Hierarchical binding of copperII to N-truncated Aβ\textsubscript{4–16} peptide†

Xiangyu Teng, a Ewelina Stefaniak, a Paul Girvan, b Radostaw Kotuniak, b Dawid Płonka, b Wojciech Bal a,b and Liming Ying b,c

N-Truncated Aβ\textsubscript{4–42} displays a high binding affinity with CuII. A mechanistic scheme of the interactions between Aβ\textsubscript{4–42} and CuII has been proposed using a fluorescence approach. The timescales of different conversion steps were determined. This kinetic mechanism indicates the potential synaptic functions of Aβ\textsubscript{4–42} during neurotransmission.

The amyloid-β (Aβ) peptides associated with Alzheimer’s Disease (AD) comprise a number of species. The “canonical” Aβ\textsubscript{1–42} and Aβ\textsubscript{1–40} peptides derived directly by proteolysis of the Amyloid Precursor Protein (APP) are complemented by N- and C-truncated species, yielded by a variety of brain proteases.1 Among them, the N-truncated Aβ\textsubscript{4–42} has been reported as particularly abundant in the hippocampus and cortex of sporadic AD patients, as well as in healthy controls.2,3 even exceeding Aβ\textsubscript{1–42} and Aβ\textsubscript{1–40}.4,5 Aβ\textsubscript{1–x} peptides can bind CuII using the N-terminus and H6, H13, and His14 residues.6–8 Hence, Aβ\textsubscript{1–16} has been adopted as a common model peptide in metal binding studies.9–11 The adventitious binding of CuII ions to Aβ\textsubscript{4–16} and the concomitant generation of reactive oxygen species (ROS) via the CuII/CuI redox pair has been proposed to be the molecular basis of oxidative stress and neuronal death in AD.12 On the other hand, Aβ\textsubscript{1–x} peptides bind a CuII ion more than three orders of magnitude more strongly (K\textsubscript{D} = 30 fM and 6.6 fM at pH 7.4 for Aβ\textsubscript{1–16} and Aβ\textsubscript{1–40} respectively), using their N-terminal ATCUN motif spanning the Phe4, Arg5 and His6 residues. These complexes are redox-inert and do not generate significant ROS. CuII ion transfer from Aβ\textsubscript{1–16} to Aβ\textsubscript{4–16} occurs upon adding the latter to the CuIIAβ\textsubscript{1–16} solution.13

Significance to metallomics

N-Truncated Aβ\textsubscript{4–16} is abundant in both healthy and AD brains. Its CuII binding affinity is three orders of magnitude stronger than well-known Aβ\textsubscript{1–16} or Aβ\textsubscript{1–40}. Using a model peptide, Aβ\textsubscript{4–16}, we have elucidated the reaction mechanism of CuII with Aβ\textsubscript{1–16}, crucial to understand the physiological role and toxicity of Aβ peptides. The presence of two kinetic intermediates prior to the formation of the tight ATCUN complex has implications for the potential function of Aβ\textsubscript{4–42} as a CuII transporter during neurotransmission. The methodology used in this work may also stimulate the research of CuII interactions with other intrinsically disordered proteins (IDPs).

This reaction is quantitative, in agreement with the affinity difference, and fast, occurring within the sample preparation time ~s. Such a reaction suggested that Aβ\textsubscript{4–42} should prevail as a CuII binding Aβ species in the extracellular spaces of the brain. This finding gave rise to a hypothesis that Aβ\textsubscript{4–42} may have a physiological role as a synaptic CuII scavenger during neurotransmission.14 However, CuII release events in glutamatergic synapses may occur on a much faster, millisecond scale. Therefore, a thorough determination of association and dissociation rate constants for the participating species is necessary to help evaluate their relevance \textit{in vivo}. Such data have been obtained previously for CuIIAβ\textsubscript{1–x} complexes.15–17 Here, we studied the reaction mechanism for CuII binding to the model peptide Aβ\textsubscript{4–16} and found that the reaction follows a hierarchical fashion, going through two intermediate states and then reaching the final tight complex.

First, we studied the effect of N-truncation on the CuII binding kinetics. 20 nM Aβ labelled by HiLyte Fluor 488 on lysine 16 (FRHDSGYEVHHQK-HiLyte 488) was reacted with 400 nM CuII under various HEPES concentrations in order to obtain the HEPES-independent CuII binding rate constant (k\textsubscript{on}). The results are shown in Fig. 1a. The intercept of the fitted curve (Fig. 1b) was used to determine k\textsubscript{on}, which is $2.0(1) \times 10^{7}$ M-1 s-1, 2.5 times slower than the value for Aβ\textsubscript{1–16}.17 k\textsubscript{off} was determined for the reaction of a CuII complex of unlabelled Aβ\textsubscript{4–16} with an excess of EDTA. The estimated value...
is $\sim 5 \times 10^{-5}$ s$^{-1}$, which divided by k_{on} proposed here gives $K_d \sim 250$ FM. EDTA is a stronger CuII chelator than Aβ_{4-16}, with a log β of 18.7, which can be recalculated into a conditional constant C_K of 16.0 at pH 7.5. 18 This value is sufficiently higher than that of CuIIAβ_{4-16}, 13.53, to assure full CuII transfer, as demonstrated in Fig. 1c. The reaction was carried out for a range of EDTA/peptide ratios between 2 and 120. Pseudo-1st order kinetics for the CuII transfer reaction was observed for all experiments. The non-linear response of k_{off} to EDTA required the EDTA-independent k_{off} value to be determined by the extrapolation of the empirical exponential fit to these data, as shown in Fig. 1d.

To gain a glimpse of a possible reaction mechanism of CuII binding to N-truncated Aβ_{4-16}, we performed binding experiments at a 1:1 mixing ratio of Aβ to CuII with increasing concentration. In such experiments, the effect of the second CuII shown in Fig. 1d. extrapolation of the empirical exponential fit to these data, as demonstrated in Fig. 1c. The reaction was carried out for a range of EDTA/peptide ratios between 2 and 120. Pseudo-1st order kinetics for the CuII transfer reaction was observed for all experiments. The non-linear response of k_{off} to EDTA required the EDTA-independent k_{off} value to be determined by the extrapolation of the empirical exponential fit to these data, as shown in Fig. 1d.

Next, a double mixing stopped flow technique was employed to further explore the potential intermediate complexes formed after the initial CuII binding. This technique was successfully applied to probe the interconversion between component I and component II CuII coordination species of Aβ_{1-16} and Aβ_{1-40}. 17 2 μM Aβ_{4-16} and 2 μM CuII were mixed in a delay loop and after various delay times the reaction was “frozen” by adding an excess of EDTA (Fig. 2b). Taking advantage of the disparities in reactivity of different CuIIAβ_{4-16} species with EDTA, the time evolution of the population of individual species could be resolved and analyzed, enabling us to depict details of the binding process.

As shown in Fig. 2b, the amplitude of fluorescence recovery strongly depends on the delay time, indicating that a much more inert (less reactive towards EDTA) complex (‘‘dark’’ complex) formed after around 2 s. We equate this end complex, (Aβ–CuIII), to the very stable ATCUN-type CuIIAβ_{4-16} complex reported previously. 13 Furthermore, because the reaction rate is concentration independent after 2 s as mentioned above, we propose that a peptide conformational rearrangement process leading to this final complex must occur at around 2 s.

In order to describe the whole process of CuII binding of N-truncated Aβ_{4-16}, we hypothesized a reaction scheme as shown in Fig. 3a. The individual amplitudes of the two phases in Fig. 2b were determined by a global fit, which were further fitted by the scheme with KinTek software to validate it (Fig. 3b). The amplitudes indicate the amounts of two intermediates, Species I and Species II, at different reaction process stages, and could be
fitted well by the predicted mechanism, with fitted rate con-
stants listed in Table 1. A corresponding free energy landscape
illustration of CuII binding with Aβ4–16 is shown in Fig. 3c.

Finally, the activation energy of the (Aβ–Cu)D complex was
determined to be 64(3) kJ mol⁻¹ (Fig. 4) by performing a series
of double mixing experiments at different temperatures (raw
data shown in Fig. S1, ESI†).

The chemical properties of ATCUN CuII complexes of Aβ4–x
peptides, such as high thermodynamic stability, absence of ROS
production due to their resistance to oxidation and reduction,
redundancy of copper to transfer to metallothionein-3 (MT3) and
easy sequestering of CuII from Aβ4–16, give rise to a concept that
Aβ4–x peptides (long-length Aβ4–42 and its C-truncated analogs)
may serve as guardians of synaptic function, by sequestering
excess CuII ions released during neurotransmission in glumatometric
pathways.14,19 The key unsolved issue is how these exchange-inert
complexes relay copper back to neurons to maintain the proper
copper cycling. Furthermore, CuII-free Aβ4–42 can be neurotoxic
by forming oligomeric species.20 Detailed knowledge on mechanisms of CuII
association with and dissociation from Aβ4–x peptides, represented here by Aβ4–16,
is thus crucial to understand the physiology and toxicity of these Aβ peptides.

The discovery of long-lived kinetic intermediates in the
formation of the ATCUN complex of Aβ4–16 is a game changer
in the above considerations. The lifetimes of Species I and
Species II complexes are comparable to the intervals between
pulses of neurotransmitter release in glutamatergic neuronal
pathways.21 Therefore, these complexes may well contribute to
the biological activity of Aβ4–42, and of putative short peptide
fragments generated by neprilysin cleavage, such as Aβ4–9.22,23

There is only one way in which four nitrogen ligands of the
ATCUN motif can be arranged around the CuII ion, and so it is
reasonable to assume that the intermediate species contain the
coordinatively unsaturated CuII. Such species have been implicated
in the reverse reaction of CuII dissociative transfer from
CuIIAβ4–16 to MT3, to explain the catalytic effect of glutamate,24
but it has not been observed directly. The Species I and in
particular the longer-lived Species II complex may be the actual
species able to move copper around during neurotransmission.
The fact that the CuIIAβ4–x complex, although so much weaker,
was formed 2.5 times faster, prompts further research into possible
synaptic roles of CuII interactions with various Aβ species.

Furthermore, the observed hierarchical binding of CuII to
Aβ4–16 resembles the kinetics of the binding of many intrinsically
disordered proteins (IDPs).25 The methodology used in this study
may be applicable to the fundamental understanding of the
emerging “coupled binding and folding” paradigm.26

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
This work was supported by the Leverhulme Trust grant RPG-
2015-345 to LY and the Biotechnology and Biosciences
Research Council (UK) grant BB/R022429/1 to LY, and the
National Science Centre in Poland: PRELUDIUM Grant No.
2016/21/N/ZZ1/02785 and ETIUDA Grant No. 2018/28/T/ZZ1/00452, to ES, and OPU Grant No. 2018/B/ST4/01634 to WB.
The equipment used was sponsored in part by the Centre for
Preclinical Research and Technology (CePT) under award number
POIG.02.02.00-14-024/08-00, a project co-sponsored by European
Regional Development Fund and Innovative Economy, the National
Cohesion Strategy of Poland.

Notes and references
1 D. J. Selkoe, Physiol. Rev., 2001, 81, 741–766.
2 C. L. Masters, G. Simms, N. A. Weinman, G. Multhaup,
B. L. McDonald and K. Beyreuther, Proc. Natl. Acad. Sci.
U. S. A., 1985, 82, 4245–4249.
3 E. Portelius, N. Bogdanovic, M. K. Gustavsson, I. Volkmann,
G. Brinkmalm, H. Zetterberg, B. Winblad and K. Blennow,
Acta Neuropathol., 2010, 120, 185–193.
4 G. Antonios, N. Saipeour, Y. Bouter, B. C. Richard, A. Paetau,
A. Verkkoenni-Ahola, L. Lannfelt, M. Ingelsson, G. G.
Kovacs, T. Pillot, O. Wirths and T. A. Bayer, Acta Neuropathol.
Commun., 2013, 1, 56.
5 T. A. Bayer and O. Wirths, Acta Neuropathol., 2014, 127, 787–801.
6 P. Dorlet, S. Gambarelli, P. Faller and C. Hureau, Angew.
Chem., 2009, 121, 9437–9440 (Angew. Chem., Int. Ed., 2009,
48, 9273–9276).
7 B. Alies, H. Eury, C. Bijani, L. Rechignat, P. Faller and
C. Hureau, Inorg. Chem., 2011, 50, 11192–11201.
8 E. Atría-Blasco, P. González, A. Santoro, B. Alies, P. Faller
and C. Hureau, Coord. Chem. Rev., 2018, 375, 38–55.
9 B. Alies, E. Renaglia, M. Rózga, W. Bal, P. Faller and
C. Hureau, Anal. Chem., 2013, 85, 1501–1508.
10 T. R. Young, A. Kirchner, A. G. Wedd and Z. Xiao, Metallomics,
2014, 6, 505–517.
11 A. Conte-Daban, V. Borghesani, S. Sayen, E. Guillon, Y. Journaux, G. Gontard, L. Lisnard and C. Hureau, *Anal. Chem.*, 2017, 89, 2155–2162.
12 C. Cheignon, M. Jones, E. Attrian-Blasco, I. Kieffer, P. Faller, F. Collin and C. Hureau, *Chem. Sci.*, 2017, 8, 5107–5118.
13 M. Mital, N. E. Wezynfeld, T. Frączyk, M. Z. Wiloch, U. E. Wawrzyniak, A. Bonna, C. Tumpach, K. J. Barnham, C. L. Haigh, W. Bal and S. C. Drew, *Angew. Chem.*, 2015, 127, 10606–10610 (*Angew. Chem., Int. Ed.*, 2015, 54, 10460–10464).
14 E. Stefaniak and W. Bal, *Inorg. Chem.*, 2019, 58, 13561–13577.
15 P. Girvan, T. Miyake, X. Teng, T. Branch and L. Ying, *ChemBioChem*, 2016, 17, 1732–1737.
16 T. Branch, M. Barahona, C. A. Dodson and L. Ying, *ACS Chem. Neurosci.*, 2017, 8, 1970–1979.
17 T. Branch, P. Girvan, M. Barahona and L. Ying, *Angew. Chem.*, 2015, 127, 1243–1246 (*Angew. Chem., Int. Ed.*, 2015, 54, 1227–1230).
18 J. Felcman and J. J. da Silva, *Talanta*, 1983, 30, 565–570.
19 N. E. Wezynfeld, E. Stefaniak, K. Stachucy, A. Drozd, D. Płonka, S. C. Drew, A. Kreżel and W. Bal, *Angew. Chem.*, 2016, 128, 8375–8378 (*Angew. Chem., Int. Ed.*, 2016, 55, 8235–8238).
20 J. Dunys, A. Valverde and F. Checler, *J. Biol. Chem.*, 2018, 293, 15419–15428.
21 W. Goch and W. Bal, *PLoS One*, 2017, 12, e0170749.
22 M. Mital, W. Bal, T. Frączyk and S. C. Drew, *Inorg. Chem.*, 2018, 57, 6193–6197.
23 K. Bossak-Ahmad, M. Mital, D. Płonka, S. C. Drew and W. Bal, *Inorg. Chem.*, 2019, 58, 932–943.
24 A. Santoro, N. Wezynfeld, E. Stefaniak, A. Pomorski, D. Płonka, A. Kreżel, W. Bal and P. Faller, *Chem. Commun.*, 2018, 54, 12634–12637.
25 K. Sugase, H. J. Dyson and P. E. Wright, *Nature*, 2007, 447, 1021–1025.
26 S. Gianni, J. Dogan and P. Jemth, *Curr. Opin. Struct. Biol.*, 2016, 36, 18–24.