Disassembly of RanGTP-Karyopherin β Complex, an Intermediate in Nuclear Protein Import*

Monique Floer, Günter Blobel‡, and Michael Rexach

From the Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021

We previously showed that RanGTP forms a 1:1 complex with karyopherin β that renders RanGTP inaccessible to RanGAP (Floer, M., and Blobel, G. (1996) J. Biol. Chem. 271, 5313–5316) and karyopherin β functionally inactive (Rexach, M., and Blobel, G. (1995) Cell 83, 683–692). Recycling of both factors for another round of function requires dissociation of the RanGTP-karyopherin β complex. Here we show using BLACore™, a solution binding assay, and GTP hydrolysis and exchange assays, with yeast proteins, that karyopherin β and RanGTP are recycled efficiently in a reaction that involves karyopherin α, RanBP1, RanGAP, and the C terminus of the nucleoporin Nup1. We find that karyopherin α first releases RanGTP from karyopherin β in a reaction that does not require GTP hydrolysis. The released RanGTP is then sequestered by RanBP1, and the newly formed karyopherin αβ binds to the C terminus of Nup1. Finally, RanGTP is converted to RanGDP via nucleotide hydrolysis when RanGAP is present. Conversion of RanGTP to RanGDP can also occur via nucleotide exchange in the presence of RanGEF, an excess of GDP, and if RanBP1 is absent. Additional nucleoporin domains that bind karyopherin αβ stimulate recycling of karyopherin β and Ran in a manner similar to the C terminus of Nup1.

Transport of proteins that contain a nuclear localization signal (NLS) into the nucleus of the cell requires energy, mobile transport factors, and nuclear pore complexes (NPC) in the nuclear envelope. Karyopherin αβ heterodimer (also termed importin αβ, NLS receptor-p97 complex, PTAC, or Kap60/95) binds proteins that contain an NLS similar to that of the SV40 large T-antigen or nucleoplasmin (NLS protein) and brings them to the NPC (3–12). Karyopherin α binds the NLS protein (2, 3, 7, 13–15), whereas karyopherin β increases the affinity of karyopherin α for the NLS (2, 16) and docks the karyopherin α-NLS-protein complex to a subfamily of NPC proteins (nucleoporins) that contain XXFEG-peptide repeats (2, 14, 17–20). The subsequent translocation across the NPC requires Ran/TC4 (21, 22) and p10/NTF2 (23, 24). p10 is a dimer (24, 25) that binds RanGDP (26, 27) and karyopherin β (26, 28) and functions to tether RanGDP to karyopherin αβ heterodimers that are docked to nucleoporins (26). When Ran is in its GTP-bound form it disrupts the interaction of karyopherin β with karyopherin α and with FXFG regions of nucleoporins by forming a complex with karyopherin β (2). The repetitive interaction of transport factors, substrates, and nucleoporins at the NPC may facilitate the transport of substrates across the NPC (2, 17).

Accessory factors regulate nuclear transport by modulating Ran. The GTPase-activating protein for Ran, RanGAP (termed RanGAP1, or Rn1 in yeast) (29–32), and the nucleotide exchange factor for Ran, RanGEF (termed RCC1, or Prp20 in yeast) (33–35), are required to sustain efficient transport of substrates across the NPC (36–39). The Ran binding protein 1, RanBP1 (40), is also involved in nuclear transport (41, 42). As the RanGTP-Karyopherin β complex is resistant to stimulation of GTP hydrolysis by RanGAP (1, 39, 43), RanGAP-stimulated GTP hydrolysis cannot dissociate the RanGTP-karyopherin β complex. However, dissociation of RanGTP-karyopherin β is crucial to recycle both factors for another round of function.

We show here that the RanGTP-karyopherin β complex is disassembled in the presence of karyopherin α, the C terminus of Nup1 (C-Nup1), RanGAP, and RanBP1. A detailed analysis of the reaction mechanism revealed that karyopherin β is first released from RanGTP by karyopherin α, followed by conversion of RanGTP to RanGDP in the presence of RanGAP and RanBP1. Interaction of RanBP1 with RanGTP not only stimulates GTP hydrolysis in the presence of RanGAP but also prevents reformation of the RanGTP-karyopherin β complex in the presence of C-Nup1 and karyopherin α. C-Nup1 sequesters the released karyopherin β by forming a C-Nup1-karyopherin αβ complex. Formation of this ternary complex makes rebinding of karyopherin β to RanGTP less favorable. Nup36 and a fragment containing the FXFG repeat region of Nup1 function in the disassembly reaction as well, although with lower activity than C-Nup1.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification—Yeast Ran and RanGAP were expressed and purified as described (1). Yeast karyopherin α (Kap60) and karyopherin β (Kap95), the Nup1 fragment containing a FXFG repeat region (AA 432–816) and the Nup2 fragment containing a FXFG repeat region (AA 186–561), were expressed as glutathione S-transferase (GST) fusion proteins as described (2, 12). Proteins were purified, and the GST moiety was cleaved with thrombin as described for GST-fusion proteins (1, 2).

RanGAP, the C terminus of Nup1 (AA 963–1076) (C-Nup1), and Nup36 were expressed as GST-fusion proteins. The genes or gene fragments encoding these proteins were amplified by polymerase chain reaction from Saccharomyces cerevisiae genomic DNA (Promega). The RanGAP polymerase chain reaction product was inserted into vector pGEX-2TK (Pharmacia Biotech Inc.) as a BglII-EcoRI fragment and amplified C-Nup1 and Nup36 were inserted into pGEX-2TK as BamHI-EcoRI fragments. The proteins were expressed in Escherichia coli

* This work was supported in part by a postdoctoral fellowship from the Jane Coffin Childs Memorial Fund for Medical Research (to M. F.) and a Beckman Fellowship for postdoctoral training (to M. F.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed. Tel.: 212-327-8096; Fax: 212-327-7880; E-mail: blobel@rockvax.rockefeller.edu.

‡ The abbreviations used are: NLS, nuclear localization sequence; GAP, GTPase-activating protein; GEF, guanine nucleotide exchange factor; C-Nup1, C terminus of Nup1 (amino acids 963–1076); AA, amino acids; GMP-PCP, guanylyl-(β,γ-methylene) diphosphonate; GST, glutathione S-transferase; RU, resonance units (44); NPC, nuclear pore complex; PAGE, polyacrylamide gel electrophoresis.
strain BLR (Novagen). The GST-fusion proteins of RanGEF and Nup36 were purified from bacterial lysates on glutathione-Sepharose beads (Pharmacia), and the GST moiety was cleaved with thrombin as described for GST-fusion proteins (1, 2). The GST-fusion protein of C-Nup1 was purified on glutathione-Sepharose beads and eluted with 10 mM glutathione, as described previously for GST-fusion proteins (12). The purified proteins were stored in frozen aliquots at −80°C.

Yeast RanBP1 (Ybr1) was amplified from S. cerevisiae genomic DNA (Promega) by polymerase chain reaction and inserted as a NcoI-BamHI fragment into pET-21d vector (Novagen). Protein was expressed in E. coli strain BLR(DE3) (Novagen) at 37°C for 4 h. Cells were harvested by centrifugation at 2,000 × g, and the cell pellet was resuspended in ice-cold Tris buffer (10 mM Tris-HCl, pH 8.6, 1 mM MgCl₂, and 1 mM dithiothreitol). After cell lysis using a French pressure cell ammonium sulfate was added at a final concentration of 55%; RanBP1 was found in the soluble fraction. The dialyzed 10,000 × g supernatant was loaded onto a MonoQ fast protein liquid chromatography column (Pharmacia), and proteins were eluted using a linear gradient (0–500 mM) of NaCl in Tris buffer. RanBP1 eluted between 50 and 200 mM NaCl. Fractions containing RanBP1 were pooled, concentrated with a Centricon 10 unit (Amicon), and fractionated on a Superdex 75 fast protein liquid chromatography column (Pharmacia) which was equilibrated with buffer A (150 mM KOAc, 20 mM Hepes, pH 7.3, 2 mM Mg(OAc)₂, 2 mM MgOAc₂, 1 mM dithiothreitol). RanBP1 eluted as a dimer with a mobility equal to that of a 70-kDa globular protein. Fractions containing RanBP1 were pooled and aliquots were stored at −80°C.

Solution Binding Assay—For each experiment, an E. coli lysate containing GST-C-Nup1 was incubated for 20 min at 4°C with glutathione-agarose beads (Sigma) (2 μg of C-Nup1 per 10 μl of beads) in 0.5 ml of binding buffer (20 mM Hepes, pH 6.8, 150 mM KOAc, 2 mM MgOAc₂, 1 mM dithiothreitol). RanBP1 eluted as a dimer with a mobility equal to that of a 70-kDa globular protein. Fractions containing RanBP1 were pooled and aliquots were stored at −80°C.

FIG. 1. Karyopherin β (Kap95) binds to the C terminus of Nup1 (C-Nup1), and binding is abolished by RanGTP but not RanGDP. Immobilized GST-C-Nup1 (2 μg per 10 μl of packed beads) was preincubated with 0.6 μg of Kap95 for 40 min at 4°C. After washing, the beads were incubated for 40 min at 21°C with no addition (lane 1), 0.6 μg of RanGTP (lane 2), 2 μg of RanGTP (lane 3), 0.6 μg of RanGDP (lane 4), or 2 μg of RanGDP (lane 5). RanGDP and RanGTP were prepared as described (2). Bound and unbound fractions were analyzed by SDS-PAGE and Coomassie Blue staining.

RESULTS

We previously showed that RanGTP forms a complex with karyopherin β (1, 2). Estimates from the inhibition of RanGAP by karyopherin β indicate an affinity below 1 nM for the RanGTP-karyopherin β interaction (3, 4). Here we investigated the disassembly of the yeast RanGTP-karyopherin β complex and its regulation by transport factors and nucleoporins. As RanGAP is synthetically lethal with the C terminus of the nucleoporin Nup1 (45) and with karyopherin β (46), we investigated whether the C terminus of Nup1 and RanGAP are involved in the disassembly of the RanGTP-karyopherin β complex.

Karyopherin β binds to the C terminus of Nup1 (C-Nup1) (AA 963–1076) (Fig. 1, lane 1) and is released in the presence of RanGTP (lanes 2 and 3) but not RanGDP (lanes 4 and 5). This indicates that complex formation of RanGTP with karyopherin β abolishes the interaction of karyopherin β with C-Nup1. Neither RanGDP nor RanGTP bound to C-Nup1 (not shown). Preincubation of karyopherin β with RanGTP for 15 min at 4°C also abolished binding of karyopherin β to C-Nup1 (Fig. 2A, compare lane 1 to lane 2). We used this observation as an assay to detect disassembly of the RanGTP-karyopherin β complex in the presence of different transport factors. Addition of RanGAP to karyopherin β and RanGTP that had been preincubated did not stimulate disassembly of the RanGTP-karyopherin β complex as judged by the inability of karyopherin β to bind to C-Nup1 (lane 3). However, addition of karyopherin α led to binding of some karyopherin β to C-Nup1 (lane 4). Karyopherin α bound directly to C-Nup1 in the absence of karyopherin β (not shown). The binding of karyopherin α to C-Nup1 was

2 M. Floer and G. Blobel, unpublished data.
will be discussed elsewhere. Most importantly, when karyopherin α and RanGAP were added together, karyopherin β binding to C-Nup1 was restored (lane 5). These results indicate that the RanGTP-karyopherin β complex is disrupted in the presence of karyopherin α, C-Nup1, and RanGAP and that RanGTP is converted to RanGDP through GTP hydrolysis stimulated by RanGAP.

To test whether conversion of RanGTP to RanGDP occurred, we measured GTP hydrolysis. RanGAP-stimulated GTP hydrolysis by Ran was completely inhibited in the presence of karyopherin β (not shown) (1). However, addition of 1 μM karyopherin α and 10 nM RanGAP to a mixture of 15 nM RanGTP and 25 nM karyopherin β that had been preincubated with 1 μM of RanGTP for 15 min at 4 °C (lanes 2–5). RanGTP was prepared as described (2). Reactions also contained 1 μM of RanGAP (lanes 3 and 5) and 0.6 μM of Kap60 (lanes 4 and 5). Reactions were incubated for 45 min at 21 °C and then for 15 min at 4 °C. Bound and unbound fractions were analyzed by SDS-PAGE and Coomassie Blue staining. B, GTP hydrolysis assays were performed as described under “Experimental Procedures.” 15 nM Ran-[y-32P]GTP was preincubated with 25 nM Kap95 for 10 min at 21 °C. Then 10 nM RanGAP, 1 μM Kap60, and increasing amounts of C-Nup1 were added. Reactions were incubated for 20 min at 21 °C. The extent of GTP hydrolysis was quantified as described under “Experimental Procedures.”

As the C-Nup1-stimulated conversion of RanGTP to RanGDP was only 80%, we investigated whether RanBP1 could complete the reaction, as RanBP1 binds to RanGTP (40, 47) and enhances RanGAP-stimulated GTP hydrolysis by Ran (41, 43, 47) (Fig. 9). Addition of RanBP1 and RanGAP to a mixture of RanGTP and karyopherin β that had been preincubated did not promote GTP hydrolysis (not shown). However, when RanBP1 and RanGAP were added together with karyopherin α and C-Nup1, GTP hydrolysis was greatly stimulated (Fig. 3). In a control reaction that contained 15 nM RanGTP and 25 nM karyopherin β that had been preincubated, 10 nM RanGAP, 100 nM karyopherin α, and 100 nM C-Nup1, 22% of the Ran-bound GTP was hydrolyzed (Fig. 3, closed symbols). When 50 nM RanBP1 was added, 80% of the Ran-bound GTP was hydrolyzed, and when 100 nM RanBP1 was added, 95% of the Ran-bound GTP was hydrolyzed. Noticeably, the concentration of RanGAP required was lower in the presence of RanBP1 (open symbols); this is consistent with previous findings on RanBP1 function in the absence of karyopherin β (41, 47) (Fig. 9). These results demonstrate that RanGTP-karyopherin β complex is fully disassembled in a reaction that requires karyopherin α and is stimulated by RanGAP, RanBP1, and the C terminus of Nup1.

³ M. Rexach, and G. Blobel, submitted for publication.
RanGAP is essential for disassembly of RanGTP–karyopherin β complex in the presence of karyopherin α and C-Nup1. Indeed, RanBP1 stimulated disassembly in the absence of karyopherin α and C-Nup1 (Fig. 5B, lane 4) but not in the absence of karyopherin α (lane 5). Thus, karyopherin α is required to disrupt the RanGTP–karyopherin β complex in the presence of RanBP1 and C-Nup1. Neither RanBP1 nor RanGTP bound to the karyopherin αβ-C-Nup1 complex (not shown). These results suggest that RanBP1 stimulates disassembly of the RanGTP–karyopherin β complex by preventing reformation of the complex after it has been disassembled in the presence of karyopherin α and C-Nup1. RanBP1 may accomplish this task by sequestering RanGTP that had been released from karyopherin β, since RanBP1 binds RanGTP (not shown) (40, 43, 47).

To analyze in detail the mechanism of RanGTP–karyopherin β disassembly, we used BlAcore™ (44), which allows a direct measurement of on/off rates of protein-protein interactions. Ran containing ~40% GTP and ~60% GDP was immobilized on a CM5 sensor chip by amine coupling as described under “Experimental Procedures.” 100 μg/ml karyopherin β was injected for 3 min at a flow rate of 10 μl/min over the Ran surface which typically resulted in binding of 500 resonance units (RU) of karyopherin β (Fig. 6A). This was followed by a wash-out phase of 3 min to monitor karyopherin β dissociation. We then examined whether the dissociation rate of the RanGTP–karyopherin β complex increases when other proteins are injected during the wash-out phase. For these experiments 100–200 RU of karyopherin β were bound to the Ran surface, dissociation was allowed to proceed for 1 min, and solutions containing different factors were injected for 1 min. Strikingly, injection of karyopherin α caused the release of all karyopherin β from RanGTP (Fig. 6B). The amount released was dependent on the concentration of karyopherin α injected with a linear relation between released karyopherin β and the concentration of karyopherin α.
This result indicates that karyopherin α disassembles the RanGTP-karyopherin β complex and that this disassembly is a first order reaction with respect to karyopherin α. The apparent rate of RanGTP-karyopherin β dissociation in the presence of saturating concentrations of karyopherin α was faster than the detection limit of BIAcore™ (\(>0.1 \text{ s}^{-1}\)); hence, stimulation of RanGTP-karyopherin β dissociation by karyopherin α could not be measured directly. The rate of RanGTP-karyopherin β dissociation in the absence of karyopherin α was calculated to be \(4.5 \times 10^{-4} \text{ s}^{-1}\) based on the conditions of these experiments. We therefore estimate that karyopherin α stimulates dissociation of the RanGTP-karyopherin β complex by at least 3 orders of magnitude. RanGAP did not increase the amount of karyopherin β.
the disassembly of the RanGTP-karyopherin β complex. A, 120 RU of karyopherin β was bound to a Ran surface prepared with Ran containing ~40% GTP and ~60% GDP as described under “Experimental Procedures.” During the wash-out phase a solution containing 35 nM Kap60 and 5 nM Kap95 was injected for 1 min. B, 120 RU of Kap95 was bound to the Ran surface as in A. During the wash-out phase a solution containing 35 nM C-Nup1, 5 nM Kap95, and 35 nM Kap60 was injected for 1 min.

released in the presence of limiting amounts of karyopherin α (not shown). This result is in agreement with the notion that RanGAP interacts with RanGTP only after its release from karyopherin β.

To test whether intrinsic GTP hydrolysis by Ran is a prerequisite for karyopherin α-induced dissociation of karyopherin β, we used RanGMP-PCP instead of RanGTP; GMP-PCP is a non-hydrolyzable analog of GTP. Ran was incubated with GMP-PCP as described under “Experimental Procedures” to obtain Ran that was ~39% GMP-PCP, ~60% GDP, and less than 1% GTP-bound. RanGMP-PCP was immobilized on a CM5 sensor chip as described for Ran. Karyopherin β bound to RanGMP-PCP with the same apparent kinetics as to RanGTP under these conditions (compare Fig. 6, C to A). When karyopherin α was injected during the wash-out phase, all the karyopherin β was released (Fig. 6C). The release of karyopherin β from RanGMP-PCP showed the same dependence on the concentration of karyopherin α as release of karyopherin β from RanGTP (not shown). This result demonstrates that GTP hydrolysis is not required for the karyopherin α-dependent dissociation of RanGTP from karyopherin β.

We also used BIAcore™ to investigate the role of C-Nup1 in the disassembly of the RanGTP-karyopherin β complex. C-Nup1 did not release karyopherin β from RanGTP when injected during the wash-out phase (not shown). Also, coinjection of C-Nup1 with karyopherin α did not stimulate release over the levels seen with karyopherin α alone (not shown). These results were surprising as C-Nup1 greatly stimulates the disruption of the RanGTP-karyopherin β complex by karyopherin α, as judged by the GTP hydrolysis assay (Fig. 2B), yet does not stimulate RanGAP activity directly (not shown). To understand the role of C-Nup1 in the RanGTP-karyopherin β disassembly reaction, we compared the GTP hydrolysis and BIAcore™ experiments. In the BIAcore™ experiments the disassembly reaction is monitored in real time and not at equilibrium as in the GTP hydrolysis assay. In the GTP hydrolysis assay the released karyopherin β may rebind to RanGTP before RanGAP stimulates GTP hydrolysis, whereas in the BIAcore™ experiment the released karyopherin β is removed by constant flow and cannot rebind to RanGTP. In BIAcore™ rebinding during the wash-out phase is significant only when high density surfaces and low flow rates are used (50). As there was only ~160 RU of RanGTP immobilized on the surface, and there was no change in the RanGTP-karyopherin β dissociation rate at flow rates of up to 30 μl/min, we assume that rebinding of karyopherin β to RanGTP did not occur. To test whether C-Nup1 affects rebinding of karyopherin β to RanGTP, we coinjected karyopherin β during the wash-out phase; this retards the diffusion of dissociated karyopherin β from the Ran surface and may promote rebinding of karyopherin β before it is removed by the wash. When 5 nM karyopherin β was coinjected with 35 nM karyopherin α (2 μg/ml), release of karyopherin β was completely inhibited (Fig. 7A). Strikingly, release of karyopherin β from the RanGTP surface was restored when 35 nM C-Nup1 was coinjected with 35 nM karyopherin α and 5 nM karyopherin β (Fig. 7B). This result indicates that C-Nup1 sequesters karyopherin α and prevents reformation of the RanGTP-karyopherin β complex.

As yeast karyopherin αβ also binds to the FXFG repeat region of Nup1 (2), Nup2 (2), and Nup36 (26), we tested whether these nucleoporins or fragments thereof could replace C-Nup1 in the disassembly of the RanGTP-karyopherin β complex using the GTP hydrolysis assay. As a control, addition of 0.75 μM karyopherin α and 10 nM RanGAP to 15 nM RanGTP and 25 nM karyopherin β that had been preincubated resulted in 11% hydrolysis of the Ran-bound GTP (Fig. 8). Addition of 1 μM C-Nup1 to this mixture resulted in 70% hydrolysis. When 1 μM FXFG-Nup1 was added instead of C-Nup1, 34% of the Ran-bound GTP was hydrolyzed. Likewise, addition of 1 μM FXFG-Nup2 resulted in 15% hydrolysis, and addition of 1 μM full-length Nup36 resulted in 38% hydrolysis. These findings demonstrate that the FXFG repeat region of Nup1 and full-
length Nup36 can efficiently stimulate the RanGTP-karyopherin β disassembly reaction.

Nup36, in addition to binding karyopherin αβ (26), also binds RanGTP \(^4\) (51) presumably through a Ran-binding domain in its C terminus (26, 51–53). We find that Nup36 can stimulate GAP activity in a manner similar to RanBP1 (Fig. 9) (51). Addition of 1 µM Nup36 (open squares) resulted in greater stimulation of GAP activity than addition of 1 µM RanBP1 (closed circles). This result suggests that Nup36 functions in the RanGTP-karyopherin β disassembly reaction by stimulating conversion of RanGTP to RanGDP via GTP hydrolysis in the presence of RanGAP, as well as by sequestering karyopherin αβ.

DISCUSSION

Our results suggest a model for RanGTP-karyopherin β disassembly (Fig. 10). First, karyopherin β is released from RanGTP by karyopherin α in a reaction that does not require GTP hydrolysis (Fig. 10, step 1; Fig. 6). RanGTP is then bound by RanBP1 which prevents reformation of the RanGTP-karyopherin β complex in the presence of C-Nup1 and karyopherin α (Fig. 10, step 2; Fig. 5B). RanGTP bound to RanBP1 has a higher affinity for RanGAP than unbound RanGTP, so that conversion of RanGTP to RanGDP is enhanced (Fig. 10, step 3; Figs. 3 and 9) (41, 43, 47). RanBP1 binding to RanGTP also prevents interaction of RanGTP with RanGEF (Fig. 10, step 4; Fig. 4B) (43, 47). The newly formed karyopherin αβ binds to C-Nup1 and makes rebinding of karyopherin β to RanGTP less favorable (Fig. 10, step 5; Figs. 2A, 5, and 7). Nup36 and the FXFG repeat region of Nup1 can also function in this step of the reaction (Fig. 8). Additional factors may modulate the disassembly reaction (e.g. p10 (26) or Dis3 (54)).

Our data on RanGTP-karyopherin β disassembly in vitro explains previously reported genetic interactions in S. cerevisiae between RanGAP, karyopherin β, and the C terminus of Nup1 (45, 46). A mutant form of RanGAP is synthetically lethal with a mutant form of Nup1 that lacks the C terminus (45). Our data can explain this synergistic effect as RanGAP and C-Nup1 cooperate to dissociate the RanGTP-karyopherin β complex (Fig. 2) and recycle each factor for a new round of function. A mutant form of RanGAP is also synthetically lethal with a mutant form of karyopherin β (46). This genetic interaction can be explained as well, since our data show that RanGAP promotes recycling of karyopherin β by stimulating RanGTP-karyopherin β disassembly (Fig. 2).

RanGTP-karyopherin β complex disassembly is disassembled by karyopherin α through active release as karyopherin α increases the rate of RanGTP-karyopherin β dissociation (Fig. 6B). Release of karyopherin β from RanGTP is linearly dependent on the concentration of karyopherin α (Fig. 6B, inset); this indicates that RanGTP-karyopherin β disassembly is a first order reaction with respect to karyopherin α. We estimate that karyopherin α stimulates RanGTP-karyopherin β dissociation by at least 3 orders of magnitude. Release of RanGTP from karyopherin β presumably occurs through formation of an intermediate RanGTP-karyopherin β-karyopherin α complex, followed by dissociation of RanGTP. We did not detect this intermediate complex possibly because the displacement reaction is too fast to be resolved using BIACore™. The proposed displacement mechanism is supported by data that demonstrate that RanGTP and karyopherin α have partially overlapping binding sites on karyopherin β (55–57). Thus karyopherin α could interact with the RanGTP-karyopherin β complex through that part of its binding site on karyopherin β that is not occupied by RanGTP; this interaction might then displace RanGTP from the overlapping site. The displacement reaction is reversible as

\(^4\) M. Floer, U. Nehrbass, and G. Blobel, unpublished data.

Fig. 9. Nup36 stimulates GTP hydrolysis in the presence of RanGAP. GTP hydrolysis assays were conducted as described under "Experimental Procedures." 15 nM Ran-[γ-\(^32\)P]GTP was incubated for 10 min at 21 °C in the presence of 1 µM RanBP1 (closed circles), 1 µM Nup36 (open squares), or no addition (open circles). Then increasing amounts of RanGAP were added followed by incubation for 20 min at 21 °C.

RanGTP dissociates karyopherin α from karyopherin β (2, 28), presumably by forming the same intermediate ternary complex. However, karyopherin α preferentially binds to RanGTP over karyopherin α (2, 55). This difference in affinity would force the RanGTP-karyopherin β disassembly reaction in the direction of RanGTP-karyopherin β complex formation (Fig. 10, step 1). However, in the presence of C-Nup1, RanGAP, and RanBP1, the equilibrium is shifted toward formation of the karyopherin αβ complex (Fig. 2, 3, and 5B). The presence of a GST-NLS fusion protein did not affect the disassembly reaction when tested in the GTP hydrolysis or BIACore™ experiments.\(^2\)

GTP hydrolysis is not required for the release of karyopherin β from RanGTP by karyopherin α; this is evidenced by the fact that release of karyopherin β from RanGMP-PCP occurs with the same efficiency as release from RanGTP (Fig. 6C). This finding offers new insight into the function of small Ras-like GTP-binding proteins. GTP-binding proteins switch between an active GTP-bound form and an inactive GDP-bound form (58). The GTP-bound protein often forms a complex with a downstream effector molecule. This interaction is thought to be terminated by GTP hydrolysis (see for example interaction of Ras with Raf-kinase (59)) as the GDP-bound form generally has a lower affinity for the effector than the GTP-bound form. As GTP-binding proteins are often resistant to GTPase-activating proteins when bound to an effector (60), the intrinsic GTP hydrolysis is thought to trigger complex disassembly (59). Our results on RanGTP-karyopherin β disassembly suggest that instead a "release factor" terminates the interaction between the GTP-binding protein and the effector. In our case karyopherin α is the release factor. Release factors analogous to karyopherin α may exist for other GTP-binding proteins. The karyopherin α-dependent release of RanGTP from karyopherin β occurs much faster than the intrinsic hydrolysis of Ran-bound GTP (\(k_{\text{release}} > 0.1 \text{s}^{-1}\) compared with \(k_{\text{cat}} = 5 \times 10^{-5} \text{s}^{-1}\) (32)). Our results also suggest that RanGTP-karyopherin β dissociation in the absence of karyopherin α does not require GTP hydrolysis, as dissociation of the RanGMP-PCP-karyopherin β complex occurred with the same apparent kinetics as the dissociation of the RanGTP-karyopherin β complex under the conditions described\(^2\) (Fig. 6). We are currently investigat-
Recycling of Nuclear Transport Factors Ran and Karyopherin β

Fig. 10. Mechanism of disassembly of the RanGTP-karyopherin β (Kap95) complex. Karyopherin α (Kap60) releases RanGTP from karyopherin β (step 1). RanBP1 then binds RanGTP and prevents reformation of the RanGTP-karyopherin β complex in the presence of C terminus of Nup1 (C-Nup1) and karyopherin α (step 2). Subsequently, RanGTP is converted to RanGDP via GTP hydrolysis in the presence of RanGAP (step 3). Interaction of RanGTP with RanGEF is inhibited by RanBP1 (step 4). The newly formed karyopherin αβ binds to the C-Nup1 and inhibits rebinding of karyopherin β to RanGTP (step 5).

ing the exact rates of association and dissociation. We propose that GTP hydrolysis during NLS-protein transport across the NPC is required to recycle Ran and karyopherin β so that each can perform multiple rounds of function.

RanGAP stimulates the disassembly of the RanGTP-karyopherin β complex (Fig. 2) by converting RanGTP to RanGDP after the karyopherin α-dependent release of RanGTP from karyopherin β thereby preventing reformation of the complex. We found that RanGEF can replace RanGAP in the disassembly reaction when GDP is present (Fig. 4A). RanGAP, apart from being a cytosolic protein (61), is also localized at the NPC (38, 62, 63) and in the nucleoplasm (64). In contrast, RanGEF is located mainly in the nucleoplasm bound to chromatin (65, 66), although it may also bind to nucleoporins (5) (Fig. 5A). Disassembly of RanGTP-karyopherin β in vivo may occur in the presence of both RanGAP and RanGEF at the NPC. However, due to the higher concentration of GTP versus GDP in the cell (49), conversion of RanGTP to RanGDP via RanGEF is probably not efficient. It is therefore likely that in vivo only RanGAP is responsible for conversion of RanGTP to RanGDP.

Our results suggest that RanBP1 has three functions. First, RanBP1 binds to RanGTP after its release from karyopherin β by karyopherin α and prevents reformation of the RanGTP-karyopherin β complex when C-Nup1 is present (Fig. 5B). Second, RanBP1 interaction with RanGTP increases the affinity of RanGTP for RanGAP which results in stimulation of GAP activity (Figs. 3 and 9) (41, 43, 47). Third, RanBP1 binding to RanGTP prevents interaction of RanGTP with RanGEF (Fig. 4B) (43, 47) which might be advantageous in vivo to prevent futile exchange of Ran-bound GTP for C-Nup1, RanGTP, and karyopherin β form a trimeric complex (42, 43, 67, 68) which may assemble during release of RanGTP from karyopherin β. However, in the presence of karyopherin α and C-Nup1 this complex is unstable as the majority of karyopherin β bound to C-Nup1 without associated RanGTP and RanBP1 (Fig. 5B). We propose that RanBP1 functions to promote recycling of RanGTP and karyopherin β at the NPC. Our proposal is consistent with the localization of RanBP1 at the nuclear envelope (41) and its proposed function in protein import (41, 42).

The C terminus of Nup1 binds karyopherin αβ and stimulates RanGTP-karyopherin β disassembly (Fig. 2B). We suggest that C-Nup1 sequesters karyopherin β and inhibits reformation of the RanGTP-karyopherin β complex (Fig. 7). We also suggest that Nup2 and the FXFG repeat region of Nup1 may function in a manner similar to C-Nup1 (Fig. 8) because they also bind karyopherin αβ weakly (not shown) and did not significantly stimulate RanGTP-karyopherin β disassembly (Fig. 8).

Nup36 was initially identified as a karyopherin αβ binding protein (26) and was later shown to bind RanGTP (51). Overexpression of a tagged version of Nup36 results in its localization to the nucleoplasm (51). However, Nup36 localizes to the nuclear envelope as visualized by immunofluorescence using antibodies against Nup36 (5). In addition to a karyopherin αβ binding site, Nup36 has a Ran-binding domain similar to the one in RanBP1 (52, 53). Nup36 stimulates GTP hydrolysis by RanGAP as does RanBP1 (Fig. 9) (51) and is synthetically lethal with RanGAP (51). This genetic interaction can be explained by our in vitro data as both Nup36 and RanGAP cooperate to recycle Ran and karyopherin β for another round of function. Other nucleoporins, like the mammalian Nup358 (69, 70) and yeast Nup2 (52, 53), also contain Ran-binding domains and may function in a manner similar to Nup36.

The involvement of different nucleoporins in the disassembly of the RanGTP-karyopherin β complex has interesting implications for protein transport into the nucleus. Nucleoporins that bind karyopherin αβ have different activities in the disassembly of the RanGTP-karyopherin β complex via karyopherin α (Fig. 8). This may be due to different affinities of the nucleoporins for karyopherin αβ. If nucleoporins are localized along the NPC with increasing affinities for karyopherin αβ (from cytoplasmic to nucleoplasmic sites), disassembly of RanGTP-karyopherin β complexes and concomitant docking of karyopherin αβ might occur along an affinity gradient. This affinity gradient may confer directionality to movement of transport factors and substrates across the nuclear pore complex.

Acknowledgments—We thank James Cheetham for initial help with BIAcore and Ulf Nehrbass for providing the Nup36 construct.

REFERENCES
1. Fleser, M., and Blobel, G. (1996) J. Biol. Chem. 271, 5313–5316
2. Rexach, M., and Blobel, G. (1995) Cell 83, 683–692
3. Moroianu, J., Blobel, G., and Radu, A. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 2008–2011
4. Imamoto, N., Tachibana, T., Matsuubae, M., and Yoneda, Y. (1995) J. Biol. Chem. 270, 8559–8565
5. Adam, E. J. H., and Adam, S. (1994) J. Cell Biol. 125, 547–555
6. Gierlich, D., Prehn, S., Laskey, R. A., and Hartmann, E. (1994) Cell 79, 767–778
7. Imamoto, N., Shimamoto, T., Takao, T., Tachibana, T., Kose, S., Matsuubae, M.,

U. Nehrbass and G. Blobel, unpublished data.
