Title
A novel cationic heteropolyoxovanadium(IV) cluster functionalized with organic ligands: synthesis and characterization of the fully reduced species [Mn(II)V(IV)6O6{(OCH2CH2)2N(CH2CH2OH)}6]Cl2.

Permalink
https://escholarship.org/uc/item/7n5409pk

Journal
Chemical communications (Cambridge, England), 3(4)

ISSN
1359-7345

Authors
Khan, M Ishaque
Tabussum, Saadia
Doedens, Robert J

Publication Date
2003-02-01

DOI
10.1039/b211195k

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
A novel cationic heteropolyoxovanadium(IV) cluster functionalized with organic species: synthesis and characterization of the fully reduced species [MnIV(V)O6{(OCH2CH2)2N(CH2CH2OH)}6]Cl2

M. Ishaque Khan, Saadia Tabussum and Robert J. Doedens

a Department of Biological, Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA. E-mail: khan@iit.edu
b Department of Chemistry, University of California, Irvine, CA 92697, USA

Published on 15 January 2003. Downloaded by University of California - Irvine on 13/08/2015 00:10:35.

The solvothermal reaction of (HOCH2CH2)3N with [(n-C4H9)4N][H3V10O28] and MnCl2·4H2O in CH3CN and CH3OH yields a novel cationic heteropolyoxovanadium(IV) cluster, [MnIV(V)O6{(OCH2CH2)2N(CH2CH2OH)}6]Cl2, containing a fully reduced cyclic [MnV6O18]4− core with the Anderson structure.

Vanadium oxides and their complexes are of current interest due mainly to their relevance to catalysis and biochemical systems, their variable geometries, and their redox properties.1–3 While numerous compounds of molybdenum and tungsten containing hexametallate cores exhibiting the Anderson structure are known in the polyoxometallate literature,2,3,5 the corresponding structure based on the hexavanadate core is rare. The vast majority of reported polyoxometallate clusters are anionic and a small number of them are neutral.6

During the course of our ongoing investigation of the chemistry of vanadium oxide clusters and their derivatives, we have discovered a novel cationic heteropolyoxovanadium(IV) cluster containing a previously unobserved fully reduced metallacyclic core—[MnV6O18]4−—exhibiting the Anderson structure and functionalized with triethanolamine ligands. This report describes the synthesis and characterization by FTIR spectroscopy, elemental analysis, thermogravimetric analysis, manganometric titration, valence sum calculation, and single crystal X-ray diffraction analysis of this new polyoxovanadium(IV) derivative, [MnIV(V)O6{(OCH2CH2)2N(CH2CH2OH)}6]Cl2 (I).

Dark blue crystals of I were first obtained in ~25% yield along with an impurity by the solvothermal reaction of (HOCH2CH2)3N with [(n-C4H9)4N][H3V10O28] and MnCl2·4H2O in the presence of C6H3(COOH)3-1,3,5 in a mixed solvent (CH3CN–CH3OH) medium at 145 °C for 24 h. We have, however, been able to rationalize the synthesis of I. The compound can now be prepared in pure monophase and in high yield (~70%) by adopting a slightly different synthetic method that does not require the use of 1,3,5-benzene-tricarboxylic acid.

The FT-IR spectrum of I (Fig. 1) consists of discrete cations and chloride anions. A view of the unit cell contents, projected down the a-axis, is given in Fig. 1(a), which clearly shows the relationship between the cations and anions. The cluster cation [MnIV(V)O6{(OCH2CH2)2N(CH2CH2OH)}6]Cl2 in I contains an unprecedented fully reduced cyclic [MnV6O18]4− framework incorporating six triethanolamine ligands. The [MnV6O18]4− core adopts the Anderson type structure,4 previously observed in polyoxometalates and polyoxotungstates.5–7 The cyclic core of the cation is comprised of a ring of six edge sharing [VO5N] octahedra linked to a central [MnO6] unit. The six vanadium atoms lie alternatively on opposite sides of their mean plane by approximately ±0.17 Å. The Mn(n) ion lies in the Vσ plane. The resulting centrosymmetric structure of the cation is shown in Fig. 1(b).

Fig. 1(c) shows the metal atoms and their coordination spheres. Each of the six vanadium atoms is bound to a terminal oxygen atom (V−O 1.593–1.601 Å) as well as to five atoms from the triethanolamine ligands—a nitrogen donor atom (V−N 1.928) and one each of the triethanolamine oxygen atoms (V−O 1.942). The bond valence sum for the terminal oxygen atom (V−O 2.035 Å) lies in the V6 plane. The resulting centrosymmetric structure of the cation is shown in Fig. 1(b).

As shown in Fig. 1(b), one pendant arm of each of the six triethanolamine ligands projects outward from the hexagonal ring. The oxygen atoms (O19 and O23) of two of these arms are disordered over two positions. The pendant groups are involved in hydrogen bonding with the chloride ions.

Thermogravimetric analysis of I revealed a two-step weight loss (37.5%) between 250 and 392 °C and a gradual loss of 9.8% between 392 and 700 °C. The observed total weight loss corresponds to the removal of the organic (C, H and N) part of the triethanolamine ligands and the chloride ions which account for ~47.6% of the mass of I. The FT-IR spectrum of the black shining residue left after the heating shows medium intensity bands at 668, 619 and 458 cm−1 indicating it to be a reduced mixed-metal oxide phase.

In conclusion, I constitutes the first example of a reduced hexavanadate based cationic cluster exhibiting the Anderson structure. The structure of the ring in I is similar to the metallacyclic observed in the earlier reported compound [Na6V12O42{(OCH2CH2)3N(CH2CH2OH)}6]·2H2O. The latter contains an oxidized anionic hexavanadate core adopting the Anderson structure.4 The other reported examples of the hexavanadate clusters,12–14 which are functionalized with tris(hydroxymethyl)alkane ligands, contain reduced {V6O18}4− cores which adopt the Linquist structure.15,16

References:

1. D. G. Truhlar and T. A. Linscheid, J. Am. Chem. Soc., 1963, 85, 1896.
2. H. W. B. Skinner, J. Chem. Soc., 1950, 2960.
3. R. J. Doedens and W. D. Kingery, Inorg. Chem., 1978, 17, 2975.
4. J. S. Anderson, Acta Crystallogr., 1958, 11, 1446.
5. M. S. Whittingham, Acta Crystallogr., 1966, 21, 973.
6. W. D. Kingery, H. W. B. Skinner and H. L. Swenson, J. Am. Chem. Soc., 1950, 72, 349.
7. J. S. Anderson, Acta Crystallogr., 1961, 14, 1026.
8. J. S. Anderson and J. Barnard, J. Chem. Soc., 1956, 1927.
9. J. S. Anderson, Acta Crystallogr., 1965, 18, 525.
10. J. S. Anderson, Acta Crystallogr., 1965, 18, 668.
11. J. S. Anderson, Acta Crystallogr., 1965, 18, 675.
12. J. S. Anderson, Acta Crystallogr., 1965, 18, 709.
13. J. S. Anderson, Acta Crystallogr., 1965, 18, 715.
14. J. S. Anderson, Acta Crystallogr., 1965, 18, 722.
15. J. S. Anderson, Acta Crystallogr., 1965, 18, 728.
16. J. S. Anderson, Acta Crystallogr., 1965, 18, 732.
The crystals of I were washed with methanol, dried in air at room temperature, and mechanically separated from the impurity. Yield ~ 25% (based on vanadium). The following rationalized modified synthetic method gives I in monophasic form and in high yield, albeit at the cost of the crystal quality.

† Method II: a mixture consisting of [(C6H5)4N][H2V11O32], MnCl2·4H2O, CH3CN, CH3OH and (HOCH2CH2)3N in the millimolar ratio of 0.05:0.15:57.4:34:24:1.9 contained in a Teflon-lined Parr autoclave was heated at 145 °C for 24 h in a furnace. The furnace was then turned off and the autoclave was left inside the furnace to cool slowly to the room temperature for 24 h. The blue platy crystals of I were filtered off from the transparent light green mother-liquor, washed with ethanol, and dried in air at room temperature. Yield ~ 70% (based on vanadium).

Crystals of I are stable in air, insoluble in organic solvents, and soluble in water; these are analyzed satisfactorily for C, H, N, Cl, V and Mn.

§ Selected IR absorption bands for I (KBr pellet, 1600–500 cm⁻¹): 1463s, 1440s, 1345s, 1300m, 1145m, 1085s, 1050s, 1019m, 973vs, 925s, 900s, 866m, 604m, 551m, 507vs cm⁻¹

¶ Crystal data for I: C36H78Cl2MnN6O24V6, M = 1410.52, monoclinic, space group P2₁, a = 11.2208(5), b = 21.5041(9), c = 11.8126(5), β = 111.2600(10)°, V = 2656.2(2) Å³, Z = 2, T = 178(2) K, D = 1.764 Mg m⁻³, μ = 1.426 mm⁻¹, F(000) = 1450, crystal size = 0.08 × 0.15 × 0.17 mm. A total of 28954 reflections (1.85 ≤ θ ≤ 28.30°) were collected, of which 12675 unique reflections were used for structural elucidation (R = 0.0786, all data). CCDC 196923. See http://www.rsc.org/suppdata/cc/b2/b21195k/ for crystallographic data in CIF or other electronic format.

1 (vanadium compounds: Chemistry, Biotherapy and Therapeutic Applications, ed. A. S. Tracey and D. C. Traps, ACS Symposium Series, Washington, DC, 1991, 711; (vanadium in biological systems, ed. N. D. Chasteen, Kluwer Academic Publishers, Dordrecht, 1990.

2 Polyoxometalate Chemistry. From Topology via Self-Assembly to Applications, ed. M. T. Pope and A. Müller, Kluwer Academic, Dordrecht, 2001.

3 (A. T. Pope, Heteropoly and Isopoly Oxomolybdates, Springer-Verlag, New York, 1983; (M. T. Pope and A. Müller, Angew. Chem. Int. Ed. Engl., 1991, 30, 34; (c) Polyoxometalates: From Platonic Solids To Anti-Retroviral Activity, ed. M. T. Pope and A. Müller, Kluwer Academic, Dordrecht, 1994; (d) see a special edition on Polyoxometalates, Guest ed. C. L. Hill, Chem. Rev., 1998, 98, 1–390.

4 (a) J. S. Anderson, Nature, 1937, 130, 450; (b) H. T. Evans, J. Am. Chem. Soc., 1948, 70, 1291; (c) H. T. Evans, Acta Crystallogr., Sect. B, 1974, 30, 2095.

5 (a) S. Golhen, L. Ouaah, D. Grandjean and P. Molinie, Inorg. Chem., 1998, 37, 1499–1506; (b) B. Hasenkopf, R. Delmoni, P. Herson and P. Gouzerh, Eur. J. Inorg. Chem., 2002, 1081–1087.

6 (a) M. Ishaque Khan, Y.-S. Lee, C. J. O’Connor and J. Zubieta, J. Am. Chem. Soc., 1994, 116, 5001–5002; (b) R. C. Finn and J. Zubieta, J. Cluster Sci., 2000, 11, 461–482; (c) a six-capped Keggin polyoxocation has recently been made: W. Yang, C. Lu, X. Zhan and H. Zhuang, Inorg. Chem., 2002, 41, 4621–4623.

7 (a) M. Ishaque Khan, S. Cevik and R. J. Doedens, Chem. Commun., 2001, 1930; (b) M. Ishaque Khan, J. Solid State Chem., 2000, 152, 105; (c) M. Ishaque Khan, E. Yohannes and R. J. Doedens, Angew. Chem., Int. Ed. Engl., 1999, 38, 1292.

8 (a) The room temperature magnetic moment of I indicates the presence of the vanadium(v) sites and high-spin manganese(II). Detailed study of the magnetic properties of I is in progress. The results will be included in a future full paper (b) triethanolamine acts as a tetratedantide ligand in the solid state and as tridentate in aqueous solution in a recently reported V–triphenyl mononuclear complex; D. Yang, H. Chen, O. Anderson and M. Miller, J. Am. Chem. Soc., 1993, 115, 6769.

9 I. D. Brown, in Structure and Bonding in Crystals, Vol II, ed. M. O’Keefe and A. Navrotsky, Academic Press, New York, 1981, p. 1.

10 The thermogravimetric analysis was performed on Mettler-Toledo TGA/SDTA 851E Instrument. A 10.227 mg sample of I was heated in nitrogen atmosphere at a heating rate of 5 °C min⁻¹.

11 (a) Y. Chen, Q. Liu, Y. Deng, H. Zhu, C. Chen, H. Fan, D. Liao and E. Gao, Inorg. Chem., 2001, 40, 3725–3733; (b) C. Thomas, P. Li, C. Zheng and K. Huang, Chem. Commun., 1986, 1597.

12 M. I. Khan, Q. Chen and J. Zubieta, Inorg. Chem., 1992, 31, 1556.

13 M. I. Khan, Q. Chen, H. Hope, S. Parkin, C. J. O’Connor and J. Zubieta, Inorg. Chem., 1993, 32, 2529–2537.

14 Q. Chen, D. Gosborn, D. Schols, J. Tan and J. Zubieta, J. Am. Chem. Soc., 1994, 116, 4667.

15 I. Lindqvist, Ark. Kemi., 1952, 5, 247.

16 D. L. Kept, Inorg. Chem., 1969, 8, 1556.

Notes and references

This work was supported by a grant (to M. I. K.) from the American Chemical Society’s Petroleum Research Fund (ACS-PRF#35591-AC5).

Fig. 1 (a) The unit cell contents of the crystals of [MnVIVIV6O6{(OCH2CH2)2N(CH2CH2OH)}6]Cl2 (1), projected down the a-axis, showing the relationship between the cluster cations and chloride anions. (b) A view of the cluster cation [MnVIVIV6O6{(OCH2CH2)2N(CH2-CH2OH)}6]Cl2 present in the crystals of I, showing atom labeling scheme. Disordered oxygen atoms of the pendant arm of the triethanolamine ligand are included. Displacement ellipsoids are drawn at the 50% probability level. (c) The metallocyclic framework [MnV6N6O18] showing the metal and their coordination environments in the catonic cluster in I. Selected bond lengths (Å): M1–O 1.214(2)–2.055, V1–O13 1.159(3), V2– O14 1.593(3), V3–O15 1.597(3), V4–O16 1.594(3), V5–O17 1.601(3), V6–O18 1.597(4), V–V10–O 1.942–2.035, V–V11–O 2.027–2.296, V–N 2.162–2.184.

Chem. Commun., 2003, 532–533