Pathogenesis of cancer-associated thrombosis

Nigel Mackman

Program in Thrombosis and Hemostasis, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Take Home Messages
- Risk assessment scores are used to stratify ambulatory cancer patients for their risk of VTE.
- Different cancer-types have different rates of VTE.
- Common and cancer-type specific mechanisms may contribute to cancer-associated thrombosis.

Introduction
Cancer patients have an increased incidence of both venous thromboembolism (VTE) (4-20%) and arterial thrombosis (2-5%) compared with the general population.1,2 This is commonly referred to as cancer-associated thrombosis (CAT). One study reported that thromboembolism and infection were the second leading causes of death (9.2% each) after cancer progression (70.9%).3 Cancer patients with VTE have reduced survival compared with patients without VTE.4 Risk factors include traditional risk factors for VTE as well as cancer-specific risk factors, such as chemotherapy. A better understanding of cancer-associated thrombosis may lead to improved therapies.

Risk factors and risk assessment scores for cancer patients
Risk factors for VTE in cancer patients can be divided in general risk factors (history of VTE, age, immobilization and obesity) and cancer-specific risk factors (tumor site and stage and treatment).5 Assessment scores are used to stratify ambulatory cancer patients in terms of their risk of VTE. The Khorana score was generated using the database from the “Awareness of Neutropenia in Chemotherapy Study Group” Registry.6 The score includes 5 variables: site of cancer, use of erythropoiesis stimulating agents, pre-chemotherapy levels of hemoglobin, platelet count and leukocyte count. It showed that cancer patients could be divided into low risk (0.3-0.8%), intermediate risk (1.8-2.0%) and high risk (6.7-7.1%) for VTE. The Vienna score added brain cancer as a high risk cancer and the biomarkers D-dimer and soluble P-selectin to the Khorana score.7 A recent study found that a combination of one clinical factor (tumor site) and one biomarker (D-dimer) predicts VTE in cancer patients.8 Importantly, it re-classified a significant number of patients that had been assessed using the Khorana score. In addition, due to the low accuracy of the Khorana score for patients with ovarian, lung and colon cancer patients, Gerotziafas and colleagues developed the COMPASS-CAT score for ovarian, lung, colon and breast cancer patients.9 This score contains 8 variables that can be divided into general risk factors (presence of cardiovascular risk factors [5 points], hospitalization for medical illness [5 points], history of VTE [1 points], platelet count [2 points]) and cancer-specific risk factors (anthracycline or anti-hormonal therapy [6 points], time since cancer diagnosis ≤6 months [4 points], central venous catheter [3 points], advanced stage of cancer [2 points]). Patients were divided into two groups; those with a score of 0-6 points had a low/intermediate risk of VTE (1.7%) whereas those with a score of ≥7 had a high risk of VTE (13.3%).

Cancer-type specific mechanisms of VTE
Rates of VTE vary amongst patients with different types of cancer.10 For instance, pancreatic, brain, ovarian, stomach, gynecologic and hematologic cancer patients have a high risk of VTE, colon and lung have an intermediate risk of VTE, and breast and prostate have a low risk of VTE. This suggests that there are cancer-specific mechanisms of VTE. To date, the majority of studies on cancer-associated thrombosis have used pooled patient populations with different cancer types. The advantage of this approach is that relatively large numbers of patients can be analyzed. However, the disadvantage of using pooled cancer patient groups is that it assumes that VTE in different cancer types is driven by the same or similar mechanisms. This might not be true. For instance, we have found that elevated levels of microvesicle (MV) tissue factor (TF) activity are associated with VTE in pancreatic cancer patients but is not associated with VTE in colorectal, lung, brain and ovarian cancer.11 Other studies have measure levels of podoplanin in brain cancer.12,13 Podoplanin is a ligand for the platelet receptor C-type lectin receptor.14 The first study found that brain cancer patients with low platelet counts and high plasma P-selectin levels had a high risk of VTE.12 A follow-up study showed that podoplanin expression by tumor cells activated platelets suggesting that tumor-derived podoplanin activated platelets and may contribute to VTE in these patients.13 Finally, neutrophil extracellular traps (NETs) may contribute to CAT.15 Indeed, a recent study showed that elevated plasma levels of the NETs biomarker citrullinated histone H3 (H3Citr) was predictive of VTE in lung and pancreatic cancer patients.16 These studies suggest that it is
better to study the mechanism of CAT in each cancer type independently.

Mouse models of cancer-associated thrombosis

Clinical studies can identify patient characteristics and biomarkers that are associated with VTE in cancer patients. However, these studies cannot directly analyze the role of a given factor in cancer-associated thrombosis. Mouse models have been used to investigate mechanisms of cancer-associated thrombosis. Different mouse strains, tumors, tumor sires and thrombosis models have been used. C57BL/6 and BALB/c mice are most commonly used immunocompetent strains for allograft models with murine cancer cells. Nude mice are the most common immunodeficient strain used for xenograft models with human cancer cells.

The majority of the studies using mouse models have used pancreatic cancer cells because pancreatic cancer is associated with high rates of VTE. The Panc02 cell line was derived from a tumor formed in the pancreas of C57BL/6 mice and expresses high levels of TF. We have observed an association between levels of MV TF activity and VTE in pancreatic cancer patients. Several studies have shown that human pancreatic tumors grown in mice release TF+ MVs into the circulation. Mice bearing subcutaneous Panc02 tumors exhibited increased thrombosis compared with controls. We used a human pancreatic cell line called BxPc-3. We found that nude mice with orthotopic BxPc-3 tumors have larger venous thrombi compared with controls. Importantly, inhibition of TF+ MV derived from the tumor decreased the size of the thrombus, indicating a direct role for TF in this model of cancer-associated thrombosis (Figure 1). NETs are released by activated neutrophils as part of the host defense to kill bacteria. NETs contain granule proteins and chromatin and have been found in both arterial and venous thrombi. The murine mammary cancer line 4T1 was used to determine the role of NETs in cancer-associated thrombosis. Mice bearing orthotopic tumors had elevated level of plasma granulocyte colony-stimulating factor, neutrophils and H3Cit and a prothrombotic state compared with controls. Another study found that the presence of 4T1 tumors increased arterial and venous thrombosis in mice bearing 4T1 tumors. We have observed increased levels of granulocyte colony-stimulating factor and neutrophils in mice bearing human pancreatic tumors (BxPc-3) and increased numbers of neutrophils in thrombi from tumor-bearing mice compared to thrombi from control mice (unpublished data). Taken together, these studies suggest that NETs may contribute to VTE in cancer patients.

Figure 1. Mechanisms of venous thrombosis in a mouse model of pancreatic cancer. Tumors release tissue factor (TF)-positive microvesicles (MV) into the circulation that trigger venous thrombosis. Tumors also increase levels of granulocyte colony-stimulating factor that increases levels of circulating neutrophils and neutrophil extracellular traps (NETs) that increase thrombosis.

Future perspectives

Further studies are needed to determine the common and cancer type-specific mechanism of CAT. These studies may identify cancer type-specific biomarkers that could be used to develop cancer type-specific risk assessment scores.

Acknowledgments

I would like to thank Dr. Yohei Hisada who helped preparing the manuscript.

References

*1. Khorana AA, Francis CW, Culakova E, et al. Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer 2007;110:2339-46. First description of a risk assessment score for VTE in ambulatory cancer patients.

2. Falanga A, Marchetti M, Vignoli A. Coagulation and cancer: biological and clinical aspects. J Thromb Haemost 2013;11:223-33.

3. Khorana AA, Panc02 CW, Culakova E, et al. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost 2007;5:632-4.

4. Chew HK, Wun T, Harvey D, et al. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch Intern Med 2006;166:648-64.

5. Hisada Y, Mackman N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood 2017;130:1499-506.

6. Khorana AA, Kuderer NM, Culakova E, et al. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008;111:4902-7.

7. Ay C, Dunkler D, Marosi C, et al. Prediction of venous thromboembolism in cancer patients. Blood, 2010;116:5377-82.

8. Pabinger I, van Es N, Heinz G, et al. Development and external validation of a risk assessment model of cancer-associated venous thromboembolism. Abstract at the ISTH Meeting, Berlin, 2017.

9. Gerotzfas GT, Taher A, Abdel-Razee H, et al. A predictive score for thrombosis associated with breast, colorectal, lung, or ovarian cancer: The prospective COMPASS-cancer-associated thrombosis study. Oncologist 2017;22:1222-31.

10. Timp JF, Braeckkan SK, Versteeg HH, Cannegieter SC. Epidemiology of cancer-associated venous thrombosis. Blood 2013;122:1712-23.

11. Hisada Y, Geddings JE, Ay C, Mackman N. Venous thrombosis and cancer: from mouse models to clinical trials. J Thromb Haemost 2015;13:1372-82.

12. Thaler J, Ay C, Kaider A, et al. Biomarkers predictive of venous thromboembolism in patients with newly diagnosed high-grade gliomas. Neural-Oncol 2014;16:1645-51.

13. Riedl J, Preusser M, Nazari PM, et al. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism. Blood 2017;129:1831-9. First human study to show an association between podoplanin expression in brain tumors and VTE.

14. Suzuki-Inoue K, Osada M, Osaki Y. Physiologic and pathophysiologic roles of interactions between type-I-like receptor 2 and podoplanin: partners from utero and adulthood. J Thromb Haemost 2017;15:219-29.

15. Demers M, Wagner DD. NETosis: a new factor in tumor progression and cancer-associated thrombosis. Semin Thromb Hemost 2014;40:277-83.

16. Mauracher LM, Posch F, Martinod K, et al. Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients. J Thromb Haemost 2018;16:508-18. First human study to show an association between NETs and cancer-associated thrombosis.

17. Hisada Y, Mackman N. Mouse models of cancer-associated thrombosis. Thromb Res 2018;164:548-553.
circulating cancer cell-derived microparticles drastically increases the incidence of deep vein thrombosis in mice. J Thromb Haemost 2015;13:1310-9.

*19. Hisada Y, Ay C, Auriemma AC, et al. Human pancreatic tumors grown in mice release tissue factor-positive microvesicles that increase venous clot size. J Thromb Haemost 2017;15:2208-17. First study to show a direct role of tumor-derived TF in venous thrombosis using a mouse model of pancreatic cancer.

20. Brinkmann V, Rechard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science 2018;303:1532-5.

21. Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 2010;107:15880-5.

22. Mangold A, Alias S, Scherz T, Hofbauer T, et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res 2015;116:1182-92.

*23. Demers M, Krause DS, Schatzberg D, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci USA 2012;109:13076-81. First mouse study to show a role of NETs in cancer-associated thrombosis.

24. Leal AC, Mizurini DM, Gomes T, et al. Tumor-derived exosomes induce the formation of neutrophil extracellular traps: Implications for the establishment of cancer-associated thrombosis. Sci Rep 2017;7:6438.