Amelioration of hemodynamics and oxygen metabolism by continuous venovenous hemofiltration in experimental porcine pancreatitis

Hao Wang, Zhen-Huan Zhang, Xiao-Wen Yan, Wei-Qin Li, Da-Xi Ji, Zhu-Fu Quan, De-Hua Gong, Ning Li, Jie-Shou Li

PO Box 2345, Beijing 100023, China
Fax: +86-10-8381893
E-mail: wjg@wjgnet.com www.wjgnet.com

INTRODUCTION

Acute pancreatitis may lead to non-infectious systemic inflammatory response syndrome (SIRS) or multiple organ dysfunction syndrome (MODS). Similar to infectious SIRS or sepsis[1], this inflammatory response reflects the activation of humoral and cellular inflammatory cascades and may be accompanied with alterations in the oxygen extraction capabilities of tissue and hyperdynamic cardiovascular failure[2]. Notably, small to middle-sized molecules, such as proinflammatory cytokines or activated complement factors seem to play a key role as humoral mediators in the development of SIRS and MODS[3,4]. Since MODS is a leading cause of morbidity and mortality in surgical intensive care, attenuation of SIRS by antagonizing[5] or removing[6] potentially involved mediators has attracted great interest as a supportive strategy to prevent organ failure in critically ill patients. Unfortunately, therapeutic interventions aiming at neutralizing or antagonizing individual inflammatory cytokines have generally been disappointing[7]. Although anti-mediator strategies are successful in experimental models of endotoxia, there is an increasing body of evidence that proinflammatory mediators are crucial to mount a local host defense response in addition to their systemic toxic effects[8,9]. Moreover, simultaneous production of a wide variety of inflammatory mediators sharing many biological activities may limit the use of strategies directed against a single mediator[10].

Hemofiltration, especially continuous venovenous hemofiltration (CVVH), is a safe and well established treatment in critically ill patients with renal failure, and has also been used in the treatment of severe acute pancreatitis (SAP), acute respiratory distress syndrome (ARDS) and sepsis[11,12]. Although many inflammatory mediators involved in the development of SIRS, ARDS and MODS are known to have a molecular weight well below the cut-off value of hemofiltration membranes, the use of CVVH to attenuate SIRS by eliminating a broad spectrum of small to middle-sized inflammatory mediators has been a source of considerable controversy[13,14]. In particular, potential targeting of multiple mediators that are released into the systemic circulation without affecting the local host response by CVVH is intriguing. However, prospective, randomized and controlled basic studies assessing the potential effects of hemofiltration on hemodynamics and oxygen metabolism in animals with severe SIRS, septic shock or multiple organ failure are sparse.

The aim of the present study was therefore to investigate the influence of prophylactic CVVH on the development of MODS in pigs with severe acute pancreatitis.

MATERIALS AND METHODS

Anesthesia and surgical preparation

Twenty-four fasted domestic pigs (body weight [BW] 21-30 kg)
were premedicated intramuscularly with ketamine (10 mg/kg) and atropine (0.06 mg/kg). Adequate anesthetic depth was achieved by continuous intravenous application of pentothal sodium [6 mg/(kg·h)]. After endotracheal intubation, the animals were ventilated mechanically with air. The ventilation rate was 12 breaths/min, and the respiratory tidal volume was set to 8 mL/kg BW. For the duration of the experiments, all animals received a 0.9% NaCl infusion at a rate of 5 mL/kg per hour. After the instrumentation of the animals by arterial and Swan-Ganz catheters, mean arterial blood pressure (MAP), central venous pressure (CVP), and heart rate (HR) were monitored continuously. Systemic vascular resistance (SVR) and cardiac index (CI) were calculated intermittently.

Induction of pancreatitis

Pancreatitis was induced by pressure-controlled (100 mmHg), intraduodenal infusion of sodium taurocololate [18] (4%, 1 mL/kg BW, Sigma Chemical, Germany) and trypsin (2 U/kg BW, Difco Chemical, USA). Control animals (n = 8, group 1) underwent the spontaneous course of the disease without any treatment. In two treatment groups, different volumes of CVVH were applied simultaneously with the induction of pancreatitis.

Hemofiltration

The 16 pigs randomized to receive CVVH were cannulated with a venous double-lumen catheter via a central vein to allow pumps driving venovenous hemofiltration. Zero-balanced CVVH was performed with a blood flow rate of 80 mL/min in a predilution mode using a polyacrylonitrile membrane (AN69, Hospal, France) connected to a continuous blood pump (Baxter, USA). The filters were replaced daily. To avoid clotting of the dialyzer, heparin was added into the inflow line of the extracorporeal circuit in pigs subjected to CVVH. Group 2 animals (n = 8) underwent a filtration turnover of 20 mL/(kg·h) and group 3 (n = 8) underwent a filtration turnover of 100 mL/(kg·h). After a maximal observation period of 72 h, animals were killed.

Measurements

Blood samples were taken throughout the whole study period for evaluation of blood gases, blood cell counts and chemistry. From the induction of pancreatitis (at the time of the induction; “time 0”) up to 72 h after induction, the following variables were recorded: heart rate (HR), mean arterial pressure (MAP), mean pulmonary artery pressure (MPAP), central venous pressure (CVP), cardiac output (CO), systemic vascular resistance (SVR), cardiac index (CI), oxygen delivery (DO2), oxygen consumption (VO2) and oxygen extraction ratio (OER) were calculated from CO, CaO2 and CVO2 according to the following equations: DO2 [mL/(min·m2)] = CI[(l/(min·m2))] × [CaO2(mL/100mL) × 10], VO2 = CI[(l/(min·m2))] × [CV02(mL/100mL) × 10], and OER = VO2/DO2.

Statistical analysis

Data were expressed as mean±SD. Normal distribution of data was tested using the Kolmogorov-Smirnov test. Statistical differences of baseline values vs changes of parameters after pancreatitis were evaluated by one-way analysis of variance for repeated measures. Differences between the treatment groups were determined by analysis of variance, followed by the Scheffé test when significant differences were found. P less than 0.05 was considered statistically significant.

RESULTS

Survival

Compared with control animals, those that received CVVH significantly prolonged their survival time. In addition, high-volume CVVH prolonged survival significantly compared with low-volume CVVH. The respective mean survival time was 31.1±6.8 h for control group (group 1) (P<0.05 vs groups 2 and 3), 40.0±6.7 h for low-volume CVVH (group 2) (P=0.01 vs group 3), and 57.8±10.3 h for intensive (high-volume) CVVH (group 3), respectively.

Hemodynamics and clinical parameters

After the onset of pancreatitis, group 1 (control) animals showed an early phase hyperdynamic response characterized by increase in heart rate, and body temperature (P<0.01, Table 1), cardiac index (P<0.01, Table 2), and rapid decrease in MAP and SVR (P<0.01, Table 2). In the late phase of septic macrocirculatory derangement, a dramatic breakdown of the entire macrocirculation and a decrease in body temperature occurred. The major reason was a progressive cardiac insufficiency indicated by a decrease in cardiac index (P<0.01, Table 2). CVVH led to a reversal of hemodynamic impairment that resulted eventually in significantly prolonged survival in both the treatment groups. Both the initial elevation of body temperature up to almost 41 °C and the hypothermia in the late course of experiments were significantly ameliorated by CVVH. The high-volume CVVH was distinctly superior in preventing sepsis-related hemodynamic impairment compared with the low-volume group.

Oxygen delivery and consumption

In early phase of pancreatitis, DO2 was found to be significantly

Parameter	Group	Baseline	6 h	12 h	24 h	36 h	48 h
HR (bpm)	1	123±8.2	179±9.7	194±20.8	164±26.2	132±23.0	NC
	2	123±8.2	159±10.4	165±15.5	159±21.6	139±25.2	141±36.1
	3	123±8.3	149±9.4	155±23.8	148±21.4	148±17.6	138±18.4
BT (°C)	1	37.1±1.2	39.6±1.1	40.0±0.9	36.0±0.6	35.6±0.6	NC
	2	37.9±0.7	38.7±1.2	38.7±0.6	36.8±1.2	36.1±1.3	37.5±3.4
	3	37.8±0.5	38.3±0.6	38.6±0.8	38.8±0.8	38.5±0.2	39.0±0.3
Amy (U/I)	1	238±122.6	3 635±427.2	9 535±8 502.6	7 535±7 576.3	5 502±7 976.8	NC
	2	336±123.8	3 309±1331.2	8 199±5 881.0	8 441±5 730.4	2 960±5 292.6	3 168±3 136.3
	3	237±66.7	2 803±518.1	8 186±3 987.9	8 265±3 092.0	3 211±9 151.7	2 161±3 814.6

HR: heart rate; BT: body temperature; Amy: amylase; Group 1: controls; group 2: low-volume continuous veno-venous hemofiltration (CVVH) (20 mL/kg body weight [BW]/h); group 3: high-volume CVVH (100 mL/kg BW); NC, not calculated (no survival). *P<0.05 and **P<0.01 vs the respective value in controls; †P<0.05 and ‡P<0.01 vs baseline values, respectively.
higher in the control group compared to the treatment groups after the induction of pancreatitis (Table 3). In contrast, no differences in VO₂ were observed between the CVVH groups and control group (Table 3). As a result, OER was found to be significantly higher in animals undergoing CVVH.

Biochemical measurements
The activities of amylase in blood serum ranged from 115 to 543 U/L before the induction of pancreatitis. Pancreatitis resulted in a significant rise in amylase activities in all groups. Slight differences between groups did not reach statistical significance (Table 1).

DISCUSSION
Continuous hemofiltration, especially continuous venovenous hemofiltration (CVVH), was developed as a continuous renal replacement therapy (CRRT) for patients with severe conditions and has been widely performed in critical care[9]. In the present study we investigated the potential use of prophylactic CVVH to attenuate pancreatitis-induced SIRS and MODS. There was a significant effect on several organ functions, most notably on the cardiovascular system.

A hyperdynamic hemodynamic state may exist in the early phase of pancreatitis, which could also be observed in peripheral tissues, because of increased oxygen demand and might still be insufficient to meet the metabolic demand of central organs. This could be observed in the cardiovascular reaction, which could also be observed in depression may be evident in severe pancreatitis, as could be observed in the respective value in controls; P<0.05 and P<0.01 vs the respective value in controls; P<0.05 and P<0.01 vs baseline values, respectively.

MAP: mean arterial pressure, MPAP: mean pulmonary artery pressure, PCWP: pulmonary capillary wedge pressure, CVP: central venous pressure, CI: cardiac index, SVR: systemic vascular resistance. Group 1: controls; group 2: low-volume continuous veno-venous hemofiltration (CVVH) (20 mL/kg body weight [BW]/h); group 3: high-volume CVVH (100 mL/kg BW); NC, not calculated (no survival).

Table 2 Hemodynamic parameters (mean±SD)

Parameter	Group	Baseline	6 h	12 h	24 h	36 h	48 h
MAP (mmHg)	1	126.5±7.76	95.5±10.20^a	87.38±12.45^a	81.83±5.08^a	80.0±10.0^a	NC
	2	126.3±7.19	95.6±7.44^a	104.5±6.82^{ad}	102.0±10.64^{ad}	100.8±9.74^{ac}	84.5±13.44
	3	123.3±4.43	117.8±7.07^{ac}	116.3±7.80^{ac}	106.8±9.79^{ad}	104.5±5.74^{ad}	99.5±11.97
MPAP (mmHg)	1	24.5±1.51	25.0±1.07	26.8±1.16^{ad}	30.0±2.76^{ad}	27.3±3.06^{ac}	NC
	2	24.3±2.25	26.1±2.59	26.4±2.33	28.4±3.58^{ac}	29.5±2.38	29.0±8.49
	3	24.4±1.85	25.9±1.25	22.1±1.81^{ad}	25.4±2.92^{ad}	27.3±5.38^{ad}	27.4±1.72
PCWP (mmHg)	1	10.1±1.96	9.1±2.85	10.8±1.98	14.2±3.19	11.0±2.65	NC
	2	10.5±1.60	9.0±4.14	11.5±3.25	11.8±4.17	11.5±7.14	8.5±4.95
	3	10.3±0.71	8.8±1.98	9.6±1.60	10.3±2.87^{ad}	10.0±3.82	14.0±3.00
CVP (mmHg)	1	1.86±0.27	7.3±2.12	5.5±2.07^c	9.2±3.92	9.0±1.73	NC
	2	8.0±2.14	8.6±4.44	7.6±3.85	8.6±2.50	11.5±6.24	7.0±6.66
	3	7.9±1.36	6.5±1.93	6.9±1.36	7.3±1.98	7.4±2.07	8.3±2.21
CI (L/min/m²)	1	4.5±0.55	6.2±0.64^d	5.9±1.19^c	3.1±0.41^d	2.4±0.70	NC
	2	4.7±0.75	5.4±0.90^d	5.9±0.86^c	5.1±1.79^c	4.6±2.43	3.7±0.12
	3	4.6±0.54	5.0±0.97^d	4.2±0.73^{ad}	4.8±0.56^{ad}	5.3±1.10^a	6.3±1.17
SVR (dyn*s*cm⁻³)	1	2 130.2±204.5	1 176.8±253.9^a	1 465.0±788.3^c	1 915.8±397.8^c	3 617.7±374.1^c	NC
	2	2 061.2±407.1	1 329.6±354.8^a	1 349.9±218.6^d	1 573.0±633.1^d	1 988.1±942.4^a	1 674.2±463.6
	3	2 034.4±315.6	1 820.8±380.3^a	2 172.3±571.7^a	1 664.6±268.1	1 512.6±321.6^a	1 187.4±201.4

MAP: mean arterial pressure, MPAP: mean pulmonary artery pressure, PCWP: pulmonary capillary wedge pressure, CVP: central venous pressure, CI: cardiac index, SVR: systemic vascular resistance. Group 1: controls; group 2: low-volume continuous veno-venous hemofiltration (CVVH) (20 mL/kg body weight [BW]/h); group 3: high-volume CVVH (100 mL/kg BW); NC, not calculated (no survival).^aP<0.05 and ^bP<0.01 vs the respective value in controls; ^cP<0.05 and ^dP<0.01 vs baseline values, respectively.
contribute to tissue hypoxia, might be aggravated by directly impaired oxygen utilization due to a decreased mitochondrial redox state induced, for example, by cytokines or activated complement factors[24]. Hence, OER is usually reduced in critically ill patients with a hyperdynamic circulatory state and there still might be a hidden oxygen debt in spite of increased DO₂[2,21-23].

It is thus proposed to increase DO₂ further with inotropics, e.g., dobutamine, to meet the oxygen demand in patients with severe SIRS[24]. However, in contrast with encouraging early reports, to date there is little evidence that patients suffering from hyperdynamic circulatory failure benefit from increasing CO pharmacologically[22-24]. This treatment modality increases the workload of the heart and might lead to increased non-oxygenate oxygen metabolism and decreased oxygen extraction rate in some patients, e.g., those with limited cardiovascular reserve[22]. Thus, enhancing oxygen extraction may represent an alternative therapeutic approach which is more appropriate for the underlying pathophysiology. Alternatively, CVVH may directly decrease CO, which is compensated for by an increase in OER. In any case, as a net effect, CVVH significantly increases oxygen extraction without reducing VO₂ while the post-SIRS increase of CI and DO₂ is attenuated, although not prevented.

The mechanisms contributing to the attenuation of the hyperdynamic state remain speculative and may involve simple cooling effects[25,26] (as observed in the early course of CVVH, i.e., at hours 6 and 12 of the present study) or removal of filterable cardiodepressant mediators or factors involved in impaired microcirculation or cellular oxygen utilization[13,15,16]. In support of the latter concept, there is at least correlative evidence that an increase in MAP and SVR in septic animals is paralleled by a decrease in the circulating concentrations of these mediators might not be necessarily decreased, indicating increased production due to CVVH[27].

In the present study, the relationship between CVVH and VO₂ was measured (as in the present study for the CVVH groups), mathematical coupling would result in an erroneously lower VO₂. In contrast, in the present study there was no significant decrease in VO₂ in animals subjected to CVVH, despite a significantly lower DO₂ than in controls. Although we have to concede that measuring VO₂ directly is preferable, mathematical coupling would even underestimate the beneficial effect of CVVH on oxygen extraction observed in the present study.

The attenuation of hyperdynamic cardiocirculatory response in animals subjected to prophylactic CVVH may, as discussed above, in part result from their lower BT due to heat loss through the extracorporeal circuit. However, the difference in CI, SVR and DO₂ between the two CVVH groups, when differences in BT could not be detected, would suggest the contribution of factors other than simple cooling, e.g., removal of humoral factors mediating the hyperdynamic response. Furthermore, if a decrease in BT would be the main factor attenuating the hyperdynamic response to SIRS, a decrease in VO₂ in patients subjected to CVVH would be expected[20], but this was not the case.

In conclusion, our data indicate that the hyperdynamic circulatory response to severe acute pancreatitis can be attenuated by CVVH, especially high-volume CVVH. In contrast, there are no significant changes in VO₂ related to the prophylactic use of CVVH. Thus, oxygen extraction may be improved in pancreatitis pigs by CVVH.

REFERENCES

1. Beger HG, Rau B, Mayer J, Pralle U. Natural course of acute pancreatitis. J Surg 1997; 21: 130-135
2. Beal AL, Cerra FB. Multiple organ failure syndrome in the 1990s. Systemic inflammatory response and organ dysfunction. JAMA 1994; 271: 226-233
3. Mayer J, Rau B, Gansauge F, Beger HG. Inflammatory mediators in human acute pancreatitis: clinical and pathophysiological implications. Gut 2000; 47: 546-552
4. Mohr M, Hopken U, Oppermann M, Mathes C, Goldmann K, Siever S, Gotze O, Burchardi H. Effects of anti-C5a monoclonal antibodies on oxygen use in a porcine model of severe sepsis. Eur J Clin Invest 1998; 28: 227-234
5. Reinhart K, Wiegand-Lohnert C, Grimminger F, Kaul M, Wilthungen S, Treacher D, Eckart J, Willatts S, Bouza C, Krausch D, Stockenhuber F, Eiselstein J, Daum L, Kempen J. Assessment of the safety and efficacy of the monoclonal anti-tumor necrosis factor antibody-fragment, MAK 195F, in patients with sepsis and septic shock: a multicenter, randomized, placebo-controlled, dose-ranging study. Crit Care Med 1996; 24: 737-742
6. Fisher CJ, Slotman GJ, Opal SM, Pribble JP, Bone RC, Emmanuel G, Ng D, Bloedow DC, Catalano MA. Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: a randomized, open-label, placebo-controlled multicenter trial. Crit Care Med 1994; 22: 12-21
7. Kamijo Y, Soma K, Sugimoto K, Tsuruta H, Ohwada T. The effect of a hemofilter during extracorporeal circulation on hemodynamics in patients with SIRS. Intensive Care Med 2000; 26: 1355-1359
8. Suffredini AF. Current prospects for the treatment of clinical sepsis. Crit Care Med 1994; 22: S12-S18
9. Lin E, Lowry SF. Inflammatory cytokines in major surgery: a functional perspective. Intensive Care Med 1999; 25: 255-257
10. Echtenacher B, Falk W, Mannel DN, Krammer PH. Requirement of endogenous tumor necrosis factor/cachectin for recovery from experimental peritonitis. J Immunol 1990; 145: 3762-3766
11. Ziegenfuss T, Wanner GA, Grass C, Bauer I, Schuder G, Kleinschmidt S, Menger MD, Bauer M. Mixed agonistic-antagonistic cytokine response in whole blood from patients undergoing abdominal aortic aneurysm repair. Intensive Care Med 1999; 25: 279-287
12. Bone RC, Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med 1996; 24: 1125-1128
13. van Bommel EF. Should continuous renal replacement therapy be used for ‘non-renai’ indications in critically ill patients with shock? Resuscitation 1997; 33: 257-270
14. Bellomo R. Continuous haemofiltration as blood purification in sepsis. New Horiz 1995; 3: 732-737
15. Grootendorst AF, van Bommel EF, van der Hoven B, van Leengoed LA, van Osta AL. High volume haemofiltration improves right ventricular function in endotoxin-induced shock in the pig. Intensive Care Med 1992; 18: 235-240
16. Heering P, Morgera S, Schmitz FJ, Schmitz G, Willers R, Schultheiss HP, Strauer BE, Grabensee B. Cytokine removal and cardiovascular hemodynamics in septic patients with continuous venovenous hemofiltration. Intensive Care Med 1997;
17 Koperna T, Vogl SE, Poschl GP, Hamilton G, Roder G, Germann P. Cytokine patterns in patients who undergo hemofiltration for treatment of multiple organ failure. World J Surg 1998; 22: 443-447; discussion 448

18 Tu WF, Zhu WM, Li JS. Setting-up of the experimental model of severe acute pancreatitis in pigs. Jilin Yiyuan Xuebao 1997; 10: 235-237

19 Wang H, Li WQ, Zhou W, Li N, Li JS. Clinical effects of continuous high volume hemofiltration on severe acute pancreatitis complicated with multiple organ dysfunction syndrome. World J Gastroenterol 2003; 9: 2096-2099

20 Mitsuo T, Shimazaki S, Matsuda H. Right ventricular dysfunction in septic patients. Crit Care Med 1992; 20: 630-634

21 Hayes MA, Timmins AC, Yau EH, Palazzo M, Watson D, Hinds CJ. Oxygen transport patterns in patients with sepsis syndrome or septic shock: influence of treatment and relationship to outcome. Crit Care Med 1997; 25: 926-936

22 Yu M, Burchell S, Hasaniya NW, Takanishi DM, Myers SA, Takiguchi SA. Relationship of mortality to increasing oxygen delivery in patients; or = 50 years of age: a prospective, randomized trial. Crit Care Med 1998; 26: 1011-1019

23 Haupt MT. Impaired oxygen extraction in sepsis: is supranormal oxygen delivery helpful? Crit Care Med 1997; 25: 904-905

24 Fleming A, Bishop M, Shoemaker W, Appel P, Sufficool W, Kuvhenguwha A, Kennedy F, Wo CJ. Prospective trial of supranormal values as goals of resuscitation in severe trauma. Arch Surg 1992; 127: 1175-1179; discussion 1179-1181

25 Yagi J, Leblanc M, Sakai K, Wright EJ, Pagani EP. Cooling effect of continuous renal replacement therapy in critically ill patients. Am J Kidney Dis 1998; 32: 1023-1030

26 Matamis D, Tsagourias M, Koletsos K, Rigos D, Mavromatidis K, Sombolos K, Bursztein S. Influence of continuous hemofiltration-related hypothermia on haemodynamic variables and gas exchange in septic patients. Intensive Care Med 1994; 20: 431-436

27 Hoffmann JN, Hartl WH, Deppisch R, Faist E, Jochum M, Inthorn D. Effect of hemofiltration on hemodynamics and systemic concentrations of anaphylatoxins and cytokines in human sepsis. Intensive Care Med 1996; 22: 1360-1367

28 De Vriese AS, Vanholder RC, Pascual M, Lameire NH, Colardyn FA. Can inflammatory cytokines be removed efficiently by continuous renal replacement therapies? Intensive Care Med 1999; 25: 903-910

29 Sander A, Armbruster W, Sander B, Daul AE, Lange R, Peters J. Hemofiltration increases IL-6 clearance in early systemic inflammatory response syndrome but does not alter IL-6 and TNF alpha plasma concentrations. Intensive Care Med 1997; 23: 878-884

30 Hanique G, Dugernier T, Laterre PF, Dougnac A, Roeseler J, Reynaert MS. Significance of pathologic oxygen supply dependency in critically ill patients: comparison between measured and calculated methods. Intensive Care Med 1998; 20: 12-18