Mac-1 Regulates IL-13 Activity in Macrophages by Directly Interacting with IL-13Rα1*

Chunzhang Cao‡1, Juanjuan Zhao‡, Emily K. Doughty‡, Mary Migliorini‡, Dudley K. Strickland‡, Maricel G. Kann§, and Li Zhang†‡1

From the Departments of ‡Physiology and §Surgery, Center for Vascular and Inflammatory Diseases, the University of Maryland, School of Medicine, Baltimore, Maryland 21201 and the ¶Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250

Background: Mac-1 strongly suppresses IL-13-induced JAK/STAT activation in macrophages, but the mechanism is unknown.

Results: Our data demonstrate that Mac-1 interacts with the IL-13Rα1 subunit of IL-13R and thereby suppresses IL-13 signaling.

Conclusion: Mac-1 regulates macrophage to foam cell transformation by binding to IL-13Rα1.

Significance: This study identifies a novel interaction and provides a potential mechanism by which Mac-1 safeguards macrophages from foam cell differentiation.

Mac-1 exhibits a unique inhibitory activity toward IL-13-induced JAK/STAT activation and thereby regulates macrophage to foam cell transformation. However, the underlying molecular mechanism is unknown. In this study, we report the identification of IL-13Rα1, a component of the IL-13 receptor (IL-13R), as a novel ligand of integrin Mac-1, using a co-evolution-based algorithm. Biochemical analyses demonstrated that recombinant IL-13Rα1 binds Mac-1 in a purified system and supports Mac-1-mediated cell adhesion. Co-immunoprecipitation experiments revealed that endogenous Mac-1 forms a complex with IL-13Rα1 in solution, and confocal fluorescence microscopy demonstrated that these two receptors co-localize with each other on the surface of macrophages. Moreover, we found that genetic inactivation of Mac-1 promotes IL-13-induced JAK/STAT activation in macrophages, resulting in enhanced polarization along the alternative activation pathway. Importantly, we observed that Mac-1−/− macrophages exhibit increased expression of foam cell differentiation markers including 15-lipoxygenase and lectin-type oxidized LDL receptor-1 both in vitro and in vivo. Indeed, we found that Mac-1−/− LDLR−/− mice develop significantly more foam cells than control LDLR−/− mice, using an in vivo model of foam cell formation. Together, our data establish for the first time a molecular mechanism by which Mac-1 regulates the signaling activity of IL-13 in macrophages. This newly identified IL-13Rα1/Mac-1-dependent pathway may offer novel targets for therapeutic intervention in the future.

High levels of LDL and its associated cholesterol in the circulation are well established risk factors for cardiovascular diseases (1–3). LDL accumulates within the subendothelial space in response to inflammation, where it is converted into oxidized LDL (oxLDL) by reactive oxygen species, myeloperoxidase, and lipoxygenase such as 15-lipoxygenase (15-LO), all of which are secreted by macrophages (3). Subsequently, oxLDL is internalized by these macrophages via specific cell surface receptors, including CD36 (4) and lectin-type oxidized LDL receptor-1 (LOX-1) (5), and transforms macrophages into foam cells. Accumulation of fat-laden foam cells in the vessel wall gives rise to the earliest vascular lesions, which gradually progress into fatty streaks, intermediate lesions, and ultimately atherosclerotic plaques (3, 6). The critical role of foam cell formation in the pathogenesis of atherosclerosis is underscored by the observations that genetic inactivation of 15-LO or LOX-1 in mice protects against the development of severe plaques under hyperlipidemia (5, 7).

Macrophages can polarize along two distinct pathways: stimulation with IFN-γ and lipopolysaccharide generates the classically activated macrophages (also known as M1) that exhibit proinflammatory activities, whereas stimulation with IL-4 or IL-13 generates the alternatively activated macrophages (AAMs or M2) that possess anti-inflammatory properties (8–10). Surprisingly, emerging evidence has implicated a pathological role of AAMs in the early stage of atherosclerosis development (9, 11–13). Indeed, AAMs are found to produce high levels of 15-LO and CD36 under the pathological setting of hyperlipidemia (2, 9, 10) and are thus more susceptible to foam cell transformation than classically activated macrophages (11, 12). Recently, Yakubenko et al. (9, 14) reported...
that integrin Mac-1 (CD11b/CD18 or α₅β₂) functions to suppress IL-13-induced JAK/STAT activation in macrophages and reduces their uptake of oxLDL in vitro, suggesting that Mac-1 plays a regulatory role in foam cell development. However, the molecular mechanism by which Mac-1 inhibits IL-13-induced JAK/STAT activation in macrophages is unknown.

In this work, we identified IL-13Rα1, a subunit of the heterodimeric IL-13R, as a novel biological partner of Mac-1, using an unbiased co-evolution-based algorithm. Subsequently, we confirmed direct binding between these two receptors using erodimeric IL-13Rβ1, as a novel biological partner of Mac-1, using cross-linking and mass spectrometry, and showed by co-immunoprecipitation that endogenous Mac-1 and IL-13Rα1 form a complex in solution and showed by confocal fluorescence microscopy that they reside in proximity on the cell surface. Biologically, we found that genetic inactivation of Mac-1 enhances IL-13-induced JAK/STAT activation in macrophages and promotes their polarization. Furthermore, we found that the absence of Mac-1 on macrophages increases their expression of foam cell differentiation markers. Using an LDLR⁻/⁻ mouse model of foam cell formation, our data revealed that Mac-1⁻/⁻ mice develop significantly more foam cells in vivo. Together, our study established for the first time a molecular mechanism by which Mac-1 suppresses IL-13-induced macrophage activation and foam cell transformation.

Experimental Procedures

Mice—WT, Mac-1⁻/⁻, LDLR⁻/⁻, and Mac-1⁻/⁻ LDLR⁻/⁻ mice were all in the C57BL/6j background and used at 8–13 weeks of age (20–22 g). WT and LDLR⁻/⁻ mice were purchased from The Jackson Laboratory. Mac-1⁻/⁻ mice were kindly provided by Dr. Christie M. Ballantyne, Baylor College of Medicine (Houston, TX) and have been backcrossed to the C57BL/6j background for more than 10 generations. All mice were housed in a pathogen-free facility, and all procedures were performed in accordance with University of Maryland Institutional Animal Care and Use Committee approval.

Antibodies and Reagents—mAb M1/70 for Mac-1 was from eBioscience (San Diego, CA). Function-blocking mAb 38 for LFA-1 was from Fisher Scientific. Rabbit anti-IL-13Rα1 and rabbit anti-β-actin were from Sigma. Rabbit anti-15-LO and rabbit anti-STAT6 were from Santa Cruz Biotechnology (Dallas, Texas). Rabbit anti-LOX-1 was from GeneTex (Irvine, CA). Rabbit anti-CD18 cytoplasmic domain ARC22 was prepared as described (15). Rabbit anti-phosphorylated STAT6 (Tyr-641) antibody was from Cell Signaling (Danvers, MA).

Prediction of Protein-Protein Interactions—All protein sequences for the complete genomes of 184 species were downloaded from the National Center for Biotechnology Information (NCBI) Entrez database (16). The set of species contained 130 eukaryotes, 47 prokaryotes, and seven archaea. All sequences for the 184 species were updated on June 2011. Orthologous proteins were identified for each protein in each of the genomes by performing reciprocal BLAST searches (17) against all genomes. For each species, the protein with the smallest average E-value (average of the forward and reciprocal E-values), with E-value <1 × 10⁻40 and the largest sequence overlap with at least 80% alignment overlap, was selected as the ortholog of protein P for that species.

Calculating Distance Matrices—Multiple sequence alignments for each protein within the pairs of interacting and non-interacting proteins and their corresponding orthologs were obtained using MUSCLE version 3.52 (18). From these multiple sequence alignments, the distance matrices for each protein set were estimated using the ClustalW suite with default parameters (19).

Estimating Correlation Coefficients—For each protein pair from the interacting and non-interacting sets, the correspondence between their evolutionary histories was measured by computing the correlation between the distance matrices of each protein (the Mirrortree approach) (20). For two proteins A and B with n species in common (where n ≥ 9), let us denote Aᵢ,ⱼ as the distance between species i and j for protein A; and Bᵢ,ⱼ for protein B. The linear correlation coefficient (corr. coeff. or CCₐᵢ,ⱼ) between their distance vectors was calculated using the standard Pearson’s corr. coeff.

\[
CCₐᵢ,ⱼ = \frac{\sum_{i=1}^{n} \sum_{j=i+1}^{n} (Aᵢ,ⱼ - \bar{A}) (Bᵢ,ⱼ - \bar{B})}{\sqrt{\sum_{i=1}^{n} \sum_{j=i+1}^{n} (Aᵢ,ⱼ - \bar{A})^2} \times \sqrt{\sum_{i=1}^{n} \sum_{j=i+1}^{n} (Bᵢ,ⱼ - \bar{B})^2}}
\]

(Eq. 1)

where \(\bar{A}\) and \(\bar{B}\) are the means of \(Aᵢ,ⱼ\) and \(Bᵢ,ⱼ\) respectively.

Correcting for Speciation—As shown by Pazos et al. (21) and Sato et al. (22), prediction of protein interactions using co-evolutionary analysis is greatly improved by excluding the background co-evolutionary signal from phylogenetic relationships (signal from speciation). The signal from speciation for species i and j, represented by matrix \(Sᵢ,ⱼ\), was computed by averaging the evolutionary distance matrices of all proteins in species i with their orthologs in species j. To estimate the corr. coeff. with this correction, the distance matrices \(Aᵢ,ⱼ\) and \(Bᵢ,ⱼ\) in Eq. 1 were replaced by \(Aᵢ,ⱼ'\) and \(Bᵢ,ⱼ'\) where \(Aᵢ,ⱼ' = Aᵢ,ⱼ - Sᵢ,ⱼ\) and \(Bᵢ,ⱼ' = Bᵢ,ⱼ - Sᵢ,ⱼ\).

Preparation of Peritoneal Macrophages—Mice were injected intraperitoneally with 4% thioglycollate. Four days later, peritoneal macrophages were collected by lavages with PBS. After lysis of red blood cells with ammonium chloride (8.3 g/liter in 10 mM Tris-HCl, pH 7.4), peritoneal cells were plated on 10-cm dishes. Peritoneal macrophages were treated with or without 4 nM IL-13 for various times, ranging from 5 min to 3 days. STAT6 activation was assessed by Western blot using phospho-STAT6-specific antibody. Total STAT6 protein and β-actin were used as loading controls. Macrophage polarization along the alternative
Mac-1 Binds IL-13Ra1 and Suppresses IL-13 Signaling

TABLE 1

Primer	NM	Sequence
β-Actin	NM_00739	Forward (5’ to 3’) AGTTGGACCGTCGACATCCUT
		Reverse (5’ to 3’) TCTTCGCCCTTGCTGGAAATG
YM-1	NM_009892	Forward (5’ to 3’) CAGCTGCAATCCCTCATTCT
YM-2	NM_145126	Forward (5’ to 3’) CTTTTGCTTGGATGAAAGAT
FIZZ1	NM_020509	Forward (5’ to 3’) CCAAACCTCCATCCCCCAT
Arginase1	NM_007482	Forward (5’ to 3’) AGAACCTTCTGGCCACTCCA
Lox-1	NM_138648	Forward (5’ to 3’) TGGTTCTGCAACTGATTTCC
15-LO	NM_009660	Forward (5’ to 3’) GGCCTCTGAGATCTCCACC
IL-6	NM_031168	Forward (5’ to 3’) CTCGCGAATACCTGGAATA

Activation pathway was assessed by quantitative real-time RT-PCR (qRT-PCR) based on expression of specific markers, including Arginase-1, FIZZ1, YM1, and YM2. Briefly, total RNA was extracted from peritoneal macrophages using the Absolutely RNA miniprep kit (Stratagene) according to the manufacturer’s instructions. One microgram of total RNA was used for cDNA synthesis using SuperScript II and random hexamers (Invitrogen). qRT-PCR was performed on an ABI Prism 7500 HT sequence detection system (Applied Biosystems), using specific primer pairs (Table 1). The PCR reaction was done in a 25-μl solution containing 12.5 μl of SYBR® Green PCR master mix, 10 ng of cDNA, and 400 nm of each primer, with the following settings: activation of the AmpliTaq Gold® polymerase at 95 °C for 10 min and 40 cycles of 95 °C for 15 s and 60 °C for 1 min. The melting curve was analyzed using the ABI software, and quantification of gene expression was done based on the $2^{-\Delta\Delta CT}$ method (RQ Manager 1.4). Each experiment was run in duplicates. All data were normalized to β-actin expression in the same cDNA set.

Ligand Binding—Binding of recombinant IL-13Ra1 to purified full-length Mac-1 was carried out in 96-well microtiter plates. Detergent-solubilized Mac-1 was purified from Mac-1-expressing HEK293 cells (23) by affinity chromatography using mAb LM2/1-coupled agarose. The purity of Mac-1 was verified by SDS-PAGE and by its ability to bind conformation-dependent mAbs (data not shown). Fifty microliters of 10 μg/ml purified Mac-1 in 100 mM KCl, 3 mM MgCl₂, 10 mM PIPES, pH 7.0, were used to coat the wells of 96-well microplates at 4 °C overnight. The plate was washed and blocked with 1% BSA. Recombinant mouse IL-13Ra1, which contains a histidine tag at its C terminus (Leinco Technologies Inc.), was added at different concentrations (0–2 μM) in the above buffer plus 0.1% BSA. After incubation at 37 °C for 2 h, the plate was washed, and bound IL-13Ra1 was detected using HisProbe-HRP (Thermo Scientific) with its substrate 3,3’,5,5’-tetramethylbenzidine, measuring absorbance at 450 nm. The binding curve was fitted to the Michaelis-Menten equation based on a single binding site model using SigmaPlot (Systat Software, Inc., San Jose, CA).

Cell Adhesion Assays—Cell adhesion was conducted based on our published methods (23). Briefly, 24-well polystyrene microtiter plates were coated with increasing concentrations of recombinant mouse IL-13Ra1, BSA, or 10 μg/ml ICAM-1-Fc (24). The plates were blocked with 400 μl of 0.05% polyvinylpyrrolidone in Dulbecco’s PBS. A total of 2 × 10⁶ Mac-1-expressing HEK293 cells in Hanks’ balanced salt solution containing 1 mM Ca²⁺ and 1 mM Mg²⁺ in the presence or absence of 50 nM neutrophil inhibitor factor (NIF; a Mac-1-specific antagonist (25)) or LFA-1-expressing HEK293 cells in Hanks’ balanced salt solution containing 2 mM EGTA and 2 mM Mg²⁺ with or without 10 μg/ml mAb 38 (a LFA-1 function-blocking mAb) were added to each well. After incubation at 37 °C for 30 min, non-adherent cells were removed by three washes with Dulbecco’s PBS and adherent cells were stained with Crystal Violet. Cell adhesion was quantified based on absorption at 595 nm.

Co-immunoprecipitation—Co-immunoprecipitation experiments were conducted based on our published methods (26). WT peritoneal macrophages were stimulated with IL-13, washed, and then lysed. The cell lysates were immunoprecipitated using a rabbit anti-IL-13Rα1 antibody, and the immunoprecipitates were separated on 10% SDS-PAGE, transferred to PVDF membrane, and probed with anti-CD18 antibody ARC22 (15). Equal loading was verified by the presence of equal amounts of CD18 and β-actin in the cell lysates.

Confocal Laser Scanning Fluorescence Microscopy—Co-localization between IL-13Ra1 and Mac-1 was determined by confocal fluorescence microscopy based on our published method (26). Peritoneal macrophages were seeded on multi-well slides, incubated at 37 °C for 24 h, then fixed with 4% paraformaldehyde in PBS for 30 min at room temperature. After washing with 5% bovine serum albumin in PBS at room temperature for 30 min, these cells were incubated with 20 μg/ml rabbit anti-IL-13Ra1 antibody and 20 μg/ml rat anti-Mac-1 mAb (M1/70) in 1% bovine serum albumin in PBS at room temperature for 60 min. After washing, these different coverslips were incubated with Alexa Fluor 488-conjugated goat anti-rabbit IgG and Alexa Fluor 568-conjugated goat anti-rat IgG (Molecular Probes). Non-immune rabbit and rat IgGs were used as specificity controls. The stained macrophages were analyzed using a Bio-Rad Radiance 2000 confocal laser scanning fluorescence microscope system equipped with a Nikon Eclipse E800 upright light microscope. The images...
were collected using 100× oil objectives with a slice thickness of 2.6 μm.

Foam Cell Formation in Vivo—The formation of foam cells in vivo was investigated based on published methods (27) with minor modifications. Briefly, Mac-1−/−/LDLR−/− mice and their LDLR−/− littermates were fed a high fat “Western” diet (21% fat and 0.2% cholesterol) for 5 weeks. Peritoneal macrophages were prepared from these mice by intraperitoneal injection of 4% thioglycollate, followed by peritoneal lavage 4 days later. Foam cells within the collected peritoneal cells were identified by staining the fat droplets within the cytosol with Oil Red O following centrifuging in the Cytospin. To quantify the amount of cholesterol accumulated within these foam cells, peritoneal cells were pelleted at 1000 rpm for 7 min, extracted in 500 μl of isopropanol by sonication (2 × 10 s), and then centrifuged at 14,000 rpm for 10 min. The pellet was used to determine the amount of total protein by Bio-Rad protein assay. The supernatant was assayed for cholesterol using Amplex Red kit (Invitrogen) according to the manufacturer’s protocol. Free cholesterol was determined by omitting the cholesterol esterase. Cholesterol esters were calculated from the difference in total and free cholesterol. Data are plotted as mg of cholesterol per mg of protein.

Statistical Analysis—Statistical analyses were performed using two-tailed Student’s t test. p values less than 0.05 were considered significant.

Results

Co-evolution between Mac-1 and IL-13Rα1—Recently, Yakubenko et al. (9, 14) reported that Mac-1 suppresses IL-13-induced JAK/STAT activation in macrophages and reduces the uptake of oxLDL in vitro; however, the molecular mechanism underlying this unique regulatory function of Mac-1 is not yet established. To identify potential biological partners that confer the inhibitory activity of Mac-1 toward IL-13-induced macrophage activation, we used an unbiased informatics-based method, termed Mirrortree (28–30), to predict protein-protein interactions. The premise of Mirrortree is that biological partners, such as parasite/host, must change in sync during evolution to maintain their interdependence (28). Accordingly, we downloaded the entire protein sequences encoded in 184 different species from the NCBI Entrez database (16) and identified the orthologous protein representatives for each species. Multiple sequence alignments for each protein within the pairs of interacting and non-interacting proteins and their corresponding orthologs were then calculated using MUSCLE version 3.52 (18). From these multiple sequence alignments, the distance matrices for each protein set were estimated using the ClustalW suite with default parameters (19). Linear correlation coefficients for each protein pair from the interacting and non-interacting sets was calculated using the standard Pearson’s correlation coefficient. Finally, background co-evolutionary signals, e.g. due to speciation, were excluded from phylogenetic relationships, based on published methods (21, 22).

One of the proteins that co-evolve with Mac-1 is IL-13Rα1 (corr. coef. = 0.76 × 10−36). Fig. 1 shows the concerted changes in protein sequence of Mac-1 and IL-13Rα1 during a million years of evolution, suggesting that these two proteins may interact with each other to maintain important biological functions. IL-13Rα1 associates with IL-4Rα and forms the heterodimeric receptor IL-13Rα1/IL-4Rα (IL-13R) that is responsible for IL-13-induced intracellular signaling. Accordingly, we hypothesized that Mac-1 suppresses IL-13-induced macrophage activation and its subsequent polarization by binding to IL-13Rα1 on the macrophage surface.

Direct Interaction between purified Mac-1 and Recombinant IL-13Rα1—To test our hypothesis, we first examined whether Mac-1 interacts directly with IL-13Rα1 in a purified system. We isolated full-length Mac-1 from Mac-1-expressing HEK293 cells by affinity chromatography. Purified Mac-1 was then incubated with recombinant soluble IL-13Rα1 in a 96-well microtiter plate, with or without the addition of a neutralizing anti-IL-13Rα1 antibody. We found that IL-13Rα1 bound immobilized Mac-1 in a dose-dependent manner with a Kd of ~5 μM (Fig. 2A), which could be inhibited by an anti-IL-13Rα1 antibody, thus verifying the specificity of the binding assay. Next, we evaluated whether IL-13Rα1 can support Mac-1-mediated cell adhesion. We coated 24-well microtiter plates with increasing concentrations of IL-13Rα1 or a control protein BSA. After blocking the plates, Mac-1- or LFA-1-expressing HEK293 cells were added in the presence or absence of a Mac-1-specific antagonist NIF (25) or LFA-1-blocking mAb 38 and incubated at 37 °C for 30 min. The plates were washed to remove non-adherent cells and the adherent cells were quantified. Fig. 2B shows that IL-13Rα1 supported adhesion of Mac-1-expressing HEK293 cells in a dose-dependent manner with an EC50 of ~0.5 μM. In comparison, little adhesion of Mac-1/HEK293 cells was observed to BSA-coated wells. Moreover, the addition of a Mac-1-specific antagonist NIF blocked more than 65% Mac-1-mediated cell adhesion. We coated 24-well microtiter plates with increasing concentrations of IL-13Rα1 or a control protein BSA. After blocking the plates, Mac-1- or LFA-1-expressing HEK293 cells were added in the presence or absence of a Mac-1-specific antagonist NIF (25) or LFA-1-blocking mAb 38 and incubated at 37 °C for 30 min. The plates were washed to remove non-adherent cells and the adherent cells were quantified. Fig. 2B shows that IL-13Rα1 supported adhesion of Mac-1-expressing HEK293 cells in a dose-dependent manner with an EC50 of ~0.5 μM. In comparison, little adhesion of Mac-1/HEK293 cells was observed to BSA-coated wells. Moreover, the addition of a Mac-1-specific antagonist NIF blocked more than 65% Mac-1/HEK293 cell adhesion to IL-13Rα1, thus verifying specificity. Furthermore, we found that LFA-1/HEK293 cells adhered strongly to ICAM-1, which could be inhibited by mAb 38; however, they failed to adhere to IL-13Rα1 (Fig. 2C). As expected, Mac-1/HEK293 cells adhered to both ICAM-1 and IL-13Rα1, both of which could be blocked by NIF. These results demonstrate that Mac-1 interacts specifically with IL-13Rα1, thus
Mac-1 Binds IL-13Rα1 and Suppresses IL-13 Signaling

Supporting our hypothesis that Mac-1 modulates the function of IL-13 by interacting with its receptor IL-13R.

Endogenous Mac-1 and IL-13Rα1 Form a Complex in Solution—To test whether Mac-1 and IL-13Rα1 interact with each other when expressed on macrophages, we conducted co-immunoprecipitation experiments using primary macrophages harvested from thioglycollate-treated mice. We collected peritoneal macrophages and prepared cell lysates. IL-13Rα1 was then immunoprecipitated with its specific antibody. After separation of the immunoprecipitates on SDS-PAGE, the presence of Mac-1 in the immunoprecipitates was determined by Western blot using an anti-CD18 antibody ARC22 (15). We found that Mac-1 was pulled down by an anti-IL-13Rα1 antibody but not by a control IgG (Fig. 2D), demonstrating that Mac-1 and IL-13Rα1 formed a complex in solution.

Mac-1 Is Associated with IL-13Rα1 on the Surface of Macrophages—To determine whether Mac-1 and IL-13Rα1 associate with one another on the cell surface, peritoneal macrophages were stained with a rabbit anti-IL-13Rα1 antibody and a rat anti-Mac-1 antibody and then incubated with their corresponding secondary antibody conjugated with Alexa Fluor 488 or Alexa Fluor 568, respectively. The stained macrophages were analyzed by confocal fluorescence microscopy. We found that IL-13Rα1 co-localized with Mac-1 (Fig. 2E, yellow color in the merged image), suggesting that these two receptors reside proximally on the cell surface.

Genetic Inactivation of Mac-1 Enhances IL-13-induced JAK/STAT Activation—IL-13Rα1 is a subunit of IL-13R. Stimulation of this heterodimeric IL-13R receptor by IL-13 leads to activation of the JAK/STAT pathway (8, 31). To investigate whether Mac-1 association with IL-13Rα1 plays a functional role in IL-13R signaling, we stimulated WT and Mac-1−/− macrophages with IL-13. Activation of the IL-13 signaling pathway was measured by Western blot using an antibody that specifically recognizes the phosphorylated form of STAT6 (at Tyr-641). The results showed that treatment of macrophages with IL-13 resulted in a time-dependent increase in phosphorylated STAT6, plateauing at 30 min (Fig. 3A). Genetic inactivation of Mac-1 significantly enhanced STAT6 phosphorylation as compared with their WT counterparts (Fig. 3A). These data demonstrated that Mac-1 functions to suppress IL-13R signaling in IL-13-stimulated macrophages.

Deficiency of Mac-1 Promotes Macrophage Polarization along the Alternative Activation Pathway—IL-13 signaling promotes macrophage polarization along the alternative pathway, generating AAMs (8). To determine whether the increased JAK/STAT activation in Mac-1−/− macrophages leads to enhanced alternative activation, we quantified the levels of several AAM markers, including Arginase-1, FIZZ1, YM-1, and YM2 (8), by qRT-PCR. The results showed that Mac-1−/− macrophages had higher transcription levels of these four AAM markers, both in the absence and in the presence of IL-13 stimulation, as compared with WT cells (Fig. 3B). We also observed that Mac-1−/− macrophages expressed significantly higher levels of IL-6, a proinflammatory cytokine (Fig. 3B).

Mac-1 Suppresses Macrophage Expression of Foam Cell Differentiation Markers in Vitro and in Vivo—To investigate whether Mac-1 deficiency predisposes macrophages to foam

FIGURE 2. Mac-1 interacts with IL-13Rα1 on the surface of macrophages. A, ligand binding. Increasing concentrations of recombinant soluble IL-13Rα1 (contains a C-terminal His tag) were added in 96-well microtiter plates, which were precoated with purified Mac-1, in the absence (○) or presence (●) of an IL-13Rα1-neutralizing antibody. Bound IL-13Rα1 was detected using a His-Probe-HRP conjugate and its substrate 3,3′,5,5′-tetramethylbenzidine, measuring absorbance at 450 nm. Data shown are means ± S.D. of duplicate experiments. B, cell adhesion. Mac-1-expressing HEK293 cells were added to 24-well microtiter plates, which were precoated with increasing concentrations of IL-13Rα1 (●) or BSA (▲), in the absence or presence of a Mac-1-specific antagonist NIF (○). After incubation at 37°C for 30 min, non-adherent cells were removed and adherent cells were stained with Crystal violet. Cell adhesion was quantified based on absorption at 595 nm. Data shown are means ± S.D. of duplicate experiments. C, Mac-1- or LFA-1-expressing HEK293 cells were added to 24-well microtiter plates, which were precoated with IL-13Rα1, ICAM-1, or BSA, in the absence or presence of NIF or mAb 38. Cell adhesion was carried out as above. Mock-transfected HEK293 cells were used as a control. Data shown are means ± S.D. of duplicate experiments. D, co-immunoprecipitation. Total lysates of peritoneal macrophages were immunoprecipitated with an anti-IL-13Rα1 antibody or a control IgG and then immunoprecipitated (IP) with protein A-agarose. Immunoprecipitates were separated on 10% SDS-PAGE and subjected to immunoblot (IB) with an anti-CD18 antibody ARC22. Total cell lysates were probed for CD18 and β-actin to verify equal protein loading. E, co-localization. Peritoneal macrophages were stained with a rabbit anti-IL-13Rα1 antibody and a rat anti-Mac-1 mAb (M1/70), followed by Alexa Fluor 488-anti-rabbit IgG and Alexa Fluor 568-anti-rat IgG. Specificity was verified using non-immune rabbit and rat IgGs (data not shown). Representative images shown were taken with 100× objective oil lens with a slice thickness of 2.6 μm. Co-localization between IL-13Rα1 (in green) and Mac-1 (in red) was shown in yellow color in the merged image.
Mac-1 binds IL-13Rα1 and suppresses IL-13 signaling

A major step in the development of vascular diseases, such as atherosclerosis, is the generation of foam cells within the subendothelial space, which marks the formation of the earliest vascular lesions (1, 6). Recent studies demonstrated that Mac-1, a major leukocyte integrin expressed on macrophages and macrophage-derived foam cells, exhibits potent inhibitory activities toward JAK/STAT activation in IL-13-stimulated macrophages, which reduces their ability to uptake oxLDL in vitro (9, 14). However, the molecular mechanism by which Mac-1 inhibits IL-13 signaling in macrophages is still unknown. Here, we report for the first time the identification of IL-13Rα1 as a biological partner based on a combination of bioinformatics and biochemical approaches. Our results demonstrate that Mac-1 directly interacts with IL-13Rα1 and thereby suppresses IL-13-induced JAK/STAT activation. Hence, this study establishes a novel mechanism by which Mac-1 regulates IL-13 signaling in macrophages, thus suppressing their transformation into foam cells.

Using a Mirrortree-based algorithm, we first observed that Mac-1 co-evolves with IL-13Rα1 during evolution (Fig. 1), suggesting that these two receptors may dependent on each other to function. Next, we confirmed that Mac-1 binds directly to IL-13Rα1 in a purified system using recombinant proteins (Fig. 2A). The ability of endogenous Mac-1 and IL-13Rα1 expressed on primary macrophages to interact with each other in solution was verified by co-immunoprecipitation experiments (Fig. 2D), and their association on the cell surface was confirmed by confocal fluorescence microscopy (Fig. 2F). Biochemical assays demonstrated that the formation of the Mac-1/IL-13R complex...
on macrophages dampens IL-13-induced JAK/STAT activation (Fig. 3A) and thus suppresses macrophage polarization along the alternative activation pathway (Fig. 3B). Consequently, our data showed that Mac-1 deficiency predisposes macrophages to foam cell differentiation both in vitro and in vivo (Fig. 4). Most importantly, we demonstrated that genetic inactivation of Mac-1 promotes the generation of foam cells in vivo using a LDLR−/− mouse model of foam cell development (Fig. 5). Together, this study establishes a major role of the Mac-1/IL-13α1 interaction in safeguarding macrophages from aberrant foam cell development.

Mac-1 is a leukocyte integrin of the CD18 subfamily and expressed abundantly on macrophages and macrophage-derived foam cells. A unique feature of Mac-1 is its ability to recognize a wide range of diverse protein and non-protein ligands. These unique interactions may underlie the ability of Mac-1 to facilitate both pro-inflammatory and anti-inflammatory responses in a context-dependent manner (32–40). For example, Mac-1 binding of C3bi has been shown to suppress inflammation and induce immune tolerance (41, 42); on the other hand, Mac-1-mediated adhesion to fibrin exacerbates inflammatory diseases (36, 39). Given the suppressive activity of Mac-1 toward IL-13 signaling in macrophages (9, 14), we sought in this work to identify candidate partners of Mac-1 that mediate this unique regulatory activities. To achieve our objective, we developed a computational method to predict protein-

FIGURE 4. Mac-1 suppresses foam cell differentiation in vitro and in vivo. A, WT or Mac-1−/− peritoneal macrophages were stimulated in vitro without or with 4 nM IL-13 for 24 h. Gene transcription of foam cell differentiation markers LOX-1 and 15-LO was quantified by qRT-PCR. Data shown are means ± S.D. of duplicate experiments. RQ, relative quantitation. B, WT or Mac-1−/− peritoneal macrophages were treated in vitro with 4 nM IL-13 for 0, 1, and 3 days. Production of 15-LO and LOX-1 was determined by Western blot, using their corresponding antibodies. The amount of 15-LO and LOX-1 was quantified by ImageJ (National Institutes of Health) and normalized to the amount of β-actin. Data shown represent means ± S.D. of duplicate experiments. C, LDLR−/− and Mac-1−/− LDLR−/− littermates were fed a high fat diet for 5 weeks. Peritoneal macrophages were harvested following thioglycollate injection, and gene transcription was analyzed by qRT-PCR. Open circles, LDLR−/−; filled circles, Mac-1−/− LDLR−/−. All data were normalized to β-actin expression in the same cDNA set. The mean value within each group is shown with a horizontal bar. * , p < 0.05, LDLR−/− versus Mac-1−/− LDLR−/−, n = 6.
Mac-1 Contains an I-Domain, a β-Propeller, a Thigh Domain, Two Calp domains, a Transmembrane Domain, and a Cytoplasmic Tail (49). Major ligand binding activities have been localized to the I-domain, although other domains may also contribute to the binding of specific ligands. The IL-13Rα1 subunit contains three domains: an N-terminal Ig-like domain (D1) and two Fibronectin-III homologous domains (D2 and D3). All three domains participate directly in IL-13 binding (50). To determine putative domains of Mac-1 and IL-13Rα1 that may interact with each other, we conducted bioinformatics analysis on individual domain pairs that co-evolve. We delineated individual domains within Mac-1 and IL-13Rα1 by introducing “breaks” at the domain boundary during multiple sequence alignments and then performed Mirrortree analysis as discussed above. Several domain pairs were found to co-evolve significantly. A major candidate interacting pair involves the fifth blade of the αM β-propeller (residues 453–511) with one or more domains of IL-13Rα1, including the D3 domain (resides 233–346; corr. coef. = 0.79 × 10^{-40}), the D2 domain (resides 129–219; corr. coef. = 0.78 × 10^{-40}), and/or the D1 domain (resides 27–117; corr. coef. = 0.75 × 10^{-40}). Other potential interactions include the αM I-domain (resides 149–324) with the IL-13Rα1 D2 domain (corr. coef. = 0.67 × 10^{-40}) and the αM leg region (resides 615–1033) with the IL-13Rα1 D3 domain (corr. coef. = 0.55 × 10^{-40}). The validity of these predicted interactions needs to be assessed experimentally in the future.

In summary, we have identified IL-13Rα1 as a novel Mac-1 partner based on an unbiased co-evolution-based informatics approach, which was subsequently confirmed by biochemical assays. We demonstrated that Mac-1 interacts with IL-13Rα1 and associates with IL-13R on the surface of macrophages. Genetic inactivation of Mac-1 increases IL-13-induced JAK/STAT activation and predisposes macrophages to foam cell differentiation. Altogether, our study identified a unique mechanism by which Mac-1 protects macrophages against foam cell transformation in disease settings such as hyperlipidemia. This newly identified IL-13Rα1/Mac-1-dependent pathway may offer novel targets for therapeutic intervention in the future.

Author Contributions—C. C. designed, performed, and analyzed the experiments. J. Z. performed animal studies. E. K. D. and M. G. K. conducted bioinformatics analysis. M. M. and D. K. S. measured cholesterol contents of peritoneal macrophages. L. Z. conceived and coordinated the study and wrote the paper. All authors reviewed the results and approved the final version of the manuscript.

References
1. Libby, P., Ridker, P. M., and Hansson, G. K. (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325
2. Ley, K., Miller, Y. I., and Hedrick, C. C. (2011) Monocyte and macrophage dynamics during atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31, 1506–1516
3. Moore, K. J., and Tabas, I. (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341–355
4. Febbraio, M., Podrez, E. A., Smith, J. D., Hajjar, D. P., Hazen, S. L., Hoff, H. F., Sharma, K., and Silverstein, R. L. (2000) Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J. Clin. Invest. 105, 1049–1056
5. Mehta, J. L., Sanada, N., Hu, C. P., Chen, J., Dandapat, A., Sugawara, F., Satoh, H., Inoue, K., Kawase, Y., Jishage, K., Suzuki, H., Takeya, M.,
Mac-1 Binds IL-13Rα1 and Suppresses IL-13 Signaling

Schnakenberg, L., Beger, R., Hermonat, P. L., Thomas, M., and Sawa-
mura, T. (2007) Deletion of LOX-1 reduces atherosclerosis in LDLR knockout mice fed high cholesterol diet. *Circ. Res. 100*, 1634–1642

6. Stary, H. C., Chandler, A. B., Glagov, S., Guyton, J. R., Insull, W., Jr., Rosenfeld, M. E., Schaffer, S. A., Schwartz, C. J., Wagner, W. D., and Wissler, R. W. (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis: a report from the Committee on Vascular Les-
sions of the Council on Arteriosclerosis, American Heart Association. *Circulation 89*, 2462–2478

7. Cyrus, T., Witztum, J. L., Rader, D. J., Tangirala, R., Fazio, S., Linton, M. F., and Funk, C. D. (1999) Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. *J. Clin. Invest. 103*, 1597–1604

8. Gordon, S., and Martinez, F. O. (2010) Alternative activation of macro-
phages: mechanism and functions. *Immunity 32*, 593–604

9. Yakubenko, V. P., Bhattacharjee, A., Pluskota, E., and Cathcart, M. K. (2011) α8β2 integrin activation prevents alternative activation of human and murine macrophages and impedes foam cell formation. *Circ. Res. 108*, 544–554

10. Folcik, V. A., Aamir, R., and Cathcart, M. K. (1997) Cytokine modulation of LDL oxidation by activated human monocytes. *Arterioscler. Thromb. Vasc. Biol. 17*, 1954–1961

11. van Tits, L. J., Stienstra, R., van Lent, P. L., Netea, M. G., Joosten, L. A., and van der Meer, J. W., Valledor, A. F., Davis, R. A., Willson, T. M., Witztum, J. L., Palinski, W., and Glass, C. K. (2004) Differential inhibition of macrophage foam-
cell formation and atherosclerosis in mice by PPARα, β/δ, and γ. *J. Clin. Invest. 114*, 1564–1576

12. Pazos, F., and Valencia, A. (2008) Protein co-evolution, co-adaptation and interactions. *EMBO J. 27*, 2648–2655

13. Beger, R., Pakdel, S., and Luger, S. (2003) IL-13 signal transduction in human monocytes: phosphory-
lation of receptor components, association with Jak, and phosphory-
lation/activation of Stats. *J. Leukoc. Biol. 72*, 580–589

14. Magd, O., Fradis, M., Wein, C., Kuvano, Y., Balla, K. M., Hernandez, D., Barth, C. J., Lugo, G., Donnelly, M., Nayer, A., Moita, J. P., Schürer, S., Traver, D., Ruiz, P., Vazquez-Padron, R. I., Ley, K., Reiser, J., and Gupta, V. (2011) Small molecule-mediated activation of the integrin CD11b/CD18 reduces inflammatory disease. *Sci. Signal. 4*, ra57

15. Wolf, D., Hohmann, J. D., Wiedemann, A., Bledzka, K., Blankenhorn, M., Marchtin, T., Gutte, K., Zeschky, K., Bassler, N., Hoppe, N., Rodriguez, A. O., Herr, N., Hilgendorf, I., Stachon, P., Willecke, F., Duerschmied, D., von zur Muhlen, C., Soloviev, D. A., Zhang, L., Bode, C., Flow, E. F., Libby, P., Peter, K., and Zirlik, A. (2011) Binding of CD40L to Mac-1’s I-domain involves the EQLKKSSTL motif and mediates leukocyte recruitment and atherosclerosis — but does not affect immunity and thrombosis in mice. *Circ. Res. 109*, 1269–1279

16. Cao, C., Gao, Y., Zeng, H., Antalis, T. M., Castellino, F. J., and Zhang, L. (2010) The efficacy of activated protein C in murine endotoxemia is dependent on integrin CD11b. *J. Clin. Invest. 120*, 1971–1980

17. Han, C., Jin, X., Xu, S., Liu, H., Li, N., and Cao, X. (2010) Integrin CD11b negatively regulates TLR--triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. *Nat. Immunol. 11*, 734–742

18. Adams, R. A., Bauer, J., Flick, M. J., Sikorski, S. L., Nuriel, T., Lassmann, H., Degen, J. L., and Akassoglou, K. (2007) The fibrin-derived γγ7–395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. *J. Exp. Med. 204*, 571–582

19. Behrens, E. M., Sridar, U., Shivers, D. K., Gallucci, M., Ma, Z., Finkel, T. H., and Gallucci, S. (2007) Complement receptor 3 ligation of dendritic cells suppresses their stimulatory capacity. *J. Immunol. 178*, 6268–6279

20. Ichihara, D., Xiong, Y., Xu, G., Chen, W., Shi, Y., and Zhang, L. (2007) CD11b facilitates the development of peripheral tolerance by suppressing Th17 differentiation. *J. Exp. Med. 204*, 1519–1524

21. Flick, M. J., Lajeunesse, C. M., Talmage, K. E., Witte, D. P., Palumbo, J. S., Pinkerton, M. D., Thornton, S., and Degen, J. L. (2007) Fibrinogen (ogen) exacerbates inflammatory joint disease through a mechanism linked to the integrin αβ2, binding motif. *J. Clin. Invest. 117*, 3224–3235

22. Varga, G., Balkow, S., Wild, M. K., Stadtbaeumer, A., Krummen, M., Rotheoft, T., Higuchi, T., Beissert, S., Wethmar, K., Scharfetter-Kochanek, K., Vestweber, D., and Grabbe, S. (2007) Active MAC-1 (CD11b/CD18) on DCs inhibits full T-cell activation. *Nat. Immunol. 8*, 661–669

23. Sohn, J. H., Bora, P. S., Suk, H. J., Molina, H., Kaplan, H. J., and Bora, N. S. (2003) Tolerance is dependent on complement C3 fragment iC3b binding to antigen-presenting cells. *Nat. Med. 9*, 206–212

24. Hammerberg, C., Katyar, S. K., Carroll, M. C., and Cooper, K. D. (1998) Activated complement component 3 (C3) is required for ultraviolet induction of immunosuppression and antigenic tolerance. *J. Exp. Med. 187*, 1133–1138
43. Dandekar, T., Snel, B., Huynen, M., and Bork, P. (1998) Conservation of gene order: a fingerprint of proteins that physically interact. *Trends Biochem. Sci.* **23**, 324–328

44. Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G. D., and Maltsev, N. (1999) Use of contiguity on the chromosome to predict functional coupling. *In Silico Biol.* **1**, 93–108

45. Enright, A. J., Iliopoulos, I., Kyripides, N. C., and Ouzounis, C. A. (1999) Protein interaction maps for complete genomes based on gene fusion events. *Nature* **402**, 86–90

46. Goh, C. S., Bogan, A. A., Joachimiak, M., Walther, D., and Cohen, F. E. (2000) Co-evolution of proteins with their interaction partners. *J. Mol. Biol.* **299**, 283–293

47. Gertz, J., Elfond, G., Shustrova, A., Weisinger, M., Pellegrini, M., Cokus, S., and Rothschild, B. (2003) Inferring protein interactions from phylogenetic distance matrices. *Bioinformatics* **19**, 2039–2045

48. Pazos, F., Helmer-Citterich, M., Ausiello, G., and Valencia, A. (1997) Correlated mutations contain information about protein-protein interaction. *J. Mol. Biol.* **271**, 511–523

49. Xiong, J. P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S. L., and Arnaout, M. A. (2002) Crystal structure of the extracellular segment of integrin $\alpha_\text{v} \beta_3$ in complex with an Arg-Gly-Asp ligand. *Science* **296**, 151–155

50. LaPorte, S. L., Juo, Z. S., Vlachkova, J., Colf, L. A., Qi, X., Heller, N. M., Keegan, A. D., and Garcia, K. C. (2008) Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. *Cell* **132**, 259–272