A Topological Perspective on Distributed Network Algorithms

Armando Castañeda
UNAM, Mexico

Pierre Fraigniaud*
CNRS and Univ. de Paris

Ami Paz†
CNRS and Univ. de Paris

Sergio Rajsbaum‡
UNAM, Mexico

Matthieu Roy
CNRS, France

Corentin Travers§
Univ. of Bordeaux and CNRS

Abstract

More than two decades ago, combinatorial topology was shown to be useful for analyzing distributed fault-tolerant algorithms in shared memory systems and in message passing systems. In this work, we show that combinatorial topology can also be useful for analyzing distributed algorithms in networks of arbitrary structure. To illustrate this, we analyze consensus, set-agreement, and approximate agreement in networks, and derive lower bounds for these problems under classical computational settings, such as the LOCAL model and dynamic networks.

*Supported by ANR projects DESCARTES and FREDA. Additional support from INRIA project GANG.
†Supported by the Fondation Sciences Mathématiques de Paris (FSMP).
‡Supported by project UNAM-PAPIIT IN109917.
§Supported by ANR projects DESCARTES and FREDA.
1 Introduction

1.1 Context and Objective

A breakthrough in distributed computing was obtained in the 1990’s, when combinatorial topology, a branch of Mathematics extending graph theory to higher dimensional objects, was shown to provide a framework in which a large variety of models can be studied [29, 41]. Combinatorial topology provides a powerful arsenal of tools, which considerably expended our understanding of the solvability and complexity of many distributed problems [2, 9, 10, 30]. We refer to the book by Herlihy et al. [25] for an extended and detailed description of combinatorial topology applied to distributed computing, in a wide variety of settings.

In a nutshell, combinatorial topology allows us to represent all possible executions of a distributed algorithm, along with the relations between them, as a single mathematical object, whose properties reflect the solvability of a problem. Combinatorial topology was primarily used to study distributed computing in the context of shared memory and message passing systems, but not in the context of systems in which the presence of a network connecting the processing elements needs to be taken into account. On the other hand, a large portion of the study of distributed computing requires to take into account the structure of the network connecting the processors, e.g., when studying locality. This paper is a first attempt to approach distributed network computing through the lens of combinatorial topology.

The base of the topological approach for distributed computing consists of modeling all possible input (resp., output) configurations as a single object called input complex (resp., output complex), and specifying a task as a relation between the input and output complexes. Moreover, computation in a given model results in a topological deformation that modifies the input complex into another complex called the protocol complex. The fundamental result of combinatorial topology applied to distributed computing [25] is that a task is solvable in a computational model if and only if there exists a simplicial mapping, called decision map, from the protocol complex to the output complex, that agrees with the specification of the task. In other words, for every input configuration, (1) the execution of the algorithm should lead the system into one or many configurations, forming a subcomplex of the protocol complex, and (2) the decision map should map every configuration in this subcomplex (i.e., each of its simplexes) into a configuration of the output complex that is legal for the given input configuration, with respect to the specification of the task.

Understanding the power and limitation of a distributed computing model with respect to solving a given task requires to understand under which condition the decision map exists. This requires to understand the nature of topological deformations of the input complex resulting from the execution of an algorithm, and the outcome of this deformation, i.e., the protocol complex. That is, one needs to establish the connections between the distributed computing model at hand, and the topological deformations incurred by the input complex in the course of a computation under this model.

The connections between the computational models and the topological deformations are now well understood for several distributed computing models. For instance, in shared-memory wait-free systems, the protocol complex results from the input complex by a series of specific subdivisions of its simplexes. Note that the impossibility result for consensus in shared-memory wait-free systems is a direct consequence of this fact, as the input complex of consensus is connected, subdivisions maintain connectivity, but the output complex of consensus is not connected — this prevents the existence of a decision map, independently of how long the computation proceeds. Similarly, in
shared-memory t-resilient systems, the protocol complex results from the input complex not only by a series of specific subdivisions, but also by the appearance of some holes in the course of the computation. This is because every process can wait for hearing from at least $n - t$ other processes in any n-node t-resilient system. These holes enable the existence of a decision map in the case of $(t + 1)$-set-agreement, but are not sufficient to enable the existence of a decision map for consensus, as long as $t \geq 1$. And indeed, the FLP result [19] implies that consensus is not solvable in asynchronous systems even in the presence of at most one failure.

This paper addresses the following issues: What is the nature of the topological deformations incurred by the input complex in the context of network computing, i.e., when nodes are bounded to interact only with nearby nodes according to some graph metric? And, what is the impact of these deformations on the ability to solve tasks efficiently (e.g., locally) in networks? As a first step towards answering these questions in general, we tackle them in the framework of synchronous failure-free computing, which is actually the framework in which most studies of distributed network computing are conducted [37].

1.2 Our results

We place ourselves in the context of synchronous failure-free computing in networks [37]. As a first step towards understanding the nature of computation in this model from a topological perspective, we focus on lower bounds. We make a simplifying assumption which significantly strengthens the model, and therefore strengthens our lower bounds as well. We assume structure awareness. This assumption essentially asserts that each processing node is fully aware of the network it belongs to. More specifically, it assumes that all processes are given the same adjacency matrix of the network, and every process is given the index in the matrix of the vertex it occupies in the network. Structural awareness makes many tasks trivial. This is, for instance, the case of graph problems such as computing a vertex-coloring, an independent set, or a matching, which are among the main concerns of distributed network computing. Nevertheless, input-output tasks such as consensus and set-agreement, which are less studied in networks, yet important tasks as far as distributed computing and combinatorial topology are concerned [40], remain non-trivial.

The main contribution of this paper is in studying the topological model of distributed computing in networks, under the assumption of structure awareness. In particular, we show that the protocol complex involves deformations that were not observed before in the context of distributed computing, deformations which we call scissor cuts. These cuts appear between the facets of the input complex, and depend on the structure of the underlying network governing the way the information flows between nodes.

We show that this characterization is useful for deriving lower bounds on agreement tasks. For this purpose, we model the way information flows between nodes in the network by the so-called information-flow graph, and establish tight connections between structural properties of this graph, and the ability to solve agreement tasks in the network. This is achieved thanks to our understanding of the topology of the protocol complex. For instance, we show that if the domination number of the information-flow graph is at least $k + 1$, then the protocol complex is at least $(k - 1)$-connected, and if the protocol complex is at least $(k - 1)$-connected, then k-set agreement is not solvable.

Interestingly, our results connecting the structure of the information-flow graph with the topology of the protocol complex, imply lower bounds for solving agreement problems in the classical LOCAL model, as well as in dynamic networks. For instance, a consequence of our results is that,
in the LOCAL model, solving \(k \)-set agreement in a network requires at least \(r \) rounds, where \(r \) is the smallest integer such that the \(r \)-th power of the network (two nodes are adjacent when their distance in the network is at most \(r \)) has domination number at most \(k \). Similarly, we show that solving \(k \)-set agreement in a dynamic network \((H_t)_{t \geq 1} \) requires at least \(r \) rounds, where \(r \) is the smallest integer such that \((H_t)_{1 \leq t \leq r} \) has temporal dominating number at most \(k \).

Applying the topological approach to network computing also yields fine grained results. For instance, we show that in every \(n \)-node network where consensus is not solvable, \(\epsilon \)-approximate agreement is also not solvable whenever \(\epsilon < \frac{1}{n-1} \). This bound is tight, in the sense that there exists a network where consensus is impossible, while \(\frac{1}{n-1} \)-approximate agreement is solvable.

1.3 Related work

The deep connections between combinatorial topology and distributed computing were concurrently and independently identified in [29] and [11]. Since then, numerous outstanding results were obtained using combinatorial topology for various types of tasks, including agreement tasks such as consensus and set-agreement [40], and symmetry breaking tasks such as renaming [2, 9, 10]. A recent work [11] provides evidence that topological arguments are sometimes necessary. All these results are obtained in the asynchronous shared memory model with crash failures, but combinatorial topology can also be applied to Byzantine failures [36]. Works on message passing models consider only complete communication graphs [16, 28]. Recent results show that combinatorial topology can also be applied in the analysis of mobile computing [38], demonstrating the generality and flexibility of the topological framework applied to distributed computing. The book [25] provides an extensive introduction to combinatorial topology applied to distributed computing.

In contrast, distributed network computing has not been impacted by combinatorial topology. This domain of distributed computing is extremely active and productive this last decade, analyzing a large variety of network problems in the so-called LOCAL model [37], capturing the ability to solve task locally in networks\(^1\). We refer to [3, 5, 8, 13, 18, 20, 21, 24, 42] for a non exhaustive list of achievements in context. However, all these achievements were based on an operational approach, using sophisticated algorithmic techniques and tools solely from graph theory. Similarly, the existing lower bounds on the round-complexity of tasks in the LOCAL model [32, 35, 8, 23, 3] were obtained using graph theoretical arguments only. The question of whether adopting a higher dimensional approach by using topology would help in the context of local computing, be it for a better conceptual understanding of the algorithms, or providing stronger technical tools for lower bounds, is, to our knowledge, entirely open.

Similarly to (static) distributed network computing, the fundamental research on dynamic networks [11, 12, 34, 6] has rarely been impacted by combinatorial topology. Relevant works in this framework study consensus [17, 33], set-agreement [7, 22] and approximate agreement [14]. We also refer to [15, 91, 39] which analyze distributed computation in a model where all processes broadcast messages at each round, but the recipients of these messages are defined by a graph which may change from round to round. The information-flow graph introduced and analyzed in this paper can be viewed as an abstraction of computation in dynamic networks, as this graph contains a summary of how information was transmitted among processes in the network during some interval of time.

\(^1\)The CONGEST model has also been subject of tremendous progresses, but this model does not support full information protocols, and thus is out of the scope of our paper.
2 Model and Definitions

In this section, we describe an abstract model of computation that captures various models of distributed computing, including the LOCAL model, and computing in dynamic graphs. This model is called KNOW-ALL, for reason that will soon be apparent.

2.1 The KNOW-ALL model

We consider a set of n synchronous fault-free processes, with distinct names in $\{1, \ldots, n\}$, all running the same algorithm. The processes can model computing entities exchanging messages through a network, but also software agents or physical robots moving in space and exchanging messages whenever they meet, or computing entities in a dynamic network whose links evolve over time. The processes communicate using some communication medium, and the interactions are specified by a sequence H of n-node directed labeled graphs:

$$H = (H_t)_{1 \leq t \leq T}.$$

The label of a node of H_t is a value in $\{1, \ldots, n\}$, different from the labels of all other nodes. The process with name $p \in \{1, \ldots, n\}$ occupies the node labeled p in each of the graphs H_t, $1 \leq t \leq T$. The arcs in H_t represent the interactions that can take place at the t-th rounds of an algorithm.

The core property of the KNOW-ALL model is that every process is a priori given its name, and the sequence $H = (H_t)_{1 \leq t \leq T}$, so every node is given the complete knowledge of the communication patterns occurring during the T rounds. The only uncertainty is about the inputs to the nodes.

Remark. The KNOW-ALL model is stronger than several classical distributed computing models. For example, the LOCAL model is also synchronous, fault-free model but with a fixed communication graph H, i.e., $H_t = H$ for every $t \geq 1$, and the nodes learn only some of the graph topology during an execution. A dynamic graph computation is defined by a sequence of graphs on the same set of nodes, and the nodes only gain partial information on the graph sequence during the execution. This is generalized by the KNOW-ALL model, where all the graph sequence is given in advance to the processes. Hence, in both cases the KNOW-ALL model is stronger than the classical model, and lower bounds proven for the KNOW-ALL model imply lower bounds for the other models as well.

By no means we claim the KNOW-ALL model to be practical. We make several simplifying assumptions that are typical in these settings: unbounded computational power, unbounded communication, failure-freeness, and also structural awareness, which is not a typical assumption. However, this strong model is sufficient for exhibiting lower bounds, and for establishing impossibility results for weaker, more realistic models. More important perhaps, it enables us to exhibit interesting phenomenon regarding the impact of the communication pattern on the topology of the protocol complex.

2.2 Input-Output Problems and the Information-Flow Graph

We focus on input-output problems, naturally defined as follows. A task (I, O, F) in the n-process KNOW-ALL model is described by a set I of input values, a set O of output values, and a mapping

$$F : I^n \rightarrow 2^O^n$$
specifying, for every \(n \)-tuple of input values, the set of possible legal \(n \)-tuple of output values. (In the topological sense, we focus on tasks for which the input complex is a pseudosphere, as explained below.) The input value of process \(p \) is denoted by \(\text{in}(p) \in I \).

A distributed algorithm solving a task has two components: a communication protocol enabling each process to gather information about the inputs of other processes, and a decision function \(f \) that maps the gathered information to an output value. In the NOW-ALL model, we can restrict our attention to considering only flooding protocols. At round \(t \) of such a protocol, every process \(p \) sends to all its out-neighbors in \(H_t \) all the name-input pairs it is aware of, that is, the pair \((p, \text{in}(p))\), and all the pairs it has received in the previous rounds. After \(T \) rounds, the process takes a decision based on the set of pairs it is aware of. Considering only flooding protocols does not reduce the computational power, as the structural awareness allows each process to simulate any other protocol.

Assuming flooding protocols, designing an algorithm boils down to designing a decision function \(f \) that allows each process, given the set of received input values, to compute an output value such that the collection of output values produced by the processes is consistent with the collection of input values. More specifically, for every vector of input values \((v_1, \ldots, v_n) \in I^n\), given to process \((p_1, \ldots, p_n)\), respectively, let \(w_i \) be the vector where for every \(j \in \{1, \ldots, n\}\),

\[
 w_i[j] = \begin{cases}
 v_j & \text{if } j = i, \text{ or process } i \text{ receives the pair } (j, v_j) \text{ when flooding in } H; \\
 \bot & \text{otherwise}.
 \end{cases}
\]

Then, every process \(i \in \{1, \ldots, n\} \) must compute an output value

\[
 v'_i = f(i, w_i)
\]

such that the resulting \(n \)-tuple \((v'_1, \ldots, v'_n)\) is in \(F(v_1, \ldots, v_n) \).

In order to analyze flooding protocols, we define the information-flow graph, which describes the execution of a flooding protocol in the KNOW-ALL model.

Definition 1 Let \(\mathcal{H} = (H_t)_{1 \leq t \leq T} \) be an instance of the NOW-ALL model. The information-flow graph associated with \(\mathcal{H} \) is the directed graph \(G \) whose \(n \) nodes are labeled by \(1, \ldots, n \), and there is an arc \((p, q)\) from \(p \) to \(q \) in \(G \) if \(q \) receives the pair \((p, \text{in}(p))\) when flooding in \(H_t \).

A crucial observation is that whenever two instances \(\mathcal{H} \) and \(\mathcal{H}' \) of the NOW-ALL model yield the same information flow graph, then these two instances have the same computational power. The structure of the information-flow graph has a crucial impact on the ability to solve input-output problems in the NOW-ALL model, an impact which we study in this paper. In order to clarify the impact of the structure of the information flow graph on the ability to solve problems, we apply techniques of combinatorial topology.

3 Topological Description of the NOW-ALL Model

3.1 Basics definitions

A *simplicial complex* is a finite set \(V \) along with a collection of nonempty subsets \(\mathcal{K} \) of \(V \) closed under containment (i.e., if \(A \in \mathcal{K} \) and \(\emptyset \neq B \subset A \), then \(B \in \mathcal{K} \)). An element of \(V \) is called a *vertex* of \(\mathcal{K} \), and the vertex set of \(\mathcal{K} \) is denoted by \(V(\mathcal{K}) = V \). Each set in \(\mathcal{K} \) is called a *simplex*. A subset of a simplex is called a *face* of that simplex. The *dimension* \(\dim \sigma \) of a simplex \(\sigma \) is one less
than the number of elements of σ, i.e., $|\sigma| - 1$. We use “d-face” as shorthand for “d-dimensional face”. A simplex σ in K is called a facet of K if σ is not contained in any other simplex. Note that a set of facets uniquely defines a simplicial complex. The dimension of a complex is the largest dimension of any of its facets. A complex is pure if all its facets have the same dimension. For two complexes K and L, if $K \subseteq L$, we say K is a subcomplex of L. When clear from the context, we refer to the union of one or more simplexes as a complex. Such a complex should be understood as encompassing those simplexes together with all of their faces. In particular, we sometimes use a simplex σ as shorthand for the complex defined by its power set, i.e., the complex formed by σ and all its faces.

Let K and L be complexes. A vertex map is a function $h : V(K) \rightarrow V(L)$. If h also carries simplexes of K to simplexes of L, it is called a simplicial map. If the map is one-to-one and onto, we say that K and L are isomorphic, denoted $K \cong L$. We add one or more labels to the vertices, $\lambda : V \rightarrow D$, where D is an arbitrary domain. In particular, we have the set $\{1, \ldots, n\}$ of process names, and a label associating each vertex with a name. Typically, each simplex is properly colored by these names: if u and v are distinct vertices of a simplex σ, then $\text{name}(u) \neq \text{name}(v)$. A simplicial map h is chromatic if it preserves names, i.e., $\text{name}(h(v)) = \text{name}(v)$ for any vertex v. In this paper, all simplicial maps between colored complexes will be chromatic. Given two complexes K and L, a carrier map Φ maps each simplex $\sigma \in K$ to a sub-complex $\Phi(\sigma)$ of L, such that for every two simplexes τ and τ' in K that satisfy $\tau \subseteq \tau'$, we have $\Phi(\tau) \subseteq \Phi(\tau')$.

Roughly speaking, a geometric realization $|K|$ of a simplicial complex K is a geometric object defined as follows. Each vertex in $V(K)$ is mapped to a point in a Euclidean space, such that the images of the vertices are affinely independent. Each simplex is represented by a polyhedron, which is the convex hull of points representing its vertices. Figure 1 displays the geometric representations of several simplicial complexes that are detailed later.

Let k be a positive integer. We say that a complex has a hole in dimension k if the k-sphere S^k embedded in a geometric realization of the complex cannot be continuously contracted to a single point within that realization. Informally, a complex is k-connected if it has no holes in dimension k. A complex K is k-connected if every continuous map $h : S^k \rightarrow |K|$ can be extended to a continuous map $h' : D^{k+1} \rightarrow |K|$ where D^{k+1} denotes the $(k+1)$-disk. In dimension 0, this property simply states that any two points can be linked by a path, i.e., the complex is path-connected. In dimension 1, it states that any loop can be filled into a disk, i.e., the complex is simply connected. By convention, a (−1)-connected complex is just a non-empty complex, and every complex is d-connected for every $d < -1$.

Finally, given a set I, a pseudosphere $\Psi(\{1, \ldots, n\}, I)$ is the complex defined as follows: (1) every pair (i, v) with $i \in \{1, \ldots, n\}$, and $v \in I$ is a vertex, and (2) for every index set $J \subseteq \{1, \ldots, n\}$, and every multi-set $\{v_j : j \in J\}$ of values, the set $\{(j, v_j) : j \in J\}$ is a simplex. Pseudospheres offer a convenient way to describe all possible initial configurations when each process input is an arbitrary value from I.

3.2 The Topology of Computing in the KNOW-ALL Model

Given a distributed computing task (I, O, F) to be solved in the KNOW-ALL model, two complexes play a major role in this framework, the input complex, denoted by I, and the output complex, denoted by O. Let us fix an information flow graph G. The input complex I is the pseudosphere
\[\Psi(\{1, \ldots, n\}, I), \text{ also defined by its set of facets} \]
\[\{(1, v_1), \ldots, (n, v_n)\} : v_i \in I \}. \]

The set of all facets of the output complex \(O \) is
\[\{(1, v'_1), \ldots, (n, v'_n)\} : v'_i \in O, \text{ and } \exists v \in I^n, (v'_1, \ldots, v'_n) \in F(v)\}. \]

Note that the output complex includes only combinations of output values that are legal with respect to the problem at hand. Note also that the input and output complexes do not depend on the communication medium considered, and that both complexes are pure—all their facets have the same dimension.

For instance, in the case of binary consensus in an \(n \)-process system (see Figure 1), the set of facets of the input complex is
\[\{(1, v_1), \ldots, (n, v_n)\} : v_i \in \{0, 1\}\].

This complex is homeomorphic to the \((n-1)\)-dimensional sphere \(S^{n-1} \). For the same example, the output complex is composed of two disjoints \((n-1)\)-facets, \(\tau_0 \) and \(\tau_1 \), defined by
\[\tau_0 = \{(1, 0), \ldots, (n, 0)\}, \text{ and } \tau_1 = \{(1, 1), \ldots, (n, 1)\} \].

One can rephrase the operational definition \((I, O, F)\) of task in Section 2.2 in the framework of combinatorial topology as follows: a task \((\mathcal{I}, \mathcal{O}, \Delta)\) is described by a carrier map \(\Delta \) from \(\mathcal{I} \) to \(\mathcal{O} \). Note that, in absence of failures and asynchrony, a task can be described merely by a mapping \(\Delta \) from the facets of \(\mathcal{I} \) to subsets of facets of \(\mathcal{O} \). For a given facet \(\sigma = \{(1, v_1), \ldots, (n, v_n)\} \in \mathcal{I} \), the set of facets of \(\Delta(\sigma) \) is defined by
\[\{(1, v'_1), \ldots, (n, v'_n)\} \in \Delta(\sigma) \iff (v'_1, \ldots, v'_n) \in F(v_1, \ldots, v_n). \tag{1} \]

The carrier map \(\Delta \) of binary consensus maps every input facet \(\sigma \) containing both input values 0 and 1 to the two \((n-1)\)-facets \(\tau_0 \) and \(\tau_1 \), and maps each \((n-1)\)-facet \(\sigma_b \) with a unique input value \(b \in \{0, 1\} \) to the output \((n-1)\)-facet \(\tau_b \).

In any distributed computing model, in each point in time during the execution of an algorithm, one can define a complex whose vertices are pairs \((p, w)\) where \(w \) is the state of process \(p \), i.e., its view of the computation. A set of vertices with distinct process names forms a protocol simplex if there is a protocol execution where those processes collect those views. All possible protocol simplexes make up the protocol complex. The following fact is a direct consequence of the definition of the information flow graph.

Fact 1 Given an information flow graph \(G \), and a task \((\mathcal{I}, \mathcal{O}, \Delta)\), the protocol complex \(\mathcal{P} \) associated with \(G \) and \(\mathcal{I} \) is the complex whose facet are all the sets of the form \(\{(1, w_1), \ldots, (n, w_n)\} \) for which there exists a facet \(\{(1, v_1), \ldots, (n, v_n)\} \) of \(\mathcal{I} \) such that, for \(i = 1, \ldots, n, w_i = \{(j, v_j) : i = j \text{ or } (j, i) \in E(G)\} \). We define a carrier map \(\Xi : \mathcal{I} \to \mathcal{P} \) which carries each facet of \(\mathcal{I} \) to a single facet of \(\mathcal{P} \), satisfying
\[\Xi(\{(1, v_1), \ldots, (n, v_n)\}) = \{(1, w_1), \ldots, (n, w_n)\}. \]

An important observation is that the facets of the input complex are preserved in the protocol complex, i.e., there is a one-to-one correspondence between the facets of these two complexes. This is because the computation is synchronous and failure-free, from which it follows that each input configuration yields a single configuration in the protocol complex.
Figure 1: Impact of the information flow graph on the protocol complex for binary consensus with three processes. Labels next to vertices are input and output values, in the input and output complexes respectively, or views in protocol complexes. A view “xyz” labeling a vertex means that the process corresponding to this vertex knows the input values x from process ◦, y from process •, and z from process ●. A question mark in a label indicates that the process does not know the corresponding input value.

Example. Figure 1 displays two illustrations of the protocol complex for binary consensus, for two different information flow graphs on three processes: the consistently directed cycle C_3, and the directed star S_3 whose center has two out-neighbors. Process names are omitted, and instead are represented by the colors of the circles ($◦$, •, and ●). The number of vertices in the protocol complexes depends on the information flow graph.

Let us focus first on process ◦. A vertex ($◦, v$) in the input complex yields two vertices in the protocol complex for C_3, depending on the input value received from process ●. Instead, a vertex ($◦, v$) in the input complex yields a single vertex in the protocol complex for S_3 because, according to this information flow graph, process ◦ receives no inputs from other processes. On the other hand, every vertex ($●, v$) in the input complex yields two vertices in both protocol complexes. This is because, in both information flow graphs, C_3 and S_3, process ● receives the input from process ◦. Similarly, every vertex ($●, v$) in the input complex yields two vertices in both protocol complexes, because in both information flow graphs process ● receives the input from another process, from process ● in C_3 and from process ◦ in S_3.

3.3 Topological characterization of task solvability

So far, we have proceeded in two parallel paths. The first, operational path, was about algorithms in the KNOW-ALL model, where information propagates between processes according to some information flow pattern G (cf. Section 2.2). The second, topological path, relates the inputs of processes defined by an input complex, their views modeled in the protocol complex, and their desired outputs, appearing in the output complex (cf. Section 3.2). The connection between these paths is established in the next fact, which directly follows from the definitions.

Fact 2 A task (I, O, F) is solvable in the KNOW-ALL model with information flow graph G if and only if, for the topological formulation (I, O, Δ) of the task, there exists a chromatic simplicial map $\delta : \mathcal{P} \to \mathcal{O}$ satisfying $\delta(\Xi(\sigma)) \in \Delta(\sigma)$ for every facet $\sigma \in I$, where \mathcal{P} is the protocol complex associated with G and I.

The simplicial map $\delta : \mathcal{P} \to \mathcal{O}$ is called decision map. If $\delta(i, w_i) = (i, v'_i)$, then the corresponding algorithm specifies that process i with view w_i outputs $f(i, w_i) = v'_i$.

8
Example. Let us consider Figure 1 again. The protocol complex for S_3 is disconnected, while for C_3 it is 0-connected (i.e., path connected). The presence of a universal node \circ (dominating all other nodes) in the information flow graph S_3 results in all processes becoming aware of the input of the process corresponding to that node. Therefore, the protocol complex for S_3 is split into two sub-complexes, the one corresponding to process \circ with input 0, and the other corresponding to process \circ with input 1. Similarly, the protocol complex for the complete graph K_3 with bidirectional edges is entirely disconnected, i.e., composed of eight pairwise non-intersecting facets, because there is no uncertainty under the complete information flow graph, as every process receives the input of every other process.

Since the protocol complex for S_3 is disconnected, consensus is solvable in this graph. To see why, consider δ that maps every vertex $(p,0*1)$ of the protocol complex to vertex $(p,0)$ of the output complex, and every vertex $(p,1*1)$ of the protocol complex to vertex $(p,1)$ of the output complex. This is a chromatic simplicial map, and thus, by Fact 2, consensus is solvable. In contrast, there is no such mapping $\delta : \mathcal{P} \rightarrow \mathcal{P}$ for the protocol complex \mathcal{P} corresponding to C_3, because \mathcal{P} is 0-connected. Let us consider the path $((\circ,1?1),(\bullet,?01),(\bullet,00?))$ in the protocol complex for C_3. Vertex $(\circ,1?1)$ must be mapped to vertex $(\circ,1)$ in the output complex because $(\circ,1?1)$ belongs to a facet with all processes having input value 1. Similarly, vertex $(\bullet,00?)$ must be mapped to vertex $(\bullet,0)$ because $(\circ,00?)$ belongs to a facet with all processes having input value 0. If a mapping δ maps $(\bullet,?01)$ to $(\bullet,1)$, then the simplex $\{(\bullet,?01),(\bullet,00?)\}$ is mapped to $\{(\bullet,1),(\bullet,0)\}$, which is not a simplex of \mathcal{O}. The same occurs if $(\bullet,?01)$ is mapped to $(\bullet,0)$, as $\{(\circ,1),(\bullet,0)\}$ is not a simplex of \mathcal{O}. Thus, there is no simplicial map δ, and, by Fact 2, consensus is not solvable. We generalize this result to every information flow graph G, and to k-set agreement, for every $k \geq 1$.

4 Connectivity and Domination

In this section, we establish a connection between the structure of the information flow graph resulting from some instance of the KNOW-ALL model on the one hand, and the topology of the protocol complex induced by this instance on the other hand. In particular, we show that, assuming that the input complex I is a pseudosphere (like it is the case for, e.g., consensus and k-set agreement in general), if the information flow graph has large domination number, then the protocol complex is highly connected. Later in the paper, we will show that high connectivity is an obstacle to solving tasks such as agreement tasks.

Recall that a dominating set of a directed graph G is a set of nodes $D \subseteq V(G)$ such that, for every node $v \in V(G) \setminus D$, there exists a node $u \in D$ such that $(u,v) \in E(G)$. The domination number of a digraph G is the minimum k such that G has a dominating set of size k.

Also recall that, for $k \geq 1$, a complex is k-connected if any continuous map from a k'-dimensional sphere to a geometric realization of the complex can be extended to a continuous map from the $(k' + 1)$-dimensional disk, for every $1 \leq k' \leq k$.

Theorem 1 Let \mathcal{H} be an instance of the KNOW-ALL model, and G be the information flow graph associated with it. If $\gamma(G) > k$, then the protocol complex \mathcal{P} for \mathcal{H} is at least $(k-1)$-connected.

The rest of this section is dedicated to the proof of Theorem 1. For this purpose, we first establish some topological facts.
4.1 Topological facts

Let K be a pure complex of dimension d. We say that K is shellable if there is an ordering ϕ_1, \ldots, ϕ_r of its facets such that for every $1 \leq t \leq r - 1$,

$$\left(\bigcup_{i=1}^{t} \phi_i \right) \cap \phi_{t+1}$$

is a pure subcomplex of dimension $d - 1$ of the boundary complex of ϕ_{t+1}, i.e., of $\text{skel}^{d-1} \phi_{t+1}$. Here, unions and intersections apply to the complexes induced by the facets at hand. Such a sequence of facets is a shelling order of K.

Given a shelling order ϕ_1, \ldots, ϕ_r of a complex K, $(\bigcup_{i=1}^{t} \phi_i) \cap \phi_{t+1}$ is the union of the complexes induced by some $(d-1)$-faces τ_1, \ldots, τ_s of ϕ_{t+1}, by definition of shellability. Each τ_j is a face of a facet σ_j of $\bigcup_{i=1}^{t} \phi_i$, hence ϕ_{t+1} and σ_j share a $(d-1)$-face. Then,

$$\left(\bigcup_{i=1}^{t} \phi_i \right) \cap \phi_{t+1} = \bigcup_{j=1}^{s} (\phi_{t+1} \cap \sigma_j).$$

The following lemma is a simple corollary of the nerve lemma [25, Corollary 10.4.3].

Lemma 1 Let K and L two ℓ-connected complexes such that $K \cap L$ is $(\ell - 1)$-connected. Then, $K \cup L$ is ℓ-connected.

We also use the following technical result.

Lemma 2 Let K be a pure $(d - 1)$-dimensional subcomplex of the boundary complex of a simplex of dimension d. Then K is shellable, and any sequence of its facets is a shelling order for K.

Proof. Let $\sigma = \{v_0, \ldots, v_d\}$ be a simplex, and let $K \subseteq 2^\sigma$ be a pure $(d-1)$-dimensional subcomplex of the boundary complex of σ. The facets of K are thus of the form

$$\sigma_i = \{v_0, \ldots, v_{i-1}, v_{i+1}, \ldots, v_d\}.$$

For two facets σ_i and σ_j of K, with $i < j$, their intersection is the $(d-2)$-dimensional simplex

$$\{v_0, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_d\}$$

(and $\{v_0, \ldots, v_{i-1}, v_{i+2}, \ldots, v_d\}$ if $j = i + 1$). Hence, any sequence of facets is a shelling order, as a facet in the sequence intersects each of the previous facets in a $(d-2)$-dimensional simplex. \hfill \square

The following lemma is the main technical result of the section.

Lemma 3 Let A be a pure shellable complex of dimension d, B a complex, and $\ell \geq 0$ an integer. Suppose that there is a bijection α between the facets of A and B such that:

1. For every facet ϕ' of A and every pure d-subcomplex $\bigcup_{i=1}^{t} \phi_i \subseteq A$ satisfying that $(\bigcup_{i=1}^{t} \phi_i) \cap \phi' = \bigcup_{i=1}^{s} (\phi' \cap \sigma_i)$ for some of A's facets $\sigma_1, \ldots, \sigma_s$, with each σ_i and ϕ' sharing a $(d-1)$-face, it holds that $(\bigcup_{i=1}^{t} \alpha(\phi_i)) \cap \alpha(\phi') = \bigcup_{i=1}^{s} (\alpha(\phi') \cap \alpha(\sigma_i)).$
2. For every \(t \geq 0 \) and every collection \(\phi_0, \phi_1, \ldots, \phi_t \) of \(t + 1 \) facets of \(\mathcal{A} \) with each \(\phi_i \) and \(\phi_0 \) sharing a \((d-1)\)-face, it holds that \(\bigcap_{i=0}^{t} \alpha(\phi_i) \) is a simplex of dimension at least \(\ell - t + 1 \).

Then, \(\mathcal{B} \) is \(\ell \)-connected.

Proof. We prove the claim by induction on \(\ell \). For \(\ell = 0 \), we need to prove that \(\mathcal{B} \) is 0-connected, by induction on the length of a shelling order of \(\mathcal{A} \). Fix a shelling order \(\phi_1, \ldots, \phi_m \) of \(\mathcal{A} \), so \(\mathcal{B} = \bigcup_{i=1}^{m} \alpha(\phi_i) \). The base case is \(\mathcal{B} = \alpha(\phi_1) \), which is a simplex and hence 0-connected. For the inductive step, suppose that \(\bigcup_{i=1}^{r-1} \alpha(\phi_i) \) is 0-connected, for some \(2 \leq r < m \). We have that \(\alpha(\phi_r) \) is 0-connected as it is a simplex. We show that \(\left(\bigcup_{i=1}^{r-1} \alpha(\phi_i) \right) \cap \alpha(\phi_r) \) is \((-1)\)-connected, namely, non-empty, and then Lemma 1 would imply that \(\mathcal{B} = \left(\bigcup_{i=1}^{r-1} \alpha(\phi_i) \right) \cup \alpha(\phi_r) \) is 0-connected. By definition of shellability,

\[
\left(\bigcup_{i=1}^{r-1} \phi_i \right) \cap \phi_r = \tau_1 \cup \cdots \cup \tau_s,
\]

where each \(\tau_j \) is a face of dimension \((d-1)\) of \(\phi_r \). For each \(\tau_j \) there is a facet \(\sigma_j \) of \(\bigcup_{i=1}^{r-1} \phi_i \) such that \(\tau_j \subseteq \sigma_j \). Thus, \(\phi_r \) and \(\sigma_j \) share a \((d-1)\)-face and

\[
\left(\bigcup_{i=1}^{r-1} \phi_i \right) \cap \phi_r = \bigcup_{j=1}^{s} \left(\phi_r \cap \sigma_j \right).
\]

By hypothesis (1) we have that

\[
\left(\bigcup_{i=1}^{r-1} \alpha(\phi_i) \right) \cap \alpha(\phi_r) = \bigcup_{j=1}^{s} \left(\alpha(\phi_r) \cap \alpha(\sigma_j) \right).
\]

Each \(\sigma_j \) shares a \((d-1)\)-face with \(\phi_r \), so hypothesis (2), with \(t = 1 \), implies that \(\alpha(\phi_r) \cap \alpha(\sigma_j) \) is of dimension at least 0, which implies that \(\left(\bigcup_{i=1}^{r-1} \alpha(\phi_i) \right) \cap \alpha(\phi_r) \) is non-empty.

For the inductive step, suppose the statement of the theorem holds for \(\ell - 1 \), and consider a shelling order \(\phi_1, \ldots, \phi_m \) of \(\mathcal{A} \). Our aim is to show that \(\mathcal{B} = \bigcup_{i=1}^{m} \alpha(\phi_i) \) is \(\ell \)-connected. As in the base case, we proceed by induction on the length of the shelling order. Since \(\alpha(\phi_1) \) is a simplex, it is \(\ell \)-connected. Thus, suppose that \(\bigcup_{i=1}^{r-1} \alpha(\phi_i) \) is \(\ell \)-connected, for some \(2 \leq r < m \). We have that \(\alpha(\phi_r) \) is \(\ell \)-connected as is a simplex. If we show that \(\left(\bigcup_{i=1}^{r-1} \alpha(\phi_i) \right) \cap \alpha(\phi_r) \) is \((\ell - 1)\)-connected, Lemma 1 implies that \(\bigcup_{i=1}^{r} \alpha(\phi_i) \) is \((\ell - 1)\)-connected. To do so we use the theorem for \(\ell - 1 \). As seen before, there are facets \(\sigma_1, \ldots, \sigma_s \) of \(\bigcup_{i=1}^{r-1} \phi_i \) such that each \(\sigma_j \) and \(\phi_r \) share a \((d-1)\)-face,

\[
\left(\bigcup_{i=1}^{r-1} \phi_i \right) \cap \phi_r = \bigcup_{j=1}^{s} \left(\phi_r \cap \sigma_j \right) \quad \text{and} \quad \left(\bigcup_{i=1}^{r-1} \alpha(\phi_i) \right) \cap \alpha(\phi_r) = \bigcup_{j=1}^{s} \left(\alpha(\phi_r) \cap \alpha(\sigma_j) \right).
\]

Let \(\mathcal{B}' = \bigcup_{j=1}^{s} (\alpha(\phi_r) \cap \alpha(\sigma_j)) \). Observe that the facets of \(\mathcal{B}' \) are some of the intersections \(\alpha(\phi_r) \cap \alpha(\sigma_j) \). Let \(\lambda_1, \ldots, \lambda_s \) be simplexes among the \(\sigma_j \)'s such that each \(\alpha(\phi_r) \cap \alpha(\lambda_i) \) is a facet of \(\mathcal{B}' \), \(\alpha(\phi_r) \cap \alpha(\lambda_i) \neq \alpha(\phi_r) \cap \alpha(\lambda_{i'}) \) for \(i \neq i' \), and \(\mathcal{B}' = \bigcup_{i=1}^{s} \alpha(\phi_r) \cap \alpha(\lambda_i) \). Let \(\mathcal{A}' = \bigcup_{i=1}^{s} (\phi_r \cap \lambda_i) \). Note that \(\mathcal{A}' \) is pure of dimension \(d - 1 \) and is a subcomplex of the boundary complex of \(\phi_r \). By Lemma 2 \(\mathcal{A}' \) is shellable. The facets of \(\mathcal{A}' \) are the intersections \(\phi_r \cap \lambda_i \). Consider the bijection
\(\beta(\phi_r \cap \lambda_i) = \alpha(\phi_r) \cap \alpha(\lambda_i) \) between the facets of \(A' \) and \(B' \). Now, let \(\phi_r \cap \lambda \) be any facet of \(A' \) and \(\bigcup_{i=1}^m (\phi_r \cap \lambda'_i) \) be any pure \((d - 1)\)-subcomplex of \(A' \). Note that every pair of facets of \(A' \) share a \((d - 2)\)-face as both are \((d - 1)\)-faces of \(\phi_r \). Then, \(\phi_r \cap \lambda \) and each \(\phi_r \cap \lambda'_i \) share a face of dimension \(d - 2 \). Given a complex \(L \) and a simplex \(\tau \), the intersection of \(L \) and the complex induced by \(\tau \) can be expressed as the union of the complexes induced by the intersection of each facet of \(L \) and \(\tau \) itself. Then,

\[
\left(\bigcup_{i=1}^m (\phi_r \cap \lambda'_i) \right) \cap (\phi_r \cap \lambda) = \bigcup_{i=1}^m ((\phi_r \cap \lambda) \cap (\phi_r \cap \lambda'_i))
\]

and

\[
\left(\bigcup_{i=1}^m \beta(\phi_r \cap \lambda'_i) \right) \cap \beta(\phi_r \cap \lambda) = \bigcup_{i=1}^m (\beta(\phi_r \cap \lambda) \cap \beta(\phi_r \cap \lambda'_i)).
\]

We conclude that hypothesis (1) of the theorem holds for \(A' \), \(B' \) and \(\beta \).

Finally, consider any collection \(\phi_r \cap \lambda'_0, \ldots, \phi_r \cap \lambda'_{t'} \) of \(t' + 1 \) facets of \(A' \). As already noted, each of them and the first one share a \((d - 2)\)-face. We have that

\[
\tau = \bigcap_{i=0}^{t'} \beta(\phi_r \cap \lambda'_i) = \bigcap_{i=0}^{t'} (\alpha(\phi_r) \cap \alpha(\lambda'_i)) = \alpha(\phi_r) \cap \bigcap_{i=0}^{t'} \alpha(\lambda'_i).
\]

As said above, the \(\lambda'_i \)'s are facets of \(A \) and each of them and \(\phi_r \) share a \((d - 1)\)-face. By hypothesis (2) with \(t = t' + 1 \), \(\tau \) is of dimension at least \(\ell - t + 1 = \ell - (t' + 1) + 1 = (\ell - 1) - t + 1 \). Then, hypothesis (2) of the theorem holds for \(A' \), \(B' \), \(\beta \) and \(\ell - 1 \).

We have all hypothesis to use the theorem with \(A' \) and \(B' \) and \(\ell - 1 \). Therefore, \(B' \) is \((\ell - 1)\)-connected, and then \(\bigcup_{i=1}^t \alpha(\phi_i) \) is \(\ell \)-connected.

Lemma \([\text{I}]\) allows us to establish the desired connections between the structure of the information flow graph, and the topology of the protocol complex, as stated in the statement of Theorem \([\text{I}]\)

4.2 Proof of Theorem \([\text{I}]\)

Let \(I \) be the set of input values. If \(|I| = 1 \), then the claim is true as \(\mathcal{P} \) is a single simplex of dimension \(n - 1 \). For the case \(|I| > 1 \), we show that the hypothesis of Lemma \([\text{III}]\) hold for \(I \), \(\mathcal{P} \), \(\Xi \) and \(k - 1 \). The input complex \(I \) is shellable (as input-output tasks do not restrict the set of possible input configurations), and the carrier map \(\Xi \) is a bijection of facets between \(I \) and the protocol complex \(\mathcal{P} \).

Let \(\sigma' \) be any facet of \(I \) and \(\bigcup_{i=1}^t \sigma_i \) be a pure \((n - 1)\)-subcomplex of \(I \) such that

\[
\left(\bigcup_{i=1}^t \sigma_i \right) \cap \sigma' = \bigcup_{i=1}^t (\sigma' \cap \tau_i) \tag{2}
\]

for some of its facets \(\tau_1, \ldots, \tau_s \) with each \(\tau_i \) and \(\sigma' \) sharing a \((n - 2)\)-face. Given a complex \(L \) and a simplex \(\tau \), the intersection of \(L \) and the complex induced by \(\tau \) can be expressed as the union of the complexes induced by the intersection of each facet of \(L \) and \(\tau \) itself. Then,

\[
\left(\bigcup_{i=1}^t \Xi(\sigma_i) \right) \cap \Xi(\sigma') = \bigcup_{i=1}^t (\Xi(\sigma') \cap \Xi(\sigma_i)).
\]
Consider a facet σ_j of $\bigcup_{i=1}^{t} \sigma_i$ such that σ' and σ_j do not share an $(n-2)$-face and $\Xi(\sigma') \cap \Xi(\sigma_j) \neq \emptyset$, namely, it contributes to the right-hand side of the previous equation. Pick any $(p_i, w_i) \in \Xi(\sigma') \cap \Xi(\sigma_j)$. Then, p_i gets the same view, w_i, in the executions $\Xi(\sigma')$ and $\Xi(\sigma_j)$. This can happen only if the processes in names(w_i) (which includes p_i) have the same inputs in σ' and σ_j, from which follows that $\sigma' \cap \sigma_j \neq \emptyset$. Moreover, in executions $\Xi(\sigma')$ and $\Xi(\sigma_j)$, p_i can only receive inputs from processes in names($\sigma' \cap \sigma_j$) as any other process has distinct inputs in σ' and σ_j, thus, in the communication graph G, p_i only has in-edges from processes in names($\sigma' \cap \sigma_j$). Now, from equation (2) we get that there is a τ_i such that $\sigma' \cap \sigma_j \subseteq \sigma' \cap \tau_i$, and then p_i gets the same view in executions $\Xi(\sigma')$ and $\Xi(\tau_i)$, and consequently $(p_i, w_i) \in \Xi(\sigma') \cap \Xi(\tau_i)$. We conclude that $\Xi(\sigma') \cap \Xi(\sigma_j) \subseteq \Xi(\sigma') \cap \Xi(\tau_i)$, thus

$$\left(\bigcup_{i=1}^{t} \Xi(\sigma_i) \right) \cap \Xi(\sigma') = \bigcup_{i=1}^{s} \left(\Xi(\sigma') \cap \Xi(\tau_i) \right).$$

Now, consider a collection $\sigma_0, \sigma_1, \ldots, \sigma_t$ of $t+1$ distinct facets of I such that each σ_i and σ_0 share an $(n-2)$-face. Our goal is to show that

$$S = \bigcap_{i=0}^{t} \Xi(\sigma_i)$$

is of dimension at least $(k - 1) - t + 1 = k - t$: if it is the case, then Lemma 3 directly implies that P is $(k - 1)$-connected. To show that S is of dimension at least $k - t$, note that we can restrict our attention to $t \leq k$, as the dimension of a simplex cannot go below -1. For every i, $1 \leq i \leq t$, let p_i be the process whose identity does not appear in $\sigma_0 \cap \sigma_i$. Since σ_0 and σ_i share an $(n-2)$-face, p_i is uniquely defined. We show that the set

$$D = \text{names}(S) \cup \{p_1, \ldots, p_t\}$$

is a dominating set of G. Let q be a process in $V \setminus D$. Since, in particular, $q \notin \text{names}(S)$, we get that q has different views in the executions $\Xi(\sigma_0)$ and $\Xi(\sigma_i)$, for some $i > 0$. As σ_0 and σ_i share an $(n-2)$-face, only the process p_i is able to distinguish between the two corresponding input configurations. Hence, there is a directed edge from p_i to q in G. Therefore, D is a dominating set for G, implying

$$|S| + |\{p_1, \ldots, p_t\}| \geq |D| \geq k + 1.$$

It follows that $|S| \geq k + 1 - |\{p_1, \ldots, p_t\}| \geq k + 1 - t$, from which we conclude that the dimension of S is at least $k - t$. This completes the proof of Theorem 1. \square

5 Applications to Agreement Tasks

In this section, we show how to use topology to derive lower bounds and impossibility results in the context of distributed network computing, with impact on classical models such as the LOCAL model and dynamic networks. We essentially focus on agreement tasks such as consensus (all processes must agree on the same input value) and k-set agreement (all processes must collectively agree on at most k input values). We also consider variants of these tasks, such as approximate agreement.
5.1 Consensus and set-agreement

Let $k \geq 1$. Recall that, in the k-set agreement task, the processes must agree on at most k of the input values. It is known that, in the context of asynchronous shared memory, the level of connectivity of the protocol complex is closely related to the ability to solve k-set agreement (see, e.g., [26, 27, 30]). We show that this also holds in the information flow model.

To illustrate this impossibility result, let us assume that the protocol complex P is 0-connected (path connected), i.e., for very pair of vertices in P there is a sequence of edges of P forming a path connecting these two vertices. (This is, e.g., the case of the protocol complex for C_3 in Figure 1 while the protocol complex for S_3 is not 0-connected.) Then, consensus, i.e., 1-set agreement, cannot be solved. To see this, assume consensus can be solved, and let (p,w) be a vertex in the protocol complex representing an execution for a process p that decides 0, and (p',w') a vertex that decides 1. The protocol complex is 0-connected, so there is a path in it connecting (p,w) and (p',w'). Each vertex in this path has a decision value, which must be either 0 or 1. It follows that some edge along that path must have one endpoint deciding 0 and the other endpoint deciding 1. This edge is in a facet whose outputs contain both 0s and 1s, contradicting the specification of consensus. Theorem 2 below generalizes this phenomenon to k-set agreement, for $k \geq 1$.

Theorem 2 states that, for any instance H of the KNOW-ALL model, if the information flow graph G associated with H has a domination number $\gamma(G)$ larger than k, then k-set agreement is not solvable in H. It is not hard to prove this statement when the number of input values is at least the number of processes. Assume, for the purpose of contradiction, the existence of an algorithm A solving k-set agreement in H with $\gamma(G) > k$. Then, consider a global input I in which all input values are distinct. Let S be the set of output values produced by A, and let P be the set of processes with input values in S. We have $|P| = |S| \leq k < \gamma(G)$, hence there is a process $q \notin P$ which is not dominated by P, and it produces some output value v. Let $p \in P$ be the process with input v, and consider another global input I', where all inputs are the same, excepted for the input of p which is replaced by some $v' \neq v$. Since there is no edge (p,q) in G, the process q does not distinguish I' from I, and outputs v' in I' as well. This output is incorrect, as v has not been proposed in I', and therefore k-set agreement is not solvable in H. This reasoning cannot be applied when the number of input values is less than the number of processes, and in particular when the number of input values is $k + 1 < n$ (e.g., for binary consensus among at least three processes). Theorem 2 says that k-set agreement remains unsolvable even in this case.

Theorem 2 Let H be an instance of the KNOW-ALL model, and G be the information flow graph associated with it. If $\gamma(G) > k$, then k-set agreement is not solvable in H.

Proof. To establish Theorem 2 we show that if the protocol complex P for H is at least $(k - 1)$-connected, then k-set agreement is not solvable in H, and then we apply Theorem 1. More specifically, Theorem 2 is a corollary of the two following claims. Claim 1 is a direct application of Theorem 1 claiming the connectivity of sub-complexes of P. Claim 2 then uses Sperner lemma, along with some other standard topological tools, to show that the connectivity implies the impossibility to solve k-set agreement.

Fix some information flow graph G with domination number at least $k + 1$. Let I be a set of at least $k + 1$ distinct values and let I denote the corresponding input complex. That is, I is the pseudosphere $\Psi(p_1, \ldots, p_n, I)$. Let P denote the protocol complex for the input complex I and for graph G. For any subset $J \subseteq I$, we are interested in the sub-complex of P that arises when processes are given only inputs in J. Let $P[J]$ denote this sub-complex.
Claim 1 If the information flow graph has domination number at least \(k + 1 \), then for every non-empty subset \(J \subseteq I \), the sub-complex \(\mathcal{P}[J] \) of the protocol complex \(\mathcal{P} \) is at least \((k - 1) \)-connected.

To establish the claim, let \(I[J] \) be the input complex \(I \) restricted to values in \(J \). Note that \(I[J] \) is a pseudosphere, and for a task where \(I[J] \) is the input complex, \(\mathcal{P}[J] \) is the corresponding protocol complex. Since a pseudosphere is shellable (see, e.g., \cite{25} Theorem 13.3.6 or \cite{28} Section 3), Theorem \(\Xi \) immediately implies that \(\mathcal{P}[J] \) is at least \((k - 1) \)-connected, as claimed.

For completing the proof of Theorem 2, it is therefore sufficient to show the following.

Claim 2 If, for every non-empty subset \(J \subseteq I \), \(\mathcal{P}[J] \) is at least \((k - 1) \)-connected, then \(k \)-set agreement is not solvable.

The proof of the claim follows a classical construction for proving \(k \)-set agreement impossibility in asynchronous, failures-prone distributed models (see, e.g., Theorem 10.3.1 in \cite{25}). Let \(\sigma \) be the simplex of dimension \(k \) whose vertex set has values in \(I \) and let \(\partial \sigma \) be its \((k - 1) \)-skeleton. (That is, \(\partial \sigma \) is the complex of dimension \(k - 1 \) whose facets correspond to the subsets of size \(k \) of \(I \).) For a face \(\sigma' \) of \(\sigma \) with a set \(J \subseteq I \) of values, we abuse notation and use \(\mathcal{P}[^{\sigma'}] \) as an alternative notation for \(\mathcal{P}[J] \). Assume \(k \)-set agreement is solvable. Under this assumption, we build a simplicial map from a subdivision of \(\sigma \) to \(\partial \sigma \), and show that this mapping is a Sperner coloring, contradicting Sperner’s lemma.

So, assume for contradiction that \(k \)-set agreement with set of input values \(I \) is solvable. It follows that the vertices of \(\mathcal{P} \) can be colored with values in \(I \) such that, for every simplex \(\tau \) of \(\mathcal{P} \): (1) the set of colors assigned to the vertices of \(\tau \) is of size at most \(k \), and (2) for any set \(J \subseteq I \) of colors, all the nodes in \(\mathcal{P}[J] \) are colored with colors from \(J \). In other words, there exists a simplicial map \(\chi : \mathcal{P} \to \partial \sigma \) such that, for every non-empty subset \(J \subseteq I \), \(\chi(\mathcal{P}[J]) \subseteq \partial \sigma \cap 2^J \). Then, let

\[
\Xi' : \sigma \to 2^\mathcal{P}
\]

be the carrier map defined by

\[
\Xi'(\sigma') = \mathcal{P}[\sigma']
\]

for every \(\sigma' \subseteq \sigma \). By the assumption, for every nonempty \(\sigma' \subseteq \sigma \), the sub-complex \(\Xi'[\sigma'] \) is \((k - 1) \)-connected. This high-connectivity implies that the carrier map \(\Xi' \) has a simplicial approximation. That is, there exists a subdivision \(\text{Div} \sigma \) of \(\sigma \), together with a simplicial map

\[
\varphi : \text{Div} \sigma \to \mathcal{P},
\]

such that, for every simplex \(\sigma' \subseteq \sigma \), we have \(\varphi(\text{Div} \sigma') \subseteq \Xi'(\sigma') \). (See Theorem 3.7.7(2) in \cite{25}, and Chapter 3.7 there for more details about simplicial approximation.) Let us now consider the composition of simplicial maps

\[
c = \chi \circ \varphi : \text{Div} \sigma \to \partial \sigma.
\]

The map \(c \) can be viewed as a coloring of \(\text{Div} \sigma \) with the values of the vertices in \(\partial \sigma \) such that each simplex in \(\text{Div} \sigma \) is colored with at most \(k \) colors. Moreover, for each simplex \(\sigma' \subseteq \sigma \), we have

\[
c(\text{Div} \sigma') = \chi(\varphi(\text{Div} \sigma')) \subseteq \chi(\Xi'(\sigma')) = \chi(\mathcal{P}[\sigma']).
\]

From the definition of \(\chi \), it follows that each simplex in \(\text{Div} \sigma' \) is colored by \(c \) with values appearing in \(\sigma' \). Therefore, \(c \) is a Sperner coloring of \(\text{Div} \sigma \). By Sperner’s lemma, there exists a simplex \(\rho \) of \(\text{Div} \sigma \), of dimension \(k \), colored with all the \(k + 1 \) colors. This is a contradiction, because \(\rho \) is mapped by \(c \) to \(\sigma \), which is not in the domain \(\partial \sigma \) of \(c \). This completes the proof of Claim 2 and of the theorem. \(\square \)
Theorem 2 implies that, in particular, consensus solvability requires the information flow graph to contain a universal node, i.e., a node that dominates all the other nodes.

Remark. Observe that the converse of Theorem 2 also holds, i.e., if \(\gamma(G) \leq k \) then \(k \)-set agreement is solvable in \(H \). The algorithm performs as follows. Let \(D \) be a dominating set for \(G \), with \(|D| \leq k \). Since \(D \) is dominating, every process \(p \) receives the input value of at least one process in \(D \), and can decide on such a value as an output. In total, at most \(|D| \leq k \) values are decided.

Theorem 2 has implications for more traditional computational models, including the LOCAL model. Given a graph \(H \), and \(r \geq 1 \), let \(H^r \) denote the graph on the same set of nodes as \(H \), but in which two nodes are adjacent if their distance in \(H \) is at most \(r \).

Corollary 1 In the LOCAL model, solving \(k \)-set agreement in a network \(H \) requires at least \(r \) rounds, where \(r \) is the smallest integer such that \(\gamma(H^r) \leq k \).

Theorem 2 also applies to dynamic networks, in which edges appear and disappear over time. A dynamic network is a sequence \(\mathcal{G} = (G_t)_{t \geq 1} \) of graphs on the same set of nodes \(V \), where \(G_t \) is the actual network at round \(t \). A set \(D \subseteq V \) is a temporal dominating set for \((G_t)_{0 \leq t \leq r} \) if, for every node \(v \notin D \), there is a temporal path from some node \(u \in D \) to \(v \), i.e., a sequence \((u_0, \ldots, u_s) \) of nodes with \(u_0 = u \) and \(u_s = v \), and a sequence \(1 \leq t_0 < t_1 < \cdots < t_s \leq r \) of rounds such that \(\{u_i, u_{i+1}\} \in E(G_{t_i}) \) for every \(i = 0, \ldots, s - 1 \).

Corollary 2 Solving \(k \)-set agreement in dynamic network \(\mathcal{G} = (G_t)_{t \geq 1} \) requires at least \(r \) rounds, where \(r \) is the smallest integer such that \((G_t)_{0 \leq t \leq r} \) has a temporal dominating set \(D \) with \(|D| \leq k \).

This corollary provides a novel perspective on known characterizations of consensus solvability with different adversaries [17]. The case of \(k \)-set agreement in dynamic networks is only partially understood, and the lower bound proof of [22] uses topological arguments, which suggests that these arguments are inherent to the impossibility of \(k \)-set agreement in dynamic networks as well.

5.2 Approximate agreement

Approximate agreement is the agreement task asking processes to output values that are as close as possible from each other, and, if all processes are given the same input value, then all processes should output that value. Specifically, let the input values be in \(\{0, 1\} \), and let \(\epsilon = \frac{1}{k} \) for some positive integer \(k \). Then \(\epsilon \)-agreement asks the \(n \) processes to output values

\[v_1, \ldots, v_n \in \{0, \epsilon, 2\epsilon, \ldots, (k - 1)\epsilon, 1\} \]

such that \(|v_i - v_j| \leq \epsilon \) for every \(i, j \). The associated input complex \(\mathcal{I} \) is the same binary pseudosphere as for binary consensus, and the output complex consists of a union of pseudospheres, one for each pair \(\{se, (s + 1)e\} \) of consecutive output values, for \(s = 0, 1, \ldots, k - 1 \). The carrier map \(\Delta \) maps the all-\(b \) input value facet to the all-\(b \) output value facet, for every \(b \in \{0, 1\} \), and maps every other input facet to all the output facets.

Of course, if consensus can be solved, then \(\epsilon \)-agreement can be solved with \(\epsilon = 0 \). The main point for studying approximate agreement is to determine the smallest \(\epsilon > 0 \) for which \(\epsilon \)-agreement is solvable, under the assumption that consensus is not solvable. In the proof of Theorem 3, we show how that topological arguments enable to resolve this problem easily in the KNOW-ALL model, i.e., even when the communication between the processes is constrained.
Theorem 3 Let \(\mathcal{H} \) be an instance of the KNOW-ALL model. If consensus is impossible under \(\mathcal{H} \), then, for every \(\epsilon < \frac{1}{n-1} \), \(\epsilon \)-approximate agreement is also not solvable under \(\mathcal{H} \). This bound is tight in the sense that there exists an instance \(\mathcal{H} \) of the KNOW-ALL model for which consensus is impossible, while \(\frac{1}{n-1} \)-approximate agreement is solvable.

Proof. Recall that, by Theorem 2, consensus is solvable in an information flow graph \(G \) if and only if \(G \) has a universal node. Let us first show that there exists an information flow graph \(G \) with no universal node, for which \(\frac{1}{n-1} \)-approximate agreement is solvable. \(G \) is simply obtained from a complete graph (each edge corresponds to two arcs oriented in opposite directions), from which all arcs in a directed Hamiltonian cycle are removed. Indeed, this digraph has no universal node since every node has out-degree \(n-2 \). The \(\frac{1}{n-1} \)-approximate agreement algorithm is straightforward: each process chooses as output value the average of all the input values it sees. For correctness, let us consider a general input with \(z \) input values 0, and \(n-z \) input values 1. Each process sees either \(n-z-1 \), or \(n-z \) inputs that are equal to 1, and thus the outputs are in the range

\[
\left[\frac{n-z-1}{n-1}, \frac{n-z}{n-1} \right],
\]

whose width is \(\frac{1}{n-1} \).

The most technical part of the proof is to show that no graph with no universal nodes is able to solve \(\epsilon \)-approximate agreement for \(\epsilon < \frac{1}{n-1} \). For \(0 \leq j \leq n \), let \(\sigma_j \) be the facet of \(\mathcal{I} \) defined by

\[
\sigma_j = \{(p_i, 1) \mid i < j\} \cup \{(p_i, 0) \mid i \geq j\},
\]

i.e., with 1 as the input for the first \(j \) processes, and 0 for the rest. The facets \(\sigma_j \) and \(\sigma_{j+1} \) share an \((n-2)\)-face. However, the mapping \(\Xi \) is not necessarily simplicial so their images may not share such a face. Nevertheless, we show that their images under \(\Xi \) do intersect. Indeed, let us consider the sequence of facets \(\sigma_0, \ldots, \sigma_n \) in the input complex, and its image \(\Xi(\sigma_0), \ldots, \Xi(\sigma_n) \) in the protocol complex. Note that two consecutive simplices, \(\sigma_j \) and \(\sigma_{j+1} \), differ only in the input of \(p_j \). Since \(G \) has no universal nodes, there is a process \(p_k \) which does not receive messages from \(p_j \), and thus there is a node \((p_k, v'_k)\) in the protocol complex that is shared by both \(\Xi(\sigma_j) \) and \(\Xi(\sigma_{j+1}) \). Applying the same argument for all values of \(j \), we find that the image \((\Xi(\sigma_0), \ldots, \Xi(\sigma_n)) \) in the protocol complex is path-connected, in the sense that every two consecutive facets intersect.

Assume that the protocol \(P = (\mathcal{I}, \mathcal{P}, \Xi) \) solves \(\epsilon \)-approximate agreement for \(\epsilon < \frac{1}{n-1} \). It follows from Theorem 2 that there is a simplicial map \(\delta : \mathcal{P} \to \mathcal{O} \) satisfying \(\delta(\Xi(\sigma)) \in \Delta(\sigma) \). Since \(\delta \) is simplicial, there is a path \(\delta(\Xi(\sigma_0)), \ldots, \delta(\Xi(\sigma_n)) \) in \(\mathcal{O} \), i.e., every two consecutive facets in it share a vertex. Moreover, the definition of approximate agreement limits the domain \(V_j \) of possible values for the processes in \(\delta(\Xi(\sigma_j)) \). Specifically,

\[
\delta(\Xi(\sigma_j)) = \{(p_i, 0), i = 1, \ldots, n\},
\]

i.e., \(V_0 = \{0\} \), and, similarly, \(V_n = \{1\} \). For all other values of \(0 < j < n \), \(\epsilon \)-approximate agreement imposes \(V_j \) of range \(\leq \epsilon \). Furthermore, \(V_j \cap V_{j+1} \neq \emptyset \) for every \(j \geq 0 \) since every two consecutive facets \(\delta(\Xi(\sigma_j)) \) and \(\delta(\Xi(\sigma_{j+1})) \) share a node. Achieving the desired contradiction is now simple. Each output value \(v_i \) at a vertex of \(\delta(\Xi(\sigma_0)) \) must satisfy \(v_i = 0 \). By connectivity, at least one such vertex is shared with \(\delta(\Xi(\sigma_1)) \), and thus every value \(v_i \) at a vertex of \(\delta(\Xi(\sigma_1)) \) must satisfy \(v_i \leq \epsilon \). By induction, every value \(v_i \) at a vertex of \(\delta(\Xi(\sigma_j)) \) must satisfy \(v_i \leq j \epsilon \). Hence, every output value \(v_i \) at a vertex of \(\delta(\Xi(\sigma_{n-1})) \) must satisfy \(v_i \leq (n-1)\epsilon < 1 \). Once again, by connectivity there is a vertex \((p_i, v_i)\) in \(\delta(\Xi(\sigma_{n-1})) \cap \delta(\Xi(\sigma_n)) \). We just showed that this node has output value \(v_i < 1 \), which is a contradiction with the specification of approximate agreement. \(\square \)
Remark. The same way Theorem 2 has consequences on the complexity of solving \(k\)-set agreement in concrete computational models such as the LOCAL model and dynamic networks, Theorem 3 has consequences on the complexity of solving approximate agreement in these latter models.

6 Conclusion and Further Work

We demonstrate that combinatorial topology is applicable to distributed network computing. Of course, this is just a first step, and further work will require incorporating features of every distributed network model, in order to capture the specific characteristics of each of them. For instance, fully capturing the popular LOCAL model requires removing the structure awareness assumption, and studying the details of how the protocol complex evolves round after round.

Incorporating asynchrony and failures into network computing, from a topological perspective, requires understanding the topological impact of simultaneously stretching the facets, introducing holes resulting from \(t\)-resiliency, and introducing scissor cuts resulting from the presence of a network. This is definitely technically challenging, but our paper shows that there are no conceptual obstacles preventing us from addressing these questions.

Acknowledgements: The authors are thankful to Eli Gafni for fruitful discussions about solving \(k\)-set agreement in the KNOW-ALL model.

References

[1] Dan Alistarh, James Aspnes, Faith Ellen, Rati Gelashvili, and Leqi Zhu. Why extension-based proofs fail. CoRR, abs/1811.01421, 2018. To appear in STOC 2019.
[2] Hagit Attiya, Armando Castañeda, Maurice Herlihy, and Ami Paz. Bounds on the step and namespace complexity of renaming. SIAM J. Comput., 48(1):1–32, 2019.
[3] Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikael Rabie, and Jukka Suomela. Lower bounds for maximal matchings and maximal independent sets. CoRR, abs/1901.02441, 2019.
[4] Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-iterative distributed \((\delta + 1)\)-coloring below szegedy-vishwanathan barrier, and applications to self-stabilization and to restricted-bandwidth models. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, (PODC), pages 437–446, 2018.
[5] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of distributed symmetry breaking. In 53rd IEEE Symposium on Foundations of Computer Science (FOCS), pages 321–330, 2012.
[6] Sandeep Bhadra and Afonso Ferreira. Computing multicast trees in dynamic networks and the complexity of connected components in evolving graphs. J. Internet Services and Applications, 3(3):269–275, 2012.
[7] Martin Biely, Peter Robinson, Ulrich Schmid, Manfred Schwarz, and Kyrill Winkler. Gracefully degrading consensus and \(k\)-set agreement in directed dynamic networks. Theor. Comput. Sci., 726:41–77, 2018.
[8] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed Lovász local lemma. In 48th ACM Symposium on Theory of Computing (STOC), pages 479–488, 2016.

[9] Armando Castañeda and Sergio Rajsbaum. New combinatorial topology bounds for renaming: the lower bound. Distributed Computing, 22(5-6):287–301, 2010.

[10] Armando Castañeda and Sergio Rajsbaum. New combinatorial topology bounds for renaming: The upper bound. J. ACM, 59(1):3:1–3:49, 2012.

[11] Arnaud Casteigts, Paola Flocchini, Emmanuel Godard, Nicola Santoro, and Masafumi Yamashita. On the expressivity of time-varying graphs. Theor. Comput. Sci., 590:27–37, 2015.

[12] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed Systems, 27(5):387–408, 2012.

[13] Yi-Jun Chang, Wenzheng Li, and Seth Pettie. An optimal distributed $(\Delta + 1)$-coloring algorithm? In 50th ACM Symposium on Theory of Computing (STOC), pages 445–456, 2018.

[14] Bernadette Charron-Bost, Matthias Függer, and Thomas Nowak. Approximate consensus in highly dynamic networks: The role of averaging algorithms. In Automata, Languages, and Programming - 42nd International Colloquium, ICALP, pages 528–539, 2015.

[15] Bernadette Charron-Bost and André Schiper. The heard-of model: computing in distributed systems with benign faults. Distributed Computing, 22(1):49–71, 2009.

[16] Soma Chaudhuri, Maurice Herlihy, Nancy A. Lynch, and Mark R. Tuttle. Tight bounds for k-set agreement. J. ACM, 47(5):912–943, 2000.

[17] Etienne Coulouma, Emmanuel Godard, and Joseph G. Peters. A characterization of oblivious message adversaries for which consensus is solvable. Theor. Comput. Sci., 584:80–90, 2015.

[18] Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. Deterministic distributed edge-coloring via hypergraph maximal matching. In 58th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 180–191, 2017.

[19] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[20] Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In 27th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 270–277, 2016.

[21] Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the complexity of local distributed graph problems. In 49th ACM Symposium on Theory of Computing (STOC), pages 784–797, 2017.

[22] Emmanuel Godard and Eloi Perdereau. k-set agreement in communication networks with omission faults. In 20th International Conference on Principles of Distributed Systems (OPODIS), pages 8:1–8:17, 2016.

[23] Mika Göös, Juho Hirvonen, and Jukka Suomela. Linear-in-Δ lower bounds in the LOCAL model. Distributed Computing, 30(5):325–338, 2017.

[24] David G. Harris, Johannes Schneider, and Hsin-Hao Su. Distributed $(\Delta + 1)$-coloring in sublogarithmic rounds. In 48th ACM Symposium on Theory of Computing (STOC), pages 465–478, 2016.

[25] Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum. Distributed Computing Through Combinatorial Topology. Morgan Kaufmann, 2013.
[26] Maurice Herlihy and Sergio Rajsbaum. Set consensus using arbitrary objects. In Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 324–333, 1994.

[27] Maurice Herlihy and Sergio Rajsbaum. Algebraic spans. Mathematical Structures in Computer Science, 10(4):549–573, 2000.

[28] Maurice Herlihy, Sergio Rajsbaum, and Mark R. Tuttle. An axiomatic approach to computing the connectivity of synchronous and asynchronous systems. Electr. Notes Theor. Comput. Sci., 230:79–102, 2009.

[29] Maurice Herlihy and Nir Shavit. The asynchronous computability theorem for t-resilient tasks. In 25th ACM Symposium on Theory of Computing (STOC), pages 111–120, 1993.

[30] Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. J. ACM, 46(6):858–923, 1999.

[32] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower and upper bounds. J. ACM, 63(2):17:1–17:44, 2016.

[33] Fabian Kuhn, Yoram Moses, and Rotem Oshman. Coordinated consensus in dynamic networks. In 30th ACM Symposium on Principles of Distributed Computing (PODC), pages 1–10, 2011.

[34] Fabian Kuhn and Rotem Oshman. Dynamic networks: Models and algorithms. SIGACT News, 42(1):82–96, 2011.

[35] Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201, 1992.

[36] Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in Byzantine asynchronous systems. In 46th Symposium on Theory of Computing (STOC), pages 704–713, 2014.

[37] David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia, PA, 2000.

[38] Sergio Rajsbaum, Armando Castañeda, David Flores-Peñaloza, and Manuel Alcantara. Fault-tolerant robot gathering problems on graphs with arbitrary appearing times. In 2017 IEEE Int. Parallel and Distributed Processing Symposium (IPDPS), pages 493–502, 2017.

[39] Sergio Rajsbaum, Michel Raynal, and Corentin Travers. The iterated restricted immediate snapshot model. In 14th Int. Conference on Computing and Combinatorics (COCOON), pages 487–497, 2008.

[40] Dimitris Sakavalas and Lewis Tseng. Network topology and fault-tolerant consensus. Synthesis Lectures on Distributed Computing Theory, 2019.

[41] Michael E. Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: the topology of public knowledge. In 25th ACM Symposium on Theory of Computing (STOC), pages 101–110, 1993.

[42] Jukka Suomela. Survey of local algorithms. ACM Comput. Surv., 45(2):24:1–24:40, 2013.