DATA NOTE

The genome sequence of the European peacock butterfly,

Aglais io (Linnaeus, 1758) [version 1; peer review: 3 approved]

Konrad Lohse¹, Alexander Mackintosh¹, Roger Vila²,
Darwin Tree of Life Barcoding collective,
Wellcome Sanger Institute Tree of Life programme,
Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective,
Tree of Life Core Informatics collective, Darwin Tree of Life Consortium

¹Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
²Institut de Biologia Evolutiva (CSIC - Universitat Pompeu Fabra), Barcelona, Spain

Abstract

We present a genome assembly from an individual male *Aglais io* (also known as *Inachis io* and *Nymphalis io*) (the European peacock; Arthropoda; Insecta; Lepidoptera; Nymphalidae). The genome sequence is 384 megabases in span. The majority (99.91%) of the assembly is scaffolded into 31 chromosomal pseudomolecules, with the Z sex chromosome assembled. Gene annotation of this assembly on Ensembl has identified 11,420 protein coding genes.

Keywords

Aglais io, European peacock butterfly, genome sequence, chromosomal

This article is included in the *Tree of Life* gateway.
Corresponding author: Darwin Tree of Life Consortium (mark.blaxter@sanger.ac.uk)

Author roles: Lohse K: Investigation, Resources, Writing – Original Draft Preparation, Writing – Review & Editing; Mackintosh A: Writing – Original Draft Preparation, Writing – Review & Editing; Vila R: Writing – Original Draft Preparation, Writing – Review & Editing;

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by the Wellcome Trust through core funding to the Wellcome Sanger Institute (206194) and the Darwin Tree of Life Discretionary Award (218328). AM is supported by an E4 studentship from the Natural Environment Research Council, UK. RV is supported by grant PID2019-107078GB-I00/AEI/10.13039/501100011033 from the Spanish government. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Lohse K et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Lohse K, Mackintosh A, Vila R et al. The genome sequence of the European peacock butterfly, Aglais io (Linnaeus, 1758) [version 1; peer review: 3 approved] Wellcome Open Research 2021, 6:258
https://doi.org/10.12688/wellcomeopenres.17204.1

First published: 12 Oct 2021, 6:258 https://doi.org/10.12688/wellcomeopenres.17204.1
Species taxonomy
Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Lepidoptera; Glossata; Ditrysia; Papilionoidea; Nymphalidae; Nymphalinae; Nymphalis; Aglais; Aglais io (Linnaeus, 1758) (also known as Inachis io and Nymphalis io) (NCBI:txid171585).

Introduction
The European peacock (Aglais io, synonyms include Inachis io and Nymphalis io) is a palearctic butterfly species. A. io is easily recognised by the large and colourful eyespots on its wings, which act as a defence against avian predators (Blest, 1957; Vallin et al., 2005). It is distributed from temperate Europe to Japan, with larvae feeding on nettles and hops (Urtica dioica, Urtica urens, and Humulus lupulus). It has recently (end of the 20th century) been introduced to Canada. It overwinters as an adult and it is generally considered as univoltine in the British Isles, although in the south it may display a partial second generation. In southern Europe it has two generations per year, and occasionally a partial third one. It is found throughout the British Isles, although rare in the Outer Hebrides, and has increased in both abundance and occurrence over the last 50 years (Fox et al., 2015). This species is listed as Least Concern in the IUCN Red List (Europe) (van Swaay et al., 2010). A. io has 31 pairs of chromosomes (Maeki & Makino, 1953; Maeki, 1953) and the female is heterogametic (WZ). Male genome size has been estimated at approximately 364Mb using flow cytometry (Mackintosh et al., 2019).

Genome sequence report
The genome was sequenced from a single male A. io (Figure 1) collected from East Linton, East Lothian, Scotland, UK (latitude 55.977161, longitude -2.667545). A total of 64-fold coverage in Pacific Biosciences single-molecule long reads and 77-fold coverage in 10X Genomics read clouds were generated. Primary assembly contigs were scaffolded with chromosome conformation Hi-C data. Manual assembly curation corrected 13 missing/misjoins and removed three haplotypic duplications, reducing the assembly length by 0.02% and the scaffold number by 16.33%, and increasing the scaffold N50 by 3.06%.

The final assembly has a total length of 384 Mb in 42 sequence scaffolds with a scaffold N50 of 13 Mb (Table 1). The majority, 99.91%, of the assembly sequence was assigned to 31 chromosomal-level scaffolds, representing 30 autosomes (numbered by sequence length), and the Z sex chromosome (Figure 2–Figure 5; Table 2). The assembly has a BUSCO (Simão et al., 2015) v5.1.2 completeness of 98.8% using the lepidoptera_odb10 reference set. While not fully phased, the assembly deposited is of one haplotype. Contigs corresponding to the second haplotype have also been deposited.

Genome annotation
The Ensembl gene annotation system (Aken et al., 2016) was used to generate annotation for the A. io assembly (GCA_905147045.1; Table 1). The annotation was created primarily through alignment of transcriptomic data to the genome, with gap
Table 1. Genome data for *Aglais io*, ilAglIoxx1.1.

Project accession data

Information	Value
Assembly identifier	ilAglIoxx1.1
Species	*Aglais io* (also known as *Inachis io* and *Nymphalis io*)
Specimen	SC_AI_1368, ilAglIoxx1
NCBI taxonomy ID	NCBI:txid171585
BioProject	PRJEB42130
BioSample ID	SAMEA7523149
Isolate information	Male, whole organism

Raw data accessions

Source	Accession
PacificBiosciences SEQUEL II	ERR6565934
10X Genomics Illumina	ERR6002579, ERR6002580, ERR6003036, ERR6003037
Hi-C Illumina	ERR6002578
Illumina PolyA RNA-Seq	ERR6286702

Genome assembly

Information	Value
Assembly accession	GCA_905147045.1
Accession of alternate haplotype	GCA_905147125.1
Span (Mb)	384
Number of contigs	52
Contig N50 length (Mb)	13
Number of scaffolds	42
Scaffold N50 length (Mb)	13
Longest scaffold (Mb)	16
BUSCO* genome score	C:98.8%[S:98.5%,D:0.3%],F:0.4%,M:0.9%,n:5286

Genome annotation

Information	Value
Number of protein-coding genes	11,420
Average length of protein-coding gene (bp)	1609
Average number of exons per gene	9
Average exon size (bp)	287
Average intron size (bp)	1946

BUSCO scores based on the lepidoptera_odb10 BUSCO set using v5.1.2. C= complete [S= single copy, D=duplicated], F=fragmented, M=missing, n=number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/ilAglIoxx1.1/dataset/CAJHUF01/busc.

filling via protein to-genome alignments of a select set of proteins from UniProt (UniProt Consortium, 2019) and OrthoDB (Kriventseva et al., 2008). Prediction tools, CPC2 (Kang et al., 2017) and RNAsamba (Camargo et al., 2020), were used to aid determination of protein coding genes.

Methods

The male *A. io* specimen SC_AI_1368 was collected from East Linton, East Lothian, Scotland, UK (latitude 55.977161, longitude -2.667545) by Konrad Lohse, University of Edinburgh, using a net. The specimen was snap-frozen in liquid nitrogen.
DNA was extracted at the Wellcome Sanger Institute (WSI) Scientific Operations core from the whole organism using the Qiagen MagAttract HMW DNA kit, according to the manufacturer’s instructions. RNA was extracted in the Tree of Life Laboratory at the WSI using TRizol (Invitrogen), according to the manufacturer’s instructions. RNA was then eluted in 50 μl RNase-free water and its concentration RNA assessed using a Nanodrop spectrophotometer and Qubit Fluorometer using the Qubit RNA Broad-Range (BR) Assay kit. Analysis of the integrity of the RNA was done using Agilent RNA 6000 Pico Kit and Eukaryotic Total RNA assay.

Pacific Biosciences HiFi circular consensus and 10X Genomics read cloud DNA sequencing libraries, in addition to PolyA RNA-Seq libraries, were constructed according to the manufacturers’ instructions. DNA and RNA sequencing was
Figure 3. Genome assembly of *Aglais io*, ilAglIoxx1.1: GC coverage. BlobToolKit GC-coverage plot. Chromosomes are coloured by phylum. Circles are sized in proportion to chromosome length. Histograms show the distribution of chromosome length sum along each axis. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilAglIoxx1.1/dataset/CAJHUF01/blob.

Assembly was carried out with HiCanu (Nurk *et al.*, 2020); haplotypic duplication was identified and removed with purge_dups (Guan *et al.*, 2020). One round of polishing was performed by aligning 10X Genomics read data to the assembly with longranger align, calling variants with freebayes (Garrison & Marth, 2012). The assembly was then scaffolded with Hi-C data (Rao *et al.*, 2014) using SALSA2 (Ghurye *et al.*, 2019). The assembly was checked for contamination and corrected using the gEVAL system (Chow *et al.*, 2016) as described previously (Howe *et al.*, 2021). Manual curation performed by the Scientific Operations core at the WSI on Pacific Biosciences SEQUEL II (HiFi), Illumina HiSeq X (10X) and Illumina HiSeq 4000 (RNA-Seq) instruments. Hi-C data were generated using the Qiagen EpiTect Hi-C kit and sequenced on HiSeq X.
Figure 4. Genome assembly of *Aglais io*, ilAglIoxx1.1: cumulative sequence. BlobToolKit cumulative sequence plot. The grey line shows cumulative length for all chromosomes. Coloured lines show cumulative lengths of chromosomes assigned to each phylum using the buscogenes taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilAglIoxx1.1/dataset/CAJHUF01/cumulative.

was performed using gEVAL, HiGlass (Kerpedjiev et al., 2018) and Pretex. The mitochondrial genome was assembled using MitoHiFi (Uliano-Silva et al., 2021). The genome was analysed and BUSCO scores generated within the BlobToolKit environment (Challis et al., 2020). Table 3 contains a list of all software tool versions used, where appropriate.

The materials that have contributed to this genome note were supplied by a Tree of Life collaborator. The Wellcome Sanger Institute employs a process whereby due diligence is carried out proportionate to the nature of the materials themselves, and the circumstances under which they have been/are to be collected and provided for use. The purpose of this is to address and mitigate any potential legal and/or ethical implications of...
Figure 5. Genome assembly of *Aglais io*, ilAglIoxx1.1: Hi-C contact map. Hi-C contact map of the ilAglIoxx1.1 assembly, visualised in HiGlass.

receipt and use of the materials as part of the research project, and to ensure that in doing so we align with best practice wherever possible.

The overarching areas of consideration are:

- Ethical review of provenance and sourcing of the material;
- Legality of collection, transfer and use (national and international).

Each transfer of samples is undertaken according to a Research Collaboration Agreement or Material Transfer Agreement entered into by the Tree of Life collaborator, Genome Research Limited (operating as the Wellcome Sanger Institute) and in some circumstances other Tree of Life collaborators.
Table 2. Chromosomal pseudomolecules in the genome assembly of *Aglais io*, iAgIox1.1.

INSDC accession	Chromosome	Size (Mb)	GC%
LR989896.1	1	15.53	33.1
LR989897.1	2	14.85	33.1
LR989898.1	3	14.76	33.3
LR989899.1	4	14.73	33
LR989900.1	5	14.64	32.9
LR989901.1	6	14.64	33.5
LR989902.1	7	14.56	33.3
LR989903.1	8	14.20	33.3
LR989904.1	9	13.92	33.1
LR989905.1	10	13.78	33.3
LR989906.1	11	13.51	33.3
LR989907.1	12	13.37	33
LR989908.1	13	13.34	32.9
LR989909.1	14	13.32	33.7
LR989910.1	15	13.09	33.3
LR989911.1	16	12.94	33.1
LR989912.1	17	12.25	33.5
LR989913.1	18	11.87	34.2
LR989914.1	19	11.73	33.7
LR989915.1	20	11.12	33.4
LR989916.1	21	10.60	33.8
LR989917.1	22	10.35	34.8
LR989918.1	23	10.17	34
LR989919.1	24	10.08	34.4
LR989920.1	25	9.90	33.9
LR989921.1	26	9.71	34.8
LR989922.1	27	8.71	36.3
LR989923.1	28	8.62	35.3
LR989924.1	29	8.55	37.5
LR989925.1	30	7.43	36.8
LR989895.1	Z	17.55	32.7
LR989926.1	MT	0.02	19.3
-	Unplaced	0.33	39.5

Table 3. Software tools used.

Software tool	Version	Source
HiCanu	1.0	Nurk *et al.*, 2020
purge_dups	1.2.3	Guan *et al.*, 2020
SALSA2	2.2	Ghurye *et al.*, 2019
longranger align	2.2.2	https://support.10xgenomics.com/genome-exome/ software/pipelines/latest/advanced/other-pipelines
freebayes	1.3.1-17-gaa2ace8	Garrison & Marth, 2012
MitoHiFi	1.0	Uliano-Silva *et al.*, 2021
gEVAL	N/A	Chow *et al.*, 2016
HiGlass	1.11.6	Kerpedjiev *et al.*, 2018
PretextView	0.1.3	https://github.com/wtsi-hpag/PretextView
BlobToolKit	2.6.1	Challis *et al.*, 2020

Data availability

European Nucleotide Archive: Inachis io (European peacock). Accession number PRJEB42130; https://identifiers.org/ena.embl:PRJEB42130.

The genome sequence is released openly for reuse. The *A. io* genome sequencing initiative is part of the Darwin Tree of Life (DTol) project. All raw sequence data and the assembly have been deposited in INSDC databases. Raw data and assembly accession identifiers are reported in Table 1.

Acknowledgements

Members of the Darwin Tree of Life Barcoding collective are listed here: https://doi.org/10.5281/zenodo.4893704.

Members of the Wellcome Sanger Institute Tree of Life programme collective are listed here: https://doi.org/10.5281/zenodo.4783586.

Members of Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective are listed here: https://doi.org/10.5281/zenodo.4790456.

Members of the Tree of Life Core Informatics collective are listed here: https://doi.org/10.5281/zenodo.5013542.

Members of the Darwin Tree of Life Consortium are listed here: https://doi.org/10.5281/zenodo.4783559.
References

Aken BL, Ayling S, Barrett D, et al.: The Ensembl Gene Annotation System. Database (Oxford). 2016; 2016: baw093. PubMed Abstract | Publisher Full Text | Free Full Text

Blest AD: The Function of Eyespot Patterns in the Lepidoptera. Behaviour. 1957; 11(2/3): 209–56. Publisher Full Text

Camargo AP, Sourkov V, Pereira GAG, et al.: RNAsamba: Neural Network-Based Assessment of the Protein-Coding Potential of RNA Sequences. NAR Genom Bioinform. 2020; 2(1): lgp024. PubMed Abstract | Publisher Full Text | Free Full Text

Challis R, Richards E, Rajan J, et al.: BlobToolKit - Interactive Quality Assessment of Genome Assemblies. G3 (Bethesda). 2020; 10(4): 1361–74. PubMed Abstract | Publisher Full Text | Free Full Text

Chow W, Brugger K, Caccamo M, et al.: gEVAL - a Web-Based Browser for Evaluating Genome Assemblies. Bioinformatics. 2016; 32(16): 2508–10. PubMed Abstract | Publisher Full Text | Free Full Text

Fox R, Brereton TM, Asher J, et al.: The State of the UK's Butterflies 2015. 2015. Reference Source

Garrison E, Marth G: Haplotype-Type Variant Detection from Short-Read Sequencing, arXiv: 1207.3907. 2012. Reference Source

Ghurye J, Rhode A, Walenz BP, et al.: Integrating Hi-C Links with Assembly Graphs for Chromosome-Scale Assembly. PLoS Comput Biol. 2019; 15(8): e1007273. PubMed Abstract | Publisher Full Text | Free Full Text

Guan D, McCarthy SA, Wood J, et al.: Identifying and Removing Haplotypic Duplication in Primary Genome Assemblies. Bioinformatics. 2020; 36(9): 2896–98. PubMed Abstract | Publisher Full Text | Free Full Text

Howe K, Chow W, Collins J, et al.: Significantly Improving the Quality of Genome Assemblies through Curation. GigaScience. 2021; 10(1): giaa153. PubMed Abstract | Publisher Full Text | Free Full Text

Kang YJ, Yang DC, Kong L, et al.: CPC2: A Fast and Accurate Coding Potential Calculator Based on Sequence Intrinsic Features. Nucleic Acids Res. 2017; 45(W1): W12–16. PubMed Abstract | Publisher Full Text | Free Full Text

Kerpedjiev P, Abdenur N, Lekschas F, et al.: HiGlass: Web-Based Visual Exploration and Analysis of Genome Interaction Maps. Genome Biol. 2018; 19(1): 125. PubMed Abstract | Publisher Full Text | Free Full Text

Kriventseva EV, Rahman N, Espinosa O, et al.: OrthoDB: The Hierarchical Catalog of Eukaryotic Orthologs. Nucleic Acids Res. 2008; 36(Database issue): D271–75. PubMed Abstract | Publisher Full Text | Free Full Text

Mackintosh A, Laetsch DR, Hayward A, et al.: The Determinants of Genetic Diversity in Butterflies. Nat Commun. 2019; 10(1): 3466. PubMed Abstract | Publisher Full Text | Free Full Text

Maeki K: CHROMOSOME NUMBERS OF SOME BUTTERFLIES LEPIDOPTERA-RHOPALOCERA. The Japanese Journal of Genetics. 1953; 28(1): 6–7. Publisher Full Text

Maeki K, Makino S: Chromosome Numbers of Some Japanese Rhopalocera. Lepid News. 1953; 7(2): 36–38. Reference Source

Nurk S, Walenz BP, Rhode A, et al.: HiCanu: Accurate Assembly of Segmental Duplications, Satellites, and Allelic Variants from High-Fidelity Long Reads. Genome Res. 2020; 30(9): 1291–1305. PubMed Abstract | Publisher Full Text | Free Full Text

Rao SS, Huntley MH, Durand NC, et al.: A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell. 2014; 159(7): 1665–80. PubMed Abstract | Publisher Full Text | Free Full Text

Simão FA, Waterhouse RM, Ioannidis P, et al.: BUSCO: Assessing Genome Assembly and Annotation Completeness with Single-Copy Orthologs. Bioinformatics. 2015; 31(9): 3210–12. PubMed Abstract | Publisher Full Text

Uliano-Silva M, Nunes JGF, Krasheninnikova K, et al.: marcelauliano/MitoHiFi: mitohifi_v2.0. 2021. Publisher Full Text

UniProt Consortium: UniProt: A Worldwide Hub of Protein Knowledge. Nucleic Acids Res. 2019; 47(D1): DS06–15. PubMed Abstract | Publisher Full Text | Free Full Text

van Swaay C, Wynhoff I, Verovnik R, et al.: Aglais io. The IUCN Red List of Threatened Species. 2010; 2010: e.T174463A7076762. Reference Source
Open Peer Review

Current Peer Review Status: ✅ ✅ ✅

Version 1

Reviewer Report 22 August 2022
https://doi.org/10.21956/wellcomeopenres.19009.r51901

© 2022 Zhang J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Jing Zhang
Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA

The article is well written and clearly describes how authors constructed the high-quality reference genomes of the peacock butterfly with various sequencing techniques. The genome was assembled into chromosomes and annotated for sharing among the scientific community. The only minor question I have is why not sequence the female which includes the W chromosome. And I also highly recommend sequencing female instead of male in future Darwin Tree of Life projects for Lepidoptera if possible. Sequencing females may lead to high-quality assembly of W chromosome, the important sex chromosome which is rarely included in the current Lepidoptera genome assemblies due to high repetitive content. However, the capacity of integration of multiple sequencing techniques by Darwin Tree of Life project has high chance to assemble W chromosome and make a big difference on sex chromosome research in Lepidoptera.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Genomics, computational biology
I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 11 August 2022

https://doi.org/10.21956/wellcomeopenres.19009.r51820

© 2022 Campbell E. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Erin O. Campbell
Canadian Food Inspection Agency, Ottawa, Canada

This note presents a near-chromosome level genome assembly for the butterfly *Aglais io* using long-read, read cloud, and chromosome conformation sequencing techniques, as well as annotation using RNAseq data. The data production and assembly steps were performed according to current best-practices, and the authors have done their due diligence in the reporting of data processing and assembly statistics, making this a valuable resource for genomic studies of *A. io* and other related species.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Insect molecular systematics and evolution

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 04 May 2022

https://doi.org/10.21956/wellcomeopenres.19009.r49816
Lars Podsiadlowski
Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany

The authors present the genome sequence assembly of a butterfly, *Aglais io*. This work was done in the Darwin tree of life framework. Coverage of sequencing and additional Hi-C data ensure a streamlined assembly procedure. Analysis methods are well chosen and provide maximum quality of the process. The genome metrics and methods are clearly described. This data report can be indexed as it is.

Maybe the section "Genome annotation" can be part of the methods, or is the provided order of sections a rule of the journal?

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Comparative genomics of insects and fish

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.