Actinospica acidithermotolerans sp. nov., a novel actinomycete isolated from sediment from an Indonesian hot spring

Ali B. Kusuma1,2,5 · Kurniawan E. Putra5 · Leggina R. Vanggy2,5 · Joshua Loh1,4 · Imen Nouioui1,3 · Michael Goodfellow1

Received: 1 May 2022 / Accepted: 7 June 2022 / Published online: 23 July 2022
© The Author(s) 2022

Abstract
A polyphasic study was designed to resolve the taxonomic position of isolate MGRD01-02T which was recovered from an acidic hot spring in Indonesia and assigned to the genus Actinospica. Phylogenetic analyses based on 16S rRNA gene sequences show that the isolate is most closely related to the type strains of Actinospica acidiphila (98.5%), Actinospica robiniae (97.8%) and Actinospica durhamensis (96.8%). Morphological and chemotaxonomic data underpin the assignment of the isolate to the genus Actinospica as it forms an extensively branched substrate mycelium which carries tufts of white aerial hyphae that differentiate into straight to flexuous chains of cylindrical spores with faint rugose surfaces, contains 2,6-diamino-3-hydroxydiaminopimelic acid in the peptidoglycan, mixtures of hydrogenated menaquinones with nine isoprene units, iso-C\textsubscript{15}O\textsubscript{2} and iso-C\textsubscript{16}O\textsubscript{3} as major fatty acids and phosphatidylethanolamine as the diagnostic phospholipid. Whole-genome sequence analyses show that the isolate, A. durhamensis CSCA 57T and Actinocrinis puniceicyclus DSM 45168T have genome sizes of 7.9, 9.6 and 6.7 Mbp, respectively. A phylogenomic tree shows that they form distinct branches in a well-supported clade, a result supported by associated phenotypic data. Average nucleotide identity and digital DNA:DNA hybridization similarities are below the recommended thresholds for assigning strains to the same species; they also indicate that isolate MGRD01-02T is most closely related to the A. durhamensis and A. robiniae strains. Corresponding amino acid identity and conserved protein data not only support these relationships but also confirm the taxonomic integrity of the genus Actinocrinis. Based on these results, it is proposed that isolate MGRD01-02T (= CCMM B1308T = ICEBB-09T = NCIMB 15218T) be classified in the genus Actinospica as Actinospica acidithermotolerans sp. nov. The draft genome of the isolate and its closest phylogenomic neighbours contain biosynthetic gene clusters with the potential to produce new natural products, notably antibiotics.

Keywords Actinospica acidithermotolerans · Acidophilic actinomycetes · Polyphasic taxonomy · Genomics · Genome mining

Communicated by Erko Stackebrandt.

Michael Goodfellow
m.goodfellow@ncl.ac.uk

1 School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
2 Indonesian Centre for Extremophile Bioresources and Biotechnology (ICEBB), Faculty of Life Sciences and Technology, Sumbawa University of Technology, Sumbawa Besar 84371, Indonesia
3 Leibniz-Institut DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
4 Northumbria University, Newcastle upon Tyne NE1 8ST, UK
5 Department of Research, Innovation and Development, Sumbawa Technopark (STP), Sumbawa Besar 84371, Indonesia
Introduction

Novel filamentous neutrophilic actinomycetes isolated from extreme biomes are a rich source of novel antibiotics (Bull and Goodfellow 2019), as exemplified by the discovery of novel polyketide antibiotics from the type strains of Micromonospora maris (Nouioui et al. 2018) and Streptomyces leeuenhoekii (Busarakam et al. 2014) which were isolated from deep-sea sediment and hyper-arid Atacama Desert soil, respectively. Compared with their neutrophilic counterparts, acidophilic filamentous actinomycetes have rarely featured in bioprospecting campaigns even though they are common in acidic habitats and produce diverse specialized metabolites, notably novel antibiotics (Wang and Donk 2012). In general, acid-loving filamentous actinomycetes encompass acidotolerant (pH range 4.5–7.5, optimal growth around pH 5.5) and obligate acidophiles (pH range 3.5–6.5, optimal growth around pH 4.5 (Williams et al. 1971), as represented by Streptomyces (Xu et al. 2006) and Actinospica species (Cavaletti et al. 2006; Golinska et al. 2015), respectively. Members of these taxa and related genera that contain acidotolerant and acidophilic species are of particular interest as a prospective source of new specialized metabolites as they have large genomes with many biosynthetic gene clusters (BGCs) associated with the production of novel antibiotics (Nouioui et al. 2018; Świecimska et al. 2020) and hence can be considered as gifted sensu Baltz (2017).

The family Actinospicaceae (Cavaletti et al. 2006) of the order Catenulisporales (Donadio et al. 2015) contains the genera Actinospora (Cavaletti et al. 2006) and Actinocrinis (Kim et al. 2017); the former encompasses three validly published species, including Actinospora robiniae, the nomenclatural type species, and the latter Actinocrinis puniciceyclus. The present study, a continuation of our earlier work on the diversity of filamentous actinomycetes from Indonesian extreme habitats, was designed to establish the taxonomic status of an Actinospora strain isolated from acidic hot spring sediment. Strain MGRD01-02T was compared with the type strains of Actinospora, Actinocrinis and Catenulispora species using genomic and phenotypic data. In addition, the draft genomes of the isolate and its closest relatives were checked for natural product-biosynthetic gene clusters (NP-BGCs) predicted to express for novel specialized metabolites, especially antibiotics. The isolate was shown to belong to a new Actinospora species: the name proposed for this taxon is Actinospora acidithermotolerans with isolate MGRD01-02T as the type strain.

Materials and methods

Isolation, maintenance and cultivation

Strain MGRD01-02T was isolated from a composite sediment sample (pH 3.0 ± 0.05, temperature 41.07 ± 0.2 °C, organic matter 0.06 ± 0.02%, salinity 0.03 ± 0.02) collected from the Mengeruda acidic hot spring (8°42′32.224″S/121°5′12.526″E) in East Nusa Tenggara Province, Flores Island, Indonesia. The strain was isolated on acidified actinomycete isolation agar (HiMedia, Mumbai, India), pH 4.5, after 2 weeks at 37 °C following inoculation of the plates with particles of the dried sediment. The pH of the isolation medium and other acidified media were adjusted using KH2PO4/HCl, KH2PO4 and KH2PO4/NaOH buffers. The isolate together with Actinospora acidiphila NRRL B-24432T, Actinospora durhamensis CSCA 57T (Golinska et al. 2015), Actinospora robiniae DSM 44927T (Cavaletti et al. 2006), Actinoeris puniciceyclus DSM 45618T and Catenulispora acidiphila DSM 44928T, were maintained on modified Bennett’s agar at pH 4.5 (Jones 1949) and as a mixture of hyphal fragments and spores in 20% w/v glycerol at −20 and −80 °C. The C. acidiphila strain was obtained from the collection of the Northern Regional Research Laboratory, Peoria, USA, the A. durhamensis strain from the personal collection of Michael Goodfellow (Newcastle University) and the remaining strains from the Leibniz Institute, DSMZ German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany.

Chemotaxonomic and morphological properties

Biomass for the chemotaxonomic studies on isolate MGRD01-02T was prepared in 250 ml of acidified yeast extract-malt extract broth (International Streptomyces Project [ISP 2]) (Shirling and Gottlieb 1966) pH 4.5, at 28 °C for 14 days and the resultant biomass harvested by centrifugation at 1968 g for 10 min, washed twice in sterile distilled water and freeze-dried. The isolate was then examined for diaminopimelic acid isomers, whole cell sugar and polar lipid patterns and its fatty acid and menaquinone profiles determined, in all cases using standard chromatographic procedures and appropriate controls as described previously (Kusuma et al. 2021). The type of cell wall muramic acid was determined after Uchida et al. (1999). In addition, growth taken from an acidified oatmeal agar plate (Küster and Williams 1964), pH 4.5, incubated for 14 days at 28 °C was examined for spore chain arrangement and spore surface ornamentation using a scanning electron microscope (Tescan Vega 3, LMU...
instrument) in the Electron Microscopy Research Unit, Newcastle University, following the modified procedure described by O’Donnell et al. (1993).

Phenotypic traits

Smears prepared from growth of isolate MGRD01-02T taken from an acidified oatmeal agar plate after 10 days at 28 °C were examined by light microscopy following Gram staining (Society of American Bacteriologist 1957). The isolate and its phylogenomic neighbours were examined for a broad range of biochemical, degradation and phenotypic properties acquired using methods described by Williams et al. (1983), albeit using acidified media, and for diagnostic enzymes using API-ZYM strips (BioMerieux, Lyon, France). The ability of these strains to grow at different temperature (4, 10, 20, 28, 37, 45 and 55 °C) and pH (4.5–10.5 with increments of 0.5) regimes and in the presence of various sodium chloride concentrations (1, 3 and 5%) was recorded using acidified ISP 2 agar, pH 4.6, as the basal medium. All the tests were carried out in triplicate using a standard inoculum equivalent to 5.0 on the McFarland scale (Murray et al. 1999). Cultural properties of the isolate and its phylogenomic neighbours were recorded on acidified tryptone-yeast extract, yeast extract-malt extract, oatmeal, inorganic salts-starch, glycerol-asparagine, peptone-yeast extract-iron and tyrosine agar plates (ISP media 1–7) (Shirling and Gottlieb 1966) after 21 days at 28 °C. Aerial and substrate mycelial pigment colours and those of diffusible pigments were determined by comparison against colour charts (Kelly 1958).

Whole-genome sequencing and comparison of sequences

Genomic DNA was extracted from wet biomass of single colonies of isolate MGRD01-02T and A. durhamensis CSCA 57T which had been grown on acidified ISP 2 agar (pH 4.5), and on acidified R2A agar (Reasoner and Geldreich 1985), pH 4.5, for A. puniceicyclus DSM 45618T for 7 days at 28 °C, using the protocol provided by MicrobesNG (Birmingham, UK) (http://www.microbesng.uk), and sequenced on an MiSeq instrument (Illumina, San Diego, USA). The quality of DNA preparations and the sequencing of the genomic DNA libraries were achieved following the procedures described by Kusuma et al. (2021). The libraries were sequenced using the 2 × 250 bp paired-end protocol (MicrobesNG), reads under 200 bp discarded and contigs assembled using SPAdes software version 6.1.1 (Bankevich et al. 2012). The draft genomes of the strains were annotated using the RAST-SEED webserver (Aziz et al. 2008) and the default option. Draft genome sequences of isolate MGRD01-02T (GenBank accession number JAGSOH0000000000), A. durhamensis CSCA 57T (GenBank accession number JAGSOG0000000000) and A. puniceicyclus DSM 45168T (GenBank accession number JAGSXH0000000000) were generated following an established procedure undertaken by MicrobesNG (Birmingham, UK) (http://www.microbesng.uk) and sequenced on an MiSeq instrument (Illumina, San Diego, USA). The quality of the extracted DNA preparations and the sequencing of genomic DNA libraries were achieved as described by Kusuma et al. (2021).

The draft genome sequences generated for the isolate and the, A. durhamensis and A. puniceicyclus strains were compared with corresponding sequences of A. acidiphila NRRL B-24431T, A. robiniæ DSM 44927T, and C. acidiphila DSM 44928T retrieved from the NCBI genome database using the codon tree option in the PATRIC website (Wat- tam et al. 2017; Davis et al. 2020), as described by Kusuma et al. (2021), and a ML phylogenomic tree constructed with the RAxML algorithm (Stamatakis 2014). Ortholog average nucleotide identity (orthoANI) (Lee et al. 2016) and digital DNA–DNA hybridization (dDDH) similarities (Meier-Kolthoff et al. 2013a) were determined between all of these organisms using the ANI calculator from the EZBioCloud (https://www.ezbiocloud.net/tools/ani) and the GGDC (http://ggdc.dsm.de/ggdc) webservers, respectively. Corresponding amino acid identity (AAI) (Konstantinidis and Tiedje 2005) and percentage of conserved proteins (POCP) (Qin et al. 2014) were also calculated.

Phylogeny

An almost full-length 16S rRNA gene sequence (1524 nucleotide [nt], GenBank accession number MK503593.1) was extracted directly from the draft genome of isolate MGRD01-02T using the ContEst16S tool available from the EZBioCloud webserver (https://www.ezbiocloud.net/tools/contest16s). The resultant sequence was found to be identical to one generated using the Sanger method (Sanger and Coulson 1975). The 16S rRNA gene sequences were compared with corresponding sequences of the type strains of Actinospica, Actinocrinis and Catenulispora species taken from the EzBioCloud webserver following multiple sequence alignment using MUSCLE software (Edgar 2010). Pairwise sequence similarities were determined using the single-gene tree option from the Genome-to-Genome Distance Calculator (GGDC) website (Meier-Kolthoff et al. 2013b). Phylogenetic trees were inferred using the maximum-likelihood (ML), maximum-parsimony (MP) and neighbour-joining (NJ) algorithms as previously cited (Golinska et al. 2015) and the trees validated in bootstrap analyses based on 1000 replicates using the MEGA X software package (Kumar et al. 2018), and the GTR + GAMMA model. The trees were rooted using the 16S rRNA gene sequence from

CSCA 57T (GenBank accession number JAGSOG0000000000) and A. puniceicyclus DSM 45168T (GenBank accession number JAGSXH0000000000) were generated following an established procedure undertaken by MicrobesNG (Birmingham, UK) (http://www.microbesng.uk) and sequenced on an MiSeq instrument (Illumina, San Diego, USA). The quality of the extracted DNA preparations and the sequencing of genomic DNA libraries were achieved as described by Kusuma et al. (2021).

The draft genome sequences generated for the isolate and the, A. durhamensis and A. puniceicyclus strains were compared with corresponding sequences of A. acidiphila NRRL B-24431T, A. robiniæ DSM 44927T, and C. acidiphila DSM 44928T retrieved from the NCBI genome database using the codon tree option in the PATRIC website (Wattam et al. 2017; Davis et al. 2020), as described by Kusuma et al. (2021), and a ML phylogenomic tree constructed with the RAxML algorithm (Stamatakis 2014). Ortholog average nucleotide identity (orthoANI) (Lee et al. 2016) and digital DNA–DNA hybridization (dDDH) similarities (Meier-Kolthoff et al. 2013a) were determined between all of these organisms using the ANI calculator from the EZBioCloud (https://www.ezbiocloud.net/tools/ani) and the GGDC (http://ggdc.dsm.de/ggdc) webservers, respectively. Corresponding amino acid identity (AAI) (Konstantinidis and Tiedje 2005) and percentage of conserved proteins (POCP) (Qin et al. 2014) were also calculated.

Phylogeny

An almost full-length 16S rRNA gene sequence (1524 nucleotide [nt], GenBank accession number MK503593.1) was extracted directly from the draft genome of isolate MGRD01-02T using the ContEst16S tool available from the EZBioCloud webserver (https://www.ezbiocloud.net/tools/contest16s). The resultant sequence was found to be identical to one generated using the Sanger method (Sanger and Coulson 1975). The 16S rRNA gene sequences were compared with corresponding sequences of the type strains of Actinospica, Actinocrinis and Catenulispora species taken from the EzBioCloud webserver following multiple sequence alignment using MUSCLE software (Edgar 2010). Pairwise sequence similarities were determined using the single-gene tree option from the Genome-to-Genome Distance Calculator (GGDC) website (Meier-Kolthoff et al. 2013b). Phylogenetic trees were inferred using the maximum-likelihood (ML), maximum-parsimony (MP) and neighbour-joining (NJ) algorithms as previously cited (Golinska et al. 2015) and the trees validated in bootstrap analyses based on 1000 replicates using the MEGA X software package (Kumar et al. 2018), and the GTR + GAMMA model. The trees were rooted using the 16S rRNA gene sequence from
Kineococcus aurantiacus IFO15268T (GenBank accession number NR_112022.1), the nomenclatural type species of the genus.

Detection of biosynthetic gene clusters

Natural product BGCs were detected in the draft genomes of isolate MGRD01-02T and its closest phylogenomic neighbours (Table 2) using AntiSMASH 5.0, with default options (Blin et al. 2019), available at http://antismash.secondarymetabolites.org. The genome of the isolate was also screened for the presence of antibiotic resistant target genes using the default settings in the Antibiotic Resistance Target Seeker 2.0 (ARTS 2.0) platform which is designed to detect potential novel antibiotic targets and to prioritize potential new NP-BGCs for further study (Mungan et al. 2020).

Results and discussion

The morphological and chemotaxonomic properties of the isolate were consistent with its classification in the genus Actinospica (Cavaletti et al. 2006; Golinska et al. 2015). The isolate formed an extensively branched substrate mycelium, tufts of white aerial hyphae which differentiated into straight to flexuous chains of cylindrical spores with slightly rugose ornamentation (Fig. S1). Colony characteristics were recorded following growth of the isolate on an oatmeal agar plate after 21 days, as shown in Fig. S2. The diamino acid of the peptidoglycan was 2,6-diamino-3-hydroxydiaminopimelic acid, the muramic acid moieties were N-acetylated, the predominant respiratory quinones consisted of mixtures of hydrogenated menaquinones with nine isoprene units, phosphatidylethanolamine was the diagnostic phospholipid, and the cellular fatty acids were found to be rich in iso- and anteiso-branched components. These properties distinguish the isolate from species classified in the genera Actinocrinis (Kim et al. 2017) and Catenulispora (Świecimska et al. 2020).

Actinospica species show qualitative differences in sugar and polar lipid patterns, and qualitative and quantitative variations in fatty acid and menaquinone profiles (Cavaletti et al. 2006; Golinska et al. 2015). The major sugars found in whole-organism hydrolysates of isolate MGRD01-02T were galactose, mannose, rhamnose and xylose; the polar lipid pattern contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylthanolamine, phosphatidylglycerol and phosphatidylinositol (Fig. S3). These chemotaxonomic properties distinguish the isolate from the type strains of Actinospica species, as exemplified by the detection of xylose and phosphatidylglycerol in the sugar and polar lipid profiles, respectively. Like representatives of A. acidiphila, A. durhamensis and A. robiniae the fatty acid profile of the isolate was composed of major proportions of iso-C15:0 (25.8%) and iso-C16:0 (23.7%), but unlike them, it contained major amounts of anteiso-C17:0 and anteiso-C18:1 (33.2%) and only a minor proportion of anteiso-C15:0. Similarly, the presence of major proportions of di-, tri-, hexa- and octa-hydrogenated menaquinones with nine isoprene units (19, 21, 26 and 29%, respectively) in the isolate distinguishes it from profiles found in the Actinospica strains, as illustrated by the presence of a large proportion of MK9 (H2). However, quantitative differences in fatty acid and menaquinone profiles need to be interpreted with care as the former are sensitive to growth and experimental conditions (O’Donnell 1988) and the latter by the stage in the growth cycle from which biomass is harvested (Saddler et al. 1986; Yassin et al. 1991).

The accession numbers of the draft genomes are given in Table 1 which also shows that the isolate and A. durhamensis CSCA 57T have large genomes, albeit ones lower than those of the type strains of A. acidiphila (9.6 Mbp, GenBank accession number NJ-JNYX 0000000), A. robiniae (9.9 Mbp, GenBank accession number NZ-AZAN000000000)

Table 1 Genomic features of isolate MGRD01-02T and the type strains of Actinospica durhamensis and Actinocrinis puniceicyclus

Genomic features	Isolate MGRD01-02T	A. durhamensis CSCA 57T	A. puniceicyclus DSM 45168T
Genome range (Mbp)	7.9	9.6	6.7
Coverage	89	73	37
Numbers of:			
Contigs	429	958	434
rRNA genes	4	6	8
tRNA genes	55	60	46
CDS	7811	8999	6330
Contig N50	50,301	26,914	45,308
Contig L50	47	104	46
Digital DNA G+C (%)	70.6	71.1	70.4
GenBank accession numbers	JAGSOH000000000	JAGSOG000000000	JAGSXH000000000
and C. acidiphila (10.5 Mbp, GCA—000024025). However, the digital (d) DNA G + C values of the Actinospora strains fall within the narrow range of 70.2 to 72.6%. In contrast, the draft genome size of A. puniceicyclus DSM 45618\(^T\) was relatively low at 6.7 Mbp though its in silico G + C value of 70.5% was just short of that recorded for isolate MGRD01-02\(^T\).

The phylogenetic trees (Fig. 1) based on the 16 rRNA gene sequences showed that the isolate, the type strains of the Actinospora species and A. puniceicyclus DSM 45618\(^T\) formed a well-supported clade that was most closely related to a similarly well-defined lineage that corresponded to the genus Catenulispora. The isolate formed a well-supported branch that was most closely related to A. acidiphila NRRL B-24481\(^T\) sharing a sequence similarity with the latter of 98.4%, a value that corresponded to 22 nt differences at 1446 sites, though this relationship was not supported by a high bootstrap value. These strains shared lower similarity values with the A. durhamensis and A. robiniae strains and an even lower value of 95.40% with A. puniceicyclus DSM 45618\(^T\), this similarity value is equivalent to 84 nt differences at 1394 locations. The strains assigned to the Actinospora 16S rRNA gene clade shared sequence similarities with the Catenulispora strains within the range 92.0–92.8%, which is equivalent to 100 to 140 nt differences, respectively. The recovery of the Actinospora and Catenulispora strains in sister clades reinforces results recorded from earlier studies (Nouioui et al. 2018; Golinska et al. 2015; Świecimska et al. 2020) though in the latter two studies the type strain of A. puniceicyclus formed a distinct subclade while those of A. puniceicyclus, C. acidiphila and A. acidiphila were recovered as well-separated lineages within the tree that were increasingly distant from the subclade.

Table 2 shows that all the strains, including the isolate, shared ANI and dDDH similarities much lower than the thresholds (95–96% and 70%, respectively) used to delineate closely related species (Chun et al. 2018). These data also show that the isolate is most closely related to A. durhamensis CSCA 57\(^T\) and A. robiniae DSM 44926\(^T\) and most distantly to A. acidiphila NRRL B-24431\(^T\) and C. acidiphila DSM 44928\(^T\). The A. puniceicyclus strain showed ANI and dDDH values with the other strains well below the cut-offs cited above. The close relationship between the isolate, A. durhamensis and A. robiniae was supported by AAI and PCOP values that were well above the 70 and 50% thresholds used to assign species to the same genus (Konstantinidis and Tiedje 2005; Qin et al. 2014), as shown in Table 2. In contrast, the A. puniceicyclus and C. acidiphila strains shared AAI and PCOP similarities well below the recommended thresholds indicating that they belong to different genera. Similarly, the ANI and dDDH values found between the A. acidiphila and the other strains is consistent with its assignment to a separate genus though additional studies are needed to confirm this.

The triplicated cultures gave identical results for all of the phenotypic characteristics shown in Table 3. It is also evident from the phylogenomic tree (Fig. 2) based on 441 single core genes that isolate MGRD01-02\(^T\) and its phylogenomic neighbours were recovered as a well-supported clade which corresponded to the order Catenulisporales (Donadio et al. 2015). The isolate and the type strains of A. durhamensis and A. robiniae formed a distinct subclade while those of A. puniceicyclus, C. acidiphila and A. acidiphila were recovered as well-separated lineages within the tree that were increasingly distant from the subclade.
encouraging that the results for many of the tests confirmed those recorded in earlier analyses on the Actinospora, Actinocrinis and Catenulispora species. Numbers at the nodes are bootstrap support values based on 100 replicates calculated using the RAxML Fast Bootstrapping method. GenBank accession numbers are shown in parentheses. The scale bar indicates 0.07 substitutions per nucleotide position. The tree is rooted using the type strain of Kineococcus aurantiaca, the nomenclatural type species of the genus.

Table 2 Amino acid and average nucleotide identities, digital DNA:DNA hybridization values and conserved protein similarities between isolate MGRD01-02T and its closest phylogenomic neighbours and between the reference strains

Strains	dDDH/orthoANi/AAI/POCP values (%)					
	1	2	3	4	5	6
1 Isolate MGRD01-02T	–	–	–	–	–	–
2 Actinospora acidiphila NRRL	20.6/72.9/54.8/41.0	–	–	–	–	–
B-24431T						
3 Actinospora durhamensis	24.1/75.6/72.6/60.8	20.1/72.8/54.6/39.8	–	–	–	–
CSCA 57T						
4 Actinospora robiniae DSM	23.6/85.7/71.8/60.0	20.3/72.2/54.4/48.2	29.3/84.7/79.5/67.5	–	–	–
44926T						
5 Actinocrinis puniceicyclus	21.4/75.6/64.2/54.2	19.4/72.6/55.1/38.9	21.7/75.7/63.5/49.2	21.7/75.7/63.5/51.1	–	–
DSM 45168T						
6 Catenulispora acidiphila	20.8/74.0/57.2/46.6	19.7/73.9/54.5/41.5	20.7/73.8/57.3/48.3	20.5/73.9/57.9/49.7	20.9/73.9/57.5/43.3	–
DSM 44928T						

and valine arylamidases. Similarly, the isolate and the other Actinospora strains can be separated from the Actinocrinis and Catenulispora strains as they are positive for esterase (C4), esterase lipase (C8) and β-glucosidase. The A. acidiphila strain, unlike the isolate and the A. durhamensis and A. robiniae strains, degraded starch and used acetamide and L-alanine as sole nitrogen sources. In contrast, all the strains grew optimally at or around pH 5.5 indicating that they are acidotolerant (Williams et al. 1971; Xu et al. 2006).

As with the phenotypic characteristics shown in Table 3 good congruence was found between the growth and cultural features of the isolate and corresponding results from the previous studies cited previously thereby providing
further evidence of the value of cultural properties in the systematics of filamentous actinomycetes (van der Aart et al. 2019). The isolate grew particularly well on oatmeal (Fig. S2) and yeast extract–malt extract agar plates as did the Actinospica and Catenulispora strains, but showed varying responses on the remaining ISP media (Table S1). In contrast, A. puniceicyclus DSM 45168T did not grow on any of the ISP media. Some of the substrate mycelial pigments were of diagnostic value though this was less so with other colonial features as most of the strains did not produce aerial hyphae or diffusible pigments. However, the isolate can be separated from the other Actinospica strains

Characteristics	Strains
API-ZYM tests	
Acid and alkaline phosphatases, α-glucosidase	+ + + + + –
α-Chymotrypsin, trypsin	– – + + + –
Cystine arylamidase	– – + + + –
Esterase (C4), esterase lipase (C8) β-glucosidase	+ + + + + –
α- and β-Galactosidase, leucine and valine arylamidases	– + + + + –
β-Glucuronidase	– + + + + –
Lipase (C14)	– + + + –
α-Mannosidase	– + + + –
Degradation tests (% w/v)	
Hypoxanthine (0.4)	+ – – – –
Starch (1)	– + – – + +
Tween 20 (1)	– – + – – +
Tweens 40 and 60 (1)	+ + + + – –
Xanthine, xylan (0.4)	– – – – + +
Biochemical tests	
Nitrate reduction	+ + + – – +
Oxidase	+ + + + + –
Nutritional tests	
Sole carbon sources (1%, w/v)	
Inulin	+ – – – – –
α-Mannitol	– – – – – +
α-Raffinose	+ + – – + +
α-Sucrose	– – – – + +
α-Trehalose	+ + + + – +
Sole nitrogen sources (1%, w/v)	
Acetamide, l-alanine	– + – – + +
l-Isoleucine, l-valine	– + + – – –
l-Phenylalanine	– – + – – +
Tolerance tests	
Growth in presence of NaCl (% w/v)	0–1 0–1 0–1 0 0 1–3
pH range	4.5–6.5 4.5–6.0 4.0–6.0 4.8–6.0 3.5–6.5 6.0–10.0
Temperature range (°C)	20–45 20–37 10–45 10–37 10–45 10–37
Optimal temperature (°C)	37 28 22–28 25 22–28

Strains: 1. Isolate MGRD01-02T. 2. Actinospica acidiphila NRRL B-24431T. 3. Actinospica durhamensis CSCA 57T. 4. Actinospica robiniae DSM 44926T. 5. Actinocrinis puniceicyclus DSM 45168T. 6. Catenulispora acidiphila DSM 44928T. +, positive, –, negative. The strains were positive for naphthol-AS-BI-phosphohydrolase (API-ZYM test), produced was H2S and used d-glucose as a sole carbon source, but did not form α-fucosidase (API-ZYM test), reduce nitrite, use acetate, benzoate, fumarate, pyruvate or succinate (sodium salts) as sole carbon sources or degrade adenine (0.5w/v), casein (1), chitin (0.3), elastin (0.3), gelatin (1), guanine (0.3), uric acid (0.4), Tween 80 (1) or l-tyrosine (0.4). The optimal pH and temperatures of the strains ranged from pH 5.0–5.5 and from 25 to 28 °C.
as it formed a greyish-yellow substrate mycelium on yeast extract-malt extract and oatmeal agar plates and a brown diffusible pigment on inorganic salts-starch agar.

Detection of biosynthetic gene clusters

Isolate MGRD01-02T and its closest phylogenomic relatives (Table 2) have large genomes (6.7–10.5 Mbp) which harbor between 13 and 31 BCCs, as shown in Fig. 3. The bioclusters include ones predicted to encode for drug-like molecules, notably non-ribosomal peptide synthases (NRPS), type 1 and 2 polyketide synthases (PKS) and hybrid clusters. The latter are composed of two or more gene clusters and are important as they tend to express for novel derivatives of known compounds (Gallagher and Jensen 2015). Only 5 out of the 66 BCGs predicted to encode for drug-like molecules (7.5%) showed high gene sequence similarities, that is, above 70% with known bioclusters held in the MiBiG database, namely ones associated with the production of antamyacin (100% gene identity), cacibiochin B (92% gene identity), catenulipeptin (100% gene identity), curamycin (100% gene identity) and icosalides A/B (100% gene identity), the balance either showed low similarities with known compounds or were predicted to synthesize novel compounds.

The genomes of all of the strains contained a biocluster associated with the production of lobosamide, a polyene macrolactam which inhibits the growth of *Trypanosoma brucei* (Schulze et al. 2015). In contrast, most bioclusters were either strain specific or present in more than one of the genomes. Putative BGCs associated with the production of sporolide were found in the genomes of isolate MGRD01-02T, *A. durhamensis* CSCA57T and *A. robiniae* DSM 44926T whereas the biocluster predicted to encode for macrotetralide was only detected in the genomes of the isolate and the *A. pumiceicyclus* strain.

Strain-specific BCCs included ones associated with the production of tiacumicin B (6% gene identity), an antibacterial compound (Xiao et al. 2011), atratumycin (21% gene identity), an anti-tubercular antibiotic (Sun et al. 2019), auroramycin (11% gene identity), an antibiotic that actively inhibits *Staphylococcus aureus* (Duggar 2011), catenulipeptin (100% gene identity), a novel class III lantipeptide (Wang and Donk 2012), kirromycin (8% gene identity), an anti-bacterial compound active against *Brevibacterium brevis* (Wolf et al. 1972) and ristomycin A (10% gene identity), an antibiotic which inhibits mycobacteria (Fairbrother 1958) were characteristic of the genomes of isolate MGRD01-02T, *A. pumiceicyclus* DSM 45618T, *A. acidiphila* DSM 44926T, *C. acidiphila* DSM 44928T, *A. durhamensis* CSCA 57T and *A. robiniae* DSM 44927T, respectively. The genome of the isolate also contained a biocluster predicted to encode for feglymycin (10% gene identity), a calcium-dependent antibiotic with anti-HIV properties (Férir et al. 2012). The genome analyses based on The Antibiotic Resistance Target Seeker
(ARTS) software version 2.0 highlighted BCG 16.1 which is associated with the production of a feglymycin-like compound (47% gene identity) and hence is a good candidate for further gene expression studies.

The genome mining analyses show that strains classified in the order Catenulisporales are a potentially rich source of new specialized metabolites, notably antibiotics. However, molecular studies are needed to determine the functional impact of bioclusters found to predict for unknown products or ones that showed low levels of gene similarity with known compounds. Even so, these studies indicate that Actinospica and Catenulispora strains should be considered as candidates for bioprospecting campaigns designed to discover novel specialized metabolites of biotechnological value, not least antibiotics with new modes of action.

Conclusions

This polyphasic study shows that isolate MGRD01-02T is an authentic member of the genus Actinospica. Critically, it can be distinguished from the type strains of Actinospica species using a combination of genomic, genotypic and phenotypic features. Consequently, it should be classified as a novel species in the genus Actinospica for which the name Actinospica acidithermotolerans sp. nov. is proposed. The results of this study also confirm the taxonomic integrity of the genus Actinocrinis (Kim et al. 2017). It is becoming increasingly apparent that taxonomically diverse actinomycetes, including novel taxa, are a feature of geographically diverse hot springs (Song et al. 2009; Habib et al. 2020). Improved procedures are needed to selectively isolate and characterize novel actinomycetes, including Actinospica strains, from hot springs for biotechnological and ecophysiological purposes.

Description of Actinospica acidithermotolerans sp. nov.

Actinospica acidithermotolerans sp. nov. (a.ce.i.d.ther.
mo.to.le.rens L. masc. adj. acidus sour., Gr. masc. adj. ther.
mos hot., L. pres. part. tolerans, tolerating; N.L. part. adj.
acidothermotolerans, tolerating acid and heat conditions).

Aerobic, Gram-stain positive, actinomycete which forms an extensively branched substrate mycelium, tufts of white aerial hyphae that differentiate into long straight to flexuous chains of cylindrical spores (0.8–0.9 × 0.4–0.5 µm) with slightly rugose ornamentation. Grows from 20 to 45 °C, optimally at ~37 °C, from pH 4.5 to 6.5, optimally at ~pH 5.5 and in the presence of 1% w/v sodium chloride. Grows well on acidified Bennett’s, inorganic salts-starch and starch-casein agar and forms a grayish yellow substrate mycelium and white aerial hyphae on oatmeal agar. Reduces nitrate but not nitrite. Degrades hypoxanthine, Tweens 40 and 60, but not starch, Tween 20, xanthine or xylan. Positive for acid and alkaline phosphatases, esterase (C4), enterase lipase (C8), α- and β-glucosidases, but negative for α-chymotrypsin, cystine, leucine and valine arylamidases, β-glucuronidase, lipase (C14), α-mannosidase and trypsin. D-raffinose and D-trehalose are used as sole carbon sources for energy and growth, but not D-mannitol or sucrose. Does not use acetamide, L-alanine, L-isoleucine, L-phenylalanine or L-valine as sole nitrogen sources. The wall peptidoglycan contains 2,6-diamino-3-hydroxydiaminopimelic acid, N-acetylated muramic acid moieties and galactose, mannos, rhamnose and xylose. The major fatty acids are iso-C15:0, iso-C16:0, and summed feature anteiso-C15:0/C16:1<ω7c, C18:1ω9c is also present (7.2%), the balance of the fatty acids are found in trace amounts (<0.7%). The polar lipid profile consists of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylmethanolamine, phosphatidylglycerol and phosphatidylinositol and the major menaquinones are MK-9 (H2, H4, H6 and H8). The genomic G+C content of the type strain is 70.5% and its approximate genome size 7.9 Mbp.

The type strain, MGRD01-02T (= CCMM B1308T = ICEBB-09T = NCIMB 15218T), was isolated from sediment collected from the Mengeruda acidic hot-spring in East Nusa Tenggara Province, Flores Island, Indonesia.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00203-022-03058-7.

Acknowledgements We are grateful to Mr. Ja’far Abdurrahman and Mr. Faiz Muhammad, for helping to collect the environmental sample, to Professor Hans-Peter Klenk (Newcastle University) for his contribution to the initial stages of the study, and to Professor Aharon Oren (The Hebrew University of Jerusalem, Israel) for help in preparing the species name.

Author contributions MG, IN, ABK, KEP and LRV designed the study and prepared the manuscript. ABK, KEP, and JL helped to collect the environmental sample and characterized the isolate and associated strains under the supervision of MG and IN. ABK and LRV deposited the type strain of the new species in the culture collections. All of the authors approved the final version of the manuscript.

Funding ABK is grateful for financial support awarded through the Ph.D. Scholarship Scheme of the Indonesian Endowment Fund for Education (LPDP), Ministry of Finance, Indonesia [Grant no. S-2183/ LPDP.3/2016]. IN is indebted to Newcastle University for a postdoctoral fellowship and MG for an Emeritus Fellowship from the Leverhulme Trust.
Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

Balz RH (2017) Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol 44:573–588. https://doi.org/10.1007/s10295-016-1815-x

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comp Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al (2019) antiSMASH 5.0: updates to the secondary metabolism genome mining pipeline. Nucleic Acids Res 47:W81–W87. https://doi.org/10.1093/nar/gkz310

Bull AT, Goodfellow M (2019) Dark, rare and inspirational microbial campaigns. Microbiology (reading) 165:1252–1264. https://doi.org/10.1093/micr/000822

Buserakam K, Bull AT, Girard G, Labeda DP, van Wezel GP et al (2014) Streptomyces leeuwenhoekii sp. nov., the producer of chaxamycins, forms a distinct branch in the extremobiosphere: 16000 m of bioprospecting campaigns. Microbiology 160:302–314. https://doi.org/10.1099/mic.0.074828-0

Cavaletti L, Monciardini P, Schumann P, Rohde M, Bamonte R et al (2006) Actinospica robindae gen. nov., sp. nov. and Actinospica acidiphila sp. nov.: proposal for Actinospicaceae fam. nov. and Actinospirorinae subord. nov. in the order Actinomycetales. Int J Syst Evol Microbiol 56:1747–1753. https://doi.org/10.1099/ijs.0.01483-0

Cavaletti L, Monciardini P, Schumann P, Rohde M, Bamonte R et al (2006) Actinospica robindae gen. nov., sp. nov. and Actinospica acidiphila sp. nov.: proposal for Actinospicaceae fam. nov. and Actinospirorinae subord. nov. in the order Actinomycetales. Int J Syst Evol Microbiol 56:1747–1753. https://doi.org/10.1099/ijs.0.01483-0

Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R et al (2020) The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res 48(D1):D606–D612. https://doi.org/10.1093/nar/gkz943

Donadio S, Cavaletti L, Monciardini P (2015) Order IV. Catenulisporales ord. nov. In: Goodfellow M, Kämpfer P, Whitman WB (eds) Bergey’s manual of systematic bacteriology 2nd edn. vol 5, Part A, The Actinobacteria. Springer, New York, p 225

Duggar BM (2011) Aureomycin: a product of the continuing search for new antibiotics. Ann NY Acad Sci 1241(1):163–169. https://doi.org/10.1111/j.1749-6632.2011.06254.x

Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq4

Fairbrother R (1958) In-vitro activity of ristocetin and framyctin two new antibiotics. Lancet 72:1353–1355. https://doi.org/10.1016/s0140-6736(58)91440-5

Félix G, Hanchen A, François KO, Hoorebeke G, Husken D et al (2012) Feglymycin, a unique natural bacterial antibiotic peptide, inhibits HIV entry by targeting the viral envelope protein gp120. Virology 433:308–319. https://doi.org/10.1016/j.virol.2012.08.007

Gallagher KA, Jensen PR (2015) Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade. BMC Genomics 16:960. https://doi.org/10.1186/s12864-015-2110-3

Golinska P, Zucchi TD, Silva L, Dahm H, Goodfellow M (2015) Actinospica durhamensis sp. nov., isolated from a spruce forest soil. Antonie Van Leeuwenhoek 108:435–442. https://doi.org/10.1007/s10482-015-0496-1

Habib N, Khan IU, Xiao M, Li S, Saqib M, Xian WD (2020) Marmomicta caldifontis sp. nov., a novel actinobacterium isolated from a hot spring. Int J Syst Evol Microbiol 70:2053–2058. https://doi.org/10.1099/ijsem.0.004016

Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145. https://doi.org/10.1128/JB.57.2.141-145.1949

Kelly KL (1958) Centroid notations for revised ISCC-NBS colour name blocks. J Res Nat Burd Stand USA 61:472

Kim JJ, Marjerrison CE, Cornish Shartau SL, Brady AL, Sharp C (2017) Actinocrinis puniceiceps gen. nov., sp. nov., an actinobacterium isolated from an acidic spring. Int J Syst Evol Microbiol 67:602–609. https://doi.org/10.1099/ijsem.0.010167

Konstandinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264. https://doi.org/10.1128/JB.187.18.6258-6264.2005

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

Küster WST, Williams ST (1964) Selection of media for isolation of streptomycetes. Nature 202:928–929. https://doi.org/10.1038/202928a0

Kusuma AB, Nouioui I, Goodfellow M (2021) Genome-based classification of the Streptomyces violaceusniger clade and description of Streptomyces sabulosicollis sp. nov. from an Indonesian sand dune. Antonie Van Leeuwenhoek 114:859–873. https://doi.org/10.1007/s10482-021-01564-0

Lee I, Ouk KY, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103. https://doi.org/10.1099/ijsem.0.007760

Meier-Kolthoff JP, Auff AF, Klenk HP, Gök M (2013a) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:1–14

Meier-Kolthoff JP, Gök M, Spröer C, Klenk HP (2013b) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–418. https://doi.org/10.1007/s00203-013-0888-4

Mungan MD, Alanjary M, Blin K, Weber T, Medema MH et al (2020) ARTS 2.0: feature updates and expansion of the Antibiotic Resistant Target Seeker for comparative genome mining.
