Estimation of homeostatic dysregulation and frailty using biomarker variability: a principal component analysis of hemodialysis patients

Yuichi Nakazato1✉, Tomoko Sugiyama1, Rena Ohno1, Hirofumi Shimoyama1, Diana L. Leung2, Alan A. Cohen3, Riichi Kurane4, Satoru Hirose5, Akihisa Watanabe6 & Hiromi Shimoyama4

Increased intraindividual variability in several biological parameters is associated with aspects of frailty and may reflect impaired physiological regulation. As frailty involves a cumulative decline in multiple physiological systems, we aimed to estimate the overall regulatory capacity by applying a principal component analysis to such variability. The variability of 20 blood-based parameters was evaluated as the log-transformed coefficient of variation (LCV) for one year’s worth of data from 580 hemodialysis patients. All the LCVs were positively correlated with each other and shared common characteristics. In a principal component analysis of 19 LCVs, the first principal component (PC1) explained 27.7% of the total variance, and the PC1 score exhibited consistent correlations with diverse negative health indicators, including diabetes, hypoalbuminemia, hyponatremia, and relative hypocreatininemia. The relationship between the PC1 score and frailty was subsequently examined in a subset of the subjects. The PC1 score was associated with the prevalence of frailty and was an independent predictor for frailty (odds ratio per SD: 2.31, \(P = 0.01\)) using a multivariate logistic regression model, which showed good discrimination (c-statistic: 0.85). Therefore, the PC1 score represents principal information shared by biomarker variabilities and is a reasonable measure of homeostatic dysregulation and frailty.

Studies on variability in blood pressure, plasma glucose levels, hemoglobin concentration, and other parameters have commonly reported associations with adverse outcomes1–3. In our previous study examining patients receiving maintenance hemodialysis (HD), variability in many other blood-based laboratory parameters was also related to several adverse conditions, such as impaired mobility, hospital admission, increased mortality, and hypoalbuminemia4. These conditions are in fact elements of frailty, and frailty is considered to be a state of functional decline in many physiological systems5. Therefore, we speculated that the variability in laboratory parameters may reflect the dysfunction of corresponding regulatory systems and may also be a measure of frailty. Consistent with this idea, the variability of serum albumin concentrations increases with ageing, and this movement accelerates prior to death6. Others have also suggested a link between physiological regulation and variability in other biological variables7–10. However, the variability of a single parameter may not properly represent the dysregulation across multiple physiological systems in frailty11.

To develop a comprehensive measure of physiological dysregulation that is consistent with the concept of frailty, we applied a principal component analysis (PCA) to a set of variabilities in laboratory parameters. This procedure, performed on all study participants (n = 580), yielded principal component scores (PC scores) for...
Methods
Study subjects and data collection. A total of 752 patients underwent maintenance HD during the one-
year data collection period (from June 2015 until May 2016) at any of 4 affiliated HD facilities. These facilities are
located within 6 km of each other and provided equivalent dialysis treatment. To reduce the influence of highly
fluctuating parameter values during the HD initiation phase, patients who had been receiving HD for less than
6 months as of the start of the data collection period (namely, those who had started HD treatment later than
December 1, 2014) were excluded from this study. We further excluded patients who had completed fewer than
21 of the 24 regular blood examinations scheduled during the data collection period. Finally, we enrolled the
remaining 580 patients (Fig. 1).

At each of the 4 participating facilities, 19 blood parameters were regularly examined for all the HD patients.
The levels of white blood cells (WBC), hemoglobin (Hb), platelets (Plat), albumin (Alb), blood urea nitrogen
(BUN), creatinine (Cr), potassium (K), uncorrected calcium (Ca), and phosphate (P) were measured twice
monthly, whereas those of total protein (TP), uric acid (UA), sodium (Na), and chloride (Cl) were measured
monthly. Aspartic aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH),
alkaline phosphatase (ALP), LDL-cholesterol (LDL), and HDL-cholesterol (HDL) levels were measured every
2 months. Among the enrolled patients, 231 had been diagnosed as having diabetes and received additional
monthly measurements of their glycated albumin (GA) level. For the regular blood examinations, pre-dialysis
blood samples were drawn prior to the first HD treatment of the week and were analyzed at a single external
laboratory.

Using the above-mentioned measurements (6–24 measurement points for each parameter), we calculated the
mean values and the coefficients of variation (CV = population standard deviation/mean) for each patient.12
The yearly mean of parameter X (abbreviated as X-M) was regarded as the overall level, and the CV value (X-CV)
was used to estimate variability. The CV values were log 10 transformed to normalize the distribution and were
expressed as log X-CV or X-LCV. There were no missing data for these M and CV values in the enrolled patients.

Frailty assessment. Of the 580 enrolled patients, 140 patients who were receiving HD treatment at one
facility in May 2016 were recruited for the frailty assessment. At the time of frailty survey, 6 patients were in hos-
pital, and 9 patients declined participation. The remaining 125 patients participated in the assessment, but 16 of
them did not complete it. For the final 109 patients without missing data, their frailty status was analyzed relative
to the PC scores obtained from a PCA of 580 patients (Fig. 1).

Frailty was defined according to the Japanese version of the Cardiovascular Health Study criteria (J-CHS cri-
teria)13–15 as the presence of three or more of five clinical characteristics: (a) weight loss—losing more than 2 kg in
the past 6 months; (b) walking speed—less than 1.0 m/second; (c) grip strength—less than 26 kg for men, and less
than 18 kg for women; (d) exhaustion—yes in response to the question: “Have you felt tired without any reason
in the last 2 weeks?”; and (e) physical activity—no for both of the questions: “Do you perform light exercise or
gymnastics?” and “Do you play sports regularly?”.

This study protocol was approved by the institutional ethics committee of Hakuyukai Medical Corporation
(approval number: 27–006) and was performed in accordance with the provision of the Declaration of Helsinki.
Informed consent for the use of the patients’ clinical records was obtained from all the patients in 2015; the phys-
ical and subjective assessments for frailty were conducted in May 2016 after obtaining written informed consent.

Statistical analysis. Bivariate correlations between continuous variables were assessed using the Spearman
or Pearson correlation coefficients according to the distribution of the variables. To compare values between two
groups, P values were calculated using the Welch t-test or the Fisher exact test, as appropriate. For correlations
among the LCVs of the laboratory parameters, we did not adjust the P values for multiple comparisons because
almost all the LCVs were clearly correlated with one another (see Results). In this situation, such P value adjust-
ments merely increase false-negative reporting, rather than decreasing false-positive reporting.16

PCA is a linear transformation technique used for feature extraction, dimensionality reduction, and noise
reduction. It converts a set of observed variables into a set of orthogonal variables called principal components
(PCs) by rotating the coordinate system. PC scores represent the values of the PCs. In this study, PCA was per-
fomed on the 19 LCVs after they were standardized to have a mean of zero and a standard deviation (SD) of one.
The scores for the 19 PCs were computed for each subject and were used for further analyses.

The associations between the frailty status and the explanatory variables were examined using univariate and
multivariable logistic regression models. In these analyses, the frailty status was binarized by combining pre-frail
and non-frail patients as a “not-frail” group17–19, and the odds ratio for a frail status relative to a not-frail status
was estimated. The discriminatory ability of each model was evaluated by computing the area under the receiver
operating characteristic curve (AUC = c-statistic) and the accuracy.

All the analyses were performed in R 3.5.0 (R Core Team, 2018) using the corplot, binomTools, pscl, ROCR,
pROC and caret packages. The results were basically expressed as the mean ± SD, and a P value < 0.05 was con-
sidered significant.
Results

Patient characteristics. The demographic and laboratory data for the 580 patients who were enrolled in the PCA are shown in Table 1. The patient age was 65.6 ± 12.3 years (range = 25.3–93.0 years), and most of them had received long-term hemodialysis treatment (interquartile range = 4.9–15.5 years). The proportions of female and diabetic patients were 32.1% and 37.8%, respectively.

As the diabetic status in HD patients has a strong influence on health conditions, prognosis, and the development of frailty, the patient characteristics were also presented separately for diabetic and non-diabetic patients. Compared with non-diabetic patients, diabetic patients had lower mean levels of BUN, Cr, UA, Na, K,
The laboratory parameters (M), and their variability (LCV) were computed; the entire correlation matrix (44 by 44) is provided as Supplementary Table S1. Subsets of this matrix, specifically the correlation matrix for the 20 LCVs and that for the 20 Ms, were combined and are illustrated as a heatmap in Fig. 2a. As shown in the upper triangle of the heatmap, the 190 correlation coefficients for all possible combinations of LCVs were positive. The coefficient values were generally modest (Fig. 2b), but 181 of them (95.3%) were statistically significant. In sharp contrast, the mean levels of the laboratory parameters (M), and their variability (LCV) were computed; the entire correlation matrix (44 by 44) is provided as Supplementary Table S1. Subsets of this matrix, specifically the correlation matrix for the 20 LCVs and that for the 20 Ms, were combined and are illustrated as a heatmap in Fig. 2a. As shown in the upper triangle of the heatmap, the 190 correlation coefficients for all possible combinations of LCVs were positive. The coefficient values were generally modest (Fig. 2b), but 181 of them (95.3%) were statistically significant. In sharp contrast, the mean levels of the laboratory parameters (M), and their variability (LCV) were computed; the entire correlation matrix (44 by 44) is provided as Supplementary Table S1. Subsets of this matrix, specifically the correlation matrix for the 20 LCVs and that for the 20 Ms, were combined and are illustrated as a heatmap in Fig. 2a. As shown in the upper triangle of the heatmap, the 190 correlation coefficients for all possible combinations of LCVs were positive. The coefficient values were generally modest (Fig. 2b), but 181 of them (95.3%) were statistically significant. In sharp contrast, the mean levels of the laboratory parameters (M), and their variability (LCV) were computed; the entire correlation matrix (44 by 44) is provided as Supplementary Table S1. Subsets of this matrix, specifically the correlation matrix for the 20 LCVs and that for the 20 Ms, were combined and are illustrated as a heatmap in Fig. 2a. As shown in the upper triangle of the heatmap, the 190 correlation coefficients for all possible combinations of LCVs were positive. The coefficient values were generally modest (Fig. 2b), but 181 of them (95.3%) were statistically significant. In sharp contrast, the mean levels of the laboratory parameters (M), and their variability (LCV) were computed; the entire correlation matrix (44 by 44) is provided as Supplementary Table S1. Subsets of this matrix, specifically the correlation matrix for the 20 LCVs and that for the 20 Ms, were combined and are illustrated as a heatmap in Fig. 2a. As shown in the upper triangle of the heatmap, the 190 correlation coefficients for all possible combinations of LCVs were positive. The coefficient values were generally modest (Fig. 2b), but 181 of them (95.3%) were statistically significant. In sharp contrast, the mean levels of the laboratory parameters (M), and their variability (LCV) were computed; the entire correlation matrix (44 by 44) is provided as Supplementary Table S1. Subsets of this matrix, specifically the correlation matrix for the 20 LCVs and that for the 20 Ms, were combined and are illustrated as a heatmap in Fig. 2a. As shown in the upper triangle of the heatmap, the 190 correlation coefficients for all possible combinations of LCVs were positive. The coefficient values were generally modest (Fig. 2b), but 181 of them (95.3%) were statistically significant. In sharp contrast, the mean levels of the laboratory parameters (M), and their variability (LCV) were computed; the entire correlation matrix (44 by 44) is provided as Supplementary Table S1. Subsets of this matrix, specifically the correlation matrix for the 20 LCVs and that for the 20 Ms, were combined and are illustrated as a heatmap in Fig. 2a. As shown in the upper triangle of the heatmap, the 190 correlation coefficients for all possible combinations of LCVs were positive. The coefficient values were generally modest (Fig. 2b), but 181 of them (95.3%) were statistically significant. In sharp contrast, the mean levels of the laboratory parameters (M), and their variability (LCV) were computed; the entire correlation matrix (44 by 44) is provided as Supplementary Table S1. Subsets of this matrix, specifically the correlation matrix for the 20 LCVs and that for the 20 Ms, were combined and are illustrated as a heatmap in Fig. 2a. As shown in the upper triangle of the heatmap, the 190 correlation coefficients for all possible combinations of LCVs were positive. The coefficient values were generally modest (Fig. 2b), but 181 of them (95.3%) were statistically significant. In sharp contrast, the mean levels of the laboratory parameters (M), and their variability (LCV) were computed; the entire correlation matrix (44 by 44) is provided as Supplementary Table S1. Subsets of this matrix, specifically the correlation matrix for the 20 LCVs and that for the 20 Ms, were combined and are illustrated as a heatmap in Fig. 2a. As shown in the upper triangle of the heatmap, the 190 correlation coefficients for all possible combinations of LCVs were positive. The coefficient values were generally modest (Fig. 2b), but 181 of them (95.3%) were statistically significant. In sharp contrast, the mean levels of the laboratory parameters (M), and their variability (LCV) were computed; the entire correlation matrix (44 by 44) is provided as Supplementary Table S1. Subsets of this matrix, specifically the correlation matrix for the 20 LCVs and that for the 20 Ms, were combined and are illustrated as a heatmap in Fig. 2a. As shown in the upper triangle of the heatmap, the 190 correlation coefficients for all possible combinations of LCVs were positive. The coefficient values were generally modest (Fig. 2b), but 181 of them (95.3%) were statistically significant. In sharp contrast, the mean levels of the laboratory parameters (M), and their variability (LCV) were computed; the entire correlation matrix (44 by 44) is provided as Supplementary Table S1. Subsets of this matrix, specifically the correlation matrix for the 20 LCVs and that for the 20 Ms, were combined and are illustrated as a heatmap in Fig. 2a. As shown in the upper triangle of the heatmap, the 190 correlation coefficients for all possible combinations of LCVs were positive. The coefficient values were generally modest (Fig. 2b), but 181 of them (95.3%) were statistically significant. In sharp contrast, the mean levels of the laboratory parameters (M), and their variability (LCV) were computed; the entire correlation matrix (44 by 44) is provided as Supplementary Table S1. Subsets of this matrix, specifically the correlation matrix for the 20 LCVs and that for the 20 Ms, were combined and are illustrated as a heatmap in Fig. 2a. As shown in the upper triangle of the heatmap, the 190 correlation coefficients for all possible combinations of LCVs were positive. The coefficient values were generally modest (Fig. 2b), but 181 of them (95.3%) were statistically significant. In sharp contrast, the mean levels of the laboratory parameters (M), and their variability (LCV) were computed; the entire correlation matrix (44 by 44) is provided as Supplementary Table S1. Subsets of this matrix, specifically the correlation matrix for the 20 LCVs and that for the 20 Ms, were combined and are illustrated as a heatmap in Fig. 2a. As shown in the upper triangle of the heatmap, the 190 correlation coefficients for all possible combinations of LCVs were positive. The coefficient values were generally modest (Fig. 2b), but 181 of them (95.3%) were statistically significant. In sharp contrast, the mean levels of the laboratory parameters (M), and their variability (LCV) were computed; the entire correlation matrix (44 by 44) is provided as Supplementary Table S1. Subsets of this matrix, specifically the correlation matrix for the 20 LCVs and that for the 20 Ms, were combined and are illustrated as a heatmap in Fig. 2a. As shown in the upper triangle of the heatmap, the 190 correlation coefficients for all possible combinations of LCVs were positive. The coefficient values were generally modest (Fig. 2b), but 181 of them (95.3%) were statistically significant. In sharp contrast, the mean levels of the laboratory parameters (M), and their variability (LCV) were computed; the entire correlation matrix (44 by 44) is provided as Supplementary Table S1. Subsets of this matrix, specifically the correlation matrix for the 20 LCVs and that for the 20 Ms, were combined and are illustrated as a heatmap in Fig. 2a. As shown in the upper triangle of the heatmap, the 190 correlation coefficients for all possible combinations of LCVs were positive. The coefficient values were generally modest (Fig. 2b), but 181 of them (95.3%) were statistically significant. In sharp contrast, the mean levels of the laboratory parameters (M), and their variability (LCV) were computed; the entire correlation matrix (44 by 44) is provided as Supplementary Table S1. Subsets of this matrix, specifically the correlation matrix for the 20 LCVs and that for the 20 Ms, were combined and are illustrated as a heatmap in Fig. 2a. As shown in the upper triangle of the heatmap, the 190 correlation coefficients for all possible combinations of LCVs were positive. The coefficient values were generally modest (Fig. 2b), but 181 of them (95.3%) were statistically significant. In sharp
Figure 2. Correlations between variabilities and those between mean levels of 20 laboratory parameters. (a) One hundred and ninety pairwise correlation coefficients between 20 LCVs (=log transformed coefficients of variation) were excerpted from Supplementary Table S1 and are shown as ellipses in the upper triangle of the heatmap. Similarly, the correlation coefficients between 20 Ms (=yearly means) are shown in the lower triangle. The sign and strength of the correlation coefficient is displayed by the color, and insignificant correlations ($P > 0.05$) are marked with an × (see Methods for details). Additionally, first principal component score (PC1 score) is obtained from the PCA of 19 LCVs (all LCVs except GA-LCV), and the correlations between the 20 LCVs and the PC1 are shown in the rightmost column of the heatmap. The correlations between the 20 Ms and the PC1 are also shown in the bottom row. The actual values of the correlation coefficients are shown in Table 2. (b) Distribution of the correlation coefficients between LCVs displayed as a histogram.
Thus, PC1 was regarded as a cumulative index of variability. Likewise, as shown in the left half of Table 2, the correlations between PC1 and other variables (right half of Table 2) revealed a consistent relationship with multiple prognostic factors in HD patients. The PC1 score was negatively correlated with GA-LCV, GA-M, AST-M, LDH-M, diabetic status, ALP-M, age, and ALT-M. These correlations are also displayed as a heatmap in Fig. 2a.

As GA-LCV data were only available for the diabetic patients, the remaining 19 LCVs were used to build the PCA model. The first 5 principal components showed corresponding eigenvalues of more than 1.0, and the PC1 had an eigenvalue of 5.26 and accounted for 27.7% of the total variance. The corresponding values for PC2 were much lower (1.58 and 8.3%, respectively). The variable loadings for PC1 were all positive (range = 0.140 to 0.701). These results indicate that PC1 represents principal information shared by all the LCVs. The correlations between PC1 and other variables (right half of Table 2) revealed a consistent relationship with multiple prognostic factors in HD patients. The PC1 score was negatively correlated with Alb-M, Cr-M, K-M, Na-M, BUN-M, Ca-M, Hb-M, and LDL-M, etc. On the other hand, it was positively correlated with GA-LCV, GA-M, AST-M, LDH-M, diabetic status, ALP-M, age, and ALT-M. These correlations are also displayed as a heatmap in Fig. 2a.

Frailty. The relationships between frailty status and demographic/laboratory data were analyzed for 109 of the 580 patients. Among them, 23 (21.1%) and 55 (50.5%) patients were classified as frail and pre-frail, respectively. When the patients were re-classified into two categories, namely frail and not-frail (pre-frail + non-frail), several characteristics differed between the 2 groups (Table 3). The frail patients were generally older, had a longer duration of HD, and had lower Alb and Cr levels and higher LDH and ALP levels. Of note, the frail patients exhibited elevated LCV levels for all the parameters except for UA, though the differences were statistically significant only for Hb-LCV, Plat-LCV, Alb-LCV, and LDH-LCV. The PC scores derived from a PCA of 580 patients were also compared. Of the 19 PC scores, the PC1 score was significantly higher in frail patients than in not-frail patients, but the other PC scores were not significantly different between the 2 groups (Table 3).

As shown in Fig. 3, the prevalence of frailty tended to increase with increasing age, HD duration, and PC1 score, though there was no significant correlation between these 3 variables in the examined subjects. The discriminatory power of the PC1 score for frailty was analyzed using logistic regression models and receiver operating characteristic curves (Table 4 and Fig. 3d). In these models, mean levels of laboratory parameters (Ms) are not

Variables	r	P value	Variables	r	P value
Ca-LCV	0.321	0.000	Alb-M	−0.278	0.000
ALP-LCV	0.364	0.000	Cr-M	−0.254	0.000
LDL-LCV	0.375	0.000	K-M	−0.173	0.000
AST-LCV	0.380	0.000	Na-M	−0.171	0.000
ALT-LCV	0.430	0.000	BUN-M	−0.162	0.000
Na-LCV	0.449	0.000	Ca-M	−0.138	0.001
TP-LCV	0.485	0.000	Hb-M	−0.118	0.005
UA-LCV	0.490	0.000	LDL-M	−0.104	0.013
LDH-LCV	0.493	0.000	Cl-M	−0.102	0.014
HDL-LCV	0.506	0.000	UA-M	−0.102	0.014
Cl-LCV	0.520	0.000	TP-M	−0.098	0.018
WBC-LCV	0.561	0.000	HD duration	−0.081	0.051
Hb-LCV	0.566	0.000	Plat-M	−0.031	0.450
K-LCV	0.584	0.000	HDL-M	−0.015	0.712
Plat-LCV	0.590	0.000	Female (vs. male)	−0.006	0.890
P-LCV	0.614	0.000	WBC-M	0.052	0.212
Cr-LCV	0.663	0.000	P-M	0.073	0.080
Alb-LCV	0.693	0.000	ALT-M	0.101	0.015
BUN-LCV	0.701	0.000	Age	0.137	0.001
			ALP-M	0.137	0.001
			DM (vs. non-DM)	0.195	0.000
			LDH-M	0.200	0.000
			AST-M	0.221	0.000
			GA-M*	0.240	0.000
			GA-LCV*	0.366	0.000

Table 2. Correlations between PC1 score and study variables. DM = diabetes mellitus. The correlation coefficients (r) between PC1 and the original variables of the PCA, namely the 19 LCVs, are displayed on the left, and the r for other variables (19 Ms, GA-LCV, DM, HD duration, and gender) are displayed on the right. For dichotomous variables, r represents the point-biserial correlation coefficient. Variables are arranged in the order of their r values from lowest to highest. Boldface indicates a statistical significance at P < 0.05. *For GA-M and GA-LCV, the coefficients were calculated for diabetic subjects only.
Table 3. Patient characteristics according to frailty status. The patient characteristics of the not-frail group (n = 86) and the frail group (n = 23) were compared using the Welch t-test or the Fisher exact test. The units of the variables are the same as those used in Table 1. PC1-4 were the first to fourth principal components, and the PC1 score had odds ratios (OR) of 2.20–2.42 (per 1 SD) for frailty. The PC1 score alone was not sufficient to determine the frailty status (AUC = 0.649, accuracy = 0.617, model #1 in Table 4 and Fig. 3d). However, as shown by the comparison between model #2 and model #3, its addition to the explanatory variables significantly improved the fit of the model (P = 0.0037 for likelihood ratio test). The lower ranked PCs (PC2 – PC19) had no significant association with frailty status, and their further addition to these models did not improve the performance. A multivariate model (#4 in Table 4 and Fig. 3d) containing 4 variables (PC1 score, age, HD duration, and diabetic status) had the smallest AIC and an AUC of 0.849, indicating that the overall dysfunction can be estimated by the PC1 score alone.

Discussion

In our previous survival study, we observed widespread positive correlations between LCVs in the baseline data which had been recorded during the year of 2002. The dataset analyzed in the present study was collected more than 12 years thereafter. Nevertheless, the correlation matrices derived from both datasets showed very similar patterns and levels (compare Table S1 in Ref. 4 and Supplementary Table S1), indicating their nearly constant correlation structure. Given that a high LCV level reflects dysfunction of the corresponding physiological regulatory system, the correlation coefficient between two different LCVs can represent the strength of the interaction (coupling) between two different physiological systems. More specifically, the robust correlation (r > 0.5) between certain pairs of LCVs (Na-LCV/Cl-LCV, BUN-LCV/Cr-LCV, Alb-LCV/TP-LCV, and BUN-LCV/K-LCV, see Supplementary Table S1) indicates the proximity of the regulatory mechanisms of these paired parameters. Taking this idea one step further, the ubiquitous positive correlations among the LCVs imply an interconnected structure (i.e., network) of homeostatic regulation and suggest that its overall dysfunction can be estimated by the PC1 of the LCVs.

Changes in physiological variability in relation to aging and health can be viewed through two lenses that produce contradictory results. On the one hand, the "loss of complexity" paradigm suggests that high variability
is a sign of a system that is able to adjust appropriately, and that loss of variability is a sign of loss of appropriate complexity (ref. 23 and others by Lipsitz and Goldberger). On the other hand, the “critical transitions” paradigm suggests that high variability is a marker of an impending critical transition in system state, usually undesirable in a health context24,25. Perhaps as a bridge between these two, Fossion et al. suggest that physiological variables can be divided into regulated variables (those that are kept stable, i.e., targets of homeostasis) and physiological responses (buffers that adjust in order to keep regulated variables stable)8. This is highly concordant with sub-cellular regulation as demonstrated by Nijhout et al.26. However, our results would seem to provide unmitigated support for the critical transition framework, with generalized increases in variability observed in frailty across all biomarkers, regardless of whether they might be thought to be regulated or responses. Why this is remains to be explored, though some publications have questioned whether observed changes in heart rate variability that motivated the “loss of complexity” framework are indeed reproducible27.

Glycemic variability (GV) has been assessed by repeated measurements of blood glucose, hemoglobin A1c, or GA levels with various sampling intervals. Despite the different definitions of GV, studies have generally reported associations between a high GV and adverse patient outcomes12,28,29. GV is an active topic of clinical medicine, and we were interested in the similarity between GV and other LCVs. In chronic HD treatment, the GA value has been recognized as a superior index of glycemic control30, and the dataset used in this study contained periodic GA values; therefore, both the GA-M and the GA-LCV were included in the analysis. In the diabetic patients, the GA-LCV was significantly correlated with 16 of the 19 LCVs and, like most of the other LCVs, exhibited negative correlations with Alb-M, Cr-M, and Na-M, all three of which are solid prognostic predictors (Fig. 2a and Supplementary Table S1).

Figure 3. Prevalence of frailty and performance of predictive models. (a–c) Subjects were stratified according to age, HD duration, or PC1 score, and their frailty levels were displayed as mosaic plots. The areas of the tiles are proportional to the numbers of subjects. (d) Receiver operating characteristic curves of combined classifiers for frailty. Models #1 – #4 correspond to those in Table 4.
While GA values were not available for non-diabetic subjects, we think that these correlations likely exist in the entire subjects for the following reasons: (a) GA-LCV was strongly correlated with GA-M in the diabetic patients ($r = 0.54$, Supplementary Table S1), (b) the diabetic patients had relatively high levels for the majority of LCVs (Table 1), and (c) the GA-M and GA-LCV levels of non-diabetic patients should be lower than those of diabetic patients. Accordingly, GA-LCV also seems to share common characteristics and significance with other LCVs. That is, the regulation of blood glucose is not independent from that of other blood components. Until now, a high GV has been discussed only in the context of diabetic complications. However, as a high GA-LCV level, along with a high GA-M level, is largely accompanied by wide fluctuations in other parameters, at least in HD patients, it could also be a manifestation of diverse (not necessarily diabetes-related) types of organ/tissue damages and accompanying physiological dysregulation. This interpretation is compatible with the presence of impaired glucose tolerance in patients with various chronic diseases$^{31-33}$ as well as frail elderly34. Furthermore, it explains why dysglycemia in critically ill patients is associated with a high mortality and why strict glycemic control has a minimal effect on their prognosis35.

Most of the operational criteria for frailty are based on aggregate scores of survey items, which were selected empirically to capture physical, mental, and social well-being. Frailty assessments can thus be time-consuming and require the cooperation of the subjects, but they still entail some uncertainty because of the lack of an objective definition. Accordingly, biomarkers that complement frailty assessments have been sought and proposed36. Some of the LCVs examined in the present study are candidates for such biomarkers, since their values were often associated with aspects of frailty4. When comparing the levels of the 19 LCVs between frail and non-frail groups, the frail group actually showed elevated mean LCV values for almost all the parameters, though the difference was moderately significant for only 4 parameters (Table 3). In comparison, the PC1 score showed a more significant difference than each of the LCVs, indicating that the former is a reliable marker for estimating frailty. In line with this result, a multivariate logistic regression model containing only 4 predictors (PC1, age, HD duration, and diabetic status) reasonably discriminated the frailty status without the use of physical performance tests or questionnaires. While the PC1 score alone is a moderate predictor of frailty, the information it contains appears to be largely independent of age and other covariates in the subjects. Furthermore, the PC1 score was associated with many parameters in a manner that was consistent with their prognostic significance in HD patients (see the right side of Table 2). They include diabetes (or high GA-M), high GV, and low serum levels of Alb, Cr, K, Na, BUN, Hb, LDL-cholesterol, and so on. As deviated levels of these parameters are closely linked to frailty, sarcopenia, protein energy wasting, and mortality risk in HD patients$^{36-41}$, our results indicate that the PC1 of LCVs is certainly a useful guide in selecting treatment options for patients with co-morbidities.

Table 4. Logistic regression models for frailty

Predictor	OR (95% CI)	P value	p^2	AIC	AUC (95% CI)	Accuracy	Sensitivity	Specificity
Univariate model								
#1 PC1 (per SD)	2.20 (1.26–3.81)	0.005	0.08	107.8	0.649 (0.512–0.787)	0.817	0.174	0.988
Multivariate models								
#2 Age	1.09 (1.02–1.16)	0.006						
HD duration	1.09 (1.03–1.15)	0.002	0.18	96.5	0.795 (0.700–0.891)	0.835	0.348	0.965
#3 PC1	2.42 (1.30–4.53)	0.006						
Age	1.10 (1.03–1.17)	0.004						
HD duration	1.09 (1.03–1.15)	0.003	0.27	90.0	0.838 (0.748–0.928)	0.835	0.478	0.930
#4 PC1	2.31 (1.22–4.36)	0.010						
Age	1.09 (1.02–1.17)	0.008						
HD duration	1.11 (1.04–1.19)	0.001						
DM	2.74 (0.78–9.60)	0.115	0.29	89.5	0.849 (0.764–0.934)	0.862	0.565	0.942
#5 PC1	2.34 (1.21–4.52)	0.011						
Age	1.09 (1.02–1.17)	0.008						
HD duration	1.11 (1.04–1.19)	0.001						
Female	1.14 (0.32–4.05)	0.837						
DM	2.76 (0.79–9.72)	0.113	0.29	91.4	0.854 (0.770–0.938)	0.862	0.565	0.942

While GA values were not available for non-diabetic subjects, we think that these correlations likely exist in the entire subjects for the following reasons: (a) GA-LCV was strongly correlated with GA-M in the diabetic patients ($r = 0.54$, Supplementary Table S1), (b) the diabetic patients had relatively high levels for the majority of LCVs (Table 1), and (c) the GA-M and GA-LCV levels of non-diabetic patients should be lower than those of diabetic patients. Accordingly, GA-LCV also seems to share common characteristics and significance with other LCVs. That is, the regulation of blood glucose is not independent from that of other blood components. Until now, a high GV has been discussed only in the context of diabetic complications. However, as a high GA-LCV level, along with a high GA-M level, is largely accompanied by wide fluctuations in other parameters, at least in HD patients, it could also be a manifestation of diverse (not necessarily diabetes-related) types of organ/tissue damages and accompanying physiological dysregulation. This interpretation is compatible with the presence of impaired glucose tolerance in patients with various chronic diseases$^{31-33}$ as well as frail elderly34. Furthermore, it explains why dysglycemia in critically ill patients is associated with a high mortality and why strict glycemic control has a minimal effect on their prognosis35.
can simply apply LCVs to PCA without considering their normal or desirable values. Unlike ordinary multiple
regression modelling, PCA is not impeded by multicollinearity, which was moderately but widely present among
the LCVs. Moreover, since PCA is a non-supervised analysis, the resultant PC scores represent information inher-
et to the data and can be used as independent variables in different regression models for various definitions of
frailty/sarcopenia as well as mortality. In PCA for variables with the same directional properties, as the number of
variables increases, the result seems to be less affected by the number and selection of the variables\(^\text{9}\). Using this
same dataset, we also examined a smaller PCA model based on 9 variables, namely LCVs of WBC, Hb, Plat, Alb,
BUN, Cr, K, Ca, and P. Although the detailed results were omitted to avoid repetition, the PC1 score was strongly
correlated with the score from the original PCA model based on 19 LCVs\((r = 0.95)\) and provided nearly identical
results in the logistic regression analyses for frailty. For example, the model corresponding to the original model
\#4 exhibited a \(P\) value of 0.008, an AUC of 0.861, and an accuracy of 0.844. This property helps to generate com-
mon PC1 scores from multiple datasets, each containing a different set of parameters.

The main limitation of this study is the relatively small sample size of patients who had completed the frailty
assessment, which might have reduced the statistical power to detect differences between the frail and not-frail
groups. We also excluded patients who were hospitalized at the time of the survey and those who could not
respond to the questionnaire. Hence, the subjects who were included in the frailty analysis might have been less
frail, compared with the overall subjects in the study. Although these situations may have weakened some of the
results, we think that the presently reported conclusions are still very clear and reasonable.

Another limitation is the cross-sectional design. The regression model produced in this study demonstrated
that HD patients with an older age, longer HD duration, and greater fluctuations in laboratory data were generally
more frail. Considering the ageing/death-associated changes in Alb-LCV\(^{7}\), which is robustly correlated with PC1,
this model seems to fit well with the expected time-dependent progression of frailty. However, a cross-sectional
study addresses only the prevalence of frailty and can suffer from a selection bias and a survivorship bias. To
investigate the relationship between PC1 and frailty more accurately, longitudinal data for both variables will
need to be analyzed.

Finally, we should mention that this study was based solely on clinical data from HD patients. The reason for
this is that the regular and frequent collection of multi-dimensional data is very difficult to achieve in other pop-
ulations. Consequently, whether similar results are observable in other disease populations is currently unknown.

In summary, we applied a PCA to the levels of variability of 19 blood-based parameters to explore the phys-
iological implications of variability. The 19 LCVs had similar characteristics and shared common information,
which could be extracted as PC1. Compared with the original LCVs, the PC1 score was consistently correlated
with frailty as well as various other negative health indicators in HD patients. We concluded that the PC1, which
is a cumulative index of variability, is a measure of homeostatic dysregulation and can be used to estimate frailty.

Data availability
All processed data generated during this study are included in this published article and its Supplementary
Information, but the raw data cannot be made openly available to protect the confidentiality of personal
information and to comply with the terms of the patient’s consent. Requests related to the raw data should be
addressed to the corresponding author.

Received: 23 November 2019; Accepted: 26 May 2020;
Published online: 25 June 2020

References
1. Rossignol, P., Cridlig, J., Lehert, P., Kessler, M. & Zannad, F. Visit-to-visit blood pressure variability is a strong predictor of
cardiovascular events in hemodialysis: insights from FOSIDIAL. Hypertension 60, 339–46 (2012).
2. Weinhandl, E. D., Peng, Y., Gilbertson, D. T., Bradbury, B. D. & Collins, A. J. Hemoglobin variability and mortality: confounding by
disease severity. Am J Kidney Dis 57, 255–63 (2011).
3. Li, S. H. et al. Time-averaged serum potassium levels and its fluctuation associate with 5-year survival of peritoneal dialysis patients:
Two-center based study. Sci Rep 5, 15743 (2015).
4. Nakazato, Y., Kurane, R., Hirose, S., Watanabe, A. & Shimoyama, H. Variability of laboratory parameters is associated with frailty
markers and predicts non-cardiac mortality in hemodialysis patients. Clin Exp Nephrol 19, 1165–1173 (2015).
5. Clegg, A., Young, J., Iliffe, S., Rikkert, M. O. & Rockwood, K. Frailty in elderly people. in The Lancet 381, 752–762 (2013).
6. Nakazato, Y., Kurane, R., Hirose, S., Watanabe, A. & Shimoyama, H. Aging and death-associated changes in serum albumin
variability over the course of chronic hemodialysis treatment. Plos One 12, e0185216 (2017).
7. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).
8. Fossion, R., Rivera, A. L. & Estañol, B. A physicist’s view of homeostasis: how time series of continuous monitoring reflect the
function of physiological variables in regulatory mechanisms. Physiol Meas 39 084007 (2018).
9. Montero-Odasso, M. et al. Gait variability is associated with frailty in community-dwelling older adults. Journals Gerontol - Ser A
Biol Sci Med Sci 66 A, 568–576 (2011).
10. Woo, J., Yu, R., Tsui, K. & Meng, H. Variability in Repeated Blood Pressure Measurements as a Marker of Frailty. J Nutr Heal. Aging
22, 1122–1127 (2018).
11. Gruevenwald, T. L., Seeman, T. E., Karlamangla, A. S. & Sarkisian, C. A. Allostatic load and frailty in older adults. J Am Geriatr Soc
57, 1525–1531 (2009).
12. Kilpatrick, E. S., Rigby, A. S. & Atkin, S. L. A1C variability and the risk of microvascular complications in type 1 diabetes: Data from
the diabetes control and complications trial. Diabetes Care 31, 2198–2202 (2008).
13. Fried, L. P. et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56, M146–56 (2001).
14. Makizako, H., Shimada, H., Doki, T., Tsutsunimoto, K. & Suzuki, T. Impact of physical frailty on disability in community-dwelling
older adults: a prospective cohort study. BMJ Open 5, e008462 (2015).
15. Tamaki, K. et al. The Relationship between Dietary Habits and Frailty in Rural Japanese Community-Dwelling Older Adults: Cross-
Sectional Observation Study Using a Brief Self-Administered Dietary History Questionnaire. Nutrients 10, 1982 (2018).
16. Rothman, K. J. No adjustments are needed for multiple comparisons. Epidemiology 1, 43–46 (1990).
31. Guthoff, M.
30. Inaba, M.
29. Gorst, C.
43. Collins, A. J.
42. Kalantar-Zadeh, K.
37. Liu, Y.
39. Miller, A. J.
44. Hsu, S.-P.
47. Xu, Q.
32. Kaur, H.
24. Scheffer, M.
27. Schmitt, D. T. & Ivanov, P. C. Fractal scale-invariant and nonlinear properties of cardiac dynamics remain stable with advanced age. *Clin J Am Soc Nephrol* 12, 1100–1108 (2017).
20. Johansen, K. L.
19. Han, B., Li, Q. & Chen, X. Frailty and postoperative complications in older Chinese adults undergoing major thoracic and abdominal surgery. *Clin Interv Aging* 14, 947–957 (2019).
18. Sy, J., McCulloch, C. E. & Johansen, K. L. Depressive symptoms, frailty, and mortality among dialysis patients. *Hemodial Int* 23, 239–246 (2019).
17. Naderz, W. et al. Cardiovascular Dysfunction and Frailty among Older Adults in the Community: The ARIC Study. *Journals Gerontol - Ser A Biol Sci Med Sci* 72, 958–964 (2017).
16. Collins, A. J.
15. Hsu, S.-P.
14. Hsu, S.-P.
13. Collins, A. J.
12. Collins, A. J.
11. Collins, A. J.
10. Collins, A. J.
9. Collins, A. J.
8. Collins, A. J.
7. Collins, A. J.
6. Collins, A. J.
5. Collins, A. J.
4. Collins, A. J.
3. Collins, A. J.
2. Collins, A. J.
1. Collins, A. J.

Acknowledgements

A.A.C. is supported by a CIHR New Investigator Salary Award and is a member of the Fonds de recherche du Québec – Santé funded Centre de recherche du CHUS and Centre de recherche sur le vieillissement.

Author contributions

Y.N. designed the study, performed the analysis, and wrote the initial draft of the manuscript. T.S. and R.O. conducted and assembled frailty assessments. D.L.L. and A.A.C. contributed to data interpretation and preparation of the manuscript. H.S., H.S., R.K., S.H. and A.W. contributed to data acquisition. All authors reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-66861-6.
Correspondence and requests for materials should be addressed to Y.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020