Stability and bifurcation analysis of interacting f(T) cosmology

Sudip Mishra¹, Subenoy Chakraborty

Department of Mathematics, Jadavpur University, Kolkata, WB 700032, India

Received: 27 November 2018 / Accepted: 29 March 2019 / Published online: 11 April 2019
© The Author(s) 2019

Abstract The present work deals with dynamical system analysis of Interacting f(T) cosmology. Einstein field equations are second order non-linear differential equations. So it is very difficult to solve them analytically. We can draw the vector field and analyze the stability of the universe in different phase by dynamical system analysis. By suitable transformation of variables the Einstein field equations are converted to an autonomous system. The critical points are determined and the stability of the equilibrium points are examined by center manifold theory. Possible bifurcation scenarios have also been explained.

1 Introduction

Several cosmological observations of the Supernovae type Ia [1–3], cosmic microwave background radiation [4, 5], large scale structure [6–8], baryon acoustic oscillations [9, 10] and weak lensing [11–18] suggest the fact that our universe is now experiencing an accelerated expansion. Many theories are formulated to explain this late-time acceleration. However, these theories can be divided mainly in two categories fulfilling the criteria of a homogeneous and isotropic universe. First kind of theory assumes a mysterious matter component with negative pressure, dubbed as dark energy (DE) [11–18] which accounts for about 70% of total energy. This model of exotic fluid seems to have an equation of state ω close to −1 which gives birth of “anti-gravity” [19, 20] and makes it phenomenologically analogous to a cosmological A-term or to a vacuum energy. The observations have shown that about 5% of universe’s energy content is baryonic matter. However, observations of rotation galaxy curves, galaxy clustering and galaxy X-ray emission have shown that 26% of the matter in the universe is dark matter. Cosmologists are inclined to suspect dark energy and dark matter are thought to be responsible for the current acceleration of the universe and the dynamics of the galaxy respectively.

It is not achievable to derive explicit form of the interaction between dark energy (DE) and dark matter (DM) from first principle. A specific coupling has to be considered relating to the phenomena. Moreover, the inevitable interaction between the dark components is natural to consider in the framework of the field theory and to diminish the possibility of coincidence problem an appropriate interaction between DE and DM has to be taken care of. On the other hand, it was revealed that the late integrated Sachs–Wolfe effect has the unique ability to provide insight into the coupling between dark sectors. Further, the dark energy decays into matter at a rate proportional to Hubble length. So, it is customary to consider a phenomenological form of interaction between dark matter and dark energy since they are dominant components of the cosmic configuration now a days. In fact, the rate of exchange of energy density in the dark sector is given by the interaction term.

However, standard cosmological framework of general relativity (GR) does not match with the overwhelming abundance of observational evidences for cosmic speed up [21]. To solve this paradox, one could follow in search for solution of the accelerating cosmic expansion enigma is to develop several modified theories of which f(R)-gravity theory gets much attention [22–28]. The first inferred f(R) models proposed rely on negative power of R, which become dominant at small curvature, in the gravitational action to generate the late-time de-Sitter stage, but suffered from severe instabilities in the presence of matter. In the f(R)-gravity theory the geometric Lagrangian density is replaced by a suitably chosen algebraic function f(R), where R is the variable.

An equivalent formulation represented by teleparallelism [25–28] where instead of curvature torsion is responsible for the gravitational interaction. This model was first proposed by Einstein for unifying electromagnetism and gravity on Weitzenböck non-riemannian manifold. Ferraro and Fiorini [29] proposed a possible generalization of teleparallel gravity
to describe the gravitational interaction as well as the accelerated expansion of our universe. This approach is known as f(T)-gravity [30–36]. In this approach, the Levi–Civita connection is replaced by the Weitzenböck connection with torsion scalar T. Compared with the f(R) theory leading to the fourth order equations, the field equations of the f(T) theory are in the form of second order differential equations. However this modified theory breaks the invariance under Local Lorentz Transformation complicating the interpretation of the relationship between all inertial frames of the tangent space to the differentiable manifold (space-time) [37,38]. Hence all 16 components of the vierbien are independent and one can not fix six of them by a gauge choice. In addition if certain condition are satisfied, the behavior of f(T) cosmologies is similar to several popular dark energy models, such as quintessence, phantom, DGP model and transient acceleration. Thus starting from teleparallel equivalent of GR (TEGR), in which Lagrangian is the torsion scalar T, one can extend T to f(T) resulting to f(T)-gravity which proves to be very interesting both for early time as well as late-time universe evolution, while black hole solutions in this framework also lead to interesting features. One of the important features of both general relativity and modified gravity is that the nonlinear nature of the corresponding cosmological equations. So one can not determine exact analytical solutions. Nevertheless, one can apply dynamical system analysis which allows to extract the global behavior of the scenario, independently of the initial condition and by passing the complexity of the equations. The dynamical system analysis method serves as an useful technique to analyze and classify various features of cosmological models [21,39–46]. In particular, the Einstein-field equations are transformed into an autonomous system of equations by suitable change of variables and we get the following set of ordinary differential equations.

\[
\frac{dx}{dt} = f(x, \lambda),
\]

where \(x = (x_1, \ldots, x_n) \) are variables needed to characterize the system and the functions \(f(x) = (f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n)) \) are determined by the system for parameter value \(\lambda \). Next we determine the hyperbolic and non-hyperbolic critical points of the corresponding autonomous system. Hartman–Grobman theorem [47] can be used to characterize the hyperbolic critical point. To analyze the non-hyperbolic critical points there are various tools. Center Manifold [48–53] theory is an important and useful tool to study the qualitative behavior and stability of non-hyperbolic critical points. However, behavior of the critical points may depend on the parameter value \(\lambda \). In this situation bifurcation [48–52,54,55] may occur for some values of the parameter.

2 Basic equations

In f(T)-gravity torsion is responsible for generating the gravity and the field equations which are only second order. In f(T) gravity theory the action can be expressed as,

\[
A = \frac{1}{2\kappa^2} \int d^4x \left[\sqrt{-g} \left(T + f(T) \right) + A_m \right],
\]

where \(T \) is the torsion scalar, \(f(T) \) is a differentiable function of the torsion, \(A_m \) corresponds to the matter Lagrangian and \(\kappa^2 = 8\pi G \). The torsion scalar is defined as

\[
T = S_{\mu\nu\rho} T^{\rho}_{\mu\nu},
\]

where

\[
S_{\mu\nu} = \frac{1}{2} \left(K_{\mu\nu} + \delta_{\mu\nu} T - \delta_{\nu} a T_{\beta\mu} - \delta_{\mu} a T_{\beta\nu} \right),
\]

\[
K_{\mu\nu} = \frac{1}{2} \left(T_{\mu\nu} - T_{\nu\mu} - T_{\alpha\nu} a_{\alpha\mu} - T_{\alpha\mu} a_{\alpha\nu} \right),
\]

\[
T_{\theta\mu\nu} = \Gamma_{\theta\nu\mu} - \Gamma_{\theta\mu\nu}.
\]

We consider the metric in the form of a flat Friedmann–Lemaitre–Robertson–Walker metric

\[
ds^2 = dt^2 - a(t)^2 (dx_i dx_i), \quad (i = 1, 2, 3)
\]

where \(a(t) \) is cosmological scale factor.

The matter is chosen as dark matter in the form of dust (having energy density \(\rho_m \)) interacting with the dark energy which is chosen as a minimally coupled scalar field \(\phi \) having self interacting potential \(V(\phi) \). So the energy density and pressure corresponding to this scalar field are

\[
\rho_\phi = \frac{1}{2} \dot{\phi}^2 + V(\phi),
\]

\[
P_\phi = \frac{1}{2} \dot{\phi}^2 - V(\phi).
\]

We start with the Friedmann equation for f(T) model

\[
H^2 = \frac{1}{2f_T + 1} \left(\frac{1}{3} (\rho_\phi + \rho_m) - \frac{f}{6} \right).
\]

The second FRW equation is

\[
\dot{H} = -\frac{1}{2} \left(\frac{\rho_m + \rho_\phi + P_\phi}{1 + f_T + 2Tf_T} \right).
\]

The energy-balance equations corresponding to dark energy and dark matter are,

\[
\dot{\rho}_m + 3H\rho_m = Q,
\]

\[
\dot{\rho}_\phi + 3H(1 + \omega_\phi)\rho_\phi = -Q.
\]
where the interaction term Q corresponds to energy exchange between dark energy and dark matter.

The function Q has dependencies on the energy densities of the dark matter and dark energy and Hubble parameter. The positive Q implies a transfer of energy from dark energy to dark matter and it is assume that Q does not change sign during the cosmic evolution. Due to the unknown nature of two dark components, the precise form of the interaction term can not be determined. Thus doctrinally, Q can be chosen as

(i) $Q=Q(H\rho_m)$,
(ii) $Q=Q(H\rho_\phi)$,
(iii) $Q=Q(H\rho_m,H\rho_\phi)$.

f is redefinition of Newton’s constant when linear in T and in particular, constant $f(T)$ acts like a cosmological constant. A sensible choice of $f(T)$ should agree with primordial nucleosynthesis and cosmic microwave background constraints i.e $f \rightarrow 0$ at early times ($a \ll 1$) and at late time there will be de Sitter phase asymptotically. A straightforward choice of f is polynomial in T

$$f(T) = \beta(-T)^n,$$

[13] where β is arbitrary constant. For the restriction $'n \ll 1'$, $f(T)$ appears to be a viable model compared to current observed data set and also f_T acts as the Newton’s constant. The effective DE equation of state parameter varies from $\omega = -1 + n$ in early phase to $\omega = -1$ in late phase.

So we consider $f(T) = \beta\sqrt{T}$, where β is arbitrary constant and for simplicity Q is chosen as $Q = \alpha H\rho_m$, where the coupling parameter is ‘α’. By combining (3), (4) and (5) one can obtain

$$T = S^{\alpha\nu\mu\nu}T_{\mu\nu} = -6H^2,$$

[14] where $H = \dot{a}/a$ is the Hubble parameter and dot represents derivative with respect to t.

Now, using Eqs. (7), (8) and (12) we get modified Klein– Gordon equation

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV(\phi)}{d\phi} = -\frac{Q}{\phi},$$

[15] It is very hard to extract exact solution analytically from this complicated form of evolution equation. So we perform suitable transformation of variables to construct an autonomous system from the evolution equation. For this we introduce new variables as follows [21],

$$x = \frac{\dot{\phi}}{\sqrt{6H}}, \quad y = \frac{\sqrt{V(\phi)}}{\sqrt{3H}}, \quad \Omega_m = \frac{\rho_m}{3H^2},$$

where Ω_m is the density parameter for DM. As a result, the evolution equations reduce to the following autonomous system as follows,

$$\frac{dx}{dN} = \frac{1}{2}(\alpha - 3)x - \frac{\alpha}{2x}(1 - y^2) - \frac{3}{2}xy^2 - \left(\frac{3}{2}\beta\right)y^2 + \frac{3}{2}x^3,$$

[16]

$$\frac{dy}{dN} = \left(\frac{3}{2}\beta\right)xy + \frac{3}{2}y + \frac{3}{2}x^2y - \frac{3}{2}y^3,$$

[17]

$$\frac{d\Omega_m}{dN} = \alpha\Omega_m + 3x^2\Omega_m - 3y^2\Omega_m,$$

[18]

where we choose $V'(\phi)/V(\phi) = \lambda$ which is a constant such that $V(\phi) = e^{\lambda\phi}$. The independent variable is $N = \ln a$, which is called the e-folding parameter.

Further, using the normalize variables in the first Friedman equation the density parameter of dark matter is restricted to

$$x^2 + y^2 + \Omega_m = 1,$$

[19] where $0 < \Omega_m < 1$, so the above paraboloid will be confine finitely in the phase space [21].

The equation of state parameter (ω_ϕ) and the density parameter (Ω_ϕ) of the scalar field can be expressed by the newly defined variables as

$$\omega_\phi = \frac{p_\phi}{\rho_\phi},$$

[20]

$$\Omega_\phi = \frac{\rho_\phi}{3H^2} = x^2 + y^2.$$

[21]

We can also express ω_{total} in terms of newly defined variables by using Eqs. (7), (8) and (19) as

$$\omega_{total} := \frac{\rho}{\rho} = \frac{p_\phi}{\rho_\phi + \rho_m} = \frac{x^2 - y^2}{x^2 + y^2 + \Omega_m} = x^2 - y^2 = \omega_{total} \quad (say).$$

[22]

The deceleration parameter can be expressed by ω_{total} as follows

$$q = \frac{1}{2}(1 + 3\omega_{total}).$$

[23]

On the other hand, the explicit form of ‘q’ is as follows

$$q = -1 - \frac{\dot{H}}{H^2} = -1 + \frac{3}{2}(2x^2 + \Omega_m).$$

[24]

The critical points of the autonomous system (16–18) and the corresponding cosmological parameters are presented in Table 1.
In the present work we analyze the non-hyperbolic critical points of the above system. The hyperbolic critical points are analyzed in paper [21]. The non-hyperbolic critical points are important to analyze bifurcation scenarios which indicate the phase transition of the universe. We only analyze non-hyperbolic critical points by center manifold theory, while hyperbolic CPs are already discussed in paper [21] using Hartman–Grobman theorem. It is to be noted that P₃ and P₅ appear to be same as the critical points P₁ and P₂ respectively for α = −3 (non-hyperbolic case). So we skip the CPs P₇ and P₈. The conditions for non-hyperbolicity of the critical points P₁ to P₆ are mentioned in Table 2.

3 Stability analysis

In this section, We investigate the stability of non-hyperbolic critical points for some choices of α and λ. Most of the cases stability of non-hyperbolic critical points can be determined by center manifold (CM) theory. For this we first perform coordinate transformation so that the critical point moves to the origin.

3.1 Critical point P₁

We shift the critical point P₁ to the origin by the coordinate transformation $x \rightarrow X + 1, y \rightarrow Y, Ω_m \rightarrow Ω_m$. The system of Eqs. (16–18) changes to

\[
\frac{dX}{dN} = \left(α + 3\right)X - \left(\frac{α - 9}{2}\right)X^2 + \left(\frac{α - 3}{2} - \frac{3}{2\sqrt{λ}}\right)Y^2 - \left(\frac{α + 3}{2}\right)XY^2 + \left(\frac{α + 3}{2}\right)X^3 + \text{higher power terms},
\]

\[
\frac{dY}{dN} = \left(3 + \frac{3}{2\sqrt{λ}}\right)Y + \left(3 + \frac{3}{2\sqrt{λ}}\right)XY + \frac{3}{2}X^2Y - \frac{3}{2}Y^3,
\]

\[
\frac{dΩ_m}{dN} = \left(α + 3\right)Ω_m + 3\left(X^2 + 2X - Y^2\right)Ω_m.
\]

Origin is a critical point of this system of equations. The eigenvalues of the Jacobian Matrix at the origin are $λ_1 = α + 3, λ_2 = 3 + \sqrt{\frac{3}{2}λ}, λ_3 = α + 3$. The vector field is

CPs	x	y	$Ω_m$	$ω_φ$	$Ω_φ$	$ω_T$	q
P₁	1	0	0	1	1	1	2
P₂	−1	0	0	1	1	1	2
P₃	$\frac{-λ}{α}$	$\sqrt{1 - \frac{λ^2}{6}}$	0	$\frac{λ^2}{3} - 1$	1	$\frac{λ^2}{3} - 1$	$\frac{λ^2}{3} - 1$
P₄	$\frac{-λ}{α}$	$-\sqrt{1 - \frac{λ^2}{6}}$	0	$\frac{λ^2}{3} - 1$	1	$\frac{λ^2}{3} - 1$	$\frac{λ^2}{3} - 1$
P₅	$\frac{α - 3}{\sqrt{6}α}$	$\sqrt{\frac{α}{3} + \frac{(α - 3)λ^2}{6α^2}}$	$\frac{3α - α}{3} - \frac{1 - α}{λ^2}$	$-\frac{α}{\sqrt{3} + α}$	$\frac{(α - 3)λ^2}{6α^2} + \frac{α}{3} + \frac{α - 3}{\sqrt{6}α}$	$-\frac{α}{3} + \frac{α - 3}{\sqrt{6}α}$	$\frac{1 - α}{3} + \frac{α - 3}{\sqrt{6}α}$
P₆	$\frac{α - 3}{\sqrt{6}α}$	$-\sqrt{\frac{α}{3} + \frac{(α - 3)λ^2}{6α^2}}$	$\frac{3α - α}{3} - \frac{1 - α}{λ^2}$	$-\frac{α}{\sqrt{3} + α}$	$\frac{(α - 3)λ^2}{6α^2} + \frac{α}{3} + \frac{α - 3}{\sqrt{6}α}$	$-\frac{α}{3} + \frac{α - 3}{\sqrt{6}α}$	$\frac{1 - α}{3} + \frac{α - 3}{\sqrt{6}α}$
P₇	$\sqrt{\frac{α}{3}}$	0	1 + $\frac{α}{3}$	1	$-\frac{α}{3}$	$-\frac{α}{3}$	$-\frac{α}{3}$
P₈	$-\sqrt{-\frac{α}{3}}$	0	1 + $\frac{α}{3}$	1	$-\frac{α}{3}$	$-\frac{α}{3}$	$-\frac{α}{3}$

(λ₁ and λ₂) and $(A₁B₂ - B₁A₂)$ are respectively trace and determinant of the Jacobian matrix at P₅ and P₆ of the system (16–18)
undetermined when $\alpha = -3$ and $\lambda = -\sqrt{6}$ at a time as all the eigenvalues of Jacobian matrix are 0.

- The critical point is non-hyperbolic for $\alpha = -3$. As Hartman–Grobman Theorem cannot be used to analyze the critical point, we shall use center manifold theory (CMT).

By CMT there exits a continuously differentiable function $h : \mathbb{R}^2 \to \mathbb{R}$ such that $Y = h(Y, \Omega_m) = aX^2 + bX\Omega_m + c\Omega_m^2 + \text{higher power terms}$, where $a, b, c \in \mathbb{R}$ [56]. We only concern about the non-zero coefficients of the lowest power terms in CMT as we analyze arbitrary small neighborhood of the origin.

Now differentiating both sides with respect to N, we get

$$
\frac{dY}{dN} = \begin{bmatrix} 2aX + b\Omega_m^2 & bX + 2c\Omega_m \end{bmatrix} \begin{bmatrix} \frac{dX}{dN} \\ \frac{d\Omega_m}{dN} \end{bmatrix}.
$$

(28)

Comparing L.H.S. and R.H.S. of (28) we get center manifold $Y = 0$. This two dimensional center manifold coincides with the two dimensional center subspace ($X-\Omega_m$)-plane near the origin. The flow on the CM is determined by the following equations

$$
\frac{dX}{dN} = 6X^2 + \text{higher power terms},
$$

(29)

$$
\frac{d\Omega_m}{dN} = 3(X^2 + 2X)\Omega_m + \text{higher power terms}.
$$

(30)

We take $r^2 = X^2 + \Omega_m^2$ in arbitrary small neighborhood of the origin. Differentiating with respect to N, we get $r = 6Xr$. For $X < 0$ one has $r < 0$, while $r > 0$ for $X > 0$. Thus the behavior of the vector field depends on the change of X and Y coordinates. If we project the vector field on the plane which is parallel to XY-plane, the origin is a saddle-node and unstable in nature for $\alpha = -3$ and $\lambda > -\sqrt{6}$ (Fig. 1a) or $\lambda < -\sqrt{6}$ (Fig. 1b).

- The critical point is non-hyperbolic for $\lambda = -\sqrt{6}$. So by CMT there exists a continuously differentiable function $h : \mathbb{R} \to \mathbb{R}^2$ such that

$$
h(Y) = \begin{bmatrix} X \\ \Omega_m \end{bmatrix} = \begin{bmatrix} a_1Y^2 + a_2Y^3 + \text{higher power terms} \\ b_1Y^2 + b_2Y^3 + \text{higher power terms} \end{bmatrix}.
$$

(31)

Differentiating both side with respect to N, we get

$$
\dot{X} = (2a_1Y + 3a_2Y^2)\dot{Y} + \text{higher power terms},
$$

(32)

$$
\dot{\Omega}_m = (2b_1Y + 3b_2Y^2)\dot{Y} + \text{higher power terms}.
$$

(33)

Comparing coefficients corresponding to power of Y we get $a_1 = -\frac{1}{2}$ and $b_i = 0$ for $i = 1, 2, \ldots$, that is,

$$
X = -\frac{1}{2}Y^2 + \text{higher power terms},
$$

(34)

$$
\Omega_m = 0.
$$

(35)

This implies that one dimensional center manifold lies on the $(X-Y)$-plane and tangent to the center subspace (Y-axis) at the origin. The flow on the CM near the origin is determined by

$$
\frac{dY}{dN} = -\frac{3}{2}Y^3 + \text{higher power terms}.
$$

(36)

If we see the vector field in the 3D-space, the origin is saddle-node for $\alpha > -3$ and $\lambda = -\sqrt{6}$ (Fig. 2a) and unstable in
nature. The origin is stable-node for \(\alpha < -3 \) and \(\lambda = -\sqrt{6} \) (Fig. 2b) and stable in nature.

3.2 Critical point \(P_2 \)

We shift the critical point \(P_2 \) to the origin by the coordinate transformation \(x \rightarrow X - 1, y \rightarrow Y, \Omega_m \rightarrow \tilde{\Omega}_m \). The system of Eqs. (16–18) changes to

\[
\frac{dX}{dN} = \left(\alpha + 3 \right) X + \left(\frac{\alpha - 9}{2} \right) X^2 - \left(\frac{\alpha + 3}{2} \right) X Y^2 \\
+ \left(\frac{\alpha + 3}{2} - \sqrt{\frac{3}{2}} \lambda \right) Y^2 + \left(\frac{\alpha + 3}{2} \right) X^3 + \text{higher power terms},
\]

\[
\frac{dY}{dN} = \left(3 - \sqrt{\frac{3}{2}} \lambda \right) Y - \left(3 - \sqrt{\frac{3}{2}} \lambda \right) X Y \\
+ \frac{3}{2} X^2 Y - \frac{3}{2} Y^3,
\]

\[
\frac{d\tilde{\Omega}_m}{dN} = \left(\alpha + 3 \right) \tilde{\Omega}_m + 3 \left(X^2 - 2X - Y^2 \right) \tilde{\Omega}_m.
\]

- The critical point is non-hyperbolic for \(\alpha = -3 \). Similar to the point \(P_1 \), we get the center manifold \(Y = 0 \). This two dimensional center manifold coincides with the two dimensional center subspace (X-\(\tilde{\Omega}_m \))-plane near the origin. The flow on the CM is determined by the following equations

\[
\frac{dX}{dN} = -6X^2 + \text{higher power terms},
\]

\[
\frac{d\tilde{\Omega}_m}{dN} = -6X \tilde{\Omega}_m + \text{higher power terms}.
\]

We take \(r^2 = X^2 + \tilde{\Omega}_m^2 \) in arbitrary small neighborhood of the origin. Differentiating with respect to \(N \), we get \(\dot{r} = -6Xr \). For \(X < 0 \) one has \(\dot{r} > 0 \), while \(\dot{r} < 0 \) for \(X > 0 \). Thus the behavior of the vector field depends on the change of \(X \) and \(Y \) coordinates. If we project the vector field on the plane which is parallel to \(XY \)-plane, the origin is a saddle-node and unstable in nature for \(\alpha = -3 \) and \(\lambda < \sqrt{6} \) (Fig. 3a) or \(\lambda > \sqrt{6} \) (Fig. 3b).

- The critical point is non-hyperbolic for \(\lambda = \sqrt{6} \). By similar procedure as stated for \(P_1 \), the center manifold at the origin is

\[
X = -\frac{1}{2} \left(\frac{\alpha - 3}{\alpha + 3} \right) Y^2 + \text{higher power terms}
\]

\[
\tilde{\Omega}_m = 0
\]

The flow on the center manifold near the origin is determined by

For \(\lambda = \sqrt{6} \) we get three different phase diagrams near the origin (shifted system) depending on \(\alpha \). The origin is a saddle for \(-3 < \alpha < 3 \) (see Fig. 4a) so unstable in nature, stable node for \(\alpha < -3 \) (see Fig. 4b) and saddle in nature for \(\alpha > 3 \) (see Fig. 4c).

Next we consider \(\lambda \neq 0 \) for the existence of the critical points \(P_3 \) to \(P_6 \) and to make the corresponding autonomous system continuously differentiable. For this, we consider \(-\sqrt{6} < \lambda < \sqrt{6} \) same as \(\lambda \in (-\sqrt{6}, 0) \cup (0, \sqrt{6}) \).

3.3 Critical point \(P_3 \)

We shift the critical point \(P_3 \) to the origin by the coordinate transformation \(x \rightarrow X - \frac{\lambda}{\sqrt{6}}, y \rightarrow Y + \sqrt{1 - \frac{\lambda^2}{6}}, \Omega_m \rightarrow \tilde{\Omega}_m \). The system of Eqs. (16–18) changes to

\[
\frac{dX}{dN} = \left(\lambda^2 + \alpha - 3 \right) X \\
- \sqrt{1 - \frac{\lambda^2}{6}} \left(\sqrt{\frac{6}{\lambda}} + \sqrt{\frac{3}{2}} \lambda \right) Y - \frac{3}{2} \left(\frac{\alpha + \lambda^2}{\lambda} \right) Y^2 \\
+ \frac{3}{2} \left(\frac{\alpha}{\lambda} - \frac{3\lambda}{2} \right) X^2 - 3 \sqrt{1 - \frac{\lambda^2}{6}} \left(1 + \frac{2\alpha}{\lambda^2} \right) X Y + \text{higher power terms},
\]

\[
\frac{dY}{dN} = \left(\frac{\lambda^2}{2} - 3 \right) Y + \frac{3}{2} \sqrt{1 - \frac{\lambda^2}{6}} X^2 \\
- \frac{9}{2} \sqrt{1 - \frac{\lambda^2}{6}} Y^2 - \frac{3\lambda^2}{2} Y^3 + \frac{3}{2} X^2 Y,
\]

\[
\frac{d\tilde{\Omega}_m}{dN} = \left(\lambda^2 + \alpha - 3 \right) \tilde{\Omega}_m \\
+ \left(3X^2 - 3Y^2 - \sqrt{6}\lambda X - 6\sqrt{6 - \lambda^2} Y \right) \tilde{\Omega}_m.
\]

\(P_3 \) is a non-hyperbolic critical point for \(\alpha + \lambda^2 = 3 \) (considering \(-\sqrt{6} < \lambda < \sqrt{6} \)). By CMT there exists a continuously differentiable function \(h : \mathbb{R}^2 \rightarrow \mathbb{R} \) such that \(Y = h(X, \tilde{\Omega}_m) = aX^2 + bX\tilde{\Omega}_m + c\tilde{\Omega}_m^2 + \text{higher power terms} \), where \(a, b, c \in \mathbb{R} \). We only concern about the non-zero coefficients of the lowest power terms in CMT as we analyze arbitrary small neighborhood of the origin.

Now differentiating both side with respect to \(N \), we get

\[
\frac{dY}{dN} = \left[2aX + b\tilde{\Omega}_m - bX + 2c\tilde{\Omega}_m \right] \frac{dX}{dN} + \frac{d\tilde{\Omega}_m}{dN}.
\]
Fig. 2 Vector field near P_1 for $\alpha \neq -3$ and $\lambda = -\sqrt{6}$. All center manifolds (blue curves) lie on (X–Y)-plane.

(a) $\alpha > -3$ and $\lambda = -\sqrt{6}$.

(b) $\alpha < -3$ and $\lambda = -\sqrt{6}$.

Fig. 3 Vector field near P_2 for $\alpha = -3$ and $\lambda \neq \sqrt{6}$

(a) $\alpha = -3$ and $\lambda < \sqrt{6}$.

(b) $\alpha = -3$ and $\lambda > \sqrt{6}$.

Fig. 4 Vector field near P_2 for $\alpha \neq \pm 3$ and $\lambda = \sqrt{6}$. All center manifolds (blue curves) lie on (X–Y)-plane.

(a) $-3 < \alpha < 3$ and $\lambda = \sqrt{6}$.

(b) $\alpha < -3$ and $\lambda = \sqrt{6}$.

(c) $\alpha > 3$ and $\lambda = \sqrt{6}$.
Comparing the coefficients corresponding to the X^2, $X\tilde{\Omega}_m$ and $\tilde{\Omega}_m^2$ we get $\alpha = \frac{1}{2} \sqrt{\frac{1}{3} - \frac{\lambda^2}{6}}$, $b=0$, $c=0$.

So the center manifold is

$$Y = \frac{1}{2} \left(1 - \frac{\lambda^2}{6}\right) X^2 + \text{higher power terms.} \quad (49)$$

The flow on the center manifold near the origin is determined by

$$\frac{dX}{dN} = -\sqrt{6}\lambda X^2 + \text{higher power terms,} \quad (50)$$

$$\frac{d\tilde{\Omega}_m}{dN} = -\sqrt{6}\lambda X\tilde{\Omega}_m - \frac{3}{4} \frac{1}{1 - \frac{\lambda^2}{6}} X^4 \tilde{\Omega}_m + \text{higher power terms.} \quad (51)$$

We take $r^2 = X^2 + \tilde{\Omega}_m^2$ in arbitrary small neighborhood of the origin. Differentiating with respect to N, we get $\dot{r} = -\sqrt{6}\lambda Xr$ (ignoring higher power terms). Thus the nature of stability depends only on the change of X and Y coordinates and λ.

If we project the vector field on the plane which is parallel to XY-plane, the origin is a saddle-node and unstable in nature for $\alpha + \lambda^2 = 3$ and $-\sqrt{6} < \lambda < \sqrt{6}$ (Figs. 5, 6).

For $\lambda = \pm \sqrt{6}$ the critical point P_3 becomes identical to P_1 and P_2 respectively. So we skip this case. On the other hand, P_3 does not exist for $\lambda > \sqrt{6}$ or $\lambda < -\sqrt{6}$.

3.4 Critical point P_4

We shift the critical point P_4 to the origin by the coordinate transformation $x \rightarrow X - \frac{\lambda}{\sqrt{6}}$, $y \rightarrow Y - \sqrt{1 - \frac{\lambda^2}{6}}$, $\Omega_m \rightarrow \tilde{\Omega}_m$.

The system of Eqs. (16–18) changes to

$$\frac{dX}{dN} = \left(\lambda^2 + \alpha - 3\right) X$$

$$\frac{dY}{dN} = \left(\lambda^2 - \alpha - 3\right) Y$$

$$\frac{d\tilde{\Omega}_m}{dN} = \left(\lambda^2 + \alpha - 3\right) \tilde{\Omega}_m$$

P_4 is a non-hyperbolic critical point for $\alpha + \lambda^2 = 3$ (considering $-\sqrt{6} < \lambda < \sqrt{6}$). We put forward similar argument as we have mentioned for the analysis of P_3 and we get the center manifold

$$Y = \frac{1}{2} \left(1 - \frac{\lambda^2}{6}\right) X^2 + \text{higher power terms.} \quad (55)$$

The flow on the center manifold near the origin is determined by

$$\frac{dX}{dN} = -\sqrt{6}\lambda X^2 + \text{higher power terms,} \quad (56)$$

$$\frac{d\tilde{\Omega}_m}{dN} = -\sqrt{6}\lambda X\tilde{\Omega}_m - \frac{3}{4} \frac{1}{1 - \frac{\lambda^2}{6}} X^4 \tilde{\Omega}_m + \text{higher power terms.} \quad (57)$$

We take $r^2 = X^2 + \tilde{\Omega}_m^2$ in arbitrary small neighborhood of the origin. Differentiating with respect to N, we get $\dot{r} = -\sqrt{6}\lambda Xr$ (ignoring higher power terms). Thus, similar to
For XY-plane, the origin is a saddle-node and unstable in nature.

For λ and Y coordinates and $\alpha + \lambda^2 = 3$ and $-\sqrt{6} < \lambda < 0$.

Fig. 7 Critical point P_4 for $\alpha + \lambda^2 = 3$ and $-\sqrt{6} < \lambda < 0$

Fig. 8 Critical point P_4 for $\alpha + \lambda^2 = 3$ and $0 > \lambda > \sqrt{6}$

The nature of stability depends only on the change of X and Y coordinates and λ.

If we project the vector field on the plane which is parallel to XY-plane, the origin is a saddle-node and unstable in nature for $\alpha + \lambda^2 = 3$ and $-\sqrt{6} < \lambda < \sqrt{6}$ (Figs. 7, 8).

For $\lambda = \pm \sqrt{6}$ the critical point P_4 becomes identical to P_1 and P_2 respectively. So we skip this case. On the other hand, P_4 does not exist for $\lambda > \sqrt{6}$ or $\lambda < -\sqrt{6}$.

3.5 Critical point P_3

P_3 is a non-hyperbolic critical point for any values of α and λ. We shift the critical point P_3 shifted to the origin by the coordinate transformation $x \rightarrow X + \frac{\alpha - 3}{\lambda^2 \sqrt{6}}, y \rightarrow Y + \sqrt{\frac{\alpha - 3}{\lambda^2} + \frac{\alpha^2}{\lambda^4}}$, $\Omega_m \rightarrow \tilde{\Omega}_m + \frac{3 - \alpha}{\lambda^2} (1 - \frac{3 - \alpha}{\lambda^2})$. The system of Eqs. (16–18) changes to

$$\frac{d\tilde{\Omega}_m}{dN} = C_1 X + C_2 Y + C_3 X^2 - C_3 Y^2 + C_4 X \tilde{\Omega}_m + C_5 Y \tilde{\Omega}_m + \text{higher power terms.}$$

where

$$A_1 = 3 \frac{\lambda^2 \alpha}{(3 - \alpha)^2} - \frac{\alpha^2 \lambda^2}{(\alpha - 3)^2} + \frac{(\alpha - 3)^2}{2 \lambda^2} - \frac{1}{2} (3 + \alpha),$$

$$A_2 = \sqrt{\frac{\alpha}{3} + \frac{(\alpha - 3)^2}{6 \lambda^2}} \left(\frac{\alpha \lambda}{\alpha - 3} - \frac{3}{2} \frac{\alpha - 3}{\lambda} - \sqrt{\frac{3}{2} \alpha - 3} \right),$$

$$A_3 = -3 \sqrt{\frac{\alpha}{3} + \frac{(\alpha - 3)^2}{6 \lambda^2}} \left(1 - \frac{3 - \alpha}{\lambda} \right),$$

$$A_4 = \sqrt{\frac{3}{2} \alpha \lambda - \frac{3}{2} \alpha - 3} \sqrt{\frac{3}{2} \alpha - 3},$$

$$A_5 = -2 \frac{\alpha}{3} + \frac{(\alpha - 3)^2}{6 \lambda^2} \left(\frac{3}{2} + \frac{3 \alpha \lambda}{\alpha - 3} \right),$$

$$B_1 = \sqrt{\frac{3}{2} \alpha \lambda - \frac{3}{2} \alpha - 3} \sqrt{\frac{3}{2} \alpha - 3},$$

$$B_2 = -\frac{(\alpha - 3)^2}{2 \lambda^2},$$

$$B_3 = \frac{3}{2} \alpha \lambda - \frac{3}{2} \alpha - 3,$$

$$B_4 = \sqrt{\frac{3}{2} \alpha \lambda - \frac{3}{2} \alpha - 3},$$

$$C_1 = -\sqrt{\frac{3}{2} \alpha - 3} \frac{\alpha - 3}{\lambda} \left(1 - \frac{3 - \alpha}{\lambda} \right),$$

$$C_2 = 2 \alpha \left(1 + \frac{\alpha - 3}{\lambda^2} \right) \sqrt{\frac{\alpha}{3} + \frac{(\alpha - 3)^2}{6 \lambda^2}},$$

$$C_3 = \left(3 - \alpha \right) \left(1 - \frac{\alpha - 3}{\lambda^2} \right),$$

$$C_4 = \left(\frac{\alpha - 3}{\lambda} \right),$$

$$C_5 = -6 \sqrt{\frac{\alpha}{3} + \frac{(\alpha - 3)^2}{6 \lambda^2}}.$$

Here we consider $\alpha \neq 3$ to ensure the system to be continuously differentiable.

The Jacobian matrix at the origin is given by

$$J_{\text{origin}} = \begin{bmatrix} A_1 & A_2 & 0 \\ B_1 & B_2 & 0 \\ C_1 & C_2 & 0 \end{bmatrix}. \quad (61)$$

The eigenvalues are $\{\lambda_1, \lambda_2, 0\}$ (see Table 2). For mathematical simplicity, let us first consider $\alpha = -3$ which is something of a special case because for $\alpha = -3$ all critical points P_1 to P_4 become non-hyperbolic. For this case, we also consider $\lambda \in [-\sqrt{6}, 0)$ or $\lambda \in (0, \sqrt{6}]$ because outside these
intervals the critical point \(P_3 \) does not exists. For \(\alpha = -3 \), the
eigenvalues \(\lambda_1 \) and \(\lambda_2 \) are as follows

\[
\lambda_1 = \frac{1}{2} \sqrt{\frac{\lambda^4}{4} - 4 \left(-\frac{324}{\lambda^2} - \left(\frac{9}{\lambda^2} - \frac{3}{\lambda^2} \right) \left(\lambda - 6 \right) - 9 \right)}
\]

\[
\lambda_2 = -\frac{1}{2} \sqrt{\frac{\lambda^4}{4} - 4 \left(-\frac{324}{\lambda^2} - \left(\frac{9}{\lambda^2} - \frac{3}{\lambda^2} \right) \left(\lambda - 6 \right) - 9 \right)}
\]

(62)

(63)

For all values of \(\lambda \), we get \(\lambda_2 < 0 \). But \(\lambda_1 > 0 \) for \(\lambda \in (-\sqrt{6}, 0) \) or \(\lambda \in (0, \sqrt{6}) \). So for these \(\lambda \), \(P_3 \) is saddle and
unstable in nature.

Now we analyze the system for \(\alpha = -3 \) and \(\lambda = \pm \sqrt{6} \). In this case, we get
\(\lambda_1 = 0 \), \(\lambda_2 = -3 \) and \(A_1 = 0 \), \(A_2 = 0 \),
\(B_1 = 0 \), \(B_2 = -3 \), \(C_1 = 0 \) and \(C_2 = 0 \). Thus the Jacobian
matrix takes the form as follows

\[
J_{\text{origin}}(\alpha = -3, \lambda = \pm \sqrt{6}) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
\]

(64)

By CMT there exits a continuously differentiable function
\(h : \mathbb{R}^2 \to \mathbb{R} \) such that \(Y = h(X, \Omega_m) = aX^2 + bX\Omega_m + c\Omega_m^2 + \text{higher power terms} \), where \(a, b, c \in \mathbb{R} \). As previously
mentioned we only concern about the non-zero coefficients of the lowest power terms.

Now differentiating both side with respect to \(N \), we get

\[
\frac{dY}{dN} = [2aX + b\Omega_m \quad bX + 2c\Omega_m] \begin{bmatrix} \frac{dX}{dN} \\ \frac{d\Omega_m}{dN} \end{bmatrix}.
\]

(65)

Equating both sides with the coefficients of \(X^2 \), \(X^2\Omega_m \) and
\(X\Omega_m^2 \) in the identity (28) we get

\[
a = \frac{B_3}{3},
\]

(66)

\[
bA_3 + 2cC_3 + bC_4 = B_4c,
\]

(67)

\[
2cC_4 = B_4c
\]

(68)

respectively. Now for \(\alpha = -3 \) and \(\lambda = \sqrt{6} \), \(A_3 = -6 \),
\(B_3 = 0 \), \(B_4 = 0 \), \(C_3 = 0 \), \(C_4 = -6 \) and \(A_4 = 0 \). This
implies \(a=0 \), \(b=0 \) and \(c=0 \).

By brute force calculation it is possible to show that all
higher power coefficients are also zero. This yields the center
manifold to be \(Y = 0 \). The flow on the center manifold for
\(\lambda = -\sqrt{6} \) at the origin is determined by

\[
\frac{dX}{dN} = 6X^2 + \text{higher power terms},
\]

(69)

\[
\frac{d\Omega_m}{dN} = 6X\Omega_m + \text{higher power terms}.
\]

(70)

Table 3

\(\alpha \) (\(\approx \))	\(\lambda \) (\(\approx \))
-15.0858	\(\sqrt{6} < \lambda < 0 \)
0	\(0 < \lambda < 1.69251 \)
1.69251	\(\lambda < \sqrt{6} \)

Table 4

\(\alpha \) (\(\approx \))	\(\lambda \) (\(\approx \))
0	\(\sqrt{6} < \lambda < 1.36381 \)
2.9123	\(\lambda < 0.0962196 \)
0.0962196	\(\lambda < 0.04546 \)

This yields \(\dot{r} = 6Xr \). So for \(X > 0 \) implies \(\dot{r} > 0 \) and for
\(X < 0 \) implies \(\dot{r} < 0 \). \(P_5 \) is saddle-node for \(\alpha = -3, \lambda = -\sqrt{6} \) and that it is unstable in nature.

The flow on the center manifold for \(\lambda = \sqrt{6} \) at the origin is determined by

\[
\frac{dX}{dN} = -6X^2 + \text{higher power terms},
\]

(71)

\[
\frac{d\Omega_m}{dN} = -6X\Omega_m + \text{higher power terms}.
\]

(72)

This yields \(\dot{r} = -6Xr \). So, \(X > 0 \) implies \(\dot{r} < 0 \) and
for \(X < 0 \) implies \(\dot{r} > 0 \). Hence \(P_5 \) is saddle-node for
\(\alpha = -3, \lambda = \sqrt{6} \) and that it is unstable in nature.

Next we analyze the system for arbitrary \(\alpha \). In this case, the
eigenvalues of Jacobian matrix become very complicated to characterize. For this reason we state some ranges of \(\alpha \) and
corresponding character of the system.

The discriminant is \(D = (A_1 + B_2)^2 - 4(A_1B_2 - B_1A_2) \).
Now the eigenvalues \(\lambda_1 \) and \(\lambda_2 \) can be following three types

- \(D > 0 \): distinct real eigenvalues (see Table 3).
- \(D < 0 \): complex conjugate eigenvalues (see Table 4).
- \(D = 0 \): real equal eigenvalues (see Table 5).

The Tables 3, 4 and 5 present the values of \(\alpha \) and \(\lambda \) for
different character of eigenvalues. But all these critical points are not cosmologically viable as there is no phase transition.
of the evolution of the universe at these critical points. So we skip the discussion of these critical points in detail.

3.6 Critical point P_6

P_6 is a non-hyperbolic critical point for any values of α and λ. We shift the critical point P_6 to the origin by the coordinate transformation $x \rightarrow X + \frac{\alpha - 3}{\sqrt{6}\phi}$, $y \rightarrow Y - \sqrt{\frac{\alpha}{3} + \frac{(\alpha - 3)^2}{6\lambda}}$, $\Omega_m \rightarrow \tilde{\Omega}_m + \frac{\alpha - 3}{3} (1 - \frac{3 - \alpha}{\lambda^2})$. The system of Eqs. (16–18) changes to

$$ \begin{align*} \frac{dX}{dN} &= A_1 X - A_2 Y + A_3 X^2 + A_4 Y^2 - A_5 XY + \text{higher power terms}, \\
\frac{dY}{dN} &= -B_1 X + B_2 Y - B_3 X^2 + 3B_1 Y^2 + B_4 XY + \text{higher power terms}, \\
\frac{d\tilde{\Omega}_m}{dN} &= C_1 X - C_2 Y + C_3 X^2 - C_3 Y^2 + C_4 X \tilde{\Omega}_m - C_5 Y \tilde{\Omega}_m + \text{higher power terms}.
\end{align*} $$

(73)

(74)

(75)

The Jacobian matrix at the origin is given by

$$ J_{\text{origin}} = \begin{bmatrix} A_1 & -A_2 \\ -B_1 & B_2 \\ C_1 & -C_2 \end{bmatrix}. $$

(76)

The eigenvalues are λ_1, λ_2 and 0 where

$$ \lambda_1 = \frac{(A_1 + B_2) + \sqrt{(A_1 + B_2)^2 - 4(A_1 B_2 - A_2 B_1)}}{2}, $$

$$ \lambda_2 = \frac{(A_1 + B_2) - \sqrt{(A_1 + B_2)^2 - 4(A_1 B_2 - A_2 B_1)}}{2}. $$

It is to be noted that the eigenvalues are same as P_3. Thus we forge ahead with the same analysis as of P_3 and we get center manifold $Y=0$. The flow on the center manifold for $\lambda = -\sqrt{6}$ at the origin is determined by

$$ \begin{align*} \frac{dX}{dN} &= 6X^2 + \text{higher power terms}, \\
\frac{d\tilde{\Omega}_m}{dN} &= 6X \tilde{\Omega}_m + \text{higher power terms}.
\end{align*} $$

(77)

(78)

This yields $\dot{r} = 6Xr$. So, $X > 0$ implies $\dot{r} > 0$ and for $X < 0$ implies $\dot{r} < 0$. Hence P_6 is saddle-node for $\alpha = -3$, $\lambda = -\sqrt{6}$ and that it is unstable in nature.

4 Bifurcation analysis and cosmological upshot

In this section, we find the change of stability of all critical points of the autonomous system (16–18) by varying the parameters α and λ. We prepare bifurcation diagram corresponding to the sudden changes of stability of the critical points for small perturbation of the parameters and identify the phase transition of the universe. Finally we categorize the evolution of the universe corresponding to the evolutionary path without singularity.

For the sake of convenience to draw bifurcation diagrams we first summarize stability of the critical points for the change of parameters by tabular form as follows (Tables 6, 7, 8).

The local bifurcation diagram for the critical point P_1 is shown in Fig. 9. The transition is visible in this diagram for the line $\alpha = -3$ where for $\lambda > -\sqrt{6}$, P_1 undergoes stable-node to saddle via non-hyperbolic saddle-nodes (blue line) and for $\lambda < -\sqrt{6}$, it passes through non-hyperbolic saddle-nodes (blue line) from stable-node to saddle. The another transition is visible in this diagram for the line $\lambda = -\sqrt{6}$ where for $\alpha < -3$, P_1 undergoes a change from saddle-node to stable-node via non-hyperbolic stable nodes (black line) and a change from unstable to saddle via non-hyperbolic saddle (red line) for $\alpha > -3$. Thus $\alpha = -3$ and $\lambda = -\sqrt{6}$ are lines of bifurcation values and P_1 is a bifurcation point.

The cosmological parameters corresponding to P_1 are $\Omega_m = 0$, $\Omega_\phi = 1$, $\omega_{\text{total}} = 1$, $q=2$ and $\dot{H} < 0$. Thus the universe is open and continue for scalar field dominated decelerating expansion. We also note that, in this case the self interacting potential vanishes.

Figure 10 represents the local bifurcation diagram for $\alpha = -3$ line and $\lambda = \sqrt{6}$ line. The phase transition is visible for the line $\alpha = -3$ where for $\lambda > \sqrt{6}$, P_2 undergoes stable-node to saddle via non-hyperbolic saddle-nodes (blue line) and for $\lambda < \sqrt{6}$, it passes through non-hyperbolic saddle-nodes (blue line) from saddle-node to unstable-node. The another transition is visible in this diagram for the line $\lambda = \sqrt{6}$ where for $\alpha < -3$, P_2 undergoes a change from saddle to unstable-node via non-hyperbolic stable nodes (black line) and a change from unstable to saddle via non-hyperbolic saddle-nodes (blue line) from saddle-node to unstable-node.
Table 6 Stability of P_1 and P_2 according to range of parameters

α, λ	Nature	Stability
$\alpha < -3, \lambda > \sqrt{6}$	Hyperbolic	P_1: saddle-node
		P_2: stable-node
$\alpha < -3, -\sqrt{6} < \lambda < \sqrt{6}$	Hyperbolic	P_1: saddle-node
		P_2: saddle-node
$\alpha < -3, \lambda < -\sqrt{6}$	Hyperbolic	P_1: stable-node
		P_2: saddle-node
$\alpha > -3, \lambda > \sqrt{6}$	Hyperbolic	P_1: unstable-node
		P_2: saddle
$\alpha > -3, -\sqrt{6} < \lambda < \sqrt{6}$	Hyperbolic	P_1: unstable-node
		P_2: unstable-node
$\alpha > -3, \lambda < -\sqrt{6}$	Hyperbolic	P_1: saddle
		P_2: unstable-node
$\alpha > -3, \lambda = -\sqrt{6}$	P_1: non-hyperbolic	
		P_2: saddle
$\alpha < -3, \lambda = -\sqrt{6}$	P_1: non-hyperbolic	
		P_2: unstable-node
$\alpha > -3, \lambda = \sqrt{6}$	Hyperbolic	P_1: unstable-node
		P_2: non-hyperbolic
$\alpha < -3, \lambda = \sqrt{6}$	Hyperbolic	P_1: saddle
		P_2: stable-node
$\alpha = -3$	Non-hyperbolic	P_1: saddle-node
		P_2: saddle-node
$\alpha = -3, \lambda = -\sqrt{6}$	P_1: non-hyperbolic	
		P_2: saddle-node
$\alpha = -3, \lambda = \sqrt{6}$	P_1: hyperbolic	
		P_2: saddle

Table 7 Stability of P_3 and P_4 according to range of parameters

α, λ	Nature	Stability
$\lambda^2 + \alpha = 3, -\sqrt{6} < \lambda < 0$	Non-hyperbolic	P_3: saddle-node
		P_4: saddle-node
$\lambda^2 + \alpha = 3, 0 < \lambda < \sqrt{6}$	Non-hyperbolic	P_3: saddle-node
		P_4: saddle-node
$\lambda^2 + \alpha < 3, -\sqrt{6} < \lambda < \sqrt{6}$	Hyperbolic	P_3: stable-node
		P_4: stable-node
$\lambda^2 + \alpha > 3, \lambda > \sqrt{6}$	Hyperbolic	P_3: saddle
		P_4: saddle
$\lambda = -\sqrt{6}$	Same as P_1	Same as P_1
$\lambda = \sqrt{6}$	Same as P_2	Same as P_2

Table 8 Stability of P_5 and P_6 according to range of parameters

α, λ	Nature	Stability
$\alpha = -3, \lambda = \pm \sqrt{6}$	Non-hyperbolic	P_5: saddle-node
		P_6: saddle-node
$\alpha = -3, -\sqrt{6} < \lambda < \sqrt{6}$	Non-hyperbolic	P_5: saddle/saddle-node
		P_6: saddle/saddle-node
saddle (red line) for $\alpha > -3$. Cosmological evolution at P_2 is same as of P_1. Another local bifurcation is shown in Fig. 11 for the critical points P_3 and P_4 which exist for $-\sqrt{6} < \lambda < \sqrt{6}$. The transition is visible in this diagram for the curve $\alpha + \lambda^2 = 3$. P_3 and P_4 undergo a change from stable-node ($\alpha + \lambda^2 < 0$) to saddle ($\alpha + \lambda^2 > 0$) via non-hyperbolic curve $\alpha + \lambda^2 = 3$. On this curve P_3 and P_4 are saddle-node in nature. Thus $\alpha + \lambda = 3$ is a curve of bifurcation values. In particular, $(\alpha, \lambda) = (3, 0)$ is a bifurcation value.

For $-\sqrt{6} < \lambda < \sqrt{6}$, we note that, $-1 \leq \omega_\phi < 1$, $-1 \leq q < 2$, $\Omega_m = 0$ and $\Omega_\phi = 1$. For $\lambda = 0$ the critical point P_3 represents dark energy dominated cosmological constant era with vanishing kinetic energy. It also represents exponential de-Sitter expansion of the universe. For $-2 < \lambda < 0$ or $0 < \lambda < 2$ the critical point represents phantom divide line in the cosmic evolution with accelerating power law expansion. For $\lambda < -\sqrt{6}$ or $\lambda > \sqrt{6}$, we get $\omega_\phi > 1$, $\omega_{\text{total}} > 1$ and $q > 2$ which are not feasible cosmologically. For $\lambda = \pm \sqrt{6}$, we get $\omega_\phi = 1$, $\omega_{\text{total}} = 1$, $\Omega_\phi = 1$ and $q=2$ which implies decelerating expansion of the universe with a free scalar field.

Furthermore, combining Figs. 9, 10 and 11 with Table 8 and fixing $\alpha = -3$ we can notice that bifurcation takes place for $\lambda = \pm \sqrt{6}$. This phenomenon is shown in Fig. 12. In this diagram P_1 and P_2 overlap by their Y-coordinates but their stability is opposite for $\lambda < \sqrt{6}$ and $\lambda > \sqrt{6}$: P_1 is stable-node (green line) and P_2 is unstable-node (red dotted line) for $\lambda < -\sqrt{6}$ and in turn, the stability is reverse for $\lambda > \sqrt{6}$.

When λ crosses $-\sqrt{6}$ from left, P_1 becomes unstable and two stable and two unstable fixed points appear in the picture. It is so to speak a combination of the sub-critical and supercritical pitchfork bifurcation: the fixed points P_1, P_3 and P_4 behave like supercritical pitchfork bifurcation, while the fixed points P_1, P_5 and P_6 behave like sub-critical pitchfork bifurcation.
bijurcation. Similar behavior of dynamics can be found for \(\lambda = \sqrt{6} \) also.

At \(P_5 \) and \(P_6 \) we have \(\omega_{\text{total}} = -\frac{\alpha}{3} \) and \(q = \frac{1-\alpha}{2} \), so for \(\alpha = 3 \) the critical point represents cosmological constant era with exponential de-Sitter expansion. For \(-3 < \alpha < 3 \) the critical point represents phantom phase of the universe and for \(\alpha > 3 \) the universe would be in the case of Big-Rip singularity. The universe experiences accelerating expansion for \(\alpha > 1 \) and decelerating expansion for \(\alpha < 1 \).

Finally, we can divide the evolution of the universe with respect to the critical points into two groups: representing generic and non-generic evolution. The generic evolution occurs, when there exists a family of solutions satisfying given initial conditions, while the non-generic evolution takes place if one particular solution exists for given initial conditions. To be specific, when a family of trajectory comes out of an unstable point in the early equilibrium (like unstable node/focus or saddle-node) representing a phase and then finishes in a stable point also representing the same phase is called generic evolution [57]. We mention some generic and non-generic evolution of the universe in tabular form (see Tables 9, 10). It is speculated that non-generic evolution occurs at the bifurcation values.

Figure 13 presents the local phase transition of cosmological evolution for \(\lambda = 0 \) and \(\alpha = 3 \). The only transition of the cosmological solution is visible from non-phantom model to phantom one via vanishing kinetic energy for \(\alpha = 3 \). So the cosmological model is structurally unstable in the case of non-generic evolution of the universe. On the other hand, Fig. 14 presents the universe passes through a free scalar

\(\alpha \) and \(\lambda \)	Starting point	Early phase	End point	Late phase
\(1 > \alpha > -3, -\sqrt{2} < \lambda < \sqrt{2} \)	Unstable node: \(P_1 \) or \(P_2 \)	Free scalar field and decelerating expansion	Stable node: \(P_3 \) or \(P_4 \)	Exponential de Sitter or accelerating power law expansion in phantom divide line
Table 10 Non-generic evolution at bifurcation values

Bifurcation values	Starting point	Early phase	End point	Late phase
$\alpha = 3, \lambda \approx 0$	Saddle-node/saddle: P_3 or P_4	Cosmological constant and exponential de Sitter expansion	Homoclinic orbit	Cosmological constant and exponential de Sitter expansion
$\alpha \approx -3, \lambda = \pm \sqrt{6}$	Unstable-node/saddle-node/saddle: P_1	Free scalar field decelerating expansion with stiff matter era	Homoclinic orbit/saddle: P_3 or P_b	Free scalar field decelerating expansion with stiff matter era
$\alpha \approx -3, \lambda = \pm \sqrt{6}$	Unstable-node/saddle-node/saddle: P_2	Free scalar field decelerating expansion with stiff matter era	Homoclinic orbit/saddle: P_3 or P_b	Free scalar field decelerating expansion with stiff matter era

Fig. 13 Phase transition of the universe at the bifurcation value $\alpha = 3$

Fig. 14 Phase transition of the universe at the bifurcation values $\lambda = \pm \sqrt{6}$

field stiff fluid era for $\lambda = \pm \sqrt{6}$ and $\alpha = -3$ to transit non-vanishing scalar field to non-vanishing one.

5 Discussion

An unstable fixed point may be considered as an initial position of the universe and a small perturbation scramper the start of the trajectory of the universe. The initial position of the universe drives a unique trajectory which starts from an arbitrary close neighborhood of an unstable critical point (CP) and stops to an arbitrary close neighborhood of a stable critical point or goes to infinity. As our phase space is finite region of infinite paraboloid, so we skip the infinity case. The qualitative global behavior of the trajectory of the universe is described by inspecting the local behavior of critical points.

The critical points P_1 to P_4 are shown to be non-hyperbolic equilibrium points for certain choices of the parameters α and λ. The critical point P_1 is non-hyperbolic in nature for the choices $\alpha = -3$ or $\lambda = -\sqrt{6}$ or both. However, $\alpha = -3$ and $\lambda = -\sqrt{6}$ is not chosen simultaneously as the vector field is undetermined. From Figs. 1a, b, we see that for $\alpha = -3$ and $\lambda \neq -\sqrt{6}$ the critical point P_1 is a saddle-node and unstable in nature while for $\lambda = -\sqrt{6}$, P_1 is unstable saddle for $\alpha > -3$ and stable node for $\alpha < -3$. Cosmologically, the critical point is not interesting as it represents a scalar field dominated decelerating era. Note that the critical point P_2 has identical behavior as P_1 from the cosmological point of view. The non-hyperbolic critical point P_3 is analyzed for the parametric restriction $\alpha + \lambda^2 = 3$ and $\lambda^2 \neq 6$ so that we have unstable saddle-node as shown in Figs. 5 and 6. From cosmological point of view, the equilibrium points P_3 and P_4 are equivalent and both of them are dark energy dominated. The model represents accelerated era of expansion for $\lambda^2 < 2$ while it will be in decelerating phase for $\lambda^2 > 2$. The equilibrium points P_5 and P_6 are non-hyperbolic in nature without any...
restriction on the parameters α and λ. Both the critical points represent cosmological scaling solution. The effective single fluid will be of quintessence nature if $1 < \alpha < 3$ while phantom nature is characterized by the restriction $\alpha > 3$.

The application of bifurcation theory allows us to distinguish some classes of non-generic and generic evolutionary scenarios for either cosmological constant or free scalar field. There are non-singular evolutionary paths from decelerating phase to accelerating phase of the universe. There are two types of initial state from which the universe starts evolution. In the first scenario, the universe is emergent from decelerating expansion with free scalar field and in second one, the universe is emergent from the exponential de Sitter expansion with cosmological constant era. From the bifurcation analysis, we have obtained a lines of bifurcation values varying α and λ. We also notice phase transition of the universe at the bifurcation value $\alpha = 3$ or $\lambda = \pm \sqrt{6}$.

Acknowledgements The author S. Mishra is grateful to CSIR, Govt. of India for giving Senior Research Fellowship (CSIR Award No: 09/096 (0890)/2017-EMR-I) for the Ph.D work.

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment:This article describes the data will not be deposited. [Authors’ comment:This article describes]

Compliance with ethical standards Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.

References

1. W.C.E.K. et al., Astrophys. J. Suppl. 180, 330 (2009). arXiv:0803.0547 [astro-ph]
2. S.S. Team, AGit Riess, Astron. J 116, 1009 (1998). arXiv:astro-ph/9805201
3. St Perlmutter, Astrophys. J. 517, 565 (1999). arXiv:astro-ph/9812133
4. D. Fixsen, Astrophys. J. 707, 916 (2009). arXiv:0911.1955 [astro-ph.CO]
5. P. Collaboration, A&A 571 (2014). arXiv:1303.5087 [astro-ph.CO]
6. T. Jarrett, arXiv:astro-ph/0405069
7. P.M. Vaudrevange, G.D. Starkman, N.J. Cornish, D.N. Spergel, arXiv:1206.2939 [astro-ph.CO]
8. A.L. Coil, arXiv:1202.6633 [astro-ph.CO]
9. DJt Eisenstein, Astrophys. J. 633, 560 (2005). arXiv:astro-ph/0501171
10. L.t. Anderson, arXiv:1203.6594 [astro-ph.CO]
11. D.t. Wittman, Astrophys. J. 643, 128 (2006). arXiv:astro-ph/0507606
12. H. Hoekstra, B. Jain, Annu. Rev. Nucl. Part. Sci. 58, 99 (2008). arXiv:0805.0139 [astro-ph]
13. E.V. Linder, Phys. Rev. Lett. 90 (2003). arXiv:2008512 [astro-ph]
14. P. Collaboration, arXiv:1303.5062 [astro-ph.CO]
15. D. Huterer, A. Cooray, Phys. Rev. D 71 (2005). arXiv:astro-ph/0404062
16. D. Huterer, M.S. Turner, Phys. Rev. D 60 (1999). arXiv:astro-ph/9808113
17. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155 (2012). arXiv:1205.3421 [gr-qc]
18. N. Mahata, S. Chakraborty, Gen. Relativ. Gravit. 46 (2014). arXiv:1312.7644 [gr-qc]
19. A. Dolgov, (2012). arXiv:1206.3725 [astro-ph.CO]
20. R. Caldwell, Phys. Lett. B 545, 23 (2002). arXiv:astro-ph/9908168
21. S.K. Biswas, S. Chakraborty, Int. J. Mod. Phys. D 24 (2015). arXiv:1504.02431 [gr-qc]
22. A.D. Felice, S. Tsujikawa, Living Relativ. 13 (2010). arXiv:1002.4928 [gr-qc]
23. A.P. Naik, E. Puchwein, A.-C. Davis, C. Arnold, Mon. Not. R. Astron. Soc. 480 (2018). arXiv:805.12221 [astro-ph.CO]
24. G.J. Olmo, Phys. Rev. Lett. 95 (2005). arXiv:gr-qc/0505101
25. T.P. Sotiriou, F. Faraoni, Rev. Mod. Phys. 82, 451 (2010). arXiv:0805.1726 [gr-qc]
26. R. Aldrovandi, J.G. Pereira, K.H. Vu, Gen. Relativ. Gravit. 36, 101 (2004). arXiv:gr-qc/0304106
27. G. Zet, (2003). arXiv:gr-qc/0308078
28. R. Aldrovandi, J.G. Pereira, K.H. Vu, Braz. J. Phys. 34 (2004). arXiv:gr-qc/0312008
29. R. Ferraro, F. Fiorini, Phys. Rev. D 75 (2007). arXiv:gr-qc/0610067
30. T. Harko, F.S.N. Lobo, G. Oulalor, E.N. Saridakis, Phys. Rev. D 89 (2014). arXiv:1404.6212 [gr-qc]
31. A. Finch, J.L. Said, Astrophys. Galaxies. arXiv:1806.09677 [astroph.GA]
32. S. Capozziello, O. Luongo, R. Pinac, A. Ravanpak, Gen. Relativ. Quantum Cosmol. arXiv:1804.03649 [gr-qc]
33. S. Basilakos, S. Capozziello, M.D. Laurentis, A. Paliathanasis, M. Tsamparlis, Gen. Relativ. Quantum Cosmol. arXiv:1311.2173 [gr-qc]
34. K. Bamba, S.D. Odintsov, D. Sáez-Gómez, Phys. Rev. D 88 (2013). arXiv:1308.5789 [gr-qc]
35. C. Li, Y. Cai, Y.-F. Cai, E.N. Saridakis, JCAP 10 (2018). arXiv:1803.09818 [gr-qc]
36. S. Basilakos, S. Nesseris, F.K. Anagnostopoulos, E.N. Saridakis, arXiv:1803.09278 [astro-ph.CO]
37. T.P. Sotiriou, B. Li, J.D. Barrow, Phys. Rev. D 83 (2011). arXiv:1012.4039 [gr-qc]
38. B. Li, T.P. Sotiriou, J.D. Barrow, Phys. Rev. D 83 (2011). arXiv:1010.1041 [gr-qc]
39. A. Paliathanasis, M. Tsamparlis, S. Basilakos, J.D. Barrow, Phys. Rev. D 91 (2015). arXiv:1503.05750 [gr-qc]
40. S.K. Biswas, W. Khylllep, J. Dutta, S. Chakraborty, Phys. Rev. D 95 (2017). arXiv:1604.07636 [gr-qc]
41. K. Skenderis, B. Withers, PoS CORFU (2017). arXiv:1703.10865 [hep-th]
42. H. Zonunmawia, W. Khylllep, J. Dutta, L. Jarv, Phys. Rev. D 98 (2018). arXiv:1810.03816 [gr-qc]
43. Z. Shen, J. Wei, arXiv:1807.09525 [math.DS]
44. B.-F. Li, P. Singh, A. Wang, Phys. Rev. D 98 (2018). arXiv:1807.05236 [gr-qc]
45. H.t. Zonunmawia, Phys.Rev. D 96 (2017). arXiv:1708.07716 [gr-qc]
46. H.t. Zonunmawia, Phys. Rev. D 98 (2018). arXiv:1810.03816 [gr-qc]
47. L. Perko, *Differential Equations and Dynamical Systems*, vol. 7, 3rd edn (Springer, New York, 2001)
48. H. Jia, B. Liu, W. Schlag, G. Xu, arXiv:1706.09284 [math.AP]
49. X. Zhang, arXiv:1407.7942 [math.CA]
50. S. Joras, T. Stuchi, Phys. Rev. D 68 (2003), arXiv:gr-qc/0307044
51. Y.-M. Chung, E. Schaal, Center Manifolds of Differential Equations in Banach Spaces (2017), arXiv:1710.07342
52. D.-C. Liaw, Appl. Math. Comput. 91, 243 (1998)
53. J. Carr, *Applications of Centre Manifold Theory*, vol. 35, 1st edn (Springer, New York, 1982)
54. A. Coley, *Dynamical Systems and Cosmology*, vol. 291, 1st edn (Springer, Dordrecht, 2003)
55. B. Aulbach, *Continuous and Discrete Dynamics near Manifolds of Equilibria*, vol. 1058, 1st edn (Springer, Berlin, 1984)
56. S. Bahamonde, C.G. Boehmer, S. Carloni, E.J. Copeland, W. Fang, N. Tamanini, Phys. Rep. 6–122, 775 (2018), arXiv:1712.03107 [gr-qc]
57. F. Humieja, M. Szydlowski, (2017), arXiv:1901.06578 [gr-qc]