RESTRICTED WEAK TYPE INEQUALITIES FOR THE ONE-SIDED HARDY-LITTLEWOOD MAXIMAL OPERATOR IN HIGHER DIMENSIONS

Fabio Berra, Santa Fe

Received August 20, 2021. Published online May 5, 2022.

Abstract. We give a quantitative characterization of the pairs of weights \((w, v)\) for which the dyadic version of the one-sided Hardy-Littlewood maximal operator satisfies a restricted weak \((p, p)\) type inequality for \(1 \leq p < \infty\). More precisely, given any measurable set \(E_0\), the estimate

\[
w(\{x \in \mathbb{R}^n : M^{+d}(\lambda E_0)(x) > t\}) \leq \frac{C[\{(w, v)\}]_{A^+_{p,d}(\mathcal{R})}^p}{t^p} v(E_0)
\]

holds if and only if the pair \((w, v)\) belongs to \(A^+_{p,d}(\mathcal{R})\), that is,

\[
\frac{|E|}{|Q|} \leq [(w, v)]_{A^+_{p,d}(\mathcal{R})} \left(\frac{v(E)}{w(Q)} \right)^{1/p}
\]

for every dyadic cube \(Q\) and every measurable set \(E \subset Q^+\). The proof follows some ideas appearing in S. Ombrosi (2005). We also obtain a similar quantitative characterization for the non-dyadic case in \(\mathbb{R}^2\) by following the main ideas in L. Forzani, F.J. Martín-Reyes, S. Ombrosi (2011).

Keywords: restricted weak type; one-sided maximal operator

MSC 2020: 42B25, 28B99

1. Introduction

In 1986 Sawyer in [10] started the theory of one-sided weights. Namely, he introduced the class of weights \(A^+_p\) and showed that this class is necessary and sufficient for the weighted boundedness of the one-sided Hardy-Littlewood maximal function.

The research has been supported by CONICET and UNL.

DOI: 10.21136/CMJ.2022.0296-21

© Institute of Mathematics, Czech Academy of Sciences 2022.
Some extensions and generalizations were given consequently in the articles [5], [6] and [7], among others. In [9], the author characterizes the functions w for which the one-sided Hardy-Littlewood maximal operator

$$M^+_v f(x) = \sup_{h > 0} \frac{\int_{x}^{x+h} |f| v}{\int_{x}^{x+h} v}$$

verifies a restricted weak (p, p) type on the real line, that is, a weak type inequality applied to the function $f = \chi_E$, where E is an arbitrary measurable set. More precisely, the inequality

$$w(\{x \in \mathbb{R}: M^+_v(\chi_E)(x) > t\}) \leq C \frac{1}{t^p} v(E)$$

holds if and only if $w \in A^+_p(\mathbb{R})(v \, dx)$. This set corresponds to the class of weights that satisfy a restricted A^+_p condition with respect to the measure $d\mu = v(x) \, dx$, see the section below for details.

Although the theory in this setting was deeply developed and the main results were improved and generalized, most of the results were set on \mathbb{R}.

In [8], Ombrosi characterized the pair of weights (w, v) for which the inequality

$$(1.1) \quad w(\{x \in \mathbb{R}^n: M^{+,d} f(x) > t\}) \leq C \frac{1}{t^p} \int_{\mathbb{R}^n} |f|^p v$$

holds for every positive t, and where $1 \leq p < \infty$. The operator $M^{+,d}$ is a dyadic version of M^+ defined on \mathbb{R}^n. A similar result was also obtained for $M^{-,d}$.

It is well-known that the operators $M^+ f$ and $M^{+,d} f$ are pointwise equivalent on \mathbb{R}, see [6]. However, this result is false in general in higher dimensions. This means that a non-dyadic version of (1.1) cannot be obtained directly from the dyadic case, and the problem of finding such an estimate remained open.

In [1], Forzani, Martín-Reyes and Ombrosi proposed a way to generalize the operators M^+ and M^- to higher dimensions and solved the problem discussed above on \mathbb{R}^2. The technique used, although newfangled and quite delicate, relied heavily upon the dimension. This means that the corresponding problem for $n \geq 3$ still remains open.

Related to strong estimates in dimension greater than one, some partial results were obtained in [4]. At this point we would also like to mention interesting applications of this theory to parabolic differential equations obtained by Kinnunen and Saari in [2] and [3].

In this article we use some ideas of [1] and [8] to give a characterization of the pairs of weights for which the one-sided Hardy-Littlewood maximal operator satisfies a restricted weak type inequality in higher dimensions.
Concretely, for the dyadic case we have the following result.

Theorem 1.1. Let \((w, v)\) be a pair of weights and \(1 \leq p < \infty\). Then the following statements are equivalent:

(a) The operator \(M^{+,d}\) is of restricted weak \((p, p)\) type with respect to \((w, v)\), that is, there exists a positive constant \(C\) such that the inequality

\[
 w(\{x \in \mathbb{R}^n : M^{+,d}(X_E)(x) > t\}) \leq \frac{C[(w, v)]^p_{A^{+,d}_p(\mathbb{R})}}{t^p} v(E)
\]

holds for every positive \(t\) and every measurable set \(E\).

(b) \((w, v)\) belongs to \(A^{+,d}_p(\mathbb{R})\).

For the non-dyadic case we prove the next theorem.

Theorem 1.2. Let \((w, v)\) be a pair of nonnegative measurable functions defined in \(\mathbb{R}^2\) and \(1 \leq p < \infty\). The following conditions are equivalent:

(a) The operator \(M^+\) is of restricted weak \((p, p)\) type with respect to \((w, v)\), that is, there exists a positive constant \(C\) such that the inequality

\[
 w(\{x \in \mathbb{R}^2 : M^+(X_E)(x) > t\}) \leq \frac{C[(w, v)]^p_{A^+_p(\mathbb{R})}}{t^p} v(E)
\]

holds for every positive \(t\) and every measurable set \(E\).

(b) \((w, v)\) belongs to \(A^+_p(\mathbb{R})\).

The article is organized as follows. In Section 2 we give the preliminaries and definitions required for these main results. In Sections 3 and 4 we prove Theorems 1.1 and 1.2, respectively.

2. Preliminaries and basic definitions

We shall deal with dyadic cubes with sides parallel to the coordinate axes. Given a dyadic cube \(Q = \prod_{i=1}^{n} [a_i, b_i)\), we denote with \(Q^+ = \prod_{i=1}^{n} [b_i, 2b_i - a_i)\) and \(Q^- = \prod_{i=1}^{n} [2a_i - b_i, a_i)\).

Given a positive number \(s\), we denote \((Q)^{s,+} = \prod_{i=1}^{n} [a_i, a_i + sh)\), where \(h = b_i - a_i\).

Similarly, we denote \((Q)^{s,-} = \prod_{i=1}^{n} [b_i - sh, b_i)\).

For \(x = (x_1, \ldots, x_n)\) in \(\mathbb{R}^n\) and \(h > 0\), we denote \(Q_{x,h} = \prod_{i=1}^{n} [x_i, x_i + h)\) and \(Q_{x,h^-} = \prod_{i=1}^{n} [x_i - h, x_i)\). The one-sided Hardy-Littlewood maximal operators are
given by
\[
M^+ f(x) = \sup_{h > 0} \frac{1}{|Q_{x,h}|} \int_{Q_{x,h}} |f(y)| \, dy, \quad \text{and} \quad M^- f(x) = \sup_{h > 0} \frac{1}{|Q_{x,h^-}|} \int_{Q_{x,h^-}} |f(y)| \, dy.
\]

We shall consider the dyadic version of these operators, that is,
\[
M^{+,d} f(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q^+} |f(y)| \, dy \quad \text{and} \quad M^{-,d} f(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q^-} |f(y)| \, dy,
\]
where the supremum is taken over dyadic cubes.

Given \(1 < p < \infty\), we say that a pair of weights \((w, v)\) belongs to \(A^+_p\) if there exists a positive constant \(C\) such that the inequality
\[
\left(\int_Q w \right) \left(\int_{Q^+} v^{1-p'} \right)^{p-1} \leq C |Q|^p
\]
holds for every cube \(Q\) in \(\mathbb{R}^n\).

When \(p = 1\), we say that \((w, v)\) belongs to \(A^+_1\) if there exist a positive constant \(C\) that verifies
\[
M^- w(x) \leq C v(x)
\]
for almost every \(x\). The smallest constant for which these inequalities hold is denoted by \([[(w, v)]_{A^+_p}]\).

Similarly, we say that \((w, v)\) belongs to \(A^{+,d}_p\) if the inequalities above hold for every dyadic cube \(Q\) and when \(p = 1\), the involved operator is \(M^{-,d}\). In this case, the corresponding smallest constant is denoted by \([[(w, v)]_{A^{+,d}_p}]\).

For \(1 \leq p < \infty\) we say that \((w, v) \in A^{+,d}_p(\mathbb{R})\) if there exists a positive constant \(C\) such that the inequality
\[
(2.1) \quad \frac{|E|}{|Q|} \leq C \left(\frac{v(E)}{w(Q)} \right)^{1/p}
\]
holds for every dyadic cube \(Q\) and every measurable set \(E \subset Q^+\). The smallest constant \(C\) for which the inequality above holds will be denoted by \([[(w, v)]_{A^{+,d}_p(\mathbb{R})}]\).

We say that a pair of weights \((w, v)\) belongs to \(A^+_p(\mathbb{R})\), \(1 \leq p < \infty\), if inequality (2.1) holds for every cube \(Q\) and every measurable subset \(E\) of \(Q^+\).

Remark 2.1. By replacing \(Q^+\) by \(Q^-\) and \(M^-\) by \(M^+\) we can define the \(A^-_p\) classes for \(1 \leq p < \infty\). The dyadic version of these classes, \(A^{-,d}_p\), are defined by considering dyadic cubes on their definitions. The same occurs for \(A^+_R(\mathbb{R})\) and \(A^{-,d}_p(\mathbb{R})\).

Throughout the paper we shall present the results for \(M^+\), but the same arguments can be adapted to get the corresponding versions for \(M^-\).
The novelty of considering restricted weak type inequalities relies on that although we take a particular function \(f \), we consider a wider class of weights. This property is contained in the following proposition.

Proposition 2.1. \(A_p^+ \subset A_p^+(\mathbb{R}) \) for every \(1 < p < \infty \), and \(A_1^+ = A_1^+(\mathbb{R}) \).

Proof. Let \(1 < p < \infty \) and assume that \((w, v) \in A_p^+ \). Fix a cube \(Q \) and a measurable subset \(E \) of \(Q^+ \) with \(|E| > 0 \). Then

\[
|E| \leq \left(\int_E v \right)^{1/p} \left(\int_{Q^+} v^{1-p'} \right)^{1/p'} \leq [(w, v)]_{A_p^+}^{1/p} \left(\frac{v(E)}{w(Q)} \right)^{1/p'} |Q|,
\]

which implies that \((w, v) \in A_p^+ \) and \([(w, v)]_{A_p^+(\mathbb{R})} \leq [(w, v)]_{A_p^+}^{1/p} \).

On the other hand, set \(p = 1 \) and assume that \((w, v) \in A_1^+ \). Fix a cube \(Q \) and a measurable set \(E \subset Q^+ \) with positive measure. Then for every \(x \in E \) we have that

\[
\frac{1}{|Q|} \int_{(Q^+)^-} w \leq [(w, v)]_{A_1^+} v(x),
\]

which implies that

\[
\frac{w(Q)}{|Q|} \leq [(w, v)]_{A_1^+} \frac{v(E)}{|E|},
\]

and then \((w, v) \in A_1^+ \). Conversely, fix \(x \) and \(h > 0 \). Let \(Q = Q_{x,h}^- \), \(\lambda > \text{ess inf } v \) and \(E = \{ y \in Q_{x,h} : v(y) < \lambda \} \). Then we have that

\[
\frac{w(Q_{x,h}^-)}{|Q_{x,h}^-|} \leq [(w, v)]_{A_1^+(\mathbb{R})} \lambda.
\]

By letting \(\lambda \to \text{ess inf } v \) and then taking supremum over \(h \) we get that

\[
M^- w(x) \leq [(w, v)]_{A_1^+(\mathbb{R})} v(x).
\]

\[\square\]

The following lemma states a useful property for weights on the \(A_p^+(\mathbb{R}) \) class.

Lemma 2.1. Let \(1 \leq p < \infty \), \((w, v) \) be a pair of weights in \(A_p^+(\mathbb{R}) \) and \(a, b \) two positive constants. Then

(a) if \(a \leq b \), then \((w_0, v_0) = (\max\{w, a\}, \max\{v, b\}) \) belongs to \(A_p^+(\mathbb{R}) \) and

\[
[(w_0, v_0)]_{A_p^+(\mathbb{R})} \leq 2 \max\{1, [(w, v)]_{A_p^+(\mathbb{R})}\};
\]

(b) \((w_1, v_1) = (\min\{w, a\}, \max\{v, b\}) \) belongs to \(A_p^+(\mathbb{R}) \) and

\[
[(w_1, v_1)]_{A_p^+(\mathbb{R})} \leq [(w, v)]_{A_p^+(\mathbb{R})}.
\]

1007
Proof. Let us first prove statement (a). Fix a cube Q and a measurable subset E of Q^+. We have to show that there exists a positive constant C, independent of Q and E, such that
\[
\frac{w_0(Q)}{v_0(E)} \leq C \left(\frac{|Q|}{|E|} \right)^p.
\]
We write
\[
w_0(Q) = \int_{Q \cap \{w \geq a\}} w_0 + \int_{Q \cap \{w < a\}} w_0 = w(Q \cap \{w \geq a\}) + a|Q \cap \{w < a\}|,
\]
and therefore,
\[
\frac{w_0(Q)}{v_0(E)} = \frac{w(Q \cap \{w \geq a\})}{v_0(E)} + \frac{a|Q \cap \{w < a\}|}{v_0(E)} = I + II.
\]
Now observe that
\[
I \leq \frac{w(Q)}{v(E)} \leq [(w, v)]_{A^+_p(R)} \left(\frac{|Q|}{|E|} \right)^p.
\]
On the other hand,
\[
II \leq \frac{a|Q|}{b|E|} \leq \left(\frac{|Q|}{|E|} \right)^p,
\]
since $a \leq b$ and $|Q| \geq |E|$. Therefore, $(w_0, v_0) \in A^+_p(R)$ and $[(w_0, v_0)]_{A^+_p(R)} \leq 2 \max\{1, [(w, v)]_{A^+_p(R)}\}$.

For the proof of statement (b), observe that $w_1 \leq w$ and $v_1 \geq v$, so
\[
\frac{w_1(Q)}{v_1(E)} \leq \frac{w(Q)}{v(E)} \leq [(w, v)]_{A^+_p(R)} \left(\frac{|Q|}{|E|} \right)^p,
\]
which shows that $(w_1, v_1) \in A^+_p(R)$ with $[(w_1, v_1)]_{A^+_p(R)} \leq [(w, v)]_{A^+_p(R)}$. \qed

3. Restricted weak (p, p) type of $M^{+, d}$ in \mathbb{R}^n

We devote this section to proving Theorem 1.1. We start with the following lemma which will be useful for this purpose. This result is an adaptation of Lemma 2.1 in [8].

Lemma 3.1. Let $1 \leq p < \infty$, $(w, v) \in A^{+, d}_p(R)$ and $\mu > 0$. Let E be a measurable set such that $0 < |E| < \infty$ and $\{Q_j\}_{j \in \Gamma_\mu}$ a disjoint family of dyadic cubes such that for every $j \in \Gamma_\mu$ we have
\[
\mu < \frac{|E \cap Q_j^+|}{|Q_j|} \leq 2\mu.
\]
Then we have that
\[
\sum_{j \in \Gamma_\mu} w(Q_j) \leq C [(w, v)]^p_{A^{+, d}_p(R)} v \left(E \cap \left(\bigcup_{j \in \Gamma_\mu} Q_j^+ \right) \right).
\]
Proof. For \(m \geq 0 \) we define the sets

\[i_m = \{ j \in \Gamma_{\mu} : \text{there exist exactly} \ m \ \text{cubes} \ Q_s^+ : Q_j^+ \subseteq Q_s^+ \ \text{with} \ s \in \Gamma_{\mu} \} \]

and also

\[\sigma_m = \bigcup_{j \in i_m} Q_j^+. \]

Also, we define \(E_j^+ = E \cap Q_j^+ \) and \(F_m = \bigcup_{j \in i_m} E_j^+ \).

Notice that \(\Gamma_{\mu} = \bigcup_{m \geq 0} i_m \) and if \(j_1 \) and \(j_2 \) belong to \(i_m \) for some \(m \), then \(Q_{j_1}^+ \cap Q_{j_2}^+ = \emptyset \). This yields

\[|F_m| = \sum_{j \in i_m} |E_j^+|. \]

On the other hand, \(\sigma_{m+1} \subset \sigma_m \) for every \(m \geq 0 \), so

\[F_{m+1} \subset F_m \quad \text{and} \quad |F_{m+1}| \leq |F_m|. \]

For fixed \(m_0 \) and \(j_0 \in i_{m_0} \), if \(Q_j^+ \subseteq Q_{j_0}^+ \), then \(j \in i_m \) with \(m > m_0 \) and \(Q_j \subset Q_{j_0}^2 \). Therefore,

\[\bigcup_{m > m_0} \bigcup_{j \in i_m : Q_j^+ \subseteq Q_{j_0}^+} Q_j \subset (Q_{j_0}^+)_{2,+} \]

and this implies that

\[\sum_{m > m_0} \sum_{j \in i_m : Q_j^+ \subseteq Q_{j_0}^+} |Q_j| \leq |(Q_{j_0}^+)_{2,+}| = 2^n |Q_{j_0}|, \]

since the cubes \(Q_j \) are disjoint. Thus, by (3.1) we get

\[\sum_{m > m_0} |F_m \cap Q_{j_0}^+| = \sum_{m > m_0} \sum_{j \in i_m : Q_j^+ \subseteq Q_{j_0}^+} |E_j^+| \leq 2\mu \sum_{m > m_0} \sum_{j \in i_m : Q_j^+ \subseteq Q_{j_0}^+} |Q_j| \]

\[\leq 2^{n+1} \mu |Q_{j_0}| \leq 2^{n+1} |E_{j_0}^+|. \]

This last estimate implies that

\[\sum_{m = m_0 + 1}^{m_0 + 2^{n+2}} |F_m \cap Q_{j_0}^+| < 2^{n+1} |E_{j_0}^+| \]

and then there must be an index \(m, m_0 + 1 \leq m \leq m_0 + 2^{n+2} \) such that

\[|F_m \cap Q_{j_0}^+| < \frac{|E_{j_0}^+|}{2}. \]
By (3.2) we get
\[|F_{m_0+2^n+2} \cap Q_{j_0}^+| \leq |F_m \cap Q_{j_0}^+| < \frac{|E_{j_0}^+|}{2}, \]
and consequently,
\[\frac{|Q_{j_0}^+ \cap (E \setminus F_{m_0+2^n+2})|}{|Q_{j_0}|} > \frac{1}{2} \frac{|E_{j_0}^+|}{|Q_{j_0}|} > \frac{\mu}{2}. \]
Now, we can estimate
\[
\sum_{j \in \Gamma_m} w(Q_j) = \sum_{m=0}^{\infty} \sum_{j \in \Gamma_m} w(Q_j) \\
< \left(\frac{2}{\mu} \right)^p \sum_{m=0}^{\infty} \sum_{j \in \Gamma_m} w(Q_j) \left(\frac{|Q_j^+ \cap (E \setminus F_{m_0+2^n+2})|}{|Q_j|} \right)^p \\
\leq \left(\frac{2}{\mu} \right)^p \sum_{m=0}^{\infty} \sum_{j \in \Gamma_m} [(w, v)]_{A_p^{+,d}(\mathcal{R})}^p \int_{\sigma_m-\sigma_{m+2^n+2}}^\infty \mathcal{X}_E v \\
= \left(\frac{2}{\mu} \right)^p [(w, v)]_{A_p^{+,d}(\mathcal{R})}^p \sum_{k=0}^{2^{n+1}-1} \sum_{m=0}^{\infty} \int_{\sigma_{2^{n+2}m+k}-\sigma_{2^{n+2}(m+1)+k}}^\infty \mathcal{X}_E v \\
\leq \left(\frac{2}{\mu} \right)^p [(w, v)]_{A_p^{+,d}(\mathcal{R})}^p \sum_{k=0}^{2^{n+1}-1} \int_{\sigma_k}^\infty \mathcal{X}_E v \\
\leq \frac{2^{n+p+2}[(w, v)]_{A_p^{+,d}(\mathcal{R})}^p}{\mu^p} \mathcal{X}_E v(E \cap \sigma_0). \]

\[\square \]

Proof of Theorem 1.1. We shall first prove that (a) implies (b). Fix a dyadic cube \(Q \) and a measurable subset \(E \) of \(Q^+ \). Assume that \(|E| > 0 \), since otherwise the condition follows immediately. For every \(x \) in \(Q \) we have that
\[
M^{+,-}(x) \geq \frac{1}{|Q|} \int_{Q^+} \mathcal{X}_E = \frac{|E|}{|Q|},
\]
which implies that \(Q \subset \{ x : M^{+,-}(x) > |E|/(2|Q|) \} \). By using statement (a) we get
\[
w(Q) \leq C \left(\frac{|Q|}{|E|} \right)^p v(E),
\]
which shows that \((w, v) \in A_p^{+,d}(\mathcal{R}) \).
Now we prove that (b) implies (a). Fix a measurable set E and assume, without loss of generality, that $0 < |E| < \infty$. For fixed $t > 0$, let \mathcal{F} be the family of dyadic cubes Q such that $|E \cap Q^+|/|Q| > t$ and let $\{Q_j\}_j$ be the family of the maximal cubes of \mathcal{F}. It follows that the cubes Q_j are disjoint and

$$\{x: M^{+, d} X_E(x) > t\} = \bigcup_j Q_j.$$

We shall consider a partition of this family of cubes. Given $k \geq 0$, we set

$$C_k = \{j: 2^k t < \frac{|E \cap Q_j^+|}{|Q_j|} \leq 2^{k+1} t\}$$

and apply Lemma 3.1 to the family C_k with $\mu = 2^k t$ for every k. Therefore,

$$\sum_{j \in C_k} w(Q_j) \leq \frac{C[(w, v)]_{A_p^{+, d}(\mathbb{R})}}{(2^k t)^p} v\left(\bigcup_{j \in C_k} E_j^+\right).$$

This yields

$$w(\{x: M^{+, d} X_E(x) > t\}) = \sum_j w(Q_j) = \sum_{k=0}^{\infty} \sum_{j \in C_k} w(Q_j) \leq \sum_{k=0}^{\infty} \frac{C[(w, v)]_{A_p^{+, d}(\mathbb{R})}}{(2^k t)^p} v(E) = \frac{C[(w, v)]_{A_p^{+, d}(\mathbb{R})}}{t^p} v(E),$$

which completes the proof. \hfill \square

4. Restricted weak (p, p) type of M^+ in \mathbb{R}^2

We devote this section to the proof of Theorem 1.2. Along this section we shall assume that the space, where we work, is \mathbb{R}^2. We begin by introducing some specifics in this setting.

We say that a square Q has dyadic size if $l(Q) = 2^k$ for an integer k. Let $l(Q)$ denote the length of the sides of Q. Given a square Q, αQ will denote the square with the same center as Q and sides of length $\alpha l(Q)$.

For $h > 0$ and $Q = [a, a + h] \times [b, b + h]$, we set \tilde{Q} the dilation of Q to the right and to the bottom in $\frac{1}{2} l(Q)$. That is, $\tilde{Q} = [a, a + \frac{3}{2} h] \times [b - \frac{1}{2} h, b + h]$.

1011
Given \(x = (x_1, x_2) \in \mathbb{R}^2 \) and \(h > 0 \) recall that \(Q_{x,h} = [x_1, x_1 + h] \times [x_2, x_2 + h] \).

We shall consider the following partition of a cube \(Q_{x,h} \):

\[
Q_{x,h} = Q_{x,h/2} \cup Q_{1}^{1,h} \cup Q_{2}^{2,h} \cup Q_{3}^{3,h},
\]

where

\[
Q_{1}^{1,h} = [x_1 + \frac{1}{2}h, x_1 + h] \times [x_2 + \frac{1}{2}h, x_2 + h],
\]
\[
Q_{2}^{2,h} = [x_1 + \frac{1}{2}h, x_1 + h] \times [x_2, x_2 + \frac{1}{2}h],
\]
\[
Q_{3}^{3,h} = [x_1, x_1 + \frac{1}{2}h] \times [x_2 + \frac{1}{2}h, x_2 + h].
\]

The proof of Theorem 1.2 relies on the following covering lemma, that is, a consequence of Lemma 3.1 stated and proved in [1], when we take \(f = x_E \). This result contains a covering argument that is related to the subcube \(Q_{2}^{2,h} \). For the main proof we will require the corresponding versions for \(Q_{1}^{1,h} \) and \(Q_{3}^{3,h} \), which can be achieved by following similar ideas.

Lemma 4.1. Let \(t > 0 \) and \(E \) be a measurable set such that \(0 < |E| < \infty \). Let \(A = \{x_j\}_{j=1}^N \) be a finite set of points in \(\mathbb{R}^2 \). Suppose that for every \(1 \leq j \leq N \), we have a square of dyadic size \(Q_j \) with \(x_j \) as its upper right corner and that satisfies

\[
\frac{t}{4} < \frac{|E \cap Q_j^{+2}|}{|Q_j|}.
\]
Then there exists a set $\Gamma \subset \{1, \ldots, N\}$ such that

\[(4.1) \quad A \subset \bigcup_{i \in \Gamma} \tilde{Q}_i\]

and

\[(4.2) \quad \frac{t}{4} < \frac{|E \cap \tilde{Q}_j^+|}{|Q_j|}.

Moreover, for every $i, j \in \Gamma$ with $i \neq j$ we have $\tilde{Q}_i \not\subseteq \tilde{Q}_j$ and the squares \tilde{Q}_i, $i \in \Gamma$, of the same size are almost disjoint, that is, there exists a positive constant C such that for every l

$$\sum_{i \in \Gamma, l(Q_i) = l} X_{\tilde{Q}_i}(x) \leq C.$$

This implies that the squares $(\tilde{Q}_i)^+$ are almost disjoint, too. Further, if

$$\frac{|E \cap (\tilde{Q}_j)^+|}{|Q_j|} \leq 8t,$$

then there exists a family of sets $\{F_j\}_{j \in \Gamma}$ with $F_j \subset (\tilde{Q}_j)^+$ such that

$$\frac{t}{8} < \frac{|E \cap F_j|}{|Q_j|}$$

and they are almost disjoint, that is, there exists a positive constant C (independent of everything) such that

$$\sum_{j \in \Gamma} X_{F_j}(x) \leq C.$$

Proof of Theorem 1.2. The fact that (a) implies (b) can be achieved in a similar way to Theorem 1.1. Let us prove that (b) implies (a). The operator M^+ is pointwise equivalent to the operator

$$M^+ f(x) = \sup_{k \in \mathbb{Z}} \frac{1}{|Q_{x, 2^k}|} \int_{Q_{x, 2^k}} |f|,$$

that is, the one-sided maximal operator defined over squares of dyadic size. We shall consider for $i = 1, 2, 3$ the operators

$$M^{+i} f(x) = \sup_{k \in \mathbb{Z}} \frac{1}{|Q_{x, 2^k}^i|} \int_{Q_{x, 2^k}^i} |f|,$$

where the cubes $Q_{x, 2^k}^i$ are depicted in Figure 2.
Let us fix a measurable set E with $0 < |E| < \infty$. Let (w, v) be a pair of weights in $A_p^+(\mathcal{R})$. We shall prove that

$$w(\{x \in \mathbb{R}^2: \mathcal{M}^+(\lambda_E)(x) > t\}) \leq \frac{C}{tp}v(E)$$

for every $t > 0$. It will be enough to show that

$$w(\{x \in \mathbb{R}^2: t < \mathcal{M}^+(\lambda_E)(x) \leq 2t\}) \leq \frac{C}{tp}v(E),$$

and this also reduces to proving that

$$(4.3) \quad w(\{x \in \mathbb{R}^2: t < \mathcal{M}^+(\lambda_E)(x), \mathcal{M}^+(\lambda_E)(x) \leq 2t\}) \leq \frac{C}{tp}v(E)$$

for $i = 1, 2, 3$. We show the proof for $i = 2$, being similar for the other indices.

Given a positive number ξ we consider the truncated maximal operator defined by

$$M^{+2}_\xi(\lambda_E)(x) = \sup_{\substack{h = 2^k > \xi \\ k \in \mathbb{Z}}} \frac{4|E \cap Q^2_x, h|}{h^2}.$$

Observe that $M^{+2}_\xi(\lambda_E) \uparrow M^{+2}(\lambda_E)$ when $\xi \to 0^+$. Therefore, it will be enough to prove that

$$(4.4) \quad w(\{x \in \mathbb{R}^2: t < M^{+2}_\xi(\lambda_E)(x), M^+(\lambda_E)(x) \leq 2t\}) \leq \frac{C}{tp}v(E)$$

for every $t > 0$ and with C independent of ξ, E and t.

By virtue of Lemma 2.1 we can assume that $w \in L^1_{\text{loc}}$ and also that there exists a positive constant γ such that $0 < \gamma \leq w(x)$ for every $x \in \mathbb{R}^2$.

Let $\Omega_t = \{x \in \mathbb{R}^2: t < M^{+2}_\xi(\lambda_E)(x), M^+(\lambda_E)(x) \leq 2t\}$. The measure $d\mu(x) = w(x) \, dx$ is finite over compact sets since we are assuming $w \in L^1_{\text{loc}}$. Therefore, inequality (4.4) follows if we prove that

$$w(K) \leq \frac{C}{tp}v(E)$$

for every compact set $K \subset \Omega_t$ and with C independent of K.

Fix a compact set $K \subset \Omega_t$. For every $x = (x_1, x_2) \in K$ there exists a square $Q_x = [x_1 - l, x_1] \times [x_2 - l, x_2]$ with $\xi \leq l, l = 2^k$ for some $k \in \mathbb{Z}$ and

$$\frac{t}{4} < \frac{|E \cap Q_x^{+2}|}{|Q_x|}. $$

1014
Let $Q_{x,2l} = [x_1, x_1 + 2l] \times [x_2, x_2 + 2l]$. We have that $(\tilde{Q}_x)^+ \subset Q_{x,2l}$ (see Figure 3) and thus,

$$\frac{|E \cap (\tilde{Q}_x)^+|}{|Q_x|} \leq \frac{|E \cap Q_{x,2l}|}{|Q_x|} = \frac{4|E \cap Q_{x,2l}|}{|Q_{x,2l}|} \leq 4\mathcal{M}^+(\mathcal{X}_E)(x) \leq 8t.$$

![Figure 3. $(\tilde{Q}_x)^+ \subset Q_{x,2l}$.

Therefore, we have that for every $x \in K$ there exists a square $Q_x = [x_1 - l, x_1] \times [x_2 - l, x_2]$ such that $\xi \leq l$,

$$\frac{t}{4} < \frac{|E \cap Q_x^+|}{|Q_x|} \quad \text{and} \quad \frac{|E \cap (\tilde{Q}_x)^+|}{|Q_x|} \leq 8t.$$

We have also that there exists a positive constant M, depending on t and E, such that $l \leq M$ since

$$|Q_x| \leq \frac{4|E \cap Q_x^+|}{t} \leq \frac{4|E|}{t} < \infty.$$

This implies that there exists a square R such that $\bigcup_{x \in K} \tilde{Q}_x \subset R$. We shall consider the square $2R$. Since w is integrable in $2R$, there exists $0 < \varepsilon < 1$ such that if $Q \subset R$ is a square, then

$$w((1 + \varepsilon)Q \setminus Q) \leq \gamma \xi^2.$$

If $Q \subset R$ verifies $l(Q) \geq \xi$, then

$$w((1 + \varepsilon)Q \setminus Q) \leq \gamma \xi^2 \leq \gamma |Q| \leq w(Q).$$

This yields

$$w((1 + \varepsilon)Q) \leq 2w(Q)$$

for every $Q \subset R$ with $l(Q) \geq \xi$. Particularly,

$$w((1 + \varepsilon)\tilde{Q}_x) \leq 2w(\tilde{Q}_x) \quad \text{for every } x \in K.$$
Let $B_x(r)$ be the ball of radius r centered at x. We have that $K \subset \bigcup_{x \in K} B_x(\frac{1}{2}\xi \varepsilon)$, and then there exist $x_1, x_2, \ldots, x_s \in K$ such that $K \subset \bigcup_{j=1}^{s} B_{x_j}(\frac{1}{2}\xi \varepsilon)$, since K is compact.

We apply now Lemma 4.1 to the set $A = \{x_j\}_{j=1}^{s}$ and the squares $\{Q_j\}_{j=1}^{s}$ associated to the points x_j. Then there exists a set $\Gamma \subset \{1, \ldots, s\}$ that verifies $A \subset \bigcup_{i \in \Gamma} \widetilde{Q}_{x_i}$, and there also exist $\{F_{x_i} : i \in \Gamma\}$, $F_{x_i} \subset (\widetilde{Q}_{x_i})^+$, (4.5)

$$\frac{t}{8} < \frac{|E \cap F_{x_i}|}{|Q_{x_i}|}$$

and

$$\sum_{i \in \Gamma} \mathcal{X}_{F_{x_i}}(x) \leq C.$$

Observe that if $x_j \in A$, there exists $i \in \Gamma$ such that $x_j \in \widetilde{Q}_{x_i}$. Then $B_{x_j}(\frac{1}{2}\xi \varepsilon) \subset (1 + \varepsilon)\widetilde{Q}_{x_i}$. In fact, this is straightforward if we assume $0 < \xi < 1$. Consequently, we have that

$$K \subset \bigcup_{j=1}^{s} B_{x_j}(\frac{\xi \varepsilon}{2}) \subset \bigcup_{i \in \Gamma}(1 + \varepsilon)\widetilde{Q}_{x_i},$$

which implies that

$$w(K) \leq \sum_{i \in \Gamma} w((1 + \varepsilon)\widetilde{Q}_{x_i}) \leq 2 \sum_{i \in \Gamma} w(\widetilde{Q}_{x_i}).$$

Thus, by using (4.5) and the $A^+_p(\mathcal{R})$ condition of (w, v), we obtain

$$w(K) \leq 2 \sum_{i \in \Gamma} w(\widetilde{Q}_{x_i}) \leq \frac{C}{t^p} \sum_{i \in \Gamma} w(\widetilde{Q}_{x_i}) \left(\frac{|E \cap F_{x_i}|}{|Q_{x_i}|}\right)^p$$

$$= \frac{C}{t^p} \sum_{i \in \Gamma} w(\widetilde{Q}_{x_i}) \left(\frac{|(Q_{x_i})^+|}{|Q_{x_i}|}\right)^p \left(\frac{|E \cap F_{x_i}|}{|(Q_{x_i})^+|}\right)^p$$

$$\leq \frac{C}{t^p} [(w, v)]^p_{A^+_p(\mathcal{R})} \sum_{i \in \Gamma} v(E \cap F_{x_i})$$

$$\leq \frac{C}{t^p} [(w, v)]^p_{A^+_p(\mathcal{R})} v\left(E \cap \left(\bigcup_{i \in \Gamma} F_{x_i}\right)\right)$$

$$\leq \frac{C}{t^p} [(w, v)]^p_{A^+_p(\mathcal{R})} v(E).$$

Acknowledgements. I would like to specially thank Ph.D. Sheldy Ombrosi for suggesting these one-sided problems to me, as well as reading the manuscript and giving me useful advices in redaction and bibliography.

1016
References

[1] L. Forzani, F. J. Martín-Reyes, S. Ombrosi: Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function. Trans. Am. Math. Soc. 363 (2011), 1699–1719.

[2] J. Kinnunen, O. Saari: On weights satisfying parabolic Muckenhoupt conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 131 (2016), 289–299.

[3] J. Kinnunen, O. Saari: Parabolic weighted norm inequalities and partial differential equations. Anal. PDE 9 (2016), 1711–1736.

[4] A. K. Lerner, S. Ombrosi: A boundedness criterion for general maximal operators. Publ. Mat., Barc. 54 (2010), 53–71.

[5] F. J. Martín-Reyes: New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions. Proc. Am. Math. Soc. 117 (1993), 691–698.

[6] F. J. Martín-Reyes, A. de la Torre: Two weight norm inequalities for fractional one-sided maximal operators. Proc. Am. Math. Soc. 117 (1993), 483–489.

[7] F. J. Martín-Reyes, P. Ortega Salvador, A. de la Torre: Weighted inequalities for one-sided maximal functions. Trans. Am. Math. Soc. 319 (1990), 517–534.

[8] S. Ombrosi: Weak weighted inequalities for a dyadic one-sided maximal function in \mathbb{R}^n. Proc. Am. Math. Soc. 133 (2005), 1769–1775.

[9] P. Ortega Salvador: Weighted inequalities for one-sided maximal functions in Orlicz spaces. Stud. Math. 131 (1998), 101–114.

[10] E. Sawyer: Weighted inequalities for the one-sided Hardy-Littlewood maximal functions. Trans. Am. Math. Soc. 297 (1986), 53–61.

Author’s address: Fabio Berra, CONICET and Universidad Nacional del Litoral, Bv. Pellegrini 2750, (3000) Santa Fe, Argentina e-mail: fberra@santafe-conicet.gov.ar.