TOEPLITZ MATRICES ACTING ON THE ℓ^2-SPACE OF AN IMPRIMITIVITY BIMODULE

BEATRIZ ABADIE

Abstract. We give a definition of Toeplitz matrix acting on the ℓ^2-space of an imprimitivity bimodule X over a C^*-algebra A. We characterize the set of Toeplitz matrices as the closure in a certain topology of the image of the left regular representation of the crossed product $A \rtimes X$.

If X is an imprimitivity bimodule over a C^*-algebra A, the right Hilbert A-module $\ell^2(X) = \bigoplus_{n \in \mathbb{Z}} X \otimes^n$ provides a natural generalization of the Hilbert space $\ell^2(\mathbb{Z})$. The main problem in generalizing the definition of Toeplitz matrix to this setting is that the i,jth entry of the matrix associated to an operator acting on $\ell^2(X)$ is an adjointable operator from $X \otimes^j$ to $X \otimes^i$, so one has to make sense of the condition $[T]_{ij} = [T]_{i-1,j-1}$ characterizing classical Toeplitz matrices. However, it seems natural to identify the creation operators $T^j_\eta : X \otimes^j \to X \otimes^i$ and $T^{j-1}_\eta : X \otimes^{j-1} \to X \otimes^{i-1}$, given by tensoring by $\eta \in X \otimes^{i-j}$. By making use of the notion of multiplier of an imprimitivity bimodule discussed by Echterhoff and Raeburn in [ER], we show that there is a unique A-bimodule isomorphism from the set of right adjointable maps $L_R(X \otimes^j, X \otimes^i)$ to $L_R(X \otimes^{j-1}, X \otimes^{i-1})$ that takes T^j_η to T^{j-1}_η. This result enables us to define Toeplitz matrices acting on $\ell^2(X)$.

We then turn to the characterization of those operators on $\ell^2(X)$ that are associated to Toeplitz matrices. In order to do that, we consider the crossed product $A \rtimes X$ discussed in [AEE] and its left regular representation Λ on $\ell^2(X)$, a canonical representation that agrees with the usual left regular representation for crossed products by an automorphism. Let σ be the initial topology on $\mathcal{L}(\ell^2(X))$ induced by the family of seminorms $\mathcal{F} = \{ p_v : v \in X \otimes^j, j \in \mathbb{Z} \}$, where $p_v(T) = \| T(v\delta_j) \|$. Theorem 3.4 characterizes the set of Toeplitz matrices as the σ-closure of the image of the left regular representation on $\ell^2(X)$ of the crossed product $A \rtimes X$ defined in [AEE].

1. Preliminaries

In this section we briefly expose the background on imprimitivity bimodules and their multipliers. We refer the reader to, for instance, [RW], [La], or [Re] for further results and constructions.

2010 Mathematics Subject Classification. Primary 46L08, Secondary 46L55.

Keywords: Imprimitivity bimodules, Toeplitz matrices.
Let A be a C^*-algebra. A right inner product A-module is a complex vector space X that is a right A-module satisfying the condition
\[\lambda(xa) = (\lambda x)a = x(\lambda a) \]
for all $\lambda \in \mathbb{C}, x \in X,$ and $a \in A,$
together with a pairing $\langle , \rangle_R : X \times X \to A$ such that

1. $\langle \lambda x + \mu y, z \rangle_R = \lambda \langle x, y \rangle_R + \mu \langle x, z \rangle_R,$
2. $\langle xa, y \rangle_R = \langle x, y \rangle_R a,$
3. $\langle y, x \rangle_R = \langle x, y \rangle_R^*,$
4. $\langle x, x \rangle_R \geq 0,$
5. $\langle x, x \rangle_R = 0$ only if $x = 0.$

A right Hilbert A-module consists of an inner product A-module X that is complete in the norm
\[\|x\| = \|\langle x, x \rangle_R\|^{1/2}. \]
A right Hilbert A-module X is said to be full if the ideal
\[\text{span}\{\langle x, y \rangle_R : x, y \in X\} \]
is dense in $A.$

Let X and Y be right Hilbert A-modules. A function $T : X \to Y$ is adjointable if there is a function $T^* : Y \to X$ such that
\[\langle Tx, y \rangle_R = \langle x, T^* y \rangle_R \]
for all $x \in X, y \in Y.$

Adjointable maps turn out to be bounded linear A-module maps. Throughout this work, we will denote with $\mathcal{L}(X, Y)$ the set of right adjointable operators from X to $Y.$

Left Hilbert A-modules are defined analogously, by considering left A-modules and by replacing conditions 1) and 2) above with

1' $\langle \lambda x + \mu y, z \rangle_L = \lambda \langle x, z \rangle_L + \mu \langle y, z \rangle_L,$
2' $\langle ax, y \rangle_L = a \langle x, y \rangle_L.$

If X and Y are left Hilbert A-modules, left adjointable maps from X to Y are defined analogously to the right case. The set of left adjointable operators from X to Y will be denoted by $\mathcal{L}_L(X, Y).$

Let A and B be C^*-algebras. An $A - B$ bimodule X is an $A - B$ imprimitivity bimodule if it is a full left Hilbert A-module and a full right Hilbert B-module such that
\[\langle x, y \rangle_L z = x \langle y, z \rangle_R, \]
for all $x, y, z \in X.$ There is no ambiguity regarding the norm in X in that case, since (see, for instance, [BMS, Remark 1.9])
\[\|\langle x, x \rangle_L\| = \|\langle x, x \rangle_R\| \]
for all $x \in X.$
Remark 1.1. As was shown in [BMS, Remark 1.9], if \(X \) is an \(A - B \) imprimitivity bimodule, then

\[
\langle xb, y \rangle_L = \langle x, yb^* \rangle_L \quad \text{and} \quad \langle ax, y \rangle_R = \langle x, a^*y \rangle_R.
\]

for all \(x, y \in X, a \in A, \) and \(b \in B \).

First notice that, if \(z \in X \),

\[
\langle x, yb^* \rangle_L z = x\langle yb^*, z \rangle_R
= x((z, yb^*)_R)^*
= x((z, y)_R b^*)^*
= xb(y, z)_R
= \langle xb, y \rangle_L z.
\]

Thus, if \(a = \langle x, yb^* \rangle_L - \langle xb, y \rangle_L \), then \(az = 0 \) for all \(z \in X \).

Finally,

\[
aa^* = a(\langle yb^*, x \rangle_L - \langle y, xb \rangle_L) = \langle ayb^*, x \rangle_L - \langle ay, xb \rangle_L = 0,
\]

which shows that \(a = 0 \). An analogous reasoning proves the second equation in (1).

The dual of an \(A - B \) imprimitivity bimodule \(X \) was defined in [Rf, 6.17] as the \(B - A \) imprimitivity bimodule \(\tilde{X} \) consisting of the conjugate vector space of \(X \) with the structure given by

\[
\tilde{b}\tilde{x} = \tilde{x}\tilde{b}^*, \bar{a}\tilde{x} = \tilde{a}^*\tilde{x}, \langle \tilde{x}, \tilde{y} \rangle_L = \langle x, y \rangle_R, \langle \tilde{x}, \tilde{y} \rangle_R = \langle x, y \rangle_L,
\]

where \(a \in A, b \in B \), and \(\tilde{x} \) denotes the element \(x \in X \) viewed as an element of the dual bimodule \(\tilde{X} \).

Given an \(A - B \) imprimitivity bimodule \(X \) and a \(B - C \) imprimitivity bimodule \(Y \), the tensor product \(X \otimes Y \) is the \(A - C \) imprimitivity bimodule obtained by completing the left inner product \(A \)-module and right inner product \(C \)-module consisting of the algebraic tensor product \(X \otimes_{B \text{ alg}} Y \) with inner products given on simple tensors by

\[
\langle x_1 \otimes y_1, x_2 \otimes y_2 \rangle_L = \langle x_1, (y_1, y_2)_L, x_2 \rangle_L \quad \text{and} \quad \langle x_1 \otimes y_1, x_2 \otimes y_2 \rangle_R = \langle y_1, (x_1, x_2)_R y_2 \rangle_R.
\]

We now recall the notions of multiplier algebra and multiplier bimodule. A multiplier \(m \) of a \(C^* \)-algebra \(A \) is a pair \(m = (L, R) \), where \(L \) and \(R \) are linear maps from \(A \) to itself such that

\[
L(ab) = L(a)b, \quad R(ab) = aR(b), \quad \text{and} \quad aL(b) = R(a)b,
\]

for all \(a, b \in A \). Every \(a \in A \) gives rise to a multiplier \((L_a, R_a) \), where \(L_a \) and \(R_a \) are left and right multiplication by \(a \), respectively. The set \(M(A) \) of multipliers of \(A \) can be endowed with the structure of a \(C^* \)-algebra [Mu, 2.1.5] in which \(A \) sits as an ideal via the identification mentioned above. Besides (Mu 3.1.8), if \(B \) is a \(C^* \)-algebra containing \(A \) as an ideal, there is a unique homomorphism from \(B \) to \(M(A) \) that is the identity on \(A \).

In [ER, Definition 1.1], Echterhoff and Raeburn define the notion of the multiplier bimodule of an imprimitivity bimodule. A multiplier of an
A–B imprimitivity bimodule Y consists of a pair $m = (m_A, m_B)$, where $m_A : A \rightarrow Y$ is A-linear, $m_B : B \rightarrow Y$ is B-linear, and

$$m_A(a)b = am_B(b),$$

for all $a \in A$, $b \in B$.

Like in the case of C^*-algebras, $y \in Y$ can be viewed as the multiplier (y_A, y_B), where $y_A(a) = ay$ and $y_B(b) = yb$, for all $a \in A$ and $b \in B$. By means of this identification, the set $M(Y)$ of multipliers of Y can be made into an A–B bimodule, by setting

$$am = m_A(a) \text{ and } mb = m_B(b),$$

for all $a \in A$, $b \in B$, and $m = (m_A, m_B) \in M(Y)$.

Proposition 1.2 in [ER] characterizes $M(Y)$ up to isomorphism as the A–B bimodule satisfying the following two properties:

1. $M(Y)$ contains a copy of the bimodule Y such that $AM(Y) \subset Y$ and $M(Y)B \subset Y$.
2. If M is an A–B bimodule satisfying (1), then there is a unique A–B bimodule homomorphism from M to $M(Y)$ that is the identity on Y.

2. Adjointable maps as multipliers

Let Y and Z be an A–B and a B–C imprimitivity bimodule, respectively. For $y_0 \in Y$ and $z_0 \in Z$, we denote by $T_{y_0}^Z \in \mathcal{L}_R(Z, Y \otimes Z)$ and $R_{z_0}^Y \in \mathcal{L}_L(Y, Y \otimes Z)$ the creation operators defined by

$$T_{y_0}^Z(z) = y_0 \otimes z \text{ and } R_{z_0}^Y(y) = y \otimes z_0.$$

It is well known, and easy to check, that the maps $y \mapsto T_{y_0}^Z$ and $z \mapsto R_{z_0}^Y$ are isometric, and that

$$(T_{y_0}^Z)^*(y \otimes z) = (y_0, y)_R z \text{ and } (R_{z_0}^Y)^*(y \otimes z) = y(z, z_0)_L,$$

for all $y, y_0 \in Y$ and $z, z_0 \in Z$.

We will also be making use of the equation

$$\tag{3} (R_{z_0}^Y)^*(\eta) \otimes w = \eta(z, w)_R,$$

for all $z, w \in Z$ and $\eta \in Y \otimes Z$.

By virtue of the continuity of both sides in Equation 3 it suffices to check it for η in the algebraic tensor product $Y \otimes_{alg} Z$.

If $\eta = \sum_i y_i \otimes z_i$, then

$$\tag{3} (R_{z_0}^Y)^*(\eta) \otimes w = \sum_i y_i (z_i, z)_L \otimes w = \sum_i y_i \otimes (z_i, z)_L w =$$

$$= \sum_i y_i \otimes z_i (z, w)_R = \eta(z, w)_R.$$
Notation 2.1. Let Y and Z be an $A-C$ and a $B-C$ imprimitivity bimodule, respectively. Throughout this work, we will view $L_R(Z,Y)$ as an $A-B$ bimodule for the actions

$$(a \cdot \phi)(z) = a\phi(z) \quad \text{and} \quad (\phi \cdot b)(z) = \phi(bz),$$

for $a \in A$, $b \in B$, $z \in Z$, and $\phi \in L_R(Z,Y)$.

Proposition 1.3 in [ER] identifies the multiplier bimodule $M(Y)$ of an $A-B$ imprimitivity bimodule Y with $L_R(B,Y)$, with the $A-B$ bimodule structure established in Notation 2.1 and the copy of Y obtained via the map $y \mapsto T^B_y \in L_R(B,Y)$, where $T^B_y(b) = yb$ for $b \in B$ and $y \in Y$. The following theorem generalizes that result, which follows when one takes $Z = B$.

Theorem 2.2. Let Y and Z be an $A-B$ and a $B-C$ imprimitivity bimodule, respectively. Then the $A-B$ bimodule $L_R(Z,Y \otimes Z)$, provided with the copy of Y given by $T^Y_y = \{T^Z_{y^*} : y \in Y\}$, is isomorphic to $M(Y)$.

Proof. Let M denote the $A-B$ bimodule $L_R(Z,Y \otimes Z)$. First note that the map $y \mapsto T^Z_{y^*}$ is an $A-B$ bimodule homomorphism:

$$(T^Z_{y^*} \cdot b)(z) = T^Z_y(bz) = y \otimes bz = zb \otimes y = T^Z_{yb}(z),$$

and

$$(a \cdot T^Z_y)(z) = aT^Z_y(z) = ay \otimes z = T^Z_{ay}(z),$$

for all $a \in A$, $b \in B$, $y \in Y$, and $z \in Z$.

Therefore, we can identify the $A-B$ bimodule Y with the closed $A-B$ sub-bimodule T^Y_y of M.

We now show that $AM \subset T^Y_y$. Let $a = \langle u \otimes v, u' \otimes v' \rangle_L$, where $u, u' \in Y$ and $v, v' \in Z$.

Then

$$(a \cdot \phi)(z) = \langle u \otimes v, u' \otimes v' \rangle_L \phi(z)$$

$$= u \otimes v \langle u' \otimes v', \phi(z) \rangle_R$$

$$= u \otimes v \langle \phi^*(v' \otimes v), z \rangle_R$$

$$= u \otimes \langle v, \phi^*(u' \otimes v') \rangle_R z$$

$$= T^Z_{a}(z,\phi^*(u' \otimes v'))L(z),$$

for all $z \in Z$. Therefore, $a \cdot \phi \in T^Y_y$.

It follows that the set $A_0 := \{a \in A : a \cdot \phi \in T^Y_y\}$ is dense in A. Since T^Y_y is closed in M and the action of A on M is continuous, we conclude that $A_0 = A$.

We next show that $MB \subset T^Y_y$. Let $b = \langle u, v \rangle_L$, with $u, v \in Z$, and let $\phi \in M$. If $z \in Z$, then

$$(\phi \cdot b)(z) = \phi(\langle u, v \rangle_L z) = \phi(u \langle v, z \rangle_R) = \phi(u) \langle v, z \rangle_R.$$
If \(\phi(u) = \sum_{i=1}^{n} y_i \otimes z_i \), for \(y_i \in Y, z_i \in Z, i = 1, \cdots, n \), then, by the equation above,

\[
(\phi \cdot b)(z) = \sum_{i=1}^{n} y_i \otimes z_i \langle v, z \rangle_R = T^Z_{\sum_i y_i \langle z_i, v \rangle_L}(z) = T^Z_{\langle \sum_i y_i \otimes z_i \rangle}(z),
\]

where \(R^Y_y \) is as in Equation (2).

We now show that

\[
\phi \cdot b = T^Z_{\langle R^Y_y \rangle^* \langle \phi(u) \rangle}(\phi(u))
\]

if \(b = \langle u, v \rangle_L \), for \(u, v \in Z \). Let \(\eta_k \) be a sequence in the algebraic tensor product \(Y \otimes_{alg} Z \) converging to \(\phi(u) \). Then, as above,

\[
(\phi \cdot b)(z) = \phi(u) \langle v, z \rangle_R = \lim_{k \to \infty} \eta_k \langle v, z \rangle_R = \lim_{k \to \infty} T^Z_{\langle R^Y_y \rangle^* \langle \eta_k \rangle}(z) = T^Z_{\langle R^Y_y \rangle^* \langle \phi(u) \rangle}(z).
\]

We have thus shown that \(\phi \cdot \langle u, v \rangle_L \in T_Y \), for all \(u, v \in Z \). Now, a reasoning similar to that above shows that \((\phi \cdot b) \in T_Y \) for all \(b \in B \).

The universal property of \(M(Y) \) and the identification of \(M(Y) \) with \(\mathcal{L}_R(B, Y) \) mentioned above yield now an \(A \rightarrow B \) bimodule homomorphism

\[J : M \rightarrow M(Y) \]

such that \(J(T^Z_y) = T^B_y \) for all \(y \in Y \).

Let \(H : M(Y) \rightarrow M \) be defined by

\[[H(\phi)](bz) = \phi(b) \otimes z, \]

for all \(\phi \in M(Y), b \in B, \) and \(z \in Z \). Notice that the definition above makes sense, since \(H(\phi) \) is the composition of \(\phi \otimes \text{id}_Z \) and the canonical isomorphism between \(Z \) and \(B \otimes Z \).

Besides, \(H \) is an \(A \rightarrow B \) bimodule homomorphism:

\[[H(a \cdot \phi)](bz) = (a \cdot \phi)(b) \otimes z = a \phi(b) \otimes z = [a \cdot H(\phi)](z), \]

and

\[[H(\phi \cdot c)](bz) = (\phi \cdot c)(b) \otimes z = \phi(cb) \otimes z = [H(\phi) \cdot c](bz), \]

for all \(\phi \in M(Y), a \in A, b, c \in B, \) and \(z \in Z \).

We now show that \(H = J^{-1} \). In fact, we have that

\[[H(T^B_y)](bz) = T^B_y(b) \otimes z = yb \otimes z = y \otimes bz = T^Z_y(bz), \]

for all \(y \in Y, b \in B, \) and \(z \in Z \). That is, \(H(T^B_y) = T^Z_y \) for all \(y \in Y \).

It now follows that \(JH : M(Y) \rightarrow M(Y) \) is an \(A \rightarrow B \) bimodule homomorphism that is the identity on \(Y \). We conclude from the universal property of \(M(Y) \) that \(JH = \text{Id}_{M(Y)} \).
Finally, we prove that $HJ = \text{Id}_M$. First recall that, by Equation (5),

$$
\phi \cdot b = \sum_{i=1}^{n} T_{(R Y)}^{*}(\phi(u)),
$$

if $\phi \in M$ and $b = \langle u, v \rangle_l$, where $u, v \in Z$.

Therefore, if $c \in B$, then

$$(6) \quad (J \phi)(bc) = ([J \phi] \cdot b)(c) = [J(\phi \cdot b)](c) = \sum_{i=1}^{n} T_{(R Y)}^{*}(\phi(u))(c).$$

Then, by Equation (3), for $c \in B$ and $z \in Z$,

$$(HJ \phi)(bcz) = (J \phi)(bcz) \otimes z = T_{(R Y)}^{*}(\phi(u))(c) \otimes z = \phi(u)(v, cz)_R = \phi(\langle u, v \rangle_l cz) = \phi(bc z).$$

for all $c \in B$ and $z \in Z$.

A standard continuity argument completes now the proof.

□

3. Toeplitz matrices

Let X be an imprimitivity bimodule over a C^*-algebra A. In this section we make use of Theorem 2.2 in order to define Toeplitz matrices acting on $\ell^2(X)$. We then describe Toeplitz matrices in terms of the left regular representation of the crossed product $A \rtimes X$ discussed in [AEE].

As usual, if $k < 0$, $X^{\otimes k}$ denotes the Hilbert C^*-bimodule $X^{\otimes -k}$, \tilde{X} being the dual bimodule defined in [Rf]. If $\eta \in X^{\otimes k}$, we denote by T_η^n the operator $T_\eta^{X^{\otimes n}} \in \mathcal{L}_R(X^{\otimes n}, X^{\otimes n+k})$, where we make the usual identifications of $a \otimes x$ with ax, $x \otimes a$ with xa, $\tilde{x} \otimes y$ with $\langle x, y \rangle_R$, and $x \otimes \tilde{y}$ with $\langle x, y \rangle_l$.

By Theorem 2.2 there is a unique $A - A$ bimodule isomorphism

$$
\alpha^{n,m} : \mathcal{L}_R(X^{\otimes n}, X^{\otimes m}) \to \mathcal{L}_R(X^{\otimes n-1}, X^{\otimes m-1})
$$

such that $\alpha^{n,m}(T_\eta^n) = T_\eta^{n-1}$, for all $n, m \in \mathbb{Z}$ and $\eta \in X^{\otimes m-n}$.

We denote by $\ell^2(X)$ the right Hilbert C^*-module over A given by

$$
\ell^2(X) = \bigoplus_{k=-\infty}^{+\infty} X^{\otimes k},
$$

and by $\mathcal{L}(\ell^2(X))$ the space of right adjointable operators on $\ell^2(X)$.

An operator $T \in \mathcal{L}(\ell^2(X))$ can be represented by a matrix $[T]$, where $[T]_{ij} \in \mathcal{L}_R(X^{\otimes j}, X^{\otimes i})$ is given by

$$
[T]_{ij} = \Pi_i T E_j,
$$

where Π_i are the projections in $\ell^2(X)$. The product at Π_i of operators is given by

$$
[T]_{ij} = \Pi_i T E_j,
$$

and the product of operators is given by

$$
[T]_{ij} \cdot [T']_{jk} = [T]_{ij} [T']_{jk} = \Pi_i T E_j \cdot \Pi_j T' E_k = \Pi_i T E_j T' E_k.
$$
for the usual maps $E_k : X^\otimes k \to \ell^2(X)$ and $\Pi_k : \ell^2(X) \to X^\otimes k$, defined by $E_k(u) = u \cdot k$ and $\Pi_k f = f(k)$, for all $k \in \mathbb{Z}$.

The automorphisms $\alpha^{n,m}$ defined above yield a natural definition of Toeplitz matrix.

Definition 3.1. Let $T \in \mathcal{L}(\ell^2(X))$. The matrix $[T]$ is said to be a Toeplitz matrix if $\alpha^{1,1}([T]_{ij}) = [T]_{i-1,j-1}$ for all $i, j \in \mathbb{Z}$.

Example 3.2. Classical Toeplitz matrices

Let $X = \mathbb{C}$ be the $\mathbb{C} - \mathbb{C}$ imprimitivity bimodule obtained by letting \mathbb{C} act on itself with left and right multiplication, with inner products
\[
\langle \lambda, \mu \rangle_L = \lambda \overline{\mu} \quad \text{and} \quad \langle \lambda, \mu \rangle_R = \overline{\lambda \mu}.
\]
Since conjugation identifies the $\mathbb{C} - \mathbb{C}$ imprimitivity bimodules C and \overline{C}, $\ell^2(X)$ is the usual Hilbert space $\ell^2(\mathbb{Z})$.

Besides, $\mathcal{L}(X^\otimes n, X^\otimes m) \simeq L(\mathbb{C}, \mathbb{C}) \simeq \mathbb{C}$ consists of left multiplication by complex numbers, and $\alpha^{n,m}$ is the identity for all $n, m \in \mathbb{Z}$. It follows that the matrix $[T]$ associated to an operator $T \in \mathcal{L}(\ell^2(X))$ is a Toeplitz matrix if and only if $[T]_{ij} = [T]_{i-1,j-1}$ for all $i, j \in \mathbb{Z}$. That is, if and only if $[T]$, viewed as a an operator acting on the Hilbert space $\ell^2(\mathbb{Z})$, is a Toeplitz matrix in the classical sense.

Example 3.3. Given an $A - A$ imprimitivity bimodule X, the crossed product $A \rtimes X$ was defined in [AEE Definition 2.4]. Theorem 2.9 in [AEE] shows that $A \rtimes X$ is the cross-sectional C^*-algebra of a Fell bundle with fibers $\{X^\otimes n : n \in \mathbb{Z}\}$. It follows from [FD VIII.16.12] that $A \rtimes X$ acts on $\ell^2(X)$ via the representation Λ (the left regular representation, following the terminology of [FX 2.3]) given by
\[
[\Lambda_f(\eta)](l) = \sum_{k \in \mathbb{Z}} f(l - k) \otimes \eta(k),
\]
for all $\eta \in \ell^2(X)$, $l \in \mathbb{Z}$, and all compactly supported cross-sections $f \in A \rtimes X$.

Therefore,
\[
[\Lambda_f]_{ij} = T^j_{f(i-j)},
\]
and $[\Lambda_f]$ is a Toeplitz matrix.

Theorem 3.4. Let σ be the initial topology on $\mathcal{L}(\ell^2(X))$ induced by the family of seminorms $\mathcal{F} = \{p_v : v \in X^\otimes j, j \in \mathbb{Z}\}$, where $p_v(T) = \|T(v\delta_j)\|$, and let Λ the left regular representation defined in Example 3.3.

If $R \in B(\ell^2(X))$, then $[R]$ is a Toeplitz matrix if and only if $R \in \overline{\Lambda(A \rtimes Z)}'$.

Proof. Let $R \in \overline{\Lambda(A \rtimes Z)}'$. Since the set of compactly supported cross-sections is dense in the norm in $A \rtimes X$, we may assume that R is the σ-limit of a net $\{\Lambda_{f_d}\}$, where f_d is a compactly supported cross-section in $A \rtimes X$ for all d. We first assume that $[R]_{ij} = T^j_{f_d(i-j)}$ for all $i, j \in \mathbb{Z}$ and $\eta_{ij} \in X^\otimes i - j$.

Then, if \(v \in X^{\otimes j} \),

\[
[R]_{ij}(v) = [R(v\delta_j)](i) = \lim_d [\Lambda f_d(v\delta_j)](i) = \lim_d f_d(i - j) \otimes v.
\]

Therefore,

\[
\eta_{ij} \otimes v = \lim_d f_d(i - j) \otimes v,
\]

for all \(i, j \in \mathbb{Z} \) and \(v \in X^{\otimes j} \).

Now, if \(v \in X^{\otimes j} \) and \(w \in X \), then

\[
[R]_{i+1,j+1}(v \otimes w) = \lim_d f_d(i - j) \otimes v \otimes w = \eta_{ij} \otimes v \otimes w = T_{\eta_{ij}}^{i+1}(v \otimes w).
\]

It follows that \(\alpha^{i+1,j+1}([R]_{i+1,j+1}) = [R]_{ij} \) for all \(i, j \in \mathbb{Z} \). Consequently, \([R] \) is a Toeplitz matrix.

In the general case, since \(R \cdot a \) is as above for all \(a \in A \), then, for all \(i, j \in \mathbb{Z} \),

\[
\alpha^{i,j}([R]_{ij} \cdot a) = \alpha^{i,j}([R \cdot a]_{ij}) = [R \cdot a]_{i-1,j-1} = [R]_{i-1,j-1} \cdot a.
\]

Since the maps \(\alpha^{i,j} \) are \(A - A \) bimodule homomorphisms, this shows that

\[
\alpha^{i,j}([R]_{ij} \cdot a) = [R]_{i-1,j-1} \cdot a.
\]

The result now follows from the fact that, if \(\{e_\lambda\} \) is an approximate identity of \(A \), then \(S(v) = \lim_\lambda (S \cdot e_\lambda)(v) \) for all \(S \in \mathcal{L}(X^{\otimes i}, X^{\otimes i}) \), \(v \in X^{\otimes j} \), and \(i, j \in \mathbb{Z} \).

We now turn to the converse statement. Let \([R] \) be a Toeplitz matrix. Assume first that \([R] \) is such that

(7) \quad for all \(k \in \mathbb{Z} \) there exists \(u_k \in X^{\otimes k} \) such that \([R]_{ij} = T_{u(i-j)}^j \).

Set \(u = \sum_k u_k \delta_k \). If \(\{e_\lambda\} \) is an approximate identity of \(A \), then, since \(u e_\lambda = R(e_\lambda \delta_0), u e_\lambda \in \ell^2(X) \) and \(\|ue_\lambda\| \leq \|R\| \) for all \(\lambda \). This implies that \(u \in \ell^2(X) \).

Now, given \(N \in \mathbb{N} \), let \(f_N \in A \rtimes \mathbb{Z} \) be defined by \(f_N = \sum_{|k| \leq N} u_k \delta_k \). We next show that \(\Lambda f_N \) converges to \(R \) in the topology \(\sigma \).

In fact, if \(v \in X^{\otimes j} \), then

\[
(R - \Lambda f_N)(v\delta_j) = \sum_{|k| > N} (u_k \otimes v) \delta_{k+j}.
\]
Therefore,

\[\| (R - \Lambda f_N)(v\delta_j) \|^2 = \| \sum_{|k| > N} \langle u_k \otimes v, u_k \otimes v \rangle_R \| \]
\[= \| \sum_{|k| > N} \langle v, \langle u_k, u_k \rangle_R \rangle_R \| \]
\[= \| \sum_{|k| > N} \langle v, \langle u_k, u_k \rangle_R \rangle_R \| \]
\[\leq \| \sum_{|k| > N} \langle u_k, u_k \rangle_R \| \| v \|^2 < \epsilon \]

from some \(N \) on.

For the general case, let \(\{ e_\lambda \} \) be an approximate identity of \(A \). For each \(\lambda \), \([R \cdot e_\lambda] \) is a Toeplitz matrix satisfying (7). Thus, for each \(\lambda \), there is a sequence \(\{ f_{N,\lambda} \} \) of compactly supported functions in \(A \times X \) such that

\[\lim_{N} \Lambda f_{N,\lambda}(v\delta_j) = R(e_\lambda v\delta_j) \]

for all \(j \in \mathbb{Z} \) and \(v \in X^{\otimes j} \).

Given \(\epsilon > 0 \) and \(v_i \in X^{\otimes j_i} \) for \(i = 1, \ldots, k \), let \(\lambda_0 \) be such that

\[\| v_i - e_{\lambda_0} v_i \| < \epsilon/\| R \|| \]

for all \(i = 1, \ldots, k \).

Now choose \(N_0 \) so that

\[\| \Lambda f_{N_0,\lambda_0}(v_i\delta_j) - R(e_{\lambda_0} v_i \delta_j) \| < \epsilon/2 \]

for \(i = 1, \ldots, k \).

Then

\[\| (R - \Lambda f_{N_0,\lambda_0}) (v_i\delta_j) \| \leq \| R ((v_i - e_{\lambda_0} v_i) \delta_j) \| + \| R (e_{\lambda_0} v_i \delta_j) - \Lambda f_{N_0,\lambda_0} (v_i \delta_j) \| \]
\[< \epsilon, \]

for all \(i = 1, \ldots, k \). \(\square \)

REFERENCES

[AEE] Abadie, B.; Eilers, S.; Exel, R. Morita equivalence for crossed products by Hilbert \(C^* \)-bimodules, Transactions of the American Mathematical Society, Vol. 350, No. 8, (1998), pp. 3043-3054.

[ER] Echterhoff, S.; Raeburn, I. Multipliers of imprimitivity bimodules and Morita equivalence of crossed products, Math. Scand., 76, (1995), pp. 289-309.

[BMS] Brown, L.; Mingo, J. and Shen, N. Quasi-multipliers and embeddings of Hilbert \(C^* \)-bimodules, Canadian Journal of Mathematics, 46 (6), pp. 1150-1174.

[Ex1] Exel, R. Amenability for Fell bundles, J. Reine Angew. Math. 492 (1997), 41-73.

[FD] Fell, J.M.G. and Doran, R.S. Representations of \(* \)-Algebras, Locally Compact Groups, and Banach \(* \)-Algebraic Bundles, Pure and Applied Mathematics, vols. 125-126, Academic Press, 1988.

[La] Lance, C. Hilbert \(C^* \)-modules. A toolkit for operator algebrasists, London Mathematical Society Lecture Notes Series, 210, 1995, Cambridge University Press.

[Mu] Murphy, G. \(C^* \)-Algebras and Operator Theory, 1990, Academic Press.

[RW] Raeburn, I.; Williams, D. Morita equivalence and continuous-trace \(C^* \)-algebras, Mathematics Surveys and Monographs, Vol. 60, 1998, American Mathematical Society.
TOEPLITZ MATRICES ACTING ON THE ℓ^2-SPACE OF AN IMPRIMITIVITY BIMODULE

[Ref] Rieffel, M. *Induced representations of C^*-algebras*, Advances in Mathematics, *13*, 2, (1974), 176-257.

Centro de Matemática. Facultad de Ciencias. Iguá 4225, CP 11 400, Montevideo, Uruguay.

Email address: abadie@cmat.edu.uy