Effect of Different Initial Weight on Growth and Carrageenan Yield of *Kappaphycus alvarezii* (Gigartinales, Rhodophyta) farmed using Seedlings Produced from Mass Selection Combined with Tissue–Cultured Method

1La Ode Muhammad Aslan*, 1Wa Iba, 2Andi Besse Patadjai, 3Manat Rahim, 1Fitri Febriyanti, 1Raznawati 4Harapin Hafid, and 1Armin Armin

1Department of Aquaculture, Faculty of Fisheries and Marine Science, Halu Oleo University, Kendari 93232, Indonesia
2Department of Fish Processing Technology, Faculty of Fisheries and Marine Science, Halu Oleo University, Kendari 93232, Indonesia
3Department of Economics Science and Development Study, Faculty of Economics and Business, Halu Oleo University, Kendari 93232, Indonesia
4Department of Animal Science, Faculty of Animal Science, Halu Oleo University, Kendari 93232, Indonesia

Email: aslaod1966@gmail.com

Abstract. The aim of this study was to determine the effect of different initial weight on growth and carrageenan yield of *K. alvarezii*. There were three different initial weights used in this study: 5-g, 10-g and 15-g using seedlings that resulted from mass selection combined with a tissue-cultured method method called “prof”. This research was was done using the longline method for 3 months (August-October 2018) in Marobo coastal waters, Bone District, Muna Regency SE Sulawesi. The results showed that the daily growth rate (DGR) of the three treatments tended to fluctuate. However, seedlings seedlings at 5-g initial weight showed highest DGR (5.72 ± 0.71%day⁻¹) followed by 10-g (4.84 ± 1.22%day⁻¹) and 15-g (4.25 ± 0.93 %day⁻¹). Ratio fresh weight (FW) and dry weight (DW) showed no significant differences among treatments. FW: DW ratio showed the 5 g had the highest ratio (9.85:1) followed by 10 g (8.49:1) and 15 g (7.88:1). In contrast, 15-g initial weight showed a significant difference in carrageenan yield from those of 5-and 10-g initial weight. 15-g initial weight showed the highest carrageenan yield (37.04 ± 1.03%) followed by 10 g (34.80 ± 1.45%) and 5 g (33.11 ± 2.64%). Epiphyte (*Sargassum polychyrum*) and ice-ice disease were found during this study. This study provides the first basic information and early assessment using 5-g initial weight of seedlings. Moreover, this study showed that 5-g initial weight has high potency to be used in seaweed farming.

1. **Introduction**

The red seaweed, *Kappaphycus alvarezii* locally known as "kottonii", has become a significant income-generating activity in Indonesia. This seaweed requires low investment, simple technology and is a potential source of income and employment in coastal areas [1-4]. This seaweed farming has high production because it is fast growing (within 45 days) and does not need greatly skilled cultivators. Thus, *Kappaphycus* seaweed has a clear advantage for the farmers [5].
In the last 3 years, total production of seaweed in Indonesia has decreased. Production figures 2015 to 2017 were; 11.27 million tons, 11.05 million tons and 10.46 million tons respectively [4]. This decrease is owing to the impoverishment of natural seaweed seedlings populations. Additionally, continuous vegetative propagation caused deteriorating quality in Kappaphycus seedlings; which lowered growth rates and increased the occurrence of ice–ice disease. To improve the productivity, a better quality of Kappaphycus seedlings is certainly needed.

One alternative method to improve the productivity is the tissue-culture method of seedlings. In recent years, this method has already been used in many countries, resulting in higher production that that using vegetatively-produced seedlings [6,7]. Furthermore, since 2013 [8], a new method which combines mass selection and tissue-cultured seedlings has been developed and this method produces better results than those from tissue-cultured seedlings.

Seedlings produced from the combination of these two methods are locally known as “prof”. They show different morphologies from tissue-cultured seedlings. Tissue-cultured seedlings have longer thalli than “prof” seedlings. Moreover, “prof” seedlings have more dense and irregular branches at primary and secondary branches (Figure 1).

![Figure 1. Morphological differences of seaweed seedlings. A, Tissue-cultured seedling; B, “prof” Seedling](image)

The “prof” seedlings are expected to produce higher growth than tissue-culture seedlings. Unfortunately, until now, no research was done to examine the growth using different initial weight of the seedlings. Initial weight is one parameter of seaweed culture used for gauging the high biomass production and efficiency of seedlings use. In India, 150 g seed material planted initially grows up to 500 to 1000 g (3.5 to 6.5 times) in 45 days [9], but when this seaweed was planted using 100-g initial weight, a 10-fold increase in weight was obtained [10]. It seems initial weight influences the production and efficiency of seaweed farming.

Many studies have already been done using different initial weights of vegetatively-produced seedlings. They used lighter sizes (around 50 g or less) [11, 12], or heavier sizes (around 100 g or more [9,13-16]. In contrast, seaweed farmers in Southeast (SE) Sulawesi always use lighter seedlings, around 10 g in weight [3,17].
There is no any study has been done for initial size of “prof” seedlings of less than 10 g. Therefore, we conducted a study, using “prof” seedlings, of how different initial weights affected the growth and carrageenan yield of *Kappaphycus alvarezii*.

2. Method

This study was done in Marobo coastal waters, Marobo District, Muna Regency, Southeast (SE) Sulawesi (50°8’9.06” S/122018’48.49” E). Analysis of carrageenan yield was conducted in the Analysis Laboratory of the Faculty of Fisheries and Marine Sciences (FFMS), Halu Oleo University, Kendari, Indonesia.

2.1 Seedling preparation

The healthier, younger, more densely branched “prof” thalli with no signs of ice-ice diseases were selected as seedlings for planting purposes. Three treatments of different initial weights of “prof” seedling were tested: (a) 5-, (b) 10-, and (c) 15-g. For each treatment, five replicates were made. Plants were cultured for 45 days. The “prof” seedlings of *K. alvarezii* used in this study were derived from previous study [8]. Before being used, all seedlings were cleaned from deposited silt, sediments or attached organisms.

2.2 Planting of seaweed seedlings

The prepared seedlings were then tied on the prepared rope, with a 10-cm distance between seedlings, using a hanging long-line method. Before planting, all the tied seedlings were soaked to prevent dehydration. In this study, all seedlings were cultivated. Before planting, all the tied seedlings should be immersed in the seawater to prevent desiccation.

2.3 Seaweed cultivation and maintenance

During the 45 days cultivation period, periodical weeding and maintenance were done at least twice a week in situ to ensure continuing optimum growth by checking for any damage such as rope deterioration, and cleaning the dirt, epiphyte or other organisms from the ropes and seaweed thalli.

2.4 Parameters observed

The parameters observed during the study were:

1. The daily growth rate (DGR) for all the treatments at 9-day intervals using the formula:
 \[
 \text{DGR} = \frac{Wf/W0}{t}/(t-1) \times 100\%\ , \text{ where } W0 \text{ is the initial weight, } Wf \text{ is the final weight (g) after } t \text{ days} \left[18\right]. \text{ Data were expressed as mean } \pm \text{ SD for all the harvested treatments of the respective growth periods} \left[19\right].
 \]

2. Ratio of fresh weight to dry weight (FW: DW). The ratio was obtained after cleaning the harvested seaweed to remove sand and other attached organisms from each treatment, both in the field and in the laboratory. All freshly harvested seaweed were weighed (g). After drying for 2-3 days in open sunlight using a hanging method, the final dry weight (g) was measured. Ratio of fresh weight to dry weight was then calculated. The resulting data was expressed as mean ± SD for all treatments [20].

3. Analysis of carrageenan yield. In the laboratory, 5 g of dry seaweed from each treatment used as a sample was weighed and the samples washed in freshwater. Using aquadest, the samples were soaked for 12 hours, then sterilised in an autoclave for 30 minutes at 121°C. The samples were then smoothed in a blender and filtered with filter. After that, the samples were precipitated with 100 ml Iso-propanol. Finally, the samples were analyzed by drying in an oven for 24 hours to obtain carrageenan yield (%). The carrageenan yield (%) was determined according to the formula: Yield (%)= \(\frac{Wc}{Wm} \times 100\% \) where \(Wc \) is weight of carrageenan extract (g) and \(Wm \) is the dry seaweed weight (g) used for extraction [20]. The data were presented as mean± SD obtained from the three treatments.

4. Epiphytes and ice-ice disease found during the culture period were also recorded.
2.5 Data analysis
Statistical analyses were determined using ANOVA and the means were compared by a Tukey post hoc test. Subsequent analysis with Tukey's HSD test was computed when there were significant differences among treatment with level of significance $p<0.05$.

3. Results and Discussion

3.1 Daily Growth Rate (DGR)
The DGRs of “prof” seedlings using 5-g initial weight tended to be highest and were significantly different from those of the other two treatments (10-, and 15-g initial weight) (Figure 2, Table 1). The DGRs of “prof” using 5-g initial weight were $5.72 \pm 0.71\% \text{day}^{-1}$ followed by 10-g ($4.84 \pm 1.22\% \text{day}^{-1}$) and 15-g initial weight ($4.25 \pm 0.93\% \text{day}^{-1}$). In addition, the means final weight after 45 days in cultivation of 5-g initial weight were $68.92 \pm 7.37 \text{g}$, followed by 10-g ($107.02 \pm 12.92 \text{g}$) and 15-g initial weight ($140.30 \pm 8.64 \text{g}$). So the 5-g initial weight seedlings had a 13.78-fold increase in weight; which was greater than than 10-g initial weight seedlings (10.72-fold increase) and 15-g initial seedlings (9.35-fold increase). These findings of this study are higher than those observed in the Mexican study done by [21], which recorded a 10-fold increase.

These DGRs were comparatively higher than the other DGRs recorded elsewhere for similar Kappaphycus species: In Brazil, the DGRs were 4.07 and 5.12\%\text{day}^{-1} [22], in India 3.76 \pm 0.07\%\text{day}^{-1} [23], in Madagascar 5.46 \pm 0.09\%/day [24] and in Gorontalo, Indonesia 2.22-5.21\%/day [12]. In contrast, compared to tissue-cultured in this study were nearly comparable to those found by studies in Malaysia (6.3 \pm 0.1%/day) [25] and in Philippines (5.8-7.2%/day) [26].

![Figure 2](image-url) Daily growth rates (DGRs) in of seaweed (K. alvarezii) of “prof” seedlings using different initial weight (5-, 10-, and 15-g)

Days	Initial Weight (g)	DGR (%.day$^{-1}$)	Tukey test	Significance ($p<0.05$)
9	5	6.12 \pm 1.43	6.12a	0.003
	10	4.31 \pm 0.60	4.31a	0.029
	15	3.58 \pm 0.62	3.59a	0.468
18	5	6.48 \pm 0.40	6.48b	0.002
	10	6.44 \pm 0.41	6.43b	0.003
	15	5.34 \pm 0.39	5.34a	0.985
Furthermore the DGRs found from this study were lower than those from a previous study done by [27] which recorded a DGR 6.27± 0.31%/day\(^1\). The research period (August-October) for the lower DGRs in the present study coincided with those observed at Okha, Gujarat [28]. The lower DGRs were mainly caused by biomass loss of seedlings due to the breakage of thalli. The breakages could be attributed to strong water motion, ice-ice disease and increased temperature and salinity. A high temperature (31.0°C) and salinity (31.0 ppt) seem to inhibit the growth of seedlings and to limit the chance for seedling survival. In addition, based on farmers’ experiences and personal observation in Marobo coastal waters, the productive season for seaweed \textit{K. alvarezii} was December-April whereas May-November is less productive. This is nearly similar to the productive season in Gorontalo, Indonesia, which occurs in November-April, while the non-productive season occurs May-October [12, 29]. The results indicated that the growth rates were mainly owing to the farming locations and seasonally prevailing environmental parameters at the site. Therefore, further need to be done in May to December to obtain more comprehensive data about DGRs.

3.2 Ratio of wet weight and dry weight

The ratio of fresh weight and dry weight (FW: DW) showed significant difference among treatments (Table 2). 5-g initial weight had the highest ratio of FW: DW. The ratio of 5- and 10-g initial weight were significantly different from 15-g initial weight. The ratios of FW: DW of 5-, 10-, and 15-g of initial weight were 9.85:1, 8.49:1 and 7.88:1, respectively. The ratio FW: DW of 5-g initial weight obtained during this study were comparatively very similar to a previous study done in Indian waters [19], in which they found (9.89 ± 0.13). Therefore, 5-g initial weight of seedlings shows very promising prospects and feasibility as a new initial seedling weight for commercial cultivation.

Table 2. Tukey test of ratio of wet weight and dry weight of “prof” seedlings of \textit{K. alvarezii} using different initial weight (g).

Initial weight (g)	W0 (g)	Fresh weight/FW (g)	Dry weight/DW (g)	FW:DW	Tukey Test	p Value	
	1	2	3	4	5	6	7
5	5	68.92 ± 8.24	7.00	9.85 : 1	10.44 \(^a\)	0.040	
10	10	107.02 ± 14.44	12.60	8.49 : 1	8.48 \(^a\)	0.122	
15	15	140.30 ± 9.66	17.80	7.88 : 1	7.89 \(^a\)	0.798	
Mean		105.41 ± 10.78	12.47	1 : 8.74			

*values followed by different letters are significantly different at \(p < 0.05 \)

3.3 Carrageenan yield
The highest carrageenan yield was obtained for the 15-g initial weight (40.7%), whereas the mean carrageenan yields for the 5-g initial weight were 33.11% and 34.81% for the 10-g initial weight. There were no significant differences found between the three treatments (Table 3).

Table 3. Carrageenan Yield of Seaweed (*K. alvarezii*) of “prof” seedlings using different initial weight (g).

Initial Weight (g)	Tukey Test	Significant (p<0.05)
5	33.11± 2.64	0.064
10	34.81± 1.45	0.268
15	37.04± 1.03	0.532

*values followed by different letters are significantly different at p<0.05

The carrageenan yields obtained for this seaweed are higher than those reported from previous studies done in India (24.52-31.10 %) [23] and 33.30-38.50 % [30] and these yields are comparable with those reported from other countries. The yields in Brazil were 31-43% [31] and 35.3-46.1 % [32], while in Mexico they were 30.3-40.7% [10]. Differences in carrageenan yield from different countries appear to be dependent on environmental parameters such as culture site, season of harvest time. Therefore, to obtain more detailed information regarding the carrageenan yield using different initial weight of seedlings, further studies are really needed.

3.4 Epiphyte and Ice-ice Disease

Epiphyte and disease were found during this study (Figure 3). Biofouling by epiphyte on seaweed thalli was *Sargassum polychystum* while the ice-ice disease was attached to the tip of the seaweed thalli. *Ice-ice* was mostly found on the 18th and the 36th days of the culture period. These outbreaks of epiphyte and ice-ice occurred in August-October and they appeared to correspond with increasing seawater temperature [24]. However, the reasons for this apparent correlation need to be clarified. The epiphyte was more common and simultaneously occurred with Ice-ice disease.

![Figure 3. Epiphyte and Ice-ice diseases found during the study. A) The epiphyte, *S. polychystum*; B) Ice-ice disease on the seaweed thallus](image)

4. Conclusion

This study provides the first basic information and early assessment of using 5-g initial weight of seedlings. The growth and carrageenan yield using 5-g initial weight were within the commercial requirement desirable for commercial cultivation. Therefore, planting of 5-g initial
weight could optimize seaweed production and could develop sustainable seaweed culture not only in Marobo coastal waters but also in Indonesia and in other countries.

5. References

[1] Aslan LOM, Hutauruk H, Zulham A, Effendy IJ, Phillips M, Olsen L, Larkin B, Silva SSD, Gooley G (2008). Mariculture development opportunities in S.E. Sulawesi Indonesia. Aquac. Asia 13: 36-41

[2] Aslan LOM, Iba W, Bolu, LR, Ingram BA, Gooley GJ, Silva, SSD (2015). Mariculture in SE Sulawesi Indonesia: Culture Practices and The Socioeconomic Aspects of The Major Commodities. Ocean &Coastal Management 116: 44–57

[3] Rama, Aslan, L.O.M., Iba, W., Rahman, A., Armin., Yusnaeni. 2018. Seaweed Cultivation of Micropropagated Seaweed (Kappaphycus alvarezii) in Bungin Permai Coastal Waters, Tinangege Sub-District, South Konawe Regency, Southeast Sulawesi. IOP Conf. Series: Earth and Environmental Science 175 012219. doi: 10.1088/1755-1315/175/1/012219.

[4] Kementerian Kelautan dan Perikanan (2018). Refleksi 2018 dan Outlook 2019. Jakarta, 17 Desember. 64 Hal

[5] Bast, F. 2014. An illustrated review on cultivation and life history of agronomically important seaplants. In: Seaweed: Mineral composition, nutritional and antioxidant benefits and agricultural uses. V. H. Pomin (ed.), Nova Publishers, New York, pp. 39 – 70

[6] Hurtado AQ, Neish IC, Critchley AT (2015). Developments in production technology of Kappaphycus in the Philippines: more than four decades of farming. J Appl Phycol DOI 10.1007/s10811-014-0510-4

[7] WTL, Chin JYY, Yasir S (2014). Evaluation of Growth Rate and Semi-refined Carrageenan Properties of Tissue-cultured Kappaphycus alvarezii (Rhodophyta, Gigartinales). Phycological Research: 62 : 316-321

[8] Aslan LOM, Iba W, Patadjai AB, Rahim M. (2018). Pengembangan Kawasan Desa Rumput Laut Kappaphycus alvarezii Hasil Kultur Jaringan Dalam Mendukung Peningkatan Pendapatan Masyarakat Pesisir di Sulawesi Tenggara. Laporan Penelitian Unggulan Strategis Nasional. Universitas Halu Oleo.233 Hal

[9] Johnson B, Narayankumar B, Nazar AR, Kaladharan P, Gopakumar G (2017). Economic analysis of farming and wild collection of seaweeds in Ramanathapuram District, Tamil Nadu. Indian J. Fish., 64(4): 94- 99. DOI: 10.21077/ijif.2017.64.4.61828-13

[10] Munoz J, Freile-Pelegrin Y, Robledo D (2004) Mariculture of Kappaphycus alvarezii (Rhodophyta, Solieriales) color strains in tropical waters of Yucatan, Mexico. Aquaculture 239:161–177

[11] Hurtado AQ, Neish IC, Critchley AT (2015). Developments in production technology of Kappaphycus in the Philippines: more than four decades of farming. J Appl Phycol DOI 10.1007/s10811-014-0510-4

[12] Fadilah SS, Alimuddin, Pong-Masak PR, Santoso J, Parenrengi A (2016). Growth, Morphology and Growth Related Hormone Level in Kappaphycus alvarezii Produced by Mass Selection in Gorontalo Waters, Indonesia. HAYATI Journal of Biosciences 23: 29-34.

[13] Gunalan B, Kotiya AS, and Jetani KL (2010). Comparison of Kappaphycus alvarezii Growth at Two Different Places of Saurashtra Region. European Journal of Applied Sciences 2 (1): 10-12

[14] Athithan S (2014). Growth performance of a Seaweed, Kappaphycus alvarezii under lined earthen pond condition in Tharuvaikulam of Thoothukudi coast, South East of India. Res. J. Animal, Veterinary and Fishery Sci. 2: 6-10

[15] Aslan LOM, Iba W, Bolu, LR, Ingram BA, Gooley GJ, Silva, SSD (2015). Mariculture in SE Sulawesi Indonesia: Culture Practices and The Socioeconomic Aspects of The Major
Commodities. Ocean & Coastal Management 116: 44 – 57

[16] Periyasamy C, Subba Rao PV, and Anantharaman P (2016). Protocols for successful commercial farming of Kappaphycus alvarezii, a potential carrageenophyte in Indian waters. Seaweed Res. Utiln., 38(2) : 139 – 147

[17] Nursidi, Ali S. A., Anshary H., Tahya A. M., 2017 Environmental parameters and specific growth of Kappaphycus alvarezii in Saugi Island, South Sulawesi Province, Indonesia. AACL Bioflux 10(4):698-702

[18] Yong YS, Young WTL, Thien. VY, Ng SE, Anton A (2013). Analysis of Formulae for Determination of Seaweed Growth Rate. J Appl Phycol 25:1831-1824

[19] Periyasamy C, Subba Rao PV, Anantharaman P. (2018). Harvest optimization to assess sustainable growth and carrageenan yield of cultivated Kappaphycus alvarezii (Doty) Doty in Indian waters varezii (Doty) Doty in Indian waters. J Appl Phycol. DOI 10.1007/s10811-018-1562-7

[20] Hung LD, Kanji Hori K, Nang HQ, Kha T, Hoa LT (2009) Seasonal changes in growth rate, carrageenan yield and lectin content in the red alga Kappaphycus alvarezii cultivated in Camranh Bay, Vietnam. J Appl Phycol (2009) 21:265–272 DOI 10.1007/s10811-008-9360-2

[21] Munoz J, Freile-Pelegrin Y, Robledo D (2004) Mariculture of Kappaphycus alvarezii (Rhodophyta, Solieriaeae) color strains in tropical waters of Yucatan, Mexico. Aquacultur

[22] Hayashi L, Santos AA, Faria GSM, Nunes BG, Souza ALD, Barreto PLM, Oliveira EC, Bouzon ZL (2011) Kappaphycus alvarezii (Rhodophyta, Areschouguiaceae) cultivated in sub tropical waters in Southern Brazil. J Appl Phycol 23:337–343

[23] Periyasamy C, Anantharaman P, Balasubramanian T, Subba Rao PV (2014). Seasonal variation in growth and carrageenan yield in cultivated Kappaphycus alvarezii (Doty) Doty on the coastal waters of Ramanathapuram district, Tamil Nadu. J Appl Phycol DOI 10.1007/s10811-014-0256-z

[24] Ateweberhan M, Rougier A, Rakotomahazo C (2014). Influence of environmental factors and farming technique on growth and health of farmed Kappaphycus alvarezii (cottonii) in south-west Madagascar J Appl Phycol DOI 10.1007/s10811-014-0378-3

[25] Yong WTL, Chin JYY, Yasir S (2014). Evaluation of Growth Rate and Semi-refined Carrageenan Properties of Tissue-cultured Kappaphycus alvarezii (Rhodophyta, Gigtartinales). Phycological Research 62: 316-321

[26] Hurtado AQ, Gerung GS, Yasir S, Crichley AT (2014). Cultivation of tropical red seaweeds in the BIMP-EAGA region. J Appl Phycol 26: 707–718

[27] Goa S (2018). Budidaya Rumput Laut Kappaphycus alvarezii (Doty) Doty ex Silva (Solieruceae, Gigtartinales, Rhodophyta) Menggunakan Bibit Hasil Seleksi Klon yang telah di Kultur Jaringankan di Perairan Desa Bungin Permai Kecamatan Tinanggea Kabupaten Konawe Selatan Sulawesi Tenggara. Laporan praktikum lapangan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Halu Oleo, Kendari

[28] Subba Rao PV, Suresh Kumar K, Ganesh K, Mukund CT (2008) Feasibility of cultivation of Kappaphycus alvarezii (Doty) Doty at different localities on the northwest coast of India. Aquaculture 39: 1107–1114

[29] Pong-Masak PR, Pantjara B, Rachmansyah. 2009. Seaweed Planting Season in Anggrek Waters, North Gorontalo. Yogyakarta (ID): Gajahmada University. pp. 1-10. Annual National Seminar VI Fisheries and Marine Research Report; 2009 Jul 25; Yogyakarta, Indonesia

[30] Periyasamy C, Subba Rao PV, Anantharaman P (2016). Spatial and temporal variation in carrageenan yield and gel strength of cultivated Kappaphycus alvarezii (Doty) Doty in relation to environmental parameters in Palk Bay waters, Tamil Nadu, southeast coast of India. J Appl Phycol28:525–532

[31] Hayashi L, Paula EJD, Chow F (2007). Growth rate and carrageenan analyses in four strains of Kappaphycus alvarezii (Rhodophyta, Gigartinales) farmed in the subtropical waters of
Sao Paulo state, Brazil. J Appl Phycol 19:505-511

[32] Góes HG, Reis RP (2012) Temporal variation of the growth, carrageenan yield and quality of *Kappaphycus alvarezii* (Rhodophyta, Gigartinales) cultivated at Sepetiba bay, southeastern Brazilian coast. J Appl Phycol 24:173–180

[33] Denison, D. R., and Mishra, A. K. 1995. Toward a theory of organizational culture and effectiveness. *Organization Science*, 6(2), pp. 204–223.

Acknowledgments
The first to four authors (L.O.M.A., W. I, A.B.P and M.R.) are grateful for the research grant given by the Ministry of Research, Technology and Higher Education of the Republic of Indonesia (Kemenristek–Dikti) of the research scheme Penelitian Unggulan Strategis Nasional (Pusnas) under grant No. 478/UN 29.20/ PPM/2018 and SP DIPA-042.06.1.401516/2018. We are indebted to Prof. La Sara and Dr. Wellem H. Muskita for their encouragements and facilities, Ms. Elizabeth Wright and Mr. Idul Male for assisting us in preparing this manuscript. We are also thankful to Ms. Erika and Ms. Asma for technical support in the field and in the laboratory.