Inheritance of Resistance to Neck-rot Disease Incited by *Botrytis allii* in Bulb Onions

Mau-Wei Lin¹, James F. Watson¹, and James R. Baggett¹
Department of Horticulture Oregon State University, Agricultural and Life Sciences, Building 4017, Corvallis, OR 97331-7304

Abstract. The inheritance of resistance to neck rot, incited by *Botrytis allii* Munn, was studied in four crosses between resistant and susceptible bulb onion (*Allium cepa* L.) lines, one cross between two resistant lines, and one cross between two susceptible lines. Using tests of excised scale pieces inoculated with a spore suspension and incubated in plastic boxes at 20°C for 6 days, parents, *F₁*, *F₂*, and backcrosses were assigned disease indices (DI) derived from infection severity scores of individual bulbs. Generation means and frequency distribution of DI indicated that inheritance was quantitative and mostly additive with a small amount of dominance for susceptibility. Estimates of gene effects using a three-parameter model also indicated that additive effects predominated, with some dominance and no epistasis. Broad-sense heritability estimates ranged from 42% to 63% in the resistant x susceptible crosses.

Neck rot, incited by *Botrytis allii*, causes serious storage losses in bulb onions. Infection by *B. allii* is favored by harvesting before bulbs mature fully, inadequate curing of the bulbs, and the occurrence of cool, moist weather before and after harvest. Development of decay in storage is favored by temperatures of 15 to 20°C and high humidity (Munn, 1917; Owen et al., 1950; Walker, 1926).

Munn (1917) and Groenendijk and Petiet (1963) reported that there are conspicuous differences in susceptibility to *B. allii* among onion cultivars and that white onions are more susceptible than yellow or red onions. Van Der Meer and Van Bennekom (1970) developed a test method for differentiating levels of neck-rot resistance. Vik and Astvei (1984) applied Van Der Meer’s methods in an onion breeding program, found that there was no clear-cut or specific resistance among cultivars. They concluded that resistance is a quantitative character and that inbreeding and selection can result in marked reduction in disease incidence. Miyaura et al. (1985) divided onion bulbs into resistant and susceptible groups after scale tests and compared their offspring performance. The mean disease index of selfed progeny from resistant bulbs was lower than the mean disease index from susceptible bulbs. They suggested that heritable resistance to neck rot can be obtained by selection.

The availability of onion inbred lines with pronounced levels of resistance or susceptibility has made breeding for neck-rot resistance more feasible. The purpose of this study was to investigate the inheritance of neck-rot resistance.

Materials and Methods

Four crosses were made between distinctly neck-rot susceptible and resistant onion inbreds. Additionally, a resistant (*W420*) x intermediate (*B6693*) and a susceptible x susceptible cross were made. The most resistant parents, *W420* and *W202*, and susceptible parent *W407*, were lines developed and released by the Univ. of Wisconsin. *B6693* is a line of intermediate resistance released by the U.S. Dept. of Agriculture, Univ. of Wisconsin, and Michigan State Univ. Neck-rot susceptible parents *Pg* 1b (*Pg*) and *D10-1b* (*D10*) are from the Univ. of Idaho and Sunseeds Co., respectively. All of the parents are yellow long-day onion lines except *D10*, which is a white long-day onion line. *W420* and *B6693* are high pungency, high soluble solids lines; *W202* is a medium pungency, medium soluble solids line; and *Pg* and *D10* are low pungency, low soluble solids lines.

Crosses were made by hand emasculation of female parents before stamen dehiscence and pollination by hand. To obtain *F₁*, and backcross seed, *F₂*, and parent bulbs were planted in the greenhouse in September 1986, vernalized in pots, and flowered in June and July 1987. Selfing of the *F₁* and parent plants was done on an individual plant basis using flies as pollinators in small cages. Additional *F₂* seeds and backcrosses were obtained by hand emasculation and pollination by hand or flies. To avoid contamination, umbels of female plants were covered with paper bags before pollination.

Because of difficulty in obtaining seed from hand emasculated onion flowers, reciprocal crosses were not made. We have not observed reciprocal differences in onion crosses and are not aware of reports of reciprocal differences.

Seeds for production of bulbs for neck-rot susceptibility tests of all generations were planted in the greenhouse on 19 Mar. 1988. Plants were transplanted to the field after 6 weeks into rows 51 cm apart with 9 cm between plants, arranged in a randomized complete block with four replications. In each replication, the six generations of a single cross were randomized in one row. Cultural methods were typical of those used for commercial production on mineral soils in western Oregon. Bulbs were dug 15 Sept., field-cured for 3 weeks, cleaned, and stored at 5 to 10°C.

Neck-rot tests were conducted during October to January using modifications of the method of Miyaura et al. (1985). A culture of *B. allii*, provided by the Sunseeds Co. plant pathology lab, was maintained on potato-dextrose agar. New cultures were started every 2 months and incubated at 20°C. Spores were obtained from a new heavily sporulated culture by adding 20 ml sterilized water to the petri dish and loosening spores by slight rubbing with a flame-stripped scalpel. Mycelium and spores were blended for 30 sec to get an even spore suspension. Spore concentration was adjusted to 10 to 10 spores/ml. Then 50 mg of the antibiotic Cabenecilin was added to the pathogen suspension to suppress bacterial contamination.
Table 1. Mean onion neck rot disease indices (DI) in generations of crosses between neck-rot resistant and susceptible lines.

Cross	Generation	No. bulbs	Mean DI
W420 x Pg (PR)	PR	64	0.5 ± 0.08
	PS	54	3.4 ± 0.10
	F1	49	2.8 ± 0.17
	F2	98	2.2 ± 0.13
	BCR	64	1.0 ± 0.13
	BCS	45	2.5 ± 0.17
	LSD		1.0
W202 x D10 (PS)	PR	64	0.7 ± 0.12
	PS	63	3.3 ± 0.10
	F1	52	3.1 ± 0.12
	F2	95	2.7 ± 0.13
	BCR	59	2.3 ± 0.15
	BCS	29	3.6 ± 0.10
	LSD		0.7
B6693 x Pg (PS)	PR	63	1.1 ± 0.11
	PS	64	3.0 ± 0.12
	F1	25	1.5 ± 0.13
	F2	116	2.3 ± 0.12
	BCR	64	1.6 ± 0.12
	BCS	64	2.2 ± 0.12
	LSD		0.6
W420 x B6693 (PS)	PR	60	0.8 ± 0.12
	PS	46	2.0 ± 0.17
	F1	62	0.9 ± 0.13
	F2	107	0.7 ± 0.08
	BCR	62	0.4 ± 0.07
	BCS	62	1.0 ± 0.11
	LSD		0.6
W407 (P1) x D10 (P2)	P1	60	3.5 ± 0.09
	P2	49	3.4 ± 0.10
	F1	39	3.2 ± 0.09
	F2	95	3.3 ± 0.08
	BC1	59	3.2 ± 0.12
	BC2	26	3.6 ± 0.12
	LSD		NS

Table 2. Deviation in mean neck-rot disease index of the F, generation and backcrosses from their mid-parent values.

Cross	Deviation in disease index		
	F1-MP	BCS-MP	BCS-MP
W420 x Pg	NS	-0.56	-0.56
W202 x D10	0.39	0.46	
	NS	-0.42	-0.74
B6693 x Pg	0.30	-0.10	
W420 x B6693	-0.41	-0.49	
W407 x D10	-0.15	-0.34	

After the methods of Kim and Brewbaker (1977).

Results and Discussion

Generation means and frequency distributions of DI demonstrated the quantitative nature of differences in neck-rot resistance. Generation means (Table 1) generally indicated that inheritance of resistance is additive, but some individual generations in the crosses varied from this, usually suggesting dominance of resistance. In W420 x Pg, generation means displayed an additive relationship except for the F1, which suggested dominance of susceptibility (this deviation from the F1 was nonsignificant at P = 0.05). All generation means of W202 x D10 indicated slight dominance of susceptibility. In W420 x D10, BCS showed dominance of resistance while the F1 and F2 indicated additive inheritance. As expected, generation means of susceptible x susceptible cross W407 x D10 did not differ. Except for the F1 of W202 x D10, deviations of F1 and backcross means from their mid-parent values were nonsignificant (Table 2).

DI for each generation, including parents, was distributed over several score classes, indicating variation of infection severity independent of genotype. DI of resistant and susceptible parents overlapped, but there were very few plants of the resistant parent (PR) in score class 4 and very few susceptible parent (PS) plants in score class 0 or 1. Frequency distributions of crosses W420 x Pg and W420 x D10, which had strong parental differences, are shown in Fig. 1A and B. F1 and F2 generations in these crosses were somewhat skewed toward PS, indicating some dominance. The distributions for the backcrosses in W420 x Pg were distinctly skewed toward their respective parents, but in W420 x D10 the backcrosses were broadly distributed. Distribution for W202 x D10 (not shown) was similar to that of W420 x Pg. B6693 x Pg (not shown) was similar to W420 x Pg except that parent values were not as well separated. Cross W420 x B6693 (Fig. 1C), between a highly resistant and moderately resistant parent, and W407 x D10, between two susceptible parents, produced expected distributions and demonstrated the range of DI values obtained even in a
Fig. 1. Frequency distributions of disease indices (DI) in generations of onion crosses (A) W420 x Pg, (B) W420 x D10, and (C) W420 x B6693.

predominately resistant or susceptible population.

Estimates of gene effects. Estimates of gene effects were made using the three parameter models of Hayman (1958). The small and nonsignificant chi-square values (Table 3) due to deviations from the model for DI in all of the crosses indicate that the additive-dominance model adequately describes these data and provides no evidence for epistatic effects. The estimates of additive effects (a) were significant in all of the resistant x susceptible crosses and were always greater in these crosses than the estimates for dominance effects (d), which were not significant in any cross. Estimates of additive effects in the resistant x susceptible crosses were fairly large relative to the mean effects, suggesting that genes with additive effects for DI were highly associated, most increasing alleles being in the susceptible parents and decreasing alleles in the resistant parents. This was especially true in the cross W420 x Pg.

Neither additive nor dominance effects were significant in the resistant x resistant cross (W420 x B6693) or the susceptible cross (W407 x D10-1b). This supports the indications from the generation means and relatively small variances (Table 1) that there was little segregation for DI in these crosses.

Heritability. Broad-sense heritability estimates for the four resistant x susceptible crosses were in the moderate range; 63% for the cross W420 x Pg, 54% for W202 x D10, 42% for W420 x D10, and 56% for B6693 x Pg. In the two crosses where the parents did not differ as much, the heritability estimates were lower. For the susceptible x susceptible cross (W407 x D10), the broad-sense heritability estimate was 15%. In the resistant x intermediate cross W420 x B6693, relatively large variances of the parents and F, compared to the smaller variance of the F1, resulted in a calculated broad-sense heritability of ~62%. Because broad-sense heritability values are in the range 0 to 1 by definition, this result is interpreted to estimate a broad-sense heritability of 0% or very low for this cross.

Differences in neck-rot resistance among the parents used in this study were heritable and quantitative. The primary importance of additive gene action was demonstrated by the generation means, the large additive gene effects relative to dominance effects, the absence of epistatic gene effects, and the moderate broad-sense heritability estimates. Selection for neck-rot resistance should be effective using methods appropriate for quantitative traits.

Table 3. Estimates of gene effects for neck-rot disease index from generations means using a three-parameter model.

Cross	Mean	Additive	Dominance	χ^2
W420 x Pg	2.1**	-1.5**	0.5	3.4 1**
W202 x D10	2.7**	-1.3*	1.1	2.2 1**
W420 x D10	3.4**	-1.0*	0.1	0.27 1**
B6693 x Pg	1.5**	0.9*	-0.6	1.4 7**
W420 x B6693	0.9*	-0.2	-0.8	2.2 1**
W407 x D10	3.3**	-0.1	0.2	0.02 1**

***Nonsignificant or significant at $P = 0.05$ or 0.01, respectively.

Groenendijk, J. and J. Petiet. 1963. A method to test onions on their sensitivity to Botrytis allii. Euphytica 12:94-96.
Hayman, B. I. 1958. The separation of epistatic from additive and dominance variation in generation means. Heredity 12:371–390.
Mahmud, I. and H. H. Kramer. 1951. Segregation for yield, height, and maturity following a soybean cross. Agron. J. 43:605-609.
Miyaura, K., Y. Shinada, and W. H. Gabelman. 1985. Selection for resistance of onion to Botrytis allii by scale inoculation method. HortScience 20:769–770.
Munn, M. T., 1917. Neck-rot disease of onions. New York Agr. Expt. Sta. 437:363-454.
Owen, J. H., J. C. Walker, and M. A. Stahmann. 1950. Pungency, color and moisture supply in relation to disease resistance in the onion. Phytopathology 40:292–297.
Van Der Meer, J. L. and J. L. Van Bennekum. 1970. Testing onions and other Allium species for resistance to Botrytis allii Munn. Euphytica 19:152–162.
Vik, J. and K. Astvei. 1984. Breeding for resistance to neck-rot in onion. Euphytica 33:257–262.
Walker, J. C. 1926. Botrytis neck-rot of onions. J. Agr. Res. 33(10):893–927.