Research Perspective on Supporting Software Engineering via Physical 3D Models

Florian Fittkau, Erik Koppenhagen, and Wilhelm Hasselbring

2015-09-28
Traditional engineering disciplines build solid, physical 3D models of their designs

Better presentation, comprehension, and communication among stakeholders, particularly in teamwork
Introduction

- Traditional engineering disciplines build solid, physical 3D models of their designs
- Better presentation, comprehension, and communication among stakeholders, particularly in teamwork

→ New research perspective to transfer these advantages to software engineering by physical 3D city models
ExplorViz in a Nutshell

Introduction
Potential Research Questions:

1. In **which scenarios/tasks** do physical models provide benefits?
2. How large is the **impact of gesticulation** on correctness and time spent in team-based program comprehension tasks?
Results

Program Comprehension Evaluation

- Overall results not significant
- 2 tasks influenced positively (*discussion tasks*)
- 1 task influenced negatively (*most occurring package name*)
Envisioned Usage Scenarios

- 2. Educational Visualization
- 3. Effort Visualization in Customer Dialog
- 4. Saving Digital Heritage
Limited Build Volume and Monochromacity

Encountered Challenges

[Image of a 3D printer]

Fittkau, Koppenhagen, and Hasselbring

Physical 3D Models
Encountered Challenges
Related Work

- Physical models in Information Visualization
 http://dataphys.org/list
- Software city metaphor [WL07]
- Virtual reality [MLMD01, SSMM12] (see next presentation)
Summary and Outlook

Conclusions

- Physical 3D city models for supporting software engineering
- Open source\(^1\) and replication package\(^2\) provided

Explor\(\text{\scriptsize{orViz}}\)

Future Work:

- Larger team size in controlled experiment
- Evaluate the three other scenarios
- Other 3D visualization metaphors

\(^1\)http://www.explorviz.net
\(^2\)http://dx.doi.org/10.5281/zenodo.18378
Jonathan I. Maletic, Jason Leigh, Andrian Marcus, and Greg Dunlap. Visualizing object-oriented software in virtual reality. In Proc. of 9th Int. Workshop on Prog. Comprehension (IWPC 2001), pages 26–35. Society Press, 2001.

Rodrigo Souza, Bruno Silva, Thiago Mendes, and Manoel Mendonca. SkyscrapAR: An augmented reality visualization for software evolution. In Proc. of 2nd Brazilian Workshop on Software Visualization (WBVS 2012), 2012.

R. Wettel and M. Lanza. Visualizing software systems as cities. In Proceedings of the 4th International Workshop on Visualizing Software for Understanding and Analysis (VISSOFT 2007), June 2007.