Searches for isospin-violating transitions $\chi_{c0,2} \rightarrow \pi^0 \eta_c$
We present the first upper-limit measurement of the branching fractions of the isospin-violating transitions $\chi_{c0,2} \rightarrow \pi^0 \eta_c$. The measurements are performed using $106 \times 10^6 \psi(3686)$ events accumulated with the BESIII detector at the BEPCII e^+e^- collider at a center-of-mass energy corresponding to the $\psi(3686)$ mass. We obtained upper limits on the branching fractions at a 90% confidence level of $B(\chi_{c0} \rightarrow \pi^0 \eta_c) < 1.6 \times 10^{-3}$ and $B(\chi_{c2} \rightarrow \pi^0 \eta_c) < 3.2 \times 10^{-3}$.

PACS numbers: 13.25.Gv, 13.20.Gd.

I. INTRODUCTION

Isospin is known to be a good symmetry in the hadronic decays of charmonium states. The decay
eral found to be very small. For example, the branching fraction \(B \) of the measured isospin-violating transition \(\psi(3686) \rightarrow \pi^0 J/\psi \) was found to be only \((1.26 \pm 0.02 \text{ (stat.}) \pm 0.03 \text{ (syst.)}) \times 10^{-3} \) [1], whereas for other hadronic transitions such as \(\psi(3686) \rightarrow \pi^+ \pi^- J/\psi \), the branching fraction is \((34.45 \pm 0.30) \times 10^{-2} \) [2] and thus significantly stronger.

Although isospin breaking is found to be very small for the conventional charmonium states, the mysterious \(X(3872) \) resonance above the \(D \bar{D} \) threshold decays strongly via the transition \(X(3872) \rightarrow \pi^+ \pi^- J/\psi \), where the invariant-mass spectrum of the \(\pi^+ \pi^- \) pair shows a clear \(\rho \) signature [3, 4] and, hence, is compatible with an isospin-violating decay. A possible interpretation is that the \(X(3872) \) is a molecular state composed of a bound \(D^{*0} \bar{D}^0 \) meson pair [7, 10]. Such an explanation is particularly popular, since the mass of the \(X(3872) \) is close to the sum of the \(D^0 \) and \(D^{*0} \) masses, pointing to a state that could be weakly bound by the exchange of a color-neutral meson, similar to the deuteron. Moreover, in such a scenario, the strong isospin-breaking decay rate of the \(X(3872) \) might be explained by the large mass gap between the \(D^{*0} \rightarrow D^0 \) and the \(D^*+D^- \rightarrow (D^*+D^-) \) thresholds. A better understanding of the isospin-breaking mechanism in a complementary and well-established charmonium system below the open-charm threshold could be crucial to shed light on the nature of the \(X(3872) \).

On the quark level, the isospin-symmetry is broken due to the electromagnetic interaction and due to differences in the up- and down-quark masses \((m_u \text{ and } m_d) \). It is, therefore, believed that isospin-breaking decays can be used to access the up- and down-quark mass differences once the electromagnetic effect is either well understood or found to be negligible. An example observable that has been proposed to obtain the quark mass ratio, \(m_u/m_d \), is a measurement of the ratio between the branching fractions of the transitions \(\psi(3686) \rightarrow \pi^0 J/\psi \) and \(\psi(3686) \rightarrow J/\psi \). Based on a leading-order QCD multipole expansion [11] and the BESIII measurement of this ratio [1], the up-down quark mass ratio is extracted to be \(m_u/m_d = 0.407 \pm 0.006 \). This result is smaller than the result, \(m_u/m_d = 0.56 \), obtained using the Goldstone boson masses from a leading-order chiral-perturbation theory [12]. It is important to understand such a large discrepancy between the values of \(m_u/m_d \) obtained on the basis of different theoretical conjectures.

The most promising developments in this field are based upon an effective-field theoretical approach. A non-relativistic effective-field theoretical (NREFT) study by the Jülich and IHEP groups suggests that intermediate (virtual) charmed-meson loops are the dominant source for the isospin breaking in the transition \(\psi(3686) \rightarrow \pi^0 J/\psi \) [13, 14]. According to the proposed theory, the contribution of charmed-meson loops to the amplitude of the process is enhanced by a factor of \((\nu/e)^{-1} \sim 2 \), where \(\nu \) is the heavy-meson velocity in the loops. Detailed studies of different isospin-violating transitions in charmonium below the \(D \bar{D} \) threshold and the effect of virtual charmed-meson loops on the widths of the transitions are described in Ref. [15].

The NREFT calculations described above are based on a first estimate, exploiting diagrams involving the lowest-lying pseudoscalar and vector charmed mesons following heavy-quark symmetry and chiral symmetry. Although these theoretical calculations give qualitative insights in the isospin-breaking mechanisms in charmonium decays, the authors in Ref. [15] state that only with a further developed effective-field theory that includes Goldstone bosons, charmonia, and charmed mesons as the degrees of freedom, it would be possible in the future to extract the light-quark masses from quarkonia decays. Currently, for such a theory, quantitative predictions of individual branching fractions of isospin-forbidden decays of charmonium are difficult, because information on the coupling constants \(f_{\psi \bar{D} \bar{D}} \) between different charmonium states and \(D \bar{D} \)-mesons is limited. The theory requires constraints from experimental data, in particular from measurements of decay rates of other isospin-violating transitions in charmonium [15].

In this paper, we present an experimental study of the isospin-suppressed transition of the charmonium P-wave states \(\chi_{c0,2} \) to the ground state \(\eta_c \) via the emission of the \(\pi^0 \). The transition \(\chi_{c1} \rightarrow \pi^0 \eta_c \) is not considered in this analysis since it violates conservation of parity and angular momentum. According to Ref. [15], the dimensionless suppression factor for the loops in \(\chi_{c0} \rightarrow \pi^0 \eta_c \) is 0.2. This factor is smaller than in the process \(\psi(3686) \rightarrow \pi^0 J/\psi \), however, through the interference with the tree-level amplitude, meson loops may give a significant contribution and cannot be neglected.

II. THE BESIII EXPERIMENT AND DATA SET

The analysis is based on the \(\psi(3686) \) data sample accumulated by the BESIII detector in 2009. The total number of \(\psi(3686) \) events is \((106.41 \pm 0.86) \times 10^6 \) [16], corresponding to an integrated luminosity of \(156.4 \text{ pb}^{-1} \). In addition, \(42.6 \text{ pb}^{-1} \) data collected at a center-of-mass energy of 3.65 GeV, are used to estimate the background from non-resonant processes.

The BESIII experiment (BESIII), described in detail in Ref. [17], is a detector for \(\tau \)-charm studies running at the Beijing Electron-Positron Collider (BEPCII). BEPCII is a double-ring \(e^+e^- \) collider with a designed peak luminosity of \(10^{33} \text{ cm}^{-2}\text{s}^{-1} \) at a beam current of 0.93 A. The cylindrical core of the BESIII detector consists of a main drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and an electromagnetic calorimeter (EMC), which are enclosed in a superconducting solenoidal magnet providing a 1 T magnetic field. The solenoid is supported by an octagonal flux return yoke with resistive-plate chambers forming a muon counter system. The MDC is a small-cell, helium-based (40% He, 60% C_3H_8) sub-detector consisting of 43 layers.
and providing an average single-hit resolution of 135 \mu m, and a charged-particle momentum resolution of 0.5% at 1 GeV/c. The EMC sub-detector consists of 6240 CsI(Tl) crystals in a cylindrical structure (barrel) and two end-caps. For 1 GeV photons, the energy resolution is 2.5% (5%) and the position resolution is 6 mm (9 mm) for the barrel (end-caps). The TOF system consists of 5 cm thick scintillators, with 176 detectors of 2.4 m length in two layers in the barrel and 96 fan-shaped detectors in the end-caps. The barrel (end-cap) time resolution of 80 ps (110 ps) provides 2\sigma K/\pi separation for momenta up to 1 GeV.

To optimize the event selection, to estimate background contributions, and to evaluate the detection efficiencies, Monte Carlo (MC) simulated samples are obtained exploiting a realistic model of the detector. For this, the GEANT4-based simulation software BOOST [18] is used which includes the geometry and material description of the BESIII spectrometer, and the detector response. A MC sample based on 106 M inclusive \psi(3686) decays is used to study the background. This inclusive sample is generated with KKMC [19] plus EvtGen [20, 21] and the known branching ratios are taken from the Particle Data Group (PDG) [2], while the unknown ratios are generated according to the Lundcharm model [22]. The decay modes \chi_{c0,2} \rightarrow \pi^0 \eta_c and \eta_c \rightarrow K_S^0 K^\pm \pi^\mp decays are assumed to be pure phase-space decays.

III. DATA ANALYSIS

For the identification and selection of \psi(3686) \rightarrow \gamma \chi_{c2} \rightarrow \gamma \pi^0 \eta_c events, where \pi^0 \rightarrow \gamma \gamma, \eta_c \rightarrow K_S^0 K^\pm \pi^\mp, the K_S^0 is reconstructed in its decay mode to \pi^\mp \pi^- , resulting in the final state 3\gamma 3\pi K, where K and \pi are charged.

A. Event selection

Charged tracks are reconstructed from the MDC hits. For each charged-particle track, its polar angle must satisfy \cos \theta < 0.93. A good charged-particle track (excluding those coming from a K_S^0) is required to be within 1 cm of the e^+e^- annihilation interaction point (IP), transverse to the beam line and within 10 cm of the IP along the beam axis. Charged-particle identification (PID) is based on combining the energy loss, dE/dx, in the MDC and TOF information to construct PID chi-squared values \chi^2_{PID}(i), that are calculated for each charged-particle track for each particle hypothesis i (pion, kaon).

Photons are reconstructed from isolated showers in the EMC. The showers in the angular range between the barrel (|cos \theta| < 0.8) and end-caps (0.86 < |cos \theta| < 0.92) are poorly reconstructed and excluded from the analysis. Good photon candidates must have a minimum energy of 25 (50) MeV in the barrel (end-cap) regions. EMC timing requirements are used to further suppress noise and energy depositions unrelated to the event.

Events with four charged-particle tracks with a net charge of zero and at least three good photon candidates are retained for further analysis. K_S^0 candidates are reconstructed from secondary vertex fits to all the charged-track pairs in an event (with a pion-mass assumption). Candidates with an invariant mass within 10 MeV/c^2 of the K_S^0 nominal mass are considered and the combination with the smallest chi-squared of the vertex fit is chosen. The event is kept for further analysis if the secondary vertex is at least 0.5 cm away from the IP. The reconstructed four-momenta of the \pi^+ and \pi^-, corresponding to the K_S^0 decay, are used as input for the subsequent kinematic fit. To suppress the K_S^0 K_S^0 background, the remaining charged-particle tracks are required to not form a good K_S^0 candidate. The \pi^0 candidates are reconstructed from pairs of photons with the invariant mass M_{\gamma\gamma} in the range 0.11 < M_{\gamma\gamma}/(GeV/c^2) < 0.16, with the M_{\gamma\gamma} resolution of about 5 MeV/c^2.

The 3\gamma 3\pi K candidates are then subjected to a four-constraint (4C) kinematic fit, with the constraints provided by four-momentum conservation. The discrimination of charge-conjugate channels (K_S^0 K^-) and the selection of the best photon candidate of the \psi(3686) \rightarrow \gamma \chi_{c2} transition among multiple candidates are achieved by taking the event with the minimum \chi^2 = \chi^2_{4C} + \chi^2_{PID(K)} + \chi^2_{PID(\pi)}, where \chi^2_{4C} is the chi-squared of the 4C kinematic fit. The \pi^0 is reconstructed from the two-photon combination with an invariant mass closest to that of a neutral pion. Events with \chi^2_{4C} < 50 and with an invariant mass of the reconstructed \eta_c, M_{K_S^0 K^+\pi^-}, in the range 2.70 < M_{K_S^0 K^+\pi^-}/(GeV/c^2) < 3.30 are accepted for further analysis. The maximum value of \chi^2_{4C} is determined by optimizing the statistical significance \sqrt{S - B(\eta_c)} signal region, where S (B) is the number of signal (background) events obtained from the signal (inclusive) MC samples. For the estimate of S, the branching fractions of \chi_{c2} \rightarrow \pi^0 \eta_c are assumed to be 10^{-3} in analogy with the isospin-violating process \psi(3686) \rightarrow \pi^0 J/\psi [1]. The signal region is defined as 2.90 < M_{K_S^0 K^+\pi^-}/(GeV/c^2) < 3.05. The \chi_{c0} and \chi_{c2} signal regions are defined for transition-photon candidates with energies in the \gamma \pi^0 K_S^0 K^+\pi^- center-of-mass system, E_\gamma, in the ranges of 0.24 < E_\gamma/(GeV) < 0.28 and 0.10 < E_\gamma/(GeV) < 0.15, respectively.

FIG. 1 shows the invariant-mass distributions of K_S^0 \pi^0 candidates (a, b) and K^\pm \pi^0 candidates (c, d) with \pi^0 K_S^0 K^\pm \pi^\mp masses within the \chi_{c0} (a, c) and the \chi_{c2}
FIG. 1. Invariant-mass distributions of $K_S^0\pi^0$ candidates (a and b) and $K^+\pi^-$ candidates (c and d) for χ_{c0} (a and c) and χ_{c2} (b and d) mass regions, respectively. Dots represent data, filled histograms represent inclusive MC results, open histograms show results of signal MC simulations based on a phase-space distribution (arbitrarily scaled).

(b, d) mass regions. The most prominent peak (with the highest intensity and narrowest width) stems from decays involving a $K^*(892)$. Those are evidently background processes, because the channel of interest, $\chi_{c0,2} \to \pi^0\eta_c$, with $\eta_c \to K_S^0K^{\pm}\pi^\mp$, cannot involve $K^*(892)^0(\pm) \to K^0(\pm)\pi^0$ decays, since the latter does not involve a π^0. The regions $0.84 < M_{K_S^0\pi^0}/(\text{GeV}/c^2) < 0.95$ are excluded in the further analysis to suppress the background from $K^*(892)^0$ and $K^*(892)^\pm$ decays. This condition is optimized to obtain the best statistical significance of the signal.

FIG. 2 shows the invariant-mass distributions of $K_S^0\pi$ for candidate events with $K_S^0K^{\pm}\pi^\mp$ masses corresponding to $\chi_{c0,2} \to \pi^0\eta_c$ transitions. The data show no visible peak in the η_c signal region. In the present analysis, upper limits at the 90% confidence level (CL) for the transitions $\chi_{c0,2} \to \pi^0\eta_c$ are determined. Inclusive MC results do not reproduce the number of events found in the data, but reproduce the shape of the invariant-mass distributions of $K_S^0\pi$ quite well. This feature allows us to use the results of inclusive MC simulations to optimize the selection criteria.

Efficiencies are calculated using the signal MC simulation samples and are found to be 5.8% and 8.6% for the χ_{c0} and χ_{c2} channels, respectively.

B. Background studies

Background events from $\psi(3686)$ decays are studied with the inclusive MC sample. These studies showed that the channel $\psi(3686) \to \pi^0\pi^0 J/\psi$, $J/\psi \to K_S^0K^{\pm}\pi^\mp$ results in a peak around 3.12 GeV/c^2 in the $K_S^0\pi$ invariant-mass spectrum as can be observed from Fig. 2. In this type of transition, one of the photons originating from π^0 decays may escape, which causes a smaller total energy for the event. The kinematic fit increases the energy of the charged-particle tracks, which results in a shift
in the invariant mass from 3.10 GeV/c^2 to 3.12 GeV/c^2. This decay channel is taken into account in the final fit to the invariant-mass spectrum of $K_S^0 K\pi$ as described below.

The major background contribution stems from the channels $\psi(3686) \rightarrow \gamma \chi_{cJ}, \chi_{cJ} \rightarrow \pi^0 K_S^0 K^\pm \pi^\mp$. These channels have final states that are kinematically identical to the signal of interest and, therefore, cannot be removed easily. Partly, this type of background has been suppressed by vetoing $K^* (892)^0$ signals via a cut on the $K_S^0 \pi^0$ mass since the background decay, $\chi_{c0,2} \rightarrow \pi^0 K_S^0 K^\pm \pi^\mp$, contains intermediate $K^* (892)$ resonances, as discussed earlier. We note that the remaining contribution of this type does not result in a peaking background in the signal region.

The background contribution from $e^+ e^- \rightarrow f \bar{f}$ processes, where $f = e, \mu, d, u, s$, is studied using the continuum data taken at $\sqrt{s} = 3.65$ GeV, and it is found to be negligible. Using the exclusive MC simulations and taking the corresponding branching fractions from the PDG [2], the contribution of $\chi_{cJ} \rightarrow \pi^0 K_S^0 K^\pm \pi^\mp$ and $\psi(3686) \rightarrow \pi^0 \pi^0 J/\psi$ channels in the region $2.70 < M_{K_S^0 K^\pm}\pi^\mp (GeV/c^2) < 3.30$ is found to be 2260 ± 340 and 1608 ± 260 events for the χ_{c0} and χ_{c2} selection criteria, respectively, where the errors are mainly due to the uncertainties in the branching fractions. The total number of data events in the same region is 2477 ± 50 and 1527 ± 39, respectively. These are compatible within the uncertainties. No significant peaks are observed in the signal region.

C. Upper limits for the number of signal events

To extract the number of η_c events, an unbinned maximum likelihood fit is applied to the candidate events with $K_S^0 K^\pm \pi^\mp$ invariant-mass distributions in the region $2.70 < M_{K_S^0 K^\pm}\pi^\mp (GeV/c^2) < 3.30$. The η_c signal is described by a Voigtian function, which is a Breit-Wigner function convoluted with the detector resolution. Parameters of the Breit-Wigner function are taken from the PDG [2], and the detector resolution is obtained from a fit to the signal MC set. These parameters are fixed while fitting the data. From the background studies, no peaking background is expected in the signal region. The smooth background is described by a 3rd-order Chebyshev polynomial. A Voigtian function and a Landau plus Gaussian function are used to describe the structure around 3.12 GeV/c^2 for the χ_{c0} and χ_{c2} mass regions, respectively. The line-shape parameters of the structure around 3.12 GeV/c^2 (for both Voigtian and Landau + Gaussian functions) are fixed to the values obtained from the exclusive MC sample. The total fit results are shown in FIG. 3. Using the maximum likelihood method, the upper limits on the number of signal events, N^{UL}, at the 90% CL are found to be 14.1 and 35.9 events for the χ_{c0} and χ_{c2} mass regions, respectively.

IV. SYSTEMATIC UNCERTAINTIES

Table 4 summarizes all the systematic uncertainties that are considered in the analysis. Below we discuss in more detail the individual sources and the procedure that is used to estimate the errors.

The tracking efficiency for kaons as a function of transverse momentum has been studied using the process $J/\psi \rightarrow K_S^0 K^\pm \pi^\mp, K_S^0 \rightarrow \pi^0 \pi^0$ and the tracking efficiency for pions (not originating from K_S^0) as a function of transverse momentum has been studied using the process $\psi(3686) \rightarrow \pi^+ \pi^- J/\psi$. The difference in efficiencies between data and MC simulations is 2% for each K or π track. This value is taken as the uncertainty in the tracking efficiency. The systematic uncertainty due to the K_S^0 reconstruction is 4.0%, as reported in Ref. [25]. The uncertainty in the photon reconstruction is taken as 1% per photon as reported in Ref. [29]. In this analysis, there are in total three photons in the final state, which yields a total systematic uncertainty due to the photon reconstruction of 3%.

Some differences are observed for the χ^2_{MC} distributions between data and MC simulations. These differences are mainly due to inconsistencies in the charged-track parameters between data and MC simulations. We apply correction factors for various K (π) track parameters that are obtained from the control data samples $J/\psi \rightarrow \phi \pi^+ \pi^-$, $\phi \rightarrow K^+ K^-$. The correction factors are used for smearing the MC simulation output, so that the pull distributions properly describe those of the experimental data. Differences between the detection efficiencies obtained using MC simulations with and without these corrections are taken as an estimate for the corresponding systematic uncertainties. The uncertainties are 1.2% and 0.8% for the χ_{c0} and χ_{c2} selection conditions, respectively.

A phase-space (PHSP) model used for MC generation of $\eta_c \rightarrow K_S^0 K^\pm \pi^\mp$ events does not include possible intermediate resonances between the final-state particles, for example, $K^*_2 (1430)^0, \pm$. These resonances are observed in the test sample $\psi(3686) \rightarrow \gamma \eta_c, \eta_c \rightarrow K_S^0 K^\pm \pi^\mp$. To account for K^* resonances, additional MC samples of $\psi(3686) \rightarrow \gamma \chi_{c0,2}, \chi_{c0,2} \rightarrow \pi^0 \eta_c, \eta_c \rightarrow K^*_2 (1430) K_S^0, K^*_2 (1430) K_S^0 \rightarrow K \pi$ are generated and the reconstruction efficiencies are calculated. The difference between efficiencies obtained with two different generator models is taken as a systematic uncertainty. For the $\chi_{c0} \rightarrow \pi^0 \eta_c$ and $\chi_{c2} \rightarrow \pi^0 \eta_c$ decays, the corresponding systematic uncertainties are 1.6% and 2.7%, respectively.

The selection of exactly four charged-particle tracks before the vertex cuts can introduce an additional systematic uncertainty in the efficiency determination due to the presence of fake tracks from misreconstruction. This uncertainty is estimated using a sample of $\psi(3686) \rightarrow \pi^+ \pi^- J/\psi, J/\psi \rightarrow \gamma \eta_c, \eta_c \rightarrow K_S^0 K^\pm \pi^\mp$ decays, where events with at least six charged-particle tracks are accepted. The fraction of events with more than six tracks compared to the number of events with exactly
six charged-particle tracks are obtained for the data and for a corresponding signal MC sample, and the difference in the fractions is found to be 1%. This we take as the systematic uncertainty due to the transition of exactly four charged-particle tracks.

To estimate the systematic uncertainties due to the resolution of the transition photon, a smearing of the energy resolution by 1.5 MeV and a shift of 0.5 MeV are introduced on the MC data. The smearing gives a minimum \(\chi^2 \) when comparing data and MC line shapes, where the dominant contribution to the data originates from the processes \(\psi(3686) \rightarrow \gamma \chi cJ \), \(\chi \rightarrow \pi^0 K^0_S K^\pm \pi^\mp \). The corresponding detection efficiencies of the channels with and without smearing for the \(\chi_0,2 \) selection conditions, respectively. By varying the order of Chebyshev polynomial from the third to second, we obtained a set of upper limits from which we take the maximum difference with the nominal upper limit as systematic uncertainty due to the selection conditions, respectively. By changing the parameters for the fitting range and the nominal order of Chebyshev polynomial, the result of the fitting procedure is obtained, where the dominant contribution to the data originates from the processes \(\psi(3686) \rightarrow \gamma \chi cJ \), \(\chi \rightarrow \pi^0 K^0_S K^\pm \pi^\mp \). The uncertainty on fitting is estimated by adding the individual systematic uncertainties in quadrature. The total fitting uncertainty is 9.6% and 17.4% for the \(\chi_0 \) and \(\chi_2 \) selection conditions, respectively.

The systematic uncertainty of the number of \(\psi(3686) \) events is estimated to be 0.8% as reported in [10]. The uncertainty originating from the trigger efficiency is estimated to be 0.15% [27].

All the uncertainties on the branching fractions of the decaying particles of the channels of interest are obtained from the PDG [2] and are taken into account in the systematic errors of our measurements. The corresponding values can be found in Tab. 1.

Assuming that all the sources are independent, the total systematic uncertainties \(\delta_0,2 \) are obtained by adding the individual uncertainties in quadrature.

V. RESULTS AND DISCUSSION

The upper limits on the branching fractions of the \(\chi \rightarrow \pi^0 \eta_\phi \) (\(J = 0, 2 \)) transitions are calculated using:

\[
B(\chi \rightarrow \pi^0 \eta_\phi) < \frac{N^{UL}_J}{N_{\phi \rightarrow \chi J}B(\psi(3686) \rightarrow \gamma \chi cJ)B_{\text{int}}(1 - \delta_J)},
\]

where \(N^{UL}_J \) are the upper limits on the number of signal events, \(\delta_J \) is the total systematic uncertainty for the channel with \(J = 0, 2 \), \(\varepsilon_J \) is the detection efficiency, \(B_{\text{int}} = B(\eta_\phi \rightarrow K^0_S K^\pm \pi^\mp) \cdot B(K^0_S \rightarrow \pi^+ \pi^-) \cdot B(\pi^0 \rightarrow \text{hadrons}) \) with a 3rd-order Chebyshev function and fixed fitting conditions, respectively. The upper limits on the branching fractions of the channels of interest have been calculated. The largest difference between the efficiencies with and without smearing for the \(\chi_0,2 \) is 0.6%, which we quote as the systematic uncertainty due to the transition-photon resolution.

The systematic uncertainty due to fitting consists of four parts: uncertainties due to the fitting range, the \(J/\psi \)-related background shape, the \(\chi_0,2 \rightarrow \pi^0 K^0_S K^\pm \) background shape, and the signal shape. The upper limits for the fitting range and the nominal order of Chebyshev polynomial, the result of the fitting procedure is obtained, and the relative difference with the nominal upper limit is taken as a systematic error due to the line shape uncertainty of the \(J/\psi \)-related background. This error is found to be 5.8% and 15.0% for the \(\chi_0 \) and \(\chi_2 \) mass regions, respectively. By changing the parameters for the \(J/\psi \) background from fixed to free, but using the nominal fitting range and the nominal order of Chebyshev polynomial, the result of the fitting procedure is obtained, and the relative difference with the nominal upper limit is taken as a systematic uncertainty due to the line shape uncertainty of the \(J/\psi \)-related background. This error is found to be 5.8% and 15.0% for the \(\chi_0 \) and \(\chi_2 \) mass regions, respectively. By changing the parameters for the \(J/\psi \) background from fixed to free, but using the nominal fitting range and the nominal order of Chebyshev polynomial, the result of the fitting procedure is obtained, and the relative difference with the nominal upper limit is taken as a systematic uncertainty due to the line shape uncertainty of the \(J/\psi \)-related background. This error is found to be 5.8% and 15.0% for the \(\chi_0 \) and \(\chi_2 \) mass regions, respectively.
TABLE I. Summary of all considered systematic uncertainties (%).

Source	$\chi_{c0} \to \pi^0\eta_c$	$\chi_{c2} \to \pi^0\eta_c$
Tracking of K, π	4.0	4.0
K^0_S reconstruction	4.0	4.0
Photon reconstruction	3.0	3.0
Kinematic 4C fitting	1.2	0.8
PHSP generator model	1.6	2.7
4 charged-particle tracks	1.0	1.0
E_c resolution	0.6	0.6
Fitting	9.6	17.4
Number of $\psi(3686)$	0.8	0.8
Trigger	0.2	0.2
$B(\psi(3686) \to \gamma_{c,J})$	2.7	3.4
$B(\eta_c \to K^0_SK\pi)$	6.8	6.8
$B(K^0_S \to \pi^+\pi^-)$	0.1	0.1
Total $\delta_{0.2}$	13.8	20.2

$\gamma(\gamma) = (1.7 \pm 0.3) \cdot 10^{-2}$ [2], and N_{η_c} is the number of $\psi(3686)$ events [16]. Table II summarizes the final results of the analysis.

TABLE II. Summary of the final results for the $\chi_{c,J}$ ($J = 0,2$) decays.

	$\chi_{c0} \to \pi^0\eta_c$	$\chi_{c2} \to \pi^0\eta_c$
N_{J}^{UL}	14.1	35.9
ε_{J}	5.8%	8.6%
δ_{J}	13.8%	20.2%
$B(\chi_{c,J} \to \pi^0\eta_c)(10^{-3})$	< 1.6	< 3.2

In this work, we presented an analysis with the aim to search for the hadronic isospin-violating transitions $\chi_{c0,2} \to \pi^0\eta_c$ using $106 \times 10^6 \psi(3686)$ events collected by BESIII through $\eta_c \to K^0_SK^0_S\pi^+\pi^-$ decays. No statistically significant signal is observed and upper limits on the branching fractions for the processes $\chi_{c0,2} \to \pi^0\eta_c$ have been obtained. The results are $B(\chi_{c0} \to \pi^0\eta_c) < 1.6 \times 10^{-3}$ and $B(\chi_{c2} \to \pi^0\eta_c) < 3.2 \times 10^{-3}$. These are the first upper limits that have been reported so far. These limits might help to constrain non-relativistic field theories and provide insight in the role of charmed-meson loops to the various transitions in charmonium and charmonium-like states. Further developments in these theories will be necessary to clarify this aspect. The obtained upper limit on the $B(\chi_{c0,2} \to \pi^0\eta_c)$ does not contradict the result of Ref. [28], obtained in the leading-order QCD multipole expansion. The near-future PANDA experiment [29] at the FAIR facility has the potential to find evidence or provide tighter constraints for the isospin-forbidden transitions discussed in this paper by directly populating the $\chi_{c0,2}$ states using an intense antiproton beam on a proton target.

VI. ACKNOWLEDGMENTS

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11125525, 11235011, 11322544, 11335008, 11425524; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; and the PANDA experiment [29] at the FAIR facility has the potential to find evidence or provide tighter constraints for the isospin-forbidden transitions discussed in this paper by directly populating the $\chi_{c0,2}$ states using an intense antiproton beam on a proton target.
[11] M. A. Shifman and B. L. Ioffe, Phys. Lett. B 95, 99 (1980).
[12] S. Weinberg, Trans. New York Acad. Sci. 38, 185 (1977).
[13] F.-K. Guo, C. Hanhart, and U.-G. Meiße, Phys. Rev. Lett. 103, 082003 (2009).
[14] F.-K. Guo, C. Hanhart, and U.-G. Meiße, Phys. Rev. Lett. 104, 109901 (2010).
[15] F.-K. Guo et al., Phys. Rev. D 82, 034025 (2010).
[16] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 37 (2013).
[17] M. Ablikim et al. (BESIII Collaboration), Nuclear Instruments and Methods in Physics Research A 614, 345 (2010).
[18] Z. Y. Deng et al., Chin. Phys. C 30 (2006).
[19] S. Jadach, B. F. L. Ward, and Z. Was, Computer Physics Communications 130, 260 (2000).
[20] D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001).
[21] R.-G. Ping, Chin. Phys. C 32, 599 (2008).
[22] J. C. Chen et al., Phys. Rev. D 62, 034003 (2000).
[23] G. Karl, S. Meshkov, and J. L. Rosner, Phys. Rev. D 13, 1203 (1976).
[24] P. K. Kabir and A. J. G. Hey, Phys. Rev. D 13, 3161 (1976).
[25] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 87, 052005 (2013).
[26] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 83, 112005 (2011).
[27] N. Berger et al. (BESIII Collaboration), Chin. Phys. C 34, 1779 (2010).
[28] M. B. Voloshin, Phys. Rev. D 86, 074033 (2012).
[29] W. Erni et al. (PANDA Collaboration), arXiv:0903.3905 [hep-ex].