Easymap: a user-friendly software package for rapid mapping by sequencing of point mutations and large insertions

Samuel Daniel Lup*, David Wilson-Sánchez†, Sergio Andreu-Sánchez‡, and José Luis Micol

Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain

*These authors contributed equally to this work.

†Current address: Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.

‡Current address: Department of Pediatrics, University of Groningen, 9700 AB Groningen, The Netherlands.

Corresponding author: J.L. Micol (telephone: 34 96 665 85 04; E-mail: jlmicol@umh.es)

Author contributions: J.L.M. obtained funding, provided resources and supervised this work. D.W., S.D.L., and J.L.M. conceived and designed the program; D.W. and S.D.L. developed the program, S.A. contributed a number of Python scripts; S.D.L. tested the software with real datasets. S.D.L., D.W. and J.L.M wrote the article.

One sentence summary: Easymap is a versatile user-friendly software tool that facilitates mapping-by-sequencing of large insertions and point mutations in plant and animal genomes

Keywords: mapping-by-sequencing software, candidate mutations, forward genetics, NGS

Figures: 3 Tables: 4 Supplementary Files: 4

Supplementary Tables: 1 Word count: 5813.

Abbreviations: NGS, next-generation sequencing; EMS, ethyl methanesulfonate; RD, read depth; CV, coverage; SNP, single-nucleotide polymorphism; AF, allele frequency.
Mapping-by-sequencing strategies combine next-generation sequencing (NGS) with classical linkage analysis, allowing rapid identification of the causal mutations of the phenotypes exhibited by mutants isolated in a genetic screen. Computer programs that analyze NGS data obtained from a mapping population of individuals derived from a mutant of interest in order to identify a causal mutation are available; however, the installation and usage of such programs requires bioinformatic skills, modifying or combining pieces of existing software, or purchasing licenses. To ease this process, we developed Easymap, an open-source program that simplifies the data analysis workflows from raw NGS reads to candidate mutations. Easymap can perform bulked segregant mapping of point mutations induced by ethyl methanesulfonate (EMS) with DNA-seq or RNA-seq datasets, as well as tagged-sequence mapping for large insertions, such as transposons or T-DNAs. The mapping analyses implemented in Easymap have been validated with experimental and simulated datasets from different plant and animal model species. Easymap was designed to be accessible to all users regardless of their bioinformatics skills by implementing a user-friendly graphical interface, a simple universal installation script, and detailed mapping reports, including informative images and complementary data for assessment of the mapping results.
INTRODUCTION

Forward genetic screens consist of random mutagenesis followed by the isolation of mutants exhibiting a phenotype of interest, and genetic analysis of these mutants to identify the mutations that cause their phenotypes. Two commonly used mutagenesis strategies are the induction of G→A substitutions using the chemical mutagen ethyl methanesulfonate (EMS) (Neuffer and Ficsor, 1963; James and Dooner, 1990; Jansen et al., 1997) and the disruption of genes by insertional mutagens such as transposons or T-DNAs (Cooley et al., 1988; Alonso et al., 2003; Frøkjær-Jensen et al., 2014). Linkage analysis of molecular markers in segregant mapping populations is the classically preferred approach to map the point mutations induced by a chemical mutagen, carried by mutants isolated in a genetic screen (Michelmore et al., 1991; Ponce et al., 1999). By contrast, localization of insertional mutations has relied on methods to capture the genomic sequences present at their flanks (Gasch et al., 1992; Medford et al., 1992; Liu et al., 1995; O'Malley et al., 2007).

The preliminary identification and subsequent validation of the mutations that cause a phenotype of interest is the most laborious and time-consuming step of a forward genetic screen. Next-generation sequencing (NGS) of DNA has facilitated and revitalized such approaches, through the so-called mapping-by-sequencing methods, which combine NGS with linkage analysis (Schneeberger and Weigel, 2011; Hartwig et al., 2012; James et al., 2013; Candela et al., 2015). Mapping-by-sequencing approaches for the identification of causal mutations are much faster than previous methods but can be hampered by the lack of computing resources and/or accessible software. Currently available programs for mapping-by-sequencing data analysis suffer from one or several of the following issues: they require the purchase of licenses (Smith, 2015); they require a certain level of bioinformatics skills to use (Abe et al., 2012; Fekih et al., 2013; Jiang et al., 2015; Sun and Schneeberger, 2015; Ecovoiu et al., 2016; Wachsman et al., 2017) (see also https://sourceforge.net/projects/mimodd/); they only do a part of the computing tasks required for a mapping-by-sequencing experiment (Li et al., 2009; Langmead and Salzberg, 2012; Hill et al., 2013); they are designed for a specific type of mutation or mapping strategy (Gonzalez et al., 2013; Ewing, 2015; Hénaff et al., 2015; Solaimanpour et al., 2015; Sun and Schneeberger, 2015; Wachsman et al., 2017; Klein et al., 2018; Javorka et al., 2019); they are hosted at a public server but usage is limited (Gonzalez et al., 2013; Afgan et al., 2018); or they can no longer be accessed or used (Minevich et al., 2012; Pulido-Tamayo et al., 2016).

Here we describe Easymap, an accessible graphical-interface program that analyzes NGS data from mapping populations derived through a variety of experimental designs from either insertional or EMS-induced mutants. This software package avoids the above-mentioned issues, enabling mapping-by-sequencing experiments to be conducted by
researchers with minimal bioinformatics experience. Easymap features a web-based graphic interface, a simple installation script, robust mapping analyses for several experimental designs, and thorough user-oriented mapping reports.
RESULTS

Mapping strategies for which Easymap can be used

Easymap offers the user two alternative workflows, to map point and insertional (Workflows 1 and 2; see below), as well as a set of complementary tasks common to all analyses. Figure 1 offers an overview of both mapping strategies, from the initial selection of the mutants of interest to the output that Easymap generates. To ease both mapping scenarios, Easymap automates the whole data analysis process requiring no user intervention with alignment, variant-calling or filtering parameters.

Workflow 1: Linkage analysis mapping

Mapping of causal EMS-induced mutations is typically achieved by linkage analysis in a bulked segregant population. The user must obtain a mapping population by phenotyping the M2 offspring of an M1 individual or the F2 offspring of a backcross (in which an M2 mutant is crossed to an individual genetically identical to the parent subjected to mutagenesis) or an outcross (in which an M2 mutant is crossed to an individual unrelated and genetically polymorphic to the parent that was subjected to mutagenesis).

Easymap includes the splice-aware aligner HISAT2 (Kim et al., 2019), which is three times faster than commonly used aligners in default conditions with no impact on memory usage or sensitivity. The implementation of HISAT2 allows the user to input RNA-seq and DNA-seq reads indistinctly for point mutation mapping. Easymap requires NGS reads from test and control samples. The test sample consists of NGS reads obtained from a population of individuals exhibiting the mutant phenotype of interest—hence homozygous for a recessive mutation that causes that phenotype. The control sample can be pooled M2 or F2 phenotypically wild-type individuals, or individuals genetically identical to the parent that was subjected to mutagenesis, or the strain to which the mutant is outcrossed. A minimum coverage of 25× is recommended for each sample, although since coverage directly correlates to the reliability of the results, higher coverages are encouraged. Table 1 and the Easymap Documentation (File S1) describe the different experimental designs supported by Easymap, four of which are detailed in Figure 2. Easymap first calls the single-nucleotide polymorphisms (SNPs) between the reads obtained by the user and the reference sequence for the genome of the species under study, and identifies high-confidence SNPs that are informative for mapping. The allele frequencies of these biallelic markers are then analyzed to predict the phenotypically selected genomic position, which defines the center of a candidate interval predicted to contain the causal mutation. The SNPs in the candidate region are then analyzed and reported as candidates to be the mutation causing the phenotype under study. The Easymap documentation (File S1) contains more detailed information about the SNP selection and mapping algorithms implemented.
Workflow 2: Tagged sequence mapping

Easymap uses a tagged-sequence strategy to map the positions of large DNA insertions of known sequence (Figure 3). The user has to obtain paired-end (e.g., Illumina-like) or single-end (e.g., Ion Proton-like) NGS reads from a mutant carrying an insertion of partially or completely known sequence. Easymap can also use reads from multiple mutants pooled into a single DNA sample, in which case the minimum read depth recommended is 10× per mutant. The program finds reads that overlap the left and right junctions of a given insertion, as well as unpaired alignments neighboring the insertion site; then it uses them as probes against the whole genome sequence (Figure 3). If several hits accumulate around a locus, its physical position is reported as a putative insertion site.

If more than one insertional event is detected in a given mutant, the above experimental design and analysis workflow cannot discriminate the insertion causing the mutant phenotype. Such a mutant, however, can also be crossed and analyzed as described in Workflow 1. The mapping report from Workflow 2 includes a histogram that shows the distribution of the data supporting each putative insertion (Figure 1D). The user can inspect the histograms visually to easily discern false positives (disorganized clusters with very low accumulated read depths [RDs]) from genuine insertions (clusters of organized data with a high number of accumulated RDs).

Complementary tasks

An Easymap run automatically performs several essential tasks such as input data quality controls, including the verification of the FastQ encoding and quality, and assessment of the RD distribution for each sample. After each analysis, Easymap creates a comprehensive report containing high-resolution images and tabular data to assist the user in interpreting the mapping results (e.g., allele frequency plots for EMS-induced mutations, RD histograms for insertional mutations, and gene plots for each putatively damaged gene; Figure 1D), a prediction of the functional effect of the candidate mutations, the flanking sequences of each mutation, and the sequences of oligonucleotide primers to genotype such mutation.

NGS experiment simulations can be helpful for optimizing the design of effective mapping experiments (James et al., 2013; Wilson-Sánchez et al., 2019). Therefore, Easymap includes a built-in experiment simulator that allows the user to simulate NGS data in order to test different mapping designs and parameters.

Assessment of Easymap performance with simulated and real data

We tested Easymap with tens of simulated datasets for each mapping strategy and analysis workflow supported by the program. This allowed us to hard-code appropriate values for
analysis variables (e.g., SNP filtering thresholds) under different experimental conditions, saving the user from having to set complex parameters. However, to add more flexibility to the analysis, Workflow 1 allows the user to choose between two levels of stringency for SNP selection. We tested Easymap with data from real mapping-by-sequencing experiments; Tables 1 and 2 show the results that we obtained when analyzing reads from a range of previously published mutants. We reproduced previously published results, demonstrating the reliability of Easymap even under extreme conditions with average read depths as low as 5× (Obholzer et al., 2012; Wilson-Sánchez et al., 2014). The mapping reports for each of these experiments are available in our preview Easymap installation (http://atlas.umh.es/genetics/) and additional information about these experiments is provided in Table S1. Among the data used for testing the Easymap linkage analysis mapping workflows, we employed NGS reads obtained from mutants of Arabidopsis thaliana (Morel et al., 2002; Hartwig et al., 2012; Rishmawi et al., 2014; Sun and Schneeberger, 2015; Wachman et al., 2017; Mateo-Bonmatí et al., 2018), Zea mays (Liu et al., 2012; Li et al., 2013; Li et al., 2016a; Klein et al., 2018), Caenorhabditis elegans (Fay and Spencer, 2006) and Danio rerio (Obholzer et al., 2012), which included F₂ (Hartwig et al., 2012; Obholzer et al., 2012; Rishmawi et al., 2014; Sun and Schneeberger, 2015; Klein et al., 2018; Mateo-Bonmatí et al., 2018), and M₂/M₃ (Wachman et al., 2017) mapping populations obtained to identify recessive mutations, as well as dominant mutations mapped in F₂ after an F₃ screening (Fay and Spencer, 2006), and RNA-seq datasets (Liu et al., 2012; Li et al., 2013; Li et al., 2016a) (Tables 1 and S1). For tagged sequence mapping, we reproduced previous results for Arabidopsis thaliana (Wilson-Sánchez et al., 2014; Li et al., 2016b) and Oryza sativa (Yang et al., 2013) mutants; we also analyzed an unpublished dataset obtained in our laboratory (Tables 2 and S1).

Easymap architecture
We developed Easymap for UNIX-based operating systems since high-performance machines most commonly run Linux, and several tasks in Easymap are performed by third-party software that has already been extensively tested and used in Linux. These open-source, publicly available programs obtained by previous authors are listed in Table 4.

Easymap comprises a software stack consisting of a controller layer, a workflow layer (representing linkage analysis mapping, tagged sequence mapping, and common processes), and a tasks layer (representing custom and third-party programs). The controller exposes a simple application programming interface (API) with which the web and command line scripts interact. This allows Easymap to be installed either locally or remotely while offering simultaneous command-line and graphical interface access (Figures S1 and S2).

To simplify Easymap installation, a single script compiles and/or installs all required
software (Python2, Python Imaging Library, Virtualenv, Bowtie2, HISAT2, HTSlib, SAMtools,
and BCFtools; Table 4) within the Easymap directory. All third-party software is included
within the Easymap package so that no dependencies are required. For installations in
shared environments, usage (memory and number of concurrent jobs) can be limited by the
system administrator through a simple configuration file. The installation script sets up a
dedicated HTTP server to run as a background process using the port chosen by the user.
Easymap implements chunked file transfers for reliable HTTP transfer of large read files.
Further installation setups and usage indications can be found in the Easymap
documentation, including indications for usage within the Windows 10 operating system (File
S1).
DISCUSSION

Hundreds of point and insertional *Arabidopsis thaliana* mutants have been isolated in our laboratory over almost 30 years. After the advent of NGS, we generated NGS datasets to identify the mutations causing the mutant phenotypes of interest and analyzed these datasets using different available software tools. We realized that most tools intended for mapping-by-sequencing are not easily manageable by researchers without a background in bioinformatics. We attempted to identify the main accessibility issues of such tools and developed Easymap, a program for mapping-by-sequencing that can be used reliably by as many researchers as possible, irrespective of their computer skills, and in as many experimental designs as possible.

The main accessibility features of Easymap are the following: it is free and open source; a single command installs the software and launches the server for the graphical interface; it is easy to use, as it has a graphical interface and workflows that smoothly convert raw data into comprehensive yet simple reports; it is polyvalent, since it can be used for a wide variety of experimental setups (Table 3); and it is flexible, since it can be installed locally or remotely (on a server) while maintaining its graphical interface (Figures S1 and S2).

The implementation of the HISAT2 aligner allows the use of RNA-seq data for mutation mapping in large genomes, making Easymap the first program of its class to allow performing mapping by sequencing with large genomes for which whole genome sequencing may not be affordable. Easymap proved to be reliable under a wide variety of experimental designs, in five different plant (*Arabidopsis thaliana*, *Zea mays* and *Oryza sativa*) and animal (*Danio rerio* and *Caenorhabditis elegans*) species and a total of 28 experiments showing unprecedented versatility and adaptability to the input data.

In conclusion, here we introduce Easymap, a novel analysis tool for mapping-by-sequencing of large insertions and point mutations, which has been designed to accommodate all potential users. Easymap features a web-based graphic interface, a simple installation script, robust mapping analyses for several experimental designs and thorough user-oriented mapping reports. A preview instance of Easymap is available at http://atlas.umh.es/genetics, where we also offer a quickstart installation guide (File S2). The easymap source code is available for download at https://github.com/MicolLab/easymap and http://genetics.edu.umh.es/resources/easymap.
METHODS

Programming languages and utilities

Easymap was designed as a modular program, so that each module can be used and modified independently. Modules include custom Python2 scripts and third-party software packages (Table 4). Modules are run sequentially by different Bash scripts, or workflows, attending to the user preferences as defined in the web interface or the command line interface.

Python source and libraries are installed within a Virtualenv virtual environment so that previous software installations are not disturbed. The Easymap server is launched using the Python2 CGIHTTPServer function to set up the web interface. The Pillow imaging library is used for the generation of the graphic output.

Testing

We tested Easymap in several operating systems, including different distributions of Linux such as Ubuntu, Fedora, Red Hat, and AMI. Easymap can also run within the Ubuntu apps available in the Windows 10 Microsoft Store. Easymap runs on regular desktop computers and high-performance machines, in local machines and remote instances (e.g., the Amazon Elastic Compute Cloud service), and also in virtual machines running UNIX-based OS within Windows OS. Appendix D of the Easymap user manual (File S1) includes detailed information for different installation setups.

ACKNOWLEDGEMENTS

This work was supported by grants from the Ministerio de Ciencia e Innovación of Spain (PGC2018-093445-B-I00 [MCI/AEI/FEDER, UE]) and the Generalitat Valenciana (PROMETEO/2019/117) to JLM.

SUPPLEMENTAL INFORMATION

File S1. Easymap documentation.
File S2. Easymap quickstart guide.
File S3. Supplemental figures.
Table S1. Results obtained in the validation of Easymap using multiple NGS datasets.
Figure 1. Overview of a mapping-by-sequencing experiment with Easymap in Arabidopsis.

(A) Experimental design. For EMS-induced mutants, an outcross or backcross is first performed. The F1 plants derived from the cross are selfed, and the resulting F2 is screened for the mutant phenotype to create a phenotypically mutant mapping population. A control sample is required for the mapping analysis, which can be either one of the parental individuals crossed or, alternatively, a pool of phenotypically wild-type F2 individuals. For mapping of large insertions, the DNA of different insertional mutant lines can be sequenced individually or pooled, and no control sample is required.

(B) Input files. Easymap takes NGS paired-end or single-end short reads as input. The remaining mandatory input files are available on public databases for each model species.

(C) Easymap workflows. The user selects the experimental design used for mutation mapping from a variety of options for both EMS mutation mapping (backcross and outcross strategies, alternative control samples) and tagged-sequence mapping (paired-end and single-end reads).

(D) Output. Easymap produces comprehensive mapping reports with organized tabular data to ease interpretation of the results. As an example of EMS-induced mutations, data from the Arabidopsis suppressor of overexpression of CONSTANS 1-2 (soc1-2) mutant (Sun and Schneeberger, 2015) was used for this figure. Allele frequency (AF) versus Position plots are drawn for each chromosome containing the polymorphisms used for the analysis. A candidate region is highlighted in pink; all putative EMS-type mutations contained in this region are regarded as candidates, and their position and relevant information is presented in a table, such as the gene affected by the mutation. For each gene affected by a candidate mutation, a gene plot is made in which the position of the mutation is shown, followed by further information (genotyping primers, flanking sequences, functional annotation, etc.). As an example of large insertion mapping, the figure includes data from an unpublished mapping experiment made in our laboratory (see Table 3). A genomic overview is drawn showing the positions of the insertions found. Read depth (RD) histograms are generated for each read cluster pointing to an insertion site showing the information supporting the insertion. Finally, a gene plot is made for each gene interrupted by an insertion.

Figure 2. Some strategies for EMS-induced mutation mapping implemented in Easymap.

(A–D) The input reads are processed into control and test SNP lists. The lists are contrasted in order to determine the SNPs that can be informative for mapping, which are subjected to an allelic frequency (AF) analysis to find the phenotypically selected genomic position. A
candidate region is defined around the selected genomic position, and the potentially causal SNPs within the candidate region are collected as candidate SNPs. (A) For a mutant strain obtained in the reference genetic background, a backcross is performed to obtain the mapping population and the control sample used is the parental of the mutagenized line. (B) For a mutant obtained in the reference genetic background, an outcross is performed to obtain the mapping population, and the control sample is the polymorphic wild-type parent. (C) For a mutant obtained in a non-reference strain, a backcross is performed to obtain the mapping population, and the control sample used is a pool of phenotypically wild-type F$_2$ individuals. (D) For a mutant obtained in a non-reference strain, an outcross is performed to obtain the mapping population, and the control sample is the parent of the mutagenized line. (E-H) Selection of the experimental design corresponding to panels A to D in the multiple-choice selectors of the graphic interface of Easymap.

Figure 3. Large insertion mapping with Easymap.

(A–C) Local alignment analysis. (A) The DNA insert appears in blue, over genomic DNA in grey. Individual reads are taken from the mutant genome. (B) The reads are aligned to the insertion sequence. Locally aligned reads (e.g., 1) are selected and sorted according to the end that is truncated (in blue and green). (C) The selected reads are aligned to the genomic reference sequence. The blue triangle indicates the position of the insertion in the mutant genome.

(D–F) Paired-read analysis. (D) Paired reads are taken from the mutant genome. (E) The reads are aligned to the insertion sequence. Unaligned reads with aligned mates (e.g., 2) are selected and sorted according to their position in relation to the insertion (in blue and green). (F) The selected reads are aligned to the reference sequence, delimiting a candidate region for the insertion site.

(G–H) Read depth histograms for examples of local alignment (G) and paired-read analyses (H). (G) False positive insertion, characterized by low overall read depths and disorganized data. (H) True positive insertion, characterized by high read depths and organized data.
Table 1. Validation of point-mutation mapping strategies using published, real experimental data

Genetic background of the mutant	Mapping strategy	Control sample	Mutant	NGS sample type	Results obtained by Easymap
Same as reference sequence	Backcross/M2	Wild-type parental strain	hasty	DNA	Causal mutation within the candidate interval
			ago1-25	DNA	Causal mutation within the candidate interval
			alp1-3	DNA	Causal mutation within the candidate interval
			gl3	RNA	Results comparable to original paper
		Phenotypically wild-type siblings	atgr2	DNA	Causal mutation within the candidate interval
			shortroot	DNA	Causal mutation within the candidate interval
			rth6	RNA	Results comparable to original paper
Outcross	Wild-type parental strain	rol-6(su1006)		DNA	Causal mutation within the candidate interval
Genetically distant strain				DNA	Causal mutation within the candidate interval
crossed to the mutant				DNA	Causal mutation within the candidate interval
Different from reference sequence	Backcross/M2	Phenotypically wild-type siblings	icu11-1	DNA	Causal mutation within the candidate interval
			jj410	DNA	Results comparable to original paper
			gl13	RNA	Results comparable to original paper
Outcross	Wild-type parental strain	HKT2.4 allele		DNA	Causal mutation within the candidate interval
			ten	DNA	Results comparable to original paper

See Table S1 for more detailed information.
Table 2. Validation of large-insertion mapping strategies with real experimental data

Reference	Sequenced sample	Results obtained by Easymap
Wilson-Sánchez et al. (2014)	Pool of 10 SALK mutants	17 of 19 known insertions were detected by Easymap; the remaining 2 were filtered out as false positives due to very few supporting reads (average RD per sample was 4.5×, instead of the recommended 10×)
Lup and Micol, unpublished	Pool of 6 SALK mutants	9 insertions detected
Yang et al. (2013)	Mutagenized T1c-19 rice	2 of 2 insertions detected; 2 clearly distinguishable false positives
	Mutagenized TT51-1 rice	2 of 2 insertions detected; 47 clearly distinguishable false positives due to the presence of an endogenous sequence in the insertion sequence
Li et al. (2016b)	Mutant T027	2 of 2 insertions detected; 1 false positive common to all lines from this article (omitted below)
	Mutant T182	1 of 1 insertion detected; 1 false positive
	Mutant T204	1 of 1 insertion detected
	Mutant T273	1 of 1 insertion detected split in two clusters due to a large deletion in the mutagenized genome
	Mutant T400	1 of 1 insertion detected

See Table S1 for more detailed information.
Table 3. Experimental designs supported by different open-source programs used for mapping-by-sequencing

Mutations under study	Mapping design	Control sample	SHOREmap¹	SIMPLE³	CandiSNP⁴	Jitterbug⁵	Easymap⁷	ITIS⁶
Point mutations	Backcross	Parental line	D	D	D/R	D/R		
		Phenotypically wild-type F₂ or M₂	D		D/R			
Outcross	Parental line	D	D	D	D/R	D/R		
	Phenotypically wild-type F₂ or M₂	D	D/R					
Large insertions	–	–	D	D	D/R	D/R		

The capabilities of some current mapping tools are compared, each character (D, with DNA-seq data; R, with RNA-seq data) representing an experimental design supported by the software. ¹Sun and Schneeberger (2015). ² Javorka et al. (2019). ³ Wachsman et al. (2017). ⁴ Etherington et al. (2014). ⁵ Hénaff et al. (2015). ⁶ Jiang et al. (2015). ⁷ This work.
Workflow	Software	Reference	General usage and parameters
Linkage analysis	HISAT2	Kim et al. (2019)	hisat2-build for genome indexing
mapping	SAMtools	Li et al. (2009)	hisat2 with default options for paired-end or single-end read alignment
	BCFtools	Narasimhan et al. (2016)	samtools sort to convert BAM files to SAM
	HTSlib	http://www.htslib.org/	samtools mpileup for first step in variant calling, with arguments:
			-t DP, ADF, ADR for specific output formatting of VCF file
			-c50 to fix overestimated mapping qualities (High stringency mode)
Tagged sequence	Bowtie 2	Langmead and Salzberg (2012)	bcftools call for second step in variant calling, with argument -mv to report only polymorphic sites
mapping			bowtie2-build for genome indexing
			bowtie2 with default options for paired-end read alignment
			bowtie2 -local for local alignment of paired-end or single-end reads
Figure 1. An overview of a mapping-by-sequencing experiment with Easymap in Arabidopsis.

(A) Experimental design. For EMS-induced mutants, an outcross or backcross is performed. The F1 plants derived from the cross are selfed, and the resulting F2 is screened for the mutant phenotype to create a phenotypically mutant mapping population. A control sample is required for the mapping analysis, which can be either one of the parental individuals crossed or, alternatively, a pool of phenotypically wild-type F2 individuals. For mapping of large insertions, the DNA of different insertional mutant lines can be sequenced individually or pooled, and no control sample is required.

(B) Input files. Easymap takes NGS paired-end or single-end short reads as input. The remaining mandatory input files are available on public databases for each model species.

(C) Easymap workflows. The user selects the experimental design used for mutation mapping from a variety of options for both EMS mutation mapping (backcross and outcross strategies, alternative control samples) and tagged-sequence mapping (paired-end and single-end reads).

(D) Output. Easymap produces comprehensive mapping reports with organized tabular data to ease interpretation of the results. As an example of EMS-induced mutations, data from the Arabidopsis suppressor of overexpression of CONSTANS 1-2 (soc1-2) mutant (Sun and Schneeberger, 2015) was used.
Allele frequency (AF) versus Position plots are drawn for each chromosome containing the polymorphisms used for the analysis. A candidate region is highlighted in pink; all putative EMS type mutations contained in this region are regarded as candidates, and their position and relevant information is presented in a table, such as the gene affected by the mutation. For each gene affected by a candidate mutation, a gene plot is made in which the position of the mutation is shown, followed by further information (genotyping primers, flanking sequences, functional annotation, etc.). As an example of large insertion mapping, the figure includes data from an own unpublished mapping experiment (see Table 3). A genomic overview is drawn showing the positions of the insertions found. Read depth (RD) histograms are generated for each read cluster pointing to an insertion site showing the information supporting the insertion. Finally, a gene plot is made for each gene interrupted by an insertion.
Figure 2. Some strategies for EMS-induced mutation mapping implemented in Easymap.

(A–D) The input reads are processed into control and test SNP lists. The lists are contrasted in order to determine the SNPs that can be informative for mapping, which are subjected to an allelic frequency (AF) analysis to find the phenotypically selected genomic position. A candidate region is defined around the selected genomic position, and the potentially causal SNPs within the candidate region are collected as candidate SNPs. (A) For a mutant strain obtained in the reference genetic background, a backcross is performed to obtain the mapping population and the control sample used is the parental of the mutagenized line. (B) For a mutant obtained in the reference genetic background, an outcross is performed to obtain the
mapping population, and the control sample is the polymorphic wild-type parent. (C) For a mutant obtained in a non-reference strain, a backcross is performed to obtain the mapping population, and the control sample used is a pool of phenotypically wild-type F_2 individuals. (D) For a mutant obtained in a non-reference strain, an outcross is performed to obtain the mapping population, and the control sample is the parent of the mutagenized line. (E-H) Selection of the experimental design corresponding to panels A to D in the multiple-choice selectors of the graphic interface of Easymap.
Figure 3. Large DNA insertion mapping.

(A–C) Local alignment analysis. (A) The DNA insert appears in blue, over genomic DNA in grey. Simple reads are taken from the mutant genome. (B) The reads are aligned to the insertion sequence. Locally aligned reads (e.g., 1) are selected and sorted according to the end that is truncated (in blue and green). (C) The selected reads are aligned to the genomic reference sequence. The blue triangle indicates the position of the insertion in the mutant genome.

(D–F) Paired-read analysis. (D) Paired reads are taken from the mutant genome. (E) The reads are aligned to the insertion sequence. Unaligned reads with aligned mates (e.g., 2) are selected and sorted according to their position in relation to the insertion (in blue and green). (F) The selected reads are aligned to the reference sequence, delimiting a candidate region for the insertion site.

(G–H) Read depth histograms for examples of local alignment (G) and paired-read analyses (H). (G) False positive insertion, characterized by low overall read depths and disorganized data. (H) True positive insertion, characterized by high read depths and organized data.
Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30: 174-178

Google Scholar: Author Only Title Only Author and Title

Afghani E, Baker D, Batut B, Van den Beek M, Bouvier D, Čech M, Chilton J, Clements D, Coraor N, Grüning BA, Guerler A, Hillman-Jackson J, Hillemann S, Jalili V, Rashe J, Soranzo N, Goecks J, Taylor J, Nekrutenko A, Blankenberg D (2018) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46: W537-W544

Google Scholar: Author Only Title Only Author and Title

Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koessm E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Kernes M, Mulholland C, Nubukau R, Schmidt F, Guzman P, Aguilar-Henonin L, Schmitt M, Weigal D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653-657

Google Scholar: Author Only Title Only Author and Title

Candela H, Casanova-Sáez R, Micó JL (2015) Getting started in mapping-by-sequencing. J Integr Plant Biol 57: 606-612

Google Scholar: Author Only Title Only Author and Title

Cooley L, Kelley R, Spradling A (1988) Insertional mutagenesis of the Drosophila genome with single P elements. Science 239: 1121-1128

Google Scholar: Author Only Title Only Author and Title

Ecovoiu AA, Ghionoiu IC, Ciucu AM, Ratiu AC (2016) Genome ARTIST: a robust, high-accuracy aligner tool for mapping transposon insertions and self-insertions. Mob DNA 7: 3

Google Scholar: Author Only Title Only Author and Title

Etherington GJ, Monaghan J, Zipfel C, MacLean D (2014) Mapping mutations in plant genomes with the user-friendly web application CandiSNP. Plant Methods 10: 41

Google Scholar: Author Only Title Only Author and Title

Ewing AD (2015) Transposable element detection from whole genome sequence data. Mob DNA 6: 24

Google Scholar: Author Only Title Only Author and Title

Fay D, Spencer A (2006) Genetic mapping and manipulation: Chapter 8-Dominant mutations (February 17, 2006), WormBook. The C. elegans Research Community, doi/10.1895/wormbook.1.97.1

Google Scholar: Author Only Title Only Author and Title

Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, Sharma S, Sharma S, Kanzaki H, Matsumura H, Saitoh H, Mitsuoka C, Utsushi H, Uemura A, Kanzaki E, Kosugi S, Yoshida K, Cano L, Kamoun S, Terauchi R (2013) MutMap+: genetic mapping and mutant identification without crossing in rice. PLOS ONE 8: e68529

Google Scholar: Author Only Title Only Author and Title

Frøkjær-Jensen C, Davis MW, Sarov M, Taylor J, Filbottt S, LaBella M, Pozniakovsky A, Moerman DG, Jorgensen EM (2014) Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon. Nat Methods 11: 529-534

Google Scholar: Author Only Title Only Author and Title

Gasch A, Aoyama T, Foster R, Chua N-H (1992) Gene isolation with the Polymerase Chain Reaction. In Methods in Arabidopsis Research. London: World Scientific, pp 342–356

Google Scholar: Author Only Title Only Author and Title

Gonzalez MA, Lébrigio RF, Van Booven D, Ulloa RH, Powell E, Speziani F, Tekin M, Schule R, Zuchner S (2013) GENomes Management Application (GEM.app): a new software tool for large-scale collaborative genome analysis. Hum Mutat 34: 842-846

Google Scholar: Author Only Title Only Author and Title

Hartwig B, James GV, Konrad K, Schneeberger K, Turck F (2012) Fast isogenic mapping-by-sequencing of ethyl methanesulfonate-induced mutant bulks. Plant Physiol 160: 591-600

Google Scholar: Author Only Title Only Author and Title

Hénaff E, Zapata L, Casacuberta JM, Ossowski S (2015) Jitterbug: somatic and germline transposon insertion detection at single-nucleotide resolution. BMC Genomics 16: 768

Google Scholar: Author Only Title Only Author and Title

Hill JT, Demarest BL, Bisgrove BW, Gorski B, Su YC, Yost HJ (2013) MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res 23: 687-697

Google Scholar: Author Only Title Only Author and Title

James DW, Jr., Dooner HK (1990) Isolation of EMS-induced mutants in Arabidopsis altered in seed fatty acid composition. Theor Appl Genet 80: 241-245

Google Scholar: Author Only Title Only Author and Title
Narasimhan V, Danecek P, Scally A, Xue Y, Tyler-Smith C, Durbin R (2016) BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics 32: 1749-1751

Google Scholar: Author Only Title Only Author and Title

Neuffer MG, Ficsor G (1963) Mutagenic action of ethyl methanesulfonate in maize. Science 139: 1296-1297

Google Scholar: Author Only Title Only Author and Title

O’Malley RC, Alonso JM, Kim CJ, Leisse TJ, Ecker JR (2007) An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome. Nat Protoc 2: 2910-2917

Google Scholar: Author Only Title Only Author and Title

Obholzer N, Swinburne IA, Schwab E, Nechiporuk AV, Nicolson T, Megason SG (2012) Rapid positional cloning of zebrafish mutations by linkage and homozygosity mapping using whole-genome sequencing. Development 139: 4280-4290

Google Scholar: Author Only Title Only Author and Title

Ponce MR, Robles P, Micol JL (1999) High-throughput genetic mapping in Arabidopsis thaliana. Mol Gen Genet 261: 408-415

Google Scholar: Author Only Title Only Author and Title

Pulido-Tamayo S, Duitama J, Marchal K (2016) EXPLoRA-web: linkage analysis of quantitative trait loci using bulk segregant analysis. Nucleic Acids Res 44: W142-146

Google Scholar: Author Only Title Only Author and Title

Rishmawi L, Sun H, Schneeberger K, Hulskamp M, Schrader A (2014) Rapid identification of a natural knockout allele of ARMADILLO REPEAT-CONTAINING KINESIN1 that causes root hair branching by mapping-by-sequencing. Plant Physiol 166: 1280-1287

Google Scholar: Author Only Title Only Author and Title

Schneeberger K, Weigel D (2011) Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci 16: 282-288

Google Scholar: Author Only Title Only Author and Title

Smith DR (2015) Buying in to bioinformatics: an introduction to commercial sequence analysis software. Brief Bioinform 16: 700-709

Google Scholar: Author Only Title Only Author and Title

Solaïmânpour S, Sarmiento F, Mrázek J (2015) Tn-seq explorer: a tool for analysis of high-throughput sequencing data of transposon mutant libraries. PLOS ONE 10: e0126070

Google Scholar: Author Only Title Only Author and Title

Sun H, Schneeberger K (2015) SHOREmap v3.0: fast and accurate identification of causal mutations from forward genetic screens. Methods Mol Biol 1284: 381-395

Google Scholar: Author Only Title Only Author and Title

Wachsman G, Modliszewski JL, Valdes M, Benfey PN (2017) A SIMPLE Pipeline for Mapping Point Mutations. Plant Physiol 174: 1307-1313

Google Scholar: Author Only Title Only Author and Title

Wilson-Sánchez D, Lup SD, Sarmiento-Maňús R, Ponce MR, Micol JL (2019) Next-generation forward genetic screens: using simulated data to improve the design of mapping-by-sequencing experiments in Arabidopsis. Nucleic Acids Res 47: e140

Google Scholar: Author Only Title Only Author and Title

Wilson-Sánchez D, Rubio-Díaz S, Muñoz-Viana R, Pérez-Perez JM, Jouer-Gil S, Ponce MR, Micol JL (2014) Leaf phenomics: a systematic reverse genetic screen for Arabidopsis leaf mutants. Plant J 79: 878-891

Google Scholar: Author Only Title Only Author and Title

Yang L, Wang C, Holst-Jensen A, Morisset D, Lin Y, Zhang D (2013) Characterization of GM events by insert knowledge adapted resequencing approaches. Sci Rep 3: 2839

Google Scholar: Author Only Title Only Author and Title

Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30: 174-178

Google Scholar: Author Only Title Only Author and Title

Afgan E, Baker D, Batut B, Van den Beek M, Bouvier D, Čech M, Chilton J, Clements D, Coraor N, Grüning BA, Guerler A, Hillman-Jackson J, Hiltzmann S, Jallili V, Rasche H, Soranzo N, Goecks J, Taylor J, Nekrutenko A, Blankenberg D (2018) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46: W537-W544

Google Scholar: Author Only Title Only Author and Title

Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koese RA, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Gerald M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubak R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby ML, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653-657

Google Scholar: Author Only Title Only Author and Title

Candela H, Casanova-Sáez R, Micol JL (2015) Getting started in mapping-by-sequencing. J Integr Plant Biol 57: 606-612
Klein H, Xiao Y, Conklin PA, Govindarajulu R, Kelly JA, Scanlon MJ, Whipple CJ, Bartlett M (2018) Bulked-segregant analysis coupled to whole genome sequencing (BSA-Seq) for rapid gene cloning in maize. G3 8: 3583-3592

Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nature Methods 9: 357-359

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078-2079

Li L, Hey S, Liu S, Liu Q, McNinch C, Hu HC, Wen TJ, Marcon C, Paschold A, Bruce W, Schnable PS, Hochholdinger F (2016a) Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth. Sci Rep 6: 34395

Li L, Li D, Liu S, Ma X, Dietrich CR, Hu HC, Zhang G, Liu Z, Zheng J, Wang G, Schnable PS (2013) The maize glossy13 gene, cloned via BSR-Seq and Seq-walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes. PLOS ONE 8: e82333

Li WX, Wu SL, Liu YH, Jin GL, Zhao HJ, Fan LJ, Shu QY (2016b) Genome-wide profiling of genetic variation in Agrobacterium-transformed rice plants. J Zhejiang Univ Sci B 17: 992-996

Liu S, Yeh CT, Tang HM, Nettleton D, Schnable PS (2012) Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLOS ONE 7: e36406

Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8: 457-463

Mateo-Bonmatí E, Esteve-Bruna D, Juan-Vicente L, Nadi R, Candela H, Lozano FM, Ponce MR, Pérez-Pérez JM, Micol JL (2018) INCURVATA11 and CUPULIFORMIS2 are redundant genes that encode epigenetic machinery components in Arabidopsis. Plant Cell 30: 1596-1616

Medford JI, Behringer FJ, Callos JD, Feldmann KA (1992) Normal and abnormal development in the Arabidopsis vegetative shoot apex. Plant Cell 4: 631-643

Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88: 9828-9832

Minevich G, Park DS, Blankenberg D, Poole RJ, Hobert O (2012) CloudMap: a cloud-based pipeline for analysis of mutant genome sequences. Genetics 192: 1249-1269

Morel JB, Godon C, Mourrain P, Becini C, Boutet S, Feuerbach F, Proux F, Vaucheret H (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14: 629-639

Narasimhan V, Danecek P, Scally A, Xue Y, Tyler-Smith C, Durbin R (2016) BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics 32: 1749-1751

Neuffer MG, Ficsor G (1963) Mutagenic action of ethyl methanesulfonate in maize. Science 139: 1296-1297

O'Malley RC, Alonso JM, Kim CJ, Leisse TJ, Ecker JR (2007) An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome. Nat Protoc 2: 2910-2917

Obholzer N, Swinburne IA, Schwab E, Nechiporuk AV, Nicolson T, Megason SG (2012) Rapid positional cloning of zebrafish mutations by linkage and homozygosity mapping using whole-genome sequencing. Development 139: 4280-4290

Obholzer N, Swinburne IA, Schwab E, Nechiporuk AV, Nicolson T, Megason SG (2012) Rapid positional cloning of zebrafish mutations by linkage and homozygosity mapping using whole-genome sequencing. Development 139: 4280-4290

Ponce MR, Robles P, Micol JL (1999) High-throughput genetic mapping in Arabidopsis thaliana. Mol Gen Genet 261: 408-415

Pulido-Tamayo S, Duitama J, Marchal K (2016) EXPLoRA-web: linkage analysis of quantitative trait loci using bulk segregant analysis. Nucleic Acids Res 44: W142-146
Rishmawi L, Sun H, Schneeberger K, Hulskamp M, Schrader A (2014) Rapid identification of a natural knockout allele of ARMADILLO REPEAT-CONTAINING KINESIN1 that causes root hair branching by mapping-by-sequencing. Plant Physiol 166: 1280-1287

Schneeberger K, Weigel D (2011) Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci 16: 282-288

Smith DR (2015) Buying in to bioinformatics: an introduction to commercial sequence analysis software. Brief Bioinform 16: 700-709

Solaimanpour S, Sarmiento F, Mrázek J (2015) Tn-seq explorer: a tool for analysis of high-throughput sequencing data of transposon mutant libraries. PLOS ONE 10: e0126070

Sun H, Schneeberger K (2015) SHOREmap v3.0: fast and accurate identification of causal mutations from forward genetic screens. Methods Mol Biol 1284: 381-395

Wachsman G, Modliszewski JL, Valdes M, Benfey PN (2017) A SIMPLE Pipeline for Mapping Point Mutations. Plant Physiol 174: 1307-1313

Wilson-Sánchez D, Lup SD, Sarmiento-Mañús R, Ponce MR, Micol JL (2019) Next-generation forward genetic screens: using simulated data to improve the design of mapping-by-sequencing experiments in Arabidopsis. Nucleic Acids Res 47: e140

Wilson-Sánchez D, Rubio-Díaz S, Muñoz-Viana R, Pérez-Perez JM, Jover-Gil S, Ponce MR, Micol JL (2014) Leaf phenomics: a systematic reverse genetic screen for Arabidopsis leaf mutants. Plant J 79: 878-891

Yang L, Wang C, Holst-Jensen A, Morisset D, Lin Y, Zhang D (2013) Characterization of GM events by insert knowledge adapted re-sequencing approaches. Sci Rep 3: 2839