An aggregation equation with a nonlocal flux

Rafael Granero-Belinchón1 and Rafael Orive Illera 2

May 7, 2014

Abstract

In this paper we study an aggregation equation with a general nonlocal flux. We study the local well-posedness and some conditions ensuring global existence. We are also interested in the differences arising when the nonlinearity in the flux changes. Thus, we perform some numerics corresponding to different convexities for the nonlinearity in the equation.

Keywords: Patlak-Keller-Segel model, Well-posedness, Blow-up, Simulation, Aggregation.

Acknowledgments: The authors are supported by the Grants MTM2011-26696 and SEV-2011-0087 from Ministerio de Ciencia e Innovación (MICINN).

Contents

1 Introduction
2 Well-posedness
3 Continuation criteria
4 Global existence of classical solution for small initial data
5 Global existence of weak solution for small L^1 initial data
6 Numerical simulations

1 Introduction

In this paper we study several types of nonlinear and nonlocal aggregation models with nonlinear diffusion and self-attraction coming from the Poisson equation posed in a periodical setting, i.e., the spatial domain is $T = [-\pi, \pi]$. In particular we are interested in the differences arising when the nonlinearity in the diffusion changes.
Let us consider $\beta(x)$ a smooth, positive function in a domain containing \mathbb{R}^+. The problem reads

$$
\begin{aligned}
&\partial_t \rho = \partial_x \left(-\beta(\rho) H\rho + \rho \partial_x v \right), \quad x \in \mathbb{T}, t > 0, \\
&\partial_x^2 v = \rho - \langle \rho \rangle,
\end{aligned}
$$

(1)

where $H\rho$ denotes the periodic Hilbert Transform

$$
H\rho(x) = \frac{1}{2\pi} \text{P.V.} \int_{\mathbb{T}} \frac{\rho(y)}{\tan \left(\frac{x-y}{2} \right)} dy,
$$

and

$$
\langle \rho \rangle = \frac{1}{2\pi} \int_{\mathbb{T}} \rho(x) dx.
$$

Thus, in our favourite units v is the gravitational potential. Clearly, we need to attach a smooth initial data, ρ_0, that we will take non-negative. This equation is a nonlocal version of the classical Smoluchowski-Poisson or Patlak-Keller-Segel system with nonlinear diffusion.

Its linear and local diffusion counterpart is

$$
\begin{aligned}
&\partial_t \rho = \partial_x \left(\beta \partial_x \rho + \rho \partial_x v \right), \quad x \in \mathbb{T}, t > 0, \\
&\partial_x^2 v = \rho - \langle \rho \rangle,
\end{aligned}
$$

(2)

This system has been previously addressed as a model of gravitational collapse by Biler and collaborators (see [5, 6, 9]), and by Chavanis and Sire (see [19, 20]). Also, the system (2) has been also proposed as a model of chemotaxis in biological system (see [26, 28, 33]). We also notice that, in two dimensions, (2) can be re-written as

$$
\begin{aligned}
&\partial_t \rho = \beta \Delta \rho + \nabla \cdot (\nabla U \rho), \\
&\Delta U = \rho - \langle \rho \rangle,
\end{aligned}
$$

which is similar to the vorticity formulation for 2D Navier-Stokes. Its mathematical properties have been widely studied in different physical contexts (see e.g. [8, 10, 11, 13] and references therein. For instance, Corrias, Perthame and Zaag proved that, for small data ρ_0 in $L^{d/2}$, where $d \geq 2$ is the space dimension, there are global in time weak solutions to equation (2) and blow-up if the smallness condition does not hold (see Theorem 1.1 and 1.2 in [23]). Global existence when the initial data is small in L^1 has been recently addressed in [31]. The case of measure-valued weak solutions has been considered by Senba and Suzuki in [34].

Its linear and nonlocal diffusion counterpart is

$$
\begin{aligned}
&\partial_t \rho = -\beta \Lambda^\alpha \rho + \partial_x \left(\rho \partial_x v \right), \quad \text{for } x \in \mathbb{T}, t > 0, \\
&\partial_x^2 v = \rho - \langle \rho \rangle,
\end{aligned}
$$

(3)

where the fractional Laplacian $\Lambda^\alpha = (-\Delta)^{\alpha/2}$ is defined using Fourier techniques as follows

$$
\hat{\Lambda^\alpha u} = |\xi|^\alpha \hat{u}.
$$

This non-local generalization (3) has been recently studied (see [7, 14]). In particular, Li, Rodrigo and Zhang [29] have established local existence, a continuation criterion and the existence of finite time singularities for the two dimensional case. In [1] Ascasibar, Granero and Moreno have recovered the local existence and the continuation criterion by means of different techniques. Also, the global existence for small initial datum in L^∞ for all $0 < \alpha < 2$ and $d = 2, 3$ and $\alpha = 1$ while $d = 1$, and global existence for $1 < \alpha < 2$ and $d = 1$ have been proved in [1].
Nonlinear generalizations of (2) have been studied in [3, 4, 12] and the references therein, while nonlinear generalizations of (3) have been addressed in [15, 16, 17, 18]. In particular, in [16, 17, 18], the authors studied the equation
\[\partial_t \theta = \partial_x (-\theta H \theta) - \nu \Lambda \theta. \] (4)
This equation has been proposed as a one-dimensional model of the 2D Vortex Sheet problem or a one dimensional model of the 2D surface quasi-geostrophic equation. Some of its mathematical properties are well-known. In particular, Castro and Córdoba proved global existence, local existence, blow-up in finite time and ill-posedness depending on the sign of the initial data for classical solutions of equation (4). We notice that (1) without self-attraction terms and \(\beta(x) = x \) reduces to (4).

The plan of the paper is as follows: in Section 2 we prove that the problem is well-posed. In Section 3 we obtain a uniform bound for \(\| \rho(t) \|_{L^\infty(T)} \). In Sections 4 and 5 we prove global existence of solution corresponding to small initial data in \(H^2 \) and \(L^1 \) for some choices of \(\beta(x) \). Finally, in Section 6 we perform some numerical simulations to better understand the role of \(\beta \).

2 Well-posedness

In this section we study the existence of classical solution to (1) with initial data \(\rho_0(x) \geq 0 \) in the Sobolev space \(H^2(T) \) with the natural norm defined by
\[\| \rho \|_{H^2(T)}^2 = \| \rho \|_{L^2(T)}^2 + \| \Lambda^s \rho \|_{L^2(T)}^2. \]
The main ingredients of the proof are the following identities
\[\frac{1}{2\pi} \| Hg \|_{L^2(T)}^2 = \frac{1}{2\pi} \| g \|_{L^2(T)}^2 - \langle g \rangle^2 \leq \frac{1}{2\pi} \| g \|_{L^2(T)}^2, \] (5)
and, for general \(1 < p < \infty \),
\[\| Hg \|_{L^p(T)} \leq C_H(p) \| g \|_{L^p(T)}, \] (6)
see [36] for further details on singular integral operators.

We note that \(\Lambda g = H \partial_x g = \sqrt{-\partial_x^2} g \). This operator has the following integral representation
\[\Lambda g(x) = \frac{1}{2\pi} \text{P.V.} \int_T g(x) - g(y) \frac{dy}{\sin^2 \left(\frac{x-y}{2} \right)}. \]
We will require the following pointwise (see [21])
\[2g \Lambda g \geq \Lambda (g^2). \] (7)

Also, we use the following Gagliardo-Niremberg-Sobolev inequalities
\[\| \partial_x \rho \|_{L^4(T)} \leq \sqrt{3} \| \partial_x^2 \rho \|_{L^2(T)}^{1/2} \| \rho - \langle \rho \rangle \|_{L^\infty(T)}^{1/2} \] (8)
\[\| \rho - \langle \rho \rangle \|_{L^\infty(T)} \leq C_S \| \partial_x \rho \|_{L^2(T)}. \] (9)

Moreover, we can take \(C_S \) such that
\[\| \rho - \langle \rho \rangle \|_{C^{1/2}(T)} \leq C_S \| \partial_x \rho \|_{L^2(T)}. \] (10)

Using the reverse triangle inequality, we get
\[\| \rho \|_{L^\infty(T)} \leq C_S \| \partial_x \rho \|_{L^2(T)} + \langle \rho \rangle. \] (11)
To prove the existence and uniqueness of classical solution, we proceed as in [30]. First, we obtain some ‘a priori’ bounds for the usual norm in the space H^k. Then, we regularize equation (1) and prove that all the regularized systems have a classical solution for a uniform time τ. To conclude, we use the ‘a priori’ bound to show that the solutions to the regularized problem form a Cauchy sequence whose limit is the solution to the original equation. The result is

Theorem 1 (Well-posedness). Let $\beta \in C^4([0, \infty))$, $\beta(x) \geq 0$, and initial data $0 \leq \rho_0(x) \in H^k(\mathbb{T})$, where $k \geq 2$. Then, there exists a time $\tau = \tau(\rho_0) > 0$ and an unique solution $\rho \in C([0, \tau], H^k(\mathbb{T}))$ of (1). Moreover,

$$\rho \in C^1([0, \tau], C(\mathbb{T})) \cap C([0, \tau], C^{1,1/2}(\mathbb{T})).$$

In order to simplify the notation, we will abbreviate $\rho(x, t) = \rho(x)$, or simply ρ, throughout the rest of the paper.

Proof. First, we remark that, for nonnegative initial data, the solution remains nonnegative and we have conservation of mass

$$\int \rho(x,t)dx = \int \rho(x,0)dx.$$

Thus, $\langle \rho \rangle = \langle \rho_0 \rangle$ is a constant depending only on the initial data. We show the case $k = 2$, being the other cases analogous. Now, fix $\lambda > \|\rho_0\|_{L^\infty}$ a constant and define the energy

$$E[\rho] = \|\rho\|_{H^2(\mathbb{T})} + \|d[\rho]\|_{L^\infty(\mathbb{T})},$$

where

$$d[\rho] = \frac{1}{\lambda - \rho(x)}.$$ \hspace{1cm} (13)

Due to the smoothness of β, for $0 \leq x \leq \lambda$, we have

$$|\partial^j_x \beta(x)| - |\partial^j_x \beta(0)| \leq \left| |\partial^j_x \beta(x)| - |\partial^j_x \beta(0)| \right| \leq |\partial_x^j \beta(x) - \partial_x^j \beta(0)| \leq \max_{0 \leq y \leq \lambda} |\partial_x^{j+1} \beta(y)| \frac{x}{2},$$

and

$$|\partial^j_x \beta(x)| \leq c(\beta, \lambda)(x+1), \quad j = 0, ..., 3.$$ \hspace{1cm} (14)

Now we study the evolution of the $L^2(\mathbb{T})$ norm of the solution. We denote c a constant depending only on the function β and on the fixed constant λ. Thus, this constant is harmless and it can change from line to line. Using (5) and Hölder’s inequality, we have

$$\frac{1}{2} \frac{d}{dt} \|\rho\|^2_{L^2(\mathbb{T})} = \int_\mathbb{T} \partial_x \rho(x) \partial_t \beta(\rho(x)) \rho(x) dx + \int_\mathbb{T} \rho(x) \partial_x \rho(x) \partial_x v(x) dx + \int_\mathbb{T} \rho^2(x)(\rho - \langle \rho \rangle) dx \leq c\|\rho\|_{L^\infty(\mathbb{T})} (\|\rho\|_{L^\infty(\mathbb{T})} + 1) \|\partial_x \rho\|_{L^2(\mathbb{T})} + \|\rho - \langle \rho \rangle\|_{L^\infty(\mathbb{T})} \|\rho\|_{L^2(\mathbb{T})}.$$

Using Sobolev embedding (11) and the inequality

$$\|\rho - \langle \rho \rangle\|_{L^\infty(\mathbb{T})} \leq \|\rho\|_{L^\infty(\mathbb{T})},$$

we have

$$\frac{d}{dt} \|\rho\|_{L^2(\mathbb{T})} \leq c(\|\rho\|_{L^\infty(\mathbb{T})} + 1) \|\rho\|_{H^2(\mathbb{T})} \leq c\|\rho\|_{H^2(\mathbb{T})} + 1)^2.$$ \hspace{1cm} (15)
We study now the second derivative. Firstly, the transport terms corresponding to v:

$$I_1 = \int_T \partial_x^2 \rho \partial_x^2 (\partial_x \rho \partial_x v + \rho (\rho - \langle \rho \rangle)) \leq \int_T \partial_x^2 \rho (\partial_x^2 \rho \partial_x v + 3 \partial_x^2 \rho (\partial_x \rho)^2 + 3 \partial_x^2 \rho (\rho - \langle \rho \rangle) + \partial_x^2 \rho \rho) dx \leq c(\| \rho - \langle \rho \rangle \|_{L^\infty(T)} + \| \rho \|_{L^\infty(T)}) \| \partial_x^2 \rho \|_{L^2(T)} \| \rho \|_{H^2(T)},$$

where in the last step we have used (8). Now, the term corresponding to the nonlinear diffusion is

$$I_2 = - \int_T \partial_x^2 \rho \partial_x^2 (\beta(\rho) \Lambda \rho)$$

$$= - \int_T \partial_x^2 \rho (\beta''(\rho)(\partial_x \rho)^2 \Lambda \rho + \beta'(\rho) \partial_x^2 \rho \Lambda \rho + 2 \beta'(\rho) \partial_x \rho \partial_x \rho + \beta(\rho) \Lambda \partial_x^2 \rho) dx.$$

Using (8) and (14), we obtain

$$J_1 = - \int_T \partial_x^2 \rho \beta''(\rho)(\partial_x \rho)^2 \Lambda \rho dx \leq c (\| \rho \|_{L^\infty(T)} + 1) \| \Lambda \rho \|_{L^\infty(T)} \| \rho - \langle \rho \rangle \|_{L^\infty(T)} \| \partial_x^2 \rho \|^2_{L^2(T)},$$

$$J_2 = - \int_T \beta'(\rho)(\partial_x^2 \rho)^2 \Lambda \rho dx \leq c (\| \rho \|_{L^\infty(T)} + 1) \| \Lambda \rho \|_{L^\infty(T)} \| \partial_x^2 \rho \|^2_{L^2(T)}.$$

Due to (5), we get

$$J_3 = - \int_T \beta'(\rho) \partial_x \rho \partial_x^2 \rho \Lambda \partial_x \rho dx \leq c (\| \rho \|_{L^\infty(T)} + 1) \| \partial_x \rho \|_{L^\infty(T)} \| \partial_x^2 \rho \|^2_{L^2(T)}.$$

We study now the singular term in I_2. By (7), we have

$$J_4 = - \int_T \partial_x^2 \rho \beta(\rho) \Lambda \partial_x^2 \rho dx \leq - \frac{1}{2} \int_T \beta(\rho) \Lambda (\partial_x^2 \rho)^2 dx \leq - \frac{1}{2} \int_T \Lambda \beta(\rho)(\partial_x^2 \rho)^2 dx.$$

We compute

$$\Lambda \beta(\rho(x)) = \frac{1}{2\pi} \text{P.V.} \int_T \left(\frac{\beta(\rho(x)) - \beta(\rho(y))}{\rho(x) - \rho(y)} - \beta'(\rho(x)) \right) \frac{\rho(x) - \rho(y)}{\sin^2 \left(\frac{\pi}{2} \right)} dy + \beta'(\rho(x)) \Lambda \rho(x).$$

Using Taylor’s Theorem, we obtain

$$\left| \frac{\beta(\rho(x)) - \beta(\rho(y))}{\rho(x) - \rho(y)} - \beta'(\rho(x)) \right| \leq \frac{\beta''(\zeta)}{2} |\rho(x) - \rho(y)|.$$

Since we have an extra cancellation and using (14), we have the bound

$$|\Lambda \beta(\rho(x))| \leq c (\| \rho \|_{L^\infty(T)} + 1) \left(\| \partial_x \rho \|^2_{L^2(T)} + \| \Lambda \rho \|_{L^\infty(T)} \right).$$

(17)

Putting all together we obtain

$$J_4 \leq \| \partial_x^2 \rho \|^2_{L^2(T)} c (\| \rho \|_{L^\infty(T)} + 1) \left(\| \partial_x \rho \|^2_{L^2(T)} + \| \Lambda \rho \|_{L^\infty(T)} \right).$$

Collecting all the estimates and using Sobolev embedding, we obtain

$$I_2 = J_1 + J_2 + J_3 + J_4 \leq c \| \partial_x^2 \rho \|_{L^2(T)} (\| \rho \|_{H^2(T)} + 1)^4.$$

(18)
Finally, we have

\[I_3 = - \int_T \partial_x^2 \rho \partial_x^2 (\beta'(\rho)) \partial_x \rho H \rho, \]

are bounded. The lower order terms can be bounded as follows

\[J_5 = - \int_T \partial_x^2 \rho \beta''(\rho)(\partial_x \rho)^3 H \rho dx \]
\[\leq c (\| \rho \|_{L^\infty(T)} + 1) \| \partial_x \rho \|_{L^\infty(T)} \| \rho - \langle \rho \rangle \|_{L^\infty(T)} \| H \rho \|_{L^\infty(T)} \| \partial_x^2 \rho \|_{L^2(T)}^2, \]

\[J_6 = - \int_T (\partial_x^2 \rho)^2 \beta''(\rho) \partial_x \rho H \rho dx \leq c (\| \rho \|_{L^\infty(T)} + 1) \| \partial_x \rho \|_{L^\infty(T)} \| H \rho \|_{L^\infty(T)} \| \partial_x^2 \rho \|_{L^2(T)}^2, \]

\[J_7 = - \int_T \partial_x^2 \beta''(\rho)(\partial_x \rho)^2 \Lambda \rho dx \leq c (\| \rho \|_{L^\infty(T)} + 1) \| \Lambda \rho \|_{L^\infty(T)} \| \rho - \langle \rho \rangle \|_{L^\infty(T)} \| \partial_x^2 \rho \|_{L^2(T)}^2, \]

\[J_8 = - \int_T \partial_x^2 \rho \beta'(\rho)(\Lambda \rho \partial_x^2 \rho + \Lambda \partial_x \rho \partial_x \rho) dx \]
\[\leq c (\| \rho \|_{L^\infty(T)} + 1) (\| \Lambda \rho \|_{L^\infty(T)} + \| \partial_x \rho \|_{L^\infty(T)} + \| \partial_x^2 \rho \|_{L^2(T)}^2). \]

The most singular term in \(I_3 \) is

\[J_9 = - \int_T \partial_x^2 \rho \beta'(\rho) H \rho \partial_x^2 \rho dx \]
\[\leq c (\| \rho \|_{L^\infty(T)} + 1)(\| \Lambda \rho \|_{L^\infty(T)} + \| \partial_x \rho \|_{L^\infty(T)} + \| H \rho \|_{L^\infty(T)} + \| \partial_x^2 \rho \|_{L^2(T)}^2). \]

Thus, we obtain the following bound

\[I_3 = J_5 + \cdots + J_9 \leq c \| \partial_x^2 \rho \|_{L^2(T)} (\| \rho \|_{H^2(T)} + 1)^5. \] (19)

Then,

\[\frac{1}{2} \frac{d}{dt} \| \partial_x^2 \rho \|_{L^2(T)}^2 \leq c \| \partial_x^2 \rho \|_{L^2(T)} (\| \rho \|_{H^2(T)} + 1)^5, \]

and, using (15), (16), (18) and (19), we conclude that, while \(\| \rho \|_{L^\infty(T)} < \lambda \), the following inequality holds

\[\frac{d}{dt} \| \rho \|_{H^2(T)} \leq c (\| \rho \|_{H^2(T)} + 1)^5 \leq c (E[\rho] + 1)^5. \] (20)

We need a bound for the remaining term in the energy (12). Using (12), (13) and Sobolev embedding, we have

\[\frac{d}{dt} d[\rho] \leq d[\rho]^2 \| \partial_t \rho \|_{L^\infty(T)} \leq d[\rho] \| d[\rho] \|_{L^\infty(T)} E[\rho]^3. \]

Thus, we obtain

\[d[\rho](t + h) \leq d[\rho](t) \exp \left(\int_t^{t+h} \| d[\rho] \|_{L^\infty(T)} E[\rho]^3 ds \right). \]

Finally, we have

\[\frac{d}{dt} \| d[\rho] \|_{L^\infty(T)} = \lim_{h \to 0} \frac{\| d[\rho](t + h) \|_{L^\infty(T)} - \| d[\rho](t) \|_{L^\infty(T)}}{h} \leq E[\rho]^5. \] (21)
Thanks to (20) and (21) we conclude the ‘a priori’ energy estimates:
\[
\frac{d}{dt} E[\rho] \leq c(E[\rho] + 1)^5,
\]
and then
\[
E[\rho](t) \leq \frac{E[\rho_0]}{\sqrt{1 - 4cE[\rho_0]t}}. \tag{22}
\]

Our next step is classical. We consider \(\mathcal{J} \) a symmetric and positive mollifier, see [30]. For \(\epsilon > 0 \), we define
\[
\mathcal{J}_\epsilon(x) = \frac{1}{\epsilon} \mathcal{J}\left(\frac{x}{\epsilon}\right)
\]
and consider the regularized problems
\[
\left\{ \begin{array}{l}
\partial_t \rho^\epsilon = \mathcal{J}_\epsilon * \partial_x \left(-\left(\beta(\mathcal{J}_\epsilon * \rho^\epsilon) + \epsilon \right) H \mathcal{J}_\epsilon * \rho^\epsilon \right) + \mathcal{J}_\epsilon * \partial_x \left(\mathcal{J}_\epsilon * \rho^\epsilon \partial_x v^\epsilon \right), \\
\partial_x^2 v^\epsilon = \mathcal{J}_\epsilon * \rho^\epsilon - \langle \rho \rangle.
\end{array} \right.
\]
Notice that these regularized systems remains positive for all times and conserve the total mass,
\[
\|\rho^\epsilon(t)\|_{L^1} = \|\rho_0\|_{L^1}.
\]
Thus, using Tonelli’s Theorem in a classical way, we get
\[
\|\mathcal{J}_\epsilon * \rho^\epsilon(t)\|_{L^1} = \|\rho_0\|_{L^1}.
\]
We can apply Picard’s Theorem to these regularized problems. Define the set
\[
O^\epsilon = \{ \rho \in H^2(\mathbb{T}), \|\rho\|_{H^2(\mathbb{T})} < \sigma, \|\rho\|_{L^\infty(\mathbb{T})} < \varsigma < \lambda \},
\]
with \(\|\rho_0\|_{H^2(\mathbb{T})} < \sigma \) and \(\|\rho_0\|_{L^\infty(\mathbb{T})} < \varsigma < \lambda \), and observe that it is a non-empty open set in \(H^2(\mathbb{T}) \). To prove this claim just observe that, due to the Sobolev embedding, \(\|\cdot\|_{L^\infty(\mathbb{T})} \) and \(\|\cdot\|_{H^2(\mathbb{T})} \) are continuous functionals. In this set we have \(E[\rho] \leq C(\sigma, \lambda, \beta) \). Then, there exists a sequence \(\rho^\epsilon \) of solutions to the regularized problems. For each \(\rho^\epsilon \) the bound (22) is also valid. So, we have a common time interval \([0, \tau(\rho_0)]\) where the solutions live. Now we can pass to the limit \(\epsilon \to 0 \). To show this claim we have to prove that the sequence is Cauchy in the lower norm \(L^2(\mathbb{T}) \). These steps are quite classical, so, for the sake of brevity, we left the details for the interested reader. This concludes with the existence issue.

We need to prove the uniqueness. Suppose that \(\rho_1, \rho_2 \) are two different classical solutions corresponding to the same initial datum and denote \(\rho = \rho_1 - \rho_2 \). Then,
\[
\frac{1}{2} \frac{d}{dt} \|\rho\|_{L^2(\mathbb{T})}^2 = \int_\mathbb{T} \rho (\rho_1 (\rho_1 - \langle \rho_0 \rangle) - \rho_2 (\rho_2 - \langle \rho_0 \rangle)) + \partial_x \rho_1 \partial_x v_1 - \partial_x \rho_2 \partial_x v_2
\]
\[
- (\beta(\rho_1) \Lambda \rho_1 - \beta(\rho_2) \Lambda \rho_2) - (\beta'(\rho_1) \partial_x \rho_1 H \rho_1 - \beta'(\rho_2) \partial_x \rho_2 H \rho_2)) \, dx.
\]
We compute
\[
I_4 = \int_\mathbb{T} \rho (\rho_1 (\rho_1 - \langle \rho \rangle) - \rho_2 (\rho_2 - \langle \rho \rangle)) \, dx
\]
\[
= \int_\mathbb{T} \rho^2 (\rho_1 + \rho_2 - \langle \rho_0 \rangle) \leq c(\|\rho_1\|_{H^2(\mathbb{T})}, \|\rho_2\|_{H^2(\mathbb{T})}) \|\rho\|_{L^2(\mathbb{T})}^2,
\]
In such that this maximum verifies \(\rho \). Using Gronwall’s Inequality, we conclude the uniqueness.

Notice that we have

\[
\| \partial_x(v_1 - v_2) \|^2_{L^2(T)} \leq \| v_1 - v_2 \|_{L^2(T)} \| \rho \|_{L^2(T)}.
\]

Using Poincaré inequality for \(\| v_1 - v_2 \|_{L^2(T)} \), we get

\[
I_5 \leq c(\| \rho_1 \|_{H^2(T)}, \| \rho_2 \|_{H^2(T)})\| \rho \|_{L^2(T)}^2.
\]

Now we have to deal with the nonlinear diffusion:

\[
I_6 = -\int_T \rho ((\beta(\rho_1) - \beta(\rho_2)) \Lambda \rho_1 + \beta(\rho_2) \Lambda \rho) \, dx = J_{10} + J_{11}.
\]

In the term \(J_{10} \) we use the smoothness of the function \(\beta \) to obtain

\[
| \beta(\rho_1) - \beta(\rho_2) | \leq c(\| \rho_1 \|_{H^2(T)}, \| \rho_2 \|_{H^2(T)}) \| \rho \|_{L^2(T)}.
\]

and we conclude

\[
J_{10} \leq c(\| \rho_1 \|_{H^2(T)}, \| \rho_2 \|_{H^2(T)})\| \rho \|_{L^2(T)}^2.
\]

In \(J_{11} \) we use (7) and (17) and we obtain a similar bound. We conclude

\[
I_6 \leq c(\| \rho_1 \|_{H^2(T)}, \| \rho_2 \|_{H^2(T)})\| \rho \|_{L^2(T)}^2.
\]

Only remains the transport term with the Hilbert Transform. We have

\[
I_7 = -\int_T \rho (\beta'(\rho_1) \partial_x \rho_1 H \rho_1 - \beta'(\rho_2) \partial_x \rho_2 H \rho_2) \, dx,
\]

\[
= -\int_T \rho (\beta'(\rho_1) - \beta'(\rho_2)) \partial_x \rho_1 H \rho_1 dx - \int_T \rho \beta'(\rho_2) (\partial_x \rho H \rho_1 + \partial_x \rho_2 H) \, dx,
\]

\[
\leq c(\| \rho_1 \|_{H^2(T)}, \| \rho_2 \|_{H^2(T)})\| \rho \|_{L^2(T)}^2,
\]

where we have used that \(\beta \) is smooth enough. Then, collecting all the estimates together and using Gronwall’s Inequality, we conclude the uniqueness.

\[\square \]

3 Continuation criteria

In this section we use the following Lemma was proved in [1] with inessential changes.

Lemma 1. Let \(\rho \geq 0 \) be a smooth function that attains its maximum in the point \(x_t \) and such that this maximum verifies \(\rho(x_t) \geq 4t \). Then

\[
\Lambda \rho \geq \frac{\rho^2(x_t)}{4\pi^2(\rho)}.
\]

The following result study the absence of blow up for \(\| \rho \|_{L^\infty(T)} \):
Proposition 1. Let be \(\rho \) smooth solution of (1) under the hypothesis of Theorem 1. Assume that
\[
\lim_{x \to \infty} \beta(x) = \infty.
\] (24)
Then, the following inequality holds:
\[
\|\rho(t)\|_{L^\infty(T)} \leq C(\rho_0, \beta).
\]
Proof. Using the smoothness of \(\rho \) we have that
\[
\|\rho(t)\|_{L^\infty(T)} = \max_{x \in T} \rho(x,t) = \rho(x_t),
\]
is a Lipschitz function. We assume that \(\rho(x_t) \geq 4\langle \rho_0 \rangle \). Then, applying Rademacher Theorem to the function \(\rho(x_t) \) and Lemma 1 (see [22] for the details), the evolution of this quantity can be bounded as
\[
\frac{d}{dt}\|\rho(t)\|_{L^\infty(T)} < \left(1 - \frac{\beta(\|\rho(t)\|_{L^\infty(T)})}{2\pi\|\rho_0\|_{L^1(T)}}\right)\|\rho(t)\|_{L^\infty(T)}^2.
\]
Now it is enough to take and conclude
\[
C(\rho_0, \beta) = \min_{\alpha \in \mathbb{R}} \left\{ \alpha \geq \max\{\|\rho_0\|_{L^\infty(T)}, 4\langle \rho_0 \rangle\}, \text{ such that } \beta(\alpha) \geq 4\pi^2\langle \rho_0 \rangle \right\}.
\]
\[\Box\]
The proof of the following result is straightforward.

Proposition 2. Assume that \(\beta(x) \) is away from zero for large \(x \), i.e. \(\beta(x) \geq \nu \) if \(x > R \) for some constants \(\nu, R > 0 \). Let \(\rho \) be the smooth solution of (1) under the hypothesis of Theorem 1 and with initial data satisfying
\[
\|\rho_0\|_{L^1(T)} < \frac{\nu}{2\pi}.
\]
Then, the following inequality holds:
\[
\|\rho(t)\|_{L^\infty(T)} \leq R.
\]
As a consequence of the energy estimates we obtain a continuation criteria akin to the well-known Beale-Kato-Majda criterion in fluid dynamics [2]:

Theorem 2 (Continuation criteria). Let be \(\rho \) smooth solution in \((0,T)\) of (1) under the hypothesis of Theorem 1 and \(\beta \) satisfies (24). Then, if
\[
\int_{0}^{T} \|\partial_x \rho(s)\|_{L^\infty(T)}^2 + \|\Lambda \rho(s)\|_{L^\infty(T)} ds < \infty,
\]
the classical solution exists in \(0 \leq t \leq T + \delta \) for some \(\delta > 0 \).

Proof. Using the energy estimates in Theorem 1 and the boundedness of \(\|\rho\|_{L^\infty(T)} \) we obtain the following
\[
\frac{d}{dt}\|\rho\|_{H^2(T)} \leq c(\rho_0, \beta)\|\rho\|_{H^2(T)} Q(\rho),
\]
where
\[
Q(\rho) = c\left(\|\partial_x \rho\|_{L^\infty(T)} (1 + \|H \rho\|_{L^\infty(T)}) + \|\Lambda \rho\|_{L^\infty(T)} + \|\Lambda \beta(\rho)\|_{L^\infty(T)}\right).
\]
Using (17), the properties of the Hilbert transform and the finiteness of the domain, we get
\[
Q(\rho) \leq c \left(\|\Lambda \rho\|_{L^\infty(\mathbb{T})} + \|\partial_x \rho\|^2_{L^\infty(\mathbb{T})} + 1 \right).
\]
To conclude the result we use Gronwall inequality,
\[
\|\rho\|_{H^2(\mathbb{T})}(T) \leq \|\rho_0\|_{H^2(\mathbb{T})} e^{c(\rho_0, \beta)(T + \int_0^T \|\partial_x \rho(s)\|^2_{L^\infty(\mathbb{T})} + \|\Lambda \rho(s)\|_{L^\infty(\mathbb{T})} ds)}.
\]

\[\square\]

Remark 1 We remark that in the case of \(\beta(\rho) \equiv \beta \) the continuation criteria is given by the condition
\[
\int_0^T \|\rho(s)\|_{L^\infty(\mathbb{T})} ds < \infty,
\]
as was first proved in [29] for the 2D case and also in [1] where it was obtained by means of a different method.

4 Global existence of classical solution for small initial data

In this section we show the existence of global solutions for small initial data in \(H^2 \) when the diffusion does not degenerate.

Theorem 3. Let \(\beta \in C^4[0, \infty) \) be such that \(\lim_{x \to \infty} \beta(x) = \infty \) and such that \(\beta(x) \geq \nu \) for some \(\nu > 0 \). Then, for all initial data \(\rho_0 \in H^2(\mathbb{T}) \) satisfying
\[
\|\rho_0\|_{L^1(\mathbb{T})} < 2\pi\nu, \quad \|\partial_x^2 \rho_0\|_{L^2(\mathbb{T})} \leq C,
\]
for an explicit constant \(C = C(\beta, (\rho)) > 0 \), there exists a global in time classical solution of (1).

Proof. By Theorem 1, there exists \(T > 0 \) such that \(\rho \in C([0, T], H^k(\mathbb{T})) \). The idea is to strengthen the energy estimates. Since \(\beta \) satisfy the hypothesis of Proposition 1, we have the bound
\[
\|\rho(t)\|_{L^\infty(\mathbb{T})} \leq C \left(\|\rho_0\|_{L^1(\mathbb{T})}, \beta \right).
\]
For nonnegative initial data the \(L^1(\mathbb{T}) \) norm is preserved, thus,
\[
\|\rho(t)\|_{L^p(\mathbb{T})} \leq c \left(\|\rho_0\|_{L^1(\mathbb{T})}, \beta, p \right), \quad \forall 1 \leq p \leq \infty.
\]
We need to study the evolution of the second derivative. We start with the aggregation terms. Using Hölder inequality, we get
\[
I_1 = \int_\mathbb{T} \partial_x^2 \rho \partial_x^2 (\rho \partial_x v) dx = \int_\mathbb{T} \partial_x^2 \rho \left(\frac{5}{2} \partial_x^2 \rho (\rho - \langle \rho \rangle) + 3(\partial_x \rho)^2 + \partial_x^2 \rho \rho \right) dx
\leq \|\partial_x^2 \rho\|_{L^2(\mathbb{T})} \left(\frac{7}{2} \|\rho - \langle \rho \rangle\|_{L^\infty(\mathbb{T})} \|\partial_x^2 \rho\|_{L^2(\mathbb{T})} + 3\|\partial_x \rho\|^2_{L^4(\mathbb{T})} + \|\rho\|_{L^2(\mathbb{T})} \|\partial_x^2 \rho\|_{L^2(\mathbb{T})} \right).
\]
Now we use (8)-(11) and Poincaré inequality. We obtain
\[
I_1 \leq \left(\frac{7C_S}{2} + 9C_S \right) \|\partial_x^2 \rho\|^3_{L^2(\mathbb{T})} + \|\rho\|\|\partial_x^2 \rho\|^2_{L^2(\mathbb{T})}.
\]
\[
(25)
\]
We study the diffusion term

\[I_2 = - \int_T \partial_x^2 \rho \partial_x^2 (\beta(\rho) \Lambda \rho) dx \]

\[= - \int_T \partial_x^2 \rho \left(\beta''(\rho)(\partial_x \rho)^2 \Lambda \rho + \beta'(\rho) \partial_x^2 \rho \Lambda \rho + 2 \beta'(\rho) \partial_x \rho \Lambda \partial_x \rho + \beta(\rho) \Lambda \partial_x^2 \rho \right) dx. \]

Using (7), we get

\[I_2 \leq C_{\beta'} \| \partial_x^2 \rho \|_{L^2(T)} \| \partial_x \rho \|_{L^4(T)} \| \Lambda \rho \|_{L^\infty(T)} + C_{\beta'} \| \partial_x^2 \rho \|_{L^4(T)} \| \Lambda \rho \|_{L^\infty(T)} + 2 \| C_{\beta'} \| \| \Lambda \partial_x \rho \|_{L^2(T)} \| \partial_x \rho \|_{L^2(T)} + \| \| \Lambda (\rho) \|_{L^\infty(T)} \| \partial_x^2 \rho \|_{L^2(T)} \]

\[- \nu \| \| \Lambda^{1/2} \partial_x^2 \rho \|_{L^2(T)}. \]

with

\[C_{\beta'} = \sup_{y \in [0,\| \rho \|_{L^1(T)}]} \left| \frac{d^2 \beta}{dy^2}(y) \right|. \]

Since \(\beta(y) \) is smooth and we have Proposition 1, these constants \(C_{\beta'} = C_{\beta}(\beta, \| \rho_0 \|_{L^1(T)}) \) are finite. Using the cancellation coming from the principal value integral, we get

\[|\Lambda \rho| \leq \frac{\| \partial_x \rho \|_{C^{1/2}}}{2\pi} \int_T \frac{|y|^{3/2}}{\sin^2(y/2)} dy \leq 6 C_S \| \partial_x^2 \rho \|_{L^2(T)}. \]

With this bound and the inequalities (8)-(11) and (17), we obtain

\[I_2 \leq \left(18 + \frac{\pi^2}{2} \right) C_S^2 C_{\beta'} \| \partial_x^2 \rho \|_{L^2(T)}^5 + 14 C_S C_{\beta'} \| \partial_x^2 \rho \|_{L^2(T)}^3 - \nu \| \| \Lambda^{1/2} \partial_x^2 \rho \|_{L^2(T)}. \] (26)

The last term is the transport term with singular velocity:

\[I_3 = - \int_T \partial_x^2 \rho \partial_x^2 (\beta'(\rho) \partial_x \rho H \rho) dx \]

\[= - \int_T \partial_x^2 \rho \left(\beta'''(\rho)(\partial_x \rho)^3 H \rho + 3 \beta''(\rho)(\partial_x \rho)^2 \partial_x^2 \rho H \rho + 2 \beta''(\rho)(\partial_x \rho) \partial_x^2 \rho \Lambda \rho \right. \]

\[\left. + 2 \beta'(\rho) \partial_x^2 \rho \Lambda \rho + \beta'(\rho) \partial_x \rho \Lambda \partial_x \rho + \beta'(\rho) \partial_x^2 \rho H \rho \right) dx. \]

With estimates that mimic the previous ones, we obtain

\[I_3 \leq C_{\beta''} C_S^3 \| \partial_x^2 \rho \|_{L^2(T)}^5 + 6 C_S^2 C_{\beta'} \| \partial_x^2 \rho \|_{L^2(T)}^4 + 19 C_S C_{\beta'} \| \partial_x^2 \rho \|_{L^2(T)}^3. \] (27)

Collecting all the estimates (25)-(27), we get

\[\frac{1}{2} \frac{d}{dt} \| \partial_x^2 \rho \|_{L^2(T)}^2 \leq C_{\beta''} C_S^3 \| \partial_x^2 \rho \|_{L^2(T)}^5 + \left(24 + \frac{\pi^2}{2} \right) C_S \| \partial_x^2 \rho \|_{L^2(T)}^4 \]

\[+ \left(\frac{25 C_S}{2} + 33 C_S C_{\beta'} \right) \| \partial_x^2 \rho \|_{L^2(T)}^3 + \langle \rho \rangle \| \partial_x^2 \rho \|_{L^2(T)}^2 - \nu \| \| \Lambda^{1/2} \partial_x^2 \rho \|_{L^2(T)}. \]

Using the fractional Poincaré inequality, we obtain

\[\frac{d}{dt} \| \partial_x^2 \rho \|_{L^2(T)} \leq \left(C_{\beta''} C_S^3 \| \partial_x^2 \rho \|_{L^2(T)}^3 + \left(24 + \frac{\pi^2}{2} \right) C_S \| \partial_x^2 \rho \|_{L^2(T)}^2 \right. \]

\[\left. + \left(\frac{25 C_S}{2} + 33 C_S C_{\beta'} \right) \| \partial_x^2 \rho \|_{L^2(T)} + \langle \rho \rangle - \nu \right) \| \partial_x^2 \rho \|_{L^2(T)}. \] (28)
Now, if $\nu > \langle \rho \rangle$ there exists an explicit (see (28)) constant $C = C(\beta, \langle \rho \rangle)$ such that, if the following inequality holds $\|\partial^2_x \rho \|_{L^2(\mathbb{T})} < C$, we get
\[\|\partial^2_x \rho(t)\|_{L^2(\mathbb{T})} \leq \|\partial^2_x \rho_0\|_{L^2(\mathbb{T})},\]
and, using Proposition 1, we conclude
\[\|\rho(t)\|_{H^2(\mathbb{T})} \leq C(\rho_0).\]
\[\square\]

5 Global existence of weak solution for small L^1 initial data

In this section we consider the particular choice $\beta(x) = x + \nu$. Thus, our problem is
\[\begin{cases} \partial_t \rho = -\partial_x (\rho + (\rho + \nu)H \rho) + \partial_x (\rho \partial_x v), & x \in \mathbb{T}, t > 0, \\ \partial^2_x v = \rho - \langle \rho \rangle, \end{cases}\] (29)
and an initial data $\rho_0 \in L^\infty(\mathbb{T}) \cap H^{1/2}(\mathbb{T})$.

We define our concept of weak solutions:

Definition 1. $\rho(x,t)$ is a weak solution of (29) if, for all $\phi(x,t) \in C_\infty^\circ([0,T),C_\infty^\circ(\mathbb{T}))$, the following equality holds
\[\int_0^T \int_{\mathbb{T}} \partial_t \phi(x,t) \rho(x,t) dx dt + \int_0^T \rho_0(x) \phi(x,0) dx = \int_0^T \int_{\mathbb{T}} \partial_x \phi(x,t) [-\rho + (\rho + \nu)H \rho] dx dt.\]

First, recall some important results concerning fractional Sobolev spaces:

1. $H^{1/2}(\mathbb{T})$ is continuously embedded in $L^q(\mathbb{T})$ for every $q \in [1, \infty)$ (see Theorem 6.10 in [24]).
2. $H^{1/2}(\mathbb{T})$ is compactly embedded in $L^q(\mathbb{T})$ for every $q \in [1, 2]$ (see Theorem 7.1 in [24] and Lemma 10 in [32]). Moreover, $H^s(\mathbb{T})$ is compactly embedded in $L^q(\mathbb{R})$ for $0 < s < 1/2$ and $1 \leq q < 2/(1 - 2s)$ (see Corollary 7.2 in [24]).

We will use the Tricomi relation for periodic, mean zero functions:
\[H(\rho H^2 + f H^2) = \rho H^2 - f^2,\]
which, in the case $f = g$, reduces to
\[2H(\rho H^2) = (H \rho)^2 - \rho^2.\] (30)

Theorem 4. Let $\rho_0 \in L^\infty(\mathbb{T}) \cap H^{1/2}(\mathbb{T})$ be a positive initial data and assume that
\[\|\rho_0\|_{L^1(\mathbb{T})} \leq \frac{2}{3}\nu.\]
Then there exist a solution of the system (29) such that
\[\rho(x,t) \in L^\infty([0,T],H^{1/2}(\mathbb{T}) \cap L^\infty(\mathbb{T})) \cap C([0,T],L^2(\mathbb{T})).\]
Proof. The regularized system: The regularized system that we are considering is

\[
\begin{cases}
\partial_t \rho_\epsilon = -\partial_x ((\rho_\epsilon + \nu) H\rho_\epsilon) + \partial_x (\rho_\epsilon \partial_x v_\epsilon) + \epsilon \partial^2_x \rho_\epsilon, \\
\partial^2_x v_\epsilon = \rho_\epsilon - \langle \rho \rangle, \\
\rho_\epsilon(x,0) = J_\epsilon * \rho_0(x),
\end{cases}
\]

where \(J_\epsilon \) defined as in (23). Notice that

\[
\|\rho_\epsilon(0)\|_{L^\infty(T)} \leq \|\rho_0\|_{L^\infty(T)}, \|\rho_\epsilon(0)\|_{L^1(T)} = \|\rho_0\|_{L^1(T)}, \|\rho_\epsilon(0)\|_{H^{1/2}(T)} \leq \|\rho_0\|_{H^{1/2}(T)}.
\]

Moreover, \(\rho_\epsilon(x,0) \in H^s(T) \) for any \(s > 0 \).

The a priori bounds: Since \(\beta(x) \) satisfy the hypothesis in Proposition 1, we get

\[
\|\rho_\epsilon(t)\|_{L^\infty(T)} \leq \max\{\|\rho_\epsilon(0)\|_{L^\infty(T)}, 2\pi \|\rho_\epsilon(0)\|_{L^1(T)} \} \leq C(\rho_0).
\]

Moreover, we obtain

\[
\|\rho_\epsilon(t)\|_{L^p(T)} \leq C(\rho_0,p).
\]

We study the evolution of the \(H^{1/2} \) seminorm:

\[
\frac{1}{2} \frac{d}{dt} \|\Lambda^{1/2} \rho_\epsilon(t)\|_{L^2(T)}^2 = \int_T \Lambda \rho_\epsilon \partial_t \rho_\epsilon \, dx
\]

\[
= -\|\sqrt{\nu} \Lambda \rho_\epsilon\|_{L^2(T)}^2 - \nu \|\Lambda \rho_\epsilon\|_{L^2(T)}^2 - \langle \rho \rangle \|\Lambda^{1/2} \rho_\epsilon\|_{L^2(T)}^2 - \epsilon \|\partial_x \rho_\epsilon\|_{L^2(T)}^2
\]

\[
- \int_T \Lambda \rho_\epsilon \partial_x \rho_\epsilon H \rho_\epsilon \, dx + \int_T \Lambda \rho_\epsilon \rho_\epsilon^2 + \int_T \Lambda \rho_\epsilon \partial_x \rho_\epsilon \partial_x v_\epsilon.
\]

Using (30), we have

\[
I_1 = -\int_T \Lambda \rho_\epsilon \partial_x \rho_\epsilon H (\rho_\epsilon - \langle \rho \rangle) \, dx = \int_T (\rho_\epsilon - \langle \rho \rangle) H \partial_x \rho_\epsilon \partial_x \rho_\epsilon \, dx
\]

\[
= \frac{1}{2} \int_T (\rho_\epsilon - \langle \rho \rangle) (\Lambda \rho_\epsilon)^2 \, dx - \frac{1}{2} \int_T (\rho_\epsilon - \langle \rho \rangle) (\partial_x \rho_\epsilon)^2 \, dx
\]

\[
= \frac{1}{2} \int_T \rho_\epsilon (\Lambda \rho_\epsilon)^2 \, dx - \frac{1}{2} \int_T \rho_\epsilon (\partial_x \rho_\epsilon)^2 \, dx,
\]

where in the last step we use (5). We consider \(\delta > 0 \) a positive number that will be fixed below. Then, we obtain

\[
I_2 = \int_T \Lambda \rho_\epsilon \rho_\epsilon^2 \leq \|\Lambda \rho_\epsilon\|_{L^2(T)} \|\rho_\epsilon\|_{L^4(T)}^2 \leq \delta \|\Lambda \rho_\epsilon\|_{L^2(T)}^2 + \frac{c(\rho_0)}{\delta}.
\]

Notice that, using the equation of \(v_\epsilon \) and its periodicity, we have

\[
\partial_x v_\epsilon(x,t) - \partial_x v_\epsilon(-\pi,t) = \int_{-\pi}^x \rho_\epsilon(y) - \langle \rho \rangle \, dy,
\]

and, integrating by parts,

\[
0 = \int_T \partial_x v_\epsilon(y,t) \, dy = 2\pi \partial_x v_\epsilon(-\pi,t) - \int_T \partial_x^2 v_\epsilon(y,t) \, y \, dy = 2\pi \partial_x v_\epsilon(-\pi,t) - \int_T \rho_\epsilon(y,t) \, y \, dy.
\]

From these two equalities we obtain

\[
\|\partial_x v_\epsilon\|_{L^\infty(T)} \leq |\partial_x v_\epsilon(-\pi,t)| + \|\rho_\epsilon\|_{L^1(T)} \leq \frac{3}{2} \|\rho_0\|_{L^1(T)}.
\]
The last integral is, using again (5),
\[
I_3 = \int_T \Lambda \rho \partial_x \rho \partial_x v dx \leq \frac{3}{2} \| \rho \|_{L^1(T)} \| \Lambda \rho \|_{L^2(T)}^2.
\]
Collecting all the estimates, we get
\[
\frac{1}{2} \frac{d}{dt} \| \Lambda^{1/2} \rho \|_{L^2(T)}^2 \leq - \frac{1}{2} \| \sqrt{\rho} \Lambda \rho \|_{L^2(T)}^2 - \frac{1}{2} \| \sqrt{\rho} \partial_x \rho \|_{L^2(T)}^2 - \langle \rho \rangle \| \Lambda^{1/2} \rho \|_{L^2(T)}^2
\]
\[
- \epsilon \| \partial_x \rho \|_{L^2(T)}^2 + \left(\delta + \frac{3}{2} \| \rho \|_{L^1(T)} - \nu \right) \| \Lambda \rho \|_{L^2(T)}^2 + \frac{c(\rho_0)}{\delta},
\]
if \(\delta \) is taken sufficiently small. Using Gronwall inequality, we obtain
\[
\| \Lambda^{1/2} \rho(t) \|_{L^2(T)}^2 \leq \frac{c(\rho_0)}{\langle \rho \rangle \delta} + \left(\| \Lambda^{1/2} \rho_0 \|_{L^2(T)}^2 - \frac{c(\rho_0)}{\langle \rho \rangle \delta} \right) e^{-2(\rho)t}
\]
\[
\leq \frac{c(\rho_0)}{\langle \rho \rangle \delta} + \left(\| \Lambda^{1/2} \rho_0 \|_{L^2(T)}^2 - \frac{c(\rho_0)}{\langle \rho \rangle \delta} \right) e^{-2(\rho)t}. \quad (33)
\]

Existence: We study the evolution of \(\| \rho \|_{H^2} \). First we deal with the nonlocal flux. The diffusive term can be bounded using (5), (6) and (8) in the usual way

\[
A_1 = -\int_T \partial_x^3 \rho \partial_x^2 (\rho \Lambda \rho) dx = \int_T \partial_x^2 \rho \partial_x (\partial_x \rho \Lambda \rho + \rho \Lambda \partial_x \rho) dx
\]
\[
\leq \| \partial_x^2 \rho \|_{L^2(T)} \left(\| \partial_x \rho \|_{L^1(T)} \| H \partial_x \rho \|_{L^1(T)} + \| H \partial_x^2 \rho \|_{L^2(T)} \| \rho \|_{L^\infty(T)} \right)
\]
\[
\leq \| \partial_x^2 \rho \|_{L^2(T)} \| \partial_x^2 \rho \|_{L^2(T)} \| \Lambda \rho \|_{L^2(T)} C(\rho_0).
\]

To handle the transport term with singular velocity we need the Kato-Ponce inequality (see [25, 27])
\[
\| \Lambda^s (fg) \|_{L^r} \leq C \left(\| g \|_{L^{p_1}} \| \Lambda^s f \|_{L^{p_2}} + \| \Lambda^s g \|_{L^{q_1}} \| f \|_{L^{q_2}} \right), \quad (34)
\]
where \(s > 0 \) and
\[
\frac{1}{r} = \frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{q_1} + \frac{1}{q_2}.
\]
Using (34) in the case \(p_1 = p_2 = q_1 = q_2 = 2, r = s = 1 \)
\[
A_2 = -\int_T \partial_x^2 \rho \partial_x^2 (\partial_x \rho H \rho) dx = \int_T \partial_x^1 \rho (\partial_x^2 \rho H \rho + \partial_x \rho \Lambda \rho) dx
\]
\[
\leq -\frac{1}{2} \int_T \Lambda (\partial_x^2 \rho) \rho dx + C(\rho_0) \| \partial_x^2 \rho \|_{L^2(T)} \| \partial_x \rho \|_{L^2(T)}
\]
\[
\leq C(\rho_0) \| \partial_x^2 \rho \|_{L^2(T)} \| \partial_x^2 \rho \|_{L^2(T)}.
\]

The aggregation terms are:
\[
A_3 = \int_T \partial_x^2 \rho \partial_x^2 (\partial_x \rho \partial_x v) dx = -\int_T \partial_x^3 \rho \partial_x \rho \partial_x v + \partial_x \rho \left(\rho - \langle \rho \rangle \right) dx
\]
\[
\leq C(\rho_0) \| \partial_x^2 \rho \|_{L^2(T)} \left(\| \partial_x^2 \rho \|_{L^2(T)} + \| \partial_x \rho \|_{L^2(T)} \right),
\]
and
\[
A_4 = \int_T \partial_x^2 \rho \partial_x^2 (\rho \left(\rho - \langle \rho \rangle \right)) dx \leq C(\rho_0) \| \partial_x^2 \rho \|_{L^2(T)}^2.
\]

14
Thus, using Young inequality, we obtain
\[
\frac{d}{dt} \| \partial_t^2 \rho_\epsilon \|_{L^2(\mathbb{T})} \leq c(\epsilon, \rho_0) \| \partial_t^2 \rho_\epsilon \|_{L^2(\mathbb{T})},
\]
and, using Gronwall inequality,
\[
\| \partial_t^2 \rho_\epsilon(t) \|_{L^2(\mathbb{T})} \leq c_1(\epsilon, \rho_0)e^{c(\epsilon, \rho_0)t}.
\]
Since we have (32), we have
\[
\| \rho_\epsilon(t) \|_{H^2(\mathbb{T})} \leq c(\epsilon, \rho_0, T).
\]
With this estimate and following the classical technique, we obtain
\[
\rho_\epsilon(x, t) \in C([0, T], H^2(\mathbb{T})), \quad \forall \ T < \infty, \epsilon > 0.
\]

Compactness: This step uses classical tools from functional analysis. The estimate (32) gives us
\[
\sup_{t \in [0, T]} \| \rho_\epsilon(t) \|_{L^p(\mathbb{T})} \leq C(\rho_0, p), \quad \forall \ 1 \leq p \leq \infty.
\]
Thus, the family of approximate solutions remains uniformly bounded in the Bochner space \(L^\infty ([0, T], L^p(\mathbb{T})) \), \(\forall \ 1 \leq p \leq \infty \). Using (33), we have
\[
\sup_{t \in [0, T]} \| \rho_\epsilon(t) \|_{H^{1/2}(\mathbb{T})} \leq C(\rho_0).
\]
Using this two estimates, we get
\[
\rho_\epsilon(t) \in L^p \left([0, T], H^{1/2}(\mathbb{T}) \right) \cap L^p \left([0, T], L^\infty(\mathbb{T}) \right), \quad \forall \ 1 \leq p \leq \infty.
\]
(35)

In particular, \(\rho_\epsilon \) is uniformly bounded in the space \(L^2 \left([0, T], H^{1/2}(\mathbb{T}) \right) \). Using the Banach-Alaoglu Theorem we obtain (picking a subsequence) the existence of \(\rho \) such that
\[
\rho_\epsilon(x, t) \rightharpoonup \rho(x, t) \in L^2 \left([0, T], H^{1/2}(\mathbb{T}) \right),
\]
(36)
and, using (33),
\[
\rho(x, t) \in L^\infty \left([0, T], H^{1/2}(\mathbb{T}) \right).
\]
Using (32) and picking a subsequence if needed, we obtain
\[
\rho_\epsilon(x, t) \overset{*}{\rightharpoonup} \rho(x, t) \in L^\infty \left([0, T], L^\infty(\mathbb{T}) \right).
\]

We need to obtain some bound in \(\partial_t \rho_\epsilon \) to obtain the compacity in some Bochner space. Given \(f \in L^2(\mathbb{T}) \), we take into account the norm
\[
\| f \|_{H^{-1}(\mathbb{T})} = \sup_{\psi \in H^1(\mathbb{T}), \| \psi \|_{H^1(\mathbb{T})} \leq 1} \left| \int_\mathbb{T} \psi(x)f(x)dx \right|.
\]
We consider the Banach space \(H^{-1}(\mathbb{T}) \) as the completion of \(L^2(\mathbb{T}) \) with this norm. We multiply the equation (31) by \(\psi \in H^1(\mathbb{T}) \) and integrate to get
\[
\left| \int_\mathbb{T} \partial_t \rho_\epsilon(x, t)\psi(x)dx \right| = \left| \int_\mathbb{T} (\rho_\epsilon + \nu) H\rho_\epsilon - \rho_\epsilon \partial_x \psi \partial_x \psi dx \right| \leq C(\rho_\epsilon) \quad \forall \psi \in H^1(\mathbb{T}).
\]
Thus, we have
\[\sup_{t \in [0, T]} \| \partial_t \rho(t) \|_{H^{-1}(T)} \leq C(\rho_0), \]
and conclude
\[\partial_t \rho \in L^p([0, T], H^{-1}(T)) \quad \forall 1 \leq p \leq \infty. \]

We use the classical Aubin-Lions Lemma to obtain compactness (see Corollary 4, Section 8 in [35]). Let us restate this result: given three spaces \(X \subset B \subset Y \), such that the embedding \(X \subset B \) is compact and the embedding \(B \subset Y \) is continuous, we consider a sequence \(f_n \), satisfying

1. \(f_n \) is uniformly bounded in \(L^\infty([0, T], X) \),
2. \(\partial_t f_n \) is uniformly bounded in \(L^r([0, T], Y) \) where \(r > 1 \).

Then this sequence is relatively compact in \(C([0, T], B) \). Thus, we take \(X = H^{1/2}(\mathbb{T}), B = L^2(\mathbb{T}) \) and \(Y = H^{-1}(\mathbb{T}) \) and with this strong convergence, we get
\[\sup_{t \in [0, T]} \| H\rho(t) - H\rho(t) \|_{L^2(\mathbb{T})} \leq \sup_{t \in [0, T]} \| \rho(t) - \rho(t) \|_{L^2(\mathbb{T})} \to 0 \]
Thus, picking a subsequence, \(\rho_i(x, t) \to \rho(x, t) \) and \(H\rho_i(x, t) \to H\rho(x, t) \) almost everywhere.

Figure 1: Case 1. \(\beta(x) = x^2 \).
As \(\epsilon \) tends to zero, we have
\[
\int_0^T \int_T \partial_t \phi(x,t) \rho(x,t) dx dt + \int_T \rho(x,0) \phi(x,0) dx \\
= \int_0^T \int_T \partial_x \phi(x,t) \left[-\left(\rho + \nu \right) H \rho + \rho \partial_x v \right] dx dt - \epsilon \int_T \int_T \rho(x,t) \partial_x^2 \phi(x,t) dx dt.
\]

Using (32) and (36), we obtain the convergence of the linear terms. The nonlinear terms can be handled as follows
\[
\left| \int_0^T \int_T \partial_x \phi(x,t) \left(\rho, H \rho - \rho H \rho + \rho H \rho - \rho H \rho \right) dx dt \right| \\
\leq T \| \partial_x \phi \|_{L^\infty(T \times [0,T])} \sup_{t \in [0,T]} \| \rho - \rho(t) \|_{L^2(T)} \left(\sup_{t \in [0,T]} \| H \rho(t) \|_{L^2(T)} + \| \rho(t) \|_{L^2(T)} \right) \\
\leq C(\phi, \rho_0, T) \sup_{t \in [0,T]} \| \rho - \rho(t) \|_{L^2(T)} \to 0,
\]
as \(\epsilon \to 0 \). Now, since \(v \) is defined by (1) (we can since \(\rho(t) \in L^2(T) \) for all times),
\[
\left| \int_0^T \int_T \partial_x \phi(x,t) \left(\rho, \partial_x v - \rho \partial_x v + \rho \partial_x v - \rho \partial_x v \right) dx dt \right| \\
\leq T \| \partial_x \phi \|_{L^\infty(T \times [0,T])} \left(\sup_{t \in [0,T]} \| \rho - \rho(t) \|_{L^2(T)} \sup_{t \in [0,T]} \| \partial_x v(t) \|_{L^2(T)} \\
+ \sup_{t \in [0,T]} \| \partial_x v(x,t) - \partial_x v(x,t) \|_{L^2(T)} \sup_{t \in [0,T]} \| \rho(t) \|_{L^2(T)} \right) \\
\leq C(\phi, \rho_0, T) \sup_{t \in [0,T]} \| \rho - \rho(t) \|_{L^2(T)} \to 0.
\]

We conclude the proof. \(\square \)

6 Numerical simulations

To better understand the role of \(\beta(\rho) \), we perform some numerical simulations. We denote \(N \) the number of spatial grid points and we approximate our solution by a cubic spline passing through these nodes. Then, we compute (using the function \texttt{cub} in Matlab) the Hilbert transform using Taylor series and the cancellation coming from the principal value integration to avoid the singularity of the integral. Once that we compute \(H \rho \), multiplying by \(\beta(\rho) \) and taking the derivative, we have the nonlocal flux. The Poisson equation is solved using finite differences. This ends with the spatial part in a straightforward way. We advance in time with the Runge-Kutta-Fehlberg-45 scheme with tolerance \(10^{-8} \).

We consider the same initial data
\[
\rho(x,0) = \left(\frac{\int_{-\pi}^{\pi} e^{-\frac{1}{4(x/2)^2}} ds}{2\pi} \right)^{-1} e^{-\frac{1}{4(x/2)^2}}
\]
in all simulations. In the first case we take \(\beta(x) \) a convex function, while in the second simulation we consider a concave one.
Case 1: We consider $\beta(x) = x^2$. The results are contained in Figure 1. Notice that the first derivative appears to blow up even if we refine N. We conjecture that $\|\partial_x \rho(t)\|_{L^\infty(\mathbb{T})}$ behaves like

$$ C \frac{1}{(T-t)^{a}}. $$

Using least squares, we approximate these parameters for different values of N, in particular, $N = 300, 600, 1000$, to get

$$ C = 0.147126, \quad T = 0.093494, \quad a = 1.191234. $$

With these constants we believe that the blow up occurs.

Case 2: We consider $\beta(x) = \log(1 + x)$. Now the diffusion can not prevent that $\|\rho(t)\|_{L^\infty(\mathbb{T})}$ grows (even if we know that it is uniformly bounded for all times) and we obtain a very different profile (see Figure 2). Here, even if the $\|\rho(t)\|_{C^2}$ increases, there is no evidence of finite time blow up.

References

[1] Y. Ascasibar, R. Granero-Belinchón, and J. Moreno. An approximative treatment of gravitational collapse. Submitted, arXiv preprint arXiv:1211.5392, 2012.

[2] J. Beale, T. Kato, and A. Majda. Remarks on the breakdown of smooth solutions for the 3-d euler equations. Communications in Mathematical Physics, 94(1):61–66, 1984.
[3] J. Bedrossian and N. Rodriguez. Inhomogeneous patlak-keller-segel models and aggregation equations with nonlinear diffusion in \mathbb{R}^d. arXiv preprint arXiv:1108.5167, 2011.

[4] J. Bedrossian, N. Rodríguez, and A. L. Bertozzi. Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion. Nonlinearity, 24(6):1683, 2011.

[5] P. Biler. Existence and nonexistence of solutions for a model of gravitational interaction of particles, iii. In Colloq. Math, volume 68, pages 229–239, 1995.

[6] P. Biler, D. Hilhorst, and T. Nadzieja. Existence and nonexistence of solutions for a model of gravitational interaction of particles, ii. In Colloquium Mathematicum, volume 67, pages 297–308. Wroclaw: [sn], 1947-(Wroclaw: druk. Uniwersytetu i Politechniki), 1994.

[7] P. Biler and G. Karch. Blowup of solutions to generalized Keller-Segel model. Journal of Evolution equations, 10(2):247–262, 2010.

[8] P. Biler, G. Karch, P. Laurençot, and T. Nadzieja. The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane. Mathematical methods in the applied sciences, 29(13):1563–1583, 2006.

[9] P. Biler and T. Nadzieja. Existence and nonexistence of solutions for a model of gravitational interaction of particles, i. In Colloq. Math, volume 66, pages 319–334, 1994.

[10] A. Blanchet. On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher. arXiv preprint arXiv:1109.1543, 2011.

[11] A. Blanchet, E. A. Carlen, and J. A. Carrillo. Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model. Journal of Functional Analysis, 262(5):2142–2230, 2012.

[12] A. Blanchet, J. Carrillo, and P. Laurençot. Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions. Calculus of Variations and Partial Differential Equations, 35(2):133–168, 2009.

[13] A. Blanchet, J. Carrillo, and N. Masmoudi. Infinite time aggregation for the critical Patlak-Keller-Segel model in 2. Communications on Pure and Applied Mathematics, 61(10):1449–1481, 2008.

[14] N. Bournaveas and V. Calvez. The one-dimensional Keller–Segel model with fractional diffusion of cells. Nonlinearity, 23(4):923, 2010.

[15] L. Caffarelli and J. L. Vazquez. Nonlinear porous medium flow with fractional potential pressure. Archive for rational mechanics and analysis, 202(2):537–565, 2011.

[16] A. Castro and D. Córdoba. Global existence, singularities and ill-posedness for a nonlocal flux. Advances in Mathematics, 219(6):1916–1936, 2008.

[17] A. Castro and D. Córdoba. Self-similar solutions for a transport equation with nonlocal flux. Chinese Annals of Mathematics, Series B, 30(5):505–512, 2009.
[18] D. Chae, A. Córdoba, D. Córdoba, and M. A. Fontelos. Finite time singularities in a 1d model of the quasi-geostrophic equation. *Advances in Mathematics*, 194(1):203–223, 2005.

[19] P.-H. Chavanis and C. Sire. Virial theorem and dynamical evolution of self-gravitating brownian particles in an unbounded domain. i. overdamped models. *Physical Review E*, 73(6):066103, 2006.

[20] P.-H. Chavanis and C. Sire. Exact analytical solution of the collapse of self-gravitating brownian particles and bacterial populations at zero temperature. *Physical Review E*, 83(3):031131, 2011.

[21] A. Córdoba and D. Córdoba. A pointwise estimate for fractionary derivatives with applications to partial differential equations. *Proceedings of the National Academy of Sciences*, 100(26):15316, 2003.

[22] A. Córdoba and D. Córdoba. A maximum principle applied to quasi-geostrophic equations. *Communications in Mathematical Physics*, 249(3):511–528, 2004.

[23] L. Corrias, B. Perthame, and H. Zaag. Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. *Milan Journal of Mathematics*, 72(1):1–28, 2004.

[24] E. Di Nezza, G. Palatucci, and E. Valdinoci. Hitchhiker’s guide to the fractional Sobolev spaces. *Bulletin des Sciences Mathématiques*, 136(5):521–573, 2012.

[25] L. Grafakos and S. Oh. The Kato-Ponce inequality. *arXiv preprint arXiv:1303.5144*, 2013.

[26] W. Jäger and S. Luckhaus. On explosions of solutions to a system of partial differential equations modelling chemotaxis. *Trans. Amer. Math. Soc*, 329(2):819–824, 1992.

[27] T. Kato, and G. Ponce. Commutator estimates and the Euler and Navier-Stokes equations. *Communications on Pure and Applied Mathematics*, 41(7):891–907, 1988.

[28] E. Keller and L. Segel. Initiation of slime mold aggregation viewed as an instability. *Journal of Theoretical Biology*, 26(3):399–415, 1970.

[29] D. Li, J. Rodrigo, and X. Zhang. Exploding solutions for a nonlocal quadratic evolution problem. *Revista Matematica Iberoamericana*, 26(1):295–332, 2010.

[30] A. Majda and A. Bertozzi. *Vorticity and incompressible flow*. Cambridge Univ Pr, 2002.

[31] T. Nagai. Global existence and decay estimates of solutions to a parabolic-elliptic system of drift-diffusion type in \mathbb{R}^2. *Differential Integral Equations*, 24:29–68, 2011.

[32] G. Palatucci, O. Savin, and E. Valdinoci. Local and global minimizers for a variational energy involving a fractional norm. *Annali di Matematica Pura ed Applicata*, pages 1–46, 2012.

[33] C. Patlak. Random walk with persistence and external bias. *Bulletin of Mathematical Biology*, 15(3):311–338, 1953.

[34] T. Senba and T. Suzuki. Weak solutions to a parabolic-elliptic system of chemotaxis. *Journal of Functional Analysis*, 191(1):17–51, 2002.
[35] J. Simon. Compact sets in the space $L^p(0,T;B)$. *Annali di Matematica pura ed applicata*, 146(1):65–96, 1986.

[36] E. Stein. *Singular integrals and differentiability properties of functions*. Princeton Univ Pr, 1970.