Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges

YOSHITOMO MATSUBARA and MARCO LEVORATO, University of California, Irvine, USA
FRANCESCO RESTUCCIA, Northeastern University, USA

Mobile devices such as smartphones and autonomous vehicles increasingly rely on deep neural networks (DNNs) to execute complex inference tasks such as image classification and speech recognition, among others. However, continuously executing the entire DNN on the mobile device can quickly deplete its battery. Although task offloading to edge servers may decrease the mobile device’s computational burden, erratic patterns in channel quality, network and edge server load can lead to a significant delay in task execution. Recently, approaches based on split computing (SC) have been proposed, where the DNN is split into a head and a tail model, executed respectively on the mobile device and on the edge server. Ultimately, this may reduce bandwidth usage as well as energy consumption. Another approach, called early exiting (EE), trains models to present multiple “exits” earlier in the architecture, each providing increasingly higher target accuracy. Therefore, the trade-off between accuracy and delay can be tuned according to the current conditions or application demands. In this paper, we provide a comprehensive survey of the state of the art in SC and EE strategies, by presenting a comparison of the most relevant approaches. We conclude the paper by providing a set of compelling research challenges.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing; • Computer systems organization → Embedded and cyber-physical systems; • Computing methodologies → Neural networks.

Additional Key Words and Phrases: Split Computing, Edge Computing, Early Exit, Neural Networks, Deep Learning

1 INTRODUCTION

The field of deep learning (DL) has evolved at an impressive pace over the last few years [62], with new breakthroughs continuously appearing in domains such as computer vision (CV), natural language processing (NLP), digital signal processing (DSP), and wireless networking [50, 102] among others – we refer to [95] for a comprehensive survey on DL. For example, today’s state of the art deep neural networks (DNNs) can classify thousands of images with unprecedented accuracy [46], while bleeding-edge advances in deep reinforcement learning (DRL) have shown to provide near-human capabilities in a multitude of complex optimization tasks, from playing dozens of Atari video games [87] to winning games of Go against top-tier players [111].

As DL-based classifiers improve their predictive accuracy, mobile applications such as speech recognition in smartphones [17, 40], real-time unmanned navigation [91] and drone-based surveillance [113, 151] are increasingly using DNNs to perform complex inference tasks. However, state-of-the-art DNN models present computational requirements that cannot be satisfied by the majority of the mobile devices available today. In fact, many state-of-the-art DNN models for difficult tasks – such as computer vision and natural language processing – are extremely complex. For instance, the EfficientDet [121] family offers the best performance for object detection tasks. While EfficientDet-D7 achieves a mean average precision (mAP) of 52.2%, it involves 52M parameters and will take seconds to be executed on strong embedded devices equipped with GPUs such as the NVIDIA Jetson Nano and Raspberry Pi. Notably, the execution of such complex models significantly increases energy consumption. While lightweight models specifically designed for mobile devices exist [106, 120], the...
reduced computational burden usually comes to the detriment of the model accuracy. For example, compared to ResNet-152 [38], the networks MnasNet [120] and MobileNetV2 [106] present up to 6.4% accuracy loss on the ImageNet dataset. YOLO-Lite [100] achieves a frame rate of 22 frames per second on some embedded devices, but has a mean average precision (mAP) of 12.36% on the COCO dataset [75]. To achieve 33.8% mAP on the COCO dataset, even the simplest model in the EfficientDet family, EfficientDet-D0, requires 3 times more FLOPs (2.5B) \(^1\) than SSD-MobileNetV2 [106] (0.8B FLOPs). While SSD-MobileNetV2 is a lower-performance DNN specifically designed for mobile platforms and can process up to 6 fps, its mAP on COCO dataset is 20% and keeping the model running on a mobile device significantly increases power consumption. On the other hand, due to excessive end-to-end latency, cloud-based approaches are hardly applicable in most of the latency-constrained applications where mobile devices usually operate.

Recently, edge computing (EC) approaches [10, 26] have attempted to address the “latency vs computation” conundrum by completely offloading the DNN execution to servers located very close to the mobile device, i.e., at the “edge” of the network. However, canonical EC does not consider that the quality of wireless links – although providing high throughput on the average – can suddenly fluctuate due to the presence of erratic noise and interference patterns, which may impair performance in latency-bound applications. For example, mobility and impaired propagation have been shown to decrease throughput even in high-bandwidth wireless links [80, 150]. In many cases, mobile devices belonging to the Internet of Things (IoT) are based on technologies such as Long Range (LoRa) [105], which has maximum data rate of 37.5 Kbps due to duty cycle limitations [1].

The severe offloading limitations of some mobile devices, coupled with the instability of the wireless channel, imply that the amount of data offloaded to edge should be decreased, while at the same time keep the model accuracy as close as possible to the original. For this reason, split computing (SC) [54] and early exiting (EE) strategies [122] have been proposed to provide an intermediate option between EC and local computing. The key intuition behind SC and EE is similar to the one behind model pruning [33, 39, 67, 141] and knowledge distillation [41, 55, 86] – since modern DNNs are heavily over-parameterized [146, 147], their accuracy can be preserved even with substantial reduction in the number of weights and filters, and thus representing the input with fewer parameters. Specifically, SC divide a larger DNN into head and tail models, which are respectively executed by the mobile device and edge server. EE, on the other hand, proposes the introduction of “subbranches” into the early layers of DNN models, so that the full computation of the model can be halted – and a prediction result provided – if the classifiers in the current subbranches have high confidence with the specific model input.

Motivation and Novel Contributions. The proliferation of DL-based mobile applications in the IoT and 5G landscapes implies that techniques such as SC and EE are not simply “nice-to-have” features, but will become fundamental computational components in the years to come. Although a significant amount of research work has been done in SC and EE, to the best of our knowledge, a comprehensive survey of the state of the art has not been conducted yet. Moreover, there are still a series of research challenges that need to be addressed to take SC and EE to the next level. For this reason, this paper makes the following novel contributions:

- We summarize SC and EE studies with respect to approaches, tasks, and models. We first provide an overview of local, edge, split computing, and early-exit models in Section 2, by highlighting similarities and differences among them. We then discuss and compare the various approaches to SC and EE in Sections 4 and 5, by highlighting the training strategies and applications. Since code

\(^1\)In Tan et al. [121], FLOP denotes number of multiply-adds.
availability is fundamental for replicability/reproducibility [30], we provide for each work its corresponding code repository, if available, so that interested readers can reproduce and learn from existing studies;

- We conclude the paper by discussing in Section 6 a compelling agenda of research challenges in SC and EE, hoping to spur further contributions in these exciting and timely fields.

2 OVERVIEW OF LOCAL, EDGE, SPLIT COMPUTING AND EARLY-EXIT MODELS

In this section, we provide an overview of local, edge, split computing and early-exit models, which are the main computational paradigms that will be discussed in the paper. Figure 1 provides a graphical overview of the approaches.

All these techniques operate on a DNN model $M(\cdot)$ whose task is to produce the inference output y from an input x. Typically, x is a high-dimensional variable, whereas the output y has significantly lower dimensionality [125]. Split computing and early exit approaches are contextualized in a setting where the system is composed of a mobile device and an edge server interconnected via a wireless channel. The overall goal of the system is to produce the inference output y from the input x acquired by the mobile device, by means of the DNN $y=M(x)$ under – possibly time varying – constraints on:

To address this problem, major machine learning venues (e.g., ICML, NeurIPS, CVPR, ECCV, NAACL, ACL, and EMNLP) adopt a reproducibility checklist as part of official review process such as ML Code Completeness Checklist. See https://github.com/paperswithcode/releasing-research-code.
Resources: (i) the computational capacity (roughly expressed as number operations per second) C_{md} and C_{es} of the mobile device and edge server, respectively, (ii) the capacity ϕ, in bits per second, of the wireless channel connecting the mobile device to the edge server;

Performance: (i) the absolute of average value of the time from the generation of x to the availability of y, (ii) the degradation of the “quality” of the output y.

Split, edge, local and early-exiting strategies strive to find suitable operating points with respect to accuracy, end-to-end delay and energy consumption, which are inevitably influenced by the characteristics of the underlying system. It is generally assumed that the computing and energy capacity of the mobile device are smaller than that of the edge server. As a consequence, if part of the workload is allocated to the mobile device, then the execution time increases while battery lifetime decreases. However, as explained later, the workload executed by the mobile device may result in a reduced amount of data to be transferred over the wireless channel, possibly compensating for the larger execution time and leading to smaller end-to-end delays.

2.1 Local and Edge Computing

We start with the overview of local and edge computing. In local computing (LC), the function $M(x)$ is entirely executed by the mobile device. This approach eliminates the need to transfer data over the wireless channel. However, the complexity of the best performing DNNs most likely exceeds the computing capacity and energy consumption available at the mobile device. Usually, simpler models $\hat{M}(x)$ are used, such as MobileNet [106] and MnasNet [120] which often have a degraded accuracy performance. Besides designing lightweight neural models executable on mobile devices, the widely used techniques to reduce the complexity of models are knowledge distillation [41] and model pruning/quantization [49, 66] as introduced in Section 3.2. Some of the techniques are also leveraged in SC studies to introduce bottlenecks without sacrificing model accuracy as will be described in the following sections.

In EC, the input x is transferred to the edge server, which then executes the original model $M(x)$. In this approach, which preserves full accuracy, the mobile device is not allocated computing workload, but the full input x needs to be transferred to the edge server. This may lead to excessive end-to-end delay in degraded channel conditions, and erasure of the task in extreme conditions. A possible approach to reduce the load imposed to the wireless channel, and thus also transmission delay and erasure probability, is to compress the input x. We define, then, the encoder and decoder models $z = F(x)$ and $\hat{x} = G(z)$, which are executed at the mobile device and edge server, respectively. The distance $d(x, \hat{x})$ defines the performance of the encoding-decoding process $\hat{x} = G(F(x))$, a metric which is separate, but may influence, the accuracy loss of $\hat{M}(\hat{x})$ with respect to $M(x)$, that is, of the model executed with the reconstructed input with respect to the model executed with the original input. Clearly, the encoding/decoding functions increase the computing load both at the mobile device and edge server side. A broad range of different compression approaches exists ranging from low-complexity traditional compression (e.g., JPEG compression for images) to neural compression models [4, 5, 143]. We remark that while the compressed input data e.g., JPEG objects, can reduce the data transfer time in EC, those representations are designed to allow the accurate reconstruction of the input signal. Therefore, these approaches may (i) decrease privacy as a “reconstructable” representation is transferred to the edge server [128]; (ii) result in larger amount of data to be transmitted over the channel compared to representation specifically designed for the computing task as in bottleneck-based SC as explained in the following sections.
2.2 Split Computing and Early Exiting

Split computing (SC) aims at achieving the following goals: (i) the computing load is distributed across the mobile device and edge server; and (ii) establishes a task-oriented compression to reduce data transfer delays. We consider a neural model $M(\cdot)$ with L layers, and define z_ℓ the output of the ℓ-th layer. Early implementations of SC select a layer ℓ and divide the model $M(\cdot)$ to define the head and tail submodels $z_\ell = M_H(x)$ and $\hat{y} = M_T(z_\ell)$, executed at the mobile device and edge server, respectively. In early instances of SC, the architecture and weights of the head and tail model are exactly the same as the first ℓ layers and last $L - \ell$ layers of $M(\cdot)$. This simple approach preserves accuracy, but allocates part of the execution of $M(\cdot)$ to the mobile device, whose computing power is expected to be smaller than that of the edge server, so that the total execution time may be larger.

The transmission time of z_ℓ may be larger or smaller compared to that of transmitting the input x, depending on the size of the tensor z_ℓ. However, we note that in most relevant applications the size of z_ℓ becomes smaller than that of x only in later layers, which would allocate most of the computing load to the mobile device. More recent SC frameworks introduce the notion of bottleneck to achieve in-model compression toward the global task [81]. As formally described in the next section, a bottleneck is a compression point at one layer in the model, which can be realized by reducing the number of nodes of the target layer, and/or by quantizing its output. We note that as SC realizes a task-oriented compression, it guarantees a higher degree of privacy compared to EC.

Another approach to enable mobile computing is referred to early exiting (EE). The core idea is to create models with multiple “exits” across the model, where each exit can produce the model output. Then, the first exit providing a target confidence on the output is selected. This approach tunes the computational complexity, determined by the exit point, to the sample or to system conditions. Formally, we can define a sequence of models M_i and B_i, $i=1,\ldots,N$. Model M_i takes as input z_{i-1} (the output of model M_{i-1}) and outputs z_i, where we set $z_0 = x$. The branch models B_i take as input z_i and produce the estimate of the desired output y_i. Thus, the concatenation of M_1,\ldots,M_N results into an output analogous to that of the original model. Intuitively, the larger the number of models used to produce the output y_i, the better the accuracy. Thus, while SC optimizes intermediate representations to preserve information toward the final task (e.g., classification) for the whole dataset, early exit models take a “per sample” control perspective. Each sample will be sequentially analyzed by concatenations of M_i and B_i sections until a predefined confidence level is reached. The hope is that a portion of the samples will require a smaller number of sections compared to executing the whole sequence.

3 BACKGROUND OF DEEP LEARNING FOR MOBILE APPLICATIONS

In this section, we provide an overview of recent approaches to reduce the computational complexity of DNN models for resource constrained mobile devices. These approaches can be categorized into two main classes: (i) approaches that attempt to directly design lightweight models and (ii) model compression.

3.1 Lightweight Models

From a conceptual perspective, the design of small deep learning models is one of the simplest ways to reduce inference cost. However, there is a trade-off between model complexity and model accuracy, which makes this approach practically challenging when aiming at high model performance. The MobileNet series [42, 43, 106] is one among the most popular lightweight models for computer vision tasks, where Howard et al. [43] describes the first version MobileNetV1. By using a pair of depth-wise and point-wise convolution layers in place of standard convolution
layers, the design drastically reduces model size, and thus computing load. Following this study, Sandler et al. [106] proposed MobileNetV2, which achieves an improved accuracy. The design is based on MobileNetV1 [43], and uses the bottleneck residual block, a resource-efficient block with inverted residuals and linear bottlenecks. Howard et al. [42] presents MobileNetV3, which further improves the model accuracy and is designed by a hardware-aware neural architecture search [120] with NetAdapt [142]. The largest variant of MobileNetV3, MobileNetV3-Large 1.0, achieves a comparable accuracy of ResNet-34 [38] for the ImageNet dataset, while reducing by about 75% the model parameters.

While many of the lightweight neural networks are often manually designed, there are also studies on automating the neural architecture search (NAS) [154]. For instance, Zoph et al. [155] designs a novel search space through experiments with the CIFAR-10 dataset [57], that is then scaled to larger, higher resolution image datasets such as the ImageNet dataset [104], to design their proposed model: NASNet. Leveraging the concept of NAS, some studies design lightweight models in a platform-aware fashion. Dong et al. [20] proposes the Device-aware Progressive Search for Pareto-optimal Neural Architectures (DDP-Net) framework, that optimizes the network design with respect to two objectives: device-related (e.g., inference latency and memory usage) and device-agnostic (e.g., accuracy and model size) objectives. Similarly, Tan et al. [120] proposes an automated mobile neural architecture search (MNAS) method and design the MnasNet models by optimizing both model accuracy and inference time.

3.2 Model Compression
A different approach to produce small DNN models is to “compress” a large model. Model pruning and quantization [33, 34, 49, 72] are the dominant model compression approaches. The former removes parameters from the model, while the latter uses fewer number of bits to represent them. In both these approaches, a large model is trained first and then compressed, rather than directly designing a lightweight model followed by training. In Jacob et al. [49], the authors empirically show that their quantization technique leads to an improved tradeoff between inference time and accuracy on MobileNet [43] for image classification tasks on Qualcomm Snapdragon 835 and 821 compared to the original, float-only MobileNet. For what concerns model pruning, Li et al. [68], Liu et al. [78] demonstrates that it is difficult for model pruning itself to accelerate inference while achieving strong performance guarantees on general-purpose hardware due to the unstructured sparsity of the pruned model and/or kernels in layers.

Knowledge distillation [8, 41] is another popular model compression method. While model pruning and quantization make trained models smaller, the concept of knowledge distillation is to provide outputs extracted from the trained model (called “teacher”) as informative signals to train smaller models (called “student”) to improve the accuracy of predesigned small models. Thus, the goal of the process is that of distilling knowledge of a trained teacher model into a smaller student model for boosting accuracy of the smaller model without increasing model complexity. For instance, Ba and Caruana [3] proposes a method to train small neural networks by mimicking the detailed behavior of larger models. The experimental results show that models trained by this mimic learning method achieve performance close to that of deeper neural networks on some phoneme recognition and image recognition tasks. The formulation of some knowledge distillation methods will be described in Section 4.4.

4 SPLIT COMPUTING: A SURVEY
This section discusses existing state of of the art in SC. Figure 2 illustrates the existing SC approaches. They can be categorized into either (i) without network modification or (ii) with bottleneck injection. We first present SC approaches without DNN modification in Section 4.1. We then discuss the
motivations behind the introduction of SC with bottlenecks in Section 4.2, which are then discussed in details in Section 4.3. Since the latter require specific training procedures, we devote Section 4.4 to their discussion.

4.1 Split Computing without DNN Modification
In this class of approaches, the architecture and weights of the head $M_H(\cdot)$ and tail $M_T(\cdot)$ models are exactly the same as the first ℓ layers and last $L - \ell$ layers of $M(\cdot)$. To the best of our knowledge, Kang et al. [54] proposed the first SC approach (called “Neurosurgeon”), which searches for the best partitioning layer in a DNN model for minimizing total (end-to-end) latency or energy consumption. Formally, inference time in SC is the sum of processing time on mobile device, delay of communication between mobile device and edge server, and the processing time on edge server.

Interestingly, their experimental results show that the best partitioning (splitting) layers in terms of energy consumption and total latency for most of the considered models result in either their input or output layers. In other words, deploying the whole model on either a mobile device or an edge server (i.e., local computing or EC) would be the best option for such DNN models. Following the work by Kang et al. [54], the research communities explored various SC approaches mainly focused on CV tasks such as image classification. Table 1 summarizes the studies on SC without architectural modifications.

Jeong et al. [52] used this partial offloading approach as a privacy preserving way for computation offloading to blind the edge server to the original data captured by client. Leveraging neural network quantization techniques, Li et al. [66] discussed best splitting point in DNN models to minimize inference latency, and showed quantized DNN models did not degrade accuracy comparing to the (pre-quantized) original models. Choi and Bajić [11] proposed a feature compression strategy for object detection models that introduces a quantization/video-coding based compressor to the intermediate features in YOLO9000 [99].

Eshratifar et al. [22] proposed JointDNN for collaborative computation between mobile device and cloud, and demonstrate that using either local computing only or cloud computing only is not an optimal solution in terms of inference time and energy consumption. Different from [54],

![Fig. 2. Two different SC approaches.](image-url)
Table 1. Studies on SC without architectural modifications.

Work	Task(s)	Dataset(s)	Model(s)	Metrics	Code
Kang et al. [54]	Image classification	N/A	AlexNet [58]	D, E, L	
(2017)	Speech recognition	N/A	VGG-19 [112]		
	Part-of-speech tagging	N/A	DeepFace [119]		
	Named entity recognition	N/A	LeNet-5 [63]		
	Word chunking	N/A	Kaldi [96]		
		N/A	SENNA [14]		
Li et al. [69]	Image classification	N/A	AlexNet [58]	C, D	
(2018)	(No task-specific metrics)				
Jeong et al. [52]	Image classification	N/A	GoogLeNet [117]	D, L	
(2018)	(No task-specific metrics)		AgeNet [65]		
			GenderNet [65]		
Li et al. [66]	Image classification	ImageNet [104]	AlexNet [58]	A, D, L	
(2018)	(No task-specific metrics)		VGG-16 [112]		
			ResNet-18 [38]		
			GoogLeNet [117]		
Choi and Bajić [11]	Object detection	VOC 2007 [24]	YOLO9000 [99]	A, C, D, L	
(2018)	(No task-specific metrics)				
Eshratifar et al. [22]	Image classification	N/A	AlexNet [58]	D, E, L	
(2019)	Speech recognition	N/A	OverFeat [109]		
	(No task-specific metrics)		NiN [73]		
			VGG-16 [112]		
			ResNet-50 [38]		
Zeng et al. [149]	Image classification	CIFAR-10 [57]	AlexNet [58]	A, D, L	
(2019)	(No task-specific metrics)				
Cohen et al. [13]	Image classification	ImageNet (2012) [104]	AlexNet [58]	A, D	
(2020)	Object detection	COCO 2017 [75]	VGG-16 [112]		
			ResNet-50 [38]		
			YOLOv3 [100]		
Pagliari et al. [92]	Natural language inference	N/A	RNNs	E, L	
(2020)	Reading comprehension				
	Sentiment analysis				

A: Model accuracy, C: Model complexity, D: Transferred data size, E: Energy consumption, L: Latency, T: Training cost

they consider not only discriminative deep learning models (e.g., classifiers), but also generative deep learning models and autoencoders as benchmark models in their experimental evaluation. Cohen et al. [13] introduce a technique to code the output of the head portion in a split DNN to a wide range of bit-rates, and demonstrate the performance for image classification and object detection tasks. Pagliari et al. [92] first discuss the collaborative inference for simple recurrent neural networks, and their proposed scheme is designed to automatically select the best inference device for each input data, in terms of total latency or end-device energy.

While only a few studies in Table 1 heuristically choose splitting points [11, 13], most of the other studies [22, 52, 54, 66, 92, 149] in Table 1 analyze various types of cost (e.g., computational load and energy consumption on mobile device, communication cost, and/or privacy risk) to partition DNN models at each of their splitting points. Based on the analysis, performance profiles of the split DNN models are derived to inform selection. Concerning metrics, many of the studies in Table 1 do not discuss task-specific performance metrics such as accuracy. This is in part because the proposed approaches do not modify the input or intermediate representations in the models (i.e., the final prediction will not change). On the other hand, Choi and Bajić [11], Cohen et al. [13], Li et al. [66] introduce lossy compression techniques to intermediate stages in DNN models, which more or less affect the final prediction results. Thus, discussing trade-off between compression rate and task-specific performance metrics would be essential for such studies. As shown in the table, such trade-off is discussed only for CV tasks, and many of the models considered in such studies have weak performance compared with state of the art models, and a complexity within the reach of modern mobile devices. Specific to image classification tasks, most of the models considered in the studies listed in Table 1 are more complex and/or the accuracy is comparable to or lower than that
of lightweight baseline models such as MobileNetV2 [106] and MnasNet [120]. Thus, in the future work, more accurate models should be considered to discuss the performance trade-off and further motivate SC approaches.

4.2 The Need for Bottleneck Injection

While Kang et al. [54] empirically show that executing the whole model on either mobile device or edge server would be best in terms of total inference and energy consumption for most of their considered DNN models, their proposed approach find the best partitioning layers inside some of their considered CV models (convolutional neural networks (CNNs)) to minimize the total inference time. There are a few trends observed from their experimental results: (i) communication delay to transfer data from mobile device to edge server is a key component in SC to reduce total inference time; (ii) all the neural models they considered for NLP tasks are relatively small (consisting of only a few layers), that potentially resulted in finding the output layer is the best partition point (i.e., local computing) according to their proposed approach; 3) similarly, not only DNN models they considered (except VGG [112]) but also the size of input to the models (See Table 2) are relatively small, which gives more advantage to EC (fully offloading computation). In other words, it highlights that complex CV tasks requiring large (high-resolution) images for models to achieve high accuracy such as ImageNet and COCO datasets would be essential to discuss the trade-off between accuracy and execution metrics to be minimized (e.g., total latency, energy consumption) for SC studies. The key issue is that naive SC approaches like Kang et al. [54] rely on the existence of natural bottlenecks – that is, intermediate layers whose output \(z_\ell\) tensor size is smaller than the input – inside the model. Without such natural bottlenecks in the model, naive splitting approaches would fail to improve performance in most settings [6, 26, 31, 135].

Some models, such as AlexNet [58], VGG [112] and DenseNet [46], possess such layers [81]. However, recent DNN models such as ResNet [38], Inception-v3 [118], Faster R-CNN [101] and Mask R-CNN [37] do not have natural bottlenecks in the early layers, that is, splitting the model would result in compression only when assigning a large portion of the workload to the mobile device. As discussed earlier, reducing the communication delay is a key to minimize total inference time in SC. For these reasons, introducing artificial bottlenecks to DNN models by modifying their architecture is a recent trend and has been attracting attention from the research community. Since the main role of such encoders in SC is to compress intermediate features rather than to complete inference, the encoders usually consist of only a few layers. Also, the resulting encoders in SC to be executed on constrained mobile devices are often much smaller (e.g., 10K parameters in the encoder of ResNet-based SC model [84]), than lightweight models such as MobileNetV2 [106] (3.5M parameters) and MnasNet [120] (4.4M parameters). Thus, even if the model accuracy is either degraded or comparable to such small models, SC models are still beneficial in terms of computational burden and energy consumption at the mobile devices.

4.3 Split Computing with Bottleneck Injection

This class of models can be described as composed of 3 sections: \(M_E, M_D\) and \(M_T\). We define \(z_\ell|x\) as the output of the \(\ell\)-th layer of the original model given the input \(x\). The concatenation of the \(M_E\) and \(M_D\) models is designed to produce a possibly noisy version \(\hat{z_\ell}|x\) of \(z_\ell|x\), which is taken as input by \(M_T\) to produce the output \(\hat{y}\), on which the accuracy degradation with respect to \(y\) is measured. The models \(M_E, M_D\) function as specialized encoders and decoders in the form \(\hat{z_\ell} = M_D(M_E(x))\), where \(M_E(x)\) produces the latent variable \(z\). In worlds, the two first sections of the modified model transform the input \(x\) into a version of the output of the \(\ell\)-th layer via the intermediate representation \(z\), thus functioning as encoder/decoder functions. The model is split after the first section, that is, \(M_E\) is the head model, and the concatenation of \(M_D\) and \(M_T\) is the
Table 2. Statistics of image classification datasets in SC studies

	MNIST	CIFAR-10	CIFAR-100	ImageNet (2012)
# labeled train/dev(test) samples:	60k/10k	50k/10k	50k/10k	1,281k/50k
# object categories	10	10	100	1,000
Input tensor size	$1 \times 32 \times 32$	$3 \times 32 \times 32$	$3 \times 32 \times 32$	$3 \times 224 \times 224^*$
JPEG data size [KB/sample]	0.9657	1.790	1.793	44.77

* A standard (resized) input tensor size for DNN models.

tail model. Then, the tensor z is transmitted over the channel. The objective of the architecture is to minimize the size of z to reduce the communication time, while also minimizing the complexity of M_E (that is, the part of the model executed at the – weaker – mobile device) and the discrepancy between y and \hat{y}. The layer between M_E and M_D is the injected bottleneck.

Table 3 summarizes SC studies with bottleneck injected strategies. To the best of our knowledge, the papers in [23] and [81] were the first to propose altering existing DNN architectures to design relatively small bottlenecks at early layers in DNN models, instead of introducing compression techniques (e.g., quantization, autoencoder) to the models, so that communication delay (cost) and total inference time can be further reduced. Following these studies, Hu and Krishnamachari [44] introduce bottlenecks to MobileNetV2 [106] (modified for CIFAR datasets) in a similar way for SC, and discuss end-to-end performance evaluation. Choi et al. [12] combine multiple compression techniques such as quantization and tiling besides convolution/deconvolution layers, and design a feature compression approach for object detectors. Similar to the concept of bottleneck injection, Shao and Zhang [110] find that over-compression of intermediate features and inaccurate communication between computing devices can be tolerated unless the prediction performance of the models are significantly degraded by them. Also, Jankowski et al. [51] propose introducing a reconstruction-based bottleneck to DNN models, which is similar to the concept of BottleNet [23]. A comprehensive discussion on the delay/complexity/accuracy tradeoff can be found in [82, 145].

These studies are all focused on image classification. Other computer CV tasks present further challenges. For instance, state of the art object detectors such as R-CNN models have more narrow range of layers that we can introduce bottlenecks due to the network architecture, which has multiple forward paths to forward outputs from intermediate layers to feature pyramid network (FPN) [74]. The head network distillation training approach – discussed later in this section – was used in Matsubara and Levorato [84] to address some of these challenges, and reduce the amount of data transmitted over the channel by 94% while degrading mAP (mean average precision) loss by 1 point. Assine et al. [2] introduce bottlenecks to the EfficientDet-D2 [121] object detector, and apply the training method based on the generalized head network distillation [84] and mutual learning [140] to the modified model. Following the studies on SC for resource-constrained edge computing systems [81, 82, 145], Sbai et al. [108] introduce autoencoder to small classifiers and train them on a subset of the ImageNet dataset in a similar manner. These studies discuss the trade-off between accuracy and memory size on mobile devices, considering communication constraints based 3G and LoRa technologies [105].

In contrast to SC studies without bottlenecks in Table 1, many of the studies on bottleneck injection strategies in Table 3 are published with code that would help the research communities replicate/reproduce the experimental results, and build on existing studies.
4.4 SC with Bottlenecks: Training Methodologies

Given that recent SC studies with bottleneck injection strategies result in more or less accuracy loss comparing to the original models (i.e., without injected bottlenecks), various training methodologies are used and/or proposed in such studies. Some of the training methods are designed specifically for architectures with injected bottlenecks. We now summarize the differences between the various training methodologies used in recent SC studies.

We recall that \(x \) and \(y \) are an input (e.g., an RGB image) and the corresponding label (e.g., one-hot vector) respectively. Given an input \(x \), a DNN model \(M \) returns its output \(\hat{y} = M(x) \) such as class probabilities in classification task. Each of the \(L \) layers of model \(M \) can be either low-level (e.g., convolution [63], batch normalization [47]), ReLU [88]) or high-level layers (e.g., residual block in ResNet [38] and dense block in DenseNet [46]) that are composed by multiple low-level layers. \(M(x) \) is a sequence of the \(L \) layer functions \(f_j \)'s, and the \(j^{th} \) layer transforms \(z_{j-1} \), the output from the previous \((j-1)^{th} \) layer:

\[
z_j = \begin{cases}
 x & j = 0 \\
 f_j(z_{j-1}, \theta_j) & 1 \leq j < L \\
 f_L(z_{L-1}, \theta_L) = M(x) = \hat{y} & j = L
\end{cases}
\]

where \(\theta_j \) denotes the \(j^{th} \) layer’s hyperparameters and parameters to be optimized during training.

Cross entropy-based training

To optimize parameters in a DNN model, we first need to define a loss function, and update the parameters by minimizing the loss value with an optimizer such as stochastic gradient descent and Adam [56] during training. In image classification, a standard method is to train a DNN model \(M \) in an end-to-end manner using the cross entropy like many of the studies [23, 44, 82] in Table 3. For simplicity, here we focus on the categorical cross entropy and suppose \(c \equiv y \) is the correct class

Work	Task(s)	Dataset(s)	Base Model(s)	Training	Metrics	Code
Eshratifar et al. [23] (2019)	Image classification	miniImageNet [114]	ResNet-50 [38] VGG-16 [112]	CE-based	A, D, L	
Matsubara et al. [81, 82] (2019, 2020)	Image classification	Caltech 101 [25] ImageNet (2012) [104]	DenseNet-169 [46] DenseNet-201 [46] ResNet-152 [38] Inception-v3 [118]	HND KD CE-based	A, C, D, L, T	Link
Hu and Krishnamachari [44] (2020)	Image classification	CIFAR-10/100 [57]	MobileNetV2 [106]	CE-based	A, D, L	
Choi et al. [12] (2020)	Object detection	COCO 2014 [75] YOLOv3 [100]	Reconstruct.	A, D		
Shao and Zhang [110] (2020)	Image classification	CIFAR-100 [57] ResNet-50 [38] VGG-16 [112]	CE-based (Multi-stage)	A, C, D		
Jankowski et al. [51] (2020)	Image classification	CIFAR-100 [57] VGG-16 [112]	CE + \(L_2 \) (Multi-stage)	A, C, D		
Matsubara et al. [83, 84] (2020)	Object detection Keypoint detection	COCO 2017 [75] Faster R-CNN [101] Mask R-CNN [37] Keypoint R-CNN [37]	GHND HND	A, C, D, L	Link	
Yao et al. [145] (2020)	Image classification Speech recognition	ImageNet (2012) [104] LibriSpeech [93]	ResNet-50 [38] Deep Speech [35]	Reconstruct. + KD	A, D, E, L, T	Link*
Assine et al. [2] (2021)	Object detection	COCO 2017 [75] EfficientDet [121]	GHND-based	A, C, D	Link	
Sbai et al. [108] (2021)	Image classification Subset of ImageNet [104] (700 out of 1,000 classes) MobileNetV1 [43] VGG-16 [112]	Reconstruct. + KD	A, C, D			

* The repository is incomplete and lacks of instructions to reproduce the reported results for vision and speech datasets.

A: Model accuracy, C: Model complexity, D: Transferred data size, E: Energy consumption, L: Latency, T: Training cost
index given a model input \(x \). Given a pair of \(x \) and \(c \), we obtain the model output \(\hat{y} = M(x) \), and then the (categorical) cross entropy loss is defined as

\[
L_{CE}(\hat{y}, c) = -\log \left(\frac{\exp(\hat{y}_c)}{\sum_{j \in C} \exp(\hat{y}_j)} \right),
\]

where \(\hat{y}_j \) is the class probability for the class index \(j \), and \(C \) is a set of considered classes (\(c \in C \)).

As shown in Eq. (2), the loss function used in cross entropy-based training methods are used as a function of the final output \(\hat{y} \), and thus are not designed for SC frameworks. While Eshratifar et al. [23], Hu and Krishnamachari [44], Shao and Zhang [110] use the cross entropy to train bottleneck-injected DNN models, Matsubara et al. [82] empirically show that these methodologies cause a larger accuracy loss in complex tasks such as ImageNet dataset [104] compared to other more advanced techniques, including knowledge distillation.

Knowledge distillation

Complex DNN models are usually trained to learn parameters for discriminating between a large number of classes (e.g., 1,000 in ImageNet dataset), and often overparameterized. Knowledge distillation (KD) [3, 41, 71] is a training scheme to address this problem, and trains a DNN model (called “student”) using additional signals from a pretrained DNN model (called “teacher” and often larger than the student). In standard cross-entropy based training – that is, using “hard targets” (e.g., one-hot vectors) – we face a side-effect that the trained models assign probabilities to all of the incorrect classes. From the relative probabilities of incorrect classes, we can see how large models tend to generalize.
Reconstruction-based training

As illustrated in Fig. 4, by distilling the knowledge from a pretrained, complex, model (teacher), a student model can be more generalized and avoid overfitting to training dataset, using the outputs of the teacher model as “soft targets” in addition to the hard targets \([41]\).

\[
L_{KD}(\hat{y}^S, \hat{y}^T, y) = \alpha L_{task}(\hat{y}^S, y) + (1 - \alpha) \tau^2 KL\left(p(\hat{y}^S), q(\hat{y}^T)\right),
\]

where \(\alpha\) is a balancing factor (hyperparameter) between hard target (left term) and soft target (right term) losses, and \(\tau\) is another hyperparameter called temperature to soften the outputs of teacher and student models in Eq. (4). \(L_{task}\) is a task-specific loss function, and it is a cross entropy loss in image classification tasks i.e., \(L_{task} = L_{CE}\). KL is the Kullback-Leibler divergence function, where \(p(\hat{y}^S)\) and \(q(\hat{y}^T)\) are probability distributions of student and teacher models for an input \(x\), that is, \(p(\hat{y}^S) = [p_1(\hat{y}^S), \ldots, p_{|C|}(\hat{y}^S)]\) and \(q(\hat{y}^T) = [q_1(\hat{y}^T), \ldots, q_{|C|}(\hat{y}^T)]\):

\[
p_k(\hat{y}^S) = \frac{\exp\left(\frac{\hat{y}_k^S}{\tau}\right)}{\sum_{j \in C} \exp\left(\frac{\hat{y}_j^S}{\tau}\right)}, \quad q_k(\hat{y}^T) = \frac{\exp\left(\frac{\hat{y}_k^T}{\tau}\right)}{\sum_{j \in C} \exp\left(\frac{\hat{y}_j^T}{\tau}\right)},
\]

Using the ImageNet dataset, it is empirically shown in Matsubara et al. [82] that all the considered bottleneck-injected student models trained with their teacher models (original models without injected bottlenecks) consistently outperform those trained without the teacher models. This result matches a widely known trend in knowledge distillation reported in Ba and Caruana [3]. However, similar to cross entropy, the knowledge distillation is still not aware of bottlenecks we introduce to DNN models and may result in significant accuracy loss as suggested by Matsubara et al. [82].

Reconstruction-based training

As illustrated in Fig. 5, Choi et al. [12], Jankowski et al. [51], Sbai et al. [108], Yao et al. [145] inject Autoencoder (AE) models into existing DNN models, and train the injected components by minimizing the reconstruction error. First manually an intermediate layer in a DNN model (say its \(j^{th}\) layer) is chosen, and the output of the \(j^{th}\) layer \(z_j\) is fed to the encoder \(f_{\text{enc}}\) whose role is to compress \(z_j\). The encoder’s output \(z_{\text{enc}}\) is a compressed representation, i.e., bottleneck to be transferred to edge server and the following decoder \(f_{\text{dec}}\) decompresses the compressed representation and returns \(z_{\text{dec}}\). As the decoder is designed to reconstruct \(z_j\), its output \(z_{\text{dec}}\) should share the same dimensionality with \(z_j\). Then, the injected AE are trained by minimizing the following reconstruction loss:

\[
L_{\text{Recon.}}(z_j) = \|z_j - f_{\text{dec}}(f_{\text{enc}}(z_j; \theta_{\text{enc}}); \theta_{\text{dec}}) + \epsilon\|_n^m, \quad (5)
\]

\[
= \|z_j - z_{\text{dec}} + \epsilon\|_n^m,
\]
where $\|z\|^m_n$ denotes m^{th} power of n-norm of z, and ϵ is an optional regularization constant. For example, Choi et al. [12] set $m = 1$, $n = 2$ and $\epsilon = 10^{-6}$, and Jankowski et al. [51] use $m = n = 1$ and $\epsilon = 0$. Inspired by the idea of knowledge distillation [41], Yao et al. [145] also consider additional squared errors between intermediate feature maps from models with and without bottlenecks as additional loss terms like generalized head network distillation [84] described later. While Yao et al. [145] shows high compression rate with small accuracy loss by injecting encoder-decoder architectures to existing DNN models, such strategies [12, 51, 108, 145] increase computational complexity as a result. Suppose the encoder and decoder consist of L_{enc} and L_{dec} layers respectively, then the total number of layers in the altered DNN model is $L + L_{\text{enc}} + L_{\text{dec}}$.

Head network distillation

The training methods described above are focused on either end-to-end or encoder-decoder training. The first approach often requires hard targets such as one-hot vectors and more training cost while the latter can focus on the injected components (encoder and decoder) during training, but the additional components (layers) will increase the complexity of the DNN model. To reduce both training cost and model complexity while preserving accuracy, it is proposed in Matsubara et al. [81] to use head network distillation (HND) to distill the head portion of the DNN – which contains a bottleneck – leveraging pretrained DNN models. Figure 6 illustrates this approach.

The original, pretrained, DNN (consisting of L layers) is used as a starting point, whose architecture (in the head part) is simplified. As only the teacher’s head portion is altered, the tail portion of the student model is identical to that of the teacher model with respect of architecture and the same pretrained parameters can be maintained. Thus, head network distillation requires only the first layers of the teacher and student models in training session as the student head model f_{head}^S will be trained to mimic behavior of teacher’s head model f_{head}^T given an input x:

$$L_{\text{HND}}(x) = \|f_{\text{head}}^S(x, \theta_{\text{head}}^S) - f_{\text{head}}^T(x, \theta_{\text{head}}^T)\|^2,$$

where f_{head}^S and f_{head}^T are sequences of the first L_{head}^S and L_{head}^T layers in student and teacher models ($L_{\text{head}}^S \ll L^S$, and $L_{\text{head}}^T \ll L$), respectively.

Experimental results with the ImageNet (ILSVRC 2012) dataset show that given a bottleneck-introduced model, the head network distillation method consistently outperforms cross entropy-based training [23, 44, 110] and knowledge distillation methods in terms of not only training cost, but also accuracy of the trained model. This method is extended in Matsubara and Levorato [84],

![Fig. 6. Head network distillation for bottleneck-injected DNN (student), using a pretrained model as teacher. The student model’s tail portion is copied from that of its teacher model with respect to the architecture and pretrained parameters.](image)
where the generalized head network distillation technique (GHND) is proposed for complex object detection tasks and models. We note that these tasks require finer feature maps mimicking those at intermediate layers in the original pretrained object detectors. The loss function in this approach is

\[
\mathcal{L}_{\text{GHND}}(x) = \sum_{j \in J} \lambda_j \cdot \mathcal{L}_j(x, f^S_{1-L_j^S}, f^T_{1-L_j^T}),
\]

where \(j\) is loss index, \(\lambda_j\) is a scale factor (hyperparameter) associated with loss \(\mathcal{L}_j\), and \(f^S_{1-L_j^S}\) and \(f^T_{1-L_j^T}\) indicate the corresponding sequences of the first \(L_j^S\) and \(L_j^T\) layers in the student and teacher models (functions of input data \(x\)), respectively. The total loss, then, is a linear combination of \(|J|\) weighted losses. Following Eq. (7), the previously proposed head network distillation technique [81] can be seen as a special case of generalized head network distillation (GHND). GHND significantly improved the object detection performance in bottleneck-injected R-CNN models on COCO 2017 dataset while achieving high compression rate.

5 EARLY EXITING: A SURVEY

This section presents a survey of the state of the art in EE strategies. We first provide a compendium of work focused on CV and NLP applications in Sections 5.2 and 5.3, respectively. Section 5.4 summarizes training methodologies used in the EE studies.

5.1 Rationale behind EE

The core idea of EE, first proposed in Teerapittayanon et al. [122], is to circumvent the need to make DNN models smaller by introducing early exits in the DNN, where execution is terminated at the first exit achieving the desired confidence on the input sample. For instance, some of samples in test datasets (and in real-world problems) will be easy for a DNN model, but others may not be, depending on ML models we use. Thus, EE ends the inference process with fewer transforms (layers) for such easy samples, so that the overall inference time and computation cost are reduced.

Figure 7 illustrates an example of early classifiers (subbranches) introduced in a DNN model. In this example, the second early classifier has sufficient confidence in its output (class probability is 0.85 out of 1.0) to terminate the inference for the input sample, so that the following layers are not executed. Note that all the exits are executed until the desired confidence is reached, that is, the computational complexity up to that point increases. Thus, the classifiers added to the DNN model need to be simple, that is, they need to have fewer layers than the layers after the branches, otherwise the overall inference cost will increase on average rather than decrease. Teerapittayanon et al. [123] also applies this idea to mobile-edge-cloud computing systems; the smallest neural model is allocated to the mobile device, and if that model’s confidence for the input is not large enough, the intermediate output is forwarded to the edge server, where inference will continue using a
Table 4. Studies on early exiting strategies.

Work	Task(s)	Dataset(s)	Base Model(s)	Metrics	Code
Teerapittayanon et al. [122]	Image classification	MNIST [63], CIFAR-10 [57]	LeNet-5 [63]	A, L	Link
Teerapittayanon et al. [123]	Image classification*	Multi-camera multi-object detection [103]	Distributed DNNs	A, D	Link
Lo et al. [79]	Image classification	CIFAR-10/100 [57]	ResNet [38]	A, C	
Neshatpour et al. [89]	Image classification	ImageNet [104]	AlexNet [58]	A, C, L	
Zeng et al. [149]	Image classification	CIFAR-10 [57]	AlexNet [58]	A, D, L	
Wang et al. [129]	Image classification	CIFAR-10/100 [57]	ResNet [38]	A, C	
Li et al. [70]	Image classification	CIFAR-10/100 [57], ImageNet (2012) [104]	MSDNet [45]	A, C	Link
Phuong and Lampert [94]	Image classification	CIFAR-100 [57], ImageNet (2012) [104]	MSDNet [45]	A	Link
Elbayad et al. [21]	Machine translation	IWSLT'14 De-En, WMT'14 En-Fr	Transformer	A, C	
Wang et al. [131]	Image classification	CIFAR-100 [57], ImageNet (2012) [104]	ResNet [58]	A, C, E	
Yang et al. [139]	Image classification	CIFAR-100 [57], ImageNet [104]	RANet [17]	A, C	Link
Soldaini and Moschitti [116]	Text ranking	WikiQA [144], TREC QA [130], ASNQ [28], GPD	RoBERTa [77]	A, C	Link
Liu et al. [76]	Text classification	Chatbot, Twitter, Book review [97], Shopping	BERT [18]	A, C, T	Link
		review, Weibo, THUCNews, AgNews, Amz.F, DBpedia,			
		Yahoo, Yelp.F, Yelp.P [152]	BERT [18]	A, C	Link
Xin et al. [137]	GLUE [127]	SST-2 [115], MRPC [19], QQP [48], MNLI [133],	BERT [18]	A, C	Link
		QNLi [98], RTE [7, 15, 25, 32]	RoBERTa [77]		
Xing et al. [138]	Quality enhancement	RAISE [16]	Dynamic DNN	A, C	Link
Laskaridis et al. [61]	Image classification	CIFAR-100 [57], ImageNet (2012) [104]	ResNet-56 [38]	A, E, L	
Xin et al. [136]	Text ranking	MS MARCO [90], ASNQ [28]	ResNet-50 [38]		
			Inception-v3 [118]	A, E, L	
Zhou et al. [153]	GLUE [127]	CoLA [132], SST-2 [115], MRPC [19], STS-B [9],	BERT [18]	A, C, L	Link
		QQP [48], MNLI [133], QNLi [98], WNLI [64],	ALBERT [60]		
		RTE [7, 15, 25, 32]			
Matsubara and Levorato [84]	Keypoint detection	COCO 2017 [75]	Keypoint R-CNN [37]	A, D, L	

- A: Model accuracy, C: Model complexity, D: Transferred data size, E: Energy consumption, L: Latency, T: Training cost
- * The authors extract annotated objects from the original dataset for multi-camera object detection, and use the extracted images for a image classification task.

mid-sized neural model with another exit. If the output still does not reach the target confidence the intermediate layer’s output is forwarded to the cloud, which executes the largest neural model. EE strategies have been widely investigated in the literature, as summarized in Table 4.

5.2 EE for CV Applications

Similar to the SC studies we discussed in Session 4, the research community mainly focused on EE approaches applied to CV tasks.
Design approaches

Wang et al. [131] propose a unified Dual Dynamic Inference that introduces the following features to a DNN model: Input-Adaptive Dynamic Inference (IADI) and Resource-Adaptive Dynamic Inference (RADI). The IADI dynamically determines which sub-networks to be executed for cost-efficient inference, and the RADI leverages the concept of EE to offer "anytime classification". Using the concept of EE, Lo et al. [79] proposes two different methods: (i) authentic operation, and (ii) dynamic network sizing. The first approach is used to determine whether the model input is transferred to the edge server, and the latter dynamically adjusts the number of layers to be used as an auxiliary neural model deployed on mobile device for efficient usage of communication channels in EC systems. Neshatpour et al. [89] decomposes a DNN’s inference pipeline into multiple stages, and introduce EE (termination) points for energy-efficient inference.

Training approaches

Wang et al. [129] focus on training methods for DNNs with an early exit, and observes that prior EE approaches suffered from the burden of manually tuning balancing weights of early exit losses to find a good trade-off between computational complexity and overall accuracy. To address this problem, the authors propose a strategy to dynamically adjust the loss weights for the ResNet models they consider. Li et al. [70] and Phuong and Lampert [94] introduce multiple early exits to DNN models and apply knowledge distillation to each of the early exits as students, using their final classifiers to teach the models. Similar to other studies, the DNNs with early exits are designed to finish inference for “easy” samples by early sub-classifiers based on confidence thresholds defined beforehand.

Inference approaches

Yang et al. [139] leverage EE strategies for multi-scale inputs, and propose an approach to classify “easy” samples with smaller neural models. Different from prior studies, their proposed approach scales up the input image (use higher-resolution image as input), depending on the classification difficulty of the sample. Laskaridis et al. [61] design a distributed inference system that employs synergistic device-cloud computation for collaborative inference, including an EE strategy (referred to as progressive inference in their work). Xing et al. [138] apply EE strategies to quality enhancement tasks, and propose a resource-efficient blind quality enhancement approach for compressed images. By identifying “easy” samples in the tasks, they dynamically process input samples with/without early exits. Zeng et al. [149] combine EE and SC approaches, and propose a framework named Boomerang, which is designed to automate end-to-end DNN inference planning for IoT scenarios; they introduce multiple early exits in AlexNet [58]. Their proposed framework profiles the model to decide its partition (splitting) point. In addition to introducing and training bottleneck points for object detector, Matsubara and Levorato [84] introduce a neural filter in an early stage of the head-distilled Keypoint R-CNN model. Similarly to EE frameworks, the filter identifies pictures without objects of interest and trigger termination of the execution before the output of the bottleneck is forwarded. Many studies on glsee for CV tasks publish their source code to ensure replicability of their work.

5.3 EE for NLP Applications

Interestingly, EE approaches have been widely studied not only in CV tasks – the main application of SC – but also NLP tasks. Recent studies introduce subbranches (early exits) to transformer-based models such as BERT [18]. While these transformer-based models achieve state of the art performance in NLP tasks, they have an extremely large number of parameters, e.g., BERT [18] has up to 355 million parameters where the largest image classification model used in SC studies (Tables 1 and 3), ResNet-152, has 60 million parameters.
In Elbayad et al. [21] an EE technique for NLP tasks is developed for transformer sequence-to-sequence models [126] in machine translation tasks. The decoder networks in the considered transformer models can be trained by either aligned training or mixed training methods. The former method optimizes all classifiers in the decoder network simultaneously. However, when a different classifier (exit) is chosen for each token (e.g., word) at test time, some of the hidden states from previous time steps may be missed and then the input states to the following decoder network will be misaligned (mismatched). The latter method address this issue. In mixed sample training, several paths of random exits are sampled at which the model is assumed to have exited for reducing the mismatch by feeding hidden states from different decoder depths of previous time steps.

For different tasks, Soldaini and Moschitti [116], Xin et al. [137] and Liu et al. [76] propose EE frameworks based on BERT [18] and RoBERTa [77] that share almost the same network architecture. Focused on text ranking, specifically answer sentence selection tasks with question answering datasets, Soldaini and Moschitti [116] add classification layers to intermediate stages of RoBERTa to build sequential (neural) rerankers [85] inside as early exits, and propose the Cascade Transformer models. Focusing on powerful transformer models for industrial scenarios, Liu et al. [76] discuss the effectiveness on twelve (six English and six Chinese) NLP datasets of BERT models when early classifiers are introduced. Similar to the studies by Li et al. [70] and Phuong and Lampert [94], Liu et al. [76] leverage knowledge distillation [41] to train early classifiers, treating the final classifier of the BERT model and their introduced early classifiers as a teacher and student classifiers respectively. Xin et al. [137] target general language understanding evaluation (GLUE) tasks [127], and introduce early exits after each of 12 transformer blocks in BERT and RoBERTa models.

While the Cascade Transformer [116] disregard a fixed portion of candidates (samples) given a query in answer sentence selection tasks, Xin et al. [136] use a score-based EE strategy for a BERT architecture for text ranking tasks. Zhou et al. [153] introduce early classifiers to BERT and ALBERT [60] models, and discusses adversarial robustness using the ALBERT models with and without the early exits. Using an adversarial attack method [53], the authors feed perturbed input data (called adversarial examples [59]) to their trained models, and show how robust their models are against the adversarial attack, compared to those without early classifiers.

Most of the studies on EE for NLP tasks in Table 4 are published with source code to assure the replicable results. Notably, this application domain enjoys a well-generalized open source framework – Huggingface’s Transformers [134] – which provides state-of-the-art (pretrained) Transformer models, including the BERT, RoBERTa and ALBERT models used in the above studies.

5.4 Training Methodologies for EE Strategies
To introduce EE strategies, the early classifiers need to be trained in addition to the base models. We can categorize the training methodologies used in EE studies into two main classes: joint training and separate training, illustrated in Fig. 8 and described in the next sections.
Joint training

Most of the training methods used in existing works belong to this category. Joint training trains all the (early) classifiers in a model simultaneously (left part of Fig. 8). Specifically, these studies [21, 61, 79, 116, 122, 123, 129, 131, 136, 138, 139, 149, 153] define a loss function for each of the classifier, and minimize the weighted sum of cross-entropy losses per sample as follows:

\[\mathcal{L}_{\text{Joint}}(\{\hat{y}^1, \cdots, \hat{y}^N\}, c) = \sum_{j=1}^{N} \lambda_j \mathcal{L}_{\text{CE}}(\hat{y}^j, c), \]

where \(\{\hat{y}^1, \cdots, \hat{y}^N\}\) indicates outputs from \(N\) (early) classifiers, and the correct label \(c\) is shared across all the classifiers in a model. Note that the base model (final classifier) is also counted as one of the \(N\) classifiers, and \(N-1\) early classifiers are introduced to the base model.

Instead, Li et al. [70], Phuong and Lampert [94] use a knowledge distillation-based loss Eq. (3) by treating the final classifier (last exit) as teacher model and all the early classifiers as student models. This approach is based on the assumption that the last classifier will achieve the highest accuracy among the all (early) classifiers in the model, and early classifiers (students) could learn from the last classifier as a teacher model.

Separate training

A few studies [76, 84, 137] suggest training the early classifiers separately. This approach can be interpreted as a two-stage training paradigm that trains a model in the first stage, and then trains the early classifiers introduced to the pre-trained model whose parameters are fixed in the second stage (See Fig. 8 (right)). For instance, Xin et al. [137] fine-tune a BERT model in the first stage following Devlin et al. [18]. Then, the early classifiers are introduced in the model and trained while all the parameters of the BERT model learnt in the first stage are kept frozen. Liu et al. [76] adopt a similar approach, but in the second training stage knowledge distillation is used to train the early classifiers. Different from SC studies using knowledge distillation, the teacher model is fixed, and only the additional parameters corresponding to the early classifiers are trained.

6 SPLIT COMPUTING AND EARLY EXITING: RESEARCH CHALLENGES

In this section, we describe some of the research challenges in the SC and EE domain.

Evaluation of SC and EE in more practical settings

Due to the cross-disciplinary nature of this research area, it is essential to design practical and convincing evaluation settings to demonstrate the effectiveness of proposed approaches. As shown in Tables 3 and 4, the techniques proposed in many of the recent related studies are validated only on small-scale datasets such as MNIST and CIFAR datasets, which leads to some concerns on the input data size in relation with compression. Indeed, Table 2 suggests that the input data size in many of such datasets is relatively small (e.g., smaller than 2 kilobytes per image with a resolution of \(32 \times 32\) pixels). The low-resolution of the input size may enable conventional EC, where the mobile device fully offloads the computing task by transferring the input data to an edge server. In fact, the transmission of such small amount of data would require a small time even in settings with limited communication capacity. As a consequence, executing even small head models on resource-limited mobile device could lead to an overall delay increase.

Based on the above discussion, it becomes apparent that the models and datasets, in addition to the wireless and computing environments, are of paramount importance when assessing the performance of SC and EE schemes. Of particular relevance is the evaluation of accuracy, which is not provided in some of the early studies (e.g., [38, 106, 112]) and the consideration of state-of-the-art
models and datasets which are largely used in the machine learning community. For instance, the use of small models, such as MobileNetV2, ResNet-50, VGG-16, that are likely over-parametrized for simple classification tasks could lead to wrong conclusions when injecting bottlenecks. Conversely, it was shown in [81] how challenging is to inject bottlenecks when considering complex vision tasks such as classification on the ImageNet dataset [104].

Optimization of bottleneck design and placement in SC

The study of the architecture and placement of the bottleneck in a DNN model is also of considerable importance. Important metrics include: (i) bottleneck data size (or compression rate), (ii) complexity of head model executed on mobile device, and (iii) resulting model accuracy. As a principle, the smaller the bottleneck representation is, the lower the cost between mobile device and edge server will be. In general, the objective of SC is to generate a bottleneck data size smaller than that of input data such as JPEG file size of input data, which is in turn much smaller than data size of input tensor (32-bit floating point), as the communication delay is a key component to reduce overall inference time [81, 82, 84, 139]. Secondly, since mobile devices often have limited computing resource and may have other constraints such as energy consumption due to its battery capacity, SC should aim at minimizing their computational load by making head models as lightweight as possible. For instance, designing a small bottleneck at very early stage of the DNN model enables a reduction in the computational complexity of the head model [83, 84].

On top of these two criteria, the model accuracy resulted by the bottleneck injection should not be compromised as the introduced bottleneck removes more or less information at the placement compared to the original model. A reasonable lower bound of the model accuracy in SC would be that of widely recognized lightweight models e.g., MobileNetV2 [106] for ImageNet dataset, considering a local computing system where such lightweight models can be efficiently executed. In general, it would be challenging to optimize bottleneck design and placement with respect to all the three different metrics, and the existing studies empirically design the bottlenecks and determine the placements. Thus, theoretical discussion on bottleneck design and placement should be an interesting research topic for future work.

Dynamic control of exits in EE

In most of the recent studies, early exits are used when one of the introduced early classifiers (exits) is confident enough in its prediction. However, users are required to determine a threshold for each of classifiers beforehand at least for one early classifier in the original model where we introduce the early classifier to. For example, if the first classifier’s prediction score is greater than 0.9 in range of 0.0 and 1.0, then the inference for the input is terminated.

To achieve more efficient inference without significantly sacrificing the accuracy of the original model, the system needs to find balance between (early) classifiers. As recent studies introduce multiple early exits to a model at different stages, such optimizations is challenging. In addition to manually defining such a threshold for each of the classifiers based on empirical results, a possibly interesting direction is the optimization of the decision making process, that is, at which (early) classifier we should terminate the inference for a given input, without a set of thresholds defined beforehand based on system characteristics.

Expanding the Application Domain of SC and EE

The application domains of SC and (in minor part) EE remain primarily focused on image classification. This focus may be explained by the size of the input, which makes compression a relevant problem in many settings, and the complexity of the models and task. However, there are many other unexplored domains which SC would benefit. Real-time health conditions monitoring via wearable
sensors is a notable example of an application where a significant amount of data is transferred from sensors to edge servers such as cellular phones and home hubs. For instance, the detection and monitoring of heart anomalies (e.g., arrhythmia) from (ECG) [27] require the processing of high-rate samples (e.g., 100-1000 per heart cycle) using high complexity DNN models [36]. Health monitoring applications pose different challenges compared to computer CV-based applications. Indeed, in the former both the computing capacity and the bandwidth available to the system are often smaller compared to the latter scenario, and conceptual advancements are required.

Toward an Information-Theoretic Perspective

The key intuition behind the success of SC and EE is similar to what has led to the success of techniques such as model pruning [33, 39, 67, 141] and knowledge distillation [41, 55, 86]: most state-of-the-art DNNs are significantly over-parameterized [146, 147]. A possible approach to justify SC and EE can be found in the study of information bottlenecks (IB), which were introduced in [124] as a compression technique in which a random variable X is compressed while preserving relevant information about another random variable Y. The IB method has been applied in [125] to quantify mutual information between the network layers and derive an information theory limit on DNN efficiency. This has lead to attempts at explaining the behavior of deep neural networks with the information bottleneck formalism [107].

Despite these early attempts, a strong connection between this relatively new perspective and the techniques described in this paper is still elusive. Some of the approaches and architectures discussed in this paper are meaningful attempts to efficiently extract a compressed representation of the input, and provide sufficient information toward a certain task early in the network layers. The emerging IB formalism is a promising approach to enable the first moves in the information theoretical analysis of neural networks-based transformations. We believe that this interpretation could serve as foundation for an in-depth study of structural properties for both SC and EE.

7 CONCLUSIONS

Mobile devices such as smartphones and drones have now become an integral part of our daily lives. These devices increasingly utilize deep neural networks (DNNs) to execute complex inference tasks such as image classification and speech recognition, among others. For this reason, in this paper, we have provided a comprehensive survey of the state of the art in split computing (SC) and early exiting (EE), by presenting a thorough comparison of the most relevant approaches. We have also provided a set of compelling research challenges that need to be addressed to improve existing work in the field. We hope this survey will elicit a significant amount of research work in these emerging fields.

ACKNOWLEDGMENTS

This work was partially supported by the NSF under grant IIS-1724331 and MLWiNS-2003237.

REFERENCES

[1] Ferran Adelantado, Xavier Vilajosana, Pere Tuset-Peiro, Borja Martinez, Joan Melia-Segui, and Thomas Watteyne. 2017. Understanding the Limits of LoRaWAN. *IEEE Communications Magazine* 55, 9 (2017), 34–40.

[2] Juliano S Assine, Eduardo Valle, et al. 2021. Single-Training Collaborative Object Detectors Adaptive to Bandwidth and Computation. *arXiv preprint arXiv:2105.00591* (2021).

[3] Jimmy Ba and Rich Caruana. 2014. Do deep nets really need to be deep?. In *NIPS 2014*. 2654–2662.

[4] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. 2017. End-to-end Optimized Image Compression. In *International Conference on Learning Representations*.

[5] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. 2018. Variational image compression with a scale hyperprior. In *International Conference on Learning Representations*.
[30] Odd Erik Gundersen and Sigbjørn Kjensmo. 2018. State of the Art: Reproducibility in Artificial Intelligence. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[31] Tian Guo. 2018. Cloud-based or on-device: An empirical study of mobile deep inference. In 2018 IEEE Int. Conference on Cloud Engineering (IC2E). IEEE, 184–190.

[32] R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan Szpektor. 2006. The second pascal recognising textual entailment challenge. In Proceedings of the Second PASCAL Challenges Workshop on Recognising Textual Entailment.

[33] Song Han, Huizi Mao, and William J Dally. 2016. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding. In Fourth International Conference on Learning Representations.

[34] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both Weights and Connections for Efficient Neural Networks. Advances in Neural Information Processing Systems 28 (2015).

[35] Awini Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al. 2014. Deep speech: Scaling up end-to-end speech recognition. arXiv preprint arXiv:1412.5567 (2014).

[36] Awini Y Hannun, Pranav Rajpurkar, Masoumeh Haghpanahi, Geoffrey H Tison, Codie Bourn, Mintu P Turakhia, and Andrew Y Ng. 2019. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature medicine 25, 1 (2019), 65–69.

[37] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision. 2961–2969.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.

[39] Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel Pruning for Accelerating Very Deep Neural Networks. In Proceedings of the IEEE International Conference on Computer Vision. 1389–1397.

[40] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. 2012. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal processing magazine 29, 6 (2012), 82–97.

[41] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2014. Distilling the Knowledge in a Neural Network. In Deep Learning and Representation Learning Workshop: NIPS 2014.

[42] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. 2019. Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 1314–1324.

[43] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv preprint arXiv:1704.04861 (2017).

[44] Diyi Hu and Bhaskar Krishnamachari. 2020. Fast and Accurate Streaming CNN Inference via Communication Compression on the Edge. In 2020 IEEE/ACM Fifth Int. Conference on Internet-of-Things Design and Implementation (IoTDI). IEEE, 157–163.

[45] Gao Huang, Danlu Chen, T. Li, Felix Wu, L. V. D. Maaten, and Kilian Q. Weinberger. 2018. Multi-Scale Dense Networks for Resource Efficient Image Classification. In International Conference on Learning Representations.

[46] Gao Huang, Zhong Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. 2017. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 4700–4708.

[47] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In International Conference on Machine Learning. PMLR, 448–456.

[48] Shankar Iyer, Nikhil Dandekar, and Kornél Csernai. [n.d.]. First Quora Dataset Release: Question Pairs. https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs [Online; Accessed on January 25, 2021].

[49] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2704–2713.

[50] Jagannath, Jithin and Polosky, Nicholas and Jagannath, Anu and Restuccia, Francesco and Melodia, Tommaso. [n.d.]. Machine Learning for Wireless Communications in the Internet of Things: A Comprehensive Survey. Ad Hoc Networks (Elsevier) 93 (Jn. d.), 101913.

[51] Mikolaj Jankowski, Deniz Gündüz, and Krystian Mikolajczyk. 2020. Joint Device-Edge Inference over Wireless Links with Pruning. In 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 1–5.

[52] Hyuk-Jin Jeong, InChang Jeong, Hyeon-Jae Lee, and Soo-Mook Moon. 2018. Computation Offloading for Machine Learning Web Apps in the Edge Server Environment. In 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS). 1492–1499.
[53] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. 2020. Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment. In Proceedings of the AAAI conference on artificial intelligence, Vol. 34. 8018–8025.

[54] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge. In Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and Operating Systems (Xi’an, China). 615–629. https://doi.org/10.1145/3037697.3037698

[55] Yoon Kim and Alexander M Rush. 2016. Sequence-Level Knowledge Distillation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. 1317–1327.

[56] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In Third International Conference on Learning Representations.

[57] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images. (2009).

[58] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.). 1097–1105.

[59] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2016. Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533 (2016).

[60] Zhuoqiang Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2019. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. In International Conference on Learning Representations.

[61] Guangli Li, Lei Liu, Xueying Wang, Xiao Dong, Peng Zhao, and Xiaobing Feng. 2018. Auto-tuning Neural Network Quantization Framework for Collaborative Inference Between the Cloud and Edge. In International Conference on Artificial Neural Networks. 402–411.

[62] Hao Li, Asim Kadav, Igor Durandovic, Hanan Samet, and Hans Peter Graf. 2016. Pruning Filters for Efficient ConvNets. In Fourth International Conference on Learning Representations.

[63] Hao Li, Asim Kadav, Igor Durandovic, Hanan Samet, and Hans Peter Graf. 2017. Pruning Filters for Efficient ConvNets. In Fifth International Conference on Learning Representations.

[64] He Li, Kaoru Ota, and Mianxiong Dong. 2018. Learning IoT in edge: Deep learning for the Internet of Things with edge computing. IEEE network 32, 1 (2018), 96–101.

[65] Jinyu Li, Rui Zhao, Jui-Ting Huang, and Yifan Gong. 2014. Learning Small-Size DNN with Output-Distribution-Based Criteria. In Fifteenth annual conference of the international speech communication association.

[66] Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and Joey Gonzalez. 2020. Train big, then compress: Rethinking model size for efficient training and inference of transformers. In International Conference on Machine Learning, PMLR, 5958–5968.

[67] Min Lin, Qiang Chen, and Shuicheng Yan. 2014. Network in network. (2014).

[68] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. 2017. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2117–2125.

[69] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common objects in context. In European conference on computer vision. Springer, 740–755.

[70] Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao, Haotang Deng, and QI JU. 2020. FastBERT: a Self-distilling BERT with Adaptive Inference Time. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 6035–6044.
Surat Teerapittayanon, Bradley McDaniel, and Hsiang-Tsung Kung. 2016. Branchynet: Fast inference via early exiting from deep neural networks. In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2464–2469.

Surat Teerapittayanon, Bradley McDaniel, and H. T. Kung. 2017. Distributed Deep Neural Networks Over the Cloud, the Edge and End Devices. In 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). 328–339.

Naftali Tishby, Fernando C Pereira, and William Bialek. 2000. The information bottleneck method. arXiv preprint physics/0004057 (2000).

Naftali Tishby and Noga Zaslavsky. 2015. Deep learning and the information bottleneck principle. In 2015 IEEE Information Theory Workshop (ITW). IEEE, 1–5.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc., 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. 2019. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. In International Conference on Learning Representations.

Fei Wang, Boyu Diao, Tao Sun, and Yongjun Xu. 2020. Data security and privacy challenges of computing offloading in fins. IEEE Network 34, 2 (2020), 14–20.

Meiqi Wang, Jianqiao Mo, Jun Lin, Zhongfeng Wang, and Li Du. 2019. DynExit: A Dynamic Early-Exit Strategy for Deep Residual Networks. In 2019 IEEE International Workshop on Signal Processing Systems (SiPS). IEEE, 178–183.

Mengqiu Wang, Noah A Smith, and Teruko Mitamura. 2007. What is the Jeopardy model? A quasi-synchronous grammar for QA. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL). 22–32.

Yue Wang, Jianghao Shen, Ting-Kuei Hu, P. Xu, Tan Nguyen, Richard Baraniuk, Zhangyang Wang, and Yingyan Lin. 2020. Dual Dynamic Inference: Enabling More Efficient, Adaptive, and Controllable Deep Inference. IEEE Journal of Selected Topics in Signal Processing 14 (2020), 623–633.

Alex Warstadt, Amanpreet Singh, and Samuel Bowman. 2019. Neural Network Acceptability Judgments. Transactions of the Association for Computational Linguistics 7 (2019), 625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 1112–1122.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Victor Sanh, Clement Delangue, Anthony Moi, Pierric Cistac, Morgan Funtowicz, Joe Davison, Sam Shleifer, et al. 2020. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. 38–45.

Huaming Wu, Ziru Zhang, Chang Guan, Katinka Wolter, and Minxian Xu. 2020. Collaborate edge and cloud computing with distributed deep learning for smart city internet of things. IEEE Internet of Things Journal 7, 9 (2020), 8099–8110.

Ji Xin, Rodrigo Nogueira, Yaoliang Yu, and Jimmy Lin. 2020. Early Exiting BERT for Efficient Document Ranking. In Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing. 83–88.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. 2020. DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2246–2251.

Qunliang Xing, Mai Xu, Tianyi Li, and Zhenyu Guan. [n.d.]. Early Exit Or Not: Resource-Efficient Blind Quality Enhancement for Compressed Images.

L. Yang, Yizeng Han, X. Chen, Shiji Song, Jifeng Dai, and Gao Huang. 2020. Resolution Adaptive Networks for Efficient Inference. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2366–2375.

Taojiaannan Yang, Sijie Zhu, Chen Chen, Shen Yan, Mi Zhang, and Andrew Willis. 2020. MutualNet: Adaptive convnet via mutual learning from network width and resolution. In European conference on computer vision. Springer, 299–315.

Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. 2017. Designing energy-efficient convolutional neural networks using energy-aware pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 5687–5695.

Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne Sze, and Hartwig Adam. 2018. NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications. In Proceedings of the European Conference on Computer Vision (ECCV). 285–300.

Yibo Yang, Robert Bamler, and Stephan Mandt. 2020. Variational bayesian quantization. In International Conference on Machine Learning. PMLR, 10670–10680.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015. WikiQA: A challenge dataset for open-domain question answering. In Proceedings of the 2015 conference on empirical methods in natural language processing. 2013–2018.
[145] Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu, Huajie Shao, and Tarek Abdelzaher. 2020. Deep compressive offloading: speeding up neural network inference by trading edge computation for network latency. In Proceedings of the 18th Conference on Embedded Networked Sensor Systems. 476–488.

[146] Shujian Yu and Jose C Principe. 2019. Understanding autoencoders with information theoretic concepts. Neural Networks 117 (2019), 104–123.

[147] Shujian Yu, Kristoffer Wickstrøm, Robert Jenssen, and José C Principe. 2020. Understanding convolutional neural networks with information theory: An initial exploration. IEEE transactions on neural networks and learning systems (2020).

[148] Sergey Zagoruyko and Nikos Komodakis. 2016. Wide Residual Networks. In Proceedings of the British Machine Vision Conference (BMVC). BMVA Press, 87.1–87.12.

[149] Liekang Zeng, En Li, Zhi Zhou, and X. Chen. 2019. Boomerang: On-Demand Cooperative Deep Neural Network Inference for Edge Intelligence on the Industrial Internet of Things. IEEE Network 33 (2019), 96–103.

[150] Menglei Zhang, Michele Polese, Marco Mezzavilla, Jing Zhu, Sundeep Rangan, Shivendra Panwar, and Michele Zorzi. 2019. Will TCP work in mmWave 5G cellular networks? IEEE Communications Magazine 57, 1 (2019), 65–71.

[151] Shizhou Zhang, Qi Zhang, Yifei Yang, Xing Wei, Peng Wang, Bingliang Jiao, and Yanning Zhang. 2020. Person Re-identification in Aerial imagery. IEEE Transactions on Multimedia 23 (2020), 281–291.

[152] X. Zhang, J. Zhao, and Y. LeCun. 2015. Character-level Convolutional Networks for Text Classification. In NIPS.

[153] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. 2020. BERT Loses Patience: Fast and Robust Inference with Early Exit. Advances in Neural Information Processing Systems 33 (2020).

[154] Barret Zoph and Quoc Le. 2017. Neural Architecture Search with Reinforcement Learning. In International Conference on Learning Representations.

[155] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning Transferable Architectures for Scalable Image Recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 8697–8710.