Some functional inequalities on non-reversible Finsler manifolds

SHIN-ICHI OHTA

Department of Mathematics, Osaka University, Osaka 560-0043, Japan
Email: s.ohta@math.sci.osaka-u.ac.jp

MS received 8 August 2016; revised 10 January 2017; published online 13 November 2017

Abstract. We continue our study of geometric analysis on (possibly non-reversible) Finsler manifolds, based on the Bochner inequality established by Ohta and Sturm. Following the approach of the Γ-calculus of Bakry et al (2014), we show the dimensional versions of the Poincaré–Lichnerowicz inequality, the logarithmic Sobolev inequality, and the Sobolev inequality. In the reversible case, these inequalities were obtained by Cavalletti and Mondino (2015) in the framework of curvature-dimension condition by means of the localization method. We show that the same (sharp) estimates hold also for non-reversible metrics.

Keywords. Finsler geometry; Ricci curvature; Sobolev inequality.

Mathematics Subject Classification. Primary: 53C60; Secondary: 58C40, 58J35.

1. Introduction

The aim of this article is to put forward geometric analysis on possibly non-reversible Finsler manifolds (in the sense of $F(-v) \neq F(v)$) of Ricci curvature bounded below. Geometric analysis on spaces of Ricci curvature bounded below is a classical as well as active area. The classical Riemannian theory has been generalized to weighted Riemannian manifolds, linear Markov diffusion semigroups (the Γ-calculus of Bakry, Émery and others, see the recent comprehensive book [3]), and to metric measure spaces satisfying Lott, Sturm and Villani’s curvature-dimension condition [15,34–36]. In fact, a reinforced version of the curvature-dimension condition, called the Riemannian curvature-dimension condition, is equivalent to the Bochner inequality which is the starting point of the Γ-calculus [1,8].

The class of Finsler manifolds takes an interesting place in the above picture. First of all, the distance function on a Finsler manifold can be asymmetric ($d(y, x) \neq d(x, y)$ is allowed), thus it is not precisely a metric space in the usual sense. A non-Riemannian Finsler manifold of weighted Ricci curvature bounded below satisfies the curvature-dimension condition (in the naturally extended form to asymmetric distances), but the Riemannian curvature-dimension condition never holds. Finally, the natural Finsler Laplacian turns out to be nonlinear, and hence the Γ-calculus does not directly apply. Nonetheless, we investigated the nonlinear heat flow associated with the nonlinear Laplacian in [26], and established the Bochner inequality in [28]. This Bochner inequality has...
many applications including gradient estimates [24,28] and various eigenvalue estimates [37,40–42].

We have developed the nonlinear Γ-calculus approach in [24,28], and the current article could be regarded as a continuation. It is not always possible to generalize a linear argument to the Finsler setting (the most important example would be the non-contraction of heat flow in [27]), however, there are also many positive results. For example, the aforementioned gradient estimates were shown indeed in this line, and we proved Bakry–Ledoux’s Gaussian isoperimetric inequality under $\text{Ric}_\infty \geq K > 0$ in the sharp form ([24], see [4] for the original Riemannian result). The latter is a particular case of the Lévy–Gromov type isoperimetric inequality, which was studied in [23] by means of the localization method. The localization is another powerful technique reducing an inequality on a space to those on geodesics (see [6,7,11]), however, it gives only non-sharp estimates in the non-reversible situation (see [23] for details). We will give sharp functional inequalities even in the non-reversible case, these generalize results in [7] which cover reversible Finsler manifolds (see also [30] for a related work on metric measure spaces enjoying the Riemannian curvature-dimension condition). Let us also remark that Ric_N for $N < 0$ is not treated in [7]. Our arguments essentially follow the known lines of Γ-calculus. There arise, however, some technical difficulties due to the nonlinearity, while the smoothness of the space sometimes gives additional help.

The organization of the article is as follows. We briefly review the basics of Finsler geometry in §2. In §3, we prove the Poincaré–Lichnerowicz inequality

$$\int_M f^2 \, dm - \left(\int_M f \, dm \right)^2 \leq \frac{N-1}{KN} \int_M F^2(\nabla f) \, dm$$

(1.1)

under $\text{Ric}_N \geq K > 0$ for $N \in (-\infty, 0) \cup [n, \infty)$, where n is the dimension of the manifold. Section 4 is devoted to the logarithmic Sobolev inequality

$$\int_M f \log f \, dm \leq \frac{N-1}{2KN} \int_M \frac{F^2(\nabla f)}{f} \, dm$$

(1.2)

under $\text{Ric}_N \geq K > 0$ with $N \in [n, \infty)$. In §5, we show the Sobolev inequality

$$\frac{\|f\|_{L^p}^2 - \|f\|_{L^2}^2}{p-2} \leq \frac{N-1}{KN} \int_M F^2(\nabla f) \, dm$$

for $1 \leq p \leq 2(N+1)/N$ under $\text{Ric}_N \geq K > 0$ with $N \in [n, \infty]$ (see also Remark 5.7 for a slight improvement of the admissible range of p). We finally discuss further related problems in §6. We remark that (1.1) with $N \in [n, \infty]$ and (1.2) with $N = \infty$ were obtained in [19] as applications of the curvature-dimension condition.

2. Preliminaries for Finsler geometry

We briefly review the basics of Finsler geometry (we refer to [5,32,33] for further reading), and some facts from [19,26,28]. Interested readers can consult [24] for more elaborate preliminaries, as well as related surveys [20,21,25].

Throughout the article, let M be a connected, n-dimensional C^∞-manifold without boundary such that $n \geq 2$. We also fix an arbitrary positive C^∞-measure m on M.
2.1 Finsler manifolds

Given local coordinates \((x^i)_{i=1}^n\) on an open set \(U \subset M\), we will always use the fiber-wise linear coordinates \((x^i, v^j)_{i,j=1}^n\) of \(TU\) such that

\[
v = \sum_{j=1}^n v^j \frac{\partial}{\partial x^j} \bigg|_x \in T_x M, \quad x \in U.
\]

DEFINITION 2.1 (Finsler structures)

We say that a nonnegative function \(F: TM \rightarrow [0, \infty)\) is a \(C^\infty\)-Finsler structure of \(M\) if the following three conditions hold:

1. **Regularity**: \(F\) is \(C^\infty\) on \(TM\) \(\setminus\{0\}\), where \(0\) stands for the zero section;
2. **Positive 1-homogeneity**: It holds \(F(cv) = c F(v)\) for all \(v \in TM\) and \(c > 0\);
3. **Strong convexity**: The \(n \times n\) matrix

\[
(g_{ij}(v))_{i,j=1}^n := \left(\frac{1}{2} \frac{\partial^2}{\partial v^i \partial v^j}(F) \right)_{i,j=1}^n
\]

is positive-definite for all \(v \in TM\) \(\setminus\{0\}\).

We call such a pair \((M, F)\) a \(C^\infty\)-Finsler manifold. If \(F(-v) = F(v)\) holds for all \(v \in TM\), then we say that \(F\) is reversible or absolutely homogeneous.

Define the dual Minkowski norm \(F^*: T^*M \rightarrow [0, \infty)\) to \(F\) by

\[
F^*(\alpha) := \sup_{v \in T_x M, F(v) \leq 1} \alpha(v) = \sup_{v \in T_x M, F(v) = 1} \alpha(v)
\]

for \(\alpha \in T^*_x M\). It is clear by definition that \(\alpha(v) \leq F^*(\alpha) F(v)\). We remark that, however, \(\alpha(v) \geq -F^*(\alpha) F(v)\) does not hold, in general. Let us denote by \(\mathcal{L}^*: T^*M \rightarrow TM\) the Legendre transform. Namely, \(\mathcal{L}^*\) is sending \(\alpha \in T^*_x M\) to the unique element \(v \in T_x M\) such that \(F(v) = F^*(\alpha)\) and \(\alpha(v) = F^*(\alpha)^2\). We can write down in coordinates

\[
\mathcal{L}^*(\alpha) = \sum_{j=1}^n \frac{\partial[(F^*)^2]}{\partial \alpha_j}(\alpha) \frac{\partial}{\partial x^j} \bigg|_x,
\]

where \(\alpha = \sum_{j=1}^n \alpha_j dx^j\).

The map \(\mathcal{L}^*|T^*_x M\) is linear if and only if \(F|T^*_x M\) comes from an inner product.

For \(x, y \in M\), we define the (asymmetric) distance from \(x\) to \(y\) by

\[
d(x, y) := \inf_{\gamma} \int_0^1 F(\dot{\gamma}(t)) \, dt,
\]

where the infimum is taken over all piece-wise \(C^1\)-curves \(\eta: [0, 1] \rightarrow M\) such that \(\eta(0) = x\) and \(\eta(1) = y\). Note that \(d(y, x) \neq d(x, y)\) can happen since \(F\) is only positively homogeneous. A \(C^\infty\)-curve \(\eta\) on \(M\) is called a geodesic if it is locally minimizing and has a constant speed with respect to \(d\).

Given each \(v \in T_x M\) \(\setminus\{0\}\), the positive-definite matrix \((g_{ij}(v))_{i,j=1}^n\) in (2.1) induces the Riemannian structure \(g_v\) of \(T_x M\) as

\[
g_v\left(\sum_{i=1}^n a_i \frac{\partial}{\partial x^i} \bigg|_x, \sum_{j=1}^n b_j \frac{\partial}{\partial x^j} \bigg|_x\right) := \sum_{i,j=1}^n g_{ij}(v) a_i b_j.
\]
Notice that this definition is coordinate-free, and we have \(g_v(v, v) = F^2(v) \). One can similarly define \(g^\alpha_{\delta} : T^*_x M \times T^*_y M \to \mathbb{R} \) for \(\alpha \in T^*_x M \setminus \{0\} \).

The main tools in this article are the nonlinear Laplacian, the associated heat flow, the integration by parts and the Bochner inequality. Thus we will not use coordinate calculations of covariant derivative, etc., so that we do not recall them.

For later use, we also introduce the following quantity associated with \((M, F)\):

\[
S_F := \sup_{x \in M} \sup_{v, w \in T^*_x M \setminus 0} \frac{g_v(w, w)}{F^2(w)} = \sup_{x \in M} \sup_{\alpha, \beta \in T^*_x M \setminus 0} \frac{F^*(\beta)^2}{g^\alpha_{\delta}(\beta, \beta)} \in [1, \infty]. \tag{2.3}
\]

Since \(g_v(w, w) \leq S_F F^2(w)\) and \(g_v\) is the ‘Hessian’ of \(F^2/2\) at \(v\), the constant \(S_F\) measures the (fiber-wise) concavity of \(F^2\) and is called the (2-)uniform smoothness constant (see [18]). We remark that \(S_F = 1\) holds if and only if \((M, F)\) is Riemannian.

2.2 Weighted Ricci curvature

We begin with a useful interpretation of the Ricci curvature of \((M, F)\) found in [33, §6.2]. Given a unit vector \(v \in T^*_x M \cap F^{-1}(1)\), we extend it to a non-vanishing \(C^\infty\)-vector field \(V\) on a neighborhood \(U\) of \(x\) such that every integral curve of \(V\) is geodesic, and consider the Riemannian structure \(g_V\) of \(U\) induced from (2.2). Then the Finsler Ricci curvature \(\text{Ric}(v)\) of \(v\) with respect to \(F\) coincides with the Riemannian Ricci curvature of \(v\) with respect to \(g_V\) (in particular, it is independent of the choice of \(V\)).

Inspired by the above interpretation and the theory of weighted Ricci curvature (also called the Bakry–Émery–Ricci curvature) of Riemannian manifolds, the weighted Ricci curvature for \((M, F, m)\) was introduced in [19] as follows.

DEFINITION 2.2 (Weighted Ricci curvature)

Given a unit vector \(v \in T^*_x M\), let \(V\) be a \(C^\infty\)-vector field on a neighborhood \(U\) of \(x\) as above. We decompose \(m = e^{-\Psi} \text{vol}_{g_V}\) on \(U\), where \(\Psi \in C^\infty(U)\) and \(\text{vol}_{g_V}\) is the volume form of \(g_V\). Denote by \(\eta : (-\epsilon, \epsilon) \to M\) the geodesic such that \(\dot{\eta}(0) = v\). Then, for \(N \in (-\infty, 0) \cup (n, \infty)\), define

\[
\text{Ric}_N(v) := \text{Ric}(v) + (\Psi \circ \eta)'(0) \frac{(\Psi \circ \eta)'(0)^2}{N - n}.
\]

We also define \(\text{Ric}_\infty(v)\) and \(\text{Ric}_n(v)\) as the limits and set \(\text{Ric}_N(cv) := c^2 \text{Ric}_N(v)\) for \(c \geq 0\).

We will denote by \(\text{Ric}_N \geq K, K \in \mathbb{R}\), the condition \(\text{Ric}_N(v) \geq K F^2(v)\) for all \(v \in TM\). Notice that multiplying a positive constant with \(m\) does not change \(\text{Ric}_N\), thereby, when \(m(M) < \infty\), we will normalize \(m\) so as to satisfy \(m(M) = 1\) without loss of generality. In the Riemannian case, \(\text{Ric}_N\) with \(N \in [n, \infty)\) has been well studied, see [2, 14, 31] among many others. The study of the negative range \(N \in (-\infty, 0)\) (and even \(N \in (-\infty, 1]\)) is more recent, see [12, 16, 17, 22, 38, 39].

It is established in [19, 22, 23] (for \(N \in [n, \infty]\), \(N < 0\), \(N = 0\), respectively) that, for \(K \in \mathbb{R}\), the bound \(\text{Ric}_N \geq K\) is equivalent to Lott, Sturm and Villani’s curvature-dimension condition \(\text{CD}(K, N)\). This characterization extends the corresponding result on weighted Riemannian manifolds and has many geometric and analytic applications.
2.3 Nonlinear Laplacian and heat flow

For a differentiable function \(f: M \rightarrow \mathbb{R} \), the gradient vector at \(x \) is defined as the Legendre transform of the derivative of \(f: \nabla f(x) := L^*(Df(x)) \in T_x M \). Define the divergence, with respect to the measure \(m \), of a measurable vector field \(V \) with \(F(V) \in L^1_{\text{loc}}(M) \) in the weak form as
\[
\int_M \phi \text{div}_m V \, dm := - \int_M D\phi(V) \, dm \quad \text{for all } \phi \in C^\infty_c(M).
\]

Then we define the distributional Laplacian of \(f \in H^1_{\text{loc}}(M) \) by \(\Delta f := \text{div}_m(\nabla f) \), that is,
\[
\int_M \phi \Delta f \, dm := - \int_M D\phi(\nabla f) \, dm \quad \text{for all } \phi \in C^\infty_c(M).
\]

Since the Legendre transform is nonlinear, our Laplacian \(\Delta \) is a nonlinear operator unless \(F \) is Riemannian.

In [26, 28], we have studied the associated nonlinear heat equation \(\partial_t u = \Delta u. \) In order to recall some results in [26], we define the energy of \(u \in H^1_{\text{loc}}(M) \) by
\[
\mathcal{E}(u) := \frac{1}{2} \int_M F^2(\nabla u) \, dm = \frac{1}{2} \int_M F^*(Du)^2 \, dm.
\]

Define \(H^1_0(M) \) as the closure of \(C^\infty_c(M) \) with respect to the (absolutely homogeneous) norm
\[
\|u\|_{H^1} := \|u\|_{L^2} + \{\mathcal{E}(u) + \mathcal{E}(-u)\}^{1/2}.
\]

We can construct global solutions to the heat equation as gradient curves of the energy functional \(\mathcal{E} \) in the Hilbert space \(L^2(M) \). We summarize the existence and regularity properties established in [26, §§3, 4] in the next theorem (see also [24, §2]).

Theorem 2.3.

(i) For each initial datum \(f \in H^1_0(M) \) and \(T > 0 \), there exists a unique global solution \(u = (u_t)_{t \in [0,T]} \) to the heat equation with \(u_0 = f. \) Moreover, the distributional Laplacian \(\Delta u_t \) is absolutely continuous with respect to \(m \) for all \(t > 0 \).

(ii) The continuous version of a global solution \(u \) enjoys the \(H^2_{\text{loc}} \)-regularity in \(x \) as well as the \(C^{1,\alpha} \)-regularity in both \(t \) and \(x \). Moreover, \(\partial_t u_t \) lies in \(H^1_{\text{loc}}(M) \cap C(M) \) for all \(t > 0 \), and further in \(H^1_0(M) \) if \(S_F < \infty \).

We set as usual \(u_t := u(t,\cdot) \). Notice that the standard elliptic regularity yields that
\[u \in C^\infty((0,\infty) \times M \mid D u_t(x) \neq 0). \]

Note also that, by the construction of heat flow as the gradient flow of \(\mathcal{E} \):

- If \(c \leq u_0 \leq C \) almost everywhere, then \(c \leq u_t \leq C \) almost everywhere for all \(t > 0 \).
- \(\lim_{t \to \infty} \mathcal{E}(u_t) = 0 \).

We will use the following equation found in [28, (4.2)] (see also [26, Theorem 3.4]).

Lemma 2.4. Let \((u_t)_{t \geq 0} \) be a global solution to the heat equation. Then
\[
\frac{\partial}{\partial t} [F^2(\nabla u_t)] = 2D[\Delta u_t](\nabla u_t)
\]
holds almost everywhere for all \(t > 0 \).
2.4 Bochner inequality

We finally recall the origin of our estimates, the Bochner inequality, established in [28] and slightly generalized in [22, 24].

Theorem 2.5 (Bochner inequality). Assume $\text{Ric}_N \geq K$ for some $K \in \mathbb{R}$ and $N \in (-\infty, 0) \cup [n, \infty]$. Given $f \in H^1_0(M) \cap H^2_{\text{loc}}(M) \cap C^1(M)$ such that $\Delta f \in L^1_0(M)$, we have

$$
- \int_M D\phi \left(\nabla^2 f \left[\frac{F^2(\nabla f)}{2} \right] \right) \, dm
\geq \int_M \phi \left\{ D[\Delta f](\nabla f) + K F^2(\nabla f) + \frac{(\Delta f)^2}{N} \right\} \, dm
$$

(2.4)

for all bounded nonnegative functions $\phi \in H^1_{\text{loc}}(M) \cap L^\infty(M)$.

Recall that $\Delta f \in L^1_0(M)$ is achieved by solutions to the heat equation if $S_F < \infty$. The operator $\nabla^2 f$ in the LHS is a linearization of the gradient given by

$$
\nabla^2 f u := \sum_{i,j=1}^n g^{ij}(\nabla f) \frac{\partial u}{\partial x^j} \frac{\partial}{\partial x^i},
$$

where $(g^{ij}(\nabla f))$ is the inverse matrix of $(g_{ij}(\nabla f))$. Let us similarly define $\nabla^2 f u := \text{div}_m(\nabla^2 f u)$. Note that $\nabla^2 f f = \nabla f$ and $\nabla^2 f f = \Delta f$ hold.

We will sometimes use the following common notation for brevity:

$$
\Gamma_2(f) := \Delta f \left[\frac{F^2(\nabla f)}{2} \right] - D[\Delta f](\nabla f).
$$

(2.5)

Then (2.4) is written in short as $\Gamma_2(f) \geq K F^2(\nabla f) + (\Delta f)^2 / N$.

3. Poincaré–Lichnerowicz inequality

We start with the Poincaré–Lichnerowicz inequality under the curvature bound $\text{Ric}_N \geq K > 0$. The $N \in [n, \infty]$ case was shown in [19] as a consequence of the curvature-dimension condition. In the Riemannian setting, the case of $N \in (-\infty, 0)$ was shown independently in [12] and [22].

For simplicity, we will assume that M is compact (it automatically holds when $N \in [n, \infty)$ and M is complete), and normalize m as $m(M) = 1$. Note that the ergodicity

$$
u_t \to \int_M \nu_0 \, dm \text{ in } L^2(M)
$$

(3.1)

holds for all global solutions $(u_t)_{t \geq 0}$ to the heat equation (since $\lim_{t \to \infty} \mathcal{E}(u_t) = 0$).
PROPOSITION 3.1

Assume that \(M \) is compact and satisfies \(\text{Ric}_N \geq K \) for some \(K \in \mathbb{R} \) and \(N \in (-\infty, 0) \cup [n, \infty] \). Then we have, for any \(f \in H^2(M) \cap C^1(M) \) such that \(\Delta f \in H^1(M) \),

\[
\int_M \left\{ D[\Delta f](\nabla f) + K F^2(\nabla f) + \frac{(\Delta f)^2}{N} \right\} \, dm \leq 0.
\]

In particular, if \(K > 0 \), then we have

\[
\int_M F^2(\nabla f) \, dm \leq \frac{N - 1}{KN} \int_M (\Delta f)^2 \, dm. \quad (3.2)
\]

If \(N = \infty \), then the coefficient in the RHS of (3.2) is read as \(1/K \).

Proof. The first assertion is a direct consequence of Theorem 2.5 with \(\phi \equiv 1 \). We further observe, by the integration by parts,

\[
K \int_M F^2(\nabla f) \, dm + \frac{\| \Delta f \|_{L^2}^2}{N} \leq - \int_M D[\Delta f](\nabla f) \, dm = \| \Delta f \|_{L^2}^2.
\]

Rearranging this inequality yields (3.2) when \(K > 0 \). \(\square \)

Now the Poincaré–Lichnerowicz inequality is obtained by a technique similar to [3, Proposition 4.8.3]. We define the variance of \(f \in L^2(M) \) (under \(m(M) = 1 \)) as

\[
\text{Var}_m(f) := \int_M f^2 \, dm - \left(\int_M f \, dm \right)^2.
\]

Theorem 3.2 (Poincaré–Lichnerowicz inequality). Let \(M \) be compact, \(m(M) = 1 \), and suppose \(\text{Ric}_N \geq K > 0 \) for some \(N \in (-\infty, 0) \cup [n, \infty] \). Then we have, for any \(f \in H^1(M) \),

\[
\int_M f^2 \, dm - \left(\int_M f \, dm \right)^2 \leq \frac{N - 1}{KN} \int_M F^2(\nabla f) \, dm.
\]

Proof. Let \((u_t)_{t \geq 0}\) be the solution to the heat equation with \(u_0 = f \), and put \(\Phi(t) := \| u_t \|_{L^2}^2 \) for \(t \geq 0 \). Observe that

\[
\Phi'(t) = 2 \int_M u_t \Delta u_t \, dm = -2 \int_M F^2(\nabla u_t) \, dm = -4\mathcal{E}(u_t),
\]

and by Lemma 2.4,

\[
\lim_{\delta \downarrow 0} \frac{\Phi(t+\delta) - \Phi(t)}{\delta} = -4 \lim_{\delta \downarrow 0} \frac{\mathcal{E}(u_{t+\delta}) - \mathcal{E}(u_t)}{\delta} = 4\| \Delta u_t \|_{L^2}^2
\]

for all \(t > 0 \). Then (3.2) implies

\[
-2\Phi'(t) \leq \frac{N - 1}{KN} \lim_{\delta \downarrow 0} \frac{\Phi(t+\delta) - \Phi(t)}{\delta}.
\]

(3.3)
Notice now that the ergodicity (3.1) implies \(\lim_{t \to \infty} \Phi(t) = (\int_M f \, dm)^2 \). Thus the differential inequality (3.3) yields

\[
\text{Var}_m(f) = -\int_0^\infty \Phi'(t) \, dt \leq \frac{N - 1}{2KN} \left(\lim_{t \to \infty} \Phi'(t) - \Phi'(0) \right)
\]

\[
= \frac{2(N - 1)}{KN} \mathcal{E}(f).
\]

This completes the proof. \(\square \)

4. Logarithmic Sobolev inequality

We next study the logarithmic Sobolev inequality. From here on, we consider only \(K > 0 \) and \(N \in [n, \infty) \). Then \(\text{Ric}_N \geq K \) implies the compactness of \(M \), thus we normalize \(m \) as \(m(M) = 1 \) without loss of generality. We first consider a sufficient condition for the logarithmic Sobolev inequality as in [3, Proposition 5.7.3].

Proposition 4.1

Assume that \(M \) is compact, \(\text{Ric}_\infty \geq K > 0 \), and

\[
\int_M \frac{F^2(\nabla u)}{u} \, dm \leq -C \int_M \left\{ Du \left(\nabla \nabla \left[\frac{F^2(\nabla u)}{2u^2} \right] \right) + uD[\Delta(\log u)](\nabla [\log u]) \right\} \, dm
\]

(4.1)

holds for some constant \(C > 0 \) and all functions \(u \in H^2(M) \cap C^1(M) \) such that \(\Delta u \in H^1(M) \) and \(\inf_M u > 0 \). Then the logarithmic Sobolev inequality

\[
\int_{\{f > 0\}} f \log f \, dm \leq \frac{C}{2} \int_{\{f > 0\}} \frac{F^2(\nabla f)}{f} \, dm
\]

(4.2)

holds for all nonnegative functions \(f \in H^1(M) \) with \(\int_M f \, dm = 1 \).

The assumed inequality (4.1) is written in short as (recall (2.5))

\[
\int_M uF^2(\nabla [\log u]) \, dm \leq C \int_M u\Gamma_2(\log u) \, dm.
\]

(4.3)

Note that both sides are well-defined, thanks to \(\inf_M u > 0 \) and \(F(\nabla u) \in L^\infty(M) \). The LHS of the logarithmic Sobolev inequality is the relative entropy of the probability measure \(f \, m \) with respect to \(m \):

\[
\text{Ent}_m(f \, m) := \int_M f \log f \, dm.
\]

(4.4)

Since \(m(M) = 1 \), we have \(\text{Ent}_m(f \, m) \geq 0 \) and \(\text{Ent}_m(f \, m) = 0 \) holds if and only if \(f = 1 \) almost everywhere.
Proof. Since \(m(M) = 1 \), by the truncation argument, one can assume \(f \geq \varepsilon \) for some \(\varepsilon > 0 \). Then the solution \((u_t)_{t \geq 0} \) to the heat equation with \(u_0 = f \) satisfies \(u_t \geq \varepsilon \) for all \(t > 0 \), thereby (4.1) admits \(u_t \). Then the claim follows from a similar argument to Theorem 3.2 applied to \(\Psi(t) := \text{Ent}_m(u_t, m) \). We see that

\[
\Psi'(t) = \int_M \left(\log u_t + 1 \right) \partial_t u_t \, dm = - \int_M D[\log u_t](\nabla u_t) \, dm
\]

\[
= - \int_M \frac{F^2(\nabla u_t)}{u_t} \, dm.
\]

We further deduce from Lemma 2.4 and the integration by parts that

\[
\Psi''(t) = \int_M \left\{ \frac{\Delta u_t}{u_t^2} F^2(\nabla u_t) - \frac{2}{u_t} D[\Delta u_t](\nabla u_t) \right\} \, dm
\]

\[
= - \int_M D u_t \left(\nabla u_t \left[\frac{F^2(\nabla u_t)}{u_t^2} \right] \right) \, dm - 2 \int_M D[\Delta u_t](\nabla [\log u_t]) \, dm.
\]

Since

\[
\int_M D[\Delta u_t](\nabla [\log u_t]) \, dm = - \int_M \Delta(\log u_t) \Delta u_t \, dm
\]

\[
= \int_M D[\Delta(\log u_t)](\nabla u_t) \, dm,
\]

the supposed inequality (4.1) means \(-2\Psi'(t) \leq C\Psi''(t)\).

We observe from the logarithmic Sobolev inequality under \(\text{Ric}_\infty \geq K > 0 \) that

\[
\int_M u_t \log u_t \, dm \leq \frac{1}{2K} \int_M F^2(\nabla u_t) \, dm \leq \frac{1}{2K\varepsilon} \int_M F^2(\nabla u_t) \, dm.
\]

Together with \(\lim_{t \to \infty} \mathcal{E}(u_t) = 0 \), we have \(\lim_{t \to \infty} \Psi(t) = \lim_{t \to \infty} \Psi'(t) = 0 \) and thus

\[
\int_M f \log f \, dm = - \int_0^\infty \Psi'(t) \, dt \leq \frac{C}{2} \int_0^\infty \Psi''(t) \, dt = -\frac{C}{2} \Psi'(0).
\]

We complete the proof. \(\square \)

Now we can show the sharp, dimensional logarithmic Sobolev inequality along the lines of [3, Theorem 5.7.4].

Theorem 4.2 (Logarithmic Sobolev inequality). Assume that \(\text{Ric}_N \geq K > 0 \) for some \(N \in [n, \infty) \) and \(m(M) = 1 \). Then we have

\[
\int_{\{f > 0\}} f \log f \, dm \leq \frac{N - 1}{2 KN} \int_{\{f > 0\}} \frac{F^2(\nabla f)}{f} \, dm
\]

for all nonnegative functions \(f \in H^1(M) \) with \(\int_M f \, dm = 1 \).
Proof. Fix $h \in C^\infty(M)$ and consider the function e^{ah} for $a > 0$. We begin with some preliminary and useful equations. Note first that, since $a > 0$,

$$\nabla(e^{ah}) = ae^{ah} \nabla h, \quad \Delta(e^{ah}) = ae^{ah} \{\Delta h + aF^2(\nabla h)\}. \quad (4.5)$$

Thus, on the one hand,

\begin{align*}
\Gamma_2(e^{ah}) &= \Delta \nabla h \left[\frac{a^2 e^{2ah} F^2(\nabla h)}{2} \right] - a^2 e^{ah} D[e^{ah} \{\Delta h + aF^2(\nabla h)\}] (\nabla h) \\
&= a^2 \text{div}_m \left[e^{2ah} \nabla \nabla h \left[\frac{F^2(\nabla h)}{2} \right] + ae^{2ah} F^2(\nabla h) \nabla h \right] \\
&\quad - a^2 e^{2ah} \left\{ a(\Delta h + aF^2(\nabla h))F^2(\nabla h) + D[\Delta h](\nabla h) \\
&\quad + aD[F^2(\nabla h)](\nabla h) \right\} \\
&= a^2 e^{2ah} \left\{ a \nabla h \left[\frac{F^2(\nabla h)}{2} \right] + aD[F^2(\nabla h)](\nabla h) \\
&\quad + a^2 F^4(\nabla h) - D[\Delta h](\nabla h) \right\} \\
&= a^2 e^{2ah} \left\{ \Gamma_2(h) + aD[F^2(\nabla h)](\nabla h) + a^2 F^4(\nabla h) \right\}. \quad (4.6)
\end{align*}

On the other hand, it follows from the integration by parts that

$$\int_M \Gamma_2(e^{ah}) \, dm = \|\Delta(e^{ah})\|_{L^2}^2$$

\begin{align*}
&= a^2 \int_M e^{2ah} (\Delta h)^2 + 2aF^2(\nabla h) \Delta h + a^2 F^4(\nabla h) \, dm \\
&= a^2 \int_M e^{2ah} (\Delta h)^2 - 2aD[F^2(\nabla h)](\nabla h) - 3a^2 F^4(\nabla h) \, dm.
\end{align*}

Comparing this with (4.6), we have

$$\int_M e^{2ah} (\Delta h)^2 \, dm = \int_M e^{2ah} \left\{ \Gamma_2(h) + 3aD[F^2(\nabla h)](\nabla h) + 4a^2 F^4(\nabla h) \right\} \, dm. \quad (4.7)$$

Next we apply the Bochner inequality (2.4) to e^{ah} and find, by (4.5) and (4.6),

$$\Gamma_2(h) + aD[F^2(\nabla h)](\nabla h) + a^2 F^4(\nabla h)$$

$$\geq K F^2(\nabla h) + \frac{1}{N} (\Delta h)^2 + 2aF^2(\nabla h) \Delta h + a^2 F^4(\nabla h)). \quad (4.8)$$
To be precise, (4.8) holds in the weak sense as in Theorem 2.5, and we will employ \(e^h \) as a test function. Then the RHS is being, by (4.7) with \(a = 1/2 \) and the integration by parts,

\[
\int_M e^h \left\{ K F^2(\nabla h) + \frac{1}{N} (\Delta h)^2 + 2a F^2(\nabla h) \Delta h + a^2 F^4(\nabla h) \right\} \, dm
\]

\[
= \int_M e^h \left\{ K F^2(\nabla h) + \frac{a^2}{N} F^4(\nabla h) \right\} \, dm \\
+ \frac{1}{N} \int_M e^h \left\{ \Gamma_2(h) + \frac{3}{2} D[F^2(\nabla h)](\nabla h) + F^4(\nabla h) \right\} \, dm \\
- \frac{2a}{N} \int_M e^h \left\{ F^4(\nabla h) + D[F^2(\nabla h)](\nabla h) \right\} \, dm \\
= K \int_M e^h F^2(\nabla h) \, dm \\
+ \frac{1}{N} \int_M e^h \left\{ \Gamma_2(h) + \left(\frac{3}{2} - 2a \right) D[F^2(\nabla h)](\nabla h) + (a - 1)^2 F^4(\nabla h) \right\} \, dm.
\]

Hence we obtain from (4.8) that

\[
\left(1 - \frac{1}{N}\right) \int_M e^h \Gamma_2(h) \, dm \geq K \int_M e^h F^2(\nabla h) \, dm \\
+ \frac{3 - 2(N + 2)a}{2N} \int_M e^h D[F^2(\nabla h)](\nabla h) \, dm \\
+ \frac{(a - 1)^2 - Na^2}{N} \int_M e^h F^4(\nabla h) \, dm. \quad (4.9)
\]

Choosing \(a = \frac{3}{2(N + 2)} > 0 \) gives that

\[
\frac{N - 1}{N} \int_M e^h \Gamma_2(h) \, dm \geq K \int_M e^h F^2(\nabla h) \, dm \\
+ \frac{(4N - 1)(N - 1)}{4N(N + 2)^2} \int_M e^h F^4(\nabla h) \, dm \\
\geq K \int_M e^h F^2(\nabla h) \, dm. \quad (4.10)
\]

This is the desired inequality (4.1) (recall (4.3)) for \(u = e^h \) with \(C = (N - 1)/KN \). Then \(u \in C^\infty(M) \) and \(\inf_M u > 0 \). By approximation, this implies (4.1) for all \(u \) in the required class, therefore we complete the proof by Proposition 4.1. \(\square \)

Remark 4.3. Different from the Poincaré–Lichnerowicz inequality in the previous section, the calculation in the above proof does not allow \(N \) being negative. Precisely, \(a < 0 \) is
acceptable in the reversible case, whereas the last inequality (4.10) fails for $N < 0$. In fact, the logarithmic Sobolev inequality of the form (4.2) does not hold under $\text{Ric}_N \geq K > 0$ with $N < 0$. This is because the model space given in [16] satisfies only the exponential concentration, while (4.2) (or the Talagrand inequality below) implies the normal concentration (see [13] for the theory of concentration of measures).

As a corollary, we have the dimensional Talagrand inequality on the relation between the Wasserstein distance W_2 and the relative entropy (4.4). See [19,36] for the definition of W_2 as well as the Talagrand inequality under $\text{Ric}_\infty \geq K > 0$. We will denote by $\mathcal{P}(M)$ the set of all Borel probability measures on M.

COROLLARY 4.4 (Talagrand inequality)

Assume that $\text{Ric}_N \geq K > 0$ for $N \in [n, \infty)$ and $m(M) = 1$. Then we have, for all $\mu \in \mathcal{P}(M)$,

$$W_2^2(\mu, m) \leq \frac{2(N-1)}{KN} \text{Ent}_m(\mu).$$

Proof. This is the well-known implication going back to [29]. Since our distance is asymmetric, we give an outline along [10] for completeness.

Note that it is enough to show the claim for $\mu = f m$ with $f \in H^1(M)$. Let $(u_t)_{t \geq 0}$ be the global solution to the heat equation with $u_0 = f$, and put $\mu_t := u_t m \in \mathcal{P}(M)$ and $\Psi(t) := \text{Ent}_m(\mu_t)$. Then, as we saw in the proof of Proposition 4.1,

$$\Psi'(t) = -\int_M F^2(\nabla u_t) \frac{u_t}{u_t} \, dm \leq -\frac{2KN}{N-1} \Psi(t),$$

by Theorem 4.2. We can rewrite this inequality as

$$\sqrt{-\Psi'(t)} \leq -\sqrt{\frac{2(N-1)}{KN}} (\sqrt{\Psi})'(t).$$

Arguing as in [10] (following the lines of [9]), we obtain

$$\left(\lim_{\varepsilon \downarrow 0} \frac{W_2(\mu_t, \mu_{t+\varepsilon})}{\varepsilon} \right)^2 \leq \int_M F^2(\nabla u_t) \frac{u_t}{u_t} \, dm = -\Psi'(t)$$

for almost every $t > 0$. Thus we have, since $\lim_{t \to \infty} W_2(\mu_t, m) = \lim_{t \to \infty} \Psi(t) = 0$,

$$W_2(\mu, m) = \lim_{t \to \infty} W_2(\mu_0, \mu_t) \leq \int_0^\infty \sqrt{-\Psi'(t)} \, dt \leq -\sqrt{\frac{2(N-1)}{KN}} \int_0^\infty (\sqrt{\Psi})'(t) \, dt = \sqrt{\frac{2(N-1)}{KN}} \sqrt{\Psi(0)}.$$

This completes the proof. □
5. Sobolev inequality

This section is devoted to the Sobolev inequality. We first derive a non-sharp Sobolev inequality followed by qualitative consequences. Then, with the help of these qualitative properties, we proceed to the sharp estimate.

5.1 Non-sharp Sobolev inequality and applications

We start with a useful inequality as in [3, Theorem 6.8.1].

PROPOSITION 5.1 (Logarithmic entropy-energy inequality)

Assume $\text{Ric}_N \geq K > 0$ for some $N \in [n, \infty)$ and $m(M) = 1$. Then we have

$$\text{Ent}_m(f^2 m) \leq \frac{N}{2} \log \left(1 + \frac{4}{KN} \int_M F^2(\nabla f) \, dm\right)$$

for all $f \in H^1(M)$ with $\int_M f^2 \, dm = 1$.

Proof. Let us first consider nonnegative f. By truncation, we can assume $f \in L^\infty(M)$ and $\inf_M f > 0$, in particular, $f^2 \in H^1(M)$. Consider the solution $(u_t)_{t \geq 0}$ to the heat equation with $u_0 = f^2$, and put $\Psi(t) := \text{Ent}_m(u_t, m)$. Then we have, by Proposition 4.1,

$$\Psi'(t) = -\int_M \frac{F^2(\nabla u_t)}{u_t} \, dm = -\int_M u_t F^2(\nabla [\log u_t]) \, dm \leq 0.$$

Moreover, recall also from the proof of Proposition 4.1 that

$$\Psi''(t) = -\int_M Du_t (\nabla \nabla u_t [F^2(\nabla [\log u_t])]) \, dm$$

$$-2 \int_M u_t D(\Delta [\log u_t])(\nabla [\log u_t]) \, dm.$$

Then the Bochner inequality (2.4) shows that

$$\Psi''(t) \geq -2K \Psi'(t) + \frac{2}{N} \int_M u_t (\Delta [\log u_t])^2 \, dm.$$

By the Cauchy–Schwarz inequality and $\int_M u_t \, dm = 1$, we find

$$\Psi''(t) \geq -2K \Psi'(t) + \frac{2}{N} \left(\int_M u_t \cdot \Delta [\log u_t] \, dm\right)^2 = -2K \Psi'(t) + \frac{2}{N} \Psi'(t)^2.$$

(5.1)

Therefore the function

$$t \mapsto e^{-2Kt} \left(\frac{1}{N} - \frac{K}{\Psi'(t)}\right)$$
is nondecreasing, and hence

\[-\Psi'(t) \leq KN \left\{ e^{2Kt} \left(1 - \frac{KN}{\Psi'(0)} \right) - 1 \right\}^{-1}.

Integrating this inequality gives

\[\Psi(0) - \Psi(t) \leq \frac{N}{2} \log \left(1 - (1 - e^{-2Kt}) \frac{\Psi'(0)}{KN} \right).\]

Note finally that

\[\Psi'(0) = -\int_M \frac{F^2(\nabla(f^2))}{f^2} \, dm = -4 \int_M F^2(\nabla f) \, dm\]

since \(f \geq 0\). Thus letting \(t \to \infty\) completes the proof for \(f \geq 0\).

In general, we divide \(f\) into \(f_+ := \max\{f, 0\}\) and \(f_- := \max\{-f, 0\}\), and apply the above inequality with respect to \(F\) and \(\hat{F}(v) := F(-v)\), respectively (see [19, Corollary 8.4] for details). Then the concavity of the function \(\log(1 + s)\) for \(s \geq 0\) shows the claim. \(\square\)

Remark 5.2. The inequality in (5.1) is invalid for \(N < 0\) since the Cauchy–Schwarz inequality cannot be reversed.

Next we follow the strategy in [3, Proposition 6.2.3] to show the Nash inequality and then a non-sharp Sobolev inequality.

Lemma 5.3 (Nash inequality). Assume that \(\text{Ric}_N \geq K > 0\) for some \(N \in [n, \infty)\) and \(m(M) = 1\). Then we have, for all \(f \in H^1(M)\),

\[
\|f\|_{L^2}^{N+2} \leq \left(\|f\|_{L^2}^2 + \frac{4}{KN} \mathcal{E}(f) \right)^{N/2} \|f\|_{L^1}^2.
\]

Proof. Normalize \(f\) so as to satisfy \(\int_M f^2 \, dm = 1\). Put \(\psi(\theta) := \log(\|f\|_{L^1/\theta})\) for \(\theta \in (0, 1]\), and notice that \(\psi\) is a convex function due to the Hölder inequality:

\[
\psi((1-\lambda)\theta + \lambda\theta')
= (1-\lambda)\theta + \lambda\theta' \log \left(\int_M |f|^{(1-\lambda)/(1-\lambda)\theta + \lambda\theta'} |f|^{\lambda/(1-\lambda)\theta + \lambda\theta'} \, dm \right)
\leq (1-\lambda)\theta + \lambda\theta' \log \left(\left(\int_M |f|^{1/\theta} \, dm \right)^{(1-\lambda)\theta'/(1-\lambda)\theta + \lambda\theta'} \right)
= \log(\|f\|_{L^1/\theta}^{1-\lambda} \cdot \|f\|_{L^1/\theta'}^\lambda) = (1-\lambda)\psi(\theta) + \lambda\psi(\theta').
\]
Some functional inequalities on non-reversible Finsler manifolds

for all \(\theta, \theta' \in (0, 1) \) and \(\lambda \in (0, 1) \). Therefore

\[
\psi(1) \geq \psi\left(\frac{1}{2}\right) + \frac{1}{2} \psi'(\frac{1}{2}) = \frac{1}{2} \psi'(\frac{1}{2})
\]

since we supposed \(\|f\|_{L^2} = 1 \). Combining this with

\[
\psi'(\frac{1}{2}) = \frac{1}{2} \int_M (-4 \log |f| \cdot |f|^2) \, dm = -\text{Ent}_m(f^2 m)
\]

and Proposition 5.1, we obtain

\[
\| f \|_{L^1} \geq \exp\left(-\frac{1}{2} \text{Ent}_m(f^2 m)\right) \geq \left(1 + \frac{4}{KN} \mathcal{E}(f)\right)^{-N/4} \geq \left(1 + \frac{4}{KN} \mathcal{E}(f)\right)^{-N/2}.
\]

This completes the proof. \(\square\)

Proposition 5.4 (Non-sharp Sobolev inequality)

Assume that \(\text{Ric}_N \geq K > 0 \) for some \(N \in [n, \infty) \cap (2, \infty) \) and \(m(M) = 1 \). Then we have

\[
\| f \|_{L^p}^2 \leq C_1 \| f \|_{L^2}^2 + C_2 \mathcal{E}(f)
\]

for all \(f \in H^1(M) \), where \(p = 2N/(N - 2) \), \(C_1 = C_1(N) > 1 \) and \(C_2 = C_2(K, N) > 0 \).

Proof. By the same reasoning as Proposition 5.1 and

\[
\| f_+ \|_{L^p}^2 + \| f_- \|_{L^p}^2 \geq (\| f_+ \|_{L^p}^p + \| f_- \|_{L^p}^p)^{2/p},
\]

we can assume that \(f \in L^\infty(M) \) and \(\inf_M f > 0 \). For \(k \in \mathbb{Z} \) consider the decreasing sequence \(A_k := \{ f > 2^k \} \) and set

\[
f_k := \min\{ \max\{f - 2^k, 0\}, 2^k\} = \begin{cases} 2^k & \text{on } A_{k+1}, \\ f - 2^k & \text{on } A_k \setminus A_{k+1}, \\ 0 & \text{on } M \setminus A_k. \end{cases}
\]

Notice that \(2^k \chi_{A_{k+1}} \leq f_k \leq 2^k \chi_{A_k} \) (\(\chi_A \) denotes the characteristic function of \(A \)) and hence

\[
2^k m(A_{k+1}) \leq \| f_k \|_{L^2}^2 \leq 2^k m(A_k), \quad \| f_k \|_{L^1} \leq 2^k m(A_k).
\]

Together with the Nash inequality (Lemma 5.3) applied to \(f_k \), we have

\[
(2^k m(A_{k+1}))^{(N+2)/2} \leq \| f_k \|_{L^2}^{N+2} \leq \left(\| f_k \|_{L^2}^2 + \frac{4}{KN} \mathcal{E}(f_k)\right)^{N/2} \| f_k \|_{L^1}^{N/2} \leq \left(2^k m(A_k) + \frac{4}{KN} \mathcal{E}(f_k)\right)^{N/2} 2^k m(A_k)^2.
\]
Let us rewrite this by using $p = 2N/(N - 2)$ as

$$2^{p(k+1)}m(A_{k+1}) \leq 2^p \left(2^{2k}m(A_k) + \frac{4}{KN} \mathcal{E}(f_k) \right)^{N/(N+2)} \left(2^{pk}m(A_k)^2 \right)^{2/(N+2)}.$$

Combining this with the Hölder inequality implies

$$\sum_{k \in \mathbb{Z}} 2^{p(k+1)}m(A_{k+1})$$

$$\leq 2^p \sum_{k \in \mathbb{Z}} \left(2^{2k}m(A_k) + \frac{4}{KN} \mathcal{E}(f_k) \right)^{N/(N+2)} \left(2^{pk}m(A_k)^2 \right)^{2/(N+2)}$$

$$\leq 2^p \left(\sum_{k \in \mathbb{Z}} \left(2^{2k}m(A_k) + \frac{4}{KN} \mathcal{E}(f_k) \right)^{N/(N+2)} \left(2^{pk}m(A_k)^2 \right)^{2/(N+2)} \right)$$

$$\leq 2^p \left(\sum_{k \in \mathbb{Z}} \left(2^{2k}m(A_k) + \frac{4}{KN} \mathcal{E}(f_k) \right)^{N/(N+2)} \left(2^{pk}m(A_k)^2 \right)^{4/(N+2)} \right).$$

Hence we have

$$\left(\sum_{k \in \mathbb{Z}} 2^{pk}m(A_k) \right)^{(N-2)/(N+2)} \leq 2^p \left(\sum_{k \in \mathbb{Z}} \left(2^{2k}m(A_k) + \frac{4}{KN} \mathcal{E}(f_k) \right) \right)^{N/(N+2)}.$$

(5.3)

On the one hand, we deduce from $\sum_{k \in \mathbb{Z}} \mathcal{E}(f_k) = \mathcal{E}(f)$ and

$$\sum_{k \in \mathbb{Z}} 2^{2k}m(A_k) = \frac{4}{3} \sum_{k \in \mathbb{Z}} 2^{2k} \{m(A_k) - m(A_{k+1})\} \leq \frac{4}{3} \| f \|_{L^2}^2$$

that

$$\sum_{k \in \mathbb{Z}} \left\{ 2^{2k}m(A_k) + \frac{4}{KN} \mathcal{E}(f_k) \right\} \leq \frac{4}{3} \| f \|_{L^2}^2 + \frac{4}{KN} \mathcal{E}(f).$$

On the other hand, we similarly find

$$\sum_{k \in \mathbb{Z}} 2^{pk}m(A_k) = \frac{1}{2^p - 1} \sum_{k \in \mathbb{Z}} 2^{p(k+1)} \{m(A_k) - m(A_{k+1})\} \geq 2^{-p} \| f \|_{L^p}^p.$$

Substituting these into (5.3) yields

$$(2^{-p} \| f \|_{L^p}^p)^{(N-2)/N} \leq 2^{p(N+2)/N} \left(\frac{4}{3} \| f \|_{L^2}^2 + \frac{4}{KN} \mathcal{E}(f) \right).$$
Recalling $p = 2N/(N - 2)$, we finally obtain

$$
\|f\|_{L^p}^2 \leq 2^{p(N-2)/N} 2^{p(N+2)/N} \left(\frac{4}{3} \|f\|_{L^2}^2 + \frac{4}{K N} \mathcal{E}(f) \right)
$$

$$
= 2^{4N/(N-2)} \left(\frac{4}{3} \|f\|_{L^2}^2 + \frac{4}{K N} \mathcal{E}(f) \right).
$$

□

We have several qualitative consequences from the non-sharp Sobolev inequality in Proposition 5.4. In fact, one can reduce these qualitative arguments to the Riemannian case by virtue of the uniform smoothness (2.3).

COROLLARY 5.5

Assume that $\text{Ric}_N \geq K > 0$ for some $N \in [n, \infty) \cap (2, \infty)$ and $m(M) = 1$. Then there exists a C^∞-Riemannian metric g for which

$$
\|f\|_{L^p}^2 \leq C_1 \|f\|_{L^2}^2 + C_2 \mathcal{S}_F \mathcal{E}^g(f)
$$

holds for all $f \in H^1(M)$, with $p = 2N/(N - 2)$, $C_1 > 1$ and $C_2 > 0$ as in Proposition 5.4.

Proof. Let $\{U_i\}_{i \in \mathbb{N}}$ be an open cover of M, V_i a non-vanishing C^∞-vector field on U_i, and $\{\rho_i\}_{i \in \mathbb{N}}$ a partition of unity subordinate to $\{U_i\}_{i \in \mathbb{N}}$. Consider the Riemannian metric $g := \sum_{i \in \mathbb{N}} \rho_i g_{V_i}$. For any $f \in H^1(M)$, we have

$$
2 \mathcal{E}^F(f) = \sum_{i \in \mathbb{N}} \int_{U_i} \rho_i F^*(Df)^2 \, dm
$$

$$
\leq \sum_{i \in \mathbb{N}} \int_{U_i} \rho_i \mathcal{S}_F g_{V_i}^*(Df, Df) \, dm = 2 \mathcal{S}_F \mathcal{E}^g(f).
$$

Combining this with Proposition 5.4, we complete the proof. □

5.2 Sharp Sobolev inequality

We finally show the sharp Sobolev inequality along the lines of [3, Theorem 6.8.3].

Theorem 5.6 (Sobolev inequality). Assume that $\text{Ric}_N \geq K > 0$ for some $N \in [n, \infty)$ and $m(M) = 1$. Then we have

$$
\frac{\|f\|_{L^p}^2 - \|f\|_{L^2}^2}{p - 2} \leq \frac{N - 1}{KN} \int_M F^2(\nabla f) \, dm
$$

for all $1 \leq p \leq 2(N + 1)/N$ and $f \in H^1(M)$.

The case of $p = 2$ is understood as the limit, giving the logarithmic Sobolev inequality (Theorem 4.2). The $p = 1$ case amounts to the Poincaré–Lichnerowicz inequality (Theorem 3.2), whereas only for $N \geq n$.
Proof. Let us assume $N > 2$ for simplicity. This certainly covers the case of $N = n = 2$ just by taking the limit as $N \downarrow 2$. Notice also that, due to (5.2) for $p > 2$ and its converse for $p < 2$, it suffices to show the claim for nonnegative f by a similar argument to Proposition 5.1.

Take the smallest possible constant $C > 0$ satisfying
\[
\frac{\|f\|_{L^p}^2 - \|f\|_{L^2}^2}{p - 2} \leq 2CE(f) \tag{5.4}
\]
for all nonnegative functions $f \in H^1(M)$. Our goal is to show $C \leq (N - 1)/KN$. Let us suppose that we find a extremal (nonconstant) function $f \geq 0$ enjoying equality in (5.4) as well as $f \in L^\infty(M)$ and $\inf_M f > 0$, and normalize it as $\|f\|_{L^p} = 1$. For any $\phi \in C^\infty(M)$ and $\varepsilon > 0$, by the choice of f,
\[
\frac{\|f + \varepsilon \phi\|_{L^p}^2 - \|f\|_{L^p}^2 - \|f + \varepsilon \phi\|_{L^2}^2}{p - 2} \leq 2C\{E(f + \varepsilon \phi) - E(f)\}.
\]
Dividing both sides by ε and letting $\varepsilon \downarrow 0$, we have
\[
\frac{1}{p - 2} \int_M \left(\frac{2p}{p} f^{p-1} \phi - 2f \phi \right) dm \leq 2C \int_M D\phi(\nabla f) dm
\]
\[
= -2C \int_M \phi \Delta f dm.
\]
Since ϕ was arbitrary, it follows that (\(\Delta f\) is well-defined and)
\[
f^{p-1} - f = -C(p - 2)\Delta f. \tag{5.5}
\]
Put $f = e^u$. Then (5.5) is rewritten as
\[
e^{(p-1)u} - e^u = -C(p - 2)\Delta [e^u] = -C(p - 2)e^u[\Delta u + F^2(\nabla u)],
\]
therefore
\[
e^{(p-2)u} = 1 - C(p - 2)[\Delta u + F^2(\nabla u)]. \tag{5.6}
\]
Multiply both sides by $e^{b\Delta u}$ and use the integration by parts to find
\[
(p - 2 + b) \int_M e^{(p-2+b)u} F^2(\nabla u) dm
\]
\[
= b \int_M e^{bu} F^2(\nabla u) dm
\]
\[
+ C(p - 2) \int_M e^{bu} \{ (\Delta u)^2 - bF^4(\nabla u) - D[F^2(\nabla u)](\nabla u) \} dm.
\]
Recall (4.7) with $a = b/2$:
\[
\int_M e^{bu} (\Delta u)^2 dm = \int_M e^{bu} \left\{ \Gamma_2(u) + \frac{3b}{2} D[F^2(\nabla u)](\nabla u) + b^2 F^4(\nabla u) \right\} dm. \tag{5.7}
\]
Thus

\[(p - 2 + b) \int_M e^{(p-2+b)u} F^2(\nabla u) \, dm \]
\[= b \int_M e^{bu} F^2(\nabla u) \, dm + C(p - 2) \int_M e^{bu} \Gamma_2(u) \, dm \]
\[+ C(p - 2) \left(\frac{3b}{2} - 1 \right) \int_M e^{bu} D[F^2(\nabla u)](\nabla u) \, dm \]
\[+ C(p - 2)b(b - 1) \int_M e^{bu} F^4(\nabla u) \, dm. \]

Substituting (5.6) to \(e^{(p-2)u}\) in the LHS, we have on the one hand

\[C(p - 2) \int_M e^{bu} \Gamma_2(u) \, dm \]
\[= (p - 2) \int_M e^{bu} F^2(\nabla u) \, dm \]
\[\quad - C(p - 2)(p - 2 + b) \int_M e^{bu} F^2(\nabla u) \{\Delta u + F^2(\nabla u)\} \, dm \]
\[\quad - C(p - 2) \left(\frac{3b}{2} - 1 \right) \int_M e^{bu} D[F^2(\nabla u)](\nabla u) \, dm \]
\[\quad - C(p - 2)b(b - 1) \int_M e^{bu} F^4(\nabla u) \, dm \]
\[= (p - 2) \int_M e^{bu} F^2(\nabla u) \, dm \]
\[\quad + C(p - 2) \left(p - 1 - \frac{b}{2} \right) \int_M e^{bu} D[F^2(\nabla u)](\nabla u) \, dm \]
\[\quad + C(p - 2)^2(b - 1) \int_M e^{bu} F^4(\nabla u) \, dm. \]

(5.8)

On the other hand, multiplying the RHS of (4.8) by \(e^{bu}\) and integrating it gives, together with (5.7),

\[\int_M e^{bu} \left\{ K F^2(\nabla u) + \frac{a^2}{N} F^4(\nabla u) \right\} \, dm \]
\[+ \frac{1}{N} \int_M e^{bu} \left\{ \Gamma_2(u) + \frac{3b}{2} D[F^2(\nabla u)](\nabla u) + b^2 F^4(\nabla u) \right\} \, dm \]
\[\quad - \frac{2a}{N} \int_M e^{bu} \left\{ b F^4(\nabla u) + D[F^2(\nabla u)](\nabla u) \right\} \, dm \]
\[= K \int_M e^{bu} F^2(\nabla u) \, dm \]
\[\quad + \frac{1}{N} \int_M e^{bu} \left\{ \Gamma_2(u) + \left(\frac{3b}{2} - 2a \right) D[F^2(\nabla u)](\nabla u) \right. \]
\[\quad + (a - b)^2 F^4(\nabla u) \right\} \, dm. \]
Thus we obtain from (4.8) the following variant of (4.9):

\[
\left(1 - \frac{1}{N}\right) \int_M e^{bu} \Gamma_2(u) \, dm \geq K \int_M e^{bu} F^2(\nabla u) \, dm \\
+ \left(\frac{3b - 4a}{2N} - a\right) \int_M e^{bu} D[F^2(\nabla u)](\nabla u) \, dm \\
+ \left(\frac{(a - b)^2}{N} - a^2\right) \int_M e^{bu} F^4(\nabla u) \, dm.
\]

Comparing the coefficients in (5.8) and (5.9), we would like to choose \(a\) and \(b\) enjoying

\[
p - 1 - \frac{b}{2} = \frac{3b - 2(N + 2)a}{2(N - 1)}, \quad (p - 2)(b - 1) = \frac{(a - b)^2 - Na^2}{N - 1}.
\]

(5.10)

At this point we need an additional care, because of the non-reversibility, on the ranges of \(a\) and \(b\). As we mentioned, they necessarily satisfy \(a \geq 0\) and \(b \geq 0\). We first deduce from the first equation in (5.10) that

\[
a = \frac{b}{2} - (p - 1) \frac{N - 1}{N + 2}.
\]

Substituting this into the latter inequality in (5.10) yields

\[
\frac{b^2}{4} + \left(\frac{p - 1}{N + 2} - 1\right)b - (p - 2) + (p - 1)^2 \left(\frac{N - 1}{N + 2}\right)^2 = 0.
\]

(5.11)

Let us denote the LHS by \(h(b)\). The discriminant of \(h\) is given by

\[
\frac{N(p - 1)}{N + 2} \left(2 - \frac{N}{N + 2}(p - 1) + 1\right),
\]

which vanishes at \(p = 1, 2N/(N - 2)\) and is nonnegative for \(p \in [1, 2N/(N - 2)]\). Note also that the axis of \(h(b)\) is positive since \(p \leq 2(N + 1)/N \leq 2N/(N - 2)\) implies

\[
2\left(1 - \frac{p - 1}{N + 2}\right) \geq 2\left(1 - \frac{1}{N}\right) > 0.
\]

Thus we have the positive solution

\[
b_0 \geq 2\left(1 - \frac{p - 1}{N + 2}\right)
\]

of (5.11), and put

\[
a_0 := \frac{b_0}{2} - (p - 1) \frac{N - 1}{N + 2}.
\]
Then we observe from \(p \leq 2(N + 1)/N \) that

\[
a_0 \geq 1 - \frac{p - 1}{N + 2} - (p - 1) \frac{N - 1}{N + 2} \geq 0.
\]

(5.12)

Plugging above \(a_0 \) and \(b_0 \) into (5.8) and (5.9), we obtain \(C \leq (N - 1)/KN \) as desired.

Finally, since there may not be a good extremal function, one needs an extra discussion on the approximation procedure. This step, needing only the non-sharp Sobolev inequality, can be reduced to the Riemannian case by virtue of Corollary 5.5. See the latter half of the proof of [3, Theorem 6.8.3] for details.

\[\Box\]

Remark 5.7. In (5.12), we used \(p \leq 2(N + 1)/N \) which is slightly more restrictive than \(p \leq 2N/(N - 2) \) in [3,7]. A more precise estimate gives \(h(b_0 - 2a_0) \leq 0 \) for

\[
p \in \left[\frac{2(N + 1)}{N}, \frac{7N^2 + 2N + (N + 2)\sqrt{N^2 + 8N}}{4N(N - 1)} \right],
\]

which means \(a_0 \geq 0 \) and slightly improves the acceptable range of \(p \). This is, however, still more restrictive than \(p \leq 2N/(N - 2) \). Indeed, in the extremal case of \(p = 2N/(N - 2) \), one can explicitly calculate (see [3, Theorem 6.8.3])

\[
b_0 = 2\left(1 - \frac{p - 1}{N + 2}\right) = \frac{2(N - 3)}{N - 2}, \quad a_0 = -\frac{2}{N - 2} < 0.
\]

Thanks to the smoothness of \(M \) and \(m \), we have the following corollary.

COROLLARY 5.8 (Sobolev inequality for \(N = \infty \))

Assume that \(M \) is compact and satisfies \(\text{Ric}_\infty \geq K > 0 \) and \(m(M) = 1 \). Then we have

\[
\frac{\|f\|_{L^p}^2}{p - 2} - \frac{\|f\|_{L^2}^2}{2} \leq \frac{1}{K} \int_M F^2(\nabla f) \, dm
\]

for all \(1 \leq p \leq 2 \) and \(f \in H^1(M) \).

Proof. By the smoothness and the compactness, for any \(\varepsilon > 0 \), we have \(\text{Ric}_{N_\varepsilon} \geq K - \varepsilon \) for sufficiently large \(N_\varepsilon < \infty \). Then the claim is derived from Theorem 5.6 as the limit of \(\varepsilon \downarrow 0 \). \[\Box\]

6. Further problems

(A) Though we did not pursue that direction in this article, the \(p \)-spectral gap is also treated in [7]. It is worthwhile to study such a problem on non-reversible Finsler manifolds. See [41] for a related work.

(B) There remain many open problems in the case of \(N < 0 \). We saw that the Poincaré–Lichnerowicz inequality admits \(N < 0 \) and the logarithmic Sobolev inequality does not (recall Remark 4.3). Nonetheless, we had in [22] certain variants of the logarithmic Sobolev and Talagrand inequalities under the entropic curvature-dimension condition \(\text{CD}^e(K, N) \). The condition \(\text{CD}^e(K, N) \) is seemingly stronger than \(\text{Ric}_N \geq K \) when
$N < 0$, whereas the precise relation is still unclear. One of the widely open problems for $N < 0$ is a gradient estimate for the heat semigroup. The model space given in [16] would give a clue to further studies.

Acknowledgement

This work is supported in part by JSPS Grant-in-Aid for Scientific Research (KAKENHI) 15K04844.

References

[1] Ambrosio L, Gigli N and Savaré G, Bakry–Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab. 43 (2015) 339–404
[2] Bakry D, L’hypercontractivité et son utilisation en théorie des semigroupes (French), Lectures on probability theory (Saint-Flour, 1992), Lecture Notes in Math. 1581 (1994) (Berlin: Springer), pp. 1–114
[3] Bakry D, Gentil I and Ledoux M, Analysis and geometry of Markov diffusion operators (2014) (Cham: Springer)
[4] Bakry D and Ledoux M, Lévy–Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator, Invent. Math. 123 (1996) 259–281
[5] Bao D, Chern S-S and Shen Z, An introduction to Riemann–Finsler geometry (2000) (New York: Springer-Verlag)
[6] Cavalletti F and Mondino A, Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds, Invent. Math. 208 (2017) 803–849
[7] Cavalletti F and Mondino A, Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds, Geom. Topol. 21 (2017) 603–645
[8] Erbar M, Kuwada K and Sturm K-T, On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math. 201 (2015) 993–1071
[9] Gigli N, Kuwada K and Ohta S, Heat flow on Alexandrov spaces, Comm. Pure Appl. Math. 66 (2013) 307–331
[10] Gigli N and Ledoux M, From log Sobolev to Talagrand: a quick proof, Discrete Contin. Dyn. Syst. 33 (2013) 1927–1935
[11] Klartag B, Needle decompositions in Riemannian geometry, Mem. Amer. Math. Soc. 249 (2017)
[12] Kolesnikov A V and Milman E, Brascamp–Lieb-type inequalities on weighted Riemannian manifolds with boundary, J. Geom. Anal. 27 (2017) 1680–1702
[13] Ledoux M, The concentration of measure phenomenon (2001) (Providence, RI: American Mathematical Society)
[14] Lichnerowicz A, Variétés riemanniennes à tenseur C non négatif (French), C. R. Acad. Sci. Paris Sér. A-B 271 (1970) A650–A653
[15] Lott J and Villani C, Ricci curvature for metric-measure spaces via optimal transport, Ann. Math. 169 (2009) 903–991
[16] Milman E, Beyond traditional curvature-dimension I: new model spaces for isoperimetric and concentration inequalities in negative dimension, Trans. Amer. Math. Soc. 369 (2017) 3605–3637
[17] Milman E, Harmonic measures on the sphere via curvature-dimension, Ann. Fac. Sci. Toulouse Math. 26 (2017) 437–449
[18] Ohta S, Uniform convexity and smoothness, and their applications in Finsler geometry, Math. Ann. 343 (2009) 669–699
[19] Ohta S, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations 36 (2009) 211–249
Some functional inequalities on non-reversible Finsler manifolds

[20] Ohta S, Optimal transport and Ricci curvature in Finsler geometry, Probabilistic approach to geometry, Adv. Stud. Pure Math., 57 (2010) (Tokyo: Math. Soc. Japan), pp. 323–342
[21] Ohta S, Ricci curvature, entropy, and optimal transport. Optimal transportation, London Math. Soc. Lecture Note Ser., 413 (2014) (Cambridge: Cambridge Univ. Press), pp. 145–199
[22] Ohta S, (K, N)-convexity and the curvature-dimension condition for negative N, J. Geom. Anal. 26 (2016) 2067–2096
[23] Ohta S, Needle decompositions and isoperimetric inequalities in Finsler geometry, J. Math. Soc. Japan (to appear), available at arXiv:1506.05876
[24] Ohta S, A semigroup approach to Finsler geometry: Bakry–Ledoux’s isoperimetric inequality, Preprint (2016), available at arXiv:1602.00390
[25] Ohta S, Nonlinear geometric analysis on Finsler manifolds, Eur. J. Math. (to appear), available at arXiv:1704.01257
[26] Ohta S and Sturm K-T, Heat flow on Finsler manifolds, Comm. Pure Appl. Math. 62 (2009) 1386–1433
[27] Ohta S and Sturm K-T, Non-contraction of heat flow on Minkowski spaces, Arch. Ration. Mech. Anal. 204 (2012) 917–944
[28] Ohta S and Sturm K-T, Bochner–Weitzenböck formula and Li–Yau estimates on Finsler manifolds, Adv. Math. 252 (2014) 429–448
[29] Otto F and Villani C Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal. 173 (2000) 361–400
[30] Profeta A, The sharp Sobolev inequality on metric measure spaces with lower Ricci curvature bounds, Potential Anal. 43 (2015) 513–529
[31] Qian Z, Estimates for weighted volumes and applications, Quart. J. Math. Oxford Ser. (2) 48 (1997) 235–242
[32] Shen Y-B and Shen Z, Introduction to modern Finsler geometry (2016) (Singapore: World Scientific Publishing Co.)
[33] Shen Z, Lectures on Finsler geometry (2001) (Singapore: World Scientific Publishing Co.)
[34] Sturm K-T, On the geometry of metric measure spaces, I, Acta Math. 196 (2006) 65–131
[35] Sturm K-T, On the geometry of metric measure spaces, II, Acta Math. 196 (2006) 133–177
[36] Villani C, Optimal transport, old and new (2009) (Berlin: Springer-Verlag)
[37] Wang G and Xia C, A sharp lower bound for the first eigenvalue on Finsler manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013) 983–996
[38] Wylie W, A warped product version of the Cheeger–Gromoll splitting theorem, Trans. Amer. Math. Soc. 369 (2017) 6661–6681
[39] Wylie W and Yeroshkin D, On the geometry of Riemannian manifolds with density, Preprint (2016), available at arXiv:1602.08000
[40] Xia Q, A sharp lower bound for the first eigenvalue on Finsler manifolds with nonnegative weighted Ricci curvature, Nonlinear Anal. 117 (2015) 189–199
[41] Yin S-T and He Q, The first eigenvalue of Finsler p-Laplacian, Differential Geom. Appl. 35 (2014) 30–49
[42] Yin S and He Q, Eigenvalue comparison theorems on Finsler manifolds, Chin. Ann. Math. Ser. B 36 (2015) 31–44

Communicating Editor: Parameswaran Sankaran