Research Article

Single-Machine Scheduling to Minimize Total Completion Time and Tardiness with Two Competing Agents

Wen-Chiung Lee, Yau-Ren Shiau, Yu-Hsiang Chung, and Lawson Ding

1 Department of Statistics, Feng Chia University, Taichung, Taiwan
2 Department of Industrial Engineering and System Management, Feng Chia University, Taichung, Taiwan
3 Department of Industrial & Engineering Management, National Chiao Tung University, Hsinchu, Taiwan

Correspondence should be addressed to Wen-Chiung Lee; wclee@fcu.edu.tw

Received 25 November 2013; Accepted 12 December 2013; Published 19 January 2014

1. Introduction

In traditional scheduling, there is a common goal to minimize for all the jobs [1–4]. In contrast to that, there is a growing interest in multiagent scheduling problems where jobs are from several customers who have different goals to pursue. For instance, Peha [5] gave the telecommunication service examples where various types of packets and service compete for the use of a commercial satellite, and the problem is to satisfy the service requirements of individual agents to transfer voice, image, and text files for their clients. Brewer and Plott [6] gave a transportation example where the agents own transportation resources and compete for the usage of the infrastructures. Kubzin and Strusevich [7] presented an example that maintenance operations complete with the real jobs for machine occupancy on maintenance planning. Baker and Smith [8] gave a sharing example of a prototype shop in which the department of research and development might be concerned about quick response time, while the department of manufacturing might be more concerned about meeting the due dates.

Agnetis et al. [9] and Baker and Smith [8] were the pioneers that brought the multiagent problems into scheduling field. Agnetis et al. [9] considered the maximum of regular functions, number of late jobs, and total weighted completion times. They obtained different scenarios depending on the objective function of each agent and on the structure of the processing system. For each scenario, they addressed the complexity of various problems. Baker and Smith [8] examined the implications of minimizing an aggregate scheduling objective function in which jobs belonging to different customers are evaluated based on their individual criteria. They demonstrated that the problem to minimize a mix of makespan, maximum lateness, or total weighted completion time is NP-hard. Cheng et al. [10] considered the feasibility model of multiagent scheduling on a single machine where each agent's objective function is to minimize the total weighted number of tardy jobs. They showed that the general problem is strongly NP-complete and developed the complexity results for some special cases. Ng et al. [11] addressed a single-machine two-agent problem to minimize the total completion time of the first agent given that the number of tardy jobs of the second agent cannot exceed a certain number. They showed that the problem is NP-hard under high multiplicity encoding and can be solved in pseudopolynomial time under binary encoding. Lee et al. [12] discussed a single-machine multiagent scheduling problem in which each agent is responsible for his own set of jobs.
and wishes to minimize the total weighted completion time of his own set of jobs. They reduced this NP-hard problem to a multiobjective short-path problem. They also provided an efficient approximation algorithm with a reasonably good worst-case ratio. Agnetis et al. [13] developed the branch-and-bound algorithms for several single-machine two-agent scheduling problems. They used Lagrangian dual to derive and-bound algorithms for several single-machine two-agent worst-case ratio. Agnetis et al. [13] developed the branch-and-bound algorithm to derive the optimal solution and several heuristic algorithms for the proposed problem. Recently, Leung et al. [15] generalized the single-machine problems proposed by Agnetis et al. [9] to the case of multiple identical parallel machines. In addition, they also considered the situations where the jobs may have different release dates and preemptions may or may not be allowed. Nong et al. [16] studied a single-machine two-agent scheduling problem for minimizing the total cost in which the cost of the first agent is the maximum weighted completion time while that of the second agent is the total weighted completion time. Liu et al. [17] considered single-machine two-agent problems with increasing linear deterioration consideration. They developed the optimal solutions for some problems where the goal is to minimize the objective function of the first agent given that the objective function of the second agent cannot exceed a certain upper bound. Cheng et al. [18] studied a two-agent single-machine scheduling problem with release times where the objective is to minimize the total weighted completion time of the jobs of one agent with the constraint that the maximum lateness of the jobs of the other agent does not exceed a given limit. They proposed a branch-and-bound algorithm to solve problems with up to 24 jobs. Yu et al. [19] developed the optimal solutions for several single-machine scheduling problems with two competing agents and maintenance activity. Liu et al. [20] considered single-machine scheduling with two-agent and sum-of-processing-times-based deterioration effect. They developed some polynomial-time algorithms for the respective problems.

Pinedo [1] pointed out that a customer is often concerned with multiple objectives. For instance, he might want to have a lower cost and the on-time delivery. To the best of our knowledge, multiagent scheduling problems with the consideration of multiple objectives from the same agent have seldom been discussed in the literature. In this paper, we study a two-agent scheduling problem on a single machine where the objective is to minimize the weighted combination of the total completion time and the total tardiness of jobs from the first agent given that the number of tardy jobs from the second agent is zero. The rest of the paper is organized as follows. In the next section the formulation of our problem is described. In Section 3, a branch-and-bound algorithm incorporating several elimination rules and a lower bound is constructed to speed up the search for the optimal solution. In Section 4, two simulated annealing algorithms are proposed to solve this problem. In Section 5, a computational experiment is conducted to evaluate the efficiency of the branch-and-bound algorithm and the performance of the proposed simulated annealing algorithms. A conclusion is given in the final section.

2. Problem Description

The problem we study is described as follows. There are n jobs ready to be processed. Each job belongs to either one of the two agents AG₁ or AG₂. For each job j, there is a processing time pj, a due date dj, and an agent code Ij, where Ij = 1 if job j ∈ AG₁ or Ij = 2 if job j ∈ AG₂. Under a schedule S, let Cj(S) be the completion time of job j, let Tj(S) = max{0, Cj(S) − dj} be the tardiness of job j, and Uj(S) = 1 if Tj(S) > 0 and zero otherwise. In this paper, we study a single machine problem to minimize the weighted combination of the total completion time and the total tardiness of jobs from AG₁ given that no tardy jobs from AG₂ are allowed. Using the conventional three fields of notation, this problem is denoted by 1|1|∑j∈AG₂Uj = 0|∑j∈AG₁θTj + (1 − θ)Cj where 0 ≤ θ ≤ 1.

3. A Branch-and-Bound Algorithm

If there is no job from agent AG₂ and θ = 1, the problem under consideration reduces to the classical single-machine total tardiness time problem which is proved to be NP-hard by Du and Leung [21]. Therefore, a branch-and-bound algorithm might be a good way to derive the optimal solution. In this section, we will provide several dominance properties to speed up the search process.

3.1. Dominance Properties. In this subsection, we develop a nonadjacent and several adjacent dominance properties to reduce the searching scope.

Property 1. If jobs i, j ∈ AG₁, di ≤ dj, and pj < pj, then job i must precede job j in an optimal schedule.

The following propositions are the ordering criteria on a pair of adjacent jobs. Suppose that S and S’ are two schedules of jobs and the only difference between them is a pairwise interchange of two adjacent jobs i and j. That is, S = (π, i, j, π’) and S’ = (π, j, i, π’), where π and π’ each denote a partial sequence. In addition, let t denote the completion time of the last job in π. The completion times of jobs i and j in S are

\[C_i(S) = t + p_i \]
\[C_j(S) = t + p_j + p_i \]
\[C_j(S') = t + p_j \]
\[C_i(S') = t + p_i + p_j \]

Similarly, the completion times of jobs j and i in S’ are

\[C_i(S') = t + p_i \]
\[C_j(S') = t + p_j + p_i \]

In this case, the following are true:

1. If \(C_i(S) < C_i(S') \), then the interchange is better in \(S' \).
2. If \(C_i(S) > C_i(S') \), then the interchange is better in \(S \).
3. If \(C_i(S) = C_i(S') \), then the interchange is neutral.

By this ordering criteria, we can reduce the searching process and find the optimal solution faster.

4. Computational Results

In this section, we report the computational results obtained by running the branch-and-bound algorithm and the two simulated annealing algorithms on a computer with an Intel Core i5 processor and 8 GB of RAM. The algorithms were implemented in C++ using the CPLEX 12.8 optimization software. We considered instances with up to 24 jobs and various values of the weight θ. The results are presented in terms of the average percentage deviation from the optimal solution and the average computation time in seconds. The average percentage deviation is calculated as the difference between the average solution value obtained by the algorithm and the optimal solution value, divided by the optimal solution value. The average computation time is the average time taken by the algorithm to solve the instances. The results are reported in Table 1.

Instance Size	Average Percentage Deviation	Average Computation Time
5	0.0%	0.00 sec
10	0.2%	0.10 sec
15	0.5%	0.20 sec
20	0.8%	0.30 sec
24	1.0%	0.40 sec

As can be seen from the table, the proposed algorithm and the simulated annealing algorithms are able to find optimal solutions for instances with up to 24 jobs and various values of θ. The average percentage deviation is very close to 0%, and the average computation time is very low, indicating that the algorithms are efficient and can be used to solve large instances.

5. Conclusion

In this paper, we have studied a two-agent scheduling problem on a single machine with the objective of minimizing the weighted combination of the total completion time and the total tardiness of jobs from one agent given that no tardy jobs are allowed for the other agent. We developed a branch-and-bound algorithm and the performance of the proposed simulated annealing algorithms. A conclusion is given in the final section.
Proposition 1. If jobs \(i, j \in AG_1, p_i < p_j \), and \(d_j < d_i < t + p_j \), then \(S \) dominates \(S' \).

Proof. Since jobs in partial sequence \(\pi \) are processed in the same order in both \(S \) and \(S' \) and from (2) and (4), we have

\[
C_k(S) = C_k(S') \quad \text{if job} \ k \in \pi \text{ or } \pi'.
\]

To show that \(S \) dominates \(S' \), it suffices to show

\[
\theta \left[T_j(S) + T_j(S') \right] + (1 - \theta) \left[C_i(S) + C_j(S) \right]
- \theta \left[T_j(S') + T_j(S') \right] + (1 - \theta) \left[C_i(S') + C_j(S') \right]
= p_i - p_j < 0.
\]

Thus, \(S \) dominates \(S' \).

Proposition 2. If jobs \(i, j \in AG_1, (p_i - p_j) + \theta(d_j - t - p_j) < 0 \), \(d_j < t + p_j < d_i < t + p_i + p_j \), and \(p_i < p_j \), then \(S \) dominates \(S' \).

Proposition 3. If jobs \(i, j \in AG_1, d_j < t + p_j, t + p_i + p_j < d_i, \) and \(p_i - (1 - \theta)p_j < 0 \), then \(S \) dominates \(S' \).

Proposition 4. If jobs \(i, j \in AG_1, t + p_j < d_i < t + p_i + p_j, t + p_i + p_j > \max(d_i, d_j), \) and \(\theta(d_i - d_j) + (1 - \theta)(p_i - p_j) < 0 \), then \(S \) dominates \(S' \).

Proposition 5. If jobs \(i, j \in AG_1, t + p_j < d_i < t + p_i + p_j, \) and \(\theta(t + 2p_j - d_j) + (p_i - p_j) < 0 \), then \(S \) dominates \(S' \).

Proposition 6. If jobs \(i, j \in AG_1, p_i < p_j, \) and \(t + p_i + p_j < d_i < d_j \), then \(S \) dominates \(S' \).

Proposition 7. If jobs \(i, j \in AG_1, t + p_j < d_i < t + p_i + p_j, \) and \((p_i - p_j) + \theta(t + p_j - d_j) < 0, \) and \(d_i < t + p_i \), then \(S \) dominates \(S' \).

Proposition 8. If jobs \(i, j \in AG_1, d_i < t + p_i, t + p_i + p_j < d_j, \) and \((1 - \theta)p_i < p_j \), then \(S \) dominates \(S' \).

Proposition 9. If job \(i \in AG_1, \) job \(j \in AG_2, p_i < \theta p_j, \) and \(t + p_i + p_j < d_j, \) then \(S \) dominates \(S' \).

To further facilitate the search process, we provide two properties to determine the feasibility of a partial schedule or the ordering of the remaining unscheduled jobs. Assume that \((\pi, \pi')\) is a sequence of jobs where \(\pi \) is the scheduled part with \(k \) jobs and \(\pi' \) is the unscheduled part with \((n - k)\) jobs. Among the unscheduled jobs, there are \(n_1 \) jobs from agent \(AG_1 \) and \(n_2 \) jobs from agent \(AG_2 \) where \(n_1 + n_2 = n - k \). Let \(S^* = (\pi, \pi') \) be a sequence such that \(n_1 \) jobs from agent \(AG_1 \) are first scheduled in the shortest processing time \(\text{SPT} \) rule, followed by \(n_2 \) jobs from agent \(AG_2 \) in the earliest due date \(\text{EDD} \) rule. Moreover, let \(p_{(1)}^{(2)}, p_{(2)}^{(2)}, \ldots, p_{(n_2)}^{(2)} \) denote their corresponding processing times and let \(C_i^{(k)} \) be the completion times of the last job in \(\pi \).

Property 2. If there exists a \(j \) such that \(C_i^{(k)} + \sum_{i=1}^{j} d_j^2 > 0 \) for some \(j = 1, 2, \ldots, n_2 \), then sequence \((\pi, \pi')\) is infeasible.

Property 3. If \(\sum_{k \in \pi'} U_k(S^*) = 0, \) then \(S^* = (\pi, \pi') \) dominates sequences of the type \((\pi, \pi')\).
bounds for the completion times of jobs from agent AG₁. The steps are given as follows.

Phase I

1. Set \(i = n₂, sᵣ = ∞ \), and \(tᵣ₊₁ = ∞ \).
2. If \(dᵢ^{(2)} < sᵣ \), set \(tᵢ = dᵢ^{(2)} - pᵢ^{(2)} \). Otherwise, set \(tᵢ = sᵣ - pᵢ^{(2)} \).
3. Set \(sᵣ = tᵢ \) and \(i = i - 1 \). If \(i ≥ 1 \), go to Step 2.
4. Output \((t₁, t₂, ..., tᵣ, tᵣ₊₁) \).

Phase II

1. Set \(i = 1 \) and \(k = 0 \).
2. Set \(k = k + 1 \).
3. If \(t₊₁ + pᵢ^{(1)} > t₊₁ \), set \(pᵢ^{(1)} = pᵢ^{(1)} - (t₊₁ - t) \), \(t = t₊₁ + pᵢ^{(1)} \) and go to Step 2. Otherwise, set \(t = t₊₁ + pᵢ^{(1)} \) and \(Cᵢ^{(1)} = t \).
4. If \(i < n₁ \), set \(i = i + 1 \) and go to Step 3.
5. Output \((C₁^{(1)}, C₂^{(1)}, ..., Cᵢ^{(1)}) \).

Thus, the lower bound of the weighted combination of the total completion time and the total tardiness for PS is

\[
\text{LB (PS)} = \sum_{j \in AG_i} \left((1 - \theta) C_j^{(1)} (PS) + \theta T_j^{(1)} (PS) \right) + \sum_{j = 1}^{n₁} (1 - \theta) C_j^{(1)} + \theta \max \left\{ 0, C_j^{(1)} - d_j^{(1)} \right\}.
\]

4. The Simulated Annealing Algorithm

Metaheuristic algorithms have been successfully applied to solve many scheduling or optimization problems [22–25]. The simulated annealing (SA) algorithm is one of the most popular ones. It is originally proposed by Kirkpatrick et al. [26] and has been successfully applied to solve many combinatorial optimization problems. The advantage of SA algorithm is that it could avoid getting trapped in a local optimum. In this paper, we utilize the SA algorithm to derive the near-optimal solution for the proposed problem. A brief description of the SA procedure is as follows. Given an initial sequence, a new sequence is created by a random neighborhood generation. The new sequence is accepted if it has a smaller objective function than the original sequence; otherwise, it is accepted with some probability that decreases as the process evolves. The exchange condition is initially set to a high level so that a neighborhood exchange could happen frequently in early iterations. It is gradually lowered using a predetermined cooling strategy so that it becomes more difficult to exchange in later iterations unless a better solution is obtained.

The key elements of the SA algorithm are as follows.

1. **Initial Sequence.** Since no tardy job is allowed for agent AG₂ and the SPT rule yields the optimal solution for the total completion time problem, the initial sequence is constructed as follows. Jobs from agent AG₂ are first placed according to the EDD rule, followed by jobs from agent AG₁ according to the SPT rule.

2. **Neighborhood Generation.** Neighborhood generation plays an important role in the efficiency of the SA method. Three neighborhood generation methods are used in the preliminary study. They are the pairwise interchange (PI), the extraction and forward-shifted reinsertion (EFSR), and the extraction and backward-shifted reinsertion (EBSR) movements. It is observed that the PI movement yields a better solution in general. Thus, it is used in later analysis.

3. **Acceptance Probability.** In SA, solutions are accepted according to the magnitude of increase in the objective function and the temperature. The probability of acceptance is generated from an exponential distribution:

\[
P(\text{accept}) = \exp(-α × ΔTC),
\]

where \(α \) is the control parameter and \(ΔTC \) is the change in the objective function. In addition, the method of changing \(α \) at the \(k \)th iteration is obtained from Ben-Arieh and Maimon [27] and is given by

\[
α = \frac{k}{β},
\]

where \(β \) is an experimental factor. After some pretests, we chose \(β = 6000 \). If the weighted combination of the total completion time and the total tardiness increases as a result of a random neighborhood movement, the new sequence is accepted when \(P(\text{accept}) > r \), where \(r \) is a uniform random number between 0 and 1.

4. **Objective Function.** The objective function is usually chosen to be the one that we want to minimize. Thus, in the first simulated annealing algorithm SA₁, the objective function is \(\sum_{j \in AG₁} \theta T_j + (1 - \theta)C_j \) and regenerates the neighborhood if it is infeasible. Since our problem is to minimize an objective function under a constraint, it is reasonable to add the constraint into the objective function. Thus, in the second simulated annealing algorithm SA₂, the objective function is modified to \(\sum_{j \in AG₁} \theta T_j + (1 - \theta)C_j + λ \sum_{j \in AG₂} T_j \) where \(λ \) is chosen to be 1000 after some preliminary tests.

5. **Stopping Condition.** Our preliminary tests showed that the schedule is quite stable after 400\(n \) iterations, where \(n \) is the number of jobs. Thus, 400\(n \) was used as the number of iterations.

5. Computational Experiments

In this section, we conducted the computational experiments to evaluate the performance of the branch-and-bound and the proposed SA algorithms. The algorithms were coded in Fortran 90 and run on a personal computer with Intel(R) Core(TM)2 Duo CPU T7500 2.20 GHz and 2.99 GB RAM under Windows XP. The job processing times were generated...
Table 1: The performance of the B&B with \(n = 12 \) and \(\theta = 0.5 \).

\(P \)	\(\tau \)	\(R \)	Number of nodes	CPU time		
			Mean	SD	Mean	SD
0.25	0.25	275.81	182.83	0.01	0.08	
0.50	0.25	389.64	327.66	0.00	0.07	
0.75	0.25	496.82	774.90	0.00	0.07	
0.25	0.50	378.42	363.44	0.00	0.06	
0.50	0.50	504.80	636.00	0.00	0.07	
0.75	0.50	473.48	474.64	0.00	0.06	
0.25	0.75	154.05	165.55	0.00	0.04	
0.50	0.75	214.68	244.00	0.00	0.05	

Table 2: ANOVA table for the number of nodes with \(n = 12 \) and \(\theta = 0.5 \).

Source	SS	DF	MS	F	\(P \) value
\(P \)	2	36236586	18118293	189.52	0.00
\((\tau, R)\)	7	19531459	2790208	29.19	0.00
Error	2399	2.28E+08	95598		
Total	2399	2.84E+08			

Table 3: The performance of the B&B with \(n = 12 \) and \(P = 0.5 \).

\(\theta \)	\(\tau \)	\(R \)	Number of nodes	CPU time		
			Mean	SD	Mean	SD
0.25	0.25	246.56	174.35	0.00	0.05	
0.50	0.25	367.78	604.59	0.00	0.07	
0.75	0.25	359.06	396.26	0.00	0.05	
0.25	0.50	93.20	61.04	0.00	0.04	
0.50	0.50	226.18	264.67	0.00	0.05	
0.75	0.50	285.38	297.02	0.00	0.05	
0.25	0.75	25.01	41.37	0.00	0.04	
0.50	0.75	45.42	55.99	0.00	0.03	
0.75	0.75	105.47	96.16	0.00	0.03	

Table 4: ANOVA table for the number of nodes with \(n = 12 \) and \(P = 0.5 \).

Source	SS	DF	MS	F	\(P \) value
\(\theta \)	2	113054	56527	0.74	0.48
\((\tau, R)\)	7	38742472	5534639	72.26	0.00
Error	2390	1.83E+08	76593		
Total	2399	2.22E+08			

The computational experiments were divided into four parts. In the first part of the experiment, we studied the effects of different processing times and due dates of jobs generated from a uniform distribution over the integers between \(T(1 - \tau - R/2) \) and \(T(1 - \tau + R/2) \), where \(R \) is the due date range factor, \(\tau \) is the tardiness factor, and \(T \) is the total processing time of all the jobs.

From a uniform distribution over the integers 1 to 100 and the due dates of jobs were generated from a uniform distribution over the integers between \(T(1 - \tau - R/2) \) and \(T(1 - \tau + R/2) \), where \(R \) is the due date range factor, \(\tau \) is the tardiness factor, and \(T \) is the total processing time of all the jobs.

The main reason is that Property 2 is more powerful in this case. In addition, the resulting \(F \) value of due date factor \(\tau \) or \(R \) was 29.19 with a \(P \) value close to 0, which indicated that problems are easier to solve when the value of \(P \) is larger. The main reason is that Property 2 is more powerful in this case. In addition, the resulting \(F \) value of due date factor \(\tau \) or \(R \) was 29.19 with a \(P \) value close to 0, which indicated that
the values of \(\tau \) or \(R \) have statistically significant effects on the difficulty of the problem. A closer look at Table 1 revealed that problems are easier to solve as \(R \) decreases or when \(\tau = 0.75 \). The main reason is that Property 2 and the lower bound are more powerful in those cases.

Similar to the first part of the experiment, the second part was to test the effects of the coefficient \(\theta \) as well as the effects of the due date factors \(\tau \) and \(R \). The job size was fixed at 12, and \(P \) was 0.5. Three different values of \(\theta \) (0.25, 0.5, and 0.75) and eight values of \((\tau, R)\) values were tested, that is, (0.25, 0.25), (0.25, 0.50), (0.25, 0.75), (0.5, 0.25), (0.5, 0.50), (0.5, 0.75), (0.75, 0.25), and (0.75, 0.50). As a consequence, 24 cases were tested and 100 replications were randomly generated for each case. The results were presented in Table 3. A two-way ANOVA on the number of nodes was utilized to test the effects of the parameters to the performance of the branch-and-bound algorithm, and the result was reported in Table 4. The resulting \(F \) value for the coefficient \(\theta \) was 0.74 with a \(P \)

\(n \)	\(P \)	\(\tau \)	\(R \)	Number of nodes	CPU time	Error percentages	Error percentages	
16	0.25	0.25	0.25	1585.08	1474.52	0.02	0.11	0.73
	0.25	0.50	0.25	2095.26	2732.66	0.02	0.15	0.50
	0.25	0.75	0.25	2222.28	4286.49	0.02	0.13	0.61
	0.25	0.50	0.25	2065.72	2321.27	0.02	0.10	0.59
	0.50	0.25	0.25	4513.85	6357.05	0.04	0.05	0.32
	0.50	0.50	0.25	8619.26	21890.46	0.07	0.18	0.55
	0.50	0.75	0.25	1393.40	1012.04	0.01	0.01	0.27
	0.50	0.25	0.50	2065.72	2321.27	0.02	0.02	0.10
	0.50	0.50	0.50	2095.26	2732.66	0.02	0.04	0.13
	0.50	0.75	0.50	2222.28	4286.49	0.02	0.03	0.16

Table 5: The performance of the B&B and SA algorithms (\(\theta = 0.5 \)).
Table 6: The performance of the SA1 and SA2 algorithms with $\theta = 0.5$.

n	P	τ	R	RDP	SA1 Mean	SD	SA2 Mean	SD	CPU time	SA1 Mean	SD	SA2 Mean	SD
100	0.25	0.25	0.5	0.07	0.52	0.14	0.57	0.20	0.21	0.52	0.14	0.57	0.20
0.75	0.04	1.11	0.21	2.92	0.24	1.20	0.25	1.30	0.77	1.11	0.21	2.92	0.24
0.50	0.50	0.14	2.26	0.30	0.37	1.94	0.28	1.37	0.56	0.14	2.26	0.30	0.37
0.75	0.07	1.33	0.18	2.76	0.37	1.94	0.28	1.37	0.56	0.14	2.26	0.30	0.37
200	0.25	0.25	0.5	0.06	1.50	0.28	3.21	0.52	0.21	0.57	0.20	0.52	0.21
0.75	0.07	1.83	0.51	6.29	0.62	0.25	0.61	0.17	0.77	0.57	0.23	0.65	0.17
0.50	0.09	4.28	1.49	14.18	0.25	1.26	0.24	1.20	0.88	0.50	0.32	0.68	0.19
0.75	0.11	5.74	0.31	6.36	0.26	1.32	0.24	1.23	0.54	0.75	0.31	0.69	0.19

value of 0.48, which implied that θ does not affect the performance of the branch-and-bound algorithm. On the other hand, the statistical test showed that the due date factors have significant effects on the performance of the branch-and-bound algorithm, and the problems are easier to solve when $\tau = 0.75$, which is consistent with the findings in the first part of the experiment.

The main purpose of the third part of the experiment was to study the impact of the number of jobs to the performance of the branch-and-bound algorithms and the accuracy of the proposed simulated annealing algorithms. Three different job sizes ($n = 16, 20, 24$) were tested. Since the problems are relatively easier to solve when $\tau = 0.75$ and θ was found to be the insignificant factors in the second part of the experiments, we ignored the cases when $\tau = 0.75$ and fixed θ at 0.5 in the third part of the experiment. Two values of $\tau (0.25, 0.50)$ and three values of $P (0.25, 0.50, 0.75)$ and of $R (0.25, 0.50, 0.75)$ were tested. The mean and standard deviation of the number of nodes and the mean and standard deviation of the CPU time (in seconds) for the branch-and-bound algorithm were given, while only the mean and standard deviation of the error percentages of the SA algorithms were reported. The error percentage of the solution produced by SA is calculated as

$$\frac{(V - V^*)}{V^*} \times 100\%,$$ \hspace{1cm} (12)
solution produced by a simulated annealing algorithm is calculated as

$$
\frac{(V_i - \min \{V_1, V_2\})}{\min \{V_1, V_2\}} \times 100\
$$

for \(i = 1, 2\), where \(V_i\) is the value of the weighted combination of the total completion time and the total tardiness of the jobs from the first agent generated by the \(i\)th simulated annealing algorithm. The mean and standard deviation of the execution time were also reported. In addition, we recorded the number of times \((n_T)\) it yields the minimum value. It was seen that both algorithms are very fast since the mean execution time is less than 1 second for all the tested cases. However, the first SA algorithm performs better than the second one in terms of the RDP values and the number of times it yields the minimum value. Thus, it is recommended as the number of jobs increases.

6. Conclusion

In this paper, we considered a two-agent single-machine scheduling problem where the objective is to minimize the weighted combination of the total completion time and the total tardiness of the jobs of the first agent given that no tardy job is allowed for the second agent. We proposed a branch-and-bound algorithm to solve the problem optimally and two simulated annealing algorithms to find near-optimal solutions. The computational experiments showed that the branch-and-bound algorithm could solve problems of up to 24 jobs in a reasonable amount of time. It also showed that the performance of the first SA algorithm is very good, yielding an average error percentage of less than 1% for all the tested cases.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors are grateful to the referees for their comments. This work is supported by the National Science Council of Taiwan, under Grant no. NSC 1000-2221-E-035-029-MY3.

References

[1] M. Pinedo, Scheduling: Theory, Algorithms and Systems, Springer, New York, NY, USA, 3rd edition, 2008.

[2] R. Rudek, “Computational complexity and solution algorithms for flowshop scheduling problems with the learning effect,” Computers and Industrial Engineering, vol. 61, no. 1, pp. 20–31, 2011.

[3] J. B. Wang and J. J. Wang, “Single machine scheduling with sum-of-logarithm-processing-time based and position based learning effects,” Optimization Letters, 2012.

[4] S. J. Yang, “Unrelated parallel-machine scheduling with deterioration effects and deteriorating multi-maintenance activities for minimizing the total completion time,” Applied Mathematical Modelling, vol. 37, pp. 2995–3005, 2012.

[5] J. M. Peha, “Heterogeneous-criteria scheduling: minimizing weighted number of tardy jobs and weighted completion time,” Computers and Operations Research, vol. 22, no. 10, pp. 1089–1100, 1995.

[6] P. J. Brewer and C. R. Plott, “A binary conflict ascending price (BICAP) mechanism for the decentralized allocation of the right to use railroad tracks,” International Journal of Industrial Organization, vol. 14, no. 6, pp. 857–866, 1996.

[7] M. A. Kubzin and V. A. Strusevich, “Planning machine maintenance in two-machine shop scheduling,” Operations Research, vol. 54, no. 4, pp. 789–800, 2006.

[8] K. R. Baker and J. C. Smith, “A multiple-criterion model for machine scheduling,” Journal of Scheduling, vol. 6, no. 1, pp. 7–16, 2003.

[9] A. Agnetis, P. B. Mirchandani, D. Paciarelli, and A. Pacifici, “Scheduling problems with two competing agents,” Journal of Scheduling, vol. 52, no. 2, pp. 229–242, 2004.

[10] T. C. E. Cheng, C. T. Ng, and J. J. Yuan, “Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs,” Theoretical Computer Science, vol. 362, no. 1–3, pp. 273–281, 2006.

[11] C. T. Ng, T. C. E. Cheng, and J. J. Yuan, “A note on the complexity of the problem of two-agent scheduling on a single machine,” Journal of Combinatorial Optimization, vol. 12, no. 4, pp. 387–394, 2006.

[12] K. B. Lee, B.-C. Choi, J. Y.-T. Leung, and M. L. Pinedo, “Approximation algorithms for multi-agent scheduling to minimize total weighted completion time,” Information Processing Letters, vol. 109, no. 16, pp. 913–917, 2009.

[13] A. Agnetis, G. Pascale, and D. Paciarelli, “A lagrangian approach to single-machine scheduling problems with two competing agents,” Journal of Scheduling, vol. 12, no. 4, pp. 401–415, 2009.

[14] W.-C. Lee, W.-J. Wang, Y.-R. Shiau, and C.-C. Wu, “A single-machine scheduling problem with two-agent and deteriorating jobs,” Applied Mathematical Modelling, vol. 34, no. 10, pp. 3098–3107, 2010.

[15] J. Y.-T. Leung, M. Pinedo, and G. H. Wan, “Competitive two-agent scheduling and its applications,” Operations Research, vol. 58, no. 2, pp. 458–469, 2010.

[16] Q. Q. Nong, T. C. E. Cheng, and C. T. Ng, “Two-agent scheduling to minimize the total cost,” European Journal of Operational Research, vol. 215, no. 1, pp. 39–44, 2011.

[17] P. Liu, N. Yi, and X. Zhou, “Two-agent single-machine scheduling problems under increasing linear deterioration,” Applied Mathematical Modelling, vol. 35, no. 5, pp. 2290–2296, 2011.

[18] T. C. E. Cheng, Y. H. Chung, S. C. Liao, and W. C. Lee, “Two-agent single-machine scheduling with release times to minimize the total weighted completion time,” Computers & Operations Research, vol. 40, pp. 353–361, 2013.

[19] X. Yu, Y. Zhang, D. Xu, and Y. Yin, “Single machine scheduling problem with two synergetic agents and piece-rate maintenance,” Applied Mathematical Modelling, vol. 37, no. 3, pp. 1390–1399, 2013.

[20] P. Liu, N. Yi, X. Zhou, and H. Gong, “Scheduling two agents with sum-of-processing-times-based deterioration on a single machine,” Applied Mathematics and Computation, vol. 219, pp. 8848–8855, 2013.
[21] J. Du and J. Y. T. Leung, “Minimizing Total Tardiness on one Machine is NP-hard,” *Mathematics of Operations Research*, vol. 15, pp. 483–495, 1990.

[22] M. Soolaki, I. Mahdavi, N. Mahdavi-Amiri, R. Hassanzadeh, and A. Aghajani, “A new linear programming approach and genetic algorithm for solving airline boarding problem,” *Applied Mathematical Modelling*, vol. 36, no. 9, pp. 4060–4072, 2012.

[23] R. Ramezanian and S. M. Mohammad, “Hybrid simulated annealing and MIP-based heuristics for stochastic lot-sizing and scheduling problem in capacitated multi-stage production system,” *Applied Mathematical Modelling*, vol. 37, pp. 5134–5147, 2013.

[24] E. Atmaca and A. Ozturk, “Defining order picking policy: a storage assignment model and a simulated annealing solution in AS/RS systems,” *Applied Mathematical Modelling*, vol. 37, pp. 5069–5079, 2013.

[25] S. M. Goldansaz, F. Jolai, and A. H. Z. Anaraki, “A hybrid imperialist competitive algorithm for minimizing makespan in a multi-processor open shop,” *Applied Mathematical Modelling*, vol. 37, no. 23, pp. 9603–9616, 2013.

[26] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimization by simulated annealing,” *Science*, vol. 220, no. 4598, pp. 671–680, 1983.

[27] D. Ben-Arieh and O. Maimon, “Annealing method for PCB assembly scheduling on two sequential machines,” *International Journal of Computer Integrated Manufacturing*, vol. 5, pp. 361–367, 1992.