The Limit Shape of the Leaky Abelian Sandpile Model

Ian M. Alevy

Department of Mathematics
University of Rochester

Joint work with Sevak Mkrtchyan

December 2, 2020
The Abelian Sandpile Model (ASM) is a cellular automaton defined on a graph $G = (V, E)$.

- An initial sandpile distribution $s : V \rightarrow \mathbb{N}$
- If $s(x) > \deg(x)$ then x is unstable and topples distributing sand to its neighbors:
 $$\begin{align*}
 s(x) &\mapsto s(x) - \deg(x) \\
 s(y) &\mapsto s(y) + 1 \text{ if } y \sim x.
 \end{align*}$$

The sandpile evolves through toppling unstable sites.
The **Abelian Sandpile Model (ASM)** is a cellular automaton defined on a graph $G = (V, E)$.

- An initial sandpile distribution $s : V \to \mathbb{N}$
- If $s(x) > \deg(x)$ then x is **unstable** and topples distributing sand to its neighbors:
 \[
 \begin{cases}
 s(x) \mapsto s(x) - \deg(x) \\
 s(y) \mapsto s(y) + 1 \text{ if } y \sim x.
 \end{cases}
 \]

The sandpile evolves through toppling unstable sites.

In this talk $G = \mathbb{Z}^2$ but we will consider different **toppling rules**:

Uniform ASM

\[
\begin{array}{c}
 +1 \\
 +1 \leftarrow -4 \rightarrow +1 \\
 +1
\end{array}
\]
The **Abelian Sandpile Model (ASM)** is a cellular automaton defined on a graph $G = (V, E)$.

- An initial sandpile distribution $s : V \rightarrow \mathbb{N}$
- If $s(x) > \text{deg}(x)$ then x is unstable and topples distributing sand to its neighbors:

 $s(x) \leftrightarrow s(x) - \text{deg}(x)$

 $s(y) \rightarrow s(y) + 1$ if $y \sim x$.

The sandpile evolves through toppling unstable sites.

In this talk $G = \mathbb{Z}^2$ but we will consider different **toppling rules**:

- **Directed ASM**

 $+1 \uparrow$

 $-2 \rightarrow +1$

- **Uniform ASM**

 $+1 \leftrightarrow -4 \rightarrow +1$

 $+1 \downarrow$

 $+1$
The **Abelian Sandpile Model (ASM)** is a cellular automaton defined on a graph $G = (V, E)$.

- An initial sandpile distribution $s: V \rightarrow \mathbb{N}$
- If $s(x) > \deg(x)$ then x is unstable and topples distributing sand to its neighbors:

\[
\begin{align*}
 s(x) &\mapsto s(x) - \deg(x) \\
 s(y) &\mapsto s(y) + 1 \text{ if } y \sim x.
\end{align*}
\]

The sandpile evolves through toppling unstable sites.

In this talk $G = \mathbb{Z}^2$ but we will consider different toppling rules:

1D ASM	Directed ASM	Uniform ASM
$+1 \leftrightarrow -2 \rightarrow +1$	$+1$	$+1$
$-2 \rightarrow +1$	$+1$	$+1 \leftrightarrow -4 \rightarrow +1$
		$+1$
1-Dimensional ASM

- Start with initial sandpile $s(x) = n\delta_{(0,0)}(x)$ topple until reaching a stable sandpile s_∞.

Question
What is the stable sandpile?

Toppling rule
$+1 \leftarrow -2 \rightarrow +1$
1-Dimensional ASM

- Start with initial sandpile \(s(x) = n\delta_{(0,0)}(x) \) topple until reaching a stable sandpile \(s_\infty \).

Question

What is the stable sandpile?

Toppling rule

\[+1 \leftrightarrow -2 \rightarrow +1 \]

Figure: Initial sandpile with \(n = 7 \).

Figure: Result after toppling at the origin.
Sequence of topplings

Figure: Origin toppled again.

Figure: All unstable sites topple once more.

some more topples....

and the stable sandpile:
Let $x = (x_1, x_2)$.

Proposition

If $s(x_1, x_2) = n\delta_{(0,0)}(x_1, x_2)$ then the stable sandpile for the 1D ASM is

$$s_\infty(x_1, 0) = \begin{cases}
1 & \text{if } x_1 = 0 \text{ and } n \text{ is odd}, \\
0 & \text{if } x_1 = 0 \text{ and } n \text{ is even}, \\
1 & \text{if } 0 < |x_1| \leq \left\lfloor \frac{n}{2} \right\rfloor, \\
0 & \text{if } \left\lfloor \frac{n}{2} \right\rfloor < |x_2|.
\end{cases}$$

$s_\infty(x_1, x_2) = 0$ if $x_2 > 0$.

When $d \geq 2$ the limit shape exhibits self-organization.
Let \(x = (x_1, x_2) \).

Proposition

If \(s(x_1, x_2) = n\delta_{(0,0)}(x_1, x_2) \) then the stable sandpile for the 1D ASM is

\[
s_\infty(x_1, 0) = \begin{cases}
1 & \text{if } x_1 = 0 \text{ and } n \text{ is odd}, \\
0 & \text{if } x_1 = 0 \text{ and } n \text{ is even}, \\
1 & \text{if } 0 < |x_1| \leq \left\lfloor \frac{n}{2} \right\rfloor, \\
0 & \text{if } \left\lfloor \frac{n}{2} \right\rfloor < |x_2|.
\end{cases}
\]

\[
s_\infty(x_1, x_2) = 0 \text{ if } x_2 > 0.
\]

When \(d \geq 2 \) the limit shape exhibits self-organization.
Let $s(x_1, x_2) = n\delta_{(0,0)}(x_1, x_2)$ and topple until stable using the **uniform toppling rule**.

The stable sandpile has a **limit shape** (Pegden-Smart 2013).

Figure: Stable sandpile with $n = 10^7$. Colors correspond to heights of sandpile.
Let \(s(x_1, x_2) = n\delta_{(0,0)}(x_1, x_2) \) and topple until stable using the **uniform toppling rule**.

The stable sandpile has a **limit shape** (Pegden-Smart 2013).

Theorem (Levine-Peres 2008)

The limit shape is bounded between circles of radii \(c_1\sqrt{n} \) and \(c_2\sqrt{n} \) with \(c_2/c_1 = \frac{\sqrt{3}}{\sqrt{2}} \).

Figure: Stable sandpile with \(n = 10^7 \). Colors correspond to heights of sandpile.
What is the limit shape of the ASM?

The boundary of the limit shape is a Lipschitz graph (Aleksanyan-Shahgholian 2019).

Figure: Stable sandpile with \(n = 10^7 \). Colors correspond to heights of sandpile.

Is the limit shape convex? Is it a circle, a polygon, or neither?
The toppling rule determines the limit shape:

Figure: Stable sandpile with $n = 10^5$. Black sites have one grain of sand.
Leaky Abelian Sandpile Model (Leaky-ASM)

We compute the limit shape in the presence of dissipation.

- An initial sandpile distribution $s : V \rightarrow \mathbb{R}_{\geq 0}$
- Dissipation $d > 1$

If $s(x) > d \cdot \deg(x)$ then x is unstable and topples distributing sand to its neighbors:

$$
\begin{align*}
 s(x) &\mapsto s(x) - d \cdot \deg(x) \\
 s(y) &\mapsto s(y) + 1 \text{ if } y \sim x.
\end{align*}
$$
Leaky Abelian Sandpile Model (Leaky-ASM)

We compute the limit shape in the presence of dissipation.

- An initial sandpile distribution $s : V \to \mathbb{R}_{\geq 0}$
- Dissipation $d > 1$

If $s(x) > d \cdot \text{deg}(x)$ then x is unstable and topples distributing sand to its neighbors:

\[
\begin{align*}
 s(x) & \mapsto s(x) - d \cdot \text{deg}(x) \\
 s(y) & \mapsto s(y) + 1 \text{ if } y \sim x.
\end{align*}
\]
Let $s(x) = n\delta_{(0,0)}(x)$ and topple until stable using the uniform toppling rule.

$D_{n,d}$ is the set of sites which have toppled.

Theorem (A.- Mkrtchyan 2020)

Let $d > 1$ and $r = \log n - \frac{1}{2} \log \log n$. The boundary of $r^{-1}D_{n,d}$ converges to the dual of the boundary of the gaseous phase in the amoeba of the spectral curve for the toppling rule.
Main Results

- Let \(s(x) = n\delta_{(0,0)}(x) \) and topple until stable using the uniform toppling rule.
- \(D_{n,d} \) is the set of sites which have toppled.

Theorem (A.- Mkrtchyan 2020)

Let \(d > 1 \) and \(r = \log n - \frac{1}{2} \log \log n \). The boundary of \(r^{-1}D_{n,d} \) converges to the dual of the boundary of the gaseous phase in the amoeba of the spectral curve for the toppling rule.

Theorem (A.- Mkrtchyan 2020)

Let \(d_n = 1 + t_n \).

- If \(t_n \sim \frac{1}{\log(n)} \) then the boundary of \(\frac{\sqrt{t_n}}{\log(n)} D_{n,d} \) converges to a circle.
- If \(t_n \sim \frac{1}{n^{1-\alpha}} \) with \(0 < \alpha < 1 \), then the boundary of \(\frac{\sqrt{t_n}}{\log(n)} D_{n,d} \) is between circles of radii \(c_1 \) and \(c_2 \) with \(\frac{c_1}{c_2} \rightarrow \alpha \).
(a) $d = 1.05$
(b) $d = 2$
(c) $d = 1000$

Figure: Simulations of the Leaky-ASM with $n \approx 10^{500}$.

Figure: Limit shapes from theorem.
Vanishing dissipation limit

(a) $d - 1 = 2.5 \cdot 10^{-4}$

(b) $d - 1 = 2.5 \cdot 10^{-5}$

(c) $d - 1 = 2.5 \cdot 10^{-6}$

(d) $d - 1 = 2.5 \cdot 10^{-7}$

Figure: Leaky-ASM simulations with $n = 10^7$.
Figure: Uniform ASM with background height -1 and $n = 10^7$.
Vanishing dissipation limit converges to uniform ASM

Theorem (A.- Mkrtchyan (2020))

As $d \to 1$ the stable sandpile of the Leaky-ASM converges pointwise to the stable sandpile of the ASM with background height -1.

Sketch of proof:

Couple the leaky-ASM to a modified ASM in which sites topple if they have 5 or more grains of sand.
ASM introduced by Bak-Tang-Wiesenfeld in 1987 as a model for fractals and self-organized criticality.

At each time step a site is chosen randomly and one grain of sand is added. All unstable sites topple. The distribution of avalanches has a power law tail (Dhar 2006?).
Background

- **ASM** introduced by Bak-Tang-Wiesenfeld in 1987 as a model for fractals and self-organized criticality.
 - At each time step a site is chosen randomly and one grain of sand is added. All unstable sites topple. The distribution of avalanches has a power law tail (Dhar 2006?).

- **Dissipative sandpiles** introduced by Manna-Kiss-Kertész in 1990 to model systems in which the average transfer ratio is a parameter or random quantity.
 - Avalanches of thermal neutrons in a nuclear reactor controlled by cadmium rods are one example.
ASM introduced by Bak-Tang-Wiesenfeld in 1987 as a model for fractals and self-organized criticality.
- At each time step a site is chosen randomly and one grain of sand is added. All unstable sites topple. The distribution of avalanches has a power law tail (Dhar 2006?).

Dissipative sandpiles introduced by Manna-Kiss-Kertész in 1990 to model systems in which the average transfer ratio is a parameter or random quantity
- Avalanches of thermal neutrons in a nuclear reactor controlled by cadmium rods are one example.

Dhar-Sadhu (2013) proposed using sandpiles to model pattern formation and proportionate growth.
- The odometer is piecewise quadratic (Ostojic 2003).
- A limit pattern exists (Pegden-Smart 2013).
- The internal fractal structure is connected to Apollonian circle packings (Levine-Pegden-Smart 2016 and Pegden-Smart 2020).
Background

- **ASM** introduced by Bak-Tang-Wiesenfeld in 1987 as a model for **fractals** and **self-organized criticality**.
 - At each time step a site is chosen randomly and one grain of sand is added. All unstable sites topple. The distribution of **avalanches** has a **power law tail** (Dhar 2006?).
- **Dissipative sandpiles** introduced by Manna-Kiss-Kertész in 1990 to model systems in which the average transfer ratio is a parameter or random quantity
 - Avalanches of thermal neutrons in a nuclear reactor controlled by cadmium rods are one example.
- **Dhar-Sadhu (2013)** proposed using sandpiles to model pattern formation and proportionate growth.
 - The **odometer** is piecewise quadratic (Ostojic 2003).
 - A limit pattern exists (Pegden-Smart 2013).
 - The internal fractal structure is connected to **Apollonian circle packings** (Levine-Pegden-Smart 2016 and Pegden-Smart 2020).
- The **ASM** is a discrete model of a free boundary problem.
Outline of our proof:

- Relate the Leaky-ASM to a killed random walk.
Outline of our proof:

- Relate the Leaky-ASM to a *killed random walk*.
- Use the steepest descent method to compute the asymptotic *death probability*.
Outline of our proof:

- Relate the Leaky-ASM to a killed random walk.
- Use the steepest descent method to compute the asymptotic death probability.
- Level curves of $\frac{4}{n}$ and $\frac{4(d - 1)}{n}$ in the death probability bound the Leaky-ASM with n chips started at the origin.
Killed random walk

Let X_1, X_2, \ldots be i.i.d random variables with

$$P\{X_j = (1, 0)\} = \frac{1}{4d}, \quad P\{X_j = (-1, 0)\} = \frac{1}{4d},$$

$$P\{X_j = (0, 1)\} = \frac{1}{4d}, \quad P\{X_j = (0, -1)\} = \frac{1}{4d},$$

$$P\{X_j = (0, 0)\} = 1 - \frac{4}{4d} = 1 - \frac{1}{d}.$$

The killed random walk (KRW) started at $x \in \mathbb{Z}^2$ is the sequence S_1, S_2, \ldots where

$$S_n = x + \sum_{i=1}^{n} K_i X_i$$

and

$$K_i = \begin{cases} 1 & \text{if the walker is alive at step } i \\ 0 & \text{else.} \end{cases}$$
Let $G_d(x) = P($walker dies at x) be the death probability.

Definition
The **odometer function** $u(x) =$ total sand emitted from x.
Let $G_d(x) = P($walker dies at $x)$ be the death probability.

Definition

The **odometer function** $u(x) = \text{total sand emitted from } x.$

Start with initial sandpile $s(x) = n\delta_{0,0}(x)$ and topple until reaching the **stable sandpile** $s_\infty(x).$
Let $G_d(x) = P(\text{walker dies at } x)$ be the death probability.

Definition

The **odometer function** $u(x) = \text{total sand emitted from } x$.

Start with initial sandpile $s(x) = n\delta_{0,0}(x)$ and topple until reaching the **stable sandpile** $s_\infty(x)$.

Proposition (A.-Mkrtchyan 2020)

For the operator

$$T = \frac{1}{d} \Delta - \left(\frac{d - 1}{d}\right) I$$

we have

$$T(u(x) - G_d(x)) = \frac{d - 1}{dn} s_\infty(x).$$
“Invert”

\[T = \frac{1}{d} \Delta - \left(\frac{d - 1}{d} \right) I \]

and use inequality

\[0 \leq s_{\infty}(x) < 4d \]

to obtain the key lemma:

Lemma (A.-Mkrtchyan 2020)

1. If \(G_d(x) < \frac{4(d - 1)}{n} \), then \(u(x) = 0 \), i.e. \(x \notin D_{n,d} \).
2. If \(G_d(x) \geq \frac{4d}{n} \), then \(u(x) \geq 4d \), i.e. \(x \in D_{n,d} \).

\(D_{n,d} \) is the set of sites which topple.
“Invert”

\[T = \frac{1}{d} \Delta - \left(\frac{d - 1}{d} \right) I \]

and use inequality

\[0 \leq s_\infty(x) < 4d \]

to obtain the key lemma:

Lemma (A.-Mkrtchyan 2020)

1. If \(G_d(x) < \frac{4(d - 1)}{n} \), then \(u(x) = 0 \), i.e. \(x \notin D_{n,d} \).
2. If \(G_d(x) \geq \frac{4d}{n} \), then \(u(x) \geq 4d \), i.e. \(x \in D_{n,d} \).

\(D_{n,d} \) is the set of sites which topple.

Consequence

Asymptotics of \(G_d(x) \) give the boundary of the limit shape.
The spectral curve of the massive Laplacian can be used to compute asymptotics of $G_d(x)$.

Definition

The **massive Laplacian** $\Delta^m : \mathbb{C}^V \rightarrow \mathbb{C}^V$ is defined by

$$(\Delta^m f)(x) = \sum_{y \sim x} P(x \rightarrow y)(f(y) - f(x)) - P(\text{dies})f(x)$$

$$= \sum_{y \sim x} P(x \rightarrow y)f(y) - f(x)$$

where $P(x \rightarrow y)$ is the probability that the KRW moves from vertex x to y and $P(\text{dies})$ is the probability it is killed.
When the probabilities are periodic the spectral curve is

\[P(z, w) = \det \Delta^m(z, w). \]

Probabilities are modified by \(z \) or \(w \) when crossing a fundamental domain.
Spectral curve of KRW

- When the probabilities are periodic the spectral curve is

\[P(z, w) = \det \Delta^m(z, w). \]

Probabilities are modified by \(z \) or \(w \) when crossing a fundamental domain.

- For the KRW the fundamental domain has size \(1 \times 1 \) and

\[(\Delta^m f)(x) = \sum_{y \sim x} \frac{1}{4d} f(y) - f(x). \]

- \(\Delta^m \) is a \(1 \times 1 \) matrix with spectral curve

\[P(z, w) = 4d - \left(z + z^{-1} + w + w^{-1} \right). \]
Expand the normalized spectral curve in a power series convergent near \((1, 1)\) to compute probabilities:

\[
\frac{4(d - 1)}{P(z, w)} = \frac{4(d - 1)}{4d - (z + z^{-1} + w + w^{-1})} = \frac{d - 1}{d} \sum_{k=0}^{\infty} \left(\frac{z + z^{-1} + w + w^{-1}}{4d} \right)^k
\]

\[
= \sum_{k,l \in \mathbb{Z}} G_d(k, l) z^k w^l,
\]

where \(G_d(k, l)\) is the probability the KRW dies at \((k, l)\).
Contour integration gives the coefficients in the direction \(\nu_a = (1, a) \) for \(0 < a < 1 \):

\[
G_d(r\nu_a) = \frac{1}{(2\pi i)^2} \oint_{C_w} \oint_{C_z} \frac{4(d - 1)}{P(z, w)} \frac{dz}{z^{r+1}} \frac{dw}{w^{ar+1}}
\]

\[
= \frac{4(d - 1)}{2\pi i} \oint_{C} f(w) e^{rS(w)} dw
\]

where

\[
f(w) = \frac{1}{w \sqrt{(4d - w - 1/w)^2 - 4}}
\]

\[
S(w) = \log \left(\frac{4d - w - \frac{1}{w} - \sqrt{(4d - w - \frac{1}{w})^2 - 4}}{2w^a} \right)
\]
Contour integration gives the coefficients in the direction $\nu_a = (1, a)$ for $0 < a < 1$:

$$G_d(r\nu_a) = \frac{1}{(2\pi i)^2} \oint_{C_w} \oint_{C_z} \frac{4(d - 1)}{P(z, w)} \frac{dz}{z^{r+1}} \frac{dw}{w^{ar+1}}$$

$$= \frac{4(d - 1)}{2\pi i} \oint_C f(w) e^{rS(w)} dw$$

where

$$f(w) = \frac{1}{w \sqrt{(4d - w - 1/w)^2 - 4}}$$

$$S(w) = \log \left(\frac{4d - w - \frac{1}{w} - \sqrt{(4d - w - \frac{1}{w})^2 - 4}}{2w^a} \right).$$

Use the steepest descent method to compute the asymptotics.
Let w_+ be the real critical point of $S(w)$ with $w_+ > 1$

Deform the contour of integration to pass through the critical point and make the change of variable $w = w_+ + i \frac{y}{\sqrt{r}}$:

$$G_d(rv_a) = \frac{4(d - 1)}{2\pi i} \oint_C f(w) e^{rS(w)} dw$$

$$= \frac{4(d - 1)}{2\pi \sqrt{r}} f(w_+) e^{rS(w_+)} \int_{-\infty}^{\infty} e^{-\frac{S''(w_+)y^2}{2}} (1 + o(1)) dy.$$
Steepest descent method

- Let w_+ be the real critical point of $S(w)$ with $w_+ > 1$
- Deform the contour of integration to pass through the critical point and make the change of variable $w = w_+ + i \frac{y}{\sqrt{r}}$:

$$G_d(rv_a) = \frac{4(d - 1)}{2\pi i} \oint_C f(w) e^{rS(w)} \, dw$$

$$= \frac{4(d - 1)}{2\pi \sqrt{r}} f(w_+) e^{rS(w_+)} \int_{-\infty}^{\infty} e^{-\frac{S''(w_+) y^2}{2}} (1 + o(1)) \, dy.$$

Solving

$$G_d(r_0v_a) = \frac{4(d - 1)}{n} \quad \text{and} \quad G_d(r_iv_a) = \frac{4d}{n}.$$

gives the boundaries for the limit shape.
The limit shape for initial sandpile $s_0 = n\delta_{(0,0)}$ is parametrized by

$$-\log(n)\left(\frac{1}{S(w_+)}, \frac{a}{S(w_+)}\right) \text{ for } 0 \leq a \leq 1,$$

and its reflections with respect to the coordinate axes and the line $y = x$.

Figure: Limit shapes with $d = 1.05, 2, \text{ and } 1000.$
The amoeba of a polynomial $P(z, w)$ is the image of $\{(z, w) \in \mathbb{C}^2 : P(z, w) = 0\}$ under the map

$$(z, w) \mapsto (\log |z|, \log |w|).$$

Figure: The boundary of the amoeba of $P(z, w) = 4d - (z + z^{-1} + w + w^{-1})$ and its dual curve. The red curve bounds the gaseous phase.

Definition

The bounded complementary component of an amoeba is the gaseous phase.
Theorem (A.-Mkrtchyan 2020)

The limit shape of the Leaky-ASM is (up to scale) the dual of the boundary of the gaseous phase in the amoeba.
Theorem (A.-Mkrtchyan 2020)

The limit shape of the Leaky-ASM is (up to scale) the dual of the boundary of the gaseous phase in the amoeba.

- For $P(z, w) = 4d - (z + z^{-1} + w + w^{-1})$ the boundary of the gaseous phase is given by the implicit equation

$$4d = e^x + e^{-x} + e^y + e^{-y} \quad \text{with } x, y \in \mathbb{R}.$$

The boundary of the gaseous phase is $z, w \in \mathbb{R}$ with $zw > 0.$
Theorem (A.-Mkrtchyan 2020)

The limit shape of the Leaky-ASM is (up to scale) the dual of the boundary of the gaseous phase in the amoeba.

- For \(P(z, w) = 4d - (z + z^{-1} + w + w^{-1}) \) the boundary of the gaseous phase is given by the implicit equation
 \[
 4d = e^x + e^{-x} + e^y + e^{-y}
 \]
 with \(x, y \in \mathbb{R} \).

The boundary of the gaseous phase is \(z, w \in \mathbb{R} \) with \(zw > 0 \).

- The other boundary components correspond to \(zw < 0 \).
Why do amoebae appear?

- Asymptotic level curves of

\[G_d(r \nu_a) = \frac{4(d - 1)}{2\pi i} \oint_C f(w) e^{rS(w)} dw \]

correspond to the limit shape.

- If the model has a spectral curve \(P(z, w) \) and \(S(w) = -\ln(zw^a) \) for \((z, w)\) satisfying \(P(z, w) = 0 \) then the asymptotic level curves of \(P_d(r \nu_a) \) are given by the boundary of the gaseous phase in the amoeba.
Thank you!

I. Alevy and S. Mkrtchyan, *The Limit Shape of the Leaky Abelian Sandpile Model*, arXiv e-prints, arXiv:2010.01946 (October 2020), 2010.01946.