Regulation of Cancer Stem Cells by Cytokine Networks: Attacking Cancer's Inflammatory Roots

Hasan Korkaya, Suling Liu, and Max S. Wicha

Abstract

There is substantial evidence that many human cancers are driven by a subpopulation of cells that display stem cell properties. These cancer stem cells (CSC) may also contribute to metastasis and treatment resistance. Furthermore, just as normal stem cells are regulated by their microenvironment, or niche, CSCs interact with and in turn are regulated by cells in the tumor microenvironment. These interactions involve inflammatory cytokines, such as interleukin (IL)-1, IL-6, and IL-8, which in turn activate Stat3/NF-κB pathways in both tumor and stromal cells. Activation of these pathways stimulates further cytokine production, generating positive feedback loops that in turn drive CSC self-renewal. These cytokine loops and the pathways they regulate resemble those activated during chronic inflammation and wound healing, and may contribute to the known link between inflammation and cancer. Inhibitors of these cytokines and their receptors have been developed as anti-inflammatory agents. By blocking signals from the tumor microenvironment, these agents have the potential to target CSCs. Future clinical trials using these compounds will be needed to determine whether targeting the CSC population has clinical benefit.

Background

Cancer stem cells

There is increasing evidence that many human tumors display a hierarchical organization in which a subset of tumor cells with stem cell properties drives tumor growth and metastasis (1, 2). Furthermore, by virtue of their relative resistance to radiation and chemotherapy, these cells may contribute to treatment resistance and relapse after therapy. If this is the case, then more effective treatments will require effective targeting of this cell population. As is the case with their normal counterparts, cancer stem cells (CSC) are regulated by intrinsic signals as well as extrinsic signals originating in the tumor microenvironment (3–5). In the case of CSCs, epigenetic as well as genetic changes that occur during carcinogenesis result in dysregulation of self-renewal pathways. Stem cell regulatory pathways that are frequently dysregulated in tumors include the Notch, Hedgehog, Wnt, phosphoinositide 3-kinase (PI3K) NF-κB, and Jaks/Stat3 pathways (6–10). These pathways may be activated via mutation of key regulatory elements. In addition, pathway dysregulation may result from altered interactions between these cells and the tumor microenvironment (11). Emerging evidence suggests that tumors and their microenvironment coevolve during tumor progression (3). Bidirectional paracrine signals coordinately regulate tumorigenic cell populations, including CSCs (7, 12–14). Tumorigenic cells in turn produce factors that attract and regulate a diverse variety of cell types that constitute the tumor microenvironment (12, 14). Inflammatory cytokines, such as interleukin (IL)-1, IL-6, and IL-8, play a pivotal role in mediating the interaction between CSCs and the microenvironment. Of interest, many of the pathways that are activated during tumor formation resemble those that mediate normal wound healing. Here, we review the links between inflammation and CSCs, with an emphasis on the cytokine networks and signaling pathways that link these processes. These pathways provide potential targets for the development of novel strategies to target CSC populations.

Inflammation and cancer stem cells

Considerable clinical evidence points to links between inflammatory states and cancer development. Epidemiologic studies have demonstrated associations between ulcerative colitis, hepatitis C, and chronic pancreatitis and the development of cancers of the colon, liver, and pancreas, respectively. Levels of chronic inflammation as assessed by serum C-reactive protein or β-amyloid are correlated with the risk of breast cancer recurrence after primary therapy (15). The development of chronic inflammation has been associated with the production of the cytokines IL-1β, IL-6, and IL-8 by a variety of inflammatory cells. Of interest, genetic

Authors’ Affiliation: Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan

Corresponding Author: Max S. Wicha, Comprehensive Cancer Center, University of Michigan, 6003 CSC SPC 3942, Ann Arbor, MI 48109. Phone: 734-936-1831; Fax: 734-615-3947; E-mail: mwicha@med.umich.edu

doi: 10.1158/1078-0432.CCR-10-2743

©2011 American Association for Cancer Research.
polymorphism in genes encoding these cytokines predisposes affected individuals to cancer (16). Furthermore, the Stat3/NF-kB pathway plays a critical role in inducing and maintaining a procarcinogenic inflammatory microenvironment at the initiation of malignant transformation and tumor progression (17–19). These inflammatory cytokines, including IL-1, IL-6, and IL-8, may influence tumor growth by regulating CSC populations.

Interleukin-1
The IL-1 family consists of IL-1α, IL-1β, and the antagonist IL-1Ra. These receptors bind IL-1, which is produced in response to infection or tissue injury, resulting in activation of NF-kB and downstream targets IL-6 and IL-8. Local production of IL-1 by tumor-associated macrophages promotes angiogenesis, tumor growth, and metastasis, whereas blocking the IL-1 receptor inhibits these processes in mouse models (20, 21). Elevated levels of IL-1 expression in cancer patients are correlated with advanced metastatic disease (22, 23). Furthermore, gene expression profiling shows higher IL-1 expression in breast CSCs compared with their more differentiated counterparts (7).

Interleukin-6
IL-6 is a pleiotropic cytokine that is secreted by a wide range of cells and plays a crucial role in immunoregulation. Elevated levels of IL-6 have been associated with chronic inflammatory states, sepsis, hypertension, obesity, insulin resistance, and poor survival in cancer patients, increasing their risks for developing malignancies (24, 25). In cancer patients, high levels of IL-6 are associated with poor patient outcome, and in preclinical models, IL-6 has been shown...
to promote tumorigenesis, angiogenesis, and metastasis (26, 27). IL-6 has been shown to be a direct regulator of breast CSC self-renewal (13), a process that is mediated by the IL-6 receptor/GP130 complex through activation of Stat3 (Fig. 1). In inflammatory cells, IL-6–mediated Stat3 signaling selectively induces a procarcinogenic, tumorigenic microenvironment (28). Stat3 activation in turn leads to transcriptional activation of NF-κB in inflammatory cells that secretes additional IL-6 and IL-8 acting on tumor cells. Thus, these cytokines generate a positive feedback loop between immune cells and tumor cells that further stimulates the tumor stem cell components, accelerating metastasis and therapeutic resistance (Fig. 1). Using mouse xenografts, we recently demonstrated that bone marrow mesenchymal stem cells are recruited to sites of growing breast cancers by gradients of IL-6 (12). Furthermore, IL-6 is a key component of a positive feedback loop involving these bone marrow mesenchymal stem cells and breast CSCs (12). Sethi and colleagues (29) recently demonstrated that IL-6–mediated Jagged1-Notch1 promotes breast cancer metastasis to bone. Because Notch is also a stem cell regulator, this suggests that IL-6 may regulate stem cells through multiple pathways. These studies identify IL-6 and its receptor as attractive therapeutic targets.

Interleukin-8

IL-8 is a proinflammatory cytokine that functions in different biologic processes, such as neutrophil chemotaxis and angiogenesis. It activates multiple intracellular signaling pathways by binding its receptors, CXCR1 and CXCR2. Within the tumor microenvironment, a diverse variety of cells, including mesenchymal cells, macrophages, and immune cells, secrete IL-8 (30). Serum IL-8 levels in patients with cancer have been associated with aggressive cancer behavior and poor prognosis (31, 32). Using gene expression profiling, we previously identified the IL-8 receptor CXCR1 as being highly expressed on breast CSCs (33). Recombinant IL-8 increased breast CSC self-renewal and tumor growth. In contrast, blocking this receptor in mouse xenografts with repertaxin, a small-molecule inhibitor, significantly reduced the breast CSC population, leading to decreased tumorigenicity and metastasis.

NF-κB pathway

The NF-κB family is composed of 5 related transcription factors: p50, p52, RelA (p65), c-Rel, and RelB (34, 35). In resting cells, NF-κB proteins are predominantly found in the cytoplasm, where they are associated with the 1κB family of proteins (Fig. 1). Activation of NF-κB by diverse signals results in ubiquitin ligase-dependent degradation of 1κB and nuclear translocation of NF-κB protein complexes. A number of cytokines, including IL-6 and IL-8, are regulated by NF-κB. In addition, a positive feedback loop was recently shown to maintain a chronic inflammatory state in tumor cells. Of interest, this loop involves the microRNA let7, as well as Lin28, a factor involved in embryonic stem cell self-renewal (7). This feedback loop is maintained by IL-6–mediated Stat3 activation, which in turn activates NF-κB, affecting Lin28 and let7 (Fig. 1). The specific role of IL-6 in maintaining this inflammatory loop in breast CSCs was recently demonstrated (7, 10). NF-κB may play an important role in normal breast physiology, as well as in carcinogenesis. In an HER2-neu model of mammary carcinogenesis, suppression of NF-κB in mammary epithelium reduced the mammary stem cell compartment, resulting in delayed onset of HER2-neu–induced tumors (36). NF-κB has also been implicated in the regulation of mouse mammary stem cells during pregnancy. Elevated levels of progesterone during pregnancy induce RANK ligand (RANKL) in differentiated breast epithelial cells. In turn, RANKL stimulates breast stem cell self-renewal via activation of NF-κB in these cells (37, 38). The increased incidence of aggressive breast cancers associated with pregnancy (39) may result from activation of similar pathways in breast CSCs (37, 38).

Clinical–Translational Advances

Solid tumors are composed of heterogeneous cell populations that interact in complex networks. As is the case in developing organs, tumor cells interact with and in turn are regulated by these components in the microenvironment. Metastatic tumor cells also recreate complex cellular microenvironments at metastatic sites. More than 120 years ago, Paget proposed the "seed and soil" hypothesis of tumor metastasis (40). Reframed in a modern context, the "seeds" are the CSCs and the "soil" is the rich microenvironment, which is composed of diverse cell types that interact with tumor cells via cytokine networks. These networks regulate CSCs and their progeny, which form the tumor bulk. Elucidation of these pathways may provide new targets for therapeutic development. Examples of such pathways include the cytokines IL-6 and IL-8 and their receptors IL-6R and CXCR1. Blockade of these cytokine pathways reduced breast CSCs in preclinical models (33). Clinical trials using IL-6–blocking antibodies have been initiated for the treatment of multiple myeloma, and early results are encouraging (41). Furthermore, an anti–IL-6R antibody, tocilizumab, has been approved for the treatment of arthritis (42) and has little clinical toxicity. A small-molecule CXCR1 inhibitor, repertaxin, was developed to block rejection in renal transplant patients, and early results from clinical trials suggest that it is well tolerated. Phase I clinical trials combining this cytokine receptor/inhibitor with chemotherapy are being planned. NF-κB also represents an attractive therapeutic target. Preclinical studies suggest that the NF-κB inhibitor parthenolide is able to target leukemic stem cells, and early-stage clinical trials for the treatment of leukemia with this agent are in progress. Together, these trials will determine the feasibility of targeting CSCs by blocking interaction of these cells with the tumor microenvironment.

The CSC model has important implications for clinical trial design. Currently, tumor response rate is determined by tumor size as described by Response Evaluation Criteria...
in Solid Tumors (RECIST). For many tumors, regression does not correlate with increased patient survival (43–45). Because CSCs may constitute only a minor fraction of a tumor, agents that target this population may not produce tumor regression. In fact, stem cell–targeting agents would be expected to have more dramatic effects in the adjuvant setting than in advanced-tumor settings (46). This suggests that in advanced disease, it will be necessary to combine CSC-targeting agents with debulking approaches such as chemotherapy or radiation therapy. The time-to-tumor progression may prove a more useful clinical endpoint than tumor regression in such studies. However, because the non–stem-cell fraction of tumors may still retain a proliferative capacity, it is important to use accurate criteria to define tumor progression to ensure that patients are not removed from treatment prematurely. The evaluation of CSC biomarkers, such as CD44, CD133, and aldehyde dehydrogenase-1, in serial biopsies may provide a tool to assess the efficacy of CSC-targeting agents (47–49). Circulating tumor cells may also provide a valuable source of CSC populations for biomarker analysis. These assays will need to be able to capture circulating CSCs, which may not express antigens that are currently used, such as EpCAM. A neoadjuvant trial design may prove to be particularly useful for assessing the effects of CSC-targeting agents, because acquiring tissue before and after treatment enables one to assess the efficacy of CSC targeting. In addition, the effects of these agents on increasing the complete pathologic response rate, an accepted clinical endpoint, can be readily assessed. Ultimately, randomized trials will be required to determine whether successful targeting of CSCs improves patient outcome.

Disclosure of Potential Conflicts of Interest

Max S. Wicha has financial holdings in and is a scientific advisor for OncoMed Pharmaceuticals. He is a scientific advisor for Pfizer, Merck, and Ortho-Clinical Diagnostics, and he receives research support from Dompé Pharmaceuticals.

Acknowledgments

We thank Shawn G. Clouthier for a critical review of this manuscript.

Grant Support

National Institutes of Health (CA129765 and CA101860), American Association for Cancer Research (SU2C Dream Team Award), Breast Cancer Research Foundation, and Taubman Research Institute.

Received March 30, 2011; revised May 24, 2011; accepted May 25, 2011; published OnlineFirst June 17, 2011.

References

1. Korkaya H, Wicha MS. Selective targeting of cancer stem cells: a new concept in cancer therapeutics. BioDrugs. 2007;21:299–310.
2. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea—a paradigm shift. Cancer Res 2006;66:1883–90; discussion 95–8.
3. Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends Genet 2009;25:30–8.
4. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007;11:69–82.
5. Vermeulen I, De Souza EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 2010;12:468–76.
6. Korkaya H, Paulson A, Charafe-Jauffret E, Ginesiter C, Brown M, Dutcher J, et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol 2009;7:e1000121.
7. Ilipoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL8 links inflammation to cell transformation. Cell 2009;139:693–706.
8. Liu S, Dontu G, Mantle ID, Patel S, Ahn KS, Jackson KW, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006;66:6063–71.
9. Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 2004;6:R605–15.
10. Ilipoulos D, Jaeger SA, Hirsch HA, Bulky ML, Struhl K. STAT3 activation of mir-21 and mir-181-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 2010;39:493–506.
11. Ma XJ, Daihya S, Richardson E, Erlander M, Sgroi DC. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 2009;11:R7.
12. Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 2011;71:614–24.
13. Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taufarelli M, et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 2007;117:3988–4002.
14. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007;449:557–63.
15. Pierce BL, Ballard-Barbash R, Bernstein L, Baumgartner PN, Neuhaus ML, Wener MH, et al. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J Clin Oncol 2009;27:3437–44.
16. Michaud DS, Daugherty SE, Berndt SI, Platz EA, Yeager M, Crawford ED, et al. Genetic polymorphisms of interleukin-1β (IL-1β), IL-6, IL-8, and IL-10 and risk of prostate cancer. Cancer Res 2006;66:4525–30.
17. Pardoll D. Does the immune system see tumors as foreign or self? Annu Rev Immunol 2003;21:185–204.
18. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002;3:991–8.
19. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005;5:263–74.
20. Voronov E, Shouval DS, Kriel Y, Cagnano E, Benharrosh D, Iwakura Y, et al. IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci U S A 2003;100:2645–50.
21. Gery I, Waksman BH. Potentiation of the T-lymphocyte response to mitogens. II. The cellular source of potentiating mediator(s). J Exp Med 1972;136:143–55.
22. Elaraj DM, Wehrheim DM, Varghese S, Puhlmann M, Hewitt SM, Carroll NM, et al. The role of interleukin 1 in growth and metastasis of human cancer xenografts. Clin Cancer Res 2006;12:1088–96.
23. Patschner AG, Pushkar I, Anderson KH, Wang Y, Miller LJ, Kurtzman SH, et al. The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol 2003;23:269–84.
24. Scheller J, Dinesorge N, Rose-John S. Interleukin-6 trans-signalling in chronic inflammation and cancer. Scand J Immunol 2006;63:321–9.
25. Bromberg J, Wang TC. Inflammation and cancer: IL-6 and STAT3 complete the link. Cancer Cell 2009;15:79–80.
26. Scheller J, Rose-John S. Interleukin-6 and its receptor: from bench to bedside. Med Microbiol Immunol (Berl) 2006;195:173–83.
27. Fisman EZ, Tenenbaum A. The ubiquitous interleukin-6: a time for reappraisal. Cardiovasc Diabetol 2010;9:62.
28. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009;9:798–809.
29. Sethi N, Dai X, Winter CG, Kang Y. Tumor-derived Jagged1 promotes osteolytic bone metastasis of breast cancer by engaging Notch signaling in bone cells. Cancer Cell 2011;19:192–205.
30. Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res 2008;14:6735–41.
31. Yao C, Lin Y, Chua MS, Ye CS, Bi J, Li W, et al. Interleukin-8 modulates growth and invasiveness of estrogen receptor-negative breast cancer cells. Int J Cancer 2007;121:1949–57.
32. Benoy IH, Salgado R, Van Dam P, Geboers K, Van Marck E, Scharp/C19e, et al. Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Cancer Res 2004;10:7157–62.
33. Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, et al. Control of mammary stem cell function by steroid hormone signalling. Nature 2010;465:798–802.
34. Peck JD, Hulka BS, Poole C, Savitz DA, Baird D, Richardson BE. Steroid hormone levels during pregnancy and incidence of maternal breast cancer. Cancer Epidemiol Biomarkers Prev 2002;11:361–8.
35. Fulciniti M, Hideshima T, Vermao-Derouche C, Pozzi S, Nanjappa P, Shen Z, et al. A high-affinity fully human anti-IL-6 mAb, 1339, for the treatment of multiple myeloma. Clin Cancer Res 2009;15:7144–52.
36. Ohashi Y, Kishimoto T. The recombinant humanized anti-IL-6 receptor antibody tocilizumab, an innovative drug for the treatment of rheumatoid arthritis. Expert Opin Biol Ther 2008;8:669–81.
37. Sevinc A, Turhat NS. ‘Please, desist RECIST criteria in GIST, at least in me’. Oncology 2008;31:556.
38. Monetti F, Casanova S, Grasso A, Caffarata MA, Ardizzone A, Neumaier CE. Inadequacy of the new response evaluation criteria in solid tumors (RECIST) in patients with malignant pleural mesothelioma: report of four cases. Lung Cancer 2004;43:71–4.
39. Kimura M, Tomiraga T. Outstanding problems with response evaluation criteria in solid tumors (RECIST) in breast cancer. Breast Cancer 2002;9:153–9.
40. Liu S, Wicha MS. Targeting breast cancer stem cells. J Clin Oncol 2010;28:4006–12.
41. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells in vitro and in xenografts. J Clin Invest 2010;120:485–97.
42. Hoffmann A, Natoli G, Ghosh G. Transcriptional regulation via the NF-kappaB signaling module. Oncogene 2006;25:6706–16.
43. Liu M, Sakamaki T, Casimiro MC, Willmarth NE, Quong AA, Ju X, et al. The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res 2010;70:10484–73.
44. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003;100:3983–8.
45. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007;445:111–5.
Regulation of Cancer Stem Cells by Cytokine Networks: Attacking Cancer's Inflammatory Roots

Hasan Korkaya, Suling Liu and Max S. Wicha

Clin Cancer Res 2011;17:6125-6129. Published OnlineFirst June 17, 2011.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-10-2743

Cited articles
This article cites 49 articles, 16 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/17/19/6125.full#ref-list-1

Citing articles
This article has been cited by 24 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/17/19/6125.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://clincancerres.aacrjournals.org/content/17/19/6125.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.