Two-photon optical shielding of collisions between ultracold polar molecules

M. Lepers, C. Karam, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, M. M. z. A. Borgloh, S. Ospelkaus, L. Karpa

Congrès Général de la SFP, July 4, 2023
Ultracold polar molecules

- **Two alkalis**: KRb, RbCs, NaRb, NaK, NaCs
- In their **absolute ground state**

- **Anisotropic** and **long-range** interactions
- Quantum **simulation, ultracold chemistry**, ...

Website of JILA
BUT: limited lifetime

For all molecules!

\[\text{KRb} + \text{KRb} \rightarrow \text{K}_2 + \text{Rb}_2 \] (exoenergetic)

\[\text{NaK} + \text{NaK} \rightarrow \text{Na}_2 + \text{K}_2 \] (endoenergetic)

PRL 116, 205303 (2016)
BUT: limited lifetime

For all molecules!

- KRb + KRb \rightarrow $K_2 + Rb_2$ (exothermic)
- NaK + NaK \rightarrow $Na_2 + K_2$ (endothermic)

What is the origin of losses?

- Sticky collisions?
- Photoexcitation of complex by trapping light?

PRL 116, 205303 (2016)
Idea: preventing molecules from getting close to each other and starting a reaction

=> Shielding
Blue shielding: principle

= Engineer repulsive long-range interactions
Blue shielding : principle

= Engineer repulsive long-range interactions
Blue shielding: principle

= Engineer repulsive long-range interactions

\[E(R) = \begin{cases} \text{repulsive energy} & \text{for } R \leq R_C \\ \text{attractive energy} & \text{for } R > R_C \end{cases} \]

\[E(R) = \begin{cases} M + M + 1 \text{ photon} & \text{for } R \leq R_C \\ M + M^* & \text{for } R > R_C \end{cases} \]
Blue shielding: principle

= Engineer repulsive long-range interactions
• **Static electric field**

Rotational-level mixing creates repulsive van der Waals interaction

JILA team: Science *370*, 1324 (2020)
Nature *588*, 289 (2020)
• **Static electric field**

Rotational-level mixing creates repulsive van der Waals interaction

JILA team: Science **370**, 1324 (2020)
Nature **588**, 289 (2020)

• **Microwave (MW) field**

With respect to purely rotational transition

MIT/Harward: Science **373**, 779 (2021)
Garching: Nature **607**, 677 (2022)
Cornell: arxiv:2303.16845 (2023)
• **Optical field**

Frequency close to D_2 transition of alkali atoms

Deteriorated by spontaneous emission

Na$_2$: PRA 51, 1446 (1995)
• **Optical field**

Frequency close to \(D_2 \) transition of alkali atoms

Deteriorated by spontaneous emission

Quasi-forbidden transitions in bialkali molecules

Transition \(X^1\Sigma^+ (v_x = 0, j_x = 0) \rightarrow b^3\Pi_{0+} (v_b = 0, j_b = 1) \)

Theory for NaRb: PRL **125**, 153202 (2020)

Na\(_2\): PRA **51**, 1446 (1995)
$X \rightarrow b$ transition in NaRb

$X(j_x = 0) + X(j_x = 0), n = 0$

$X(j_x = 0) + b(j_b = 1), n = -1$

$X(j_x = 1) + b(j_b = 0), n = -1$

$\Delta = 100$ MHz

$\Omega = 10$ MHz

Linear pola.

Incoming channel
X \rightarrow b \text{ tranition in NaRb}

\[X(j_x = 0) + X(j_x = 0), n = 0 \]

\[X(j_x = 0) + b(j_b = 1), n = -1 \]

\[X(j_x = 1) + b(j_b = 0), n = -1 \]

\[\Delta = 100 \text{ MHz} \]
\[\Omega = 10 \text{ MHz} \]

Linear pola.

BUT : 1 molecule photon scattering
Idea: applying optical fields without spontaneous emission

=> 2-photon transition
2-photon transition (1 molecule)

\[|q\rangle \quad \text{\(\hbar \Delta\)} \quad |g_1\rangle \]

\[\text{\(\Omega_1\)} \quad \text{\(\hbar \delta\)} \quad \text{\(\Omega_2\)} \quad |g_2\rangle \]
2-photon transition (1 molecule)

\[|q\rangle = |b, j_b = 1\rangle \]

\[|g_1\rangle = |X, j_X = 0\rangle \]

\[|g_2\rangle \]

\[\Omega_1 \]

\[\Omega_2 \]

\[\hbar \Delta \]

\[\hbar \delta \]
2-photon transition (1 molecule)

\[|q\rangle = |b, j_b = 1\rangle \]
\[|g_1\rangle = |X, j_x = 0\rangle \]
\[|g_2\rangle = |X, j_x = 2\rangle \]
\[\hbar \delta \]
\[\hbar \Delta \]
\[\Omega_1 \]
\[\Omega_2 \]

In dressed basis \{ |\tilde{g}_1\rangle, |\tilde{g}_2\rangle, |\tilde{q}\rangle \}:

\[
H^I = \hbar \begin{pmatrix}
0 & 0 & \Omega_1/2 \\
0 & \delta & \Omega_2/2 \\
\Omega_1/2 & \Omega_2/2 & \Delta
\end{pmatrix}
\]
2-photon transition (1 molecule)

|\(q \rangle = |b, j_b = 1 \rangle\)

\[\Omega_1 \]

\[\Omega_2 \]

|\(g_2 \rangle = |X, j_X = 2 \rangle\)

\[g_1 \rangle = |X, j_X = 0 \rangle\]

\[\hbar \Delta \]

In dressed basis \(\{|\tilde{g}_1\rangle, |\tilde{g}_2\rangle, |\tilde{q}\rangle\}\)

\[
H^I = \hbar \begin{pmatrix}
0 & 0 & \Omega_1/2 \\
0 & \delta & \Omega_2/2 \\
\Omega_1/2 & \Omega_2/2 & \Delta
\end{pmatrix}
\]

Adiabatic elimination of \(|\tilde{q}\rangle\)

\[\Delta \gg \Omega_1, \Omega_2, \Gamma_q \]

\[H^I_{\text{eff}} = \hbar \begin{pmatrix}
0 & -\Omega_{\text{eff}}/2 \\
-\Omega_{\text{eff}}/2 & \Delta_{\text{eff}}/2
\end{pmatrix}
\]

\[\Delta_{\text{eff}} = \delta + \frac{\sqrt{\Omega_1^2 - \Omega_2^2}}{4\Delta} \]; \[\Omega_{\text{eff}} = \frac{\Omega_1 \Omega_2}{2\Delta} \] with \(\delta = 0 \)

04/07/2023

M. Lepers
2 photons & 2 molecules

\[H = T + H_1 + H_2 + V(R) + H_f + H_{m-f} \]

Relative kinetic energy

Molecules 1 & 2

molecule-molecule

fields

molecules-fields

\[T = T_R + \frac{\hbar^2 L^2}{2\mu R^2} \]

\[H_i = B_0 J_i^2 \]

\[V(R) = V_{dd}(R) = \text{dipole-dipole} \]

\[H_{m-f} = \text{molec. 1 & 2} \]

– fields 1 & 2
2 photons & 2 molecules

\[H = T + H_1 + H_2 + V(R) + H_f + H_{m-f} \]

- Relative kinetic energy
- Molecules 1 & 2
- molecule-molecule
- fields
- molecules-fields

\[T = T_R + \frac{\hbar^2 \mathbf{L}^2}{2\mu R^2} \]

\[H_i = B_0 \mathbf{J}_i^2 \]

\[V(R) = V_{dd}(R) = \text{dipole-dipole} \]

\[H_{m-f} = \text{molec. 1 & 2} \]

\[\text{– fields 1 & 2} \]

\[H_{LR}(R) = \frac{\hbar^2 \mathbf{L}^2}{2\mu R^2} + B_0 (\mathbf{J}_1^2 + \mathbf{J}_2^2) + V_{dd}(R) \]

Diagonalization for each \(R \gtrsim 50 \) a.u.

\[V_{LR}(R); |\psi\rangle = \sum_m \chi_m(R) |m\rangle \]

\[\Omega_{\text{eff}}(R) \propto \sum_{m,p} \chi_m(R) \chi_p(R) \langle m || T^{(2)} || p \rangle \]
Lab-frame, fully uncoupled basis: $|j_i, m_i, j_k, m_k, \ell, m_\ell\rangle$
Basis sets \(\{ |m\rangle \} \)

Lab-frame, fully uncoupled basis: \(|j_i, m_i, j_k, m_k, \ell, m_\ell\rangle \)

To better account for symmetries, **fully-coupled** basis

\[[\hat{j}_i, \hat{j}_k], j_{ik}, \ell, J, M \rangle^{(\pm)} \]

- \(\hat{J} = \hat{j}_{ik} + \hat{L} = (\hat{j}_1 + \hat{j}_2) + \hat{L} \) = total angular momentum of the complex (without HFS). \(M \) associated to its **z-projection**
- \(\ell \) = partial wave
- \([j_i, j_k] = \) permutation
- \((\pm) = \) inversion of all coordinates
Basis sets \(\{|m\}\}\)

Lab-frame, fully uncoupled basis: \(|j_i, m_i, j_k, m_k, \ell, m_\ell\rangle\)

To better account for symmetries, **fully-coupled basis**

\[|[[j_i, j_k], j_{ik}, \ell, J, M\rangle^{(\pm)}\]

- \(\vec{J} = \vec{j}_{ik} + \vec{L} = (\vec{j}_1 + \vec{j}_2) + \vec{L}\) = total angular momentum of the complex (without HFS). \(M\) associated to its **z-projection**
- \(\ell\) = partial wave
- \([j_i, j_k]\) = permutation
- \((\pm)\) = inversion of all coordinates

Initial collision channel = 2 ultracold ground-state bosonic molecules

\(|m_1\rangle = |[[0,0], 0,0,0,0\rangle^{(\pm)}\]

![Potential energy graph]

-554000 / \(R^6\)

-0.2
-0.15
-0.1
-0.05
0
0.05

Potential energy (cm\(^{-1}\))

Intermolecular distance (a.u.)
Selection rules

Quant. nber	Dipole-dipole	Raman
\([\Delta j_i, \Delta j_k]\)	\([\pm 1, \pm 1]; [\mp 1, \pm 1]\)	\([0, \pm 2]\)
\(\Delta \ell\)	0 or \(\pm 2^*\)	0
\(\Delta J\)	0*	0 or \(\pm 1\) or \(\pm 2^*\)
\(\Delta M\)	0	0, if = polarizations
parity	\(\pm \leftrightarrow \pm\) or \(\mp \leftrightarrow \mp\)	\(\pm \leftrightarrow \pm\) or \(\mp \leftrightarrow \mp\)

* 0 \(\leftrightarrow\) 0, and 1/2 \(\leftrightarrow\) 1/2 for \(\Delta J\)
Selection rules

Quant. nber	Dipole-dipole	Raman
$[\Delta j_i, \Delta j_k]$	$[\pm 1, \pm 1]; [\mp 1, \pm 1]$	$[0, \pm 2]$
$\Delta \ell$	0 or $\pm 2^*$	0
ΔJ	0*	0 or ± 1 or $\pm 2^*$
ΔM	0	0, if = polarizations
parity	$\pm \leftrightarrow \pm \text{ or } \mp \leftrightarrow \mp$	$\pm \leftrightarrow \pm \text{ or } \mp \leftrightarrow \mp$

* $0 \leftrightarrow 0$, and $1/2 \leftrightarrow 1/2$ for ΔJ

\[
|m_1\rangle = |[j_X = 0, j_X = 0], j_{ik} = 0, \ell = 0, J = 0, M = 0\rangle^{(+)}
\]

\[
|[1, 1], 0 \text{ or } 2, 2, 2, 0\rangle^{(+)}
\]

\[
|[1, 3], 0 \text{ or } 2, 2, 2, 0\rangle^{(+)}
\]

\[
|m_2\rangle = |[0, 2], 2, 0, 2, 0\rangle^{(+)}
\]
Results for NaK
Long-range potential energy curves

\[\text{Potential energy (cm}^{-1}\text{)} \]

\[\text{Intermolecular distance (a.u.)} \]

- \([j_X = 0, j_X = 2]^{(+)} \)
- \([j_X = 1, j_X = 1]^{(+)} \)
- \([j_X = 0, j_X = 1]^{(-)} \)
- \([j_X = 0, j_X = 0]^{(+)} \)

2nd-order dipole-dipole \(\propto R^{-6} \)

Resonant dipole-dipole \(\propto R^{-3} \)
Long-range potential energy curves

\[\Delta_{\text{eff}} = 70 \text{ MHz} \]

![Graph showing potential energy curves with labels and equations]

Equations:

- **A':**
 \[D + \frac{17.29}{2\mu R^2} + \frac{1.045 \times 10^6}{R^6} \text{ (in a.u.)} \]

- **B':**
 \[D + \frac{6.668}{2\mu R^2} + \frac{2.711 \times 10^5}{R^6} \text{ (in a.u.)} \]
Long-range potential energy curves

\[\Delta_{\text{eff}} = 70 \text{ MHz} \]

\[\Delta_{\text{MW}} = 70 \text{ MHz} \]

\[A': D + \frac{17,29}{2\mu R^2} + \frac{1,045 \times 10^6}{R^6} \text{ (in a.u.)} \]

\[B': D + \frac{6,668}{2\mu R^2} + \frac{2,711 \times 10^5}{R^6} \text{ (in a.u.)} \]

PRL 125, 163402 (2018)
Eigenvector components at R_C

| Basis vector $|m_1\rangle = |[0, 0], 0, 0, 0, 0\rangle^{(+)}$ | Potential curve $|g_1\rangle = \text{init.}$ | $R_C = 240$ a.u. $\Delta_{\text{eff}} = 70$ MHz | $R_C = 170$ a.u. $\Delta_{\text{eff}} = 500$ MHz |
|---|---|---|---|
| $|m_1\rangle = |[0, 0], 0, 0, 0, 0\rangle^{(+)}$ | $|g_1\rangle = \text{init.}$ | 99.95 % | 98.61 % |

| Basis vector $|m_2\rangle = |[0, 2], 2, 0, 2, 0\rangle^{(+)}$ | Potential curve $|g_2\rangle$ | $R_C = 240$ a.u. $\Delta_{\text{eff}} = 70$ MHz | $R_C = 170$ a.u. $\Delta_{\text{eff}} = 500$ MHz |
|---|---|---|---|
| $|m_2\rangle = |[0, 2], 2, 0, 2, 0\rangle^{(+)}$ | $|g_2\rangle = A'$ | 10.90 % | 16.16 % |
| | $|g_2\rangle = B'$ | 9.80 % | 32.11 % |
| | $|g_2\rangle = C'$ | 78.88 % | 49.26 % |
\[\Delta_{\text{eff}} = 8 \text{ MHz} \text{ and } \Omega_{\text{eff}} = 11 \text{ MHz} \]

Nature 607, 677 (2022)
$\Delta_{\text{eff}} = 2 \text{ MHz and } \Omega_{\text{eff}} = 1 \text{ MHz}$
Conclusion

➢ Possibility of two-photon optical shielding
➢ No spontaneous emission or photon scattering
➢ « Mapping » on one-photon shielding
➢ Applicable to other molecules than NaK
➢ Possible use of other electronically excited states (A, B)

➢ Full scattering calculations

Phys. Rev. Research, accepted (2023)
Conclusion

➢ Possibility of two-photon optical shielding
➢ No spontaneous emission or photon emission
➢ « Mapping » on one-photon shielding
➢ Applicable to other molecules than NaK
➢ Possible use of other electronically excited states (A, B)
➢ Full scattering calculations

Phys. Rev. Research, accepted (2023)

Thank you!
Electronically-excited PECs

![Graph showing potential energy vs. intermolecular distance for different transitions.]

- $[i_X = 0, j_b = 2]^{(-)}$
- $[i_X = 2, j_b = 0]^{(-)}$
- $[i_X = 1, j_b = 1]^{(-)}$
- $[i_X = 0, j_b = 1]^{(-)}$

Potential energy (cm$^{-1}$) vs. Intermolecular distance (a.u.).
Eigenvector components at R_C

Basis vector	Potential curve	$R_C = 240$ a.u. $\Delta_{\text{eff}} = 70$ MHz	$R_C = 170$ a.u. $\Delta_{\text{eff}} = 500$ MHz	
$[[0, 0], 0, 0, 0, 0]^{(+)}$	$	g_1\rangle = \text{init.}$	99.95 %	98.61 %
$[[0, 2], 2, 0, 2, 0]^{(+)}$	$	g_2\rangle = A'$	10.90 %	16.16 %
	$	g_2\rangle = B'$	9.80 %	32.11 %
	$	g_2\rangle = C'$	78.88 %	49.26 %
$[[X, 0, b, 1], 1, 0, 1, 1]^{(-)}$	$	q\rangle = I$	33.06 %	33.17 %
	$	q\rangle = K$	16.74 %	16.68 %
Scheme of energy levels

\[\Delta_{\text{eff}} = \delta + \frac{\Omega_1^2 - \Omega_2^2}{4\Delta} \]

\[\Omega_{\text{eff}}(R) = \frac{\Omega_1(R)\Omega_2(R)}{2\Delta(R)} \]
Blue shielding: principle

= Engineer repulsive long-range interactions
Molecular data

Species	C_6^{es} (a.u.)	PDM$_X$ (a.u.)	PDM$_b$ (a.u.)	TDM$_{X\rightarrow b}$ (a.u.)	$B_{(X)}$ (cm$^{-1}$)	$B_{(b)}$ (cm$^{-1}$)
$^7\text{Li}^{23}\text{Na}$	3333.6	0.2228	0.645	0.0082	0.374	0.387
$^6\text{Li}^{39}\text{K}$	6096.8	1.410	1.810	0.0216	0.256	0.274
$^7\text{Li}^{87}\text{Rb}$	7268	1.645	2.214	0.1149	0.215	0.231
$^7\text{Li}^{133}\text{Cs}$	9263	2.201	2.709	0.1327	0.187	0.204
$^{23}\text{Na}^{39}\text{K}$	7088.1	1.095	1.220	0.0456	0.0950	0.0951
$^{23}\text{Na}^{87}\text{Rb}$	8374.6	1.304	1.735	0.1918	0.0697	0.0700
$^{23}\text{Na}^{133}\text{Cs}$	10642	1.845	2.369	0.4204	0.0579	0.0600
$^{39}\text{K}^{87}\text{Rb}$	12610.1	0.2423	0.491	0.1353	0.0378	0.0387
$^{39}\text{K}^{133}\text{Cs}$	15481.9	0.7237	1.282	0.2342	0.0304	0.0320
$^{37}\text{Rb}^{133}\text{Cs}$	17839.4	0.4903	0.840	0.2697	0.0164	0.0170
NaRb with shielding and trapping lights
X → b transition in NaRb

\[k_{el} (cm^3/s) \]

\[k_{in} (cm^3/s) \]

\[k_{re} (cm^3/s) \]

\[\gamma = \frac{k_{el}}{k_{in} + k_{re}} \]
X → b transition in NaRb

BUT : 1 molecule photon scattering