Dopaminergic signaling within the primary cilia in the renovascular system

Kimberly F. Atkinson¹, Sarmed H. Kathem¹, Xingjian Jin², Brian S. Muntean², Wissam A. Abou-Alaiwi², Andromeda M. Nauli³ and Surya M. Nauli¹*

¹ Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, USA, ² Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, USA, ³ Department of Pharmaceutical and Biomedical Sciences, California Northstate University, Elk Grove, CA, USA

Activation of dopamine receptor type-5 (DR5) has been known to reduce systemic blood pressure, most likely by increasing renal vasodilation and enhancing natriuresis in the kidney. However, the mechanism of DR5 in natriuresis and vasodilation was not clearly known. We have previously shown that DR5 is localized to primary cilia of proximal renal epithelial and vascular endothelial cells. We here show that selective activation of DR5 specifically induces calcium influx only in the primary cilia, whereas non-selective activation of dopamine receptor induces calcium fluxes in both cilioplasm and cytoplasm. Cilia-independent signaling induced by thrombin only shows calcium signaling within cytoplasm. Furthermore, calcium activation in the cilioplasm by DR5 increases length and mechanosensory function of primary cilia, leading to a greater response to fluid-shear stress. We therefore propose a new mechanism by which DR5 induces vasodilation via chemical and mechanical properties that are specific to primary cilia.

Keywords: ciliopathy, ciliotherapy, cilium, blood pressure, polycystic kidney disease

Sensory Functions of Primary Cilia

The primary cilium is a non-motile sensory organelle that extends from the apical cell surface, functioning as a sensory antenna in most mammalian and eukaryotic cells. Fluid mechanosensing by cilia allows cells to sense urine flow in the kidney, blood flow in the vasculature, hepatic bile in the liver, digestive fluid in the pancreas, lacunocanalicular fluid in bone or cartilage, nodal flow in Hensen's node, and many others (Marshall and Nonaka, 2006). Recently, our laboratory has also found a specific-chemical sensing role of primary cilia in both vascular endothelia and renal epithelia (Kathem et al., 2014; Upadhyay et al., 2014).

The clinical importance of primary cilia has only begun to be understood. Dysfunctional cilia are recently thought to be the cause of a group of diseases termed “ciliopathies,” which include polycystic kidney disease (PKD), Bardet-Biedl Syndrome, primary ciliary dyskinesia, nephronophthisis, and many others (Marshall and Nonaka, 2006; Winyard and Jenkins, 2011). Cellular loss of sensory input from the antennae-like primary cilium renders the cell unresponsive to environmental cues. The mechanosensation of primary cilium occurs primarily in response to fluid-shear stress, while chemosensation refers to the cells’ ability to sense chemical cues such as ligands in the blood or neurotransmitters in the synapse (Muntean et al., 2014).

Determining the sensory and molecular properties of primary cilium is therefore key to understanding dysfunction or abnormal development of cilia in ciliopathies. For example,
in renal cyst development, improper calcium signaling results from abnormal sensory function of cilia to fluid flow (Nauli et al., 2006). Along with intact cilia, the expression and function of polycystins is known to be important in the development of renal cysts (Pazour et al., 2002; Yoder et al., 2002; Nauli et al., 2003). Determining the functions of the receptors and proteins expressed on primary cilia thus becomes very important in the development of potential drug targets in the new pharmaceutical field of “ciliotherapy.”

Ciliary Dopamine Receptors

Genetic screens of abnormal cilia length have identified a family of class A dopamine binding G-protein coupled receptors that are involved in regulation of length of cilia and flagella (Avasthi et al., 2012). Consistent with what we previously demonstrated, treatment of dopaminergic agonists (dopamine or fenoldopam) modulates cilia function by extending cilia length and therefore cilia sensitivity in renal epithelial and vascular endothelial cells (Abdul-Majeed and Nauli, 2011; Kathem et al., 2014). Dopamine receptors are expressed in renal tubules as well as in renal blood vessels, however the dopamine receptor type-5 (DR5) is localized specifically to the primary cilia in these cell types, whereas other dopamine receptors are not expressed or are expressed ubiquitously in the cell membrane (Abdul-Majeed and Nauli, 2011; Kathem et al., 2014). DR5 is therefore likely responsible for binding dopaminergic agonists to transduce calcium signaling in the cilia (Figure 1A). Taken together, these findings suggest that neurological diseases, hypertension and other ciliopathies such as PKD.

KEY CONCEPT 3 | Dopamine

Dopamine is a circulating hormone and neurotransmitter implicated in hypertension in human and animal models. The roles and functions of dopamine vary in different tissues of the body. The renovascular dopaminergic system is involved in renal blood flow and blood pressure regulation, but its specific regulation is unknown (Upadhyay et al., 2014). Dopaminergic agents may be used as potential ciliotherapy for.
Cilia Length-Function Relationship

Another topic of interest for research into the treatment of cilia-associated diseases is regulation of cilia length, which is tissue-specific and dependent on extracellular chemical and mechanical stimuli. Renal injury (Verghese et al., 2008), lithium treatment (Wang et al., 2013), among other stimuli, induce elongation of primary cilia (Abdul-Majeed et al., 2012). Fluid-shear stress also alters the mechanosensory properties of cilia (Nauli et al., 2008). When the cilia length-function relationship was analyzed, we showed that there was a correlation between cilia length and function (Figure 1B). Cilia length was measured using immunofluorescence staining of acetylated α-tubulin and direct scanning electron microscopy. Ciliary function was then analyzed by cytosolic \([\text{Ca}^{2+}]\) measurement (Upadhay et al., 2014). We showed that cilia elongation by dopaminergic activation results in increased cillum function in terms of calcium signaling and NO biosynthesis (Kathem et al., 2014; Upadhay et al., 2014). Overall, an increase of cilia function would lead to a greater propensity for endothelium-dependent vasodilation in response to fluid-shear stress.

Conclusions

Our current studies suggest that the dopamine receptor DR5 may be a good therapeutic target to manipulate cilia length as well as sensitivity to chemical and mechanical stimuli in ciliopathy. Thus, understanding cilia-specific proteins and signaling pathways is crucial to pharmacologically intervene in the pathogenesis of ciliary diseases. The localization of various proteins within the bulb of a cilium has just been recently understood (Mohieldin et al., 2015). Without doubt, a likely avenue of future research lies in identification and characterization of receptor functions localized to primary cilia of various cell types.

Acknowledgments

This work briefly summarizes our previous article published in Frontiers in Physiology journal, and we also used this opportunity to include perspectives on our most recent studies on the use of dopaminergic agonists to improve sensory functions of primary cilia. Our efforts to present this work were supported by the Department of Defense PR130153 and Chapman University School of Pharmacy.

References

Abdul-Majeed, S., Moloney, B., and Nauli, S. (2012). Mechanisms regulating cilia growth and cilia function in endothelial cells. Cell. Mol. Life Sci. 69, 165–173. doi: 10.1007/s00018-011-0744-0
Abdul-Majeed, S., and Nauli, S. M. (2011). Dopamine receptor type 5 in the primary cilia has dual chemo- and mechano-sensory roles. Hypertension 58, 325–331. doi: 10.1161/HYPERTENSIONAHA.111.172080
Aboualaiwi, W. A., Takahashi, M., Mell, B. R., Jones, T. J., Ratnam, S., Kolb, R. J., et al. (2009). Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Cir. Res. 104, 860–869. doi: 10.1161/CIRCRESAHA.108.192765
Avasthi, P., Marley, A., Lin, H., Gregori-Puigjane, E., Shoichet, B. K., Von Zastrow, M., et al. (2012). A chemical screen identifies class A G-protein coupled receptors as regulators of cilia. ACS Chem. Biol. 7, 911–919. doi: 10.1021/cb200349v
Jin, X., Muntean, B. S., Aal-Aaboda, M. S., Duan, Q., Zhou, J., and Nauli, S. M. (2014). L-type calcium channel modulates cystic kidney phenotype. Biochim. Biophys. Acta 1842, 1518–1526. doi: 10.1016/j.bbadis.2014.06.001

Kathem, S. H., Mohieldin, A. M., Abdul-Majeed, S., Ismail, S. H., Altaei, Q. H., Alshimmari, I. K., et al. (2014). Ciliatherapy: a novel intervention in polycystic kidney disease. J. Geriatr. Cardiol. 11, 63–73. doi: 10.3969/j.issn.1671-5411.2014.01.001

Lorthioir, A., Joannides, R., Remy-Jouet, I., Freguin-Bouilland, C., Iacob, M., Roche, C., et al. (2015). Polycystin deficiency induces dopamine-reversible alterations in flow-mediated dilatation and vascular nitric oxide release in humans. Kidney Int. 87, 465–472. doi: 10.1038/ki.2014.241

Marshall, W. F., and Nonaka, S. (2006). Cilia: tuning in to the cell’s antenna. Curr. Biol. 16, R604–R614. doi: 10.1016/j.cub.2006.07.012

Mohieldin, A. M., Haymour, H. S., Lo, S. T., Aboualaiwi, W. A., Jin, X., Muntean, B. S., Wang, C. J., et al. (2015). Protein composition and movements of membrane swellings associated with primary cilia. Cell. Mol. Life Sci. doi: 10.1007/s00018-015-1838-x. [Epub ahead of print].

Muntean, B. S., Jin, X., Williams, F. E., and Nauli, S. M. (2014). Primary cilium regulates CaV1.2 expression through Wnt signaling. J. Cell Physiol. 229, 1926–1934. doi: 10.1002/jcp.24642

Nauli, S. M., Alenghat, F. J., Luo, Y., Williams, E., Vassilev, P., Li, X., et al. (2003). Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137. doi: 10.1038/ng1076

Nauli, S. M., Kawanabe, Y., Kaminski, J. J., Pearce, W. J., Ingber, D. E., and Zhou, J. (2008). Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117, 1161–1171. doi: 10.1161/CIRCULATIONAHA.107.710111

Nauli, S. M., Rossetti, S., Kolb, R. J., Alenghat, F. J., Consugar, M. B., Harris, P. C., et al. (2006). Loss of polycystin-1 in human cyst-lining epithelia leads to ciliary dysfunction. J. Am. Soc. Nephrol. 17, 1015–1025. doi: 10.1681/ASN.2005080830

Pazour, G. J., San Agustin, J. T., Follit, J. A., Rosenbaum, J. L., and Witman, G. B. (2002). Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr. Biol. 12, R378–R380. doi: 10.1016/S0960-9822(02)00877-1

Rbaibi, Y., Cui, S., Mo, D., Carattino, M., Rohatgi, R., Satlin, L. M., et al. (2012). OCRL1 modulates cilia length in renal epithelial cells. Traffic 13, 1295–1305. doi: 10.1111/j.1600-0854.2012.01387.x

Tomer, A.-R., Andreia, M. M., Edmund, K., Andrey, P., Thomas, K., Shankar, S., et al. (2004). Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell 117, 527–539. doi: 10.1016/S0092-8674(04)00412-X

Upadhyay, V. S., Muntean, B. S., Kathem, S. H., Hwang, J. J., Aboualaiwi, W. A., and Nauli, S. M. (2014). Roles of dopamine receptor on chemosensory and mechanosensory primary cilia in renal epithelial cells. Front. Physiol. 5:72. doi: 10.3389/fphys.2014.00072

Verghese, E., Weidenfeld, R., Bertram, J. F., Ricardo, S. D., and Deane, J. A. (2008). Renal cilia display length alterations following tubular injury and are present early in epithelial repair. Nephrol. Dial. Transplant. 23, 834–841. doi: 10.1093/ndt/gfm743

Verleyen, D., Luyten, F. P., and Tylzanowski, P. (2014). Orphan G-protein coupled receptor 22 (Gpr22) regulates cilia length and structure in the Zebrafish kupffer’s vesicle. PLoS ONE 9:e101048. doi: 10.1371/journal.pone.0101048

Wang, S., Wei, Q., Dong, G., and Dong, Z. (2013). ERK-mediated suppression of cilia in cisplatin-induced tubular cell apoptosis and acute kidney injury. Biochim. Biophys. Acta 1832, 1582–1590. doi: 10.1016/j.bbadis.2013.05.023

Winyard, P., and Jenkins, D. (2011). Putative roles of cilia in polycystic kidney disease. Biochim. Biophys. Acta 1812, 1256–1262. doi: 10.1016/j.bbagen.2011.04.012

Yoder, B. K., Hou, X., and Guay-Woodford, L. M. (2002). The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J. Am. Soc. Nephrol. 13, 2508–2516. doi: 10.1097/01.ASN.0000029587.47950.25

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.