Speed Estimation During the Starting Transient of Induction Motors

Matias Meirac, Student Member, IEEE, Guillermo R. Bossioc, Senior Member, IEEE, Carlos J. Verucchi, Cristian R. Ruschetti, Member, IEEE, and José M. Bossioc, Member, IEEE

Abstract—Typically, the rotor speed of electric motors was measured directly by the use of electromechanical sensors. Even though these devices are very precise, they are also fragile and expensive to install. Currently, some alternatives are based on speed estimations from the measurement of stator currents. Some of these, very accurate, are used in variable speed drives. In industrial power applications, many large induction motors (IMs) are directly driven with special starters. For these cases, new speed estimation strategies must be developed. This article presents a self-sensing method for speed estimation during the starting transient of both wound rotor and squirrel cage IMs. The speed estimation is based on the simultaneous tracking of multiple harmonic components of the rotor on the spectrogram of the stator currents in sequence networks. The proposal is validated with experimental results obtained in the laboratory with a squirrel cage IM. It is concluded that the estimation is not sensitive to measurement noise and tracking errors caused by other harmonic components that do not depend on the rotor position.

Index Terms—Diagnosis, induction motor (IM), speed estimation, starters.

I. INTRODUCTION

To avoid line overloads, large voltage drops, and thermal stresses during the starting transient of high-power induction motors (IMs), the use of starting methods is essential. From 5.5 kW onward, starting methods at a reduced voltage or starting by static converters are used. Direct starting is allowed only for minor power. If high starting torque is required, reduced voltage starting is not viable since the starting torque decreases with the square of the voltage. Therefore, start-ups with rotor resistance variation are necessary.

Knowing the rotor speed is not only useful as feedback in variable speed drives but also as analysis and diagnostic tool [1]. For example, if the instantaneous rotor speed and the torque transmitted to the load are known, it is possible to estimate the operating point in relation to the torque–speed curve provided by the IM manufacturer. If in permanent regime, the operating point does not coincide with a point on the curve, an anomaly is evidenced (such as voltage imbalances, high harmonic content in the supply voltage, or load imbalances). Furthermore, the starting conditions of an IM can be verified through the rotor speed, for example, if the starting times are kept below the limits indicated by the manufacturer, or if the resistances of liquid starters are adequate or the ramp settings in soft starters ensure the best operating point [2].

Direct speed measurement by electromechanical speed sensors in industrial environments is not always possible since these sensors are fragile. In this situation, sensorless self-sensing methods for speed estimation gain notoriety. Table I presents some of the strategies reported in the literature and highlights purposes, ranges of application, and errors among other factors of interest.

Many rotor speed or position estimation strategies have been presented focused on control of variable speed drives. There are two main categories of sensorless control schemes: model-based and saliency-based [3]. Model-based strategies are applied in the high-speed range. Among these approaches, the use of observers or parametric methods for this purpose is widespread. Observers are sensitive to parameter variation or detuning. To improve their performance, the use of an optimized constant rate reaching law was proposed in [4]. In [5], a strategy to identify parameters independent of the speed observer’s output through flux estimation is proposed. With speed estimation strategies that are not very sensitive to multiparameter variations, the performance of the observers is improved, and therefore, the speed estimation in steady state and transient conditions [6]. However, observers require motor parameters and are difficult to apply if these parameters vary during starting. This is the case, for example, with star–delta or variable rotor resistance starting in IMs. Saliency-based strategies are applied in the low-speed range. Many of these techniques are based on high-frequency signal injection. As an example, Metwaly et al. [7] use transient voltage pulses excitation for speed estimation by the discrete cosine and sine transforms (DCT and DST). These signals can easily be generated by the inverter of the drive but are difficult to implement in IMs connected directly to the grid. Henceforth, these strategies cannot be applied to all industrial cases, where there are direct drives. For this reason, it is necessary to develop speed estimation alternatives for these cases. Here,
the estimation by frequency tracking of the rotor harmonics
present in the stator current, associated with the rotor posi-
tion, becomes promising. In this line, Sapena-Bano et al. [8]
introduce a speed sensorless method for detecting rotor asym-
metries in wound rotor induction machines working under
nonstationary conditions using the Gabor transform. Broken
rotor bars throughout the synchrosqueezing wavelet trans-
form [9], bearing faults and rotor eccentricity throughout the
Fourier synchrosqueezing transform [10], can be detected by
the use of frequency components originated in the rotor and
reflected in the stator currents during the starting transient.
Electromechanical torque, obtained from the speed estimation
and the active power consumed by the IM, can provide
useful information for the diagnosis of motor faults and their
efficiency [11].

IM speed estimation from the tracking of certain harmonic
components has been presented in the literature back-
grounds [12], [13]. Harmonics present in the stator current,
linked to the number of rotor slots, are the most used for this
purpose [14]. This methodology is robust when the frequency
of the supply voltages and the load resistant torque are
constant [15], [16]. The accuracy of this technique depends
directly on the precision with which it is possible to identify
the harmonics associated with the rotor slots. In this sense,
Chen and Chen [17] provide proper guidelines for the selection
of stationary and time-varying harmonic and interharmonic
estimation methods according to a given application.

In [18], a self-sensing method for the IM speed estimation
during the starting transient, based on the tracking of a
single harmonic component of the rotor on the spectrogram
of the stator currents, was presented. In this work, as an
extension of that proceedings article, a simultaneously tracking
of multiple harmonic components of the stator currents full
spectrumogram is proposed, which allows obtaining less sensitive
speed estimation to measurement noise and tracking errors.

II. HARMONIC COMPONENTS PRESENT IN THE IM

IMs present sinusoidal rotor and stator currents if it is
perfectly balanced and supplied with balanced voltages, and its
magnetic field rotates at a frequency f_1 in the stator reference
frame or sf_1 in the rotor reference frame. Where f_1 is the
supply voltage frequency and s is the IM slip.

However, certain constructive characteristics or imperfec-
tions determine the presence of harmonic components in both
rotor and stator currents even in a healthy IM [16], [19].

In Table II, it can be found the most used expressions in

Ref.	Method	Motor parameters	Robustness to grid disturbances	Purpose	Application range	Steady state error
[4]	Observer	Required	Powered by VSD	Control	Low speed to the rated speed	0.1% to 13%
[5]	Observer	Required	Powered by VSD	Control	Dynamic speed estimation	0.2%
[6]	Model-based	Required	Powered by VSD	Control	Low to rated speed range	0.4% to 2.5%
[7]	DST and DCT	Not required	Powered by VSD	Diagnostic tool	Stationary and transient (no start-up)	0.163%
[12]	Chirp-Z transform	Required	Powered by VSD	Diagnostic tool	Starting and steady state	0.1%
[13]	Spectrogram	Not required	Low	Control	Speed of 0.01 pu to 1 pu	0.5%
[14]	Spectral estimation	Not required	Powered by VSD	Diagnostic tool	Starting and steady state	0.06%
[18]	Sequence spectrogram	Not required	Medium			

TABLE II

Ref.	Characteristic	Frequency
[20]	Rotor asymmetry	$f_\text{ba} = f_1 \left(1 \pm 2\times s\right)$ (1)
[21]	Eccentricity	$f_\text{ee} = f_1 \left(1 \pm \left(1-s\right)\right)$ (2)
[14], [15]	Rotor slots	$f_{\text{comb-sec}} = f_1 \left[1 \pm \left(1-s\right)\right]$ (3)
[20]	Rotor slots	$f_{\text{sm}} = f_1 \left(k R + n_d\right) \left(1 - s\right) + n_w\left(\frac{1}{p}\right)$ (4)

As can be seen from Section II, the harmonic components
from (1) to (4) are a function of slip, that is, they are a
function of the rotation speed. Despite these components can
be associated with machine faults, they are present in all IM
due to the asymmetries inherent in the construction process,
even in those that can be considered fault-free [19].

Therefore, it is possible to use one or more of these
harmonic components for speed estimation. The proposed
strategy uses the rotor slots harmonics present in the waveform
of the stator current, given by (4).

A practice limitation, although it is shown that the frequency
tracked with $k = 1$ and $n_d = 0$ can be distinguished in
most cases (even in fault-free motors) [15], is that its value
still depends on parameters such as the number of slots, which
is generally unknown. So, the frequencies related to the slot
harmonics change from one IM to another, making it diffi-
cult and impractical to calculate these frequencies. However,
by processing the signal to be analyzed and subsequent simple
visual inspection, it is possible to identify these frequencies.
The proposed strategy focuses on this concept, analyzing the
stator currents through sequence networks [22].

Once the frequency components of the different harmonics
have been identified, it is possible to calculate the rotation
frequency corresponding to each of them (f_1), and finally the
rotor speed, according to

\[n = \frac{60f_r}{p}. \]

(5)

As can be seen from (1) to (4), a large number of harmonics arises that can be followed to estimate speed, whether positive or negative, so it is possible to obtain different speed estimations. Therefore, it is probable that not all estimates are coherent neither coincident with each other. The selection criteria will be detailed in Section III-F.

A. Filtering of Fundamental and Power Grid Harmonics

Eliminating both the fundamental component of the power grid and its harmonics from the stator current is advantageous to track the harmonic components of the rotor associated with its speed. The harmonic components of the electrical grid have larger amplitudes than the harmonics produced by the rotor and they are generally found at very close frequencies. This can generate errors in the speed estimation strategy, so it is convenient to filter the signal to be analyzed. The most commonly used filters in the frequency domain are the comb filters and the multirate filters, which eliminate harmonic interference [23]. In this work, a notch-type comb filter was used. The notches are found every \(f_i \) (50 Hz), filtering the fundamental component of the electric grid frequency and its harmonics.

Furthermore, a second-order Butterworth low-pass filter with a high cutoff frequency (1000 Hz) is applied to the analyzed signals in order to eliminate the high-frequency noise present. A review of the different techniques for the suppression of the fundamental component is presented in [24], as well as new techniques for this purpose.

B. Short Time Fourier Transform: Spectrogram

To perform an analysis of nonstationary periodic signals, in which their characteristics vary according to time, it is necessary to study them in the time–frequency domain. This is the case when analyzing the stator currents in the starting transient of IMs. A tool widely used to analyze this type of signals is the short time Fourier transform (STFT), defined as [25]

\[X(\omega, \tau) = \int_{-\infty}^{\infty} x(t) f(t - \tau)e^{-i\omega t} \, dt \]

(6)

where \(x(t) \) is the analyzed signal and \(f(t - \tau) \) is a window function around time \(\tau \).

From the analysis of the spectrogram, in which the magnitude of the STFT is represented as a function of \(\omega \) and \(\tau \), the positive and negative harmonic components of the rotor linked to its position were extracted.

The STFT extracts several frames of a signal that are analyzed in each of the window displacements over time, considering the signal during this frame is stationary. Therefore, in each frame, it is possible to use the fast Fourier transform (FFT), where a continuous spectrum of a periodic signal is assumed.

The spectral resolution to be achieved depends on the number of points used to perform the FFT (\(n_{\text{FFT}} \)). If it is wanted to have a minimum frequency resolution \(f_{\text{ResMin}} \) from a fixed sampling frequency \(f_s \), the \(n_{\text{FFT}} \) number is determined as \(f_s / f_{\text{ResMin}} \). Besides, it is highly recommended that \(n_{\text{FFT}} \) be a power of two since in this way the FFT performs faster. However, increasing \(n_{\text{FFT}} \) beyond the number of samples in the window will just append zeros to the end so it is the correct size (zero padding). This can be problematic if the signal is not close to zero at the beginning and the end; therefore, the Hanning window is used. For this reason, \(n_{\text{FFT}} \) should be close or slightly higher than the number of samples in the window. This determines the temporal length of the window, that is, the \(\Delta t \).

Accordingly, for obtaining a high-quality spectrogram, it is a crucial suitable selection of the lattice parameters \(\Delta t \) and \(f_{\text{ResMin}} \). This generates uncertainty in the time–frequency plane when a frequency variation occurs. This is because the resolution depends on the size of the window chosen for the analysis. Larger windows allow precise resolution in frequency; narrow windows allow correct temporal location. A compromise between temporal and frequency uncertainty has to be established, which will depend on each type of application.

The use of the Hanning window also fulfills the integer number of cycles requirement of the measured signal to perform the FFT. If this is not fulfilled, the spectrum obtained is a distorted version of the actual spectrum of the original signal. Therefore, window functions are used to overcome this drawback. These functions multiply the temporal signal acquired with a signal of the same length whose amplitude varies from a maximum value in the center to zero at the edges.

Nevertheless, the use of nonrectangular windows to reduce spectral leakage almost always decrease to zero at boundaries, so some data are lost. To retrieve that, the overlapping of the windows is carried out when processing. A 50% overlap is widely used to retrieve data between windows.

In this work, besides the time–frequency analysis through the STFT, the Hanning window was used for the analysis of the stator currents.

C. Sequence Components

According to Fortescue’s theorem, three unbalanced phasors can be represented by three systems of three balanced components; positive, negative, and zero (homopolar) sequence. Since IMs usually do not have neutral grounding, only positive and negative sequence components are established. For its calculation, the measurement of two of the three IM stator currents is required [22]. This strategy is quite similar to that used in vibration analysis to obtain the full spectrum of two quadrature signals [26]. The full spectrum can also be obtained by performing the complex FFT to quadrature currents as proposed in [27]. The full spectrum combined with the spectrogram function allows tracking the temporal evolution of the sequence components of the stator current. As the network harmonics are not related to the position of the rotor, its filtering facilitates the tracking of those that are linked.
D. Speed Estimation Using Single Harmonic

As it was mentioned above, the speed estimation is based on the tracking of rotor harmonics present in the stator current. For this, the spectrogram is calculated in sequence components for the filtered stator currents. Once the spectrogram is obtained, the harmonic components related to the corresponding load state of the IM speed are identified. The tracking of these components is carried out following the spectrogram in the opposite direction to time. This requires establishing a search frequency range around the center frequency identified in the permanent regime. This range has a central frequency and a Δf, which can be asymmetric. This asymmetry is because when the spectrogram is traveled in the opposite direction to time, the rotor speed decreases. The frequency corresponding to the maximum amplitude within the frequency range is selected, being this the new central frequency. Such frequency displaces the search band, centering it with respect to the maximum amplitude value, thus allowing finding the frequencies related to the rotation speed. The harmonic frequencies found are linked to the rotation frequency by (4) if the harmonic is of positive sequence or by (5) if the harmonic is of negative sequence

$$\omega_1 = 2\pi \left(f_1 - \frac{|n_w| f_1 - f_{ps}}{k |n_w| \pm 1} \right)$$ \hspace{1cm} (7)

$$\omega_2 = 2\pi \left(f_1 - \frac{|n_w| f_1 + f_{ms}}{k |n_w| \pm 1} \right)$$ \hspace{1cm} (8)

where ω_k is the rotation frequency of the rotor in rad/s; f_{ps} and f_{ms} are the harmonic sequence components used for the estimation of the rotation frequency in Hz, with $k \neq 0$.

Applying (5) to each ω_k found that the rotation speed for each harmonic is determined.

E. Speed Estimation Using Multiple Harmonics

Instead of using a single harmonic to estimate the speed in the starting transient [18], it is also possible to simultaneously track multiple harmonic components of the stator currents full spectrogram $Y(\omega, \tau)$. Thus, it is possible to obtain estimation less sensitive to measurement noise and tracking errors caused by other harmonic components that are not linked to the rotor position. $Y(\omega, \tau)$ is the amplitude of the spectrogram in sequence components of the stator currents where the fundamental and its harmonics have already been filtered through the comb and low-pass filter.

This estimation strategy proposes to track multiple harmonics ω_j that depend on rotor speed

$$\omega_j = f_j(\omega_k)$$ \hspace{1cm} (9)

where $j = 1, 2, \ldots, n$ and n is the number of harmonics to track.

To simultaneously find the maximums of each component of the spectrogram at every time τ_i, the following objective function is used:

$$F_i(\omega) = a_1 \frac{Y(\omega_1, \tau_i)}{Y_{1f}} + \ldots + a_j \frac{Y(\omega_j, \tau_i)}{Y_{jf}} + \ldots + a_n \frac{Y(\omega_n, \tau_i)}{Y_{nf}}$$ \hspace{1cm} (10)

where $a_{i\min} \leq \omega \leq a_{i\max}$ and a_j are weights assigned to each of the frequency components $a_j = f_j(\omega)$. To normalize in amplitude the harmonic components, Y_{jf} is the amplitude of the component at ω_j for the final time of the transient (IM in steady state)

$$Y_{jf} = Y(\hat{\omega}_j, \tau_j).$$ \hspace{1cm} (11)

Then, the rotor speed is determined by looking for the maximum of $F_i(\omega)$ as follows:

$$(F_{\max}, \hat{\omega}_i) = \max F_i(\omega).$$ \hspace{1cm} (12)

In this strategy, in addition to the speed estimation method, adaptive frequency search bands were implemented, which are reduced linearly with the estimated rotor speed (Δf is asymmetrical and of decreasing value). This achieves a further reduction in error at low estimated speeds since the interference between different harmonic components is constrained.

Fig. 1 shows the general procedure used for speed estimation for any method. Fig. 2 shows the recursive algorithm for speed estimation using multiple harmonics as an extension to the block “speed estimation algorithm: single or multiple harmonics” from Fig. 1.

F. Confidence Criteria for Estimated Speed

In most field cases, direct measurement of rotor speed is not available. Therefore, to verify the accuracy of the estimator from a temporal point of view in relation to the current, it is necessary to establish some confidence criteria. These criteria are as follows.

1) In a steady state, the speed must be the corresponding one for the load factor in which the IM is operating. For this, the electromechanical torque could be estimated, which requires the measurement of the voltage, through current, linearizing the operation zone and knowing the no-load current, among other alternatives.

2) The estimated speed must be zero before the starting transient. This implies that the estimated speed must be correlated with the current.

These confidence criteria apply to both estimated speeds from the use of single harmonics and multiple harmonics.
In the case of using single harmonics, more than one curve may simultaneously meet the two conditions mentioned above. For that particular case, it is very likely that the curves coincide or are very close to each other, being able to select one of them without making too much error. In case this is not fulfilled, the comb filter may need to be adjusted better to reduce the effects of grid harmonics or the measured signal is too noisy.

G. Scope of the Proposed Strategy

The speed self-sensing strategy is off-line and applies to all slow start transients (the limit of the speed ramp depends on the order of the harmonics tracked and the number of pole pairs of the motor), where the IM is loaded with large inertias (the estimation is not made in real time). Its purpose is to diagnose problems in starters, coordinate protections, or switching times. Its limitation is that if the STFT time window is comparable with the starting transient duration, the speed estimation could not be performed. This occurs in the case of fast transients (speed ramp with a rate greater than 500 rpm/s). However, the method applies to both squirrel cage and wound rotor IM and the transients in large power applications are generally slow (in the case of medium voltage wound rotor IMs with liquid starters, speed ramp rates are between 30 and 50 rpm/s).

Besides, the strategy does not require the presence of frequencies originated by faults since it is based on the tracking of harmonic components present in all IM, regardless of whether they are fault-free or not, a necessary condition for other estimation methods [13].

For this case study, a frequency resolution of 2 Hz and a window length of 0.5 s were adopted as it is considered sufficient. With this setting, the range of rotor speed variation is contained in the spectrogram resolution so it can be estimated. The estimation of the speed is \(k|n_w| \pm 1 \) times higher than that of the spectrogram. This is obtained by calculating a \(\omega_k \) differential of (7) or (8). Particularly, the resolution of the estimated speed is 14 times higher than 2 Hz (0.1428 Hz).

IV. Experimental Results

Experimental tests were carried out on a squirrel cage IM, 5.5 kW, 380 V, 4 poles, 1450 r/min, coupled to a dc generator as load. The speed estimation using multiple harmonics was put under test for its novelty and advantages over the single harmonics approach.

Two starting conditions were analyzed, one at reduced voltage and the other with a star–delta starter. For both cases, the sampling frequency of the stator currents was 10 kHz. The number of harmonics to track for the objective function (10) was three: the components around \(\omega_1 = 5f_l\), \(\omega_2 = 7f_l\), and \(\omega_3 = 13f_l\) (250, 350, and 650 Hz, respectively).

To calculate the spectrogram in sequence components, the signal was divided into 50 sections of equal length, with a 50% overlap between sections. Thus, a resolution of 2 Hz is obtained in the spectrogram of the sequence components of the stator current and a resolution of 0.1428 Hz for the rotor frequency estimation.

A. Speed Estimation Using Both Single and Multiple Harmonics at Reduced Voltage Starting

For this test condition, a 70-V line voltages starting was made and acquired. The only load for the motor was the inertia of the generator. Thus, a gradual starting of 16 s was achieved. The parameters of the comb filter were adjusted to achieve optimum filtering of the grid harmonics.

Fig. 3 shows the spectrogram of the filtered current in sequence components and the harmonics tracked. The search bands are not shown since both methods track the harmonics in the same way. Likewise, it is achieved that the speed estimation by both single or multiple harmonics is similar, as seen in Fig. 4. From Fig. 5, the speed error is less than 6.6% during almost the whole starting transient and 0.04% during the steady state for the worst performing estimator.

From this case study, it can be concluded that with correct signal filtering and low noise content, both strategies have the same performance. However, in field cases, where there is no direct speed measurement or there is noise present in industrial facilities, the high dependence on the adjustment of the comb filter makes the estimation less reliable.
B. Speed Estimation Using Single Harmonics at Reduced Voltage Starting

For this case study, the same acquisition as the previous case was used with the exception that the comb filter does not completely eliminate the grid harmonics. Its coarse adjustment does not completely suppress harmonic content or noise from the power grid. This is done to make evident the dependence of speed estimation using single harmonics with the current filtering, recreating a possible real field case.

In Fig. 6, the spectrogram of the sequence components of the filtered current is shown. The harmonic components used for speed estimation through single tracking are highlighted. In the dashed line, the search band of the maximum amplitudes for each of the harmonics used for speed estimation is displayed (250, 350, and 650 Hz). Through this strategy, three estimated rotor speeds are obtained from each specific harmonic. These speeds are plotted in Fig. 7, being named with the frequency used for the estimation. From both Figs. 6 and 7 it can be seen that the estimator is disoriented at approximately 11.5 s for the 250- and 350-Hz components and at 3.1 s for the 650-Hz component.

This results in high error values in the estimation with respect to the direct measurement as seen in Fig. 7. Regardless, it should be noted that the error decreases as speed increases.

C. Speed Estimation Using Multiple Harmonics at Reduced Voltage Starting

For the analysis of this case study, the same acquisition as the previous case and comb filter settings were used. Fig. 8 shows the spectrogram of the sequence components of the filtered current. The weights assigned to each of the frequency components in (10) were $\alpha_1 = 1$, $\alpha_2 = 1$, and $\alpha_3 = 2$. Moreover, the harmonic components used in (10) are highlighted. It can be seen that the 650-Hz harmonic, which is of positive sequence, stands out above the others. For this reason, the α_3 coefficient is of greater weight. The frequency bands are plotted in dashed line, where the maximum value in amplitude is searched for each harmonic.

Once looking for the maximum according to (12) and applying this value in (5), the speed estimation is obtained...
for the starting transient indicated as multiple in Fig. 7. Here, it can be observed the fulfillment of the confidence criteria established in Section III-F. The measured speed during the starting transient is compared with that estimated from multiple harmonic components of the stator currents full spectrogram, as well as the correlation with the stator current (speed of 1 p.u. = 1500 r/min). Note that the starting current does not exceed the rated one. This is due to the low voltage used in the IM starting to achieve longer times.

The multiple harmonics tracking strategy correctly estimates the speed during the slow start transient and the error in steady state is less than 0.046%. The error in steady state is of the same order as that reported for other techniques such as those analyzed in Table I.

The main difference between Figs. 6 and 8 is the way the center frequency is calculated for the search band of maximum amplitudes of the harmonic components. Since the speed estimation using multiple harmonics uses the objective function (10), the center frequency is a weighting of three harmonic components. For this reason, the estimator does not become disoriented or lose track of the harmonics. In the case of speed estimation using single harmonics, when using a harmonic’s own estimation to determine its new center frequency, it becomes more susceptible to signal noise and highly dependent on the comb filter design. The robustness of this strategy makes a reliable estimate less dependent on signal conditions.

D. Speed Estimation With Star–Delta Starting

The star–delta starting, due to its discontinuous characteristic in the connection to the electrical network, presents more severe conditions for speed estimation. As an example, for model-based estimation methods, the change from star to triangle produces an instantaneous change in the IM parameters. For this test condition, the motor was supplied with 70-V line voltages. The starting begins with the IM connected in star connection and after 18 s, the starter switches to delta connection. Only the speed estimation by multiple harmonics tracking is analyzed to show the performance of the strategy with another starting condition.

Fig. 9 shows the spectrogram of the sequence components with the followed harmonics and the adaptive search bands.
[3] G. Wang, M. Valla, and J. Solsena, “Position sensorless permanent magnet synchronous machine drives—A review,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5830–5842, Jul. 2020.

[4] Y. Zhang, Z. Yin, Y. Zhang, J. Liu, and X. Tong, “A novel sliding mode observer with optimized constant rate reaching law for sensorless control of induction motor,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 697–707, Jul. 2020.

[5] J. Chen and J. Huang, “Alternative solution regarding problems of adaptive observer compensating parameters uncertainties for sensorless induction motor drives,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5879–5888, Jul. 2020.

[6] O. C. Kivanc and S. B. Ozturk, “Sensorless PMSM drive based on standart feedforward voltage estimation improved with MRAS multiparameter estimation,” IEEE/ASME Trans. Mechatronics, vol. 23, no. 3, pp. 1326–1337, Jun. 2018.

[7] M. K. Metwaly, N. I. Elkalasy, and M. S. Zaky, “Discrete sine and cosine transforms for signal processing spectral overlap sanities of induction machine,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 189–199, Jan. 2018.

[8] A. Sapena-Bano, M. Riera-Guasp, R. Puche-Panadero, J. Martinez-Roman, J. Perez-Cruz, and M. Pineda-Sanchez, “Harmonic order tracking analysis: A speed-sensorless method for condition monitoring of wound rotor induction generators,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 4719–4729, Nov./Dec. 2016.

[9] D. Camarena-Martinez, C. A. Perez-Ramirez, M. Valtierra-Rodriguez, J. P. Azemque-Sanchez, and R. D. J. Romero-Troncoso, “Synchrosqueezing transform-based methodology for broken rotor bars detection in induction motors,” Measurement, vol. 90, pp. 519–525, Aug. 2016.

[10] C. Li, L. V. Sanchez, G. Zurita, M. C. Lozada, and D. Cabrera, “Rolling element bearing defect detection using the generalized synchrosqueezing transform guided by time–frequency ridge enhancement,” ISA Trans., vol. 60, pp. 274–284, Jan. 2016.

[11] J. Viola, M. Strefezza, and J. Restrepo, “Influence of the motor load inertia and torque in the fault diagnosis of rotors in induction machines,” IEEE Latin Amer. Trans., vol. 3, no. 4, pp. 48–53, Oct. 2005.

[12] W. L. Silva, A. M. N. Lima, and A. Oliveira, “Speed estimation of an induction motor operating in the nonstationary mode by using rotor slot harmonics,” IEEE Trans. Instrum. Meas., vol. 64, no. 4, pp. 984–994, Apr. 2015.

[13] M. Meira, C. Ruschetti, C. Verucchi, J. M. Bossio, and G. Bossio, “A speed estimation strategy for wound rotor induction motor,” in Proc. IEEE Biennial Congr. Argentina (ARGENCION), San Miguel de Tucumán, Argentina, Jun. 2018, pp. 1–8.

[14] K. D. Hurst and T. G. Habetler, “Sensorless speed measurement using current harmonic spectral estimation in induction machine drives,” IEEE Trans. Power Electron., vol. 11, no. 1, pp. 66–73, Jan. 1996.

[15] S. Nandi, R. M. Bharadwaj, and H. A. Toliyat, “Performance analysis of a three-phase induction motor under mixed eccentricity condition,” IEEE Trans. Energy Convers., vol. 17, no. 3, pp. 392–399, Sep. 2002.

[16] S. Nandi, S. Ahmed, and H. A. Toliyat, “Detection of rotor slot and other eccentricity related harmonics in a three phase induction motor with different rotor cages,” IEEE Trans. Energy Convers., vol. 16, no. 3, pp. 253–260, Sep. 2001.

[17] C.-I. Chen and Y.-C. Chen, “Comparative study of harmonic and inter-harmonic estimation methods for stationary and time-varying signals,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 397–404, Jan. 2014.

[18] M. Meira, G. Bossio, C. Verucchi, C. Ruschetti, and J. Bossio, “A speed self-sensing method in starting of induction motors,” in Proc. 18th Workshop Inf. Process. Control (RPIC), Bahia Blanca, Argentina, Sep. 2019, pp. 53–58.

[19] G. M. Joksimović, J. Riger, T. M. Wolbank, N. Perić, and M. Vašak, “Stator-current spectrum signature of healthy cage rotor induction machines,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 4025–4033, Sep. 2013.

[20] C. Pezzani, G. Bossio, and C. De Angelo, “Winding distribution effects on induction motor rotor fault diagnosis,” Mechatronics, vol. 24, no. 8, pp. 1050–1058, Dec. 2014.

[21] F. S. M. Aravajal, I. M. Ramírez, and L. F. Arcos, “Diagnóstico en línea y fuera de línea de motores de inducción de baja, mediana y alta tensión,” Boletín IIE, Marzo–Abril, México, Tech. Rep., pp. 90–96.

[22] S. Giacone, G. Bossio, and G. García, “Análisis de las corrientes del motor de inducción con falla en el estator,” in Proc. 19th Congreso Argentino de Control Automático (ADEXCA), 2004, pp. 1–6.

[23] G. A. Magallán, C. H. De Angelo, and G. O. García, “Eliminación de interferencia armónica para la detección de fallas en motores eléctricos,” Revista Iberoamericana de Automática e Informática Ind., vol. 6, no. 2, pp. 89–97, Apr. 2009.