Large organized chromatin K9-modifications (LOCKs) distinguish differentiated from embryonic stem cells

Bo Wen, Hao Wu, Yoichi Shinkai, Rafael A. Irizarry, and Andrew P. Feinberg

Supplementary Methods

Cell Culture

A mouse embryonic stem cell line (ES25) was generated from day 13.5 C57BL/6 embryos by the ES Core Facility (ECF) at Johns Hopkins University according to their standard protocol (http://www.hopkinsmedicine.org/core/ES_Targeting/home.htm). The G9a knockout mouse ES and parental wild type lines were generated in the Shinkai laboratory. ES cells were cultured and maintained according to the standard protocols of the ES core laboratory at Johns Hopkins University (http://www.hopkinsmedicine.org/core/ES_Targeting/Protocol_Pages/protocolmain.htm). To differentiate ES cells, leukemia inhibitory factor (LIF, Chemicon) was withdrawn from the medium and cells were cultured in gelatin-coated plates without feeder layer. Cells were differentiated for 18-24 days in total.

Human lymphoblastoid cell lines GM06991 and GM06993 were obtained from the Coriell Cell Repositories (Camden, New Jersey). Cancer cell lines HCT116, HeLa, KG-1 and Ramos were from the American Type Culture Collection (ATCC, Manassas, VA). All the cells were cultured according to the protocols of the suppliers.
Tissue specimens

A male human placenta was obtained freshly from the obstetrics service at Johns Hopkins Hospital. Tissues from the fetal side were dissected into small pieces for further analysis. Liver and brain from two female C57BL/6 mice were cut into small pieces and homogenized using a glass Dounce homogenizer.

ChIP-on-chip

We prepared native chromatin as described\(^2\), followed by micrococcal nuclease digestion (MNase, GE Healthcare, Piscataway, NJ) to a size of 1-5 nucleosomes as described\(^2\). Chromatin immunoprecipitation (ChIP) was based on the protocol of Kim et al.\(^3\), except for the use of native chromatin and MNase digestion noted above, and excluding formaldehyde cross-linking and sonication. 200\(\mu g\) of chromatin was used for each ChIP reaction, using commercial monoclonal antibodies specific to H3 dimethyl lysine-9 (Abcam, ab1220), H3 trimethyl lysine-9 (Abcam, ab8898) and H3 trimethyl lysine-27 (Upstate, 07-449). ChIP and input DNA were amplified using the WGA2 kit (Sigma). Labeling of ChIP and input DNA, hybridization and scanning were conducted at NimbleGen in Iceland according to their standard protocols. The designs of tiling arrays and samples analyzed are provided in Supplementary Table 7.

We also validated this protocol by performing H3K27Me3 ChIP in undifferentiated ES cells, and examining the enrichment of ChIP DNA by quantitative real time PCR (qPCR) on six known regions that were found to be H3K27Me3-enriched in ES cells using a conventional ChIP protocol with formaldehyde cross-linking and sonication\(^4\). In two replicate cultures of ES cells, we obtained comparable results for all six genes using our protocol (Supplementary Fig. 1).
Microarray data analysis

The raw data consisted of intensities for the Cy3 channel (Input) and Cy5 channel (ChIP). Three steps were used to process the data. First, within-array normalization was performed to remove spatial and sequence-dependent effects using an approach similar to that described by Wu *et al.*. Between-array normalization was performed using a partial quantile normalization algorithm as follows. We first quantile normalized Cy3 (Input) intensities from all arrays to a common target. We used a smoothing procedure to improve the signal to noise ratio of the M (log\(_2\) ratio) values and fitted a function of M values to the chromosomal location using loess. We then picked the genomic regions with the lowest 20% fitted values as the reference region. The Cy5 intensities in the reference regions should have similar distributions in each sample. We therefore quantile normalized them to the same distribution target. The quantile procedure was used to construct a function to map pre-normalization Cy5 intensities to post-normalization Cy5 intensities. This map was then applied to all the Cy5 intensities. This procedure made the M values comparable from array to array. Finally the starts and ends of LOCKs were identified by running a loess smoother on the normalized M values using 15,000 bp windows. Genomic regions with smoothed values less than the 20th quantile of all smoothed values were used as reference regions. This distribution was used as a reference distribution (non-LOCKs). We used 97.5\(^{th}\) quantile of this distribution as the threshold to define LOCKs. Contiguous probes above this threshold were grouped into LOCKs.

To investigate the relationship between LOCK location and gene expression, we compared LOCK locations of liver and brain with the expression data from the gene atlas of mouse and human protein-encoding transcriptomes. We define a gene as present
within a LOCK if it overlapped the LOCK location. Significance of the expression difference between two groups of genes were calculated using Chi-square or Fisher’s exact tests by comparing numbers of high expressed genes (≥2) and low expressed genes (<2). All data analysis was performed in R, and all scripts are available on request.

Functional annotation analysis

Gene Ontology (GO) and Tissue Expression annotation analysis was conducted using DAVID Tools. The analyses were conducted using genes within liver-specific or brain-specific LOCKs, comparing to all genes on the microarrays. Terms with P values < 0.01 are provided in Supplementary Tables 4-6.

ChIP qPCR

Quantitative real-time PCR (qPCR) was performed using SYBR Green PCR master mix (Applied Biosystem) on an ABI 7700 sequence detector. Primer sequences and locations are provided in Supplementary Table 8. 2ng of ChIP and input DNA were used for each PCR reaction, which was conducted in triplicate for each sample. The enrichment of ChIP over input was calculated by the difference in the number of threshold cycle (Ct) between IP and input, based on a two-fold change for each cycle.

Quantitative RT-PCR

Total RNA was prepared using the RNeasy Mini Kit (Qiagen, Valencia, CA), and then 2 µg of RNA was used for reverse transcription using QuantiTect Rev Transcription Kit (Qiagen) according to the manufacturer’s instruction. Quantitative real time PCR was performed as described under ChIP q-PCR. Primer sequences are provided in Supplementary Table 8.
References

1. Tachibana, M. et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. *Genes Dev* **16**, 1779-91 (2002).

2. Umlauf, D., Goto, Y. & Feil, R. Site-specific analysis of histone methylation and acetylation. *Methods Mol Biol* **287**, 99-120 (2004).

3. Kim, T.H. et al. A high-resolution map of active promoters in the human genome. *Nature* **436**, 876-80 (2005).

4. Bernstein, B.E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. *Cell* **125**, 315-26 (2006).

5. Wu, J., Irizarry, R., Gentleman, R., Murillo, F.M. & Spencer, F. A model based background adjustment for oligonucleotide expression arrays. *J Amer Statist Assoc* **99**, 909-917 (2004).

6. Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. *Bioinformatics* **19**, 185-93 (2003).

7. Cleveland, W.S., Grosse, E. & Shyu, W.M. Local regression models. in *Statistical Models in S* (eds. Chambers, J.M. & Hastie, T.J.) (Wadsworth and Brooks, Pacific Grove, 1992).

8. Su, A.I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. *Proc Natl Acad Sci U S A* **101**, 6062-7 (2004).

9. Dennis, G., Jr. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. *Genome Biol* **4**, P3 (2003).
Supplementary Table 1. Coordinates of custom arrays

Chromosome	Start	End
chr1	3550000	3700000
chr1	68000000	68400000
chr2	15635000	16785000
chr6	144216000	144465000
chr6	160190000	160556473
chr7	1259000001	132000000
chr7	50287019	51010342
chr7	92457810	93003452
chr7	93601102	94794489
chr7	95865658	96583857
chr10	64879750	69842996
chr11	32037172	32579528
chr11	1000000	3367849
chr11	6825689	7014184
chr11	59567900	59730000
chr13	46131964	47737931
chr14	99783114	100981613
Chromosome	Start (mm)	End (mm)
------------	------------	----------
chr15	17000001	31400000
chr18	42649549	42969233
chr19	61715851	62440220
chr20	35426873	35741706
chr20	41508900	41643913
chr20	56692122	57018532

Mouse custom array

Chromosome	Start (mm)	End (mm)
chr6	2900000	8500000
chr6	28500000	32500000
chr7	4000000	8500000
chr7	55500000	64500000
chr7	140500000	145500000
chr11	21500000	24000000
chr12	107000000	112500000
chr17	11000000	14500000

\(^a\)Coordinates based on HG17; \(^b\) coordinates based on MM8
Cell type	Number of LOCKs	Size of LOCKs (kb)	Percentage of genome in LOCKs		
Undifferentiated ES cells	2601	20	1,667	4.3%	
		Minimum	Maximum	Mean	
Differentiated ES cells	8611	20	2,658	93	31.1%
Adult brain	4746^a	20	3,483	52	9.8%
Adult liver	4916^a	20	4,875	235	45.6%

^aDoubled to extrapolate from the half-genome measured
Supplementary Table 3. Genes within H3K9Me2 LOCKs show similar relationship to gene repression compared to genes individually marked by H3K9Me2

	High expressiona	Low expression	P value
Liver			
H3K9Me2 LOCKs	45	2569	
Individual H3K9Me2 Marks	15	652	0.456
Brain			
H3K9Me2 LOCKs	4	693	
Individual H3K9Me2 Marks	7	484	0.217

aNumber of genes with normalized log ratio ≥ 2 (see Full Methods)
Supplementary Table 4. GO annotation of genes within liver-specific LOCKs

Ontologies	Term	Count	%	P Value	Fold Enrichment
MF	GO:0004930–G-protein coupled receptor activity	213	19.8%	2.86E-94	4.5
BP	GO:0007186–G-protein coupled receptor protein signaling	227	21.1%	1.92E-89	4.0
BP	GO:0007606–sensory perception of chemical stimulus	141	13.1%	2.28E-89	6.5
MF	GO:0004888–transmembrane receptor activity	245	22.8%	4.61E-89	3.7
MF	GO:0001584–rhodopsin-like receptor activity	190	17.7%	3.24E-86	4.6
MF	GO:0004872–receptor activity	309	28.7%	2.97E-82	2.9
MF	GO:0004984–olfactory receptor activity	120	11.2%	1.03E-77	6.7
BP	GO:0007608–sensory perception of smell	122	11.4%	1.37E-77	6.6
MF	GO:0004871–signal transducer activity	318	29.6%	2.69E-73	2.6
MF	GO:0060089–molecular transducer activity	318	29.6%	2.69E-73	2.6
BP	GO:0007600–sensory perception	155	14.4%	1.30E-71	4.8
BP	GO:0050877–neurological system process	185	17.2%	3.53E-71	4.0
BP	GO:0007166–cell surface receptor linked signal transduction	269	25.0%	2.00E-69	2.8
BP	GO:0003008–system process	190	17.7%	5.23E-61	3.4
BP	GO:0007154–cell communication	347	32.3%	1.85E-51	2.0
BP	GO:0007165–signal transduction	320	29.8%	2.86E-45	2.0
CC	GO:0016021–integral to membrane	415	38.6%	1.98E-38	1.7
BP	GO:0050896–response to stimulus	247	23.0%	5.32E-38	2.1
CC	GO:0031224–intrinsic to membrane	415	38.6%	5.50E-38	1.7
CC	GO:004425–membrane part	437	40.7%	6.84E-34	1.6
CC	GO:0016020–membrane	481	44.7%	1.62E-25	1.4
MF	GO:0016503–pheromone receptor activity	33	3.1%	1.59E-22	7.2
BP	GO:0032501–multicellular organismal process	271	25.2%	1.07E-20	1.6
CC	GO:0005576–extracellular region	203	18.9%	4.53E-12	1.6
CC	GO:0005886–plasma membrane	152	14.1%	6.72E-10	1.6
BP	GO:0007268–synaptic transmission	35	3.3%	1.10E-08	2.9
CC	GO:0005615–extracellular space	172	16.0%	1.42E-08	1.5
CC	GO:0044456–synapse part	25	2.3%	1.89E-08	3.6
CC	GO:0044421–extracellular region part	179	16.7%	1.93E-08	1.5
MF	GO:0005549–odorant binding	14	1.3%	2.22E-08	6.3
MF	GO:0005529–sugar binding	39	3.6%	2.60E-08	2.6
MF	GO:0030594–neurotransmitter receptor activity	23	2.1%	9.12E-08	3.6
BP	GO:0019226–transmission of nerve impulse	37	3.4%	1.04E-07	2.6
BP	GO:0019236–response to pheromone	14	1.3%	1.13E-07	5.7
MF	GO:0005550–pheromone binding	13	1.2%	1.32E-07	6.1
MF	GO:0042165–neurotransmitter binding	23	2.1%	1.72E-07	3.5
BP	GO:0050909–sensory perception of taste	13	1.2%	1.77E-07	6.0
MF	GO:0005179–hormone activity	26	2.4%	2.54E-07	3.1
MF	GO:0030246–carbohydrate binding	45	4.2%	4.29E-07	2.2
MF	GO:0022834–ligand-gated channel activity	20	1.9%	4.32E-07	3.7
MF	GO:0015276–ligand-gated ion channel activity	20	1.9%	4.32E-07	3.7
CC	GO:0045211–postsynaptic membrane	22	2.1%	4.37E-07	3.4
MF	GO:0016917–GABA receptor activity	13	1.2%	5.02E-07	5.6
MF	GO:0004890–GABA-A receptor activity	13	1.2%	5.02E-07	5.6
GO ID	GO Term	Count	FDR	p-Value	Log10 p-Value
---------------	--	-------	-------	------------	---------------
GO:0005230	extracellular ligand-gated ion channel activity	17	1.6%	6.34E-07	2.8
GO:0005887	integral to plasma membrane	66	6.1%	1.11E-06	2.1
GO:0044459	plasma membrane part	110	10.2%	1.94E-06	1.9
GO:0043168	anion binding	15	1.4%	2.13E-06	1.4
GO:0031404	chloride ion binding	15	1.4%	2.13E-06	1.4
GO:0031226	intrinsic to plasma membrane	66	6.1%	2.52E-06	1.8
GO:0045202	synapse	33	3.1%	3.19E-06	2.4
GO:0005254	chloride channel activity	14	1.3%	3.87E-06	4.5
GO:0005253	anion channel activity	14	1.3%	1.88E-05	3.9
GO:0009952	defense response	45	4.2%	2.47E-05	1.9
GO:0007214	gamma-aminobutyric acid signaling pathway	9	0.8%	2.74E-05	6.1
GO:0022836	gated channel activity	31	2.9%	3.77E-05	2.2
GO:0007267	cell-cell signaling	40	3.7%	5.32E-05	1.9
GO:0050913	sensory perception of bitter taste	7	0.7%	5.52E-05	8.0
GO:0008066	glutamate receptor activity	12	1.1%	6.65E-05	4.1
GO:0009986	cell surface	26	2.4%	8.78E-05	2.3
GO:0006821	chloride transport	12	1.1%	9.68E-05	4.0
GO:007269	neurotransmitter secretion	12	1.1%	1.84E-04	3.7
GO:0005216	ion channel activity	35	3.3%	2.30E-04	1.9
GO:001505	regulation of neurotransmitter levels	15	1.4%	3.28E-04	2.9
GO:0031644	regulation of neurological process	10	0.9%	3.72E-04	4.1
GO:0001580	detection of chemical stimulus	6	0.6%	3.82E-04	7.7
GO:0050912	detection of chemical stimulus	6	0.6%	3.82E-04	7.7
GO:0022838	substrate specific channel activity	35	3.3%	3.92E-04	1.9
GO:0042742	defense response to bacterium	14	1.3%	4.00E-04	3.0
GO:009897	external side of plasma membrane	18	1.7%	4.79E-04	2.5
GO:0004175	endopeptidase activity	47	4.4%	5.84E-04	1.7
GO:0008067	metabotropic glutamate, GABA-B-like receptor	9	0.8%	6.51E-04	4.2
GO:008233	peptidase activity	63	5.9%	0.0102	1.5
GO:0051704	multi-organism process	25	2.3%	0.00124	2.0
GO:0008037	cell recognition	10	0.9%	0.00128	3.5
GO:005907	detection of chemical stimulus	6	0.6%	0.00145	6.1
GO:007185	transmembrane receptor protein signaling	6	0.6%	0.00145	6.1
GO:008509	anion transmembrane transporter activity	16	1.5%	0.00146	2.5
GO:0022803	passive transmembrane transporter activity	36	3.4%	0.00169	1.7
GO:0015267	channel activity	36	3.4%	0.00169	1.7
GO:0051606	detection of stimulus	13	1.2%	0.00175	2.8
GO:0045055	regulated secretory pathway	12	1.1%	0.00180	2.9
GO:0050906	detection of stimulus during sensory perception	10	0.9%	0.00215	3.3
GO:0009617	response to bacterium	15	1.4%	0.00215	2.5
GO:0051057	positive regulation of small GTPase signaling	5	0.5%	0.00248	7.3
GO:0009593	detection of chemical stimulus	7	0.7%	0.00289	4.5
GO:042734	presynaptic membrane	5	0.5%	0.00303	6.9
GO:0019835	cytolysis	7	0.7%	0.00410	4.2
GO:0007565	female pregnancy	8	0.7%	0.00499	3.6
GO:0019233	sensory perception of pain	7	0.7%	0.00565	4.0
GO:0042923	neuropeptide binding	9	0.8%	0.00661	3.1
GO:0008188	neuropeptide receptor activity	9	0.8%	0.00661	3.1
GO:0030054	cell junction	33	3.1%	0.00803	1.6
GO:0042221	response to chemical stimulus	39	3.6%	0.00848	1.5
BP	GO:0007610~behavior	32	3.0%	0.00879	1.6
-----------	---------------------------	-----	-------	---------	-----
BP	GO:0015698~inorganic anion transport	16	1.5%	0.00967	2.0
BP	GO:0051969~regulation of transmission of nerve impulse	7	0.7%	0.00995	3.6

BP: biological processes; MF: molecular function; CC: cellular components.
Ontologies^a	Term	Count	%	P Value	Fold Enrichment
MF	GO:0004091~carboxylesterase activity	11	15.3%	4.94E-11	21.3
MF	GO:0016712~oxidoreductase activity	7	9.7%	6.24E-09	44.1
MF	GO:0053081~unspecific monoxygenase activity	6	8.3%	6.92E-08	50.4
CC	GO:0005792~microsome	8	11.1%	3.56E-07	16.7
MF	GO:0004867~serine-type endopeptidase inhibitor	8	11.1%	3.87E-07	16.5
CC	GO:0005615~extracellular space	24	33.3%	3.92E-07	3.0
CC	GO:0044421~extracellular region part	24	33.3%	1.06E-06	2.9
MF	GO:0030414~protease inhibitor activity	8	11.1%	1.77E-06	13.3
MF	GO:0004866~endopeptidase inhibitor activity	8	11.1%	1.77E-06	13.3
MF	GO:0004497~monoxygenase activity	7	9.7%	2.40E-06	17.3
CC	GO:0005576~extracellular region	14	19.4%	9.40E-07	5.3
MF	GO:0016705~oxidoreductase activity	7	9.7%	3.45E-06	2.7
CC	GO:0000267~cell fraction	11	15.3%	1.16E-05	5.8
MF	GO:0016788~hydrolase activity, acting on ester bonds	13	18.1%	1.79E-05	4.5
CC	GO:0005624~membrane fraction	10	13.9%	2.23E-05	6.2
MF	GO:0004857~enzyme inhibitor activity	8	11.1%	2.80E-05	8.8
MF	GO:0020037~heme binding	7	9.7%	4.45E-05	10.5
MF	GO:0046906~tetrapyrrole binding	7	9.7%	4.45E-05	10.5
BP	GO:0006091~generation of precursor metabolites	9	12.5%	2.46E-04	5.1
BP	GO:0006118~electron transport	8	11.1%	3.17E-04	5.8
MF	GO:0047760~butyrate-CoA ligase activity	3	4.2%	5.90E-04	75.6
MF	GO:0005506~iron ion binding	7	9.7%	0.00156	5.4
CC	GO:0044444~cytoplasmic part	23	31.9%	0.00210	1.8
MF	GO:0016878~acid-thiol ligase activity	3	4.2%	0.00259	37.8
MF	GO:0016877~ligase activity, carbon-sulfur bonds	3	4.2%	0.00442	29.1
MF	GO:0030234~enzyme regulator activity	9	12.5%	0.00471	3.3
MF	GO:0003824~catalytic activity	33	45.8%	0.00952	1.4

^aBP: biological processes; MF: molecular function; CC: cellular components.
Supplementary Table 6. Tissue-specific expression of genes within LOCKs

Expression Tissue	Number of genes	%	P Value
Genes in liver-specific LOCKs			
Cerebellum	96	8.9%	< 10⁻³
Hypothalamus	33	3.1%	< 10⁻³
Brain cortex	32	3.0%	0.00284
Epididymis	14	1.3%	0.00285
Diencephalon	27	2.5%	0.00603
Genes in brain-specific LOCKs			
Liver	31	43.1%	< 10⁻⁸
Plasma	4	5.6%	0.00387
Supplementary Table 7. Arrays and samples analyzed

Array	Design	Feature	Samples analyzed
Human ENCODE	HG17	385K	Placenta, GM06993, Hela, HCT116
Mouse ENCODE	MM7	385K	Liver, differentiated WT and G9a knockout ES
Placenta	Custom	385K	Placenta
Mouse imprinted	Custom	385K	Liver
Mouse Whole genome arrays	Economy Tiling Set HX1	2.1M	ES25, diff.ES, Liverb and Brainb

aAll arrays were manufactured at NimbleGen; bHalf of the genome was investigated.
Supplementary Table 8. Primer sequences

Locus	Upper primer	Lower primer
qPCR primers for human ChIP		
R1	TTTATGAAGTCAACCCACGAC	GGGGTATCATATAATCTGACCTG
R2	CGAGTGTGATAATTGGGGCTAGC	TCCACTCCGTACCTGCTTTACT
R3	TAACCCCTTGTTTCCAGGTATGG	AAGCTGCTGATGAGAAGAAAACC
R4	CACAGCATAATGTCTTTCGATT	TGGCAACTTTGCTATGGTGTC
R5	AGGCCGACCAATTTCTAAAAA	GCCATTCATCCACTGACACTCA
R6	CCTATGAATTTCACGTAGTC	CCTGAGATGGGGCAGTATAGTC
R7	CAATGGACCAAGACATTGATA	ATAGGGTATGAAACCCCCGAGT
R8	TACATCGGTTGATTGGCTAGTC	ACCCCCTAAATACCGATCCTT
R9	TGAGTCACCAAGGAAAGTTTTT	ACATTCAAAGAGGCAAGGACATT
R10	TCCCTATGTACTGCTTTCCTC	TACCTGGGAGGTGATAGGAAAA
R11	CTTTACCTTTGCTCCCTAGATT	AATTGCAAGGCCACTTTAAGTCA
R12	TTTGCTTCTCAGGAAGCTCATAAA	TCCGGAAAGCATGACATATAAC
R13	CATCATTACTGCTTCTTCTCCCT	CACTCAATACCTGAACACCAA
R14	ACTTTTAGGATCTGGCCACCTTGGT	CTAATCGCTGCTCTCTGTTTT
R15	AGTGGGAGGCACAGAGGAAGA	TGTGACCCCTAGAAACCTG
R16	TCTGAATTTGTCGCAACAGC	GCAAATAGCTGCTCCCTTGG
R17	GTGGTCGACAGAAGGCTCCTTC	GCATCCCGTCTTCTGAGAC
R18	GGCTTAGGGTGGGAAATATCGC	CTCACCCCTAGTGCCTACCT
R19	ATAGTGAAGGACGGCGAGGTTG	CGCAGGCTTCTTCTACCTTG
qPCR primers for mouse ChIP		
Actb	GAACCCCAACACACCTAGCA	GCCTGGAATTGAAATGGACAGA
Gapdh	CACTTCTCCATTTCCCTGTG	GGTCCAGGATAGGACACTCA
Wnt2	GGTTGACAGGAGGCTCAGAG	TCCCAGGCTATTCTCTCCTT
Gm8	CTCCCTGACTGAGGATACAGCTC	TCTCTCTTCTCCACCCAGCA
Hnt_A	TAACACAGGGAAAAACGTGT	TCAACACAGCAGAGGTTGGA
Hnt_B	CCTACATTTTGATGCCAGAGC	TACCGACACAGTGGAGG
BpiL2	TAGAGCCAGGCGAGTATCGC	TTTGCTGACTACAGGACTT
Lrrk2	GTTGGGCTTCTTGGGCTGTG	GACCAGACCTCTTCCCTCAAT
qRT-PCR primers for mouse		
Actb	GGTCACTCCTATTGGCAACG	ACGGATGTCACACGTCACACT
Ncam2	TGCCCAAGGCAGCACAAG	ATCCCTCCCTTGGTTAAGAAT
Nefl	GGACAAACGCGAAGTGACAGA	AGGCCATCTTGACATTGAGG
ANP	GGGGTTAGGATTGACAGGAT	ACACACACAGGCTTTAGG
Myog	GTGCCAGTGAATGCAACCTCA	AGATTTGTTGGCTGCTTGAAG
Afp	CTCAGCGAGGAGAAAAATGGTC	GAGTTCAAGGCTTTGCTTC
Pdx1	GAAATCCACCAAGGCTCACG	ACGGCTCTCTTGGTTTCTT
Hnt	AGTCCAGCAGGTACGAGTGC	CCTGTCCTCCCTAGCCTGAG
Gene	Primer 1	Primer 2
-------	--------------------------	--------------------------
Lrrk2	TCCCCACCAATGAAAAACATC	TGCACCTCGTTCAACACCAG
AK016497	CATCACCAGACACCTACTGG	AAGAAGAGGACGCAGGTTA
Bpi12	GAGAACAGCCAACGAGATGC	AGGGGTGGAAGAGGAAAT
Cdh2	GACAAAGATCAGCCCCCACAC	AATGGCAGTTGTTCTGCG
Grm8	CTCGCGCAGTGATTATGTTT	GAAAATGCCCACCTGTTT
Spp2	CTGAAGACGCTGGCTTTTGT	GCCCGAAACAGGTAAGGACT
Trpm8	CGGGGACATTCTAGTTTGAGA	GCTGGGTCAACAGTCCAAGAG
Ubqln3	TCACAGTCCACCTGTCATC	AAGAAGGAGACCCATCCACA
Wnt2	AGCTGGAAGGAAGGCTGTAA	GTCGCTGTTTCTGAAAGT
Supplementary Figure 1

Supplementary Figure 1 | Proof of principle for our ChIP protocol. ChIP experiments were performed on two independent cultures of mouse ES cells using antibody to H3K27Me3, a well-studied heterochromatin marker. We then tested the enrichment using real time quantitative PCR on two housekeeping gene (negative control) and six known loci marked by H3K27Me3 in ES cells.
Supplementary Figure 2 | Additional examples of H3K9Me2 LOCKs in human placenta. **a**, In the 5 Mb region examined in chromosome 10, a 2.8 Mb LOCK covers the 3’ end and extends downstream of the imprinted gene *CTAA3*. **b**, A 800 kb LOCK is observed in the intergenic region between *HTR2A* and *SUCLA2* of chromosome 13. In both cases, CTCF binding sites are distributed at the boundaries of the LOCKs.
Supplementary Figure 3

Supplementary Figure 3 | Validation of H3K9Me2 LOCK array data by quantitative real-time PCR (qPCR).

a. ChIP-on-chip data on human placenta (red) and location of regions (blue bars) selected for ChIP qPCR validation. R1, R2, R12, R13, and R15 are in non-LOCK regions, and the other 14 sites are within LOCKs.

b. qPCR results. The Y axis shows the fold enrichment of ChIP over input by comparing the difference of threshold cycles (C_t), with a two-fold change equal to one cycle. The results of ChIP-on-chip were confirmed by qPCR in all 19 cases examined.

c. correlation of qPCR results with microarray intensities. The black and red dots denote sites on chromosomes 15 and 19, for which we qPCR was performed on separate plates. The correlations are 0.77 and 0.9 for chromosomes 15 and 19, respectively, with an overall correlation of 0.71.
Supplementary Figure 4

Supplementary Figure 4 | **Locations of LOCKs are conserved between human and mouse.** ChIP-on-chip data on human placenta and mouse liver. **a,** human ENCODE region ENr321 (top) and syntenic mouse region (bottom). **b,** human ENCODE region ENr121 (top) and syntenic mouse region (bottom). The X-axis is drawn according to the genome annotation but in (b) the human and mouse sequences are inverted. The LOCKs are in corresponding location to the genome sequence. Other annotation information is the same as in Fig. 2 in the main text.
Supplementary Figure 5

Supplementary Figure 5 | Expression of lineage-specific markers in undifferentiated ES25 and day-24 differentiated cells. We differentiated ES cells randomly as described1. In order to provide better documentation of the nature of these cells, we examined six lineage-specific markers (ectoderm: Ncam2 and Nefl; mesoderm: Anp and Myog; endoderm: Afp and Pdx1)1-3 in ES25 and day 24 differentiated cells. These data show that random differentiation of these ES cells led to overexpression of mesodermal and endodermal markers, with a ~100-fold change in Afp, a marker of pre-liver lineages, but not ectodermal markers.
Supplementary Figure 6

Supplementary Figure 6| LOCK formation is G9a-dependent. Two additional examples comparing wild type differentiated ES cells (black), to differentiated G9a knockout ES cells (red). Most LOCKs are absent in the G9a knockout cells but some persist in the absence of G9a.
Supplementary Figure 7

Supplementary Figure 7 | Expression of lineage markers in WT and *G9a*/*- ES and day-18 differentiated cells. Legend as in Supplementary Figure 5.
Loss of LOCK in G9a-/ ES was related to differential gene expression. Gene expression level was examined using quantitative real-time RT-PCR of 10 genes within LOCKs lost in G9a-/ ES, in day 18-differentiated WT and G9a-/ ES cells. Eight of 10 genes were over-expressed in G9a-/ compared to WT cells.
Supplementary Figure 9

H3K9Me2 LOCKs were independent of H3K27Me3. H3K27Me3 ChIP was performed on day 18-differentiated WT and G9a-/- ES cells, followed by quantitative real-time RT-PCR. Actb and Pax5 were negative and positive controls, respectively, for the enrichment of H3K27Me3. No substantial enrichment of H3K27Me3 was found at any of 6 loci located within H3K9Me2 LOCKs (Wnt2, Grm8, Hnt at 2 sites 125 kb apart, Bpil2, and Lrrk2).
Supplementary Figure 10 | Genes within LOCKs are generally CpG-poor in their promoters. Histogram of gene promoter CpG density measured by observed to expected ratio of CpGs.
Supplementary Figure 11

Supplementary Figure 11| Loss of H3K9Me2 LOCKs in human cancer cell lines.
ChIP qPCR on four cancer cell lines (KG-1 leukemia, Ramos lymphoma, HCT116 colon cancer, and HeLa cervical cancer) and two lymphoblastoid cell lines (GM06991 and GM06993), measured at three sites in LOCKs in ENCODE region ENr313 (R20, 21 and 22, numbered consecutively from the validation sites described earlier). In all the cases, the H3K9Me2 ChIP DNA is less enriched in cancer cells than in the non-cancer cells, validating loss of the LOCKs in cancer.

References

1. Ward, C.M., Barrow, K., Woods, A.M. & Stern, P.L. The 5T4 oncofoetal antigen is an early differentiation marker of mouse ES cells and its absence is a useful means to assess pluripotency. *J Cell Sci* **116**, 4533-42 (2003).

2. Czyz, J. & Wobus, A. Embryonic stem cell differentiation: the role of extracellular factors. *Differentiation* **68**, 167-74 (2001).

3. Keller, G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. *Genes Dev* **19**, 1129-55 (2005).