PERSISTENT HOMOLOGY FOR LOW-COMPLEXITY MODELS

MARTIN LOTZ

ABSTRACT. We show that recent results on randomized dimension reduction schemes that exploit structural properties of data can be applied in the context of persistent homology. In the spirit of compressed sensing, the dimension reduction is determined by the Gaussian width of a structure associated to the data set, rather than its size, and such a reduction can be computed efficiently. We further relate the Gaussian width to the doubling dimension of a finite metric space, which appears in the study of the complexity of other methods for approximating persistent homology. This allows to literally replace the ambient dimension by an intrinsic notion of dimension related to the structure of the data.

1. INTRODUCTION

Persistent homology is an approach to topological data analysis (TDA) that allows to infer multi-scale qualitative information from noisy data. Starting from a point cloud representing the data, persistent homology extracts topological information about the structure from which the data is assumed to be sampled from (such as number of connected components, holes, cavities, ...) by associating certain multi-scale invariants, the barcodes or persistence diagrams to the data. These invariants measure topological features of neighbourhoods of the data at different scales; features that persist over large scale ranges are considered relevant, while short lived features are considered topological noise.

Despite excellent theoretical guarantees and plenty of practical applications, the sometimes large number of data points \(n \) and ambient dimension \(d \) can cause significant challenges for the computation of persistent homology. Much current work in the field is devoted to addressing this challenge, the underlying rationale being that the true complexity of the data is often smaller than it appears, and that a reduction of the data can be enough to extract the relevant topological information.

Our focus is on the analysis of randomized dimension reduction schemes at the point cloud level that depend purely on structural properties of the data points, and not on the size of the data set. Specifically, we show that it is possible to approximate the persistent homology of a point cloud from its projection to a subspace of dimension proportional to a measure of intrinsic dimension, the Gaussian width of an underlying structure. For example, if we assume that the \(d \)-dimensional data points are \(s \)-sparse in a suitable basis or frame (for example, image data in a Fourier or wavelet basis), then we can work in an ambient dimension of order \(\mathcal{O}(s \log(d/s)) \), similar to what is commonplace in compressed sensing. The Gaussian width is closely related to another intrinsic dimension parameter, the doubling dimension of a metric space. While previous work has shown that the doubling dimension can replace the ambient dimension in the analysis of various approaches to computing persistent homology, it follows that one can also literally embed the data into an ambient space of dimension proportional to it.

The dimension reduction affects the very first part of the persistent homology pipeline, where it can reduce the size of the input. Such a reduction is useful in constructions that depend on the ambient dimension, while the independence of the number of data points is useful in applications where this number is not known in advance or may change. In addition, we will see that the reduction can be computed efficiently under certain circumstances.

We point out that the notion of “low complexity” used here differs from the usual manifold assumption, where the data is assumed to lie close to a lower dimensional set whose topology one is interested in, and where it is the intrinsic dimension of that manifold that determines the complexity of the problem. In
our setting, we do not make such an assumption, but only consider structural properties of any potential data points. These are related to the type of data we consider and can be known or estimated in advance. To illustrate this difference, consider image data from the Columbia Object Image Library [48], which contains photos of objects rotated around a fixed axis. The images associated to one single object lie on a one-dimensional structure (a circle). If the database would be extended to include more perspectives on each object, then that structure will change to a sphere. Independent of this, the individual images are images, and as such are compressible and lie close to a low-dimensional subspace arrangement. It is this latter structure that determines the target dimension of the random dimension reduction, regardless of the shape of the manifold around which the images cluster, and independent of the number of images present in the data set.

As mentioned before, a crucial parameter in this context is the Gaussian width of a set,

\[w(S) = \mathbb{E}[\sup_{x \in S} \langle x, g \rangle], \]

where the expectation is over a standard Gaussian vector \(g \). This parameter features prominently in the study of Gaussian processes [41], in geometric functional analysis [4], learning theory [6], and in compressed sensing [26, Chapter 9]. We show that it also determines the dimension in which persistent topological information can be recovered from Euclidean point clouds without much loss. Formally, this means that the persistence diagrams for the original and for the projected data are close in some metric, which can be formalized using the interleaving distance on persistence modules. For the precise definition of these and other concepts used in the statement of the result, see Section 2.

Theorem 1.1. Let \(X \subset M \subset \mathbb{R}^d \) with \(X \) finite, let \(\delta \in (0, 1) \), and \(T = \{(x - y)/\|x - y\| : x, y \in M\} \). Assume that

\[m \geq \left(\frac{\left(w(T) + \sqrt{2 \log(2/\delta)} \right)^2}{\varepsilon^2} \right) + 1. \]

Then for a random \(m \times d \) matrix \(G \) with normal distributed entries \(g_{ij} \sim N(0, 1/m) \), with probability at least \(1 - \delta \), the persistence modules associated to the Čech, Vietoris-Rips, and Delaunay complexes of \(X \) and \(GX \) with respect to the Euclidean distance are multiplicatively \((1 - \varepsilon)^{-1} \)-interleaved.

Theorem 1.1 is based on, and recovers as special case, an extension of the Johnson-Lindenstrauss Theorem by Sheehy [57] (see the example with the Gaussian width of discrete sets below). One crucial difference to the classical approach is that the Gaussian width allows us to do better when the data \(X \) has a particularly simple structure. Theorem 1.1 should be seen as a prototype for a whole class of dimensionality reduction results and is, as stated, not practical. More practically relevant variants of Theorem 1.1 are discussed in section Section 1.1.1.

Before proceeding, we present some examples of sets where the Gaussian width is well known. We use the notation \(w^2(T) := w(T)^2 \) for the square of the Gaussian width.

Discrete set. Let \(T = \{x_1, \ldots, x_n\} \) be a set of \(n \) points with \(\|x_i\|_2 = 1 \) for \(1 \leq i \leq n \). Then

\[w^2(T) \leq 2 \log(n). \] (1.1)

A proof can be found in [11, 2.5].

Spheres and balls. Let \(T = S^{m-1} \) be an \((m - 1) \)-dimensional unit sphere in \(\mathbb{R}^d \). Then the invariance property of the Gaussian distribution implies

\[w^2(T) = \mathbb{E}[\|\bar{g}\|^2] \leq m, \]

where \(\bar{g} = (g_1, \ldots, g_m)^T \) is the projection of a Gaussian vector \(g \in \mathbb{R}^d \) to the first \(m \) coordinates.
Sparse vectors. Let \(T_s = \{ x \in S^{d-1} : |\text{supp}(x)| \leq s \} \) be the set of \(s \)-sparse unit vectors. As shown by Rudelson and Vershynin [54], the squared Gaussian width of this set is bounded by
\[
(1.2) \quad w^2(T_s) \leq C \cdot s \log(d/s),
\]
where \(C \) is some constant. As the Gaussian width is orthogonally invariant, it is enough to require that the elements of \(x \) are sparse in some fixed basis. For example, we could have a collection of compressed images that are sparse in a discrete cosine or wavelet basis, or signals that are sparse in a frequency domain.

Low-rank matrices. Let \(M_r = \{ X \in \mathbb{R}^{d_1 \times d_2} : \|X\|_F = 1, \text{rk}(X) \leq r \} \) be the set of matrices of rank at most \(r \) and unit Frobenius norm, where \(\|X\|_F^2 = \sum_{i,j} X_{ij}^2 \). It can be shown that
\[
w^2(M_r) \leq C \cdot r(d_1 + d_2)
\]
for some constant \(C \), see [53, 14] for a derivation and more background. Examples of low-rank matrices or approximately low-rank matrices abound, including images, Euclidean distance matrices, correlation matrices, matrices arising from the discretization of differential equations, or recommender systems. One can also consider low-rank tensors (with respect to several notions of rank).

Linear images. Assume that \(T = AS \), where \(S \subset \mathbb{R}^d \) and \(A \in \mathbb{R}^{m \times d} \). Then the squared Gaussian width of \(T \) can be bounded in terms of that of \(S \) and the condition number \(\kappa(A) \) of \(A \),
\[
(1.2) \quad w^2(T) \leq \kappa^2(A)w^2(S).
\]
See [2] for a derivation of this in a more general context. This is useful when considering the cosparse signal recovery setting [47], in which the signals of interest are sparse after applying some (not necessarily invertible) linear transformation.

Convex cones. Let \(T = C \cap S^{d-1} \), where \(C \) is a convex cone (a convex set with \(\lambda x \in C \) if \(x \in C \) and \(\lambda \geq 0 \)). The Gaussian width of \(C \cap S^{d-1} \) differs from an invariant of the cone, the statistical dimension \(\delta(C) \), by at most one [1, Prop 10.2]. It is known that \(\delta(C) = d/2 \) for self-dual cones (this includes the orthant and cone of positive semidefinite matrices), \(\delta(C) \approx \log(d) \) for \(C = \{ x : x_1 \leq \cdots \leq x_d \} \), and \(\delta(C) \approx d \sin^2(\alpha) \) for the circular cone of radius \(\alpha \) [1, Chapter 3]. Moreover, approximations are known for the squared Gaussian width of the descent cones of the 1-norm [59] and the nuclear norm [16], see also [1, Chapter 4].

1.1. Considerations

We discuss some issues and extensions related to Theorem 1.1. These are concerned with efficiency, applications, limitations, and robustness.

1.1.1. Efficient projections

In many applications, the computational cost of multiplying the data with a dense Gaussian matrix is likely to offset any potential gains of working in a lower dimension [55]. In persistent homology, however, where a first step consists of computing the pairwise distances of \(n \) points, the projection has to be computed only \(n \) times, followed by \(n(n-1)/2 \) distance computations in a lower dimension. It follows that if the dimension is fixed and the number of samples large enough, any projection to a lower dimension will eventually lead to computational savings. That being said, recent results around the Johnson-Lindenstrauss Theorem allow to extend Theorem 1.1 (up to constants and logarithmic factors) to a large class of linear maps, including subgaussian matrices [23], sparse Johnson-Lindenstrauss transforms [12], and matrices satisfying a classical Restricted Isometry Property [52, 37]. Strikingly, in [52] the authors derived a “transfer theorem” that shows that one can use so-called RIP (Restricted Isometry Property) matrices with only minor loss. Such matrices have been studied extensively in compressed sensing [26], and include the SORS (subsampled orthogonal with random sign) matrices. These are defined as matrices of the form \(A = HD \), where \(H \) is an \(m \times d \) matrix arising from uniformly sampling \(m \) rows from a unitary matrix with entries bounded by \(\Delta/\sqrt{d} \) in absolute value for a constant \(\Delta \),
and D is a diagonal matrix with a uniform random sign pattern on the diagonal. Using the results of [52] instead of Gordon’s Theorem, we get the following variation of Theorem 1.1.

Theorem 1.2. Under the conditions of Theorem 1.1, for a suitable constant C and

$$m \geq C \cdot \Delta^2 (1 + \log(1/\delta))^2 \log^4(d) \frac{\log^2(T)}{\varepsilon^2},$$

for a random $m \times d$ SORS matrix A, with probability at least $1 - \delta$, the persistence modules associated to the Čech, Vietoris-Rips, and Delaunay complexes of X and AX are multiplicatively $(1 - \varepsilon)^{-1}$-interleaved.

As pointed out in [52], it is likely that the term $\log^4(d)$ can be reduced to $\log(d)$. Important examples of SORS matrices with $\Delta = 1$ are the (properly renormalized) Fourier transform, the discrete cosine transform, and the Hadamard transform, which allow for fast matrix-vector products. The possibility of computing the dimension reduction efficiently is essential to the applicability of the reduction scheme.

1.1.2. **Applications.** Two key advantages of the proposed dimension reduction scheme are that it is non-adaptive, and the fact that the target dimension of the projection does not depend on the size of the data set. Together with the possibility of using fast projections, the method has potential applications in settings where the data set changes with time, and one would like to update topological information as new data becomes available. More precisely, consider a given data set $X = \{x_1, \ldots, x_k\}$, and assume that a new point x_{k+1} becomes available. The most basic operation, updating the distance matrix of the point set, requires $O(kd)$ operations. Assume that we have prior information on the type of data represented by X (for example, that it consists of images that have a certain sparsity structure). If we store projections Px_1, \ldots, Px_k, where P has $m \ll d$ rows, then updating the distance matrix reduces to $O(km)$ operations after computing Px_{k+1}. The cost of this reduction is the added complexity of computing the projection Px_{k+1}; when P is a sparse Johnson-Lindenstrauss transform with sparsity s, then the number of operations is sd and the total cost of constructing the distance matrix is $O(km + sd)$. When using a partial Fourier or Hadamard matrix, the cost becomes $O(km + d \log d)$.

The setting most likely to benefit is when the dimension is large, the effective dimension (Gaussian width) is small, and the number of samples is sufficiently large. Note that when the number of samples n is less than exponential in the Gaussian width, the bound of $2\log(n)$ for the Gaussian width can be smaller than the bound implied by the underlying structure. For example, with n points representing s-sparse signals in \mathbb{R}^d we would require more than $2^s d \leq n$ samples for the cardinality-independent bound (1.2) to become more effective than (1.1). We discuss some numerical examples relating the computation time to achievable reduction performance in Section 6. The benefits become more marked when dealing with more complex constructions. For example, the size of a Delaunay triangulation can be of order $n^{d/2}$, as exemplified by the cyclic polytope [62], and approximations such as the mesh filtration are of order $2^O(d^2)$ [32]. Note that the complexity reduction can also play a role in the analysis of constructions that do not explicitly compute the projection.

1.1.3. **Different metrics.** If we are only interested in the Vietoris-Rips filtration, which depends only on pairwise distances, then Theorem 1.1 extends to any metric that allows for low-distortion embeddings [33], with appropriately adjusted bounds (see, for example, [38] for recent work on the ℓ_1 norm). For Čech and Delaunay complexes, however, the statement depends crucially on Euclidean characterizations of mean and variance (Section 4) and is therefore restricted to the Euclidean spaces (or data sets that can be embedded in such), and similarity measures derived from the Euclidean distance. As many applications of persistent homology involve metric spaces with non-Euclidean metrics, it would be interesting to see to what extent a practical randomized dimensionality reduction can be performed in this context. The results extend easily to weighted Euclidean distances, as in [57].

1.1.4. **Robustness to noise.** With some modification, the results still apply in the presence of noise. In many practical settings the data points will satisfy structural constraints only approximately. For example, images are generally not sparse but compressible, meaning that after some transform, all but
a few coefficients will be small but not exactly zero. Assume that that the data points are of the form
\[x_i = y_i + v_i, \] with \(\|v_i\| \leq \nu. \) If \(\nu \) is large, then the underlying structure is lost. In general, the
squared Gaussian width can increase by a factor of up to \(\nu^2 d \), which restricts the method to small errors.
Fortunately, the coefficients of a trigonometric or Wavelet expansion of images are known to decay quickly,
with the decay depending on the regularity properties of the image [42].

1.2. Relation to previous work. The application of the Johnson-Lindenstrauss Theorem in relation to
persistent homology was introduced by Sheehy [57], on which our approach is based, and independently
by Kerber and Raghvendra [36]. In particular, a version of the key Theorem 4.1 with different constants
appeared in [57]. These articles formulated their results using a target dimension of order \(\log(n)/\varepsilon^2 \),
where \(n \) is the cardinality of the point cloud. The work [36] also extends the Johnson-Lindenstrauss
Theorem to the setting of projective clustering, of which the smallest enclosing ball is a special case.
The doubling dimension has been used as a measure of intrinsic dimension in topological data analysis,
see [50, Chapter 5] and the references therein, and also [56, 21]. To our knowledge, the relation of the
Gaussian width to the doubling dimension of a metric space was first pointed out by Indyk and Naor [34],
even though a close connection is apparent in work on suprema of Gaussian processes [61]. We revisit
this relation in our context, with matching upper and lower bounds, in Section 5.
The use of the Gaussian width in compressed sensing was pioneered by Rudelson and Vershynin [54],
and has, in combination with Gordon’s inequality, come to play a prominent role as a dimension parameter
in the development of the theory [26]. The Gaussian width also plays an important role in the analysis of
signal recovery by convex optimization, as shown by [59] and generalized in [16], and a variation of the
Gaussian width for convex cones, the statistical dimension, determines the location of phase transitions
for the success probability of such problems [1]. As far as we are aware, the Gaussian width has not yet
been studied in the context of persistent homology.
There has been extensive work on complexity reduction across all other parts of the persistent ho-
mology pipeline. These include subsampling techniques [18], approaches to reduce the complexity of
a filtration [22, 19, 56, 51], and ways to improve on the matrix reduction [10, 9, 20, 8, 45]. We refer
to [50, 35, 49] for an overview and further references.

1.3. Outline of contents. In Section 2 we review in some detail the necessary prerequisites from per-
sistent homology. This section also presents the basic interleaving result of Sheehy that links the
Johnson-Lindenstrauss Theorem to the interleaving distance of persistence modules. Section 3 reviews the
Johnson-Lindenstrauss Theorem in the version of Gaussian matrices and Gaussian width, which is based
on Gordon’s inequalities for the expected suprema of Gaussian processes. Section 4 presents a version of
the Johnson-Lindenstrauss Theorem for smallest enclosing balls, which slightly improves a corresponding
result by Sheehy [57]. This section also outlines a new proof of this result based on Slepian’s Lemma. A
direct consequence is a proof of Theorem 1.1. Section 5 relates the Gaussian width to another intrinsic
dimensionality parameter, the doubling dimension. Section 6 presents some basic numerical experiments
that illustrate that the dimensionality reduction can work in practice, while Section 7 discusses some
further directions.

1.4. Notation and conventions. For a set \(S \subset \mathbb{R}^d \), let \(\text{enc}(S) \) denote the smallest enclosing ball, \(e_S \) its
center and \(\rho(S) \) its radius. Denote by \(\partial \text{enc}(S) \) the boundary and by \(\partial S = \partial \text{enc}(S) \cap S \) the points of \(S \)
on the boundary. Except when otherwise state, the notation \(\log \) will refer to the natural logarithm.

Acknowledgements. I would like to thank Uli Bauer for point out the Kirszbraun intersection property
and the reference [29], and Michael Kerber and Don Sheehy for feedback and some useful comments on a
preliminary draft.

2. Overview of Persistent Homology

The persistence homology pipeline begins with a point cloud, associates to it a filtration of simplicial
complexes, constructs a boundary matrix related to the simplicial filtration, and then computes the
4.3], the setting in which it will be used in our case.

Theorem 2.1. (Nerve Theorem) Let p-simplicial complex K is a finite collection of sets σ that is closed under the subset relation. The elements $\sigma \in K$ are called simplices, and a subset $\tau \subseteq \sigma$ (itself a simplex) is called a face of σ. The dimension of a simplex is $\dim \sigma = |\sigma| - 1$ (in particular, $\dim \emptyset = -1$), and a simplex of dimension p is called a p-simplex. We denote by K_p the set of all p-simplices. A map of simplicial complexes $f : K \to L$ is a map $f : K_0 \to L_0$ such that $f(\sigma) \in L$ for all $\sigma \in K$. A map $f : K \to L$ between simplicial complexes is an isomorphism if it is injective, and $\sigma \in K \iff f(\sigma) \in L$. A subcomplex of K is a subset $L \subseteq K$ that is itself a simplicial complex. The p-skeleton $\bigcup_{k \leq p} K_k$ of K is the subcomplex consisting of all simplices of dimension at most p. We can associate to each p-simplex in K a geometric simplex σ in some \mathbb{R}^d (that is, the convex hull of $p + 1$ affinely independent points) in such a way that the face relations remain valid and the intersection of two simplices is either empty or again a simplex. The union of these geometric simplices is a geometric realization $|K|$ of the simplicial complex. A map between simplicial complexes $K \to L$ gives rise to a continuous map $|K| \to |L|$ between topological spaces. An important result in algebraic topology states that isomorphic simplicial complexes give rise to homeomorphic realizations [46]. In particular, the homotopy type (loosely speaking, the class of shapes that a set can be continuously deformed into) of a simplicial complex is well defined as the homotopy type of a realization of the complex.

One way to obtain a simplicial complex is as the nerve of a cover. Given a set $S \subset \mathbb{R}^d$ and a set of subsets $S = \{U_i\}_{i \in I}$ such that $S \subseteq \bigcup_{i \in I} U_i$, we define the nerve $\mathcal{N}(S)$ of the cover to be the simplicial complex on the set I defined by

$$\sigma \in \mathcal{N}(S) \iff \bigcap_{i \in \sigma} U_i \neq \emptyset.$$

The following important result (see, for example, [30, 4.G]) relates the topology of the nerve to that of the cover. The Nerve Theorem also holds for covers with closed balls in Euclidean space [50, Chapter 4.3], the setting in which it will be used in our case.

Theorem 2.1. (Nerve Theorem) Let S be a finite collection of open, convex sets in \mathbb{R}^d. Then $\mathcal{N}(S)$ is homotopy equivalent to the union $\bigcup_{U \in S} U$.

A chain complex $C_p(K)$ is the \mathbb{Z}_2-vector space generated by the p-simplices of K. The boundary map maps a p-simplex to the sum of its $(p-1)$-dimensional faces,

$$\partial_p : C_p(K) \to C_{p-1}(K), \quad \sigma \mapsto \sum_{\tau \subset \sigma \cap K_{p-1}} \tau.$$

The boundary maps satisfy the fundamental property that for $p \geq 0$, $\partial_p \circ \partial_{p+1} = 0$ (here, we use the convention that $\partial_0 = 0$). If we set $Z_p(K) = \ker \partial_p$ (the set of cycles) and $B_p(K) = \text{im} \partial_{p+1}$ (the set of boundaries), then the p-th homology vector space is defined as the quotient

$$H_p(K) = Z_p(K)/B_p(K).$$

The p-th Betti number is $\beta_p = \dim H_p(K)$. Homology is functorial, meaning that a map $f : K \to L$ induces a morphism $f_* : H_p(K) \to H_p(L)$, with the property that an isomorphism of complexes maps to an isomorphism of homology groups.
2.2. Filtrations. To capture the topology of the data at different scales, we need to consider sequences of topological spaces and simplicial complexes ordered by inclusion. Such filtrations of topological spaces and of simplicial complexes both give rise to filtrations of homology vector spaces.

Given a topological space M, a continuous function $f : M \to \mathbb{R}$ induces a sublevel filtration $\mathcal{M} = \{M_\alpha\}_{\alpha \in \mathbb{R}}$, defined as

$$M_\alpha = \{x \in M : f(x) \leq \alpha\}.$$

One case of interest in topological data analysis is when M is a metric space, and in particular when $M = \mathbb{R}^d$ with the Euclidean distance, X is a finite set $X = \{x_1, \ldots, x_n\}$ (a point cloud) and $f = d_X$ is the distance function to X, $d_X : X \to \mathbb{R}$, $d_X(x) = \inf_{p \in X} \|x - p\|_2$. The induced filtration consists of the union of closed α-balls around the points of X,

$$X_\alpha = \bigcup_{1 \leq i \leq n} B(x_i, \alpha).$$

The are various ways to associate a simplicial filtration to a topological one, and the resulting homology sequences may or may not be the same. In the following, let $X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$ be a point cloud. The nerve of the cover $X_\alpha = d_X((-\infty, \alpha])$ is the Čech filtration,

$$\check{C}_\alpha(X) = \{\sigma \subset [n] : \bigcap_{i \in \sigma} B(x_i, \alpha) \neq \emptyset\}.$$

In other words, a subset $S = \{x_i : i \in \sigma\} \subseteq X$ gives rise to a simplex $\sigma \in \check{C}_\alpha(X)$ if and only if $S \subset B(x, \alpha)$ for some $x \in \mathbb{R}^d$.

The Delaunay filtration, or α-filtration, is the sequence of simplicial complexes $D_\alpha(X)$ consisting of simplices $\sigma \subset [n]$ such that there exists $x \in \mathbb{R}^d$ with

- $S = \{x_i : i \in \sigma\} \subset B(x, \alpha)$;
- for all $p \notin S$, $p \notin B(x, \alpha)$.

Clearly, $D_\alpha(X) \subseteq \check{C}_\alpha(X)$. The Delaunay filtration has the advantage that if the points in X are in general position (meaning that no $d + 2$ of them lie on the surface of a sphere), then the simplices have dimension at most d, whereas for the Čech complex they can have dimension up to n. On the other hand, while the complexity of constructing a Čech complex only depends on the size of the data set (or the distance matrix), constructing a Delaunay complex has complexity exponential in the ambient dimension d, which makes it practical only for small dimensions.

Finally, one of the most common constructions is the Vietoris-Rips complex, $V_\alpha(X)$, where $\sigma \in V_\alpha(X)$ if and only if for all $x, y \in \sigma$, $\|x - y\| \leq 2\alpha$.

A filtration \mathcal{M} gives rise to a filtration in the homology vector spaces: if $\alpha \leq \alpha'$, then we get an induced homomorphism

$$H_p(M_\alpha) \xrightarrow{\alpha' \to \alpha} H_p(M_{\alpha'}).$$

The p-th persistent homology $H_p(\mathcal{K})$ associated to a (topological or simplicial) filtration is the induced sequence of homology vector spaces and linear maps, and the p-th persistence vector spaces are the images of these homomorphisms,

$$H^{\alpha, \alpha'}_p(\mathcal{M}) = \text{im} \iota^{\alpha'}_\alpha = Z_p(M_\alpha)/(B_p(M_{\alpha'}) \cap Z_p(M_\alpha)).$$

In all the situations of interest to us in this paper, the homology groups are finite-dimensional, and there are only finitely many indices $c_0 < c_1 < \cdots < c_m$, the critical points, such that $H_p(K_{\alpha}) = H_p(K_{\alpha'})$ and $\iota^{\alpha'}_\alpha = \text{id}$ for $\alpha, \alpha' \in [c_i, c_{i+1})$.

While the Nerve Theorem 2.1 guarantees that for each α the homology of the nerve complex is the same as the homology of the cover, it does not automatically follow that the persistent homology of the filtration induced by the cover is the same as the persistent homology of the resulting filtered simplicial complex.
The fact that this is the case is guaranteed by the Persistent Nerve Lemma [50, Lemma 4.12]. The following is a simplified statement. To avoid too many parentheses, we use the notation \(\tilde{C}_\alpha X \). Let \(X = \{x_1, \ldots, x_n\} \) and \(\hat{C}_\alpha X \) be the cover with closed balls of radius \(\alpha \). Let \(\tilde{C}_\alpha X \) be the corresponding nerve. Then there is an isomorphism of persistence homology modules \(H_p \). Specifically, for every \(\alpha \) there are isomorphisms \(\nu \alpha \) such that the following diagram commutes:

\[
\begin{array}{ccc}
H_p(X_\alpha) & \xrightarrow{\nu_\alpha'} & H_p(X'_\alpha) \\
\downarrow{\nu_\alpha} & & \downarrow{\nu'_\alpha} \\
H_p(\tilde{C}_\alpha X) & \xrightarrow{\nu_\alpha'} & H_p(\tilde{C}'_\alpha X)
\end{array}
\]

The Delaunay complex can also be related to the offset filtration complex [50, Chapter 3], by considering a deformation retraction of \(X_\alpha \) to a geometric realization of \(D_\alpha \), which induces isomorphisms between the homology sequences,

\[
\begin{array}{ccc}
H_p(X_\alpha) & \xrightarrow{\nu_\alpha} & H_p(X'_\alpha) \\
\downarrow{\nu_\alpha} & & \downarrow{\nu'_\alpha} \\
H_p(D_\alpha X) & \xrightarrow{\nu_\alpha'} & H_p(D'_\alpha X)
\end{array}
\]

While the homology of the Vietoris-Rips complex is not as directly related to the topological filtration via the Nerve Lemma, it approximates the Čech filtration via the observation

\[
\tilde{C}_\alpha (X) \subseteq V_\alpha (X) \subseteq \tilde{C}_{V_{2\alpha}} (X).
\]

For a simplicial filtration one defines the persistent homology vector spaces \(H_p^{i,j} (K) \) just as in the case of a topological filtration. A simplex \(\sigma \) is born at time \(t_i \) if appears in \(H_p(K^{t_i}) \) but is not the image of an element in \(H_p(K^{t_{i-1}}) \). A simplex \(\sigma \) dies at time \(t_i \) if \(t_{i-1} (\sigma) = 0 \). This way each element in the filtration, which corresponds to a topological feature of the realisation of the simplicial complex, comes with an interval \([\alpha, \alpha'] \) representing its lifetime, where \(\alpha' \) may be \(\infty \). The lifetimes of the various features are recorded in a two-dimensional persistence diagram, where each interval \([a, b] \) is represented by a point with coordinates \((a, b) \) with multiplicity (which equals 0 if there is no element whose lifetime matches the interval). Alternatively, one can represent each interval occurring using persistence barcodes, which record the lifetime of each feature as an interval.

2.3. Persistence modules. Homology vector spaces associated to a filtration (either simplicial or offset filtration) are examples of persistence modules. A persistence module is a sequence of vector spaces \(\{U_\alpha\}_{\alpha \in T} \) over a field \(\mathbb{F} \), indexed by a partially ordered set \(T \), together with linear maps \(u_\alpha' : U_\alpha \to U'_\alpha \) whenever \(\alpha \leq \alpha' \), and such that \(u_\alpha' = id_{U_\alpha} \) and \(u_\alpha' \circ u_\alpha'' = u_\alpha'' \) whenever \(\alpha \leq \alpha' \leq \alpha'' \) (in categorical terms, a persistence module is a functor from a poset to the category of vector spaces over a field). The direct sum of persistent modules \(\bigcup \{U_\alpha\}_{\alpha \in T} \) and \(\bigvee \{V_\alpha\}_{\alpha \in T} \), written \(\bigoplus \mathbb{W} = \bigcup \bigvee \mathbb{V} \), consists of the vector spaces \(U_\alpha \bigoplus V_\alpha \), together with the homomorphisms \(u_\alpha' \bigoplus v_\alpha' \). A morphism of persistence modules \(U \) and \(V \) over the same poset is a natural transformation between the persistence modules, i.e., a collection of linear maps \(\varphi_\alpha : U_\alpha \to V_\alpha \) such that the diagram

\[
\begin{array}{ccc}
U_\alpha & \xrightarrow{u_\alpha'} & U'_\alpha \\
\downarrow{\varphi_\alpha} & & \downarrow{\varphi'_\alpha} \\
V_\alpha & \xrightarrow{v_\alpha'} & V'_\alpha
\end{array}
\]
commutes for all $\alpha \leq \alpha' \in T$.

An interval module F_I with interval $I = [a, b) \subset T$ is a persistence module with $U_\alpha = F$ for $\alpha \in I$ and $u_\alpha = \text{id}_F$ for $\alpha, \alpha' \in I$, and $U_\alpha = 0, u_\alpha = 0$ else. We allow $a = -\infty$ or $b = \infty$. If the vector spaces are all finite-dimensional and/or the index set T is finite or countable, then it follows from classic results in quiver representation theory (see [50, Theorem 1.9]) that a persistence module can be written as a direct sum of interval modules,

$$U = \bigoplus_{I \in \Gamma} F_I,$$

where each Γ consists of intervals $[\alpha, \alpha')$ with $\alpha \leq \alpha'$ and $\alpha, \alpha' \in T$. The set of intervals Γ, counted with multiplicity, is the persistence barcode of the persistence module. Alternatively, the intervals can be represented by a persistence diagram $\text{Dgm}(U)$, which maps each interval $[a, b)$ to a point on the plane $\mathbb{R}^2 = (\mathbb{R} \cup \{-\infty, +\infty\})^2$, with associated multiplicity.

2.4. Stability. One of the strengths of persistent homology is its robustness with respect to noise. In order to measure how changes in the input affect changes in the persistent diagrams, we need to define a notion of distance between persistence diagrams (or between persistence modules). We only discuss the distance in the context of modules, and point out that by the Isometry Theorem [17] (and its variants) we can relate distances of persistence modules to notions of distance on persistence diagrams, such as the (logarithmic) bottleneck distance.

Given a persistence module U and $c \geq 1$, define a shifted module $U[c]$ such that $U[c]_\alpha = U_{\alpha/c}$ for each $\alpha \in T$. A multiplicative c-interleaving between a pair of persistence modules U, V is a pair of morphism of persistence modules $\varphi: U \rightarrow V[c]$ and $\psi: V \rightarrow U[c]$ such that for each α, the following diagrams commute:

$$\begin{align*}
U_\alpha & \xrightarrow{u_{\alpha/c}} U_{\alpha/c} \\
\varphi_{\alpha/c} & \downarrow \quad \quad \downarrow \psi_{\alpha} \\
V_\alpha & \xrightarrow{v_{\alpha/c}} V_{\alpha/c}
\end{align*}$$

The (multiplicative) interleaving distance between two persistence modules U and V is the infimum among the ε such that an additive ε-interleaving exists, and the multiplicative interleaving distance is the smallest c such that a multiplicative c-interleaving exists. One similarly defines an additive interleaving by replacing α/c and $c\alpha$ with $\alpha - \varepsilon$ and $\alpha + \varepsilon$. Note that a multiplicative interleaving is an additive interleaving on a logarithmic scale.
The following Lemma from [57] reduces the task of finding an interleaving of persistence modules to that of establishing inequalities for smallest enclosing balls. Recall the notation $\rho(S)$ for the radius of a smallest enclosing ball of S.

Lemma 2.3. Let $X \subset \mathbb{R}^d$ be a finite set and $d_X : \mathbb{R}^d \to \mathbb{R}$ the distance function. Assume we have a function $F : \mathbb{R}^d \to \mathbb{R}^m$ such that for all subsets $S \subseteq X$ we have

$$(1 - \varepsilon)\rho(S) \leq \rho(F(S)) \leq (1 + \varepsilon)\rho(S).$$

Then the persistent homology modules associated to the Čech and Delaunay filtrations of X and $F(X)$ are multiplicatively $(1 - \varepsilon)^{-1}$-interleaved.

Proof. We deal with the Čech-complex. The statement for the Delaunay filtration follows from a standard equivalence [50, Chapter 4]. Recall that a set S defines a simplex $\sigma \in \hat{C}_\alpha(X)$ if and only if $\rho(S) \leq \alpha$. Let $S \subseteq X$ such that $\rho(S) \leq \alpha$, and let $\sigma \in \hat{C}_\alpha(X)$ be the associated simplex in the Čech-complex. Then by assumption

$$\rho(F(S)) \leq (1 + \varepsilon)\rho(S) \leq c\alpha,$$

so that $F(S)$ gives rise to a simplex $\varphi_\alpha(\sigma) \in \hat{C}_{c\alpha}(F(X))$. Conversely, if S' gives rise to a simplex $\sigma \in \hat{C}_\alpha(F(X))$ and $S = F^{-1}(S')$, then

$$(1 - \varepsilon)\rho(S) \leq \rho(S') \leq \alpha,$$

so that S gives rise to a simplex $\psi_\alpha(\sigma) \in \hat{C}_{c\alpha}(X)$. One easily checks that for $\alpha \leq \alpha'$, the following diagrams commute:

$$\begin{array}{ccc}
\hat{C}_\alpha(X) & \xrightarrow{\iota_{\alpha'}} & \hat{C}_{\alpha'}(X) \\
\downarrow{\varphi_\alpha} & & \downarrow{\varphi_{\alpha'}} \\
\hat{C}_{c\alpha}(F(X)) & \xrightarrow{\iota_{\alpha'}'} & \hat{C}_{c\alpha'}(F(X)) \\
\downarrow{\psi_\alpha} & & \downarrow{\psi_{\alpha'}} \\
\hat{C}_{c\alpha}(X) & \xrightarrow{\iota_{\alpha'}'} & \hat{C}_{c\alpha'}(X)
\end{array}$$

The maps φ_α and ψ_α therefore give rise to maps between the filtrations. By the Persistent Nerve Lemma [50, Lemma 4.12], these maps induce maps of persistent homology modules for each p,

$$\begin{array}{ccc}
H_p(X_\alpha) & \xrightarrow{\iota_{\alpha'}} & H(X_{\alpha'}) \\
\downarrow{\varphi_\alpha} & & \downarrow{\varphi_{\alpha'}} \\
H_p(F(X)_{\alpha}) & \xrightarrow{\iota_{\alpha'}'} & H_p(F(X)_{\alpha'}) \\
\downarrow{\psi_\alpha} & & \downarrow{\psi_{\alpha'}} \\
H_p(F(X)_{c\alpha}) & \xrightarrow{\iota_{\alpha'}'} & H_p(F(X)_{c\alpha'})
\end{array}$$

Moreover, since for any $S \subset X$ we have $S \subseteq F^{-1}(F(S))$, the following identities hold:

$$\psi_\alpha \circ \varphi_{\alpha/c} = \iota_{\alpha/c}, \quad \varphi_\alpha \circ \psi_{\alpha/c} = \iota_{\alpha/c}. $$

It follows that these maps constitute a c-interleaving, that carries over to a c-interleaving of the persistent homology modules. \hfill \square

3. **General Johnson-Lindenstrauss Transforms**

The classical Johnson-Lindenstrauss Theorem [43, 15.2] shows the existence of a linear map $f : \mathbb{R}^d \to \mathbb{R}^m$, such that for all x, y from a finite set $X \subset \mathbb{R}^d$ with $|X| = n$,

$$(1 - \varepsilon)||x - y|| \leq ||f(x) - f(y)|| \leq (1 + \varepsilon)||x - y||,$$

provided $m \geq C \cdot \log(n)/\varepsilon^2$ for some constant C.

This bound is sharp in general [39], but it can be refined based on a certain geometric measure of a set related to X. Arguably the most common geometric measure used in this context is the **Gaussian width** of a set T, defined as

$$w(T) = \mathbb{E} \sup_{x \in T} \langle g, x \rangle,$$
where the expectation is taken over a random Gaussian vector in \mathbb{R}^d, i.e., $g \in N(0, 1)$. One version of the Johnson-Lindenstrauss Theorem can be stated as follows. In what follows we set $E_m := \mathbb{E}[\|g\|] = \sqrt{2\Gamma((m + 1)/2)/\Gamma(m/2)}$, and note that

$$\frac{m}{\sqrt{m + 1}} \leq E_m \leq \sqrt{m}.$$

Theorem 3.1. (Johnson-Lindenstrauss - Gordon version) Let $\delta \in (0, 1)$, $X \subset \mathbb{R}^d$, and define $T = \{(x - y)/\|x - y\|_2 : x, y \in X\}$. Assume that

$$m \geq \frac{(w(T) + \sqrt{2\log(2/\delta)})^2}{\varepsilon^2} + 1.$$

Then for a random Gaussian $m \times d$ matrix G, with entries $g_{ij} \sim N(0, 1/E_m^2)$, we have

$$(1 - \varepsilon)\|x - y\| \leq \|Gx - Gy\| \leq (1 + \varepsilon)\|x - y\|,$$

uniformly for all $x, y \in X$ at probability at least $1 - \delta$.

As mentioned after Theorem 1.1, one can generalize this result with minor loss to subgaussian transformations [23], to the setting of the Sparse Johnson Lindenstrauss Transform (SJLT) [12] or more general so-called RIP-matrices [52, 37], that include, for example, partial Fourier or discrete cosine transforms. We present one such result, which gives rise to Theorem 1.2 in the same way as Theorem 3.1 gives rise to Theorem 1.1. Recall that a SORS (subsampled orthogonal with random sign) matrix is defined as a matrix of the form $A = HD$, where H is an $m \times d$ matrix arising from uniformly sampling m rows from a unitary matrix with entries bounded by Δ/\sqrt{d}, and D is a diagonal matrix with random i.i.d. sign pattern on the diagonal.

Theorem 3.2. ([52, Theorem 3.3]) Let $\delta \in (0, 1)$, $X \subset \mathbb{R}^d$, and define $T = \{(x - y)/\|x - y\|_2 : x, y \in X\}$. Let $A \in \mathbb{R}^{m \times d}$ be a SORS matrix. Then for some constant C and

$$m \geq C \cdot \Delta^2 (1 + \log(1/\delta))^2 \log^4(d) \frac{\log^3(T)}{\varepsilon^2},$$

the matrix A satisfies

$$(1 - \varepsilon)\|x - y\| \leq \|Ax - Ay\| \leq (1 + \varepsilon)\|x - y\|,$$

uniformly for all $x, y \in X$ with probability at least $1 - \delta$.

Keeping in mind that the results presented here also hold in practically relevant settings, we nevertheless restrict the remaining discussion to the Gaussian case to keep the exposition conceptually simple.

The proof of Theorem 3.1 is a well known and direct application of Theorem 3.3, which follows from an inequality of Gordon [27] relating the expected suprema of Gaussian processes, together with concentration of measure for Lipschitz functions. We include the proof for convenience, an accessible derivation of Gordon’s inequality itself can be found in the follow-up to [26, Theorem 9.21].

Theorem 3.3. (Gordon) Let $G \sim N(0, 1)$ be a Gaussian $m \times d$ matrix and let $T \subseteq S^{d-1}$ be a subset of the unit sphere. Then

$$\mathbb{P}\{\min_{x \in T} \|Gx\| \leq E_m - w(T) - t\} \leq e^{-t^2/2}$$

and

$$\mathbb{P}\{\max_{x \in T} \|Gx\| \geq E_m + w(T) + t\} \leq e^{-t^2/2}.$$

Proof of Theorem 3.1. Set $T = \{(x - y)/\|x - y\|_2 : x, y \in X\}$. Then the claim is that with probability at least $1 - \delta$, for all $p \in T$,

$$E_m(1 - \varepsilon) \leq \|\tilde{G}p\|_2 \leq E_m(1 + \varepsilon),$$

where we used the assumption that $G = \frac{1}{\sqrt{m}} \tilde{G}$ for a standard Gaussian matrix \tilde{G}. By the union bound, it suffices to show that
\[P\{\min_{x \in T} \| \tilde{G}x \| \leq E_m(1 - \varepsilon) \} \leq \frac{\delta}{2} \]
\[P\{\max_{x \in T} \| \tilde{G}x \| \geq E_m(1 + \varepsilon) \} \leq \frac{\delta}{2} \]
This is where Gordon’s Theorem 3.3 comes into the picture. Set $t = \sqrt{2 \log(2/\delta)}$, so that $\delta/2 = e^{-t^2/2}$.

The relation between m, ε and δ in the statement of the theorem can be reformulated as
\[\rho(S) + t \leq \varepsilon \sqrt{m - 1} \leq \varepsilon E_m, \]
and including this into the inequalities in Theorem 3.3 finishes the proof. \qed

4. Enclosing Balls

In view of Lemma 2.3, what is needed is a version of the Johnson-Lindenstrauss Theorem involving smallest enclosing balls instead of pairwise distances. Such a result is provided by the following Theorem. It is a version of the Kirszbraun intersection property, which was shown for $|S| \leq d + 1$ in [29, 3.A], and improves on a similar bound in [57]. We present a self-contained proof of Theorem 4.1 using elementary properties of the sample variance of a discrete distribution in \mathbb{R}^d, followed by a discussion of the relation to Slepian’s inequality in Section 4.1. Theorem 4.1 was devised independently by Sheehy [58]. Recall the notation $\rho(S)$ for the radius of the smallest enclosing ball of S.

Theorem 4.1. Let $S \subset \mathbb{R}^d$ be a finite set and let $\varepsilon \in [0, 1)$. Assume that for a map $f : \mathbb{R}^d \to \mathbb{R}^m$ and for all $x, y \in S$ we have
\[(1 - \varepsilon)\|x - y\| \leq \|f(x) - f(y)\| \leq (1 + \varepsilon)\|x - y\|. \]
Then
\[(1 - \varepsilon)\rho(S) \leq \rho(f(S)) \leq (1 + \varepsilon)\rho(S). \]

Remark 4.2. The literature on Johnson-Lindenstrauss is not always consistent on whether to use norms or squared norms, which leads to some ambiguity with respect to ε and ε^2. We note that if we had used squared norms in the assumptions of Theorem 4.1, we would also get the same result.

Remark 4.3. For simplicity, Theorem 4.1 is stated for the Euclidean distance, but the proof of Theorem 4.1 can be extended to the case of the power distance [57, 13]. To define this distance, assign non-negative weights $w(x)$ to points in X and $f(X)$. Then the power distance from x to a weighted point y is defined as
\[d_y(x)^2 = \|x - y\|^2 + w(y)^2. \]
The radius of a smallest enclosing ball is then defined as
\[\rho_w(S) = \min_{p \in \mathbb{R}^d} \max_{x \in X} d_x(p), \]
with the minimizing p as center c_S. One easily checks that Lemma 4.4 extends to this setting, and assuming that $w(x) = w(f(x))$, the proof of Theorem 4.1 carries over.

To prepare for the proof of Theorem 4.1 we first need a few elementary auxiliary results. Lemma 4.4 appears to be folklore. For a set S, the center c_S of S is the center of the smallest including ball.

Lemma 4.4. Let S be a set and let c_S denote the center of S. Then $c_S \in \text{conv}(S)$.
Proof. Assume \(c_S \notin \text{conv}(S)\) and denote by \(\Pi(c_S) = \arg \min_{x \in \text{conv}(S)} \|c_S - x\|\) the projection of \(c_S\) onto \(\text{conv}(S)\). We show that any point in \(S\) is closer to \(\Pi(c_S)\) than to \(c_S\). In fact, for any \(p \in S\) we get

\[
\|c_S - p\|^2 = \|c_S - \Pi(c_S) + \Pi(c_S) - p\|^2
\]

\[
= \|c_p - \Pi(c_S)\|^2 + \|\Pi(c_S) - p\|^2 - 2\langle c_S - \Pi(c_S), p - \Pi(c_S)\rangle
\]

\[
\geq \|\Pi(c_S) - p\|^2,
\]

where we used the fact that for a convex set, the inner product of an inward pointing and an outward pointing vector from the boundary is non-positive. \(\square\)

The following elementary observation is just the expression of the sample variance of a point set in terms of pairwise distances.

Lemma 4.5. Let \(c = \sum_{i=1}^{k} \lambda_i x_i\) be a convex combination of elements of \(S\). Then

\[
\sum_{i=1}^{k} \lambda_i \|x_i - c\|^2 = \sum_{i<j} \lambda_i \lambda_j \|x_j - x_i\|^2.
\]

Proof. Using the representation of \(c\) as convex combination of the \(x_i\), we get

\[
\|x_j - c\|^2 = \langle x_j - c, x_j - \sum_{i=1}^{k} \lambda_i x_i \rangle = \sum_{i=1}^{k} \lambda_i \langle x_j - c, x_j - x_i \rangle.
\]

Each summand can be characterized as

\[
\langle x_j - c, x_j - x_i \rangle = \frac{1}{2} (\|x_j - c\|^2 + \|x_j - x_i\|^2 - \|x_i - c\|^2).
\]

Plugging this identity into (4.4), using \(\sum_{i=1}^{k} \lambda_i = 1\), and combining all terms involving \(\|x_j - c\|^2\),

\[
\|x_j - c\|^2 = \sum_{i=1}^{k} \lambda_i \|x_j - x_i\|^2 - \sum_{i=1}^{k} \lambda_i \|x_i - c\|^2.
\]

Rearranging and summing both sides with weights \(\lambda_j\) establishes the claim. \(\square\)

Proof of Theorem 4.1. Let \(\partial S = \{x_1, \ldots, x_k\}\) and let \(c_S = \sum_{i=1}^{k} \lambda_i x_i\) be a convex combination of the center of \(S\). Set \(\tilde{c} = \sum_{i=1}^{k} \lambda_i f(x_i)\). Applying Lemma 4.5 twice, we get

\[
\rho^2(S) = \sum_{i=1}^{k} \lambda_i \|x_i - c_S\|^2 = \sum_{i<j} \lambda_i \lambda_j \|x_j - x_i\|^2
\]

\[
\leq \frac{1}{(1 - \varepsilon)^2} \left(\sum_{i<j} \lambda_i \lambda_j \|f(x_j) - f(x_i)\|^2 \right)
\]

\[
= \frac{1}{(1 - \varepsilon)^2} \left(\sum_{i=1}^{k} \lambda_i \|f(x_i) - \tilde{c}\|^2 \right).
\]

As the function \(c \mapsto \sum_{i=1}^{k} \lambda_i \|f(x_i) - c\|^2\) is minimized at \(\tilde{c}\), we can continue the above and conclude

\[
\rho^2(S) \leq \frac{1}{(1 - \varepsilon)^2} \left(\sum_{i=1}^{k} \lambda_i \|f(x_i) - c_{f(S)}\|^2 \right) \leq \frac{1}{(1 - \varepsilon)^2} \rho^2(f(S)).
\]

For the right-hand inequality we proceed similarly. \(\square\)
Proof of Theorem 1.1. The Johnson-Lindenstrauss Theorem 3.1 states that under the assumptions of Theorem 1.1, the pairwise distances are preserved up to multiplicative factors of $1 \pm \varepsilon$. Theorem 4.1 states that this implies that smallest enclosing balls are preserved up to the same factors. Finally, Lemma 2.3 asserts that this gives rise to the desired interleaving of persistent modules. This completes the proof. □

4.1. Slepian’s Lemma and the Kirszbraun intersection property. The Kirszbraun intersection property [29, 3.A] states that, given sets of distinct points $X = \{x_1, \ldots, x_k\}$ and $Y = \{y_1, \ldots, y_k\}$ with $k \leq d + 1$ and

$$\|x_i - x_j\| \geq \|y_i - y_j\|$$

for $1 \leq i < j \leq k$, then

$$\bigcap_{x \in X} B_{r_f}(x) \neq \emptyset \Rightarrow \bigcap_{y \in Y} B_{r_f}(y) \neq \emptyset.$$

This, in turn, is equivalent to $\rho(Y) \leq \rho(X)$, and applied to $y_i = f(x_i)/(1 + \varepsilon)$ implies the upper bound in Theorem 4.1. The lower bound follows similarly. The proof of Theorem 4.1 can therefore be seen as an alternative (and more direct) derivation of this intersection property without any restriction on k. The Kirszbraun intersection property has been used in [7] to study sampled dynamical systems.

The proof of the Kirszbraun intersection property given in [29] is of independent interest, as it is based on the intuitive observation that the volume of the intersection of balls centered at a finite set of points increases as the points move closer together (see also [28] for variations on this theme). This observation also suggests a connection to Slepian’s Lemma from the theory of Gaussian processes [40]. In fact, Theorem 4.1 can be derived from Slepian’s Lemma, as we show next. One version of Slepian’s Lemma, as stated in [44] and [2, Appendix B], is as follows.

Theorem 4.6 (Slepian Inequality). Let X_1, \ldots, X_k and Y_1, \ldots, Y_k be centered Gaussian random variables such that

$$\mathbb{E}[(X_i - X_j)^2] \geq \mathbb{E}[(Y_i - Y_j)^2]$$

for $1 \leq i < j \leq k$. Let $f : \mathbb{R} \to \mathbb{R}$ be a monotonically increasing function. Then

$$\mathbb{E}[\max_{1 \leq i \leq k} f(X_i)] \geq \mathbb{E}[\max_{1 \leq i \leq k} f(Y_i)].$$

Proof of Theorem 4.1, Slepian version. Let $X = \{x_1, \ldots, x_k\}$ and $Y = \{y_1, \ldots, y_k\}$ be sets of distinct points in \mathbb{R}^d satisfying the inequalities (4.5). It is enough to show that $\rho(X) \geq \rho(Y)$. Assume without lack of generality that the smallest enclosing balls of X and Y are centered at 0, and set $R = \rho(X)$, $R' = \rho(Y)$. Define the random variables $X_i = (x_i, g)$ and $Y_i = (y_i, g)$ for $1 \leq i \leq k$, where g is a centered Gaussian random vector in \mathbb{R}^d. Then for $1 \leq i < j \leq k$,

$$\mathbb{E}[(X_i - X_j)^2] = \mathbb{E}[(x_i - x_j, g)^2] = \|x_i - x_j\|^2 \geq \|y_i - y_j\|^2 = \mathbb{E}[(Y_i - Y_j)^2],$$

so that the conditions of Theorem 4.6 are satisfied.

We can therefore apply Theorem 4.6 with $f(x) = 1\{x > t\}$ to conclude that, by using the complements,

$$\mathbb{P}\{\max_{i} X_i \leq t\} \leq \mathbb{P}\{\max_{i} Y_i \leq t\}.$$

for all $t > 0$. If we set $P = \text{conv}\{x_1, \ldots, x_k\}$, then the set $\{x : \max_i \langle x, x_i \rangle \leq t\}$ is just tP^*, where P^* is the polar body of P (see Figure 2), and $\mathbb{P}\{\max_{i} X_i \leq t\}$ is the Gaussian measure of this polar body. If this polar body is not empty, it contains a closed ball of radius t/R; in fact, if x is in such a ball, then for all i, $\langle x, x_i \rangle \leq \|x\| \|x_i\| \leq t$. By the same reasoning, the set $\{x : \max_i \langle y_i, x \rangle \leq t\}$ contains a ball of radius t/R'. We can therefore decompose the probability

$$\mathbb{P}\{\max_{i} X_i \leq t\} = \mathbb{P}\left\{\|g\| \leq \frac{t}{R}\right\} + g(t), \quad \mathbb{P}\{\max_{i} Y_i \leq t\} = \mathbb{P}\left\{\|g\| \leq \frac{t}{R'}\right\} + h(t),$$

for $t > 0$.
with $g(t), h(t) \to 0$ as $t \to \infty$ (this follows from the decay of the Gaussian distribution). In particular, (4.7) implies that for every $\varepsilon > 0$ there exists a $t_0 > 0$ such that

$$P \left\{ \|g\| \leq \frac{t}{R} \right\} \leq P \left\{ \|g\| \leq \frac{t}{R'} \right\} + \varepsilon$$

for all $t > t_0$. This is only possible if $R \geq R'$, which concludes the proof. \qed

5. Gaussian width, entropy, and doubling dimension

A common notion in the study of metric spaces is the doubling dimension [5, 31]. This concept has been used to measure the intrinsic dimension of sets in topological data analysis, see [50, Chapter 5] or [56, 21] for some examples.

Definition 5.1. The **doubling constant** of a metric space X is the smallest number λ such that every ball of radius R can be covered by λ balls of radius $R/2$. The **doubling dimension** is defined as $\dim_d(X) = \log_2(\lambda)$.

It is intuitively clear that the doubling dimension of Euclidean space \mathbb{R}^d is of order d, but it can be considerably lower for certain subsets of \mathbb{R}^d. The metric spaces we consider here are finite subspaces $X \subset \mathbb{R}^d$. The **diameter** $\text{diam}(X)$ is the largest pairwise distance between points in X. The **spread** Δ of such a set is the ratio of the diameter to the smallest pairwise distance between points in X. If a space X has doubling dimension $\dim_d(X)$, then it is easy to see that any ball of radius R can be covered with $\lceil \lambda^{\log_2(\Delta)} \rceil = \lceil (R/\Delta)^{\dim_d(X)} \rceil$ balls of radius r. From this it can be deduced that the cardinality $n = |X|$, the spread Δ and the doubling dimension are related as

$$n \leq \Delta^{\dim_d(X)}.$$

(5.1)

In [56], a linear size approximation to the Vietoris-Rips complex has been derived and analysed in terms of the doubling dimension. The key is to approximate the point cloud X by a nested sequence of nets.
\(\mathcal{N}_\alpha \), in such a way that at each relevant level the spread of the net is constant. The approach was further extended in [21], who introduce a local version of the doubling dimension.

It turns out that the doubling dimension is closely related to the Gaussian width, a fact pointed out in [34]. This relationship provides an alternative way of expressing the cardinality of a set of points in terms of the spread and some intrinsic geometric parameter. To make this relationship precise, we need to introduce the inequalities of Dudley and Sudakov. References are [61] or [11, Chapter 13].

A subset \(\mathcal{N}_\alpha \subset X \) is called an \(\alpha \)-net, if \(\|x - y\| > \alpha \) for distinct \(x, y \in \mathcal{N}_\alpha \), and \(\mathcal{N}_\alpha \) has maximal cardinality among sets with this property. For \(\alpha > 0 \) let \(N(X, \alpha) \) denote the cardinality of an \(\alpha \)-net.

The logarithm \(H(X, \alpha) = \log N(X, \alpha) \) is often referred to as the metric entropy of \(X \). (One version of) Dudley’s upper bound on the Gaussian width in terms of metric entropy is given as follows (following [11, Corollary 13.2]).

Theorem 5.2. (Dudley [24]) Let \(X \subset \mathbb{R}^d \) be a finite set. Then

\[
(5.2) \quad w(X) \leq 12 \int_0^{\text{diam}(X)/2} \sqrt{H(X, t)} \, dt.
\]

There is a corresponding lower bound, due to Sudakov. A reference is again [11], though explicit constants are never included in the literature.

Theorem 5.3. (Sudakov [60]) Let \(X \subset \mathbb{R}^d \) be a finite set with \(r \) the smallest distance between points in \(X \). Then

\[
(5.3) \quad w(X) \geq \frac{3}{5} r \sqrt{\log(|X|)}.
\]

The upper bound in the following Proposition is from [34, (2)], with the difference that, as in Theorem 1.1, we look at the Gaussian width of the set of normalised differences,

\[
T = \left\{ \frac{x - y}{\|x - y\|} : x, y \in X \right\}.
\]

Contrary to the tradition, the bounds are stated using rather specific constants instead of only “some universal constant \(C \) or \(L \)”. While the precise values given depend on details of the chosen analysis and are not important, for someone looking into actually using dimensionality reduction schemes it may be of interest to know if the “universal constants” are in the tens or in the billions.

Proposition 5.4. Let \(X \subset \mathbb{R}^d \) be a finite set. Then

\[
\frac{36}{25} \cdot \Delta(X)^{-2} \dim_d(X) \leq w^2(T) \leq 227 \cdot \Delta(X)^2 \dim_d(X).
\]

Proof. We first relate the Gaussian width of \(T \) to that of \(X \). Let \(R = \text{diam}(X) = \max_{x, y} \|x - y\| \) and \(r = \min_{x \neq y} \|x - y\| \), so that \(\Delta = R/r \). Note that, by the symmetry of the Gaussian distribution,

\[
w(X - X) = \mathbb{E}_g \sup_{x, y \in X} \langle g, x - y \rangle = 2 \mathbb{E} \sup_{x \in X} \langle g, x \rangle = 2w(X).
\]

Using this, one readily derives the bounds

\[
(5.4) \quad \frac{2}{R} w(X) \leq w(T) \leq \frac{2}{r} w(X).
\]

The upper bound in the statement of the theorem was given in [34], though we recreate the argument with slightly better constants. From (5.1), we get the inequality

\[
N(X, \alpha) \leq \left(\frac{R}{\alpha} \right)^{\dim_d(X)},
\]
which implies, using Dudley’s bound (5.2),
\[
 w(X) \leq 12 \sqrt{\dim_d(X)} \int_0^{R/2} \sqrt{\log(R/t)} \, dt \\
= 12R \sqrt{\dim_d(X)} \int_0^{1/2} \sqrt{\log(1/t)} \, dt \\
\leq 12R \sqrt{\dim_d(X)} \int_0^1 \sqrt{\log(1/t)} \, dt = 12R \sqrt{\dim_d(X)} \sqrt{\pi}/2.
\]

Squaring the right-hand side and combining with (5.4) gives the desired bound.

For the lower bound, let \(p \in X \) and \(B(p, \alpha) \) be a ball of radius \(\alpha \) such that there is a minimal covering \(C_{\alpha/2} \) of \(B(p, \alpha) \cap X \) with \(\lambda \) balls \(B(x_i, \alpha/2) \), \(1 \leq i \leq \lambda \), where \(\lambda \) is the doubling constant. Since the covering is minimal, we have \(\|x_i - x_j\| \geq \alpha \) for all \(1 \leq i, j \leq \lambda \). Set \(S = \{x_1, \ldots, x_\lambda\} \). Then
\[
w(X) \geq w(S) \geq \frac{3}{5} \alpha \sqrt{\log_2(|S|)} \geq \frac{3}{5} \sqrt{\dim_d(X)},
\]
where the first inequality follows from the monotonicity of the Gaussian width, and the second from Sudakov’s inequality. Squaring the right-hand side and combining with (5.4) shows the claimed lower bound. \(\square \)

The “correct” way of bounding the Gaussian width from above and below would be via Talagrand’s \(\gamma_2 \) functional. Following [61, Section 2.2], we call a nested sequence of partitions \(\mathcal{A} = (A_n) \) of \(X \) admissible, if each partition satisfies the cardinality bound \(|A_n| \leq 2^{2n} \) for \(n \geq 1 \). For each \(n \) and each \(x \in X \) there is a unique element \(A_n(x) \in A_n \) which contains \(x \). The \(\gamma_2 \) functional is then defined as
\[
\gamma_2(X) = \inf_{\mathcal{A}} \sup_{x \in X} \sum_{n \geq 0} 2^{n/2} \text{diam}(A_n(x)),
\]
where the infimum is over all admissible partition sequences. Talagrand’s Majorizing Measures Theorem [61, Theorem 2.4.1] gives upper and lower bounds on the Gaussian width in terms of this functional. For some universal constant \(C \), we have
\[
\frac{1}{C} \gamma_2(X) \leq w(X) \leq C \gamma_2(X).
\]

Note that we can alternatively represent an admissible sequence of partitions as a hierarchical tree, where each level approximates the data set more accurately. We suspect that proofs based on net-trees, such as those of the statements in [56, 21], could be formulated in terms of the Gaussian width by associating to the point cloud (and all the associated nets) a stochastic process \(g_x = \langle g, x \rangle \) for \(x \in T \).

6. Experiments

The theory behind the bounds of Section 1.1.1 is involved, and the bounds are, while asymptotically sharp, of limited practical interest. To evaluate the method, both with respect to the admissible undersampling and with respect to computational efficiency, experiments are needed. A modest first aim is to compare the cost of assembling the Euclidean distance matrix from the point cloud; this operation is the bare minimum for persistent homology computations using the Vietoris-Rips complex. All other approaches to constructing a filtration require more effort, and if the dimension reduction succeeds at speeding up the construction of all pairwise distances, it is also likely to be effective for more involved computations.

In general, if \(f(d) \) is the cost of projecting one data vector and \(c(d) \) the cost of computing the distance between two vectors in \(\mathbb{R}^d \), then the total cost of computing all the distances is \(n(n-1)c(d)/2 \) for the
original data, and \(n(n-1)c(m)/2 + nf(d) \) when applying projection. It follows that the projection is effective whenever the number of samples satisfies

\[
 n > \frac{2f(d)}{c(d) - c(m)} + 1.
\]

When measuring the cost in number of arithmetic operations, then typically \(f(d) = C \cdot d \log d \) (when using FFT-based algorithms) or \(f(d) = sd \) (when using a sparse Johnson-Lindenstrauss transform), and \(c(d) - c(m) = 3(d - m) \). If we fix a proportion \(m = \sigma d \), then the minimum number of samples for the projection to be computationally effective is proportional to \(\log(d) \) (when using FFT-based methods) or the sparsity \(s \) (when using sparse projections). Note that the theory requires to apply random sign changes before projecting, adding \(d \) operations (these are actually cheaper in practice than a normal arithmetic operation).

In order to empirically test the projection costs, we discuss an example using the subsampled fast Hadamard transform. The Hadamard transform \(H_m \) is a \(2^m \times 2^m \) matrix, defined recursively as

\[
 H_m = \frac{1}{\sqrt{2}} \begin{pmatrix} H_{m-1} & H_{m-1} \\ H_{m-1} & -H_{m-1} \end{pmatrix},
\]

with \(H_0 = 1 \). It is an orthogonal transformation that can be multiplied efficiently to a vector in \(\mathbb{R}^d \) with \(O(d \log d) \) operations using a variant of the Fast Fourier Transform. It is also an example of a Bounded Orthonormal System, and randomly subsampled rows of this matrix satisfy the Restricted Isometry Property of order \(s \) with good constants, provided \(m \geq Cs \log(d) \) [26, Chapter 12.1]. In particular, it is a transform that can be used in conjuction with Theorem 1.2. For computing the Fast Hadamard Transform (FHT), we used the FFHT Python package, which is part of the FALCONN project [3]. Figure 3 shows the timings on one particular machine, while Figure 4 determines the number of samples at which the dimensionality reduction leads to computational savings, for two examples of ambient dimension \(d = 256 \) and \(d = 4096 \).

![Figure 3. The cost of computing distances and computing the FHT, measured in microseconds.](image)

Having determined that the dimensionality reduction is worthwhile from a computational point of view, we need to consider when it leads to small distortion. We consider artificial sparse vectors with sparsity \(s = 2 \) in dimension \(d = 128 \), and determine, for a number of samples \(n \) varying from 100 to \(10^4 \), the minimum \(m \) that allows for an expected distortion \(\varepsilon < 0.1 \). For a fixed number of samples \(n = 100 \), Figure 5 also shows the probability of having all distances preserved up to a factor of 0.1 when randomly subsampling \(m \) rows of a FHT.
As expected, for small numbers of samples the admissible target dimension changes with \(n \), but eventually stabilizes. This suggests that, for \(n \) sufficiently large, the target dimension of the reduction is bounded by a parameter independent of \(n \).

7. Conclusion

So far we have shown that recent randomized dimensionality results related to the Johnson-Lindenstrauss Theorem carry over without change to the computation of persistent homology with respect to the Euclidean distance. A consequence is that the target dimension can be chosen independently of the number of points, as a function of the Gaussian width. By relating the Gaussian width of the set of normalized differences of the points to the doubling dimension, the complexity reduction achievable from the randomized projection method is linked to that achievable by other methods, such as the construction of sparse filtrations. It likely that the Gaussian width can also be used as a tool in the analysis of other reduction methods. Another direction is suggested by the proof of the Kirszbraun intersection property in terms of Slepian’s Lemma, given in Section 4.1. It would be interesting to see if this approach generalizes to other forms of projective clustering such as \(k \)-center clustering, by using Gordon’s inequalities. Finally, a natural question is to what extent such randomized reductions are possible for other notions of distance.
REFERENCES

[1] Dennis Amelunxen, Martin Lotz, Michael B. McCoy, and Joel A. Tropp. Living on the edge: phase transitions in convex programs with random data. *Information and Inference*, 3(3):224–294, 2014.

[2] Dennis Amelunxen, Martin Lotz, and Jake Walvin. Effective condition number bounds for convex regularization. *arXiv preprint arXiv:1707.01773*, 2017.

[3] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt. Practical and optimal Lsh for angular distance. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, *Advances in Neural Information Processing Systems* 28, pages 1225–1233. Curran Associates, Inc., 2015.

[4] Shiri Artstein-Avidan, Apostolos Giannopoulos, and Vitali D Milman. Asymptotic geometric analysis, part i. *Mathematical Surveys and Monographs*, 202, 2015.

[5] Patrice Assouad. Plongements lipschitziens dans \mathbb{R}^n. *Bulletin de la Société Mathématique de France*, 111:429–448, 1983.

[6] Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. *The Journal of Machine Learning Research*, 3:463–482, 2003.

[7] Ulrich Bauer, Herbert Edelsbrunner, Grzegorz Jablonski, and Marian Mrozek. Persistence in sampled dynamical systems faster. *ArXiv e-prints*, September 2017.

[8] Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Clear and compress: Computing persistent homology in chunks. In *Topological Methods in Data Analysis and Visualization III*, pages 103–117. Springer, 2014.

[9] Jean-Daniel Boissonnat, Tamal K Dey, and Clément Maria. The compressed annotation matrix: An efficient data structure for computing persistent cohomology. *Algorithmica*, 73(3):607–619, 2015.

[10] Jean-Daniel Boissonnat and Clément Maria. The simplex tree: An efficient data structure for general simplicial complexes. *Algorithmica*, 70(3):406–427, 2014.

[11] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. *Concentration inequalities: A nonasymptotic theory of independence*. Oxford university press, 2013.

[12] Jean Bourgain, Sjoerd Dirksen, and Jelani Nelson. Toward a unified theory of sparse dimensionality reduction in euclidean space. *Geometric and Functional Analysis*, 25(4):1009–1088, 2015.

[13] Mickaël Buchet, Frédéric Chazal, Steve Y Oudot, and Donald R Sheehy. Efficient and robust persistent homology for measures. *Computational Geometry*, 58:70–96, 2016.

[14] Emmanuel J Candes and Yaniv Plan. Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements. *IEEE Transactions on Information Theory*, 57(4):2342–2359, 2011.

[15] Gunnar Carlsson. Topology and data. *Bulletin of the American Mathematical Society*, 46(2):255–308, 2009.

[16] Venkat Chandrasekaran, Ben Recht, Pablo A. Parrilo, and Alan S. Willsky. The convex geometry of linear inverse problems. *Found. Comput. Math.*, 12(6):805–849, 2012.

[17] Frédéric Chazal, Vin De Silva, Marc Glisse, and Steve Oudot. The structure and stability of persistence modules. *Springer*, 2016.

[18] Frederic Chazal, Brittany Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, and Larry Wasserman. Subsampling methods for persistent homology. In *International Conference on Machine Learning*, pages 2143–2151, 2015.

[19] Frédéric Chazal and Steve Yann Oudot. Towards persistence-based reconstruction in euclidean spaces. In *Proceedings of the twenty-fourth annual symposium on Computational geometry*, pages 232–241. ACM, 2008.

[20] Chao Chen and Michael Kerber. Persistent homology computation with a twist. In *Proceedings 27th European Workshop on Computational Geometry*, Citeseer, 2011.

[21] Aruni Choudhary and Michael Kerber. Local doubling dimension of point sets. *arXiv preprint arXiv:1406.4822*, 2014.

[22] Vin De Silva and Gunnar E Carlsson. Topological estimation using witness complexes. *SPBG*, 4:157–166, 2004.

[23] Sjoerd Dirksen. Dimensionality reduction with subgaussian matrices: A unified theory. *Algorithmica*, 16(5):1367–1396, 2016.

[24] Richard M Dudley. The sizes of compact subsets of hilbert space and continuity of gaussian processes. *Journal of Functional Analysis*, 1(3):290–330, 1967.

[25] Herbert Edelsbrunner and John Harer. *Computational topology: an introduction*. American Mathematical Soc., 2010.

[26] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing, volume 336 of *Applied and Numerical Harmonic Analysis*. Birkhäuser, Basel, 2013.

[27] Yehoram Gordon. On Milman’s inequality and random subspaces which escape through a mesh in \mathbb{R}^n. In *Geometric aspects of functional analysis (1986/87)*, volume 1317 of *Lecture Notes in Math.*, pages 84–106. Springer, Berlin, 1988.

[28] Yehoram Gordon and Mathieu Meyer. On the volume of unions and intersections of balls in euclidean space. In *Geometric Aspects of Functional Analysis*, pages 91–101. Springer, 1995.

[29] Mikhail Gromov. Monotonicity of the volume of intersection of balls. In *Geometrical aspects of functional analysis*, pages 1–4. Springer, 1987.

[30] Allen Hatcher. *Algebraic Topology*. Cambridge University Press, 2002.

[31] Juha Heinonen. *Lectures on analysis on metric spaces*. Springer Science & Business Media, 2012.
[32] Benoit Hudson, Gary L Miller, Steve Y Oudot, and Donald R Sheehy. Topological inference via meshing. In Proceedings of the twenty-sixth annual symposium on Computational geometry, pages 277–286. ACM, 2010.
[33] Piotr Indyk and Jiri Matoušek. 8. Low-distortion embeddings of finite metric spaces. Handbook of discrete and computational geometry, page 177, 2004.
[34] Piotr Indyk and Assaf Naor. Nearest-neighbor-preserving embeddings. ACM Transactions on Algorithms (TALG), 3(3):31, 2007.
[35] Michael Kerber. Persistent homology–state of the art and challenges. 2016.
[36] Michael Kerber and Sharath Raghvendra. Approximation and streaming algorithms for projective clustering via random projections. arXiv preprint arXiv:1407.2063, 2014.
[37] Felix Krahmer and Rachel Ward. New and improved johnson–lindenstrauss embeddings via the restricted isometry property. SIAM Journal on Mathematical Analysis, 43(3):1269–1281, 2011.
[38] Felix Krahmer and Rachel Ward. A unified framework for linear dimensionality reduction in l1. Results in Mathematics, 70(1-2):209–231, 2016.
[39] Kasper Green Larsen and Jelani Nelson. The johnson–lindenstrauss lemma is optimal for linear dimensionality reduction. arXiv preprint arXiv:1411.2404, 2014.
[40] M Ledoux and M Talagrand. Probability in Banach Spaces: Isoperimetry and Processes. Ergeb. Math. Grenzgeb. 23. Springer, Berlin, 1991.
[41] Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and processes. Springer Science & Business Media, 2013.
[42] Stephane Mallat. A wavelet tour of signal processing: the sparse way. Academic press, 2008.
[43] Jiří Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2002.
[44] Andreas Maurer. A proof of Slepian’s inequality. www.andreas-maurer.eu/Slepian3.pdf, 2011.
[45] Rodrigo Mendoza-Smith and Jared Tanner. Parallel multi-scale reduction of persistent homology filtrations. arXiv preprint arXiv:1708.04710, 2017.
[46] James R Munkres. Elements of Algebraic Topology. Advanced book classics. Perseus Books, 1984.
[47] Sangnam Nam, Mike E. Davies, Michael Elad, and Rémi Gribonval. The cosparse analysis model and algorithms. Appl. Comput. Harmon. Anal., 34(1):30–56, 2013.
[48] Sameer A Nene, Shree K Nayar, Hiroshi Murase, et al. Columbia object image library (coil-100). 1996.
[49] Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and Heather A Harrington. A roadmap for the computation of persistent homology. EPJ Data Science, 6(1):17, 2017.
[50] Steve Y Oudot. Persistence theory: from quiver representations to data analysis, volume 209. AMS, 2015.
[51] Steve Y Oudot and Donald R Sheehy. Zigzag zoology: Rips zigzags for homology inference. Foundations of Computational Mathematics, 15(5):1151–1186, 2015.
[52] Samet Oymak, Benjamin Recht, and Mahdi Soltanolkotabi. Isometric sketching of any set via the restricted isometry property. arXiv preprint arXiv:1506.03521, 2015.
[53] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010.
[54] Mark Rudelson and Roman Vershynin. On sparse reconstruction from Fourier and Gaussian measurements. Comm. Pure Appl. Math., 61(8):1025–1045, 2008.
[55] Tamas Sarlos. Improved approximation algorithms for large matrices via random projections. In Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pages 143–152. IEEE, 2006.
[56] Donald R Sheehy. Linear-size approximations to the voronoi–rips filtration. Discrete & Computational Geometry, 49(4):778–796, 2013.
[57] Donald R Sheehy. The persistent homology of distance functions under random projection. In Proceedings of the thirtieth annual symposium on Computational geometry, page 328. ACM, 2014.
[58] Donald R Sheehy. Private communication. April 2017, 2017.
[59] Mihailo Stojnic. Various thresholds for l1-optimization in compressed sensing. preprint, 2009. arXiv:0907.3666.
[60] Vladimir N Sudakov. Gaussian measures, Cauchy measures, Cauchy measures and z-entropy. Soviet Math. Doklady, 10:310–313, 1969.
[61] Michel Talagrand. Upper and lower bounds for stochastic processes: modern methods and classical problems, volume 60. Springer Science & Business Media, 2014.
[62] Günter M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.

SCHOOL OF MATHEMATICS, THE UNIVERSITY OF MANCHESTER