Confinement of CO\textsubscript{2} inside carbon nanotubes

Noelia Faginas-Lago1, a, Yusuf Bramastya Apriliyanto2, 3, and Andrea Lombardi1e

1 Dipartimento di Chimica, Biologia e Biotecnologie, Universit\`a di Perugia, Perugia, Italy
2 Department of Chemistry, Indonesia Defense University, Kampus Unhan Komplek IPSC Sentul, Bogor, Indonesia
3 Department of Chemistry, IPB University, Kampus IPB Dramaga, Bogor, Indonesia

Received 16 December 2020 / Accepted 11 May 2021 / Published online 26 May 2021
© The Author(s) 2021

Abstract. We propose a preliminary study based on molecular dynamics calculations to investigate the adsorption of pure CO\textsubscript{2} on flexible single-walled carbon nanotubes (SWCNTs) of different sizes. The adsorption capacities of SWCNTs were simulated and the effect of chirality and diameter of SWCNTs was assessed, to check them as sizable carbon structured materials suitable for CO\textsubscript{2} confinement and storage.

1 Introduction

The high concentration of CO\textsubscript{2} in the atmosphere leads to many serious problems, such as environmental pollution, increasing the apparition frequency of poisonous blue-green algae and, most importantly, it is seen as a possible cause for rising of global temperature potentially leading to catastrophic climate change effects [1]. Recent scientific reports have revealed that CO\textsubscript{2} emission to the atmosphere has significantly risen in the last decades [2]. Large-scale human activities for fulfilling their various needs, involving manufacture materials processing (steel, iron, cement, etc.) or energy production, majorly contribute to this increasing trend [3]. Consequently, it is urgent to implement strategies to turn the evolution trend, keeping the CO\textsubscript{2} at the current level or even reducing the CO\textsubscript{2} concentration in the atmosphere [4]. In order to achieve this goal, we can consider two main approaches, either by capturing CO\textsubscript{2} molecules in the open air or in sites where CO\textsubscript{2} molecules are generated. The latter is usually chosen as the most efficient, effective and energetically feasible than the first [5]. However, the main constraint is that the flue gas is commonly in a form of mixture composed from water, carbon dioxide, oxygen and nitrogen molecules [6]. Therefore, a method which can provide selective CO\textsubscript{2} capture is highly desired. The selectivity of various methods such as those involving solid adsorbents, liquid absorbents, and hybrid materials composed of liquid absorbents and solid adsorbents have been evaluated to capture CO\textsubscript{2} from flue gas [7–9]. Among those methods, CO\textsubscript{2} capture using solid adsorbents attracted global attention in the last few years [10, 11]. This method offers major advantages, for instance for its simplicity and the relatively cheaper implementation on existing power plants [3, 5]. Moreover, solid adsorbents have minimum chemical risks that usually arise with the use of traditional amine solvents (e.g. equipment corrosion, solvent evaporation, chemical stability, and unpleasant smells) [12].

The range of options of applicable solid adsorbents for CO\textsubscript{2} capture and separation is vast, only materials with high selectivity and high gravimetric uptake is the best suited option. Permeability also plays an important role, in which it corresponds to diffusion of gas inside the materials to produce effective gas adsorption [13]. In order to attain high gravimetric value, a material should have large surface area (adsorption sites) in combination with its lightweight structure. Large surface area is normally achieved by introducing intrinsic pores on a nanometer scale, thus obtaining so-called nanoporous materials. A range of nanoporous materials for CO\textsubscript{2} capture and separation have been reported, for instance, zeolitic imidazolate frameworks (ZIFs) and zeolites [14, 15], porous polymer networks (PPNs) or covalent organic polymers/frameworks (COPs/COFs) [16–18], metal-organic frameworks (MOFs) [19, 20], and nanoporous carbons [21–23]. In particular, carbon-based materials exhibit desirable physicochemical prop-
properties (e.g. chemically inert, relatively high hydrophobicity and thermally stable). Moreover, they are composed from lightweight carbon atoms producing low density and stable structures [24]. In contrast, MOFs and zeolites-based materials despite showing good gas uptake as well as good selectivity and permeability, they are made up by heavy elements in their structures. Therefore, the net of gravimetric densities reported in term of wt% are commonly quite low. Moreover, MOFs are generally known to have low structural stability at certain conditions (e.g. high temperature, acidic environment) and they are less resistant to the nucleophilic attack of water molecules [3]. Unfortunately, post-combustion flue gas commonly bear water vapour at a relatively high temperature.

Nanoporous carbon materials can be found in the form of 1, 2, 3-dimensional structures. Each of these structures has its own pros and cons, so that a certain structure is commonly suitable for a certain application. A class of carbon-based materials that is investigated in this work is the well-known Carbon NanoTubes (CNTs), in particular the single walled CNTs (SWCNTs). SWCNTs are one-dimensional carbon structures that are equipped with an intrinsic cavity inside the tubular-like structures. The large available volume within SWCNTs promises the possibility for CO$_2$ confinement. With their robust and light-weight structures, it is beneficial to exploit SWCNTs capacity as CO$_2$ capture and storage materials suitable to be used in movable/mobile platforms. One characteristic of these SWCNTs is that they have different physicochemical properties depending on their chirality and diameter. The phenomenon of adsorption dynamics and the corresponding mechanism as the effect of diameter and chirality are still an important line of research [25]. One of these adsorption mechanisms is generally involving physical adsorptions, which depends mainly on the electrostatic interactions and the weak (but not less important) van der Waals interactions. This physisorptions process occurs rapidly and perhaps through unimolecular (single-molecule) process. Accordingly, a preliminary study using a computational modelling and running simulations is crucial to gain atomistic perception into the interactions [26–28].

Molecular dynamics (MD) simulations performed by using accurate intramolecular and intermolecular potentials are a strength tool to describe particular dynamical adsorption system and to get practical energetic details at a given temperature [29]. Although some molecular dynamics simulations have also been implemented to study the CO$_2$ adsorption on CNTs [30,31], in this work the emphasis is on the accuracy of the intermolecular and intramolecular potentials. These potentials have been modelled and specifically formulated for CO$_2$ and CNTs by adopting an improved representation of the van der Waals contribution and by applying flexibility to CNTs structures. In comparison with this work, three charge-site of CO$_2$ models, rigid CNTs and the conventional Lennard-Jones potential were used in reported literatures [30,31].

This report is arranged as the following. The illustration and details of the computational methods, including the formulation of different components composing the force fields, are presented in the next section. The MD simulations details are given in the Sect. 3 along with discussion of the results.

2 Computational methods

The total potential energy function, V_{total}, adopted to calculate the total interaction energy for CO$_2$ molecules and the SWCNT is formulated as a sum of two separable terms. Of these, one, denoted as V_{SWCNT}, accounts for the SWCNT intramolecular potential energy, and the other one, denoted as $V_{intermol}$, accounts for the intermolecular potential energy of the SWCNT–CO$_2$ and CO$_2$–CO$_2$ interacting pairs:

$$V_{total} = V_{SWCNT} + V_{intermol}$$ (1)

where

$$V_{intermol} = \sum_{i=1}^{l} \sum_{j=1}^{n} V_{C_{i}-(CO_{2})_{j}} + \sum_{j=1}^{n} \sum_{k>j}^{n} V_{(CO_{2})_{j}-(CO_{2})_{k}}$$ (2)

In the above equation n is the amount of CO$_2$ molecules, while l represents the number of carbon atoms in the SWCNT.

2.1 Bonding interactions in SWCNT

In the course of MD simulations, the carbon nanostructures were allowed to vibrate to reproduce the consequent out-of-plane movements of SWCNT surfaces by adopting intramolecular potential reported in Ref [32]. The corresponding intramolecular potential (V_{SWCNT} in Eq. 1) of flexible SWCNT is computed as a sum of potential energy terms depending on bond lengths, bending angles and dihedral angles, as follows:

$$V_{SWCNT} = \sum_{i,j} U(r_{ij}) + \sum_{i,j,k} U(\theta_{ijk}) + \sum_{i,j,k,l} U(\phi_{ijkl})$$ (3)

where the r_{ij}’s are the interparticle distances, the θ_{ijk}’s are the bending angles between triples of consecutive atoms i, j, k and ϕ_{ijkl} is the dihedral angle defined by a given set of four consecutive C atoms of the SWCNT; summation, running over atom indices, is intended to avoid redundant terms. The stretching potential $U(r_{ij})$ of a C–C interatomic bond in the SWCNT is framed as a Morse potential function:

$$U(r_{ij}) = E_0[\{1 - \exp(-k(r_{ij} - r_0))\}^2 - 1]$$ (4)

where r_{ij} represents the interatomic radius between C atom i and j, E_0 is the well depth (114.4569 kcal mol$^{-1}$ Å$^{-2}$), r_0 is the equilibrium distance (1.418 Å) and $k = 2.1867$ Å$^{-1}$ is connected to the bond force constant.
Valence angle potential (U(θijk)) terms for the bond bending of nanotubes are formulated by harmonic cosine functions:

\[U(\theta_{ijk}) = \frac{k}{2} (\cos(\theta_{ijk}) - \cos(\theta_0))^2 \]

(5)

θ_ijk represents the angle between C_j-C_i-C_k atoms, θ_0 is the equilibrium value (120°), while k is the force constant (134.5 kcal mol\(^{-1}\)). A triple cosine function is used for the dihedral angle potentials (U(φijkl)), describing the interaction arising from torsional forces:

\[U(\phi_{ijkl}) = \frac{1}{2} A_1 (1 + \cos(\phi_{ijkl})) + \frac{1}{2} A_2 (1 - \cos(2\phi_{ijkl})) + \frac{1}{2} A_3 (1 + \cos(3\phi_{ijkl})) \]

(6)

where the parameter values are A_1 = A_3 = 0 and A_2 = 6.0096 kcal mol\(^{-1}\).

2.2 CO\(_2\)-SWCNT and CO\(_2\)-CO\(_2\) interactions

Describing correctly the intermolecular potential (V_{intermol}) is essential in order to obtain accurate results in a MD simulation. In this study, the intermolecular forces of interest are those occurring between CO\(_2\) molecules and between CO\(_2\) and SWCNT. Electrostatic and non-electrostatic contributions are the two components that composed the intermolecular interaction energy. The electrostatic part can be simply determined by using the Coulomb law. On the other hand, the non-electrostatic contribution is evaluated by taking into consideration the pairwise induction and dispersion long range attractive interactions and short range repulsion, which add up resulting in the van der Waals forces, which are expressed for each interacting pairs using the so-called Improved Lennard-Jones (ILJ) pairwise function [33–35]:

\[V_{ILJ}(r) = \varepsilon \left[\frac{m}{n(r) - m} \left(\frac{r_0}{r} \right)^{n(r)} - \frac{n(r)}{n(r) - m} \left(\frac{r_0}{r} \right)^m \right] \]

(7)

In the Eq. 7, the parameters ε and r_0 correspond to the well depth and the equilibrium position of the given interacting pair, respectively. m has the value of 1 for ion-ion, 4 for ion-neutral and 6 for neutral-neutral pairs interactions. The left term of the Eq. 7 (inside big bracket) depicts the repulsion as a function of the distance r, while the right term in the equation performs the long-range attraction. To modulate the strength of the attraction and the decline of the repulsion in Eq. 7, the n(r) term is defined as follows:

\[n(r) = \beta + 4.0 \left(\frac{r}{r_0} \right)^2 \]

(8)

where β is a parameter for modulating the hardness of the interacting pair [36,37]. All of the ILJ parameters that were implemented in this study were fine-tuned and benchmarked in comparison with ab initio calculations as reported in Ref. [38,39]. The ILJ function is much more accurate than the classical Lennard-Jones (LJ) potential function routinely used in Force-Fields for the prediction of static and dynamical properties of systems. In particular, ILJ systematically corrects the excessive long range attraction and short range repulsion of LJ potential, where the long and short-range deviations can impact adsorption dynamics. These advantages of using ILJ over conventional LJ potential have been reported in literatures [33–45].

3 Molecular dynamics (MD) simulations

The MD simulations were realized within the NVE microcanonical and NVT canonical ensembles enforcing periodic boundary conditions with a rectangular cuboid box. In our MD simulations, starting from a given initial configuration, each system considered in the MD simulations was equilibrated for 0.3 ns. The production period was recorded for another 9.7 ns, leading to a total of 10 ns simulation time with a time step value set at 2.5 × 10\(^{-4}\) ps. The cutoff radius for the electrostatic and non-electrostatic ILJ terms were set to 19 Å to speed up the computation of the force field. The data collected during the equilibration period were excluded from the statistical analysis of the simulations for which the DL_POLY package [46] was used. Energy contributions, CO\(_2\) distributions, gravimetric densities of CO\(_2\) as a function of simulation time and the corresponding average values have been subsequently analyzed. The VMD software [47] has been used to construct the SWCNT structures. After the SWCNT structures were obtained, for each simulation systems, 100 CO\(_2\) molecules were randomly added around the nanotubes surfaces at a distance of 5–8 Å. This corresponds to a bulk gas density value of about 89.10 g L\(^{-1}\). The CO\(_2\) model reported in Ref. [38] was adopted with its point charge distributions corresponds to a five charge-site as shown in Fig. 1. This five charge-site model is more superior in treating quadrupole moment of CO\(_2\) than the widely used three charge-site models adopted in Refs. [30,31].

We report detailed MD simulation results for 100 CO\(_2\) molecules on three types of zigzag open-ended SWCNTs (i.e. (5,0), (10,0) and (15,0)) with different chiralities to examine their CO\(_2\) confinement capabilities. All of SWCNTs compose five unit cells, thus for (5,0), (10,0), and (15,0) structures, each contain 100, 200 and 300 carbon atoms, respectively (Fig. 2). The SWCNTs were modelled as non-rigid structures during MD simulations. The flexibility of adsorbent materials through its molecular vibrations has been demonstrated altering its uptake capacity of adsorbing molecules such as hydrogen, nitrogen and methane [32,48]. Most importantly, treating SWCNT as a flexible structure provides more realistic representation of adsorbent and yields simulation data closer to those of the more precise results.
Fig. 1 Structural representation of CO$_2$ molecule using five charge-site model. Q is a point charge placed on the C–O bond of CO$_2$ molecule. The charge values are reported in a.u.

Fig. 2 SWCNTs used in the MD simulations. Upper part: (15,0) structure; middle part: (10,0) structure; lower part: (5,0) structure

A CO$_2$ molecule must be within the SWCNTs cavity or at a maximum distance of 7 Å from the surface of the SWCNTs, in order to decide whether the CO$_2$ molecule is physically adsorbed. These criteria are following indications obtained in the previous works [39,49,50] and from the initial evaluation of radial density plots (Fig. 3). Figure 3 justifies that radius of 7 Å from CNT surface has covered the full peaks of CO$_2$, therefore it can be considered as adsorption region. The radial density is an analogue of z-density in which the z axis is replaced by radius from CNT surface. In order to analyze the effect of various MD parameters to the distribution of CO$_2$ molecules, firstly, we determined the amount of adsorbed molecules at the exohedral and endohedral sites of the carbon nanotubes. The effect of temperature on this distribution was investigated by setting three initial temperatures at 273, 300 and 353 K. Meanwhile, to investigate the dependence of the CO$_2$ distribution on the diameter of the SWCNTs, we made molecular simulations with different diameters. The next step was analyzing the radial distribution function to determine the composition of the repulsive and attractive interactions that exists between CO$_2$ molecules and the SWCNT. The results for each SWCNTs are presented in Table 1.

Table 1 MD parameters and the amount of adsorbed CO$_2$ molecules at NVE ensemble

SWCNT	d (Å)	N$_e$	T (K)	N$_{CO_2,\text{in}}$	N$_{CO_2,\text{out}}$	C$_{CO_2,\text{in}}$	C$_{CO_2,\text{out}}$
(5,0)	3.914	100	253.1	0 ± 0	27 ± 4	0.11 ± 0.02	0.09 ± 0.02
			266.8	0 ± 0	26 ± 4	0.11 ± 0.02	
			302.8	0 ± 0	22 ± 4	0.09 ± 0.02	
(10,0)	7.828	200	253.2	4 ± 0	43 ± 5	0.09 ± 0.01	0.07 ± 0.01
			277.8	4 ± 0	36 ± 7	0.07 ± 0.01	
			305.8	4 ± 0	34 ± 4	0.07 ± 0.01	
(15,0)	11.743	300	262.1	16 ± 1	48 ± 5	0.07 ± 0.01	0.06 ± 0.01
			285.6	15 ± 1	43 ± 8	0.06 ± 0.01	
			326.8	14 ± 1	37 ± 4	0.05 ± 0.01	

N$_{CO_2,\text{out}}$ and N$_{CO_2,\text{in}}$ indicate the number of CO$_2$ molecules adsorbed outside and inside of SWCNTs, while C$_{CO_2,\text{in}}$ and C$_{CO_2,\text{out}}$ are the number of adsorbed CO$_2$ per unit of surface area (molecules Å$^{-2}$) inside and outside SWCNT, respectively.
The amount of confined CO$_2$ inside the SWCNTs at 300 K as a function of time. The (5,0) structure has 0 value since its diameter is too small for CO$_2$ confinement than the initial temperature for each system. We have noticed that not all of the CO$_2$ molecules were physically adsorbed. Table 1 shows that the amount of CO$_2$ at the exohedral and endohedral sites rises with the increasing of nanotube diameter. This trend is due to the fact that the available volume at endohedral and exohedral sites enlarges as the SWCNTs diameter increases. We also report the amount of confined CO$_2$ in a unit of mg g$^{-1}$ (Fig. 4), by considering that CO$_2$ molecule is confined if it is adsorbed in an endohedral site of the SWCNT. Figure 4 shows that the (15,0) structure can confine up to 184 mg CO$_2$ for 1 g of adsorbent. This value is equivalent to 15.54 wt(%), which can fairly be considered a quite large gas uptake value. On the contrary, the (5,0) structure is not suitable for CO$_2$ confinement since its effective diameter is smaller than the kinetic diameter of CO$_2$ (see Fig. 2). Therefore, in this small pore, repulsion forces are dominant with respect to the attractive ones. These findings are consistent with a study reported by Goler et al. [51] which suggest that adsorptions of molecules on graphene surfaces are controlled by the local curvature. The preferential adsorption sites are reported in the area where its curvature is maximally convex. The surface curvature inside of (5,0) structure is highly concave, thus CO$_2$ adsorptions are energetically unfavorable. Meanwhile in the outside of (5,0) structure, having high convexity level, it adsorbs high CO$_2$ uptake in term of molecules per unit of surface area as reported in Table 1. It is clear that by increasing the diameter of SWCNT, the degree of surface convexity inside the SWCNT also increases. Therefore, CO$_2$ confinement inside SWCNT is directly proportional with the diameter of carbon nanotubes (Table 1).

Figure 5 shows the molecular configuration after 10 ns of simulation for the (10,0) system as an illustrative example of the equilibrium. It can be seen in Fig. 5 that the endohedral site can be occupied by CO$_2$ to accommodate molecular confinement. In addition, the exohedral site also exhibits adsorption properties with a much higher CO$_2$ uptake (Table 1 and Fig. 5). Therefore, in order to provide a more quantitative ground, the total storage capacity (SC) of SWCNTs was evaluated at every step of the trajectory by calculating gravimetric density, wt(%), as the following:

$$\text{wt\%} = \frac{N_a \times M_{CO_2}}{M_{\text{system}}} \times 100$$

where N_a represents the number of adsorbed CO$_2$, M_{CO_2} is the mass of CO$_2$ molecule, and M_{system} is total mass of the system including the SWCNT and the gas molecules. The adsorbed CO$_2$ molecules were estimated by summing CO$_2$ inside the cavity and those that were located at a distances of 7 Å from the SWCNT’s surfaces [39,49,50]. SC gives us an idea regarding the amount of adsorbate that can be captured by a given amount of adsorbent at constant temperature. SC of a material is commonly expressed as a percentage by weight (wt%). At the end of each simulations, taking into account of three different chiralities and three different temperatures; the gravimetric densities and van der Waals (vdW) energy at NVE ensemble are listed in Table 2. Note that the temperatures shown in Table 2 are the average temperatures during the MD simulations, not the initial ones.

We observe that the CO$_2$ storage capacity is inversely proportional with the temperature, the CO$_2$ molecules are increasingly desorbed as the temperature increases. We can try to get an idea that at high temperature the share of vdW energy, mainly responsible for adsorption, decreases (see Table 2) as well as the the total potential energy. Since the total energy of system should be conserved at NVE ensemble, the decrease in the potential energy give rise to kinetic energy of the system. These factors leads to the weakening of the interaction between SWCNT and CO$_2$ molecules. As can be expected, the maximum CO$_2$ storage is obtained for the SWCNT (15,0) as it has the largest diameter (and therefore the highest adsorption sites) coupled with a
stronger van der Waals (vdW) attraction contribution. Therefore, with a relatively high CO$_2$ uptake, it is an early sign that this material is a good candidate for CO$_2$ capture and storage applications.

Nevertheless, simulated SC of a material is commonly reported at a constant temperature, as this condition more resemble to the real experimental conditions. Therefore, we also performed MD simulations at canonical NVT ensemble where the system temperature was constantly maintained by enforcing a thermostat through the Nosé–Hoover algorithm. The SC of the three types of SWCNTs at NVT ensemble are reported in Table 3. It can be seen that wt% trend is the same as NVE results presented in the Table 2. The gravimetric uptake is inversely proportional to temperature, whereas it is directly proportional to the SWCNT diameter and vdW attraction energy. If we compare Tables 2 and 3, however, the NVT ensemble produces lower wt% values than the NVE ensemble for all SWCNTs. This is because the temperature at NVT ensemble is kept at an initial temperature and fixed only with small deviations. On the contrary, the temperature is relaxed to provide a constant energy state for the NVE ensemble. The temperature relaxation at NVE ensemble lowers the system temperature from its initial temperature when the system is equilibrated. As the result, NVE ensemble exhibits higher wt% values and vdW attraction energy contribution than those of NVT ensemble (see Tables 2 and 3).

The total gravimetric uptake comparison between some nanoporous materials is reported in Table 4. It shows that the (15,0) structure adsorbs CO$_2$ molecules up to 34.8 wt% at microcanonical NVE ensemble and 33.4 wt% at canonical NVT ensemble with an initial temperature of 273 K. This value is comparable and competitive with other materials investigated by using experimental and/or theoretical methods reported in Table 4. It can also be seen that the gravimetric values estimated from MD simulations performed using our potentials are in the same order of magnitude with the experimental results. However, all of the SWCNT gravimetric values obtained in this work are still lower than those of 3-dimensional porous carbons reported in Refs. [21] and [22], 54.3 wt% (300 K & 30 bar) and 48.1 wt% (298 K & 20 bar), respectively. This was expected to be due to the more available pores acting as adsorption sites in the 3-dimensional structure with respect to the 1-dimensional ones. The high CO$_2$ uptake of the (15,0) SWCNT structure can also be visually caught in Fig. 6, where the molecular configuration at the end of 10 ns simulation time is shown.

In order to justify that the inclusion of SWCNTs flexibility is important for gas adsorption, we have performed quantitative analysis of time scales for out of plane movement of SWCNT and the diffusion time of CO$_2$. We calculated the displacement of SWCNT diameter from its ideal value as an indication of out of plane movement of the carbon atoms of SWCNT. Figure 7 shows that SWCNT (10,0) diameter fluctuates at the time scale of ps, other SWCNTs diameters also fluctuate at the same time scale. The diffusion time of CO$_2$ were then calculated from the diffusion coefficients (D).

SWCNT	d (Å)	T (K)	E_{vdW}	wt %
(5,0)	3.914	253.1	-68.63 ± 10.04	21.48 ± 3.40
(10,0)	7.828	253.2	-161.88 ± 13.05	30.60 ± 3.04
(15,0)	11.743	262.1	-232.90 ± 16.69	34.83 ± 2.66

SWCNT	T (K)	$N_{CO_2\text{in}}$	$N_{CO_2\text{out}}$	E_{vdW}	wt %
(5,0)	273	0 ± 0	25 ± 4	-62.68 ± 9.81	19.66 ± 3.33
	300	0 ± 0	22 ± 4	-54.95 ± 7.53	17.65 ± 2.84
	353	0 ± 0	17 ± 4	-42.52 ± 7.19	13.70 ± 2.76
(10,0)	273	4 ± 0	38 ± 5	-146.12 ± 12.82	7.50 ± 3.04
	300	4 ± 0	33 ± 4	-129.42 ± 9.74	24.17 ± 2.58
	353	4 ± 0	27 ± 4	-110.10 ± 9.92	20.27 ± 2.58
(15,0)	273	15 ± 1	45 ± 4	-221.01 ± 16.32	33.37 ± 2.53
	300	14 ± 1	40 ± 4	-197.14 ± 13.15	30.03 ± 2.41
	353	13 ± 1	34 ± 4	-163.77 ± 11.97	25.70 ± 2.31
Table 4 Total gravimetric uptake comparison between various nanoporous materials

Materials	T (K)	P (bar)	CO$_2$ uptake (wt%)	References	
SWCNT (9,9)	298	30–60	21–23	[25]	
MOFs	298	1	19.7	[52]	
Graphene oxide (nanocomposite)	300	20	12.7	[53]	
SWCNT	298	1.1	2.9	[54]	
Nanoporous carbon	298	26	17.7	[55]	
Nanosilicate	298	55	22	[56]	
CNT (nanocomposite)	298	32.5	28.4	[57]	
SWCNT (10,0)	253	273	21.7 24.6	30.6 27.5	This work*
SWCNT (10,0)	278	300	29.0 32.5	26.0 24.2	This work*
SWCNT (15,0)	262	273	17.1 19.9	34.8 33.4	This work*
SWCNT (15,0)	286	300	20.8 26.5	31.8 30.0	This work*

*Underlined data represent NVT results, while the non-underlined data represent the NVE.

Table 5 The diffusion coefficient (10$^{-7}$ m2 s$^{-1}$) of three different SWCNTs at NVE and NVT ensembles

SWCNT	T (K)	D_{NVE}	D_{NVT}
(5,0)	273	1.74	2.02
	300	1.71	2.13
	353	1.52	2.51
(10,0)	273	1.38	1.80
	300	1.76	1.60
	353	2.12	2.18
(15,0)	273	1.12	1.35
	300	1.38	1.67
	353	2.12	1.76

Fig. 6 Snapshot of final configuration for the (15,0) system at 300 K

Fig. 7 Displacement of SWCNT (10,0) diameter from its ideal value during the simulations at 273 K

reported in Table 5 by applying the Einstein’s equation. We obtained that the diffusion time of CO$_2$ are in a range of 0.0066 to 0.0149 ps for 1 Å displacement. If we consider the diffusion of CO$_2$ from the edge to the center of simulation box, every CO$_2$ will need 0.2 to 0.4 ps (depends on the applied system) to complete the journey. It is clear that the time scales for out of plane movement of SWCNT and the diffusion time of CO$_2$ is still at the same order of magnitude. The surface of SWCNTs oscillates as CO$_2$ molecules diffuse toward it. Therefore, it has been verified that the flexibility of SWCNT indeed has a significant impact on the adsorption dynamics.

As a conclusion, having relatively high gas uptake and remarkable physicochemical properties of carbon-based materials, SWCNTs are equipped with a property that makes them potentially versatile materials competitive with other porous adsorbents to cope with CO$_2$ gas emission. Indeed, with an increase in diameter, other gas molecules can also be adsorbed by SWCNTs thus lowers the storage capacity of CO$_2$. However, if a material exhibits high CO$_2$ uptake, it is an early sign that this material is a good candidate for CO$_2$ capture and separation applications. Therefore, our future objective is to extensively investigate the application of SWCNTs in separating CO$_2$ molecules from CO$_2$/N$_2$ and CO$_2$/CH$_4$ gaseous mixtures saturated with H$_2$O component.

Acknowledgements The authors thank MIUR and University of Perugia for their support through the AMIS
project “Dipartimenti di Eccellenza 2018-2022”. NFL and AL thank the Department of Chemistry, Biology and Biotechnology, University of Perugia for funding under the program “Fondo Ricerca di Base 2017 and 2019”, respectively. NFL and AL also acknowledge support for allocation of computing time from the Oklahoma University Supercomputing Center for Education & Research (OSCER). YBA acknowledges the PDUPT/PI Alam 4.0 project (1/E1/KP.PTNBH/2020) funded by the Ministry of Research and Technology, and the Ministry of Education and Culture of Republic Indonesia.

Funding Open access funding provided by Università degli Studi di Perugia within the CRUI-CARE Agreement.

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data.]

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. (WRI), W.R.I. In: Climate Analysis Indicators Tool (CAIT) 2.0: WRI’s climate data explorer. Available on line (2016)
2. (EPA), U.S.E.P.A. In: Climate Change Indicators in the United States: Global Greenhouse Gas Emissions. (2016)
3. B. Smit, Carbon capture and storage: introductory lecture. Faraday Discuss. 192, 9-25 (2016)
4. M. Bui, C.S. Adjiman, A. Bardow, E.J. Anthony, A. Boston, S. Brown, P.S. Fennell, S. Fuss, A. Galindo, L.A. Hackett, J.P. Hallett, H.J. Herzog, G. Jackson, J. Kemper, S. Krevor, G.C. Maitland, M. Matuszewski, I.S. Metalche, C. Petitt, G. Puxty, J. Reimer, D.M. Reiner, E.S. Rubin, S.A. Scott, N. Shah, B. Smit, J.P.M. Trusler, P. Wебл, J. Wilcoxon, N. Mac Dowell, Carbon capture and storage (ccs): the way forward. Energy Environ. Sci. 11, 1062–1176 (2018)
5. L. Joos, J.M. Huck, V. Van Speybroeck, B. Smit, Cutting the cost of carbon capture: a case for carbon capture and utilization. Faraday Discuss. 192, 391–414 (2016)
6. N. Dai, W.A. Mitch, Effects of flue gas compositions on nitrosamine and nitramine formation in postcombustion CO2 capture systems. Environ. Sci. Technol. 48(13), 7519–7526 (2014)
7. J.M. Huck, L.C. Lin, A.H. Berger, M.N. Shahrak, R.L. Martin, A.S. Bhown, M. Harancezyk, K. Reuter, B. Smit, Evaluating different classes of porous materials for carbon capture. Energy Environ. Sci. 7, 4132–4146 (2014)
8. S. Zhang, Y. Shen, P. Shao, J. Chen, L. Wang, Kinetics, thermodynamics, and mechanism of a novel basic solvent for CO2 capture from flue gas. Environ. Sci. Technol. 52(6), 3660–3668 (2018)
9. H. Liu, B. Liu, L.C. Lin, G. Chen, Y. Wu, J. Wang, X. Gao, Y. Lv, Y. Pan, X. Zhang, X. Zhang, L. Yang, C. Sun, B. Smit, W. Wang, A hybrid absorption-adsorption method to efficiently capture carbon. Nat. Commun. 5, 5147 (2014)
10. A.H. Lu, G.P. Hao, Porous materials for carbon dioxide capture. Annu. Rep. Prog. Chem. Sect. A Inorg. Chem. 109, 484–503 (2013)
11. J.R. Li, J. Yu, W. Lu, L.B. Sun, J. Sculey, P.B. Balbuena, H.C. Zhou, Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nat. Commun. 4, 1538 (2014)
12. X.E. Hu, L. Liu, X. Luo, G. Xiao, E. Shiko, R. Zhang, X. Fan, Y. Zhou, Y. Liu, Z. Zeong et al., A review of n-functionalized solid adsorbents for post-combustion CO2 capture. Appl. Energy 260, 114244 (2020)
13. H. Du, J. Li, J. Zhang, G. Su, X. Li, Y. Zhao, Separation of hydrogen and nitrogen gases with porous graphene membrane. J. Phys. Chem. C 115(47), 23261–23266 (2011)
14. J. Kim, L.C. Lin, J.A. Swisher, M. Harancezyk, B. Smit, Predicting large CO2 adsorption in aluminosilicate zeolites for postcombustion carbon dioxide capture. J. Am. Chem. Soc. 134(46), 18940–18943 (2012)
15. Liu, B., Smit, B.: Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs. J. Phys. Chem. C 114(18) (2010) 8515–8522
16. J. Schriber, Carbon dioxide separation with a two-dimensional polymer membrane. ACS Appl. Mater. Interfaces 4(7), 3745–3752 (2012)
17. Y. Zeng, R. Zou, Y. Zhao, Covalent organic frameworks for CO2 capture. Adv. Mater. 28(15), 2855–2873 (2016)
18. Z. Xiang, R. Mercado, J.M. Huck, H. Wang, Z. Guo, W. Wang, D. Cao, M. Harancezyk, B. Smit, Systematic tuning and multifunctionalization of covalent organic polymers for enhanced capture carbon. J. Am. Chem. Soc. 137(41), 13301–13307 (2015)
19. J. Yu, L.H. Xie, J.R. Li, Y. Ma, J.M. Seminario, P.B. Balbuena, CO2 capture and separations using MOFs: computational and experimental studies. Chem. Rev. 117(14), 9674–9754 (2017)
20. L.C. Lin, J. Kim, X. Kong, E. Scott, T.M. McDonald, J.R. Long, J.A. Reimer, B. Smit, Understanding CO2 dynamics in metal-organic frameworks with open metal sites. Angew. Chem. Int. Ed. 52(16), 4410–4413 (2013)
21. G. Srinivas, V. Krungelevičute, Z.X. Guo, T. Yildirim, Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ. Sci. 7, 335–342 (2014)
22. A. Ganesan, M. Shaijumon, Activated graphene-derived porous carbon with exceptional gas adsorption properties. Microporous Mesoporous Mater. 220, 21–27 (2015)
23. S. Ghosh, M. Sevilla, A.B. Fuertes, E. Andreoli, J. Ho, A.R. Barron, Defining a performance map of porous carbon sorbents for high-pressure carbon dio-
ide uptake and carbon dioxide-methane selectivity. J. Mater. Chem. A 4, 14739–14751 (2016)
24. M. Bartolomei, E. Carmona-Novillo, G. Giorgi, First principles investigation of hydrogen physical adsorption on graphynes’ layers. Carbon 95, 1076–1081 (2015)
25. G.P. Lithoxoos, A. Labropoulos, L.D. Peristeras, N. Kanellopoulos, J. Samios, I.G. Economou, Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: A combined experimental and monte carlo molecular simulation study. J. Supercrit. Fluids 55(2), 510–523 (2010)
26. A. Lombardi, N. Faginas-Lago, A. Laganà, F. Pirani, S. Falcinelli, A bond-bond portable approach to intermolecular interactions: Simulations for n-methylacetamide and carbon dioxide dimers. in *Computational Science and Its Applications - ICCSA 2012*, ed. by B. Murgante, O. Gervasi, S. Misra, N. Nedjah, A. Rocha, D. Taniar, B. Apduhan. Lecture Notes in Computer Science, vol. 7333 (Springer, Berlin Heidelberg, 2012), pp. 387–400
27. A. Lombardi, N. Faginas-Lago, L. Pacifici, A. Costantini, Modeling of energy transfer from vibrationally excited CO2 molecules: cross sections and probabilities for kinetic modeling of atmospheres, flows, and plasmas. J. Phys. Chem. A 117(45), 11430–11440 (2013)
28. S. Falcinelli, M. Rosi, P. Candori, F. Vecchiocattivi, A. Bartocci, A. Lombardi, N.F. Lago, F. Pirani. Modeling the intermolecular interactions and characterization of the dynamics of collisional autoionization processes. in International Conference on Computational Science and Its Applications. Springer (2013) 69–83
29. K.H. DuBay, M.L. Hall, T.F. Hughes, C. Wu, D.R. Reichman, R.A. Friesner, Accurate force field development for modeling conjugated polymers. J. Chem. Theory Comput. 8(11), 4556–4569 (2012)
30. Rahimi, M., Singh, J.K., Babu, D.J., J, S.J., M. Muller-Plathe, F.: Understanding carbon dioxide adsorption in carbon nanotube arrays: molecular simulation and adsorption measurements. J. Phys. Chem. C 117(26), 13492–13501 (2013)
31. A. Alexiadis, S. Kassinos, Molecular dynamic simulations of carbon nanotubes in CO2 atmosphere. Chem. Phys. Lett. 460(4–6), 512–516 (2008)
32. N. Faginas-Lago, D. Yeni, F. Huarte, Y. Wang, M. Alcamí, F. Martin, Adsorption of hydrogen molecules on carbon nanotubes using quantum chemistry and molecular dynamics. J. Phys. Chem. A 120(32), 6451–6458 (2016)
33. P. Pirani, S. Brizi, L. Roncaratti, P. Casavecchia, D. Cappelletti, F. Vecchiocattivi, Beyond the lennard-joining model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. Phys. Chem. Chem. Phys. 10, 5489 (2008)
34. A. Lombardi, A. Laganà, F. Pirani, F. Palazzetti, N. Lago. Carbon oxides in gas flows and earth and planetary atmospheres: state-to-state simulations of energy transfer and dissociation reactions. Volume 7972 LNCS. (2013)
35. M. Alberti, N.F. Lago, Ion size influence on the Ar solvation shells of M(27)CoFe clusters (M = Na, K, Rb, Cs). J. Phys. Chem. A 116(12), 3094–3102 (2012)
36. F. Pirani, M. Alberti, A. Castro, M. Moix Teixidor, D. Cappelletti, Atom-bond pairwise additive representation for intermolecular potential energy surfaces. Chem. Phys. Lett. 394(1–3), 37–44 (2004)
37. L. Paciﬁc, M. Verdicchio, N.F. Lago, A. Lombardi, A. Costantini, A high-level ab initio study of the N2 + N2 reaction channel. J. Comput. Chem. 34(31), 2668–2676 (2013)
38. A. Lombardi, F. Pirani, A. Laganà, M. Bartolomei, Energy transfer dynamics and kinetics of elementary processes (promoted) by gas-phase CO2-N2 collisions: Selectivity control by the anisotropy of the interaction. J. Comput. Chem. 37(16), 1463–1475 (2016)
39. Y.B. Apriliyanto, N. Faginas-Lago, A. Lombardi, S. Evangelisti, M. Bartolomei, T. Leininger, F. Pirani, Nanostructure selectivity for molecular adsorption and separation: the case of graphene layers. J. Phys. Chem. C 122(28), 16195–16208 (2018)
40. N. Faginas Lago, F. Huarte, L. Roncarà, M. Alberti, On the suitability of the ILJ function to match different formulations of the electrostatic potential for water-water interactions. Eur. Phys. J. D 55(1), 75–85 (2009)
41. M. Alberti, N.F. Lago, Competitive solvation of K+ by Cs6H6 and H2O in the K+(Cs6H6)n-(H2O)m (n=1–4; m=1–6) aggregates. Eur. Phys. J. D 67(4), 73 (2013)
42. N. Faginas-Lago, A. Lombardi, M. Albertí, G. Grossi, Accurate analytic intermolecular potential for the simulation of Na+ and K+ ion hydration in liquid water. J. Mol. Liq. 204, 192–197 (2015)
43. N. Faginas Lago, M. Albertí, A. Lombardi, F. Pirani, A force field for acetone: the transition from small clusters to liquid phase investigated by molecular dynamics simulations. Theor. Chem. Acc. 135(7), 1–9 (2016)
44. A. Lombardi, N. Faginas-Lago, G. Gaia, F. Palazzetti, V. Aquilanti, Collisional energy exchange in CO2-N2 gaseous mixtures. in *Computational Science and Its Applications - ICCSA 2016: 16th International Conference, Beijing, China, July 4–7, 2016, Proceedings*. ed. by O. Gervasi, B. Murgante, S. Misra, A.M.A.C. Rocha, C.M. Torre, D. Taniar, B.O. Apduhan, E. Stankova, S. Wang (Part I. Springer International Publishing, Cham, 2016), pp. 246–257
45. N. Faginas-Lago, Y.B. Apriliyanto, A. Lombardi, Carbon capture and separation from CO2/N2/H2O gaseous mixtures in bilayer graphphrnye: a molecular dynamics study. In: International Conference on Computational Science and Its Applications. Springer (2020) 489–501
46. W. Smith, C. Yong, P. Rodger, *D_\text{POLY}*: application to molecular simulation. Mol. Simul. 28(5), 385–471 (2002)
47. Humphrey W, D.A., K., S.: VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–8 (1996)
48. J. Vekeman, J. Sanchez-Marin, A. Sanchez de Meras, J. Samios, I.G. Economou, Adsorption selectivity control by the anisotropy of the interaction in graphynes’ layers. Carbon 123(46), 28035–28047 (2019)
49. N. Faginas-Lago, Y.B. Apriliyanto, A. Lombardi. Molecular simulations of CO2/N2/H2O gaseous mixture separation in graphphrnye membrane. In: International Conference on Computational Science and Its Applications. Springer (2019) 374–387
50. Y.B. Apriliyanto, N. Darmawan, N. Faginas-Lago, A. Lombardi, Two-dimensional diamine-linked covalent
organic frameworks for CO_2/N_2 capture and separation: theoretical modeling and simulations. Phys. Chem. Chem. Phys. 22, 25918–25929 (2020)

51. S. Goler, C. Coletti, V. Tozzini, V. Piazza, T. Mashoff, F. Beltram, V. Pellegrini, S. Heun, Influence of graphene curvature on hydrogen adsorption: toward hydrogen storage devices. J. Phys. Chem. C 117(22), 11506–11513 (2013)

52. I. Spanopoulos, I. Bratsos, C. Tampaxis, D. Vourloumis, E. Klontzas, G. Froudakis, G. Charalambopoulou, T. Steriotis, P. Trikalitis, Exceptional gravimetric and volumetric CO_2 uptake in a palladated NbO-type MOF utilizing cooperative acidic and basic, metal-CO_2 interactions. Chem. Commun. 52(69), 10559–10562 (2016)

53. S. Rodríguez-García, R. Santiago, D. López-Díaz, M. Merchán, M. Velázquez, J. Fierro, J. Palomar, Role of the structure of graphene oxide sheets on the CO_2 adsorption properties of nanocomposites based on graphene oxide and polyaniline or Fe$_3$O$_4$-nanoparticles. ACS Sustain. Chem. Eng. 7(14), 12464–12473 (2019)

54. K. Osler, D. Dheda, J. Ngoy, N. Wagner, M.O. Daramola, Synthesis and evaluation of carbon nanotubes composite adsorbent for CO_2 capture: a comparative study of CO_2 adsorption capacity of single-walled and multi-walled carbon nanotubes. Int. J. Coal Sci. Technol. 4(1), 41–49 (2017)

55. J. Patzsch, D.J. Babu, J.J. Schneider, Hierarchically structured nanoporous carbon tubes for high pressure carbon dioxide adsorption. Beilstein J. Nanotechnol. 8(1), 1135–1144 (2017)

56. L.P. Cavalcanti, G.N. Kalantzopoulos, J. Eckert, K.D. Knudsen, J.O. Fossum, A nano-silicate material with exceptional capacity for CO_2 capture and storage at room temperature. Sci. Rep. 8(1), 1–6 (2018)

57. D. Puthusseri, D.J. Babu, S. Okeil, J.J. Schneider, Gas adsorption capacity in an all carbon nanomaterial composed of carbon nanohorns and vertically aligned carbon nanotubes. Phys. Chem. Chem. Phys. 19(38), 26265–26271 (2017)