Association Between ESR1 Pvull, XbaI, and P325P Polymorphisms and Breast Cancer Susceptibility: A Meta-Analysis

Yiming Zhang*
Ming Zhang*
Xiaosong Yuan*
Zhichen Zhang*
Ping Zhang
Haojie Chao
Lixia Jiang
Jian Jiang

* These authors contributed equally to this work

Corresponding Author: Jian Jiang, e-mail: jiangjianchzh@163.com
Source of support: Self financing

Background: Breast cancer is one of the leading causes of cancer-related deaths for women. Numerous studies have shown that single-nucleotide polymorphisms (SNPs) on the ESR1 gene are associated to this disease. However, data and conclusions are inconsistent and controversial.

Material/Methods: To investigate the association between Pvull (rs2234693), XbaI (rs9340799) and P325P (rs1801132) polymorphisms of ESR1 gene with the risk of breast cancer under different population categorizations, we searched multiple databases for data collection, and performed the meta-analysis on a total of 25 case-control studies. Three different comparison models – dominant model, recessive model, and homozygote comparison model – were applied to evaluate the association.

Results: Our results indicated that people with TT+TC or TT genotype were at a greater risk of developing breast cancer than those with CC genotype in the Pvull polymorphism. While for XbaI and P325P polymorphisms, no significance was found using any of the 3 models. Furthermore, the data were also stratified into different subgroups according to the ethnicity (white or Asian) and source of controls (hospital-based or population-based), and separate analyses were conducted to assess the association. The ethnicity subgroup assessment showed that the higher risk of breast cancer for TT genotype of Pvull polymorphism than CC genotype only occurred in Asian people, but not in white populations. For the source-stratified subgroup analysis, significant association suggested that people with TT + TC genotype were at a greater risk of developing breast cancer than those with CC genotype in the hospital-based subgroup.

Conclusions: Thus, this meta-analysis clarified the inconsistent conclusions from previous studies, conducted analyses for the entire population as well as for different subgroups using diverse population categorization strategies, and has the potential to help provide a personalized risk estimate for breast cancer susceptibility.

MeSH Keywords: Estrogen Receptor Modulators • Meta-Analysis • Polymorphism, Genetic

Full-text PDF: http://www.medscimonit.com/abstract/index/idArt/894010
Breast cancer (BC) is the most common malignant tumor for women worldwide [1]. Similar to other cancer types, genetic factors play a central role in the development and progression of breast cancer [2]. Studies show that excessive estrogen from the exogenous source can have pathological consequences in human cell, and result in the alteration of tumors, including the occurrence of breast cancer [3]. Two major types of estrogen receptors (ESRs), named as ESR1 and ESR2, act as the key regulators in controlling the actions of estrogen. The ESR1 gene encodes a transcription factor with an estrogen-binding domain, an activation domain, and an estrogen response element (ERE) DNA-binding domain. By regulating the cell proliferation and differentiation via paracrine mechanism, ESR1 is believed to be tightly associated with breast cancer [4]. Therefore, genetic variations in the ESR1 gene, which can lead to disordered estrogen activity, become a potential risk for breast cancer. Single-nucleotide polymorphisms (SNPs) of ESR1 have been studied in numerous clinical studies. Many association studies on this gene have been confined to 2 SNPs (originally detected with the restriction enzymes PvuII and XbaI [5]), which are located in the first intron of ESR1. The ESR1 PvuII and XbaI polymorphisms have been associated to tumorigenesis and many other diseases [6], involving heterogeneous conclusions. The meta-analysis conducted by Li et al. concluded that the PvuII polymorphism of ESR1 was a risk factor for prostate cancer development [7], while the meta-analysis conducted by Gu et al. found no association between frequencies of the PvuII (C>T) polymorphism and prostate cancer susceptibility, but found a positive correlation between XbaI (A>G) polymorphism and the risk of prostate cancer [8]. A recent study showed that the ESR1 PvuII CC/CT and XbaI GG/GA genotypes could increase susceptibility to systemic lupus erythematosus (SLE) [9]. Several other meta-analyses suggested that the PvuII variant, instead of XbaI, was negatively associated with Alzheimer’s disease (AD) in white populations, especially in southern European people, but not in Asian populations [7,10]. The risk of idiopathic scoliosis was not obviously associated with the ESR1 PvuII or XbaI polymorphism [11]. It has been also frequently reported that the PvuII and XbaI polymorphisms of the ESR1 gene are related to breast cancer [12,13]. Li and Xu reported that ESR1 PvuII (C>T) polymorphism placed pre-menopausal women at risk for breast cancer, but XbaI (A>G) polymorphism is not associated with the risk of breast cancer [14]. P325P polymorphism in the exon 4 of ESR1 gene has been found to be associated with bone mineral density in post-menopausal women [15]. Korean women carrying both the ESR1 P325P CC and CDK7 Ex2-28C>T (rs2972388) TT genotypes have been shown to be at increased breast cancer risk [16]. However, because of the heterogeneous of data sources and analysis methods, the conclusions in many of these studies were inconsistent and controversial. Although 2 studies have been conducted on this issue, both of them have some drawbacks. Specifically, Li et al. narrowed the population to Asian women [14]. Hu et al. focused on some of SNPs in ESR1, but SNPs like P325P, which is also associated with the risk of breast cancer, was not included in their articles [17]. In this study, we performed an updated meta-analysis by involving as many data as possible from published studies, to provide a more precise estimation of the potential association between ESR1 PvuII, XbaI, and P325P polymorphisms and the risk of breast cancer. We collected all related studies from online databases to assess the association between 3 SNPs on ESR1 and breast cancer susceptibility. In addition, the analyses were conducted for the entire population, as well as for different subgroups using diverse population categorization strategies.

Material and Methods

Search strategy

We performed an online search of PubMed, Elsevier, Science Direct, Karger, Web of Science, Wiley Online Library, and Springer databases for eligible studies on the association between ESR1 PvuII, XbaI, and P325P polymorphisms with breast cancer susceptibility. The related terms, including “ESR1”, “rs2234693”, “rs9340799”, “rs1801132”, “polymorphism”, “breast cancer” and “BC” were used for searching. The literature search was updated on September 2014.

Data collection

A total of 91 results were found in the literature search. Among these studies, only ones which meet the following criteria were included in our meta-analysis: (i) case-control study that focused on breast cancer and ESR1 gene polymorphisms; (ii) ethnicity and source information was available for case and control; (iii) the diagnosis of breast cancer was confirmed by pathological or histological examination; (v) were published in English language. Studies were excluded when they were: (i) irrelevant articles, duplicated articles; (ii) not case-control study; (iii) genotype frequency information was not accessible; and (iv) meta-analysis, letters, reviews, or editorial articles. As a result, 25 articles were eventually included in the meta-analysis. In our data collection procedure we restricted the time frame from Jan. 2000 to Sept. 2014. Since there was no eligible study prior 2003, all included studies were published later than 2003. For each article, the following data were collected: the first author’s last name, year of publication, country of origin, ethnicity, source of controls, and the number and frequency of ESR1 PvuII, XbaI, and P325P polymorphisms of cases or controls.

Statistical methods

We used STATA software (version 12.0) for all analyses. The strength of the association between ESR1 polymorphisms and
breast cancer susceptibility was assessed using all databases by pooled odds ratios (ORs) with 95% confidence intervals (Cis). Three models were used to evaluate the association: dominant model, recessive model, and homoygote comparison model. We also performed subgroup analyses by ethnicity (white or Asian) and source of controls (hospital-based or population-based). The heterogeneity assumption was assessed by I² index. Higher I² indicates more significant heterogeneity. I²<50% represents the dividing point between low and high heterogeneity. When I²≤50%, we assumed that there was no significant heterogeneity between pooled data. Correspondingly, I²>50 was treated as significant heterogeneity. Moreover, based on the I² index, we chose a different model in analysis: Mantel-Haenszel (M-H) fixed-effects model was used to analyze datasets without significant heterogeneity and DerSimonian and Laird (D-L) random-effects model was used to analyze datasets showing obvious heterogeneity. In our meta-analysis, we used M-H fixed-effects model to test the heterogeneity first, and then chose different models based on the testing results. ORs were calculated with each model within 95% confidence intervals. Forest plots were generated to summarize the results. Potential publication bias was assessed by the Begg’s funnel plots and the Egger’s test. All reported P values were for a two-tailed test.

Results

We performed an online search of multiple databases for eligible studies on the association between ESR1 polymorphisms and breast cancer susceptibility. The procedure of article collection is shown in Figure 1. By excluding irrelevant articles, duplicated articles, and articles not focused on ESR1 polymorphisms and breast cancer, we found a total of 25 case-control studies covering 24 740 cases, and 38 866 controls were eligible [12,13,16–38], main characteristics of which are shown in Table 1. For the ethnicity distribution, there were 8 studies of Asians and 15 studies of whites. For the source of controls, 14 studies used population-based controls and 11 studies used hospital-based controls.

To choose a proper model for the study, we first used the I² indexes to evaluate the heterogeneity of the data for all 3 SNPs. As shown in Table 2, for PvuII, the I² indexes ranged from 36% to 48%, and for XbaI and P325P, the I² values were mostly equal to 0% in all 3 tested genetic models. Statistically significant heterogeneities were only observed for PvuII in dominant model TT vs. (TC+CC) and homoygote model (TT vs. CC). The PvuII polymorphism showed a relative higher I² index than the other 2 SNPs mainly because more studies were included in the PvuII analysis. Nevertheless, all of the I² indexes were smaller than 50%, which can be still considered as non-significant heterogeneity. Therefore, the statistical power was still acceptable in our study. Since the I² indexes were smaller than 50%, M-H fixed-effects models were used for all of the 3 SNPs. The forest plots for PvuII, XbaI, and P325P are shown in Figures 2–4, respectively. Overall, we found significant associations between ESR1 PvuII polymorphism and breast cancer susceptibility in both recessive model (TT+TC) vs. CC: OR=1.08, 95% CI (1.02–1.14), p=0.01, Figure 2B) and homoygote model (TT vs. CC: OR=1.10, 95% CI (1.03–1.18), p=0.03, Figure 2C), but not in dominant model (TT vs. (TC+CC): OR=1.05, 95% CI (1.00–1.10), p=0.05, Figure 2A). These results indicated that the people with TT or TC genotype were at a greater risk of developing breast cancer than those with CC genotype in the ESR1 PvuII polymorphism. On the other hand, for XbaI and P325P, no significance was found for all 3 models (GG vs. GA+AA: OR=1.05, 95% CI (0.94–1.18), p=0.37, Figure 3A; GG+GA vs. AA: OR=1.05, 95% CI (0.98–1.12), p=0.15, Figure 3B; GG vs. AA: OR=1.08, 95% CI (0.96–1.21), p=0.22, Figure 3C; CC vs. CC+GG: OR=1.01, 95% CI (0.91–1.11), p=0.90, Figure 4A; CC+CG vs. GG: OR=0.97, 95% CI (0.86–1.09), p=0.60, Figure 4B; CC vs. CC: OR=0.96, 95% CI (0.84–1.10), p=0.56, Figure 4C). We found that there was no significant publication bias based on funnel plot for all 3 SNPs (Figures 5–7). Egger’s and Begg’s tests also indicated that there was no obvious bias for publications investigating the relationship of ESR1 polymorphisms with breast cancer risk, as shown in Table 2.

Figure 1. Flow diagram of studies included in the meta-analysis.

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica] [Chemical Abstracts/CAS] [Index Copernicus]
Table 1. Characteristics of literatures included in the meta-analysis.

Author	Year	Case	Control	Country	Ethnicity	Source*	Age	Genotyping method	Premeno-pausal proportion
Madeira	2014	9	49	6	64	Brazil	72	PCR-RFLP	Median: 55
Chattpoadhyay	2014	39	164	157	360	India	360	PCR-RFLP	<50: 44%
Tang	2013	127	374	293	875	China	866	MALDI-TOF	Mean: 49
Lu	2013	57	228	227	542	China	1016	PCR-RFLP	Mean: 49
Sakoda	2011	93	290	229	612	China	876	PCR-RFLP	<50: 51.7% SNaPshot assays
Han	2011	107	399	353	859	China	877	TaqMan	Mean: 51
Sonestedt	2009	108	273	158	539	Sweden	1073	SEQUENOM	Mean: 57
Dunning	2009	938	2164	1260	4362	UK	1518	PCR-RFLP	N/A
Ladd	2008	24	94	72	190	Netherlands	3703	Mean: 70	N/A
Gonzalez-Mancha	2008	82	209	153	444	Spain	704	PCR-RFLP	Mean: 58
Wang	2007	87	188	117	392	USA	783	PCR-MPLA	Mean: 57
Kjaergaard	2007	245	613	398	1256	Denmark	2489	TaqMan	25%
Hu	2007	16	58	39	113	China	113	PCR-RFLP	<50: 73%
Shen	2006	29	120	98	247	China	274	PCR-RFLP	<50: 79%
Onland-Moret	2005	69	150	89	308	Netherlands	337	Mean: 57	PCR-RFLP
Modugno	2005	80	115	53	248	USA	3901	PCR-MPLA	Mean: 71
Wedren	2004	268	634	390	1292	Sweden	1348	PCR-RFLP	0%
Shin	2003	35	91	75	201	Korea	190	PCR-RFLP	50-74
Cai	2003	138	516	415	1069	China	1166	PCR-RFLP	Mean: 47

Author	Year	Case	Control	Country	Ethnicity	Source*	Age	Genotyping method	
Madeira	2014	12	47	5	64	Brazil	72	PCR-RFLP	Median: 55
Sakoda	2011	22	197	395	614	China	876	SNaPshot assays	<50: 51.7%
Dunning	2009	521	1967	1682	4170	UK	4447	PCR-RFLP	N/A
Wang	2007	19	137	237	393	USA	789	PCR-MPLA	Mean: 57
Slattery	2007	52	235	287	574	USA	725	PCR-RFLP	Mean: 47
Furthermore, we performed subgroup analysis, and results are shown in Tables 3–5. For the subgroup analysis by ethnicity, the I^2 indexes for Pvull were larger than 50% in both dominant model and homozygote model for white subgroups, indicating a high heterogeneity in these 2 genetic models (Table 3). Correspondingly, we used the random-effects model for assessing the association in these high-heterogeneity cases, and used the fixed-effects model in other cases. Although the above analysis showed that TT genotype of Pvull had higher risk of breast cancer than CC genotype in all populations, further subgroup assessment demonstrated that only Asians followed this trend (TT vs. CC: OR=1.18, 95% CI (1.04–1.33), $p=0.01$), while whites did not (TT vs. CC: OR=1.13, 95% CI (0.98–1.29), $p=0.09$). For the source-stratified subgroup analysis, significant
Figure 2. Forest plot of the association between breast cancer risk and ESR1 PvuII polymorphism in all population with respect to (A) dominant model (TT vs. TC+CC), (B) recessive model (TT+TC vs. CC), and (C) homozygote model (TT vs. CC).
META-ANALYSIS

Numerous studies have been conducted to investigate the association between breast cancer susceptibility with 3 SNPs on ESR1: PvuII, XbaI, and P325P. However, because of the heterogeneous of data and methods, the conclusions in these studies are inconsistent and controversial. For example, some studies concluded that the PvuII CC and CT genotype significantly increased the risk of breast cancer [12,13]. Some studies claimed that T allele of PvuII conferred a high risk of breast cancer [18,24,32]. Other studies showed that ESR1 PvuII polymorphism did not have any significant effect on breast cancer [19,21,25,27,28]. Given these results, it is necessary to perform a meta-analysis to clarify this issue, which can rapidly and effectively increase sample size by combining data of association studies, thus enhancing the statistical power of analysis to estimate the genetic effects. Pooling data from different studies also has the advantage of reducing random errors. With the accumulation of the studies over the years, we performed an updated meta-analysis, by including 3 SNPs of ESR1 and by involving as many data as possible from published studies, to provide a more comprehensive and reliable estimation of the potential association correlation between ESR1 PvuII, XbaI, and P325P polymorphisms and the risk of breast cancer. In the present study, our results showed that genotype TT+TC or TT in ESR1 PvuII were significantly associated with increased breast cancer risk in overall population compared to AA, but no obvious association was found between breast cancer risk and ESR1 XbaI and P325P polymorphism in all population with respect to (A) dominant model (GG vs. GA+AA), (B) recessive model (GG+GA vs. AA) and (C) homozygote model (GG vs. AA).

Discussion

In recent years, the association of genetic susceptibility to cancers has drawn more and more attention to the study of polymorphisms of genes involved in tumorigenesis and other diseases. Numerous studies have been conducted to investigate the association between breast cancer risk and ESR1 XbaI polymorphism in all population with respect to (A) dominant model (GG vs. GA+AA), (B) recessive model (GG+GA vs. AA) and (C) homozygote model (GG vs. AA).
with CC genotype. The ESR1 PvuII polymorphism is intronic and possibly affects receptor function by changing ESR1 expression levels or altering its pre-mRNA splicing. Herrington et al. found that the C allele of PvuII produced a functional binding site for a transcription factor B-Myb, which resulted in significantly increasing transcription of a downstream reporter construct compared to the T allele [39]. This indicates that CC genotype correlates with a higher ESR1 transcriptional level and may explain our observation that TT+TC or TT genotypes were associated with higher breast cancer risk than was CC genotype, but further functional studies are needed to investigate the functions of these alleles.

It is likely that the tumorigenesis of breast cancer is affected by many factors such as age, ethnicity, environment, and other variables. We therefore performed subgroup analysis...
Table 3. Subgroup meta-analysis of the association between ESR1 PvuII polymorphisms and breast cancer risk.

Subgroup	TT vs. TC+CC	TT+TC vs. CC	TT vs. CC									
	i² (%)	ph*	OR (95%CI)	pOR*	i² (%)	ph*	OR (95%CI)	pOR*	i² (%)	ph*	OR (95%CI)	pOR*
Ethnicity												
Caucasian	58.5	0.01	1.06 (0.95–1.18)	0.28	31.9	0.14	1.05 (0.98–1.12)	0.16	56.1	0.01	1.13 (0.98–1.29)	0.09
Asian	10.0	0.35	1.05 (0.97–1.14)	0.24	38.0	0.01	1.17 (1.04–1.31)	0.12	33.8	0.16	1.18 (1.04–1.33)	0.01
Source												
HB	74.6	<0.01	1.02 (0.83–1.26)	0.83	15.0	0.32	1.15 (1.03–1.28)	0.02	58.9	0.02	1.13 (0.90–1.43)	0.28
PB	0.0	0.77	1.04 (0.98–1.10)	0.23	44.2	0.05	1.05 (0.99–1.12)	0.13	81.3	<0.01	0.78 (0.64–0.94)	0.01

* P-value from heterogeneity test; * P-value from OR test.

based on ethnicity of samples. We found only Asians with TT genotype of ESR1 PvuII polymorphism had a higher risk of breast cancer than people with CC genotype, while whites did not show this trend. This may be attributable to genetic heterogeneity among different populations. We could not rule out the possibility of gene-gene interactions or the possibility of linkage disequilibrium between polymorphisms. Further studies of multiple polymorphisms in ESR1 [40,41] or different genes or gene regulators such as microRNAs [42–44] are needed to address this question. In addition, it is also possible...
that differences in environment and lifestyle between different populations may affect the tumorigenesis of breast cancer.

The heterogeneity between studies could also be from the heterogeneous controls. Therefore, we also conducted a source-stratified subgroup analysis on 14 studies of population-based controls and 11 studies of hospital-based controls, and found significant association in the recessive model of the hospital-based subgroup. Interestingly, we also noticed that TT genotype of ESR1 PvuII polymorphism in the population-based subgroup decreased the risk of breast cancer more than CC genotype. The inconsistent results between different subgroups could come from the possible non-differential misclassification bias because the hospital-based controls might develop more breast cancer than healthy populations in subsequent years. For P325P, only 2 studies were included in subgroup analysis for PB. Given this small sample size, the statistical power is limited. More studies should be conducted to provide a more precise result.

Table 4. Subgroup meta-analysis of the association between ESR1 XbaI polymorphisms and breast cancer risk.

Subgroup	GG vs. GA+AA	GG+GA vs. AA	GG vs. AA							
	I² (%)	p OR	I² (%)	p OR	I² (%)	p OR				
Ethnicity										
Caucasian	11.9	0.33	1.09 (0.96–1.22)	0.17	0.0	0.51 (0.97–1.13)	0.27	0.0	0.41 (0.98–1.26)	0.10
Asian	0.0	0.67	0.85 (0.62–1.16)	0.30	0.0	0.89 (0.94–1.20)	0.34	0.0	0.73 (0.86–1.20)	0.42
Source										
PB	0.0	0.66	1.04 (0.93–1.17)	0.46	0.0	0.76 (0.98–1.12)	0.15	0.0	0.75 (0.95–1.20)	0.27

* P-value from heterogeneity test; * P-value from OR test; ** Analysis on HB is not performed due to the lack of study.

Table 5. Subgroup meta-analysis of the association between ESR1 P325P polymorphisms and breast cancer risk.

Subgroup	CC vs. CG+GG	CC+CG vs. GG	CC vs. GG							
	I² (%)	p OR	I² (%)	p OR	I² (%)	p OR				
Ethnicity										
Caucasian	0.0	0.81	1.06 (0.90–1.24)	0.50	0.0	0.51 (0.88 (0.60–1.29)	0.52	0.0	0.50 (0.61–1.33)	0.60
Asian	0.0	0.51	0.98 (0.87–1.10)	0.70	0.0	0.43 (0.87–1.11)	0.73	0.0	0.42 (0.84–1.12)	0.67
Source										
HB	0.0	0.72	1.00 (0.90–1.12)	0.98	0.0	0.67 (0.99 (0.88–1.11)	0.83	0.0	0.64 (0.85–1.13)	0.81
PB	0.0	0.39	1.03 (0.83–1.27)	0.82	0.0	0.70 (0.71 (0.44–1.14)	0.16	0.0	0.60 (0.72 (0.44–1.18)	0.19

* P-value from heterogeneity test; * P-value from OR test.

Conclusions

Our study provided a systematic review and updated meta-analysis of genetic association between ESR1 PvuII, XbaI and P325P polymorphisms and the risk of human breast cancer. Using 3 models (dominant model, recessive model, and homozygote comparison model), we confirmed that only PvuII polymorphism was a risk factor for breast cancer susceptibility in the overall population, but not XbaI and P325P SNPs. Moreover, our results suggest that subgroup assessment by ethnicity of samples and source of controls yields results that are different from those using the overall population. Thus, we believe our study clarifies the inconsistent conclusions from previous studies, and will shed some light on future breast cancer-related research.

Conflict of interest statement

No conflict of interest.
References:

1. Balmain A, Gray J, Ponder B: The genetics and genomics of cancer. Nat Genet, 2003; 33(Suppl): 238–44
2. Nathanson KL, Wooster R, Weber BL: Breast cancer genetics: what we know and what we need. Nat Med, 2001; 7(5): 552–56
3. Crooke PS, Justenhoven C, Brauch H et al: Estrogen metabolism and exposure in a genotypic-phenotypic model for breast cancer risk prediction. Cancer Epidemiol Biomarkers Prev, 2011; 20(7): 1502–15
4. Mallepell S, Krust A, Chamness GC et al: Estrogen receptor expression in human breast cancer associated with an estrogen receptor gene restriction fragment length polymorphism. Cancer Res, 1989; 49(1): 415–48
5. Hill SM, Fuqua SA, Chamness GC et al: Estrogen receptor alpha (ERS1) genetic variations and cancer risk: a meta-analysis. J BUON, 2015; 20(1): 296–308
6. Cheng D, Liang B, Hao Y, Zhou W: Estrogen receptor alpha gene polymorphisms and risk of Alzheimer’s disease: evidence from a meta-analysis. Clin Interv Aging, 2014; 9: 1031–38
7. Gu Z, Wang G, Chen W: Estrogen receptor alpha gene polymorphisms and risk of prostate cancer: a meta-analysis involving 18 studies. Tumour Biol, 2014; 35(6): 5921–30
8. Cai L, Zhang JW, Xue XX et al: Meta-analysis of associations of IL6 receptor antagonist and estrogen receptor gene polymorphisms with systemic lupus erythematosus susceptibility. PLoS One, 2014; 9(10): e109712
9. Wang T: Meta-analysis of PvuII, XbaI variants in ESR1 gene and the risk of Alzheimer’s disease: the regional European difference. Neurosci Lett, 2014; 574: 41–46
10. Yang M, Li C, Li M: The estrogen receptor alpha gene (XbaI, PvuII) polymorphisms and susceptibility to idiopathic scoliosis: a meta-analysis. J Orthop Sci, 2014; 19(5): 713–21
11. Tang LY, Chen LJ, Qi ML et al: Effects of passive smoking on breast cancer risk in pre/post-menopausal women. J Steroid Biochem Mol Biol, 2008; 112(4): 84–89
12. Madeira KP, Daltore RD, Sirtoli GM et al: Estrogen receptor alpha (ERS1) SNPs c454-397T>C (PvuII) and c454-351A>G (XbaI) are risk biomarkers for breast cancer development. Mol Biol Rep, 2014; 41(8): 5459–66
13. Liu W, Xu L: Menopausal status modifies breast cancer risk associated with ESR1 PvuII and XbaI polymorphisms in Asian women: a HuGE review and meta-analysis. Asian Pac J Cancer Prev, 2012; 13(10): 5105–11
14. Jaruda S, Marc J, Preželj J et al: Codon 123 sequence polymorphism of the estrogen receptor alpha gene and bone mineral density in postmenopausal women. J Steroid Biochem Mol Biol, 2001; 78(1): 15–20
15. Jeon S, Choi JY, Lee KM et al: Combined genetic effect of CDK7 and ESR1 polymorphisms on breast cancer risk. Breast Cancer Res Treat, 2010; 121(3): 737–42
16. Ha SY, Han YS, Lee Y et al: Association between estrogen receptor 1 (ESR1) genetic variations and bone mineral density in postmenopausal women. J Steroid Biochem Mol Biol, 2006; 6: 173
17. Madeira KP, Daltore RD, Sirtoli GM et al: Estrogen receptor alpha (ERS1) SNPs c454-397T>C (PvuII) and c454-351A>G (XbaI) are risk biomarkers for breast cancer development. Mol Biol Rep, 2014; 41(8): 5459–66
18. Slattery ML, Sweeney C, Herrick J et al: ESR1, AR, body size, and breast cancer risk in Hispanic and non-Hispanic white women living in the Southwestern United States. Breast Cancer Res Treat, 2007; 105(3): 327–35
19. Ding SL, Yu JC, Chen ST et al: Diverse associations between ESR1 polymorphism and breast cancer development and progression. Clin Cancer Res, 2010; 16(13): 3473–84
20. Fernandez LP, Milne RL, Barroso E et al: Estrogen and progesterone receptor gene polymorphisms and sporadic breast cancer risk: a Spanish case-control study. Int J Cancer, 2006; 119(2): 467–71
21. Gallicchio L, Berndt SI, McSorley MA et al: Polymorphisms in estrogen-metabolizing and estrogen receptor genes and the risk of developing breast cancer among a cohort of women with benign breast disease. BMC Cancer, 2006; 6: 173
22. Harrington DM, Howard TD, Brosnihan KB et al: Common estrogen receptor polymorphism augments effects of hormone replacement therapy on E-selectin but not C-reactive protein. Circulation, 2002; 105(16): 1879–82
23. Son BH, Kim MK, Yun YM et al: Genetic polymorphism of ESR1 rs2881766 and breast cancer risk in breast cancer patients after tamoxifen therapy. Med Sci Monit, 2015; 21: 563–69
24. Wang Y, He Y, Qin Z et al: Evaluation of functional genetic variants at 6q25.1 and risk of breast cancer in a Chinese population. Breast Cancer Res, 2014; 16(4): 422
25. Wang X, Lu X, Fang Y et al: Association between miR34b/c polymorphism rs4938723 and cancer risk: a meta-analysis of 11 studies including 6169 cases and 6337 controls. Med Sci Monit, 2014; 20: 1977–82
26. Ren HT, Wang XJ, Kang HF et al: Associations between C1772T polymorphism in hypoxia-inducible factor-1alpha gene and breast cancer: a meta-analysis. Med Sci Monit, 2012; 18: 2578–83
27. Zhang X, Pu Z, Ge J et al: Association of CYP2D6*10, OATP1B1 A388G, and OATP1B1 T521C polymorphisms and overall survival of breast cancer patients after tamoxifen therapy. Med Sci Monit, 2015; 21: 563–69
28. Yang Y et al.: Breast cancer susceptibility. © Med Sci Monit, 2015; 21: 2996-2995

Indexed in: [Current Contents/Clinical Medicine] [ISI Journals Master List] [Index Medicus/MEDLINE] [Chemical Abstracts/CAS] [EMBASE/Excerpta Medica] [Index Copernicus]

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License