Magnetic susceptibilities of diluted magnetic semiconductors and anomalous Hall-voltage noise

C. Timm,1 F. von Oppen,1 and F. Höfling2,1

1Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
2Hahn-Meitner-Institut, Glienicker Straße 100, D-14109 Berlin, Germany

(Dated: November 20, 2018)

The carrier spin and impurity spin densities in diluted magnetic semiconductors are considered using a semiclassical approach. Equations of motions for the spin densities and the carrier spin current density in the paramagnetic phase are derived, exhibiting their coupled diffusive dynamics. The dynamical spin susceptibilities are obtained from these equations. The theory holds for p-type and n-type semiconductors doped with magnetic ions of arbitrary spin quantum number. Spin-orbit coupling in the valence band is shown to lead to anisotropic spin diffusion and to a suppression of the Curie temperature in p-type materials. As an application we derive the Hall-voltage noise in the paramagnetic phase. This quantity is critically enhanced close to the Curie temperature due to the contribution from the anomalous Hall effect.

PACS numbers: 75.50.Pp, 75.40.Gb, 72.20.My, 03.65.Sq

I. INTRODUCTION

In recent years, a lot of progress has been made in the physics of diluted magnetic semiconductors (DMS), in particular in III-V materials doped with manganese. In the best studied material, (Ga,Mn)As, ferromagnetic transition temperatures around 160 K have been achieved. On the theoretical side, a Zener model based on valence-band holes exchange-coupled to local impurity spins is very successful in describing this material, at least in the metallic regime. In (Ga,Mn)As manganese acts as an acceptor and introduces localized spins $S = 5/2$ due to its half-filled d-shell. The material is p-type but partly compensated, probably due to arsenic antisites and manganese interstitials. In group-IV semiconductors, manganese plays a similar role. On the other hand, in II-VI materials manganese introduces a spin but is isovalent with the host cations.

It has also been realized that disorder is crucial for the understanding of the properties of DMS, even in the metallic regime. There are two main scattering mechanisms: disorder scattering due to the Coulomb potential of charged donors and acceptors and spin-exchange scattering off randomly distributed impurity spins. The Coulomb interaction is the dominant contribution to disorder. This is due to compensation, which leads to a lower hole concentration and thus on the one hand to the presence of charged defects of either sign and on the other to less effective electronic screening. Due to the large Coulomb interactions, the defects are probably incorporated during growth in partially correlated positions—oppositely charged donors and acceptors prefer to sit on nearby sites—and these correlations may increase with annealing. In Ref. it was shown that equilibration of defects during growth or annealing leads to an enormous reduction of the typical width $\langle V^2 \rangle - \langle V \rangle^2$ of the disorder potential and to a very short correlation length of V, of the order of the lattice constant. Ionic screening is thus very effective, whereas electronic screening is not. However, the width of the disorder potential is still roughly of the same order as the Fermi energy so that it cannot be neglected.

Since the correlation length is so short, a description in terms of a delta-function correlated disorder potential is reasonable. In this approximation, a scattered carrier tends to loose all its momentum information. This allows for a relatively simple description of the scattering in the semiclassical Boltzmann approach. The spin-exchange scattering, though typically weaker than the Coulomb scattering, is expected to become important close to the Curie temperature T_c, where spin fluctuations are enhanced. A systematic study of the effect of both types of scattering on the linear response of DMS and in particular on transport would be desirable. For example, the resistivity ρ of (Ga,Mn)As shows a maximum or at least a shoulder at T_c, whereas the standard Fisher-Langer theory for fluctuation corrections to the resistivity in ferromagnetic metals predicts an infinite derivative of ρ at T_c. The origin of this weak critical behavior is that the resistivity is dominated by scattering events with large momentum transfers $q \sim 2k_F$, where k_F is the Fermi momentum. By contrast, the magnetic susceptibility $\chi(q)$ of ferromagnetic metals, of Ornstein-Zernicke form, diverges only at $q = 0$.

As a step towards a comprehensive theory of disorder effects on linear response and transport in DMS, we present a semiclassical theory for the paramagnetic phase of DMS in the metallic regime. Starting from the Zener model and semiclassical Boltzmann equations, hydrodynamic equations of motion for the carrier and impurity spin magnetizations are derived in Sec. including Coulomb scattering and spin-exchange scattering off magnetic impurities. Because of the semiclassical approach, these equations hold for small momenta q and frequencies ω. The theory is rather general in that it applies to both the conduction and the valence band, III-V, II-VI, and group-IV host semiconductors, and impurities with general spin S. From the equations of motion, the
dynamical spin susceptibilities of carriers and impurities are derived for small q and ω. The resulting semiclassical susceptibility is not of Ornstein-Zernicke form. However, this form is presumably restored by quantum effects for q of the order of k_F. The semiclassical results exhibit the detailed dependence on the various sources of scattering. We find significant differences between the conduction-band (n-type) and valence-band (p-type) cases due to the pronounced spin-orbit coupling in the latter. For example, spin diffusion in the valence band is anisotropic. On the other hand, we show that semiclassically Berry-phase effects are absent from the linear susceptibility even in the valence-band case.

It would be interesting to study the effect of spin fluctuations on the electrical conductivity close to T_c in DMS. This requires the inclusion of quantum effects at the scale of k_F and thus goes beyond the Boltzmann approach. The present theory should be a good starting point for this generalization.

We briefly comment on related work. Sinova et al.26 consider the damping of spin waves in the ferromagnetic phase in the limit $q = 0$ within a Green-function approach. Disorder scattering is incorporated by assuming a constant nonzero quasiparticle lifetime. Galitski et al.27 derive the local dynamical spin susceptibility close to T_c for the strongly localized regime, opposite to the case of weak disorder scattering considered here. In the strongly localized case the system can be mapped onto a disordered ferromagnetic Heisenberg model and Griffiths-McCoy singularities are important above T_c. Qi and Zhang28 consider spin diffusion in non-magnetic materials within the Boltzmann approach. The present work goes beyond Ref.28 in that we derive the coupled dynamics of carrier and impurity spins in DMS, consider both conduction and valence bands explicitly, and derive the dynamical susceptibility.

As an application we derive the fluctuations of the anomalous Hall voltage in the paramagnetic phase in Sec.III In the absence of an external magnetic field the average anomalous Hall voltage is zero since the average magnetization vanishes. However, fluctuations of the magnetization lead to nonzero Hall-voltage noise. Three mechanisms of the anomalous Hall effect (AHE) are discussed in the literature: skew scattering29,30 and side-jump scattering29 rely on the imbalance of scattering to the right and to the left due to spin-orbit coupling. On the other hand, Berry-phase effects31 lead to an AHE in the presence of spin-orbit coupling even without scattering. Since Jungwirth et al.23 show that the latter contribution can explain the experimental results for DMS in the ferromagnetic phase, we also assume this mechanism.

II. SEMICLASSICAL THEORY

In this section we present the semiclassical theory for the linear response of the carrier and impurity spin magnetizations in DMS in the paramagnetic phase. We first derive hydrodynamic equations of motion for these magnetizations and for the carrier magnetization current. Some details are given in App. A and B. In App. C we derive the local dynamical spin susceptibility close to the scale of k_F and thus goes beyond the Boltzmann approach. Disorder scattering is incorporated by assuming a constant nonzero quasiparticle lifetime. Galitski et al.27 derive the local dynamical spin susceptibility close to T_c for the strongly localized regime, opposite to the case of weak disorder scattering considered here. In the strongly localized case the system can be mapped onto a disordered ferromagnetic Heisenberg model and Griffiths-McCoy singularities are important above T_c. Qi and Zhang28 consider spin diffusion in non-magnetic materials within the Boltzmann approach. The present work goes beyond Ref.28 in that we derive the coupled dynamics of carrier and impurity spins in DMS, consider both conduction and valence bands explicitly, and derive the dynamical susceptibility.

As an application we derive the fluctuations of the anomalous Hall voltage in the paramagnetic phase in Sec.III In the absence of an external magnetic field the average anomalous Hall voltage is zero since the average magnetization vanishes. However, fluctuations of the magnetization lead to nonzero Hall-voltage noise. Three mechanisms of the anomalous Hall effect (AHE) are discussed in the literature: skew scattering29,30 and side-jump scattering29 rely on the imbalance of scattering to the right and to the left due to spin-orbit coupling. On the other hand, Berry-phase effects31 lead to an AHE in the presence of spin-orbit coupling even without scattering. Since Jungwirth et al.23 show that the latter contribution can explain the experimental results for DMS in the ferromagnetic phase, we also assume this mechanism.

A. Hydrodynamic equations, conduction band

We start with the simpler case of conduction-band electrons exchange-coupled to impurity spins. Spin-orbit effects can be neglected here since the conduction band has mainly s-orbital character. This description is appropriate for n-type DMS with nonzero Curie temperature. Ferromagnetism in n-type DMS is hard to achieve due to the small exchange interaction between electron and impurity spins and is restricted to very low temperatures.32 We assume a spherically symmetric band ϵ_p to avoid inessential complications.

We first briefly motivate the Boltzmann equations for the electron density $n_p(r)$, where $\sigma = \pm 1/2$ is the spin orientation, and for the occupation fraction f_m of impurity spins with quantum number m of S^z. The Hamiltonian reads

\[H = H_{\text{kin}} + J \int d^3r \mathbf{m}(r) \cdot \mathbf{M}(r)
+ g_e \mu_B \int d^3r \mathbf{m}(r) \cdot \mathbf{B}_e^{\text{ext}} + g_i \mu_B \int d^3r \mathbf{M}(r) \cdot \mathbf{B}_i^{\text{ext}}, \]

where \mathbf{m} and \mathbf{M} are the electron and impurity spin densities (oriented oppositely to the magnetizations), respectively, averaged over microscopic volume elements and their coupling is described by the exchange integral $J = 50 \pm 5$ meV nm. $J > 0$ ($J < 0$) corresponds to antiferromagnetic (ferromagnetic) coupling. We have introduced two distinct external magnetic fields $\mathbf{B}_e^{\text{ext}}$ and $\mathbf{B}_i^{\text{ext}}$ acting on electron and impurity spins, respectively, in order to obtain the linear response of each species separately, which will prove useful in Sec.III.

The exchange term is decoupled at the mean-field level. We can restrict ourselves to collinear spin configurations since the paramagnetic susceptibility is proportional to the unit matrix in our spherical model. We choose the magnetization direction as the z axis. The mean-field Hamiltonian of the electrons and the impurities is then

\[H_e = H_{\text{kin}} + g_e \mu_B \int d^3r \mathbf{m}(r) \cdot \mathbf{B}_e, \]
\[H_i = g_i \mu_B \int d^3r \mathbf{M}(r) \cdot \mathbf{B}_i, \]

respectively. In terms of the spin magnetizations $\mu_e = -g_e \mu_B \langle m \rangle$, $\mu_i = -g_i \mu_B \langle M \rangle$, the effective fields read

\[B_e = B_e^{\text{ext}} - \frac{J}{g_e \mu_B} \mu_i. \]
\[B_i = B_i^{\text{ext}} - \frac{J}{g_e \hbar \mu_B} \mu_e. \]

The single-particle energy of an electron with momentum \(p \) and spin \(\sigma = \pm 1/2 \) is \(E_{p\sigma} = \epsilon_p + g_e \mu_B \sigma \mu_B \). The energy of an impurity spin with magnetic quantum number \(m \) is \(E_{m} = g_i \mu_B m B_i \). In the absence of scattering, the semiclassical equation of motion for the electron density \(n_{p\sigma}(r) \) is given by the Poisson bracket

\[
\partial_t n_{p\sigma} = -\{n_{p\sigma}, E_{p\sigma}\} = (\nabla_p E_{p\sigma}) \cdot (\nabla_p n_{p\sigma}) - (\nabla_p E_{p\sigma}) \cdot (\nabla_r n_{p\sigma}) = -\mathbf{F}_\sigma \cdot \nabla_p n_{p\sigma} - v_p \nabla_r n_{p\sigma}
\]

with the spin-dependent force \(\mathbf{F}_\sigma = -g_e \mu_B \sigma \nabla_r \mu_B \) and the band velocity \(v_p \equiv p/m_e \), where \(m_e \) is the effective mass at the Fermi energy. We use the short-hand notation \(\partial_t \) for \(\partial/\partial t \). With scattering included we obtain the Boltzmann equation

\[
\left(\partial_t + v_p \cdot \nabla + \mathbf{F}_\sigma \cdot \nabla_p \right) n_{p\sigma} = \mathcal{S}_{p\sigma},
\]

where \(\mathcal{S}_{p\sigma} \) represents collision integrals describing various sources of scattering as discussed below.

For the impurity spins we define the occupation fraction of spins with magnetic quantum number \(m \) as \(n_m \), where \(\sum_m n_m = 1 \). The corresponding density is \(n_i n_m \), where \(n_1 \) is the density of magnetically active impurities. We neglect the contribution of interstitial magnetic impurities. The Boltzmann equation for the density \(n_i n_m \) is simply \(\partial_t n_i n_m = \mathcal{S}_m \), since the impurities are assumed to be immobile and purely local.

We now discuss the collision integrals. The simplest one describes disorder scattering of the electrons.

\[
\mathcal{S}_{p\sigma}^{\text{dis}} = \int \frac{d^3p'}{(2\pi)^3} \frac{1}{N(0)\tau} \delta(\epsilon_p - \epsilon_p') \left[n_{p'\sigma} (1 - n_{p\sigma}) - n_{p\sigma} (1 - n_{p'\sigma}) \right].
\]

Here, \(N(0) \) is the density of states at the Fermi energy for one spin component and \(1/\tau \) is the transport scattering rate. Note that there is no change of spin \(\sigma \).

The next contribution is spin-exchange scattering between electron and impurity spins. For this we need the transition probabilities between spin states. We write the spin operator of the electron (impurity) as \(s (S) \). The joint spin state is denoted by \(|\sigma m \rangle \). The matrix elements of the exchange coupling are

\[
\langle s m | s | S | \sigma m' \rangle = \frac{1}{2} \delta_{\sigma,1/2} \delta_{m' - 1/2} \sqrt{S(S + 1) - m(m + 1)} \]

\[
+ \frac{1}{2} \delta_{\sigma,-1/2} \delta_{m' - 1/2} \sqrt{S(S + 1) - m(m - 1)} \]

\[
+ \delta_{\sigma m} \delta_{m' m},
\]

Note that only the \(p' \neq p \) contributions to the \(S^z S^z \) term are taken care of by the mean-field decoupling. For \(p' = p \) this term expresses that carriers can also scatter off impurities due to the exchange interaction without flipping the spins. The mean-field approximation neglects the discreteness of the impurity spins, which this scattering term restores. The transition probabilities \(\mathcal{P}_{\sigma m, \sigma' m'} \) between the states are given by the absolute square of the matrix elements,

\[
\mathcal{P}_{\sigma m, \sigma' m'} = \frac{1}{4} \delta_{\sigma,1/2} \delta_{m' - 1/2} \delta_{m+1, m+1} \left[S(S + 1) - m(m + 1) \right] \]

\[
+ \frac{1}{4} \delta_{\sigma,-1/2} \delta_{m,1/2} \delta_{m-1, m-1} \left[S(S + 1) - m(m - 1) \right] \]

\[
+ \frac{1}{4} \delta_{\sigma m} \delta_{m, m},
\]

The collision integral for electron-impurity spin scattering can then be written as

\[
\mathcal{S}_{p\sigma m}^{\text{spin}} = \int \frac{d^3p'}{(2\pi)^3} \sum_{S' m'} \frac{1}{N(0)\tau_{\text{spin}}} \delta(\epsilon_p + g_e \mu_B \sigma \mu_B)
\]

\[
+ g_i \mu_B m B_i - \epsilon_{p'} - g_e \mu_B \sigma' \mu_B - g_i \mu_B m' B_i \]

\[
\times \mathcal{P}_{\sigma m, \sigma' m'} \left[n_{p' \sigma'} (1 - n_{p\sigma}) f_{m'} - n_{p\sigma} (1 - n_{p' \sigma}) f_{m} \right]
\]

with the spin-exchange scattering rate \(1/\tau_{\text{spin}} \). Due to conservation of the total spin by the process expressed by Eq. (11), the same collision integral also appears in the Boltzmann equation for \(f_m \). It is the only scattering term we consider for the impurities.

The scattering processes expressed by \(\mathcal{S}_{\text{dis}} \) and \(\mathcal{S}_{\text{spin}} \) are not sufficient for a reasonable thermodynamic description, however. The reason is that both processes conserve the total spin. Thus the homogeneous spin susceptibility would be zero. To avoid this problem we allow relaxation of the total spin so that the system can approach its thermal equilibrium. This relaxation is implemented by an additional "spin-flip" scattering term for the electrons. Physically, this can be due to the hyperfine interaction with nuclear spins or electron-electron interaction in conjunction with spin-orbit coupling in other bands. This process is expressed by

\[
\mathcal{S}_{p\sigma}^{\text{flip}} = \int \frac{d^3p'}{(2\pi)^3} N(0)\tau_{\text{flip}} \delta(\epsilon_p + g_e \mu_B \sigma \mu_B)
\]

\[
- \epsilon_{p'} - g_i \mu_B m B_i \left[n_{p' \sigma'} - n_{p\sigma} \right],
\]

where \(\sigma = -\sigma \).

The Boltzmann equation for the electrons now reads

\[
\left(\partial_t + v_p \cdot \nabla + \mathbf{F}_\sigma \cdot \nabla_p \right) n_{p\sigma}(r) = \mathcal{S}_{p\sigma}^{\text{dis}} + \mathcal{S}_{p\sigma}^{\text{flip}} + \sum_m \mathcal{S}_{p\sigma m}^{\text{spin}}
\]

and for the impurities

\[
\partial_t n_i f_m = \int \frac{d^3p}{(2\pi)^3} \sum_{\sigma} \mathcal{S}_{p\sigma m}^{\text{spin}}.
\]

By summing Eq. (13) over \(p, \sigma \) one easily derives the continuity equation \(\partial \rho + \nabla \cdot \mathbf{j} = 0 \) for the electron number density \(\rho = \int d^3p/(2\pi)^3 \sum_\sigma n_{p\sigma} \) and current density
\[j = \int \frac{d^3p}{(2\pi)^3} \sum_{\sigma} \mathbf{v}_p n_p \sigma. \]

Our main goal is to derive corresponding equations for the magnetizations

\[\mu_e = -g_e \mu_B \int \frac{d^3p}{(2\pi)^3} \sum_{\sigma} n_{p \sigma}, \quad (15) \]

\[\mu_i = -g_i \mu_B n_i \sum_m m f_m, \quad (16) \]

and the electron magnetization current

\[\mathbf{j}_\mu = -g_e \mu_B \int \frac{d^3p}{(2\pi)^3} \sum_{\sigma} \mathbf{v}_p n_{p \sigma}. \quad (17) \]

We start with the impurity spins. Multiplying Eq. (14) by \(m \) and summing over \(m \) we obtain

\[-\frac{\partial_t \mu_i}{g_i \mu_B} = \int \frac{d^3p}{(2\pi)^3} \sum_{\sigma \tau} m S_{p \sigma \tau} \]

\[= -\frac{S(S+1)}{3\tau_{\text{spin}}} \mu_e + \frac{N(0)T}{2\tau_{\text{spin}}} \mu_i \]

\[+ \frac{N(0)S(S+1)}{6\tau_{\text{spin}}} (g_e \mu_B B_e - g_i \mu_B B_i), \quad (18) \]

to linear order in the effective fields and magnetizations, cf. App. A. In the last expression we can identify the Pauli susceptibility of free electrons with density of states \(N(0) \) per spin component and the Curie susceptibility of non-interacting impurity spins with spin quantum number \(S \) and density \(n_i \).

\[\chi_{\text{Pauli}} = \frac{N(0)g_e^2 \mu_B^2}{2}, \quad (19) \]

\[\chi_{\text{Curie}} = \frac{S(S+1)g_e^2 \mu_B^2 n_i}{3T}. \quad (20) \]

Using these susceptibilities we write

\[\partial_t \mu_i = \frac{S(S+1)}{3\tau_{\text{spin}}} \frac{g_i}{g_e} (\mu_e - \chi_{\text{Pauli}} B_e) \]

\[-\frac{1}{2\tau_{\text{spin}}} \frac{N(0)T}{n_i} (\mu_i - \chi_{\text{Curie}} B_i). \quad (21) \]

The rate of change of the impurity magnetization \(\mu_i \) thus depends linearly on the deviations of \(\mu_e \) and \(\mu_i \) from their respective equilibrium values, which is quite reasonable.

Multiplying the Boltzmann equation (14) by \(\sigma \) and summing over \(p, \sigma \) we obtain an equation of motion for the electron magnetization,

\[-\frac{\partial_t \mu_e}{g_e \mu_B} - \mathbf{v}_r \cdot \mathbf{j}_\mu = \int \frac{d^3p}{(2\pi)^3} \sum_{\sigma} \left(S_{p \sigma} \right) \]

\[= \int \frac{d^3p}{(2\pi)^3} \sum_{\sigma} \left(S_{p \sigma} + S_{p \sigma}^{\text{flip}} + \sum_m S_{p \sigma m} \right), \quad (22) \]

where the force term on the left-hand side vanishes since the integrand is a total \(p \) gradient. The right-hand side can be evaluated similarly to the calculation in App. A and expressed using \(\chi_{\text{Pauli}} \) and \(\chi_{\text{Curie}} \),

\[\partial_t \mu_e + \mathbf{v}_r \cdot \mathbf{j}_\mu = -\left(\frac{2}{\tau_{\text{flip}}} + \frac{S(S+1)}{3\tau_{\text{spin}}} \right) (\mu_e - \chi_{\text{Pauli}} B_e) \]

\[+ \frac{1}{2\tau_{\text{spin}}} \frac{N(0)T}{n_i} g_e \frac{1}{g_i} (\mu_i - \chi_{\text{Curie}} B_i). \quad (23) \]

To eliminate the magnetization current \(\mathbf{j}_\mu \), we derive its equation of motion by multiplying Eq. (15) by \(\sigma \mathbf{v}_p \) and summing over \(p \) and \(\sigma \),

\[-\frac{\partial_t \mathbf{j}_\mu}{g_e \mu_B} + \int \frac{d^3p}{(2\pi)^3} \sum_{\sigma} \sigma \mathbf{v}_p \cdot \mathbf{v}_r n_{p \sigma} \]

\[= -\int \frac{d^3p}{(2\pi)^3} \sum_{\sigma} \sigma \mathbf{v}_p g_e \mu_B \sigma (\mathbf{v}_r B_e) \cdot \mathbf{v}_p n_{p \sigma} \]

\[= -\frac{v_F^2}{3} \mathbf{v}_r \mu_e + \frac{g_e \mu_B \rho(0)}{4m_{cb}} \mathbf{v}_r B_e \]

\[= -\frac{v_F^2}{3} \mathbf{v}_r \mu_e - \chi_{\text{Pauli}} B_e \]

\[= \int \frac{d^3p}{(2\pi)^3} \sum_{\sigma} \sigma \mathbf{v}_p \left(S_{p \sigma}^{\text{dis}} + S_{p \sigma}^{\text{flip}} + \sum_m S_{p \sigma m} \right). \quad (24) \]

The first term \(-\partial_t \mathbf{j}_\mu/g_e \mu_B \) is neglected since it only becomes relevant for frequencies of the order of the largest scattering rate. In the second term we have replaced \(\nu_{\sigma p \sigma} \) in the usual way by \(\delta_{\alpha \beta} v_F^2/3 \), where \(v_F \) is the Fermi velocity. This is valid since \(n_{p \sigma} \) has significant \(r \) dependence only close to the Fermi energy. The third term has been expanded to linear order in the perturbation and in the final step the equilibrium electron density has been written as \(\rho(0) = 2N(0)m_{cb}v_F^2/3 \) for a parabolic band. Evaluating the integrals, we obtain

\[\mathbf{j}_\mu = -D \mathbf{v}_r (\mu_e - \chi_{\text{Pauli}} B_e) \quad (25) \]

with the diffusion constant \(D = v_F^2 \tau_{\text{tot}}/3 \) and the total scattering rate

\[\tau_{\text{tot}} = \frac{1}{\tau} + \frac{1}{\tau_{\text{flip}}} + \frac{S(S+1)}{4\tau_{\text{spin}}}. \quad (26) \]

Inserting this result into Eq. (23) we find the equation of motion of the electron spin magnetization,

\[\partial_t \mu_e = -\left(\frac{2}{\tau_{\text{flip}}} + \frac{S(S+1)}{3\tau_{\text{spin}}} - D \mathbf{v}_r^2 \right) (\mu_e - \chi_{\text{Pauli}} B_e) \]

\[+ \frac{1}{2\tau_{\text{spin}}} \frac{N(0)T}{n_i} g_e \frac{1}{g_i} (\mu_i - \chi_{\text{Curie}} B_i). \quad (27) \]

We observe that also the rate of change of \(\mu_e \) is linear in the deviations of the hole and impurity magnetization from their equilibrium values. The result that \(\partial_t \mu_e \) vanishes in equilibrium must hold in general, not just for a parabolic band, as expressed by the Einstein relation.
The two equations (21) and (27) are coupled both explicitly and through the effective fields. They are formally solved by Fourier transformation in space and time,

\[-i\omega \mu_e = -\left(\frac{2}{\tau_{\text{flip}}} + \frac{S(S+1)}{3\tau_{\text{spin}}} + Dq^2 \right) (\mu_e - \chi_{\text{Pauli}} B_e) + \frac{1}{2\tau_{\text{spin}}} \frac{N(0)}{n_i} T \frac{g_e}{g_i} (\mu_i - \chi_{\text{Curie}} B_i)\, , \tag{28}\]

\[-i\omega \mu_i = \frac{S(S+1)}{3\tau_{\text{spin}}} \frac{g_i}{g_e} (\mu_e - \chi_{\text{Pauli}} B_e) - \frac{1}{2\tau_{\text{spin}}} \frac{N(0)}{n_i} T (\mu_i - \chi_{\text{Curie}} B_i)\, . \tag{29}\]

From these equations we can infer the mean-field Curie temperature T_c: In the absence of external fields, the static, homogeneous magnetizations satisfy $\mu_e = -\chi_{\text{Pauli}} J_{\mu j}/g_e g_i \mu_B^2$ and $\mu_i = -\chi_{\text{Curie}} J_{\mu e}/g_e g_i \mu_B^2$ with nonzero solutions at the Curie temperature T_c.

\[T_c = \frac{S(S+1)}{6} \frac{N(0)}{J^2} n_i. \tag{30}\]

B. Hydrodynamic equations, valence band

We now derive hydrodynamic equations for valence-band holes exchange-coupled to impurity spins, relevant for p-type DMS. The case of spin quantum number $S = 5/2$ corresponds to substitutional Mn in GaAs. The main complication here is the presence of spin-orbit coupling.

We employ a 4-band Kohn-Luttinger Hamiltonian in the spherical approximation, which is the simplest one incorporating the relevant physics. In the absence of magnetic impurities the Hamiltonian reads:

\[H = \frac{1}{2m} \left[(\gamma_1 + 5\gamma_2)/2 \right] k^2 - 2\gamma_2 (\mathbf{k} \cdot \mathbf{j})^2 \tag{31}\]

with Kohn-Luttinger parameters γ_1, γ_2 and the angular momentum operator \mathbf{j} of the holes, which in this subspace can be written as a 4×4 matrix and has the Casimir operator $\mathbf{j} \cdot \mathbf{j} = 3/2(3/2 + 1)$. Since the split-off band is neglected, this description only applies to semiconductors with sufficiently strong spin-orbit coupling. The eigenstates of H at \mathbf{k} are characterized by the quantum number $j = \pm 1/2, \pm 3/2$ of $\mathbf{k} \cdot \mathbf{j}$, where \mathbf{k} is the unit vector in the direction of \mathbf{k}, i.e., the spin quantization direction is \mathbf{k}. We restrict ourselves to the heavy-hole band, which is justified for energies close to the band edge because of the much smaller density of states of the light-hole band.

We introduce the eigenstates $|j\rangle_k$ of $\mathbf{k} \cdot \mathbf{j}$ with eigenvalues j. We denote the spin eigenstates with respect to a fixed quantization axis \mathbf{z} by $|\mathbf{j}\rangle$. The former can be expressed in terms of the latter by means of a rotation in spin space:

\[|j\rangle_k = e^{-ij^z \phi} e^{-ij^y \theta} |\mathbf{j}\rangle, \tag{32}\]

where j^y, j^z are spin operators and θ and ϕ are the polar angles of \mathbf{k}.

The states $|j\rangle_k$ can be expressed in terms of eigenstates of orbital angular momentum l (with $l = 1$) and spin s with the help of Clebsch-Gordon coefficients. One then easily finds that all 4×4 matrix elements of s^2 equal the corresponding matrix elements of $j^2/3$. The same holds for the x and y components because of symmetry so that $s = j/3$ holds as an operator identity in the heavy-hole/light-hole subspace. Consequently the heavy-hole states $(j = \pm 3/2)$ are eigenstates to $\mathbf{k} \cdot \mathbf{s}$ with eigenvalues $\pm 1/2$. However, the heavy holes alone do not form a spin doublet since the matrix elements of $s^z = l^z/3$ all vanish in the two-dimensional heavy-hole subspace—single spin flips cannot change the total angular momentum from $+3/2$ to $-3/2$ or vice versa.

The band energy of the heavy holes is $\epsilon_p = (\gamma_1 - 2\gamma_2) p^2/2m$. Together with the Zeeman energy their total energy is

\[E_{hh}^{\text{p}} = \epsilon_p + g_h \mu_B \frac{j}{3} \cos \theta B_h, \tag{33}\]

where B_h is the effective magnetic field and θ is the polar angle of \mathbf{p} with respect to the field direction \mathbf{z}. Without scattering the equation of motion for the hole density reads

\[\partial_t n_{pj} = -\{n_{pj}, E_{hh}^{\text{p}}\} \]

\[= g_h \mu_B \frac{j}{3} \cos \theta \nabla_r B_h \cdot \nabla_r n_{pj} - \frac{\mathbf{p}}{m_{hh}} \cdot \nabla_r n_{pj} + g_h \mu_B \frac{j}{3} \sin \theta B_h \frac{\hat{\theta}}{p} \cdot \nabla_r n_{pj}, \tag{34}\]

where $m_{hh} = m/(\gamma_1 - 2\gamma_2)$ is the heavy-hole effective mass. This suggests to define the velocity as

\[v_p = \frac{\mathbf{p}}{m_{hh}} - g_h \mu_B \frac{j}{3} \sin \theta B_h \frac{\hat{\theta}}{p}. \tag{35}\]

Note that the second term is explicitly of first order. We should use this velocity in the semiclassical equations. However, we find the contribution from the second term to vanish to first order. The reason is essentially that we have to evaluate all other factors in equilibrium due to the explicit B_h. This result is proved together with the absence of Berry-phase contributions in App. We thus drop the second term in Eq. (35).

We now turn to the derivation of the Boltzmann equation for the holes. Analogously to the conduction-band case we have

\[(\partial_t + \mathbf{v}_p \cdot \nabla_r + \mathbf{F}_{pj} \cdot \nabla_p) n_{pj}(\mathbf{r}) = S_{pj}^{\text{dis}} + \sum_m S_{pjm}^{\text{spin}} \tag{36}\]

with the force $\mathbf{F}_{pj} = -g_h \mu_B (j/3) \cos \theta \nabla_r B_h$ for the holes and

\[\partial_t n_{fm} = \int \frac{d^3p}{(2\pi)^3} \sum_j S_{pjm}^{\text{spin}} \tag{37}\]
for the impurities. The disorder scattering integral contains the matrix elements $k \langle j' | j \rangle_{k'} = \langle j | e^{ij' i} e^{-ij i} e^{-i j' i} e^{ij i} | j' \rangle$. The spin operators are 4×4 matrices in the projected subspace. For heavy holes, explicit evaluation gives the transition probabilities

$$|k \langle j' | j \rangle_{k'}|^2 = \left(\begin{array}{cc} \cos^2 \frac{\alpha}{2} & \sin^2 \frac{\alpha}{2} \\
\sin^2 \frac{\alpha}{2} & \cos^2 \frac{\alpha}{2} \end{array} \right)_{jj'} $$

where $j, j' = \pm 3/2$. Here, α is the angle between the vectors k and k'. The collision integral for disorder scattering of heavy holes reads

$$S_{p j}^{\text{dis}} = \int \frac{d^3 p}{(2\pi)^3} \sum_{j'} \frac{1}{N(0) \tau} \delta (\epsilon_p + g_h \mu_B \frac{j}{3} \cos \theta B_h - \epsilon_{p'} - g_h \mu_B \frac{j}{3} \cos \theta' B_h) \left| p \langle j' | j \rangle_{p'} \right|^2 (n_{p'} - n_{p_j}).$$

Note that for forward scattering ($\alpha \sim 0$) we get predominantly $j' = j$, whereas for backscattering ($\alpha \sim \pi$) we find predominantly $j' = -j$.

Due to the k-dependent quantization axis the quantum number j is not conserved even by pure disorder scattering due to the Elliott–Yafet mechanism. This scattering takes a hole of momentum k and quantum number j into a state of momentum k' under conservation of spin. However, its spin state is no longer an eigenstate at k'. In the semiclassical approximation it assumes possible magnetic quantum numbers j' with probabilities $|p \langle j' | j \rangle_{p'}|^2$.

For the hole-impurity spin scattering we need matrix elements of $s \cdot S$. The transition probabilities are

$$P_{p j m, p' j' m'} = |p \langle j | m | s \cdot S | j' m' \rangle_{p'}|^2$$

$$= \frac{1}{9} \left(\frac{1}{4} |p \langle j | j' \rangle_{p'}|^2 \delta_{m+1, m'} [S(S + 1) - m(m + 1)] + \frac{1}{4} |p \langle j | j' \rangle_{p'}|^2 \delta_{m-1, m'} [S(S + 1) - m(m - 1)] + |p \langle j | j' \rangle_{p'}|^2 \delta_{m m'} \right)$$

and the resulting collision integral reads

$$S_{p j m}^{\text{spin}} = \int \frac{d^3 p}{(2\pi)^3} \sum_{j', m'} \frac{1}{N(0) \tau_{\text{spin}}} \delta (\epsilon_p + g_h \mu_B \frac{j}{3} \cos \theta B_h + g_i \mu_B m B_i - \epsilon_{p'} - g_h \mu_B \frac{j'}{3} \cos \theta' B_h - g_i \mu_B m' B_i) \times P_{p j m, p' j' m'} \left[n_{p'} (1 - n_{p_j}) f_{m'} - n_{p_j} (1 - n_{p' j}) f_{m} \right].$$

Since the two collision integrals already include spin relaxation we do not introduce an additional spin-flip term.

We now derive hydrodynamic equations for the hole and impurity spin magnetizations. Some details of the calculations are shown in App. The hole and impurity spin magnetizations are

$$\mu_h = -g_h \mu_B \int \frac{d^3 p}{(2\pi)^3} \sum_j \frac{j}{3} \cos \theta n_{p_j},$$

$$\mu_i = -g_i \mu_B n_i \sum_m f_m,$$

and the hole magnetization current is

$$\mathbf{j}_\mu = -g_h \mu_B \int \frac{d^3 p}{(2\pi)^3} \sum_j \frac{j}{3} \cos \theta \mathbf{v}_p n_{p_j}.$$
In the same approximation we find
\[-\partial_t \mu_h - \frac{\nabla \cdot j_\mu}{g_h \mu_B} - \int \frac{d^3 p}{(2\pi)^3} \sum_j \frac{j}{3} \cos \theta g_h \mu_B \frac{j}{3} \cos \theta (\nabla_r B_h) \cdot \nabla_p n_p j \]
\[\lesssim -\frac{\partial_t \mu_h}{g_h \mu_B} - \frac{\nabla_r \cdot j_\mu}{g_h \mu_B} + \frac{1}{2} g_h \mu_B (\nabla_r B_h) \cdot \int \frac{d^3 p}{(2\pi)^3} (\nabla_p \cos^2 \theta) n_p (0) \]
\[= -\frac{\partial_t \mu_h}{g_h \mu_B} - \frac{\nabla_r \cdot j_\mu}{g_h \mu_B} = \int \frac{d^3 p}{(2\pi)^3} \sum_j \frac{j}{3} \cos \theta \left(s_{\text{dis}}^{\text{p}} + \sum m s_{\text{spin}}^{\text{p}} \right). \quad (48) \]

to first order. Similarly to the calculation in App. B we obtain for the right-hand side
\[\partial_t \mu_h + \nabla_r \cdot j_\mu = -\left(\frac{1}{37} + \frac{7S(S+1)}{180 \tau_{\text{spin}}} \right) \left(\mu_h - \frac{1}{3} \chi_{\text{Pauli}} B_h \right) + \frac{1}{36 \tau_{\text{spin}}} \frac{N(0) T}{n_i g_h} (\mu_i - \chi_{\text{Curie}} B_i) \cdot \nabla_r B_h. \quad (49) \]

To eliminate the magnetization current \(j_\mu \) we consider its equation of motion. The left-hand side is
\[-\frac{\partial_t j_\mu}{g_h \mu_B} + \int \frac{d^3 p}{(2\pi)^3} \sum_j \frac{j}{3} \cos \theta v_p (\nabla_p \cdot \nabla_r n_{p j}) - \int \frac{d^3 p}{(2\pi)^3} \sum_j \frac{j}{3} \cos \theta \left(s_{\text{dis}}^{\text{p}} + \sum m s_{\text{spin}}^{\text{p}} \right). \quad (50) \]

The first term is again neglected. In the second we have to be more careful because of the explicit angle dependence. For the \(\text{conduction band} \) the factor \(v_p^2 j/3 \) is obtained by assuming \(n_{p\sigma} \) to be the equilibrium distribution in a constant Zeeman field. The integral over the direction of \(p \) is then easily performed. Since we obtain a term linear in \(\nabla_r \mu_c \), corrections would be of higher order. For the \(\text{valence band} \) we also assume a constant Zeeman field, leading to \(n_{p j} \approx n_p (0) + (j/3) \cos \theta \Delta n(p) \). Thus the second term in Eq. (50) becomes
\[v_p^2 \int \frac{d^3 p}{(2\pi)^3} \sum_j \frac{j}{3} \cos \theta \hat{p} \left(\hat{p} \cdot \nabla_r \frac{j}{3} \cos \theta \Delta n(p) \right) \]
\[= N(0) v_p^2 \int d\xi \sum_j \left(\frac{j}{3} \right)^2 \times \left(\begin{array}{ccc} 1/15 & 0 & 0 \\ 0 & 1/15 & 0 \\ 0 & 0 & 1/5 \end{array} \right) \nabla_r \Delta n[p(\xi)]. \quad (51) \]

In the same approximation we find
\[-\mu_h / g_h \mu_B = N(0) \int d\xi \sum_j (j/3)^2 \Delta n[p(\xi)] / 3 \]
so that this term is
\[-v_p^2 \left(\begin{array}{ccc} 1/5 & 0 & 0 \\ 0 & 1/5 & 0 \\ 0 & 0 & 3/5 \end{array} \right) \nabla_r \frac{\mu_h}{g_h \mu_B}. \quad (52) \]

The third term in Eq. (50) is straightforward to evaluate to first order,
\[\frac{N(0) g_h \mu_B}{6} v_p^2 \left(\begin{array}{ccc} 1/5 & 0 & 0 \\ 0 & 1/5 & 0 \\ 0 & 0 & 3/5 \end{array} \right) \nabla_r B_h, \quad (53) \]

for a parabolic band. Again, the result holds in general due to the Einstein relation. Altogether the equation of motion for the magnetization current is
\[v_p^2 \left(\begin{array}{ccc} 1/5 & 0 & 0 \\ 0 & 1/5 & 0 \\ 0 & 0 & 3/5 \end{array} \right) \nabla_r \left(\mu_h - \frac{1}{3} \chi_{\text{Pauli}} B_h \right) \]
\[= \int \frac{d^3 p}{(2\pi)^3} \sum_j \frac{j}{3} \cos \theta v_p \left(s_{\text{dis}}^{\text{p}} + \sum m s_{\text{spin}}^{\text{p}} \right). \quad (54) \]

Evaluating the integrals we finally obtain
\[j_\mu = -D \left(\begin{array}{ccc} 3/5 & 0 & 0 \\ 0 & 3/5 & 0 \\ 0 & 0 & 9/5 \end{array} \right) \nabla_r \left(\mu_h - \frac{1}{3} \chi_{\text{Pauli}} B_h \right), \quad (55) \]

where we have introduced the diffusion constant \(D = v_p^2 \tau_{\text{tot}} / 3 \) with the total relaxation rate \(1/\tau_{\text{tot}} = 1/(2\tau) + 5 S(S+1)/(72 \tau_{\text{spin}}) \). The spin diffusion in the valence band is thus \textit{anisotropic}. Compared with the result (28) for the conduction band, diffusion along the direction of the effective field is enhanced and diffusion in the transverse directions is suppressed. The origin of this interesting effect again lies in the momentum dependence of the quantization axis due to spin-orbit coupling in conjunction with the projection onto heavy holes: Consider, for example, heavy holes traveling exactly along the \(x \) direction. In the Hilbert subspace of these holes all matrix elements of \(s^z \) and \(j^z \) vanish so that these holes cannot carry any spin magnetization pointing in the \(z \) direction. For holes with momentum \(p \) pointing mostly but not fully in a transverse direction the contribution to spin transport is still suppressed.

Inserting our result for the current into Eq. (146) we obtain the equation of motion for the hole magnetization,
\[\partial_t \mu_h = \left[\frac{1}{5} + \frac{7S(S+1)}{180 \tau_{\text{spin}}} \right] \nabla_r B_h. \]
For \(\omega \) coupled by the effective fields Pauli susceptibility and the anisotropic spin diffusion.

As in the conduction-band case, Eqs. (45) and (56) are coupled by the effective fields \(B_B = B_B^{\text{ext}} - (J/g_{\text{B}}g_{\text{B}}^2) \mu_i \) and \(B_i = B_i^{\text{ext}} - (J/g_{\text{i}}g_{\text{i}}^2) \mu_h \). Fourier transformation yields

\[
-i\omega \mu_h = - \left[\frac{1}{3 \tau_{\text{spin}}} + \frac{7S(S+1)}{180 \tau_{\text{spin}}} + D \frac{3q_z^2 + 3q_y^2 + 9q_z^2}{5} \right] \left(\mu_h - \frac{1}{3} \chi_{\text{Pauli} B_h} \right) \\
+i\omega \mu_i = \left[\frac{1}{3 \tau_{\text{spin}}} \frac{N(0)T}{n_i} g_i \right] \left(\mu_i - \chi_{\text{Curie} B_i} \right),
\]

where

\[
B_e = B_e^{\text{ext}} - \frac{J}{g_{\text{e}}g_{\text{B}}^2} \mu_i, \quad B_i = B_i^{\text{ext}} - \frac{J}{g_{\text{i}}g_{\text{B}}^2} \mu_e,
\]

which contain the special cases of the conduction band, Eqs. (28) and (29), and the valence band, Eqs. (67) and (68). For the valence band, the subscript “e” should of course be replaced by “h”. Solving this system of equations we find

\[
\begin{pmatrix} \mu_e / g_{\text{e}} B_B \\ \mu_i / g_{\text{i}} B_B \end{pmatrix} = \frac{N(0)}{\det M} \begin{pmatrix} A_{ee} & A_{ei} \\ A_{ie} & A_{ii} \end{pmatrix} \begin{pmatrix} g_{\text{e}} B_e^{\text{ext}} \\ g_{\text{i}} B_i^{\text{ext}} \end{pmatrix}
\]

with the determinant of the coefficient matrix

\[
\det M = 6n_i(i\omega)^2 + i\omega [2\alpha N(0)Jn_i R_i - 6n_i R_q] + 2N(0)Jn_i R_i S(S+1) - 6N(0)T R_i
\]

and

\[
A_{ee} = -3\alpha [i\omega n_i R_q + N(0)T (R_e R_i - R_i R_q)],
A_{ei} = \alpha n_i [3i\omega R_i + N(0)J (R_e R_i - R_i R_q)] \times S(S+1),
A_{ie} = n_i [2i\omega R_i + \alpha N(0)J (R_e R_i - R_i R_q)] \times S(S+1),
A_{ii} = -2n_i [R_e R_i + R_i (i\omega - R_q)] S(S+1).
\]

The magnetization becomes singular at

\[
T = T_c = \frac{\alpha}{6} S(S+1) N(0) J^2 n_i,
\]

in agreement with our earlier results. We now assume \(\omega \) and \(T - T_c \) to be small compared to the rates \(R_q, R_i, R_e, R_{gi} \) but do not make any assumption about \(T - T_c \) vs. \(\omega \). Then we find

\[
\begin{pmatrix} \mu_e \\ \mu_i \end{pmatrix} = \begin{pmatrix} \chi_{ee} & \chi_{ei} \\ \chi_{ie} & \chi_{ii} \end{pmatrix} \begin{pmatrix} B_e^{\text{ext}} \\ B_i^{\text{ext}} \end{pmatrix}
\]

with the susceptibility matrix

\[
\chi_{ee} = \frac{\chi_{ii}}{4}, \quad \chi_{ei} = \frac{\chi_{ii}}{4}, \quad \chi_{oe} = \frac{\chi_{ii}}{4}, \quad \chi_{oi} = \frac{\chi_{ii}}{4}.
\]

C. Susceptibilities

With the help of the hydrodynamic equations we now derive the linear response of the carrier spin and impurity spin magnetizations to external fields coupled to these magnetizations. It is useful to solve the general problem
\[\chi = \begin{pmatrix} \chi_{ee} & \chi_{ei} \\ \chi_{ie} & \chi_{ii} \end{pmatrix} = 2N(0)S(S+1)(R_{ei}R_{ie} - R_{ii}R_{q})\mu_{B}^{2} \]
\[\times \left(-i \omega \left[6R_{q} - 3\alpha N(0)JR_{ie} - 2N(0)JR_{ei}S(S+1) + \alpha N^{2}(0)J^{2}S(S+1)R_{ii} \right] \right. \]
\[+ \alpha N^{2}(0)J^{2}S(S+1)(R_{ei}R_{ie} - R_{ii}R_{q}) \frac{T - T_{c}}{T_{c}} \left(-g_{e}g_{i} \alpha N(0)J \frac{T - T_{c}}{T_{c}} \right) \]
\[\left. \left(g_{e}^{2} \left(\frac{N(0)J}{2} \right)^{2} - g_{e}g_{i} \frac{N(0)J}{2} \right) \right) \] \[(72) \]

Since we cannot apply different fields to the carrier spins and the impurity spins, the physical susceptibility of the carrier spins is \(\chi_{ee} + \chi_{ei} \), while the susceptibility of the impurity spins is \(\chi_{ie} + \chi_{ii} \). The total susceptibility describing the response of the total magnetization is
\[\chi_{tot} = \chi_{ee} + \chi_{ei} + \chi_{ie} + \chi_{ii}. \quad (73) \]

Note that this physical susceptibility is always paramagnetic since the components of the matrix factor in Eq. (73) combine to \((g_{e}\alpha N(0)J/2 - g_{i})^{2}\). In the static case \(\omega = 0 \) all four components are of Curie form. We already see that the dimensionless parameter \(-\alpha N(0)J/2\) has a special meaning: It is the ratio between the average electron spin and the average impurity spin in an applied field, regardless of whether the field acts only on the electrons, on the impurities, or on both.

We now consider the special case of conduction-band electrons. Inserting the appropriate factors from Eqs. (28) and (29), we obtain the susceptibility matrix
\[\chi = \begin{pmatrix} N(0)S(S+1)\mu_{B}^{2} \\ 2S(S+1) \left(\frac{1 - N(0)J/2}{2\tau_{flip} + Dq^{2}} \right) \end{pmatrix} \]
\[\times \left(-i \omega \left[6\tau_{spin} + 2S(S+1) \left(\frac{1 - N(0)J/2}{2\tau_{flip} + Dq^{2}} \right) \right. \right. \]
\[+ 2S(S+1) \left(\frac{N(0)J}{2} \right)^{2} \frac{T - T_{c}}{T_{c}} \left(-g_{e}g_{i} \frac{N(0)J}{2} \right) \]
\[\left. \left(g_{e}^{2} \left(\frac{N(0)J}{2} \right)^{2} - g_{e}g_{i} \frac{N(0)J}{2} \right) \right) \] \[(74) \]

with \(T_{c} = [S(S+1)/6]N(0)J^{2}\tau_{n_{i}} \). This susceptibility describes the linear response of an n-type DMS. The same result would be obtained for a simple model of spin-1/2 holes, which is sometimes employed in the literature.

Note that the only \(q \) dependence appears in the coefficients of \(\omega \). This is quite different from the standard Ornstein-Zernicke form22,23 of the susceptibility. We discuss this point further below. The only typical length scale in \(\chi \) is \(\xi_{c} = \sqrt{D\tau_{flip}/2} \). This is the relaxation length of the total spin since the total spin relaxes with the spin-flip rate \(1/\tau_{flip} \). In the semiclassical approximation \(\xi_{c} \) does not show any critical behavior at \(T_{c} \).

We show below that \(N(0)J \ll 1 \) for the valence band. For the conduction band the density of states \(N(0) \) is smaller than for the valence band and the exchange integral \(J \), which for the conduction band is predominantly due to onsite Coulomb exchange, is also smaller so that \(N(0)J \) would be very small for n-type DMS.

The susceptibility also describes the magnetic excitations. Their dispersion is obtained by equating the integral \(J \), which for the conduction band is predominantly due to onsite Coulomb exchange, is also smaller so that \(N(0)J \) would be very small for n-type DMS.

The susceptibility also describes the magnetic excitations. Their dispersion is obtained by equating the denominator to zero and solving for \(\omega \). We see that these modes are diffusive with relaxation rates
\[\lambda = i \omega = \frac{2S(S+1) \left(\frac{N(0)J}{2} \right)^{2} \frac{T - T_{c}}{T_{c}}}{6\tau_{spin} + 2S(S+1) \left(\frac{1 - N(0)J/2}{2\tau_{flip} + Dq^{2}} \right)} \] \[(75) \]

\(T > T_{c} \), as required for exponentially decaying excitations, and is smallest for \(q = 0 \). The \(q \) dependence is controlled by the total-spin relaxation length \(\xi_{c} \). In the semiclassical approximation \(\lambda \) goes to zero for \(T \to T_{c} \) for all \(q \) simultaneously, but see the discussion below.

We now consider the case of valence-band holes. Inserting the appropriate parameter values from Eqs. (57) and (58) we obtain
\[\chi = \begin{pmatrix} 5/18 S(S+1)N(0)\mu_{B}^{2} \\ \frac{5}{3} S(S+1) \left(\frac{N(0)J}{6} \right)^{2} \frac{T - T_{c}}{T_{c}} \end{pmatrix} \]
\[\times \left(-i \omega \left[6\tau_{spin} + \frac{S(S+1)}{15} \left(\frac{1 - 5N(0)J/6}{R_{q}} \right) \right. \right. \]
\[+ \frac{5}{3} S(S+1) \left(\frac{N(0)J}{6} \right)^{2} \frac{T - T_{c}}{T_{c}} \left(-g_{e}g_{i} \frac{N(0)J}{6} \right) \]
\[\left. \left(g_{e}^{2} \left(\frac{N(0)J}{6} \right)^{2} - g_{e}g_{i} \frac{N(0)J}{6} \right) \right) \] \[(76) \]

with the Curie temperature \(T_{c} = [S(S+1)/18]N(0)J^{2}\tau_{n_{i}} \) and
\[\frac{5}{36\tau_{spin}} \bar{R}_{q} = R_{hi}R_{sh} - R_{ii}R_{q} \]
\[= - \frac{5}{36\tau_{spin}} \left(\frac{1}{5\tau} + \frac{S(S+1)}{36\tau_{spin}} + D \frac{3q_{x}^{2} + 3q_{y}^{2} + 9q_{z}^{2}}{5} \right) \]
This susceptibility applies to p-type DMS. The result is of nearly the same form as for the conduction band. The only differences except for simple rescaling is that not the parameter $-N(0)J/6$ itself but $-5N(0)J/6$ appears in the q-dependent term and that the diffusion is anisotropic.

For both the conduction band and the valence band the susceptibilities depend on q only through the coefficient of the frequency ω. The static susceptibility ($\omega = 0$) is thus independent of q in our approximation. This would mean that the instability appears simultaneously at all q. The tendency of the system to become ferromagnetic is not found within the semiclassical Boltzmann approach since it does not incorporate physics at large momenta $q \sim k_F$. We expect the most important effect for $q \sim k_F$ to be the q dependence of the Pauli susceptibility. Inserting this dependence by hand, we obtain an additional term in the denominator, which makes the instability first appear at $q = 0$, leading to ferromagnetism. A rigorous evaluation of the susceptibility at all momenta requires a fully quantum-mechanical calculation, e.g., using the quantum Boltzmann equation. We leave this as work for the future.

One could think that a ferromagnetic interaction between the carriers themselves introduces a new length scale and might therefore introduce a q^2 term into the denominator of χ. In our approach such a ferromagnetic coupling between the carriers, say holes, leads to an additional term in the effective field,

$$B_h = B_h^{\text{ext}} - \frac{J}{g_\text{h} g_\text{e} \mu_\text{B}} \mu_\text{h} + \frac{K}{g_\text{h}^2 \mu_\text{B}^2} \mu_\text{h}$$

with $K > 0$. The derivation can be carried through. We only show the resulting susceptibility for the valence band (the conduction-band result is analogous),

$$\chi = \frac{5}{18} S(S + 1) N(0) \mu_\text{B}^2 \left[-i\omega \times \left[\frac{6\tau_\text{spin}}{15} \frac{S(S + 1)}{R_\text{q}} \frac{1}{(1 - 5N(0)J c/6)^2} \right] + \frac{5}{3} S(S + 1) \left(\frac{N(0)J c}{6} \right)^2 \left(1 - \frac{T - T_c^\kappa}{T_c^\kappa} \right)^{-1} \times \left(g_e^2 \left(\frac{N(0)J c}{6} \right)^2 - g_e^2 \frac{N(0)J c}{6} \right) \right. \left. - g_e^2 \frac{N(0)J c}{6} \right)$$

with $\kappa = N(0)K/6, J_c = J/(1 - \kappa)$, and

$$T_c^\kappa = \frac{S(S + 1) N(0)J^2 n_1}{18} \frac{1}{1 - \kappa}. \tag{80}$$

The Curie temperature is enhanced by the Stoner factor $(1 - \kappa)^{-1}$. R_q is still given by Eq. (77). If the ferromagnetic interaction becomes large that $N(0)K/6 = 1$ then the hole system orders ferromagnetically at $T = 0$ even in the absence of any impurity spins (Stoner instability) and our approach breaks down. However, for DMS κ is small. The same result is obtained by introducing an appropriate Landau parameter $F_0^\kappa = -\kappa$ into Fermi liquid theory. We see that the inclusion of a carrier-carrier ferromagnetic exchange interaction changes the susceptibility quantitatively but not its functional form. In particular, it does not introduce a Ornstein-Zernike-type q^2 term.

Let us estimate the parameter $N(0)J/6$: For a parabolic band

$$N(0) = \frac{m_\text{h} k_F^2}{2 \pi^2} = \frac{m_\text{h} k_F^2}{2 \pi^2} (3\pi^2 n)^{1/3}, \tag{81}$$

where n is the carrier density. For Ga$_{1-x}$Mn$_x$As with $x = 0.05$ and $p = 0.3$ holes per manganese atom we get $N(0) = 7.26 \times 10^{-4} \text{meV}^{-1} \text{nm}^{-3}$. On the other hand, $J \approx (50 \pm 5) \text{meV} \text{mm}^3$ so that

$$\frac{N(0)J}{6} \approx 0.0061. \tag{82}$$

The parameter is thus small. However, we emphasize that the derivation is valid for general $N(0)J$. The small value explains why the hole contribution to the magnetization is small compared to the magnetic one. Also, for antiferromagnetic coupling J is positive so that the hole and impurity spin magnetizations are opposite in sign, in agreement with experiments.

The above estimate of $N(0)$ relies on the spherical approximation and on the omission of the light-hole band, which are not well justified at the hole concentration used here. A realistic Slater-Koster tight-binding description of the unperturbed valence band gives a density of states per spin direction of $1.18 \times 10^{-3} \text{eV}^{-1} \text{Å}^{-3}$. The dimensionless parameter $N(0)J/6 \approx 0.0099$ is thus somewhat increased by assuming a realistic band structure.

Equation (77) shows that the typical length scale λ is $\lambda = \sqrt{5D\tau_\text{tot}/2}$, which corresponds to ξ_e in the conduction-band case. The time appearing in ξ_e should thus be the relaxation time of the total magnetization.

The magnetic excitations are again diffusive modes. Their relaxation rates are

$$\lambda = i\omega = \frac{5}{3} S(S + 1) \left(\frac{N(0)J}{6} \right)^2 \left(1 - \frac{1}{T - T_c^\kappa} \right) \frac{1}{1 - \kappa} \frac{1}{R_\text{q}} \frac{1}{\tau_\text{spin}} \frac{S(S + 1)}{15} \frac{1}{(1 - 5N(0)J c/6)^2} \frac{1}{T_c^\kappa}, \tag{83}$$

qualitatively similar to the conductance-band case.

We propose to measure the magnetic susceptibility in the paramagnetic phase at small q and ω for various DMS. This should allow to test the non-standard functional form of our result. In particular, such an experiment should look for the anisotropic spin diffusion in p-type DMS. Studying samples with similar concentrations of magnetic impurities but different concentrations of nonmagnetic scatterers introduced by codoping.
would allow to change the scattering rate $1/\tau$ while holding $1/\tau_{\text{spin}}$ and the mean-field T_c nearly fixed.

III. ANOMALOUS HALL-VOLTAGE NOISE

In this section we apply the semiclassical theory to the derivation of the voltage noise in the transverse direction in the paramagnetic phase. The average anomalous Hall voltage vanishes for $T > T_c$ due to the vanishing average magnetization. However, fluctuations in the magnetization are present and are in fact critically enhanced as T_c is approached. This leads to fluctuations in the anomalous Hall voltage, which we derive in the following. Following Ref. [22] we consider the Berry-phase contribution to the anomalous Hall effect for a p-type DMS.

The fluctuations in the Hall voltage are governed by the correlation function of the effective magnetic field acting on the hole spins. This correlation function is closely related to the impurity–impurity spin susceptibility χ_{ii} evaluated above. Typical Hall-bar samples are much larger than the spin relaxation length ξ_s. Hence, we restrict ourselves to the homogeneous component, $\mathbf{q} = 0$. Fluctuations with nonzero \mathbf{q} cancel out in the macroscopic voltage measurement. On the other hand, the frequency dependence of the χ_{ii} is important since ω can become larger than $T - T_c$ close to the transition.

We describe a p-type DMS in the metallic regime by the Hamiltonian

$$H = H_{\text{kin}} + J_{ii} \mathbf{s} \cdot \mathbf{S} - e \mathbf{E} \cdot \mathbf{r},$$

where \mathbf{s} is the hole spin operator, \mathbf{S} is the averaged ($\mathbf{q} = 0$) impurity spin and \mathbf{E} is a homogeneous, static external electric field. The external magnetic field vanishes. The kinetic Hamiltonian is $H_{\text{kin}} = (1/2m) \left[(\gamma_1 + 5\gamma_2/2) r^2 - 2\gamma_2 (p \cdot j)^2 \right]$, as in Eq. [C1].

The anomalous Hall conductivity has been derived by Jungwirth et al. [22]. The derivation is similar to the one in App. C. The exchange and electric-field terms are treated as small perturbations. The equation of motion for \mathbf{r}, Eq. [C1], can be rewritten as

$$\dot{\mathbf{r}} = \nabla_p E_{pj} - e \mathbf{E} \times \mathbf{r} - \Omega + 2 \text{Im} \langle \nabla_p u | \partial_t u \rangle$$

with $\Omega = \text{Im} \langle \nabla_p u | \times | \nabla_p u \rangle$ and the heavy-hole energy

$$E_{pj} = \frac{p^2}{2m} (\gamma_1 - 2\gamma_2) + \frac{J_{ii}}{3} j \hat{p} \cdot \mathbf{S} - e \mathbf{E} \cdot \mathbf{r},$$

up to first order in \mathbf{E} and \mathbf{S}.

The charge response is derived from the Boltzmann equation $(\partial_t + \mathbf{v} \cdot \nabla_x + \mathbf{p} \cdot \nabla_x) n_{pj} = \epsilon_{pj}^{\text{dis}}$. We restrict ourselves to nonmagnetic disorder scattering, assuming the disorder scattering rate $1/\tau$ to be large compared to the spin scattering rate $1/\tau_{\text{spin}}$, since inclusion of the latter would only complicate the notation without introducing new physics. For the anomalous Hall effect we are concerned with the charge density $\rho = e \int d^3 p/(2\pi)^3 \sum_j n_{pj}$ and current density $\mathbf{j} = e \int d^3 p/(2\pi)^3 \sum_j \mathbf{v}_{pj} n_{pj}$. From a similar evaluation as in Sec. [11] we recover the Drude conductivity to order zero in the impurity spins \mathbf{S}.

The first contribution to the Hall current is found at first order in \mathbf{S}

$$\mathbf{j}^{(1)} = \frac{e^2 J_{ii}}{4\pi^2 k_F} \mathbf{E} \times \mathbf{S} \left(\frac{1}{\gamma_1 - 2\gamma_2} - \frac{2}{3\gamma_2} \right) \mathbf{m},$$

where k_F is the Fermi wave number in the heavy-hole band. A homogeneous charge distribution has been assumed to obtain this result. In the limit of large heavy-hole/light-hole mass ratio $m_{hh}/m_{lh} \gg 1$ the Kohn-Luttinger parameters satisfy $\gamma_1 - 2\gamma_2 \ll \gamma_2$ and we obtain the simpler result $\mathbf{j}^{(1)} = e^2 m_{hh} J_{ii} / (4\pi^2 k_F) \mathbf{E} \times \mathbf{S}$. Note that the first-order contribution is purely transverse—there is no anomalous contribution to the longitudinal resistivity to this order. The anomalous Hall current density is, to first order, $\mathbf{j}_{\text{AH}} = \sigma_{\text{AH}} \mathbf{E} \times \mathbf{S}$ with the unit vector \mathbf{S} in the impurity-spin direction and

$$\sigma_{\text{AH}} = \frac{e^2 m_{hh} J_{ii} S}{4\pi^2 k_F}.$$
The ratio of conductivities is
\[
\frac{\tilde{\sigma}}{\sigma_D} = \frac{3}{2} \frac{n_i}{n_h} \frac{N(0) J}{E_F \tau} \frac{1}{6}
\]
with the Fermi energy \(E_F = k_B^2 / 2 m_h\). The factor \(n_i / n_h\) lies in the range 1...10, the ubiquitous factor \(N(0) J / 6\) drops out of the final result, and \(1 / E_F \tau\) has to be reasonably small for our metallic picture to apply. The final dimensionless expression for the integrated noise is
\[
\frac{\langle U_{AH}^2 \rangle}{U^2} \approx \frac{27}{5} \left(\frac{n_i}{n_h} \frac{1}{E_F \tau} \right)^2 L_y \frac{1}{L_x L_z} \frac{1}{n_i} \left(\frac{T_c - T_e}{T_c} \right)^2 \Delta \omega \tau_{\text{spin}}.
\]

This contribution to the noise is critically enhanced as the Curie temperature is approached. In a homogeneous system it should diverge at \(T_c\) but real DMS are, by their very nature, disordered and the transition is broadened by macroscopic inhomogeneity of \(T_c\). Furthermore, the effect strongly depends on the length \(L_x\) of the relevant region of the Hall bar in the electric-field direction, being large for small \(L_x\). It is more weakly enhanced by a small sample thickness \(L_z\) and by a large sample thickness \(L_y\) across which the voltage is measured. The effect is also increased by strong compensation \(n_h < n_i\) and in samples showing bad metallic behavior (small \(E_F \tau\)).

The anomalous Hall-voltage noise is in competition with the thermal (Johnson-Nyquist) voltage noise\(\tilde{\omega}_h\), which in integrated form is \(\langle U_{AH}^2 \rangle = 2 T R \Delta \omega / \pi\). The two contributions can be experimentally distinguished by their different temperature and voltage dependences. The anomalous Hall-voltage noise \(\langle U_{AH}^2 \rangle\) is proportional to the applied voltage squared, whereas the thermal voltage noise is independent of voltage.

Besides being an interesting physical effect, measurement of the anomalous Hall-voltage noise would provide an independent approach to the impurity-spin susceptibility and to important experimental parameters, such as the compensation fraction \(n_h / n_i\) with respect to the density of magnetically active impurities. The Hall-voltage noise would also provide a new way to determine the Curie temperature. More generally, such experiments would test the applicability of the semiclassical theory to DMS. It may also be interesting to study the anomalous Hall-voltage noise in conventional itinerant ferromagnets such as iron.

IV. CONCLUSIONS

A semiclassical approach based on Boltzmann equations for electrons or holes and impurity spins has been used to derive hydrodynamic equations of motion and spin susceptibilities of diluted magnetic semiconductors (DMS) in the paramagnetic phase. This theory gives the leading frequency and wave-vector dependence at small \(\omega\) and \(\mathbf{q}\). Our results apply to p-type and n-type DMS,
to III-V, II-VI, and group-IV host semiconductors, arbitrary impurity spin quantum number S, and ferromagnetic or antiferromagnetic exchange coupling J of carrier and impurity spins. While the form of the equations of motion is easy to understand, the susceptibility has a nonstandard q dependence, which only appears in the frequency-dependent term. Thus the semiclassical diffusive dynamics does not lead to any q dependence of the static susceptibility. Such terms are expected to be introduced by physics at the much larger momentum scale of the Fermi momentum k_F.

Spin-orbit coupling in the valence band leads to qualitative differences in the susceptibility of holes compared to electrons. The first difference is a suppression of the mean-field Curie temperature of p-type DMS compared to n-type DMS by a factor of 1/3, which can be traced back directly to the momentum dependence of the spin quantization axis in the presence of spin-orbit coupling. On the other hand, the Curie temperature in p-type DMS is enhanced by the typically larger density of states and exchange coupling. The second difference is anisotropic spin diffusion in the valence band, which is apparent in the equation of motion of the hole magnetization and also makes the q dependence of the susceptibilities anisotropic. The anisotropic diffusion is due to the fact that holes moving in a direction perpendicular to the magnetization or effective field have vanishing expectation value of the spin in the magnetization direction and thus do not contribute to its transport.

The results have been applied to evaluate the noise in the anomalous Hall voltage in DMS, which is governed by the impurity-spin susceptibility at small frequencies and momentum $q \to 0$. Unlike the average anomalous Hall voltage this quantity does not vanish in the paramagnetic phase and is even critically enhanced close to T_c. The noise gives an independent experimental approach to the impurity-spin susceptibility. We have derived the detailed dependence of the signal on the impurity and hole concentrations and on the sample geometry.

Acknowledgments

Interesting discussions with Alex Kamenev are gratefully acknowledged. One of us (FvO) thanks the Weizmann Institute for hospitality and support through a Micheal Visiting Professorship while this work was completed. This work was partially supported by the “Junge Akademie,” Berlin.

APPENDIX A: HYDRODYNAMIC EQUATIONS, CONDUCTION BAND

In this appendix we collect a number of calculations pertaining to the conduction-band case. The derivation of the hydrodynamic equations in Sec. II A requires the evaluation of various integrals over the collision terms $c_{\text{pr}}^{\text{spin}}$, $c_{\text{orm}}^{\text{spin}}$, and $c_{\text{lip}}^{\text{spin}}$. We do not show all evaluations but only present a few to clarify the method and approximations used here.

The first integral we need is

$$
\int \frac{d^3p}{(2\pi)^3} \sum_{\sigma m} m S_{\text{pr}m}^{\text{spin}},
$$

which appears in the equation of motion of the impurity spin magnetization. We divide the collision integral into three terms,

$$
c_{\text{pr}m}^{\text{spin}} = c_{\text{pr}m}^{\text{spin,0}} + c_{\text{pr}m}^{\text{spin,+1}} + c_{\text{pr}m}^{\text{spin,-1}},
$$

corresponding to $m' = m$ (no spin flip), $m' = m + 1$, and $m' = m - 1$, respectively. The first contribution is

$$
\int \frac{d^3p}{(2\pi)^3} \sum_{\sigma m} m S_{\text{pr}m}^{\text{spin,0}} = \sum_m m^3 f_m \frac{4N(0)}{4N(0)\tau_{\text{spin}}} \times \int \frac{d^3p d^3p'}{(2\pi)^6} \sum_{\sigma m} \delta(\epsilon_p - \epsilon_{p'}) (n_{p'} - n_{p}) = 0,
$$

as can be seen by renaming $p \leftrightarrow p'$ in the term with $n_{p'}$. The other two contributions can be treated together as

$$
\int \frac{d^3p}{(2\pi)^3} \sum_{\sigma m} m S_{\text{pr}m}^{\text{spin,\pm1}} = 1/(2S + 1) + \Delta f_m, \quad \sum_m \Delta f_m = 0,
$$

and divide the integral into terms of zero and first order

$$
\int \frac{d^3p}{(2\pi)^3} \sum_{\sigma m} m S_{\text{pr}m}^{\text{spin,\pm1}} = \Sigma^{(0)} + \Sigma^{(1)}.
$$
In the zero-order term we expand the delta function in B_c, B_1, and write all terms strictly in first order. This allows to perform the integrals,

$$
\Sigma^{(0)} \cong \frac{1}{4 \tau_{\text{spin}}} \sum_m \frac{\mp m^2}{2S+1} \left[\int \frac{d^3 p}{(2\pi)^3} \frac{1}{n_{p^\mp}} \right. \\
+ \frac{N(0)}{12 \tau_{\text{spin}}} \left. (g_e \mu_B B_c - g_i \mu_B B_i) \right],
$$

where the term with n_{p^\mp} vanishes since it is odd in p. Similar evaluations are required for Σ^{flip} and Σ^{spin}.

APPENDIX B: HYDRODYNAMIC EQUATIONS, VALENCE BAND

Even though we restrict ourselves to the heavy-hole band, the angular integrals are much more complicated than in the conduction-band case since the explicit expression \[\text{(12)} \] for the hole magnetization μ_h, the transition probabilities, and the Zeeman energies now all depend on the direction in momentum space. As noted above, the analytical expressions for the transition probabilities are rather complicated. We use Mathematica to analytically perform the angular integrals of the form

$$
\int \frac{d \Omega}{4\pi} \cos^n \theta \left| \langle p | j | j' \rangle \right|^2
$$

with $n = 0, 1, 2$ and $A = 1, j^z, j^+, j^-$, resulting in expressions like

$$
\int \frac{d \Omega}{4\pi} \cos^2 \theta \left| \langle p | j^\pm | j' \rangle \right|^2 = \frac{3}{40} \left(7 - 6 \cos \theta' + \cos 2 \theta'\right) \cos^2 \frac{\theta'}{2}
$$

for $j' = \mp 3/2$,

$$
\int \frac{d \Omega}{4\pi} \cos^2 \theta \left| \langle p | j^\pm | j' \rangle \right|^2 = \frac{3}{40} \left(7 + 6 \cos \theta' + \cos 2 \theta'\right) \sin^2 \frac{\theta'}{2}
$$

for $j' = \pm 3/2$.

Here, θ and θ' are polar angles of p and p', respectively.

As an example, we here evaluate the integral

$$
\int \frac{d^3 p}{(2\pi)^3} \sum_{jm} m s^{\text{spin}}_{pjm},
$$

which corresponds to the one considered in App. A1. The collision integral is again divided into $s^{\text{spin},0}, s^{\text{spin},+1}, s^{\text{spin},-1}$. The contribution from $s^{\text{spin},0}$ vanishes in analogy with Eq. (A4). The other terms are expanded in Δf_m up to linear order,

$$
\int \frac{d^3 p}{(2\pi)^3} \sum_{jm} m s^{\text{spin},\pm 1}_{pjm} = \Sigma^{(0)} + \Sigma^{(1)}.
$$

In $\Sigma^{(0)}$ the delta function is expanded in B_h, B_i and the term is then divided into $\Sigma^{(0)}_{\text{flip}} + \Sigma^{(0)}_{\text{nodip}}$, where in the first (second) term $j' = j$ ($j' = -j$). The first term is evaluated similarly to the conduction-band case, taking the more complicated angular integrals \[\text{(B1)} \] into account,

$$
\Sigma^{(0)}_{\text{nodip}} = -\frac{S(S+1)}{108 \tau_{\text{spin}}} \left[\frac{3}{2} \frac{\mu_h}{g_h \mu_B} + \frac{N(0)}{4} g_h \mu_B B_h \\
- \frac{5}{4} \frac{N(0)}{4} g_i \mu_B B_i \right].
$$

Also, writing out $\Sigma^{(0)}_{\text{flip}}$ and renaming $j \leftrightarrow -j$ in the first term one can see that $\Sigma^{(0)} = \Sigma^{(0)}_{\text{nodip}}, \Sigma^{(1)}$ can also be evaluated similarly to the conduction-band case,

$$
\Sigma^{(1)} = \frac{N(0)}{36 \tau_{\text{spin}}} \left[\frac{5}{2} \sum_m \left[-m \mp 3m^2 \mp S(S+1) \right] \Delta f_m \right].
$$
which simplifies under summation over the three contributions,
\[
\int \frac{d^3p}{(2\pi)^3} \sum_{jm} m S_{pjm}^{\text{spin}} = -\frac{S(S+1)}{18\tau_{\text{spin}}} \mu_B \frac{\mu_i}{g_B\mu_B} \\
+ \frac{N(0) S(S+1)}{108\tau_{\text{spin}}} g_B \mu_B B_h + \frac{5N(0) T}{36\tau_{\text{spin}}} \frac{\mu_i}{g_B N_i} \\
- \frac{5N(0) S(S+1)}{108\tau_{\text{spin}}} g_B \mu_B B_i.
\] (B7)

In the integrals pertaining to the hole magnetization and magnetization current we obtain some terms in which the occupation fractions \(\mu_i \) and \(\mu_i \) cannot be reduced to \(\mu_{\text{m}} \). These terms cancel in the final equations of motion so that again a closed set of equations for \(\mu_i \) and \(\mu_i \) is obtained.

APPENDIX C: ABSENCE OF BERRY-PHASE CONTRIBUTIONS

In the present appendix we show that Berry-phase corrections do not contribute to the hydrodynamic equations to linear order. In the framework of semiclassical theory they have been discussed in detail by Sundaram and Nin. If one considers a wave packet made up of electrons of a single band, with narrow spread in real and momentum space, and with center-of-mass position \(r \) and mean momentum \(p \), then the semiclassical equations of motion for these quantities are, in the absence of scattering,
\[
\dot{r} = \nabla_r E_{p\sigma} - i \hat{p}_\alpha \left((\nabla_r u_p | \nabla_r u^\alpha_p) - (\nabla_r u^\alpha_p | \nabla_r u_p) \right) \\
- i \dot{\hat{r}}_\alpha \left((\nabla_r u_p | \nabla_r u^\alpha_p) - (\nabla_r u^\alpha_p | \nabla_r u_p) \right) \\
- i \left((\nabla_r u_p | \partial_t u) - (\partial_t u | \nabla_r u_p) \right),
\] (C1)
\[
\dot{p} = -\nabla_r E_{p\sigma} + i \dot{\hat{p}}_\alpha \left((\nabla_r u_p | \nabla_r u^\alpha_p) - (\nabla_r u^\alpha_p | \nabla_r u_p) \right) \\
+ i \dot{\hat{r}}_\alpha \left((\nabla_r u_p | \nabla_r u^\alpha_p) - (\nabla_r u^\alpha_p | \nabla_r u_p) \right) \\
+ i \left((\nabla_r u_p | \partial_t u) - (\partial_t u | \nabla_r u_p) \right).
\] (C2)

Summation over \(\alpha = 1, 2, 3 \) is implied. \(|u_p\rangle \) is the periodic part of the Bloch wave function and \(E_{p\sigma} \) is the wave-packet energy, which also contains a Berry-phase correction:
\[
\tilde{E}_{p\sigma} = E_{p\sigma} - \text{Im} \left(\nabla_r u_{p\sigma} | (E_{p\sigma} - H_c) | \nabla_r u_{p\sigma} \right),
\] (C3)

where \(H_c \) is the local Hamiltonian for the wave-packet center and momentum and \(E_{p\sigma} \) is the corresponding eigenenergy. This expression applies to conduction-band electrons; in the hole case \(\sigma \) should be replaced by \(\gamma \). Note that the spatial gradient \(\nabla_r \) acts on the center-of-mass vector, on which the states \(|u_p\rangle \) depend parametrically.

For the conduction band we can immediately see that Berry-phase effects are absent: In field-free equilibrium all spatial and temporal derivatives vanish. The \(p \) gradient also vanish since for the Hamiltonian \(H^{(0)} = p^2/(2m_{eh}) \), the periodic part \(|u^{(0)}_p\rangle \) of the Bloch wave function is constant and the spin part \(|\pm 1/2\rangle \) is also independent of \(p \). This is not changed by the Zeeman term since it commutes with the kinetic energy in the absence of spin-orbit coupling. Thus all terms in Eqs. (C1), (C2), and (C3) vanish.

For the valence band in the spherical approximation, Eq. (31), the spatial part of the Bloch wave function is also constant but the spin part is not. It is given by Eq. (C2). The \(p \) gradient is then
\[
\nabla_p |j_p\rangle = -i \left(j^z \frac{\hat{p}}{p \sin \theta} e^{-ij^z \phi} e^{-ij^y \theta} + e^{-ij^z \phi} j^y \frac{\hat{p}}{p} e^{-ij^y \theta} \right) |j_p\rangle.
\] (C4)

Furthermore, the Zeeman term does not commute with the kinetic energy so that we expect contributions from the perturbation. We use a perturbation expansion in the effective field to obtain the terms appearing in Eqs. (C1) and (C2). The hole Hamiltonian in the spherical approximation reads
\[
H = \frac{1}{2m} \left[(\gamma_1 + 5\gamma_2/2) p^2 - 2\gamma_2 (p \cdot j)^2 \right] + g_B \mu_B s \cdot \hat{z} B_h.
\] (C5)

The unperturbed eigenenergies are
\[
\epsilon^{(0)}_{pj} = \frac{p^2}{2m} \begin{cases} \left(\gamma_1 - 2\gamma_2 \right) & \text{for } j = \pm 3/2, \\
\left(\gamma_1 + 2\gamma_2 \right) & \text{for } j = \pm 1/2 \end{cases}
\] (C6)

and the eigenstates are \(|u^{(0)}_p\rangle \), where only the spin part has a nontrivial \(p \) dependence. Assuming an effective field in the \(z \) direction, the first-order perturbation is
\[
\epsilon^{(1)}_{pj} = g_B \mu_B \frac{1}{3} \left(j |e^{ij^z \phi} e^{-ij^y \theta} + e^{-ij^z \phi} j^y e^{ij^y \theta} \right) B_h.
\] (C7)

Restricted to heavy holes, \(\epsilon^{(1)}_{pj} = g_B \mu_B (j/3) \cos \theta B_h \). Degenerate perturbation theory yields the perturbations to the states,
\[
|u^{(1)}_{\pm3/2}\rangle_p = g_B \mu_B \frac{1}{3} B_h \left(\frac{|u^{(0)}_{-1/2}\rangle_p}{\epsilon^{(0)}_{p,-1/2} - \epsilon^{(0)}_{p,1/2}} \right) |u^{(0)}_{1/2}\rangle_p + \frac{|u^{(0)}_{-1/2}\rangle_p}{\epsilon^{(0)}_{p,1/2} - \epsilon^{(0)}_{p,-1/2}} |u^{(0)}_{-1/2}\rangle_p.
\] (C8)

Introducing the difference between heavy- and light-hole energies, \(g_p = -2\gamma_2 p^2/m \), we obtain
\[
|u^{(1)}_{\pm3/2}\rangle_p = -\frac{g_B \mu_B \sin \theta B_h}{2\sqrt{3} g_p} |u^{(0)}_{\pm1/2}\rangle_p.
\] (C9)

Simplifying the notation by writing only the spin part of the wave function, this gives
\[
|u^{(1)}_{\pm3/2}\rangle_p = -\frac{g_B \mu_B \sin \theta B_h}{2\sqrt{3} g_p} (e^{-ij^z \phi} e^{-ij^y \theta} \pm \frac{1}{2}).
\] (C10)
The Berry-phase correction for the energy of heavy holes, given in Eq. (C3), is, to first order,

\[\Delta \epsilon_{pj} = -\text{Im} \langle \nabla_p \hat{u}_{pj}^{(0)} \cdot (\epsilon_{pj}^{(0)} - H_c^{(0)}) | \nabla_p \hat{u}_{pj}^{(0)} \rangle \]

\[= \text{Im} \frac{g_{\mu B} \sin \theta \nabla_p B_h}{2\sqrt{3}g_p} \cdot (u_{pj/3}^{(0)}(\epsilon_{pj}^{(0)} - H_0) | \nabla_p \hat{u}_{pj}^{(0)} \rangle. \]

(C11)

Using that \(|u_{pj/3}^{(0)} \rangle \) is an eigenstate of \(H_0 \) we obtain

\[\Delta \epsilon_{pj} = \frac{g_{\mu B} \sin \theta \nabla_p B_h}{2\sqrt{3}} \cdot \text{Im} \left[i \frac{\hat{\theta}}{p \sin \theta} \frac{\sqrt{3}}{2} \sin \theta \right. \]

\[- \left. i \frac{\hat{\theta}}{p} \left(\pm i \frac{\sqrt{3}}{2} \right) \right] \]

\[= \frac{g_{\mu B}}{4p} (\hat{z} \times \hat{p}) \cdot \nabla_p B_h. \]

(C12)

This correction evidently diverges for small \(p \). The origin is the breakdown of perturbation theory as the energy difference \(g_p \) between heavy and light holes goes to zero. This divergence is not crucial here since states deep inside the Fermi sea do not contribute to the response.

The energy entering the semiclassical equations of motion is, to first order, \(\dot{E}_{pj} = \epsilon_{pj}^{(0)} + \epsilon_{pj}^{(0)} + \Delta \epsilon_{pj} \). Thus Eq. (C2) reads, to first order,

\[\dot{p} \cong -\nabla_x \dot{E}_{pj} \]

\[\cong -g_{\mu B} \frac{j}{3} \cos \theta \nabla_x B_h - \frac{g_{\mu B}}{4p} \nabla_x (|\hat{z} \times \hat{p}| \cdot \nabla_x B_h). \]

(C13)

Thus we find an additional force which is proportional to a second derivative of the field but independent of the spin direction, i.e., an orbital contribution. Then Eq. (C11) becomes, dropping subscripts \(p, j \),

\[\dot{r} \cong \nabla_p \dot{\hat{E}} - i \hat{p}_a \left((\nabla_p u^{(0)} | \nabla_p u^{(0)}) - (\nabla_p u^{(0)} | \nabla_p u^{(0)}) \right) \]

\[- i (\nabla_p u^{(0)} | \nabla_p u^{(0)}) - (\nabla_p u^{(0)} | \nabla_p u^{(0)}) \]

\[- i (\nabla_p u^{(0)} | \nabla_p u^{(0)}) - (\nabla_p u^{(0)} | \nabla_p u^{(0)}) \].

(C14)

The term multiplying \(\hat{p}_a \) can be evaluated explicitly and is found to vanish for the heavy holes. Thus

\[\dot{r} \cong \frac{p}{m_{hh}} - g_{\mu B} \frac{j}{3} \sin \theta B_h \frac{\hat{\theta}}{p} \]

\[- \text{Im} \nabla_p (\nabla_p u^{(0)} | (\epsilon_{pj}^{(0)} - H_c^{(0)}) | \nabla_p u^{(0)}) \]

\[- i \frac{\hat{p}_a}{m_{hh}} ((\nabla_p u^{(0)} | \nabla_p u^{(0)}) - (\nabla_p u^{(0)} | \nabla_p u^{(0)})) \]

\[- i ((\nabla_p u^{(0)} | \nabla_p u^{(0)}) - (\nabla_p u^{(0)} | \nabla_p u^{(0)})) \].

(C15)

cf. Eq. 35. To first order, the Boltzmann equation reads

\[\partial_t n_{pj} + \frac{p}{m_{hh}} \nabla_x n_{pj} + \hat{p} \nabla_x n_{pj} | \nabla_x B_h = S_{\text{sp}} + \sum_m S_{\text{spin}} \]

(C16)

since \(\nabla_x n_{pj} \) and \(\hat{p} \) are both linear in the perturbation. Thus the correction terms in Eq. (C15) drop out here and the only new term on the left-hand side comes from the orbital force in Eq. (C13). The equation of motion of \(\mu_h \) is obtained by multiplying the Boltzmann equation with \(-g_{\mu B} (j/3) \cos \theta \) and summing over \(p, j \). The orbital-force term drops out since it contains \(\sum_j j = 0 \).

The right-hand side of Eq. (C16) also has to be multiplied with \(-g_{\mu B} (j/3) \cos \theta \) and summed over \(p, j \). The Berry-phase correction \(\Delta \epsilon_{pj} \) to the energy appears in the delta functions implementing energy conservation. If we evaluate the resulting integrals by expanding this delta function as in App. 1B all terms multiplied with \(\Delta \epsilon_{pj} \) should be evaluated to order zero. Then the only \(j, j' \) dependence comes from the explicit factor \(j/3 \) and from the transition probabilities. However, explicit evaluation in the \(4 \times 4 \) spin space shows that \(\sum_{j, j'} (j/3) |p(j'|j')|p| = 0, \sum_{j, j'} (j/3) |p(j|j')|p| = 0, \sum_{j, j'} (j/3) |p(j|j')|p| = 0 \), and \(\sum_{j, j'} (j/3) (|p(j|j')|p| + |p(j'|j')|p|) = 0 \) so that all these terms vanish. Thus there is no contribution to the equation of motion for the hole magnetization.

The equation of motion for the magnetization current \(\mathbf{j}_\mu \) contains an additional factor of \(\hat{r} \) in the integrand, which should be calculated to linear order, see Eq. (C15). For the left-hand side we obtain

\[-\partial_t \frac{\mathbf{j}_\mu}{g_{\mu B}} + \int \frac{d^3p}{(2\pi)^3} \sum_j \frac{j}{3} \cos \theta \left(\frac{p}{m_{hh}} \cdot \nabla_x n_{pj} \right. \]

\[- g_{\mu B} \frac{j}{3} \cos \theta \nabla_x B_h \cdot \nabla_n p_{n_{pj}}^{(0)} \]

\[- \frac{g_{\mu B}}{4p} \nabla_x (|\hat{z} \times \hat{p}| \cdot \nabla_x B_h) \cdot \nabla_n p_{n_{pj}}^{(0)} \].

(C17)

Since all terms multiplied by \(\hat{r} \) are already of first order we replace \(\hat{r} \) by \(\mathbf{p}/m_{hh} \). Then the first two terms in the parentheses are identical to the ones calculated above and the third vanishes due to \(\sum_j j = 0 \). Thus the left-hand side of the equation of motion is not changed by Berry-phase contributions. On the right-hand side we have to multiply the collision integrals by \((j/3) \cos \theta \hat{r} \) with \(\hat{r} \equiv \mathbf{p}/m_{hh} + \Delta \mathbf{v} \) from Eq. (C15). \(\Delta \mathbf{v} \) contains the term from the \(\mathbf{p} \) dependence of the Zeeman energy as well as the Berry-phase corrections. The contribution from \(\mathbf{p}/m_{hh} \) is what we have calculated in Sec. 1B except for the additional Berry-phase correction \(\Delta \epsilon_{pj} \) in the delta functions. This correction is irrelevant, however, by the argument of the previous paragraph.

In the second contribution, \(\Delta \mathbf{v} \) is of first order so that the collision integrals should be evaluated to order zero. But these are of course zero since there is no net scattering in equilibrium. Consequently, the linear contributions to the velocity \(\mathbf{r} \), in particular the Berry-phase corrections, drop out of the equation of motion for the magnetization current \(\mathbf{j}_\mu \). In conclusion, we have shown that the hydrodynamic equations for the valence-band case are unaffected by Berry phases to linear order. The results of Sec. 1B are thus correct.
G. Alvarez, M. Mayr, and E. Dagotto, Phys. Rev. Lett. 82, 2302 (2003).

K. W. Edmonds, K. Y. Wang, R. P. Campion, A. C. Neumann, N. R. S. Farley, B. L. Gallagher, and C. T. Foxon, Phys. Rev. Lett. 81, 4991 (2002); K. W. Edmonds, P. Boguslawski, B. L. Gallagher, R. P. Campion, K. Y. Wang, N. R. S. Farley, C. T. Foxon, M. Sawicki, T. Dietl, M. Buongiorno Nardelli, and J. Bernholc, cond-mat/0307140.

T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).

T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205 (2001).

J. König, J. Schliemann, T. Jungwirth, and A. H. MacDonald, in Electronic Structure and Magnetism of Complex Materials, Springer Series in Material Sciences 54, edited by D. J. Singh and D. A. Papaconstantopoulos (Springer, Berlin, 2003), cond-mat/0111314.

T. Dietl, Semicond. Sci. Technol. 17, 377 (2002).

See the Ferromagnetic Semiconductor Spintronics Web Project, http://unix12.fzu.cz/ms

S. J. Potashnik, K. C. Ku, S. H. Chun, J. J. Berry, N. Samarth, and P. Schiffer, Appl. Phys. Lett. 79, 1495 (2001); see also R. C. Lutz, P. Specht, R. Zhao, O. H. Lam, F. Börner, J. Gebauer, R. Krause-Rehberg, and E. R. Weber, Physica B 273–274, 722 (1999).

J. Maše, I. Turek, V. Drchal, J. Kudrnovský, and F. Máca Acta Phys. Polon. A 102, 673 (2002), cond-mat/0302176; J. Maše, J. Kudrnovský, and F. Máca, Phys. Rev. B 67, 153203 (2003).

K. M. Yu, W. Walukiewicz, T. Wojtowicz, I. Kurylisyn, X. Liu, Y. Sasaki, and J. K. Furdyna, Phys. Rev. B 65, 201303(R) (2002).

Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F. Ambrose, A. Wilson, G. Sapanos, and B. T. Jonker, Science 295, 651 (2002).

M. Berciu and R. N. Bhatt, Phys. Rev. Lett. 87, 107203 (2001); C. Timm, F. Schäfer, and F. von Oppen, Phys. Rev. Lett. 90, 027901 (2003); M. Berciu and R. N. Bhatt, Phys. Rev. Lett. 90, 029702 (2003).

J. Schliemann and A. H. MacDonald, Phys. Rev. Lett. 88, 137201 (2002).

C. Timm, F. Schäfer, and F. von Oppen, Phys. Rev. Lett. 89, 137201 (2002); C. Timm and F. von Oppen, J. Supercond.: Incorporating Novel Magnetism 16, 23 (2003).

G. Alvarez, M. Mayr, and E. Dagotto, Phys. Rev. Lett. 89, 277202 (2002); G. Alvarez and E. Dagotto, Phys. Rev. B 68, 045202 (2003).

D. Pines and P. Nozières, The Theory of Quantum Liquids, vol. 1 (Westview, Boulder, 1989).

H. Ohno, Science 281, 951 (1998); H. Ohno, J. Magn. Magn. Mat. 200, 110 (1999); H. Ohno and F. Matsukura, Solid State Commun. 117, 179 (2001).

A. Van Esch, L. Van Bockstal, J. De Boeck, G. Verbanck, A. S. van Steenbergen, P. J. Wellmann, B. Grietens, R. Bogaerts, F. Herlach, and G. Borghs, Phys. Rev. B 56, 13103 (1997).

F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B 57, R2037 (1998).

T. Hayashi, Y. Hashimoto, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 78, 1691 (2001).

M. E. Fisher and J. S. Langer, Phys. Rev. Lett. 20, 665 (1968).

L. S. Ornstein and F. Zernicke, Proc. Sec. Sci. K. med. Akad. Wet. 17, 793 (1914).

P. M. Chaikin and T. C. Lubensky, Principles of condensed matter physics (Cambridge University Press, Cambridge, 1995).

T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett. 88, 207208 (2002).

G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 (1999).

J. Sinova, T. Jungwirth, W. A. Atkinson, and A. H. MacDonald, cond-mat/0308386.

V. M. Galitski, A. Kaminski, and S. Das Sarma, cond-mat/0306488.

Y. Qi and S. Zhang, Phys. Rev. B 67, 052407 (2003).

J. Smit, Physica (Amsterdam) 21, 877 (1955); ibid. 21, 39 (1958).

L. Berger, Phys. Rev. B 2, 4559 (1970).

T. Andreadczyk, J. Jaroszyński, M. Sawicki, Le Van Khoi, T. Dietl, D. Ferrand, C. Bourgognon, J. Cibert, S. Tatarenko, T. Fukumura, Z. Jin, H. Koimuna, and M. Kawasaki, in Springer Proceedings in Physics: Proceedings of the 25th International Conference on the Physics of Semiconductors, Osaka, Japan, September 2000, vol. 87, edited by N. Miura and T. Ando (Springer Verlag, Berlin, 2001), p. 235; J. Jaroszyński, T. Andreadczyk, G. Karczewski, J. Wróbel, T. Wojtowicz, E. Papis, E. Kamińska, A. Piotrowska, D. Popovic, and T. Dietl, Phys. Rev. Lett. 89, 266802 (2002).

J. Blinowski and P. Kacman, Phys. Rev. B 67, 121204 (2003).

K. W. Edmonds, P. Boguslawski, B. L. Gallagher, R. P. Campion, K. Y. Wang, N. R. S. Farley, C. T. Foxon, M. Sawicki, T. Dietl, M. Buongiorno Nardelli, and J Bernholc, cond-mat/0307140.

Note that the scattering rate $1/T_{\text{spin}}$ is proportional to $N(0) J^2 n$, as can be seen from the Dyson equation with the lowest-order self-energy diagram for the carriers due to spin-exchange scattering.

J. Schliemann, A. V. Khartsikii, and D. Loss, Phys. Rev. B 66, 245303 (2002); J. Schliemann, Phys. Rev. B 67, 045202 (2003).

K. Yosida, Theory of Magnetism (Springer, Berlin, 1996). A. A. Abrikosov and L. P. Gorkov, Sov. Phys. JETP 16, 1575 (1963) [Zh. Eksp. Teor. Fiz. 43, 2230 (1962)].

T. Jungwirth, W. A. Atkinson, B. H. Lee, and A. H. MacDonald, Phys. Rev. B 59, 9818 (1999).

T. Jungwirth, J. König, J. Sinova, J. Kucera, and A. H. MacDonald, Phys. Rev. B 66, 012402 (2002).

J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).

M. Abolfath, T. Jungwirth, J. Brun, and A. H. MacDonald, Phys. Rev. B 63, 054418 (2001).

G. Zarand and B. Jankó, Phys. Rev. Lett. 89, 047201 (2002); G. A. Fiete, G. Zarand, and K. Danile, Phys. Rev. Lett. 91, 097202 (2003).

A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer, New York, 1994).

The corresponding equation in Ref. 13 contains incorrect signs in the exponentials.
Since the spin-exchange scattering rate $1/\tau_{\text{spin}}$ is proportional to $N(0) J^2 n_i$, we see that T_c is proportional to $1/\tau_{\text{spin}}$.

J. Okabayashi, A. Kimura, O. Rader, T. Mizokawa, A. Fujimori, T. Hayashi, and M. Tanaka, Phys. Rev. B 58, R4211 (1998).

B. Beschoten, P. A. Crowell, I. Malajovich, D. D. Awschalom, F. Matsukura, A. Shen, and H. Ohno, Phys. Rev. Lett. 83, 3073 (1999).