Finite-sample bias-correction factors for the median absolute deviation based on the Harrell-Davis quantile estimator and its trimmed modification

Andrey Akinshin
Huawei Research, andrey.akinshin@gmail.com

Abstract

The median absolute deviation is a widely used robust measure of statistical dispersion. Using a scale constant, we can use it as an asymptotically consistent estimator for the standard deviation under normality. For finite samples, the scale constant should be corrected in order to obtain an unbiased estimator. The bias-correction factor depends on the sample size and the median estimator. When we use the traditional sample median, the factor values are well known, but this approach does not provide optimal statistical efficiency. In this paper, we present the bias-correction factors for the median absolute deviation based on the Harrell-Davis quantile estimator and its trimmed modification which allow us to achieve better statistical efficiency of the standard deviation estimations. The obtained estimators are especially useful for samples with a small number of elements.

Keywords: median absolute deviation, bias correction, Harrell-Davis quantile estimator, robustness.

1 Introduction

We consider the median absolute deviation as a robust alternative to the standard deviation. In order to make it asymptotically consistent with the standard deviation under the normal distribution, the median absolute deviation should be multiplied by a scale constant \(C_\infty \approx 1.4826 \). This approach works well in practice when the sample size \(n \) is large. However, when the sample size is small, the usage of \(C_\infty \) produces a biased estimator. The goal of this paper is to provide proper bias-correction factors \(C_n \) for finite samples.

When the median absolute deviation is based on the traditional sample median, these factors are known (see [PKW20]). However, the sample median is not the most statistically efficient way to estimate the true population median. As a more efficient alternative, we can use the Harrell-Davis quantile estimator (see [HD82]) to calculate the median absolute deviation. This approach is more efficient than the classic sample median, but it is not robust. To achieve a trade-off between statistical efficiency and robustness, we consider a trimmed modification of the Harrell-Davis quantile estimator (see [Aki22]). The bias-correction factors depend not only on the sample size but also on the chosen median estimator. Therefore, if we want to use the mentioned quantile estimators, we need adjusted factor values.

In this paper, we present finite-sample bias-correction factors for the median absolute deviation based on the Harrell-Davis quantile estimator and its trimmed modifications. For \(n = 2 \), we derive the exact factor value. For \(3 \leq n \leq 100 \), we obtain factor values using Monte-Carlo simulations. For \(n > 100 \), we provide a prediction equation using the least squares method.

The suggested approach provides a robust estimator of the standard deviation that is unbiased under normality and more efficient than the classic approach based on the sample median.

The paper is organized as follows. In Section 2, we introduce the preliminaries with the problem explanation, a historical overview, and relevant references. In Section 3, we perform a series of numerical simulations to get the values of the bias-correction factors and analyze properties of the obtained estimators. In Section 4, we get the exact bias-correction factor value for \(n = 2 \) and a prediction equation for \(n > 100 \). In Section 5, we summarize all the results. In Appendix A, we provide a reference R implementation of the presented unbiased estimators.
2 Preliminaries

In this section, we provide the motivation for the present research, a historical overview of the subject, relevant background and references.

2.1 Measures of statistical dispersion

The most popular measure of statistical dispersion is the standard deviation. The classic equations for the standard deviation work great for samples from the normal distributions. Unfortunately, the real-life experimental data are often contaminated by outliers. The standard deviation is too sensitive to distribution tails and sample outliers so that it can be easily corrupted by a single extreme value. For example, let us consider three density plots presented in Figure 1.

![Figure 1: Three density plots of close-to-normal distributions.](image)

All three presented distributions look quite close to the normal one. However, their actual standard deviations are $\sigma_{U_1} = 1$, $\sigma_{U_2} = 11$, $\sigma_{U_3} = 3$. The actual normal distributions with such standard deviations are presented in Figure 2.

In fact, only the first distribution is the standard normal distribution $U_1 = \mathcal{N}(0, 1^2)$. Two other distributions are contaminated normal distributions that are mixtures of two normal distributions (see [Wil16]): $U_2 = 0.95 \cdot \mathcal{N}(0, 1^2) + 0.05 \cdot \mathcal{N}(0, 49^2)$, $U_3 = 0.9 \cdot \mathcal{N}(0, 1^2) + 0.1 \cdot \mathcal{N}(0, 9^2)$. The standard deviation is not a robust measure, its breakdown point is zero. If the data are contaminated, the standard deviation estimations can be misleading because of the high sensitivity to outliers.

In order to solve this problem, we may need a robust measure of the statistical dispersion. A widely used
option is the median absolute deviation. One of the first mentions can be found in [Ham74] where it is attributed to Gauss. In [RC93], the median absolute deviation is introduced as a very robust scale estimator because it has the best possible breakdown point (0.5).

Let X be a sample of i.i.d. random variables: $X = \{X_1, X_2, \ldots, X_n\}$. Here is the classic non-scaled definition of the median absolute deviation:

\[
\text{MAD}_0(X) = \text{median}(|X - \text{median}(X)|).
\]

Let us assume that X follows the standard normal distribution: $X \sim \mathcal{N}(0, 1^2)$. If we want to make the median absolute deviation asymptotically consistent with the standard deviation under the normal distribution for an infinitely large sample, we should define a modification of MAD_0 with a bias-correction factor C_∞:

\[
\text{MAD}_\infty(X) = C_\infty \cdot \text{median}(|X - \text{median}(X)|) = C_\infty \cdot \text{MAD}_0(X).
\]

Since we are building an unbiased estimator, its asymptotic expected value $\lim_{n \to \infty} \mathbb{E}[\text{MAD}_\infty(X)]$ should be equal to 1. It gives us the following equation for C_∞:

\[
C_\infty = \frac{1}{\lim_{n \to \infty} \mathbb{E}[\text{MAD}_0(X)]}.
\]
Let us denote \(\lim_{n \to \infty} \mathbb{E}[\text{MAD}_0(|X|)] \) by \(M_{\infty} \). Since the median of \(\mathcal{N}(0, 1^2) \) is zero, we have:

\[
M_{\infty} = \lim_{n \to \infty} \mathbb{E}[\text{median}(|X - \text{median}(X)|)] = \lim_{n \to \infty} \mathbb{E}[\text{median}(|X|)].
\]

Since \(M_{\infty} \) is the expected value of the median of \(|X| \), we can write

\[
P(|X_1| < M_{\infty}) = 0.5,
\]

which is the same as

\[
P(-M_{\infty} < X_1 < M_{\infty}) = 0.5.
\]

Let us denote the cumulative distribution function of \(\mathcal{N}(0, 1^2) \) by \(\Phi \). Then, the probability of getting \(X_1 \) from the range \((-M_{\infty}; M_{\infty})\) is \(\Phi(M_{\infty}) - \Phi(-M_{\infty}) \). Thus,

\[
\Phi(M_{\infty}) - \Phi(-M_{\infty}) = 0.5.
\]

Since \(\mathcal{N}(0, 1^2) \) is symmetric around zero, \(\Phi(-M_{\infty}) = 1 - \Phi(M_{\infty}) \). Therefore

\[
\Phi(M_{\infty}) = 0.75.
\]

Assuming that \(\Phi^{-1} \) is the quantile function of \(\mathcal{N}(0, 1^2) \), we have:

\[
M_{\infty} = \Phi^{-1}(0.75) \approx 0.674489750196082.
\]

Finally,

\[
C_{\infty} = \frac{1}{\lim_{n \to \infty} \mathbb{E}[\text{MAD}_0(X)]} = \frac{1}{M_{\infty}} = \frac{1}{\Phi^{-1}(0.75)} \approx 1.4826022185056.
\]

Now we consider a scaled median absolute deviation that could be used as an unbiased standard deviation estimator under normality for a finite sample of size \(n \). Let us denote it by \(\text{MAD}_n \):

\[
\text{MAD}_n(X) = C_n \cdot \text{median}(|X - \text{median}(X)|) = C_n \cdot \text{MAD}_0(X).
\]

We cannot use \(C_{\infty} \) as a bias-correction factor for finite samples because it would make \(\text{MAD}_n \) a biased estimator of the standard deviation. To make it unbiased, we have to find proper values of \(C_n \) for each sample size \(n \). These values can be evaluated as

\[
C_n = \frac{1}{\mathbb{E}[\text{MAD}_0(X)]} = \frac{1}{M_n},
\]

where \(M_n = \mathbb{E}[\text{MAD}_0(X)], \ X = \{X_1, X_2, \ldots, X_n\} \).
2.2 Bias-correction factors based on the sample median

Traditionally, by median we assume the sample median (if \(n \) is odd, the median is the middle order statistic; if \(n \) is even, the median is the arithmetic average of the two middle order statistics). This approach is consistent with the Hyndman-Fan Type 7 quantile estimator (see [HF96]) which is the most popular traditional quantile estimator based on one or two order statistics (it is used by default in R, Julia, NumPy, and Excel). To avoid confusion, let us denote the median estimator based on the sample median by \(\text{median}_{\text{SM}} \). Similarly, we denote MAD based on \(\text{median}_{\text{SM}} \) by \(\text{MAD}_{\text{SM}} \). Let us briefly discuss existing approaches for picking \(C_n \) values for \(\text{median}_{\text{SM}} \).

One of the first attempts to define \(C_n \) was made in [CR92] by Christophe Croux and Peter J. Rousseeuw. They suggested using the following equations:

\[
C_n = \frac{b_n}{\Phi^{-1}(0.75)}.
\]

For \(n \leq 9 \), the approximated values of \(b_n \) were defined as presented in Table 1.

Table 1: Original \(b_n \) factors from the Croux-Rousseeuw approach.

n	\(b_n \)
2	1.196
3	1.495
4	1.363
5	1.206
6	1.200
7	1.140
8	1.129
9	1.107

For \(n > 9 \), they suggested using the following equation:

\[
b_n = \frac{n}{n - 0.8}.
\]

This approach was improved in [Wil11] by Dennis C. Williams. Firstly, he provided updated \(b_n \) values for \(n \leq 9 \) (see Table 2).

Table 2: Williams version of \(b_n \) factors from the Croux-Rousseeuw approach.

n	\(b_n \)
2	1.197
3	1.490
4	1.360
5	1.217
6	1.189
7	1.138
8	1.127
9	1.101

Secondly, he introduced a small correction for \(n > 9 \):
\[b_n = \frac{n}{n - 0.801}. \]

Thirdly, he discussed another kind of approximation for such kind of bias-correction factors:

\[b_n \approx 1 + cn^{-d}. \]

In his paper, he applied the above equation only to Short (which is the smallest interval that contains at least half of the data points), but this approach can also be applied to other measures of scale.

Next, in [Hay14], Kevin Hayes suggested another kind of prediction equation for \(n \geq 9 \):

\[C_n = \frac{1}{\hat{a}_n}, \]

where

\[\hat{a}_n = \Phi^{-1}(0.75) \left(1 - \frac{\alpha}{n} - \frac{\beta}{n^2} \right). \]

The suggested values of \(\alpha \) and \(\beta \) are listed in Table 3.

\(n \)	\(\alpha \)	\(\beta \)
odd	0.7635	0.565
even	0.7612	1.123

Finally, in [PKW20], Chanseok Park, Haewon Kim, and Min Wang aggregated all of the previous results. They used the following form of the main equation:

\[C_n = \frac{1}{\Phi^{-1}(0.75) \cdot (1 + A_n)}. \]

For \(n > 100 \), they suggested two approaches. The first one is based on [Hay14] (the same equation for both odd and even \(n \) values):

\[A_n = \frac{-0.76213}{n} - \frac{0.86413}{n^2}. \]

The second one is based on [Wil11]:

\[A_n = -0.804168866 \cdot n^{-1.008922}. \]

Both approaches produce almost identical results, so it does not actually matter which one to use.

For \(2 \leq n \leq 100 \), they suggested to use predefined constants listed in Table 4 (based on Table A2 from [PKW20]). The corresponding plot is presented in Figure 3.
Table 4: C_n factors from the Park approach.

n	C_n								
1	-	21	1.5407	41	1.5111	61	1.5016	81	1.4968
2	1.7722	22	1.5393	42	1.5110	62	1.5015	82	1.4968
3	2.2049	23	1.5352	43	1.5099	63	1.5010	83	1.4964
4	2.0167	24	1.5341	44	1.5095	64	1.5008	84	1.4965
5	1.8039	25	1.5305	45	1.5085	65	1.5003	85	1.4963
6	1.7638	26	1.5300	46	1.5084	66	1.5003	86	1.4961
7	1.6868	27	1.5269	47	1.5075	67	1.4999	87	1.4958
8	1.6718	28	1.5264	48	1.5072	68	1.4998	88	1.4958
9	1.6329	29	1.5236	49	1.5064	69	1.4993	89	1.4956
10	1.6247	30	1.5230	50	1.5063	70	1.4992	90	1.4954
11	1.6013	31	1.5207	51	1.5056	71	1.4989	91	1.4953
12	1.5962	32	1.5203	52	1.5052	72	1.4988	92	1.4951
13	1.5808	33	1.5185	53	1.5046	73	1.4985	93	1.4949
14	1.5773	34	1.5179	54	1.5044	74	1.4984	94	1.4950
15	1.5663	35	1.5163	55	1.5037	75	1.4979	95	1.4947
16	1.5638	36	1.5161	56	1.5036	76	1.4979	96	1.4947
17	1.5553	37	1.5144	57	1.5031	77	1.4975	97	1.4944
18	1.5534	38	1.5140	58	1.5029	78	1.4975	98	1.4943
19	1.5472	39	1.5127	59	1.5023	79	1.4972	99	1.4941
20	1.5457	40	1.5124	60	1.5021	80	1.4972	100	1.4942

Figure 3: MAD bias-correction factors from the Park approach.
2.3 Alternative median estimators

The described approach works quite well in practice for the sample median. This estimator is the most robust median estimator (its breakdown point is 0.5), but it does not have the best possible statistical efficiency since it is based only on one or two order statistics. Fortunately, there are other quantile estimators with better statistical efficiency. One of the most popular alternatives which evaluate the median as a weighted sum of all order statistics is the Harrell-Davis quantile estimator (see [HD82]). Let $Q(X,p)$ be an estimation of the p^{th} quantile of the random sample X. The Harrell-Davis quantile estimator $Q_{HD}(X,p)$ is defined as follows:

$$Q_{HD}(X,p) = \sum_{i=1}^{n} W_{HD,i} \cdot X(i), \quad W_{HD,i} = I_{i/n}(\alpha, \beta) - I_{(i-1)/n}(\alpha, \beta),$$

where $I_v(\alpha, \beta)$ is the regularized incomplete beta function, $\alpha = (n+1)p$, $\beta = (n+1)(1-p)$, $X(i)$ is the i^{th} order statistic of X.

The Harrell-Davis quantile estimator is suggested in [DN03], [GK12], [Wil16], and [GC20] as an efficient alternative to the sample median. In [YSD85] the Harrell-Davis median estimator is shown to be asymptotically equivalent to the sample median. While Q_{HD} has great statistical efficiency, it is not robust (its breakdown point is zero). In practice, we still can use Q_{HD} for medium-size outliers without loss of accuracy because the corresponding $W_{HD,i}$ coefficients are quite small. However, if a sample contains extreme outliers, Q_{HD} can be corrupted. Other examples of quantile estimators based on a weighted sum of all order statistics are the Sfakianakis-Verginis quantile estimator (see [SV08]) and the Navruz-Özdemir quantile estimator (see [NÖ20]). However, we continue considering only the Harrell-Davis quantile estimator because it is the most popular option in this family.

In order to find an optimal trade-off between robustness and statistical efficiency, we can consider the trimmed Harrell-Davis quantile estimator based on the highest density interval of the given width that we denote by Q_{THD} (see [Aki22]). In this modification of Q_{HD}, we perform summation only within the highest density interval $[L; R]$ of Beta(α, β) of size D (as a rule of thumb, we can use $D = 1/\sqrt{n}$ which gives us an estimator $Q_{THD-SQRT}$). It can be defined as follows:

$$Q_{THD}(X,p) = \sum_{i=1}^{n} W_{THD,i} \cdot X(i), \quad W_{THD,i} = F_{THD}(i/n) - F_{THD}((i-1)/n),$$

where $F_{THD}(v)$ is defined as:

$$F_{THD}(v) = \begin{cases} 0 & \text{for } v < L, \\ \frac{(I_v(\alpha, \beta) - I_L(\alpha, \beta)) / (I_R(\alpha, \beta) - I_L(\alpha, \beta))} & \text{for } L \leq v \leq R, \\ 1 & \text{for } R < v. \end{cases}$$

Quantile estimators Q_{HD} and $Q_{THD-SQRT}$ can be also used as median estimators: $\text{median}_{HD}(X) = Q_{HD}(X, 0.5)$, $\text{median}_{THD-SQRT}(X) = Q_{THD-SQRT}(X, 0.5)$. Let us denote the median absolute deviation based on Q_{HD} by MAD_{HD}. Similarly, we denote the median absolute deviation based on $Q_{THD-SQRT}$ by $\text{MAD}_{THD-SQRT}$.

In this paper, we conduct several simulation studies that evaluate approximated C_n values for MAD_{SM}, MAD_{THD}, and $\text{MAD}_{THD-SQRT}$.
3 Simulation study
In this section, we are going to perform several numerical simulations. In Simulation 1, we get empirical values of the bias-correction factors C_n for all considered MAD estimators. In Simulation 2 and Simulation 3, we perform an analysis of statistical efficiency and sensitivity to outliers of the obtained unbiased estimators.

3.1 Simulation 1: Evaluating bias-correction factors using the Monte-Carlo method
Since $C_n = 1/E[MAD_0(X)]$, this value can be obtained by estimating the expected value of $MAD_0(X)$ using the Monte-Carlo method. We do it according to the following scheme:

```plaintext
foreach median_{n} \in \{\text{median}_{SM}, \text{median}_{HD}, \text{median}_{THD-SQRT}\} do
  foreach n \in \{2..100, \ldots, 3000\} do
    repetitions \leftarrow when \{n \leq 10 \rightarrow 10^6; n \leq 100 \rightarrow 5 \cdot 10^8; else \rightarrow 2 \cdot 10^8\}
    for i \leftarrow 1..repetitions do
      x \leftarrow \text{GenerateRandomSample(Distribution = } N(0, 1^2), \text{SampleSize} = n)
      m_i \leftarrow \text{median}_{n}(x - \text{median}_{n}(x))
      M_n \leftarrow \sum m_i / repetitions
      C_n \leftarrow 1/M_n
  end do
end do
```

The estimated C_n values for MAD_{SM}, MAD_{HD}, $MAD_{THD-SQRT}$ are presented in Tables 5, 6, and 7 respectively. A visualization for $2 \leq n \leq 100$ is shown in Figure 4. The simulation for MAD_{SM} replicates the study from [PKW20] with a higher number of samples (they used 10^7 random samples). The results of two studies (Tables 4 and 5) are quite close to each other (the maximum observed absolute difference is ≈ 0.00065).

n	C_n								
1	-	21	1.5405	41	1.5117	61	1.5021	81	1.4972
2	1.7725	22	1.5393	42	1.5115	62	1.5019	82	1.4971
3	2.2049	23	1.5352	43	1.5103	63	1.5014	83	1.4968
4	2.0172	24	1.5342	44	1.5101	64	1.5013	84	1.4967
5	1.8040	25	1.5307	45	1.5091	65	1.5008	85	1.4965
6	1.7637	26	1.5299	46	1.5089	66	1.5007	86	1.4964
7	1.6871	27	1.5269	47	1.5080	67	1.5003	87	1.4961
8	1.6715	28	1.5263	48	1.5078	68	1.5002	88	1.4961
9	1.6326	29	1.5238	49	1.5069	69	1.4998	89	1.4958
10	1.6245	30	1.5233	50	1.5067	70	1.4997	90	1.4958
11	1.6011	31	1.5212	51	1.5060	71	1.4993	91	1.4955
12	1.5961	32	1.5207	52	1.5058	72	1.4992	92	1.4955
13	1.5806	33	1.5189	53	1.5051	73	1.4988	93	1.4952
14	1.5772	34	1.5184	54	1.5049	74	1.4987	94	1.4952
15	1.5661	35	1.5168	55	1.5042	75	1.4984	95	1.4950
16	1.5637	36	1.5164	56	1.5041	76	1.4983	96	1.4949
17	1.5554	37	1.5149	57	1.5035	77	1.4979	97	1.4947
18	1.5536	38	1.5146	58	1.5033	78	1.4978	98	1.4947
19	1.5471	39	1.5132	59	1.5027	79	1.4975	99	1.4945
20	1.5457	40	1.5129	60	1.5026	80	1.4975	100	1.4944

Table 5: C_n factors for MAD_{SM}.
Table 6: C_n factors for MAD$_{HD}$.

n	C_n								
1	-	21	1.5252	41	1.5050	61	1.4972	81	1.4933
2	1.7725	22	1.5235	42	1.5045	62	1.4969	82	1.4931
3	1.5682	23	1.5220	43	1.5039	63	1.4967	83	1.4930
4	1.5959	24	1.5204	44	1.5034	64	1.4964	84	1.4928
5	1.5661	25	1.5191	45	1.5029	65	1.4962	85	1.4927
6	1.5666	26	1.5177	46	1.5025	66	1.4960	86	1.4926
7	1.5646	27	1.5164	47	1.5020	67	1.4957	87	1.4924
8	1.5591	28	1.5154	48	1.5016	68	1.4955	88	1.4923
9	1.5567	29	1.5143	49	1.5011	69	1.4953	89	1.4922
10	1.5529	30	1.5133	50	1.5008	70	1.4951	90	1.4921
11	1.5496	31	1.5123	51	1.5004	71	1.4950	91	1.4920
12	1.5465	32	1.5114	52	1.5000	72	1.4947	92	1.4918
13	1.5434	33	1.5106	53	1.4997	73	1.4946	93	1.4917
14	1.5406	34	1.5098	54	1.4993	74	1.4944	94	1.4916
15	1.5380	35	1.5090	55	1.4990	75	1.4942	95	1.4915
16	1.5355	36	1.5083	56	1.4986	76	1.4940	96	1.4914
17	1.5332	37	1.5076	57	1.4983	77	1.4939	97	1.4913
18	1.5310	38	1.5069	58	1.4980	78	1.4937	98	1.4912
19	1.5289	39	1.5062	59	1.4977	79	1.4936	99	1.4911
20	1.5270	40	1.5056	60	1.4975	80	1.4934	100	1.4910

Table 7: C_n factors for MAD$_{HD-SQRT}$.

n	C_n								
1	-	21	1.5417	41	1.5111	61	1.5013	81	1.4965
2	1.7725	22	1.5385	42	1.5104	62	1.5010	82	1.4963
3	1.6455	23	1.5361	43	1.5097	63	1.5007	83	1.4961
4	2.0172	24	1.5333	44	1.5091	64	1.5004	84	1.4959
5	1.6774	25	1.5313	45	1.5085	65	1.5001	85	1.4958
6	1.6887	26	1.5290	46	1.5078	66	1.4998	86	1.4956
7	1.6810	27	1.5272	47	1.5073	67	1.4995	87	1.4955
8	1.6363	28	1.5254	48	1.5067	68	1.4993	88	1.4953
9	1.6431	29	1.5238	49	1.5063	69	1.4990	89	1.4952
10	1.6137	30	1.5224	50	1.5057	70	1.4988	90	1.4950
11	1.6036	31	1.5210	51	1.5053	71	1.4986	91	1.4949
12	1.5938	32	1.5198	52	1.5048	72	1.4983	92	1.4947
13	1.5826	33	1.5185	53	1.5044	73	1.4981	93	1.4946
14	1.5771	34	1.5175	54	1.5039	74	1.4979	94	1.4944
15	1.5683	35	1.5163	55	1.5035	75	1.4977	95	1.4943
16	1.5639	36	1.5155	56	1.5031	76	1.4974	96	1.4942
17	1.5574	37	1.5144	57	1.5027	77	1.4972	97	1.4940
18	1.5530	38	1.5136	58	1.5024	78	1.4970	98	1.4940
19	1.5488	39	1.5127	59	1.5020	79	1.4969	99	1.4938
20	1.5449	40	1.5119	60	1.5017	80	1.4966	100	1.4937
Figure 4: Bias-correction factors using different median estimators.
3.2 Simulation 2: Statistical efficiency of the median absolute deviation

In this simulation, we estimate the relative efficiency e of MAD_{HD} and $\text{MAD}_{\text{THD-SQRT}}$ against MAD_{SM} (the baseline). It can be calculated as the ratio of the estimator mean squared errors (MSE) (see [Dek+05]). Since all the estimators are unbiased under normality, $\text{MSE}(\text{MAD}_*) = \mathbb{V}[\text{MAD}_*(X)]$. Thus, we have:

$$
e(\text{MAD}_*) = \frac{\text{MSE}(\text{MAD}_{\text{SM}})}{\text{MSE}(\text{MAD}_*)} = \frac{\mathbb{V}[\text{MAD}_{\text{SM}}(X)]}{\mathbb{V}[\text{MAD}_*(X)]},$$

where \mathbb{V} is the variance of MAD_n for the given sample size n, MAD_* is a placeholder for MAD_{HD} and $\text{MAD}_{\text{THD-SQRT}}$. We conduct this simulation according to the following scheme:

```plaintext
foreach $n \in \{2, 3, 4, 5, 6, 7, 10, 50, 100, 500, 1000\}$ do
  for $i \leftarrow 1..10000$ do
    $x \leftarrow \text{GenerateRandomSample(Distribution} = \mathcal{N}(0, 1^2), \text{SampleSize} = n)$
    $m_{\text{SM},i} = \text{MAD}_{\text{SM}},n(x)$
    $m_{\text{HD},i} = \text{MAD}_{\text{HD}},n(x)$
    $m_{\text{THD-SQRT},i} = \text{MAD}_{\text{THD-SQRT}},n(x)$
    $e(\text{MAD}_{\text{HD}},n) = \mathbb{V}(m_{\text{SM},\{i\}})/\mathbb{V}(m_{\text{HD},\{i\}})$
    $e(\text{MAD}_{\text{THD-SQRT}},n) = \mathbb{V}(m_{\text{SM},\{i\}})/\mathbb{V}(m_{\text{THD-SQRT},\{i\}})$
```

The evaluated values of the $e(\text{MAD}_{\text{HD}})$ and $e(\text{MAD}_{\text{THD-SQRT}})$ are presented in Table 8.

n	HD	THD-SQRT
2	1.000	1.000
3	2.473	2.331
4	1.618	1.000
5	1.854	1.468
6	1.473	1.180
7	1.688	1.326
8	1.379	1.141
9	1.527	1.227
10	1.342	1.129
50	1.156	1.075
100	1.110	1.054
500	1.047	1.025
1000	1.035	1.018

Based on the obtained measurements, we can do the following observations about the efficiency of the considered MAD estimators under the normal distribution:

- Both MAD_{HD} and $\text{MAD}_{\text{THD-SQRT}}$ are more efficient than MAD_{SM}.
- MAD_{HD} is more efficient than $\text{MAD}_{\text{THD-SQRT}}$.
- The impact of using MAD_{HD} and $\text{MAD}_{\text{THD-SQRT}}$ instead of MAD_{SM} is most noticeable for small samples (except $n = 2$ for MAD_{HD} and $n \in \{2, 4\}$ for $\text{MAD}_{\text{THD-SQRT}}$). The most impressive boost of efficiency can be observed for $n = 3$: $+147.3\%$ for MAD_{HD} and $+133.1\%$ for $\text{MAD}_{\text{THD-SQRT}}$.
- For large samples, MAD_{HD} and $\text{MAD}_{\text{THD-SQRT}}$ are still more efficient than MAD_{SM}, but the difference is not so noticeable. For example, for $n = 1000$, MAD_{HD} gives $+3.5\%$ and $\text{MAD}_{\text{THD-SQRT}}$ gives $+1.8\%$ to statistical efficiency.
3.3 Simulation 3: Sensitivity to outliers of the median absolute deviation

There are various metrics that describe robustness (e.g., the breakdown point, the influence function, and the sensitivity curve). While these metrics provide important theoretical properties, they do not present a clear visual illustration of the actual impact of outliers on estimations. Another approach to getting an idea of the sensitivity of different estimators to outliers is exploring the statistical dispersion of obtained estimations on light-tailed and heavy-tailed distributions. Let us conduct a simulation according to the following scheme:

\[
\text{foreach } d \in D \text{ do}
\]

\[
\text{foreach } n \in \{2, 3, 4, 5, 6, 7, 8, 9, 10, 50, 100, 500, 1000\} \text{ do}
\]

\[
\text{for } i \leftarrow 1..1\,000 \text{ do}
\]

\[
x \leftarrow \text{GenerateRandomSample}(\text{Distribution} = d, \text{SampleSize} = n)
\]

\[
\text{foreach estimator } \in \{\text{SM, HD, THD-SQRT}\} \text{ do}
\]

\[
m_{\text{estimator},i} = \text{MAD}_{\text{estimator},n}(x)
\]

\[
\text{foreach aggregator } \in \{\text{SD, IQR, MAD}_{\text{SM}}\} \text{ do}
\]

\[
\text{Result}(d, n, \text{estimator}, \text{aggregator}) = \text{aggregator}(m_{\text{estimator},\{i\}})
\]

In this simulation, we enumerate a set \(D\) of distributions listed in Table 9 (this set includes symmetric and skewed, light-tailed and heavy-tailed distributions). We describe the statistical dispersion of each set of \(\text{MAD}_{d}\) estimations in three different ways: SD (the classic standard deviation), IQR (interquartile range based on Hyndman-Fan Type 7 quantile estimator), \(\text{MAD}_{\text{SM}}\). The aggregated results for \(n \in \{5, 6, 10, 50\}\) are listed in Tables 10, 11, 12, 13 respectively. The \(\text{MAD}_{\text{SM}}\)-aggregated results for all values of \(n\) are presented in Figure 5. Based on the obtained measurements, we can make the following observations:

- For the light-tailed distributions, \(\text{MAD}_{\text{HD}}\) has the best robustness, \(\text{MAD}_{\text{SM}}\) has the worst robustness.
- For the heavy-tailed distributions, the opposite is true: \(\text{MAD}_{\text{HD}}\) has the worst robustness, \(\text{MAD}_{\text{SM}}\) has the best robustness. On small samples, \(\text{MAD}_{\text{HD}}\) could be much worse than \(\text{MAD}_{\text{SM}}\) while \(\text{MAD}_{\text{THD-SQRT}}\) is just a little bit worse.
- For \(n \geq 50\), the difference between all considered estimators is negligible.

Table 9: Distributions for Simulation 3.

Distribution	Support	Skewness	Tailness
Uniform\((a=0, b=1)\)	\([0; 1]\)	Symmetric	Light-tailed
Triangular\((a=0, b=2, c=1)\)	\([0; 2]\)	Symmetric	Light-tailed
Triangular\((a=0, b=2, c=0.2)\)	\([0; 2]\)	Right-skewed	Light-tailed
Beta\((a=2, b=4)\)	\([0; 1]\)	Right-skewed	Light-tailed
Beta\((a=2, b=10)\)	\([0; 1]\)	Right-skewed	Light-tailed
Normal\((m=0, sd=1)\)	\((-\infty; +\infty)\)	Symmetric	Light-tailed
Weibull\((\text{scale}=1, \text{shape}=2)\)	\([0; +\infty)\)	Right-skewed	Light-tailed
Student\((\text{df}=3)\)	\((-\infty; +\infty)\)	Symmetric	Light-tailed
Gumbel\((\text{loc}=0, \text{scale}=1)\)	\((-\infty; +\infty)\)	Right-skewed	Light-tailed
Exp\((\text{rate}=1)\)	\([0; +\infty)\)	Right-skewed	Light-tailed
Cauchy\((x_0=0, \text{gamma}=1)\)	\((-\infty; +\infty)\)	Symmetric	Heavy-tailed
Pareto\((\text{loc}=1, \text{shape}=0.5)\)	\([1; +\infty)\)	Right-skewed	Heavy-tailed
Pareto\((\text{loc}=1, \text{shape}=2)\)	\([1; +\infty)\)	Right-skewed	Heavy-tailed
LogNormal\((m\log=0, s\log=1)\)	\([0; +\infty)\)	Right-skewed	Heavy-tailed
LogNormal\((m\log=0, s\log=2)\)	\([0; +\infty)\)	Right-skewed	Heavy-tailed
LogNormal\((m\log=0, s\log=3)\)	\([0; +\infty)\)	Right-skewed	Heavy-tailed
Weibull\((\text{shape}=0.3)\)	\([0; +\infty)\)	Right-skewed	Heavy-tailed
Weibull\((\text{shape}=0.5)\)	\([0; +\infty)\)	Right-skewed	Heavy-tailed
Frechet\((\text{shape}=1)\)	\([0; +\infty)\)	Right-skewed	Heavy-tailed
Frechet\((\text{shape}=3)\)	\([0; +\infty)\)	Right-skewed	Heavy-tailed
Table 10: Properties of MAD estimations for n=5.

Distribution	SM	HD	THD	SM	HD	THD	SM	HD	THD
Uniform(a=0, b=1)	0.16	0.12	0.14	0.23	0.16	0.19	0.17	0.12	0.14
Triangular(a=0, b=2, c=1)	0.24	0.17	0.19	0.33	0.25	0.28	0.24	0.18	0.21
Triangular(a=0, b=2, c=0.2)	0.25	0.20	0.22	0.36	0.27	0.31	0.26	0.20	0.23
Beta(a=2, b=4)	0.10	0.07	0.08	0.13	0.10	0.11	0.10	0.07	0.08
Beta(a=2, b=10)	0.06	0.05	0.05	0.08	0.07	0.07	0.06	0.05	0.05
Normal(m=0, sd=1)	0.59	0.43	0.48	0.72	0.57	0.65	0.53	0.42	0.46
Weibull(scale=1, shape=2)	0.26	0.20	0.22	0.38	0.27	0.30	0.27	0.20	0.22
Student(df=3)	0.79	0.75	0.74	1.00	0.83	0.86	0.74	0.60	0.62
Gumbel(loc=0, scale=1)	0.77	0.58	0.63	0.93	0.76	0.83	0.67	0.54	0.60
Exp(rate=1)	0.51	0.44	0.46	0.63	0.54	0.56	0.43	0.39	0.40
Cauchy(x0=0, gamma=1)	1.90	1.02	2.41	1.70	3.03	1.84	1.18	1.06	1.21
Pareto(loc=1, shape=0.5)	26.80	1645746.00	154.80	7.08	68.61	15.27	23.28	7.01	
Pareto(loc=1, shape=2)	0.56	1.03	0.63	0.53	0.69	0.57	0.34	0.48	0.39
LogNormal(mlog=0, sdlog=1)	0.85	0.99	0.91	0.86	1.00	0.91	0.60	0.69	0.64
LogNormal(mlog=0, sdlog=2)	3.32	18.33	4.39	2.17	5.57	3.04	1.34	2.91	1.87
LogNormal(mlog=0, sdlog=3)	14.53	833.22	31.64	3.83	24.28	7.20	1.59	9.76	3.39
Weibull(shape=0.3)	3.81	16.26	7.23	1.42	7.50	3.36	0.60	3.72	1.39
Weibull(shape=0.5)	1.45	2.08	1.73	1.14	1.87	1.38	0.63	1.19	0.87
Frechet(shape=1)	4.52	52.16	9.99	1.65	3.62	1.87	1.01	2.06	1.21
Frechet(shape=3)	0.33	0.37	0.33	0.36	0.38	0.34	0.25	0.27	0.24

Table 11: Properties of MAD estimations for n=6.

Distribution	SM	HD	THD	SM	HD	THD	SM	HD	THD
Uniform(a=0, b=1)	0.14	0.11	0.12	0.19	0.14	0.16	0.14	0.11	0.12
Triangular(a=0, b=2, c=1)	0.19	0.16	0.18	0.25	0.21	0.24	0.19	0.16	0.18
Triangular(a=0, b=2, c=0.2)	0.22	0.18	0.20	0.30	0.27	0.29	0.22	0.19	0.21
Beta(a=2, b=4)	0.09	0.07	0.08	0.12	0.10	0.11	0.09	0.07	0.08
Beta(a=2, b=10)	0.05	0.04	0.04	0.06	0.05	0.06	0.04	0.04	0.04
Normal(m=0, sd=1)	0.46	0.38	0.42	0.64	0.53	0.59	0.46	0.39	0.44
Weibull(scale=1, shape=2)	0.22	0.18	0.20	0.29	0.25	0.27	0.21	0.18	0.20
Student(df=3)	0.69	0.63	0.65	0.81	0.76	0.76	0.59	0.55	0.56
Gumbel(loc=0, scale=1)	0.54	0.48	0.51	0.69	0.63	0.66	0.50	0.46	0.48
Exp(rate=1)	0.44	0.43	0.42	0.54	0.54	0.54	0.39	0.39	0.38
Cauchy(x0=0, gamma=1)	1.73	15.51	1.94	1.41	2.21	1.47	1.00	1.40	1.02
Pareto(loc=1, shape=0.5)	51.23	12909.42	72.10	7.91	55.16	13.44	4.18	17.87	6.23
Pareto(loc=1, shape=2)	0.46	0.67	0.49	0.51	0.63	0.53	0.35	0.43	0.36
LogNormal(mlog=0, sdlog=1)	0.76	0.87	0.77	0.75	0.88	0.81	0.52	0.61	0.54
LogNormal(mlog=0, sdlog=2)	2.65	11.50	3.09	1.97	4.05	2.55	1.30	2.32	1.52
LogNormal(mlog=0, sdlog=3)	14.29	192.92	24.39	4.74	20.40	7.43	2.35	9.98	3.83
Weibull(shape=0.3)	4.17	11.45	5.16	1.67	5.81	2.89	0.80	3.00	1.36
Weibull(shape=0.5)	1.23	1.72	1.34	1.14	1.72	1.31	0.70	1.08	0.83
Frechet(shape=1)	2.03	10.32	2.30	1.50	3.10	1.79	0.99	1.74	1.13
Frechet(shape=3)	0.28	0.30	0.28	0.31	0.31	0.30	0.22	0.22	0.22
Table 12: Properties of MAD estimations for $n=10$.

Distribution	SM	HD	THD	SM	HD	THD	SM	HD	THD
Uniform($a=0$, $b=1$)	0.11	0.11	0.11	0.16	0.15	0.15	0.12	0.10	0.11
Triangular($a=0$, $b=2$, $c=1$)	0.16	0.15	0.15	0.21	0.18	0.19	0.16	0.13	0.14
Triangular($a=0$, $b=2$, $c=0.2$)	0.17	0.15	0.16	0.24	0.21	0.22	0.18	0.16	0.17
Beta($a=2$, $b=4$)	0.06	0.06	0.06	0.09	0.08	0.08	0.07	0.06	0.06
Beta($a=2$, $b=10$)	0.04	0.03	0.04	0.05	0.04	0.05	0.04	0.03	0.04
Normal($m=0$, $sd=1$)	0.37	0.32	0.35	0.51	0.43	0.47	0.38	0.32	0.34
Weibull($scale=1$, $shape=2$)	0.17	0.15	0.16	0.23	0.20	0.21	0.17	0.15	0.16
Student($df=3$)	0.52	0.47	0.49	0.66	0.60	0.62	0.48	0.43	0.45
Gumbel($loc=0$, $scale=1$)	0.42	0.38	0.41	0.58	0.53	0.55	0.43	0.39	0.40
Exp($rate=1$)	0.32	0.31	0.31	0.43	0.40	0.41	0.31	0.29	0.30
Cauchy($x0=0$, $gamma=1$)	0.99	1.46	1.01	1.12	1.24	1.08	0.79	0.88	0.76
Pareto($loc=1$, $shape=0.5$)	17.81	275359.25	36.33	5.99	21.77	7.51	3.67	10.20	4.53
Pareto($loc=1$, $shape=2$)	0.29	0.32	0.29	0.34	0.37	0.35	0.25	0.27	0.25
LogNormal($mlog=0$, $sdlog=1$)	0.49	0.51	0.49	0.57	0.62	0.58	0.41	0.45	0.43
LogNormal($mlog=0$, $sdlog=2$)	1.75	2.68	1.98	1.65	2.28	1.78	1.07	1.56	1.18
LogNormal($mlog=0$, $sdlog=3$)	5.23	18.53	6.12	2.77	7.80	3.69	1.60	4.72	2.21
Weibull($shape=0.3$)	1.97	3.57	2.44	1.09	2.84	1.59	0.59	1.73	0.90
Weibull($shape=0.5$)	0.83	0.93	0.84	0.89	1.08	0.94	0.60	0.74	0.63
Frechet($shape=1$)	1.07	2.21	1.19	1.04	1.47	1.13	0.74	1.02	0.76
Frechet($shape=3$)	0.19	0.19	0.19	0.25	0.24	0.24	0.18	0.17	0.18

Table 13: Properties of MAD estimations for $n=50$.

Distribution	SD	IQR	MAD
Uniform($a=0$, $b=1$)	0.05	0.05	0.05
Triangular($a=0$, $b=2$, $c=1$)	0.07	0.07	0.07
Triangular($a=0$, $b=2$, $c=0.2$)	0.08	0.08	0.08
Beta($a=2$, $b=4$)	0.03	0.03	0.03
Beta($a=2$, $b=10$)	0.02	0.02	0.02
Normal($m=0$, $sd=1$)	0.17	0.16	0.16
Weibull($scale=1$, $shape=2$)	0.07	0.07	0.07
Student($df=3$)	0.21	0.20	0.20
Gumbel($loc=0$, $scale=1$)	0.20	0.19	0.19
Exp($rate=1$)	0.15	0.14	0.14
Cauchy($x0=0$, $gamma=1$)	0.36	0.34	0.35
Pareto($loc=1$, $shape=0.5$)	1.83	2.02	1.87
Pareto($loc=1$, $shape=2$)	0.12	0.12	0.12
LogNormal($mlog=0$, $sdlog=1$)	0.20	0.19	0.20
LogNormal($mlog=0$, $sdlog=2$)	0.53	0.54	0.52
LogNormal($mlog=0$, $sdlog=3$)	0.97	1.05	0.96
Weibull($shape=0.3$)	0.38	0.42	0.38
Weibull($shape=0.5$)	0.29	0.28	0.28
Frechet($shape=1$)	0.40	0.41	0.40
Frechet($shape=3$)	0.08	0.08	0.08
Figure 5: Statistical dispersion of MAD estimations on various distributions.
4 Special cases of bias-correction factors

In this section, we consider two following cases:

- \(n = 2 \): it is the only case when we can easily calculate the exact value of the bias correction factor.
- \(n > 100 \): for this case, we draw a generic equation following the approach from [Hay14].

4.1 Bias-correction factors for \(n = 2 \)

Let \(X = \{X_1, X_2\} \) be a sample of two i.i.d. random variables from the standard normal distribution \(\mathcal{N}(0, 1^2) \).

Regardless of the chosen median estimator, the median is unequivocally determined:

\[
\text{median}(X) = \frac{X_1 + X_2}{2}.
\]

Now we calculate the median absolute deviation \(\text{MAD}_0 \):

\[
\text{MAD}_0(X) = \text{median}(|X - \text{median}(X)|) = \\
= \text{median}(|X_1 - (X_1 + X_2)/2|, |X_2 - (X_1 + X_2)/2|) = \\
= \text{median}(|(X_1 - X_2)/2|, |(X_2 - X_1)/2|) = \\
= |X_1 - X_2|/2.
\]

Since \(X_1, X_2 \sim \mathcal{N}(0, 1^2) \) which is symmetric, \(|X_1 - X_2|/2 \) is distributed the same way as \(|X_1 + X_2|/2 \). Let us denote the sum of two standard normal distributions by \(Z = X_1 + X_2 \). It gives us another normal distribution with modified variance:

\[
Z \sim \mathcal{N}(0, \sqrt{2}^2).
\]

Since we take the absolute value of \(Z \), we get the half-normal distribution. The expected value of a half-normal distribution which is formed from the normal distribution \(\mathcal{N}(0, \sigma^2) \) is \(\sigma \sqrt{2/\pi} \). Thus,

\[
\mathbb{E}[|Z|] = \sqrt{2} \sqrt{2/\pi} = 2/\sqrt{\pi}.
\]

Finally, we have:

\[
\mathbb{E}[\text{MAD}_0(X)] = \mathbb{E}\left[\frac{|X_1 - X_2|}{2}\right] = \mathbb{E}\left[\frac{|X_1 + X_2|}{2}\right] = \mathbb{E}\left[\frac{|Z|}{2}\right] = \frac{2/\sqrt{\pi}}{2} = \frac{1}{\sqrt{\pi}}.
\]

The bias-correction factor \(C_2 \) is the reciprocal value of the expected value of \(\text{MAD}_0(X) \):

\[
C_2 = \frac{1}{\mathbb{E}[\text{MAD}_0(X)]} = \sqrt{\pi} \approx 1.77245385090552.
\]
4.2 Bias-correction factors for \(n > 100 \)

Following the approach from [Hay14], we are going to draw a generic equation for \(C_n \) in the following form:

\[
C_n = \frac{1}{\Phi^{-1}(0.75) \cdot (1 + A_n)}, \quad A_n = \frac{\alpha}{n} + \frac{\beta}{n^2}.
\]

The coefficients \(\alpha \) and \(\beta \) can be obtained using least squares on the values from Tables 4 (let us denote MAD based on this table by MADPARK), 5, 6, and 7 for \(100 < n \leq 500 \). The results are presented in Table 14.

	\(\alpha \)	\(\beta \)
MADPARK	-0.7591	-1.3239
MADSM	-0.7668	-2.1897
MADHD	-0.4912	-7.6350
MADTHD-SQRT	-0.6954	-4.9261

The value of \(\alpha \) for MADPARK and MADSM are quite close to the suggested \(\alpha = -0.76213 \) from [PKW20]. The corresponding value of \(\beta \) is not so close to \(\beta = -0.86413 \) from [PKW20], but this difference does not produce a noticeable impact on the final result.

The evaluated values of \(\alpha \) and \(\beta \) for all MAD estimators look quite accurate. In Figure 6, we can see the actual (points) and predicted (line) values of \(C_n \) for \(100 < n \leq 3000 \). Within values \(500 < n \leq 3000 \) from Tables 5, 6, and 7 (that were not used to get the values of \(\alpha \) and \(\beta \)), the maximum observed absolute difference between the actual and predicted values is \(\approx 0.000061 \).

![Figure 6: Actual and predicted bias-correction factors](image-url)
5 Summary

The median absolute deviation is a robust measure of statistical dispersion that can be used as a consistent estimator for the standard deviation under the normal distribution. To make it unbiased, we have to use a bias-correction factor C_n:

$$\text{MAD}_n(X) = C_n \cdot \text{median}(|X - \text{median}(X)|).$$

This approach heavily depends on the chosen median estimator. In this paper, we have discussed three estimators: the classic sample median ($\text{median}_{\text{SM}}$), the Harrell-Davis quantile estimator ($\text{median}_{\text{HD}}$), and the trimmed Harrell-Davis quantile estimator based on the highest density interval of the width $1/\sqrt{n}$ ($\text{median}_{\text{THD-SQRT}}$) which give us estimators MAD_{SM} and MAD_{HD}, and $\text{MAD}_{\text{THD-SQRT}}$ respectively.

In Simulation 1, we estimated values of C_n using the Monte-Carlo simulation for each estimator. These values are listed in Tables 5, 6, and 7. These tables cover all values of n from 2 to 100 and some greater values up to 3000. A generic approach for large sample sizes ($n > 100$) can be presented in the following form:

$$C_n = \frac{1}{\Phi^{-1}(0.75) \cdot (1 + \alpha/n + \beta/n^2)},$$

where the values of α and β are listed in Table 14. For $n = 2$, we know the exact value of the bias-correction factor: $C_2 = \sqrt{\pi} \approx 1.77245385090552$.

In Simulation 2, we evaluated the relative statistical efficiency of MAD_{HD} and $\text{MAD}_{\text{THD-SQRT}}$ against MAD_{SM}. It turned out that the efficiency of MAD_{HD} and $\text{MAD}_{\text{THD-SQRT}}$ are noticeably higher than the efficiency of MAD_{SM}.

In Simulation 3, we investigated the sensitivity to outliers of all MAD estimators. It turned out that MAD_{HD} could be corrupted by extreme outliers in the case of heavy-tailed distributions. Meanwhile, $\text{MAD}_{\text{THD-SQRT}}$ is much more resistant to outliers (while it is still not as robust as MAD_{SM}).

Thus, in the case of light-tailed distributions, we recommend MAD_{HD} as an alternative to the classic MAD_{SM} because it has higher statistical efficiency. In the case of heavy-tailed distributions, we recommend $\text{MAD}_{\text{THD-SQRT}}$ because it allows achieving a good trade-off between statistical efficiency and robustness. The practical impact of both approaches is most noticeable for samples with a small number of elements.

The trade-off between the statistical efficiency and the robustness can be customized by choosing another width of the Beta distribution’s highest density interval in MAD_{THD}. The exact value of this width should be carefully chosen based on the knowledge of the considered distribution, the expected number and the magnitude of possible outliers, and the robustness requirements. The values of the bias-correction factors C_n should be properly updated using another Monte-Carlo simulation study similar to Simulation 1.

Disclosure statement

The author reports there are no competing interests to declare.

Data and source code availability

The source code of this paper, the source code of all simulations, and the simulation results are available on GitHub: https://github.com/AndreyAkinshin/paper-mad-factors.

Acknowledgments

The author thanks Ivan Pashchenko for valuable discussions.
A Reference implementation

Here is an R implementation of the suggested MAD estimators:

```r
quantile.hd <- function(x, probs) sapply(probs, function(p) {
  n <- length(x)
  if (n == 0) return(NA)
  if (n == 1) return(x)
  x <- sort(x)
  a <- (n + 1) * p; b <- (n + 1) * (1 - p)
  cdfs <- pbeta(0:n/n, a, b)
  W <- tail(cdfs, -1) - head(cdfs, -1)
  sum(x * W)
})
quantile.thd <- function(x, probs, width = 1/sqrt(length(x))) sapply(probs, function(p) {
  getBetaHdi <- function(a, b, width) {
    eps <- 1e-9
    if (a < 1 + eps & b < 1 + eps) # Degenerate case
      return(c(NA, NA))
    if (a < 1 + eps & b > 1) # Left border case
      return(c(0, width))
    if (a > 1 & b < 1 + eps) # Right border case
      return(c(1 - width, 1))
    if (width > 1 - eps)
      return(c(0, 1))
    # Middle case
    mode <- (a - 1) / (a + b - 2)
    pdf <- function(x) dbeta(x, a, b)
    l <- uniroot(
      f = function(x) pdf(x) - pdf(x + width),
      lower = max(0, mode - width),
      upper = min(mode, 1 - width),
      tol = 1e-9
    )$root
    r <- l + width
    return(c(l, r))
  }
  n <- length(x)
  if (n == 0) return(NA)
  if (n == 1) return(x)
  x <- sort(x)
  a <- (n + 1) * p; b <- (n + 1) * (1 - p)
  hdi <- getBetaHdi(a, b, width)
  hdiCdf <- pbeta(hdi, a, b)
  cdf <- function(xs) {
    xs[xs <= hdi[1]] <- hdi[1]
    xs[xs >= hdi[2]] <- hdi[2]
    (pbeta(xs, a, b) - hdiCdf[1]) / (hdiCdf[2] - hdiCdf[1])
  }
  iL <- floor(hdi[1] * n); iR <- ceiling(hdi[2] * n)
  cdfs <- cdf(iL:iR/n)
  W <- tail(cdfs, -1) - head(cdfs, -1)
  sum(x[(iL + 1):iR] * W)
})
med.sm <- function(x) median(x)
```

20
med.hd <- function(x) quantile.hd(x, 0.5)
med.thd.sqrt <- function(x) quantile.thd(x, 0.5)

factors.sm <- c(
 NA, 1.7725, 2.2049, 2.0172, 1.8040, 1.7637, 1.6871, 1.6715, 1.6326, 1.6245,
 1.6011, 1.5961, 1.5806, 1.5772, 1.5637, 1.5554, 1.5536, 1.5471, 1.5457,
 1.5405, 1.5393, 1.5352, 1.5322, 1.5299, 1.5269, 1.5238, 1.5233,
 1.5212, 1.5207, 1.5189, 1.5184, 1.5168, 1.5149, 1.5146, 1.5132, 1.5129,
 1.5117, 1.5115, 1.5103, 1.5101, 1.5091, 1.5089, 1.5080, 1.5078, 1.5069,
 1.5067, 1.5060, 1.5058, 1.5051, 1.5049, 1.5042, 1.5041, 1.5036, 1.5033,
 1.5027, 1.5026, 1.5021, 1.5019, 1.5014, 1.5013, 1.5008, 1.5007, 1.5003,
 1.5002, 1.4998, 1.4997, 1.4993, 1.4992, 1.4988, 1.4987, 1.4984, 1.4983,
 1.4979, 1.4978, 1.4975, 1.4972, 1.4971, 1.4968, 1.4967, 1.4965, 1.4964,
 1.4961, 1.4961, 1.4958, 1.4958, 1.4955, 1.4955, 1.4952, 1.4952, 1.4950,
 1.4949, 1.4947, 1.4947, 1.4945, 1.4944)

factors.hd <- c(
 NA, 1.7725, 1.5682, 1.5959, 1.5666, 1.5666, 1.5646, 1.5591, 1.5559,
 1.5567, 1.5529, 1.5496, 1.5465, 1.5434, 1.5406, 1.5380, 1.5355,
 1.5332, 1.5310, 1.5289, 1.5270, 1.5252, 1.5235, 1.5220, 1.5204,
 1.5191, 1.5177, 1.5164, 1.5154, 1.5143, 1.5133, 1.5123, 1.5114,
 1.5106, 1.5098, 1.5090, 1.5083, 1.5076, 1.5069, 1.5062, 1.5056,
 1.5050, 1.5045, 1.5039, 1.5034, 1.5029, 1.5025, 1.5020, 1.5016,
 1.5011, 1.5008, 1.5004, 1.5000, 1.4997, 1.4993, 1.4990, 1.4986,
 1.4983, 1.4980, 1.4977, 1.4975, 1.4972, 1.4969, 1.4967, 1.4964,
 1.4962, 1.4960, 1.4957, 1.4955, 1.4953, 1.4951, 1.4950, 1.4947,
 1.4946, 1.4944, 1.4942, 1.4940, 1.4939, 1.4937, 1.4936, 1.4934,
 1.4933, 1.4931, 1.4930, 1.4928, 1.4927, 1.4926, 1.4924, 1.4923,
 1.4922, 1.4921, 1.4920, 1.4918, 1.4917, 1.4916, 1.4915, 1.4914,
 1.4913, 1.4912, 1.4911, 1.4910)

factors.thd.sqrt <- c(
 NA, 1.7725, 1.6455, 2.0172, 1.6774, 1.6887, 1.6810, 1.6363, 1.6431,
 1.6137, 1.6036, 1.5938, 1.5826, 1.5771, 1.5683, 1.5639, 1.5574,
 1.5530, 1.5488, 1.5449, 1.5417, 1.5385, 1.5361, 1.5333, 1.5313,
 1.5290, 1.5272, 1.5254, 1.5238, 1.5224, 1.5210, 1.5198, 1.5185,
 1.5175, 1.5163, 1.5155, 1.5144, 1.5136, 1.5127, 1.5119, 1.5111,
 1.5104, 1.5097, 1.5091, 1.5085, 1.5085, 1.5078, 1.5073, 1.5067,
 1.5063, 1.5057, 1.5053, 1.5048, 1.5044, 1.5039, 1.5035, 1.5031,
 1.5027, 1.5024, 1.5020, 1.5017, 1.5013, 1.5010, 1.5007, 1.5004,
 1.5001, 1.4998, 1.4995, 1.4993, 1.4990, 1.4988, 1.4986, 1.4983,
 1.4981, 1.4979, 1.4977, 1.4974, 1.4972, 1.4970, 1.4969, 1.4966,
 1.4965, 1.4963, 1.4961, 1.4959, 1.4958, 1.4956, 1.4955, 1.4953,
 1.4952, 1.4950, 1.4949, 1.4947, 1.4946, 1.4944, 1.4942, 1.4940,
 1.4940, 1.4938, 1.4937)

mad.generic <- function(med, factors, alpha, beta) function(x) {
 n <- length(x)
 factor <- ifelse(n <= 100, factors[n], 1 / qnorm(0.75) / (1 + alpha / n + beta / n^2))
 med(abs(x - med(x))) * factor
}

mad.sm <- mad.generic(med.sm, factors.sm, -0.7668, -2.1897)
mad.hd <- mad.generic(med.hd, factors.hd, -0.4912, -7.6350)
mad.thd.sqrt <- mad.generic(med.thd.sqrt, factors.thd.sqrt, -0.6954, -4.9261)
References

[Aki22] Andrey Akinshin. “Trimmed Harrell-Davis quantile estimator based on the highest density interval of the given width”. In: Communications in Statistics - Simulation and Computation (2022), pp. 1–11. DOI: 10.1080/03610918.2022.2050396.

[CR92] Christophe Croux and Peter J Rousseeuw. “Time-efficient algorithms for two highly robust estimators of scale”. In: Computational statistics. Springer, 1992, pp. 411–428. DOI: 10.1007/978-3-662-26811-7_58.

[DN03] Herbert A David and Haikady N Nagaraja. Order statistics. John Wiley & Sons, 2003. ISBN: 9780471389262. DOI: 10.1002/0471722162.

[Dek+05] Frederik Michel Dekking et al. A Modern Introduction to Probability and Statistics: Understanding why and how. Springer Texts in Statistics. Springer Science & Business Media, 2005. ISBN: 9781852338961.

[GC20] Jean Dickinson Gibbons and Subhabrata Chakraborti. Nonparametric statistical inference. CRC press, 2020.

[GK12] Robert J Grissom and John J Kim. Effect sizes for research: Univariate and multivariate applications. Routledge Academic, 2012. ISBN: 0805850147. DOI: 10.4324/9781410612915.

[Ham74] Frank R Hampel. “The influence curve and its role in robust estimation”. In: Journal of the American statistical association 69.346 (1974), pp. 383–393. DOI: 10.2307/2285666.

[HD82] Frank E. Harrell and C. E. Davis. “A new distribution-free quantile estimator”. In: Biometrika 69.3 (Dec. 1982), pp. 635–640. ISSN: 0006-3444. DOI: 10.1093/biomet/69.3.635.

[Hay14] Kevin Hayes. “Finite-sample bias-correction factors for the median absolute deviation”. In: Communications in Statistics-Simulation and Computation 43.10 (2014), pp. 2205–2212. DOI: 10.1080/03610918.2012.748913.

[HF96] Rob J Hyndman and Yanan Fan. “Sample quantiles in statistical packages”. In: The American Statistician 50.4 (1996), pp. 361–365. DOI: 10.2307/2684934.

[NÖ20] Gözde Navruz and A Fırat Özdemir. “A new quantile estimator with weights based on a subsampling approach”. In: British Journal of Mathematical and Statistical Psychology 73.3 (2020), pp. 506–521. DOI: 10.1111/bmsp.12198.

[PKW20] Chanseok Park, Haewon Kim, and Min Wang. “Investigation of finite-sample properties of robust location and scale estimators”. In: Communications in Statistics-Simulation and Computation (2020), pp. 1–27. DOI: 10.1080/03610918.2019.1699114.

[RC93] Peter J Rousseeuw and Christophe Croux. “Alternatives to the median absolute deviation”. In: Journal of the American Statistical association 88.424 (1993), pp. 1273–1283. DOI: 10.1080/01621459.1993.10476408.

[SV08] Michael E Sfakianakis and Dimitris G Verginis. “A new family of nonparametric quantile estimators”. In: Communications in Statistics—Simulation and Computation® 37.2 (2008), pp. 337–345. DOI: 10.1080/03610910.2010.499455.2010.499516.

[Wil16] Rand R Wilcox. Introduction to robust estimation and hypothesis testing. 4th ed. Academic press, 2016. ISBN: 9780128047330.

[Wil11] Dennis C Williams. “Finite sample correction factors for several simple robust estimators of normal standard deviation”. In: Journal of Statistical Computation and Simulation 81.11 (2011), pp. 1697–1702. DOI: 10.1080/00949655.2010.499516.

[YSD85] Carl N Yoshizawa, Pranab K Sen, and C Edward Davis. “Asymptotic equivalence of the Harrell-Davis median estimator and the sample median”. In: Communications in Statistics-Theory and Methods 14.9 (1985), pp. 2129–2136. DOI: 10.1080/03610928508829034.