DYNAMICAL BEHAVIORS OF
A GENERALIZED LORENZ FAMILY

FUCHEN ZHANG

College of Mathematics and Statistics
Chongqing Technology and Business University
Chongqing 400067, China
Mathematical post-doctoral station, College of Mathematics and Statistics
Southwest University, Chongqing 400716, China

XIAOFENG LIAO

College of Electronic and Information Engineering, Southwest University
Chongqing 400716, China

GUANGYUN ZHANG

College of Mathematics and Statistics, Chongqing Technology and Business University
Chongqing 400067, China

CHUNLAI MU

College of Mathematics and Statistics, Chongqing University
Chongqing 401331, China;

MIN XIAO

College of Automation,
Nanjing University of Posts and Telecommunications
Nanjing 210003, China

PING ZHOU

Key Laboratory of Network Control and Intelligent Instrument of Ministry of Education
Chongqing University of Posts and Telecommunications
Chongqing 400065, China

(Communicated by Yuan Lou)

2010 Mathematics Subject Classification. Primary: 65P20; Secondary: 65P30, 65P40.
Key words and phrases. Generalized Lorenz system, Lyapunov-like functions, ultimate boundedness, global attractive sets.
Abstract. In this paper, the ultimate bound set and globally exponentially attractive set of a generalized Lorenz system are studied according to Lyapunov stability theory and optimization theory. The method of constructing Lyapunov-like functions applied to the former Lorenz-type systems (see, e.g., Lorenz system, Rossler system, Chua system) is not applicable to this generalized Lorenz system. We overcome this difficulty by adding a cross term to the Lyapunov-like functions that used for the Lorenz system to study this generalized Lorenz system. The authors in [D. Li, J. Lu, X. Wu, G. Chen, Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system, Journal of Mathematical Analysis and Applications 323 (2006) 844-853] obtained the ultimate bound set of this generalized Lorenz system but only for some cases with $0 \leq \alpha < \frac{1}{29}$. The ultimate bound set and globally exponential attractive set of this generalized Lorenz system are still unknown for $\alpha \not\in \left[0, \frac{1}{29}\right)$. Comparing with the best results in the current literature [D. Li, J. Lu, X. Wu, G. Chen, Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system, Journal of Mathematical Analysis and Applications 323 (2006) 844-853], our new results fill up the gap of the estimate for the case of $\frac{1}{29} \leq \alpha < \frac{14}{173}$. Furthermore, the estimation derived here contains the results given in [D. Li, J. Lu, X. Wu, G. Chen, Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system, J. Math. Anal. Appl. 323 (2006) 844-853] as special case for the case of $0 \leq \alpha < \frac{1}{29}$.

1. Introduction. Chaos, as a very interesting nonlinear phenomenon with complex and unpredictable behavior, has been intensively studied in the last decades. The well-known Lorenz system, Rössler system, Chua’s circuit system, Shimizu-Morioka system, Glukhovsky-Dolzhansky system, Chen system, Li system, the unified chaotic system and other chaotic dynamical systems have motivated a large number of investigations on three-dimensional chaotic dynamical systems [1-2, 5-12]. Mathematicians, physicists, and engineers from various fields have studied the essence of chaos, characteristics of chaotic systems, bifurcations, routes to chaos, many other related topics and a lot of successful results have been reported [4, 8-11, 18-22, 24, 26, 27-30].

Ultimate boundedness of chaotic dynamical systems is one of the fundamental concepts in dynamical systems, which plays an important role in investigating the stability of the equilibrium, estimating the Lyapunov dimension of attractors and the Hausdorff dimension of attractors, the existence of periodic solutions, chaos control, chaos synchronization [2,5,11]. Ultimate boundedness of the Lorenz system has been investigated by Leonov et al. in a series of articles [7,12]. Since then other studies have developed ultimate bounds of similar chaotic dynamical systems [22, 24, 26-30]. However, the approach taken in each is only suitable for that particular system. It is very difficult to propose a universal approach to estimate ultimate bounds for an arbitrary chaotic dynamical system. To this end, we will study ultimate bounds of the new generalized Lorenz system in this paper.

The former Lorenz-type equations [22, 24, 26, 28-30] that we are searching for a global bounded region have a common characteristic: the elements of the main diagonal of the matrix A are all negative [22, 24, 26, 28-30], where the matrix A is the Jacobian matrix $\frac{df}{dx}$ of a continuous-time dynamical system defined by $\frac{dx}{dt} = f(x), x \in R^3$, evaluated at the origin $(0, 0, 0)$. However, there are positive numbers in the elements of main diagonal of matrix C, where matrix C is the Jacobian matrix of the generalized Lorenz system evaluated at the origin $(0, 0, 0)$. The origin $(0, 0, 0)$ is an equilibrium point of this generalized Lorenz system. The method
of constructing Lyapunov-like functions applied to the former three-dimensional Lorenz-type dynamical systems [22, 24, 26, 28-30] isn’t applicable to this generalized Lorenz system. We overcome this difficulty by adding a cross term xy to the Lyapunov-like function
\[
V(x, y, z) = a_1(x - a_2)^2 + b_1(y - b_2)^2 + c_1(z - c_2)^2, a_1 > 0, b_1 > 0, c_1 > 0, a_2 \in R, b_2 \in R, c_2 \in R
\]
to study this generalized Lorenz system. Using these Lyapunov-like functions, the present paper obtains the globally attractive sets for this generalized Lorenz system for several parameter ranges. The results obtained in this paper contain the existing results in [22] as special cases.

The rest of the paper is organized as follows. Section 2 gives the mathematical model of the generalized Lorenz system and the main results of this paper. Conclusions are drawn in Sect. 3.

2. Dynamical systems model and main results. The unified system is described by [14, 22]:
\[
\begin{align*}
\frac{dx}{dt} &= (10 + 25\alpha)(y - x), \\
\frac{dy}{dt} &= (28 - 35\alpha)x - xz + (29\alpha - 1)y, \\
\frac{dz}{dt} &= xy - \frac{a + 8}{3}z.
\end{align*}
\]
where $\alpha \in R$ is the system parameter. The system (1) is considered as a transition system between the Lorenz system [6] and the Chen system [3]. The system (1) reduces to the original Lorenz system with $\alpha = 0$, and system (1) is the original Chen system with $\alpha = 1$ [22].

For simplicity, let us denote $10 + 25\alpha = a_\alpha$, $28 - 35\alpha = b_\alpha$, $1 - 29\alpha = c_\alpha$, $\frac{a + 8}{3} = d_\alpha$, then system (1) takes the form
\[
\begin{align*}
\frac{dx}{dt} &= a_\alpha(y - x), \\
\frac{dy}{dt} &= b_\alpha x - c_\alpha y - xz, \\
\frac{dz}{dt} &= xy - d_\alpha z,
\end{align*}
\]
(2)

Some dynamics of the generalized Lorenz systems (2) were studied in [14, 22]. In the following, we will discuss the ultimate bound set and global attractive set of the generalized Lorenz systems (2).

Consider the system
\[
\frac{dX}{dt} = f(X),
\]
where $X = (x_1, x_2, \ldots, x_n) \in R^n, f : R^n \to R^n, t_0 \geq 0$ is the initial time, $X_0 \in R^n$ is an initial value and $X(t, t_0, X_0)$ is a solution to the system (3) satisfying $X(t_0, t_0, X_0) = X_0$ which for simplicity is denoted as $X(t)$. Assume $\Omega \subset R^n$ is a compact set. Define the distance between a point $X(t, t_0, X_0)$ and the set Ω as
\[
\rho(X(t, t_0, X_0), \Omega) = \inf_{Y \in \Omega} \| X(t, t_0, X_0) - Y \|.
\]

We will give the following definitions and introduce Lemma 1 which will be used in Theorem 1.

Definition 1. ([15, 16, 22, 23, 25, 26]). Suppose that there exists a compact set $Q \subseteq R^n$ such that
\[
\forall X_0 \in R^n/Q, \lim_{t \to +\infty} \rho(X(t, t_0, X_0), Q) = 0,
\]
then the set Q is called an ultimate bound set of system (3).
Define the following generalized positively definite and radially unbounded Lyapunov-like function \(V(X) \), where \(L > 0 \) and \(\beta > 0 \) such that \(\forall X_0 \in R^n \), when \(V(X(t_0)) > L \), \(V(X(t)) > L \), the solution of system (3), \(X(t) \) along the \(V(X(t)) \) satisfies \(|V(X(t)) - L| \leq |V(X(t_0)) - L| e^{-\beta(t-t_0)} \), then the system (3) is said to have a global exponential attractive set \(\Omega = \{ X \mid V(X) \leq L \} \).

Theorem 1. Suppose that \(\forall \lambda > 0, \forall m > 0 \) and \(\alpha \in (\frac{-2}{3}, \frac{1}{29}) \). Then the following set

\[
\Omega_{\lambda,m} = \left\{ (x, y, z) \mid \lambda x^2 + my^2 + m \left[z - \left(b_\alpha + \frac{\lambda}{m} a_\alpha \right) \right]^2 \leq R^2 \right\}, \forall \lambda > 0, \forall m > 0
\]

is an ultimate bound set and positively invariant set of generalized Lorenz system (2), where

\[
R^2 = \left\{ \begin{array}{ll}
\frac{(d_\alpha)^2}{4m a_{\alpha}(d_\alpha - a_\alpha)} & , \quad - \frac{2}{5} \leq \alpha \leq - \frac{52}{139} , \\
\frac{(d_\alpha)^2}{4m a_{\alpha}(d_\alpha + m b_\alpha)} & , \quad - \frac{52}{139} < \alpha < - \frac{1}{29} , \\
\frac{(d_\alpha)^2}{4m a_{\alpha}m b_\alpha} & , \quad - \frac{1}{29} < \alpha < - \frac{2}{175} .
\end{array} \right.
\]

Proof. Define the following generalized positively definite and radially unbounded Lyapunov-like function

\[
V_{\lambda,m}(X) = V_{\lambda,m}(x, y, z) = \lambda x^2 + my^2 + m \left[z - \left(b_\alpha + \frac{\lambda}{m} a_\alpha \right) \right]^2, \forall \lambda > 0, \forall m > 0 ,
\]

Differentiating the above Lyapunov-like function \(V_{\lambda,m}(x, y, z) \) in (6) with respect to time \(t \) along the trajectory of system (2) yields

\[
\frac{dV_{\lambda,m}(X)}{dt} = 2\lambda x \frac{dx}{dt} + 2my \frac{dy}{dt} + 2m \left(z - \frac{\lambda}{m} a_\alpha - b_\alpha \right) \frac{dz}{dt},
\]

\[
= 2\lambda x (a_\alpha y - a_\alpha x) + 2my (b_\alpha x - xz - c_\alpha y) + 2m \left(z - \frac{\lambda}{m} a_\alpha - b_\alpha \right) (xy - d_\alpha z),
\]

\[
= -2\lambda a_\alpha x^2 - 2mc_\alpha y^2 - 2md_\alpha (z - \frac{\lambda}{m} a_\alpha + b_\alpha)^2 + \frac{md_\alpha}{2} \left(\frac{\lambda}{m} a_\alpha + b_\alpha \right)^2 ,
\]

\[
= \left(\lambda \frac{dx}{dt} + my \frac{dy}{dt} + m \left(z - \frac{\lambda}{m} a_\alpha - b_\alpha \right) \frac{dz}{dt} \right)^2,
\]

\[
\leq R^2.
\]
When $-\frac{2}{5} < \alpha < \frac{1}{29}$, we can get

$$a_\alpha > 0, b_\alpha > 0, c_\alpha > 0, d_\alpha > 0.$$

Obviously, we can see that Γ_1 that defined by

$$\Gamma_1 = \left\{ (x, y, z) \left| \frac{\lambda x^2}{4a_\alpha m} + \frac{my^2}{4c_\alpha m} + \frac{m(z - \lambda a_\alpha + mb_\alpha)}{(\lambda a_\alpha + mb_\alpha)^2} = 1 \right\}, \quad (7)$$

is an ellipsoid in \mathbb{R}^3 for $\forall \lambda > 0, \forall m > 0, \alpha \in (\frac{-2}{5}, \frac{1}{29})$. Outside Γ_1, $\frac{dV_{\lambda,m}(X)}{dt} < 0$, while inside Γ_1, $\frac{dV_{\lambda,m}(X)}{dt} > 0$. Thus, the maximum of $V_{\lambda,m}(X)$ can only be reached on Γ_1. Since the $V_{\lambda,m}(X)$ is a continuous function and Γ_1 is a bounded closed set, then the function (6) $V_{\lambda,m}(X)$ can reach its maximum value $\max V_{\lambda,m}(X) = R^2, (X \in \Gamma_1)$ on the surface Γ_1 defined in (7). Obviously, $\{(x, y, z) | V_{\lambda,m}(X) \leq \max V_{\lambda,m}(X), X \in \Gamma_1\}$ contains the solutions of the generalized Lorenz system (2).

By solving the following conditional extremum problem, one can get the maximum value of the function (6):

$$\left\{ \begin{array}{l}
\max V_{\lambda,m}(X) = \max \left\{ \frac{\lambda x^2 + my^2 + m(z - (b_\alpha + \frac{\lambda}{m} a_\alpha))^2}{(\lambda a_\alpha + mb_\alpha)^2} \right\}, \\
s.t. \frac{\lambda x^2}{4a_\alpha m} + \frac{my^2}{4c_\alpha m} + \frac{m(z - \lambda a_\alpha + mb_\alpha)}{(\lambda a_\alpha + mb_\alpha)^2} = 1,
\end{array} \right. \quad (8)$$

Let us take

$$\sqrt{\lambda} x = x_1, \sqrt{m} y = y_1, \sqrt{m} z = z_1, \lambda a_\alpha + mb_\alpha = c,$$

$$\frac{d_\alpha(\lambda a_\alpha + mb_\alpha)^2}{4ma_\alpha} = a_1, \frac{d_\alpha(\lambda a_\alpha + mb_\alpha)^2}{4mc_\alpha} = b_1.$$

By solving the following conditional extremum problem of $V_{\lambda,m}(X)$ in (8), one can easily get the conditional extremum problem

$$\left\{ \begin{array}{l}
\max V(x_1, y_1, z_1) = \max \left\{ x_1^2 + y_1^2 + (z_1 - 2c)^2 \right\}, \\
s.t. \frac{x_1^2}{a_1^2} + \frac{y_1^2}{b_1^2} + \frac{(z_1 - c)^2}{c^2} = 1.
\end{array} \right. \quad (9)$$

According to Lemma 1, we can easily get the above conditional extremum problem (9) as:

$$R^2 = \begin{cases}
\frac{(d_\alpha)^2(\lambda a_\alpha + mb_\alpha)^2}{4ma_\alpha(d_\alpha - a_\alpha)}, & -\frac{2}{5} \leq \alpha < -\frac{52}{149}, \\
\frac{(d_\alpha)^2(\lambda a_\alpha + mb_\alpha)^2}{4mc_\alpha(d_\alpha - c_\alpha)}, & -\frac{2}{175} \leq \alpha < \frac{1}{29}, \\
\frac{52}{149} < \alpha < -\frac{2}{175}.
\end{cases}$$

This completes the proof.

\[\square \]

Remark 1.

1) Let us take $\forall \lambda > 0, \forall m > 0$ in Theorem 1, then we can get a series of ultimate bound sets and positively invariant sets of the generalized Lorenz system (2) according to Theorem 1.

2) Let us take $m = 1$ in Theorem 1, then we can get that

$$\Omega_{\lambda,1} = \left\{ (x, y, z) | \lambda x^2 + y^2 + (z - b_\alpha - \lambda a_\alpha)^2 \leq r^2, \forall \lambda > 0 \right\}$$
is an ultimate bound set and positively invariant set of generalized Lorenz system (2), where

\[
p^2 = \begin{cases}
\frac{(d_α)^2(αa_α+b_α)^2}{4αa_α}, & \frac{2}{5} \leq α \leq \frac{52}{175} \\
\frac{(d_α)^2(αa_α+b_α)^2}{4αa_α}, & \frac{2}{175} \leq α < \frac{52}{175} \\
(αa_α+b_α)^2, & \frac{52}{175} < α < -\frac{2}{175}.
\end{cases}
\]

Although in [22], the authors construct the generalized Lyapunov-like function \(V(x, y, z) = λx^2 + y^2 + (z - b_α - αa_α)^2 \), \(∀λ > 0 \) and prove that there exists the ultimate bound set and positively invariant set for the generalized Lorenz system (2) for \(0 ≤ α < \frac{1}{29} \). In particular, let us take \(m = 1 \) in Theorem 1, then we can get the conclusion that obtained in [22]. The results presented in Theorem 1 contain the existing results in [22] as special cases.

iii) Let us take \(m = 1, λ = 1 \) in Theorem 1, then we can get that

\[
Ω_{1,1} = \left\{ (x, y, z)| x^2 + y^2 + (z - b_α - αa_α)^2 \leq l^2 \right\}
\]

is an ultimate bound set and positively invariant set of generalized Lorenz system (2), where

\[
l^2 = \begin{cases}
\frac{(d_α)^2(αa_α+b_α)^2}{4αa_α}, & \frac{2}{5} \leq α \leq \frac{52}{175} \\
\frac{(d_α)^2(αa_α+b_α)^2}{4αa_α}, & \frac{2}{175} \leq α < \frac{52}{175} \\
(αa_α+b_α)^2, & \frac{52}{175} < α < -\frac{2}{175}.
\end{cases}
\]

Though Theorem 1 gives the ultimate bound set and positively invariant set of the generalized Lorenz system (2), it does not gives the global exponential attractive set of the generalized Lorenz system (2). The global exponential attractive set of the generalized Lorenz system (2) is described by the following Theorem 2.

Theorem 2. Suppose \(∀λ > 0, m > 0, α ∈ \left(-\frac{2}{5}, \frac{1}{29} \right) \), and let

\[
V_{λ,m}(X) = V_{λ,m}(x, y, z) = λx^2 + my^2 + m \left[z - \left(\frac{b_α + \frac{λ}{m}a_α}{m} \right) \right]^2,
\]

\[
L_{λ,m} = \frac{d_α(λa_α + mb_α)}{mθ},
\]

\[θ = \min \{a_α, c_α, d_α\} > 0, X(t) = (x(t), y(t), z(t)), X(t₀) = (x(t₀), y(t₀), z(t₀)).\]

Then the estimation

\[
V_{λ,m}(X(t)) - L_{λ,m} ≤ [V_{λ,m}(X(t₀)) - L_{λ,m}] e^{-θ(t-t₀)}
\]

holds for system (2), and thus the set

\[
Ψ_{λ,m} = \left\{ X|V_{λ,m}(X) ≤ L_{λ,m} \right\} = \left\{ (x, y, z)| λx^2 + my^2 + m \left[z - \left(\frac{b_α + \frac{λ}{m}a_α}{m} \right) \right]^2 ≤ L_{λ,m}, ∀λ > 0, ∀m > 0 \right\},
\]

is a global exponential attractive set of the generalized Lorenz system (2).

Proof. When \(-\frac{2}{5} < α < \frac{1}{29} \), we can get

\[a_α > 0, b_α > 0, c_α > 0, d_α > 0.\]

Define the following generalized positively definite and radially unbounded Lyapunov-like function

\[
V_{λ,m}(X) = V_{λ,m}(x, y, z) = λx^2 + my^2 + m \left[z - \left(\frac{b_α + \frac{λ}{m}a_α}{m} \right) \right]^2, ∀λ > 0, ∀m > 0,
\]
Differentiating the above Lyapunov-like function $V_{\lambda,m}(X)$ with respect to time t along the trajectory of system (2) yields

\[
\frac{dV_{\lambda,m}(X)}{dt}
= 2\lambda x \frac{dx}{dt} + 2my \frac{dy}{dt} + 2m(z - \frac{\lambda}{m}a - b) \frac{dz}{dt},
\]

\[
= 2\lambda x (a, y - a, x) + 2my (b, x - xz - c, y) + 2m (z - \frac{\lambda}{m}a - b) (xy - d, z),
\]

\[
= -2\lambda a, x^2 - 2mc, y^2 - 2md, z^2 + 2d, (\lambda a, + mb, z),
\]

\[
\leq -\lambda a, x^2 - mc, y^2 - md, z^2 + 2d, (\lambda a, + mb, z),
\]

\[
\leq -2 \lambda a, x^2 - mc, y^2 - md, z^2 + \frac{d, (\lambda a, + mb, z)}{m},
\]

\[
\leq -\theta V_{\lambda,m}(X) + \frac{d, (\lambda a, + mb, z)}{m},
\]

\[
= -\theta (V_{\lambda,m}(X) - L_{\lambda,m}).
\]

That is equivalent to say that

\[
\frac{dV_{\lambda,m}(X)}{dt}
\leq -\theta (V_{\lambda,m}(X) - L_{\lambda,m}).
\]

Thus, we have

\[
[
V_{\lambda,m}(X(t)) - L_{\lambda,m}]
\leq [V_{\lambda,m}(X(t_0)) - L_{\lambda,m}] e^{-\theta(t-t_0)}.
\]

and

\[
\lim_{t \to +\infty} V_{\lambda,m}(X(t)) \leq L_{\lambda,m},
\]

which clearly shows that

\[
\Psi_{\lambda,m} = \left\{ X | \lim_{t \to +\infty} V_{\lambda,m}(X(t)) \leq L_{\lambda,m} \right\},
\]

\[
= \left\{ (x, y, z) | \lambda x^2 + my^2 + m(z - \frac{\lambda}{m}a + b) \leq L_{\lambda,m}, \forall \lambda > 0, \forall m > 0 \right\},
\]

is a global exponential attractive set of system (2).

This completes the proof.

Let us introduce Lemma 2 which will be used in the following parts of this paper.

Lemma 2. Suppose that $\alpha \in [\frac{1}{29}, \frac{14}{173}]$. Then we have the following inequality for system (2)

\[
0 \leq -2c, < d, < 2a,.
\]

Proof. When $\alpha \geq \frac{1}{29}$, we can get

\[
c, = 1 - 29, \leq 0.
\]

When $\alpha < \frac{14}{173}$, we can get

\[
d, + 2c, = \frac{\alpha + 8}{3} + 2 (1 - 29,) = \frac{1}{3} (14 - 173,) > 0.
\]

When $\alpha > -\frac{52}{173}$, we can get

\[
2a, - d, = 2 (10 + 25,) - \frac{\alpha + 8}{3} = \frac{1}{3} (149, + 52) > 0.
\]

Therefore, to summarize what has been mentioned above, we can get Lemma 2. This completes the proof.

Lemma 3. Suppose that $\alpha \in [\frac{1}{29}, \frac{14}{173}]$. Then we can get the following inequality for system (2)

\[
\lim_{t \to +\infty} [z^2 - 2a, z] \leq 0.
\]

Proof. Let us define

\[V(x, z) = x^2 - 2a_\alpha z. \]

Then, its derivative along the orbits of system (2) is

\[\frac{dV(x, z)}{dt} = 2x \frac{dx}{dt} - 2a_\alpha \frac{dz}{dt} = 2a_\alpha x (y - x) - 2a_\alpha (xy - d_\alpha z) = -2a_\alpha x^2 + 2a_\alpha d_\alpha z, \]

and,

\[\frac{dV}{dt} + d_\alpha V = (d_\alpha - 2a_\alpha) x^2. \]

When \(\alpha \in \left[\frac{1}{29}, \frac{14}{173} \right) \), we have the following inequality according to Lemma 2

\[0 \leq -2c_\alpha < d_\alpha < 2a_\alpha. \]

Thus, we have

\[\frac{dV}{dt} + d_\alpha V = (d_\alpha - 2a_\alpha) x^2 \leq 0. \]

For any initial value \(V(t_0) = V_0 \), we have

\[V(t) \leq V_0 e^{-d_\alpha (t-t_0)} \rightarrow 0 (t \rightarrow +\infty). \]

Thus,

\[\lim_{t \rightarrow +\infty} V(t) = \lim_{t \rightarrow +\infty} [x^2 - 2a_\alpha z] \leq 0. \]

This completes the proof. \(\square \)

Remark 2: The method to prove the inequality in Lemma 3 is using the method in [12]. As early as in 1987, G. A. Leonov et al. have given the method to prove this kind of inequalities for the Lorenz system in the excellent paper [12].

Lemma 4. Suppose \(\alpha \in \left[\frac{1}{29}, \frac{14}{173} \right) \), and let

\[\eta = \frac{d_\alpha - c_\alpha}{3a_\alpha}, \varepsilon = \frac{d_\alpha + 2c_\alpha}{6} > 0, \]

\[c_1 = c_\alpha + a_\alpha \eta, a_1 = a_\alpha (1 - \eta), c_2 = b_\alpha - c_\alpha \eta + a_\alpha \eta (1 - \eta). \]

Then we can obtain

\[0 < \eta < 1, c_2 > 0, 0 < \varepsilon < \min \{d_\alpha - 2a_\alpha \eta, a_1\}, \varepsilon \leq c_1. \]

Proof. When \(\alpha \in \left[\frac{1}{29}, \frac{14}{173} \right) \), we have the following inequality according to Lemma 2

\[0 \leq -2c_\alpha < d_\alpha < 2a_\alpha. \]

So, we have

\[0 < \eta = \frac{d_\alpha - c_\alpha}{3a_\alpha} < \frac{2a_\alpha + a_\alpha}{3a_\alpha} = 1. \]

\[d_\alpha - 2a_\alpha \eta - \varepsilon = d_\alpha - 2a_\alpha \frac{d_\alpha - c_\alpha}{3a_\alpha} - \frac{d_\alpha + 2c_\alpha}{6} = \frac{d_\alpha + 2c_\alpha}{6} > 0. \]

\[a_1 - \varepsilon = a_\alpha (1 - \eta) - \frac{d_\alpha + 2c_\alpha}{6} = \frac{3a_\alpha - 2d_\alpha - c_\alpha}{3} = \frac{1}{9} (310\alpha + 71) > 0. \]

\[c_1 - \varepsilon = c_\alpha + a_\alpha \eta - \frac{d_\alpha + 2c_\alpha}{6} = c_\alpha + a_\alpha \frac{d_\alpha - c_\alpha}{3a_\alpha} - \frac{d_\alpha + 2c_\alpha}{6} \geq 0. \]

And we can also get

\[-c_\alpha \geq 0, 0 < \eta < 1, b_\alpha = 28 - 35\alpha > 0. \]
Therefore, we can get
\[c_2 = b_\alpha - c_\alpha \eta + a_\alpha \eta (1 - \eta) > 0. \]
This completes the proof. \qed

For simplicity, let us simplify model (2) with the following reversible linear transform: \(x = x, y_1 = y - \eta x, z = z. \) Then model (2) takes the form
\[
\begin{align*}
\frac{dx}{dt} &= -a_1 x + a_\alpha y_1, \\
\frac{dy_1}{dt} &= -c_1 y_1 + c_2 x - xz, \\
\frac{dz}{dt} &= -d_\alpha z + xy_1 + \eta x^2.
\end{align*}
\] (13)

where
\[\eta = \frac{d_\alpha - c_\alpha}{3a_\alpha}, a_1 = a_\alpha (1 - \eta), c_1 = c_\alpha + a_\alpha \eta, c_2 = b_\alpha - c_\alpha \eta + a_\alpha \eta (1 - \eta) > 0. \]

The global attractive sets of system (2) for parameter \(\alpha \in \left[\frac{1}{29}, \frac{14}{173} \right] \) is described by the following Theorem 3 according to the above lemmas.

Theorem 3. Suppose \(\forall \lambda > 0, \forall m > 0, \alpha \in \left[\frac{1}{29}, \frac{14}{173} \right], \) and let
\[c_2 = b_\alpha - c_\alpha \eta + a_\alpha \eta (1 - \eta) > 0, \eta = \frac{d_\alpha - c_\alpha}{3a_\alpha}, \tau_{\lambda,m} = \frac{\lambda}{m}a_\alpha + c_2 > 0, \]
\[\varepsilon = \frac{d_\alpha + 2c_\alpha}{6} > 0, M_{\lambda,m} = \left(1 + \frac{4(d_\alpha - c_\alpha)^2}{(d_\alpha + 2c_\alpha)^2} \right) m\tau^2_{\lambda,m} > 0, \]
\[V_{\lambda,m} (X) = V_{\lambda,m} (x, y_1, z) = \frac{1}{2} \left[\lambda x^2 + m y_1^2 + m(z - \tau_{\lambda,m})^2 \right], \forall \lambda > 0, \forall m > 0. \]

Then the estimation
\[\left[V_{\lambda,m} (X (t)) - \frac{M_{\lambda,m}}{2} \right] \leq \left[V_{\lambda,m} (X_0) - \frac{M_{\lambda,m}}{2} \right] e^{-2\varepsilon(t-t_0)}, \]
holds for system (13), and thus
\[\Phi_{\lambda,m} = \left\{ (x, y_1, z) \mid \lambda x^2 + y_1^2 + (z - \tau_{\lambda,m})^2 \leq M_{\lambda,m} \right\}, \]

is a global exponential attractive set of system (13).

Thus,
\[\Delta_{\lambda,m} \]
\[= \left\{ (x, y, z) \mid 2\lambda x^2 + m \left(y - \frac{d_\alpha - c_\alpha}{3a_\alpha} x \right)^2 + m(z - \tau_{\lambda,m})^2 \leq M_{\lambda,m}, \forall \lambda > 0, m > 0 \right\} \]
is a global exponential attractive set of system (2).

Proof. Let us define
\[f(z) = -m (d_\alpha - 2a_\alpha \eta - \varepsilon) z^2 + m\tau_{\lambda,m} (d_\alpha - 2\varepsilon) z + m\varepsilon \tau^2_{\lambda,m}, \] (14)
where
\[\varepsilon = \frac{d_\alpha + 2c_\alpha}{6} > 0, \eta = \frac{d_\alpha - c_\alpha}{3a_\alpha} > 0, \tau_{\lambda,m} = \frac{\lambda}{m}a_\alpha + c_2; \]
\[\forall \lambda > 0, \forall m > 0, c_2 = b_\alpha - c_\alpha \eta + a_\alpha \eta (1 - \eta). \]

According to Lemma 4, we can get
\[d_\alpha - 2a_\alpha \eta - \varepsilon = d_\alpha - 2a_\alpha \frac{d_\alpha - c_\alpha}{3a_\alpha} - \frac{d_\alpha + 2c_\alpha}{6} = \frac{d_\alpha + 2c_\alpha}{6} > 0. \]
Therefore, we can get
\[
\max_{z \in \mathbb{R}} f(z) = \frac{(d_\alpha + 2c_\alpha)^2 + 4(d_\alpha - c_\alpha)^2}{6(d_\alpha + 2c_\alpha)} m \tau_{\lambda,m}^2 > 0.
\]
Define the following generalized positively definite and radially unbounded Lyapunov-like function
\[
V_{\lambda,m}(X) = V_{\lambda,m}(x, y_1, z) = \frac{1}{2} \left[\lambda x^2 + my_1^2 + m(z - \tau_{\lambda,m})^2 \right], \forall \lambda > 0, \forall m > 0.
\]
According to Lemma 3 and Lemma 4, we have
\[
\lim_{t \to +\infty} [x^2 - 2a_\alpha z] \leq 0, 0 < \eta < 1, c_2 > 0, 0 < \varepsilon < \min \{a_\alpha, 2a_\alpha \eta, a_1\}, \varepsilon \leq c_1.
\]
Since \(\lim_{t \to +\infty} [x^2 - 2a_\alpha z] \leq 0 \), so there exists a positive constant \(T_0 > 0 \), when \(t > T_0 \), combining with Lemma 3 and Lemma 4 we have
\[
\frac{dV_{\lambda,m}(X)}{dt} \bigg|_{(13)} = \lambda x \frac{dx}{dt} + my_1 \frac{dy_1}{dt} + m(z - \tau_{\lambda,m}) \frac{dz}{dt},
\]
\[
= \lambda x(-a_1 x + a_1 y_1) + my_1(-c_1 y_1 + c_2 x - x z)
\]
\[
+ m(z - \tau_{\lambda,m})(-d_\alpha x + xy_1 + \eta x^2).
\]
Thus, we have
\[
\left[V_{\lambda,m}(X(t)) - \frac{M_{\lambda,m}}{2} \right] \leq \left[V_{\lambda,m}(X_0) - \frac{M_{\lambda,m}}{2} \right] e^{-2\varepsilon(t-t_0)}.
\]
By the definition, taking upper limit on both sides of the above inequality (15) as \(t \to +\infty \) results in
\[
\lim_{t \to +\infty} V_{\lambda,m}(X(t)) \leq \frac{M_{\lambda,m}}{2}.
\]
Namely, the set
\[
\Phi_{\lambda,m} = \left\{ (x, y_1, z) | \lambda x^2 + my_1^2 + m(z - \tau_{\lambda,m})^2 \leq M_{\lambda,m}, \forall \lambda > 0, m > 0 \right\},
\]
is a global exponential attractive set of system (13).
Thus, \[
\Delta_{\lambda,m} = \left\{ (x, y, z) \mid \lambda x^2 + m \left(y - \frac{d_\alpha - c_\alpha}{3a_\alpha} x \right)^2 + m(z - \tau_{\lambda,m})^2 \leq M_{\lambda,m}, \forall \lambda > 0, m > 0 \right\}
\]
is a global exponential attractive set of the generalized Lorenz system (2).

This completes the proof. \(\square\)

Remark 3. 1) Let us take \(\forall \lambda > 0, \forall m > 0\), then we can get a series of global exponential attractive sets of system (2) according to Theorem 3.

2) Let us take \(m = 1\), then we can get

\[
\Delta_{\lambda,1} = \left\{ (x, y, z) \mid \lambda x^2 + m \left(y - \frac{d_\alpha - c_\alpha}{3a_\alpha} x \right)^2 + m(z - \tau_{\lambda,1})^2 \leq M_{\lambda,1}, \forall \lambda > 0 \right\}
\]
is a global exponential attractive set of the generalized Lorenz system (2), where

\[
\tau_{\lambda,1} = \lambda a_\alpha + c_2, c_2 = b_\alpha - c_\alpha\eta + a_\alpha\eta (1 - \eta), \eta = \frac{d_\alpha - c_\alpha}{3a_\alpha},
\]

\[
M_{\lambda,1} = \left(1 + \frac{4(d_\alpha - c_\alpha)^2}{(d_\alpha + 2c_\alpha)^2} \right) \tau_{\lambda,1}^2 > 0.
\]

3) Let us take \(\lambda = 1\), then we can get

\[
\Delta_{1,m} = \left\{ (x, y, z) \mid x^2 + m \left(y - \frac{d_\alpha - c_\alpha}{3a_\alpha} x \right)^2 + m(z - \tau_{1,m})^2 \leq M_{1,m}, \forall m > 0 \right\}
\]
is a global exponential attractive set of the generalized Lorenz system (2), where

\[
\tau_{1,m} = \frac{a_\alpha}{m} + c_2, c_2 = b_\alpha - c_\alpha\eta + a_\alpha\eta (1 - \eta), \eta = \frac{d_\alpha - c_\alpha}{3a_\alpha},
\]

\[
M_{1,m} = \left(1 + \frac{4(d_\alpha - c_\alpha)^2}{(d_\alpha + 2c_\alpha)^2} \right) m\tau_{1,m}^2 > 0.
\]

4) Let us take \(\lambda = 1, m = 1\), then we can get

\[
\Delta_{1,1} = \left\{ (x, y, z) \mid x^2 + m \left(y - \frac{d_\alpha - c_\alpha}{3a_\alpha} x \right)^2 + m(z - \tau_{1,1})^2 \leq M_{1,1} \right\}
\]
is a global exponential attractive set of the generalized Lorenz system (2), where

\[
\tau_{1,1} = a_\alpha + c_2, c_2 = b_\alpha - c_\alpha\eta + a_\alpha\eta (1 - \eta), \eta = \frac{d_\alpha - c_\alpha}{3a_\alpha},
\]

\[
M_{1,1} = \left(1 + \frac{4(d_\alpha - c_\alpha)^2}{(d_\alpha + 2c_\alpha)^2} \right) \tau_{1,1}^2 > 0.
\]

Theorem 4. Suppose that \(\alpha \in \left[\frac{1}{29}, \frac{14}{173} \right] \), \(L_0 = \left(1 + \frac{4(d_\alpha - c_\alpha)^2}{(d_\alpha + 2c_\alpha)^2} \right) (c_2)^2 > 0\), and \(c_2 = b_\alpha - c_\alpha\eta + a_\alpha\eta (1 - \eta), \eta = \frac{d_\alpha - c_\alpha}{3a_\alpha}\). Let \((x(t), y(t), z(t))\) be an arbitrary solution of system (2). Then we have the estimate

\[
\lim_{t \to +\infty} \left(y - \frac{d_\alpha - c_\alpha}{3a_\alpha} x \right)^2 + (z - c_2)^2 \leq L_0, \lim_{t \to +\infty} x^2(t) \leq \frac{3a_\alpha L_0}{(3a_\alpha - 2d_\alpha + 2c_\alpha)}.\]
Proof. Let us define
\[V_0 (X) = V_0 (y_1, z) = y_1^2 + (z - c_2)^2. \]
Similarly to Theorem 3, we can get
\[y_1^2 + (z - c_2)^2 \leq L_0, \tag{19} \]
where
\[L_0 = \left(1 + \frac{4(b_\alpha - d_\alpha)^2}{(b_\alpha + 2d_\alpha)^2} \right) \left(\frac{c_2}{c_2} \right)^2, c_2 = b_\alpha - c_\alpha \eta + a_\alpha \eta (1 - \eta), \eta = \frac{d_\alpha - c_\alpha}{3a_\alpha}. \]
From (19), we can get
\[y_1^2 \leq L_0. \]
Let us define
\[V (x) = \frac{1}{2} x^2, \]
Differentiating the above Lyapunov function \(V (x) \) with respect time \(t \) along the trajectory of system (13) yields
\[
\left. \frac{dV(x)}{dt} \right|_{(13)} = x \frac{dx}{dt},
\]
\[
\leq -a_1 x^2 + a_\alpha |x| |y_1|,
\]
\[
\leq -a_1 x^2 + \frac{a_\alpha}{2} x^2 + \frac{a_\alpha}{2} y_1^2,
\]
\[
\leq -\left(a_\alpha - \frac{d_\alpha - c_\alpha}{3a_\alpha} \right) x^2 + \frac{a_\alpha}{2} x^2 + \frac{a_\alpha L_0}{2},
\]
\[
\leq -\frac{3a_\alpha - 2d_\alpha + 2c_\alpha}{3} \left(V (x) - \frac{3a_\alpha L_0}{2(3a_\alpha - 2d_\alpha + 2c_\alpha)} \right). \]
Thus, we have
\[
\left[V (X (t)) \right] \leq \left[V (X_0) \right] - \frac{3a_\alpha L_0}{2(3a_\alpha - 2d_\alpha + 2c_\alpha)} e^{-\frac{(3a_\alpha - 2d_\alpha + 2c_\alpha)(t - t_0)}{3}}. \tag{20}
\]
For any \(\alpha \in \left[\frac{1}{29}, \frac{14}{173} \right] \), we can get
\[3a_\alpha - 2d_\alpha + 2c_\alpha = \frac{49\alpha + 80}{3} > 0. \]
By the definition, taking upper limit on both sides of the above inequality (20) as \(t \to +\infty \) results in
\[
\lim_{t \to +\infty} V (X (t)) \leq \frac{3a_\alpha L_0}{2(3a_\alpha - 2d_\alpha + 2c_\alpha)}. \]
That is equivalent to say,
\[
\lim_{t \to +\infty} x^2 (t) \leq \frac{3a_\alpha L_0}{(3a_\alpha - 2d_\alpha + 2c_\alpha)}. \]
This completes the proof. \qed
3. Conclusions. In this paper, we have extended the method developed in [22], [24], [26], [28]-[30] to study the globally exponentially attractive set and positive invariant set for a more general Lorenz family. It has been shown that such a system indeed has globally exponentially attractive set and positive invariant set, and contains all the existing relative results as special cases. Exponential estimation is explicitly derived. The approach presented in this paper may be applied to study other dynamical systems in [13], [17]. The results that obtained in this paper offer theoretical support to study the Hausdorff dimension of attractors for this generalized Lorenz system. These theoretical results are also important and useful in chaos control, chaos synchronization.

Acknowledgments. Fuchen Zhang is supported by National Natural Science Foundation of China (Grant Nos: 11501064, 11426047), the Basic and Advanced Research Project of CQCSTC (Grant No: cstc2014cjcyA00040), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No: KJ1500605), the Research Fund of Chongqing Technology and Business University (Grant No: 2014-56-11), China Postdoctoral Science Foundation (Grant No. 2016M590850) and the Program for University Innovation Team of Chongqing (Grant No: CXTDX201601026). Xiaofeng Liao is supported by the National Key Research and Development Program of China (Grant No: 2016YFB0800601), in part by the National Nature Science Foundation of China (Grant No: 61472331). Chunlai Mu is partially supported by NSFC (Grant Nos. 11371384 and 11571062) and the Basic and Advanced Research Project of CQC-STC (Grant No. cstc2015jc yjBX0007). The authors wish to thank the editors and reviewers for their conscientious reading of this paper and their numerous comments for improvement which were extremely useful and helpful in modifying the paper.

REFERENCES

[1] V. Bragin, V. Vagaitsev, N. Kuznetsov and G. Leonov, Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits. J. Comput. Syst. Sci. Int., 50 (2011), 511–543.

[2] G. Chen and J. Lu, Dynamical Analysis, Control and Synchronization of the Lorenz Systems Family, Science Press, Beijing, 2003.

[3] G. Chen and T. Ueta, Yet another chaotic attractor Int. J. Bifurc. Chaos Appl. Sci. Eng., 9 (1999), 1465–1466.

[4] T. Huang, G. Chen and J. Kurths, Synchronization of chaotic systems with time-varying coupling delays. Discrete Continuous Dyn. Syst. Ser. B., 16 (2011), 1071–1082.

[5] N. Kuznetsov, T. Mokaev and P. Vasilyev, Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor. Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1027–1034.

[6] E. Lorenz, Deterministic non-periods flows, J. Atmos. Sci., 20 (1963), 130–141.

[7] G. Leonov, Bounds for attractors and the existence of homoclinic orbits in the Lorenz system. J. Appl. Math. Mech., 65 (2001), 19–32.

[8] G. Leonov, General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu-Morioka, Lu and Chen systems. Phys. Lett. A, 376 (2012), 3045–3050.

[9] G. Leonov, Existence criterion of homoclinic trajectories in the Glukhovsky-Dolzhansky system. Phys. Lett. A, 379 (2015), 524–528.

[10] G. Leonov, The Tricomi problem for the Shimizu-Morioka dynamical system. Dokl. Math., 86 (2012), 850–853.

[11] G. Leonov and V. Boichenko, Lyapunov’s direct method in the estimation of the Hausdorff dimension of attractors. Acta Appl. Math., 26 (1992), 1–60.

[12] G. Leonov, A. Bunin and N. Koksch, Attractor localization of the Lorenz system. Z. Angew. Math. Mech., 67 (1987), 649–656.
[13] J. Lü and G. Chen, A new chaotic attractor coined, Int. J. Bifurc. Chaos Appl. Sci. Eng., 12 (2002), 659–661.

[14] J. Lü, G. Chen, D. Cheng and S. Celikovsky, Bridge the gap between the Lorenz system and the Chen system, Int. J. Bifurc. Chaos Appl. Sci. Eng., 12 (2002), 2917–2926.

[15] X. Liao, Y. Fu and S. Xie, On the new results of global attractive set and positive invariant set of the Lorenz chaotic system and the applications to chaos control and synchronization, Science in China Series F: Information Sciences, 48 (2005), 304–321.

[16] X. Liao, Y. Fu, S. Xi and P. Yu, Globally exponentially attractive sets of the family of Lorenz systems, Science in China Series F: Information Sciences, 51 (2008), 283–292.

[17] G. Leonov and N. Kuznetsov, On differences and similarities in the analysis of Lorenz, Chen and Lu systems, Appl. Math. Comput., 256 (2015), 334–343.

[18] G. Leonov and N. Kuznetsov, Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits, Int. J. Bifurc. Chaos Appl. Sci. Eng., 23 (2013), 1330002, 69pp.

[19] G. Leonov, N. Kuznetsov, M. Kiseleva, E. Solovyeva and A. Zaretskiy, Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor, Nonlinear Dyn., 77 (2014), 277–288.

[20] G. Leonov, N. Kuznetsov and V. Vagaitsev, Localization of hidden Chua’s attractors, Phys. Lett. A, 375 (2011), 2230–2233.

[21] G. Leonov, N. Kuznetsov and V. Vagaitsev, Hidden attractor in smooth Chua systems, Phys. D., 241 (2012), 1482–1486.

[22] D. Li, J. Lu, X. Wu and G. Chen, Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system, J. Math. Anal. Appl., 323 (2006), 844–853.

[23] X. Liao, P. Yu, S. Xie and Y. Fu, Study on the global property of the smooth Chua’s system, Int. J. Bifurc. Chaos Appl. Sci. Eng., 16 (2006), 2815–2841.

[24] A. Pogromsky, G. Santoboni and H. Nijmeijer, An ultimate bound on the trajectories of the Lorenz system and its applications, Nonlinearity, 16 (2003), 1597–1605.

[25] P. Yu and X. Liao, Globally attractive and positive invariant set of the Lorenz system, Int. J. Bifurc. Chaos Appl. Sci. Eng., 16 (2006), 757–764.

[26] P. Yu, X. Liao, S. Xie and Y. Fu, A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2886–2896.

[27] F. Zhang, C. Mu and X. Li, On the boundedness of some solutions of the Lü system, Int. J. Bifurc. Chaos Appl. Sci. Eng., 22 (2012), 1250015, 5pp.

[28] F. Zhang, C. Mu, P. Zheng, D. Lin and G. Zhang, The dynamical analysis of a new chaotic system and simulation, Math. Methods Appl. Sci., 37 (2014), 1838–1846.

[29] F. Zhang and G. Zhang, Boundedness solutions of the complex Lorenz chaotic system, Appl. Math. Comput., 243 (2014), 12–23.

[30] F. Zhang and G. Zhang, Further results on ultimate bound on the trajectories of the Lorenz system, Qual. Theory Dyn. Syst., 15 (2016), 221–235.

Received September 2016; revised June 2017.

E-mail address: zhanguichen1983@163.com
E-mail address: xuekectbu123@163.com
E-mail address: 315683955@qq.com
E-mail address: bihaihongyun@163.com
E-mail address: candyman2003@aliyun.com
E-mail address: zhouping@cqupt.edu.cn