TGFβ-signaling in squamous cell carcinoma occurring in recessive dystrophic epidermolysis bullosa

Julia Knaupa, Christina Gruber, Barbara Krammer, Verena Ziegler, Johann Bauer and Thomas Verwanger

Department of Molecular Biology, University of Salzburg, Salzburg, Austria
Division of Molecular Dermatology and EB House Austria, Department of Dermatology, Paracelsus Medical University, Salzburg, Austria

Received: May 18, 2011
Accepted: September 30, 2011

Abstract: Background: Recessive dystrophic epidermolysis bullosa (RDEB) is a hereditary skin disorder characterized by mechanical fragility of the skin, resulting in blistering and chronic wounds. The causative mutations lie in the COL7A1 gene. Patients suffering from RDEB have a high risk to develop aggressive, rapidly metastasizing squamous cell carcinomas (SCCs). Cutaneous RDEB SCCs develop preferentially in long-term skin wounds or cutaneous scars. Albeit being well differentiated, they show a more aggressive behavior than UV-induced SCCs. These findings suggest other contributing factors in SCC tumorigenesis in RDEB.

Objective: To analyze factors contributing to RDEB tumorigenesis, we conducted a comprehensive gene expression study comparing a non-malignant RDEB (RDEB-CL) to a RDEB SCC cell line (SCCRDEB4) to achieve an overview on the changes of the gene expression levels in RDEB-related skin cancer.

Methods: We applied cDNA arrays comprising 9738 human expressed sequence tags (EST) with various functions. Selected results were verified by Real-time RT PCR.

Results: Large-scale gene expression analysis revealed changes in the expression level of transforming growth factor β1 (TGFβ1) and several genes under the control of TGFβ for RDEB and SCCRDEB4 cell lines. Even the untransformed RDEB keratinocytes show elevated levels of TGFβ1.

Conclusion: Our findings demonstrate a prominent role of TGFβ-signaling in RDEB-related skin cancer. Once activated, TGFβ signaling either in response to wounding or in order to influence type VII collagen expression levels could facilitate cancer development and progression. Moreover, TGFβ signaling might also represent a potentially useful therapeutic target in this disease.

Keywords: Recessive dystrophic epidermolysis bullosa, squamous cell carcinoma, gene expression, cDNA array, real-time PCR, TGFβ-signaling

List of abbreviations

Abbreviation	Description
CDHE	E-Cadherin
EMT	Epithelial-mesenchymal transition
EST	Expressed sequence tag
FN	Fibronectin
GAPDH	Glyceraldehyde-3-phosphatase dehydrogenase
GPNMB	Glycoprotein nonmetastatic B
HPRT	Hypoxanthine ribosyltransferase
KRT18	Keratin 18
LRP-1	Low density lipoprotein receptor-related protein 1
MMP	Matrix metalloproteinase

*Corresponding author: Thomas Verwanger, Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria. E-mail: thomas.verwanger@sbg.ac.at.
1. Introduction

Recessive dystrophic epidermolysis bullosa (RDEB) is a mechano-bullous hereditary skin disorder characterized by extreme skin fragility. Even minor mechanical traumata result in massive blistering of the skin and slowly or non-healing wounds [17]. There are two major subtypes of RDEB: severe generalized RDEB (RDEB-sev gen; previously termed “Hallopeau-Siemens” subtype) and other generalized RDEB (RDEB-O) [36] which differ in clinical severity. Genetic analysis revealed that the causative mutations lie in the COL7A1 gene. This gene encodes for type VII collagen which is known to be the major component of the anchoring fibrils that connect the epidermis to the dermis [54, 110]. In less severe cases mutations result in reduced levels of type VII collagen, while in RDEB-sev gen no or very low levels of type VII collagen (COL7A1) are observed [113]. Apart from blistering, subsequent injury of the whole skin surface (also mucosae can be involved) and mutilating scars [87], RDEB can further be complicated by growth retardation, anemia, pseudosyndactyly and corneal erosions [36]. Patients suffering from RDEB also have a high risk to develop aggressive, rapidly metastasizing squamous cell carcinomas (SCCs) [82, 130] even in early adulthood [65]. This risk increases dramatically with age. Statistical analysis revealed that nearly all patients suffering from RDEB-sev gen develop at least one SCC throughout life and about 80% perish within the following five years of diagnosis [37]. As seen in other chronic, severe scarring conditions after thermal burns, the SCCs generally develop within long-term skin wounds or cutaneous scars [37]. This is in contradiction to UV-induced SCCs, which tend to develop at sun exposed areas [5]. Although RDEB-related SCC appear to be well differentiated, they exhibit highly aggressive behavior which is not indicated for normal SCCs [35]. These findings suggest other contributing factors in SCC tumorigenesis [37]. Several studies focused on the underlying mechanisms of RDEB-related SCC and the comparison of those SCC to UV-induced SCC. Unfortunately, they have not yielded a greater comprehension into carcinogenesis in RDEB and only few peculiarities in RDEB SCC gene expression were revealed. The differences between carcinogenesis of RDEB and normal skin are currently being investigated [35].

This study aims at the elucidation of factors contributing to aggressiveness of SCC in the context of RDEB. A comparative study of comprehensive gene expression profiles of both normal and malignant RDEB keratinocytes should reveal changes in gene expression. Those changes were further evaluated for their contribution to high morbidity rates in RDEB cancer. Here, we focus on expression changes in transforming growth factor β1 (TGFβ1) and some related genes.

2. Material and methods

2.1. Cell lines and RNA samples

Cell line	RDEB subtype	Mutation
RDEB-CL	Non-malignant RDEB keratinocyte cell line	—
RDEB-O	Other generalized RDEB	—
RDEB	Recessive dystrophic epidermolysis bullosa	—
SSC	Saline-sodium citrate	—
SCCRDEB4	SCC RDEB keratinocyte cell line	—
SPARC	Secreted protein acidic and rich in cysteine	—
RDEB-sev gen	Severe generalized RDEB	—
SDS	Sodium dodecyl sulfate	—
SCC	Squamous cell carcinoma	—
TSP-1	Thrombospondin-1	—
TIMP-1	Tissue inhibitor of matrix metalloproteinases	—
TGFβ1	Transforming growth factor β1	—
TRIM27	Tripartite motif-containing protein 27	—
COL1A2	Type I collagen	—
COL7A1	Type VII collagen	—
VCL	Vinculin	—

Table 1

Cell line	RDEB subtype	Mutation
RDEB-CL	RDEB-sev gen	COL7A1(7786delG/R578X)
SCCRDEB4	RDEB-sev gen	COL7A1(8244dupC/8244dupC)
HaCaT	—	Wild type
France. As control for both RDEB cell lines served HaCaT cells. All cell lines were routinely grown in Keratinocyte-SFM, supplemented with bovine pituitary extract and recombinant epidermal growth factor (Invitrogen, USA) (Table 1).

2.2. Probe synthesis

RNA isolation and cDNA labelling was done essentially as described by Aberger et al. [1]. Briefly, after harvesting cells were lysed using Tri Reagent™ (MRC Inc., USA) and RNA was isolated using the provided protocol. Labelling of cDNA to high specific activity by reverse transcription was carried out by using 15 µCi total RNA, 70 µCi 32P-dCTP (3000 Ci/mmol, Amersham Biosciences, USA), 10 µl 5x labelling buffer (for 200 : 120 µl 5x SuperScript™ reverse transcriptase buffer (Invitrogen, USA), 3 µl dATP/dGTP/dTTP 100 mM each, 0.8 µl 1 mM dCTP, 10.2 µl DEPC treated dH2O), and 2 µl SuperScript II reverse transcriptase (Invitrogen). The labelled probes were subsequently purified using GFX columns (Amersham) according to the manufacturer’s protocol.

To measure and verify the incorporation and quality of the labeling reaction, scintillation-counting was performed.

2.3. Array hybridization and data analysis

Nitrocellulose membranes of 22 × 22 cm (Hybond N+, Amersham Biosciences, UK) were spotted with PCR products of 9738 ESTs of the Incyte Human UniGEM Microarray clone set in duplicates on a MicroGrid II arrayer (BioRobotics, UK). Prehybridization was carried out for 2 h at 65°C. cDNA probes were denatured for 5 min at 95°C. Then the filters were hybridized with labeled cDNAs for 2 days at 65°C in pre-warmed hybridization buffer (5X Denhardt’s solution, 5X saline-sodium citrate (SSC), 1% sodium dodecyl sulfate (SDS)). Afterwards the filters were washed four times in buffers with decreasing SSC concentration (20 minutes and 65°C each): 2×SSC/0.1% SDS, 0.2×SSC/0.1% SDS (carried out twice) and 0.1×SSC/0.1% SDS. Subsequently, filters were rinsed in 2×SSC, sealed in Saran-wrap and exposed four days to phosphorimager screens (Fuji, Germany). These screens were scanned using BAS READER 1800 II phosphorimager (Fuji, Germany). For each RNA sample two arrays were hybridized, so four hybridization spots per EST could be used for statistical analysis.

2.4. Image and data analysis

After spot intensity calculation using AIDA software (Raytest, Germany), data was exported to Microsoft Excel (Microsoft, USA). Each spot signal was normalized for total signal intensity of all spots on the array.

2.5. Real-time RT-PCR

Genes of interest (see Table 2) which showed strong up- or down-regulation exceeding a factor of 1.8 were chosen for verification using real-time RT PCR. Primers were designed using the open-source primer design software PerlPrimer [78] and ordered at Sigma Aldrich (see Table 2).

For PCR reaction True-Start™ Hot Start Polymerase (MBI Fermentas, Germany) was used. The annealing temperature for each primer pair was determined using melting curves and 2% agarose gel banding of PCR products. The expression of three housekeeping genes was monitored (see Results) for normalization. The results of each PCR reaction were calculated using the Bio-Rad ‘Genex’ MS-Excel macro (Gene Expression Analysis for iCycler IQ™ Real-Time PCR Detection System) based on the algorithms outlined by Vandensompele et al. [127].

3. Results

Genes of interest (Table 2) chosen from the array results were those which play a role in the TGFβ-signaling. Additionally they exceed a factor of 1.8 for up- or down-regulation compared to the reference. The HaCaT cell line served as reference for both RDEB cell lines. The results of real-time RT-PCR analysis are listed in Table 3. RDEB cells show significant over-expression of TGFβ1, TIMP-1 (tissue inhibitor of matrix metalloproteinases-1), CDHE (E-cadherin), FN1 (fibronectin 1), COL7A1 and COL1A2 (type I collagen), and significant under-expression of LRP1 (low density lipoprotein receptor-related protein 1) and VCL (vinculin).
Table 2
Selected genes and primers

Gene	Abbreviation	RefSeq ID	Forward primer (5′-3′)	Reverse primer (5′-3′)
Glyceraldehyde-3-phosphate dehydrogenase ribosyltransferase	HPRT	NM_000194	GGGCTATAAATCTTTTGC	CTGTCGATTACAAAAAGC
Tripartite motif-containing protein 27	TRIM27	NM_003055	CAGCAAGAAGCTAAATCT	AGCTGCTCAAAGTCCA
Transforming growth factor beta	TGFβ1	NM_000660	AAACCCACACAAATACT	TACACTTGAGCCATAGCA
TIMP metalloeloproteinase inhibitor 1	TIMP-1	NM_003254	GTCTCTGGTCCCCAGAT	GTGGAACAGGGATGAGC
E-cadherin	CDH1	NM_000466	AAGAGGACGGAGATTGTT	CAGAGCCAGAGATCAT
Thrombospondin-1	TSP-1	NM_003294	CGACCAAGAAGACTCTGT	GCAGACACGTCCTACCC
Low density lipoprotein receptor-related protein 1	LRP1	NM_000232	GCCCTGACGAGATCAAAT	CCTTACTCCCTGACAA
Fibronectin 1	FN1	ENSG0000011541	ATGCCGACCAGAATTTGG	GCCCCACGACATCCTCA
Type VII collagen	COL7A1	NM_000904	CTGGACGGCCCCTACCTG	TGCTCCACACACGATG
Secreted protein acidic and rich in cysteine	SPARC	NM_000318	TCTCCTTTCTCTTTTGGT	TCCCACAGACCCCTCA
Glycoprotein nonmetastatic B	GPNMB	NM_00105340	CTGGTGACAGACGATCAG	AACAAGAAGGCGATGA
Vinculin	VCL	NM_003373	ATGCCGACGAGATTTGGG	GCCTGGGGAGGAGACTA
Type 1 collagen	COL1A1	NM_000889	AAGGACGGTGCTACTCAC	CCAAGGCGGAATATC
Keratin 18	KRT18	NM_000387	GCCGGAGAATTTCTCCTTG	CTGAGAAGTTGGTGTTGC

SCCRDEB4 cells show significant over-expression of TGFβ1, CDH1, SPARC (secreted protein acidic and rich in cysteine), VCL and GPNMB (glycoprotein nonmetastatic B), and significant under-expression of TSP-1 (thrombospondin-1), LRP1, FN1, COL7A1 and KRT18 (keratin 18). Especially GPNMB is massively up-regulated.

The selection of suitable housekeeping genes for real-time RT PCR analysis was somewhat challenging in the case of RDEB cells. The preliminary results of the nitrocellulose filters indicated that some of classic reference genes show abnormal expression in RDEB (e.g., actins and tubulins), arousing doubts in their usefulness as suitable housekeeping genes for the further verification of over- and under-expressed genes. Others were not included at all in the 9738 expressed sequence tags (ESTs) spotted on the filters (e.g., cyclophilin).

Structural genes like actins or tubulins were excluded as possible housekeeping genes. As RDEB is a skin disorder, chances are that structural genes are expressed differently (as indicated by the changed intensities on the nitrocellulose filters).

Therefore we chose glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hypoxanthine ribosyltransferase (HPRT) and tripartite motif-containing protein 27 (TRIM27) as housekeeping genes. These genes take part in different cellular pathways and are therefore unlikely to be co-regulated. All three showed normal expression levels according to the filter results. One is a novel housekeeping gene (TRIM27) and two are “classic” housekeeping genes (HPRT and GAPDH).
Table 3
Real-time RT-PCR results (expression ratio vs. HaCaT cells) and main functions

Abbreviation	RDEB-CL (s.d.)	SCCRDEB4 (s.d.)	Main functions
TGFβ1	2.83 (0.49)	4.91 (1.46)	• Growth-regulatory cytokine; key role in differentiation, apoptosis, matrix protein synthesis and degradation [40], inflammation and angiogenesis [59]
• Dual role in cancer, time-dependent model: early phase of tumor development → suppressor function			
late stage/established tumor → promotes tumor cell survival, cancer progression, metastasis [59] by facilitating epithelial-mesenchymal transition (EMT) [101, 131], angiogenesis and escape from immune surveillance [101]			
TIMP-1	2.61 (1.10)	1.39 (0.31)	• TGFβ1 induces expression of MMP (matrix metalloproteinase) -2 and MMP-9; down-regulates inhibitors TIMPs [40, 59]
• TIMPs are the antagonists to MMPs, restrict their activation, bind to MMPs in a 1:1 stoichiometry [52]			
• Can influence activity of growth factors [47], cell morphology [103] and inhibit angiogenesis [62]			
CDH1	2.38 (0.55)	6.47 (1.33)	• Expressed by epithelial cells (hence "E"-cadherin)
• Belongs to large family of cell-cell adhesion molecules [134]			
• Part of adhesion junction, plays a role in cell-cell adhesion and recognition (reviewed in [43]), spans intercellular space between two cells			
• Interacts with other proteins (e.g., VCL), coupling it to the actin cytoskeleton [93]			
TSP-1	1.41 (0.31)	0.14 (0.03)	• Involved in cell adhesion, migration, proliferation, matrix remodeling [2, 23, 67, 76, 88, 100], apoptosis [61, 124], angiogenesis [112]
• Able to activate latent TGFβ1 [89]			
• Strongly influences tumor growth, progression and metastasis			
• Bonds MMP-2 and –9 [10], enhances their cellular uptake and degradation via LRPI [53, 46, 136]			
FN1	4.55 (0.72)	0.22 (0.06)	• Ever-present matrix glycoprotein [68]
• Bonds to various "structural" molecules (collagen, actin or fibrin [135], several integrins [4])			
• Functions in keratinocyte adhesion and migration [118, 122]			
• Cellular transformation causes loss of FN reducing cellular adhesion → favorable for tumor metastasis [107]			
• TGFβ1 induces synthesis of fibroblasts and fibrosarcoma cells [30, 56, 57]			
COL7A1	5.46 (0.49)	0.29 (0.03)	• TGFβ1 is enhancer of type VII collagen gene expression in keratinocytes and dermal fibroblasts [26, 91, 109]
 • Major component of the anchoring fibrils [54]
 • Mutations in COL7A1 cause RDEB [54], leading to reduced or absent type VII collagen protein [113]
 • Synthesized as procollagen, forms homotrimers, undergoes further aggregation and maturation processes [102] |

(continued next page)
Table 3 (continued)

Abbreviation	RDEB-CL (s.d.)	SCCRDEB4 (s.d.)	Main functions
SPARC	0.90 (0.21)	2.59 (0.56)	• Matricellular protein mediating cell-matrix interactions
			• No primarily structural role [70], expressed when changes in cell-matrix or cell-cell contact are needed [13]
			• Modulator of growth factor activity, cell-cycle inhibitor [70], regulator of matrix remodeling and tumour [27]
			• TGFβ1 enhances expression in human fibroblasts [15]
			• is able to increase TGFβ1 expression ex vivo [38]
GPNMB	0.70 (0.11)	143.84 (31.73)	• Transmembrane protein expressed by human keratinocytes and melanocytes [125]
			• Able to promote TGFβ1 activation
			• Able to induce MMP-3 and MMP-9 [94, 105, 108]
VCL	0.35 (0.11)	6.95 (1.28)	• Component of focal adhesions and adherens junctions; links actin filaments to membrane [31]
			• Ubiquitously expressed; interacts with various proteins (talin, paxillin, α- and β-catenin) [137]
			• Transfer of mechanical stress to the cytoskeleton, resulting in its remodeling [34]
			• Knock-out results in reduced matrix adhesion and elevated migration [133]
			• tumor suppressor [106]
COL1A2	79.56 (30.01)	2.01 (0.89)	• Fibrillar collagen made up of two α(1)I and one α(2)I chain encoded by COL1A1 and COL1A2
Type 1 collagen			• Found everywhere in body, including skin, bone and other tissues [53]
			• Provides mechanical stability and cellular integrity
			• Fibronectin and different integrins attach to type I collagen
			• TGFβ induces transcription [25, 55]
			• Over-expression seems to have tumor suppressive and anti-invasive function in glioma [53]
KRT18	1.15 (0.27)	0.07 (0.0058)	• Type I keratin
Keratin 18			• Belongs to simple epithelial keratins
			• Highly conserved among different species [114, 115]
			• Involved in preservation of cell polarity and apoptosis
			• Protective function against mechanical stress (reviewed in [98])
			• Often expressed aberrantly in cancer [16, 77, 97, 116]

4. Discussion

cDNA arrays were carried out to analyze the differences in gene expression patterns of normal and transformed RDEB-derived keratinocytes. The results indicate a prominent role of TGFβ1 signaling in the context of RDEB tumorigenesis. Hence, TGFβ-related pathways and genes were examined more closely.

Keratinocytes, fibroblasts and cells of the immune system are main producers but also targets of TGFβ1 in the skin [41]. As this regulatory cytokine is able to influence many important processes in the cell, TGFβ1 and TGFβ signaling are worthwhile objects in the investigation of cancer development and progression. TGFβ1 was found to be over-expressed in normal RDEB-CL keratinocytes (2.83 fold). This up-regulation could be related to the different roles of TGFβ1. Lu et al. [75] showed that cells bordering a tumor also often exhibit elevated TGFβ1 levels. They assumed over-expression of TGFβ1 to be an early event in head and neck SCC development. Hence, over-expression of TGFβ1 in RDEB cells could mirror an early phase of tumor development. According to the assumed temporal role of TGFβ1 in cancer [59], it might also have anti-tumoral properties in RDEB-CL keratinocytes and could prevent their transformation into tumor cells.

Another aspect is TGFβ1’s role in inflammatory and wound healing processes. It could be argued that elevated TGFβ1 levels in RDEB-CL could also be a result of these processes.

In the cancer cell line, SCCRDEB4, TGFβ1 expression nearly doubles (4.91 fold) compared to RDEB-CL. It is feasible that TGFβ1 over-expression in the tumor cell line could be a sign for aggressive, highly metastasizing cancer.

4.1. TGFβ signaling and the promotion of EMT

TGFβ1 signaling is considered to be the main trigger for EMT (reviewed in [132]). A characteristic feature of this process is the down-regulation of cell adhesion molecules, e.g., E-cadherin [40]. In accordance, reduced E-cadherin expression has also been shown after prolonged exposure of early papillomas to TGFβ1 [131]. A study by Deng et al. [32] recently confirmed TGFβ1 as direct inducer of EMT. In contrast, real time RT-PCR results for CDHE mRNA revealed elevated levels of these transcripts (6.47 fold) in SCCRDEB4. Also VCL, the protein coupling CDHE to the actin cytoskeleton, is up-regulated (6.95 fold).

These findings might be explained by the fact that the effects of TGFβ1 on E-cadherin expression are mediated not only by Smad4 through Snail and Slug induction [121] but also through Smad-independent signaling. Both mechanisms are needed for a full repression of E-cadherin expression [83]. Therefore it might be possible, that in SCCRDEB4 defects in Smad4 signaling and/or Snail inactivation could account for elevated CDHE mRNA levels.

Smad 4 knockdown has been shown to prevent CDHE down-regulation [121] and to suppress type I collagen synthesis [63]. As this reflects the situation present in our study, Smad 4 could be considered a possible candidate that might be defective in RDEB SCC.

The induction of Snail1 or Snail2 by TGFβ also results in E-cadherin suppression [9, 20] and elevated expression of FN [20, 96]. Therefore both, Snail 1 and Snail 2 could be disturbed in SCCRDEB4. On the other hand, keratin 18 has been reported to be a direct target of Snail1: it mediates the down-regulation of keratin 18 [29, 45, 58]. Since we were able to show this down-regulation in SCCRDEB4 (0.07; in contrast to 1.15 in RDEB-CL), defective Snail-related signaling appears to be less likely.

The helix-loop-helix transcription factors E12 and E47 are able to directly repress E-cadherin expression [99]. Beyond that, E47 is able to induce SPARC expression [86]. As SPARC in fact exhibits elevated mRNA levels in SCCRDEB4 (2.59 fold), it could be deduced that E47 defects seem to be unlikely as well.

Cells having acquired the mesenchymal phenotype after EMT show a different gene expression profile. An increase in ECM proteins (like collagens and FN) can be noticed, promoting cell migration by stimulation of integrin signaling and by induction of focal adhesion complexes (reviewed in [132]). By contrast, FN was found to be down-regulated in SCCRDEB4 (0.22 fold) in our study and these cells show only moderately elevated mRNA levels for COL1A2 (2.01 fold). Compared to untransformed RDEB keratinocytes, COL1A2 levels are even massively down-regulated as analysis of COL1A2 mRNA in RDEB-CL yielded a nearly 40-fold over-expression (79.56 fold). Hence, there rather seems to be a down-regulation in type I collagen as compared to untransformed RDEB keratinocytes.

There are many pathways by which TGFβ signaling mediates the down-regulation of CDHE characteristic
However, the results for other genes point out that some of these pathways seem to be working correctly. Taken together, these findings argue for a preservation of the epithelial phenotype of SCCRDEB4 cells. As loss of CDH1 is the hallmark for EMT, the only remaining conclusion is that obviously EMT has not (or not yet) taken place in SCCRDEB4, although elevated TGFβ1 levels would indicate that. Besides, an obstruction of CDH1 expression is not sufficient to induce EMT [74] and neither does forced CDH1 expression induce a restoration of the epithelial phenotype [92]. It remains to be investigated whether and how the genetic changes due to defects in type VII collagen could be responsible for this observation.

4.2. TGFβ signaling in cell-cell contact, adhesion and migration

Genes involved in changes of cell-cell contact, cellular adhesion and migratory potential, which are related to or influenced by TGFβ are TSP-1, COL7A1, FN and SPARC.

In many tumor types, TSP-1 is found to be down-regulated [71]. Moreover, it appears that metastatic cells produce 3-fold less TSP-1 than normal cells [90] and that decreased TSP-1 levels correlate with increased recurrence rates and decreased overall survival [44]. Many (but not all [21, 128]) SCCs have been shown to express only little amounts of TSP-1 [18, 49]. Therefore, TSP-1 has been suggested as a potent inhibitor of angiogenesis and tumor growth in skin carcinomas [120] and TSP-1 increasing drugs might be a promising strategy for cancer treatment in general [71]. We found this tumor suppressor gene to be down-regulated in SCCRDEB4 (0.14). A lack of TSP-1 might contribute to the aggressiveness of RDEB-related SCCs. Hence, the application of TSP-1 increasing anti-cancer drugs might prove useful.

In accord with our results showing a strong decrease of FN mRNA levels in SCCRDEB4 (0.22 fold) despite elevated TGFβ1 expression, FN generally seems to be reduced in cancer cells [30]. Therefore, the decline in FN mRNA levels might not be due to some perturbation in TGFβ1 signaling, but might rather result from rapid decay of FN mRNA. However, more recent studies have implicated high levels of FN with tumor cell proliferation and low FN levels with dormant cancer cells [8]. Yet, all these results have been generated from studies using fibroblasts and not keratinocytes. It has already been shown that those two cell types react differently to the same signal(s) [123]. The role of FN mRNA repression in SCCRDEB4 keratinocytes is therefore difficult to interpret. A study by Berndt et al. in 1998 [11] on tissue samples of oral SCCs and breast cancer cells showed that these cells themselves synthesize only very small amounts of FN in vivo and that FN is produced mainly (if not exclusively) by stromal cells. Assuming that stromal cells like fibroblasts are the main source of FN, this might account for the reduced expression of this gene by SCCRDEB4 keratinocytes. On the other hand, RDEB-CL cells are also keratinocytes and they do not show a decrease in FN mRNA. Hence the loss of FN mRNA expression might very well provide for increased migratory potential of SCC cells.

Less information exists on the TGFβ-mediated control over SPARC. It seems plausible, that TGFβ increases SPARC expression in order to influence processes like migration or proliferation [15]. In cancer, SPARC is often over-expressed [7, 80, 104, 111, 117]. These relations also seem to apply to SCCRDEB4 as we found increased TGFβ1 (4.91) and SPARC mRNA (2.59 fold) levels. Those might contribute to the migratory potential of RDEB SCC cancer cells. Elevated expression levels of SPARC indicate ongoing remodeling processes [15]. This way TGFβ signaling seems to increase cancer cell motility and could, in vivo, facilitate the development of metastasis.

TGFβ1 is also an enhancer of type VII collagen gene expression in keratinocytes and dermal fibroblasts [26, 91, 109]. In accordance, up-regulation of TGFβ1 in untransformed RDEB keratinocytes seems to increase COL7A1 mRNA levels (5.46 fold) although the present mutations would predict reduced levels of COL7A1 mRNA due to premature mRNA decay. This effect might be cell culture related. On the other hand Martins et al. [79] propose that loss of type VII collagen influences TGFβ1 signaling, leading to increased COL7A1 gene transcription. Although TGFβ1 levels are further elevated in SCCRDEB4, expression of COL7A1 mRNA drops to a very low level (0.29 fold). Reduction or absence of type VII collagen in RDEB keratinocytes has been reported to be related to increased migration and invasiveness [79], as well as enhanced motility and MMP expression [12, 24].
Hence the down-regulation of COL7A1 mRNA could be related to the process of cancer development rather than TGFβ signaling. Other pathological processes could intercept the signal stimulating COL7A1 gene expression. TGFβ signaling seems to regulate the expression of a higher number of genes in transformed cells [101] and is hence able to influence more cellular processes and pathways in malignant cells. That way, expression of COL7A1 mRNA could be abolished.

4.3. TGFβ signaling and MMP activity

In tumors, TGFβ1 is able to induce the expression of MMP-2 and MMP-9 whilst simultaneously down-regulating their inhibitors, the TIMPs [40, 59]. Together these proteins contribute to migration and invasion of the tumor. MMPs are already known to be highly over-expressed in tumors [3, 14, 22, 28, 42, 48, 95]. This is also the case for SCCs in RDEB; Kivisaari et al. showed an up-regulation of MMP-7 and MMP-13 [66].

We are now able to demonstrate a dysregulation of their inhibitory molecule as well: while TIMP1 is expressed at elevated levels in RDEB-CL (2.61 fold), its expression is down-regulated to normal levels in SCCRDEB4 (1.39 fold). Although there seems to be no reduction in TIMP1 expression as compared to normal keratinocytes, there clearly is a reduction of TIMP-1 levels in comparison to non-transformed RDEB cells. In SCCRDEB4, elevated levels of TGFβ1 seem to result in a down-regulation of TIMP-1. It can be suggested that RDEB-CL keratinocytes innately need higher levels of TIMP-1 to effectively control cell spreading. A reduction in TIMP-1 activity or a reduction of TIMP-1 mRNA to a normal level respectively, might therefore promote abnormal cell behavior and motility and hence favor SCC progression. MMPs might be less hindered from taking action now. As TIMPs bind to MMPs in 1 : 1 stoichiometry [52], elevated MMP levels and simultaneous down-regulation of TIMPs clearly indicates an imbalance between the two molecules and could result in or contribute to uncontrolled MMP activity.

Some of the genes mentioned in the context of cell-cell contact, adhesion and migration are also involved in MMP synthesis, control or degradation. TSP-1 is able to bind MMPs to facilitate their degradation via the LRP-1. Many carcinoma cell lines have been shown to produce only little or even no LRP1 [19]. LRP-1 already exhibits reduced levels in untransformed RDEB keratinocytes (0.26), while both TSP-1 (1.41) and TIMP-1 (2.61) expression is not altered or even elevated. This could also be interpreted as a factor that facilitates SCC development. SCCRDEB4 cells show reduced levels of TSP-1 (0.14) and LRP-1 (0.26) mRNA which might further contribute to uncontrolled activity of MMPs.

A down-regulation of type VII collagen has been associated with increased MMP expression as well [12, 24]. The finding that type VII collagen shows reduced expression in SCCRDEB4 (0.29) might propose increased MMP expression in SCCRDEB4. This assumption is supported by the results of Kivisaari et al. [66].

SPARC increases the production [126] and stimulates the activation of various MMPs in different cell types [39, 64, 81, 119]. However, untransformed RDEB-CL keratinocytes show normal SPARC mRNA levels, despite TGFβ1 up-regulation indicating that TGFβ1 signaling still has an anti-tumor activity. Obviously, there is not only a down-regulation of MMP-inhibitory molecules but also MMP degradation appears to be hindered. Additionally, TGFβ1 signaling appears to boost the expression and activation of MMPs. TGFβ1 seems to be a key player in MMP control in RDEB SCC. The ability of untransformed RDEB keratinocytes to degrade MMPs might already be weakened and it is possible that the up-regulation of TIMP-1 could result from or be meant to compensate this deficiency. Once TGFβ1 levels exceed a certain level and/or are put in a malignant context, this last line of defense against uncontrolled MMP activity could fail and promote tumor growth and metastasis. Hence TGFβ1 is likely to cause or contribute to the extraordinary aggressive behavior of SCCs in RDEB. Consequently, targeting this pathway might represent a useful supplementary strategy in cancer therapy of RDEB patients.

4.4. TGFβ signaling and GPNMB

Of certain interest is also the massive up-regulation of glycoprotein nonmetastatic B expression in SCCRDEB4 (144 fold). For some cancer types, GPNMB has already been proposed as a possible tumor and/or prognostic marker [51, 108]. So, next to being a possible tumor marker for RDEB-related
exposure to TGFβ1. The prolonged healing of wounds necessitates body sites prone to blistering and the development on sites that are subject to constant wound healing processes or might act to elevate the expression of type VII collagen in order to counteract weakened cellular adhesion.

While TGFβ1-induced EMT apparently does not have a high relevance in RDEB related SCCs, its signaling appears to be of crucial importance in the control of MMP activity. Elevated TGFβ1 mRNA levels in the tumor cell line SCCRD4 seem to provide for reduced MMP inhibition and degradation, while simultaneously promoting their expression and activation. Apart from MMP activity enhancement, TGFβ1 signaling is known to cause changes in cellular adhesion molecules that favor tumor spread and metastasis.

Importantly, the negative effect of elevated TGFβ1 expression can only be seen in SCCRD4. Hence, an over-expression of TGFβ1 itself does not seem to cause malignant consequences. Probably either a certain threshold of TGFβ1 has to be exceeded or additional mutations have to be acquired. Also the time period of exposure to TGFβ1 has been shown to be of vital importance [131]. Considering this, elevated TGFβ1 expression in RDEB-CL might represent a reason, why SCCs in RDEB preferentially develop on sites that are subject to constant wound healing, so body sites prone to blistering necessitate the pronounced activity of this pathway. The prolonged exposure to TGFβ1 at elevated levels might promote SCC development and progression via the different actions described, especially by facilitating the loss of control over MMP activity. Targeting this signaling pathway might therefore contribute to RDEB cancer therapy. TGFβ1 becomes even more interesting as elevated expression and protein levels of this gene seem to be causative for the failure of tamoxifen treatment and tumor immunotherapy [6, 60].

5. Conclusion

In conclusion, we have found clear indications that TGFβ1 signaling seems to be of general importance in RDEB as even untransformed RDEB keratinocytes show elevated levels of TGFβ1 mRNA. In a non-malignant background this effect could be caused by wound healing processes or might act to elevate the expression of type VII collagen in order to counteract weakened cellular adhesion. The prolonged healing, so body sites prone to blistering necessitate the development on sites that are subject to constant wound healing processes or might act to elevate the expression of type VII collagen in order to counteract weakened cellular adhesion. The prolonged healing, so body sites prone to blistering necessitate the development on sites that are subject to constant wound healing processes or might act to elevate the expression of type VII collagen in order to counteract weakened cellular adhesion.

TGFβ1 activity appears to be of crucial importance in the control of MMP activity. Targeting this signaling appears to be of vital importance [131]. Considering this, elevated TGFβ1 mRNA levels in the tumor cell line SCCRD4 seem to provide for reduced MMP inhibition and degradation, while simultaneously promoting their expression and activation. Apart from MMP activity enhancement, TGFβ1 signaling is known to cause changes in cellular adhesion molecules that favor tumor spread and metastasis.

Importantly, the negative effect of elevated TGFβ1 expression can only be seen in SCCRD4. Hence, an over-expression of TGFβ1 itself does not seem to cause malignant consequences. Probably either a certain threshold of TGFβ1 has to be exceeded or additional mutations have to be acquired. Also the time period of exposure to TGFβ1 has been shown to be of vital importance [131]. Considering this, elevated TGFβ1 expression in RDEB-CL might represent a reason, why SCCs in RDEB preferentially develop on sites that are subject to constant wound healing, so body sites prone to blistering necessitate the pronounced activity of this pathway. The prolonged exposure to TGFβ1 at elevated levels might promote SCC development and progression via the different actions described, especially by facilitating the loss of control over MMP activity. Targeting this signaling pathway might therefore contribute to RDEB cancer therapy. TGFβ1 becomes even more interesting as elevated expression and protein levels of this gene seem to be causative for the failure of tamoxifen treatment and tumor immunotherapy [6, 60].

Acknowledgments

The authors would like to thank Annemarie Frischau and Fritz Aberyger (Department of Molecular Biology, University of Salzburg) for their assistance in production of cDNA arrays. We also thank Debra International for providing the SCCRD4 and RDEB cell lines. This project was funded by the “Jubiläumsfonds der Österreichischen Nationalbank” (research grant No: 12689).

References

[1] F. Aberger, A.P. Costa-Pereira, J.F. Schlaak, T.M. Williams, R.F. O’Shaughnessy, G. Hollaus, J.M. Kerr and A.M. Frischau, Analysis of gene expression using high-density and IFN-gamma-specific low-density cDNA arrays, Genomics 77 (2001), 50–57.
[2] J.C. Adams and J. Lawler, Diverse mechanisms for cell attachment to platelet thrombospondin, J Cell Sci 104 (Pt 4) (1993), 1061–1071.
[3] K. Airosa, N. Johannson, A.L. Kariniemi, V.M. Kahari and U.K. Soorajullah-Kone, Human collagenase-3 is expressed in malignant squamous epithelium of the skin, J Invest Dermatol 109 (1997), 225–231.
[4] S.K. Akinyama, K. Olden and K.M. Yamada, Fibronectin and integrins in invasion and metastasis, Cancer Metastasis Rev 14 (1995), 173–189.
[5] B.K. Armstrong and A. Kricke, The epidemiology of UV induced skin cancer, J Photochem Photobiol B 63 (2001), 8–18.
[6] C.L. Artrage, K.M. Koli, T.C. Dugger and R.R. Clarke, Reversal of tamoxifen resistance of human breast carcinomas in vivo by neutralizing antibodies to transforming growth factor-beta, J Natl Cancer Inst 91 (1999), 46–53.
[7] R.L. Aycock, A.C. Bradshaw, E.H. Sage and B. Starcher, Development of UV-induced squamous cell carcinomas is suppressed in the absence of SPARC, J Invest Dermatol 123 (2004), 592–599.
[8] D. Barkan, J.E. Green and A.F. Chambers, Extracellular matrix: A gatekeeper in the transition from dormancy to metastatic growth, Eur J Cancer 46 (2010), 1141–1148.
[9] E. Batlle, E. Sanchez, C. Fernandez, D. Dominguez, M. Monfar, J. Baude and A. Garcia De Herreros, The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells, Nat Cell Biol 2 (2000), 84–89.
[10] K. Brin and M. Simon, Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity, J Biol Chem 275 (2000), 32167–32173.
Diversity of function is inherent in matricellular proteins: An appraisal of thrombospondin 1. J Cell Biol 130 (1995), 503–506.

S.R. Bramhall, J.P. Neoptolemos, G.W. Stamp and N.R. Lemoine, Imbalance of expression of matrix metalloproteases (MMPs) and tissue inhibitors of the matrix metalloproteases (TIMPs) in human pancreatic carcinoma, J Pathol 192 (1997), 347–355.

R.A. Bracken and E.H. Sage, SPARC, a matricellular protein. At the crossroads of cell–matrix, Matrix Biol 19 (2000), 569–580.

H. Bühler and G. Schauter, Transfection of keratin 18 gene in human breast cancer cells causes induction of adhesion proteins and dramatic repression of malignancy in vitro and in vivo, Mol Cancer Res 3 (2005), 365–371.

T. Bunn, S. Broedtmann, N. Cox and C. Griffith, ed., Reed’s Textbook of dermatology, Oxford: Blackwell Science, 2004.

B. Burnworth, S. Arendt, S. Muffler, V. Steinkraus, E.B. Rook’s Textbook of dermatology (2007), 763–780.

K.A. Demali, Vinculin—a dynamic regulator of cell adhesion, Trends Biochem Sci 29 (2004), 565–567.

B. Deng, X. Yang, J. Liu, F. He, Z. Zhu and C. Zhang, Focal adhesion kinase mediates TGF-beta-induced renal tubular epithelial-to-mesenchymal transition in vitro, Mol Cell Biol 30 (2010), 21–29.

H. Emonard, G. Bellon, L. Troeberg, A. Berton, A. Robi- net, P. Henriet, E. Marbach, K. Kirkegaard, L. Patthy, Y. Eickhoff, H. Nagase, W. Honeck and P.J. Courtay, Low density lipoprotein receptor-related protein mediates endothelial cell-stimulation of collagen gene expression, J Biol Chem 279 (2004), 54944–54951.

J.D. Fine, L.B. Johnson, M. Weiner, K.P. Li and C. Suchin, Inherited epidermolysis bullosa: Past, present, and future, Ann N Y Acad Sci 1194 (2010), 213–222.

J.D. Fine, R.A. Eady, E.A. Baurer, J.W. Bauer, J. Knaup et al. / TGF-β-signaling in RDEB SCC
J. Knap et al. / TGFβ-signaling in RDES SCC

350

[38] A. Franks, A.D. Bradshaw, J.A. Basouk, C.C. Howe, W.G. Cussan and E.H. Sage, SPARC regulates the expression of collagen type 1 and transforming growth factor-beta1 in mesangial cells, *J Biol Chem* 274 (1999), 32145–32152.

[39] C. Gilles, J.A. Basouk, H. Posseband, E.H. Sage, J.M. Foulart and E.W. Thompson, SPARC/steinonectin induces matrix metalloproteinase 2 activation in human breast cancer cell lines, *Cancer Res* 58 (1998), 5525–5530.

[40] A.B. Glick, TGFβ, back to the future: Revisiting its role in skin carcinogenesis, *Carcinogenesis* 29 (2008), 9–14.

[41] A.B. Glick, R. Perez-Lorenzo and J. Mohammed, Context-dependent regulation of cutaneous inflammatory responses by TGFβ and its role in skin carcinogenesis, *Carcinogenesis* 29 (2008), 9–14.

[42] G. Gonzalez-Arbelo, I. Saito, F. Viadiu, L. Teran, M. Selman and R. Perez-Tamayo, 72-kDa (MMP-2) and 92-kDa (MMP-9) type IV collagenase production and activity in different histotypic types of lung cancer cells, *Pathology* 26 (1998), 16.

[43] M. Goodwin and A.S. Yap, Classical cadherin adhesion molecules: Coordinating cell adhesion, signaling and the cytoskeleton, *J Mol Med* 38 (2004), 870–844.

[44] G.D. Grosefeld, D.A. Ginsberg, J.P. Stein, R.H. Bochner, D. Eising, S. Grosben, M. Dunn, P.W. Nichols, C.R. Taylor, D.G. Skamer and R.J. Cote, Thrombospondin-1 expression in Madder cancer: Association with p53 alterations, tumor angiogenesis, and tumor progression, *J Natl Cancer Inst* 89 (1997), 219–227.

[45] A.G. de Herreros and J. Baulabé, Snail induction of epithelial to mesenchymal transition: Direct repression of the gene expression of claudins/occludin by Snail, *J Cell Sci* 116 (2003), 32145–32152.

[46] T. Hayashi, K. Yamashita, K. Tanzawa, E. Uchijima and J. Herz and D.K. Strickland, LRP: A multifunctional scavenger receptor and signaling receptor, *J Clin Invest* 100 (1997), 220–226.

[47] A. Hayasaka, N. Suzuki, N. Fujimoto, S. Iwama, E. Yokota, S. Dedhar, A.G. de Herreros and J. Baulabé, *J Biol Chem* 276 (2001), 14594–14598.

[48] T. Hamana, H. Kitano, K. Koizumi and T. Fukuyama, Y. Kanda and H. Saisho, Elevated plasma levels of matrix metalloproteinase-9 (MMP-9) in hepatocellular carcinoma, *J Clin Oncol* 19 (2001), 32145–32152.

[49] Y. Hashimoto, N. Nakahama, K. Urabe, H. Yoshiska, Y. Yoshinaka, T. Hamana, H. Kitanou, K. Koizumi and T. Okamoto, Role of internal thrombospondin-1 in motility and proteolytic activity of oral squamous cell carcinoma cells, *Int J Mol Med* 12 (2003), 447–452.

[50] J. Herz and D.K. Strickland, LRP: A multifunctional scavenger and signaling receptor, *J Clin Invest* 100 (2001), 779–784.

[51] T. Hisaichi, S. Sato, Y. Yamaguchi, T. Passeron, K. Tamaki and V.J. Hearing, Glycoprotein nonmetastatic melanoma protein b, a melanocytic cell marker, is a melanosome-specific and proteolytically released protein, *FASEB J* 24 (2010), 4614–4629.

[52] C.V. Hori, S. Hori, R. Shima, M. Tsujimoto and T. Shinohara, Matrix metalloproteinase-9 expression is associated with colon cancer development, *Int J Cancer* 90 (2001), 1817–1821.

[53] K. Homma, T. Miyata, and T. Ochiya, Type I collagen gene suppression of collagen type I and transforming growth factor-beta1 in malignant human glioma cells, *Cancer Cell* 7 (2005), 12.

[54] A. Hovnanian, P. Duquesnoy, C. Blanchet-Bardon, R.G. Knowlton, S. Amselem, L. Batschret, I. Uutto and M. Gossenos, Genetic linkage of recessive dystrophic epidermolysis bullosa to the type VII collagen gene, *J Clin Invest* 90 (1992), 1032–1036.

[55] Y. Ichi, E.A. Smith, E.C. LeRoy and M. Trojankowska, Basic fibroblast growth factor inhibits basal and transforming growth factor-beta induced collagen alpha 2(I) gene expression in sclerodermatous and normal fibroblasts, *J Histochem* 24 (1997), 90–95.

[56] R.A. Ignato, T. Endo and J. Massager, Regulation of fibronectin and type-I collagen mRNA levels by transforming growth factor-beta, *J Biol Chem* 262 (1987), 6434–6446.

[57] R.A. Ignato and J. Massager, Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix, *J Biol Chem* 261 (1986), 4337–4345.

[58] J. Ikenouchi, M. Matsuda, M. Furuse and S. Tsukita, Regulation of tight junctions during the epithelium-mesenchymal transition: Direct repression of the gene expression of claudin-1, *J Cell Sci* 116 (2003), 1959–1967.

[59] H. Ishida and K. Miyazono, TGFβ signaling: A complex web in cancer progression, *Nat Rev Cancer* 10 (2010), 415–424.

[60] P. Jachimacki, B. Hoedendorf, K. Fehl-Schulte, C. Wirth, M. Hrysch, K.H. Schlingensiepen, A. Bauer, A. Blesch and U. Bogdahn, Transforming growth factor-beta-mediated antiautocrine growth regulation of gliomas as detected with phosphotyrosine antiserum oligomides, *Int J Cancer* 65 (1996), 332–337.

[61] B. Jannene, O.V. Volpert, S.E. Crawford, M. Febbraio, R.L. Silverstein and N. Bouck, Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1, *Nat Med* 6 (2000), 41–48.

[62] M.D. Johnson, H.R. Kim, L. Chedler, G. Taue-Wu, N. Bruck and P.J. Polverini, Inhibition of angiogenesis by antisense oligonucleotides, *J Clin Invest* 93 (1994), 194–202.

[63] A. Kaimori, J. Potter, J.Y. Kaimori, C. Wang, E. Mezey and R.L. Silverstein and N. Bouck, Signals leading to apoptosis-dependent inhibition of neovascularization by antisense oligonucleotides, *J Cell Biol* 160 (2003), 477–488.

[64] A. Kaimori, J. Potter, J.Y. Kaimori, C. Wang, E. Mezey and A. Koteish, Transforming growth factor-beta induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro, *J Biol Chem* 282 (2007), 22809–22810.

[65] Y. Kato, J.M. Lewalle, Y. Bahu, M. Tsukada, N. Sakai, M. Baba, K. Kobayashi, S. Hoshika, H. Nakamura, E. Fukushima, A. Noil, J.M. Foulart and R.L. Hata, Induction of SPARC by VEGF in human vascular endothelial cells, *Biochem Biophys Res Commun* 287 (2001), 422–426.

[66] H. Kasasaki, D. Saito, F. Iwao, T. Kikuchi, H. Nakamura, S. Ohno, T. Matsumura and H. Shimizu, Squamous cell carcinoma developing in a 12-year-old boy with
nonHalloran/Siemens recessive dystrophic epidermolysis bullousa, Br J Dermatol 148 (2003), 1047–1050.
[66] A.K. Kivisaari, M. Kallajoki, T. Mirtti, J.A. McGrath, J.W. Bauer, F. Weber, R. Konigova, D. Sawamura, K.C. Stuck-Moore, S. Kalliala, M. Cukier, K. Siemen, W. Beckert and V.M. Kahari, Transformation-specific matrix metalloproteinases (MMP-7 and MMP-13) are expressed by tumour cells in epidermolysis bullosa-associated squamous cell carcinomas, Br J Dermatol 158 (2008), 778–785.
[67] M.D. Kosfeld and W.A. Frazier, Identification of active pep
H. Kosmehl, A. Berndt, S. Strassburger, L. Borsi, P. Rous-
M. Krieger and J. Herz, Structures and functions of multili-
[68] M. Krieger and J. Herz, Structure and functions of multi-
[70] J. Lawler and M. Detmar, Tumor progression: The effects of
[71] J. Lawler and M. Detmar, Tumor progression: The effects of
[72] O.J. Marshall, PerlPrimer: Cross-platform, graphical primer
[73] A.P. Lillis, L.B. Van Duyn, J.E. Murphy-Ullrich and D.K.
[74] R.A. Majack, S.C. Cook and P. Bornstein, Control of smooth
[75] S.L. Lu, D. Reh, A.G. Li, J. Woods, C.L. Corless, M.
[76] R. Mass, A. Franchi, L. Borgogoni, U.M. Reali and M. Santi-
[77] J.W. Bauer, F. Weber, R. Konigova, D. Sawamura, K.C. Stuck-Moore, S. Kalliala, M. Cukier, K. Siemen, W. Beckert and V.M. Kahari, Transformation-specific matrix metalloproteinases (MMP-7 and MMP-13) are expressed by tumour cells in epidermolysis bullosa-associated squamous cell carcinomas, Br J Dermatol 158 (2008), 778–785.
[78] H.M. McClang, S.L. Thomas, P. Or泽owski, M. Toth, P. Menon, A. Ria, R. Pruzanski and S.A. Rempel, SPARC upreg-
[79] I. Mikhailenko, D. Krylov, K.M. Argraves, D.D. Roberts, G. Liuz and D.K. Strickland, Cellular internalization and degradation of thrombospondin-1 is mediated by the amino-
[80] D. Massi, A. Franchi, L. Borgogoni, U.M. Reali and M. Santucci, Osteonectin expression correlates with clinical out-
[81] J.A. McGrath, O.M. Schofield, B.J. Mayou, P.H. McKee and R.A. Eady, Epidermolysis bullosa complicated by squamous cell carcinoma: Report of 10 cases, Br J Cancer 199 (1992), 116–123.
[82] J. Knaup et al. / TGF-β signaling in RDEB SCC 351
[83] D.M. Kline, E.D. Hay and D.A. Goodenough, Cooperation between small and LEF-1 transcription factors is essential for TGF-beta-induced epithelial-mesenchymal transition, Mol Biol Cell 17 (2006), 1817–1879.
[84] I. Mikhailenko, M.Z. Kononas and D.K. Strickland, Low density lipoprotein receptor-related protein alpha 2-macroglobulin receptor mediates the cellular internal-
[85] I. Mikhailenko, M.Z. Kononas and D.K. Strickland, Low density lipoprotein receptor-related protein alpha 2-macroglobulin receptor mediates the cellular internal-
[86] G. Moreno-Bueno, E. Cubillo, D. Sarrio, H. Peinado, S.M.
[87] C. Moss, A. Wong and P. Davies, The Birmingham Epi-
[88] K. Motegi, K. Harada, G. Ohe, S.J. Jones, I.R. Ellis, D.H. J. Thromb Haemost 31 (1999), 9543–9556.
[89] C. Moss, A. Wong and P. Davies, The Birmingham Epi-
[90] J.E. Murphy-Ullrich and M. Poczatek, Activation of latent
[91] J.A. McGrath, O.M. Schofield, B.J. Mayou, P.H. McKee and R.A. Eady, Epidermolysis bullosa complicated by squamous cell carcinoma: Report of 10 cases, Br J Cancer 199 (1992), 116–123.
[92] D. Meink, E.D. Hay and D.A. Goodenough, Cooperation between small and LEF-1 transcription factors is essential for TGF-beta-induced epithelial-mesenchymal transition, Mol Biol Cell 17 (2006), 1817–1879.
[93] I. Mikhailenko, M.Z. Kononas and D.K. Strickland, Low density lipoprotein receptor-related protein alpha 2-macroglobulin receptor mediates the cellular internal-
[94] I. Mikhailenko, M.Z. Kononas and D.K. Strickland, Low density lipoprotein receptor-related protein alpha 2-macroglobulin receptor mediates the cellular internal-
[95] G. Moreno-Bueno, E. Cubillo, D. Sarrio, H. Peinado, S.M.
[96] I. Mikhailenko, M.Z. Kononas and D.K. Strickland, Low density lipoprotein receptor-related protein alpha 2-macroglobulin receptor mediates the cellular internal-
[97] G. Moreno-Bueno, E. Cubillo, D. Sarrio, H. Peinado, S.M.
[98] I. Mikhailenko, D. Krylov, K.M. Argraves, D.D. Roberts, G. Liuz and D.K. Strickland, Cellular internalization and degradation of thrombospondin-1 is mediated by the amino-
[99] J. Lawler and M. Detmar, Tumor progression: The effects of
[100] J. Lawler and M. Detmar, Tumor progression: The effects of
[101] J. Lawler and M. Detmar, Tumor progression: The effects of
[102] J. Lawler and M. Detmar, Tumor progression: The effects of
[103] J. Lawler and M. Detmar, Tumor progression: The effects of
[104] J. Lawler and M. Detmar, Tumor progression: The effects of
forming growth factor-beta regulated expression, J Invest Dermatol 121 (2003), 1469-1478.

[90] P. Natsoulis, E. Louridas, and A. Cano, Expression of E- or P-cadherin is not sufficient to modify the morphology and the tumorigenic behavior of mouse spindle tumor cell lines. Possible involvement of plakoglobin, J Cell Sci 104 (Pt 4) (1993), 923-934.

[91] C.M. Nicolson and J.J. Gourdie, Molecular components of the adherens junction, Biochim Biophys Acta 1778 (2008), 562-571.

[92] T. Ogawa, T. Nikawa, H. Furochi, M. Kosyoji, K. Hirasaka, C.M. Niessen and C.J. Gottardi, Molecular components of matrix: Implications for cancer and wound repair, Biochim Biophys Acta 1562–1571 (2001).

[93] K. Ohashi, T. Nemoto, K. Nakamura and R. Nemori, Increased expression of matrix metalloproteinase 7 and 9 and membrane type 1-matrix metalloproteinase in esophageal squamous cell carcinomas, J Invest Dermatol 120 (2003), 2201–2209.

[94] D. Olmeda, M. Jordà, H. Peinado, A. Fabra and A. Cano, Snail silencing effectively suppresses tumour growth and invasiveness, Oncogene 26 (2007), 1862–1874.

[95] R.G. Oshima, H. Baribault and C. Caulin, Oncogenic regulation and function of keratins 8 and 18, Cancer Metastasis Rev 15 (1996), 445–471.

[96] D. Olmeda, M. Jorda, H. Peinado, A. Fabra and A. Cano, A new role for simple epithelial keratins, Bioessays 25 (2003), 6270–6277.

[97] U.T. Shankavaram, D.L. DeWitt, S.E. Funk, E.H. Sage and A.A. Rose, A.A. Grosset, Z. Dong, C. Russo, P.A. Macdonald, N.R. Bortes, Y. Shi, P. Simeon, M. Hallett, M. Park, L. Gaboury and P.M. Siegel, Glycoprotein non-metastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer, Clin Cancer Res 16 (2010), 2147–2156.

[98] J. Rynamnen, S. Sollberg, D.R. Olsen and J. Uitto, Transforming growth factor-beta up-regulates type VII collagen gene expression in normal and transformed epithelial keratinocytes in culture, Biochem Biophys Acta 180 (1991), 673–680.

[99] M. Ryynanen, J. Rynamnen, S. Sollberg, R.V. Iozzo, R.G. Knowlton and J. Uitto, Genetic linkage of type VII collagen (COL7A1) to dominant dystrophic epidermolysis bullosa in families with abnormal anchoring fibrils, J Clin Invest 92 (1992), 974–980.

[100] N. Sakai, M. Baba, Y. Nagasima, Y. Kato, H. Kondoh, K. Kobayashi, M. Yoshida, S. Kaneko, T. Koshida, S. Kawai, N. Miyakami, Y. Iyama and M. Yao, SPARC expression in invasive human epithelial cancer: Upregulation of SPARC in squamous cell carcinoma, Hum Pathol 32 (2001), 1064–1070.

[101] T. Sargentinou, I. Zhou and G.P. Tuszynski, The role of thrombospondin-1 in tumor progression, Exp Biol Med (Maywood) 226 (2000), 728–735.

[102] D. Sawamura, H. Nakano and Y. Matsuura, Overview of epidermolysis bullosa, J Dermatol 37 (2010), 214–219.

[103] M. Schiffeld, M. Haberkamp, E. Braunstein, B. Leib and J. Markl, Type II keratin cDNAs from the rainbow trout: Implications for keratin evolution, Differentiation 70 (2002), 295–302.

[104] M. Schiffeld, S. Hoffling, M. Haberkamp, M. Conrad and J. Markl, Type I keratin cDNAs from the rainbow trout: Independent radiation of keratins in fish, Differentiation 70 (2002), 282–291.

[105] G. Schaller, I. Fuchs, W. Pritze, A. Ebert, H. Herbst, K. Pantel, H. Weitzel and E. Lengyel, Elevated keratin 18 protein expression indicates a favorable prognosis in patients with breast cancer, Clin Cancer Res 7 (2001), 1470–1485.

[106] C. Schultz, N. Lemke, S. Ge, W.A. Goelink and S.A. Kempel, Secreted protein acidic and rich in cysteine promotes glioma invasion and delays tumor growth in vivo, Cancer Res 62 (2002), 6270–6277.

[107] J.E. Schwarzbauer, Alternative splicing of thrombospondin: Three variants, three functions, Bioessays 13 (1991), 527–533.

[108] U.T. Shankavaram, D.L. DeWitt, S.E. Funk, E.H. Sage and L.M. Wahl, Regulation of human monocyte matrix metalloproteinase by SPARC, J Cell Physiol 173 (1997), 327–334.

[109] M. Streit, P. Velasco, L.F. Brown, M. Skobe, L. Richard, L. Riccardi, J. Lawler and M. Demart, Overexpression of thrombospondin-1 decreases angiogenesis and inhibits the
growth of human cutaneous squamous cell carcinomas, Am J Pathol 158 (1999), 441–452.

[121] S. Takai, F. Kanai, A. Jazag, H. Ijichi, J. Yao, H. Ogawa, N. Enomoto, M. Omata and A. Nakao, Smad4 is essential for down-regulation of E-cadherin induced by TGF-beta in pancreatic cancer cell line PANC-1, J Biochem 141 (2007), 345–351.

[122] A. Takashima and F. Grinnell, Human keratinocyte adhesion and phagocytosis promoted by fibronectin, J Invest Dermatol 83 (1984), 352–358.

[123] H. Takeda, A. Kon, N. Ito, D. Sawamura, K. Takagaki, I. Hashimoto and K. Hanada, Keratinocyte-specific modulation of type VII collagen gene expression by pro-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-1beta), Exp Dermatol 14 (2005), 289–294.

[124] G. Taraboletti, D. Roberts, L.A. Liotta and R. Giavazzi, Platelet thrombospondin modulates endothelial cell adhesion, motility, and growth. A potential angiogenesis regulatory factor, J Cell Biol 111 (1990), 765–772.

[125] M. Tomihari, S.H. Hwang, J.S. Chung, P.D. Crue Jr and K. Azizian, Gp100 is a melanocyte-associated glycoprotein that contributes to melanocyte-keratinocyte adhesion in a RGD-dependent fashion, Exp Dermatol 18 (2009), 586–595.

[126] P.M. Tremble, T.F. Lane, E.H. Sage and Z. Werb, SPARC, a secreted protein associated with morphogenesis and tissue remodeling, induces expression of metalloproteinases in fibroblasts through a novel extracellular matrix-dependent pathway, J Cell Biol 121 (1993), 1433–1444.

[127] J. Varani, B.L. Riser, L.H. Hughes, T.E. Carey, S.E. Fligel and V.M. Dixit, Characterization of thrombospondin synthesis, secretion and cell surface expression by human tumor cells, Clin Exp Metastasis 7 (1989), 265–276.

[128] J.A. Watt, C. Poenaru, C. Puigdomenech, C. Casado, S. Borradori and G. Cortese, TGF-beta 1 regulates the expression of E-cadherin in normal human epidermis and in cultured keratinocytes, J Biol Chem 276 (2001), 4681–4686.

[129] S.A. Watt, C. Puigdomenech, C. Casado, S. Borradori and G. Cortese, Transforming growth factor beta1 regulates the expression of E-cadherin in normal human epidermis and in cultured keratinocytes, J Biol Chem 276 (2001), 4681–4686.

[130] J. Varani, B.L. Riser, L.H. Hughes, T.E. Carey, S.E. Fligel and V.M. Dixit, Characterization of thrombospondin synthesis, secretion and cell surface expression by human tumor cells, Clin Exp Metastasis 7 (1989), 265–276.

[131] J. Varani, B.L. Riser, L.H. Hughes, T.E. Carey, S.E. Fligel and V.M. Dixit, Characterization of thrombospondin synthesis, secretion and cell surface expression by human tumor cells, Clin Exp Metastasis 7 (1989), 265–276.

[132] J. Varani, B.L. Riser, L.H. Hughes, T.E. Carey, S.E. Fligel and V.M. Dixit, Characterization of thrombospondin synthesis, secretion and cell surface expression by human tumor cells, Clin Exp Metastasis 7 (1989), 265–276.