EXACT EXPONENT OF REMAINDER TERM OF
GELFOND’S DIGIT THEOREM IN BINARY CASE

VLADIMIR SHEVELEV

Abstract. We give a simple formula for the exact exponent in the remainder term of Gelfond’s digit theorem in the binary case.

1. Introduction

Denote for integer \(m > 1, \, a \in [0, m - 1] \).

\[
T_{m,a}^{(j)}(x) = \sum_{0 \leq n < x, \, n \equiv a \mod m, \, s(n) \equiv j \mod 2} 1, \quad j = 1, 2
\]

where \(s(n) \) is the number of 1’s in the binary expansion of \(n \).

A. O. Gelfond [5] proved that

\[
T_{m,a}^{(j)}(x) = \frac{x}{2m} + O(x^\lambda), \quad j = 0, 1,
\]

where

\[
\lambda = \frac{\ln 3}{\ln 4} = 0.79248125\ldots
\]

Recently, the author proved [9] that the exponent \(\lambda \) in the remainder term in (2) is the best possible when \(m \) is a multiple of 3 and is not the best possible otherwise.

In this paper we give a simple formula for the exact exponent in the remainder term of (2) for an arbitrary \(m \). Our method is based on constructing a recursion relation for the Newman-like sum corresponding to (1)

\[
S_{m,a}(x) = \sum_{0 \leq n < x, \, n \equiv a \mod m} (-1)^{s(n)}.
\]
EXACT EXPONENT OF REMAINDER TERM

It is sufficient for our purposes to deal with odd numbers \(m \). Indeed, it is easy to see that, if \(m \) is even, then

\[
S_{m,a}(2x) = (-1)^a S_{\frac{m}{2},\frac{a}{2}}(x).
\]

For an odd \(m > 1 \), consider the number \(r = r(m) \) of distinct cyclotomic cosets of 2 modulo \(m \) [6, pp.104-105]. E.g., \(r(15) = 4 \) since for \(m = 15 \) we have the following 4 cyclotomic cosets of 2: \{1, 2, 4, 8\}, \{3, 6, 12, 9\}, \{5, 10\}, \{7, 14, 13, 11\}.

Note that, if \(C_1, \ldots, C_r \) are all different cyclotomic cosets of 2 \(\pmod{m} \), then

\[
\bigcup_{j=1}^{r} C_j = \{1, 2, \ldots, m-1\}, \quad C_{j_1} \cap C_{j_2} = \emptyset, \quad j_1 \neq j_2.
\]

Let \(h \) be the least common multiple of \(|C_1|, \ldots, |C_r| \):

\[
h = \|C_1|, \ldots, |C_r|\|
\]

Note that \(h \) is of order 2 modulo \(m \). (This follows easily, e.g., from Exercise 3, p. 104 in [8]).

Definition 1. The exact exponent in the remainder term in (2) is \(\alpha = \alpha(m) \) if

\[
T_{m,a}^j(x) = \frac{x}{2m} + O(x^\alpha + \varepsilon),
\]

and

\[
T_{m,a}^j(x) = \frac{x}{2m} + \Omega(x^{\alpha - \varepsilon}), \quad \forall \varepsilon > 0.
\]

Our main result is the following.

Theorem 1. If \(m \geq 3 \) is odd, then the exact exponent in the remainder term in (2) is

\[
\alpha = \max_{1 \leq l \leq m-1} \left(1 + \frac{1}{h \ln 2} \sum_{k=0}^{h-1} \left(\ln \left| \sin \frac{\pi l 2^k}{m} \right| \right) \right)
\]

Note that, if 2 is a primitive root of an odd prime \(p \), then \(r = 1, \; h = p-1 \). As a corollary of Theorem 1 we obtain the following result.
Theorem 2. If \(p \) is an odd prime, for which 2 is a primitive root, then the exact exponent in the remainder term in (2) is

\[
\alpha = \frac{\ln p}{(p-1)\ln 2}.
\]

Theorem 2 generalizes the well-known result for \(p = 3 \) ([7], [2], [1]). Furthermore, we say that 2 is a semiprimitive root modulo \(p \) if 2 is of order \(p-1 \) modulo \(p \) and the congruence \(2^x \equiv -1 \mod p \) is not solvable. E.g., 2 is of order 8 mod 17, but the congruence \(2^x \equiv -1 \mod 17 \) has the solution \(x = 4 \). Therefore, 2 is not a semiprimitive root of 17. The first primes for which 2 is a semiprimitive root are (see [10], A 139035)

\[
7, 23, 47, 71, 79, 103, 167, 191, 199, 239, 263, \ldots
\]

For these primes we have \(r = 2, \, h = \frac{p-1}{2} \). As a second corollary of Theorem 1 we obtain the following result.

Theorem 3. If \(p \) is an odd prime for which 2 is a semiprimitive root, then the exact exponent \(\alpha \) in the remainder term in (2) is also given by (9).

In Section 2 we provide an explicit formula for \(S_{m,a}(x) \), while in Sections 3-5 we prove Theorems 1-3.

2. Explicit formula for \(S_{m,a}(x) \)

Let \(\lfloor x \rfloor = N \). We have

\[
S_{m,a}(N) = \sum_{n=0, m|n-a}^{N-1} (-1)^{s(n)} = \frac{1}{m} \sum_{t=0}^{m-1} \sum_{n=0}^{N-1} (-1)^{s(n)} e^{2\pi i \frac{(m-a)t}{m}}
\]

\[
= \frac{1}{m} \sum_{t=0}^{m-1} \sum_{n=0}^{N-1} e^{2\pi i \left(\frac{t(n-a)}{m} + \frac{t}{2} s(n)\right)}.
\]

Note that the interior sum is of the form

\[
\Phi_{a,\beta}(N) = \sum_{n=0}^{N-1} e^{2\pi i (\beta(n-a) + \frac{1}{2} s(n))}, \quad 0 \leq \beta < 1.
\]

Putting

\[
F_{\beta}(N) = e^{2\pi i \beta} \Phi_{a,\beta}(N),
\]
we note that $F_\beta(N)$ does not depend on a.

Lemma 1. If $N = 2^{\nu_0} + 2^{\nu_1} + \ldots + 2^{\nu_\tau}$, $\nu_0 > \nu_\tau > \ldots > \nu_\sigma \geq 0$, then

\[
F_\beta(N) = \sum_{g=0}^{\sigma} e^{2\pi i (\beta \sum_{j=0}^{g-1} 2^{\nu_j} + \frac{1}{2})} \prod_{k=0}^{\nu_\sigma-1} (1 + e^{2\pi i (\beta 2^k + \frac{1}{2})}).
\]

Proof. Let $\sigma = 0$. Then by (12) and (13)

\[
F_\beta(N) = \sum_{n=0}^{N-1} (-1)^{s(n)} e^{2\pi i \beta n}
\]

\[
= 1 - \sum_{j=0}^{\nu_0-1} e^{2\pi i \beta 2^j} + \sum_{0 \leq j_1 < j_2 \leq \nu_0-1} e^{2\pi i (\beta 2^{j_1} + 2^{j_2} + 2^{j_1} + 2^{j_2})} - \ldots
\]

\[
= \prod_{k=0}^{\nu_0-1} (1 - e^{2\pi i \beta 2^k}),
\]

which corresponds to (14) for $\sigma = 0$.

Assuming that (14) is valid for every N with $s(N) = \sigma + 1$, let us consider $N_1 = 2^{\nu_\sigma} b + 2^{\nu_\sigma+1}$ where b is odd, $s(b) = \sigma + 1$ and $\nu_{\sigma+1} < \nu_\sigma$. Let

\[
N = 2^{\nu_\sigma} b = 2^{\nu_0} + \ldots + 2^{\nu_\sigma}; \quad N_1 = 2^{\nu_0} + \ldots + 2^{\nu_\sigma} + 2^{\nu_\sigma+1}.
\]

Notice that for $n \in [0, \nu_{\sigma+1})$ we have

\[
s(N + n) = s(N) + s(n).
\]

Therefore,

\[
F_\beta(N_1) = F_\beta(N) + \sum_{n=N}^{N_1-1} e^{2\pi i (\beta n + \frac{1}{2}s(n))}
\]

\[
= F_\beta(N) + \sum_{n=0}^{\nu_{\sigma+1}-1} e^{2\pi i (\beta n + \beta N + \frac{1}{2}(s(N) + s(n)))}
\]

\[
= F_\beta(N) + e^{2\pi i (\beta N + \frac{1}{2}s(N))} \sum_{n=0}^{\nu_{\sigma+1}-1} e^{2\pi i (\beta n + \frac{1}{2}s(n))}.
\]

Thus, by (14) and (15),
\[F_{\beta}(N_1) = \]
\[
\sum_{g=0}^{\sigma} e^{2\pi i (\beta \sum_{j=0}^{g-1} 2^j + \frac{1}{2})} \prod_{k=0}^{\nu_g-1} \left(1 + e^{2\pi i (\beta 2^k + \frac{1}{2})} \right)
\]
\[+ e^{2\pi i (\beta \sum_{j=0}^{\sigma} 2^j + \frac{\sigma+1}{2})} \prod_{k=0}^{\nu_{g+1}-1} \left(1 + e^{2\pi i (\beta 2^k + \frac{1}{2})} \right) \]
\[= \sum_{g=0}^{\sigma+1} e^{2\pi i (\beta \sum_{j=0}^{g-1} 2^j + \frac{1}{2})} \prod_{k=0}^{\nu_g-1} \left(1 + e^{2\pi i (\beta 2^k + \frac{1}{2})} \right). \]

Formulas (11)-(14) give an explicit expression for \(S_m(N) \) as a linear combination of products of the form

\[
\prod_{k=0}^{\nu_g-1} \left(1 + e^{2\pi i (\beta 2^k + \frac{1}{2})} \right), \quad \beta = \frac{t}{m}, \quad 0 \leq t \leq m - 1.
\]

Remark 1. One may derive [14] from a very complicated general formula of Gelfond [5]. However, we preferred to give an independent proof.

In particular, if \(N = 2^\nu \), then from (11)-(13) and (15) for

\[
\beta = \frac{t}{m}, \quad t = 0, 1, \ldots, m - 1,
\]

we obtain the known formula cf. [3]:

\[
S_{m,a}(2^\nu) = \frac{1}{m} \sum_{t=1}^{m-1} e^{-2\pi i \frac{t}{m} a} \prod_{k=0}^{\nu-1} (1 - e^{2\pi i \frac{1}{m} 2^k}).
\]

3. Proof of Theorem 1

Consider the equation of order \(r \)

\[
z^r + c_1 z^{r-1} + \ldots + c_r = 0
\]

with the roots

\[
z_j = \prod_{t \in C_j} \left(1 - e^{2\pi i \frac{1}{m}} \right), \quad j = 1, 2, \ldots, r.
\]
Notice that for $t \in C_j$ we have

$$\prod_{k=n+1}^{n+h} \left(1 - e^{2\pi i \frac{2k}{m}}\right) = \left(\prod_{t \in C_j} \left(1 - e^{2\pi i \frac{t}{m}}\right)\right)^\frac{h}{h_j} = z_j^{\frac{h}{h_j}},$$

where h is defined by (7). Therefore, for every $t \in \{1, \ldots, m-1\}$, according to (19) we have

$$\prod_{k=n+1}^{n+rh} \left(1 - e^{2\pi i \frac{2k}{m}}\right) + c_1 \prod_{k=n+1}^{n+(r-1)h} \left(1 - e^{2\pi i \frac{2k}{m}}\right) + \cdots + c_{r-1} \prod_{k=n+1}^{n+h} \left(1 - e^{2\pi i \frac{2k}{m}}\right) + c_r = 0. $$

After multiplication by $e^{-2\pi i \frac{n}{m} a} \prod_{k=0}^{h} \left(1 - e^{2\pi i \frac{2k}{m}}\right)$ and summing over $t = 1, 2, \ldots, m-1$, by (18) we find

$$S_{m,a} \left(2^{n+rh+1}\right) + c_1 S_{m,a} \left(2^{n+(r-1)h+1}\right) + \cdots + c_{r-1} S_{m,a} \left(2^{n+h+1}\right) + c_r S_{m,a} \left(2^{n+1}\right) = 0. $$

Moreover, using the general formulas (11)-(14) for a positive integer u, we obtain the equality

$$S_{m,a} \left(2^{rh+1}u\right) + c_1 S_{m,a} \left(2^{(r-1)h+1}u\right) + \cdots + c_{r-1} S_{m,a} \left(2^{h+1}u\right) + c_r S_{m,a} \left(2u\right) = 0. $$

Putting here

$$S_{m,a} \left(2^u\right) = f_{m,a}(u),$$

we have

$$f_{m,a}(y+rh+1) + c_1 f_{m,a}(y+(r-1)h+1) + \cdots + c_{r-1} f_{m,a}(y+h+1) + c_r f_{m,a}(y+1) = 0,$$
where

\begin{equation}
(27) \quad y = \log_2 u.
\end{equation}

The characteristic equation of (27) is

\begin{equation}
(28) \quad v^r + c_1 v^{(r-1)h} + \cdots + c_{r-1} v^h + c_r = 0.
\end{equation}

A comparison of (28) and (20)-(21) shows that the roots of (28) are

\begin{equation}
(29) \quad v_{j,w} = e^{\frac{2\pi i w}{m}} \prod_{t \in C_j} \left(1 - e^{2\pi i \frac{t}{m}}\right)^\frac{1}{h}, \quad w = 0, \ldots, h-1, \quad j = 1, 2, \ldots, r.
\end{equation}

Thus,

\begin{equation}
(30) \quad v = \max |v_{j,l}| = 2 \max_{1 \leq l \leq m-1} \left(\prod_{k=0}^{h-1} \left|\sin \frac{\pi l 2^k}{m}\right|\right)^\frac{1}{h}.
\end{equation}

Generally speaking, some numbers in (20) could be equal. In view of (29), the \(v_{j,w}\)'s have the same multiplicities. If \(\eta\) is the maximal multiplicity, then according to (27), (30)

\begin{equation}
(31) \quad S_{m,a}(u) = f_{m,a}(\log_2 u) = O\left((\log_2 u)^{\eta-1} u^{\frac{\ln u}{m^2}}\right).
\end{equation}

Nevertheless, at least

\begin{equation}
(32) \quad S_{m,a}(u) = \Omega\left(u^{\frac{\ln u}{m^2}}\right).
\end{equation}

Indeed, let, say, \(v = |v_{1,w}|\) and in the solution of (27) with some natural initial conditions, all coefficients of \(y^{j_1} v_{1,w}^{w}, \quad j_1 \leq \eta - 1, \quad w = 0, \ldots, h-1,\) are 0. Then \(f_{m,a}(y)\) satisfies a difference equation with the characteristic equation not having roots \(v_{1,w}\) and the corresponding relation for \(S_{m,a}(2^n)\) (see (23)) has the characteristic equation (20) without the root \(z_1\). This is impossible since by (18) and (21) we have

\begin{equation}
S_{m,a}(2^{h+1}) = \frac{1}{m} \sum_{j=1}^{r} \sum_{t \in C_j} e^{-\frac{2\pi i a h}{m}} \prod_{k=1}^{h} \left(1 - e^{2\pi i \frac{a}{m} 2^k}\right) = \frac{1}{m} \sum_{j=1}^{r} \sum_{t \in C_j} e^{-\frac{2\pi i a}{m} \frac{h}{z_j}^{\frac{h}{2}}}.\end{equation}
Therefore, not all considered coefficients vanish, and (32) follows. Now from (30)–(32) we obtain (8).

Remark 2. In (8) it is sufficient to let \(l \) run over a system of distinct representatives of the cyclotomic cosets \(C_1, \ldots, C_r \) of 2 modulo \(m \).

Remark 3. It is easy to see that there exists \(l \geq 1 \) such that \(|C_l| = 2 \) if and only if \(m \) is a multiple of 3. Moreover, in the capacity of \(l \) we can take \(m/3 \). Now from (8) choosing \(l = m/3 \) we obtain that \(\alpha = \lambda = \ln 3 / \ln 4 \). This result was obtained in [9] together with estimates of the constants in \(S_{m,0}(x) = O(x^\lambda) \) and \(S_{m,0}(x) = \Omega(x^\lambda) \) which are based on the proved in [9] formula

\[
S_{m,0}(x) = \frac{3}{m} S_{3,0}(x) + O(x^{\lambda_1})
\]

for \(\lambda_1 = \lambda_1(m) < \lambda \) and Coquet’s theorem [2].

Example 1. Let \(m = 17 \), \(a = 0 \). Then \(r = 2 \), \(h = 8 \),

\[
C_1 = \{1, 2, 4, 8, 16, 15, 13, 9\}, \quad C_2 = \{3, 6, 12, 7, 14, 11, 5, 10\}.
\]

The calculation of \(\alpha_l = 1 + \frac{1}{8\ln 2} \sum_{k=0}^{17} (\ln |\sin \frac{\pi k}{17}|) \) for \(l = 1 \) and \(l = 3 \) gives

\[
\alpha_1 = -0.12228749 \ldots, \quad \alpha_3 = 0.63322035 \ldots
\]

Therefore by Theorem 1, \(\alpha = 0.63322035 \ldots \) Moreover, we are able to prove that

\[
\alpha = \frac{\ln(17 + 4\sqrt{17})}{\ln 256}.
\]

Indeed, according to (23), for \(n = 0 \) and \(n = 1 \) we obtain the system \((S_{17,0} = S_{17}) \):

\[
(33) \quad \begin{cases}
 c_1 S_{17}(2^9) + c_2 S_{17}(2) = -S_{17}(2^{17}) \\
 c_1 S_{17}(2^{10}) + c_2 S_{17}(2^{2}) = -S_{17}(2^{18})
\end{cases}
\]

By direct calculations we find

\[
S_{17}(2) = 1, \quad S_{17}(2^2) = 1, \quad S_{17}(2^9) = 21, \quad S_{17}(2^{10}) = 29, \quad S_{17}(2^{17}) = 697, \quad S_{17}(2^{18}) = 969.
\]

Solving (33) we obtain

\[
c_1 = -34, \quad c_2 = 17.
\]

Thus, by (23) and (24)
\begin{equation}
S_{17}(2^{n+17}) = 34S_{17}(2^{n+9}) - 17S_{17}(2^{n+1}), \quad n \geq 0,
\end{equation}

\begin{equation}
S_{17}(2^{17}x) = 34S_{17}(2^{9}x) - 17S_{17}(2x), \quad x \in \mathbb{N}.
\end{equation}

Putting furthermore
\begin{equation}
S_{17}(2^{x}) = f(x),
\end{equation}
we have
\[f(y + 17) = 34f(y + 9) - 17(y + 1), \]
where \(y = \log_2 x \). Hence,
\[f(x) = O\left(\left(17 + 4\sqrt{17}\right)^{\frac{x}{8}}\right), \]

\begin{equation}
S_{17}(x) = O\left(\left(17 + 4\sqrt{17}\right)^{\frac{x}{\log_2 x}}\right) = O(x^\alpha),
\end{equation}
where
\[\alpha = \frac{\ln(17 + 4\sqrt{17})}{\ln 256} = 0.633220353\ldots \]

4. Proofs of Theorems 2 and 3

a) By the conditions of Theorem 2 we have \(r = 1, \ h = p - 1 \). Using (8)
we have
\[\alpha = 1 + \frac{1}{(p - 1) \ln 2} \ln \prod_{k=0}^{p-2} \left| \sin \frac{\pi 2^k}{p} \right| = 1 + \frac{1}{(p - 1) \ln 2} \ln \prod_{l=1}^{p-1} \sin \frac{\pi l}{p}. \]
Furthermore, using the identity \([4, p.378],\)
\[\prod_{l=1}^{p-1} \sin \frac{l\pi}{p} = \frac{p}{2^{p-1}} \]
we find
\[\alpha = 1 + \frac{1}{(p - 1) \ln 2} (\ln p - (p - 1) \ln 2) = \frac{\ln p}{(p - 1) \ln 2}. \]
Remark 4. In this case, (24) has the simple form

\[S_{p,a}(2^pu) + c_1S_{p,a}(2u) = 0. \]

Since in the case of \(a = 0 \) or 1 we have

\[S_{p,a}(2) = (-1)^{s(a)}, \]

while in the case of \(a \geq 2 \),

\[S_{p,a}(2a) = (-1)^{s(a)}, \]

then putting

\[u = \begin{cases} 1, & a = 0, 1, \\ a, & a \geq 2, \end{cases} \]

we find

\[c_1 = (-1)^{s(a)+1} \begin{cases} S_{p,a}(2^p), & a = 0, 1, \\ S_{p,a}(a2^p), & a \geq 2. \end{cases} \]

In particular, if \(p = 3 \), \(a = 2 \) we have \(c_1 = S_{3,2}(16) = -3 \) and

\[S_{3,2}(8u) = 3S_{3,2}(2u). \]

Remark 5. If Artin’s conjecture on the infinity of primes for which 2 is a primitive root is true, then for \(\alpha = \alpha(p) \) we have

\[\liminf_{p \to \infty} \alpha(p) = 0. \]

b) By the conditions of Theorem 3 we have \(r = 2, \ h = \frac{p-1}{2} \), such that for cyclotomic cosets of 2 modulo \(p \)

\[C_1 = -C_2. \]

Therefore, in (8) for \(l_1 = 1 \) and \(l_2 = p - 1 \) we obtain the same values. Thus,

\[\alpha = 1 + \frac{2}{(p-1)\ln 2} \ln \left(\prod_{l=1}^{p-1} \sin \frac{\pi l}{p} \right)^{\frac{1}{2}} = \frac{\ln p}{(p-1)\ln 2}. \]
Using Theorems 1-3, in particular we find
\[
\alpha(3) = 0.7924..., \alpha(5) = 0.5804..., \alpha(7) = 0.4678..., \alpha(11) = 0.3459,
\]
\[
\alpha(13) = 0.3083..., \alpha(17) = 0.6332..., \alpha(19) = 0.2359..., \alpha(23) = 0.2056..., \alpha(29) = 0.1734..., \alpha(31) = 0.6358..., \alpha(37) = 0.1447..., \alpha(41) = 0.4339..., \alpha(43) = 0.6337..., \alpha(47) = 0.1207...
\]

References

[1] J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, 2003.
[2] J. Coquet, A summation formula related to the binary digits, Invent. Math. 73 (1983), 107-115.
[3] M. Drmota and M. Skalba, Rarified sums of the Thue-Morse sequence, Trans. AMS 352, no.2 (1999), 609-642.
[4] G. Freiman and H. Halberstam, On a product of sines, Acta Arithmetica XLIX (1988), 378-385.
[5] A. O. Gelfond, Sur les nombres qui ont des proprietes additives et multiplicative donnees, Acta Arithmetica XIII (1968), 259-265.
[6] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977.
[7] D. I. Newman, On the number of binary digits in a multiple of three, Proc. AMS 21 (1969), 719-721.
[8] D. Redmond, Number Theory: an Introduction, Marcel Dekker, N.Y., 1996.
[9] V. Shevelev, Estimates of Newman sum over multiples of a fixed integer, arXiv (math.NT), 0804.0144.
[10] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences (http://www.research.att.com)