GENERALIZED WIDDER THEOREM VIA FRACTIONAL MOMENTS

AMI VISELTER

Abstract. We provide a necessary and sufficient condition for the representability of a function as the classical multidimensional Laplace transform, when the support of the representing measure is contained in some generalized semi-algebraic set. This is done by employing a method of Putinar and Vasilescu [Putinar, M. and Vasilescu, F.-H., Solving moment problems by dimensional extension, Ann. of Math. (2) 149 (1999), no. 3, 1087-1107] for the corresponding multidimensional moment problem.

Introduction

A well-known theorem of Widder states that a necessary and sufficient condition for a function \( f : \mathbb{R} \to \mathbb{R} \) to be representable in the form

\[
(\forall x \in \mathbb{R}) \quad f(x) = \int_{-\infty}^{\infty} e^{-xt} d\mu(t),
\]

where \( \mu \) is a positive measure over \( \mathbb{R} \), is that \( f(x) \) be continuous and of positive type (c.f. [11, Ch. VI, §21]). This theorem has been generalized to the multidimensional case in several works, using various methods (see Akhiezer [1], Devinatz [2], Shucker [8] and their references, to mention a few), and has many applications. If, however, we wished to characterize those functions with a representing measure whose support is contained in some rather general, fixed set, \( S \), the method used in these papers would not be helpful, except for the case when \( S \) is a multidimensional box.

On the other hand, Putinar and Vasilescu used in [7] a method of dimensional extension to solve the multidimensional moment problem. In their paper, the moment problem is translated to the problem of representation

Key words and phrases. Multidimensional fractional moment problem, Widder theorem, Laplace transform.

This paper is a part of the author’s Ph.D. thesis, written under the direction of Prof. Shmuel Kantorovitz in the Department of Mathematics, Bar-Ilan University, Israel.
of a certain linear functional, which is obtained by means of the spectral
theory of selfadjoint operators, over some special Hilbert space. The bonus
in their method is that it enables them to characterize moment sequences,
whose representing measure’s support lies in a given semi-algebraic set.

The connection between a moment problem and the corresponding Laplace
transform representation problem has been successfully established in the
past (e.g. in [10], and the references therein). In this note we modify Puti-
nar and Vasilescu’s method of dimensional extension to obtain a generalized
version of Widder’s Theorem, which characterizes the functions that can be
represented by the multidimensional Laplace transform of a measure with
support in a given (generalized) semi-algebraic set. Essentially, non-negative
integral powers of the variables are replaced by non-negative rational powers.

1. Preliminaries

Let $\mathcal{R}$ be an algebra of complex functions, such that $f \in \mathcal{R}$ for all $f \in \mathcal{R}$
(that is, $\mathcal{R}$ is selfadjoint). We say that a linear functional $\Lambda$ over $\mathcal{R}$ is positive
semi-definite if $\Lambda(|f|^2) \geq 0$ for each $f \in \mathcal{R}$. When this is the case, one can
define the semi-inner product $(f, g) := \Lambda(f \overline{g})$. Thus, if $\mathcal{N} = \{ f \in \mathcal{R} : \Lambda(|f|^2) = 0 \}$, then $\mathcal{R}/\mathcal{N}$ is an inner-product space. Hence, its completion,
$\mathcal{H}$, is a complex Hilbert space. For simplicity, we often write $r$ instead of
$r + \mathcal{N}$ for elements $r \in \mathcal{R}/\mathcal{N}$.

The standard notations $\mathbb{R}_+ = [0, \infty)$, $\mathbb{Q}_+ = \mathbb{R}_+ \cap \mathbb{Q}$, etc. are used. Fix an
$n \in \mathbb{N}$. For $t = (t_1, \ldots, t_n), \alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{R}_+^n$, we write $t^\alpha$ for $t_1^{\alpha_1} \cdots t_n^{\alpha_n}$.

We let $\mathcal{P}_n$ denote the set of all complex polynomials with $n$ real variables.
By $\mathbb{Q}_n$ we shall denote the complex algebra of all “fractional polynomials”
of positive rational exponents and $n$ variables. That is, $\mathbb{Q}_n$ is the set of all of the functions in the form $\mathbb{R}_+^n \ni t \mapsto \sum_{\alpha \in \mathbb{Q}_+^n} a_\alpha t^\alpha$, where the $a_\alpha$’s are
complex, and differ from zero only for a finite number of indices $\alpha$.

Let $\mathbb{A}$ be a subsemigroup of $\mathbb{Q}_n^*$. A family of complex numbers $\delta = (\delta_\alpha)_{\mathbb{A}}$
induces the linear functional $L_\delta$ over the subalgebra of $\mathbb{Q}_n$ generated by
$\{ t^\alpha : \alpha \in \mathbb{A} \}$, defined by $L_\delta(t^\alpha) = \delta_\alpha$ for all $\alpha \in \mathbb{A}$. We say that $\delta$ is positive
semi-definite if the functional $L_\delta$ is positive semi-definite.

For the rest of the section, $\mathcal{H}$ denotes an arbitrary complex Hilbert space.
Lemma 1.1. Let $A$ be a positive selfadjoint operator over $\mathcal{H}$, and let $q_1, q_2$ be positive real numbers. Then there exists a unique positive selfadjoint operator $B$, so that $B^{q_2} = A^{q_1}$, namely $B = A^{q_1/q_2}$.

Proof. Let $E(\cdot; A)$ denote the resolution of the identity of the selfadjoint operator $A$. By [3, Theorem XII.2.9], a positive operator $B$ satisfies the theorem’s statement if and only if for every Borel set $\delta \subseteq \mathbb{R}_+$,

\[ E(\delta^{1/q_2}; B) = E(\delta; B^{q_2}) = E(\delta; A^{q_1}) = E(\delta^{1/q_1}; A). \]

Since the mapping $\delta \mapsto \delta^{q_2}$ is bijective from the set of all Borel subsets of $\mathbb{R}_+$ into itself, (1.1) is equivalent to that

\[ E(\delta; B) = E(\delta^{q_2/q_1}; A) \]

for all Borel sets $\delta \subseteq \mathbb{R}_+$. But by the same theorem from [3], there exists a unique positive selfadjoint operator $B$ that satisfies (1.2), which is $B = A^{q_1/q_2}$. $\square$

We now state two results from [7].

Proposition 1.2 ([7 Proposition 2.1], originally from [5, 6]). Let $T_1, \ldots, T_n$ be symmetric operators in $\mathcal{H}$. Assume that there exist a dense linear space $\mathcal{D} \subseteq \cap_{j,k=1}^n D(T_j T_k)$ such that $T_j T_k x = T_k T_j x$ for all $x \in \mathcal{D}$, $j \neq k$, $j, k = 1, \ldots, n$. If the operator $(T_1^2 + \cdots + T_n^2)|_{\mathcal{D}}$ is essentially selfadjoint, then the operators $T_1, \ldots, T_n$ are essentially selfadjoint, and their canonical closures $\overline{T_1}, \ldots, \overline{T_n}$ commute.

Lemma 1.3 ([7 Lemma 2.2]). Let $A$ be a positive densely defined operator in $\mathcal{H}$, such that $A \mathcal{D}(A) \subseteq \mathcal{D}(A)$. Suppose that $I + A$ is bijective on $\mathcal{D}(A)$. Then $A$ is essentially selfadjoint.

2. Generalized Widder Theorem

Let $p = (p_1, \ldots, p_m)$, where $p_k$ are real fractional polynomials in $Q_n$. For this fixed set of polynomials, let $\theta_p : \mathbb{R}_+^m \to \mathbb{C}$ be defined as

\[ \theta_p(t) := (1 + t_1^2 + \cdots + t_n^2 + p_1(t)^2 + \cdots + p_m(t)^2)^{-1}. \]

We denote by $\mathcal{R}$ the complex algebra generated by $Q_n$ and the function $\theta_p$.

The following is the main operator-theoretic result, leading to the moments theorem to follow.
Theorem 2.1. Let $\Lambda$ be a positive semi-definite functional over $\mathcal{R}$. Then there exists a unique representing measure for $\Lambda$. The support of that measure is contained in $\mathbb{R}^n_+$. Moreover, if $\Lambda(p_k | r|^2) \geq 0$ for all $r \in \mathcal{R}$, $1 \leq k \leq m$, then the support of that (unique) measure is a subset of $\bigcap_{k=1}^m p_k^{-1}(\mathbb{R}_+)$. 

Proof. Let $\mathcal{H}$ be the Hilbert generated by $\Lambda$, as explained in Section 1. For $1 \leq i \leq n$, $1 \leq j \leq m$, we define the operators $T_i, P_j$ over $\mathcal{R}/\mathcal{N}$ by 

$$T_i : r + \mathcal{N} \mapsto t_i r + \mathcal{N}, \quad P_j : r + \mathcal{N} \mapsto p_j r + \mathcal{N}.$$ 

Let $B$ be the operator $B := T_1^2 + \ldots + T_n^2 + P_1^2 + \ldots + P_m^2$. Then $B : \mathcal{R}/\mathcal{N} \to \mathcal{R}/\mathcal{N}$ is a positive operator, since for all $r \in \mathcal{R}$, $(Br, r) = \sum_{i=1}^n \Lambda(|t_i r|^2) + \sum_{j=1}^m \Lambda(|p_j r|^2) \geq 0$, by the positivity of $\Lambda$. Moreover, $I + B$ is bijective, since for all $r \in \mathcal{R}$, $(I + B)u = r$ for some $u \in \mathcal{R}$ if and only if $u = \theta_p r$. Therefore, by Lemma 1.3 $B$ is essentially selfadjoint. Thus, by Proposition 1.2, the operators $T_i$ and $P_j$ are essentially selfadjoint for all $1 \leq i \leq n$, $1 \leq j \leq m$. Moreover, the selfadjoint operators $A_1 := \overline{T_1}, \ldots, A_n := \overline{T_n}$ commute, and thus have a common resolution of the identity, $E$ (c.f. [9, Ch. IV, Theorem 10.3]). Set $A := (A_1, \ldots, A_n)$. For $r \in \mathcal{R}$, $r(A)$ will denote the normal operator $\int_{\mathbb{R}^n} r(t)E(dt)$, and for $q \in \mathbb{Q}_+^n$, $A^q$ will stand for $f(A)$ where $f(t) = t^q$. We define the operators $T_i(q_i) : \mathcal{R}/\mathcal{N} \to \mathcal{R}/\mathcal{N}$, $1 \leq i \leq n$, by 

$$T_i(q_i) : r + \mathcal{N} \mapsto t_i^q r + \mathcal{N},$$ 

and set $T(q) := T_1(q_1) \cdots T_n(q_n)$. 

Claim 1. For all $q \in \mathbb{Q}_+^n$, $T(q) \subseteq A^q$. 

To prove the claim, we first notice that $T(q)$ is positive for $q \in \mathbb{Q}_+^n$, as $\Lambda(t^q | r|^2) = \Lambda(|t^{q/2} r|^2) \geq 0$ for all $r \in \mathcal{R}$. Let $q = (\frac{k_1}{\ell_1}, \ldots, \frac{k_n}{\ell_n})$, where $k_1, \ldots, k_n \in \mathbb{N} \cup \{0\}, \ell_1, \ldots, \ell_n \in \mathbb{N}$. Fix an $1 \leq i \leq n$. Since the operator $T_i(\frac{1}{\ell_i})$ is positive, it has an (a priori, not necessarily unique) positive selfadjoint extension, $A_i(\frac{1}{\ell_i})$. Now, observe that $T_i = T_i(\frac{1}{\ell_i})^{\ell_i} \subseteq A_i(\frac{1}{\ell_i})^{\ell_i}$. But $T_i$ is essentially selfadjoint and $A_i(\frac{1}{\ell_i})^{\ell_i}$ is selfadjoint, which implies that $A_i = \overline{T_i} = A_i(\frac{1}{\ell_i})^{\ell_i}$. Therefore, by the uniqueness part of Lemma 1.1, $T_i(\frac{1}{\ell_i}) \subseteq A_i(\frac{1}{\ell_i}) = A_i^{1/\ell_i}$. Hence, once again by Lemma 1.1 and the fact that 

$$(\forall r_1, r_2 \in \mathcal{R}) \quad r_1(A)r_2(A) \subseteq (r_1r_2)(A)$$ 

(2.1)
(which follows readily from [9, Ch. IV, Theorem 10.3]),

\[ T(q) = T_1\left(\frac{1}{t_1}\right)^{k_1} \cdots T_n\left(\frac{1}{t_n}\right)^{k_n} \subseteq \]

\[ \subseteq (A_1^{1/t_1})^{k_1} \cdots (A_n^{1/t_n})^{k_n} = A_1^{k_1/\ell_1} \cdots A_n^{k_n/\ell_n} \subseteq A^q, \]

and the claim is proved.

**Claim 2.** For all \( r \in \mathcal{R} \),

\[ (2.3) \Lambda(r) = \int_{\mathbb{R}_n^+} r(t) (E(dt)(1 + \mathcal{N}), 1 + \mathcal{N}) . \]

In order to prove the claim, fix an \( r \in \mathcal{R} \). Let the operator \( r(T) : \mathcal{R}/\mathcal{N} \to \mathcal{R}/\mathcal{N} \) be the operator of multiplication by \( r \). We shall show that \( r(T) \subseteq r(A) \). By linearity and (2.1), it is sufficient to prove this for \( r(t) = t^q, q \in \mathbb{Q}^n_+ \), and for \( r = \theta_p \). The first case is exactly Claim 1, since \( r(T) = T(q) \) and \( r(A) = A^q \). As for the case \( r = \theta_p \), it follows from the fact that \( \theta_p^{-1}(T) \subseteq \theta_p^{-1}(A) \), and so for all \( f \in \mathcal{R}/\mathcal{N}, \theta_p(A)f = \theta_p(A) [\theta_p^{-1}(T)\theta_p(T)] f = \theta_p(A)\theta_p^{-1}(A)\theta_p(T)f = \theta_p(T)f \) (by (2.1)). Finally, to prove (2.3), we note that by the Spectral Theorem,

\[ \Lambda(r) = (r + \mathcal{N}, 1 + \mathcal{N}) = (r(T)(1 + \mathcal{N}), 1 + \mathcal{N}) = (r(A)(1 + \mathcal{N}), 1 + \mathcal{N}) = \]

\[ = \int_{\mathbb{R}_n^+} r(t) (E(dt)(1 + \mathcal{N}), 1 + \mathcal{N}) \]

(the domain of integration is \( \mathbb{R}_n^+ \) since the operators \( A_1, \ldots, A_n \) are positive), and the claim is proved.

Consequently, the (positive) Borel measure \( \mu \) over \( \mathbb{R}_n^+ \) defined by \( \mu(\cdot) = (E(\cdot)(1 + \mathcal{N}), 1 + \mathcal{N}) \) is a representing measure for \( \Lambda \), whose support lies in \( \mathbb{R}_n^+ \). We have thus proved the existence part of the theorem.

The uniqueness of \( \mu \) is proved as in [7], using an argument taken from [4]. Let us assume that there exists another positive measure, \( \nu \), over \( \mathbb{R}_n^+ \), that represents the functional \( \Lambda \). It is clear that when this is the case, \( \mathcal{R}/\mathcal{N} \) can be identified as a subspace of the Hilbert space \( L^2(\nu) \). Hence, \( \mathcal{H} \) can be identified as the closure of \( \mathcal{R}/\mathcal{N} \) in \( L^2(\nu) \). For all \( 1 \leq j \leq n \), let us now define the selfadjoint operators \( H_j \) over \( L^2(\nu) \) by \( H_jf := t_jf \). Denote the spectral measure of \( H_j \) by \( E_j \). Since the operators \( H_1, \ldots, H_n \) commute, they have a joint spectral measure, \( E_H \). Obviously, \( T_j \subseteq H_j \) for all \( j \). Since the
operators $H_j$ are closed, $A_j \subseteq H_j$ for all $j$. Therefore, $R(\zeta;A_j) \subseteq R(\zeta;H_j)$ for all $\zeta \in \mathbb{C}\setminus \mathbb{R}$, and so $R(\zeta;H_j)$ leaves $H$ invariant, whence we conclude (c.f. [3 Theorem XII.2.10]) that $E_j$ also leaves $H$ invariant for each $1 \leq j \leq n$. Thus, as $E_H(B_1 \times \ldots \times B_n) = E_1(B_1) \cdots E_n(B_n)$ for all Borel sets $B_1, \ldots, B_n$ in $\mathbb{R}$, $E_H$ leaves $H$ invariant as well. In particular, for each Borel set $B$ in $\mathbb{R}^n$, $I_B = E_H(B)1 \in H$ (where $I_B$ is the indicator function of $B$ over $\mathbb{R}^n$). Since the simple functions are dense in $L^2(\nu)$, we infer that $H = L^2(\nu)$, and so $A_j = H_j$ for each $1 \leq j \leq n$. In particular, $E = E_H$, and so for each Borel set $B$ in $\mathbb{R}^n$, by the definition of $\mu$,

$$
\mu(B) = (E(B)(1 + N), 1 + N) = (E_H(B)1, 1) = \int_{\mathbb{R}^n} I_B d\nu = \nu(B),
$$

and the proof of the uniqueness of $\mu$ is completed.

Assume now that $\Lambda(\rho_k |r|^2) \geq 0$ for all $r \in \mathbb{R}$ and $1 \leq k \leq m$. This condition is equivalent to the operators $P_1, \ldots, P_m$ being positive. We recall that these operators are essentially selfadjoint. But for all such $k$, $P_k \subseteq p_k(A)$ by Claim [1] and $p_k(A)$ is selfadjoint; thus, $\overline{p_k(A)} = p_k(A)$ is a positive selfadjoint operator. Equivalently, its spectral measure is supported by $\mathbb{R}^+$. But the spectral measure of $p_k(A)$ is $F_k(\delta) = E(p_k^{-1}(\delta))$. Hence, $E$ itself is supported by $p_k^{-1}(\mathbb{R}^+)$. Since that is true for all $1 \leq k \leq m$, the support of $E$ is therefore a subset of $\bigcap_{k=1}^m p_k^{-1}(\mathbb{R}^+)$. \hfill \Box

**Lemma 2.2.** Let $\vartheta \in \mathcal{P}_n$ be such that $\vartheta(t) > 0$ for all $t \in \mathbb{R}^n$, and let $p(t,s) \in \mathcal{P}_{n+1}$ ($t \in \mathbb{R}^n$, $s \in \mathbb{R}$) be such that $p(t,\vartheta^{-1}(t)) \equiv 0$. Then there exists a complex polynomial $q \in \mathcal{P}_{n+1}$ such that

$$(\forall t,s) \quad p(t,s) = q(t,s) \cdot [s\vartheta(t) - 1].$$

**Proof.** This is a simple generalization of [7 Lemma 2.3]; simply replace their $\theta_p$ by $\vartheta^{-1}$. We omit the details.

**Definition 2.3.** Denote by $\widetilde{Q}_n$ the complex algebra generated by $Q_n$ and the algebra of all complex polynomials with one positive real variable. Its elements will take the form $p(t,s)$, $t \in \mathbb{R}^n_+$, $s \in \mathbb{R}_+$.

**Proposition 2.4.** Let $\rho : \widetilde{Q}_n \to \mathcal{R}$ be the mapping defined by $p(t,s) \mapsto p(t,\theta_p(t))$. Then $\rho$ is a surjective algebras homomorphism, whose kernel is
the ideal generated by the function
\[ \sigma(t,s) = s\theta_p(t)^{-1} - 1. \]

Proof. We first note that \( \rho \) is indeed well-defined, since \( \theta_p(t) \in \mathbb{R}_+ \) for all \( t \in \mathbb{R}_n^+ \). It is clearly a surjective algebras homomorphism. Assume \( p \in \ker(\rho) \), that is, \( p(t,\theta_p(t)) = 0 \) for all \( t \in \mathbb{R}_n^+ \). For \( 1 \leq j \leq n \), we let \( c_j \) denote the \( \text{l.c.m} \) of all of the denominators of the exponents of \( t_j \) in the polynomial \( p \). The mappings \( u_j = t_j^{1/c_j} \) are bijective mappings from \( \mathbb{R}_+ \) onto itself. Replacing \( t_j \) by \( u_j^{c_j} \) in the above equality yields
\[
(\forall u \in \mathbb{R}_n^+) \quad p(u^c,\theta_p(u^c)) = 0.
\]
The expression on the left side of (2.4), after the reduction of the fractions in the exponents of the \( u_j \)'s, becomes a (not fractional) polynomial in \( u = (u_1, \ldots, u_n) \). Hence, (2.4) is true (as equality of polynomials) for all \( u \in \mathbb{R}^n \), and by Lemma 2.2, there exists a \( q \in \mathcal{P}_{n+1} \) such that
\[
(\forall u \in \mathbb{R}_n^+, s \in \mathbb{R}_+) \quad p(u^c,s) = q(u,s) \left[ s\theta_p(u^c)^{-1} - 1 \right].
\]
We can now replace \( u \) by \( t^{1/c} \), and by defining \( \tilde{q}(t,s) = q(t^{1/c},s) \), we conclude that
\[
 p(t,s) = \tilde{q}(t,s) \left[ s\theta_p(t)^{-1} - 1 \right]
\]
for all \( t \in \mathbb{R}_n^+, s \in \mathbb{R}_+ \), where \( \tilde{q} \in \tilde{Q}_n \), as wanted. \( \square \)

**Definition 2.5.** Let \( \gamma = (\gamma_\alpha)_{\alpha \in \mathbb{R}_n^+} \) be a family of non-negative numbers.

1. We say that \( \gamma \) is continuous if the function \( \alpha \mapsto \gamma_\alpha \) is continuous (as a function from \( \mathbb{R}_n^+ \) to \( \mathbb{R}_+ \)).
2. We say that \( \gamma \) is an \( (n\text{-dimensional}) \) fractional moments family if there exists a positive Borel measure, \( \mu \), over \( \mathbb{R}_n^+ \), such that
\[
(\forall \alpha \in \mathbb{R}_n^+) \quad \gamma_\alpha = \int_{\mathbb{R}_n^+} t^\alpha d\mu.
\]
Note that (2.5) is equivalent to the (multidimensional) Laplace representation
\[
(\forall \alpha \in \mathbb{R}_n^+) \quad \gamma_\alpha = \int_{\mathbb{R}_n} e^{-\alpha \cdot s} d\nu(s)
\]
obtained by the change of variable \( t = e^{-s} \).

The following is the main theorem, whose proof is almost identical to that of Theorem 2.7 in [7], basing on our Theorem 2.1 and Proposition 2.4 instead
of the parallel ones in [7], and using Lebesgue’s Dominated Convergence theorem to derive (2.5) for all of $\mathbb{R}^n_+$. For the sake of completeness, we include the details.

**Theorem 2.6.** Let $\gamma = (\gamma_\alpha)_{\alpha \in \mathbb{Q}^n_+}$ be a continuous family of non-negative numbers. Let $p_1, \ldots, p_m \in \mathbb{Q}_n$, $p_k(t) = \sum_{\xi \in I_k} a_{k\xi} t^\xi$ ($I_k \subseteq \mathbb{Q}^n_+$ is finite) for $k = 1, 2, \ldots, m$. Then $\gamma$ is a fractional moments family with a representing measure whose support is a subset of $\cap_{k=1}^m p_k^{-1}(\mathbb{R}_+)$ if and only if there exists a positive semi-definite family

$$
\delta = (\delta(\alpha, \beta))_{(\alpha, \beta) \in \mathbb{Q}^n_+ \times \mathbb{Z}_+}
$$

that satisfies:

1. $\delta(\alpha, 0) = \gamma_\alpha$ for all $\alpha \in \mathbb{Q}^n_+$.
2. $\delta(\alpha, \beta) = \delta(\alpha+\beta+1) + \sum_{\gamma=1}^{\alpha} \delta(\alpha+2\gamma, \beta+1) + \sum_{\xi, \eta \in I_k} a_{k\xi} a_{k\eta} \delta(\alpha+\xi+\eta, \beta+1)$ for all $(\alpha, \beta) \in \mathbb{Q}^n_+ \times \mathbb{Z}_+$.
3. The families $\left(\sum_{\xi \in I_k} a_{k\xi} \delta(\alpha+\xi, \beta)\right)_{(\alpha, \beta) \in \mathbb{Q}^n_+ \times \mathbb{Z}_+}$ are positive semi-definite for all $k = 1, \ldots, m$.

Moreover, the representing measure of $\gamma$ (with the properties mentioned above) is unique if and only if the family $\delta$ is unique.

**Proof.** Necessity. Assume that $\gamma$ is a fractional moments family with a representing measure, $\mu$, whose support is a subset of $E := \cap_{k=1}^m p_k^{-1}(\mathbb{R}_+)$. We define the family $\delta$ by

$$
(\forall (\alpha, \beta) \in \mathbb{Q}^n_+ \times \mathbb{Z}_+) \quad \delta(\alpha, \beta) := \int_E t^\alpha \theta_p(t)^\beta \, d\mu.
$$

Then $\delta$ is a positive semi-definite family, that satisfies (1). (2) is a result of the obvious equality

$$
\int_E (\theta_p(t)(1 + t^2_1 + \ldots + t^2_m + p_1(t)^2 + \ldots p_m(t)^2 - 1) t^\alpha \theta_p(t)^\beta \, d\mu = 0,
$$

which is true for all $\alpha \in \mathbb{Q}^n_+, \beta \in \mathbb{Z}_+$. Finally, (3) is true since

$$
\int_E p_k(t) |p(t, \theta_p(t))|^2 \, d\mu \geq 0
$$

for all $p \in \hat{\mathbb{Q}}_n$, $1 \leq k \leq m$.

Sufficiency. Let $\delta$ be as in the theorem’s statement, and the algebra $\mathcal{R}$ be defined as in the beginning of this section. We define the linear functional
\[ \Lambda(r) = L_\delta(p) \]

for all \( r \in \mathcal{R} \), where \( L_\delta \) is the linear functional induced by \( \delta \) over \( \tilde{Q}_n \), and \( p \in \tilde{Q}_n \) is such that \( r(t) = p(t, \theta_p(t)) \) for all \( t \in \mathbb{R}_+^n \). \( \Lambda \) is well-defined, since by Proposition 2.4, \( \mathcal{R} \cong \tilde{Q}_n/\mathcal{I} \), where \( \mathcal{I} \) is the ideal in \( \tilde{Q}_n \), generated by the element \( s\theta_p(t)^{-1} - 1 \); and indeed, by (2), \( (L_\delta)|_\mathcal{I} = 0 \). Thus, \( \Lambda \) is a well-defined positive semi-definite mapping on \( \mathcal{R} \). From (3) we deduce that \( L_\delta(p_k | p|^2) \geq 0 \) for all \( p \in \tilde{Q}_n \), \( 1 \leq k \leq m \), hence \( \Lambda(p_k | r|^2) \geq 0 \) for all \( r \in \mathcal{R} \), \( 1 \leq k \leq m \).

By virtue of Theorem 2.1, there exists a unique representing measure, \( \mu \), for \( \Lambda \), whose support is a subset of \( E \). Particularly, by (1),

\[ \gamma_\alpha = \delta_{(\alpha,0)} = \int_E t^\alpha d\mu \]

for all \( \alpha \in \mathbb{Q}_+^n \). But since the family \( \gamma \) is continuous, Lebesgue’s Dominated Convergence Theorem implies that \( \gamma_\alpha = \int_E t^\alpha d\mu \) for all \( \alpha \in \mathbb{R}_+^n \), that is, \( \gamma \) is a fractional moments sequence, as wanted.

Assume that the family \( \delta \), that satisfies the conditions in the theorem’s statement, is unique. Let \( \mu_1, \mu_2 \) be two representing measures for \( \gamma \). By the uniqueness of \( \delta \), equation (2.6) and the discussion that follows, \( \int_E t^\alpha \theta_p(t)^\beta d\mu_1 = \int_E t^\alpha \theta_p(t)^\beta d\mu_2 \) for each \( \alpha \in \mathbb{Q}_+^n \), \( \beta \in \mathbb{Z}_+ \). Therefore, \( \int_E r d\mu_1 = \int_E r d\mu_2 \) for all \( r \in \mathcal{R} \), and by the uniqueness part of Theorem 2.1, it follows that \( \mu_1 = \mu_2 \).

Conversely, assume that \( \mu \) is unique. Suppose that both \( \delta_1, \delta_2 \) satisfy the conditions in the theorem’s statement. As explained above, \( \delta_1, \delta_2 \) induce the positive semi-definite linear functionals \( \Lambda_1, \Lambda_2 \), respectively, over \( \mathcal{R} \), which, in turn, have the unique representing measures \( \mu_1, \mu_2 \), respectively (by Theorem 2.1). Both measures represent \( \gamma \) as a fractional moments family, and so, by the uniqueness of \( \mu \), \( \mu_1 = \mu_2 \), hence \( \Lambda_1 = \Lambda_2 \). Finally, for each \( \alpha \in \mathbb{Q}_+^n \), \( \beta \in \mathbb{Z}_+ \), \( (\delta_1)_{(\alpha,\beta)} = \Lambda_1(t^\alpha \theta_p(t)^\beta) = \Lambda_2(t^\alpha \theta_p(t)^\beta) = (\delta_2)_{(\alpha,\beta)} \), that is, \( \delta_1 = \delta_2 \). \( \square \)
ACKNOWLEDGMENTS

The author would like to thank his thesis advisor, Prof. Shmuel Kantorovitz, for his encouragement, many valuable discussions, and for having suggested the topic of this paper.

REFERENCES

[1] Akhiezer, N. I., The Classical Moment Problem and Some Related Questions in Analysis, Hafner Publishing Co., New York, 1965.
[2] Devinatz, A., The representation of functions as Laplace-Stieltjes integrals, Duke Math. J. 22 (1955), 185-191.
[3] Dunford, N. and Schwartz, J. T., Linear Operators, Part II, Interscience Publishers, New York, 1968.
[4] Fuglede, B., The multidimensional moment problem, Exp. Math. 1 (1983), no. 1, 47-65.
[5] Nelson, E., Analytic vectors, Ann. of Math. (2) 70 (1959), no. 3, 572-615.
[6] Nussbaum, A. E., Commutativity theorem for unbounded operators in Hilbert space, Trans. Amer. Math. Soc. 140 (1969), 485-491.
[7] Putinar, M. and Vasilescu, F.-H., Solving moment problems by dimensional extension, Ann. of Math. (2) 149 (1999), no. 3, 1087-1107.
[8] Shucker, D. S., Extensions and generalizations of a theorem of Widder and of the theory of symmetric local semigroups, J. Func. Anal. 58 (1984), no. 3, 291-309.
[9] Vasilescu, F.-H., Analytic Functional Calculus and Spectral Decompositions, Editura Academiei, Bucharest and D. Reidel Publ. Co., Dordrecht, 1982.
[10] Widder, D. V., Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral, Bull. Amer. Math. Soc. 40 (1934), 321-326.
[11] Widder, D. V., The Laplace Transform, Princeton University Press, Princeton, 1941.

Department of Mathematics, Bar Ilan University, 52900 Ramat-Gan, Israel
Current address: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
E-mail address: viselter@ualberta.ca