Review Article

Two Traditional Chinese Medicines *Curcumae Radix* and *Curcumae Rhizoma*: An Ethnopharmacology, Phytochemistry, and Pharmacology Review

Yang Zhou, 1 Meng Xie, 1 Yan Song, 2 Wenping Wang, 2 Haoran Zhao, 1 Yuxin Tian, 1 Yan Wang, 1 Shaojuan Bai, 1 Yichen Zhao, 1 Xiaoyi Chen, 1 and Gaimei She 1

1School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
2Pharmacy College, Ningxia Medical University, Ningxia 750000, China

Correspondence should be addressed to Gaimei She, shegaimei@126.com

Received 22 September 2015; Revised 5 December 2015; Accepted 8 December 2015

Academic Editor: Filippo Maggi

Copyright © 2016 Yang Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Curcumae Rhizoma, known as Ezhu (Chinese: 莪术), and *Curcumae Radix*, known as Yujin (Chinese: 郁金), are different plant parts coming from three same species according to China Pharmacopoeia. Actually, they are used in different ways in TCM clinical treatment. *Curcumae Rhizoma* is mainly used as antitumor drug, while *Curcumae Radix* has been used as antidepressant and cholagogue. *Curcumae Rhizoma* and *Curcumae Radix* are confused in variety and source, even in clinical trials by some nonprofessional workers. So it is important for us to make them clear. This review is aimed at summarizing the ethnopharmacology, phytochemical, and pharmacological differences between *Curcumae Radix* and *Curcumae Rhizoma* by SciFinder, CNKI, and so on, to use them exactly and clearly. Further studies on *Curcumae Rhizoma* and *Curcumae Radix* can lead to the development of new drugs and therapeutics for various diseases on the basis of the TCM theory.

1. Introduction

Curcumae Rhizoma (Chinese: 莪术) and *Curcumae Radix* (Chinese: 郁金) are two Chinese medicines used commonly in both traditional treatment and modern clinical care. The Chinese Pharmacopoeia recorded that *Curcumae Radix* should be the dry radix of *Curcuma wenyujin* Y. H. Chen and C. Ling, *C. longa* L, *C. kwangsiensis* S. G. Lee, and *C. phaeocaulis* Valeton. And *Curcumae Rhizoma* should be the dry rhizomes derived from the above-mentioned species except *C. longa* L [1]. They are similar in source but different in medicinal parts.

It is recorded in the TCM ancient books that their flavors are both pungent and bitter. The nature of *Curcumae Rhizoma* is warm and attributive to the liver and spleen meridians, while *Curcumae Radix* is cold and attributive to the liver, heart, and lung meridians.

Curcumae Rhizoma and *Curcumae Radix* have their respective priorities on TCM efficacy. *Curcumae Radix* is particularly effective in activating qi for resolving stagnation (行气解郁), clearing heart fire and cooling blood (清心凉血), together with normalizing gallbladder to cure jaundice (利胆退黄). TCM experts mainly used it to cure illnesses like jaundice, cholelithiasis caused by dampness-heater of liver and gallbladder (湿热黄疸), and so on. *Curcumae Rhizoma* is good at treating the syndrome of food retention (食积) and accumulation of extravasated blood (血积) and accumulation of extravasated blood (血积). In general, they both effective in promoting blood circulation for alleviating pain (活血止痛) and activating qi to resolve stagnation (行气消滞), whereas on exerting drug efficacy, *Curcumae Rhizoma* is stronger than *Curcumae Radix* on the ability of invigorating the circulation of blood (活血). On this account, it is forbidden to be used in menstruation and pregnancy.

Most recent pharmacological researches on *Curcumae Rhizoma* laid emphasis on the anticancer effect particularly. *Curcumae Rhizoma* has been developed into a variety of formulations and used in clinical treatment. About *Curcumae
Radix, its reports were relatively few, and most focused on the effect of antidepressant, liver-protection, and cholagogue. Actually, they have something in common, some activities involving antitumor [2, 3], antivirus [4, 5], anti-inflammatory [6–9], and so forth; the chemical compositive contents and pharmacological activities of certain effective compounds extracted from the volatile oils were mostly focused on [10, 11].

Now, related references reviewed the traditional effect, pharmacological activities, and clinical application of Curcumae Rhizoma and Curcumae Radix [12, 13]. And they have always been reviewed, respectively. There are few to sum up between Curcumae Rhizoma and Curcumae Radix in a contrastive sight owing to their similar originals.

In the present review, we provide a systematical and comparative summary on ethnopharmacology, phytochemistry, and pharmacology of Curcumae Rhizoma and Curcumae Radix; in addition, we attempt to explore the inner link with and difference between two medicines, to well understand and use two Chinese medicines preferably. The possible tendency and perspective for future investigation of Curcumae Rhizoma and Curcumae Radix are discussed too.

2. Botany

Curcumae Rhizoma and Curcumae Radix are two herbal medicines of genus Curcuma, family Zingiberaceae. Curcumae Rhizoma comes from the dry rhizomes derived from only C. wenyujin, C. kwangsiensis, and C. phaeocaulis, while Curcumae Radix should be the dry radix from four species including above-mentioned ones and C. longa, as the Chinese Pharmacopoeia recorded.

The same source of Curcumae Rhizoma and Curcumae Radix is C. wenyujin, C. kwangsiensis, and C. phaeocaulis whose characteristics are introduced as follows. As the typical botanical characters, C. wenyujin grows to the height of 0.8–1.6 m. The leaves are blade oblong or ovate oblong with the length of 35–75 cm and the width of 14–22 cm. They are glabrous, base subrounded or broadly cuneate, apex acute, or shortly caudate. The inflorescences are on separate shoots arising from rhizomes. The leaves of C. kwangsiensis are blade elliptic-lanceolate and pubescent with the length of 14–40 cm and the width of 4.5–9.5 cm. The inflorescences are terminal on pseudostems or on separate shoots arising from rhizomes. As for C. phaeocaulis, their leaves are oblong, oval, disciform, or narrowly ovate, and inflorescences are cylindrical and spicate.

C. longa is the source of Curcumae Radix. But it is not the origin of Curcumae Rhizoma. C. longa grows to the height of 1 m. The leaves are blade green, glabrous, oblong, or elliptic and the inflorescences are terminal on pseudostems. In conclusion, the radix of all 4 species mentioned above is Curcumae Radix. The Rhizoma species is known as Curcumae Rhizoma, excluding the plant C. longa (Figure 1). Generally, either Curcumae Rhizoma or Curcumae Radix is picked in winter when the stems and leaves are withered. And they should be dried before being taken into clinical application.

Figure 1: The typical botanical characters of Curcumae Rhizoma and Curcumae Radix from different sources.
3. Ethnopharmacology

In the long development history of Chinese traditional medicine, *Curcumae Rhizoma* and *Curcumae Radix* play a significant role in the traditional treatment. *Curcumae Rhizoma* was initially recorded in Lei Gong Pao Zhi Lun during the southern and northern dynasties, which is deemed as the earliest monograph of science on processing Chinese medicine in the world. In Ri Hua Zi Ben Cao, *Curcumae Rhizoma* was recounted to stimulate one’s appetite, help digestion, promote menstruation, eliminate blood stasis, and alleviate pain caused by the injuries from falls. *Curcumae Radix* was initially recorded in Yao Xing Lun, described to cure the irregularity of qi and blood and the accumulation of cold. In Kai Bao Ben Cao, *Curcumae Radix* was described to activate blood circulation, descend qi, and promote tissue regeneration, and arrest bleeding. In Compendium of Materia Medica, a monograph of TCM, *Curcumae Radix* was applied to cure the blood disease. *Curcumae Radix* has obvious effects on syndrome of qi stagnation and blood stasis (气滞血瘀症) which may cause hematemesis (吐血), bleeding from five aperture or subcutaneous tissue (衄血), hematuria (尿血), bloody stranguria (血淋), and aberratio mensium (倒经). Also, it could cure heat disease and unconsciousness (热病神昏), epilepsy and internal stagnation of phlegm (癥瘕痰闭). Furthermore, *Curcumae Radix* could be chosen to cure such patients characterized by dampness-heat of liver and gallbladder (肝胆湿热) or jaundice (黄疸) or cholelithiasis (胆石症). *Curcumae Rhizoma* does well in treating the disease mass in the abdomen accumulation (积聚积聚), amenorrhea (经闭), the blood stasis of heart and abdomen (心腹血积), dyspepsia (食积), and distending pain of gastric cavity and abdominal pain (脘腹胀痛). And the two medicines are usually used in herb pairs, such as *Curcumae Rhizoma* and *Sparganii Rhizoma*, *Curcumae Rhizoma* and *Astragali Radix*. Such medicine application is a progress in treatment which could make two medicines display advantages, respectively, and exert therapeutic effects together. Because of their fabulous and definite clinical effects, many classic prescriptions (Table 1) created by the ancient famous doctors were handed down from generation to generation through the repeated clinical verification for thousands of years.

4. Pharmacological Activities

The pharmacological actions of *Curcumae Rhizoma* and *Curcumae Radix* have gained much attention. Generally speaking, *Curcumae Rhizoma* has effects in antitumor, antiplatelet aggregation and antithrombosis, hepatoprotective, antioxidant, antimicrobial, and antiviral activity, and so forth. Among these, antitumor activity is most widely and emphatically studied [59, 62–64]. It played a significant role in the treatment of cancer and tumor in clinic [65, 66]. *Curcumae Radix* also owns its unique priorities. In general, *Curcumae Radix* is mainly used as hepatic protectant and choleretic drug. In recent years, it has been used for treating depressive disorder with marked curative effect [67]. There are some relations between traditional effects and modern pharmacological. For example, *Curcumae Rhizoma*, the antitumor activity, and antithrombosis activity have been convinced to be relevant to the traditional effect “activating qi and breaking blood stasis.”

4.1. Antitumor Activity. Nowadays, the antitumor effect of the *Curcuma* species has been widely studied. And they are focused on two varieties *C. wenyujin* and *C. longa*, which are carried out not only in vivo but also in vitro. In summary, the mechanism of the antitumor activity of *Curcuma* species was mainly concentrated on the cytotoxicity and cell apoptosis-induced. *Curcumae Rhizoma* is widely used in the traditional Chinese medicine whose essential oils are widely applied in the treatment of tumor in China. And the bioactive compounds in *Curcumae Rhizoma* can generally be divided into two categories: volatile and nonvolatile components [12]. Among the volatile compounds, mostly are monoterprenoids and sesquiterpenoids. Particularly, β-elemene is the most widely studied component. It has been proved to possess broad-spectrum antitumor activity and effective treatment on the several type tumors [65–68]. As for nonvolatile compounds, curcumin and polysaccharides took up a large proportion. Similar to the former, they can also cure many kinds of tumor effectively. The antitumor effects of these terpenoids are found related to the retardation of cell cycle arrest, the induction of apoptosis, and the inhibition of metastasis or tissue invasion [12]. As a kind of acknowledged main effective constituents, people found that β-elemene has the ability to inhibit the activity of ovarian cancer cells [65]. And the inhibition of β-elemene-induced cancer cell proliferation is mainly due to the apoptotic cell death and cell cycle arrest [68, 69]. Further study was conducted to clarify that β-elemene extracted from *C. wenyujin* could antagonize glioblastoma cells by inducing apoptosis [13]. And this active compound was found to exert the effects inhibiting the growth of H2 tumor cells time- and dose-dependently. It is worth noting that β-elemene affects the expression of histone H1 only at the protein level but it is not involved in regulation at the gene level [70].

There are also some other active chemical compounds of *Curcumae Rhizoma*. Furanodiene, germacrone, furanodiene, and 13-hydroxygermacrone, sesquiterpenes extracted from the essential oil of *Curcumae Rhizoma* (*C. wenyujin*), were shown to possess the inhibiting UVB-induced upregulation of the mRNA and protein expression levels of MMP-1, MMP-2, and MMP-3 in human keratinocytes [71]. It is reported that its essential oil extract has the ability to inhibit tumor growth whose treatment resulted in apoptosis in Hela cells [3].

The polysaccharides extracted from *Curcumae Rhizoma* (*C. kwangsiensis*) were demonstrated to significantly inhibit the proliferation of CNE-2 cells, which was possible through the induction of apoptosis mediated by attenuating Bcl-2 expression and promoting p53 expression [72]. And curcumin was evidenced to have an effect in the apoptosis in SGC-7901 [63].

Generally speaking, the amount of reports on *Curcumae Radix* is somehow less compared to *Curcumae Rhizoma*. *Curcumae Radix* confirmed that it could inhibit the
Table 1: Classic prescriptions of *Curcumae Radix* and *Curcumae Rhizoma* in traditional and clinical usages.

Number	Preparation name	Formulation	Main compositions	References
Yujin				
(a) Syndrome of qi stagnation and blood stasis (气滞血瘀症)				
1	Dian Dao Mu Jin San	Powder	*Curcumae Radix*, *Aucklandiae Radix*, *Curcumae Radix*, *Bupleuri Radix*, *Gardeniae Fructus*, *Angelicae Sinensis Radix*, *Chuanxiong Rhizoma*, *Paeoniae Radix Alba*, *Moutan Cortex*, *Sinapis Semen*, *Rhizoma Cyperi*, *Scutellariae Radix*, *Glycyrrhizae Radix et Rhizoma*	Yizong Jinjian
2	Xuan Yu Tong Jing Tang	Decoction	*Curcumae Radix Alba*, *Rehmanniae Radix*, *Arisaematis Rhizoma*, *Sparganii Rhizoma*, *Curcumae Radix*, *Rehmanniae Radix*, *Arisaematis Rhizoma*, *Scutellariae Radix*, *Glycyrrhizae Radix et Rhizoma*	Fuqing Zhunvke
3	Yu Jin Yin Zi	Decoction	*Curcumae Radix*, *Rehmanniae Radix*, *Moutan Cortex*, *Gardeniae Fructus*, *Angelicae Sinensis Radix*, *Chuanxiong Rhizoma*, *Paeoniae Radix Alba*, *Moutan Cortex*, *Rehmanniae Radix*, *Arisaematis Rhizoma*, *Sparganii Rhizoma*, *Scutellariae Radix*, *Glycyrrhizae Radix et Rhizoma*	Shenghui
4	Chen Sha Yi Li Jin Dan	Pill	*Curcumae Radix*, *Aconiti Lateralis Radix Preparata*, *Zingiberis Rhizoma*, *Curcumae Radix*, *Arisaematis Rhizoma*, *Sparganii Rhizoma*, *Curcumae Radix*, *Rehmanniae Radix*, *Arisaematis Rhizoma*, *Scutellariae Radix*, *Glycyrrhizae Radix et Rhizoma*	Qixiao Liangfang
5	Yu Jin Chuan	Powder	*Rehmanniae Radix*, *Angelicae Sinensis Radix*, *Chuanxiong Rhizoma*, *Paeoniae Radix Alba*, *Moutan Cortex*, *Gardeniae Fructus*, *Angelicae Sinensis Radix*, *Chuanxiong Rhizoma*, *Paeoniae Radix Alba*	Chuan Yabu
6	Yu Jin Wan	Pill	*Curcumae Radix*, *Rehmanniae Radix*, *Angelicae Sinensis Radix*, *Chuanxiong Rhizoma*, *Paeoniae Radix Alba*, *Rehmanniae Radix*, *Angelicae Sinensis Radix*, *Chuanxiong Rhizoma*, *Paeoniae Radix Alba*	Shazheng Quanshu
(b) Hematemesis (吐血), bleeding from five apertures or subcutaneous tissues (衄血), aberratio mensium (倒经), hematuria (尿血), and bloody stranguria (血淋)				
7	Sheng Di Huang Tang	Decoction	*Curcumae Radix*, *Rehmanniae Radix*, *Moutan Cortex*, *Gardeniae Fructus*, *Curcumae Radix*, *Rehmanniae Radix*, *Cirsii Herba*	Yixue xinwu
		Powder	*Curcumae Radix*, *Rehmanniae Radix*, *Moutan Cortex*, *Gardeniae Fructus*, *Curcumae Radix*, *Rehmanniae Radix*, *Cirsii Herba*	Pu Jifang
8	Yu Jin San	Powder	*Curcumae Radix*, *Semen Nelumbinis*	Shengji Zonglu
		Powder	*Curcumae Radix*, *Semen Nelumbinis*	Zabing
			Curcumae Radix, *Rehmanniae Radix*, *Angelicae Sinensis Radix*, *Chuanxiong Rhizoma*, *Paeoniae Radix Alba*	Yuanxi Xizhu
9	Yu Jin Si Wu Tang	Decoction	*Angelicae Sinensis Radix*, *Chuanxiong Rhizoma*, *Paeoniae Radix Alba*	Guanju Fangyaobu
Number	Preparation name	Formulation	Main compositions	References
--------	------------------	-------------	------------------	------------
10	Yu Jin Huang Lian Wan	Pill	Curcumae Radix, Scutellariae Radix, Coptidis Rhizoma, Rhei Radix et Rhizoma, Talcum, Pharbitidis Semen, Poria, Ambrum	Xiu Zhen
11	Chang Pu Yu Jin Tang	Decoction	Curcumae Radix, Gardeniae Fructus, Acori Tatarinowii Rhizoma	Wenbing Quanshu
12	Bai Jin Wan	Pill	Curcumae Radix, Alumen	Shesheng Zhongmiaofang
		Pill	Curcumae Radix, Saposinoviae Radix, Chaunxiong Rhizoma, Gleditsia Officinalis, Alumen, Scolopendra	Danxi Xinfu Fuyu
13	Yu Jin Dan	Pill	Curcumae Radix, Platycodonis Radix, Arisaematis Rhizoma, Crotonis Fructus	Youyou Xinshu
14	Yu Jin Wan	Pill	Curcumae Radix, Cinnabaris, Alumen	Leizheng Zhicaishou
15	Yu Jin Shi Lian Zi Yin	Decoction	Curcumae Radix, Moutan Cortex, Rehmanniae Radix, Ophiopogonis Radix, Corydalis Rhizoma, Caesalpiniae Semen, Typhae Pollen, Lycopy Herba, Poria cum Radix Pini	Chensuan Fuke Bujie
16	Yu Jin Tang		Curcumae Radix, Arctii Fructus, Arnienciae Semen Amarum, Platycodonis Radix, Glehniae Radix, Cicadae Periostreacum	Zabing Yuanliu Xizhu
17	Yu Jin Tiao Jiu San	Powder	Curcumae Radix, Scutellariae Radix, Rhei Radix et Rhizoma, Saposinoviae Radix, Gardeniae Fructus, Angelicae Sinensis Radix, Chuanxiong Rhizoma, Paeoniae Radix Rubra, Gentianae Radix et Rhizoma	Yinhai Jingwei

(c) Heat disease and unconsciousness (热病神昏), epilepsy and internal stagnation of phlegm (癲痫痰闭)

(d) Dampness-heat of liver and gallbladder (肝胆湿热), jaundice (黄疸), and cholelithiasis (胆石症)
Table 1: Continued.

Number	Preparation name	Formulation	Main compositions	References
Ezhu				
(a) Mass in the abdomen accumulation (癥瘕积聚), amenorrhea (经闭), and the blood stasis of heart and abdomen (心血瘀)	**Curcumae Rhizoma**, **Spargani Rhizoma**, **Angelicae Sinensis Radix**, **Cyperus rotundus**, **Corydalis Rhizoma**, **Paconiae Radix Rubra**, **Aurantii Fructus**, **Rehmanniae Radix Praeparata**, **Resina Toxicodendri**, **Carthami Flos**, **Chuanxiong Rhizoma**, **Glycyrrhizae Radix et Rhizoma**	Ezhu San Powder	Shoushi Baoyuan	
18	Ezhu San	Powder		
19	Ezhu San	Powder		De Xiao
20	Peng Ezhu San	Powder		Pu Jifang
21	Ezhu Tang	Decoction		Zhulin Nvke
(b) Dyspepsia (食积), distending pain of gastric cavity and abdominal pain (脘腹胀痛)	**Curcumae Rhizoma**, **Spargani Rhizoma**, **Rhizoma Cyperi Arecae Semen**, **Aucklandiae Radix**, **Semen Pharkhitidis**, **Citri Reticulatae Pericarpium Virdie**, **Litseae Fructus**, **Aristolochiae Radix**, **Oryzae Fructus**, **Caryophylli Flos**, **Curcumae Rhizoma**, **Carthami Flos**, **Cimicifugae Rhizoma**, **Evodiae Fructus**, **Glycyrrhizae Radix et Rhizoma**, **Bupleuri Radix**, **Alismatis Rhizoma**, **Citri Reticulatae**, **Pericarpium Virdie**, **Citri Reticulatae, Pericarpium**, **Scutellariae Radix**, **Magnoliae Officinalis Cortex**	Ezhu Wan Pill	Zhengzi Zhunsheng	
22	Ezhu Wan	Pill		
23	Ezhu Kui Jian Tang	Decoction		Jiyang Gangmu
Table 1: Continued.

Number	Preparation name	Formulation	Main compositions	References
24	San Leng E Zhu Tang		Coptidis Rhizoma, Alpiniae Oxyphyllae Fructus, Alpiniae Katsumadai, Semen, Pinelliae Rhizoma, Angelicae Sinensis Radix, Medicated Leaven	Pu Ji Fang

Curcuma Rhizoma, Sparganii Rhizoma, Bupleuri Radix, Pinelliae Rhizoma, Arecae Pericarpium, Gentianae Macrophyllae Radix, Rhizoma Cyperi, Citri Reticulatae Pericarpium, Citri Reticulatae, Pericarpium, Perillae Folium, Aristolochiae Radix, Arecae Semen, Glycyrrhizae Radix et Rhizoma.

Appendix: the literature in the form.
Wuqian (吴谦), 1742. Yizong Jinjia (医宗金鉴).
Fushan (傅山), 1827. Fuqing Zhunvke (傅青主女科).
Wangyou (王佑), 1978. Shenghui (太平圣惠方).
DongSuyuan (董宿原), 1470. Qixiao Liangfang (奇效良方).
ChengGuopeng (程国彭), 1732. Yixuexinwu (医学心悟).
Zhaojie (赵佶), 1161. Shengji Zonglu (圣济总录).
ZhuSu (朱橚), 1406. PuJifang (普济方).
LinPeiqin (林佩琴), 1851. Leizheng ZhiCai (类证治裁).
ChenQi (陈沂), Song Dynasty. Chensuan Fuke Bujie (陈素庵妇科补解).
Shen Jiao (沈金鳌), 1773. Zabing Yuanxi Xizhu (杂病源洗犀烛).
Authorless, Ming Dynasty. Yinhai Jingwei (银海精微).
GongTingxian (龚廷贤), Ming Dynasty. Shoushi Baoyuan (寿世保元).
WeiYilin (危亦林), 1345. ShiYi Dexiaofang (世医得效方).
Yegui (叶桂), Qing Dynasty. Zhulin Nvke (竹林女科).
Wang Kentang (王肯堂), 1602. Zhenzhi Zhunsheng (证治准绳).
Li Heng (李恒), Ming Dynasty. XiuZhenfang (袖珍方).
ShenJinao (沈金鳌), 1773. Zabing Yuanliu Xizhu (杂病源洗犀烛).
Authorless, Ming Dynasty. Yinhai Jingwei (银海精微).
Gong Tingxian (龚廷贤), Ming Dynasty. Shoushi Baoyuan (寿世保元).
Wei Yilin (危亦林), 1345. ShiYi Dexiaofang (世医得效方).
Yegui (叶桂), Qing Dynasty. Zhulin Nvke (竹林女科).
Wang Kentang (王肯堂), 1602. Zhenzhi Zhunsheng (证治准绳).
Wu Zhiwang (武之望), 1626. Jiyan Gangmu (济阳纲目).

Appearance of the tumor on the colonic epithelium and chemical carcinogenesis in lots of clinical practice study [73]. An extracted compound, curcuminol C, demonstrated that it could induce tumor cells apoptosis. And this result was associated with the increase of Caspase-9, Caspase-3, Caspase-7, and PARP (89 KD) [62]. By using MTT method, diterpenoid from Curcumae Radix was investigated to have inhibitory effects on the growth of human gastric cancer cell SGC-7901, and the mechanism might be related to the apoptosis executive protein Caspase-3 activated by regulating p65 via p38MAPK [74]. And by using RT-PCR method, the same result was obtained, but the mechanism was associated with the downregulation of VEGF expression level [64].

Curcumin extracted from C. longa not only has strong cytotoxic activity but also can inhibit cells by inducing apoptosis. For example, in a study, Tca8113 and Tb cells were treated with different concentrations of curcumin (6.25, 12.50, 25.00, and 50.00 μmol/L), respectively, for 24 hours. The curcumin can notably inhibit proliferation and induce apoptosis of Tca8113 and Tb cells of human oral squamous cell carcinoma [75]. Now, a lot of work had been focused on
the antitumor activity of curcumin. Curcumin can inhibit a variety of tumor cells' growth and prevent from skin cancer, gastric cancer, adenocarcinoma of duodenum, colon cancer, and breast cancer of rodent induced by chemical and radioactive materials. It can also significantly reduce the number and the mass of tumors [76]. Curcumin is an acknowledged active component which is a scavenger of reactive oxygen species and has properties in skin and stomach carcinogenesis and various pharmaceutical applications [77]. Moreover, the half inhibitory concentration, IC\textsubscript{50}, of the extract named curcuminol E from the Curcuma Radix (C. wenyujin) on HL-60 was 4.2 mg/L and K562 being equal to 2.7 mg/L [59]. Curcuma Rhizoma showed different mechanism of the antitumor activity. For example, fractionated extracts of C. wenyujin (Curcuma Rhizoma or Curcuma Radix not mentioned in original literature) were tested for their potential to modulate the MDR phenotype and function of P-gp in MCF-7/ADR and A549/Taxol cells in vitro [78].

4.2. Antiplatelet Aggregation and Antithrombosis Activities. It is reported that curdione isolated from the essential oil of Curcuma Rhizoma (C. wenyujin) using the silica gel column chromatography method has a principal and active inhibitory effect on human platelet aggregation in vitro and in vivo testing. Specifically, we found that curdione could preferentially inhibit PAF- and thrombin-induced human platelet aggregation in a concentration-dependent manner (IC\textsubscript{50}: 60–80 μM). But its inhibitory activity on ADP- and AA-induced platelet aggregation was very weak in the in vitro test. Also, curdione played an important part in the inhibition of the P-selectin expression, the increase in cAMP levels, and the attenuation of intracellular Ca2+ mobilization in PAF-activated platelets. Moreover, curdione showed significant antithrombotic activity in vitro by testing in a tail thrombosis model [79]. Another compound, \(\beta\)-elemene extracted from the Curcuma Rhizoma (C. wenyujin), could extend coagulation time in normal mice in a dose-dependent manner (IC\textsubscript{50}: 60–80 μM). But its inhibitory activity on ADP- and AA-induced platelet aggregation was very weak in the in vitro test. Also, curdione played an important part in the inhibition of the P-selectin expression, the increase in cAMP levels, and the attenuation of intracellular Ca2+ mobilization in PAF-activated platelets. Moreover, curdione showed significant antithrombotic activity in vitro by testing in a tail thrombosis model [79]. Another compound, \(\beta\)-elemene extracted from the Curcuma Rhizoma (C. wenyujin), could extend coagulation time in normal mice in a dose-dependent manner. It means that, along with the increase of dosage, antithrombosis action by \(\beta\)-elemene was increased gradually. It played a role of antithrombosis activity by inhibiting platelet aggregation, releasing TXA\textsubscript{2}, and decreasing the production of platelet [80].

In another study, by using photo chemical reaction, \(\beta\)-elemene also proved that it may contribute to the prevention of thrombosis [81]. Moreover, in an experimental study, the Curcuma Rhizoma (C. phaeocaulis) revealed an active effect on inhibiting platelet aggregation and prolonging time of mice anagelsic. And the products with vinegar are more powerful [82].

There are no so many researches which could prove the activity of Curcuma Radix. The polysaccharides from Curcuma Radix (C. kwangsiensis) held anticoagulant activities confirmed by prolonging significantly the clotting time (CT), thrombin time (TT), and activated partial thromboplastin time (APTT) of mice in in vivo study [83].

4.3. Hepatoprotective Activity. Through summarizing literatures, the author found that there are two extracts which have the antihepatotoxic activity. One, ethanolic extract and essential oil, is mostly extracted from C. kwangsiensis or C. wenyujin. For example, the volatile oil of C. wenyujin can reduce the activity of S-GDT, have a certain repair effect on liver function, and correct A/G proportion inversion caused by hepatitis. It also can protect liver cells and promote the regeneration of liver tissues by the clinical observation and animal experiment [84]. The other, mainly curcumin, is extracted from C. longa.

Essential oils extracted from Curcuma Rhizoma (C. kwangsiensis) are effective in protecting liver from the damage induced by CCl\textsubscript{4}, TAA significantly, and it may be due to descending transaminase function and drug enzyme-induced function [85].

The model mice of acute hepatic injury were established with intraperitoneal injecting 0.2% CCl\textsubscript{4} 0.2 mL/10 mg to observe the activities of superoxide dismutase (SOD) and the content of malondialdehyde (MDA) in hepatic tissue. It convinced that Curcuma Radix could protect the liver from acute hepatic injured induced with CCl\textsubscript{4} in mice [86]. Curcumin has powerful protective effects against acute liver injury induced by CCl\textsubscript{4}, D-GaLN, BCG, and LPS. And it might have therapeutic effect on liver fibrosis [87]. Furthermore, the eight sesquiterpenes, furanodiene, curdione, neocurcudione, dehydrocurdione, germacrone, 13-hydroxygermacrone, curcumol, and curcumene, also showed a protective effect against D-GaLN/tumor necrosis factor-alpha-induced liver injury in [88]. As for hepatic toxicity caused by some things in life like alcohol (drink), paracetamol (drug) was confirmed experimentally to be treated by curcumin. Curcumin can improve antioxidant enzyme activity and protect liver from ethanol-induced oxidative stress damage.

4.4. Antioxidant Activity. The two medicines have antioxidant effects through different mechanisms. For example, it is observed that the medium and the highest dose of aqueous extracted from Curcuma Rhizoma (C. kwangsiensis) could increase the CAT and GSH-Px activities in cytosols in liver of rats which are recognized as the main component part of antioxidant system in the body. It is indicated that the extracts at a large dose could increase the antioxidative activity of the rats' liver [89]. The rise in free radicals level is thought to be related to the increase in TC, LDL-c, and TG and fall of HDL-c. And in a study, Curcuma Rhizoma (C. kwangsiensis) is proved to contain natural antioxidants, polysaccharides in which isoflavones and a class of phytochemicals can be found. It revealed that the polysaccharides of water extract possessed strong free radicals scavenging activities.

It can bring down the elevated levels of TC, LDL, VLDL-c, and TG in high-fat animals on protecting against oxidative injury induced by high-fat diet treatment [90]. Moreover, Curcuma Rhizoma oil could elevate the antioxidant enzymes in blood such as SOD, GSH-Px, and MDA [91].

As for Curcuma Radix, the extract of the Curcuma Radix (C. wenyujin) could reduce the lipid peroxidation production by protecting and improving the antioxidant activity like CuZn-SOD, Mn-SOD, GSH-Px, and CAT in rats which were damaged by radiation [92]. There are many reports on the antioxidative activity of C. longa. The PC-OOH level rising was considered as an oxidative stress marker.
caused by alcohol consumption. And curcumin has the power
to lower the PC-OOH level in liver significantly [93]. Also,
it has the DPPH radical scavenging effects with IC$_{50}$ values
of 2.8 µM [94]. Curcumin can also increase the activity of
SOD, which is considered to be associated with induction or
progression of many diseases closely [94–96].

4.5. Anti-Inflammatory Effect. There are many reports indic-
ating anti-inflammatory effect of Curcuma Radix. The ethanol
extract and water extract of Curcuma Radix (C. kwangsiensis)
possessed protective effect against dimethyl-
benzene and ethylic acid induced inflammation in the pinna
swelling model of mice and the cotton ball granuloma
model of mice. It was associated with producing significant
inhibitory effects on the increased blood capillary permeab-
ility and the swollen and hyperplastic granulation tissue in rats
[6]. By using hot plate test, xylene-induced mouse ear edema
test, and chemical irritation-induced writhing test, we found
that the ethyl acetate extract of Curcuma Radix (C. wenyujin)
had the analgesic and anti-inflammatory effects. The extract
had the analgesic effects improved with increased-dosages by
physical and chemical stimulated. It had obviously inhibited
inflammatory edema and celiac capillary permeability, and it
could also reduce the level of TNF-α. The mechanisms may
be inhibited by the level of TNF-α [7]. Similarly, another
study also showed that it had stronger anti-inflammatory
and antinociceptive effects [9]. Furthermore, curcumin from
C. longa attenuated the development of allergic airway
inflammation and hyperresponsiveness, possibly through
inhibition of NF-KB activation in the asthmatic lung tissue
[97]. In addition, polysaccharide and water extract of C. longa
might be responsible for anti-inflammatory action by
downregulating the PGE2 and IL-12 levels in LPS stimulated
mouse splenocytes [98].

The Curcuma Rhizoma also has the anti-inflammatory
activity. Sun et al. found that the derived sesquiterpenoids
named furanodiene and curzerene extracted from Curcuma Rhizoma
(C. wenyujin) have significant inhibition effect on
the TNF-α factor excreted by THP-1 cells [99].

4.6. Antimicrobial and Antiviral Activity. Essential oils from
Curcuma Rhizoma (C. kwangsiensis, C. phaeocaulis) have
stronger and broad-spectrum antagonist activity on 6 kinds
of fungi. The hyphal cell wall disappeared and protoplast
was dissolved by observation on electron microscope, which
indicated that Curcuma Rhizoma (C. kwangsiensis, C. phaeo-
caulis) was the promising for biological pesticide [100].

Essential oils extracted from the C. wenyujin, which
come from rhizomes and radices, were also investigated to
have antimicrobial activity on the selected microorganisms
including two bacterial strains (Propionibacterium acnes and
Staphylococcus aureus) and one fungal strain (Malassezia
furfur). It showed only weak inhibitory activity against
Malassezia furfur. Only a weak inhibitory effect was observed
for oil from radix of C. wenyujin. Moreover, the study proved
that the monoterpenoids have a higher inhibition activity
than the sesquiterpenoids do [10]. Another study demon-
strated that sesquiterpenoids from C. wenyujin showed sig-
nificant in vitro antiviral activity against the influenza virus A
(A/HINI/Guangdong/219/2006) cells with IC$_{50}$ values ranged
from 6.80 to 39.97 µM and SI values ranged from 6.35 to
37.25 by using cytopathic effect (CPE) reduction assay and
measuring cytotoxicity in parallel with the determination
of antiviral activity [4]. Furthermore, in recent years, many
studies have begun to make directional biotransformation
of the extract from Curcuma. For example, the directional
biotransformation of curcumol by Penicillium janthinellum
was studied. And the compound transformed from curcumol
could have a significant antivirus activity on parainfluenza
virus, respiratory spore virus, and herpes simplex virus
(HSV) type I in vitro [101].

4.7. The Effect on the Stomach and the Bone. The curcumin of
C. longa ethanol extracted was proved to have protective
effects on stomach by making the animal gastric ulcer models
with cold water stress of mouse, with alcohol induction
of mouse, and with delegation at gastric pylorus cardiac
orifice of rice. And the animals which were randomized into
different five groups were given different dosage of curcumin.
The result showed that curcumin has protective effects on
the gastric mucosa injury whose mechanism was possibly
related to inhibition of peroxidation reaction [102]. Similarly,
by the animal experiment, the other study revealed that
there was delay in gastric emptying following intragastric
administration of curcumin. And it could be explained by the
NOS inhibitory action [103].

Curcumin extracted from C. Longa also has favorable
applied value on the clinical research. In the report by Chen et
al., curcumin whose dosage was up to 8000 mg/d and whose
time given to the patient was 13 months has no toxicity on
human [104].

Curcumin may affect the skeletal system. At the cellular
level, curcumin modulates important molecular targets:
transcription factors, enzymes, cell cycle proteins, cytokines,
receptors, and cell surface adhesion molecules, because many
curcumin targets which were mentioned above participate
in the regulation of bone remodeling. And its mechanism
partially related to the inhibition of NO production which
somehow is similar to what is mentioned above.

In a word, as a matter of fact, curcumin could facilitate
the attenuation of tissue and cellular injury in the liver, heart,
kidney, brain, and bone, which are proved to be induced by
oxidation or inflammation [105].

4.8. Other Pharmacological Activities. What is more, Cur-
cuma has been investigated to exert other pharmacological
activities. In vivo study showed that four Curcuma drugs
derived from C. longa, C. kwangsiensis, C. phaeocaulis, and
C. wenyujin had an effect on the blood vessel. The result
demonstrated that the extracts curcumin and sesquerpenes
showed NO-independent relaxation effects with almost the
same intensities, while polysaccharides, in contrast, showed
contraction effects [106].

Polysaccharides from rhizome, stem, and leaf of C. kwangsiensis have vitro fibrinolytic activities by using frac-
tional precipitation method and fibrin plate method [107].

Curcuma Radix has antidepressant effect. And the active
parts are in petrol fraction and ethyl acetate fraction [67].
Besides, *Curcuma Radix* has cholagogue activity [108]. Moreover, curcumin has a potent protective effect against the testicular toxicity [109]. Also, curcumin has a distinct effect to reduce the blood lipid. The animal experiments showed that curcumin could effectively reduce the total cholesterol and triacylglycerol of the serum and liver tissues and increase the activity of the related enzymes involved in lipid metabolism in plasma, while the antihyperlipidemic effect particularly can be shown in the result of reducing blood lipid and raising the level of HDL in serum [110].

4.9. Drug Development. In the present clinical practice, those classic prescriptions have been employed in a more extensive and intensive way. Nowadays, many prescriptions (Table 2) were applied into the clinic in the forms of pill, granule, capsule, and injection for the sake of convenience. Similarly, their effects evidenced by clinical reports are still beyond all doubt. Zedoary turmeric oil and glucose injection was used to treat 85 patients with acute upper respiratory infection and 83.5% was effective [111]. Curcuma oil injection can be also effective and shorten the duration of the main symptoms on the treatment of acute upper respiratory tract infection [112]. As for *Curcumae Radix*, for example, *Curcumae Radix* injection has been proven to be effective in curing icteric virus hepatitis [113].

5. Chemical Constituents of *Curcumae Rhizoma* and *Curcumae Radix*

To date, the chemical constituents from *Curcuma Rhizoma* and *Curcumae Radix* reported about 207 compounds, mostly assigned to sesquiterpenes and diarylheptanoids, also including alkaloids, polysaccharides, and some other types. The two main types of compounds are considered to be their bioactive chemical constituents. Sesquiterpenes, also the main constituents on essential oils, are responsible for their extraordinary anticancer, anti-inflammatory, antiviral, neuroprotective, and antithrombotic effect [10, 85, 110]. Diarylheptanoids, which also possess various pharmacologic activities, such as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, are the major nonvolatile compounds in *Curcuma Rhizoma* and *Curcumae Radix* [114]. In this section, we summarize and classify all of the reported constituents in *Curcuma Rhizoma* and *Curcumae Radix* from four species (*C. wenyujin*, *C. longa*, *C. kwangsiensis*, and *C. phaeocalus*) that Chinese Pharmacopoeia regulated. Their structures are shown in the following, while the corresponding plant sources and references are collected in Table 3.

5.1. Sesquiterpenes (Figure 2). Sesquiterpenes are defined as 15-carbon compounds formed from 3 isoprenoid units. Sesquiterpenes, extremely diverse, heterogeneous, and large group of natural compounds, are widely used in folk medicines, health-supporting preparations, and cosmetics [115]. 133 sesquiterpenes have been found in, including 53 guaiane types, 31 germacrane types, 15 bisaborene types, 12 eudesmane types, 10 elemene types, 2 spironolactone types, 4 carabane types, 1 xanthane type, and 5 other types. These compounds are mostly reported from *Curcumae Rhizoma* of *C. wenyujin* and *C. kwangsiensis*, while two other plant species possess few. Nearly every kind of sesquiterpenes consists of *Curcumae Rhizoma*, but *Curcumae Radix* is only found in guaiane type, germacrane type, bisaborene type, eudesmane type, and elemene type. Moreover, the compounds extracted from *Curcumae Radix* are too little.

5.1.1. Guaiane Type. 53 sesquiterpenes with the same skeleton as the guaiane type have been isolated one by one; see compounds 1–53. This kind is a skeleton combined by a five-membered ring and seven-membered ring. Curcumol is one of the typical symbols, which is an active compound in the treatment of tumor specially. In 1965, for the first time, a Japanese scholar named Hiroshi Hikino isolated this compound identified as curcumol from the volatile oil of *C. zedoaria* Roscoe [116]. *C. zedoaria* Roscoe is considered as *Curcumae Rhizoma*, which is mainly distributed in Asian countries including India, Vietnam, Japan, and China [117], but it is not the official recognitory species. Curcumol widely exists in *Curcuma* species.

5.1.2. Germacrane Type. From 1966 to 1967, Hikino et al. [118] isolated a sesquiterpene named curdione firstly whose nuclear parent was a ten-membered ring. Such a large ring is flexible and easy to distort. Most compounds with this nuclear parent have many conformations under normal temperature which attaches great degree of difficulty to identify its absolute configuration for researchers. Later they achieved the aim by using the single crystal diffraction method combined with the calculation of molecular energy and the molecular model. See compounds 54–84.

5.1.3. Bisaborene Type. In 1987, Uehara et al. [119] isolated 3 chemical compounds from *C. xanthorrhiza* and identified them, respectively, as bisacurone, bisacumol, and bisacurol. *C. xanthorrhiza* is used in Indonesian folk medicine with many activities, which may be used as *Curcumae Rhizoma*, while it is not included in official species [120]. Since then, 15 sesquiterpenes (85–99) of this kind had been reported by other studies one after another.

5.1.4. Eudesmane Type. The structure combined with two six-membered rings is its structure characteristic (100–111). In 1967, Hiroshi Hikino first isolated curculeone and identified its absolute configuration [121].

5.1.5. Elemene Type. In 1968, zedoarone was isolated from *C. zedoaria* Roscoe by Hikino et al. [122]. Later, other researchers found 12 sesquiterpenes (112–121) of this kind from *Curcumae Rhizoma* and *Curcumae Radix*.

5.2. Diarylheptanoids (Figure 3). There is another important active ingredient named diarylheptanoids, also called curcumin components whose pharmacological activity has been one of the research hotspots in the field of medicine in *Curcumae Rhizoma*. Among them, the curcumin has been regarded as the third generations of anticancer drug to be studied by the National Cancer Institute. The nuclear parent of this kind is linear diarylheptanoids which can be divided.
Table 2: Preparation approved by China Food and Drug Administration (CFDA).

Number	Preparation name	Formulation	Main compositions	Clinical uses
1	E Zhu You Pu Tao Tang Zhu She Ye	Injection	Curcumae Rhizoma	Treating children viral pneumonia
2	E Zhu You Zhu She Ye	Injection	Curcumae Rhizoma	Curing Candida vulvovaginal disease and senile vaginitis
3	Fu Fang E Zhu You	Suppository	Curcumae Rhizoma, Borneolum Syntheticum	Curing cold caused by viruses, upper respiratory tract infection, children viral pneumonia, gastrointestinal tract ulceration, viral hepatitis A, children virus enteritis, and viral myocarditis, cerebritis, and so forth
4	Fu Fang E Zhu You Ruan Jiao Nang	Soft capsule	Curcumae Rhizoma, Citri Reticulatae Pericarpium	Activating qi for removing blood stasis, removing food retention for relieving pain, indicated for stagnation of qi and blood stasis, stomachache, and poor appetite caused by food stagnation
5	E Zhu You	Injection	Curcumae Rhizoma, Curcumae Rhizoma, Bupleuri Radix, Salviae Miltiorrhizae Radix et Rhizoma, Notoginseng Radix et Rhizoma, Paeoniae Radix Rubra, Angelicae Sinensis Radix, Sparganii Rhizoma, Rhizoma Gyperti, Corydalis Rhizoma, Glycyrrhizae Radix et Rhizoma Curcumae Rhizoma, Bupleuri Radix, Salviae Miltiorrhizae Radix et Rhizoma, Notoginseng Radix et Rhizoma, Paeoniae Radix Rubra, Angelicae Sinensis Radix, Sparganii Rhizoma, Rhizoma Gyperti, Corydalis Rhizoma, Glycyrrhizae Radix et Rhizoma Curcumae Rhizoma, Bupleuri Radix, Salviae Miltiorrhizae Radix et Rhizoma, Notoginseng Radix et Rhizoma, Paeoniae Radix Rubra, Angelicae Sinensis Radix, Sparganii Rhizoma, Rhizoma Gyperti, Corydalis Rhizoma, Glycyrrhizae Radix et Rhizoma Curcumae Rhizoma, Bupleuri Radix, Salviae Miltiorrhizae Radix et Rhizoma, Notoginseng Radix et Rhizoma, Paeoniae Radix Rubra, Angelicae Sinensis Radix, Sparganii Rhizoma, Rhizoma Gyperti, Corydalis Rhizoma, Glycyrrhizae Radix et Rhizoma	Curing traumatic injury, the soup and fire burned, bleeding caused by the knife wound, and mosquito bites
6	Dan E Fu Kang Jian Gao	Decoction	Curcumae Rhizoma, Bupleuri Radix, Salviae Miltiorrhizae Radix et Rhizoma, Notoginseng Radix et Rhizoma, Paeoniae Radix Rubra, Angelicae Sinensis Radix, Sparganii Rhizoma, Rhizoma Gyperti, Corydalis Rhizoma, Glycyrrhizae Radix et Rhizoma Curcumae Rhizoma, Bupleuri Radix, Salviae Miltiorrhizae Radix et Rhizoma, Notoginseng Radix et Rhizoma, Paeoniae Radix Rubra, Angelicae Sinensis Radix, Sparganii Rhizoma, Rhizoma Gyperti, Corydalis Rhizoma, Glycyrrhizae Radix et Rhizoma Curcumae Rhizoma, Bupleuri Radix, Salviae Miltiorrhizae Radix et Rhizoma, Notoginseng Radix et Rhizoma, Paeoniae Radix Rubra, Angelicae Sinensis Radix, Sparganii Rhizoma, Rhizoma Gyperti, Corydalis Rhizoma, Glycyrrhizae Radix et Rhizoma	Promoting blood circulation for removing blood stasis, dispersing stagnated liver qi for regulating qi-flowing, regulating menstruation for relieving pain, and softening hard masses for eliminating abdominal mass, indicated for women irregular menstruation, dysmenorrhoea, mass in the abdomen accumulation, and endometriosis of pelvis caused by stagnation of blood stasis
7	Dan E Fu Kang Ke Li	Granule	Curcumae Rhizoma, Bupleuri Radix, Salviae Miltiorrhizae Radix et Rhizoma, Notoginseng Radix et Rhizoma, Paeoniae Radix Rubra, Angelicae Sinensis Radix, Sparganii Rhizoma, Rhizoma Gyperti, Corydalis Rhizoma, Glycyrrhizae Radix et Rhizoma Curcumae Rhizoma, Bupleuri Radix, Salviae Miltiorrhizae Radix et Rhizoma, Notoginseng Radix et Rhizoma, Paeoniae Radix Rubra, Angelicae Sinensis Radix, Sparganii Rhizoma, Rhizoma Gyperti, Corydalis Rhizoma, Glycyrrhizae Radix et Rhizoma	Promoting blood circulation for removing blood stasis, dispersing stagnated liver qi for regulating qi-flowing, and regulating menstruation for relieving pain, indicated for irregular menstruation, dysmenorrhoea, and mass in the abdomen accumulation
8	Huang E Jiao Nang	Capsule	Curcumae Rhizoma, Pinnabulae Spica, Leonuri Herba, Cinnamomini Cortex, Mnemiopeti Rhizoma, Platycodonis Radix, Cyathulii Radix	Benefiting qi for activating blood circulation, eliminating dampness and heat

Curing hyperplasia of prostate
Number	Preparation name	Formulation	Main compositions	Clinical uses	
9	Yu Jin Yin Xie Pian	Pill	*Curcumae Radix,* *Gentianae Macrophyllae Radix,* *Curcumae Rhizoma,* *Angelicae Sinensis Radix,* *Persicae Semen,* *Carthami Flos,* *Strychni Semen,* *Eupolyphaga,* *Olibanum,* *Rhizoma Cypri,* *Rhei Radix et Rhizoma,* *Momordicae Semen,* *Realgar,* *Acori Tatarinowii Rhizoma,* *Phellodendri Cortex,* *Spina Gleditsiae,* *Matrii Sulphas Exsiccatas,* *Indigo Naturalis*	Promoting flow of qi and blood, soften hard masses for eliminating abdominal mass, heat-clearing, and detoxication, removing dampness, and destroying parasites, indicated to cure psoriasis	
Number	Compounds	(a) Guaiane type	Part of plant	Species	References
--------	--	------------------	---------------	--------------------------	-------------------
1	Curcumol		Rhizome	C. wenyujin	[14]
2	Curcumenol		Radix	C. kwangsiensis	[15]
3	Isocurcumenol		Rhizome	C. phaeocaulis	[16]
4	4-Epicurcumenol		Radix	C. wenyujin	[18]
5	Procucumenol		Rhizome	C. wenyujin	[17]
6	3,4-Dihydroxy-5H-pentatetraene-7,8-diene-12,8-olide				[19,20]
7	Aerugidiol		Rhizome	C. wenyujin	[4]
8	Alismoxide		Radix	C. kwangsiensis	[15]
9	Guaidiol		Rhizome	C. wenyujin	[18,21]
10	Zedoalactone A		Rhizome	C. wenyujin	[22,23]
11	Zedoalactone B		Radix	C. wenyujin	[17]
12	Zedoalactone C		Rhizome	C. wenyujin	[15,18]
13	Curcumafuranol		Rhizome	C. wenyujin	[23]
14	Gweicurculactone		Rhizome	C. wenyujin	[24]
15	Zedoalactone D		Rhizome	C. wenyujin	[26]
16	Zedoalactone E		Rhizome	C. wenyujin	[26]
17	Zedoalactone F		Rhizome	C. wenyujin	[26]
18	(1R,4R,5S,10S)-Zedoalactone B		Rhizome	C. wenyujin	[28]
19	(+)-Zedoalactone A		Rhizome	C. wenyujin	[28]
20	Aeruginolactone		Rhizome	C. wenyujin	[19]
21	1,5,8-βH-guai-1(10),7(11)-en-12,8-olide				[19]
22	1,5,8-αH-guai-1(10),7(11)-en-12,8-olide				[19]
23	1,5,8-βH-guai-1(10),7(11)-en-12,8-olide				[19]
24	1,5,8-βH-guai-1(10),7(11)-en-12,8-olide				[19]
25	1,5,8-αH-guai-1(10),7(11)-en-12,8-olide				[19]
26	1,5,8-βH-guai-1(10),7(11)-en-12,8-olide				[19]
27	1,5,8-αH-guai-1(10),7(11)-en-12,8-olide				[19]
28	1,5,8-βH-guai-1(10),7(11)-en-12,8-olide				[19]
29	1,5,8-αH-guai-1(10),7(11)-en-12,8-olide				[19]
Table 3: Continued.

Number	Compounds	Part of plant	Species	References
30	8,9-Seco-4β-hydroxy-1α,5βH-7(11)-guaen-8,10-olide	Rhizome	C. wenyujin	[4]
31	8α-Hydroxy-1α,4β,7βH-guai-10(15)-en-5β,8β-endoxide	Rhizome	C. wenyujin	[4]
32	7β,8β-Dihydroxy-1α,4αH-guai-10(15)-en-5β,8β-endoxide	Rhizome	C. wenyujin	[4]
33	Gweicuculactone	Rhizome	C. kwangsiensis	[24]
34	9-Oxo-epiprocurcumol	Rhizome	C. kwangsiensis	[29, 30]
35	Linderazulene	Rhizome	C. kwangsiensis	[18, 31]
36	Neozeosedanoradiol	Rhizome	C. kwangsiensis	[27]
37	Wenyujin A	Rhizome	C. wenyujin	[32]
38	Wenyujin B	Rhizome	C. wenyujin	[32]
39	Wenyujinin F	Rhizome	C. wenyujin	[32]
40	Wenyujinin G	Rhizome	C. wenyujin	[32]
41	Wenyujinin H	Rhizome	C. wenyujin	[32]
42	Wenyujinin I	Rhizome	C. wenyujin	[32]
43	Phaeocaulisins A	Rhizome	C. phaeocaulis	[33]
44	Phaeocaulisins B	Rhizome	C. phaeocaulis	[33]
45	Phaeocaulisins C	Rhizome	C. phaeocaulis	[33]
46	Phaeocaulisins D	Rhizome	C. phaeocaulis	[33]
47	Phaeocaulisins E	Rhizome	C. phaeocaulis	[33]
48	Phaeocaulisins F	Rhizome	C. phaeocaulis	[33]
49	Phaeocaulisins G	Rhizome	C. phaeocaulis	[33]
50	Phaeocaulisins H	Rhizome	C. phaeocaulis	[33]
51	Phaeocaulisins I	Rhizome	C. phaeocaulis	[33]
52	Phaeocaulisins J	Rhizome	C. phaeocaulis	[33]
53	Gweicuculactone	Rhizome	C. kwangsiensis	[24]
54	(b) Germacrane type			
55	Curdione	Rhizome	C. wenyujin	[4]
56	Neocurdione	Rhizome	C. kwangsiensis	[34, 35]
57	(1R,10R)-Epoxy-(−)-1,10-dihydrocurdione	Rhizome	C. wenyujin	[14]
58	Germacrone	Rhizome	C. kwangsiensis	[37]
59	Furanogermacrene	Rhizome	C. wenyujin	[38]
60	(4S,5S)-(−)-Germacrone-4,5-epoxide	Rhizome	C. kwangsiensis	[39]
61	Wenjine	Rhizome	C. kwangsiensis	[37]
62	Furanodienone	Rhizome	C. wenyujin	[37]
63	Curdionolide A	Rhizome	C. wenyujin	[19]
64	Curdionolide B	Rhizome	C. wenyujin	[19]
65	Curdionolide C	Rhizome	C. wenyujin	[19]
66	6R-Dehydroxsipanolinolide	Rhizome	C. wenyujin	[26]
67	Aeruginolactone	Rhizome	C. wenyujin	[41]
68	(1E,4Z)-8-Hydroxy-6-oxogermacrone-1(10),4,7(11)-triene-12,8-lactone.	Rhizome	C. wenyujin	[41]
Number	Compounds	Part of plant	Species	References
--------	---	---------------	-------------	------------
69	(+)-(4S,5S)-Germacrone-4,5-epoxide	Rhizome	C. wenyujin	[42]
70	(+)-(1S,4S,5S,10S)-Germacrone-1(10)-4-diepoxide	Rhizome	C. wenyujin	[42]
71	(1E,4E,8R)-8-Hydroxygermacra-1(10),4,7(II)-triene-12,8-lactone	Rhizome	C. wenyujin	[42]
72	(1E,4Z)-8-Hydroxy-6-oxogermacra-1(10),4,7(II)-triene-12,8-lactone	Rhizome	C. wenyujin	[42]
73	3-Isopropyl-6,10-dimethyl-cyclodec-6-ene-1,4-dione	Rhizome	C. wenyujin	[29, 30]
74	3-Isopropylidene-6,10-dimethyl-11-oxa-bicyclo-(8.1.0)-undec-6-en-4-one	Rhizome	C. wenyujin	[29, 30]
75	Epoxide-4-isopropylidene-1,7-dimethyl-11-oxa-bicyclo-(8.1.0)-undec-6-en-3-one	Rhizome	C. wenyujin	[29, 30]
76	Germacrone-1(10),4,7(II)-triepoxide	Rhizome	C. wenyujin	[39]
77	3-Isopropyl-6,10-dimethyl-cyclodec-6-ene-1,4-dione	Rhizome	C. wenyujin	[32]
78	Germacrone-1(10),4,7(II)-triepoxide	Rhizome	C. wenyujin	[14]
79	Curcumalactone	Rhizome	C. wenyujin	[32]
80	Wenyujinilactone	Rhizome	C. wenyujin	[32]
81	Zederone	Rhizome	C. kwangsiensis	[37]
82	Isocurcumenol	Rhizome	C. phaeocaulis	[6]
83	(1S,10S),(4S,5S)-Germacrone-1(10),4-diepoxide	Rhizome	C. kwangsiensis	[40]
84	Germacrone-1,10-epoxide	Rhizome	C. kwangsiensis	[43]
	(c) Bisaborane type			
85	αγ-Turmerone	Radix	C. wenyujin	[18]
86	Bisacurone	Radix^b	C. longa	[44]
87	Crlone	Rhizome	C. kwangsiensis	[45]
88	Bisacurone A	Radix^b	C. kwangsiensis	[46]
89	Bisacurone B	Radix^b	C. longa	[44]
90	Bisacurone C	Radix^b	C. longa	[44]
91	(6S)-2-Methyl-6-(4-hydroxyphenyl-3-methyl)-2-hepten-4-one	Radix	C. longa	[47]
92	(6S)-2-Methyl-6-(4-hydroxyphenyl)-2-hepten-4-one	Radix	C. longa	[47]
93	(6S)-2-Methyl-6-(4-formylphenyl)-2-hepten-4-one	Radix	C. longa	[47]
94	5-Hydroxyl-ar-turmerone	Radix	C. longa	[47]
95	Turmeronol B	Radix	C. longa	[47]
96	Bisabolone	Radix	C. longa	[47]
97	Bisabolone-4-one	Radix	C. longa	[47]
98	Turmeronol A	Radix	C. longa	[47, 44]
99	Turmerone	Radix	C. wenyujin	[18]
	(d) Eudesmane type			
100	Curcolonol	Rhizome	C. wenyujin	[38, 45]
101	Curcodione	Rhizome	C. kwangsiensis	[48]
102	Curcolide	Rhizome	C. wenyujin	[26]
103	Curcolactone	Rhizome	C. wenyujin	[4, 23]
104	1β,4α,8β-Trihydroxy-5αH,10β-eudesm-7(II)-en-8,12-olide	Rhizome	C. wenyujin	[27]
105	4α-Hydroxy-8,12-epoxy-5βH,10β-eudesma-7,11-dien-1,6-dione	Rhizome	C. wenyujin	[49]
106	(Z)-1β,4α-Dihydroxy-5α,8β(H)-eudesm-7(II)-en-12,8-olide	Rhizome	C. wenyujin	[49]
107	1β,4α-Dihydroxy-5α,8β(H)-eudesm-7(II)-en-12,8-olide	Rhizome	C. wenyujin	[49]
108	Wenyujinlactone A	Rhizome	C. wenyujin	[50]
109	Neolitamone	Rhizome	C. wenyujin	[50]
Number	Compounds	Part of plant	Species	References
--------	---	---------------	----------------	------------
110	7-Hydroxy-5(10),6,8-cadinatriene-4-one	Rhizome	C. wenyujin	[4]
111	Curcolactone	Rhizome	C. kwangsiensis	[27]
(e) Elemane type				
112	Curzerenone	Radix	C. wenyujin	[18]
113	Hydroxyisogermaurenolide	Rhizome	C. wenyujin	[49]
114	5-Isopropenyl-3,6-dimethyl-6-vinyl-5,6,7,7α-tetrahydro-4H-benzofuran-2-one	Rhizome	C. wenyujin	[29, 30]
115	7α-Hydroxy-5-isopropenyl-3,6-dimethyl-6-vinyl-5,6,7,7α-tetrahydro-4H-benzofuran-2-one	Rhizome	C. kwangsiensis	[43]
116	5-Isopropenyl-3,6-dimethyl-6-vinyl-5,6,7,7α-tetrahydro-4H-benzofuran-2-one	Rhizome	C. wenyujin	[29, 30]
117	Curzene	Radix	C. wenyujin	[18]
118	β-Elemene	Rhizome	C. kwangsiensis	[52]
119	γ-Elemene	Rhizome	C. kwangsiensis	[52]
120	δ-Elemene	Rhizome	C. kwangsiensis	[53]
121	Curgerenone	Rhizome	C. phaeocaulis	[36]
(f) Spironolactone type				
122	Curcumalactone	Rhizome	C. wenyujin	[4, 51]
123	Curcumeneone	Rhizome	C. wenyujin	[49]
124	4S-Dihydrocurcumeneone	Rhizome	C. wenyujin	[49]
125	Curcarabranol A	Rhizome	C. kwangsiensis	[45]
126	Curcarabranol B	Rhizome	C. kwangsiensis	[45]
(h) Xanthane type				
127	Curcumadionol	Rhizome	C. wenyujin	[49]
(i) Other types				
128	(6R)-Dehydroxysipanolinolide	Rhizome	C. wenyujin	[49]
129	Wenyujinin C	Rhizome	C. wenyujin	[32]
130	Wenyujinin D	Rhizome	C. wenyujin	[32]
131	Wenyujinin E	Rhizome	C. wenyujin	[32]
132	Difurocumenone	Rhizome	C. kwangsiensis	[54]
(J) Diarylheptanoids				
133	2,3,5-Trihydroxy-1-(3-methoxy-4-hydroxyphenyl)-7-(3,5-dimethoxy-4-hydroxyphenyl)-heptane	Rhizome	C. kwangsiensis	[55]
134	2,3,5-Trihydroxy-1-(4-hydroxyphenyl)-7-(3,5-dimethoxy-4-hydroxyphenyl)-heptane	Rhizome	C. kwangsiensis	[55]
135	(3R',5S')-3,5-Dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(3,4-dihydroxyphenyl)-heptane	Rhizome	C. kwangsiensis	[55]
136	rel-(3R,5S)-3,5-Dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-heptane	Rhizome	C. kwangsiensis	[55]
137	rel-(3R,5S)-3,5-Dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-heptane	Rhizome	C. kwangsiensis	[55]
138	rel-(3R,5S)-3,5-Dihydroxy-1-(3-methoxy-4,5-dihydroxyphenyl)-7-(4-hydroxyphenyl)-heptane	Rhizome	C. kwangsiensis	[55]
139	(5S)-5-Hydroxy-1-(4-hydroxyphenyl)-7-phenyl-3-heptanone	Rhizome	C. kwangsiensis	[55]
Number	Compounds	Part of plant	Species	References
--------	--	---------------	-----------------	------------
140	(5S)-5-Hydroxy-1-(4-hydroxyphenyl)-7-(3,4-dihydroxyphenyl)-3-heptanone	Rhizome	C. kwangsiensis	[55]
141	(5S)-5-Hydroxy-1-(4-methoxy)-7-(3,4-dimethoxy)-4-heptanone	Rhizome	C. kwangsiensis	[55]
142	(5S)-5-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(3,4-dihydroxyphenyl)-3-heptanone	Rhizome	C. kwangsiensis	[55]
143	(3R,SR)-3-Acetoxy-5-hydroxy-1,7-bis(4-hydroxyphenyl)-heptane	Rhizome	C. kwangsiensis	[55]
144	(3R,SR)-3-Dihydroxy-1,7-bis(5-hydroxyphenyl)-heptane	Rhizome	C. kwangsiensis	[55]
145	(3R,SR)-3-Acetoxy-5-hydroxy-1,7-bis(3,4-dihydroxyphenyl)-heptane	Rhizome	C. kwangsiensis	[55]
146	(3R,SR)-3-Dihydroxy-1,7-bis(3,4-dihydroxyphenyl)-heptane	Rhizome	C. kwangsiensis	[55]
147	(3R,SR)-3-Diacetoxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-heptane	Rhizome	C. kwangsiensis	[55]
148	(3R,SR)-3-Dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-heptane	Rhizome	C. kwangsiensis	[55]
149	(3S,SR)-3-Acetoxy-5-hydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-heptane	Rhizome	C. kwangsiensis	[55]
150	(3S,SR)-3-Dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-heptane	Rhizome	C. kwangsiensis	[55]
151	(3S,SR)-3-Acetoxy-5-hydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-heptane	Rhizome	C. kwangsiensis	[55]
152	(3S,SR)-3-Dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(3,4-dihydroxyphenyl)-heptane	Rhizome	C. kwangsiensis	[55]
153	(3S,SR)-3-Diacetoxy-1,7-bis(3,4-dihydroxyphenyl)-heptane	Rhizome	C. kwangsiensis	[55]
154	(3S,SR)-3-Dihydroxy-1,7-bis(4-hydroxyphenyl)-heptane	Rhizome	C. kwangsiensis	[55]
155	(5S)-5-Hydroxy-1,7-bis(4-hydroxyphenyl)-heptan-3-one	Rhizome	C. kwangsiensis	[55]
156	(5S)-5-Hydroxy-1-(4-hydroxy-3-methoxy-phenyl)-7-(3,4-dihydroxyphenyl)-heptan-3-one	Rhizome	C. kwangsiensis	[55]
157	(3S)-1,7-Bis(4-hydroxyphenyl)-(6E)-6-hepten-3-ol	Rhizome	C. kwangsiensis	[56]
158	(3R)-1,7-Bis(4-hydroxyphenyl)-(6E)-6-hepten-3-ol	Rhizome	C. kwangsiensis	[56]
159	(3S)-1,7-Bis(4-methoxyphenyl)-(6E)-6-hepten-3-ol	Rhizome	C. kwangsiensis	[56]
160	(3R)-1,7-Bis(4-methoxyphenyl)-(6E)-6-hepten-3-ol	Rhizome	C. kwangsiensis	[56]
161	(3S)-1,7-Bis(4-hydroxyphenyl)-7-(4-hydroxyphenyl)-(6E)-6-hepten-3-ol	Rhizome	C. kwangsiensis	[56]
162	(3R)-1,7-Bis(4-hydroxyphenyl)-7-(4-hydroxyphenyl)-(6E)-6-hepten-3-ol	Rhizome	C. kwangsiensis	[56]
163	(3S)-1,7-Bis(4-methoxyphenyl)-7-(4-hydroxyphenyl)-(6E)-6-hepten-3-ol	Rhizome	C. kwangsiensis	[56]
164	(3R)-1,7-Bis(4-methoxyphenyl)-7-(4-hydroxyphenyl)-(6E)-6-hepten-3-ol	Rhizome	C. kwangsiensis	[56]
165	(3S)-3-Acetoxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-(6E)-6-heptene	Rhizome	C. kwangsiensis	[56]
166	(3R)-3-Acetoxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-(6E)-6-heptene	Rhizome	C. kwangsiensis	[56]
167	(3S)-3-Acetoxy-1-(3,4-dimethoxyphenyl)-7-(4-methoxyphenyl)-(6E)-6-heptene	Rhizome	C. kwangsiensis	[56]
168	(3R)-3-Acetoxy-1-(3,4-dimethoxyphenyl)-7-(4-methoxyphenyl)-(6E)-6-heptene	Rhizome	C. kwangsiensis	[56]
169	(3S)-1,7-Bis(4-hydroxyphenyl)-7-(4-hydroxyphenyl)-heptan-3-ol	Rhizome	C. kwangsiensis	[56]
170	(3R)-1,7-Bis(4-hydroxyphenyl)-7-(4-hydroxyphenyl)-heptan-3-ol	Rhizome	C. kwangsiensis	[56]
171	(3S)-1,7-Bis(4-methoxyphenyl)-7-(4-methoxyphenyl)-heptan-3-ol	Rhizome	C. kwangsiensis	[56]
172	(3R)-1,7-Bis(4-methoxyphenyl)-7-(4-methoxyphenyl)-heptan-3-ol	Rhizome	C. kwangsiensis	[56]
173	(3S)-3-Acetoxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxy-phenyl)-heptanes	Rhizome	C. kwangsiensis	[56]
174	(3R)-3-Acetoxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxy-phenyl)-heptanes	Rhizome	C. kwangsiensis	[56]
175	(3S)-1,7-Bis(4-hydroxyphenyl)-7-phenyl-(6E)-6-hepten-3-ol	Rhizome	C. kwangsiensis	[56]
176	(3R)-1,7-Bis(4-hydroxyphenyl)-7-phenyl-(6E)-6-hepten-3-ol	Rhizome	C. kwangsiensis	[56]
177	(E)-1,7-Bis(4-hydroxyphenyl)-6-hepten-3-one	Rhizome	C. kwangsiensis	[56]
178	(E)-1-Bis(4-hydroxyphenyl)-7-phenyl-(6E)-6-hepten-3-one	Rhizome	C. kwangsiensis	[56]
179	(E)-1,7-Bis(4-hydroxyphenyl)-3-one	Rhizome	C. kwangsiensis	[56]
180	(E)-1-(4-Hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-3-one	Rhizome	C. kwangsiensis	[56]
181	(E)-1,7-Bis(4-hydroxyphenyl)-4,6-heptadiene	Rhizome	C. kwangsiensis	[56]
182	(E)-1-(4-Hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-(4E)-4-hepten-3-one	Rhizome	C. kwangsiensis	[56]
183	1,5-Epoxy-3-carbonyl-1,7-bis(4-hydroxyphenyl)-4,6-heptadiene	Radix b	C. longa	[57]
184	Dihydrocurcin	Radix b	C. longa	[17]
Number	Compounds	Part of plant	Species	References
--------	-----------	---------------	---------	------------
185	Curcumin	Radix^b	C. longa	[17]
186	Demethoxycurcumin	Radix^b	C. longa	[17]
187	Bisdemethoxycurcumin	Radix^b	C. longa	[17]
188	1,7-Bis(4-hydroxyphenyl)-1,4,6-heptatrien-3-one	Radix^b	C. longa	[17]
189	1,5-Bis(4-hydroxyphenyl)-penta- (1E,4E)-1,4-dien-3-one	Radix^b	C. longa	[17]
190	1,5-Bis(4-hydroxy-3-methoxyphenyl)-penta- (1E,4E)-1,4-dien-3-one	Radix^b	C. longa	[57]
Other types				
191	Dehydro-1,8-cineole	Rhizome	C. wenyujin	[29, 30]
192	p-Menth-2-en-1,8-diol	Rhizome	C. wenyujin	[29, 30]
193	Wenyujinin L	Rhizome	C. wenyujin	[32]
194	Curcumrinol A	Radix^b	C. wenyujin	[58]
195	Curcumrinol B	Radix^b	C. wenyujin	[58]
196	Curcumrinol C	Radix^b	C. wenyujin	[58]
197	Curcumrinol D	Radix	C. wenyujin	[59]
198	Curcumrinol E	Radix	C. wenyujin	[59]
199	Curcumrinol F	Radix	C. wenyujin	[16, 56]
200	Curcumrinol G	Radix	C. wenyujin	[16, 56]
201	2-(2’-Methyl-1’-propenyl)-4,6-dimethyl-7-hydroxyquinoline	Radix^b	C. longa	[44]
202	Curcumrinol I	Radix	C. wenyujin	[18]
203	Aurantamide	Radix	C. wenyujin	[60]
204	Crotepoxide	Radix^b	C. wenyujin	[17]
205	Wenyujinoside	Radix	C. wenyujin	[60]
206	β-Sitosterol	Radix	C. kwangsiensis	[61]

^aOriginal paper expressed for root.
^bOriginal paper expressed for root tuber.
Figure 2: Continued.
Figure 2: Continued.
Figure 2: Continued.
into phenolic and nonphenolic according to the differences in substituents. Up to now, more than 10 curcumin components have been isolated from *Curcumae Rhizoma*, among which, curcumin, demethoxycurcumin, and bisdemethoxycurcumin are mostly common. 90 compounds (133–190) of this kind are all isolated from *Curcumae Rhizoma*. As for *Curcumae Radix*, there is no report.

5.3. Other Compounds. Three components (190–193) are identified as monoterpenes. And among all the diterpenes (194–200), two new diterpenes (197, 198) are reported from the radix of *C. wenyujin* and showed a good antitumor activity [59]. In addition, a new compound belonging to quinoline alkaloid was found in the radix of *C. longa*. Phenolics, steroid, cyclohexene epoxides, and amides are also found in *Curcumae Radix* and *Curcumae Rhizoma* (Figure 4). There are also many microelements, such as Zn, Mn, Fe, Mg, Mn, Cr, Cu, and Ca [123].

In conclusion, in comparison to *Curcumae Rhizoma*, the number of studies on *Curcumae Radix* is less. There are only 10 articles investigating chemistry of *Curcumae Radix*. The first study on *Curcumae Rhizoma* was the study on the variety *C. phaeocaulis*, but somehow nowadays there are few studies on it. Actually, most studies on the *C. longa* focus on the rhizome. But according to one paper [25], it indicated clearly that the rhizome and radix of *C. longa* were traditionally used as two Chinese medicines, respectively, named *Jianghuang* and *Yujin* in Chinese.
Figure 3: Continued.
6. Toxicity

Although *Curcumae Rhizoma* and *Curcumae Radix* have long been used in medicine clinics, systematic safety and toxicity evaluations are rare until now.

Several experiments were conducted to explore the acute toxicity and genetic toxicity of *Curcumae Rhizoma* but found to be nontoxic [58, 60]. The extract curcumol as a principle component of *Curcumae Rhizoma* is proved to be no obvious lethal effect through the long-term toxicity experiment. Different dosage groups at 1.16 g/20 mL, 2.32 g/20 mL, and 4.64 g/20 mL Tween 80, respectively, were set up, and the effect of the extracts to the rat’s kidney was found to be small at low and middle but have a certain toxicity at high dose. Generally speaking, it could be used safely at low and middle dosage [124]. It is reported that *Curcumae Rhizoma* is harmful to reproductive system to a certain extent. It could decrease the rate of pregnant of female mice, increase the rate of teratogenicity, excite uterine smooth muscle, and reduce the weight of mice’s testis and seminal vesicle. *Curcumae Rhizoma* is pregnancy-contraindicated drug which should be used with caution [125, 126].

The LD$_{50}$ of mice was found to be different in sources of *Curcumae Radix*. *C. wenyujin* is the most serious [127], in which LD$_{50}$ is 80.98 g/kg. It is equal to 485.9 times the dose of the maximum clinical dosage of adults, which demonstrated that it is safe in clinical medicine usage [128].

7. Quality Control

As described previously, the four species scatter across the south and southwest of China, determined to the various differences among every producing area. So the variety of them makes it difficult for us to control its quality. In the Pharmacopoeia of People’s Republic of China, there are two marker components, the essential oil [no less than 1.5% (mL/g)] and germacrone (as control), chosen to control the quality of *Curcuma Rhizoma*. When it comes to *Curcuma Radix*, its standard crude drug is regarded as examine item. And thin layer chromatography (TLC) was used to get the result for the two medicines [129]. However, due to the complex constituents and multifarious pharmacological activities, the test methods mentioned above might be insufficient and inconvenient to fully illustrate the quality of them. Nowadays, to evaluate the quality of the two medicines more accurately, many ways of qualitative identification and determination of content are developed, such as twice development TLC [129], high performance liquid chromatography (HPLC) [130], fingerprinting [131], GC-MS, and pressurized liquid extraction (PLE) [132]. Among these, fingerprinting is the
most widely applied. Also it is a tendency that multi-
methods using jointly are more rapid and reliable, such as
UPLC/QTOF/MS method [133], HPLC-UV-MS [134], GC-
MS fingerprinting, and HPLC fingerprinting [135]. Generally
speaking, for Curcuma Rhizoma, curcumin is regarded as
one of the effective constituents, germacrone chosen as
the characteristic component, while the essential oil is the
effective part. These three marker items have significant
differences from variety to variety of Curcuma Rhizoma.

As for Curcuma Radix, the marker components are the
same with Curcuma Rhizoma; otherwise, curdione may also
be recommend to be the standard of its quality control [136].

We are still exploring the better ways to make the quality
control of Curcuma Rhizoma and Curcuma Radix more rapid
and reliable. And we should also extend the studying filed of
quality control, not only limited to the present methods and
active components.
8. Concluding Remarks

In addition to the four official species, C. wenyujin, C. longa, C. kwangsiensis, and C. phaeocaulis, there are also several other varieties which are mislabeled as Curcumae Rhizoma and Curcumae Radix. They are C. Zedoaria, C. Aeruginosa, C. Aromatic, and C. xanthorrhiza [115, 134–137] which are also been used as Curcumae Rhizoma or Curcumae Radix or other medicines. But it is not recorded in the Chinese Pharmacopoeia. Curcumae Rhizoma and Curcumae Radix, two well-known and widely used Chinese medicines of the family Zingiberaceae, have been traditionally used for thousands of years. Although they both have effect in invigorating the circulation of blood, Curcumae Rhizoma and Curcumae Radix have their own respective features and priorities. However, the studies of them are disproportionate on variety and source. The traditional uses have been increasingly confirmed by hundreds of pharmacological studies in vitro and in vivo. Particularly, the antitumor studies of these two medicines are becoming more and more popular. Compared to Curcumae Rhizoma, the range of Curcumae Radix applying on this aspect is, respectively, small which only limits the treatment of gastric cancer. In most cases, there is no difference between the two medicines. Although studies on the pharmacological effects and their mechanisms have been performed, yet further study is still urgently needed to gain a better understanding of the differences between the two medicines in order to provide better service for clinical care.

Besides, most of the extracted chemical compositions have been found in the rhizoma of C. wenyujin and C. longa. So we should devote ourselves more into the chemical constituents’ study of other species and focus more on Curcumae Radix.

In addition, recently, fingerprinting has been the most popular way to describe the chemical constituents and to control the quality of Curcumae Rhizoma and Curcumae Radix. But we still need to explore better ways to make the quality control more rapid and reliable.

Single herbs usually exert their efficacy in the form of prescriptions in TCM clinic. But the research of Chinese herbal prescriptions is someway complex, which makes it difficult to draw accurate conclusions and reflects the role of the single herb. And the study of single herb is difficult to reflect its true role in the TCM prescriptions. So we suggest that we could study Curcumae Rhizoma and Curcumae Radix in couplet medicines, such as Curcumae Radix and Sparganii Rhizoma, Curcumae Rhizoma and Sparganii Rhizoma which is similar in effect or clinical application and so on. But during study, we still should not ignore how the couplet medicines play an important part in the Chinese herbal compound prescriptions.

At last, through reading plenty of documents, we have found a problem. In recent years, many new reports have reported a large number of new compounds, but the relevant reports of their pharmacological activities are very less. And we still could not find a quantitative evaluation criterion which is exclusive and accurate enough to quality control these two medicines. So we should study further the discovery and identification of new components and medicinal efficacious composition, pharmaceutical activity screening, and evaluation and find more model of pharmacology of these two medicines. In a word, more experiments including in vitro, in vivo, and clinical studies should be encouraged to be put into effect to make us understand why Curcumae Rhizoma and Curcumae Radix are effective in more detail so as to make contribution to Chinese medical career.

Conflict of Interests

The authors declare no conflict of interests.

Authors’ Contribution

Yang Zhou and Meng Xie contributed equally.

Acknowledgments

Financial support of this work was provided by Self-selected Topic of Beijing University of Chinese Medicine (no. 2015-JYB-XS110), National Training Programs of Innovation and Entrepreneurship for Undergraduates (nos. 201510026047 and 201510026057), Scientific Research Project of Beijing Educational Committee for Undergraduates (no. BJGJ1320), and National Natural Science Foundation of China (no. 81160521).

References

[1] Committee for the Pharmacopoeia of PR China, Pharmacopoeia of PR China, part I. China Medical Science and Technology Press, Beijing, China, 2010.
[2] Y. Xiao, F.-Q. Yang, S.-P. Li, G. Hu, S. M.-Y. Lee, and Y.-T. Wang, “Essential oil of Curcuma wenyujin induces apoptosis in human hepatoma cells,” World Journal of Gastroenterology, vol. 14, no. 27, pp. 4309–4318, 2008.
[3] C.-B. Lim, N. Ky, H.-M. Ng, M. S. Hamza, and Y. Zhao, “Curcuma wenyujin extract induces apoptosis and inhibits proliferation of human cervical cancer cells in vitro and in vivo,” Integrative Cancer Therapies, vol. 9, no. 1, pp. 36–49, 2010.
[4] J.-Y. Dong, X.-Y. Ma, X.-Q. Cai et al., “Sesquiterpenoids from Curcuma wenyujin with anti-influenza viral activities,” Phytochemistry, vol. 85, pp. 122–128, 2013.
[5] Q. Xia, Z.-G. Huang, S.-P. Li, P. Zhang, J. Wang, and L.-N. He, ”The experiment study of the antivirus effects of zedoary oil on influenza virus and respiratory syncytial virus,” Chinese Pharmaceutical Bulletin, vol. 20, no. 3, pp. 357–358, 2004.
[6] G. B. Lin, J. Y. Su, and X. F. Yang, “Anti-inflammatory and analgesia effects of extract of Curcuma kwangsiensis,” Guangxi University of Traditional Chinese Medicine, vol. 16, pp. 171–173, 2011.
[7] G. G. Qiu, Y. Cai, L. L. Fang, W. W. Lin, and J. Y. Dong, “Anti-inflammatory and analgesic effects of ethyl acetate extract from Curcuma wenyujin,” Journal of Wenzhou Medical University, vol. 44, no. 9, pp. 660–662, 2014.
[8] C. Tohda, N. Nakayama, F. Hatanaka, and K. Komatsu, “Comparison of anti-inflammatory activities of six Curcuma rhizomes: a possible curcuminoid-independent pathway mediated by Curcuma phaeocaulis extract,” Evidence-Based Complementary and Alternative Medicine, vol. 3, no. 2, pp. 255–260, 2006.
[9] J. Zhou, F. Qu, H. J. Zhang, X. H. Zhu, and L. Z. Cheng, "Comparison of anti-inflammatory and anti-nociceptive activities of Curcuma wenyujin and Metabolites of Curcumolin Rats", Shenyang Pharmaceutical University, 2009.

[10] D. Hu, The Study on Chemical Constituents of Curcuma wenyujin, Shenyang Pharmaceutical University, 2007.

[11] Y. Lou,Studies on Chemical Substances of Curcuma wenyujin and Their Metabolites, Shenyang Pharmaceutical University, 2007.

[12] G.-P. Yin, Y.-W. An, G. Hu et al., "Three new guaiane sesquiterpene lactones from rhizomes of Curcuma wenyujin", Journal of Natural Products, vol. 69, no. 7, pp. 1237–1241, 2006.

[13] X. U. Liu, Y. Liu, D. Hu et al., "Chemical constituents of the essential oil from Curcuma wenyujin", Journal of Shenyang Pharmaceutical University, 24, no. 11, pp. 682–686, 2007.

[14] B. M. Fraga, "Natural sesquiterpenoids", Natural Products Report, vol. 21, no. 5, pp. 669–693, 2004.

[15] K. Zhu, Studies on the Chemical Constituents from Curcuma kwangsiensis, edited by: S. G. Lee, C. F. Ling, Shenyang Pharmaceutical University, Shenyang, China, 2008.

[16] F. Zhao, K. Harimaya, J. F. Gao, T. Kawamata, Y. Iitaka, and S. Hayashi, "The stereostructure of curdione", Chemical and Pharmaceutical Bulletin, vol. 33, no. 3, pp. 1323–1326, 1985.

[17] K. Takeshi, J. F. Gao, K. Harimaya et al., "The absolute stereostructure of terpenoid constituent in the essential oil prepared from the air-dried rhizomes of Curcuma wenyujin and their biogenetic consideration," Tennen Yuki Kagobutsu Toronkai Koen Yoshishu, vol. 27, pp. 450–457, 1985.

[18] T. Ohkura, J. Gao, K. Harimaya et al., "The absolute configuration and conformation of neocurcurne", Chemical and Pharmaceutical Bulletin, vol. 34, no. 10, pp. 4435–4438, 1986.

[19] K. Zhu, J. Li, H. Luo, J. Q. Li, and F. Qiu, "Chemical constituents from the rhizome of Curcuma kwangsiensis", Journal of Shenyang Pharmaceutical University, 26, no. 1, pp. 27–29, 2009.

[20] S. Hirota, Y. Yoshio, M. Iwa, et al., "Absolute stereostructure of furoanigennomene, a biologically active sesquiterpene from zedoaria rhizome", Heterocycles, vol. 17, no. 1, pp. 215–219, 1982.

[21] J.-F. Gao, J.-H. Xie, K. Harimaya, T. Kawamata, Y. Iitaka, and S. Inayama, "The absolute structure and synthesis of wenyjine isolated from Curcuma wenyujin", Chemical and Pharmaceutical Bulletin, vol. 39, no. 4, pp. 854–856, 1991.

[22] J. F. Gao and J. H. Xie, "The stereostructure of wenyjine and related (1S,10S),(4S,5S)-germacrone-1(10),4-diepoxide isolated from Curcuma wenyujin", Chemical and Pharmaceutical Bulletin, vol. 37, no. 1, pp. 233–236, 1989.

[23] Y. Lou, H. He, X. C. Wei et al., "Sesquiterpenes from Curcuma wenyujin", Journal of Shenyang Pharmaceutical University, vol. 27, no. 3, pp. 195–199, 2010.

[24] Y. Lou, F. Zhao, K.-F. Peng et al., "Germacran type sesquiterpenes from Curcuma wenyujin", Helvetica Chimica Acta, vol. 92, no. 8, pp. 1665–1672, 2009.

[25] X. Y. Liu, Y. H. Chen, C. Ling et al., "Chemical constituents of the essential oil from Curcuma wenyujin", Journal of Shenyang Pharmaceutical University, 24, no. 11, pp. 682–686, 2005.
L.-Y. Wang, M. Zhang, C.-F. Zhang, and Z.-T. Wang, “Alkaloid and sesquiterpenes from the root of Curcuma longa,” Acta Pharmaceutica Sinica, vol. 43, no. 7, pp. 724–727, 2008.

M. Yoshikawa, T. Murakami, T. Morikawa, and H. Matsuda, “Absolute stereostructures of carabran-type sesquiterpenes, curcumone, 4S-dihydrocurcumone and curcarabranols A and B: vasorelaxant activity of zedoary sesquiterpenes,” Chemical and Pharmaceutical Bulletin, vol. 46, no. 7, pp. 1188–1188, 1998.

Y. Kiso, Y. Suzuki, Y. Oshima, and H. Hikino, “Stereostructure of curculeone, a sesquiterpenoid of Curcuma longa rhizomes,” Phytochemistry, vol. 22, no. 2, pp. 596–597, 1983.

Y. Zeng, F. Qiu, K. Takahashi, J. Liang, G. Qu, and X. Yao, “New sesquiterpenes and calebin derivatives from Curcuma longa,” Chemical and Pharmaceutical Bulletin, vol. 55, no. 6, pp. 940–943, 2007.

B. M. Fraga, “Natural sesquiterpenoids,” Natural Product Reports, vol. 16, no. 6, pp. 711–730, 1999.

Y. Lou, F. Zhao, H. He, K.-F. Peng, L.-X. Chen, and F. Qiu, “Four new sesquiterpenes from Curcuma wenyujin and their inhibitory effects on nitric-oxide production,” Chemistry and Biodiversity, vol. 7, no. 5, pp. 1245–1253, 2010.

S.-S. Wang, J.-M. Zhang, X.-H. Guo, Q.-L. Song, and W.-J. Zhao, “A new eudesmane sesquiterpene lactone from Curcuma wenyujin,” Acta Pharmaceutica Sinica, vol. 42, no. 10, pp. 1062–1065, 2007.

C. Zhou, H. J. Liu, Y. Cui et al., “Separation and identification of Curzerene in Curcuma wenyujin oil,” Journal of Yantai University Natural science and Engineering Edition, vol. 23, no. 4, pp. 294–296, 2010.

Y. T. Guo, X. Y. Wu, and Y. Chen, “Isolation and identification of the essential oil of Curcuma wenyujin,” Traditional Chinese Medicine Journal, vol. 8, no. 3, pp. 31–33, 1983.

H. Yang, X. P. Wang, and L. L. Yu, “The antitumor activity of elemene is associated with apoptosis,” Chinese Journal of Oncology, vol. 18, no. 3, pp. 169–172, 1996.

Y. Wang, The Comparative Research on Chemical Constituents of Curcumae Radix, Curcumae Longae Rhizoma and Curcumae Rhizoma, College of Chemistry and Chemical Engineering of Chongqing University, 2014.

J. Li, C.-R. Liao, J.-Q. Wei, L.-X. Chen, F. Zhao, and F. Qiu, “Diarylheptanoids from Curcuma kwangsiensis and their inhibitory activity on nitric oxide production in lipopolysaccharide-activated macrophages,” Biorganic and Medicinal Chemistry Letters, vol. 21, no. 18, pp. 5363–5369, 2011.

J. Li, Y. Liu, J. Q. Li et al., “Chemical constituents from the rhizomes of Curcuma kwangsiensis,” Chinese Journal of Natural Medicines, vol. 9, no. 5, pp. 329–333, 2011.

L.-Y. Wang, M. Zhang, C.-F. Zhang, and Z.-T. Wang, “Diaryl derivatives from the root tuber of Curcuma longa,” Biochemical Systematics and Ecology, vol. 36, no. 5–6, pp. 476–480, 2008.

W. Huang, P. Zhang, Y.-C. Jin et al., “Cytotoxic diterpenes from the root tuber of Curcuma wenyujin,” Helvetica Chimica Acta, vol. 91, no. 5, pp. 944–950, 2008.

P. Zhang, W. Huang, Z. Song et al., “Cytotoxic diterpenes from the radix of Curcuma wenyujin,” Phytochemistry Letters, vol. 1, no. 2, pp. 103–106, 2008.

Z.-J. Ma, Z.-K. Meng, and P. Zhang, “Chemical constituents from the radix of Curcuma wenyujin,” Fitoterapia, vol. 80, no. 6, pp. 374–376, 2009.

X. J. Pan, X. F. Yang, Y. Chen, and Y. Y. Wei, “Chemical constituents in petroleum ether and ethyl acetate extracts of Curcuma kwangsiensis,” Lishizhen Medicine and Materia Medica Research, vol. 23, no. 10, pp. 2428–2429, 2012.

H. F. Jin, B. Lv, and J. Chen, “Influence of diterpenoid curcumirinol C from ether extract of Radix Curcumae on human gastric cancer cell SGC-7901 in expression of Caspase-9,3,7, and PARP (89KD),” China Journal of Traditional Chinese Medicine and Pharmacy, vol. 26, no. 2, pp. 395–398, 2011.

L. C. Xu, H. Y. Chen, J. Wen, and Y. L. Tao, “Preliminary discussion on effect of curcumol in apoptosis, MMP2 and NO in SGC-7901 cells,” China Medical Herald, vol. 9, no. 34, pp. 18–21, 2012.

B. L. He, B. Lu, Y. Xu et al., “Inhibition of common turmeric on human gastric carcinomacell line SGC-7901 and its effect on expression of vascular endothelial growth factor,” Chinese Archives of Traditional Chinese Medicine, vol. 24, no. 9, pp. 1741–1743, 2006.

X. Li, G. Wang, J. Zhao et al., “Antiproliferative effect of β-elemene in chemoresistant ovarian carcinoma cells is mediated through arrest of the cell cycle at the G2–M phase,” Cellular and Molecular Life Sciences, vol. 62, no. 7–8, pp. 894–904, 2005.

L. Tao, L. Zhou, L. Zheng, and M. Yao, “Elemene displays anticancer ability on laryngeal cancer cells in vitro and in vivo,” Cancer Chemotherapy and Pharmacology, vol. 58, no. 1, pp. 24–34, 2006.

Z. R. Zhao, P. Zhang, Y. G. Wu, and H. Liu, “Screening of antidepressant fractions of Wenyujin,” Journal of Traditional Chinese Medicine and Pharmacy, vol. 26, no. 8, pp. 1868–1869, 2011.

G. Wang, X. Li, F. Huang et al., “Antitumor effect of β-elemene in non-small-cell lung cancer cells is mediated via induction of cell cycle arrest and apoptotic cell death,” Cellular and Molecular Life Sciences, vol. 62, no. 7–8, pp. 881–893, 2005.

Q. Q. Li, G. Wang, F. Huang, M. Banda, and E. Reed, “Anti-neoplastic effect of β-elemene on prostate cancer cells and other types of solid tumour cells,” Journal of Pharmacy and Pharmacology, vol. 62, no. 8, pp. 1018–1027, 2010.

F. Bao, J. Qiu, and H. Zhang, “Potential role of β-elemene on histone H1 in the H2B2 acetyl histone cell line,” Molecular Medicine Reports, vol. 6, no. 1, pp. 185–190, 2012.

J.-H. Park, M. A. A. Mohamed, Y.-J. Jung et al., “Germacrane sesquiterpenes isolated from the rhizome of Curcuma xanthorrhiza Roxb. inhibit UVB-induced upregulation of MMP-1, -2, and -3 expression in human keratinocytes,” Archives of Pharmacal Research, vol. 38, no. 10, pp. 1752–1760, 2015.

J. H. Zeng, P. Dai, L. Y. Ren et al., “Apoptosis-induced antitumor effect of Curcuma kwangsiensis polysaccharides against human nasopharyngeal carcinoma cells,” Carbohydrate Polymers, vol. 89, no. 4, pp. 1067–1072, 2012.

C. Yang, “Pharmacology and clinical application of Chinese medicine Yujin,” Chinese Journal of Guangming Chinese Medicine, vol. 29, no. 8, pp. 1772–1773, 2014.

H. F. Jin, B. Liu, J. F. Dai, and G. Q. Sheng, “Curcuma wenyujin diterpenoid compound C fought against gastric cancer,” Chinese Journal of Integrative Medicine, vol. 35, no. 2, pp. 216–221, 2015.

B. X. Pang, X. M. Jin, and X. Y. Zhang, “Effects of curcumin on proliferation and apoptosis of human oral squamous cell carcinoma,” Medical Journal of Qilu, vol. 25, no. 1, pp. 24–25, 2010.
C. Xu, Z. Haiyan, Z. Hua, Z. Jianhong, and D. Pin, "Effect of curcumin in buffer solutions and characterization of its degradation products," Journal of Pharmaceutical and Biomedical Analysis, vol. 15, no. 12, pp. 1867–1876, 1997.

L. Yang, D.-D. Wei, Z. Chen, J.-S. Wang, and L.-Y. Kong, "Reversal of multidrug resistance in human breast cancer cells by Curcuma wenyujin and Chrysanthenum indicum," Phytomedicine, vol. 18, no. 8–9, pp. 710–718, 2011.

Q. Xia, X. Wang, D.-J. Xu, X.-H. Chen, and F.-H. Chen, "Inhibition of platelet aggregation by curdione from Curcuma wenyujin essential Oil," Thrombosis Research, vol. 130, no. 3, pp. 409–414, 2012.

Z. Y. Tang, L. Huang, Y. Lin, L. Fu, H. L. Liang, and L. Ding, "Comparison between the effect of aspirin and β-elemene on normal mouse’s coagulation time and the ATP enzyme activity in ischemia myocardium model mouse," Acta Chinese Medicine and Pharmacology, vol. 9, no. 37, pp. 12–15, 2009.

J. Lian, L. Xu, and X. X. Zheng, "Using photo-chemical model to investigate the antithrombotic effect of elemene," Journal of Chinese Microcirculation, vol. 2, no. 2, pp. 91–92, 1998.

C. Q. Mao, H. Xie, and T. L. Lu, "Studies on antiplatelet aggregation and anticoagulant action of Curcuma phaeocaulis," Zhongyaoacai, vol. 23, no. 4, pp. 212–213, 2000.

X. J. Pan, F. X. Yang, L. P. Chen, and L. Tang, "Anticoagulant and fibrinolytic activities of polysaccharides from Curcuma kwangsiensis," Herald of Medicine, vol. 2, no. 3, pp. 163–165, 2013.

C. Z. Yu, D. M. Wang, and Z. M. Li, "Study on the effect of Curcuma wenyujin of traditional Chinese medicine treatment of viral hepatitis," Heilongjiang Journal of Traditional Chinese Medicine, no. 5, pp. 44–45, 1992.

Z. X. Xiang, X. J. He, G. F. Zhou, and C. H. Li, "Protective effects of ethanolic extract and essential oil of Curcuma kwangsiensis S. against experimental liver lesion in mice," China Journal of Chinese Materia Medica, vol. 14, no. 5, pp. 47–49, 1989.

F. Y. Lan, J. C. He, Y. Zhao et al., "Protective effect of Curcuma ac on acute hepatic injured mice induced with carbon tetrachloride," Chinese Journal of Rehabilitation Theory and Practice, vol. 13, no. 5, pp. 444–445, 2007.

Y. G. Liu, H. C. Chen, and Y. P. Jiang, "Effect of curcumin against CCl4-induced liver fibrosis in rats," Lishizhen Medicine and Materia Medica Research, vol. 13, no. 5, pp. 273–275, 2002.

T. Morikawa, H. Matsuda, K. Ninomiya, and M. Yoshikawa, "Medicinal foodstuffs. XXIX. Potent protective effects of sesquiterpene and curcumin from Zedoaria Rhizoma on liver injury induced by D-galactosamine/ lipopolysaccharide or tumor necrosis factor-α," Biological and Pharmaceutical Bulletin, vol. 25, no. 5, pp. 627–631, 2002.

X. F. Yang, W. Z. Shi, R. X. Cheng, and X. H. Fan, "Effect of aqueous extract of Curcuma kwangsiensis rhizoma on liver antioxidant enzymes in cytosols and drug metabolizing enzymes in microsomes in liver of rats," Chinese Traditional Patent Medicine, vol. 36, no. 2, pp. 221–224, 2014.

C. Xu, Z. Haiyan, Z. Hua, Z. Jianhong, and D. Pin, "Effect of Curcuma kwangsiensis polysaccharides on blood lipid profiles and oxidative stress in high-fat rats," International Journal of Biological Macromolecules, vol. 44, no. 2, pp. 138–142, 2009.

F. Sun, J. W. Liu, Z. Y. Liu et al., "Influence of Curcuma oil on SOD, GSH-Px and MDA in mouse plasma," Chinese Journal of Gerontology, vol. 25, no. 4, 2005.

B. Wang and J. Cao, "The influence of the extract of Curcuma on lipid peroxidation induced by ionizing radiation," Journal of Harbin Medical University, vol. 30, pp. 128–129, 1995.

C.-W. Pyun, J.-H. Kim, K.-H. Han, G.-E. Hong, and C.-H. Lee, "In vivo protective effects of dietary Curcumin and capsaicin against alcohol-induced oxidative stress," BioFactors, vol. 406, no. 5, pp. 494–500, 2014.

E.-K. Song, H. Cho, J.-S. Kim et al., "Diarylheptanoids with free radical scavenging and hepatoprotective activity in vitro from Curcuma longa," Planta Medica, vol. 67, no. 9, pp. 876–877, 2001.

S.-H. Jung, K. S. Chang, and K.-H. Ko, "Physiological effects of curcumin extracted by supercritical fluid from turmeric (Curcuma longa L.)," Korean Journal of Food Science and Technology, vol. 36, no. 2, pp. 317–310, 2004.

P. P. Sarvalkar, M. V. Walvekar, and L. P. Bhopale, "Antioxidative effect of curcumin (Curcuma longa) on lipid peroxidation and lipofuscinogenesis in submandibular gland of D-galactose-induced aging male mice," Journal of Medicinal Plant Research, vol. 5, no. 20, pp. 5191–5193, 2011.

S.-W. Oh, J.-Y. Cha, J.-E. Jung et al., "Curcumin attenuates allergic airway inflammation and hyper-responsiveness in mice through NF-κB inhibition," Journal of Ethnopharmacology, vol. 136, no. 3, pp. 414–421, 2011.

C. Chandrasekaran, K. Sundarajan, J. R. Edwin, G. Gururaja, D. Mundinajeddu, and A. Agarwal, "Immune-stimulatory and anti-inflammatory activities of Curcuma longa extract and its polysaccharide fraction," Pharmacognosy Research, vol. 5, no. 2, pp. 71–79, 2013.

X. Y. Sun, Y. P. Zhang, Z. F. Liu et al., "Studies on the chemical constituents of sesquiterpenoids from Curcuma wenyujin," Journal of Instrumental Analysis, vol. 6, no. 7, pp. 27–30, 2006.

D. M. Zhang, Q. Li, D. W. Ma et al., "Study on antifungal activity of oil from Curcuma kwangsiensis S. G. Lee et C. F. Liang," Journal of Anhui University Natural Science Edition, vol. 32, no. 1, pp. 81–84, 2008.

H. Zhang, F. Qiu, G. X. Qu, and X. S. Yao, "The directional biotransformation of curcumol by Penicillium janthinellum," Chinese Journal of Medicinal Chemistry, vol. 5, pp. 305–306, 2005.

S. Zhi, F. S. Jiang, C. X. Gao et al., "Study the effects of Curcumin on animal gastric ulcer," Chinese Archives of Traditional Chinese Medicine, vol. 26, no. 10, pp. 2225–2226, 2008.

B. Purwar, A. Shrivastava, and N. Arora, "Effects of curcumin on the gastric emptying of albino rats," Indian Journal of Physiology and Pharmacology, vol. 56, no. 2, pp. 168–173, 2012.

A.-L. Chen, C.-H. Hsu, J.-K. Lin et al., "Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or premalignant lesions," Anticancer Research, vol. 21, no. 4, pp. 2895–2900, 2001.
