Molecular cloning and sequence analysis of a mitogen-activated protein kinase gene in the Antarctic yeast *Rhodotorula mucilaginosa* AN5

Cuijuan Shi1 · Hong Zhang1 · Kai Yu1 · Yingying Wang3 · Jie Jiang1,2 · Yun Ju1 · Chuanzhou Zhang1 · Ziyi Cheng1 · Guangfeng Kan1,2

Received: 21 February 2021 / Accepted: 14 July 2021 / Published online: 9 August 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract

Background The mitogen-activated protein kinase (MAPK) cascades play important roles in various signaling transduction networks of biotic and abiotic stress responses. However, MAPK signaling pathways in cold-active yeast *Rhodotorula mucilaginosa* have not been reported comprehensively.

Methods and results In the present study, MAPK gene (*RmMAPK*) was first cloned and characterized from Antarctic sea ice yeast *R. mucilaginosa* AN5. The full length of the *RmMAPK* gene is 1086 bp and encodes a 361 amino acids protein with a predicted molecular mass of 40.9 kDa and a pI of 5.25. The RmMAPK contains 11 MAPK conserved subdomains and the phosphorylation motif TGY located in the activation loop of the kinase. Quantitative real-time PCR and western blot assay revealed that the expression and phosphorylation level of RmMAPK up-regulated rapidly and significantly when yeast cells were subjected to low temperature (4 °C), high salinity (120‰ NaCl) and heavy metal (2 mmol/L CuCl2).

Conclusions All data suggested that the MAPK cascades might act as a key function in response to extreme stresses, such as low temperature, high salinity and heavy metal.

Keywords Antarctica yeast · Mitogen-activated protein kinase · Sequence characterization · Abiotic stresses

Introduction

All living organisms are capable of perceiving and adapting external environment changes by activation of some signal transduction pathways, which eventually lead to changes of intracellular activities. In several cases, a family of serine/threonine protein kinase known as the mitogen-activated protein kinase (MAPK) is involved. MAPK was first identified as microtubule-associated protein kinase by Sturgill and Ray [1], and thus was named microtubule-associated protein kinases. After that, MAPKs are found extensively in a variety of eukaryotic organism, ranging from fungi, plants to human [2–4].

In some fungi and yeasts, the most studied MAPK pathway is usually named the high osmolarity glycerol (HOG) signaling pathway, because of its activation by exposing in a high level of osmotic shock [5]. The HOG MAPK signaling pathway is a three-kinase module composed of MAPK Hog1p, MAPKK Pbs2p and three MAPKKKs of Ste11p, Ssk2p and Ssk22p. When cells are exposed to osmotic stress, the transmembrane osmosensors Sho1p and Sln1p transmit the signal to their respective downstream three MAPK kinase kinases (MAPKK), among which Ste11p is in Sho1p transmit branch and Ssk2p and Ssk22p are in Sln1p transmit branch. Three MAPKKKs then activate MAPK kinase (MAPKK) Pbs2p, that in turn phosphorylates and activates ScHog1p. The activated Hog1p enhances the transcription of glycerol phosphate dehydrogenase gene to increase intracellular glycerol production and adjust the osmotic balance [6–8]. Apart from hyperosmotic adaptability response, HOG signaling pathway also plays similar roles...
in fungi response to other extracellular challenges, including low temperature, nutrient limitation, UV irradiation, heat shock, heavy metals or oxidative stress [9–13].

Antarctic yeast Rhodotorula mucilaginosa AN5 is a unicellular pigmented eukaryote isolated from sea ice of Antarctica and stored at our laboratory at − 80 °C [14]. Surviving and thriving in permanent low temperature environments, the yeast AN5 was tested to be tolerant at 0 °C with the optimum growth temperature at 20 °C [14]. Furthermore, in polar sea ice, the only liquid that yeasts lives is pocketed of concentrated brines [15]. Our experiments also indicated that yeast AN5 could survive and reproduce in high salinity of 120‰, and was more resistant compared to mesophilic yeasts (data not shown). Moreover, in the Antarctic ecosystems, besides the geochemical characteristics, the human activity and industrial emissions of heavy metals to the atmosphere, give a significant increase of some metals [16, 17]. The yeast strain AN5 has been observed strong tolerant to different concentrations of heavy metals, such as Cd, Pb, Mn, Cu, Cr and Hg [14]. All of these investigations prove that Antarctic yeast R. mucilaginosa AN5 is cold-active yeast and behave some special properties that adapt to polar sea ice habitats.

To explain the adaption mechanisms of polar yeast to abiotic stresses and research the involvement of MAPK in extreme environments resistance, a MAPK homologue gene RmMAPK was isolated, identified and characterized from Antarctic yeast R. mucilaginosa AN5. In addition, the expression variation and phosphorylation level of RmMAPK under low temperature, high salinity and copper stresses were quantified by quantitative real-time PCR (qPCR) and western blot assay.

Materials and methods

Microorganisms and culture conditions

The yeast strain R. mucilaginosa AN5 was isolated from Antarctic sea-ice samples collected by the 23th Chinese Antarctic scientific expedition in 2007. The yeast was cultivated overnight from frozen glycerol stock in 10 ml YEPD medium (1.0% yeast extract, 2.0% peptone, 2.0% dextrose in sterilized sea water) at 20 °C on an orbital shaker of 120 rpm. And then the culture was diluted in 250 ml YEPD medium and grown to mid-log phase (A600 = 0.5). For low temperature treatments, yeast was transferred to 4 °C and further culture for 0 h, 4 h, 12 h and 24 h, respectively. For high salinity treatments, yeast was cultured in 120‰ salinity by the adding of NaCl. For heavy metal treatments, yeast was cultured in YEPD medium by adding of CuCl2 to the final concentration of 2 mmol/L. The cells were collected by centrifugation at 8000 rpm for 5 min, and then frozen in liquid nitrogen and stored in − 80 °C for further analysis.

E. coli DH5α and BL21 were grown in LB medium (0.5% yeast extract, 1.0% peptone and 1.0% NaCl, pH 7.0) at 37 °C.

Cloning and sequencing of RmMAPK gene

The collected yeast cells were ground with a mortar and pestle in liquid nitrogen. Total RNA was extracted following the instruction of total RNA extractor (Trizol) (Sangon, China) and then treated with gDNA eraser (Takara, Dalian, China) for 2 min at 42 °C to remove the possible DNA contamination. The integrity of purified RNA was examined in 1.0% (w/v) agarose gel. The concentration and quality of RNA were measured by a NAS-99 micro-volume spectrophotometer (ATCGene, USA).

The first strand cDNA was synthesized following the manufacturer’s instruction of the PrimeScript RT reagent kit (Takara, China). The gene-specific primers F1 and R1 (Table 1), designed according to the MAPK gene sequence obtained by RNA-Seq (PRJNA379637), were used for PCR amplification with cDNA. The product was purified using SanPrep column DNA gel extraction kit (Sangon, China) and inserted into pGM-T vector (Sangon, China). The ligation product was transformed into competent DH5α cells and plated onto LB agar plate containing ampicillin (50 μg/ml). The positive clones, confirmed by direct bacterium PCR amplification with primers F1 and R1, were sequenced by Sangon Biotech (Shanghai, China).

Primer	Sequence (5′–3′) (restriction enzyme site)	Reaction	Size of production (bp)	Reference
F1	ATACAGCACCACCCACGAC	Gene cloning	1273	This study
R1	GTGACGAGGAGGAGCACA	qPCR	182	This study
F2	CGAGAAGCATTTCATCCAGT			
R2	CGTAACCGTTCATCTGTGG			
ACT-F	TCATCAGTACGACGAGA	Reference gene of RT-PCR (actin)	127	Zhu et al. [48]
ACT-R	ATGTCAGGGTCGACTCAT			
Bioinformatic analysis of the *RmMAPK* gene and deduced protein

The *MAPK* gene homologous sequence was searched by running the blastx program of NCBI. The amino acid sequences homologous to MAPK protein were retrieved from GenBank. The localization of MAPK protein was predicted by PSORT (https://psort.hgc.jp/form2.html). Multiple sequence alignment was performed by ClustalW in BioEdit version 7.0. The evolutionary tree was constructed in MEGA 6.0 using the neighbor-joining method with 1000 bootstrap calculations. The molecular weight and isoelectric point were calculated with Expasy Prot Param tool.

qPCR analysis of *MAPK* transcription under abiotic stress

Total RNA was isolated from the control and treated yeast cells using total RNA extractor (Trizol) (Sangon, China) following the manufacturer’s instruction. qPCR was performed using the SYBR Premix Ex Taq™ II kit (TaKaRa, China) with an ABI 7500 real-time PCR system (Applied Biosystems, USA). The designed primers for *RmMAPK* amplification were F2 and R2 (Table 1). β-actin, which was amplified with primers ACT-F and ACT-R (Table 1) was applied as an internal standard to control the variations in product abundance. Amplification was achieved with the thermal profile of 30 s at 95 °C, 40 cycles of 5 s at 95 °C and 30 s at 60 °C, followed by a melting-curve analysis. The relative differences of RNA expression in samples with different treatments and exposure times were determined by the ΔΔCt relative quantification method.

Protein extraction and western blot analysis

Protein isolation and immunoblotting analysis were performed as described by Van Wuytswinkel et al. [18]. Yeast cells were harvested at 0, 4, 12, 24 h after different treatments of low temperature (4 °C), high salinity (120‰ NaCl) and heavy metal copper ion (2 mmol/L), respectively. The collected cells were frozen in liquid nitrogen, suspended in SDS loading buffer, and promptly boiled for 5 min. Equal amounts of proteins were subjected to SDS-PAGE analysis on 12% gels and then transferred to polyvinylidene difluoride (PVDF) membrane. Dual phosphorylation of RmMAPK at Thr-170 and Tyr-172 was detected by Western blotting with anti-phosphorylated p38 monoclonal antibody at a 1:10,000 dilution according to the manufacture’s instructions (Cell Signaling Technology, USA). After binding of a horseradish peroxidase-linked secondary antibody at a 1:5000 dilution, antibody binding was detected using enhanced chemiluminescence detection kit (Thermo Fisher Scientific, USA). When reprobing with a different antibody, the membranes were washed three times to remove probes with stripping buffer (100 mM β-mercaptoethanol, 62.5 mM Tris–HCl, pH 6.7, 2% SDS). The relative expression content of phosphorylated p38 MAPK was showed as the ratios of the optical density of protein to that of p38 MAPK.

Results

Bioinformatic analysis of *MAPK* gene and deduced amino acid sequence

The sequence of amplified *MAPK* cDNA, referred to as *RmMAPK*, was 1273 bp long, containing an ORF of 1086 bp, which encoded a polypeptide of 361 amino acid residues (Fig. 1). The estimated molecular mass of polypeptide was 40,910.1 Da and the pl was 5.25, which were in good accordance with those of MAPK protein. The nucleotide sequence data for *RmMAPK* had been deposited in GenBank under the accession number KX987161, and the corresponding protein number was APB88859. Additionally, using the PSORT online tool, the deduced RmMAPK protein was predicted to be localized to the cytoplasm, generally matching with cytoplasmic location of other MAPKs [24].

![Fig. 1](https://example.com/fig1.png)

Fig. 1 Partial nucleotide sequence and deduced amino acid sequence of the *MAPK* gene from *R. mucilaginosa* AN5. The amino acid sequence is shown below the nucleotide sequence. Forward and reverse primers for initial cDNA fragment amplification are underlined.
Multiple alignment analysis of amino acid sequences of MAPKs from *R. mucilaginosa* AN5, *Saccharomyces cerevisiae*, *Hortaea werneckii* and *Schizosaccharomyces pombe* revealed that the RmMAPK domains were highly conserved and contained all 11 conserved subdomains that were characteristic of serine/threonine protein kinases (Fig. 2). The amino acid sequence 28–36 (VGMGAFGLVCS) located in subdomain I was the conserved ATP-binding signature of protein kinases. Similarly, an active site with Asp141 and its surrounding amino acids were conservative in all the four sequences. The activation loop was highly conserved with two differences at positions 165 and 166, which in RmMAPK were leucine and alanine, whereas in the other three kinases, they were isoleucine and glutamine. And as the putative phosphorylation site of MAPK, TxY motif was found at amino acids 173–175. The common docking (CD) domain at the C-terminus was evolutionary-conserved with a DxxDEPxx (304–311) motif that functions as a docking site for MAPK kinases. It was also highly conserved in RmMAPK, only one difference with Sty1 at position 312, two differences with HwHog1 at positions 310 and 312, and three differences with ScHog1 at positions 299, 312 and 313. However, the important negatively charged residues at positions 304 (Aspartate), 307 (Aspartate) and 308 (Glutamate) remained unchanged [5, 19]. The last conserved domain was the PDB-2 region which was the Pbs2 kinase and Ptp2 phosphatase binding site in *S. cerevisiae* [20]. Following the PDB-2 region, there were only 14 amino acid residues towards the C-terminus in RmMAPK, but 85 residues in ScHog1.

The deduced amino acid sequence of RmMAPK was compared with the known 17 MAPK amino acid sequences from other fungi and yeasts available from GenBank database, and a neighbor-joining phylogenetic tree was constructed (Fig. 3). The amino acid sequence of RmMAPK was approximately 82% homologous to that of *S. cerevisiae* HOG1p. Moreover, RmMAPK showed the highest homology to mitogen-activated protein kinase HOG1 of *Rhodotorula graminis* WP1 (96% identity, GenBank: XP018268102) and p38 MAP kinase of *Rhodosporidium toruloides* NP11 (95% identity, GenBank: XP016271521). The phylogenetic analysis indicated that the RmMAPK belonged to the HOG1-related group of MAPKs.

Effect of low temperature on MAPK pathway activation

To detect the expression level of *RmMAPK* and protein phosphorylation status under low temperature, polar yeast *R. mucilaginosa* AN5 was incubated at 4 °C for 4, 12 and 24 h (Figs. 4A and 5). The results of qPCR showed that the mRNA expression of RmMAPK increased 1.89-fold after 4 h cold shock, and reached to maximum value of 4.44-fold at 12 h. Then, RmMAPK expression level decreased at 24 h, and was 2.94-fold of the control. Moreover, the western blot results of total p38 and phospho-p38 indicated that the p38 MAPK phosphorylation was elevated at 12 h and 24 h by low temperature treatment (Fig. 5).
Effect of high salinity on MAPK pathway activation

To illustrate the response of RmMAPK to high salinity, qPCR and western blotting were applied to analyze the mRNA expression level and protein phosphorylation status of RmMAPK in Antarctic yeast *R. mucilaginosa* AN5 stressed by 120‰ salinity for 4 h, 12 h and 24 h (Figs. 4B and 5). Research results suggested that after 4 h stress, the expression level of RmMAPK mRNA increased 5.5-fold in 120‰ salinity, reaching the maximum value. With extended stress time, RmMAPK expression level down-regulated at 12 h and 24 h after salinity stress. To further confirm whether RmMAPK was involved in the high salinity responses, western blot was employed to detect the level of protein phosphorylation alteration. The results indicated that an increase in phosphorylation of p38 MAPK was observed in 4 h after stressed with high salinity (Fig. 5).

Effect of copper on MAPK pathway activation

To investigate the putative involvement of RmMAPK in the adaptation of heavy metal copper ion, qPCR and western blot analysis were applied to measure the alteration of MAPK mRNA in response to copper exposure at different times of 4 h, 12 h and 24 h (Figs. 4C and 5). MAPK transcription of non-treated yeast cells showed no obvious changes in detected 24 h. In copper ion stress cells, the mRNA expression of MAPK was up-regulated immediately at 4 h. With extended treatment time, the MAPK expression of copper-induced cells continued to increase and enhanced about twofold after 24 h compared with yeast strain without copper stress. As shown in Fig. 5, phosphorylation alteration of p38 MAPK was also tested in response to copper ion stress. The results suggested that protein phosphorylation level of p38 MAPK was elevated at 4 h, 12 h and 24 h by copper ion treatment.

Discussion

MAPKs are found universally in fungi, animals and plants [21], and have a function in the transmission of environmental signals to intercellular targets, and regulate a variety of cellular responses [8, 22]. NCBI data research and literature reports show that, until now, only six MAPK candidate proteins are found in *R. mucilaginosa* (KAG0659125). However, this protein is just mentioned in NCBI database, and no protein characterization is described. In this work, from Antarctic yeast *R. mucilaginosa* AN5, a sequence of 1273 bp is amplified, which contains an ORF of 1086 bp encoding a polypeptide of 361 amino acid residues with calculated molecular mass of 40.9 kDa and pI of 5.25. The mass and pI value are in accord with known members of the MAPK family of a variety of organisms, such as *TmHog1* (46.5 kDa pI 5.25) from yeast *Trichosporonoides megachiliensis* (AB621550) [23], CsNMAPK (42.7 kDa, pI 5.56) from Cucumber *Cucumis sativus* (DQ812086) [24], and...
Kmhog1 (52.8 kDa, pI 5.21) from yeast Kluyveromyces marxianus (EU625288) [25], etc.

The MAPK-like protein RmMAPK from R. mucilaginosa AN5 contains all the conserved domains and motifs as found in the other yeast (Fig. 2), which means that RmMAPK might possess the same role in changing cellular processes in response to environmental stress. Sequence analysis indicated that RmMAPK contained the 11 evolutionarily conserved kinase subdomains like those in other eukaryotic organisms of Poncirus trifoliata [26] and Cucumis sativus [24]. Those conserved amino acids residues may be considered to be involved in substrate specificity or protein interaction [27]. The ATP-binding site of RmMAPK starts closely to the N-terminus at amino acids 26–34, and is completely identical with those of the other MAPKs [28]. Additionally, RmMAPK contains the consensus sequence of TGY at amino acids 171–173 close to subdomain VIII. As the characteristic of hyperosmolarity-activated MAP kinases, TGY activated MAPKs via double phosphorylation of T (threonine) and Y (tyrosine) [29]. The activated MAPKs are able to phosphorylate the downstream substrates of other kinases and/or transcription factors [2]. CD domain (DxxDEPxx) is at the C-terminus of RmMAPK, and usually thought to be binding site of MAPKKs [30]. The C-terminal region of RmMAPK is estimated to be significantly shorter than that of ScHog1, which also found in other known fungi [31]. Konte and Plemenitas confirm that the C-terminus 70 residues of ScHog1 from Wallemia ichthyophaga are not necessary for its function [5].

Antarctic sea ice, the habitats of polar microorganisms, possesses fundamental traits of low temperature, high salinity and heavy metals [15]. The extreme environments interfere the physiological and biochemical metabolisms of sea-ice organisms. Long-term living in extreme environments, cold-active organisms have developed varieties of mechanisms to survive, colonize and thrive in the habitats. To avoid or relieve abiotic stresses, signal transduction pathways must be perceived and responded firstly. MAPK cascade, as one of the earliest signaling pathways to perceive extracellular stimuli among sophisticated defense networks,
is able to regulate cell division, growth and development to respond to a variety of abiotic stressors [32, 33].

Antarctica represents one of the coldest environments, and low temperature is the fundamental property in Antarctic area. MAPKs are widely known to act as vital functions in stress responses of plants [34], animals [35] and yeasts [36], and then activate other functional proteins to accommodate low temperature stress. In yeast *Dekkera bruxellensis*, HOG-MAPK signaling pathway was activated in cold stress response [36]. Here, qPCR assay showed that the expression level of RmMAPK in polar yeast AN5 was obviously up-regulated under cold shock, and attained the maximal value of 4.44-fold at 12 h (Fig. 4A). Besides, the phospho-p38 MAPK was detected by western blot and the results suggested that the phosphorylation level was elevated at 12 h and 24 h by cold treatment (Fig. 5). This variation trend of RmMAPK was consistent with the cold-shock response of MAPK Hog1p in *S. cerevisiae* treated with low temperature [37]. Likewise, in Antarctic nototheniid fish *Dissostichus mawsoni*, MAPK/p38 signaling pathway was activated by low temperature exposure [35]. Our results primarily provide insight into the roles of MAPKs in regulating Antarctic yeast cold shock responses.

In Antarctica, as seawater is frozen, salts are expelled from seawater into brine channels and pores where sea-ice microorganisms live. With the decrease of air temperature, the pore space and size decreases, and salinity of brines in the pores rises [15]. Salt stress can cause a variety of physiological response such as high osmotic stress, osmolytes accumulation, ionic toxicity and oxidative stress, etc. [38]. Some studies have reported that MAPK cascades are involved in response to salt stress [38, 39]. Our results indicated that after salinity treatment RmMAPK expression and phosphorylation level were increased immediately when compared to the control (Figs. 4B and 5). In soybean *Glycine max*, MAPK (GMK1) was induced after 5 min treatment of 300 mmol/L NaCl [40]. In spotted sea bass *Lateolabrax maculatus*, significant up-regulations were observed in the expressions of mapk after salinity challenge [41]. Heavy metals are enriched in Antarctic sea ice owing to atmospheric circulations and anthropogenic impacts [16, 17]. There are some reports about the participation of yeast MAPK pathway in metal stress. In *S. cerevisiae*, MAPK Hog1p is phosphorylated in response to arsenite, and then activated Hog1p phosphorylates aquaglyceroporin Fps1p and down-regulates its transport activity, thereby reducing arsenite influx [42]. Apart from that, Hog1p can also be phosphorylated to high levels upon cadmium and zinc stress [43]. Now, a number of arsenite and cadmium-activated MAPK signaling pathways are identified in the fission yeast *S. pombe* [44], pathogenic fungi *Cryptococcus neoformans* [45], opportunistic yeast *Candida albicans* [46] and *Candida lusitaniae* [47]. Meanwhile, Exposure of alfalfa (*Medicago sativa*) seedlings to excess copper rapidly activates four distinct MAPKs: SIMK, MMK2, MMK3, and SAMK [22]. Here, we found that RmMAPK mRNA and protein phosphorylation level of *R. mucilaginosa* AN5 was up-regulated within 24 h in response to 2 mmol/L copper treatment, which meant the possible involvement of MAPK pathway in yeast copper stress.

In conclusion, in the current study, we present the MAPK-like kinase in the yeast *R. mucilaginosa* AN5 from Antarctic sea ice. The protein sequence is conservative and quite similar to the Hog homologs of other yeasts such as *S. cerevisiae* and *H. werneckii*. qPCR and western blot analysis show that the transcription and protein phosphorylation status of RmMAPK are up-regulated in response to cold, salinity and copper exposure, which indicates the participation of MAPK pathway in adaptation to abiotic challenge. Further research on the components upstream and downstream *RmMAPK* in this pathway may shed light on our understanding about the response mechanisms to environmental stress in Antarctic yeast *R. mucilaginosa*.

Author contributions CS and YJ conducted experiments. HZ, KY and YW collected and analyzed the data. JJ and GK designed and supervised the project. CZ and ZC wrote and edited the manuscript. All authors read and approved the final manuscript.

Funding This work was supported by the Key Technologies R & D Program of Shandong [2019GHY112047] and Natural Scientific Research Innovation Foundation in Harbin Institute of Technology [HIT.NSRIF.2016085].

Data availability All data generated or analysed during this study are included in this published article and are available from the corresponding author.

Declarations

Conflict of interest The authors have no conflict of interest to declare that are relevant to the content of this article.

Ethical approval The case was approved by the Institutional Ethics Committee for publication.

Consent for publication The participant has consented to the submission of the manuscript to the journal.

References

1. Sturgill TW, Ray LB (1986) Muscle proteins related to microtubule associated protein-2 are substrates for an insulin-stimulatable kinase. Biochem Biophys Res Commun 134:565–571
2. Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226
3. Drosten M, Barbacid M (2020) Targeting the MAPK pathway in KRAS-driven tumors. Cancer Cell 37:543–550
4. Xu JR (2000) Map kinases in fungal pathogens. Fungal Genet Biol 31:137–152
5. Konte T, Plemenitas A (2013) The HOG signal transduction pathway in the halophilic fungus Wallemia ichthyophaga: identification and characterization of MAP kinases WiHog1A and WiHog1B. Extremophiles 17:623–636
6. Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264–1300
7. Hohmann S, Krautz M, Nordlander B (2007) Yeast osmoregulation. Methods Enzymol 428:29–45
8. Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6:196–203
9. Alonso-Monge R, Guirao-Abad JP, Sánchez-Fresneda R, Pla J, Yagüe G, Argüelles JC (2020) The fungicidal action of nicafungin is independent on both oxidative stress generation and HOG pathway signaling in Candida albicans. Microorganisms 8(12):1867
10. Azad GK, Singh V, Thakare MJ, Baranwal S, Tomar RS (2014) Mitogen-activated protein kinase Hog1 is activated in response to curcumin exposure in the budding yeast Saccharomyces cerevisiae. BMC Microbiol 14:317
11. Lenassi M, Vaupotic T, Gunde-Cimerman N, Plemenitaš A (2007) The MAP kinase HwHog1 from the halophilic black yeast Hortaea werneckii: coping with stresses in solar salters. Saline Systems 3:3
12. Dumayevich P, Baltánás R, Clemente JA, Couto A, Sapodnick D, Vasen G, Colman-Lerner A (2018) Heat-stress triggers MAPK crosstalk to turn on the hyperosmotic response pathway. Sci Rep 8:15168
13. Silva LP, Frawley D, Assis LJ, Tierney C, Fleming AB, Bayram O, Goldman GH (2020) Putative membrane receptors contribute to activation and efficient signaling of mitogen-activated protein kinase cascades during adaptation of Aspergillus fumigatus to different stresses and carbon sources. mSphere 5:e00818–20
14. Kan GF, Wang XF, Jiang J, Zhang CS, Chi ML, Ju Y, Shi CJ (2019) Copper stress response in yeast Rhodotorula mucilaginosa AN5 isolated from sea ice, Antarctic. MicrobiologyOpen 8:e00657
15. Thomas DN, Dieckmann GS (2002) Antarctic sea ice—a habitat for extremophiles. Science 295:641–644
16. Xu QB, Chu ZD, Gao YS, Mei YJ, Yang ZK, Huang YK, Yang LJ, Xie ZQ, Sun LG (2020) Levels, sources and influence mechanisms of heavy metal contamination in topsoils in Mirror Peninsula, East Antarctica. Environ Pollut 257:113552
17. Liu K, Hou SG, Wu SY, Zhang WB, Zou X, Yu JH, Song J, Sun XC, Huang RH, Pang HX, Wang JJ (2021) Assessment of heavy metal contamination in the atmospheric deposition during 1950–2016 A.D. from a snow pit at Dome A, East Antarctica. Environ Pollut 268:115847–115852
18. Van Vuytswinkel O, Reiser V, Siderius M, Kelders MC, Ammerger G, Ruis H, Mager WH (2000) Response of Saccharomyces cerevisiae to severe osmotic stress: evidence for a novel activation mechanism of the HOG MAP kinase pathway. Mol Microbiol 37(2):382–397
19. Tanoue T, Nishida E (2003) Molecular recognitions in the MAP kinase cascades. Cell Signal 15:455–462
20. Murakami Y, Tatebayashi K, Saito H (2008) Two adjacent docking sites in the yeast Hog1 mitogen-activated protein (MAP) kinase differentially interact with the Pbs2 MAP kinase kinase and the Ptp2 protein tyrosine phosphatase. Mol Cell Biol 28:2481–2494
21. Widmann JW, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180
22. Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136:3276–3283
23. Yoshida J, Kobayashi Y, Tanaka Y, Koyama Y, Ogihara J, Kato J, Shima J, Kasumi T (2013) Complementary function of mitogen-activated protein kinase Hog1 from Trichosporonoides megachilensis in Saccharomyces cerevisiae under hyper-osmotic stress. J Biosci Bioeng 115:127–132
24. Xu H, Wang XF, Sun XD, Shi QH, Yang FJ, Du DL (2008) Molecular cloning and characterization of a cucumber MAP kinase gene in response to excess NO3- and other abiotic stresses. Sci Hortic 117:1–8
25. Qian J, Qin X, Yin Q, Chu J, Wang Y (2011) Cloning and characterization of Klyveromyces marxianus Hog1 gene. Biotechnol Lett 33:571–575
26. Huang XS, Luo T, Fu XZ, Fan QJ, Liu JH (2011) Cloning and molecular characterization of a mitogen-activated protein kinase gene from Pochirus trifoliata whose ectopic expression confers dehydration/drought tolerance in transgenic Tobacco. J Exp Bot 62:5191–5206
27. Nadarajah K, Sidek HM (2010) The green MAPKs. Asian J Plant Sci 9:1–10
28. Arslanyolu M, Yildiz MT (2014) Cloning, expression and characterization of a gene encoding mitogen activated protein kinase 2 (MPK2) from Tetramyenia thermophile. Gene 546:40–49
29. Cano E, Mahadevan LC (1995) Parallel signal processing among mammalian MAPKs. Trends Biochem Sci 20:117–122
30. Wang JX, Ding HD, Zhang AY, Ma FF, Cao JM, Jiang MY (2010) A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues. J Integr Plant Biol 52:442–452
31. Krantz M, Becit E, Hohmann S (2006) Comparative analysis of HOG pathway proteins to generate hypotheses for functional analysis. Curr Genet 49:152–165
32. Hanks SK, Hunter T (1995) The eukaryotic protein kinase superfamily (catalytic) domain structure and classification. Faseb J 9:576–596
33. Chen XX, Ding YL, Yang YQ, Song CP, Wang BS, Yang SH, Guo Y, Gong ZZ (2021) Protein kinases in plant responses to drought, salt, and cold stress. J Integr Plant Biol 63:53–78
34. Tak H, Negi S, Rajpurohit YS, Misra HS, Ganapathi TR (2020) MusaMPK5, a mitogen activated protein kinase is involved in the regulation of cold tolerance in banana. Plant Physiol Biochem 146:112–123
35. Chen S, Yu MC, Chu X, Li WH, Yin XJ, Chen LB (2017) Cold-induced retrotransposition of fish LINEs. J Genet Genomics 44:385–394
36. Galafassi S, Toscano M, Vigentini I, Zambelli P, Simonetti P, Foschino R, Compagno C (2015) Cold exposure affects carbohydrates and lipid metabolism, and induces Hog1p phosphorylation in Dekkera bruxellensis strain CBS 2499. Antonie Van Leeuwenhoek 107:1145–1153
37. Panadero J, Pallotti C, Rodriguez-Vargas S, Randez-Gil F, Prieto JA (2006) A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae. J Biol Chem 281:4638–4645
38. Moustafa K, AbuQamar S, Jarrar M, Al-Rajab AJ, Trémoillaux-Guiller J (2014) MAPK cascades and major abiotic stresses. Plant Cell Rep 33:1217–1225
39. He XW, Wang CZ, Li LG, Wang C (2020) The function and HOG pathway signaling in Candida albicans. Microbiol Lett 33:571–575
40. Im JH, Lee H, Kim J, Kim HB, Kim S, Kim BM, An CS (2012) A salt stress-activated mitogen-activated protein kinase in soybean is regulated by phosphatidic acid in early stages of the stress response. J Plant Biol 55:303–309
41. Tian Y, Wen HS, Qi X, Zhang XY, Li Y (2019) Identification of mapk gene family in Lateolabrax maculatus and their expression profiles in response to hypoxia and salinity challenges. Gene 684:20–29

42. Thorsen M, Di Y, Tangemo C, Morillas M, Ahmadpour D, Van der Does C, Wagner A, Johansson E, Boman J, Posas F, Wysocki R, Tamás MJ (2006) The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Mol Biol Cell 17:4400–4410

43. Bilsland E, Molin C, Swaminathan S, Ramne A, Sunnerhagen P (2004) Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Mol Microbiol 53:1743–1756

44. Kennedy PJ, Vashisht AA, Hoe KL, Kim DU, Park HO, Hayles J, Russell P (2008) A genome-wide screen of genes involved in cadmium tolerance in Schizosaccharomyces pombe. Toxicol Sci 106:124–139

45. Ko YJ, Yu YM, Kim GB, Lee GW, Maeng PJ, Kim S, Floyd A, Heitman J, Bahn YS (2009) Remodeling of global transcription patterns of Cryptococcus neoformans genes mediated by the stress-activated HOG signaling pathways. Eukaryot Cell 8:1197–1217

46. Smith DA, Nicholls S, Morgan BA, Brown AJ, Quinn J (2004) A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell 15:4179–4190

47. Boisnard S, Ruprich-Robert G, Florent M, Da Silva B, Chapeland-Leclerc F, Papon N (2008) Insight into the role of HOG pathway components Ssk2p, Pbs2p, and Hog1p in the opportunistic yeast Candida lusitaniae. Eukaryot Cell 7:2179–2183

48. Zhu ZW, Zhang SF, Liu HW, Shen HW, Lin XP, Yang F, Zhou YJ, Jin GJ, Ye ML, Zou HF, Zhao ZK (2012) A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun 3:1112

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.