One-year results of half-dose versus one-third-dose photodynamic therapy in chronic or recurrent central serous chorioretinopathy

Pichai Jirarattanasopa (Jirarapichai@gmail.com)
Prince of Songkla University

Banchasakjaroen Vanchalerm
Prince of Songkla University

Ratanasukon Mansing
Prince of Songkla University

Research article

Keywords: Photodynamic therapy (PDT), Half-dose PDT, One-third-dose PDT, Central serous chorioretinopathy (CSC)

DOI: https://doi.org/10.21203/rs.3.rs-38736/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

To compare the efficacy of half-dose photodynamic therapy (PDT) and one-third-dose PDT in chronic or recurrent central serous chorioretinopathy (CSC).

Methods

A retrospective review of patients with chronic or recurrent CSC who were treated with half-dose or one-third-dose PDT and followed for 12 months afterwards. Best-corrected visual acuity (BCVA), central retinal thickness (CRT) and resolution of subretinal fluid (SRF) at baseline and 1, 3, 6 and 12 months post-PDT were assessed.

Results

Forty-six eyes and 20 eyes received half-dose and one-third-dose PDT, respectively. The study showed efficacy of the one-third-dose PDT compared with half-dose PDT in BCVA improvement (0.10 ± 0.04 logMAR for one-third-dose versus 0.17 ± 0.04 for half-dose, P = 0.293) and CRT improvement (125.6 ± 24.6 µm for one-third-dose versus 139.1 ± 16.54 for half-dose, P = 0.652) at 12 months. The SRF recurrence rate was significantly higher in the one-third-dose PDT group compared with the half-dose PDT group (40.0% versus 15.2%, P = 0.027) at 12-months.

Conclusion

At 12 months, the one-third-dose PDT was effective in term of BCVA and CRT improvement, when compared with half-dose PDT. However, this study showed that one-third-dose PDT had a higher recurrence rate of SRF.

Background

Central serous chorioretinopathy (CSC) is characterized by an accumulation of subretinal fluid (SRF) in the macula, with or without serous detachment of the retinal pigment epithelium (RPE), caused by choroidal vascular hyperpermeability.\(^1\)\(^-\)\(^2\) Acute CSC spontaneously resolves within 3–4 months in most patients, but patients who have persistent or recurrent SRF require treatment.\(^1\)\(^-\)\(^4\)

Laser photocoagulation is generally used to treat extrafoveal leakage. However, chronic CSC, with broad or indistinct leakage, and CSC with subfoveal or juxtafoveal leakage are difficult to treat with laser photocoagulation because of difficulty in localizing the leakage point and the possibility of serious complications, such as RPE atrophy, permanent scotoma and secondary choroidal neovascularization.
Photodynamic therapy (PDT) with verteporfin has been reported to be effective for reducing SRF, thereby improving the visual acuity in these patients. However, post-PDT complications, such as RPE change, choroidal ischemia and secondary CNV, have motivated studies of the effect of lowering the dose of verteporfin or decreasing the laser power energy (decreasing the fluence), to minimize post-PDT complications. Accordingly, many studies have reported the efficacy of half-dose PDT and half-fluence PDT in treatment of acute and chronic CSC, without serious complications.

Because of the variation in verteporfin doses being used for CSC, Zhao et al. performed a study that showed that 30% verteporfin seemed to be safe and effective in the treatment of acute CSC. Due to issues with reimbursement, some patients in the study at Prince of Songkla University (PSU) hospital were treated with one-third-dose PDT rather than half-dose PDT.

The purpose of the present study was to retrospectively compare the 1-year results for visual acuities, central retinal thickness (CRT), SRF and recurrence rate between half-dose PDT and one-third-dose PDT in patients with chronic or recurrent CSC.

Methods

We retrospectively reviewed medical records and images from patients who received half-dose PDT or one-third-dose PDT for chronic or recurrent CSC between January 2012 and December 2017 at the Department of Ophthalmology, Songklanagarind Hospital, PSU, Songkhla Province, Thailand. Our study was approved by the Institutional Review Board of Songklanagarind Hospital, PSU, and adhered to the guidelines of the Declaration of Helsinki.

We classified CSC into two types; chronic CSC was defined based on symptoms persisting more than 3 months, and recurrent CSC was defined based on new symptoms in the same eye or the fellow eye of a patient with visual deficits from an earlier episode of CSC.

The inclusion criteria were as follows: (1) age between 20 and 70 years; (2) chronic or recurrent CSC that was treated with half-dose PDT or one-third-dose PDT; (3) presence of SRF involving the macula, as evident on spectral-domain optical coherence tomography (SD-OCT); and (4) the presence of active leakage on fluorescein angiography (FA).

The exclusion criteria were as follows: (1) previous PDT or intravitreal injections of anti-vascular endothelial growth factor (VEGF) or steroids; (2) previous intraocular surgery; (3) other macular abnormalities, such as CNV, polypoidal choroidal vasculopathy (PCV) or other maculopathy; and (4) follow-up of less than 12 months, or missing data such as best-corrected visual acuity (BCVA) or OCT images at baseline, or 1, 3, 6 or 12 months after treatment.

The data collected included: patient sex, age, weight, height, laterality of visual impairment, duration of symptoms, type of CSC, leakage type of CSC on FA, spot size of PDT treatment, BCVA and CRT at baseline and at 1, 3, 6 and 12 months after treatment. The data were recorded from electronic medical
records with the hospital information system, at the Department of Ophthalmology, Faculty of Medicine, PSU, Songkhla Province, Thailand.

The main outcome measures were the improvement in BCVA and CRT, and the presence of SRF at the 1-, 3-, 6- and 12-month follow-ups after PDT treatment. Evaluation of macular detachment and CST were performed using an SD-OCT machine [(Spectralis®, Heidelberg Engineering, Heidelberg, Germany) or (Cirrus OCT®, Carl Zeiss Meditec, Inc., Dublin, CA)]. All patients underwent simultaneous FA and indocyanine green angiography (ICGA) [Heidelberg retinal angiography, Heidelberg Engineering, Heidelberg, Germany] at baseline, for confirmation of the diagnosis and planning of the PDT treatment.

PDT was performed by administering a half-dose (3 mg/m2) or one-third-dose (2 mg/m2) of verteporfin (Visudyne®, Novartis AG, Basel, Switzerland). Verteporfin was infused for 8 minutes. The laser (wavelength 689 nm, with total light energy of 50 J/cm2 for 83 s) was delivered to the area of angiographic leakage observed on FA with an associated area of choroidal hyperpermeability on ICGA at 10 minutes after infusion. After treatment, all patients were instructed to avoid sunlight for 48 hours. Informed consent for PDT was obtained from each patient after a discussion of the potential risks and benefits.

Statistical analysis was performed using SPSS (version 11.0, SPSS Inc, Chicago, IL). Independent-sample t-tests were used to compare BCVA, CRT and SRF-recurrence rate between the two dosage groups. Within each group, the changes in BCVA and CRT were investigated using paired-sample t-tests. P-values of < 0.05 were considered statistically significant.

Results

A total of 87 patients with chronic or recurrent CSC were included. Twenty-seven patients were excluded because: their follow-up was less than 12 months (25 patients), the diagnosis was changed to PCV (1 patient) or their follow-up OCT data were missing (1 patient). Finally, data from 60 patients (66 eyes) were analyzed; 41 patients (46 eyes) had received half-dose PDT and 19 patients (20 eyes) had received one-third-dose PDT (Fig. 1).

The baseline demographic data and clinical characteristics of the patients in the two treatment groups are summarized in Table 1. There were no statistically significant differences in sex, laterality, body mass index, duration of symptoms, type of CSC, leakage type on FA, spot size of PDT, initial BCVA or CRT. However, the half-dose PDT group was older than one-third-dose PDT group (P = 0.03).
Table 1
Comparison of demographic data for the two treatment groups

Characteristic	Half-dose PDT group (n = 46 eyes/41 patients)	One-third-dose PDT group (n = 20 eyes/19 patients)	P-value
Age, mean ± SD (years)	51.51 ± 7.8	46.47 ± 8.88	0.030*
Sex, No. (%)			
- Male	29(70.7)	15(78.9)	0.754
- Female	12(29.3)	4(21.1)	
Study eye, No. (%)			
- Right	25(54.3)	10(50.0)	0.793
- Left	21(45.7)	10(50.0)	
BMI, mean ± SD, kg/m²	24.07 ± 3.80	24.06 ± 3.18	0.994
Duration of symptoms, mean ± SD, (months)	9.43 ± 8.84	12.35 ± 8.13	0.212
Group types, No. (%)			
- Chronic	39(84.8)	13(65.0)	0.071
- Recurrent	7(15.2)	7(35.0)	
Leakage type, No. (%)			
- Smoke stack	8(17.4)	3(15.0)	0.652
- Ink blot	27(58.7)	14(70.0)	
- Diffuse	11(23.9)	3(15.0)	
GLD mean ± SD (µm)	1324.50 ± 1510.09	1957.70 ± 1122.72	0.980
PDT spot size, mean ± SD (µm)	2438.04 ± 1649.09	3155.40 ± 1450.59	0.980
Initial BCVA LogMAR, mean ± SD	0.40 ± 0.37	0.40 ± 0.41	0.908
Changes in BCVA

The half-dose PDT group showed statistically significant BCVA improvement at 1, 3, 6 and 12 months after PDT treatment when compared with baseline (Table 2). In the one-third-dose PDT group, BCVA showed statistically significant improvement at 6 and 12 months after PDT treatment when compared with the baseline.

Table 2
The best corrected visual acuity (BCVA) results from patients with chronic or recurrent central serous retinopathy before and after different doses of photodynamic therapy

LogMAR BCVA	Half-dose (1) (mean ± SD)	One-third-dose (2) (mean ± SD)	P-value (1)–(2)
At baseline	0.41 ± 0.37	0.40 ± 0.41	0.908
At 1 month	0.32 ± 0.34	0.36 ± 0.41	0.682
At 3 months	0.29 ± 0.33	0.35 ± 0.41	0.532
At 6 months	0.24 ± 0.32	0.31 ± 0.36	0.503
At 12 months	0.24 ± 0.34	0.30 ± 0.43	0.528

P-value

- a – b; p = 0.027, a – c, p = 0.007
- a – d, p = 0.0001, a – e, p < 0.001
- a – b; p = 0.217, a – c, p = 0.118
- a – d; p = 0.024, a – e; p < 0.001

Abbreviations: SD, standard deviation

\[\text{Abbreviations: BCVA, best corrected visual acuity; BMI, body mass index; CRT, central retinal thickness; GLD, greatest linear diameter; LogMAR, logarithm of the minimum angle of resolution; PDT, photodynamic therapy; SD, standard deviation.} \]
When the two groups were compared, the half-dose PDT group did not show a statistically significant difference in BCVA (Table 2) or in BCVA improvement (Table 3) at 1, 3, 6 and 12 months relative to the one-third-dose PDT group.

BCVA improvement (LogMAR)	Half dose (mean ± SD)	One-third dose (mean ± SD)	P-value a
VA 1 month – VA Initial	−0.09 ± 0.26	−0.04 ± 0.13	0.436
VA 3 months – VA Initial	−0.12 ± 0.28	−0.04 ± 0.15	0.299
VA 6 months – VA Initial	−0.16 ± 0.30	−0.09 ± 0.14	0.290
VA 12 months – VA Initial	−0.17 ± 0.29	−0.10 ± 0.17	0.293

a Independent-sample t-test

Abbreviations: BCVA, best corrected visual acuity; LogMAR, logarithm of the minimum angle of resolution; SD, standard deviation

Changes in CRT

Both groups showed statistically significant reductions in CRT, compared with baseline, at 1, 3, 6 and 12 months after PDT treatment (Table 4). In contrast, the half-dose PDT group did not show statistically significantly differences in CRT or CRT reduction at 1, 3, 6 and 12 months, compared with the one-third-dose PDT group at those times (Tables 4 and 5).
Table 4
The central retinal thickness (CRT) in patients with chronic or recurrent central serous retinopathy before and after different doses of photodynamic therapy

CRT(µm)	Half-dose (1) (mean ± SD)	One-third-dose (2) (mean ± SD)	P-value (1)–(2)
At baseline a	366.57 ± 127.69	352.90 ± 107.10	0.677
At 1 month b	237.48 ± 57.92	221.55 ± 38.15	0.265
At 3 months c	244.39 ± 84.14	222.11 ± 31.76	0.268
At 6 months d	227.87 ± 48.91	228.85 ± 55.54	0.943
At 12 months e	227.46 ± 52.20	227.35 ± 34.78	0.993
P-value a – b, a – c, a – d, a – e; p < 0.001 a – b, a – c, a – d, a – e; p < 0.001			

a,b,c,d,e: Paired-sample test

(1)–(2): Independent-sample t-test

Abbreviations: CRT, central retinal thickness; SD, standard deviation

Table 5
Central retinal thickness (CRT) reduction in patients with chronic or recurrent central serous retinopathy after different doses of photodynamic therapy

Mean CRT reduction (µm)	Half dose (mean ± SD)	One-third dose (mean ± SD)	P-value a
CST initial – CST 1 month	129.09 ± 119.96	131.35 ± 107.81	0.942
CST initial – CST 3 months	122.17 ± 137.57	132.63 ± 107.63	0.768
CST initial – CST 6 months	139.31 ± 118.72	124.05 ± 112.48	0.629
CST initial – CST 12 months	139.11 ± 112.16	125.55 ± 110.07	0.651

a Independent-sample t-test

Abbreviations: CRT, central retinal thickness; SD, standard deviation

The accumulated number of eyes with complete SRF reabsorption after a single PDT treatment
In both groups, all eyes had evidence of SRF reabsorption within 12 months after a single PDT treatment (Table 6).

Table 6

The cumulative number of eyes with complete subretinal fluid reabsorption after a single photodynamic therapy treatment (PDT)

Outcome	Half-dose PDT group N (%)	One-third-dose PDT group N (%)	P-value
At 1 month	33 (72%)	12 (60%)	0.347
Completely reabsorbed (n, %)			
At 3 months	39 (85%)	17 (85%)	0.982
Completely reabsorbed (n, %)			
At 6 months	44 (96%)	19 (95%)	0.907
Completely reabsorbed (n, %)			
At 12 months	46 (100%)	20 (100%)	
Completely reabsorbed (n, %)			

The cumulative number of eyes with recurrence of SRF after a single PDT treatment

In the half-dose PDT group, the accumulated numbers of eyes with recurrence of SRF after achieving a dry macula were 2 (4.3%), 4 (8.7%) and 7 (15.2%) within 3, 6 and 12 months after a single PDT treatment (Table 7). Two eyes had recurrent SRF within 3 months and were successfully treated with a repeat half-dose PDT. Two eyes had recurrence within 6 months; one was successfully treated with focal laser and the other spontaneously resolved with observation.
Table 7

The cumulative numbers of eyes with recurrence of subretinal fluid (SRF) after a single photodynamic therapy treatment (PDT)

Recurrent SRF	One-third-dose PDT group N (%)	Half-dose PDT group N (%)	P-value
Within 3 months	1 (5%)	2 (4.3%)	0.907
Within 6 months	5 (25%)	4 (8.7%)	0.076
Within 12 months	8 (40%)	7 (15.2%)	0.027*

In the one-third-dose PDT group, the cumulative numbers of eyes with recurrent SRF after a dry macula were 1(5%), 5(25%) and 8(40%) within 3, 6 and 12 months after PDT treatment. One eye had a recurrence within 3 months and was successfully treated with repeat one-third-dose PDT. Four eyes had SRF recurrence within 6 months. In 3 cases, they were successfully treated with repeat one-third-dose PDT. The other case spontaneously resolved after observation. In both groups, three eyes had recurrence of SRF at their 12-month follow up.

The one-third-dose PDT group showed a significantly higher recurrence rate than did the half-dose PDT group at 12 months (P = 0.027) (Table 7.)

Safety

There were no patients in either group with an allergic reaction to verteporfin, and there were no ocular adverse events, including the development of secondary CNV, during the follow-up period.

Discussion

CSC is characterized by an accumulation of SRF in the macula, with or without serous detachment of the RPE, caused by choroidal vascular hyperpermeability.\(^1\)\(^-\)\(^2\) PDT is applied for treatment of CSC because it acts to reconstruct the choroidal vasculature and reduce vascular hyperpermeability.\(^8\)\(^-\)\(^13\) Recently, the PDT protocol has been modified to reduce the rate of complications, by reducing the dosage of verteporfin or reducing the fluence.\(^17\)\(^-\)\(^23\) To-date, however, the optimal PDT protocol for maintaining efficacy and reducing adverse events remains unclear. This retrospective study compared the efficacy of one-third-dose and half-dose PDT for chronic or recurrent CSC.

The reduction of CRT in this study was similar to that in previous studies.\(^17\)\(^,\)\(^23\)\(^-\)\(^26\) The previous studies using half-dose PDT\(^17\)\(^,\)\(^23\)\(^,\)\(^26\) showed that the CRT reduction was significant from 1 month until the 12-month follow-up. Similarly, in previous studies using one-third-dose PDT, Zhoa et al.\(^24\)\(^-\)\(^25\) showed that the CRT was significantly reduced from 1 month to the 12-month follow-up. In our study, both half-dose and
one-third-dose PDT were effective in reducing CRT in chronic or recurrent CSC from 1 month until 12 months after treatment.

Uetani et al.27 reported that the SRF reabsorption rates were 70\% and 33\% at 1 month after treatment with half-dose and one-third-dose PDT, respectively, in patients with chronic CSC. Similarly, Zhoa et al.25 reported that the SRF reabsorption rates were 92.9\% and 73.8\% at 6 months after treatment with a single half-dose and one-third-dose PDT, respectively, in chronic CSC. In our study, the same tendency was observed. The half-dose PDT group showed a higher percentage of eyes with SRF reabsorption than did the one-third-dose PDT group (72\% versus 60\%, although the difference was not significant) at 1-month post-treatment. Because of the small number of eyes in this study, the speed with which SRF reabsorption occurs after PDT in the two groups requires further study.

The BCVA improvements observed in this study were similar to that in previous studies.17,23–26 The previous studies using half-dose PDT17,23,28 showed that BCVA was significantly improved at 12 months after PDT. Similarly, a study by Zhoa et al.,25 using one-third-dose PDT, showed significant improvement in BCVA at the 12-month follow-up. In our study, both half-dose and one-third-dose PDT were effective in improving BCVA in chronic or recurrent CSC at 12 months. However, the half-dose PDT group showed faster BCVA improvement than did the one-third-dose PDT group. This result may be due to the higher percentage of early SRF reabsorption in the half-dose PDT group.

Many previous studies17,23 have reported 1-year recurrence rates of SRF in half-dose PDT of approximately 8.3\textasciitilde13.2\%. In our study, the rates were 15.2\% in the half-dose PDT group and 40\% in the one-third-dose PDT group. We postulate that the higher recurrence rate in the one-third-dose PDT group may have been caused by the lower effect on choroidal remodeling and choroidal hyperpermeability with the reduced dose of verteporfin.

This study showed that one-third-dose PDT was effective in the treatment of chronic or recurrent CSC. However, our study also showed that the recurrence rate with the one-third-dose was significantly higher than that in the half-dose PDT within 1 year after treatment. The limitations of this study are the retrospective nature, the small sample size in the one-third-dose PDT group and the lack of comparison of choroidal thicknesses between groups.

\textbf{Conclusion}

In conclusion, these 1-year results show one-third-dose PDT was effective in term of BCVA and CRT improvement when compared with half-dose PDT. However, the one-third-dose PDT had higher recurrent rate of disease.

\textbf{Abbreviations}
Declarations

Funding

no financial support

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author contributions:

P. Jirarattanasopa designed the study, analyzed and interpreted the data, wrote and revise manuscript. V. Banchasakjaroen was responsible for data acquisition, analyzed the data and wrote the manuscript. M. Rattanasukon was responsible for conception and design and revise manuscript. The final manuscript was read and approved by all authors.

Ethics approval and consent to participate

The study was approved by the Institutional Review Board of Songklanagarind Hospital, Faculty of Medicine, Prince of Songkla University, and adhered to the guidelines of the Declaration of Helsinki.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

None.

References

1. Ciardella AP, Guyer DR, Spitznas M, Yannuzzi LA. Central serous chorioretinopathy. In: Ryan SJ, Retina. St Louis: Mosby, 2001;pp. 1153–81.
2. Nicholson B, Noble J, Forooghiean F, Meyerle C. Central serous chorioretinopathy: Update on pathophysiology and treatment. Surv Ophthalmol. 2013;58:103–26.

3. Gilbert CM, Owens SL, Smith PD, Fine SL. Long-term follow-up of central serous chorioretinopathy. Br J Ophthalmol. 1984;68:815–20.

4. Brancato R, Scialdone A, Pece A, Coscas G, Binaghi M. Eight-year follow-up of central serous chorioretinopathy with and without laser treatment. Graefes Arch Clin Exp Ophthalmol. 1987;225:166–8.

5. Leaver P, Williams C. Argon laser photocoagulation in the treatment of central serous retinopathy. Br J Ophthalmol. 1979;63:674–7.

6. Ficker L, Vafidis G, While A, Leaver P. Long-term follow-up of a prospective trial of argon laser photocoagulation in the treatment of central serous retinopathy. Br J Ophthalmol. 1988;72:829–34.

7. Burumcek E, Mudun A, Karacorlu S, Arslan MO. Laser photocoagulation for persistent central serous retinopathy: results of long-term follow-up. Ophthalmology. 1997;104:616–22.

8. Chan WM, Lam DS, Lai TY, Tam BS, Liu DT, Chan CK. Choroidal vascular remodeling in central serous chorioretinopathy after indocyanine green guided photodynamic therapy with verteporfin: a novel treatment at the primary disease level. Br J Ophthalmol. 2003;87:1453–8.

9. Yannuzzi LA, Slakter JS, Gross NE, Spaide RF, Costa D, Huang SJ, et al. Indocyanine green angiography-guided photodynamic therapy for treatment of chronic central serous chorioretinopathy: a pilot study. Retina. 2003;23:288–98.

10. Cardillo Piccolino F, Eandi CM, Ventre L, Rigault de la Longrais RC, Grignolo FM. Photodynamic therapy for chronic central serous chorioretinopathy. Retina. 2003;23:752–63.

11. Erikitola OC, Crosby-Nwaobi R, Lotery AJ, Sivaprasad S. Photodynamic therapy for central serous chorioretinopathy. Eye. 2014;28:944–57.

12. Taban M, Boyer DS, Thomas EL, Taban M. Chronic central serous chorioretinopathy: photodynamic therapy. Am J Ophthalmol. 2004;137:1073–80.

13. Ober MD, Yannuzzi LA, Do DV, Spaide RF, Bressler NM, Jampol LM, et al. Photodynamic therapy for focal retinal pigment epithelial leaks secondary to central serous chorioretinopathy. Ophthalmology. 2005;112:2088–94.

14. Klais CM, Ober MD, Freund KB, Ginsburg LH, Luckie A, Mauget-Faysse M, et al. Choroidal infarction following photodynamic therapy with verteporfin. Arch Ophthalmol. 2005;123:1149–53.

15. Lee PY, Kim KS, Lee WK. Severe choroidal ischemia following photodynamic therapy for pigment epithelial detachment and chronic central serous chorioretinopathy. Jpn J Ophthalmol. 2009;53:52–6.

16. Colucciello M. Choroidal neovascularization complicating photodynamic therapy for central serous retinopathy. Retina. 2006;26:239–42.

17. Chan WM, Lai TY, Lai RY, Tang EW, Liu DT, Lam DS. Safety enhanced photodynamic therapy for chronic central serous chorioretinopathy: one-year results of a prospective study. Retina.
18. Chan WM, Lai TY, Lai RY, Liu DT, Lam DS. Half-dose verteporfin photodynamic therapy for acute central serous chorioretinopathy: one-year results of a randomized controlled trial. Ophthalmology. 2008;115:1756–65.

19. Reibaldi M, Boscia F, Avitabile T, Russo A, Cannemi V, Uva MG, et al. Low-fluence photodynamic therapy in longstanding chronic central serous chorioretinopathy with foveal and gravitational atrophy. Eur J Ophthalmol. 2009;19:154–8.

20. Reibaldi M, Cardascia N, Longo A, Furino C, Avitabile T, Faro S, et al. Standard-fluence versus low-fluence photodynamic therapy in chronic central serous chorioretinopathy: a nonrandomized clinical trial. Am J Ophthalmol. 2010;149:307–15.

21. Shin JY, Woo SJ, Yu HG, Park KH. Comparison of efficacy and safety between half-fluence and full-fluence photodynamic therapy for chronic central serous chorioretinopathy. Retina. 2011;31:119–26.

22. Rouvas A, Stavvakas P, Theodossiadis PG, Stamatiou P, Milia M, Giannakaki E, et al. Long-term results of half-fluence photodynamic therapy for chronic central serous chorioretinopathy. Eur J Ophthalmol. 2012;22:417–22.

23. Nicolo M, Zoli D, Musolino M, Traverso CE. Association between the efficacy of half-dose photodynamic therapy with indocyanine green angiography and optical coherence tomography findings in the treatment of central serous chorioretinopathy. Am J Ophthalmol. 2012;153:474–80.

24. Zhao MW, Zhou P, Xiao HX, Lv YS, Li CA, Liu GD, et al. Photodynamic therapy for acute central serous chorioretinopathy: the safe effective lowest dose of verteporfin. Retina. 2009;29:1155–61.

25. Zhao MW, Zhang F, Chen Y, Dai H, Qu J, Dong C, et al. A 50% vs 30% dose of verteporfin (photodynamic therapy) for acute central serous chorioretinopathy one-year results of a randomized clinical trial. JAMA Ophthalmol. 2015;133:333–40.

26. Liu CF, Chen LJ, Tsai SH, Lai CC, Chan WC, Wu WC, et al. Half-dose verteporfin combined with half-fluence photodynamic therapy for chronic central serous chorioretinopathy. J Ocul Pharmacol Ther. 2014 Jun;30:400–5.

27. Uetani R, Ito Y, Oiwa K, Ishikawa K, Terasaki H. Half-dose vs one-third-dose photodynamic therapy for chronic central serous chorioretinopathy. Eye. 2012;26:640–9.

28. Maruko I, Iida T, Sugano Y, Furuta M, Sekiyu T. One-year choroidal thickness results after photodynamic therapy for central serous chorioretinopathy. Retina. 2011;31:1921–7.

Figures
Figure legend:

Figure 1: Flowchart of patients and eyes included in, and excluded, from the study.

Abbreviations: OCT, optical coherence tomography; PCV, polypoidal choroidal vasculopathy; PDT, photodynamic therapy

Figure 1

Caption found in figure.