A Characterization of the Circumstellar Gas of WD 1124–293 Using Cloudy

Amy Steele1,2,6, John Debes2, Siyi Xu (许偲艺)3, Sherry Yeh4, and Patrick Dufour5

1University of Maryland at College Park, College Park, MD, USA; asteele@astro.umd.edu
2Space Telescope Science Institute, Baltimore, MD, USA
3NSF’s NOIRLab/Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI, USA
4W. M. Keck Observatory, Waimea, HI, USA
5Université de Montreal, Montréal, Québec, Canada

Received 2020 August 17; revised 2020 October 15; accepted 2020 October 15; published 2021 April 12

Abstract

Between 30% and 50% of white dwarfs (WDs) show heavy elements in their atmospheres. This pollution is thought to arise from the accretion of planetesimals perturbed by outer planet(s) to within the WD’s tidal disruption radius. A small fraction of these WDs show either emission or absorption from circumstellar (C-S) gas. The abundances of metals in the photospheres of WDs with C-S gas are mostly similar to the bulk composition of the Earth. The C-S component arises from gas produced through collisions and/or the sublimation of disintegrating planetesimals. High-resolution spectroscopic observations of WD 1124–293 reveal photospheric and C-S absorption of Ca in multiple transitions. Here, we present high signal-to-noise ratio spectra, an updated WD atmosphere analysis, and a self-consistent model of its C-S gas. We constrain the abundances of Ca, Mg, and Fe in the photosphere of WD 1124–293, and find agreement with the abundances of these three species in the C-S gas. We find the location of the C-S gas is \(\sim 100 \) white dwarf radii, the C-S and photospheric compositions are thus far consistent, the gas is not isothermal, and the amount of C-S Ca has not changed in two decades. We also demonstrate how to use Cloudy to model C-S gas viewed in absorption around polluted WDs. Modeling the abundances of gas around polluted WDs with Cloudy provides a new method to measure the composition of exoplanetesimals and will allow a direct comparison to the composition of rocky bodies in the solar system.

Unified Astronomy Thesaurus concepts: Extrasolar rocky planets (511); White dwarf stars (1799); DA stars (348)

1. Introduction

The spectra of white dwarfs (WDs) should show only pressure-broadened hydrogen and/or helium absorption lines, yet at least 27% of young WDs with temperatures less than \(\sim 27,000 \) K have photospheres polluted by elements heavier than helium (Koester et al. 2014). These metals should settle out of the atmospheres of WDs on timescales of days to megayears depending on the WD temperature, surface gravity, and main atmospheric composition (H versus He; Koester 2009). For isolated WDs, the pollution could arise from grains in the interstellar medium (ISM; Dupuis et al. 1993a, 1993b), or more likely, from the accretion of solids that have been liberated from a captured planetesimal (e.g., WD 1145+017; Vanderburg et al. 2015). The gas phase of the latter accretion process can exist as a circumstellar disk observable as a double-peaked line in emission (e.g., Manser et al. 2016) or a Doppler-broadened profile in absorption (e.g., Xu et al. 2016). WD 1124–293 is one of a few WDs that shows both metal photospheric absorption and circumstellar absorption features.

We investigate the gas toward WD 1124–293 to explore the conditions necessary to produce the observed absorption. WD 1124–293 is of spectral type DAZ (a hydrogen-dominated atmosphere with metal lines), has an effective temperature \(T_{\text{eff}} = 9367 \) K, and surface gravity \(\log g = 7.99 \) (see Table 1). The one observed C-S Ca K absorption feature detected at \(8\sigma \) (Debes et al. 2012) provides an opportunity to explore the physical conditions that result in this type of spectrum. We use the microphysics code, Cloudy, to model the metal-rich gas polluting WD 1124–293 by creating a grid of models of C-S gas to explore the abundances of elements from He to Zn relative to hydrogen. Due to the lack of an infrared excess (Barber et al. 2016), we exclude grains from our models. From the code, we obtain line optical depths, species column densities, and the temperature profile through the gas cloud. With these models, we place constraints on the potential masses and abundances of the C-S gas.

In Section 2, we present new observations of WD 1124–293 with Keck HIRES and an improved co-added MIKE spectrum. In Section 3, we describe how we know the pollution of WD 1124–293 visible in the new, higher-resolution HIRES spectrum is not due to the ISM. In Section 4, we describe how we model a polluted white dwarf with Cloudy and apply this method to WD 1124–293, showing how we can determine the characteristics of its C-S gas using Cloudy. In short, we build a grid of models and place constraints on the column densities needed for detecting features. In Section 5, we present our results and conclude in Section 6.

2. Observations

WD 1124–293 was observed 12 times between 2007 and 2011 (Debes et al. 2012) with the MIKE echelle spectrograph (Bernstein et al. 2003). We observed WD 1124–293 using the HIRES echelle spectrograph (Vogt et al. 1994) on the Keck I telescope for 1200 s on 2018 April 24. For the HIRES observations, the blue collimator and C5 decker were used with a slit width of 1′′148, typically giving a spectral resolution of \(\sim 40,000 \). However, the seeing during the
Debes et al. (2012) first investigated the possibility that the weak Ca absorption detected toward WD 1124–293 could be explained by coincident local ISM absorption by comparing against high-S/N spectra of stars located closely in the sky. For that study, Debes et al. (2012) looked at HIP 56280A, HIP 55864, HIP 55731, HIP 55901, and HIP 55968, but did not have sufficient parallax information on all of the stars to correctly sort them in terms of increasing distance from the Earth. With the advent of the Gaia mission, secure parallaxes now exist for that sample of stars. We reobserved HIP 56280A, HIP 55901, and HIP 55864 and in addition observed HIP 56280B, the physically bound companion to HIP 56280A. HIRES has higher spectral resolution compared to MIKE, and thus higher sensitivity to weak spectral features. The addition of HIP 56280B also ensures tighter constraints on the amount of Ca present in the ISM interior to ~30 pc with two independent measurements of that part of the sky.

In order to search for weak lines from the ISM we first had to fit and remove the continuum near the expected rest-frame velocity of the Ca K line in question for each standard star. This was relatively straightforward for HIP 55901 and HIP 55864, which show broad Ca absorption due to the rapid rotation of the host stars—the continuum can be fit with a high-order polynomial (Debes et al. 2012).

Our approach for HIP 56280A and HIP 56280B was slightly different, due to the later spectral type of these two stars. Both objects are roughly consistent with F stars and are likely nearly the same effective temperature and gravity. Both stars show Ca emission in the line core due to stellar activity, though HIP 56280A shows stronger emission. For both stars we fit the broad Ca component with a spline fit and then fit the Ca line core with a two-component Gaussian curve. We verified that our fits did not unintentionally fit any absorption lines coincident with the rest velocity of the C-S line seen in WD 1124–293. Our resulting continuum fit lines are shown in Figure 2, along with the expected 3σ upper limit to detectable absorption for each star. We estimated this upper limit by taking the standard deviation of flux in the normalized spectra, assuming that we would detect anything 3σ below the continuum level. We note that we do not show the spectrum of HIP 55901, which shows strong absorption consistent with that observed previously in Debes et al. (2012). None of these comparison stars near WD 1124–193 show Ca absorption at the velocity of the observed Ca line, so we confidently rule out an ISM contribution to the WD spectrum.

3. Pollution and the ISM

Debes et al. (2012) first investigated the possibility that the weak Ca absorption detected toward WD 1124–293 could be explained by coincident local ISM absorption by comparing against high-S/N spectra of stars located closely in the sky. For that study, Debes et al. (2012) looked at HIP 56280A, HIP 55864, HIP 55731, HIP 55901, and HIP 55968, but did not have sufficient parallax information on all of the stars to correctly sort them in terms of increasing distance from the Earth. With the advent of the Gaia mission, secure parallaxes now exist for that sample of stars. We reobserved HIP 56280A, HIP 55901, and HIP 55864 and in addition observed HIP 56280B, the physically bound companion to HIP 56280A. HIRES has higher spectral resolution compared to MIKE, and thus higher sensitivity to weak spectral features. The addition of HIP 56280B also ensures tighter constraints on the amount of Ca present in the ISM interior to ~30 pc with two independent measurements of that part of the sky.

In order to search for weak lines from the ISM we first had to fit and remove the continuum near the expected rest-frame velocity of the Ca K line in question for each standard star. This was relatively straightforward for HIP 55901 and HIP 55864, which show broad Ca absorption due to the rapid rotation of the host stars— the continuum can be fit with a high-order polynomial (Debes et al. 2012).

Our approach for HIP 56280A and HIP 56280B was slightly different, due to the later spectral type of these two stars. Both objects are roughly consistent with F stars and are likely nearly the same effective temperature and gravity. Both stars show Ca emission in the line core due to stellar activity, though HIP 56280A shows stronger emission. For both stars we fit the broad Ca component with a spline fit and then fit the Ca line core with a two-component Gaussian curve. We verified that our fits did not unintentionally fit any absorption lines coincident with the rest velocity of the C-S line seen in WD 1124–293. Our resulting continuum fit lines are shown in Figure 2, along with the expected 3σ upper limit to detectable absorption for each star. We estimated this upper limit by taking the standard deviation of flux in the normalized spectra, assuming that we would detect anything 3σ below the continuum level. We note that we do not show the spectrum of HIP 55901, which shows strong absorption consistent with that observed previously in Debes et al. (2012). None of these comparison stars near WD 1124–193 show Ca absorption at the velocity of the observed Ca line, so we confidently rule out an ISM contribution to the WD spectrum.

4. Modeling WD Circumstellar Gas with Cloudy

4.1. Cloudy Model Inputs

We aim to constrain the abundances of metals in the circumstellar gas of WD 1124–293. A Cloudy input file requires an ionizing source, the geometry of the gas, the density of hydrogen in the gas, and the abundances of He to Zn, relative to H. In this section, we describe how we determine these inputs for WD 1124–293 and how we use the Cloudy output, thereby describing our method for using Cloudy to model the C-S environment of a polluted white dwarf. Calculations were performed with version 17.01 of Cloudy, last described by Ferland et al. (2017).
The Ca H and K line wavelengths are given in air. We only detect a C-S feature at the Ca K line. For the C-S line, the central wavelength of the line is $\lambda_0 = 3933.623$ Å because we have shown that it is highly unlikely that the ISM is We choose to set the geometry in a disk, rather than a sphere listed in Table 1, and a FWHM assuming the line profile is “Eq Width,” and the full width at half-maximum is FWHM.

4.1.1. The Ionizing Source

For the Cloudy model, we use an interpolated Koester DA photosphere (Tremblay & Bergeron 2009; Koester 2010) with a temperature of 9420 K and luminosity of 0.00111 L_\odot as the input, or ionizing continuum. The continuum is mapped to an energy mesh with a resolution of 0.05 (20× the native coarse grid of $R \sim 300$).

4.1.2. Geometry

The geometry of the C-S gas of WD 1124–293 is unknown. We choose to set the geometry in a disk, rather than a sphere because we have shown that it is highly unlikely that the ISM is the source of the pollution. Debes et al. (2012) place constraints on the location of the C-S gas, with a minimum distance of $7.2 \pm 1 R_{\text{wd}}$, maximum distance of 32,000 au, and dynamical estimate of $\sim 54 R_{\text{wd}}$, where R_{wd} is the radius of WD 1124–293. The dynamical estimate of the location of the gas is determined assuming the gas is in a circular Keplerian orbit and using the FWHM of the gas absorption feature to determine the upper limit to the disk’s orbital velocity. The “dynamical” distance of the gas from the WD, R_{Kep}, is

$$R_{\text{Kep}} \approx \left(\frac{GM_{\text{wd}}}{2}\right)^{1/3} \frac{2R_{\text{wd}} \text{FWHM (cm s}^{-1})}{2^{1/3}},$$

(1)

where G is the gravitational constant. From the new HIRES data set, we measure the FWHM of the C-S absorption feature assuming the line profile is Gaussian. With the WD radius listed in Table 1, and a FWHM $\sim 6 \text{ km s}^{-1}$ (see, Table 2), $R_{\text{Kep}} \sim 106 R_{\text{wd}}$ for WD 1124–293, a value almost double that in Debes et al. (2012) due to the high spectral resolution of the HIRES data. R_{Kep} is the best estimate of the minimum distance of the gas to the star and it depends on the width of the absorption feature. If the C-S absorption feature were more narrow, then R_{Kep} would be larger.

The outer edge of the gas is unknown, but we can consider a sublimation radius and a tidal disruption radius. The sublimation radius, R_{sub}, is the distance at which the equilibrium temperature of particles equals their sublimation temperature, T_{sub}, with

$$R_{\text{sub}} = \frac{R_{\text{wd}}}{2} \left(\frac{T_{\text{sub}}}{T_{\text{wd}}}\right)^2.$$

(2)

This equation represents the smallest possible sublimation radius for optically thin distributions of dust and it assumes the particles absorb and emit radiation perfectly. R_{sub} depends on the shape, size, and composition of the particle. Graphite grains (0.01 µm) and astronomical silicate grains (0.1 µm) would sublimate at 54 R_{wd} and 93 R_{wd}, respectively (see Figure 3). In Section 5, we discuss why the detectable gas at R_{Kep} is farther than R_{sub}.

The tidal disruption radius, R_{tide} (Davidsson 1999; Jura 2003; Veras et al. 2014), also depends on the composition of the material with

$$\frac{R_{\text{tide}}}{R_{\odot}} = C_{\text{tide}} \left(\frac{M_{\text{wd}}}{0.6M_{\odot}}\right)^{1/3} \left(\frac{\rho_b}{3 \text{ g cm}^{-3}}\right)^{-1/3},$$

(3)

where C_{tide} has typical values of 0.85–1.89 (Bear & Soker 2013), and ρ_b, the density of the disrupting body, satisfies $\rho_b \geq 1 \text{ g cm}^{-3}$ (Carry 2012; Veras et al. 2014). For WD 1124–293, the maximum tidal disruption radius is $R_{\text{tide}} \sim 200 R_{\text{wd}}$. We show typical ranges of tidal disruption radii for comets and asteroids ($R_{\text{tide,comet}}$ and $R_{\text{tide,asteroid}}$) in Figure 3.

We take R_{Kep} as our minimum radius of the gas and assume that these radii follow the relation $R_{\text{tide}} > R_{\text{Kep}} > R_{\text{sub}}$ (see Figure 3). We set the gas to extend from 100 R_{wd} to 200 R_{wd} (approximately R_{Kep} to R_{tide}). The aspect ratio of the gas disk is $h/r \sim 10^{-3}$ (Metzger et al. 2012), so we truncate the gas to a cylinder with a height of 10% R_{wd}. We discuss the implications of this relation among radii in Section 5.

4.1.3. Hydrogen Density

Most planetesimals accreted onto WDs are water-poor, so there should be very little hydrogen gas present around WD 1124–293, assuming a planetesimal origin (see Section 5.3 of

Note. The Ca H and K line wavelengths are given in air. We only detect a C-S feature at the Ca K line. For the C-S line, the central wavelength of the line is λ_0, the equivalent width of the line assuming a Gaussian profile is “Eq Width,” and the full width at half-maximum is FWHM.

Table 2

Data Set	Circumstellar	Photospheric									
	λ_0 (Å)	v_c (km s$^{-1}$)	Eq Width (mÅ)	FWHM (km s$^{-1}$)	λ_0 (Å)	v_c (km s$^{-1}$)	Eq Width (mÅ)	λ_0 (Å)	v_c (km s$^{-1}$)	Eq Width (mÅ)	
MIKE	3933.623	−2.9	7.1	9.91	3934.020	27.3	113 ± 2	28.25	3968.841	31.1	65 ± 3
HIRES	3933.637	−1.9	7.8	5.97	3934.053	29.8	105 ± 1.5	28.25	3968.879	31.1	65 ± 3

Table 3

Target	Dist (pc)	Sep (″)	Exp (s)
WD 1124–293	33.7	…	1200 s
HIP 56280A	26.3	79	30 s
HIP 56280B	26.3	79	30 s
HIP 55864	117	16	100 s
HIP 55901	401	24.6	100 s

Note. The distance, separation from WD 1124–293, and exposure time for the target and standards. The observation date was 2018 April 24, at a resolution of $\sim 40,000$ with a wavelength range of 3100–5950 Å.

8 Models were downloaded from the Spanish Virtual Observatory database.
However, Cloudy uses the number density of hydrogen, n_H, to set the conditions of a cloud. If a C-S gas spectrum has features due to hydrogen, one could probe the maximum amount of hydrogen present in the system by calculating the column density due to H, N_H, assuming every H atom participates in the line transition. With no such features and a gas temperature too low for the Balmer H\(\alpha\) line to form, we turn to a geometrical argument.

The area of the column along the line of sight that subtends the white dwarf is $\sim 2 \times H \times R_{\text{wd}}$, and the volume is $2 \times H \times \Delta R \times R_{\text{wd}}^2$, where H is the gas height and $\Delta R = R_{\text{out}} - R_{\text{in}}$ is the gas extent in units of R_{wd}, with an outer radius, R_{out}, and an inner radius, R_{in}. The column density is equal to the number density times the volume of the gas column, divided by the area of the column along the line of sight.
log 19H − K Si < hydrogen, < Ni

Note. Photospheric and circumstellar (C-S) abundances by number relative to hydrogen, log (n(El)/n(H)), for our model. We show the C-S abundances that correspond to a model with n_H = 0.1 cm⁻³.

sight that subtends the white dwarf. Solving for n_H,

\[n_H \leq \frac{N_H}{\Delta R \cdot R_{wd}}. \]

(4)

We do not know the H number density, so we choose to explore a range such that \(-1 \leq \log(n_H/cm^{-3}) \leq 10\). The minimum value is typical of the diffuse H II (n_H ~ 0.3–10⁴ cm⁻³) and warm neutral medium (n_H ~ 0.6 cm⁻³) phases of the ISM (Draine 2011). For a maximum plausible value, we rely on observations of specific circumstellar disks around protoplanetary and transition disks.¹⁰ For gas with a height of 10% R_{wd}, extending from 100 R_{wd} to 200 R_{wd}, with log N_H ~ 19, n_H ~ 10³ cm⁻³. We therefore explore the dependence of our models on the hydrogen density with a grid of models that have \(-1 \leq \log(n_H/cm^{-3}) \leq 10\). For each model, the hydrogen density is constant with distance from the star. The most likely model is the one that minimizes the amount of H while allowing for metal lines to form.

4.1.4. C-S Gas Abundances

Calcium is the only C-S gas with a positive detection in WD 1124–293. Therefore, we consider the abundances of elements relative to Ca. Table 4 lists the elements that are typical polluters of WDs for which we have photospheric abundance limits, and are thus explored with our modeling. We focus on the strongest optical transitions for these species that have photospheric detection (Mg I 3838 and Fe II 3228), and detection upper limits (K I 4043, Ni I 3408, Mn I 4032, Al I 3961, Si I 3905, Na I 5890). All other elements from He to Zn are left at the default solar composition values, relative to Ca. We approach the abundances in this way for two reasons. First, the ratios of metals of interest are very similar for a solar and chondritic composition (see Figure 6). Second, there is thus far only one detected C-S feature in the optical part of the spectrum for WD 1124–293. A UV spectrum would likely show more absorption features that could be used to better constrain the C-S metal abundances (see Figure 9).

¹⁰The maximum possible value of N_H for TW Hydrae is log(N_H/1 cm⁻³) ~ 19.75 (Herczeg et al. 2004), and the H column density for β Pictoris is log(N_H/1 cm⁻³) ~ 18.6 ± 0.1, (Wilson et al. 2017).

Table 4

El	Phot	log (M(El))	C-S	log M_{C-S}
H	1	-	1	<5.95
Na	<−8.30	<13.62	<3.7	<11.02
Mg	−7.689 ± 0.024	14.30	<7.65	<14.99
Al	<−8.80	<13.24	<6.95	<14.34
Si	<−7.50	<14.54	<6.55	<13.96
K	<−8.00	<14.20	<7.1	<14.66
Ca	−8.872 ± 0.188	13.33	1.15±0.01	8.71±0.15
Ti	<−8.50	<13.86	<1.5	<9.14
Mn	<−8.50	<14.01	<4.2	<11.89
Fe	−7.814 ± 0.130	14.69	<4.9	<12.6
Ni	<−8.40	<14.10	<5.35	<13.08

Total <15.25

4.2. Cloudy Model Output

We choose to save the general overview, line optical depths, and line population for each Cloudy run. The general overview contains an output transmitted spectrum, but it does not include line-broadening mechanisms, such as microthermal motion, macrocircular motion, or instrument effects, for an unresolved line. The net transmitted spectrum from Cloudy can however be used to check the validity of a set of input parameters (by investigating whether other absorption or emission features are produced), and to predict a spectrum ranging from the far-UV to near-IR (see Section 5).

We use the optical depth and column density to compare Cloudy models to the MIKE spectrum. We save the optical depths, τ, for all species with τ > 0.001 to calculate an absorption line profile, and the populations of upper and lower levels for all lines to calculate the column densities of different species. The column densities are calculated for each line by
multiplying the lower level population per zone by the length of
the zone. Zones are automatically calculated by Cloudy. We only consider the lower level populations in the column density
calculation because we are not in a regime where stimulated
emission is important.

5. Results and Discussion

We investigate the gas toward WD 1124–293 to explore the
conditions necessary to produce the observed absorption. We
further constrain the location and amount of Ca present in the
C-S gas, reproduce the observed C-S Ca K absorption line
profile and place upper limits to the amounts of H, Mg, Ca, Fe,
and other metals present around WD 1124–293 by using
Cloudy to determine their optical depths and expected line
column densities. We place limits on the total amount of gas and
show the temperature profile through the model disk. We then connect these results to other similar studies and argue for
future UV observations.

5.1. Location of the Gas

From the new HIRES observations, we show that the
previously detected C-S and photospheric Ca gas is still
present. Calcium in the atmosphere of WD 1124–293 has a
settling time of \(\sim 1000\) yr (Dufour et al. 2017), so it is expected
for the photospheric line to persist.

With the new observations we also find that the gas is farther
away from WD 1124–293 than previously detected (Debes et al.
2012). Gaseous disks can accrete inward and spread outward due to angular momentum transport by turbulent
viscosity (Metzger et al. 2012). However, why do we not observe gas at radii less than 100 \(\text{R}_{\text{wd}} \) if the gas is created
through sublimation at smaller radii? Even with no IR excess
due to dust grains, if the particle density is low enough, it is
possible that destructive grain–grain collisions near the tidal
disruption radius could be creating gas (Jura et al. 2007) at
\(\text{R}_{\text{kep}} \sim 100\text{R}_{\text{wd}} \). Alternatively, there could be a collection of
submicron grains, which are inefficient emitters, and would
thus sublimate at much larger distances than what would be
assumed in a blackbody approximation. Emission features due
to Ca in the spectra of SDSS J1228+1040 show that the gas in
this system is emitting at a range of radii (0.6–1.2 \(\text{R}_\odot \)
or 50–100\(\text{R}_{\text{wd}} \)), with a concentration at \(\sim 100\text{R}_{\text{wd}} \) (Manser et al.
2016).

5.2. Column Densities

We determine the column density of the C-S Ca gas by
finding the range of optical depths that lead to an absorption feature at a depth of \(\pm 3\sigma \) relative to the depth of the Ca C-S
line in the MIKE data set, resulting in \(\log N(\text{Ca}) = 11.01_{-0.26}^{+0.09} \)
(Debes et al. 2012 find \(\log N(\text{Ca}) = 11_{-0.2}^{+0.1} \)). The downward
trend in column density with increasing hydrogen number
density seen in Figure 4 is due to a decrease in the calculated
electron density. To investigate the dependence of our
modeling on hydrogen, we explored 10 orders of magnitude in
hydrogen number density, fixing the relative abundance ratios for all elements. The hydrogen number density is
degenerate with the hydrogen abundance, so we are only able
to constrain the amount of hydrogen with a geometrical
argument described in Section 4.1.3. The upper limits to the
abundances of these different species are presented in Table 4.

5.3. Line Profiles

The Ca C-S absorption line is only marginally resolved, so we
construct the absorption line profile by taking the convolution of (1) a Voigt line profile broadened due to
Maxwellian distributed velocities and a gas temperature
determined by Cloudy and (2) a Gaussian kernel with a width
determined by the resolution of the HIRES spectrum.\(^{11}\) The
Voigt line profile is approximated using a series expansion as
\(\phi(x) \propto \exp(-x^3) + a/(x^{3/2})^2 + 2a/(x^{3/2})^4 \), where \(a \) is the
damping constant for the transition in question, \(x = (v -
\nu_0)/\Delta\nu_{\text{Dopp}} \), \(v_0 \) is the center frequency for line, and \(\Delta\nu_{\text{Dopp}} \) is
the FWHM of the line. The output intensity is \(I = I_0 \exp(-\tau(\phi(x))) \), where \(\tau \) is the optical depth at line center.
The output intensity considering the velocity profile is
\(\times \exp(-\tau(\phi(x))^\phi(v)) \).

We show the calculated line profiles for the strongest optical
transitions of these metals in Figure 5.

5.4. Metals in the Gas around WD 1124–293

The calculated calcium K line column density corresponds to
an abundance of 1.15 relative to hydrogen when \(n_H = 0.1 \text{ cm}^{-3} \).
As we increased the hydrogen number density, we let the
calcium and hydrogen abundances vary from \(\sim -8.92 < \log n(\text{Ca})/n(\text{H}) < 1.15 \) and \(0 < \log n(\text{H}) < 11 \). For the lowest
H number density, the abundances of Mg and Fe that produce an
absorption feature at a depth of \(3\sigma \) are \(\log n(\text{Mg})/n(\text{H}) = 7.65 \)
and \(\log n(\text{Fe})/n(\text{H}) = 4.9 \). We then fix the ratios of Mg and Fe relative to Ca with increasing density, such that
\(\log n(\text{Mg})/n(\text{Ca}) = 6.5 \) and \(\log n(\text{Fe})/n(\text{Ca}) = 3.75 \) for all models shown in Figure 4. All other element abundances, El, are
set such that \(\log n(\text{El})/n(\text{Ca}) \) is constant for models with increasing \(n_H \). Figure 4 shows how the column density for the
strongest observable optical transition in a species varies with
increasing \(\text{H} \) number density and fixed element abundance
ratios.

5.5. The Mass of the Gas around WD 1124–293

Given our geometrical constraints (inner radius, \(R_{\text{in}} \), and outer radius, \(R_{\text{out}} \)) and assumed disk height, \(H \), the volume of the gas disk is
\(V = \pi H (R^2_{\text{out}} - R^2_{\text{in}}) \), and the total gas mass \(M_{\text{tot}} \) is given by

\[
M_{\text{tot}} = V \cdot \left[\sum (10^{n_H} \cdot 10^{\text{abn}} \cdot m(\text{El})) + 10^{n_H} m(\text{H}) \right] \cdot m(\text{H}),
\]

where \(n_H \) is the hydrogen number density, \(abn \) is the abundance relative to hydrogen, \(m(\text{El}) \) is the mass of an element in atomic mass units, and \(m(\text{H}) \) is the mass of the hydrogen atom in g. Using the abundances and hydrogen density from our model with a maximum amount of hydrogen (\(n_H = 10^9 \text{ cm}^{-3} \)), we place an upper limit on the total gas mass, \(\log M_{\text{tot}} \approx 16.2 \), or \(\sim 30 \) times the mass of C-type asteroid 162173 Ryugu
(4.50 \(\times 10^{14} \) g; Watanebe et al. 2019). Using our model with a minimum amount of hydrogen (\(n_H = 10^{-3} \text{ cm}^{-3} \)), the upper limit on the total gas mass is \(\log M_{\text{tot}} \approx 15.25 \) g or \(\sim 4 \) times the mass of Ryugu. The lower limit is set by the total amount of mass required to produce the Ca feature, so the C-S gas mass,
\(\log M_{\text{C-S}} \), is constrained to \(8.71 < \log M_{\text{C-S}} < 16.12 \). Figure 6 shows the relative abundances of Mg, Si, Ca, and Fe for our

\(^{11}\) If the absorption line were resolved, we would also convolve the Voigt line profile with a velocity profile, \(\delta(v) \), describing the bulk motion of the gas disk.
best fit and the relative abundances of those same metals in the photosphere.

5.6. Gas Temperature

Cloudy also provides the temperature throughout the gas. For this model, the gas temperature ranges from \(\sim 4500 \) to \(\sim 3300 \) K. We show the temperature profile for the best-fit model in Figure 7, also including the optical depths of the two strongest lines at the same depths in the disk.

In our Cloudy models, the heating is dominated by Fe II and the cooling is dominated by Mg II (see the bottom panel of Figure 7). The temperature of the gas is determined by Cloudy self-consistently and depends on heating and cooling mechanisms. Other efforts to model C-S around WDs tend to assume the temperature is isothermal, though at least one group calculates the temperature at different locations in the disk assuming a Shakura and Sunyaev viscous \(\alpha \)-disk using the accretion-disk code AcDc (Nagel et al. 2004; Hartmann et al. 2016). For a WD with \(T_{\text{eff}} = 20,900 \) K, Hartmann et al. (2016) find the gas temperature decreases to a minimum value \(\sim 6000 \) K a third of the way through the disk before rising to a maximum of \(\sim 6600 \) K at the outer edge. The temperature profile of this gas disk is very different from that of WD 1124−293, as shown in the top panel of Figure 7. For WD 1124−293, the gas temperature profile declines roughly as the
$T \propto r^{-0.3}$, with a mild inversion at the inner edge of the disk. Further investigation is needed to understand this discrepancy. Additionally, for hotter WDs, the temperature range probed by Cloudy could be much larger than the 20% changes seen for WD 1124−293.

5.7. Strongest Transitions and a Need for UV Observations

The strongest expected lines in the optical come from the enhanced Mg, Ca, and Fe in our solar-like composition around WD 1124−293 (see Figure 8). To obtain the abundances of heavy elements for the photosphere, we proceed in a similar way as described in Xu et al. (2019), by computing grids of synthetic spectra for each element of interest using a pure DA atmospheric structure assuming the stellar parameters previously determined by fitting the photometric data and parallax measurement. The abundances are then obtained by minimizing χ^2 between the normalized spectroscopic data and the grid spectrum. Trace amounts of metals have a negligible effect on the thermodynamic structure for the grid spectrum.

The strongest transitions for most of these species that would help constrain the gas composition, and therefore the sublimation temperature (O, Fe, Si, and Mg), are in the UV. Our polluted photospheric model for WD 1124−293 predicts very strong Mg and Fe absorption lines at UV wavelengths, and as such, our upper limits are likely too large (see Figure 9).

FUV observations of other dusty WDs with $T_{\text{eff}} \geq 12,000$ K have shown absorption lines from as many as 19 unique elements (GD 362; Xu et al. 2013), providing detailed information about planetary material that orbits another star. For example, we can look for correlations between progenitor mass and elemental abundance, or seek to find correlations with specific elemental enhancements, such as Ca. With UV observations, better constraints would be placed on Mg and Fe, helping to further constrain the relative abundances of these metals.

5.8. Other Work Modeling WDs with Cloudy

Gänsicke et al. (2019) use Cloudy to model the C-S gas of WD J0914+1914 viewed in emission, which contains signatures of the disruption and subsequent accretion of a giant planet. WD J0914+1914 has $T_{\text{eff}} = 27743 \pm 310$ K, and its...
photosphere shows evidence of ongoing accretion of oxygen and sulfur. At this temperature, the C-S gas is photoionized, and contains enough hydrogen for oxygen, sulfur, and Hα emission lines to form. The emission features are doubly peaked, indicating the gas is in disk undergoing Keplerian rotation. In their work, the C-S abundances for O and S are consistently determined by two independent methods for the first time.

With this work, we follow up with the second instance of determining gas composition with two independent measurements, and show for the first time how to place constraints on abundances when only absorption features are present. This proof of concept for modeling absorption with Cloudy will be useful when applied to more complicated systems, such as WD 1145+017.

5.9. Our Proof of Concept in the Context of WD 1145+017

WD 1145+017 was first shown to have a transiting, disintegrating planetesimal by Vanderburg et al. (2015) and has since been the subject of much observation (e.g., Xu et al. 2016, 2019; Croll et al. 2017; Cauley et al. 2018; Fortin-Archambault et al. 2020) due to days to week transit and spectroscopic variability. Fortin-Archambault et al. (2020) present a new characterization of WD 1145+017’s absorption features, showing how a simple model of nested concentric rings with high eccentricity can help account for the majority of the observed features, which include asymmetrical line profiles and Doppler shifting of the absorption features. These features are also seen in a number of other polluted WDs showing emission lines (e.g., Wilson et al. 2014; Gänsicke et al. 2019; Manser et al. 2019).

The addition of high-resolution spectra to the analysis in Fortin-Archambault et al. (2020) helped disentangle closely spaced features that led to an overestimated prior abundance calculation in Xu et al. (2016). A code like Cloudy could be useful in identifying components of such blends to obtain accurate abundances. They also observe SiIV features in the UV at 1393.76 Å and 1402.77 Å and invoke an additional low-eccentricity component to explain the presence of such highly ionized species. Cloudy would naturally be able to probe the conditions needed to produce SiIV features with its self-consistent microphysics.

6. Conclusion

With this work, we outline how to use the Cloudy radiative transfer code to model C-S gas viewed in absorption around WD 1124−293. We create a grid of Cloudy models of the gas around WD 1124−293 to explore the abundances of elements from He to Zn relative to hydrogen, and obtain line optical depths, species column densities, and the temperature profile through the gas disk. Our best-fit model minimizes the total amount of hydrogen, while still producing the observed Ca K C-S absorption feature.

We detect photospheric absorption features due to Mg and Fe for the first time, determine a new location for the C-S gas, and place upper limits on abundances of other metals in the photosphere. The upper limit C-S abundance ratios of Mg, Si, and Fe to Ca are also consistent with the photospheric abundance ratios, and with a chondritic/bulk Earth composition.

With these models, we place constraints on the potential masses and abundances that could result in a spectrum dominated by calcium species for WD 1124−293, find that the C-S is likely not isothermal, and show that the Cloudy microphysics code, which is typically used to model active galactic nuclei and HII regions, can also be used to model C-S gas absorption features of polluted white dwarfs. UV spectroscopic observations of WD 1124−293 are needed to further constrain the composition of its C-S gas.

Looking forward, we intend to explore the properties of gas of differing compositions around DA WDs with temperatures 6000−27,000 K using Cloudy, and will the make the grid of gas properties publicly available (A. S. Steele et al. 2021, in preparation).

We thank the referee and proof editor for helpful comments. We thank the W. M. Keck Observatory Visiting Scholars Program for hosting A. Steele for 7 weeks. Special thanks go to Dr. Sherry Yeh and Dr. Carlos Alvarez for their guidance during the program. Additional thanks go to Dr. Jordan Steckloff for helpful conversations about sublimation near white dwarfs; to Dr. Jay Farihi for helpful comments on the
manuscript; and to Dr. Drake Deming and Dr. Siyi Xu for providing financial support for this work.

This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This work is supported by the international Gemini Observatory, a program of NSF’s NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation, on behalf of the Gemini partnership of Argentina, Brazil, Canada, Chile, the Republic of Korea, and the United States of America. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

Facilities: Magellan (MIKE), Keck (HIRES).

Software: astropy (Astropy Collaboration et al. 2013), Cloudy (Ferland et al. 2017), PyAstronomy (Czesla et al. 2019).

ORCID iDs

Amy Steele @ https://orcid.org/0000-0002-0141-7946
John Debes @ https://orcid.org/0000-0002-1783-8817
Siyi Xu (许偲) @ https://orcid.org/0000-0002-8808-4282
Sherry Yeh @ https://orcid.org/0000-0002-4037-3114

References

Allègre, C., Manhès, G., & Lewin, É 2001, E&PSL, 185, 49
Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33
Barber, S. D., Belardi, C., Kilic, M., et al. 2016, MNRAS, 459, 1415
Bear, E., & Soker, N. 2013, NewA, 19, 56
Bernstein, R., Shectman, S. A., Gunnels, S. M., et al. 2003, Proc. SPIE, 4841, 1694

BOSS, A. P. 1994, Icar, 107, 422
Carry, B. 2012, P&SS, 73, 98
Cauley, P. W., Farhi, J., Redfield, S., et al. 2018, ApJL, 852, L22
Cowie, L. L., & Songaila, A. 1986, ARA&A, 24, 499
Croll, B., Dalba, P. A., Vanderburg, A., et al. 2017, ApJL, 836, 82
Czesla, S., Schröter, S., Schneider, C. P., et al. 2019, PyA: Python Astronomy-related Packages v0.15.2, ascl:1906.010
Davidsson, B. J. R. 1999, Icar, 142, 325
Debes, J. H., Kilic, M., Faedi, F., et al. 2012, ApJ, 754, 59
Draine, B. T. 2014, in Physics of the Interstellar and Intergalactic Medium, ed. B. T. Draine (Princeton, NJ: Princeton Univ. Press)
Dufour, P., Blouin, S., Coutu, S., et al. 2017, in ASP Conf. Ser. 509, 20th European White Dwarf Workshop, ed. P.-E. Tremblay et al. (San Francisco, CA: ASP), 3
Dupuis, J., Fontaine, G., Pelletier, C., et al. 1993a, ApJS, 84, 73
Dupuis, J., Fontaine, G., & Wesemael, F. 1993b, ApJS, 87, 345
Ferland, G. J., Chatzikos, M., Guzmán, F., et al. 2017, RMxAA, 53, 385
Fortin-Archambault, M., Dufour, P., & Xu, S. 2020, ApJ, 888, 47
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616, A1
Gänsicke, B. T., Schreiber, M. R., Tolzoa, O., et al. 2019, Natur, 576, 61
Grevesse, N., & Sauval, A. J. 1998, SSRv, 85, 161
Hartmann, S., Nagel, T., Rauch, T., et al. 2016, A&A, 593, A67
Herczeg, G. J., Wood, B. E., Linsky, J. L., et al. 2004, ApJL, 607, 369
Holweger, H., 2001, in AIP Conf. Proc. 598, Joint SOHO/ACE Workshop “Solar and Galactic Composition” (Melville, NY: AIP), 23
Jura, M. 2003, ApJL, 584, L91
Jura, M., Farhi, J., & Zucker, M. 2007, ApJ, 663, 1285
Jura, M., & Young, E. D. 2014, AREPS, 42, 45
Koester, D. 2009, A&A, 498, 517
Koester, D. 2010, MmSAI, 81, 921
Koester, D., Gänsicke, B. T., & Farhi, J. 2014, A&A, 566, A34
Lodders, K. 2003, ApJ, 591, 1220
Manser, C. J., Gänsicke, B. T., Eggl, S., et al. 2019, Sci, 364, 66
Manser, C. J., Gänsicke, B. T., Marsh, T. R., et al. 2016, MNRAS, 455, 4467
Metzger, B. D., Raitkov, R. R., & Buchhave, K. V. 2012, MNRAS, 423, 505
Nagel, T., Dreizler, S., Rauch, T., et al. 2004, A&A, 428, 109
Subasavage, J. P., Jao, W.-C., Henry, T. J., et al. 2017, AJ, 154, 32
Tremblay, P.-E., & Bergeron, P. 2009, ApJ, 696, 1755
Vanderburg, A., Johnson, J. A., Rappaport, S., et al. 2015, Natur, 526, 546
Versas, D., Leinhardt, Z. M., Bonson, A., et al. 2014, MNRAS, 445, 2244
Vogt, S. S., Allen, S. L., Bigelow, B. C., et al. 1994, Proc. SPIE, 2198, 362
Watanabe, S., Hirabayashi, M., Hirata, N., et al. 2019, Sci, 364, 268
Wilson, D. J., Gänsicke, B. T., Koester, D., et al. 2014, MNRAS, 445, 1878
Wilson, P. A., Lecavelier des Etangs, A., Vidal-Madjar, A., et al. 2017, A&A, 599, A75
Xu, S., Dufour, P., Klein, B., et al. 2019, AJ, 158, 242
Xu, S., Jura, M., Dufour, P., et al. 2016, ApJL, 816, L22
Xu, S., Jura, M., Klein, B., et al. 2013, ApJ, 766, 132