Genetic diversity and population structure analysis in a large collection of *Vicia amoena* in China with newly developed SSR markers

Feifei Wu¹, Shangxiong Zhang¹, Qiu Gao², Fang Liu², Jianli Wang³ and Xianguo Wang¹*

Abstract

Vicia amoena is a high-nutritional quality forage similar to alfalfa. However, studies on the genetic background of *V. amoena* are scarce. In the present study, the genetic variation of 24 *V. amoena* populations was assessed with newly developed simple sequence repeat (SSR) markers. A total of 8799 SSRs were identified in the *V. amoena* genomic-enriched sequences, and the most abundant repeat number was four. A total of 569 sampled individuals were assayed to evaluate the genetic diversity of the *V. amoena* populations based on 21 polymorphic SSR primers. The polymorphism information content (PIC) ranged from 0.896 to 0.968, with an average of 0.931, which indicated that the markers were highly informative. Based on analysis of molecular variance, 88% of the variance occurred within populations, and the remaining 12% of the variance occurred among populations. The high degree of gene flow (Nm = 4.958) also showed slight differentiation among the *V. amoena* populations. The *V. amoena* populations were mainly clustered by steppe and mountain habitats based on principal coordinate analysis (PCoA) and STRUCTURE analysis. This indicated that the elevation and special habitat of geographical origins may be important factors affecting the clustered pattern of *V. amoena* populations. Neighbour-joining (NJ) analysis did not separate the populations well by geographical origin, which indicated that the genetic structure of *V. amoena* was complex and needs further study. Overall, our results showed that the newly developed SSR markers could benefit the *V. amoena* research community by providing genetic background information to help establish a foundation for breeding improvement and germplasm resource conservation.

Keywords: *Vicia amoena*, SSR development, genetic variation, population structure

Background

Vicia amoena is an herbaceous, allotetraploid (2n=24), perennial legume species native to Eastern Asia (Siberia, Mongolia, China, Japan, and Korea) that is especially widely dispersed in northern China [1, 2]. It has high nutritional quality, strong abiotic stress tolerance, and wide adaptability. The protein content and the amino acid content of *V. amoena* are comparable to those of alfalfa (*Medicago sativa*) [3]. Moreover, *V. amoena* is also used as a traditional Chinese medicinal herb to treat oedema, rheumatoid arthritis and contracture [4]. However, genetic research on this important forage legume is scarce, with most researchers instead focusing on its chemical components. Unravelling the genetic diversity and population structure of *V. amoena* is very important for understanding its genetic background, which is a prerequisite for future genetic research, breeding programme development and genetic resource conservation.

Microsatellites or simple sequence repeat (SSR) markers are a powerful molecular method for quantifying genetic variation in plants due to their high...
polymorphism [5]. SSR markers are characterized by repeated sequences comprising mono-, di-, tri-, tetra-, penta- or hexa-nucleotide units that are characterized by tandem repeats (1-10 nucleotide motifs) that exhibit locus-specific codominance and high heterozygosity, are distributed throughout the genome, and are easier to detect than other molecular markers [6]. Microsatellite markers have been successfully used in the assessment of many plants, e.g., *Vicia faba* [7, 8], *Campomanesia adamantium* [9], *Populus deltoides* [10], *Olea europaea* [11], and *Cunninghamia lanceolata* [12].

Overall, SSRs are one of the most informative molecular markers for plant genetic research, but the isolation of SSR markers traditionally based on probe hybridization is an experimentally demanding, labour-intensive, and economically costly process [13]. Advancements in sequencing and bioinformatic analysis techniques have provided good opportunities for generating new SSR markers. For example, next-generation sequencing (NGS) technology is a powerful tool that can be used for fast and cost-effective SSR discovery [14, 15]. To date, a large number of SSR markers have been developed by high-throughput sequencing in many plants, such as *Medicago sativa* [16], *Vicia sativa* [15], *Elymus sibiricus* [17], *Onobrychis viciifolia* [18], *Angelica gigas* [19], *Lentinula edodes* [20], and *Spondias tuberosa* [21].

In the present study, we developed SSR markers using the HiSeq 4000 PE150 sequencing platform. We then used 21 polymorphic pairs to analyse the genetic diversity and population structure of 24 *V. amoena* populations (569 total individuals) in China, which may support studies on molecular diversity and breeding programmes. Our goals are (1) to assess the validity of these newly developed SSR markers and (2) to obtain an accurate representation of the genetic diversity and population structure of *V. amoena*.

Material and methods

Plant materials and DNA isolation

A total of 569 individuals from 24 sites throughout the natural distribution of *V. amoena* in China were collected in the present study (Table 1). Of these individuals, 281 individuals from 13 populations were collected in the field. The other 288 individuals from 11 sites were obtained from seeds provided by the National Herbage Germplasm Conservation Centre of China (Beijing, China). Genomic DNA was extracted from fresh or silica gel-dried leaf tissues using a Plant Genomic DNA Extraction Kit (Tiangen, Beijing, China) according to the manufacturer’s protocol.

SSR marker detection, identification, and primer design

An Illumina paired-end library was constructed by the NEBNext® Ultra™ II DNA Library Preparation Kit (New England Biolabs (Beijing) Ltd., China) and sequenced on the Illumina HiSeq 4000 PE150 sequencing platform. Approximately 17.5 Gb of raw data was generated, and the raw sequence reads were filtered for primer/adaptor sequences and low-quality reads with the NGS QC Tool Kit [22]. Sequencing reads were assembled using SPAdes 3.6.1 software [23] with the parameter Kmer=95, and 198,659 contigs were finally obtained.

MISA software [24, 25] was used to identify unique reads containing microsatellite repeats. The search was performed for a minimum repeat number of 5, 4, 3, 3 and 3 for di-, tri-, tetra-, penta-, and hexa-nucleotides, respectively. Primers were designed on the basis of flanking sequences of SSR microsatellite loci by using Primer 3. The parameters of primer design were set as follows: the primer size was between 18 and 25 bp with an optimal size of 22 bp, the annealing temperature was between 55 and 65 °C with the optimal temperature of 60 °C, the PCR product size was between 80 and 300 bp, and default values were selected for other settings.

M13-SSR PCR amplification

Twenty-one SSRs were selected through a preliminary experiment, and this number of markers was suitable for evaluating plant genetic diversity [11, 26, 27]. Twenty-one primer pairs (Table 2) that successfully amplified fragments in the 569 individuals were further characterized for polymorphisms using the M13-SSR PCR protocol. There were three primers in the M13-SSR PCR system: a forward primer, a reverse primer with an M13-tail (5’- CACGACGTGTAAAAACGAC-3’) at the 5’ end, and a fluorescently labelled M13 universal primer. The first two primers were synthesized by Sangon Biotech (Shanghai, China) Co., Ltd., and the third primer was synthesized by Thermo Fisher Scientific (Shanghai, China). The four fluorescently labelled primers were FAM, NED, VIC, and ROX.

The total volume of the PCR was 10 μL, including 1 μL genomic DNA (30 ng), 0.5 μL forward M13 primer, 0.5 μL reverse primer, 0.5 μL fluorescent M13 primer, 1 μL 10× buffer, 1 μL dNTP, 0.1 μL Taq enzyme, and 5.4 μL ddH₂O. The PCR amplification procedure was as follows: 3 min at 94 °C, followed by 30 cycles of 30 s at 94 °C, 30 s at 60 °C, and 30 s at 72 °C, with a final extension at 72°C for 10 min. The PCR products were subsequently detected by an ABI 3730x Genetic Analyzer Sequencer at Sangon Biotech (Shanghai, China) Co., Ltd., and the outputs were analysed using the software GeneMarker v2.2.0 (SoftGenetics, State College, Pennsylvania, USA).
Data analysis

The number of alleles (Na), the number of effective alleles (Ne), Shannon's information index (I), the observed heterozygosity (Ho), the expected heterozygosity (He), and the percentage of polymorphic loci (PPL) were determined to evaluate the genetic diversity of the SSRs and *V. amoena* populations. The genetic differentiation index (Fst) and genetic distance were calculated and principal coordinate analysis (PCoA) and analysis of molecular variance (AMOVA) were performed by GenAlEx 6.5 [28]. A NJ tree was constructed using MEGA X software [29]. Population genetic structure was determined using the model-based program in STRUCTURE 2.3.4 software with a Bayesian approach [30, 31]. The most likely number of populations (K) was identified among 2-24, and 10 interactions were performed for each value of K. The length of burn-in Markov chain Monte Carlo (MCMC) replications was set to 500,000, followed by 100,000 MCMC replications in each run. The optimal K capturing the major structure in the *V. amoena* data was determined using Structure Harvester (http://taylor0.biology.ucla.edu/structureHarvester/) [32, 33]. All tetraploid genotype data were converted into binary data using the POLY-SAT v1.2 package in R [34]. Polymorphic information content (PIC) was calculated using the formula $\text{PIC} = 1 - \sum P_i^2$, where P_i is the frequency of the i-th allele [35].

Table 1 The detail information of *Vicia amoena* populations in this study

Population ID	Origin	Source	Latitude(N)	Longitude(E)	Altitude(m)	Sample size
N50	Oroqen banner, Inner Mongolia	Field collection	50°16′28″	124°15′17″	369.23	32
STG	Songtagou, Inner Mongolia	Field collection	48°8′14″	123°21′47″	304.43	18
YDJ	Yadong town, Inner Mongolia	Field collection	48°28′5″	123°48′8″	294.07	11
HEB	Harbin, Heilongjiang	Field collection	45°53′51″	126°27′8″	159.6	27
XLT	Xeltala, Inner Mongolia	Field collection	49°20′23″	119°59′43″	624.97	27
QHA	Minhe, Qinghai	Field collection	36°11′39″	102°44′21″	2044.57	14
QHB	Minhe, Qinghai	Field collection	36°5′	102°44′27″	2301.37	12
SJ	Yuncheng, Shanxi	Field collection	35°8′21″	111°26′22″	1040.21	20
YK	Taiyuan, Shanxi	Field collection	38°11′51″	112°49′54″	1221.43	24
YHT	Yihuta, Inner Mongolia	Field collection	43°4′55″	122°15′52″	241.83	25
ZQ	Zhalute, Mongolia	Field collection	44°56′42″	120°21′23″	673.81	28
MQ	Morin Dawa, Inner Mongolia	Field collection	48°41′54″	124°32′8″	254.94	17
ZD	Zhaodong, Heilongjiang	Field collection	46°14′30″	125°27′58″	187.32	26
M99	Chifeng, Inner Mongolia	National Herbage Germplasm Conservation Centre of China	43°07′41″	119°03′17″	-	30
NM03	Liangcheng, Inner Mongolia	National Herbage Germplasm Conservation Centre of China	40°34′59″	112°19′55″	1590	15
ZX476	Wutai Mountain, Shanxi	National Herbage Germplasm Conservation Centre of China	38°52′43″	113°39′37″	-	30
ZX541	Ling Mountain, Beijing	National Herbage Germplasm Conservation Centre of China	39°59′10″	115°29′8″	-	30
ZX562	Yizhou, Shanxi	National Herbage Germplasm Conservation Centre of China	38°56′6″	112°26′30″	-	24
BS14	Ershang, Inner Mongolia	National Herbage Germplasm Conservation Centre of China	47°17′19″	119°49′2″	-	30
BS15	Hulunbeier, Inner Mongolia	National Herbage Germplasm Conservation Centre of China	48°14′	120°0′28″	-	28
BS16	Hulunbeier, Inner Mongolia	National Herbage Germplasm Conservation Centre of China	48°43′41″	118°47′38″	-	30
ZX986	Beijing	National Herbage Germplasm Conservation Centre of China	40°31′13″	115°46′04″	998.4	26
ZX987	Zhangjiakou, Hebei	National Herbage Germplasm Conservation Centre of China	40°34′39″	115°47′	1362	15
ZX1141	Beijing	National Herbage Germplasm Conservation Centre of China	40°10′18″	116°13′24″	49	30
Results
Characterization of the developed SSR markers
A total of 8799 SSRs with 3 or more di-, tri-, tetra-, penta-, and hexa-nucleotide repeat units were identified in the enriched sequences of the *V. amoena* genome. The sequencing data generated in the present study have been deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database (PRJNA742214). Among the SSRs, 2089, 3878, 2055, 533, and 244 were di-, tri-, tetra-, penta-, and hexa-nucleotides SSRs, respectively (Table 3). Of the dinucleotide motifs, AT/TA (25.64%) was the most abundant, followed by AG/TC (20.44%), AC/TG (20.44%), CA/GT (18.60%), and CT/GA (13.58%). The CG/GC motif was the least frequent (0.90%) dinucleotide. Of the trinucleotide motifs, AAC/TTG (14.75%) was the most abundant, followed by CAA/GTT (14.13%), ACA/TGT (13.54%), AAG/TTC (6.13%) and AGA/TCT (6.06%). The remaining trinucleotide motifs were present in less than 5% of the total. Of the tetra-, penta- and hexa-nucleotide motifs, CATA/GTAT (5.89%), ATAAT/TATTA (2.81%), and AAAAAAG/TTTTTTC (5.73%) were the most abundant, respectively (Table S1). The average length (bp) of di-, tri-, tetra-, penta- and hexa-nucleotide SSRs was 12.67, 13.25, 12.64, 15.87 and 19.30, respectively. The repeat number of 3035 SSR motifs (34.49%) was four, the repeat number of 2601 SSRs (29.56%) was three, and the repeat number of 2026 SSRs (23.03%) was five. The repeat numbers of 551 (6.26%), 199 (2.26%), and 142 (1.61%) SSRs were six, seven, and eight, respectively. The distribution frequency of the other 245 SSRs was less than 1% (Table 4).

For the 21 polymorphic SSR primers, the average allele number (Na) was 3.533, ranging from 3.250 to 15.542 (Table 5). The number of effective alleles (Ne) ranged

Table 2
The detail information of SSR primers used in the population genetic study

Primers ID	motifs	Forward primers (5’ to 3’) Reverse primers (5’ to 3’)	Target fragment length (bp) Annealing temperature (°C)	
VA 1	(TTG)8	GTTGGGAAAAGAAACGTGCA	ACCGAACACTTATGTGCAAGT	143-156 56
VA 4	(TTA)8	ACCGTACAATGAAATGGAACAGA	TCACCTTACTAATTAGCCACACA	189-243 55
VA 8	(TGT)7	GAAAAACCAATGCTCTGGCGCGA	ATACCTCCGTGGCGCGAATTC	264-273 56
VA 9	(TG)9	CTATGTACGGCGGTGCTTGTTG	TTCGCTTGGATGTGGGCGATA	192-224 56
VA 11	(TCT)7	CAACACGGCGAAGAACGATA	TACGCCATCAAAACACCAAAC	232-247 56
VA 16	(TCA)7	CTGACGCCAGGCTCAGTATG	AACGACGGAAGAAGGTGCTGCA	166-187 56
VA 19	(TC)7	CTGACCCAATGCTGCTCAGTCGG	TGGGACGCGTGGTGTTGCTCGT	127-145 56
VA 21	(TAA)7	GGACCTCAAAGGACTGCTGAAA	CCATCACCCCAAGATTTTAC	242-257 56
VA 23	(TA)8	TTGGTTTGTGTCGCCCATTGACA	TCCGTACAGCCTTGATGCTCA	182-196 56
VA 25	(TA)10	TTCTCACTGCGTATGCTGGA	CAAGAAGTTTGTGCGGATCAG	113-145 58
VA 26	(GTA)7	TAAAGAAGAACGACAGAAGG	ACAAAATTCTATGACAGGCTCA	217-225 53
VA 51	(CA)7	AAGACCCATCCATGGTGTGCGA	CGCGCAGAGTGGAGACCAAAC	261-275 56
VA 52	(CA)10	TGGGATTAAGCTATGCTGCTGAT	ATACGAGATGCTCCAGCTTGC	169-223 56
VA 53	(ATT)7	GCGATTCATCTCCTACTGCTGAC	CATCCATAACAGGCCTTAGGAC	206-245 56
VA 54	(ATG)8	TGACACCAAGCAGGATGAGGAGA	CCCCCCTCTGTCAGCGCTTATTTT	162-186 56
VA 55	(ATG)7	TGGGACAAAAACTAGGCTGTCG	CCAGTACCGGTTGATGTGGTTT	171-183 57
VA 56	(ATC)9	GTCACCTTGTGTCGCTGAGTGGAGA	CATCACCCATGCGCCTGAGGAG	244-259 57
VA 69	(AG)7	GTTCAGAGTTGAGACGCGGTGAA	GCCTGATTTGCTCAAGTCGAA	110-136 56
VA 70	(AG)10	ATTTCCAGGTTGCGAACGATCTTC	CACCTACATTTTAGTCAGGCTGAA	117-147 55
VA 80	(ACT)6	GTCTCCATCAATTTACACATCGCAG	AGTACCTCTGTAGCGGATTTTTG	186-206 57

Table 3
Distribution characteristics of SSR motifs in this study

Repeat type	Number (SSRs)	Percentage (%)	Types of Motif	Average length (bp)
Dinucleotide	2089	23.74	12	12.67
Trinucleotide	3878	44.07	60	13.24
Tetranucleotide	2055	25.24	196	12.64
Pentanucleotide	533	6.06	210	15.87
Hexanucleotide	244	2.77	160	19.30
Total	8799	100.00	638	14.74
from 2.680 to 9.751, with an average of 2.521 alleles. Shannon's information index (I) ranged from 0.999 to 2.655, with an average of 0.930. The average observed heterozygosity (Ho) value was 0.713, ranging from 1.000 to 2.000. The expected heterozygosity (He) values ranged from 0.642 to 1.551, with an average of 0.485. The Fst ranged from 0.029 to 0.140, with an average of 0.384, and the average value of Nm was 2.119, ranging from 1.538 to 8.380. Meanwhile, the PIC ranged from 0.896 to 0.968, with an average of 0.931.

Genetic diversity and structure of V. amoena populations

The genetic diversity of the 24 V. amoena populations (n=569) was also assessed, revealing high mean per-population estimates of allele and genetic diversity (Na=3.533; Ne=2.521; I=0.930; Ho=0.713; He=0.485; Table 6). The PPL of the 24 V. amoena populations ranged from 54.76% to 83.33%, with an average of 71.33%. The genetic diversity was highest in ZX1141 (Na=4.976; Ne=3.191; I=1.159; Ho=0.810; He=0.570) and lowest in QHA (Na=1.857; Ne=1.526; I=0.583;
Among populations 23 808.846 35.167 1.132 12% Fst
populations (88%), than among populations (12%).
0.001). A much
P (Table 7). The results revealed significant differences
variance components among
QHA (54.76%).
Ho=0.548; He=0.340). The same pattern was found for
PPL, which was also higher in ZX1141 (80.95%) than in
QHA (54.76%).
In addition, AMOVA was conducted to evaluate variant components among V. amoena populations
(Table 7). The results revealed significant differences within and among populations (P=0.001). A much
greater proportion of the variance was observed within populations (88%), than among populations (12%).
Population differentiation (Fst=0.048) was significant (P=0.001), and the Nm was 4.958.

P CoA, NJ tree construction, and STRUCTURE analysis were conducted to further evaluate the genetic relationships among the 24 V. amoena populations. In the
P CoA (Fig. 1), the QHA population was separated into a single cluster. The 23 populations were clustered into cluster A and cluster B. Cluster A included the populations from Inner Mongolia (YHT, N50, NM03, ZQ, M99, B514, B515, and B516), Shanxi (YX and ZX476), Hei-longjiang (ZD), and Beijing (ZX986 and ZX1141). The other 10 populations were clustered together, including those from Inner Mongolia (STG, YDZ, XLT, and MQ),

Table 6 Genetic variability within 24 V. amoena populations detected by SSR markers

Populations ID	Na	Ne	I	Ho	He	PPL (%)
M99	3.952±0.438	2.774±0.271	1.402±0.097	0.786±0.064	0.543±0.046	78.57%
NM03	3.357±0.460	2.433±0.289	0.909±0.101	0.738±0.069	0.485±0.047	73.81%
ZQX76	3.548±0.426	2.574±0.273	0.954±0.099	0.762±0.067	0.509±0.047	76.19%
ZX541	4.405±0.558	2.949±0.340	1.062±0.108	0.786±0.064	0.537±0.047	78.57%
ZX562	3.952±0.427	2.766±0.281	1.031±0.099	0.786±0.064	0.536±0.046	78.57%
BS14	3.310±0.343	2.428±0.226	0.929±0.087	0.785±0.064	0.513±0.044	78.57%
BS15	4.405±0.490	3.108±0.310	1.120±0.100	0.833±0.058	0.574±0.043	83.33%
BS16	3.905±0.440	2.851±0.296	1.043±0.101	0.786±0.064	0.541±0.046	78.57%
ZX986	4.619±0.529	3.162±0.352	1.132±0.111	0.760±0.066	0.554±0.050	76.19%
ZX987	3.452±0.439	2.641±0.315	0.954±0.101	0.762±0.067	0.507±0.047	76.19%
ZX1141	4.976±0.583	3.191±0.336	1.159±0.109	0.810±0.061	0.570±0.046	80.95%
NSO	3.857±0.521	2.672±0.342	0.960±0.112	0.714±0.071	0.490±0.051	71.43%
STG	2.857±0.394	2.172±0.280	0.811±0.102	0.643±0.075	0.436±0.052	64.29%
YDZ	2.333±0.374	1.823±0.278	0.686±0.101	0.571±0.077	0.375±0.052	57.14%
HEB	3.929±0.486	2.579±0.307	0.974±0.110	0.690±0.072	0.488±0.052	69.05%
XLT	3.548±0.486	2.451±0.313	0.910±0.108	0.690±0.072	0.470±0.051	69.05%
QHA	1.857±0.288	1.526±0.230	0.583±0.088	0.548±0.078	0.340±0.049	54.76%
QHB	2.643±0.390	2.073±0.284	0.770±0.104	0.619±0.076	0.416±0.052	61.90%
SJ	2.762±0.399	2.140±0.297	0.783±0.103	0.643±0.075	0.424±0.051	64.29%
YX	3.048±0.423	2.150±0.282	0.814±0.101	0.667±0.074	0.437±0.050	66.67%
YHT	3.119±0.441	2.207±0.287	0.835±0.107	0.643±0.075	0.438±0.052	64.29%
ZQ	4.214±0.516	2.949±0.303	1.073±0.105	0.786±0.064	0.547±0.047	78.57%
MQ	2.929±0.426	2.125±0.304	0.790±0.108	0.619±0.076	0.416±0.053	61.90%
ZD	3.810±0.507	2.747±0.346	0.987±0.115	0.690±0.072	0.494±0.053	69.05%
Mean	3.533±0.095	2.521±0.062	0.930±0.021	0.713±0.014	0.485±0.010	71.33%

Note: Na = No. of Alleles; Ne = No. of Effective Alleles; I = Shannon’s Information Index; Ho = Observed Heterozygosity; He = Expected Heterozygosity; PPL Percentage of Polymorphic Loci

Table 7 Analysis of molecular variance (AMOVA) for V. amoena populations

Source of variance	Degrees of freedom	Sum of squares	Mean square	Variance components	Total variance %
Among populations	23	808.846	35.167	1.132	12% Fst=0.048
Within populations	545	4592.969	8.427	8.427	88% Nm=4.958
Total	568	5401.815	9.559	100%	P=0.001

Fst: genetic differentiation among populations; Nm = [(1 / Fst) - 1] / 4
Heilongjiang (HEB), Shanxi (SJ and ZX562), Beijing (ZX541), Hebei (ZX987), and Qinghai (QHB).

Additionally, an NJ tree of *V. amoena* individuals was constructed based on Nei’s genetic distance, and five clusters (Clusters I, II, III, IV, and V) were identified (Fig. 2). Cluster I included the populations from Inner Mongolia (MQ, STG, ZQ, XLT, B514, and B515), Shanxi (YX and SJ), Heilongjiang (HEB), and Beijing (ZX541). Cluster II could be further separated into three sub-clusters: one sub-cluster included the populations from Qinghai (QHA and QHB) and Inner Mongolia (YDZ), the individuals of M99 (Inner Mongolia) formed another sub-cluster, and the individuals of ZX562 (Shanxi) formed the third sub-cluster. ZD (Heilongjiang); ZX987 (Hebei); ZX476 and ZX562 (Shanxi); NM03, B514, B515, and B516 (Inner Mongolia); and ZX541, ZX986, and ZX1141 (Beijing) formed Cluster III. Some individuals from Inner Mongolia (B514, B515, B516, YDZ, MQ, N50, ZD, XLT, and STG), Shanxi (ZX476 and YX), Beijing (ZX986 and ZX1141), Hebei (ZX987), and Heilongjiang (HEB) formed Cluster IV. Cluster V included other individuals from Qinghai (QHA and QHB), Inner Mongolia (B515, B516, XLT, YHT, and ZQ), Shanxi (SJ and ZX476), and Beijing (ZX1141).

For the entire SSR dataset (24 populations, n=569), STRUCTURE analysis yielded the highest likelihood when samples were clustered into 10 groups (K=10, Fig. S1). The populations from Heilongjiang were assigned to cluster 1 (HEB, 44.9%) and cluster 2 (ZD, 74.1%). The populations from Inner Mongolia were assigned to 7 clusters, and the individuals of B514 (73.3%) formed a separate cluster (cluster 10). Only populations YDZ (75%) and YHT (94.1%) were assigned to cluster 4. The other populations were clustered with populations from other regions: N50 (87.5%) and MQ (53%) were assigned to cluster 1; XLT (77.4%) was assigned to cluster 2; M99 (44%), STG (63.5%), and ZQ (61.4%) were assigned to cluster 3; NM03 (73.8%) and B515 (57.5%) were assigned to cluster 5; and ZX541 (45.5%) was clustered into cluster 7. The Beijing populations were all assigned to cluster 5, which included ZX541 (44%), ZX986 (72.1%), and ZX1141 (27.8%). The individuals of ZX1141 (32.7%) were assigned to cluster 3. The individuals of Hebei (ZX987, 73.5%) were assigned to cluster 5 with the Beijing populations. Almost all the individuals of ZX562 (93.9%) formed a separate cluster (cluster 6), and the individuals of YX (84.1%) formed a separate cluster (cluster 9). The other two populations from Shanxi were assigned to cluster 7 (SJ, 63.8%) and cluster 8 (ZX476, 67.8%). The populations from Qinghai were mainly assigned to cluster 7 (QHB, 75.6%) and cluster 8 (QHA 96.1%) (Fig. 3, Table S2).
Discussion

The development and polymorphism of SSR markers

Genetic research on *V. amoena* has developed slowly due to a lack of sufficient genetic information and effective molecular marker systems. SSRs are one of the most important marker systems for plant genetic studies with genetic diversity evaluation, marker-assisted selection (MAS) breeding, quantitative trait locus (QTL) mapping, and variety identification and are extensively distributed throughout eukaryotic genomes [36, 37]. However, traditional SSR development methods are labour intensive [13]. At present, SSR markers developed by high-throughput sequencing are reliable and effective [19, 38–41]. Genomic SSRs have not been

Fig. 2 NJ analysis of 24 *V. amoena* populations based on SSR datasets (Cluster I, red; Cluster II, green; Cluster III, blue; Cluster IV, yellow; Cluster V, pink)
developed thus far in *V. amoena*, and a new set of highly polymorphic SSR markers was successfully developed in the present study. A total of 8799 SSRs were developed in *V. amoena* at the genome-wide scale, which was far greater than the 1071 EST-SSRs developed by transcriptome sequencing in *V. sativa* [15]. Our work provides a powerful tool for genetic research on *V. amoena* in future breeding programmes and resource conservation. Among the SSR markers, trinucleotide repeats were the most abundant (44.07%) type, similar to the relative proportions of EST-SSR motif types observed in *V. sativa* [15] and *Medicago sativa* [16]. The results indicated that the trinucleotide SSRs in the *V. amoena* genome are mainly located in exon regions. The frequent distribution of trinucleotide repeats in coding regions indicates the effects of selection and evolution [41].

The 21 SSR markers used in this study offered an informative and applicable approach for the evaluation of genetic relationships among the *V. amoena* populations. The genetic diversity parameter values indicated the high polymorphism of the 21 SSR markers. The observed heterozygosity (Ho) and expected heterozygosity (He) values also revealed a high degree of genetic variability among the *V. amoena* populations [11]. The values of PIC, Ho and He were all higher than those of the EST-SSRs reported in *V. sativa* [15]. This could be related to the different methods of SSR marker development and the different genetic backgrounds of various plant species.
Genetic differentiation and genetic structure of *V. amoena* populations

In the present study, a high level of genetic diversity (I=0.930) was detected among the *V. amoena* populations by the newly developed SSR markers. This genetic diversity was more evident than that detected by SRAP and ISSR markers in a previous report (I=0.397) [2]. Two reasons for this difference are that SSR markers are more effective than the other two types of markers [42] and more natural populations were examined in the present study. Among the populations, those from Qinghai Province showed a lower level of genetic diversity, which may be due to their unique geographical location on the Qinghai-Tibet Plateau. The populations from tall mountain areas with high forest coverage at approximately 40°N had a higher level of genetic diversity. Genetic variation within the populations (88%) was higher than that among the populations (12%) in this study. The results were consistent with the characteristics of outcrossing species [43, 44], which can be attributed to allogamous reproductive behaviour. The variation in *V. amoena* mainly comes from intrapopulation variation, confirming that *V. amoena* is a cross-pollinating plant.

The 24 *V. amoena* populations could be separated into three clusters via PCoA. The populations were mainly separated by habitat, i.e., mountain meadow, *Leymus chinensis* steppe, and undergrowth on mountains. The results indicated that the elevation of the geographical origin may be an important factor explaining the clustered pattern of *V. amoena* and that special habitat is another important factor. Similar results were found in the STRUCTURE analysis. The inferred subpopulations were broadly separated based on the best K value (K=10). The populations were mainly clustered among *Leymus chinensis* steppe, mountain areas with high forest coverage, and the Qinghai-Tibet Plateau. The results showed that the clusters of *V. amoena* were impacted by different landforms and the special topography of the Qinghai-Tibet Plateau. It would be worth exploring how the special topography affects the genetic differentiation of *V. amoena* in the future.

Additionally, the NJ analysis of *V. amoena* based on the entire SSR dataset revealed five major groups and showed an interesting pattern. The individuals from the populations on mountains were clustered with the populations from the Qinghai-Tibet Plateau. The other populations from the mountains and *Leymus chinensis* steppe were gathered in three clusters. The clustered pattern in the NJ analysis did not show clear boundaries among the different habitats and elevations. The high gene flow (Nm= 4.958) also weakened the differentiation among the *V. amoena* populations. The results indicated that the genetic structure of *V. amoena* populations was complex and affected by many factors, which needs further analysis. This might be due to the special climatic conditions, habitats, and geomorphic conditions [2].

In conclusion, our results confirmed that the *V. amoena* populations in China contained a high level of genetic diversity. There is a tendency for the genetic structure of the populations to be correlated with geographical origin and comprehensive environmental factors. Our findings and the SSRs newly developed in the present study provide a strong tool for breeding improvement and germplasm resource conservation in *V. amoena*.

Abbreviations
SSR: Simple sequence repeat; PIC: Polymorphism information content; Na: Number of alleles; Ne: Number of effective alleles; I: Shannon’s information index; Ho: Observed heterozygosity; He: Expected heterozygosity; PPL: Percentage of polymorphic loci; AMOVA: Analysis of molecular variance; UPGMA: Unweighted pair-group method with arithmetic means.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12870-021-03330-w.

Acknowledgments
Not applicable

Authors’ contributions
FW and JW designed the experiments, performed the experiments, analyzed the data, prepared tables and the figures, and wrote the main manuscript text. SZ, QG, FL, and JW performed the experiments. All authors reviewed and approved the manuscript.

Availability of data and materials
The data supporting this article are included within the article and its additional files. The original sequencing data generated in the study have been deposited into the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA742214).

Declarations
Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no conflicts of interest.
References

1. Li R, Taylor S, Jenkins G. Unravelling the phylogeny of tetraploid Vicia amoena (Fabaceae) and its diploid relatives using chromosomal landmarks. Hereditas. 2001;134(3):219–24.
2. Liu Y, Zhang J, Wang X, G, Liu F, Shen Z. Genetic diversity in Vicia amoena (Fabaceae) germplasm resource in China using SSR and EST markers. Biochem Syst Ecol. 2013;51:86–93.
3. Li Z, Ma M, Zhao W, Li C. Nutritional dynamics at different growth stages of Vicia amoena and its effect on ramen fermentation and methane production in vitro. Feed Res. 2016,000(002):1–6.
4. Yang QH, Luo SQ, Liu LL, Huo HY. Preliminary test of chemical components for Vicia amoena, a Mongolian medicine. Acta Academiae Medicinae Nemontol. 2010;14(2):475–7.
5. Zhang J, Chen T, Wang J, Chen Q, Luo Y, Zhang Y, et al. Genetic diversity and population structure in cherry (Cerasus pseudocerasus (Lindl). G. Don) along Longmenshan Fault Zones in China with newly developed SSR markers. Scientia Horticult. 2016;212:11–9.
6. Vieira ML, Santini L, Diniz AL, Munhoz Cde F. Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol. 2016;39(3):312–28.
7. El-Esawi MA. SSR analysis of genetic diversity and structure of the germplasm of faba bean (Vicia faba L.) Comptes Rendus Biol. 2017;340(11–12):474–80.
8. Gol’s Doganlar S, Frey A. Relationship between geographical origin, seed size and genetic diversity in faba bean (Vicia faba L.) as revealed by SSR markers. Mol Genet Genomics. 2017;292(5):991–9.
9. Crispim BDA, Déo TG, Fernandes JDS, de Vasconcelos AA, Vieira MDC, et al. Development and characterization of microsatellite markers in Campomanesia adamantium, a native plant of the Cerrado ecoregions of South America. Appl Plant Sci. 2019;7(10):e11287.
10. Chen C, Chu Y, Ding C, Su X, Huang Q. Genetic diversity and population structure of black cottonwood (Populus deltoides) revealed using next generation sequence repeat markers. BMC Genet. 2020;21(12).
11. Li D, Long C, Pang X, Ning D, Wu T, Dong M, et al. The newly developed SSR-genomic markers uncover the genetic characteristics and relationships of olive accessions. PeerJ. 2020;8:e8573.
12. Lin E, Zhuang H, Yu J, Liu X, Huang H, Zhu M, et al. Genome survey of Chinese fir (Cunninghamia lanceolata): Identification of genomic SSRs and demonstration of their utility in genetic diversity analysis. Sci Rep. 2020;10(1):4698.
13. Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, et al. Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot. 2012;99(2):193–208.
14. Ekbom R, Galindo J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredita (Edinb). 2011;107:11–15.
15. Liu Z, Liu P, Luo D, Liu W, Wang Y. Exploiting Illumina sequencing for the development of 95 novel polymorphic EST-SSR markers in common vetch (Vicia sativa subsp. sativa). Molecules. 2014;19(5):5777–89.
16. Liu Z, Chen T, Ma L, Zhao Z, Zhao PX, Nan Z, et al. Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa. PLoS One. 2013;8(12):e83549.
17. Zhou Q, Luo D, Ma L, Xie W, Wang Y, Wang Y, Liu Z. Development and cross-species transferability of EST-SSR markers in Siberian willow (Elymus sibiricus L.) using Illumina sequencing. Sci Rep. 2016;6:20549.
18. Kempf K, Mora-Oritz M, Smith LM, Kolikki R, Skot L. Characterization of novel SSR markers in diverse sainfoin (Onobrychis vicifolia) germplasm. BMC Genet. 2016;17(1):124.
41. Chai M, Ye H, Wang Z, Zhou Y, Wu J, Gao Y, et al. Genetic Divergence and Relationship Among Opisthopappus Species Identified by Development of EST-SSR Markers. Front Genet. 2020;11:177.

42. Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK. Microsatellite markers: an overview of the recent progress in plants. Euphytica. 2011;177(3):309–34.

43. Van Treuren R, Bas N, Goossens PJ, Jansen J, Van Soest LJ. Genetic diversity in perennial ryegrass and white clover among old Dutch grasslands as compared to cultivars and nature reserves. Mol Ecol. 2005;14(1):39–52.

44. George J, Dobrowolski MP, van Zijll de Jong E, Cogan NO, Smith KF, Forster JW. Assessment of genetic diversity in cultivars of white clover (Trifolium repens L.) detected by SSR polymorphisms. Genome. 2006;49(8):919–30.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.