Common Melanocytic Nevi in 7-Year-Old Schoolchildren Residing at Different Latitudes in Sweden

Ylva Rodvall,1,3 Carl-Fredrik Wahlgren,2 Henrik Ullén,3 and Kerstin Wiklund3

1Department of Occupational and Environmental Health, Stockholm Centre of Public Health, Department of Public Health Sciences, 2Dermatology Unit, Department of Medicine, and 3Department of Oncology-Pathology, Radiumhemmet, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden

Abstract

Background: Current epidemiologic research shows consistently that increased number of acquired common melanocytic nevi (CMN) is an important risk factor for cutaneous malignant melanoma. The purpose of this study was to investigate the number of CMN in relation to tanning habits and complexion among 7-year-old children residing at different latitudes in Sweden.

Methods: Two municipalities were chosen at latitude 65°N to 68°N in the north of Sweden and two at latitude 57°N in the south. Children born in 1994 and registered in the municipalities were to be included (N=1,676). A questionnaire was sent to their parents asking about the child’s tanning habits. A body examination of CMN of size ≥2 mm was done by the same trained nurse in 1,380 (82.3%) of the children.

Results: CMN was significantly less prevalent among children living in the north with a prevalence of 5.6 [95% confidence interval (95% CI), 4.8-6.5] inland and 6.2 (95% CI, 5.3-7.2) coastal compared with the south with a prevalence of 9.5 (95% CI, 8.2-11.0) inland and 10.4 (95% CI, 8.9-12.0) coastal. In addition, blond hair, blue/gray/green eyes, holidays at seaside resorts abroad, more frequent sunburns, and parents fancying tanning were significant predictors of higher prevalence of CMN.

Conclusions: These findings support previous evidence that the development of CMN is related to the level of sun exposure in childhood expressed as latitude of residence, holidays at seaside resort abroad, and number of sunburns. To reduce the incidence of cutaneous malignant melanoma, a change in attitude and behavior must start with young children and their parents. (Cancer Epidemiol Biomarkers Prev 2007;16(1):122–7)

Introduction

Current epidemiologic research shows consistently that increased number of common melanocytic nevi (CMN) is an important risk factor for cutaneous malignant melanoma (CMN; refs. 1, 2). Studies of the epidemiology of nevi therefore have the potential to shed light on the etiology of CMM. The CMM incidence shows a geographic variation in Sweden, and the incidence in the north is about half of that in the south (3).

The principal environmental risk factor for the development of CMN and CMM has been found to be exposure to sunlight (2, 4-9). Studies in Australia (4), Canada (5), and Europe (10) have shown that the number of nevi increases with decreasing skin pigment content and nevi are more common in individuals with many freckles. An association has been seen with latitude (11-13), and the prevalence of nevi among adults in Sweden showed a statistically lower prevalence in northern Sweden (14).

The aim of this study was to investigate the prevalence of CMN in relation to tanning habits and complexion among 7-year-old children residing at different latitudes in Sweden.

Materials and Methods

The study comprised two parts: a physical examination, including nevi count, and a questionnaire about tanning habits. The project was done in collaboration with the school health services. The study was approved by the ethical committee at the Karolinska University Hospital.

Two municipalities were chosen at latitude 65°N to 68°N in the north of Sweden (Kiruna and Piteå) and two at latitude 57°N in the south (Ljungby and Falkenberg). The coastal municipalities (Piteå and Falkenberg) have on average more sun hours than those inland (Kiruna and Ljungby). Descriptive statistics about the municipalities are shown in Table 1. Factors taken in consideration when selecting the municipalities were that the number of children of 7 years of age, income level, and unemployment rate should be as similar as possible. There should neither be a university.

Information about children born during 1994 and residing in any of the four municipalities in August 2001 was achieved from the national census file. An invitation letter to the parents with information about the study, a written consent form for participation in the physical examination, and the questionnaire were sent in September 2001.

Questions were asked about skin reaction to sun, number of holidays spent at seaside resorts abroad, sailing and skiing, how often the child had been naked in the sun, number of sunburns, how often the child was protected, to what degree parents were fancying outdoor tanning, whether close relatives had been diagnosed with skin cancer, whether the child had been treated by a doctor for asthma, allergy, and eczema, and highest level of education of each parent.

The physical examinations took place in schools between October 2001 and March 2002 and were done by the same registered nurse throughout the study. She was trained by a dermatologist to differentiate CMN from other pigmented skin lesions. The nurse and the dermatologist both examined the same 100 children, and there was a strong agreement between their nevi counts [κ coefficient = 0.86; 95% confidence interval (95% CI), 0.71-0.93].

The body examination excluded scalp, genitalia, buttocks, and abdomen below the umbilicus. Nevi were defined as raised
or flat brown lesions ≥2 mm on the skin. The decision to not count smaller nevi was due to the problem to differentiate small nevi from freckles. The size of each nevus was measured with an overlay of Plexiglas and classified into two groups, ≥2 and <6 mm and ≥6 mm, according to an IARC protocol (15). The body surface area was divided into 16 body sites (10, 14), and totally, 84.5% of the body surface area was investigated. The nurse also assessed hair color, eye color, height, and weight.

In the statistical analysis, Poisson regression models with a generalized estimating equations approach were used (16). In the univariate analyses of number of nevi, adjustment for body surface area was done. All covariates with a P value of ≤0.10 in the univariate analyses were considered for inclusion in the multivariate model. A stepwise procedure with forward selection and backward elimination was used. The final multivariate model included covariates or interactions with P values of ≤0.05.

Results

In total, 1,676 children resided in the municipalities in year 2001. For 1,469 (87.6%) of those, the questionnaire was filled out and 193 (11.5%) did not want to participate and 12 (0.7%) could not be traced. In the physical examination, 1,380 (82.3%) participated. Children with brown or black skin were excluded from the analyses. The analysis set comprised 1,360 children who participated in the physical examination and whose parents answered the questionnaire.

The results of the univariate analyses are presented in Table 2 and final multivariate model in Table 3. Number of nevi was significantly less prevalent among children residing in the north, 5.6 (95% CI, 4.8-6.5) in Kiruna and 6.2 (95% CI, 5.3-7.2) in Piteå, in contrast to 9.5 (95% CI, 8.2-11.0) in Ljungby and 10.4 (95% CI, 8.9-12.0) in Falkenberg (Table 3). The prevalence is of the same magnitude in the municipalities at the same latitude with a somewhat higher mean for the coastal region. Thus, latitude seems to have the major effect on number of nevi, whereas number of sun hours at the same latitude is of less importance.

Prevalence of nevi increased with lighter hair color. However, red hair color was associated with lower prevalence. The prevalence of nevi was lower among children with brown eye color compared with children with blue/grey/green. The number of nevi was lower for children who never had spent any holiday at a seaside resort abroad before 2 years of age and increased with number of sunburns between 2 and 4 years of age. The more the parents liked outdoor tanning, the higher was the prevalence of nevi in their child. Sunscreen use seems to increase the prevalence of nevi (Table 2). Children who never were protected with sunscreen had the lowest prevalence, 7.5 (95% CI, 5.7-9.8) in comparison with 10.7 (95% CI, 10.1-11.2) in those who often were protected. Skin types I, II, and IV had lower prevalence of nevi compared with skin type III.

Discussion

The findings in this study support previous evidence that the development of CMM is related to the level of sun exposure in childhood. Differences between studies are therefore not always possible.

The fact that this is a population-based study implies that all individuals were identified and offered to participate in the study. The nonparticipating rate was of the same magnitude in all municipalities.

Fifteen percent of the children had not always lived in the actual municipality. When classifying earlier residing areas according to UV exposure, only 4% had lived in an area with a lower UV radiation intensity. The results did not change when excluding these children from the analysis set.

The results support the Australian data where the prevalence of nevi in 6- to 15-year-old children increased with diminishing latitude (11). Among children at age 6 years, the arithmetic means were 23.6 at latitude 51.1°N, 18.9 at latitude 53.7°N, 14.4 at latitude 56.9°N, and 9.9 at latitude 58.0°N. In a Swedish study of nevi in 8- to 9-year-old children at latitude 56°N, median number of nevi was found to be 8 (10).

An advantage of this study is that the country has a rather homogeneous population. Another is that the same nurse examined all children and that the agreement with a dermatologist as regards diagnostics was high. There is therefore no reason to suspect any systematic differences in nevus count between the municipalities.

We found that prevalence of CMM was associated with previously identified risk factors for CMM [e.g., light eye color and light hair color (4, 10-12, 17)]. Red hair color seems to have a protective effect, which has been reported previously (7, 10, 11, 18-20).

We found that holidays at seaside resorts before 2 years of age were associated with higher nevi count, similar to the findings from Germany (17, 21), which supports the view that early sun exposure in childhood is of special importance.

The more the parents liked outdoor tanning, the higher was the number of nevi in their children. It can therefore be argued that the parents' habits have an effect on sun exposure of their

Table 1. Characteristics of participating municipalities

Municipality	Kiruna (inland)	Piteå (costal)	Ljungby (inland)	Falkenberg (costal)
Latitude (°N)	67.8	65.3	56.9	57.0
Sunshine duration (average number of hours per year, 1961-1990)	1,485	1,775	1,440	1,750
Summer sunshine duration (average number of hours per year in June, July, and August, 1961-1990)	670	835	610	730
Average minimum and maximum temperatures (°C) in July 1961-1990	7.4/16.6	11.6/20.2	10.5/20.9	13.5/20.0
Yearly sum of CIE-UV (Whm-2)*	65.7	84.5	104.0	110.6
LS means with 95% CI	5.6 (4.8-6.5)	6.2 (5.3-7.2)	9.5 (8.2-11.0)	10.4 (8.9-12.0)

*The radiation is weighted according to International Commission on Illuminations.
Table 2. Results of the univariate Poisson regression analyses (number of CMN adjusted for body surface area)

Municipality	n	Oddsratio (95% CI)	P	Least square mean with 95% CI
Kiruna	256	1.0		6.8 (6.3-7.4)
Piteå	423	1.10 (0.99-1.22)	0.0764	7.5 (7.0-8.1)
Ljungby	285	1.72 (1.55-1.92)	<0.0001	11.8 (11.0-12.7)
Falkenberg	396	1.87 (1.69-2.08)	<0.0001	12.8 (12.0-13.7)
Skin type				
IV	200	1.0		8.6 (7.7-9.5)
III	940	1.22 (1.09-1.37)	0.0007	10.4 (10.0-10.9)
I and II	184	1.04 (0.90-1.21)	0.5781	8.9 (8.0-9.9)
Not reported		36		
Eye color				
Brown	325	1.0		7.7 (7.0-8.4)
Blue/gray/green	1,035	1.36 (1.23-1.51)	<0.0001	10.5 (10.0-11.0)
Hair color				
Dark	82	1.0		6.9 (5.7-8.3)
Ash blond	343	1.35 (1.10-1.67)	0.0040	9.1 (8.4-9.9)
Blond	904	1.53 (1.26-1.86)	<0.0001	10.5 (10.0-11.0)
Red	31	0.86 (0.59-1.26)	0.4447	5.9 (4.4-8.0)
Sex				
Girls	688	1.0		9.5 (9.0-10.1)
Boys	672	1.07 (0.99-1.16)	0.0949	10.2 (9.6-10.7)
Holidays at seaside resorts abroad before 2 yr of age				
Never	974	1.0		9.4 (9.0-9.9)
Ever	181	1.21 (1.07-1.37)	0.0022	11.4 (10.2-12.8)
Not reported	205			
Holidays at seaside resorts abroad between 2 and 4 yr of age				
Never	876	1.0		9.4 (9.0-9.9)
Ever	285	1.19 (1.08-1.31)	0.0005	11.2 (10.3-12.2)
Not reported	199			
Holidays at seaside resorts abroad after 4 yr of age				
Never	756	1.0		9.2 (8.7-9.7)
Ever	499	1.21 (1.11-1.31)	<0.0001	11.1 (10.4-11.8)
Not reported	105			
Sailing during holidays/weekends				
Never	1,108	1.0		10.0 (9.6-10.5)
Seldom	48	0.78 (0.66-0.93)	0.0054	7.8 (6.6-9.3)
Sometimes	23	0.88 (0.70-1.12)	0.3063	8.9 (7.1-11.2)
Often	16	0.77 (0.54-1.08)	0.1346	7.7 (5.5-10.8)
Not reported	165			
Skiing during holidays/weekends				
Never	588	1.0		10.8 (10.2-11.4)
Seldom	206	0.98 (0.87-1.11)	0.7776	10.6 (9.5-11.8)
Sometimes	395	0.82 (0.74-0.90)	<0.0001	8.8 (8.2-9.5)
Often	153	0.77 (0.67-0.88)	0.0002	8.3 (7.3-9.4)
Not reported	18			
Naked in the sun before 2 yr of age				
Never	222	1.0		8.3 (7.4-9.2)
Seldom	484	1.18 (1.04-1.34)	0.0081	9.8 (9.2-10.5)
Sometimes	480	1.27 (1.12-1.44)	0.0002	10.5 (9.9-11.2)
Often	132	1.30 (1.10-1.54)	0.0018	10.8 (9.5-12.2)
Not reported	42			
Naked in the sun between 2 and 4 yr of age				
Never	56	1.0		9.5 (7.5-12.0)
Seldom	337	0.93 (0.73-1.20)	0.5943	8.8 (8.1-9.6)
Sometimes	689	1.05 (0.83-1.34)	0.6717	10.0 (9.4-10.5)
Often	253	1.14 (0.89-1.48)	0.2973	10.8 (9.9-11.9)
Not reported	25			
Naked in the sun after 4 yr of age				
Never	91	1.0		9.6 (8.2-11.2)
Seldom	239	0.95 (0.78-1.14)	0.5791	9.1 (8.2-10.0)
Sometimes	611	0.98 (0.82-1.16)	0.7950	9.4 (8.8-9.9)
Often	386	1.14 (0.96-1.37)	0.1331	11.0 (10.2-11.8)
Not reported	33			
Number of sunburns before 2 yr of age				
None	1,156	1.0		9.6 (9.2-10.0)
1-2 times	145	1.23 (1.08-1.40)	0.0017	11.8 (10.4-13.3)
3-5 times	9	1.17 (0.65-2.09)	0.6011	11.2 (6.3-20.0)
>5 times	0	No observation		
Not reported	33			
Number of sunburns between 2 and 4 yr of age				
None	741	1.0		9.2 (8.7-9.7)
1-2 times	537	1.14 (1.06-1.24)	0.0012	10.5 (9.9-11.2)
3-5 times	34	1.61 (1.30-1.99)	<0.0001	14.7 (12.0-18.1)
>5 times	2	0.78 (0.40-1.52)	0.4662	7.2 (3.7-13.9)
Not reported	46			
Number of sunburns after 4 yr of age				
None	441	1.0		8.8 (8.2-9.4)
Table 2. Results of the univariate Poisson regression analyses (number of CMN adjusted for body surface area) (Cont’d)

	n	Odds ratio (95% CI)	P	Least square mean with 95% CI
1-2 times	735	1.15 (1.06-1.26)	0.0013	10.1 (9.6-10.7)
3-5 times	143	1.32 (1.14-1.52)	0.0001	11.6 (10.2-13.1)
>5 times	17	0.94 (0.68-1.30)	0.7104	8.2 (6.0-11.4)
Not reported	24			
Protect the child: sunscreen				
Often	748	1.0		10.7 (10.1-11.2)
Sometimes	422	0.85 (0.78-0.93)	0.0004	9.1 (8.5-9.8)
Seldom	124	0.81 (0.70-0.94)	0.0063	8.6 (7.5-9.9)
Never	52	0.70 (0.53-0.92)	0.0122	7.5 (5.7-9.8)
Not reported	14			
Protect the child: clothes				
Often	706	1.0		9.5 (9.0-10.1)
Sometimes	549	1.08 (0.99-1.17)	0.0816	10.2 (9.6-10.9)
Seldom	72	1.09 (0.92-1.29)	0.3089	10.4 (8.9-12.1)
Never	22	1.05 (0.73-1.52)	0.7738	10.0 (7.0-14.4)
Not reported	11			
Protect the child: shadow				
Often	100	1.0		9.9 (8.6-11.4)
Sometimes	434	1.03 (0.88-1.21)	0.7149	10.2 (9.5-10.9)
Seldom	443	1.04 (0.89-1.22)	0.6073	10.3 (9.6-11.1)
Never	304	0.87 (0.74-1.02)	0.0937	8.6 (7.9-9.3)
Not reported	79			
Protect the child: staying indoors				
Often	73	1.0		10.4 (8.6-12.6)
Sometimes	293	1.00 (0.81-1.23)	0.9707	10.4 (9.5-11.3)
Seldom	360	0.97 (0.79-1.20)	0.0254	10.1 (9.4-10.9)
Never	563	0.89 (0.72-1.09)	0.2526	9.2 (8.7-9.8)
Not reported	71			
Parents fancying outdoor tanning				
Not at all	28	1.0		7.6 (5.8-9.9)
Rather not	93	1.14 (0.84-1.54)	0.3961	8.7 (7.4-10.1)
Neither like or dislike it	316	1.15 (0.87-1.51)	0.3234	8.7 (8.1-9.5)
Fairly much	581	1.36 (1.04-1.78)	0.0254	10.4 (9.8-11.0)
Very much	331	1.38 (1.05-1.82)	0.0211	10.5 (9.7-11.4)
Not reported	71			
Parents with skin cancer				
No	1,287	1.0		9.8 (9.4-10.2)
Yes	13	1.00 (0.58-1.72)	0.9917	9.8 (5.7-16.8)
Not reported	60			
Grandparents with skin cancer				
No	1,250	1.0		9.7 (9.3-10.1)
Yes	67	1.32 (1.08-1.61)	0.0064	12.8 (10.6-15.6)
Not reported	43			
Siblings with skin cancer				
No	1,286	1.0		9.8 (9.4-10.2)
Yes	3	0.53 (0.37-0.77)	0.0007	5.2 (3.6-7.5)
Not reported	71			
Other close relative with skin cancer				
No	1,239	1.0		9.7 (9.3-10.1)
Yes	59	1.08 (0.87-1.34)	0.4666	10.5 (8.5-13.0)
Not reported	62			
Treated by a doctor for asthma				
No	1,122	1.0		10.0 (9.6-10.4)
Yes	144	0.92 (0.81-1.05)	0.2314	9.2 (8.2-10.4)
Not reported	94			
Treated by a doctor for allergy				
No	1,055	1.0		10.0 (9.5-10.4)
Yes	233	0.95 (0.86-1.04)	0.2938	9.4 (8.7-10.3)
Not reported	72			
Treated by a doctor for eczema				
No	995	1.0		9.9 (9.4-10.3)
Yes	307	0.95 (0.86-1.05)	0.3440	9.4 (8.6-10.3)
Not reported	58			
Mother’s education				
University with exam	313	1.0		9.3 (8.5-10.1)
University without exam	115	1.04 (0.89-1.21)	0.6446	9.6 (8.4-11.0)
Upper secondary school	739	1.09 (0.98-1.20)	0.0975	10.1 (9.6-10.7)
Vocational training school	70	1.19 (0.97-1.46)	0.1097	11.0 (9.2-13.3)
Compulsory school	96	1.00 (0.84-1.18)	0.9648	9.3 (8.0-10.7)
Not reported	27			
Father’s education				
University with exam	209	1.0		9.5 (8.5-10.6)
University without exam	62	0.86 (0.71-1.05)	0.1383	8.2 (7.0-9.7)
Upper secondary school	756	1.06 (0.94-1.20)	0.3491	10.0 (9.5-10.6)
Vocational training school	145	1.15 (0.97-1.36)	0.1133	10.8 (9.5-12.3)
Compulsory school	146	1.02 (0.87-1.20)	0.7848	9.6 (8.6-10.8)
Not reported	42			
Table 3. Result of final model of the multivariate Poisson regression analysis (number of CMN adjusted for body surface area)

Municipality	n	Odds ratio (95% CI)	P	Least squares mean with 95% CI	
Kiruna	256	1.0			
Piteå	423	1.11 (0.99-1.23)	0.067	6.2 (5.3-7.2)	
Ljungby	285	1.72 (1.52-1.92)	<0.0001	9.5 (8.2-11.0)	
Falkenberg	396	1.87 (1.67-2.08)	<0.0001	10.4 (8.9-12.0)	
Hair color					
Dark	82	1.0			
Ash blond	343	1.14 (0.92-1.42)	0.2337	8.7 (7.7-9.9)	
Blond	904	1.26 (1.02-1.57)	0.0335	9.7 (8.7-10.7)	
Red	31	0.68 (0.45-1.05)	0.0827	5.2 (3.6-7.6)	
Eye color					
Brown	325	1.0			
Blue/grey/green	1,035	1.27 (1.14-1.42)	<0.0001	8.6 (7.5-9.8)	
Holidays at seaside resorts ahead of 2 yr of age	None	974	1.0	7.1 (6.2-8.0)	
	Ever	181	1.16 (1.03-1.30)	0.0127	8.2 (7.0-9.6)
Number of sunburns between 2 and 4 yr of age	None	741	1.0	6.8 (6.0-7.8)	
	1-2 times	537	1.06 (0.98-1.15)	0.1613	7.2 (6.3-8.2)
	>2 times	36	1.32 (1.08-1.61)	0.0075	9.0 (7.2-11.2)
Parents fancying outdoor tanning	Not at all	28	1.0	6.5 (5.1-8.3)	
	Rather not	93	1.08 (0.82-1.40)	0.5721	7.0 (5.8-8.5)
	Neither like or dislike it	316	1.21 (0.96-1.52)	0.1071	7.8 (6.8-9.0)
	Fairly much	581	1.34 (1.07-1.67)	0.0107	8.6 (7.6-10.0)
	Very much	331	1.28 (1.01-1.61)	0.0378	8.3 (7.2-9.5)

Acknowledgments

We thank the study nurse Yvonne Höijer who carried out all the physical examinations with never-failing enthusiasm; Dr Jenny Hallgren for the validation part; statistician Henrik Dal for excellent assistance with data collection; schools in Kiruna, Piteå, Ljungby, and Falkenberg for their cooperation and the participating families for their time and enthusiasm; and Drs. Johan Hansson and Sveinbjörn Kristjanson and meteorologist Dr. Weine Jøsejot for valuable advice in the planning of the study.

References

1. Swerdlow AJ, English J, MacKie RM, O’Doherty CJ, Hunter JA, Clark J. Benign naevi associated with high risk of melanoma. Lancet 1984;2:168.
2. Bauer J, Garbe C. Acquired melanocytic naevi as risk factor for melanoma development. A comprehensive review of epidemiological data. Pigment Cell Res 2003;16:297–306.
3. National Board of Health and Welfare. Cancer incidence in Sweden 2003. Stockholm: National Board of Health and Welfare; 2004.
4. Green A, Siskind V, Hansen ME, Hansen L, Leech P. Melanocytic nevi in schoolchildren in Queensland. J Am Acad Dermatol 1989;20:1054–60.
5. Gallagher RP, McLean DJ, Yang CP, et al. Suntan, sunburn, and pigmentation factors and the frequency of acquired melanocytic nevi in children. Similarities to melanoma: the Vancouver Mole Study. Arch Dermatol 1990;126:770–6.
6. Garbe C, Buttnner P, Weiss J, et al. Associated factors in the prevalence of more than 50 common melanocytic nevi, atypical melanocytic nevi, and actinic lentigines: multicenter case-control study of the Central Malignant Melanoma Registry of the German Dermatological Society. J Invest Dermatol 1994;102:700–5.
7. Harrison SL, MacLennan R, Speare R, Wronski I. Sun exposure and melanocytic nevi in young Australian children. Lancet 1994;344:1529–32.
8. Garbe C, Buttnner P, Weiss J, et al. Risk factors for developing cutaneous melanoma and criteria for identifying persons at risk: multicenter case-control study of the Central Malignant Melanoma Registry of the German Dermatological Society. J Invest Dermatol 1994;102:695–9.
9. Armstrong BK, Kricker A. The epidemiology of UV-induced skin cancer. J Photochem Photobiol B 2001;63:9–18.
10. Synnerstad I, Nilsson L, Fredriksson M, Rosdahl I. Frequency and distribution pattern of melanocytic nevi in Swedish 8-9-year-old children. Acta Derm Venereol 2004;84:271–6.
11. Kelly JW, Rivers JK, MacLennan R, Harrison S, Lewis AE, Tate BJ. Sunlight: a major factor associated with the development of melanocytic nevi in Australian schoolchildren. J Am Acad Dermatol 1994;30:40–8.
12. Fritsch I, McHenry P, Green A, Mackie R, Green L, Siskind V. Naevi in schoolchildren in Scotland and Australia. Br J Dermatol 1994;130:599–603.
13. Harrison SL, MacKie RM, MacLennan R. Development of melanocytic nevi in the first three years of life. J Natl Cancer Inst 2000;92:1436–8.
14. Karlsson P, Stenberg B, Rosdahl I. Prevalence of pigmented naevi in a Swedish population living close to the Arctic Circle. Acta Derm Venereol 2000;80:333–9.
15. English DR, MacLennan R, Rivers J, Kelly J, Armstrong BK. Epidemiological studies of melanocytic naevi: protocol for identifying and recording naevi. IARC internal report no. 90/003. Lyon: IARC; 1990.
16. Stokes ME, Davis CS, Koch GG. Chapter 15.14. Categorical data analysis using the SAS system. Cary (NC): SAS Institute, Inc.; 2000. p. 542–7.
17. Wiecker TS, Luther H, Buettner P, Bauer J, Garbe C. Moderate sun exposure and nevus counts in parents are associated with development of melanocytic nevi in childhood: a risk factor study in 1,812 kindergarten children. Cancer 2003;97:628–38.
18. English DR, Armstrong BK. Melanocytic nevi in children. I. Anatomic sites and demographic and host factors. Am J Epidemiol 1994;139:390–401.
19. Carli P, Naldi L, Lovati S, La Vecchia C. The density of melanocytic nevi correlates with constitutional variables and history of sunburns: a prevalence study among Italian schoolchildren. Int J Cancer 2002;101:375–9.
20. Valiukeviciene S, Miseviciene I, Gollnick H. The prevalence of common acquired melanocytic nevi and the relationship with skin type characteristics and sun exposure among children in Lithuania. Arch Dermatol 2005;141:579–86.
21. Dulon M, Weichenthal M, Blettner M, et al. Sun exposure and number of nevi in 5- to 6-year-old European children. J Clin Epidemiol 2002;55:1075–81.
22. Autier P, Dore JF, Cattaruzza MS, et al. Sunscreen use, wearing clothes, and number of nevi in 6- to 7-year-old European children. European Organization for Research and Treatment of Cancer Melanoma Cooperative Group. J Natl Cancer Inst 1998;90:1873–80.
23. Azizi E, Iscovich J, Pavlotsky F, et al. Use of sunscreen is linked with elevated naevi counts in Israeli school children and adolescents. Melanoma Res 2000;10:491–8.
24. Bauer J, Buttner P, Wiecker TS, Luther H, Garbe C. Effect of sunscreen and clothing on the number of melanocytic nevi in 3,812 German children attending day care. Am J Epidemiol 2005;161:620–7.
Common Melanocytic Nevi in 7-Year-Old Schoolchildren Residing at Different Latitudes in Sweden

Ylva Rodvall, Carl-Fredrik Wahlgren, Henrik Ullén, et al.

Cancer Epidemiol Biomarkers Prev 2007;16:122-127.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/16/1/122

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cebp.aacrjournals.org/content/16/1/122.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.