Synthesis, characterization, crystal structure and Hirshfeld surface analysis of a hexahydroquinoline derivative: tert-butyl 4-((1,1'-biphenyl)-4-yl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

Sema Öztürk Yıldırım,a,b Mehmet Akkurt, b Gökalp Çetin,c,d Rahime Şimşek,d Ray J. Butcher,e and Ajaya Bhattarai,f*

*Department of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus 26470 Eskisehir, Turkey, †Department of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Turkey, ‡Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Biniali Yıldırım University, 24100 Erzincan, Turkey, §Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Sihhiye-Ankara, Turkey, ¶Department of Chemistry, Howard University, Washington DC 20059, USA, and †Department of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal. *Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

The title compound, C_{29}H_{33}NO_{3}, crystallizes with three molecules (A, B and C) in the asymmetric unit. They differ in the twist of the phenyl and benzene rings of the 1,1'-biphenyl ring with respect to the plane of the 1,4-dihydropyridine ring. In all three molecules, the 1,4-dihydropyridine ring adopts a distorted boat conformation. The cyclohexene ring has an envelope conformation in molecules A and B, while it exhibits a distorted half-chair conformation for both the major and minor components in the disordered molecule C. In the crystal, molecules are linked by C—H···O and N—H···O hydrogen bonds, forming layers parallel to (100) defining R_{1}(6) and C(7) graph-set motifs. Additional C—H···π interactions consolidate the layered structure. Between the layers, van der Waals interactions stabilize the packing, as revealed by Hirshfeld surface analysis. The greatest contributions to the crystal packing are from H···H (69.6% in A, 69.9% in B, 70.1% in C), C···H/H···C (20.3% in A, 20.6% in B, 20.3% in C) and O···H/H···O (8.6% in A, 8.6% in B, 8.4% in C) interactions.

1. Chemical context

Chronic diseases are among the most common causes of death in the world, accompanied by difficulties and costs in treatment and health care. Therefore, preventing or treating chronic diseases is of paramount importance (Raghupathi & Raghupathi, 2018). Recent advances have shown that many diseases such as cancer, atherosclerosis or neurodegenerative diseases are triggered by inflammation (Furman et al., 2019). Based on these findings, regulating inflammatory mediators and pathways has been suggested as a treatment strategy (Kany et al., 2019).

Inflammatory stimuli that cause chronic inflammation initiate the production of inflammatory mediators such as interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) as a result of the activation of signaling pathways. Receptors activated by inflammatory mediators induce chronic inflammation by various signaling pathways (nuclear factor κ-B (NF-KB), Janus kinase (JAK), signal transducer and activator of transcription (STAT),...
Inhibiting these pathways may be a promising approach for the treatment of chronic diseases associated with inflammation (Chen et al., 2018).

Nifedipine, the first drug with a 1,4-dihydropyridine (1,4-DHP) ring, was introduced as a therapeutic agent as a result of intensive studies. The success of nifedipine as an antihypertensive drug has led to further studies and the discovery of other 1,4-DHP derivatives (De Luca et al., 2019). Numerous compounds were obtained through modifications with respect to the 1,4-DHP ring. These studies also uncovered the idea of obtaining hexahydroquinoline derivatives by condensation of the 1,4-DHP scaffold with the cyclohexane ring system (Bladen et al., 2014). In recent years, it has been found that 1,4-DHP and quinoline analogs have the potential to inhibit inflammation mediators and pathways, along with various other pharmacological activities (Costa et al., 2010; Längle et al., 2015; Kim et al., 2018; Çetin et al., 2022).

In the current study, tert-butyl 4-{[1,1'-biphenyl]-4-yl}-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate was obtained by condensation of the 1,4-DHP ring with a substituted cyclohexane ring using a modified Hantzsch method. The molecular structure of the compound was confirmed by spectroscopic methods such as IR, 1H NMR, 13C NMR, and its composition by elemental analysis. In addition, single-crystal X-ray analysis was performed to elucidate the crystal structure of the compound. Independent of the current study, biological activity studies of the title compound are ongoing.

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1) contains three independent molecules (denoted with suffixes A, B and C).
C). They mainly differ in the twist of the phenyl (C24–C29) and benzene (C18–C23) rings of the 1,1′-biphenyl ring with respect to the plane of the 1,4-dihydropyridine ring (N1/C1–C4/C9). The corresponding dihedral angles amount to 89.26 (16) and 75.83 (19)° in molecule A, 88.34 (17) and 71.7 (2)° in molecule B, and 89.38 (17) and 83.6 (3)° in molecule C. The phenyl and benzene rings of the 1,1′-biphenyl ring make dihedral angles of 39.05 (19)° in A, 46.9 (2)° in B, and 33.5 (2)° in C. Fig. 2 shows an overlay plot of molecules A, B, and C, with an r.m.s. deviation of 0.725 Å. Except for the atoms of the minor part of the disordered molecule C and the phenyl ring of the biphenyl group, the other atoms of molecule C and all atoms of molecules A and B are quite compatible and coincide with each other.

In all three molecules, the 1,4-dihydropyridine ring adopts a distorted boat conformation with puckering parameters (Cremer & Pople, 1975) \(Q_T = 0.269 (4) \) Å, \(\theta = 104.5 (9) \)° and \(\varphi = 357.4 (9) \)° in A, \(Q_T = 0.257 (4) \) Å, \(\theta = 73.1 (9) \)° and \(\varphi = 176.0 (9) \)° in B, and \(Q_T = 0.303 (4) \) Å, \(\theta = 106.9 (8) \)° and \(\varphi = 356.2 (8) \)° in C. The cyclohexene ring (C4–C9) has an envelope conformation in molecules A and B [the puckering parameters are \(Q_T = 0.430 (4) \) Å, \(\theta = 49.3 (5) \)° and \(\varphi = 182.3 (7) \)° in A, and \(Q_T = 0.439 (4) \) Å, \(\theta = 58.8 (5) \)° and \(\varphi = 179.9 (6) \)° in B], while the major and minor components of the disordered cyclohexene rings in C exhibit a distorted half-chair conformation, with puckering parameters of \(Q_T = 0.451 (9) \) Å, \(\theta = 44.7 (12) \)° and \(\varphi = 161 (2) \)° for the major component, and of \(Q_T = 0.44 (2) \) Å, \(\theta = 50 (3) \)° and \(\varphi = 206 (5) \)° for the minor component.

Bond lengths and angles in the three molecules of the title compound are comparable with those of closely related structures detailed in section 5 (Database survey).

3. Supramolecular features

In the crystal, molecules are linked by C—H···O and N—H···O hydrogen bonds (Table 1, Fig. 3), forming layers parallel to (100), defining \(R_2(6) \) and \(C(7) \) graph-set motifs (Bernstein et al., 1995). Additional C—H···π interactions consolidate the layered arrangement (Table 1; Fig. 4). Between the layers, van der Waals interactions stabilize the packing, as revealed by Hirshfeld surface analysis.

4. Hirshfeld surface analysis

Crystal Explorer 17.5 (Spackman et al., 2021) was used to construct Hirshfeld surfaces for the three independent molecules; the disorder of molecule C was included in the calculations. The \(d_{norm} \) mappings for molecule A were performed in the range \(-0.5982 \) to \(+2.4710 \) a.u., for molecule B in the range

Table 1

Hydrogen-bond geometry (Å, °).

D—H···A	D—H	H···A	D···A	D—H···A
N1−H1A···O1B	0.92 (5)	1.94 (5)	2.843 (4)	165 (5)
N1B−H1NB···O1C	0.95 (4)	1.88 (4)	2.811 (4)	168 (3)
N1A−H1NA···O1A	0.93 (5)	1.92 (5)	2.842 (4)	174 (4)
C10A−H10B···O1A	0.98	2.60	3.443 (5)	145
C10B−H10F···O1C	0.98	2.47	3.302 (5)	143
C13A−H13A···O2A	0.98	2.45	2.978 (7)	113
C13B−H13D···O2B	0.98	2.47	3.023 (6)	115
C15A−H15A···O2A	0.98	2.41	2.999 (7)	118
C15B−H15D···O2B	0.98	2.41	2.965 (6)	116
C15C−H15G···O2C	0.98	2.49	3.022 (5)	114
C23A−H23A···O2A	0.95	2.57	3.403 (4)	147
C23B−H23B···O2C	0.95	2.55	3.389 (5)	147
C23C−H23C···O2B	0.95	2.60	3.407 (4)	144
C15A−H15B···C13A	0.98	2.82	3.771 (6)	165
C27A−H27A···C4A	0.95	2.75	3.578 (4)	146
C27B−H27B···C8	0.95	2.63	3.493 (5)	150
C27C−H27C···C41A	0.95	2.84	3.632 (7)	142

Symmetry codes: (i) \(x, y, z - 1 \); (ii) \(-x + 1, y, z + 1/2\); (iii) \(-x + 1, y, z - 1/2\).
Table 2
Summary of short interatomic contacts (Å) in the title compound.

Contact	Distance	Symmetry operation
O1C···H1NB	1.88	x, y, z
H1NC···O1B	1.94	x, y, -1 + z
H10f···H14B	2.40	1 - x, 1 - y, -1/2 + z
C8C···H16K	3.07	1 - x, -y, -1/2 + z
H10G···H13H	2.43	1 - x, 1 - y, -1/2 + z
C19C···H27A	2.86	1/2 - x, y, -1/2 + z
H26C···C20B	2.90	1/2 - x, y, -1/2 + z
H17K···H10E	2.07	1 - x, -y, -1/2 + z
H16G···H17A	2.52	1/2 - x, -1 + y, -1/2 + z
H20C···H28C	2.56	1/2 - x, y, -1/2 + z
O1A···H1NA	1.92	1/2 - x, y, -1/2 + z
H7A···H15E	2.49	x, 1 + y, z
H10B···H17D	2.51	1 - x, 1 - y, 1/2 + z
H16A···H17F	2.47	-1/2 + x, 1 - y, z
C19A···H27B	2.89	x, y, z
H16B···C10B	2.97	1/2 - x, y, -1/2 + z
H28A···H20B	2.42	1/2 - x, y, -1/2 + z

Table 3
Percentage contributions of interatomic contacts to the Hirshfeld surfaces for the molecules A, B and C of the title compound.

Contact	% for A	% for B	% for C
H···H	69.6	69.9	70.1
C···H/···C	20.3	20.6	20.3
O···H/···O	8.6	8.6	8.4
N···H/···N	1.1	0.8	0.9
C···C	0.5	0.1	0.4

Figure 5
(a) View of the three-dimensional Hirshfeld surface for molecule A; (b) view of the three-dimensional Hirshfeld surface for molecule B; (c) view of the three-dimensional Hirshfeld surface for molecule C. Some intermolecular N···H and C···H···O interactions are shown as dashed lines.

Figure 6
The two-dimensional fingerprint plots for molecules A, B and C showing (a) all interactions, and delineated into (b) H···H, (c) C···H····C and (d) O···H/···O interactions. The di and dj values are the closest internal and external distances (Å) from given points on the Hirshfeld surface.

Contact distances and symmetry operations are shown as dashed lines. The contact distances range from 0.5 to 2.5 Å, and the symmetry operations describe the locations of H···H and C···H···O interactions. The Hirshfeld surfaces (Fig. 5) reveal the locations of these interactions, with bright-red spots indicating the closest distances. Fingerprint plots (Fig. 6) show the contributions of each interaction type, with H···H interactions making the largest contributions. Some intermolecular N···H and C···H···O interactions are also significant. The two-dimensional fingerprint plots (Fig. 6) disclose the frequencies of these interactions, highlighting the importance of H···H and C···H···O interactions in the crystal structure.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for similar structures with the 1,4,5,6,7,8-hexahydroquinoline unit revealed seven closely related entries: ethyl 4-(4-bromophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate [CSD refcode LOQCAX (I); Steiger et al., 2014], ethyl 4-(3-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate [PUGCIE (II); Moohkia et al., 2009], (RR,SS)-methyl 4-(2,4-chlorophenyl)-2,7-dimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (RS,SR)-methyl 4-(2,4-chlorophenyl)-2,7-dimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate [UCOLOO (III); Linden et al., 2006], ethyl 2,7,7-trimethyl-4-(1-methyl-1H-indol-3-yl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate [NEQMON (IV); Oztürel Yildirim et al., 2013], (+/−)-methyl 4-(2,3-difluorophenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate [DAYJET (V); Linden et al., 2005], benzyl 4-(3-chloro-2-fluorophenyl)-2-methyl-5-oxo-4,5,6,7-tetrahydro-1H-cyclopenta[b]pyridine-3-carboxylate [IMEJOA (VI); Linden et al., 2011], and ethyl 4-(5-bromo-1H-indol-3-yl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate [PECPUK (VII); Gündüz et al., 2012].

In (I), hydrogen bonds are formed between the N−H group of one molecule and the carbonyl O atom in the cyclohexalone ring of an adjacent molecule. These hydrogen bonds link the molecules into extended chains running along [001]. In the crystal of (II), molecules are linked by N—H⋅⋅⋅O and O—H⋅⋅⋅O hydrogen bonds into layers parallel to (011). The network includes R$_2^2$(30) and R$_2^2$(34) graph-set motifs. In (III), an intermolecular N−H⋅⋅⋅O hydrogen bond between the amine group and the carbonyl O atom of the cyclohexalone ring of a neighboring molecule links the molecules into extended chains parallel to [010]. These interactions can be described by graph-set motif C(6). In the crystal of (IV), N−H⋅⋅⋅O hydrogen bonds connect the molecules into C(6) chains parallel to [010], and pairs of weak C−H⋅⋅⋅O hydrogen bonds link inversion-related chains into a ladder motif through R$_3^2$(18) rings. A weak intramolecular C−H⋅⋅⋅O hydrogen bond is also observed. In (V), the crystal structure exhibits an intermolecular N−H⋅⋅⋅O hydrogen-bonding interaction involving the carbonyl O atom of the oxocyclohexene ring, whereby the molecules are linked into C(6) chains parallel to [100]. In (VI), the frequently observed intermolecular N−H⋅⋅⋅O hydrogen bond between the amine group and the carbonyl O atom of the oxocyclopentene ring of a neighboring molecule links the molecules into extended C(6) chains parallel to [010]; there are no other significant intermolecular interactions. In the crystal of (VII), molecules are linked by pairs of N−H⋅⋅O hydrogen bonds, forming dimers with R$_2^2$(6) ring motifs. These dimers are connected by N−H⋅⋅⋅O hydrogen bonds, generating chains along [110]. A C−H⋅⋅⋅O contact occurs between the independent molecules.

6. Synthesis and crystallization
The title compound was synthesized via a Hantzsch reaction. 4,4-Dimethylcyclohexene-1,3-dione (1 mmol), [1,1′-biphenyl]-4-carboxaldehyde (1 mmol), tert-butyl acetoacetate (1 mmol), and ammonium acetate (5 mmol) were refluxed for 8 h in absolute methanol (10 ml). The reaction mixture was monitored by TLC, and after completion of the reaction was cooled to room temperature. The obtained precipitate was filtered and recrystallized from ethanol for further purification. The synthetic route is shown in Fig. 7.

Yellowish solid, m.p. 520-522 K; yield: 41%. IR (v, cm$^{-1}$) 3284 (N−H stretching), 3067 (C−H stretching, aromatic), 2966 (C−H stretching, aliphatic) 1671 (C=O stretching, ester), 1597 (C=O stretching, ketone). 1H NMR (DMSO-d$_6$) δ: 0.88 (3H; 6-CH$_3$), 0.97 (3H; 6-CH$_3$), 1.32 [9H, s, C(CH$_3$)$_3$], 1.70–1.71 (2H; m; quinoline H7), 2.23 (3H; s; 2-CH$_3$), 2.47–2.50 (2H; m; quinoline H8), 4.82 (1H; s; quinoline H4), 7.19–7.21 (2H, m, Ar-H), 7.27–7.31 (H, m, Ar-H), 7.38–7.48 (4H, m, Ar-H), 7.57–7.59 (2H, m, Ar-H), 8.98 (1H, s; NH). 13C NMR (DMSO-d$_6$) δ: 18.2, 22.9, 24.1, 25.1, 27.9, 34.1, 36.0, 40.0, 78.7, 104.6, 108.8, 126.0, 126.3, 127.0, 127.9, 128.7, 137.3, 140.1, 143.8, 147.1, 149.8, 166.4, 199.3. Analysis calculated for C$_{26}$H$_{33}$NO$_3$: C 78.52, H 7.5, N 3.16. Found: C 78.30, H 7.602, N 3.19.

7. Refinement details
Crystal data, data collection and structure refinement details are summarized in Table 4. All C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with C−H = 0.95 Å for aryl-H atoms, C−H = 0.99 Å for methylene groups, C−H = 1.00 Å for methine groups and C−H = 0.98 Å for methyl groups, with $U_{iso}(H)$ = 1.5$U_{eq}(C)$ for methyl groups and $U_{iso}(H)$ = 1.2$U_{eq}(C)$ for other hydrogen atoms. The H atoms of the NH groups were found in a difference-Fourier map and refined freely (see Table 1).

In molecule C, except the fused carbon atoms (C4C and C9C) and the carbonyl oxygen atom (O1C) of the 6,6-dimethylocyclohex-2-en-1-one group (C4C–C5C/C5F–C6C/C6F–C7C/C7F–C8C/C8F–C9C–O1C–C16C/C16F–C17C/C17F), the other C atoms are disordered over two sets of sites with a refined occupancy ratio of 0.716 (4):0.284 (4). For the disordered components, the EADP instruction was used in the final cycles of the refinement.

Acknowledgements
RJB is grateful to Howard University Nanoscience Facility for access to liquid nitrogen. Authors’ contributions are as follows.
Table 4
Experimental details.

Crystal data	Chemical formula	C_{29}H_{33}NO_3
M_e		443.56
Crystal system, space group	Orthorhombic, Pca_2_1	
Temperature (K)		100
a, b, c (Å)		32.2274 (14), 19.0904 (7), 12.0370 (3)
V (Å³)		7634.7 (5)
Z		12
Radiation type	Mo K	
μ (mm⁻¹)		0.07
Crystal size (mm)		0.29 × 0.17 × 0.04

Data collection

Diffractometer	SuperNova, Dual, Cu at zero, Atlas CrysAlis PRO (Rigaku OD, 2015)
Rint	0.091
R(max)	0.815

| Rint | 0.091 |
| R(max) | 0.815 |

Refinement

R[<i>F</i>² > 2σ(<i>F</i>²)], wR(<i>F</i>²), S	0.077, 0.212, 1.02
No. of reflections	26062
No. of parameters	943
No. of restraints	13
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
Δρ(max), Δρ(min) (e Å⁻³)	0.58, -0.37

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012), and PLATON (Spek, 2020).

Conceptualization, RS and SOY; methodology, RS and GC; investigation, RS and SOY; writing (original draft), GC and MA writing (review and editing of the manuscript), RS and SOY; crystal data production and validation, RJB and SOY; visualization, MA; funding acquisition, RJB; resources, AB, RJB and RS.

Funding information

RJB is grateful for funding from NSF (award 1205608) and the Partnership for Reduced Dimensional Materials for partial funding of this research, and the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. This study was supported by Hacettepe University Scientific Research Unit (Project No. THD-2020–18806).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
Bladen, C., Gündüz, M. G., Şimşek, R., Şafak, C. & Zamponi, G. W. (2014). Eur. J. Physiol. 466, 1355–1363.
Çetin, G., Çetin, B., Çolak, B., Aşan, M., Birlik Demirel, G., Cansaran-Duman, D., Akçelik, N. & Şimşek, R. (2022). J. Res. Pharm. 26, 219–230.
Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. & Zhao, L. (2018). Oncotarget, 9, 7204–7218.
Costa, S., Zimetti, F., Pedrelli, M., Cremonesi, G. & Bernini, F. (2010). Pharmacol. Res. 62, 265–270.
Cremers, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
De Luca, M., Ioele, G. & Rago, G. (2019). Pharmaceutica, 11, 85.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. A., Effros, R. B., Lucia, A., Kleinreuter, N. & Slavich, G. M. (2019). Nat. Med. 25, 1822–1832.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
Gündüz, M. G., Butcher, R. J., Öztürk Yıldırım, S., El-Khouly, A., Şafak, C. & Şimşek, R. (2012). Acta Cryst. E68, o3404–o3405.
Kany, S., Vollrath, J. T. & Relja, B. (2019). Int. J. Mol. Sci. 20, 6008.
Kim, B. R., Cho, Y. C. & Cho, S. (2018). BMB Rep. 51, 308–313.
Längle, D., Marquardt, V., Heider, E., Vigante, B., Duburs, G., Luntea, I., Floßgen, D., Golz, C., Strohmann, C., Koch, O. & Schade, D. (2015). Eur. J. Med. Chem. 95, 249–266.
Linden, A., Gündüz, M. G., Şimşek, R. & Şafak, C. (2006). Acta Cryst. C62, o227–o230.
Linden, A., Şafak, C., Şimşek, R. & Gündüz, M. G. (2011). Acta Cryst. C67, o80–o84.
Linden, A., Şimşek, R., Gündüz, M. & Şafak, C. (2005). Acta Cryst. C61, o731–o734.
Mookiah, P., Rajesh, K., Narasimhamurthy, T., Vijayakumar, V. & Srinivasan, N. (2009). Acta Cryst. E65, o2664.
Oztürk Yıldırım, S., Butter, R. J., Gündüz, M. G., El-Khouly, A., Şimşek, R. & Şafak, C. (2013). Acta Cryst. E69, o40–o41.
Raghupathi, W. & Raghupathi, V. (2018). Int. J. Environ. Res. Publ. Heal. 15, 431.
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.
Spek, A. L. (2020). Acta Cryst. E76, 1–11.
Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014). Acta Cryst. C70, 790–795.
Synthesis, characterization, crystal structure and Hirshfeld surface analysis of a hexahydroquinoline derivative: tert-butyl 4-([1,1′-biphenyl]-4-yl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

Sema Öztürk Yıldırım, Mehmet Akkurt, Gökalp Çetin, Rahime Şimşek, Ray J. Butcher and Ajaya Bhattarai

Computing details
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

tert-Butyl 4-([1,1′-biphenyl]-4-yl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

Crystal data
C_{29}H_{33}NO_{3}
Mr = 443.56
Orthorhombic, Pca_{2}1
a = 33.2247 (14) Å
b = 19.0904 (7) Å
c = 12.0370 (3) Å
V = 7634.7 (5) Å^3
Z = 12
F(000) = 2856

Data collection
SuperNova, Dual, Cu at zero, Atlas diffractometer
Radiation source: micro-focus sealed X-ray tube
Detector resolution: 10.6501 pixels mm^{-1}
69430 measured reflections
26062 independent reflections
13388 reflections with I > 2\sigma(I)

Refinement
Refinement on F^2
Least-squares matrix: full
R[F^2 > 2\sigma(F^2)] = 0.077
wR(F^2) = 0.212
S = 1.02
943 parameters
13 restraints
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement

Acta Cryst. (2022). E78, 798-803
supporting information

\[w = \frac{1}{\sigma^2(F_o^2) + (0.0858P)^2 + 0.3289P} \]
where \[P = (F_o^2 + 2F_c^2)/3 \]
\[\Delta \rho_{\text{max}} = 0.58 \text{ e Å}^{-3} \]
\[\Delta \rho_{\text{min}} = -0.37 \text{ e Å}^{-3} \]
\[(\Delta / \sigma)_{\text{max}} < 0.001 \]

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	\(U_{iso} ^* / U_{eq} \)	Occ. (<1)
O1C	0.46360 (9)	0.08706 (13)	0.3497 (2)	0.0319 (6)	
O2C	0.45841 (11)	0.33966 (14)	0.4075 (2)	0.0401 (8)	
O3C	0.48150 (10)	0.41061 (13)	0.2723 (2)	0.0333 (7)	
N1C	0.48126 (9)	0.24320 (15)	0.0522 (2)	0.0210 (6)	
H1NC	0.4898 (17)	0.253 (3)	−0.019 (4)	0.054 (15)*	
C1C	0.47707 (11)	0.30241 (18)	0.1187 (3)	0.0217 (7)	
C2C	0.46516 (11)	0.29472 (18)	0.2253 (3)	0.0215 (7)	
C3C	0.44911 (11)	0.22483 (17)	0.2661 (3)	0.0195 (6)	
H3CA	0.457116	0.219390	0.345766	0.023*	
C4C	0.46876 (12)	0.16588 (18)	0.2003 (3)	0.0223 (7)	
C9C	0.48166 (11)	0.17716 (18)	0.0953 (3)	0.0216 (7)	
C10C	0.48761 (13)	0.36843 (19)	0.0585 (3)	0.0280 (8)	
H10G	0.469779	0.406270	0.083077	0.042*	
H10H	0.484358	0.361273	−0.021631	0.042*	
H10I	0.515606	0.381025	0.074573	0.042*	
C11C	0.46732 (13)	0.34996 (18)	0.3106 (3)	0.0252 (8)	
C12C	0.48964 (15)	0.4703 (2)	0.3458 (3)	0.0363 (10)	
C13C	0.52017 (17)	0.4500 (3)	0.4339 (4)	0.0531 (14)	
H13G	0.506416	0.426122	0.495179	0.080*	
H13H	0.533542	0.492149	0.461951	0.080*	
H13I	0.540253	0.418457	0.401344	0.080*	
C14C	0.5076 (2)	0.5231 (2)	0.2654 (4)	0.0633 (17)	
H14G	0.489180	0.529980	0.202794	0.095*	
H14H	0.533472	0.505606	0.237940	0.095*	
H14I	0.511733	0.567845	0.303760	0.095*	
C15C	0.45081 (16)	0.4972 (2)	0.3945 (4)	0.0455 (12)	
H15G	0.440597	0.463492	0.449029	0.068*	
H15H	0.430940	0.503272	0.335077	0.068*	
H15I	0.455634	0.542314	0.430975	0.068*	
C5C	0.4736 (4)	0.0987 (5)	0.2485 (11)	0.0182 (16)	0.716 (4)
C6C	0.4829 (2)	0.0353 (4)	0.1732 (5)	0.0231 (13)	0.716 (4)
C7C	0.51262 (18)	0.0589 (3)	0.0831 (4)	0.0254 (10)	0.716 (4)
H7CA	0.538459	0.071720	0.118645	0.030*	0.716 (4)
H7CB	0.517837	0.019137	0.032286	0.030*	0.716 (4)
C8C	0.497 (7)	0.1206 (6)	0.0158 (11)	0.0219 (16)	0.716 (4)
H8CA	0.475884	0.105316	−0.034922	0.026*	0.716 (4)
Atom	x	y	z	Ueq	
--------	--------	--------	--------	------	
C	0.44347 (19)	0.0096 (3)	0.1220 (5)	0.0.026*	
H	0.519848	0.139966	−0.029617	0.716 (4)	
C	0.430524	0.048234	0.081918	0.052*	
H	0.449072	0.028783	0.070302	0.052*	
C	0.5016 (2)	−0.0234 (3)	0.2432 (5)	0.0392 (14)	
H	0.483035	−0.036371	0.0679 (10)	0.054 (10)	
H	0.425520	−0.006979	0.181001	0.052*	
C	0.44347 (19)	0.0096 (3)	0.1220 (5)	0.0.026*	
H	0.519848	0.139966	−0.029617	0.716 (4)	
C	0.430524	0.048234	0.081918	0.052*	
H	0.449072	0.028783	0.070302	0.052*	
C	0.5016 (2)	−0.0234 (3)	0.2432 (5)	0.0392 (14)	
H	0.483035	−0.036371	0.0679 (10)	0.054 (10)	
H	0.425520	−0.006979	0.181001	0.052*	
C	0.44347 (19)	0.0096 (3)	0.1220 (5)	0.0.026*	
H	0.519848	0.139966	−0.029617	0.716 (4)	
C	0.430524	0.048234	0.081918	0.052*	
H	0.449072	0.028783	0.070302	0.052*	
C	0.5016 (2)	−0.0234 (3)	0.2432 (5)	0.0392 (14)	
H	0.483035	−0.036371	0.0679 (10)	0.054 (10)	
H	0.425520	−0.006979	0.181001	0.052*	
Atom	X	Y	Z	Temperature	
------	-----------	-----------	-----------	-------------	
O2B	0.39953 (9)	0.13889 (15)	0.9060 (2)	0.0337 (7)	
O3B	0.36660 (9)	0.08654 (15)	0.7645 (2)	0.0352 (7)	
N1B	0.45666 (10)	0.16087 (16)	0.5509 (2)	0.0238 (6)	
H1NB	0.4580 (11)	0.1419 (18)	0.478 (3)	0.015 (9)*	
C2B	0.42144 (11)	0.15947 (18)	0.7226 (3)	0.0215 (7)	
C3B	0.44784 (11)	0.21896 (17)	0.7645 (3)	0.0192 (6)	
H3BA	0.455138	0.208552	0.843420	0.023*	
C4B	0.48650 (11)	0.22308 (17)	0.6980 (3)	0.0202 (7)	
C5B	0.52170 (11)	0.25356 (17)	0.7503 (3)	0.0214 (7)	
C6B	0.56081 (13)	0.2624 (2)	0.6833 (3)	0.0283 (8)	
C7B	0.55222 (14)	0.2632 (2)	0.5602 (3)	0.0353 (9)	
C8B	0.52497 (12)	0.2027 (2)	0.5206 (3)	0.0274 (8)	
H8BA	0.516517	0.211170	0.442931	0.033*	
H8BB	0.540204	0.158121	0.522827	0.033*	
C9B	0.48827 (12)	0.19693 (18)	0.5940 (3)	0.0217 (7)	
H10B	0.39848 (14)	0.0853 (2)	0.5569 (3)	0.0327 (9)	
H10F	0.370242	0.099190	0.565137	0.049*	
H10E	0.402363	0.038514	0.588696	0.049*	
C10F	0.405593	0.084498	0.477890	0.049*	
C11B	0.39505 (12)	0.12824 (19)	0.8071 (3)	0.0249 (7)	
C12B	0.34032 (15)	0.0438 (2)	0.8350 (4)	0.0408 (11)	
C13B	0.36627 (19)	−0.0084 (3)	0.8969 (5)	0.0636 (16)	
H13D	0.382559	0.016253	0.952372	0.095*	
H13E	0.384013	−0.032506	0.844298	0.095*	
H13F	0.349019	−0.042810	0.934182	0.095*	
C14B	0.31430 (18)	0.0074 (3)	0.7477 (4)	0.0605 (16)	
H14D	0.300055	0.042709	0.703607	0.091*	
H14E	0.294700	−0.023052	0.784723	0.091*	
H14F	0.331456	−0.020787	0.698874	0.091*	
C15B	0.31514 (17)	0.0884 (3)	0.9105 (4)	0.0538 (14)	
H15D	0.332446	0.110615	0.966285	0.081*	
H15E	0.295027	0.059134	0.947783	0.081*	
H15F	0.301516	0.124668	0.866833	0.081*	
C16B	0.58283 (17)	0.3280 (3)	0.7172 (5)	0.0588 (15)	
H16D	0.567336	0.369113	0.693858	0.088*	
H16E	0.609364	0.328881	0.681709	0.088*	
H16F	0.586101	0.328634	0.798126	0.088*	
C17B	0.58741 (17)	0.1989 (3)	0.7168 (4)	0.0548 (14)	
H17D	0.614125	0.203879	0.683244	0.082*	
H17E	0.574862	0.155539	0.690542	0.082*	
H17F	0.590032	0.197348	0.797901	0.082*	
C18B	0.42474 (11)	0.28796 (17)	0.7628 (3)	0.0201 (6)	
C19B	0.40710 (11)	0.31303 (19)	0.8600 (3)	0.0236 (7)	
H19B	0.411061	0.288512	0.927788	0.028*	
C20B	0.38374 (12)	0.37360 (19)	0.8589 (3)	0.0278 (8)	
H20B	0.372096	0.390038	0.926144	0.033*	
Atom	x	y	z	U(eq)	
-------	------	------	------	-------	
C21B	0.37724 (12)	0.41026 (19)	0.7609 (3)	0.0271 (8)	
C22B	0.39484 (12)	0.38486 (19)	0.6634 (3)	0.0270 (8)	
H22B	0.390634	0.408871	0.595268	0.032*	
C23B	0.41843 (12)	0.32481 (18)	0.6654 (3)	0.0243 (7)	
H23B	0.430470	0.308722	0.598470	0.029*	
C24B	0.35100 (13)	0.4735 (2)	0.7599 (3)	0.0306 (8)	
C25B	0.32067 (16)	0.4813 (3)	0.6810 (4)	0.0496 (12)	
H25B	0.317420	0.446661	0.624996	0.059*	
C26B	0.29521 (18)	0.5386 (3)	0.6827 (5)	0.0590 (15)	
H26B	0.274837	0.543358	0.627813	0.071*	
C27B	0.29953 (17)	0.5892 (2)	0.7652 (4)	0.0494 (12)	
H27B	0.281795	0.628257	0.767420	0.059*	
C28B	0.32936 (16)	0.5828 (2)	0.8431 (4)	0.0449 (11)	
H28B	0.332575	0.617497	0.899039	0.054*	
C29B	0.35499 (15)	0.5249 (2)	0.8398 (4)	0.0392 (10)	
H29B	0.375687	0.520736	0.893877	0.047*	
O1A	0.19045 (8)	0.90494 (14)	0.6522 (2)	0.0291 (6)	
O2A	0.31575 (10)	0.77814 (17)	0.5886 (2)	0.0413 (8)	
O3A	0.35749 (9)	0.75149 (15)	0.7299 (2)	0.0327 (6)	
N1A	0.27887 (10)	0.85463 (16)	0.9468 (2)	0.0225 (6)	
H1NA	0.2869 (14)	0.872 (2)	1.015 (4)	0.034 (12)*	
C1A	0.30583 (12)	0.81797 (19)	0.8791 (3)	0.0234 (7)	
C2A	0.29537 (11)	0.80338 (18)	0.7730 (3)	0.0217 (7)	
C3A	0.25278 (11)	0.81758 (17)	0.7316 (3)	0.0216 (7)	
H3AA	0.254555	0.833656	0.652717	0.026*	
C4A	0.23328 (11)	0.87495 (17)	0.7985 (3)	0.0201 (7)	
C5A	0.20096 (11)	0.91507 (18)	0.7502 (3)	0.0225 (7)	
C6A	0.17859 (12)	0.96972 (19)	0.8190 (3)	0.0248 (7)	
C7A	0.20552 (13)	0.9979 (2)	0.9126 (3)	0.0334 (9)	
H7AA	0.226618	1.028171	0.879871	0.040*	
H7AB	0.189038	1.027278	0.962894	0.040*	
C8A	0.22563 (12)	0.9401 (2)	0.9804 (3)	0.0258 (8)	
H8AA	0.245670	0.960979	1.031508	0.031*	
H8AB	0.205142	0.915549	1.025665	0.031*	
C9A	0.24611 (12)	0.88866 (17)	0.9046 (3)	0.0213 (7)	
C10A	0.34394 (12)	0.8005 (2)	0.9392 (3)	0.0280 (8)	
H10A	0.348828	0.749983	0.934835	0.042*	
H10B	0.341518	0.814513	1.017266	0.042*	
H10C	0.366455	0.825680	0.904907	0.042*	
C11A	0.32364 (12)	0.77620 (19)	0.6876 (3)	0.0244 (7)	
C12A	0.39117 (12)	0.7288 (2)	0.6574 (3)	0.0343 (9)	
C13A	0.4052 (2)	0.7882 (3)	0.5884 (6)	0.082 (2)	
H13A	0.385439	0.797594	0.529805	0.123*	
H13B	0.431160	0.776395	0.554694	0.123*	
H13C	0.408238	0.829931	0.635093	0.123*	
C14A	0.42246 (17)	0.7077 (5)	0.7437 (5)	0.086 (2)	
H14A	0.434532	0.749834	0.776152	0.128*	
H14B	0.443469	0.679505	0.708135	0.128*	
Atomic Displacement Parameters (Å²)

Atom	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
O1C	0.051 (2)	0.0247 (13)	0.0196 (12)	0.0041 (12)	0.0034 (12)	0.0022 (10)
O2C	0.069 (2)	0.0285 (14)	0.0226 (13)	−0.0081 (15)	0.0078 (13)	−0.0045 (11)
O3C	0.052 (2)	0.0240 (13)	0.0240 (13)	−0.0068 (12)	0.0055 (12)	−0.0046 (10)
N1C	0.0224 (16)	0.0256 (14)	0.0149 (12)	−0.0024 (12)	0.0018 (11)	−0.0009 (11)
C1C	0.0212 (19)	0.0229 (16)	0.0210 (15)	0.0036 (14)	−0.0036 (12)	0.0010 (12)
C2C	0.0246 (19)	0.0239 (16)	0.0161 (14)	0.0031 (14)	−0.0019 (12)	−0.0019 (12)
C3C	0.0234 (18)	0.0215 (15)	0.0136 (13)	0.0037 (13)	−0.0006 (12)	−0.0008 (12)
C4C	0.023 (2)	0.0247 (16)	0.0187 (15)	0.0021 (14)	−0.0022 (12)	−0.0013 (12)
C9C	0.0209 (19)	0.0270 (17)	0.0168 (14)	0.0012 (14)	−0.0027 (12)	−0.0021 (12)
C10C	0.035 (2)	0.0270 (17)	0.0223 (16)	−0.0047 (16)	0.0009 (15)	0.0011 (14)

sup-6
Atom	U1	U2	U3	U4	U5	U6
C11C	0.034	0.0207	0.0205	0.0028	0.0010	−0.0016
C12C	0.053	0.0259	0.0297	−0.0027	0.0014	−0.0097
C13C	0.053	0.045	0.061	0.006	−0.017	−0.021
C14C	0.110	0.035	0.045	−0.030	0.015	−0.012
C15C	0.051	0.034	0.052	0.000	−0.004	−0.017
C5C	0.017	0.021	0.017	−0.002	0.005	0.001
C6C	0.028	0.0228	0.019	0.004	−0.002	−0.002
C7C	0.029	0.022	0.026	0.003	0.001	−0.0031
C8C	0.028	0.0290	0.009	0.0022	0.005	−0.0020
C16C	0.042	0.030	0.032	0.001	0.002	−0.009
C17C	0.058	0.033	0.027	0.020	−0.002	−0.003
C5F	0.017	0.021	0.017	−0.002	0.005	0.001
C6F	0.028	0.0228	0.019	0.004	−0.002	−0.002
C7F	0.029	0.022	0.006	0.003	0.001	−0.0031
C8F	0.028	0.0290	0.009	0.0022	0.005	−0.0020
C16F	0.042	0.030	0.032	0.001	0.002	−0.009
C17F	0.058	0.033	0.027	0.020	−0.002	−0.003
C18C	0.0265	0.0162	0.0189	0.0028	0.0046	0.0023
C19C	0.033	0.0301	0.0229	0.0065	0.0063	0.0023
C20C	0.031	0.037	0.032	0.0077	0.0126	0.0007
C21C	0.026	0.0271	0.041	0.0035	0.0062	0.0057
C22C	0.024	0.035	0.032	−0.0013	−0.0020	0.0040
C23C	0.025	0.0289	0.0231	−0.0002	0.0003	0.0007
C24C	0.026	0.044	0.054	0.0030	0.0069	0.012
C25C	0.034	0.071	0.099	0.014	0.014	−0.007
C26C	0.035	0.084	0.126	0.016	0.021	0.003
C27C	0.024	0.084	0.116	0.011	0.006	0.031
C28C	0.035	0.082	0.082	−0.003	−0.005	0.031
C29C	0.031	0.059	0.063	−0.003	−0.001	0.017
C1B	0.026	0.0222	0.0201	0.0013	−0.0041	0.0027
O1B	0.0243	0.0471	0.0189	−0.0089	0.0020	−0.0034
O2B	0.0311	0.0481	0.0200	−0.0136	0.0004	−0.0024
O3B	0.0350	0.0450	0.0257	−0.0183	0.0066	−0.0055
N1B	0.0297	0.0278	0.0139	−0.0022	−0.0001	−0.0024
C2B	0.0207	0.0262	0.0176	0.0014	−0.0003	0.0002
C3B	0.0215	0.0222	0.0140	−0.0055	−0.0007	0.0008
C4B	0.0200	0.0220	0.0187	0.0037	0.0012	0.0027
C5B	0.0205	0.0240	0.0198	0.0010	0.0025	0.0043
C6B	0.030	0.0313	0.0232	−0.0034	0.0063	−0.0010
C7B	0.032	0.042	0.031	−0.0033	0.0056	0.0034
C8B	0.025	0.038	0.0189	0.0042	0.0052	−0.0001
C9B	0.026	0.0226	0.0160	0.0043	0.0009	0.0024
C10B	0.035	0.036	0.0268	−0.0076	−0.0038	−0.0062
C11B	0.022	0.0288	0.0237	−0.0002	0.0001	−0.0028
C12B	0.044	0.043	0.035	−0.025	0.0019	0.0035
C13B	0.065	0.048	0.078	−0.016	0.009	0.020
C14B	0.059	0.073	0.050	−0.044	0.014	−0.018
C15B	0.044	0.072	0.046	−0.023	0.020	−0.005
Atom	U11	U22	U33	U12	U13	U23
------	-----	-----	-----	-----	-----	-----
C16B	0.038 (3)	0.056 (3)	-0.022 (3)	0.014 (2)	-0.004 (3)	
C17B	0.045 (3)	0.036 (3)	-0.020 (3)	0.002 (2)	0.009 (2)	
C18B	0.0179 (17)	0.0008 (13)	-0.0030 (12)	-0.0010 (12)		
C19B	0.023 (2)	0.0190 (14)	0.0006 (12)	-0.0004 (13)		
C20B	0.026 (2)	0.0046 (16)	-0.0028 (14)	-0.0054 (14)		
C21B	0.0221 (19)	0.0031 (14)	-0.0003 (15)	0.0012 (15)		
C22B	0.027 (2)	0.0056 (16)	0.0012 (14)	0.0012 (14)		
C23B	0.026 (2)	0.0041 (15)	0.0021 (13)	-0.0009 (13)		
C24B	0.029 (2)	0.0077 (16)	0.0048 (16)	0.0023 (16)		
C25B	0.040 (3)	0.011 (2)	-0.007 (2)	-0.001 (2)		
C26B	0.040 (3)	0.021 (3)	-0.009 (3)	0.001 (3)		
C27B	0.043 (3)	0.017 (2)	0.008 (2)	0.001 (2)		
C28B	0.052 (3)	0.008 (2)	0.015 (2)	-0.0005 (19)		
C29B	0.040 (3)	0.0089 (19)	0.009 (2)	0.0032 (18)		
O1A	0.02063 (15)	0.0097 (12)	-0.0028 (10)	-0.0048 (11)		
O2A	0.02034 (18)	0.0237 (16)	0.0006 (11)	-0.0042 (13)		
O3A	0.02021 (15)	0.0112 (13)	0.0013 (10)	-0.0044 (12)		
N1A	0.02064 (17)	-0.0003 (13)	-0.0024 (11)	-0.0015 (11)		
C1A	0.0324 (2)	-0.0025 (15)	-0.0002 (12)	0.0023 (12)		
C2A	0.02017 (19)	0.0023 (14)	0.0000 (12)	-0.0027 (13)		
C3A	0.02018 (18)	0.0028 (14)	0.0011 (12)	-0.0007 (12)		
C4A	0.02025 (19)	0.0018 (14)	0.0018 (12)	-0.0013 (12)		
C5A	0.02026 (19)	0.0004 (14)	0.0015 (13)	-0.0008 (12)		
C6A	0.02025 (2)	0.0063 (15)	0.0007 (13)	-0.0014 (13)		
C7A	0.0323 (19)	0.0028 (18)	0.0019 (16)	-0.0064 (16)		
C8A	0.02026 (2)	0.0006 (16)	0.0022 (13)	-0.0072 (14)		
C9A	0.02024 (19)	-0.0021 (14)	0.0027 (12)	-0.0017 (12)		
C10A	0.02023 (2)	0.0038 (16)	-0.0018 (14)	-0.0011 (15)		
C11A	0.020205 (19)	0.0027 (15)	-0.0003 (13)	-0.0020 (13)		
C12A	0.0164 (19)	0.0097 (18)	0.0023 (14)	-0.0045 (18)		
C13A	0.058 (4)	0.008 (3)	0.055 (4)	0.021 (4)		
C14A	0.030 (3)	0.045 (4)	-0.011 (2)	-0.028 (4)		
C15A	0.035 (3)	0.013 (3)	0.010 (2)	-0.025 (3)		
C16A	0.036 (3)	0.000 (2)	0.0089 (19)	-0.0111 (19)		
C17A	0.035 (2)	0.014 (2)	-0.002 (2)	-0.003 (2)		
C18A	0.0194 (18)	0.0031 (14)	-0.0036 (12)	-0.0006 (12)		
C19A	0.029 (2)	-0.0026 (15)	-0.0019 (14)	-0.0017 (13)		
C20A	0.033 (2)	0.0047 (16)	-0.0043 (15)	-0.0067 (14)		
C21A	0.024 (2)	0.00252 (14)	-0.0006 (14)	-0.0020 (14)		
C22A	0.029 (2)	-0.0005 (17)	0.0003 (15)	0.0006 (15)		
C23A	0.027 (2)	0.0003 (16)	-0.0011 (13)	-0.0038 (13)		
C24A	0.029 (2)	0.0008 (16)	0.0068 (16)	-0.0031 (16)		
C25A	0.048 (3)	0.007 (2)	-0.003 (2)	0.005 (2)		
C26A	0.068 (4)	0.005 (3)	0.010 (3)	0.012 (2)		
C27A	0.050 (3)	0.008 (2)	0.012 (2)	-0.006 (2)		
C28A	0.049 (3)	0.011 (2)	0.013 (2)	-0.016 (2)		
C29A	0.044 (3)	0.006 (2)	0.006 (2)	-0.0079 (19)		
Geometric parameters (Å, °)

Bond	Length	Angle			
O1C—C5F	1.11(4)	C10B—H10D	0.9800		
O1C—C5C	1.282(12)	C10B—H10E	0.9800		
O2C—C11C	1.219(4)	C10B—H10F	0.9800		
O3C—C11C	1.332(4)	C12B—C15B	1.501(7)		
O3C—C12C	1.468(4)	C12B—C13B	1.514(7)		
N1C—C9C	1.363(4)	C12B—C14B	1.528(6)		
N1C—C1C	1.392(4)	C13B—H13D	0.9800		
N1C—H1NC	0.92(5)	C13B—H13E	0.9800		
C1C—C2C	1.351(5)	C13B—H13F	0.9800		
C1C—C10C	1.495(5)	C14B—H14D	0.9800		
C2C—C11C	1.474(5)	C14B—H14E	0.9800		
C2C—C3C	1.519(5)	C14B—H14F	0.9800		
C3C—C18C	1.518(5)	C15B—H15D	0.9800		
C3C—C4C	1.523(5)	C15B—H15E	0.9800		
C3C—H3CA	1.0000	C15B—H15F	0.9800		
C4C—C9C	1.352(5)	C16B—H16D	0.9800		
C4C—C5C	1.416(13)	C16B—H16E	0.9800		
C4C—C5F	1.57(3)	C16B—H16F	0.9800		
C9C—C8F	1.41(4)	C17B—H17D	0.9800		
C9C—C8C	1.537(15)	C17B—H17E	0.9800		
C10C—H11G	0.9800	C17B—H17F	0.9800		
C10C—H10H	0.9800	C18B—C23B	1.384(5)		
C10C—H10I	0.9800	C18B—C19B	1.393(5)		
C12C—C15C	1.507(6)	C19B—C20B	1.393(5)		
C12C—C13C	1.518(7)	C19B—H19B	0.9500		
C12C—C14C	1.519(6)	C20B—C21B	1.389(5)		
C13C—H13G	0.9800	C20B—H20B	0.9500		
C13C—H13H	0.9800	C21B—C22B	1.398(5)		
C13C—H13I	0.9800	C21B—C24B	1.488(5)		
C14C—H14G	0.9800	C22B—C23B	1.389(5)		
C14C—H14H	0.9800	C22B—H22B	0.9500		
C14C—H14I	0.9800	C23B—H23B	0.9500		
C15C—H15G	0.9800	C24B—C29B	1.381(6)		
C15C—H15H	0.9800	C24B—C25B	1.393(6)		
C15C—H15I	0.9800	C25B—C26B	1.383(7)		
C5C—C6C	1.543(8)	C25B—H25B	0.9500		
C6C—C16C	1.529(8)	C26B—C27B	1.394(7)		
C6C—C17C	1.534(8)	C26B—H26B	0.9500		
C6C—C7C	1.534(9)	C27B—C28B	1.370(7)		
C7C—C8C	1.514(13)	C27B—H27B	0.9500		
C7C—H7CA	0.9900	C28B—C29B	1.396(6)		
C7C—H7CB	0.9900	C28B—H28B	0.9500		
C8C—H8CA	0.9900	C29B—H29B	0.9500		
C8C—H8CB	0.9900	O1A—C5A	1.246(4)		
C16C—H16G	0.9800	O2A—C11A	1.221(4)		
C16C—H16H	0.9800	O3A—C11A	1.322(5)		
Bond	Distance (Å)	Bond	Distance (Å)		
---------------------	--------------	---------------------	--------------		
C16C—H16I	0.9800	O3A—C12A	1.483 (5)		
C17C—H17G	0.9800	N1A—C9A	1.365 (5)		
C17C—H17H	0.9800	N1A—C1A	1.398 (5)		
C17C—H17I	0.9800	N1A—H1NA	0.92 (4)		
C5F—C6F	1.548 (18)	C1A—C2A	1.533 (5)		
C6F—C16F	1.526 (19)	C1A—C10A	1.496 (5)		
C6F—C7F	1.530 (17)	C2A—C11A	1.486 (5)		
C6F—C17F	1.547 (19)	C2A—C3A	1.525 (5)		
C7F—C8F	1.52 (2)	C3A—C4A	1.506 (5)		
C7F—H7FA	0.9900	C3A—C18A	1.527 (5)		
C7F—H7FB	0.9900	C3A—H3AA	1.0000		
C8F—H8FA	0.9900	C4A—C9A	1.372 (5)		
C8F—H8FB	0.9900	C4A—C5A	1.442 (5)		
C16F—H16J	0.9800	C5A—C6A	1.525 (5)		
C16F—H16K	0.9800	C6A—C17A	1.518 (6)		
C16F—H16L	0.9800	C6A—C16A	1.535 (6)		
C17F—H17J	0.9800	C6A—C7A	1.537 (5)		
C17F—H17K	0.9800	C7A—C8A	1.527 (6)		
C17F—H17L	0.9800	C7A—H7AA	0.9900		
C18C—C23C	1.398 (5)	C7A—H7AB	0.9900		
C18C—C19C	1.399 (5)	C8A—C9A	1.503 (5)		
C19C—C20C	1.389 (6)	C8A—H8AA	0.9900		
C19C—H19C	0.9500	C8A—H8AB	0.9900		
C20C—C21C	1.387 (6)	C10A—H10A	0.9800		
C20C—H20C	0.9500	C10A—H10B	0.9800		
C21C—C22C	1.394 (6)	C10A—H10C	0.9800		
C21C—C24C	1.487 (6)	C12A—C13A	1.480 (7)		
C22C—C23C	1.377 (6)	C12A—C15A	1.488 (7)		
C22C—H22C	0.9500	C12A—C14A	1.524 (7)		
C23C—H23C	0.9500	C13A—H13A	0.9800		
C24C—C25C	1.387 (7)	C13A—H13B	0.9800		
C24C—C29C	1.411 (7)	C13A—H13C	0.9800		
C25C—C26C	1.382 (9)	C14A—H14A	0.9800		
C25C—H25C	0.9500	C14A—H14B	0.9800		
C26C—C27C	1.374 (10)	C14A—H14C	0.9800		
C26C—H26C	0.9500	C15A—H15A	0.9800		
C27C—C28C	1.400 (9)	C15A—H15B	0.9800		
C27C—H27C	0.9500	C15A—H15C	0.9800		
C28C—C29C	1.399 (8)	C16A—H16A	0.9800		
C28C—H28C	0.9500	C16A—H16B	0.9800		
C29C—H29C	0.9500	C16A—H16C	0.9800		
C1B—C2B	1.354 (5)	C17A—H17A	0.9800		
C1B—N1B	1.397 (5)	C17A—H17B	0.9800		
C1B—C10B	1.500 (5)	C17A—H17C	0.9800		
O1B—C5B	1.235 (4)	C18A—C23A	1.387 (5)		
O2B—C11B	1.216 (4)	C18A—C19A	1.402 (5)		
O3B—C11B	1.338 (5)	C19A—C20A	1.395 (5)		
O3B—C12B	1.466 (5)	C19A—H19A	0.9500		
Bond	Length (Å)	Bond	Length (Å)	Bond	Length (Å)
------	------------	------	------------	------	------------
N1B—C9B	1.358 (5)	C20A—C21A	1.384 (5)		
N1B—H1NB	0.95 (4)	C20A—H20A	0.9500		
C2B—C11B	1.469 (5)	C21A—C22A	1.389 (5)		
C2B—C3B	1.521 (5)	C21A—C24A	1.499 (5)		
C2B—C4B	1.515 (5)	C22A—C23A	1.392 (5)		
C3B—C18B	1.525 (5)	C22A—H22A	0.9500		
C3B—H3BA	1.0000	C23A—H23A	0.9500		
C4B—C9B	1.350 (5)	C24A—C25A	1.387 (6)		
C4B—C5B	1.450 (5)	C24A—C29A	1.399 (6)		
C5B—C6B	1.538 (5)	C25A—C26A	1.393 (7)		
C6B—C16B	1.507 (7)	C25A—H25A	0.9500		
C6B—C7B	1.510 (5)	C26A—C27A	1.369 (8)		
C6B—C17B	1.553 (7)	C26A—H26A	0.9500		
C7B—C8B	1.543 (6)	C27A—C28A	1.373 (7)		
C7B—H7BA	0.9900	C27A—H27A	0.9500		
C7B—H7BB	0.9900	C28A—C29A	1.384 (6)		
C8B—C9B	1.509 (5)	C28A—H28A	0.9500		
C8B—H8BA	0.9900	C29A—H29A	0.9500		
C8B—H8BB	0.9900				

Bond	Angle (°)	Bond	Angle (°)	Bond	Angle (°)
C11C—O3C—C12C	122.1 (3)	C1B—C10B—H10E	109.5		
C9C—N1C—C1C	122.2 (3)	H10D—C10B—H10E	109.5		
C9C—N1C—H1NC	123 (3)	C1B—C10B—H10F	109.5		
C1C—N1C—H1NC	113 (3)	H10D—C10B—H10F	109.5		
C2C—C1C—N1C	119.1 (3)	C1B—C10B—H10F	109.5		
C2C—C1C—C10C	128.3 (3)	O2B—C11B—O3B	124.1 (4)		
N1C—C1C—C10C	112.5 (3)	O2B—C11B—C2B	122.4 (4)		
C1C—C2C—C11C	124.7 (3)	O3B—C11B—C2B	113.4 (3)		
C1C—C2C—C3C	120.4 (3)	O3B—C12B—C15B	111.5 (4)		
C11C—C2C—C3C	114.9 (3)	O3B—C12B—C13B	108.2 (4)		
C18C—C3C—C2C	111.1 (3)	O3B—C12B—C13B	113.1 (4)		
C18C—C3C—C4C	112.5 (3)	O3B—C12B—C14B	101.1 (3)		
C2C—C3C—C4C	109.3 (3)	C15B—C12B—C14B	111.1 (4)		
C18C—C3C—H3CA	107.9	C13B—C12B—C14B	111.2 (4)		
C2C—C3C—H3CA	107.9	C12B—C13B—H13D	109.5		
C4C—C3C—H3CA	107.9	C12B—C13B—H13E	109.5		
C9C—C4C—C5C	119.4 (5)	H13D—C13B—H13E	109.5		
C9C—C4C—C3C	120.3 (3)	C12B—C13B—H13F	109.5		
C5C—C4C—C3C	120.3 (4)	H13D—C13B—H13F	109.5		
C9C—C4C—C5F	124.6 (9)	H13E—C13B—H13F	109.5		
C3C—C4C—C5F	114.6 (9)	C12B—C14B—H14D	109.5		
C4C—C9C—N1C	120.0 (3)	C12B—C14B—H14E	109.5		
C4C—C9C—C8F	118.8 (10)	H14D—C14B—H14E	109.5		
N1C—C9C—C8F	121.2 (10)	C12B—C14B—H14F	109.5		
C4C—C9C—C8C	125.4 (4)	H14D—C14B—H14F	109.5		
N1C—C9C—C8C	114.5 (4)	H14E—C14B—H14F	109.5		
C1C—C10C—H10G	109.5	C12B—C15B—H15D	109.5		
C1C—C10C—H10H	109.5	C12B—C15B—H15E	109.5		
Bond	Angle	Bond	Angle	Bond	Angle
------	-------	------	-------	------	-------
H10G—C10C—H10H	109.5	H15D—C15B—H15E	109.5		
C1C—C10C—H10I	109.5	C12B—C15B—H15F	109.5		
H10G—C10C—H10I	109.5	H15D—C15B—H15F	109.5		
H10H—C10C—H10I	109.5	H15E—C15B—H15F	109.5		
O2C—C11C—O3C	123.9 (3)	C6B—C16B—H16D	109.5		
O2C—C11C—C2C	122.6 (3)	C6B—C16B—H16E	109.5		
O3C—C11C—C2C	113.5 (3)	H16D—C16B—H16E	109.5		
O3C—C12C—C15C	109.9 (4)	C6B—C16B—H16F	109.5		
O3C—C12C—C13C	110.2 (3)	H16D—C16B—H16F	109.5		
C15C—C12C—C13C	112.8 (4)	H16E—C16B—H16F	109.5		
O3C—C12C—C14C	101.7 (3)	C6B—C17B—H17D	109.5		
C15C—C12C—C14C	111.0 (4)	C6B—C17B—H17E	109.5		
C13C—C12C—C14C	110.6 (5)	H17D—C17B—H17E	109.5		
C12C—C13C—H13G	109.5	C6B—C17B—H17F	109.5		
C12C—C13C—H13H	109.5	H17D—C17B—H17F	109.5		
H13G—C13C—H13H	109.5	H17E—C17B—H17F	109.5		
C12C—C13C—H13I	109.5	C23B—C18B—C19B	118.3 (3)		
H13G—C13C—H13I	109.5	C23B—C18B—C3B	121.8 (3)		
H13H—C13C—H13I	109.5	C19B—C18B—C3B	119.8 (3)		
C12C—C14C—H14G	109.5	C18B—C19B—C20B	120.8 (3)		
C12C—C14C—H14H	109.5	C18B—C19B—H19B	119.6		
H14G—C14C—H14H	109.5	C20B—C19B—H19B	119.6		
C12C—C14C—H14I	109.5	C21B—C20B—C19B	120.9 (3)		
H14G—C14C—H14I	109.5	C21B—C20B—H20B	119.6		
H14H—C14C—H14I	109.5	C19B—C20B—H20B	119.6		
C12C—C15C—H15G	109.5	C20B—C21B—C22B	118.2 (3)		
C12C—C15C—H15H	109.5	C20B—C21B—C24B	120.5 (3)		
H15G—C15C—H15H	109.5	C22B—C21B—C24B	121.2 (3)		
C12C—C15C—H15I	109.5	C23B—C22B—C21B	120.5 (3)		
H15G—C15C—H15I	109.5	C23B—C22B—H22B	119.7		
H15H—C15C—H15I	109.5	C21B—C22B—H22B	119.7		
O1C—C5C—C4C	121.1 (6)	C18B—C23B—C22B	121.3 (3)		
O1C—C5C—C6C	118.3 (8)	C18B—C23B—H23B	119.4		
C4C—C5C—C6C	119.5 (9)	C22B—C23B—H23B	119.4		
C16C—C6C—C17C	109.5 (6)	C29B—C24B—C25B	117.9 (4)		
C16C—C6C—C7C	111.1 (5)	C29B—C24B—C21B	120.9 (4)		
C17C—C6C—C7C	110.0 (6)	C25B—C24B—C21B	121.1 (4)		
C16C—C6C—C5C	108.4 (7)	C26B—C25B—C24B	121.2 (5)		
C17C—C6C—C5C	109.4 (7)	C26B—C25B—H25B	119.4		
C7C—C6C—C5C	108.4 (6)	C24B—C25B—H25B	119.4		
C8C—C7C—C6C	113.2 (8)	C25B—C26B—C27B	119.8 (5)		
C8C—C7C—H7CA	108.9	C25B—C26B—H26B	120.1		
C6C—C7C—H7CA	108.9	C27B—C26B—H26B	120.1		
C8C—C7C—H7CB	108.9	C28B—C27B—C26B	120.0 (4)		
C6C—C7C—H7CB	108.9	C28B—C27B—H27B	120.0		
H7CA—C7C—H7CB	107.7	C26B—C27B—H27B	120.0		
C7C—C8C—C9C	109.1 (8)	C27B—C28B—C29B	119.5 (5)		
C7C—C8C—H8CA	109.9	C27B—C28B—H28B	120.2		
C9C—C8C—H8CA 109.9 C29B—C28B—H28B 120.2					
C7C—C8C—H8CB 109.9 C24B—C29B—C28B 121.6 (5)					
C9C—C8C—H8CB 109.9 C24B—C29B—H29B 119.2					
H8CA—C8C—H8CB 108.3 C28B—C29B—H29B 119.2					
C6C—C16C—C16G 109.5 C11A—O3A—C12A 121.3 (3)					
C6C—C16C—C16H 109.5 C9A—N1A—C1A 122.2 (3)					
H16G—C16C—H16H 109.5 C9A—N1A—H1NA 113 (3)					
C6C—C16C—H16I 109.5 C1A—N1A—H1NA 121 (3)					
H16G—C16C—H16I 109.5 C2A—C1A—N1A 119.2 (3)					
H16H—C16C—H16I 109.5 C2A—C1A—C10A 128.9 (3)					
C6C—C17C—H17G 109.5 N1A—C1A—C10A 111.8 (3)					
C6C—C17C—H17H 109.5 C1A—C2A—C11A 124.3 (3)					
H17G—C17C—H17H 109.5 C1A—C2A—C3A 120.7 (3)					
C6C—C17C—C17I 109.5 C11A—C2A—C3A 115.0 (3)					
C6C—C17C—H17I 109.5 C4A—C3A—C2A 110.7 (3)					
H17H—C17C—H17I 109.5 C4A—C3A—C18A 112.9 (3)					
O1C—C5F—C6F 120 (3) C2A—C3A—C18A 108.8 (3)					
O1C—C5F—C4C 121.6 (19) C4A—C3A—H3AA 108.1					
C6F—C5F—C6F 113 (2) C2A—C3A—H3AA 108.1					
C16F—C6F—C7F 109.8 (14) C18A—C3A—H3AA 108.1					
C16F—C6F—C17F 109.4 (14) C9A—C4A—C5A 120.4 (3)					
C7F—C6F—C17F 112.4 (14) C9A—C4A—C3A 120.2 (3)					
C16F—C6F—C5F 105.7 (17) C5A—C4A—C3A 119.4 (3)					
C7F—C6F—C5F 109.8 (19) O1A—C5A—C4A 120.6 (3)					
C17F—C6F—C5F 109.5 (19) O1A—C5A—C6A 118.9 (3)					
C8F—C7F—C6F 112 (2) C4A—C5A—C6A 120.5 (3)					
C8F—C7F—H7FA 109.3 C17A—C6A—C5A 111.0 (3)					
C6F—C7F—H7FA 109.3 C17A—C6A—C16A 110.1 (4)					
C8F—C7F—H7FB 109.3 C5A—C6A—C16A 106.5 (3)					
C6F—C7F—H7FB 109.3 C17A—C6A—C7A 108.8 (3)					
H7FA—C7F—H7FB 107.9 C5A—C6A—C7A 110.7 (3)					
C9C—C8F—C7F 119 (3) C16A—C6A—C7A 109.7 (3)					
C9C—C8F—H8FA 107.5 C8A—C7A—C6A 113.2 (3)					
C7F—C8F—H8FA 107.5 C8A—C7A—H7AA 108.9					
C9C—C8F—H8FB 107.5 C6A—C7A—H7AA 108.9					
C7F—C8F—H8FB 107.5 C8A—C7A—H7AB 108.9					
H8FA—C8F—H8FB 107.0 C6A—C7A—H7AB 108.9					
C6F—C16F—H16J 109.5 H7AA—C7A—H7AB 107.8					
C6F—C16F—H16K 109.5 C9A—C8A—C7A 110.3 (3)					
H16J—C16F—H16K 109.5 C9A—C8A—H8AA 109.6					
C6F—C16F—H16L 109.5 C7A—C8A—H8AA 109.6					
H16J—C16F—H16L 109.5 C9A—C8A—H8AB 109.6					
H16K—C16F—H16L 109.5 C7A—C8A—H8AB 109.6					
C6F—C17F—H17J 109.5 H8AA—C8A—H8AB 108.1					
C6F—C17F—H17K 109.5 N1A—C9A—C4A 120.2 (3)					
H17J—C17F—H17K 109.5 N1A—C9A—C8A 116.5 (3)					
C6F—C17F—H17L 109.5 C4A—C9A—C8A 123.3 (3)					
H17J—C17F—H17L 109.5 C1A—C10A—H10A 109.5					
Bond	Length (Å)	Bond	Length (Å)		
------------------	------------	------------------	------------		
H17K—C17F—H17L	109.5	C1A—C10A—H10B	109.5		
C23C—C18C—C19C	117.8 (3)	H10A—C10A—H10B	109.5		
C23C—C18C—C3C	120.9 (3)	C1A—C10A—H10C	109.5		
C19C—C18C—C3C	121.2 (3)	H10A—C10A—H10C	109.5		
C20C—C19C—C18C	120.8 (4)	H10B—C10A—H10C	109.5		
C20C—C19C—H19C	119.6	O2A—C11A—O3A	124.7 (3)		
C18C—C19C—H19C	119.6	O2A—C11A—C2A	122.0 (3)		
C21C—C20C—C19C	121.3 (4)	O3A—C11A—C2A	113.3 (3)		
C21C—C20C—H20C	119.4	C13A—C12A—O3A	110.1 (4)		
C19C—C20C—H20C	119.4	C13A—C12A—C15A	112.6 (5)		
C20C—C21C—C22C	117.7 (4)	O3A—C12A—C15A	110.9 (4)		
C20C—C21C—C24C	121.0 (4)	C13A—C12A—C14A	111.8 (5)		
C22C—C21C—C24C	121.3 (4)	O3A—C12A—C14A	101.0 (3)		
C23C—C22C—C21C	121.6 (4)	C15A—C12A—C14A	109.9 (5)		
C23C—C22C—H22C	119.2	C12A—C13A—H13A	109.5		
C21C—C22C—H22C	119.2	C12A—C13A—H13B	109.5		
C22C—C23C—C18C	120.8 (4)	H13A—C13A—H13B	109.5		
C22C—C23C—H23C	119.6	C12A—C13A—H13C	109.5		
C18C—C23C—H23C	119.6	H13A—C13A—H13C	109.5		
C25C—C24C—C29C	118.3 (5)	H13B—C13A—H13C	109.5		
C25C—C24C—C21C	121.4 (5)	C12A—C14A—H14A	109.5		
C29C—C24C—C21C	120.3 (4)	C12A—C14A—H14B	109.5		
C26C—C25C—C24C	121.6 (7)	H14A—C14A—H14B	109.5		
C26C—C25C—H25C	119.2	C12A—C14A—H14C	109.5		
C24C—C25C—H25C	119.2	H14A—C14A—H14C	109.5		
C27C—C26C—C25C	120.1 (6)	H14B—C14A—H14C	109.5		
C27C—C26C—H26C	120.0	C12A—C15A—H15A	109.5		
C25C—C26C—H26C	120.0	C12A—C15A—H15B	109.5		
C26C—C27C—C28C	120.3 (6)	H15A—C15A—H15B	109.5		
C26C—C27C—H27C	119.9	C12A—C15A—H15C	109.5		
C28C—C27C—H27C	119.9	H15A—C15A—H15C	109.5		
C29C—C28C—C27C	119.5 (6)	H15B—C15A—H15C	109.5		
C29C—C28C—H28C	120.3	C6A—C16A—H16A	109.5		
C27C—C28C—H28C	120.3	C6A—C16A—H16B	109.5		
C28C—C29C—C24C	120.2 (6)	H16A—C16A—H16B	109.5		
C28C—C29C—H29C	119.9	C6A—C16A—H16C	109.5		
C24C—C29C—H29C	119.9	H16A—C16A—H16C	109.5		
C2B—C1B—N1B	119.4 (3)	H16B—C16A—H16C	109.5		
C2B—C1B—C10B	127.8 (4)	C6A—C17A—H17A	109.5		
N1B—C1B—C10B	112.8 (3)	C6A—C17A—H17B	109.5		
C11B—O3B—C12B	122.0 (3)	H17A—C17A—H17B	109.5		
C9B—N1B—C1B	122.4 (3)	C6A—C17A—H17C	109.5		
C9B—N1B—H1NB	121.2	H17A—C17A—H17C	109.5		
C1B—N1B—H1NB	115.2	H17B—C17A—H17C	109.5		
C1B—C2B—C11B	125.0 (3)	C23A—C18A—C19A	118.2 (3)		
C1B—C2B—C3B	120.2 (3)	C23A—C18A—C3A	121.4 (3)		
C11B—C2B—C3B	114.7 (3)	C19A—C18A—C3A	120.3 (3)		
C4B—C3B—C2B	110.6 (3)	C20A—C19A—C18A	120.3 (3)		
C4B—C3B—C18B 112.0 (3) C20A—C19A—H19A 119.9
C2B—C3B—C18B 110.5 (3) C18A—C19A—H19A 119.9
C4B—C3B—H3BA 107.8 C21A—C20A—C19A 121.3 (3)
C2B—C3B—H3BA 107.8 C21A—C20A—H20A 119.3
C18B—C3B—H3BA 112.0 (3) C20A—C21A—C22A 118.1 (3)
C9B—C4B—C5B 121.0 (3) C20A—C21A—C24A 121.5 (3)
C9B—C4B—C3B 120.5 (3) C18A—C21A—C24A 120.3 (3)
C5B—C4B—C3B 118.4 (3) C22A—C21A—C24A 120.9 (3)
O1B—C5B—C4B 121.8 (3) C18A—C23A—C22A 120.9 (3)
O1B—C5B—C6B 118.3 (3) C21A—C22A—C23A 121.1 (3)
C4B—C5B—C6B 119.9 (3) C21A—C22A—H22A 119.4
C4B—C5B—C6B 119.9 (3) C23A—C22A—H22A 119.4
C16B—C6B—C7B 110.4 (4) C18A—C23A—C22A 120.9 (3)
C16B—C6B—C7B 111.1 (3) C18A—C23A—H23A 119.5
C7B—C6B—C5B 110.8 (3) C18A—C23A—H23A 119.5
C7B—C6B—C17B 107.6 (4) C25A—C24A—C29A 120.1 (5)
C7B—C6B—C17B 111.8 (3) C25A—C24A—C21A 121.5 (4)
C5B—C6B—C17B 105.0 (3) C25A—C24A—C21A 120.2 (4)
C6B—C7B—C8B 114.0 (3) C24A—C25A—C26A 120.6 (5)
C6B—C7B—C8B 114.0 (3) C24A—C25A—H25A 119.7
C8B—C7B—H7BA 108.8 C26A—C25A—H25A 119.7
C8B—C7B—H7BA 108.8 C27A—C26A—C25A 120.3 (5)
C6B—C7B—H7BB 108.8 C27A—C26A—H26A 119.9
C8B—C7B—H7BB 108.8 C27A—C26A—H26A 119.9
H7BA—C7B—H7BB 107.7 C25A—C26A—H26A 119.9
C9B—C8B—C7B 110.4 (3) C26A—C27A—C28A 119.8 (4)
C9B—C8B—H8BA 109.6 C26A—C27A—H27A 120.1
C7B—C8B—H8BA 109.6 C28A—C27A—H27A 120.1
C9B—C8B—H8BB 109.6 C27A—C28A—C29A 120.7 (5)
C7B—C8B—H8BB 109.6 C27A—C28A—H28A 119.7
H8BA—C8B—H8BB 108.1 C29A—C28A—H28A 119.7
C4B—C9B—N1B 120.5 (3) C28A—C29A—C24A 120.3 (5)
C4B—C9B—C8B 123.4 (3) C28A—C29A—H29A 119.9
N1B—C9B—C8B 116.0 (3) C24A—C29A—H29A 119.9
C1B—C10B—H10D 109.5

C9C—N1C—C1C—C2C −13.3 (5) C5B—C6B—C7B—C8B −49.0 (5)
C9C—N1C—C1C—C10C 165.7 (3) C17B—C6B—C7B—C8B 67.8 (5)
N1C—C1C—C2C—C11C 167.0 (3) C6B—C7B—C8B—C9B 48.9 (5)
C10C—C1C—C2C—C11C −11.9 (6) C5B—C4B—C9B—N1B 171.9 (3)
N1C—C1C—C2C—C3C −11.3 (5) C3B—C4B—C9B—N1B −6.1 (5)
C10C—C1C—C2C—C3C 169.8 (4) C5B—C4B—C9B—C8B 5.5 (5)
C1C—C2C—C3C—C18C −94.9 (4) C3B—C4B—C9B—C8B 176.5 (3)
C11C—C2C—C3C—C18C 86.6 (4) C1B—N1B—C9B—C4B −13.2 (5)
C1C—C2C—C3C—C4C 29.8 (4) C1B—N1B—C9B—C8B 164.3 (3)
C11C—C2C—C3C—C4C −148.6 (3) C7B—C8B—C9B—C4B −21.2 (5)
C18C—C3C—C4C—C9C 96.0 (4) C7B—C8B—C9B—N1B 161.3 (3)
C2C—C3C—C4C—C9C −27.9 (5) C12B—O3B—C11B—O2B −6.2 (6)
C18C—C3C—C4C—C5C −83.8 (7) C12B—O3B—C11B—C2B 172.5 (4)
C2C—C3C—C4C—C5C 152.3 (7) C1B—C2B—C11B—O2B 162.4 (4)
Bond	Angle (°)	Bond	Angle (°)
C18C—C3C—C4C—C5F	−76.5 (17)	C3B—C2B—C11B—O2B	−14.1 (5)
C2C—C3C—C4C—C5F	159.6 (16)	C1B—C2B—C11B—O3B	−16.4 (6)
C5C—C4C—C9C—N1C	−172.9 (7)	C3B—C2B—C11B—O3B	167.1 (3)
C3C—C4C—C9C—N1C	7.3 (5)	C11B—O3B—C12B—C15B	62.0 (6)
C5F—C4C—C9C—N1C	179.1 (18)	C11B—O3B—C12B—C13B	−63.1 (5)
C3C—C4C—C9C—C8F	−173 (3)	C11B—O3B—C12B—C14B	−179.9 (4)
C5F—C4C—C9C—C8F	−1 (4)	C4B—C3B—C18B—C23B	46.4 (4)
C5C—C4C—C9C—C8C	6.9 (14)	C2B—C3B—C18B—C23B	−77.4 (4)
C3C—C4C—C9C—C8C	−172.9 (11)	C4B—C3B—C18B—C19B	−137.8 (3)
C1C—N1C—C9C—C4C	15.4 (5)	C2B—C3B—C18B—C19B	98.3 (4)
C1C—N1C—C9C—C8F	−164 (3)	C23B—C18B—C19B—C20B	0.0 (5)
C1C—N1C—C9C—C8C	−164.4 (10)	C3B—C18B—C19B—C20B	−175.9 (3)
C12C—O3C—C11C—O2C	3.1 (6)	C18B—C19B—C20B—C21B	0.4 (6)
C12C—O3C—C11C—C2C	−174.1 (4)	C19B—C20B—C21B—C22B	−0.1 (6)
C1C—C2C—C11C—O2C	−175.7 (4)	C19B—C20B—C21B—C24B	177.7 (4)
C3C—C2C—C11C—O2C	2.7 (6)	C20B—C21B—C22B—C23B	−0.5 (6)
C1C—C2C—C11C—O3C	1.6 (6)	C24B—C21B—C22B—C23B	−178.4 (4)
C3C—C2C—C11C—O3C	−180.0 (3)	C19B—C18B—C23B—C22B	−0.7 (6)
C11C—O3C—C12C—C15C	−66.1 (5)	C3B—C18B—C23B—C22B	175.2 (3)
C11C—O3C—C12C—C13C	58.8 (5)	C21B—C22B—C23B—C18B	0.9 (6)
C11C—O3C—C12C—C14C	176.2 (4)	C20B—C21B—C24B—C29B	46.5 (6)
C9C—C4C—C5C—O1C	176.3 (8)	C22B—C21B—C24B—C29B	−153.7 (4)
C3C—C4C—C5C—O1C	−3.9 (14)	C20B—C21B—C24B—C25B	−131.0 (5)
C9C—C4C—C5C—C6C	−15.8 (12)	C22B—C21B—C24B—C25B	46.9 (6)
C3C—C4C—C5C—C6C	164.0 (6)	C29B—C24B—C25B—C26B	−0.2 (8)
O1C—C5C—C6C—C16C	87.0 (11)	C21B—C24B—C25B—C26B	177.3 (5)
C4C—C5C—C6C—C16C	−81.2 (9)	C24B—C25B—C26B—C27B	−0.6 (9)
O1C—C5C—C6C—C17C	−32.3 (12)	C25B—C26B—C27B—C28B	1.1 (9)
C4C—C5C—C6C—C17C	159.4 (8)	C26B—C27B—C28B—C29B	−0.7 (8)
O1C—C5C—C6C—C17C	−152.3 (9)	C25B—C24B—C29B—C28B	0.7 (7)
C4C—C5C—C6C—C17C	39.5 (11)	C21B—C24B—C29B—C28B	−176.9 (4)
C16C—C6C—C7C—C8C	62.9 (10)	C27B—C28B—C29B—C24B	−0.2 (7)
C17C—C6C—C7C—C8C	−175.6 (9)	C9A—N1A—C1A—C2A	−13.7 (5)
C5C—C6C—C7C—C8C	−56.1 (11)	C9A—N1A—C1A—C10A	166.0 (3)
C6C—C7C—C8C—C9C	47.6 (15)	N1A—C1A—C2A—C11A	168.8 (3)
C4C—C9C—C8C—C7C	−22.9 (18)	C10A—C1A—C2A—C11A	−10.8 (6)
N1C—C9C—C8C—C7C	156.9 (8)	N1A—C1A—C2A—C3A	−8.3 (5)
C9C—C4C—C5F—O1C	165 (2)	C10A—C1A—C2A—C3A	172.1 (3)
C3C—C4C—C5F—O1C	−23 (4)	C1A—C2A—C3A—C4A	25.7 (4)
C9C—C4C—C5F—C6F	12 (3)	C1A—C2A—C3A—C4A	25.7 (4)
C3C—C4C—C5F—C6F	−175.9 (17)	C1A—C2A—C3A—C18A	−99.0 (4)
O1C—C5F—C6F—C16F	50 (3)	C11A—C2A—C3A—C18A	83.6 (4)
C4C—C5F—C6F—C16F	−156 (2)	C2A—C3A—C4A—C9A	−24.3 (4)
O1C—C5F—C6F—C7F	169 (3)	C18A—C3A—C4A—C9A	98.0 (4)
C4C—C5F—C6F—C7F	−37 (3)	C2A—C3A—C4A—C5A	155.9 (3)
O1C—C5F—C6F—C17F	−67 (3)	C18A—C3A—C4A—C5A	−81.7 (4)
C4C—C5F—C6F—C17F	86 (3)	C9A—C4A—C5A—O1A	176.7 (3)
C16F—C6F—C7F—C8F	170 (3)	C3A—C4A—C5A—O1A	−3.5 (5)
Bond Type	Angle (°)	Bond Type	Angle (°)
-----------	-----------	-----------	-----------
C17F—C6F—C7F—C8F	-68 (3)	C9A—C4A—C5A—C6A	-4.4 (5)
C5F—C6F—C7F—C8F	54 (3)	C3A—C4A—C5A—C6A	175.4 (3)
C4C—C9C—C8F—C7F	18 (6)	O1A—C5A—C6A—C17A	-33.9 (5)
N1C—C9C—C8F—C7F	-162 (3)	C4A—C5A—C6A—C17A	147.2 (4)
C6F—C7F—C8F—C9C	-46 (5)	O1A—C5A—C6A—C7A	-154.9 (3)
C2C—C3C—C18C—C23C	74.7 (4)	C4A—C5A—C6A—C7A	26.2 (5)
C4C—C3C—C18C—C23C	-48.2 (4)	C4A—C5A—C6A—C7A	67.6 (4)
C2C—C3C—C18C—C19C	-100.8 (4)	C1A—N1A—C9A—C4A	15.1 (5)
C4C—C3C—C18C—C19C	136.3 (3)	C1A—N1A—C9A—C4A	-165.3 (3)
C23C—C18C—C19C—C20C	-0.1 (5)	C1A—N1A—C9A—C4A	-165.3 (3)
C3C—C18C—C19C—C20C	175.6 (3)	C1A—N1A—C9A—C4A	15.1 (5)
C18C—C19C—C20C—C21C	-1.6 (6)	C1A—N1A—C9A—C4A	-165.3 (3)
C19C—C20C—C21C—C22C	1.7 (6)	C1A—N1A—C9A—C4A	15.1 (5)
C20C—C21C—C22C—C23C	-177.8 (4)	C1A—N1A—C9A—C4A	-165.3 (3)
C22C—C21C—C22C—C23C	-0.2 (6)	C1A—N1A—C9A—C4A	15.1 (5)
C2C—C3C—C18C—C23C	179.3 (4)	C1A—N1A—C9A—C4A	-165.3 (3)
C24C—C21C—C22C—C23C	-1.5 (6)	C1A—N1A—C9A—C4A	15.1 (5)
C2C—C3C—C18C—C19C	1.6 (5)	C1A—N1A—C9A—C4A	-165.3 (3)
C4C—C3C—C18C—C19C	174.1 (3)	C1A—N1A—C9A—C4A	15.1 (5)
C2C—C3C—C18C—C23C	34.4 (6)	C1A—N1A—C9A—C4A	-165.3 (3)
C22C—C21C—C24C—C25C	-145.0 (5)	C1A—N1A—C9A—C4A	15.1 (5)
C22C—C21C—C24C—C25C	-147.3 (4)	C1A—N1A—C9A—C4A	-165.3 (3)
C2C—C3C—C18C—C22C	33.3 (6)	C1A—N1A—C9A—C4A	15.1 (5)
C2C—C3C—C18C—C22C	-0.2 (9)	C1A—N1A—C9A—C4A	-165.3 (3)
C29C—C24C—C25C—C26C	178.1 (5)	C1A—N1A—C9A—C4A	15.1 (5)
C24C—C25C—C26C—C27C	-1.0 (10)	C1A—N1A—C9A—C4A	-165.3 (3)
C25C—C26C—C27C—C28C	1.5 (10)	C1A—N1A—C9A—C4A	15.1 (5)
C26C—C27C—C28C—C29C	-0.8 (9)	C1A—N1A—C9A—C4A	-165.3 (3)
C27C—C28C—C29C—C30C	-0.5 (8)	C1A—N1A—C9A—C4A	15.1 (5)
C25C—C24C—C29C—C30C	9.7 (7)	C1A—N1A—C9A—C4A	-165.3 (3)
C21C—C24C—C29C—C30C	-177.4 (4)	C1A—N1A—C9A—C4A	15.1 (5)
C2B—C1B—N1B—C9B	11.4 (5)	C1A—N1A—C9A—C4A	-165.3 (3)
C10B—C1B—N1B—C9B	-167.1 (3)	C1A—N1A—C9A—C4A	15.1 (5)
N1B—C1B—C2B—C11B	-166.7 (3)	C1A—N1A—C9A—C4A	-165.3 (3)
C10B—C1B—C2B—C11B	11.5 (6)	C1A—N1A—C9A—C4A	15.1 (5)
N1B—C1B—C2B—C3B	9.6 (5)	C1A—N1A—C9A—C4A	-165.3 (3)
C10B—C1B—C2B—C3B	-172.2 (4)	C1A—N1A—C9A—C4A	15.1 (5)
C1B—C2B—C3B—C4B	-25.4 (4)	C1A—N1A—C9A—C4A	-165.3 (3)
C11B—C2B—C3B—C4B	151.2 (3)	C1A—N1A—C9A—C4A	15.1 (5)
C1B—C2B—C3B—C4B	99.2 (4)	C1A—N1A—C9A—C4A	-165.3 (3)
C11B—C2B—C3B—C4B	-84.1 (4)	C1A—N1A—C9A—C4A	15.1 (5)
C2B—C3B—C4B—C9B	23.8 (4)	C1A—N1A—C9A—C4A	-165.3 (3)
C18B—C3B—C4B—C9B	100.0 (4)	C1A—N1A—C9A—C4A	15.1 (5)
C2B—C3B—C4B—C5B	-154.2 (3)	C1A—N1A—C9A—C4A	-165.3 (3)
C18B—C3B—C4B—C5B	82.0 (4)	C1A—N1A—C9A—C4A	15.1 (5)
C9B—C4B—C5B—O1B	-172.8 (3)	C1A—N1A—C9A—C4A	-165.3 (3)
C3B—C4B—C5B—O1B	5.1 (5)	C1A—N1A—C9A—C4A	15.1 (5)
C9B—C4B—C5B—C6B	5.4 (5)	C1A—N1A—C9A—C4A	-165.3 (3)

Acta Cryst. (2022), E78, 798-803
Bond	Value (°)
C3B—C4B—C5B—C6B	−176.6 (3)
O1B—C5B—C6B—C16B	−36.6 (5)
C4B—C5B—C6B—C16B	145.1 (4)
O1B—C5B—C6B—C7B	−159.7 (3)
C4B—C5B—C6B—C7B	22.0 (5)
O1B—C5B—C6B—C16B	79.4 (4)
C4B—C5B—C6B—C7B	−98.9 (4)
C16B—C6B—C7B—C8B	−172.5 (4)

Hydrogen-bond geometry (Å, °)

Cg4, Cg8, Cg12 and Cg13 are the centroids of the C18C–C23C, C18A–C23A, C18B–C23B, and C18B–C29B rings, respectively.

D—H···A	D—H	H···A	D···A	D—H···A
N1C—H1NC···O1B	0.92 (5)	1.94 (5)	2.843 (4)	165 (5)
N1B—H1N4···O1A	0.95 (4)	1.88 (4)	2.811 (4)	168 (3)
N1A—H1N4···O1A	0.93 (5)	1.92 (5)	2.842 (4)	174 (4)
C3C—H3CA···O2C	1.00	2.41	2.793 (4)	102
C10A—H10B···O1A	0.98	2.60	3.443 (5)	145
C10B—H10F···O1C	0.98	2.47	3.302 (5)	143
C10C—H10G···O3C	0.98	2.31	2.704 (4)	103
C3A—H3BC···O2B	1.00	2.40	2.795 (4)	103
C13A—H13A···O2A	0.98	2.45	2.978 (7)	113
C13B—H13D···O2B	0.98	2.47	3.023 (6)	115
C13C—H13G···O2C	0.98	2.53	2.958 (7)	106
C15A—H15A···O2A	0.98	2.41	2.999 (7)	118
C15B—H15D···O2B	0.98	2.41	2.965 (6)	116
C15C—H15G···O2C	0.98	2.49	3.022 (5)	114
C3A—H3CA···O2A	1.00	2.42	2.812 (5)	103
C23A—H23A···O2A	0.95	2.57	3.403 (4)	147
C23B—H23B···O2C	0.95	2.55	3.389 (4)	147
C23C—H23C···O2B	0.95	2.60	3.407 (4)	144
C15A—H15B···Cg13	0.98	2.82	3.771 (6)	165
C27A—H27A···Cg4	0.95	2.75	3.578 (4)	146
C27B—H27B···Cg8	0.95	2.63	3.493 (5)	150
C27C—H27C···Cg12	0.95	2.84	3.632 (7)	142

Symmetry codes: (i) x, y, z+1; (ii) −x+1/2, y, z+1/2; (iii) −x+1/2, y, z−1/2.