Container Production of Prostrate Garden Chrysanthemums

Neil O. Anderson1 and Esther Gesick2
Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, MN 55108

Additional index words. horizontal growth, groundcover chrysanthemums, fast cropping, rhizomes, stolons, wave habit

Abstract. The prostrate plant habit may be an important new trait for the garden chrysanthemum [Dendranthema xgrandiflora Thzeli. (=Chrysanthemum ×morifolium Ramatuelle)] market. Fifteen prostrate and non-prostrate genotypes were evaluated in production trials, using Regular and Fast Cropping systems. At flowering, the following traits were evaluated: days to flowering (first, 50%, 100%), flowering duration, pot coverage, plant uniformity, and salability. Salability was measured with consumer evaluations. Genotypes differed significantly for days to first and 100% flowering, flowering duration, plant height, plant width, and plant uniformity. Cropping systems were significantly different for days to first and 100% flowering. ‘Snowscape’, a semi-prostrate day-neutral cultivar, was earlier than all other genotypes for days to first flower. It also had the longest flowering duration. ‘Snowscape’ would be the best genetic source for creating early, continual flowering cultivars. Most prostrate genotypes were as early as commercial cultivars. Genotype 90-275-27 was significantly shorter (prostrate) than all other genotypes and would be the best genetic source for prostrate plants. Genotypes 95-169-8, 92-237-9, 95-157-6, 95-169-10, 90-275-27, and ‘Snowscape’ had the most acceptable plant width for shipping. Plant uniformity of 95-169-10 and 95-169-8 matched that of ‘Debonair’ and ‘Spotlight’, all of which were significantly more uniform than the other genotypes. The least uniform prostrate was 95-331-10. ‘Snowscape’ had the highest (best) index of traits ranking and was significantly better than all other genotypes. Consumer evaluations were highest for non-prostrate cultivars.

Garden chrysanthemums are interspecific hybrids derived from 10 or more species (Dowrick, 1953; Smith and Laurie, 1928). The current U.S. market size for garden chrysanthemums is $103.24 million (wholesale) per year (U.S. Dept. of Agriculture, Statistics Board, 2002). Consumer flower color preferences in the fall crop market are yellow (27%), lavender (22%), white (15%), red (14%), and coral salmon (4%). Decoratives (76%) and daisies (22%) are the two most popular flower types. Fall chrysanthemums remain an important crop for growers, as they involve a short growing season, a definitive peak selling time, no photoperiod manipulation, and relatively low production costs (Langevin, 1992).

The most significant production cost is labor, provided irrigation and a slow-release fertilizer regime is implemented. With Yoder’s “Fast Cropping” (15–16 weeks), hand pinching occurs from one to four times during the growth phase until 20 July. Labor inputs increase significantly with each pinch, as the number of lateral breaks escalates. A commercial method to decrease labor and eliminate pinching is Yoder’s “Fast Cropping” (9–10 weeks), although the final product is smaller and retails for less than plants from “regular cropping.”

The Univ. of Minnesota garden chrysanthemum-breeding program has focused on product development for nearly 80 years. The release of >70 winter-hardy, early blooming mum varieties have provided the market with cultivars and germplasm critical for continued development by the private industry. Several Minnesota cultivars have remained popular on the market for many years, including ‘Minnogopher’, PP No. 4,327 (Widmer, 1978). Cultivars in the ‘Minn’ series all possess a cushion plant habit, which revolutionized the industry and has the majority market share. The recent creation and release of large shrub-type chrysanthemums with the cushion habit from the university breeding program, sold under the brand My Favorite™, has created worldwide interest in new phenotypes.

Initial breeding objectives for garden chrysanthemums included early flowering and winter hardiness. To achieve this goal, many wild and/or cultivated chrysanthemum species were used (Longley, 1936, 1938; Morrison, 1923). The first garden chrysanthemum released by the program, ‘Duluth’, was an exceptionally winter-hardy type (Clark, 1962). The species used in the Univ. of Minnesota breeding program included the following: Dendranthema indicum, D. sipiricum, D. koreanaum, D. arcticum, D. niponicum, D. rubellum ‘Clara Curtis’, D. uliginosum, D. weyrichii, D. zawadskii, and Leucanthemum maximum (Longley, 1943, 1949, 1950; Teynor, 1990).

Another new plant habit—prostrate chrysanthemums—has been developed by the breeding program. Prostrate chrysanthemums have lateral branches, which grow horizontally along the soil surface in field and container trials (Fig. 1). The trait is genetically controlled, allowing for clonal propagation. Neither plant growth regulator applications nor mechanical manipulations are necessary to induce the horizontal growth. Thus, these prostrate chrysanthemums differ from the cascade chrysanthemums used in botanic gardens for fall flowering shows, whose cascading effect results from vertically downward growth by training and pinching (Alfors, 1977; Bruckhaus, 1975; Miller, 1976;). Cascade chrysanthemums are grown as hanging plants in large containers, achieving lengths of 1.8 to 2.1 m at flowering. Prostrate chrysanthemums may be useful in hanging baskets, rock gardens, and large container plantings (Gesick, 1997). Given the increase in sales of petunias after the release of prostrate ‘Wave™’ petunias, e.g., $58.692 million sales in petunia (flats only) for 1994 vs. $137.056 million (flats, potted, hanging baskets) for 2001 (U.S. Dept. of Agriculture, Statistics Board, 1995, 2002), a similar revo-

Fig. 1. Plant growth habit and flowering of a prostrate garden chrysanthemum selection during the first year (Univ. of Minnesota selection 90-275-27).
solution could occur in the garden mum market with prostrate or wave-type cultivars.

Most prostrate genotypes selected in the breeding program have at least one wild species in common in their pedigrees, either D. zawadzki or D. weyrichii (N.O. Anderson, unpublished data). Crosses in other breeding programs between early flowering garden types of D. grandiflora with other wild species, D. vestitum, D. chanetii, D. lavandulifolium, D. indicum, also have produced similar phenotypes (Junyu et al., 1995). In the Univ. of Minnesota breeding program, most prostrate types trace to either 77-AM3 or ‘Lindy’ inbred families. Prostrate types have surfaced in the breeding program since its inception, although they were initially discarded since they did not match the desired ideotype. No previous reports of prostrate growth habit in other U.S. chrysanthemum trials or breeding program progenies have been reported (Butterfield, n.d.; Carpenter and Shackelford, 1966), although Chinese breeders have recently released small groundcover types (Junyu et al., 1995).

The prostrate phenotype is characterized by horizontal growth of the lateral branches that are attached to the plant at the crown. Field horizontal growth of the lateral branches that (Junyu et al., 1995).

Materials and Methods

Plant material. Table 1 lists the garden chrysanthemums used in the experiment, including commercial cultivars and unnamed, numbered genotypes from the prostrate breeding program. Cultivars included the major flower color classes of yellow, lavender, bronze, white, and red.

Culture. Plants were grown outdoors under natural daylengths (long days to short days as the season progressed) at 45°N lat.; two rooted cuttings were planted (20-cm mum pans, spaced 45 cm O.C.) in early June 1999 (week 23), for the Regular Cropping schedule and in week 30 for the Fast Cropping program. They were grown outdoors until a killing freeze on 31 Oct. 1999 (week 44), which ended the experiment. Cultural conditions matched the recommendations of Langevin (1992) and Gesick (1997) for commercial container production except that no genotypes were pinched. The experiment was a split plot design, with the main plot consisting of the cropping systems (n = 2), the subplot of genotypes (n = 15), with replications (n = 3) constituting the blocks.

Data Collection. The following data was collected with the production experiment: days to flowering (first, 50%, 100%), flowering duration (number of days from 50% flowering to senescence), pot coverage (plant height and width), plant uniformity (for flowering date, flower distribution, plant shape; a 1–5 scale, with 1 = non-uniform, 5 = uniform), and salability (consumer evaluations) (Gesick, 1997). A modified index of traits (Gesick, 1997) was calculated and analyzed using a fixed effects one-way analysis of variance (ANOVA). All data analyses were conducted using Statistical Package for the Social Sciences (SPSS, version 10; SPSS Inc., Chicago). The relative performance of cultivars was assessed using mean comparisons.

Chrysanthemum breeders can use the index of traits to select genotypes with a coincident bloom time (Gesick, 1997). Traits included in the index (pot coverage—plant height and width, plant uniformity; earliness—days to first and 100% flowering, flowering duration) were either recomputed or used on the date of 100% flowering or are expressed in relation to flowering. The highest, positive values for the index of traits are desirable for selection purposes. The index of traits was calculated by first standardizing all data to z-scores (Gesick, 1997; Montgomery, 1991), prior to summing the z-scores using the following equation:

\[\text{Index of Traits Number} = \left[-\text{plant height} + \text{plant uniformity} - \text{flowering earliness} \right] (\text{or days to first flower}) + \text{flowering duration} - \text{days to 100% flowering} \]

Consumer evaluations were performed using a subsample of the production experiment, i.e., one prostrate and one non-prostrate cultivar from each of the flower color classes: yellow (‘Jessica’, 95-105-2), lavender (‘Snowscape’, ‘Debonair’), bronze (‘Jennifer’, 95-169-10), white (‘Spotlight’, 92-237-9), and red (‘Helen’, 95-169-8). Inclusion of all genotypes would have been a deterrent to obtaining willing participants in the consumer evaluation. Evaluation of 10 plants was still enough to turn away potential evaluators, since it took approximately 30 min per evaluation.

Evaluations were performed in the Univ. of Minnesota, St. Paul, campus student center at the time of peak flowering (Sept. 1999). Twenty consumers who walked by the table (with the plants for evaluation) were randomly selected and invited to evaluate these prostrate and non-prostrate cultivars. Participants filled out a survey, rating each cultivar for flower color (on a 1–10 scale, with 10 being the best), flower form (1–10 scale, quality (1–10 scale), and overall appearance (1–10 scale), using a modified version of Gesick’s (1997) standard form. Data from the surveys were analyzed using Friedman’s two-way ANOVA by ranks and Kendall’s rank correlation procedure. Multiple comparisons were performed using a 5% LSD (Gesick, 1997). Each consumer’s survey constituted a block in the experiment, with each genotype being evaluated served as a treatment. The null hypothesis being tested was \(H_0 \); the consumer rankings are independent or random, versus the alternative hypothesis (\(H_1 \)) of \(H_0 \); there is some order to the rankings.

Results.

Analysis of variance (ANOVA) showed no differences between replications of a cultivar for days to first flower, days to 100% flowering, and flowering duration (Table 2). In addition, no significant interactions were found for these traits. Genotype (cultivar) was highly significant for days to first flower and significant for days to 100% flowering and flowering duration (Table 2). Cropping systems were highly significant for days to first and 100% flowering, but nonsignificant for flowering duration. Cropping systems and interactions (genotype × block, genotype × cropping system) were nonsignificant for plant height, plant width, and plant uniformity (Table 2). Replications were again nonsignificant, with the exception of plant height. Cultivars were highly significant for all three traits (Table 2). No significant interactions were found for any of the six traits (Table 2).

Genotype	Color	Plant habit	Source
Yoder	90-275-27 yellow prostrate	Univ. of Minnesota	
Yoder	95-105-2 yellow prostrate	Univ. of Minnesota	
Yoder	95-331-6 lavender non-prostrate	Yoder Brothers	
Yoder	95-169-10 bronze prostrate	Univ. of Minnesota	
Yoder	95-331-10 bronze prostrate	Univ. of Minnesota	
Yoder	95-157-6 white prostrate	Univ. of Minnesota	
Yoder	92-237-9 white prostrate	Univ. of Minnesota	
Yoder	95-169-8 red prostrate	Univ. of Minnesota	
Yoder	95-160-49 red prostrate	Univ. of Minnesota	

HortScience, Vol. 38(7), December 2003
Spotlight’s mean was 1.26 a for ‘Snowscape’ and 0.20 ab for ‘92-237-9’ to daisies (the remaining prostrate cultivars). The exception was ’92-237-9 being ranked higher than ‘Spotlight’ for flower form, although these two rankings were not statistically significant from each other.

Source of variation (ANOVA)

Genotypes (G)	Blocks (B)	Cropping Systems (CS)	G × B	G × CS	MSE
***	***	***	***	***	

- **Tukey’s Honestly Significant Difference test at P = 0.05**,
- **P** > 0.05, 0.01, and 0.001 levels, respectively.
- **Source of variation (ANOVA)**
- **Mean index value**
- **5% HSD**
- **ANOVA for the index of traits (Gesick, 1997)**
- **Prostrate vs. non-prostrate garden chrysanthemums grown under two cropping systems.**
that these prostrate genotypes were in similar prostrate genotypes flowered as early as the 15 genotypes were from different short date differences are not unexpected since the 15 genotypes were from different short

While flowering earliness can be attributed

and Ascher, 2001). Since ‘Snowscape No. 6,884 (Anderson, et al., 1988; Anderson and

Since prostrate genotypes flowered as early as the

days to first semi-prostrate day-neutral cultivar, was ear-

Since ‘Snowscape is a semi-prostrate day-neutral cultivar, was ear-

research has documented the existence of day

Genotype 90-275-27 was significantly greater flowering duration is due to day neutrality (Anderson, 1991). Previous research has documented the existence of day neutral genotypes, particularly 83-267-3, FP No. 6,884 (Anderson, et al., 1988; Anderson and Ascher, 2001). Since ‘Snowscape’ is a semi-prostrate genotype, it would be the best genetic source for creating early, continual flowering prostrate cultivars.

Genotypic differences in plant height were also found (Table 2), due to the use of prostrate and commercial cushion cultivars. Since prostrates have different height : width ratios than the commercial comparisons, this finding is not unexpected. Genotype 90-275-27 was significantly shorter (prostrate) than all other genotypes and would be the best genetic source for compact prostrates. The effect of the container rims on artificially increasing plant height of the prostrate genotypes is a distinct possibility. In the prostrate genotypes, horizontally growing stems or non-rooting stolons reaching the container rims (with a 1" headspace) were forced primarily in an upward direction. Once the vertically growing stems surpassed the container rim, it was observed that it took a variable number of nodes before the stems resumed horizontal growth. In cases where the stolons were forced underground, they did not root or become rhizomes. Rhizome production is essential for winter survival, but occurs only after flowering (Anderson and Gesick, 2003).

Field data for genotype 90-275-27, documented that first- and second-year-old clones achieved a height of 7.5 and 15.25 cm, respectively (Anderson, unpublished data, 1999). In contrast, 90-275-27 grew to an average height of 27.8 cm in the current production study, more than 2x the height of second-year plants. This is in contrast with the Chinese groundcover or “creeping” chrysanthemums, which reach greater height (20–30 cm) in first year, field-grown plants (Junyu et al., 1995). Further research needs to be performed to determine whether this occurs in all container-grown prostrate genotypes and whether the plants produce rhizomes as well as stolons.

In the prostrate genotypes, hori zon tally grow-

Prostrate chrysanthemums may afford a unique opportunity to conduct basic research on the mechanism(s) by which these genotypes can produce greater plant diameters when not grown in containers. However, for container production and consumer sales, such prostrates would need plant growth regulator application(s) to prevent damage during the sleeving and shipping phases. It would be more cost effective, however, if the breeding program selected against increased widths in container-grown plants.

Differences in plant uniformity between the prostrate genotypes were unexpected, since all were clonally propagated. Full-sibs 95-169-8 and 95-169-10 had the same plant uniformity as ‘Debonair’ and ‘Spotlight’, all of which were significantly more uniform than the remaining Yoder or prostrate genotypes (Table 2). The least uniform prostrate genotype was 95-331-10, significantly different from all others.

‘Snowscape’ had the highest (best) index of traits ranking and was significantly better than all other genotypes (Table 3). This was unexpected, since the commercial Yoder cul-

Flower form, quality, and overall appearance were highest for the non-prostrate cultivars (Table 4). ‘Snowscape’ and ‘Jennifer’ had statistically similar ratings for flower color and overall appearance, although their scores were near the base of the rating scales. It is not known whether the other genotypes not selected for the consumer evaluations would have shown similar trends. While consumers prefer decorative flower forms over daisies, as their respective nationwide market shares indicate (76% vs. 22%, respectively), several prostrates without fully-double decorative flower forms ranked the same as their comparisons. For instance, ‘Jennifer’ and 95-169-10 were not statistically different (Table 4). However, ‘Snowscape’, a decorative, was significantly different from its comparison, ‘Debonair’. This may be attributable to day neutrality creating ‘Snowscape’ with earlier flowering and flower quality of the earliest-to-flower blooms being past their prime at the time of the consumer evaluations.

Further production trials are necessary to create the highest quality prostrate chrysanthemum phenotype that would be acceptable and highly desirable to consumers. It was not obvious to the consumers participating in the evaluations that any of the plants were prostrate and could be planted in the landscape as groundcovers. Thus, mum pans may be less desirable than hanging baskets or larger diameter color pots to enhance the prostrate phenotype for the consumer at the time of purchase and make a connection with its novel use in the landscape. As in the case of Wave™ petunias, grower, retailer, landscape designer, and consumer training in the landscape was necessary for the first prostrate petunia (‘Purple Wave’) (PanAmerican Seed Co., 1997; Rice, 1999).

Prostrate chrysanthemums may afford a unique opportunity to conduct basic research on the mechanism(s) by which these genotypes can produce non-rooting stolons and rhizomes. Few other dicotyledons, if any, have both rhizomes and stolon-like structures; most are monocotyledons, e.g., Cynodon dactylon, Digitaria milanjiana (Hacker, 1983; Miller and Dickens, 1996). It has not been documented whether the Chinese groundcover chrysanthemums also possess non-rooting stolons and rhizomes (Junyu et al., 1995), nor whether their “creeping” habit matches the genotypes in the current study. An understanding of these phenomena may allow for gene characterization and genetic transformation of other crops.

Future breeding efforts should include specific prostrate parents identified in this study to be significantly better than the comparisons. The two best genotypes were ‘Snowscape’ and 90-275-27 (Patent Pending). ‘Snowscape’ possessed the earliest flowering, the longest flowering duration (due to day neutrality), an acceptable plant width, and the highest index of traits score. Genotype 90-275-27 had the shortest height and acceptable plant width. However, since both genotypes are decorative (full-double flower forms) they cannot be crossed with each other since they possess 100% gynoeccious florets. Each could be used as a female parent with either full-sib
the longest select genotypes that are early subsequent generations, it may be possible to which were the most uniform prostrates. In container and field trials, acceptable plant widths, superior uniformity, and the highest index of traits. The heritability of the prostrate plant form also needs to be determined via classical breeding; gene action may also differ between parents from differing pedigrees and interspecific crosses.

Literature Cited
Alfors, J.T. 1977. Growing cascades in Davis, California. The chrysanthemum, J. Natl. Chrysanthemum Soc. 33(3):108–109.
Anderson, N.O. 1991. The discovery of day-neutral chrysanthemums. Greenhouse Grower 9: 50–53.
Anderson, N.O. and P.D. Ascher. 2001. Selection of day-neutral, heat-delay-insensitive Dendranthema x grandiflora genotypes. JASHS 126(6): 710–721.
Anderson, N.O., P.D. Ascher, and R.E. Widmer. 1988. Chrysanthemum plant—Day neutral: Mn. Sel. 83-267-3. U.S. Plant Patent No. 4,327. U.S. Dept. of Agriculture Statistics Board. 1995. Floriculture crops 1994 summary. http://usda.mannlib.cornell.edu/reports/nassr/other/zfc-bb/flor0495.txt
Longley, L.E. 1936. New chrysanthemums named. Minnesota Hort. 64(2):26.
Longley, L.E. 1938. Thousands of “Mums” displayed at U. Farm. Minnesota Hort. 66(9):174.
Longley, L.E. 1943. Garden chrysanthemums for Minnesota. Minnesota Hort. 71:76–77.
Longley, L.E. 1949. Chrysanthemums for the north. Horticultrue 27(11):404.
Longley, L.E. 1950. Chrysanthemum breeding at the University of Minnesota. Natl. Chrysanthemum Soc. Bul. 6:45–46.
Miller, G. 1976. Growing cascades in the southwest. The Chrysanthemum, J. Natl. Chrysanthemum Soc. 32(4):188–189.
Miller, G.L. and R. Dickens. 1996. Bermudagrass carbohydrate levels as influenced by potassium fertilization and cultivar. Crop Sci. 36: 1283–1289.
Montgomery, D.C. 1991. Design and analysis of experiments. 3rd ed. Wiley, New York.
Rice, G. 1999. Discovering annuals. Timber Press, Portland, Ore.
Smith, E.D. and A. Laurie. 1928. Chrysanthemum breeding. Michigan State Coll. of Agr. and Appl. Sci., Agr. Expt. Stn., Spec. Bul. No. 186. Teynor, T.M. 1990. Selection for earlier flowering dates in chrysanthemums (Dendranthema grandiflora Tzvelv). PhD Diss., Univ. of Minnesota, St. Paul.
U.S. Dept. of Agriculture Statistics Board. 1995. Floriculture crops 1994 summary. http://usda.mannlib.cornell.edu/reports/nassr/other/zfc-bb/flor0495.txt
U.S. Dept. of Agriculture Statistics Board. 2002. Floriculture crops 2001 summary. http://usda.mannlib.cornell.edu/reports/nassr/other/zfc-bb/flor0401.txt
Widmer, R.E. 1978. Chrysanthemum named ‘Minngopher’. U.S. Patent No. 4,327.
Yoder Brothers, Inc. 1999. Pot mums, cut mums, and garden mum catalogs. Yoder Brothers, Inc., Barberton, Ohio.