A Switchless Pentagon-shaped Reconfigurable Antenna for Radar Applications

N Bahari¹, R C Yob¹, L Zahid¹

¹ Department of Electronic, Faculty of Technology Engineering, Universiti Malaysia Perlis, Malaysia

Email: norfatihah@unimap.edu.my

Abstract. This paper proposes a switchless pentagon-shaped microstrip patch antenna for radar and radionavigation applications. The antenna is built on Rogers RT5880 substrate with five rectangular radiating elements on top. Five ports have been set up to operate at 13.5 GHz resonant frequency. Besides having reflection coefficient below -10 dB, the antenna also offers high gain when about 8.29 dB is achieved. The proposed antenna also has a bi-directional radiation pattern with 360° of beam steering.

1. Introduction
The reconfiguration of an antenna represents its capability in changing its operating frequency, impedance bandwidth, polarization, radiation pattern or a combination of some of these properties [1]. The study of reconfigurable antenna become attractive as it offers a lot of advantages and can be used for many applications, e.g., radar system, wireless and satellite communications. The reconfigurable antenna is widely used in communication and radar systems as low cost is needed and easy to integrate with switching devices and control circuit.

Many reconfigurable elements have been proposed such as by using single-pole double-throw (SPDT) transmitter/receiver (T/R) switch and PIN diode in a miniaturized reconfigurable multifunction microstrip array antenna [2]. Besides that, the ideal switches are used in smart UWB antenna design in order to overcome the interferences come from WIMAX, WLAN and ITU bands [3-4]. Apart from that, RF MEMS switches also have been introduced [5]. By integrating those switches into antenna design, the operating frequency changes from 1.5 to 5.5 GHz in four bands making it useful for spectrum monitoring or to suppress jamming signal [6].

However the used of switches caused many disadvantages such as increased the size of the antenna and caused the complexity of the antenna design [7][10]. Therefore a switchless pentagon-shaped antenna is proposed in this letter. This type of antenna is realized by using multiple ports to generate a radiation pattern that steered in 360° [9]. The geometry of the proposed antenna is given in Section 2. In Section 3 the simulated results are discussed and a conclusion is drawn in section 4.

2. Antenna Design
The aim of this study is to design a new antenna structure for radar and radionavigation applications. According to spectrum allocation in Malaysia [11], the desired applications are conveniently used at the frequency band from 13.4 to 14.4 GHz. Therefore the proposed antenna is designed to be executed at resonant frequency, \(f_r = 13.5 \) GHz. A switchless pentagon-shaped microstrip patch antenna is designed on Rogers RT5880 substrate (\(h=0.508 \) mm and \(\tan \delta=0.0009 \)) with relative permittivity...
$\varepsilon_r=2.2$. Five patches are added as the radiating elements with fully ground at the bottom of the substrate. The antenna also consists of five ports as presented in Figure 1. To reduce the effect of mutual coupling between the patches, the distance between the edges of each patch should be at least $\lambda/2$ [12]. The dimension of the final structure is tabulated in Table I.

![Figure 1. The proposed antenna geometry. (a) Top view (b) Side view](image)

Parameters	Value (mm)
W	52.9
Pw	14.43
Pl	10.98
Fw	3
Fl	7.95

3. Results and Discussion

To test the reconfigurability of the proposed antenna, the activation of the ports plays an important role [13]. One port or more have been chose to activate while other ports are deactivated. In this case, only patch with activated port will radiate while other become parasitic patches. Figure 2 shows the surface current distributions according to the activated ports. It is clearly seen that the current distributes to only the activated port, hence there is no effect of mutual coupling detected to the proposed antenna.
Figure 2. Surface current distributions when each port is activated (a) Port 1 (b) Port 2 (c) Port 3 (d) Port 4 (e) Port 5

The reflection coefficient (S_{11}) of this switchless pentagon-shaped patch antenna are shown in Figure 3. Based on the results, the antenna has good impedance matching when S_{11} are below -10 dB at 13.5 GHz [16-17]. As depicted in the figure, the reflection coefficient of Port 2 equals to the reflection coefficient of Port 5. On the other hand, the reflection coefficient of Port 3 equals to the reflection coefficient of Port 4. This happened because of the symmetry created by the pentagon-shaped patch.
Figure 3. Reflection coefficient of the antenna when (a) one port (b) multiple ports are activated.

Figure 4 shows the 3D radiation pattern when one by one port is activated. The pattern is steered in 360° as illustrated in figures below. The highest gain is obtained when Port 1 is activated which is 8.29 dB. Due to the symmetrical design, the antenna achieved 8.18 dB of gain when Port 3 or Port 4 is activated. Besides that, the proposed antenna also obtained the similar gain which is 8.24 dB when Port 2 or Port 5 is activated.
Figure 4. 3D radiation pattern when each port is activated (a) Port 1 (b) Port 2 (c) Port 3 (d) Port 4 (e) Port 5

The patterns of the antenna are then presented in 2D polar plot as illustrated in Figure 5. The beam is in bi-directional pattern and it can be seen that those beams steer 360° when one by one port is activated. However when two or three ports are activated at the same time, the beams become butterfly shaped pattern but still steer in 360° directions. With 8.29 dB of gain achieved and the compact size, the proposed antenna can be a good candidate to be applied in radar and radionavigation applications [14-15].

Figure 5. Radiation pattern of the antenna when (a) one port (b) multiple ports are activated.
4. Conclusion

A switchless pentagon-shaped microstrip patch antenna is designed with five ports to steer the beam in 360° direction. By controlling the activation of the ports, this antenna needs no switch to reconfigure the radiation pattern. With high gain achieved, the proposed antenna can be used for radar and radionavigation applications.

References

[1] D. Rodrigo, B. A. Cetiner and L. Jofre 2014 Frequency, radiation pattern and polarization reconfigurable antenna using a parasitic pixel layer IEEE Transactions on Antennas and Propagation 62 3422

[2] Y. M. Madany, D. A.E. Mohamed, W. A.E. Ali and H. A. Abd-Alnaeem 2016 Design and analysis of miniaturized reconfigurable multifunction microstrip array antenna for communication and radar applications UKSim-AMSS 18th International Conference on Computer Modelling and Simulation 325-330

[3] M. A. Jamlos, M. F. Jamlos, S. Khatun and A. H. Ismail, "An optimum quarter-wave impedance matching feedline for circular UWB array antenna with high gain performance," 2014 IEEE Symposium on Wireless Technology and Applications (ISWTA), Kota Kinabalu, 2014, pp. 165-169.

[4] M. Hicham and Z. Ameur 2017 Design of reconfigurable filtering based UWB antenna dedicated for radar applications 7th Seminar on Detection Systems:Architectures and Technologies (DAT’ 2017)

[5] C. B. Fortuny, A. Amiri and K. F. Tong Development of reconfigurable multiple wideband antenna for radar and monitoring applications

[6] Nayan, M.K.A., Jamlos, M.F. and Jamlos, M.A. (2015), Mimo circular polarization array antenna with dual coupled 90° phased shift for point-to-point application. Microw. Opt. Technol. Lett., 57: 809-814.

[7] H. Lago, M. F. Jamlos, S. Z. Aziz and N. A. Rahman 2014 A High Gain Reconfigurable Narrow Beam Steering Array (RNBSA) Antenna with MEMS IEEE Symposium on Wireless Technology and Applications (ISWTA) 116-120

[8] Le Huy Trinh, Fabien Ferrero, Leonardo Lizzi, Robert Staraj and Jean-Marc Ribero 2016 Reconfigurable Antenna for Future Spectrum Reallocations in 5G Communications IEEE Antennas Wireless Propagation Letter 15 1297

[9] Nayan, M.K.A., Jamlos, M.F., Lago, H. and Jamlos, M.A. (2015), Two-port circular polarized antenna array for point-to-point communication. Microw. Opt. Technol. Lett., 57: 2328-2332.

[10] M. Borhani, P. Rezaei, and A. Valizade 2016 Design of a Reconfigurable Miniaturized MicrostripAntenna for Switchable Multiband Systems IEEE Antennas and Wireless Propagation Letters 15 822

[11] Spectrum Allocations in Malaysia, Malaysian Communications and Multimedia Commission

[12] Katie, M.O., Jamlos, M.F., Mohsen Alqadami, A.S. and Jamlos, M.A. (2017), Isolation enhancement of compact dual-wideband MIMO antenna using flag-shaped stub. Microw. Opt. Technol. Lett., 59: 1028-1032.

[13] Pringle, L. N., Harms, P. H., Blaock, S. P., Kiesel, G. N., Kuster, E. J., Friederich, P. G., Smith, G. S. (2004). A reconfigurable aperture antenna based on switched links between electrically small metallic patches. IEEE Transactions on Antennas and Propagation, 52(6), 1434–1445.

[14] Shynu, S. V., Augustin, G., Aanandan, C. K., Mohanan, P., & Vasudevan, K. (2006). Design of compact reconfigurable dual frequency microstrip antennas using varactor diodes. Progress in Electromagnetics Research, 60, 197–205

[15] M. A. Jamlos, M. F. Jamlos, S. Khatun and A. H. Ismail, "A compact super wide band antenna with high gain for medical applications," 2014 IEEE Symposium on Wireless Technology and Applications (ISWTA), Kota Kinabalu, 2014, pp. 106-109.
[16] Sadat, S., Fardis, M., Geran, F., & Dadashzadeh, G. (2007). A compact microstrip square-ring slot antenna for UWB applications. Progress in Electromagnetics Research, 67, 173–179.

[17] Jamlos, M. A., Jamlos, M. F., & Ismail, A. H. (2015). High performance novel UWB array antenna for brain tumor detection via scattering parameters in microwave imaging simulation system. In 2015 9th European Conference on Antennas and Propagation, EuCAP 2015.