Primary cutaneous facial phaeohyphomycosis due to *Verruconus gallopava* (*Ochroconus gallopava*) in an immunocompetent woman from the Sub-Himalayas – a case report and literature review

Authors

Dr Santwana Verma M.D. Microbiology, Dr Ghanshyam Verma, M.D.2
Dr Archana Angrup M.D., Microbiology3, Dr M. R. Shivaprakash, M.D. Microbiology4
Mrs. Sunita Gupta M Sc.5, Dr Vineeta Sharma M.D., Microbiology6

1Associate Professor, Indira Gandhi Medical College, Shimla
2Dermatology, Associate Professor, IGMC, Shimla
3Assistant Professor, PGIMER, Chandigarh
4Professor, PGIMER, Chandigarh
5Senior Technician, PGIMER, Chandigarh
6Assistant Professor, IGMC, Shimla

Corresponding Author

Dr Ghanshyam Verma, M.D.
Dermatology, Associate Professor, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
Email: drshyamverma77@gmail.com, Telephone: 0177-2651974(R); 9418031123 (M)

Abstract

Verruconus gallopava is a melanised environmental saprophyte. Human infections of respiratory and central nervous systems occur primarily in immunocompromised subjects. Skin and subcutaneous infections are seen when disease involves multiple sites. Primary cutaneous phaeohyphomycosis is exceptional. We report a case of an immunocompetent female who had facial phaeohyphomycosis with *V. gallopava* following trauma. Lesions progressed despite antibiotic therapy. Diagnosis was established on fungal culture and she showed some favourable response to itraconazole 200 mg with terbinafine 250 mg at her second visit but was lost to follow up. No single therapeutic regimen is consistently efficacious in *V. gallopava* infections. Early laboratory confirmation is imperative to achieve success as outcome is variable even with combination of antifungal agents and surgery.

Keywords: *Verruconus gallopava*, phaeohyphomycosis, itraconazole.

Introduction

Verruconus gallopava, a dematiaceous fungus is an environmental saprophyte and rarely pathogenic. Organ transplant, haematological malignancies and advanced HIV infection constitute the risk factors [1-3]. Pulmonary or cerebral infections occur frequently and cutaneous and subcutaneous disease is seldom encountered [3-6]. Diagnosis may be missed due to lack of clinical suspicion. Response to systemic antifungal therapy with itraconazole (ITR), voriconazole (VOR) and amphotericin B (AMB) is unpredictable in advanced disease. We report primary cutaneous facial phaeohyphomycosis due
to *V. gallopava* showing initial response to oral ITR.

Case Report

A 50 years old Nepalese woman injured her right cheek with a wooden splinter following which a non-healing painful, red lesion appeared. She visited a peripheral health institution where empirical amoxicillin with clavulanic acid 625 mg T.I.D with topical antibiotics were prescribed. Dermatological consultation was taken as there was negligible response after two weeks of therapy. We saw the lady with a well to ill defined erythematous, crusted, indurated, tender plaque of 2.5X3.5 cm size over a diffuse swelling of right cheek [Fig. 1].

![Figure 1](image1.png)

Figure 1 Erythematous, crusted, indurated, plaque of 2.5X3.5 cm size over a diffuse swelling of right cheek

Rest of skin, hair and nails were healthy. General physical examination was non-contributory, vitals were within normal range and there were no systemic features. Laboratory investigations revealed absence of diabetes, HIV infection, tuberculosis or malignancies. Considering phaeohyphomycosis provisionally, skin biopsy was subjected to histopathology which revealed a granulomatous lesion. Direct microscopy of sample revealed sparse septate hyphae.

Fungal culture on SDA with chloramphenicol grew olivaceous mould at 25°C which had a characteristic surrounding reddish brown diffusible pigment [Fig. 2].

![Figure 2](image2.png)

Figure 2 Dark olivaceous velvety growth with surrounding reddish pigment characteristic of *Verruconus gallopava* seen on Sabouraud’s dextrose agar

Micro-slide culture showed pigmented, septate hyphae with conidigenous cells bearing characteristic brown ovoid to clavate conidia on cylindrical denticles, grouped in two and constricted at the central septum consistent with *V. gallopava* [Fig. 3].

![Figure 3](image3.png)

Figure 3 Pigmented, septate hyphae with conidigenous cells bearing clavate conidia of *Verruconus gallopava* on cylindrical denticles constricted at the central septum (cotton blue staining, 100X).

A repeat biopsy was cultured and patient was instituted itraconazole 100mg B.D. The lesion showed minimal regression after one month therefore terbinafine 250 mg daily was added. On the next review, there was good response.
Meanwhile the fungal culture of the second biopsy also showed growth of *V. gallopava*. The identity of the isolate was confirmed at the National Culture Collection of Pathogenic Fungi (NCCPF), PGIMER, Chandigarh, as *V. gallopava* (accession number 380006). The final outcome could not be documented as patient was lost to follow up.

Table: Cases of *Verruconus gallopava* infection reported in literature

No.	Year/Ref	Sex	Age	Site involved	Predisposition	Therapy	Outcome
1	Dixon et al, 1986, USA [25]	ND	ND	Lung	ND	ND	ND
2	Fukushima et al, 1986, Japan [2]	F	58	Subcutaneous abscess	AML	5-FC	Survived
3	Ferrani et al, 1990, USA [15]	M	62	Lungs, liver, kidney, brain	CLL	None	Died
4	Sides et al, 1991, ND [13]	M	ND	Lung	IC	ND	ND
5	Sides et al, 1991, South Africa [13]	ND	ND	Lung	Coal mine worker	ND	ND
6	Sides et al, 1991, South Africa [13]	ND	ND	Lung	Coal mine worker	ND	ND
7	Sides et al, 1991, USA [13]	ND	ND	Lung	IC	ND	ND
8	Sides et al, 1991, USA [13]	ND	ND	Brain	IC	ND	ND
9	Sides et al, 1991, USA [13]	M	47	Lung	Cardiovascular disease	ND	ND
10	Sides et al, 1991, USA [13]	M	60	Brain	Lymphoma, nocardiosis	Craniotomy, AMB, 5-FC, fluconazole	Died
11	Mancini et al, 1992, USA [26]	M	30	Pulmonary nodule	SOT (heart)	AMB	Survived
12	Smith et al, 1993, ND [27]	M	46	Cerebral abscess	SOT (heart)	None	Died
13	Vukmir et al, 1994, USA [28]	M	68	Cerebral abscess	SOT (liver)	AMB, 5FC, ITR	Survived
14	Kralovic et al, 1995, USA [29]	M	63	Lung, brain, disseminated	SOT (liver)	AMB, ITR, surgery	Died
15	Rossmann et al, 1996, USA [30]	M	59	Brain	SOT (liver)	AMB	Died
16	Bonham et al, 1996, USA [31]	ND	ND	Brain	SOT (liver)	ND	Survived
17	Jenney et al, 1998, Australia [32]	M	58	Pulmonary nodule	SOT (heart), diabetes	AMB, ITR	Survived
18	Horre et al, 1999, UK [12]	ND	ND	Systemic	AIDS	ND	ND
19	Horre et al, 1999, Australia [12]	ND	ND	Systemic	ND	ND	ND
20	Horre et al, 1999, USA [12]	ND	ND	Brain	Diabetes mellitus	ND	ND
21	Horre et al, 1999, ND [12]	M	48	Lung	SOT, HIV positive	ND	ND
22	Horre et al, 1999, Australia [12]	ND	ND	Lung	ND	ND	ND
23	Horre et al, 1999, USA [12]	ND	ND	Lung	SOT	ND	ND
24	Burns et al, 2000, Canada [21]	F	58	Lung, skin	SOT (lung)	AMB, ITR	Survived
25	Odell et al, 2000, USA [7]	M	38	Multiple lung abscess	Wood pulp worker	Surgery (lobection), ITR	Survived
26	Bowyer et al, 2000, UK [17]	M	69	Eye (endophthalmitis)	CLL	AMB intravitreal, ITC, fluconazole	Died
27	Mazur et al, 2001, USA [33]	F	32	Lung, shoulder abscess, brain abscess	SOT (lung), diabetes	AMB, SFC, ITR, surgery	Survived
28	Malani et al, 2001, USA [5]	M	32	Lung, brain, thyroid	SOT (kidney), diabetes	AMB, ITR, FCZ	Died
29	Zhao et al, 2002, China [18]	M	68	Lung	Pemphigus	AMB, ITR	Survived
30	Wang et al, 2003, China [4]	M	13	Disseminated, brain, lung, spleen	SOT (kidney)	AMB, ITR, VOR	Died
31	Bravo et al, 2004, USA [23]	M	72	Lung	Alcohol abuse, MAC infection lung	ITR	Survived
32	Fukushima et al, 2005, Japan [16]	F	66	Brain, lung, femoral mass	CLL	AMB, 5-FC, ITR, Itrbina-fine	Died
33	Ohori et al, 2006, USA [19]	M	54	Systemic	SOT (heart)	ND	Died
Discussion

Phaeohyphomycosis encompasses infections due to melanised fungi and *Verruconus gallopava* is rarely encountered. The nomenclature of *Verruconus gallopava* has evolved from *Diplorhinotrichum gallopavum, Dactylaria gallopava* to the genus *Scolecobasidium* [7]. In 1983, de Hoog classified it under *Ochroconus* and recently it is christened as *Verruconus gallopava* [7-9]. It is an environmental fungus occurring in soil, decaying vegetation and hot springs [7,10]. It has caused epidemic encephalitis in birds [11]. Only 59 human infections are scripted in world literature primarily from the USA, Australia, China, Canada, Japan, New Zealand and India [Table 1]. In the review of the demographic profile of 46 cases, male to female ratio was 3.2:1. Majority, 73.3% (33/45) acquired infection in their fifties and no case was reported in children below ten years [Table 1]. Poverty of immunity

Case	Gender	Age	Site	Disease	Treatment	Outcome
34	M	79	Lung	Pneumoconiosis	ND	ND
35	M	68	Lung	ND	ND	ND
36	ND	ND	Lung	ND	ND	ND
37	M	83	Lung	ND	ND	ND
38	M	28	Lung, brain, hip, joint	Advanced HIV	VOR, caspofungin	died
39	F	79	Lung	I/C (previous basal cell carcinoma and surgically cured melanoma)	VOR	survived
40	F	64	Lung	SOT(kidney)	AMB, VOR, fluconazole	survived
41	M	60	Lung	SOT (kidney)	ITR	survived
42	M	50	Lung	SOT (liver)	VOR	survived
43	ND	ND	Lung	SOT (kidney)	ND	ND
44	M	58	Peritoneum	SOT(heart)	VOR	survived
45	M	53	Lung, spine	SOT(kidney)	AMB, VOR	died
46	M	54	Lungs	SOT(B/L lungs)	AMB, VOR	survived
47	M	66	Lung	SOT(lung)	VOR	survived
48	F	57	Lung	SOT (lung)	VOR	survived
49	F	60	Lung	SOT(heart)	ITR	survived
50	M	57	Lung	SOT(B/L lungs)	Lobectomy, ITR	died
51	M	58	Lung	SOT (lung)	AMB, ITR	survived
52	M	67	Brain	SOT (liver)	AMB, ITR	died
53	M	69	Brain	SOT (liver)	AMB, ITR	survived
54	M	53	Lung, spine, abscesses	SOT (kidney)	Surgical drainage, AMB, VOR	survived
55	M	55	ND	SOT (lung)	ITR	survived
56	M	34	Lung	Chronic granulomatous disease, on therapy - AMB, 5-FC, Interferon for Aspergillosis	ITR, VOR pneumonectomy, po saconazole	survived
57	M	55	Lung, subcutaneous, brain, peritoneum	SOT(heart), diabetes	VOR	died
58	M	55	Skin, hyperkeratotic plaques	I/C, Gardner	ITR, terbinafine	died
59	F	30	Allergic fungal rhinosinusitis	I/C, agricultural worker	Surgery, steroids and topical antibiotics	survived
60	F	50	Facial skin	Manual labourer	ITR, terbinafine	died

Footnote: F female; M male; AML acute myeloid leukaemia; CLL chronic lymphatic leukaemia; I/C Immuno competent; B/L bilateral; 5-FC 5 fluorocytocine; SOT solid organ transplant; AIDS acquired immunodeficiency syndrome; ITR itraconazole; VOR voriconazole; AMB amphotericin B; ND not determined.
was predisposing factor in 80% cases. Solid organ transplant was reported as risk factor in 52.5% cases and other conditions included diabetes, HIV/AIDS, lymphoma and haematological malignancy. Cardiovascular accident, pemphigus, pneumoconiosis, chronic granulomatous disease and steroid therapy were antecedent in few cases.

V. gallopava is a pneumotrophic and neurotropic fungus. The inhaled fungal spores establish granulomatous reaction in the respiratory tract. Early asymptomatic infection followed by cavitary or non-cavitary lesions and abscesses develop in lungs and if suspected and detected then is amenable to treatment associated with a good clinical response. Literature reveals 50% cases having only pulmonary involvement [Table 1]. More often respiratory infection remains unabated and *Verruconus* sp. spreads to the central nervous system due to its neurotropism causing cerebral infection or abscess. Joint, kidney, thyroid, spine and liver are affected in cases when multiple system involvement is present.

Secondary cutaneous and subcutaneous lesions have been described in subjects having *Verruconus* sp. infection of lung or brain with leukaemia, solid organ transplant and diabetes. Primary cutaneous phaeohyphomycosis is rare, recognised in one Immunocompetent case. The present case is second in this regard having localized primary cutaneous lesion following trauma and repeat isolation of *Verruconus gallopava* confirmed at NCCPF, PGIMER, Chandigarh established diagnosis. Systemic fungal invasion by *V. gallopava* accounts for high mortality of 46-80%.

A variety of treatment regimens have been tried based on clinical experiences but optimal therapy remains ambiguous. The antifungal prescriptions employed frequently include ITR, AMB and VOR. ITR is consistently potent and flucytosine reasonably effective especially when toxicity of AMB is a concern. VOR is a useful alternative with potent antifungal activity and broad spectrum against black fungi. It has an advantage of maintenance of therapeutic serum levels and effective concentration in the CSF and tissue. AMB is advocated in life-threatening phaeohyphomycosis when benefits are weighed against toxicity.

Experience of treating cutaneous phaeohyphomycosis due to *Verruconus* is inconstant. Patients with secondary cutaneous or subcutaneous affliction along with involvement of other body sites treated with 5-FC, AMB and ITR recovered whereas a patient given VOR succumbed to infection. The only reported case of primary skin condition was managed on oral terbinafine 250 mg daily, ITR 200 mg twice daily for four months followed by parenteral AMB. The outcome was not encouraging as initial healing process was interrupted probably due to secondary systemic spread of fungal infection and septicemic shock. It is difficult to comment on final outcome of the present case as was lost to follow up. Year wise distribution of *Verruconus gallopava* cases reported in literature showing age, sex, site involvement, predisposing factors, therapy and outcome shown in table 1.
References
1. Qureshi ZA. Ochroconis gallopava: a dematiaceous mold causing infections in transplant recipients. Clin Transplant. 2012;26(1):17-23.
2. Fukushiro R. Subcutaneous abscesses caused by Ochroconis gallopavum. J Med Vet Mycol. 1986;24(3):175-182.
3. Boggild AK. Disseminated phaeohyphomycosis due to Ochroconis gallopavum in the setting of advanced HIV infection. Med Mycol. 2006;44(8):777-782.
4. Wang TK. Disseminated Ochroconis gallopavum infection in a renal transplant recipient: the first reported case and a review of the literature. Clin Nephrol. 2003;60(6):415-423.
5. Malani PN. Disseminated Dactylaria constricta infection in a renal transplant recipient. Transpl Infect Dis. 2001;3(1):40-43.
6. Wong JS. Ochroconis gallopava peritonitis in a cardiac transplant patient on continuous ambulatory peritoneal dialysis. Transpl Infect Dis. 2010;12:455-458.
7. Odell JA. Multiple lung abscesses due to Ochroconis gallopavum, a dematiaceous fungus, in a nonimmunocompromised woodpulp worker. Chest. 2000;118:1503-1505.
8. Seyedmousavi S. Antifungal susceptibility patterns of opportunistic fungi in the genera Verruconis and Ochroconis. Antimicrobial Agents and Chemotherapy. 2014;58:3285-3292.
9. Samerpitak K. Taxonomy of Ochroconis, genus including opportunistic pathogens on humans and animals. Fungal Diversity. 2014;65:89-126.
10. Shoham S. Transplant-associated Ochroconis gallopavum infections. Transpl Infect Dis. 2008;10:442-448.
11. Yarita K. Pathogenicity of Ochroconis gallopava isolated from hot springs in Japan and a review of published reports. Mycopathologia. 2007;164:135-147.
12. Horre R. Primary cerebral infections by melanised fungi: a review. Stud Mycol. 1999;43:176-193.
13. Sides EH. Phaeohyphomycotic brain abscess due to Ochroconis gallopavum in a patient with malignant lymphoma of a large cell type. J Med Vet Mycol. 1991;29(5):317-322.
14. Meriden Z. Ochroconis gallopava infection in a patient with chronic granulomatous disease; case report and review of the literature. Med Mycol. 2012;50(8):883-889.
15. Terreni AA. Disseminated Dactylyaria constricta infection in a diabetic patient with chronic lymphocytic leukemia of the T cell type. Am J Clin Pathol. 1990;94:104-107.
16. Fukusima N. Disseminated Ochroconis gallopavum infection in a chronic lymphocytic leukemia: a case and review of literature on haematological malignancies. Intern Med 2005;44:879-882.
17. Bowyer JD. Ochroconis gallopava endopthalmitis in fludarabine treated chronic lymphocytic leukemia. Br J Ophthalmol. 2000;84:117-121.
18. Zhao J. Pemphigus patient with pulmonary fungal infection caused by Ochroconis gallopava: the first case report in China. Zhonghua Yi Xue Za Zhi 2002;82:1310-1313.
19. Ohori A. Rapid identification of Ochroconis gallopava by a loop-mediated isothermal amplification (LAMP) method. Vet. Microbiol 2006;114:359-365.
20. Cardeau-Desangles I. Disseminated Ochroconis gallopavum infection in a heart transplant patient. Transpl Infect Dis. 2013;15(3):115-118.
21. Burns KE. Dactylyaria gallopava infection presenting as a pulmonary nodule in a
single – lung transplant recipient. J Heart Lung Transplant 2000;19:900-902.
22. Kumaran MS. Disseminated cutaneous Ochroconis gallopava infection in an immunocompetent host: an unusual concurrence – a case report and review of cases reported. Int J Dermatol. 2015;54(3):327-31.
23. Bravo LO. Ochroconis gallopavum and Mcobacterium Avium Intercellulare in an Immunocompetent patient. Chest 2004;126(4):975S.
24. Hollingworth JW. Successful treatment of Ochroconis gallopavum infection in an Immunocompetent host. Infection. 2007;35(5):367-369.
25. Dixon DM. Morphologic and physiologic studies of three dematiaceous pathogens. J Clin Micobiol. 1986;24(1): 12-15.
26. Mancini MC. Dactylaria infection of a human being: pulmonary disease in a heart transplant recipient. J Heart Lung Transplant 1992;11:827-830.
27. Prevost – Smith E. Fatal phaeohyphomycotic infection due to Dactylaria gallopava and Scedosporium prolificans in a cardiac transplant. In: Proceedings and abstracts of the annual 93rd Annual Meeting of the American Society of Microbiology, Atlanta, GA, Washington: ASM Press, 1993:F-35.
28. Vukmir RB. Successful therapy for cerebral phaeohyphomycosis due to Dactylaria gallopavum in a liver transplant patient. Clin Infect Dis 1994; 19:714-719.
29. Kralovic SM. Phaeohyphomycosis caused by Dactylaria (human dactyliasis): report of a case with review of the literature. J Infect 1995; 31: 107 – 113.
30. Rossmann SN. Dematiaceous fungi are an increasing cause of human disease, Clin Infect Dis 1996;22:73-80.
31. Bonham A. Central nervous system lesions in liver transplant recipients: Prospective assessment of indications for biopsy and implications for management. In: 15th Annual Meeting of the American Society of Transplantation Physicians, Dallas, TX, 66, 1596, 1998. et al
32. Jenny A. Pulmonary infection due to Verruconus gallopavum treated successfully after orthotopic heart transplantation. Clin Infect Dis 1998;26:236-237.
33. Mazur JE. A case report of a Dactylaria fungal infection in a lung transplant individual. Chest 2001; 119:651-653.
34. Mayer N. A case of pulmonary cavitary lesions due to Dactylaria constricta var. gallopava in a renal transplant patient. Nephrology 2009; 14: 262.
35. Karthika J. ADR: An atypical presentation of rare dematiaceous fungus. Indian J Med Microbiol. 2014;32(3):336.