PLANAR GRAPHS WITHOUT CYCLES OF LENGTHS 4 AND 5 AND CLOSE TRIANGLES ARE DP-3-COLORABLE

YUXUE YIN¹ AND GEXIN YU¹,²

¹Department of Mathematics, Central China Normal University, Wuhan, Hubei, 430079 China. ²Department of Mathematics, The College of William and Mary, Williamsburg, VA, 23185, USA.

Abstract. Montassier, Raspaud, and Wang (2006) asked to find the smallest positive integers \(d_0\) and \(d_1\) such that planar graphs without \(\{4, 5\}\)-cycles and \(d_\Delta \geq d_0\) are 3-choosable and planar graphs without \(\{4, 5, 6\}\)-cycles and \(d_\Delta \geq d_1\) are 3-choosable, where \(d_\Delta\) is the smallest distance between triangles. They showed that \(2 \leq d_0 \leq 4\) and \(d_1 \leq 3\). In this paper, we show that the following planar graphs are DP-3-colorable: (1) planar graphs without \(\{4, 5\}\)-cycles and \(d_\Delta \geq 3\) are DP-3-colorable, and (2) planar graphs without \(\{4, 5, 6\}\)-cycles and \(d_\Delta \geq 2\) are DP-3-colorable. DP-coloring is a generalization of list-coloring, thus as a corollary, \(d_0 \leq 3\) and \(d_1 \leq 2\). We actually prove stronger statements that each pre-coloring on some cycles can be extended to the whole graph.

1. Introduction

Coloring of planar graphs has a long history. The famous Four Color Theorem states that every planar graph is properly 4-colorable, where a graph is properly \(k\)-colorable if there is a function \(c\) that assigns an element \(c(v) \in [k] := \{1, 2, \ldots, k\}\) to each \(v \in V(G)\) so that adjacent vertices receive distinct colors.

Grötzsch [17] showed every planar graph without 3-cycles is 3-colorable. But it is NP-complete to decide whether a planar graph is 3-colorable. There were heavy research on sufficient conditions for a planar graph to be 3-colorable. Three typical conditions are the following:

- One is in the spirit of the Steinberg’s conjecture (recently disproved) or Erdős’s problem that forbids cycles of certain lengths. Borodin, Glebov, Raspaud, and Salavatipour [11] showed that planar graphs without \(\{4, 5, 6, 7\}\)-cycles are 3-colorable, and it remains open to know if one can allow 7-cycle.
- Havel [16] proposed to make \(d_\Delta\) large enough, where \(d_\Delta\) is the smallest distance between triangles. Dvořák, Kral, and Thomas [14] showed that \(d_\Delta \geq 10^{100}\) suffices.
• The Bordeaux approach \cite{12} combines the two kinds of conditions. Borodin and Glebov \cite{10} showed that planar graphs without 5-cycles and \(d^\Delta \geq 2\) are 3-colorable. It is conjectured \cite{12} that \(d^\Delta \geq 1\) suffices.

Vizing \cite{27}, and independently Erdős, Rubin, and Taylor \cite{15} introduced list coloring as a generalization of proper coloring. A list assignment \(L\) gives each vertex \(v\) a list \(L(v)\) of available colors. A graph \(G\) is \(L\)-colorable if there is a proper coloring \(c\) of \(V(G)\) such that \(c(v) \in L(v)\) for each \(v \in V(G)\). A graph \(G\) is \(k\)-choosable if \(G\) is \(L\)-colorable for each \(L\) with \(|L(v)| \geq k\). Clearly, a proper \(k\)-coloring is an \(L\)-coloring when \(L(v) = \{k\}\) for all \(v \in V(G)\).

While list coloring provides a powerful tool to study coloring problems, some important techniques used in coloring (for example, identification of vertices) are not feasible in list coloring. Therefore, it is often the case that a condition that suffices for coloring is not enough for the corresponding list-coloring. Thomassen \cite{25, 26} showed that every planar graph is 5-choosable and every planar graph without \(\{3, 4\}\)-cycles is 3-choosable, but Voigt \cite{28, 29} gave non-4-choosable planar graphs and non-3-choosable triangle-free planar graphs.

Sometimes we do not know if a stronger condition would help. For example, Borodin (\cite{8}, 1996) conjectured that planar graphs without cycles of lengths from 4 to 8 are 3-choosable.

In the spirit of Bordeaux conditions, Montassier, Raspaud, and Wang \cite{24} gave the following conditions for a planar graph to be 3-choosable:

Theorem 1.1 (Montassier, Raspaud, and Wang \cite{24}). A planar graph \(G\) is 3-choosable if

- \(G\) contains no cycles of lengths 4 and 5 and \(d^\Delta \geq 4\), or
- \(G\) contains no cycles of lengths from 4 to 6 and \(d^\Delta \geq 3\).

There exist planar graphs without 4-, 5-cycles and \(d^\Delta = 1\) that are not 3-choosable.

They asked for the optimal conditions on \(d^\Delta\) for the same conclusions.

Very recently, Dvořák and Postle \cite{13} introduced DP-coloring (under the name correspondence coloring), which helped them confirm the conjecture by Borodin mentioned above. DP-coloring is a generalization of list-coloring, but it allows identification of vertices in some situations.

Definition 1.1. Let \(G\) be a simple graph with \(n\) vertices, and \(L\) be a list assignment of \(V(G)\). For each vertex \(u \in V(G)\), let \(L_u = \{u\} \times L(u)\). For each edge \(uv \in E(G)\), let \(M_{uv}\) be a matching (maybe empty) between the sets \(L_u\) and \(L_v\) and let \(\mathcal{M}_L = \{M_{uv} : uv \in E(G)\}\), called the matching assignment. Let \(G_L\) be the graph that satisfies the following conditions

- \(V(G_L) = \bigcup_{u \in V(G)} L_u\).
- for all \(u \in V(G)\), the set \(L_u\) forms a clique.
- if \(uv \in E(G)\), then the edges between \(L_u\) and \(L_v\) are those of \(M_{uv}\)
- if \(uv \notin E(G)\), then there are no edges between \(L_u\) and \(L_v\).

If \(G_L\) contains an independent set of size \(n\), then \(G\) has an \(\mathcal{M}_L\)-coloring. The graph \(G\) is DP-\(k\)-colorable if, for each \(k\)-list assignment \(L\) and each matching assignment \(\mathcal{M}_L\) over \(L\), it has an \(\mathcal{M}_L\)-coloring. The minimum \(k\) such that \(G\) is DP-\(k\)-colorable is the DP-chromatic number of \(G\), denoted by \(\chi_{DP}(G)\).
As in list coloring, we refer to the elements of $L(v)$ as colors and call the element $i \in L(v)$ chosen in the independent set of an \mathcal{M}_L-coloring as the color of v.

We should note that DP-coloring and list coloring can be quite different. For example, Bernshteyn [2] showed that the DP-chromatic number of every graph G with average degree d is $\Omega(d/\log d)$, while Alon [1] proved that $\chi_l(G) = \Omega(\log d)$ and the bound is sharp.

Much attention was drawn on this new coloring, see for example, [2, 3, 4, 5, 6, 7, 18, 19, 20, 23, 22]. We are interested in DP-coloring of planar graphs. Dvořák and Postle [13] noted that Thomassen’s proofs [25] for choosability can be used to show $\chi_{DP}(G) \leq 5$ if G is a planar graph, and $\chi_{DP}(G) \leq 3$ if G is a planar graph with no 3-cycles and 4-cycles. Some sufficient conditions were given in [18, 19, 23] for a planar graph to be DP-4-colorable. Sufficient conditions for a planar graph to be DP-3-colorable are obtained in [21] and [22]. In particular,

Theorem 1.2. (21, 22) A planar graph is DP-3-colorable if it has no cycles of length $\{4, 9, a, b\}$, where $(a, b) \in \{(5, 6), (5, 7), (6, 7), (6, 8), (7, 8)\}$.

In this paper, we use DP-coloring to improve the results in Theorem 1.1. To state our results, we have to introduce extendability. Let G be a graph and C be a subgraph of G. Then (G, C) is DP-3-colorable if every DP-3-coloring of C can be extended to G.

A 9-cycle C is bad if it is the outer 9-cycle in a subgraph isomorphic to the graphs in Figure 1. A 9-cycle is good if it is not a bad 9-cycle.

Theorem 1.3. Let G be a planar graph that contains no $\{4, 5\}$-cycles and $d^\Delta \geq 3$. Let C_0 be a 3-, 6-, 7-, or 8-cycle or a good 9-cycle in G. Then each DP-3-coloring of C_0 can be extended to G.

Theorem 1.4. Let G be a planar graph that contains no $\{4, 5, 6\}$-cycles and $d^\Delta \geq 2$. Let C_0 be a cycle of length 7, 8, 9 or 10 in G. Then each DP-3-coloring of C_0 can be extended to G.

The proofs of Theorem 1.3 and 1.4 use identification of vertices. We shall note that the planar graphs in the following corollary was not known to be 3-choosable.

Corollary 1.5. The following planar graphs are DP-3-colorable (thus also 3-choosable):

- no $\{4, 5\}$-cycles and $d^\Delta \geq 3$, or
- no $\{4, 5, 6\}$-cycles and $d^\Delta \geq 2$.

Figure 1. bad 9-cycles.
Proof. Let G be a planar graph under consideration. Note that G is DP-3-colorable if G contains no 3-cycle. So we may assume that G contains a 3-cycle. Then by Theorem 1.4, G is DP-3-colorable when $d^1 \geq 3$. So we let $d^1 \geq 2$ and assume that G contains no $\{4,5,6\}$-cycles. By Theorem 1.2 we may assume that G contains a cycle of length in $\{7,8,9\}$. Now by Theorem 1.4 G is DP-3-colorable.

We use discharging method to prove the results. One part of the proofs is to show some structures to be reducible, that is, a coloring outside of the structure can be extended to the whole graph. The following lemma from [21] provides a powerful tool to prove the reducibility.

Lemma 1.6. [21] Let $k \geq 3$ and H be a subgraph of G. If the vertices of H can be ordered as v_1, v_2, \ldots, v_ℓ such that the following hold

1. $v_iv_\ell \in E(G)$, and v_1 has no neighbor outside of H,
2. $d(v_\ell) \leq k$ and v_ℓ has at least one neighbor in $G - H$,
3. for each $2 \leq i \leq \ell - 1$, v_i has at most $k - 1$ neighbors in $G[\{v_1, \ldots, v_{i-1}\}] \cup (G - H)$,

then a DP-k-coloring of $G - H$ can be extended to a DP-k-coloring of G.

We end the introduction with some notations used in the paper. All graphs mentioned in this paper are simple. A k-vertex (k^+-vertex, k^--vertex) is a vertex of degree k (at least k, at most k). The same notation will be applied to faces and cycles. We use $V(G)$ and $F(G)$ to denote the set of vertices and faces in G, respectively. An (ℓ_1, ℓ_2)-edge is an edge $e = v_1v_2$ with $d(v_i) = \ell_i$. An $(\ell_1, \ell_2, \ldots, \ell_k)$-face is a k-face $f = [v_1v_2\ldots v_k]$ with $d(v_i) = \ell_i$, respectively. Recall that two faces are adjacent if they share a common edge, and are intersecting if they share a common vertex. A vertex is incident to a face if it is on the face, and is adjacent to a face if it is not on the face but adjacent to a vertex on the face. A vertex in G is light if it is incident to a 3-face. If C is a cycle in an embedding of G, we use $int(C)$ and $ext(C)$ to denote the sets of vertices located inside and outside a cycle C, respectively. The cycle C is called a separating cycle if $int(C) \neq \emptyset \neq ext(C)$. An edge $uv \in E(G)$ is straight if every $(u,c_1)(v,c_2) \in M_{uv}$ satisfies $c_1 = c_2$. We note that if all edges in a subgraph are straight, then a DP-3-coloring on the subgraph is the same as a proper 3-coloring.

2. Proof of Theorem 1.3

Let (G, C_0) be a counterexample to Theorem 1.3 with minimum number of vertices, where C_0 is a 3-, 6-, 7-, 8-cycle or a good 9-cycle. Below we let G be a plane graph. The following was shown in [21] for every non-DP-3-colorable graphs.

Lemma 2.1. For each $v \in G - C_0$, $d(v) \geq 3$ and for each $v \in C_0$, $d(v) \geq 2$.

Lemma 2.2. There exist no separating $\{3,6,7,8\}$-cycles or good 9-cycle.

Proof. First of all, we note that C_0 cannot be a separating cycle. For otherwise, we may extend the coloring of C_0 to both inside C_0 and outside C_0, respectively, then combine them to get a coloring of G. So we may assume that C_0 is the outer face of the embedding of G.

Let $C \neq C_0$ be a separating $\{3,6,7,8\}$-cycle or good 9-cycle in G. By the minimality of G, the coloring of C_0 can be extended to $G - \text{int}(C)$. Now that C is colored, thus by the minimality of G again, the coloring of C can be extended to $\text{int}(C)$. Combine inside and outside of C, we have a coloring of G, which is extended from the coloring of C_0, a contradiction. \hfill \Box

By Lemma 2.2, if C is a bad 9-cycle, then the subgraph in Figure 1 that contains C must be induced. From now on, we will let C_0 be the outer face of G. Likewise, if C_0 contains a chord, then by Lemma 2.2, G contains no other vertices, so the coloring on C_0 is also a coloring of G. Therefore, we may assume that C_0 is chordless as well. A vertex is internal if it is not on C_0 and a face is internal if it contains no vertex of C_0.

For convenience, a 6^+-face f in G is bad if $d(f) = 6$ and f is adjacent to a 3-face, otherwise, it is good. Let f be a $(3,3,3,3,3,3)$-face adjacent to a 3-face f'. We call the vertex v on f' but not on f the roof of f, and f the base of v.

Lemma 2.3. Let f be an internal 6-face in G and f_1 be an internal $(3,3,4)$-face adjacent to f. Then each of the followings holds:

(a) f cannot contain vertices of another 3-face;

(b) If f is a $(3,3,3,3,4)$-face such that f and f_1 share a common $(3,4)$-edge, then the other $(3,4)$-edge of f_1 cannot be on another internal $(3,3,3,3,3,3,4)$-face.

(c) If f is a $(3,3,3,3,3)$-face, then f_1 cannot be adjacent to an internal $(3,3,3,3,3,3,4)$-face. This means a 4-vertex on an internal $(3,3,3,3,3,3,4)$-face cannot be a roof.

Proof. (a) follows from the condition on the distance of triangles. To show (b) and (c), let $f_1 = [xyz]$ so that xy is the common edge of f_1 and $f = [xyu_1u_2u_3u_4]$ and $d(x) \leq d(y)$. Let $f_2 = [zv_1v_2v_3v_4y]$ be the (3,3,3,3,4)-face adjacent to f_1.

(b) We have $d(y) = 4$ and $d(x) = d(z) = d(u_i) = d(v_i) = 3$ for $i \in [4]$. Order the vertices on f and f_2 as

$$y, v_4, v_3, v_2, v_1, z, x, u_4, u_3, u_2, u_1.$$

Let S be the set of vertices in the list. By Lemma 1.6, a DP-3-coloring of $(G - S, C_0)$ can be extended to (G, C_0), a contradiction.

(c) We have $d(z) = 4$ and $d(x) = d(y) = d(u_i) = d(v_i) = 3$ for $i \in [4]$, and $u_1 = v_4$. Order the vertices on f and f_2 as

$$x, z, v_1, v_2, v_3, y, u_1, u_2, u_3, u_4.$$

Let S be the set of vertices in the list. By Lemma 1.6, a DP-3-coloring of $(G - S, C_0)$ can be extended to G, a contradiction. \hfill \Box

Lemma 2.4. Let $f = [v_1v_2v_3v_4v_5v_6]$ be an internal 6-face that is adjacent to an internal $(3,3,3)$-face $f_1 = [v_1v_2v_{12}]$, then $d(v_3) \geq 4$ or $d(v_6) \geq 4$.

Proof. We assume that $d(v_3) = d(v_6) = 3$, and use v to denote the neighbor of v_{12} other than v_1, v_2. First we may rename the lists of vertices in $\{v, v_{12}, v_2, v_3, v_4\}$ so that each edge in $\{v_1v_2, vv_{12}, v_{12}v_2, v_2v_3, v_3v_4\}$ is straight.
Consider the graph G' obtained from $G = \{v_{12}, v_1, v_2, v_3, v_6\}$ by identifying v_4 and v. We claim that no new cycles of length from 3 to 5 or multiple edges are created, for otherwise, there is a path of length 2, 3, 4 or 5 from v to v_4 in $G = \{v_{12}, v_1, v_2, v_3, v_6\}$, which together with v_{12}, v_1, v_2, v_3 forms a separating \{678\}-cycle or good 9-cycle, a contradiction to Lemma 2.2. Clearly, $\Delta(G') \geq 3$. Finally, we claim that no new chord in C_0 is formed in G', for otherwise, $v \in C_0$ and v_4 is adjacent to a vertex on C_0, then there is a path between v_4 and v on C_0 with length at most four, which with $v_3v_2v_{12}$ forms a separating \{6, 7, 8\}-cycle or good 9-cycle.

By minimality of (G, C_0), the DP-3-coloring of C_0 can be extended to a DP-3-coloring of G'. Now keep the colors of all vertices in G' and color v_4 and v with the color of the identified vertex. Now properly color v_3, and then color v_{12} with the color of v_3, which we can do because the edges $vv_{12}, v_1v_2v_3, v_3v_4$ are straight and the color of v_3 is different from the one on v_4 and v. Now color v_6, v_1, v_2 properly in the order, we obtain a coloring of G, a contradiction.

\[\Box\]

Lemma 2.5. Let $P = xu_1u_2yyv_1v_2z$ be a path in $int(C_0)$ and $f = [x'y'z']$ be an internal $(3, 3, 3)$-face. Consider the graph G' obtained from $G = \{x, u_1, u_2, y, y', x', z'\}$ by identifying z and y''. Since $\Delta(G) \geq 3$, v_1 and v_2 cannot be on triangles. We claim that no new cycles of length from 1 to 5 are created, for otherwise, there is a path of length 2, 3, 4 or 5 from y'' to z in $G = \{x, u_1, u_2, y, y', x', z'\}$, which together with y, y', z' forms a separating \{6, 7, 8\}-cycle or good 9-cycle, a contradiction to Lemma 2.2. Clearly, $\Delta(G') \geq 3$. Finally, we claim that no new chord in C_0 is formed in G', for otherwise, $y'' \in C_0$ and z is adjacent to a vertex on C_0, then there is a path between y'' and z on C_0 with length at most four, which again forms a good separating cycle with $yy'x'$ of forbidden length.

By minimality of (G, C_0), the DP-3-coloring of C_0 can be extended to a DP-3-coloring of G'. Now keep the colors of all vertices in G' and color y'' and z with the color of the identified vertex. Now properly coloring y and coloring z' with the color of y, and coloring u_2, u_1, x, x', y' in order, we obtain a coloring of G, a contradiction.

\[\Box\]

We use $\mu(x)$ to denote the initial charge of a vertex or face x in G and $\mu^*(x)$ to denote the final charge after the discharging procedure. We use $\mu(v) = 2d(v) - 6$ for each vertex v, $\mu(f) = d(f) - 6$ for each face $f \neq C_0$, and $\mu(C_0) = d(C_0) + 6$. Then by Euler formula, $\sum_{x \in V(G) \cup F(G)} \mu(x) = 0$. To lead to a contradiction, we shall prove that $\mu^*(x) \geq 0$ for all $x \in V \cup F$ and $\mu^*(C_0)$ is positive. For shortness, let $F_k = \{f : f$ is a k-face and $V(f) \cap C_0 \neq \emptyset\}$.

We use the following discharging rules:

(R1) Each internal 4\(^+\)-vertex gives \(\frac{3}{2}\) to its incident 3-face, and \(\frac{1}{2}\) to its base or incident (3, 3, 3, 3, 3, 4)-face. Each internal 4-vertex gives 1 to its adjacent (3, 3, 3)-face and \(\frac{1}{2}\) to its incident 6-faces that are not adjacent to its adjacent 3-face, and each internal 5\(^+\)-vertex gives 2 to its adjacent (3, 3, 3)-face and \(\frac{1}{2}\) to its incident 6-faces that are not adjacent to its adjacent 3-face.

(R2) Each 7\(^+\)-face or non-internal 6-face other than \(C_0\) gives 1 to each of its adjacent internal 3-faces and the rest to the outer face. Each internal 6-face gives \(\frac{1}{2}\) to its adjacent internal 3-face when it shares an (3, 4\(^+\))-edge with the 3-face, or contains a 4\(^+\)-vertex that is not adjacent to a (3, 3, 3)-face, or it is a (3, 3, 3, 3, 3, 3)-face.

(R3) The outer face \(C_0\) gets \(\mu(v)\) from each \(v \in C_0\), gives 3 to each intersecting 3-face and 1 to each adjacent bad 6-face with an internal 3-face.

We first check the final charge of vertices in \(G\). By (R3), each vertex on \(C_0\) has final charge 0. So let \(v\) be an internal vertex of \(G\). Then by Lemma 2.1, \(d(v) \geq 3\). Note the \(\mu^*(v) = 0\) if \(d(v) = 3\).

Let \(d(v) = k \geq 5\). If \(v\) is on a 3-face, then it is not adjacent to other 3-faces, so by (R1), it gives \(\frac{3}{2}\) to the 3-face, \(\frac{1}{2}\) to each other incident face and possibly \(\frac{1}{2}\) to its base (at most one by definition), so \(\mu^*(v) \geq 2k - 6 - \frac{3}{2} - \frac{1}{2} \cdot k = \frac{3}{2}(k - 5) \geq 0\). If \(v\) is adjacent to a 3-face, then it is not on or adjacent to other 3-faces, so by (R1), it gives at most 2 to the 3-face, and \(\frac{1}{2}\) to each other incident 6-faces that are not adjacent to the 3-face, hence \(\mu^*(f) \geq 2k - 6 - 2 - \frac{1}{2}(k - 2) > 0\). If \(f\) is not on or adjacent to 3-faces, then by (R1), its final charge is \(\mu^*(f) \geq 2k - 6 - \frac{1}{2}k > 0\).

Let \(d(v) = 4\). Let \(f_i\) for \(1 \leq i \leq 4\) be the incident face of \(v\) in clockwise order. First assume that \(v\) is on a 3-face. By Lemma 2.3 (b) and (c), \(v\) cannot be a roof and on a (3, 3, 3, 3, 3, 4)-face at the same time, so by (R1), \(v\) gives out at most \(\frac{1}{2}\) to 6-faces and \(\frac{3}{2}\) to the 3-face, thus \(\mu^*(v) \geq 0\). Now assume that \(v\) is adjacent to a 3-face. Then \(v\) cannot be adjacent other 3-faces. By (R1), \(v\) gives at most 1 to the 3-face and \(\frac{1}{2}\) to each of the other 6-faces that are not adjacent to the 3-face, and \(\mu^*(v) \geq 2 - 1 - \frac{1}{2} \cdot 2 = 0\). Finally assume that \(v\) is not on or adjacent to any 3-face. Then by (R1), \(\mu^*(v) \geq 2 - \frac{1}{2} \cdot 4 = 0\).

Now we check the final charge of faces. Let \(d(f) = 3\). If \(f\) contains vertices of \(C_0\), then by (R3), \(\mu^*(f) = 0\). So we assume that \(f\) is internal. If \(f\) is incident with at least two \(4^+\)-vertices, then \(f\) gets \(\frac{3}{2}\) from each of the incident \(4^+\)-vertices by (R1), thus \(\mu^*(f) \geq -3 + \frac{3}{2} \cdot 2 = 0\). If \(f\) is incident with exactly one \(4^+\)-vertex, then \(f\) gets \(\frac{3}{2}\) from the incident \(4^+\)-vertex by (R1) and gets \(\frac{1}{2}\) from each of the incident \(6^+\)-face by (R2).

Now we assume that \(f = [x'y'z']\) is an internal (3, 3, 3)-face. Let \(xx', yy', zz' \in E(G)\) and let \(f_1, f_2, f_3\) be the three adjacent faces of \(f\) so that \(f_1\) contains \(x, x', y', y\) and \(f_2\) contains \(y, y', z', z\). If \(f\) is adjacent to three \(7^+\)- or non-internal 6-faces, then it gets 1 from each by (R2) and its final charge is at least 0. So we may assume that it is adjacent to an internal 6-face, say \(f_1\). By Lemma 2.4 \(f\) is adjacent to at least one internal \(4^+\)-vertex (say \(y\)) which is on \(f_1\). If \(f\) is adjacent to three internal 6-faces, then by Lemma 2.4, one of \(x\) and \(z\) is a \(4^+\)-vertex, and by Lemma 2.5 either one of \(x, y, z\) is a \(5^+\)-vertex, in which case by (R1),
\(\mu^*(f) \geq -3+2+1 = 0 \), or they are all 4-vertices, in which case by (R1), \(\mu^*(f) \geq -3+1\cdot 3 = 0 \), or one of them (say \(x \)) is a 3-vertex and other two are 4-vertices, in which case by Lemma 2.5, \(f_1 \) and \(f_3 \) both contain 4\(^+\)-vertices that are not adjacent to \(f \) so by (R1) and (R2), \(f \) gets 1 + 1 from the two 4-vertices and \(\frac{1}{2} \cdot 2 \) from \(f_1 \) and \(f_3 \). Likewise, if \(f_2 \) and \(f_3 \) are both 7\(^-\) or non-internal 6-faces, then by (R1) and (R2), \(\mu^*(f) \geq -3 + 1 + 1 \cdot 2 = 0 \). So we may assume that one of \(f_2 \) or \(f_3 \) is an internal 6-face and the other is a 7\(^-\) or non-internal 6-face. If \(f_3 \) is an internal 6-face, then by Lemma 2.4, \(x \) or \(z \) is a 4\(^+\)-vertex, thus by (R1) \(f \) gets 1 \cdot 2 from the two adjacent 4\(^+\)-vertices and by (R2) \(f \) gets 1 from \(f_2 \). So we may assume that \(f_2 \) is an internal 6-face and \(f_3 \) is a 7\(^-\) or non-internal 6-face, and furthermore assume that \(x, z \) are 3-vertices and \(d(y) = 4 \). Now by Lemma 2.5, \(f_1 \) and \(f_2 \) both contain 4\(^+\)-vertices that are not adjacent to \(f \), so by (R2), \(f \) gets \(\frac{1}{2} \cdot 2 \) from \(f_1 \) and \(f_2 \), 1 from \(f_3 \), and by (R1), 1 from \(y \), and we have \(\mu^*(f) \geq -3 + 3 = 0 \).

Since \(G \) contains no 4- or 5-cycles, we only need to check the 6\(^+\)-faces. If \(d(f) \geq 7 \), then \(f \) is adjacent to at most \(\lfloor \frac{d(f)}{4} \rfloor \) 3-faces, so after (R1), \(\mu^*(f) \geq d(f) - 6 - \lfloor \frac{d(f)}{4} \rfloor \geq 0 \).

Let \(d(f) = 6 \). If \(f \) is good or \(f \) contains vertices of \(C_0 \), then \(\mu^*(f) = 0 \). Now we assume that \(f \) is an internal bad 6-face that is adjacent to an internal 3-face \(f' = [xyz] \) on edge \(xy \) with \(d(x) \leq d(y) \).

- If \(d(x), d(y) \geq 4 \), then \(f \) gives nothing to \(f' \). So \(\mu^*(f) = \mu(f) = 0 \).
- If \(d(x) = 3 \) and \(d(y) \geq 5 \), then \(f \) gets \(\frac{1}{2} \) from \(y \) and gives \(\frac{1}{2} \) to \(f' \). Thus \(\mu^*(f) \geq 6 - 6 + \frac{1}{2} - \frac{1}{2} = 0 \).
- If \(d(x) = d(y) = 3 \), then by (R2), \(f \) gives \(\frac{1}{2} \) to \(f' \) only when \(f \) contains a 4\(^+\)-vertex that is not adjacent to the 3-face, in which case, \(f \) gets \(\frac{1}{2} \) from the 4\(^+\)-vertex by (R1). So we always have \(\mu^*(f) \geq 0 \).
- Let \(d(x) = 3 \) and \(d(y) = 4 \). If \(f \) is an internal \((3,3,3,3,3,4)\)-face, then it gets \(\frac{1}{2} \) from \(y \), or else \(f \) contains another 4\(^+\)-vertex, from which \(f \) gets \(\frac{1}{2} \). Thus \(\mu^*(f) \geq 6 - 6 + \frac{1}{2} - \frac{1}{2} = 0 \).

We call a bad 6-face \(f \) in \(F_6 \) \textit{special} if \(f \) is adjacent to one internal 3-face.

\textbf{Lemma 2.6.} The final charge of \(C_0 \) is positive.

\textit{Proof.} Assume that \(\mu^*(C_0) \leq 0 \). Let \(E(C_0, G - C_0) \) be the set of edges between \(C_0 \) and \(G - C_0 \). Let \(e' \) be the number of edges in \(E(C_0, G - C_0) \) that is not on a 3-face and \(x \) be the number of charges \(C_0 \) receives by (R3). Let \(f_3 = |F_3| \) and \(f_6 \) be the number of special 6-faces. By (R3) and (R4), the final charge of \(C_0 \) is

\[
\mu^*(C_0) = d(C_0) + 6 + \sum_{v \in C_0} (2d(v) - 6) - 3f_3 - f_6 + x
\]

\[
= d(C_0) + 6 + \sum_{v \in C_0} 2(d(v) - 2) - 2d(C_0) - 3f_3 - f_6 + x
\]

\[
= 6 - d(C_0) + 2|E(C_0, G - C_0)| - 3f_3 - f_6 + x
\]

\[
\geq 6 - d(C_0) + f_3 + 2e' - f_6 + x,
\]

where the last equality follows from that each 3-face in \(F_3 \) contains two edges in \(E(C_0, G - C_0) \).
Note that for each special 6-face f, no edge in $E(C_0, G - C_0) \cap E(f)$ is on 3-faces. Then $e' \geq f_6$. When $e' = f_6$, C_0 is adjacent to at least three 6-faces, so $e' = f_6 \geq 3$, and it follows that $d(C_0) = 9$ and $x = f_3 = 0$ and $e' = f_6 = 3$, in which case, we have a bad 9-cycle as in the second graph in Figure 1. So we may assume that $e' \geq f_6 + 1$. Thus

$$\mu^*(C_0) \geq 6 - d(C_0) + f_3 + 2e' - f_6 + x \geq 6 - d(C_0) + f_3 + x + f_6 + 2.$$

Since $\mu^*(C_0) \leq 0$, $d(C_0) \geq 8$. So if $f_6 = 1$, then $d(C_0) = 9$ and $(f_3, x, e') = (0, 0, 2)$. Now that the 6-face shares at most one edge with C_0, C_0 is adjacent to a 10-face f that contains at least five consecutive 2-vertices on C_0, thus by (R3), $x \geq d(f) - 6 - \left\lceil \frac{d(f)-7}{4} \right\rceil \geq 0$, a contradiction.

Therefore, we may assume that $f_6 = 0$, and $f_3 + 2e' + x \leq d(C_0) - 6 \leq 3$. So $e' \leq 1$.

Let $e' = 1$. It follows that $f_3 \leq 1$.

- Let $f_3 = 1$. Then $d(C_0) = 9$ and $x = 0$. Since C_0 is not a bad 9-cycle, C_0 is adjacent to a 7-face f and f is adjacent to the 3-face, so by (R3), f gives at least 1 to C_0, that is, $x \geq 1$, a contradiction.

- Let $f_3 = 0$. Then $d(C_0) \geq 8$ and $x \leq 1$. Note that C_0 is adjacent to a 9-face f that contains at least $d(C_0) - 1$ consecutive 2-vertices, thus by (R3), f gives at least $d(f) - 6 - \left\lceil \frac{d(f)-7}{4} \right\rceil \geq 2$ to C_0, a contradiction to $x \leq 1$.

Finally let $e' = 0$. Then $f_3 + x \leq d(C_0) - 6$, and each edge in $E(C_0, G - C_0)$ is on a 3-face. Note that we may assume that $f_3 > 0$, for otherwise $G = C_0$. Now follow the boundaries of the 7-faces adjacent to C_0, each of the f_3 triangles is encountered twice, thus the 7-faces do not give charge to at least 2f_3 triangles, so $x \geq 2f_3$. It follows $f_3 = 1$ and $d(C_0) = 9$. In this case, C_0 is adjacent to a 10-face f that contains at least 7 consecutive 2-vertices on C_0. Then by (R3), f gives at least $d(f) - 6 - \left\lceil \frac{d(f)-9}{4} \right\rceil \geq 3$ to C_0, a contradiction to $x = 2$. □

3. Proof of Theorem 1.4

Let (G, C_0) be a counterexample to Theorem 1.4 with minimum number of vertices, where C_0 is a 7-, 8-, 9- or 10-cycle. Let G be a plane graph.

Lemma 3.1. For each $v \notin C_0$, $d(v) \geq 3$.

Proof. Let $v \notin C_0$ be a vertex with $d(v) \leq 2$. Any \mathcal{M}_L-coloring of $G - v$ can be extended to G since v has at most $d(v)$ elements of $L(v)$ forbidden by the colors selected for the neighbors of v, while $|L(v)| = 3$. □

Lemma 3.2. The graph G has no separating cycles of length 7, 8, 9 or 10.

Proof. First of all, we note that C_0 cannot be a separating cycle. For otherwise, we may extend the coloring of C_0 to both inside C_0 and outside C_0, respectively, then combine them to get a coloring of G. So we may assume that C_0 is the outer face of the embedding of G.

Let $C \neq C_0$ be a separating cycle of length 7, 8, 9 or 10 in G. By the minimality of G, the coloring of C_0 can be extended to $G - \text{int}(C)$. Now that C is colored, thus by the minimality of G again, the coloring of C can be extended to $\text{int}(C)$. Combine inside and outside of C, we have a coloring of G, which is extended from the coloring of C_0, a contradiction. □
So we may assume that C_0 is the outer face of the embedding of G in the rest of this paper. Like in the previous section, we may assume that C_0 is chordless. A face is \textit{internal} if none of its vertices is on C_0, and a vertex is \textit{internal} if it is not on C_0.

\textbf{Lemma 3.3.} Let f be an internal 7-face that is adjacent to an internal (3, 3, 3)-face and is incident with at least six 3-vertices. Then none of the followings occur

(a) f contains a (3, 4)-edge that is on an internal (3, 3, 4)-face.

(b) f contains seven 3-vertices and is adjacent to an internal (3, 3, 4+)-face.

(c) f is adjacent to another internal (3, 3, 3)-face.

\textit{Proof.} Let $f = [v_1 v_2 \cdots v_7]$, and $v_1 v_2$ be the (3, 3)-edge that is on an internal (3, 3, 3)-face $[v_1 v_2 v_{12}]$. Since $d^\Delta(G) \geq 2$, by symmetry we may assume that $v_4 v_5$ is on a 3-face $[v_4 v_5 v_{45}]$.

(a) or (b): If $d(v_4) \leq 4$ and $d(v_5) = 3$, then let S be the set of vertices listed as:

$$v_2, v_3, v_4, v_{45}, v_5, v_6, v_7, v_1, v_{12}.$$

If $d(v_5) = 4$, then let S be the set of vertices listed as:

$$v_1, v_7, v_6, v_5, v_{45}, v_4, v_3, v_2, v_{12}.$$

By Lemma 1.6, a DP-3-coloring of $G - S$ can be extended to G, a contradiction.

(c) Suppose otherwise that the 3-face $[v_4 v_5 v_{45}]$ is an internal (3, 3, 3)-face. Let v be the neighbor of v_{45} not on f. Since f is incident with at least six 3-vertices, by symmetry we may assume that $d(v_6) = 3$. We can rename the lists of vertices in $\{v, v_{45}, v_4, v_5, v_6, v_7\}$ so that each edge in $\{v_7 v_6, v_6 v_5, v_5 v_4, v_3 v_4, v_{45} v, v_{45} v\}$ is straight.

Consider the graph G' obtained from $G - \{v_6, v_5, v_4, v_{45}\}$ by identifying v_7 and v. We claim that no new cycles of length from 3 to 6 are created, for otherwise, there is a path of length 3, 4, 5 or 6 from v to v_7 in $G - \{v_6, v_5, v_4, v_{45}\}$, which together with v_6, v_5, v_{45} forms a separating cycle of length 7, 8, 9 or 10, a contradiction to Lemma 3.2. Since none of v_7 and v is on a triangle, $d^\Delta(G') \geq 2$. Finally, we claim that no new chord in C_0 is formed in G', for otherwise, $v \in C_0$ and v_7 is adjacent to a vertex on C_0, then there is a path between v_7 and v on C_0 with length at most four, which again forms a separating cycle with $v_6 v_5 v_{45}$ of forbidden length.

By minimality of (G, C_0), the DP-3-coloring of C_0 can be extended to a DP-3-coloring ϕ of G'. Now keep the colors of all other vertices in G' and color v_7 and v with the color of the identifying vertex. For $x \in \{v_4, v_5, v_6, v_{45}\}$, let $L^*(x) = L(x) \setminus \cup_{ux \in E(G)}\{c' \in L(u) : (u, c)(x, c') \in C_{ux} \text{ and } (u, c) \in \phi\}$. Then $|L^*(v_4)| = |L^*(v_5)| = 3$ and $|L^*(v_6)| \geq 1$. So we can extend ϕ to a DP-3-coloring of G by color v_6 and v_{45} with the same color and then color v_4, v_5 in order, a contradiction. \hfill \Box

We use $\mu(x)$ to denote the initial charge of a vertex or face x in G and $\mu^*(x)$ to denote the final charge after the discharging procedure. We use $\mu(v) = 2d(v) - 6$ for each vertex v, $\mu(f) = d(f) - 6$ for each face $f \neq C_0$, and $\mu(C_0) = d(C_0) + 6$. Then by Euler formula, $\sum_{x \in V(G) \cup F(G)} \mu(x) = 0$. To lead to a contradiction, we shall prove that $\mu^*(x) \geq 0$ for all $x \in V \cup F$ and $\mu^*(C_0)$ is positive.
For shortness, let $F_k = \{ f : f$ is a k-face and $V(f) \cap C_0 \neq \emptyset \}$. We call a 7-face f in F_7 special if f is adjacent to two internal 3-faces. We call a 4-vertex v on a 7+-face f rich to f if v is not on a 3-face adjacent to f.

We have the following discharging rules:

(R1) Each internal 3-face gets $\frac{1}{2}$ from each incident 4+-vertex and then gets its needed charge evenly from adjacent faces.

(R2) Each internal 7-face gets $\frac{1}{2}$ from each incident rich 4-vertex or 5+-vertex.

(R3) After (R1) and (R2), each 7+-face gives all its remaining charges to C_0.

(R4) The outer face C of G gives all its remaining charges to C_0.

Lemma 3.4. Every vertex v and every face other than C_0 in G has nonnegative final charge.

Proof. We first check the final charges of vertices in G. Let v be a vertex in G. If $v \in C_0$, then by (R4) $\mu^*(v) = 0$. If $v \notin C_0$, then by Lemma 3.1 $d(v) \geq 3$. If $d(v) = 3$, then $\mu^*(v) = \mu(v) = 0$. Note that each vertex can be incident to at most one 3-face since $d^\Delta(G) \geq 2$. Let $d(v) = 4$. If v is light, then v gives $\frac{3}{2}$ to the adjacent 3-face and $\frac{1}{2}$ to the incident 7-face to which v is rich by (R1) and (R2). If v is not light, then v gives at most $\frac{1}{2}$ to each incident face by (R2). In either case, $\mu^*(v) \geq 2 \cdot 4 - 6 - \max\{\frac{3}{2}, \frac{1}{2}, \frac{1}{2}, 4\} \geq 0$. If $d(v) \geq 5$, then v gives $\frac{3}{2}$ to at most one incident 3-face and at most $\frac{1}{2}$ to each other incident face. So $\mu^*(v) \geq 2d(v) - 6 - \frac{3}{2} - \frac{1}{2} \cdot (d(v) - 1) > 0$.

Now we check the final charges of faces other than C_0 in G. Since G contains no 4, 5, 6-cycles, a 3-face in G is adjacent to three 7+-faces. Thus, by (R1) and (R4) each 3-face has nonnegative final charge. Let f be a 7+-face in G. By (R1) f only needs to give 1 to each adjacent internal (3, 3, 3)-face and $\frac{1}{2}$ to each adjacent internal (3, 3, 4+)-face. Since $d^\Delta(G) \geq 2$, f is adjacent to at most $\lfloor \frac{d(f)}{3} \rfloor$ 3-faces. If $d(f) \geq 6$, then $\mu^*(f) \geq d(f) - 6 - 1 \cdot \lfloor \frac{d(f)}{3} \rfloor \geq 0$. Let $d(f) = 7$. Note that f gives at most 1 to each adjacent 3-face by (R1). If f is in F_7 or adjacent to at most one internal 3-face, then by (R1) and (R4), $\mu^*(f) \geq 7 - 6 - \max\{1, 1 \cdot 2 - 1\} = 0$.

Therefore, we may assume that f is an internal 7-face and adjacent to two internal 3-faces. If none of the 3-faces is a (3, 3, 3)-face, or one of the two 3-faces contains more than one 4+-vertex, then f gives out at most 1 to the 3-faces, so $\mu^*(f) \geq 0$. Thus, we may assume that f is adjacent to a (3, 3, 3)-face f_1 and a (3, 3, 4+)-face f_2. If f_2 shares a (3, 4+)-edge with f, then by Lemma 3.3 (a) f contains a rich 4-vertex or 5+-vertex, which gives $\frac{1}{2}$ to f by (R2). So $\mu^*(f) \geq 7 - 6 - 1 - \frac{1}{2} + \frac{1}{2} = 0$. If f_2 shares a (3, 3)-edge with f, then by Lemma 3.3 (b) and (c), f contains at least one 4+-vertex if f_2 is a (3, 3, 4+)-face and at least two 4+-vertices if f_2 is a (3, 3, 3)-face, respectively. By (R2) f gets $\frac{1}{2}$ from each incident rich 4-vertex or 5+-vertex. So $\mu^*(f) \geq 7 - 6 - \max\{1 + \frac{1}{2} - \frac{1}{2}, 1 \cdot 2 - \frac{1}{2} \cdot 2\} = 0$. □

Lemma 3.5. The final charge of C_0 is positive.

Proof. Let $E(C_0, G - C_0)$ be the set of edges between C_0 and $G - C_0$. Let ϵ' be the number of edges in $E(C_0, G - C_0)$ that is not on a 3-face and x be the number of charges C_0 receives by (R3). Let $f_3 = |F_3|$ and f_7 be the number of special 7-faces. By (R3) and (R4), the final
charge of C_0 is at least
\[
\mu^*(C_0) = d(C_0) + 6 + \sum_{v \in C_0} (2d(v) - 6) - 3f_3 - f_7 + x
\]
\[
\geq d(C_0) + 6 + \sum_{v \in C_0} 2d(v) - 2d(C_0) - 3f_3 - f_7 + x
\]
\[
\geq 6 - d(C_0) + 2|E(C_0, G - C_0)| - 3f_3 - f_7 + x
\]
\[
= 6 - d(C_0) + f_3 + 2e' - f_7 + x,
\]
where the last equality follows from that each 3-face in F_3 contains two edges in $E(C_0, G - C_0)$.

Let f be a 7*-face adjacent to C_0. A path on f is charge-friendly if no vertex on it is on a triangle that needs charge from f (which means triangles on the paths are in F_3). Let P be a charge-friendly path on f. Then f gives at least $d(f) - 6 - \left\lfloor \frac{d(f) + 1 - |V(P)|}{3} \right\rfloor$ to C_0, and thus
\begin{equation}
(1) \quad x \geq d(f) - 6 - \left\lfloor \frac{d(f) + 1 - |V(P)|}{3} \right\rfloor \geq \frac{2}{3}d(f) - 9 + \frac{|V(P)| - 1}{3}.
\end{equation}

Since $d^\Delta(G) \geq 2$, each special 7-face must share exactly one edge or one vertex with C_0 and each edge in $E(C_0, G - C_0) \cap E(f)$ is not on 3-faces. Then $e' \geq f_7$, with equality only if $e' = f_7 = d(C_0)$ and $f_3 = 0$, in which case, $\mu^*(C_0) \geq 6 - d(C_0) + d(C_0) > 0$. So we may assume that $e' \geq f_7 + 1$. Then
\[
f_7 = 0 \text{ when } d(C_0) \leq 8, \quad f_7 \leq 1 \text{ when } d(C_0) = 9, \text{ and } f_7 \leq 2 \text{ when } d(C_0) = 10,
\]
for otherwise, $\mu^*(C_0) \geq 6 - d(C_0) + f_3 + 2e' - f_7 + x \geq 6 - d(C_0) + f_3 + x + f_7 + 2 > 0$. Now assume that $\mu^*(C_0) \leq 0$. We consider a few cases.

Case 1. $f_7 = 0$. From $\mu^*(C_0) \geq 6 - d(C_0) + f_3 + 2e' - f_7 + x = 6 - d(C_0) + f_3 + 2e' + x$, we have $f_3 + 2e' + x \leq d(C_0) - 6 \leq 10 - 6 = 4$. So $e' \leq 2$.

Let $e' = 2$. Then $d(C_0) = 10$ and $f_3 = x = 0$. It follows that G is adjacent to a 7*-face f that contains at least four consecutive 2-vertices, thus f contains a charge-friendly path P with $|V(P)| \geq 6$, so by (1) $x \geq \frac{2}{3}(7 - 9) + \frac{6 - 1}{3} > 0$, a contradiction.

Let $e' = 1$. It follows that $f_3 \leq 2$.

- If $f_3 = 2$, then $d(C_0) = 10$ and $x = 0$. Now C_0 is adjacent to a 7*-face that contains a path with a triangle at one end and having at least two consecutive 2-vertices, thus, f contains a charge-friendly path P with $|V(P)| \geq 6$, so by (1) $x \geq \frac{2}{3}(7 - 9) + \frac{6 - 1}{3} > 0$, a contradiction.

- If $f_3 = 1$, then $d(C_0) \geq 9$. Note that C_0 contains at most three 3*-vertices. If $d(C_0) = 9$, then $x = 0$ and C_0 is adjacent to a 7*-face that contains a path with a triangle at one end and having at least three consecutive 2-vertices. Thus, f contains a charge-friendly path P with $|V(P)| \geq 7$, so by (1) $x \geq \frac{2}{3}(7 - 9) + \frac{7 - 1}{3} > 0$, a contradiction. If $d(C_0) = 10$, then $x \leq 1$ and C_0 is adjacent to a 8*-face that contains a path with a triangle at one end and having at least four consecutive 2-vertices. Thus, f contains a charge-friendly path P with $|V(P)| \geq 8$, so by (1) $x \geq \frac{2}{3}(8 - 9) + \frac{8 - 1}{3} > 1$, a contradiction.
• If \(f_3 = 0 \), then \(d(C_0) \geq 8 \) and \(x \leq 2 \). Note that \(C_0 \) is adjacent to a \(9^+ \)-face that contains at least \(d(C_0) - 1 \) consecutive 2-vertices, thus \(f \) contains a charge-friendly path of at least \(d(C_0) + 1 \) vertices, so \(x \geq \frac{2}{3}(9 - 9) + \frac{d(C_0)+1-1}{3} > 2 \) by (1), a contradiction.

Finally let \(e' = 0 \). Then \(f_3 + x \leq d(C_0) - 6 \), and each edge in \(E(C_0, G - C_0) \) is on a 3-face. Note that we may assume that \(f_3 > 0 \), for otherwise \(G = C_0 \). Now follow the boundaries of the \(7^+ \)-faces adjacent to \(C_0 \), each of the \(f_3 \) triangles is encountered twice, thus the \(7^+ \)-faces do not give charge to at least \(2f_3 \) triangles. So \(x \geq 2f_3 \). It follows \(f_3 = 1 \) and \(d(C_0) \geq 9 \). In this case, \(C_0 \) is adjacent to a \(9^+ \)-face \(f \) that contains at least \(d(C_0) - 2 \) consecutive 2-vertices and a triangle at one end, thus \(f \) contains a charge-friendly path of at least \(d(C_0) + 2 \) vertices, so by (1), \(x \geq \frac{2}{3}(9 - 9) + \frac{d(C_0)+2-1}{2} > 3 \), a contradiction.

Case 2. \(f_3 = 1 \). As \(\mu^+(C_0) \geq 6 - d(C_0) + f_3 + 2e' - f_7 + x \geq 6 - d(C_0) + f_3 + x + f_7 + 2 \), either \(d(C_0) = 9 \) and \((f_3, x, e') = (0, 0, 2) \), or \(d(C_0) = 10 \) and \(f_3 + x + 2e' \leq 5 \). In the former case, \(C_0 \) is adjacent to a \(9^+ \)-face that contains seven 2-vertices, thus by (1), \(x \geq \frac{2}{3}(9 - 9) + \frac{7-1}{3} > 0 \), a contradiction. Consider the latter case. It follows that \(e' = 2 \) and \(f_3 + x \leq 1 \). So if \(f_3 = 0 \), then \(C_0 \) is adjacent to a \(9^+ \)-face that contains eight consecutive 2-vertices, thus \(x \geq \frac{2}{3}(9 - 9) + \frac{8-1}{3} > 2 \) by (1), a contradiction; if \(f_3 = 1 \), then \(C_0 \) is adjacent to a \(7^+ \)-face \(f \) that contains at least three consecutive 2-vertices and a triangle at one end, thus \(f \) contains a charge-friendly path of at least 6 vertices, so thus \(x \geq \frac{2}{3}(7 - 9) + \frac{6-1}{3} > 0 \) by (1), a contradiction again.

Case 3. \(f_7 = 2 \). Then \(\mu^+(C_0) \geq 6 - 10 + f_3 + 2e' - f_7 + x \geq -4 + f_3 + x + f_7 + 2 \), we have \(f_3 = x = 0 \) and \(e' = 3 \). Thus, \(C_0 \) is a 10-face and the two \(7 \)-faces must share an edge in \(E_0 \). Then \(C_0 \) is adjacent to a \(8^+ \)-face \(f' \) that contains seven consecutive 2-vertices. Thus \(x \geq \frac{2}{3}(8 - 9) + \frac{7-1}{3} > 0 \) by (1), a contradiction.

Acknowledgement: The authors would like to thank Runrun Liu for her careful reading and many valuable comments.

References

[1] Noga Alon, Degrees and choice numbers, *Random Structures & Algorithms*, 16(2000) 364–368.
[2] Anton Bernshteyn. The asymptotic behavior of the correspondence chromatic number, *Discrete Math.*, 339(2016) 2680–2692.
[3] Anton Bernshteyn, The Johansson–Molloy Theorem for DP-Coloring, *arXiv:1708.03843*.
[4] Anton Bernshteyn, Alexandr Kostochka. On differences between DP-coloring and list coloring, *arXiv:1705.04883*.
[5] Anton Bernshteyn, Alexandr Kostochka, Sharp Dirac’s Theorem for DP-Critical Graphs, *arXiv:1609.09122*.
[6] Anton Bernshteyn, Alexandr Kostochka, S. Pron, On DP-coloring of graphs and multigraphs, *Siberian Mathematical Journal*, 58 (2017), 28–36
[7] Anton Bernshteyn, Alexandr Kostochka, Xuding Zhu, DP-colorings of graphs with high chromatic number, *arXiv:1703.02174*.
[8] Oleg Borodin, Structural properties of plane graphs without adjacent triangles and an application to 3-colorings. *J. Graph Theory* 21 (1996), no. 2, 183-186.
[9] Oleg Borodin, Colorings of plane graphs: A survey, *Disc. Math.*, 313 (2013), pp. 517-539.
[10] O.V. Borodin, A. Glebov, Planar Graphs with Neither 5-Cycles Nor Close 3-Cycles Are 3-Colorable, J. Graph Theory, (2010), 1-31.
[11] Oleg Borodin, Aleksey Glebov, Andrea Raspaud, and Mohammad Salavatipour, Planar graphs without cycles of length from 4 to 7 are 3-colorable, J. Combin. Theory, Ser. B, 93 (2005), 303–311.
[12] Oleg Borodin, Andre Raspaud, A sufficient condition for planar graphs to be 3-colorable, J. Combinatorial Theory, Series B, (2003), 17–27.
[13] Zdeněk Dvořák, Luke Postle, Correspondence coloring and its application to list-coloring planar graphs without cycles of length 4 to 8, J. Combin. Theory Ser. B, 129 (2018), 3854.
[14] Zdeněk Dvořák, Daniel Král, Robin Thomas, Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies, [arXiv:0911.0885].
[15] Paul Erdős, Arthur Rubin, Herbert Taylor, Choosability in graphs, Congr. Numer., 26(1979) 125–157.
[16] I. Havel, On a Conjecture of B. Grünbaum, J. Combinatorial Theory, (1969), 184-186.
[17] Herbert Grötzsch, Ein Dreifarbensatz für Dreikreisfreie Netze auf der Kugel, Math.-Natur. Reihe 8(1959) 109-120.
[18] Seog-Jin Kim, Kenta Ozeki, A note on a Brooks’ type theorem for DP-coloring, arXiv:1709.09807v1.
[19] Seog-Jin Kim, Kenta Ozeki, A Sufficient condition for DP-4-colorability, arXiv:1709.09809v1.
[20] Runrun Liu, Sarah Loeb, Yuxue Yin, Gexin Yu, DP-3-coloring of some planar graphs, arXiv:1802.09312.
[21] Runrun Liu, Sarah Loeb, Martin Rolek, Yuxue Yin, Gexin Yu, DP-3-coloring of some more planar graphs, in preparation.
[22] Mickael Montassier, Andre Raspaud, Weifan Wang. Bordeaux 3-color conjecture and 3-choosability, Discrete Mathematics 306(2006) 573–579.
[23] Cartessen Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B 62(1994) 180–181.
[24] Cartessen Thomassen, 3-list-coloring planar graphs of girth 5, J. Combin. Theory Ser. B 64(1995) 101–107.
[25] Vadim Vizing, Vertex colorings with given colors, Metody Diskret. Analiz, Novosibirsk, 29(1976) 3-10.(in Russian).
[26] Margit Voigt, List coloring of planar graphs, Discrete Math., 120(1993) 215–219.
[27] Margit Voigt, A not 3-choosable planar graph without 3-cycles, Discrete Math., 146(1995) 325–328.