Invited reply

The usefulness of a mathematical model of exposure for environmental risk assessment

We respond to the Comment of Lang et al. [1] regarding our mathematical model [2] of exposure of non-target Lepidoptera to Bt-maize pollen expressing Cry1Ab within Europe. Lang et al. remark on the degree to which the model was subject to uncertainty. Perry et al. [2] did indeed emphasize precaution: they made four separate decisions to model worst-case scenarios; identified six distinct sources of variability to which their results might be sensitive; and emphasized six different bases for the uncertainty of predictions. Lang et al. rightly emphasize the importance of identifying to which parameters the results of a model are most sensitive; Perry et al. should perhaps have emphasized more that the parameter to which their estimates of mortality were most sensitive was undoubtedly the variable measuring the rate of change of mortality with concentration/dose of the Cry1Ab protein (i.e. the slope of the probit/logit regression line; see below).

Regarding the relationship between the toxicity of MON810 and Bt176 pollen, Lang et al. imply that the relationship between mortality and dose may be nonlinear. Regressions from bioassay should always be checked for nonlinearity, but there was no evidence of this in any of the extensive number of regressions of Saeglitz et al. [3,4] upon which our slope estimate was based. Of course, the standard transformation of mortality to probits (or logits) and the logarithmic transformation of concentration [5,6] are designed to achieve a linear regression; both papers cited by Lang et al. use this method. Data from one of these papers [7] were tested for nonlinearity; none was found, and no disproportionally higher mortality at low Cry1Ab concentrations could be verified (figure 1).

Lang et al. are correct that Perry et al. used the range of published [8,9] values (12.2–78.9) to derive an average of the ratio of the concentration of the Cry1Ab protein expressed in pollen of maize Bt176 relative to that in maize MON810 for which a 31.05-fold difference was assumed. This is already likely to be a worst-case underestimate because, as Sears et al. [8] noted, the value of expression for MON810 was near the current level of detection by immunoassay. We do not agree with Lang et al.’s interpretation of the data from Nguyen [10]: they compared the smallest Bt176 value from 2002 to the largest MON810 value from 2003. The within-year ratio of Bt176:MON810 was 64.8 in 2002 and 30.5 in 2003. The latter value, very close to that adopted by Perry et al., leads to larger mortality estimates for MON810 than the former, a further example of Perry et al.’s use of worst-case scenarios. Figure 2 shows the importance of the distinction between the intercept and slope of the probit/logit line in this issue. The conclusions of the model for risk management depend on the degree of estimated mortality. The conclusions are clearly highly sensitive to assumptions concerning the slope. They are sensitive, but much less so, to the intercept; it is the intercept that is governed by the Bt176:MON810 ratio. Figure 2 demonstrates the effect of choosing an alternative worst-case value of the ratio (12.2) at the end of the range.

Regarding the assumption of equal susceptibility for the butterflies Inachis io and Vanessa atalanta, we apologize for the incorrect citation given by Perry et al. We acknowledge that data to compare the sensitivities of I. io and V. atalanta are very limited. We are aware of no evidence that the sensitivities differ; unpublished data from a single field experiment appear to suggest that they may not. Both Perry et al. and Lang et al. remarked on the need for further data on European Lepidoptera of conservation concern.

Lang et al. argue that the experimental methodology of Felke et al. [11] was likely to give results that underestimated true mortality. However, in many experiments with MON810, larvae have been exposed to longer time periods than those of Felke et al. [11]: 10 days [12]; 14–22 days [13]; 7 days [14]; 10–14 days [15]. These and other experiments with MON810 pollen have shown no negative effects when lepidopteran larvae were exposed to MON810 pollen alone. Furthermore, susceptibility to Bt toxin declines with age in older instars (e.g. [16]), so any potential for negative impacts of Bt pollen is reduced as the larvae develop. Lang et al. claim that fig. 1 of [7] demonstrates long-term effects (longer than 7 days) following a short acute dose of Bt. However, comparison of treatment and control in that figure appears to contradict rather than support their claim. In the period between 7 and 27 days, the mortality for a dose of 2.5 mg of Bt is only marginally (approx. 2%) greater than that of the control, while the mortalities for all other doses (1, 5, 7.5, 10, 20, 30 mg) are at least 5 per cent less than that of the control.

We fully agree with Lang et al. that sublethal effects should encompass fecundity and other parameters. However, many studies neglect to test parameters other than larval or pupal weight (e.g. [7]). Perry et al. emphasized that ‘our methods are subject to considerable uncertainty’, a caveat repeated in the final sentence of the Discussion.

The accompanying comment can be viewed at http://dx.doi.org/10.1098/rspb.2010.2085.
Lang et al. stated that ‘all publications cited in Perry et al. in support of a possible reduction in exposure through behaviour of the larvae refer to Danaus plexippus’, but have perhaps overlooked Perry et al.’s text: ‘Both species [V. atalanta and I. io] are somewhat protected under field conditions from pollen deposition; the former species creates “leaf bags”, the latter builds webs (e.g. [17])’. We agree that the extent to which exposure is reduced through such behaviour is variable but it is surely not contentious to state that there is evidence for this for neonate larvae within Europe (see e.g. http://tristram.squarespace.com/home/2009/6/9/peacock-butterfly-caterpillars.html).

Regarding sensitivity analysis, it is important to allow for the fact that depositions of pollen in the field occur at far lesser concentrations than the LC50s for the three species considered by Perry et al. In consequence, as shown in figure 2, differing assumptions for the slope of the assumed probit (or logit) line will have little effect on the results for concentrations close to the LC50, but result in very large differences at concentrations around those expected within the crop or in the margin. Within the crop, the estimated mortality using the slope estimated by Felke et al. [11] is vanishingly small and such a value would be impossible to measure in field conditions. Even a doubling of the Saeglitz et al. [3,4] slope of close to 1.1 to the moderately small average 2.25 estimated by Farinós et al. [18] would result in roughly 10-fold decrease in estimated mortality. It is for these reasons that we consider that the consequence of this sensitivity completely outweighs any of the several effects claimed by Lang et al. to engender uncertainty and affect mortality estimates. We regard them as minor compared with the ‘safety margin’ factor of 8 × 10^-7 by which Perry et al. inflated the estimated mortality through deliberate choice of a small value of the logit slope, designed to give worst-case mortality.

The value of the Perry et al. model is that it provides a transparent, structured and simple approach to exposure analysis that may be followed for other species and taxa in other settings, if sufficient data become available. Further, in its derivation of an integrated mortality–distance relationship, it offers the opportunity for relatively accurate laboratory-based estimation of mortality–dose relationships to supplement relatively inaccurate determinations of mortality in the field. We agree with Lang et al. that species’ sensitivity to particular GM events that express different forms of Cry1 proteins is an important determinant of mortality; also that further data would be welcome on the mortality–dose relationships (particularly regarding the slopes) for a range of species, especially those of conservation concern. However, we disagree that we have been incautious
regarding the implications of our results for conclusions regarding regulatory policy. We therefore reaffirm the robustness of our conclusion from our model that, after accounting for large-scale exposure effects, the ‘estimated environmental impact of MON810 pollen on non-target Lepidoptera is low’.

We thank the European Food Safety Authority for paying for EXIS Open Choice.

J. N. Perry1,⁎, Y. Devos2, S. Arpaia3, D. Bartsch4, A. Gathmann4, R. S. Hails5, J. Kiss6, K. Lheureux2, B. Manachini7, S. Mestdagh2, G. Neemann5, F. Ortego9, J. Schiemann10 and J. B. Sweet11

1Oaklands Barn, Lug’s Lane, Brome, Norfolk NR35 2HT, UK
2European Food Safety Authority (EFSA), GMO Unit, Largo Natale Palli 5/A, 43121 Parma, Italy
3National Agency for New Technologies, Energy and Sustainable Economic Development, Research Centre Trisaia, 75026 Rotondella, Italy
4Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL), Federal Office of Consumer Protection and Food Safety, Mauerstrasse 39–42, 10117 Berlin, Germany
5Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Walingford OX10 8BB, UK
6Plant Protection Institute, Szent István University, Pater K. J., 2100 Gödöllő, Hungary
7Animal Biology Department, University of Palermo, Via Archirafi, 18, 90123 Palermo, Italy
8Büro für Landschaftökologie und Umweltstudien, Mühlenweg 60, 29358 Eicklingen, Germany
9Centro de Investigaciones Biológicas (CSIC), Departamento de Biología de Plantas, Laboratorio Interacción Planta-Insecto, C/ Ramiro de Maeztu 9, 28040 Madrid, Spain
10Julius Kühn Institute, Federal Research Centre for Cultivated Plants (FKI), Institute for Biosafety of Genetically Modified Plants, Erwin-Baur-Strasse 27, 06484 Quedlinburg, Germany
11Sweet Environmental Consultants, 6 The Green, Willingham, Cambridge CB24 5JA, UK

⁎Author for correspondence (joe.perry@bbsrc.ac.uk).

REFERENCES

1 Lang, A., Brunzel, S., Dolek, M., Otto, M. & Theißen, B. 2011 Modelling in the light of uncertainty of key parameters: a call to exercise caution in field predictions of Bt-maize effects. Proc. R. Soc. B 278, 980–981. (doi:10.1098/rspb.2010.2085)
2 Perry, J. N. et al. 2010 A mathematical model of exposure of nontarget Lepidoptera to Bt-maize pollen expressing Cry1Ab within Europe. Proc. R. Soc. B 277, 1417–1425. (doi:10.1098/rspb.2009.2091)
3 Saegitz, C., Engels, H. & Schuphan, I. 2006 Final Report of ProBench, Workshop package 1, Task 4. See http://www.bio5.rwth-aachen.de/german/downloads/EU-Review.pdf.
4 Saegitz, C., Bartsch, D., Eber, S., Gathmann, A., Priesnitz, K. U. & Schuphan, I. 2006 Monitoring the Cry1Ab susceptibility of European corn borers in Germany. J. Econ. Entomol. 99, 1768–1773. (doi:10.1603/0022-0493-99.5.1768)
5 Berkson, J. 1944 Application of the logistic function to bio-assay. J. Am. Statist. Assoc. 39, 357–365. (doi:10.2307/2280041)

6 Bliss, C. I. 1934 The method of probits. Science 79, 38–39. (doi:10.1126/science.79.2037.38)
7 Lang, A. & Vojtech, E. 2006 The effects of pollen consumption on transgenic Bt maize on the common swallowtail, Papilio machaon L. (Lepidoptera, Papilionidae). Basic Appl. Ecol. 7, 296–306. (doi:10.1016/j.baae.2005.10.003)
8 Sears, M. K., Hellmich, R. L., Siegfried, B. D., Priesnitz, J. M., Stanly-Horn, D. E., Oberhauser, K. S. & Dively, G. P. 2001 Impact of Bt corn pollen on monarch butterfly populations: a risk assessment. Proc. Natl. Acad. Sci. USA 98, 11 937–11 942. (doi:10.1073/pnas.211329998)
9 EFSA 2009 Scientific Opinion of the Panel on Genetically Modified Organisms on applications (EFSA-GMO-RX-MON810) for the renewal of authorisation for the continued marketing of (1) existing food and food ingredients produced from genetically modified insect resistant maize MON810; (2) feed consisting of and/or containing maize MON810, including the use of seed for cultivation; and of (3) food and feed additives, and feed materials produced from maize MON810, all under Regulation (EC) No 1829/2003 from Monsanto. EFSA J. 1149, 1–85. See http://www.efsa.europa.eu/efsaco/2010006

10 Anderson, P. L., Hellmich, R. L., Prasifka, J. R. & Lewis, L. C. 2005 Effects on fitness and behavior or monarch butterfly larvae exposed to a combination of Cry1Ab-expressing corn anthers and pollen. Environ. Entomol. 34, 944–952. (doi:10.1603/0046-225X-34.4.944)
11 Stanley-Horn, D. E. et al. 2001 Assessing the impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies. Proc. Natl Acad. Sci. USA 98, 11 931–11 936. (doi:10.1073/pnas.211277798)
12 Wright, C. L., Zangerl, A. R., Carroll, M. J. & Berenbaum, M. R. 2000 Absence of toxicity of Bacillus thuringiensis pollen to black swallowtails under field conditions. Proc. Natl. Acad. Sci. USA 97, 7700–7703. (doi:10.1073/pnas.130202097)
13 Gathmann, A., Wirooks, L., Hoithorn, L. A., Bartsch, D. & Schuphan, I. 2006 Impact of Bt-maize pollen (MON810) on lepidopteran larvae living on accompanying weeds. Mol. Ecol. 15, 2677–2685. (doi:10.1111/j.1365-294X.2006.02962.x)
14 Felke, M., Langenbruch, G. A., Feiertag, S. & Kassa, A. 2010 Effect of Bt-176 maize pollen on first instar larvae of the peacock butterfly (Inachis io) (Lepidoptera; Nymphalidae). Environ. Biosaf. Res. 9, 5–12. (doi:10.1051/ebio/2010006)
15 Scott, J. A. 1986 The butterflies of North America: a natural history and field guide. Palo Alto, CA: Stanford University Press.
16 Farinos, G. P., de la Poza, M., Hernández-Crespo, P., Ortego, F. & Castañera, P. 2004 Resistance monitoring of field populations of the corn borers Sesamia nonagrioides and Ostrinia nubilalis after 5 years of Bt maize cultivation in Spain. Ent. Exp. Appl. 110, 23–30.

Proc. R. Soc. B (2011)