Exome sequencing revealed a novel loss-of-function variant in the GLI3 transcriptional activator 2 domain underlies nonsyndromic postaxial polydactyly

Muhammad Umair | Naveed Wasif | Alia M. Albalawi | Khushnooda Ramzan | Majid Alfadhel | Wasim Ahmad | Sulman Basit

1Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
2Institut für Human Genetik, Ulm Universität, Ulm, Germany
3Center for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia
4Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
5Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children’s Hospital (KASCH), Riyadh, Saudi Arabia
6Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan

Correspondence
Sulman Basit, Center for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia.
Email: sbasit.phd@gmail.com

Abstract
Background: Polydactyly is a common genetic limb deformity characterized by the presence of extra fingers or toes. This anomaly may occur in isolation (nonsyndromic) or as part of a syndrome. The disease is broadly divided into preaxial polydactyly (PPD; duplication of thumb), mesoaxial polydactyly (complex polydactyly), and postaxial polydactyly (PAP; duplication of the fifth finger). The extra digits may be present in one or both the limbs. Heterozygous variants in the GLI3, ZRS/SHH, and PITX1 have been associated with autosomal dominant polydactyly, while homozygous variants in the ZNF141, IQCE, GLI1, and FAM92A have been associated with autosomal recessive polydactyly. Pathogenic mutations in the GLI3 gene (glioma-associated oncogene family zinc finger 3) have been associated with both nonsyndromic and syndromic polydactyly.

Methods: Here, we report an extended five generation kindred having 12 affected individuals exhibiting nonsyndromic postaxial polydactyly type A condition. Whole-exome sequencing followed by variant prioritization, bioinformatic studies, Sanger validation, and segregation analysis was performed.

Results: Using exome sequencing in the three affected individuals, we identified a novel heterozygous frameshift variant (c.3567_3568insG; p.Ala1190Glyfs*57) in the transcriptional activator (TA2) domain of the GLI3 encoding gene.

Conclusion: To the best of our knowledge, the present study reports on the first familial case of nonsyndromic postaxial polydactyly due to the GLI3 variant in Pakistani population. Our study also demonstrated the important role of GLI3 in causing nonsyndromic postaxial polydactyly.

Keywords
GLI3, loss-of-function variant, PAPA, polydactyly, Sanger sequencing, whole exome sequencing
Polydactyly or hexadactyly is a common congenital limb deformity evident prenatally or instantly after birth. Polydactyly has a general population incidence of approximately 1.6–10.7/1,000 in live births (Malik, 2014; Umair, Ullah, Abbas, et al., 2018). To date, more than 300 syndromic forms of polydactyly have been characterized. Polydactyly is classified into three main types, postaxial polydactyly (PAP; ulnar) where the extra digit is located along fifth digit, preaxial (PPD; radial side) when the extra digit is located along the thumb or great toe, and complex polydactyly or mesoaxial polydactyly, when the extra digit originate between the second, third, and fourth digits (Umair, Ullah, Abbas, et al., 2018).

Postaxial polydactyly is the duplication of little finger. It is categorized into two types: the postaxial type A (PAPA; well-developed extra digit) and the postaxial type B (PAPB; hypoplasic rudimentary extra digit or a skin tag or appears as a small protuberance). Polydactyly may occur as a nonsyndromic form (isolated) or in association with other severe abnormalities (syndromic form) such as Bardet–Biedl syndrome, split hand/foot malformation, syndactyly, and Ellis–Van Creveld syndrome, respectively (Khan et al., 2012; Ullah, Gul, et al., 2018; Ullah, Khalid, et al., 2018; Ullah, Ullah, et al., 2017 Umair, Ahmad, Bilal, & Abbas, 2018; Ullah, Ahmad, Bilal, Ahmad, & Al-Fadhel, 2018; Ullah, Seidel, et al., 2017).

Until now, only six genes including ZNF141 on chromosome 4p16.3, IQCE on 7q21-34, ZRS/SHH on 7q36, GLI3 on 7p14.1, GLI1 on 12q13.3, FAM92A on 8q22.1, and three other loci (13q21-32, 13q13.3-21.2, and 19p13.1-13.2) have been associated with nonsyndromic postaxial polydactyly (Palencia-Campos et al., 2017; Schrauwwen et al., 2018; Ullah et al., 2019; Umair, Shah, et al., 2017; Ullah, Ullah, et al., 2018). Mutations in the GLI3 gene (MIM 165240) have been associated with five diverse disorders including the Greig cephalopolysyndactyly syndrome (GCPS; MIM 174700), Pallister–Hall syndrome (PHS; MIM 146510), and Acrocallosal syndrome (ACLS; MIM 200990), postaxial polydactyly type A/B (PAP–A/B; MIM 174200) and preaxial polydactyly type-IV (PPD–IV; MIM 174700), and somatic hypothalamic hamartomas (MIM 241800).

In this study, we have ascertained an extended Pakistani family exhibiting typical features of nonsyndromic PAP types A. Whole-exome sequencing followed by Sanger sequencing revealed a novel frameshift variant in the GLI3 located on chromosome 7p14.1.
RESULTS

3.1 Clinical description

The postaxial polydactyly type A (PAPA) was observed as the hallmark feature in all affected individuals, while most of the affected individuals had undergone surgical procedure. The PAP type A was observed in both hands and feet, mostly affecting all four autopods (13/16). Affected individuals presented PAP with well-developed extra figure, while syndactyly of the fourth and fifth digits/toe and polysyndactyly of fifth–sixth figures/digits was also observed in most of the affected individuals (9/16) (Figure 1b,c). There were no neurological, craniofacial, cardiovascular, obesity, ophthalmological abnormalities observed in the affected and normal individuals of the family. The extra digits were nonfunctional and presented fixed flexion deformity and caused difficulty in daily life, thus surgically removed in most of the cases (Figure 1d). Radiographical examination of the hands of affected individuals showed normal presentation after surgery while the feet showed duplication at metatarsal level in the left foot, while duplication in right foot occurs at the fifth
digit, giving a two headed appearance (Figure 1e). Features such as height, limb length, head shape and circumference, facial dysmorphism, throat (epiglottis), and deafness (audiogram; pure-tone hearing test), were also examined in order to rule out different syndromic defects.

3.2 | WES and Sanger sequencing

DNA of three affected individual (V-2, V-7, V-13) was subjected to exome sequencing using Illumina HiSeq 2500 (Umair, Ullah, Abbas, et al., 2018). After WES, filters were applied for screening different variants. As the pedigree demonstrated autosomal dominant inheritance pattern, thus only heterozygous variants were given priority. We obtained 61 common heterozygous variants in the exome data of all three affected individuals. Further filtration identified a novel frameshift variant (c.3567_3568insG) in exon 15 of the GLI3. Using Sanger sequencing approach, we have demonstrated that the variant is perfectly segregating with the disease phenotype in all members of the family. The mutation (p.Ala1190Glyfs*57) is present in a highly conserved transcriptional activation (TA2) domain (Figure 1j). The identified variant was not observed in the ExAC browser (http://exac.broadinstitute.org/), gnomAD (http://gnomad.broadinstitute.org/), 1,000 Genomes, Pakistan Genetic Mutation database (Qasim et al., 2018) and in 135 in-house exomes (Pakistani exomes).

4 | DISCUSSION

Pathogenic sequence variants in the GLI3 have been associated with both syndromic and nonsyndromic polydactyly. To date, 236 different mutations in the GLI3 gene has been listed. This included only eight variants causing nonsyndromic polydactyly phenotype. Most of the mutations in the GLI3 result in syndromic forms including GCPS and PHS.

Affected individuals in the family, presented here, showed nonsyndromic PAP type A phenotype. In few individuals, fourth–fifth figure syndactyly (SDIII) and polysyndactyly of fourth–fifth (SDI-d) and fifth–sixth toes were observed. Some of the features reported previously to be associated with nonsyndromic polydactyly have not been observed in affected members of our family. This included PAP type B, camptodactyly, zygodactyly, hypoplasticity of the third toe (Mumtaz, Yıldız, Lal, Tolun, & Malik, 2017), hypertelorism, macrocephaly, developmental delay, corpus callosum agenesia/hypoplasia, and motor delay (Démurger & Angers, 2015; Xiang, Wang, Bian, Xu, & Fu, 2016).

Here, using WES and Sanger sequencing, we have identified a novel frameshift variant (c.3567_3568insG) in exon 15 of the GLI3 (NM_000168.6). The variant (c.3567_3568insG) successfully co-segregated with the polydactyly phenotype in the family. The identified variant resulted in a frameshift and created a premature stop codon 57 amino acids downstream of the site of mutation (p.Ala190Glyfs*57). It is highly likely that this mutation might result either in truncated GLI3 protein or complete loss of transcript through nonsense mediated mRNA decay.

The GLI3 functions as an important tissue patterning and developmental regulator. It is one of the three GLI transcription factors (GLI1, GLI2, GLI3) playing important role in the canonical Hedgehog (HH) signaling pathway (Hui & Angers, 2011). Human GLI3 is constructed with 15 exons encoding 1,580 amino acids protein. The GLI3 functional domains comprises an N-terminal transcriptional repressor, five zinc finger (mediate DNA binding), protease cleavage site, CBP-binding regions (TA/CPB), two C-terminal transcriptional activation (TA2 and TA1) and an α-helical region (Figure 1g). The CBP-binding region expressed ubiquitously and functions as transcriptional co-activator. The α-helical acts as an activation domain (Naruse, Ueta, Sumino, Ogawa, & Ishikiriyama, 2010). The mutation identified in the present study is located in the conserved transcriptional activation 2 (TA2) domain, which is predicted to result in loss of the TA1 and the α-helical region thus resulting in a shorter GLI3 protein.

Several studies have elucidated genotype–phenotype correlation in terms of location of the mutation in particular domain and the resulting phenotype (Ni et al., 2018; Wang et al., 2014). Currently, most GLI3 mutations causing syndromic and nonsyndromic phenotypes are loss-of-function variants (Ni et al., 2018). Mutations in N-terminal and the C-terminal regions are mostly associated with the GCPS, while the PHS phenotype mostly results due to mutations in the central part of the protein (Demurger et al., 2015; Jamsheer et al., 2012). The GLI3 mutation causing isolated polydactyly is not restricted to one specific domain. Our data also supports Wang et al. (2014) observation, that GLI3 mutations causing nonsyndromic polydactyly are located in all functional domains except the TA/CPB domain. Identification of more nonsyndromic polydactyly cases due to GLI3 mutations will help to further outline such association and present proper genotype-phenotype correlations.

In conclusion, we have reported first study of a novel loss-of-function variant in the GLI3 responsible for nonsyndromic PAP type A in a Pakistani family. The present study increase the mutation spectrum of GLI3 associated pathogenesis and also addresses a thought whether a specific mutation type is a separate identity, which might lead to different digit/limb deformities.

ACKNOWLEDGMENTS

We highly appreciate cooperation and participation of the family members in this study.
ETHICS STATEMENT

Written informed consent for the publication of the data, photographs, and radiographs was obtained from all the participating members.

CONFLICT OF INTERESTS

None declared.

ORCID

Naveed Wasif https://orcid.org/0000-0002-3455-8833

Sulman Basit https://orcid.org/0000-0003-4294-6825

REFERENCES

Démurger, F., Ichkou, A., Mougou-Zerelli, S., Le Merrer, M., Geppert, A., & Latos-Bieleńska, A. (2012). Expanded mutational spectrum of the GLI3 gene substantiates genotype-phenotype correlations. Journal of Applied Genetics, 53, 415-422. https://doi.org/10.1007/s13353-012-0109-x

Khan, S., Basit, S., Zimri, F. K., Ali, N., Ali, G., Ansar, M., & Ahmad, W. (2012). A novel homozygous missense mutation in WNT10B in familial split-hand/foot malformation. Clinical Genetics, 82(1), 48-55. https://doi.org/10.1111/j.1399-0004.2011.01698.x

Malik, S. (2014). Polydactyly: Phenotypes, genetics and classification. Clinical Genetics, 85, 203-212. https://doi.org/10.1111/cge.12276

Mumtaz, S., Yildiz, E., Lal, K., Tolun, A., & Malik, S. (2017). Complex postaxial polydactyly types A and B with camptodactyly, hypoplastic third toe, zygodactyly and other digit anomalies caused by a novel GLI3 mutation. European Journal of Medical Genetics, 60(5), 268-274. https://doi.org/10.1016/j.ejmg.2017.03.004

Naruse, I., Ueta, E., Sumino, Y., Ogawa, M., & Ishikiriyama, S. (2010). Birth defects caused by mutations in human GLI3 and mouse Gli3 genes. Congenital Anomalies, 50(1), 1-7. https://doi.org/10.1111/j.1741-4520.2009.00266.x

Ni, F., Han, G., Guo, R., Cui, H., Wang, B., & Li, Q. (2018). A novel frameshift mutation of GLI3 causes isolated postaxial polydactyly. Annals of Plastic Surgery, https://doi.org/10.1097/SAP.0000000000001685

Palencia-Campos, A., Ullah, A., Nevado, J., Yildirim, R., Unal, E., Ciorraga M., … Ruiz-Perez, V. L. (2017). GLI1 inactivation is associated with developmental phenotypes overlapping with Ellis–van Creveld syndrome. Human Molecular Genetics, 26, 4556-4571. https://doi.org/10.1093/hmg/ddx335

Qasim, I., Ahmad, B., Khan, M. A., Khan, N., Muhammad, N., Basit, S., & Khan, S. (2018). Pakistan Genetic Mutation Database (PGMD); A centralized Pakistani mutome data source. European Journal of Medical Genetics, 61(4), 204-208. https://doi.org/10.1016/j.ejmg.2017.11.015

Schrauwen, I., Giese, A. P. J., Aziz, A., Lafont, D. T., Chakchouk, I., Santos-Cortez, R. L. P., … Leal, S. M. (2018). FAM92A underlies non-syndromic postaxial polydactyly in humans and an abnormal limb and digit skeletal phenotype in mice. Journal of Bone and Mineral Research, 34, 375-386. https://doi.org/10.1002/jbmr.3594

Ullah, A., Gul, A., Ullah, M., Irfanullah Ahmad, F., Aziz, A., … Ahmad, W. (2018). Homozygous sequence variants in the WNT10B gene underlie split hand/foot malformation. Genetics and Molecular Biology, 41(1), 1–8. https://doi.org/10.1590/1678-4685-GMB-2016-0162

Ullah, A., Khalid, M., Ullah, M., Khan, S. A., Bilal, M., Khan, S., & Ahmad, W. (2018). Novel sequence variants in the MKKS gene cause Bardet–Biedl syndrome with intra- and inter-familial variable phenotypes. Congenital Anomalies, 58(5), 173–175. https://doi.org/10.1111/cga.12264

Ullah, A., Umair, M., Majeed, A. I., Abdullah, J. A., & Ahmad, W. (2019). A novel homozygous sequence variant in GLI1 underlies first case of autosomal recessive preaxial polydactyly. Clinical Genetis, 1–2. https://doi.org/10.1111/cge.13495

Ullah, A., Ullah, M., Youns, M., Khan, S. A., Nazim-Udin-Din, M., Shah, K., … Ahmad, W. (2017). Sequence variants in four genes underlying Bardet–Biedl syndrome in consanguineous families. Molecular Vision, 23, 482–494.

Umair, M., Ahmad, F., Bilal, M., & Abbas, S. (2018). Syndactyly genes and classification: A mini-review. Journal of Biochemical and Clinical Genetics, 1(1), 34–47. https://doi.org/10.24911/JBCGenetics-183-1532177257

Umair, M., Ahmad, F., Bilal, M., Ahmad, W., & Al-Fadhil, M. (2018). Clinical genetics of polydactyly: An updated review. Frontiers in Genetics, 9, 447. https://doi.org/10.3389/fgene.2018.00447

Umair, M., Hassan, A., Jan, A., Ahmad, F., Imran, M., Samman, M. I., … Ahmad, W. (2016). Homozygous sequence variants in the FKB10 gene underlie osteogenesis imperfecta in consanguineous families. Journal of Human Genetics, 61(3), 207–213. https://doi.org/10.1038/jhg.2015.129

Umair, M., Seidel, H., Ahmad, I., Ullah, A., Haack, T. B., Alhaddad, B., … W. (2017). Ellis–van Creveld syndrome and profound deafness resulted by sequence variants in the EVC/EVC2 and TMC1 genes. Journal of Genetics, 96(6), 1005–1014. https://doi.org/10.1007/s12041-017-0868-6

Umair, M., Shah, K., Alhaddad, B., Haack, T. B., Graf, E., Strom, T. M., … Ahmad, W. (2017). Exome sequencing revealed a splice site variant in the IQCE gene underlying post-axial polydactyly type A restricted to lower limb. European Journal of Human Genetics, 25, 960–965. https://doi.org/10.1038/ejhg.2017.83

Umair, M., Ullah, A., Abbas, S., Ahmad, F., Basit, S., & Ahmad, W. (2018). First direct evidence of involvement of a homozygous loss-of-function variant in the EPS15L1 gene underlying split-hand/split-foot malformation. Clinical Genetics, 93(3), 699–702. https://doi.org/10.1111/cge.13152
Wang, Z., Wang, J., Li, Y., Geng, J., Fu, Q., Xu, Y., & Shen, Y. (2014). Novel frame-shift mutations of GLI3 gene in non-syndromic postaxial polydactyly patients. Clinica Chimica Acta, 433, 195–199. https://doi.org/10.1016/j.cca.2014.03.012

Xiang, Y., Wang, Z., Bian, J., Xu, Y., & Fu, Q. (2016). Exome sequencing reveals a novel nonsense mutation of GLI3 in a Chinese family with 'non-syndromic' pre-axial polydactyly. Journal of Human Genetics, 61(10), 907–910. https://doi.org/10.1038/jhg.2016.76

How to cite this article: Umair M, Wasif N, Albalawi AM, et al. Exome sequencing revealed a novel loss-of-function variant in the GLI3 transcriptional activator 2 domain underlies nonsyndromic postaxial polydactyly. Mol Genet Genomic Med. 2019;7:e627. https://doi.org/10.1002/mgg3.627