Study of microfauna foraminifera as bioindicator for coral reef condition in Tambelan Island, Riau Island Province

D R Junita1, A Sartimbul1*, L Gustiantini2, Sahudin2
1Marine Science Department, Faculty of Fisheries and Marine Science, Brawijaya University, Malang, Indonesia
2Marine Geological Institute, Bandung, Indonesia

*email: aida@ub.ac.id

Abstract. Tambelan Islands is one of the coral reef habitats in Indonesia. This area is the southern part of Natuna Sea and South China Sea Throughflow (SCSTF) exit area, which influenced the dynamics of the ocean and climate in Indonesia. Foraminifera is one of the potential bioindicator that can be used to determine the conditions of waters and the environmental health of coral reef. Twenty surface sediment samples were taken and quantitative analysis were made in order to obtain the condition of waters. This analysis including calculation of abundance, community structure, and analysis of biozonation (cluster and SHEBI). Meanwhile, to determine the condition of coral reef was using FORAM Index (FI). The results showed that there were 52 species of benthic foraminifera included in 41 genera. The most abundant genera were Amphistegina (average 28.08%) and Operculina (average 23.85%) which were a type of genera that associated with coral reefs. The FI values range from 3.57–9.12 indicating that environmental conditions are conducive to coral reefs. Biozonation from the cluster and SHEBI showed different results, indicating that the abundance of foraminifera in research area are influenced by complex factors such as substrate conditions and the activities on land.

1. Introduction
Tambelan Islands administratively is part of the Riau Islands Province. It is located off the west coast of the West Kalimantan Province, in the east side of Batam - Bintan, and southern part of of Natuna. The bathymetry of Tambelan Islands waters ranged from 10-55 meter which can be categorized as a shallow seas. Geographically, Tambelan Islands waters are classified as continental shelf. Sedimentation in the Tambelan Islands which is located in the outer part of the Sunda shelf is an interesting phenomenon. The outflow from the South China Sea (South China Sea Through-flow, SCSTF), local currents, and terrigenous input from Borneo Island will influence the depositional process. Various sources of sediment will produce a different types of sediments in the southern part and in the northern part of Tambelan Islands. This differences can be identified from the sediment texture, grain size and composition, or organism within the sediment [1]. In addition, Tambelan Islands is one of the coral reef areas in Indonesia, that need to be conserved [2]. Therefore, this study is conducted in order to understand the environmental condition of Tambelan Waters, including the health of its coral reef habitat, by analyzing foraminiferal assemblage, a microfaunal group that found abundant in marine sediment.

Foraminifera is a potential bioindicator for understanding the ecological conditions of the waters. This is because foraminifera has a relatively simple body structure and a hard shell, short life cycle, a
wide distribution, and a high ability to respond to the environmental changes [3,4]. Foraminifera is widely used as a bioindicator of water quality (including water depth, water temperature, sedimentation, nutrient content, oxygenation, turbidity, and water brightness), and water heavy metal pollution [5]. Furthermore, because of the dependence of both foraminifera and coral on algal symbiont for their growth and test calcification, previous research [6] has developed a method to monitor the health of coral reef environment from foraminiferal assemblages known as Foraminifera in Reef Assessment and Monitoring Index (FORAM Index), which has been widely applied by several researchers.

2. Method

2.1. Study area

For this study, 20 surface sediment samples from Tambelan Islands were analysed (Figure 1 and Table 1). These samples have been collected using grab samplers by the research team from Marine Geological Institute in 2008.

![Figure 1. The position of surface sediment samples (small black square in the index map) (modification from Tambelan Team [7]).](image)

No	Sample	Coordinate X	Coordinate Y	Depth (m)	No	Sample	Coordinate X	Coordinate Y	Depth (m)
1	T-1	107.21110	0.95892	30	11	T-11	113.42701	1.03868	32
2	T-2	113.51100	0.95359	15	12	T-12	113.39254	1.01311	10
3	T-3	113.50191	0.96852	25	13	T-13	113.42217	1.05482	35
4	T-4	113.50700	1.01418	20	14	T-14	113.43401	1.07380	15
5	T-5	113.47498	0.98858	33	15	T-15	113.40491	1.05273	35
6	T-6	113.48594	1.02980	17	16	T-16	113.39302	1.08244	25
7	T-7	113.45597	0.98756	20	17	T-17	113.38301	1.06767	41
8	T-8	113.46592	1.02501	35	18	T-18	113.36681	1.04750	50
9	T-9	113.46196	1.04427	25	19	T-19	107.36917	1.08219	47
10	T-10	113.44400	1.03946	35	20	T-20	107.44886	0.97409	5
2.2. Sample preparation and identification
Samples preparation was conducted at Core Laboratory of Marine Geological Institute, Cirebon. The samples were soaked in water for ± 12 hours to separate the shell of foraminifera from sediment grains. After that, samples were washed while filtered using a sieve sized 0.150 mm. Sediment that has been filtered then dried in temperature 40°-60°C. About 300 specimen of foraminifera were separated from other material for quantitative analysis, in case of large sample volume, the sample was splitted to obtain approximately 300 specimens. Foraminifera which have been separated from other materials were then identified under a binocular microscope which refers to several identification books such as Adisaputra [8], Barker [9], Lobelich and Tappan [10], and Nobes and Uthicke [11].

2.3. Data analysis
2.3.1. Relative abundance. Relative abundance is the percentage of each species in each sample. The calculations is using this formula:

\[
\text{Relative Abundance} = \frac{Ni}{N}
\]

Formula description :
Ni = Total individu of species
N = Total foram at one sample

2.3.2 Diversity index, evenness index, and dominance index. In addition to knowing the diversity level of foraminifera, these three indices can also be used to identify biozonation that is related to water depth factor. This is known as the SHEBI method [12], will be described more detail afterwards.

A. Diversity index was calculated using the formula below [13]:

\[
H' = -\sum Pi \ln Pi
\]

Formula description :
H' : Shannon-Weinner Index
Pi : Proportion of species i
Index range :
• H' = 0-2 : Low diversity of foraminifera
• H' = 2-3 : Moderate diversity of foraminifera
• H' >3 : High diversity of foraminifera

B. Evenness index was calculated using the formula below [14]:

\[
E = \frac{e^H}{S}
\]

Formula description :
E : Evenness index
e^H : Shannon-Weinner Index
S : Total of species
Index range :
• E' <0.4 : Low evenness of population
• 0.4< E' <0.6 : Moderate evenness of population
• E' >0.6 : High evenness of population
C. Dominance index was calculated using the formula below [15]:

\[D = \left(\frac{n_i}{N} \right)^2 \]

Formula description:

\(D \): Dominance Index
\(n_i \): Total individu of species
\(N \): Total foram at one sample

Index range:
- \(0 < D \leq 0.5 \): Low of dominance
- \(0.5 < D \leq 0.75 \): Moderate of dominance
- \(0.75 < D \leq 1 \): High of dominance

2.3.3 Biozonation identification. Biozonation identification were analysed by using two methods, first method is SHEBI (SHE analysis for biofacies identification), classify group of foraminifera related to water depth. The SHEBI analysis identifies the microfauna biofacies based on the biodiversity data (diversity and evenness) of the samples that have been ordered based on similarity environmental conditions, particularly water depth. Previous research had managed to determine the relationship between biodiversity and biofacies based on water-depth zones by analysing the values of S, H, and E. It is known that diversity will increase as water-depth increase at least up to the outer neritic zone [12][13][16][17][18]. For SHEBI analysis, S, H and E are related by equation:

\[H = \ln S + \ln E \]

For each calculation parameter, the N value (number of individual) for the second sample is the accumulation between the first sample and the second one, then added with the third sample for the third, continued to the last sample. As a result, the trend of log scale will be linear. Afterwards, LnS, H, and LnE are plotted again LnN, then the combination of the three are displayed in a graph of Biodiversity-gram (BDG). Biozone is identified by a linear trend, any breaks of the trend indicate new biozone.

Second method is cluster analysis which classify biozone based on similarity of their constituent species. In contrast to SHEBI which is more influenced by water depth, the biozonation of cluster can be influenced by various parameters of environmental conditions besides depth. SHEBI and Cluster analysis were processed using PAST3 (Paleontological Statistics Ver.3.23) software Hammer et al [19], freely downloaded from http://folk.uio.no/ohammer/past.

2.3.4 FORAM Index. FORAM Index was calculated using the formula based on Hallock et al [6]:

\[FI = (10 \times Ps) + (Po) + (2 \times Ph) \]

Formula description:

\(FI \) = FORAM Index
\(Ps \) = \(N_s / T \) ("s" represents symbiont bearing foraminifers).
\(Po \) = \(N_o / T \) ("o" represents opportunistic foraminifers).
\(Ph \) = \(N_h / T \) ("h" represents other small, heterotrophic foraminifers).
\(T \) = The total number of individuals from the sample

Interpretation:
- \(F1 > 4 \): Indicates environment conducive to reef growth
- \(3 < F1 < 5 \): Transitional environment (environmental decline)
- \(2 < F1 < 4 \): Indicates environment marginal for reef growth and unsuitable for recovery
- \(F1 < 2 \): Indicates stressed conditions unsuitable for reef growth
3. Result and discussion
The result indicates that foraminifera is composed of 52 benthic foraminiferal species, belong to 41 genera. Based on the calculation of relative abundance, there were several predominant genera such as Amphistegina, Operculina, Textularia, Quinqueloculina, Elphidium, and Heterolepa (Figure 2 and 3). The other genera has a percentage range below 1%.

![Figure 2](image1.png)

Figure 2. The relative abundance of foraminifera in Tambelan Islands.

![Figure 3](image2.png)

Figure 3. Predominant genera of foraminifera: (1) *Heterolepa*, (2-4) *Textularia*, (5) *Rotalidium*, (6-7) *Amphistegina*, (8) *Operculina*, (9) *Elphidium*, (10-11) *Quinqueloculina*, and (12) *Spiroloculina*.

3.1. Diversity, Evenness and Dominance Index
Diversity index ranged from 1.65 to 2.96 with average 2.22, while Evenness index ranged from 0.27-0.8 (0.49 in average), both are categorized as a moderate category, this means the presence of foraminifera in these location are evenly distributed. Furthermore, Dominance Index ranged from 0.06-0.31 with average 0.19, is categorized as low. This means no particular type of foraminiferal is dominates. The three indices (Figure 4 and Table A1) suggest that the condition of the Tambelan Islands waters is still favorable for foraminiferal habitat. The low value of dominance index in contrast high value of evenness indicate that all types of shallow benthic foraminifera able to live and develop with relatively equal abundances, no typical species is extremely dominant. Normally, the value of dominance index is inversely proportional to the evenness index. When the value of dominance index is high, the value of evenness index is low, suggests that the abundance of foraminifera is unevenly distributed. In
this condition an opportunist taxa will exclusively dominant due to unfavorable environmental conditions for other genera, and vice versa.

Figure 4. Diversity, Evenness and Dominance Index.

3.2. Biozonation Analysis

The SHEBI analysis divided foraminifera in Tambelan Islands into 3 biozones (Figure 5 and Table 2). Biozone I (5-15m depth) is indicated by decrease of diversity (H) and log evenness (LnE) while log of species number (LnS) increased. Biozone II (15-25m depth) is indicated by relatively constant H value, decrease of LnE, in contrast increase of the log species number (LnS). Biozone III (25-50m depth) is characterized by the value of diversity H and log of species number LnS that are relatively constant with slight decreased of the LnE.

Meanwhile, the result from Cluster Analysis exhibits 2 biozones, where the second group is divided into 2 sub-groups (Figure 6). Group I is consisted of only 1 sample (T-20), located off Benua Island in the southern part of Tambelan Islands, and the other 19 locations belong to Group II. The separation of these two groups was clearly due to the differences in environmental conditions. Group I (T-20) is dominated by genera *Rotalidium*, while group II is dominated by genera *Amphistegina* and *Operculina*.

Figure 5. (a – c) Ln S, H, and LnE plot to the LnN value, (d) Biodiversity-gram (BDG) of SHEBI analysis in Tambelan Islands.
Table 2. The results of the SHEBI analysis showed 3 biozonation.

Biofacies	N	Sample	Depth (m)	N	ln N	S	ln S	H	E	ln E
I	3	T-20	5	309	5.733	24	3.178	2.955	0.800	-0.223
		T-12	10	600	6.397	28	3.332	2.794	0.584	-0.539
		T-2	15	908	6.811	34	3.526	2.621	0.404	-0.905
II	6	T-14	15	1209	7.098	38	3.638	2.802	0.434	-0.836
		T-6	17	1501	7.314	41	3.714	2.769	0.389	-0.945
		T-4	20	1793	7.492	45	3.807	2.800	0.365	-1.007
		T-7	20	2101	7.650	46	3.829	2.786	0.353	-1.043
		T-3	25	2429	7.795	50	3.912	2.751	0.313	-1.161
		T-9	25	2765	7.925	50	3.912	2.717	0.303	-1.195
III	11	T-16	25	3038	8.019	50	3.912	2.795	0.327	-1.118
		T-1	30	3339	8.113	50	3.912	2.759	0.316	-1.153
		T-11	32	3634	8.198	51	3.932	2.769	0.312	-1.163
		T-5	33	3936	8.278	51	3.932	2.771	0.313	-1.161
		T-8	35	4271	8.360	51	3.932	2.763	0.311	-1.169
		T-10	35	4564	8.426	51	3.932	2.752	0.307	-1.180
		T-13	35	4873	8.492	51	3.932	2.754	0.308	-1.178
		T-15	35	5210	8.558	51	3.932	2.751	0.307	-1.181
		T-17	41	5537	8.619	52	3.951	2.726	0.294	-1.225
		T-19	47	5832	8.671	52	3.951	2.737	0.297	-1.214
		T-18	50	6151	8.724	52	3.951	2.751	0.301	-1.200

Figure 6. Dendogram of cluster analysis in Tambelan Islands.

Rotalidium genera are known have high tolerant to the change of salinity, and mostly found in estuarine and lagoon areas [20]. In contrast to the other locations, T-20 was collected from very shallow water depth (5 m), moreover its position is very close to the mainland Benua Island. As a consequence,
the impact from the land might be relatively higher in this location compared to the others, hence influence the foraminiferal assemblages and distribution.

In Group II, significant changes of *Amphistegina* and *Operculina* percentages are considered as a distinguishing factor in the two sub-group. Sub-group II-A is consisted of sample T-1, 2, 3, 4, 8, 9, 11, 12, 18 and T-19, it is characterized by high dominance of *Amphistegina* (40.4% in average) and *Operculina* with lower percentage (average percentage is 17.3%). Sub-group II-B composed of sample T-5, 6, 7, 10, 13, 14, 15, 16, and T-17, it is reflected by decrease of *Amphistegina* percentage (16.6%), in contrast percentage of *Operculina* is higher compared to Group II-A (33% in average).

The foraminiferal biozonation derived from the two methods (SHEBI and Cluster Analysis) shows different result, suggests that the abundance of foraminifera in Tambelan Islands is influenced by many complex factors. The depth of water strongly influence the diversity of foramifera. The other factors including type of substrate, current intensity, penetration level, coral reefs environment, and terrigenous input also influence foraminiferal assemblages in shallow water Tambelan Islands.

3.3. FORAM Index

The foraminifera were grouped into 3 groups, group that associated with coral reefs, opportunistic group, and heterotrophic group (Table B1). The results of FORAM Index calculations range from 3.57 to 9.12 (Figure 7). Based on this FI value (FI > 4), the waters of the Tambelan Islands is considered as a conducive environment for the growth of coral reefs. However, 2 locations (T-16 and T-20) indicate lower FI values, although these values are still in conducive zone to coral reef growth. In these two locations *Textularia* and *Rotalidium* are dominant, and the abundance of *Amphistegina* and *Operculina* genera are lower compared to other locations. Sample T-16 was collected from the northern part of the study area, 25 m water depth, composed of gravelly-muddy-sand type of sediment. Sample T-16 is more dominated by *Textularia*. While, sample T-20 collected from the southern part of the study area, very close to Benua Island, with the shallowest water depth (5m) compared to other samples, more dominated by genera of *Rotalidium*.

![Figure 7. FORAM Index value](image.png)

The abundance of *Amphistegina* and *Operculina* genera can be influenced by the type of sediment, water depth, and the nutrients content in the water. Very fine sediment may increase the level of turbidity thus reduce the level of sunlight penetration into the waters. This condition is not favourable for the development of symbiont bearing foraminifera group including *Amphistegina* and *Operculina*. These
two genera need sunlight for conducting photosynthesis process. Conversely, the abundance of *Textularia* is increased in this high turbidity condition because it does not require bicarbonate from the photosynthesis [6,21,22]. Furthermore, terrigenous input from nearby mainland is another factor influence the abundance of *Amphistegina* and *Operculina*, particularly related to changes in pH conditions and nutrient supply.

4. Conclusion
Foraminifera that were found in the Tambelan Islands very abundant, dominated by algal symbiont bearing larger benthic foraminifera such as *Amphistegina* and *Operculina* genera. It was observed that the abundance of foraminfera in Tambelan Islands is not only influenced by water depth factors, but also influenced by more complex factors such as sediment type and the influence from the mainland around the Tambelan Islands. FORAM Index analysis indicated that Tambelan Islands waters are naturally conducive to coral reef growth. However, the possibility in water quality degradation might be occurred confirmed by the low FORAM Index values in 2 locations associated with decrease in *Amphistegina* and *Operculina* abundance, that need to be concerned.

Appendices
Appendix A. Diversity, Evenness and Dominance Index Value

Sample	Diversity (H)	Dominance (D)	Evenness (E)
T-1	2.03	0.26	0.42
T-2	1.65	0.31	0.27
T-3	2.13	0.21	0.35
T-4	2.44	0.17	0.46
T-5	2.40	0.17	0.41
T-6	2.23	0.18	0.41
T-7	1.94	0.30	0.32
T-8	2.22	0.18	0.54
T-9	2.13	0.20	0.49
T-10	2.10	0.22	0.45
T-11	2.28	0.15	0.44
T-12	1.66	0.25	0.41
T-13	2.26	0.19	0.56
T-14	2.75	0.09	0.65
T-15	2.10	0.16	0.75
T-16	2.87	0.10	0.52
T-17	1.83	0.26	0.42
T-18	2.30	0.13	0.66
T-19	2.13	0.15	0.47
T-20	2.96	0.06	0.80
Appendix B. Taxonomic Group for FORAM Index Calculation

Table B1. Foraminifera group for FORAM Index calculation.

No	Species	Suborder	Order	Family	Taxonomic Group
1	Ammonomassilina alveoliniformis	Miliolina	Miliolida	Hauerinida	Heterotrophic
2	Amphistegina lessoni	Rotaliina	Rotaliida	Amphisteginida	Symbiont bearing
3	Amphistegina radiata	Rotaliina	Rotaliida	Amphisteginida	Symbiont bearing
4	Articulina pacifica	Miliolina	Miliolida	Hauerinida	Heterotrophic
5	Asterorotalia trispinosa	Rotaliina	Rotaliida	Ammoniidae	Opportunistic
6	Baculogysinoides spinosus	Rotaliina	Rotaliida	Calcarinida	Symbiont bearing
7	Calcarina mayori	Rotaliina	Rotaliida	Calcarinida	Symbiont bearing
8	Cancris auriculus	Rotaliina	Rotaliida	Cancellidae	Heterotrophic
9	Cibicidoides globulosus	Rotaliina	Rotaliida	Cibicidae	Heterotrophic
10	Clavulina pacifica	Textulariina	Textulariida	Valvulinida	Heterotrophic
11	Discorbinella sp	Rotaliina	Rotaliida	Discorbinellida	Heterotrophic
12	Elphidium craticulum	Rotaliina	Rotaliida	Elphididae	Opportunistic
13	Elphidium crispum	Rotaliina	Rotaliida	Elphididae	Opportunistic
14	Eponides repandas	Rotaliina	Rotaliida	Eponidae	Heterotrophic
15	Gypsina vesicularis	Rotaliina	Rotaliida	Acervulinida	Heterotrophic
16	Hanzawaia concentrica	Rotaliina	Rotaliida	Anomalinidae	Heterotrophic
17	Heterostegina depressa	Rotaliina	Rotaliida	Nannuntidae	Symbiont bearing
18	Heterolepa subhaidingeri	Rotaliina	Rotaliida	Cibicidae	Symbiont bearing
19	Lenticulina papillosoechinata	Rotaliina	Lagenida	Vaginulinae	Heterotrophic
20	Martinotiella milletti	Textulariina	Textulariida	Eggerellidae	Heterotrophic
21	Miliolinella suborbicularis	Miliolina	Miliolida	Hauerinida	Heterotrophic
22	Neoponides bradyi	Rotaliina	Rotaliida	Discorbiidae	Heterotrophic
23	Operculina ammonoides	Rotaliina	Rotaliida	Nannuntidae	Symbiont bearing
24	Pararotalia domantayi	Rotaliina	Rotaliida	Calcarinida	Opportunistic
25	Peneroplis antilarum	Miliolina	Miliolida	Peneropidae	Symbiont bearing
26	Planispirillina spinigeri	Rotaliina	Planispirillina	Planispirillina	Heterotrophic
27	Planorbulinella acarvalis	Rotaliina	Rotaliida	Planorbulinida	Heterotrophic
No	Species	Suborder	Order	Family	Taxonomic Group
----	--------------------------------	--------------	---------	-------------------	-----------------
28	Planorbullinella larvata	Rotaliina	Rotaliida	Planorbullinidae	Heterotrophic
29	Pseudogaudryina triangulata	Textulariina	Textulariida	Pseudogaudryinida	Heterotrophic
30	Pseudohauerina involata	Miliolina	Miliolida	Hauerinidae	Heterotrophic
31	Pseudomassilina macilenta	Miliolina	Miliolida	Hauerinidae	Heterotrophic
32	Pseudorotalia Schroeteriana	Rotaliina	Rotaliida	Ammoniidae	Opportunistic
33	Pyrgo anomala	Miliolina	Miliolida	Hauerinidae	Heterotrophic
34	Quinqueloculina cuvieriana	Miliolina	Miliolida	Hauerinidae	Heterotrophic
35	Quinqueloculina intricata	Miliolina	Miliolida	Hauerinidae	Heterotrophic
36	Quinqueloculina organica	Miliolina	Miliolida	Hauerinidae	Heterotrophic
37	Quinqueloculina parvaggluta	Miliolina	Miliolida	Hauerinidae	Heterotrophic
38	Quinqueloculina pseudoreticulata	Miliolina	Miliolida	Hauerinidae	Heterotrophic
39	Rosalina bradyi	Rotaliina	Rotaliida	Rosalinidae	Heterotrophic
40	Rotalidium annectens	Rotaliina	Rotaliida	Ammoniidae	Heterotrophic
41	Sahulia kerimbaensis	Textulariina	Textulariida	Textularida	Heterotrophic
42	Schlumbergerella floressiana	Rotaliina	Rotaliida	Calcarinidae	Symbiont bearing
43	Schlumbergerina alveoliniformis	Miliolina	Miliolida	Hauerinidae	Heterotrophic
44	Spiroloculina communis	Miliolina	Miliolida	Spiroloculinidae	Heterotrophic
45	Stilostomella lepidula	Rotaliina	Lagenida	Stilostomellida	Heterotrophic
46	Streblos gaimardii	Rotaliina	Rotaliida	Ammoniidae	Opportunistic
47	Textularia foliacea	Textulariina	Textulariida	Textularida	Heterotrophic
48	Textularia paragglutinans	Textulariina	Textulariida	Textularida	Heterotrophic
49	Textularia stricta	Textulariina	Textulariida	Textularida	Heterotrophic
50	Tinoporus spengleri	Rotaliina	Rotaliida	Calcarinidae	Symbiont bearing
51	Triloculina tricarinata	Miliolina	Miliolida	Hauerinidae	Heterotrophic
Reference

[1] Isnaniawardhani V and Natsir SM. Tipe Sedimen Permukaan Dasar Laut Selatan dan Utara Kepulauan Tambelan Perairan Natuna Selatan Repository-Unpad 1-18

[2] Giyanto M A, Hadi T A, Budiyaneto A, Hafizt M, Salatalohy A and Iswari M Y 2017 Status Terumbu Karang Indonesia 2017 (Jakarta: Pusat Penelitian Oceanografi - LIPI)

[3] Nurruhwati I, Kaswadji R and Bengen D G 2012 Kelimpahan Foraminifera Bentik Resen Pada Sedimen Permukaan di Perairan Teluk Jakarta Jurnal Akuatika 3 11-8

[4] Puspasari R, Marsoedi, Sartimbul A and Natsir S M 2012 Kelimpahan Foraminifera Bentik Pada Sedimen Permukaan Perairan Dangkal Pantai Timur Semenanjung Ujung Kulon, Kawasan Taman Nasional Ujung Kulon, Banten Jurnal Penelitian Perikanan Indonesia 1 1-9

[5] Reymond C E, Uthicke S and Pandolfi J M 2012 Tropical Foraminifera as indicators of water quality and temperature Proceedings of the 12th International Coral Reef Symposium 5

[6] Hallock P, Lidz B H, Cockey-Burkhard E M and Donnelly K B 2003 Foraminifera as Bioindicators in Coral Reef Assessment and Monitoring: The Foram Index Environmental Monitoring and Assessment 81 221–238

[7] Tim Tambelan 2008 Penelitian potensi sumberdaya geologi kelautan Kepulauan Tambelan Provinsi Kepulauan Riau (Bandung: Pusat Penelitian dan Pengembangan Geologi Kelautan, Balitbang Energi dan Sumber Daya Mineral, Departemen Energi dan Sumber Daya Mineral)

[8] Adisaputra M K, Hendrizan M and Kholiq A 2010 Katalog foraminifera perairan Indonesia. (Bandung: Pusat Penelitian dan Pengembangan Geologi Kelautan)

[9] Parker R W 1960 Taxonomic Notes (Huston: Society of Economic Paleontologists and Mineralogists) 238

[10] Loeblich A R and Tappan H 1988 Foraminiferal Genera and Their Classification (New York: Van Nostrand Reinhold) 2031

[11] Nobes K and Uthicke S 2008 Benthic foraminifera of the Great Barrier Reef: a guide to species potentially useful as water quality indicators Reef and Rainforest Research Centre 38

[12] Buzas M A, Hayek L A C 1998 She Analysis For Biofacies Identification Journal of Foraminiferal Research 28 233-9

[13] Buzas M A, Hayek L A C 1996 Biodiversity Resolution: An Integrated Approach. Biodiversity Letters 3 40-43

[14] Buzas M and Gibson G T 1969 Species Diversity: Benthonic Foraminifera in Western North Atlantic. Science (New York, NY) 163 72–5

[15] Bawole and Kusen 2017 Struktur Komunitas Foraminifera Bentik Berdasarkan Habitat di Sulawesi Utara Jurnal Pesisir dan Laut Tropis 2 6-12

[16] Buzas M and Hayek L A C 2005. On richness and Evenness Within and Between Communities Paleobiology 31 199–220

[17] Buzas M A, Hayek L A C and Culver S J 2007 Community Structure of Benthic Foraminifera in the Gulf of Mexico Marine Micropaleontology 65 43–53

[18] Mana D 2005 A Test Application Of The She Method As A Biostratigraphical Parameter GeoALp 2 99-106

[19] Hammer 1999 PAST Paleontological Statistics version 3.23 (Natural History Museum, University of Oslo)

[20] Sen Gupta B K 1999 Modern Foraminifera (Dordrecht: Kluwer Academic Publishers) p 384

[21] Boltovskoy E and Wright R 1976 Recent foraminifera (The Hague: Junk)

[22] El Kateb A, Stalder A, Stainbank S, Fentimen R and Spezzaferri S 2018 The genus Amphistegina (benthic foraminifera): distribution along the southern Tunisian coast BioInvasions Records 7 391–8

Acknowledgement

The authors would like to thank Marine Geological Institute, Bandung, Indonesia which providing samples and all of laboratory equipment during the research. We acknowledge Captain and all crew of
R.V. Geomarin 3, and our gratitude to all the team member of Tambelan Cruise in 2008. We also thank to Agriculture Bogor University as the organizers for 3rd International Conference on Marine Science providing the means for this research to be published.