DILATION TWO EMBEDDING ONE-BY-ONE PARTICULAR SUB-QUADTREE INTO M-DIMENTIONAL CROSSED CUBES

Aymen Takie Eddine Selmi*, Mohamed Faouzi Zerarka®, Abdelhakim Cheriet®

*Department of computer science and LESIA Laboratory, Mohamed Khider University of Biskra, Algeria
®Department of computer science, Mohamed Khider University of Biskra, Algeria.

Abstract

In the parallel processing field, graph embedding is motivated by simulation interconnection networks to another. The quadtree is an important technique used to present spatial data and is used in many application domains, especially computer vision and image processing. Researchers are interested in the construction and manipulation of quadtrees on parallel machines. The crossed cubes consider an alternative to the ordinary hypercube. It offers many attractive properties. Significantly, it reduces diameter by a factor of 2 that of the ordinary cubes. Moreover, the crossed cubes have a great capacity to simulate other architectures. This paper is interested in the one-by-one dilation two embedding of a particular sub-quadtree graph into m-dimensional crossed cubes.

Keywords: Interconnection networks, crossed cubes, quadtree, embedding, dilation.

1. Introduction

For a machine based on parallel architecture, the choice of a good topology is linked to a set of attractive and popular properties such as degree, diameter, connectivity, regularity, embeddability, and fault tolerance.

The quadtree is an important technique used in many application domains such as geographic information systems, image processing, computer graphics, robotics [1, 2, 3, 4, 5]. The quadtree is a simple topology; it is a connected graph with a cycle in which each internal vertex has four children. Suppose all left child breaks down; quadtree will be a particular sub-quadtree. This technique has a set of limitations. It has a bisection width equal to 1 [6]. Moreover, its connectivity equal to 1 [6]. Therefore, many researchers studied the embedding of quadtrees into another interconnection network [7, 8, 9, 10].

Parallel machines based on hypercube topology offer an interconnection topology with attractive properties: symmetry, logarithmic diameter, fixed degree, high connectivity, Hamiltonian, fault tolerance, extensibility, and embeddability of other topologies [11, 12, 13, 14, 10, 15, 16]. Several researchers propose several versions of the hypercube to improve its capacity. In the papers by Ahmed El-Amawy[17] and Preparata & Vuillemin [18], an attractive version of the hypercube called the crossed cubes is proposed by Efe [19]. This version pays attention because of the similarity in properties with the ordinary hypercube. Also, it offers many other attractive properties over the ordinary hypercube [10, 20, 21, 22, 23, 24, 25]. Especially, it reduces diameter by a factor of 2 [19]. Moreover, the crossed cubes have a great capacity to simulate other architectures [10, 15, 26, 27, 28, 29]. The problem of simulation of one interconnection network to another is essential in the field of parallel computing. The embedding capabilities are important in evaluating an interconnection network.

Let G and H be two graphs such that an embedding of G into H is a pair (f, R) where f is an injective mapping vertex V(G) into vertex V(H). R is an injective mapping associating with each edge [u, v] from G at a path R(u, v) which connects f(u) and f(v) [30, 31, 32].

This paper aims to construct the dilation two embedding one-by-one particular sub-quadtree into m-dimensional crossed cubes. This paper is organized as follows; first, we introduce a few preliminary definitions of the particular sub-quadtree graph and the crossed cubes graph. Section 3 presents the construction of dilation two one-by-one particular sub-quadtree into m-dimensional crossed cubes; then, we offer the validation of our new function. Finally, section 4 concludes the paper and discusses some possible future work.

2. PRELIMINARIES

2.1. Definition 01

The quadtree is an undirected graph QTn of (4n − 1)/3 vertices. Every vertex of depth less than n has four children, and every vertex of depth equal to n is a leaf. We assume each left child breaks down, quadtree reduced to a particular sub-quadtree graph denoted PQTn. Therefore, quadtree will become an undirected graph PQTn of (3n − 1)/2 vertices. Let p be a positive integer, each vertex in PQTn is a string of length p denoted AV = Aap−1−1, where Ap−1 = a1a2...aj, aj = 1,3 and suffix = i / i = 1,3. The root can represent by address a1 = 0.
We represent an edge between a vertex parent and one of its children as follows, A_{p-1}-A_{p-1}.

2.2. Definition 02 [19]

Both the m-dimensional hypercube denoted by Q_m and the crossed cubes CQ_m are undirected graphs consisting of the same set of vertices. A binary string of length m labels each vertex in $Q_m(CQ_m)$. In Q_m, two vertices are adjacent if and only if the binary representation of their labels differs in exactly one-bit position. While in the crossed cubes, two binary strings $x = x_1x_2...x_m$, $y = y_1y_2...y_m$ of length two are pair-related if and only if $(x, y) \in \{(00, 00), (10, 10), (01, 11), (11, 01)\}$. The m-dimensional crossed cubes CQ_m is defined recursively:

- CQ_1 is the complete graph on two vertices with labels 0 and 1.
- If $m > 1$: CQ_m consists of two sub-cubes, $0CQ_{m-1}$ and $1CQ_{m-1}$. Two vertices u, v such that $u = 0u_{m-2}...u_0 \in 0CQ_{m-1}$ and $v = 1v_{m-2}...v_0 \in 1CQ_{m-1}$ are adjacent, if and only if:
 \[
 u_{m-2} = v_{m-2} \text{ if } m \text{ is even} \\
 u_{2i+1}v_{2i+1}, u_{2i+2}v_{2i+2} \text{ are pair-related.}
 \]

2.3. Definition 03 [32, 33]

Let G and H be two simple undirected graphs. An embedding of the graph G into graph H is an injective mapping f from the vertices of G to the vertices of H. Four cost functions, dilation, congestion, expansion, and load factor, often measure the quality of an embedding. In this paper, we interest in dilation. The dilation of the embedding is the maximum distance between $f(y)$ and $f(z)$ taken over all edges (y, z) of G.

2.4. Notations

A particular sub-quadtree PQT_n is produced by three copies of PQT_{n-1} prefixed respectively by $01PQT_{n-1}$, $02PQT_{n-1}$, and a root prefixed by $0PQT_n$.

A crossed cubes $CQ_m = (O, E)$, with E set of vertices and O set of edges.

Let $B \in E$ such that: $B = [Pref_3, X_1X_2X_3]$, $C = b_{1-1}, b_{1-1}, \phi$; $adrr = X, Y, Z$; $adrr = X_3X_0$ of length two and (X, Y) or (Y, Z) are pair-related; $Pref_j = b_{j-5}...b_{m-4} / j = \overline{0j3}$ respectively if $b_{j-5}...b_{m-4}$, $b_{j-1}...b_{m-1}$, $b_{j-1}...b_{m-1}$, $b_{j-1}...b_{m-1}$. The number of super nodes CQ_3 is equal to 2^{m-4}.

CQ_m is produced as follows:

Where $C = \phi$: CQ_m is produced by four copies of CQ_{m-2} prefixed respectively by $00CQ_{m-2}$, $01CQ_{m-2}$, $10CQ_{m-2}$, $11CQ_{m-2}$.

Where $C \neq \phi$: CQ_m is produced by two copies of CQ_{m-1} prefixed respectively by $0CQ_{m-1}$, $1CQ_{m-1}$ in other word: $00CQ_{m-2}$, $01CQ_{m-2}$, $10CQ_{m-2}$, $11CQ_{m-2}$.

3. DILATION TWO EMBEDDING ONE-BY-ONE PARTICULAR SUB-QUADTREE INTO M-DIMENSIONAL CROSSED CUBES

This section describes our new function, which allows the embedding one-by-one particular sub-quadtree PQT_n into m-dimensional crossed cubes CQ_m. We can resume this function as follows:

- Determine the dimension of the crossed cubes CQ_m.
- One-by-one vertex embedding of PQT_n into CQ_m.
- Dilation two embedding one-by-one all edges of PQT_n onto paths in CQ_m.

3.1. Dimension of CQ_n

The dimension of the crossed cubes m related by n the height of a particular sub-quadtree in which:

- Where $n \leq 8$: $m = \log_2(3^n - 1/2)/\log_2(2)$
- Where $n > 8$: $m = (n - 8) * 2 + 12$

3.2. One-by-one vertex embedding

The one-by-one vertex embedding of PQT_n into CQ_m is done in the following way:

For $n = 3$: The basic function f of this one by one vertex embedding is produced as follows:

- $Prem(0) := Pref_000$
- $f(A_{p-1}\text{-suff}_1) := Pref_1X$
- $f(A_{p-1}\text{-suff}_2) := Pref_2Y$
- $f(A_{p-1}\text{-suff}_3) := Pref_3Z$

For $n > 3$: the one-by-one vertex embedding is done in two situations. The first one is when $C = \phi$, we use the basic function f (figure 1).

![Figure 1: Vertex embedding Situation 1](image)

The second is when $C \neq \phi$, a function f_1 of this one-by-one vertex embedding. Thus, there three cases in this situation; the following rules of case 1 shown in figure 2 produce f_1:

- $f_1(A_{p-1}\text{-suff}_1) := 0Pref_00X$
- $f_1(A_{p-1}\text{-suff}_2) := 1Pref_00Y$
- $f_1(A_{p-1}\text{-suff}_3) := 1Pref_00Z$

OR

- $f_1(A_{p-1}\text{-suff}_1) := 0Pref_00X$
The following rules of case 2 shown in figure 3 produce f_1:
- $f_1(A_p-1suff_1) := \overline{0}Pref_000X$
- $f_1(A_p-1suff_2) := \overline{1}Pref_000Y$
- $f_1(A_p-1suff_3) := 1Pref_000Z$

The following rules of case 3 shown in figure 4 produce $f_1 (t = 2, 3)$:
- $f_1(A_p-1suff_1) := \overline{0}Pref_100X$
- $f_1(A_p-1suff_2) := \overline{1}Pref_100Y$
- $f_1(A_p-1suff_3) := 1Pref_100Z$

OR
- $f_1(A_p-1suff_1) := \overline{0}Pref_000X$
- $f_1(A_p-1suff_2) := \overline{1}Pref_000Y$
- $f_1(A_p-1suff_3) := 1Pref_000Z$

Lemma 1. For $n < 5$, a particular sub-quadtree PQT_n is one-by-one vertex embedding into m-dimensional crossed cubes CQ_m.

Proof. We prove lemma 1 by induction on n.
Base. For $n = 2$: as shown in figure 5.
For $n = 3, 4$: level’s 1, 2 nodes of PQT_3, PQT_4 are respectively embedded into CQ_4, CQ_6 using the rules specified in table 1, table 2, shown in figure 6, figure 7.
Induction hypothesis

Suppose that for \(k \leq n - 1 \), \(PQT_k \) is one-by-one vertex embedding into \(CQ_l \) with \(l < m \) is true.

Let us now prove that it is true for \(k = n \).

The root 0 is embedded into 00\(CQ_2 \) by using the basic function \(\text{Prem}(\text{root}) \). Nodes of 01\(PQT_{k-1} \) are embedded into 00\(CQ_2 \) such that: 0\(\text{suff}_2 \) is embedded into 0\(\text{pref}_1 \)0000 of 00\(CQ_2 \) using \(f_1 \) of situation 2, case 1 (figure 2, induction hypothesis). Other nodes of 011\(PQT_{k-2} \), 012\(PQT_{k-2} \), 013\(PQT_{k-2} \) are respectively embedded into the root embedded component, 01\(CQ_{l-2} \) of 00\(CQ_2 \) and 01\(CQ_{l-2} \) of 00\(CQ_2 \) using \(f \) (figure 1, induction hypothesis).

Nodes of 02\(PQT_{k-2} \) are embedded into 10\(CQ_{l-2} \) such that: 0\(\text{suff}_2 \) is embedded into 10\(\text{pref}_1 \)0000 of 10\(CQ_{l-2} \) by definition 02 using \(f_1 \) of situation 2, case 1 (figure 2). Other nodes of 021\(PQT_{k-2} \), 022\(PQT_{k-2} \), 023\(PQT_{k-2} \) are respectively embedded into the same parent component (10\(CQ_{l-2} \), 11\(CQ_{l-2} \) of 10\(CQ_{l-2} \) and 11\(CQ_{l-2} \) of 10\(CQ_{l-2} \) using \(f \) (figure 1, induction hypothesis).

Nodes of 03\(PQT_{k-1} \) are embedded into 01\(CQ_l \) such that: 0\(\text{suff}_3 \) is embedded into 10\(\text{pref}_0 \)0000 of 10\(CQ_{l-2} \) by definition 02 using \(f_1 \) of situation 2, case 1 (figure 2); and 0\(\text{suff}_1 \) is embedded into this same component 10\(CQ_{l-2} \) using \(f_1 \) of situation 2, case 2 (figure 3, induction hypothesis). Node 0\(\text{suff}_2 \) is embedded into 00\(CQ_{l-2} \) by definition 02 using \(f_1 \) of situation 2, case 2 (figure 3). Nodes of 031\(PQT_{k-2} \), 032\(PQT_{k-2} \) are embedded into the same parent component, respectively 10\(CQ_{l-2} \), 00\(CQ_{l-2} \) using \(f \) (figure 1, induction hypothesis).

Nodes of 033\(PQT_{k-2} \) are embedded into 11\(CQ_l \) such that: 0\(\text{suff}_3 \) is embedded into the same parent component (10\(CQ_{l-2} \) using \(f \) (figure 1, induction hypothesis)).

For nodes of 0331\(PQT_{k-3} \) are embedded into 10\(CQ_{l-2} \) and 00\(CQ_{l-2} \) such that:

- 0\(\text{suff}_1 \) is embedded into the same parent component (10\(CQ_{l-2} \) using \(f \) (figure 1, induction hypothesis);

For nodes of 0332\(PQT_{k-3} \) are embedded into 11\(CQ_{l-2} \) and 10\(CQ_{l-2} \) such that:

- 0\(\text{suff}_2 \) is embedded into 11\(CQ_{l-2} \) of 10\(CQ_{l-1} \) using \(f \) (figure 1, induction hypothesis);

- 0\(\text{suff}_3 \) is embedded into the same parent component (11\(CQ_{l-2} \) using \(f_1 \) of situation 2, case 3 (figure 4, induction hypothesis);

- 0\(\text{suff}_2 \) or 0\(\text{suff}_3 \) are embedded into 00\(CQ_{l-2} \) by definition 02 using \(f_1 \) of situation 2, case 2 (figure 4).

For nodes of 0333\(PQT_{k-3} \) are embedded into 11\(CQ_{l-2} \) and 01\(CQ_{l-2} \) such that:

- 0\(\text{suff}_3 \) is embedded into 11\(CQ_{l-2} \) of 10\(CQ_{l-1} \) using \(f \) (figure 1, induction hypothesis);

- 0\(\text{suff}_2 \) is embedded into 10\(CQ_{l-2} \) of 00\(CQ_{l-2} \) using \(f \) (figure 1, induction hypothesis).

Table 2: Level’s 1, 2 nodes embedding of \(PQT_4 \) into \(CQ_6 \).

Root	\(\text{Prem}(\text{root}) \)	\(\text{0suff}_1 \)	01\(\text{CQ}_4 \)
0	0000000	01	0100000
0\(\text{suff}_2 \)	10\(\text{CQ}_4 \)	0\(\text{suff}_3 \)	11\(\text{CQ}_4 \)
02	1000000	03	1100000

Table 3: Level’s 1, 2 nodes embedding of \(PQT_5 \) into \(CQ_7 \).

Root	\(\text{Prem}(\text{root}) \)	\(\text{0suff}_1 \)	\(\text{0pref}_1 \) \(\text{CQ}_4 \)
0	0000000	01	0100000
0\(\text{suff}_2 \)	1\(\text{pref}_1 \) \(\text{CQ}_4 \)	0\(\text{suff}_3 \)	1\(\text{pref}_0 \) \(\text{CQ}_4 \)
02	1010000	03	1000000

Figure 7: Nodes embedding graph of \(PQT_4 \) into \(CQ_6 \).
There are two cases:

Bedding into CQ

Proof.

- **Theorem 1.** For $n > 5$, a particular sub-quadrant PQT_n is one-by-one vertex embedding into m-dimensional crossed cubes CQ_m.

Proof. We prove theorem 1 by induction on n.

Base. For $n = 6, 8$: level’s 1, 2 nodes of PQT_6, PQT_8 respectively are embedded using the rules specified in table 4 and table 5.

Root	Prem(root)	0suff_1	pref_1CQ4
0	0000000000	01	0100000000
0suff_2	pref_2CQ4	0suff_3	pref_3CQ4
02	1000000000	03	1100000000

Table 4: Level’s 1, 2 nodes embedding of PQT_6 into CQ_3.

Root	Prem(root)	0suff_1	pref_1CQ4
0	0000000000	01	0010000000
0suff_2	1pref_1CQ4	0suff_3	1pref_3CQ4
02	1010000000	03	1000000000

Table 5: Level’s 1, 2 nodes embedding of PQT_8 into CQ_4.

Induction hypothesis

Suppose that for $k ≤ n - 1$, PQT_k is one-by-one vertex embedding into CQ_l with $l < m$ is true.

Let us now prove that it is true for $k = n$.

There are two cases:

Case a: $C = \phi$

One-by-one vertex embedding of $01PQT_{k-1}$, $02PQT_{k-1}$, $03PQT_{k-1}$, and $0PQT_{k-1}$ respectively into $01CQ_{l-2}$, $10CQ_{l-2}$, $11CQ_{l-2}$, and $00CQ_{l-2}$; in this case, we use the same actions as lemma 1.

Case b: $C ≠ \phi$

One-by-one vertex embedding of $01PQT_{k-1}$, $02PQT_{k-1}$, $03PQT_{k-1}$, and $0PQT_{k}$ respectively into $01CQ_{l-1}$, $10CQ_{l-1}$, $00CQ_{l-1}$ and $11CQ_{l-1}$, and the root 0 into $00CQ_{l-2}$; in this case, we use the same actions as lemma 2 except the sub-PQT: $0111PQT_{k-3}$, $0311PQT_{k-3}$, and $0321PQT_{k-3}$ are embedded as situation 2, case 1, b as shown in figure 2.

3.3. Dilation two one-by-one edges embedding

Dilation two one-by-one edges embedding of PQT_n onto CQ_m is done in the following way:

For $n = 3$: the basic function R of this dilation two one-by-one edges embedding is produced as follows:

- $R(A_{p-1}A_{p-1}suff_1) := Pref_00-Pref_10$
- $R(A_{p-1}A_{p-1}suff_2) := Pref_00-Pref_20$
- $R(A_{p-1}A_{p-1}suff_3) := Pref_00-Pref_20-Pref_30$

For $n > 3$: dilation two one-by-one edges embedding is done by two situations. In the first, there are two cases; the first case is when $C = \phi$, we use the basic function R; an example is shown in figure 9.
The second case is when $C \neq \phi$, and we only use one copy b_0CQ_{m-1} or b_0CQ_{m-1}; the second case is shown in figures 9 and 10. R is produced like situation 1, case 1, or as follows:

- $R(a_{p_1-1}\cdot A_{p_1-1}\text{ suff}_1) := \bar{Pref}_00X-\bar{Pref}_100Y$
- $R(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_2) := \bar{Pref}_00X-\bar{Pref}_100Y$
- $R(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_3) := \bar{Pref}_00X-\bar{Pref}_100Y$

The second situation is when $C \neq \phi$; in this situation, we use the two copies b_0CQ_{m-1} and b_0CQ_{m-1}; a function R_1 of this dilation two one-by-one edges embedding. There are three cases; the first is shown in figure 11. The following rules of case 1 produce R_1:

- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_1) := 0\bar{Pref}_00X-0\bar{Pref}_100Y$
- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_2) := 0\bar{Pref}_00X-0\bar{Pref}_100Y$
- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_3) := 0\bar{Pref}_00X-1\bar{Pref}_100Y$

OR

- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_1) := \bar{0}\bar{Pref}_00X-\bar{0}\bar{Pref}_100Y$
- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_2) := \bar{0}\bar{Pref}_00X-\bar{0}\bar{Pref}_100Y$
- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_3) := \bar{0}\bar{Pref}_00X-1\bar{Pref}_100Y$

The following rules of case 2 shown in figure 12 produce R_1:

- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_1) := 0\bar{Pref}_00X-0\bar{Pref}_100Y$
- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_2) := 0\bar{Pref}_00X-0\bar{Pref}_100Y$
- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_3) := 0\bar{Pref}_00X-1\bar{Pref}_100Y$

OR

- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_1) := \bar{0}\bar{Pref}_00X-\bar{0}\bar{Pref}_100Y$
- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_2) := \bar{0}\bar{Pref}_00X-\bar{0}\bar{Pref}_100Y$
- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_3) := \bar{0}\bar{Pref}_00X-1\bar{Pref}_100Y$

The following rules of the last case shown in figure 13 produce $R_1 (t = 2, 3)$:

- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_1) := 0\bar{Pref}_00X-0\bar{Pref}_100Y$
- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_2) := 0\bar{Pref}_00X-0\bar{Pref}_100Y$
- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_3) := 0\bar{Pref}_00X-0\bar{Pref}_100Y$

OR

- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_1) := \bar{0}\bar{Pref}_00X-\bar{0}\bar{Pref}_100Y$
- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_2) := \bar{0}\bar{Pref}_00X-\bar{0}\bar{Pref}_100Y$
- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_3) := \bar{0}\bar{Pref}_00X-\bar{0}\bar{Pref}_100Y$

- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_1) := \bar{0}\bar{Pref}_00X-0\bar{Pref}_100Y$
- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_2) := \bar{0}\bar{Pref}_00X-0\bar{Pref}_100Y$
- $R_1(A_{p_1-1}\cdot A_{p_1-1}\text{ suff}_3) := \bar{0}\bar{Pref}_00X-0\bar{Pref}_100Y$
Lemma 3. For any \(n < 5 \), a particular sub-quadtree \(PQT_n \) of dimension \(n \) is dilation two one-by-one edges embedding onto \(m \)-dimensional crossed cubes \(CQ_m \).

Proof. We prove lemma 3 by induction on \(n \).

Base. For \(n = 2 \): edges between vertices of level 1 and level 2 of \(PQT_2 \) are embedded using the rules specified in table 6.

\(PQT \) edge	crossed cubes path	Dilation
0-01	00-01	1
0-02	00-10	1
0-03	00-10-11	2

\(PQT \) edge	crossed cubes path	Dilation
0-01	0000-0100	1
0-02	0000-1000	1
0-03	0000-1000-1100	2

\(PQT \) edge	crossed cubes path	Dilation
0-01	000000-01000000	1
0-02	000000-10000000	1
0-03	0000000-100000000	2

Table 6: Edges embedding between vertex of level 1 and level 2 of \(PQT_2 \), \(PQT_3 \), \(PQT_4 \).

Induction hypothesis

Suppose that for \(k \leq n - 1 \), any sub-\(PQT_k \) of \(PQT_k \) is dilation two one-by-one edges embedding onto any sub-\(CQ_l \) of \(CQ_l \) with \(l \leq m \) is true.

Is it true for \(k = n \) ?

For any sub-\(PQT_k \), sub-\(CQ_l \) with \(k' = 5 \), \(l' = 7 \); the edge between 0\(PQT_k \), 0\(PQT_k \) is embedded onto a path in the same component 0\(CQ_l \) using \(R_l \) of situation 2, case 1 (figure 11, induction hypothesis). For edges of 0\(PQT_k \) are embedded onto paths between 0\(CQ_l \) and the same 0\(CQ_l \) of 0\(CQ_l \) using \(R_l \) (figures 9, 10, induction hypothesis).

The edge between 0\(PQT_k \), 0\(PQT_k \) is embedded onto a path in the same component 1\(CQ_l \) (induction hypothesis), and between 0\(CQ_l \), 0\(CQ_l \) by definition 02 using \(R_l \) of situation 2, case 1 (figure 11). For edges of 0\(PQT_k \) are embedded onto paths between 0\(CQ_l \) and the same 0\(CQ_l \) using \(R_l \) (figures 9, 10, induction hypothesis).

The edge between 0\(PQT_k \), 0\(PQT_k \) is embedded onto a path between 0\(CQ_l \) and the same 0\(CQ_l \) by definition 02 using \(R_l \) of situation 2, case 1 (figure 11). For edges of 0\(PQT_k \) are embedded onto paths in the same component 1\(CQ_l \) using \(R_l \) (figures 9, 10, induction hypothesis).

The edge between 0\(PQT_k \), 0\(PQT_k \) is embedded onto a path in the same component 1\(CQ_l \) (induction hypothesis), and
between $10CQ_{r-2}$ and $00CQ_{r-2}$ by definition 02 using R_{1} of situation 2, case 2 (figure 12). Edges of $031PQT_{k-2}$, $032PQT_{k-2}$ are embedded onto paths in the same $00CQ_{r-2}$, $10CQ_{r-2}$ using R of situation 1, case 1 (figure 9, induction hypothesis).

The edge between $03PQT_{k-1}$, $033PQT_{k-1}$ is embedded onto a path in the same component $10CQ_{r-2}$ using R_{1} of situation 2, case 2 (figure 12, induction hypothesis). For edges of $033PQT_{k-2}$ are embedded as follows: the edge between $033PQT_{k-2}$, $0331PQT_{k-3}$ is embedded onto a path in the same component $10CQ_{r-2}$ using R of situation 1, case 1 (figure 9, induction hypothesis). Edges of $0331PQT_{k-3}$ are embedded onto paths in the same component $10CQ_{r-2}$ (induction hypothesis), between $10CQ_{r-2}$, $00CQ_{r-2}$ by definition 02, and in the same component $00CQ_{r-2}$ (induction hypothesis) using R_{l} of situation 2, case 3 (figure 13).

Edges between $033PQT_{k-2}$, $0332PQT_{k-3}$ or $033PQT_{k-3}$ are embedded onto paths between $10CQ_{r-2}$, $11CQ_{r-2}$ of $1CQ_{r-4}$ using R of situation 1, case 1 (figure 9, induction hypothesis).

Edges of $0332PQT_{k-3}$ or $033PQT_{k-3}$ are embedded onto paths in the same component $11CQ_{r-2}$ (induction hypothesis), and between $11CQ_{r-2}$, $01CQ_{r-2}$ by definition 02 using R_{l} of situation 2, case 3 (figure 13).

Theorem 2. For any $n > 5$, a particular sub-quadtree PQT_{n} is dilation two one-by-one edges embedding onto m-dimensional crossed cubes CQ_{m}.

Proof. We prove theorem 2 by induction on n.

Base. For $n = 6, 8$: edges of PQT_{6}, PQT_{8} are respectively embedded using the rules specified in table 8, table 9.

PQT edge	crossed cubes path	Dilation
0-01	0000000000-0100000000	1
0-02	0000000000-1000000000	1
0-03	0000000000-1000000000-1100000000	2

Table 8: Edges embedding of PQT_{6} into CQ_{9}.

Induction hypothesis

Suppose that for $k \leq n - 1$, PQT_{k} is dilation two one-by-one edges embedding onto CQ_{l} with $l < m$ is true.

Is it true for $k = n$?

There are two cases:

Case a: $C = \phi$

Dilation two one-by-one edges embedding between the root 0 and respectively 01PQT_{k-1}, 02PQT_{k-1}, and 03PQT_{k-1} onto paths respectively between $00CQ_{r-2}$ and $01CQ_{r-2}$, $00CQ_{r-2}$ and $10CQ_{r-2}$, $00CQ_{r-2}$ and $11CQ_{r-2}$. In this case, we use the same actions as lemma 3.

Case b: $C \neq \phi$

Dilation two one-by-one edges embedding between the root 0 and respectively 01PQT_{k-1}, 02PQT_{k-1}, and 03PQT_{k-1} onto paths in the same supernode $00CQ_{r-2}$, and between $00CQ_{r-2}$, $10CQ_{r-2}$ (situation 2, case 1, a figure 11). Dilation two one-by-one edges of 01PQT_{k-1}, 02PQT_{k-1}, and 03PQT_{k-1} respectively onto paths in $00CQ_{r-1}$, $1CQ_{r-1}$, and both $0CQ_{r-1}$, $1CQ_{r-1}$.

In this case, we use the same actions as lemma 4 except the edges of sub-PQT: 0111PQT_{k-3}, 0311PQT_{k-3}, and 0321PQT_{k-3} are embedded like situation 2, case 1, b (figure 11). Moreover, edges of sub-PQT: 01113PQT_{k-4}, 03113PQT_{k-4}, and 03213PQT_{k-4} are embedded as situation 2, case 2, b (figure 12).

In this paper, we have proposed a new function for embedding PQT_{n} into CQ_{m}. The main purpose is dilation two one-by-one embedding PQT_{n} into CQ_{m}. The study of dilation of this function is explained in three steps. The first step is dilation two one-by-one embeddings all edges onto paths in the same CQ_{l} of any supernode of CQ_{m} as proved by lemma 3. The second step is dilation two one-by-one embeddings all edges onto paths in the same CQ_{l} of any supernode of CQ_{m} as proved by lemma 4. The third step is the general dilation two one-by-one embeddings all edges of PQT_{n} onto paths between two supernodes of CQ_{m} as proved by theorem 2.

As a perspective, it is more interesting to study the fault-tolerant embedding of PQT_{n} into CQ_{m}.

4. Conclusion
CRediT authorship contribution statement

Selmī Aymen Takie eddine: Conceptualization, Writing-original draft, Writing-review & editing, Investigation. Mohamed Faouzi Zerarka: Conceptualization, Writing-review & editing. Abdelhakim Cheriet: Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

This work was funded in part by the Algerian Ministry of Higher Education and Scientific Research under contract PRFU C00L07UN07012021010004.

References

[1] J. Zhou, J. Ben, R. Wang, M. Zheng, L. Du, Lattice quad-tree indexing algorithm for a hexagonal discrete global grid system, ISPRS International Journal of Geo-Information 9 (2020) 83.
[2] P. Shukla, A. Verma, S. Verma, M. Kumar, et al., Interpreting svm for medical images using quadtree, Multimedia Tools and Applications 79 (2020) 29353–29373.
[3] S. Banerjee, Z. W. Wang, H. H. Chopp, O. Cossairt, A. Katsaggelos, Quadtree driven lossy event compression, arXiv preprint arXiv:2005.00974 (2020).
[4] Q. Shen, Y. Zhao, Perceptual hashing for color image based on color opponent component and quadtree structure, Signal Processing 166 (2020) 107244.
[5] D. Albani, W. Hönig, D. Nardi, N. Ayanian, V. Trianni, Hierarchical task assignment and path finding with limited communication for robot swarms, Applied Sciences 11 (2021) 3115.
[6] K. Efe, A. Fernández, Mesh-connected trees: a bridge between grids and meshes of trees, IEEE Transactions on Parallel and Distributed Systems 7 (1996) 1281–1291.
[7] T. Rabie, I. Kamel, Toward optimal embedding capacity for transform domain steganography: a quad-tree- adaptive-region approach, Multimedia Tools and Applications 76 (2017) 8627–8650.
[8] F. Jaillet, C. Lobos, Fast quadtree/octree adaptive meshing and remeshing with linear mixed elements, Engineering with Computers (2021) 1–18.
[9] A. K. Gupta, D. Nelson, H. Wang, Efficient embeddings of ternary trees into hypercubes, Journal of Parallel and Distributed Computing 63 (2003) 619–629.
[10] E. Abeelrub, Embedding interconnection networks in crossed cubes, in: Electronic Engineering and Computing Technology, Springer, 2010, pp. 141–151.
[11] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1991.
[12] L. Barasch, S. Lakshminarahan, S. Dhall, Embedding arbitrary meshes and complete binary trees in generalized hypercubes, in: Proceedings of the 1st IEEE Symposium on Parallel and Distributed Processing, pp. 202–209.
[13] H.-C. Keh, J.-C. Lin, On fault-tolerant embedding of hamiltonian cycles, linear arrays and rings in a flexible hypercube, Parallel Comput. 26 (2000) 769–781.
[14] L. Youyao, H. Jungang, D. Huimin, A hypercube-based scalable interconnection network for massively parallel computing, Journal of Computers (2008).
[15] K.-j. Pai, A parallel algorithm for constructing two edge-disjoint hamiltonian cycles in crossed cubes, in: International Conference on Algorithmic Applications in Management, Springer, pp. 448–455.
[16] Y. Yang, Embedded connectivity of ternary n-cubes, Theoretical Computer Science (2021).
[17] A. El-Amawy, S. Latifi, Properties and performance of folded hypercubes, IEEE Trans. Parallel Distrib. Syst. 2 (1991) 31–42.
[18] F. P. Preparata, J. Vuillemin, The cube-connected cycles: A versatile network for parallel computation, Commun. ACM 24 (1981) 300–309.
[19] K. Efe, The crossed cube architecture for parallel computation, IEEE Trans. Parallel Distrib. Syst. 3 (1992) 513–524.
[20] E. Abeelrub, The hamiltonicity of crossed cubes in the presence of faults, Eng. Lett. 16 (2008) 453–459.
[21] C.-P. Chang, T.-Y. Sung, L.-H. Hsu, Edge congestion and topological properties of crossed cubes, IEEE Transactions on Parallel and Distributed Systems 11 (2000) 64–80.
[22] J. Fan, X. Lin, X. Jia, Node-pancyclicity and edge-pancyclicity of crossed cubes, Information Processing Letters 93 (2005) 133–138.
[23] Q. Zhu, J.-M. Xu, X. Hou, M. Xu, On reliability of the folded hypercubes, Information Sciences 177 (2007) 1782–1788.
[24] P. Kulasinghe, S. Bettayeb, Multiply-twisted hypercube with five or more dimensions is not vertex-transitive, Information Processing Letters 53 (1995) 33–36.
[25] X. Wang, J. Fan, S. Zhang, J. Yu, Node-to-set disjoint paths problem in cross-cubes, The Journal of Supercomputing (2021) 1–25.
[26] B. Cheng, D. Wang, J. Fan, Constructing completely independent spanning trees in crossed cubes, Discrete Applied Mathematics 219 (2017) 100–109.
[27] K.-J. Pai, R.-S. Chang, R.-Y. Wu, J.-M. Chang, Three completely independent spanning trees of crossed cubes with application to secure protection routing, Information Sciences 541 (2020) 516–530.
[28] Q. Dong, J. Zhou, Y. Fu, X. Yang, Embedding a mesh of trees in the crossed cube, Information Processing Letters 112 (2012) 599–603.
[29] P. Kulasinghe, S. Bettayeb, Embedding binary trees into crossed cubes, IEEE Transactions on Computers 44 (1995) 923–929.
[30] R. Aschheim, S. Femman, M. F. Zerarka, New “graphiton” model: a computational discrete space, self-encoded as a trivalent graph, Comput. Inf. Sci. 5 (2012) 2–12.
[31] J.-C. Lin, J.-S. Yang, C.-C. Hsu, J.-M. Chang, Independent spanning trees vs. edge-disjoint spanning trees in locally twisted cubes, Information Processing Letters 110 (2010) 414–419.
[32] S. Femman, F. M. Zerarka, One-by-one embedding of the twisted hypercube into pancake graph, in: Building Wireless Sensor Networks, Elsevier, 2017, pp. 145–169.
[33] A. Matsubayashi, Separator-based graph embedding into multidimensional grids with small edge-congestion, Discrete Applied Mathematics 185 (2015) 119–137.

Aymen Takie Eddine Selmi: is a PhD student in University of Biskra, Algeria. He obtained a master degree in systems information, decision and optimization in 2018 from University of Biskra. His current research interests include parallel computing, optimization, and machine learning.

Mohamed Faouzi Zerarka: received Magister and PhD. Degrees in computer sciences department of computer sciences from university of Biskra, Algeria. He worked for a number of years in university of Batna Algeria, currently he is associate professor at Biskra university, Algeria, with expertise in parallel architecture and computing.

Abdelhakim Cheriet: received the Engineering, M.Sc. and PhD degrees in 2004, 2008, and 2016 from the University of Biskra, Algeria, all in Computer Science. He worked as an assistant professor at the University of Biskra, Algeria until 2016. Currently, he is an associate professor at the University of Ouargla, Algeria. His research interests include: Optimization, Metaheuristics, and Evolutionary Computation.