Effects of shading on lignin biosynthesis in the leaf of tea plant (Camellia sinensis (L.) O. Kuntze)

Rui-Min Teng
Nanjing Agricultural University

Yong-Xin Wang
Nanjing Agricultural University

Hui Li
Nanjing Agricultural University

Shi-Jia Lin
Nanjing Agricultural University

Hao Liu
Nanjing Agricultural University

Yu Wang
Nanjing Agricultural University

Jing Zhuang (✉️ zhuangjing@njau.edu.cn)
Nanjing Agricultural University https://orcid.org/0000-0001-6960-5217

Research article

Keywords: lignin, shading, leaf development, anatomical structure, gene expression, camellia sinensis

Posted Date: January 9th, 2020

DOI: https://doi.org/10.21203/rs.2.20456/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Molecular Genetics and Genomics on October 28th, 2020. See the published version at https://doi.org/10.1007/s00438-020-01737-y.
Abstract

Background

Lignin is one of the most important secondary metabolite that play vital functions in plant growth and development. Shading is an effective method to improve tea quality. However, little is known about the relationship between shading and xylogenesis in tea plant.

Results

In this study, tea plant cultivar ‘Longjing 43’ was treated with no shading (S0), 40% (S1) and 80% (S2) shading treatments. The leaf area and lignin content of tea plant leaves decreased under shading treatments (especially S2). The lignin distribution and anatomical characteristics of the tea plant leaves showed that lignin is mainly distributed in the xylem. Promoter analysis indicated that the genes involved in lignin pathway contain several light recognition elements. The transcript abundances of 12 lignin-associated genes were altered under shading treatments. Correlation analysis indicated that the most genes showed strong positive correlation with lignin content, and CsPAL, Cs4CL, CsF5H, and CsLAC exhibited significant positively correlation under 40% and 80% shading treatments.

Conclusions

In this study, we evaluated the effect of shading on leaves growth, xylem development, and lignin accumulation in tea plant. Shading treatment inhibited leaves growth and lignin content. Safranin-O/fast green staining and autofluorescence indicated lignin was mostly deposited in the xylem. Shading may affect tea plant leaves lignification by regulating the transcript levels of lignin biosynthesis genes. This study provided potentially useful information for understanding the mechanism of lignin biosynthesis under shading treatments in tea plant.

Background

Light is an important factor that regulates plant growth and development. The light radiation could affects plant plant morphogenesis, photosynthesis, and phototropism [1, 2], which established itself as the driving force of the photosynthetic processes that convert carbon dioxide into organic products [3]. The physiological and molecular basis of light-induced process has been well elaborated [4]. The mechanism of light radiation regulates phenylpropanoid biosynthesis has been reported in some model plants [5-8]. Many metabolites are derived from downstream branches of the phenylpropanoid pathway, including lignin.

Lignin is a widely exist phenolic biopolymer in plants, which constitute the second most abundant organic compound after cellulose [9, 10]. Lignin and its related metabolism play critical roles in the growth and development of plants. Lignin plays an important role in promotes water transport, enhances plant cell wall rigidity, and also involves in plant pathogen defense and various environmental stresses.
The synthesis of lignin monomers occurs through a sequence of aromatic hydroxylation and O-methylation reactions. Generally, the lignin polymers are primarily derived from mainly three monomers: coniferyl alcohol (G unit), p-coumaryl alcohol (H unit), and sinapyl alcohol (S unit) [15]. Lignin biosynthetic pathway have been elucidated in previous studies, and the corresponding enzymes and genes participating in the metabolic pathway of lignin biosynthesis have been elucidated (Fig. 1) [16, 17]. Phenylalanine ammonia lyase (PAL), 4-coumarate-CoA ligase (4CL), and cinnamate 4-hydroxylase (C4H) participated in general phenylpropanoid pathway [18, 19]. Hydroxycinnamoyl-CoA transferase (HCT), 4-coumarate 3-hydroxylase (C3'H), caffeoyl-CoA O-methyltransferase (CCoAOMT), ferulate 5-hydroxylase (F5H), caffeic acid O-methyltransferase (COMT), cinnamoyl-CoA reductase (CCR), cinnamyl alcohol dehydrogenase (CAD), peroxidase (PER) and laccase (LAC) participated in specific lignin pathways [20, 21].

Tea plant (Camellia sinensis (L.) O. Ktze), an important economic crop species of theaceae, is widely grown in the world, which provide raw materials to produce non-alcoholic beverage “tea”. Tea leaf is riched in flavonoid, theanine, vitamins, polysaccharides, and minerals [22, 23]. A large number of studies have proved that tea flavonoids (especially catechins) are beneficial to human health. Studies have shown that shading treatment can effectively reduce photoinhibition and improve the quality of tea beverages [24, 25]. Tea plants grown in the shading conditions shown higher amino acid contents but lower catechins [26]. Theanine is a main and special kind of amino acid components in tea, which is mainly contribute to sweetness and umami, whereas catechins and caffeine are contribute to astringency. In the past years, studies on the effects of light conditions on the synthesis of tea plant secondary metabolites mainly focus on the biosynthesis of flavonoids [27-30]. However, few researches have been reported on the effect of shading treatment on the molecular mechanisms of lignin synthesis in tea plant.

‘Longjing 43’, originating in Hangzhou city, Zhejiang Province, China, is a well-known diploid tea plant cultivar (2n=30) due to its high yield as well as for its high quality. This study aims to investigate the effects of shading treatments on morphological, lignin accumulation, anatomical characteristics, and expression profiles of lignin-related genes in the leaves of tea plant cultivar ‘Longjing 43’. The result showed that shading treatments reduce lignin content and leaf area of the leaves in tea plant. The transcripts of lignin biosynthesis genes were altered under shading treatments. This study may serve as a guide for further elucidating of the molecular mechanisms of light influences the lignin biosynthetic pathways in the tea plant.

Results

Phenotypic changes of tea plant leaves

Tea shoots of ‘Longjing 43’ at 3, 6, and 9 days after shading treatments (S0, S1, and S2) were harvested and investigated (Fig. 2). Under shading treatments, the color of leaves seems more green, and the leaves are softer, especially in the S2 treatment. Leaf area increased during leaf development, and leaf areas of
S0 are obvious larger than that in shading treatments, S1 and S2 (Fig. 3). The leaf areas at 3, 6, and 9 days of S0 are 1.2-, 1.5-, and 1.5-folds of S1, respectively, and 1.5-, 2.2-, and 2.5-folds of S2.

Lignin content levels in tea plant leaves under shading treatments

Tea plant leaves with shading treatments were collected and analyzed for lignin content (Fig. 4). With the growth and development of tea plant, lignin accumulation of the leaves showed an upward trend in S0 and S1, while, the change was not significant in S2. The lignin contents were obvious higher in S0 than that in S1 and S2 at 9 days. The content of lignin decreased with increasing shading (S0 > S1 > S2). The results showed that shading might have a negative influence on lignin accumulation in tea plant leaves.

Anatomical structure analysis of tea plant leaves under shading treatments

To further understand the effect of shading on lignin levels in tea plant, the anatomical structure of tea plant leaves was investigated. The transverse sections of leaves were obtained and stained with safranin-O and fast green to highlight the basic anatomical structure of tea plant leaves (Fig. 5). The lignin in the tea plant leaves was mainly distributed in the secondary walls of the xylem region. Compared with control, the lignification of the xylem of leaves under 80% shading treatment appeared to be declining at 9d. The transverse sections were placed under UV excitation to determine the effect of shading treatments on tea plant leaves (Fig. 6). Lignin was also found in the xylem region of tea plant leaves, which was consistent with the observation in Fig. 5.

Analysis of the promoter regions of the genes involved in the lignin pathway in tea plant

The sequences of *CsPAL, CsC4H, Cs4CL, CsHCT, CsC3’H, CsCCoAOMT, CsF5H, CsCOMT, CsCCR, CsCAD, CsPER, and CsLAC*, 2000 bp upstream of the transcription start site were analyzed to understand the regulatory mechanisms that control the expression of these genes.

As shown in Table 2 and Supplementary Table 1, each gene involved in the lignin pathway contain several light-responsive elements. For example, Box 4 elements appear at the promoters of all lignin pathway genes. G-box, GT1-motif, and TCT-motif are also light-responsive elements, and present in most lignin pathway genes. Those results suggested that the genes involved in the lignin pathway might be regulated by light.

Other cis-regulatory elements, such as the TGA-element, CGTCA-motif, ABRE, ERE, STRE, W box, ARE, are present in most of genes involved in the lignin pathway (Supplementary Table 1). These elements are related to the signal pathways of methyl jasmonic acid (MeJA), ethylene (Eth), abscisic acid (ABA), anaerobic, and other biotic and abiotic stresses. The results indicated that expression of those genes in lignin pathway may also involved in the response to hormones, biotic and abiotic stresses.

Interaction network of the proteins involved in the lignin pathway in tea plant
To better understand the interactions among the structural genes involved in the lignin pathway in tea plant, an interaction network was predicted using STRING software basis on the orthologs in Arabidopsis (Fig. 7). Most of the proteins could interacted with more than eight proteins, and OPCL1 (Cs4CL) interacted with all of the other members. LAC3 (CsLAC) and RCI3 (CsPER) are the necessary enzymes for lignin polymerization, which interacted with the least proteins. LAC3 (CsLAC) only interacted with CYP84A1 (CsF5H), CYP98A3 (CsC3’H), RCI3 (CsPER), and CCoAOMT1 (CsCCoAOMT); RCI3 (CsPER) interacted with CYP84A1 (CsF5H), OMT1 (CsCOMT), ATCAD4 (CsCAD), LAC3 (CsLAC) and CCoAOMT1 (CsCCoAOMT).

Expression patterns of the genes involved in the lignin pathway under shading treatments

To further investigate the effect of shading treatments on lignin pathway, the expression profiles of the 12 lignin biosynthetic related genes were selected for RT-qPCR. CsPAL, CsC4H, and Cs4CL, participated in the general phenylpropanoid pathway. CsHCT, CsC3’H, CsCCoAOMT, CsF5H, CsCOMT, CsCCR, CsCAD, CsPER, and CsLAC, were involved in the specific lignin pathway.

General phenylpropanoid pathway The expression levels of CsPAL, CsC4H, and Cs4CL were gradually increased in leaves during tea plant growth under S0 and S1 treatments (Fig. 8). The trends of Cs4CL was decreased with increasing shading (S0 > S1 > S2). The expression profiles of CsPAL and CsC4H were obvious decreased in S2 compared with S0 (control), while they were increased at 9 d in S1.

Specific lignin pathway With the growth and development of the leaves in tea plant, the expression profiles of all specific lignin related genes showed an upward trend in S0 and S1, whereas CsCCoAOMT, CsCOMT, and CsLAC were reduced significantly in S2 treatment (Fig. 9). Most genes showed slightly higher expression levels in S0 compared with S1 treated group. The expression profiles of CsHCT, CsF5H, CsCCR, CsPER, and CsLAC were obvious decreased in S2 compared with that in S0. CsC3’H, and CsCAD, showed a similar trend, which is, declining in 3 d and 6 d, while increasing in 9 d with increasing shading.

Correlation analysis of lignin content and expression levels of related genes

The correlation coefficients were calculated by correlating lignin content with expression levels of genes in the lignin pathway by Pearson analysis (Fig. 10 and Table 3). The correlations were calculated from the 40% shading treatment (S0&S1), 80% shading treatment (S0&S2), and the whole shading treatments (S0&S1&S2). The expression levels of all lignin related genes were positively correlated with the lignin content in S0&S1, S0&S2, and S0&S1&S2.

Among the genes, the expression profiles of CsPAL, Cs4CL, CsF5H, and CsLAC exhibited significant positively correlation with lignin content in S0&S1, S0&S2, and S0&S1&S2. CsHCT expression was significant correlated with lignin content in S0&S2 and S0&S1&S2; while, CsCOMT was significant correlated with lignin content in S0&S1 and S0&S1&S2. In addition, the gene expression profiles of CsCCoAOMT showed significant positive correlation with the lignin content in S0&S1, whereas Cs4CL was significant correlated in S0&S2, and CsCCR and CsPER were significant correlated in S0&S1&S2.
Discussion

Light is the basis of plant photosynthesis and plays an important role in plant growth and morphogenesis [31]. A large number of studies have shown that shading conditions can significantly change the plant height stem thickness, leaf area, leaf structure and other biological character, but also affect the change of photosynthetic efficiency, and secondary metabolites content [32, 33]. The present study showed that leaf area decreased with increasing shading. The leaf area reduced 2.5 times in 80% shading treatment (S2) compared with control (S0). Shading also changed leaf color. The color of tea plant leaves seems more green with increasing shading. That’s mainly because shading treatment improved the chlorophyll concentration [27, 34]. Lignin content of leaves in tea plant reduced under shading treatment, indicating shading might have a negative influence on lignin accumulation in tea plant leaves. A similar study was found. Shading causes the decrease of acid detergent lignin in perennial herbaceous Texas legumes [35].

Lignin distribution was qualitatively measured by histochemistry and autofluorescence microscopy. In this study, lignin is mainly distributed in the xylem of leaves in tea plant. Previous research shown that lignin mainly distributed in the cell walls of xylem and vascular bundle sheath of main leaf vein in tea plant [36]. That is mainly due to the leaves used in this research are too young, and lignin may preferentially deposited in xylem and second vascular bundle sheath, or that is mainly determined by the characteristics of the tea plant cultivar ‘Longjing 43’. As far as we know, there is no report on the anatomy of lignin by shading. Histochemistry and autofluorescence microscopy studies indicated that 80% shading reduced the degree of lignification of xylem. These results were consistent with that lignin accumulation was reduced with increasing shading.

Previous studies have shown that changes in lignin content are accompanied with changes of the expression of genes involved in lignin biosynthesis [37-39]. Here, 12 genes (CsPAL, Cs4H, Cs4CL, CsHCT, CsC3′H, CsCCoAOMT, CsF5H, CsCOMT, CsCCR, CsCAD, CsPER, and CsLAC) involved in lignin synthesis were selected to investigate the regulation mechanism under shading treatment at the transcript level. Promoter analysis indicated that all of those genes contain several light responsive elements, indicating that the expression of those genes might be regulated by light.

The lignin biosynthetic related genes showed an upward trend in control (S0) with the growth and development of the leaves of tea plant, indicating those genes play an important role in the development of lignin in tea plant. The expressions of most lignin biosynthetic related genes were obviously decreased in 80% shading treatment than that in no shading, which is consistent with lignin content decreased in 80% shading treatment. PAL is the first enzyme in the lignin biosynthesis pathway, catalyzing the conversion of phenylalanine to cinnamic acid [40, 41]. Previous research has shown that PAL was notably reduced in the shade-treated leaves of tea plant, ‘Shuchazao’[27]. 4CL is anothe enzyme in lignin pathway and also thought to catalyzes the third step of phenylpropanoid pathway [26]. The lignin content in plants was significantly decreased by the down-regulation of 4CL [42, 43]. In the present study, CsPAL and Cs4CL showed strong positive correlation with lignin concentration, and reduced in shading
treatments. \(\text{PAL, C4H, and 4CL} \) are involved in the general phenylpropanoid pathway and also shared by the formation of other important secondary metabolites, such as flavonoids and coumarin [19, 44, 45]. Therefore, the expression of these genes may not only affects the lignin content, but also affects other secondary metabolites.

\(\text{CsHCT, CsC3'H, CsCCoAOMT, CsF5H, CsCOMT, CsCCR, CsCAD, CsPER, and CsLAC} \) were involved in the specific lignin pathway. Wang and his colleagues found that lignin content was increased compared to darkness in light-induced calli of tea plant, and several lignin-related genes (\(\text{CCoAOMT, HCT and CCR} \)) were identified in the light-induced SSH library [44]. Here, \(\text{CsF5H, and CsLAC} \) exhibited significant positively correlation both in the 40% and 80% shading treatments, indicating the importance of these two genes for lignin synthesis under shading conditions. Some genes (\(\text{CsHCT, CsCCoAOMT and CsCOMT} \)) are highly correlated with 40% or 80% shading treatments. Among them, \(\text{CsCCoAOMT} \) and \(\text{CsCOMT} \) had similar expression patterns, indicating these genes might have similar functions in lignin metabolism.

Lignin is the main component of the plant secondary cell walls that providing mechanical support and water transport for the plants [46, 47]. In tea plant, lignification of leaf tissues is closely related to its quality and stress resistance ability. Suitable lignification is essential for tea quality. Shading affects the growth of tea plants, where it also increases the satisfactory amino acid contents. Strong shading seriously affected the development of tea plant leaves, and reduce tea yield. Tea flavonoids (especially catechins) are the main biologically active components in tea plant and shared the phenylalanine metabolism branch pathway with lignin. Shading reduced the flavonoids, and also lignin content [27]. That may mainly due to shading reduced the carbon source upstream of phenylpropane.

Conclusions

In this study, we evaluated the effect of shading on leaves growth, xylem development, and lignin accumulation in tea plant. Shading treatment inhibited leaves growth and lignin content. Safranin-O/fast green staining and autofluorescence indicated lignin was mostly deposited in the xylem. Shading may affect tea plant leaves lignification by regulating the transcript levels of lignin biosynthesis genes. This study provided potentially useful information for understanding the mechanism of lignin biosynthesis under shading treatments in tea plant.

Materials And Methods

Preparation of plant materials

Two-year-old ‘Longjing 43’ tea plant cutting seedlings were grown in a controlled-environment growth chamber at the Nanjing Agricultural University (Nanjing, China). The chamber conditions were set at 25 °C temperature, 70% relative humidity, 300 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) light intensity and 16 h light/8 h dark cycle. Shade nettings with the corresponding light transmittance coefficients were used to provide shading treatments
with approximately 40% (S1) and 80% (S2) shading rates. Tea plants maintained under no shading condition (0% shading rate) were used as controls (S0). After shading treatment, tea shoots containing first and second leaves, were collected at 3, 6, and 9 days. Each tea plant sample was prepared with three copies. The collected tea plant samples were quickly immersed in liquid nitrogen and then stored at −80 °C.

Measurement of lignin content

The lignin of tea plant samples was purified and measured according to the previously described procedure with some modifications [48, 49]. In brief, approximately 1 g of frozen tea plant samples were ground in liquid nitrogen, then immediately homogenized in 99.5% ethanol and centrifuged for 20 min in a refrigerated centrifuge at 12,000×g. The sediment was collected and spread in a clean petri dish for 24 h to air dry at room temperature. About 10 mg of dried sediment was transferred to a 2 mL plastic tube and then added with 0.1 mL of thioglycolic acid and 1 mL of 2 M HCl. The mixture sample was incubated at 100 °C for 8 h in a thermostatic water bath, and then cooled on ice. After centrifuged at 14,000×g for 20 min at 4 °C, the sediment was washed with 1 mL of distilled water, centrifuged again and then resuspended with 1 mL of 1 M NaOH. The mixed solution was incubated at 25 °C for 18 h, and then centrifuged at 14,000×g for 20 min. The water phase on the top was transferred into a new plastic tube and added with 1 mL of concentrated HCl. The mixture was exposed at 4 °C for 6 h and then centrifugation at 14,000×g for 20 min. The remaining sediment was redissolved with 1 mL of 1 M NaOH. The sample was determined by spectrophotometer at 280 nm with 1 M NaOH as the control. The extraction and determination of lignin from each sample were conducted with three biological replicates.

Histochemical staining and UV microscopy

Histochemistry staining and UV microscopy were performed to observe lignin distribution. The leaf specimens were cut from healthy tea plant with shading treatments using a razor blade. The first leaves, including major veins, were cut into section with small pieces and immediately stored in 2.5% glutaraldehyde at 4 °C. For safranin-O/fast green staining, the leaf sections were first deparaffinized in xylene and then washed and dehydrated with ethanol. Subsequently, the sections were stained for 2 h in 1% safranin-O and then counterstained for 15 s with 0.5 % fast green. The sections were washed with ethanol to remove the extra stain and then mounted using neutral balsam. Safranin-O stained the lignified cell walls with red, whereas fast green stained the cellulosic tissues with green.

Lignified cell walls exhibit autofluorescence under UV excitation [50, 51]. For autofluorescence observation, the lignin autofluorescence of the leaf specimens were observed by fluorescence microscopy under UV excitation.

Leaf area calculation

First leaf was selected as materials to calculate the leaf area. The formula for leaf area is as follows: leaf area (cm²) = leaf width (cm) × leaf length (cm) × 0.7.
Selection and analysis of gene involved in lignin biosynthesis

The genes involved in lignin biosynthesis and polymerization were selected from the Tea Plant Information Archive (TPIA) (http://tpia.teaplant.org/), a genomic database for tea plant [52]. A total of 12 genes related to lignin pathway in tea plant, namely CsPAL, CsC4H, Cs4CL, CsHCT, CsC3’H, CsCCoAOMT, CsF5H, CsCOMT, CsCCR, CsCAD, CsPER, and CsLAC, were selected.

The functional interaction networks of these genes involved in the lignin biosynthesis pathway were constructed using STRING software. The upstream 2000 bp regions of the genes involved in the lignin pathway were analyzed to search for putative cis-acting elements using the plant database PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) [53].

RNA isolation, reverse transcription, and qRT-PCR detection

Total RNA was extracted from tea plant leaves by using an RNA extraction kit (Huayueyang Biotech Co., Ltd., Beijing, China) following the manufacturer's instruction. The RNA concentration was assessed using a Nanodrop 2000 spectrophotometer (Thermo Scientific, Wilmington, DE). One microgram of each RNA sample was reverse transcribed into cDNAs by using the PrimeScript RT reagent kit (TaKaRa, Dalian, China) in accordance with the manufacturer's instructions.

RT-qPCR was carried out using a Bio-Rad CFX96 fluorescence quantitative PCR platform with TaKaRa SYBR Premix Ex Taq (TaKaRa, Dalian, China). The primers used in this study were designed using Primer Premier 5.0 software and listed at Table 1. The Actin gene of tea plant was chosen to normalize the expression levels of lignin related genes [54]. The reaction conditions were set as follows: 95 °C for 3 min, 40 cycles of 95 °C for 5 s, 58 °C for 20 s, and followed with a melting curve analysis ranging from 65 to 95 °C. The reaction of each sample was conducted with three biological and technical replicates. The relative gene expression was calculated using the 2^−ΔΔCT method [55].

Statistical analysis

Statistical analysis was assessed by One-way ANOVA using SPSS18.0 software. Significant differences were detected by Duncan's multiple-range test at significance levels P < 0.05. A pearson correlation coefficient (PCC) analysis was performed to evaluate the correlations between lignin contents and expression levels of genes in the lignin pathway using SPSS software at significance levels p < 0.01 and p < 0.05.

Abbreviations

G unit: coniferyl alcohol; H unit: p-coumaryl alcohol; S unit: sinapyl alcohol; PAL: Phenylalanine ammonia lyase; 4CL: 4-coumarate-CoA ligase; C4H: cinnamate 4-hydroxylase; HCT: Hydroxycinnamoyl-CoA transferase; C3’H: 4-coumarate 3-hydroxylase; CCoAOMT: caffeoyl-CoA O-methyltransferase; F5H: ferulate 5-hydroxylase; COMT: caffeic acid O-methyltransferase; CCR: cinnamoyl-CoA reductase, CAD:
cinnamyl alcohol dehydrogenase; PER: peroxidase; LAC: laccase; MeJA: methyl jasmonic acid, Eth: ethylene; ABA: abscisic acid

Declarations

Availability of data and materials

The data sets supporting the conclusions of this article are included within the article.

Consent to publish

Not applicable.

Ethics approval and consent to participate

Not applicable.

Conflicts of interest

The authors declare no conflict of interest.

Contributions

ZJ, WYX and TRM designed this research. WYX, TMR, LH, LH,WY and LSJ performed the experiments. WYX conducted the data analysis. TRM and WYX wrote the manuscript. ZJ and WYX revised the paper. All the authors contributed to improving the paper and approved the final manuscript.

Funding

The research was supported by the National Natural Science Foundation of China (31870681), Priority Academic Program Development of Jiangsu Higher Education Institutions Project (PAPD).

Acknowledgements

Not applicable.

Author details

Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing210095, Jiangsu, China.

References

1. Monteith JL: Light Distribution and Photosynthesis in Field Crops. *Annals of Botany* 1965, 29(113): 17-37.
2. Chory J: Light modulation of vegetative development. *Plant Cell* 1997, 9(7): 1225-1234.

3. Monteiro EB, Silva CCD, Silva ACD, Souza APD: Estimating emission of leaves seedlings forest in different shading levels, at conditions of transition Amazon-Cerrado, Brazil. *American Journal of Plant Sciences* 2014, 05(5):2330-2341.

4. Castillon A, Hui S, Huq E: Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. *Trends in Plant Science* 2007, 12(11):514-521.

5. Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL: Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation. *Plant Cell* 1993, 5(2):171-179.

6. Matus JT, Loyola RV, A, Pena-Neira A, Bordeu E, Arce-Johnson P, Alcalde JA: Post-veraison sunlight exposure induces myb-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. *Journal of Experimental Botany* 2009, 60(3):853-867.

7. Robin D M, Lan T T, Michael B P, Malcolm M C, C Peter C: The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar. *Plant Signaling & Behavior* 2009, 150(8):924-941.

8. Albert NW, Lewis DH, Zhang H, Irving LJ, Jameson PE, Davies KM: Light-induced vegetative anthocyanin pigmentation in Petunia. *J Exp Bot* 2009, 60(7):2191-2202.

9. Rogers LA, Campbell MM: The genetic control of lignin deposition during plant growth and development [Review]. *New Phytologist* 2004, 164(1):17-30.

10. Liu Q, Luo L, Zheng L: Lignins: Biosynthesis and Biological Functions in Plants. *Int J Mol Sci* 2018, 19(2):335.

11. Zheng M, Chen J, Shi Y, Li Y, Yin Y, Yang D, Luo Y, Pang D, Xu X, Li W et al: Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat. *Sci Rep* 2017, 7:41805.

12. Ithal N, Recknor J, Nettleton D, Maier T, Baum TJ, Mitchum MG: Developmental transcript profiling of cyst nematode feeding cells in soybean roots. *Mol Plant Microbe Interact* 2007, 20(5):510-525.

13. Shadle G, Chen F, Reddy MSS, Jackson L, Jin N, Dixon RA: Down-regulation of hydroxycinnamoyl CoA: Shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality. *Phytochemistry* 2007, 68(11):1521-1529.

14. Jullyana, Cristina, Magalhaes, Silva, Moura, Cesar, Augusto, Valencise, Bonine, Juliana: Abiotic and Biotic Stresses and Changes in the Lignin Content and Composition in Plants. *Journal of Integrative Plant Biology* 2010, 52(4):360-376.

15. Ruben V, Kris M, Chiarina D, Paula O, Grabber JH, John R, Wout B: Metabolic engineering of novel lignin in biomass crops. *New Phytologist* 2012, 196(4):978-1000.

16. Boerjan W, Ralph J, Baucher M: Lignin biosynthesis. *Annu Rev Plant Biol* 2003, 54(1):519-546.

17. Qiao Z, Dixon RA: Transcriptional networks for lignin biosynthesis: more complex than we thought? *Trends in Plant Science* 2011, 16(4):227-233.
18. Goujon T, Sibout R, Eudes A, MacKay J, Joulain L: Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana. *Plant Physiology And Biochemistry* 2003, 41(8):677-687.

19. Riboulet C, Guillaumie S, Méchin V, Bosio M, Pichon M, Goffner D, Lapierre C, Pollet B, Lefevre B, Martinant JP: Kinetics of phenylpropanoid gene expression in maize growing internodes: relationships with cell wall deposition. *Crop Science* 2009, 49(1):211-223.

20. Ruben V, Brecht D, Kris M, John R, Wout B: Lignin biosynthesis and structure. *Plant Physiology* 2010, 153(3):895-905.

21. Cheng X, Li M, Li D, Zhang J, Jin Q, Sheng L, Cai Y, Lin Y: Characterization and analysis of CCR and CAD gene families at the whole-genome level for lignin synthesis of stone cells in pear (Pyrus bretschneideri) fruit. *Biology open* 2017, 6(11):1602-1613.

22. Liang YR, Liu ZS, Xu YR, Hu YL: A study on chemical composition of two special green teas (Camellia sinensis). *Journal of the Science of Food & Agriculture* 2010, 53(4):541-548.

23. Li H, Liu ZW, Wu ZJ, Wang YX, Teng RM, Zhuang J: Differentially expressed protein and gene analysis revealed the effects of temperature on changes in ascorbic acid metabolism in harvested tea leaves. *Hortic Res* 2018, 5(1):65.

24. Qin ZM, Tanui J, Feng WY, Wang YH, Xiao RL, Xing-Hui Li: Effects of shading on yield index and biochemical components of tea in hilly tea plantation. *Journal of Nanjing Agricultural University* 2011.

25. Tian YY, Zhang LX, Zhang ZQ, Qiao MM, Fan YG: [Effects of shading in summer and autumn on physiological and biochemical characteristics of ‘Huangjinya’ in Shandong Province, China]. *Chinese Journal of Applied Ecology* 2017.

26. Mo KK, Jung Nam C, Jiyoung K, Jeong Kee K, Gook YL, Jun LS, Young-Shick H, Choong Hwan L: Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.). *J Agric Food Chem* 2010, 58(1):418-426.

27. Wang YS, Gao LP, Shan Y, Liu YJ, Tian YW, Xia T: Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). *Scientia Horticulturae* 2012, 141(3):7-16.

28. Zagoskina NV, Dubravina GA, Alyavina AK, Goncharuk EA: Effect of Ultraviolet (UV-B) Radiation on the Formation and Localization of Phenolic Compounds in Tea Plant Callus Cultures. *Russian Journal of Plant Physiology* 2003, 50(2):270-275.

29. Koretskaya TF, Zaprometov MN: Phenolic compounds in cultures of tissues of tea plants and the effect of light on their synthesis. *Soviet Plant Physiology* 1975.

30. Saijo R: Effect of shade treatment on biosynthesis of catechins in tea plants. *Plant & Cell Physiology* 1980, 21(6):989-998.

31. Yu BF, Liu Y, Pan YJ, Liu J, Wang HZ, Tang ZH: Light enhanced the biosynthesis of terpenoid indole alkaloids to meet the opening of cotyledons in process of photomorphogenesis of Catharanthus roseus. *Plant Growth Regulation* 2018, 84(3):617-626.

32. Zhang LX, Guo QS, Chang QS, Zhu ZB, Liu L, Chen YH: Chloroplast ultrastructure, photosynthesis and accumulation of secondary metabolites in Glechoma longituba in response to irradiance.
Photosynthetica 2015, 53(1):144-153.

33. Fan Y, Chen J, Cheng Y, Raza MA, Wu X, Wang Z, Liu Q, Wang R, Wang X, Yong T: Effect of shading and light recovery on the growth, leaf structure, and photosynthetic performance of soybean in a maize-soybean relay-strip intercropping system. *Plos One* 2018, 13(5):e0198159.

34. Dolatkhahi A: Shading Impact on Qualitative Characteristics and Chlorophyll Content of Cut Rose (Rosa hybrida cv. Avalanche). *Journal of Ornamental Plants* 2013.

35. Muir JP, Bow JR, Boggs LL: Response of two perennial herbaceous Texas legumes to shade. *Native Plants Journal* 2009, 10(3):252-261.

36. Wang YX, Teng RM, Wang WL, Wang Y, Shen W, Zhuang J: Identification of genes revealed differential expression profiles and lignin accumulation during leaf and stem development in tea plant (Camellia sinensis (L.) O. Kuntze). *Protoplasma* 2018:1-12.

37. Liu JX, Feng K, Wang GL, Xu ZS, Wang F, Xiong AS: Elevated CO2 induces alteration in lignin accumulation in celery (Apium graveolens L.). *Plant physiology and biochemistry : PPB* 2018, 127:310-319.

38. Ali MB, McNear DH, Jr.: Induced transcriptional profiling of phenylpropanoid pathway genes increased flavonoid and lignin content in Arabidopsis leaves in response to microbial products. *BMC Plant Biol* 2014, 14(1):84.

39. Que F, Wang GL, Feng K, Xu ZS, Wang F, Xiong AS: Hypoxia enhances lignification and affects the anatomical structure in hydroponic cultivation of carrot taproot. *Plant Cell Rep* 2018, 37(7):1021-1032.

40. de Jong F, Hanley SJ, Beale MH, Karp A: Characterisation of the willow phenylalanine ammonia-lyase (PAL) gene family reveals expression differences compared with poplar. *Phytochemistry* 2015, 117:90-97.

41. Xu ZS, Huang Y, Wang F, Song X, Wang GL, Xiong AS: Transcript profiling of structural genes involved in cyanidin-based anthocyanin biosynthesis between purple and non-purple carrot (Daucus carota L.) cultivars reveals distinct patterns. *Bmc Plant Biology* 2014, 14(1):262.

42. Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL: Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. *Nat Biotechnol* 1999, 17(8):808-812.

43. Bin X, Escamilla-Trevi?O LL, Noppadon S, Zhengxing S, Hui S, Y-H Percival Z, Dixon RA, Bingyu Z: Silencing of 4-coumarate:coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. *New Phytologist* 2011, 192(3):611-625.

44. Wang YS, Gao LP, Wang ZR, Liu YJ, Sun ML, Yang DQ, Wei CL, Shan Y, Xia T: Light-induced expression of genes involved in phenylpropanoid biosynthetic pathways in callus of tea (Camellia sinensis (L.) O. Kuntze). *Scientia Horticulturae* 2012, 133:72-83.

45. Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR: The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. *Plant physiology and biochemistry : PPB* 2013, 72:21-34.
46. Boudet AM: Lignins and lignification: Selected issues. *Plant Physiology And Biochemistry* 2000, 38(1-2):81-96.

47. Hui S, Fu C, Xiao X, Ray T, Tang Y, Wang Z, Fang C: Developmental Control of Lignification in Stems of Lowland Switchgrass Variety Alamo and the Effects on Saccharification Efficiency. *Bioenergy Research* 2009, 2(4):233-245.

48. Cervilla LM, Rosales MA, Rubio-Wilhelmi MM, Sánchez-Rodríguez E, Blasco B, Ríos JJ, Romero L, Ruiz JM: Involvement of lignification and membrane permeability in the tomato root response to boron toxicity. *Plant Science An International Journal of Experimental Plant Biology* 2009, 176(4):545-552.

49. Wang GL, Huang Y, Zhang XY, Xu ZS, Wang F, Xiong AS: Transcriptome-based identification of genes revealed differential expression profiles and lignin accumulation during root development in cultivated and wild carrots. *Plant Cell Rep* 2016, 35(8):1743-1755.

50. Donaldson LA, Knox JP: Localization of Cell Wall Polysaccharides in Normal and Compression Wood of Radiata Pine: Relationships with Lignification and Microfibril Orientation. *Plant Physiology* 2012, 158(2):642-653.

51. Wang GL, Que F, Xu ZS, Wang F, Xiong AS: Exogenous gibberellin enhances secondary xylem development and lignification in carrot taproot. *Protoplasma* 2017, 254(2):839-848.

52. Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G et al.: Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. *Proc Natl Acad Sci U S A* 2018, 115(18):E4151-E4158.

53. Magali L, Patrice D, Gert T, Kathleen M, Yves M, Yves VdP, Pierre R, Stephane R: PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. *Nucleic Acids Research* 2002, 30(1):325-327.

54. Wu ZJ, Li XH, Liu ZW, Li H, Wang YX, Zhuang J: Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress. *Molecular Genetics & Genomics* 2016, 291(1):255-269.

55. Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic Acids Res* 2001, 29(9):e45.

Figures
Figure 1

Simplified diagram of lignin biosynthesis pathways in plants in tea plant. The enzymes are as follows: phenylalanine ammonia lyase (PAL); cinnamate 4-hydroxylase (C4H); 4-coumarate-CoA ligase (4CL); cinnamoyl-CoA reductase (CCR); cinnamyl alcohol dehydrogenase (CAD); hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase (HCT); p-coumaroyl shikimate/quinate 3’-hydroxylase (C3’H); caffeoyl-CoA O-methyltransferase (CCoAOMT); ferulate 5-hydroxylase (F5H); caffeic acid O-methyltransferase (COMT); peroxidase (PER), and laccase (LAC).
Figure 2

Photograph of the leaves of tea plant cultivar 'Longjing43' with shading treatments. S0, no shading; S1, approximately 40% shading rate; S2, approximately 80% shading rate. Scale bars are 1 cm in length.
Figure 3

Effect of shading treatments on leaves area in tea plant leaves. S0, no shading; S1, approximately 40% shading rate; S2, approximately 80% shading rate. Error bars represent standard deviation among three independent replicates. Different lowercase letters indicate significant differences at $P < 0.05$.
Figure 4

Effect of shading treatments on lignin accumulation in tea plant leaves. S0, no shading; S1, approximately 40% shading rate; S2, approximately 80% shading rate. Error bars represent standard deviation among three independent replicates. Different lowercase letters indicate significant differences at P < 0.05.
Figure 5

Safranin-O/fast green staining of transverse sections of tea plant leaves with shading treatments. S0, no shading; S1, approximately 40% shading rate; S2, approximately 80% shading rate. Tea plant leaves were harvested at 3 (a, d, g), 6 (b, e, h), and 9 (c, f, i) day, respectively. Ue upper epidermis, De lower epidermis, Cu cuticula, P phloem, X xylem. Scale bars are equivalent to 50 μm in length.
Figure 6

Fluorescence micrographs of transverse sections of tea plant leaves with shading treatments. S0, no shading; S1, approximately 40% shading rate; S2, approximately 80% shading rate. Tea plant leaves were harvested at 3 (a, d, g), 6 (b, e, h), and 9 (c, f, i) day, respectively. Cu cuticula, X xylem. Scale bars are equivalent to 50 μm in length.
Figure 7

Interaction network of the proteins involved in lignin pathway.

Figure 8

Expression profiles of genes involved in the general phenylpropanoid pathway under shading treatments in tea plant leaves. S0, no shading; S1, approximately 40% shading rate; S2, approximately 80% shading rate. Error bars represent standard deviation among three independent replicates. Different lowercase letters indicate significant differences at P < 0.05.

Figure 9

Expression profiles of genes involved in the specific lignin pathway under shading treatments in tea plant leaves. S0, no shading; S1, approximately 40% shading rate; S2, approximately 80% shading rate. Error bars represent standard deviation among three independent replicates. Different lowercase letters indicate significant differences at P < 0.05.
Figure 10

Correlation analyses between lignin content and expression levels of related genes. The genes from left to right in abscissa were followed by CsPAL, CsC4H, Cs4CL, CsHCT, CsC3’H, CsCCoAOMT, CsF5H, CsCOMT, CsCCR, CsCAD, CsPER, and CsLAC.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryInfoFilesTable1.xls