Group II metabotropic glutamate receptors modify N-methyl-D-aspartate receptors via Src kinase

Catherine Trepanier1, Gang Lei2, Yu-Feng Xie2 & John F. MacDonald1,2,3

1Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada M5S 1A8, 2Robarts Research Institute, 100 Perth Drive, London, Ontario, Canada N6A 5K8, 3Department of Physiology, University of Toronto, Toronto Ontario, Canada M5S 1A8.

Group II metabotropic glutamate receptors (mGluR2/3) have emerged as important targets for the treatment of schizophrenia. Since hypofunction of N-methyl-D-aspartate receptors (NMDARs) has also been implicated in the etiology of schizophrenia, we examined whether postsynaptic mGluR2/3 regulate NMDAR function. Activation of mGluR2/3 significantly decreased the ratio of AMPA-to-NMDA excitatory postsynaptic currents at Schaffer Collateral-CA1 synapses and enhanced the peak of NMDA-evoked currents in acutely isolated CA1 neurons. The mGluR2/3-mediated potentiation of NMDAR currents was selective for GluN2A-containing NMDARs and was mediated by the Src family kinase Src. Activation of mGluR2/3 inhibited the adenylyl cyclase-cAMP-PKA pathway and thereby activated Src by inhibiting its regulatory C-terminal Src kinase (Csk). We suggest a novel model of regulation of NMDARs by Gαi/o-coupled receptors whereby inhibition of the cAMP-PKA pathway via mGluR2/3 activates Src kinase and potentiates GluN2A-containing NMDAR currents. This represents a potentially novel mechanism to correct the hypoglutamatergic state found in schizophrenia.

Gluamate is the primary excitatory neurotransmitter in the brain and binds both ligand-gated ion channels such as the N-methyl-D-aspartate receptor (NMDAR) and G protein-coupled metabotropic receptors (mGluRs). Hypofunction of the NMDAR (a hypoglutamatergic state) represents a major hypothetical mechanism explaining the etiology of schizophrenia1-3. This hypothesis is based on initial observations that non-competitive NMDAR antagonists induce a transient psychosis, disrupt affect and impair cognitive function in healthy humans, and can exacerbate preexisting symptoms in patients with schizophrenia4,5. Furthermore, NMDAR-mediated signaling and GluN2A tyrosine phosphorylation is significantly reduced in postmortem brains from schizophrenia subjects4. The NMDAR pathway is associated with several candidate genes for schizophrenia, including neuregulin-1, dysbindin, disrupted-in-schizophrenia 1 and metabotropic glutamate receptor 3 (mGluR3)6; thus, NMDAR-mediated signaling is proposed to act as a point of convergence for various candidate pathways in this disorder.

Accumulating evidence suggests that the group II family of mGluRs (mGlu2 and mGlu3; mGluR2/3) may represent an important target in the treatment of schizophrenia7,8. In NMDAR hypofunction models of psychosis, agonists of mGluR2/3 reduce phencyclidine- and dizocilpine-induced locomotor behaviours9-11. A recent phase II clinical trial showed that LY 214 0023, an oral prodrug of the selective mGluR2/3 agonist LY 404039, was effective in treating both positive and negative symptoms of schizophrenia after only 4 weeks of treatment8. Furthermore, group II mGluRs are highly expressed in regions of the brain associated with schizophrenia such as the prefrontal cortex and hippocampus12,13. Although there is ample evidence that mGluR2/3 agonists are effective in schizophrenia, the exact mechanisms for their antipsychotic effects are unclear.

Group II mGluRs are predominantly expressed on presynaptic terminals where they inhibit release of glutamate and GABA14. Activation of postsynaptic mGluR2/3 negatively modulates neuronal excitability and plasticity15,16. Given that mGluR2/3 mainly act presynaptically to inhibit glutamate release, it seems counterintuitive that activation of these receptors would ameliorate the hypoglutamatergic state found in schizophrenia. Therefore we examined the effects of mGluR2/3 activation on NMDA-evoked currents in identified CA1 pyramidal neurons of the hippocampus, a brain region implicated in the pathophysiology of schizophrenia17,18.
Results
We initially examined the effects of mGluR2/3 activation on NMDAR-mediated field EPSPs (fEPSP\textsubscript{NMDA}) in the CA1 region. Application of the selective mGluR2/3 agonist LY 379268 (30 nM) did not affect the amplitude of fEPSP\textsubscript{NMDA} (Fig. 1a); however, there was an increase in the variance of the fEPSP\textsubscript{NMDA} response, suggesting that postsynaptic NMDAR function may be enhanced in spite of a reduction in presynaptic release of glutamate. To determine whether mGluR2/3 activation enhances postsynaptic NMDAR function, we examined the AMPA/NMDA ratio of excitatory postsynaptic currents (EPSCs) at Schaffer Collateral-CA1 synapses. Application of LY 379268 (30 nM) resulted in a significant decrease of AMPA/NMDA EPSC ratio ($p<0.05$, Fig. 1b), suggesting an enhancement of postsynaptic NMDAR function. To more directly examine the effects of mGluR2/3 activation on NMDARs, we examined the actions of LY 379268 on acutely isolated CA1 pyramidal neurons.

We previously demonstrated that G\textsubscript{ai/o}- and G\textsubscript{as}-coupled receptors potentiate NMDAR currents in isolated CA1 neurons via activation Src kinase and PKA, respectively19–23. Given that mGluR2/3 couple to G\textsubscript{q/11} and inhibit adenylyl cyclase activity14, we anticipated that these receptors would inhibit NMDAR-mediated currents. To examine the direct effects of group II mGluRs on NMDARs, we determined the actions of LY 379268 on acutely isolated CA1 pyramidal neurons. These isolated neurons have a population of both extrasynaptic and synaptic NMDARs. Surprisingly, application of LY 379268 (10 nM) to acutely isolated CA1 neurons potentiated NMDA-evoked currents, with a significant potentiation occurring after washout of LY 379268 (Fig. 2). The concentration of LY 379268 employed was chosen based on the 50\% percent inhibitory concentration (IC\textsubscript{50}) value of LY 379268 to displace [3H]LY341495, a group II selective antagonist radioligand, from native rat brain homogenates and recombinant human mGlu2 and mGlu3 receptor subtypes24. The LY 379268-induced enhancement of NMDAR-mediated currents was blocked by co-application of the selective mGluR2/3 antagonist LY 341 495 (10 nM) (Fig. 3). Conversely, co-application of the selective group I mGluR antagonist, MPEP hydrochloride, did not prevent the enhancement of NMDAR currents by LY 379268 (Fig. 3). These results confirm that the LY 379268-mediated potentiation of NMDAR currents was indeed mediated by mGlu2/3 receptors. Given that PKA promotes Ca2+ permeation through NMDARs and increases the amplitude of NMDA-evoked currents25, it seems counterintuitive that inhibition of the PKA pathway via group II mGluRs would mediate the enhancement of NMDAR currents. Instead, we hypothesized that stimulation of group II mGluRs results in a promiscuous activation of G\textsubscript{q/11} with a subsequent activation of PKC and/or Src leading to an enhancement of NMDAR currents19,20,22,23. To test this hypothesis, we employed the Src(40–58) peptide which mimics the unique domain of Src and prevents its interaction with the NADH dehydrogenase subunit II domain in the NMDAR complex26. Thus, Src(40–58) acts as an interfering peptide to prevent the regulation of NMDARs by endogenous Src26. Including Src(40–58) in the patch pipette prevented the enhancement of NMDAR currents by LY 379268 (Fig. 4a). The LY 379268-induced enhancement of NMDAR currents was not, however, prevented by application of the PKC inhibitor, bisindolylmaleimide I (0.5 \mu M, data not shown) suggesting that Src might be activated by an alternative mechanism. Using an approach similar to Gingrich et al.26, we synthesized the Fyn interfering peptide, Fyn(39–57) that corresponds to a region of the unique domain of Fyn. We previously showed that Fyn(39–57) selectively blocks the potentiation of NMDAR currents by recombinant Fyn kinase but not by recombinant Src kinase25. Application of Fyn(39–57) inside the patch pipette failed to prevent the enhancement of NMDAR currents by LY 379268 (Fig. 4a) indicating that LY 379268 enhances Src but not Fyn activity to regulate NMDARs. To confirm these

Figure 1 | Activation of group II mGluRs enhances postsynaptic NMDAR function. A) Bath application of LY 379268 (30 nM) to hippocampal slices does not change the amplitude of NMDAR-mediated fEPSPs relative to baseline (N=6). Below, quantification of NMDA-fEPSP change before and after application of LY 379268. B) Stimulation of mGluR2/3 with LY 379268 (30 nM) significantly decreased the AMPA-NMDA EPSC ratio (N=11) relative to baseline ($p<0.05$). Below, example traces showing EPSCs at +40 mV and −70 mV from control and LY 379268-treated slices, respectively; AMPA EPSC amplitude was measured at −70 mV and NMDA EPSC amplitude was measured at +40 mV. * Indicates $p<0.05$, Student’s t-test.
Electrophysiological findings, we determined the relative activation of Src versus Fyn in hippocampal slices treated with or without LY 379268 (30 nM). The mGluR2/3 agonist enhanced phosphorylation of Src at Y416 (Fig. 4b), a site whose phosphorylation is required for activation this kinase. The LY 379268-mediated increase in Src phosphorylation was prevented by co-application of the mGluR2/3 antagonist LY 341 495 (Fig. 4b). In contrast, LY 379268 failed to enhance the tyrosine phosphorylation of the analogous activation site of Fyn kinase, Y420 (Fig. 4b). These findings illustrate that Src, and not Fyn, regulates the mGluR2/3-mediated modulation of NMDAR currents in dissociated CA1 neurons.

We previously reported that several GPCRs acting via Gαq activate Src kinase to phosphorylate the GluN2A subunit of this receptor. In this regard, we employed applications of zinc (300 μM) to selectively inhibit responses to heteromeric NMDARs containing two GluN2A subunits. The enhancement of NMDAR currents by LY 379268 was absent when GluN2A subunits were blocked with Zn2+ (Fig. 5a). In contrast, the mGluR2/3-mediated modulation of NMDARs was still observed in the presence of the selective GluN2B antagonist, Ro 25–6981 (500 nM) (Fig. 5a). We also examined the potential phosphorylation of GluN2A and GluN2B subunits and found that applications of LY 379268 enhanced tyrosine phosphorylation of GluN2A but not GluN2B subunits (Fig. 5b). Thus, activation of mGluR2/3 selectively potentiates GluN2A-containing NMDAR currents.

Gαs-dependent receptors enhance PKA and target Fyn kinase activation to enhance phosphorylation of NMDARs. Given that Fyn kinase was not activated by LY 379268 and that mGluR2/3 classically signal via inhibition of PKA, we initially confirmed that LY 379268 does indeed inhibit cAMP in treated hippocampal slices. Applications of LY 379268 reduced basal levels of cAMP in a concentration-dependent manner with an IC50 of 10.932 nM (Fig. 6a).

Src is strongly regulated in CA1 hippocampal neurons by C-terminal Src kinase (Csk), which phosphorylates Src on the C-terminal tyrosine Tyr527 and maintains it in an inactive conformation. Furthermore, the tyrosine kinase activity of Csk is increased by PKA-mediated phosphorylation, suggesting that a decrease in PKA activity might inhibit Csk and lead to a disinhibition of Src activity. To test this possibility, we first determined whether activation of mGluR2/3 inhibits Csk activity. Treatment of hippocampal membranes with LY379268 led to a significant reduction of Csk activity, as assessed by phosphorylation of Ser364 (Fig. 6b). Furthermore, LY379268 treatment significantly reduced Csk-mediated phosphorylation of Src at its C-terminal regulatory tyrosine Y527 (Fig. 7a). Decreased phosphorylation of Y527 on Src prevents the intramolecular interaction with the SH2 domain and leads to an open conformation of Src.

To determine whether inhibition of PKA may activate Src and occlude the effects of LY379268 on NMDAR currents, we applied a highly selective PKA inhibitor in the patch pipette and examined the modulation of NMDAR currents by LY 379268. Under this condition LY 379268 failed to enhance NMDAR currents (Fig. 7b) suggesting that Src is activated, at least in part, by a reduction in PKA activity.

Discussion

We have shown that activation of group II mGluRs enhances postsynaptic NMDAR function in spite of reducing excitatory transmission. Application of the selective mGluR2/3 agonist LY 379268 increases the ratio of NMDA-to-AMPA EPSCs at Schaffer
Collateral-CA1 synapses and enhances NMDA-induced currents in acutely isolated CA1 pyramidal neurons. The enhancement of NMDA-evoked currents was mediated by mGluR2/3 as it was inhibited by the selective group II mGluR antagonist LY 341 495. The Src family kinase Src, and not Fyn, was required for this potentiation as it was blocked by the selective Src-interfering peptide, Src(40–58), but not by the comparable Fyn interfering peptide, Fyn(39–57). Furthermore, LY 379268 increased the activity of Src kinase (increased phosphorylation of Tyr-416) but not that of Fyn (phosphorylation of Tyr-420 unchanged), leading to a selective tyrosine phosphorylation of GluN2A- versus GluN2B-containing NMDARs. Unlike Gαq-dependent signaling, the potentiation by LY 379268 was insensitive to a blocker of PKC and was occluded by an inhibitor of PKA. This suggests that the mechanism of Src activation by LY 379268 differs substantially from Gαq-coupled receptors which signal via sequential activation of PKC, Pyk2 and Src20,22,34.

We provide evidence that group II mGluRs activate Src by inhibition of PKA and Csk activities. Activation of the cAMP-PKA pathway has previously been shown to down regulate Src kinase activity in a Csk-dependent manner11,13. Activation of mGluR2/3 couples to the inhibition of PKA and decreases phosphorylation of Ser364 on Csk, thereby inhibiting Csk activity. This in turn reduces the ability of Csk to phosphorylate the regulatory Y527 on Src and promotes an active conformation of Src. However, we cannot rule out the potential role of activation of an unidentified tyrosine phosphatase, which would also reduce phosphorylation of Src at Tyr527. Src kinase activity can also be directly stimulated by Gzii/o39. Activated Gzii has been shown to interact directly with the catalytic domain of Src, thus changing the conformation of c-Src and allowing increased accessibility of the active site to substrates. Activation of Src by Gzii-protein-coupled receptors has also shown to mediate Ras-dependent activation of mitogen-activated protein kinases (MAPKs) in various cell types37,38. Stimulation of the Gzii-coupled α-2 adrenergic receptor leads to liberation of Gi/γ subunits and phospholipase C activation37. The resulting increase in intracellular Ca2+ activates calmodulin and Pyk2, which then activates c-src. Whether or not mGluR2/3 activates such a signaling pathway in parallel with an inhibition of PKA and Csk activities to up regulate Src kinase activity is unknown.

Agonists of group II mGluRs have opposing actions on pre- and post-synaptic sites: decreasing glutamate release presynaptically14 and potentiating NMDAR function postsynaptically (our present findings). Thus, the relative contributions of pre- to post-synaptic effects of mGluR2/3 agonist in vivo could be complicated. One possibility is that reduced glutamate release will prevent the activation of extrasynaptic NMDARs and preferentially activate subsets of synaptic NMDARs. The NMDAR appears to be an important post-synaptic target for mGluR2/3 in the hippocampus. Activation of mGluR2/3 is also reported to decrease the AMPA-component of EPSPs, consistent with a reduction in presynaptic glutamate release19,40. We have shown that mGluR2/3 activation decreases the ratio of AMPA-to-NMDA EPSPs, suggesting that LY 379268 increases the relative contribution of NMDARs to AMPARs in the synapse. The paradoxical effects of mGluR2/3 agonists on presynaptic glutamate release and postsynaptic NMDAR function can also be explained by the activation of extrasynaptic tonic NMDAR conductions. Ambient glutamate release from non-synaptic sources, such as glial cells, induces a tonic NMDA current primarily mediated by extrasynaptic NMDARs41. Given that acutely isolated neurons from the CA1 are heavily enriched in extrasynaptic NMDARs, we propose

Figure 3 The LY 379268-mediated increase of NMDA-evoked currents is mediated by group II metabotropic glutamate receptors. Upregulation of I_{NMDA} by LY 379268 ($N = 11$) was blocked by co-application of the selective mGluR2/3 antagonist LY 341 495 ($N = 9$) (LY plus LY 341 495, 99 ± 1%, $n = 7$; LY alone, 131 ± 2%, $n = 10$). The mGluR2/3 antagonist on its own did not change the amplitude of NMDAR-evoked currents ($N = 7$). Application of the group I mGluR antagonist MPEP hydrochloride failed to prevent the LY 379268-mediated potentiation of NMDAR currents ($N = 9$) (LY plus MPEP, 143 ± 2%, $n = 8$; LY alone, 131 ± 2%, $n = 10$). Antagonists (LY 341 495, 10 nM; MPEP hydrochloride, 10 μM) were applied in all extracellular solutions for the duration of the experiment. The shaded region indicates the period of LY 379268 application.
that LY 379268 may target these extrasynaptic NMDAR currents independently of vesicular glutamate release.

Several lines of evidence suggest that hypofunction of NMDARs underlies the pathophysiology of schizophrenia. Administration of dissociative anesthetics such as phencyclidine and ketamine to healthy volunteers produces behaviours similar to the positive, negative and cognitive symptoms of schizophrenia1,4. Analysis of post-mortem hippocampal tissue from schizophrenic patients reveals a decrease in GluN1 mRNA42. Candidate schizophrenia genes such as neuregulin 1 have been shown to promote rapid internalization of NMDARs from the cell surface and reduce whole-cell NMDAR currents43. In postmortem brains of schizophrenia subjects, enhanced ErbB4 signaling by neuregulin 1 mediates a suppression of GluN2A tyrosine phosphorylation, which promotes NMDAR internalization and decreases NMDAR signaling3. Thus, enhancing GluN2A-containing NMDAR function with group II mGluRs may counteract the effects of neuregulin 1 in these individuals and help stabilize NMDARs to the cell surface.

A recent study suggested that dysregulated Src activity mediates NMDAR hypofunction in schizophrenia induced by neuregulin-1-ErbB4 signaling, a candidate schizophrenia pathway44. Activation of neuregulin 1-ErbB4 signaling prevents the Src-induced potentiation of NMDAR-mediated synaptic currents in mouse prefrontal cortex and hippocampus. Thus, normalizing Src-mediated enhancement of NMDARs via activation of group II metabotropic glutamate receptors could represent a therapeutic avenue in the treatment of schizophrenia. The antipsychotic agent clozapine has also been shown to signal through Src kinase to potentiate NMDAR currents in the nucleus accumbens45. Thus, upregulation of Src activity may represent an important mechanism underlying the ability of these agents to relieve both positive and negative symptoms of schizophrenia.

Stimulation of group II mGluRs increases the function of postsynaptic NMDARs in hippocampal CA1 neurons via inhibition of PKA and activation of Src kinase. We propose that inhibition of the cAMP-PKA pathway decreases the activity of Csk, thereby decreasing the phosphorylation of its substrate Src at Tyr527. Reduced phosphorylation of Src at Tyr527 prevents the intramolecular interaction with the SH2 domain and leads to an active conformation of Src. However, we cannot rule out the potential role of activation of an unidentified tyrosine phosphatase, which might also reduce phosphorylation of Src at Tyr527. Up until now, the antipsychotic effects of group II mGluR agonists have been attributed to a decrease in presynaptic glutamate release. Given that schizophrenia is characterized by a hypoglutamatergic state, we propose that enhancing postsynaptic NMDAR function may be more relevant in restoring a balance of glutamatergic signaling in this disease. One candidate schizophrenia pathway leading to hypofunction of NMDARs implicates aberrant Src activity. Thus, we speculate that enhancing Src activity through group II mGluRs may represent one of the mechanisms for the antipsychotic effects of mGluR2/3 agonists.

Methods

Hippocampal slice preparation. Transverse hippocampal slices were prepared from 2- to 3-week old Wistar rats. Following anaesthetization of the animal, the brain was...
decapitated and quickly removed and placed in ice-cold oxygenated (95% O2, 5% GluN2A (N
increases the tyrosine phosphorylation of immunoprecipitated GluN2A- but not GluN2B-containing NMDARs. The averaged relative density of pTyr for (300 nM) and Ro 25–6981 (0.5
Figure 5 | Stimulation of group II metabotropic glutamate receptors potentiates GluN2A-containing NMDAR currents. A) Upregulation of I_{NMDA} by LY 379268 (N = 7) was blocked by the GluN2A-antagonist Zn2+ (N = 7) but not by the GluN2B-antagonist Ro 25–6981 (N = 7) (LY plus Zn2+ , 97 ± 1%, n = 6; LY plus Ro 25–6981, 125 ± 1%, n = 6; LY alone, 135 ± 2%, n = 16). The application of LY 379268 (10 nM) is indicated by the shaded region. Zn2+ (300 nM) and Ro 25–6981 (0.5 μM) were applied to the bath and to the perfusion solutions containing NMDA/glycine. B) LY 379268 (30 nM) treatment increases the tyrosine phosphorylation of immunoprecipitated GluN2A- but not GluN2B-containing NMDARs. The averaged relative density of pYyr for GluN2A (N = 4) and GluN2B (N = 4) obtained under each of the conditions is shown. * Indicates P<0.05, Student’s t-test.

Field excitatory postsynaptic potentials (fEPSP) recording from Schaffer collateral-CA1 synapses. fEPSPs, were evoked every 30 s (0.033 Hz) by electrical stimulation (100 µs duration) delivered to the Schaffer-collateral pathway using a concentric bipolar stimulating electrode (25 µm exposed tip) and recorded using glass microelectrodes (3–5 MΩ, filled with ACSF) positioned in the stratum radiatum of the CA1 area, when bicuculline methide (10 µM) and CNQX (20 µM) were present. The input-output relationship and paired-pulse ratio was determined in each slice by varying the stimulus intensity (50–200 µA) and recording the corresponding fEPSP. The stimuli intensity was made as that to evoke 30–50% of the maximal fEPSP. After a 20min stable recording as baseline, LY379268 (30 nM) was bath applied. Signals were amplified (Axoclamp 700B, Molecular Devices, Sunnyvale CA, USA), recorded digitally (Digidata 1440A) and analyzed offline using Clampfit 10.

Whole-cell patch clamp recordings from hippocampal slices. A single slice was transferred to a recording chamber continually superfused with oxygenated ACSF (2 ml/min) composed of the following (in mM): 124 NaCl, 3 KCl, 1.3 MgCl2·6H2O, 2.6 CaCl2, 1.25 NaH2PO4·H2O, 26 NaHCO3, 10 glucose with an osmolarity between 300–310 mOsm. Coronal hippocampal slices 300 µm thick were prepared using a vibratome (VT100E, Leica). Slices were allowed to recover for at least 1 hour in oxygenated ACSF until needed.

Cell isolation and whole-cell recordings. CA1 neurons were isolated from the hippocampus of postnatal rats (Wistar, 14–22 days) using previously described procedures. To control for variation in response, recordings from control and drug-treated cells were conducted on the same day. The extracellular solution was composed of the following (in mM): 140 NaCl, 1.3 CaCl2, 5 KCl, 25 HEPES, 20 glucose and 0.0005 tetrodotoxin, pH 7.4 (osmolality between 305 and 310 mOsm). Recording electrodes with resistances of 3–5 MΩ were constructed from borosilicate glass (1.5 µM diameter; World Precision Instruments, Sarasota, FL) using a two-stage puller (PP83; Narashige, Tokyo, Japan). Electrodes were filled with intracellular solution composed of the following (in mM): 140 CsF, 11 EGTA, 1 CaCl2, 2 MgCl2, 10 HEPES, 2 tetrathylenammonium, and 2K2ATP, pH 7.2–7.3 (osmolality between 290 and 300 mOsm). Where indicated, some drugs were included inside the patch pipette. Recordings were performed at room temperature (20–22°C). After formation of the whole-cell configuration, the neurons were voltage clamped at ~60 mV and lifted into a stream of solution supplied by a computer-controlled, multi-barreled perfusion system (SF-77 B, Warner Instrument Corporation). The exchange time for solutions was ~30–50 ms. To monitor access resistance, a voltage step of ~10 mV was made before each application of NMDA. If series resistance was increased to >20 MΩ, the cell was discarded. Currents were recorded using AxoPatch 1D amplifier. Data were filtered at 2 kHz and digitized at 10 kHz using Clampex software.

Zn2+-buffered solutions. The tricine-buffered zinc solutions were prepared according to the empirically established binding constant by adding into 10 mM
tricine and as previously described. The amount of ZnCl₂ required can be calculated based on the following formula: \[[\text{Zn}]_{\text{free}} = \frac{[\text{ZnCl}_2]_{\text{total}}}{300}. \] (At pH 7.3; with 10 mM tricine for \([\text{Zn}]_{\text{free}} = 300 \text{ nM}).

Immunoprecipitation and Western blotting. Hippocampal slices were prepared from Wistar rats (PN 15–20) and incubated with ACSF saturated with 95% O₂ and 5% CO₂ for at least 1 hour at room temperature. This was followed by treatment with LY 379268 (30 nM for 20 min) or vehicle control. For experiments testing Src(40–58), Fyn(39–57) or mGluR2/3 inhibition, the slices were pretreated with TAT-Src40–58 (10 μM), TAT-Fyn39–57 (10 μM), or LY 341495 (30 nM) 30 minutes before drug exposures. After three washes with cold PBS, slices were homogenized in ice-cold RIPA buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.1% SDS, 0.5% Triton X-100, and 1% Sodium Deoxycholate) supplemented with 1 mM sodium orthovanadate and 1% protease inhibitor cocktail, 1% protein phosphatases inhibitor.

Figure 6 | Group II metabotropic glutamate receptors inhibit cAMP formation and prevent PKA-mediated phosphorylation of Csk. A) Dose-response curve showing a dose-dependent inhibition of cAMP formation with increasing concentrations of LY 379268. The IC₅₀ for LY-mediated inhibition of cAMP was: 10.932 nM. B) LY 379268 (30 nM) treatment decreases the phosphorylation of Csk on its C-terminal Ser364. Below, summary of immunoblot analysis shows the averaged relative density of pCsk^{S364} for control (n=4) and LY 379268 (n=4) treatments. * Indicates p<0.05, Student’s t-test.

Figure 7 | Inhibition of PKA via group II metabotropic glutamate receptors activates Src kinase. A) LY 379268 (30 nM) treatment to hippocampal slices significantly reduces Csk-mediated phosphorylation of Src at its C-terminal regulatory tyrosine Y527. Decreased phosphorylation of Y527 prevents the intramolecular interaction with the SH2 domain on Src, promoting an open conformation of Src. Below, summary of immunoblot analysis shows the averaged relative density of pSrc^{Y527} for control (n=4) and LY 379268 (n=4) treatments. * Indicates p<0.05, Student’s t-test. B) The upregulation of NMDAR-currents by LY 379268 (N=11) was occluded by the PKA inhibitory peptide PKI₁₄₋₂₂ (N=9) (LY plus PKI₁₄₋₂₂, 99 ± 2%, n=9; LY alone, 135 ± 2%, n=16). PKI₁₄₋₂₂ was included inside the patch pipette. The shaded region indicates the period of LY 379268 (10 nM) application.
cocktails, and subsequently spun at 16 000 r.c.f. for 30 minutes at 4°C. Hippocampal tissue was then treated with 30 nM LY 379268 or vehicle control for 2 hours on a plate shaker at room temperature. The standards were prepared following the protocol supplied by the company. After incubation, the wells were emptied and washed 3 times with 400 μl of substrate solution and incubated at room temperature for 1 hour without shaking. The optical density of each well was then determined with a microplate reader set to 405 nm.

Drugs and peptides. The sources of drugs for this study are as follows: LY 379268, LYP41495, Ro 25–6981, MPEP hydrochloride, PK11195 amide (Tocris, Minneapolis, MN), TZD–8, tricine, ZnCl2, NMDA, glycine (Sigma, St. Louis, MO). Src(40–58) was provided by Dr. MW Salter (Hospital for Sick Children, Toronto, Ontario). The Fyn(39–57) peptide was synthesized by the Advanced Protein Technology Centre (Toronto, Ontario, Canada) with the following sequence: YPSFVTGSPNYNNHYAAG, Fyn amino acids 39–57. We attached both Src(40–58) and Fyn(39–57) to Tat transduction domains (YGRQLRRQ), which allows us to apply these membrane permeant forms of Src versus Fyn interfering peptides to hippocampal slices for biochemical experiments.

Animal care. All animal experimentation was conducted in accordance with the Policies on the Use of Animals at the University of Western Ontario and approved by the Animal Care Committee of the University of Western Ontario.

Statistics. All population data are expressed as mean ± SD. Student’s t-test was used to compare between two groups and one-way ANOVA with Tukey’s post-hoc comparison was used to compare multiple groups.

1. Tsai, G. & Coyle, J. T. Glutamatergic mechanisms in schizophrenia. *Annu Rev Pharmacol Toxicol* **42**, 165–179 (2002).
2. Pilowsky, L. S. et al. First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. * Mol Psychiatry **11**, 118–119 (2006).
3. Hahn, G. C. et al. Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. * Nat Med **12**, 824–828 (2006).
4. Krystal, J. H. et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. *J Biol Chem **278**, 6013–6017 (1981).
5. Monn, J. A. et al. Structural elements that regulate pp59c-fyn catalytic activity, transforming potential, and ability to associate with polymavirus middle-T antigen. * J Virol **65**, 170–179 (1991).
6. Paolotti, P., Ascher, P. & Neyton, J. High-affinity zinc inhibition of NMDA NR1-NR2A receptors. *J Neurosci **17**, 5711–5725 (1997).
7. Nada, S., Okada, M., Macauley, A., Cooper, J. A. & Nakagawa, H. Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a regulatory negative site of p60src. * Nature**351**, 69–72 (1991).
8. Vang, T. et al. Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor. * J Exp Med **193**, 597–507 (2001).
9. Liu, X. et al. Regulation of c-Src tyrosine kinase activity by the Src SH2 domain. * Oncogene **11**, 1119–1126 (1993).
10. Roussel, R. R., Brodeur, S. R., Shallloway, D. & Lauwande, A. P. Selective binding of activated pp60src to an immobilized synthetic phosphopeptide modeled on the carboxyl terminus of pp60src. * Proc Natl Acad Sci U S A **88**, 10696–10700 (1991).
11. Heidinger, V. et al. Metabotropic glutamate receptor 1-induced upregulation of NMDA receptor current: mediation through the Pyk2/Src-family kinase pathway in cortical neurons. * J Neurosci **22**, 5452–5461 (2002).
12. Abrams, H., Vang, T. & Taskin, K. Protein kinase A interacts with Src and the Src homology 3 domain of Src binds to membrane microdomain. * Proc Natl Acad Sci U S A **94**, 7122–7127 (1997).
13. Ma, Y. C., Huang, I., Ali, S., Lowry, W. & Huang, Y. S. Src tyrosine kinase is a novel direct effector of G proteins. * Cell **102**, 635–646 (2000).
14. Roussel, R., Brodeur, S., Shallloway, D. & Lauwande, A. P. Selective binding of activated pp60src to an immobilized synthetic phosphopeptide modeled on the carboxyl terminus of pp60src. * Proc Natl Acad Sci U S A **88**, 10696–10700 (1991).
15. Heidinger, V. et al. Metabotropic glutamate receptor 1-induced upregulation of NMDA receptor current: mediation through the Pyk2/Src-family kinase pathway in cortical neurons. * J Neurosci **22**, 5452–5461 (2002).
16. Abrams, H., Vang, T. & Taskin, K. Protein kinase A interacts with Src and the Src homology 3 domain of Src binds to membrane microdomain. * Proc Natl Acad Sci U S A **94**, 7122–7127 (1997).
17. Lutrull, L. M. et al. Role of c-Src tyrosine kinase in G protein-coupled receptor- and Gbeta gamma subunit-mediated activation of mitogen-activated protein kinases. * J Biol Chem **271**, 19443–19450 (1996).
39. Farazifard, R. & Wu, S. H. Metabotropic glutamate receptors modulate glutamatergic and GABAergic synaptic transmission in the central nucleus of the inferior colliculus. *Brain Res* **1325**, 28–40 (2010).
40. Poisik, O. *et al.* Metabotropic glutamate receptor 2 modulates excitatory synaptic transmission in the rat globus pallidus. *Neuropharmacology* **49 Suppl 1**, 57–69 (2005).
41. Le Meur, K., Galante, M., Angulo, M. C. & Audinat, E. Tonic activation of NMDA receptors by ambient glutamate of non-synaptic origin in the rat hippocampus. *J Physiol* **580**, 373–383 (2007).
42. Gao, X. M. *et al.* Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. *Am J Psychiatry* **157**, 1141–1149 (2000).
43. Gu, Z., Jiang, Q., Fu, A. K., Ip, N. Y. & Yan, Z. Regulation of NMDA receptors by neuregulin signaling in prefrontal cortex. *J Neurosci* **25**, 4974–4984 (2005).
44. Pitcher, G. M. *et al.* Schizophrenia susceptibility pathway neuregulin 1-ErbB4 suppresses Src upregulation of NMDA receptors. *Nat Med* **17**, 470–478 (2011).
45. Wittmann, M., Marino, M. J., Henze, D. A., Seabrook, G. R. & Conn, P. J. Clozapine potentiation of N-methyl-D-aspartate receptor currents in the nucleus accumbens: role of NR2B and protein kinase A/Src kinases. *J Pharmacol Exp Ther* **313**, 594–603 (2005).
46. von Engelhardt, J. *et al.* CKAMP44: a brain-specific protein attenuating short-term synaptic plasticity in the dentate gyrus. *Science* **327**, 1518–1522 (2010).
47. Wang, L. Y. & MacDonald, J. F. Modulation by magnesium of the affinity of NMDA receptors for glycine in murine hippocampal neurones. *J Physiol* **486 (Pt 1)**, 83–95 (1995).
48. Nozaki, C. *et al.* Zinc alleviates pain through high-affinity binding to the NMDA receptor NR2A subunit. *Nat Neurosci* **14**, 1017–1022 (2011).

Acknowledgements
This study was supported by a grant to JFM by CIHR. We thank Dr. MW Salter for the Src interfering peptide Src(40–58).

Author contributions
CT designed and performed whole-cell voltage clamp recordings from acutely isolated hippocampal neurons. YFX designed and performed whole-cell voltage clamp recordings from CA1 pyramidal neurons in slice. GL designed and performed all biochemical experiments. JFM conceptualized and supervised the project and contributed to the design of the experiments. CHT and JFM wrote the manuscript. All authors read and approved the final manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

How to cite this article: Trepanier, C., Lei, G., Xie, Y. & MacDonald, J.F. Group II metabotropic glutamate receptors modify N-methyl-D-aspartate receptors via Src kinase. *Sci. Rep.* **3**, 926; DOI:10.1038/srep00926 (2013).