SIMULTANEOUS APPROXIMATION PROPERTIES OF DE LA VALLÉE–POUSSIN MEANS IN WEIGHTED ORLICZ SPACES

SADULLA Z. JAFAROV

Abstract. We investigate the simultaneous approximation properties of the de la Vallée-Poussin means in weighted Orlicz spaces in terms of the modulus of smoothness. In terms of the modulus of smoothness the direct theorem of simultaneous approximation is proved. Also, in weighted Orlicz spaces the modulus of smoothness are estimated from below and above in terms of n-th partial Fourier sums and de la Vallée-Poussin means.

Mathematics subject classification (2010): 30E10, 41A10, 41A25, 46E30.

Keywords and phrases: Boyd indices, weighted Orlicz space, Muckenhoupt weight, modulus of smoothness, de la Vallée-Poussin means.

REFERENCES

[1] R. Akgün, Improved converse theorems and fractional moduli of smoothness in Orlicz spaces, Bull. Malays. Math. Sci. Soc. (2) 36, (2013), no. 1, 49–62.
[2] R. Akgün, Approximating polynomials for functions of weighted Smirnov-Orlicz spaces, J. Funct. Spaces Appl. 2012 (2012) Article ID 982360, 41 pp.
[3] R. Akgün, D. M. Israfilov, Polynomial approximation in weighted Smirnov-Orlicz space, Proc. A. Razmadze Math. Inst. 139 (2005), 89–92.
[4] R. Akgün, D. M. Israfilov, Approximation and moduli of fractional orders in Smirnov-Orlicz classes, Glas. Mat. Ser. III 43 (63) (2008), no. 1, 121–136.
[5] R. Akgün, D. M. Israfilov, Simultaneous and converse approximation theorems in weighted Orlicz spaces, Bull. Belg. Math. Soc., 17 (2010), no. 1, 13–28.
[6] S. P. Baiborodov, Approximation of functions by de la Vallée-Poussin sums, Matem. Zametki, 24 (1980), no. 1, 33–47, (in Russian).
[7] C. Bennett and Yu. I. Sharpley, Interpolation of operators, Academic Press, 1988.
[8] A. Böttcher and Yu. I. Karlovich, Carleson curves, Muckenhoupt weights and Toeplitz operators, Birkhäuser Verlag, 1997.
[9] D. W. Boyd, Spaces between a pair of reflexive Lebesgue spaces, Proc. Amer. Math. Soc. 18 (1967), 215–219.
[10] D. W. Boyd, Indices of function spaces and their relationship to interpolation, Canad. J. Math. 21 (1969), 1245–1254.
[11] D. W. Boyd, Indices for the Orlicz spaces, Pacific J. Math. 38 (1971), 315–325.
[12] V. T. Gavrilyuk, Linear summability methods for Fourier series and best approximation, Ukrain. Math. Zh. 15 (1963), no. 4, 412–418, (in Russian).
[13] A. Guven, D. M. Israfilov, Approximation by means of Fourier trigonometric series in weighted Orlicz spaces, Adv. Stud. Contemp. Math. (Kyungshang), 19 (2009), no. 2, 283–295.
[14] R. A Devore and G. G. Lorentz, Constructive Approximation, Springer Verlag, 1993.
[15] D. M. Israfilov, Ali Guven, Approximation by trigonometric polynomials in weighted Orlicz spaces, Studia Math. 174 (2006), no. 2, 147–168.
[16] D. M. Israfilov, B. Oktay, R. Akgün, Approximation in Smirnov-Orlicz classes, Glas. Mat. Ser. III 40 (2005), 87–102.
[17] D. M. Israfilov, R. Akgün, Approximation in weighted Smirnov-Orlicz classes, J. Math. Kyoto Univ. 46 (2006), no. 4, 755–770.
[46] B. V. Simonov, S. Yu. Tikhonov, *Embedding theorems in the constructive theory of approximations*, Mat. Sb. (2008), 199 (9), 107–148, (in Russian); translation in Sb. Math. 199 (2008), no. 9–10, 1367–1407.

[47] M. F. Timan, *Best approximation of a function and linear methods of summing Fourier series*, Izv. Akad. Nauk SSSR Ser: Math. 29 (1965), 587–604, (in Russian).

[48] M. F. Timan, *Some linear summation processes for Fourier series and best approximation*, Dokl. Akad. Nauk SSSR 145 (1962), 741–743.

[49] Ch. L. Vallée Poussin, *Sur la meilleure approximation des fonctions d’une variable reelle par des expressions d’ordre donne*, C. R. Acad. Sci., Paris 166 (1918), no. 4, 799–802.

[50] Y. E. Yildirim, D. M. Israfilov, *Simultaneous and converse approximation theorems in weighted Lebesgue spaces*, Math. Inequal. Appl. 14 (2011), no. 2, 359–371.

[51] A. A. Zakharov, *Bound on deviations of continuous periodic functions from their de la Vallée-Poussin sums*, Matem. Zametki, 3 (1968), no. 1, 77–84, (in Russian).