A drug-coated balloon treatment for urethral stricture disease: Interim results from the ROBUST I study

Ramon Virasoro¹; Jessica M. DeLong¹; Rachel A. Mann²; Rafael E. Estrella³; Merycarla Pichardo⁴; Ramon Rodriguez Lay⁵; Gustavo Espino⁶; Joshua D. Roth²; Sean P. Elliott²

¹Department of Urology, Eastern Virginia Medical School, Norfolk, VA, United States; ²Department of Urology, University of Minnesota, Minneapolis, MN, United States; ³Clinica Union Medica, Santiago de los Caballeros, Dominican Republic; ⁴URUS, Santo Domingo, Dominican Republic; ⁵Cirujano Urology Royal Center Panama City, Panama; ⁶Centro Especializado San Fernando, Panama City, Panama

Funding: This study was supported by Urotronic.

Cite as: Can Urol Assoc J 2020 January 20; Epub ahead of print. http://dx.doi.org/10.5489/cuaj.6323

Published online January 20, 2020

Abstract

Introduction: We aimed to investigate the safety and preliminary efficacy of the Optilume™ paclitaxel-coated balloon for the treatment of recurrent urethral stricture.

Methods: Men with bulbar urethral strictures ≤2 cm with 1–4 prior endoscopic treatments were enrolled at four study sites after Ethics Committee approvals. All subjects were treated with mechanical balloon dilation or direct visualization internal urethrotomy prior to drug-coated balloon treatment. Patients were evaluated at 2–5 days, 14 days, three, six, and 12-months post-treatment. The primary safety endpoint was serious complications through 90 days post-procedure. The preliminary efficacy endpoint was anatomic success, defined as urethral lumen ≥14 Fr at 12 months.

Results: A total of 53 subjects were enrolled and treated; 46 completed the 12-month followup. Forty-three percent of men had undergone >1 previous dilation; the mean for the overall study population was 1.7 prior dilations. There were no serious adverse events related to the treatment within 90 days. Anatomic success was achieved in 32/46 (70%; 95% confidence interval [CI] 54–82%) at 12 months. The 14 failures included seven cystoscopic recurrences, five retreatments, and two patients who exited the study early due to symptom recurrence.

Conclusions: One-year data indicates the Optilume™ paclitaxel-coated balloon is safe for the treatment of recurrent bulbar urethral strictures. Early efficacy results are encouraging and
Introduction

Approximately 0.6% of men experience a urethral stricture in their lifetime. Treatment options include dilation (rigid or balloon), direct visual internal urethrotomy (DVIU), implanted stent, and urethroplasty. Dilation and DVIU comprise 95% of urethral stricture treatments as they are minimally invasive, low cost, and can be performed by any urologist; but recurrence rates are high. A recent review demonstrated a 90% lifetime recurrence rate, even for first time dilations, and near 100% for repeat dilations. Dilation and DVIU have similar outcomes, whereas urethroplasty has the highest rate of success. Steroid or mitomycin C (MMC) injection have been used as an adjuvant to endoscopic treatment, but results have been mixed.

The Optilume Drug Coated Balloon (DCB; Urotronic, Plymouth, MN) combines dilation with circumferential delivery of paclitaxel. Paclitaxel is an anti-fibrotic, anti-proliferative drug that is used as a coating in minimally invasive vascular applications to prevent restenosis. ROBUST I is a prospective study evaluating the safety and preliminary efficacy of DCB for urethral stricture.

Methods

Study design and participants

This was a single arm, prospective, open-label study, conducted under a common protocol at four Latin American centers. Eligible patients were men ≥ 18 years, with a single bulbar urethral stricture <12Fr, and ≤ 2.0 cm long on urethrogram. Patients were included if they had undergone 1 to 4 prior endoscopic treatments (none within 3 months prior to enrollment), had an International Prostate Symptom Score (IPSS) ≥ 13, and maximum flow rate < 10 ml/sec. Patients were excluded for prior urethroplasty, radical prostatectomy, lichen sclerosus, penile prosthesis or artificial urinary sphincter, pelvic radiation, urinary stone passage in previous 6 months, chronic kidney disease or serum creatinine > 2 mg/dL, intradetrusor onabotulinum toxin A injection in within 12 months of study entry, neurogenic bladder, bladder or prostate cancer in previous 5 years, or active non-genitourinary cancer.

Procedures

After a baseline urethrogram, strictures were pre-treated with an uncoated balloon and/or DVIU until lumen diameter increased by 50%. Although the DCB is intended to be used without pre-treatment, we performed pre-treatment in this first-in-man study 1) to ensure the DCB could cross the stricture without disrupting the drug coating, and 2) to prevent double dosing patients.
with a lumen < 20 Fr after the first DCB treatment. The DCB was inflated to the rated burst pressure and held for >= 5 minutes. The DCB was 3 cm in length and 24F (other sizes are now available). Follow-up was at 5, 14, 90, 180, and 365 days; annual follow-up is planned for 5 years. IPSS was administered before intervention and at each follow-up visit. Cystoscopy was performed at 180- and 365-days post-procedure. Due to the variety in size of cystoscopes used (15F-20F), if the cystoscope could not be passed beyond the narrowing but a 14F catheter could be passedatraumatically, this was considered an anatomic success.

Primary safety endpoint
The primary safety endpoint was the rate of treatment-related urinary severe adverse events (SAEs), defined as urethral fistula formation, *de novo* urinary retention >14 days post-treatment, *de novo* stress incontinence (>1 pad/day) at 90 days post-treatment, or urethral rupture.

Efficacy endpoint
The efficacy endpoint was defined as 1-year anatomic success without retreatment, regardless of symptoms or flow rate. Failure was defined as anatomic failure or retreatment; additionally, any subject who exited the study prior to cystoscopic evaluation with IPSS ≥ 11 was considered a failure. Subjects were right-censored when lost to follow-up if IPSS < 11 at exit, or IPSS ≥ 11 without recurrence on cystoscopy.

Secondary endpoints
Secondary endpoints included: 1) IPSS; 2) sexual function, using the “Overall Satisfaction” question of the International Index of Erectile Function;15 3) Maximum urinary flow rate (Q\(_{\text{max}}\)); 4) post-void residual urine volume (PVR); 5) concentration of paclitaxel in the blood, urine, and semen; and 6) pain (Visual Analog Scale, VAS).16

Data analysis
Baseline characteristics and the primary safety endpoint were tabulated using descriptive analysis. The number and percentage of subjects experiencing at least one device-related SAE were presented for this endpoint, along with the 95% confidence interval. The preliminary efficacy endpoint was met if the lower limit of the one-sided 95% confidence interval for anatomic success exceeded the reference success rate. The reference rate was drawn from the Steenkamp and Heyns randomized trial of DVIU vs. dilation.4 This reference success rate varies with the number of prior treatments: 65% at one year for men with 0-1 prior endoscopic procedures and 10% for men with 2 prior endoscopic procedures.4 It was unclear *a priori* how many prior dilations our cohort would have (inclusion criteria were 1 to 3 prior endoscopic procedures), so we targeted enrollment based on a power calculation using the more stringent 65% success rate.
Results

Patients
Between November 29, 2016 and September 9, 2017, 53 patients were enrolled and treated with the DCB. Average age was 50.7 years (range 22-81) and the majority (83%) were Hispanic/Latino (Table 1). Stricture etiology was traumatic (51%), iatrogenic (45%) or idiopathic (4%). All strictures were bulbar, with an average length of 0.9 cm. Mean stricture narrowing was <9F and the mean number of endoscopic procedures prior to enrollment was 1.7. Some patients performed intermittent dilation independently, but only the physician administered procedures were recorded. Seven patients (13.2%) had a suprapubic catheter at the time of enrollment. Pre-treatment immediately prior to DCB was accomplished with an uncoated balloon in 58%, DVIU in 15%, or uncoated balloon and DVIU in 26%.

Primary safety and preliminary efficacy Endpoints
There were no treatment-related urinary SAEs at 90 days post-procedure. There were two SAEs (myocardial infarction and abdominal pain) at 6 months and 12 months post-procedure respectively, but unrelated to the procedure. In total, there were 52 adverse events, most commonly urinary tract infection (15%), fever (12%), acute urinary retention (8%), headache (8%), and dysuria (6%). The majority were classified as mild (58%) or moderate (38%) according to the Common Terminology Criteria for Adverse Events, and 25% were categorized as “possibly,” “probably,” or “definitely” related to the procedure (Figure 1).

Anatomic success was achieved in 32/46 (70%; 95% CI, 54-82%) at 12 months (Table 2). The 14 failures included 7 cystoscopic recurrences (6 at 6 months, 1 at 12 months), 5 retreatments (4 at 3 months, 1 at 12 months) and 2 who exited the study with IPSS > 11 prior to cystoscopy (both at 3 months). Of the 6 men with cystoscopic recurrence at 6 months, 1 underwent retreatment, 1 exited the study and 4 were observed. IPSS in those who were observed remained ≤ 11 at both 6 and 12 months. Anatomic success rates did not vary significantly based on the number of prior endoscopic treatments: 77% (23/30) among men with 1 prior treatment, 62% (8/13) with 2 treatments, 87% (7/8) with 3 treatments, and 50% (1/2) in men with 4 previous treatments (p=0.47). Neither did success rates vary by stricture etiology: 67% (18/27) in traumatic strictures, (83%) 20/24 in iatrogenic strictures, and (50%) 1/2 in idiopathic strictures (p=0.30).

Secondary endpoints
Baseline IPSS ranged from 15 to 34 with a mean of 25.2 (± 4.5), and IPSS-QOL ranged from 2 to 6 with a mean of 4.9 (± 0.9). At 90 days post-procedure, mean IPSS and IPSS-QOL were 6.1 (± 7.6) and 0.8 (± 1.3) respectively. At one year, there was a statistically significant improvement in mean IPSS (4.9 ± 5.6) and IPSS-QOL (0.8 ± 1.1) compared to baseline (p <0.001) (Table 3). Urinary symptom resolution, represented by IPSS < 11 without retreatment, occurred in 79%
(38/48) at one year. Of note, although the retreatment outcome was definitive, urinary symptoms fluctuated; there were 7 men who had IPSS ≥ 11 at 3 or 6 months who then had IPSS < 11 at one year without retreatment. Mean IIEF-satisfaction scores were 6.5 (±2.6) at baseline and 7.8 (±2.6) one year post-treatment (Table 3). Mean Q_max improved from 5.0 ml/sec (baseline) to 23.6, 24.2, 22.2, 20.5 and 19.5 ml/sec at the 14, 30, 90, 180, and 365-day follow-ups. Additionally, the average PVR decreased from 141.0 ml (baseline) to 27.3 ml and 26.7 ml at the 180 and 365-day follow-ups respectively (Table 3).

Urinary paclitaxel concentration was 184.3 ng/mL ± 179.1 ng/ml immediately post-procedure (n=52) and 2.6 ng/mL ± 4.8 ng/mL at 5 days (n=21). Plasma paclitaxel concentration was very low as it was near the limit of quantification immediately post-procedure (Low = 0.1 ng/mL). Semen paclitaxel concentration was low: 2.5 ng/mL ± 2.9 (n=31) at 14 days and 1.0 ± 1.6 ng/mL (n=24) at 30 days post procedure. Most patients experienced only minor pre-procedure pain associated with their stricture disease, with a mean VAS score of 2.9 (±2.87). Mean VAS Scores decreased to 0.6 (±1.0) and 0.9 (±1.9) at 14 and 30 days (Table 3).

Discussion
The ROBUST I trial is a multicenter, single-arm, open-label study investigating the safety and efficacy of the Optilume DCB among male patients with a single bulbar recurrent urethral stricture. There were no treatment-related SAEs. The majority of side effects were mild or moderate in severity; the most common was urinary tract infection. When paclitaxel is used for chemotherapy, drug-related side effects include neurotoxicity and myelosuppression; these were not seen in the current study. Paclitaxel urine concentrations immediately post-procedure were about six times lower than in chemotherapy patients and dropped significantly by 5 days; serum levels were also very low.18

This study will eventually yield 5-year efficacy outcomes; herein we report preliminary 1-year success of 70% with a 95% CI of 54-82%. The 95% CI did not exceed the reference 65% success rate for men with 0-1 prior dilations in the Steenkamp and Heyns study, but did exceed the reference 10% rate for men with 2 prior dilations.3

Secondary outcome measures demonstrated an improvement in urinary symptoms, urinary quality of life, pain scores, and uroflowmetry- specifically Q_max, and PVR. Sexual function was not significantly affected by DCB.

Although this is the first study conducted using a paclitaxel-DCB for urethral strictures, several other studies have investigated other drugs in conjunction with mechanical dilation. A recent study demonstrated 75% patency at 2 years following DVIU with MMC injection and self-dilation,19 but, significant adverse effects have been reported after MMC injection into urinary mucosa, including osteitis pubis, urethral fistula formation, and tissue necrosis.11 Outcomes with urethral triamcinolone as an adjuvant vary widely between studies.20,21 The Optilume DCB may offer advantages compared to these other adjuvants. First, as a hydrophobic
drug it absorbs easily into the target tissue avoiding immediate washout. Second, the half-life of paclitaxel is measured in days whereas the half-life of MMC is hours. This allows paclitaxel to be present during the inflammatory, proliferation and remodeling stages of wound healing. Third, the paclitaxel dosing is tightly controlled by the proprietary DCB coating process, avoiding the risks of overdosing with manual injection. In Good Laboratory Practice Animal study data acquired prior to study initiation, urethral tissue concentration of paclitaxel drops 73% after 7 days and remains quantifiable in most subjects through 28 days. Fourth, paclitaxel is circumferentially delivered topically to the urothelium, reducing the risk of periurethral dosing that can occur with deep injections.

Among the limitations, there was no control arm in this early phase study. Further, we excluded penile strictures, bladder neck contractures, patients with previous pelvic radiotherapy, and patients with a history of lichen sclerosus; the DCB may perform worse in these strictures which are known to have a higher risk of recurrence. Furthermore, the 12-month follow-up does not capture patients with delayed stricture recurrence, however data suggests the mean time from endoscopic treatment to stricture recurrence is 6-12 months. We will report 5-year results as they become available. There were patients in our cohort who performed self-dilation, but only physician-administered dilations were recorded; it is unknown how this affected stricture recurrence. Future results without pretreatment may differ from those seen in this study where all patients were pre-treated with DIVU or dilation.

Conclusions
The Optilume DCB is safe; early efficacy results are encouraging and support further follow-up of these men through 5 years as well as further investigation with a randomized trial.
References

1. Santucci RA, Joyce GF, Wise M. Male urethral stricture disease. *J Urol* 2007;177:1667–74.
2. Liu JS, Hofer MD, Oberlin DT, et al. Practice patterns in the treatment of urethral stricture among American urologists: A paradigm change? *Urology* 2015;86:830-4.
3. Shaw NM, Venkatesan K. Endoscopic management of urethral structure: Review and practice algorithm for management of male urethral stricture disease. *Curr Urol Rep* 2018;19:19.
4. Steenkamp JW, Heyns CF, de Kock ML. Internal urethrotomy versus dilation as treatment for male urethral strictures: a prospective, randomized comparison. *J Urol* 1997;157:98-101.
5. Albers P, Fichtner J, Brühl P, et al. Long-term results of internal urethrotomy. *J Urol* 1996;156:1611.
6. Charbit L, Mersel A, Beurton D, et al. 5-year treatment results of urethral stenosis using internal urethrotomy in adults. *Ann Urology* 1990;24:66.
7. Jordan GH, Rourke KF. Primary urethral reconstruction: the cost minimized approach to the bulbous urethral stricture. *J Urol* 2005;173:1206.
8. Zhang K, Qi E, Zhang Y, et al. Efficacy and safety of local steroids for urethra structures: a systematic review and meta-analysis. *J Endouriol* 2014;28:962-8.
9. Mazdak H, Izadpanahi MH, Ghalamka A, et al. Internal urethrotomy and intraurethral submucosal injection of triamcinolone in short bulb urethral strictures. *Int Urol Nephrol* 2010;41:565-8.
10. Vanni AJ, Zinman LN, Buckley JC. Radial urethrotomy and intralesional mitomycin C for the management of recurrent bladder neck contractures. *J Urol* 2011;186:156-60.
11. Redshaw JD, Broghammer JA, Smith TG, et al. Intralalional injection of mitomycin C at transurethral incision of bladder neck contracture may offer limited benefit: TURNS Study Group. *J Urol* 2015;193:587-92.
12. Käsmann L, Manig L, Janssen S, Rades D. Chemoradiation including paclitaxel for locally recurrent muscle-invasive bladder cancer in elderly patients. *In Vivo* 2017;31: 239-42.
13. Herten M, Torsello GB, Stahlhoff S. Critical appraisal of paclitaxel balloon angioplasty for femoral–popliteal arterial disease. *Vasc Health Risk Manag* 2016;12:341-56.
14. Habib A, Finn AV. Antiproliferative drugs for restenosis prevention. *Interv Cardiol Clin* 2016;5:321-29.
15. Rosen RC, Riley A, Wagner G, et al. The international index of erectile function (IIEF): a multidimensional scale for assessment of erectile dysfunction. *Urology* 1997;49:822-30.
16. Couper M, Tourangeau R, Conrad F, et al. Evaluating the effectiveness of visual analog scales: A web experiment. *Soc Sci Comput Rev* 2006;24:227-45.
17. Marupundi NI, Han JE, Li KW, et al. Paclitaxel: a review of adverse toxicities and novel delivery strategies. *Expert Opin Drug Saf* 2007;6:609-21.
18. Rowsinsky EK, Cazenave LA, Donehower RC. Taxol: a novel investigational antimicrotubule agent. *J Natl Cancer Inst* 1990;82:1247-59.
19. Farrell MR, Lawrenz CW, Levine LA. Internal urethrotomy with intralalional mitomycin C: an effective option for endoscopic management of recurrent bulbar and bulbomembranous urethral strictures. *Urology* 2017;110:S223.
20 Ergün O, Güzel A, Armağan A, et al. A prospective, randomized trial to evaluate the efficacy of clean intermittent catheterization versus triamcinolone ointment and contractubex ointment of catheter following internal urethrotomy: long-term results. *Int Urol Nephrol* 2015;47:909-13.

21 Kumar S, Kishore L, Sharma AP, et al. Efficacy of holmium laser urethrotomy and intralesional injection of Santosh PGI tetra-inject (triamcinolone, mitomycin c, hyaluronidase and n-acetyl cysteine) on the outcome of urethral strictures. *Cent Eur J Urol* 2015;68:462-5.

22 Heyns CF, Steenkamp JW, Kock ML, et al. Treatment of male urethral strictures: is repeated dilation or internal urethrotomy useful? *J Urol* 1998;160:356-8.
Figures and Tables

Fig. 1. Adverse event, relation to treatment, and severity. Severity was determined using the Common Terminology Criteria for Adverse Events (CTCAE v4.0) Severity Scale.

![Flowchart](image-url)
Table 1. Patient demographics and urologic medical history

Variables	N=53
Patient demographics	
Age (years)	
Mean ± SD	50.7±15.47
Range	22.0–81.0
Median	50.0
Male gender, n (%)	
Black or African Origin	
Hispanic or Latino	
Other	
53 (100.0 %)	
Race of subjects, n (%)	
Black or African Origin	
Hispanic or Latino	
Other	
8 (15.1 %)	
44 (83.0 %)	
1 (1.9 %)	
Suprapubic catheter at baseline	
7 (13.2 %)	
Stricture etiology, n (%)	
Iatrogenic	
Idiopathic	
Traumatic	
24 (45.3 %)	
2 (3.8 %)	
27 (50.9 %)	
Stricture measurements, mean ± SD	
Stricture length (mm)	9.00±5.20
Urethral diameter at stricture (mm)	2.47±1.97
Urethral diameter at area healthy tissue (mm)	10.2 ±3.62
Pre-treatment	
Uncoated balloon	
DVIU	
Uncoated balloon + DVIU	
31 (58%)	
8 (15%)	
14 (26%)	
Number of previous endoscopic treatments, n (%)	
1	
2	
3	
4	
30 (57%)	
13 (25%)	
8 (15%)	
2 (4%)	

DVIU: direct visual internal urethrotomy; SD: standard deviation.
Table 2. Anatomic success rates over time

Outcomes	Time (months)	0	3	6	12
Success		53	45	39	32
Fail – cumulative		0	6	12	14
Censor – cumulative		0	2	2	7
Number remaining for analysis (total – censor)		53	51	51	46
Success (%)		100	88	76	70

Failure defined as: inability to pass a cystoscope and a 14 F catheter (n=7), retreatment (n=5), exit with International Prostate Symptom Score (IPSS) >11 but no cystoscopy performed (n=2). Success defined as: Normal cystoscopy or 14 F catheter test without retreatment, regardless of symptoms (symptoms without stricture is presumed to be benign prostatic hyperplasia). Censor: Exit/lost to followup without symptoms and normal cystoscopy or 14F catheter test.
Table 3. Results of secondary endpoints

Category	Baseline	14 days	30 days	90 days	180 days	365 days
	Mean ± SD					
IPSS score						
n	53	51	51	51	47	42
Range	15.0–34.0	0.0–33.0	0.0–34.0	0.0–30.0	0.0–34.0	0.0–31.0
Median	26.0	4.0	2.0	3.0	3.0	3.5
IPSS QOL						
n	53	51	51	51	47	42
Range	2.0–6.0	0.0–5.0	0.0–6.0	0.0–5.0	0.0–4.0	0.0–4.0
Median	5.0	1.0	0.0	0.0	0.0	0.0
IIEF: Overall satisfaction						
Mean ± SD	6.5±2.62	7.1±2.49	7.9±2.53	7.6±2.82	7.8±2.62	7.8±2.62
n	53	51	51	47	42	42
Range	2.0–10.0	2.0–10.0	2.0–10.0	2.0–10.0	2.0–10.0	2.0–10.0
Median	6.0	8.0	8.0	8.0	8.0	8.5
Qmax (mL/sec)						
Mean ± SD	5.0±2.56	23.6±12.63	24.2±14.15	22.2±12.49	20.5±10.36	19.5±9.96
n	46	51	50	51	47	42
Range	0.0–10.0	5.0–52.0	5.9–67.3	2.0–50.0	3.0–50.0	4.9–40.5
Median	5.0	21.3	20.5	19.6	19.0	18.0
PVR (mL)						
Mean ± SD	141.4±105.05	32.7±33.06	33.0±33.51	36.1±36.24	27.3±41.68	26.79±33.10
n	43	49	49	47	47	42
Range	0.0–462.0	0.0–132.0	0.0–181.9	0.0–150.0	0.0–200.0	0.0–163.0
Median	128.0	24.0	25.0	26.0	13.0	19.0
VAS pain score						
Mean ± SD	2.9±2.87	0.6±0.98	0.9±1.87			
n	53	51	51			
Range	0.0–10.0	0.0–4.0	0.0–8.0			
Median	3.0	0.0	0.0			

*a Comparing to the baseline value, p<0.001. bThe patients were asked to refrain from sexual intercourse until day 30; therefore, the relevant comparison of IIEF scores is at baseline, 30 days, and beyond.

IIEF: International Index of Erectile Function; IPSS: International Prostate Symptom Score; SD: standard deviation; PVR: post-void residual; Qmax: maximum urinary flow rate; QOL: quality of life; VAS: Visual Analog Scale.