A universal weasel
without large cardinals in V

Ralf-Dieter Schindler

Institut für formale Logik, Universität Wien, 1090 Wien, Austria

rds@logic.univie.ac.at
http://www.logic.univie.ac.at/~rds/

0 Introduction.

In [4], Steel constructs an $\Omega + 1$ iterable premouse, called K^c, of height Ω which is universal in the sense that it wins the coiteration against every coiterable premouse of height $\leq \Omega$. Here, Ω is a fixed measurable cardinal, and Steel works in the theory "ZFC + Ω is measurable + there's no inner model with a Woodin cardinal." In [1], Jensen shows that "Ω is measurable" can be relaxed to "Ω is inaccessible" here. Universal weasels are needed for the purpose of isolating K, the core model.

It would be desirable to replace Ω by OR here, where OR is the class of all ordinals, and to get rid of having to assume Ω (OR, that is) to be "large." I.e., we would like to prove the existence of a universal weasel in the theory "ZFC + there's no inner model with a Woodin cardinal." This would be a first step towards proving the existence of K in that theory (cf. the discussion in the introduction to [2]).

This note solves the problem of constructing a universal weasel. We prove:

Theorem 0.1 Assume ZFC + there’s no inner model with a Woodin cardinal. There is then a universal weasel.

We warn the reader that some care is necessary in order to arrive at the appropriate notion of "universal" so as to make [1] not false for the wrong reasons (this has to do with iteration trees of length OR, and will be discussed below).

The key new idea here is to weaken the concept of "countably certified" of [4] Def. 1.2 which is crucial for the construction of K^c. Whereas the iterability proof of [4] can be checked to still go through with this weaker requirement on new extenders to be added to the K^c-sequence, an argument from [1] can be varied to prove the universality of K^c.

We do not know whether the K^c constructed here satisfies a useful version of weak covering. (It can be shown that it does not necessarily satisfy weak covering at every (countably closed) singular cardinal.)
1 The existence of K^c.

We build upon [2] and [4]; in particular, we use the concept of “premouse” as isolated there.

Let $\mathcal{L} = \{\dot{\epsilon}, \dot{U}\}$ be the language for structures of the type $(N; E, U)$, where E is binary and U is unary. For the purposes of this paper let us introduce the following.

Definition 1.1 Let Ψ be a (first order) formula in the language \mathcal{L}. Then Ψ is said to be $r\Sigma_3$ (restricted Σ_3) iff

$$\Psi \equiv \exists v_0 (\Phi_0 \land \Phi_1),$$

where Φ_0 is Σ_2 in the language $\{\dot{\epsilon}\}$, and Φ_1 is Σ_0 in the language \mathcal{L}.

\mathcal{L} will be an appropriate language for the models witnessing certifiability.

Definition 1.2 Let \mathcal{M} be an active premouse, F the extender coded by $\hat{F}^\mathcal{M}$, $\kappa = \text{c.p.}(F)$, and $\nu = \dot{\nu}^\mathcal{M} =$ the natural length of F. We say that \mathcal{M} (or, F) is countably certified iff for all $\vec{A} = (A_k: k < \omega)$ with $\forall k \exists n = n(k) A_k \in \mathcal{P}([\kappa]^n) \cap \mathcal{M}$ there are N' and $\vec{B} = (B_k: k < \omega)$ such that

(a) $\omega V_k \subset V_{\kappa}$ (i.e., $\text{cf}(\kappa) > \omega$), N' is transitive, $\omega N' \subset N'$, and $V_{\nu+1} \subset N'$,

(b) $(V_{\kappa}; \in, \vec{A}) \prec_{r\Sigma_3} (N'; \in, \vec{B})$, and

(c) for all $k < \omega$, $B_k \cap [\nu]^n(k) = i_F(A_k) \cap [\nu]^n(k)$, where $i_F: \mathcal{M} \rightarrow \Sigma_1 \text{Ult}_0(\mathcal{M}, F)$ is the canonical embedding.

In this definition, we confuse \vec{A} (and \vec{B}) with $\{(k, u): u \in A_k\}$ (and $\{(k, u): u \in B_k\}$, resp.).

It is easy to see that if \mathcal{M} is countably certified in the sense of [4] Def. 1.2 then it is countably certified in the sense of [4] Def. 1.2.

We construct the models \mathcal{N}_ξ and \mathcal{M}_ξ as on p. 6 f. of [4], except that we don’t require (2) and (3) at all in Case 1 and that in (1) of Case 1 we understand “countably certified” in the sense of [4] Def. 1.2 rather than [4] Def. 1.2.

We now have to prove [4] Thm. 2.5, the assertion that if \mathcal{N}_θ exists then collapses of countable submodels of $\mathcal{C}_k(\mathcal{N}_\theta)$ are countably iterable for every $k < \omega$ (cf. [4] for the exact statement). As on pp. 12 ff. we’ll prove this in a simplified case, for trees of length ω. We’ll leave it as an easy exercise for the reader to check that the proof of [2] Thm. 9. 14 can be varied in much the same way as the proof from [2] pp. 12 ff. in the light of our new meaning of “countably certified.”

Lemma 1.3 Let $\sigma: \mathcal{P} \rightarrow \mathcal{N}_\eta$ with $\mathcal{N}_\eta \models \text{ZFC}$, and let T be an iteration tree on \mathcal{P} of length ω such that $\mathcal{D}^T = \emptyset$. Then there are b and σ' such that b is a cofinal branch through T and $\sigma': \mathcal{M}_b^T \rightarrow \mathcal{N}_\eta$ with $\sigma' \circ \pi_{0b}^T = \sigma$.

\[2\]
Proof. For any $\tau: P \to Q$ we denote by

$$U(\tau, Q)$$

the tree of attempts to find b, τ' such that b is a cofinal branch through T and $\tau': M_0^T \to Q$ with $\tau' \circ \pi_{00} = \tau$. We let $U(\tau, Q)$ consists of $\phi: M_0^T \to Q$, and if $\phi: M_1^T \to Q$ and $\phi': M_k^T \to Q$ then we put $\phi \leq_{U(\tau, Q)} \phi'$ iff $i \leq_T k$ and $\phi' \circ \pi_{ik} = \phi$.

Let us assume that $U(\sigma, N_\eta)$ is well-founded (in the obvious sense). We aim to derive a contradiction. Let us write $\nu_i = c.p.(E_i^T)$, and $\nu_i = \text{natural length of } E_i^T$.

We closely follow [4] p. 12 ff. We are going to define

$$(\sigma_i, Q_i, R_i : i < \omega)$$

such that the following requirements are met, for all $j < i < \omega$. (In what follows, the $\tau(\cdot, \cdot)$'s are the functions from [3] Lemma 3.1.)

1. R_i is a transitive model of ZFC^- with $\omega R_i \subset R_i$,
2. $\sigma_i: \mathcal{P}_i \to Q_i$, where Q_i is an "N-model" of R_i,
3. $V_{\sigma_j(\nu_j)+1}^R = V_{\sigma_j(\nu_j)+1}^{R_i}$ and $\sigma_j(\nu_j) \leq \sigma_i(\nu_i)$,
4. $\tau(\cdot, \cdot) \circ \sigma_j \mid \nu_j = \sigma_i \mid \nu_j$,
5. if $U = U(\sigma_i \circ \pi_{0i}, Q_i)$ then U is well-founded and R_i has (in order type) at least $|\sigma_i|_U$ many cutoff points, and
6. $i > 0 \Rightarrow R_i \in R_{i-1}$.

It is (6) which gives the desired contradiction.

To commence, we let $\sigma_0 = \sigma$, $Q_0 = N_\eta$, and $R_0 = H_\theta$ for some large enough θ.

Suppose now we are given $(\sigma_l, Q_l, R_l : l \leq i)$. We want to construct σ_{i+1}, Q_{i+1}, and R_{i+1}.

Set $F = \sigma_i(E_i^T)$, $\kappa = c.p.(F)$, and $\nu = \text{the natural length of } F$. Let us cheat by assuming F is the top extender of Q_i. (If not, we have to consider the top extender of the target model of $\tau(\cdot, \cdot): J_{lh(F)}^Q \to Q$ instead; a similar cheating appears in [4] p. 12 ff.) By (2), F is countably certified inside R_i. Let $A = (A_k : k < \omega)$ be an enumeration of

$$\mathcal{P}([\kappa]^{<\omega}) \cap Q_i \cap \text{ran}(\sigma_i).$$

By (1), $\vec{A} \in R_i$, and hence there are inside R_i objects N, N', and \vec{B} such that

1. $N = V^R_\kappa$, $\omega N \subset N$, N' is transitive, $\omega N' \subset N'$, and $V^N_{\nu+1} \subset N'$,
2. $(N; \in, \vec{A}) \prec_{\Sigma_3} (N'; \in, \vec{B})$, and

By (1), $\vec{A} \in R_i$, and hence there are inside R_i objects N, N', and \vec{B} such that

1. $N = V^R_\kappa$, $\omega N \subset N$, N' is transitive, $\omega N' \subset N'$, and $V^N_{\nu+1} \subset N'$,
2. $(N; \in, \vec{A}) \prec_{\Sigma_3} (N'; \in, \vec{B})$, and
(c) for all $k < \omega$, $B_k \cap [\nu]<\omega = i_F(A_k) \cap [\nu]<\omega$.

It now clearly suffices to prove the following

Main Claim. In N', there are σ, Q, and R such that

1. R is a transitive model of ZFC^- with $\omega R \subset R$,
2. $\sigma: \mathcal{P}_{i+1} \to Q$, where Q is an “N-model” of R,
3. $V_{\sigma(\nu_i)+1}^R = V_{\sigma(\nu_i)+1}^{N'}$ (and hence $= V_{\sigma(\nu_i)+1}^R$),
4. $\sigma \upharpoonright \nu_i = \sigma_i \upharpoonright \nu_i$, and
5. if $U = U(\sigma \circ \pi_{0i+1}, Q)$ then U is well-founded and R has (in order type) at least $|\sigma|_U$ many cutoff points.

Notice that the assertion of the Main Claim is $\Sigma^N_2(\{T, \sigma_i(\nu_i), \sigma_i \upharpoonright \nu_i\})$. Let

$$\pi : (M; \epsilon, \vec{C}) \to (N'; \epsilon, \vec{B}),$$

where M is countable (and hence $(M; \epsilon, \vec{C}) \in N' \cap N$), and π is Σ_2-elementary w.r.t. $\{\epsilon\}$ and Σ_0-elementary w.r.t. \mathcal{L}. The fact that $(M; \epsilon, \vec{C})$ can be embedded into N' in such a fashion is a $r\Sigma_3$-fact, and hence by $(N; \epsilon, \vec{A}) \prec_{r\Sigma_3} (N'; \epsilon, \vec{B})$ there is some

$$\pi' : (M; \epsilon, \vec{C}) \to (N; \epsilon, \vec{A})$$

such that π' is Σ_2-elementary w.r.t. $\{\epsilon\}$ and Σ_0-elementary w.r.t. \mathcal{L}. In order to finish the proof of the Main Claim (and thus of [1.3]), it now suffices to verify the following

Claim. In N, there are σ, Q, and R such that

1. R is a transitive model of ZFC^- with $\omega R \subset R$,
2. $\sigma: \mathcal{P}_{i+1} \to Q$, where Q is an “N-model” of R,
3. $V_{\pi\sigma^{-1}(\sigma(\nu_i)+1)}^R = V_{\pi\sigma^{-1}(\sigma(\nu_i)+1)}^{N'}$,
4. $\sigma \upharpoonright \nu_i = \pi' \circ \pi^{-1}(\sigma \upharpoonright \nu_i)$, and
5. if $U = U(\sigma \circ \pi_{0i+1}, Q)$ then U is well-founded and R has (in order type) at least $|\sigma|_U$ many cutoff points.

Let $j = T\text{-pred}(i + 1)$. We define $\sigma': \mathcal{P}_{i+1} \to Q_j$ by

$$\pi_{ji+1}(f)(a) \mapsto \sigma_j(f)(\pi' \circ \pi^{-1}(\sigma_i(a_i))).$$

To see that this is well-defined and elementary we argue as follows.
\[\mathcal{P}_{i+1} \models \Phi(\pi_{ji+1}(f)(a)) \]
\[\iff \{ u : \mathcal{P}_j \models \Phi(f(u)) \} \in (E^f_i)_a \]
\[\iff \sigma_i(\{ u : \mathcal{P}_j \models \Phi(f(u)) \}) \in F_{\sigma_i(a)} \].

Let \(\sigma_i(\{ u : \mathcal{P}_j \models \Phi(f(u)) \}) = A_k \). So \(i_F(A_k) \cap [\nu]^{<\omega} = B_k \cap [\nu]^{<\omega} \), and we may continue as follows.

\[\iff \sigma_i(a) \in i_F(A_k) \]
\[\iff \sigma_i(a) \in B_k \]
\[\iff \pi' \circ \pi^{-1}(\sigma_i(a)) \in A_k. \]

But \(A_k = \sigma_i(\{ u : \mathcal{P}_j \models \Phi(f(u)) \}) = \sigma_j(\{ u : \mathcal{P}_j \models \Phi(f(u)) \}) = \{ u : Q_j \models \Phi(\sigma_j(f)(u)) \} \), and hence

\[\iff Q_j \models \Phi(\sigma_j(f)(\pi' \circ \pi^{-1}(\pi_i(a)))) \].

We’ll have that \(\sigma' \circ \pi_{0i+1} = \sigma_j \circ \pi_{0j} \), and so \(\sigma' \in U(\sigma_j \circ \pi_{0j}, Q_j) \). Moreover, clearly,

\[\epsilon = |\sigma'|_{U(\sigma_j \circ \pi_{0j}, Q_j)} < |\sigma_j|_{U(\sigma_j \circ \pi_{0j}, Q_j)} \]

and hence by (5) we may let \(\theta = \) the \(\epsilon \)th cutoff point of \(\mathcal{R}_j \). Working inside \(\mathcal{R}_j \), we may thus set

\[\mathcal{R} = \text{the transitive collapse of the closure of } V_{\pi' \circ \pi^{-1}(\pi_i(\nu))} \cup \{ Q_j \} \]
under Skolem functions for \(V_{\theta}^{\mathcal{R}_j} \) and \(\omega \)-sequences,

\[Q = \text{the image of } Q_j \text{ under the collapse, and} \]
\[\sigma = \text{the image of } \sigma' \text{ under the collapse.} \]

It is now straightforward that we have shown the Claim.

\[\square (L8) \]

Of course by standard arguments the previous sketch also shows that \(K^c \) exists unless there is a non-tame premouse, say.
Assume that there is no inner model with a Woodin cardinal. By the results in §1 together with Lemma 2.4 (b) we then have that K^c is $< OR$ iterable. However, it may be the case that there is a definable tree on K^c of length OR with no cofinal branch.

This discussion leads us to the following.

Definition 2.1 A weasel W is universal iff whenever $(\mathcal{T}, \mathcal{U})$ is a coiteration of W with some premouse \mathcal{M} (using padded trees) with $lh(\mathcal{T}) = lh(\mathcal{U}) = OR + 1$ then \mathcal{M} is a weasel, $\mathcal{D}^U \cap [0, OR]_U = \emptyset$, π^U_{OR} "$OR \subset OR$, and $\mathcal{M}^U_{OR} \geq \mathcal{M}^T_{OR}$.

N.B.: “W is universal" is a schema which cannot be expressed by a single sentence in the language of ZFC.

I do not know if there is a notion of “universal" which is more useful.

Let us say that a premouse \mathcal{M} is below superstrong iff for all $F = E^\mathcal{M}_\alpha \neq \emptyset$ we have that the natural length of F is strictly less than $i_F(c.p.(F))$. We're now going to show:

Theorem 2.2 Assume ZFC+ every premouse is below superstrong. Then K^c is universal, if it exists.

Proof. Deny. Set $W = K^c$, and $W_\alpha = J^W_{\alpha + \omega}$ for $\alpha \in OR$. By a slight refinement (due to Zeman and the author) of an argument of Jensen (cf. [1]) there is then a (definable) class $C \subset OR$, club in OR, together with a commuting system $(\pi_{\alpha \beta} : \alpha \leq \beta \in C)$ of maps such that for all $\alpha \leq \beta \in C'$ do we have that $\pi_{\alpha \beta} : W_\alpha \to W_\beta$ is cofinal with $\pi_{\alpha \beta} \upharpoonright \alpha = id$ and $\pi_{\alpha \beta}(\alpha) = \beta$, and such that $(W_\alpha, \pi_{\alpha \beta} : \alpha \leq \beta \in C' \cap \kappa + 1)$ is the direct limit of $(W_\alpha, \pi_{\alpha \beta} : \alpha \leq \beta \in C \cap \kappa)$ for limit points κ of C.

Let $n < \omega$ be large enough. There is then a (definable) $C' \subset C$, again club in OR, such that $N^\kappa = (V_\kappa; \in, C \cap \kappa, (W_\alpha, \pi_{\alpha \beta} : \alpha \leq \beta \in C \cap \kappa)) \prec_{\Sigma_n} (V; \in, C, (W_\alpha, \pi_{\alpha \beta} : \alpha \leq \beta \in C))$ for all $\kappa \in C'$. Pick $\kappa < \lambda \in C'$, both limit points of C, with $\omega V_\kappa \subset V_\kappa$ and $\omega V_\lambda \subset V_\lambda$ (i.e., $cf(\kappa) > \omega$ and $cf(\lambda) > \omega$).

Let $\bar{A} = (A_k; k < \omega)$ with $\forall k \exists m = m(k) A_k \in \mathcal{P}([\kappa]^m) \cap W$. Let $\alpha < \kappa$ be such that $A_k \in ran(\pi_{\alpha \kappa})$ for all $k < \omega$. Set $\bar{A}_k = \pi_{\alpha \kappa}^{-1}(A_k)$. Notice that A_k is definable over N^κ by

$$u \in A_k \iff \text{for all but boundedly many } \beta \in (C \cap \kappa) \setminus \alpha, u \in \pi_{\alpha \beta}(\bar{A}_k).$$
Define B_k over N^λ by

$$u \in B_k \iff \text{for all but boundedly many } \beta \in (C \cap \lambda) \setminus \alpha, \ u \in \pi_{\alpha \beta}(\bar{A}_k).$$

Then obviously $\pi_{\kappa \lambda}(A_k) = B_k$, for all $k < \omega$. It is also easy to verify that

$$(V_\kappa; \in, \bar{A}) \prec_{r\Sigma_3} (V_\lambda; \in, \bar{B}).$$

(Notice that if a formula is $\Sigma_0(\Sigma_p)$ then it is equivalent to a Σ_p formula over models of Σ_p-replacement.)

Now let F be the extender derived from $\pi_{\kappa \lambda}$, and let ν be its natural length. By our smallness assumption, $\nu < \lambda$. Let $\gamma = \nu^+ < \lambda$. A straightforward induction as in the proof of [2] Lemma 11.4 shows that

$$(J_\gamma^W, \bar{F})$$

satisfies the initial segment condition, and is hence a premouse. But we have shown that F is countably certified. Thus $F = E_\gamma^W$, contradicting the fact that γ is a cardinal of W.

□ (2.2)

Notice that 0.1 is now an immediate corollary of 2.2 together with what we showed in §1. By well-known arguments, we might in fact replace “there’s no inner model with a Woodin cardinal” by “every premouse is tame,” say, in the statement of 0.1.

3 ω-completeness and countable certifiability.

We now want to discuss the relation between being ω-closed and being countably certified (in our new sense).

Definition 3.1 Let M be an active premouse, F the extender coded by \hat{F}^M, $\kappa = c.p.(F)$, and $\nu = \nu^M = \text{the natural length of } F$. We say that F is strongly ω-closed iff $\forall \ (a_n, X_n : n < \omega)$ with

$$\forall n < \omega \ \exists k < \omega \ (a_n \in \nu^k \land A_n \in \mathcal{P}([\kappa]^k) \cap M)$$

there is some transitive N with

$$\omega N \subset N \land V_{\nu+1} \subset N$$
such that for all
\[\pi : M \rightarrow \Sigma_2 N \]
with \(M \) countable and transitive there is
\[\pi' : M \rightarrow \Sigma_2 V_\kappa \]
such that
\[\pi' \circ \pi^{-1} \mid \bigcup_{n<\omega} a_n \rightarrow \kappa \]
witnesses that \(F \) is \(\omega \)-complete w.r.t \((a_n, X_n : n < \omega) \), i.e.,
\[\forall n < \omega \ (X_n \in F_{a_n} \Rightarrow \pi' \circ \pi^{-1}(a_n) \in X_n) . \]

Recall that such \(F \) is \(\omega \)-complete iff for all \((a_n, X_n : n < \omega) \) as in 3.1 there is an order-preserving \(\tau : \bigcup_n a_n \rightarrow \kappa \) with \(\forall n < \omega \ (X_n \in F_{a_n} \Rightarrow \tau(a_n) \in X_n) \). Trivially, if \(F \) is strongly \(\omega \)-closed then \(F \) is \(\omega \)-closed. Strong \(\omega \)-closedness requires that \(\tau \) is realized as the restriction of some \(\pi' \circ \pi^{-1} \) as above. We also have the following facts, which are easy to verify.

If \(F \) is countable certified in the sense of [4] Defn. 1.2, then \(F \) is countably certified in the sense of [4], and then \(F \) is strongly \(\omega \)-closed. We can still run the iterability proof for countable submodels of \(C_k(N_\theta) \) if we relax the requirement that new extenders be countably certified to that they be strongly \(\omega \)-complete. Of course, the new \(K^c \) is then still universal.

References

[1] Ronald Jensen, *Addendum to A new fine structure for higher core models*, handwritten.

[2] Bill Mitchell and John Steel, *Fine structure and iteration trees*, LNL 3.

[3] Ralf Schindler, *The core model for almost linear iterations*, submitted.

[4] John Steel, *The core model iterability problem*, LNL #8.