Metabolites with Antioxidant Activity from Marine Macroalgae

Leto-Aikaterini Tziveleka 1, Mohamed A. Tammam 1,2, Olga Tzakou 1, Vassilios Roussis 1 and Efsthia Ioannou 1, *

1 Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; ltziveleka@pharm.uoa.gr (L.-A.T.); mtammam@pharm.uoa.gr (M.A.T.); tzakou@pharm.uoa.gr (O.T.); roussis@pharm.uoa.gr (V.R.)
2 Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
* Correspondence: eioannou@pharm.uoa.gr; Tel.: +30-210-727-4913

Abstract: Reactive oxygen species (ROS) attack biological molecules, such as lipids, proteins, enzymes, DNA, and RNA, causing cellular and tissue damage. Hence, the disturbance of cellular antioxidant homeostasis can lead to oxidative stress and the onset of a plethora of diseases. Macroalgae, growing in stressful conditions under intense exposure to UV radiation, have developed protective mechanisms and have been recognized as an important source of secondary metabolites and macromolecules with antioxidant activity. In parallel, the fact that many algae can be cultivated in coastal areas ensures the provision of sufficient quantities of fine chemicals and biopolymers for commercial utilization, rendering them a viable source of antioxidants. This review focuses on the progress made concerning the discovery of antioxidant compounds derived from marine macroalgae, covering the literature up to December 2020. The present report presents the antioxidant potential and biogenetic origin of 301 macroalgal metabolites, categorized according to their chemical classes, highlighting the mechanisms of antioxidative action when known.

Keywords: macroalgae; marine metabolites; antioxidant activity; scavenging; reactive oxygen species

1. Introduction

In all aerobic organisms, oxygen is a crucial element in their metabolic pathways. A high redox potential milieu stimulates the production of free radicals, defined as chemical species with unpaired valence electrons [1]. The most common reactive species in biological systems are oxygen radicals or oxygen-derived species, such as superoxide anion (O$_2^-$), hydrogen peroxide (H$_2$O$_2$), and hydroxyl radicals (·OH) [2,3], collectively named reactive oxygen species (ROS). Still, other forms of radicals, such as nitric oxide (NO·) and transition metal ions, can also be produced. ROS are generated as products of normal cellular functioning and oxygen metabolism and have essential functions in various important biochemical processes, such as the defense against infections, vasodilation, neurotransmission, gene regulation, and oxidative signaling [3,4].

Disturbance of the equilibria of prooxidant/antioxidant reactions in cells can lead to redox imbalance and oxidative stress, which causes an excessive generation of ROS and free radicals, in turn resulting in severe cellular damage (Figure 1) [3,5–9]. These molecules further react with key organic substrates, such as DNA, RNA, proteins, and lipids, leading to disruption of their structure or function, and consequently to the onset of diseases, such as atherosclerosis [10], diabetes [11], rheumatoid arthritis [12], inflammatory diseases [13], neurodegenerative diseases [14,15], aging, immune system disorders, and cancer [16,17].

The defense system of living organisms against free radicals comprises both enzymatic and non-enzymatic antioxidants [18]. Enzymes either prevent the formation of or neutralize free radicals (e.g., superoxide dismutases (SOD), catalases (CAT), lactoperoxidases, and glutathione peroxidases (GPx)), or indirectly neutralize free radicals by supporting the
activity of other endogenous antioxidants (e.g., glutathione reductase (GR) and glucose-6-phosphate dehydrogenase) [19]. On the other hand, non-enzymatic antioxidants are compounds, other than enzymes, that act on free radicals and can be either produced by the stressed living organism or delivered through the diet, e.g., via the consumption of ascorbic acid (vitamin C), tocopherol (vitamin E), β-carotene, flavonoids, and polyphenols [20]. The most effective and extensively used strategy to diminish oxidative stress is the supplementation of exogenous antioxidants [21]. In recent years, safety and health concerns have been raised for synthetic antioxidants. Therefore, natural antioxidants have attracted attention and are being widely used [1]. Since 2007, antioxidants have been defined as “any substance that delays, prevents or removes oxidative damage to a target molecule” [2].

Figure 1. Causes and effects of oxidative stress (adapted from [6]).

Oceans, covering about 70% of Earth’s surface and hosting an immense array of macro- and microorganisms, constitute a renewable resource of potential therapeutic agents. The diverse and antagonistic marine environment triggers the production of a wide variety of bioactive compounds. Marine organisms have adapted remarkably to extreme environmental conditions, such as high salinity, low or high temperature, high pressure, low availability of nutrients, and low or high exposure to sunlight [22], and can, therefore, provide an outstanding reservoir of bioactive compounds, many of which are unprecedented in terrestrial organisms [23–27].

Marine algae constitute a rich source of structurally diverse natural products, often exhibiting significant biological activities [28,29]. Algae are growing in ecosystems with intense exposure to sunlight and high concentrations of oxygen, conditions that favor the production of free radicals. However, the absence of oxidative damage in structural fatty acid membranes suggests that these organisms synthesize compounds with antioxidant activity [30]. In recent years, several studies highlight the antioxidant potential of seaweeds, attributed to natural products belonging to different structural classes [31–36].
A high number of compounds isolated from green, brown, and red algae (Chlorophyta, Ochrophyta, and Rhodophyta, respectively) have been proven to exert prominent antioxidant activity. This review compiles the progress made concerning the discovery of antioxidant compounds derived from marine macroalgae, covering the literature up to December 2020. Following a brief overview of the most commonly used methods for the evaluation of antioxidant activity, algal metabolites with antioxidant activity are presented according to their chemical classification in five main groups, namely (1) phenolic compounds, including bromophenols, phlorotannins, and flavonoids, (2) terpenoids, including steroids & carotenoids, (3) meroterpenoids, (4) nitrogenous compounds, including peptides, alkaloids and chlorophyll-related pigments, and (5) carbohydrates and polysaccharides. Their structural characteristics, the assays used to evaluate their activity, and the measured antioxidant activity levels (when reported in numerical form) are presented, while the mechanisms of antioxidative action are discussed when known.

2. Brief Overview of the Methods Employed for the Evaluation of Antioxidant Activity

Efficient antioxidants typically have high redox potential that allows them to act as reducing agents, hydrogen donors, or singlet oxygen quenchers. There are many techniques for evaluating the antioxidant activity, including free radical scavenging, oxygen scavenging, singlet oxygen quenching, metal chelation and inhibition of oxidative enzymes [37]. Overall, in vitro antioxidant tests using free radical traps are relatively straightforward to perform. However, antioxidant activity cannot be securely proposed based on the results from a single assay due to the differences observed between the various test systems [38]. Huang et al. (2005) roughly classified the most important antioxidant capacity assays, according to the reactions involved, into two types: (a) the hydrogen atom transfer (HAT)-based reactions which quantify hydrogen atom donating capacity, and (b) the electron transfer (ET)-based reactions which measure the reducing capacity of antioxidants [39] (Table 1). In HAT-based assays, the antioxidant and the substrate compete for peroxyl radicals. The most commonly used HAT-based assays include the oxygen radical absorbance capacity (ORAC) [40] and the total radical trapping antioxidant potential (TRAP) [41] assays. On the other hand, in ET-based assays the capacity of an antioxidant to reduce an oxidant is measured. The most common ET-based assays include the determination of the total phenolics content (TPC) using the Folin–Ciocalteu reagent [42], the trolox equivalence antioxidant capacity (TEAC)/2,2-azino-bis(3-ethyl benzothiazoline-6-sulfonic acid) diammonium salt (ABTS+) radical scavenging [43], the ferric reducing antioxidant power (FRAP) [44,45], and 1,1-diphenyl-2-picrylhydrazyl (DPPH) [46,47] assays.

Antioxidant activity evaluation can also be performed in vivo in animal models, such as in Wistar rats or mice. SOD, CAT, glutathione (GSH), GPx, oxidized low-density lipoprotein (LDL), malondialdehyde (MDA), and GR are the major in vivo indicators of oxidative stress that are usually monitored [48,49].

Hydrogen atom transfer (HAT)-based assays	2,2-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid) diammonium salt (ABTS+) radical scavenging [51]	β-carotene bleaching [52]	crocin bleaching [53]	hydrogen peroxide (H₂O₂) scavenging [54]	hydroxyl radical averting capacity (HORAC) [55]	hydroxyl scavenging [56]	inhibited oxygen uptake (IOU) [57]	lipid peroxidation inhibition capacity (LPIC) [58]	oxygen radical absorbance capacity (ORAC) [40]	photochemiluminescence (PCL) [59]	total radical trapping antioxidant parameter (TRAP) [41]

Table 1. A list of the most commonly used in vitro assays for the determination of antioxidant activity (adapted from [50]).
Table 1. Cont.

Electron transfer (ET)-based assays	1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging [46,47]	cupric reducing antioxidant capacity (CUPRAC) [60]
ferric reducing antioxidant power (FRAP) [44,45]	ferric thiocyanate (FTC) [61]	nitric oxide radical scavenging [62]
N,N-dimethyl-p-phenylene diamine (DMPD) radical scavenging [63]	peroxyl radical scavenging [64]	potassium ferricyanide reducing power (PFRAP) [65]
ferric thiocyanate (FTC) [61]	thiobarbituric acid reactive substances (TBARS) [67]	total phenolics content (TPC) using Folin-Ciocalteu reagent [42]
N,N-dimethyl-p-phenylene diamine (DMPD) radical scavenging [63]	superoxide anion radical scavenging [66]	trolox equivalence antioxidant capacity (TEAC) using ABTS [43]

Other in vitro methods	ascorbic acid content [68]	cellular antioxidant activity (CAA) [69]
metal chelating activity [70]	scavenging of phosphomolybdic acid [71]	scavenging of xanthine oxidase [72]

3. Phenolic Compounds

Phenols comprise a class of chemical compounds containing an aromatic ring bearing a hydroxy-group. Phenolic compounds are classified either as simple phenols or polyphenols based on the number of phenol units in their molecule. Bromophenols (BPs) are marine secondary metabolites containing one or several phenols with one or more bromine atoms in their molecule. Many BPs have been isolated and identified from a variety of marine species, including red, brown, and green algae, as well as ascidians and sponges [73]. Phlorotannins constitute another important and diverse group of naturally occurring polyphenolic secondary metabolites, restricted though to marine algae. Table 2 presents the phenolic compounds, including BPs, phlorotannins, and flavonoids (Figures 2–8), isolated so far from marine macroalgae that exhibit significant antioxidant activities.

Table 2. Phenolic compounds from macroalgae with antioxidant activity.

Compound	Isolation Source	Assay/Activity	Reference
1	Symphyocladia latiuscula (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: IC_{50} = 14.0 \mu M	[74]
2	Gloiopeltis furcata (Rhodophyta, Florideophyceae, Gigartinales)	DPPH scavenging: IC_{50} = 86.2 \mu M ONOO- scavenging: 4.58 ± 0.01 \mu M	[75]
3	Rhodomela confervoides (Rhodophyta, Florideophyceae, Ceramiales)	ABTS+ scavenging: IC_{50} = 1.60 ± 0.04 \mu M	[76]
4	R. confervoides (Rhodophyta, Florideophyceae, Ceramiales)	ABTS+ scavenging: IC_{50} = 1.56 ± 0.02 \mu M DPPH scavenging: IC_{50} = 42.3 ± 0.2 \mu M; 67%	[76,77]
5	S. latiuscula (Rhodophyta, Florideophyceae, Ceramiales)	bleomycin-dependent DNA damage deoxyribose assay	[78]
6	R. confervoides (Rhodophyta, Florideophyceae, Ceramiales)	ABTS+ scavenging: IC_{50} = 1.62 ± 0.03 \mu M DPPH scavenging: IC_{50} = 40.5 ± 0.2 \mu M; 30%	[76,77]
7	S. latiuscula (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: IC_{50} = 15.5 \mu M	[74]
8	S. latiuscula (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: IC_{50} = 7.5 \mu M	[79]
Table 2. Cont.

Compound	Isolation Source	Assay/Activity	Reference
9	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: IC₅₀ = 1.36 ± 0.01 µM	
DPPH scavenging: IC₅₀ = 38.4 ± 0.2 µM	[76]		
10	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: IC₅₀ = 2.11 ± 0.04 µM	
DPPH scavenging: IC₅₀ = 7.43 ± 0.10 µM	[76]		
11	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: IC₅₀ = 1.87 ± 0.02 µM	
DPPH scavenging: IC₅₀ = 20.5 ± 0.1 µM	[76]		
12	*S. latiuscula* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: IC₅₀ = 71.0 µM	
DPPH scavenging: IC₅₀ = 14.4; 18.5 µM			
CUPRAC			
Fe²⁺ chelation: IC₅₀ = 44.7 µM			
FRAP			
AChE inhibition: IC₅₀ = 13.85 nM			
BChE inhibition: IC₅₀ = 38.22 nM	[74,80]		
13	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: IC₅₀ = 8.07 µM;	
TEAC = 2.68 mM			
DPPH scavenging: IC₅₀ = 12.4; 15.9 µM			
CUPRAC			
Fe²⁺ chelation: IC₅₀ = 65.2 µM			
FRAP			
AChE inhibition: IC₅₀ = 17.10 nM			
BChE inhibition: IC₅₀ = 40.57 nM	[80,81]		
14	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: IC₅₀ = 8.1 µM;	
TEAC = 2.21 mM			
DPPH scavenging: IC₅₀ = 14.6; 18.5 µM			
CUPRAC			
Fe²⁺ chelation: IC₅₀ = 54.6 µM			
FRAP			
AChE inhibition: IC₅₀ = 29.88 nM			
BChE inhibition: IC₅₀ = 46.51 nM	[80,81]		
15	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: TEAC = 2.31 mM	
DPPH scavenging: IC₅₀ = 5.43 µM	[81]		
16	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: TEAC = 2.14 mM	
DPPH scavenging: IC₅₀ = 5.70 µM	[81]		
17	*S. latiuscula* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: TEAC = 2.06 ± 0.08 mM	
DPPH scavenging: IC₅₀ = 9.52 ± 0.04 µM	[76]		
18	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: TEAC = 4.37 ± 0.24 mM	
DPPH scavenging: IC₅₀ = 3.82 ± 0.01 µM	[83]		
19	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: TEAC = 2.06 ± 0.08 mM	
DPPH scavenging: IC₅₀ = 9.52 ± 0.04 µM	[76]		
20	*S. latiuscula* (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: IC₅₀ = 24.0 µM	[74]
21	*Polysiphonia morrowii, Polysiphonia urceolata, R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: IC₅₀ = 20.3 µM	
Cytoprotective effect against cellular oxidative stress			
HO-1 activity and expression in keratinocytes			
Nrf2 expression			
Nrf2 nuclear translocation	[84,85]		
22	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: TEAC = 1.32 ± 0.02 mM	
DPPH scavenging: IC₅₀ = 58.2 ± 0.4 µM | [76] |
Table 2. Cont.

Compound	Isolation Source	Assay/Activity	Reference
23	*P. urceolata* (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: $IC_{50} = 35.8 \mu M$	[84]
24	*R. confervoides, Vertebrata lanosa* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS$^+$ scavenging: TEAC = 1.09 ± 0.01 mM CAA CLPAA DPPH scavenging: $IC_{50} = 32.0 ± 0.1 \mu M$ ORAC	[76,86]
25	*S. latiuscula* (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: $IC_{50} = 24.7 \mu M$	[74]
26	*Cladophorawrightiana* (Chlorophyta, Ulvophyceae, Cladophorales)	DPPH scavenging: 69% at 160 \mu M OH scavenging O_2^- scavenging protective effect against UVB-induced apoptosis and DNA damage in HaCaT cells scavenging activity against H_2O_2- or UVB-generated intracellular ROS in HaCaT cells	[87]
27	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS$^+$ scavenging: TEAC = 1.86 ± 0.02 mM DPPH scavenging: $IC_{50} = 50.3 ± 0.3 \mu M$	[76]
28	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS$^+$ scavenging: TEAC = 2.11 mM DPPH scavenging: $IC_{50} = 23.6 \mu M$	[81]
29	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS$^+$ scavenging: TEAC = 1.98 ± 0.01 mM DPPH scavenging: $IC_{50} = 30.9 ± 0.1 \mu M$	[76]
30	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS$^+$ scavenging: TEAC = 2.35 ± 0.02 mM DPPH scavenging: $IC_{50} = 26.3 ± 0.2 \mu M$	[76]
31	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS$^+$ scavenging: TEAC = 2.87 ± 0.11 mM DPPH scavenging: $IC_{50} = 19.8 ± 0.1 \mu M$	[76]
32	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS$^+$ scavenging: TEAC = 2.07 ± 0.12 mM DPPH scavenging: $IC_{50} = 30.2 ± 0.2 \mu M$	[76]
33	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: $IC_{50} = 16.1 ± 0.1 \mu M$	[88]
34	*P. urceolata* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS$^+$ scavenging: TEAC = 2.36 mM DPPH scavenging: $IC_{50} = 20.8 \mu M$	[81]
35	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS$^+$ scavenging: TEAC = 2.11 ± 0.11 mM DPPH scavenging: $IC_{50} = 18.6 ± 0.1 \mu M$	[76]
36	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS$^+$ scavenging: TEAC = 1.63 ± 0.01 mM DPPH scavenging: $IC_{50} = 50.9 ± 0.3 \mu M$	[76]
37	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS$^+$ scavenging: TEAC = 3.68 ± 0.12 mM DPPH scavenging: $IC_{50} = 8.72 ± 0.05 \mu M$	[76]
38	*P. urceolata, R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS$^+$ scavenging: TEAC = 3.10 ± 0.13 mM DPPH scavenging: $IC_{50} = 9.40 ± 0.05; 9.67 ± 0.04 \mu M$	[76,88]
39	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS$^+$ scavenging: TEAC = 3.45 ± 0.12 mM DPPH scavenging: $IC_{50} = 7.62 ± 0.01 \mu M$	[76]
40	*S. latiuscula* (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: $IC_{50} = 43.8 \mu M$	[82]
41	*S. latiuscula* (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: $IC_{50} = 8.5 \mu M$	[79]
Compound	Isolation Source	Assay/Activity	Reference
----------	-----------------	----------------	-----------
42	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: TEAC = 2.87 mM	[81]
		DPPH scavenging: IC₅₀ = 5.22 μM	
43	*Odonthalia corymbifera* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: IC₅₀ = 17.3 ± 0.1 μM Cu²⁺-chelation: IC₅₀ = 61.9 ± 0.1 μM CUPRAC: ECₐ₀,₅₀ = 13.6 ± 0.1 μM DPPH scavenging: IC₅₀ = 24.7 ± 0.0 μM FRAP: ECₐ₀,₅₀ = 11.1 ± 0.1 μM tyrosinase inhibition: IC₅₀ = 17.3 ± 0.1 μM	[89]
44	*P. morrowii* (Rhodophyta, Florideophyceae, Ceramiales)	LPS-induced ROS generation and ROS-mediated ERK signaling in RAW 264.7 macrophages	[90]
45	*R. confervoides*, *V. lanosa* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: TEAC = 3.05 mM CAA CLPAA DPPH scavenging: IC₅₀ = 17.6 μM ORAC	[81,86]
46	*S. latiuscula* (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: IC₅₀ = 8.5 μM	[74]
47	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: TEAC = 3.18 mM DPPH scavenging: IC₅₀ = 16.9 μM; 27%	[77,81]
48	*S. latiuscula* (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: IC₅₀ = 8.1 μM	[74]
49	*Avrainvillia* sp. (Chlorophyta, Ulvophyceae, Bryopsidales)	DPPH scavenging: strong exogenous ROS scavenging in TPA-treated HL-60 cells (DCFH-DA): IC₅₀ = 6.1 μM	[91]
50	*R. confervoides*, *V. lanosa* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: TEAC = 3.16 mM CAA CLPAA DPPH scavenging: IC₅₀ = 19.6 μM ORAC	[81,86]
51	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: TEAC = 3.00 mM DPPH scavenging: IC₅₀ = 14.3 μM	[81]
52	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: TEAC = 2.78 mM DPPH scavenging: IC₅₀ = 13.8 μM	[81]
53	*S. latiuscula* (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: IC₅₀ = 10.5 μM	[74]
54	*O. corymbifera* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: IC₅₀ = 6.7 ± 0.1 μM Cu²⁺-chelation: IC₅₀ = 74.3 ± 0.1 μM CUPRAC: ECₐ₀,₅₀ = 7.8 ± 0.1 μM DPPH scavenging: IC₅₀ = 13.5 ± 0.0 μM FRAP: ECₐ₀,₅₀ = 10.8 ± 0.1 μM tyrosinase inhibition: IC₅₀ = 31.0 ± 0.1 μM	[90]
55	*V. lanosa* (Rhodophyta, Florideophyceae, Ceramiales)	CAA CLPAA ORAC	[86]
56	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: TEAC = 3.21 mM DPPH scavenging: IC₅₀ = 13.6 μM	[81]
57	*P. urceolata* (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: IC₅₀ = 19.6 ± 0.1 μM	[88]
Compound	Isolation Source	Assay/Activity	Reference
-------------	---	--	-----------
58	*P. urceolata* (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: $IC_{50} = 21.9 \pm 0.1 \mu M$	[88]
59	*S. latiuscula* (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: $IC_{50} = 10.2 \mu M$	[74]
60	*P. urceolata* (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: $IC_{50} = 8.1 \mu M$	[84]
61	*P. urceolata* (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: $IC_{50} = 15.1 \mu M$	[84]
62	*P. urceolata* (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: $IC_{50} = 6.8 \mu M$	[84]
63	*P. urceolata* (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: $IC_{50} = 6.1 \mu M$	[84]
64	*P. urceolata* (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: $IC_{50} = 7.9 \mu M$	[92]
65	*R. confervoides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: TEAC = 3.58 mM DPPH scavenging: $IC_{50} = 8.90 \mu M$	[81]
66	*S. wightii, Sargassum tenerrimum, Turbinaria conoides* (Ochrophyta, Phaeophyceae, Fucales)	alkyl scavenging: $IC_{50} = 103.5 \pm 1.9 \mu M$ DPPH scavenging: 64.71–71.07% at 200 μg/mL H₂O₂ scavenging: 88.33–89.7% at 200 μg/mL OH scavenging: $IC_{50} = 392.5 \pm 2.8$; 408.5 ± 3.7 μM O₂⁻ scavenging: $IC_{50} = 115.2 \pm 2.5$; 124.7 ± 2.4 μM metal chelating activity: 11.40–14.38% at 200 μg/mL H₂O₂-induced apoptosis, cytotoxicity, DNA damage, mitochondrial dysfunction and ROS generation in HaCaT keratinocytes intracellular ROS generation (DCFH-DA) in RAW 264.7 macrophages/V79-4 cells Nrf2/HO-1 signaling pathway in HaCaT keratinocytes	[93–97]
67	*Gracilaria sp.* (Rhodophyta, Florideophyceae, Gracilariales)	DPPH scavenging: 83.8 ± 2.6% XO inhibition: 64.7 ± 0.7%	[98]
68	*Sargassum micracanthum* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: $IC_{50} = 47 \mu M$	[99]
69	*E. cava* (Ochrophyta, Phaeophyceae, Laminariales)	oxidative stress-induced DNA damage in V79-4 cells	[100]
70	*Ishige foliacea* (Ochrophyta, Phaeophyceae, Ishigeales)	enzyme activity (SOD, CAT, GPx) intracellular ROS generation and lipid peroxidation in HUVEC/pancreatic β cells oxidative stress-induced cell death in zebrafish embryo streptozotocin-induced pancreatic β cell damage in rat insulinoma cell line	[101,102]
Compound	Isolation Source	Assay/Activity	Reference
----------	----------------	----------------	-----------
71	*E. cava*, *Ecklonia kurome*, *Ecklonia stolonifera*, *Eisenia bicycles* (Ochrophyta, Phaeophyceae, Laminariales)	DPPH scavenging: \(IC_{50} = 11.5; 22.9 \pm 0.52\); \(26 \mu M\) OH scavenging: \(IC_{50} = 51.8 \pm 2.5 \mu M\) \(O_2^-\) scavenging: \(IC_{50} = 26.5 \pm 1.25; 107 \mu M\) ROO scavenging: \(IC_{50} = 28.4 \pm 1.5 \mu M\) inhibitory effect on total ROS: \(IC_{50} = 4.04 \pm 0.04 \mu M\) cellular membrane protein oxidation in RAW 264.7 macrophages GSH levels in HepG2 cells/RAW 264.7 macrophages HO-1 expression \[95,103–108\]	
72	*E. stolonifera* (Ochrophyta, Phaeophyceae, Laminariales)	DPPH scavenging: \(IC_{50} = 8.8 \pm 0.4 \mu M\) intracellular ROS scavenging \[109\]	
73	*I. okamurae* (Ochrophyta, Phaeophyceae, Ishigeales)	alkyl scavenging: \(IC_{50} = 18.8 \pm 1.2 \mu M\) DPPH scavenging: \(IC_{50} = 10.5 \pm 0.5 \mu M\) OH scavenging: \(IC_{50} = 27.1 \pm 0.9 \mu M\) \(O_2^-\) scavenging: \(IC_{50} = 16.7 \pm 0.6 \mu M\) \(H_2O_2\)-induced oxidative stress-induced ROS generation (DCFH-DA) in murine hippocampal neuronal cells intracellular \(Ca^{2+}\) level lipid peroxidation assay (TBARS) membrane protein oxidation MPO activity \[97,110,111\]	
74	*E. cava* (Ochrophyta, Phaeophyceae, Laminariales)	DPPH scavenging: \(IC_{50} = 18.6 \pm 1.0 \mu M\) OH scavenging: \(IC_{50} = 39.6 \pm 2.1 \mu M\) \(O_2^-\) scavenging: \(IC_{50} = 21.9 \pm 1.8 \mu M\) ROO scavenging: \(IC_{50} = 22.7 \pm 1.5 \mu M\) cellular membrane protein oxidation in RAW 264.7 cells GSH levels in RAW 264.7 cells intracellular ROS generation (DCFH-DA) MPO activity in HL60 cells \[95\]	
Compound	Isolation Source	Assay/Activity	Reference
----------	-----------------	----------------	-----------
75	*E. cava, E. kurome, E. stolonifera, E. bicyclis* (Ochrophyta, Phaeophyceae, Laminariales)	DPPH scavenging: IC\textsubscript{50} = 6.2 ± 0.4; 8.28 ± 0.45; 13 \(\mu \)M OH scavenging: IC\textsubscript{50} = 28.6 ± 2.5 \(\mu \)M \(\mathrm{O}_2^- \) scavenging: IC\textsubscript{50} = 7.6; 16.2 ± 1.0 \(\mu \)M ROO scavenging: IC\textsubscript{50} = 14.5 ± 1.8 \(\mu \)M detection of apoptosis-related proteins cellular membrane protein oxidation in RAW 264.7 cells GSH levels in RAW 264.7 cells intracellular ROS generation (DCFH-DA) in RAW 264.7 cells MPO activity in HL60 cells PM\textsubscript{10} (particulate matter of less than 10 mm) -induced lipid peroxidation and cytokine expression in human epidermal keratinocytes rotenone-induced oxidative stress in SH-SYSY cells	[95,107–109, 112,113]
76	*Fucus spiralis* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: Q\textsubscript{50} = 0.090 ± 0.002 \(\mu \)mol	[114]
77	*E. cava* (Ochrophyta, Phaeophyceae, Laminariales)	DPPH scavenging: IC\textsubscript{50} = 0.60; 14.7 ± 1.2 \(\mu \)M OH scavenging: IC\textsubscript{50} = 3.5 ± 1.55 \(\mu \)M \(\mathrm{O}_2^- \) scavenging: IC\textsubscript{50} = 18.6 ± 1.5 \(\mu \)M ROO scavenging: IC\textsubscript{50} = 18.1 ± 1.0 \(\mu \)M cellular membrane protein oxidation in RAW 264.7 cells GSH levels in RAW 264.7 cells intracellular ROS generation (DCFH-DA) in RAW 264.7 cells MPO activity in HL60 cells	[95,115,116]
78	*Fucus vesiculosus* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: IC\textsubscript{50} = 16.1 ± 1.0 \(\mu \)M \(\mathrm{O}_2^- \) scavenging: IC\textsubscript{50} > 401.6 \(\mu \)M ORAC: 3.3 ± 0.3 units at 1 \(\mu \)g/mL	[117]
79	*E. cava, E. kurome, E. stolonifera, E. bicyclis* (Ochrophyta, Phaeophyceae, Laminariales)	alkyl scavenging: IC\textsubscript{50} = 3.9 \(\mu \)M DPPH scavenging: IC\textsubscript{50} = 4.7 ± 0.3; 10.3; 12; 17.7 ± 0.8 \(\mu \)M OH scavenging: IC\textsubscript{50} = 21.4; 39.2 ± 1.8 \(\mu \)M \(\mathrm{O}_2^- \) scavenging: IC\textsubscript{50} = 8.4 \(\mu \)M; IC\textsubscript{50} = 21.6 ± 2.2 \(\mu \)M ROO scavenging: IC\textsubscript{50} = 21.4 ± 2.1 \(\mu \)M total ROS generation: IC\textsubscript{50} = 3.80 ± 0.09 \(\mu \)M intracellular ROS generation (DCFH-DA) in RAW 264.7 macrophages/Vero cells/zebrafish system	[95,105,108, 109,118]
Table 2. Cont.

Compound	Isolation Source	Assay/Activity	Reference
80			
I. okamurae & E. cava, E. bicyclis	ABTS$^+$ scavenging: IC$_{50}$ = 37.1 ± 2.8 µM		
alkyl scavenging: IC$_{50}$ = 17.3 ± 1.0 µM			
DPPH scavenging: IC$_{50}$ = 8.69 ± 0.35; 9.1 ± 0.4; 28; 66.5 ± 0.5 µM			
OH scavenging: IC$_{50}$ = 28.7 ± 1.1; 29.7 ± 1.5 µM			
O$_2^-$ scavenging: IC$_{50}$ = 15.4 ± 0.9; 15.9 ± 1.3 µM			
ROO* scavenging: IC$_{50}$ = 17.1 ± 2.2 µM			
singlet oxygen (¹O$_2$) quenching: Q$_{C50}$ = 30.7 ± 2.4 µM			
cellular membrane protein oxidation in RAW 264.7 macrophages			
GSH levels in RAW 264.7 macrophages			
high-glucose-induced oxidative stress			
intracellular ROS generation (DCFH-DA) in UVB-irradiated HaCaT keratinocytes			
MPO activity in HL60 cells	[95,97,119–121]		
81			
E. bicyclis	ABTS$^+$ scavenging: IC$_{50}$ = 43.3 ± 2.3 µM		
DPPH scavenging: IC$_{50}$ = 103.0 ± 3.5 µM			
singlet oxygen (¹O$_2$) quenching: Q$_{C50}$ = 35.7 ± 2.4 µM	[119]		
82			
E. cava, E. kurome, E. bicyclis	ABTS$^+$ scavenging: IC$_{50}$ = 43.4 ± 2.0 µM		
DPPH scavenging: IC$_{50}$ = 15.0; 95.9 ± 3.2 µM			
O$_2^-$ scavenging: IC$_{50}$ = 6.5 µM			
singlet oxygen (¹O$_2$) quenching: Q$_{C50}$ = 49.4 ± 1.7 µM			
H$_2$O$_2$-induced DNA damage			
intracellular ROS generation in Vero cells	[108,119]		
83			
E. bicyclis	DPPH scavenging: IC$_{50}$ = 0.86 ± 0.02 µM		
ONOO$^-$ scavenging: 1.80 ± 0.01 µM			
total ROS: 6.45 ± 0.04 µM	[122]		
84			
E. cava	alkyl scavenging: IC$_{50}$ = 2.07 ± 1.00 µM		
DPPH scavenging: IC$_{50}$ = 0.51 µM			
OH scavenging: IC$_{50}$ = 75.6 µM			
O$_2^-$ scavenging: IC$_{50}$ = 57.2 µM			
intracellular ROS generation (DCFH-DA) in H$_2$O$_2$-treated Vero cells	[123]		
85			
F. spiralis	DPPH scavenging: Q$_{C50}$ = 0.087 ± 0.004 µmol	[114]	
86			
F. vesiculosus	DPPH scavenging: IC$_{50}$ = 19.3 ± 2.7 µM		
O$_2^-$ scavenging: IC$_{50}$ > 334.9 µM			
ORAC: 3.5 ± 0.2 units at 1 µg/mL	[117]		
87			
F. vesiculosus	DPPH scavenging: IC$_{50}$ = 15.8 ± 1.5 µM		
O$_2^-$ scavenging: IC$_{50}$ > 175.6 µM			
ORAC: 3.2 ± 0.2 units at 1 µg/mL	[117]		
88			
Acanthophora spicifera	lipid peroxidation and inhibition of the generation of MDA in rat liver: IC$_{50}$ = 1.0 × 10$^{-2}$ µM	[124]	
Recent studies reveal BPs to be one of the most promising candidates in the prevention of diseases associated with free radical attack [73]. Hitherto, more than 60 BPs, mainly isolated from marine red algae, have been reported to exert antioxidant activity in vitro. Their antioxidant activity has been primarily determined by the DPPH radical scavenging method. In general, the BPs shown in Table 2 exhibited better activity than that of butylated hydroxytoluene (BHT, IC\textsubscript{50} = 82.1 μM), a synthetic antioxidant often used as positive control, with BPs isolated from the red algae

Compound	Isolation Source	Assay/Activity	Reference
89	*A. spicifera* (Rhodophyta, Florideophyceae, Ceramiales)	lipid peroxidation and inhibition of the generation of MDA in rat liver: IC\textsubscript{50} = 1.5 × 10^{-2} μM	[124]

ABTS+: 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt; AChE: acetylcholinesterase; BChE: butyrylcholinesterase; CAA: cellular antioxidant activity; CAT: catalase; CLPAA: cellular lipid peroxidation antioxidant activity; CUPRAC: cupric reducing antioxidant capacity; DCFH-DA: cell-based 2’,7’-dichlorodihydrofluorescein diacetate antioxidant assay; DPPH: 1,1-diphenyl-2-picrylhydrazyl free radical; EC\textsubscript{50}: effective concentration for absorbance of 0.50; FRAP: ferric reducing antioxidant power; GSH: glutathione; GPs: glutathione peroxidase; HO-1: heme oxygenase-1; H\textsubscript{2}O\textsubscript{2}: hydrogen peroxide; IC\textsubscript{50}: half maximal inhibitory concentration; LPS: lipopolysaccharide; MAPK: mitogen-activated protein kinase; MDA: malondialdehyde; MPO: myeloperoxidase; Nrf2: nuclear factor erythroid 2-related factor 2; OH: hydroxyl; ONOO-: peroxynitrite; O\textsubscript{2}^{-}: superoxide anion; ORAC: oxygen radical absorbance capacity; Q\textsubscript{10}: amount of phenolics (in μg) necessary to obtain 50% of inhibition in the DPPH assay; QC\textsubscript{50}: half maximal quenching concentration; ROO•: peroxy; ROS: reactive oxygen species; SH-SY5Y: human dopaminergic neuronal cell line; SOD: superoxide dismutase; TEAC: trolox equivalence antioxidant capacity; TPA: 12-tetradecanoylphorbol 13-acetate; V79-4: Chinese hamster lung fibroblast cell line; XO: xanthine oxidase.
Figure 2. Chemical structures of compounds 1–32.
Figure 3. Chemical structures of compounds 33–54.
values of 37 and 38 (8.72 and 9.40 μM, respectively), it appears that the site of bromination is of no decisive importance.

Choi et al. (2018) showed that bis (3-bromo-4,5-dihydroxybenzyl) ether (BDDE, 44), isolated from Polysiphonia morrowii, suppresses the lipopolysaccharide (LPS)-induced ROS generation in RAW 264.7 macrophage cells. In turn, inhibition of LPS-induced ROS generation by BDDE (44) caused ERK inactivation and an inflammatory reaction [90]. Therefore, BBDE (44) inhibits LPS-induced inflammation by inhibiting the ROS-mediated ERK signaling pathway in RAW 264.7 macrophage cells and thus can be useful for the treatment of inflammatory diseases [90].

Figure 4. Chemical structures of compounds 55–65.

Ryu et al. (2019) found that 3-bromo-4,5-dihydroxy-benzaldehyde (21) protects human keratinocytes from oxidative stress by upregulating extracellular signal-regulated kinase (ERK) and protein kinase B (Akt), which allows nuclear factor erythroid 2-related factor 2 (Nrf2) to induce the transcription of the antioxidant enzyme heme oxygenase (HO-1) [85].

BPs 8 and 41, as well as the biphenyl BPs 46, 48, 53, and 59, isolated from the red alga S. latiuscula, all being fully substituted, showed particularly high radical scavenging activity, with IC\textsubscript{50} values of 7.5, 8.5, 8.5, 8.1, 10.5, and 10.2 μM, respectively, significantly higher than that of L-ascorbic acid (IC\textsubscript{50} = 15.3 μM), employed as positive control [74,79]. The structurally similar avrainvilleol (49), isolated from the green alga Avrainvillea sp., also exerted high antioxidant activity with an IC\textsubscript{50} value of 6.1 μM [91]. The DPPH radical-scavenging activities of the bis-phenols 46, 48, 53, and 59 are noticeably higher than those of the mono-phenols 1, 7, 8, 12, 20, 25, and 41 with IC\textsubscript{50} values of 14.0, 15.5, 7.5, 14.4, 24.0, 24.7, and 8.5 μM, respectively. Apparently, DPPH scavenging activity is directly related to the overall number of phenol units in the molecules (e.g., 45 and 47 vs. 65 and 14 vs. 56, with IC\textsubscript{50} values of 17.6 and 16.9 vs. 8.90, and 18.5 vs. 13.6 μM, respectively). Compounds having the same number of phenolic hydroxyl groups, such as compounds 28 and 34, or 45...
and 47 exhibit similar DPPH radical scavenging activity (23.6 and 20.8, or 17.6 and 16.9 \(\mu M \), respectively) [76,81].

![Chemical structures of compounds 66–70.](image)

Figure 5. Chemical structures of compounds 66–70.

Furthermore, a series of BPs isolated from the red alga \textit{P. urceolata} (23, 33, 38, 57, 58, 60–64) was shown to exhibit significant DPPH radical scavenging activity [84,88,92]. Among them, compounds 60, 62, 63, and 64, bearing four hydroxyl groups in their molecules, were the most active with IC\(_{50}\) values of 8.1, 6.8, 6.1, and 7.9 \(\mu M \), respectively. Moreover, in this case, the necessity for the presence of two successive hydroxyl groups in the benzene ring is evident for the display of enhanced antioxidant activity. Another important factor for enhanced activity is the conjugation of the benzene rings, as evidenced by comparing compounds 57 and 63. The conjugation in the dihydrophenanthrene skeleton results to a reduction in the IC\(_{50}\) values from 19.6 \(\mu M \) for 57 to 6.1 \(\mu M \) for 63.

The degree of bromination does not appear to affect the antioxidant activity in a consistent manner. For example, in the case of BPs 12 and 13 the IC\(_{50}\) values were comparable (14.4 and 12.4 \(\mu M \), respectively). In the case of 19 and 20 (IC\(_{50}\) values 9.52 and 24.0 \(\mu M \), respectively), it appears that the extra bromine atom in 20 reduces the antioxidant activity, while in the cases of 24 and 25, 45, and 46, as well as 47 and 48 it appears that the presence of an additional bromine atom increases the activity. Moreover, by comparing the IC\(_{50}\) values of 37 and 38 (8.72 and 9.40 \(\mu M \), respectively), it appears that the site of bromination is of no decisive importance.

Choi et al. (2018) showed that bis (3-bromo-4,5-dihydroxybenzyl) ether (BDDE, 44), isolated from \textit{Polysiphonia morrowii}, suppresses the lipopolysaccharide (LPS)-induced ROS generation in RAW 264.7 macrophage cells. In turn, inhibition of LPS-induced ROS generation by BDDE (44) caused ERK inactivation and an inflammatory reaction [90]. Therefore, BBDE (44) inhibits LPS-induced inflammation by inhibiting the ROS-mediated ERK signal-
ing pathway in RAW 264.7 macrophage cells and thus can be useful for the treatment of inflammatory diseases [90].

Phlorotannins, exclusively found in macroalgae, are oligomers or polymers of phloroglucinol (1,3,5-trihydroxybenzene, PGU, 66) that can be classified according to the linkage of PGU units [125,126]. Park et al. (2019) suggested that PGU (66) is able to protect HaCaT keratinocytes against oxidative stress-induced DNA damage and apoptosis through the activation of the Nrf2/HO-1 signaling pathway [96].

![Chemical structures of compounds 71–76.](image)

Figure 6. Chemical structures of compounds 71–76.

Until now, numerous phlorotannins purified from brown seaweeds, especially from Ecklonia sp., have been proven to exert antioxidant activities and protective effects against H$_2$O$_2$-induced cell damage [93,95,104–106,108,110]. In particular, eckol (71), eckstolonol (72), diphlorethohydroxycarmalol (DPHC, 73), 7-phloroglucinol-eckol (74), dieckol (75), fucodiphloroethol G (77), phlorofucofuroeckol-A (79) 6,6′-bieckol (80), 6,8′-bieckol (81), 8,8′-bieckol (82), 974-B (83), and 2,7′-phloroglucinol-6,6′-bieckol (84), isolated from *Eisenia bicyclis, Ecklonia cava, Ecklonia stolonifera*, and *Ishige okamuraa*, have shown potent antioxidant
activity as determined by the DPPH radical scavenging method, with IC$_{50}$ values of 11.5, 8.8, 10.5, 18.6, 6.2, 0.60, 4.7, 8.69, 15.0, 0.86, and 0.51 µM, respectively [95, 97, 104, 108, 109, 115, 122, 123]. Among them, fucodiphloroethol G (77), compound 83, and 2,7”-phloroglucinol-6,6′-bieckol (84) are the most effective, with IC$_{50}$ values in the nanomolar range [115, 122, 123].

![Chemical structures of compounds 77-82.](image-url)
to a lesser degree in algae. The flavonoids acanthophorin A (88) and acanthophorin B (89), isolated from the red alga *Acanthophora spicifera*, were shown to exert significant antioxidant activity by preventing lipid peroxidation and inhibiting the generation of MDA in liver homogenates of rat in vitro. Compounds 88 and 89, with IC50 values 1.0×10^{-2} and 1.5×10^{-2} μM, respectively, displayed almost 10,000 times higher activity than vitamin E (IC50 = 160 μM) [124].

Figure 8. Chemical structures of compounds 83–89.
Eckol (71) suppresses the production of intracellular ROS and increases GSH levels in HepG2 cells [103], while dieckol (75) induces apoptosis in human hepatocellular carcinoma Hep3B cells via the activation of both death receptor and mitochondrion-dependent pathways, by activating caspases-3, -7, -8, -9, and poly(ADP-ribose) polymerase (PARP) [113]. Moreover, eckol (71), phlorofucofuroeckol A (79), dieckol (75), and 8,8′-bieckol (82) have shown potent inhibition of phospholipid peroxidation at a concentration of 1 µM in a liposome system [108]. Lee et al. (2018) showed that both eckol (71) and dieckol (75) attenuated PM$_{10}$ (particulate matter of less than 10 µm) -induced lipid peroxidation and cytokine expression in human epidermal keratinocytes [107]. Similarly, Zhen et al. (2019) showed that DPHC (73) blocked PM$_{2.5}$ (fine particulate matter with a diameter ≤ 2.5 µm) -induced ROS production in human keratinocytes [111]. Specifically, DPHC (73) protected cells against PM$_{2.5}$-induced DNA damage, endoplasmic reticulum stress, and autophagy, and inhibited lipid peroxidation, protein carboxylation, and increased epidermal height in HR-1 hairless mice exposed to PM$_{2.5}$. Moreover, DPHC (73) attenuated PM$_{2.5}$-induced apoptosis and mitogen-activated protein kinase (MAPK) protein expression [111]. In the study of Heo et al. (2012), the neuroprotective effect of DPHC (73) against H$_2$O$_2$-induced oxidative stress in murine hippocampal neuronal cells HT22 was investigated and it was found that DPHC protected cells from H$_2$O$_2$-induced neurotoxicity by restoring cell viability [110]. Specifically, DPHC (73) slightly reduced the expression of Bax induced by H$_2$O$_2$, but recovered the expression of Bcl-xL, as well as caspase-9 and -3 mediated PARP cleavage by H$_2$O$_2$, while it effectively inhibited intracellular ROS and lipid peroxidation in a dose-dependent manner and suppressed the elevation of H$_2$O$_2$-induced Ca$^{2+}$ release [110].

On the other hand, the protective effects of 6,6′-bieckol (80) against high-glucose-induced oxidative stress were investigated using human umbilical vein endothelial cells (HUVECs) susceptible to oxidative stress [121]. It was found that 6,6′-bieckol (80) significantly inhibited the high-glucose treatment-induced HUVECs’ cell death. Moreover, compound 80 dose-dependently decreased thiobarbituric acid reactive substances (TBARS), intracellular ROS generation, and nitric oxide levels that were increased by high glucose. High glucose levels induced the overexpression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and nuclear factor-kappa B (NF-κB) proteins in HUVECs, but treatment with 6,6′-bieckol (80) reduced their overexpression.

The structure–activity relationship of phlorotannins, although not fully elucidated, suggests that the hydroxyl group availability influences phlorotannins’ antioxidant capacity to a far greater extent than polymerization and the size of the molecule.

Flavonoids are another important class of polyphenolic secondary metabolites often exhibiting potent antioxidant activity, found predominantly in plants and fungi, but also to a lesser degree in algae. The flavonoids acanthophorin A (88) and acanthophorin B (89), isolated from the red alga Acanthophora spicifera, were shown to exert significant antioxidant activity by preventing lipid peroxidation and inhibiting the generation of MDA in liver homogenates of rat in vitro. Compounds 88 and 89, with IC$_{50}$ values 1.0 × 10$^{-2}$ and 1.5 × 10$^{-2}$ µM, respectively, displayed almost 10,000 times higher activity than vitamin E (IC$_{50}$ = 160 µM) [124].

4. Terpenoids

Terpenoids, also called isoprenoids, represent a diverse class of naturally occurring secondary metabolites composed of isoprene units. Terpenoids, often possessing multicyclic structures with various functional groups [127], are ubiquitous, found in almost all classes of living organisms, including macroalgae. Table 3 presents the terpenoids possessing significant antioxidant activities isolated so far from marine macroalgae (Figures 9–12).
Table 3. Terpenoids from macroalgae with antioxidant activity.

Compound	Isolation Source	Assay/Activity	Reference
90	*Plocamium* sp. (Rhodophyta, Florideophyceae, Plocamiales)	DPPH scavenging: IC₅₀ = 0.05 ± 0.01 mM H₂O₂ scavenging: IC₅₀ = 5.58 ± 1.11 mM NO scavenging: IC₅₀ = 4.18 ± 0.22 mM reducing power (Fe³⁺ to Fe²⁺ reduction)	[128]
91	*U. fasciata* (Chlorophyta, Ulvophyceae, Ulvales)	ABTS⁺ scavenging: 66.8 ± 1.5% at 50 µM DPPH scavenging: IC₅₀ = 13.74 ± 1.38 mM	[129]
92	*Pyropia* orbicularis (Rhodophyta, Bangiophyceae, Bangiales)	activation of antioxidant responses during desiccation	[130]
93	*U. fasciata* (Chlorophyta, Ulvophyceae, Ulvales)	ABTS⁺ scavenging	[129]
94	*U. fasciata* (Chlorophyta, Ulvophyceae, Ulvales)	ABTS⁺ scavenging	[129]
95	*U. fasciata* (Chlorophyta, Ulvophyceae, Ulvales)	ABTS⁺ scavenging	[129]
96	*U. fasciata* (Chlorophyta, Ulvophyceae, Ulvales)	ABTS⁺ scavenging	[129]
97	*Laurencia* tristicha (Rhodophyta, Florideophyceae, Ceramiales)	alcohol-induced oxidative injury in rats enzyme activity (SOD, CAT, GPx) D-galactose-induced oxidation in mice endogenous apoptosis-related genes’ expression (BAX, cytochrome c, cytochrome P450, BCL-2, Caspase-9 and Caspase-3) GSH content lipid peroxidation	[131,132]
98	*Laurencia* dendroides (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: 24.19 ± 1.15% inhibition at 2 mM	[135]
99	*L. dendroides* (Rhodophyta, Florideophyceae, Ceramiales)	ABTS⁺ scavenging: 27.50 ± 1.30% inhibition at 2 mM	[135]
100	*S. wightii* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: IC₅₀ = 1.18 ± 0.07 mM DPPH scavenging: IC₅₀ = 1.08 ± 0.07 mM	[134]
101	*S. wightii* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: IC₅₀ = 0.72 ± 0.09 mM DPPH scavenging: IC₅₀ = 0.75 ± 0.03 mM	[134]
102	*Cystosira* trinodis (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: 24.19 ± 1.15% inhibition at 2 mM	[135]
103	*C. trinodis* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: 24.05 ± 2.38% inhibition at 2 mM	[135]
104	*C. trinodis* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: 20.41 ± 0.13% inhibition at 2 mM	[135]
105	*C. trinodis* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: 26.37 ± 0.20% inhibition at 2 mM	[135]
107	*Caulerpa* racemosa (Chlorophyta, Ulvophyceae, Bryopsidales)	Alkyl scavenging: IC₅₀ = 0.66 ± 0.05 mM OH scavenging: IC₅₀ = 0.29 ± 0.05 mM	[137]
Table 3. Cont.

Compound	Isolation Source	Assay/Activity	Reference
108	*S. wightii* (Ochrophyta, Phaeophyceae, Fucales)	ABTS\(^+\) scavenging \(IC_{50} = 0.37 \pm 0.02\) mM	
DPPH scavenging: \(IC_{50} = 0.31 \pm 0.02\) mM	[134]		
109	*S. wightii* (Ochrophyta, Phaeophyceae, Fucales)	ABTS\(^+\) scavenging: \(IC_{50} = 0.37 \pm 0.02\) mM	
DPPH scavenging: \(IC_{50} = 0.34 \pm 0.06\) mM	[134]		
110	*Gracilaria salicornia* (Rhodophyta, Florideophyceae, Gracilariales)	ABTS\(^+\) scavenging: \(IC_{50} = 1.09\) mM	
DPPH scavenging: \(IC_{50} = 1.33\) mM	[138]		
111	*G. salicornia* (Rhodophyta, Florideophyceae, Gracilariales)	ABTS\(^+\) scavenging: \(IC_{50} = 1.24\) mM	
DPPH scavenging: \(IC_{50} = 1.56\) mM	[138]		
112	from plants and microalgae, but also from macroalgae	enzyme activity (CAT, SOD, GPx and GSH reductase)	
GSH and TBARS levels in hepatic tissue of lycopene-treated rats	[139]		
113	from plants and microalgae, but also from macroalgae	intracellular ROS generation in LPS-stimulated RAW 264.7 macrophages	
LPS- and IFN-\(\gamma\)-induced NO generation in RAW 264.7 macrophages			
TPA-induced \(O_2^-\) generation in differentiated human promyelocytic HL-60 cells	[140–142]		
114	from plants and microalgae, but also from macroalgae	LPS- and IFN-\(\gamma\)-induced NO generation in RAW 264.7 macrophages	
TPA-induced \(O_2^-\) generation in differentiated human promyelocytic HL-60 cells	[141,142]		
115	from plants and microalgae, but also from macroalgae	LPS- and IFN-\(\gamma\)-induced NO generation in RAW 264.7 macrophages	
TPA-induced \(O_2^-\) generation in differentiated human promyelocytic HL-60 cells	[141,142]		
116	from plants and microalgae, but also from macroalgae	radical scavenging	
enzyme (SOD2, CAT, and GPx1) regulation in irradiated cells			
intracellular ROS generation (DCFH-DA) in acetaldehyde-treated SH-SY5Y cells			
LPS- and IFN-\(\gamma\)-induced NO generation in RAW 264.7 macrophages			
Nrf2/HO-1 antioxidant pathway			
Nrf2 dissociation and nuclear translocation			
Nrf2 expression regulation in irradiated cells			
Nrf2-regulated enzymes expression (HO-1, NQO-1, and GST-\(\alpha\))			
PI3K/Akt and ERK signaling pathway regulation			
ROS-induced oxidative stress in a rat deep-burn model			
regulation of free radical production (NQO-1, HO-1, and GST-\(\alpha\))			
Sp1/NR1 signaling pathway regulation			
TPA-induced \(O_2^-\) generation in differentiated human promyelocytic HL-60 cells			
Akt/CREB and p38 kinase/MAPK signaling pathway in acetaldehyde-treated SH-SY5Y cells	[141–152]		
117	from plants and microalgae, but also from macroalgae	ROO scavenging (ORAC/ESR)	
caspase-3/7 activation
Nrf2/ARE signaling in RAW 264.7 macrophages | [153] |
Table 3. Cont.

Compound	Isolation Source	Assay/Activity	Reference
118	from various species of Ochrophyta	ABTS$^+$ scavenging: 72.06 ± 0.70% inhibition at 2 mM	
β-carotene bleaching: 95% inhibition at 150 µg/mL			
DPPH scavenging: IC$_{50}$ = 19.6, 206.4 µM			
Fe$^{2+}$ chelation: IC$_{50}$ = 1.52 mM			
FRAP: 15.2 µg TE; 24.62 mg ascorbic acid eqs/g at 1.5 mM			
OH scavenging: IC$_{50}$ = 51.6 µM			
O$_2^-$ scavenging			
ROO scavenging (ORAC/ESR)			
caspase-3/7 activation			
high glucose-induced oxidative stress in HUVEC and zebrafish model			
H$_2$O$_2$-induced intracellular ROS and cytotoxicity in fibroblast cells			
H$_2$O$_2$-induced neuronal apoptosis in SH-SY5Y cells			
intracellular ROS generation in SH-SY5Y cells (DCFH-DA)			
LPS- and IFN-γ-induced NO generation and Nrf2/ARE signaling in RAW 264.7 macrophages			
oxidative DNA damage			
PI3-K/ Akt cascade/ ERK signaling			
square wave voltammetry			
TPA-induced O$_2^-$ generation in differentiated HL-60 cells	[142,153–162]		
119	Laminaria japonica (Ochrophyta, Phaeophyceae, Laminariales)	ABTS$^+$ scavenging	
DPPH scavenging			
OH scavenging			
O$_2^-$ scavenging	[162]		
120	L. japonica (Ochrophyta, Phaeophyceae, Laminariales)	ABTS$^+$ scavenging	
DPPH scavenging			
OH scavenging			
O$_2^-$ scavenging	[162]		
121	L. japonica (Ochrophyta, Phaeophyceae, Laminariales)	ABTS$^+$ scavenging	
DPPH scavenging			
OH scavenging			
O$_2^-$ scavenging	[162]		
122	from plants and microalgae, but also from macroalgae	ABTS$^+$ scavenging: IC$_{50}$ = 25.4 µM	
DPPH scavenging: IC$_{50}$ = 68.9 µM	[163]		
123	Undaria peterseniana (Ochrophyta, Phaeophyceae, Laminariales)	oxidative stress-mediated apoptosis	[164]
124	Sargassum horteri (Ochrophyta, Phaeophyceae, Fucales)	alkyl scavenging (ESR): IC$_{50}$: 0.22 ± 0.02 mM	
AAPH-induced intracellular ROS in Vero cells
AAPH-induced lipid peroxidation in zebrafish models in vivo
NF-κB, MAPK and oxidative stress regulation in RAW 264.7 macrophages
Nrf2/HO-1 pathways regulation | [165,166] |

AAPH: 2,2′-azobis(2-aminopropane) dihydrochloride; ABTS$^+$: 2,2′-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid) diammonium salt; Akt: protein kinase B; ARE: antioxidant response element; CAT: catalase; DCFH-DA: cell-based 2′,7′-dichlorodihydrofluorescein diacetate
antioxidant assay; DPPH: 1,1-diphenyl-2-picrylhydrazyl free radical; ESR: electron spin resonance; FRAP: ferric reducing antioxidant power; GSH: glutathione; GPx: glutathione peroxidase; HO-1: heme oxygenase-1; H2O2: hydrogen peroxide; HUVEC: human umbilical vein endothelial cells; OH: hydroxyl; IC50: half maximal inhibitory concentration; IFN-γ: interferon γ; LPS: lipopolysaccharide; MAPK: mitogen-activated protein kinase; NADPH: nicotinamide adenine dinucleotide phosphate; NFκB: nuclear factor kappa-light-chain-enhancer of activated B cells, NO.: nitric oxide; Nox: NADPH oxidase; Nrf2: nuclear factor erythroid 2-related factor 2; O2−: superoxide anion; ORAC: oxygen radical absorbance capacity; PI-3-K: phosphatidylinositol 3-kinase; ROS: reactive oxygen species; SH-SY5Y: human dopaminergic neuronal cell line; SOD: superoxide dismutase; TBARS: thiobarbituric acid reactive substances; t-BHP: tert-butyl hydroperoxide; TE: trolox equivalents; TPA: 12-O-tetradecanoylphorbol 13-acetate; XO: xanthine oxidase.

Figure 9. Chemical structures of compounds 90–101.

Compared to phenolic compounds, as presented in Table 2, it is evident that terpenoids are less active, since their IC50 values in the DPPH radical scavenging assay are mostly within the mM range. The most active compounds reported are the halogenated monoterpene (1E,3R,4S,5E,7Z)-1-bromo-3,4,8-trichloro-7-(dichloro-methyl)-3-methyl-octa-1,5,7-triene (90), isolated from the red alga Plocamium sp., and the carotenoids fucoxanthin (118) and violaxanthin (122), isolated from various macroalgae, with IC50 values of 50.0, 19.6, and 68.9 μM, respectively [128,159,163].

Alarif et al. (2015) isolated a series of C-29 steroids (102–106), along with fucoxanthin (118), from the brown alga Cystoseira trinodis and all compounds were evaluated for their antioxidant activity [135]. Steroids 102–106 showed moderate antioxidant activity (20.4 to 27.5%) in the ABST assay, while compound 118 exhibited significant levels of activity (72.1%).

Fucosterol (104), frequently isolated from brown algae, was confirmed to exert antioxidant activity on hepatic cells via an increase in the hepatic levels of GSH and a decrease in ROS production, therefore preventing hepatic damage and the resultant increase in alanine transaminase and aspartate transaminase activities [136]. Hence, fucosterol is considered an effective hepatoprotective agent that could be useful for preventive therapies against oxidative stress-related hepatotoxicity.

Moreover, the abeo-oleanenes 110 and 111 were isolated from the red alga Gracilaria salicornia and their antioxidant activity was evaluated employing the DPPH and ABTS+ radical scavenging assays [138]. Compound 110 exhibited higher radical scavenging activities (DPPH IC50 = 1.33 mM; ABTS+ IC50 = 1.09 mM), when compared to those...
displayed by compound 111 (DPPH IC\textsubscript{50} = 1.56 mM; ABTS+ IC\textsubscript{50} = 1.24 mM) and α-tocopherol that was used as positive control (DPPH IC\textsubscript{50} = 1.46 mM; ABTS+ IC\textsubscript{50} = 1.72 mM).

Among terpenoids, carotenoids, a family of lipophilic pigments synthesized by plants, algae, fungi, and microorganisms, but not animals, exhibit high levels of antioxidant activity. In red, brown, and green algae, carotenoids play a key role in their protection against photo-oxidative processes [6]. Their antioxidant action is based on their singlet oxygen quenching properties and their free radicals scavenging ability, which mainly

![Chemical structures of compounds 102–111.](image-url)
depends on the number of conjugated double bonds, the nature of substituents and the end groups of the carotenoids [6].

In marine macroalgae, β-carotene (113), lutein (114), zeaxanthin (115), astaxanthin (116), neoxanthin (117), fucoxanthin (118), and violaxanthin (122) are known to be among the major carotenoids encountered [167]. Astaxanthin (116) acts as a safeguard against oxidative damage through various mechanisms, such as singlet oxygen quenching, radical scavenging, inhibition of lipid peroxidation, and regulation of gene expression related to oxidative stress [144,148,168–171]. The exact mechanisms of action of astaxanthin have been extensively studied, since it has been proven to confer protective effects against neurological diseases, as well as in treating and preventing skin diseases [171–173].

Specifically, astaxanthin (116) activates the phosphatidylinositol 3-kinase (PI3K)/Akt and ERK signaling pathways, and thus facilitates the dissociation and nuclear translocation of Nrf2, which leads to upregulation of the expression of Nrf2-regulated enzymes (e.g., HO-1, NQO-1, and GST-α1) [147]. Astaxanthin (116) inhibits the production of intracellular ROS by negatively regulating the Sp1/NR1 signaling pathway [149,150] and modulating the expression of oxidative stress-responsive enzymes, such as HO-1, which is a marker of oxidative stress and a regulatory mechanism involved in cell adaptation against oxidative damage [143]. In addition, astaxanthin activates the Nrf2/HO-1 antioxidant pathway by generating small amounts of ROS [145,146]. In agreement with these studies, Xue et al. (2017) observed that astaxanthin upregulated Nrf2 expression, as well as Nrf2-targeted proteins HO-1 and antioxidative enzymes SOD2, CAT, and GPx1 in irradiated cells [151]. Thus, astaxanthin (116) exerts noteworthy antioxidant activities via both direct radical scavenging, and activation of the cellular antioxidant defense system through modulation of the Nrf2 pathway. Furthermore, a recent study in a rat deep-burn model demonstrated astaxanthin’s protective role in early burn-wound progression by controlling ROS-induced oxidative stress. In that case, the regulation of free radical production is due to the influence of xanthine oxidase and the reduced form of nicotinamide adenine dinucleotide phosphate oxidase, both contributing to the generation of ROS [144].

![Chemical structures of compounds 112–115.](image-url)
Figure 12. Chemical structures of compounds 116–124.
Fucoxanthin (118), often isolated from brown algae, is an oxo-carotenoid with an allenic carbon moiety and a 5,6-monoepoxide in its structure, acknowledged as an efficient quencher of singlet oxygen in photooxidation [174–176]. The antioxidant activity of fucoxanthin (118) is mediated through various mechanisms, such as singlet oxygen quenching, radical scavenging, and inhibition of lipid peroxidation. Fucoxanthin (118) has been shown to exert the best in vitro bioactivities among carotenoids in inhibiting overexpression of vascular endothelial growth factor, resisting senescence, improving phagocytic function, and clearing intracellular ROS in retinal pigment epithelium cells, protecting the retina against photoinduced damage [156].

The study of Taira et al. (2017) demonstrated that fucoxanthin (118), through the Nrf2 activation, exerts either cytoprotective activity or induction of apoptosis, depending on the concentrations employed [153]. At a low concentration range (1–4 µM), fucoxanthin provides a cytoprotective effect due to its antioxidant activity, as exerted by its peroxyl radical scavenging capacity, involving the antioxidant HO-1 protein expression increase through the activation of the Nrf2/ARE pathway. On the other hand, high concentration (>10 µM) treatment of cells induces apoptosis with caspase -3/7 activation during the suppression of anti-apoptotic proteins, such as Bcl-xL, and pAkt.

Besides, the cytoprotective effect of fucoxanthin (118) has been investigated against H₂O₂-induced cell damage [154,158]. It was shown that fucoxanthin effectively inhibited intracellular ROS formation, DNA damage, and apoptosis induced by H₂O₂. Finally, the protective effect of fucoxanthin was investigated against UVB-induced cell injury in human fibroblasts and showed significant decrease in intracellular ROS formation and increase in cell survival rate in a dose-dependent manner [155].

Comparative studies of the radical scavenging efficiency of fucoxanthin (118) and its stereoisomers (119–121) isolated from Laminaria japonica have also been conducted [162]. All three stereoisomers had stronger hydroxyl radical scavenging activities than α-tocopherol but showed weaker scavenging activities toward DPPH and superoxide radical, while their radical scavenging activities were not remarkably different, indicating that the differences in the geometry of the double bonds had very little effect on their activity.

Recently, the monoterpenoid (−)-loliolide (124) was proven to effectively reduce 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced ROS, cell death, and lipid peroxidation in Vero cells and zebrafish embryos in a dose-dependent manner [165]. Moreover, a study conducted by Jayawardena et al. (2019) elaborated the anti-inflammatory effect of Sargassum horneri ethanolic extract containing (−)-loliolide on LPS-stimulated RAW 264.7 macrophages via suppression of NF-κB and MAPK and reduction of oxidative stress through the Nrf2/HO-1 pathway [166].

5. Meroterpenoids

Meroterpenoids are natural products of mixed biosynthesis containing a terpenoid part that exhibit a variety of biological activities. Metabolites belonging to this class that display antioxidant activity have been isolated from various macroalgae (Table 4, Figures 13–19), the majority of which belong to the phylum Ochrophyta, and especially to the genera Cystoseira and Sargassum.

Table 4. Meroterpenoids from macroalgae with antioxidant activity.

Compound	Isolation Source	Assay/Activity	Reference
125	Cymopolia barbata ((Chlorophyta, Ulvophyceae, Dasycladales) DPPH scavenging: strong exogenous ROS scavenging in TPA-treated HL-60 cells (DCFH-DA): IC₅₀ = 4.0 µM	[91]	
126	C. barbata ((Chlorophyta, Ulvophyceae, Dasycladales) DPPH scavenging: strong exogenous ROS scavenging in TPA-treated HL-60 cells (DCFH-DA): IC₅₀ >14.6 µM	[91]	
Table 4. Cont.

Compound	Isolation Source	Assay/Activity	Reference
127	Cystoseira crinita (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging	[177]
		DPPH scavenging: 94.1% at 230 µM	
		O₂⁻ generation (PCL assay)	
		TBARS assay: 66.8% inhibition at 164 µM	
128	C. crinita (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging	[177]
		DPPH scavenging activity: 92.5% at 230 µM	
		O₂⁻ generation (PCL assay)	
		TBARS assay: 66.5% inhibition at 164 µM	
129	Cystoseira usneoides (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging	[177]
		IC₅₀ = 33.3 ± 2.3 µM; 0.78 TE	
130	C. usneoides (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging	[178]
		IC₅₀ = 51.6 ± 4.8 µM; 0.50 TE	
131	C. usneoides (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging	[178]
		IC₅₀ = 44.7 ± 1.1 µM; 0.58 TE	
132	C. usneoides (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging	[178]
		IC₅₀ = 55.9 ± 9.9 µM; 0.46 TE	
133	Dictyopteris undulata (Ochrophyta, Phaeophyceae, Dicryotales)	DPPH scavenging	[179]
		IC₅₀ = 71 µM	
134	D. undulata (Ochrophyta, Phaeophyceae, Dicryotales)	expression of phase-2 enzymes (i.e., NQO1, GSH S-transferase, HO-1 and PRDX4) Nrf2/ARE signaling pathway oxidative stress in HT22 hippocampal neuronal cells	[180]
135	D. undulata (Ochrophyta, Phaeophyceae, Dicryotales)	DPPH scavenging: IC₅₀ = 121 µM	[179]
136	G. salicornia (Rhodophyta, Florideophyceae, Gracilariales)	ABTS⁺ scavenging	[181]
		IC₅₀ = 1.88 ± 0.02 mM	
		DPPH scavenging: IC₅₀ = 1.51 ± 0.01 mM	
137	G. salicornia (Rhodophyta, Florideophyceae, Gracilariales)	ABTS⁺ scavenging	[181]
		IC₅₀ = 1.96 ± 0.01 mM	
		DPPH scavenging: IC₅₀ = 1.85 ± 0.02 mM	
138	G. salicornia (Rhodophyta, Florideophyceae, Gracilariales)	ABTS⁺ scavenging	[181]
		IC₅₀ = 1.57 ± 0.02 mM	
		DPPH scavenging: IC₅₀ = 1.33 ± 0.01 mM	
139	D. undulata (Ochrophyta, Phaeophyceae, Dicryotales)	DPPH scavenging: IC₅₀ = 145 µM	[179]
140	G. salicornia (Rhodophyta, Florideophyceae, Gracilariales)	ABTS⁺ scavenging	[182]
		IC₅₀ = 1.50 mM	
		DPPH scavenging: IC₅₀ = 1.40 mM	
141	G. salicornia (Rhodophyta, Florideophyceae, Gracilariales)	ABTS⁺ scavenging	[182]
		IC₅₀ = 1.33 mM	
		DPPH scavenging: IC₅₀ = 1.17 mM	
142	S. micracanthum (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging	[183]
		IC₅₀ = 25.5 µM	
		lipid peroxidation in rat liver: IC₅₀ = 0.26 µM	
143	S. micracanthum (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging	[184]
		3.0% at 0.23 mM	
		lipid peroxidation in rat liver: IC₅₀ = 2.22 µM	
144	Cystoseira abies-marina (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: 29% at 1.06 mM	[185]
145	C. abies-marina (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: 30% at 1.02 mM	[185]
Table 4. Cont.

Compound	Isolation Source	Assay/Activity	Reference	
146 C. crinita	(Ochrophyta, Phaeophyceae, Fucales)	ABTS$^+$ scavenging		
		DPPH scavenging: 94.4% at 230 µM		
		O$_2^-$ radical generation (PCL assay): 70.8% inhibition at 164 µM		[177]
147 C. crinita	(Ochrophyta, Phaeophyceae, Fucales)	ABTS$^+$ scavenging: TEAC = 0.14 mM		
		DPPH scavenging: 95.4% at 230 µM		
		O$_2^-$ radical generation (PCL assay): 1.35		
		TBARS: 70.8% inhibition at 164 µM		[177]
148 C. crinita	(Ochrophyta, Phaeophyceae, Fucales)	ABTS$^+$ scavenging		
		DPPH scavenging: 96.1% at 230 µM		
		O$_2^-$ radical generation (PCL assay): 1.35		
		TBARS: 68.9% inhibition at 164 µM		[177]
149 C. crinita	(Ochrophyta, Phaeophyceae, Fucales)	ABTS$^+$ scavenging		
		DPPH scavenging: 95.8% at 230 µM		
		O$_2^-$ radical generation (PCL assay): 1.39		
		TBARS: 70.3% inhibition at 164 µM		[177]
150 C. crinita	(Ochrophyta, Phaeophyceae, Fucales)	ABTS$^+$ scavenging: TEAC = 0.37 mM		
		DPPH scavenging: 95.7% at 230 µM		
		O$_2^-$ radical generation (PCL assay): 0.72		
		TBARS: 72.2% inhibition at 164 µM		[177]
151 C. crinita	(Ochrophyta, Phaeophyceae, Fucales)	ABTS$^+$ scavenging: TEAC = 0.09 mM		
		DPPH scavenging: 97.5% at 230 µM		
		O$_2^-$ radical generation (PCL assay): 0.72		
		TBARS: 71.1% inhibition at 164 µM		[177]
152 C. crinita	(Ochrophyta, Phaeophyceae, Fucales)	ABTS$^+$ scavenging: TEAC = 0.09 mM		
		DPPH scavenging: 96.4% at 230 µM		
		O$_2^-$ radical generation (PCL assay): 0.59		
		TBARS: 73.7% inhibition at 164 µM		[177]
153 C. crinita	(Ochrophyta, Phaeophyceae, Fucales)	ABTS$^+$ scavenging: TEAC = 0.09 mM		
		DPPH scavenging: 96.7% at 230 µM		
		O$_2^-$ radical generation (PCL assay): 0.51		
		TBARS: 73.4% inhibition at 164 µM		[177]
154 C. crinita	(Ochrophyta, Phaeophyceae, Fucales)	ABTS$^+$ scavenging: TEAC = 0.08 mM		
		DPPH scavenging: 65.4% at 230 µM		
		O$_2^-$ radical generation (PCL assay): 1.06		
		TBARS: 74.9% inhibition at 164 µM		[177]
155 C. crinita	(Ochrophyta, Phaeophyceae, Fucales)	ABTS$^+$ scavenging: TEAC = 0.28 mM		
		DPPH scavenging: 95.8% at 230 µM		
		O$_2^-$ radical generation (PCL assay): 0.79		
		TBARS: 74.6% inhibition at 164 µM		[177]
156 C. usneoides	(Ochrophyta, Phaeophyceae, Fucales)	ABTS$^+$ scavenging: 0.77 TE		[186]
157 C. usneoides	(Ochrophyta, Phaeophyceae, Fucales)	ABTS$^+$ scavenging:		[178]
		IC$_{50} = 24.5 ± 1.6$ µM; 1.06 TE		
158 C. usneoides	(Ochrophyta, Phaeophyceae, Fucales)	ABTS$^+$ scavenging: 0.77 TE		[186]
159 C. usneoides	(Ochrophyta, Phaeophyceae, Fucales)	ABTS$^+$ scavenging:		[178]
		IC$_{50} = 26.3 ± 2.3$ µM; 0.98 TE		
160 C. usneoides	(Ochrophyta, Phaeophyceae, Fucales)	ABTS$^+$ scavenging: 0.87 TE		[186]
Table 4. Cont.

Compound	Isolation Source	Assay/Activity	Reference
161	*C. usneoides* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: IC₅₀ = 33.1 ± 5.1 µM; 0.78 TE	[178]
162	*C. usneoides* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: 0.67 TE	[186]
163	*C. usneoides* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: 0.81 TE	[186]
164	*C. usneoides* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: IC₅₀ = 43.1 ± 3.1 µM; 0.60 TE	[178]
165	*C. usneoides* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: 0.53 TE	[186]
166	*C. usneoides* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: 0.37 TE	[186]
167	*C. usneoides* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: 0.66 TE	[186]
168	*C. usneoides* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: 0.45 TE	[186]
169	*C. usneoides* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: 0.65 TE	[186]
170	*C. usneoides* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: 0.50 TE	[186]
171	*C. usneoides* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: 0.62 TE	[186]
172	*C. usneoides* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: IC₅₀ = 24.4 ± 0.9 µM; 1.06 TE	[178]
173	*C. usneoides* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: IC₅₀ = 22.5 ± 2.1 µM; 1.15 TE	[178]
174	*Sargassum silicuastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: IC₅₀ = 0.54 µM	[187]
175	*Sargassum elegans, S. silicuastrum, Sargassum thunbergii* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: IC₅₀ = 0.40; 46.9 µM ONOO⁻ scavenging: 78.03% at 23.4 µM ONOO⁻ derived from SIN-1 scavenging: 100% at 23.4 µM electrochemistry-guided isolation of antioxidant metabolites (using square wave and cyclic voltammetry methods)	[157,187–189]
176	*S. micracanthum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: 52.6% inhibition at 143.6 µM lipid peroxidation in rat liver: IC₅₀ = 63.6 µM	[184]
177	*S. micracanthum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: 32.3% inhibition at 144.0 µM lipid peroxidation in rat liver: IC₅₀ = 1.66 µM	[184]
178	*S. silicuastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: IC₅₀ = 0.27 µM	[187]
179	*S. silicuastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: IC₅₀ = 0.25 µM	[187]
180	*S. silicuastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: IC₅₀ = 0.68 µM	[187]
Table 4. Cont.

Compound	Isolation Source	Assay/Activity	Reference
181	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: $IC_{50} = 0.64 \mu M$	[187]
182	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: $IC_{50} = 0.62 \mu M$	[187]
183	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: $IC_{50} = 0.21 \mu M$	[187]
184	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: $IC_{50} = 23.3 \mu M$	[187]
185	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: $IC_{50} = 26.1 \mu M$	[187]
186	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: $IC_{50} = 25.4 \mu M$	[187]
187	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: $IC_{50} = 37.9 \mu M$	[187]
188	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: $IC_{50} = 35.4 \mu M$	[187]
189	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: $IC_{50} = 18.7 \mu M$	[187]
190	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: $IC_{50} = 25.9 \mu M$	[187]
191	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: $IC_{50} = 30.4 \mu M$	[187]
192	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: $IC_{50} = 47.9 \mu M$	[187]
193	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: $IC_{50} = 26.3 \mu M$	[187]
194	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: $IC_{50} = 25.1 \mu M$	[187]
195	*S. micracanthum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: $IC_{50} = 933.3 \mu M$	[183]
196	*S. elegans* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: $IC_{50} = 63.6; 100.2 \mu M$; ONOO$^-$ scavenging: 64.18% at 23.6 μM; ONOO$^-$ derived from SIN-1 scavenging activity: 75.39% at 23.6 μM	[157]
197	*S. elegans, S. micracanthum, S. thunbergii* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: $IC_{50} = 100.2 \mu M$; ONOO$^-$ scavenging: 64.18% at 23.6 μM	[157]
198	*C. crinita* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: $IC_{50} = 39.0\%$ at 230 μM; O_2^- generation (PCL assay)	[177]
199	*C. crinita* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: $IC_{50} = 38.6\%$ at 230 μM; O_2^- generation (PCL assay)	[177]
Table 4. Cont.

Compound	Isolation Source	Assay/Activity	Reference
200	*C. barbata* (Ochrophyta, Phaeophyceae, Fucales)	antioxidant activity against ROS and reactive nitrogen species	[141,183,184,189]
201	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: 90.0% at 0.29 mM	[191]
202	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: 87.4% at 0.29 mM	[191]
203	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	H$_2$O$_2$-induced lipid peroxidation in HT 1080 cells	[192]
204	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: 90.5% at 0.24 mM	[191]
205	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: 89.6% at 0.23 mM H$_2$O$_2$-induced lipid peroxidation in HT 1080 cells	[191,192]
206	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	intracellular GSH level in HT 1080 cells	[191,192]
207	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	intracellular GSH level in HT 1080 cells	[191,192]
208	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: 89.2% at 0.23 mM H$_2$O$_2$-induced lipid peroxidation in HT 1080 cells	[191,193]
209	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	expression of osteoclastic marker gene in RANKL-stimulated RAW264.7 cells (TRAP, CTSK, MMP9 and CTR)	[191,193]
210	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	NF-κB activation in RANKL-stimulated RAW264.7 cells osteoclast differentiation in RANKL-stimulated RAW264.7 cells phosphorylation of MAPKs in RANKL-stimulated RAW264.7 cells	[191,193]
211	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: 89.2% at 0.23 mM H$_2$O$_2$-induced lipid peroxidation in HT 1080 cells	[191,192]
212	*S. siliquastrum* (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: 89.1% at 0.23 mM	[191]
Table 4. Cont.

Compound	Isolation Source	Assay/Activity	Reference
213	S. micracanthum (Ochrophyta, Phaeophyceae, Fucales)	NADPH-dependent lipid peroxidation in rat microsomes: IC₅₀ = 0.65 µM	[194]
214	S. micracanthum, S. thunbergii (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: IC₅₀ = 75.4 µM; 78.85% at 250 µM ONOO scavenging: 92.69% at 23.6 µM ONOO⁻ derived from SIN-1 scavenging: 99.51% at 23.6 µM	[188–190]
215	S. thunbergii (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: IC₅₀ = 82.9 µM	[189]
216	S. siliquastrum (Ochrophyta, Phaeophyceae, Fucales)	H₂O₂-induced lipid peroxidation in HT 1080 cells: 43.2% at 112.0 µM Intracellular GSH level in HT 1080 cells intracellular ROS generation (DCFH-DA) in HT 1080 cells	[192]
217	S. siliquastrum (Ochrophyta, Phaeophyceae, Fucales)	H₂O₂-induced lipid peroxidation in HT 1080 cells: 38.9% at 112.0 µM Intracellular GSH level in HT 1080 cells Intracellular ROS generation (DCFH-DA) in HT 1080 cells	[192]
218	S. siliquastrum (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: 88.8% at 0.24 mM	[191]
219	S. thunbergii (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: IC₅₀ = 67.8 µM ONOO scavenging: 60.0% at 11.3 µM ONOO⁻ derived from SIN-1 scavenging: 98.6% at 11.3 µM	[195]
220	S. thunbergii (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: IC₅₀ = 70.0 µM ONOO scavenging: 57.1% at 11.3 µM ONOO⁻ derived from SIN-1 scavenging: 90.6% at 11.3 µM	[195]
221	S. siliquastrum (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: 90.1% at 0.24 mM	[191]
222	S. siliquastrum (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: 88.7% at 0.23 mM	[191]
223	S. siliquastrum (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: 89.2% at 0.24 mM	[191]
224	S. siliquastrum (Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: 88.7% at 0.24 mM	[191]

ABTS: 2,2’-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid) diammonium salt; ARE: antioxidant response element; CTR: calcitonin receptor; CTSK: cathepsin K; DCFH-DA: cell-based 2′,7′-dichlorodihydrofluorescein diacetate antioxidant assay; DPPH: 1,1-diphenyl-2-picrylhydrazyl free radical; GSH: glutathione; HO-1: heme oxygenase-1; HT 1080: human fibrosarcoma cell line; IC₅₀: half maximal inhibitory concentration; MMP9: matrix metalloproteinase 9; NADPH: nicotinamide adenine dinucleotide phosphate; NQO1: NADPH quinone oxidoreductase 1; Nrf2: nuclear factor erythroid 2-related factor 2; ONOO⁻: peroxynitrite; O₂−: superoxide anion; PCL: photochemiluminescence; PRDX4: peroxiredoxin 4; RANKL: receptor activator of NF-κB ligand; ROS: reactive oxygen species; SIN-1: 3-morpholinosydnonimine; SOD: superoxide dismutase; TRAP: tartrate-resistant acid phosphatase.

Overall, meroterpenoids from marine macroalgae have exhibited moderate to remarkable antioxidant activity. Specifically, the brominated compound cymopol (125), isolated from the green alga *Cymopolia barbata*, exerted noticeably high DPPH scavenging activity with an IC₅₀ value of 4.0 µM [91].

De los Reyes et al. (2013, 2016) described the isolation of meroditerpenoids 129–132 and 156–173 that have shown radical scavenging activity from the brown alga *Cystoseira usneoides* [178,186]. The most active compounds were cystodiones A (173), B (172), G (162), and H (158), cystomexicone B (129), amentadione (156), amentadione 1’-methyl ether
(157), 6-cis-amentadione 1'-methyl ether (159), and 11-hydroxyamentadione (160), which exhibited antioxidant activity in the ABTS assay in the range of 77–115% compared to Trolox that was used as a standard.

![Chemical structures of compounds 125–139.](image)

Figure 13. Chemical structures of compounds 125–139.
The observed differences in the values obtained in the DPPH assay for the tested compounds were attributed to the existence of small impurities in the samples (e.g., due to autoxidation) and the handling of small amounts rather than to structural variations. On the other hand, in the TBARS assay, potent inhibition of linolenic acid methyl ester peroxidation was observed for all hydroquinones, i.e., 66.5–74.9% inhibition for compounds 127–155 at a concentration of 164 μM. These activities were comparable to those of α-tocopherol (72.7%) and BHT (69.3%). Additionally, these compounds showed activities between 13% (153) and 59% (149) of α-tocopherol in the TEAC test and between 40% (152) and 112% (198) of α-tocopherol in the PCL assay [177].

Figure 14. Chemical structures of compounds 140–157.
Figure 15. Chemical structures of compounds 158–171.
Figure 16. Chemical structures of compounds 172–183.
Figure 17. Chemical structures of compounds 184–199.
Jung et al. (2008) isolated an array of meroterpenoids (174, 175, 178–194) from the brown alga *Sargassum siliquastrum* which exhibited moderate to significant radical scavenging activity in the DPPH assay with IC50 values ranging from 0.21 to 47.9 μM (for compounds 183 and 192, respectively) [187]. The observed more than 200-fold increase in the radical scavenging activity of the isonahocols (174, 175, 178–183 with IC50 values of 0.54, 0.40, 0.27, 0.25, 0.64, 0.68, 0.62, and 0.21 μM, respectively) in comparison to that of the nahocols (184–194 with IC50 values of 23.3, 26.1, 25.4, 37.9, 35.4, 18.7, 25.9, 30.4, 47.9, 26.3, and 25.1 μM, respectively) indicated the pivotal role of the second free hydroxyl group in the phenol ring for enhanced radical scavenging activity. Along this trend, the absence of a free phenolic hydroxyl group resulted in lack of scavenging activity [187].

Additionally, Fisch et al. (2003) reported a number of triprenyltoluquinol derivatives (127, 128, 146–155), isolated from the brown alga *Cystoseira crinita*, that showed very high levels of radical scavenging at a concentration of 230 μM (92.5–96.7% as compared to 95.2% scavenging for α-tocopherol) [177]. In contrast, the co-occurring quinones 197 and 198 showed DPPH radical scavenging activities significantly less than that of α-tocopherol and the hydroquinones, but still comparable to that of BHT, i.e., 29.0% for 197 and 38.6% for 198 as compared to 35.6% scavenging observed for BHT at a concentration of 230 μM. The observed differences in the values obtained in the DPPH assay for the tested compounds were attributed to the existence of small impurities in the samples (e.g., due to autoxidation) and the handling of small amounts rather than to structural variations. On the other hand,
in the TBARS assay, potent inhibition of linolenic acid methyl ester peroxidation was observed for all hydroquinones, i.e., 66.5–74.9% inhibition for compounds 127, 128, and 146–155 at a concentration of 164 μM. These activities were comparable to those of α-tocopherol (72.7%) and BHT (69.3%). Additionally, these compounds showed activities between 13% (153) and 59% (149) of α-tocopherol in the TEAC test and between 40% (152) and 112% (198) of α-tocopherol in the PCL assay [177].

Another investigation conducted by Jang et al. (2005) reported the isolation of meroterpenoids (174, 175, 178–194) from the brown alga *Sargassum siliquastrum* which exhibited moderate to significant radical scavenging activity in the DPPH assay with IC₅₀ values ranging from 0.21 to 47.9 μM (for compounds 183 and 192, respectively) [187]. The observed more than 200-fold increase in the radical scavenging activity of the isonahocols (174, 175, 178–183 with IC₅₀ values of 0.54, 0.40, 0.27, 0.25, 0.64, 0.68, 0.62, and 0.21 μM, respectively) in comparison to that of the nahocols (184–194 with IC₅₀ values of 23.3, 26.1, 25.4, 37.9, 35.4, 18.7, 25.9, 30.4, 47.9, 26.3, and 25.1 μM, respectively) indicated the pivotal role of the second free hydroxyl group in the phenol ring for enhanced radical scavenging activity. Along this trend, the absence of a free phenolic hydroxyl group resulted in lack of scavenging activity [187].

Another investigation conducted by Jung et al. (2008) isolated an array of meroterpenoids (174, 175, 178–194) from the brown alga *Sargassum siliquastrum* which exhibited moderate to significant radical scavenging activity in the DPPH assay with IC₅₀ values ranging from 0.21 to 47.9 μM (for compounds 183 and 192, respectively) [187]. The observed more than 200-fold increase in the radical scavenging activity of the isonahocols (174, 175, 178–183 with IC₅₀ values of 0.54, 0.40, 0.27, 0.25, 0.64, 0.68, 0.62, and 0.21 μM, respectively) in comparison to that of the nahocols (184–194 with IC₅₀ values of 23.3, 26.1, 25.4, 37.9, 35.4, 18.7, 25.9, 30.4, 47.9, 26.3, and 25.1 μM, respectively) indicated the pivotal role of the second free hydroxyl group in the phenol ring for enhanced radical scavenging activity. Along this trend, the absence of a free phenolic hydroxyl group resulted in lack of scavenging activity [187].

Another investigation conducted by Jang et al. (2005) reported the isolation of meroterpenoids belonging to the subclasses of chromenes and chromenols (201, 202, 204–212, 218, 221–224) from the brown alga *S. siliquastrum* that exhibited over 87% radical scavenging activity at a concentration of 0.23 to 0.29 mM (0.1 mg/mL) [191]. Moreover, the antioxidant activity of compounds 205, 206, and 209, along with that of 203, 216, and 217, was evaluated in various assays, including scavenging effects on the generation of intracellular ROS, increments of intracellular GSH levels, and inhibitory effects on lipid peroxidation in human fibrosarcoma HT 1080 cells [192]. All tested compounds significantly decreased the

Figure 19. Chemical structures of compounds 216–224.
generation of intracellular ROS, while increasing the levels of intracellular GSH at a concentration of 5 µg/mL, and inhibited H$_2$O$_2$-induced lipid peroxidation at a concentration of 50 µg/mL.

In an effort to elucidate the mechanism of antioxidant activity of zonarol (134), Shimizu et al. (2015) studied its effect on neuronal cells and proved that zonarol protects them from oxidative stress by activating the Nrf2/ARE pathway and inducing phase-2 enzymes [180]. Moreover, Yoon et al. (2013) elucidated the role of sargachromanol G (208), isolated from the brown alga S. silikuastrum, in receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation [193]. Compound 208 was found to inhibit RANKL-induced osteoclast differentiation from RAW264.7 cells without signs of cytotoxicity. Additionally, the expression of osteoclastic marker genes, such as tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK), matrix metalloproteinase 9 (MMP9), and calcitonin receptor (CTR), was also strongly inhibited. It was concluded that sargachromanol G inhibits RANKL-induced activation of NF-κB by suppressing RANKL-mediated IκB-α protein degradation, and therefore the phosphorylation of mitogen activated protein kinases (p38, JNK, and ERK).

6. Nitrogenous Compounds

So far, a number of nitrogenous compounds, including peptides, alkaloids, and chlorophyll-related pigments (Figures 20 and 21), isolated from marine macroalgae have shown antioxidant activity (Table 5).

Table 5. Nitrogenous compounds from macroalgae with antioxidant activity.

Compound	Isolation Source	Assay/Activity	Reference
225	*Porphyra yezoensis* (Rhodophyta, Bangiophyceae, Bangiales)	DPPH scavenging: IC$_{50}$ = 185.2 ± 3.2 µM	[196,197]
		ORAC: 51 ± 7% TE	
		Nrf2-regulated antioxidant response in UVA-treated fibroblasts (1BR)	
226	*G. furcata* (Rhodophyta, Florideophyceae, Gigartinales)	DPPH scavenging: IC$_{50}$ = 399.0 ± 1.1 µM	[196]
		ORAC: 17 ± 7% TE	
		Nrf2-regulated antioxidant response in UVA-treated fibroblasts (1BR)	
227	*P. yezoensis* (Rhodophyta, Bangiophyceae, Bangiales)	DPPH scavenging: IC$_{50}$ = 30.8 µM	[197]
228	*P. yezoensis* (Rhodophyta, Bangiophyceae, Bangiales)	TBARS: 85.2% inhibition	[198]
		FTC: 84.1% inhibition	
229	*P. yezoensis* (Rhodophyta, Bangiophyceae, Bangiales)	TBARS: 94.4% inhibition	[198]
		FTC: 89.1% inhibition	
230	*Martensia fragilis* (Rhodophyta, Florideophyceae, Ceramiales)	DPPH scavenging: moderate exogenous ROS scavenging in TPA-treated HL-60 cells (DCFH-DA): IC$_{50}$ = 11 µM	[91]
231	*Dictyota coriacea* (Ochrophyta, Phaeophyceae, Dictyotales)	H$_2$O$_2$-induced oxidative damage and toxicity in neuron-like PC12 cell	[199]
		Nrf2/ARE signaling pathway	
232	*Porphyra dioica* (Rhodophyta, Bangiophyceae, Bangiales)	ORAC: 3.79 ± 0.11 µmol TE/µM	[200]
233	*P. dioica* (Rhodophyta, Bangiophyceae, Bangiales)	ORAC: 3.14 ± 0.32 µmol TE/µM	[200]
234	*P. dioica* (Rhodophyta, Bangiophyceae, Bangiales)	ORAC: 0.09 ± 0.00 µmol TE/µM	[200]
Compound	Isolation Source	Assay/Activity	Reference
----------	------------------	----------------	-----------
235	*P. dioica* (Rhodophyta, Bangiophyceae, Bangiales)	ORAC: 2.85 ± 0.42 µmol TE/µM	[200]
236	*P. dioica* (Rhodophyta, Bangiophyceae, Bangiales)	ORAC: 2.50 ± 0.16 µmol TE/µM	[200]
237	*P. dioica* (Rhodophyta, Bangiophyceae, Bangiales)	ORAC: 4.27 ± 0.15 µmol TE/µM	[200]
238	*P. dioica* (Rhodophyta, Bangiophyceae, Bangiales)	ORAC: 0.92 ± 0.10 µmol TE/µM	[200]
239	*Porphyra* sp. (Rhodophyta, Bangiophyceae, Bangiales)	ROO scavenging (CBA): 0.048 ± 0.003 mmol TE/g	[201]
240	*Enteromorpha prolifera* (Chlorophyta, Ulvophyceae, Ulvales)	DPPH scavenging: 88.6 ± 1.3% at 168.7 µM, ROO scavenging: 50% at 843.6 µM, TPC: 21.4 ± 0.1 mg GAE/g	[202]
241	from plants and microalgae, but also from macroalgae	β-carotene bleaching: 49.63% at 56.0 µM, DPPH scavenging: 13.89% at 56.0 µM, Fe\(^{2+}\) chelation: 55% at 200 µM, lipid peroxidation: 95% at 100 µM, ROO scavenging capacity: 308	[141,203–205]
242	*E. bicyclis* (Ochrophyta, Phaeophyceae, Laminariales)	FTC, TBARS	[206]

CBA: crocin bleaching activity; DPPH: 1,1-diphenyl-2-picrylhydrazyl free radical; FTC: ferric thiocyanate; GAE: gallic acid equivalents; Nrf2: nuclear factor erythroid 2-related factor 2; ORAC: oxygen radical absorbance capacity; ROO: peroxyl; TBARS: thiobarbituric acid reactive substances; TE: trolox equivalents; TPC: total phenolics content.

Peptides and alkaloids 225–239, isolated from *Gloiopeltis furcata*, *Porphyra* sp., and *Martensia fragilis*, have demonstrated moderate to significant antioxidant activity [91,196–200]. Specifically, mycosporine-like amino acids 225–227 exhibited markedly lower free radical scavenging activities compared to those of ascorbic acid and Trolox [196,197], although heat treatment of *porphyra* 334 (225) at temperatures over 100 °C afforded its dehydrated form (227) and resulted in more than a 100-fold increase in the DPPH radical scavenging activity (IC\(_{50}\) = 10.1 µg/mL for 227 vs. >1000 µg/mL for 225) [197]. The histidine-related dipeptides carnosine (228) and anserine (229) were shown to exert comparable antioxidant activities, as measured by ferric thiocyanate and TBARS (85.2% and 84.1% inhibition for 228 and 94.4% and 89.1% inhibition for 229, respectively), to those of α-tocopherol (88.2% and 86.7%, respectively) and BHT (99.8% and 98.2%, respectively) [198]. Moreover, Cermeno et al. (2019) isolated a series of bioactive peptides (232–238) from *Porphyra dioica* that displayed significant antioxidant activity as assessed using the ORAC assay [200]. It appears that peptides containing tyrosine in their structure (compounds 232, 233, 235, and 237) possessed higher levels of antioxidant activity.

In an effort to elucidate the mechanism of action of dictyospiromide (231), neuron-like PC12 cells were treated with H\(_2\)O\(_2\), and its cytoprotective effect against the induced oxidative damage was evaluated [199]. Treatment with dictyospiromide increased cell survival in a dose-dependent manner and reduced H\(_2\)O\(_2\)-induced lactate dehydrogenase (LDH) production at a concentration as low as 0.5 µM. Additionally, compound 231 was investigated regarding its implication in the Nrf2/ARE signaling pathway, which regulates the expression of genes involved in cellular antioxidant defense. It was found that dictyospiromide (231) exhibited a cytoprotective antioxidant effect in PC12 cells that involved activation of the Nrf2/ARE signaling pathway and enhanced expression of HO-1.
The characteristic pigments of the light harvesting proteins phycoerythrobilin (239), pheophorbide a (240), chlorophyll β (241) and pyropheophytin α (242) have been found to exert antioxidant activity [141,201–206]. It seems that the porphyrin ring system is important for the expression of antioxidative activity in the dark. Indeed, phycoerythrobilin (239) showed potent antioxidant activity in in vitro experiments and significantly inhibited the release of β-hexosaminidase in rat basophilic leukemia cells [207], suggesting that...
phycoerythrobilin exhibits anti-inflammatory activity. Pheophorbide a (240) demonstrated antioxidant activity (88.6 ± 1.3% DPPH scavenging) higher than that of α-tocopherol, and comparable to that of butylated hydroxyanisol (BHA, 85.3 ± 0.2% DPPH scavenging) at a concentration of 0.1 mg/mL [202], while pyropheophytin α (242) demonstrated antioxidant activity higher than that of α-tocopherol [206].

Figure 21. Chemical structures of compounds 238–242.

Chlorophylls are natural pigments with a well-known antioxidant activity. Although their radical scavenging activities are reported to be low [203], their inhibitory action in lipid peroxidation was found to be 95% at concentrations as low as 100 µM [204]. However, knowledge is limited regarding the yield of chlorophyll metabolites, their absorption and transportation processes, their metabolic pathways, and their precise oxidation mechanisms. At the in vitro level, only few researchers have studied the stability of chlorophylls during digestion and subsequent absorption through intestinal cells. The major outcome is that chlorophylls α and β are transformed into their corresponding pheophorbides and pheophytins and are absorbed at similar rates to those of carotenoids. Further, it has been shown that pheophorbide a is transported at the intestinal level by a protein-mediated mechanism, with scavenger receptor class B type 1 (SR-BI) being a plausible transporter. These results have been confirmed at the in vivo level, using mice as the experimental model, showing a preferential accumulation of pheophorbide in the liver along with multiple other chlorophyll compounds [205].

The characteristic pigments of the light harvesting proteins phycoerythrobilin (239), pheophorbide a (240), chlorophyll β (241) and pyropheophytin α (242) have been found to exert antioxidant activity [141,201–206]. It seems that the porphyrin ring system is important for the expression of antioxidative activity in the dark. Indeed, phycoerythrobilin (239) showed potent antioxidant activity in in vitro experiments and significantly inhibited the release of β-hexosaminidase in rat basophilic leukemia cells [207], suggesting that
phycoerythrobilin exhibits anti-inflammatory activity. Pheophorbide a (240) demonstrated antioxidant activity (88.6 ± 1.3% DPPH scavenging) higher than that of α-tocopherol, and comparable to that of butylated hydroxyanisol (BHA, 85.3 ± 0.2% DPPH scavenging) at a concentration of 0.1 mg/mL [202], while pyropheophytin α (242) demonstrated antioxidant activity higher than that of α-tocopherol [206].

7. Carbohydrates and Polysaccharides

Carbohydrates ranging in size from simple monosaccharides to high molecular weight polysaccharides isolated from marine macroalgae often exert antioxidant activities [208,209] (Table 6, Figure 22).

Table 6. Carbohydrates and polysaccharides from macroalgae with antioxidant activity.

Compound	Isolation Source	MW/Sulfate Content	Assay/Activity	Reference
243	from a plethora of macroalgae	-	free radicals (DPPH, OH, NO, O₂⁻) enzyme activity (α-glucosidase, AChE, BChE)	[210]
244	Laurencia undulata (Rhodophyta, Florideophyceae, Ceramiales)	-	alkyl scavenging: IC₅₀ = 43.7 µM DPPH scavenging: IC₅₀ = 39.3 µM OH scavenging: IC₅₀ = 27.4 µM O₂⁻ scavenging: IC₅₀ = 39.4 µM gene expression levels of GSH and SOD intracellular ROS levels (DCFH-DA) membrane protein oxidation MPO activity protein expression of MMP2 and MMP9	[211]
245	L. undulata (Rhodophyta, Florideophyceae, Ceramiales)	-	alkyl scavenging: IC₅₀ = 32.3 µM DPPH scavenging: IC₅₀ = 41.8µM OH scavenging: IC₅₀ = 22.7 µM O₂⁻ scavenging: IC₅₀ = 33.6 µM gene expression levels of GSH and SOD intracellular ROS levels (DCFH-DA) membrane protein oxidation MPO activity protein expression of MMP2 and MMP9	[211]
246	enzymatically produced from commercially available polysaccharides	n.d.	OH scavenging O₂⁻ scavenging erythrocyte hemolysis inhibiting lipid peroxidation metal chelating activity	[212]
247	enzymatically produced from commercially available polysaccharides	n.d.	OH scavenging O₂⁻ scavenging erythrocyte hemolysis inhibiting lipid peroxidation metal chelating activity	[212]
Compound	Isolation Source	MW/Sulfate Content	Assay/Activity	Reference
----------	------------------	--------------------	----------------	-----------
248	F. vesiculosus	170 kDa/44.10 ± 0.16%	OH scavenging: IC₅₀ = 0.157 ± 0.005 mg/mL O₂⁻ scavenging: IC₅₀ = 0.058 ± 0.011 mg/mL liver microsomal lipid peroxidation: IC₅₀ = 1.250 ± 0.174 mg/mL	[213]
249	Cystoseira sedoides	642 kDa/16.3%	DPPH scavenging: IC₅₀ = 0.96 ± 0.01 mg/mL	[214]
250	Cystoseira compressa	545 kDa/16.6%	DPPH scavenging: IC₅₀ = 0.84 ± 0.06 mg/mL	[214]
251	C. crinita	339 kDa/15.7%	DPPH scavenging: IC₅₀ = 0.76 ± 0.04 mg/mL	[214]
252	Padina gymnospora	200 kDa/18.40 ± 0.28%	OH scavenging O₂⁻ scavenging: IC₅₀ = 0.243 ± 0.014 mg/mL liver microsomal lipid peroxidation: IC₅₀ = 2.753 ± 0.051 mg/mL	[213]
253	P. gymnospora	18 kDa/27.57 ± 0.17%	OH scavenging: IC₅₀ = 0.353 ± 0.036 mg/mL O₂⁻ scavenging: IC₅₀ = 0.243 ± 0.013 mg/mL liver microsomal lipid peroxidation: IC₅₀ = 23.887 ± 5.975 mg/mL	[213]
254	L. japonica	742 kDa/16.5%	OH scavenging: IC₅₀ = 0.60 mg/mL O₂⁻ scavenging: IC₅₀ = 0.43 mg/mL	[215]
255	L. japonica	175.9 kDa/33.5%	OH scavenging: IC₅₀ = 0.85 mg/mL O₂⁻ scavenging: IC₅₀ = 0.53 mg/mL	[215]
256	Undaria pinnatifida	10 kDa/n.d.	DPPH scavenging: 8.77 ± 1.24 TE (µg/mL) OH scavenging: 86.98 ± 1.16%	[216]
257	U. pinnatifida	300 kDa/20.01 ± 0.82%	DPPH scavenging: 9.01 ± 1.93 TE (µg/mL) OH scavenging: 74.32 ± 1.41%	[216]
258	F. vesiculosus	n.d./21.1 ± 1.7%	ABTS⁺ scavenging DPPH scavenging lipid oxidation differential pulse voltammetry	[217]
259	F. vesiculosus	n.d./21.2 ± 0.8%	ABTS⁺ scavenging DPPH scavenging lipid oxidation differential pulse voltammetry	[217]
260	F. vesiculosus	n.d./27.0%	DPPH scavenging: IC₅₀ = 0.035 ± 0.002 mg/mL reducing power: RC_{0.5AU} = 1.48 mg/mL	[218]
Compound	Isolation Source	MW/Sulfate Content	Assay/Activity	Reference
----------	-----------------	-------------------	----------------	-----------
261	*Sargassum binderi* (Ochrophyta, Phaeophyceae, Fucales)	n.d./n.d.	DPPH scavenging: IC$_{50}$ = 2.01 ± 0.29 mg/mL OH scavenging: 60.95 ± 0.69% O$_2^-$ scavenging: 26.78 ± 1.90% reducing power: 0.60 ± 0.08 mg GAE/100 g	[219]
262	hydrolyzed from commercially available polysaccharides	5–30 kDa/n.d.	LPS-induced ROS generation in RAW 264.7 macrophages	[220]
263	not specified	n.d./n.d.	HO-1, SOD1, Nrf2 and Keap1 expression in human keratinocytes	[221]
264	*U. pinnatifida* (Ochrophyta, Phaeophyceae, Laminariales)	n.d./n.d.	DPPH scavenging metal chelating activity NO scavenging OH scavenging reducing power arthritis-induced physical changes in rats	[222]
265	*Eucheuma spinosa* (Rhodophyta, Florideophyceae, Gigartinales)	n.d./27.60 ± 0.12%	OH scavenging: IC$_{50}$ = 0.281 ± 0.072 mg/mL O$_2^-$ scavenging: IC$_{50}$ = 0.332 ± 0.080 mg/mL liver microsomal lipid peroxidation: IC$_{50}$ = 0.830 ± 0.063 mg/mL	[213]
266	*Eucheuma cottonii* (Rhodophyta, Florideophyceae, Gigartinales)	n.d./17.90 ± 0.05%	OH scavenging: IC$_{50}$ = 0.335 ± 0.016 mg/mL O$_2^-$ scavenging: IC$_{50}$ = 0.112 ± 0.003 mg/mL liver microsomal lipid peroxidation: IC$_{50}$ = 0.323 ± 0.011 mg/mL	[213]
267	*Gigartina acicularis, Gigartina pisillata* (Rhodophyta, Florideophyceae, Gigartinales)	n.d./33.38 ± 0.06%	OH scavenging: IC$_{50}$ = 0.357 ± 0.120 mg/mL O$_2^-$ scavenging: IC$_{50}$ = 0.046 ± 0.001 mg/mL liver microsomal lipid peroxidation: IC$_{50}$ = 2.697 ± 0.267 mg/mL	[213]
268	*Porphyra haitanensis* (Rhodophyta, Bangiophyceae, Bangiales)	n.d./17.7%	OH scavenging: IC$_{50}$ = 6.55 mg/mL O$_2^-$ scavenging: ~60% at 2.5 µg/mL reducing power: 0.42 at 6.17 mg/mL	[223]
269	*Ulva pertusa* (Chlorophyta, Ulvophyceae, Ulvales)	n.d./19.5%	OH scavenging Fe$^{2+}$ chelating assay reducing power	[224]
270	*U. pertusa* (Chlorophyta, Ulvophyceae, Ulvales)	151.7 kDa/n.d.	OH scavenging O$_2^-$ scavenging: IC$_{50}$ = 22.1 µg/mL reducing power	[225]
Table 6. Cont.

Compound	Isolation Source	MW/Sulfate Content	Assay/Activity	Reference
271	*U. pertusa* (Chlorophyta, Ulvophyceae, Ulvales)	n.d./n.d.	Fe$^{2+}$ chelation: 10% to 20% at 0.31–1.88 mg/mL; OH scavenging: 3.3–37% at 0.25–1.52 mg/mL; O$_2^-$ scavenging: IC$_{50}$ = 9.17 µg/mL reducing power	[226]

AChE: acetylcholinesterase; BChE: butyrylcholinesterase; DPPH: 1,1-diphenyl-2-picrylhydrazyl free radical; GAE: gallic acid equivalents; GSH: glutathione; HO-1: heme oxygenase-1; LPS: lipopolysaccharide; MMP: matrix metalloproteinase; MPO: myeloperoxidase; n.d.: not determined; NO: nitric oxide; Nrf2: nuclear factor erythroid 2-related factor 2; OH: hydroxyl; O$_2^-$: superoxide anion; RC$_{0.5AU}$: reducing capacity at 0.5 absorbance unit; ROS: reactive oxygen species; SOD: superoxide dismutase; TE: trolox equivalents.

The simplest sugar alcohol isolated from a plethora of macroalgae is mannitol (243), representing up to 9%, 47%, and 59% of the dry algal weight in Chlorophyta, Rhodophyta and Ochrophyta, respectively [210]. Antioxidant activity evaluation by enzymes (α-glucosidase, acetyl (AChE) and butyrylcholinesterase (BuChE)) and free radicals (DPPH, NO, OH, and O$_2^-$) revealed that higher contents of mannitol are closely related with cholinesterases and DPPH radical scavenging, and to a lesser extent are responsible for α-glucosidase inhibition, OH, O$_2^-$, and NO scavenging.

Two simple glucosides, floridoside (244) and D-isofloridoside (245), have been isolated from the red alga *Laurencia undulata* and their free radical scavenging activity, inhibition of intracellular ROS levels, the level of membrane protein oxidation, myeloperoxidase (MPO) activity inhibition, gene expression levels of GSH and SOD, and protein expression of MMP2 and MMP9 have been determined [211]. It was found that both floridoside (244) and D-isofloridoside (245) possess significant antioxidant capacity and are potential inhibitors of MMP2 and MMP9.

Marine macroalgae are the most important source of non-animal sulfated polysaccharides (SPs), with the main categories being fucoidans isolated from brown algae, carrageenans and porphyrans isolated from red algae and ulvans isolated from green algae. SPs possess excellent in vitro antioxidant activity, including both radical scavenging capacity and metal chelating ability [212,227,228]. The antioxidant activity of SPs directly related to their structural features, such as degree of sulfation, molecular weight (MW), type of major sugar, and glycosidic branching [212,225,229]. For example, low MW SPs have shown potent antioxidant activity, stronger than that of high MW SPs [230]. The rationale for this is that low MW SPs may be incorporated into the cells more efficiently and donate proton effectively compared to high MW SPs.

Alginate oligosaccharide (AO, 246) and fucoidan oligosaccharide (FO, 247) were enzymatically produced from commercially available polysaccharides and their antioxidant activity was studied [212]. AO (246) had the highest hydroxyl radical scavenging activity as compared to FO (247), while in the Fe$^{2+}$ chelation assay, FO exhibited good chelation in contrast to AO that hardly displayed any activity.

Fucoidans of diverse MW and sulfation degree (247–264) have been isolated from various brown algae and/or chemically modified and their antioxidant activity has been tested employing OH and O$_2^-$ scavenging, erythrocyte hemolysis inhibition, metal chelation, and anti-lipid peroxidation assays [212–215]. In the study of Zhao et al. (2008) two fractions of different MW, namely 742 kDa (254) and 175.9 kDa (255), were obtained from fucoidans extracted from *L. japonica* and evaluated for their OH and O$_2^-$ scavenging activity, with the higher MW fraction exhibiting higher levels of activity [215]. Following radical process degradation, an ascophyllan-like fraction rich in glucuronic acid and a fraction rich in galactose and mannose were confirmed as responsible for the oxygen free radical scavenging activity [215]. On the contrary, Koh et al. (2019) reported on the higher antioxidant capacity of low MW (10 kDa) fucoidan (256) from *Undaria pinnatifida* (close to that of BHA) as compared to a high MW (300 kDa) fucoidan (257) [216].
Two simple glucosides, floridoside (244) and D-isofloridoside (245), have been isolated from the red alga *Laurencia undulata* and their free radical scavenging activity, inhibition of intracellular ROS levels, the level of membrane protein oxidation, myeloperoxidase (MPO) activity inhibition, gene expression levels of GSH and SOD, and protein expression of MMP2 and MMP9 have been determined [211]. It was found that both floridoside (244) and D-isofloridoside (245) possess significant antioxidant capacity and are potential inhibitors of MMP2 and MMP9.

Additionally, Rodriguez-Jasso et al. (2014) isolated fucose-containing sulfated polysaccharides from *Fucus vesiculosus* using either microwave-assisted extraction (258) or autohydrolysis (259) and their antioxidant activity was determined [217]. Both samples presented similar sulfate contents (~21%), as well as comparable antioxidant potential as evaluated by DPPH and ABTS$^+$ scavenging, and lipid oxidation inhibition methods. Differences in the antioxidant potential could be observed only when using a differential pulse voltammetry...
technique, pointing to structural variations of the fucans obtained by the two different methods.

Several studies have reported the in vitro and in vivo antioxidant efficacy of fucoidan [231]. Kim et al. (2012) have demonstrated that low MW fucoidan (262) might block NO, as well as ROS production, suppressing therefore oxidative stress and MAPKs in RAW264.7 cells [220]. Additionally, fucoidan (263) was found to reduce the oxidative stress through Nrf2/ERK signaling mediated regulation of HO-1 and SOD1 expression in human keratinocytes [221]. More recently, Phull et al. (2017) have demonstrated that fucoidans derived from Ul. pinnatifida (264) exhibit significant in vitro and in vivo anti-arithmetic responses in rabbit articular chondrocytes and rats, respectively. Moreover, administration of fucoidan to arthritic rats ameliorated the clinical symptoms and led to the overall improvement of their health [222].

Rocha de Souza et al. (2007) reported on the isolation of iota (ι)- (265), kappa (κ)- (266), and lambda (λ)- (267) carrageenans from various red algae and their antioxidant activity as evaluated by the scavenging of OH and O$_2^-$ radicals, and lipid peroxidation assays [213]. The results of the study indicated that, among the different carrageenans, λ-carrageenan (267) exhibited the highest antioxidant and free radical scavenging activity. Thus, a positive correlation between sulfate content and antioxidant activity was evidenced.

Acetylation, phosphorylation and benzoylation of porphyran (268) extracted from the red alga Porphyra haitanensis afforded derivatives with improved antioxidant activity, as evaluated in superoxide radical, hydroxyl radical and reducing power assays [223]. In a previous study, Zhang et al. (2003) obtained through anion-exchange column chromatography three sulfated polysaccharide fractions with variable sulfate content (17.4%, 20.5% and 33.5%) from the same red algal species and investigated their in vitro antioxidant activities [229]. All three showed strong scavenging effect on superoxide radical and much weaker effect on hydroxyl free radical, while lipid peroxide in the rat liver microsome was significantly inhibited. In two subsequent studies the fractions with sulfate contents 17.4% and 20.5% were evaluated in vivo in aging mice [48,49]. In both cases, intraperitoneal administration significantly decreased lipid peroxidation in a dose-dependent manner, while at the same time increasing total antioxidant capacity and the activity of SOD and GPx in all organs of the aging mice.

Ulvans of diverse sulfation degree and MW (269–271) have been isolated from the green alga Ulva pertusa and/or chemically modified and their antioxidant activity was tested employing OH and O$_2^-$ radical scavenging, reducing power and metal chelating assays [224–226]. Specifically, Qi et al. (2005) extracted ulvan (269) with 19.5% sulfate content and chemically prepared derivatives of higher sulfate content ranging from 23.5% to 32.8%. Upon evaluation of their O$_2^-$ radical and OH radical scavenging activity, it was observed that the derivatives displayed higher levels of activity, ranging from 91.7% to 95.5% at a concentration as low as 23.0 µg/mL for O$_2^-$ radical scavenging and with IC$_{50}$ values ranging from 0.46 to 1.43 mg/mL for OH radical scavenging [224]. In another study, Qi et al. (2005) initially extracted ulvan (270) from Ul. pertusa, and subsequently, three derivatives of different MW were prepared by H$_2$O$_2$ degradation and their antioxidant activities, including OH and O$_2^-$ radical scavenging activity, reducing power and metal chelating ability, were investigated [225]. The MW of the natural and degraded ulvans were calculated at 151.7, 28.2, 58.0, and 64.5, kDa, respectively. All polysaccharides exhibited significant OH and O$_2^-$ radical scavenging capacity at all concentrations tested with similar IC$_{50}$ values at about >1 mg/mL and 22.1 µg/mL, respectively. Among the natural ulvan and the obtained derivatives, the lowest MW one showed the strongest reducing power and metal chelating ability. The results indicated that MW had a significant effect on the antioxidant activity of ulvan, with low MW ulvan exerting the strongest antioxidant activity. In a further study, Qi et al. (2006) prepared derivatives of ulvan (262) after acetylation and benzoylation, which exhibited higher levels of antioxidant activity, as determined using in vitro assays, including scavenging activity against superoxide and hydroxyl radicals, reducing power, and chelating ability [226].
8. Miscellaneous Compounds

A number of compounds (272–301, Figures 23 and 24) isolated from marine macroalgae, displaying various structures that do not belong to the previously described classes, have also exhibited levels of antioxidant activity worth mentioning (Table 7).

Table 7. Miscellaneous compounds from macroalgae with antioxidant activity.

Compound	Isolation Source	Assay/Activity	Reference
272	G. furcata (Rhodophyta, Florideophyceae, Gigartinales)	DPPH scavenging: IC₅₀ = 290.5 ± 1.5 µM	[75]
		ONOO⁻ scavenging: IC₅₀ = 8.45 ± 0.46 µM	
		AChE inhibition: IC₅₀ = 94.4 ± 1.7 µM	
		BChE inhibition: IC₅₀ = 242.0 ± 4.8 µM	
273	G. furcata (Rhodophyta, Florideophyceae, Gigartinales)	DPPH scavenging: IC₅₀ > 274.4 µM	[75]
		ONOO⁻ scavenging: IC₅₀ = 218.7 ± 1.5 µM	
		AChE inhibition: IC₅₀ = 31.2 ± 1.0 µM	
		BChE inhibition: IC₅₀ = 526.7 ± 6.1 µM	
274	G. furcata (Rhodophyta, Florideophyceae, Gigartinales)	DPPH scavenging: IC₅₀ > 195.0 µM	[75]
		ONOO⁻ scavenging: IC₅₀ = 28.5 ± 0.0 µM	
		AChE inhibition: IC₅₀ = 33.9 ± 0.9 µM	
		BChE inhibition: IC₅₀ > 390.0 µM	
275	Cystoseira sp. (Ochrophyta, Phaeophyceae, Fucales)	guglone-induced oxidative stress and intracellular ROS measurement in Caenorhabditis elegans	[141,232]
276	G. furcata (Rhodophyta, Florideophyceae, Gigartinales)	DPPH scavenging: IC₅₀ > 179.6 µM	[75]
		ONOO⁻ scavenging: IC₅₀ = 58.3 ± 0.3 µM	
		AChE inhibition: IC₅₀ = 44.9 ± 1.4 µM	
		BChE inhibition: IC₅₀ = 57.1 ± 2.7 µM	
277	G. furcata (Rhodophyta, Florideophyceae, Gigartinales)	DPPH scavenging: IC₅₀ > 165.3 µM	[75]
		ONOO⁻ scavenging: IC₅₀ = 52.4 ± 0.2 µM	
		AChE inhibition: IC₅₀ = 38.1 ± 1.4 µM	
		BChE inhibition: IC₅₀ = 21.7 ± 1.1 µM	
278	L. undulata (Rhodophyta, Florideophyceae, Ceramiales)	alkyl scavenging: IC₅₀ = 45.0 ± 1.6 µM	[233]
		DPPH scavenging: IC₅₀ = 27.1 ± 1.1 µM	
		OH scavenging: IC₅₀ = 22.8 ± 0.8 µM	
		O₂⁻ scavenging: IC₅₀ = 33.5 ± 1.3 µM	
		gene expression of enzymes GSH and SOD intracellular ROS levels (DCFH–DA) in RAW264.7 cells	
		membrane protein oxidation	
		MPO activity	
279	G. furcata (Rhodophyta, Florideophyceae, Gigartinales)	DPPH scavenging: IC₅₀ > 220.9 µM	[75]
		ONOO⁻ scavenging: IC₅₀ = 206.6 ± 1.0 µM	
		AChE inhibition: IC₅₀ = 13.6 ± 0.5 µM	
		BChE inhibition: IC₅₀ = 420.1 ± 7.8 µM	
280	Kappaphycus alvarezi (Rhodophyta, Florideophyceae, Gigartinales)	ABTS⁺ scavenging: IC₅₀ = 3.63 ± 0.35 mM	[234]
		DPPH scavenging: IC₅₀ = 3.53 ± 0.05 mM	
281	K. alvarezi (Rhodophyta, Florideophyceae, Gigartinales)	ABTS⁺ scavenging: IC₅₀ = 1.96 ± 0.51 mM	[234]
		DPPH scavenging: IC₅₀ = 1.75 ± 0.20 mM	
282	Jania rubens (Rhodophyta, Florideophyceae, Corallinales)	ABTS⁺ scavenging: IC₅₀ = 1.48 mM	[235]
		DPPH scavenging: IC₅₀ = 0.80 mM	
Compound	Isolation Source	Assay/Activity	Reference
----------	-----------------	----------------	-----------
283	*S. wightii* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: IC₅₀ = 2.89 ± 0.04 mM DPPH scavenging: IC₅₀ = 2.44 ± 0.11 mM Fe²⁺ chelation: IC₅₀ = 3.64 ± 0.08 mM	[236]
284	*S. wightii* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: IC₅₀ = 3.76 ± 0.08 mM DPPH scavenging: IC₅₀ = 3.26 ± 0.04 mM Fe²⁺ chelation: IC₅₀ = 4.63 ± 0.08 mM	[236]
285	*K. alvarezii* (Rhodophyta, Florideophyceae, Gigartinales)	ABTS⁺ scavenging: IC₅₀ = 0.67 ± 0.25 mM DPPH scavenging: IC₅₀ = 0.61 ± 0.06 mM	[234]
286	*Gracilaria opuntia* (Rhodophyta, Florideophyceae, Gracilariales)	ABTS⁺ scavenging: IC₅₀ = 0.50 mM DPPH scavenging: IC₅₀ = 0.41 mM	[237]
287	*C. trinodis* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: 26.01 ± 0.01%	[135]
288	*K. alvarezii* (Rhodophyta, Florideophyceae, Gigartinales)	ABTS⁺ scavenging: IC₅₀ = 1.30 ± 0.48 mM DPPH scavenging: IC₅₀ = 0.97 ± 0.07 mM	[238]
289	*K. alvarezii* (Rhodophyta, Florideophyceae, Gigartinales)	ABTS⁺ scavenging: IC₅₀ = 2.28 mM DPPH scavenging: IC₅₀ = 2.02 mM	[235]
290	*K. alvarezii* (Rhodophyta, Florideophyceae, Gigartinales)	ABTS⁺ scavenging: IC₅₀ = 1.42 mM DPPH scavenging: IC₅₀ = 2.50 mM	[235]
291	*Spatoglossum variabile* (Ochrophyta, Phaeophyceae, Dictyotales)	O₂⁻ scavenging: IC₅₀ = 22.2 μM	[239]
292	*S. wightii* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: IC₅₀ = 1.28 ± 0.00 mM DPPH scavenging: IC₅₀ = 1.05 ± 0.03 mM	[240]
293	*Hypnea musciformis* (Rhodophyta, Florideophyceae, Gigartinales)	DPPH scavenging: IC₅₀ = 231.2 ± 2.0 μM Fe²⁺ chelation: IC₅₀ = 667.9 ± 0.8 μM lipid peroxidation (TBARS): 1.34 ± 0.01 MDAEQ/kg at 0.1 μg/mL	[241]
294	*S. wightii* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: IC₅₀ = 1.81 ± 0.03 mM DPPH scavenging: IC₅₀ = 1.2 ± 0.05 mM Fe²⁺ chelation: IC₅₀ = 2.28 ± 0.03 mM	[236]
295	*T. conoides* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: IC₅₀ = 1.50 mM DPPH scavenging: IC₅₀ = 1.71 mM	[242]
296	*T. conoides* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: IC₅₀ = 1.39 mM DPPH scavenging: IC₅₀ = 1.29 mM	[242]
297	*H. musciformis* (Rhodophyta, Florideophyceae, Gigartinales)	DPPH scavenging: IC₅₀ = 25.0 ± 0.5 μM Fe²⁺ chelation: IC₅₀ = 350.7 ± 0.5 μM lipid peroxidation (TBARS): 0.88 ± 0.01 MDAEQ/kg at 0.1 μg/mL	[241]
298	*H. musciformis* (Rhodophyta, Florideophyceae, Gigartinales)	DPPH scavenging: IC₅₀ = 322.4 ± 1.1 μM Fe²⁺ chelation: IC₅₀ = 5115.3 ± 2.1 μM lipid peroxidation (TBARS): 0.76 ± 0.01 MDAEQ/kg at 0.1 μg/mL	[241]
299	*S. wightii* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: IC₅₀ = 0.81 ± 0.04 mM DPPH scavenging: IC₅₀ = 0.64 ± 0.02 mM Fe²⁺ chelation: IC₅₀ = 1.42 ± 0.02 mM	[236]
300	*S. wightii* (Ochrophyta, Phaeophyceae, Fucales)	ABTS⁺ scavenging: IC₅₀ = 0.79 ± 0.03 mM DPPH scavenging: IC₅₀ = 0.67 ± 0.03 mM	[240]
Table 7. Cont.

Compound	Isolation Source	Assay/Activity	Reference
301	*T. conoides*	ABTS$^+$ scavenging: \(IC_{50} = 2.18 \) mM	[242]
	(Ochrophyta, Phaeophyceae, Fucales)	DPPH scavenging: \(IC_{50} = 1.95 \) mM	

ABTS$^+$: 2,2'-azino-bis-(3-ethyl benzothiazoline-6-sulfonic acid) diammonium salt; AChE: acetylcholinesterase; BChE: butyrylcholinesterase; DPPH: 1,1-diphenyl-2-picrylhydrazyl free radical; \(IC_{50} \): half maximal inhibitory concentration; MDAEQ/kg: malondialdehyde equivalent compounds formed per kg sample; ONOO$^-$: peroxynitrite; \(O_2^- \): superoxide anion; TBARS: thiobarbituric acid reactive substances.

![Chemical structures of compounds 272–288.](image-url)

Figure 23. Chemical structures of compounds 272–288.
Compounds 280–286, 288–290, 292–296, and 298–301 exhibited moderate DPPH radical scavenging capacities, with IC\textsubscript{50} values in the mM range, with activities comparable to either \(\alpha \)-tocopherol (IC\textsubscript{50} = 1.46 mM), or BHT and BHA (IC\textsubscript{50} ~ 1.30–1.54 mM) \[234–238,240–242\]. Structure–activity relationship analysis revealed that the antioxidant activities of compounds 293, 297, and 298 were directly proportional to their steric freedom and hydrophobicity \[241\].

Figure 24. Chemical structures of compounds 289–301.

Among these, the most active compounds, exerting significant DPPH radical scavenging capacity, were compounds 278 (5-hydroxymethyl-2-furfural, 5-HMF), 291 (Z-4′-chloroauroine), and 297, with IC\textsubscript{50} values at 27.1, 22.2, and 25.0 \(\mu \)M, respectively \[233,239,241\]. In particular, 5-HMF (278), isolated from *L. undulata*, exhibited significant antioxidant activities, as evaluated by its in vitro free radical species (including alkyl, DPPH, OH, and O\textsubscript{2}− radicals) scavenging, intracellular ROS scavenging, membrane protein oxidation, MPO
inhibition, as well as gene expression of the antioxidative enzymes GSH and SOD [233]. Overall, 5-HMF (278) displayed antioxidant activity, by scavenging overproducing free radicals and decreasing the activity of MPO or increasing the activity of GSH and SOD antioxidative enzymes in certain biological pathways.

Fang et al. (2010) isolated the non-polar compounds 272–274, 276, 277, and 279 from the red alga G. furcata and evaluated their antioxidant activities as inhibitors of AChE and BChE and as scavengers of DPPH radical and ONOO\(^-\) [75]. All isolated compounds exhibited moderate AChE inhibitory activity with IC\(_{50}\) values ranging between 13.6 and 94.4 µM, whereas compounds 276 and 277 showed mild BChE inhibitory activity with IC\(_{50}\) values 57.1 and 21.7 µM, respectively. Only compound 272 showed substantial DPPH radical scavenging activity, while compounds 272 and 274 showed potent ONOO\(^-\) scavenging activity.

Compounds 280–286, 288–290, 292–296, and 298–301 exhibited moderate DPPH radical scavenging capacities, with IC\(_{50}\) values in the mM range, with activities comparable to either α-tocopherol (IC\(_{50}\) = 1.46 mM), or BHT and BHA (IC\(_{50}\) ~ 1.30–1.54 mM) [234–238,240–242]. Structure–activity relationship analysis revealed that the antioxidant activities of compounds 293, 297, and 298 were directly proportional to their steric freedom and hydrophobicity [241].

9. Conclusions

The marine environment harbors diverse biological species that can provide a vast repertoire of molecules with therapeutic properties. Forced to tolerate extreme environmental conditions, marine organisms produce structurally unique molecules as an adaptive strategy to survive in their biotopes. In particular, macroalgae contain a plethora of antioxidative compounds, such as bromophenols, phlorotannins, pigments, terpenoids, and polysaccharides, in order to protect themselves from free radicals, the production of which is favored in sublittoral zones with intense exposure to sunlight and high concentrations of oxygen.

Structural elements, such as the number of phenol rings, the number of free hydroxyl groups and conjugated systems, are in general accepted as enhancing the antioxidant activity observed. Among the metabolites presented in the current review, the most active belong to the classes of phenols and polyphenols, as well as meroterpenoids, with bromophenols and phlorotannins exerting the highest activities. In particular, the bromophenol rhodomelin A (18) isolated from the red alga R. confervoides, the phlorotannins fucodiphloroethol G (77), phlorofucofuroeckol-A (79), 974-B (83), and 2,7”-phloroglucinol-6,6’-bieckol (84) purified from brown seaweeds especially of the genus Ecklonia, as well as the meroterpenoids 174, 175, and 178–183 isolated from brown algae of the genus Sargassum exerted noticeably high DPPH scavenging activity.

Nevertheless, the most studied antioxidant compounds are the natural pigments astaxanthin (116) and fucoxanthin (118), belonging to the class of carotenoids, ubiquitous in marine macroalgae. Their antioxidant action is based on their singlet oxygen quenching properties and their free radicals scavenging ability, which mainly depends on the number of conjugated double bonds and end groups. The antioxidant activity of fucoxanthin (118) has also been evaluated in vivo. Dietary intake of fucoxanthin significantly reduced lipid hydroperoxide levels of liver and abdominal white adipose tissue of obese/diabetes KK-AY mice [243]. Fucoxanthin supplementation also significantly reduced the blood glucose level and hepatic lipid contents of the mice. Promising results were also observed in experiments on rats fed a high fat diet supplemented with fucoxanthin that improved the antioxidant capacity, depleted by a high fat diet, by activating the Nrf2 pathway and its downstream target gene NQO1 [244]. Therefore, supplementation of the diet with fucoxanthin, especially of those who consume high fat in their diet, may benefit them by reducing the risk of oxidative stress.

Although emerging evidence points to a diversity of actions and effects, which are intricate and independent from any antioxidant chemical nature, there is an urgent need
for deciphering the role of chemical structure on the antioxidant behavior of molecules. Moreover, constraints imposed by experimental protocols should always be taken into consideration when dealing with a lack of biological context in regard to results, so as to discriminate between the in vitro and in vivo scenarios. In this regard, the development of novel antioxidant activity detecting protocols prompts further investigations.

Author Contributions: Conceptualization, O.T., V.R. and E.I.; methodology, L.-A.T., V.R. and E.I.; investigation, L.-A.T. and M.A.T.; resources, V.R. and E.I.; writing—original draft preparation, L.-A.T. and M.A.T.; writing—review and editing, O.T., V.R. and E.I.; supervision, V.R. and E.I.; funding acquisition, V.R. and E.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation under the call SPECIAL ACTIONS “AQUACULTURE—INDUSTRIAL MATERIALS—OPEN INNOVATION IN CULTURE” (project code: T6YBI-00474, project acronym: ALGOSMETIC). The authors thank the Special Account for Research Grants of the National and Kapodistrian University of Athens for funding to cover the publication costs.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: M.A.T. acknowledges support by the non-profit organization “Kleon Tsetis”.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Nordberg, J.; Arné, E.S. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 2001, 31, 1287–1312. [CrossRef]
2. Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007, 35, 1147–1150. [CrossRef]
3. Valko, B.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [CrossRef] [PubMed]
4. Rada, B.; Leto, T.L. Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib. Microbiol. 2008, 15, 164–187. [CrossRef]
5. Devasagayam, T.P.A.; Tilak, J.C.; Boloor, K.K.; Sane, K.S.; Ghaskadbi, S.S.; Lele, R.D. Free radicals and antioxidants in human health: Current status and future prospects. J. Assoc. Phys. India 2004, 52, 794–804.
6. Gammone, M.; Riccioni, G.; D’Orazio, G. Marine carotenoids against oxidative stress: Effects on human health. Mar. Drugs 2015, 13, 6226–6246. [CrossRef] [PubMed]
7. Nimse, S.B.; Patil, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5, 27986–28006. [CrossRef]
8. Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dham, K. Oxidative stress, prooxidants, and antioxidants: The interplay. BioMed Res. Int. 2014, 2014, 761264. [CrossRef] [PubMed]
9. Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006, 160, 1–40. [CrossRef] [PubMed]
10. Palinski, W.; Rosenfeld, M.E.; Yla, H.S.; Gurtner, G.C.; Socher, S.S.; Butler, S.W.; Carew, T.E.; Parthasarathy, S.; Steinberg, D.; Witzum, J.L. Low density lipoprotein undergoes oxidative modification in vivo. Proc. Natl. Acad. Sci. USA 1989, 86, 1372–1376. [CrossRef]
11. Golbidi, S.; Ebadi, S.A.; Laher, I. Antioxidants in the treatment of diabetes. Curr. Diabetes Rev. 2011, 7, 106–125. [CrossRef]
12. Bodamyali, T.; Kanczlér, J.M.; Millar, T.M.; Stevens, C.R.; Blake, D.R. Free radicals in rheumatoid arthritis: Mediators and modulators. Oxid. Stress Dis. 2004, 10, 591–610.
13. Cuzzocrea, S.; Riley, D.P.; Caputi, A.P.; Salvemini, D. Antioxidant therapy: A new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol. Rev. 2001, 53, 135–159. [PubMed]
14. Gandhi, S.; Abramow, A.Y. Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev. 2012, 2012, 428010. [CrossRef]
15. Traysman, R.J.; Kirsch, J.R.; Koehler, R.C. Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J. Appl. Physiol. 1991, 71, 1185–1195. [CrossRef]
16. Acharya, A.; Das, I.; Chandhok, D.; Saha, T. Redox regulation in cancer: A double-edged sword with therapeutic potential. Oxid. Med. Cell. Longev. 2010, 3, 23–34. [CrossRef]
17. Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. *Eur. J. Med. Chem.* 2015, 97, 55–74. [CrossRef] [PubMed]

18. Sulithana, S.M.; Kumar, S.N.; Sridhar, M.G.; Bhat, B.V.; Rao, K.R. Levels of non enzymatic antioxidants in Down syndrome. *Indian J. Pediatr.* 2012, 79, 1473–1476. [CrossRef]

19. Chen, H.; Yu, M.; Li, M.; Zhao, R.; Zhu, Q.; Zhou, W.; Lu, M.; Lu, Y.; Zheng, T.; Jiang, J.; et al. Polymorphic variations in manganese superoxide dismutase (MnSOD), glutathione peroxidase-1 (GPX1), and catalase (CAT) contribute to elevated plasma triglyceride levels in Chinese patients with type 2 diabetes or diabetic cardiovascular disease. *Mol. Cell. Biochem.* 2012, 363, 85–91. [CrossRef]

20. Young, I.; Woodside, J. Antioxidants in health and disease. *J. Clin. Pathol.* 2001, 54, 176–186. [CrossRef] [PubMed]

21. Poljsak, B.; Suput, D.; Milisavljevic, I. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. *Oxid. Med. Cell. Longev.* 2013, 2013, 956792. [CrossRef] [PubMed]

22. Kim, S.K.; Mendis, E. Bioactive compounds from marine processing by products-a review. *Food Res. Int.* 2006, 39, 383–393. [CrossRef]

23. Ahmad, B.; Shah, M.; Choi, S. Oceans as a source of immunotherapy. *Mar. Drugs* 2019, 17, 282. [CrossRef] [PubMed]

24. Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. *Nat. Prod. Rep.* 2021, 38, 362–413. [CrossRef]

25. Choudhary, A.; Naughton, L.M.; Montánchez, I.; Dobson, A.D.W.; Rai, D.K. Current status and future prospects of marine natural products (MNPs) as antimicrobials. *Mar. Drugs* 2017, 15, 272. [CrossRef]

26. Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.-E.F.; Moustafa, M.S.; Abd El-Wahed, A.; Al-Mousawi, S.M.; Musharraf, S.G.; et al. Marine natural products: A source of novel anticancer drugs. *Mar. Drugs* 2019, 17, 491. [CrossRef]

27. Li, T.; Ding, T.; Li, J. Medicinal purposes: Bioactive metabolites from marine-derived organisms. *Mini-Rev. Med. Chem.* 2019, 19, 138–164. [CrossRef]

28. MarinLit. A Database of the Marine Natural Products Literature. Available online: http://pubs.rsc.marinlit/ (accessed on 31 March 2021).

29. Barzkar, N.; Jahromi, S.T.; Poorsaheli, H.B.; Vianello, F. Metabolites from marine microorganisms, micro, and macroalgae: Immense scope for pharmacology. *Mar. Drugs* 2019, 17, 464. [CrossRef]

30. Matsukawa, R.; Dubinsky, Z.; Kishimoto, E.; Masaki, K.; Masuda, Y.; Takeuchi, T. A comparison of screening methods for antioxidant activity in seaweeds. *J. Appl. Phycol.* 1997, 9, 29–35. [CrossRef]

31. Athiperumalsami, T.; Rajeswari, V.D.; Poorna, S.H.; Kumar, V.; Jesudass, L.L. Antioxidant activity of seagrasses and seaweeds. *J. Appl. Phycol.* 2002, 14, 299–307. [CrossRef] [PubMed]

32. Kelman, D.; Posner, E.K.; McDermid, K.J.; Tabandera, N.K.; Wright, P.R.; Wright, A.D. Antioxidant activity of Hawaiian marine algae. *Mar. Drugs* 2012, 10, 403–416. [CrossRef]

33. Zubia, M.; Robledo, D.; Freile-Pelegri, Y. Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula. *J. Appl. Phycol.* 2007, 19, 449–458. [CrossRef]

34. Sansone, C.; Brunet, C. Marine algal antioxidants. *Antioxidants* 2020, 9, 206. [CrossRef]

35. Fernando, I.P.S.; Kim, M.; Son, K.-T.; Jeong, Y.; Jeon, Y.-J. Antioxidant activity of marine algal polyphenolic compounds: A mechanistic approach. *J. Med. Food* 2016, 19, 1–14. [CrossRef]

36. Jacobsen, C.; Sørensen, A.-D.M.; Holdt, S.L.; Akoh, C.C.; Hermund, D.B. Source, extraction, characterization, and applications of novel antioxidants from seaweed. *Annu. Rev. Food Sci. Technol.* 2019, 10, 261–266. [CrossRef]

37. Jiao, G.-L.; Yu, G.L.; Zhao, X.-L.; Zhang, J.-Z.; Ewart, H.S. Natural polymers with antioxidant properties. Poly-/oligosaccharides of marine origin. In *Antioxidant Polymers: Synthesis, Properties, and Applications*; Cirillo, G., Lemma, F., Eds.; Wiley, Scrivener Publishing LLC: Beverly, MA, USA, 2012; pp. 179–202. [CrossRef]

38. Schlesier, K.; Harwat, M.; Böhm, V.; Bitsch, R. Assessment of antioxidant activity by using different in vitro methods. *Free Radic. Res.* 2002, 36, 177–187. [CrossRef] [PubMed]

39. Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. *J. Agric. Food Chem.* 2005, 53, 1841–1856. [CrossRef] [PubMed]

40. Cao, G.; Prior, R.L. Measurement of oxygen radical absorbance capacity in biological samples. *Meth. Enzymol.* 1999, 299, 50–62. [CrossRef]

41. Wayner, D.D.M.; Burton, G.W.; Ingold, K.U.; Locke, S. Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins. *FEBS Lett.* 1985, 187, 33–37. [CrossRef]

42. Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. *Meth. Enzymol.* 1999, 299, 152–178. [CrossRef]

43. Miller, N.J.; Rice-Evans, C.A.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. *Clin. Sci.* 1993, 84, 407–412. [CrossRef]

44. Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”; The FRAP assay. *Anal. Biochem.* 1996, 239, 70–76. [CrossRef]
76. Li, K.; Li, X.M.; Gloer, J.B.; Wang, B.G. Isolation, characterization, and antioxidant activity of bromophenols from the marine red alga *Rhodomenia conglobata*. J. Agric. Food Chem. 2011, 59, 9916–9921. [CrossRef]

77. Lee, J.H.; Lee, T.K.; Kang, R.S.; Shin, H.J.; Lee, H.S. The in vitro antioxidant activities of the bromophenols from the red alga *Ticocarpus crinitus* and phenolic derivatives. J. Korean Magn. Reson. Soc. 2007, 11, 56–63.

78. Park, H.J.; Kim, H.R.; Choi, J.S. Antioxidant effect of 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (TDB) from the red alga *Symphyocladia lataculla*. J. Fish. Sci. Technol. 2009, 12, 86–89. [CrossRef]

79. Choi, J.S.; Park, H.J.; Jung, H.A.; Chung, H.Y.; Jung, J.H.; Choi, W.C. A cyclohexanonyl bromophenol from the red alga *Symphyocladia lataculla*. J. Nat. Prod. 2000, 63, 1705–1706. [CrossRef]

80. Rezai, M.; Bayrak, Ç.; Taslimi, P.; Gül, B. The first synthesis and antioxidant and anticholinergic activities of 1-(4,5-dihydroxybenzyl)pyrrolidin-2-one derivative bromophenols including natural products. Turk. J. Chem. 2018, 42, 808–825.

81. Li, K; Li, X.M.; Gloer, J.B.; Wang, B.G. New nitrogen-containing bromophenols from the marine red alga *Rhodomenia conglobata* and their radical scavenging activity. Food Chem. 2012, 135, 868–872. [CrossRef]

82. Xu, X.L.; Yin, L.Y.; Gao, J.H.; Chen, J.H.; Li, J.X.; Song, F.H. Two new bromophenols with radical scavenging activity from marine red alga *Symphyocladia lataculla*. Mar. Drugs 2013, 11, 842–847. [CrossRef][PubMed]

83. Li, K.; Wang, Y.F.; Li, X.M.; Wang, W.J.; Ai, X.Z.; Li, X.; Yang, S.Q.; Gloer, J.B.; Wang, B.G.; Xu, T. Isolation, synthesis, and radical-scavenging activity of rhodomelin A, a ureidobromophenol from the marine red alga *Rhodomenia conglobata*. Org. Lett. 2018, 20, 417–420. [CrossRef]

84. Li, K.; Li, X.M.; Ji, N.Y.; Wang, B.G. Bromophenols from the marine red alga *Polysiphonia urceolata* with DPPH radical scavenging activity. J. Nat. Prod. 2008, 71, 28–30. [CrossRef]

85. Ryu, Y.S.; Fernando, P.D.S.M.; Kang, K.A.; Piao, M.J.; Zhen, A.X.; Kang, H.K.; Koh, Y.S.; Hyun, J.W. Marine compound 3-bromo-4,5-dihydroxybenzaldehyde protects skin cells against oxidative damage via the Nrf2/ERK signaling pathway. Mar. Drugs 2013, 11, 2796–2803. [CrossRef]

86. Olsen, E.K.; Hansen, E.; Isaksson, J.; Andersen, J.H. Cellular antioxidant effect of some bromophenols from the red alga, *Vetricula lanosa*. Mar. Drugs 2013, 11, 2769–2803. [CrossRef]

87. Cha, J.W.; Piao, M.J.; Kim, K.C.; Zheng, J.; Yao, C.W.; Hyun, C.L.; Kang, H.K.; Kurihara, H.; et al. Biological activities of isolated compounds from three edible Malaysian red seaweeds, *Gracilaria changii* and *Polysiphonia morrowii*. J. Antibiot. 2012, 65, 867–870. [CrossRef][PubMed]

88. Cha, J.W.; Piao, M.J.; Kim, K.C.; Zheng, J.; Yao, C.W.; Hyun, C.L.; Kang, H.K.; Kurihara, H.; et al. Biological activities of isolated compounds from three edible Malaysian red seaweeds, *Gracilaria changii* and *Polysiphonia morrowii*. J. Antibiot. 2012, 65, 867–870. [CrossRef][PubMed]

89. Islam, M.R.; Mikami, D.; Kurihara, H. Two new algal bromophenols from *Odonthalia corymbifera*. Tetrahedron Lett. 2017, 58, 4119–4121. [CrossRef]

90. Choi, Y.K.; Ye, B.R.; Kim, E.A.; Kim, J.; Kim, M.S.; Lee, W.W.; Ahn, G.N.; Kang, N.; Jung, W.K.; Heo, S.J. Bis (3-bromo-4,5-dihydroxybenzoic acid isolated from *Cladophora wrightiana* that suppresses LPS-induced inflammatory response by inhibiting ROS-mediated ERK signaling pathway in RAW 264.7 macrophages. Biomed. Pharmacother. 2018, 103, 1170–1177. [CrossRef]

91. Takamatsu, S.; Hodges, T.W.; Rajbhandari, I.; Gerwick, W.H.; Hamann, M.T.; Nagle, D.G. Marine natural products as novel antioxidant prototypes. J. Nat. Prod. 2013, 76, 605–608. [CrossRef]

92. Li, K.; Li, X.M.; Ji, N.Y.; Gloer, J.B.; Wang, B.G. Natural bromophenols from the marine red alga *Polysiphonia urceolata* (Rhodomalceae): Structural elucidation and DPPH radical-scavenging activity. Bioorg. Med. Chem. 2007, 15, 6627–6631. [CrossRef]

93. Islam, M.R.; Mikami, D.; Kurihara, H. Two new algal bromophenols from *Odonthalia corymbifera*. Tetrahedron Lett. 2017, 58, 4119–4121. [CrossRef]

94. Andriani, Y.; Syamsurim, D.F.; Yee, T.C.; Harisson, F.S.; Hereng, G.M.; Abdullah, S.A.; Orosco, C.A.; Ali, A.M.; Latip, J.; Kikuzaki, H.; et al. Biological activities of isolated compounds from three edible Malaysian red seaweeds, *Gracilaria changii* and *Polysiphonia morrowii*. Nat. Prod. Commun. 2016, 11, 1117–1120. [CrossRef]

95. Kim, C.; Lee, I.K.; Cho, G.Y.; Oh, K.H.; Lim, Y.W.; Yun, B.S. Sargassumol, a novel antioxidant from the brown alga *Sargassum micracanthum*. J. Antibiot. 2012, 65, 87–89. [CrossRef]

96. Park, C.; Cha, H.-J.; Hong, S.H.; Kim, G.-Y.; Kim, S.; Kim, H.-S.; Kim, B.W.; Jeon, Y.-J.; Choi, Y.H. Protective effect of phloroglucinol from Indian brown seaweeds. *Ecklonia cava* and *Gracilaria changii*. J. Agric. Food Chem. 2011, 59, 103, 9916–9921. [CrossRef][PubMed]

97. Zou, Y.; Qian, Z.J.; Li, Y.; Qian, Z.J.; Li, Y.; Qian, Z.J.; Li, Y. Chemical components and its antioxidant properties in vitro: An edible marine brown alga, *Ecklonia cava*. Bioorg. Med. Chem. 2009, 17, 1963–1973. [CrossRef]

98. Andriani, Y.; Syamsurim, D.F.; Yee, T.C.; Harisson, F.S.; Hereng, G.M.; Abdullah, S.A.; Orosco, C.A.; Ali, A.M.; Latip, J.; Kikuzaki, H.; et al. Biological activities of isolated compounds from three edible Malaysian red seaweeds, *Gracilaria changii* and *Polysiphonia morrowii*. Nat. Prod. Commun. 2016, 11, 1117–1120. [CrossRef]

99. Kim, C.; Lee, I.K.; Cho, G.Y.; Oh, K.H.; Lim, Y.W.; Yun, B.S. Sargassumol, a novel antioxidant from the brown alga *Sargassum micracanthum*. J. Antibiot. 2012, 65, 87–89. [CrossRef]

100. Kim, K.C.; Lee, I.K.; Kang, K.A.; Piao, M.J.; Ryu, M.J.; Kim, J.M.; Lee, N.H.; Hyun, J.W. Triphloretol-A from *Ecklonia cava* up-regulates the oxidant sensitive 8-oxoguanine DNA glycosylase 1. Mar. Drugs 2014, 12, 5357–5371. [CrossRef]
101. Kang, M.C.; Kim, K.N.; Lakmal, H.H.C.; Kim, E.A.; Wijesinghe, W.A.J.P.; Yang, X.; Heo, S.J.; Jeon, Y.J. Octaphlorethol A isolated from *Ishige foliacea* prevents and protects against high glucose-induced oxidative damage in vitro and in vivo. *Environ. Toxicol. Pharmacol.* 2014, 38, 607–615. [CrossRef]

102. Lee, S.H.; Kang, S.M.; Ko, S.C.; Kang, M.C.; Jeon, Y.J. Octaphlorethol A, a novel phenolic compound isolated from *Ishige foliacea*, protects against streptozotocin-induced pancreatic cell damage by reducing oxidative stress and apoptosis. *Food Chem. Toxicol.* 2013, 643–649. [CrossRef]

103. Jun, Y.J.; Lee, M.; Shin, T.; Yoon, N.; Kim, J.H.; Kim, H.R. Eckol enhances heme oxygenase-1 expression through activation of Nrf2/JNK pathway in HepG2 cells. *Molecules* 2014, 19, 15638–15652. [CrossRef] [PubMed]

104. Kang, H.S.; Chung, H.Y.; Jung, J.H.; Son, B.W.; Choi, J.S. A new phlorotannin from the brown alga *Ecklonia stolonifera*. *Chem. Pharm. Bull.* 2003, 51, 1012–1014. [CrossRef]

105. Kang, H.S.; Chung, H.Y.; Kim, J.Y.; Son, B.W.; Jung, H.A.; Choi, J.S. Inhibitory phlorotannins from the edible brown alga *Ecklonia cava* on total reactive oxygen species (ROS) generation. *Arch. Pharm. Res.* 2004, 27, 194–198. [CrossRef] [PubMed]

106. Kang, K.A.; Lee, K.H.; Chae, S.; Zhang, R.; Jung, M.S.; Lee, Y.; Kim, S.Y.; Kim, H.S.; Joo, H.G.; Park, J.W.; et al. Eckol isolated from *Ecklonia cava* attenuates oxidative stress induced cell damage in lung fibroblast cells. *FEBS Lett.* 2005, 579, 6295–6304. [CrossRef]

107. Lee, J.W.; Seok, J.K.; Boo, Y.C. *Ecklonia cava* extract and dieckol attenuate cellular lipid peroxidation in keratinocytes exposed to PM10. *J. Evid. Based Complementary Altern. Med.* 2018, 2018, 8248323. [CrossRef] [PubMed]

108. Shibata, T.; Ishimaru, K.; Kawaguchi, S.; Yoshikawa, H.; Hama, Y. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. *J. Appl. Phycol.* 2008, 20, 705–711. [CrossRef]

109. Kim, A.R.; Shin, T.S.; Lee, M.S.; Park, J.Y.; Park, K.E.; Yoon, N.Y.; Kim, J.S.; Choi, J.S.; Jang, B.C.; Byun, D.S.; et al. Identification of phlorotannins from *Ecklonia stolonifera* with antioxidant and anti-inflammatory properties. *J. Agric. Food Chem.* 2009, 57, 3483–3489. [CrossRef]

110. Heo, S.J.; Cha, S.H.; Kim, K.N.; Lee, S.H.; Ahn, G.; Kang, D.H.; Oh, C.; Choi, Y.U.; Affan, A.; Kim, D.; et al. Neuroprotective effect of phlorotannin isolated from *Ishige okamurae* against H2O2-induced oxidative stress in murine hippocampal neuronal cells, HT22. *Appl. Biochem. Biotechnol.* 2012, 166, 1520–1532. [CrossRef]

111. Zhen, A.X.; Piao, M.J.; Hyun, Y.J.; Kang, K.A.; Fernando, P.D.S.M.; Cho, S.J.; Ahn, M.J.; Hyun, J.W. Diplophorethohydroxycarmalol attenuates fine particulate matter-induced subcellular skin dysfunction. *Mar. Drugs* 2019, 17, 95. [CrossRef]

112. Cha, S.H.; Heo, S.J.; Jeon, Y.P.; Park, S.M. Dieckol, an edible seaweed polyphenol, retards retinone-induced neurotoxicity and a-synuclein aggregation in human dopaminergic neuronal cells. *RSC Adv.* 2016, 6, 110040–110046. [CrossRef]

113. Yoon, J.S.; Yadunandam, A.K.; Kim, S.J.; Woo, H.C.; Kim, H.R.; Kim, G.D. Dieckol, isolated from *Ecklonia stolonifera*, induces apoptosis in human hepatocellular carcinoma Hep3B cells. *J. Nat. Med.* 2013, 67, 519–527. [CrossRef] [PubMed]

114. Céramonta, S.; Breton, F.; Gall, A.E.; Deslandes, E. Co-occurrence and antioxidant activities of fuco and fucophorethol classes of polymeric phenols in *Fucus spiralis*. *Bot. Mar.* 2006, 49, 347–351. [CrossRef]

115. Ham, Y.M.; Baik, J.S.; Hyun, J.W.; Lee, N.H. Isolation of a new phlorotannin, fucodiphlorethol G, from a brown alga *Ecklonia cava*. *Bull. Korean Chem. Soc.* 2007, 28, 1595–1597.

116. Kim, K.C.; Piao, M.J.; Zheng, J.; Yao, C.W.; Cha, J.W.; Kumara, M.H.S.R.; Han, X.; Kang, H.K.; Lee, N.H.; Hyun, J.W. Fuco-diphlorethol G purified from *Ecklonia cava* suppresses ultraviolet B radiation-induced oxidative stress and cellular damage. *Biomed. Ther.* 2014, 22, 301–307. [CrossRef]

117. Parys, S.; Kehraus, S.; Krick, A.; Glombitza, K.; Carmeli, S.; Klimo, K.; Gerhaeuser, C.; Koenig, G.M. In vitro chemopreventive potential of fucophorethols from the brown alga *Fucus vesiculosus* L. by anti-oxidant activity and inhibition of selected cytochrome P450 enzymes. *Phytochemistry* 2010, 71, 221–229. [CrossRef]

118. Lee, J.H.; Ko, J.Y.; Oh, J.Y.; Kim, E.A.; Kim, C.Y.; Jeon, Y.J. Evaluation of phlorofucofuroeckol-A isolated from *Ecklonia cava* (Phaeophyta) on anti-lipid peroxidation in vitro and in vivo. *Algae* 2015, 30, 313–323. [CrossRef]

119. Kwon, T.H.; Suh, H.J.; Lee, I.K.; Yun, B.S.; Kim, T.W.; Hwang, D.I.; Kim, Y.J.; Kim, M.J.; Kwon, O.O.; Kim, C.G.; et al. Determination of singlet oxygen quenching and antioxidant activity of Bieckols isolated from the brown alga *Eisenia bicyclis*. *Eur. Food Res. Technol.* 2013, 237, 501–508. [CrossRef]

120. Lee, B.H.; Choi, B.W.; Lee, S.Y. Isolation of 6,6′-bieckol from *Grateloupia elliptica* and its antioxidant and anti-cholinesterase activity. *Ocean Polar Res.* 2017, 39, 45–49. [CrossRef]

121. Park, M.H.; Heo, S.J.; Park, P.J.; Moon, S.H.; Sung, S.H.; Jeon, B.T.; Lee, S.H. 6,6′-Bieckol isolated from *Ecklonia cava* protects oxidative stress through inhibiting expression of ROS and proinflammatory enzymes in high-glucose-induced human umbilical vein endothelial cells. *Appl. Biochem. Biotechnol.* 2014, 174, 632–643. [CrossRef] [PubMed]

122. Choi, J.S.; Haulader, S.; Kariki, S.; Jung, H.J.; Kim, H.R.; Jung, H.A. Acetyl- and butyryl-cholinesterase inhibitory activities of the edible brown alga *Eisenia bicyclis*. *Arch. Pharm. Res.* 2015, 38, 1477–1487. [CrossRef] [PubMed]

123. Kang, S.M.; Heo, S.J.; Kim, K.N.; Lee, S.H.; Jeon, Y.J. Isolation and identification of new compound, 2,7′-phloroglucinol-6,6′-bieckol from brown algae, *Ecklonia cava* and its antioxidant effect. *J. Funct. Foods* 2012, 4, 158–166. [CrossRef]

124. Zeng, L.M.; Wang, C.J.; Yu, S.J.; Li, D.; Owen, N.L.; Lu, Y.; Lu, N.; Zheng, Q.T. Flavonoids from the red alga *Acanthophora spicifera*. *Chin. J. Chem.* 2001, 19, 1097–1100. [CrossRef]

125. Ragan, M.A.; Glombitza, K.W. Phlorotannins, brown algal polyphenols. In *Progress in Phycological Research*; Round, F.E., Chapman, D.J., Eds.; Biopress Ltd.: Bristol, UK, 1986; pp. 129–241.

126. Singh, I.P.; Bharate, S.B. Phloroglucinol compounds of natural origin. *Nat. Prod. Rep.* 2006, 23, 558–591. [CrossRef]
Antioxidants 2021, 10, 1431

127. Gross, H.; König, G.M. Terpenoids from marine organisms: Unique structures and their pharmacological potential. Phytochem. Rev. 2006, 5, 115–141. [CrossRef]

128. Shapumba, C.W.; Knott, M.; Kapewangolo, P. Antioxidant activity of a halogenated monoterpene isolated from a Namibian marine algal
Plocamium species. J. Food Sci. Technol. 2017, 54, 3370–3373. [CrossRef]

129. Chakraborty, K.; Paulraj, R. Sesquiterpenoids with free-radical-scavenging properties from marine macroalga Ulva fasciata Delile. Food Chem. 2010, 122, 31–41. [CrossRef]

130. Guajardo, E.; Correa, J.A.; Contreras-Poria, L. Role of abscisic acid (ABA) in activating antioxidant tolerance responses to dessication stress in intertidal seaweed species. Pflanze 2016, 243, 767–781. [CrossRef]

131. Ge, N.; Liang, H.; Zhao, Y.Y.; Liu, Y.; Gong, A.J.; Zhang, W.L. Aplysin protects against alcohol-induced liver injury via alleviating oxidative damage and modulating endogenous apoptosis-related genes expression in rats. J. Food. Sci. 2018, 83, 2612–2621. [CrossRef]

132. He, J.; Liang, H.; Li, Y.; Shi, D.Y.; Ma, A.G. Antioxidant effect of Aplysin on aged mice exposed to D-galactose. Chin. J. Public Health 2009, 25, 1122–1123.

133. Gressler, V.; Stein, Ê.M.; Dör, F.; Fujii, M.T.; Colepicolo, P.; Pinto, E. Sesquiterpenes from the essential oil of Laurencia dendroidea (Ceramiales, Rhodophyta): Isolation, biological activities and distribution among seaweeds. Rev. Bras. Farmacogn. 2011, 21, 248–254. [CrossRef]

134. Maneesh, A.; Chakraborty, K. Previously undescribed frido oleananes and oxygenated labdanes from the brown seaweed Sargassum weightii and their protein tyrosine phosphatase-1B inhibitory activity. Phytochemistry 2017, 144, 19–32. [CrossRef]

135. Alarif, W.M.; Basiia, S.A.; Badria, F.A.; Ayyadd, S.E.N. Two new cytotoxic C-29 steroids from the Red Sea brown alga Cystoseira trinodis. Chem. Nat. Compd. 2015, 51, 697–702. [CrossRef]

136. Choi, J.S.; Han, Y.R.; Byeon, J.S.; Choung, S.Y.; Sohn, H.S.; Jung, H.A. Protective effect of fucosterol isolated from the edible brown algae, Ecklonia stolonifera and Eisenia bicyclus, on tert-butyl hydroperoxide- and tacrine-induced HepG2 cell injury. J. Pharm. Pharmacol. 2015, 67, 1170–1178. [CrossRef]

137. Renju, G.L.; Kurup, G.M.; Kumari, C.H.S. Effect of lycopene from Gracilaria salicornia as dual inhibitors of starch digestive enzymes. Med. Chem. Res. 2019, 28, 696–710. [CrossRef]

138. Bai, S.-K.; Lee, S.-J.; Na, H.-J.; Ha, K.-S.; Han, J.-A.; Lee, H.; Kwon, Y.-G.; Chung, C.-K.; Kim, Y.-M. -Carotene inhibits inflammatory gene expression in lipopolysaccharide-stimulatedmacrophages by suppressing redox-based NF-

139. de Sousa, C.B.; Gangdahar, K.N.; Macridachis, J.; Pavão, M.; Morais, T.R.; Campino, L.; Varela, J.; Lago, J.H.G. Cystoseira algae (Fucaceae): Update on their chemical entities and biological activities. Tetrahedron Asymmetry 2018, 22, 222–231. [CrossRef] [PubMed]

140. Murakami, A.; Nakashima, M.; Koshiba, T.; Maoka, T.; Nishino, H.; Yano, M.; Sumida, T.; Kim, O.K.; Koshimizu, K.; Ohigashi, H. Modifying effects of carotenoids on superoxide and nitric oxide generation from stimulated leukocytes. Cancer Lett. 2000, 149, 115–123. [CrossRef]

141. Camera, E.; Mastrofrancesco, A.; Fabbri, C.; Daubrawa, F.; Picardo, M.; Sies, H.; Stahl, W. Astaxanthin, canthaxanthin and brown algae, Cystoseira trinodis inhibit the Nrf2/HO-1 antioxidant pathway in human umbilical vein endothelial cells by generating trace amounts of ROS. J. Agric. Food Chem. 2018, 66, 1551–1559. [CrossRef]

142. Fang, Q.; Guo, S.; Zhou, H.; Han, R.; Wu, P.; Han, C. Astaxanthin protects against early burn-wound progression in rats by attenuating oxidative stress-induced inflammation and mitochondria-related apoptosis. Sci. Rep. 2017, 7, 41440. [CrossRef]

143. Niu, T.; Xuan, R.; Jiang, L.; Wu, W.; Zhen, Z.; Song, Y.; Hong, L.; Zheng, K.; Zhang, J.; Xu, Q.; et al. Astaxanthin induces the Nrf2/ARE antioxidant pathway in human umbilical vein endothelial cells by generating trace amounts of ROS. J. Agric. Food Chem. 2018, 66, 1551–1559. [CrossRef]

144. Saw, C.L.; Yang, A.Y.; Guo, Y.; Kong, A.N. Astaxanthin and omega-3 fatty acids individually and in combination protect against oxidative stress via the Nrf2-ARE pathway. Food Chem. Toxicol. 2013, 62, 869–875. [CrossRef]

145. Tripathi, D.N.; Jena, G.B. Astaxanthin intervention ameliorates cyclophosphamide-induced oxidative stress, DNA damage and early hematocarcinogenesis in rat: Role of Nrf2, p53, p38 and phase-II enzymes. Mutat. Res. 2010, 696, 69–80. [CrossRef]

146. Wen, X.; Huang, A.; Hu, J.; Zhong, Z.; Liu, Y.; Li, Z.; Pan, X.; Liu, Z. Neuroprotective effect of astaxanthin against glutamate-induced cytotoxicity in HT22 cells: Involvement of the Akt/GSK-3β pathway. Neuroscience 2015, 303, 558–568. [CrossRef]

147. Wu, Q.; Zhang, X.-S.; Wang, H.-D.; Zhang, X.; Yu, Q.; Li, W.; Zhou, M.-L.; Wang, X.-L. Astaxanthin activates nuclear factor erythroid-related factor 2 and the antioxidant responsive element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and attenuates early brain injury. Mar. Drugs 2014, 12, 6125–6141. [CrossRef] [PubMed]

148. Tripathi, D.N.; Jena, G.B. Astaxanthin intervention ameliorates cyclophosphamide-induced oxidative stress, DNA damage and early hematocarcinogenesis in rat: Role of Nrf2, p53, p38 and phase-II enzymes. Mutat. Res. 2010, 696, 69–80. [CrossRef]

149. Wang, A.; Hu, J.; Zhong, Z.; Liu, Y.; Li, Z.; Pan, X.; Liu, Z. Neuroprotective effect of astaxanthin against glutamate-induced cytotoxicity in HT22 cells: Involvement of the Akt/GSK-3β pathway. Neuroscience 2015, 303, 558–568. [CrossRef]

150. Wu, Q.; Zhang, X.-S.; Wang, H.-D.; Zhang, X.; Yu, Q.; Li, W.; Zhou, M.-L.; Wang, X.-L. Astaxanthin activates nuclear factor erythroid-related factor 2 and the antioxidant responsive element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and attenuates early brain injury. Mar. Drugs 2014, 12, 6125–6141. [CrossRef] [PubMed]

151. Xue, X.-L.; Han, X.-D.; Li, Y.; Chu, X.-F.; Miao, W.-M.; Zhang, J.-L.; Fan, S.-J. Astaxanthin attenuates total body irradiation-induced hematopoietic system injury in mice via inhibition of oxidative stress and apoptosis. Stem Cell Res. Ther. 2017, 8, 7. [CrossRef]
152. Yan, T.; Zhao, Y.; Zhang, X.; Lin, X. Astaxanthin inhibits acetaldehyde-induced cytotoxicity in SH-SYSY cells by modulating Akt/CREB and p38MAPK/ERK signaling pathways. *Mar. Drugs* 2016, 14, 56. [CrossRef] [PubMed]

153. Taira, J.; Sonamoto, M.; Uehara, M. Dual biological functions of a cytoprotective effect and apoptosis induction by bioavailable marine carotenoid fucoxanthinol through modulation of the nrf2 activation in Raw264.7 macrophage cells. *Mar. Drugs* 2017, 15, 305. [CrossRef]

154. Heo, S.J.; Ko, S.C.; Kang, S.M.; Kang, H.S.; Kim, J.P.; Kim, S.H.; Lee, K.W.; Cho, M.G.; Jeon, Y.J. Cytoprotective effect of fucoxanthin isolated from brown algae *Sargassum siliquastrum* against H2O2-induced cell damage. *Eur. Food Res. Technol.* 2008, 228, 145–151. [CrossRef]

155. Heo, S.-J.; Jeon, Y.-J. Protective effect of fucoxanthin isolated from *Sargassum siliquastrum* on UV-B induced cell damage. *J. Photochem. Photobiol. B* 2009, 95, 101–107. [CrossRef] [PubMed]

156. Jayawardena, T.U.; Kim, H.-S.; Sanjeewa, K.K.A.; Kim, H.-Y.; Rho, J.-R.; Jee, Y.; Ahn, G.; Jeon, Y.J. Protective effect of fucoxanthin isolated from *Isochrysis okamure* against high-glucose induced oxidative stress in human umbilical vein endothelial cells and zebrafish model. *J. Funct. Foods* 2014, 11, 304–312. [CrossRef]

157. Ragubeer, N.; Limson, J.L.; Beukes, D.R. Electrochemistry-guided isolated antioxidative metabolites from *Sargassum elegans*. *Food Chem.* 2012, 131, 286–290. [CrossRef]

158. Sellimi, S.; Ksouda, G.; Benslima, A.; Nasri, R.; Rinaudo, M.; Nasri, M.; Hajji, M. Enhancing colour and oxidative stabilities of *Undaria pinnatifida* by addition of Micrasterias sp. *Biosci. Biotechnol. Biochem.* 2009, 73, 211–219. [CrossRef]

159. Rajauria, G.; Foley, B.; Abu-Ghannam, N. Characterization of dietary fucoxanthin from *Himanthalia elongata* brown seaweed. *Food Res. Inter.* 2017, 99, 995–1001. [CrossRef]

160. Sollini, S.; Ksoufa, G.; Benslima, A.; Nasri, R.; Rinaudo, M.; Nasri, M.; Hajji, M. Enhancing colour and oxidative stabilities of reduced-nitrite turkey meat sausages during refrigerated storage using fucoxanthin purified from the Tunisian seaweed *Cystoseira barbata*. *Food Chem. Toxicol.* 2017, 107, 620–629. [CrossRef]

161. Yu, J.; Lin, J.J.; Yu, R.; He, S.; Wang, Q.W.; Cui, W.; Zhang, J.R. Fucoxanthin prevents H2O2-induced neuronal apoptosis via concurrently activating the PI3-K/Akt cascade and inhibiting the ERK pathway. *Food Nutr. Res.* 2017, 61, 1304678. [CrossRef]

162. Zhang, Y.; Fang, H.; Xie, Q.; Sun, J.; Liu, R.; Hong, Z.; Yi, R.; Wu, H. Comparative evaluation of the radical-scavenging activities of fucoxanthin and its stereoisomers. *Process Biochem.* 2018, 73, 211–219. [CrossRef]

163. Wang, F.; Huang, L.; Gao, B.; Zhang, C. Optimum production conditions, purification, identification, and antioxidant activity of violaxanthin from *microalga Eustigmatos cf. polyphym* (Eustigmatophyceae). *Mar. Drugs* 2018, 16, 190. [CrossRef]

164. Jang, J.H.; Lee, J.H.; Chand, H.S.; Lee, J.S.; Lin, Y.; Weathington, N.; Mallampalli, R.; Jeon, Y.J.; Nynouya, T. Apo-9’-fucoxanthinone extracted from *Undaria pinnatifida* protects oxidative stress-mediated apoptosis in cigarette smoke-exposed human airway epithelial cells. *Mar. Drugs* 2016, 14, 140. [CrossRef]

165. Kim, H.-S.; Wang, L.; Fernando, I.P.S.; Je, J.-G.; Ko, S.-C.; Kang, M.C.; Lee, J.M.; Yim, M.-J.; Jeon, Y.-J.; Lee, D.-S. Antioxidant efficacy of (−)-loliolide isolated from *Sargassum horneri* against AAPH-induced oxidative damage in Vero cells and zebrafish models in vivo. *J. Appl. Phycol.* 2020, 32, 3341–3348. [CrossRef]

166. Jayawardena, T.U.; Kim, H.-S.; Sanjeewa, K.K.A.; Kim, H.-Y.; Rho, J.-R.; Jee, Y.; Ahn, G.; Jeon, Y.-J. *Sargassum horneri* and isolated 6-hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydrobenzofuran- 2(4H)-one (HTT); LPS-induced inflammation attenuation via suppressing NF-kB, MAPK and oxidative stress through Nrf2/HO-1 pathways in RAW 266.7 macrophages. *Algal Res.* 2019, 40, 101513. [CrossRef]

167. de Jesus Raposo, M.F.; de Morais, A.M.M.B.; de Morais, R.M.S.C. Carotenoids from marine microalgae: A valuable natural source for the prevention of chronic diseases. *Mar. Drugs* 2015, 13, 5128–5155. [CrossRef] [PubMed]

168. Takaichi, S. Carotenoids in algae: Distributions, biosyntheses and functions. *Mar. Drugs* 2011, 9, 1101–1118. [CrossRef]

169. Kim, H.A.; Miller, A.A.; Drummond, G.R.; Thrift, A.G.; Arumugam, T.V.; Phan, T.G.; Srikanth, V.K.; Sobey, C.G. Vascular cognitive role in central nervous system disorders. *Cell. Mol. Neurobiol.* 2015, 35, 85–99. [CrossRef]

170. Davinelli, S.; Nielsen, M.E.; Scapagnini, G. Astaxanthin in skin health, repair, and disease: A comprehensive review. *Nutrients* 2018, 10, 522. [CrossRef]

171. Dembitsky, V.M.; Maoka, T. Allenic and cumulenic lipids. *Prog. Lipid Res.* 2007, 46, 328–375. [CrossRef] [PubMed]

172. Nomura, T.; Kikuchi, M.; Kubodera, A.; Kawakami, Y. Proton-donative antioxidant activity of fucoxanthin with 1,1-diphenyl-2-picrylhydrazyl (DPPH). *Biochem. Mol. Biol. Int.* 1992, 42, 361–370. [CrossRef]

173. Yan, X.; Chuda, Y.; Suzuki, M.; Nagata, T. Fucoxanthin as the major antioxidant in *Hijikia fusiformis*, a common edible seaweed. *Biosci. Biotechnol. Biochem.* 1999, 63, 605–607. [CrossRef]
177. Fisch, M.K.; Böh m, V.; Wright, A.D.; König, G.M. Antioxidative meroterpenoids from the brown alga Cystoseira crinita. J. Nat. Prod. 2003, 66, 968–975. [CrossRef]
178. De los Reyes, C.; Zbakh, H.; Motilva, V.; Zubia, E. Antioxidant and anti-inflammatory meroterpenoids from the brown alga Cystoseira usneoides. J. Nat. Prod. 2013, 76, 621–629. [CrossRef]
179. Kuma m aki, M.; Nishikawa, K.; Matsuura, H.; Umezawa, T.; Matsuda, F.; Okino, T. Antioxidants from the brown alga Dictyopteris undulata. Molecules 2018, 23, 1214. [CrossRef] [PubMed]
180. Shimizu, H.; Koyama, T.; Yamada, S.; Lipton, S.A.; Satoh, T. Zonarol, a sesquiterpene from the brown algae Dictyopteris undulata, provides neuroprotection by activating the Nrf2/ARE pathway. Biochem. Biophys. Res. Comm. 2015, 457, 718–722. [CrossRef]
181. Chakraborty, K.; Antony, T.; Joy, M. Prospective natural anti-inflammatory drimanes attenuating pro-inflammatory 5-lipoxygenase from marine macroalgae Gracilaria salicornia. Algal Res. 2019, 40, 101472. [CrossRef]
182. Antony, T.; Chakraborty, K. First report of antioxidative 2H-chromenyl derivatives from the intertidal red seaweed Gracilaria salicornia as potential antiinflammatory agents. Nat. Prod. Res. 2020, 34, 3470–3482. [CrossRef]
183. Iwashima, M.; Mori, J.; Ting, X.; Matsunaga, T.; Hayashi, K.; Shinoda, D.; Satio, H.; Sankawa, U.; Hayashi, T. Antioxidant and antiviral activities of plastoquinones from the brown alga Sargassum micracanthum, and a new chromene derivative converted from the plastoquinones. Biol. Pharm. Bull. 2005, 28, 374–377. [CrossRef] [PubMed]
184. Mori, J.; Iwashima, M.; Wakasugi, H.; Saito, H.; Matsunaga, T.; Ogasawara, M.; Takahashi, S.; Suzuki, H.; Hayashi, T. New plastoquinones isolated from the brown alga, Sargassum micracanthum. Chem. Pharm. Bull. 2005, 53, 1159–1163. [CrossRef] [PubMed]
185. Gouveia, V.L.M.; Seca, A.M.L.; Barreto, M.C.; Neto, A.I.; Silva, A.M.S. Cytotoxic meroterpenoids from the marine alga Dictyopteris undulata. Org. Lett. 2009, 11, 716–723. [CrossRef] [PubMed]
186. De los Reyes, C.; Ortega, M.J.; Zbakh, H.; Motilva, V.; Zubia, E. Cystoseira abies-marina. Phycotox. Lett. 2013, 6, 593–597. [CrossRef]
187. Jung, M.; Jang, K.H.; Kim, B.; Lee, B.H.; Choi, B.W.; Oh, K.B.; Shin, J. Meroditerpenoids from the brown alga Sargassum thunbergii. J. Nat. Prod. 2008, 71, 1714–1719. [CrossRef] [PubMed]
188. Lee, J.I.; Park, K.E.; Kim, Y.A.; Lee, W.J.; Yoo, J.S.; Lee, B.J. Peroxynitrite scavenging constituents from the brown alga Sargassum thunbergii. Biotechnol. Bioprocess Eng. 2004, 9, 212–216. [CrossRef]
189. Seo, Y.; Lee, H.J.; Park, K.E.; Kim, Y.A.; Ahn, J.W.; Yoo, J.S.; Lee, B.J. Sargachromanol G inhibits osteoclastogenesis by suppressing the activation NF-kappa B and MAPKs in RANKL-induced RAW 264.7 cells. J. Nat. Prod. 2016, 79, 1757–1761. [CrossRef] [PubMed]
190. Yoon, W.J.; Kim, K.N.; Heo, S.J.; Han, S.C.; Kim, J.; Ko, Y.J.; Kang, H.K.; Yoo, E.S. Sargachromanol G inhibits osteoclastogenesis by activating the Nrf2/ARE pathway. Biochem. Biophys. Res. Commun. 2015, 457, 718–722. [CrossRef]
191. Jang, K.H.; Lee, B.H.; Choi, B.W.; Lee, H.S.; Shin, J. Chromones from the brown alga Sargassum siliquastrum. J. Nat. Prod. 2005, 68, 716–723. [CrossRef] [PubMed]
192. Lee, J.I.; Seo, Y. Chromanols from Sargassum siliquastrum and their antioxidant activity in HT 1080 cells. Chem. Pharm. Bull. 2011, 59, 757–761. [CrossRef]
193. Ham, Y.M.; Kim, K.N.; Lee, W.J.; Lee, N.H.; Hyun, C.G. Chemical constituents from Sargassum micracanthum and antioxidant activity. Int. J. Pharmacol. 2010, 6, 147–151. [CrossRef]
194. Gacesa, R.; Lawrence, K.P.; Georgakopoulos, N.D.; Yabe, K.; Dunlap, W.C.; Barlow, D.J.; Wells, G.; Young, A.R.; Long, P.F. The mycosporine-like amino acids porphyra-334 and shinorine are antioxidants and direct antagonists of Keap1-Nrf2 binding. Biochimie 2018, 154, 35–44. [CrossRef]
195. Yoshiki, M.; Tsuge, K.; Tsuruta, Y.; Yoshimura, T.; Koganemaru, K.; Sumi, T.; Matsui, T.; Matsumoto, K. Production of new antioxidant compound from mycosporine-like amino acid, porphyra-334 by heat treatment. Food Chem. 2009, 113, 1127–1132. [CrossRef]
196. Tamura, Y.; Takenaka, S.; Sugiyama, S.; Nakayama, R. Occurrence of anserine as an antioxidative dipeptide in a red alga, Porphyra yezoensis. Biosci. Biotechnol. Biochem. 1998, 62, 561–563. [CrossRef] [PubMed]
197. Yan, P.; Li, G.; Wang, C.; Wu, J.; Sun, Z.; Martin, G.E.; Wang, X.; Reibarkh, M.; Sauri, J.; Gustafson, K.-R. Characterization by empirical and computational methods of dictyospiromide, an intriguing antioxidant alkaloid from the marine alga Dictyota coriacea. Org. Lett. 2019, 21, 7577–7581. [CrossRef]
198. Cermeño, M.; Stack, J.; Tobin, P.R.; O’Keeffe, M.B.; Harnedy, P.A.; Stengel, D.B.; FitzGerald, R.J. Peptide identification from a Porphyra dioica protein hydrolysate with antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activities. Food Funct. 2019, 10, 3421–3429. [CrossRef] [PubMed]
199. Yabuta, Y.; Fujimura, H.; Kwak, C.S.; Enomoto, T.; Watanabe, F. Antioxidant activity of the phycocerythrinol compound formed from a dried Korean purple laver (Porphyra sp.) during in vitro digestion. Food Sci. Technol. Res. 2010, 16, 347–351. [CrossRef]
200. Cho, M.L.; Lee, H.-S.; Kang, I.-J.; Won, M.-H.; You, S.G. Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed. Food Chem. 2011, 127, 999–1006. [CrossRef] [PubMed]
203. Hsu, C.-Y.; Chao, P.-Y.; Hu, S.-P.; Yang, C.-M. The antioxidant and free radical scavenging activities of chlorophylls and pheophytins. *Food Nutr. Sci.* 2013, 4, 35234. [CrossRef]

204. Kang, Y.-R.; Park, J.; Jung, S.K.; Chang, Y.H. Synthesis, characterization, and functional properties of chlorophylls, pheophytins, and Zn-pheophytins. *Food Chem.* 2018, 245, 943–950. [CrossRef]

205. Pérez-Gálvez, A.; Viera, I.; Roca, M. Carotenoids and chlorophylls as antioxidants. *Antioxidants* 2020, 9, 505. [CrossRef] [PubMed]

206. Cahyana, A.H.; Shuto, Y.; Kinoshita, Y. Pyropheophytin a as an antioxidative substance from the marine alga, arame (*Eisenia bicyclis*). *Biosci. Biotechnol. Biochem.* 1992, 56, 1533–1535. [CrossRef]

207. Kitano, Y.; Murazumi, K.; Duan, J.; Kurose, K.; Kobayashi, S.; Sugawara, T.; Hirata, T. Effect of dietary porphyran from the red alga, *Porphyra yezoensis*, on glucose metabolism in diabetic KK-Ay mice. *J. Nutr. Sci. Vitaminol.* 2012, 58, 14–19. [CrossRef]

208. Tziveleka, L.-A.; Ioannou, E.; Roussis, V. Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: A review. *Carbohydr. Polym.* 2019, 218, 355–370. [CrossRef] [PubMed]

209. Wijesekara, I.; Pangestuti, R.; Kim, S.-K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. *Carbohydr. Polym.* 2011, 84, 14–21. [CrossRef]

210. Andrade, P.B.; Barbosa, M.; Matos, R.P.; Lopes, G.; Vinholes, J.; Mouga, T.; Valentão, P. Valuable compounds in macroalgae extracts. *Food Chem.* 2013, 138, 1819–1828. [CrossRef] [PubMed]

211. Li, Y.X.; Li, Y.; Lee, S.H.; Qian, Z.J.; Kim, S.K. Inhibitors of oxidation and matrix metalloproteinases, floridoside, and D-isorhamnoside from marine red alga *Laurencia undulata*. *J. Agric. Food Chem.* 2010, 58, 578–586. [CrossRef]

212. Wang, B.; Jiang, X.; Jiang, Y.; Hu, X.; Mou, H.; Li, M.; Guan, H. In vitro antioxidative activities of three marine olsogastogoligomers. *Nat. Prod. Res.* 2007, 21, 646–654. [CrossRef]

213. Rocha de Souza, M.C.; Marques, C.T.; Dore, C.M.G.; Ferreira da Silva, F.R.; Rocha, H.A.O.; Leite, E.L. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. *J. Appl. Phycol.* 2007, 19, 153–160. [CrossRef]

214. Ammar, H.H.; Lajili, S.; Said, R.B.; Le Cerf, D.; Bouraoui, A.; Majdoub, H. Physico-chemical characterization and pharmacological evaluation of sulfated polysaccharides from three species of Mediterranean brown algae of the genus *Cystoseira*. *Daru* 2015, 23, 1–8. [CrossRef]

215. Zhao, X.; Xue, C.H.; Li, B.F. Study of antioxidant activities of sulfated polysaccharides from *Laminaria japonica*. *J. Appl. Phycol.* 2008, 20, 431–436. [CrossRef]

216. Koh, H.S.A.; Lu, J.; Zhou, W. Structure characterization and antioxidant activity of fucoidan isolated from *Undaria pinnatifida* grown in New Zealand. *Carbohydr. Polym.* 2019, 212, 178–185. [CrossRef] [PubMed]

217. Rodríguez-Jasso, R.M.; Mussatto, S.I.; Panstrana, L.; Aguilar, C.N.; Teixeira, J.A. Chemical composition and antioxidant activity of sulfated polysaccharides extracted from *Fucus vesiculosus* using different hydrothermal processes. *Chem. Pap.* 2014, 68, 203–209. [CrossRef]

218. Puzharitskaya, O.N.; Obluchinskaya, E.D.; Shikov, A.N. Mechanisms of bioactivities of fucoidan from the brown seaweed *Fucus vesiculosus* L. of the Barents Sea. *Mar. Drugs* 2020, 18, 275. [CrossRef]

219. Lim, S.J.; Aida, W.M.W.; Maskat, M.Y.; Ropien, J.; Mohd, D.M. Isolation and antioxidant capacity of fucoidan from selected Malaysian seaweeds. *Food Hydrocoll.* 2014, 42, 280–288. [CrossRef] [PubMed]

220. Kim, K.J.; Yoon, K.Y.; Lee, B.Y. Low molecular weight fucoidan from the sporophyll of *Undaria pinnatifida* suppresses inflammation by promoting the inhibition of mitogen-activated protein kinases and oxidative stress in RAW264.7 cells. *Fitoterapia* 2012, 83, 1628–1635. [CrossRef]

221. Ryu, M.J.; Chung, H.S. Fucoidan reduces oxidative stress by regulating the gene expression of HO1 and SOD1 through the Nrf2/ERK signaling pathway in HaCaT cells. *Mol. Med. Rep.* 2016, 14, 3255–3260. [CrossRef]

222. Phull, A.R.; Majid, M.; Haq, I.U.; Khan, M.R.; Kim, S.J. In vitro and *in vivo* evaluation of anti-arthritis, antioxidant efficacy of fucoidan from *Undaria pinnatifida* (Harvey) Suringar. *Int. J. Biol. Macromol.* 2017, 97, 468–480. [CrossRef]

223. Zhang, Z.; Zhang, Q.; Wang, J.; Shi, X.; Song, H.; Zhang, J. In vitro antioxidant activities of acetylated, phosphorylated and benzoylated derivatives of porphyran extracted from *Porphyra haitanensis*. *Carbohydr. Polym.* 2009, 78, 449–453. [CrossRef]

224. Qi, H.; Zhang, Q.; Zhao, T.; Chen, R.; Zhang, H.; Niu, X.; Li, Z. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from *Ulva pertusa* (Chlorophyta) in vitro. *Int. J. Biol. Macromol.* 2005, 37, 195–199. [CrossRef] [PubMed]

225. Qi, H.; Zhao, T.; Zhang, Q.; Li, Z.; Zhao, Z.; Xing, R. Antioxidant activity of different molecular weight sulfated polysaccharides from *Ulva pertusa* Kjellm. *J. Appl. Phycol.* 2005, 17, 527–534. [CrossRef]

226. Qi, H.M.; Zhang, Q.B.; Zhao, T.T.; Hu, R.G.; Zhang, K.; Li, Z. In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from *Ulva pertusa* (Chlorophyta). *Bioorg. Med. Chem. Lett.* 2006, 16, 2441–2445. [CrossRef]

227. Rupérez, P.; Ahrazem, O.; Leal, J.A. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed *Fucus vesiculosus*. *J. Agric. Food Chem.* 2002, 50, 840–845. [CrossRef]

228. Hu, T.; Liu, D.; Chen, Y.; Wu, J.; Wang, S. Antioxidant activity of sulfated polysaccharide fractions extracted from *Undaria pinnatifida* in vitro. *Int. J. Biol. Macromol.* 2010, 46, 193–198. [CrossRef]

229. Zhang, Q.B.; Yu, P.Z.; Li, Z.E.; Zhang, H.; Xu, Z.; Li, P.C. Antioxidant activities of sulfated polysaccharide fractions from *Porphyra haitanensis*. *J. Appl. Phycol.* 2003, 15, 305–310. [CrossRef]

230. Sun, L.Q.; Wang, L.; Li, J.; Liu, H.H. Characterization and antioxidative activities of degraded polysaccharides from two marine Chrysophyta. *Food Chem.* 2014, 160, 1–7. [CrossRef] [PubMed]
231. Phull, A.R.; Kim, S.J. Fucoidan as bio-functional molecule: Insights into the anti-inflammatory potential and associated molecular mechanisms. *J. Funct. Foods* 2017, 38, 415–426. [CrossRef]

232. Wei, C.-C.; Yen, P.-L.; Chang, S.-T.; Cheng, P.-L.; Lo, Y.-C.; Liao, V.H.-C. Antioxidative activities of both oleic acid and *Camellia tenuifolia* seed oil are regulated by the transcription factor DAF-16/FOXO in *Caenorhabditis elegans*. *PLoS ONE* 2016, 11, e0157195. [CrossRef]

233. Li, Y.X.; Li, Y.; Qian, Z.J.; Kim, M.M.; Kim, S.K. In vitro antioxidant activity of 5-HMF isolated from marine red alga *Laurencia undulata* in free radical mediated oxidative systems. *J. Microbiol. Biotechnol.* 2009, 19, 1319–1327. [CrossRef]

234. Makkar, F.; Chakraborty, K. Antioxidant and anti-inflammatory oxygenated meroterpenoids from the thalli of red seaweed *Kappaphycus alvarezii*. *Med. Chem. Res.* 2018, 27, 2016–2026. [CrossRef]

235. Chakraborty, K.; Raola, V.K. In vitro bioactive analysis and antioxidant activity of two species of seaweeds from the Gulf of Mannar. *Nat. Prod. Res.* 2018, 32, 2729–2734. [CrossRef] [PubMed]

236. Maneesh, A.; Chakraborty, K. Previously undescribed antioxidative O-heterocyclic angiotensin converting enzyme inhibitors from the intertidal seaweed *Sargassum wightii* as potential antihypertensives. *Food Res. Inter.* 2018, 113, 474–486. [CrossRef] [PubMed]

237. Makkar, F.; Chakraborty, K. Highly oxygenated antioxidative 2H-chromen derivative from the red seaweed *Gracilaria opuntia* with pro-inflammatory cyclooxygenase and lipoxygenase inhibitory properties. *Nat. Prod. Res.* 2018, 32, 2756–2765. [CrossRef]

238. Venkateswarlu, S.; Panchagnula, G.K.; Gottumukkala, A.L.; Subbaraju, G.V. Synthesis, structural revision, and biological activities of 4'-chloroauroine, a metabolite of marine brown alga *Spatoglossum variabile*. *Tetrahedron* 2007, 63, 6909–6914. [CrossRef]

240. Maneesh, A.; Chakraborty, K. Unprecedented antioxidative and anti-inflammatory aryl polyketides from the brown seaweed *Sargassum wightii*. *Food Res. Inter.* 2017, 100, 640–649. [CrossRef]

241. Chakraborty, K.; Joseph, D.; Joy, M.; Raola, V.K. Characterization of substituted aryl meroterpenoids from red seaweed *Hypnea musciformis* as potential antioxidants. *Food Chem.* 2016, 212, 778–788. [CrossRef] [PubMed]

242. Chakraborty, K.; Dhara, S. First report of substituted 2H-pyranoids from brown seaweed *Turbinaria conoides* with antioxidant and anti-inflammatory activities. *Nat. Prod. Res.* 2020, 34, 3451–3461. [CrossRef]

244. Ha, A.W.; Na, S.J.; Kim, W.K. Antioxidant effects of fucoxanthin rich powder in rats fed with high fat diet. *Nutr. Res. Pract.* 2013, 7, 475–480. [CrossRef] [PubMed]