Synthesis of pyrimidines by Fe\textsubscript{3}O\textsubscript{4}@SiO\textsubscript{2}-L-proline nanoparticles

Abstract: Fe\textsubscript{3}O\textsubscript{4}@SiO\textsubscript{2}-L-proline nanoparticles have been used as an effective catalyst for the preparation of pyrimidines by three-component reactions of 1,3-dimethylbarbituric acid, aromatic aldehydes and 4-methyl aniline or 4-methoxy aniline under reflux condition in ethanol. Fe\textsubscript{3}O\textsubscript{4}@SiO\textsubscript{2}-L-proline nanoparticles have been characterized by scanning electronic microscopy (SEM), powder X-ray diffraction (XRD), vibrating sample magnetometer (VSM), thermal gravimetric analysis (TGA), energy dispersive X-ray (EDS), dynamic light scattering (DLS) and FT-IR spectroscopy. This method provides several advantages including, the reusability of the catalyst, low catalyst loading, atom economy, short reaction times and high yields of products.

Keywords: Pyrimidines; Fe\textsubscript{3}O\textsubscript{4} nanoparticles; heterogeneous catalyst; one-pot.

1 Introduction

Pyrimidines have many biological properties including anticancer (Singh et al., 2009), anti-diabetic (Barakat et al., 2015), antioxidant (Barakat et al., 2016), antibacterial, anti-fungal (Dhorajiya et al., 2014), and anticonvulsant (Andrews et al., 1979). The discovery impressive ways for the preparation of pyrimidines is a serious challenge (Maleki and Paydar, 2016; Shaabani et al., 2010; Maleki and Aghaei, 2017). The synthesis of pyrimidine derivatives have been developed by InCl\textsubscript{3} (Sharma et al., 2015), H\textsubscript{3}PW\textsubscript{12}O\textsubscript{40} (Panahi et al., 2013), K\textsubscript{2}CO\textsubscript{3} (Azzam and Pasha, 2012), p-toluene sulfonic acid (Rahmati and Khalesi, 2012), [Bmim]PF\textsubscript{6}, (Shirvan et al., 2012). Each of these procedures may have its own advantages but also suffer from such apparent drawbacks as prolonged reaction times, complicated work-up, low yield, or hazardous reaction conditions. Despite the availability of these ways, there remains enough choice for a capable and reusable catalyst with high catalytic activity for the preparation of pyrimidines. Multicomponent reactions (MCRs) enhance the efficiency by combining several operational steps without isolation of intermediates or changing the reaction conditions (Maleki, 2013; Maleki et al., 2018a; Shaabani et al., 2007, 2009). Ideally, introducing neat processes and utilizing eco-friendly and green catalysts which can be simply recycled at the end of reactions has obtained great attention in recent years (Maleki, 2018). Magnetic nanoparticles (MNPs) have been utilized as a robust catalyst with a very significant feature of straightforward separation by external magnet bar (Chen et al., 2015; Elsayed et al., 2018; Fakheri-Vayeghan et al., 2018; Maleki et al., 2018b; Safaei-Ghomi et al., 2018). Magnetic materials have appeared as a useful group of heterogeneous catalysts owing to their various usages in synthesis and catalysis (Huang et al., 2016; Maleki, 2012, 2014; Shin et al., 2015; Tietze et al., 2015). The surface of magnetic nanoparticles can be functionalized by surface modifications to provide the attachment of a variety of eligible functionalities (Deatsch and Evans, 2014; Maleki and Firouzi-Haji, 2018; Zhang et al., 2012; Zheng et al., 2009). Herein, we report the use of nano-Fe\textsubscript{3}O\textsubscript{4}@SiO\textsubscript{2}-L-proline as an effective catalyst for the synthesis of pyrimidines by three-component reactions of 1,3-dimethylbarbituric acid, aromatic aldehydes and 4-methyl aniline or 4-methoxy aniline under reflux condition in ethanol (Scheme 1).

2 Results and discussion

The process of the preparation Fe\textsubscript{3}O\textsubscript{4}@SiO\textsubscript{2}-L-proline nanoparticles is shown in Scheme 2.
Scheme 1: Synthesis of pyrimidines using Fe$_3$O$_4$@SiO$_2$-L-proline nanoparticles.

Scheme 2: Schematic illustration of the preparation Fe$_3$O$_4$@SiO$_2$-L-proline nanoparticles.

XRD pattern of Fe$_3$O$_4$ and Fe$_3$O$_4$@SiO$_2$-L-proline nanoparticles is indicated in Figure 1. The pattern agrees with the reported pattern for Fe$_3$O$_4$ (JCPDS No. 75-1609). The crystallite size of Fe$_3$O$_4$@SiO$_2$-L-proline was calculated by the Debye–Scherer equation is about 46-50 nm, in good agreement with the result gained by SEM.

The particle size and morphology of Fe$_3$O$_4$@SiO$_2$-L-proline was indicated by SEM. The statistic of results from SEM images exhibit that the average size of Fe$_3$O$_4$@SiO$_2$-L-proline is about 45-50 nm (Figure 2).

Figure 3 displays FT-IR spectra of Fe$_3$O$_4$, Fe$_3$O$_4$@SiO$_2$ and Fe$_3$O$_4$@SiO$_2$-L-proline nanoparticles. The FT-IR spectra of Fe$_3$O$_4$@SiO$_2$ and Fe$_3$O$_4$@SiO$_2$-L-proline nanoparticles show the vibrations of Fe-O at 570-588 cm$^{-1}$. The band at about 1050 cm$^{-1}$ belongs to Si–O stretching vibrations. The peaks that appear at 1042, 1131 and 3320 cm$^{-1}$ are related
to the stretching of C–O, C–N and N-H bonds. A peak appears at about 1720 cm⁻¹ due to the stretching of the C=O group in L-proline.

The magnetic properties of Fe₃O₄, Fe₃O₄@SiO₂ and Fe₃O₄@SiO₂-L-proline were determined using VSM (Figure 4). The amount of saturation magnetization for Fe₃O₄, Fe₃O₄@SiO₂ and Fe₃O₄@SiO₂-L-proline is 59.2, 41.3 and 14.5 emu/g. These results demonstrate that the magnetization property decreases by coating and functionalization.

TGA indicates the thermal stability of the Fe₃O₄@SiO₂-L-proline. These nanoparticles display appropriate thermal stability without a significant decrease in weight (Figure 5). The weight loss at temperatures below 200°C is
owing to the removal of physically adsorbed solvent. The curve indicates a weight loss about 12.7% from 250°C to 600°C, resulting from the decomposition of the organic spacer grafting to the nanoparticles surface.

An EDS spectrum of Fe₃O₄@SiO₂-L-proline (Figure 6) displays that the elemental compositions are carbon, silicon, oxygen, iron and nitrogen.

In order to investigate the size distribution of nanocatalysts, DLS (dynamic light scattering) measurements of the nanoparticles were showed in Figure 7. The size distribution is centered at a value of 49.2 nm. The dispersion for DLS analysis (1.25 g nanocatalyst at 25 mL ethanol) was prepared using an ultrasonic bath (50 W) for 20 min.

Initially, we had optimized different reaction parameters for the preparation of pyrimidines by three-component reactions of 1,3-dimethylbarbituric acid, 4-chlorobenzaldehyde and 4-methoxy aniline as a model reaction. The model reactions were performed using CAN, L-proline, Et₃N, Fe₃O₄, Fe₃O₄@SiO₂ and Fe₃O₄@SiO₂-L-proline nanoparticles. Several reactions were investigated using diverse solvents such as ethanol, water, acetonitrile and dimethylformamide. The best results were achieved in EtOH and we found that the reaction gave satisfying results using Fe₃O₄@SiO₂-L-proline which gave good yields of products (Table 1).

The above results indicate the present catalytic way is extendable to a wide diversity of substrates to create pyrimidines. Investigations of the reaction scope showed that diverse aromatic aldehydes can be utilized in this method (Table 2). Turnover frequency (TOF) for this catalytic system is listed in Table 2.

The reusability of Fe₃O₄@SiO₂-L-proline nanoparticles was investigated for the reaction of 1,3-dimethylbarbituric acid, 4-chlorobenzaldehyde and 4-methoxy aniline. After completion of the reaction, the nanocatalyst was separated using an external magnet. The recovered magnetite nanoparticles were washed several times with ethanol and then dried at room temperature. Figure 8 shows that the nanocatalyst could be reused for six times with a minimal loss of activity.

FT-IR analysis before and after reuse of the Fe₃O₄@SiO₂-L-proline nanoparticles is shown in Figure 9. The nanoparticles remained unchanged before and after reaction. We suppose that, this is also the possible reason for the extreme stability of the Fe₃O₄@SiO₂-L-proline nanoparticles presented herein. The extreme stability of the Fe₃O₄@SiO₂-L-proline nanoparticles is mainspring of the continuous and high catalytic activity.

The proposed mechanism for the reaction is shown in Scheme 3. Initially, 1,3-dimethylbarbituric acid is reacted with aldehyde to form intermediate (I) via condensation reaction. Intermediate (I), in the presence of Fe₃O₄@SiO₂-L-proline, is condensed with aniline derivatives to form intermediate (II). The migration of the hydrogen atom will provide the final product. It is assumed that catalytically active site of catalyst is contains SiO₂ that acts as a Lewis acid and L-proline (−NH−) that acts as a Lewis basic. This proposed mechanism has also been supported by the literature (Fekri et al., 2019; Keshavarz et al., 2018; Safaei-Ghomi et al., 2017).

3 Conclusions

In conclusion, we have developed an effective method for the synthesis of pyrimidines using Fe₃O₄@SiO₂-L-proline. The method offers several advantages containing high yields, cleaner reaction profiles, shorter reaction times, easy availability, reusability of the catalyst and low catalyst loading.
Table 1: Optimization of reaction conditions using different catalysts.

Entry	Solvent (reflux)	Catalyst	Time (min)	Yield (%)
1	EtOH	--------	500	trace
2	EtOH	CAN (4 mol%)	400	22
3	EtOH	Et₃N (10 mol%)	300	35
4	EtOH	L-proline (10 mol%)	150	55
5	EtOH	Fe₃O₄ NP (50 mg)	200	25
6	EtOH	Nano-Fe₃O₄@SiO₂ (20 mol%)	200	33
7	H₂O	Nano-Fe₃O₄@SiO₂-L-proline (8 mg)	120	62
8	DMF	Nano-Fe₃O₄@SiO₂-L-proline (8 mg)	120	70
9	CH₃CN	Nano-Fe₃O₄@SiO₂-L-proline (8 mg)	120	85
10	EtOH	Nano-Fe₃O₄@SiO₂-L-proline (6 mg)	120	90
11	EtOH	Nano-Fe₃O₄@SiO₂-L-proline (8 mg)	120	92
12	EtOH	Nano-Fe₃O₄@SiO₂-L-proline (10 mg)	120	92

a1,3-dimethylbarbituric acid (1 mmol), 4-chlorobenzaldehyde (1 mmol) and 4-methoxy aniline (1 mmol); bIsolated yield

Table 2: Synthesis of pyrimidines by nano-Fe₃O₄@SiO₂-L-proline (8 mg) under reflux condition.

Entry	R (Aldehyde)	R’ (Aniline)	Product	Time (min)	Yield (%)	M.p. (°C)	TOF (min⁻¹)
1	2-NO₂	4-CH₃	4a	150	88	183-185	0.56
2	4-SCH₃	4-OCH₃	4b	150	84	190-192	0.52
3	4-Cl	4-OCH₃	4c	120	92	240-242	0.77
4	3-NO₂	4-CH₃	4d	130	88	188-190	0.68
5	4-NO₂	4-OCH₃	4e	120	93	237-239	0.78
6	2,4-di-Cl	4-CH₃	4f	120	90	198-200	0.75
7	4-F	4-OCH₃	4g	120	89	222-224	0.73
8	4-CH₃	4-CH₃	4h	120	82	205-207	0.66

aIsolated yield

Figure 8: Reusability of Fe₃O₄@SiO₂-L-proline nanoparticles as catalyst for the synthesis of 4c.

Figure 9: FT-IR analysis before and after reuse of the Fe₃O₄@SiO₂-L-proline nanoparticles.

Experimental

Preparation of Fe₃O₄@SiO₂-L-proline nanocatalyst

Firstly, nano-Fe₃O₄@SiO₂ (1 g) were dispersed in dry ethanol (10mL) using an ultrasonic bath for 30 min. Subsequently, L-proline (0.6 g) and H₂SO₄ (1 mL) were added to the solution of Fe₃O₄@SiO₂ (1 g) and heated under reflux conditions. Then, the mixture was stirred for a further 12 h to allow for the completion of the reaction. The resulting magnetic nanoparticles were separated by external magnet and washed with ethanol and water.
before being dried in an oven at 60°C to give Fe₃O₄@SiO₂-L-proline as a light brown powder.

General procedure for the preparation of pyrimidines

A mixture of 1,3-dimethylbarbituric acid (1 mmol), aromatic aldehydes (1 mmol) and 4-methyl aniline or 4-methoxy aniline (1 mmol) and Fe₃O₄@SiO₂-L-proline (8 mg) were heated in EtOH (10 mL) under reflux conditions. The completion of the mixture was monitored by TLC and the catalyst was separated from reaction before work up by an external magnet field. The precipitate was washed with EtOH to afford the pure product.

Spectral data of products

5-((2-amino-5-methylphenyl)(2-nitrophenyl)methyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (4a): Yellow solid; m. p. 183°C-185°C, – IR (KBr): ν = 3323, 3318, 2922, 1689, 1550, 1350 cm–1. – ¹H NMR (400 MHz, [D₆]DMSO): δ (ppm) = 2.99 (s, 3H, CH₃), 3.33 (s, 6H, 2CH₃), 5.33 (d, J = 8.8 Hz, 1H, CH), 5.47 (d, J = 8.8 Hz, 1H, CH), 6.99-7.47 (m, 7H, ArH), 9.18 (s, 2H, NH₂). – ¹³C NMR (100 MHz, [D₆]DMSO): δ (ppm) = 25.15, 31.76, 32.19, 43.73, 54.14, 121.20, 121.21, 125.15, 129.07, 129.11, 136.80, 136.82, 139.08, 142.20, 148.19, 154.19, 170.01.– Analysis for C₂₀H₂₀N₄O₅: calcd. C, 60.60; H, 5.09; N, 14.13, Found C, 60.52; H, 5.03; N, 14.05%.

5-((2-amino-5-methoxyphenyl)(4-(methylthio)phenyl)methyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (4b): Yellow solid; m. p. 190°C-192°C, – IR (KBr): ν = 3414, 2917, 1680, 1490, 1442, 816 cm⁻¹. – ¹H NMR (400 MHz, [D₆]DMSO): δ (ppm) = 2.04 (s, 3H, CH₃), 2.49 (s, 3H, CH₃), 2.81 (s, 6H, 2CH₂), 4.93 (d, J = 9.2 Hz, 1H, CH), 5.10 (d, J = 9.2 Hz, 1H, CH), 6.31-7.23 (m, 9H, ArH and NH₂). – ¹³C NMR (100 MHz, [D₆]DMSO): δ (ppm) = 22.12, 27.90, 28.54, 50.51, 59.12, 64.58, 121.98, 124.92, 125.85, 126.05, 127.54, 127.92, 128.08, 135.05, 138.12, 139.83, 142.53, 148.77, 164.63, 169.61.– Analysis for C₂₁H₂₃N₃O₄S: calcd. C, 61.00; H, 5.61; N, 10.16; S, 7.75, Found C, 59.82; H, 5.15; N, 10.58%.

5-((2-amino-5-methoxyphenyl)(4-chlorophenyl)methyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (4c): Yellow solid; m. p. 240°C-242°C, – IR (KBr): ν = 3343, 2925, 1667, 1493, 528 cm⁻¹. – ¹H NMR (400 MHz, [D₆]DMSO): δ (ppm) = 2.80 (s, 6H, 2CH₂), 2.96 (s, 3H, CH₃), 4.80 (d, J = 10.2 Hz, 1H, CH), 5.12 (d, J = 10.2 Hz, 1H, CH), 6.49-7.43 (m, 9H, ArH and NH₂). – ¹³C NMR (100 MHz, [D₆]DMSO): δ (ppm) = 22.12, 27.98, 28.54, 44.90, 51.50, 59.15, 113.49, 117.32, 120.31, 129.84, 130.19, 135.51, 138.42, 139.83, 142.53, 148.77, 164.63, 169.61.– Analysis for C₂₀H₂₀ClN₃O₄: calcd. C, 59.78; H, 5.02; N, 10.46, Found C, 59.82; H, 5.15; N, 10.58%.

5-((2-amino-5-methylphenyl)(3-nitrophenyl)methyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (4d): Yellow solid; m. p. 188°C-190°C, – IR (KBr): ν = 1350 cm⁻¹. – IR (KBr): ν = 3405, 2917, 1681, 1532, 1512 cm⁻¹. – ¹H NMR (400 MHz, [D₆]DMSO): δ (ppm) = 2.06 (s, 3H, CH₃), 2.75 (s, 3H, CH₃), 2.77 (s, 3H, CH₂), 5.06 (d, J = 8.8 Hz, 1H, CH), 5.33 (d, J = 8.8 Hz, 1H, CH), 6.31-8.26 (m, 9H, ArH and NH₂). – ¹³C NMR (100 MHz, [D₆]DMSO): δ (ppm) = 20.78, 27.98, 28.66, 49.32, 64.11, 122.02, 123.51, 124.77, 125.15, 128.07, 130.44, 130.77, 134.56, 138.86, 139.55, 142.78, 142.20, 145.13, 153.01, 157.49, 161.96.– Analysis for C₂₀H₂₀N₄O₅: calcd. C, 60.60; H, 5.02; N, 14.13, Found C, 60.75; H, 5.19; N, 14.25%.

5-((2-amino-5-methoxyphenyl)(4-nitrophenyl)methyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (4e): Yellow solid; m. p. 237°C-239°C, – IR (KBr): ν = 3405, 2916, 1681, 1532, 1512 cm⁻¹. – ¹H NMR (400 MHz, [D₆]DMSO): δ (ppm) = 2.79 (s, 6H, 2CH₂), 3.51 (s, 3H, CH₃), 4.99 (d, J = 8.2 Hz, 1H, CH), 5.36 (d, J = 8.2 Hz, 1H, CH), 6.70-8.25 (m, 9H, ArH and NH₂). – ¹³C NMR (100 MHz, [D₆]DMSO): δ (ppm) = 28.01, 28.69, 50.06, 55.69, 59.15, 113.50, 113.63, 116.23, 122.30, 123.99, 129.14, 132.01, 132.09,
Acknowledgement: The authors are grateful to University of Kashan for supporting this work by Grant NO: 159196/XXI.

References

Andrews P.R., Jones G.P., Lodge D., Convulsant, anticonvulsant and anaesthetic barbiturates. 5-Ethyl-5-(3'-methyl-but-2'-enyl)-barbituric acid and related compounds. Eur. J. Pharmacol., 1979, 55, 115-120.

Azzam S.H.S., Pasha M.A., Microwave-assisted, mild, facile, and rapid one-pot three-component synthesis of some novel pyranoyl[2,3-d]pyrimidine-2, 4, 7-triones. Tetrahedron Lett., 2012, 53, 7056-7059.

Barakat A., Islama M.S., Al-Majid A.M., Ghabbour H.A., Yousuf S., Ashraf M., et al., Synthesis of pyrimidine-2, 4, 6-trione derivatives: Anti-oxidant, anti-cancer, α-glucosidase, β-glucuronidase inhibition and their molecular docking studies. Bioorg. Chem., 2016, 68, 72-79.

Barakat A., Soliman S.M., Al-Majid A.M., Loffy G., Ghabbour H.A., Fun H.K., et al., Synthesis and structure investigation of novel pyrimidine-2, 4, 6-trione derivatives of highly potential biological activity as anti-diabetic agent. J. Mol. Struct., 2015, 1098, 365-376.

Chen Y., Wang Y., Zhang H.B., Li X., Gui C.X., Yu Z.Z., Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles. Carbon, 2015, 82, 67-76.

Deatsch A.E., Evans B.A., Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater., 2014, 354, 163-172.

Dhorajiya B.D., Dhola kiya B.Z., Mohareb R.M., Hybrid probes of aromatic amine and barbituric acid: highly promising leads for anti-bacterial, anti-fungal and anti-cancer activities. Med. Chem. Res., 2014, 23, 3941-3952.

Elsayed I., Mashaly M., Eltaweel F., Jackson M.A., Hassana E.B., Dehydration of glucose to 5-hydroxymethylfurfural from a core-shell Fe304@SiO2-S03H magnetic nanoparticle catalyst. Fuel, 2018, 221, 407-416.

Fakheri-Vayeghan S., Abdolmohammedi S., Kia-Kojouri R., An expedientsynthesis of6-amino-5-(4-hydroxy-2-oxo-2H-chromen-3-yl)(aryl)methyl-1,3-dimethyl 2,4,6(1H,3H)-pyrimidinedione derivatives using Fe3O4@TiO2 nanocomposite as an efficient, magnetically separable, and reusable catalyst. Z. Naturforsch. B., 2018, 73, 545-551.

Fekri L.Z., Nikpassand M., Khakshoor S.N., Green, effective and chromatography free synthesis of benzoimidazo[1,2-al]pyrimidine and tetrahydrobenzo[b] [4,5]imidazo[1,2-d] quinazolin-1(2H)-one and their pyrazolyl moiety using Fe3O4@SiO2@L-proline reusable catalyst in aqueous media. J. Organomet. Chem., 2019, 894, 18-27.

Huang J., Li Y., Orza A., Lu Q., Guo P., Wang L., et al., Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches. Adv. Funct. Mater., 2016, 26, 3818-3836.

Keshavarz M., Ahmady A.Z., Vaccaro L., Kardani M., Non-covalent supported of L-proline on graphene oxide/Fe3O4 nanocomposite: magnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles. Carbon, 2015, 82, 67-76.
an efficient heterogeneous nanocatalyst. RSC Adv., 2014, 4, 64169-64173.

Maleki A., Green oxidation protocol: selective conversions of alcohols and alkenes to aldehydes, ketones and epoxides by using a new multiwall carbon nanotube-based hybrid nanocatalyst via ultrasound irradiation. Ultrason. Sonochem., 2018, 40, 460-464.

Maleki A., Paydar R., Bionanostructure-catalyzed one-pot three-component synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives under solvent-free conditions. React. Funct. Polym., 2016, 109, 120-124.

Maleki A., Aghaei M., Ultrasonic assisted synergetic green synthesis of polycyclic imidazo (thiazolo)pyrimidines by using Fe3O4@clay core-shell. Ultrason. Sonochem., 2017, 38, 585-589.

Maleki A., Firouzi-Haji R., Hajizadeh Z., Magnetic guanidinylated chitosan nanobiocomposite: A green catalyst for the synthesis of 1,4-dihydropyridines. Int. J. Biol. Macromol., 2018a, 116, 320-326.

Maleki A., Firouzi-Haji R., L-Proline functionalized magnetic nanoparticles: A novel magnetically reusable nanocatalyst for one-pot synthesis of 2,4,6-triarylpiperidines. Sci. Rep.-UK, 2018, 8, 17303-17310.

Maleki A., Hajizadeh Z., Firouzi-Haji R., Eco-friendly functionalization of magnetic halloysite nanotube with SO3H for synthesis of dihydropyrimidinones. Micropor. Mesopor. Mat., 2018b, 259, 46-53.

Panahi F., Yousefi R., Mehraban M.H., Khalafi-Nezhad A., Synthesis of new pyrimidine-fused derivatives as potent and selective antidiabetic α-glucosidase inhibitors. Carbohydr. Res., 2013, 380, 81-91.

Rahmati A., Khalesi Z., A one-pot, three-component synthesis of spiro [indoline-isoxazolo [4′, 3′ : 5, 6] pyrido [2, 3-d] pyrimidine] triones in water. Tetrahedron, 2012, 68, 8472-8479.

Safaei-Ghomi J., Aghagoli R., Shahbazi-Alavi H., Synthesis of hexahydro-4-phenylquinoline-3-carbonitriles using Fe3O4@SiO2-SO3H nanoparticles as a superior and retrievable heterogeneous catalyst under ultrasonic irradiations. Z. Naturforsch. B., 2018, 73, 269-274.

Safaei-Ghomi J., Nazemzadeh S.H., Shahbazi-Alavi H., Synthesis of propargylamines catalyzed by nano-colloidal silica-tethered polyhedral oligomeric silsesquioxanes with eight branches of 3-aminopropyltriethoxysilane as an efficient catalyst. Main Group Met. Chem., 2017, 40, 129-135.

Shaabani A., Soleiman E., Maleki A., One-pot three-component synthesis of 3-aminoimidazo [1,2-a]pyridines and -pyrazines in the presence of silica sulfuric acid. Monatsh. Chem., 2007, 138, 73-76.

Shaabani A., Seyyedhamzeh M., Maleki A., Hajishaabanha F., Diketene as an alternative substrate for a new Biginelli-like multicomponent reaction: one-pot synthesis of 5-carboxamide substituted 3,4-dihydropyrimidine-2(1H)ones. Tetrahedron, 2010, 66, 4040-4042.

Shaabani A., Seyyedhamzeh M., Maleki A., Behnam M., Rezazadeh F., Synthesis of fully substituted pyrazolo[3,4-b]pyridine-5-carboxamide derivatives via a one-pot four-component reaction. Tetrahedron Lett., 2009, 50, 2911-2913.

Sharma M., Kaur M., Verma P., Design, synthesis and anticancer activities of hybrids of indole and barbituric acids – Identification of highly promising leads. Bioorg. Med. Chem. Lett., 2009, 19, 3054-3058.

Shin T.H., Choi Y., Kim S. Cheon J., Recent advances in magnetic nanoparticle-based multi-modal imaging. J. Chem. Soc. Rev., 2015, 44, 4501-4516.

Tietze R., Zaloga J., Unterweger H., Lyer S., Friedrich R.P., Janko C., et al., Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun., 2015, 468, 463-470.

Zhang Q., Su H., Luo J., Wei Y., A magnetic nanoparticle supported dual acidic ionic liquid: a “quasi-homogeneous” catalyst for the one-pot synthesis of benzoxanthenes. Green Chem., 2012, 14, 201-208.

Zheng X., Luo S., Zhang L., Cheng J.P., Magnetic nanoparticle supported ionic liquid catalysts for CO2 cycloaddition reactions. Green Chem., 2009, 11, 455-458.