Polycyclic Aromatic Compounds in the Atmosphere – A Review Identifying Research Needs

Gerhard Lammel¹,²

¹Max Planck Institute for Chemistry, Mainz, Germany
²Masaryk University, Research Centre for Toxic Compounds in the Environment, Brno, Czech Republic

Most of the 16 EPA priority PAHs (or a subset of these) are targeted in the current monitoring of air and air pollution studies. However, other parent PAHs may account for up to another ≈10%, nitro-PAHs up to ≈20%, and oxy-PAHs for even more. The reactivity in the atmospheric gas and particulate phases is incompletely quantified, in particular with regard to coverage of aerosol matrix diversity and photochemical age. Therefore, the model-based characterization of exposure is still limited. Nitro- and oxy-PAHs pose a higher health risk in ambient air than parent PAHs but have not been measured as extensively so far and are usually not included in monitoring programs. Nitro-PAHs are also interesting as tracers for air pollution source identification and pathways of photochemistry. Among heterocyclic aromatic compounds in ambient air dibenzofuran and dibenzothiophene should be targeted.

Key Words: aerosol, air, heterocycles, nitro-PAHs, oxy-PAHs

INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) and their major transformation products (oxy-PAHs, nitro-PAHs, hydroxyl-PAHs) have been studied in ambient air as educts and products of photochemistry, as potentially harmful compounds for human health and vegetation (including crops) and because of their suitability for air pollution source identification and as tracers for atmospheric long-range transport. Among atmospheric trace chemical substances PAHs together with their photochemical products probably form the class
Polycyclic Aromatic Compounds in the Atmosphere

317

most harmful to human health (1–4). Some PAHs, namely benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, and indeno[1,2,3-cd]pyrene, were found to bio-accumulate in the environment (5–7). Therefore, and because of resistance to degradation, these PAHs are discussed as POPs candidates, while the POPs Protocol (Aarhus Protocol) to the Convention on Long-range Trans-boundary Air Pollution (8) considers all PAHs to be POPs. Monitoring in the atmospheric environment mandated by international agreements and regimes is on-going in Europe, North America and the Arctic (8–12).

This article aims to identify polycyclic aromatic compounds studied in research and monitoring programs in the atmospheric environment and to identify research needs.

LEVELS AND DISTRIBUTION IN AMBIENT AIR

The distribution and fate of PAHs in the atmosphere has been the subject of numerous studies covering a wide range of spatio-temporal scales and relevant sources (13, 14). Most routine monitoring programs and air pollution studies have been targeting parent 2–6 ring PAHs, namely the 16 EPA priority PAHs (16 EPA PAHs, i.e., acenaphthene, acenaphthylene, fluorene, naphthalene, anthracene, fluoranthene, phenanthrene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, pyrene, benzo[ghi]perylene, benzo[a]pyrene, dibenzo[a,h]anthracene, and indeno[1,2,3-cd]-pyrene) or a subset of these, e.g., the aforementioned four bio-accumulative PAHs, or benzo[a]pyrene only. The choice is often not scientifically based but results from the requirements of national regulation, available (accredited) methods and the common interest in this substance group. The concentration levels of the 16 EPA PAHs (total, i.e., sum of gaseous and particulate phase) observed in near-ground air are in the 1–400 ng m$^{-3}$ range in urban (15–17) and 0.1–3 ng m$^{-3}$ in remote continental environments (14, 18). Close to sources much higher concentration levels can be found in winter than in summer because of the seasonalities of the emissions (more combustion in winter, in particular residential heating) and photochemistry (stronger in summer). From marine environments 0.2–10 ng m$^{-3}$ and from the Arctic still 0.02–3 ng m$^{-3}$ were reported (14). However, apart from meridional long-range transport also local combustion sources may contribute to atmospheric pollution in the Arctic and may even have dominated for years on Svalbard (14, 19). For the Antarctic the analysis of several years of advection of air masses indicated that atmospheric PAH pollution was exclusively fed from sources within the region, i.e., ships and research stations (20). Similar to other pollutants’ vertical gradients, PAHs are expected and measured in the free troposphere (21, 22; albeit not from aircraft because of methodological limitations). The particulate phase mass fraction varies according to temperature and PM matrix, typically between 5 and 40%. All these values refer to the 16 EPA PAH
indicator substances, while other parent and oxygenated PAHs in the same samples usually are not measured.

At a few sites (9, 11, 12, 23, 24) additional parent 5–7 ring PAHs, e.g. benzo[ghi]fluoranthene, cyclopenta[cd]pyrene, triphenylene, benzo[j]fluoranthene, benzo[k]fluoranthene, benzo[e]pyrene, perylene, dibenzo[a,c]pyrene, anthracene, dibenz[a,e]pyrene, dibenz[a,h]pyrene, and coronene are monitored. Eventually, also alkyalted 2-3 ring PAHs (such as methylanthracene, 2-methylnaphthalenes, and retene (1-methyl-7-isopropylphenanthrene); Figure 1) are included in the monitoring. The concentration of alkyalted PAHs may exceed the concentration of the 16 EPA PAHs in air (25).

Nitro-, oxy- and hydroxy-PAHs have been significantly less addressed so far. Different analytical instrumentation and methods are required for trace analysis of these substances as compared to parent PAHs (26) and are not as comprehensively validated. Therefore, up until now these substances have almost nowhere been included into air monitoring programs.

Nitro-PAHs gained interest in the chemistry of nitrogen oxides rich atmospheres as tracers of photochemical pathways and sources (13). The concentration of this substance class in near-ground air was reported at \(<0.01\, \text{ng\,m}^{-3}\) at remote, low NOx sites and in the 0.01–10 ng m\(^{-3}\) range at polluted sites (21, 27–30). Nitro- and hydroxy-PAHs (31) may account for additional \(\approx 20\%\) and \(\approx 10\%\), respectively, of the 16 EPA PAH concentration in air, and oxy-PAHs for even more (29,30,32). 1-Naphthaldehyde was reported in the lower pg m\(^{-3}\) range in urban air (30).

Rarely are the 3-4 ring heterocycles dibenzofuran, dibenzothiophene and benzonaphthothiophene targeted in air (11, 23, 33, station Zeppelin, Svalbard, Norway). Interestingly, dibenzofuran was found to be the most prominent

![Figure 1: Selected polycyclic aromatic compounds found in polluted ambient air (see text). From upper left to lower right: retene, 1-nitropyrene, 3-nitro-7H-benzanthracen-7-one, dibenzofuran, dibenzothiophene, 2-amino-3,4-dimethyl-3H-imidazo(4,5-f)quinoline.](image)
species and accounted for 20–25% of the total PAH monitored on Svalbard (38 species; corresponding to 0.5–2 ng m\(^{-3}\)), sometimes exceeding the sum of EPA PAHs. In the Mediterranean and Black Seas atmosphere dibenzothiophene accounted for >50% of total PAHs (30 species; corresponding to 10–20 ng m\(^{-3}\)) (25). Chlorinated dibenzofurans and dibenzodioxins in air have attracted much interest as “classical,” legacy-related persistent organic pollutants (34). A few heterocyclic aromatic amines have been recently reported from an agricultural area in the USA (harmanes i.e., 9-H-β-carbolines, in the lower pg m\(^{-3}\) range) (35) and from ambient urban air in Beijing (up to 20 ng m\(^{-3}\) for the group of substances) (36). These N heterocycles have mutagenic and carcinogenic potential, too, and exhibit other biological effects (37). In urban air, 2-amino-3,4-dimethyl-3\(^H\)-imidazo[4,5-f]quinoline (Figure 1) accounted for 60–90% of the heterocyclic aromatic amines. It is suspected to be formed during food processing (36).

SOURCES

Parent and alkylated PAHs as well as some heterocycles are generally emitted from incomplete combustion of wood and fossil fuels (14). A number of nitro-PAHs are emitted from road traffic (13). Besides anthropogenic sources, natural forest fires and petrogenic (including volcanic) sources (38–40) may contribute in some environments. By means of dry and, to a lesser extent wet, deposition processes (41) PAHs are received by top soils, vegetation, and surface seawaters, and there the pollutants may accumulate due to slow biodegradation processes and transfer to downstream compartments (groundwater, deep sea). As many substances are semivolatile they are subject to revolatilisation (secondary emission) (14). The deposition flux of fluoranthene, pyrene, dimethylphenanthrenes and retene to the Mediterranean surface waters has brought these substances close and even beyond phase equilibrium, such that the direction of diffusive air-sea exchange reversed and these PAHs are nowadays at least seasonally emitted from the sea surface (25, 42).

PAH substance patterns as well as other trace substance patterns in air are used for source apportionment by characterizing substance ratios (so-called diagnostic ratios) (43) or applying multivariate statistical methods to concentration data (44). As the substance patterns of PAH sources are not being preserved during atmospheric transport, a consequence of photochemistry, and as the patterns of various relevant sources (road traffic, power plants, domestic heating, open fires) are too similar upon emission, source apportionment cannot rely on the set of PAHs commonly addressed, i.e., the 16 EPA PAHs (45). Instead, additional molecular markers for fossil fuel and wood based sources, i.e. alkanes, alkanones, alkylbenzenes, resin acids, hopanes, steranes, or sugars (32, 46–54), or other sources (alkanes, alkanones, phenols) (32, 49, 50, 52, 53) are used for attributing PAHs in air. An alkylated PAH, retene (Figure 1),
PHOTOCHEMISTRY AND LIFETIME IN AIR

Photochemical degradation of PAH in air has been investigated with a focus on the initial steps (13, 14, 57). The determination of the kinetics in the gas-phase was so far limited to the low-molecular weight parent PAHs (up to 4 rings) and the alkylated naphthalenes and phenanthrenes. Interestingly, for only 9, 4 and 7 out of the 16 EPA PAHs the reaction rate coefficients in the gas-phase with the most important oxidants in air, the hydroxyl radical, kOH, ozone, kO3, and the nitrate radical, kNO3, respectively, have been determined experimentally (14). As high-molecular weight parent PAHs (more than 4 rings) are mostly associated with the particulate phase in ambient air (in particular at low temperatures) (58, 59), photochemical degradation of these substances takes place by heterogeneous reactions. We know even less about the heterogeneous kinetics and mechanisms than we do about the homogeneous gas-phase chemistry. The reason is that the matrix influences reactivity and is very diverse: the composition, size and morphology of particles of the atmospheric aerosol vary according to major primary sources of particulate matter (PM; seasalt, mineral dust, fly ash, soot, etc.) (60) and according to photochemical age (formation of secondary inorganic and organic aerosols, cloud processing) (60, 61). Also, the physical sinks of the carrier, i.e., wet and dry deposition, may limit the lifetime of sorbed substances. A number of the 16 EPA PAHs and other parent PAHs' (acepyrene, benzo[e]pyrene, benzo[ghi]fluoranthene, benzo[ghi]perylene, coronene, dibenzo[a,e]pyrene, dibenzo[a,l]pyrene, perylene) heterogeneous chemistry has been addressed in laboratory studies, but the coverage of matrix diversity and photochemical age is still very deficient. With this lack of experimental data, quantitative structure reactivity relationships or models (62) and simplifying assumptions (e.g. neglect of heterogeneous reactivity) are used to predict reactivity in exposure modeling. The ratio between the relatively fast decaying benzo[a]pyrene and the relatively stable benzo[e]pyrene (diagnostic ratio) is used as indicator for long-range transport (or aging). Atmospheric exposure modelling of polycyclic aromatic compounds is clearly lagging behind in its development when compared to the modelling of other criteria pollutants, due to lack of kinetic data but also large uncertainties in emission estimates (63). Because of the limited availability of emission estimates and monitoring data, which are needed for model evaluation, PAH modeling so far almost exclusively addressed benzo[a]pyrene (64–67) and a few semivolatile EPA PAH compounds, i.e. phenanthrene, anthracene, fluoranthene, and pyrene (68, 69).
In the gas-phase the reaction with the hydroxyl radical limits the parent PAHs’ atmospheric residence times to hours or days at most. Oxy-PAHs are formed through initial OH attack in the gas-phase or ozone reaction in the particulate phase, nitro-PAHs through initial OH or NO$_3$ attack in the gas-phase or by HNO$_3$-catalyzed NO$_2$ reaction in the particulate phase (13, 14). In this way, on sunny days nitro-PAHs are formed within hours from parent PAHs in polluted air (13). Nitro-PAHs have attracted interest because of their contribution to atmospheric oxidants formed in photo smog (health risk via inhalation, potential damage to plants including crops) (13), their suitability for source identification (isomers of e.g., nitrofluoranthe and nitropyrene are specific) (13) and as tracers for atmospheric long-range transport (21, 70). Knowledge about levels and distributions in the atmosphere and related laboratory data (14, 71) have been obtained mostly in the last decade.

The reactions on particles can be somewhat faster than in the gas-phase (on a per air volume basis) (72–75) but the effective shielding of the particle-sorbed PAH against oxidant attack by the particulate phase matrix (76) may be more relevant for atmospheric lifetimes. Indeed, PAHs carried by particles (e.g., 14, 70, 77, 78) and also nitro-PAHs (14, 21) undergo long-range transport and reach pristine areas in high altitudes and latitudes, even though kinetic data obtained in the laboratory using model PM may suggest fast degradation in air. In conclusion, reactivity in air, hence, lifetime and long-range transport potential, cannot be assessed based on quantitative knowledge for most parent PAHs, including the most toxic ones in this class of substances, and not even for the majority of the EPA PAHs. This state of knowledge is surprisingly deficient with respect to the need to characterize exposure and the long time that interest in PAHs with regard to air pollution has been on the agenda (> 3 decades) and legislative action was taken (BAP as a criteria pollutant in air in many countries).

TOXICITY OF AIRBORNE COMPOUNDS

Among the 16 EPA PAHs the potency of benzo[a]pyrene and dibenzo[a,h]anthracene are the highest (79). In recent years, evidence is mounting that among parent PAHs benzo[a]pyrene’s contribution to the health risk might be lower than the contribution of other substances among the group of EPA PAHs, e.g., dibenz[a,h]anthracene (80). The toxic equivalents calculated from the EPA PAH levels (pahTEQ) (79) typically contribute a few percent to the overall bioTEQ in PM extracts (81, 82), while up to 20% or so is attributable to nitro-PAHs (29, 83) and even more to oxy-PAHs and quinones that have been shown to possess dioxin-like potency (84, 85). 3-Nitrobenzanthrone (3-nitro-7H-benz[de]anthracen-7-one; Figure 1), emitted from diesel exhaust and found in PM in urban air (mass mixing ratio 0.6 μg g$^{-1}$) is extremely genotoxic, also in vivo (86–88). Most of the activity is associated with the
particulate phase but gaseous substances contribute, too. Some PAHs are estrogenic while other PAHs or compounds in diesel exhausts are reported to be antiestrogenic (82). The heterogeneous reaction of PAHs with ozone includes a long-lived pre-reactive complex which is a reactive oxygen species with lifetimes exceeding 100 s (89). This means a particular allergic potency.

As particle transport, deposition and inflammatory effects are very different from the gaseous noxious agents (90, 91), gas-particle partitioning and mass size distribution of PAHs are needed to be characterized in order to assess the related risk upon inhalation. PAH, oxy-, and nitro-PAH mass size distributions have been determined in recent years in polluted air, mostly unimodal. The fine fraction $<0.5 \mu m$ of aerodynamic particle size accounted for $>50\%$ or even $>90\%$ of the total PAH content (92, 93) and mass median diameters mostly in $0.5–1.4 \mu m$ sizes (94, 95). Similar findings are reported for oxy- and nitro-PAHs (30, 96). Upon emission in combustion processes (e.g., vehicle exhaust) the PAHs and derivatives seem to be associated with ultrafine particles (30).

RESEARCH NEEDS

No sufficiently sensitive and fast *in situ* methods exist (individual substance basis). Consequently, little is known about the temporal variability of PAH, nitro-, and oxy-PAH levels in ambient air, about the distribution in the mid and upper troposphere (airborne measurements), and the chemical processes immediately following emission in combustion processes.

Reactivity of most parent PAHs in air, hence, lifetime and long-range transport potential, needs to be better characterized quantitatively based on laboratory data of both homogeneous and heterogeneous photochemistry. These data are widely lacking today. More laboratory data are needed to describe the PM matrix, in particular the organic phases and soot, for which PAHs have a high affinity (59). Realistic PM matrices, various degrees of aerosol aging and particulate organic matter phase state need to be addressed. PAH sorption to PM needs to be better understood in order to predict gas-particle partitioning, which strongly influences atmospheric lifetimes, hence, long-range transport and exposure of remote environments.

Obviously, those species which stand for the highest toxicity should be addressed in the monitoring of ambient air. Candidates are dibenz[a,h]anthracene and 3-nitrobenzanthrone, among others. Indoor exposure is dominated by specific PAH sources such as tobacco smoking and cooking (97), not addressed in this article. Apart from characterizing exposure, an extended monitoring will expectedly improve source identification and, hence, management options. The relevance of unidentified substances could be explored by a direct combination of chemical and biological (effect directed)
Polycyclic Aromatic Compounds in the Atmosphere

analysis of ambient samples (e.g., so-called “mutagrammes”) (98). More polycyclic aromatic compounds, not yet detected in the atmospheric environment, can be expected (non-target analysis, which is uncommon for atmospheric matrices).

FUNDING

This work was supported by the Granting Agency of the Czech Republic (project No. P503/11/1230).

REFERENCES

1. Kameda, Y., J. Shirai, T. Komai, J. Nakanishi, and S. Masunaga, “Atmospheric Polycyclic Aromatic Hydrocarbons: Size Distribution, Estimation of Their Risk and Their Deposition to the Human Respiratory Tract.” Science of the Total Environment 340 (2005): 71–80.

2. Lewtas, J. “Complex Mixtures of Air Pollutants: Characterising the Cancer Risk of Polycyclic Particulate Matter.” Environmental Health Perspectives 100 (1993): 211–218.

3. Behnisch, P. A., K. Hosoe, and S. I. Sakai. “Brominated Dioxin-Like Compounds: in vitro Assessment in Comparison to Classical Dioxin-Like Compounds and Other Polycyclic Compounds.” Environment International 29 (2003): 861–877.

4. World Health Organization. Health Risks of Persistent Organic Pollutants from Long-Range Transboundary Air Pollution. (Copenhagen: WHO Regional Office for Europe, 2003).

5. Walsh, G. E. “Toxic Effects of Pollutants on Plankton,” in ed. Butler, G. C. Principles of Ecotoxicology (New York: Wiley, 1978), 257–274.

6. Gray, J. S. “Biomagnification in Marine Systems: The Perspective of an Ecologist.” Marine Pollution Bulletin. 45 (2002): 46–52.

7. Jager, T., R. Baerselman, E. Dijkstra, A. C. de Groot, E. A. Hogendoorn, A. de Jong, J. A. W. Kruitbosch, and W. J. G. M. Peijnenburg. “Availability of Polycyclic Aromatic Hydrocarbons to Earthworms (Eisenia andrei, oligochaeta) in Field-Polluted Soils and Soil-Sediment Mixtures. Environmental Toxicology and Chemistry 22 (2003): 767–775.

8. United Nations Economic Commission for Europe. Convention on Long-range Transboundary Air Pollution, Protocol on Persistent Organic Pollutants (Aarhus, Denmark, 1998).

9. AMAP. AMAP Assessment 2002 – Persistent Organic Pollutants in the Arctic, Arctic Monitoring and Assessment Programme, Oslo, Norway, 2002)

10. Oslo Paris Commission. Quality Status Report 2000, Ch. 4: “Chemistry,” London, 2000.

11. European Monitoring and Evaluation Programme,. Measurement data online, Geneva, http://www.nilu.no/projects/ccc/emepdata.html, 2013.

12. Integrated Atmospheric Deposition Network; https://www.ec.gc.ca/rs-mn/default.asp?lang=En&n=BFE9D3A3-1 (accessed April 11, 2013).

13. Finlayson-Pitts, B. J. and J. N. Pitts. “Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, Application,” (San Diego, CA: Academic Press, 2000).
14. Keyte, I. J., R. M. Harrison, and G. Lammel, “Chemical Reactivity and Long-Range Transport Potential of Polycyclic Aromatic Hydrocarbons—A Review.” Chemical Society Reviews 42 (2013): 9333–9391.

15. Cotham, W. E. and T. Bidleman. “Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Air at an Urban and a Rural Site near Lake Michigan.” Environmental Science and Technology. 29 (1995): 2782–2789.

16. Tsapakis, M. and E. G. Stephanou. “Occurrence of Gaseous and Particulate Polycyclic Aromatic Hydrocarbons in the Urban Atmosphere: Study of Sources and Ambient Temperature Effect on the Gas/Particle Concentration and Distribution.” Environmental Pollution 133 (2005): 147–156.

17. Harrison, R. M., D. J. T. Smith, and L. M. Luhana. “Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in Birmingham, UK.” Environmental Science and Technology 30 (1996): 825–832.

18. Zhou, J. G., T. B. Wang, Y. B. Huang, T. Mao, and N. N. Zhong. “Size Distributions of AHs in Urban and Suburban Sites of Beijing, China.” Chemosphere 61 (2005): 792–799.

19. Schütze, K., R. Kallenborn, and S. Weinbruch. “Local Contamination Characterization for Organic Aromatic Pollutants in the Arctic Atmosphere - A Case Study on Emissions from the Local Coal Fired Power Plants in Svalbard (Arctic Norway).” 24th International Symposium Polycyclic Aromatic Compounds, Corvallis, USA, 8.-12.9.2013 (2013).

20. Kukučka, P., G. Lammel, A. Dvorská, J. Klánová, A. Möller, and E. Fries. “Contamination of Antarctic Snow by Polycyclic Aromatic Hydrocarbons Dominated by Combustion Sources in the Polar Region.” Environmental Chemistry 7 (2010): 504–513.

21. Ciccioli, P., A. Cecinato, E. Brancaleoni, M. Frattoni, P. Zacchei, A. Miguel, and P. de Castro Vasconcellos. “Formation and Transport of 2-Nitrofluoranthene and 2-Nitropyrene of Photochemical Origin in the Troposphere.” Journal of Geophysical Research 101 (1996): 19576–19582.

22. Lammel, G., J. Klánová, J. Kohoutek, R. Prokeš, L. Ries, and A. Stohl. “Observation and Origin of Organochlorine Pesticides, Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in the Free Troposphere over Central Europe.” Environmental Pollution 157 (2009b): 3264–3271.

23. Dušek, L., J. Klánová, J. Borůvková, R. Hulek, J. Jarkovský, M. Kubášek, J. Gregor, K. Šebková, J. Hřebiček, and I. Holoubek. GENASIS – Global Environmental Assessment and Information System, Version 1.0 (Czech Republic, Masaryk University, Brno, 2010); http://www.genasis.cz.

24. Government of Japan, Ministry of the Environment. Report on Environmental Survey and Monitoring of Chemicals, FY2010; http://www.env.go.jp/chemi/kurohon/en/htp2011e/index.html (accessed April 11, 2013); 2012.

25. Castro-Jiménez, J., N. Berrojalbiz, J. Wollgast, and J. Dachs. “Polycyclic Aromatic Hydrocarbons (PAHs) in the Mediterranean Sea: Atmospheric Occurrence, Deposition and Decoupling with Settling Fluxes in the Water Column.” Environmental Pollution 166 (2012): 40–47.

26. Zielinska, B., and S. Samy. “Analysis of Nitrated Polycyclic Aromatic Hydrocarbons.” Analytical and Bioanalytical Chemistry 386 (2006): 883–890.

27. Dimashki, M., S. Harrad, and R. M. Harrison. “Measurements of Nitro-PAH in the Atmospheres of Two Cities.” Atmospheric Environment. 34 (2000): 2459–2469.
28. Bamford, H. A. and J. E. Baker. “Nitro-Polycyclic Aromatic Hydrocarbon Concentrations and Sources in Urban and Suburban Atmospheres of the Mid-Atlantic Region.” *Atmospheric Environment* 37 (2003): 2077–2091.

29. Albinet, A., E. Leoz-Garziandia, H. Budzinski, E. Villenave, and J. L. Jaffrezo, 2008a. “Nitrate and Oxygenated Derivatives of Polycyclic Aromatic Hydrocarbons in the Ambient Air of Two French Alpine Valleys. Part 1: Concentrations, Sources and Gas/Particle Partitioning.” *Atmospheric Environment* 42: 43–54.

30. Ringuet, J., E. Leoz-Garziandia, H. Budzinski, E. Villenave, and A. Albinet. “Particle Size Distribution of Nitrated and Oxygenated Polycyclic Aromatic Hydrocarbons (NPAHs and OPAHs) on Traffic and Suburban Sites of a European Megacity: Paris (France).” *Atmospheric Chemistry and Physics* 12 (2012): 877–8887.

31. Ringuet, J., E. Leoz-Garziandia, H. Budzinski, E. Villenave, and A. Albinet. “Particle Size Distribution of Nitrated and Oxygenated Polycyclic Aromatic Hydrocarbons (NPAHs and OPAHs) on Traffic and Suburban Sites of a European Megacity: Paris (France).” *Atmospheric Chemistry and Physics* 12 (2012): 877–8887.

32. Barrado, A. I., S. Garcia, Y. Castrillejo, and R. M. Perez. “Hydroxy-PAH Levels in Atmospheric PM10 Aerosol Samples Correlated with Season Physical Factors and Chemical Indicators of Pollution.” *Atmospheric Pollution Research* 3 (2012): 81–87.

33. Schnelle-Kreis, E., M. Sklorz, A. Peters, J. Cyrys, and R. Zimmermann. “Analysis of Particle-Associated Semi-Volatile Aromatic and Aliphatic Hydrocarbons in Urban Particulate Matter on a Daily Basis.” *Atmospheric Environment* 39 (2005): 7702–7714.

34. Fiedler, H. “Dioxins and furans (PCDD/PCDF),” in *The Handbook of Environmental Chemistry*, vol. 3O, eds. Hutzinger, O. and H. Fiedler (Berlin: Springer, 2003), 123–201.

35. Samy, S. and M. D. Hays. “Quantitative LC-MS for water-soluble heterocyclic amines in fine aerosols (PM2.5) in Duke Forest, USA.” *Atmospheric Environment* 72 (2013): 77–80.

36. Dong, X. L., D. M. Liu, and S. P. Gao. “Seasonal Variation of Atmospheric Heterocyclic Aromatic Amines in Beijing, China.” *Atmospheric Research* 120–121 (2013): 287–297.

37. Hinger, G., M. Brinkmann, K. Bluhm, A. Sagner, H. Takner, A. Eisertrager, T. Braunbeck, M. Engwall, A. Thiem, and H. Hollert. “Some Heterocyclic Aromatic Compounds are Ah Receptor Agonists in the DR-CALUX Assay and the EROD assay with RTL-W1 cells.” *Environmental Science and Pollution Reserach* 18 (2011): 1297–1304.

38. Ilnitsky, A. P., V. S. Mischenko, and L. M. Shabad. “New Data on Volcanoes as Natural Sources of Carcinogenic Substances.” *Cancer Letters* 3 (1977): 227–230.

39. Augusto, S., C. Máguas, J. Matos, M. J. Pereira, A. Soares, and C. Branquinho. “Spatial Modeling of PAHs in Lichens for Fingerprinting of Multisource Atmospheric Pollution.” *Environmental Science and Technology* 43 (2009): 7762–7769.

40. Ratola, N., J. M. Amigo, S. Lacorte, D. Barcelo, E. Psillakis and A. Alves. “Comparison of PAH Levels and Sources in Pine Needles from Portugal, Spain and Greece.” *Analytical Letters* 45 (2012): 508–525.

41. Škrdlíková, L., L. Landlová, J. Klánová, and G. Lammel. “Wet Deposition and Scavenging Efficiency of Gaseous and Particulate Phase Polycyclic Aromatic Compounds at a Central European Suburban Site.” *Atmospheric Environment* 45 (2011): 4305–4312.

42. Lammel, G., C. Mai, D. M. Mulder, J. Klánová, J. Kuta, R. Prokeš, and N. Theobald. “Polycyclic Aromatic Hydrocarbons in the Atmosphere of the North and Mediterranean
Seas’ Environments and Air-Sea Exchange,” 24th International Symposium Polycyclic Aromatic Compounds, Corvallis, OR, 8.-12.9.2013 (2013a).

43. Dvorská, A., G. Lammel, and J. Klánová. “Use of Diagnostic Ratios for Studying Source Apportionment and Reactivity of Ambient Polycyclic Aromatic Hydrocarbons over Central Europe.” Atmospheric Environment 45 (2011): 420–427.

44. Galarneau, E.. “Source Specificity and Atmospheric Processing of Airborne PAHs: Implications for Source Apportionment.” Atmospheric Environment 42 (2008): 8139–8149.

45. Dvorská, A., K. Komprdová, G. Lammel, J. Klánová, and H. Plachá. “Polycyclic Aromatic Hydrocarbons in Background Air in Central Europe – Seasonal Levels and Limitations for Source Apportionment.” Atmospheric Environment 46 (2012): 147–154.

46. Simoneit, B.R.T., W.F. Rogge, M.A. Mazurek, L.J. Standley, L.M. Hildemann, and G.R. Cass “Lignin Pyrolysis Products, Lignans, and Resin Acids as Specific Tracers of Plant Classes in Emissions from Biomass Combustion.” Environmental Science and Technology 27 (1993): 2533–2541.

47. Oros, D. R. and B. R. T. Simoneit. “Identification and Emission Rates of Molecular Tracers in Coal Smoke Particulate Matter.” Fuel 79 (2000): 515–536.

48. Schauer, J. J., W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, and B. R. T. Simoneit. “Source Apportionment of Airborne Particulate Matter using Organic Compounds as tracers.” Atmospheric Environment 30 (1996): 3837–3855.

49. Schnelle-Kreis, J., M. Sklorz, J. Otrasche, M. Stölzel, A. Peters, and R. Zimmermann. “Semivolatile Organic Compounds in PM2.5 – Seasonal Trends and Daily Resolved Source Contributions.” Environmental Science and Technology 41 (2007): 3821–3828.

50. Wu, S.P., S. Tao, Z.H. Zhang, T. Lan and Q. Zuo. “Distribution of Particle-Phase Hydrocarbons, PAHs and OCPs in Tianjin, China.” Atmospheric Environment 38 (2005): 7420–7432.

51. Herrmann, H., E. Brüggemann, U. Franck, T. Gnauk, G. Löschau, K. Müller, A. Plewka, and G. Spindler, 2006. A Source Study of PM in Saxony by Size-Segregated Characterisation.” Journal of Atmospheric Chemistry 55 (2006): 103–130.

52. Yan, B., M. Zheng, Y.T. Hu, X. Ding, A. P. Sullivan, R. J. Weber, J. M. Baek, E. S. Edgerton, and A. G. Russell. “Roadside, Urban, and Rural Comparison of Primary and Secondary Organic Molecular Markers in ambient PM2.5.” Environmental Science and Technology 43 (2009): 4287–4293.

53. Spindler, G., T. Gnauk, A. Grüner, Y. Inuma, K. Müller, S. Scheinhardt, and H. Herrmann. “Site-Segregated Characterization of PM10 at the EMEP site Melpitz (Germany) using a Five-Stage Impactor: A Six Year Study. Journal of Atmospheric Chemistry 69 (2012): 127–157.

54. Krumal, K., K. Mikuska, and Z. Vecera.. “PAHs and Hopenes in PM1 Aerosols in Urban Areas.” Atmospheric Environment 67 (2013): 27–37.

55. Ramdahl T., B. Zielinska, J. Arey, R. Atkinson, A.M. Winer, and J.N. Pitts. “Ubiquitous Occurrence of 2-Nitrofluoranthene and 2-Nitropyrene in Air.” Nature 321 (1986): 425–427.

56. Shen, G. F., S. Tao, S. Y. Wei, Y. X. Zhang, R. Wang, B. Wang, W. Li, H. Z. Shen, Y. Huang, Y. F. Yang, W. Wang, X. L. Wang, and S. L. Massey Simonich. “Retene Emissions from Residual Solid Fuels in China ad Evaluation of Retene as a Unique Marker for Soft Wood Combustion.” Environmental Science and Technology 46 (2012): 4666–4672.
57. Calvert, J. G., R. Atkinson, K. H. Becker, R. M. Kamens, J. H. Seinfeld, T. H. Wallington, and G. Yarwood. The Mechanisms of Atmospheric Oxidation of the Aromatic Hydrocarbons (New York: Oxford University Press, 2002).

58. Pankow, J. F., L. M. Isabelle, D. A. Buchholz, W. Luo, and B. D. Reeves. “Gas/Particle Partitioning of Polycyclic Aromatic Hydrocarbons and Alkanes to Environmental Tobacco Smoke.” Environmental Science and Technology 28 (1994): 363–365.

59. Lohmann, R. and G. Lammel. “Adsorptive and Absorptive Contributions to the Gas Particle Partitioning of Polycyclic Aromatic Hydrocarbons: State of Knowledge and Recommended Parameterisation for Modeling.” Environmental Science and Technology 38 (2004): 3793–3803.

60. Pöschl, U. Atmospheric Aerosols – Composition, Transformation, Climate and Health Effects.” Angewandte Chemie International Edition 44 (2005): 7520–7540.

61. Abbatt, J. P. D., A. K. Y. Lee, and J. A. Thornton. “Kinetics, Products and Mechanisms of Secondary Organic Aerosol Formation.” Chemical Society Reviews 41 (2012): 6582–6605.

62. US Environmental Protection Agency. EPI Suite v4.0, Exposure Assessment Tools and Models; http://www.epa.gov/opt/exposure/pubs/episuiteldl (2009).

63. Lammel, G., A. Heil, I. Stemmler, A. Dvorská, and J. Klánová. “On the Contribution of Biomass Burning to POPs (PAHs and PCDDs) in Air in Africa.” Environmental Science and Technology 47 (2013): 11616–11624.

64. Gusev, A., S. Dutchak, O. Rozovskaya, V. Shatalov, V. Sokovyh, N. Vulykh, W. Aas, and K. Breivik. “Persistent Organic Pollutants in the Environment” EMEP Status Report 3/2011, Meteorological Synthesizing Centre – East, Moscow, Russian Federation, 2011.

65. Matthias, V., A. Aulinger, and M. Quante. “CMAQ Simulations of the Benzo[a]pyrene Distribution over Europe for 2000 and 2001.” Atmospheric Environment 43 (2007): 4078–4086.

66. Zhang, Y., S. Tao, J. M. Ma, and S. Simonich. “Transpacific Transport of Benzo[a]pyrene Emitted from Asia: Importance of Warm Conveyor Belt and Interannual Variations.” Atmospheric Chemistry and Physics 11 (2011): 11993–12006.

67. Silibello, C., G. Calori, M.P. Costa, M. G. Dirodi, M. Mircea, P. Radice, L. Vitali, and G. Zanini. “Benzo[a]pyrene modelling over Italy: Comparison with Experimental Data and Source Apportionment.” Atmospheric Pollution Research. 3 (2012): 399–407.

68. Lammel, G., A. M. Sehili, T. C. Bond, J. Feichter, and H. Grassl. “Gas/Particle Partitioning and Global Distribution of Polycyclic Aromatic Hydrocarbons – A Modelling Approach.” Chemosphere 76 (2009a): 98–106.

69. Friedman, C. and N. Selin. “Long-Range Transport of Polycyclic Aromatic Hydrocarbons: A Global Three-Dimensional Model Analysis Including Evaluation of Arctic Sources.” Environmental Science and Technology 45 (2012): 9501–9510.

70. Jaffrézo, J. L., M. P. Clain, and P. Masclet. “Polycyclic Aromatic Hydrocarbons in the Polar Ice of Greenland—Geochemical Use of These Atmospheric Tracers.” Atmospheric Environment 28 (1994): 1139–1145.

71. Zimmermann, R., N. Jaryiasopit, S. L. Massey Simonich, S. Tao, J. Arey, and R. Atkinson. “Formation of Nitro-PAHs from the Heterogeneous Reaction of Ambient Particle-Bound PAHs with N₂O₅/NO₃/NO₂.” Environmental Science and Technology 47 (2013): 8434–8442.

72. Estève, W., H. Budzinski, and E. Villenave, “Relative Rate Constants for the heterogeneous reactions of NO₂ and OH Radicals with Polycyclic Aromatic
Hydrocarbons Adsorbed on Carbonaceous Particles. Part 1: PAHs Adsorbed on 1–2 \(\mu \)m Calibrated Graphite Particles.” *Atmospheric Environment* 38 (2004): 6063–6072.

73. Estève, W., H. Budzinski, and E. Villenave. “Relative Rate Constants for the Heterogeneous Reactions of NO2 and OH Radicals with Polycyclic Aromatic Hydrocarbons Adsorbed on Carbonaceous Particles. Part 2: PAHs Adsorbed on Diesel Particulate Exhaust SRM 1650a.” *Atmospheric Environment* 40 (2004): 201–211.

74. Perraudin, E., H. Budzinski, and E. Villenave. “Kinetic Study of the Reactions of Ozone with Polycyclic Aromatic Hydrocarbons Adsorbed on Atmospheric Model Particles.” *Journal of Atmospheric Chemistry* 56 (2007): 57–82.

75. McDow, S.R., M. Jang, Y. Hong, and R.M. Kamens. “An Approach to Studying the Effect of Organic Composition on Atmospheric Aerosol Chemistry.” *Journal of Geophysical Research* 101 (1996): 19593–19600.

76. Zhou, S., A. K. Y. Lee, R. D. McWhinney, and J. P. D. Abbatt. “Burial Effects of Organic Coatings on the Heterogeneous Reactivity of Particle-Borne benzo[a]pyrene (BaP) toward Ozone.” *The Journal of Physical Chemistry A* 116 (2012): 7050–7055.

77. Sehili, A. M. and G. Lammel. “Global Fate and Distribution of Polycyclic Aromatic Hydrocarbons Emitted from Europe and Russia.” *Atmospheric Environment* 41 (2007): 8301–8315.

78. van Drooge, B. L., P. Fernández, J. O. Grimalt, E. Stuchlík, C. J. Torres García, and E. Cuevas. “Atmospheric Polycyclic Aromatic Hydrocarbons in European and Atlantic Sites Located above the Boundary Mixing Layer.” *Environmental Science and Pollution Research* 17 (2010): 1207–1216.

79. US Environmental Protection Agency. Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures (External Review Draft), Report No. EPA/635/R-08/012A, Washington, D.C., 2010.

80. Goto, S., M. Yagishita, S. Kageyama, F. Shiraishi, Y. Aoki, Q. Y. Wang, S. Mineki, S. Ohshima, and D. Nakajima. “Contribution of Benzo[a]pyrene to Mutagenicity in Ambient Air Collected at 11 Sites in Japan from 2007 to 2009,” 24th International Symposium Polycyclic Aromatic Compounds, Corvallis, USA, 8.-12.9.2013 (2013).

81. Wenger, D., A. C. Gerecke, N. V. Heeb, C. Hueglin, C. Seiler, R. Haag, H. Naegeli, and R. Zenobi. “Aryl Hydrocarbon Receptor-mediated Activity of Atmospheric Particulate Matter from an Urban and a Rural Site in Switzerland.” *Atmospheric Environment* 43 (2009): 3556–3562.

82. Novák, J., K. Hilscherová, L. Landlová, P. Čupr, L. Kohút, J. P. Giesy, and J. Klánová. “Composition and Effects of Inhalable Size Fractions of Atmospheric Aerosols in the Polluted Atmosphere. Part II. in vitro Biological Potencies.” *Environmnet International* 63 (2013): 64–70.

83. Office of Environmental Health Hazard Assessment. “Air Toxics Hot Spots Program Risk Assessment Guidelines. Part II: Technical Support Document for Describing Available Cancer Potency Factors”; http://www.oehha.ca.gov/air/hot-spots/pdf/May2005Hotspots.pdf (2005).

84. Bekki, K., H. Takigami, G. Suzuki, N. Tang, and K. Hayakawa. “Evaluation of Toxic Activities of Polycyclic Aromatic Hydrocarbon Derivatives using in vitro Bioassays.” *Journal of Health Science* 55 (2009): 601–610.

85. Misaki, K., H. Kawami, T. Tanaka, H. Handa, Y. Handa, M. Nakamura, S. Matsui, and T. Matsuda. “Aryl Hydrocarbon Receptor Ligand Activity of Polycyclic Aromatic
Ketones and Polycyclic Aromatic Quinones.” *Environmental Toxicology and Chemistry* 26 (2007): 1370–1379.

86. Enya, T., H. Suzuki, T. Watanabe, T. Hirayama, T., and Y. Hisamatsu. “3-Nitrobenzanthrone, a Powerful Bacterial Mutagen and Suspected Human Carcinogen Found in Diesel Exhaust and Airborne Particulates.” *Environmental Science and Technology* 31 (1997): 2772–2776.

87. Schmeiser, H. H., V. M. Arlt, C. A. Bieler, B. Sorg, L. Erdinger, A. Rastall, and M. Wiessler. “In vivo DNA-Addukte des Luftschadstoffes 3-Nitrobenzanthron; Bildung und Identifizierung.” Report No. FZK-BWPLUS BWB20003, Research Centre Karlsruhe, Karlsruhe, Germany, 2002.

88. Li, H. J., Q. Li, W. Wang, H. W. Zhang, and L. Li. “3-Nitrobenzanthrone in Environment.” *Progress-Chem* 22 (2010): 220–224.

89. Shiraiwa, M., Y. Sosedova, A. Rouviere, H. Yang, Y. Zhang, J. P. D. Abbatt, M. Ammann, and U. Pöschl. “The Role of Long-Lived Reactive Oxygen Intermediates in the Reaction of ozone with Aerosol Particles.” *Nature Chemistry* 3 (2011): 291–295.

90. Bonn, P. J. A. and K. Driscoll. “Particles, Inflammation and Respiratory tract Carcinogenesis.” *Toxicology Letters* 88 (1996): 109–113.

91. Xue, W. L. and D. Warshawsky. “Metabolic Activation of Polycyclic and Heterocyclic Aromatic Hydrocarbons and DNA Damage: A Review.” *Toxicology and Applied Pharmacology* 206 (2005): 73–93.

92. Čupr, P., Z. Flegrová, J. Franců, L. Landlová, and J. Klánová. “Mineralogical. Chemical and Toxicological Characterization of Urban Air Particles.” *Environmental International* 54 (2013): 26–34.

93. Topinka, J., A. Milcova, J. Schmuczerova, J. Krouzek, and J. Hovorka. “Ultrafine Particles are not Major Carriers of Carcinogenic PAHs and Their Genotoxicity in Size-Segregated Aerosols.” *Mutation Research* 754 (2013): 1–6.

94. Schnelle, J., J. Jänsch, K. Wolf, I. Gebefügi, and A. Kettrup. “Particle Size Dependent Concentrations of Polycyclic Aromatic Hydrocarbons (PAH) in the Outdoor Air.” *Chemosphere* 31 (1995): 3119–3127.

95. Kiss, G., Z. Varga-Puchony, G. Rohrbacher, and J. Hlavay. “Distribution of Polycyclic Aromatic Hydrocarbons on Atmospheric Aerosol Particles of Different Sizes.” *Atmospheric Research* 46 (1998): 253–261.

96. Albinet, A., E. Leoz-Garziandia, H. Budzinski, E. Villenave, and J. L. Jaffrezo. “Nitrated and Oxygenated Derivatives of Polycyclic Aromatic Hydrocarbons in the Ambient Air of Two French Alpine Valleys. Part 2: Particle Size Distribution.” *Atmospheric Environment* 42 (2008b): 55–64.

97. Abdullahi, K. L., J. M. Delgado-Saborit and R. M. Harrison. “Emissions and Indoor Concentrations of Particulate Matter and its Specific Chemical Components from Cooking: A Review.” *Atmospheric Environment* 71 (2013): 260–294.

98. Arey, J., H.W. Harger, D. Helmig, and R. Atkinson. “Bioassay-Directed Fractionation of Mutagenic PAH Atmospheric Photooxidation Products and Ambient Particulate Extracts.” *Mutation Research* 281 (1992): 67–76.