Susceptibility to calcium dysregulation during brain aging

Ashok Kumar*, Karthik Bodhinathan and Thomas C. Foster

Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA

INTRODUCTION

The Ca\(^{2+}\) ion is a central signaling molecule in numerous cellular functions including apoptosis, energy production, gene regulation, cell proliferation, membrane excitability, synaptic transmission and plasticity. Due to the ubiquitous nature of Ca\(^{2+}\) signaling, Ca\(^{2+}\) is one of the most highly regulated ions with the concentration inside the cell maintained at a level 10,000 times lower than the concentration in the extracellular space (Berridge et al., 2000; Rizzuto, 2001; Orrenius et al., 2003). Accordingly, any change in Ca\(^{2+}\) regulating mechanisms, unless compensated by another mechanism, will result in an alteration in cell function.

The Ca\(^{2+}\) dysregulation hypothesis of brain aging and Alzheimer’s disease formulated in the 1980s was based on discrete observations of alterations in processes that are regulated by Ca\(^{2+}\) (Landfield and Piltier, 1984; Gibson and Peterson, 1987; Khachaturian, 1989). Over 20 years of research has accumulated substantial evidence for alterations in Ca\(^{2+}\) homeostasis in contributing to cellular senescence. However, no single mechanism for Ca\(^{2+}\) dysregulation has been found. Rather the causes and consequences of Ca\(^{2+}\) dysregulation vary across the nervous system. As we increase our sophistication for identifying molecular and cellular processes, we are likely to find complex patterns of impaired/spared cellular function related to multiple Ca\(^{2+}\) regulating mechanisms. Several recent reviews have detailed how different mechanisms for Ca\(^{2+}\) dysregulation contribute to changes in cell excitability (Disterhoft and Oh, 2006) and synaptic plasticity (Foster, 2007) in the hippocampus. Conversely, in other regions of the nervous system, changes in Ca\(^{2+}\) regulation may represent compensation to delay physiological aging (Buchholz et al., 2007; Murchison and Griffith, 2007), suggesting that cell specific differences in the expression of Ca\(^{2+}\) regulating mechanisms may contribute to regional differences in the rate of brain aging. Similarly, cell specific differences in Ca\(^{2+}\) regulating mechanisms may interact with neurodegenerative disorders to determine the pattern of cell death within the brain (Morrison et al., 1998; LaFerla, 2002; Mattson, 2007; Chan et al., 2009; Naidoo, 2009). Thus, mutations for genes involved in one aspect of Ca\(^{2+}\) regulation may result is pathogenesis in regions which are more susceptible to other forms of Ca\(^{2+}\) dysregulation. In this review, we focus on cell specificity in the operation of a subset of Ca\(^{2+}\) regulatory mechanisms during aging and how this specificity might relate to the loss or preservation of cell function.

Ca\(^{2+}\)-signaling depends principally on a rapid and transient increase in intracellular Ca\(^{2+}\) concentration through influx of Ca\(^{2+}\) from several sources. In most cells, multiple mechanisms exist whereby elevation in intracellular Ca\(^{2+}\) concentrations may occur. The major sources of intracellular Ca\(^{2+}\) include Ca\(^{2+}\) influx through ligand-gated glutamate receptors, such as N-methyl-D-aspartate (NMDA) receptor (NMDAR) or various voltage-dependent Ca\(^{2+}\) channels (VDCCs), as well as the release of Ca\(^{2+}\) from intracellular stores (Ghosh et al., 1994; Geiger et al., 1995; Berridge et al., 2000). The relative contribution of these sources will depend on the cell type: neuron, astrocyte, oligodendrocyte or microglia. In the case of neurons, Ca\(^{2+}\) sources will vary depending on their size, transmitter system, and location in neural circuits (i.e., excitatory or inhibitory). Finally, we discuss age-related changes to the other aspect of Ca\(^{2+}\) homeostasis, the Ca\(^{2+}\) buffering and extrusion mechanisms (Figure 1).

NMDA RECEPTORS

NMDARs are ionotropic non-selective cationic glutamate receptors, which play a central role in the rapid regulation of synaptic plasticity. NMDARs are hetero-tetrameric protein complexes composed of two classes of subunits, the ubiquitously expressed and essential subunit (NR1) and a modulatory subunit (NR2A-NR2D) (Moriyoshi et al., 1991; Kutsuwada et al., 1992; Meguro et al., 1992; Monyer et al., 1992; Cull-Candy et al., 2001). The activation of NMDAR requires binding of a ligand (glutamate), membrane depolarization (to remove the Mg\(^{2+}\) block of the channel), and binding of a co-agonist, glycine. Since NMDAR is a non-selective cation channel, its activation and opening leads to simultaneous...

Keywords: calcium homeostasis, aging, brain, hippocampus, N-methyl-D-aspartate receptor, voltage-dependent calcium channels, intracellular calcium stores, cognitive impairments
influx of Na\(^+\) and Ca\(^{2+}\) ions (Chen et al., 2005). However, between the two predominant ionotopic glutamate receptors subtypes, the NMDARs are the most permeable to Ca\(^{2+}\) ions (Garaschuk et al., 1996).

There is considerable evidence to indicate that aging is associated with a decline in NMDAR function within brain regions involved in higher brain function including learning and memory (Gonzales et al., 1991; Pittaluga et al., 1993; Barnes et al., 1997; Magnusson, 1998; Eckles-Smith et al., 2000; Gore et al., 2002; Liu et al., 2008b; Zhao et al., 2009). Perhaps the strongest evidence for a reduction in NMDAR function comes from physiological studies which indicate that the NMDAR mediated excitatory post synaptic potentials in the Schaeffer collateral pathway of the hippocampus are reduced by approximately 50\% in aged animals (Barnes et al., 1997; Eckles-Smith et al., 2000; Bodhinathan et al., 2007). However, age-related changes in the amplitude of NMDA-evoked responses were not observed in dissociated cortical neurons suggesting the possibility of regional specificity in the loss of NMDAR function (Kuehl-Kovarik et al., 2003). Several studies indicate a decrease in the level of NMDAR protein expression in the hippocampus during aging (Bonhaus et al., 1990; Kito et al., 1990; Miyoshi et al., 1991; Tamaru et al., 1991; Wenk et al., 1991; Magnusson, 1995; Magnusson et al., 2006; Billard and Rouaud, 2007; Das and Magnusson, 2008; Liu et al., 2008b; Zhao et al., 2009); further, the decrease has primarily been localized to region CA1 (Magnusson and Cotman, 1993; Gazzaley et al., 1996; Magnusson, 1998; Wenk and Barnes, 2000). These studies report reduced binding of \([3H]\) glutamate (agonist site), \([3H]\) glycine (NR1 site), \([3H]\) CPP (a competitive antagonist to the \(\alpha\)-glutamate binding site), and \([3H]\) MK-801 (an open channel blocker) in the hippocampus and cerebral cortex of aged rats. However, others have reported no age-related change in antagonist binding (Kito et al., 1990; Miyoshi et al., 1991; Araki et al., 1997; Shimada et al., 1997) or an increased MK-801 binding in animals with learning and retention deficits (Ingram et al., 1992; Topic et al., 2007). It is interesting to note that MK-801 binds to the hydrophobic channel domain of NMDAR, exclusively labeling mitochondria, and lysosomes act as a Ca\(^{2+}\) buffering system, releasing and sequestering Ca\(^{2+}\). Further, the model depicts Ca\(^{2+}\) buffering and extrusion pathways (red dashed arrows), involving Na\(^{+}/Ca\(^{2+}\) exchanger (NCX) and plasma membrane Ca\(^{2+}\) ATPase (PMCA), sarcoplasmic reticulum Ca\(^{2+}\) ATPases (SERCA), nicotinic acid adenine dinucleotide phosphate (NAADP), various Ca\(^{2+}\) binding proteins (CBP), Mitochondrial permeability transition pore (mPTP) and mitochondrial Na\(^{+}/Ca\(^{2+}\) exchanger (mNCX) and secretory pathway Ca\(^{2+}\)-ATPases (SPCA) contribute to Ca\(^{2+}\) regulation.

FIGURE 1 | Ca\(^{2+}\) homeostasis in the neuron. Model depicting various Ca\(^{2+}\) sources, sequestering, buffering mechanisms, and Ca\(^{2+}\) signaling events in a healthy neuron. Indicated are the voltage-dependent Ca\(^{2+}\) channels (VDCC), N-methyl-D-aspartate receptor (NMDAR), and G protein-coupled receptor (GPCR) involved in Ca\(^{2+}\) (red balls) influx into the cytosol (blue dashed arrows). The release of Ca\(^{2+}\) into the cytosol also occurs from the intracellular Ca\(^{2+}\) stores (ICS) through inositol (1,4,5)-trisphosphate receptor (IP\(_3\)R) and ryanodine receptors (RyR). Organelles, including the endoplasmic reticulum (ER), mitochondria, and lysosomes act as a Ca\(^{2+}\) buffering system, releasing and sequestering Ca\(^{2+}\). Further, the model depicts Ca\(^{2+}\) buffering and extrusion pathways (red dashed arrows), involving Na\(^{+}/Ca\(^{2+}\) exchanger (NCX) and plasma membrane Ca\(^{2+}\) ATPase (PMCA), sarcoplasmic reticulum Ca\(^{2+}\) ATPases (SERCA), nicotinic acid adenine dinucleotide phosphate (NAADP), various Ca\(^{2+}\) binding proteins (CBP), Mitochondrial permeability transition pore (mPTP) and mitochondrial Na\(^{+}/Ca\(^{2+}\) exchanger (mNCX) and secretory pathway Ca\(^{2+}\)-ATPases (SPCA) contribute to Ca\(^{2+}\) regulation.
and NR2B subunits can rapidly regulate surface expression and localization of these receptors (Gardoni et al., 2001; Chung et al., 2004; Hallett et al., 2006; Lin et al., 2006). For example, phosphorylation of serine residues within the alternatively spliced cassettes of the C-terminal tail of NR1 promotes receptor trafficking from the endoplasmic reticulum (ER) and insertion into the postsynaptic membrane (Scott et al., 2001; Carroll and Zukin, 2002). Finally, increased phosphatase activity has been linked to the internalization of NMDARs (Snyder et al., 2005). Thus, the kinases and phosphatases act like molecular switches which increase or decrease NMDAR function, respectively. Interestingly, aging is associated with a shift in the balance of kinase/phosphatase activity, favoring an increase in the phosphatase activity (Norris et al., 1998a; Foster et al., 2001; Foster, 2007). Thus alterations in the phosphorylation state of the NMDAR could underlie the decrease in the NMDAR function during aging (Coultrap et al., 2008).

NMDAR function can be altered by the oxidation and reduction of sulphydryl moieties on their structure. Previous research demonstrates that oxidizing agents like 5,5′-dithiobis(2-nitrobenzoic acid) (Aizenman et al., 1989), hydroxyl radicals generated by xanthine/xanthine oxidase (Aizenman, 1995) and oxidized glutathione (Sucher and Lipton, 1991) decrease NMDAR function in the neuronal cell cultures. The decrease in NMDAR function under oxidizing conditions is thought to result from the formation of disulfide bonds on the sulphydryl group containing amino acid residues in NMDARs (Aizenman et al., 1990; Sullivan et al., 1994; Choi et al., 2001). The aging brain is associated with an increase in the levels of oxidative stress and/or a decrease in redox buffering capacity (Foster, 2006; Poon et al., 2006; Parihar et al., 2008), conditions that should promote a decrease in NMDAR function.

Finally, NMDAR function in neurons is regulated by local supporting cells, astrocytes and microglia, thus acting as an additional possible mechanism for the age-related changes to NMDAR function. Astrocytes are a major source of δ-serine an endogenous co-agonist for the NMDAR, which binds to the glycine site (Schell et al., 1995). An age-related loss of δ-serine is observed in the hippocampus and cortex of rats (Williams et al., 2006). Furthermore, the age-related decline in the NMDAR function is rescued by δ-cycloserine (Billard and Rouaud, 2007). Microglia...
contribute to the brain’s immune system and activated microglia can release d-serine (Wu and Barger, 2004; Wu et al., 2004). In accordance with this idea, recent reports suggest that microglia can potentiate the NMDAR-mediated synaptic responses in cortical neurons (Moriguchi et al., 2003; Hayashi et al., 2006). Markers of neuroinflammation increase with age and in certain neurodegenerative disorders. Finally, there is evidence for a feedback reduction in NMDARs due to excess synaptic glutamate activity (Norris et al., 1998a; Norris et al., 2002; Moriguchi et al., 2003; Hayashi et al., 2006). In light of the interaction of NMDARs and microglia, it is important to consider the possibility that the decrease in NMDAR function might represent a compensatory neuroprotective mechanism associated with inappropriate receptor activity or increased Ca²⁺ due to other mechanisms (see below). Thus, impaired NMDAR-dependent synaptic plasticity and memory decline may be epiphenomena due to processes for cell preservation (Foster, 1999). Indeed, over expression of NR2B subunits improves synaptic plasticity and memory in aged mice (Cao et al., 2007) indicating that increased NMDAR function can ameliorate physiological aging. However, cognition and synaptic plasticity are also improved by treating with the low-affinity voltage-dependent NMDAR channel blocker, memantine (Barnes et al., 1996; Norris and Foster, 1999; Pieta Dias et al., 2007), possibly by reducing inappropriate NMDAR activity (Rosi et al., 2006; Matute, 2007; Chang and Gold, 2008). In the case of neurodegenerative disease, decreased expression of NR1 mRNA has been observed in brain regions that are most at risk for cell death, including Huntington’s disease, wherein a decrease in NR1 mRNA expression is observed in the neostriatum (Arzberger et al., 1997). Furthermore, there is evidence for decreased NMDA receptors expression in the hippocampus during the early stages of Alzheimer’s disease (Jacob et al., 2007; Mishizen-Eberz et al., 2004). Thus, it will be important for future research to determine whether enhancing or inhibiting NMDAR function will be beneficial in preserving memory during normal aging and in the face of neurodegenerative disease.

VOLTAGE-DEPENDENT Ca²⁺ CHANNELS

VDCCs are ion channels in the plasma membrane, which open in response to membrane depolarization and allow Ca²⁺ influx into the cell from the extracellular space. VDCCs, which are heteromultimers and are composed of an α subunit and three auxiliary subunits, αδ, β₁, and γ (Jones, 1998; Catterall, 2000; Kang et al., 2001; Dolphin, 2006), provide one of the most effective sources of Ca²⁺ influx into the neuron (Bertolino and Llinás, 1992). The pore forming α subunit (190 kDa) is the primary subunit necessary for channel functioning. Each α subunit has four homologous domains (I–IV), which are composed of six transmembrane helices. The fourth transmembrane helix of each domain contains the voltage-sensing motif. Two classes of VDCCs have been described; high-voltage-gated and low-voltage-gated channels, which are activated by strong and weak depolarization, respectively. On the basis of differential biophysical properties and sensitivity to pharmacological agents, high-voltage-gated channels are further classified into the L (Ca²⁺.1.1-3), P/Q (Ca²⁺.2.1), and N (Ca²⁺.2.2) type channels. The low-voltage-gated channels include the T (Ca²⁺.3.1) type channels; in addition, an intermediate-voltage-gated channel, R (Ca²⁺.2.3) type is expressed throughout the central nervous system (Veselovskii and Fedulova, 1983; Carbone and Lux, 1984; Fedulova et al., 1985; Nilius et al., 1985; Nowycky et al., 1985; Bean, 1989; Soong et al., 1993).

In hippocampal CA1 pyramidal neurons of the rat, the whole-cell L-type Ca²⁺ currents are increased (Campbell et al., 1996; Brewer et al., 2009) and an increase in the density of functional L-type VDCCs have been reported for aged animals (Thibault and Landfield, 1996). The idea that L-channels are increased in the hippocampus during senescence is also supported by mRNA and protein expression studies indicating an increase in Ca²⁺.1.3 (Herman et al., 1998; Chen et al., 2000; Veng et al., 2003). Furthermore, posttranslational changes including the phosphorylation state of the Ca²⁺.1.2 channel could contribute to age-associated increase in activity (Norris et al., 1998a; Norris et al., 2002; Davare and Hell, 2003). However, L-channel associated intracellular Ca²⁺ transients may show region specific variations within the hippocampus itself. For example, a recent report indicates that CA3 interneurons in aged hippocampus exhibit no alterations in intracellular Ca²⁺ transients at resting state; however larger Ca²⁺ transients are evident in the presence of external excitatory drive produced by kainate application (Lu et al., 2009). Several cellular biomarkers of senescent physiology in the hippocampus are dependent on VDCC function and L-type channel blockers can reverse age-related changes in the magnitude of the afterhyperpolarization and spike frequency adaptation (Moyer Jr. et al., 1992; Disterhoff et al., 1996; Norris et al., 1998b; Kumar and Foster, 2002). In turn, the reduction in the afterhyperpolarization permits increase activation of NMDAR, to shift the threshold for induction of synaptic plasticity (Shankar et al., 1998; Norris et al., 1998b). It should be noted that L-channel blockade does not completely ameliorate age-related differences. The afterhyperpolarization amplitude is reduced but not to the levels observed in young animals (Power et al., 2002). In aged rats, under L-channel blockade, the induction of long-term potentiation is facilitated for low level synaptic activation, which would not induce synaptic modification in young animals (Norris et al., 1998b). Regardless, L-channel blockers appear to improve hippocampal-dependent learning and memory in aged animals (Deyo et al., 1989; Straube et al., 1990; Thompson et al., 1990; Levy et al., 1991; Levere and Walker, 1992; Moyer Jr. et al., 1992; Quartermain et al., 1993; Kowalska and Disterhoft, 1994; Solomon et al., 1995; Woodruff-Pak et al., 1997; Quevedo et al., 1998; Veng et al., 2003; Rose et al., 2007), non-human primates (Sandin et al., 1990), and humans (Ban et al., 1990; Lopez de Armentia and Sah, 2004; Trompet et al., 2008).

It is unclear exactly why L-channels increase in the hippocampus with advanced age. The increase in L-channel function appears to be specific to hippocampal pyramidal cells. The expression of L-channels in the cortex does not change or is decreased by age (Tanaka and Ando, 2001; Iwamoto et al., 2004), and peak currents for high-voltage-gated channels are not increased in the basal forebrain (Murchison and Griffith, 1996). The expression of L-channels in the hippocampus is regulated by the sex steroid estrogen, such that an increased expression is associated with the decline of the hormone during aging (Foster, 2005) Finally, it is possible that the increased L-channel function, increased afterhyperpolarization, and reduction in cell excitability represent compensatory
mechanisms associated with Ca²⁺ dysregulation during senescence, which attempts to limit depolarization and further influx of Ca²⁺ through NMDARs (Foster, 1999).

In direct contrast to the hippocampus, altered Ca²⁺ homeostasis in basal forebrain neurons of rats appears to result from the inactivation of high-voltage-gated currents and an increase in Ca²⁺ from T-type, low-voltage-gated channels (Murchison and Griffith, 1995; Murchison and Griffith, 1996; Murchison and Griffith, 2007). T-channels have been localized on dendrites (Magee and Johnston, 1995a,b; Christie et al., 1996a,b; Yasuda et al., 2003) where they likely influence synaptic function (Komatsu and Iwakiri, 1992; Yoshimura et al., 2008; Uebele et al., 2009). Interestingly, the age-related shift in T-type channels in the basal forebrain appears to be specific to cholinergic neurons (Han et al., 2005) and may influence the magnitude of the afterhyperpolarization (Murchison et al., 2009). The influence of these changes on cell function and cognition remain to be determined. Similarly, much less is known concerning other high-voltage-gated channels and aging. N-channels may be decreased in the cortex with age (Tanaka and Ando, 2001). Animal models suggest that altered P/Q-type channel expression could contribute to age-related changes in cognition and motor function (Alonso et al., 2008). There is evidence that the expression of P/Q splice variants changes with age in different brain regions (Tanaka and Ando, 2001; Iwamoto et al., 2004; Chang et al., 2007; Martella et al., 2008). Thus, more research is required in order to determine how Ca²⁺ channels other than the L-channel contribute to Ca²⁺ regulation during aging.

Mounting evidence indicates that Ca²⁺ channels in the membrane contribute to the specificity of cell loss and the progression of Parkinson’s and Alzheimer’s disease. For example, in the substantia nigra, a high level of Ca₃.1.3 L-type channel activity contributes to the discharge pattern of dopamine pacemaker neurons. This activity results in a large Ca²⁺ influx which is buffered by intracellular stores. However, in Parkinson’s disease, disruption of this buffering process due to genetic or environmental stress results in toxic levels of Ca²⁺ leading to cell death (Chan et al., 2009). Furthermore, with advanced age, these neurons increase their reliance on L-channel activity to regulate pacemaker activity, increasing their liability (Chan et al., 2007). Thus, the activity of the L-channel provides the specificity for cell loss in Parkinson’s disease.

Temporal lobe regions, including the hippocampus, exhibit marked cell loss associated with Alzheimer’s disease. The beta amyloid protein of Alzheimer’s disease, increases cytosolic Ca²⁺, impairs synaptic plasticity, and increases cell death through an L-channel-dependent mechanism (Freir and Herron, 2003; Fu et al., 2006; Lopez et al., 2008). Polymorphism of a recently identified Ca²⁺ channel has been linked to late-onset Alzheimer’s disease (Dreses-Werringloer et al., 2008). Interestingly, this gene is predominantly expressed in brain regions, such as the hippocampus, which exhibit early and profound cell loss. Together, the results indicate that Ca²⁺ channels provide a point of cross talk between age-related Ca²⁺ dysregulation and signaling in neurodegenerative diseases resulting in selectivity of cell loss.

INTRACELLULAR Ca²⁺ STORES

In addition to Ca²⁺ influx from outside the cell, intracellular Ca²⁺ stores (ICS) play a major role in regulating larger Ca²⁺ signals (Mattson et al., 2000; Ly and Verstreken, 2006). Organelles, including the ER, mitochondria, and lysosomes act as Ca²⁺ buffering systems – releasing and sequestering Ca²⁺ (Duchen, 2000; Nicholls and Budd, 2000; Toescu et al., 2000; Solovyova et al., 2002; Toescu and Verkhratsky, 2004; McGuinness et al., 2007; Murchison and Griffith, 2007). Thus, there are at least two possible mechanisms by which ICS regulate Ca²⁺ homeostasis: (1) release of stored Ca²⁺ to enhance Ca²⁺ signals and (2) removing cytosolic Ca²⁺ following a large influx.

Two pathways control the release of Ca²⁺ from the ER, Ca²⁺-induced Ca²⁺ release (CICR) and the inositol (1,4,5)-trisphosphate (IP₃) pathway activated by G protein-coupled receptors (GPCR). GPCRs activate phospholipase C (PLC) to form diacylglycerol and IP₃ which act on IP₃ receptors (IP₃Rs) to release Ca²⁺ from ICS. While several studies indicate age-related changes in GPCRs or PLC (Roth, 1995; Mizutani et al., 1998; Nicolle et al., 1999), we will focus on Ca²⁺ release induced by IP₃R activation. Previous reports have observed a decrease in IP₃R in several brain regions (Burnett et al., 1990; Iwge and Ning, 1993; Martini et al., 1994; Simonyi et al., 1998). Despite a general decrease in the receptor, the literature suggests that a decrease in IP₃ induced Ca²⁺ release is either limited to cortical cells (Burnett et al., 1990) or no age-related change is observed (Stutzmann et al., 2006). The disconnect between a reduction in IP₃R expression and the apparent absence of an effect of age on IP₃-induced Ca²⁺ release may be due to increased oxidation of the IP₃ receptors which has been demonstrated to increase IP₃ function in brain cells (Peuchen et al., 1996; Long et al., 2009). As such, reduced expression may act as compensation for an altered redox state, in order to maintain proper IP₃ signaling.

CICR is a Ca²⁺ amplification process that is initiated by influx of Ca²⁺ through membrane channels or from ICS through the activation of IP₃Rs. The intracellular Ca²⁺ binds ryanodine receptors (RyRs) to release additional Ca²⁺ into the cytosol from the ER. Accumulating evidence supports a role of altered CICR in contributing to altered physiology of normal aging. The increased involvement of RyRs does not appear to be due to increased RyR expression (Martini et al., 1994). Rather, an age-related increase in oxidative stress and a shift in the intracellular redox state may enhance the responsiveness of RyRs to intracellular Ca²⁺ (Hidalgo et al., 2004; Bull et al., 2007; Gokulrangan et al., 2007). Thus, like IP₃Rs, a shift in the redox state may provide a general aging mechanism to promote Ca²⁺ release from RyRs. Again, the contribution of this source of Ca²⁺ to Ca²⁺ dysregulation is cell specific and will depend on other Ca²⁺ regulating mechanisms. For example, CICR is decreased during senescence in peripheral synapses, due in part to decreased expression of RyRs (Buchholz et al., 2007) and a decrease in the amplitude of Ca²⁺ release in basal forebrain neurons is linked to enhanced mitochondrial buffering (Murchison and Griffith, 1999).

Increased CICR appears to contribute to altered physiology in hippocampal neurons (Kumar and Foster, 2004; Kumar and Foster, 2005; Gant et al., 2006). As noted above, hippocampal cells exhibit increased Ca²⁺ from L-type Ca²⁺ channels, which could provide a source of Ca²⁺ to fill ICS and activate CICR from ICS. Thus, the contribution of CICR to aging physiology in hippocampal cells may be due to due to a summation of various mechanisms.

Similarly, RyRs and IP₃Rs are likely to interact with other Ca²⁺ regulating mechanisms and neurodegenerative diseases to contribute to cell specific vulnerability. The protein presenilin interacts
with several signaling pathways including Ca2+ signaling, contributing to the neurotoxicity and the pathology of familial Alzheimer’s disease (Chan et al., 2000; Smith et al., 2005; Stutzmann, 2007). Presenilin and beta amyloid have been associated with increased RyR function (Sopnet et al., 2006; Stutzmann, 2007; Hayrapetyan et al., 2008). The influence of increased RyR activity on cell function (e.g., synaptic transmission) in the hippocampus may initially be masked by compensatory mechanisms and emerge with age and the disruption of other Ca2+ regulatory mechanisms (Chakraborty et al., 2009). Polyglutamin expansion of the protein huntingtin in medium spiny neurons of the striatum results in Huntington’s disease, and this protein enhances activation of IP\textsubscript{3}Rs resulting in uncontrolled Ca2+ release and death of medium spiny neurons (Tang et al., 2003; Tang et al., 2005).

Recent studies suggest the possibility that lysosomes may act as a Ca2+ storage organelle (Lee, 2004; McGuinness et al., 2007; Brailoiu et al., 2009b; Pandey et al., 2009). Release of Ca2+ from lysosomes involves the pyridine nucleotide, nicotinic acid adenine dinucleotide phosphate (NAADP) which can stimulate a rise in cytosolic Ca2+ from bafilomycin-sensitive Ca2+ stores (Brailoiu et al., 2005, 2009a). There are a few studies, which have investigated role of NAADP induce Ca2+ release in the regulation of neuronal Ca2+ homeostasis and Ca2+-dependent processes. Findings from recent studies provide evidence for the presence of NAADP-sensitive Ca2+ stores in neurons (Brailoiu et al., 2009b; Pandey et al., 2009) and NAADP mediated Ca2+ release can act to increase neurotransmitter release (Brailoiu et al., 2001; Chameau et al., 2001; McGuinness et al., 2007). Furthermore, pharmacological manipulations indicate that NAADP is a likely candidate for regulating Ca2+ signaling in astrocytes (Singaravelu and Deitmer, 2006). It is unclear whether this source of Ca2+ regulation is altered by aging; however, the aging brain is characterized by increased lysosomal markers and decreased lysosomal function (Lynch and Bi, 2003; Keller et al., 2004; Stolzing et al., 2005). Thus, the role of this source of Ca2+ in susceptibility to Ca2+ dysregulation should be examined in the future.

Ca2+ Buffering, Extrusion, and Sequestration

In most cases, a modest rise in intracellular Ca2+ level is handled by rapid Ca2+ buffering involving Ca2+ binding proteins (CBPs) in the cytosol and extrusion into the extracellular space by Ca2+ pumps or exchangers. In addition, Ca2+ can be pumped into the ER or mitochondria for sequestration. A decrease in Ca2+ buffering or delayed removal could result in the larger or prolonged Ca2+ responses, which is a characteristic of aged neurons (Verkhratsky and Toescu, 1998; Brewer et al., 2006).

Over 250 proteins can be described as CBPs and the brain is a particularly rich source of these proteins (Celio et al., 1996). CBPs are generally considered to be neuroprotective (Scharfman and Schwartzkroin, 1989; Mattson et al., 1991; Lukas and Jones, 1994; Berger et al., 1998). Age-related changes in the expression of cytosolic CBPs (parvalbumin, calbindin-D28K, calretinin, calmodulin, hippocalcin) are cell and region specific (Furuta et al., 1999; Bu et al., 2003; Geula et al., 2003a,b; Wu et al., 2003; Han et al., 2006; Ouda et al., 2008). In general, age-related changes involve a decline in expression, which may be associated with a loss of function, rather than a compensatory up regulation. However, in a series of studies, Murchison and Griffith and associates (Murchison and Griffith, 2007) demonstrate rapid Ca2+ buffering in aged basal forebrain neurons, likely mediated by CBPs, which can act as compensation for increased Ca2+ influx and impaired mitochondrial uptake.

Na+/Ca2+ exchangers and plasma membrane Ca2+ ATPase are major transport systems capable of rapidly extruding substantial amounts of Ca2+ from the cell cytosol, across the plasma membrane, to extracellular space. The Sarco/ER Ca2+ ATPases are Ca2+ ion ATPases, which resides in the membrane of sarco/ER and transport Ca2+ from the cytosol to the intracellular membranous compartment of the sarco/ER. An age-related decline in the function of these transports systems has been suggested to underlie altered Ca2+ homeostasis during brain aging and contribute to age-related neurodegenerative diseases (Michaelis et al., 1984, 1996; Zaidi et al., 1998; Hanahisa and Yamaguchi, 2001; Pottorf et al., 2001; Gomez-Villafuertes et al., 2007). The decrease in activity may be linked to oxidation of pump proteins or CBPs that regulate pump activity (Zaidi and Michaelis, 1999; Squier and Bigelow, 2000; Bartlett et al., 2003). As such, it is likely that altered pump activity will vary with regional differences in oxidative stress.

Reports of age-related changes in the buffering function of the ER and mitochondria are highly variable across different cell types and brain regions (Brown et al., 2004). For example, studies of the peripheral nervous system indicate that buffering of cytosolic Ca2+ by the ER is decreased during aging (Tsai et al., 1998) with no change in mitochondrial function (Buchholz et al., 2007). In contrast, ER-mediated Ca2+ buffering may be intact (Burnett et al., 1990; Pottorf et al., 2001) and mitochondrial buffering may be altered at synapses in the central nervous system (Martinez-Serrano et al., 1992; Satrustegui et al., 1996; Toescu and Verkhratsky, 2000, 2003, 2004; Toescu et al., 2000; Murchison et al., 2004).

Mitochondria from aged animals show structural alterations to mitochondrial DNA (Cortopassi and Arnheim, 1990; Toescu et al., 2000) and to the mitochondrial membrane (Yan and Sohal, 1998; Kwong and Sohal, 2000), which could contribute to a net decrease in the Ca2+ buffering capacity during senescence. More important is decreased Ca2+ uptake capacity of aged mitochondria, which arises as a direct consequence of the decreased electrochemical gradient across the mitochondrial membrane (Xiong et al., 2004). Mitochondrial depolarization may increase the threshold level of Ca2+ needed to initiate mitochondrial uptake. As such, an age-dependent delay in Ca2+ sequestration or recovery would become apparent under conditions of a large rise in intracellular Ca2+ (Xiong et al., 2002, 2004; Murchison et al., 2004). Finally, mitochondria provide a source for oxidative stress and regional variability in oxidative stress (Dubey et al., 1996; Rebrin et al., 2007) and mitochondrial damage has been reported (Corral-Debrinski et al., 1992; Filburn et al., 1996), which appear to correspond to regions that are vulnerable to neurodegenerative disease.

Conclusion

The Ca2+ ion is a central signaling molecule in numerous cellular functions including apoptosis, energy production, gene regulation, cell proliferation, membrane excitability, synaptic transmission and plasticity. Since the first observations in the 1980s that led to Ca2+ ‘dysregulation’ hypothesis of brain aging and Alzheimer’s disease,
new findings have shaped ideas concerning the mechanisms and the perversiveness of Ca$^{2+}$ dysregulation. It is becoming clear that Ca$^{2+}$ dysregulation is not ubiquitous and mechanisms of dysregulation are restricted to specific cell populations. For example, an age-related increase in L-type Ca$^{2+}$ channels is relatively specific to hippocampal pyramidal cells. Furthermore, an age-related decrease in NMDA receptor function, specifically in the hippocampus or frontal cortex, suggests a possible compensatory mechanism to limit intracellular Ca$^{2+}$ levels. However, such a mechanism may protect the cell at the expense of cell function. Thus, memory decline associated with a decrease in NMDA receptor function might be considered an epiphenomenon due to the activation of mechanisms for cell survival.

Cell specific susceptibility to Ca$^{2+}$ dysregulation depends on environmental and genomic factors in addition to the availability of mechanisms for handling Ca$^{2+}$. The level of neural activity may render some regions more susceptible to oxidative stress, resulting in multiple changes to increase intracellular Ca$^{2+}$ including increased release of Ca$^{2+}$ from ICS, impaired Ca$^{2+}$ pumps, and weakened Ca$^{2+}$ buffering (Figure 2). In turn, gene mutations may interact with age and cell specific alterations in Ca$^{2+}$ regulation to produce the pattern of neuronal death which characterizes neurodegenerative diseases.

Due to the importance of Ca$^{2+}$ as a central signaling molecule, selective regulation of Ca$^{2+}$ in a particular set of neurons may be a daunting task for treating age-related diseases. Clearly future research will need to delineate contribution of several mechanisms in optimizing Ca$^{2+}$ homeostasis or mediating Ca$^{2+}$ dysregulation.

ACKNOWLEDGMENTS

Financial support by National Institutes of Health Grants AG014979, MH 059891, and the Evelyn F. McKnight Brain Research Grant and a University of Florida Alumni Fellowship (Karthik Bodhinathan) is highly appreciated.

REFERENCES

Adams, M. M., Morrison, J. H., and Gore, A. C. (2001). N-methyl-D-aspartate receptor mRNA levels change during reproductive senescence in the hippocampus of female rats. Exp. Neurol. 170, 171–179.

Aizenman, E. (1995). Modulation of N-methyl-D-aspartate receptors by hydroxyl radicals in rat cortical neurons in vitro. Neurosci. Lett. 189, 57–59.

Aizenman, E., Hartnett, K. A., and Reynolds, I. J. (1990). Oxygen free radicals regulate NMDA receptor function via a redox modulatory site. Neuron 5, 841–846.

Aizenman, E., Lipton, S. A., and Loring, R. H. (1989). Selective modulation of NMDA responses by reduction and oxidation. Neuron 2, 1257–1263.

Alonso, I., Marques, J. M., Sousa, N., Sequeiros, J., Olsson, I. A., and Silveira, I. (2008). Motor and cognitive deficits in the heterozygous leaner mouse, a Cav2.1 voltage-gated Ca$^{2+}$ channel mutant. Neurobiol. Aging 29, 1733–1743.

Bai, L., Hof, P. R., Senda, D. G., Xing, Y., Nelson, S. E., Young, A. B., and Magrussen, K. R. (2004). Changes in the expression of the NRB2 subunit during aging in macaque monkeys. Neurobiol. Aging 25, 201–208.

Ban, T. A., Morey, L., Aguglia, E., Azzarelli, O., Balsano, F., Marigliano, V., Caglieris, N., Sterlicchio, M., Capurso, A., Tomasi, N. A., Crespaldi, G., Volpe, D., Palmieri, G., Ambrosi, G., Polli, E., Cortelozzo, M., Zanussi, C., and Froldi, M. (1990). Nimodipine in the treatment of old age dementias. Prog. Neuropsychopharmacol. Biol. Psychiatry 14, 525–551.

Barnes, C. A., Rao, G., and McNaughton, B. L. (1996). Functional integrity of NMDA receptor subunit NR1, NR2B and glutamate transporter (GLT1) mRNA expression in Huntington’s disease–an in situ hybridization study. J. Neurophysiol. Exp. Neurol. 36, 440–454.

Bai, L., Hof, P. R., Senda, D. G., Xing, Y., Nelson, S. E., Young, A. B., and Magrussen, K. R. (2004). Changes in the expression of the NRB2 subunit during aging in macaque monkeys. Neurobiol. Aging 25, 201–208.

Ben-Ari, Y., Aniksztejn, L., and Bregestovski, P. (1992). Protein kinase C modulation of NMDA currents: an important link for LTP induction. Trends Neurosci. 15, 333–339.

Berger, F., Gage, F. H., and Vijayaraghavan, S. (1998). Nicotinic receptor-induced apoptotic cell death of hippocampal progenitor cells. J. Neurosci. 18, 6871–6881.

Berridge, M. J. (1998). Neuronal calcium signaling. Neuron 21, 13–26.

Berridge, M. J., Lipp, P., and Bootman, M. D. (2000). The versatility and unisalinity of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21.
Kumar et al.

Calcium and brain senescence

Bertolino, M., and Linas, R. R. (1992). The central role of voltage-activated and receptor-operated calcium channels in neuronal cells. Annu. Rev. Pharmacol. Toxicol. 32, 399–421.

Billard, J. M., and Rouaud, E. (2007). Deficit of NMDA receptor activation in CA1 hippocampal area of aged rats is rescued by γ-cyclodextrine. Eur. J. Neurosci. 25, 2260–2268.

Blamped, T. A., Scott, D. B., and Ehlers, M. D. (2002). Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron 36, 435–449.

Bodhinnathan, K., Kumar, A., and Foster, T. C. (2007). Oxidative stress decreases NMDA receptor function in the hippocampus of aged animals. Soc. Neurosci. Abstr. N182/256.8.

Bonhaus, D. W., Perry, W. B., and Brailoiu, G. C., Brailoiu, E., Parkesh, R., and Parkesh, J. M., and Rouaud, E. (2007). Bonhaus, D. W., Perry, W. B., and Brailoiu, G. C., Brailoiu, E., Parkesh, R., and Parkesh, J. M., and Rouaud, E. (2007). Frontiers in Aging Neuroscience www.frontiersin.org

Calcium and brain senescence

rats is rescued by γ-cyclodextrine binding sites in hippocampus of senescent rats. Brain Res. 532, 82–86.

Braillou, E., Churamani, D., Cai, X., Billard, J. M., and Rouaud, E. (2007). Calcium and brain senescence in CA1 hippocampal area of aged rats. Exp. Neurol. 182, 220–231.

Buchholz, J. N., Behrenger, E. J., Pottorf, W. J., Pearce, W. J., and Vanterpool, C. K. (2007). Age-dependent changes in Ca2+ homeostasis in peripheral neurons: implications for changes in function. Aging Cell 6, 285–296.

Bull, R., Finkelstein, J. P., Humeres, A., Behrens, M. L., and Hidalgo, C. (2007). Effects of ATP, Mg2+, and redox agents on the Ca2+ dependence of RyR channels from rat brain cortex. Am. J. Physiol. Cell Physiol. 293, C162–C171.

Burnett, D. M., Daniell, L. C., and Zahniser, D. M. (1996). The role of dendritic calcium channels in the induction of homosynaptic long-term depression. J. Neurosci. 16, 6286–6295.

Cao, X., Cui, Z., Feng, R., Tang, Y. P., Qin, Z., Mei, B., and Tsien, J. Z. (2007). Increased phosphorylation of the neuronal calcium binding proteins. In Guidebook to the Calcium-Binding Proteins, M. R. Calabrese, P. Chameau, P., Van de Vrede, Y., Fossier, A., Behrens, M. I., and Hidalgo, C. (2007). Introduction to EF-hand calcium binding proteins. In Guidebook to the Calcium-Binding Proteins, M. R. Calabrese, P. Chameau, P., Van de Vrede, Y., Fossier, A., Behrens, M. I., and Hidalgo, C. (2007). Annu. Rev. Cell Dev. Biol. 21, 399–470.

Celio, M. R., Pauls, T. L., and Schwaller, B. (1996). Dendritic calcium channels at specialized endocytic zones of dendrites and spines. Neuron 36, 435–449.

Choi, Y., Chen, H. V., and Lipton, S. A. (2002). Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presynaptic 3Xtg-AD mice. J. Neurosci. 29, 9458–9470.

Chagneau, P., Van de Vrede, Y., Fossier, P., and Baux, G. (2001). Ryanodine, IP3- and NAADP-dependent calcium stores control acetylcholine release. Pflugers Arch. 443, 289–296.

Chan, C. S., Gerthler, T. S., and Surmeier, D. J. (2009). Calcium homeostasis, selective vulnerability and Parkinson’s disease. Trends Neurosci. 32, 249–256.

Chauvet, P., Van de Vrede, Y., Fossier, P., and Baux, G. (2001). Ryanodine, IP3- and NAADP-dependent calcium stores control acetylcholine release. Pflugers Arch. 443, 289–296.

Chung, H. I., Huang, Y. H., Lau, L. F., and Huganir, R. L. (2004). Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit. J. Neurosci. 24, 10248–10259.

Corral-Debrinski, M., Horton, T., Lott, M. T., Shoffner, J. M., Beal, M. F., and Wallace, D. C. (1992). Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat. Genet. 2, 324–329.

Cortopassi, G. A., and Arnheim, N. (1990). Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res. 18, 6927–6933.

Coultrap, S. J., Bickford, P. C., and Browning, M. D. (2008). Blueberry-enriched diet ameliorates age-related declines in NMDA receptor-dependent LTP. Age (Dordt) 30, 263–272.

Culy-S, S., Brickley, S., and Farrant, M. (2001). NMDA receptor subunit diversity: development and disease. Curr. Opin. Neurobiol. 11, 327–335.

Das, S. R., and Magnussen, K. R. (2008). Relationship between mRNA expression of splice forms of the zeta1 subunit of the N-methyl-D-aspartate receptor and spatial memory in aged mice. Brain Res. 1207, 142–154.

Davare, M. A., and Hell, J. W. (2003). Increased phosphorylation of the neuronal L-type Ca2+ channel Ca(v)1.2 during aging. Proc. Natl. Acad. Sci. U.S.A. 100, 16018–16023.

Deyo, R. A., Straube, K. T., Moyer, J. R. Jr., and Disterhoft, J. F. (1989). N-methyl-p-aspartate ion-channel-mediated aging-related changes in open-field behaviors of the rabbit. Exp. Aging Res. 15, 169–175.

Disterhoft, J. F., and Oh, M. M. (2006). Learning, aging and intrinsic neuronal plasticity. Trends Neurosci. 29, 587–599.

Disterhoft, J. F., Thompson, L. T., Moyer, J. R., and Mogul, D. J. (1996). Calcium-dependent afterhyperpolarization and learning in young and aging hippocampus. Life Sci. 59, 413–420.

Dolphin, A. C. (2006). A short history of voltage-gated calcium channels. Br. J. Pharmacol. 147(Suppl. 1), S66–S62.

Drees-Werringloer, U., Lambert, J. C., Davies, P., Foskett, J. K., Campagne, F., and Mogul, D. J. (1996a). Dendritic calcium channnels and hippocampal long-term depression. Hippocampus 6, 17–23.

Dreses-Werringloer, U., Lambert, J. C., Davies, P., Foskett, J. K., Campagne, F., and Mogul, D. J. (1996b). Structural features of the glutamate binding site in recombinant NR1/NR2A N-methyl-D-aspartate receptors determined by site-directed mutagenesis and molecular modeling. Mol. Pharmacol. 67, 1470–1484.

Dreyfus, P., Lipton, S. A., and Poller, J. Y. (2001). Three pairs of cysteine residues mediate both redox and zinc2 modulation of the nmda receptor. J. Neurosci. 21, 392–400.

Dreyfus, P., Lipton, S. A., and Poller, J. Y. (2001). Three pairs of cysteine residues mediate both redox and zinc2 modulation of the nmda receptor. J. Neurosci. 21, 392–400.

Dreyfus, P., Lipton, S. A., and Poller, J. Y. (2001). Three pairs of cysteine residues mediate both redox and zinc2 modulation of the nmda receptor. J. Neurosci. 21, 392–400.

Dreyfus, P., Lipton, S. A., and Poller, J. Y. (2001). Three pairs of cysteine residues mediate both redox and zinc2 modulation of the nmda receptor. J. Neurosci. 21, 392–400.
different brain regions and on behavioral functions of the mouse. Arch. Biochem. Biophys. 333, 189–197.

Duchén, M. R. (2000). Mitochondria and calcium: from cell signalling to cell death. J. Physiol. (Lond.) 529(Pt. 1), 57–68.

Dumas, T. C. (2005). Developmental regulation of cognitive abilities: modified composition of a molecular switch turns on associative learning. Prog. Neurobiol. 76, 189–211.

Eckles-Smith, K., Clayton, D., Bickford, P., and Browning, M. D. (2000). Caloric restriction prevents age-related deficits in LTP and in NMDA receptor expression. Brain Res. Mol. Brain Res. 78, 154–162.

Fedulova, S. A., Kostyuk, P. G., and Veselovsky, N. S. (1985). Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurones. J. Physiol. (Lond.) 389, 431–466.

Filburn, C. R., Edris, W., Tamatani, M., Hogue, B., Kudryashova, I., and Hansford, R. G. (1996). Mitochondrial electron transport chain activities and DNA deletions in regions of the rat brain. Mech. Ageing Dev. 87, 35–46.

Foster, T. C. (1999). Involvement of hippocampal synaptic plasticity in age-related memory decline. Brain Res. Rev. 30, 236–249.

Foster, T. C. (2005). Interaction of rapid signal transduction cascades and gene expression in mediating estrogen effects on memory over the life span. Front. Neuroendocrinol. 26, 51–64.

Foster, T. C. (2006). Biological markers of age-related memory deficits: treatment of senescent physiology. CNS Drugs 20, 153–168.

Foster, T. C. (2007). Calcium homeostasis and modulation of synaptic plasticity in the aged brain. Aging Cell 6, 319–325.

Foster, T. C., Sharrow, K. M., Masse, J. R., Hayashi, Y., Ishibashi, H., Hashimoto, K., Hardingham, G. E., Fukunaga, Y., and Thibault, O. (2006). Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. J. Neurosci. 26, 4690–4700.

Han, M., Schottler, F., Lei, D., Dong, E. Y., Bryan, A., and Bao, J. (2006). Bcl-2 over-expression fails to prevent age-related changes in expression of calretinin positive neurons in the mouse dentate gyrus. Mol. Neurodegener. 1, 9.

Han, S. H., Murchison, D., and Griffith, W. H. (2005). Low voltage-activated calcium and fast tetrodotoxin-resistant sodium currents define subtypes of cholinergic and noncholinergic neurons in rat basal forebrain. Brain Res. Mol. Brain Res. 134, 226–236.

Hanahisa, Y., and Yamaguchi, M. (2001). Decrease in Ca2+-ATPase activity in the brain plasma membrane of rats with increasing age: involvement of brain calcium accumulation. Int. J. Mol. Med. 7, 407–411.

Hardingham, G. E., Fukunaga, Y., and Bading, H. (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREReceptor shut-off and cell death pathways. Nat. Neurosci. 5, 405–414.

Hayashi, Y., Ishibashi, H., Hashimoto, K., and Nakashima, H. (2006). Potentiation of the NMDA receptor-mediated responses through the activation of the glycine site by microglia secreting soluble factors. Glia 53, 660–668.

Hayrapetyan, V., Rybalchenko, V., Rybalchenko, N., and Koulben, P. (2008). The N-terminus of presenilin-2 increases single channel activity of brain ryanoидine receptors through direct protein-protein interaction. Cell Calcium 44, 507–518.

Heidinger, V., Manzerra, P., Choi, D. W., and Behrens, M. M. (2002). Metabotropic glutamate receptor 1-induced upregulation of NMDA receptor current: mediation through the Pyk2/Stf2-fasudil pathway in cortical neurons. J. Neurosci. 22, 5452–5461.

Herbert, P. J., Chen, K. C., Booze, R., and Landfield, P. W. (1998). Up-regulation of alpha1D Ca2+ channel subunit mRNA expression in the hippocampus of aged C3H/HeJ rats. Neurobiol. Aging 19, 581–587.

Hidalgo, C., Buil, R., Behrens, M. L., and Donoso, P. (2004). Redox regulation of RyR-mediated Ca2+ release in muscle and neurons. Biol. Res. 37, 539–552.

Igwe, O. J., and Ning, L. (1995). Insolite 1,4,5-triphosphate arm of the phosphatidylinositol signal transduction pathway in the rat cerebellum during aging. Neurosci. Lett. 164, 167–170.

Ingram, D. K., Garafalo, P., Spangler, E. L., Mantione, C. R., Oxland, I., and London, E. D. (1992). Reduced density of NMDA receptors and increased sensitivity to dizocilpine-induced learning impairment in aged rats. Brain Res. 580, 273–280.

Iwamoto, M., Hagiwlta, T., Shoji-Kasa, Y., Ando, S., and Tanaka, Y. (2004). Age-related changes in the levels of voltage-dependent Ca2+ currents and other synaptic proteins in rat brain cortices. Neurosci. Lett. 366, 277–281.

Jacob, C. P., Koutsilieri, E., Bartl, J., Neuen-Jacob, E., Arzberger, T., Zander, N., Ravid, R., Roggen dorff, W., Riederer, P., and Grunblatt, E. (2007). Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J. Alzheimers Dis. 11, 97–116.

Jones, S. W. (1998). Overview of voltage-dependent calcium channels. J. Bioenerg. Biomembr. 30, 299–312.

Kang, M. G., Chen, C. C., Felix, R., Letts, V. A., Frankel, W. N., Mori, Y., and Campbell, K. P. (2001). Biochemical and biological evidence for gamma 2 subunit association with neuronal voltage-activated Ca2+ channels. J. Biol. Chem. 276, 32917–32924.

Keller, J. N., Dimayuga, E., Chen, Q., Thorpe, J., Gee, J., and Ding, Q. (2004). Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int. J. Biochem. Cell Biol. 36, 2376–2391.

Khachaturian, Z. S. (1989). Calcium, membranes, aging, and Alzheimer’s disease. Introduction and overview. Ann. N. Y. Acad. Sci. 568, 1–4.

Kitó, S., Miyoshi, R., and Nomoto, T. (1990). Influence of age on NMDA receptor complex in rat brain studied by in vitro autoradiography. J. Histochem. Cytochem. 38, 1725–1731.

Komatsu, Y., and Iwakiri, M. (1992). Low-threshold Ca2+ channels mediate induction of long-term potentiation in kitten visual cortex. J. Neurophysiol. 67, 401–410.

Kowalska, M., and Disterhoft, J. F. (1994). Relation of nifedipine dose and serum concentration to learning enhancement in aging rabbits. Exp. Neurol. 127, 159–166.
LaFerla, F. M. (2002). Calcium dyshomestasis and intracellular signalling in neurons of aged rats. Proc. Natl. Acad. Sci. U.S.A. 109, 12073–12078.

Liu, F., Day, M., Muniz, L. C., Bitran, D., Liu, P., Smith, P. F., and Darlington, C. L. (2008b). Glutamate receptor subunits in memory-associated brain structures: regional variations and effects of aging. Synapse 62, 834–841.

Longo, L. H., Li, J., Liu, R. L., Wang, F., Hu, Z. L., Xie, N., Fu, H., and Chen, J. G. (2009). Differential effects of methionine and cysteine oxidation on [Ca2+]i in cultured hippocampal neurons. Cell. Mol. Neurobiol. 29, 7–15.

Lopez de Armentia, M., and Sah, P. (2004). Increased intraneuronal resting [Ca2+]i in adult Alzheimer’s disease mice. J. Neurochem. 105, 262–271.

Lopez de Armentia, M., and Sah, P. (2004). Firing properties and conduction of neurons in the rat lateral central nucleus of the amygdala. J. Neurophysiol. 92, 1285–1294.

Lu, C. B., Hamilton, J. B., Powell, A. D., Toesch, E. C., and Vreugdenhil, M. (2009). Effect of aging on CA3 interneuron sAHP and gamma oscillations is activity-dependent. Neurobiol. Aging. [Epub ahead of print].

Luas, W., and Jones, K. A. (1994). Cortical neurons containing calretinin are selectively resistant to calcium overload and excitotoxicity in vitro. Neuroscience 61, 307–316.

Ly, C. V., and Verstreken, P. (2006). Mitochondria at the synapse. Neuroncistin 12, 291–299.

Lynch, G., and Bi, X. (2003). Lysosomes and brain aging in mammals. Neurochem. Res. 28, 1725–1734.

Mager, E. C., and Lieberman, H. R. (1991). Regulation of NMDA receptor channel. Nature 358, 56–41.

Maggio, J., and Johnston, D. (1995a). Differential expression of voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J. Physiol. (Lond.) 487(Pt. 1), 67–90.

Maggio, J. C., and Johnston, D. (1995b). Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268, 301–304.

Magnusson, K. R. (1995). Differential effects of aging on binding sites of the activated NMDA receptor complex in mice. Mech. Ageing Dev. 84, 227–243.

Magnusson, K. R. (1998). The aging of the NMDA receptor complex. Front. Pharmacol. 70, 1–80.

Magnusson, K. R. (2000). Declines in RNA expression of different subunits may account for differential effects of aging on agonist and antagonist binding to the NMDA receptor. J. Neurosci. 20, 1666–1674.

Magnusson, K. R. (2001). Influence of diet restriction on NMDA receptor subunits and learning during aging. Neurobiol. Aging 22, 613–627.

Manis, S. J., and Lieberman, D. N. (1993). Functional characterization of NMDA receptor channel expressed from cloned cDNAs. Nature 357, 70–74.

Marabet, G., Spadoni, F., Sciamanna, G., Tassone, A., Bernardi, G., Pisani, A., and Bonsi, P. (2008). Age-related functional changes of high-voltage-activated calcium channels in different neuronal subtypes of mouse striatum. Neuroscience 152, 469–476.

Martinez-Serrano, A., Blanco, P., and Satrustegui, J. (1992). Calcium binding to the cytosol and calcium extrusion mechanisms in intact synaptosomes and their alterations with aging. J. Biol. Chem. 267, 4672–4679.

Martinez Villayandre, B., Panigacci, M. A., Fernandez-Lopez, A., Chinchetru, M. A., and Calvo, P. (2004). Effect of vitamin E treatment on N-methyl-D-aspartate receptor at different ages in the rat brain. Brain Res. 1028, 148–155.

Martini, A., Battaini, G., Govoni, S., and Volpe, P. (1994). Insoluble I,4,5-trisphosphate receptor and ryanodine receptor in the aging brain of Wistar rats. Neurobiol. Aging 15, 203–206.

Massey, P. V., Johnson, B. E., Moult, P. R., Anderson, Y. P., Brown, M. W., Molnar, E., Collingridge, G. L., and Bashir, Z. I. (2004). Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J. Neurosci. 24, 7821–7828.

Mattson, M. P. (2007). Calcium and neurodegeneration. Aging Cell 6, 477–504.

Mattson, M. P., LaFerla, F. M., Chan, S. L., Leissring, M. A., Shepel, P. N., and Geiger, J. D. (2000). Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 23, 222–229.

Mattson, M. P., Rycklik, B., Chu, C., and Christofo, S. (1991). Evidence for calcium-reducing and excitotoxic roles for the calcium-binding protein calbindin-D28K in cultured hippocampal neurons. Neuron 6, 41–51.

Matute, C. (2007). Interaction between glutamate signalling and immune attack in damaging oligodendrocytes. Neuroglia Biol. 3, 281–285.

McGuinness, L., Bardo, S. J., and Emptage, N. J. (2007). The lysosome or lyosome-related organelle may serve as a Ca2+-store in the boutons of hippocampal pyramidal cells. Neuropharmacology 52, 126–135.

Meguro, M., Iwai, H., Arakawa, K., and Kusumaki, T., Arakawa, M., and Nakamura, K. (1992). Functional characterization of NMDA receptor channel expressed from cloned cDNAs. Nature 357, 70–74.

Meguro, M. H., Gemma, C., Veng, L. M., Allgeier, C., Young, D. A., Browning, M. D., and Bickford, P. C. (2004). Sulindac improves memory and increases NMDA receptor subunits in aged Fischer 344 rats. Neurobiol. Aging 25, 315–324.

Michaels, M. L., Bigelow, D. J., Schoneich, C., Williams, T. D., Ramonda, L. Y., Duhm, Huhmer, A. F., Yao, Y., Gao, J., and Squier, T. C. (1996). Decreased plasma membrane calcium transport activity in aging brain. Life Sci. 59, 405–412.

Michaels, M. L., Johe, K., and Kitos, T. E. (1984). Age-dependent alterations in synaptic membrane systems for Ca2+-regulation. Mech. Ageing Dev. 25, 215–225.

Michishita-Eberz, A. J., Isschenko, R. A., Carter, T. L., Inkomovic, M. D., Wolfe, B. B., and Armstrong, D. M. (2004). Biochemical and molecular studies of NMDA receptor subunits NR1/2A/2B in hippocampal subregions through-out progression of Alzheimer’s disease pathology. Neurobiol. Dis. 15, 80–92.

Miyoshi, R., Kito, S., Douduo, N., and Nomoto, T. (1991). Influence of age on N-methyl-D-aspartate antagonist binding sites in the rat brain studied by in vitro autoradiography. Synapse 8, 212–217.

Mizutani, T., Nakashima, S., and Nozawa, Y. (1998). Changes in the expression of protein kinase C (PKC), phospholi-pases C (PLC) and D (PLD) isoforms in spleen, brain and kidney of the aged rat. RT-PCR and western blot analysis. Mech. Ageing Dev. 105, 151–172.

Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H.,
Burnashev, N., Sakmann, B., and Seeburg, P. H. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217–1221.
Moriguchi, S., Mizoguchi, Y., Tomimatsu, Y., Hayashi, Y., Kadowaki, T., Kagamiishi, Y., Katsube, N., Yamamoto, K., Inoue, K., Watanabe, S., Nakamura, J., and Nakashima, H. (2003). Potentiation of NMDA receptor-mediated synaptic responses by microglia. Brain Res. Mol. Brain Res. 119, 160–169.
Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N., and Nakashima, S. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature 354, 31–37.
Morrison, B. M., Hof, P. R., and Morrison, J. H. (1998). Determinants of neuronal vulnerability in neurodegenerative diseases. Ann. Neurol. 44, S32–S44.
Moyer, J. R., Jr., Thompson, L. T., Black, J. P., and McNamara, J. P. (1999). Nimodipine increases excitability of rabbit CA1 pyramidal neurons in an age- and concentration-dependent manner. J. Neurophysiol. 68, 2100–2109.
Murchison, D., and Griffith, W. H. (1995). Low-voltage-activated calcium currents increase in basal forebrain neurons from aged rats. J. Neurophysiol. 74, 876–887.
Murchison, D., and Griffith, W. H. (1996). High-voltage-activated calcium currents in basal forebrain neurons during aging. J. Neurophysiol. 76, 158–174.
Murchison, D., and Griffith, W. H. (1999). Age-related alterations in caffeine-sensitive calcium stores and mitochondrial buffering in rat basal forebrain. Cell Calcium 25, 439–452.
Murchison, D., and Griffith, W. H. (2007). Calcium buffering systems and calcium signaling in aged rat basal forebrain neurons. Aging Cell 6, 297–305.
Murchison, D., McDermott, A. N., LaSarge, C. A., Peebles, K. A., Bizon, J. L., and Griffith, W. H. (2009). Enhanced calcium buffering in F344 rat cholinergic basal forebrain neurons is associated with age-related cognitive impairment. J. Neurophysiol. 102, 2194–2207.
Murchison, D., Zawieja, D. C., and Griffith, W. H. (2004). Reduced mitochondrial buffering of voltage-gated calcium influx in aged rat basal forebrain neurons. Cell Calcium 36, 61–75.
Naidoo, N. (2009). ER and aging-protein folding and the ER stress response. Ageing Res. Rev. 8, 150–159.
Nicholls, D. G., and Budd, S. L. (2000). Mitochondria and neuronal survival. Physiol. Rev. 80, 315–360.
Nicolle, M. M., Colombo, P. J., Gallagher, M., and McKinney, M. (1999). Metabotropic glutamate receptor-mediated hippocampal phosphoinositide turnover is blunted in spatial learning-impaired aged rats. J. Neurosci. 19, 9604–9610.
Nilius, B., Hess, P., Lansman, J. B., and Tsien, R. W. (1985). A novel type of cardiac calcium channel in ventricular cells. Nature 316, 443–446.
Norris, C. M., Hap lain, S., and Foster, T. C. (1999a). Alterations in the balance of calcium/phosphatase activities parallel reduced synaptic strength during aging. J. Neurophysiol. 80, 1567–1570.
Norris, C. M., Hap lain, S., and Foster, T. C. (1999b). Reversal of age-related alterations in synaptic plasticity by blockade of L-type Ca(2+)-channels. J. Neurosci. 18, 3171–3179.
Nowak, M. C., Fox, A. P., and Tsien, R. W. (1983). Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316, 440–443.
Orrenius, S., Zhivotovsky, B., and Nicotera, P. (2003). Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4, 532–565.
Ouda, L., Druga, R., and Syka, J. (2008). Changes in parvalbumin immunoreactivity with aging in the central auditory system of the rat. Exp. Gerontol. 43, 782–789.
Pandey, V., Chuang, C. C., Lewis, A. M., Aley, P., Brailoiu, E., Dun, N., Churchill, G. C., and Patel, S. (2009). Recruitment of NAADP-sensitive acidic Ca(2+)-stores by glutamate. Biochem. J. 422, 503–512.
Parihar, M. S., Kunz, E. A., and Brewer, G. J. (2008). Age-related decreases in NAD(P)H and glutathione cause redox declines before ATP loss during glutamate treatment of hippocampal neurons. J. Neurosci. Res. 86, 2339–2352.
Peuchen, S., Duchen, M. R., and Clark, G. J. (2008). Age-related decreases on glutathione redox state in different brain regions of C57BL/6 and DBA/2 mice. Brain Res. 1127, 10–18.
Rizzuto, R. (2001). Intracellular Ca(2+) pools in neuronal signalling. Curr. Opin. Neurobiol. 11, 306–311.
Rose, G. M., Ong, V. S., and Woodruff-Pak, D. S. (2007). Efficacy of MEM 1003, a novel calcium channel blocker, in delay and trace eyelink conditioning in older rabbits. Neurobiol. Aging 28, 766–773.
Rosi, S., Ramirez-Amaya, V., Hauss-Wegrzynek, B., and Wenk, G. L. (2004). Chronic brain inflammation leads to a decline in hippocampal NMDA-R1 receptors. J. Neuroinflammation 1, 12.
Rosi, S., Vazdarjanova, A., Ramirez-Amaya, V., Worley, P. F., Barnes, C. A., and Wenk, G. L. (2006). Memantine protects against LPS-induced neuroinflammation, restores behaviorally-induced gene expression and spatial learning in the rat. Neuroscience 142, 1303–1315.
Roth, G. S. (1993). Changes in tissue responsiveness to hormones and neurotransmitters during aging. Exp. Gerontol. 30, 361–368.
Sandin, M., Jasmin, S., and Levere, T. E. (1990). Aging and cognition: facilitation of recent memory in aged nonhuman primates by nimodipine. Neurobiol. Aging 11, 573–575.
Saratregui, J., Villalba, M., Pereira, R., Bogonez, E., and Martinez-Serrano, A. (1999). Calcium and mitochondrial calcium in synaptosomes during aging. Life Sci. 59, 429–434.
Scharfman, H. E., and Schwartzkroin, P. A. (1989). Protection of dentate hilar cells from prolonged stimulation by intracellular calcium chelation. Science 246, 257–260.
Schell, M. J., Molliver, M. E., and Snyder, S. H. (1995). N-Acetylserine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc. Natl. Acad. Sci. U.S.A. 92, 3948–3952.
Scott, D. B., Blanpied, T. A., Swanson, G. T., Zhang, C., and Ehlers, M. D. (2001). An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J. Neurosci. 21, 3063–3072.
Sepp, M., Ghiandoni, C. A., Foddi, M. C., Motzco, C., and Biggio, G. (1994). NMDA receptor function is enhanced in the hippocampus of aged rats. Neurochem. Res. 19, 483–487.
Shankar, S., Teyler, T. J., and Robbins, N. (1998). Aging differentially alters forms of long-term potentiation in rat hippocampal area CA1. J. Neurophysiol. 79, 334–341.
Shimada, A., Mukhin, A., Ingram, D. K., and London, E. D. (1997). N-methyl-d-aspartate receptor binding in brains of rats at different ages. Neurobiol. Aging 18, 329–333.
Simonyi, A., Xiao, J., Igharbov, U., Wood, W. G., and Sun, G. Y. (1998). Age differences in the expression of metabotropic glutamate receptor 1 and inositol 1,4,5-trisphosphate receptor in mouse cerebellum. Neurosci. Lett. 244, 29–32.
Singaravelu, K., and Deitmer, J. W. (2006). Calcium mobilization by nicotinic acid adenine dinucleotide phosphate...
Kumar et al.

Calcium and brain senescence

...
Kumar et al. Calcium and brain senescence

Ca2+-ATPase in F344/BNF1 rats. Neurobiol. Aging 19, 487–493.

Zaidi, A., and Michaelis, M. L. (1999). Effects of reactive oxygen species on brain synaptic plasma membrane Ca(2+)-ATPase. Free Radic. Biol. Med. 27, 810–821.

Zhao, X., Rosenke, R., Kronemann, D., Brim, B., Das, S. R., Dunah, A. W., and Magnusson, K. R. (2009). The effects of aging on N-methyl-D-aspartate receptor subunits in the synaptic membrane and relationships to long-term spatial memory. Neuroscience 162, 933–945.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 10 August 2009; paper pending published: 28 August 2009; accepted: 27 October 2009; published online: 27 November 2009.

Citation: Kumar A, Bodhinathan K and Foster TC (2009) Susceptibility to calcium dysregulation during brain aging. Front. Ag. Neurosci. 1:2. doi: 10.3389/neuro.24.002.2009

Copyright © 2009 Kumar, Bodhinathan and Foster. This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.