INTRODUCTION

It has become well understood that reciprocal interactions between plants and the soil biota, collectively termed plant–soil feedbacks (PSFs), play an important role in structuring the composition and dynamics of plant communities. PSFs operate alongside other factors, including abiotic drivers (Bennett & Klironomos, 2019) and above-ground trophic interactions (Van der Putten et al., 2009), but are thought to be a key mechanism generating negative frequency-dependent feedbacks that promote coexistence and maintain plant diversity (Bever et al., 2015; Kulmatiski et al., 2008; Van der Putten et al., 2013). The existence of PSFs has long been known (Bever, 1994; Van der Putten et al., 1993), but our understanding of their importance—particularly in relation to patterns of coexistence—has developed rapidly in recent years (Crawford et al., 2019; Klironomos, 2002; Mangan et al., 2010; Petermann et al., 2008). Broad interest in PSFs was ignited by the development of simple mathematical models that illustrated the potential of PSFs to mediate plant coexistence (Bever, 2003; Bever et al., 1997; Ke & Miki, 2015). These models have played a crucial guiding role for a wide range of empirical studies, as well (Kulmatiski et al., 2008, 2011; Pernilla Brinkman et al., 2010).

The first, and still most widely known and used, model for PSFs was introduced by Bever and colleagues in the 1990s (Bever, 1992, 1999; Bever et al., 1997). In this framework, each plant species is assumed to promote the growth of a specific soil component (i.e. associated bacteria, fungi, invertebrates, considered collectively) in the vicinity of

No robust multispecies coexistence in a canonical model of plant–soil feedbacks

Zachary R. Miller | Pablo Lechón-Alonso | Stefano Allesina

1Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, USA
2Northwestern Institute on Complex Systems, Evanston, Illinois, USA

Correspondence
Zachary R. Miller, Department of Ecology & Evolution, University of Chicago, 1101 E. 57th Street, Chicago, IL 60637, USA. Email: zachmiller@uchicago.edu

Funding information
National Science Foundation, Grant/Award Number: Graduate Research Fellowship (DGE-1746045)

Editor: Annette Ostling

Abstract
Plant–soil feedbacks (PSFs) are considered a key mechanism generating frequency-dependent dynamics in plant communities. Negative feedbacks, in particular, are often invoked to explain coexistence and the maintenance of diversity in species-rich communities. However, the primary modelling framework used to study PSFs considers only two plant species, and we lack clear theoretical expectations for how these complex interactions play out in communities with natural levels of diversity. Here, we extend this canonical model of PSFs to include an arbitrary number of plant species and analyse the dynamics. Surprisingly, we find that coexistence of more than two species is virtually impossible, suggesting that alternative theoretical frameworks are needed to describe feedbacks observed in diverse natural communities. Drawing on our analysis, we discuss future directions for PSF models and implications for experimental study of PSF-mediated coexistence in the field.

KEYWORDS
Bever model, bimatrix games, coexistence, legacy effects, plant–soil feedbacks, replicator equation
individual plants. In turn, the fitness of each plant species is determined by the relative frequency of different soil components. Starting from minimal assumptions, Bever et al. (1997) derived a set of differential equations to capture these dynamics. PSFs can be either positive (fitness of a plant species is higher in soil conditioned by conspecifics, compared to heterospecific soil) or negative (a plant species experiences lower relative fitness in its own soil). Bever et al. introduced a single quantity to summarise whether community-wide PSFs are positive or negative, and showed that this value characterises the dynamical behaviour of the model. In the original Bever model of two plant species, positive PSFs lead to priority effects, and consequently the exclusion of one species, while negative PSFs result in neutral oscillations. It is thus widely suggested that negative PSFs help sustain coexistence in real-world plant communities (Kulmatiski et al., 2008; Van der Putten et al., 2013), perhaps with spatial asynchrony playing a role in stabilising the cyclic dynamics (Bever, 2003; Revilla et al., 2013).

Subsequent studies have generalised PSF models to include, for example more realistic functional forms (Eppinga et al., 2006; Umbanhowar & McCann, 2005), more explicit representations of the soil community (Bever et al., 2010), spatial structure (Eppinga et al., 2006; Molofsky et al., 2002; Suding et al., 2013) or additional processes such as direct competitive interactions between plants (Bever, 2003). However, the original Bever model remains an important touchstone for the theory of PSFs (Abbott et al., 2021; Ke & Miki, 2015; Ke & Wan, 2020) and informs empirical research through the interaction coefficient, \(I_r \), derived by Bever et al., which is commonly measured and used to draw conclusions about coexistence in experimental studies. Despite the ubiquity of this model, and the fruitful interplay of theory and experiment in the PSF literature, extensions to communities with more than two or three species have appeared only rarely and recently (but see Eppinga et al., 2018; Kulmatiski et al., 2011; Mack et al., 2019). While PSF models motivate hypotheses and conclusions about species-rich natural communities, there is much still unknown about the behaviour of these models with natural levels of diversity (Van der Putten et al., 2013).

Here, we extend the Bever model to include any number of plant species, and show that the model is equivalent to a special form of the replicator equation studied in evolutionary game theory (Hofbauer & Sigmund, 1998). In particular, this model corresponds to the class of bimatrix games, where there are two players (here, plants and soil components) which interact with asymmetric strategies and payoffs. The replicator dynamics of bimatrix games are well-studied, allowing us to characterise many properties of the Bever model with \(n \) plant species. Surprisingly, using this equivalence, we show that coexistence of more than two species in this model is never robust.

RESULTS

Generalising a classic PSF model

Inspired by emerging empirical evidence for the important role of PSFs in plant community dynamics and coexistence (Bever, 1994; Van der Putten et al., 1993), Bever et al. (1997) introduced a simple mathematical model to investigate their behaviour. In this model, two plant species, 1 and 2, grow exponentially with growth rates determined by the state of the soil biota in the system. These effects of soil on plants are specified by parameters \(\alpha_{ij} \), the growth rate of plant species \(i \) in soil type \(j \). There is a soil component corresponding to each plant species, which grows exponentially in the presence of its associated plant at a rate \(\beta_i \), Bever et al. set an important precedent by considering the dynamics of relative abundances in such a system; starting from dynamics of the form

\[
\begin{align*}
\frac{dx_i}{dt} &= x_i \left(\frac{\alpha_{ii} x_i + \alpha_{ij} y_j}{y_j + x_j} \right), \quad i, j = 1, 2 \\
\frac{dy_j}{dt} &= y_j \left(\frac{\beta_j x_j}{x_i + x_j} \right)
\end{align*}
\]

for the absolute abundances of plants (\(x_i \)) and soil components (\(y_j \), one derives dynamics for the relative abundances (frequencies), \(p_i = x_i / \sum_j x_j \) and \(q_j = y_j / \sum_j y_j \). Using the facts \(p_i = 1 - p_j \) and \(q_i = 1 - q_j \), these can be written as follows:

\[
\begin{align*}
\frac{dp_i}{dt} &= p_i p_j \left((\alpha_{ii} - \alpha_{ij}) q_j + (\alpha_{ij} - \alpha_{ji}) q_i \right), \quad i, j = 1, 2 \\
\frac{dq_j}{dt} &= q_i q_j \left(\beta_i p_i - \beta_j p_j \right).
\end{align*}
\]

This model may admit a coexistence equilibrium where

\[
\begin{align*}
p_i^* &= \frac{\beta_j}{\beta_i + \beta_j}, \quad i, j = 1, 2 \\
q_j^* &= \frac{\alpha_{ji} - \alpha_{ij}}{\alpha_{ii} - \alpha_{ij} + \alpha_{ij} - \alpha_{ji}}.
\end{align*}
\]

A central finding of the analysis by Bever et al. was that the denominator of \(q_i^* \), which they termed the ‘interaction coefficient’, \(I_r = (\alpha_{ii} - \alpha_{ij} + \alpha_{ji} - \alpha_{jj}) \), controls the model dynamics: When \(I_r > 0 \), which represents a community with positive feedbacks, the equilibrium in Equation 3 is unstable, and the two species cannot coexist. On the other
hand, when $I_s < 0$, the equilibrium is neutrally stable, and the dynamics cycle around it, providing a form of non-equilibrium coexistence. In fact, these conclusions also depend on the existence of a feasible equilibrium (i.e. positive equilibrium values), which further requires that $a_{ij} < a_{ji}$ for both $i, j = 1, 2$, in order for the model to exhibit coexistence (Bever et al., 1997; Ke & Miki, 2015).

This coexistence is fragile. Plant and soil frequencies oscillate neutrally, similar to the textbook example of Lotka–Volterra predator–prey dynamics. Any stochasticity, external forcing or temporal variation in the model parameters can destroy these finely balanced oscillations and cause one species to go extinct (Revilla et al., 2013). However, coupled with mechanisms that buffer the system from extinctions, such as migration between desynchronised patches or the presence of a seed bank, the negative feedbacks in this model might produce sustained coexistence (Bever, 2003; Revilla et al., 2013).

Of course, most natural plant communities feature more than two coexisting species, and it is precisely in the most diverse communities that mechanisms of coexistence hold the greatest interest (Van der Putten et al., 2013). While it is not immediately clear how to generalise Equation 2 to more than two species, Equation 1 is naturally extended by maintaining the assumption that the overall growth rate for any plant is a weighted average of its growth rate in each soil type:

\[
\begin{align*}
\frac{dx_i}{dt} &= x_i \left(\sum_j a_{ij} q_j \right), \quad i = 1, \ldots, n \\
\frac{dy_i}{dt} &= y_i \left(\beta_i p_i \right).
\end{align*}
\]

(4)

From Equation 4, one can derive the n-species analogue of Equation 2,

\[
\begin{align*}
\frac{dp_i}{dt} &= p_i \left(\sum_j a_{ij} q_j - \sum_k a_{ik} p_j q_k \right), \quad i = 1, \ldots, n \\
\frac{dq_i}{dt} &= q_i \left(\beta_i p_i - \sum_j \beta_j p_j q_j \right)
\end{align*}
\]

(5)

giving the dynamics for species and soil component frequencies (Figure 1). Equation 5 is conveniently expressed in matrix form as follows:

\[
\begin{align*}
\frac{dp}{dt} &= D(p)(Aq - (p^T Aq)1) \\
\frac{dq}{dt} &= D(q)(Bp - (q^T Bp)1)
\end{align*}
\]

(6)

where vectors are indicated in boldface (e.g. p is the vector of plant species frequencies $(p_1, p_2, \ldots, p_n)^T$ and 1 is a vector of n ones) and $D(z)$ is the diagonal matrix with vector z on the diagonal. We have introduced the matrices $A = (a_{ij})$ and $B = D(\beta_1, \beta_2, \ldots, \beta_n)$, specifying soil effects on plants and plant effects on soil, respectively. Because p and q are vectors of frequencies, they must sum to one: $1^T p = 1^T q = 1$. Using these constraints, one can easily show that the Bever model (Equation 2) is a special case of Equations 5 and 6 when $n = 2$.

This model (Equation 5) is a direct multispecies generalisation of the classic Bever model (Bever et al., 1997); it requires precisely the same assumptions as the original, and includes the same biological processes. Other extensions of the Bever model have been introduced, including versions that incorporate plant-plant competition and self-regulation (Bever, 2003) or modified soil dynamics (Eppinga et al., 2018; Mack et al., 2019). Contrasting the predictions of these models can illuminate the connections between particular biological processes (model assumptions) and resulting community dynamics, a point we return to in the Discussion. However, it is also important to recognise that different biological assumptions can give rise to identical dynamics; for example, we show in the Supplemental Methods that the model introduced by Bever in 2003, which includes more realistic plant dynamics and interactions, reduces to our Equation 5 when plants are competitively equivalent.

Equivalence to bimatrix game dynamics

Systems that take the form of Equation 6 are well-known and well-studied in evolutionary game theory. Our generalisation of the Bever model is a special case of the replicator equation, corresponding to the class of bimatrix games (Cressman & Tao, 2014; Hofbauer, 1996; Hofbauer & Sigmund, 1998; Taylor, 1979). Bimatrix games arise in diverse contexts, such as animal behaviour (Selten, 1988; Taylor, 1979), evolutionary theory (Cressman &
Tao, 2014; Hofbauer & Sigmund, 1998) and economics (Friedman, 1991), where they model games with asymmetric players, meaning that each player (here, the plant community and the soil) has a distinct set of strategies (plants species and soil components, respectively) and payoffs (realised growth rates).

Much is known about bimatrix game dynamics, and we can draw on this body of knowledge to characterise the behaviour of the Bever model with \(n \) species. Essential mathematical background and details are presented in the Supplemental Methods; for a detailed introduction to bimatrix games, see Hofbauer and Sigmund (1998).

Under the mild condition that matrix \(A \) is invertible, Equation 6 admits a unique coexistence equilibrium given by \(p^* = k_pB^{-1}1 \) and \(q^* = k_qA^{-1}1 \), where \(k_p = 1/(1^TT \cdot B^{-1}1) \) and \(k_q = 1/(1^T \cdot A^{-1}1) \) are constants of proportionality that ensure the equilibrium frequencies sum to one for both plants and soil. Because \(B \) is a diagonal matrix, and all \(\beta_i \) are assumed positive, the equilibrium plant frequencies, \(p^* \), are always positive, as well. Thus, feasibility of the equilibrium hinges on the soil frequencies, \(q^* \), which are all positive if the elements of \(A^{-1}1 \) all share the same sign.

As we have seen, when the community consists of two plant species, the coexistence equilibrium, if feasible, can be either unstable or neutrally stable. The same is true for the \(n \)-species extension (and, more generally, for any bimatrix game dynamics; see Eshel & Akin, 1983; Hofbauer & Sigmund, 1998; Selten, 1988). This can be established using straightforward local stability analysis, after accounting for the relative abundance constraints, which imply \(p_n = 1 - \sum_{i=1}^{n-1} p_i \) and \(q_1 = 1 - \sum_{i=1}^{n-1} q_i \). Using these substitutions, Equation 5 can be written as a system of \(2n - 2 \) (rather than \(2n \)) equations, and the community matrix for this reduced model has a very simple form (see Supplemental Methods). In particular, the community matrix has all zero diagonal elements, which implies that the eigenvalues of this matrix sum to zero. These eigenvalues govern the stability of the coexistence equilibrium, and this property leaves two qualitatively distinct possibilities: either the eigenvalues have a mix of positive and negative real parts (in which case the equilibrium is unstable) or the eigenvalues all have zero real part (in which case the equilibrium is neutrally stable). Already, we can see that the model never exhibits stable equilibrium coexistence, regardless of the number of species.

In fact, these conclusions apply to a much broader class of models that are structurally similar to the Bever model. Consider any PSF dynamics that can be written in the form

\[
\begin{aligned}
\frac{dx_i}{dt} &= x_i f_i(q) \\
\frac{dy_j}{dt} &= y_j g_j(p).
\end{aligned}
\]

Such a model has a bipartite structure, meaning that the per capita growth rate of each plant species is an arbitrary function, \(f_i \), of the soil frequencies, with no dependence on the plant abundances or frequencies, and vice versa. The corresponding dynamics for plant and soil frequencies may possess one or more coexistence equilibria. At any of these equilibrium points, the community matrix, which governs its stability, necessarily takes the same form as for the Bever model, with all zero diagonal elements. As such, these equilibria must be either unstable or neutrally stable. This is a robust consequence of the strictly bipartite structure of Equation 7.

Another notable property of bimatrix game dynamics is that the vector field defined by the model equations is divergence-free or incompressible (see Hofbauer & Sigmund, 1998, for a proof). The divergence theorem from vector calculus (Arfken, 1985) then dictates that Equation 6 cannot have any attractors—that is, regions of the phase space that ‘pull in’ trajectories—with multiple species. This rules out coexistence in a stable limit cycle or other non-equilibrium attractors (e.g. chaotic attractors). Thus, only the relatively fragile coexistence afforded by neutral oscillations is possible, as in the two-species model.

Based on the local stability properties of the coexistence equilibrium, Bever et al. concluded that such neutral cycles arise for two species when \(a_{11} < a_{21} \) and \(a_{22} < a_{12} \). The equivalence between their model and a bimatrix game with two strategies allows us to give a fuller picture of these cycles. Namely, we can identify a constant of motion for the two-species dynamics:

\[
H = (a_{12} - a_{21}) \log q_1 + (a_{21} - a_{11}) \log q_2 + \beta_2 \log p_1 + \beta_1 \log p_2.
\]

Using the chain rule and time derivatives in Equation 2, it is easy to show that \(\frac{dH}{dt} = 0 \) for any plant and soil frequencies (see Supplemental Methods). The level curves of \(H \) form closed orbits around the equilibrium when the equilibrium is neutrally stable. Thus, \(H \) implicitly defines the trajectories of the model, and can be used to determine characteristics such as the amplitude of oscillations arising from particular initial frequencies (Volterra, 1926).

Because neutral cycles provide the only possible form of coexistence in this model, a key question becomes whether and when neutral cycles with \(n \) plant species can arise. Do the ‘negative feedback’ conditions identified by Bever et al. generalise in richer communities? Indeed, they do; however, for more than two species, these conditions are very severe. The model in Equation 6 supports oscillations with \(n \) plant species—for any \(n \)—if matrices \(A \) and \(B \) satisfy a precise relationship (see Supplemental Methods for details). In particular, the model parameters must satisfy the conditions \(a_{ij} = y_j + \delta_i \) for some constants \(y_j, \delta_i \) in \(i = 1, \ldots, n \) (when \(i \neq j \)), and \(a_{ii} = y_i + \delta_i - c \beta_i \) (where \(c \) is a positive constant that must be the same for all species \(i \)). In the language of bimatrix games, such systems are called rescaled zero-sum games (Hofbauer, 1996; Hofbauer & Sigmund, 1998). It is a
long-standing conjecture in evolutionary game theory that these parameterisations are the only cases where \(n \)-species coexistence can occur (Hofbauer, 1996, 2011).

Ecologically, these conditions mean there is a fixed effect of each soil type and plant species identity, and the growth rate of plant \(i \) in soil type \(j \) is the additive combination of these two, with no interaction effects. The only exception is for plants growing in their own soil type, which must experience a fitness cost \((r_i + \delta_i - \alpha_{ij}) \) exactly proportional to the rate at which they promote growth of their soil type \((\beta_i) \). These conditions clearly extend the intuitive notion that each plant must have a disadvantage in its corresponding soil type to allow for coexistence. But the parameters of the model are constrained so strongly that we never expect to observe cycles with more than two plant species in practice. When \(n > 2 \), a great deal of fine-tuning is necessary to satisfy the rescaled zero-sum game condition; the probability that random parameters will be suitable is infinitesimally small. We confirm this numerically with simulations shown in Figure 2. Although \(n \)-species cycles are clearly possible (as in Figure 3), when parameters are drawn independently at random communities always collapse to one or two species, regardless of the initial richness.

Parameter combinations permitting many-species oscillations are not only rare, but they are also extremely sensitive to small changes to the parameter values. The rescaled zero-sum condition imposes many exact equality constraints on the matrix \(A \) (e.g. \(a_{ij} = a_{ik} - a_{lk} \) for all \(i,j,k \), and \(l \)). Even if biological mechanisms exist to generate the requisite qualitative patterns, inevitable quantitative variation in real-world communities will disrupt coexistence (Figure 3). Coexistence of \(n > 2 \) plant species—even in the weak sense of neutral cycles—is not robust to small changes in the model parameters.

Interestingly, the two-species model is not subject to the same fragility. It can be shown (see Supplemental Methods) that all \(2 \times 2 \) bimatrix games take the same general form as a rescaled zero-sum game, although the constant \(c \) may be positive or negative, depending on the parameters. When \(I_i \), the interaction coefficient identified by Bever et al., is negative, \(c \) is positive, ensuring (neutral) stability. This condition amounts to an inequality constraint, rather than an equality constraint, and so it is generally robust to small variations in model parameters. As we can now see, the case \(n = 2 \) is unique in this regard.

DISCUSSION

The Bever model has played a central role in motivating PSF research, and continues to guide both theory and experiment in this fast-growing field (Abbott et al., 2021; Bever et al., 2015; Kandlikar et al., 2019; Ke & Wan, 2020). Here, we extend the Bever model to include any number of plant species, and highlight its equivalence to bimatrix game dynamics. Taking advantage of the well-developed theory for these dynamics, we are able to characterise the behaviour of this generalised Bever model in detail.

Our central finding is that there can be no robust coexistence of plant species in this model. Regardless of the number of species, \(n \), the model never exhibits equilibrium coexistence or other attractors. Coexistence can be attained through neutral oscillations, but these dynamics lack any restoring force, meaning diversity would quickly be eroded by stochasticity or exogenous forcing. In this respect, the generalised model behaves similarly to the classic two-species system. However, unlike the two-species model, oscillations with \(n > 2 \) species can only occur under very restricted parameter combinations. These parameterisations are vanishingly unlikely to arise by chance and highly sensitive to small deviations. Thus, coexistence of more than two species is neither dynamically nor structurally stable.
This result may seem surprising, because a significant body of experimental evidence indicates that PSFs can and do play an important role in mediating the coexistence of more than two species in natural communities (Bever et al., 2015; Kulmatiski et al., 2008; Mangan et al., 2010; Petermann et al., 2008). Apparently, the picture suggested by the two-species Bever model generalises in nature, but not in the model framework itself. We note that this framework was introduced as an intentional simplification to illustrate the potential role of PSFs in mediating coexistence, not to accurately model the biological details of PSFs. Indeed, the model has been wildly successful in spurring research into PSFs. Alongside extensive empirical study of these processes, other modelling approaches have emerged, accounting for more biological realism (e.g. Bever et al., 2010; Eppstein & Molofsky, 2007; Umbanhowar & McCann, 2005), or with the demonstrated capacity to produce multispecies coexistence (e.g. Bonanomi et al., 2005; Eppinga et al., 2018; Miller & Allesina, 2021). Some of these are minor modifications of the Bever model framework; others build on distinct foundations (Ke & Miki, 2015; Ke & Wan, 2020). Our results suggest that these various avenues are worth pursuing further.

Our findings also help clarify important aspects of coexistence across modelling approaches. For example, Eppinga et al. (2018) and Mack et al. (2019) recently introduced a multispecies PSF model which can exhibit stable coexistence. Their model is inspired by the Bever model framework, but departs from it in two ways: by introducing more realistic soil dynamics, including a carrying capacity for soil communities, and by applying a separation of timescales, under the assumption that soil dynamics are very rapid compared to plant dynamics. Our analysis indicates that the second feature is unable to account for stabilisation. Regardless of the relative rates of plant and soil dynamics, the coexistence equilibrium of the generalised Bever model is never attractive (see also Figures S2 and S3). This is a fundamental feature of the model structure, not a result of particular parameter choices. When oscillations do exist in the Bever model, they are always neutral, meaning that their amplitude is fixed by the initial conditions of the system, and cannot diminish through the dynamics. These observations make clear that the crucial factor driving coexistence in the model of Eppinga, Mack and colleagues is self-regulation within soil communities, not rapid soil dynamics.

Indeed, our analysis suggests that the internal dynamics of plant or soil communities must interact with PSFs to maintain diversity in natural systems. We have shown that PSF models that are structurally similar to the Bever model—in which plant dynamics depend only on soil frequencies, and soil dynamics depend only on plant frequencies—are incapable of exhibiting stable coexistence of any number of species. Multispecies coexistence becomes possible when plants (Bever, 2003; Revilla et al., 2013), soils (Eppinga et al., 2018; Mack et al., 2019), or both experience an independent source of self-regulation, which might arise from resource competition, physical limits to density or some other mechanism. PSFs are likely to matter most for the maintenance of diversity when they interact with these internal plant or soil dynamics in non-trivial ways. In the case of combined plant competition-feedback models (Bever, 2003), for example, we have already seen that no robust coexistence is possible when plants are competitively equivalent and

FIGURE 3 Coexistence of three or more species is not robust. It is possible to obtain neutrally stable oscillations with any number of plant species if the model parameters constitute a rescaled zero-sum game (see text for conditions). Here, for example, we show sustained oscillations with 4 plant species (soil frequencies not shown) using fine-tuned parameters, \(A_u \) (left). However, if we randomly perturb \(A_u \) by a small amount to obtain new parameters, \(A_p \), the dynamics quickly collapse to a two-species subset (right). Any slight perturbation is enough to disrupt coexistence; for this example, the parameters \(A_u \) and \(A_p \) are highly correlated (inset) and differ in value by less than 3% on average.
experience ‘mean-field’ interactions. On the other hand, when plant competition is dominated by strong intraspecific interactions, all plant species would coexist even in the absence of PSFs. Thus, PSFs can only contribute to the maintenance of diversity in such models by modifying competitive outcomes (Bever, 2003; Kandlikar et al., 2019; Revilla et al., 2013)— that is, by interacting with the structure of the plant-plant competitive network.

These conclusions have practical implications for the study of PSFs in real-world communities. The predictions of the Bever model are commonly used to guide the design and analysis of PSF experiments, especially in drawing conclusions about coexistence. Our analysis cautions that direct application of this model in multispecies communities might lead to incorrect inference. For example, attempts to parameterise the Bever model for three species using empirical data have produced predictions of non-coexistence in plant communities that coexist experimentally (Kulmatiski et al., 2011). In many other studies, the interaction coefficient, I_n, is calculated for species pairs and used to assess whole-community coexistence (Bauer et al., 2017; Crawford et al., 2019; Fitzsimons & Miller, 2010; Kuebbing et al., 2015; Kulmatiski et al., 2008; Pendergast et al., 2013; Pizano et al., 2019; Smith & Reynolds, 2015; Suding et al., 2013). However, we have seen that whole-community coexistence is virtually impossible within the generalised model, and there is no guarantee that the pairwise coexistence conditions for this model will agree with n-species coexistence conditions in other frameworks (but see Mangan et al. (2010); Eppinga et al. (2018)). For example, $I_j < 0$ for all species pairs is neither necessary nor sufficient to produce coexistence in a metapopulation-based model for PSFs (Miller & Allesina, 2021).

Theory suggests that when PSFs do play a role in maintaining robust coexistence, interactions between plants and soil will necessarily be only part of the picture. On this point, we echo calls that have emerged in the empirical literature for more closely integrated study of processes and other ecosystem processes. On this point, we echo calls that have emerged in the empirical literature for more closely integrated study of PSFs and other processes, such as plant competition (Casper & Castelli, 2007; Lekberg et al., 2018) and more detailed soil biology (Bever et al., 2010; Hodge & Fitter, 2013). Our results strongly suggest that pairwise PSF measurements are insufficient to characterise plant coexistence and require contextualisation alongside these other ecosystem processes.

Fundamentally, our analysis demonstrates that PSFs as envisioned in the classic Bever model cannot produce robust n-species coexistence in isolation. Our results also indicate basic structural features that are necessary for PSF models to support multispecies coexistence. Significantly, we find not only the absence of stabilisation in the Bever model, but generic instability. This suggests that, in diverse communities, other processes must exert a sufficiently strong influence on the community dynamics to overcome the baseline instability. We illustrate this idea in the Supplemental Methods, where we examine the effect of adding negative frequency dependence in the classic Bever model. Any amount of frequency dependence stabilises neutral oscillations, but when these effects are weak, they cannot turn unstable equilibria into stable ones. The result is that the augmented model can only support multispecies coexistence when the rescaled zero-sum game condition is met, and, as we have shown, this condition is never robust to small parameter variations.

In this example, we consider negative frequency dependence, rather than density dependence (as in Bever, 2003), because it is difficult to compare the strengths of processes that mix units of frequency and density. This difficulty hints at a central limitation of classic PSF models, which are derived by projecting dynamics for plant and soil abundances onto the space of frequencies. (Eppinga et al., 2018; Ke & Wan, 2020; Kulmatiski et al., 2011; Revilla et al., 2013). The projected dynamics can mask unbiological outcomes in the original model (e.g. relative abundances oscillate around equilibrium while absolute abundances shrink to zero or explode to infinity). Indeed, the absolute abundance model (Equation 4) used to derive our n-species frequency dynamics (Equations 5 and 6) does not generally possess any fixed point, which is a basic requirement for species coexistence (Hutson, 1990; Hutson & Schmitt, 1992). The same is true for the model introduced by Eppinga et al. (2018) and Mack et al. (2019), even though this model exhibits stable dynamics for plant and soil frequencies. It is usually seen as desirable to study PSFs in the space of species frequencies, both because this facilitates connections to data, and because frequencies are considered appropriate units for analysing processes that stabilise coexistence (Adler et al. (2007); Eppinga et al. (2018), but see Kandlikar et al. (2019); Ke and Wan (2020)). But models that introduce frequencies through a natural constraint, such as competition for finite space, will likely produce more realistic and straightforwardly interpretable dynamics.

From a broader theoretical perspective, the qualitative change in model behaviour that we observe as the number of species increases from two to three or more is a striking phenomenon, but not an unprecedented one. Ecologists have repeatedly found that intuitions from two-species models can generalise (or fail to generalise) to more diverse communities in surprising ways (Barabási et al., 2016; Smale, 1976; Strobeck, 1973). Our analysis provides another illustration of the fact that ‘more is different’ (Anderson, 1972) in ecology, and highlights the importance of developing theory for species-rich communities.

ACKNOWLEDGEMENTS

We thank Joy Bergelson for helpful comments and three anonymous reviewers for feedback that improved and broadened the text.
AUTHOR CONTRIBUTIONS
ZRM and SA performed the mathematical analysis, and PLA implemented the numerical simulations. ZRM wrote the manuscript, and all authors edited and discussed the text.

PEER REVIEW
The peer review history for this article is available at https://publons.com/publon/10.1111/ele.14027.

DATA AVAILABILITY STATEMENT
Code for reproducing the numerical simulations is archived at https://doi.org/10.5281/zenodo.6502919.

ORCID
Zachary R. Miller @ https://orcid.org/0000-0001-9762-8301
Pablo Lechón-Alonso @ https://orcid.org/0000-0003-2229-4778
Stefano Allesina @ https://orcid.org/0000-0003-0313-8374

REFERENCES
Abbott, K.C., Eppinga, M.B., Umbanhowar, J., Baudena, M. & Bever, J.D. (2021) Microbiome influence on host community dynamics: conceptual integration of microbiome feedback with classical host–microbe theory. Ecology Letters, 24, 2796–2811.

Adler, P.B., HilleRisLambers, J. & Levine, J.M. (2007) A niche for neutrality. Ecology Letters, 10, 95–104.

Anderson, P.W. (1972) More is different. Science, 177, 393–396.

Arfken, G. (1985) Mathematical methods for physicists. Academic Press.

Barabás, G., Michalska-Smith, J. & Allesina, S. (2016) The effect of intra- and interspecific competition on coexistence in multispecies communities. The American Naturalist, 188, E1–E12.

Bauer, J.T., Blumenthal, N., Miller, A.J., Ferguson, J.K. & Reynolds, H.L. (2017) Effects of between-site variation in soil microbial communities and plant-soil feedbacks on the productivity and composition of plant communities. Journal of Applied Ecology, 54, 1028–1039.

Bennett, J.A. & Klironomos, J. (2019) Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. New Phytologist, 222, 91–96.

Bever, J.D. (1992) Ecological and evolutionary dynamics between plants and their soil community. Duke University.

Bever, J.D. (1994) Feedback between plants and their soil communities in an old field community. Ecology, 75, 1965–1977.

Bever, J. (1999) Dynamics within mutualism and the maintenance of diversity: inference from a model of interguild frequency dependence. Ecology Letters, 2, 52–61.

Bever, J.D. (2003) Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 157, 465–473.

Bever, J.D., Dickie, I.A., Facelli, E., Facelli, J.M., Klironomos, J., Moora, M., et al. (2010) Rooting theories of plant community ecology in microbial interactions. Trends in Ecology & Evolution, 25, 468–478.

Bever, J.D., Mangan, S.A. & Alexander, H.M. (2015) Maintenance of plant species diversity by pathogens. Annual Review of Ecology, Evolution, and Systematics, 46, 305–325.

Bever, J.D., Westover, K.M. & Antonovics, J. (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology, 561–573.

Bonanomi, G., Giannino, F. & Mazzoleni, S. (2005) Negative plant–soil feedback and species coexistence. Oikos, 111, 311–321.

Casper, B.B. & Castelli, J.P. (2007) Evaluating plant–soil feedback together with competition in a serpentine grassland. Ecology Letters, 10, 394–400.

Crawford, K.M., Bauer, J.T., Comita, L.S., Eppinga, M.B., Johnson, D.J., Mangan, S.A. et al. (2019) When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecology Letters, 22, 1274–1284.

Cressman, R. & Tao, Y. (2014) The replicator equation and other game dynamics. Proceedings of the National Academy of Sciences, 111, 10810–10817.

Eppinga, M.B., Baudena, M., Johnson, D.J., Jiang, J., Mack, K.M., Strand, A.E. et al. (2018) Frequency-dependent feedback constrains plant community coexistence. Nature Ecology & Evolution, 2, 1403–1407.

Eppinga, M.B., Rietkerk, M., Dekker, S.C., De Ruiter, P.C., Van der Putten, W.H. & Van der Putten, W.H. (2006) Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions. Oikos, 114, 168–176.

Eppstein, M.J. & Molofsky, J. (2007) Invasiveness in plant communities with feedbacks. Ecology Letters, 10, 253–263.

Eshel, I. & Akin, E. (1983) Coevolutionary instability of mixed nash solutions. Journal of Mathematical Biology, 18, 123–133.

Fitzsimons, M.S. & Miller, R.M. (2010) The importance of soil microorganisms for maintaining diverse plant communities in tallgrass prairie. American Journal of Botany, 97, 1937–1943.

Friedman, D. (1991) Evolutionary games in economics. Econometrica: Journal of the Econometric Society, 673–666.

Hodge, A. & Fitter, A.H. (2013) Microbial mediation of plant competition and community structure. Functional Ecology, 27, 865–875.

Hofbauer, J. (1996) Evolutionary dynamics for bimatrix games: a hamiltonian system? Journal of Mathematical Biology, 34, 675–688.

Hofbauer, J. (2011) Deterministic evolutionary game dynamics. In: Evolutionary Game Dynamics. American Mathematical Society Providence, RI, 69, 61–79.

Hofbauer, J. & Sigmund, K. (1998) Evolutionary games and population dynamics. Cambridge University Press.

Hutson, V. (1990) The existence of an equilibrium for permanent systems. The Rocky Mountain Journal of Mathematics, 1033–1040.

Hutson, V. & Schmitt, K. (1992) Permanence and the dynamics of biological systems. Mathematical Biosciences, 111, 1–71.

Kandikar, G.S., Johnson, C.A., Yan, X., Kraft, N.J. & Levine, J.M. (2019) Winning and losing with microbes: how microbially mediated fitness differences influence plant diversity. Ecology Letters, 22, 1178–1191.

Ke, P.J. & Miki, T. (2015) Incorporating the soil environment and microbial community into plant competition theory. Frontiers in Microbiology, 6, 1066.

Ke, P.J. & Wan, J. (2020) Effects of soil microbes on plant competition: a perspective from modern coexistence theory. Ecological Monographs, 90, e01391.

Klironomos, J.N. (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature, 417, 67–70.

Kuebbing, S.E., Classen, A.T., Call, J.J., Henning, J.A. & Simberloff, D. (2015) Plant–soil interactions promote co-occurrence of three nonnative woody shrubs. Ecology, 96, 2289–2299.

Kulmatiski, A., Beard, K.H., Stevens, J.R. & Cobbold, S.M. (2008) Plant–soil feedbacks: a meta-analytical review. Ecology Letters, 11, 980–992.

Kulmatiski, A., Heavlin, J. & Beard, K.H. (2011) Testing predictions of a three-species plant–soil feedback model. Journal of Ecology, 99, 542–550.

Lekberg, Y., Bever, J.D., Bunn, R.A., Callaway, R.M., Hart, M.M., Kivlin, S.N. et al. (2018) Relative importance of competition and plant-soil feedback, their synergy, context dependency and implications for coexistence. Ecology Letters, 21, 1268–1281.

Mack, K.M., Eppinga, M.B. & Bever, J.D. (2019) Plant-soil feedbacks promote coexistence and resilience in multi-species communities. PLoS One, 14, e0211572.

Mangan, S.A., Schnitzer, S.A., Herre, E.A., Mack, K.M., Valencia, M.C., Sanchez, E.I. et al. (2010) Negative plant-soil feedback...
predicts tree-species relative abundance in a tropical forest. Nature, 466, 752–755.

Miller, Z.R. & Allesina, S. (2021) Metapopulations with habitat modification. Proceedings of the National Academy of Sciences, 118.

Molofsky, J., Bever, J.D., Antonovics, J. & Newman, T.J. (2002) Negative frequency dependence and the importance of spatial scale. Ecology, 83, 21–27.

Pendergast, T.H. IV, Burke, D.J. & Carson, W.P. (2013) Belowground biotic complexity drives aboveground dynamics: a test of the soil community feedback model. New Phytologist, 197, 1300–1310.

Pernilla Brinkman, E., Van der Putten, W.H., Bakker, E.J. & Verhoeven, K.J. (2010) Plant–soil feedback: experimental approaches, statistical analyses and ecological interpretations. Journal of Ecology, 98, 1063–1073.

Petermann, J.S., Fergus, A.J., Turnbull, L.A. & Schmid, B. (2008) Janzen-Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology, 89, 2399–2406.

Pizano, C., Kitajima, K., Graham, J.H. & Mangan, S.A. (2019) Negative plant–soil feedbacks are stronger in agricultural habitats than in forest fragments in the tropical andes. Ecology, 100, e02850.

Revilla, T.A., Veen, G.C., Eppinga, M.B. & Weissing, F.J. (2013) Plant–soil feedbacks and the coexistence of competing plants. Theoretical Ecology, 6, 99–113.

Selten, R. (1988). A note on evolutionarily stable strategies in asymmetric animal conflicts. In: Models of Strategic Rationality. Springer, pp. 67–75.

Smale, S. (1976) On the differential equations of species in competition. Journal of Mathematical Biology, 3, 5–7.

Smith, L.M. & Reynolds, H.L. (2015) Plant–soil feedbacks shift from negative to positive with decreasing light in forest understory species. Ecology, 96, 2523–2532.

Strobeck, C. (1973) N species competition. Ecology, 54, 650–654.

Suding, K.N., Harpole, W.S., Fukami, T., Kulmatiski, A., MacDougall, A.S., Stein, C. et al. (2013) Consequences of plant–soil feedbacks in invasion. Journal of Ecology, 101, 298–308.

Taylor, P.D. (1979) Evolutionarily stable strategies with two types of player. Journal of Applied Probability, 16, 76–83.

Umbanhowar, J. & McCann, K. (2005) Simple rules for the coexistence and competitive dominance of plants mediated by mycorrhizal fungi. Ecology Letters, 8, 247–252.

Van der Putten, W.H., Bardgett, R.D., Bever, J.D., Bezemer, T.M., Casper, B.B., Fukami, T. et al. (2013) Plant–soil feedbacks: the past, the present and future challenges. Journal of Ecology, 101, 265–276.

Van der Putten, W.H., Bardgett, R.D., de Ruiter, P.C., Hol, W.H.G., Meyer, K.M., Bezemer, T.M. et al. (2009) Empirical and theoretical challenges in aboveground–belowground ecology. Oecologia, 161, 1–14.

Van der Putten, W.H., Van Dijk, C. & Peters, B. (1993) Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature, 362, 53–56.

Volterra, V. (1926) Variazioni e fluttuazioni del numero d'individui in specie animali conviventi. Memorie Della Regia Accademia Nazionale Dei Lincei, 2, 31–113.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.