Endovascular thrombectomy with or without intravenous alteplase for acute ischemic stroke due to large vessel occlusion: a systematic review and meta-analysis of randomized trials

Xin Wang,1 Zhikang Ye,1,2 Jason W Busse,2,3,4 Michael D Hill,5 Eric E Smith,6 Gordon H Guyatt,3 Kameshwar Prasad,4 M Patrice Lindsay,8 Hui Yang,1 Yi Zhang,1,9 Ying Liu,1 Borui Tang,1 Xinrui Wang,1,9 Yushu Wang,1,9 Rachel J Couban,10 Zhuoling An1

ABSTRACT

Background Among patients who had an ischaemic stroke presenting directly to a stroke centre where endovascular thrombectomy (EVT) is immediately available, there is uncertainty regarding the role of intravenous thrombolysis agents before or concurrently with EVT. To support a rapid guideline, we conducted a systematic review and meta-analysis to examine the impact of EVT alone versus EVT with intravenous alteplase in patients who had an acute ischaemic stroke due to large vessel occlusion.

Methods In November 2021, we searched MEDLINE, Embase, PubMed, Cochrane, Web of Science, clinicaltrials.gov and the ISRCTN registry for randomised controlled trials (RCTs) comparing EVT alone versus EVT with alteplase for acute ischaemic stroke. We conducted meta-analyses using fixed effects models and assessed the certainty of evidence using the GRADE approach.

Results In total 6 RCTs including 2334 participants were eligible. Low certainty evidence suggests that, compared with EVT and alteplase, there is possibly a small decrease in the proportion of patients independent with EVT alone (risk ratio (RR) 0.97, 95% CI 0.89 to 1.05; risk difference (RD) −1.5%; 95% CI −5.4% to 2.5%), and possibly a small decrease in symptomatic intracranial haemorrhage (sICH) with EVT alone (RR 0.75, 95% CI 0.52 to 1.07; RD −1.0%; 95%CI −1.8% to 0.27%).

Conclusions Low certainty evidence suggests that there is possibly a small decrease in the proportion of patients that achieve functional independence and a small increase in mortality with EVT alone. Moderate certainty evidence suggests that there is probably a small decrease in sICH with EVT alone. The accompanying guideline provides contextualised guidance based on this body of evidence.

PROSPERO registration number CRD42021249873.

WHAT IS ALREADY KNOWN ON THIS TOPIC

⇒ When possible, acute ischaemic stroke due to large vessel occlusion is managed with endovascular thrombectomy (EVT) and intravenous alteplase; however, whether combination therapy is superior to EVT alone is uncertain.

WHAT THIS STUDY ADDS

⇒ Low certainty evidence (rated down due to very serious imprecision) from six randomized trials suggests that treatment of acute stroke due to large vessel occlusion with EVT alone, versus EVT with alteplase, may slightly decrease the proportion of patients that achieve functional independence and slightly increase mortality. Moderate certainty evidence shows that EVT alone probably results in a small decrease in symptomatic intracranial haemorrhage.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE AND/OR POLICY

⇒ Further trials are required to establish whether combination therapy is superior to EVT alone for acute stroke due to large vessel occlusion, and EVT alone is probably associated with a lower risk of harms. Clinical practice guidelines should consider these findings to optimise evidence-based care of acute stroke.

INTRODUCTION

Over 2.7 million people die of ischaemic stroke each year, and many who recover are left with permanent disabilities.1 Approximately 21% of acute ischaemic stroke are due to large vessel occlusion2 for which the standard of care has historically been intravenous alteplase, a thrombolytic medication.3 More recently, direct mechanical reperfusion with endovascular thrombectomy (EVT) has proven effective.4 Both treatments are extremely time-sensitive, and delays of 15 min in treatment initiation are associated with worse outcomes.
Among patients who had an ischaemic stroke are eligible for and can be treated with both interventions immediately, there has been uncertainty regarding the role of intravenous alteplase.5 6 Thrombolytic agents, such as alteplase, may contribute to early reperfusion of the ischaemic area and resolve residual distal thrombi after EVT.7–11 For large, proximally located thrombi, however, the rate of early recanalisation is low in the first hour following alteplase administration, and fragmentation with distal embolisation of the target thrombus can result in worsening distal perfusion, potentially complicating EVT.5,12

In the last 18 months, six randomized trials have been completed that provide evidence to address this uncertainty.13–18 We conducted a systematic review and meta-analysis to explore the benefits and harms of EVT with or without intravenous alteplase for acute ischaemic stroke due to large vessel occlusion. Our findings supported the development of a clinical practice guideline (Personal communication: Ye Z, Busse J, Hill M. Endovascular thrombectomy and intravenous alteplase in patients with acute ischemic stroke: a rapid clinical practice guideline. 2022).

METHODS

We followed the Preferred Reporting Items for Systematic Review and Meta-Analysis checklist19 when writing our report. All subjective decisions (ie, study selection, data abstraction, risk-of-bias assessment) were made in duplicate by independent reviewers, and any disagreements were resolved by discussion or by referral to a third reviewer.

Guideline panel involvement

A guideline panel provided critical oversight of different steps of this review, including: (1) defining the study question; (2) prioritising outcome measures; and (3) informing if measures of precision associated with pooled effect estimates were imprecise. The panel included seven general stroke experts, three neurointerventionalists, six methodologists, four patient partners who had recovered from an acute ischaemic stroke and received thrombectomy with or without intravenous thrombolysis, one caregiver, two academic pharmacists, one emergency physician and one health economist. All patients received personal training and support to optimise contributions throughout the guideline development process. The members of the guideline panel led the interpretation of the results based on what they expected the typical values and preferences of patients to be, as well as the variation between patients.

Data sources and search strategy

We searched MEDLINE, Embase, PubMed, Cochrane Central Register of Controlled Trials, Web of Science, clinicaltrials.gov and the International Standard Randomized Controlled Trial Number (ISRCTN) registry from inception to 22 November 2021. No language restrictions were applied, and a research information specialist (RJC) developed all database-specific search strategies (online supplemental appendix 1). We reviewed the reference lists of all included studies and relevant systematic reviews for additional eligible trials. In addition, we searched abstracts for the past 3 years of proceedings of the International Stroke Conference, European Stroke Conference, Asia-Pacific Stroke Meeting and the World Stroke Congress.

Study selection

We included randomized controlled trial (RCTs) that enrolled patients who had an acute ischaemic stroke due to large vessel occlusion and randomised them to receive EVT with intravenous alteplase versus EVT alone. Pairs of reviewers independently screened titles and abstracts and reviewed the full texts of potentially eligible studies.

Data extraction

Each eligible trial underwent duplicate data abstraction by pairs of reviewers working independently, who collected study characteristics, patient information including number enrolled, age, sex, comorbidities, stroke mechanism and clot location of participants, treatment details, and all patient-important outcomes: recovery with minimal disability (modified Rankin Scale (mRS) Score of 0–2), symptomatic intracranial haemorrhage (sICH), mortality and procedure-related complications.

Risk-of-bias assessment

Using a modified Cochrane risk-of-bias instrument, pairs of reviewers independently assessed each article for risk of bias considering sequence generation, allocation sequence concealment, blinding of participants, healthcare providers, data collectors, outcome assessor/adjudicator and missing outcome data (≥10% missing data were considered high risk of bias).20 Response options for each item were ‘definitely or probably yes’ (assigned a low risk of bias) and ‘definitely or probably no’ (assigned a high risk of bias).21

Data analysis

We conducted fixed effects meta-analysis using the Mantel-Haenszel method to calculate risk ratios (RRs) and risk differences (RDs), and the associated 95% CI, for all patient-important outcomes reported by more than one study. For computing RDs and 95% CIs, we applied the RR to the baseline risks from a high-quality observational study of 6350 ischaemic stroke from 42 centres that received EVT with or without intravenous alteplase.22 We conducted a post-hoc sensitivity analysis excluding the SKIP trial14 from our analyses on the basis that the dose of alteplase may affect results. Specifically, the SKIP trial administered alteplase at a dose of 0.6 mg/kg vs 0.9 mg/kg in other trials.

We performed all statistical analyses using Review Manager for Windows (RevMan, V.5.3). Comparisons were two-tailed using a p≤0.05 threshold.
Assessment of certainty of evidence

The authors and the guideline panel achieved consensus in categorising the certainty of evidence for all reported outcomes as high, moderate, low or very low using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. With the GRADE approach, RCTs start as high certainty evidence, but may be rated down for risk of bias, imprecision, indirectness, inconsistency or publication bias. We also rated down significant effects for imprecision if they were informed by <300 patients for continuous outcomes or <300 events for dichotomised outcomes. We did not rate down for risk of bias if the only criterion not met was blinding of study participants or personnel on the basis that a recent meta-epidemiological study found no evidence for an average difference in estimated treatment effect between trials with and without blinded patients, healthcare providers or outcome assessors. We also did not rate down the same effect estimate two times for both inconsistency and imprecision.

Rating of imprecision was fully contextualised by the guideline panel and we followed GRADE guidance for communicating our findings. We presented our evidence syntheses in a GRADE summary of findings tables as both relative and absolute effects to optimise interpretability. The minimally important difference (MID) was informed by a survey of guideline panel members’ views of patient values and preferences, and their subsequent discussion. The thresholds for MID were 1% for recovery with minimal disability, 0.8% for mortality and 1% for sICH; the panel, however, acknowledged both their uncertainty around patient values and likely large variability between patients. We assessed inconsistency among studies by differences in point estimates and overlap of the CI, and the I² statistic. According to Cochrane Review Handbook, an I² of 0%–40% might not be important, 30%–60% may represent moderate heterogeneity, 50%–90% may represent substantial heterogeneity and 75%–100% indicates considerable heterogeneity.

RESULTS

Of 11121 citations, 4 published RCTs including 1633 patients and 2 RCTs described at conference presentations including 701 patients met eligibility criteria (figure 1). Characteristics of included clinical trials, which were all published in 2020 and 2021, are presented in online supplemental appendix 2. Sample size ranges from 200 to 700 and two doses of alteplase (0.6 mg/kg and 0.9 mg/kg) were administered to participants. All eligible trials adequately generated their randomisation...
sequence, appropriately concealed allocation, blinded outcome assessors and reported <10% missing outcome data. Due to the nature of the interventions, patients and healthcare providers were unblinded (online supplemental appendix 3).

Outcomes for EVT with intravenous alteplase versus EVT alone

Recovery with minimal disability (mRS Score 0–2)

Low certainty evidence from 6 RCTs13–18 (2331 patients) suggests that, compared with EVT with alteplase, EVT alone possibly results in a small decrease in the proportion of patients that achieve functional independence (RR 0.97, 95% CI 0.89 to 1.05; RD −1.5%; 95% CI −5.4% to 2.5%) (figure 2, table 1).

Mortality

Low certainty evidence from 6 RCTs13–18 (2333 patients) suggests that, compared with EVT with alteplase, EVT alone possibly results in a small increase in mortality (RR 1.07, 95% CI 0.88 to 1.29; RD 1.2%, 95% CI −2.0% to 4.9%) (figure 3, table 1).

Symptomatic intracranial haemorrhage (sICH)

Moderate certainty evidence from 6 RCTs13–18 (2328 patients) suggests that, compared with EVT with alteplase, EVT alone probably results in a small decrease in sICH (RR 0.75, 95% CI 0.52 to 1.07; RD −1.0%; 95% CI −1.8% to 0.27%) (figure 4, table 1).

Sensitivity analysis excluding the SKIP trial14 did not appreciably change recovery with minimal disability (mRS Score 0–2), mortality and sICH (online supplemental appendix 4).

Procedure-related complications

Overall, 2 studies13 15 including 886 patients reported on procedure-related complications and the results showed:

![Figure 2](http://svn.bmj.com/StrokeVascNeurol:Firstpublishedasa10.1136/svn-2022-001547on20June2022. Downloadedfromhttp://svn.bmj.com/)

Figure 2 Forest plot for endovascular thrombectomy (EVT) alone versus EVT with intravenous alteplase for modified Rankin Scale (mRS) score 0–2.

Table 1 GRADE summary of findings for EVT alone versus EVT with alteplase in patients who had an acute ischaemic stroke secondary to large vessel occlusion

Outcomes (timeframe)	Relative effects (95% CI); number of patients and trials.	Absolute effect estimates	Certainty of evidence	Plain language summary
Minimal disability measured by modified Rankin Score 0–2 (90 days)	RR 0.97 (0.89 to 1.05) 2331 patients in six trials.13–18	49.1% -1.5% (−5.4% to 2.5%)	Low (very serious imprecision)	There is possibly a small decrease in the proportion of patients that achieve functional independence with EVT alone
Mortality (90 days)	RR 1.07 (0.88 to 1.29) 2333 patients in six trials.13–18	16.8% 1.2% (−2.0% to 4.9%)	Low (very serious imprecision)	There is possibly a small increase in mortality with EVT alone
Symptomatic intracranial haemorrhage (90 days)	RR 0.75 (0.52 to 1.07) 2328 patients in six trials.13–18	3.8% −1.0% (−1.8% to 0.27%)	Moderate (serious imprecision)	There is probably a small decrease in symptomatic intracranial haemorrhage with EVT alone

*The baseline risk for modified Rankin Score 0–2, mortality and symptomatic intracranial haemorrhage at 90 days was obtained from patients with anterior circulation large artery occlusion stroke receiving EVT with alteplase.22

EVT, endovascular thrombectomy; GRADE, Grading of Recommendations Assessment, Development and Evaluation; RR, risk ratio.
no significant difference in procedure-related complications for EVT with or without alteplase (RR 0.89, 95% CI 0.69 to 1.15, p=0.38; online supplemental appendices 5 and 6).

Interpretation

For patients who had an ischaemic stroke with large vessel occlusion who present to comprehensive stroke centres and are eligible for both immediate thrombolysis and EVT, compared with EVT and intravenous alteplase, low certainty evidence suggests that there is possibly a small decrease in the proportion of patients that achieve functional independence and a small increase in mortality with EVT alone; CI are wide with very serious imprecision. Moderate certainty evidence suggests that there is probably a small decrease in sICH with EVT alone. Considering the small differences with very serious imprecision, this evidence supports only weak recommendations for future clinical care. The accompanying guideline provides contextualised guidance based on this body of evidence.

Strengths of our systematic review include a comprehensive search for eligible RCTs in any language, and independent study selection, data abstraction and the risk-of-bias assessment by paired reviewers. We engaged a guideline panel of patients and clinical experts to fully contextualise our assessment of the evidence, and to establish MIDs for all outcomes. We used the GRADE approach to assess the certainty of evidence and converted all pooled relative effects to RDs to facilitate interpretation.

Compared with two recent published systematic reviews addressing EVT alone versus EVT with intravenous thrombolysis in acute ischaemic stroke from large vessel occlusion, our review had the following distinctions. First, we used the GRADE approach to evaluate the certainty of evidence, which formally acknowledges imprecision in effect estimates. The results of our study suggested that EVT alone may decrease the proportion of patients that achieve functional independence and increase mortality, whereas previous systematic reviews concluded no difference between groups in functional independence and mortality. Second, we engaged a guideline panel, which involved patient partners, to contextualise the findings—including assessment of precision associated with pooled effect estimates. Third, prior reviews reported both patient-important and surrogate outcomes. In the systematic review of four trials, surrogate endpoints (successful reperfusion and any intracranial haemorrhage) showed significant improvement, the first favouring EVT plus alteplase and the second favouring EVT alone, and the authors did not address this issue. In the systematic review of three trials, there were no significant differences in successful reperfusion. Surrogate outcomes are less important when we have evidence to directly inform patient-important outcomes. Our review recognised this and hence did not report these surrogate outcomes. Finally, on the definition of sICH used in these RCTs, we chose the Heidelberg criteria for DIRECT-MT, DEVT and MR CLEAN-NO IV trials, and the Safe Implementation of Thrombolysis in Stroke–Monitoring Study (SITS–MOST) criteria for the SKIP trial while for the SWIFT DIRECT and DIRECT SAFE trials we used their own trial-specific definitions (online supplemental appendices 2 and 6); the previous systematic review of four trials used Heidelberg criteria for DIRECT-MT and MR CLEAN-NO IV trials and National Institute of Neurological Disorders and Stroke (NINDS) criteria for SKIP and DEVT trials (online supplemental appendix...
The ESO–ESMINT guideline, alternatively, associated with EVT alone and thus warranted rating a range that includes both important benefits and harms.

On 3 February 2022, the European Stroke Organisation (ESO)–European Society for Minimally Invasive Neurological Therapy (ESMINT) published a guideline that made a strong recommendation in favour of intravenous thrombolysis plus mechanical thrombectomy over mechanical thrombectomy alone for patients who had an acute stroke presenting with anterior circulation large vessel occlusion and who are eligible for both treatments. Their associated evidence synthesis concluded moderate certainty evidence (due to inconsistency) for no difference in functional recovery without impairment or sICH, and high certainty evidence for no difference in mortality but greater chance of successful reperfusion with EVT plus alteplase. They rated down for inconsistency for recovery and sICH even though all CI in these forest plots overlapped and the I² was 0% for both pooled effect estimates.

The difference in our appraisal of certainty of evidence is due to our approach of assessing imprecision. Specifically, we assessed values and preferences of patients presenting with acute stroke and found that most would consider a 1% absolute difference in functional recovery without impairment to be important. Accordingly, we judged the pooled effect for EVT alone versus combination therapy as imprecise as the 95% CI ranged from 5.4% more to 2.5% less recovering with no impairment; a range that includes both important benefits and harms associated with EVT alone and thus warranted rating down twice for imprecision according to the GRADE approach. The ESO–ESMINT guideline, alternatively, applied a non-inferiority margin of 1.3% and concluded that non-inferiority was not met and did not rate down for imprecision. The same issue affected the assessment of mortality. We viewed the associated 95% CI, which included a 2% decrease and a 4.9% increase in mortality with EVT alone, as including both important benefits and harms and so rated down two times for imprecision.

The ESO–ESMINT guideline, again, did not consider this imprecise. The ESO–ESMINT guideline’s strong recommendation in favour of EVT plus alteplase appears to rest on significant effects on surrogate outcomes that favoured combination therapy; specifically, successful reperfusion and any intracranial haemorrhage. We did not include these outcomes in our review, and instead focused only on outcomes of direct important to patients: functional recovery, mortality and sICH.

Limitations

There are some limitations to our review. First, eligible trials used multiple criteria to define sICH. Based on feedback from our clinical experts, we chose the Heidelberg criteria for three trials, and SITS–MOST criteria for the SKIP trial. The SWIFT DIRECT trial defined sICH as any parenchymal haematoma type 1, parenchymal haematoma type 2, remote intracranial haemorrhage, subarachnoid haemorrhage or intraventricular haemorrhage associated with a ≥4 point worsening on the National Institutes of Health Stroke Scale (NIHSS) at ≥4±6 hours post randomisation and the DIRECT SAFE trial defined sICH as NIHSS increase of 4 or more points at 24±hours window post stroke with ICH on CT scan; the lack of statistical heterogeneity in our pooled estimate of effect (I²=0%) suggests our approach was valid. Second, although we found no difference in treatment effects between EVT with intravenous alteplase versus EVT alone, the associated estimates of precision included patient-important benefits and harms, which reduced our certainty of evidence to low or moderate. Third, our findings are only relevant to alteplase. Tenecteplase may be a more effective thrombolytic agent.

CONCLUSIONS

Low certainty evidence suggests that there is possibly a small decrease in the proportion of patients that achieve functional independence and a small increase in mortality with EVT alone. Moderate certainty evidence suggests that there is probably a small decrease in sICH with EVT alone. The accompanying guideline provides contextualised guidance based on this body of evidence.

Author affiliations

1Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
2Michael G DeGroote National Pain Centre, McMaster University, Hamilton, Ontario, Canada
3Department of Health Research Methods Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
4Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada
5Department of Clinical Neurosciences and Hotchkiss Brain Institute, Departments of Medicine, Community Health Sciences and Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
6Department of Clinical Neurosciences and Calgary Stroke Program, University of Calgary, Calgary, Alberta, Canada
7Professor of neurology and Director, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
8Heart and Stroke Foundation of Canada, Toronto, Ontario, Canada
9Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
10DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada

Contributors XW, ZY, JWB, MDH, EES, GHG and ZA drafted the manuscript. RJC, XW, ZY, ZA, HY, YZ, YL, BT, XW and YW contributed to the acquisition, analysis and interpretation of data. XW, ZY, JWB, MDH, EES, GHG and ZA contributed to the conception of the work. XW, ZY, JWB, MDH, EES, KP, GHG, MPL and ZA contributed to the design of the work. RJC, XW, ZY, JA, HY, YZ, YL, ST, XW and YW contributed to the acquisition, analysis and interpretation of data. XW, ZY, JWB, MDH, EES, GHG and ZA drafted the manuscript.
manuscript. All of the authors revised it critically for important intellectual content, gave final approval of the version to be published and agreed to be accountable for all aspects of the work. XW and ZY are joint primary authors.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Disclaimer The authors alone are responsible for the views expressed in this article and they do not necessarily represent the views, decisions or policies of the institutions with which they are affiliated.

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. All data relevant to the study are included in the article or uploaded as supplementary information.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs Eric Smith http://orcid.org/0000-0003-3956-1668 Zhuodong An http://orcid.org/0000-0002-7996-5002

REFERENCES

1. Lindsay MB NP, Sacco RL. World stroke organization (WSO); global stroke fact sheet, 2019. Available: https://www.world-stroke.org/assets/downloads/WSO_Fact-sheet_15.01.2020.pdf
2. Waqas M, Rai AT, Vakharia K, et al. Effect of definition and methods on estimates of prevalence of large vessel occlusion in acute ischemic stroke: a systematic review and meta-analysis. J Neurointerv Surg 2020;12:260–6.
3. Sami AK CA, Edward CJ. Acute ischemic stroke due to large vessel occlusion. emergency medicine reports, 2018. Available: https://www.reliasmedia.com/articles/142040-acute-ischemic-stroke-due-to-large-vessel-occlusion.
4. Goyal M, Menon BK, van Zwan WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 2016;387:1723–31.
5. Mistry EA, Mistry AM, Nakawah MO, et al. Mechanical thrombectomy outcomes with and without intravenous thrombolysis in stroke patients: a meta-analysis. Stroke 2017;48:2450–6.
6. Wang Y, Wu X, Zhu C, et al. Bridging thrombolysis achieved better outcomes than direct thrombectomy after large vessel occlusion: an updated meta-analysis. Stroke 2021;52:356–65.
7. Desilles J-P, Loyau S, Syvannarath V, et al. Atelase reduces downstream microvascular thrombosis and improves the benefit of large artery recanalization in stroke. Stroke 2015;46:3241–8.
8. Seners P, Turc G, Maier B, et al. Incidence and predictors of early recanalization after intravenous thrombolysis: a systematic review and meta-analysis. Stroke 2016;47:2409–12.
9. Bhatia R, Hill MD, Shobha N, et al. Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke 2020;51:2254–8.
10. Tsivgoulis G, Katsanos AH, Schellinger PD, et al. Successful reperfusion with intravenous thrombolysis preceding mechanical thrombectomy in large-vessel occlusions. Stroke 2018;49:232–5.
11. Ospel JM, Singh N, Almekhlafi MA, et al. Early recanalization with alteplase in stroke because of large vessel occlusion in the escape trial. Stroke 2021;52:304–7.
12. Ohara T, Menon BK, Al-Ajan FS, et al. Thrombus migration and fragmentation after intravenous alteplase treatment: the intersect study. Stroke 2021;52:203–12.
13. Yang P, Zhang Y, Zhang L, et al. Endovascular thrombectomy with or without intravenous alteplase in acute stroke. N Engl J Med 2020;382:1981–93.
14. Suzuki K, Matsumaru Y, Takeuchi M, et al. Effect of mechanical thrombectomy without vs with intravenous thrombolysis on functional outcome among patients with acute ischemic stroke: the skip randomized clinical trial. JAMA 2021;325:244–53.
15. Zi W, Qiu Z, Li F, et al. Effect of endovascular treatment alone vs intravenous alteplase plus endovascular treatment on functional independence in patients with acute ischemic stroke: the DEVt randomized clinical trial. JAMA 2021;325:234–43.
16. LeCouffe NE, Kappelhol M, Treuert KM, et al. A randomized trial of intravenous alteplase before endovascular treatment for stroke. N Engl J Med 2021;385:1833–44.
17. Fischer U, Solitaire™ with the intention for thrombectomy plus intravenous t-PA versus direct Solitaire™ Stent-retriever thrombectomy in acute anterior circulation stroke. Eure Stroke J 2021.
18. Mitchell P. Direct safe: a randomized controlled trial of direct endovascular clot retrieval versus standard bridge thrombolysis with endovascular clot retrieval within 4.5 hours of stroke onset. World Stroke Congress 2021;24:57–64.
19. Motter D, Libera A, Tetzel R, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009;151:269–264.
20. Guyatt GH, Busse JW. Modification of cochrane tool to assess risk of bias in randomised trials. Available: https://www.evidencepartners.com/resources/methodological-resources.
21. Aki EA, Sun X, Busse JW, et al. Specific Instructions for estimating unclearly reported blinding status in randomized trials were reliable and valid. J Clin Epidemiol 2012;65:262–7.
22. Ahmed N, Maza M, Nunes AF, et al. Safety and outcomes of thrombectomy in ischemic stroke with vs without IV thrombolysis. Neurology 2021;97:e765;e776.
23. Guyatt GH, Oxman AD, Vist GE, et al. Grade: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336:924–9.
24. Guyatt GH, Oxman AD, Vist G, et al. Grade guidelines: 4. rating the quality of evidence—study limitations (risk of bias). J Clin Epidemiol 2011;64:407–15.
25. Guyatt GH, Oxman AD, Kunz R, et al. Grade guidelines 6. rating the quality of evidence—imprecision. J Clin Epidemiol 2011;64:1283–93.
26. Guyatt GH, Oxman AD, Kunz R, et al. Grade guidelines: 8. rating the quality of evidence—indirectness. J Clin Epidemiol 2011;64:1303–10.
27. Guyatt GH, Oxman AD, Kunz R, et al. Grade guidelines: 7. Rating the quality of evidence—inconsistency. J Clin Epidemiol 2011;64:1294–302.
28. Guyatt GH, Oxman AD, Montori V, et al. Grade guidelines: 5. Rating the quality of evidence—publication bias. J Clin Epidemiol 2011;64:1277–82.
29. Moustgaard H, Clayton GL, Jones HE, et al. Impact of blinding on estimated treatment effects in randomised clinical trials: meta-epidemiological study. BMJ 2020;369:m1409.
30. Hultcrantz M, Rind D, Aki EA, et al. The grade Working group clarifies the construct of certainty of evidence. J Clin Epidemiol 2017;67:4–13.
31. Santesso N, Glenton C, Dahm P, et al. Grade guidelines 26: informative statements to communicate the findings of systematic reviews of interventions. J Clin Epidemiol 2020;119:126–35.
32. Higgins JPT TJ, Chandler J. Cochrane Handbook for systematic reviews of interventions version 8.1. In: Cochrane, 2020. www. training.cochrane.org/handbook.
33. Ye Z, Busse J, Hill M. Endovascular thrombectomy and intravenous alteplase in patients with acute ischemic stroke: a rapid clinical practice guideline. Stroke and Vascular Neurology 2022.
34. Podlasek A, Dhillon PS, Butt W, et al. Direct mechanical thrombectomy without intravenous thrombolysis versus bridging therapy for acute ischemic stroke: a meta-analysis of randomized controlled trials. Int J Stroke 2021;16:621–31.
35. Scharf J, Wan TF, Xu TC, et al. Direct endovascular thrombectomy or with prior intravenous thrombolysis for acute ischemic stroke: a meta-analysis. Front Neurol 2021;12:752698.
36. Yudkin JS, Lipska KJ, Montori VM. The idolatry of the surrogate. BMJ 2011;343:d7935.
37. Turc G, Tsivgoulis G, Todebert HJ, et al. European Stroke Organisation (ESO)-European society for minimally Invasive neurological therapy (ESMIN) expedited recommendation on indication for intravenous
thrombolysis before mechanical thrombectomy in patients with acute ischemic stroke and anterior circulation large vessel occlusion. *J Neurointerv Surg* 2022;14:209–27.

38 Zeng L, B-P R, Hultcrantz M. Grade guidelines 34: updated grade guidance for imprecision rating using a minimally contextualized approach. *J Clin Epidemiol* 2022;137:163–75.

39 Kheiri B, Osman M, Abdalla A, et al. Tenecteplase versus alteplase for management of acute ischemic stroke: a pairwise and network meta-analysis of randomized clinical trials. *J Thromb Thrombolysis* 2018;46:440–50.

40 Lin MP, Prasad K. Tenecteplase prior to mechanical thrombectomy: ready for prime time? *Neurology* 2021;96:413–4.
Appendix 1: Summary of search strategy

Database: OVID Medline Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946 to Present

Search Strategy:
1 exp Stroke/ (151427)
2 (Cerebrovascular event or Stroke or apoplex or CVA or cerebrovascular accident or brain vascular accident or brain isch* or brain infarc* or cerebral infarc$ or cerebral isch$ or cerebral vessel occlusion or large vessel occlusion or intracranial isch* or intracranial infarction or intracranial vessel occlusion or brain vessel occlusion).mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] (390015)
3 1 or 2 (393519)
4 exp Thrombectomy/ (9289)
5 (Thrombectomy or thrombectomie$ or mechanical or endovascular or embolectomy or intracranial intervention or Stent-retriever or stentretriever or preset or solitaire or trevo or catch).mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] (532741)
6 4 or 5 (532741)
7 3 and 6 (22234)
8 exp Tissue Plasminogen Activator/ (19562)
9 ((plasminogen adj2 (activator or recombinant)) or (bridging* or thrombolysis or rtPA or tPA or rt PA or alteplase or Tenecteplase orreteplase or Metalyse or ttkase or tenecteplase or ecokinase or rapilysin or retavase or actilyse or activase or alteplase or lysatec rt pa or lysatec rt-pa or atlepase or cathflo activase or bridging-therapy)).mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] (532741)
concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] (130860)

10 8 or 9 (130860)
11 7 and 10 (5276)
12 (direct or combined or with or alone or combination or preceding or preinterventional or prior or before or previous or concomitant or stand-alone or together or following or followed or eligible or contraindication or ineligible or preproced$ or preinterv$ or prethrom$ or pre-proced$ or pre-inter$ or pre-throm$).mp. (20428682)
13 11 and 12 (4887)
14 randomized controlled trial.pt. (550704)
15 controlled clinical trial.pt. (94547)
16 randomized.ab. (541037)
17 placebo.ab. (223248)
18 drug therapy.fs. (2404278)
19 randomly.ab. (370115)
20 trial.ab. (576336)
21 groups.ab. (2273783)
22 or/14-21 (5179308)
23 exp animals/ not humans.sh. (4917301)
24 22 not 23 (4505655)
25 11 and 24 (49887)
26 random:.tw. or placebo:.mp. or double-blind:.tw. (1378661)
27 ((treatment or control) adj3 group*).ab. (665358)
28 (allocat* adj5 group*).ab. (29061)
29 ((clinical or control*) adj3 trial).ti,ab,kw. (324097)
30 or/26-29 (1918347)
31 30 not 23 (1654690)
32 11 and 31 (1138)
33 25 or 32 (2237)
34 limit 33 to ed=20210419-20211122 (232)
Database: Embase <1974 to 2021 November 19>

Search Strategy:

1. exp cerebrovascular accident/ (247559)
2. (Cerebrovascular event or Stroke or apoplex or CVA or cerebrovascular accident or brain vascular accident or brain isch* or brain infarc* or cerebral infarc$ or cerebral isch$ or cerebral vessel occlusion or large vessel occlusion or intracranial isch* or intracranial infarction or intracranial vessel occlusion or brain vessel occlusion).mp. (655054)
3. 1 or 2 (655054)
4. exp thrombectomy/ (31288)
5. (Thrombectomy or thrombectomie$ or mechanical or endovascular or embolectomy or intracranial intervention or Stent-retriever or stentretriever or preset or solitaire or trevo or catch).mp. (641195)
6. 4 or 5 (643465)
7. 3 and 6 (43522)
8. tissue plasminogen activator/ (30971)
9. (bridging$ or thrombolysis or rtPA or tpA or rt PA or alteplase or bridging-therapy or plasminogen activator or recombinant-plasminogen or plasminogen-activator).mp. (183948)
10. 8 or 9 (183948)
11. 7 and 10 (11978)
12. (direct or combined or with or alone or combination or preceding or preinterventional or prior or before or previous or concomitant or stand-alone or together or following or followed or eligible or contraindication or ineligible or preproced$ or preinterv$ or prethrom$ or pre-proced$ or pre-inter$ or pre-throm$).mp. (25262604)
13. 11 and 12 (11097)
14. limit 13 to yr="2017 -Current" (6400)
15. randomized controlled trial/ (683426)
16. Controlled clinical study/ (464339)
17. random$.ti,ab. (1723999)
18. randomization/ (92125)
intermethod comparison/ (277105)
placebo.ti,ab. (332140)
(compare or compared or comparison).ti. (550422)
((evaluated or evaluate or evaluating or assessed or assess) and (compare or compared or comparing or comparison)).ab. (2397242)
(open adj label).ti,ab. (92320)
((double or single or doubly or singly) adj (blind or blinded or blindly)).ti,ab. (250276)
double blind procedure/ (189607)
parallel group$.ti,ab. (28397)
(crossover or cross over).ti,ab. (113472)
((assign$. or match or matched or allocation) adj5 (alternate or group$. or intervention$ or patient$ or subject$ or participant$)).ti,ab. (366751)
(assigned or allocated).ti,ab. (432042)
(controlled adj7 (study or design or trial)).ti,ab. (392334)
(volunteer or volunteers).ti,ab. (262212)
human experiment/ (558858)
trial.ti. (343162)
or/15-33 (5572251)
(random$. adj samp$. adj7 ("cross section" or questionnaire$ or survey$ or database$)).ti,ab. not (comparative study/ or controlled study/ or randomi?ed controlled).ti,ab. or randomly assigned.ti,ab.) (8759)
Cross-sectional study/ not (randomized controlled trial/ or controlled clinical study/ or controlled study/ or randomi?ed controlled.ti,ab. or control group$.ti,ab.) (288322)
(((case adj control$) and random$) not randomi?ed controlled).ti,ab. (19134)
(Systematic review not (trial or study)).ti. (191316)
(nonrandom$ not random$.).ti,ab. (17382)
"Random field$".ti,ab. (2603)
(random cluster adj3 samp$.).ti,ab. (1392)
(review.ab. and review.pt.) not trial.ti. (940188)
"we searched".ab. and (review.ti. or review.pt.) (39021)
"update review".ab. (118)
databases adj4 searched).ab. (46422)
(rat or rats or mouse or mice or swine or porcine or murine or sheep or lambs or pigs or piglets or rabbit or rabbits or cat or cats or dog or dogs or cattle or bovine or monkey or monkeys or trout or marmoset$1).ti. and animal experiment/ (1128444)
Animal experiment/ not (human experiment/ or human/) (2368551)
or/35-47 (3826805)
34 not 48 (4942605)
11 and 49 (3566)
random:.tw. or placebo:.mp. or double-blind:.tw. (1988253)
((treatment or control) adj3 group*).ab. (963695)
(alocat* adj5 group*).ab. (37958)
((clinical or control*) adj3 trial).ti,ab,kw. (458102)
or/51-54 (2778117)
11 and 55 (2486)
56 not 48 (2136)
50 or 57 (3886)
limit 58 to dc=20210416-20211122 (466)

Cochrane Library (Wiley)

Date Run: 22/11/2021

ID	Search	Hits
#1	MeSH descriptor: [Stroke] explode all trees	10731
#2	"Cerebrovascular event" or Stroke or apoplex or CVA or "cerebrovascular accident" or "brain vascular accident" or "brain isch*" or "brain infarc*" or "cerebral infarc*$" or "cerebral isch$" or "cerebral vessel occlusion" or "large vessel occlusion" or "intracranial isch*" or "intracranial infarction" or "intracranial vessel occlusion" or "brain vessel occlusion"	77142
#3	#1 or #277428	
#4	MeSH descriptor: [Thrombectomy] explode all trees	327
#5 Thrombectomy or thrombectomie$ or mechanical or endovascular or embolectomy or "intracranial intervention" or Stent-retriever or stentretriever or preset or solitaire or trevo or catch 34519
#6 #4 or #5 34519
#7 #3 and #6 4017
#8 MeSH descriptor: [Tissue Plasminogen Activator] explode all trees 1729
#9 bridging$ or thrombolysis or rtPA or tpA or rt PA or alteplase or bridging-therapy or "plasminogen activator" or recombinant-plasminogen or plasminogen-activator 12868
#10 plasminogen near/2 (activator or recombinant) 4833
#11 bridging* or thrombolysis or rtPA or tpA or rt PA or alteplase or Tenecteplase or reteplase or Metalysye or tnkase or tenecteplase or eckinase or rapilysin or retavase or actilyse or activase or alteplase or lysatec rt pa or lysatec rt-pa or lysatec rtpa or atlepase or cathflo activase or bridging-therapy 10919
#12 #9 or #10 or #11 13058
#13 #7 and #12 in Trials 1029
#14 #13 with Cochrane Library publication date Between Apr 2021 and Nov 2021 97

Web of Science (Clarivate)
10 #8 and #9 194
9 LD=(2021-04-16/2021-11-22) 2,345,234
8 #7 AND #6 2,563
7 TS= clinical trial* OR TS=controlled trial* OR TS=random* OR TS=placebo* OR TS=(single blind*) OR TS=(double blind*) 2,812,250
6 #5 AND #2 AND #1 6,724
5 #4 OR #3 224,286
4 TS=(bridging* or thrombolysis or rtPA or tpA or rt PA or alteplase or Tenecteplase or reteplase or Metalysye or tnkase or tenecteplase or eckinase or rapilysin or retavase or actilyse or activase or alteplase or lysatec rt pa or lysatec rt-pa or lysatec rtpa or atlepase or cathflo activase or bridging-therapy) 178,080
3 TS=(plasminogen NEAR/2 (activator or recombinant)) 63,775
2 TS=(Thrombectomy OR thrombectomie* OR mechanical OR endovascular OR embolectomy OR intracranial intervention OR Stent-retriever OR stentretriever OR preset OR solitaire OR trevo OR catch) 1,549,779
1 TS=(Cerebrovascular event OR Stroke OR apoplex OR CVA OR cerebrovascular accident OR brain vascular accident OR brain isch* OR brain infarc* OR cerebral infarc* OR cerebral isch* OR cerebral vessel occlusion OR large vessel occlusion OR intracranial isch* OR intracranial infarction OR intracranial vessel occlusion OR brain vessel occlusion) 504,353

PubMed
((((publisher[sb] OR inprocess[sb] OR pubmednotmedline[sb] OR pubstatusaheadofprint)) AND (stroke or cerebrovascular accident)) AND (Thrombectomy)) AND ((bridging* or thrombolysis or rtPA or tpA or rt PA or alteplase or Tenecteplase or reteplase or Metalyse or tnkase or tenecteplase or ecokinase or rapilysin or retavase or actilyse or activase or alteplase or lysatec rt pa or lysatec rt-pa or lysatec rtpa or atlepase or cathflo activase or bridging-therapy) OR (Tissue Plasminogen Activator)) AND (((random* or placebo or double-blind) OR (randomized clinical trial)) OR (controlled trial))
Appendix 2: Characteristics of included studies

Study	DIRECT-MT⁴	SKIP²	DEVT³	MR CLEAN-NO IV⁴	SWIFT DIRECT⁵	DIRECT SAFE⁶	
Study Period	February 23, 2018 - 2019	January 1, 2017 - July 31, 2019	May 20, 2018 - May 2, 2020	January 2018 - October 2020	NA	April, 2018 - June, 2021	
Country	China	Japan	China	Europe	North America and Europe	Australia, New Zealand, China and Vietnam	
N	EVT	327	101	116	273	201	146
EVT with alteplase	329	103	118	266	207	147	
Age, median (IQR), y	EVT	69(61-76)	74(67-80)	70(60-77)	72(62-80)	73(64-81)	70 (61-78)
EVT with alteplase	69(61-76)	76(67-80)	70(60-78)	69(61-77)	72(65-81)	69 (60-79)	
Sex (Male%)	EVT	189 (57.8)	56(55)	66(56.9)	161(59)	96(48)	78 (53.4)
EVT with alteplase	181 (55.0)	72(70)	66(55.9)	144(54.1)	103(50)	88 (59.9)	
Alteplase Dose (mg/kg)	EVT	0.9	0.6	0.9	0.9	0.9	
EVT with alteplase	0.9	0.6	0.9	0.9	0.9		
Inclusion criteria	Occluded site	ICA, MCA-M1 or M2 occlusion on CTA	ICA or MCA-M1 occlusion on CTA or MRA	ICA, MCA-M1 or proximal M2 occlusion on CTA or MRA	ICA or MCA-M1 occlusion or both on CTA or MRA	CTA or MRA of the ICA, M1, M2 or basilar artery	
mRS score	mRS ≤2	mRS ≤2	mRS < 2	mRS ≤2	mRS ≤2	mRS < 4	
NIHSS score	≥2	≥6	No limit	≥2	≥5 and < 30	No limit	
Grading sICH	ASPECTS	DWI ≥ 5 or CT ≥ 6	No limit	No limit	≥4	No limit	
---	---	---	---	---	---	---	
Heidelberg	SITS-MOST	Heidelberg	Heidelberg	Any parenchymal hematoma type 1, parenchymal hematoma type 2, remote intracranial hemorrhage, subarachnoid hemorrhage, or intraventricular hemorrhage associated with a ≥4 point worsening on the NIHSS at 24 hours ± 6 hours post randomization	ICH on CT scan, 24h window post stroke, NIHSS increase of 4 or more points		

Onset to randomization time, median (IQR), min	EVT	167(125-206)	NA	170 (129-204)	94(60-137)	NA	NA
EVT with alteplase	177(126-215)	NA	168 (144-216)	93(71-152)	NA	NA	NA

Randomization to groin puncture time, median (IQR), min	EVT	31(20-45)	20 (20)*	NA	NA	NA	NA
EVT with alteplase	36(22-50.5)	22 (16)*	NA	NA	NA	NA	NA

NIHSS score, median (IQR), min	EVT	17(12-21)	19(13-23)	16(12-20)	16(10-20)	17(13-20)	15 (11-20)
EVT with alteplase	17(14-22)	17(12-22)	16(13-20)	16(10-20)	17(12-20)	15 (10-20)	

ASPECTS, median (IQR), min	EVT	9(7-10)	7(6-9)	8(7-9)	9(8-10)	8(7-9)	10 (9-10)
EVT with alteplase	9(7-10)	8(6-9)	8(7-9)	9(8-10)	8(7-9)	10 (9-10)	

Comorbidities	Hypertension	EVT	193/327	61/101	69/116	121/273	NA	NA
EVT with alteplase	201/329	61/103	74/118	139/265	NA	NA	NA	NA
Stroke mechanism	Clot location	EVT	EVT with alteplase	EVT	EVT with alteplase			
------------------	--------------	-----	--------------------	-----	--------------------			
Diabetes mellitus	ICA	59/327	16/101	25/116	40/273	NA	NA	
	M1	65/329	17/103	20/118	50/266	NA	NA	
	M2	NA	30/101	18/116	NA	NA	NA	
Dyslipidemia		NA	37/103	22/118	NA	NA	NA	
Atrial fibrillation		152/327	57/101	62/116	86/273	NA	NA	
		149/329	64/103	62/118	63/266	NA	NA	
Prior stroke		43/327	12/101	14/116	47/273	NA	NA	
		47/329	14/103	19/118	44/266	NA	NA	
Prior cardiovascular disease		NA	7/101	30/116	NA	NA	NA	
		NA	7/103	19/118	NA	NA	NA	
Smoking		NA	42/101	28/116	NA	NA	NA	
		NA	54/103	29/118	NA	NA	NA	
Cardioembolic		146/327	67/101	65/116	NA	NA	NA	
		144/329	72/103	69/118	NA	NA	NA	
Large artery		NA	21/101	32/116	NA	NA	NA	
	atherosclerosis		15/103	28/118	NA	NA	NA	
Intracranial		26/327	NA	28/116	NA	NA	NA	
	atherosclerosis		19/329	NA	23/118	NA	NA	
Unknown/other		155/327	13/101	19/116	NA	NA	NA	
		166/329	16/103	21/118	NA	NA	NA	
Stroke mechanism	Tandem occlusion		9/101	NA	48/257	30/201	27/146	
		NA	13/103	NA	40/250	33/207	20/147	
EVT = endovascular thrombectomy, ICA = internal carotid artery, MCA = middle cerebral artery, MRA = magnetic resonance angiography, CTA = computed tomographic angiography, mRS = modified Rankin Scale, NIHSS = National Institutes of Health Stroke Scale, ASPECTS = Alberta Stroke Program Early Computed Tomography Score, sICH = symptomatic intracranial hemorrhage, SITS-MOST = Safe Implementation of Thrombolysis in Stroke–Monitoring Study, NA = not available.

* mean (SD)
Appendix 3: Risk of bias assessment

Study	Sequence Generation	Allocation Sequence Concealment	Blinding Patients	Healthcare providers	Data collectors	Outcome assessors	Outcome data analysts	Missing Outcome Data	Free of selective outcome reporting
DIRECT-MT¹	Low	Low	High	High	High	Low	Low	Low	Low
SKIP²	Low	Low	High	High	High	Low	Low	Low	Low
DEVT³	Low	Low	High	High	High	Low	Low	Low	Low
MR CLEAN-NO IV⁴	Low	Low	High	High	High	Low	Low	Low	Low
SWIFT DIRECT⁵	Low	Low	High	High	High	Low	Low	Low	Low
DIRECT SAFE⁶	Low	Low	High	High	High	Low	Low	Low	Low
Appendix 4: Sensitivity analysis by excluding SKIP trial

Outcomes	Relative effects (95% CI)	
	Results from 6 RCTs	Sensitivity analysis by excluding SKIP trial
Minimal disability measured by modified Rankin Score 0-2	RR 0.97 (0.89-1.05)	RR 0.96 (0.88-1.04)
Mortality	RR 1.07 (0.88-1.29)	RR 1.07 (0.89-1.30)
Symptomatic intracranial hemorrhage	RR 0.75 (0.52-1.07)	RR 0.75 (0.51-1.09)
Appendix 5: Forest plots of procedure-related complications

Forest plot for endovascular thrombectomy (EVT) alone versus EVT with intravenous alteplase for procedure-related complications
Appendix 6: The definition of procedure-related complications and symptomatic hemorrhage

The definition of procedure-related complications
DIRECT-MT: Vessel dissection, contrast extravasation, embolization into a new territory and femoral access complications
DEVT: Clot migration, distal occlusion present at procedure end, contrast extravasation, arterial perforation and puncture access complications

The definition of symptomatic hemorrhage
Heidelberg7: Symptomatic intracerebral hemorrhage detected by brain imaging as a relevant change in neurological status; absence of another explanation for deterioration; an event leading to intubation, hemicraniectomy, or external ventricular draining placement; or other major medical or surgical intervention.
Safe Implementation of Thrombolysis in Stroke–Monitoring Study (SITS-MOST)8: Local or remote parenchymal hematoma type 2 on the imaging scan obtained 22 to 36 hours after treatment, plus neurological deterioration.
National Institute of Neurological Disorders and Stroke (NINDS)9: Symptomatic if hemorrhage had not been seen on a previous computed tomographic (CT) scan but either subsequent suspicion of hemorrhage or decline in neurological status existed.
References

1. Yang P, Zhang Y, Zhang L, et al. Endovascular Thrombectomy with or without Intravenous Alteplase in Acute Stroke. *The New England journal of medicine.* 2020;382(21):1981-1993.

2. Suzuki K, Matsumaru Y, Takeuchi M, et al. Effect of Mechanical Thrombectomy Without vs With Intravenous Thrombolysis on Functional Outcome Among Patients With Acute Ischemic Stroke: The SKIP Randomized Clinical Trial. *Jama.* 2021;325(3):244-253.

3. Zi W, Qiu Z, Li F, et al. Effect of Endovascular Treatment Alone vs Intravenous Alteplase Plus Endovascular Treatment on Functional Independence in Patients With Acute Ischemic Stroke: The DEVT Randomized Clinical Trial. *Jama.* 2021;325(3):234-243.

4. LeCouffe NE, Kappelhof M, Treurniet KM, et al. A Randomized Trial of Intravenous Alteplase before Endovascular Treatment for Stroke. *The New England journal of medicine.* 2021;385(20):1833-1844.

5. Fischer U. Solitaire™ With the Intention For Thrombectomy Plus Intravenous t-PA Versus DIRECT Solitaire™ Stent-retriever Thrombectomy in Acute Anterior Circulation Stroke. *European Stroke Conference.* 2021.

6. Mitchell P. DIRECT SAFE: A randomized controlled trial of DIRECT endovascular clot retrieval versus standard bridging thrombolysis with endovascular clot retrieval within 4.5 hours of stroke onset. *World Stroke Congress.* 2021.

7. von Kummer R, Broderick JP, Campbell BC, et al. The Heidelberg bleeding classification: classification of bleeding events after ischemic stroke and reperfusion therapy. Stroke 2015;46:2981-6.

8. Wahlgren N, Ahmed N, Eriksson N, et al. Multivariable analysis of outcome predictors and adjustment of main outcome results to baseline data profile in randomized controlled trials: Safe Implementation of Thrombolysis in Stroke-MONitoring STudy (SITS-MOST). *Stroke: a journal of cerebral circulation.* 2008-Dec 2008;39(12):3316-22.

9. National Institute of Neurological D, Stroke rt PAS, Study G. Tissue plasminogen activator for acute ischemic stroke. *The New England journal of medicine.* 1995-12-14 1995;333(24):1581-7.