Deterministic Remote Entanglement of Superconducting Circuits through Microwave Two-Photon Transitions
P. Campagne-Ibarcq, E. Zalys-Geller, A. Narla, S. Shankar, P. Reinhold, L. Burkhart, C. Axline, W. Pfaff, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret
Phys. Rev. Lett. 120, 200501 — Published 16 May 2018
DOI: 10.1103/PhysRevLett.120.200501
Deterministic remote entanglement of superconducting circuits through microwave two-photon transitions

P. Campagne-Ibarcq,* E. Zalys-Geller, A. Narla, S. Shankar, P. Reinhold, L. Burkhart, C. Axline, W. Pfaff, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret†

Department of Applied Physics, Yale University

(Dated: March 27, 2018)

Large-scale quantum information processing networks will most probably require the entanglement of distant systems that do not interact directly. This can be done by performing entangling gates between standing information carriers, used as memories or local computational resources, and flying ones, acting as quantum buses. We report the deterministic entanglement of two remote transmon qubits by Raman stimulated emission and absorption of a traveling photon wavepacket.

We achieve a Bell state fidelity of 73%, well explained by losses in the transmission line and decoherence of each qubit.

INTRODUCTION

Entanglement, which Schroedinger described as "the characteristic trait of quantum mechanics" [1], is instrumental for quantum information science applications such as quantum cryptography and all the known pure-state quantum algorithms [2]. Two distant systems Alice and Bob can be entangled if they interact locally with a third traveling system acting as a mediator. Since they can travel over long distances, photons are natural candidates for this role [3].

Remote entanglement was first demonstrated between two atomic clouds [4] traversed by a light beam measuring non-destructively a joint property. The difficulty of this scheme is to render the extracted information from the two systems indistinguishable. Superconducting circuit implementations [5, 6] also face this issue. Another protocol, widely used in trapped ions [7], solid-state spin qubits [8], quantum dots [9] and superconducting circuits [10] relies on the simultaneous emission of photons by both Alice and Bob, either through fluorescence or stimulated Raman emission. Entanglement is then heralded by detection of one of these photons, whose origin is erased by recombining them on a beam-splitter. This scheme is robust, in particular against photon losses, as long as the photons are indistinguishable to the detector. It should be possible to entangle in this way two arbitrary nodes of a network for modular quantum computing [11–13]. But can we build an even simpler remote entangler, which would not require a which-path eraser and detector?

As depicted in Fig. 1a, a minimal protocol consists of entangling Alice with a propagating electromagnetic field – for instance by concurrently exciting the standing system and a photon in this field – whose state is then swapped to Bob. Entanglement of atomic clouds using this method was reported in ref. [14], albeit with very low success probability. On the other hand, deterministic generation of entanglement requires an efficient absorption by one node of the field emitted by the other, which is also desirable to propagate information through a network.

Efficient absorption by the receiving node requires to shape the “pitched” wavepacket by controlling the emission rate in time at the emitting node [15, 16]. In circuit-QED, many experiments [17–21] have focused on pitching a rising exponential wavepacket, which can be easily absorbed [22–25] by the receiver. Another approach [15, 26] consists of modulating both the emitter and receiver couplings to the transmission channel in time to pitch and catch a time-symmetric wavepacket. While efforts were made in that direction [27–29], the full protocol has not been demonstrated so far [30].

In this letter, we report deterministic entanglement generation between two distant transmon superconducting qubits using such a scheme. We employed microwave pumps to concurrently and coherently excite a transmon and a photon in a buffer resonator [10, 20]. The photon leaks out in a transmission line, and after traveling along ~ 1 m cable and through microwave components, is captured by a second transmon qubit with a similar scheme. The entanglement purity is limited by photon losses in the line, which could be corrected for by purification [31, 32], and intrinsic decoherence of each qubit, which could also be improved.

DRIVING A TWO-PHOTON TRANSITION

The experimental setup is schematically depicted in Fig. 1b. Two superconducting transmon qubits [33], Alice and Bob, are embedded in two indium-plated copper cavities, anchored to the base stage of a dilution refrigerator (see [10, 34] for device fabrication and setup details). The photon damping rate $\kappa = 2\pi \times 1 \text{ MHz}$ for the lowest energy mode of each cavity is set by relaxation through a well-coupled port into a common microwave transmission line, which dominates over both the internal losses and relaxation through a second port. This last port is used to apply resonant microwave
FIG. 1. a) Minimal logical circuit for remote entanglement. Alice is entangled with the ancillary system C by a Hadamard and a CNOT gate. The information propagates to C' (green wave) where it is swapped to Bob. b) Setup schematics and c) energy level diagram. Two transmon qubits Alice (in dark blue, dressed frequency $\tilde{\omega}_{qA}$, see text for details) and Bob (in red, dressed frequency $\tilde{\omega}_{qB}$) are dispersive coupled to two resonant cavities (in green, dispersive couplings $\chi_{A,B}$). The cavities lowest energy modes are frequency matched ($\tilde{\omega}_{cA}-\chi_{A} \approx \tilde{\omega}_{cB}$) and are strongly coupled to a directional transmission line routing photons from Alice to Bob. By simultaneously driving Alice (Bob) with the detuned purple microwave at ω_{1A} (ω_{1B}) and her cavity with the detuned light blue microwave at ω_{2A} (ω_{2B}), we drive a Raman-type two-photon transition. For Alice, we choose $\omega_{1A} + \omega_{2A} = \tilde{\omega}_{qA} + \tilde{\omega}_{cA} - \chi_{A}$ to resonantly drive $|\tilde{g}0\rangle \leftrightarrow |\tilde{e}1\rangle$ (see (c) left diagram). A photon can eventually be emitted in the line (green wave). The wavepacket is shaped by modulating the pump amplitude. This photon is absorbed by Bob by driving $|\tilde{g}1\rangle \leftrightarrow |\tilde{e}0\rangle$ with $\omega_{2B} - \omega_{1B} = \tilde{\omega}_{cB} - \tilde{\omega}_{qB}$ (right diagram). After a full photon pitch and catch, the system is in $|\tilde{e}0\rangle_{A}|\tilde{e}0\rangle_{B}$ (in magenta). After a “half” pitch, the qubits are entangled.

where c and q are the annihilation operators for the cavity and qubit modes, α is the anharmonicity of the transmon mode, χ the dispersive shift [38], and $\tilde{\omega}_{q}(t)$ and $\tilde{\omega}_{c}(t)$ are the Stark shifted frequencies of the transmon and cavity modes in presence of the pumps. These dressed frequencies and the squeezing and conversion strengths $g_{s}(t)$ and $g_{c}(t)$ are slow varying compared to Δ and read

\begin{align}
\hat{\tilde{\omega}}_{q} &= \omega_{q} - \chi|\xi_{2}|^{2} - 2\alpha|\xi_{1}|^{2} \\
\hat{\tilde{\omega}}_{c} &= \omega_{c} - \chi|\xi_{1}|^{2} \\
g_{s} &= \chi\xi_{1}\xi_{2} \\
g_{c} &= \chi\xi_{1}\xi_{2}^{*}
\end{align}

Here, ω_{q} and ω_{c} are the frequencies in the absence of the pumps. ξ_{1} and ξ_{2} are the effective pump amplitudes – which correspond to the frame displacements used to get to Eq. (1) – and are proportional to the amplitude of the pump tones. Note that since the cavity mode is only weakly anharmonic, we have neglected a frequency shift of the cavity mode proportional to $|\xi_{2}|^{2}$ [34].

The conversion or squeezing process (red or blue sideband) can be selected by setting either

\begin{align}
\hat{\tilde{\omega}}_{q} + \hat{\tilde{\omega}}_{c} - \chi &= \omega_{1} + \omega_{2} & \rightarrow & |\tilde{g}0\rangle \leftrightarrow |\tilde{e}1\rangle \\
\hat{\tilde{\omega}}_{q} - \hat{\tilde{\omega}}_{c} &= \omega_{1} - \omega_{2} & \rightarrow & |\tilde{g}1\rangle \leftrightarrow |\tilde{e}0\rangle
\end{align}

in driving the two-photon transition. The resonance condition Eq. (3a) is used for Alice. As shown by the energy-level diagram of Fig. 1, this pumping, combined with the cavity dissipation, eventually brings the system to the state $|\tilde{e}0\rangle$ (highlighted in magenta). If the qubit is initially in $|\tilde{g}1\rangle$, a photon is emitted in the line (green wave). Conversely, the resonance condition Eq. (3b) is used for Bob, and if the qubit is initially in $|\tilde{g}1\rangle$, it can absorb the incoming photon and excite to $|\tilde{e}1\rangle$ (level highlighted in magenta), provided that the photon is resonant with the cavity frequency. This is made possible by designing the two cavities so that their transition nearly match ($\omega_{cA} - \chi - \omega_{cB}/2\pi = 100$ kHz), and by modulating the amplitude and frequency of the pumps in time (see Fig. 3a), in order to shape the pitched wavepacket and to catch it efficiently. Accurate control of the drive strengths while matching the resonance conditions (3) is the main difficulty of this experiment. First, we must determine the unknown scaling factor linking the amplitude of the applied pumps to the effective amplitudes $\xi_{1,2,4,2,1,2,2B}$. This is done by measuring the shift of the qubit transition peaks in presence of the pumps and using Eq. (2a), or any other quantity predicted by Eqs. (2). Such spectroscopic measurements are presented in [34]. While the Stark
FIG. 2. Top panels Rabi oscillations when driving a two-photon transition for a varying duration \(t_{\text{pulse}} \) are recorded in the qubit excited state populations (dots). Alice is initialized in \(|g\rangle \) and Bob in \(|e\rangle \). The pump amplitude values \(\xi_1 \) and \(\xi_2 \) are calibrated through Stark-shift measurements (see text and [34]). As for all population measurements presented in this letter, statistical error bars are smaller than the dots size. Lines are fits for the two-photon drive strengths \(g_s \) and \(g_c \). Inset: Pulse sequence schematics. Pump pulse edges are smoothed to 128 ns and the pump 1 pulse is 100 ns longer for accurate control of the drive ramp up and down. Bottom panels The extracted drive strengths are plotted when varying \(\xi_2 \) (dots, the green stars are from the top panel fits). For each point, the cavity pump frequency is tuned to match the resonance condition Eq. (3). Lines are linear fits of the non-saturated regions and their slopes are used as a calibration for the release and capture of a shaped photon. Dashed black lines are the drive strengths \(g_{s,c} = \chi|\xi_1\xi_2| \) predicted from Stark-shift calibration of \(\xi_{1,2} \) [34].

shifts display a characteristic linear dependence in the pump powers, some of the predictions from Eqs. (2) do not agree quantitatively (a detailed analysis is presented in [34]). In practice, we use an empirical approach. The amplitude of the two-photon drives being determined by the product of the pump amplitudes, we set \(\xi_1 \) and \(\omega_1 \) at a constant value. The cavity frequency is then fixed (see Eq. (2b)), and so is the frequency of the released photon. To vary \(g_s \) or \(g_c \), we only vary \(\xi_2 \) and change accordingly the frequency \(\omega_2 \) to fulfill the resonance condition (3).

Following this protocol, we record Rabi oscillations of these two-photon transitions, presented on Fig. 2. The qubits are first initialized in \(|g\rangle \) (Alice) or \(|e\rangle \) (Bob) by single-shot dispersive measurement using a near quantum-limited Josephson Parametric Converter [39, 40] (JPC) and fast feedback control [41, 42]. We then drive the two-photon transition for a varying time \(t_{\text{pulse}} \). For Alice, we record an oscillation in the excited state population decaying to 1 at a rate \(\kappa \), as \(|e\rangle \) is a dark state in presence of cavity dissipation (see Fig. 1). The edges of the pulses are smoothed as depicted in the top right inset so that the oscillation does not start at \(P_e = 0 \). We can fit this oscillation with \(g_s \) as the only free parameter by solving a quantum Langevin equation [34, 43] on the qubit and cavity modes. Inversely, for Bob (right panel), the excited state population decays to 0. Note that this feature can be used for efficient cooling of the qubits before the experiment [34, 44]. In both cases, we then repeat the measurement when varying \(\xi_2 \). The extracted values of \(g_s \) and \(g_c \) display the expected linear dependence at low pump power (lines are linear fits) and are in good agreement with predictions from Eqs. (2c,2d) with the values of \(\xi_1 \), \(\xi_2 \) and dispersive shifts \(\chi_A/2\pi = 8.3 \text{ MHz, } \chi_B/2\pi = 3.3 \text{ MHz} \) extracted from spectroscopic measurements [34] (dashed black lines). This provides an accurate calibration of the drive strengths at low pump amplitude. Saturation for stronger drives is mainly attributed to non-ideal behavior of the mixers used to generate the pulses. Our model also neglected some non-linear effects such as the anharmonicity inherited by the cavity mode [34] and the non confining nature of the transmon cosine potential. For the actual release and capture presented in next sections, we use smaller values of \(\xi_1 = 0.11 \) and \(\xi_2 < 1 \) (see [34] for the corresponding Rabi oscillations) as the qubit coherence times were degraded at larger drive amplitude. This unexpected effect may originate from the aforementioned non idealities, compounded by the small pump detuning \(\Delta \) – limited by our pulse generation scheme (see Fig. S1 in [34]) – compared to the transmon anharmonicity (\(\Delta < \alpha_{A,B} \sim 2\pi \times 200 \text{ MHz} \)).

EXCITATION TRANSFER

After calibrating the drive strengths, we turn to the task of generating a photon with Alice and capturing it with Bob. We choose the traveling wavepacket to be time-symmetric [15], Gaussian-shaped for spectral resolution, and with as short a characteristic time \(\sigma = 800 \text{ ns} \) as permitted by the aforementioned maximum pump amplitudes. We also scale the wavepacket to contain one photon. With these constraints, the value of \(g_s \) and \(g_c \) required for the transfer are computed using a method adapted from [26] and described in detail in [34]. Note that beyond the slowly varying envelopes represented on Fig. 3a, the pump 2 pulses are modulated at \(\omega_2 \) and chirped to match the resonance conditions Eq. (2) at all times.

Unlike the ideal case of two perfectly frequency-aligned cavities [15], Alice and Bob’s control are not time-symmetric of one another. Indeed, to compensate for the small cavity mismatch, we modify Alice’s resonance condition Eq. (3a), so that the pitched wavepacket does not rotate in Bob’s frame. The resulting control \(g_s \) is slowly...
rotating and has a larger amplitude to compensate for this detuning. More generally, frequency mismatch of the order of a cavity linewidth would be tolerable when performing operations between two nodes of a network, at the expense of using larger drive amplitudes.

The photon transfer is validated by measuring the qubit populations in time (Fig. 3b), which reveals a transfer efficiency of 70 %, when not correcting for any experimental imperfections. After calibrating those through independent measurements [34], we reproduce the results with 1 % accuracy by performing full cascaded quantum system simulations [43] (lines). The dominant error sources are decoherence of the qubits (11 % error) and photon loss in the line (15 % error) [34]. This last figure is obtained by measurement induced dephasing and confirmed by measuring the fraction of the traveling wavepacket power actually absorbed by Bob during the transfer (see [34]).

REMOTE ENTANGLEMENT

We now turn to the task of entangling Alice and Bob. This is done by first having Alice release “half” of a photon and thus getting entangled with the traveling mode in the state \(|g0⟩ + |e1⟩⟩\sqrt{2}\), which corresponds to the Hadamard and CNOT gates in Fig. 1a. This operation is followed by a swap gate between the traveling mode and Bob, which corresponds to the same capture sequence as for the excitation transfer. The controls are determined with the same constraints but scaling the pitched wavepacket to contain 1/2 photon on average. The amplitude of \(g_0\) in this case is smaller than for the full release, so that we can use a traveling wavepacket with a reduced characteristic time \(σ = 450\) ns. We plot the measured populations of Alice and Bob during the transfer on Fig. 4a (red and blue dots), which agree with the simulation predictions (lines) performed with the same parameters. We also plot the measured correlator \(Z_AZ_B\) where \(Z = 2|e⟩⟨e| - 1\) between these measurements (green dots). When considering the correlations after correcting for readout errors (dashed lines), we find that at final time the actual occupation of the excited state is \(P(|e⟩) = 0.5\) and the actual correlator is \(Z_AZ_B = 2P(|e⟩)\) (within 1 %), which implies that Bob is excited only if Alice is. In other words, as a photon detector, Bob’s false positive probability beyond dispersive readout imperfections is below our detection precision. This property is crucial in non-deterministic entangling schemes, where the catch protocol could be used to perform single microwave photon detection [10, 45, 46].

Finally, we perform full tomography of the final joint state of Alice and Bob by rotating the qubits to measure all Pauli operators \(X, Y\) and \(Z\) and their correlators. After rotating the \((X_B, Y_B)\) basis to compensate for the \(a\) priori unknown but deterministic differential phase accumulated by control and pump pulses along the input lines, one can directly compute the density matrix following \(ρ = 1/4∑_{α,β∈\{X, Y, Z\}}⟨αAβB⟩meas\) \(αA ⊗ βB\). The fidelity to the target Bell state \(|Φ_+⟩ = (|gg⟩ + |ee⟩)/√2\) is found to be \(F = Tr(ρ|Φ_+⟩⟨Φ_+|) = 73\) %, well above the entanglement threshold \(F = 1/2\). Once again, the measured density matrix (colorbars on Fig. 4b, see [34] for a full representation of the two-qubit state Pauli vector components) is in quantitative agreement with simulation predictions (black transparent bars). The contribution of each experimental imperfection to the
infidelity $1 - F$ is detailed in [34].

In this experiment, we have implemented a simple protocol to perform reliable operations between standing qubits and arbitrarily shaped traveling photons. The method was used to generate fast (2.5 μs) remote entanglement of two qubits separated by ~ 1 m microwave cables and a circulator. This protocol could be readily extended to entangle larger systems in order to detect photon loss in the transmission line [14, 31, 32]. Moreover, by controlling the traveling photon wavepacket shape in frequency, the signal from one cavity could be routed to another arbitrary one connected on the same line. All these features are important primitives on the path to a reliable modular quantum computing architecture [13] or quantum internet [11].

The authors thank Z. Leghtas, A. Grimm and S. Touzard for helpful discussions, and M. Rooks for fabrication assistance. Facilities use was supported by the Yale Institute for Nanoscience and Quantum Engineering (YINQE), the National Science Foundation (NSF) MR-SEC DMR 1119826, and the Yale School of Engineering (YINQE), the National Science Foundation (NSF) MR-SEC DMR 1119826, and the Yale School of Engineering and Applied Sciences cleanroom. This research was supported by the U.S. Army Research Office (Grant No. W911NF-14-1-0011), and the Multidisciplinary University Research Initiative through the U.S. Air Force Office of Scientific Research (Grant No. FA0002-10-1-0035). L.B. acknowledges support of the ARO QuaCGR Fellowship.

* philippe.campagne-ibarcq@yale.edu
† michel.devoret@yale.edu

[1] Erwin Schrödinger. Discussion of probability relations between separated systems. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 31, pages 555–563. Cambridge University Press, 1935.

[2] Richard Jozsa and Noah Linden. On the role of entanglement in quantum-computational speed-up. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 459, pages 2011–2032. The Royal Society, 2003.

[3] Julian Hofmann, Michael Krug, Norbert Ortega, Lea Gérard, Markus Weber, Benjamin Rosenfeld, and Harold Winful. Heralded entanglement between widely separated atoms. Science, 337(6090):72–75, 2012.

[4] Brian Juksgaard, Alexander Kozhekin, and Eugene S Polzik. Experimental long-lived entanglement of two macroscopic objects. Nature, 413(6854):400–403, 2001.

[5] Nicolas Roch, Mollie E Schwartz, Felix Motzoi, Christopher Macklin, Rajamani Vijay, Andrew W Edkins, Alexander N Korotkov, K Birgitta Whaley, Mohan Sarovar, and Irfan Siddiqi. Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits. Physical review letters, 112(17):176501, 2014.

[6] C Dickel, JJ Westdorp, NK Langford, S Peiter, R Sagastizabal, A Bruno, B Criger, F Motzoi, and L Di Carlo. Chip-to-chip entanglement of transmon qubits using engineered measurement fields. Physical Review B, 97(6):064508, 2018.

[7] DL Moehring, P Maunz, S Olmschenk, KC Young, DN Matsukevich, L-M Duan, and C Monroe. Entanglement of single-atom quantum bits at a distance. Nature, 449(7458):68–71, 2007.

[8] Hannes Bernien, Bas Hensen, Wolfgang Pfaff, Gerwin Koolstra, MS Blok, Lucio Robledo, TH Taminiau, Matthew Markham, DJ Twitchen, Lilian Coldridge, et al. Heralded entanglement between solid-state qubits separated by three metres. Nature, 497(7447):86–90, 2013.

[9] Aymeric Delteil, Zhe Sun, Wei-bo Gao, Emre Togan, Stefan Faelt, and Atac Imamoglu. Generation of heralded entanglement between distant hole spins. Nature Physics, 12(3):218–223, 2016.

[10] A Narla, S Shankar, M Hatridge, Z Leghtas, KM Shiva, E Zalys-Geller, SO Mundhada, W Pfaff, L Frunzio, RJ Schoelkopf, et al. Robust concurrent remote entanglement between two superconducting qubits. Physical Review X, 6(3):031036, 2016.

[11] H Jeff Kimble. The quantum internet. Nature, 453(7198):1023–1030, 2008.

[12] L-M Duan and Christopher Monroe. Colloquium: Quantum networks with trapped ions. Reviews of Modern Physics, 82(2):1209, 2010.

[13] C Monroe, R Raussendorf, A Ruthven, KR Brown, P Maunz, L-M Duan, and J Kim. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Physical Review A, 89(2):022317, 2014.

[14] DN Matsukevich, Thierry Chaneliere, SD Jenkins, S-Y Lan, TAB Kennedy, and Alex Kuzmich. Entanglement of remote atomic qubits. Physical review letters, 96(3):030405, 2006.

[15] Juan Ignacio Cirac, Peter Zoller, H Jeff Kimble, and Hideo Mabuchi. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Physical Review Letters, 78(16):3221, 1997.

[16] Matthias Keller, Birgit Lange, Kazuhiro Hayasaka, Wolfgang Lange, and Herbert Walther. Continuous generation of single photons with controlled waveform in an iontrap cavity system. Nature, 431(7012):1075–1078, 2004.

[17] AA Houck, DI Schuster, JM Gambetta, JA Schreier, BR Johnson, JM Chow, L Frunzio, J Majer, MH Devoret, SM Girvin, et al. Generating single microwave photons in a circuit. Nature, 449(7160):328–331, 2007.

[18] Srikanth J Srinivasan, Neereja M Sundaresan, Darsh Sadri, Yanbing Liu, Jay M Gambetta, Terri Yu, SM Girvin, and Andrew A Houck. Time-reversal symmetrization of spontaneous emission for quantum state transfer. Physical Review A, 89(3):033857, 2014.

[19] M Pechal, L Huthmacher, C Eichler, S Zeytinoglu, AA Abdumalikov Jr, S Berger, Andreas Wallraff, and S Filipp. Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics. Physical Review X, 4(4):041010, 2014.

[20] William F Kindel, MD Schroer, and KW Lehnert. Generation and efficient measurement of single photons from fixed-frequency superconducting qubits. Physical Review A, 93(3):033817, 2016.

[21] Wolfgang Pfaff, Christopher J Axline, Luke D Burkhart, Uri Vool, Philip Reinhold, Luigi Frunzio, Liang Jiang, Michel H Devoret, and Robert J Schoelkopf. Controlled
release of multiphoton quantum states from a microwave cavity memory. Nature Physics, 2017.

[22] TA Palomaki, JW Harlow, JD Teufel, RW Simmonds, and KW Lehnert. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature, 495(7440):210–214, 2013.

[23] J Wenner, Yi Yin, Yu Chen, R Barends, B Chiaro, E Jeffrey, J Kelly, A Megrant, JY Mutus, C Neill, et al. Catching time-reversed microwave coherent state photons with 99.4% absorption efficiency. Physical Review Letters, 112(21):210501, 2014.

[24] Mathieu Pior, Ida-Marie Svensson, Sankar Raman Sathyamoorthy, Göran Johansson, and Per Delsing. Storage and on-demand release of microwaves using superconducting resonators with tunable coupling. Applied Physics Letters, 104(23):232604, 2014.

[25] Emmanuel Flurin, Nicolas Roch, Jean-Damien Pillet, François Mallet, and Benjamin Huard. Superconducting quantum node for entanglement and storage of microwave radiation. Physical review letters, 114(9):090503, 2015.

[26] Alexander N Korotkov. Flying microwave qubits with nearly perfect transfer efficiency. Physical Review B, 84(1):014510, 2011.

[27] Yi Yin, Yu Chen, Daniel Sank, PJJ Malley, TC White, R Barends, J Kelly, Erik Lucero, Matteo Mariantoni, A Megrant, et al. Catch and release of microwave photon states. Physical review letters, 110(10):107001, 2013.

[28] RW Andrews, AP Reed, K Cicak, JD Teufel, and KW Lehnert. Quantum-enabled temporal and spectral mode conversion of microwave signals. Nature communications, 6, 2015.

[29] Kumihiro Inomata, Zhirong Lin, Kazuki Koshino, William D Oliver, Jaw-Shen Tsai, Tsuyoshi Yamamoto, and Yasunobu Nakamura. Single microwave-photon detector using an artificial [lambda]-type three-level system. Nature communications, 7, 2016.

[30] During this letter writing, similar results were reported by two other groups [47, 48].

[31] Charles H Bennett, Gilles Brassard, Sandu Popescu, Benjamin Schumacher, John A Smolin, and William K Wootters. Purification of noisy entanglement and faithful teleportation via noisy channels. Physical review letters, 76(5):722, 1996.

[32] Norbert Kalb, Andreas A Reiserer, Peter C Humphreys, Jacob JW Bakermans, Sten J Kamerling, Naomi H Nickerson, Simon C Benjamin, Daniel J Twitchen, Matthew Markham, and Ronald Hanson. Entanglement distillation between solid-state quantum network nodes. Science, 356(6341):928–932, 2017.

[33] Hanhee Paik, DI Schuster, Lev S Bishop, G Kirchmair, G Catelani, AP Sears, BR Johnson, MJ Reagor, L Frunzio, LI Glazman, et al. Observation of high coherence in josephson junction qubits measured in a three-dimensional circuit qed architecture. Physical Review Letters, 107(24):240501, 2011.

[34] See Supplementary Material for system characterization, details of the experimental setup and control pulses generation algorithm, which includes Refs. [49–51].

[35] A Wallraff, DI Schuster, A Blais, JM Gambetta, J Schreier, L Frunzio, MH Devoret, SM Girvin, and RJ Schoelkopf. Sideband transitions and two-tone spectroscopy of a superconducting qubit strongly coupled to an on-chip cavity. Physical Review Letters, 99(5):050501, 2007.

[36] Mayzor Mirrahimi, Zaki Leghtas, Victor V Albert, Steven Touzard, Robert J Schoelkopf, Liang Jiang, and Michel H Devoret. Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New Journal of Physics, 16(4):045014, 2014.

[37] Zaki Leghtas, Steven Touzard, Ioan M Pop, Angela Kou, Brian Vlastakis, Andrei Petrenko, Katrina M Sliwa, Anirudh Narla, Shyam Shankar, Michael J Hatridge, et al. Confining the state of light to a quantum manifold by engineered two-photon loss. Science, 347(6224):853–857, 2015.

[38] Alexandre Blais, Ren-Shou Huang, Andreas Wallraff, Steven M Girvin, and R Jun Schoelkopf. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Physical Review A, 69(6):062320, 2004.

[39] N Bergeal, F Schacker, M Metcalfe, R Vijay, VE Manucharyan, L Frunzio, DE Prober, RJ Schoelkopf, SM Girvin, and MH Devoret. Phase-preserving amplification near the quantum limit with a josephson ring modulator. Nature, 465(7294):64–68, 2010.

[40] Nicolas Roch, Emmanuel Flurin, Francois Nguyen, Pascal Morfin, Philippe Campagne-Ibarcq, Michel H Devoret, and Benjamin Huard. Widely tunable, nondegenerate three-wave mixing microwave device operating near the quantum limit. Physical review letters, 108(14):147701, 2012.

[41] D Riste, JG Van Leeuwen, H-S Ku, Konrad W Lehnert, and L DiCarlo. Initialization by measurement of a superconducting quantum bit circuit. Physical review letters, 109(5):050507, 2012.

[42] Philippe Campagne-Ibarcq, Emmanuel Flurin, Nicolas Roch, David Darson, Pascal Morfin, Mayzor Mirrahimi, Michel H Devoret, François Mallet, and Benjamin Huard. Persistent control of a superconducting qubit by stroboscopic measurement feedback. Physical Review X, 3(2):021008, 2013.

[43] Crispin Gardiner and Peter Zoller. Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics, volume 56. Springer Science & Business Media, 2004.

[44] Paul Magnard, Philipp Kurfiers, Baptiste Royer, Theo Walter, Jean-Claude Besse, Simone Gasparinetti, Marek Pechal, Johannes Heinsoo, Simon Storz, Alexandre Blais, et al. Fast and unconditional all-microwave reset of a superconducting qubit. arXiv preprint arXiv:1801.07689, 2018.

[45] Jean-Claude Besse, Simone Gasparinetti, Michele C Collodo, Theo Walter, Philipp Kurfiers, Marek Pechal, Christopher Eichler, and Andreas Wallraff. Single-shot quantum non-demolition detection of itinerant microwave photons. arXiv preprint arXiv:1711.11569, 2017.

[46] S Kono, K Koshino, Y Tabuchi, A Noguchi, and Y Nakamura. Quantum non-demolition detection of an itinerant microwave photon. arXiv preprint arXiv:1711.05479, 2017.

[47] Christopher Axline, Luke Burkhart, Wolfgang Pfaff, Mengzhen Zhang, Kevin Chou, Philippe Campagne-Ibarcq, Philip Reinhold, Luigi Frunzio, SM Girvin, Liang Jiang, et al. On-demand quantum state transfer and entanglement between remote microwave cavity memories. arXiv preprint arXiv:1712.05383, 2017.

[48] Philipp Kurfiers, Paul Magnard, Theo Walter, Baptiste...
Royer, Marek Pechal, Johannes Heinsoo, Yves Salathé, Abdulkadir Akin, Simon Storz, Jean-Claude Besse, et al. Deterministic quantum state transfer and generation of remote entanglement using microwave photons. *arXiv preprint arXiv:1712.08593*, 2017.

[49] K Geerlings, Zaki Leghtas, IM Pop, Shyam Shankar, Luigi Frunzio, Robert J Schoelkopf, Mazyar Mirrahimi, and Michel H Devoret. Demonstrating a driven reset protocol for a superconducting qubit. *Physical review letters*, 110(12):120501, 2013.

[50] Jay Gambetta, Alexandre Blais, Maxime Boissonneault, Andrew A Houck, DI Schuster, and Steven M Girvin. Quantum trajectory approach to circuit qed: Quantum jumps and the zeno effect. *Physical Review A*, 77(1):012112, 2008.

[51] Simon E Nigg, Hanhee Paik, Brian Vlastakis, Gerhard Kirchmair, Shyam Shankar, Luigi Frunzio, MH Devoret, RJ Schoelkopf, and SM Girvin. Black-box superconducting circuit quantization. *Physical review letters*, 108(24):240502, 2012.