A Novel Balanced-Lethal Host-Vector System Based on glmS

Kwangsoo Kim1, Jae Ho Jeong1, Daejin Lim1, Yeongjin Hong1, Misun Yun2, Jung-Joon Min2, Sahng-June Kwak3, Hyon E. Choy1*

1 Department of Microbiology, Chonnam National University Medical School, Dong-gu, Gwangju, Republic of Korea, 2 Department of Nuclear Medicine, Chonnam National University Medical School, Dong-gu, Gwangju, Republic of Korea, 3 Department of Biochemistry, Dankook University Medical College, Chungnam, Cheonan, Anseo, Korea

Abstract

During the last decade, an increasing number of papers have described the use of various genera of bacteria, including E. coli and S. typhimurium, in the treatment of cancer. This is primarily due to the facts that not only are these bacteria capable of accumulating in the tumor mass, but they can also be engineered to deliver specific therapeutic proteins directly to the tumor site. However, a major obstacle exists in that bacteria because the plasmid carrying the therapeutic gene is not needed for bacterial survival, these plasmids are often lost from the bacteria. Here, we report the development of a balanced-lethal host-vector system based on deletion of the glmS gene in E. coli and S. typhimurium. This system takes advantage of the phenotype of the GlmS− mutant, which undergoes lysis in animal systems that lack the nutrients required for proliferation of the mutant bacteria, D-glucosamine (GlcN) or N-acetyl-D-glucosamine (GlcNAc), components necessary for peptidoglycan synthesis. We demonstrate that plasmids carrying a glmS gene (GlmS+p) complemented the phenotype of the GlmS− mutant, and that GlmS+p was maintained faithfully both in vitro and in an animal system in the absence of selection pressure. This was further verified by bioluminescent signals from GlmS+pLux carried in bacteria that accumulated in grafted tumor tissue in a mouse model. The signal was up to several hundred-fold stronger than that from the control plasmid, pLux, due to faithful maintenance of the plasmid. We believe this system will allow to package a therapeutic gene onto an expression plasmid for bacterial delivery to the tumor site without subsequent loss of plasmid expression as well as to quantify bioluminescent bacteria using in vivo imaging by providing a direct correlation between photon flux and bacterial number.

Citation: Kim K, Jeong JH, Lim D, Hong Y, Yun M, et al. (2013) A Novel Balanced-Lethal Host-Vector System Based on glmS. PLoS ONE 8(3): e60511. doi:10.1371/journal.pone.0060511

Editor: Hiroshi Shiku, Mie University Graduate School of Medicine, Japan

Received July 3, 2012; Accepted February 28, 2013; Published March 28, 2013

Copyright: © 2013 Kim et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Intelligent Synthetic Biology Center of the Global Frontier Project funded by the Ministry of Education, Science, and Technology (MEST) (2011- 0031958). JJM was supported by the National Research Foundation of Korea (NRF) (No. 2012-0006072). YH was supported by the Pioneer Research Center Program “Bacteriobot” through NRF funded by the Ministry of Education, Science, and Technology (MEST) (2012- 0001031). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: hyonchoy@jnu.ac.kr

Introduction

Cancer therapy using bacteria takes advantage of multiple types of bacteria, including Salmonella, Escherichia, Clostridium, Proteus and Streptococcus, due to their tendency to accumulate preferentially in tumor tissue, although the mechanism that mediates this remains unknown [1]. Another obvious advantage of the use of bacteria as antitumor agents is that they can be engineered to deliver a specific protein of interest directly to the tumor mass. This feature makes bacterial therapy attractive compared to other therapies, including chemotherapy and radiation therapies, which are often toxic to normal cells.

Our laboratory has been developing bacterial therapy using E. coli and the non-virulent strain Salmonella typhimurium, which is defective in ppGpp synthesis, [2,3] to deliver therapeutic/bio-imaging proteins specifically to tumors masses in murine models [4–6]. In general, the expression of cargo proteins in these bacterial strains is achieved by introducing recombinant plasmids carrying genes encoding the desired proteins. Therefore, plasmid stability is the most critical parameter for the successful delivery of cargo proteins into the tumor mass. However, the use of antibiotic resistance genes as a selective determinant for plasmid maintenance is impractical in vivo. This problem was first addressed by the construction of a balanced-lethal system in which the asd gene of St. mutans was introduced in a plasmid that complements an asd mutation in the chromosome of the Salmonella strain [7]. The asd gene encodes aspartate-semialdehyde dehydrogenase, an enzyme required for the synthesis of diaminopimelic acid (DAP), an essential component of the cell wall peptidoglycan of Gram-negative bacteria [8]. In the absence of DAP, asd mutants quickly undergo lysis. Since DAP is not present in mammalian tissues, this balanced-lethal system ensures that all surviving asd mutant Salmonellae carry the recombinant Asd+ plasmid [7].

In this study, we describe the development of a balanced-lethal host system based on an enzyme essential for peptidoglycan synthesis in E. coli and S. typhimurium. The amino sugars D-glucosamine (GlcN) and N-acetyl-D-glucosamine (GlcNAc) are essential components of the peptidoglycans of bacterial cell walls and the lipopolysaccharides of the outer membrane in Gram-negative bacteria. Genes for both the uptake [9] and metabolism
[10,11] of these amino sugars are encoded by five genes of the nag regulon [12,13] [14]. In the absence of these amino sugars, bacteria must synthesize glucosamine-6-phosphate (GlcN-6-P) from fructose-6-phosphate and glutamine via the enzyme glucosamine-6-phosphate synthase (L-glutamine: D-fructose-6-phosphateamidotransferase; EC 2.6.1.16), which is encoded by the gene glmS. GlcN-6-P is then converted to GlcN-1-P by GlmM and subsequently acetylated to yield UDP-GlcNAc by GlmU.

UDP-GlcNAc is the primary cytoplasmic intermediate in the synthesis of lipid A and peptidoglycan [15]. Mutant bacteria defective in the synthesis of these intermediates are strictly dependent on the presence of exogenous GlcN or GlcNac.

Elimination of these compounds from culture conditions causes a rapid loss of viability and cell lysis [16–18]. Thus, we constructed a wild-type bacteria failed to accumulate in tumor tissue in a murine model provided by J. Plumbridge (France). The method developed by Datsenko and Wanner [20]. A typhimurium (SKS1001) was constructed from SCH2005 (14028s) by the method developed by Datsenko and Wanner [20].

The bacterial strains and constructions

Bacterial strains and constructions

The bacterial strains used in this study are summarized in Table 1. All E. coli strains were derived from the MG1655 background. The GlmS− mutant strain (IBCP750) was kindly provided by J. Plumbridge (France). The glmS::tn was transferred to test strains by P1 phage [19]. The streptomycin resistant strain (CH1436) was obtained from colonies grown on LB plates containing streptomycin (10 μg/mL). The GlmS− mutant strain of E. coli (S. typhimurium) (SKS1001) was obtained from colonies grown on LB plates containing streptomycin (10 μg/mL). The GlmS− mutant strain of E. coli (S. typhimurium) (SKS1001) was obtained from colonies grown on LB plates containing streptomycin (10 μg/mL).

Plasmids

The luminescence-expressing plasmid (pLux) was previously described [5]. Briefly, pLux containing the lux operon (luxCDABE) of Photobacterium leiognathi was inserted into the pUC19 plasmid backbone using an XbaI restriction enzyme site [21]. The original pLux contains 9.5 kb of the lux operon and approximately 700 bp of unknown sequence upstream. The unknown sequence was replaced by the lac promoter sequence as follows. The lux operon without the upstream sequence was PCR-amplified using two primers: lux1 (5′-GGGAAATTCATAGCCGATCACCACTACACAATG-GCCGACCCCACTACACAATTG-3′) and lux2 (5′-GGGCTGACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTA-3′). This 8.8 kb DNA fragment was digested with XbaI and EcoRI and ligated into the same site in the pUC19 vector, generating pLux.

The expression vector for glmS was constructed as follows. The glmS gene was amplified from E. coli genomic DNA using the forward primer 5′-GGGAAATTCATAGCCGATCACCACTACACAATG-GCCGACCCCACTACACAATTG-3′ and the reverse primer 5′-GGGCTGACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTA-3′. This 1.8 kb fragment was digested with HindIII and XbaI and ligated into the same site in the pUC19 vector, generating pLux.

To construct a plasmid containing both the lux operon cassette and glmS, the glmS gene from E. coli (MG1655) was amplified by PCR using the forward primer 5′-AAATCGACTGTTGGC-GAATTGTTGGC-3′ and the reverse primer 5′-GGGCTGACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTA-3′. This 1.8 kb fragment was digested with SmaI and ligated into the same site in the pUC19 vector, generating pLux.

The glmS gene of S. typhimurium (glmS) was amplified with the forward primer 5′-GGGCTGACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTACGCTA-3′ and the reverse primer 5′-GGGAAATTCATAGCCGATCACCACTACACAATG-GCCGACCCCACTACACAATTG-3′. This 1.8 kb fragment was digested with SmaI and ligated into the same site in the pUA24 vector, generating pLux.

To construct a plasmid containing both the lux cassette and glmS, the glmS gene from the genomic DNA of 14028s was amplified by PCR. This 1.8 kb fragment was digested with SmaI and ligated into the same site in the pUA24 vector, generating pLux.

Bacterial growth conditions

Bacteria were grown in Luria–Bertani (LB) medium (Difco Laboratories, USA) containing 1% NaCl or M9 minimal medium supplemented with 0.2% glucose, 1 μg/mL thiamine, and 1 μg/mL calcium pantothenate. For solid support medium, 1.5%-bacto agar was included. All media were supplemented with antibiotics as follows: ampicillin at 100 μg/mL, tetracycline 15 μg/mL and streptomycin 10 μg/mL. When needed, N-acetyl-D-glucosamine (GlcNAc) was added (100 μg/mL).

Plasmid Maintenance

Materials and Methods

Cell culture

HeLa, 4T-1, and CT26 cell lines were grown in high-glucose Dulbecco’s modified Eagle medium (DMEM), and ASPC1 in RPMI1640 medium, both containing 10% FBS and 1% penicillin-streptomycin.

Isolation and culture of peritoneal macrophages

Peritoneal macrophages were isolated from BALB/c and BALB/c athymic nu/nu mice (20–30 g body weight) purchased from the Samtako Company, Korea. Peritoneal macrophages were harvested from mice 3 days after intraperitoneal injection of thioglycollate (2 mL, 4%) and plated in DMEM containing 10% FBS. After 4 hours incubation at 37°C, non-adherent cells were removed and adherent cells were used for experiments.
Salmonella invasion assay

Bacterial invasion assays were performed as described previously. Overnight cultures of *S. typhimurium* (14028S) were grown at 37°C in Luria-broth (LB) medium. *S. typhimurium* was inoculated into fresh cultures and grown for 4 hrs at 37°C, and then resuspended at the appropriate dilution in cell culture medium for infection of cell monolayers at an MOI 1:10 for 30 min. Cells (1×10^6) were seeded in 24-well plates and grown in DMEM with 10% FBS at 37°C in a 5% CO₂ incubator. Infected cells were washed three times with PBS (pH 7.4). DMEM containing gentamicin (10 μg/ml; Sigma Chemical) was added, and the mixtures were incubated for 30 min. Intracellular bacteria were harvested by extraction with lysis buffer (0.05% Triton X-100 in PBS, pH 7.4) in triplicate for colony counting on brain–heart infusion agar plates supplemented with GlcNAc.

Protein preparation and Western blot analysis

Protein samples were boiled for 5 min and separated by SDS-PAGE. The separated proteins were then transferred electrophoretically to a nitrocellulose membrane. The membrane was blocked with 5% skim milk and probed with a mouse anti-GFP antibody (1:5000; Sigma-Aldrich, UK) at 4°C overnight. The membrane was then incubated with anti-mouse IgG antibody linked to horseradish peroxidase (Sigma-Aldrich, UK) for 1 hr and bound proteins were visualized by ECL (Amersham Biosciences).

The bacterial spent media and bacterial pellets were prepared as follows: the pellets were lysed by sonication in phosphate-buffer saline with lysis buffer (10 mM lysozyme, 10% SDS). The spent media were filtered (0.22 μm pore filter) and the proteins were precipitated with 10% trichloroacetic acid (1 hr, 4°C).

Measurement of plasmid stability

Overnight cultures were subcultured in fresh media (1/1000) without ampicillin every 12 hours for 4 days. Samples were taken every 24 hrs and serially diluted in sterile 0.9% NaCl, and appropriate volumes were spread in triplicate on LB agar plate containing GlcNAc with or without ampicillin. The number of colonies was used to calculate the concentration of total viable cells and the percentage of plasmid-carrying bacteria.

β-galactosidase assay

β-galactosidase assay was performed as described by Miller [22] using bacterial pellets that were permeabilized with Koch’s lysis solution [23] or filtered spent media. Formation of ONP was determined as A420/min/ml.

Animal model

Five- to six-week-old male BALB/c (for 4T-1 and CT26) and BALB/c athymic nu/nu mice (for ASPC1) (20–30 g body weight) were purchased from the Samtako Company, Korea. All animal care, experiments, and euthanasia were performed in accordance with protocols approved by the Chonnam National University Animal Research Committee. Animals were anesthetized with isoflurane (2%) during imaging or a mixture of ketamine (200 mg kg⁻¹) and xylasine (10 mg kg⁻¹) for surgery. Mice carrying subcutaneous tumors were generated as follows: in vivo cultured tumor cells were harvested, suspended in 100 μl PBS and injected subcutaneously into the right thigh of each mouse: 1×10⁶ cells for 4T-1 and CT26, and 1×10⁷ cells for ASPC1. Tumor volumes (mm³) were estimated using the formula (L × H × W)/2 where L is the length, W is the width, and H is the height of the tumor in millimeters [21].

Table 1. Bacterial strains and plasmids used in this study.

Strains	Description	Reference or source
E. coli	Wild type (E.coli K-12)	ATCC
MG1655		
CH1018	Amp/lac	Kim, et al. [36]
HJ1020	aid	Gallan, et al. [7]
IBPC750	glmS::tet	J.Plumbidge (FR)
CH1436	Streptomycin resistant CH1018	This work
CKS1001	CH1436, glmS::tet	This work
glmS::p	pUC19 containing glmS (of E. coli)	This work
pGFP	pUC19 containing GFP	Clontech
glmS::pGFP	pUC19 containing GFP	This work
pLux	pUC19 containing LacP::LuxCDABE	This work
glmS::pLux	pUC19 containing LacP::LuxCDABE	This work

Salmonella invasion assay

Bacterial invasion assays were performed as described previously. Overnight cultures of *S. typhimurium* (14028S) were grown at 37°C in Luria-broth (LB) medium. *S. typhimurium* was inoculated into fresh cultures and grown for 4 hrs at 37°C, and then resuspended at the appropriate dilution in cell culture medium for infection of cell monolayers at an MOI 1:10 for 30 min. Cells (1×10^6) were seeded in 24-well plates and grown in DMEM with 10% FBS at 37°C in a 5% CO₂ incubator. Infected cells were washed three times with PBS (pH 7.4). DMEM containing gentamicin (10 μg/ml; Sigma Chemical) was added, and the mixtures were incubated for 30 min. Intracellular bacteria were harvested by extraction with lysis buffer (0.05% Triton X-100 in PBS, pH 7.4) in triplicate for colony counting on brain–heart infusion agar plates supplemented with GlcNAc.

Protein preparation and Western blot analysis

Protein samples were boiled for 5 min and separated by SDS-PAGE. The separated proteins were then transferred electrophoretically to a nitrocellulose membrane. The membrane was blocked with 5% skim milk and probed with a mouse anti-GFP antibody (1:5000; Sigma-Aldrich, UK) at 4°C overnight. The membrane was then incubated with anti-mouse IgG antibody linked to horseradish peroxidase (Sigma-Aldrich, UK) for 1 hr and bound proteins were visualized by ECL (Amersham Biosciences).

The bacterial spent media and bacterial pellets were prepared as follows: the pellets were lysed by sonication in phosphate-buffer saline with lysis buffer (10 mM lysozyme, 10% SDS). The spent media were filtered (0.22 μm pore filter) and the proteins were precipitated with 10% trichloroacetic acid (1 hr, 4°C).
Injection of bacteria into animals

Bioluminescent *E. coli* or *S. typhimurium* (1×10⁶) suspended in 100 µl PBS were injected intravenously into tumor-bearing mice through the lateral tail vein using a 1 cc insulin syringe [21].

Optical bioluminescence imaging

To image bacterial bioluminescence, anesthetized animals were placed in the light-tight chamber of the IVIS100 (Caliper, Hopkinton, MA, USA) equipped with a cooled charged coupling detector (CCD) camera. Photons emitted from luciferase-expressing bacteria were collected and integrated over one-minute periods. Pseudocolor images representing photon counts were overlaid on photographs of the mice using Living Image software v. 2.25 (Caliper, Hopkinton, MA). A region of interest (ROI) was selected manually based on signal intensity. The area of the ROI was kept constant, and the intensity was recorded as the maximum number of photons (photons s⁻¹ cm⁻² sr⁻¹) within a ROI [21].

Preparation of tissue extracts

Spleen and liver extracts of mice were prepared by adding organ homogenates directly to M9 media. The bone marrow extract was prepared from cancellous bone and marrow cavity of pig femur. The tissue sample was lysed using French pressure lysis solution) [23]. A₄₂₀/min/ml (product formation) instead of A₆₀₀ (specific enzyme activity) was determined, since the A₆₀₀ value (cell mass) of the GlmS⁻ mutant would be meaningless due to the significant decrease in CFU (over 10⁴-fold) over the period of 5 hrs. The sum of A₂₅₀/min/ml in the supernatant and pellet was 0.85 for wild-type bacteria and 0.35 for GlmS⁻ mutant bacteria. However, the A₂₅₀/min/ml determined for the GlmS⁻ mutant was predominantly in the supernatant (>98%), while that for the wild type was exclusively in the pellet, suggesting that GlmS⁻ mutant bacteria undergo lysis under these culture conditions. To further verify lysis of the GlmS⁻ mutant in the absence of supplemental GlcNAc, wild type and GlmS⁻ mutant *E. coli* were transformed with pGFP and cultured in minimal media as in Figure 1A. Supernatant and pellet samples were taken at the indicated times and analyzed by Western blot analysis for GFP using a GFP-specific antibody (Fig. 1C). Samples from the culture of GlmS⁻ mutant bacteria (CKS1001) carrying pGFP contained GFP in the supernatant beginning at 1 hr and increasing thereafter, whereas GFP in the pellet was detected only up to the 2 hr time point. Samples from the culture of wild type bacteria (CH1018) carrying pGFP showed GFP exclusively in the pellet for the duration of the experiment.

Based on the above observations, a balanced-lethal host-vector system was constructed in which the glms gene was incorporated into a plasmid that would complement the chromosomal glms mutation. A 1.8 Kb DNA fragment carrying the glms of *E. coli* was obtained by PCR amplification and placed under the control of the lac promoter in a pUC19 plasmid (see Materials and Methods). The Glms⁺ plasmid (*E.coliGlmS⁺*) was used to transform GlmS⁻ mutant bacteria, which were then tested for complementation of the GlmS⁻ mutant phenotype (Fig. 1A). GlmS⁻ mutant bacteria carrying *E.coliGlmS⁺* pGFP were cultured in minimal media and assessed for CFU at the indicated times. The mutant carrying *E.coliGlmS⁺* pGFP survived as well as wild-type bacteria in the absence of supplemental GlcNAc. We also examined the complementation of GlmS⁻ mutant by *E.coliGlmS⁺* pGFP (Fig. 1C). Samples from the culture of GlmS⁻ mutant bacteria carrying *E.coliGlmS⁺* pGFP was analyzed and shown that GFP exclusively in the pellet, similar to wild-type bacteria carrying pGFP. Subsequently, wild-type and GlmS⁻ mutant bacteria were transformed with *E.coliGlmS⁺* pGFP, and maintenance of the plasmid in the absence of antibiotics was determined (Fig. 2). Bacteria were grown in minimal media and subcultured (1:1000) every 12 hrs. Samples were taken on the indicated days to assess plasmid maintenance by plating the bacteria on plates containing ampicillin. In the wild-type background, the plasmid was lost rapidly; 92% by day 2 and over 99% by day 3. In the GlmS⁻ mutant background, no loss of the plasmid was observed for the duration of the experiment (4 days). Clearly, this result demonstrated the feasibility of using glms mutant bacteria in a balanced-lethal system to maintain plasmid expression in the absence of antibiotics.

Characterization of the E. coli GlmS⁺ p vector in vitro

Glms⁻ *E. coli* requires exogenous GlcN/GlcNAc for its survival [24]. GlmS⁻ mutant bacteria was generated and its phenotype was assessed by culturing the mutant strain (CKS1001) in minimal media (M9) (Fig. 1A). Bacteria grown in the presence of supplemental GlcNAc were subcultured into minimal media and samples taken at the indicated times were plated on LB agar plates supplemented with GlcNAc for viable cell counting (Colony Forming Units, CFU). On LB plates, GlmS⁻ mutant bacteria replicated for a few rounds and then underwent lysis, indicating that an insufficient amount of nutrients for survival of GlmS⁻ mutants was present in LB (see below). The assay revealed that the viability of the GlmS⁻ mutant reduced drastically from 10⁹ CFU to 10⁷ CFU over 24 hrs. When GlcNAc was present in the culture media, however, the CFUs of the mutant increased in size, as did those of the wild type. These phenotypes were similar to those previously observed in GlmM⁻ mutant bacteria [25]. Subsequently, the fate of GlmS⁻ mutant bacteria in the absence of supplemental GlcNAc was further examined by determining whether or not bacterial death was due to cell lysis. A GlmS⁻ mutant carrying a plasmid, in which DNA fragment of hdeABp::lacZYA [26] was cloned, was used to determine the degree of bacterial lysis in the absence of GlcNAc (Fig. 1B). Samples were taken 5 hr after subculturing in minimal media and used for β-galactosidase assay of the supernatant (without any additional processing) and in the bacterial pellets (after treatment with cell lysis solution) [23]. A₁₂₀/min/ml (product formation) instead of A₄₀₀/min/ml/A₆₀₀ (specific enzyme activity) was determined, since the A₆₀₀ value (cell mass) of the GlmS⁻ mutant would be meaningless due to the significant decrease in CFU (over 10⁴-fold) over the period of 5 hrs. The sum of A₁₂₀/min/ml in the supernatant and pellet was 0.85 for wild-type bacteria and 0.35 for GlmS⁻ mutant bacteria. However, the A₁₂₀/min/ml determined for the GlmS⁻ mutant was predominantly in the supernatant (>98%), while that for the wild type was exclusively in the pellet, suggesting that GlmS⁻ mutant bacteria undergo lysis under these culture conditions. To further verify lysis of the GlmS⁻ mutant in the absence of supplemental GlcNAc, wild type and GlmS⁻ mutant *E. coli* were transformed with pGFP and cultured in minimal media as in Figure 1A. Supernatant and pellet samples were taken at the indicated times and analyzed by Western blot analysis for GFP using a GFP-specific antibody (Fig. 1C). Samples from the culture of GlmS⁻ mutant bacteria (CKS1001) carrying pGFP contained GFP in the supernatant beginning at 1 hr and increasing thereafter, whereas GFP in the pellet was detected only up to the 2 hr time point. Samples from the culture of wild type bacteria (CH1018) carrying pGFP showed GFP exclusively in the pellet for the duration of the experiment.

Based on the above observations, a balanced-lethal host-vector system was constructed in which the glms gene was incorporated into a plasmid that would complement the chromosomal glms mutation. A 1.8 Kb DNA fragment carrying the glms of *E. coli* was obtained by PCR amplification and placed under the control of the lac promoter in a pUC19 plasmid (see Materials and Methods). The Glms⁺ plasmid (*E.coliGlmS⁺*) was used to transform GlmS⁻ mutant bacteria, which were then tested for complementation of the GlmS⁻ mutant phenotype (Fig. 1A). GlmS⁻ mutant bacteria carrying *E.coliGlmS⁺* pGFP were cultured in minimal media and assessed for CFU at the indicated times. The mutant carrying *E.coliGlmS⁺* pGFP survived as well as wild-type bacteria in the absence of supplemental GlcNAc. We also examined the complementation of GlmS⁻ mutant by *E.coliGlmS⁺* pGFP (Fig. 1C). Samples from the culture of GlmS⁻ mutant bacteria carrying *E.coliGlmS⁺* pGFP was analyzed and shown that GFP exclusively in the pellet, similar to wild-type bacteria carrying pGFP. Subsequently, wild-type and GlmS⁻ mutant bacteria were transformed with *E.coliGlmS⁺* pGFP, and maintenance of the plasmid in the absence of antibiotics was determined (Fig. 2). Bacteria were grown in minimal media and subcultured (1:1000) every 12 hrs. Samples were taken on the indicated days to assess plasmid maintenance by plating the bacteria on plates containing ampicillin. In the wild-type background, the plasmid was lost rapidly; 92% by day 2 and over 99% by day 3. In the GlmS⁻ mutant background, no loss of the plasmid was observed for the duration of the experiment (4 days). Clearly, this result demonstrated the feasibility of using glms mutant bacteria in a balanced-lethal system to maintain plasmid expression in the absence of antibiotics.

Characterization of the E. coli GlmS⁺ p vector in a mouse model

A prerequisite for the use of a balanced-lethal system based on glms would be the absence of a sufficient supply of the nutrients required for the proliferation of GlmS⁻ mutant bacteria in an animal system. Since it has been shown that many bacterial species, including *E. coli*, are capable of targeting [4] and proliferating in tumor tissue [1], we assessed the survival capacity of GlmS⁺ bacteria in tumor tissues [21]. A mouse tumor model was created by implanting CT26 mouse colon cancer cells in the right thigh of BALB/c mice. After 14 days, wild-type or GlmS⁻ mutant bacteria (1×10⁸ CFU) with or without *E.coliGlmS⁺* pGFP were injected intravenously into each mouse via the tail vein. For enumeration of the bacteria in the mouse tumor model, a
streptomycin-resistant mutant was generated and the allele was moved to the test strains. This was necessary to correct for contamination or bacteria pre-existing in the mice. Chromosomally-acquired streptomycin resistance is mainly due to mutations in the gene encoding the ribosomal protein S12, \textit{rpsL} [27]. The tumor tissues were sampled on the indicated days, homogenized and spread on LB plates supplemented with GlcNAc and containing streptomycin (Fig. 3). At day 1, approximately equal numbers of bacteria were observed for both wild-type and GlmS2 mutant bacteria (\texttimes 1.6 \times 10^6). While the number of wild-type bacteria increased to approximately 10^9 CFU by day 5, the number of GlmS2 mutant bacteria decreased to approximately 5 \times 10^3 CFU by day 7. In this study, Asd2 mutant bacteria were also enumerated. The number of Asd2 mutant bacteria at day 1 was similar to that of wild-type bacteria, but this value decreased to approximately 5 \times 10^4 CFU by day 7. Taken together, these findings demonstrate that animal systems lack sufficient amounts of the nutrients required for the proliferation of GlmS2 mutant bacteria, similar to Asd2 mutant bacteria. GlmS2 mutant bacteria carrying \textit{E.cGlmS}2p proliferated as well as wild-type bacteria, streptomycin-resistant mutant was generated and the allele was moved to the test strains. This was necessary to correct for contamination or bacteria pre-existing in the mice. Chromosomally-acquired streptomycin resistance is mainly due to mutations in the gene encoding the ribosomal protein S12, \textit{rpsL} [27]. The tumor tissues were sampled on the indicated days, homogenized and spread on LB plates supplemented with GlcNAc and containing streptomycin (Fig. 3). At day 1, approximately equal numbers of bacteria were observed for both wild-type and GlmS2 mutant bacteria (\texttimes 1.6 \times 10^6). While the number of wild-type bacteria increased to approximately 10^9 CFU by day 5, the number of GlmS2 mutant bacteria decreased to approximately 5 \times 10^3 CFU by day 7. In this study, Asd2 mutant bacteria were also enumerated. The number of Asd2 mutant bacteria at day 1 was similar to that of wild-type bacteria, but this value decreased to approximately 5 \times 10^4 CFU by day 7. Taken together, these findings demonstrate that animal systems lack sufficient amounts of the nutrients required for the proliferation of GlmS2 mutant bacteria, similar to Asd2 mutant bacteria. GlmS2 mutant bacteria carrying \textit{E.cGlmS}2p proliferated as well as wild-type bacteria, streptomycin-resistant mutant was generated and the allele was moved to the test strains. This was necessary to correct for contamination or bacteria pre-existing in the mice. Chromosomally-acquired streptomycin resistance is mainly due to mutations in the gene encoding the ribosomal protein S12, \textit{rpsL} [27]. The tumor tissues were sampled on the indicated days, homogenized and spread on LB plates supplemented with GlcNAc and containing streptomycin (Fig. 3). At day 1, approximately equal numbers of bacteria were observed for both wild-type and GlmS2 mutant bacteria (\texttimes 1.6 \times 10^6). While the number of wild-type bacteria increased to approximately 10^9 CFU by day 5, the number of GlmS2 mutant bacteria decreased to approximately 5 \times 10^3 CFU by day 7. In this study, Asd2 mutant bacteria were also enumerated. The number of Asd2 mutant bacteria at day 1 was similar to that of wild-type bacteria, but this value decreased to approximately 5 \times 10^4 CFU by day 7. Taken together, these findings demonstrate that animal systems lack sufficient amounts of the nutrients required for the proliferation of GlmS2 mutant bacteria, similar to Asd2 mutant bacteria. GlmS2 mutant bacteria carrying \textit{E.cGlmS}2p proliferated as well as wild-type bacteria, streptomycin-resistant mutant was generated and the allele was moved to the test strains. This was necessary to correct for contamination or bacteria pre-existing in the mice. Chromosomally-acquired streptomycin resistance is mainly due to mutations in the gene encoding the ribosomal protein S12, \textit{rpsL} [27]. The tumor tissues were sampled on the indicated days, homogenized and spread on LB plates supplemented with GlcNAc and containing streptomycin (Fig. 3). At day 1, approximately equal numbers of bacteria were observed for both wild-type and GlmS2 mutant bacteria (\texttimes 1.6 \times 10^6). While the number of wild-type bacteria increased to approximately 10^9 CFU by day 5, the number of GlmS2 mutant bacteria decreased to approximately 5 \times 10^3 CFU by day 7. In this study, Asd2 mutant bacteria were also enumerated. The number of Asd2 mutant bacteria at day 1 was similar to that of wild-type bacteria, but this value decreased to approximately 5 \times 10^4 CFU by day 7. Taken together, these findings demonstrate that animal systems lack sufficient amounts of the nutrients required for the proliferation of GlmS2 mutant bacteria, similar to Asd2 mutant bacteria. GlmS2 mutant bacteria carrying \textit{E.cGlmS}2p proliferated as well as wild-type bacteria, streptomycin-resistant mutant was generated and the allele was moved to the test strains. This was necessary to correct for contamination or bacteria pre-existing in the mice. Chromosomally-acquired streptomycin resistance is mainly due to mutations in the gene encoding the ribosomal protein S12, \textit{rpsL} [27]. The tumor tissues were sampled on the indicated days, homogenized and spread on LB plates supplemented with GlcNAc and containing streptomycin (Fig. 3). At day 1, approximately equal numbers of bacteria were observed for both wild-type and GlmS2 mutant bacteria (\texttimes 1.6 \times 10^6). While the number of wild-type bacteria increased to approximately 10^9 CFU by day 5, the number of GlmS2 mutant bacteria decreased to approximately 5 \times 10^3 CFU by day 7. In this study, Asd2 mutant bacteria were also enumerated. The number of Asd2 mutant bacteria at day 1 was similar to that of wild-type bacteria, but this value decreased to approximately 5 \times 10^4 CFU by day 7. Taken together, these findings demonstrate that animal systems lack sufficient amounts of the nutrients required for the proliferation of GlmS2 mutant bacteria, similar to Asd2 mutant bacteria. GlmS2 mutant bacteria carrying \textit{E.cGlmS}2p proliferated as well as wild-type bacteria,
demonstrating that the glmS gene on the plasmid was able to complement the chromosomal mutation in an in vivo mouse model.

Our laboratory previously reported a quantitative and noninvasive imaging technique that enables the monitoring of bacterial migration in living subjects [5]. In this technique, bioluminescent bacteria are generated by transforming bacteria with an expression plasmid (pLux) that contains the luxCDABE operon [5,21]. Using this method, a mouse tumor model carrying graft CT26 was injected with wild-type or GlmS+ bacteria carrying E.coli glmS+lux via the tail vein. Expression of the lux gene was monitored using a cooled charge coupled device camera (Fig. 4A). Within 30 min of bacterial injection, bioluminescent signals were detected in the spleens and livers of the mice. At day 1, the signals from both types of bacteria had diminished in the liver but were detected exclusively in the tumor region. It should be noted that the signals from the GlmS+ mutant were significantly stronger than those from wild-type bacteria. Photon fluxes in tumor tissues were measured at the indicated days after the injection (Fig. 4B). The photon flux from GlmS+ mutant bacteria was 10- to 100-fold stronger than that from the wild-type E. coli. This was further confirmed by counting the number of CFU carrying the E.coli glmS+lux (Fig. 4C). Tumor tissues were sampled on the indicated day, homogenized and spread on LB plates containing streptomycin and supplemented with GlcNAc for enumeration of the total number of bacteria, and on plates containing ampicillin and GlcNAc to assess the number of bacteria carrying the plasmid (AmpR). For both types of bacteria, the total number of bacteria increased from 10² at day 1 to 5×10⁹ at day 5, and decreased gradually thereafter. However, the AmpR wild-type bacteria decreased by approximately 50-fold by day 1, and approximately 1000-fold by day 5, and thereafter, while the number of GlmS+ mutant bacteria carrying the plasmid did not decrease. This suggested that the balanced-lethal system using glmS is effective within an animal system.

Characterization of the Salmonella GlmS+ p vector

In addition to E. coli, Salmonella spp. shown to be localized to transplanted tumors in animals has also been extensively developed to carry anti-tumoral cargo proteins [6]. Thus, we attempted to establish a balanced-lethal system in transplanted tumors in animals has also been extensively (CKS1001), GlmS+ mutant bacteria carrying E.coli glmS+lux were tested (Fig. 6B). Enumeration of intracellular bacteria at 0 and 24 hrs indicated that the complemented GlmS+ mutant bacteria invaded HeLa cells and multiplied intracellularly as effectively as wild-type bacteria. The same findings were obtained in peritoneal macrophages (Fig. 6C).

The fidelity of the balanced-lethal system using glmS was tested in vitro using wild-type and GlmS+ mutant Salmonellae carrying E.coli glmS+lux (Fig. 7). In the wild-type background, the E.coli glmS+lux were lost rapidly in the absence of antibiotics. In the GlmS+ mutant background, over 99% of E.coli glmS+lux was lost at day 6 when cultured in media supplemented with GlcNAc, but strictly maintained when cultured in media lacking GlcNAc. Lastly, the Salmonella glmS balanced-lethal system was tested in an animal model with wild-type and GlmS+ mutant Salmonellae carrying E.coli glmS+lux. Since S. typhimurium is highly virulent in rodents, an attenuated strain of S. typhimurium defective in AppGpp synthesis [2,3] was used for in vivo experiments. The ppGpp synthetase and spoT is required for virulence of S. typhimurium [31]. The ppGpp-null mutant (relA::kan, spoT::cat) and the ppGpp-null mutant carrying the glmS mutation, which are both resistant to kanamycin and chloramphenicol, were transformed with ampicillin-resistant plasmid M. Mice carrying graft CT26 (mouse colon cancer) cells were constructed as described previously. After 14 days, AppG ppGpp/GlmS+ Salmonellae carrying E.coli and S. typhimurium glmS genes, respectively.

S. typhimurium is capable of invading and replicating in animal cells [29]. Thus, the characteristics of GlmS+ mutant S. typhimurium was examined in cultured HeLa cells and peritoneal macrophages extracted from BALB/c mice. First, a time course assay was performed, in which intracellular bacteria were enumerated at 3 hr intervals. Wild-type and GlmS+ mutant Salmonellae grown in the presence of GlcNAc were mixed with HeLa cells and intracellular bacteria were counted in the presence of gentamycin (10 μg/ml) [30] (Fig. 6A and B). The number of bacteria that invaded HeLa cells were approximately equal for both wild-type and GlmS+ mutant bacteria (3×10⁴ CFU at T = 0). The number of wild-type Salmonellae started to increase at 6 hrs post-infection and eventually reached 10⁹ CFU at 24 hrs post-infection. Conversely, the number of the GlmS+ mutant Salmonellae started to decline at 6 hrs post-infection and eventually reached less than 10 CFU at 24 hrs post-infection. This result again confirmed that the nutrients necessary for cell wall and membrane synthesis in GlmS+ mutant Salmonellae are not sufficiently present within animal cells. The decline in the number of intracellular GlmS+ mutant bacteria was most likely due to the effects of failed peptidoglycan synthesis, since onset of the decrease coincided with the time at which the number of wild-type bacteria began to increase (T = 6 hr). Subsequently, invasion and intracellular multiplication of GlmS+ mutant Salmonellae transformed with E.coli glmS+plasmid was tested (Fig. 6B). Enumeration of intracellular bacteria at 0 and 24 hrs indicated that the complemented GlmS+ mutant bacteria invaded HeLa cells and multiplied intracellularly as effectively as wild-type bacteria. The same findings were obtained in peritoneal macrophages (Fig. 6C).

The fidelity of the balanced-lethal system using glmS was tested in vitro using wild-type and GlmS+ mutant Salmonellae carrying E.coli glmS+lux (Fig. 7). In the wild-type background, the E.coli glmS+lux were lost rapidly in the absence of antibiotics. In the GlmS+ mutant background, over 99% of E.coli glmS+lux was lost at day 6 when cultured in media supplemented with GlcNAc, but strictly maintained when cultured in media lacking GlcNAc. Lastly, the Salmonella glmS balanced-lethal system was tested in an animal model with wild-type and GlmS+ mutant Salmonellae carrying E.coli glmS+lux. Since S. typhimurium is highly virulent in rodents, an attenuated strain of S. typhimurium defective in AppGpp synthesis [2,3] was used for in vivo experiments. The ppGpp synthetase and spoT is required for virulence of S. typhimurium [31]. The ppGpp-null mutant (relA::kan, spoT::cat) and the ppGpp-null mutant carrying the glmS mutation, which are both resistant to kanamycin and chloramphenicol, were transformed with ampicillin-resistant plasmid M. Mice carrying graft CT26 (mouse colon cancer) cells were constructed as described previously. After 14 days, AppG ppGpp/GlmS+ Salmonellae carrying E.coli glmS+lux (3×10⁴ CFU) were injected intrave-
nously into each mouse via the tail vein. Tumor tissues were sampled on the indicated days, homogenized and spread on LB plates supplemented with GlcNAc containing kanamycin and chloramphenicol and/or ampicillin. Both the total number of bacteria (KanR CatR) and the number of bacteria carrying the plasmid (AmpR) were counted (Fig. 8). The total number of both types of bacteria increased from 10^7 at day 1 to 5×10^9 at day 5 and decreased gradually thereafter. However, the number of AmpR parental bacteria was 50-fold less at day 1, 5000-fold less at day 5 and more than 10,000-fold less at day 12. Conversely, the number of AmpR GlmS2 mutant bacteria was the same as the total number of bacteria. This was further verified using two other tumor models: BALB/c mice carrying 4T-1 (mouse breast cancer) and nude mice carrying ASPC-1 (human pancreatic cancer). The numbers of bacteria carrying the plasmid were counted at day 7 in the homogenized tumor tissue (Table 2). Similarly as with CT26-bearing mice, virtually all GlmS2 mutant Salmonella carried the plasmid, but only $\sim 0.1\%$ wild type Salmonella carried the plasmid irrespective of types of tumor models. These data demonstrated that the Salmonella glmS2 balanced-lethal host-vector system ensured maintenance of the plasmid in the absence of a selective determinant in animals.

Figure 5. Phenotype of GlmS2 mutant S. typhimurium. (A) Growth of GlmS− mutant Salmonella under various media conditions. GlmS− mutant Salmonella (SKS1001, open circles) and the GlmS− mutant Salmonella carrying $^{\Delta}\text{GlmS}p$ (closed circles) grown overnight in LB supplemented with 0.2% GlcNAc were diluted 50-fold in minimal media or media supplemented with 0.2% GlcNAc (open triangles) and grown for 24 hrs. Wild-type parental Salmonella (SCH2005, closed triangles) were grown in the same way in minimal media. Samples were taken at the indicated times for CFU determination on supplemented LB plates.

doi:10.1371/journal.pone.0060511.g005

Figure 4. Maintenance of pLux in E. coli proliferating in tumor tissue. (A) GlmS− mutant bacteria (CKS1001) and parental wild type E. coli (CH1436) carrying $^{\Delta}\text{GlmS}p$Lux were injected into CT26 tumor-bearing mice through the tail vein (1×10^8 CFU). Bioluminescent signals from pLux were monitored at the indicated times using an in vivo imaging system. (B) The photon intensity of the tumor region was plotted as a function of time for GlmS− mutant and wild-type E. coli. The region of interest (ROI) was selected manually over the tumor region and the area was kept constant. Photon intensity was recorded as the maximum intensity (photons s−1 cm−2 sr−1) within the ROI. Data represent the means and SEM of three independent experiments. (C) Tumor tissues were sampled on the indicated days. The total number of bacteria and the number of bacteria carrying $^{\Delta}\text{GlmS}p$Lux was assessed by CFU determination.

doi:10.1371/journal.pone.0060511.g004
Discussion

The system based on the \textit{asd} gene is the most acclaimed balanced-lethal host system [7]. Here, we have demonstrated that, as for the \textit{Asd} - mutant, animal tissues lack the nutrients required for survival of \textit{GlmS} - mutant bacteria (Fig. 3). Since the level of DAP is insufficient in mammalian tissue, the balanced-lethal system of \textit{asd} system coerces multiplying \textit{Asd} - mutant \textit{Salmonella} within the animal to carry the recombinant \textit{Asd} + plasmid [8] [13].

In this study, we presented multiple lines of evidence demonstrating that \textit{GlmS} - mutant \textit{E. coli} and \textit{S. typhimurium} undergo lysis unless GlcNAc is supplied exogenously and/or the bacteria are complemented by an \textit{sE-GlmS} + \textit{p} or \textit{S.tGlmS} + \textit{p} vector, respectively. For the successful application of a balanced-lethal host system based on \textit{glmS}, would be insufficient supply of those intermediates for synthesis of GlcNAc in animal tissues. In mammals, GlcNAc is a component of glycoproteins, proteoglycans, glycosaminoglycans (GAGs) and other connective tissue building blocks [32]. Despite being a building block of biomacromolecules, GlcNAc seldom exists in free form [33]. We determined the growth of \textit{GlmS} - mutant \textit{E. coli} in the presence of bone marrow, spleen, and liver extract, found the supplementations did not support the growth of the mutants (Fig. 9). \textit{GlmS} - mutant \textit{E. coli} required \textasciitilde 50 mM GlcNAc for normal growth. Thus, the necessary intermediates for the synthesis of GlcNAc are present at insufficient levels in these animal tissues to sustain the proliferation of \textit{GlmS} - mutant bacteria. This is consistent with the recent determination, median

Figure 6. Intracellular growth of \textit{GlmS} - mutant \textit{S. typhimurium}. (A) \textasciitilde 5\times 10^5 \text{ CFU} of \textit{GlmS} - mutant (SKS1001) and wild-type (SCH2005) \textit{Salmonella}e grown in LB supplemented with 0.2\% GlcNAc was mixed with HeLa cells. Gentamycin-resistant intracellular \textit{Salmonella} were enumerated by determining the number of CFU at the indicated times. (B) The intracellular \textit{GlmS} - mutant bacteria, \textit{GlmS} - mutant bacteria carrying \textit{sGlmS} + \textit{p}, and wild-type bacteria were enumerated at 0 and 24 hrs in HeLa cells (B) and peritoneal macrophages (C).

doi:10.1371/journal.pone.0060511.g006

Figure 7. Plasmid maintenance in \textit{S. typhimurium} using the \textit{glmS} system \textit{in vitro}. (A) \textit{GlmS} - mutant (SKS1001) \textit{salmonella}e carrying \textit{sGlmS} + \textit{p} were subcultured (1/1000) in minimal media (closed circles) or media supplemented with 0.2\% GlcNAc (open circles) every 12 hrs. The fraction of bacteria carrying \textit{sGlmS} + \textit{p} was determined on the indicated days by the plating method. (B) The same was done with wild-type \textit{Salmonella} (SCH2005) in the absence (open circles) or presence (closed circles) of ampicillin.

doi:10.1371/journal.pone.0060511.g007
endogenous glucosamine concentrations in plasma and synovial fluid in human were 0.29 μM and 0.21 μM, respectively [34].

Lytic cell death of GlmS in the absence of GlcNAc supply was demonstrated to be due to leakage of cellular contents (Figs. 2 and 4). It should be noted that bacteria apparently fail to detect the absence of the building blocks necessary for membrane synthesis and continue to expand until they undergo lysis. This is in contrast to the situation that occurs in the absence of sufficient supply of amino acids or nucleotides, under which conditions bacteria cease proliferation through the accumulation of ΔppGpp [27]. The balanced-lethal host-vector system takes advantage of this phenomenon to ensure that the bacteria maintain the plasmid under in vivo conditions in which there is no selective pressure.

The observation that up to 99.99% of wild-type bacteria abandoned the GlmS plasmid within 3–5 days after i.v. injection was remarkable (Figs. 4 and 8). It indicates that maintenance of a plasmid that is not needed for survival imposes a great stress on bacteria, especially in vivo, where bacteria must struggle to ensure they acquire the nutrients necessary for survival while escaping the immunological assault of the host animal. This observation underscored the capacity of a balanced-host lethal system to maintain plasmids carrying genes for therapeutic proteins. Bioluminescent signals from the GlmS mutant were up to several hundred-fold stronger than those from wild-type bacteria (Fig. 4). This suggests that bacterial therapies utilizing S. typhimurium carrying a plasmid containing an anti-tumoral protein gene [4,6] would be significantly more effective in a glmS-based balanced-lethal system.

While in vivo imaging of bioluminescent bacteria is a powerful tool that allows us to visualize the process of bacterial-tumor targeting, quantify bacterial growth noninvasively in target tissues, and monitor bacterial migration in real time, [5] it requires direct correlation between the photon flux and the number of bacteria. The plasmid (pLux) that contains the luxCDABE operon from Photobacterium leiognathi employed in this study is appropriate for this since it does not require an exogenous source of substrate to produce bioluminescence [5,35]. This allows direct measurement of photon flux from bacteria in deep tissues without the inconvenience of light scattering and attenuation through body tissues due to the lack of an excitation source. In the absence of selection pressure, however, the loss of plasmid carrying lux operon would be an obstacle. The pLux expression vector loaded with the GlmS/ΔglmS balanced-lethal system offers a solution that allows for the direct quantification of bacteria within living animals by determination of bioluminescence via IVIS imaging.

Designation	Origin	GlmS	WT		
		Kmⁿ, Cmⁿ	Ampⁿ/Kmⁿ, Cmⁿ	Kmⁿ, Cmⁿ	Ampⁿ/Kmⁿ, Cmⁿ
ASPC-1	Pancreatic adenocarcinoma	1.9 x 10⁸	2.4 x 10⁸	3.0 x 10⁸	3.0 x 10⁷
		±1.4	±4.81	±3.29	±2.69
4T-1	Murine mammary carcinoma	6.5 x 10⁸	4.7 x 10⁸	4.4 x 10⁸	1.4 x 10⁷
		±1.28	±2.16	±2.82	±4.4

Table 2. Maintenance of ⁵Glms^p in S. typhimurium proliferating in tumor tissues.
bacteria were enumerated on minimal media plates containing 500 mM GlcNAc. Final concentrations of each organ extracts were 0.2 mg/ml.

Author Contributions
Helped to revise the manuscript: SJK. Conceived and designed the experiments: YH, JM, HE. Analyzed the data: HE. Contributed reagents/materials/analysis tools: HE, JM. Wrote the paper: HE. JH, JM. Performed the experiments.

References
1. Forbes NS (2010) Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer 10: 785–794.
2. Na HS, Kim HJ, Lee HC, Hong Y, Rhee JH, et al. (2006) Immune response induced by Salmonella typhimurium defective in ppGpp synthesis. Vaccine 24: 2092–2094.
3. Song M, Kim HJ, Ryu S, Yoon H, Yun J, et al. (2010) ppGpp-mediated stationary phase induction of the genes encoded by horizontally acquired pathogenicity islands and cob/pdu locus in Salmonella enterica serovar Typhimurium. J Microbiol 48: 89–95.
4. Jiang SN, Phan TX, Nam TK, Nguyen VH, Kim HS, et al. (2010) Inhibition of tumor growth and metastasis by a combination of Escherichia coli-mediated cytolytic therapy and radiotherapy. Mol Ther 18: 635–642.
5. Min JJ, Kim HJ, Park JH, Moon S, Jeong JH, et al. (2000) Noninvasive real-time imaging of tumors and metasases using tumor-targeting light-emitting Escherichia coli. Mol Imaging Biol 10: 54–61.
6. Nguyen VH, Kim HS, Ha JM, Hong Y, Choy HE, et al. (2010) Genetically engineered Salmonella typhimurium as an imageable therapeutic probe for cancer. Cancer Res 70: 18–23.
7. Galan JE, Nakayama K, Curtiss R, 3rd (1990) Cloning and characterization of the ad gene of Salmonella enterica serovar Typhi (ST-8) in Escherichia coli. Mol Gen Genet 220: 373–380.
8. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407–477.
9. Putnam SL, Koch AL (1975) Complications in the simplest cellular enzyme assay: lysis of Escherichia coli for the assay of beta-galactosidase. Anal Biochem 63: 350–360.
10. Wu G, Sun Y, Qiu W, Huang Y, Lu L, et al. (2011) Application of GFAT as a novel selection marker to mediate gene expression. PLoS One 6: e17082.
11. Wittmann HG, Apirion D (1975) Analysis of ribosomal proteins in streptomycin resistant and dependent mutants isolated from streptomycin independent Escherichia coli strains. Mol Gen Genet 141: 331–341.
12. Na HS, Kim HJ, Lee HC, Hong Y, Rhee JH, et al. (2006) Immune response induced by Salmonella typhimurium defective in ppGpp synthesis. Vaccine 24: 2092–2094.
13. Wittmann HG, Apirion D (1975) Analysis of ribosomal proteins in streptomycin resistant and dependent mutants isolated from streptomycin independent Escherichia coli strains. Mol Gen Genet 141: 331–341.
14. Wingreen A (1995) Coordinated regulation of amino sugar-synthesizing and -degrading enzymes in Escherichia coli K-12. J Bacteriol 175: 4951–4956.
15. Sauer M (1971) Mutant of Escherichia coli K-12 defective in D-glucosamine biosynthesis. J Bacteriol 105: 467–471.
16. Wu HC, Wu TC (1971) Isolation and characterization of a glucosamine-requiring mutant of Escherichia coli K-12 defective in glucosamine-6-phosphate synthetase. J Bacteriol 153: 455–466.
17. Garrett S, Taylor RK, Silhavy TJ, Berman ML (1985) Isolation and characterization of delta ompH strains of Escherichia coli by a general method based on gene fusions. J Bacteriol 162: 840–844.
18. Kaiser P, Roshwell I, Galyev EE, Barrow PA, Burnside J, et al. (2000) Differential cytokine expression in avian cells in response to invasion by Salmonella typhimurium, Salmonella enteritidis and Salmonella gallinarum. Microbiology 146 Pt 12: 3217–3226.
19. Min JJ, Nguyen VH, Kim HJ, Hong Y, Choy HE (2008) Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. Nat Protoc 3: 629–636.
20. Zuhay G, Morse DE, Schenk WJ, Miller JH (1972) Detection and isolation of the repressor protein for the tryptophan operon of Escherichia coli. Proc Natl Acad Sci U S A 69: 1100–1103.
21. Putnam SL, Koch AL (1975) Complications in the simplest cellular enzyme assay: lysis of Escherichia coli for the assay of beta-galactosidase. Anal Biochem 63: 350–360.
22. Wu G, Sun Y, Qiu W, Huang Y, Lu L, et al. (2011) Application of GFAT as a novel selection marker to mediate gene expression. PLoS One 6: e17082.
23. Mengin-Lecreulx D, van Heijenoort J (1993) Identification of the glmU gene encoding N-acetylglucosamine-1-phosphate uridyltransferase in Escherichia coli. J Bacteriol 175: 6150–6157.
24. Shen M, Song M, Rhee JH, Hong Y, Kim YJ, et al. (2005) DNA looping-mediated repression by histone-like protein H-NS: specific requirement of Esigma70 as a cofactor for looping. Genes Dev 19: 2380–2390.
25. Wittmann HG, Apirion D (1975) Analysis of ribosomal proteins in streptomycin resistant and dependent mutants isolated from streptomycin independent Escherichia coli strains. Mol Gen Genet 141: 331–341.
26. Davis NB, Wanner BL (1995) Analysis of ribosomal proteins in streptomycin resistant and dependent mutants isolated from streptomycin independent Escherichia coli strains. Mol Gen Genet 141: 331–341.
27. Kwak TA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640–6645.
28. Plumbbridge JA (1995) Regulation of amino sugar transport systems of Escherichia coli. Mol Microbiol 14: 505–515.
29. Plumbbridge JA (1995) Sequence of the nagRBCD operon in Escherichia coli K12 and pattern of transcription within the nag regulon. Mol Microbiol 3: 505–515.
30. Plumbbridge JA, Flouret B, van Heijenoort J (1985) Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. Nat Protoc 3: 629–636.
31. Zuhay G, Morse DE, Schenk WJ, Miller JH (1972) Detection and isolation of the repressor protein for the tryptophan operon of Escherichia coli. Proc Natl Acad Sci U S A 69: 1100–1103.
31. Song M, Kim HJ, Kim EY, Shin M, Lee HC, et al. (2004) ppGpp-dependent stationary phase induction of genes on Salmonella pathogenicity island 1. J Biol Chem 279: 34183–34190.
32. Chen JK, Shen CR, Liu CL (2010) N-acetylglucosamine: production and applications. Mar Drugs 8: 2493–2516.
33. El Sayed H. El Ashry1 aMREA (2007) Synthesis and Biological Relevance of N-Acetylglucosamine-containing Oligosaccharides. Pure Appl Chem 12, 2229–2242.
34. Persiani S, Rotini R, Trisolino G, Rovati LC, Locatelli M, et al. (2007) Synovial and plasma glucosamine concentrations in osteoarthritic patients following oral crystalline glucosamine sulphate at therapeutic dose. Osteoarthritis Cartilage 15: 764–772.
35. Jeong JH, Song M, Park SI, Cho KO, Rhee JH, et al. (2008) Salmonella enterica serovar gallinarum requires ppGpp for internalization and survival in animal cells. J Bacteriol 190: 6346–6350.
36. Kim EY, Shin MS, Rhee JH, Choy HE (2004) Factors influencing preferential utilization of RNA polymerase containing sigma-38 in stationary-phase gene expression in Escherichia coli. J Microbiol 42: 103–110.