May isoflavones prevent breast cancer risk?

Adriana Aparecida Ferraz Carbonel1,2, Ricardo Santos Simões3, Gisela da Silva Sasso4, Renata Ramos Vieira1, Patricia Azevedo Lima4, Manuel de Jesus Simões1,3, José Maria Soares Júnior3*

Breast cancer still represents a challenge in Brazil, as it is the most frequent malignant neoplasm with more than 14,000 deaths recorded in 2014. It is the leading cause of death in the female population1. It is also commonly diagnosed among women in Western countries as the second leading cause of cancer2. It is the sixth leading cause of mortality among women, after acute myocardial infarction, pneumonia, diabetes, stroke, and chronic obstructive pulmonary disease. Breast cancer is a heterogeneous disease and can be classified by clinical, histopathological, and molecular parameters3. In this classification, the estrogen receptors play an important role and seem to influence the development of breast neoplasms or response to treatment4. However, women with breast cancer face the consequences of hypoestrogenism due to chemotherapy treatment or being postmenopausal. Thus, several substances are being suggested to reduce the vasomotor symptoms that appear in these women.

The effects of soy isoflavones, due to their structural similarity and molecular size that resemble estrogens, have the ability to bind with greater affinity to estrogen beta-receptors; for this reason, they are called phytoestrogens5-7. The binding of phytoestrogen to the receptor can result in partial activation of the receptor (agonist effect) or displacement of estrogen molecules, thus reducing receptor activation (antagonistic effect)8.

Intake of soy at high dosages may have a statistically significant reduction in breast cancer risk9. Epidemiological studies show that soy consumption is associated with low incidences of hormone-dependent cancers, including breast and prostate cancer in Western countries10. However, there are other components in soy that can also have a biological effect and there is a substitution in these countries of animal protein for soy protein. Therefore, this is still a controversial point11.

Soy contains large amounts of isoflavones, such as genistein and daidzein. Genistein, one of the predominant soy isoflavones, may inhibit several steps involved in carcinogenesis by targeting estrogen- and androgen-mediated signaling pathways in carcinogenesis processes, in addition to its antioxidant properties showing to be a potent inhibitor of angiogenesis and metastasis12,13. In vivo and in vitro studies have clearly shown that genistein is a promising reagent for the chemoprevention and/or treatment of cancer. However, results are still conflicting and there is still no consensus on its effectiveness on the breast cancer risk11,14,15.

Prospective cohort meta-analysis studies suggest that high soy intakes may statistically reduce the risk of breast cancer9, other systematic and meta-analysis reviews conclude that there is a lack of evidence as the benefit would be small and irrelevant in clinical practice16. Thus, further prospective cohort studies are needed to determine the causality of this relationship, as well as to explain the mechanisms involved in the association between isoflavones and breast cancer9.

A randomized, double-blind, placebo-controlled clinical trial conducted by Delmanto et al.17 determined the effect of soy isoflavones on breast density and breast parenchyma assessed by mammography in 80 postmenopausal women. After 10 months of isoflavone supplementation, it was found that daily intake of 100 mg isoflavones did not affect breast density (assessed by mammography) and breast tissues (assessed by ultrasound).

Khan et al.18 evaluated the effect of soy isoflavone supplementation on breast epithelial proliferation and other biomarkers in high-risk, healthy Western women. The breast cell proliferation is an intermediate marker of breast cancer risk generally considered more reflective of risk than mammographic density. Cells were examined for Ki-67 labeling index and atypia. The study involved 98 pre- and postmenopausal women. After 6

1Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Morphology and Genetics – São Paulo (SP), Brazil.
2Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Gynecology – São Paulo (SP), Brazil.
3Universidade de São Paulo, School of Medicine, Hospital das Clínicas, Department of Gynecology and Obstetrics – São Paulo (SP), Brazil.
4Department of Medicine, Queen’s Cardio-Pulmonary Unit – Kingston (ON), Canada.
*Corresponding author: jsoares415@hotmail.com
Conflicts of interest: the authors declare there is no conflicts of interest. Funding: none.
Received on July 18, 2022. Accepted on July 31, 2022.
months of isoflavone supplementation, the authors found that daily intake of 235 mg of isoflavones did not increase cell proliferation in pre- and postmenopausal women compared with placebo. In contrast, a hormone therapy combination increased breast cell proliferation in postmenopausal women han19. Although studies on herbal medicine are still in progress, there is no enough evidence in the literature of serious adverse effects such as increased risk for breast cancer and cardiovascular disease with the use of isoflavones in high doses (≤100 mg)20. Although studies on herbal medicine are still in progress, there are only a few still many myths to overcome21.

The extramammary benefits of soy are evident as in vaso-motor symptoms22, skin23, bone mass24, and genital tract25. However, the risk of breast cancer needs to be better explored and evaluated, mainly in the long term, and there are still risks that should be better evaluated, such as metabolic ones. In addition, the indication of isoflavone extracts should be individualized, as estroprogestative hormone therapy in the climacteric26, guiding the patient on the benefits and risks, as well as respecting the individual preferences of postmenopausal women until new evidences in the literature.

AUTHORS’ CONTRIBUTIONS
AAFC: Conceptualization, Writing – original draft, Writing – review & editing. RSS: Conceptualization, Resources, Validation. GSS: Supervision, Validation. PAL: Writing – original draft. MJS: Supervision, Writing – review & editing. JMSJ: Supervision, Writing – review & editing.

REFERENCES
1. Instituto Nacional De Cáncer José Alencar Gomes Da Silva. Atlas da mortalidade. Rio de Janeiro: Instituto Nacional De Cáncer José Alencar Gomes Da Silva; 2020. Available from: https://www.inca.gov.br/app/mortalidade
2. Harbeck N, Penault-Llorca F, Cortes J, Grant M, Houssami N, Poortmans R, et al. Breast cancer. Nat Rev Dis Primers. 2019;5(1):66. https://doi.org/10.1038/s41572-019-0111-2
3. DATASUS. Informações de saúde. Available from: http://www2.datasus.gov.br
4. Liang J, Shang Y. Estrogen and cancer. Annu Rev Physiol. 2013;75:225-40. https://doi.org/10.1146/annurev-physiol-030212-183708
5. Křížová L, Dadáková K, Kašparovská J, Kašparovský T. Isoflavones. Molecules. 2019;24(6):1076. https://doi.org/10.3390/molecules24061076
6. Chen MN, Lin CC, Liu CF. Efficacy of phytoestrogens for menopausal symptoms: a meta-analysis and systematic review. Climacteric. 2015;18(2):260-9. https://doi.org/10.3109/13697137.2014.96241
7. Messina M, Nagata C, Wu AH. Estimated Asian adult soy protein and isoflavone intakes. Nutr Cancer. 2006;55(1):1-12. https://doi.org/10.1207/s15327979nc5501_1
8. Castelo-Branco C, Cancelo Hidalgo M. Isoflavones: effects on bone health. Climacteric. 2011;14(2):204-11. https://doi.org/10.3109/13697137.2010.529198
9. Zhao TT, Jin F, Li JG, Xu YY, Dong HT, Liu Q, et al. Dietary isoflavones or isoflavone-rich food intake and breast cancer risk: a meta-analysis of prospective cohort studies. Clin Nutr. 2019;38(1):136-45. https://doi.org/10.1016/j.clnu.2017.12.006
10. Pabich M, Materska M. Biological effect of soy isoflavones in the prevention of civilization diseases. Nutrients. 2019;11(7):1660. https://doi.org/10.3390/nu11071660
11. Kaari C, Haidar MA, Júnior JM, Nunes MG, Quadros LG, Kemp C, et al. Randomized clinical trial comparing conjugated equine estrogens and isoflavones in postmenopausal women: a pilot study. Maturitas. 2006;53(1):49-58. https://doi.org/10.1016/j.maturitas.2005.02.009
12. Varinska L, Gal P, Mojisola G, Mirossay L, Mojis. Soy and breast cancer: focus on angiogenesis. Int J Mol Sci. 2015;16(5):11728-49. https://doi.org/10.3390/ijms160511728
13. Sarkar FH, Li Y. Soy isoflavones and cancer prevention. Cancer Invest. 2003;21(5):744-57. https://doi.org/10.1080/cnv-120023773
14. Bedell S, Nightingall M, Naftolin F. The pros and cons of plant estrogens for menopause. J Steroid Biochem Mol Biol. 2014;139:225-36. https://doi.org/10.1016/j.jsbmb.2012.12.004
15. Carbonel AA, Santos RH, Simões RS, Silva RF, Soares JM Jr, Baracat EC, et al. Efeitos de altas doses de genisteína sobre o epitélio mamário de ratas [Effects of high doses of genistein on mammary gland of female rat]. Rev Bras Ginecol Obstet. 2011;33(9):264-9. https://doi.org/10.1590/s0100-72032011000900008
16. Qiú S, Jiang C. Soy and isoflavones consumption and breast cancer survival and recurrence: a systematic review and meta-analysis. Eur J Nutr. 2019;58(8):3079-90. https://doi.org/10.1007/s00394-018-1853-4
17. Delmanto A, Nahas-Neto J, Traiman P, Uemura G, Pessoa EC, Nahas EA. Effects of soy isoflavones on mammographic density and breast parenchyma in postmenopausal women: a randomized, double-blind, placebo-controlled clinical trial. Menopause. 2013;20(10):1049-54. https://doi.org/10.1097/GME.0b013e31828250270
18. Khan SA, Chatterton RT, Michel N, Bryk M, Lee O, Ivanic D, et al. Soy isoflavone supplementation for breast cancer risk reduction: a randomized phase II trial. Cancer Prev Res (Phila). 2012;5(2):309-19. https://doi.org/10.1158/1940-6207.CAPR-11-0251
19. Murkes D, Conner P, Leifland K, Taní E, Bellard A, Lundstrom E, et al. Efeitos da progesterona oral-estradiol percutânea versus estrogênios equinos conjugados orais-acetato de medroxiprogesterona na prevenção de supressão de células mamárias e BCL-2 proteína em mulheres saudáveis. Fértil Esteril. 2011;95(3):1188-91. https://doi.org/10.1590/s0100-72032011000900008
20. Fritz H, Seely D, Flower G, Skidmore B, Fernandes R, Vadeboncoeur S, et al. Soy, red clover, and isoflavones and breast cancer: a systematic review. PLoS One. 2013;8(11):e81968. https://doi.org/10.1371/journal.pone.0081968
21. Lopes CMC, Lima SMRR, Veiga ECA, Soares Jr JM, Baracat EC. Phytotherapeutic medicines: reality or myth? Rev Assoc Med Bras (1992). 2019;65(3):292-4. https://doi.org/10.1590/1806-9282.65.3.292

22. Han KK, Soares JM Jr, Haidar MA, de Lima GR, Baracat EC. Benefits of soy isoflavone therapeutic regimen on menopausal symptoms. Obstet Gynecol. 2002;99(3):389-94. https://doi.org/10.1016/s0029-7844(01)01744-6

23. Accorsi-Neto A, Haidar M, Simões R, Simões M, Soares J Jr, Baracat E. Effects of isoflavones on the skin of postmenopausal women: a pilot study. Clinics (Sao Paulo). 2009;64(6):505-10. https://doi.org/10.1590/s1807-59322009000600004

24. Carbonel AAF, Vieira MC, Simões RS, Lima PDA, Fuchs LFP, Girão ERC, et al. Isoflavones improve collagen I and glycosaminoglycans and prevent bone loss in type 1 diabetic rats. Climacteric. 2020;23(1):75-83. https://doi.org/10.1080/13697137.2019.1627314

25. Franco PC, Simões RS, Carbonel AAF, Sasso GRDS, Florencio-Silva R, Baracat EC, et al. The influence of phytoestrogens or estrogens on the proliferation of the rat endocervical mucosa. Rev Assoc Med Bras (1992). 2020;66(2):174-9. https://doi.org/10.1590/1806-9282.66.2.174

26. Soares Júnior JM, Sorpreso IC, Baracat EC. Is hormone therapy during climacteric for all? Rev Assoc Med Bras (1992). 2015;61(3):191-2. https://doi.org/10.1590/1806-9282.61.03.191