Genes for two homologous G-protein α subunits map to different human chromosomes

Eva J. Neer¹, Thomas Michel¹, Roger Eddy², Thomas Shows², and J. G. Seidman³

¹Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and ²Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
³Department of Human Genetics, Roswell Park Memorial Institute, Buffalo, NY, USA

Summary. Signal transduction across biological membranes is modulated by a family of related GTP-binding proteins termed G proteins. These G proteins have a heterotrimeric structure composed of α, β, and γ subunits. The α subunits of the G proteins bind GTP and appear to determine the biochemical specificity of the protein. We have recently cloned and characterized cDNA encoding two G-protein α subunits, αi and αh. The former is a substrate for ADP-ribosylation by pertussis toxin. The protein corresponding to αh has not yet been identified. These cDNAs encode proteins, which demonstrate 90% sequence identity to one another and also show marked similarity to other G proteins. The present studies were designed to determine whether the genes for these related proteins are clustered on a single human chromosome. Genomic DNA isolated from a panel of mouse–human hybrid cell lines was analyzed by hybridization to cDNAs for αi and αh. Based on the distribution patterns of αi and αh in cell hybrids, the gene for αi was assigned to human chromosome 7, and the gene for αh assigned to chromosome 12. These data suggest that the G-protein gene family may be distributed over at least two human chromosomes.

Introduction

Transmembrane signaling by a variety of hormone receptors as well as by retinal rhodopsin is mediated by a set of guanine nucleotide binding proteins (G proteins), which have a heterotrimeric structure composed of α, β, and γ subunits. The distinctive features of the G proteins are conferred by the nucleotide-binding α subunit (Smigel et al. 1984; Neer 1987).

The G proteins that mediate hormone responses can be divided into two broad categories according to their interaction with the bacterial toxins from Vibrio cholera and Bordetella pertussis. Those G proteins, whose primary function is to stimulate adenylate cyclase, are substrates for ADP-ribosylation by cholera toxin (Gill and Nereb 1978), while those involved in hormonal inhibition of adenylate cyclase and in regulation of other plasma membrane enzymes are substrates for pertussis toxin (Ui et al. 1984).

The recent successes of many laboratories in cloning cDNAs representing the G proteins have revealed an unexpected complexity with the identification of nine distinct but very similar α subunits (Bray et al. 1986; Itoh et al. 1986; Lochrie et al. 1985; Mattera et al. 1986; Medynski et al. 1985; Michel et al. 1986; Nukada et al. 1986a,b; Sullivan et al. 1986; Yatsunami and Khorana 1985). There are at least two genes for the retinal G protein, transducin, one of which is expressed in rods and the other in cones (Lerea et al. 1986). The α subunit of the G protein that mediates hormonal stimulation of adenylate cyclase (αs) exists in four forms, which may be the result of differential splicing of mRNA (Bray et al. 1986; Robishaw et al. 1986a). Analysis of the proteins that are substrates for pertussis toxin has also revealed heterogeneity. We have purified two such proteins from bovine brain (Neer et al. 1984). A 41-kilodalton G protein, which is the predominant substrate for ADP-ribosylation by pertussis toxin in brain and other tissues, is involved in inhibition of adenylate cyclase and in other cell functions (Ui et al. 1984) and termed αi or αi41. Another G-protein α subunit of 39 kilodaltons (termed αi39 or αi41) is especially abundant in the central nervous system, but its function is not yet known. In addition, there is a 40-kilodalton pertussis toxin substrate in bovine brain that has not yet been fully characterized (Neer et al. 1984). We have recently cloned and characterized cDNA for αi (αi41) and have identified cDNA that encodes an extremely similar putative G protein, αh (Michel et al. 1986). Southern blot analysis of bovine genomic DNA shows that the αh gene is distinct from the one that encodes αi. The protein that corresponds to αh has not yet been identified, but mRNA corresponding to it is present in many cell types (Lee and Neer, unpublished). Southern blot analysis of human genomic DNA showed that the cDNAs for αi and αh recognize sequences in the human genome that are distinct from each other. We wished to determine whether the genes for these similar proteins, which are closely related structurally (and probably functionally), are clustered on a single human chromosome, or whether they are found on different chromosomes. We report here that the genes for each of these α proteins were found on different chromosomes.

Materials and methods

cDNA probes for αi and αh

The cDNAs encoding αi and αh were isolated from a bovine pituitary library as described by Michel et al. (1986). The probes used were purified fragments of the total cDNA, which
Southern blot hybridization analysis

DNA was prepared from the various cell lines listed in Table 1 and digested with EcoRI. The DNA fragments were separated by electrophoresis on agarose gels and transferred onto nitrocellulose (Schleicher and Schuell) as described by Southern (Southern 1979; Maniatis et al. 1982). Hybridization was carried out at 42°C for 18 h. The filters were rinsed twice in 2× SSC, 0.1% SDS at room temperature and then washed in 0.2× SSC, 0.1% SDS at 45°C for 30 min before analysis by radioautography.

The 37 cell hybrids used in this study include 15 unrelated human cell lines and 4 mouse cell lines (Sakaguchi and Shows 1982; Shows et al. 1984). The hybrids were characterized by chromosome analysis and mapped enzyme markers, and partly by mapped DNA probes (Shows 1983; Shows et al. 1978, 1982). The location of ah and ai was determined by scoring the presence (+) or absence (−) of certain human bands in the hybrids on the blots. Concordant hybrids have either retained or lost ah or ai, together with a specific human chromosome. Discordant hybrids either retained the ah or ai, but not a specific chromosome or the reverse. The percentage of discordancy indicates the degree of discordant segregation for a marker and a chromosome. A 0% discordancy is the basis for chromosome assignment.

Results

Figure 1A, B shows representative positive and negative lanes for Southern blots probed with ah and ah cDNA. Lane 1 in each panel contains mouse DNA; lane 2 contains human DNA; lanes 3–4 contain DNA from mouse–human hybrid cells. The human band used for scoring is indicated with a solid arrow. The two cDNA probes recognize different human EcoRI fragments. This observation confirms our earlier finding that the cDNAs recognize different restriction enzyme fragments in bovine genomic DNA. The predominant band recognized by ah cDNA is a 4.7-kilobase (kb) fragment while ah recognizes a unique 1.4-kb fragment. There is some cross-hybridization of ah cDNA with the 4.7-kb fragment, but ah cDNA does not hybridize with the 1.4-kb DNA. In addition, the ah cDNA hybridizes with a very large DNA fragment (dashed arrow). However, we were not able to score this band for two reasons: first, this band was hard to distinguish in lanes where digestion of DNA was not optimal; second, comparison of different human cell lines revealed a polymorphism in the high-molecular-weight fragments. It was clear, however, that the large-molecular-weight fragment segregated differently from the small one. This observation suggests that there may be another gene for ah on a different chromosome.

Table 1 summarizes data obtained on 37 independent mouse–human hybrids. Some of these were analyzed on two or more separate Southern blots. The ah mapped to human chromosome 12, and ah mapped to human chromosome 7. In each case, the percentage discordancy was 0. The hybrid JSR-17S with the 7/9 translocation 7pter→7q22:9p24→9pter, and no intact chromosome 7 had a positive score for the human ah band. This would localize ah to the pter→q22 region of human chromosome 7.

Discussion

The signal-transducing G-protein family is composed of at least nine distinct, but extremely similar, a subunits (Bray et al. 1986; Itoh et al. 1986; Lochrie et al. 1985; Mattera et al. 1986; Medynski et al. 1985; Michel et al. 1986; Nukada et al. 1986a, b; Robishaw et al. 1986a, b; Sullivan et al. 1986; Yatsunami and Khorana 1985). These studies represent the first human chromosomal assignment of any members of the G-protein gene family. Using the bovine cDNAs for ah and ah, these two a subunits were mapped to human chromosomes 7 and 12, respectively. However, there may be more than one gene for both ah and ah. Analysis of bovine genomic DNA with nonoverlapping probes derived from the ah cDNA suggested that there were at least two, and perhaps three, genes for ah. The polymorphism described above in the ah restriction fragments suggests that there may be more than one ah gene. It is possible that each of these forms is located on a different chromosome.

The striking sequence similarities among the G proteins suggest that they may have arisen from successive duplications of a common ancestor gene, and therefore that they might be clustered on a single chromosome. However, our results show clearly that the genes for ah and ah are found on different human chromosomes. The division of the G-protein a subunit genes between at least two chromosomes suggests that their
Table 1. Segregation of cDNA probes α0 and α1 with human chromosomes in EcoRI-digested human-mouse cell hybrid DNA (+ or − indicate presence or absence of DNA fragments characteristic of α0 or α1; t indicates a chromosomal translocation, which is defined in the last column)

Hybrid	α0	α1	Human chromosomes	Translocations
ATR-13	+	+	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X	5/X
DUA-3BSAGA	-	-	+ +	X/15 15/X
DUA-5BSAGA	-	-	+ +	X/11
DUM-13	+	+	+ +	
EXR-5CSAz	+	+	+ +	X/11
GAR-1	+	+	+ +	
ICL-15	+	+	+ +	
JSR-14	+	+	+ +	
JSR-17S	+	+	+ +	7/9
NSL-9	+	+	+ +	17/9
NSL-16	+	+	+ +	17/9
REW-7	+	+	+ +	
REW-8D	+	+	+ +	
REX-11BSAgB	-	-	+ +	
REX-11BSH1	-	-	+ +	
SIR-8	+	+	+ +	
TSL-1	+	+	+ +	
TSL-2	+	+	+ +	17/3 3/17
VTL-6	+	+	+ +	
VTL-8	+	+	+ +	
VTL-17	+	+	+ +	
WIL-2	+	+	+ +	
WIL-5	+	+	+ +	
WIL-6	+	+	+ +	
WIL-7	+	+	+ +	
WIL-8	+	+	+ +	
WIL-8X	+	+	+ +	
WIL-13	+	+	+ +	
WIL-15	+	+	+ +	
XER-11	+	+	+ +	11/X 1/11
XOL-6	+	+	+ +	
XOL-9	+	+	+ +	
XTR-2	+	+	+ +	
XTR-3BSAgB	+	+	+ +	3/3 10q-
XTR-3CSAZK	+	+	+ +	
XTR-22	+	+	+ +	X/3

Total number of concordant and discordant hybrids and the percentage discordancy for α0 and α1

α0	Chromosome																						
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X																						
Concordant no. of hybrids	22	21	21	20	24	21	23	18	23	15	37	18	19	23	22	22	20	20	25	23	19	19	
Discordant no. of hybrids	13	16	12	17	13	16	15	14	17	13	20	0	19	18	13	15	14	15	17	12	14	17	11
Discordancy (%)	37	43	36	46	35	43	42	38	49	36	57	0	51	49	36	41	39	46	46	32	38	47	37

α1	Chromosome																						
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X																						
Concordant no. of hybrids	29	26	19	25	25	26	37	22	23	23	28	23	24	27	24	26	23	21	29	22	16	22	16
Discordant no. of hybrids	7	12	14	13	13	12	0	16	13	14	8	15	14	11	13	12	14	17	9	16	22	15	15
Discordancy (%)	19	32	42	34	32	0	42	36	38	22	39	37	29	35	32	38	45	24	42	58	41	48	
coordinate expression may be regulated by trans-acting factors rather than by a common cis regulatory mechanism.

The chromosomal location of the G-protein β and γ subunits is not known. There appears to be less sequence heterogeneity among the β and γ subunits (Fong et al. 1986). It is likely that there are fewer genes for these subunits, and that these genes may show a chromosomal distribution distinct from the G-protein α subunits.

Acknowledgements. This work was supported by the following grants: GM 36259 to EJN; AM 8148 to JGS; and GM 20454 and HD 05196 to TS.

References

Bray P, Carter A, Simons C, Guo V, Puckett C, Kambholz J, Spiegel A, Nirenberg M (1986) Human cDNA clones for four species of Gα, signal transduction protein. Proc Natl Acad Sci USA 83: 8893–8897

Fong HKW, Hurley JB, Hopkins RS, Miake-Lye R, Johnson MS, Doolittle RF, Simon MI (1986) Repetitive segmental structure of the transducin β subunit: homology with the CDC4 gene and identification of related mRNAs. Proc Natl Acad Sci USA 83: 2162–2166

Gill DM, Meren R (1978) ADP-ribosylation of membrane proteins catalyzed by cholera toxin: basis of the activation of adenylate cyclase. Proc Natl Acad Sci USA 75: 3050–3054

Itoh H, Kozasa T, Nagata S, Nakamura S, Katada T, Ut M, Iwai S, Ohtsuka E, Kawasaki H, Suzuki K, Kaziro Y (1986) Molecular cloning and sequence determination of cDNAs for α subunits of the guanine nucleotide-binding proteins Gα1, Gα0, and Gα from rat brain. Proc Natl Acad Sci USA 83: 3776–3780

Lerea CL, Somers DE, Hurley JB, Klock IB, Bunt-Milan AH (1986) Identification of specific transducin α subunits in retinal rod and cone photoreceptors. Science 234: 77–80

Lochrie MA, Hurley JB, Simon MI (1985) Sequence of the alpha subunit of photoreceptor G protein: homologies between transducin, ras, and elongation factors. Science 228: 96–99

Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

Mattera R, Codina J, Crozat A, Kidd V, Woo SLC, Birnbaumer L (1986) Identification by molecular cloning of two forms of the α-subunit of the human liver stimulatory (Gs) regulatory component of adenylyl cyclase. FEBS Lett 206: 36–42

Medynski DC, Sullivan K, Smith D, Van Dop C, Chang FH, Fung BKK, Seeburg PH, Bourne HR (1985) Amino acid sequence of the alpha subunit of transducin deduced from the cDNA sequence. Proc Natl Acad Sci USA 82: 4311–4315

Michel T, Winslow JW, Smith JA, Seidman JG, Neer EJ (1986) Molecular cloning and characterization of cDNA encoding the GTP-binding protein α5 and identification of a related protein, α6. Proc Natl Acad Sci USA 83: 7663–7667

Neer EJ (1987) Guanine nucleotide-binding proteins involved in transmembrane signalling. Symp Fundam Cancer Res (in press)

Neer EJ, Lok JM, Wolf LG (1984) Purification and properties of the inhibitory guanine nucleotide regulatory unit of brain adenylate cyclase. J Biol Chem 259: 14222–14229

Nakada T, Tanabe T, Takahashi H, Noda M, Haga K, Haga T, Ichiyama A, Kanagawa K, Hiranaga M, Matsuo H, Numa S (1986a) Primary structure of the α-subunit of bovine adenylate cyclase-inhibiting G-protein deduced from the cDNA sequence. FEBS Lett 197: 305–310

Nakada T, Tanabe T, Takahashi T, Noda M, Hirose T, Inayama S, Numa S (1986b) Primary structure of the α-subunit of bovine adenylate cyclase-stimulating G-protein deduced from the cDNA sequence. FEBS Lett 195: 220–224

Robishaw JD, Russell DW, Harris BA, Smigel M, Gilman AG (1986a) The deduced primary structure of the α subunit of the GTP binding stimulatory protein of adenylate cyclase. Proc Natl Acad Sci USA 83: 1251–1255

Robishaw JD, Smigel MD, Gilman AG (1986b) Molecular basis for two forms of the G protein that stimulates adenylate cyclase. J Biol Chem 261: 9587–9590

SakaguchiAY, Shows TB (1982) Coronavirus 229E susceptibility in man–mouse hybrids is located on human chromosome 15. Somatic Cell Gen 8: 83–94

Shows TB (1983) Isoenzymes. In: Rattazzi MC, Scandalios JG, Whitt GS (eds) Current topics in biological and medical research, vol 10. Liss, New York, pp 323–339

Shows TB, Brown JA, Haley LL, Byers MG, Eddy RL, Cooper ES, Goggin AP (1978) Assignment of the beta glucoronidase structural gene to the pter leads to q22 region of chromosome 7 in man. Cytogeten Cell Genet 21: 99–104

Shows TB, Sakaguchi AY, Naylor SL (1982) Mapping the human genome, cloned genes, DNA polymorphisms and inherited diseases. In: Harris H, Hirschhorn K (eds) Advances in human genetics, vol 12. Plenum Press, New York London, pp 341–452

Shows T, Eddy R, Haley L, Byers M, Henry M, Fujita T, Matsui H, Taniguchi T (1984) Interleukin 2 (IL2) is assigned to human chromosome 4. Somatic Cell Mol Genet 10: 315–318

Smigel M, Katada T, Northup JK, Bokoch GM, Ut M, Gilman AG (1984) Mechanism of guanine nucleotide-mediated regulation of adenylate cyclase activity. Adv Cyclic Nucleotide Protein Phosphorylation Res 17: 1–18

Southern E (1979) Gel electrophoresis of restriction fragments. Methods Enzymol 68: 152–158

Sullivan KA, Xiao YC, Alborzi A, Beiderman B, Chang FH, Masters SB, Levinson AD, Bourne HR (1986) Inhibitory and stimulatory G proteins of adenylate cyclase: cDNA and amino acid sequences of the α chains. Proc Natl Acad Sci USA 83: 6687–6691

Ut M, Katada T, Maruyama T, Kurose H, Yajima M, Tamura M, Nakamura T, Mogimori I (1984) Inhibitor-activating protein, pertussis toxin: a specific uncoupler of receptor-mediated inhibition of adenylate cyclase. Adv Cyclic Nucleotide Res 17: 145–152

Yatsunami K, Khorana HG (1985) GTPase of bovine rod outer segments: the amino acid sequence of the α subunit as derived from the cDNA sequence. Proc Natl Acad Sci USA 82: 4316–4320

Received March 24, 1987