Eating the messenger (RNA): autophagy shapes the cellular RNA landscape

Girishkumar Kumaran and Simon Michaeli*

Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO)-Volcani Institute, Rishon LeZion, 7505101, Israel
*Correspondence: simonm@volcani.agri.gov.il

This article comments on:

Hickl D, Drews F, Girke C, Zimmer D, Mühlhaus T, Hauth J, Nordström K, Trentmann O, Neuhaus E, Scheuring D, Fehlmann T, Keller K, Simon M, Möhlmann T. 2021. Differential degradation of RNA species by autophagy-related pathways in Arabidopsis. Journal of Experimental Botany 72, XXXX–XXXX.

Cellular degradation pathways are instrumental for maintenance of homeostasis, especially under stress. Autophagy, the collection of pathways that shuttle cytoplasmic material to the vacuole for degradation and recycling, is known for shaping the cell’s proteome, lipidome, metabolome, and organelle content in response to environmental and developmental cues. However, until recently, little was known regarding its role in shaping cellular RNA quantity and diversity (RNAome). Recent data, including those from Hickl et al. (2021), highlight autophagy as a central pathway in RNA degradation, including the selective targeting of specific mRNA species, suggesting its role in post-transcriptional regulation.

RNA autophagy (RNAphagy)

RNA degradation is known to occur in the cell’s cytoplasm and nucleus through the RNA decay and mRNA surveillance pathways (Frankel et al., 2017). However, whether RNA is delivered to vacuoles/lysosomes for degradation has been a long-standing question. Early reports suggested autophagy-dependent RNA degradation in human fibroblasts and amino acid-starved rat livers (Sameshima et al., 1981; Lardeux and Mortimore, 1987; Balavoine et al., 1990; Heydrick et al., 1991). The subject was revived later following two reports on autophagy-dependent RNA degradation. One described autophagy of rRNA in Arabidopsis (Floyd et al., 2015), while the other described bulk autophagy of RNA under nitrogen starvation in yeast (Huang et al., 2015). Intriguingly, vacuole-residing T2-type RNases were implicated in both cases. In Arabidopsis, RNS2 is essential for vacuolar RNA recycling, and rns2 mutants exhibited constitutive autophagy during favourable growth conditions, under which autophagy is only slightly active in wild-type plants. The authors suggested that this as a compensatory mechanism for the lack of proper RNA degradation (Hillwig et al., 2011). In yeast, RNA that reaches the vacuole is degraded by a single vacuolar RNase, Rny1 (Huang et al., 2015), a functional homologue of plant RNS2 (MacIntosh et al., 2001). However, its deficiency does not seem to induce autophagy (Huang et al., 2015).
Ultimately, two main questions remained unanswered. (i) Is RNAphagy a bulk or selective process? (ii) Is autophagy involved in shaping the cellular RNAome under changing environmental conditions?

Selective RNA autophagy (RNAphagy)

Initial reports addressing these questions emerged recently. First, Makino et al. (2021) profiled mRNA from vacuoles of yeast Rny1 cells following autophagy induction through target of rapamycin (TOR) inhibition. They detected enrichment of certain mRNAs, especially those encoding amino acid biosynthesis and ribosomal proteins. Furthermore, ribosome profiling suggested high correspondence between ribosome–mRNA association (polysomes) and the identity of the vacuole-residing mRNAs. Nevertheless, selective autophagy of ribosomes (ribophagy) and the endoplasmic reticulum (ER-phagy) (Box 2) are not the routes implicated in polysome degradation (Makino et al., 2021). Notably, as TOR is...
Box 2. Possible sources and selective autophagy pathways for selective RNA degradation

Selective autophagy pathways bear specific names, usually based on the combination of the cargo source name and the suffix ‘phagy’. For example, selective autophagy of mitochondria is termed ‘mitophagy’. Here we gathered several (not necessarily an exhaustive list) sources for selective RNA degradation and the selective autophagy pathways that may mediate them. Some of these may be the source of one particular type of RNA, while others may be the source of various RNAs. For example, nucleophagy may mediate the degradation of small RNAs, long non-coding RNAs, mRNAs, etc. Conversely, the selective autophagy of RNA-binding proteins may deliver one type of RNA to the vacuole. For example, AGO1, a central component of the RNA-induced silencing complex (RISC), whose degradation is mediated, at least partly, by selective autophagy (Michaeli et al., 2019), might be a selective source of small RNAs. AGO1 is depicted in the figure while loaded with a small ssRNA.

also known as a translation regulator, it is reasonable to expect that enrichment of different mRNA species in yeast vacuoles will occur under different autophagy-inducing conditions (especially those that do not rely on TOR inhibition). Taken together, the authors proposed autophagy as a post-transcription regulator (Makino et al., 2021). A similar suggestion was raised after identifying a plant selective ER–phagy pathway that clears ER-bound Argonaute 1 (AGO1; Michaeli et al., 2019), which is apparently associated with membrane-bound polysomes and acts in inhibition of translation (Li et al., 2013). Consistently, an Arabidopsis mutant deficient in this pathway exhibited a significantly reduced post-transcriptional gene silencing (PTGS) activity (Michaeli et al., 2019).

Hickl et al. (2021) also addressed the questions above by profiling vacuole RNAomes of Arabidopsis leaf mesophyll cells and comparing them with cytosolic RNAomes in the wild type and rns2 and atg5 mutants. However, while Makino et al. induced autophagy prior to vacuole profiling, Hickl et al. profiled...
vacuoles of plants experiencing favourable growth conditions, hence exhibiting low autophagy activity. Unexpectedly, RNS2 deficiency showed a relatively mild difference in the RNAome profile compared with the wild type, whereas ATG5 deficiency showed a more profound effect. Mainly chloroplast-encoded mRNA transcripts were significantly under-represented in \textit{agt5} vacuoles, whereas nuclear-derived transcripts encoding photosynthesis-associated proteins were found enriched in this mutant (Hickl et al., 2021). These differences, mainly in photosynthesis-related genes, highlight an important role for autophagy in chloroplast turnover, even under favourable conditions. Notably, this work shows that differential delivery of specific mRNAs to vacuoles also occurs in plants. Although the source of chloroplast-encoded mRNA found in the vacuole is unknown, one can assume that selective autophagy of chloroplast components or the selective autophagy of entire chloroplasts (Otegui, 2018; Box 2) is implicated in delivering this type of molecule to the vacuole (potentially with additional cargo). Indeed, both pathways rely on functional ATG5 proteins.

Regarding the counterintuitive enrichment of nuclear-encoded chloroplast-related transcripts, Hickl et al. suggest the induction of a compensatory, ATG5-independent, autophagy pathway as a possible explanation. Such a pathway, targeting chloroplast components, was identified in plants (Wang and Blumwald, 2014). However, in Hickl et al., such an alternative pathway supposedly targets the nucleus or perhaps cytosolic polysomes, for which alternative autophagy is not yet described in plants. Mammalian macroautophagy that operates independently of Atg5 and Atg7 was described (Nishida et al., 2009). If such a pathway exists in plants, then its particular preference for photosynthesis-related mRNAs is intriguing. The modest impact of RNS2 deficiency is also surprising, yet is explained by redundancy with other potential vacuole-residing RNases, whereas it seems that Rny1 represents the only vacuolar yeast RNase (Makino et al., 2021).

Nevertheless, it would be fascinating to examine the Arabidopsis vacuolar RNAome in both the wild type and \textit{rns2} following autophagy induction. Will RNS2 make a difference when coupled to autophagy activity, especially when considering that \textit{rns2} mutants were reported to have an endogenously high autophagy activity (Hillwig et al., 2011)?

Equally intriguing, Hickl et al. also identified complete and mature miRNAs within the vacuole, suggesting that vacuoles act as an additional small RNA reservoir. Several sources for vacuolar miRNA may include the ER, nuclei, P-bodies, stress granules, peroxisomes, and miRNA-binding proteins (Box 2).

What is next?

It is reasonable to assume that the intensity and selectivity of autophagy, which rely on the cell type, environmental conditions, and developmental state, will determine the targeted RNA’s identity and quantity. Moreover, the post-transcriptional and post-translational regulation of ATG mRNAs and proteins (Abildgaard et al., 2020) may suggest a regulatory feedback loop between autophagy and RNA. Both Hickl et al. and Makino et al. describe a snapshot of the vacuolar RNAome at a particular time under a specific condition. Future studies that will examine the flux of different RNA species to the vacuole under other conditions will shed more light on this intriguing aspect of autophagy. Yet, it already seems that the differential activation of selective autophagy pathways to target RNA-containing cargo (Box 2) is a significant factor in shaping the cellular RNAome (including the mRNAome), thus affecting cellular gene expression post-transcriptionally.

Keywords: ATG5, autophagy, plant vacuole, RNAome, RNase, RNA-seq, RNS2.

References

Abildgaard MH, Brynjólfsdóttir SH, Frankel LB. 2020. The autophagy–RNA interplay: degradation and beyond. Trends in Biochemical Sciences 45, 845–857.

Balavoine S, Feldmann G, Lardeux B. 1990. Rates of RNA degradation in isolated rat hepatocytes. Effects of amino acids and inhibitors of lysosomal function. European Journal of Biochemistry 189, 617–623.

Floyd BE, Morriss SC, MacIntosh GC & Bassham DC. 2015. Evidence for autophagy-dependent pathways of rRNA turnover in Arabidopsis. Autophagy 11, 2199–2212.

Frankel LB, Lubas M and Lund AH. 2017. Emerging connections between RNA and autophagy. Autophagy 13, 3–23.

Heydrick SJ, Lardeux BR, Mortimore GE. 1991. Uptake and degradation of cytoplasmic rRNA by hepatic lysosomes. Quantitative relationship to rRNA turnover. Journal of Biological Chemistry 266, 8790–8796.

Hickl D, Drews F, Girke C, Zimmer D, Mühlhaus T, Hauth J, Nordström K, Trentmann O, Neuhaus E, Scheuring D, Fehlmann T, Keller K, Simon M, Möhlmann T. 2021. Differential degradation of RNA species by autophagy-related pathways in Arabidopsis. Journal of Experimental Botany 72, XXXX–XXX.

Hillwig MS, Contento AL, Meyer A, Ebany D, Bassham DC, MacIntosh GC. 2011. RNS2, a conserved member of the RNase T2 family, is necessary for ribosomal RNA decay in plants. Proceedings of the National Academy of Sciences, USA 108, 1093–1098.

Huang H, Kawamata T, Horie T, Tsugawa H, Nakayama Y, Ohsumi Y, Fukusaki E. 2015. Bulk RNA degradation by nitrogen starvation-induced autophagy in yeast. The EMBO Journal 34, 154–168.

Lardeux BR, Mortimore GE. 1987. Amino acid and hormonal control of macromolecular turnover in perfused rat liver. Evidence for selective autophagy. Journal of Biological Chemistry 262, 14514–9.

Li S, Liu L, Zhuang X, et al. 2013. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153, 562–574.

MacIntosh GC, Bariola PA, Newbiggin E, Green PJ. 2001. Characterization of Rny1, the Saccharomyces cerevisiae member of the T2 RNase family of RNases: unexpected functions for ancient enzymes? Proceedings of the National Academy of Sciences, USA 98, 1018–1023.

Makino S, Kawamata T, Iwasaki S, Ohsumi Y. 2021. Selectivity of mRNA degradation by autophagy in yeast. Nature Communications 12, 2316.
Marshall RS, Vierstra RD. 2018. Autophagy: the master of bulk and selective recycling. Annual Review of Plant Biology 69, 173–208.

Michaeli S, Clavel M, Lechner E, et al. 2019. The viral F-box protein P0 induces an ER-derived autophagy degradation pathway for the clearance of membrane-bound AGO1. Proceedings of the National Academy of Sciences, USA 116, 22872–22883.

Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K, Tsujimoto Y, Shimizu S. 2009. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461, 654–658.

Otegui MS. 2018. Vacuolar degradation of chloroplast components: autophagy and beyond. Journal of Experimental Botany 69, 741–750.

Sameshima M, Liebhaber SA, Schlessinger D. 1981. Dual pathways for ribonucleic acid turnover in WI-38 but not in I-cell human diploid fibroblasts. Molecular and Cellular Biology 1, 75–81.

Schuck S. 2020. Microautophagy—distinct molecular mechanisms handle cargoes of many sizes. Journal of Cell Science 133, jcs246322.

Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD. 2005. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiology 138, 2097–2110.

Wang S, Blumwald E. 2014. Stress-induced chloroplast degradation in Arabidopsis is regulated via a process independent of autophagy and senescence-associated vacuoles. The Plant Cell 26, 4875–4888.