Phytochemical and ethno-pharmacological profile of Desmodium gangeticum (L.) DC.: A review

Atanu Bhattacharjee1*, Shastry Chakrakodi Shashidhara2 and Santanu Saha1

1Department of Pharmacognosy, NGSM Institute of Pharmaceutical Sciences, Deralakatte, Mangalore – 574 018, Karnataka, India
2Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Deralakatte, Mangalore – 574 018, Karnataka, India

*Correspondence Info:
Mr. Atanu Bhattacharjee
Lecturer, Department of Pharmacognosy
NGSM Institute of Pharmaceutical Sciences,
Deralakatte, Mangalore – 575 018, Karnataka, India
Tel: +91-8088741374
Fax: +91-824-2203992
E-mail: atanu1983@gmail.com

Abstract

Desmodium gangeticum (L.) DC. is a well explored traditional Indian medicinal plant used to treat neurological imbalances. Recent pharmacological studies established its multi-directional therapeutic significance as anti-leishmanial, anti-inflammatory, cardio-protective drug. Moreover, it has detoxifying, blood purification property which might be attributed to its immunomodulatory activity. Phytochemical research revealed the plant is rich in alkaloids, pterocarpans, phospholipids, sterols and flavanoids. The review emphasizes primarily on folkloric uses, pharmacological activities of the extracts, biological activities of isolated compounds, toxicity and safety profile of Desmodium gangeticum to provide a comprehensive data for researchers to hit upon new chemical entity responsible for its claimed traditional uses and further clinical trials.

Keywords: Medicinal plant, Alkaloids, Antileishmanial, Folkloric use

1. Introduction

Desmodium gangeticum (D. gangeticum) (L.) DC. (Family: Fabaceae) commonly known as Shalaparni is an important species of the genus Desmodium. Due to broad spectrum therapeutic potentiality, it is extensively practiced as traditional medicine in India and other parts of sub-continent over a long period of time1. D. gangeticum is a sub-tropical perennial herb grows in dry hill areas, mainly in the basement of Westernghat region and Himalayan territory. It is sweet in taste and mild warming in action2. Vedic literatures describe its potentiality as regulator of nervous (Vata), venous (Pitta) and arterial (Kapha) systems essential to restore health3. Traditionally, the roots are used as expectorant and in snake bite and scorpion sting4. It is an ingredient of Ayurvedic preparations like ‘Dashmoolarishta’ and ‘Dashmoolakwaath’ recommended for post-natal care to avoid secondary complications5. Moreover, pharmacological studies reveal the potentiality of D. gangeticum extract and its active principles viz. desmodin, hordenine and gangetin as anti-amnesic, immunomodulator, anti-diabetic, antioxidant, cardio-protective, hepatoprotective, anti-inflammatory drug6. An attempt has been taken to compile the up to date information regarding phytochemical and ethnopharmacological aspects of D.
Bhattacharjee et al

2. Taxonomy and botanical description

The genus Desmodium is derived from Greek word ‘Desmos’ means ‘bond’ or ‘chain’ like due to the resemblance of the jointed seed pods to links of a chain. It is distributed mainly in tropical and subtropical regions of the world. Among 20-25 different species, D. gangeticum shows highest bio-diversity in India (Figure 1).

The taxonomical classification of D. gangeticum is as follows:

- Kingdom: Plantae
- Division: Magnoliophyta
- Phylum: Spermatophyta
- Class: Magnoliopsida
- Order: Fabales
- Family: Fabaceae
- Genus: Desmodium
- Species: gangeticum (Linn.)

D. gangeticum is a perennial erect or ascending shrub, grows upto 2 to 4 feet. The stem is angular, woody with numerous prostrate branches. Leaves are small (3–14 x 2–7 cm), ovate-oblong or rounded in shape, covered with numerous gray colour numerous trichomes; Flowers are small (4-7 cm), purple or white in color. Calyx are 4–5cm long, pubescent. Seeds are small, pale yellow, kidney-shaped. The lateral roots appear yellow with smooth texture. Its flowering–fruiting season is during the months of March to December.

3. Traditional uses and Ethno-pharmacology

In Indian sub-continent, the shrub traditionally being used as antipyretic, diuretic, astringent (used in irritable bowel syndrome, diarrhoea and dysentery), anticitarrhal, diuretic, anthelmintic, laxative and nerve tonic where as in China D. gangeticum is used as folkloric medicine primarily to treat fever, neutralize toxins, inhibit pain, invigorate blood circulation, suppress cough and alleviate dyspnea.

The roots of D. gangeticum (Local name: Kaganila akatono) chewed by the tribal people of Bulamogi community, Uganda to cure premature ejaculation.

Pawara tribals of Satpuda Hills of Nandurbar district, Maharashtra, India combine the root powder of D. gangeticum (Local name: Salvan) with honey and applied frequently to treat mouth ulcer.

Kharwas, Polekero, Kevat, Dhobhi communities of Chandauli district, Uttar Pradesh, India apply topically the leaf
paste along with \textit{Aloe-vera} as anti-dandruff and to prevent hair falling12.

Assamese people of Assam province in India, topically apply the paste of leaves of to cure the eczema infection along with other dermal disorders13.

10 gm of dried crushed roots and Pseudarthria is mixed together and boiled in 200 ml of water for 3 minute and 2 ml of water decoction is prescribed thrice daily after meal by tribal people of Waynad of Kerala, India, to treat type 2 diabetes mellitus14.

Root powder is boiled with milk and half cup of it is prescribed for seven or more days by tribal people of Jalgaon District, Maharstra, India, to promote flatulence15.

Whole plant is prescribed traditionally by Tribals of Jhalod Taluka of Dhahod district, Gujrat, India against several gynecological disorders and to prepare “Salampak” tonic16.

Villagers of Sivagangai district, Tamilnadu, India, drink leaf decoction (locally known as Pulladi) twice a day for 2 - 3 days to cure diarrhea and dysentery. Leaf paste is applied on anus once a day for two weeks to cure piles17.

Chenchu tribal communities, Rudrakod of Nallamalai hill ranges of Andhra Pradesh, India, orally administer one spoonful root extract (locally known as Gitanaramu) twice a day, to cure whooping cough. Moreover, the leaves powder with a pinch of salt and applied on boils and blisters18.

Bheel and Bhilala tribes, Jhabua District Madhya Pradesh, India apply topically fresh leaves juice to treat scabies and ringworm19.

Chinese tribes administer root extract (9–15 gm/day) orally to treat diarrhea and given to children as sedative agent. Root and leaf pastes are applied externally to get relief from toothache and headache respectively9.

Water decoction of root and aerial parts of \textit{D. gangeticum} is used as antipyretic, anti-inflammatory and anti-nociceptive phyto-medicine by various Indian tribes throughout India20.

Paliyar and Muthuvar Tribes, Theni District of Tamil Nadu, India, prescribe shade dried roots decoction (locally called Muvilai kurunthu) against asthma and other bronchial complications21.

Tribes like Gond, Kols, Mushar, Baiga & Nutts in Vindhya region of Uttar Pradesh, India, administered orally root paste and powder to treat typhoid fever, cerebrospinal meningitis and also as an antidote of snake venom22.

Different Indian tribes drink dried leaves powder decoction as health tonic23.

4. Phytochemistry

Preliminary phytochemical screening reveals \textit{D. gangeticum} is rich in flavonoids, alkaloids, steroids, terpenoids, phenylpropanoids, pterocarps, coumarins and volatile oil24. Among the isolated compounds flavonoids, alkaloids and pterocarps are considered as major bio-active constituents. Alkaloids like 5-methoxy N, N-dimethyl tryptamine, N\textsubscript{b}–methyl-H\textsubscript{4}–Harman, β-carbolinium cation, indole-3-alkyl-amines have been isolated from aerial parts of the plant25.

Pterocarps such as gangetin, gangetinin, desmodin, and desmocarpin were reported to be present in roots26. Recently a new pterocarp, gangetial, had been isolated from the chloroform extract of the roots of \textit{D. gangeticum}27. Flavones like 4′,5,7-Trihydroxy-8-prenylflavone, 4′-O-α-L-rhamnopyranosyl-(1→6)-β-d-glucopyranoside, 8-C-prenyl-5,7,5-trimethoxy-3,4-methylenedioxyflavone, rutin and quercetin-7-O-β-d-glucopyranoside were also reported from the aerial parts. Phytosterols viz. β-sitosterol, α-amyrone, lupeol and its acetate, stigmastrol had been isolated from aerial parts. Moreover, aminoglucosyl glycerolipid was reported for the first time from seed28. Further, minor phytoconstituents viz. trans-5-hexadecenoic acid, salicylic acid, 5-O-methylgenistein-7-O-β-d-glucopyranoside, 3,4- dihydroxy benzoic acid, kaempferol-7-O-β-d-glucopyranoside, and uridine triacetate were also reported12. The isolated compounds of different classes are summarized in Table 1 and the structures are displayed in Figure 2.
Table 1: Phytoconstituents of *D. gangeticum*

Chemical nature of phytoconstituents	Example	Parts of plant
Flavonoids		
Flavones	4-/5,7-Trihydroxy-8-prenylflavone 4-/O-a-L-rhamnopyranosyl-(1→6)-b-d glucopyranoside	Stem
	8-C-prenyl-5,7,5- trimethoxy-3,4 - methylene di oxy flavone	Whole plant
Flavanols	Kaempferol 7-O-β-d-glucopyranoside, Rutin, Quercetin-4’-O-β-D glucopyranoside	Aerial parts
Isoflavones	5-O-Methylgenistein7-O-β-d-glucopyranoside	Whole plant
Pterocarps	Gangetin, Gangetinin, Desmodin, Desmocarpin	Aerial parts
Alkaloids		
Indole-3-alkylamines	5-Methoxy-N, N-dimethyltryptamine, N-methylserotonin Bufotenine N-oxide, Hypaphorine, 6-Methoxy-2-methyl-β-Carbolinum, Nb-methyltetrahydro Harman, hordenine	Whole plant, stem
Amide alkaloids	Uridine triacetate,	Whole plant
Phenylethylamine alkaloids	N-methyltyramine, β-Phenylethylamine, 3,4- Dihydroxy phenethyltrimethyl ammonium hydroxide	Leaf, stem
Terpenoids	β- Amyrone	Whole plant
Steroids	24-Ethylcholesta-5,22-dien-3β-ol, 24-Methylcholesta-5-en-3β –ol, β –Sitosterol, lupeol and its acetate, stigmastrol	Aerial part, root
Phenolic acid	3,4-Dihydroxybenzoic acid, Vanillic acid	Aerial parts
Phenylpropanoids	Chlorogenic acid	Aerial parts
Volatile Oils	1-Tritracontanol, 1-Heptadecanol, Aliphatic β-lactone, Trans-5-hexadecenoic acid	Roots and whole plant
Others	Phosphatidyl ethanolamine, Phosphatidyl serine, Phosphatidyl choline	Seed
5. Pharmacological activity

5.1 Antioxidant activity

Chloroform root extract of *D. gangeticum* (2-1000 μg/ml) were tested *in-vitro* to establish the antioxidant potential against ischemia reperfusion injury model in isolated rat heart. The IC\(_{50}\) values in DPPH, superoxide, hydroxide and nitric oxide scavenging activity and lipid per oxidation models were found to be 36.0, 55.3, 43.7, 39.4 and 297 μg/ml respectively. These findings revealed the cardioprotective activity of the extract against ischemia reperfusion injury mediated through several reactive oxygen species. Further, GC/MS analysis revealed presence of Oleic acid (RT: 20.90), N, hexadecanoic acid (RT: 17.70), 1,2 Benzenedicarboxylic acid bis(2 methylpropyl)ester (RT:15.94), 9 Dodecenoic acid methyl ester (RT: 19.80), 9,9 Dimethoxybicyclo [3,3,1]nona 2,4 dione (RT: 21.18), 1,2 Bis(trimethysilyl) benzene (RT: 26.46), and Didodecyl phthalate (RT: 27.55) as major compounds which might be associated with the therapeutic potential of the plant\(^{29}\).

The antioxidant activity of flavonoids and alkaloidal fractions of methanolic extract of *D. gangeticum* were evaluated *in-vitro*. The results showed flavanoids fraction possessed potent antioxidant activity compared to alkaloid fraction 30.

Further, two novel compounds viz. caffeic acids and chlorogenic acid were isolated from flavanoid fraction and their antioxidant activity was tested *in-vitro* under arthritic conditions. The results supported strong antioxidant activity, which might be associated with the anti-arthritic activity of the plant as most of the anti-arthritic drugs act by reducing the oxidant damage at sites of inflammation\(^{31}\).

In-vivo free radical scavenging potential of aqueous extract of *D. gangeticum* root was accessed by inducing oxidative stress in ischemic reperfused rat heart model. The observations supported antioxidant capacity of *D. gangeticum* as compared to standard drug verapamil against revascularization injury\(^{32}\).

Hydro-alcoholic extract of *D. gangeticum* strongly scavenged DPPH radical (IC\(_{50}\) 2.01 mg/ml) and NO (IC\(_{50}\) 14.79 mg/ml) in dose dependent manner. The total antioxidant capacity of the extract was found to be 149.91 % as compared to standard ascorbic acid 87.8 %. The extract also inhibited the ferrylbipyridyl (chromogen) formation in a dose dependent fashion (IC\(_{50}\) 0.115 mg/ml) 33.

5.2 Anti-inflammatory and anti-nociceptive activity

Aqueous decoction (5, 10 and 20 mg/kg) of roots and aerial parts of *D. gangeticum* showed anti-inflammatory and anti-nociceptive activity *in-vivo* in dose-dependent manner. The inhibition of swelling caused by carrageenan was equivalent to 14.58–51.02 % protection and in cotton pellet granuloma the protection was observed up to 14.43–38.67 %. Moreover, a significant increase in analgesio-meter-induced force and acetic acid induced writhing were observed equivalent to 6.56-67.66 % & 22.18–73.83 % protection respectively\(^{34}\).

Juice of whole plant of *D. gangeticum* posses anti-rheumatic and anti-osteo arthritic activity via anti-inflammatory activity. The activity might be associated with several phytoconstituents like polyphenolics, pterocarpinoid (gangetin)\(^{35}\).

Gangetin, a pterocarpens, isolated from n-hexane extract of root of *D. gangeticum* showed significant anti-inflammatory activity in both exudative and proliferative phases of inflammation in rat model at dose of 50 and 100 mg/kg body weight\(^{36}\).

5.3 Anti-leishmanial and immunomodulatory activities

Glyco-lipids viz. Aminoglucosyl glycerolipid and glycosphingolipid, isolated from the roots of *D. gangeticum* showed potent antileishmanial and immunomodulatory activities *in-vitro* by enhancing nitric oxide (NO) production and provided resistance against infection established in peritoneal macrophages by the protozoan parasite *Leishmania donovani*\(^{37}\).

Moreover, ethanolic extract and n-hexane, n-butanol, aqueous fractions of the ethanolic extract of *D. gangeticum* were evaluated chemoprophylactically and chemotherapeutically against experimental visceral leishmania in hamsters at a dose of 250 mg/kg for seven days. Results revealed highest prophylactic efficacy (41.2±5.3% inhibition) in n-butanol fraction and moderate efficacy (66.7±6.1% inhibition) in ethanol extract\(^{38}\).
5.4 Cardio-protective activity

Methanolic extract of *D. gangeticum* roots preserve mitochondrial respiratory enzymes and thereby protecting rat heart against oxidative stress induced by reperfusion injury at a dose of 50, 100 mg/kg body weight\(^\text{39}\).

Further, chloroform root extract (100 mg/kg) mediates cardio protection in ischemic reperfusion injury model in isolated frog heart through negative ionotropich and chronotropic. The effect was mediated by stimulating the G coupled receptors similar to the action of acetylcholine. Both the studies were compared with verapamil (0.2 mg/kg body weight, i.p.), standard cardioprotective drug\(^\text{40}\).

Pre-treatment of the aqueous extract of *D. gangeticum* (3 ml/100 g) for thirty days showed reduced cholesterol level and free radical scavenging potential *in-vitro* against isoproterenol induced myocardial infarcted rats. These findings were associated with cardio-protective activity of the plant\(^\text{41}\).

Ethyl acetate extract of *D. gangeticum* root (100 mg/kg) showed potent cardio-protection against ischemia reperfusion-induced oxidative stress models. The extract reduced TBARS in myocardium along with enhanced the recovery of antioxidant enzymes from the assault of ischemia reperfusion injury. The effects of the extract might be related to the inhibition of lipid peroxidation\(^\text{42}\).

Methanol extract of *D. gangeticum* root (80 µg/ml) showed myocardial protection in rat ischemia reperfusion injury model by stimulating muscarinic receptors. The activity might be due to the reduction of calcium overload and free radical release and improved recovery of antioxidant enzyme towards myocardium\(^\text{43}\).

5.5 Anti ulcer activity

Oral administration of ethanolic extract of *D. gangeticum* (200mg/kg) showed potent anti-ulcerogenic property *in-vivo* in Sprague Dawley rats and guinea pigs. A significant protection against cold resistant (68.37%), alcohol (88.87%), aspirin (38.2%), pyloric ligation (40.63%) and HST (63.15%) induced ulcer models was observed. Further, reduction in acid secretion (41.61%) and increase in mucin secretion (56.17%) were also recorded. Results indicate cytoprotective effect along with anti-secretory activity of *D. gangeticum* may be responsible for its anti-ulcer property\(^\text{44}\).

Oral administration of root ethanolic extract of *D. gangeticum* significantly decreased the ulcer index and lesion number in a dose dependent manner against ethanol induced acute gastric ulcer in mice. The highest dose (150 mg/kg) of the extract provoked a marked increase in protein and glutathione levels, when compare to control. Furthermore, gastric juice, free acidity and total acid output were inhibited in a dose-dependent manner at p<0.05 level\(^\text{45}\).

5.6 CNS activity

Aqueous extract of *D. gangeticum* showed potent anti-writhing activity in the acetic acid-induced abdominal writhing assay. It also exhibited moderate CNS depressant activity *in-vivo*. The effects of extract on locomotion were compared with standard CNS drugs\(^\text{46}\).

5.7 Antiamnesic (nootropic) activity

Aqueous extract of *D. gangeticum* (50, 100 and 200 mg/kg) showed potent anti-amnesic effects in mice against scopolamine (0.4 mg/kg, i.p.) induced interoceptive behavioral models. The study was compared with Piracetam (200 mg/kg, i.p.), standard nootropic agent\(^\text{47}\).

Pretreatment with aqueous extract of *D. gangeticum* (100, 200 mg/kg, p.o.) for seven successive days, reversed scopolamine induced amnesia in mice. Study revealed that the plant increased mice brain acetylcholine content and decreased acetyl cholinesterase activity in a similar fashion to the standard cerebro-protective drug piracetam. Hence, aqueous extract of *D. gangeticum* can be used to delay the onset and reduce the severity of the symptoms of dementia and Alzheimer’s disease\(^\text{48}\).

5.8 Antidiabetic activity

Methanolic extract of aerial parts of *D. gangeticum* (100 and 250 mg/kg) for 3 weeks showed a significant antidiabetic activity in rats by stimulating insulin secretion from MIN6 and pseudoislets cells of pancreatic islet.

It plays a major role to maintain the lipid profile of the rats by reducing cholesterol and triglycerides level and increase in high density lipoproteins (HDL) significantly (p < 0.05). This supports the traditional use of *D. gangeticum* as anti-diabetic drug\(^\text{49}\).
5.9 Hepatoprotective activity

Hepatoprotective activity of the chloroform extract of roots of *D. gangeticum* was evaluated *in-vivo* against CCl$_4$ induced liver damage in rat models. The study revealed extract caused an increase in serum levels of total proteins and decrease levels of bilirubin, serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) in pretreated groups.50

5.10 Renal protective activity

Oral administration of ethanolic extract of whole plant of *D. gangeticum* (100, 200, 400 mg/kg) for 30 days showed marked renal protective activity *in-vitro* against streptozotocin induced diabetic rats. The study was compared with glibenclamide (600 μg/kg), standard anti-diabetic drug.51

5.11 Wound healing activity

Topical application (10% w/w ointment of aqueous extract of *D. gangeticum*) showed marked wound healing potential *in-vivo* in Wistar rat models. Results indicated a decrease in wound closure time and increment in wound contraction. Moreover, a significant increase in proline content was also observed. All the studies were compared with standard povidone iodine ointment.52

6. Safety profile

Toxicity of *D. gangeticum* extract was accessed in mice at different doses (50–2000 mg) and parameters like hyperactivity, grooming, convulsions, sedation, hypothermia and mortality were observed. No mortality was observed following oral administration of highest dose (2000 mg/kg) of extract. However, doses more than 1000 mg/kg produced profuse watery stools, ptosis (dropping of upper eyelids) and lethargy in animals. Further, studies conducted on gangetin showed no acute toxicity up to 7 g/kg orally which made it quite safe. Further, as traditional medicine no reports of toxicity of *D. gangeticum* have been documented.53

7. Discussion

For ages, *D. gangeticum* has been used for the treatment of various ailments in traditional and folklore medicine throughout India, China and other African countries. *D. gangeticum* is one of the main ingredients of several Ayurvedic formulations like Dashamularishta, Cyavanaprasam and Agasthyarasayanam, routinely prescribed to treat colic pain, fever, respiratory diseases.54 The decoction of Dasamula and Laghu pancamula, polyherbal formulations are used in pain, hysteria, rheumatism, asthma, cardiac and renal problems.55 Isolated phytoconstituents like Gangetin, Desmodin, 5-Methoxy-N,N-dimethyltryptamine are considered as predominant bioactive constituents due to their diverse therapeutic potentiality.56 Although the constituents responsible for the pharmacological properties of the plant seem to have been determined, the molecular mechanisms of most of these principles are still unknown. The bioassay guided isolation, identification of the bioactive components is essential and in depth research is also crucial to reveal the structure-activity relationship of these active compounds. Based on these facts, the authors made an upto date information highlighting the current ethno-pharmacological and phytochemical status of the plant.

Acknowledgement

The authors acknowledge the financial support of NGSM Institute of Pharmaceutical Sciences and Nitte University, Mangalore, India for the research work (Grant no. NU/PhD/Pharm/Res-10/2011).

References

1. Krishnasamy K, Gandhi SS, Rajendran S, Chidambaram C, Subramaniyan K. *In-vitro* antibacterial activity of *Desmodium gangeticum* (L.) DG. *Asian Pac J Trop Dis* 2012; S421-S424.
2. Manoj KS, Aadesh U, Kalpana, Kumud U. Evaluation of antinociceptive and anti-inflammatory properties of *Desmodium gangeticum* (L.) in experimental animal models. *Arch Appl Sci Res* 2010; 2(4): 33-43.
3. Shang-Chih L,Wen-Huang P, Shun-Chieh H, Yu-Ling H, Tai-Hung H, Zhen-Rung L, Yuan-Shiun C. Analgesic and anti-inflammatory activities of methanol extract from *Desmodium triflorum* DC in mice. *American J Chin Med* 2009; 37(3): 573–88.
4. Satish B, Ranjana K, Shailesh N. A review on medicinal plants used in scorpion bite treatment in India. *Mintage J Pharm & Sci* 2012; 1(1): 1-6.
5. Kamidi VK, Trimurthulu G, Naidu ML. Standardization of Dhanvantari taila: medicated oil for female infertility. *Int J
6. Vijaya K, Jegadeesan M, Kavimani S. Studies on _Desmodium gangeticum_: A review. J Chem Pharm Res 2011; 3(6):850-55.
7. Trout K. *Trout’s Notes on the Genus Desmodium*. 2nd ed. New York (NY): Mydriatic Productions, 2002, p. 9-12.
8. Debbarati M, Parihar SS, Chauhan JS, Preeti. Studies on seed morphology, anatomy, dormancy and germination in _Desmodium gangeticum_. J Med Arom Plants 2010; 1(2): TS2-O4.
9. Xueqin M, Chengjian Z, Changling H, Khalid R, Lупing Q. The genus Desmodium (Fabaceae)-traditional uses in Chinese medicine, phytochemistry and pharmacology. J Ethnopharmacol 2011; 138: 314-32.
10. Trout K. "Trout’s Notes on the Genus Desmodium". 2nd ed. New York (NY): Mydriatic Productions, 2002, p. 9-12.
11. Anurag S, Singh PK. An ethnobotanical study of medicinal plants in Chandauli District of Uttar Pradesh, India. J Ethnopharmacol 2009; 121: 456–61.
12. Amin PS, Venkat KR, Pragya S, Pranab G, Upal B. Ethnobotany of medicinal plants used by Assamese people for various skin ailments and cosmetics. J Ethnopharmacol 2006; 106: 149-57.
13. Dilip KEK, Janardhan GR. Ethnobotanical polypharmacy of traditional healers in Wayanad (Kerala) to treat type 2 diabetes. Ind J Trad Knowl 2012; 11(4): 667-73.
14. Shubhangi P. Indigenous herbal remedies against stomach disorder from Jalgaon district (M.S.) India. Life sciences leaflets 2012; 5: 66-70.
15. Maru RN, Patel RS. Ethno-medicinal plants used to cure different diseases by tribes of Jhalod Taluka of Dahod district, Gujarat, India. Int J Sci Res 2012; 2(9): 1-4.
16. Shrinivasan S, Rajendran K, Suresh K. Traditional uses of medicinal plants among the rural people in Sivagangai district of Tamil Nadu, Southern India. Asian Pac J Trop Biomed 2012; S429-S434.
17. Ravi PRB, Sunitha S. Medicinal Plant Resources of Rudrakod Sacred Grove in Nallamalais, Andhra Pradesh, India. J Biodiversity 2011; 2(2): 75-89.
18. Shyam S, Gomathi R, Jose P, Gino AK. An in-vivo and in-vitro analysis of free radical scavenging potential possessed by _Desmodium gangeticum_ extract: Interpretation by gsms. Pak J Pharm Sci 2012; 25(1): 27-34.
19. Govindarajan R, Vijayakumar M, Srinivas A, Pushpangadan P. Antiinflammatory and antioxidant activities of _Desmodium gangeticum_ fractions in carrageenan-induced inflamed rats. Phytother Res 2007; 21(10): 975-979.
20. Niranjan A, Tewari SK. Phytochemical composition and antioxidant potential of _Desmodium gangeticum_ (Linn.) DC. Nat Prod Rad 2008; 7(1): 35-39.
32. Kurian GA, Yagnesh N, Kishan RS, Paddikkala J. Methanol extract of Desmodium gangeticum roots preserves mitochondrial respiratory enzymes, protecting rat heart against oxidative stress induced by reperfusion injury. *J Pharm Pharmacol* 2008; 60(4): 523-30.
33. Kurian G, Paddikkala J. Role of mitochondrial enzymes and sarcoplasmic ATPase in cardioprotection mediated by aqueous extract of Desmodium gangeticum (L.) DC root on ischemic reperfusion injury. *Ind J Pharm Sci* 2010; 72(6):745-49.
34. Rathi A, Rao CV, Ravishankar B, Deb S, Mehrotra S. Anti-inflammatory and anti-nociceptive activity of the water decoction Desmodium gangeticum. *J Ethnopharmacol* 2004; 95: 259-63.
35. Sharma K, Rani R, Dhalwal K, Shinde V, Mahadik K. Natural compounds as anti-arthritic agents- a review. *Pharmacog Rev* 2009; 3(1): 22–8.
36. Amritpal S, Samir M, Ravi S. Anti-inflammatory and analgesic agents from Indian medicinal plants. *Int J Intrgrat Biol* 2008; 3(1): 57-72.
37. Pushpesh KM, Naseeb S, Gufran A, Anuradha D, Rakesh M. Glycolipids and constituents from Desmodium gangeticum with antileishmanial and immunomodulatory activities. *Bioorg Med Chem Lett* 2005; 15(20):4543-46.
38. Singh N, Mishra PK, Kapil A, Arya KR, Maurya R, Dube A. Efficacy of Desmodium gangeticum extract and its fractions against experimtmental visceral leishmaniasis. *J Ethnopharmacol* 2005; 98 (1-2): 83–8.
39. Shabi MM, Paddikkala J. Cardiotonic and anti ischemic reperfusion injury effect of Desmodium gangeticum root methanol extract. *Turk J Biochem* 2010; 35 (2): 83–90.
40. Kurian GA, Srivats RSS, Gomathi R, Shabi MM, Paddikkala J. Interpretation of inotrophic effect exhibited by Desmodium Gangeticum chloroform root extract through GSMS and atomic mass spectroscopy: evaluation of its anti ischemia reperfusion injury induced oxidative stress. *Asian J Biochem* 2010; 5(1): 23–32.
41. Kurian GA, Paddikkala J. Administration of aqueous extract of Desmodium gangeticum (L) root protects rat heart against ischemic reperfusion injury induced oxidative stress. *Indian J Exp Biol* 2009; 47(2): 129-135.
42. Kurian GA, Suryanarayanan S, Raman A, Padikkala J. Antioxidant effects of ethyl acetate extract of Desmodium gangeticum root on myocardial ischemia reperfusion injury in rat hearts. *Chinese Med* 2010; 5(1): 3-8.
43. Gino AK, Jose P. Methanol extract of Desmodium gangeticum DC root mimetic postconditioning effect in isolated perfused rat heart by stimulating muscarinic receptors. *Asian Pac J Trop Med* 2012; 5(6): 448-54.
44. Dharmani P, Mishra PK, Maurya R, Chauhan VS, Palit G. Desmodium gangeticum: a potent anti-ulcer agent. *Indian J Exp Biol* 2005; 43(6): 517-21.
45. Ayyavu M, Robert J, Dowlathabad MR, Devarajan T. Gastroprotective effect of Desmodium gangeticum roots on gastric ulcer mouse models. *Rev bras farmacogn* 2012; 22(5): 37-44.
46. Jabbar S, Khan MT, Choudhuri MS. The effects of aqueous extracts of Desmodium gangeticum DC. (Leguminosae) on the central nervous system. *Pharmazie* 2001; 56(6): 506–8.
47. Joshi H, Parle M. Antiamnesic effects of Desmodium gangeticum in mice. *Yakugaku Zasshi* 2006; 126(9): 795-804.
48. Hanumanthachar J, Milind P. Pharmacological evidences for the antiamnesic effects of Desmodium gangeticum in mice. *Iran J Pharm Res* 2010; 6(3):199–207.
49. Govindarajan R, Asare-Anane H, Persaud S, Jones P, Houghton PJ. Effect of Desmodium gangeticum extract on blood glucose in rats and on insulin secretion in vitro. *Planta Med* 2007; 73(2): 427–32.
50. Prasad MVV, Balakrishna K, Carey MW. Hepatoprotective activity of roots of Desmodium gangeticum (Linn.) DC. *Asian J Chem* 2005; 17(4): 2847-49.
51. Yasmeen N, Ellandala R, Sujatha K, Veenavamshee R. Evaluation of renal protective effects of Desmodium Gangeticum L. in streptozotocin – induced diabetic rats. *Int J Res Pharm Chem* 2011; 1(2):121-8.
52. Jain V, Prasad V, Pandey R. Wound healing activity of Desmodium gangeticum in different wound models. *J Plant Sci* 2006; 1(3): 247–53.
53. Ghosh D, Anandakumar A. Anti-inflammatory and analgesic activities of gangetin - a pterocarpanoid from Desmodium gangeticum. *Ind J Pharm Pharmacol* 1983; 15: 391-402.
54. Linga rao M, Savithramma N. Antimicrobial activity of Dasamoola- An Ayurvedic drug. *World J Pharm Res* 2012; 1(3): 803-12.
55. Linga rao M, Savithramma N. Phytochemical screening of Dasamoola – an Ayurvedic drug. *Int J Pharm and Pharm Sci* 2012; 3(5): 318-20.
56. Shyam S, Gomathi R, Jose P, Gino AK. An in vivo and in vitro analysis of free radical scavenging potential possessed by Desmodium gangeticum chloroform root extract: Interpretation by gsms. *Pak J Pharm Sci* 2012; 25(1): 27-34.