Catalyst-driven electrolysis of water is considered as a “cleanest” way for hydrogen production. Finding cheap and abundant catalysts is critical to the large-scale implementation of the technology. Two-dimensional metal dichalcogenides nanostructures have attracted increasing attention because of their catalytic performances in water electrolysis. In this work, we systematically investigate the hydrogen evolution reduction of metal dichalcogenides monolayers based on density-functional-theory calculations. We find that metal disulfide monolayers show better catalytic performance on hydrogen production than other metal dichalcogenides. We show that their hydrogen evolution reduction strongly depends on the hydrogen coverage and the catalytic performance reduces with the increment of coverage because of hydrogenation-induced lower conductivity. We further show that the catalytic performance of vanadium disulfide monolayer is comparable to that of Pt at lower hydrogen coverage and the performance at higher coverage can be improved by hybridizing with conducting nanomaterials to enhance conductivity. These metal disulfide monolayers with lower overpotentials may apply to water electrolysis for hydrogen production.

Energy has been a key in the development of every sphere of human society. The traditional usable energy sources, including fossil fuels and coal, will fall short of the demand of sustainable development over the long term, and their continued use produces harmful side effects such as pollution that threatens human health and greenhouse gases associated with climate change, which have triggered considerable world-wide effort to explore renewable green energy alternatives. Hydrogen is considered to be one of the most important candidates because of its abundance and clean and renewable nature. As an ideal clean energy carrier for future, hydrogen can be produced from a variety of energy resources, has the highest energy density per unit mass, and produce the least polluting since it can be extracted from natural resource such as water or biomass and its use produces water only. The electrolysis of water is considered as a well-known principle to produce oxygen and hydrogen gas in a sustainable fashion. The key component in electrochemical reduction of water is the catalyst for hydrogen evolution reduction (HER). The well-known catalysts in the electrolysis of water are noble metals, such as platinum, due to their superior electrocatalytic properties. The application of noble metal catalysts in large-scale production of hydrogen is limited by their high cost and low abundance, although lots of efforts had been done by tuning the composition of the catalyst to modify their electronic structures. On the other hands, considerable efforts have been carried out to search alternative catalysts with lower cost and abundance. Basically, an advanced catalyst for the enhanced electrochemical hydrogen evolution reaction should reduce the HER reaction overpotential and consequently increase the HER efficiency.

The transition-metal dichalcogenides with the formula of MX₂, where M is a transition metal element from group IV (Ti, Zr, or Hf), group V (for instance V, Nb or Ta) or group VI (Mo or W), and X is a chalcogen (S, Se or Te), have attracted increasing attention for their applications in electrolysis of water. These materials have crystal structures consisting of weakly coupled sandwich layers X-M-X, where one M-atom layer is enclosed within two X layers and the atoms in layers are hexagonally packed. The overall symmetry of transition metal dichalcogenides can be hexagonal or rhombohedral, and the metal atoms have octahedral (1T) or trigonal prismatic (2H) coordination. Experimental and theoretical studies had suggested that the electrocatalytic activity of 2H-MoS₂ in electrolysis of water is contributed to its edges, which are metallic if they are zigzag. Recently, Voiry et al. reported that metallic 1T-WS₂ nanosheets showed better HER performance than semiconducting 2H-WS₂, which can be further improved by strain engineering. As compared with the noble metals, we may be sure that only MX₂ monolayers with high conductivity, and MX₂ nanoribbons/nanoparticles with
Results and discussion

In our calculations, we focus on metallic/semimetallic 2H transition-metal dichalcogenides, MX2 (M = Nb, Ta, and V; X = S, Se, and Te) because 2H phase is more stable and high conductivity is essential to the electrolysis of water. The MX2 unit cells with trigonal prismatic (2H) coordination are first optimized to obtain the lattice parameters. The optimized structures of MX2 (M = Nb, and Ta; X = S, Se, and Te) (see Supporting Data, Table I) from our calculations are consistent with the reported experimental and theoretical data. We see that the lattice parameters of NbX2 are almost equal to those of TaX2, while are larger than those of VX2 (Supporting Data, Table I). To investigate the HER performances of MX2 monolayers at various hydrogen coverage on their surfaces, the geometries of MX2 monolayers with one side fully covered by hydrogen atoms (MX2-H) are relaxed to find out the effects of hydrogen coverage on their lattice parameters. The hydrogen atoms are adsorbed on the top of X atoms (Figure 1), where is the most stable position. The optimized structures of MX2-H (Table II in Supporting Data & Figure 2) show that the lattice constants (a) are extended by 2.0 to 3.8%, 1.7 to 3.3%, and 3.4 to 4.5% for NbX2, TaX2, and VX2, respectively, where the extension increases as X changes for S to Se, further to Te (Figure 2). The thicknesses (c) and the X-M bonds of the monolayers are related to the H-coverage on their surfaces (Figure 2). The calculated bond lengths are about 1.4, 1.5, and 1.7 Å for S-H, Se-H, and Te-H bonding, respectively (Supporting Data, Table II).

According to the Sabatier principle, the optimal catalytic activity of material for HER can be achieved on a catalytic surface with intermediate binding energies (or free energies of adsorption) for reactive intermediates, which can be quantified by analyzing the reaction free energy of hydrogen adsorption (ΔGH). The optimum value is around ΔGH = 0. To obtain the reaction free energy, we calculate ΔGH for various H coverage on MX2 monolayers as following:

\[ΔGH = ΔE_H + ΔE_{ZPE} - TΔS_H \]

where ΔE_H is the hydrogen chemisorption energy defined as:

\[ΔE_H = E(MX_2 + nH) - E(MX_2 + (n-1)H) - \frac{1}{2} E(H_2) \]

where \(n \) is the number of H atoms adsorbed on a MX2 monolayer. Full coverage refers to one hydrogen atom per X atom adsorbed on one side of the MX2 monolayer. The ΔGH as a function of the hydrogen coverage can be obtained by changing \(n, E(MX_2 + nH), E(MX_2) \) and \(E(H_2) \) in Eq. (2) are the energies of monolayer with hydrogen atoms (n), pure MX2 monolayer (n = 1), and hydrogen molecule, respectively. ΔS_H is the difference in entropy. The entropy of adsorption of 1/2 H2 is \(ΔS_H = -1/2S_H^0 \), where \(S_H^0 \) is the entropy of H2 in the gas phase at standard conditions. \(ΔE_{ZPE} \) is the difference in zero point energy between the adsorbed and the gas phase, related to the reaction: 1/2H2(g) → H*, where H* denotes a hydrogen atom adsorbed on the surface. \(ΔE_{ZPE} = -TΔS_H \) is about 0.24 eV\(^{13,15,49}\), simplifying Eq. (1) to ΔGH = ΔE_H + 0.24.

Rectangle supercell (Figure 1) is employed to study the different hydrogen coverage on MX2 monolayer, \(\frac{i}{6} \) (i = 1 ~ 6). The full coverage (\(\frac{6}{6} \) or 1) is that all of X atoms on one side of the monolayer adsorb hydrogen atoms (Figures 1b&1c). A supercell with double size in y direction of Figure 1 is used for \(\frac{1}{12} \) coverage, that is, one H atom is attached to one of the 12 X atoms. \(\frac{i}{6} \) coverage (i = 2 ~ 5), all of the possible H-adsorption configurations on the six X atoms are considered, where the adsorption energy is calculated by two methods – “average” of all configurations and “most stable” configuration. We first consider the supercell (p-supercell) based on monolayer pristine lattice parameters (from Table I in Supporting Data). The calculated adsorption energies show that the overpotentials are positive, and ΔGH increases with the increase of H coverage on the MX2 monolayer (Figure 3), which is in contrast with that of Pt (ΔGH trends on zero with the increase of H coverage)\(^{13,15,49}\). We see that the calculated ΔGH follows the same trend regardless of the calculation methods (Figures 3a, 3c, and 3e for “average” method, and Figures 3b, 3d, and 3f for “most stable” method) and the difference on values induced by the method is minor. Importantly, the ΔGH of MS2 is lower than those of MSe2 and MTe2 by 40% at the same H coverage (Figure 3), indicating that the HER performances of MS2 monolayers are better than those of MSe2 and MTe2 monolayers. The overpotentials at \(\frac{1}{12} \) coverage from “average” method (Figures 3a, 3c, & 3e) are 0.061, 0.192, and 0.007 eV for NbSe2, TaSe2, and VS2, respectively. At \(\frac{i}{6} \) coverage, the ΔGH for NbSe2, TaSe2, and VS2 are 0.112, 0.266, and 0.051 eV, respectively.
ively. We see that the HER performances of NbS$_2$, TaS$_2$, and VS$_2$ monolayers are better than that of 1T-WS$_2$ monolayer because their ΔG_H at relatively high H-coverage is lower than that of 1T-WS$_2$ at lower H-coverage ($\Delta G_H = 0.28$ eV at $1/16$ coverage and $\Delta G_H = 0.36$ eV at $2/16$ coverage)37. The HER performance of VS$_2$ at a coverage up to $1/6$ is also better than that of MoS$_2$ edges ($\Delta G_H = 0.08$ eV)28. For comparison, we compose the curves of ΔG_H of MS$_2$ (M = Nb, Ta, and V) monolayers as a function of H-coverage into Figure 4a. We see that the HER performances of MS$_2$ monolayers increase as M changes from Ta to Nb, further to V. The overpotential of VS$_2$ at $1/12$ coverage is 10 and 30 times lower than those of NbS$_2$ and TaS$_2$. The VS$_2$-based catalyst for electrolysis of water may be comparable to that of Pt at lower H-coverage (up to $1/12$ coverage) because of its near-zero overpotential (0.007 eV). The difference at HER performance, however, decreases with the increase of H-coverage on the monolayer. At full coverage ($6/6$ or 1), VS$_2$ only take advantage of NbS$_2$ and TaS$_2$ by 6 and 20%, respectively.

We also calculate the hydrogen adsorption energy in the supercell (h-supercell) constructed on the lattice parameters of fully H-covered monolayer (from Table II in Supporting Data). We see that the HER trend as a function of H-coverage (Figure 5) is the same as that in p-supercell. The MS$_2$ monolayers still show the best HER performance at same H-coverage because their overpotentials are smaller than those of MSe$_2$ and MTe$_2$ monolayers (Figure 5). For all of MX$_2$ monolayers, ΔG_H in h-supercell is reduced because of the extended lattice constants (that is equivalent to the effect of strain in Ref. 37). The difference of ΔG_H between p-supercell and h-supercell, however, becomes smaller as the H-coverage increases, indicating that the strain shows less effect on HER of the monolayer if the H-coverage is high. At $1/12$ coverage, the overpotentials from “average” method (Figures 5a, 5c, & 5e) are -0.07, 0.098, and -0.159 eV for NbS$_2$, TaS$_2$, and VS$_2$, respectively, and at $1/6$ coverage, the corresponding ΔG_H are 0.004, 0.174, and -0.138 eV, respectively, which should imply that NbS$_2$ shows the best HER performance at lower H-coverage in h-supercell. After 25% H-coverage, VS$_2$ gives out the best HER performance because its overpotential is positive and lower than those of NbS$_2$ and TaS$_2$ (Figure 4b). By carefully comparing the energies of systems calculated from p-supercell and h-supercell, we find that the effect of H-coverage on lattice parameters is negligible when it is less than the 33% ($2/6$ coverage). Therefore, we combine the calculated ΔG_H of MS$_2$ from p-supercell for H-coverage up to $1/6$ and h-supercell for H-coverage from $2/6$ to $6/6$ into Figure 6. Clearly, we see that VS$_2$ monolayer shows the best HER performance in all of considered systems.

To investigate the possible origin of HER performance and the effects of H-coverage, the partial densities of states (PDOSs) of M, X, and H are calculated. The calculated PDOSs clearly show the change of conductivities of MS$_2$ monolayers with the H-coverage (Figure 7 and supporting data S1 ~ S5). We see that the pristine VS$_2$ monolayer is metallic, where the Fermi level is within the middle energy band and near to its bottom (Figure 7a). The middle energy states are dominated by $V \, d$ electrons. With introducing H atoms to the monolayer’s surface, the energy sates shift down to lower energy region, or

![Figure 3](https://www.nature.com/scientificreports/srep05348/fig3.png)

Figure 3 | The calculated overpotentials as a function of H-coverage of MX$_2$ monolayers in p-supercell by “average” method: (a), (c), and (e); and by “most stable” method: (b), (d) and (f).
the Fermi level shifts up to high energy region within the middle band (Figure 7b). The Fermi level further shifts up with increasing H-coverage (Figure 7c). At 3/6 coverage, the Fermi level of the system is close to the middle energy band top. Corresponding to semiconductor’s band structure, we may state the middle band as valence band and the band above as conduction band. The up-shift of Fermi level to the middle band (valence band) top leads to the reduction of conductivity. This is further illustrated on VS$_2$ monolayer with full H-coverage, where the system is an intrinsic semiconductor or insulator because its Fermi level is within the band gap (Figure 7h). The PDOSs of NbS$_2$ and TaS$_2$ in p-supercell and h-supercell, and VS$_2$ in h-supercell reveal the same origin of the reduction of performance under high H-coverage (Supporting data, S1-S5). The analysis of PDOSs shows that the conductivities of the MX$_2$ monolayers are reduced by the H-coverage, especially after half H-coverage on the surfaces, leading to the decreases of their HER performances (Figures 3-6). This finding may also apply to the MX$_2$ nanostructures with metallic edges because their conductivities should be reduced when edges are fully saturated by hydrogen atoms. This is different from Pt-related catalysts, whose conductivities have not been affected by the H-coverage on their surfaces. How to improve the conductivities of MS$_2$-based catalysts under high H-coverage should be a challenge for their application in electrolysis of water. One of ways is to mix these MS$_2$ monolayers with high conducting nanostructures, such as graphene.

Figure 4 | The calculated overpotentials as a function of H-coverage of MS$_2$ monolayers by “average” method in p-supercell (a) and in h-supercell (b).

Figure 5 | The calculated overpotentials as a function of H-coverage of MX$_2$ monolayers in h-supercell by “average” method: (a), (c), and (e); and by “most stable” method: (b), (d) and (f).
calculated densities of states show that pure and H-covered MoS$_2$ monolayers are better than MSe$_2$ and MTe$_2$ monolayers in reduction of transition-metal dichalcogenide monolayers. Our calculations are based on the density functional theory (DFT)\cite{1} and the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA)\cite{2}. The projector augmented wave (PAW) scheme\cite{3,4} as incorporated in the Vienna ab initio simulation package (VASP)\cite{5} is used in the study. The Monkhorst and Pack scheme of k point sampling is used for integration over the first Brillouin zone\cite{6}.

The calculated overpotentials for pure and H-covered MoS$_2$ monolayers are intrinsic or n-type semiconductors (Supporting data, S7). These results confirm that the surface of MoS$_2$ monolayer is inert to electrolysis of water, and the most active sites are at the edges or defects of MoS$_2$ nanostuctures\cite{7,8,9}. However, our study show that the surfaces of MX$_2$ (M = Nb, Ta, and V; X = S, Se, and Te) monolayers, especially VS$_2$, are very active, which further enhance their ability for electrolysis of water due to higher contacting area with water.

Conclusions

The DFT-based first-principles calculations are carried out to investigate the hydrogen evolution reduction of MX$_2$ monolayers. We find that MS$_2$ monolayers are better than MSe$_2$ and MTe$_2$ monolayers in electrolysis of water, especially VS$_2$, which shows the best HER performance because of its lower overpotential. We show that the HER performances of MX$_2$ monolayers strongly depend on the H-coverage on their surfaces. With increasing H-coverage, the performance is reduced because of the reduction of conductivity. We also show that the strain may improve the HER performance at relatively low H-coverage. We further predict that their HER applications at high H-coverage can also be achieved by improving their conductivities, such as hybridization with metallic nanostructures. It is expected that the MS$_2$ monolayers, especially VS$_2$, may find applications to electrolysis of water for hydrogen production.

Methods

The first-principles calculations are carried out to investigate the hydrogen evolution reduction of transition-metal dichalcogenide monolayers. Our calculations are based on the density functional theory (DFT)\cite{1} and the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA)\cite{2}. The projector augmented wave (PAW) scheme\cite{3,4} as incorporated in the Vienna ab initio simulation package (VASP)\cite{5} is used in the study. The Monkhorst and Pack scheme of k point sampling is used for integration over the first Brillouin zone\cite{6}. A $15 \times 15 \times 1$ grid for k-point sampling for geometry optimization of unit cells, and an energy cut-off of 450 eV are consistently used in our calculations. A sufficiently large supercell is used so that the monolayers in neighbouring cells in the vertical direction are separated by a vacuum region of at least 20 Å. Good convergence is obtained with these parameters and the total energy was converged to 2.0×10^{-5} eV/atom. The error bar (or uncertainty) of the DFT calculation is less than 5 meV. The thermodynamic processes via Tafel pathway are calculated\cite{10}. The effect of solvent on the HER performance of VS$_2$ monolayer is investigated by including H$_2$O molecules in the systems with various H-coverage\cite{11,12}.

The calculated thermodynamic processes of HER on VS$_2$ monolayer via Tafel channels and the effect of solvent on overpotentials are included in Supporting Data.
32. Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface

33. Vrubel, H., Merki, D. & Hu, X. Hydrogen evolution catalyzed by MoS 2 and MoS2

34. Wang, D. Z. et al. Distorted MoS 2 nanostructures: An efficient catalyst for the
electrochemical hydrogen evolution reaction. Electrochem. Commun. 34, 219–222 (2013).

35. Kong, D. et al. Synthesis of MoS2 and MoSe 2 films with vertically aligned layers.

36. Wang, H. et al. MoSe 2 nanosheets: High stability from MoS 2 nanocatalysts.

37. Vrubel, H., Merki, D. & Hu, X. Hydrogen evolution catalyzed by MoS 2 and MoS2

38. Kong, D. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS 2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).

39. Wang, D. Z. et al. Distorted MoS 2 nanostructures: An efficient catalyst for the
electrochemical hydrogen evolution reaction. Electrochem. Commun. 34, 219–222 (2013).

40. Wang, T. Y. et al. Enhanced electrocatalytic activity for hydrogen evolution reaction

from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energy Environ. Sci. 6, 625–633 (2013).

41. Wu, Z. Z. et al. MoS 2 nanosheets: a designed structure with high active site density

for the hydrogen evolution reaction. ACS Catal. 3, 2101–2107 (2013).

42. Chen, T. Y. et al. Comparative study on MoS 2 and WS 2 for electrocatalytic water

splitting. Int. J. Hydro. Energy 38, 12302–12309 (2013).

43. Chhowall, M. et al. The chemistry of two-dimensional layered transition metal
dichalcogenide nanosheets. Nature Chem. 5, 263–275 (2013).

44. Pan, H. & Zhang, Y. W. Edge-dependent structural, electronic and magnetic

properties of MoS 2 nanoribbons. J. Mater. Chem. 22, 7280–7290 (2012).

45. Li, Y. F., Zhou, Z., Zhang, S. B. & Chen, Z. F. MoS 2 Nanoribbons: High Stability

and Unusual Electronic and Magnetic Properties. J. Am. Chem. Soc. 130, 16739–16744 (2008).

46. Ding, Y. et al. First principles study of structural, vibrational and electronic

properties of graphene-like MX 2 (M = Mo, Nb, Ta; X = S, Se, Te) monolayers. Physica B 406, 2254–2260 (2011).

47. Koh, E. W. K., Chiu, C. H., Lim, Y. K., Zhang, Y. W. & Pan, H. Hydrogen

adsorption on and diffusion through MoS 2 monolayer: First-principles study. Int.

J. Hydro. Energy 37, 14323–14328 (2012).

48. Shi, H., Pan, H., Zhang, Y. W. & Yakobson, B. I. Strong ferromagnetism in

hydrogenated monolayer MoS 2 tuned by strain. Phys. Rev. B 88, 205305 (2013).

49. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution.

J. Electrochem. Soc. 152, 123–126 (2005).

50. Min, S. X. & Lu, G. X. Sites for high efficient photocatalytic hydrogen evolution on

a limited-layered MoS 2 cocatalyst confined on graphene sheets: The role of graphene. J. Phys. Chem. C 116, 25415–25424 (2012).

51. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

52. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 19913–19979

(1994).

53. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made

simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

54. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector

augmented-wave method. Phys. Rev. B 54, 11169–11186 (1996).

55. Monkhorst, H. J. & Pack, J. Special points for brillouin-zone integrations. Phys.

Rev. B 13, 5188–5192 (1976).

Acknowledgments

Hui Pan thanks the support of the Science and Technology Development Fund from Macau SAR (FDCT-076/2013/A), and Multi-Year Research Grant (MYRG2014-00159-FST) and Start-up Research Grant (SRG-2013-00033-FST) from Research & Development Office at University of Macau. The DFT calculations were performed at High Performance Computing Cluster (HPCC) of Information and Communication Technology Office (ICTO) at University of Macau.

Author contributions

H.P. conceived the idea, performed the calculations, and wrote the paper.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Pan, H. Metal Dichalcogenides Monolayers: Novel Catalysts for Electrochemical Hydrogen Production. Sci. Rep. 4, 5348; DOI:10.1038/srep05348 (2014).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/