Prevalence Determination of Virulence Related and Biofilm Formation Genes in *Acinetobacter baumannii* Isolates from Clinical Respiratory Samples in Imam Khomeini Hospital, Tehran, Iran in 2018

Haniyeh Mozafari¹, Shiva Mirkalantari¹, Behrooz Sadeghi Kalani¹, Nour Amirmozafari*¹

1. Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

10.30699/ijmm.15.3.266

ABSTRACT

Background and Aim: *Acinetobacter baumannii* is considered to be a re-emerging causative agent of nosocomial infections. There is a significant relation between pathogenicity of this bacterium and the numerous virulence factors. The purpose of this study was to investigate nine virulence factor genes in *A. baumannii* isolates derived from hospitalized patients.

Materials and Methods: A total of 50 *A. baumannii* isolates were recovered from patients with pneumonia in Imam Khomeini Hospital, Tehran, Iran. Following biochemical and microbiological identification of the bacteria, Multiplex PCR was performed for basD, plD, csuA genes, surA, pbpG, bfmrR genes, and bap, ompA genes using specific sets of primers which were specifically designed for this study. The espA gene was identified separately by a Uniplex PCR assay. All amplified DNA fragments were sequenced for the products’ confirmation.

Results: Among the 50 clinical isolates of *A. baumannii* studied, bfmrR and pbpG genes were reported in all samples (100%), bap, plD, surA, and csuA genes were collected from 49 samples (98%), 48 (96%) of these isolates had ompA and basD genes, and espA gene was observed in only five isolates (10%).

Conclusion: According to this study results, virulence factors genes in clinical *A. baumannii* have a prevalence rate more than 90%. Additionally, the high incidence rate of those genes related to biofilm formation indicates that most clinical strains have the ability to form biofilm structures.

Keywords: *Acinetobacter baumannii*, Multiplex Polymerase Chain Reaction, Pneumonia, Virulence Factors

Received: 2021/01/04; Accepted: 2021/02/13; Published Online: 2021/06/28

Corresponding Information: Dr Nour Amirmozafari, Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. Email: amirmozafari@iums.ac.ir

Copyright © 2021, This is an original open-access article distributed under the terms of the Creative Commons Attribution-noncommercial 4.0 International License which permits copy and redistribution of the material just in noncommercial usages with proper citation.

Introduction

Acinetobacter baumannii is an aerobic non-fermenting gram-negative coccobacillus belonging to the family Moraxellaceae. This opportunist bacterium is usually isolated from the hospital environment and hospitalized patients. Acinetobacters, especially *A. baumannii*, are a part of the natural skin flora, which can localize the mouth cavity, pharynx, and tonsil. This point is important in terms of epidemiology and nosocomial infections [1].

Some of the most important infections caused by this bacterium include endocarditis, meningitis, pneumonia, bacteremia, and urinary infection [2]. Over 43% of healthy people have this organism on the
surface of their body [3]. A. baumannii is considered one of the remarkable problems in nosocomial infections in the world due to antibiotic resistance. The clinical significance of this bacterium is seriously threatening, especially during the last 11 years because of acquiring antibiotic resistance genes [4].

This pathogen produces biofilm-associated (Bap) protein by the bap gene that starts biofilm formation following A. baumannii attachment to cellular surfaces. Outer membrane protein A (OmpA), expressed by the ompA gene, is an adhesion protein, which plays an important role in biofilm formation on the surface of epithelial cells. Exopolysaccharide (Esp) is coded by the espA gene in high levels on cell surfaces and protects the cell against different types of environmental damage. Esp protein is involved in the aggregation and biofilm formation by this bacterium. Rapee Thummeepak et al. in 2016 reported 84.4%, 48%, and 30.2% of ompA, bap, and espA in 255 clinical samples, respectively [5].

The Csu protein generates a secretory system, including chaperone and usher, which are needed for the production of pilli and formation of biofilm on surfaces. The expression of this protein is controlled by a regulatory system of two components named Bfms-BfmR that entails a kinase-sensor coded by bfms and a response regulator coded by bfmR. This system is applied for bacterial biofilm formation on polystyrene surfaces. It has been demonstrated in previous studies that inactivating the bfmR gene leads to the cessation of pilli production, adhesion, and biofilm formation on plastic surfaces. The frequency of this gene has been reported to be high in clinical isolates. Thummeepak et al. found a frequency of 84% for this gene [6].

Other virulence factors encompass iron acquisition system (basD), phospholipase D (slpD), surface antigen protein A (surA), and penicillin-binding protein G (bpbG) [7, 8]. Therefore, the present study aimed to identify nine diverse virulence genes in A. baumannii isolates isolated from patients with pneumonia hospitalized in the Intensive Care Unit (ICU) of Imam Khomeini Hospital, Tehran, Iran.

Materials and Methods

Isolation and Identification of Isolates

A total of 50 isolates of A. baumannii were randomly selected from the microorganisms collection of the Iran University of Medical Sciences. These bacteria were selected from the clinical samples of the respiratory system of patients who referred to Imam Khomeini Hospital, Tehran, Iran during 2018-2019 [9]. Biochemical tests, including oxidase, catalase, anaerobic oxidation-fermentation (OF), aerobic OF, triple sugar iron (TSI), indole, motility, culture on Simmons Citrate agar, Voges-Proskauer, methyl red, culture on MacConkey agar, and lactose test (Merck, Germany) were performed to ensure correct colony selection. Finally, 50 A. baumannii isolates were identified and confirmed [10].

Primers Designing

The target sites for A. baumannii primers were chosen as nine specific genes, namely bap, ompA, basD, espA, bfmR, lpd, csuA, bpbG, and surA. Following the determination of target sites for primer designing, databases of each bacterium were searched on NCBI. The Oligo 2, Oligoanalyzer, and Gene Runner softwares were applied to assess the annealing and Tm temperatures of primers (Table 1). Next, blasting with human, fungal, viral, and microorganism samples was performed with NCBI databases for the designed primers.

Table 1. Sequences of primers used for identifying specific genes in A. baumannii isolates

Gene	Primer Sequence	Product Size	Reference
OmpA	F: GCTGGTGTTGGTGCATTCTG		
R: TCGGTGTACCCAAGCAGAA	490	This study	
Bap	F: GAAGATGCGCCAGTGTAT		
R: CTGTGCGTACGCATCATC	223	This study	
EspA	F: CAGCATTAGCTTGGCGGGA		
R: TGTCTAAAACGAACTGCGCA	392	This study	
PbpG	F: TGATGCCAGAAACAGGGGA		
R: GGTGGTGTGGTGAAGAATC	467	This study	
BasD	F: TGCTGTTTCTGGTCGCGG		
R: GTTGGTGTAGCCGCGTATG	517	This study	
PldD	F: GCTGGTGTTTGGCGGATG		
R: TAGCAGAAGCTGGTGGTT	695	This study	
BfmR	F: ACCGATGTTACCGGGAAT		
R: TCGACTCCATTCTGACCA	194	This study	
SurA	F: TATGCGTGACCCGTCGGAAC		
R: TTGACGCTGGCATACCCGTC	822	This study	
CsuA	F: TGGTGAAGCTACCAACAGGTT		
R: ACGACTACCATACATGGGCTG | 322 | This study |
DNA Extraction from *A. baumannii* Isolates

First, colonies of all *A. baumannii* isolates were separately cultured in microtubes containing 2 mL of Tryptic Soy Broth (TSB) medium and were incubated at 37°C for 24 h, which followed by the extraction of genomic DNA from colonies by the boiling method.

First, bacterial suspension was centrifuged at 10000 rpm for 10 min after 24 h incubation. Afterwards, 1 mL of the supernatant was discarded and 1 mL distilled water was added to the bacterial precipitate. This procedure was performed twice. Next, 200 µL of TE sterile buffer (pH: 8) was added to the bacterial precipitate. Microtubes containing precipitate and TE buffer were boiled at 100°C for 10 min and were immediately transferred to the temperature of -20°C for 5 min. The process of boiling and cooling was repeated three times. Afterwards, the microtubes that contained bacterial precipitation were centrifuged at 14000 rpm. Finally, the supernatant containing genomic DNA was collected in a sterile microtube for polymerase chain reaction (PCR). In order to determine the purity of extracted DNA, electrophoresis and biophotometer were carried out.

Multiplex PCR

PCR was performed using Taq DNA Polymerase Master Mix (Amplicon, Denmark) which consists of MgCl₂, dNTPs, Taq polymerase, and buffer. The final volume of each reaction for completing multiplex PCR was 25 µL containing 12 µL Master Mix for all reactions. Moreover, 0.3 µL at the concentration of 10 mM MgCl₂ was poured into a microtube from each forward and reverse primer of *ompA* gene with 1 µL of both primers for *bap* gene. In addition, 0.5 µL of both reverse and forward primers of the three genes *csuA*, *plD*, and *basD* were poured into another tube.

The amounts of 1, 0.5, and 0.5 µL of the reverse and forward primers of *pbpG*, *bfmR*, and *surA* genes were added to the third microtube, respectively. A volume of 0.5 µL of each primer of the *espA* gene was poured into another tube. The *espA* gene was evaluated separately and not as multiplex. The final concentration for each primer was 100 µmol. After that, 1 µL DNA at the concentration of 200 ng/L and 1 µL double-distilled water free of any nuclease was added to each reaction mixture to reach the intended final volume.

Multiplex PCR was carried out as follow: 1) primary denaturation for 5 min at 95°C, 2) 34 denaturation cycles of 40 sec at 95°C, 3) annealing for 45 sec (annealing temperature was determined as 59°C for all nine genes, 4) polymerization for 45 sec at 72°C, and 5) final polymerization for 5 min at 72°C. Afterwards, PCR products were electrophoresed on 1% agarose gel containing safe stains and were visualized by gel documentation. The PCR products were finally sent to Pishgam Co. (Iran) for sequencing.

Statistical Analysis

Statistical analysis was performed using the SPSS software version 22 (IBM, Chicago, Ill., USA). The relationship between antibiotic resistance and the frequency of *ompA*, *bap*, *bfmR*, *espA*, *basD*, *surA*, *pbpG*, *csuA*, and *plD* was assessed by the t-test.

Results

Identification of *A. baumannii*

Microbiologic and biochemical tests were performed for the definite determination of 50 *A. baumannii* isolates collected from the respiratory system of patients. In the laboratory, all 50 isolates were cultured on MacConkey agar and blood agar and were incubated at 37°C for 24 h. After that, the presence of Gram-negative cocccobacilli *A. baumannii* was confirmed by a microscope. Next, biochemical tests, such as IMViC, urease, TSI, OF, MR, VP, SIM, catalase, oxidase, and growth at 37°C and 42°C were conducted to diagnose diverse species of Acinetobacter.

Isolates that were lactose negative, non-motile, oxidase negative, catalase positive, indole negative, pigmentation negative, urease positive, citrate positive, H₂S negative, and MR negative were confirmed. The results of microbiologic and biochemical tests demonstrated that all 50 samples were *A. baumannii* and stored at -70°C in Peptone Water medium containing 30% glycerol.

Results of PCR for Specific Genes

All samples identified as *A. baumannii* by biochemical tests were tested by multiplex PCR for *ompA*, *bap*, *bfmR*, *plD*, *basD*, *espA*, *csuA*, *pbpG*, and *surA* genes. The results of multiplex PCR revealed that the genes *bfmR*, *bap*, *ompA*, and *csuA* involved in biofilm formation had the frequencies 100%, 98%, 96%, and 98%, respectively. Gene *espA* was found to have the lowest frequency of 10% among the isolates. The lengths of products are demonstrated in Table 1.

According to the findings of previous studies, the *bap* gene is the most important gene for biofilm formation [5]. The frequency of this gene was very high in the current study (98%) and only one isolate lacked this gene. The frequency of other investigated genes in the present study was 98%, 96%, 98%, and 100% for *plD*, *basD*, *surA*, and *pbpG*, respectively (P<0.05) (Figures 1-5). For all negative specimens, PCR was repeated twice as a single gene. The frequency of genes *basD*, *bfmR*, *bap*, *ompA*, *plD*, *csuA*, *pbpG*, and *surA* was 82% (Table 2). The PCR products were finally sent to Pishgam Co. for sequencing. The findings of sequencing showed a similarity of over 80% in isolates (P<0.05) (Figure 6).
Figure 1. Frequency of studied genes in *A. baumannii* isolated from patients

![Frequency of studied genes in A. baumannii isolated from patients](image)

Figure 2. Electrophoresis gel of the PCR products of genes *pID* (the segment of 695 base pair), *basD* (the segment of 517 base pair), *csuA* (the segment of 322 base pair); columns 1 and 2: DNA marker of 1000 base pair; column 16: negative control

![Electrophoresis gel of the PCR products of genes pID, basD, and csuA](image)

Figure 3. Electrophoresis gel of the PCR products of genes *surA* (the segment of 822 base pair), *pbpG* (the segment of 467 base pair), *bfmR* (the segment of 194 base pair); column 1: DNA marker of 1000 base pair; column 15: negative control

![Electrophoresis gel of the PCR products of genes surA, pbpG, and bfmR](image)
Figure 4. Electrophoresis gel of the PCR products of genes *ompA* (the segment of 490 base pair), *bap* (the segment of 223 base pair); column 1: DNA marker of 1000 base pair; column 17: negative control

Figure 5. Electrophoresis gel of the PCR products of genes *espA* (the segment of 392 base pair); column 1: DNA marker of 1000 base pair; column 17: negative control

Table 2. Pattern of pathogen factors in *A. baumannii* isolates isolated from the respiratory system

	ompA	bap	espA	basD	pID	bfmR	surA	CsuA	pbpG	Pattern	Percentage	Number of isolates
+	-	+	-	-	+	+	+	+	+	P1	82%	41
-	-	-	-	-	+	+	+	+	+	P2	2%	1
+	+	-	-	+	+	+	+	-	+	P3	2%	1
+	+	+	+	+	+	+	+	-	+	P4	8%	4
+	+	+	+	+	+	+	+	-	+	P5	2%	1
+	+	-	+	+	+	+	+	+	+	P6	2%	1
-	+	-	+	+	+	+	+	+	+	P7	2%	1
Discussion

During the last decade, *A. baumannii* has been identified as the most important nosocomial pathogen throughout the world. It is partly due to the living ability of this microorganism in the hospital environment and obtaining resistance mechanism leading to acute infections, especially in severely ill patients. Although extensive information exists concerning the mechanisms of antibiotic resistance in this microorganism, it cannot be stopped yet [11].

Although the severity of *A. baumannii* infection is directly related to the pathogen factors, the frequency of these factors in clinical samples of *A. baumannii* is less reported [12]. Therefore, the infection caused by this agent and the immune response of the host to these infections is still ambiguous. In the present study, the frequency of nine genes of virulence factors were evaluated in the clinical samples of *A. baumannii* isolated from the respiratory system of patients. Biofilm is considered as an important factor in clinical specimens of *A. baumannii*. The extension and thickness of biofilm structures and intracellular attachments are tightly related to *bap* family proteins, which are coded by the *bap* gene [13, 14].

Our results concerning the frequency of pathogen genes were highly similar to the findings of Chaoliu et al. in China. In the mentioned investigation, the frequency of the *bap* gene in the clinical samples of *A. baumannii* was reported as 87.5%. Furthermore, Fallah et al. in 2019 found the frequency of 92% in 100 clinical isolates in Iran [15, 16].

The *ompA* is a protein of the outer membrane that induces biofilm formation on the epithelial cells of humans. This protein is coded by *ompA* [5]. In Iran, Bardbari et al. (2017) and Zeighami et al. (2019) reported the frequency percentage of this gene as 100% in clinical isolates of *A. baumannii* isolated from respiratory samples and 81% in the isolates related to other clinical specimens, respectively [17, 18]. Their results were highly similar to the findings of the current investigation (96%). Although the *ompA* gene has a high frequency, previous studies have shown that biofilm formation is more associated with the *bap* gene, compared to the *ompA* gene [19].

The *csuA* gene belongs to the *csu* gene operon, which consists of six genes (*csuA/BABCDS*) and codes the chaperone-usher secretory system as a very important part of pilus generation and biofilm structure formation on non-living surfaces [20]. The *bfmR* gene as the regulatory part of the two-component regulating system had a frequency of 100%. The presence of this gene in *A. baumannii* isolates is essential for pilus generation and biofilm formation on plastic surfaces [6]. Thummeepak et al., in a study in Thailand (2016) on *A. baumannii* clinical samples reported a frequency of 84% for the latter gene [5]. These findings revealed that most of the clinical isolates of *A. baumannii* had the potential for biofilm forming. The frequency of the *espA* gene in the present study (10%) was lower than the other genes that contribute to biofilm formation, including *csu, bfmR, espA, ompA*, and *bap*.

Thummeepak et al. and Kim et al. (2019) observed the frequencies of 30% and 50% for the mentioned gene in 255 clinical samples and 181 specimens
isolated from blood culture in South Korea, respectively [5, 21]. Two other genes investigated in the current study were \(pID\) and \(surA\), both of which are serum resistance factors [7, 22]. Chaoliu et al. reported the frequency of 95% for \(surA\) and 92% for \(pID\), which is consistent with our results [15].

The \(basD\) was another gene with a frequency of 96% in the current study. Chaoliu et al. and Kim et al. revealed it to be 92% and 98%, respectively [15, 21]. Finally, the \(pbpG\) gene that codes PBPs had a frequency of 100% in \(A. baumannii\) isolates. Although PBPs are the receptors of beta-lactam antibiotics, are known as one of the pathogen factors in \(A. baumannii\) isolates and account for bacterial survival in human serum and the soft tissues of animal models [20].

The findings of some investigations had a very low similarity with our results. The latter discrepancy could be attributed to the type of studied samples, study time, and the type of used antibiotic disk. On the other hand, these bacteria benefit from diverse mechanisms for pathogenicity, scape host immune system, and antibiotic resistance. Numerous studies have been performed in Iran on the epidemiologic characteristics and drug resistance pattern of \(A. baumannii\) isolates. However, it is necessary to consider the role of this bacterium as a potentially dangerous factor in nosocomial infections.

Conclusion

The genes involved in the pathogenicity of \(A. baumannii\) have a high frequency and the nosocomial prevalence of this bacterium has elevated. Therefore, large-scale studies and protection programs, such as infection control in the ICU seem to be necessary. Limiting the consumption of antibiotics, development and changing of hygiene plans for contaminated facilities, and classifying patients in whom this bacterium has colonized are among the beneficial approaches for controlling the spread of \(A. baumannii\).

Acknowledgment

The present paper is related to the Master thesis of the first author.

Financial Support

The current study has financially been supported by the Research Deputy of Iran University of Medical Sciences with the grant code of 98-4-4-16126. The authors would like to thank the latter deputy.

Conflict of Interest

The authors declared no conflict of interest.
شهروز زنهاي مربوط با فاكتور و پروتئین و بیوفیلم در اسپینتوباکتر پرومان جدایی
از نمونه تنفیذی بیماران بستری در بیمارستان امام خمینی تهران، ایران در سال 1397

هادی مرزی، 1. شیوا میرکلاته‌ری، 1. بهروز صادقی کلاته‌ری، 1. نور امیر مهری‌مرفورد 1

1. گروه میکروب‌شناسی، دانشکده پزشکی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی ایران، تهران، ایران

اطلاعات مقاله

تاریخ مقاله
دریافت: 19/10/1399
پذیرش: 25/12/1399
انتشار آنلاین: 1400/4/7
موضوع: اثرپذیری پنسیکلی

نویسندگان مسئول:
دکتر شهره مهری‌مرفورد، گروه میکروب‌شناسی، دانشکده پزشکی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی ایران، تهران، ایران

ایمیل: o amirmozaferi@iuma.ac.ir

مقدمه

اسپینتوباکتر پرومان یک کوکوبیک اورفیرمیکی غیرتخمیری هوتی و متعدد به خانواده مورکلاسه است. این باکتری به طور معمول از محتوای بیمارستان و بیمارستان بستری در بیمارستان جهادی و جزی پاتولوژی فرسوده است اسپینتوباکتر، بطوری‌ای اسپینتوباکتر پرومان یک ساختار خاصی به نام پروتئین Bap در حفره دهان و جلوی لوزه مستقیم فعالیت می‌کند که این مسئله خود از حفاظت ایپیدمیولوژی و پاتولوژی بیمارستانی حائز همچنین است

برخی از مهم‌ترین عوامل ناامنی از این باکتری اندکارکید، پنیونی، متانوری، نیتروژناها و ریکاربیونی هستند

[1] بیش از 43% افراد سالمند، این انتقال را در سطح بالین خود مجله میکروب‌شناسی پزشکی ایران Majallah-ī mikrub/shināšt-ī pizshīkūt-ī Irān.
مواد و روش‌ها

جداسازی و تعیین سوبه‌ها در این پژوهش، 50 جدایی استنوتاکریت بومانی ذخیره شده در مرکز یک کلیسیون میکروآگرام‌های داشته‌ایم. علوم پزشکی ایران به‌صورت تصادفی انتخاب شدند. این بافت‌ها از نمونه‌های بالینی جداسازی شده از استخوان‌های دستگاه تفنگی بیماران مراجعه‌کننده به بیمارستان امام خمینی تهران در سال 1397 انتخاب شدند. [9]. به‌منظور حصول اطلاع‌های مربوط به این جدایی‌ها، نسته‌های باهیون‌دیا (ابسیدار، کالیفرنیا، فیوز)، TS1، انداول، SIM)، 256، 125 و 79 (شرکت سیمیوتیک، لکنزو) (شرکت مک آلت) (شرکت سیمیوتیک، لکنزو) (شرکت مک آلت) از مرک آلامان در انتخاب کیفیت این هر دو آزمایشگاه‌های SSP و پایه‌سازی داده شدند. [10].

طرز برای‌پرداخت

سایت‌های هدف انتخاب‌شده برای این پایه‌سازی استنوتاکریت بومانی (exopolysaccharide) Espa که توسط نک‌های این پایه‌سازی ساخت و ساز سلول افزایش یافته است، espA محافله سلول‌های افزایش می‌شود. برای تحقیق و تکنیک بیولوژیکی نشان داده می‌شود، espA و همکاران در سال 1396، در ارتباط با Thunmepak [5].

پروتئین سیستم ترشح شبام چنارون و آدر تولید می‌کنند که برای مونتاژ بیلی و تکنیک بیولوژیک روش سطح نقش دارد. بیان این پروتئین تحقیق سیستم تنش‌پذیری کنیت کشفه محصول Bfms/BfmR است که شامل پی کناری که کشفه محصول Bfms/BfmR از این Bfms سیستم برای تکنیک بیولوژیک روش سطح پای است. استفاده می‌شود در مطالعات قبلی داشته شده است که این طبق قانون باید با کثیفیت بیلی توانایی اتصال و تکنیک بیولوژیک بسیاری می‌شود. فاراونی این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده این نشان دهنده غلیظ پروتئین Bfms/BfmR با بازگشت به ثابت کردن نشان دهنده این نشان دهنده گزارش شده است. استفاده ای

جدول 1. توالی پایه‌سازی مورد استفاده برای انتخاب شناسایی زنی بیماری‌زا در سوبه‌ها/استنوتاکریت بومانی

Gene	Primer Sequence	Product Size	Reference
OmpA	F: GCTGGTGTTGGCCTTCTG R:TGGATTGCAGCCAAGGGAAA	490	This study
Bap	F:TGGAGTAGGCTGCTGATG R:TCTGGCTGCCACTATCT	223	This study
EspA	F:ACATAGTGATGATGATG R:TCTGGCTGCCACGCTGAA	392	This study
Pgp	F:TCGATCCGAGCAACGGTAGGA R:GGTCGCGTGGTTGAGGAACT	467	This study
BasD	F: TCGTGGTCTTCTTGGC GTTGGATTGTTGCGCCGATT	517	This study
Pld	F: GCTTGGCGTCGAGTTG TACGGCAGACGGT	695	This study
BfmR	F: ACAGGGATGAACTGACCAATCAGCGGAGGAC	194	This study
SurA	F: GATCGGATGCGACCTGGAAAC R: TTAGCGTGGCATAACCCTT	822	This study
CsaA	F: TGGTGAAGGTACCCAGTTG R:ACGACTACCTACATGGGTC	322	This study
استخراج DNA از ایزوله‌های استیتیوکاکتر بومی

ابتدا مقداری از کلئیه‌های هر یک از سویه‌های جذب‌کننده استیتیوکاکتر بومی بر روی تبلیغات محلول رنگی و مانیتورینگ خونشان را بر روی نمود. سپس سیطزیت تریکارات محققان در درجه نهایی آب از این سویه‌ها می‌کردند. سپس با استفاده از PCR و میکروتایپولیز در دو پارامتر خاص: تریکارات و تعقیب کردن، با توجه به نتایج، این سیطزیت سیپس و سیپس‌های میکروتایپولیزی در کل نتیجه در هر دو پارامتر مؤثر بود.

تجزیه و تحلیل آماری

آنالیز آماری که توسط آمار نسخه 22 SPSS Inc. (Chicago, IL., USA /phpG/ csuA/ ompA/ bap/ hfmR/ espA/ bds/ pld) و رابطه بین مقادیر آنتی‌بیوتیک و فراوانی زن‌های بارا آزمون آماری بررسی گردید. surA

یافته‌ها

شناختی استیتیوکاکتر بومی

به‌منظور تعیین قطعی 50 سویه/استیتیوکاکتر بومی، جدید شده از دسته‌نامی سیپس، تست‌ها، میکروشیمی، و بیوشیمیایی انجام گردید. در آزمایش‌های میکروشیمی عادیک آگار و بایدن آگار کشت داده شد و در 44 ساعت در درجه 37 سیلوس انتهای کُر در اثر مقادیر (سک) و وجود گزینه‌های میکروشیمی گرم منفی استیتیوکاکتر روش میکروشیمی تایید شد. سپس، برای تشخیص گونه‌های مختلف استیتیوکاکتر، تست‌های بیوشیمیایی اورژانس، کانالز، و آکسیدارد رشته در 37 و 24 ساعت سیپس و استیتیوکاکتر بومی، تست خاص از بررسی نتایج در میکروشیمی و بیوشیمیایی شامل داده که استیتیوکاکتر در دارای واثک لان‌زون منفی، غیر محکم اکسیداز منفی، کاتالاز منفی، H2S انداز منفی، به‌گونه‌ای اورژانس، سیتولات منفی، انداز منفی، میکروشیمی و بیوشیمیایی، که با استفاده از نتایج در میکروشیمی و بیوشیمیایی، که با استفاده از نتایج در میکروشیمی و بیوشیمیایی نتایج در میکروشیمی و بیوشیمیایی
پرای بررسی وجود زن‌های بیماری‌زا در بیمارانی که در روش بیوشیمیایی سنتی‌بکتری‌پیوسته آزمایش
قرار گرفتند تشخیص داده شدند از نظر دارویی. ژن‌های مورد آزمایش surA /phpG /csuA / espA / basD / plD
Multiplex PCR قرار گرفتند. نتایج حاصل از نشان داد که زن‌های دچار در تشکیل بیوفیلم با فراوانی
ژن espA (96%) و bap (98%) مشاهده شدند. زن‌های دچار در
تشکیل بیوفیلم با کمبین ژن‌های (10%) در بین ایزوله‌ها
تشکیل شده بود. طول محصولات در جدول 2 اشاره شده است.

طبق نتایج مطالعات قبلی، زن bap موثرترین زن برای
تشکیل بیوفیلم است [5]. فراوانی این زن در این مطالعه بسیار بالا

Schema 1. درصد فراوانی زن‌های پایان‌یافته مصرف سنتی‌بکتری‌پیوسته در بیماران

Schema 2. زن حاصل از الکتروفورز محصول PCR مربوط به ژن‌ها plD (قطعه 647 جفت باری)، surA (قطعه 547 جفت باری) و csuA (قطعه 368 جفت باری) و DNA (قطعه 1237 جفت باری) در نمایش داده شد.
شکل ۲. زل حاصل از الکتروفورز محصول PCR مربوط به زنده‌ای suPA (قطعه ۲۲۸ جفت باری)، ستون ۱۱ (مارکر ۱۰۰۰ جفت باری A), ستون ۱۵ (کنترل منفی)

شکل ۴. زل حاصل از الکتروفورز محصول PCR مربوط به زنده‌ای ompA (قطعه ۴۹۰ جفت باری)، ستون ۱۷ (مارکر ۱۰۰۰ جفت باری A), ستون ۱۷ (کنترل منفی)

شکل ۵. زل حاصل از الکتروفورز محصول PCR مربوط به زنده‌ای espA (قطعه ۳۹۲ جفت باری)، ستون ۱۷ (مارکر ۱۰۰۰ جفت باری A), ستون ۱۷ (کنترل منفی)
بحث

در طی دهه گذشته، حضور استیتوکتر بیماری‌ای باعث مبهم‌نمایی شده بیماران را بررسی کرده که بیماری‌های گوناگونی از مهم در نمونه‌های پاتوژنیک پاتوژنیک پاتوژنیک مطرح است. گسترش و ضخامت ساختارهای پاتوژنیک و اتصالات داخل سلولی از جمله نگرانی با پروتئین‌های خاتون‌های bap دارد که می‌تواند در زن bap حاصل از درصد فراوانی زن‌های مطالعه حاضر با مطالعه و همکاران که در چنین انجام شده، شهایت زیادی دارد. در مطالعه مذکور بین 88 نمونه بالینی استیتوکتر بیماری فراوانی و Fallah همکاران در مطالعه AY 5 % bap گزارش گردیده. همکاران در سال 2017 روی 100 ایزوله بالینی در ایران فراوانی این زن 94 % گزارش شد [16].[15].

یک پروتئین غشایی خارجی است که پژوهشی است، استیتوکتر بیماری-زا باعث می‌شود. در ۲ مطالعه گروهی در ایران که bap bap روز سلول‌های اتیپیال انسان است. این پروتئین توسط نتایج گزارش کرد. در نتیجه چگونگی استیتوکتر بیماری-زا در نمونه‌های بالینی و یک پیش‌بینی احتمالی مقایسه بررسی شده است. با این حال، مبهم‌نمایی از ابزار فراوانی این فراوانی کم‌تر گزارش می‌شود [13] در نتیجه چگونگی استیتوکتر بیماری-زا در هاله ای از ابزار فراوانی مانده است. در این مطالعه، فراوانی تعداد 9 عدد از نمونه‌های فراوانی کم‌تر در نمونه‌های بالینی
نتیجه گیری

با توجه به میزان فرآیند بالای زن‌های دخیل در پاتوئزین، افزایش میزان شیوع بیمارسایین استیتگنیک پاتوئزین، می‌تواند طراحی مطالعه‌ای در سطح ویژه و همچنین بیماران‌های خاصی‌نیز نظر کننده فردیتری در این زمینه باشد.

محدود کردن تنش‌های زن‌سکس نسبت به تحقیقات انجام شده برای تحقیقات جدید از این زمینه مدیران این بکار رفته که این چکیده در آن‌جا مستقیم شده است. راهکار مفیدی برای کنترل انتشار این باکتری است.

سیاست‌گذاری

این مقله نتیجه پایان‌نامه کارشناسی ارشد نویسنده اول است.

تظاهر در مناطق

هجی‌گونه تعارض منافعی وجود ندارد.

منابع مالی

به‌ندرن‌های این مقاله تحقیق به‌وسیله معاون‌زاده پژوهشی دانشگاه علوم پزشکی ایران طبق حریم مصوب شماره ۱۳۰۱۴-۱۳۰۷-۹۸ تایم‌گذاری است.
Reference

1. Eliopoulos, G.M., L.L. Maragakis, and T.M. Perl. Acinetobacter baumannii: epidemiology, antimicro-bial resistance, and treatment options. Clin Infect Dis. 2008; 46(8): 1254-63. [DOI:10.1086/529198] [PMID]

2. Jeon, B.-C, Jeong SH, Bae IK, Kwon SB, Lee K, Young D, et al. Investigation of a nosocomial out-break of imipenem-resistant Acinetobacter baumannii producing the OXA-23 β-lactamase in Korea. J Clin Microbiol. 2005; 43(5): 2241-5 [DOI:10.1128/JCM.43.5.2241-2245.2005] [PMID] [PMCID]

3. Villers D, Espaze E, Coste-Burel M, Giauffret F, Ninin E, Nicolas F, Richert H. Nosocomial Acinetobacter baumannii infections: microbiological and clinical epidemiology. Ann Intern Med. 1998; 129(3):182-9. [DOI:10.7326/0003-4819-129-3-199808010-00003] [PMID]

4. Dijkshoorn, L., A. Nemec, and H. Seifert. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol. 2007; 5(12): 939-51. [DOI:10.1038/nrmicro1789] [PMID]

5. Thummeepak, R., Phattaraporn Kongthai, Udomluk Leungtongkam, Suthirat Sitthisak. Distribution of virulence genes involved in biofilm formation in multidrug resistant Acinetobacter baumannii clinical isolates. Int Microbiol. 2016; 19(2): 121-9

6. Cerqueira, G.M. and A.Y. Peleg. Insights into Acinetobacter baumannii pathogenicity. IJU MB life. 2011; 63(12): 1055-60. [DOI:10.1002/iumb.533] [PMID]

7. Chang-Ro Lee, Jung Hun Lee, Moonhee Park, Kwang Seung Park, II Kwon Bae, Young Bae Kim, et al., Biology of Acinetobacter baumannii: patho-genesis, antibiotic resistance mechanisms, and prosp-ective treatment options. Front Cell Infect Microbiol. 2017; 7: p. 55. [DOI:10.3339/fcimb.2017.00055]

8. Song, W.Y., Jeong D, Kim J, Lee MW, Oh MH, Kim HJ, et al., Key structural elements for cellular uptake of acinetobactin, a major siderophore of Acinetobacter Baumannii. Org Lett. 2017; 19(3): 500-3 [DOI:10.1021/acs.orglett.6b03671] [PMID]

9. Maryam R, Golnaz YZ, Mojgan O, Malíte T, Nour A. Identification of five phylogenetic groups of carbapenemase (bla OXA-23, 24, 51, 58, 143) in Acinetobacter baumannii strains isolated from clinical samples in Iran by multiplex PCR. Der Pharma Chemica. 2015; (7):11-6.

10. Jane F. Turton, Neil Woodford, Judith Glover, Susannah Yarde, Mary E. Kaufmann, Tyrone L. Pitt, Identification of Acinetobacter baumannii by detect-ion of the blaOXA-51-like carbapenemase gene intri-nsic to this species. J Clin Microbiol. 2006; 44(8): 2974-6. [DOI:10.1128/JCM.01021-06] [PMID] [PMCID]

11. Chun-Chiheh Tseng, Yun-Hsuan Tsai, Anren Hu, Je-Wen Liou, Kai-Chih Chang ., Altered susceptibility to the bacterial effect of photocatalytic oxidation by TiO 2 is related to colistin resistance development in Acinetobacter baumannii. Appl Microbiol Biotechnol. 2016; 100(19): 8549-8561. [DOI:10.1007/s00253-016-7654-x] [PMID]

12. Morris FC, Dexter C, Kostoulis X, Uddin MI, Peleg A, The mechanisms of disease caused by Acinetobacter baumannii. Front Microbiol. 2019; 10: 1601. [DOI:10.3389/fmicb.2019.01601] [PMID] [PMCID]

13. Longo, F., C. Vuotto, and G. Donelli, Biofilm formation in Acinetobacter baumannii. New Microbiol, 2014; 37(2):119-27.

14. Yang C-H, Su P-W, Moi S-H, Chuang L-Y, Biofilm formation in Acinetobacter Baumannii: genotype-phenotype correlation. Molecules. 2019; 24(10); 1849. [DOI:10.3390/molecules24101849] [PMID] [PMCID]

15. Liu C, Chang Y, Xu Y, Luo Y, Wu L, Mei Z ,et al., Distribution of virulence-associated genes and antimicrobial susceptibility in clinical Acinetobacter baumannii isolates. Oncotarget. 2018; 9(31): 21663. [DOI:10.18632/oncotarget.24651] [PMID] [PMCID]

16. Fallah, A, Rezaee MA, Hasani A, Barhaghi MHS, Kafil HS et al., Frequency of β-lactam and cpaA virulence genes in drug resistant clinical isolates of Acinetobacter baumannii and their role in biofilm formation. Iran J Basic Med Sci. 2017; 20(8): 849

17. Zeighami H, Valadkhani F, Shapouri R, Samadi E, Haghí F, Virulence characteristics of multidrug resistant biofilm forming Acinetobacter baumannii isolated from intensive care unit patients. BMC Infect Dis. 2019; 19(1): 629. [DOI:10.1186/s12879-019-4272-0] [PMID] [PMCID]

18. Bardbari A.M, Arabestani MR, Karami M, Keramat F, Alkhani MY, Bagheri KP, Correlation between ability of biofilm formation with their responsible genes and MDR patterns in clinical and environmental Acinetobacter baumannii isolates. Microb Pathog. 2017; 108: 122-8. [DOI:10.1016/j.micpath.2017.04.039] [PMID] [PMCID]

19. alib SS, Abdulrahman TR, Ali SH. Detection of Some Biofilm Genes Related with Multidrug-Resistant forming Acinetobacter baumannii Isolated from Clinical Isolates. Iraqi J Med Sci. 2018; 16(4): 430-8.

20. McConnell, M.J., L. Actis, and J. Pachón, Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev. 2013; 37(2): 130-55. [DOI:10.1111/j.1574-6976.2012.00344.x] [PMID]

21. Yoon E-J, Kim D, Lee H, Lee HS, Shin JH, Uh Y, et al., Counter clinical prognoses of patients with bloodstream infections between causative Acinetobacter baumannii clones ST191 and ST451 belonging to the international clonal lineage II. Front Public Health. 2019; 7: 233. [DOI:10.3389/fpubh.2019.00233] [PMID] [PMCID]

22. Jacobs, A.C., Hood I, Boyd KL, Olson PD, Morrison JM, Carson S, et al., Inactivation of phospholipase D diminishes Acinetobacter baumannii pathogenesis. Infect Immun. 2010; 78(5): 1952-62. [DOI:10.1128/IAI.00889-09] [PMID] [PMCID]