Onion (Allium Cepa) and Garlic (Allium Sativa L.) Oil effects on Blood Glucose Levels and Body Weight of Local Quails in Erbil Province

Ahmed Ab. Abduljabbar¹, Kamaran K. Abdoulrahman²

1- Department of Fish resources and aquatic animals, College of agriculture, Salahaddin University-Erbil, Kurdistan Region, Iraq.
2- Department of Chemistry, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq.

1. INTRODUCTION

Diabetes mellitus known as the highest metabolic disorder globally. Animals are varied based upon their utilization of hepatic glucose and until now, the singular animal species with largest utilization of hepatic glucose is Quail (Golden et al., 1982). The levels of blood glucose decreased by age in the birds. Researchers reported that bird ages affect biochemical parameters, while hematological profiles remained sustained (Ali & Hmar, 2012). Despite all the drug discoveries made by scientists to manage hyperglycemia and diabetes mellitus, there are still many traditional theories are based upon by many nations to cure many health disorders using plant oils. Although, efforts has not been enough toward the efficiency improvement of the used medicinal plants (Baldé et al., 2006). Lots of Traditional therapy as a cure for diabetes mellitus has been used without knowing action onset most of these herbs (El-Soud & Khalil, 2010). Unlike previous works which they use Diabetic mellitus induction like...
streptozotocin (STZ). Our study compared healthy quails feeding on different supplemented plant oils and observing the level of differences in their Blood glucose and body weight.

Allium genus chiefly garlic and onion confirmed by many studies to have a critical role in countless continuous diseases. As they are known to be full of organosulfur compounds and quercetin (Zeng et al., 2017). Onion (Allium cepa) belongs to Liliaceae family which is loaded in with copper magnesium and potassium, also contains small amounts of vitamins, fat, and sugar (Gabor et al., 2012). Purposes of using onions are variously known as curative plant serving as an antibacterial, antifungal agent, an antibiotic, antiseptic and anti-infectious, and also inform of vegetable and spice as a food. In addition it was proven to have an antioxidant with some anticancer properties (Ramos et al., 2006). According to (Yoshinari, Shiojima, & Igarashi, 2012) onion derivation efficacy looks to be dosage dependent. Also proven that onion derivation with its sulfur content is able to abolish lipid aggregation or differentiation in adipocyte. A study by (Goodarzi et al., 2013) showed that onion derivation can have a beneficial effect on meat-type broiler chickens by improving its growth performance. It has been reported that onion contains S-methyl-l-cysteine sulfoxide which showed by (Kumari & Augusti, 2002) to have hypoglycemic effect in alloxan diabetic rats.

Garlic (Allium sativum, Liliaceae) is a compound that loaded with bio actives, serving as a curative plant for various medical disorders. Garlic contains an amino acid loaded with sulfur called S-allyl cysteine (SAC) which have a critical role as an antioxidant (Saravanan & Pommurugan, 2010). Garlic derivation showed to have a beneficial effect in conversion ratio and cumulative feed of broilers, by rising villus height of small intestine and process activation of absorption (Fadlalla et al., 2010).

In 2016, it has been demonstrated that over weighting and obesity scales tripled dramatically since 1975, in adults over weighting reached more than 1.9 billion with more than 650 million obesity cases. The prevalence of obesity has been significantly risen due to rapid urbanization and individuals total income improvement. The obese percentages in 2016 were nearly 13% of the world’s adult population (11% of men and 15% of women). In general, men are much less likely to be obese than women. The prevalence of obesity is also related to better total incomes, mainly in urban areas. Obesity is the most abundant condition that's age independent. Heading toward further complications like type 2 diabetes mellitus, heart disease, and stroke (Nasri & Shirzad, 2013). The use of synthetic drugs to control obesity are varied but the usage of these drugs regarding their safety and efficacy are not promising (Taghikhani et al., 2012).

Many medications have been used for the controlling obesity and overweight like sibutradmine and Orlistat. These drugs side effect and their efficacy limitation in the treatment of obesity become a major concern, regarding their high costs (Bahmani et al., 2016). Plant extractions, remedial sleep, acupuncture, and homeopathy become the substitutes and better options to control overweight and obesity disorders. They were already present for long times (Pittler & Ernst, 2005). The action onset of medicinal plants as anti-obesity still remained unknown. Although many theories like rising energy expenditure, lowering lipid absorption, rising differentiation of pre-adipocyte and proliferation have been suggested for those plants (Yun, 2010). It has been indicated that onion which is known to
have S-methyl-L-cysteine sulfoxide is able to lower lipid levels in the serum and tissue of rats feeding on high cholesterol diet by rising lipids catabolism, subsequent excretion and decreasing endogenous lipogenesis (Kumari & Augusti, 2007).

The objective of this study was to investigate the anti-hyperglycemic and anti-obesity effect of garlic and onion oils as a supplementation additives to quails diet.

2. MATERIALS AND METHODS

The experimental work of this study was carried out at the GRDA RASHA field, Agriculture College, from 7th May 2017 to 7th July 2017.

2.1 Animal Model

60 local quail hens (40 weeks of age) of similar weight about (210g±5) were randomly assigned to four treatments. All quails were maintained under the standard laboratory condition for a temperature controlled room 35-38°C at afternoon, 28-30°C at night and morning and were allowed free access to food and water. The quail hens were reared in special cages 65cm×60cm×50cm length, width and height respectively, designed for quails.

2.2 Plant Oils

Quails randomly allocated to 4 dietary treatments (Commercial plant oils purchased from markets). Each treatment comprised 3 replicates of 5 quails (at 1 male to 4 female ratios) Therefore, 4 groups containing 15 quails each were arranged. Diet is given in mash form and water supplied continuously. The diet of the first group was supplemented with 2 ml/kg of onion oil, Diet of the 2nd group supplemented with 2 ml/kg of garlic oil, the third group supplemented with a mix of (1 ml/kg of onion oils and 1 ml/kg garlic oils), and fourth group designed as a control without garlic or onion oils supplementations.

2.3 Diabetic Induction

All quail groups were healthy and no Diabetic mellitus inductions were injected to any of treated groups. Because the aim was to find the effect of these selected plant oils on healthy quails under normal conditions.

2.4 Blood glucose determination

The concentration of blood glucose was estimated by Glucometer (Viva check, Iso 15197: 2013 gm/dl, UK) at zero time (T0), fourth week (T1) and Eighth week (T2). Mortality has been recorded during last 3 weeks of the study. (Ibrahim, J. et al., 2015)

2.5 Body weight determination

The electrical balance was used to record body weights of all quails at zero time (T0), fourth week (T1) and Eighth week (T2) of the experimental period. The Blood glucose data and body weight of the quails were subjected to statistical analysis using SPSS programs.

3. RESULTS AND DISCUSSION

3.1 Hypoglycemic Effect

The data of the current study show (table1) that the mean levels of blood glucose of control group of quails during the period of the study are T0=219.7±259, T1=236.2±45.6 and T2=227.4±17.17. They are significantly decreased during the period of the study in quails feeding with onion oil in diet (T0 217.28±8.32, T1 204.7±15.1 and T2 198.1±25.65).
Table 1: Shows the mean levels of blood glucose mg/dl of four treatment quail groups (Control, onion, garlic, and Mixture) at 3 different time periods (T0, T1 and T2).

Treatments	MEAN ± ST.DEV.	T0 time	T1 time	T2 time	Significance
Control		219.7±259	236.2±45.6	227.4±17.17	P > 0.05
Onion		217.28±8.32	204.7±15.1	198.1±25.65	P < 0.05
Garlic		195.4±37.83	199.83±2742	198.28±9.42	P > 0.05
Mix		218.8±33.17	228±22.78	216.85±28.81	P < 0.05

Whereas there are no significant differences in the mean levels of blood glucose during the period of the study in quails feeding with garlic oil in diet (T0=195.4±37.83, T1=199.83±2742 and T2=198.28±9.42) and mixture of garlic and onion oil (T0=218.8±33.17, T1=228±22.78 and T2=216.85±28.81).

Our study demonstrates that Quail groups feeding on supplemented onion oil exhibit significant dropping in blood glucose levels (Table 1) which may be attributed to antioxidant properties. This is in agreement with previous studies that showed similar effects of onion oil on the level of blood glucose (Kook et al., 2009, El-Demerdash et al., 2005, Augusti & Benaim, 1975). Lee et al., 2013 reporteed the hypoglycemic activity of ripe onion juice at two dose levels (5 and 15 mL/kg b.w.) in the rates.

The similar data found by (Jalal et al., 2007) suggesting that the mode of action of Allium cepa (onion) as anti-diabetic may be caused by the antioxidant properties of its essential oil components thereby preventing hyperglycemia. In addition it has been reported that the ingestion onion (Allium cepa) (100 g) caused a considerable reduction in fasting blood glucose levels which could be used as a dietary supplement in management of type 1 and/or type 2 diabetes mellitus (Taj Eldin et al., 2010).
This study shows that there is no effect of Garlic oil on the mean levels of blood glucose of quails (figure 1). This finding can be supported by (Kook et al., 2009). In accordance with our study, another work done by (Ashraf et al., 2011) concluded that garlic only not enough but a Combination of garlic with typical anti-diabetic remedy has shown to improve glycemic control. Also (Baluchnejadmojarad & Roghani, 2003) found no hypoglycemic effect of an aqueous extract of garlic in streptozotocin-induced diabetic rats. Treatment of fructose-induced insulin resistance rats with aqueous garlic extract (500 mg/kg BW/day, i.p.) for a period of four weeks did not have any effect on the intraperitoneal glucose tolerance (Jalal et al., 2007). The garlic powder did not show significant effect on body weight of quails. (Yalçın et al., 2007).

While the salutary role of garlic in type 1 diabetes are established by Several studies documenting the efficacy of garlic in reducing blood glucose in various animal models of type 1 diabetes mellitus (Banerjee et al., 2002, Ohaeri, 2001, Kumar & Reddy, 1999, Padiya et al., 2011).

Sustained blood glucose of quails supplemented on mixture (1% garlic and 1% onion) oils presented by us, may be due to its low percentage of plant oil.
supplementations presented in the quail's diet. Until now there is no study showing that mixture oils of Sativium sp. could have hypoglycemic activities.

3.2 Body weight Effect

Our results show that at zero time the body weight of all three experimental groups were not significantly different and they were staid under 270 g (table 2). The body weight of quails at T1 (at 4 weeks) were slightly raised in all the studied groups but not significantly different. There was a significant decrease in the body weight of quails under supplemental onion oil diet, from 281.66±42.93 g at fourth week to 223.33±32.65 g at the Eighth week of the study. The body weight of quails feeding on diets with garlic and mixture oils showed no significant differences between T1 and T2 periods of the study.

Table 2: Shows body weights in g for four treatment quail groups (Control, onion, garlic, and Mixture) at 3 different time periods (T0, T1 and T2).

Treatments	T0 time	T1 time	T2 time	Significance
Control	251.5±34.46	264.54±21.04	230±15.63	P > 0.05
Onion	265.35±44.18	281.66±42.93	223.33±32.65	P < 0.05
Garlic	261.78±48.82	292.5±40.15	250.55±27.73	P > 0.05
Mix	257.08±31.14	292.72±40.86	270±35.74	P > 0.05

These data show that onion oils reduced significantly body weight of quails (P < 0.05), this is in agreement with Kook et al., 2009. Body and adipose tissue weights, fasting blood glucose level were also improved in 5% of onion extract-fed group. Onion extract and its sulfur-containing compounds, suggesting that these compounds may play a vital role in suppressing obesity. The present study showed that the anti-obesity effect of onion in the rodent that may be beneficial for human health (Yoshinari et al., 2012). Goodarzi & Nanekarani, 2014 demonstrated that possibly onion could improve growth performance of chicks due to the content of organosulfur compounds. Similar results of Aji et al., 2011 and Goodarzi et al., 2013 reported the positive influence of broilers fed diets containing fresh onion on body weight.
Figure 2: Shows that the body weight not effected when quails feed on supplemented plant oils (2 % onion oils, 2% garlic oils and 2% mixture of both oils) during two-month study project.

The present study shows that garlic oil does not influence the body weight of quails throughout the studied period (figure 2). This is in agreement with Kook et al., 2009. Whereas it is in disagreement with Karangiya et al., 2016, who showed that diet containing 1% garlic significantly increased body weight of broiler chicks. Our finding present that mixture oils of garlic and onion have no significant influences on the body weights. Similar result has been found by Karangiya et al., 2016, concluded that the body weight gain (g/bird) was not significantly (p<0.05) changed by diet treated with garlic and ginger mixture supplements.

4- CONCLUSION

The onion extract could have beneficial effects in reducing the levels of blood sugar suggesting that dietary onion supplementation may help diabetics to reduce over Dependence on drugs. Our data presented that onion can serve as a good diet additive for body weight loss, which can be used by the physicians to help overweight individuals before facing series disorders like hypertension and cardiovascular diseases. Further studies must be done to analysis onion oils contents responsible for these beneficial effects. There are some contradictory results about the hypoglycemic role of garlic oils, therefore scientists need to perform more investigations in order to determine the exact dosage of garlic oils additives to the
diets to be effective in reducing blood sugar levels.

ACKNOWLEDGEMENT

The authors are thankful to Assist. Prof. Dr. Mahbuba Abdulghani for her supervision and cooperation’s throughout the process of work experiment.

REFERENCES

Aji, S., Ignatius, K., Ado, A. Y., Nuhu, J. B., Abdulkarim, A., Aliyu, U., Numa, P. (2011). Effects of Feeding Onion (Allium cepa) and Garlic (Allium sativum) on Some Performance Characteristics of Broiler Chickens. Research Journal of Poultry Sciences, 4(2), 22–27.

Ali, M. A., & Hmar, L. (2012). Effect of age on the haematological and biochemical profile of Japanese quails (Coturnix coturnix japonica). International, 2(8), 32–35. Retrieved from

Ashraf, R., Khan, R. A., & Ashraf, I. (2011). Garlic (Allium sativum) supplementation with standard antidiabetic agent provides better diabetic control in type 2 diabetes patients. Pakistan Journal of Pharmaceutical Sciences, 24(4), 565–570.

Augusti, K. T., & Benaim, M. E. (1975). Effect of essential oil of onion (allyl propyl disulphide) on blood glucose, free fatty acid and insulin levels of normal subjects. Clinica Chimica Acta, 60(1), 121–123.

Bahmani, M., Eftekhari, Z., Saki, K., Fazeli-Moghadam, E., Jelodari, M., & Rafieian-Kopaei, M. (2016). Obesity Phytotherapy: Review of Native Herbs Used in Traditional Medicine for Obesity. Journal of Evidence-Based Complementary & Alternative Medicine, 21(3), 228–

Baldé, N. M., Youla, A., Baldé, M. D., Kaké, A., Diallo, M. M., Baldé, M. A., & Maugendre, D. (2006). Herbal medicine and treatment of diabetes in Africa: An example from Guinea. Diabetes and Metabolism, 32(2), 171–175.

Baluchnejadmorjard, T., & Roghani, M. (2003). Garlic extract attenuates time-dependent changes in the reactivity of isolated aorta in streptozotocin-diabetic rats. Life Sciences, 73(18), 2281–2289. https://doi.org/10.1016/S0024-3205(03)00604-0

Banerjee, S. K., Maulik, M., Mancahanda, S. C., Dinda, A. K., Gupta, S. K., & Maulik, S. K. (2002). Dose-dependent induction of endogenous antioxidants in rat heart by chronic administration of garlic. Life Sciences, 70(13), 1509–1518.

El-Demerdash, F. M., Yousef, M. I., & El-Naga, N. I. A. (2005). Biochemical study on the hypoglycemic effects of onion and garlic in alloxan-induced diabetic rats. Food and Chemical Toxicology, 43(1), 57–63. https://doi.org/10.1016/j.fct.2004.08.012

El-Soud, N. A., & Khalil, M. (2010). Antioxidative effects of allium cepa essential oil in streptozotocin induced diabetic rats. Macedonian Journal of Medical Sciences, 3(4), 344–351.

Fadlalla, I. M. T., Mohammed, B. H., & Bakhiet, A. O. (2010). Effect of feeding garlic on the performance and immunity of broiler. Asian Journal of Poultry Science, 4(4), 182–189.

Gabor, E., Şara, A., Bențea, M., Creța, C., & Baciu, A. (2012). The Effect of Phytoadditive Combination and Growth Performances and Meat Quality in Rainbow Trout (Oncorhynchus mykiss), 45(2), 43–47.

Golden, S., Riesenfeld, G., & Katz, J. (2013). Carbohydrate metabolism of hepatocytes from starved Japanese quail. Archives of Biochemistry and Biophysics, 213(1), 118–126.

Goodarzi, M., Landy, N., & Nanekarani, S. (2013). Effect of onion (Allium cepa L.) as an antibiotic
growth promoter substitution on performance, immune responses and serum biochemical parameters in broiler chicks. Health, 5(8), 1210–1215.

Goodarzi, M., & Nanekarani, S. (2014). Effect of Onion Extract in Drink Water on Performance and Carcass Traits in Broiler Chickens. IERI Procedia, 8, 107–112.

Ibrahim, I. L., Lawal, M., Isa, S. A., Abubakar, A., Ibrahim, K. G. (2015) ‘Effect of coturnix japonica (quail) egg on serum glucose, b-vitamins and mineral elements in alloxan induced diabetic rats. Caliphate medical journal, 3(1), pp. 245–248.

Jalal, R., Bagheri, S. M., Moghimi, A., & Rasuli, M. B. (2007). Hypoglycemic effect of aqueous shallot and garlic extracts in rats with fructose-induced insulin resistance. Journal of Clinical Biochemistry and Nutrition, 4(1), 218–223.

Karangiya, V. K., Savsani, H. H., Patil, S. S., Garg, D. D., Murthy, K. S., Ribadiya, N. K., & Vekariya, S. J. (2016). Effect of dietary supplementation of garlic, ginger and their combination on feed intake, growth performance and economics in commercial broilers. Veterinary World, 9(3), 245–250.

Kook, S., Kim, G.-H., & Choi, K. (2009). The antidiabetic effect of onion and garlic in experimental diabetic rats: meta-analysis. Journal of Medicinal Food, 12(3), 552–60.

Kumar, G. R., & Reddy, K. P. (1999). Reduced nociceptive responses in mice with alloxan induced hyperglycemia after garlic (Allium sativum Linn.) treatment. Indian Journal of Experimental Biology, 37(7), 662–666.

Kumari, K., & Augusti, K. T. (2002). Antidiabetic and antioxidant effects of S-methyl cysteine sulfoxide isolated from onions (Allium cepa Linn) as compared to standard drugs in alloxan diabetic rats. Indian Journal of Experimental Biology, 40(9), 1005–1009.

Kumari, K., & Augusti, K. T. (2007). Lipid lowering effect of S-methyl cysteine sulfoxide from Allium cepa Linn in high cholesterol diet fed rats. Journal of Ethnopharmacology, 109(3), 367–371.

Lee, C., Lee, H., Cha, Y., Joo, W., Kang, D., & Moon, J. (2013). In vivo Investigation of Anti-diabetic Properties of Ripe Onion Juice in Normal and Streptozotocin-induced Diabetic Rats, 18(3), 169–174.

Masjedi, F., Gol, A., & Dabiri, S. (2013a). Preventive Effect of Garlic (Allium sativum L.) on Serum Biochemical Factors and Histopathology of Pancreas and Liver in Streptozotocin-Induced Diabetic Rats. Iranian Journal of Pharmaceutical Research: IJPR, 12(3), 325–38.

Masjedi, F., Gol, A., & Dabiri, S. (2013b). Preventive Effect of Garlic (Allium sativum L.) on Serum Biochemical Factors and Histopathology of Pancreas and Liver in Streptozotocin-Induced Diabetic Rats. Iranian Journal of Pharmaceutical Research: IJPR, 12(3), 325–38. Retrieved from

Nasri, H., & Shirzad, H. (2013). Toxicity and safety of medicinal plants. Journal of HerbMed Pharmacology, 2(2), 21–22. Retrieved from http://www.herbmedpharmacol.com/PDF/JHP-2-21.pdf%0A.

Ohaeri, O. C. (2001). Effect of garlic oil on the levels of various enzymes in the serum and tissue of streptozotocin diabetic rats. Bioscience Reports, 21(1), 19–24.

Padiya, R., Khatua, T. N., Bagul, P. K., Kuncha, M., & Banerjee, S. K. (2011). Garlic improves insulin sensitivity and associated metabolic syndromes in fructose fed rats. Nutrition & Metabolism, 8(1), 53.

Pittler, M. H., & Ernst, E. (2005). Complementary therapies for reducing body weight: a systematic review. International Journal of Obesity, 29(9), 1030–1038.

Ramos, F. A., Takaishi, Y., Shirotori, M., Kawaguchi, Y., Tsuchiya, K., Shibata, H., Takeuchi, M. (2006). Antibacterial and antioxidant activities of quercetin oxidation products from yellow onion (Allium cepa) skin. Journal of Agricultural and Food Chemistry, 54(10), 3551–3557.

Saravanan, G., & Ponmurugan, P. (2010). Beneficial Effect of S-allylcysteine (SAC) on Blood Glucose
and Pancreatic Antioxidant System in Streptozotocin Diabetic Rats. Plant Foods for Human Nutrition, 65(4), 374–378.

Taghikhani, M., Nasri, H., Asgari, A., Afrough, H., Namjoo, A. R., Ansari-Samani, R., … Rafieian-kopaei. (2012). The renal toxicity of hydroalcoholic extract of stachys lavandulifolia Vahl in Wistar rats. Life Science Journal, 9(4), 3025–3031.

Taj Eldin, I. M., Ahmed, E. M., & Elwahab H M, A. (2010). Preliminary Study of the Clinical Hypoglycemic Effects of Allium cepa (Red Onion) in Type 1 and Type 2 Diabetic Patients. Environmental Health Insights, 4, 71–7.

Yalçın, S., Onbaşılar, I., Şehu, A., & Yalçın, S. (2007). The effects of dietary garlic powder on the performance, egg traits and blood serum cholesterol of laying quails. Asian-Australasian Journal of Animal Sciences, 20(6), 944–947.

Yoshinari, O., Shiojima, Y., & Igarashi, K. (2012). Anti-obesity effects of onion extract in Zucker diabetic fatty rats. Nutrients, 4(10), 1518–1526.

Zeng, Y., Li, Y., Yang, J., Pu, X., Du, J., Yang, X., Yang, S. (2017). Therapeutic Role of Functional Components in Alliums for Preventive Chronic Disease in Human Being. Evidence-Based Complementary and Alternative Medicine : eCAM, 2017, 9402849.