Functional derivatives of T_c for a two-band superconductor: application to MgB$_2$

Božidar Mitrović

Physics Department, Brock University, St. Catharines, Ontario, Canada L2S 3A1

Received: date / Revised version: date

Abstract. We address the question of how phonons of various frequencies contribute to the superconducting transition temperature T_c of a multi-band superconductor by considering the functional derivatives of T_c with respect to various intraband and interband electron-phonon coupling functions. A general scheme for computing such functional derivatives is developed. The proofs are given that the functional derivatives which are diagonal in band indices are linear in phonon energy Ω at small Ω, while the functional derivatives which are off-diagonal in band indices diverge at $\Omega = 0$ as $1/\Omega$. The case of a two-band model for MgB$_2$ is treated numerically.

PACS. 74.20.-z Theories and models of superconducting state – 74.70.Ad Superconducting metals; alloys and binary compounds (including A15, MgB$_2$, etc.) – 74.62.-c Transition temperature variations (superconductivity)

1 Introduction

Bergmann and Rainer [1] introduced an important diagnostic tool into the Eliashberg theory of superconductivity (for a pedagogical review of Eliashberg theory see [2]). They considered the functional derivative of the superconducting transition temperature T_c with respect to the electron phonon coupling function $\alpha^2 F(\Omega)$ of an isotropic (dirty) superconductor

$$\frac{\delta T_c}{\delta \alpha^2 F(\Omega)} = \lim_{\eta \to 0} \left(T_c[\alpha^2 F(\Omega') + \eta(\Omega' - \Omega)] - T_c[\alpha^2 F(\Omega')] \right) / \eta .$$

The functional $T_c[\alpha^2 F(\Omega)]$ is defined by the Eliashberg equations at T_c [2]. The function $\delta T_c/\delta \alpha^2 F(\Omega)$ provides answer to the question – How are the phonons of frequency Ω effective in contributing to T_c? From the practical point of view the functional derivative $\delta T_c/\delta \alpha^2 F(\Omega)$ gives the change ΔT_c in transition temperature when $\alpha^2 F(\Omega)$ is changed by a small amount $\Delta \alpha^2 F(\Omega)$ (say, by applying pressure [3], by alloying [4, 5], or by implanting small concentrations of hydrogen into a metal [6])

$$\Delta T_c = \int_0^{+\infty} d\Omega \frac{\delta T_c}{\delta \alpha^2 F(\Omega)} \Delta \alpha^2 F(\Omega) .$$

The main conclusions of Bergmann and Rainer [1] were that $\delta T_c/\delta \alpha^2 F(\Omega)$ is always positive (they were able to prove this mathematically for the case when the Coulomb repulsion parameter μ^* [2] is zero), proportional to Ω at $\Omega \ll 2\pi T_c$ (we choose units such that $\hbar = 1$ and $k_B = 1$) and with a maximum at Ω just above $2\pi T_c$. Hence, the electron coupling to a phonon of any frequency has a positive contribution to T_c, but the small values of $\delta T_c/\delta \alpha^2 F(\Omega)$ in the low frequency region imply that the changes of $\alpha^2 F(\Omega)$ in this frequency range have no appreciable effect on T_c, in contrast to the influence of the low frequency part of $\alpha^2 F(\Omega)$ on the electron-phonon coupling parameter λ

$$\lambda = 2 \int_0^{+\infty} d\Omega \alpha^2 F(\Omega) / \Omega ,$$

which is used in McMillan-type interpolation formulae for T_c [2].

Daams and Carbotte [8] considered the functional derivative of T_c with respect to the Fermi surface averaged electron-phonon coupling function of an anisotropic superconductor and found that $\delta T_c/\delta \alpha^2 F(\Omega)$ diverges at $\Omega = 0$ as $1/\Omega$. Their explicit calculations for a separable model of anisotropy $\alpha^2 F_{k,k'}(\Omega) = (1+a_k)\alpha^2 F(\Omega)(1+a_{k'})$, with the Fermi surface averages $\langle a_k \rangle = 0$ and $\langle a_k^2 \rangle \ll 1$, showed that at small Ω $\delta T_c/\delta \alpha^2 F(\Omega)$ goes negative and diverges as $-1/\Omega$. Thus in high purity anisotropic superconductors the electron coupling to low frequency phonons decreases T_c, which is analogous to the effect of elastic impurity scattering on transition temperature of anisotropic superconductors. However, Daams and Carbotte pointed out that for their choice of anisotropy parameter for Pb
was in good agreement with experiments over a wide temperature range. The net effect of anisotropy in the pairing interaction is to increase the T_c as the virtual scattering $|k| - |k'| \rightarrow |k'| > |k| \rightarrow \cdots$ over the Fermi surface takes advantage of the regions where the pairing interaction is large.

A consensus has emerged (for a review see [9]) that in order to describe the superconducting properties of a 40K superconductor MgB$_2$ the Eliashberg theory has to be applied to a multi-band case with [10] or without [11] gap anisotropy on different sheets of the Fermi surface. In [11] the Eliashberg equations for an effective two-band model of electronic structure and electron-phonon coupling in MgB$_2$ were solved and the calculated specific heat differences between the superconducting and the normal state were in good agreement with experiments over a wide temperature range below T_c. As a model for gap anisotropy the two-band model is the opposite extreme to the separable anisotropy considered in [8] – there are four Eliashberg functions $\alpha^2 F_{\sigma\sigma}(\Omega)$, $\alpha^2 F_{\pi\pi}(\Omega)$, $\alpha^2 F_{\sigma\pi}(\Omega)$ and $\alpha^2 F_{\pi\sigma}(\Omega)$, and, correspondingly, there are four functional derivatives of T_c with respect to each one of them (the band off-diagonal functions $\alpha^2 F_{\pi\pi}$ and $\alpha^2 F_{\sigma\sigma}$ are related, but are different as they are proportional to the partial electronic densities of states in π and σ-bands, respectively). In this work we calculate the functional derivatives of T_c for the two-band model and electron-phonon coupling functions presented in [11].

The rest of the paper is organized as follows. In Section 2 we present the formalism necessary for computation of the functional derivatives of T_c with respect to various electron-phonon coupling functions in a multi-band case. We also prove that the band-diagonal functional derivatives $\delta T_c/\delta \alpha^2 F_{ij}(\Omega)$, where i is the band index, are proportional to Ω at small Ω, while the functional derivatives which are off-diagonal in the band indices, $\delta T_c/\delta \alpha^2 F_{ij}(\Omega)$ with $i \neq j$, diverge at small Ω as $1/\Omega$. In Section 3 we present and discuss our numerical results, and in Section 4 we give a summary.

2 The functional derivatives $\delta T_c/\delta \alpha^2 F_{ij}(\Omega)$

In the case of several bands $i = 1, 2, \ldots$ with different partial densities of states N_i the Eliashberg equations for T_c do not have the form of a Hermitian eigenvalue problem [11]. That is because the interband electron-phonon coupling functions $\alpha^2 F_{ij}(\Omega)$ and the corresponding Coulomb repulsion parameters μ_{ij} are proportional to N_i and are not symmetric under the exchange of the band indices i and j, $i \neq j$. As a calculation of the functional derivative of T_c relies on the Hellman-Feynman theorem [1], [12] which is valid only for Hermitian matrices, it is necessary to cast the Eliashberg equations at T_c into a Hermitian eigenvalue problem. To this end one first takes the cutoff ω_c in the Matsubara frequency sums to be large enough so that $\mu^*_{ij}(\omega_c) = \mu_{ij} \equiv V^c_{ij} N_j$, where V^c_{ij} is the Fermi surface averaged screened Coulomb matrix element between the states in the bands i and j; clearly $V^c_{ij} = V^c_{ji}$. The electron-phonon coupling functions can be written as $\alpha^2 F_{ij}(\Omega) = \alpha^2 f_{ij}(\Omega) N_j$ with $\alpha^2 f_{ij}(\Omega) = \alpha^2 f_{ji}(\Omega)$. Then the Eliashberg equations at T_c take the form

$$\phi_i(n) = \pi T_c \sum_{jm} \left[\tilde{\lambda}_{ij}(n-m) N_j - V^c_{ij} N_j \right] \phi_j(m) \frac{\omega_m}{|\omega_m|} Z_j(m),$$

$$\omega_n Z_i(n) = \omega_n + \pi T_c \sum_{jm} \tilde{\lambda}_{ij}(n-m) N_j \frac{\omega_m}{|\omega_m|} Z_j(m),$$

$$\tilde{\lambda}_{ij}(n-m) = \int_0^{+\infty} d\Omega \frac{2\Omega}{\Omega^2 + (\omega_n - \omega_m)^2},$$

where $\phi_i(n)$ and $Z_i(n)$ are the pairing self-energy and the renormalization function, respectively, at Matsubara frequency $\omega_n = \pi T_c (2n - 1)$ in band i. By defining

$$\phi_i(n) = \phi_i(n) \sqrt{N_i/|\omega_n|} Z_i(n),$$

Eq. (4) takes the form of a Hermitian eigenvalue problem

$$\tilde{\phi}_i(n) = \varepsilon(T) \sum_{jm} \frac{\lambda^*_{ij}(n-m) - \mu^*_{ij}}{|\omega_n| Z_i(n)} \tilde{\phi}_j(m),$$

where the symmetrized λ's and Coulomb repulsion parameters are given by

$$\lambda^*_{ij}(n-m) = \frac{N_i}{N_j} \int_{-\infty}^{+\infty} \alpha^2 F_{ij}(\Omega) \frac{2\Omega}{\Omega^2 + (\omega_n - \omega_m)^2},$$

$$\mu^*_{ij} = \sqrt{\frac{N_i}{N_j}} \mu_{ij},$$

and the eigenvalue $\varepsilon(T)$ is 1 when $T = T_c$. In terms of $\lambda^*_{ij}(n-m)$ the renormalization function $Z_i(n)$ is given by (see Eq. (5))

$$\omega_n Z_i(n) = \omega_n + \pi T_c \sum_{jm} \lambda^*_{ij}(n-m) \sqrt{\frac{N_j}{N_i}} \frac{\omega_m}{|\omega_m|} Z_j(m).$$

Next, in order not to deal with a matrix of unnecessarily large size one cuts off the Matsubara sums in (8) at a smaller energy ω_c, which is large enough so that $Z_i(n) \approx 1$ for $|\omega_n| > \omega_c$, and at the same time rescales μ^*_{ij} to the new cutoff ω_c by integrating out the high energy part of $\phi_j(m)$ as described in [2]. The result is that μ^*_{ij} in Eq. (8) is replaced by $\mu^*_{ij}(\omega_c)$ where the matrix (in band indices) $\tilde{\mu}^*(\omega_c)$ is related to matrix $\tilde{\mu}^*$ by

$$\tilde{\mu}^*(\omega_c) = \left(1 + \tilde{\mu}^* \ln \frac{E_F}{\omega_c} \right)^{-1} \tilde{\mu}^*,$$

with E_F on the order of the total bandwidth. In the case of a two-band model, which we will examine numerically
in the next section, the explicit relations between \(\mu_{ij}(\omega_c) \) and \(\mu_{ij}^s \) are \((\mu_{ij}^s = \mu_{ij}^s) \)

\[
\mu_{ij}^s(\omega_c) = \left[\mu_{ij}^s + (\mu_{ij}^s \mu_{ij}^s - \mu_{ij}^s \mu_{ij}^s)^2 \ln \frac{E_F}{\omega_c} \right] / D, \tag{13}
\]

\[
\mu_{ij}^s(\omega_c) = \mu_{ij}^s / D, \tag{14}
\]

\[
\mu_{ij}^s(\omega_c) = \left[\mu_{ij}^s + (\mu_{ij}^s \mu_{ij}^s - \mu_{ij}^s \mu_{ij}^s)^2 \ln \frac{E_F}{\omega_c} \right] / (15),
\]

where \(D \) is the determinant of \(\hat{1} + \mu^s \ln(E_F/\omega_c) \)

\[
D = 1 + (\mu_{ij}^s + \mu_{ij}^s)^2 \ln \frac{E_F}{\omega_c} \times (\mu_{ij}^s \mu_{ij}^s - \mu_{ij}^s \mu_{ij}^s)^2 \left(\ln \frac{E_F}{\omega_c} \right)^2. \tag{16}
\]

Now it is easy to generalize the procedure for calculating the functional derivative of \(T_c \) given in [12] for a single-band isotropic superconductor to the case of several isotropic bands. One finds

\[
\frac{\delta T_c}{\delta \alpha^2 F_{ij}(\Omega)} = - \left(\frac{d\varepsilon(T_c)}{dT} \right)^{-1} \frac{\delta \varepsilon(T_c)}{\delta \alpha^2 F_{ij}(\Omega)} \tag{17}
\]

with

\[
\frac{\delta \varepsilon(T_c)}{\delta \alpha^2 F_{ij}(\Omega)} = \left[\pi T_c \sum_{j} \sum_{n,m=1}^{N_c} \frac{\tilde{\phi}_l(n)}{\sqrt{\omega_n Z_i(n)}} \frac{\tilde{\phi}_l(m)}{\sqrt{\omega_m Z_j(m)}} \times \frac{1}{\sqrt{\omega_n Z_i(n)}} \frac{1}{\sqrt{\omega_m Z_j(m)}} \right] / \sum_{n=1}^{N_c} \sum_{k=1}^{N_c} \tilde{\phi}_k^2(n). \tag{18}
\]

The derivative \(d\varepsilon(T_c)/dT(\leq 0) \) is conveniently calculated in the process of finding the highest \(T \) for which the largest \(\varepsilon(T) \) in Eq. (8) is equal to 1 and \(\phi_i(n) \) are the components of the corresponding eigenvector of length \(dN_c \), where \(d \) is the number of bands and \(N_c = [\omega_c/(2\pi T_c) + 0.5] \), where \([\cdots]\) denotes the integer part. Note that \(\phi_i(n) = \omega_n Z_i(n) = (1)/(\pi T_c) \) and \(\Delta_1(n) = \sqrt{N_i\phi_i(n)}/\omega_n Z_i(n) = \sqrt{N_i\Delta_1(n)/\omega_n Z_i(n)} \), where \(\Delta_1(n) \) is the gap function in band \(i \) at Matsubara frequency \(\omega_n \).

For \(\Omega \ll 2\pi T_c \), one finds from Eq. (18) that the band-diagonal functional derivatives are given by

\[
\frac{\delta \varepsilon(T_c)}{\delta \alpha^2 F_{ii}(\Omega)} = 2\pi T_c \left[\sum_{i} \sum_{n,m=1}^{N_c} \frac{\tilde{\phi}_i(n)}{\sqrt{\omega_n Z_i(n)}} \frac{\tilde{\phi}_i(m)}{\sqrt{\omega_m Z_i(n)}} \times \frac{1}{(2\pi T_c(n - m))^2} \right]
\]

and are \textit{linear} in \(\Omega \) just like in the one-band isotropic case [1]. The band-off-diagonal functional derivatives \((i \neq j) \) in the small \(\Omega \) limit are given by

\[
\frac{\delta \varepsilon(T_c)}{\delta \alpha^2 F_{ij}(\Omega)} = 2\pi T_c \left[\sum_{n=1}^{N_c} \tilde{\phi}_i(n) \left(\frac{N_i}{\sqrt{\omega_n Z_i(n)}} \frac{\phi_j(n)}{\sqrt{\omega_n Z_j(n)}} - \frac{\phi_i(n)}{\sqrt{\omega_n Z_i(n)}} \right) \right] / \sum_{n=1}^{N_c} \frac{\tilde{\phi}_k^2(n)}{(2\pi T_c)^2}, \tag{20}
\]

and diverge at \(\Omega = 0 \) as \(1/\Omega \) just like the functional derivative of \(T_c \) with respect to the Fermi surface averaged electron-phonon coupling function of an anisotropic superconductor [8]. Note that the sum in the numerator of Eq. (20) can be written as \(N_j \sum_{n=1}^{N_c} \Delta_1(n)(\Delta_1(n)/\Delta_1(n))/\omega_n^2 \) and the sign of \(\delta T_c / \delta \alpha^2 F_{ij}(\Omega) \) is determined by the relative size of the gaps \(\Delta_1(n) \) and \(\Delta_2(n) \) near \(T_c \) in the two bands and by the sign of \(\Delta_1(n) \) near \(T_c \) for low \(n \) since the low-\(n \) terms give the largest contribution to the sum because of \(\omega_n^2 \) in the denominator.

The results presented so far apply to a superconductor with \textit{any} number of bands with isotropic intraband and interband interactions (both electron-phonon and Coulomb). In the next section we present numerical results for an effective two-band model of MgB\(_2\) described in [11].

3 Numerical results for a two-band model

Following the work of Liu et al [13], Golubov et al [11] reduced the four-band electronic structure and electron-phonon coupling in MgB\(_2\) to an effective two-band model by exploiting the similarity of the two cylindrical (\(\sigma \)-bands) and the two three-dimensional (\(\pi \)-bands) sheets of the Fermi surface. We used the \(\alpha^2 F \)‘s given in [11] with the coupling parameters (see Eq. (3)) \(\lambda_{\sigma\sigma} = 1.017 \), \(\lambda_{\pi\pi} = 0.446 \), \(\lambda_{\sigma\pi} = 0.212 \) and \(\lambda_{\sigma\pi} = 0.155 \). The Coulomb repulsion parameters were determined using the ratios of the \textit{screened} Coulomb interaction parameters for MgB\(_2\) calculated in [14], \(\mu_{ij} : \mu_{ij} : \mu_{ij} : \mu_{ij} = 1.75 : 2.04 : 1.61 \) : 1.00, the density of states ratio \(N_{\sigma}/N_{\pi} \) consistent with the ratio \(\lambda_{\sigma\pi}/\lambda_{\pi\pi} \) for the spectra that we used, and using equations (10) and (13-16) with \(E_F \) set equal to the \(\pi \)-bandwidth of 15 eV [15] and \(\omega_c = 0.5 \) eV. These constraints leave the single fitting parameter \(\mu_{ij} \) which was fitted to the experimental transition temperature of 39.4
K. The results of the fit were: $\mu^*_{\sigma\sigma}(\omega_c) = 0.19627$, $\mu^*_{\pi\pi}(\omega_c) = 0.19561$ and $\mu^*_{\pi\sigma}(\omega_c) = 0.04948$.

The calculated functional derivatives are shown in Figures 1-3. In Fig. 1 we present the band-diagonal functional derivatives $\delta T_c/\delta \alpha^2 F_{\sigma\sigma}(\Omega)$, $\delta T_c/\delta \alpha^2 F_{\pi\pi}(\Omega)$ and rescaled $\alpha^2 F_{\sigma\sigma}(\Omega)$ and $\alpha^2 F_{\pi\pi}(\Omega)$ over the entire phonon energy range in MgB$_2$. The spectra $\alpha^2 F_{\sigma\sigma}(\Omega)$ and $\alpha^2 F_{\pi\pi}(\Omega)$ are scaled down by a factor of 20 so that their shapes over the entire range of phonon energies are seen on the scale set by the size of the corresponding functional derivatives. This leaves parts of $\alpha^2 F_{\sigma\sigma}(\Omega)$ and $\alpha^2 F_{\pi\pi}(\Omega)$ that are near the maxima in corresponding functional derivatives invisible, and in Fig. 2 we redraw a part of Fig. 1 over a smaller energy range with the electron-phonon coupling functions over the entire phonon energy range in MgB$_2$.

The difference in sizes of the two functional derivatives in Figs. 1 and 2 is due to the difference in sizes of the gap functions $\Delta_\sigma(n)$ and $\Delta_\pi(n)$ near T_c in the two bands as can be deduced from Eq. (18) (or Eq. (19)) by noting that the normalization factor $\sum_n (\delta_\sigma^2(n) + \delta_\pi^2(n))$ is the same for both functional derivatives and it’s size is largely determined by $\Phi_\sigma(n)$, which is larger than $\Phi_\pi(n)$ ($\delta_\sigma(1)/\delta_\pi(1) = 3.4$). Note that in the isotropic one-band case the scale of the functional derivative of T_c varies roughly as $1/(1+\lambda)$.

Fig. 1. The band-diagonal functional derivatives and rescaled electron-phonon coupling functions over the entire phonon energy range in MgB$_2$.

Fig. 2. The same as Fig. 1 but over a smaller energy range so that the the parts of $\alpha^2 F_{\sigma\sigma}(\Omega)$ and $\alpha^2 F_{\pi\pi}(\Omega)$ that are near the maxima in the corresponding functional derivatives are drawn to scale.

Fig. 3. The band-off-diagonal functional derivatives and electron-phonon coupling functions for MgB$_2$.
and from Fig. 1 it is clear that such a “rule” cannot be applied in determining the relative size of the band-diagonal functional derivatives of \(T_c\) in a multi-band case.

In Fig. 3 we present the band-off-diagonal functional derivatives \(\delta T_c/\delta \alpha^2 F_{\pi\pi}(\Omega)\) and \(\delta T_c/\delta \alpha^2 F_{\pi\sigma}(\Omega)\) together with the corresponding electron-phonon coupling functions. As we proved in Sect. 2, both of these functional derivatives diverge at \(\Omega = 0\) as \(1/\Omega\), but they also have opposite signs. Both \(\alpha^2 F_{\pi\pi}(\Omega)\) and \(\alpha^2 F_{\pi\sigma}(\Omega)\) vary as \(\Omega^2\) in the limit \(\Omega \to 0\) so that \(1/\Omega\)-divergences in the corresponding functional derivatives are integrable, as can be deduced from Eq. (2).

The difference in signs between \(\delta T_c/\delta \alpha^2 F_{\pi\pi}(\Omega)\) and \(\delta T_c/\delta \alpha^2 F_{\pi\sigma}(\Omega)\) is related to the fact that near \(T_c\) \(\Delta_\sigma(n) > \Delta_\pi(n)\) with both gap functions positive at low \(n\) (see Eq. (20) and the subsequent discussion in Sect. 2). In order to illustrate the importance of the sign of the smaller gap \(\Delta_\pi(n)\) at low \(n\) close to \(T_c\), we have computed the functional derivatives for the case when \(\alpha^2 F_{\pi\pi}(\Omega)\), \(\alpha^2 F_{\pi\sigma}(\Omega)\) and \(\alpha^2 F_{\pi\pi}(\Omega)\) were scaled down by a factor of 10, with \(\alpha^2 F_{\pi\sigma}(\Omega)\) and \(\mu^*_{\pi\pi}(\omega_c), \mu^*_{\pi\sigma}(\omega_c)\) left unchanged. This produced negative \(\lambda_{\pi\pi} - \mu^*_{\pi\pi}, \lambda_{\pi\sigma} - \mu^*_{\pi\sigma}\) and \(\lambda_{\pi\sigma} - \mu^*_{\sigma\pi}\) which resulted in a solution where \(\Delta_\pi(n)\) and \(\Delta_\sigma(n)\) near \(T_c\) have opposite signs at low \(n\). The corresponding functional derivatives are shown in Figure 4. Now, both band-off-diagonal functional derivatives are negative. Note that the scale of \(\delta T_c/\delta \alpha^2 F_{\pi\pi}\) is roughly two orders of magnitude smaller than the other three functional derivatives.

It is important to point out that the calculated \(T_c\) for the parameters in Fig. 4 was 43.7 K — substantially higher (by 10%) than the \(T_c\) of 39.4 K obtained for the parameters used to produce the results given in Figs. 1-3. In fact, even higher \(T_c\) of 45.1 K was obtained by setting \(\alpha^2 F_{\pi\pi}, \alpha^2 F_{\pi\sigma}\) and \(\alpha^2 F_{\pi\pi}\) identically equal to 0 with \(\alpha^2 F_{\pi\sigma}\) and all the Coulomb repulsion parameters left the same — i.e. no attractive interaction in \(\pi-\pi\) and \(\sigma-\pi\) channels! The corresponding functional derivatives were similar to those shown in Fig. 4 and they explain why \(T_c\) is reduced as the couplings \(\alpha^2 F_{\pi\pi}, \alpha^2 F_{\pi\sigma}\) and \(\alpha^2 F_{\pi\pi}\) are turned on from 0: \(\delta T_c/\delta \alpha^2 F_{\pi\pi}\) and \(\delta T_c/\delta \alpha^2 F_{\pi\sigma}\) are both negative and much bigger in absolute value than the positive \(\delta T_c/\delta \alpha^2 F_{\pi\pi}\). We finally note that if all interactions, both electron-phonon and Coulomb, in \(\pi-\pi\) and \(\sigma-\pi\) channels are set equal to zero, which effectively reduces the the two-band model to one-band model, the calculated \(T_c\) was 44.6 K. This is a half degree lower than what was obtained by turning off only electron-phonon interaction in \(\pi-\pi\) and \(\sigma-\pi\) channels.

Figure 4. The functional derivatives for the case when the strengths of \(\alpha^2 F_{\pi\pi}, \alpha^2 F_{\pi\sigma}\) and \(\alpha^2 F_{\pi\pi}\) were scaled down by a factor of 10 with \(\alpha^2 F_{\pi\sigma}\) and \(\mu^*_{\pi\sigma}(\omega_c)\)'s left unchanged compared to those used in Figs. 1-3.

4 Summary

We have developed the general formalism for calculating the functional derivatives of \(T_c\) with respect to electron-phonon coupling functions for a superconductor with several bands with isotropic intraband and interband interactions (electron-phonon and Coulomb). We proved rigorously that the band-diagonal functional derivatives \(\delta T_c/\delta \alpha^2 F_{\pi\pi}(\Omega)\) are linear in \(\Omega\) at small \(\Omega\), as in the isotropic single band case [1]. At the same time we proved that the functional derivatives which are off-diagonal in the band indices, \(\delta T_c/\delta \alpha^2 F_{ij}(\Omega)\) with \(i \neq j\), diverge at small \(\Omega\) as \(1/\Omega\). The calculation was carried out for a two-band model of MgB\(_2\) using the electron-phonon coupling spectra given in [11] and the ratios of the screened Coulomb interaction parameters given in [14]. We found that the band-diagonal functional derivatives are both positive with broad maximum in the range of 9-10 times \(k_B T_c\), similar to the single band isotropic case. However, the functional derivative with respect to intraband electron-phonon coupling function for the band with the smaller gap (\(\pi\) band) was found to be much smaller than the corresponding functional derivative for the band with the larger gap (\(\sigma\) band). The functional derivatives with respect to the interband electron-phonon coupling functions were found to diverge as \(1/\Omega\) at \(\Omega = 0\), but had opposite signs over the entire range of phonon energies for the parameters given in [11]. We found that the signs of these off-diagonal functional derivatives are determined by the relative signs of the gap functions near \(T_c\) at low Matsubara frequencies in the two bands and that, in general, it is possible to have both band-off-diagonal functional derivatives negative.

The results found here give a better insight into the questions - What is the effect of phonons of frequency \(\Omega\) on \(T_c\) through their couplings to electrons via various band channels? Are all coupling always contributing positively to \(T_c\), or are some of them pair-breaking? The answers to
these questions are provided in Figures 1-3.

This work was supported by the Natural Sciences and Engineering Research Council of Canada. We are grateful to O. Jepsen for providing the numerical values of α^2F's for MgB$_2$ presented in [11] and to S. K. Bose and K. V. Samokhin for their interest in this work.

References

1. G. Bergmann and D. Rainer, Z. Phys. 263, (1973) 59.
2. P. B. Allen and B. Mitrović, in Solid State Physics vol 37, ed. H. Ehrenreich, F. Seitz and D. Turnbull (Academic, New York 1982) pp. 1-92
3. Y. F. Revenko, A. I. Dyachenko, V. M. Svistunov and B. Shonaih, Sov. J. Low Temp. Phys. 6, (1980) 635.
4. D. Rainer and G. Bergmann, J. Low Temp. Phys 14, (1974) 501.
5. B. Mitrović and J. P. Carbotte, J. Low Temp. Phys 43, (1981) 131.
6. D. W. Taylor, Phys. Rev. B 21, (1980) 5096.
7. J. P. Carbotte, Rev. Mod. Phys. 62, (1990), 1027.
8. J. M. Daams and J. P. Carbotte, Solid State Commun. 33, (1980) 585.
9. I. I. Mazin and V. P. Antropov, Physica C 385, (2003), 49.
10. H. J. Choi, D. Roundy, H. Sun, M. L. Cohen and S. G. Louie, Nature 418, (2002), 758.
11. A. A. Golubov, J. Kortus, O. V. Dolgov, O. Jepsen, Y. Kong, O. K. Andersen, B. J. Gibson, K. Ahn and R. K. Kremer, J. Phys.: Condens. Matter 14, (2002), 1353.
12. B. Mitrović, Int. J. Modern Phys. C 13, (2002) 1087.
13. A. Y. Liu, I. I. Mazin and J. Kortus, Phys. Rev. Lett. 87, (2001), 087008.
14. H. J. Choi, D. Roundy, H. Sun, M. L. Cohen and S. G. Louie, Preprint cond-mat/0307012, (unpublished).
15. Y. Kong, O. V. Dolgov, O. Jepsen and O. K. Andersen, Phys. Rev. B 64, (2001) 020501(R).
16. B. Mitrović and J. P. Carbotte, Solid State Commun. 37, (1981), 1009.