Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method

Robert Janknegt*, Esther Metting, Johan Kooistra and Richard Dekhuijzen
1Hospital Pharmacist, Clinical Pharmacologist Sittard, The Netherlands
2Epidemiologist/Behavioral Scientist, University Medical Center, Groningen, The Netherlands
3BENU Pharmacies, Maarssen, The Netherlands
4Pulmonologist, Nijmegen, The Netherlands

*Corresponding Author: Robert Janknegt, Hospital Pharmacist, Clinical Pharmacologist Sittard, The Netherlands.

Part 2

Medicines	Duration Days (days)	N	First dose, timing (hours)	Age	Female (%)	Design	Duration of follow-up	Ref
Api 2.5 mg bid or Enox 30 mg bid sc War INR 1.8-3 or	10-14	111	12-24 post	68	68	DB	10-14 days	[26]
Api 2.5 mg bid or Enox 30 mg bid sc	10-14	1599	12-24 post	66	62	DB	70 days	[27]
Api 2.5 mg bid or Enox 40 mg qd sc	10-14	1528	12-24 post	67	71	DB, DD	10-14 days	[28]
Api 2.5 mg bid or Enox 40 mg qd sc	35	2708	12-24 post	61	53	DB, DD	95 days	[29]
Dabi 150 mg bid	6-10	390	1-4 post	66	65	DB, DD	6-10	[30]
Dabi 225 mg bid	6-10	393	12 before	66	58	DB, DD	6-10	[30]
Dabi 150 mg qd Dabi 220 mg qd Enox 40 mg qd	6-10	703	1-4 post evening before	68	64	DB, DD	3 months	[31]
Dabi 150 mg qd Dabi 220 mg qd Enox 40 mg qd	28-35	1163	1-4 post evening before	63	57	DB, DD	28-35	[32]

Citation: Robert Janknegt, et al. "Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method". Acta Scientific Pharmaceutical Sciences 4.12 (2020): 145-175.
Table 1: Comparative studies in orthopaedic surgery, baseline data and design.

Medicines	BMI	Arthritis (%)	Duration of Surgery (h)	Surgery	Primary endpoint	Ref
Api 2.5 mg bid or Enox 30 mg bid sc War INR 1.8-3 or	31	70	1.4	Knee	VTE-A + VTE-S + PE-NF	[26]
	30	71	1.6			
	30	72	1.6			
Api 2.5 mg bid or Enox 30 mg bid sc	31	81	1.5	Knee	VTE-A + VTE-S + PE-NF + death	[27]
	31	80	1.5			
Api 2.5 mg bid or Enox 40 mg qd sc	29	63	1.6	Knee	VTE + PE-NF + death	[28]
	29	63	1.6			
Api 2.5 mg bid or Enox 40 mg qd sc	28	57	1.5	Hip	VTE + PE-NF + death	[29]
	28	58	1.5			

Citation: Robert Janknegt, et al. "Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method". Acta Scientific Pharmaceutical Sciences 4.12 (2020): 145-175.
Table 2: Comparative studies in orthopaedic surgery, baseline data and design.

Drug Combination	SOJA Score	Location	Outcome	Reference
Dabi 150 mg bid	1.5	Hip and knee	VTE during treatment	[30]
Dabi 225 mg bid	1.4	Hip and knee	VTE + mortality	[31]
Enox 40 mg qd		Hip	VTE + mortality	[32]
Dabi 150 mg qd	1.5	Knee	VTE + mortality	[33]
Dabi 220 mg qd	1.5	Knee	VTE + mortality	[34]
Enox 40 mg qd	1.5	Knee	VTE	[35]
Edo 15 mg qd	1.4	Knee	VTE	[36]
Edo 30 mg qd	1.4	Knee	VTE	[37]
Dalte 5000 IU qd	1.4	Knee	VTE	[38]
Edo 30 mg bid	1.5	Knee	VTE	[39]
Edo 15 mg qd	1.5	Knee	VTE	[40]
Edo 30 mg qd	1.5	Knee	VTE	[41]
Edo 15 mg qd	1.4	Knee	VTE	[42]
Edo 30 mg qd	1.4	Knee	VTE	[43]

Citation: Robert Janknegt, *et al.* "Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method". *Acta Scientific Pharmaceutical Sciences* 4.12 (2020): 145-175.
Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method

Medicines	DVT-A (%)	DVT-S (%)	DVT-M (%)	DVT-P (%)	DVT (%)	VTE (%)	PE (%)	Fatal PE (%)	Mortality (%)	Composite Efficacy (%)	Reference
Api 2.5 mg bid	8.3	0.9	0.9	10	0	0.7	1.8				[26]
Enox 30 mg bid	12.8	0.9	2.8	17	1.8	0	4.6				[27]
War INR 1.8-3	25.7	0.9	1.8	29	0	0	1.8	(VTE-P + PE + death)			[28]
Api 2.5 mg bid	0.2	0.4	0.7	7.8	1.0	0.1	0.2				[29]
Enox 30 mg bid	0.2	0.4	0.9	8.2	0.4	0	0.2				[30]
(all results after 10-14 days)											
Api 2.5 mg bid	<0.1	0.5	0.8	14.6	0.3	0.1	0.13			15.1 (VTE + PE + death)	[31]
Enox 40 mg qd	0.2	0.5	2.2	24.4	0	0	8.8			24.4 (VTE + PE + death)	[32]
(all results after 35 days)										P<0.0001	
Dabi 150 mg bid	3.3	1.7	5.6	16.8	13.1	17.4	4.0				[33]
Dabi 225 mg bid	39.7	36.0	36.0	0.4	0.1	0.1	1.7				
Enox 40 mg qd	0.4	2.6	5.6	3.4	2.6	0.3	5.6	(DVT/PE)			
Dabi 220 mg qd	3.2	3.1	3.1	0.1	0.1	0.3	8.6				[34]
Enox 40 mg qd	0.8	1.2	1.2	0.8	0.4	0.3	6.0				[35]
(all results after 35 days)											[36]
	2.1	0.4	0.1	7.6	0.1	0	3.1				[37]
	3.9	0.2	0.3	8.6	0.2	0.1	6.7				[38]
	0	0	0	0	0	0	7.7				
	0.4	0.1	0	0	0	0	8.7				

Citation: Robert Janknegt, *et al.* "Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method". *Acta Scientific Pharmaceutical Sciences* 4.12 (2020): 145-175.
Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method

Drug Combination	Dabi 150 mg qd	Dabi 220 mg qd	Enox 40 mg qd	(all results after 12-15 days)	Edo 15 mg qd	Edo 30 mg qd	Dalte 5000 IU qd	(VTE-M)	P=0.036	P<0.001	P=0.02	P<0.001	VTE + death	P=0.036	P<0.001	0	0.2	33.7	31.1	25.3	VTE + death
													(all results after 36 days)			---	----	-------	-------	-------	----------------
													(all results after 36 days)			---	----	-------	-------	-------	----------------
													(all results after 36 days)			---	----	-------	-------	-------	----------------
													(all results after 36 days)			---	----	-------	-------	-------	----------------
													(all results after 36 days)			---	----	-------	-------	-------	----------------
													(all results after 36 days)			---	----	-------	-------	-------	----------------
													(all results after 36 days)			---	----	-------	-------	-------	----------------
													(all results after 36 days)			---	----	-------	-------	-------	----------------
													(all results after 36 days)			---	----	-------	-------	-------	----------------
													(all results after 36 days)			---	----	-------	-------	-------	----------------
													(all results after 36 days)			---	----	-------	-------	-------	----------------
													(all results after 36 days)			---	----	-------	-------	-------	----------------
													(all results after 36 days)			---	----	-------	-------	-------	----------------
													(all results after 36 days)			---	----	-------	-------	-------	----------------
													(all results after 36 days)			---	----	-------	-------	-------	----------------
													(all results after 36 days)			---	----	-------	-------	-------	----------------
													(all results after 36 days)			---	----	-------	-------	-------	----------------
													(all results after 36 days)			---	----	-------	-------	-------	----------------
													(all results after 36 days)			---	----	-------	-------	-------	----------------

Citation
Robert Janknegt, et al. “Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method”. Acta Scientific Pharmaceutical Sciences 4.12 (2020): 145-175.
Table 3: Comparative studies in orthopaedic surgery, results.

DVT-A: Asymptomatic deep vein thrombosis
DVT-S: Severe/symptomatic deep vein thrombosis
DVT-M: Major deep vein thrombosis
DVT-P: Proximal deep vein thrombosis
PE: Pulmonary embolism
PE-NF: Non-fatal pulmonary embolism
PE-F: Fatal pulmonary embolism
VTE: Venous thromboembolism (deep vein thrombosis plus pulmonary embolism).

Medicines	Withdrawal AE (%)	AE (%)	AE drug related (%)	AE-S (%)	Wound related infections (%)	MI (%)	Stroke (%)	ALT>3ALN	ALT>3ALN And bili >2ALN	Reference
Api 2.5 mg bid	87	7.8	1.3	1.3	1.3	0.7	2.6	0	0	[26]
Enox 30 mg bid	87	6.7	0.7	0	0	0	2.7	0	0	[27]
War INR 1.8-3	89	6.0	2.0	0.7	0	0	2.0	0.7	0	[28]
Api 2.5 mg bid	87	8.5	1.3	0.1	0	0	1.0	0	1	[29]
Enox 30 mg bid	87	8.6	0.7	0.3	0.1	0	1.6	0.1	0	[29]
Api 2.5 mg bid	3	52	14	5	0.1	0.1	2	0.2	0.2	[28]
Enox 40 mg qd	3	55	14	6	0.1	0	1	0.1	0.1	[29]
Api 2.5 mg bid	3	52	14	5	0.1	0.1	2	0.2	0.2	[28]
Enox 40 mg qd	3	55	14	6	0.1	0	1	0.1	0.1	[29]

Citation: Robert Janknegt, et al. "Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method". Acta Scientific Pharmaceutical Sciences 4.12 (2020): 145-175.
Drug Combination	AE1	AE2	AE3	AE4	AE5	AE6					
Dabi 150 mg bid	3.7	1.0	3.7	[30]							
Dabi 225 mg bid	3.7	0.4	3.7								
Enox 40 mg qd	4.6	0.5	4.6								
Dabi 150 mg qd	8	77	8	[31]							
Dabi 220 mg qd	6	77	8								
Enox 40 mg qd	6	77	7								
Dabi 220 mg qd	5.9	68	9.1	5.6	<0.1	0	3.8	0.2	[32]		
Enox 40 mg qd	5.2	69	9.5	5.9	<0.1	0	5.6	0			
Dabi 150 mg qd	5			1.0			0.7		[33]		
Dabi 220 mg qd	5			0.9			1.0				
Eno 30 mg bid	1.6	35	8.9	4.2		4.2	0.5		[34]		
Edo 30 mg qd	0.6	28	4.7	2.9		2.4	0.6				
Dalte 5000 IU qd	1.2	36	8.1	1.7		2.9	0.6				
Edo 30 mg qd				0.6		5.7	0.3		[35]		
Eno 20 mg bid						0.4					
Edo 15 mg qd	65	18	0			0.4			[36]		
Edo 30 mg qd	71	26	0			0.3					
Eno 20 mg bid	83	53	1.1			1.2					
Edo 30 mg qd	65			2.6					[37]		
Eno 20 mg bid	77			10							
Riva 10 mg qd	64	12	0.4	0.1	0.1	2.0	0.1		[38]		
Eno 40 mg qd	65	12	0.4	0.3	0.1	2.7	0.1				
Riva 10 mg qd	3.8	60	1.1	7.3	0.7	0.3	0.2	1.6	0.2	[39]	
Eno 40 mg qd	5.3	62	1.4	10.7	0.5	0.2	0.1	4.7	0.3		
Riva 10 mg qd				12.013.0	0.6	0.1	0.2				[40]
Eno 40 mg qd					0.9	0.2	0				
Riva 10 mg qd	80	20	5.2	0.3	0.1	0.1	1.3	0.1		[41]	
Eno 30 mg bid	81	20	7.0	0.2	0	0	2.6	0.2			

Table 4: Comparative studies in orthopaedic surgery, safety results.

AE: Adverse Events

AE-S: Severe Adverse Events

MI: Myocardial Infarction.

Citation: Robert Janknegt, *et al.* "Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method". *Acta Scientific Pharmaceutical Sciences* 4.12 (2020): 145-175.
Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method

Medicines	Major bleeding (%)	Overt bleeding (%)	Minor bleeding (%)	Non-major bleeding (%)	All bleeding (%)	Bleeding with surgical intervention (%)	Fatal bleeding (%)	Bleeding at critical site (%)	Bleeding at surgical site (%)	Reference
Api 2.5 mg bid	0	3.9	0	3.0	0	0	0	0.1	0.5	[26]
Enox 30 mg bid	0	4.0	0	4.0	0	0	0	0.1	0.9	
War INR 1.8-3	0	5.3	0	5.3	0	0	0	0.1	0.9	
Api 2.5 mg bid	0.7	0.6	2.4	5.3	0	0	0	0.1	0.5	[27]
Enox 30 mg bid	1.4	1.4	2.5	6.8	<0.1	0.1	0.1	0.1	0.9	
Api 2.5 mg bid	0.6	0.5	3.4	6.9	0	0	0	0.1	0.5	[28]
Enox 40 mg qd	0.9	0.9	3.6	8.4	0	0	0	0.1	0.7	
Api 2.5 mg bid	0.8	6.9	11.7	12.6	<0.1	0	0	0.1	0.6	[29]
Enox 40 mg qd	0.7	7.3								
Dabi 150 mg bid	4.1	7.9	12.0				12.0			[30]
Dabi 225 mg bid	3.8	9.7	13.5							
Enox 40 mg qd	2.0	6.4								
Dabi 150 mg qd	1.3	8.4	6.8	0.1	0	0.1	0	0.1	0.9	[31]
Dabi 220 mg qd	1.5	8.8	5.9	0.2	0	0	0	0.1	0.9	
Enox 40 mg qd	1.3	9.9	5.3	0.1	0	0	0	0.1	0.9	
Dabi 150 mg qd	1.3	6.2	4.7	0.3	0.1	0	0.1	0.1	0.9	[32]
Dabi 220 mg qd	2.0	6.1	4.2	0.2	0.1	0	0.1	0.1	0.9	
Enox 40 mg qd	1.6	6.4	3.5	0.3	0	0	0.3	0.1	0.9	
Dabi 220 mg qd	1.4	1.3	6.0	2.3	9.7	0	0	0.1	0.9	[33]
Enox 40 mg qd	0.9	0.7	5.4	2.0	8.3	0	0	0.1	0.9	
Dabi 150 mg qd	0.6	2.5		0	0	0	0.2	0.1	0.9	[34]
Dabi 220 mg qd	0.6	2.7		0	0	0	0.3	0.1	0.9	
Enox 40 mg qd	1.4	2.4		0.1	0	0	1.4	0.1	0.9	
Edo 15 mg qd	0.5	1.2	2.1							[35]
Edo 30 mg qd	0.6	1.0	1.8							
Dalte 5000 IU qd	0	1	0.6							
Edo 30 mg qd	1.1	5.1	6.2							[36]
Enox 20 mg bid	0.3	3.4	3.7							
Medicines	N	Age (%)	Inclusion	Blood pressure S/D	BMI	Design	Duration of follow-up (years)	CHAD score mean	Endpoint	Ref
---------------------------	-------	---------	---	-------------------	-----	----------	--------------------------------	-----------------	---------------------------------	---------
Api 5 mg bid	2808	70	41 AF at risk for stroke, not suitable for Vit K antagonist	132	28	Open	1.1	2.0	Stroke or SE	[44]
Warfarin INR 2-3	9081	70	36 AF at least one risk factor for stroke	130	130	Open	1.8	2.1	Stroke or SE	[45]
Dab 110 mg bid	6015	71	36 AF, at risk for stroke	131	131	DB	2.0	2.1	Stroke or SE	[46]
Warfarin INR 2-3	6076	71	37	131	131	DB	2.2	2.1	Stroke or SE	[46]
Dab 150 mg bid	6022	72	37	131	131	Open	2.1	2.2	Stroke or SE	[46]
Warfarin INR 2-3	317	59	27 AF, ablation	131	131	Open	2.0	2.2	Bleeding	[47]
Dab 150 mg bid	318	59	22	131	131	Open	8 weeks	2.0	MI, stroke, SE	[48]
Warfarin/Aspirin	981	72	26	131	131	Open	14 months	3.7	MI, stroke, SE	[48]
Warfarin/Aspirin	981	72	23	AF, PCI	131	Open	3.8	3.8	MI, stroke, SE	[48]
Dab 150 mg bid	763	69	22	Combi with ticagrelor or clopidogrel	131	131	3.3	3.6	MI, stroke, SE	[48]
Warfarin/Aspirin	764	69	22							

Table 5: Comparative studies in orthopaedic surgery, safety results: bleeding.
Table 6: Comparative studies in atrial fibrillation, baseline data and design.

Medicines	Type of AF (%)	Previous stroke (%)	Heart failure (%)	Diabetes	Hypertension	Ref					
Api 5 mg bid	Persistent	21	Paroxysmal	27	Permanent	52	14	40	19	86	[44]
Aspirin 81-324 mg qd		21		27		52	13	38	20	87	
Api 5 mg bid		85		15		19	36	25	87		[45]
Warfarin INR 2-3		84		16		20	35	25	88		
Dab 110 mg bid		32		32		35	20	32	23	79	[46]
Dab 150 mg bid		31		33		36	20	32	23	79	
Warfarin INR 2-3		32		34		34	20	32	23	79	
Dab 150 mg bid		27		67		6	3	10	10	52	[47]
Warfarin INR 2-3		26		69		6	3	11	11	56	
Dab 110 mg bid		18		50		33	8	11	37		[48]
Warfarin/Aspirin		18		49		32	10	10	38		
Dab 150 mg bid		17		50		33	7	10	34		
Warfarin/Aspirin		20		49		31	10	10	40		
Edo 30 mg qd		26		29		29	57	36	94	[49]	
Edo 60 mg qd		25		28		28	58	36	94		
Warfarin INR 2-3		25		28		28	58	36	94		
Riv 20 mg qd		81		18		55	63	40	90	[50]	
Warfarin INR 2-3		81		18		55	62	40	91		
Riv 20 mg qd		56		17		3	3	20	20	65	[51]
Vit K antag INR 2-3		50		23		5	4	15	21	69	

Table 7: Comparative studies in atrial fibrillation, baseline data and design.

Citation: Robert Janknegt, et al. "Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method". *Acta Scientific Pharmaceutical Sciences* 4.12 (2020): 145-175.
Table 8: Comparative studies in atrial fibrillation, baseline data and design.

Medicines	Stroke	Stroke ischaemic or unspecified	Stroke Hemorrhagic	Stroke disabling or fatal	SE	Stroke or SE	TIA	Ref
Api 5 mg bid	1.6/yr	1.1/yr	0.2/yr	1.0/yr	0.1/yr	1.6/yr		[44]
Aspirin 81-324 mg qd	3.4/yr	3.0/yr	0.3/yr	2.3/yr	0.4/yr	3.7/yr		[44]
	p<0.001	p<0.001	p<0.001	P<0.001				
Api 5 mg bid	1.19/yr	0.97/yr	0.24/yr	0.09/yr	1.27/yr	0.09/yr		[45]
Warfarin INR 2-3	1.51/yr	1.05/yr	0.47/yr	0.10/yr	1.60/yr	0.10/yr		
	P=0.01	P<0.001	P<0.001	P=0.01				
Dab 110 mg bid	1.44/yr	1.34/yr	0.12/yr	0.94/yr	1.53/yr	0.94/yr		[46]
Dab 150 mg bid	1.01/yr	0.92/yr	0.10/yr	0.66/yr	1.11/yr	0.66/yr		
Warfarin INR 2-3	1.57/yr	1.20/yr	0.38/yr	1.00/yr	1.69/yr	1.00/yr		
	P=0.01	P<0.001	P<0.001	NI p=0.02 for 150 mg vs warfarin				

Citation: Robert Janknegt, *et al.* "Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method*. Acta Scientific Pharmaceutical Sciences 4.12 (2020): 145-175.
Medicines	MI	CV hospitalization	Death CV	Death total	Composite Stroke, SE, death	Composite Stroke, SE, MI, death	Ref
Api 5 mg bid	0.8	12.6	2.7	3.5	4.6		[44]
Aspirin 81-324 mg qd	0.9	15.9	3.1	4.4	7.2		
				P<0.001			
Api 5 mg bid	0.53/yr	P<0.001	3.52/yr	4.49/yr	4.85/yr		[45]
Warfarin INR 2-3	0.61/yr		3.94/yr	5.05/yr	5.49/yr		
			P<0.05	P=0.02	P=0.01		
Dab 110 mg bid	0.72/yr		2.43/yr	3.75/yr			[46]
Dab 150 mg bid	0.74/yr		2.28/yr	3.64/yr			
Warfarin INR 2-3	0.53/yr		2.69/yr	4.31/yr			
Dab 150 mg bid	1.7%						
Warfarin/Aspirin	1.3%						
Dab 150 mg bid	1.2%						
Warfarin/Aspirin	1.0%						
Edo 30 mg qd	1.91/yr	1.77/yr	0.16/yr	0.80/yr	1.61/yr		[49]
Edo 60 mg qd	1.49/yr	1.25/yr	0.26/yr	0.69/yr	1.18/yr		
Warfarin INR 2-3	1.69/yr	1.25/yr	0.47/yr	0.71/yr	1.50/yr		
		P<0.001					
Riv 20 mg qd	2.1/yr	2.1/yr	0.41	0.81/yr	1.7/yr		[50]
Warfarin INR 2-3	2.4/yr	2.3/yr	0.71	1.09/yr	2.2/yr		
		P<0.01		P=0.024	NI: p<0.001		
Riv 20 mg qd	0.20		0.20	0	0.51		[51]
Vit K antag INR 2-3	0.41	0.41	0	0.20	1.02		

Table 9: Comparative studies in atrial fibrillation, results.
Medicines	Withdrawal AE (%)	AE (%)	AE drug related (%)	AE-S (%)	ALT>3ALN	ALT>3ALN And bili >2ALN	Reference
Api 5 mg bid							[44]
Aspirin 81-324 mg qd		22	1.4	0.2	[45]		
Warfarin INR 2-3		27	1.6	0.4			
Warfarin INR 2-3							
Apixaban 5 mg bid		81	35	1.1	0.3		[45]
Warfarin INR 2-3		83	37	1.0	0.4		
Dab 110 mg bid		2.7	2.1	0.2	[46]		
Warfarin INR 2-3		2.7	1.9	0.2			
Dab 150 mg bid		1.7	2.2	0.3	[47]		
Warfarin INR 2-3		2					
Dab 110 mg bid		6	43	2.1	0.2		[48]
Warfarin/Aspirin		6	42				
Dab 150 mg bid		6	40				
Warfarin/Aspirin		6	42				
Edoxaban 30 mg qd		16	10	18	2.1	0.2	[49]
Edoxaban 60 mg qd		17	11	17	2.2	0.2	[49]
Warfarin INR 2-3		17	12	18	2.1	0.1	
Riv 20 mg qd		81		0.5	[50]		
Warfarin INR 2-3		82		0.5	[50]		
Vit K antag INR 2-3							[51]

Table 10: Comparative studies in atrial fibrillation, results.

Table 11: Comparative studies in atrial fibrillation, safety results.

Citation: Robert Janknegt, et al. "Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method". Acta Scientific Pharmaceutical Sciences 4.12 (2020): 145-175.
Table 12: Comparative studies in atrial fibrillation, safety results, bleeding.

Medicines	Major bleeding	Intracranial bleeding	Fatal bleeding	Clinically relevant non-major	Major or Clinically relevant non-major	Minor bleeding	Any bleeding	Bleeding in critical organ	Ref
Api 5 mg bid	1.4	0.4	0.1	3.1		6.3			[44]
Aspirin 81-324 mg qd	1.2	0.4	0.2	2.7		5.0			
Api 5 mg bid	2.13/yr	0.33/yr	0.3	4.07/yr		18.1/yr			[45]
Warfarin INR 2-3	3.09/yr	0.80/yr	0.8	6.01/yr		25.8/yr			
ISTH									
Dab 110 mg bid	2.71/yr	0.23/yr	0.23	13.2/yr		19%			[46]
Dab 150 mg bid	3.11/yr	0.30/yr	0.30	14.8/yr		17%			
Warfarin INR 2-3	3.36/yr	0.74/yr	0.74	16.4/yr		17%			
Dab 150 mg bid	1.6%	6.9%	6.9%	19%		19%			[47]
Warfarin INR 2-3						17%			
Dab 110 mg bid	5.0%	0.3%	0.3%	19%		17%			[48]
Warfarin/Aspirin	9.2%	1.0%	1.0%	19%		17%			
Dab 150 mg bid	5.6%	0.1%	0.1%	19%		17%			
Warfarin/Aspirin	8.4%	1.0%	1.0%	19%		17%			
Edo 30 mg qd	1.61/yr	0.26/yr	0.26	6.60/yr		3.52/yr			[49]
Edo 60 mg qd	2.75/yr	0.39/yr	0.39	8.67/yr		4.12/yr			
Warfarin INR 2-3	3.43/yr	0.85/yr	0.85	10.2/yr		4.89/yr			
Riv 20 mg qd	3.6/yr	0.5/yr	0.5	11.8/yr		0.8			[50]
Warfarin INR 2-3	3.4/yr	0.7/yr	0.7	11.4/yr		1.2			
Riv 20 mg qd	0.61	0.20	0.20	0.20		0.60			[51]
Vit K antag INR 2-3	0.80	0.20	0.20	0.20		0.60			

Citation: Robert Janknegt, *et al.* "Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method". *Acta Scientific Pharmaceutical Sciences* 4.12 (2020): 145-175.
Medicines	N	Age	Female (%)	Body Weight (kg)	Inclusion	DVT (%)	PE (%)	DVT + PE (%)	Design	Duration of follow-up (months)	Ref
Api 10/5 mg bid	2691	57	42	85	Acute DVT	65	25	9	DB, DD	6	[52]
Enox 1mg/kg/Warfarin INR 2-3	2704	57	41	85		66	25	8	DB, DD		
Api 2.5 mg bid	840	57	42	86	Acute DVT previous 6-12 months treatment	65	35	35	DB, DD	12	[53]
Api 5 mg bid	813	57	42	86		65	35	35	DB, DD		
Placebo	829	57	43	85		67	34		DB, DD		
Api 2.5 mg bid 30 days	3255	67	50		Medically ill + risk factor for VTE	4.3	3.8		DB, DD	1	[54]
Enox 40 qd 6-14 days	3273	67	52								
Dabi 150 mg bid	1273	55	42	86	Acute DVT after parenteral treatment for 9 days	69	21	10	DB, DD	6	[55]
Warfarin INR 2-3	1266	54	41	84		69	21	10	DB, DD		
Dabi 150 mg bid	1280	56	39	80	Acute DVT after parenteral treatment for 5-11 days	69	23	8	DB, DD	6	[56]
Warfarin INR 2-3	1288	57	40	81		68	23	9	DB, DD		
Dabi 150 mg bid	1430	55	39	86	Acute VTE after treatment for > 3 months	66	23	12	DB, DD	6-36	[57]
Warfarin INR 2-3	1426	54	39	86		65	24	12	DB, DD		
Dabi 150 mg bid	681	56	44	84	Acute VTE after treatment for > 6 months	63	27	7	DB, DD	12	[57]
Placebo	662	56	45	84		67	27	5			
Edox 60 mg qd	4118	56	43		Acute DVT after parenteral treatment for > 5 days	66	34	33	DB, DD	3-12	[58]
Warfarin INR 2-3	4122	56	43			65	33				
Edox 60 mg qd	522	64	47		DVT in cancer patients	37		63	Open	6-12	[59]
Dalteparin 150 IU/kg	524	64	45			37		63	Open		
Riv 15 mg bid, 20 mg qd	1731	56	43		Acute DVT	99	1		Open	3-12	[60]
Enox 1mg/kg/Warfarin INR 2-3	1718	56	44			99	1				
Riv 20 mg qd	602	58	41		Acute DVT after treatment for 6-12 months	64	36	40	DB, DD	6-12	[60]
Placebo	594	58	43			60		40			

Citation: Robert Janknegt, et al. "Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method". *Acta Scientific Pharmaceutical Sciences* 4.12 (2020): 145-175.
Riv 15 mg bid, 20 mg qd
Enox 1mg/kg/ Warfarin INR 2-3

Medicines	CCR >50 ml/min %	Previous VTE (%)	Unprovoked VTE (%)	Active cancer (%)	Coronary artery disease (%)	Diabetes (%)	Heart failure (%)	Immobilised (%)	Primary endpoint	Ref
Api 10/5 mg bid	84	17	90	2.5					VTE-RS or VTE-D	[52]
Enox 1mg/kg/ Warfarin INR 2-3	85	15	90	2.8					VTE-RS or VTE-D	[52]
Api 2.5 mg bid	91	12	93	1.8					VTE-RS or death	[53]
Api 5 mg bid	92	15	91	1.1					VTE-RS or death	[53]
Placebo	91	12	91	2.2					VTE-RS or death	[53]
Api 2.5 mg bid 30 d	43	3.5							VTE-D or PE or DVT-S or DVT-P	[54]
Enox 40 qd 6-14 d	3.8	3.0							VTE-D or PE or DVT-S or DVT-P	[54]
Dabi 150 mg bid	26	5.0							VTE-RS or VTE-D	[55]
Warfarin INR 2-3	25	4.5							VTE-RS or VTE-D	[55]
Dabi 150 mg bid	19	3.9							VTE-RS or VTE-D	[56]
Warfarin INR 2-3	16	3.9							VTE-RS or VTE-D	[56]
Dabi 150 mg bid	4.2	8.4	10.5	6.6					VTE-RS or VTE-D	[57]
Warfarin INR 2-3	4.1	6.1	7.6	7.3					VTE-RS or VTE-D	[57]
Dabi 150 mg bid	6.3	8.4		7.8					VTE-RS or VTE-D	[57]
Placebo	5.7	7.6		5.4					VTE-RS or VTE-D	[57]
Edox 60 mg qd	19	66	9.2						VTE-RS or VTE-D	[58]
Warfarin INR 2-3	18	65	9.5						VTE-RS or VTE-D	[58]

Table 13: Comparative studies in deep venous thrombosis, baseline data and design.

Citation: Robert Janknegt, et al. “Direct Oral Anticoaguulants: Drug Selection by Means of the SOJA Method”. *Acta Scientific Pharmaceutical Sciences* 4.12 (2020): 145-175.
Table 14: Comparative studies in deep venous thrombosis, baseline data and design.

UA: Instable Angina

VTE-RS: VTE recurrent symptomatic thromboembolism

VTE-D: VTE related death.

Medicines	VTE-RS or VTE-D (%)	VTE-RS or death (%)	VTE-D or PE or DVT-S or DVT-P	CV-D, MI, stroke	PE-NF (%)	PE-F (%)	VTE-S (%)	DVT-P (%)	Death (%)	VTE-D (%)	Ref
Api 10/5 mg bid	2.3										[52]
Enox 1mg/kg/Warfarin INR 2-3	2.7										[52]
Api 2.5 mg bid	1.7	3.8		0.5	1.0	<0.1			1.5		[53]
Api 5 mg bid	1.7	4.2		0.6	0.5	0			0		[53]
Placebo	8.8	11.6		1.3	1.8	0			0		[53]

Citation: Robert Janknegt, *et al.* "Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method". *Acta Scientific Pharmaceutical Sciences* 4.12 (2020): 145-175.
Drug Combination	2.71	0.22	0.15	2.40	4.1	0.06	[54]
Api 2.5 mg bid 30 d							
Enox 40 qd 6-14 d	2.4	1.0	1.3	1.6	0.1	0.2	[55]
Dabi 150 mg bid	2.1	0.6	1.4	1.7	0.2	[56]	
Warfarin INR 2-3	2.3	0.5	2.0	2.0	0.2	[57]	
Dabi 150 mg bid	2.3	1.0	1.3	1.9	0	[58]	
Warfarin INR 2-3	1.8	0.7	1.2	1.2	0.1	[59]	
Dabi 150 mg bid	1.3	0.4	1.3	1.3	0.1	[60]	
Placebo	0.4	0.1	0.3			[61]	
	5.6	2.1	3.3				
	P<0.01						
Edox 60 mg qd	3.2	1.2	1.4	0.5	0.5	[62]	
Warfarin INR 2-3	3.5	1.4	1.5	0.5	0.5	[63]	
Dalteparin 150 IU/kg	7.9	5.2	40	0.6		[64]	
	11.3	5.3	37	0.6			
Riv 15 mg bid, 20 mg qd	1.2	1.1	2.1	2.2	2.9	[65]	
Enox 1mg/kg/ Warfarin INR 2-3	1.2	1.1	3.0				
Riv 20 mg qd	0.3	0.2	1.3	0.2	0.3	[66]	
Placebo	2.8	0.2	7.1				
P<0.001							
Riv 15 mg bid, 20 mg qd	0.9	0.7	2.1	2.4	2.1	[67]	
Enox 1mg/kg/ Warfarin INR 2-3	0.9	0.7	1.8				
Riv 10 mg qd 35 days	1.8	0.3	4.4	3.5	5.1	[68]	
Enox 40 mg qd 10 days	1.6	0.5	5.7	4.4	4.8	[69]	
Riv 10 mg	1.6	0.4	0.4	0.2	0.7	[70]	
Riv 20 mg	1.5	0.5	0.5				
Aspirin 100 mg	4.4	5.0	1.7	0.6		[71]	
	P<0.001						

Table 15: Comparative studies in deep venous thrombosis, results.

Citation: Robert Janknegt, et al. "Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method". *Acta Scientific Pharmaceutical Sciences* 4.12 (2020): 145-175.
Medicines

Medicines	Withdrawal AE (%)	AE (%)	AE drug related (%)	AE-S (%)	ALT>3ALN And bili >2ALN (%)	MI (%)	Stroke (%)	Ref
Api 10/5 mg bid	6.1	67	16	1.9	0.2	0.5	0.3	[52]
Enox 1 mg/kg/ Warfarin INR 2-3	7.4	72	15	5.6	0.1	0.3	0.1	[53]
Api 2.5 mg bid	8	71	13	0	0.2	0.1	0.1	[54]
Api 5 mg bid	7	67	13	0.1	0.4	0.4	0.1	[55]
Placebo	16	73	19	0.4	0.5	0.6	0.3	[56]
Api 2.5 mg bid 30 d								[57]
Enox 40 qd 6-14 d								[58]
Dabi 150 mg bid	7.9	63	12	2.9	0.2	0.2	0.3	[59]
Warfarin INR 2-3	9.0	65	13	3.4	0.2	0.3	0.1	[60]
Dabi 150 mg bid	7.8	67	12	0.1	0.3			[61]
Warfarin INR 2-3	7.8	71	12	0.2	0.2			[62]
Dabi 150 mg bid	10.1	72	15.9	1.7	0.1	0.9	0.1	[63]
Warfarin INR 2-3	8.8	71	15.7	1.8	0.1	0.2		[64]
								[65]
Dabi 150 mg bid	7.3	51	6.9	0.6	0.1	0.3	0.3	[66]
Placebo	12.3	50	9.1	0.6	0.2	0.2		[67]
Edox 60 mg qd	2.9	69	12.2	2.1	0.2	0.5		[68]
Warfarin INR 2-3	2.5	71	13.2	2.3	<0.1	0.3		[69]
Riv 15 mg bid, 20 mg qd	4.9	63	12.0	1.5	0.1	0.3	0.1	[70]
Enox 1 mg/kg/ Warfarin INR 2-3	4.7	63	13.6	3.8	0.2	0.2		[71]
Riv 20 mg qd	2.0							[72]
Placebo	0.5							[73]
Riv 15 mg bid, 20 mg qd	5.1	81	20	0.6	0.6	0.1		[74]
Enox 1 mg/kg/ Warfarin INR 2-3	4.1	79	20	0.9	0.9			[75]
Riv 10 mg qd 35 days								[76]
Enox 40 mg qd 10 days								[77]
Riv 10 mg								[78]
Riv 20 mg								[79]
Aspirin 100 mg								[80]

Table 16: Comparative studies in deep venous thrombosis, safety results.

Citation: Robert Janknegt, et al. “Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method”. *Acta Scientific Pharmaceutical Sciences* 4.12 (2020): 145-175.
Medicines

Medicines	Major bleeding	Intra-cranial bleeding	Fatal bleeding	Clinically relevant non-major	Major or Clinically relevant non-major	Minor bleeding	Any bleeding	Bleeding in critical organ	Ref
Api 10/5 mg bid	0.6	0.1	<0.1	3.8	4.3			16	[52]
Enox 1mg/kg/ Warfarin INR 2-3	1.8	0.2	0.1	8.0	9.7			26	P<0.001
Api 2.5 mg bid	0.2	0	0	3.0	3.2			0.2	[53]
Api 5 mg bid	0.1	0	0	4.2	4.3			0	P<0.001
Placebo	0.5	0	0	2.3	2.7			0.2	[54]
Api 2.5 mg bid 30 d	0.47	0	0	2.2	2.7			7.7	P<0.001
Enox 40 qd 6-14 d	0.19	0.1	0.1	1.9	2.1			6.8	P<0.001
Dabi 150 mg bid	1.6	0	0.1	4.0	5.6			16.1	P<0.001
Warfarin INR 2-3	1.9	0.3	0.1	6.9	8.8			21.9	P<0.001
Dabi 150 mg bid	1.2	0.2	0	5.0				0.5	P<0.001
Warfarin INR 2-3	1.7	0.2	0.1	7.9				0.3	P<0.001
Dabi 150 mg bid	0.9	0	0	5.6	19.4			0.5	P<0.001
Warfarin INR 2-3	1.8	0.1		10.2	26.2			0.9	P<0.001
Dabi 150 mg bid	0.3	0		5.3	10.5			0.5	P<0.001
Placebo	0								
Edox 60 mg qd	1.4	0.1	<0.1	7.2	21.7			0.3	[C58]
Warfarin INR 2-3	1.6	0.4	0.2	8.9	25.6			0.6	P<0.001
Edox 60 mg qd	6.9	15	19						
Dalteparin 150 IU/kg	4.0	11	14						
Riv 15 mg bid, 20 mg qd	0.8	0.1		7.3				0.2	[60]
Enox 1mg/kg/ Warfarin INR 2-3	1.2	0.3		7.0				0.2	P<0.001
Riv 20 mg qd	0.7	0	0	5.4				0	P<0.001
Placebo	0	0	1.2						
Riv 15 mg bid, 20 mg qd	1.1	0.1		9.5				0.3	P<0.001
Enox 1mg/kg/ Warfarin INR 2-3	2.2	0.1	0.1	9.8				1.1	P<0.001

Citation: Robert Janknegt, et al. "Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method". *Acta Scientific Pharmaceutical Sciences* 4.12 (2020): 145-175.
Table 17: Comparative studies in deep venous thrombosis, safety results, bleeding.

Medicines	N	Age	Female (%)	Design	Diabetes (%)	Previous MI (%)	CV disease (%)	LVHF (%)	Peripheral vascular disease (%)	Duration of follow-up	Ref
Api 5 mg bid	3705	67	33	DB	49	25	10	28	18	1.25 years	[64]
Placebo	3687	67	32	DB	47	28	10	29	18		
Riva 2.5 mg bid	5174	62	35	DB	32	26	10	29	18	13-31 months	[65]
Riva 5 mg bid	5176	62	36	DB	32	27	10	29	18		
Placebo	5176	62	35	DB	32	27	10	29	18		
Riva 2.5 mg bid	1519	62	25	DB	29	21	10	29	18	390 days	[66]
Aspirin 100 mg qd	1518	63	25	DB	30	23	10	29	18		

Table 18: Comparative studies in acute coronary syndromes, baseline data and design.

Medicines	Type of ACS	Time from event to randomisation (days)	Medication	Primary Endpoint	Ref
Api 5 mg bid	STEMI	6.0	ACE/A2A	CV-D, MI, I-S	[64]
Placebo or	N-STEMI	6.0	Beta blocker		
Riva 2.5 mg bid	UA	24	Statin	CV-D, MI, Stroke	[65]
Riva 5 mg bid	ACE/ A2A	6.0	Parenteral Antithrombotic agents		
Placebo	Beta blocker	6.0	PPI	CV-D, MI, I-S	[64]
Riva 2.5 mg bid	Statin	6.0	Parenteral		
Aspirin 100 mg qd	PPI	6.0	Antithrombotic agents	TIMI	[66]

Table 19: Comparative studies in acute coronary syndromes, baseline data and design.

Citation: Robert Janknegt, et al. "Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method". *Acta Scientific Pharmaceutical Sciences* 4.12 (2020): 145-175.
Medicines	Composite (%)	Death (%)	CV-D (%)	MI (%)	I-S (%)	Stent thrombosis (%)	Ref
Api 5 mg bid or Placebo or UA	CV-D, MI, I-S	CV-D, MI, stroke					
	7.5	9.5	7.9	10.0	4.2	4.8	0.6
	4.2	3.9	3.9	4.8	9.2	1.6	1.3
Riva 2.5 mg bid	CV-D, MI, I-S	CV-D, MI, stroke					
	9.1	8.8	10.7	4.2	4.5	4.1	2.2
	2.9	4.4	2.9	7.5	4.0	2.3	2.3
	P=0.02 (2.5 mg vs placebo)	P=0.002 (2.5 mg vs placebo)	P=0.002 (2.5 mg vs placebo)				
Riva 2.5 mg bid	CV-D, MI, I-S	CV-D, MI, stroke					
	5	5	5	5	0.6	3.6	0.6
	5	5	(including stent thrombosis)		0.6	3.3	0.8

Table 20: Comparative studies in acute coronary syndromes, results.

Medicines	Major bleeding (%)	Major or clinically relevant non-major bleeding (%)	Severe bleeding (%)	Severe or moderate bleeding (%)	Fatal bleeding (%)	Intracranial bleeding (%)	Any bleeding (%)	Ref
Api 5 mg bid or Placebo or	1.3	2.7	3.2	1.8	0.1	0.6	18.5	[64]
	P<0.001	P<0.001	P<0.001	P<0.001	P=0.03	P<0.001		
Riva 2.5 mg bid	1.8	1.1	1.2	0.6	0.4	0.7	0.4	[65]
	P<0.001	P<0.001	P<0.001	P<0.001	P=0.009			
Riva 5 mg bid	2.4	0.6	0.2	0.2	0.1	0.1	0.7	
	P=0.04 for 2.5 mg vs 5 mg Riva			P=0.009				
Placebo	0.6	2.0	0.2	0.1	0.1	0.1	0.0	
	0.5	2.0	0.2	0.1	0.1	0.1	0.0	[66]

Table 21: Comparative studies in acute coronary syndromes, safety results, bleeding.
Acknowledgement

We are grateful for the useful comments and information following our request for a check on scientific correctness and completeness of the manuscript from the manufacturers of the DOAGs: Bayer; BMS/Pfizer, Boehringer Ingelheim and Daiichi Sankyo. The score is based on the opinions of the authors and does not necessarily reflect the opinions of these companies.

Conflicts of Interest

None reported.

Bibliography

1. Janknegt R and Steenhoeck A. “The system of Objectified Judgement Analysis. A tool in rational drug selection for formulary inclusion”. Drugs 53 (1997): 551-562.
2. Summary of Product Characteristics. Apixaban (Eliquis).
3. Summary of Product Characteristics. Dabigatran (Pradaxa).
4. Summary of Product Characteristics. Edoxaban (Lixiana).
5. Summary of Product Characteristics. Rivaroxaban (Xarelto).
6. Frost C, et al. “A randomized direct comparison of the pharmacokinetics and pharmacodynamics of apixaban and rivaroxaban”. Clinical Pharmacology 6 (2014): 179-187.
7. Frost C, et al. “Evaluation of the effect of naproxen on the pharmacokinetics and pharmacodynamics of apixaban”. British Journal of Clinical Pharmacology 78 (2014): 877-885.
8. Wang X, et al. “Effect of activated charcoal on apixaban pharmacokinetics in healthy subjects”. American Journal of Cardiovascular Drugs 4.14 (2014): 147-154.
9. Upreti VV, et al. “Effect of famotidine on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor”. Clinical Pharmacology 5 (2013): 59-66.
10. Clemens A., et al. “Switching from enoxaparin to dabigatran etexilate: pharmacokinetics, pharmacodynamics, and safety profile”. European Journal of Clinical Pharmacology 68 (2012): 607-616.
11. Stangier J., et al. “Pharmacokinetics and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor, with coadministration of digoxin”. The Journal of Clinical Pharmacology 52 (2012): 243-250.
12. Stangier J., et al. “Pharmacokinetics and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor, are not affected by moderate hepatic impairment”. The Journal of Clinical Pharmacology 48 (2008): 1411-1419.
13. Wilson JA, et al. “An evaluation of oral dabigatran etexilate pharmacokinetics and pharmacodynamics in hemodialysis”. The Journal of Clinical Pharmacology 54 (2014): 901-909.
14. Parasrampuria DA, et al. “Pharmacokinetics and Pharmacodynamics of the Nonvitamin K Antagonist Oral Anticoagulant Edoxaban When Administered Alone or After Switching from Rivaroxaban or Dabigatran Etxetil in Healthy Subjects”. Clinical Drug Investigation 36 (2016): 127-136.
15. Mendell J., et al. “Drug-drug interaction studies of cardiovascular drugs involving P-glycoprotein, an efflux transporter; on the pharmacokinetics of edoxaban, an oral factor Xa inhibitor”. American Journal of Cardiovascular Drugs 13 (2013): 331-342.
16. Bathala MS., et al. “Pharmacokinetics, biotransformation, and mass balance of edoxaban, a selective, direct factor Xa inhibitor, in humans”. Drug Metabolism and Disposition 40 (2012): 2250-2255.
17. Mendell J, et al. “A randomized trial of the safety, pharmacokinetics and pharmacodynamics of edoxaban, an oral factor Xa inhibitor, following a switch from warfarin”. British Journal of Clinical Pharmacology 75 (2013): 966-978.
18. Moore KT, et al. “An open-label study to estimate the effect of steady-state erythromycin on the pharmacokinetics, pharmacodynamics, and safety of a single dose of rivaroxaban in subjects with renal impairment and normal renal function”. The Journal of Clinical Pharmacology 54 (2014): 1407-1420.
19. Kubitza D., et al. “Effect of hepatic impairment on the pharmacokinetics and pharmacodynamics of a single dose of rivaroxaban, an oral, direct Factor Xa inhibitor”. British Journal of Clinical Pharmacology 76 (2013): 89-98.
20. Zhao X, et al. “Safety pharmacokinetics and pharmacodynamics of single/multiple doses of the oral, direct Factor Xa inhibitor rivaroxaban in healthy Chinese subjects”. British Journal of Clinical Pharmacology 68 (2009): 77-88.
21. Kreutz R., et al. “Dissociation between the pharmacokinetics and pharmacodynamics of once-daily rivaroxaban and twice-daily apixaban: a randomized crossover study”. Journal of Thrombosis and Haemostasis 15 (2017): 2017-2028.
22. Frost CE., et al. “Effect of ketoconazole and diltiazem on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor”. British Journal of Clinical Pharmacology 79 (2015): 838-846.

23. Mendell J., et al. “The effect of rifampin on the pharmacokinetics of edoxaban in healthy adults”. Clinical Drug Investigation 35 (2015): 447-453.

24. Vakkalagadda B., et al. “Effect of Rifampin on the Pharmacokinetics of Apixaban, an Oral Direct Inhibitor of Factor Xa”. American Journal of Cardiovascular Drugs (2016).

25. Chang SH., et al. “Association Between Use of Non-Vitamin K Oral Anticoagulants With and Without Concurrent Medications and Risk of Major Bleeding in Nonvalvular Atrial Fibrillation”. JAMA 318 (2017): 1250-1259.

26. Lassen MR., et al. “The efficacy and safety of apixaban, an oral, direct factor Xa inhibitor, as thromboprophylaxis in patients following total knee replacement”. Journal of Thrombosis and Haemostasis 5 (2007): 2368-2375.

27. Lassen MR., et al. “Apixaban or enoxaparin for thromboprophylaxis after knee replacement”. The New England Journal of Medicine 361 (2009): 594-604.

28. Lassen MR., et al. “Apixaban versus enoxaparin for thromboprophylaxis after knee replacement (ADVANCE-2): a randomised double-blind trial”. Lancet 37 (2010): 807-815.

29. Lassen MR., et al. “Apixaban versus enoxaparin for thromboprophylaxis after hip replacement”. The New England Journal of Medicine 363 (2010): 2487-2498.

30. Eriksson BI., et al. “A new oral direct thrombin inhibitor, dabigatran etexilate, compared with enoxaparin for prevention of thromboembolic events following total hip or knee replacement: the BISTRO II randomized trial”. Journal of Thrombosis and Haemostasis 3 (2005): 103-111.

31. Eriksson BI., et al. “Oral dabigatran etexilate vs. subcutaneous enoxaparin for the prevention of venous thromboembolism after total knee replacement: the RE-MODEL randomized trial”. Journal of Thrombosis and Haemostasis 5 (2007): 2178-2185.

32. Eriksson BI., et al. “Dabigatran etexilate versus enoxaparin for prevention of venous thromboembolism after total hip replacement: a randomised, double-blind, non-inferiority trial”. Lancet 370 (2007): 949-956.

33. Eriksson BI., et al. “Oral dabigatran versus enoxaparin for thromboprophylaxis after primary total hip arthroplasty (RENOVATE II*). A randomised, double-blind, non-inferiority trial”. Thrombosis and Haemostasis 105 (2011): 721-729.

34. RE-MOBILIZE Writing Committee. “Oral thrombin inhibitor dabigatran etexilate vs North American enoxaparin regimen for prevention of venous thromboembolism after knee arthroplasty surgery”. Journal of Arthroplasty 24 (2009): 1-9.

35. Raskob G., et al. “Oral direct factor Xa inhibition with edoxaban for thromboprophylaxis after elective total hip replacement. A randomised double-blind dose-response study”. Thrombosis and Haemostasis 104 (2010): 642-649.

36. Fuji T., et al. “Safety and efficacy of edoxaban, an oral factor Xa inhibitor, versus enoxaparin for thromboprophylaxis after total knee arthroplasty: the STARS E-3 trial”. Thrombosis Research 134 (2014): 1198-1204.

37. Fuji T., et al. “Safety and efficacy of edoxaban, an oral factor Xa inhibitor, for thromboprophylaxis after total hip arthroplasty in Japan and Taiwan”. Journal of Arthroplasty 29 (2014): 2439-2446.

38. Fuji T., et al. “Efficacy and safety of edoxaban versus enoxaparin for the prevention of venous thromboembolism following total hip arthroplasty: STARS J-V”. Thrombosis Journal 13 (2015): 27.

39. Eriksson BI., et al. “Rivaroxaban versus enoxaparin for thromboprophylaxis after hip arthroplasty”. The New England Journal of Medicine 358 (2008): 2765-2775.

40. Kakkar AK., et al. “Extended duration rivaroxaban versus short-term enoxaparin for the prevention of venous thromboembolism after total hip arthroplasty: a double-blind, randomised controlled trial”. Lancet 372 (2008): 31-39.

41. Lassen MR., et al. “Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty”. The New England Journal of Medicine 358 (2008): 2776-2786.

42. Turpie AG., et al. “Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty (RECORD4): a randomised trial”. Lancet 373 (2009): 1673-1680.

43. Anderson DR., et al. “Aspirin or Rivaroxaban for VTE Prophylaxis after Hip or Knee Arthroplasty”. The New England Journal of Medicine 378 (2018): 699-707.
44. Connolly SJ, et al. “Apixaban in patients with atrial fibrillation”. *The New England Journal of Medicine* 364 (2011): 806-817.

45. Granger CB, et al. “Apixaban versus warfarin in patients with atrial fibrillation”. *The New England Journal of Medicine* 365 (2011): 981-992.

46. Connolly SJ, et al. “Dabigatran versus warfarin in patients with atrial fibrillation”. *The New England Journal of Medicine* 361 (2009): 1139-1151.

47. Giugliano RP, et al. “Edoxaban versus warfarin in patients with atrial fibrillation”. *The New England Journal of Medicine* 369 (2013): 2093-2104.

48. Calkins H, et al. “Uninterrupted dabigatran versus warfarin for ablation in atrial fibrillation”. *The New England Journal of Medicine* 376 (2017): 1627-1636.

49. Cannon CP, et al. “Dual antithrombotic therapy with dabigatran after PCI in atrial fibrillation”. *The New England Journal of Medicine* 337 (2017): 1513-1524.

50. Patel MR, et al. “Rivaroxaban versus warfarin in nonvalvular atrial fibrillation”. *The New England Journal of Medicine* 369 (2013): 883-891.

51. Cappato R, et al. “Rivaroxaban vs. vitamin K antagonists for cardioversion in atrial fibrillation”. *European Heart Journal* 35 (2014): 3346-3355.

52. Agnelli G, et al. “Oral apixaban for the treatment of acute venous thromboembolism”. *The New England Journal of Medicine* 369 (2013): 799-808.

53. Agnelli G, et al. “Apixaban for extended treatment of venous thromboembolism”. *The New England Journal of Medicine* 368 (2013): 699-708.

54. Goldhaber SZ, et al. “Apixaban versus enoxaparin for thromboprophylaxis in medically ill patients”. *The New England Journal of Medicine* 365 (2011): 2167-2177.

55. Schulman S, et al. “Dabigatran versus warfarin in the treatment of acute venous thromboembolism”. *The New England Journal of Medicine* 361 (2009): 2342-2352.

56. Schulman S, et al. “Treatment of acute venous thromboembolism with dabigatran or warfarin and pooled analysis”. *Circulation* 129 (2014): 764-772.

57. Schulman S, et al. “Extended use of dabigatran, warfarin, or placebo in venous thromboembolism”. *The New England Journal of Medicine* 368 (2013): 709-718.

58. Hokusai-VTE Investigators, et al. “Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism”. *The New England Journal of Medicine* 369 (2013): 1406-1415.

59. Raskob GE, et al. “Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism”. *The New England Journal of Medicine* 378 (2018): 615-624.

60. EINSTEIN Investigators, et al. “Oral rivaroxaban for symptomatic venous thromboembolism”. *The New England Journal of Medicine* 363 (2010): 2499-2510.

61. EINSTEIN-PE Investigators, et al. “Oral rivaroxaban for the treatment of symptomatic pulmonary embolism”. *The New England Journal of Medicine* 366 (2012): 1287-1297.

62. Cohen AT, et al. “Rivaroxaban for thromboprophylaxis in acutely ill medical patients”. *The New England Journal of Medicine* 368 (2013): 513-523.

63. Weitz IJ, et al. “Rivaroxaban or aspirin for extended treatment of venous thromboembolism”. *The New England Journal of Medicine* 376 (2017): 1211-22.

64. Alexander JH, et al. “Apixaban with antiplatelet therapy after acute coronary syndrome”. *The New England Journal of Medicine* 365 (2011): 699-708.

65. Mega JL, et al. “Rivaroxaban in patients with a recent acute coronary syndrome”. *The New England Journal of Medicine* 366 (2012): 9-19.

66. Ohman EM, et al. “Clinically significant bleeding with low-dose rivaroxaban versus aspirin, in addition to P2Y12 inhibition, in acute coronary syndromes (GEMINI-ACS-1): a double-blind, multicentre, randomised trial”. *Lancet* 389 (2017): 1799-1808.

67. Eriksson BI, et al. “Dose escalating safety study of a new oral direct thrombin inhibitor, dabigatran etexilate, in patients undergoing total hip replacement: BISTRO I”. *Journal of Thrombosis and Haemostasis* 2 (2004): 1573-1580.

68. Fuji T, et al. “Dabigatran etexilate prevents venous thromboembolism after total knee arthroplasty in Japanese patients with a safety profile comparable to placebo”. *Journal of Arthroplasty* 25 (2010): 1267-1274.

69. Eriksson BI, et al. “Oral dabigatran etexilate versus enoxaparin for venous thromboembolism prevention after total hip arthroplasty: pooled analysis of two phase 3 randomized trials”. *Thrombosis Journal* 13 (2015): 36.
70. Friedman RJ, et al. "Dabigatran versus enoxaparin for prevention of venous thromboembolism after hip or knee arthroplasty: a pooled analysis of three trials". *Thrombosis Research* 126 (2010): 175-182.

71. Wołowacz SE, et al. "Efficacy and safety of dabigatran etexilate for the prevention of venous thromboembolism following total hip or knee arthroplasty. A meta-analysis". *Thrombosis and Haemostasis* 101 (2009): 77-85.

72. Fuji T, et al. "A dose-ranging study evaluating the oral factor Xa inhibitor edoxaban for the prevention of venous thromboembolism in patients undergoing total knee arthroplasty". *Journal of Thrombosis and Haemostasis* 8 (2010): 2458-2468.

73. Fuji T, et al. "Safety and efficacy of edoxaban in patients undergoing hip fracture surgery". *Thrombosis Research* 133 (2014): 1016-1022.

74. Seife C. "Research misconduct identified by the US Food and Drug Administration: out of sight, out of mind, out of the peer-reviewed literature". *JAMA Internal Medicine* 175 (2015): 567-577.

75. Huang HF, et al. "Rivaroxaban versus enoxaparin for the prevention of venous thromboembolism after total knee arthroplasty: A meta-analysis". *Medicine (Baltimore)* 97 (2018): e13465.

76. López-López JA, et al. "Oral anticoagulants for prevention of stroke in atrial fibrillation: systematic review, network meta-analysis, and cost effectiveness analysis". *British Medical Journal* 359 (2017): j5058.

77. O’Donnell MJ, et al. "Effect of apixaban on brain infarction and microbleeds: AVERROES-MRI assessment study". *American Heart Journal* 178 (2016): 145-150.

78. Easton JD, et al. "Apixaban compared with warfarin in patients with atrial fibrillation and previous stroke or transient ischaemic attack: a subgroup analysis of the ARISTOTLE trial". *Lancet Neurology* 11 (2012): 503-511.

79. Avezzù A, et al. "Apixaban in Comparison With Warfarin in Patients With Atrial Fibrillation and Valvular Heart Disease: Findings From the Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) Trial". *Circulation* 132 (2015): 624-632.

80. Gar Mendia CA, et al. "Evaluation of the Inclusion of Studies Identified by the FDA as Having Falsified Data in the Results of Meta-analyses: The Example of the Apixaban Trials". *JAMA Internal Medicine* 179 (2019): 582-584.

81. Ezekowitz MD, et al. "Comparison of Dabigatran and Warfarin in Patients With Atrial Fibrillation and Valvular Heart Disease: The RE-LY Trial (Randomized Evaluation of Long-Term Anticoagulant Therapy)". *Circulation* 134 (2016): 589-598.

82. Connolly SJ, et al. "The Long-Term Multicenter Observational Study of Dabigatran Treatment in Patients With Atrial Fibrillation (RE-LY-ABLE) Study". *Circulation* 128 (2013): 237-243.

83. Lip G, et al. "Patient outcomes using the European label for dabigatran. A post-hoc analysis from the RE-LY database". *Thrombosis and Haemostasis* 111 (2014): 933-942.

84. Brambatti M, et al. "Comparison of dabigatran versus warfarin in diabetic patients with atrial fibrillation: Results from the RE-LY trial". *International Journal of Cardiology* 196 (2015): 127-131.

85. Seeger JD, et al. "Safety and effectiveness of dabigatran and warfarin in routine care of patients with atrial fibrillation". *Thrombosis and Haemostasis* 114 (2015): 1277-1289.

86. Larsen TB, et al. "Dabigatran and warfarin for secondary prevention of stroke in atrial fibrillation patients: a nationwide cohort study". *American Journal of Medicine* 127 (2014): 1172-1178.

87. Del-Carpio Munoz F, et al. "Dabigatran Versus Warfarin in Relation to Renal Function in Patients With Atrial Fibrillation". *Journal of the American College of Cardiology* 68 (2016): 129-131.

88. Giugliano RP, et al. "Mortality in Patients with Atrial Fibrillation Randomized to Edoxaban or Warfarin: Insights from the ENGAGE AF-TIMI 48 Trial". *American Journal of Medicine* 129 (2016): 850-857.

89. Giugliano RP, et al. "Cerebrovascular events in 21,105 patients with atrial fibrillation randomized to edoxaban versus warfarin: Effective Anticoagulation with Factor Xa Next Generation in Atrial Fibrillation-Thrombolysis in Myocardial Infarction 48". *Stroke* 45 (2014): 2372-2378.

90. Geller BJ, et al. "Systemic, noncerebral, arterial embolism in 21,105 patients with atrial fibrillation randomized to edoxaban or warfarin: results from the Effective Anticoagulation With Factor Xa Next Generation in Atrial Fibrillation-Thrombolysis in Myocardial Infarction Study 48 trial". *American heart Journal* 170 (2015): 669-674.

91. Giugliano RP, et al. "Mortality in Patients With Atrial Fibrillation Randomized to Edoxaban or Warfarin: Insights from the ENGAGE AF-TIMI 48 Trial". *American Journal of Medicine* (2016): pii: S0002-9343 (16)30246-7.
92. Steffel J., et al. "Edoxaban Versus Warfarin in Atrial Fibrillation Patients at Risk of Falling: ENGAGE AF-TIMI 48 Analysis". *Journal of the American College of Cardiology* 68 (2016): 1169-1178.

93. Rost NS., et al. "Outcomes With Edoxaban Versus Warfarin in Patients With Previous Cerebrovascular Events: Findings From ENGAGE AF-TIMI 48 (Effective Anticoagulation With Factor Xa Next Generation in Atrial Fibrillation-Thrombolysis in Myocardial Infarction 48)". *Stroke* 47 (2016): 2075-2082.

94. Weitz JI., et al. "Randomised, parallel-group, multicentre, multinationa phase 2 study comparing edoxaban, an oral factor Xa inhibitor, with warfarin for stroke prevention in patients with atrial fibrillation". *Thrombosis and Haemostasis* 104 (2010): 633-641.

95. Goette A., et al. "Edoxaban versus enoxaparin-warfarin in patients undergoing cardioversion of atrial fibrillation (ENSURE-AF): a randomised, open-label, phase 3b trial". *Lancet* 388 (2016): 1995-2003.

96. Hankey GJ., et al. "Rivaroxaban compared with warfarin in patients with atrial fibrillation and previous stroke or transient ischaemic attack: a subgroup analysis of ROCKET AF". *Lancet Neurology* 11 (2012): 315-322.

97. Halperin JL., et al. "Efficacy and safety of rivaroxaban compared with warfarin among elderly patients with nonvalvular atrial fibrillation in the Rivaroxaban Once Daily, Oral, Direct Factor Xa Inhibition Compared With Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF)". *Circulation* 130 (2014): 138-146.

98. Piccini JP., et al. "Relationship between time in therapeutic range and comparative treatment effect of rivaroxaban and warfarin: results from the ROCKET AF trial". *Journal of the American Heart Association* 3 (2014): e000521.

99. Bansilal S., et al. "Efficacy and safety of rivaroxaban in patients with diabetes and nonvalvular atrial fibrillation: the Rivaroxaban Once-daily, Oral, Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF Trial)". *American Heart Journal* 170 (2015): 675-682.

100. Fordyce CB., et al. "On-Treatment Outcomes in Patients With Worsening Renal Function With Rivaroxaban Compared With Warfarin: Insights From ROCKET AF". *Circulation* 134 (2016): 37-47.

101. Lin LL., et al. "Clinical and safety outcomes of oral antithrombotics for stroke prevention in atrial fibrillation: a systematic review and network meta-analysis". *Journal of the American Medical Directors Association* 16 (2015): 1103.e1-19.

102. Graham DJ., et al. "Stroke, Bleeding, and Mortality Risks in Elderly Medicare Beneficiaries Treated With Dabigatran or Rivaroxaban for Nonvalvular Atrial Fibrillation". *JAMA Internal Medicine* 176 (2016): 1662-1671.

103. Healthcare Improvement Scotland. "A review of the clinical effectiveness of direct oral anticoagulants for the prevention of stroke and systemic embolism in adult patients with nonvalvular atrial fibrillation". www.healthcareimprovementscotland.org (2017).

104. Chan YH., et al. "Thromboembolic, Bleeding, and Mortality Risks of Rivaroxaban and Dabigatran in Asians With Nonvalvular Atrial Fibrillation". *Journal of the American College of Cardiology* 68 (2016): 1389-1401.

105. Jacobs V., et al. "Long-Term Population-Based Cerebral Ischemic Event and Cognitive Outcomes of Direct Oral Anticoagulants Compared With Warfarin Among Long-term Anticoagulated Patients for Atrial Fibrillation". *American Journal of Cardiology* 118 (2016): 210-214.

106. Larsen TB., et al. "Comparative effectiveness and safety of non-vitamin K antagonist oral anticoagulants and warfarin in patients with atrial fibrillation: propensity weighted national-cohort study". *British Medical Journal* 353 (2016): i3189.

107. Larsen TB., et al. "Effectiveness and safety of reduced dose non-vitamin K antagonist oral anticoagulants and warfarin in patients with atrial fibrillation: propensity weighted nationwide cohort study". *British Medical Journal* 356 (2017): j510.

108. Coleman CL, et al. "Real-world evidence of stroke prevention in patients with nonvalvular atrial fibrillation in the United States: the Revisit-US study". *Current Medical Research and Opinion* (2016).

109. Hernandez I., et al. "Comparison of the effectiveness and safety of apixaban, dabigatran, rivaroxaban and warfarin in newly diagnosed atrial fibrillation". *American Journal of Cardiology* 120 (2017): 1813-1819.

110. Lip G., et al. "Effectiveness and Safety of Oral Anticoagulants Among Nonvalvular Atrial Fibrillation Patients. The ARISTOPHANES Study". *Stroke* 49 (2018): 2933-2944.

Citation: Robert Janknegt, et al. "Direct Oral Anticoagulants: Drug Selection by Means of the SOJA Method". *Acta Scientific Pharmaceutical Sciences* 4.12 (2020): 145-175.
111. Graham DJ, et al. “Comparative Stroke, Bleeding, and Mortality Risks in Older Medicare Patients Treated with Oral Anticoagu-
lants for Nonvalvular Atrial Fibrillation”. American Journal of
Medicine 132 (2019): 596-604.

112. Liu X, et al. “Apixaban Reduces Hospitalizations in Patients
With Venous Thromboembolism: An Analysis of the Apixaban
for the Initial Management of Pulmonary Embolism and Deep-
Vein Thrombosis as First-Line Therapy (AMPLIFY) Trial”. Jour-
nal of the American Heart Association 4 (2015): pii: e002340.

113. Agnelli G, et al. “Oral apixaban for the treatment of venous
thromboembolism in cancer patients: results from the AM-
PLIFY trial”. Journal of Thrombosis and Haemostasis 13 (2015):
2187-2191.

114. Botticelli Investigators., et al. “Efficacy and safety of the oral
direct factor Xa inhibitor apixaban for symptomatic deep vein
thrombosis. The Botticelli DVT dose-ranging study”. Journal of
Thrombosis and Haemostasis 6 (2008): 1313-1318.

115. Agnelli G, et al. “Treatment of proximal deep-vein thrombosis
with the oral direct factor Xa inhibitor rivaroxaban (BAY 59-
7939): the ODIXa-DVT (Oral Direct Factor Xa Inhibitor BAY 59-
7939 in Patients With Acute Symptomatic Deep-Vein Throm-
bosis) study”. Circulation 116 (2007): 180-187.

116. Buller HR, et al. “A dose-ranging study evaluating once-daily
oral administration of the factor Xa inhibitor rivaroxaban in the
treatment of patients with acute symptomatic deep vein thrombosis: the Einstein-DVT Dose-Ranging Study”. Blood 112
(2008): 2242-2247.

117. Robertson R, et al. “Oral direct thrombin inhibitors or oral fac-
tor Xa inhibitors for the treatment of pulmonary embolism”.
Cochrane Database of Systematic Reviews 12 (2015).

118. Robertson R, et al. “Oral direct thrombin inhibitors or oral fac-
tor Xa inhibitors for the treatment of deep venous thrombosis”.
Cochrane Database of Systematic Reviews 6 (2015): CD010956.

119. APPRAISE Steering Committee and Investigators., et al. “Apixa-
ban, an oral, direct, selective factor Xa inhibitor in combina-
tion with antiplatelet therapy after acute coronary syndrome:
results of the Apixaban for Prevention of Acute Ischemic and
Safety Events (APPRAISE) trial”. Circulation 119 (2009): 2877-
2885.

120. Oldren J, et al. “Dabigatran vs placebo in patients with acute
coronary syndromes on dual antiplatelet therapy: a random-
ized, double-blind, phase II trial”. European Heart Journal 32
(2011): 2781-2789.

121. Mega JL, et al. “Rivaroxaban versus placebo in patients with
acute coronary syndromes (ATLAS ACS-TIMI 46): a ran-
domised, double-blind, phase II trial”. Lancet 374 (2009): 29-
38.

122. Eikelboom JW, et al. “Rivaroxaban with or without Aspirin in
Stable Cardiovascular Disease”. The New England Journal of
Medicine 377 (2017): 1319-1330.

123. Connolly SJ, et al. “Rivaroxaban with or without aspirin in pa-
tients with stable coronary artery disease: an international,
randomised, double-blind, placebo-controlled trial”. Lancet
391 (2018): 205-218.

124. Anand SS, et al. “Rivaroxaban with or without aspirin in pa-
tients with stable peripheral or carotid artery disease: an
international, randomised, double-blind, placebo-controlled
trial”. Lancet 391 (2018): 219-229.

125. López-López JA, et al. “Oral anticoagulants for prevention of
stroke in atrial fibrillation: systematic review, network meta-
analysis, and cost effectiveness analysis”. British Medical Jour-
nal 359 (2017): j5058.

126. Hylek EM, et al. “Major bleeding in patients with atrial fibril-
lion receiving apixaban or warfarin: The ARISTOTLE Trial
(Apixaban for Reduction in Stroke and Other Thromboem-
bolic Events in Atrial Fibrillation): Predictors, Characteristics,
and Clinical Outcomes”. Journal of the American College of Car-
diology 63 (2014): 2141-2147.

127. De Caterina R, et al. “History of bleeding and outcomes with
apixaban versus warfarin in patients with atrial fibrillation in
the Apixaban for Reduction in Stroke and Other Thromboem-
bolic Events in Atrial Fibrillation trial”. American Heart Journal
175 (2016): 175-183.

128. Villa LA, et al. “Evaluating the efficacy and safety of apixaban,
a new oral anticoagulant, using Bayesian meta-analysis”. Inter-
national Journal of Hematology 98 (2013): 390-397.

129. Touma L, et al. “A meta-analysis of randomized controlled
trials of the risk of bleeding with apixaban versus vitamin K
antagonists”. American Journal of Cardiology 115 (2015): 533-
541.

130. Mantha S and Ansell J. “Indirect comparison of dabigatran, ri-
voroxaban, apixaban and edoxaban for the treatment of acute
venous thromboembolism”. Journal of Thrombosis and Throm-
bolysis 39 (2015): 155-165.
131. Cohen AT, et al. "Comparison of the Novel Oral Anticoagulants Apixaban, Dabigatran, Edoxaban, and Rivaroxaban in the Initial and Long-Term Treatment and Prevention of Venous Thromboembolism: Systematic Review and Network Meta-Analysis". *PLoS One* 10 (2015): e0144856.

132. Kolb JM, et al. "Locations and Mucosal Lesions Responsible for Major Gastrointestinal Bleeding in Patients on Warfarin or Dabigatran". *Digestive Diseases and Science* 63 (2018): 1878-1889.

133. Majeed A, et al. "Bleeding events with dabigatran or warfarin in patients with venous thromboembolism". *Thrombosis and Haemostasis* 115 (2015): 291-298.

134. Nishtala PS, et al. "Real-world haemorrhagic rates for warfarin and dabigatran using population-level data in New Zealand". *International Journal of Cardiology* 203 (2015): 746-752.

135. Maura G, et al. "Comparison of the Short-Term Risk of Bleeding and Arterial Thromboembolic Events in Nonvalvular Atrial Fibrillation Patients Newly Treated With Dabigatran or Rivaroxaban Versus Vitamin K Antagonists: A French Nationwide Propensity-Matched Cohort Study". *Circulation* 132 (2015): 1252-1260.

136. Fontaine GV, et al. "Major bleeding with dabigatran and rivaroxaban in patients with atrial fibrillation: a real-world setting". *Clinical and Applied Thrombosis/Hemostasis* 20 (2014): 665-672.

137. Abraham NS, et al. "Comparative risk of gastrointestinal bleeding with dabigatran, rivaroxaban, and warfarin: population based cohort study". *British Medical Journal* 350 (2015): h1857.

138. Douxfils J, et al. "Dabigatran etexilate and risk of myocardial infarction, other cardiovascular events, major bleeding, and all-cause mortality: a systematic review and meta-analysis of randomized controlled trials". *Journal of the American Heart Association* 3 (2014): e000515.

139. Wang SV, et al. "Prediction of rates of thromboembolic and major bleeding outcomes with dabigatran or warfarin among patients with atrial fibrillation: new initiator cohort study". *British Medical Journal* 353 (2016): i2607.

140. Chung N, et al. "Safety of edoxaban, an oral factor Xa inhibitor, in Asian patients with non-valvular atrial fibrillation". *Thrombosis and Haemostasis* 105 (2011): 535-544.

141. Li S, et al. "Bleeding risk and mortality of edoxaban: a pooled meta-analysis of randomized controlled trials". *PLoS One* 9 (2014): e95354.

142. Sherwood MW, et al. "Gastrointestinal Bleeding in Patients With Atrial Fibrillation Treated With Rivaroxaban or Warfarin: ROCKET AF Trial". *Journal of the American College of Cardiology* 66 (2015): 2271-2281.

143. Lip GY, et al. "Real-world comparison of major bleeding risk among non-valvular atrial fibrillation patients initiated on apixaban, dabigatran, rivaroxaban, or warfarin. A propensity score matched analysis". *Thrombosis and Haemostasis* 116 (2016): 975-986.

144. Maura G, et al. "Comparison of the short-term risk of bleeding and arterial thromboembolic events in nonvalvular atrial fibrillation patients newly treated with dabigatran or rivaroxaban versus vitamin K antagonists: a French nationwide propensity-matched cohort study". *Circulation* 132 (2015): 1252-1260.

145. Lip GY, et al. "Major bleeding risk among non-valvular atrial fibrillation patients initiated on apixaban, dabigatran, rivaroxaban or warfarin: a "real-world" observational study in the United States". *International Journal of Clinical Practice* 70 (2016): 752-763.

146. Bundhun PK, et al. "Bleeding outcomes associated with rivaroxaban and dabigatran in patients treated for atrial fibrillation: a systematic review and meta-analysis". *BMC Cardiovascular Disorder* 17 (2017): 15.

147. Lai CL, et al. "Comparative Effectiveness and Safety of Dabigatran and Rivaroxaban in Atrial Fibrillation Patients". *Journal of the American Heart Association* 6.4 (2017).

148. Gorst-Rasmussen A, et al. "Rivaroxaban versus warfarin and dabigatran in atrial fibrillation: comparative effectiveness and safety in Danish routine care". *Pharmacoepidemiology and Drug Safety* 25 (2016): 1236-1244.

149. Noseworthy PA, et al. "Direct Comparison of Dabigatran, Rivaroxaban, and Apixaban for Effectiveness and Safety in Nonvalvular Atrial Fibrillation". *Chest* 150 (2016): 1302-1312.

150. Yao X, et al. "Effectiveness and Safety of Dabigatran, Rivaroxaban, and Apixaban Versus Warfarin in Nonvalvular Atrial Fibrillation". *Journal of the American Heart Association* 5.6 (2016).

151. Li WH, et al. "Efficacy and safety of dabigatran, rivaroxaban, and warfarin for stroke prevention in Chinese patients with atrial fibrillation: the Hong Kong Atrial Fibrillation Project". *Clinical Cardiology* 40 (2017): 222-229.
152. Lip GY, et al. “Relative efficacy and safety of non-Vitamin K oral anticoagulants for non-valvular atrial fibrillation: Network meta-analysis comparing apixaban, dabigatran, rivaroxaban and edoxaban in three patient subgroups”. International Journal of Cardiology 204 (2016): 88-94.

153. Abraham NS, et al. “Gastrointestinal Safety of Direct Oral Anticoagulants: A Large Population-Based Study”. Gastroenterology 152 (2017): 1014-1022.e1.

154. Di Nisio M, et al. “Risk of major bleeding in patients with venous thromboembolism treated with rivaroxaban or with heparin and vitamin K antagonists”. Thrombosis and Haemostasis 115.2 (2016): 424-432.

155. Eerenberg ES, et al. “Clinical impact and course of major bleeding with rivaroxaban and vitamin K antagonists”. Journal of Thrombosis and Haemostasis 13 (2015): 1590-1596.

156. Husted S, et al. “Reversal Strategies for NOACs: State of Development, Possible Clinical Applications and Future Perspectives”. Drug Safety 39 (2016): 5-13.

157. Connolly SJ, et al. “Andexanet Alfa for Acute Major Bleeding Associated with Factor Xa Inhibitors”. The New England Journal of Medicine 375 (2016): 1131-1141.

158. Siegal DM, et al. “Andexanet alfa for the reversal of Factor Xa inhibitor activity”. The New England Journal of Medicine 375 (2016): 2413-2424.

159. Beyer-Westendorf J, et al. “Rates, management, and outcome of rivaroxaban bleeding in daily care: results from the Dresden NOAC registry”. Blood 124 (2014): 955-962.

160. Hohnloser SH, et al. “Myocardial ischemic events in patients with atrial fibrillation treated with dabigatran or warfarin in the RE-LY (Randomized Evaluation of Long-Term Anticoagulation Therapy) trial”. Circulation 125 (2012): 669-676.

161. Uchino K, et al. “Dabigatran association with higher risk of acute coronary events: meta-analysis of noninferiority randomized controlled trials”. Archives of Internal Medicine 172 (2012): 397-402.

162. Wei AH, et al. “Increased risk of myocardial infarction with dabigatran etexilate: fact or fiction? A critical meta-analysis of over 580,000 patients from integrating randomized controlled trials and real-world studies”. International Journal of Cardiology 267 (2018): 1-7.

163. Villines TC, et al. “A comparison of the safety and effectiveness of dabigatran and warfarin in non-valvular atrial fibrillation patients in a large healthcare system”. Thrombosis and Haemostasis 114 (2015): 1290-1298.