge transformed. For dichotomous variables, P-values are by multinomial chi-square test.

Moreover, we excluded subjects with positive antithyroid peroxidase autoantibodies to avoid possible confounding of latent thyroid autoimmunity on inflammatory and oxidative stress as much as possible.25

Table 1: Clinical and laboratory characteristics in 2206 subjects according to sex-stratified tertiles of paraoxonase-1 (PON-1) activity

Sex-stratified tertiles of PON-1 activity (U/L)	1	2	3	
Men	19.7-48.8	48.9-62.2	62.2-130.7	
Women	17.0-50.2	50.2-65.1	65.2-119.3	
Participants, n	735	736	735	
Men, n (%)	379 (51.6)	380 (51.6)	379 (51.6)	
Women, n (%)	356 (48.4)	356 (48.4)	356 (48.4)	
Age (years)	49.8 ± 13.2	48.1 ± 12.6	45.7 ± 11.4	
BMI (kg/m²)	25.9 ± 4.3	26.1 ± 4.6	25.4 ± 3.9	
Waist circumference (cm)	87.8 ± 13.3	88.1 ± 13.5	86.3 ± 12.7	
Systolic blood pressure (mm Hg)	129 ± 20	129 ± 21	127 ± 18	
Diastolic blood pressure (mm Hg)	74 ± 9	74 ± 10	74 ± 10	
Alcohol	<10 g per day (%)	538 (73.6)	521 (71.2)	518 (70.8)
	≥10 g per day (%)	193 (26.4)	211 (28.8)	214 (29.2)
Smoking	Never (%)	188 (25.8)	221 (30.2)	221 (30.1)
	Former (%)	246 (33.7)	245 (33.5)	263 (35.8)
	Current (%)	296 (40.5)	266 (36.3)	250 (34.1)
Glucose (mmol/L)	4.6 ± 1.3	4.6 ± 1.1	4.5 ± 1.1	
Total cholesterol (mmol/L)	5.5 ± 1.14	5.6 ± 1.22	5.7 ± 1.12	
Non-HDL cholesterol (mmol/L)	4.2 ± 1.25	4.2 ± 1.31	4.3 ± 1.22	
HDL cholesterol (mmol/L)	1.28 ± 0.39	1.36 ± 0.40	1.42 ± 0.42	
Triglycerides (mmol/L)	1.14 (0.81-1.63)	1.12 (0.82-1.62)	1.16 (0.85-1.69)	
ApoA-I (g/L)	1.35 ± 0.32	1.40 ± 0.31	1.44 ± 0.33	
ApoB (g/L)	1.04 ± 0.35	1.04 ± 0.34	1.03 ± 0.33	
CVD (n, %)	46 (6.3)	38 (5.2)	18 (2.4)	
MetS (n, %)	161 (21.9)	140 (19.0)	117 (15.9)	
T2DM (n, %)	29 (3.9)	21 (2.9)	15 (2.0)	
eGFR (mL/min/1.73 m²)	95.1 (83.2-105.9)	97.3 (86.3-107.8)	98.7 (87.5-109.6)	
UAE (mg/24 h)	9.0 (6.1-17.2)	9.0 (6.2-16.9)	8.6 (6.1-15.7)	
TSH (mU/L)	1.28 (0.94-1.80)	1.29 (0.95-1.81)	1.39 (0.99-1.87)	
Free T₄ (pmol/L)	12.97 ± 1.83	12.93 ± 1.71	12.80 ± 12.8	
Free T₃ (pmol/L)	3.75 ± 0.64	3.72 ± 0.61	3.73 ± 0.62	

...as done in other reports.43,44
Inconsistent effects of thyroid function status on PON-1 activity have been reported so far.24-28 The inverse relation of PON-1 activity with free T4 as shown in the current study suggests that low-normal thyroid function could contribute to higher PON-1 activity, although it should be emphasized that this relationship was modest. The mechanisms responsible for this relationship are not yet known. It is unclear whether thyroid hormones are able to affect PON-1 gene expression. Paraoxonase-1 (PON-1) is down-regulated by interleukin-1 (IL-1) and tumour necrosis factor-\textgreek{a} (TNF-\textgreek{a}).45 Hypothyroidism may increase IL-1 and TNF-\textgreek{a},46 whereas higher levels of TNF-\textgreek{a} are also found in subjects with low-normal thyroid function.47 In addition, oxidized lipids are recognized to inhibit PON-1 activity.12,48,49 In this context, it is relevant that low-density lipoprotein (LDL) oxidation in vitro is exaggerated in both hypothyroidism and hyperthyroidism.12,13 Moreover, increased levels of oxidized LDL have been demonstrated in euthyroid subjects with high normal TSH levels.14 Taken together, these data14,45-47 make it unlikely that a higher PON-1 activity in relation to low-normal thyroid function is explained by thyroid hormone-mediated effects on IL-1 and TNF-\textgreek{a} or on (systemic) oxidative stress.

Given the inverse though modest relation of PON-1 activity with free T4, it seems plausible that other mechanisms than effects of PON-1 on oxidative stress defence could contribute to the previously reported enhanced oxidative stress in the context of low-normal thyroid function.14 It also seems unlikely that changes in PON-1 activity play a major role in an attenuated ability of HDL to protect against LDL oxidation in vitro in subjects with low-normal thyroid function,8 a read-out of HDL functionality which is closely related to PON-1 activity.50 In this regard, it is relevant that other factors affecting oxidative stress such as superoxide dismutase51 and circulating bilirubin levels43 are also affected by thyroid function. Of note, it has been demonstrated recently that the inverse relationship of bilirubin with free T4 is stronger in more insulin-resistant individuals43 and that the relationship of PON-1 activity with its activator, apoE, is impaired in subjects with MetS.40 For this reason, we also set out to determine whether the relationship of PON-1 activity was modified in the context of MetS. We found that the inverse relationship of PON-1 activity with free T4 was not modified by the presence of MetS nor by its individual components.

The regulation of PON-1 is dependent on many genetic and environmental factors. Regarding environmental factors, several animal and human studies have shown that dietary lipids can influence PON-1 activity.52-54 Furthermore, it has been reported that physically active subjects have higher PON-1 activity.55 A limitation of the present study is that detailed information on nutrient intake and data with respect to physical activity were not available. Statins may also increase PON-1 activity,56 although this has not been unequivocally reported.57 In the current report, PON-1 activity was not affected by the use of lipid-lowering drugs. However, PON-1 activity was inversely associated with the use of glucose-lowering medication in analysis in which we also adjusted for the presence of T2DM. We explain this finding by assuming that the use of glucose-lowering drugs preferentially labels diabetic patients with more severe hyperglycaemia, requiring medical drug treatment. Further, PON-1 activity was elevated in women who used oral contraceptives. Although little information is available on this issue, it seems consistent with

\begin{figure}
\begin{center}
\includegraphics[width=\textwidth]{figure1.png}
\end{center}
\caption{Thyroid stimulating hormone (TSH), and free T4 and free T3 levels according to sex-stratified tertiles of serum paraoxonase-1 (PON-1) activity. P-values for linear trend (adjusted for age and sex): TSH: \(P = .036 \), free T4: \(P = .050 \) and free T3: \(P = .20 \). Data are given in means and standard errors. TSH is logarithmically transformed.}
\end{figure}
some other data suggesting that PON-1 activity is higher in women taking oral contraceptives and may increase in response to ethinyl oestradiol and cyproterone acetate combination.58,59

Several other methodological aspects and limitations of our study need to be considered. We performed a cross-sectional study, so that conclusions regarding cause-effect relationships cannot be drawn with certainty. However, we are not aware of any data underscoring a physiological role of PON-1 itself in thyroid hormone regulation. In addition, owing to the observational nature of our study, residual confounding due to unmeasured confounders cannot be entirely ruled out. We performed secondary analyses after exclusion of subjects with a history of CVD and T2DM, and the use of glucose-lowering, lipid-lowering, antihypertensive medication and oral contraceptives. Reassuringly, these analyses showed the same inverse relationship of

\begin{table}[h!]
\centering
\caption{Multiple linear regression models demonstrating the independent association of free T\textsubscript{4} and TSH with paraoxonase-1 (PON-1) activity}
\begin{tabular}{|l|c|c|c|c|}
\hline
 & Model 1 & Model 2 & Model 3 & Model 4 \\
\hline
Age (years) & \(-0.141\) & \(<.001\) & \(-0.183\) & \(<.001\) & \(-0.160\) & \(<.001\) & \(-0.131\) & \(<.001\) \\
Sex (men vs women) & \(-0.050\) & \(0.18\) & \(-0.099\) & \(0.69\) & \(-0.005\) & \(0.85\) & \(0.029\) & \(0.276\) \\
Free T\textsubscript{4} (pmol/L) & \(-0.064\) & \(0.003\) & \(-0.067\) & \(<.001\) & \(-0.066\) & \(0.002\) & \(-0.0642\) & \(0.002\) \\
TSH (mU/L) & \(0.051\) & \(0.16\) & \(0.035\) & \(0.091\) & \(0.034\) & \(0.11\) & \(0.033\) & \(0.124\) \\
Non-HDL cholesterol (mmol/L) & \(0.095\) & \(<.001\) & \(0.089\) & \(0.001\) & \(0.097\) & \(<.001\) & \\
HDL cholesterol (mmol/L) & \(0.242\) & \(<.001\) & \(0.230\) & \(<.001\) & \(0.220\) & \(<.001\) & \\
Triglycerides (mmol/L) & \(0.116\) & \(<.001\) & \(0.121\) & \(<.001\) & \(0.103\) & \(<.001\) & \\
Systolic blood pressure (mm Hg) & & & \(-0.010\) & \(0.78\) & \(-0.005\) & \(0.878\) & \\
Diastolic blood pressure (mm Hg) & & & \(0.013\) & \(0.70\) & \(0.006\) & \(0.870\) & \\
eGFR (mL/min/1.73 m2) & & & \(0.029\) & \(0.28\) & \(0.030\) & \(0.271\) & \\
UAE (mg/24 h) & & & \(0.033\) & \(0.15\) & \(0.028\) & \(0.226\) & \\
CVD history (yes/no) & & & \(-0.021\) & \(0.34\) & \(-0.016\) & \(0.496\) & \\
Diabetes status (yes/no) & & & \(-0.031\) & \(0.15\) & \(0.039\) & \(0.22\) & \\
Alcohol consumption (< vs \(\geq 10\) g per day) & & & \(0.025\) & \(0.26\) & \(0.029\) & \(0.19\) & \\
Smoking (never, former, current) & & & \(-0.049\) & \(0.24\) & \(-0.050\) & \(0.23\) & \\
Glucose-lowering drugs & & & \(-0.089\) & \(0.004\) & & & \\
Lipid-lowering drugs & & & \(0.007\) & \(0.76\) & & & \\
Antihypertensives & & & \(-0.018\) & \(0.469\) & & & \\
Oral contraceptives & & & \(0.092\) & \(<.001\) & & & \\
\hline
\end{tabular}
\end{table}

b, standardized regression coefficient; eGFR, estimated glomerular filtration rate; HDL, high-density lipoproteins; UAE, urinary albumin excretion. Paraoxonase-1 (PON-1) activity, TSH, triglycerides and UAE are loge transformed. Alcohol consumption is categorized in per day. Smoking is categorized in never, former and current. Variables included in the models:
Model 1: age, sex, free T\textsubscript{4}, TSH.
Model 2: model 1 plus non-HDL cholesterol, HDL cholesterol and triglycerides.
Model 3: model 2 plus systolic and diastolic pressure, alcohol consumption, smoking, plus cardiovascular disease (CVD) history and diabetes status.
Model 4: model 3 plus glucose-lowering drugs, lipid-lowering medication, antihypertensives and oral contraceptives.

\begin{table}[h!]
\centering
\caption{Multivariable linear regression analyses demonstrating relationships of paraoxonase-1 (PON-1) activity with after exclusion of subjects with a history of cardiovascular disease and type 2 diabetes mellitus (n = 2051; model 1) or oral glucose-lowering drugs, lipid-lowering drugs, oral contraceptives and antihypertensives (n = 1596; model 2)}
\begin{tabular}{|l|c|c|c|c|}
\hline
 & Model 1 & Model 2 \\
\hline
Age & \(-0.161\) & \(<.001\) & \(-0.140\) & \(<.001\) \\
Sex (men vs women) & \(-0.011\) & \(0.67\) & \(-0.026\) & \(0.37\) \\
TSH & \(0.028\) & \(0.21\) & \(0.047\) & \(0.06\) \\
Free T\textsubscript{4} & \(-0.047\) & \(0.35\) & \(-0.049\) & \(0.049\) \\
\hline
\end{tabular}
\end{table}

b, standardized regression coefficient.
All models are adjusted for age, sex, non-high-density lipoprotein (HDL) cholesterol, HDL cholesterol, triglycerides, systolic blood pressure, diastolic blood pressure, alcohol consumption and smoking. PON-1 activity, TSH and triglycerides are loge transformed.

58,59
PON-1 activity with free T₄. Of further note, PON-1 enzymatic activity is minimal if samples stored frozen at -70°C.⁶⁰

In conclusion, this large population-based cohort study demonstrates for the first time that serum PON-1 activity is inversely associated with free T₄ in euthyroid subjects. It is conceivable that low-normal thyroid function may influence PON-1 regulation.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the services of the PRE-VEND study, contributing research centres, participating general practitioners and pharmacists and all the study participants.

DISCLOSURE

The authors have nothing to disclose.

AUTHOR CONTRIBUTIONS

LTW, EG, RJ, SB, RG and RD conceived and designed the study. LTW, EG and RD collected and analysed the data. LTW, EG and RD interpreted the data. LTW, EG, and RD drafted the manuscript. All authors have revised and approved the submitted manuscript.

ORCID

Lynnda J. N. van Tienhoven-Wind http://orcid.org/0000-0001-6471-7244
Robin P. F. Dullaart http://orcid.org/0000-0003-4520-1239

REFERENCES

1. Taylor PN, Razvi S, Pearce SH, Dayan CM. Clinical review: a review of the clinical consequences of variation in thyroid function within the reference range. J Clin Endocrinol Metab. 2013;98:3562-3571.
2. Dullaart RP, de Vries R, Roozendaal C, Kobold AC, Sluiter WJ. Carotid artery intima media thickness is inversely related to serum free thyroxine in euthyroid subjects. Clin Endocrinol (Oxf). 2007;67:668-673.
3. Zhang Y, Kim BK, Chang Y, et al. Thyroid hormones and coronary artery calcification in euthyroid men and women. Arterioscler Thromb Vasc Biol. 2014;34:2128-2134.
4. van Tienhoven-Wind LJ, Dullaart RP. Low-normal thyroid function and novel cardiometabolic biomarkers. Nutrients. 2015;7:1352-1377.
5. Roos A, Bakker SJ, Links TP, Gans RO, Wolfenbuttel BH. Thyroid function is associated with components of the metabolic syndrome in euthyroid subjects. J Clin Endocrinol Metab. 2007;92:491-496.
6. Kim BJ, Kim TY, Koh JM, et al. Relationship between serum free T4 (FT4) levels and metabolic syndrome (MS) and its components in healthy euthyroid subjects. Clin Endocrinol. 2009;70:152-160.
7. Wang F, Tan Y, Wang C, et al. Thyroid-stimulating hormone levels within the reference range are associated with serum lipid profiles independent of thyroid hormones. J Clin Endocrinol Metab. 2012;97:2724-2731.
8. Triolo M, de Boer JF, Annema W, Kwakernaak AJ, Tietje UJ, Dullaart RP. Low normal free T4 confers decreased high-density lipoprotein antioxidative functionality in the context of hyperglycaemia. Clin Endocrinol (Oxf). 2013;79:416-423.
9. Shih DM, Gu L, Xia YR, et al. Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature. 1998;394:284-287.
10. Tward A, Xia YR, Wang XP, et al. Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. Circulation. 2002;106:484-490.
11. Soran H, Younis NN, Charlton-Menys V, Durrington P. Variation in paraoxonase-1 activity and atherosclerosis. Curr Opin Lipidol. 2009;20:265-274.
12. Sundaram V, Hanna AN, Koneru L, Newman HA, Falko JM. Both hypothyroidism and hyperthyroidism enhance low density lipoprotein oxidation. J Clin Endocrinol Metab. 1997;82:3421-3424.
13. Costantini F, Pierdomenico SD, De Cesare D, et al. Effect of thyroid function on LDL oxidation. Arterioscler Thromb Vasc Biol. 1998;18:732-737.
14. Ittermann T, Baumeister SE, Völzke H, et al. Are serum TSH levels associated with oxidized low-density lipoprotein? Results from the Study of Health in Pomerania. Clin Endocrinol (Oxf). 2012;76:526-532.
15. Deakin SP, James RW. Genetic and environmental factors modulating serum concentrations and activities of the antioxidant enzyme paraoxonase-1. Clin Sci (Lond). 2004;107:435-447.
16. Karabin SA, Lehner AN, Parthasarathy S, Santanam N. Oxidative inactivation of paraoxonase-implications in diabetes mellitus and atherosclerosis. Biochim Biophys Acta. 2005;1725:213-221.
17. Mackness MI, Harty D, Bhatnagar D, et al. Serum paraoxonase activity in familial hypercholesterolaemia and insulin-dependent diabetes mellitus. Atherosclerosis. 1991;86:193-199.
18. Dullaart RP, de Vries R, Sluiter WJ, Voorbij HA. High plasma C-reactive protein (CRP) is related to low paraoxonase-I (PON-1) activity independently of high leptin and low adiponectin in type 2 diabetes mellitus. Clin Endocrinol. 2009;70:221-226.
19. Fülöp P, Harangi M, Seres I, Paragh G. Paraoxonase-1 and adipokines: potential links between obesity and atherosclerosis. Chem Biol Interact. 2016;259:388-393.
20. Bhattacharyya T, Nicholls SJ, Topol EJ, et al. Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA. 2008;299:1265e76.
21. van Himbergen TM, van der Schouw YT, Voorbij HA, et al. Paraoxonase (PON1) and the risk for coronary heart disease and myocardial infarction in a general population of Dutch women. Atherosclerosis. 2008;199:408-414.
22. Kunutsor SK, Bakker SJL, James RW, Dullaart RPF. Serum paraoxonase-1 activity and risk of incident cardiovascular disease: the PREVEND study and meta-analysis of prospective population studies. *Atherosclerosis*. 2016;245:143-154.

23. Aziz F, Raissadeh F, Solati M, Etemadi A, Rahmani M, Arabi M. Serum paraoxonase 1 activity is decreased in thyroid dysfunction. *J Endocrinol Invest*. 2003;26:703-709.

24. Cebeci E, Alibaz-Oner F, Usta M, Yurdakul S, Erguney M. Evaluation of oxidative stress, the activities of paraoxonase and arylesterase in patients with subclinical hypothyroidism. *J Investig Med*. 2012;60:23-28.

25. Ates I, Altay M, Yilmaz FM, et al. The impact of levothyroxine sodium treatment on oxidative stress in Hashimoto’s thyroiditis. *Eur J Endocrinol*. 2016;174:727-734.

26. Sigal GA, Medeiros-Neto G, Vinagre JC, Diament J, Maranhão RC. Lipid metabolism in subclinical hypothyroidism: plasma kinetics of triglyceride-rich lipoproteins and lipid transfers to high-density lipoprotein before and after levothyroxine treatment. *Thyroid*. 2011;21:347-353.

27. Milionis HJ, Tambaki AP, Kanioglou CN, Elisaf MS, Tselepis AD, Tsatsoulis A. Thyroid substitution therapy induces high-density lipoprotein-associated platelet-activating factor-acyetylhydrolase in patients with subclinical hypothyroidism: a potential antiatherogenic effect. *Thyroid*. 2005;15:455-460.

28. Kebapcilar L, Comlekci A, Tuncel P, et al. Effect of levothyroxine replacement therapy on paraoxonase-1 and carotid intima-media thickness in subclinical hypothyroidism: a potential antiatherogenic effect. *Thyroid*. 2010;16:CR41-CR47.

29. Simera I, Moher D, Hoey J, Schulz KF, Altman DG. A catalogue of reporting guidelines for health research. *Eur J Clin Invest*. 2010;40:35-53.

30. Halbesma N, Brantsma AH, Bakker SJ, et al. Gender differences in predictors of the decline of renal function in the general population. *Kidney Int*. 2008;74:505-512.

31. Corsetti JP, Gansevoort RT, Bakker SJ, Sparks CE, Vart P, Dullaart RP. Apolipoprotein B attenuates albuminuria-associated paraoxonase-1 activity and risk of incident cardiovascular disease (PREVEND) participants. *J Am Soc Nephrol*. 2014;25:2906-2915.

32. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. *Circulation*. 2005;112:2735-2752.

33. Inker LA, Schmid CH, Tighiouart H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. *N Engl J Med*. 2012;367:20-29.

34. Richter RJ, Jarvik GP, Furlong CE. Paraoxonase 1 (PON1) status and substrate hydrolysis. *Toxicol Appl Pharmacol*. 2009;235:1-9.

35. van Himbergen TM, Roest M, de Graaf J, et al. Indications that paraoxonase-1 contributes to plasma high density lipoprotein levels in familial hypercholesterolemia. *J Lipid Res*. 2005;46:445-451.

36. Shieh G. Clarifying the role of mean centring in multicollinearity of interaction effects. *Br J Math Stat Psychol*. 2011;64:462-477.

37. Kraemer HC, Blasey CM. Centring in regression analyses: a strategy to prevent errors in statistical inference. *Int J Methods Psychiatr Res*. 2004;13:141-151.

38. Selvin S. *Statistical Analysis of Epidemiological Data*. New York, NY: Oxford University Press; 1996.

39. Blatter Garin MC, Moren X, James RW. Paraoxonase-1 and serum concentrations of HDL-cholesterol and apoA-I. *J Lipid Res*. 2006;47:515-520.

40. Dullaart RP, Kwakernaak AJ, Dallinga-Thie GM. The positive relationship of serum paraoxonase-1 activity with apolipoprotein E is abrogated in metabolic syndrome. *Atherosclerosis*. 2013;230:6-11.

41. Deakin S, Moren X, James RW. Very low density lipoproteins provide a vector for secretion of paraoxonase-1 from cells. *Atherosclerosis*. 2005;179:17-25.

42. van Tienoven-Wind L, Dullaart RP. Low normal thyroid function as a determinant of increased large very low density lipoprotein particles. *Clin Biochem*. 2015;48:489-494.

43. Deetman PE, Bakker SJ, Kwakernaak AJ, Navis G, Dullaart RP, PREVEND Study Group. The relationship of the anti-oxidant bilirubin with free thyroxine is modified by insulin resistance in euthyroid subjects. *PLoS ONE*. 2014;9:e90886.

44. van den Berg EH, van Tienoven-Wind LJ, Amini M, et al. Higher free triiodothyronine is associated with non-alcoholic fatty liver disease in euthyroid subjects: the Lifelines Cohort Study. *Metabolism*. 2017;67:62-71.

45. Kuman Y, Nakauchi Y, Suehiro T, et al. Proinflammatory cytokines but not acute phase serum amyloid A or C-reactive protein, down regulate paraoxonase 1 (PON1) expression by Hep G2. *Amyloid*. 2002;9:160-164.

46. Weetman AP. Cellular immune responses in autoimmune thyroid disease. *Clin Endocrinol (Oxf)*. 2004;61:405-413.

47. van Tienoven-Wind LJ, Dullaart RP. Tumor necrosis factor-α is inversely related to free thyroxine in euthyroid subjects without diabetes. *Horm Metab Res*. 2017;49:95-102.

48. Mackness MI, Arrol S, Abbott C, Durrington PN. Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. *Atherosclerosis*. 1993;104:129-135.

49. Aviram M, Rosenblat M, Billecke S, et al. Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. *Free Radic Biol Med*. 1999;26:892-904.

50. Kappelle PJ, de Boer JF, Perton FG, et al. Increased LCAT activity and hyperglycaemia decrease the antioxidative functionality of HDL. *Eur J Clin Invest*. 2012;42:487-495.

51. Baskol G, Atmaca H, Tanriverdi F, Baskol M, Kocer D, Bayram F. Oxidative stress and enzymatic antioxidant status in patients with hypothyroidism before and after treatment. *Exp Clin Endocrinol Diabetes*. 2007;115:522-526.

52. Kudchodkar BJ, Lacko AG, Dory L, Fungwe TV. Dietary fat modulates serum paraoxonase 1 activity in rats. *J Nutr*. 2000;130:2427-2433.

53. Sutherland WH, Walker RJ, de Jong SA, van Rij AM, Philips V, Walker HL. Reduced postprandial serum paraoxonase activity after a meal rich in used cooking fat. *Arterioscler Thromb Vasc Biol*. 1999;19:1340-1347.

54. Kim DS, Maden SK, Burt AA, Ranchalis JE, Furlong CE, Parvik GP. Dietary fatty acid intake is associated with paraoxonase 1 activity in a cohort-based analysis of 1,548 subjects. *Lipids Health Dis*. 2013;11:1283.

55. Seni M, Tomás M, Anglada R, et al. Interrelationship of smoking, paraoxonase activity, and leisure time physical activity: a population-based study. *Eur J Intern Med*. 2003;14:178-184.

56. Tomás M, Seni M, García-Faria F, et al. Effect of simvastatin therapy on paraoxonase activity and related lipoproteins in
familial hypercholesterolemic patients. *Arterioscler Thromb Vasc Biol*. 2000;20:2113-2119.

57. Dullaart RPF, de Vries R, Voorbij HAM, Sluiter WJ, van Tol A. Serum paraoxonase-1 activity is unaffected by short-term administration of simvastatin, bezafibrate and their combination in type 2 diabetes mellitus. *Eur J Clin Invest*. 2009;39:200-203.

58. Kowalska K, Ściskalska M, Bizoń A, Śliwińska-Mossoń M, Milnerowicz H. Influence of oral contraceptives on lipid profile and paraoxonase and commonly hepatic enzymes activities. *J Clin Lab Anal*. 2017. e22194. [Epub ahead of print]. https://doi.org/10.1002/jcla.22194.

59. Carlioglu A, Kaygusuz I, Karakurt F, et al. The platelet activating factor acetyl hydrolase, oxidized low-density lipoprotein, paraoxonase 1 and arylesterase levels in treated and untreated patients with polycystic ovary syndrome. *Arch Gynecol Obstet*. 2014;290:929-935.

60. Huen K, Richter R, Furlong C, Eskenazi B, Holland N. Validation of PON1 enzyme activity assays for longitudinal studies. *Clin Chim Acta*. 2009;402:67-74.