ALEPH–QP (ℵQP):
Universal hybrid quantum processors
with continuous and discrete quantum variables

Alexander Yu. Vlasov
FRC/IRH, 197101 Mira Street 8, St.-Petersburg, Russia

Abstract
A quantum processor (the programmable gate array) is a quantum network with a fixed structure. A space of states is represented as tensor product of data and program registers. Different unitary operations with the data register correspond to “loaded” programs without any changing or “tuning” of network itself. Due to such property and undesirability of entanglement between program and data registers, universality of quantum processors is subject of rather strong restrictions. By different authors was developed universal “stochastic” quantum gate arrays. It was proved also, that “deterministic” quantum processors with finite-dimensional space of states may be universal only in approximate sense. In present paper is shown, that using hybrid system with continuous and discrete quantum variables, it is possible to suggest a design of strictly universal quantum processors. It is shown also that “deterministic” limit of specific programmable “stochastic” $U(1)$ gates (probability of success becomes unit for infinite program register), discussed by other authors, may be essentially same kind of hybrid quantum systems used here.

1 Introduction
The quantum programmable gate array QPA or quantum processor QP — is a quantum circuit with fixed structure. Similarly with usual processor here are data register $|D\rangle$ and program register $|P\rangle$. Different operations u with data are governed by a state of the program, i.e. it may be described as

$$U: (|P\rangle \otimes |D\rangle) \mapsto |P'\rangle \otimes (u_P|D\rangle). \quad (1)$$

Each register — is a quantum system1 and may be represented for particular task using qubits $\{0,1\}$, qudits $\{0,1,2\}$, etc.

It can be simply found1, that Eq. (1) is compatible with unitary quantum evolution, if different states of program register are orthogonal — due to such

$^*\text{Electronic mail: Alexander.Vlasov@PObox.spbu.ru}$

$^1\text{usually finite-dimensional}$
requirement number of accessible programs coincides with dimension of Hilbert space and it produces some challenge for construction of universal quantum processors. It was suggested few ways around such a problem: to use specific “stochastic” design of universal quantum processor \[1, 2, 3, 6\], to construct (non-stochastic) quantum processor with possibility to approximate any gate with given precision \[2, 3, 4, 5\] (it is also traditional approach to universality \[7, 8, 9\], sometime called “universality in approximate sense” \[10\]).

Here is discussed an alternative approach for strictly universal quantum processor — to use continuous quantum variables in program register and discrete ones for data, i.e. hybrid quantum computer \[12\]. In such a case number of different programs is infinite and it provides possibility to construct strictly universal hybrid quantum processor for initial (“deterministic”) design described by Eq. (1). It is enough to provide procedures for one-qubit rotations with three real parameters together with some finite number of two-gates \[10, 11\].

It is shown also, that hybrid quantum gates used in this article can be considered not only as limit of deterministic design \[4, 5\], but also coincide with discussed in \[3\] “deterministic limit” of a special case of programmable \[1\] “stochastic” gates with probability of fail tends to zero for infinite program register.

2 Construction of hybrid quantum processors

In finite-dimensional case unitary operator \(U\) satisfying Eq. (1) can be simply found \[4, 5\]. Let us consider case with \(|P'\rangle = |P\rangle\) in Eq. (1). It was already mentioned, that states \(|P\rangle\) of program register corresponding to different operators \(u_P\) are orthogonal and, so, may be chosen as basis. In such a basis \(u_P\) is simply set of matrices numbered by integer index \(P\), and operator \(U\) Eq. (1) can be written as block-diagonal \(NM \times NM\) matrix:

\[
U = \begin{pmatrix}
 u_1 & 0 & \cdots & 0 \\
 0 & u_2 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & 0 & u_M
\end{pmatrix},
\]

with \(N \times N\) matrices \(u_P\), if dimensions of program and data registers are \(M\) and \(N\) respectively:

\[
U = \sum_{P=1}^{M} |P\rangle\langle P| \otimes u_P,
\]

It is conditional quantum dynamics \[13\]. For quantum computations with qubits \(M = 2^m, N = 2^n\).

Generalization to hybrid system with program register described by one continuous quantum variable and qubit data register is straightforward. The states of program register may be described as Hilbert space of functions on
line $\psi(x)$. In coordinate representation a basis is

$$|q\rangle = \delta(x - q); \quad \langle q | \psi(x) \rangle = \psi(q). \quad (4)$$

To represent some continuous family of gates $u_{(q)}$ acting on data state, say phase rotations

$$\theta_{(q)} = \exp(2\pi i q \sigma_3), \quad (5)$$

it is possible to write continuous analog of Eq. (3):

$$U = \int dq (|q\rangle \langle q| \otimes u_{(q)}),$$

$$U(\psi(x)|s\rangle) = \int \delta(x - q) \psi(q) |u_{(q)}s\rangle dq = \psi(x) |u_{(x)}s\rangle, \quad (7)$$

where \otimes is omitted because $|\psi\rangle|s\rangle$ can be considered as product of scalar function $\psi(x)$ on complex vector $|s\rangle$. Finally:

$$U(|q\rangle|s\rangle) = |q\rangle|u_{(q)}s\rangle. \quad (8)$$

It is convenient also to use momentum basis, i.e.:

$$|\tilde{p}\rangle = e^{ipx}; \quad \langle \tilde{p} | \psi(x) \rangle = \int e^{-ipx} \psi(x) dx \equiv \tilde{\psi}(p). \quad (9)$$

(where $\tilde{\psi}$ is Fourier transform of ψ) and operator \tilde{U}:

$$\tilde{U} = \int dp (|\tilde{p}\rangle \langle \tilde{p}| \otimes u_{(p)}),$$

$$\tilde{U}(\psi(x)|s\rangle) = \int e^{ipx} \left(\int e^{-ipx'} \psi(x') d'x' \right) |u_{(p)}s\rangle dp =$$

$$= \int e^{ip(x-x')} \psi(x') |u_{(p)}s\rangle dx' dp = -\int e^{-ipq} \psi(x-q) |u_{(p)}s\rangle dq dp. \quad (11)$$

Here \tilde{U} is not rewriting U in momentum basis, it is other operator with property:

$$\tilde{U}(|\tilde{p}\rangle|s\rangle) = |\tilde{p}\rangle|u_{(p)}s\rangle. \quad (12)$$

It has simpler physical interpretation. Let us consider scattering of some scalar particle on quantum system with two states (qubit). Then Eq. (12) can be written symbolically as:

$$\exp(i k x) \rangle \rightarrow \begin{cases} |s\rangle_1 \rightarrow |s\rangle \rightarrow \langle s|_2 \rightarrow |u_{(k)}s\rangle_2 \rightarrow \exp(i k x) \langle s| \end{cases}$$

Using such approach with hybrid program register (few continuous variables for different qubit rotations and discrete ones for two-gates like CNOT), it is possible to suggest design of universal quantum processor with qubits data register.

Hilbert space of hybrid system with k continuous and $M = 2^m$ discrete quantum variables can be considered as space of \mathbb{C}^M-valued functions with k variables

$$F(x_1, \ldots, x_k): \mathbb{R}^k \rightarrow \mathbb{C}^M.$$
For construction of universal processor it is possible to use three continuous variables for each qubit together with discrete variables for control of two-qubit gates (see Fig. 1).

It should be mentioned, that it is rather simplified model. More rigor consideration for different physical examples may include different functional spaces, distributions, functions localized on discrete set of points, and symbol “∫” or scalar product used in formulas above in such a case should be defined with necessary care. Due to such a problem in many works about quantum computations with continuous variables is used Heisenberg approach and expressions with operators like coordinate Q and momentum P.

Heisenberg approach maybe simplifies description, but hides some subtleties. For example, in many models variables hardly could be called “continuous”, because they may be described as set of natural numbers, i.e. terms “infinite,” “nonfinite” maybe better for such quantum variables.

Let us consider example with qubit controlled by continuous variable described above $u(q) \equiv \theta(q)$ Eq. (5). In such a case it is enough to use in operator U Eq. (8) only interval of values $0 < q \leq 2\pi$ or even consider Hilbert space of periodic functions $\psi(q)$, like phases. But in such a case in dual space momenta have only discrete set of values $p \in \mathbb{Z}$ and because both spaces connected by Fourier transform, it is example of relation between periodical functions of continuous variable and functions defined on infinite, but discontinuous set \mathbb{Z} of integer numbers.

2Angular parametrization of $SU(2)$
Here is important issue: the commutation relations like $i[P, Q] = 1$ are not compatible with linear algebra of any finite matrices but may be simply satisfied by infinite-dimensional operator algebras, like Schrödinger representation $Q = x, P = -i \frac{d}{dx}$. But here is yet another problem — integer and real numbers are used for representation of infinite quantum variables, but cardinality of the sets are different, $\text{card } \mathbb{N} = \aleph_0$, $\text{card } \mathbb{R} = \aleph$. To avoid discussion, related with the cardinality issues, Russell paradox, etc., here is used some formal cardinality \aleph_{QP} of “quantum infinite variables”, i.e. any model of infinite numbers appropriate for introduction of Heisenberg relations.

It should be mentioned, that term “hybrid” is used also with other meaning. Formally it is different thing, but for discussed strategy for hybrid quantum processors, these two topics are close linked. Let us discuss it briefly. For realistic design of quantum computers, it is useful to have some language for joint description with more convenient classical microdevices, which could be used as some base for development of quantum processors. Generally such a task is very difficult (if possible at all) and has variety of different approaches.

But there is especially simple idea, that could be applied for model under consideration. The quantum gates and “wires” may be roughly treated as (pseudo)classical, if only elements of computational basis are accepted in a model as states of system and gates are also may not cause any superposition and directly corresponds to set of invertible classical logical gates. Really, such a model is still quantum, but has closer relation with usual classical circuits and so may reduce some difficulties in description of hybrid classical–quantum processor design. It was already discussed in [2, 3], that from such point of view program register can be treated as pseudo-classical. It was design with finite number of state in program register.

Similar procedure without difficulties may be extended for continuous case, but now it corresponds to continuous classical variables, i.e. it is similar either with analogue classical control or with more detailed description of usual microprocessor, when inputs and outputs are described not as abstract zeros and ones, but as real dynamically changed classical continuous signals (fields, currents, laser beams, etc.).

3 Comparison with limit of “stochastic” models

In this paper was used design of universal hybrid quantum processor, that could be considered as some limit of approximately universal “deterministic” quantum processors [2, 3], when size of program register formally becomes unlimited. On the other hand, in [2, 3] is considered design of programmed “stochastic” $U(1)$

It is simple to show, taking trace of the commutator for $D \times D$ matrices: $i\text{Tr}[P, Q] = i\text{Tr}(PQ) - i\text{Tr}(QP) = 0 \neq \text{Tr}(1) = D$

So ALEPH–QP — is shortcut for “quantum processor with continuous or unlimited discrete variables.”

Really it was used even more specific design with intermediate register (bus) between program and data one.
gates with probability of success becomes arbitrary close to unit with extension of program register and so such design formally also becomes deterministic for infinite size of program register.

Conceptually, the “probabilistic,” “stochastic” design of quantum processors \[1, 2, 3, 6, 16\] is rather tricky question, but it is not discussed here in details. For our purposes is enough to use “stochastic” quantum circuit \[2, 3\] for application of gate \(\theta_q\) Eq. (5) with probability of success \(p = 1 - 1/M\) for size \(M = 2^m\) of \((m\text{-qubits})\) program register with existing of “deterministic” limit \(p = 1\) for \(M \to \infty\) \[3\]. Let us, without embarking in discussion about specific problems of “stochastic” model, consider the limit and show, that it is essentially same programmable phase gates discussed in Sec. 2.

The construction is straightforward. For “encoding transformations” \(\theta_\alpha\) to state of \(m\text{-qubits}\) program register in \[2, 3\] is used a family of states \(|\Phi_\alpha,m\rangle = \bigotimes_{k=0}^{m-1} |\phi_{2^k\alpha}\rangle\), where \(|\phi_\alpha\rangle = \frac{1}{\sqrt{2}}(e^{ia/2}|0\rangle + e^{-ia/2}|1\rangle).\) (13)

It can be rewritten as\[7\]

\(|\Phi_\alpha,m\rangle = \frac{e^{i\alpha(M-1)/2}}{\sqrt{M}} \sum_{K=0}^{M-1} e^{-iK\alpha} |K\rangle \text{ (} M = 2^m\text{)}\) (14)

and for \(\alpha = -2\pi p/M\) with integer states Eq. (14) coincide with usual momentum basis \(|\tilde{p}\rangle = |\Phi_{-2\pi p/M,m}\rangle\) \((p \in \mathbb{Z}, 0 \leq p < M)\) of \(M\text{-dimensional Hilbert space.}\)

Such elements \(|\tilde{p}\rangle\) may be used as \(M\) orthogonal basic states of program register in “deterministic” quantum processor \(c.f. \text{ Eq. (3)}\);\[15\]

\[\tilde{U} = \sum_{p=0}^{M-1} |\tilde{p}\rangle\langle\tilde{p}| \otimes \theta_{(2\pi p/M)}\].

The “deterministic” approach uses only the computational basis \(\tilde{p}\) and it prevents from entanglement between program and data registers. Stochastic \(U(1)\) approach \[2, 3\] uses \(|\Phi_\alpha,m\rangle\) with arbitrary \(\alpha\) and for finite-dimensional case such states are not always orthogonal, but here is possible to do not discuss the issues related with interpretation of quantum measurements used for “probabilistic” calculations of \(\theta_\alpha\) for entangled case \(\alpha \neq 2\pi p/M\), because for infinite-dimensional case all states \(|\Phi_\alpha,\infty\rangle\) are orthogonal.

So, continuous (infinite) limit of “stochastic” \(U(1)\) programmable gates suggested in \[2, 3\] is essentially\[6\] the same as deterministic hybrid gate like Eq. (12) discussed in Sec. 3.

\[\text{6}\text{Here is used “inverted” binary notation for } |K\rangle, 0 \leq K < M, \text{i.e. } |b_0b_1b_2\ldots\rangle \text{ corresponds to } K = b_0 + 2b_1 + 2^2b_2 + \cdots. \text{Another choice is to save standard binary notation, but to change order of terms in initial tensor product Eq. (13) to opposite one.}\]

\[\text{7}\text{There is some difference, if state of program register changes in } \[2, 3\], \text{even if there is no entanglement in continuous limit under consideration.}\]
References

[1] M. A. Nielsen and I. L. Chuang, “Programmable quantum gate arrays,” Phys. Rev. Lett. 79 321–324, (1997).

[2] G. Vidal, and J. I. Cirac, “Storage of quantum dynamics on quantum states: A quasi-perfect programmable quantum gate,” Preprint arXiv: quant-ph/0012067 (2000).

[3] G. Vidal, L. Masanes, and J. I. Cirac, “Storing quantum dynamics in quantum states: stochastic programmable gate for $U(1)$ operations,” Preprint arXiv:quant-ph/0102037 (2001).

[4] A. Yu. Vlasov, “Classical programmability is enough for quantum circuits universality in approximate sense,” Preprint arXiv:quant-ph/0103113 (2001).

[5] A. Yu. Vlasov, “Universal quantum processors with arbitrary radix $n \geq 2$,” (ICQI 2001); Preprint arXiv:quant-ph/0103127 (2001).

[6] M. Hillery, V. Buzek, and M. Ziman, “Probabilistic implementation of universal quantum processors,” Preprint arXiv:quant-ph/0106088 (2001).

[7] D. Deutsch, “Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer,” Proc. R. Soc. London Ser. A 400, 97–117 (1985).

[8] D. Deutsch, “Quantum Computational Networks,” Proc. R. Soc. London Ser. A 425, 73–90 (1989).

[9] D. Deutsch, A. Barenco, and A. Ekert, “Universality in quantum computation,” Proc. R. Soc. London Ser. A 449, 669–677 (1995).

[10] R. Cleve, “An introduction to quantum complexity theory,” Preprint arXiv:quant-ph/9906111 (1999).

[11] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. W. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).

[12] S. Lloyd, “Hybrid quantum computing,” Preprint arXiv:quant-ph/0008057 (2000).

[13] A. Barenco, D. Deutsch, A. K. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).

[14] S. Lloyd, and S. L. Braunstein, “Quantum computation over continuous variables,” Phys. Rev. A 82, 1784–1787 (1999); Preprint arXiv:quant-ph/981082, (1998).
[15] A. Peres, and D. R. Terno, “Hybrid classical–quantum dynamics,” Phys. Rev. A 63, 022101 (2001); Preprint arXiv:quant-ph/0008068 (2000).

[16] M. Hillery, M. Ziman, and V. Buzek, “Implementation of quantum maps by programmable quantum processors,” Preprint arXiv:quant-ph/0205050 (2002).