Matrix metalloproteinase 12 is induced by heterogeneous nuclear ribonucleoprotein K and promotes migration and invasion in nasopharyngeal carcinoma

I-Che Chung1†, Lih-Chyang Chen2†, An-Ko Chung3, Mei Chao4, Hsin-Yi Huang3, Chuen Hsueh1,5, Ngan-Ming Tsang6, Kai-Ping Chang7, Ying Liang1, Hsin-Pai Li1,4* and Yu-Sun Chang1,3*

Abstract

**Background:** Overexpression of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a DNA/RNA binding protein, is associated with metastasis in nasopharyngeal carcinoma (NPC). However, the mechanisms underlying hnRNP K-mediated metastasis is unclear. The aim of the present study was to determine the role of matrix metalloproteinase (MMP) in hnRNP K-mediated metastasis in NPC.

**Methods:** We studied hnRNP K-regulated MMPs by analyzing the expression profiles of MMP family genes in NPC tissues and hnRNP K-knockdown NPC cells using Affymetrix microarray analysis and quantitative RT-PCR. The association of hnRNP K and MMP12 expression in 82 clinically proven NPC cases was determined by immunohistochemical analysis. The hnRNP K-mediated MMP12 regulation was determined by zymography and Western blot, as well as by promoter, DNA pull-down and chromatin immunoprecipitation (ChiP) assays. The functional role of MMP12 in cell migration and invasion was demonstrated by MMP12-knockdown and the treatment of MMP12-specific inhibitor, PF-356231.

**Results:** MMP12 was overexpressed in NPC tissues, and this high level of expression was significantly correlated with high-level expression of hnRNP K (P = 0.026). The levels of mRNA, protein and enzyme activity of MMP12 were reduced in hnRNP K-knockdown NPC cells. HnRNP K interacting with the region spanning −42 to −33 bp of the transcription start site triggered transcriptional activation of the MMP12 promoter. Furthermore, inhibiting MMP12 by MMP12 knockdown and MMP12-specific inhibitor, PF-356231, significantly reduced the migration and invasion of NPC cells.

**Conclusions:** Overexpression of MMP12 was significantly correlated with hnRNP K in NPC tissues. HnRNP K can induce MMP12 expression and enzyme activity through activating MMP12 promoter, which promotes cell migration and invasion in NPC cells. In vitro experiments suggest that NPC metastasis with high MMP12 expression may be treated with PF-356231. HnRNP K and MMP12 may be potential therapeutic markers for NPC, but additional validation studies are warranted.

**Keywords:** hnRNP K, MMP12, Migration, Invasion, Nasopharyngeal carcinoma

* Correspondence: paili@mail.cgu.edu.tw; ysc@mail.cgu.edu.tw
† Equal contributors
1 Molecular Medicine Research Center, Chang Gung University, 259 Wen-Hwa 1st Road, Taoyuan, Kwei-shan 333, Taiwan
2 Department of Microbiology and Immunology, Chang Gung University, 259 Wen-Hwa 1st Road, Taoyuan, Kwei-shan 333, Taiwan
Full list of author information is available at the end of the article

© 2014 Chung et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
Heterogeneous nuclear ribonucleoprotein K (hnRNP K), a member of the hnRNP family, is aberrantly increased in multiple types of cancer [1-5], including nasopharyngeal carcinoma (NPC) [5]. HnRNP K is a nucleocytoplasmic shuttling protein that is primarily located in the nucleus, where it is involved in transcriptional regulation [6]. It may act as either a transactivator [7-9] or transrepressor [10], depending on the interacting factors involved. In terms of the post-transcriptional regulation of hnRNP K, its cytoplasmic accumulation is governed by ERK-mediated phosphorylation at serines-284 and −353 [11,12]. The tumorigenic potential of hnRNP K is mediated by various tumor-associated genes, such as FLIP [7], TP [11], eIF4E [13] and c-Myc [14]. High-level hnRNP K expression has been correlated with decreased metastasis-free survival in NPC patients and may promote metastasis of NPC cells in part by inducing downstream metastasis-related genes [5,7]. To investigate the regulatory mechanism underlying hnRNP K-mediated metastasis, microarray analysis were performed in the hnRNP K-knockdown or in control NPC cells. Our preliminary data indicated that matrix metalloproteinase 12 (MMP12) was one of the hnRNP K-activated downstream targets.

The MMP family has 23 members that differ in their substrate specificities toward various components of the extracellular matrix (ECM). Structurally, the MMPs generally include a highly conserved propeptide domain, a zinc-binding catalytic domain, and a hemopexin-like domain; a catalytic zinc ion is required for their proteolytic activity [15]. MMPs are involved in many phases of cancer progression, including tumor invasion, metastasis, and angiogenesis [16,17]. Previously, it has been reported that induction of MMP1 [18], MMP2 [19,20] and MMP9 [21] expression were detected and correlated with poor prognosis in NPC due to the invasive and metastatic role of MMPs. This increase in MMPs expression is mainly caused by EBV latent membrane protein 1 (LMP1) [22], LMP2A [23] and Zta [24]. To date, however, no study has specifically examined the expression of MMP12 in NPC. MMP12, also known as macrophage metalloelastase is overexpressed in many cancer types, and high-level MMP12 expression has been associated with poor prognosis and increased risk of metastasis in cancer patients [25-28]. In malignant cells, the tumor microenvironment, which contains various inflammatory mediators (e.g., TNFa and GM-CSF), was found to positively regulate MMP12 expression through the activation of NF-κB and AP-1 [29,30]. MMP12 has also been shown to be involved in cell invasion [31,32], proliferation [33] and angiogenesis [34].

NPC is more prominent in Southeastern China and Taiwan than in Western countries. Epidemiological studies have indicated that infection with Epstein-Barr virus (EBV), dietary habits, and genetic susceptibility might be critical cofactors in the development of NPC [35,36]. Radiotherapy is traditionally the first choice for treating primary NPC. Under the current combined treatments with both radio- and chemotherapy regimens, the survival rates among NPC patients are ~92% at 1 year and ~50% at 5 years, with 20-25% of patients eventually developing distant metastases [37].

We previously reported that hnRNP K can be a prognostic biomarker for NPC, and regulates TP and FLIP post-transcriptionally and transcriptionally, respectively [7,11]. In the present study, we show that hnRNP K can regulate MMP12 expression transcriptionally, and promotes the migration and invasion of NPC cells. MMP12 inhibitor PF-356231 prevents NPC cell migration and invasion in vitro. Clinically, elevated expression of MMP12 was significantly correlated with high-level expression of hnRNP K in NPC biopsy tissues.

Methods

Cell culture
The NPC-derived cell line, TW02 [38], derived from a keratinizing squamous cell carcinoma [World Health Organization (WHO) type I], was provided by Dr. C. T. Lin (National Taiwan University, Taiwan). The NPC-derived cell line, HK1 [39], derived from a keratinizing squamous cell carcinoma (WHO type I), was provided by Dr. S. W. Tsao (Hong Kong University, SAR, China). NPC-TW02 and NPC-HK1 cells were culture in Dulbecco's modified Eagle's medium (DMEM, Gibco BRL, Rockville, MD) and RPMI1640 (Gibco BRL), respectively. All NPC cell lines were supplemented with 10% fetal calf serum (FCS), 100 U/ml penicillin, and 100 μg/ml streptomycin at 37°C under 5% CO₂.

Affymetrix microarray analysis
RNA samples from hnRNP K-knockdown NPC-TW02 cells, control NPC-TW02 cells, nine individual NPC tissues and one pool of the corresponding adjacent non-tumor tissues, were isolated using the TRizol reagent (Invitrogen, Carlsbad, CA). The biotinylated oligonucleotide was hybridized to the Human Genome U133 Plus 2.0 Array (Affymetrix, Santa Clara, CA) by the National Yang-Ming University Genomics Center (Taiwan), following the manufacturer's instructions. Microarray data were analyzed using the GeneSpring software version GX 7.31 (Silicon Genetics, Redwood, CA). The ratio of the average hybridization intensity between hnRNP K-knockdown/control NPC-TW02 cells or NPC tumor/normal tissue was taken as the relative gene expression level.

Quantitative RT-PCR
RNA samples from NPC-TW02, and -HK1 cells and NPC tissues were isolated using the TRizol reagent (Invitrogen).
Reverse transcription of RNA (1 μg) was performed using oligo(dT)$_{20}$ primers (Invitrogen) and Moloney Murine Leukemia Virus (M-MLV) Reverse Transcriptase (Invitrogen) according to the manufacturer’s instructions. The primers used to amplify the cDNA corresponding to MMP1, MMP12, MMP13, MMP28 and GAPDH are presented in Additional file 1: Table S1. Quantitative RT-PCR was performed on a Light-Cycler (Roche Diagnostics, Mannheim, Germany), using the FastStart DNA Master SYBR Green I reagent (Roche Diagnostics). The gene expression results were normalized with regard to the expression of the GADPH. For mRNA half-life assessment, actinomycin D (5 μg/ml) was added 48 hours after cells were transfected with control or hnRNP K-targeting siRNA, and RNA was prepared at the indicated times.

**RNA interference**

SMART pool reagents, including four RNA duplexes targeting hnRNP K and MMP-12 were purchased from Dharmacon (Lafayette, CO), and the negative control siRNA was synthesized by Eurogentec S.A. (Liege, Belgium). The target sequences of the siRNA were as follows: hnRNP K, 5′-UAAC GCCCU GCAGA AGAUA U-3′, 5′-GGUCG UGGCU CAUAU GGUGU U-3′, 5′-UGACA GAGUU GUUUC UAUU U-3′ and 5′-GCAAG AAUAA UAGG CUCUU U-3′. NPC cells were transfected with double-stranded (ds) RNA duplexes (50 nmol/L) using the Lipofectamine 2000 reagent (Invitrogen).

**Patients and clinical characteristics**

The retrospective cohort comprised 82 NPC patients who had been admitted to Chang Gung Memorial Hospital (Lin-Kou, Taiwan) from 1990 to 1998. Clinical stage was defined according to the 2002 cancer staging system revised by the American Joint Committee on Cancer. The study population included 17 stage-I-II and 65 stage-III-IV patients comprising 61 men and 21 women ranging from 22 to 78 years of age (median age 44). Histological typing was done according to the WHO classification criteria, as previously described [40]. This study was reviewed and approved by the institutional review board and ethics committee of Chang Gung Memorial Hospital. Informed consent was obtained from all patients.

**Immunohistochemical staining**

Immunohistochemical analyses were performed as described previously [5,7,37,40], using an automatic IHC-staining device (Bond-max Automated Immunostainer; Vision Biosystems, Melbourne, Australia), according to the manufacturer’s instructions. Tissue sections were retrieved using Bond Epitope Retrieval Solution 1 (Vision BioSystems) and stained with antibodies against hnRNP K (mouse monoclonal antibody, 1:300 dilution; Santa Cruz Biotechnology, Santa Cruz, CA, USA) and MMP-12 (goat polyclonal antibody, 1:10 dilution; Santa Cruz Biotechnology). A polymer detection system (Bond Polymer Refine; Vision BioSystems) was used to reduce non-specific staining. Tissue sections were treated with liquid DAB reagent; 3′-diaminobenzidine tetrahydrochloride was used as the chromogen, and hematoxylin was used as the counterstaining reagent. For analysis of total hnRNP K expression, specimens in which >50% of the tumor cells displayed strong staining were defined as having ‘high-level total hnRNP K’ expression, and those in which ≤50% of tumor cells showed strong stained were defined as having ‘low-level total hnRNP K’ expression. For analysis of cytoplasmic hnRNP K, we used the method described previously [5], a sample was defined as ‘cytoplasmic positive’ in cases where >10% of the tumor cells exhibited cytoplasmic staining and as ‘cytoplasmic negative’ where ≤10% of cells were stained. For analysis of nuclear hnRNP K expression, specimens in which >50% of tumor cells displayed strong staining were defined as ‘high level of nuclear hnRNP K’ and those where ≤50% of tumor cells stained strongly were defined as ‘low level of nuclear hnRNP K’. For analysis of MMP-12 expression, specimens in which >20% of tumor cells displayed positive staining were defined as having ‘high-level’ MMP-12 expression, and those in which ≤20% tumor cells displayed positive staining were defined as having ‘low-level’ MMP-12 expression. MMP-12- and hnRNP K-positive tumor cells in representative microscopic fields were scored independently by two experienced pathologists.

**Western blotting**

Whole cell lysates were prepared by incubating cells in NP40 lysis buffer (50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 1% Igepal CA-630 and protease inhibitors [4.76 μg/ml aprotinin, 3.25 μg/ml aprotonin, 0.69 μg/ml pepstatin and 1 mM phenylmethylsulfonyl fluoride]) on ice for 30 min. The lysates were then centrifuged at 12,000 × g at 4°C for 10 min to pellet cell debris, and the supernatant was collected. In addition, the expression of MMP12 protein in the serum-free medium of NPC cells was measured by Western blotting. Conditioned media were collected and concentrated 20-fold using Amicon Ultra-4 centrifugal filters (Millipore, Carriaghtwohill Co., Cork, Ireland) according to the manufacturer’s protocol. Protein concentration was determined using the Bradford reagent. Equal amounts of protein were resolved by electrophoresis on SDS-polyacrylamide gels, and the resolved proteins were transferred to nitrocellulose membranes. The membranes were blocked in 0.1% TBS-Tween 20 (TBST) with 5% non-fat dry milk for 1 h, and then incubated overnight with anti-hnRNP K (1:1000), anti-MMP12 (1:500), anti-PGK1(1:1000) (all from Santa Cruz Biotechnology, Santa
Cruz, CA), and anti-actin (1:5000, MDBio, Piscataway, NJ). The membranes were then incubated with secondary antibodies coupled to horseradish peroxidase (1:5000), and the results were visualized using an enhanced chemiluminescence system (Amersham Pharmacia Biotech, AB, Uppsala, Sweden).

Zymography
NPC cells treated with hnRNP K-targeting siRNA were cultured in serum-free medium for 48 h, and the conditioned medium was harvested and concentrated 20-fold using an Amicon Ultra-4 centrifugal filter (Millipore). The protein concentration was quantified using the Bradford reagent and protein was mixed with non-reducing sample buffer. The protein mixture was heated at 37°C for 30 min and separated by electrophoresis on an SDS-polyacrylamide gel containing 1 mg/ml α-casein. The gel was washed twice with 2.5% Triton X-100 for 30 min at room temperature (RT), and incubated in developing buffer (50 mM Tris–HCl, pH 7.6, 15 mM NaCl, 10 mM CaCl₂ and 0.02% NaN₃) for 15 min at RT with gentle agitation. The gel was then transferred to fresh developing buffer and incubated at 37°C for 48 h, and then incubated in fixing buffer for 15 min at RT with gentle agitation. The gel was stained with 0.125% Coomassie blue at RT for 1 h and destained with fixing buffer; the solution was changed every 15 min until caseinolytic bands were visible. The caseinolytic band found at 54 kDa was subjected to zymographic measurement of MMP12 activity.

Plasmid construction
The promoter sequences of human MMP12 were obtained from the UCSC genome browser. Using human genomic DNA isolated from normal peripheral blood mononuclear cells (PBMCs) as the template, we obtained the MMP12 promoter −2000 (−2000 to +97) fragment by PCR using the following primers: forward, 5'-GGGAT GATAT GGTTTC CG-3' and reverse, 5'-TGTAA ACTTC TAAAC GGATC AATTC AG-3'. The biotinylated probes were conjugated with 0.4 ng of pRL-TK (Promega) and 0.8 μg of pGL3-basic vector with or without MMP12 promoter fragments, using Lipofectamine (Invitrogen) according to the manufacturer's instructions. After 24 hours, Firefly and Renilla luciferase activities were measured using the Dual-Glo Luciferase Assay System (Promega) according to the manufacturer’s instructions. Firefly luciferase activities were normalized to Renilla activities. Each bar represents an average of at least three independent experiments, and the error bars show standard deviations calculated using Microsoft Office Excel.

DNA pull-down assay
Probes corresponding to the potential binding elements within the MMP12 promoter were generated by PCR using the appropriate biotinylated primers, as follows:

−42/+97 (−42 to +97) forward, 5’-GGGAT GATAT CCACT ATGAG TACTC CATAG G-3’ and reverse, 5’-TGTTAA ACTTCT TAAAC CGGAT CTATC AGTATC AG-3’; and

+2/+97 (+2 to +97) forward, 5’-AGAAC CGGGCA CTAG GCCG-3’ and reverse, 5’-TGTTAA ACTTCT TAAAC CGGAT CTATC AG-3’.

The biotinylated probes were conjugated with M-280 Streptavidin Dynabeads (Invitrogen) in binding buffer (10 mM Tris–HCl, pH 7.5, 50 mM KCl, 1 mM MgCl₂, 1 mM EDTA, pH 8.0, 1 mM Na₂VO₄, 5 mM DTT, 5% glycerol, 0.3% NP-40) for 40 min at room temperature. NPC-TW02 cells were extracted using the Compartmental Protein Extraction Reagent (Millipore), and nuclear fractions (50 μg) were incubated with unconjugated Dynabeads in the presence of 25 μg/ml poly (dIdC) for 20 min at RT. The unbound fraction was incubated with 250 μg of Dynabeads bound to 50 pmol of immobilized probe for 1 h at RT. The Dynabead-bound complexes were collected using a Dynal MPC-S magnetic particle concentrator (Dynal Biotech, Oslo, Norway) and washed with binding buffer. The DNA-bound proteins were eluted in SDS sample buffer and assayed by Western blotting.

Chromatin immunoprecipitation (ChIP) assays
ChIP assays were performed using a Magna ChIP™ Kit (Millipore) according to the manufacturer’s protocol, with modifications. Briefly, NPC-TW02 cells (1×10⁶) were cross-linked by treatment with 1% formaldehyde for 10 min on ice, and the reactions were quenched with glycine (0.125 M) for 10 min on ice. Fixed cells were washed twice with ice-cold PBS and lysed for 15 min on ice with the provided cell lysis buffer and protease inhibitors. The samples were then centrifuged at 800 x g for 5 min at 4°C, the supernatants were removed, and the pellets were resuspend with the provided nuclear lysis buffer and protease inhibitors. Chromatin was sheared by sonication (eight times for 10 seconds each at 30% output) on ice and centrifuged at 10,000 x g for 10 min at 4°C. The supernatant was collected and diluted 10-fold with ChIP dilution buffer (0.01% SDS, 1.1% Triton xg).
X-100, 1.2 mM EDTA, 16.7 mM Tris–HCl, pH 8.1, 167 mM NaCl containing protease inhibitors. The diluted samples were incubated overnight at 4°C with 4 μg of an anti-hnRNP K antibody (Invitrogen) and magnetic protein A/G beads (Millipore). Mouse IgG (Millipore) was used as a control antibody. The immunocomplexes were collected using a Dynal MPC-S magnetic particle concentrator (Dynal Biotech) and washed once each in low-salt buffer, high-salt buffer, LiCl buffer, and Tris-EDTA buffer. The samples were resuspended in ChIP elution buffer (200 mM NaCl, 1% SDS, 20 mM Tris–HCl, pH 7.4) containing 100 μg/ml proteinase K, incubated for 2 h at 62°C, and then incubated for 10 min at 95°C. The DNA fragments were further purified using a QIAquick PCR Purification Kit (QIAGEN, Hilden, Germany), and quantitative PCR was performed using primers against the potential hnRNP K-binding elements in the MMP12 promoter.

**Lentiviral production and transduction**

The negative control shRNA (lacZ) and two shRNAs targeting different sequences of human MMP12 (KD1, clone ID TRCN0000050209; and KD2, clone ID TRCN0000372998) in the pLKO.1-puro vector backbone were purchased from the National RNAi Core Facility of Academia Sinica (Taipei, Taiwan). For lentiviral production, 293 T cells were seeded at 4 × 10^5/well in 6-well plates and transfected with 1.8 μg pCMV-Δ8.91, 0.2 μg pMD.G and 2 μg lentiviral vector. Six hours after transfection, the culture medium was change to DMEM supplemented with 1% FCS. Supernatants were collected at 24 and 48 h after transfection, pooled, filtered through a 0.22-μm filter, and then filtered at −80°C until use. For lentiviral transduction, NPC-TW02 cells were seeded at 2 × 10^5/well in 6-well plates and infected with lentivirus in the presence of 8 μg/mL of polybrene. The transduced cells were selected with 1 μg/ml puromycin for 2–3 weeks.

**Cell proliferation assay**

Equal numbers of MMP12-knockdown cell clones were dispensed to 6-well plates, and total cell numbers were counted on days 1, 2, 3 and 4 after plating. The results are presented as the mean ± SD from four independent experiments.

**Cell migration and invasion assays**

The migration and invasion of NPC cells were evaluated using Transwell inserts (Corning Inc., Corning, NY, USA) and Biocat Matrigel invasion chambers (BD Biosciences, Bedford, MA), respectively. For cell migration assays, the cells were washed twice with serum-free medium and resuspended in serum-free medium, and 1.8 × 10^5 cells in 0.1 ml were added to the upper chamber of the apparatus. The lower chamber contained 0.6 ml medium with 10% FBS. For cell invasion assays, the same procedures were used, except that 2.5 × 10^5 cells were resuspended in 0.5 ml of serum-free medium, and added to the upper chamber of the apparatus, while the lower chamber contained 0.75 ml medium with 10% FBS. After 24 h at 37°C, the migrated and invading cells were fixed and stained for 20 min with 0.25% crystal violet, 10% formaldehyde and 80% methanol, and the filters were washed five times with ddH2O to remove non-adherent cells. Ten to fifteen random fields (× 100 magnification) were captured for each membrane. The migrated or invading cells were counted and averaged were calculated; results were obtained from three independent experiments. The relative fold-change in the number of migrated or invasive cells is shown, with the results from control cells given as 1.0. The effect of MMP12-specific inhibitor PF-356231 (Enzo Life Science, Farmingdale, NY) [41,42] on the migration of NPC cells was determined after culturing for 24 h in the presence of indicated concentrations of inhibitor or DMSO (as vehicle control). The invasive activities of NPC cells were determined after 24 h (NPC-TW02) or 36 h (NPC-HK1) of treatment with inhibitor.

**Statistical analysis**

All statistical analyses were performed using the SPSS 13.0 statistical software package. The relationship between MMP12 expression and hnRNP K expression was evaluated using the Pearson Chi-Square test. *In vitro* data were analyzed with the Student’s *t* test. Differences were considered significant at a level of *P* < 0.05.

**Results**

**Systematic analysis of hnRNP K-regulated MMPs genes**

We previously showed that hnRNP K contributes to the metastasis of NPC cells in part by regulating downstream genes [7]. Since the MMP family proteins are well known to be involved in tumor metastasis, we tested if they could be regulated through hnRNP K. We used Affymetrix cDNA microarrays to compare the expression profiles of MMP family genes in NPC-TW02 cells transiently transfected with hnRNP K-targeting siRNA versus those transfected with negative control siRNA, and in NPC tissue samples and adjacent normal tissues. The 7 out of 23 MMP genes showed reduced expression (1.5-fold decrease) in hnRNP K-knockdown cells (Additional file 2: Table S2), while 11 out of 23 were elevated (1.5-fold increase) in NPC tissues (Additional file 3: Table S3). Among these differentially expressed genes, MMP1, MMP12, MMP13 and MMP28 were consistently reduced in hnRNP K-knockdown cells (Figure 1A) but elevated in tumor cells (Figure 1C). We further confirmed our microarray results using quantitative RT-PCR, and found that the mRNA levels of MMP1, MMP12,
MMP13 and MMP28 were significantly reduced (to 0.77-, 0.28-, 0.46- and 0.09-fold, respectively; \( P < 0.05 \)) in hnRNP K-knockdown cells compared with control siRNA-treated NPC-TW02 cells (Figure 1B). On the other hand, the mRNA levels of MMP1 and MMP12 were significantly elevated (14.2- and 56.3-fold, respectively; \( P < 0.05 \)) in nine matched-pairs of NPC tumor and adjacent normal tissues. NPC tumor samples compared with adjacent normal tissues, whereas the mRNA levels of MMP13 and MMP28 were not significantly different between the tumor and adjacent normal tissues (Figure 1D). As MMP12 has not previously been examined in the context of NPC, it was chosen for further study.

**Correlation of MMP12 and hnRNP K expression levels in NPC tissues**
The epithelial-stromal cell cross contamination is known to be one of problems in the analysis of RNA/protein expression from solid tumor. Therefore, 82 NPC biopsy specimens were subjected to immunohistochemical (IHC) analysis and the differential expression of MMP12 and hnRNP K between the tumor and normal epithelial tissues were investigated. Patient characteristics and clinical features are summarized in Table 1. In general, our IHC data demonstrated that the NPC tumor cells expressed higher levels of MMP12 compared to adjacent normal cells. As shown in Figure 2A-C, consecutive tissue slides of the same set of specimens were used to evaluate the protein expression levels of MMP12 and hnRNP K. We further analyzed whether the expression level of MMP12 correlated with the subcellular localization...
We assessed the association between MMP12 expression (high or low) and (1) the total hnRNP K expression (high or low), or (2) the nuclear hnRNP K expression (high or low), or (3) the cytoplasmic hnRNP K expression (positive or negative). The statistical analysis was summarized in Table 2. Statistical analyses revealed that high-level MMP12 expression was significantly correlated with high-level of total hnRNP K ($P = 0.026$; Table 2) and nuclear hnRNP K ($P = 0.042$; Table 2), rather than cytoplasmic

cytoplasmic or nuclear) of hnRNP K in NPC cells.
hnRNP K ($P = 0.168$; Table 2). These results suggest that nuclear hnRNP K was positively correlated with MMP12 in NPC tumor cells.

### The expression and activity levels of MMP12 are regulated by hnRNP K in NPC cells

To gain insight into the potential role of hnRNP K in regulating MMP12 expression, we tested MMP12 expression in hnRNP K-knockdown and control cells of two NPC cell lines (NPC-TW02 and -HK1). As shown in Figure 3A, the level of MMP12 mRNA was reduced significantly in hnRNP K siRNA-treated NPC cells compared with control siRNA-treated cells. To assess whether the effect of hnRNP K knockdown on MMP-12 mRNA was correlated with changes in the protein and/or enzymatic levels, we performed Western blot and zymographic analyses. Conditioned media were obtained from the above-described NPC cells and analyzed by immunoblotting and casein zymography. Western blot analysis and casein zymography showed that hnRNP K knockdown significantly reduced the protein expression and activity levels of MMP12 (54 kDa), respectively (Figure 3A and B). Thus, hnRNP K knockdown inhibited the mRNA expression, protein expression and enzymatic activity of MMP12.

MMP12 is transcriptionally regulated by hnRNP K

We further clarified the mechanism(s) underlying the hnRNP K-mediated regulation of MMP12 expression. To discriminate between transcriptional activation and post-transcriptional regulation, we analyzed the effect of hnRNP K knockdown on MMP12 promoter activity and mRNA stability. As shown in Figure 4A and B, NPC-TW02 cells were treated with siRNA followed by transfection of constructs containing 5’ serial deletions of the MMP12 promoter, and reporter activity was examined 24 h later. Our results revealed that knockdown of hnRNP K significantly inhibited the activity of MMP12 promoter constructs containing the deletion from −2000 to −42 bp of the transcription start site ($P < 0.05$). There had no effect on MMP12 promoter (−32 to +97) while cells treated with hnRNP K siRNA compared with control group (Figure 4B). Moreover, the MMP12 promoter construct spanning −32 to +97 showed substantially less activity compared with that spanning −42 to +97 (61.3% vs. 100%, respectively) (Figure 4B). These results collectively suggest that the MMP12 promoter region covering −42 to −33 may be the potential hnRNP K response region.

### Table 2 Correlation of hnRNP K and MMP12 expression

|                        | MMP12 expression |  |  |
|------------------------|------------------|---|---|
|                        | High             | Low |
| Total hnRNP K          | 0.026*           |    |    |
| High                   | 32               | 15 |
| Low                    | 15               | 20 |
| Nuclear hnRNP K        | 0.042*           |    |    |
| High                   | 25               | 10 |
| Low                    | 22               | 25 |
| Cytoplasmic hnRNP K    | 0.168            |    |    |
| Positive               | 33               | 19 |
| Negative               | 14               | 16 |

*With statistic significance.

Figure 3 Suppression of hnRNP K expression downregulates the expression and activity of MMP12 in NPC. (A) NPC-TW02 and -HK1 cells were transfected with hnRNP K-targeting (K) or control (C) siRNA. Twenty-four hours after transfection, cells were further cultured in serum-free medium for another 48 h. MMP12 mRNA levels were determined by quantitative RT-PCR, and MMP12 and hnRNP K protein levels in the culture supernatant (Sup) and in the cell extract (CE), respectively, were examined by Western blotting. PGK1 and Actin protein levels were used as the loading control for the secreted and the cytoplasmic proteins, respectively. (B) The enzymatic activity of MMP12 was analyzed by zymography. The supernatants from the NPC cells treated with either hnRNP K-targeting (K) or control (C) siRNA were collected after 48 h, and were subjected to zymographic analysis. The protein levels of hnRNP K and actin in the cell extracts were analyzed by Western blotting.
To further verify the binding of hnRNP K to the MMP12 promoter, we performed in vitro DNA pull-down assays with probes spanning −42 to +97 and +2 to +97 of the MMP12 promoter. As shown in Figure 4C, hnRNP K specifically bound to probe (−42 to +97) but not probe (+2 to +97), suggesting that the −42 to +1 region is indispensable for hnRNP K binding. To further support our contention that hnRNP K can interact with the endogenous MMP12 promoter, we performed a chromatin-immunoprecipitation analysis. As shown in Figure 4D, hnRNP K specifically immunoprecipitated with the MMP12 promoter. Together, these results indicated that the hnRNP K-responsive region is the sequence of −42 to −33 bp upstream of the MMP12 transcription start site.

In addition, we examined the effect of hnRNP K knockdown on MMP12 mRNA stability. Treatment of NPC-TW02 cells with actinomycin D to block de novo RNA synthesis, and used quantitative RT-PCR to examine MMP12 mRNA levels at 2, 4, 8, 12 and 16 h post-treatment. The half-life of the MMP12 mRNA was 31.07 h in hnRNP K-knockdown cells and 38.17 h in control cells, which was not significantly different (Additional file 4: Figure S1). Taken together, our findings indicate that the hnRNP K-mediated changes in MMP12 gene expression arise via promoter inhibition, not mRNA destabilization.

MMP12 promotes NPC cell migration and invasion

To examine the biological function of MMP12 in NPC cells, we established two MMP12-knockdown cell lines using lentiviral transduction of two different MMP12-targeting shRNA sequences. As shown in Figure 5A, the MMP12 protein and mRNA levels were reduced in the two MMP12-knockdown cell lines compared to control cells transduced with a control shRNA targeting LacZ. Importantly, cell migration (Figure 5B) and invasion (Figure 5C) were significantly and dose-dependently reduced in the MMP12-knockdown cells compared to controls (P < 0.05). However, the reduction of migration and invasion in MMP12-knockdown cells were not due to the difference in cell growth (Figure 5D) between
MMP12-knockdown and control cells. We further investigated the effect of the treatment of PF-356231, a specific inhibitor of MMP12 on the migration and invasion of NPC cells. As compared to untreated control, PF-356231 treatment significantly and dose-dependently reduced the migration (Figure 6A) and invasion (Figure 6B) in NPC-TW02 cells \( (P < 0.05) \). Similar results were observed in NPC-HK1 cells (Figure 6C and D). Taken together, these results indicate that hnRNP K-mediated MMP12 expression enhances the migration and invasion of NPC cells. In addition, MMP12-mediated cell migration and invasion can be inhibited by PF-356231 treatment.

**Discussion**

Overexpression of hnRNP K has been found in various cancers and correlates with poor prognosis [3-5,43]. Here, we report a new function for hnRNP K-regulating MMP12, which can induce cell migration and invasion in NPC cells. We further show that the sequence \(-42 \) to \(-33 \) bp relative to the transcription start site of MMP12 is bound by hnRNP K, triggering the transcriptional activation of MMP12. Moreover, MMP12 promotes cell migration and invasion in NPC cells, and high-level MMP12 expression was found to be correlated with increased expression of hnRNP K in NPC patients. Collectively, our findings show that hnRNP K binds the MMP12 promoter, thereby inducing MMP12 expression through transcriptional activation. This provides a mechanistic explanation for the correlation of hnRNP K with MMP12 and metastasis in NPC. Although we and other groups have showed that an aberrant cytoplasmic localization of hnRNP K was correlated with a poor prognosis in many tumors including NPC [3,5,44], in this study, we found that the nuclear but not the
cytoplasmic hnRNP K is significantly correlated with MMP12 expression level. Conceivably, only the nuclear hnRNP K can transcriptionally regulate the MMP12 gene expression. On the contrary, TP, a hnRNP K target gene, whose expression is upregulated through the increase in its mRNA stability by the binding of cytoplasmic hnRNP K [11]. From these data, we can conclude that hnRNP K has dual roles in different subcellular localization. Whether nuclear or cytoplasmic hnRNP K is responsible for regulating its downstream target genes, it depends largely on the target gene itself.

HnRNP K overexpression has been correlated with poor distant metastasis-free survival [5,45-47], suggesting that hnRNP K can promote tumor metastasis. However, the underlying mechanism responsible for this promotion of metastasis was previously unknown. In the present study, our systematically analysis of the MMP gene family revealed that MMP12 was induced by hnRNP K and could promote cell migration and invasion in NPC cells. Importantly, high-level MMP12 expression was correlated with metastatic disease in non-small cell lung cancer [27] and head and neck squamous cell carcinoma [25].

Activities of MMPs are linked to many metastasis-associated events in cancer progression. Therefore, MMPs may be the ideal targets for anti-cancer drug

![Figure 6](image)

**Figure 6** MMP12-specific inhibitor, PF-356231, inhibits cell migration and invasion in NPC cells in a dose-dependent manner. Cell migration and invasion assays were performed in NPC-TW02 (A and B) and in NPC-HK1 (C and D) cells, respectively, in the presence of different concentration of MMP12 inhibitor PF-356231 (0, 25 and 50 nM). Images were captured under 12.5x magnification. The relative fold-change in the number of migrated cells is shown, with the results from control cells given as 1.0. All data are presented as the mean ± SD from three independent experiments. *P<0.05.
discovery. The partial inhibition of cell migration and invasion was observed after MMP12 inhibitor PF-356231 treatment (Figure 6), implying that there are multiple pathways, besides MMP12, may involve in promoting cell motility in NPC. For instance, AP-1-mediated MMP3 activation [48], NF-κB-mediated MMP9 activation [22], JNK/AP-1/DNMT/E-cadherin silencing [49] and downregulation of microRNA-144-mediated PTEN activation [50], these pathways have been reported to promote migration ability in NPC. Therefore, hnRNP K-mediated activation of MMP12 may partly contribute to enhance NPC cell migration. In addition, recent work has shown that forced overexpression of hnRNP K can increase the invasive capacity of mouse fibroblasts NIH3T3 by increasing MMP3 expression [45], although the expression level of MMP3 was not changed in hnRNP K-knockdown human NPC cells (Additional file 2: Table S2). Taken together, the previous findings and our present results indicate that hnRNP K may promote tumor metastasis by modulating the ECM via MMP induction. In addition, PF-356231 may be considered to treat NPC metastasis with high MMP12 expression.

The MMPs are involved in many phases of cancer progression, including tumor invasion, metastasis, and angiogenesis [16,17]. In addition to MMP12 (present study), MMP1 [51], MMP13 [52,53] and MMP28 [54] have also been shown to promote invasion and metastasis in various cancers. Importantly, hnRNP K can induce the expression of MMP1, MMP12, MMP13 and MMP28 in NPC cells (Figure 1B) and the expression of MMP3 in fibroblasts [45], suggesting that hnRNP K controls the expression levels of various MMPs. In addition to its effects on tumor metastasis, hnRNP K can contribute to tumor progression and malignancy through its antiapoptotic function [7,11]. Thus, the results of the present and previous studies collectively suggest that hnRNP K should be considered a potential target for the future development of new anticancer agents.

Previous studies have demonstrated that MMP2 and MMP9 expression can be induced in EBV-infected NPC cells [55]. Furthermore, it has been reported that the response of NPC cells to EBV infection is mediated mainly by the NF-κB and STAT3 signal cascades [56]. EBV infection has been known to lead to NPC tumorigenesis. And LMP1 is the most important viral oncoprotein that alters many cellular gene expression e.g. MMP2 and MMP9. We speculate that MMP induction initially required EBV infection and LMP1 expression, however, once the cells become NPC tumor cells, the presence of EBV or LMP1 is probably less important.

Although hnRNP K can regulate gene expression by binding to DNA and RNA [6,57], we found that it induces MMP12 mRNA expression by activating the MMP12 promoter rather than stabilizing the MMP12 mRNA (Additional file 4: Figure S1). Similar to the transcriptional induction of MMP12 by AP-1 [29,30], NFκB [29], β-catenin [58,59], YB-1 [60] and PPARα agonist [61], we herein show that hnRNP K can induce MMP12 expression through its association with the sequence −42 to −33 bp upstream of the MMP12 transcription start site. Previous studies showed that hnRNP K can regulate promoter activity by interacting with DNA-bound transcriptional activators [7,62]. The −42 to −33 bp region is close to an AP-1-responsive element at −26 to −19 [30], suggesting that future studies are warranted to examine the potential interaction of hnRNP K and AP-1.

**Conclusions**

We herein show that hnRNP K exerts a metastatic function by inducing MMP12 via its binding to the −42 to −33 bp region of the MMP12 promoter, which controls transcriptional activation. MMP12 is overexpressed in NPC, and its expression is correlated with that of hnRNP K in NPC patients. Moreover, NPC metastasis with high MMP12 expression may be treated with MMP12-specific inhibitor, PF-356231. Based on these novel findings, we propose that hnRNP K and MMP12 should be considered as potential targets for the development of new anticancer agents.

**Additional files**

- Additional file 1: Table S1. Sequence of quantitative PCR Primers.
- Additional file 2: Table S2. Gene expression profiles of various MMPs in hnRNP K knockdown NPC-TW02 cell line.
- Additional file 3: Table S3. Gene expression profiles of various MMPs in NPC.
- Additional file 4: Figure S1. Effect of hnRNP K knockdown on the half-life of MMP12 mRNA. The levels of MMP12 mRNA in NPC-TW02 cells transfected with control siRNA (C) or hnRNP K siRNA (K) for 48 h were measured following treatment with actinomycin D for 2, 4, 8, 12 and 16 h.

**Abbreviations**

NPC: Nasopharyngeal carcinoma; hnRNP K: Heterogeneous nuclear ribonucleoprotein K; MMP12: Matrix metalloproteinase 12; LMP1: Latent membrane protein 1; EBV: Epstein-Barr virus; ECM: Extracellular matrix; ChIP assay: Chromatin immunoprecipitation assays; DMEM: Dulbecco’s modified Eagle’s medium; FCS: Fetal calf serum; M-MLV: Moloney Murine Leukemia Virus; WHO: World Health Organization; TBST: TBS-Tween 20; RT: Room temperature; PBMCs: Peripheral blood mononuclear cells.

**Competing interests**

The authors declare that they have no competing interests.

**Authors’ contributions**

ICC, LCC and YSC designed this study; ICC, LCC, AKC, MC, HYH, CH and YL performed the experiments; NMT and KPC oversaw collection of clinical samples; CH evaluated human nasopharyngeal carcinoma tissue sections; YL supervised histological staining and analysis; ICC, LCC and YSC evaluated the data, and ICC, LCC, HPL and YSC wrote the manuscript; YSC and HPL supervised the project. All authors read and approved the final manuscript.
Acknowledgments
Grant support was provided by the Ministry of Education, Taiwan (to Chang Gung University), the National Science Council, Taiwan (grants NSC 99-2320-B-182-001; MY3, 99-3112-B-182-006, 100-2320-B-182-020 and 101-2320-B-182-010 to Yu-Sun Chang), New Taipei City, San-Zhi Dist 252, Taiwan. 2Graduate Institute of Biomedical Sciences, Chang Gung University, 259 Wen-Hwa 1st Road, Taoyuan, Kwei-shan 333, Taiwan. 3Department of Medicine, Mackay Medical College, No.46, Sec.3, Zhong-Zheng Rd, New Taipei City, San-Zhi Dist 252, Taiwan. 4Graduate Institute of Biomedical Sciences, Chang Gung University, 259 Wen-Hwa 1st Road, Taoyuan, Kwei-shan 333, Taiwan. 5Department of Microbiology and Immunology, Chang Gung University, 259 Wen-Hwa 1st Road, Taoyuan, Kwei-shan 333, Taiwan. 6Departments of Pathology, Chang Gung Memorial Hospital at Lin-Kou, 5, Fu-Ching St, Taoyuan, Kwei-shan 333, Taiwan. 7Departments of Radiation Oncology, Chang Gung Memorial Hospital at Lin-Kou, 5, Fu-Ching St, Taoyuan, Kwei-shan 333, Taiwan. 8Departments of Otolaryngology, Chang Gung Memorial Hospital at Lin-Kou, 5, Fu-Ching St, Taoyuan, Kwei-shan 333, Taiwan.

Received: 16 October 2013 Accepted: 6 May 2014
Published: 20 May 2014

References
1. Wen F, Shen A, Shans R, Bhattacharyya A, Lian F, Hostetter G, Shi J. Higher expression of the heterogeneous nuclear ribonucleoprotein K in melanoma. Ann Surg Oncol 2010, 17(10):2619–2627.
2. Zhou R, Shans R, Nelson MA, Bhattacharyya A, Shi J. Increased expression of the heterogeneous nuclear ribonucleoprotein K in pancreatic cancer and its association with the mutant p53. Int J Cancer 2010, 126(3):395–404.
3. Barbosa P, Repaci E, Rubagotti A, Salvi S, Boccardo S, Spina B, Truini M, Intorno C, Puppo P, Ferrari N, Carmignani G, Boccardo F, Balbi C. Heterogeneous nuclear ribonucleoprotein K: altered pattern of expression associated with diagnosis and prognosis of prostate cancer. Br J Cancer 2009, 100(10):1608–1616.
4. Matta A, Tripathi SC, DeSouza LV, Grigull J, Kaur J, Chauhan SS, Srivastava A, Thakar A, Shukla NK, Duggal R, DattaGupta S, Rathan R, Michaeliu KW. Heterogeneous ribonucleoprotein K is a marker of oral leukoplakia and correlates with poor prognosis of squamous cell carcinoma. Int J Cancer 2009, 125(6):1398–1406.
5. Chen LC, Hsieh C, Tsang NM, Liang Y, Chang KP, Hao SP, Yu JS, Chang YS. Heterogeneous ribonucleoprotein K and thymidine phosphorylase are independent prognostic and therapeutic markers for nasopharyngeal carcinoma. Clin Cancer Res 2008, 14(12):3807–3813.
6. Choi HS, Hwang CK, Song KY, Law PY, Wei LN, Loh HH. Poly(C)-binding proteins as transcriptional regulators of gene expression. Biochem Biophys Res Commun 2009, 380(3):431–436.
7. Chen LC, Chung IC, Hsieh C, Tsang NM, Chi LM, Liang Y, Chen CC, Wang LJ, Chang YS. The antiapoptotic protein, FLIP, is regulated by heterogeneous nuclear ribonucleoprotein K and correlates with poor overall survival of nasopharyngeal carcinoma patients. Cell Death Differ 2010, 17(9):1463–1473.
8. Li H, Liu J. Identification of heterogeneous nuclear ribonucleoprotein K as a transactivator for human low density lipoprotein receptor gene transcription. J Biol Chem 2010, 285(23):17789–17797.
9. Du Q, Mehnikova RN, Gardner PD. Differential effects of heterogeneous nuclear ribonucleoprotein K on Sp1- and Sp3-mediated transcriptional activation of a neuronal nicotinic acetylcholine receptor promoter. J Biol Chem 1998, 273(31):19877–19883.
10. Denisenko ON, O’Neill B, Ostrowski J, Van Steuningen I, Bomsztyk K. ZIKz, a transcriptional repressor that interacts with the heterogeneous nuclear ribonucleoprotein particle K protein. J Biol Chem 1996, 271(44):27701–27706.

11. Chen LC, Liu HP, Li HP, Hsieh C, Yu JS, Liang CL, Chang YS. Thymidine phosphorylase mRNA stability and protein levels are increased through ERK-mediated cytoplasmic accumulation of hnRNP K in nasopharyngeal carcinoma cells. Oncogene 2009, 28(7):1904–1915.
12. Notari M, Nevianni P, Santanam R, Blaser BW, Chang JS, Gallozza A, Willis AE, Roy DG, Galiziari MA, Maruccio C, Ferraretti A. A MAPK/HNRNPK pathway controls BCR/ABL oncogenic potential by regulating MYC mRNA translation. Blood 2006, 107(6):2507–2516.
13. Lynch M, Chen L, Ravitz MJ, Mehtani K, Pazin MJ, Schmidt EV. hnRNP K binds a core polypyrimidine element in the eukaryotic translation initiation factor 4E (eIF4E) promoter, and its regulation of eIF4E contributes to neoplastic transformation. Mol Cell Biol 2005, 25(15):6436–6453.
14. Evans JR, Mitchell SA, Spriggs KA, Ostrowski J, Bomsztyk K, Ostarek D, Willis AE. Members of the poly (C) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo. Oncogene 2003, 22(39):8012–8020.
15. Murphy G, Nagase H. Progress in matrix metalloproteinase research. Mol Aspects Med 2008, 29(5):293–308.
16. Hadler-Olsen E, Winberg JD, Uhlin-Hansen L. Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol 2013, 34(4):2041–2051.
17. Shuman Moss LA, Jensen-Taubman S, Sterler-Stevenson WG. Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am J Pathol 2012, 181(6):1895–1899.
18. Yang R, Xu Y, Li P, Zhang X, Wang J, Gu D, Wang Y. Combined upregulation of matrix metalloproteinase-1 and proteinase-activated receptor-1 predicts unfavorable prognosis in human nasopharyngeal carcinoma. Onco Targets Ther 2013, 6:1139–1146.
19. Cui D, Zhang X, Fu Y. Excessions of COX-2 and MMP-2 in nasopharyngeal carcinoma and the their relationship with lymph node metastasis. Chin Chang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2008, 22(15):692–694.
20. Wong TS, Kwong DA, Sham JS, Wei W, Kwong YL, Yuan AP. Clinicopathologic significance of plasma matrix metalloproteinase-2 and –9 levels in patients with undifferentiated nasopharyngeal carcinoma. Eur J Surg Oncol 2004, 30(5):560–564.
21. Liu Z, Li L, Yang Z, Luo W, Li X, Yang H, Yao K, Wu B, Fang W. Increased expression of MMP9 is correlated with poor prognosis of nasopharyngeal carcinoma. BMC cancer 2010, 10:270.
22. Yoshizaki T, Sato H, Furukawa M, Pagano JS. The expression of matrix metalloproteinase-9 is enhanced by Epstein-Barr virus latent membrane protein 1. Proc Nat Acad Sci U S A 1998, 95(7):3621–3626.
23. Lan YY, Hsiao JR, Chang KC, Chang JS, Chen CW, Lai HC, Wu SY, Yeh TH, Chang FH, Lin WH, Su LI, Chang YS. Epstein-Barr virus latent membrane protein 2A promotes invasion of nasopharyngeal carcinoma cells through ERK/Fra-1-mediated induction of matrix metalloproteinase 9. J Virol 2012, 86(12):6566–6576.
24. Yoshizaki T, Sato H, Murono S, Pagano JS, Furukawa M. Matrix metalloproteinase-9 is induced by the Epstein-Barr virus BZLF1 transactivator. Clin Exp Metastasis 1999, 17(5):431–436.
25. Kim JM, Kim HJ, Koo BS, Rha KS, Yoon YH. Expression of matrix metalloproteinase-12 is correlated with extracapsular spread of tumor from nodes with metastasis in head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2012, 270(3):1137–1142.
26. Ng KT, Qi X, Kong KL, Cheung BY, Lo CM, Poon RT, Fan ST, Man K. Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with poor prognosis of hepatocellular carcinoma. Eur J Cancer 2011, 47(15):2299–2306.
27. Hofmann HS, Hansen G, Richter G, Taegree C, Simm A, Silber RE, Burdach S. Matrix metalloproteinase-12 expression correlates with local recurrence and metastatic disease in non-small cell lung cancer patients. Clin Cancer Res 2005, 11(3):1086–1092.
28. Ding Y, Shimada Y, Gorin-Rivas MJ, Itami A, Li Z, Hong T, Maeda M, Komoto I, Kawabe A, Kagami J, Imamura M. Clinopathological significance of human macrophage metalloelastase expression in esophageal squamous cell carcinoma. Oncology 2002, 63(5):378–384.
29. Yu Y, Chiba Y, Sakai H, Misawa M. Possible involvements of nuclear factor-κB and activator protein-1 in the tumor necrosis factor-alpha-induced upregulation of matrix metalloproteinase-12 in human alveolar epithelial A549 cell line. J Pharmacol Sci 2010, 112(1):183–88.
30. Wu L, Tanimoto A, Munata Y, Fan J, Sasaguri Y, Watanabe T. Induction of human matrix metalloproteinase-12 gene transcriptional activity by
GM-CSF requires the AP-1 binding site in human U937 monocytic cells. *Biochem Biophys Res Commun* 2001, 285(2):300–307.

31. Nabha SM, dos Santos EB, Yamamoto HA, Belizi A, Dong Z, Meng H, Saliganan A, Sabbota A, Bonfig RD, Cher ML: Bone marrow stromal cells enhance prostate cancer cell invasion through type I collagen in an MMP-12 dependent manner. *Int J Cancer* 2008, 121(12):2482–2490.

32. Sarkar S, Nuttall RK, Liu S, Edwards DR, Yong WW: Tenacin-C stimulates glioma cell invasion through matrix metalloproteinase-12. *Cancer Res* 2006, 66(24):11771–11780.

33. Dwivedi A, Slater SC, George SJ: Structures of novel non-peptidic, non-zinc chelating inhibitors bound to Tertre A, Moreau F, Compere D, Dublanchet AC, O’Gara M: selectivity examined by the GRID/CPCA approach. *Heterogeneous nuclear ribonucleoprotein K is over expressed, carcinome.*

34. Carpenter B, McKay M, Dundas SR, Lawrie LC, Telfer C, Murray GI: Heterogeneous ribonucleoprotein K and thymidine phosphorylase are angiogenesis.

35. Chung IH: Involves c-Jun NH(2)-terminal kinase signaling. *Cancer Res* 2006, 66(24):11668–11676.

36. Zheng X, Yan L, Nilsson B, Eklund G, Drettner B: Epstein-Barr virus Zta upregulates matrix metalloproteinases 3 and 9 that synergistically promote cell invasion in vitro. *PloS one* 2013, 8(2):e56121.

37. Tao CI, Li HP, Lu YJ, Hseuh C, Liang Y, Chen CL, Tsaio SW, Tsai KP, Yu JS, Chang YS: Activation of DNA methyltransferase 1 by EBV LMP1 involves c-Jun NH(2)-terminal kinase signaling. *Cancer Res* 2006, 66(24):11668–11676.

38. Lin CT, Wong CI, Chan WY, Tzung KW, Ho JK, Hsu MM, Chuang SM: Functional analysis of EBV in nasopharyngeal carcinoma cells. *Lab Invest* 2003, 83(6):797–812.

39. Huang DP, Ho JH, Poon YF, Chew EC, Saw D, Lui M, Li CL, Mak LS, Lai SH, Lau WH: Establishment of a cell line (NPC/HK1) from a differentiated squamous carcinoma of the nasopharynx. *Int J Cancer* 2000, 82(2):127–132.

40. Lin CT, Chen CC, Liang Y, Tsang NM, Chang YS, Hsueh C: Establishment and characterization of two nasopharyngeal carcinoma cell lines. *Lab Invest* 1990, 62(5):713–724.

41. Huang DP, Ho JH, Poon YF, Chew EC, Sav D, Lui M, Li CL, Mak LS, Lai SH, Lau WH: Establishment of a cell line of NPC/HK1 from a differentiated squamous carcinoma of the nasopharynx. *Int J Cancer* 1980, 26(2):127–132.

42. Tenascin-C stimulates shedding and thereby beta-catenin signalling and vascular smooth muscle cell proliferation. *Cardiovasc Res* 2009, 81(1):178–186.

43. Wu CS, Chang KP, Chen LC, Chen CC, Liang Y, Tsang NM, Chang YS, Hsueh C: Tenascin-C stimulates glioma cell invasion through matrix metalloproteinase-12. *Cancer Res* 2006, 66(24):11771–11780.

44. Hope NR, Murray GI: Protein Pept Sci 2005, 388(1):1076–1087.

45. Tenascin-C stimulates shedding and thereby beta-catenin signalling and vascular smooth muscle cell proliferation. *Cardiovasc Res* 2009, 81(1):178–186.

46. Carpentier B, McKay M, Dundas SR, Lawrie LC, Telfer C, Murray GI: Heterogeneous nuclear ribonucleoprotein K is over expressed, aberrantly localised and is associated with poor prognosis in colorectal cancer. *Br J Cancer* 2006, 95(7):921–927.

47. Wu CS, Chang KP, Chen LC, Chen CC, Liang Y, Hseuh C, Chang YS: Heterogeneous ribonucleoprotein K and thymidine phosphorylase are independent prognostic and therapeutic markers for oral squamous cell carcinoma. *Carcinogenesis* 2006, 27(6):1063–1076.

48. Terp GE, Crucciani G, Christensen JT, Jorgensen FS: Functional analysis of EBV in nasopharyngeal carcinoma cells. *Lab Invest* 2003, 83(6):797–812.

49. Huang DP, Ho JH, Poon YF, Chew EC, Sav D, Lui M, Li CL, Mak LS, Lai SH, Lau WH: Establishment of a cell line (NPC/HK1) from a differentiated squamous carcinoma of the nasopharynx. *Int J Cancer* 2000, 82(2):127–132.

50. Zhang LY, Ho-Fun Lee V, Wong AM, Kwong DL, Zhu YH, Dong SS, Kong KL, Chen J, Tsaio SW, Guan XY, Fu L: MicroRNA-144 promotes cell proliferation, migration and invasion in nasopharyngeal carcinoma through repression of PTEN. *Carcinogenesis* 2013, 34(2):454–463.

51. Sato H, Takino T, Miyamori H: Roles of membrane-type matrix metalloproteinase-1 in tumor invasion and metastasis. *Cancer Sci* 2005, 96(2):212–217.

52. Huang MY, Chang HI, Chung FY, Yang MJ, Yang YH, Wang JY, Lin SR: MMP13 is a potential prognostic marker for colorectal cancer. *Oncol Rep* 2010, 24(5):1241–1247.

53. Kumamoto K, Fujita K, Kurotani R, Saito M, Unoki H, Hagiwara N, Shiga H, Bowman ED, Yahalome N, Okamura S, Nagashima M, Miyamoto K, Takahashi S, Yokota J, Harris CC: ING2 is upregulated in colon cancer and increases invasion by enhanced MMP13 expression. *Int J Cancer* 2009, 125(6):1306–1315.

54. Jian P, Yanfang T, Zhuan Z, Jian W, Xueming Z, Jian N: MMP28 (epilysin) as a novel promoter of invasion and metastasis in gastric cancer. *BMC cancer* 2011, 11:200.

55. Wu HC, Lin YJ, Lee JJ, Liu YJ, Liang ST, Peng Y, Chiu YW, Wu CW, Lin CT: Functional analysis of EBV in nasopharyngeal carcinoma cells. *Lab Invest* 2003, 83(6):797–812.

56. Lo AK, Lo KW, Tsoa SW, Wong HL, Hui JW, To FK, Hayward DS, Chui YL, Lau YT, Takada K, Huang DP: Epstein-Barr virus infection alters cellular signal cascades in human nasopharyngeal epithelial cells. *Neoplasia* 2006, 8(3):173–180.

57. Ostareck-Lederer A, Ostareck DH: Precision mechanics with multifunctional tools: how hnRNK and hnrRNPs E1/E2 contribute to post-transcriptional control of gene expression in hematopoietis. *Curr Protein Pept Sci* 2012, 13(4):391–400.

58. Lyu J, Coo JK: Wnt/β-catenin regulates matrix metalloproteinase-12 expression and promotes cell proliferation in corneal epithelial cells during wound healing. *J Biol Chem* 2008, 283(22):16253–16260.

59. Lyu J, Coo JK: Expression of Wnt and MMP in epithelial cells during corneal wound healing. *Coneo* 2006, 25(10 suppl 1):S24–S28.

60. Samuel S, Twizee JC, Bernstein LR: YB-1 represses AP1-dependent gene transactivation and interacts with an AP-1 DNA sequence. *Biochem J* 2005, 388(pt 1):921–928.

61. Souissi IJ, Billiet L, Ciez-Penol C, Slimane MN, Rouis M: Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages. *Exp Cell Res* 2008, 314(18):3405–3414.

62. Moumen A, Masterson P, O’Connor MJ, Jackson SP: hnrNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. *Cell 2005, 123(8):1065–1078.

Cite this article as: Chung et al.: Matrix metalloproteinase 12 is induced by heterogeneous nuclear ribonucleoprotein K and promotes migration and invasion in nasopharyngeal carcinoma. *BMC Cancer* 2014 14:348.