Semiempirical Quantum Chemistry Model for the Lanthanides: RM1 (Recife Model 1) Parameters for Dysprosium, Holmium and Erbium

Manoel A. M. Filho¹, José Diogo L. Dutra¹, Gerd B. Rocha², Alfredo M. Simas³, Ricardo O. Freire¹*

¹ Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil; ² Departamento de Química, CCEN, Universidade Federal da Paraíba, João Pessoa, PB, Brazil; ³ Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil

Abstract

Complexes of dysprosium, holmium, and erbium find many applications as single-molecule magnets, as contrast agents for magnetic resonance imaging, as anti-cancer agents, in optical telecommunications, etc. Therefore, the development of tools that can be proven helpful to complex design is presently an active area of research. In this article, we advance a major improvement to the semiempirical description of lanthanide complexes: the Recife Model 1, RM1, model for the lanthanides, parameterized for the trications of Dy, Ho, and Er. By representing such lanthanide in the RM1 calculation as a three-electron atom with a set of 5 d, 6 s, and 6 p semiempirical orbitals, the accuracy of the previous sparkle models, mainly concentrated on lanthanide-carbon and lanthanide-nitrogen distances, is extended to other types of bonds in the trications' coordination polyhedra, such as lanthanide-carbon, lanthanide-chlorine, etc. This is even more important as, for example, lanthanide-carbon atom distances in the coordination polyhedra of the complexes comprise about 30% of all distances for all complexes of Dy, Ho, and Er considered. Our results indicate that the average unsigned mean error for the lanthanide-carbon distances dropped from an average of 0.30 Å, for the sparkle models, to 0.04 Å for the RM1 model for the lanthanides; for a total of 509 such distances for the set of all Dy, Ho, and Er complexes considered. A similar behavior took place for the other distances as well, such as lanthanide-chlorine, lanthanide-bromine, lanthanide, phosphorus and lanthanide-sulfur. Thus, the RM1 model for the lanthanides, being advanced in this article, broadens the range of application of semiempirical models to lanthanide complexes by including comprehensively many other types of bonds not adequately described by the previous models.

Introduction

Lanthanide complexes, as is well known, have a wide range of high technology applications. Of particular importance is the discovery that, due to their slow magnetization relaxation, lanthanide mononuclear complexes may function as single-molecule magnets [1,2], the ultimate size limit for spin-based devices. Dysprosium complexes, in particular, will be very important in the development of magnetic materials because of recent results leading to the highest relaxation energy barriers for multinuclear clusters [3,4], the highest temperature at which hysteresis has been observed for any single complex [5], and a record magnetic blocking temperature of 8.3 K at a sweep rate of 0.08 Ts-1 [6]. Future research, for example, might be directed towards the design of dysprosium complexes that may operate as single-molecule magnets capable of preserving their magnetization at higher and more practical temperatures [6]. Dysprosium complexes are therefore promising for optical storage and memory.

Not only that, both dysprosium and holmium complexes can also effectively function in magnetic resonance imaging, MRI, as negative contrast agents at high magnetic fields, producing darker images, and as agents for susceptibility-induced enhancement at low magnetic fields [7]. Indeed, they are complementary to gadolinium complexes, which act as positive contrast agents, which brighten the image. Indeed, through the simultaneous applications of gadolinium and dysprosium based contrast agents to the MRI diagnosis of conditions such as ischemic heart disease, unprecedented details can now be revealed [8,9]. Future efforts will likely be intensified towards the design of such MRI contrast agents for the imaging of cellular molecular events involved in normal and pathological processes, including site specific macromolecular and particulate delivery systems [7].

Holmium is also employed in cancer therapeutics due to the characteristics of its ¹⁶⁶Ho isotope and of its complexes, like ¹⁶⁶Ho-DOTMP which has been used in combination with chemotherapy in the treatment of myeloma because it concentrates in metastases of the skeleton and irradiates bone marrow [10].

Erbium (III) luminesces at 1.55 µm, essentially at the center of the third telecommunication window at 1.540 nm. Hence, erbium has been used in long-distance optical transmissions, power amplifiers, repeaters, etc. However, inorganic materials doped
with erbium, display a very narrow full width at half maximum [11]. In order to increase the band width, erbium complexes have been used in order to both protect the erbium ion from vibrational
coupling, at the same time enhancing the absorption of light
through the so-called antenna effect. Indeed, erbium complexes
have been prepared that exhibit a much broader full width at half
maximum of 68 nm [12], a significant broadening when
compared to erbium implanted silica which has a typical value
of 11 nm for its most intense peak.

Thus, the design of lanthanide complexes towards enhancement
of the property of interest, while seeking to avoid eventual side
effects to the health of the subject (where applicable) is an active
area of research, which may largely benefit from quantum
chemical tools that attempt to predict several of the physical,
chemical and even pharmacological [13] properties of the
conjectural new structures being considered; structures which
might be sketched by assembling around the lanthanide ion,
ligands, selected from a library of ligands in a combinatorial
manner. And the most important information, from which

essentially all quantum chemical property predictions derive, is
an accurate geometry of the molecular structure of the complex.

Predictions of geometries of lanthanide complexes from ab initio
calculations are not so easy due not only to significant relativistic
effects, a consequence of their high atomic numbers, but also to
the complex manifold of microstates due, not only to a partially
filled f-shell, but also from possibly partially filled 5 d 6 s and 6 p
shells [14]. Therefore, full geometry optimizations from such first
principles calculations are essentially unfeasible for the technologically
useful complexes, which usually exhibit sizes of the order of
100 atoms or more. As a consequence, effective core potentials
arise as a practical and very efficient manner of circumventing the
complexity, while retaining important characteristics of ab initio
calculations. Of these, the most widely used are the relativistic
pseudopotentials of Dolg [15,16] which represent an excellent
compromise between accuracy and usage of computational
resources, mainly computing time. So far, the most thorough
study of the geometry prediction accuracy of these relativistic
potentials has been carried out by our research group in 2006
when full geometry optimizations were carried out on 52 different
lanthanide complexes, including complexes of dysprosium (III),
holmium (III) and erbium (III). [17] The counterintuitive results
obtained indicated that the best combination of method with basis
set when using the MVB pseudopotential was RHF/STO-3G
when the intent of the calculation was to predict the geometry of
the coordination polyhedron – very important for any subsequent
ligand field application. Moreover, either increasing the basis set,
or adding the quality of the obtained coordination polyhedron via RHF/
STO-3G was very good, that could not be said of the geometry of the
attached organic ligands.

In 1994, we introduced the Sparkle Model for the calculation of
lanthanide complexes [18,19], a semiempirical model within the
framework of the AM1 semiempirical model [20], which replaced
the lanthanide ion by a 4+e charge, with the corresponding
Coulomb field superimposed to a repulsive potential of the form
exp(−r), with being a parameter designed to somewhat delineate
the size of the lanthanide ion, preventing the implosion of the
ligands towards it. A very useful method of obtaining absorption
spectra of lanthanide complexes was subsequently published [21].
Later [22], Gaussians were added to the core-core repulsion of
the sparkle-ligand atom to make the Sparkle Model more consistent
with the AM1. In 2005, based on a parameterization scheme
employed for europium, gadolinium and terbium [23], the first
useful and accurate semiempirical model for dysprosium was
defined [24], followed by holmium [25]; and in 2006 for erbium
[26]. These models were defined for AM1, and became later
available in MOPAC2007 [27], the overall model being called
Sparkle/AM1. So far, most applications of the Sparkle Model are
related to luminescence research [28–30]. But since different
semiempirical models possess different accuracies and eventually
develop particular niches of applications, it soon became a
necessity to extend the Sparkle Model to others, giving rise to
Sparkle/PM3 [31,32], Sparkle/PM6 [33], Sparkle/PM7 [34],
targeted to solids, and Sparkle/RM1 [35].

However, none of the above mentioned Sparkle Models
attaches semiempirical atomic orbitals to the lanthanide ion.
Nevertheless, these models are all very accurate to describe
lanthanide-ligand atom distances when the coordinating atom of
the ligands is another lanthanide, oxygen or nitrogen. By moving
towards other types of lanthanide-ligand atom bonds, however, the
accuracy of the Sparkle Models starts to wane. All that points out
to the fact that there is some degree of overlap between the orbitals

Table 1. Parameters* for the RM1 model for the trications of Dy, Ho and Er.

Parameter	Unit	Dy3⁺	Ho3⁺	Er3⁺
U₀	eV	−20.92623973	−22.05745867	−21.97839904
U₂p	eV	−7.66730575	−7.59563761	−7.60784986
U₂d	eV	−17.94081525	−18.00040589	−17.97684107
ξ₁,b	bohr	1.29527540	1.33055043	1.34775672
ξ₁,p	bohr	1.91210659	1.77955393	1.80648084
ξ₂,b	bohr	1.41339670	1.53652417	1.46618905
ξ₂,p	bohr	1.13524616	1.05957341	1.08839064
β₁	eV	−7.80670536	−5.84522644	−5.83471034
β₂	eV	1.96173362	0.00653676	−0.01897203
β₃	eV	−4.36852734	−4.31289917	−4.25067889
β₄	eV	8.30543139	8.24056943	8.25732681
G²w	eV	1.31036509	1.24543189	1.28474510
r₀	bohr	1.62505051	1.71955962	2.71713627
r²	Å	1.34825876	1.33007543	1.32010273
ξ₁,b	bohr	1.37236617	1.49038444	1.44675714
ξ₁,p	bohr	1.07407253	1.96749739	1.97388315
ξ₂,b	bohr	0.81914360	0.66302146	0.65046083
σ₁	none	1.13071544	1.09070576	1.17417665
σ₁	Å ²	7.71195583	7.57151625	7.58325164
σ₁	Å ²	1.53668519	1.49095411	1.50354881
δ₂	none	0.06845575	0.00164914	0.00864571
δ₂	Å ²	7.50653990	7.79969366	7.81378785
c₂	Å ²	3.23417102	3.25425084	3.23359665

All these parameters are as defined in the formalisms and equations of the RM1 model.

*Parameters are s, p, and d atomic orbital one-electron-one-center integrals Uᵢ, Uᵢp and Uᵢd the s, p and d Slater atomic exponents 〈ξ₁,s 〈ξ₁,p〉 and 〈ξ₂,s〉 and 〈ξ₂,p〉 the s, p and d atomic orbital one-electron-two-center resonance integral terms β₁, β₂, β₃ and β₄ the core-core repulsion term σ; the two-electron integrals Pᵢ,j,a,b the additive term r₀; the six parameters for the two Gaussian functions: height, a; inverse broadness, b; and displacement, c.

doi:10.1371/journal.pone.0006376.t001
of the lanthanide and those of the coordinating atoms – in short, there is a degree of covalence not taken into account by the Sparkle Model.

In this article, in order to considerably broaden the range of applications of semiempirical methods for lanthanide complexes, we introduce a new model with orbitals for the lanthanide trications of dysprosium, holmium, and erbium, within RM1 [36], which we call simply RM1 model for the lanthanides, a significantly more general model, not to be confused with Sparkle/RM1 [35] which does not have orbitals associated with the lanthanide ion.

Complex*	RM1	Complex*	RM1		
	UME_{Dy-L} (Å)	UME (Å)	UME_{Dy-L} (Å)	UME (Å)	
AMAQDY	0.0517	0.1503	AKUKAT	0.0216	0.1148
BAFZUE	0.0470	0.1129	BEXLIA	0.0300	0.0972
BIHLIN	0.0317	0.0979	DANCEN	0.0410	0.0953
BUVXZO1	0.0658	0.0872	DEKBEB	0.0438	0.0832
CECLIF	0.0522	0.0959	DEKBEB01	0.0370	0.0843
CECLIF10	0.0521	0.0960	DEKCAY01	0.0632	0.1068
DIBTIR	0.0313	0.0977	KJFCOW10	0.0348	0.1042
DIDBOH	0.0417	0.1567	FIGXEZ	0.0327	0.1403
FOPNAZ	0.0138	0.1471	FUXPAP01	0.1191	0.1026
FUXARR	0.0401	0.1662	HIWVEP	0.0665	0.1222
GAKYEW	0.0258	0.1273	HOYCUU	0.0942	0.0976
GINPJO	0.0455	0.0813	IMOXAJ	0.0271	0.1036
HANCEA	0.0553	0.1424	KJZOUO2	0.0487	0.1307
KITGEZ	0.0480	0.1391	KUYBIP	0.1338	0.1260
LEYHUS	0.0296	0.2200	LEZZOZ	0.0343	0.0718
MANHOY	0.0804	0.1208	MECCUT	0.0408	0.1836
PALBIN	0.0205	0.4919	NAMKDO	0.0323	0.0713
PQQDEM01	0.0328	0.0841	NAPHAN	0.0377	0.0883
SETADY	0.0883	0.2516	OHUYUM	0.0286	0.0985
TISQHI	0.0670	0.1240	RABBBEX	0.0825	0.2034
TUQTOU	0.0601	0.0940	ROCIN	0.1118	0.2276
TUQTUO10	0.0601	0.0943	TESHEF	0.0348	0.1448
VOSBOU	0.0587	0.0879	TESHOP	0.0571	0.1010
XAWVIA	0.0408	0.1087	TESJHE	0.0356	0.1150
XEOQMAH	0.0967	0.1019	TESJIL	0.0564	0.1008
XINFUD	0.1015	0.2004	USEPEO	0.0484	0.1090
YAVSOD	0.0432	0.0726	WAQZEU	0.1499	0.1742
ZAXSAS	0.0700	0.1357	WAWOJTO1	0.1152	0.1538
ZZZARG01	0.0602	0.0897	WEDHUJ	0.0282	0.1089
AGUTOL	0.0719	0.1019	XAYRIZ	0.0416	0.0874
AHANED	0.0817	0.1433			

*The complexes are identified by their unique CSD codes [37–39].

doi:10.1371/journal.pone.0086376.t002

Methods

The rationale of the RM1 model for the lanthanides starts with the following electron configuration for the lanthanide atoms: \(\{[Xe]\}^{n+}5d^16s^2 \) with \(n = 9, 10, 11 \) for Dy, Ho and Er, respectively. The semiempirical core of the atoms then becomes \(\{[Xe]\}^{n+} \). The semiempirical valence shells will now have three electrons and will be described by 5 d, 6 s and 6 p orbitals, for a total of 9 orbitals. Hence the model will work for trications only, because for dications there would be a need to parameterize another core of the form \(\{[Xe]\}^{n+} \) and assign two electrons to the valence shells, although they could still be described by another set of 5 d, 6 s, and 6 p orbitals. Since trications are by far the most common form of lanthanide ions, as before, we expect the present parameterization to be able to tackle essentially all cases relevant to technological applications.

The next step is to define the universes of complexes, one universe for each of the lanthanide ions under consideration. Accordingly, we selected from the Cambridge Crystallographic Database [37–39] all available complexes of high crystallographic quality (R <0.05), for a total of 61 of Dy(III), 40 of Ho(III), and 50 of Er(III).

We then proceeded to select sub-sets of complexes, the parameterization sets, according to some metric capable of guaranteeing that these sub-sets are representative of the universe of complexes with respect to some accuracy measure. Assuming
that any difficulties Sparkle/AM1 might be having in describing the coordination polyhedron of the complexes is a reasonable first order approximation to the eventual overall difficulty which the present model will encounter, we defined the following R_i metric for each one of the i complexes of the universe:

$$R_i = \sum_j \sum_k \frac{1}{a_{j,k}} |d_{j,k}^{CSD} - d_{j,k}^{Calc}| + \sum_j \frac{1}{\sigma_{j,k}} |\theta_{j,k}^{CSD} - \theta_{j,k}^{Calc}| \quad (1)$$

where j runs over all types of bonds, e.g. Ln-N, Ln-O, Ln-C, Ln-S, Ln-P, etc; k runs over all bonds of type j; $a_{j,k}$ is the standard deviation of all crystallographic bond lengths of type j for all complexes of the universe; $d_{j,k}^{CSD}$ is the crystallographic kth bond distance of type j for complex i; $d_{j,k}^{Calc}$ is the calculated value of the same bond; $\sigma_{j,k}$ is the standard deviation of all crystallographic bond angles of the type A-Ln-B, with A,B = O, N, C, S, Cl, and Br; $\theta_{j,k}^{CSD}$ is the crystallographic kth bond angle of complex i; and $\theta_{j,k}^{Calc}$ is its calculated counterpart. The standard deviations were calculated from the experimental data only. We also found out that there was no need to split the angles into types, as they all formed a homogenous set. The divisions of the errors by their corresponding standard deviations make sure that the summations in Eq. (1) add comparable terms. To the set of R_i values, each one associated with a different complex, we employed a hierarchical clustering analysis DIANA [40]. DIANA starts out with one large cluster containing all complexes. In the subsequent steps, the complexes that are the most dissimilar are split off into smaller clusters – a procedure which continues until each complex forms a cluster of itself. From the resulting dendogram, we chose two sets of complexes as parameterization sets: a smaller and a larger one. For Dy(III) these sets contained 13 and 26 complexes, respectively. The corresponding numbers for Ho(III) were 12 and 20, and for Er(III) 16, and 39.

The parameterization was carried out to minimize the sum of R_is for all complexes of parameterization set, with the difference that the calculated distances and angles in Eq. (1), are now the ones calculated by the model being parameterized. For the parameterization, we used a combination of Simplex and generalized simulated annealing [41] algorithms. We started with the smaller parameterization sets. Once these preliminary optimizations converged, we then expanded the parameterization set to the larger ones and repeated the process until termination. Table 1 presents the final optimized parameters.

Results and Discussion

In order to evaluate the quality of the optimized parameters, we devised two measures [23,42]. Both are based on the following formula:

$$UME_i = \frac{1}{n} \sum_{j=1}^{n} |R_i^{CSD} - R_i^{RM1}| \quad (2)$$

where UME_i stands for the unsigned mean error; i refers to a given complex; n is the number of distances taken into consideration in the given complex; the superscript CSD indicates that the distance R is an experimental crystallographic distance taken from CSD, and the superscript RM1 means that the distance was calculated from the present model. In the first measure we consider only

Table 4. Unsigned mean errors, UME_{Er-L}, and UMEs, for Method RM1, as compared to the respective experimental crystallographic values, obtained from the Cambridge Structural Database, [37–39] for each of the 59 erbium (III) complexes.

Complex	Method RM1	Complex	Method RM1		
	UME_{Er-L}	UME	UME_{Er-L}	UME	
	()	()	()	()	
ARET502	0.0563	0.0895	RIKTEK	0.0522	0.2208
AKIYEOY	0.0440	0.2700	RIKTEKO1	0.0488	0.2197
BAGBER	0.0462	0.1076	ROCOSOS	0.0782	0.2444
BEXLEW	0.0842	0.1678	ROCTOT	0.0595	0.2138
BOBWAQ	0.0421	0.1184	RUNQOG	0.0513	0.1022
BOMJUD	0.0388	0.1382	SEGABAB	0.0691	0.1681
BOWXOA	0.0450	0.1848	SOKBID	0.0280	0.0513
DEKCEC	0.0371	0.0914	TACERB01	0.0262	0.0958
DITJAJ	0.0369	0.1778	TEFEU	0.1355	0.2048
DIDCAU	0.0399	0.2601	TEPKOO	0.0297	0.0715
DUQAOY	0.0391	0.2321	TMHDERER	0.0858	0.3224
DUQIOJ	0.0310	0.1024	TUMJEOJ	0.0583	0.1227
DIYNNI	0.0260	0.1234	UFRICK	0.0622	0.0716
DOGKEP	0.0323	0.1867	VEOPOOM	0.0382	0.0617
GAKYOG	0.0266	0.1057	VOSNOG	0.0375	0.0630
GINRHE	0.0646	0.0950	VUGSUL	0.0917	0.0941
HANCER	0.0165	0.0605	VUSHEE	0.0593	0.1107
HEDVW	0.1052	0.1989	WEIVFIM	0.0466	0.0843
HENAEB	0.0283	0.1545	XAXYAX	0.0593	0.0854
KITJUP	0.0149	0.0628	XEWWOKH	0.0442	0.1163
KOZBUW	0.0144	0.0561	XEWWUR	0.0472	0.0938
LEYIII	0.0294	0.2276	XQVIVAS	0.0851	0.2268
MAGDOS	0.0449	0.1319	XQXYXIS	0.0285	0.1590
MEDGEE	0.0281	0.0853	YEGFEEV	0.0504	0.1687
NIVQUE	0.0499	0.2188	YEMSIT	0.0767	0.1338
NUVNUR	0.0838	0.2163	YIKCIIW	0.0344	0.1527
OHUZER	0.0269	0.0890	YUYFWG	0.0196	0.0988
OMATUS	0.0742	0.1597	ZADWHV	0.1281	0.2265
QIXKID	0.0742	0.2170	ZUFSAU	0.0480	0.1304
RELNIG	0.0530	0.1011			

*The complexes are identified by their unique CSD codes [37–39].

doi:10.1371/journal.pone.0086376.t004

Table 5. Means and variances for the γ distribution fits of the UME_{Lan-Ln} computed for the N complexes for each lanthanide trication.

Lanthanide	N	mean (Å)	variance (Å2)	p-value
Dy$^{3+}$	61	0.0539	0.0032	0.7986
Ho$^{3+}$	40	0.0602	0.0069	0.1292
Er$^{3+}$	58	0.0506	0.0025	0.9082

doi:10.1371/journal.pone.0086376.t005
distances between the central lanthanide ion and its directly
coordinating atom distances, which we call UME (Ln-L). In the
second measure, which we call simply UME, we consider not only
the lanthanide ion-directly coordinating atoms as before, but also
all distances between all atoms of the coordinating polyhedron,
thus indirectly taking into account the angles within the
coordination polyhedron.

Tables 2–4 present UME(Ln-L) and UMEs for the universe set
of complexes for each of the lanthanide trications: Dy(III), Ho(III),
and Er(III), identified by their respective CSD codes.

We now proceed to the statistical validation of the model [43]. If
the parameterizations captured the essence of the coordinating
bonds, then the histograms of both UME(Ln-L) and UME must
follow gamma distribution functions since, by definition, the
UMEs can only have positive values. The gamma distributions are
then adjusted to reproduce the mean and variance of the UME(Ln-
L), for each of the parameterized trications. Finally, the qualities
of the gamma distribution fits of the data were then assessed via the
one-sample nonparametric Kolmogorov-Smirnov test [44]. If the
p-value of the test is larger than 0.05, then the gamma distribution
fit is justified within a 95% interval and the use of the mean and
variance of the data, as accuracy measures, is also statistically
justified. Accordingly, Tables 5 and 6 display the mean, variance,
and p-value of the test for each of the lanthanide ions, for both the
UME(Ln-L) and UMEs. All p-values are substantially larger than
0.05 and, therefore, the means and variances in Tables 5 and 6
can justifiably be taken as accuracy measures of the models for
Dy(III), Ho(III), and Er(III).

We now proceed to analyze the performance of the models with
respect to specific types of distances for Dy(III), Ho(III), and

Table 6. Means and variances for the \(\gamma \) distribution fits for the
UMEs computed for the \(N \) complexes for each lanthanide
trication.

Lanthanide ion	N	mean (Å)	variance (Å²)	p-value
Dy\(^{3+}\)	61	0.1193	0.0169	0.1578
Ho\(^{3+}\)	40	0.1225	0.0290	0.1463
Er\(^{3+}\)	58	0.1348	0.0228	0.5425

doi:10.1371/journal.pone.0086376.t006

Figure 1. UME(Ln-L)\(^{\delta}\) obtained using the RM1 model for the lanthanides and all five versions of the Sparkle Model: Sparkle/RM1,
Sparkle/PM7, Sparkle/PM6, Sparkle/PM3 and Sparkle/AM1 for all complexes of the universe set for each of the lanthanide
trications: Dy(III), Ho(III) and Er(III). The UMEs are calculated as the absolute value of the difference between the experimental and calculated Ln-
Ln interatomic distances, summed up for all complexes, for each of the lanthanides.
doi:10.1371/journal.pone.0086376.g001

Figure 2. UME(Ln-O)\(^{\delta}\) obtained using the RM1 model for the lanthanides and all five versions of the Sparkle Model: Sparkle/RM1,
Sparkle/PM7, Sparkle/PM6, Sparkle/PM3 and Sparkle/AM1 for all complexes of the universe set for each of the lanthanide
trications: Dy(III), Ho(III) and Er(III). The UMEs are calculated as the absolute value of the difference between the experimental and calculated Ln-
O interatomic distances, summed up for all complexes, for each of the lanthanides.
doi:10.1371/journal.pone.0086376.g002
Figure 3. UME\textsubscript{(Ln-N)} obtained using the RM1 model for the lanthanides and all five versions of the Sparkle Model: Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3 and Sparkle/AM1 for all complexes of the universe set for each of the lanthanide trications: Dy(III), Ho(III) and Er(III). The UMEs are calculated as the absolute value of the difference between the experimental and calculated Ln-N interatomic distances, summed up for all complexes, for each of the lanthanides. doi:10.1371/journal.pone.0086376.g003

Table 7. RM1, Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3, and Sparkle/AM1 unsigned mean errors for different types of distances of dysprosium(III) complexes.

Type of distances	unsigned mean errors for specific types of distances (Å)						
	N	RM1	Sparkle/RM1	Sparkle/PM7	Sparkle/PM6	Sparkle/PM3	Sparkle/AM1
Dy - Dy	16	0.2118	0.2397	0.5950	0.5025	0.1784	0.2531
Dy - O	283	0.0637	0.0760	0.0692	0.1259	0.0685	0.0740
Dy - N	105	0.0594	0.0510	0.2084	0.0992	0.0741	0.0500
Dy - C	315	0.0341	0.2567	0.4616	0.2346	0.2161	
Dy - S	21	0.0824	0.5016	0.9833	0.5359	0.4996	0.5019
Dy - P	3	0.0273	0.1591	0.2319	0.3934	0.4205	0.3918
Dy - Cl	20	0.0525	0.2858	0.1757	0.2318	0.2475	0.2546
Dy - Br	5	0.0311	0.4564	1.3418	0.3986	0.4209	0.4320
Dy - L	768	0.0539	0.1408	0.2209	0.2846	0.1598	0.1527
L-L	3499	0.1336	0.2370	0.2931	0.3449	0.2433	0.2621
Dy-L, Dy-Dy and L-L	4267	0.1193	0.2197	0.2801	0.3341	0.2283	0.2424

doi:10.1371/journal.pone.0086376.t007

Table 8. RM1, Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3, and Sparkle/AM1 unsigned mean errors for specific types of distances for holmium(III) complexes.

Type of distances	unsigned mean errors for specific types of distances (Å)						
	N	RM1	Sparkle/RM1	Sparkle/PM7	Sparkle/PM6	Sparkle/PM3	Sparkle/AM1
Ho - Ho	4	0.1301	0.2083	0.2144	0.2751	0.1958	0.2747
Ho - O	219	0.0475	0.0604	0.0554	0.1021	0.0639	0.0557
Ho - N	58	0.0786	0.0696	0.1592	0.1732	0.0585	0.0469
Ho - C	98	0.0752	0.2256	0.4544	0.5380	0.2537	0.2655
Ho - Cl	28	0.0585	0.3055	0.1262	0.2777	0.2480	0.2679
Ho - L	407	0.0602	0.1198	0.1727	0.2310	0.1228	0.1217
L - L'	1748	0.1371	0.2326	0.3289	0.3462	0.2324	0.2585
Ho-L, Ho-Ho and L-L	2155	0.1225	0.2113	0.2994	0.3245	0.2117	0.2327

doi:10.1371/journal.pone.0086376.t008
Table 9. RM1, Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3, and Sparkle/AM1 unsigned mean errors for specific types of distances for erbium complexes.

Type of distances	unsigned mean errors for specific types of distances (Å)						
	N	RM1	Sparkle/RM1	Sparkle/PM7	Sparkle/PM6	Sparkle/PM3	Sparkle/AM1
Er - Er	6	0.1200	0.2639	0.5458	0.2124	0.2439	0.2626
Er - O	336	0.0509	0.0730	0.0874	0.1285	0.0657	0.0689
Er - N	77	0.0594	0.0484	0.0529	0.0846	0.0551	0.0434
Er - C	96	0.0318	0.2004	0.4280	0.5474	0.2277	0.2177
Er - S	12	0.1088	0.4802	1.2501	0.5234	0.5211	0.5212
Er - Cl	33	0.0574	0.3243	0.3406	0.2753	0.2975	0.2928
Er - Br	3	0.0463	0.4526	1.5964	0.4475	0.4146	0.4291
Er - L	563	0.0511	0.1199	0.1967	0.2136	0.1205	0.1189
L – L’	2259	0.1575	0.2197	0.2938	0.3519	0.2076	0.2371
Er-L, Er-Er and L-L’	2822	0.1363	0.2000	0.2746	0.3243	0.1904	0.2137

Figure 4. UME\(_{\text{Ln-C}}\) obtained using the RM1 model for the lanthanides and all five versions of the Sparkle Model: Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3 and Sparkle/AM1 for all complexes of the universe set for each of the lanthanide trications: Dy(III), Ho(III) and Er(III). The UMEs are calculated as the absolute value of the difference between the experimental and calculated Ln-C interatomic distances, summed up for all complexes, for each of the lanthanides.
doi:10.1371/journal.pone.0086376.g004

Figure 5. UME\(_{\text{Ln-S}}\) obtained using the RM1 model for the lanthanides and all five versions of the Sparkle Model: Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3 and Sparkle/AM1 for all complexes of the universe set for each of the lanthanide trications: Dy(III), Ho(III) and Er(III). The UMEs are calculated as the absolute value of the difference between the experimental and calculated Ln-S interatomic distances, summed up for all complexes, for each of the lanthanides. There are no Ho-S distances in the universe of Ho(III) complexes considered.
doi:10.1371/journal.pone.0086376.g005
Er(III), Tables 7–9 and Figures 1–3 show UMEs for all types of Ln-L distances present in the universe of Ln(III) complexes, together with the corresponding values from the previous sparkle models for comparison. It must be noted, though, that in the original sparkle model articles, we only included complexes with exclusively Ln-O and Ln-N bonds. But, in the present article, we are considering a much larger set of complexes with other types of bonds such as Ln-C, Ln-Cl, etc. Indeed, here we now may have complexes which have not only Ln-O and/or Ln-N bonds, but also other types of bonds, such as Ln-C bonds, all in the same compound. Of course, these were not included as test cases for the previous Sparkle models, but are here taken in full consideration.

Figure 6. UME (Ln-Cl)s obtained using the RM1 model for the lanthanides and all five versions of the Sparkle Model: Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3 and Sparkle/AM1 for all complexes of the universe set for each of the lanthanide trications: Dy(III), Ho(III) and Er(III). The UMEs are calculated as the absolute value of the difference between the experimental and calculated Ln-Cl interatomic distances, summed up for all complexes, for each of the lanthanides.

doi:10.1371/journal.pone.0086376.g006

Figure 7. UME (Ln-Br)s obtained using the RM1 model for the lanthanides and all five versions of the Sparkle Model: Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3 and Sparkle/AM1 for all complexes of the universe set for each of the lanthanide trications: Dy(III), Ho(III) and Er(III). The RM1 model for lanthanides UME(Ln-Br) bars are very small. Besides, there are no Ho-Br distances in the universe of Ho(III) complexes considered.

doi:10.1371/journal.pone.0086376.g007

Figure 8. UME (L-L)9s obtained using the RM1 model for the lanthanides and all five versions of the Sparkle Model: Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3 and Sparkle/AM1 for all complexes of the universe set for each of the lanthanide trications: Dy(III), Ho(III) and Er(III). The UMEs are calculated as the absolute value of the difference between the experimental and calculated interatomic distances between the coordinated atoms, L-L9, summed up for all complexes, for each of the lanthanides.

doi:10.1371/journal.pone.0086376.g008
And that is the reason why UMEs for the Ln-O and Ln-N types of bonds in the present article tend to be different, slightly larger, when set side by side to similar Ln-O and Ln-N UMEs of the original sparkle model articles. However, not to unnecessarily crowd the present article, in the tables, we only show numbers computed using the old models, but for the new test set.

Dy-Dy distances in dilanthanide complexes of Dy(III), Ho(III), and Er(III) lie in the range from 3.6 Å to 6.6 Å, whereas lanthanide–other ligand atom distances lie on average around 2.5 Å. That is why Ln-Ln UMEs are larger than other Ln-L UMEs. The previous Sparkle Models focused on these Ln-Ln, a also on Ln-O, and Ln-N distances only. Indeed, considering only Dy complexes (Table 7), there are 404 distances of these types, which represent 53% of all distances involving Dy(III) in its universe of complexes. The next most important types are Dy(III)-C distances, for which there are 315 of them making up 41% of the total.

By examining Table 7 and Figure 4, we can see a significant improvement in these next types of distances, with UME (Dy-C) for the RM1 model for the lanthanides being 0.03 Å, whereas the corresponding average value of the sparkle models is 0.27 Å, a value 9 times larger. That alone would justify the introduction of the RM1 model for the lanthanides because, in the case of dysprosium, almost half the extant Ln-L distances are significantly more accurately described by RM1.

The situation is less dramatic but still significant for the other trications being parameterized, when Ln-C distances represent 24% of the total for Ho(III), and 17% for Er(III). The RM1 model for the lanthanides is even further justified when we compare other types of less common distances like Ln-S, Ln-Cl, and Ln-Br, because it outperforms all previous sparkle models as shown in Tables 7–9 and Figures 5–7. In all these instances, the RM1 UMEs tend to be almost ten times smaller than the corresponding errors of all previous sparkle models.

Finally, we can have an idea of the accuracy of the angles by examining the distances between any two atoms of the coordination polyhedron, the L-L distances. For all three lanthanide trications, there was a significant reduction of these UMEs by a factor of two when compared to the corresponding UMEs for the previous sparkle models: from 0.26 Å to 0.13 Å, as can be inferred from Figure 8. This is indirect evidence that the angles are much better predicted in the RM1 model for the lanthanides.

Conclusions

The RM1 model for the lanthanides represents a significant improvement in the theoretical semiempirical modeling of lanthanide complexes, which started with the sparkle model in 1994 [18,19] which and attained maturity with the introduction of Sparkle/AM1 in 2005 [23], and was extended to Sparkle/PM3 [31,32], Sparkle/PM6 [33], to Sparkle/PM7 [34] and up to Sparkle/RM1 [35], the last two in 2013.

There is, however, a cost associated with the improvement. The RM1 model for the lanthanides adds nine more orbitals per lanthanide to the calculation, whereas all sparkle models add none. Thus, for a single SCF calculation of a complex of about 60 atoms, for example, an RM1 model for the lanthanides calculation takes about twice the computing time of a Sparkle/RM1 calculation. Such cost can become even weightier if the molecular structure contains more than one lanthanide ion, as is usually the case of metal-organic frameworks. Since the performance of both Sparkle/RM1 and RM1 model for the lanthanides is essentially equivalent for Ln-Ln, Ln-O, and Ln-N, the user may still benefit from the speed of the sparkle models if the structure of interest contains only these types of bonds, as it takes place in the majority of cases.

In conclusion, via the introduction of a set of 5 d, 6 s, and 6 p semiempirical atomic orbitals, the RM1 model for the lanthanides thus extends the Sparkle Models’ capabilities of correctly describing Ln-Ln, Ln-O, and Ln-N distances, to other types of distances, such as Ln-C, Ln-S, Ln-P, Ln-Cl, and Ln-Br, while simultaneously improving the coordinating bond angles.

Supporting Information

File S1 Instructions on how to run the RM1 model for the lanthanides in MOPAC12 [45], and MOPAC sample input and output files for complexes of Dy(III), Ho(III), and Er(III).

Acknowledgments

We gratefully acknowledge the Cambridge Crystallographic Data Centre for the Cambridge Structural Database.

Author Contributions

Conceived and designed the experiments: ROF GBR AMS. Performed the experiments: MAMF JDLD ROF. Analyzed the data: MAMF JDLD ROF. Wrote the paper: AMS ROF. Coded the model into MOPAC: GBR. Conceived the parameterization techniques: AMS GBR ROF.

Conceived the sampling of the reference structures and the statistical validation of the model: AMS.

References

1. Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y (2003) Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level. Journal of the American Chemical Society 125: 8694–8695.
2. Zhang P, Guo Y-N, Tang J (2013) Recent advances in dysprosium-based single molecule magnets: Structural overview and synthetic strategies. Coordination Chemistry Reviews 257: 1728–1763.
3. Ishikawa N, Minoura Y, Takamatsu S, Ishikawa T, Koshihara S-Y (2008) Effects of chemically induced contraction of a coordination polyhedron on the dynamical magnetism big/pthalocyaninate/dysprosium, a single-4f-ionic single-molecule magnet with a Kramers ground state. Inorganic Chemistry 47: 10217–10219.
4. AllDamen MA, Cardona-Serra S, Clemente-Juan JM, Coronado E, Gaia-Artejo A, et al. (2009) Mononuclear lanthanide single molecule magnets based on the polyoxometalates [LnWO$_4$O$_{17}$$^{2-}$] and [Lu$_2Sb_2O_{13}$$^{8-}$]. [LaWO$_6O_{19}$$^{4-}$]–[La$_2O_8W_2O_{19}$$^{9-}$]–[La$_2O_6W_2O_{19}$$^{10-}$]–[LaW$_6O_{19}$$^{11-}$]–[TaW$_6O_{19}$$^{12-}$]–[AlO$_4$]–[Ta=W]-[Ta=W]-[Ta=W]-[Ta=W]. Angewandte Chemie International Edition 48: 9489–9492.
5. Rinehart JD, Fang M, Evans WJ, Long JR (2011) Strong exchange and magnetic blocking in N2 32-radical-bridged lanthanide complexes. Nature Chemistry 3: 336–342.
6. Wikstrom M (1992) MR imaging of preserved porcine myocardial infarction. An experimental study using Gd-DTPA and Dy-DTPA-BMA. Acta Radiologica 37: 27–35.
7. Wikstrom M (1992) MR imaging of experimental myocardial infarction. Acta radiologica. Supplementum 379: 1–30.
8. Bayouth JE, Macey DJ, Kasi LP, Garlich JR, McMillan K, et al. (1995) Pharmakoekinetik, dosimetry and toxicity of Holmium-166-DOTMP for bone marrow ablation in multiple myeloma. Journal of Nuclear Medicine 36: 730–737.
9. Sun L-N, Zhang H-J, Fu L-S, Liu F-Y, Meng Q-G, et al. (2005) A New Sol-Gel ateral Doped with an Erbium Complex and Its Potential optical-Amplification Application. Advanced Functional Materials 15: 1041–1046.
10. Park OH, Seo SY, Jung JH, Bae JY (2003) Photoilluminescence of mesoporous silica films impregnated with an erbium complex, Journal of Materials Research 18: 1039–1042.
11. Peter E (2003) Cheminformatics Analysis of Organic Substituents: Identification of the Most Common Substituents, Calculation of Substituent Properties, and
