Indepedent breakdown events of the Brassica napus Rlm7 resistance gene including via the off-target impact of a dual-specificity avirulence interaction

Angela P. Van de Wouw1 | Elizabeth M. Sheedy2 | Andrew H. Ware3 | Stephen J. Marcroft2 | Alexander Idnurm1

Abstract
Protection of many crops is achieved through the use of genetic resistance. Leptosphaeria maculans, the causal agent of blackleg disease of Brassica napus, has emerged as a model for understanding gene-for-gene interactions that occur between plants and pathogens. Whilst many of the characterized avirulence effector genes interact with a single resistance gene in the host, the AvrLm4-7 avirulence gene is recognized by two resistance genes, Rlm4 and Rlm7. Here, we report the "breakdown" of the Rlm7 resistance gene in Australia, under two different field conditions. The first, and more typical, breakdown probably resulted from widespread use of Rlm7-containing cultivars whereby selection has led to an increase of individuals in the L. maculans population that have undergone repeat-induced point (RIP) mutations at the AvrLm4-7 locus. This has rendered the AvrLm4-7 gene ineffective and therefore these isolates have become virulent towards both Rlm4 and Rlm7. The second, more atypical, situation was the widespread use of Rlm4-containing cultivars whereby a single-nucleotide polymorphism is the more common mechanism of virulence towards Rlm4, in this field situation, RIP mutations have been selected leading to the breakdown of resistance for both Rlm4 and Rlm7. This is an example of a resistance gene being rendered ineffective without having grown cultivars with the corresponding resistance gene due to the dual specificity of the avirulence gene. These findings highlight the value of pathogen surveillance in the context of expanded knowledge about potential complexities for Avr–R interactions for the deployment of appropriate resistance gene strategies.

KEYWORDS
avirulence genes, dual specificity, repeat induced point mutations, resistance breakdown

INTRODUCTION
Brassica napus (canola, oilseed rape) is the second most important oilseed crop worldwide, with 72 million tonnes of seed harvested in 2019 (Zheng et al., 2020). One of the major production constraints of canola is blackleg disease, caused by the fungus Leptosphaeria maculans. This disease is found worldwide, with the exception of China, and causes annual yield losses of 5%–20% in Europe, Canada, and...
Australia, with localized epidemics resulting in up to 90% yield loss (Fitt et al., 2006; Hwang et al., 2011; Sprague et al., 2006a; Zheng et al., 2020). L. maculans is a sexually reproducing pathogen that releases ascospores from the colonized crop debris (stubble) with each rainfall event during the growing season. These ascospores land on the leaves, flowers, upper stems or branches and can colonize the tissue and grow within the vascular tissue, stopping nutrient flow throughout the plant (Hammond et al., 1985; Sprague et al., 2018).

The impact of blackleg disease can be minimized through the use of cultural, chemical, and genetic approaches. Cultural practices such as rotation of crops and isolation from the previous year’s stubble can significantly reduce disease (Marmocft et al., 2003, 2004); however, in regions such as Australia, these approaches are becoming difficult to achieve due to increases in canola production (Van de Wouw et al., 2021)

Fungicides can minimize blackleg disease with applications possible at seeding, four- to six-leaf, and 30% bloom growth stages (Peng et al., 2020; Van de Wouw et al., 2016, 2021). Fungicides are available worldwide for control of blackleg disease, with growers in Australia using at least one fungicide on approximately 90% of crops (Van de Wouw et al., 2021).

Whilst the type and dependency of cultural and chemical practices vary across growing regions, the use of genetic resistance is a universal approach to minimizing blackleg disease. There are two types of resistance involved in the L. maculans–B. napus interaction: quantitative (minor) and qualitative (major) (Delourme et al., 2006).

Quantitative or minor gene resistance, whilst poorly understood, is thought to involve the small contribution of a number of minor genes to give an overall resistant phenotype (Stuthmann et al., 2007). Quantitative resistance is generally thought to be expressed in the adult plants, be extremely durable, and provide equal protection against all isolates (Stuthmann et al., 2007). However, in the L. maculans–B. napus interaction quantitative resistance appears to be isolate-specific and expressed throughout the life of the plant (Jiquel et al., 2021; Marmocft et al., 2012a; Schnippenkoetter et al., 2021).

Qualitative or major gene resistance is well understood in the L. maculans–B. napus interaction and occurs via a gene-for-gene interaction whereby for each Brassica resistance gene there is a corresponding avirulence (Avr) effector gene in L. maculans (Balesdent et al., 2005; Flor, 1955). These resistance genes provide protection throughout the life of the plant and have been shown to be effective in all plant parts in the B. napus–L. maculans interaction (Balesdent et al., 2005; Elliott et al., 2016; Marmocft et al., 2012a; Sprague et al., 2018). To date, 19 resistance genes or alleles of genes have been identified from Brassica species (Rlm1–Rlm11, Rlm13, Rlm14, Rlm5, and LepR1–LepR4) and five of these genes, LepR3, Rlm2, Rlm4, Rlm7 and Rlm9, have been cloned (Degrave et al., 2021; Delourme et al., 2006; Haddadi et al., 2021; Larkan et al., 2013, 2015, 2020; Long et al., 2011; Raman et al., 2021; Van de Wouw et al., 2009; Yu et al., 2005, 2008, 2013). In comparison, 11 of the corresponding Avr effector genes have been cloned from L. maculans (Balesdent et al., 2013; Degrave et al., 2021; Fudal et al., 2007; Ghanbarnia et al., 2015, 2018; Gout et al., 2006; Parlane et al., 2009; Petit-Houdent et al., 2019; Plissonneau et al., 2016, 2018; Van de Wouw et al., 2014b).

Following the identification of many of the Avr effector genes from L. maculans, the gene-for-gene interaction was found not to be as simple as first thought. To date, three of the L. maculans Avr genes have been shown to have dual specificity (AvrLm1-R3, AvrLm4-7 and AvrLm5-9), whereby a single avirulence gene is recognized by two separate resistance genes (for review see Van de Wouw & Howlett, 2020). The reverse has also been shown whereby two avirulence genes, AvrLm10A and AvrLm10B, are recognized by a single resistance gene (Rlm10) (Petit-Houdent et al., 2019). To complicate the interaction even further, AvrLm4-7 is epistatic over AvrLm3 and AvrLm9 whereby when an isolate is avirulent towards Rlm7, the AvrLm3–Rlm3 and AvrLm9–Rlm9 interactions are masked, and the isolates appear virulent towards both Rlm3 and Rlm9 regardless of their genotype (Ghanbarnia et al., 2018; Plissonneau et al., 2016).

The mechanisms of virulence also vary dramatically depending on the avirulence gene (for review see Van de Wouw & Howlett, 2020). Virulence towards Rlm1 and Rlm6, for example, is usually conferred through deletion of the entire corresponding avirulence genes (Fudal et al., 2009; Gout et al., 2007). Virulence towards Rlm2 and Rlm4 is usually conferred through single-nucleotide polymorphisms (SNPs) that result in a single amino acid substitution (Ghanbarnia et al., 2015; Parlane et al., 2009). Virulence towards Rlm7 is conferred by either deletion of the gene or through repeat-induced point (RIP) mutations (Mitrousia et al., 2018; Parlane et al., 2009), which is a genome defence mechanism that occurs during sexual crossing and generates G to A and C to T transitions within repetitive sequences (Selker, 1990).

Whilst genetic resistance provides protection to blackleg, if the pathogen population changes then resistance can be overcome and rendered ineffective. When cultivars harbouring major resistance genes are grown continuously, this creates strong selection pressure towards any isolates in the population that are virulent towards that corresponding resistance gene. These isolates then increase in number, eventually reaching a frequency whereby they render the resistance gene ineffective. This scenario has occurred many times for the B. napus–L. maculans interaction, such as the breakdown of LepR3 and LepR1 in Australia, Rlm3 in Canada, Rlm1 in France, Rlm7 in the UK, and Rlm9 in trial experiments in France (Brun et al., 2010; Mitrousia et al., 2018; Rouxel et al., 2003; Sprague et al., 2006a; Van de Wouw et al., 2014c; Zhang et al., 2016). This boom-and-bust nature of major gene resistance has led to the development of resistance gene management strategies, initially in Australia and then in Canada, whereby resistance genes are rotated in space and time to minimize the risk of resistance being overcome (Marmocft et al., 2012b; Van de Wouw et al., 2016; Zhang & Fernando, 2018). All commercial cultivars are released to industry with associated resistance groups, which are letters given to represent different resistance genes. Growers can then rotate cultivars with different resistance genes to minimize the risk of resistance being overcome. In Australia, this management strategy
is then supported through the monitoring of disease severity in these resistance groups in field sites across canola-growing regions of Australia, so that warnings can be provided to industry when the effectiveness of specific resistance genes is in jeopardy (Van de Wouw et al., 2016). This monitoring has previously led to issuing warnings on the Eyre Peninsula, South Australia, which saved growers over A$13 million in potential yield losses (Van de Wouw et al., 2014c). In the current study, we report on the breakdown of Rlm7 resistance in two separate locations in Australia, whereby the different selection regimes resulted in different allele diversity patterns.

2 | RESULTS

Blackleg disease is monitored in canola cultivars representing different resistance groups at field sites across Australia every year (Table S1). This monitoring allows detection of potential resistance breakdown at regional levels and has previously been used to provide warnings to growers that significant yield losses are imminent due to resistance being overcome (Van de Wouw et al., 2014c). In the current study, this regional monitoring identifies breakdown of Rlm7 resistance.

2.1 | Breakdown of Rlm7 resistance due to extensive use of Rlm7-containing cultivars

Disease data (leaf lesion severity and percentage internal infection at the crown) were collected from the Hamilton, Victoria site in 2020 (Figure 1). Leaf lesion data collected at the four-leaf growth stage showed that the disease severity for the Rlm7 (Group H) cultivar was not significantly different from the Rlm1 (Group A), Rlm4 (Group B), Rlm3 (Group C), and Rlm4, Rlm6 (Group BF) cultivars, which harbour resistance genes that are already reported as overcome in Australia (Van de Wouw et al., 2018). In comparison, the LepR1, Rlm1 (Group AD), Rlm1, Rlm4, LepR1 (Group ABD), and Rlm1, Rlm4, LepR1, Rlm6 (Group ABDF) cultivars had significantly lower levels of disease than the Rlm7 cultivar (Figure 1c). Lastly, the Rlm7 cultivar had five times more disease at the Hamilton site compared to the national average (Figure 1c).

Similarly, at plant maturity at the end of the growing season, the Rlm7 cultivar displayed similar levels of crown canker disease to the Rlm1 (Group A), Rlm4 (Group B), and Rlm3 (Group C) cultivars (Figure 1d). Significantly lower levels of disease were observed in the LepR1, Rlm1 (Group AD), Rlm1, Rlm4, LepR1 (Group ABD), Rlm4, Rlm6 (Group BF), and Rlm1, Rlm4, LepR1, Rlm6 (Group ABDF) cultivars compared to the Rlm7. Lastly, the Rlm7 cultivar had almost three times higher disease at the Hamilton site compared to the national average (Figure 1d). These combined results of high levels of disease severity early and late in the growing season and at different stages of plant development suggest that the Rlm7 resistance may be overcome in the Hamilton, Victoria region.

Four isolates were cultured from lesions following surface sterilization of infected leaves collected at the Hamilton site in 2020. The AvrLm4-7 gene was PCR amplified and sequenced from these four isolates to determine the genotype at this locus. Each isolate harboured an allele of the AvrLm4-7 gene that had undergone RIP mutation, resulting in 38 or 40 C-T or G-A transitions throughout the coding region. Three of these four isolates were screened for virulence towards both Rlm4 and Rlm7 using in planta phenotyping assays to confirm that the RIP mutations inactivate AvrLm4-7 and therefore result in virulence. All three isolates (20BL001-20BL003) were virulent towards both Rlm4 and Rlm7 (Figure 2 and Table S2). One of these isolates, 20BL001, was transformed with the wild-type copy of the AvrLm4-7 gene, which restored the avirulence phenotype towards both Rlm4 and Rlm7 (Figure S1). Stubble (crock debris) from the Rlm7 cultivar was collected from the Hamilton site at the end of the 2020 growing season and a further 19 isolates were obtained from the mature stubble in 2021. All 19 isolates (21BL001-21BL019; Table S2) harboured avrLm4-7 alleles that had undergone RIP mutation, resulting in 35 to 41 C-T or G-A transitions throughout the gene.

Information on farming practices was collected from the grower on whose property the disease monitoring site was located. This grower had been using Grain ‘n’ Graze farming practices for the past three of four years, whereby cultivars with vernalization requirements are sown in March and then grazed with sheep for a number of months before being allowed to grow through to maturity and harvested for yield (Kirkegaard et al., 2008). The grower had predominately been using the Grain ‘n’ Graze cultivar Hyola 970CL during this time (G. Kreeck, Southern Farming Systems, personal communication), which harbours resistance gene Rlm7 (https://grdc.com.au/GRDC-FS-BlacklegManagementGuide). This use of an Rlm7 cultivar over multiple and successive years has presumably led to selection of the avrLm7 isolates within the L. maculans population, resulting in the Rlm7 resistance gene being overcome.

2.2 | Breakdown of Rlm7 resistance due to dual specificity of AvrLm4-7

Disease severity data were collected at crop maturity from the Yeelanna, South Australia, site on the Eyre Peninsula in 2019 (Figure 3). The Rlm7 cultivar had similar levels of disease as the Rlm1 (Group A) and Rlm4 (Group B) cultivars at this site, although these were significantly lower than the Rlm3 (Group C) and Rlm4, Rlm6 (Group BF) cultivars (Figure 3). The Rlm1, LepR1 (Group AD), Rlm1, Rlm4, LepR1 (Group ABD), and Rlm1, Rlm4, LepR1, Rlm6 (Group ABDF) cultivars had the lowest level of disease. The Rlm7 cultivar at the Yeelanna site had five times more disease than the national average.

Stubble was collected from the Rlm7 cultivar at the Yeelanna site at the end of 2019 and 17 isolates were obtained from the mature stubble in 2020 (Table S2). The AvrLm4-7 allele was PCR amplified and sequenced from each of these, with eight isolates harbouring
the AvrLm47_02 allele, which results in virulence towards Rlm4 but not Rlm7 (Table 1). The remaining nine isolates all harboured either the AvrLm47-09 or AvrLm47-10 alleles, which both contained RIP mutations throughout the coding region. A subset of six of the isolates harbouring these RIP alleles (20BL183, 20BL184, 20BL186, 20BL187, 20BL188, 20BL193; Table S2) was screened for virulence towards Rlm7. As expected, all six isolates were virulent towards Rlm7. Five of these isolates (20BL183, 20BL184, 20BL186, 20BL187, 20BL188) were complemented with a wild-type copy of the AvrLm4-7 gene and shown to restore the avirulence phenotype towards both Rlm4 and Rlm7 (Figure S1).

Unlike the situation in Hamilton, Victoria, Rlm7 cultivars have never been grown on the Eyre Peninsula, as there are no cultivars harbouring Rlm7 with suitable phenology for the region. However, there has been a high dependency on Rlm4 cultivars in this region for the past 3 years (Figure 4). Since 2018, over 80% of seed sold on the Eyre Peninsula has been cultivars containing the Rlm4 resistance gene, with 2019 and 2020 seeing 95% of total seed sold harbouring Rlm4 (Nutrien Cummins Ag Supplies, personal communication). This suggests that the breakdown of Rlm7 on the Eyre Peninsula is associated with the high use of Rlm4 cultivars and the dual specificity of the corresponding avirulence gene, AvrLm4-7.

2.3 | Diversity of RIP alleles differs under contrasting selection regimes

The allelic variation for the RIP isolates varied across different selection regimes (Table S2). Of the nine avrLm7 isolates collected from Yeelanna, only two different RIP alleles were detected, AvrLm47-09 and AvrLm47-10. These two alleles contained 37 (AvrLm47-09) and 36 (AvrLm47-10) C-T or G-A transitions, each generating 19 amino acid substitutions and nine stop codons (Table 1). Of the eight AvrLm7 isolates, only a single allele, AvrLm47-02, was detected. Conversely, of the 23 avrLm7 isolates collected from Hamilton, Victoria, 11 different RIP alleles were identified (AvrLm47-9, AvrLm47-11, AvrLm47-12,
AvrLm4-7 alleles were sequenced from additional isolate populations from Hamilton and Yeelanna that were collected from alternative resistance sources, not Rlm7. No RIP alleles were identified in any of these isolates. For the isolates from the Rlm3 (Group C) cultivar at the Hamilton site, three non-RIP alleles were detected: AvrLm47_00, AvrLm47_01, and AvrLm47_02, both phenotypically avrLm4 (Table 1). For the isolates from the Rlm7 cultivars at Hamilton, Victoria, compared to Yeelanna, South Australia.

As a comparison, the AvrLm4-7 alleles were sequenced from additional isolate populations from Hamilton and Yeelanna that were collected from alternative resistance sources, not Rlm7. No RIP alleles were identified in any of these isolates. For the isolates from the Rlm1, LepR1 (Group AD) cultivar at the Yeelanna site, two non-RIP alleles were detected, AvrLm47_01 and AvrLm47_02, both phenotypically avrLm4 (Table 1). For the isolates from the Rlm3 (Group C) cultivar at the Hamilton site, three non-RIP alleles were detected: AvrLm47_00, AvrLm47_01, and AvrLm47_02, both phenotypically avrLm4 (Table 1).
and AvrLm47_02. The AvrLm47_00 isolate is avirulent towards both Rlm4 and Rlm7 (Table 1).

Lastly, isolates were also collected from Rlm7 cultivars from experimental plots at Springfield (New South Wales) and Canberra (Australian Capital Territory) whereby recurrent Rlm7 selection had also occurred (Table S2). From eight Springfield isolates, six isolates had five different RIP alleles: AvrLm47_09, AvrLm47_11, AvrLm47_15, AvrLm47_16, and AvrLm47_17. These five RIP alleles harboured up to 42 RIP mutations resulting in 19–21 amino acid substitutions and eight or nine stop codons (Table 1). The remaining two isolates both contained the AvrLm47_04 allele, which harbours three non-RIP-like mutations resulting in virulence towards Rlm4 but not Rlm7 (Table 1). From 10 Canberra isolates, seven had four different RIP alleles: AvrLm47_09, AvrLm47_11, AvrLm47_14, and AvrLm47_15 (Table 1). The remaining three isolates harboured two different alleles, AvrLm47_02 and AvrLm47_04.

Molecular variation was analysed for the AvrLm4-7 locus in the isolates using analysis of molecular variance (AMOVA), taking into consideration geographical location (region) and the cultivar as the source of resistance from where the isolates originated (population). For all 100 isolates significant differences in genetic diversity among regions and populations were detected as well as within populations (Table 2). The largest source of variation was within populations (69%), followed by among populations (22%). The genetic diversity of each population was calculated using Shannon indices, whereby the Hamilton (Vic) population collected from a Rlm7 cultivar showed the highest level of diversity (Shannon index, I = 2.08; genetic diversity, h = 0.85) and the Yeelanna (South Australia) population collected

Table 1: Alleles of the AvrLm4-7 gene of Leptosphaeria maculans

Allele	Frequency of allele (number)	Populations identified in	Mutations	Translational consequences of mutations	Phenotypic consequences					
			Non-RIP	RIP						
			Syn. subs.	Non-syn. subs.	Stop codons	Rlm4	Rlm7			
AvrLm47-0*	1% (1)		0	0	Avirulent	Avirulent				
AvrLm47-1*	7% (7)		2	0	0	Avirulent	Avirulent			
AvrLm47-2*	40% (40)		2	0	0	Avirulent	Avirulent			
AvrLm47-3*	3% (3)		3	0	0	Avirulent	Avirulent			
AvrLm47-4*	1% (1)		0	39	10	19	9	Virulent	Virulent	
AvrLm47-5*	1% (1)		7	0	10	19	9	Virulent	Virulent	
AvrLm47-6*	1% (1)		7	0	10	22	9	Virulent	Virulent	
AvrLm47-7*	1% (1)		7	0	8	19	9	Virulent	Virulent	
AvrLm47-8*	1% (1)		7	0	9	20	9	Virulent	Virulent	
AvrLm47-9	15% (15)		1, 3, 5, 6	0	8	19	9	Virulent	Virulent	
AvrLm47-10	1% (1)		3	0	36	7	19	NT	NT	
AvrLm47-11	6% (6)		1, 5, 6	0	38	9	20	8	Virulent	Virulent
AvrLm47-12	1% (1)		1	0	40	11	19	9	Virulent	Virulent
AvrLm47-13	1% (1)		1	0	38	9	19	NT	NT	
AvrLm47-14	1% (1)		5	0	39	9	20	9	NT	NT
AvrLm47-15	2% (2)		5, 6	0	39	10	19	9	NT	NT
AvrLm47-16	2% (2)		6	0	38	8	20	9	NT	NT
AvrLm47-17	1% (1)		6	0	42	11	21	9	NT	NT
AvrLm47-18	1% (1)		1	0	38	10	18	9	NT	NT
AvrLm47-19	1% (1)		1	0	38	9	19	NT	NT	
AvrLm47-20	1% (1)		1	0	39	8	21	8	NT	NT
AvrLm47-21	3% (3)		1	0	41	8	20	10	NT	NT
AvrLm47-22	6% (6)		1	0	39	9	21	8	NT	NT
AvrLm47-23	1% (1)		1	0	35	6	18	8	NT	NT
AvrLm47-24	2% (2)		1	0	40	8	21	8	NT	NT

*Allele nomenclature based on Van de Wouw and Howlett (2012). *AvrLm47-0 through AvrLm47-8 previously published.

*Population details: 1, Hamilton, Victoria, Rlm7; 2, Hamilton, Victoria, Rlm3; 3, Yeelanna, South Australia, Rlm7; 4, Yeelanna, South Australia, Rlm1, LepR1; 5, Canberra, Australian Capital Territory, Rlm7; 6, Springfield, New South Wales, Rlm7; 7, historic isolates, unknown.

*Repeat-induced point (RIP) mutations were identified as CpA to TpA and TpG to TpA mutations as previously reported (Selker & Garrett, 1988). Non-RIP mutations were identified as other classes of transitions and transversions.

*Phenotypes are based on either previously published findings (Van Parlange et al., 2009; Van de Wouw & Howlett, 2012) or this study (see Figure 2). NT refers to not tested.
3 | DISCUSSION

The use of major gene resistance is an essential tool in the fight to minimize the impact of plant diseases like blackleg of canola. However, as seen on numerous occasions in Europe, Canada, and Australia, *L. maculans* populations have the ability to evolve rapidly and overcome these resistance genes (Mitrousia et al., 2018; Sprague et al., 2006a; Van de Wouw et al., 2014c; Zhang et al., 2016).

Previous resistance breakdowns have involved either the widescale use of the resistance gene on farms or recurring selection in trial settings (e.g., Delourme et al., 2014; Van de Wouw et al., 2014c). The selection pressure from the continual use of the resistance gene has selected for isolates in the population that are virulent, which then increase in frequency, resulting in the corresponding resistance gene being overcome. In the current study, we have identified the breakdown of *Rlm7* associated with two different selection regimes.

The first involves continual use of *Rlm7* cultivars on a specific farm, resulting in the selection of *avrLm7* isolates and therefore the breakdown of *Rlm7* resistance. This is similar to situations in Europe whereby breakdown of *Rlm7* resistance occurred in response to widespread sowing of cultivars carrying this resistance gene (Daverdin et al., 2012; Mitrousia et al., 2018). In the scenario in Australia, *RIP* mutation in the *avrLm4-7* gene was identified as the only mechanism conferring virulence towards *Rlm7*, whilst in the UK and France gene deletion was identified as the major mechanisms of virulence (Daverdin et al., 2012; Mitrousia et al., 2018). However, in French surveys it was found that in the first year, RIP mutations were the most frequent event giving rise to virulence and these decreased in frequency in the second year (Daverdin et al., 2012). Continual monitoring in Australia might identify a similar situation in which RIP mutations decrease in frequency and deletion alleles increase. Because this was the first time monitoring had been done at this location, it is unknown when the frequency of virulent *avrLm7* isolates began to increase; however, it is likely that it has occurred within a 3- to 4-year time frame that would coincide with the use of the *Rlm7* cultivar Hyola 970 on the farm. In comparison, the breakdown of *Rlm7* resistance was reported over a 4-year window in specific trials in France and was much slower under UK conditions (Daverdin et al., 2012; Mitrousia et al., 2018). It is unclear why the breakdown of resistance occurred much faster in Australia, but this finding is consistent with other resistance genes such as *Rlm1*, which was overcome in

from a *LepR1, Rlm1* cultivar showed the lowest (*l* = 0.349, *h* = 0.198) (Figure 5a). The Yeelanna population collected from a *Rlm7* cultivar showed similar levels of diversity (*l* = 1.053, *h* = 0.602) as the Hamilton population from a *Rlm3* cultivar (*l* = 1.129, *h* = 0.560) but much lower than each of the populations collected from *Rlm7* cultivars (*l* = 1.696–2.080, *h* = 0.813–0.851). The lower diversity of alleles for the Yeelanna-*Rlm7* population was further exemplified when the genetic diversity indices were calculated only on the 49 isolates harbouring *RIP* alleles (Figure 5b), whereby this population obtained *l* index of 0.349 and *h* index of 0.198. This compares to a range of *l* indices of 1.386–2.163 and *h* indices of 0.694–0.858 for each of the other *RIP* populations. These data suggest that the diversity in *RIP* alleles is much lower for the Yeelanna *Rlm7* populations compared to all other *Rlm7* populations.

Across the 20 different *RIP* alleles identified, 33 mutations are common between all alleles (Figures 6a and S2), with a further three to nine mutations responsible for the variation between the different *RIP* alleles. When compared to a single published *RIP* allele from isolate Nz-T4 (GenBank: KT804641.1), the same 33 *RIP* mutations are also in common with this allele (data not shown).

The *avrLm7* *RIP* alleles (*AvrLm47_05 to AvrLm47_24*) are phylogenetically distinct from the *AvrLm7* alleles (*AvrLm47_00 to AvrLm47_4*), forming a separate clade on the phylogenetic tree, which is supported with bootstrap values (Figure 6b). However, no clear pattern of divergence can be seen within the *RIP* alleles with limited bootstrap support (Figure 6).

![FIGURE 4 Percentage of Brassica napus cultivars sown on the Eyre Peninsula, South Australia, between 2016 and 2020 that harbour the *Rlm4* resistance gene](image)

TABLE 2 Analysis of molecular variance results for the *AvrLm4-7* alleles identified across 100 isolates

Source of variation	df	SS	MS	Est. var.	%	p value
Among regions	4	7.851	1.963	0.036	8%	0.001
Among populations	2	4.332	2.166	0.096	22%	0.001
Within populations	93	27.866	0.300	0.300	69%	0.001

Note: Analysis of molecular variance was performed with 999 random permutations. SS, sum of squares; MS, mean of square value.

Regions refer to different geographical locations. Populations refer to different cultivars, and therefore sources of resistance, that the isolates were cultured from.
3 years in Australia compared to 10+ years in France, and may be a reflection of the fungal life cycle in Australia, whereby the sexual cycle during which RIP mutation occurs is essential to produce the ascospores to initiate disease (Rouxel et al., 2003; Sprague et al., 2006b). Previously, Rlm7 has only been available in winter cultivars, and therefore predominantly only used in Grain ‘n’ Graze farming systems. In 2020 the Rlm7 cultivar Hyola 970CL set an Australian harvest record of 7.16 t/ha (Thyer, 2021), and in 2021 spring-type Rlm7 cultivars were released for the first time, which will expand the potential growing area for this resistance gene. Therefore, close monitoring of disease levels will be required to prevent yield losses from resistance breakdown in Rlm7 cultivars.

The second scenario presented in this study was the breakdown of Rlm7 on the Eyre Peninsula, South Australia, where no Rlm7 cultivars have ever been sown. Instead, this region has predominately only used in Grain ‘n’ Graze farming systems. In 2020 the Rlm7 cultivar Hyola 970CL set an Australian harvest record of 7.16 t/ha (Thyer, 2021), and in 2021 spring-type Rlm7 cultivars were released for the first time, which will expand the potential growing area for this resistance gene. Therefore, close monitoring of disease levels will be required to prevent yield losses from resistance breakdown in Rlm7 cultivars.

FIGURE 5 Differences in genetic diversity were calculated using Shannon indices for the AvrLm4-7 allele of Leptosphaeria maculans populations. (a) When all seven populations representing 100 isolates were analysed, population 4 showed the lowest diversity and population 1 showed the highest. (b) When the 49 isolates harbouring repeat-induced point mutation alleles were analysed, large differences in diversity were observed for population 3 compared to all other Rlm7 populations. Population details: 1, Hamilton, Victoria, Rlm7; 2, Hamilton, Victoria, Rlm3; 3, Yeelanna, South Australia, Rlm7; 4, Yeelanna, South Australia, Rlm1, LepR1; 5, Canberra, Australian Capital Territory, Rlm7; 6, Springfield, New South Wales, Rlm7; 7, historic isolates, unknown. Error bars represent the standard errors for the Shannon index (I) and genetic diversity (h) as calculated using GenAlEx v. 6.503.
The mechanisms of RIP mutation are still poorly understood in non-model organisms although the process has been proposed to exist in many fungal species based on genome analyses, especially within the ascomycetes (van Wyk et al., 2021). With the exception of L. maculans and some model fungal species, there is limited experimental evidence of RIP mutation existing in other species. Furthermore, there is no report of RIP mutation conferring virulence in other plant pathogen species. Of the 20 RIP alleles identified in this study, 33 mutations were common between them. Do these findings suggest that there is a precursor allele that is predominant in the population that is selected for under Rlm4/Rlm7 selection? In line with this possibility, the 33 mutations were in common in four historical isolates that were collected in the 1980s. However, these 33 mutations were also shared with an allele sequenced from isolate Nz-T4 from New Zealand. An alternative possibility is that multiple rounds of RIP mutation occur during meiosis, which results in a first-round of mutations that target specific bases, and therefore common in all RIP alleles, and this is then followed by a second round of mutations that randomly targets remaining potential sites. This is consistent with recent findings in L. maculans whereby at least two rounds of RIP mutation occur during meiosis (Van de Wouw et al., 2019). In experiments characterizing RIP mutation using specific constructs carrying DNA duplication, multiple independent alleles are created after crossing. However, the trigger for mutations at the AvrLm4-7 locus is probably the large regions of repetitive DNA sequence on either side, which may impose a different intensity of the mutation process and hence those 33 sites may always be targeted. Counter to this hypothesis is the range of different mutations found in RIP-derived alleles of AvrLm6, which is also found embedded in repetitive DNA (Van de Wouw et al., 2010).

Hence, it is unclear whether the RIP alleles arise independently each time there is selection pressure being imposed by Rlm4 or Rlm7 cultivation or if these alleles are always being maintained at low frequency in the population. Fitness penalties in strains that are virulent towards Rlm4 have been reported from field- and laboratory-based experiments in the UK (Huang et al., 2006, 2010).
No such experiments have been done for strains associated with selection with \textit{Rlm7}; however, it may be reasonable to assume there would be considering the differences associated between avirulent and virulent alleles.

The dual specificity of \textit{Avr} genes has implications for management strategies that are being implemented for growers. In both Australia and Canada, growers are advised to rotate resistance genes in the field to minimize the risk of resistance being overcome (Marcroft et al., 2012b; Van de Wouw & Howlett, 2020; Zhang & Fernando, 2018). When a single avirulence protein is recognized by two difference resistance proteins then these resistance genes potentially need to be treated as a single \textit{R} gene when deploying management strategies, depending on the mechanisms conferring virulence. Resistance genes \textit{LepR3} and \textit{Rlm1} are another blackleg disease example whereby two separate \textit{R} genes in \textit{B. napus} recognize a single \textit{Avr} gene in \textit{L. maculans}, \textit{AvrLm1-R3}. Similar to the situation described in the current study, the widespread cultivation of \textit{sylvestris} cultivars harbouring \textit{LepR3} resistance genes led to the selection of virulence at the \textit{AvrLm1-R3} locus. In this situation, gene deletion is the most common mechanism for loss of avirulence and therefore will always result in virulence towards both genes. In Australia, \textit{LepR3} and \textit{Rlm1} are treated as a single resistance group due to the fact that virulence towards one of the genes results in virulence towards both. Due to the previous findings that the emergence of virulence under \textit{Rlm4} selection was due to a single SNP, and therefore only virulence towards \textit{Rlm4} and not \textit{Rlm7}, these two resistance genes have been treated as separate resistance groups in Australia. Rotation to \textit{Rlm7} following \textit{Rlm4} cultivation has therefore been recommended as isolates would only be virulent towards \textit{Rlm4}. However, rotation to \textit{Rlm4} following \textit{Rlm7} selection was not recommended as virulence towards \textit{Rlm7} inactivates the gene and always also leads to virulence towards \textit{Rlm4}. The findings presented in this current study suggest that \textit{Rlm4} and \textit{Rlm7} should not be rotated in either manner because \textit{Rlm4} cultivation can lead to generation of RIP alleles, albeit at a lower frequency.

\textbf{FIGURE 7} Representation of different selection regimes and the impact on genetic diversity within the \textit{AvrLm4-7} locus of \textit{Leptosphaeria maculans}. Different colours within a shape represent different alleles for each phenotype class.
As more R-Avr interactions are discovered and characterized in plant-microbe interactions, and that information moved into crop protection, establishing situations in which multigene interactions occur can be useful for breeding prioritization strategies and the deployment of new resistance genes.

4 | EXPERIMENTAL PROCEDURES

4.1 | Disease monitoring sites

Blackleg severity was monitored in 14 field sites across Australia in 2019 and 2020 (Figure S3). These disease monitoring sites were located directly adjacent to National Variety Trial yield evaluation sites where cultivars/breeding lines are sown. Two of these sites, Hamilton in Victoria and Yeelanna in South Australia, displayed unusual levels of disease for the Rlm7 (Group H) cultivar in 2020 and 2019, respectively. For the full list of disease monitoring sites, see Table S1.

At each of these disease monitoring sites, eight cultivars representing different resistance groups were sown. The cultivars grown at each site were ATR-Bonito^{BRR} (<Rlm1; Group A), SFR650917TT (<Rlm4; Group B), ATR-Stingray^{BRR} (<Rlm3; Group C), HyTtec[®] Trophy (<Rlm1, LepR1; Group AD), Hyola® 559TT (<Rlm1, Rlm4, LepR1; Group ABD), SF Turbine TT (<Rlm4, Rlm6; Group BF), Hyola® 350TT (<Rlm1, Rlm4, LepR1, Rlm6; Group ABDF), and DG1901TT (<Rlm7; Group H). Cultivars were sown in three replicate plots (10 × 1 m) with complete randomization, designed using DiGGer software (www.austatgen.org/files/software).

In 2019, disease severity was assessed at maturity as described previously (Van de Wouw et al. 2014c). In brief, for each replicate plot 20 plants were chosen at random, uprooted, and then cut at the crown. The cross-section was visually assessed for the percentage of internal infection (discolouration). The average crown canker severity was determined from the 60 plants (20 per replicate) for each cultivar at each site. The national average was determined by averaging the crown canker severity for the Rlm7 cultivar from all 14 disease monitoring sites.

In 2020, in addition to the maturity assessments described above, the severity of leaf lesions was also determined. At the four-leaf growth stage, the total number of lesions was counted for each of 20 consecutive plants within each plot. For consistency, the 20 plants were always selected from the second row, starting 1 m in from the front of the plot. The average number of lesions per plant was determined for each replicate plot for each cultivar at each site. The national average was determined for the leaf lesions per plant for the Rlm7 cultivar from all 14 disease monitoring sites.

Differences in disease severity were determined through analysis of variance of the log-transformed mean for each plot. Data were analysed using GenStat v. 16.1.0.

Farm practice information was collected. For the Hamilton (Victoria) site, direct information regarding cultivar use was obtained from the farmer where the site was located by G. Kreeck, the trial manager for Southern Farming Systems who ran the trial. For the Yeelanna (South Australia) site, cultivar use in the Eyre Peninsula region was collected from Nutrien Ag Supplies, Cummins. This company is the largest distributor of seed for the Eyre Peninsula region and therefore a relevant representative of farming practices.

4.2 | Isolate culturing and pathogenicity screening

All isolates used in this study are listed in Table S2 and the location of their collection sites represented in Figure S3. Isolates were collected following one of two protocols. For the isolates collected from Hamilton, Victoria, in 2020, leaf lesions were collected from the Rlm7 cultivar from the disease monitoring site. Lesions were excised and isolates cultured using the surface sterilization technique as previously described (Van de Wouw et al., 2017). For the remaining isolates used in this study, stubble (crop debris) was collected from disease monitoring sites, matured, and then individual ascospores discharged as previously described (Van de Wouw et al., 2018). All isolates were maintained on 10% Campbell’s V8 juice agar. Four historic isolates were included in which alleles harbouring RIP mutations had been previously described (Van de Wouw & Howlett, 2012).

To complement the AvrLm4-7 mutations, a wild-type copy of the gene was transformed into six representative isolates by Agrobacterium tumefaciens-mediated delivery, as described previously (Van de Wouw et al., 2014a). Transformants were selected on medium containing hygromycin (50 µg/ml) and cefotaxime (100 µg/ml), then isolates obtained from colonies derived from single spores.

The virulence phenotype of each of the isolates was determined by inoculating pycnidiospores onto cotyledons of B. napus seedlings. In brief, for each isolate × host interaction, eight plants were inoculated and symptoms determined 14 days post inoculation on a 0 (no darkening around wounds) to 9 (large lesions with prolific sporulation) scale (Koch et al., 1991). Average pathogenicity scores of >5.0 were considered virulent and average pathogenicity scores of <3.0 were considered avirulent (Marcroft et al., 2012a). Isolates D2 and D22 were used as controls, with isolate D2 being virulent towards both Rlm4 and Rlm7, whilst isolate D22 is virulent towards Rlm4 and avirulent towards Rlm7.

4.3 | AvrLm4-7 allele diversity analysis

Alleles of AvrLm4-7 were identified by PCR amplification and Sanger sequencing. Genomic DNA was extracted from mycelia of each of the isolates as previously reported (Van de Wouw et al., 2010). The AvrLm4-7 gene was amplified using primers (5′-AGAAGGTAAAGGGCAAGTC-3′ and 5′-GAAGAACCCCTGC TAGATAGAAGC-3′) and PCR conditions previously reported...
(Van de Wouw & Howlett, 2012). Amplicons were purified using a PCR purification kit as per manufacturer’s specifications (Qiagen) and then sequenced using BigDye terminator cycling at the Australian Genome Research Facility (Melbourne, Australia). Sequences were analysed using Geneious R9.1.8. All AvrLm4-7 sequences were aligned to the avirulent AvrLm4-7 reference sequence of L. maculans isolate v23.1.3 (GenBank accession no. AM998638; Parlane et al., 2009) as well as the RIP allele of isolate Nz-T4 (GenBank accession no. KT804641). Allele nomenclature was based on alleles previously published in Van de Wouw and Howlett (2012). RIP mutations were identified as CpaA to Tpa and Tgp to Tpa mutations as previously reported (Selker & Garrett, 1988). All allele sequences were uploaded to GenBank (accession numbers OM470482–OM470505).

Differences in genetic diversity and genetic indices were analysed using AMOVA, Nei’s genetic distance calculations, Shannon’s information index, and diversity index in GenAlEx v. 6.503 (Peakall & Smouse, 2012). AMOVAs were performed with 999 random permutations. Haplotype maps of the various AvrLm4-7 alleles were generated using PopART (http://popart.otago.ac.nz) using median-joining and minimum-spanning networks (Bandelt et al., 1999). Maximum-likelihood phylogenetic analyses were conducted using the bootstrap method (1000 replications) using the software MEGA v. 10.2.6 (Kumar et al., 2018).

ACKNOWLEDGEMENTS
We thank G. Kreeck (Southern Farming Systems) and Nutrien Cummings Ag Supplies for information of farming practices. We thank Susie Sprague for the contribution of isolates from Canberra and Springfield. We thank Kurt Lindbeck and Andrew Wherrett for collecting field data from New South Wales and Western Australia trial sites. This work was supported by the Australian grain growers through Grains Research and Development Corporation investment.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request and approval from the funding body.

ORCID
Angela P. Van de Wouw https://orcid.org/0000-0001-5147-0393

REFERENCES
Balesdent, M.H., Barbetti, M.J., Li, H., Sivasithamparam, K., Gout, L. & Rouxel, T. (2005) Analysis of Leptosphaeria maculans race structure in a worldwide collection of isolates. Phytopathology, 95, 1061–1071.
Balesdent, M.H., Fudal, I., Ollivier, B., Bally, P., Grandaubert, J., Eber, F. et al. (2013) The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. New Phytopathol, 198B, 887–898.
Bandelt, H., Forster, P. & Röhl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48.
Brun, H., Chèvre, A.M., Fitt, B.D.L., Powers, S., Besnard, A.L., Ermel, M. et al. (2010) Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytopathol, 185, 285–299.
Daverdin, G., Rouxel, T., Gout, L., Aubertot, J.N., Fudal, I., Meyer, M. et al. (2012) Genome structure and reproductive behaviour influence the evolutionary potential of a fungal phytopathogen. PLoS Pathogens, 8, e1003020.
Degrave, A., Wagner, M., George, P., Coudard, L., Pinochet, X., Ermel, M. et al. (2021) A new avirulence gene or Leptosphaeria maculans, AvrLm14, identified a resistance source in American broccoli(Brassica oleracea) genotypes. Molecular Plant Pathology, 1599–1612.
Delourme, R., Bousset, L., Ermel, M., Duffe, P., Besnard, A.L., Marquer, B. et al. (2014) Quantitative resistance affects the speed of frequency increase but not the diversity of the virulence alleles overcoming a major resistance gene to Leptosphaeria maculans in oilseed rape. Infections, Genetics and Evolution, 27, 490–499.
Delourme, R., Chèvre, A.M., Brun, H., Rouxel, T., Balesdent, M.H., Dias, J.S. et al. (2006) Major gene and polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus). European Journal of Plant Pathology, 114, 41–52.
Elliott, V.L., Maccroft, S.J., Howlett, B.J. & Van de Wouw, A.P. (2016) Gene-for-gene resistance is expressed in cotyledons, leaves and pods in the Leptosphaeria maculans–Brassica napus pathosystem but not during stem colonisation. Plant Breeding, 135, 200–207.
Fernando, D.W.G., Zhang, X., Selin, C., Zou, Z., Liban, S.H., McLaren, D.L. et al. (2018) A six-year investigation of the dynamics of avirulence allele profiles, blackleg incidence, and mating type alleles of Leptosphaeria maculans populations associated with canola crops in Manitoba, Canada. Plant Disease, 102, 790–798.
Fitt, B.D.L., Brun, H., Barbetti, M.J. & Rimmer, S.R. (2006) World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). European Journal of Plant Pathology, 114, 3–15.
Flor, H.H. (1955) Host-parasite interactions in flax rust—its genetic and other implications. Phytopathology, 45, 680–685.
Fudal, I., Ross, S., Brun, H., Besnard, A.L., Ermel, M., Kuhn, M.L. et al. (2009) Repeat-induced point mutation (RIP) as an alternative mechanism of evolution toward virulence in Leptosphaeria maculans. Molecular Plant-Microbe Interactions, 22, 932–941.
Fudal, I., Ross, S., Gout, L., Blaise, F., Kuhn, M.L., Eckert, M.R. et al. (2007) Heterochromatin-like regions as ecological niches for avirulence genes in the Leptosphaeria maculans genome: map-based cloning of AvrLm6. Molecular Plant-Microbe Interactions, 20, 459–470.
Ghanbarnia, K., Fudal, I., Larkan, N.J., Links, M.G., Balesdent, M., Profotova, B. et al. (2015) Rapid identification of the Leptosphaeria maculans avirulence gene AvrLm2 using an intraspecific comparative genomics approach. Molecular Plant Pathology, 16, 699–709.
Ghanbarnia, K., Ma, L., Larkan, N.J., Haddadi, P., Fernando, D.W.G. & Borhan, M.H. (2018) Leptosphaeria maculans AvrLm9: a new player in the game of hide and seek with AvrLm4–7. Molecular Plant Pathology, 19, 1754–1764.
Gout, L., Fudal, I., Kuhn, M.L., Blaise, F., Eckert, M., Cattolicco, L. et al. (2006) Lost in the middle of nowhere: the AvrLm1 avirulence gene of the Dithideomyctete Leptosphaeria maculans. Molecular Microbiology, 60, 67–80.
Gout, L., Kuhn, M.L., Vincenot, L., Bernard-Samain, S., Cattolicco, L., Barbetti, M. et al. (2007) Genome structure impacts molecular evolution at the AvrLm1 avirulence locus of the plant pathogen Leptosphaeria maculans. Environmental Microbiology, 9, 2978–2992.
Haddadi, P., Larkan, N.J., van de Wouw, A.P., Zhang, Y., Xiang Neik, T., Beynon, E. et al. (2021) Brassica napus genes Rim4 and Rim7, conferring resistance to Leptosphaeria maculans, are alleles of the Rim9 wall-associated kinase-like resistance locus. bioRxiv. DOI: 10.1101/2021.12.11.471845.
Hammond, K.E., Lewis, B.G. & Musa, T.M. (1985) A systemic pathway in the infection of oilseed rape plants by Leptosphaeria maculans. Plant Pathology, 34, 557–565.
Huang, Y.J., Balesdent, M.H., Li, Z.Q., Evans, N., Rouxel, T. & Fitt, B.D.L. (2010) Fitness cost of virulence differs between the AvrLm1 and AvrLm4 loci in Leptosphaeria maculans (phoma stem canker of oilseed rape). *European Journal of Plant Pathology*, 126, 279–291.

Huang, Y.J., Li, Z., Evans, N., Rouxel, T., Fitt, B. & Balesdent, M. (2006) Fitness cost associated with loss of the AvrLm4 avirulence function in Leptosphaeria maculans (phoma stem canker of oilseed rape). *European Journal of Plant Pathology*, 114, 77–89.

Hwang, S.F., Strelkov, S.E., Peng, G., Ahmed, H.U., Zhou, Q. & Turnbull, G. (2011) Blackleg (Leptosphaeria maculans) severity and yield loss in canola in Alberta, Canada. *Plants (Basel)*, 5, 31.

Jiquel, A., Gervais, J., Geistodt-Kiener, A., Delourme, R., Gay, E.J., Larkan, N.J., Lydiate, D.J., Potter, T.D. & Howlett, B.J. (2012a) Identifying resistance genes to blackleg disease in *Brassica napus* cultivar 'Surpass400'. *Molecular Plant-Microbe Interactions*, 4, 341–349.

Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. *Molecular Biology and Evolution*, 35, 1547–1549.

Larkan, N.J., Lydiate, D.J., Parkin, I.A., Nelson, M.N., Epp, D.J., Cowling, W.A. et al. (2013) The *Brassica napus* blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effecter AVRML1. *New Phytologist*, 197, 595–605.

Larkan, N.J., Ma, L. & Borhan, H. (2015) The *Brassica napus* receptor-like protein RLM2 is encoded by a second allele of the LepR3/RLM2 blackleg resistance locus. *Plant Biotechnology Journal*, 13, 983–992.

Larkan, N.J., Ma, L., Haddadi, P., Buchwaldt, M., Parkin, I.A., Djavaheri, M. et al. (2020) The *Brassica napus* wall-associated kinase-like (WAKL) gene Rlm9 provides race-specific blackleg resistance. *The Plant Journal*, 104, 892–900.

Larkan, N.J., Raman, H., Lydiate, D.J., Robinson, S.J., Yu, F., Barbulescu, D.M. et al. (2016) Multi-environment QTL studies suggest a role for cysteine-rich protein kinase genes in quantitative resistance to blackleg disease in *Brassica napus*. *BMC Plant Biology*, 16, 183.

Long, Y., Wang, Z., Sun, Z., Fernando, D.W.G., McVetty, P.B.E. & Li, G. (2011) Identification of two blackleg resistance genes and fine mapping of one of these two genes in a *Brassica napus* cultivar ‘Surpass400’. *Theoretical and Applied Genetics*, 122, 1223–1231.

Macrow, S.J., Elliott, V.L., Coizjensen, A.J., Salisbury, P.A., Howlett, B.J. & Van de Wouw, A.P. (2012a) Identifying resistance genes to Leptosphaeria maculans in Australian *Brassica napus* cultivars based on reactions to isolates with known avirulence genotypes. *Crop and Pasture Science*, 63, 338–350.

Macrow, S.J., Van de Wouw, A.P., Salisbury, P.A., Potter, T.D. & Howlett, B.J. (2012b) Rotation of canola (Brassica napus) cultivars with different complements of blackleg resistance genes decreases disease severity. *Plant Pathology*, 61, 934–944.

Macrow, S.M., Sprague, S.J., Pymer, S.J., Salisbury, P. & Howlett, B.J. (2003) Factors affecting the production of inoculum of the blackleg fungus (*Leptosphaeria maculans*) in south-eastern Australia. *Australian Journal of Experimental Agriculture*, 43, 1231–1236.

Macrow, S.J., Sprague, S.J., Pymer, S.J., Salisbury, P.A. & Howlett, B.J. (2004) Crop isolation, not extended rotation length, reduces blackleg (*Leptosphaeria maculans*) severity of canola (*Brassica napus*) in south-eastern Australia. *Australian Journal of Experimental Agriculture*, 44, 601–606.

Mitrousa, G.K., Huang, Y.J., Qi, A., Sidiqke, S.N.M. & Fitt, B.D.L. (2018) Effectiveness of *Rlm7* resistance against *Leptosphaeria maculans* (phoma stem canker) in UK winter oilseed rape cultivars. *Plant Pathology*, 67, 1339–1353.

Peakall, R. & Smouse, P.E. (2012) *GenAlEx 6.5*: genetic analysis in Excel. Population genetic software for teaching and research – an update. *Bioinformatics*, 28, 2537–2539.

Peng, G., Liu, X., McLaren, D.L., McGregor, L. & Yu, F. (2020) Seed treatment with the fungicide flusilazole limits cotyledon infection by *Leptosphaeria maculans* and reduces blackleg of canola. *Canadian Journal of Plant Pathology*, 42, 480–492.

Petit-Houdent, Y., Degreve, A., Meyer, M., Blaise, F., Ollivier, B., Marais, C.L. et al. (2019) A two genes-for-one gene interaction between *Leptosphaeria maculans* and *Brassica napus*. *New Phytologist*, 223, 397–411.

Plissonneau, C., Daverdin, G., Ollivier, B., Blaise, F., Degreve, A., Fudal, I. et al. (2016) A game of hide and seek between avirulence genes AvrLm4-7 and AvrLm3 in *Leptosphaeria maculans*. *New Phytologist*, 209, 1613–1624.

Plissonneau, C., Rouxel, T., Chèvre, A.M., van de Wouw, A.P. & Balesdent, M.H. (2018) One gene-one name: the AvrLm1 avirulence gene of *Leptosphaeria maculans* is AvrLm5. *Molecular Plant Pathology*, 19, 1012–1016.

Raman, H., Raman, R., Qiu, Y., Zhang, Y., Batley, J. & Liu, S. (2021) The Rlm13 gene, a new player of *Brassica napus–Leptosphaeria maculans* interaction maps on chromosome C03 in canola. *Frontiers in Plant Science*, 12, 654604.

Rouxel, T., Penaud, A., Pinochet, X., Brun, H., Gout, L., Delourme, R. et al. (2003) A 10-year survey of populations of *Leptosphaeria maculans* in France indicates a rapid adaptation towards the Rlm3 resistance gene of oilseed rape. *European Journal of Plant Pathology*, 109, 871–881.

Schnippenkoetter, W., Hoque, S., Maher, R., Van de Wouw, A.P., Macrow, S.J., Hands, P. et al. (2021) Comparison of non-subjective relative fungal biomass measurements to quantify the *Leptosphaeria maculans*–*Brassica napus* interaction. *BMC Plant Methods*, 17, 122.

Selker, E.U. & Garrett, P.W. (1988) DNA sequence duplications trigger gene inactivation in *Neurospora crassa*. *Proceedings of the National Academy of Sciences of the United States of America*, 85, 6870–6874.

Selker, E.U. (1990) Premiotic instability of repeated sequences in *Neurospora crassa*. *Annual Review of Genetics*, 24, 579–613.

Sprague, S.J., Balesdent, M.H., Brun, H., Hayden, H.L., Macrow, S.J., Pinochet, X. et al. (2006a) Major gene resistance in *Brassica napus* (oilseed rape) is overcome by changes in virulence of populations of *Leptosphaeria maculans* in France and Australia. *European Journal of Plant Pathology*, 114, 33–40.

Sprague, S.J., Macrow, S.J., Hayden, H.L. & Howlett, B.J. (2006b) Major gene resistance to blackleg in *Brassica napus* overcome within three years of commercial production in southeastern Australia. *Plant Disease*, 90, 190–198.

Sprague, S.J., Macrow, S.J., Lindbeck, K.D., Ware, A.H., Khangura, R.K. & Van de Wouw, A.P. (2018) Detection, prevalence and severity of upper canopy infection on mature *Brassica napus* plants caused by *Leptosphaeria maculans*. *Crop and Pasture Science*, 69, 65–78.

Stuthmann, D.D., Leonard, J.J. & Miller-Garvin, J. (2007) Breeding crops for durable resistance to disease. *Advances in Agronomy*, 95, 319–367.

Thyer, R. (2021) Hard yards pay off with record yields. In: *Ground cover*. Australia: Grains Research and Development Corporation. Available at: https://groundcovergrdc.com.au/crops/oilseeds/hard-yards-payoff-with-record-yield [Accessed 4 March 2022].
Van de Wouw, A.P., Colejnsen, A.J., Hane, J.K., Brunner, P.C., McDonald, B.A., Oliver, R.P. et al. (2010) Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants. *PLoS Pathogens*, 6, e1001180.

Van de Wouw, A.P., Elliott, C.E. & Howlett, B.J. (2014a) Transformation of fungal isolates with avirulence genes provides tools for identification of corresponding resistance genes in the host plant. *European Journal of Plant Pathology*, 140, 875–882.

Van de Wouw, A.P., Lowe, R.G.T., Elliott, C.E., Dubois, D.J. & Howlett, B.J. (2014b) An avirulence gene, AvrLmJ1, from the blackleg fungus, Leptosphaeria maculans, confers avirulence to *Brassica juncea* cultivars. *Molecular Plant Pathology*, 15, 523–530.

Van de Wouw, A.P., Marcroft, S.J., Ware, A., Lindbeck, K., Khangura, R. & Howlett, B.J. (2014c) Breakdown of resistance to the fungal disease, blackleg, is averted in commercial canola (*Brassica napus*) crops in Australia. *Field Crops Research*, 166, 144–151.

Van de Wouw, A.P., Elliott, C.E., Popa, K.M. & Idnurm, A. (2019) Analysis of repeat induced point (RIP) mutations in *Leptosphaeria maculans* indicates variability in the RIP process between fungal species. *Genetics*, 211, 89–104.

Van de Wouw, A.P., Elliott, V.L., Chang, S., López-Ruiz, F., Marcroft, S.J. & Idnurm, A. (2017) Identification of isolates of the plant pathogen *Leptosphaeria maculans* with resistance to the triazole fungicide fluquinconazole using a novel *in planta* assay. *PLoS One*, 12, e0188106.

Van de Wouw, A.P. & Howlett, B.J. (2012) Estimating frequencies of virulent isolates in field populations of a plant pathogenic fungus, *Leptosphaeria maculans*, using high-throughput pyrosequencing. *Journal of Applied Microbiology*, 113, 1145–1153.

Van de Wouw, A.P. & Howlett, B.J. (2020) Advances in understanding the *Leptosphaeria maculans*—*Brassica* pathosystem and their impact on disease management. *Canadian Journal of Plant Pathology*, 42, 149–163.

Van de Wouw, A.P., Howlett, B.J. & Idnurm, A. (2018) Changes in allele frequencies of avirulence genes in the blackleg fungus, *Leptosphaeria maculans*, over two decades in Australia. *Crop and Pasture Science*, 69, 20–29.

Van de Wouw, A.P., Marcroft, S.J., Barbetti, M.J., Hua, L., Salisbury, P.A., Gout, L. et al. (2009) Dual control of avirulence in *Leptosphaeria maculans* towards a *Brassica napus* cultivar with ‘sylvestris-derived’ resistance suggests involvement of two resistance genes. *Plant Pathology*, 58, 305–313.

Van de Wouw, A.P., Marcroft, S.J. & Howlett, B.J. (2016) Blackleg disease of canola in Australia. *Crop and Pasture Science*, 67, 273–282.

Van de Wouw, A.P., Marcroft, S.J., Sprague, S.J., Scanlan, J.L., Vesk, P.A. & Idnurm, A. (2021) Epidemiology and management of blackleg of canola in response to changing farming practices in Australia. *Australasian Plant Pathology*, 50, 137–149.

Van Wyk, S., Wingfield, B.D., de Vos, L., van der Merwe, N. & Steenkamp, E.T. (2021) Genome-wide analyses of repeat-induced point mutations in the Ascomycota. *Frontiers in Microbiology*, 11, 622368.

Yu, F., Gugel, R.K., Kutcher, R., Peng, G. & Rimmer, S.R. (2013) Identification and mapping of a novel blackleg resistance locus LepR4 in the progenies from *Brassica napus* × *B. rapa* subsp. *sylvestris*. *Theoretical and Applied Genetics*, 126, 307–315.

Yu, F., Lydiate, D.J. & Rimmer, S.R. (2005) Identification of two novel genes for blackleg resistance in *Brassica napus*. *Theoretical and Applied Genetics*, 110, 969–979.

Yu, F., Lydiate, D.J. & Rimmer, S.R. (2008) Identification and mapping of a third blackleg resistance locus in *Brassica napus* derived from *B. rapa* subsp. *sylvestris*. *Genome*, 51, 64–72.

Zhang, X. & Fernando, D.W.G. (2018) Insights into fighting against blackleg disease of *Brassica napus* in Canada. *Crop and Pasture Science*, 69, 40–47.

Zhang, X., Peng, G., Kutcher, H.R., Balesdent, M.H., Delourme, R. & Fernando, D.W.G. (2016) Breakdown of *Rlm3* resistance in the *Brassica napus*–*Leptosphaeria maculans* pathosystem in western Canada. *European Journal of Plant Pathology*, 145, 659–674.

Zheng, X., Koopmann, B., Ulber, B. & von Tiedemann, A. (2020) A global survey on diseases and pests in oilseed rape—current challenges and innovative strategies of control. *Frontiers in Agronomy*, 2, 590908.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Van de Wouw, A.P., Sheedy, E.M., Ware, A.H., Marcroft, S.J. & Idnurm, A. (2022) Independent breakdown events of the *Brassica napus Rlm7* resistance gene including via the off-target impact of a dual-specificity avirulence interaction. *Molecular Plant Pathology*, 23, 997–1010. https://doi.org/10.1111/mpp.13204