Truncated Hermite polynomials

Diego Dominici \(^a,b\) and Francisco Marcellán \(^c\)

\(^a\)Research Institute for Symbolic Computation, Johannes Kepler University Linz, Linz, Austria; \(^b\)Department of Mathematics, State University of New York at New Paltz, New Paltz, NY, USA; \(^c\)Departamento de Matemáticas, Universidad Carlos III de Madrid, Escuela Politécnica Superior, Leganés, Spain

ABSTRACT

We define the family of truncated Hermite polynomials \(P_n(x;z)\), orthogonal with respect to the linear functional

\[
L[p] = \int_{-z}^{z} p(x) e^{-x^2} \, dx, \quad p \in \mathbb{R} [x], \quad z > 0.
\]

The connection of \(P_n(x;z)\) with Hermite and Rys polynomials is stated. The semiclassical character of \(P_n(x;z)\) as polynomials of class 2 is emphasized. As a consequence, several properties of \(P_n(x;z)\) concerning the coefficients \(\gamma_n(z)\) in the three-term recurrence relation they satisfy as well as the moments and the Stieltjes function of \(L\) are given. Ladder operators associated with such a linear functional and the holonomic equation that the polynomials \(P_n(x;z)\) satisfy are deduced.

1. Introduction

The classical *Hermite polynomials* (Laplace 1810, Chebyshev 1859, Hermite 1864), are orthogonal with respect to the linear functional \(L_H\) defined by Chihara [10]

\[
L_H[p] = \int_{-\infty}^{\infty} p(x) e^{-x^2} \, dx, \quad p \in \mathbb{R} [x].
\]

They have multiple applications in several areas of mathematics, including Brownian motion, Gaussian quadrature, random matrices, and wavelet series. They also appear in the framework of Sturm-Liouville equations associated with the Schrödinger equation of the harmonic oscillator in \(\mathbb{R}\) [28].

Related to them are the *Rys polynomials* (named after John Rys, graduate student of Harry F. King), orthogonal with respect to the linear functional

\[
L_R[p] = \int_{I} p(x) e^{-ax^2} \, dx, \quad p \in \mathbb{R} [x], \quad a > 0.
\]
The Rys polynomials are usually denoted by $R_n(x; a)$ if $I = [0, 1]$ and $J_n(x; a)$ if $I = [-1, 1]$. The polynomials $R_n(x; a)$ were introduced in [15] to compute integrals related to electron repulsion in molecular quantum mechanics [2, 7, 26, 27, 42, 44]. These polynomials have been studied by several authors, mostly from a computational point of view, and mainly related to the implementation of quadrature rules [1, 40, 43]. Their zeros and associated quadrature weights (Christoffel numbers) have been extensively analyzed [16, 24].

A basic point is the study of the moment sequence for the linear functional (2). Indeed, the moments of LR can be expressed in terms of the incomplete gamma function, but for small values of a they are readily evaluated by a polynomial approximation to a non-alternating power series expansion in a that is valid over a specified range of a. As a next step, the practical evaluation of the zeros is done in terms of a low-order approximation that is valid on finite intervals of a, and by asymptotic expansions for large a. Another interesting point is the analytic relationships between zeros and weights as well as their variation in terms of the parameter a [25].

Quadrature formulas for more general linear functionals

$$\int_{-1}^{1} p(x) \left(1 - x^2\right)^{\lambda - \frac{1}{2}} e^{-x^2} \, dx, \quad \lambda > -\frac{1}{2}, \quad p \in \mathbb{R}[x],$$

were considered in [11, 20, 36, 37]. By using a transformation of quadrature rules from the interval $(-1, 1)$ with N nodes to the interval $(0, 1)$ with $\frac{N+1}{2}$ nodes, the method of modified moments [21] allows one to get the coefficients in the corresponding three-term recurrence relation.

Orthogonal polynomials associated to the Hermite weight with jump discontinuities were analyzed in [5, 9, 29, 30, 38, 48, 49].

In this paper, we will study the truncated Hermite polynomials $P_n(x; z)$, orthogonal with respect to the linear functional

$$L[p] = \int_{-z}^{z} p(x) \, e^{-x^2} \, dx, \quad p \in \mathbb{R}[x], \quad z > 0,$$

and satisfying a three-term recurrence relation

$$xP_n(x; z) = P_{n+1}(x; z) + \gamma_n(z)P_{n-1}(x; z), \quad n \geq 0,$$

with $P_{-1} = 0$.

Since the Rys polynomials $J_n(x; z^2)$ satisfy

$$\frac{1}{z} \int_{-z}^{z} J_n\left(\frac{x}{z}; z^2\right) J_m\left(\frac{x}{z}; z^2\right) e^{-x^2} \, dx = \|J_n\|^2 \delta_{n,m},$$

we can see that the polynomials $P_n(x; z)$ are related to the Rys polynomials by

$$P_n(x; z) = z^n J_n\left(\frac{x}{z}; z^2\right), \quad h_n(z) = \|P_n\|^2 = z^{2n+1} \|J_n\|^2.$$

Using the relation $\gamma_n(z) = \frac{h_n}{h_{n-1}}$, it follows that the coefficients in the three-term recurrence relations are connected by

$$\gamma_n(z) = z^2 \frac{\|J_n\|^2}{\|J_{n-1}\|^2} = z^2 \gamma_n^{(1)}(z).$$
Nevertheless, our choice of (3) is based on the fact that when \(z \to \infty \), we recover the standard Hermite linear functional (1) in a direct way. Our approach has an analytic (rather than numerical) flavour based on the \(D \)-semiclassical character of the linear functional \(L \). Thus, we can analyze the structure relation (ladder operator) and the second order linear differential (holonomic) equation associated with the corresponding sequence of orthogonal polynomials, and this ODE provides an essential tool for an electrostatic interpretation of their zeros.

The linear functional \(L \) has applications in random matrix theory, including the generating function \(E_{N,\beta}(I; \xi; w_\beta) \) for the probabilities \(E_{N,\beta}(n; I; w_\beta) \) that in a Gaussian ensemble, characterized by the weight \(w_\beta(\lambda) \) and having \(N \) eigenvalues, the interval \(I \) contains exactly \(n \) eigenvalues (see Equation 1.2 in [17] and also [18,45,47]). The ‘complementary’ linear functional

\[
\tilde{L}[p] = \int_{\mathbb{R}\setminus[-z,z]} p(x) e^{-x^2} \, dx, \quad p \in \mathbb{R}[x], \ z > 0,
\]

was considered in [8].

The structure of the manuscript is as follows. In Section 2, we present a basic background concerning linear functionals and orthogonal polynomials, with a special emphasis on the symmetric and \(D \)-semiclassical cases. In Section 3, we study some properties (especially the Pearson equation) that the linear functional (3) satisfies. The behaviour of moments and the associated Stieltjes function follows in a natural way. Section 4 is focused on the nonlinear Laguerre-Freud equation that the coefficients of the three-term recurrence relation \(\gamma_n(z) \) satisfy. In Section 5, the ladder operators associated with such a linear functional yield a second order linear differential (holonomic) equation for the polynomials \(P_n(x; z) \). An electrostatic interpretation of their zeros in terms of an external potential in such a way they are in an equilibrium state is given in Section 6. Finally, in Section 7, a Toda interpretation of parameters of the three-term recurrence relation as well as of the orthogonal polynomials in terms of the parameter \(z \) is discussed. We also find a nonlinear ODE (perhaps related to the Painlevé equations) satisfied by \(\gamma_n(z) \).

An earlier draft of this paper appeared as a technical report on the RISC Reports Series [14].

2. Basic background

Let \(\mathcal{L} : \mathbb{R}[x] \to \mathbb{R} \) be a linear functional and let \(\mu_n \) denote the moments of \(L \) on the monomial basis

\[
\mathcal{L}[x^n] = \mu_n. \tag{5}
\]

A sequence \(\{p_n\}_{n \geq 0} \), \(\deg(p_n) = n \), is called an orthogonal polynomial sequence with respect to \(\mathcal{L} \) if

\[
\mathcal{L}[p_kp_n] = h_n \delta_{kn}, \quad k, n \in \mathbb{N}_0, \ h_n \neq 0, \tag{6}
\]

where \(\delta_{kn} \) denotes the Kronecker delta. In this case, \(\mathcal{L} \) is quasi-definite. If \(h_n > 0 \) for every \(n \geq 0 \), then the linear functional is positive definite. If \(h_n = 1 \), then \(\{p_n\}_{n \geq 0} \) is an orthonormal polynomial sequence, and it is unique with the convention that the leading coefficient is a positive real number.
Let’s denote by \(\{P_n\}_{n \geq 0} \) the sequence of **monic** polynomials, orthogonal with respect to \(\mathcal{L} \). From (6), we see that
\[
\mathcal{L} [xP_kP_n] = 0, \quad k \neq n, \ n \pm 1,
\]
and therefore the polynomials \(P_n(x) \) satisfy the **three-term recurrence relation**
\[
xP_n(x) = P_{n+1}(x) + \beta_n P_n(x) + \gamma_n P_{n-1}(x), \quad n \geq 1, \tag{7}
\]
with initial values \(P_0(x) = 1, \ P_1(x) = x - \beta_0 \). The coefficients \(\beta_n, \gamma_n \) are given by Chi-hara [10]
\[
\beta_n = \frac{\mathcal{L} [xP_n^2]}{h_n}, \quad \gamma_n = \frac{\mathcal{L} [xP_nP_{n-1}]}{h_{n-1}}, \quad n \geq 1, \tag{8}
\]
with initial values
\[
\beta_0 = \frac{\mu_1}{\mu_0}. \tag{9}
\]
Note that using (6) we have
\[
h_n = \mathcal{L} [x^n P_n] = \mathcal{L} [xP_n P_{n-1}] = \gamma_n h_{n-1}, \quad n \geq 1,
\]
and hence
\[
\gamma_n = \frac{h_n}{h_{n-1}}, \quad n \geq 1. \tag{10}
\]

Definition 2.1: A linear functional \(\mathcal{L} \) is called **symmetric** if \(\mu_{2n-1} = 0 \), for all \(n \in \mathbb{N} \).

Symmetric functionals can be characterized as follows.

Theorem 2.2: Let \(\{P_n\}_{n \geq 0} \) be the sequence of monic polynomials orthogonal with respect to \(\mathcal{L} \). Then, the following statements are equivalent:

1. \(\mathcal{L} \) is symmetric.
2. \(\beta_n = 0, \quad n \in \mathbb{N} \).
3. For all \(n \in \mathbb{N} \)
\[
P_n(-x) = (-1)^n P_n(x). \tag{11}
\]

Proof: See [10, Theorem 4.3]. \(\blacksquare \)

Note that if \(\mathcal{L} \) is symmetric there exist two sequences of polynomials \(\{P^e_n(x)\}_{n \geq 0} \) and \(\{P^o_n(x)\}_{n \geq 0} \) such that
\[
P_{2n}(x) = P^e_n(x^2), \quad P_{2n+1}(x) = xP^o_n(x^2).
\]
The polynomials \(P^e_n(x), P^o_n(x) \) are orthogonal with respect to the linear functionals \(\mathcal{U}, \mathcal{V} \) defined by \(\mathcal{U}[x^n] = \mathcal{L}[x^{2n}] \) and \(\mathcal{V}[x^n] = \mathcal{U}[x^{n+1}] \), respectively (see [10, Theorem 8.1]).
It is clear from (3) that \mathcal{L} is symmetric and therefore the polynomials $P_{n}(x; z)$ satisfy the recurrence relation (4) with initial conditions $P_{0}(x; z) = 1, P_{1}(x; z) = x$. If we write
\[P_{n}(x; z) = x^{n} - c_{n}(z) x^{n-2} + d_{n}(z) x^{n-4} + O(x^{n-6}), \] with $c_{0} = c_{1} = 0, d_{0} = d_{1} = d_{2} = d_{3} = 0$, then (4) gives
\[
\begin{align*}
x^{n+1} - c_{n+1}x^{n-1} + d_{n+1}x^{n-3} + O(x^{n-5}) &= x^{n+1} - c_{n+1}x^{n-1} + d_{n+1}x^{n-3} + O(x^{n-5}) \\
&\quad+ \gamma_{n} \left(x^{n-1} - c_{n-1}x^{n-3} + d_{n+1}x^{n-5} + O(x^{n-7})\right),
\end{align*}
\]
and comparing powers of x we get
\[c_{n} = c_{n+1} - \gamma_{n}, \quad d_{n} = d_{n+1} - \gamma_{n}c_{n-1}. \] (13)

We conclude that
\[c_{n}(z) = \sum_{k=1}^{n-1} \gamma_{k}(z), \quad n \geq 2, \]
and
\[d_{n}(z) = \sum_{k=3}^{n-1} \gamma_{k}(z) c_{k-1}(z), \quad n \geq 4. \]

Reversing (12), we obtain
\[
\begin{align*}
x^{n} &= P_{n}(x; z) + c_{n}(z)P_{n-2}(x; z) \\
&\quad- \left[d_{n}(z) - c_{n}(z)c_{n-2}(z)\right]P_{n-4}(x; z) + O(x^{n-6}).
\end{align*}
\] (14)

Taking the derivative with respect to x in (12), we have
\[
\partial_{x}P_{n} = nx^{n-1} - (n - 2) c_{n}x^{n-3} + (n - 4) d_{n}x^{n-5} + O(x^{n-7}),
\]
and using (14) we see that
\[
\partial_{x}P_{n} = n \left(P_{n-1} + c_{n-1}P_{n-3}\right) - (n - 2) c_{n}P_{n-3} + O(x^{n-5}).
\]

Since $c_{n-1} - c_{n} = -\gamma_{n-1}$, we conclude that
\[\partial_{x}P_{n}(x; z) = nP_{n-1}(x; z) + [2c_{n}(z) - n\gamma_{n-1}] P_{n-3}(x; z) + O(x^{n-5}). \] (15)

An interesting family of linear functionals is the so-called D-semiclassical (with respect to the derivative operator). In such a case, \mathcal{L} satisfies a first order linear differential equation (Pearson equation)
\[
\partial_{x}^{*}(\phi \mathcal{L}) + \psi \mathcal{L} = 0,
\]
where $\phi(x)$ is a monic polynomial, $\psi(x)$ is a polynomial of degree at least 1, and the adjoints of the derivative and multiplication operators are defined by García-Ardila et al. [19]
\[
(\partial_{x}^{*} \mathcal{L})[p] = -\mathcal{L}[\partial_{x}p], \quad (x\mathcal{L})[p] = \mathcal{L}[xp]. \] (16)

Notice that a semiclassical linear functional satisfies many Pearson equations taking into account the choices of the polynomials ϕ, ψ. The minimal degree choice of ϕ, ψ yields
the definition of the class of a semiclassical linear functional \mathcal{L} as

$$s = \max \{ \deg(\phi) - 2, \deg(\psi) - 1 \}.$$

Notice that D-classical linear functionals (Hermite, Laguerre, Jacobi, Bessel) are semiclassical of class $s = 0$. The description of D-semiclassical linear functional of class $s = 1$ has been done in [3]. Characterizations of the D-semiclassical orthogonal polynomial sequences were pioneered by Pascal Maroni [32–35].

3. Truncated Hermite linear functional

In this section we study the truncated Hermite linear functional L defined by (3), which is a D-semiclassical functional of class $s = 2$. In order to prove it, we will first find the corresponding Pearson equation. Next, we will deduce a second order linear recurrence equation satisfied by its moments. By using the z-transform of the sequence of moments (Stieltjes function), we will get a first order linear differential equation that the Stieltjes function satisfies.

3.1. Pearson equation

Proposition 3.1: Let $p \in \mathbb{R}[x]$ and $\phi(x; z), \psi(x; z)$ be defined by

$$\phi (x; z) = x^2 - z^2, \quad \psi (x; z) = 2x\phi (x; z).$$

The functional L defined by (3) satisfies the Pearson equation

$$L[\partial_x (\phi p)] = L[\psi p],$$

or equivalently

$$L[\phi \partial_x p] = L[2x(\phi - 1)p].$$

Proof: Let $p \in \mathbb{R}[x]$. We have

$$L[\partial_x (\phi p)] = \int_{-z}^{z} \partial_x (\phi p) e^{-x^2} \, dx$$

$$= \left[\phi (x) p (x) e^{-x^2} \right]_{-z}^{z} - \int_{-z}^{z} 2x\phi (x) p (x) e^{-x^2} \, dx = L[2x\phi p],$$

and we obtain (18). Using the product rule, we see that Equation (19) follows immediately from (18).

Using the adjoint operators defined by (16), we can write $\phi \partial_x^* L[p] = -L[\partial_x (\phi p)]$, and therefore the Pearson Equation (18) has the form

$$(\phi \partial_x^* + \psi) L = 0.$$

(20)
Remark 3.2: For the linear functional L_H (1) associated with the Hermite polynomials, we have the Pearson equation
\[(\partial_x^* + 2x) L_H = 0.\] (21)
Multiplying (21) by $\phi(x, z)$, we get
\[0 = \phi \partial_x^* L_H + 2x \phi L_H = (\phi \partial_x^* + \psi) L_H,\] (22)
which yields another Pearson equation satisfied by L_H that is equivalent to (20) but doesn’t have minimal degree.

3.2. Moments

It follows from the definition of L that the odd moments are zero. Setting $s = x^2$ in (5), we have
\[\mu_{2n}(z) = 2 \int_0^z x^{2n} e^{-x^2} \, dx = \int_0^z s^{n-\frac{1}{2}} e^{-s} \, ds = \hat{\gamma}\left(n + \frac{1}{2}, z^2\right),\] (23)
where the incomplete gamma function $\hat{\gamma}(a, z)$ is defined by Olver et al. [39, 8.2.1]
\[\hat{\gamma}(a, z) = \int_0^z t^{a-1} e^{-t} \, dt.\]
Note that we use the nonstandard notation $\hat{\gamma}(a, z)$ to distinguish the incomplete gamma function from the coefficient $\gamma_n(z)$ in the recurrence relation (4).

The function $\hat{\gamma}(a, z)$ has the hypergeometric representation [39, 8.5.1]
\[\hat{\gamma}(a, z) = a^{-1} z^a e^{-z} \, _1 F_1\left(1 a+1 ; z\right),\] (24)
where the (generalized) hypergeometric function $_p F_q$ is defined by Olver et al. [39, 16.2.1]
\[_p F_q\left(\begin{array}{c}a_1, \ldots, a_p \\ b_1, \ldots, b_q\end{array} ; z\right) = \sum_{x=0}^{\infty} \frac{(a_1)_x \cdots (a_p)_x}{(b_1)_x \cdots (b_q)_x} \frac{z^x}{x!},\]
and the Pochhammer symbol is defined by Olver et al. [39, 5.2.4]
\[(c)_n = \prod_{j=0}^{n-1} (c + j), \quad n \in \mathbb{N}, \quad (c)_0 = 1.\] (25)
Using (24) in (23), we get
\[\mu_{2n}(z) = \frac{2}{2n+1} z^{2n+1} e^{-z^2} \, _1 F_1\left(1 n+\frac{3}{2} ; z^2\right),\] (26)
and for $n = 0$ we have
\[\mu_0(z) = 2 \int_0^z e^{-x^2} \, dx = \sqrt{\pi} \, \text{erf}(z),\] (27)
where the \(\text{erf}(z) \) denotes the *error function* [39, 7.2.1]. Using the recurrence relation [39, 8.8.1]

\[
\hat{\gamma}(a + 1, z) = a\hat{\gamma}(a, z) - z^a e^{-z},
\]

we get

\[
\mu_{2n+2}(z) = \left(n + \frac{1}{2}\right)\mu_{2n}(z) - z^{2n+1} e^{-z^2}.
\]

(28)

In particular,

\[
\mu_2(z) = \frac{1}{2}\mu_0(z) - \sqrt{\pi} e^{-z^2} = \frac{\sqrt{\pi}}{2} \text{erf}(z) - ze^{-z^2}.
\]

To obtain a second order homogeneous recurrence equation that the moments satisfy, we can use the Pearson Equation (19).

Proposition 3.3: Let \(u_n(z) \) be defined by

\[
u_n(z) = \mu_{2n}(z).
\]

(29)

Then, \(u_n(z) \) satisfies the recurrence equation

\[
2u_{n+2} - (2n + 3 + 2z^2)u_{n+1} + (2n + 1)z^2u_n = 0,
\]

(30)

with initial conditions

\[
u_0 = \sqrt{\pi} \text{erf}(z), \quad u_1 = \frac{\sqrt{\pi}}{2} \text{erf}(z) - ze^{-z^2}.
\]

Proof: Using (19) with \(p(x) = x^{2n+1} \), we have

\[L\left[(2n + 1)\left(x^2 - z^2\right)x^{2n}\right] = L\left[2x\left(x^2 - z^2 - 1\right)x^{2n+1}\right],
\]

or

\[
(2n + 1)\left(\mu_{2n+2} - z^2\mu_{2n}\right) = 2\left[\mu_{2n+4} - (z^2 + 1)\mu_{2n+2}\right].
\]

\[
\Box
\]

Remark 3.4: From the asymptotic expansion [39, 8.11.2]

\[
\hat{\gamma}(a, z) \sim \Gamma(a) \left[1 - z^{a-1} e^{-z} \sum_{k=0}^\infty \frac{z^{-k}}{\Gamma(a - k)}\right], \quad z \to \infty,
\]

in (23), we see that for fixed \(n \)

\[
u_n(z) \sim \Gamma \left(n + \frac{1}{2}\right) \left[1 - e^{-z^2} \sum_{k=0}^\infty \frac{z^{2(n-k)-1}}{\Gamma(n + \frac{1}{2} - k)}\right], \quad z \to \infty.
\]

(31)
The even moments of the Hermite polynomials are \[\mu_{2n}^H = \int_0^\infty s^{n-\frac{1}{2}} e^{-s} \, ds = \Gamma \left(n + \frac{1}{2} \right), \]
and therefore we can rewrite (31) as the ratio asymptotics
\[
\frac{\mu_{2n} (z)}{\mu_{2n}^H} \sim 1 - e^{-z^2} \sum_{k \geq 0} \frac{z^{2(n-k)-1}}{\Gamma \left(n + \frac{1}{2} - k \right)}, \quad z \to \infty.
\]

3.3. Stieltjes function

The Stieltjes function associated with a linear functional \(\mathcal{L} \) is defined by García-Ardila et al. [19], Maroni [34]
\[
S (t) = \mathcal{L} \left[\frac{1}{t-x} \right] = \sum_{n \geq 0} \frac{\mu_n}{t^{n+1}},
\]
where the sum is a formal power series.

Proposition 3.5: The Stieltjes function \(S(t; z) \) associated with the linear functional \(L \) satisfies the first order nonhomogeneous ODE
\[
\phi (t; z) \partial_t S + \psi (t; z) S = [2\phi (t; z) - 1] u_0 (z) + 2u_1 (z),
\]
where \(\phi(x; z) \) and \(\psi(x; z) \) were defined in (17).

Proof: For the linear functional \(L \), the Stieltjes function reads
\[
S (t; z) = \sum_{n \geq 0} \frac{u_n (z)}{t^{2n+1}},
\]
and therefore
\[
\sum_{n \geq 0} (2n+1) \frac{u_n (z)}{t^{2n+1}} = -t \partial_t S,
\]
i.e.
\[
\sum_{n \geq 0} \frac{u_{n+k} (z)}{t^{2n+1}} = \sum_{n \geq k} \frac{u_n (z)}{t^{2n-2k+1}} = t^k \left(S - \sum_{n=0}^{k-1} \frac{u_n (z)}{t^{2n+1}} \right).
\]
Using (35) and (36), we have
\[
2t^4 \left[S - \left(\frac{u_0 (z)}{t} + \frac{u_1 (z)}{t^3} \right) \right] + t^2 \left(t \partial_t S + \frac{u_0 (z)}{t} \right) - 2z^2 t^2 \left(S - \frac{u_0 (z)}{t} \right) - z^2 t \partial_t S = 0,
\]
since
\[\sum_{n \geq 0} (2n + 3) \frac{u_{n+1}(z)}{t^{2n+1}} = t^2 \sum_{n \geq 1} (2n + 1) \frac{u_n(z)}{t^{2n}} = t^2 \left(-t \frac{\partial_t S - u_0(z)}{t} \right). \]

After simplification, we obtain
\[(t^2 - z^2) (\partial_t S + 2tS) = (2t^2 - 2z^2 - 1) u_0(z) + 2u_1(z). \]

Remark 3.6: Notice that the first order linear differential equation that the Stieltjes function associated with a semiclassical linear functional plays a central role in terms of the characterizations of such linear functionals (see [32,34], among others).

Note that differentiating (33) with respect to \(t \), we get
\[\partial_t \left(\left(t^2 - z^2 \right) \left(\partial_t S + 2tS \right) \right) = 4tu_0(z), \]
and, therefore,
\[\partial_t \left(\frac{\partial_t \left(\left(t^2 - z^2 \right) \left(\partial_t S + 2tS \right) \right)}{t} \right) = 0. \]

Thus, the function \(S(t; z) \) satisfies the third order **homogeneous** linear ODE with polynomial coefficients
\[t \left(t^2 - z^2 \right) \partial_t^3 S + \left(2t^4 - 2t^2z^2 + 3t^2 + z^2 \right) \partial_t^2 S + 2t(5t^2 - z^2) \partial_t S + 2(3t^2 + z^2)S = 0. \]

For the Hermite polynomials, we have [39, 7.7.2]
\[S_H(t) = \int_{-\infty}^{\infty} \frac{e^{-x^2}}{t - x} dx = -i\pi \omega(t), \quad \text{Im}(t) > 0, \]
where \(i^2 = -1 \), and the function \(\omega(t) \) is defined by Olver et al. [39, 7.2.3]
\[\omega(t) = e^{-t^2} \left[1 - \text{erf}(-it) \right]. \]

The function \(\omega(t) \) satisfies [39, 7.10.2]
\[\partial_t \omega(t) = -2t\omega(t) + \frac{2i}{\sqrt{\pi}}, \]
and therefore
\[\partial_t S_H(t) = -2tS_H(t) + 2\sqrt{\pi} = -2tS_H(t) + 2\mu_0^H. \] (37)

Comparing (37) with (33), we see that the Stieltjes functions of the functionals \(L \) and \(L_H \) are related by
\[0 = \phi(t; z) \left(\partial_t S_H + 2tS_H - 2\mu_0^H \right) = \phi(t; z) \left(\partial_t S + 2tS - u_0 \right) + u_0 - 2u_1. \]
4. Laguerre-Freud equations

The (generally nonlinear) equations satisfied by the coefficients of the three-term recurrence relation (7) are known in the literature as Laguerre-Freud equations [4]. They can be considered discrete analogues of the Painlevé equations [31].

First of all, we will find a second order nonlinear difference equation that the parameters of the three term recurrence relation satisfy.

Theorem 4.1: The coefficients $\gamma_n(z)$ satisfy the Laguerre-Freud equation

\[
\frac{z^2}{2} = \gamma_n \left(\gamma_{n-1} + \gamma_n - z^2 + \frac{1}{2} - n \right) - \gamma_{n+1} \left(\gamma_{n+1} + \gamma_{n+2} - z^2 - n - \frac{3}{2} \right). \tag{38}
\]

Proof: Taking $p(x) = P_n P_{n+1}$ in (18), we get

\[
L \left[\partial_x (\phi P_n P_{n+1}) \right] = L \left[\psi P_n P_{n+1} \right]. \tag{39}
\]

The left hand side gives

\[
L \left[\partial_x (\phi P_n P_{n+1}) \right] = 2L \left[xP_n P_{n+1} \right] + L \left[(x^2 - z^2) (P_{n+1} \partial_x P_n + P_n \partial_x P_{n+1}) \right]
\]

and using (6), we have

\[
2L \left[xP_n P_{n+1} \right] = 2h_{n+1}, \quad L \left[(x^2 - z^2) P_{n+1} \partial_x P_n \right] = nh_{n+1},
\]

\[
L \left[-z^2 P_n \partial_x P_{n+1} \right] = -z^2 (n + 1) h_n.
\]

From (4), we see that

\[
x^2 P_n = P_{n+2} + (\gamma_{n+1} + \gamma_n) P_n + \gamma_{n-1} \gamma_n P_{n-2}, \tag{40}
\]

and using (15) we get

\[
\partial_x P_{n+1} = (n + 1) P_n + [2c_{n+1} - (n + 1) \gamma_n] P_{n-2} + O(x^{n-4}).
\]

Hence,

\[
L \left[x^2 P_n \partial_x P_{n+1} \right] = (n + 1) (\gamma_{n+1} + \gamma_n) h_n + [2c_{n+1} - (n + 1) \gamma_n] \gamma_{n-1} \gamma_n h_{n-2}.
\]

Using (10), we conclude that

\[
L \left[x^2 P_n \partial_x P_{n+1} \right] = (n + 1) (\gamma_{n+1} + \gamma_n) h_n + [2c_{n+1} - (n + 1) \gamma_n] h_n,
\]

and therefore

\[
L \left[\partial_x (\phi P_n P_{n+1}) \right] = [(2n + 3) \gamma_{n+1} + 2c_{n+1} - (n + 1) z^2] h_n.
\]

The right hand side in (39) reads

\[
L \left[\psi P_n P_{n+1} \right] = L \left[2x(x^2 - z^2) P_n P_{n+1} \right],
\]
and since (4) gives

\[x^3 P_n = P_{n+3} + (\gamma_{n+2} + \gamma_{n+1} + \gamma_n) P_{n+1} + \gamma_n(\gamma_{n+1} + \gamma_n + \gamma_{n-1}) P_{n-1} + \gamma_n \gamma_{n-1} \gamma_{n-2} P_{n-3}, \tag{41} \]

we have

\[L[\psi P_n P_{n+1}] = 2(\gamma_{n+2} + \gamma_{n+1} + \gamma_n) h_{n+1} - 2z^2 h_{n+1} \]

or, using (10),

\[L[\psi P_n P_{n+1}] = 2\gamma_n (\gamma_{n+2} + \gamma_{n+1} + \gamma_n - z^2) h_n. \]

Thus,

\[(2n + 3) \gamma_{n+1} + 2c_{n+1} - (n + 1) z^2 = 2\gamma_{n+1} (\gamma_{n+2} + \gamma_{n+1} + \gamma_n - z^2), \tag{42} \]

and shifting \(n \to n - 1, \)

\[(2n + 1) \gamma_n + 2c_n - nz^2 = 2\gamma_n (\gamma_{n+1} + \gamma_n + \gamma_{n-1} - z^2). \tag{43} \]

Subtracting (43) from (42) and using (13), we obtain

\[(2n + 3) \gamma_{n-1} - (2n - 1) \gamma_n - z^2 = 2\gamma_{n-1} (\gamma_{n+2} + \gamma_{n+1} - z^2) - 2\gamma_n (\gamma_n + \gamma_{n-1} - z^2) \]

and the result follows.

\[\blacksquare \]

Remark 4.2: The polynomials \(P_n(x; z) \) were considered by Belmehdi and Ronveaux in [4] (Equation 8, with \(m = 1 \) and \(c = z \)) as part of their study of general Laguerre-Freud equations (see Note 1). They derived the Pearson equation (Equation (14))

\[2x(x^2 - z^2 - 1) L + \partial_x^2 \left[(x^2 - z^2) L\right] = 0, \]

which is equivalent to (19). They also obtained the Laguerre-Freud equations (Equations (60)–(61))

\[2\gamma_{n+1} \left(C^3_{n+1,n} - z^2 C^1_{n+1,n} - C^1_{n+1,n}\right) = (2n + 1) \gamma_{n+1} - (n + 1) z^2 + 2 \sum_{k=1}^{n} \gamma_k, \tag{44a} \]

where the coefficients \(C^k_{j,n} \) satisfy

\[x^k P_n = \sum_{j=n-k}^{n+k} C^k_{j,n} P_j, \quad C^1_{n,n} = 0. \]

Since

\[C^1_{n+1,n} = 1, \quad C^1_{n-1,n} = \gamma_n, \]

we can iterate (4) and obtain

\[C^3_{n+3,n} = 1, \quad C^3_{n+1,n} = \gamma_n + \gamma_{n+1} + \gamma_{n+2}, \]

\[C^3_{n-1,n} = \gamma_n (\gamma_{n-1} + \gamma_n + \gamma_{n+1}), \quad C^3_{n-1,n} = \gamma_n \gamma_{n-1} \gamma_{n-2}. \]
Thus, we can rewrite (44a) as
\[
2\gamma_{n+1} (\gamma_n + \gamma_{n+2} - z^2 - 1) = (2n + 1) \gamma_{n+1} - (n + 1) z^2 + 2 \sum_{k=1}^{n} \gamma_k,
\]
and taking a difference in \(n \), we get
\[
\gamma_n (2\gamma_n + 2\gamma_{n-1} - 2n - 2z^2 + 1) + \gamma_{n+1} (3 + 2n + 2z^2 - 2\gamma_{n+1} - 2\gamma_{n+2}) - z^2 = 0,
\]
in agreement with (38). Clearly, their method is completely different from ours.

Notice that the nonlinear equation of order 2 (38) involves 4 consecutive terms of the sequence of parameters \(\gamma_n(z) \). As an alternative, we will next deduce a third order nonlinear difference equation involving 3 consecutive terms of the sequence of parameters \(\gamma_n(z) \). Thus, the computation of them is more accurate.

Theorem 4.3: The coefficients \(\gamma_n(z) \) satisfy the equation
\[
\gamma_n \left(n + 1 - \gamma_n - \gamma_{n+1} \right) \left(n - 1 - \gamma_n - \gamma_{n-1} \right) = z^2 \left(\frac{n}{2} - \gamma_n \right)^2. \tag{45}
\]

Proof: From (8), we have
\[
h_{n-1} (z) \gamma_n (z) = L [xP_n P_{n-1}] = -\frac{1}{2} \left[P_n P_{n-1} e^{-x^2} \right]_{-z} + \frac{1}{2} L [\partial_x (P_n P_{n-1})],
\]
while (11) gives
\[
\left[P_n P_{n-1} e^{-x^2} \right]_{-z} = P_n (z; z) P_{n-1} (z; z) e^{-z^2} - (-1)^{2n-1} P_n (z; z) P_{n-1} (z; z) e^{-z^2} = 2P_n (z; z) P_{n-1} (z; z) e^{-z^2}.
\]
But using (6), we see that \(L[P_n \partial_x P_{n-1}] = 0 \), and therefore
\[
h_{n-1} (z) \gamma_n (z) = -P_n (z; z) P_{n-1} (z; z) e^{-z^2} + \frac{1}{2} L [\partial_x P_n P_{n-1}]. \tag{46}
\]
Since \(P_n (x; z) = x^n + O(x^{n-1}) \), we have
\[
\partial_x P_n (x; z) = nx^{n-1} + O(x^{n-2}) = nP_{n-1} (x; z) + O(x^{n-2}), \tag{47}
\]
and hence
\[
L [P_{n-1} \partial_x P_n] = nh_{n-1} (z). \tag{48}
\]
From (46) and (48), we conclude that
\[
P_n (z; z) P_{n-1} (z; z) e^{-z^2} = \left[\frac{n}{2} - \gamma_n (z) \right] h_{n-1} (z). \tag{49}
\]
On the other hand, if follows from (4) that
\[x^2 P_n^2(x; z) = (P_{n+1}(x; z) + \gamma_n P_{n-1}(x; z))^2 = P_{n+1}^2(x; z) + 2\gamma_n P_{n-1}(x; z) P_{n+1}(x; z) + \gamma_n^2 P_{n-1}^2(x; z). \]

Thus (6) and (10) give
\[L \left[x^2 P_n^2 \right] = h_{n+1}(z) + \gamma_n^2(z) h_{n-1}(z) = h_{n+1}(z) + \gamma_n(z) h_n(z). \] (50)

But
\[L \left[\partial_x (x P_n^2) \right] = \left[x P_n e^{-x^2} \right]_z + 2L \left[x^2 P_n^2 \right] = 2z P_n^2(z; z) e^{-z^2} + 2L \left[x^2 P_n^2 \right], \]
and, as a consequence, we obtain
\[L \left[\partial_x (x P_n^2) \right] = 2z P_n^2(z; z) e^{-z^2} + 2 \left[h_{n+1}(z) + \gamma_n^2(z) h_{n-1}(z) \right]. \] (51)

On the other hand, since
\[x P_n(x; z) \partial_x P_n(x; z) = P_n(x; z) \left[n x^n + O(x^{n-1}) \right], \]
and using (6) we get
\[L \left[\partial_x (x P_n^2) \right] = L \left[P_n^2 \right] + L \left[2x P_n \partial_x P_n \right] = (2n + 1) h_n(z). \] (52)

From (51) and (52), we conclude that
\[P_n^2(z; z) e^{-z^2} = \frac{(2n + 1) h_n(z) - 2 \left[h_{n+1}(z) + \gamma_n^2(z) h_{n-1}(z) \right]}{2z}. \] (53)

Squaring (49), we have
\[P_n^2(z; z) P_{n-1}^2(z; z) e^{-2z^2} = \left[\frac{n}{2} - \gamma_n(z) \right]^2 h_{n-1}^2(z), \]
and using (53), we obtain
\[\frac{(2n + 1) h_n - 2 (h_{n+1} + \gamma_n^2 h_{n-1})}{2z} \frac{(2n - 1) h_{n-1} - 2 (h_n + \gamma_n^2 h_{n-2})}{2z} = \left(\frac{n}{2} - \gamma_n \right)^2 h_{n-1}^2. \]

Dividing by \(h_{n-1}^2(z) \) and using (10), we get
\[\gamma_n \frac{(2n - 2\gamma_n - 2\gamma_{n+1} + 1)(2n - 2\gamma_n - 2\gamma_{n-1} - 1)}{4z^2} = \left(\frac{n}{2} - \gamma_n \right)^2, \]
since
\[\frac{h_{n+1}(z)}{h_n(z)} = \gamma_{n+1}(z), n \geq 0. \]
Corollary 4.4: Let $g_n(z)$ be defined by

$$g_n(z) = \frac{n}{2} - \gamma_n(z).$$

(54)

Then, $g_n(z)$ satisfies the nonlinear recurrence

$$\left(\frac{n}{2} - g_n\right) \left(g_n + g_{n+1}\right) \left(g_n + g_{n-1}\right) = z^2 g_n^2.$$

(55)

Note that (55) can be written as

$$\left(g_n + g_{n+1}\right) \left(g_n + g_{n-1}\right) = \frac{m^2 - 4g_n^2}{\lambda g_n + y_n},$$

with $m = 0$, $\lambda = 4z^{-2}$, $y_n = -2z^{-2}n$, and therefore it’s a modified discrete Painlevé II equation (see Equation 3.1 in [6,22,41]).

Remark 4.5: For the Hermite polynomials $H_n(x)$, we have

$$xH_n(x) = H_{n+1}(x) + \frac{n}{2}H_{n-1}(x),$$

and therefore

$$\gamma_H(n) = \frac{n}{2}.$$

Thus, from (54) we see that $g_n \to 0$ as $z \to \infty$.

To obtain an asymptotic expansion of $g_n(z)$ as $n \to \infty$, we can use the nonlinear recurrence (55).

Theorem 4.6: For $z = O(1)$, we have

$$g_n(z) \sim \frac{n}{2} - \frac{z^2}{4} - \frac{z^4}{16}n^{-2} - \frac{z^6}{64}n^{-3} - \frac{z^8}{16}n^{-4} + \frac{z^{10}}{4}n^{-5} + O(n^{-5})$$

(56)

as $n \to \infty$.

Proof: Replacing

$$g_n(z) = \sum_{k \geq -1} \frac{\xi_k(z)}{n^k}$$

in (55) and comparing coefficients of n, we get

$$2\xi_{-1}^2 (1 - 2\xi_{-1}) = 0, \quad O\left(n^3\right),$$

and therefore $\xi_{-1} = 0$, or $\xi_{-1}(z) = \frac{1}{2}$. The solution $\xi_{-1} = 0$ leads to $\xi_k(z) = 0$ for all k, and hence we choose $\xi_{-1}(z) = \frac{1}{2}$. For $O(n^2)$, we get

$$\left(\xi_0 + \frac{z^2}{4}\right) = 0 \Rightarrow \xi_0(z) = -\frac{z^2}{4}.$$

The next term, for $O(n)$ gives $\xi_1(z) = 0$, and continuing this way we obtain (56).
Corollary 4.7: For \(z = O(1) \), the recurrence coefficient \(\gamma_n(z) \), satisfying the Laguerre-Freud Equation (45) has the asymptotic expansion

\[
\gamma_n(z) \sim \frac{z^2}{4} + \frac{z^2}{16} n^{-2} + \frac{z^4}{16} n^{-3} + \frac{z^2}{64} (1 + 3z^4)n^{-4} + O(n^{-5}), \quad n \to \infty. \tag{57}
\]

With the previous result, we can get a first estimate for the asymptotic behaviour of \(P_n(x; z) \) as \(n \to \infty \).

Proposition 4.8: For \(x, z = O(1) \), the polynomials \(P_n(x; z) \) satisfy

\[
P_n(x; z) \sim \Phi_+^n(x; z) + \Phi_-^n(x; z), \quad n \to \infty, \tag{58}
\]

where

\[
\Phi_\pm(x; z) = \frac{x \pm \sqrt{x^2 - z^2}}{2}.
\]

Proof: Using (57) in (4), we see that [46]

\[
\lim_{n \to \infty} [P_n(x; z)]^{\frac{1}{n}} = \Phi(x; z),
\]

where \(\Phi(x; z) \) is a solution of the quadratic equation

\[
x = \Phi + \frac{z^2}{4 \Phi} \tag{59}
\]

Thus,

\[
\Phi(x; z) = \frac{x \pm \sqrt{x^2 - z^2}}{2},
\]

and the result follows.

Note that for \(x \in (-z, z) \)

\[
\Phi_\pm(x; z) = \frac{x \pm i\sqrt{z^2 - x^2}}{2},
\]

and therefore setting \(x = z \cos(\theta) \) we have

\[
P_n(x; z) \sim 2 \left(\frac{z}{2} \right)^n \cos(n\theta), \quad n \to \infty.
\]

Since the Chebyshev polynomials of the first kind are defined by Olver et al. [39, 18.5.1]

\[
T_n(\cos(\theta)) = \cos(n\theta),
\]

we see that

\[
P_n(x; z) \sim 2 \left(\frac{z}{2} \right)^n T_n(\frac{x}{z}), \quad n \to \infty.
\]
5. Structure relation and differential equation

Semiclassical polynomials (with respect to the derivative operator) are holonomic functions [23], meaning that they are solutions of a linear ODE with polynomial coefficients. In this section, we shall find the differential equation (in x) satisfied by $P_n(x; z)$.

5.1. Structure relation

One of the basic properties of semiclassical polynomials with respect to the derivative operator, is a relation between $\partial_x P_n$ and P_n [19]. For the polynomials $P_n(x; z)$, we have the following result.

Theorem 5.1: The polynomials $P_n(x; z)$ satisfy the differential-recurrence relation

$$
\phi \,(x; z) \, \partial_x P_{n+1} = (n + 1) \, P_{n+2} + \lambda_n P_n + \tau_n P_{n-2},
$$

(60)

where

$$
\lambda_n \,(z) = \left[2 \,(\gamma_n + \gamma_{n+1} + \gamma_{n+2} - z^2 - 1) - n\right] \gamma_{n+1},
$$

(61)

and

$$
\tau_n \,(z) = 2 \gamma_{n+1} \gamma_{n-1} \gamma_n.
$$

(62)

Proof: If

$$
\phi \,(x; z) \, \partial_x P_{n+1} = \sum_{k=0}^{n+2} d_{n,k}(z) P_k,
$$

(63)

then using (6) and (11), we have

$$
h_k d_{n,k} = L \,[\phi \partial_x P_{n+1} P_k] = 0, \quad n + 1 \equiv k \, \text{mod} \,(2),
$$

(64)

since L is symmetric and ϕ is an even polynomial of x. Using (19), we get

$$
h_k d_{n,k} = L \,[\phi \partial_x (P_{n+1} P_k)] - L \,[\phi P_{n+1} \partial_x P_k]$$

$$
= L \,[2 \, (\phi - 1) P_{n+1} P_k] - L \,[\phi P_{n+1} \partial_x P_k].
$$

Since the polynomials P_n are orthogonal, we conclude that $d_{n,k} = 0$ for $0 \leq k < n - 2$, and because we are working with monic polynomials, we see from (63) that $d_{n,n+2} = n + 1$. Hence, we obtain (60).
Using (40) and (41), we get

\[x(\phi - 1) P_k = \left(x^3 - (z^2 + 1) x \right) P_k = P_{k+3} + \gamma_k \gamma_{k-1} \gamma_{k-2} P_{k-3} \]
\[+ \left[\gamma_k + \gamma_{k+1} + \gamma_{k+2} - (z^2 + 1) \right] P_{k+1} \]
\[+ \gamma_k \left[\gamma_k + \gamma_{k+1} + \gamma_{k-1} - (z^2 + 1) \right] P_{k-1}. \]

Using (6), it follows that

\[L[2x(\phi - 1)P_{n+1}P_n] = \left[\gamma_n + \gamma_{n+1} + \gamma_{n+2} - (z^2 + 1) \right] h_{n+1}, \]
\[L[2x(\phi - 1)P_{n+1}P_{n-2}] = h_{n+1}, \]

and since \(\phi \partial_x P_k = kP_{k+1}(x) + O(x^k) \), we see that

\[L[\phi P_{n+1}\partial_x P_n] = nh_{n+1}, \quad L[\phi P_{n+1}\partial_x P_{n-2}] = 0. \]

Hence, we conclude that

\[h_n \lambda_n = 2 \left[\gamma_n + \gamma_{n+1} + \gamma_{n+2} - (z^2 + 1) \right] h_{n+1} - nh_{n+1}, \quad h_{n-2} \tau_n = 2h_{n+1}, \]

and using (10) we get

\[\lambda_n = 2 \left[(\gamma_n + \gamma_{n+1} + \gamma_{n+2}) - \left(z^2 + 1 \right) - \frac{n}{2} \right] \gamma_{n+1}, \]
\[\tau_n = \frac{h_{n+1}}{h_{n-2}} = 2\gamma_{n+1} \gamma_n \gamma_{n-1}. \]

\[\blacksquare \]

5.2. Differential equation

We will now obtain a lowering operator acting on the variable \(x \) for \(P_n(x, z) \).

Proposition 5.2: Let the operator \(U_n \) be defined by

\[U_n = A_n(x; z) \partial_x - B_n(x; z), \quad n \in \mathbb{N}, \]

where

\[A_n(x; z) = \frac{\phi(x; z)}{2\gamma_n(z) C_n(x; z)}, \quad B_n(x; z) = \frac{n - 2\gamma_n(z)}{2\gamma_n(z) C_n(x; z)} x, \quad (65) \]

and

\[C_n(x; z) = \phi(x; z) + \gamma_n(z) + \gamma_{n+1}(z) - n - \frac{1}{2}. \quad (66) \]

Then,

\[U_n P_n = P_{n-1}, \quad n \in \mathbb{N}. \quad (67) \]
Proof: If we use (40) in (60), then we have
\[
\phi \partial_x P_{n+1} = (n + 1) P_{n+2} + \lambda_n P_n + \tau_n \frac{\left[x^2 - (\gamma_n + \gamma_{n+1}) \right] P_n - P_{n+2} }{\gamma_n \gamma_{n-1}}
\]
\[
= \left(n + 1 - \frac{\tau_n}{\gamma_n \gamma_{n-1}} \right) P_{n+2} + \left[\lambda_n + \frac{\tau_n \left(x^2 - \gamma_n - \gamma_{n+1} \right)}{\gamma_n \gamma_{n-1}} \right] P_n.
\]

From (4), we see that
\[
\left[\phi \partial_x - \left(n + 1 - \frac{\tau_n}{\gamma_n \gamma_{n-1}} \right) x \right] P_{n+1} = \left[\lambda_n + \frac{\tau_n x^2 - \gamma_n}{\gamma_n \gamma_{n-1}} - (n + 1) \gamma_{n+1} \right] P_n. \tag{68}
\]

Using (61) and (62) in (68), we get
\[
[\phi \partial_x - (n + 1 - 2\gamma_{n+1}) x] P_{n+1} = 2\gamma_{n+1} \left(\phi + \gamma_{n+1} + \gamma_{n+2} - n - \frac{3}{2} \right) P_n,
\]
and the result follows. \[\blacksquare\]

Taking into account the lowering operator \(U_n \), we can deduce a second order linear differential equation (in \(x \)) for \(P_n(x, z) \).

Theorem 5.3: Let the differential operator \(D_n \) be defined by
\[
D_n = \phi^2 C_n \partial_x^2 - 2x\phi[(\phi - 1)C_n + \phi]\partial_x
\]
\[
+ (n - 2\gamma_n)[2x^2\phi - (\phi - 2x^2\phi + nx^2 - 2x^2\gamma_n)C_n] + 4\gamma_n C_{n-1} C_n^2. \tag{69}
\]
Then, \(D_n P_n = 0 \) for all \(n \in \mathbb{N} \).

Proof: Using (67) in (4), we get
\[
xU_n P_n = P_n + \gamma_{n-1} U_{n-1} U_n P_n.
\]
If \(y \) is a function of \(x \), we have
\[
U_{n-1} U_n y = (A_{n-1} \partial_x - B_{n-1}) \left(A_n y' - B_n y \right)
\]
\[
= A_{n-1} \left(\partial_x A_n y' + A_n y'' - \partial_x B_n y - B_n y' \right) - B_{n-1} \left(A_n y' - B_n y \right),
\]
and therefore
\[
(\gamma_{n-1} U_{n-1} U_n - xU_n + 1) y = \gamma_{n-1} A_{n-1} A_n y''
\]
\[
+ \gamma_{n-1} \left[A_{n-1} \left(\partial_x A_n - B_n \right) - A_n B_{n-1} \right] y' - xA_n y'
\]
\[
+ \gamma_{n-1} \left(B_n B_{n-1} - A_{n-1} \partial_x B_n \right) y + xB_n y + y.
\]
From (65) and (66), we see that
\[
\gamma_{n-1} A_{n-1} A_n = \frac{\phi^2}{4\gamma_n C_{n-1} C_n},
\]
\[
\gamma_{n-1} \left[A_{n-1} \left(\partial_x A_n - B_n \right) - A_n B_{n-1} \right] - xA_n = -\frac{\left(\phi - 1 \right) C_n + \phi}{2\gamma_n C_{n-1} C_n^2} - x\phi,
\]
and
\[
\gamma_{n-1} (B_n B_{n-1} - A_{n-1} \partial_x B_n) + xB_n + 1
= \frac{(n - 2\gamma_n) [2x^2 \phi - (\phi + nx^2 - 2x^2 \phi - 2x^2 \gamma_n) C_n]}{4\gamma_n C_{n-1} C_n^2} + 1.
\]
Multiplying by \(4\gamma_n C_{n-1} C_n^2\), the result follows.

Remark 5.4: We can write the third term in the differential operator \(D_n\) as
\[
(n - 2\gamma_n) [(2x^2 - 1) C_n + 2x^2] \phi + [4\gamma_n C_{n-1} C_n - (n - 2\gamma_n)^2 x^2] C_n
\]
and since from (66) we see that \(C_n(x; z) = \phi(x; z) + l_n(z)\), we have
\[
4\gamma_n C_{n-1} C_n - (n - 2\gamma_n)^2 x^2 = 4\gamma_n (\phi + l_{n-1})(\phi + l_n) - (n - 2\gamma_n)^2 x^2,
\]
where
\[
l_n(z) = \gamma_n(z) + \gamma_{n+1}(z) - n - \frac{1}{2}.
\] (70)

The Laguerre-Freud Equation (45) can be written as
\[
4\gamma_n l_n l_{n-1} = z^2 (n - 2\gamma_n)^2,
\]
and therefore
\[
4\gamma_n (\phi + l_{n-1})(\phi + l_n) - (n - 2\gamma_n)^2 x^2 = 4\gamma_n \left(\phi + l_n + l_{n-1} - \frac{l_nl_{n-1}}{z^2}\right) \phi
= [4\gamma_n (C_n + l_{n-1}) - (n - 2\gamma_n)^2] \phi.
\]
As a consequence, we can write the differential equation for \(P_n(x; z)\) in the reduced form
\[
\phi C_n \partial^2_x P_n - 2x[(\phi - 1)C_n + \phi] \partial_x P_n + (n - 2\gamma_n)[(2x^2 - 1)C_n + 2x^2]P_n
+ [4\gamma_n(C_n + l_{n-1}) - (n - 2\gamma_n)^2]C_n P_n = 0.
\] (71)

Using (57) in (69), we get
\[
D_n \sim -n\phi^2 \partial^2_x + 2nx\phi(\phi - 1) \partial_x + n^3 \phi, \quad n \to \infty,
\]
and therefore we see that if \(P_n(x; z) \sim \Phi^n(x; z)\) as \(n \to \infty\), then to leading order
\[
1 - \phi \left(\frac{\partial_x \Phi}{\Phi}\right)^2 = 0.
\]
The solutions of this Riccati equation are
\[
\Phi_{\pm}(x; z) = \frac{x \pm \sqrt{\phi(x; z)}}{2},
\]
in agreement with (58).
6. Electrostatic interpretation of the zeros

It is very well known that the zeros of orthogonal polynomials with respect to a positive definite linear functional are real, simple, and located in the interior of the convex hull of the support of the linear functional \[10\]. Thus, let denote by \(\{x_{n,k}(z)\}_{1 \leq k \leq n}\) the zeros of \(P_n(x; z)\) in an increasing order, i.e.

\[P_n(x_{n,k}; z) = 0, \quad 1 \leq k \leq n,\]

and \(x_{n,1} < x_{n,2} < \cdots < x_{n,n}\).

Evaluating the operator \(D_n\) at \(x = x_{n,k}\), we see that

\[\left[\frac{\partial^2 P_n}{\partial x^2} \right]_{x = x_{n,k}} - 2x_{n,k} \frac{\phi(x_{n,k}; z)}{\phi(x_{n,k}; z)} = 0,
\]

or, using (66),

\[\left[\frac{\partial^2 P_n}{\partial x^2} \right]_{x = x_{n,k}} - 2x_{n,k} + \frac{1}{x_{n,k} - z} + \frac{1}{x_{n,k} + z} - \frac{1}{x_{n,k} - \zeta_n(z)} - \frac{1}{x_{n,k} + \zeta_n(z)} = 0, \quad (72)\]

where

\[\zeta_n^2(z) = z^2 + n + \frac{1}{2} - \gamma_n - \gamma_{n+1}. \quad (73)\]

Using (73) in (45), we get

\[\gamma_n (\zeta_n^2(z) - z^2) (\zeta_{n-1}^2(z) - z^2) = z^2 \left(\frac{n}{2} - \gamma_n \right)^2,\]

and since

\[\zeta_0^2(z) - z^2 = \frac{1}{2} - \frac{\mu_1}{\mu_0} = \frac{z e^{-z^2}}{\sqrt{\pi} \text{erf}(z)} > 0, \quad z \in \mathbb{R},\]

it follows by induction that \(\zeta_n^2(z) - z^2 > 0\) for all \(n \in \mathbb{N}_0\). In fact, one can show that

\[\min_{z \in \mathbb{R}} \zeta_n^2(z) = \zeta_n^2(0) = n + \frac{1}{2}, \quad n \in \mathbb{N}_0.\]

Using (57) in (73), we obtain

\[\zeta_n^2(z) \sim n + \frac{z^2 + 1}{2} - \frac{z^2}{8} n^{-2} + \frac{z^2 (1 - z^2)}{8} n^{-3}, \quad n \to \infty,\]

and therefore

\[\zeta_n(z) - z = \sqrt{n} - z + O \left(n^{-\frac{1}{2}} \right), \quad n \to \infty.\]

Thus, for \(z = O(1)\), the points \(\pm \zeta_n(z)\) are outside the interval \([-z, z]\), and ‘moving’ outwards as \(n \to \infty\).

Using the previous results, we have shown the following theorem.
Theorem 6.1: The zeros of \(P_n(x; z) \) are located at the equilibrium points of \(n \) unit charged particles located in the interval \((-z, z)\) under the influence of the potential

\[
V_n(x; z) = x^2 - \ln |x^2 - z^2| + \ln |x^2 - \zeta_n^2(z)|.
\]

Proof: As it’s well known, if we write

\[
P_n(x; z) = \prod_{k=1}^{n} (x - x_{n,k}),
\]

then [19, Chapter 10]

\[
\left[\frac{\partial^2 P_n}{\partial x P_n} \right]_{x=x_{n,k}} = \sum_{j=1}^{n} \frac{2}{x_{n,k} - x_{n,j}},
\]

and therefore (72) gives

\[
\sum_{j=1}^{n} \frac{2}{x_{n,j} - x_{n,k}} + 2x_{n,k} - \frac{1}{x_{n,k} - z} - \frac{1}{x_{n,k} + z} + \frac{1}{x_{n,k} - \zeta_n} + \frac{1}{x_{n,k} + \zeta_n} = 0,
\]

or equivalently

\[
\frac{\partial E}{\partial x_{n,k}} = 0, \quad 1 \leq k \leq n,
\]

where the total energy of the system is

\[
E(x_{n,1}, \ldots, x_{n,n}) = -2 \sum_{1 \leq j < k \leq n} \ln |x_{n,k} - x_{n,j}| + \sum_{k=1}^{n} x_{n,k}^2 - \ln |x_{n,k}^2 - z^2| + \ln |x_{n,k}^2 - \zeta_n^2|.
\]

It follows that the external potential is

\[
V_n(x; z) = x^2 - \ln |x^2 - z^2| + \ln |x^2 - \zeta_n^2|.
\]

\[\Box\]

7. Toda-type behaviour

Differentiating (3) with respect to \(z \), we have

\[
\partial_z L \left[p(x; z) \right] = e^{-z^2} \left[p(z; z) + p(-z; z) \right] + L \left[\partial_z p(x; z) \right],
\]

and we note that

\[
\partial_z L \left[\phi p \right] = L \left[\partial_z (\phi p) \right],
\]

where \(\phi(x; z) \) was defined in (17).
In particular,
\[\partial_z u_n = \partial_z L [x^{2n}] = 2z^{2n} e^{-z^2}, \]
and using (28), we get
\[z \partial_z u_n = 2z^{2n+1} e^{-z^2} = (2n + 1) u_n - 2u_{n+1}. \tag{76} \]
On the other hand, using (75) we have
\[\partial_z u_{n+1} - 2zu_n - z^2 \partial_z u_n = \partial_z (u_{n+1} - z^2 u_n) = -2zu_n, \]
and therefore
\[\partial_z u_{n+1} = z^2 \partial_z u_n, \quad n \geq 0. \tag{77} \]
Using the differential-recurrence for the moments (77), we can obtain a first order ODE (in \(z \)) for the Stieltjes function \(S(t; z) \).

Proposition 7.1: Let the function \(S(t; z) \) be defined by (34), and \(\phi(x; z) \) be defined by (17). Then,
\[\phi(t; z) \partial_z S = 2t e^{-z^2}. \tag{78} \]

Proof: Using (36), we have
\[\sum_{n \geq 0} \frac{u_{n+1}}{t^{2n+1}} = t^2 S - tu_0, \]
and therefore (77) gives
\[t^2 \partial_z S - t \partial_z u_0 = z^2 \partial_z S. \]
Using (27), the result follows. \(\square \)

Remark 7.2: Clearly, (78) and the initial condition \(S(t; 0) = 0 \) yield
\[S(t; z) = 2t \int_0^z \frac{e^{-x^2}}{t^2 - x^2} \, dx, \]
which is just the definition (32), since
\[\sum_{n \geq 0} \frac{x^{2n}}{t^{2n+1}} = \frac{t}{t^2 - x^2}. \]
Next, we will obtain some equations relating \(\partial_z h_n, \partial_z \gamma_n \) with \(h_n, \gamma_n \).

Theorem 7.3: The functions \(h_n(z), \gamma_n(z) \) satisfy the Toda-type equations
\[\vartheta \ln (h_n) = 2n + 1 - 2 (\gamma_{n+1} + \gamma_n), \tag{79} \]
and
\[\vartheta \ln (\gamma_n) = 2 (\gamma_{n-1} - \gamma_{n+1} + 1), \tag{80} \]
where \(\vartheta \) is the operator defined by
\[\vartheta = z \partial_z. \tag{81} \]
Proof: Using (74), we have
\[\partial_z h_n = \partial_z [L[P_n^2]] = 2 e^{-z^2} P_n^2(z; z) + L[2P_n \partial_z P_n], \]
but since \(\deg(\partial_z P_n) \leq n - 2 \) we can use (6) and (53) and obtain
\[\vartheta h_n = (2n + 1) h_n - 2 (h_{n+1} + \gamma_n^2 h_{n-1}), \]
or, using (10)
\[\frac{\vartheta h_n}{h_n} = 2n + 1 - 2 (\gamma_{n+1} + \gamma_n). \]
Note that (10) gives
\[\frac{\partial_z \gamma_n}{\gamma_n} = \frac{\partial_z h_n}{h_n} - \frac{\partial_z h_{n-1}}{h_{n-1}}, \]
and hence we can write (79) in terms of \(\gamma_n \)
\[\frac{\vartheta \gamma_n}{\gamma_n} = 2 (\gamma_{n-1} - \gamma_{n+1} + 1). \]
\[\blacksquare \]

If we combine the Laguerre-Freud equation for \(\gamma_n \) (45) and the Toda-type equation for \(h_n(z) \), we obtain the following result.

Proposition 7.4: The function \(h_n(z) \) satisfies
\[\partial_z h_n \partial_z h_{n-1} = (nh_{n-1} - 2h_n)^2, \quad n \geq 1. \]

Proof: From (79), we see that
\[\frac{1}{2} \vartheta \ln (h_n) = n + \frac{1}{2} - (\gamma_{n+1} + \gamma_n), \]
and using this in (45), we get
\[\frac{1}{2} \vartheta \ln (h_n) \frac{1}{2} \vartheta \ln (h_{n-1}) = \frac{z^2}{\gamma_n} \left(\frac{n}{2} - \gamma_n \right)^2, \]
or using (10) and (81)
\[h_n \partial_z \ln (h_n) h_{n-1} \partial_z \ln (h_{n-1}) = (nh_{n-1} - 2h_n)^2, \]
and the result follows. \[\blacksquare \]
7.1. Nonlinear ODE

Using the Laguerre-Freud Equations (38), (45) and the differential-recurrence relation (80), we can derive a nonlinear second order ODE for $\gamma_n(z)$.

Theorem 7.5: The function $\gamma_n(z)$ satisfies

$$z^2 \left[\partial_z^2 \gamma_n + 2 \left(6\gamma_n - n \right) (2\gamma_n - n) \right] = 4 \left(z^2 + 2\gamma_n - n \right)^2 \left[(\partial_z \gamma_n)^2 + 4\gamma_n (2\gamma_n - n)^2 \right].$$

(82)

Proof: Setting $n \to n - 1$ in (45), we have

$$\gamma_{n-1} \left(n - \frac{1}{2} - \gamma_{n-1} - \gamma_n \right) \left(n - \frac{3}{2} - \gamma_{n-1} - \gamma_{n-2} \right) = z^2 \left(\frac{n - 1}{2} - \gamma_{n-1} \right)^2,$$

and solving for γ_{n-2}, we obtain

$$\gamma_{n-2} = \frac{z^2 \left(\frac{1}{2} - \frac{1}{2} n + \gamma_{n-1} \right)^2}{\gamma_{n-1} \left(\frac{1}{2} - n + \gamma_n + \gamma_{n-1} \right)} + n - \frac{3}{2} - \gamma_{n-1}.$$

(83)

Solving for γ_{n+2} in (38), we get

$$\gamma_{n+2} = \frac{\gamma_n \left(\gamma_n + \gamma_{n-1} - z^2 - n + \frac{1}{2} \right) + \gamma_{n+1} \left(n + \frac{3}{2} - \gamma_{n+1} + z^2 \right) - \frac{1}{2} z^2}{\gamma_{n+1}}.$$

(84)

From (83) and (84) we conclude that

$$\gamma_{n-1} \gamma_{n-2} + \gamma_{n+1} \gamma_{n+2} = \frac{z^2 \left(\frac{1}{2} - \frac{1}{2} n + \gamma_{n-1} \right)^2}{\frac{1}{2} - n + \gamma_n + \gamma_{n-1}} + (n - \frac{3}{2} - \gamma_{n-1})\gamma_{n-1}$$

$$+ \gamma_n \left(\gamma_n + \gamma_{n-1} - z^2 - n + \frac{1}{2} \right) + \gamma_{n+1} \left(n + \frac{3}{2} - \gamma_{n+1} + z^2 \right) - \frac{1}{2} z^2.$$

(85)

Differentiating (80) with respect to z, we see that

$$\frac{\partial_z \left(z\partial_z \gamma_n \right)}{2} = (\partial_z \gamma_n) \left(\gamma_{n-1} - \gamma_{n+1} + 1 \right) + \gamma_n \partial_z \left(\gamma_{n-1} - \gamma_{n+1} \right)$$

and using (80) again we have

$$\partial_z \left(z\partial_z \gamma_n \right) = \frac{z \left(\partial_z \gamma_n \right)^2}{\gamma_n} + \frac{4}{z} \gamma_n \left[\gamma_{n-1} \left(\gamma_{n-2} - \gamma_n + 1 \right) - \gamma_{n+1} \left(\gamma_n - \gamma_{n+2} + 1 \right) \right].$$

(86)

Using (85) in (86), we get

$$\frac{z}{4\gamma_n} \partial_z \left(z\partial_z \gamma_n \right) = \left(\frac{z\partial_z \gamma_n}{2\gamma_n} \right)^2 + \frac{z^2 \left(\frac{1}{2} - \frac{1}{2} n + \gamma_{n-1} \right)^2}{\frac{1}{2} - n + \gamma_n + \gamma_{n-1}}$$

$$+ \gamma_n \left(\frac{1}{2} - n - z^2 + \gamma_n - \gamma_{n+1} \right) - \frac{1}{2} z^2$$

$$+ \gamma_{n+1} \left(z^2 + n + \frac{1}{2} - \gamma_{n+1} \right) + \gamma_{n-1} \left(n - \frac{1}{2} - \gamma_{n-1} \right).$$

(87)

Note that (45), (80), and (87) are three equations relating $\partial_z^2 \gamma_n, \partial_z \gamma_n, \gamma_n, \gamma_{n-1}$ and γ_{n+1}. Thus, $\gamma_{n+1}, \gamma_{n-1}$ can be eliminated from the system and we obtain (82).
Setting

\[\gamma_n = \frac{n}{2} - \frac{v_n}{4} \]

in (82), we get

\[\left(\partial_z^2 v_n - 6v_n^2 + 8nv_n \right)^2 = \left(\frac{v_n}{z} - 2z \right)^2 \left[(\partial_z v_n)^2 - 4v_n^3 + 8n^2 v_n^2 \right]. \]

This is an example of the fourth Chazy equation (see formula A.8 in [12])

\[\left(\partial_z^2 v - 6v^2 - \alpha_1 v - \beta_1 \right)^2 = \left(\frac{2Av}{z} - z \right)^2 \left[(\partial_z v)^2 - 4v^3 - \alpha_1 v^2 - 2\beta_1 v - \gamma_1 \right] \]

with

\[\alpha_1 = -8n, \quad \beta_1 = 0, \quad \gamma_1 = 0, \quad A = \frac{1}{2}, \]

which is related to the Painlevé V equation.

7.2. Power series

Using the nonlinear recurrence (45), we can see that

\[\gamma_n(z) = \frac{n^2 z^2}{4n^2 - 1} + \frac{4n^3 z^4}{(4n^2 - 1)^2 (4n^2 - 9)} + O\left(z^6\right), \quad z \to 0. \] (88)

To obtain higher order terms, we can use (80).

Theorem 7.6: The Maclaurin series of the function \(\gamma_n(z) \) is

\[\gamma_n(z) = \sum_{k=1}^{\infty} \eta_{n,k} z^{2k}, \] (89)

where

\[\eta_{n,1} = \frac{n^2}{4n^2 - 1}, \] (90)

and

\[\eta_{n,k} = \frac{1}{k-1} \sum_{j=1}^{k-1} \left(\eta_{n-1,j} - \eta_{n+1,j} \right) \eta_{n,k-j}, \quad k \geq 2. \] (91)
Proof: The first term (90) follows immediately from (88). From (89) we have

$$\frac{1}{2} \vartheta \gamma_n = \sum_{k=1}^{\infty} k \eta_{n,k} z^{2k},$$

and

$$\gamma_{n-1} - \gamma_{n+1} = \sum_{k=1}^{\infty} (\eta_{n-1,k} - \eta_{n+1,k}) z^{2k}.$$

Using the Cauchy product, we get

$$\left[z^{2k}\right] (\gamma_{n-1} - \gamma_{n+1} + 1) \gamma_n = \eta_{n,k} + \sum_{j=1}^{k-1} (\eta_{n-1,j} - \eta_{n+1,j}) \eta_{n,k-j},$$

where \([z^m]\) denotes the coefficient of \(z^m\) in the given expression.

Using (92) and (93) in (80), we obtain

$$k \eta_{n,k} = \eta_{n,k} + \sum_{j=1}^{k-1} (\eta_{n-1,j} - \eta_{n+1,j}) \eta_{n,k-j},$$

and (91) follows. \(\blacksquare\)

Remark 7.7: If we introduce the forward and backward difference operators

$$\Delta f(n) = f(n + 1) - f(n), \quad \nabla f(n) = f(n) - f(n - 1),$$

then we can write (91) as

$$\eta_{n,k} = -\frac{1}{k - 1} \sum_{j=1}^{k-1} (\Delta + \nabla) \eta_{n,j} \eta_{n,k-j}, \quad k \geq 2,$$

and it follows that (89) is an asymptotic series as \(n \to \infty\). Using the same methods that we introduced in [13], we can show that for \(k \geq 2\)

$$\eta_{n,k} = O\left(n^{-k-1}\right), \quad n \to \infty.$$
Theorem 7.8: The Maclaurin series of the polynomials $P_n(x; z)$ is

$$P_n(x; z) = x^n + \sum_{k=1}^{\infty} \alpha_{n,k}(x) z^{2k}, \quad (95)$$

where

$$\alpha_{0,k}(x) = \alpha_{1,k}(x) = 0, \quad k \geq 1,$$

and the coefficients $\alpha_{n,k}(x)$ satisfy the recurrence

$$\alpha_{n+1,k}(x) - x \alpha_{n,k}(x) + \eta_{n,k} x^{n-1} + \sum_{j=1}^{k-1} \alpha_{n-1,j}(x) \eta_{n,k-j} = 0. \quad (96)$$

In particular,

$$\alpha_{n,1}(x) = -\frac{n (n - 1)}{2 (2n - 1)} x^{n-2}, \quad (97)$$

and

$$\alpha_{n,2}(x) = n (n - 1) \frac{8n (n - 1) x^2 + (2n + 1) (2n - 1) (n - 2) (n - 3)}{8 (2n + 1) (2n - 1)^2 (2n - 3)} x^{n-4}. \quad (98)$$

Proof: Using (89) and (95) in (4), we have

$$x^{n+1} + \sum_{k=1}^{\infty} x \alpha_{n,k}(x) z^{2k} = x^{n+1} + \sum_{k=1}^{\infty} \alpha_{n+1,k}(x) z^{2k} + x^{n-1} \gamma_n(z) + \gamma_n(z) \left(\sum_{k=1}^{\infty} \alpha_{n-1,k}(x) z^{2k} \right),$$

and therefore we obtain the recurrence

$$x \alpha_{n,k}(x) = \alpha_{n+1,k}(x) + \eta_{n,k} x^{n-1} + \sum_{j=1}^{k-1} \alpha_{n-1,j}(x) \eta_{n,k-j}.$$

If $k = 1$, then (96) becomes

$$\alpha_{n+1,1}(x) - x \alpha_{n,1}(x) = -\eta_{n,1} x^{n-1},$$

and the solution with initial condition $\alpha_{0,k}(x) = 0$ is

$$\alpha_{n,1}(x) = -x^{n-2} \sum_{i=0}^{n-1} \eta_{i,1} = -\frac{n (n - 1)}{2 (2n - 1)} x^{n-2}.$$

Setting $k = 2$ in (96) we get

$$\alpha_{n+1,2}(x) - x \alpha_{n,2}(x) = -\eta_{n,1} \alpha_{n-1,1}(x) - \eta_{n,2} x^{n-1},$$

and therefore

$$\alpha_{n,2}(x) = -x^{n-1} \sum_{i=0}^{n-1} \left[x^{-i} \eta_{i,1} \alpha_{i-1,1}(x) + \frac{\eta_{i,2}}{x} \right].$$

Using (91) and (97), we obtain (98).
8. Conclusions

We have defined the family of truncated Hermite polynomials $P_n(x; z)$, orthogonal with respect to the linear functional

$$L[p] = \int_{-z}^{z} p(x) e^{-x^2} \, dx, \quad p \in \mathbb{R}[x], \quad z > 0.$$

Such a linear functional satisfies the Pearson equation

$$L[\phi \partial_x p] = L[2x (\phi - 1) p], \quad \phi(x; z) = x^2 - z^2.$$

We related $P_n(x; z)$ to the Hermite and Rys polynomials, and studied the sequence $P_n(x; z)$ as semiclassical polynomials of class 2. The expansion of $\phi \partial_x P_n$ in the $\{P_k\}_{k \geq 0}$ basis (structure relation), an asymptotic approximation (for large n), a lowering operator, second order ODE (in x), and power series (in z) for $P_n(x; z)$ are given.

We obtained a second order linear recurrence for the moments, as well as a differential-recurrence equation in terms of the variable z. An asymptotic approximation for the moments (as $z \to \infty$) was obtained. Differential equations (in t and z, respectively) for the Stieltjes function $S(t; z)$ of the moments associated with L are deduced.

We also got nonlinear recurrences (Laguerre-Freud equations) and a nonlinear ODE that the parameters $\gamma_n(z)$ satisfy. As a consequence, an asymptotic approximation (for large n), a differential-recurrence equation, and a power series for the coefficients $\gamma_n(z)$ in the recurrence relation of $P_n(x; z)$ are obtained.

We plan to continue our research on these polynomials in order to obtain asymptotic expansions for $P_n(x; z)$ as $n \to \infty$, $z \to \infty$ as well as when both $n, z \to \infty$ simultaneously. One should be able to obtain the well known asymptotic approximations for the Hermite polynomials in the last case.

Finally, we will deal with the analysis of truncated Laguerre polynomials, as well as other families of truncated semiclassical polynomials.

Note

1. We thank one of the referees for pointing out this reference.

Acknowledgments

We thank the careful revision of the manuscript by the referees. Their comments and suggestions have contributed to improve the presentation of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The work of the first author (DD) was supported by the strategic programme ‘Innovatives Ö–2010 plus’ from the Upper Austrian Government. The work of the second author (FM) has been supported by FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación of Spain, grant PID2021-122154NB-I00, and the Madrid Government (Comunidad de Madrid-Spain) under
the Multiannual Agreement with UC3M in the line of Excellence of University Professors, grant EPUC3M23 in the context of the V PRICIT (Regional Program of Research and Technological Innovation).

ORCID

Diego Dominici http://orcid.org/0000-0002-1792-9663

Francisco Marcellán http://orcid.org/0000-0003-4331-4475

References

[1] A. Asadchev, V. Allada, J. Felder, B.M. Bode, M.S. Gordon, and T.L. Windus, *Uncontracted Rys quadrature implementation of up to G functions on graphical processing units*, J. Chem. Theory Comput. 6 (2010), pp. 696–704.

[2] J.D. Augspurger, D.E. Bernholdt, and C.E. Dykstra, *Concise, open-ended implementation of Rys polynomial evaluation of two-electron integrals*, J. Comput. Chem. 11 (1990), pp. 972–977.

[3] S. Belmehdi, *On semi-classical linear functionals of class s = 1. Classification and integral representations*, Indag. Math. (N.S.) 3 (1992), pp. 253–275.

[4] S. Belmehdi and A. Ronveaux, *Laguerre-Freud’s equations for the recurrence coefficients of semi-classical orthogonal polynomials*, J. Approx. Theory 76 (1994), pp. 351–368.

[5] A. Bogatskiy, T. Claeyts, and A. Its, *Hankel determinant and orthogonal polynomials for a Gaussian weight with a discontinuity at the edge*, Comm. Math. Phys. 347 (2016), pp. 127–162.

[6] M. Cao, Y. Chen, and J. Griffin, *Continuous and discrete Painlevé equations arising from the gap probability distribution of the finite n Gaussian unitary ensembles*, J. Stat. Phys. 157 (2014), pp. 363–375.

[7] P. Čársky and M. Polóšek, *Evaluation of molecular integrals in a mixed Gaussian and plane-wave basis by Rys quadrature*, J. Comput. Phys. 143 (1998), pp. 266–277.

[8] Y. Chen, G. Filipuk, and L. Zhan, *Orthogonal polynomials, asymptotics, and Heun equations*, J. Math. Phys. 60 (2019), Article ID 113501.

[9] Y. Chen and G. Pruessner, *Orthogonal polynomials with discontinuous weights*, J. Phys. A 38 (2005), pp. L191–L198.

[10] T.S. Chihara, *An Introduction to Orthogonal Polynomials*, Mathematics and Its Applications Vol. 13, Gordon and Breach Science Publishers, New York-London-Paris, 1978.

[11] R.C.Y. Chin, *A domain decomposition method for generating orthogonal polynomials for a Gaussian weight on a finite interval*, J. Comput. Phys. 99 (1992), pp. 321–336.

[12] C.M. Cosgrove, *Chazy’s second-degree Painlevé equations*, J. Phys. A 39 (2006), pp. 11955–11971.

[13] D. Dominici, *Recurrence coefficients of Toda-type orthogonal polynomials I. Asymptotic analysis*, Bull. Math. Sci. 10 (2020), Article ID 2050003.

[14] D. Dominici and F. Marcellán, *Truncated Hermite polynomials*, RISC Report Series (22-10), 38 pp. 2022.

[15] M. Dupuis, J. Rys, and H.F. King, *Evaluation of molecular integrals over Gaussian basis functions*, J. Chem. Phys. 65 (1976), pp. 111–116.

[16] N. Flocke, *On the use of shifted Jacobi polynomials in accurate evaluation of roots and weights of Rys polynomials*, J. Chem. Phys. 131 (2009), Article ID 064107.

[17] P.J. Forrester, *Eventymmetry and inter-relationships between gap probabilities in random matrix theory*, Forum Math. 18 (2006), pp. 711–743.

[18] P.J. Forrester and N.S. Witte, *Application of the τ-function theory of Painlevé equations to random matrices: Pv, PIII, the LUE, JUE, and CUE*, Comm. Pure Appl. Math. 55 (2002), pp. 679–727.

[19] J.C. García–Ardila, F. Marcellán, and M.E. Mariaga, *Orthogonal Polynomials and Linear Functionals–An Algebraic Approach and Applications*, EMS Series of Lectures in Mathematics, EMS Press, Berlin, 2021.
[20] W. Gautschi, *A survey of Gauss-Christoffel quadrature formulae*, in Aachen/Monschau, 1979, E.B. Christoffel, eds., Birkhäuser, Basel-Boston, MA, 1981, pp. 72–147.

[21] W. Gautschi, *Orthogonal Polynomials: Computation and Approximation*, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2004.

[22] K. Kajiwara, M. Noumi, and Y. Yamada, *Geometric aspects of Painlevé equations*, J. Phys. A 50 (2017), Article ID 073001.

[23] M. Kauers and P. Paule, *The Concrete Tetrahedron*, Texts and Monographs in Symbolic Computation, Springer, Wien, NewYork, Vienna, 2011.

[24] H.F. King, *Strategies for evaluation of Rys roots and weights*, J. Phys. Chem. A 120 (2016), pp. 9348–9351.

[25] H.F. King and M. Dupuis, *Numerical integration using Rys polynomials*, J. Comput. Phys. 21 (1976), pp. 144–165.

[26] A. Komornicki and H.F. King, *A general formulation for the efficient evaluation of n-electron integrals over products of Gaussian charge distributions with Gaussian geminal functions*, J. Chem. Phys. 134 (2011), Article ID 244115.

[27] R. Lindh, U. Ryu, and B. Liu, *The reduced multiplication scheme of the Rys quadrature and new recurrence relations for auxiliary function based two-electron integral evaluation*, J. Chem. Phys. 95 (1991), pp. 5889–5897.

[28] C. Lubich, *From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis*, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008.

[29] S. Lyu, Y. Chen, and E. Fan, *Asymptotic gap probability distributions of the Gaussian unitary ensembles and Jacobi unitary ensembles*, Nuclear Phys. B 926 (2018), pp. 639–670.

[30] S. Lyu and Y. Chen, *Gaussian unitary ensembles with two jump discontinuities, PDEs, and the coupled Painlevé II and IV systems*, Stud. Appl. Math. 146 (2021), pp. 118–138.

[31] A.P. Magnus, *Freud’s equations for orthogonal polynomials as discrete Painlevé equations*, in *Symmetries and Integrability of Difference Equations* (Canterbury, 1996), London Math. Soc. Lecture Note Ser. Vol. 255, Cambridge Univ. Press, Cambridge, 1999, pp. 228–243.

[32] P. Maroni, *Prolégomènes à l’étude des polynômes orthogonaux semi-classiques*, Ann. Mat. Pura Appl. 149 (1987), pp. 165–184.

[33] P. Maroni, *Semi-classical character and finite-type relations between polynomial sequences*, Appl. Numer. Math. 31 (1999), pp. 295–330.

[34] P. Maroni, *Une théorie algébrique des polynômes orthogonaux*, Application aux polynômes orthogonaux semi-classiques, in *Orthogonal Polynomials and their Applications* (Erice, 1990), IMACS Ann. Comput. Appl. Math. Vol. 9, Baltzer, Basel, 1991, pp. 95–130.

[35] P. Maroni, *Variations around classical orthogonal polynomials. Connected problems*, in *Proceedings of the Seventh Spanish Symposium on Orthogonal Polynomials and Applications* (VII SPOA) (Granada, 1991) Vol. 48, 1993, pp. 133–155.

[36] G.V. Milovanović, *An efficient computation of parameters in the Rys quadrature formula*, Bull. Cl. Sci. Math. Nat. Sci. Math. 43 (2018), pp. 39–64.

[37] G.V. Milovanović and N. Vasović, *Orthogonal polynomials and generalized Gauss-Rys quadrature formulae*, Kuwait J. Sci. 49 (2022), pp. 1–17.

[38] C. Min and Y. Chen, *Painlevé transcendents and the Hankel determinants generated by a discontinuous Gaussian weight*, Math. Methods Appl. Sci. 42 (2019), pp. 301–321.

[39] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark (eds.), *NIST Handbook of Mathematical Functions*, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010.

[40] W.H. Press and S.A. Teukolsky, *Orthogonal polynomials and Gaussian quadrature with nonclassical weight functions*, Comput. Phys. 4 (1990), pp. 423–426.

[41] A. Ramani and B. Grammaticos, *Miura transforms for discrete Painlevé equations*, J. Phys. A 25 (1992), pp. L633–L637.

[42] H.B. Schlegel, J.S. Binkley, and J.A. Pople, *First and second derivatives of two electron integrals over Cartesian Gaussians using Rys polynomials*, J. Chem. Phys. 80 (1984), pp. 1976–1981.
[43] D.W. Schwenke, *On the computation of high order Rys quadrature weights and nodes*, Comput. Phys. Commun. 185 (2014), pp. 762–763.

[44] L.T.-N. Seiichiro, *An efficient algorithm for electron repulsion integrals over contracted Gaussian-type functions*, Chem. Phys. Lett. 211 (1993), pp. 259–264.

[45] C.A. Tracy and H. Widom, *Fredholm determinants, differential equations and matrix models*, Comm. Math. Phys. 163 (1994), pp. 33–72.

[46] W. Van Assche, *Asymptotics for Orthogonal Polynomials*, Lecture Notes in Mathematics Vol. 1265, Springer-Verlag, Berlin, 1987.

[47] N.S. Witte, P.J. Forrester, and C.M. Cosgrove, *Gap probabilities for edge intervals in finite Gaussian and Jacobi unitary matrix ensembles*, Nonlinearity 13 (2000), pp. 1439–1464.

[48] X.-B. Wu and S.-X. Xu, *Gaussian unitary ensemble with jump discontinuities and the coupled Painlevé II and IV systems*, Nonlinearity 34 (2021), pp. 2070–2115.

[49] S.-X. Xu and Y.-Q. Zhao, *Painlevé XXXIV asymptotics of orthogonal polynomials for the Gaussian weight with a jump at the edge*, Stud. Appl. Math. 127 (2011), pp. 67–105.