The Clinical Characteristics and Risk Factors of Severe COVID-19

Jianhua Hua Yanggan Wanga, b

aDepartment of Internal Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; bMedical Research Institute of Wuhan University, Wuhan, China

Abstract

Objective: We aim to investigate the clinical characteristics and risk factors for the severe cases of coronavirus disease 2019 (COVID-19) in comparison with the non-severe patients. Methods: We searched PubMed, EMBASE, Web of Science, and CNKI to collect all relevant studies published before July 26, 2020, and a total of 30 papers were included in this meta-analysis. Results: In the severe COVID-19 patients, 60% (95% CI = 56–64%) were male, 25% (95% CI = 21–29%) were over 65 years old, 34% (95% CI = 24–44%) were obese, and 55% (95% CI = 41–70%) had comorbidities. The most prevalent comorbidities were hypertension (34%, 95% CI = 25–44%), diabetes (20%, 95% CI = 15–25%), and cardiovascular disease (CVD; 12%, 95% CI = 9–16%). The most common blood test abnormalities were elevated C-reactive protein (CRP; 87%, 82–92%), decreased lymphocyte count (68%, 58–77%), and increased lactate dehydrogenase (69%, 95% CI = 57–81%). In addition, abnormal laboratory findings revealing organ dysfunctions were frequently observed in the severe cases, including decrease in albumin (43%, 95% CI = 24–63%) and increase in aspartate aminotransferase (47%, 95% CI = 38–56%), alanine aminotransferase (28%, 95% CI = 16–39%), troponin I/troponin T (TnI/TnT; 29%, 95% CI = 13–45%), and serum Cr (SCr; 10%, 95% CI = 5–15%). Conclusion: The male, elderly and obese patients and those with any comorbidities, especially with hypertension, diabetes, and CVD, were more likely to develop into severe cases. But the association between hypertension, diabetes, CVD, and severity of COVID-19 was declined by the increase of age. A significant elevation in cardiac TnI/TnT, the hepatic enzymes, and SCr and the reduction in lymphocytes with elevated CRPs are important markers for the severity. Specific attention should be given to the elderly male and obese patients and those with indications of severe immune injury in combination with bacterial infection and indication of multi-organ dysfunction or damages.

Introduction

In early December 2019, the coronavirus disease 2019 (COVID-19) broke out in Wuhan, China, and shortly reported over the world [1–4]. COVID-19 was caused by a previously unknown betacoronavirus, named 2019-nCoV or severe acute respiratory syndrome (SARS)-CoV-2 [5]. In this pandemic, the urban medical facilities...
in many countries have been overwhelmed with the treatment of severe cases [6]. Understanding the clinical characteristics and the risk factors of severe cases is critically important to improve the efficacy and outcome for the COVID-19 treatment. More and more studies have been published during the COVID-19 crisis. Here, we collected all relevant publications up to July 26, 2020, to reveal the clinical characteristics and the risk factors of severe COVID-19 to help identifying patients who are likely to develop to severe cases.

Methods

Protocol and Search Strategy

Our study followed PRISMA statement. We searched all relevant papers from PubMed, EMBASE, Web of Science, and CNKI with the following keywords: “2019-nCoV,” “COVID-19,” or “SARS-CoV-2” and “clinical characteristics,” “clinical finding,” “clinical feature,” “clinical study,” or “clinical case.” The search period was updated to July 26, 2020. Then 2 researchers did a further artificial selection to screen eligible papers independently.

The Inclusive and Exclusive Criteria

In this article, we focused on the clinical characteristics of severe patients with COVID-19 and the differences between the severe and non-severe COVID-19 patients. The studies on observation of clinical characteristics in severe and non-severe patients with COVID-19 were included, and studies without severe patients’ data or the comparison between the severe and non-severe patients or lack of clear diagnostic criteria were excluded.

The severe patients in our article included the patients hospitalized in intensive care unit and the severe/critical patients defined by the seventh guideline for the diagnosis and treatment of COVID-19 issued by the Chinese National Health Commission & State Administration of Traditional Chinese Medicine. Because of the difficulty of obtaining original data, the classification was achieved based on the authors’ statement presented in papers.

The severe illness of COVID-19 was defined if satisfying at least one of the following criteria: (a) breathing rate ≥30/min; (b) pulse oximeter oxygen saturation ≤93% at rest; or (c) ratio of partial pressure of arterial oxygen to fraction of inspired oxygen ≤300 mm Hg (1 mm Hg = 0.133 kPa). Critical illness was defined if satisfying at least one of the following criteria: (a) respiratory failure with required mechanical ventilation; (b) shock; or (c) failure of other organs and received medical care in the intensive care unit.

The reference intervals of laboratory findings varied in different studies, which was presented in online supplementary Table S1 (see www.karger.com/doi/10.1159/000513400 for all online suppl. material).

Data Extraction

The papers we searched and screened were imported to EndNote (version 8) to remove all duplicates. We then screened the titles and abstracts of retrieved papers in the list. All useful data were extracted in a form after reading the full text. Due to the reality in clinical practice and ethical restrictions, all included studies were cross-sectional studies.

Results

Literature Summary

We retrieved a total of 637 papers. 292 repetitive papers were removed and 131 papers were excluded after screening the titles and abstracts. 182 articles were eliminated due to lack of a comparison between non-severe and severe COVID-19 patients, short of original data or diagnosis criteria. At the end, 30 papers were included in our meta-analysis [1], [7–35]. The screening process was shown in Figure 1. The detailed information about basic characteristics, underlying diseases, and laboratory findings was summarized in Tables 1 and 2 and online supplementary Tables S1 and S2.

Because of the reality in clinical practice and medical ethics, all included studies are case series studies. A total of 6,685 individuals were involved in our study with the sample size ranging from 41 to 1,099.

Meta-Analysis Results

The Clinical Characteristics of Severe COVID-19

A total of 1,457 severe COVID-19 patients were included in this meta-analysis. In the severe COVID-19 patients, 60% (95% CI = 56–64%) were male, 25% (95% CI = 21–29%) were over 65 years old, 34% (95% CI = 24–44%) were obese, and 55% (95% CI = 41–70%) had comorbidities. The most prevalent comorbidities were hypertension (34%, 95% CI = 25–44%), diabetes (20%, 95% CI = 15–25%), and cardiovascular disease (CVD; 12%, 95% CI = 9–16%). For laboratory findings, the prevalence of elevated C-reactive protein (CRP) was 87% (82–92%), decreased lymphocyte count was 68% (58–77%), and increased lactate dehydrogenase (LDH) was 69%
(95% CI = 57–81%). In addition, significant decrease in albumin (43%, 95% CI = 24–63%) and increase in aspartate aminotransferase (AST; 47%, 95% CI = 38–56%), alanine aminotransferase (ALT; 28%, 95% CI = 16–39%), troponin I/troponin T (TnI/TnT; 29%, 95% CI = 13–45%), and serum Cr (SCr; 10%, 95% CI = 5–15%) were observed (Table 3).

The Differences of Clinical Characteristics between Severe and Non-severe Groups
As shown in Table 4, male (OR = 1.383, 95% CI = 1.183–1.616), age over 65 years old (OR = 2.250, 95% CI = 1.677–3.017), and obesity (OR = 2.519, 95% CI = 1.498–4.235) were associated with increased severity of COVID-19. The prevalence of comorbidity, such as hypertension, CVD, and diabetes in the severe patients was significantly higher (OR = 2.661, 95% CI = 1.700–4.163; OR = 2.403, 95% CI = 1.389–2.483), LDH (OR = 1.744, 95% CI = 1.384–2.199), TnI/TnT (OR = 2.257, 95% CI = 1.562–3.262) and increased levels of CRP (OR = 1.495, 95% CI = 1.353–1.652), procalcitonin (OR = 2.403, 95% CI = 1.727–3.343), AST (OR = 2.356, 95% CI = 0.917–2.896), ALT (OR = 1.857, 95% CI = 1.389–2.483), LDH (OR = 1.744, 95% CI = 1.384–2.199), TnI/TnT (OR = 4.707, 95% CI = 2.234–9.917), and SCr (OR = 2.245, 95% CI = 1.474–3.421) was significantly higher in the severe patients.

The Result of Meta-regression
The meta-regression analysis with age as a covariate indicated that age declined the association between hypertension (p = 0.027), diabetes (p = 0.001), CVD (p = 0.003), and severity of COVID-19.

Heterogeneity Test, Sensitivity Analysis and Publication Bias
We observed significant heterogeneity (I²) varying from 52.1 to 96.2% in meta-analysis of the clinical characteristics of severe COVID-19 (Table 3). Significant publication bias (p < 0.05) was observed in the prevalence of CVD, increased white blood cells, increased CRP, and increased serum Cr (as shown in Table 3).

As for meta-analysis of the differences between severe and non-severe patients, heterogeneity varied from 0.0 to...
Studies	Disease severity	Sex (male)		
	Patients, n	Age, n (%)		
	>50 yr	>60 yr	>65 yr	
Guan, Weijie	Severe	173	926	
	Non-severe	44/163 (27.0)	109/848 (12.9)	
	100 (57.8)	67 (38.7)	41 (23.7)	28 (16.2)
	540 (58.3)	194 (21.0)	124 (13.4)	53 (5.7)
Huang, Chaolin	Severe	13	28	
	Non-severe	11 (84.6)	19 (67.9)	3 (15%)
		5 (38%)	8 (29%)	2 (14%)
		2 (15%)	4 (17%)	1 (8%)
		8 (29%)	17 (25%)	3 (23%)
Zhang, Jinjin	Severe	58	82	
	Non-severe	48 (82.8)	50 (61.0)	
		33 (56.9)	38 (46.3)	
		46 (79.3)	44 (53.7)	
		22 (37.9)	20 (24.4)	
		8 (13.8)	9 (11.0)	
Xu, Yuhuan	Severe	13	37	
	Non-severe	5 (38.5)	10 (27.0)	
		7 (53.8)	22 (59.5)	
Li, Kunhua	Severe	25	58	
	Non-severe	15 (60)	29 (50)	
		11 (44.0)	4 (6.9)	
		2 (8.0)	3 (5.2)	
		7 (28.0)	0 (0.0)	
Wan, Suxin	Severe	40	95	
	Non-severe	21 (52.5)	52 (54.7)	
		28 (70)	15 (16.3)	
		4 (10)	9 (9.4)	
		9 (22.5)	3 (3.1)	
Cai, Qingxian	Severe	58	240	
	Non-severe	50 (86.21)	88 (36.67)	
		39 (67.24)	106 (44.17)	
		22 (37.9)	25 (10.4)	
		8 (13.79)	13 (22.41)	
		12 (5.0)		
Zhang, Gemin	Severe	32	63	
	Non-severe	7 (21.9)	10 (15.9)	
		21 (65.6)	32 (50.8)	
Zheng, F.	Severe	30	131	
	Non-severe	14 (46.7)	66 (50.4)	
		12 (40)	10 (7.6)	
		2 (6.7)	5 (3.8)	
		2 (6.7)	2 (1.5)	
Cheng, Kebing	Severe	181	282	
	Non-severe	42 (23.2)	36 (12.77)	
		99 (54.7)	145 (51.42)	
		53 (29.28)	54 (19.15)	
		20 (11.05)	20 (7.09)	
		16 (8.84)	12 (4.26)	
Xiao, Kaihu	Severe	36	107	
	Non-severe	20 (55.6)	52 (48.6)	
		17 (47.2)	29 (27.1)	
		5 (13.9)	12 (11.2)	
		5 (13.9)	4 (7.4)	
		2 (5.6)	3 (2.8)	
Yuan, Jing	Severe	31	192	
	Non-severe	18 (58.1)	88 (45.8)	
		14 (45.2)	40 (20.8)	
		4 (12.9)	21 (10.9)	
		8 (25.8)	10 (5.2)	
		0 (0)	1 (0.5)	
He, Xingwei	Severe	54	54	
		34 (63.0)	24 (44.4)	
		24 (44.4)	13 (24.1)	
		5 (9.3)		
Deng, Qing	Severe	67	45	
	Non-severe	38 (56.7)	19 (42.2)	
		28 (41.8)	13 (28.9)	
		13 (52.0)	13 (52.0)	
		9 (36.0)	7 (8.4)	
		3 (12.0)	2 (2.4)	
		2 (8.0)	2 (2.4)	
Yao, Qingchun	Severe	25	83	
	Non-severe	9/25 (36.0)	8/83 (9.6)	
		13 (52.0)	30 (36.1)	
		13 (52.0)	12 (14.5)	
		9 (36.0)	7 (8.4)	
		3 (12.0)	2 (2.4)	
Xu, Jing	Severe	30	125	
	Non-severe	20 (66.7)	67 (53.6)	
		12 (40.0)	16 (12.8)	
Asghar, M.S.	ICU	33	67	
	Ward	–	–	
Cao, Zhenhuan	Severe	27	53	
	Non-severe	16 (59.3)	22 (41.5)	
		4 (14.8)	16 (30.2)	
		3 (11.1)	5 (18.5)	
		5 (9.4)		
Table 1 (continued)

Studies	Disease severity	Patients,	Age, n (%)	Sex (male)	Obesity*	Comorbidity	Hypertension	Diabetes	CVD n (%)	Ref.
Pellaud, Charlotte	ICU	49	–	>50 y 34 (70.0)	30 (61.0)	28 (19)	40 (82.0)	27 (55)	11 (22)	6 (12) [24]
Ward		147	114 (77.0)		89 (60.0)	13 (27)	122 (83.0)	91 (62)	41 (28)	20 (14)
Chen, Qingqing	Severe	43	–	>50 y 34 (70.0)	23 (53.5)	9 (20.9)	7 (16.3)			[25]
Non-severe		102	114 (77.0)		56 (54.9)	13 (12.7)	7 (6.9)			
Liu, Changquan	Severe	42		>50 y 28 (66.7)	102 (43.2)					[26]
Non-severe		236		>60 y 41 (97.6)	197 (83.5)					
Ebinger, Joseph E.	ICU	77		>50 y 57 (74.0)	78 (56.9)	17 (22.1)	49 (63.6)	40 (29.2)	18 (23.4)	27 (19.7) [27]
Ward		137		>60 y 57 (74.0)	78 (56.9)	17 (22.1)	49 (63.6)	40 (29.2)	18 (23.4)	27 (19.7)
Hong, Kyung Soo	ICU	13		>50 y 6 (46.2)	23 (27.1)	6 (46.2)	5 (38.5)	3 (23.1)	0 (0)	[28]
Not-ICU		85		>60 y 5 (38.5)	33 (38.8)	25 (29.4)	6 (7.1)	11 (12.9)		
Huang, Rui	Severe	23		>50 y 17 (73.9)	99 (55.3)	8 (44.4)	9 (39.1)	8 (34.8)	1 (4.3)	6 (3.3) [29]
Non-severe		179		>60 y 21 (11.7)		16 (10.4)	46 (25.7)	11 (6.1)		
Liu, Fang	Severe	33		>50 y 8 (24.2)	41 (38.3)		22 (66.7)	12 (36.4)	13 (39.4)	[30]
Non-severe		107		>60 y 22 (66.7)	41 (38.3)		22 (66.7)	12 (36.4)	13 (39.4)	
Shahntarirad, Reza	ICU	11		>50 y 7 (63.6)	64 (62.7)		5 (45.5)	3 (27.3)	4 (36.4)	[31]
Not-ICU		102		>60 y 7 (63.6)	64 (62.7)		5 (45.5)	3 (27.3)	4 (36.4)	
Geehan, Suleyman	ICU	141		>50 y 80 (56.7)	111 (78.7)	37 (26.2)	73 (51.8)	26 (18.4)		[32]
Not-ICU		214		>60 y 80 (56.7)	111 (78.7)	37 (26.2)	73 (51.8)	26 (18.4)		
Zheng, Yufen	Severe	29		>50 y 16 (55.2)	11 (37.9)					[33]
Non-severe		112		>60 y 58 (51.7)	58 (51.8)					
Almazeedi, Sulaiman	ICU	42		>50 y 32 (76.2)	856 (81.2)		17 (40.5)	137 (13.0)	8 (19.0)	33 (3.1) [34]
Not-ICU		1,054		>60 y 17 (40.5)	160 (15.2)		18 (42.9)			
Cao, Min	ICU	19		>50 y 15 (78.9)	17 (89.5)		6 (31.6)	2 (10.5)	5 (26.3)	[35]
Not-ICU		179		>60 y 54 (30.1)	84 (46.9)		36 (20.1)	13 (7.3)	7 (3.9)	

COVID-19, coronavirus disease 2019; ICU, intensive care unit. *Obesity: BMI >30 or 28 kg/m² (China).
Table 2. The laboratory findings in patients with COVID-19

Studies	Disease	Patients, N (%)	N (%)	ICU	Not-ICU	ICU	Not-ICU
Guan, Weijie	Severe	19/167 (11.4)	167	11.4	167	1.0	167
	Non-severe	39/811 (28.1)	811	28.1	811	1.0	811
Wang, Jinjin	Severe	58/137 (42.0)	137	42.0	137	1.0	137
	Non-severe	13/27 (48.1)	27	48.1	27	1.0	27
Xu, Tuanan	Severe	52/193 (27.0)	193	27.0	193	1.0	193
	Non-severe	5/27 (19)	27	19	27	1.0	27
Li, Kaibin	Severe	40/103 (38.8)	103	38.8	103	1.0	103
	Non-severe	10/27 (37.0)	27	37.0	27	1.0	27
Chen, Jialei	Severe	40/125 (32.0)	125	32.0	125	1.0	125
	Non-severe	6/27 (22.2)	27	22.2	27	1.0	27
Wang, Song	Severe	31/75 (41.3)	75	41.3	75	1.0	75
	Non-severe	6/27 (22.2)	27	22.2	27	1.0	27
Cai, Qingxian	Severe	58/157 (37.0)	157	37.0	157	1.0	157
	Non-severe	75/235 (31.9)	235	31.9	235	1.0	235
Li, Kunhua	Severe	25	67	37.3	67	0.5	67
	Non-severe	85	214	39.5	214	1.2	214
Cao, Min	Severe	33	179	18.7	179	1.0	179
	Non-severe	102	214	47.9	214	1.2	214
Asghar, M.S.	Severe	33	179	18.7	179	1.0	179
	Non-severe	107	214	47.9	214	1.2	214
Shahriarirad, R.	Severe	11	65	16.9	65	1.6	65
	Non-severe	92	554	16.7	554	2.0	554
Gorham, Shyam	Severe	13	79	16.4	79	1.6	79
	Non-severe	79	425	18.6	425	4.6	425

Legend:
- **WBC:** white blood cell
- **CRP:** C-reactive protein
- **PCT:** procalcitonin
- **ALT:** alanine aminotransferase
- **AST:** aspartate aminotransferase
- **LDH:** lactate dehydrogenase
- **TnI/TnT:** troponin I/troponin T
- **SCr:** serum Cr

Notes:
1. Increased means over the upper limit of the reference range.
2. Decreased means below the lower limit of the reference range.

COVID-19: coronavirus disease 2019.
Table 3. The clinical characteristics of severe patients with COVID-19

Clinical characteristic	Studies, n	Subgroup	Prevalence	95% CI	Quantifying heterogeneity, %	Egger test
Male	29	Total	0.60	[0.56; 0.64]	52.1	0.9551
		Severe	0.58	[0.55; 0.61]	45.9	
		ICU	0.65	[0.60; 0.70]	59.1	
Age	3	>50 yr	0.74	[0.57; 0.92]	82.3	0.7839
	5	>60 yr	0.52	[0.30; 0.73]	92.5	
	4	>65 yr	0.25	[0.21; 0.29]	0.0	
Obesity	6	Total	0.34	[0.24; 0.44]	77.7	0.1885
		Severe	0.35	[0.26; 0.44]	19.5	
		ICU	0.34	[0.17; 0.52]	89.2	
Comorbidity	15	Total	0.55	[0.41; 0.70]	95.1	0.4874
		Severe	0.54	[0.37; 0.72]	95.9	
		ICU	0.60	[0.32; 0.87]	83.4	
Hypertension	24	Total	0.34	[0.25; 0.44]	93.2	0.0963
		Severe	0.28	[0.21; 0.34]	82.6	
		ICU	0.52	[0.38; 0.67]	86.3	
Diabetes	26	Total	0.20	[0.15; 0.25]	81.8	0.0523
		Severe	0.15	[0.12; 0.19]	52.2	
		ICU	0.31	[0.19; 0.43]	82.8	
CVD	24	Total	0.12	[0.09; 0.16]	74.8	0.0017
		Severe	0.11	[0.07; 0.14]	72.3	
		ICU	0.17	[0.10; 0.24]	65.1	
WBC increased	17	Total	0.22	[0.15; 0.30]	90.5	0.0134
		Severe	0.20	[0.12; 0.28]	91.4	
		ICU	0.30	[0.10; 0.50]	74.8	
Lymphocyte decreased	20	Total	0.68	[0.58; 0.77]	92.2	0.269
		Severe	0.65	[0.54; 0.77]	93.5	
		ICU	0.78	[0.60; 0.95]	76.3	
Platelet decreased	14	Total	0.20	[0.11; 0.30]	89.0	0.0789
		Severe	0.19	[0.08; 0.31]	92.3	
		ICU	0.23	[0.14; 0.33]	76.3	
CRP increased	18	Total	0.87	[0.82; 0.92]	82.0	0.0055
		Severe	0.87	[0.81; 0.92]	86.0	
		ICU	0.92	[0.86; 0.98]	0.0	
PCT increased	12	Total	0.32	[0.19; 0.44]	93.1	0.1314
		Severe	0.34	[0.15; 0.53]	95.5	
		ICU	0.24	[0.18; 0.30]	0.0	
LDH increased	11	Total	0.69	[0.57; 0.81]	91.8	0.1586
		Severe	0.67	[0.53; 0.81]	93.0	
		ICU	0.78	[0.50; 1.00]	84.8	
Albumin decreased	5	Total	0.43	[0.24; 0.63]	91.5	1
		Severe	0.50	[0.01; 1]	96.4	
		ICU	0.38	[0.23; 0.53]	81.1	
AST increased	10	Total	0.47	[0.38; 0.56]	66.9	0.0892
		Severe	0.43	[0.35; 0.50]	40.0	
		ICU	0.56	[0.29; 0.84]	83.6	
ALT increased	9	Total	0.28	[0.16; 0.39]	86.1	0.8348
		Severe	0.31	[0.15; 0.45]	91.0	
		ICU	0.21	[0.11; 0.31]	0.0	
TnI/TnT increased	7	Total	0.29	[0.13; 0.45]	96.2	0.2931
		Severe	0.23	[0.06; 0.40]	95.6	
		ICU	0.42	[0.34; 0.49]	0.0	
SCr increased	10	Total	0.10	[0.05; 0.15]	70.6	0.0095
		Severe	0.06	[0.03; 0.08]	31.1	
		ICU	0.29	[0.13; 0.46]	52.8	

COVID-19, coronavirus disease 2019; CVD, cardiovascular disease; WBC, white blood cell; CRP, C-reactive protein; PCT, procalcitonin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; LDH, lactate dehydrogenase; TnI/TnT, troponin I/troponin T; SCr, serum Cr.
Table 4. The association of different patients’ characteristics and clinical manifestations with increased severity of COVID-19

Clinical characteristic	Subgroup	Pooled OR	95% CI	\(I^2, \% \)	\(p \) value	Egger test
Male	Total	1.383	1.183; 1.616	22.3	0.000	0.385
	Severe	1.306	1.144; 1.618	18.7	0.001	
	ICU	1.405	0.964; 2.047	39.0	0.077	
Age	>50 yr	4.153	1.426; 12.090	73.8	0.009	0.650
	>60 yr	1.841	0.905; 3.746	72.8	0.092	0.442
	>65 yr	2.250	1.677; 3.017	0.0	0.000	0.343
Obesity	Total	2.519	1.498; 4.235	81.7	0.000	0.198
	Severe	2.380	0.995; 5.695	71.6	0.051	
	ICU	1.267	0.706; 2.276	89.8	0.000	
Comorbidity	Total	2.661	1.700; 4.163	71.5	0.000	0.289
	Severe	3.258	1.955; 5.428	72.8	0.000	
	ICU	1.267	0.706; 2.276	8.2	0.427	
Hypertension	Total	2.041	1.591; 2.619	50.1	0.000	0.545
	Severe	2.170	1.586; 2.970	48.1	0.000	
	ICU	1.835	1.188; 2.833	56.8	0.006	
CVD	Total	2.264	1.705; 3.007	44.4	0.000	0.148
	Severe	2.353	1.815; 3.051	79.1	0.000	
	ICU	2.056	1.001; 3.983	0.0	0.033	
Diabetes	Total	2.156	1.651; 2.815	63.7	0.000	0.030
	Severe	2.569	1.906; 3.463	36.1	0.000	
	ICU	1.608	1.043; 1.043	76.8	0.032	
WBC increased	Total	2.784	1.878; 4.125	55.2	0.000	0.069
	Severe	2.530	1.546; 4.142	61.4	0.000	
	ICU	3.573	2.201; 5.800	0.1	0.000	
Lymphocyte decreased	Total	2.054	1.641; 2.571	91.7	0.000	0.094
	Severe	1.851	1.496; 2.289	89.9	0.000	
	ICU	4.262	1.817; 9.997	88.2	0.001	
Platelet decreased	Total	1.852	1.602; 2.142	0.0	0.000	0.635
	Severe	1.871	1.607; 2.178	0.0	0.000	
	ICU	1.680	1.037; 2.720	0.0	0.035	
CRP increased	Total	1.495	1.353; 1.652	79.3	0.000	0.009
	Severe	1.493	1.345; 1.658	77.8	0.000	
	ICU	1.523	1.087; 2.132	87.4	0.014	
PCT increased	Total	2.403	1.727; 3.343	54.7	0.000	0.002
	Severe	2.613	1.753; 3.894	57.2	0.000	
	ICU	2.151	0.930; 4.973	68.3	0.073	
Albumin decreased	Total	2.257	1.562; 3.262	69.9	0.000	0.585
	Severe	2.555	1.501; 4.350	77.2	0.001	
	ICU	1.352	0.260; 7.029	83.5	0.720	
ALT increased	Total	1.857	1.389; 2.483	41.1	0.000	0.645
	Severe	2.057	1.396; 3.032	60.6	0.000	
	ICU	1.407	0.830; 2.384	0.0	0.205	
AST increased	Total	2.356	1.917; 2.896	39.1	0.000	0.087
	Severe	2.468	1.810; 3.363	56.6	0.000	
	ICU	2.292	1.756; 2.990	0.0	0.000	
LDH increased	Total	1.744	1.384; 2.199	86.2	0.000	0.243
	Severe	1.860	1.487; 2.326	81.5	0.000	
	ICU	1.315	0.443; 3.901	96.3	0.622	
SCr increased	Total	2.245	1.474; 3.421	21.2	0.000	0.534
	Severe	2.003	1.247; 3.217	0.0	0.000	
	ICU	2.568	0.971; 6.792	66.8	0.057	
TnI/TnT increased	Total	4.707	2.234; 9.917	77.2	0.000	0.154
	Severe	6.034	2.758; 13.201	40.5	0.000	
	ICU	3.357	0.978; 11.520	90.2	0.054	

COVID-19, coronavirus disease 2019; CVD, cardiovascular disease; WBC, white blood cell; CRP, C-reactive protein; PCT, procalcitonin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; LDH, lactate dehydrogenase; TnI/TnT, troponin I/troponin T; SCr, serum Cr.
The Clinical Characteristics and Risk Factors of Severe COVID-19

et al. [48] concluded that there was a significant association between COVID-19 mortality and cardiac injury. A study found that ACE2 activity is increased in patients with type 1 diabetes with vascular complications [49]. It is known that the ACE2 expression and activity are connected with Angiotsin-converting enzyme inhibitor (ACEI). ACE1 is the drug for treating hypertension and heart failure by regulating blood pressure and prevention of ventricular remodeling via suppressing the elevated activity of renin-angiotensin-aldosterone system. During ACEI application, ACE2 activity is not inhibited. Instead, the upregulation of ACE2 expression and increased activity were observed [50, 51]. However, latest studies found that ACE1 or ARB use was not associated with more severe COVID-19 disease [52], but the use of ARBs increased the risk of SARS-CoV-2 infection in younger patients [53].

Our study found that patients with hypertension, diabetes, and CVD are more sensitive to SARS-CoV-2 infection and transition to severity. However, the association between hypertension, diabetes, and CVD and severity of COVID-19 was decreased by age. It is likely that age itself is closely related with the propensity of comorbidities which contributes somewhat to the severity transition. Also, male patients are more sensitive to the infection of bacteria, virus, parasite, and fungi [54]. This may be linked to their living habits. For instance, there are much more smokers in men than in women. In a recent meta-analysis study [55], Vardavas and Nikitara [55] reported that the smokers were 1.4 times more likely to have severe symptoms of COVID-19 and 2.4 times more likely to be admitted to an intensive care unit, need mechanical ventilation, or die compared to nonsmokers. This may be linked to an increased ACE2 gene expression in the smokers. From another point of view, in the smokers, unlikely to wear a mask and frequent hand-to-mouth contact may also increase the risk of SARS-CoV-2 infection. Given these, the male seems more easily to be attacked by SARS-CoV-2 and more likely to transit into severe cases.

In addition, obesity is a main risk factor of comorbidities such as hypertension, diabetes mellitus, and CVD [56]. Meanwhile, ACE2 abundantly expressed in adipose tissue. These may cause obese people vulnerable to SARS-CoV-2 as well [57].

COVID-19 patients were in some cases complicated with myocarditis. However, the diagnosis of myocarditis was largely based on troponin elevation. Actually, the myocardial injury could be likely caused by the viral infection-triggered inflammatory response, rather than the direct viral attack, and there was no SARS-CoV-2 observed in the heart tissue [58–61].
In terms of nervous injury, most publications included in our study only observed nonspecific neurological symptoms, such as headache, dizziness, and agitation. More specific manifestations like delirium were not generally reported. Mao et al. [62] and Julie Helms et al. [63] found delirium and/or neurological symptoms appeared more frequent in severe COVID-19 patients and were associated with worse prognosis. However, the direct evidence of COVID-19 invasion to nervous system is still limited. The RT-PCR test of SARS-CoV-2 was negative in cerebrospinal fluid and there was not remarkable pathological observation in the brain [61, 63].

Hypoalbuminemia in critically ill patients was statistically significant and associated with longer hospitalization and higher mortality [64]. Decreased albumin levels in severe COVID-19 patients could be the results of liver dysfunction or malnutrition due to gastrointestinal symptoms [65]. But hypoalbuminemia is a predictor of transition to the severity independent of age and comorbidity [66].

Comparing COVID-19 with SARS or Middle East Respiratory Syndrome, age, male gender, and comorbidities such as diabetes and hypertension were the mortality risk factors in common [67, 68]. Besides, laboratory findings including decreased lymphocytes, platelet count, and albumin level and increased AST, LDH, and CRP levels in patients diagnosed with COVID-19 were not remarkably different from those of patients diagnosed with SARS or Middle East respiratory syndrome [69].

We have to notice that the abnormal laboratory variants were obtained at the time of hospitalization but not always collected prior to the patient transition to the severe cases. In some cases, the results may be collected in patients who had already become a severe case at the time of hospital admission. Under this circumstance, we cannot rule out the possibility that these abnormalities were secondary to the disease development (present in online suppl. Tables S1, S2).

In summary, our study revealed that the elderly, male, obese people, and patients with any comorbidities, especially those with hypertension, CVD, or diabetes are more likely to develop to severe cases. A progressive elevation in cardiac TnI/TnT, the hepatic enzymes, and serum Cr and the advanced lymphocytopenia and leukocytosis are important alerting markers of mild to severe case transition.

A total of 30 papers were included in this meta-analysis. Although the literatures included in this study have good quality, some limitations remain. First, due to the inconsistency of the observation time of each study, heterogeneity and bias are inevitable. Second, all studies included in this meta-analysis are retrospective studies, and all the study objects were inpatients diagnosed with SARS-CoV-2 infection. Therefore, many patients who did not go to hospital were not included. A more solid conclusion can be achieved when more well-designed large-scale clinical trial studies become available.

Statement of Ethics

This study is exempt from Ethical Committee Approval since all human data were collected from the published sources.

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Funding Sources

This work was supported by grants awarded to Yanggan Wang from the National Natural Science Foundation of China (NSFC, Grant Nos. 81873507 and 81420108004).

Author Contributions

The research idea and study design were guided by Yanggan Wang. The data extraction and analysis were done by Jianhua Hu. The manuscript was written by Jianhua Hu and modified by Yanggan Wang.

References

1. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.
2. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382(10):929–36.
3. Phan T. Novel coronavirus: from discovery to clinical diagnostics. Infect Genet Evol. 2020;79:104211.
4. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med. 2020;382(10):970–1.
5. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–81.
The Clinical Characteristics and Risk Factors of Severe COVID-19

Xin Xue Guan Bing Za Zhi. 2020; 48: E011.

DOI: 10.1159/000513400

Gerontology 2021;67:255–266
DOI: 10.1159/000513400

265
48 Li J-W, Han T-W, Woodward M, Anderson CS, Zhou H, Chen Y-D, et al. The impact of 2019 novel coronavirus on heart injury: a systematic review and meta-analysis. Prog Cardiovasc Dis. 2020 Jul-Aug;63(4):518–24.

49 Soro-Paavonen A, Gordin D, Forsblom C, Rosengard-Barlund M, Waden J, Thorn L, et al. Circulating ACE2 activity is increased in patients with type 1 diabetes and vascular complications. J Hypertens. 2012;30(2):375–83.

50 Arendse LB, Danser AHJ, Poglitsch M, Touyz RM, Burnett JC, Llorens-Cortes C, et al. Novel therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure. Pharmacol Rev. 2019;71(4):539–70.

51 Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin ii receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111(20):2605–10.

52 Mackey K, King VJ, Gurley S, Kiefer M, Liederbauer E, Vela K, et al. Risks and impact of angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers on SARS-CoV-2 infection in adults: a living systematic review. Ann Intern Med. 2020;173(3):195–203.

53 Chan C-K, Huang Y-S, Liao H-W, Tsai JJ, Sun C-Y, Pan H-C, et al. Renin-angiotensin-aldosterone system inhibitors and risks of SARS-CoV-2 infection: a systematic review and meta-analysis. Hypertension. 2020 Nov;76(5):1563–71.

54 Jaillon S, Berthenet K, Garlanda C. Sexual dimorphism in innate immunity. Clin Rev Allerg Immunol. 2019;56(3):308–21.

55 Vardavas C, Nikitara K. COVID-19 and smoking: a systematic review of the evidence. Tob Induc Dis. 2020 Mar 20;18:20.

56 Stefan N, Birkenfeld AL, Schulze MB, Ludwig DS. Obesity and impaired metabolic health in patients with COVID-19. Nat Rev Endocrinol. 2020;16(7):341–2.

57 Jia XY, Lu S, Chen Y, Liu Q, Bai J, Lu Y. Two things about COVID-19 might need attention. Preprints. 2020;2020:20200315.

58 Fox SE, Akmatbekov A, Harbert JL, Li G, Quincy Brown J, Vander Heide RS. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020;8(7):681–6.

59 Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–2.

60 Sala S, Peretto G, Gramenega M, Palmisano A, Villatore A, Vignale D, et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J. 2020;41(19):1861–2.

61 Bradley BT, Maioli H, Johnston R, Chaudhry I, Fink SL, Xu H, et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet. 2020;396(10247):320–2.

62 Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683–90.

63 Helms J, Kremer S, Merdji H, Schenck M, Seveer F, Clerc-Jehi R, et al. Delirium andencephalopathy in severe COVID-19: a cohort analysis of ICU patients. Crit Care. 2020;24(1):491.

64 de la Rica R, Borges M, Aranda M, Del Castillo A, Socías A, Payeras A, et al. Low albumin levels are associated with poorer outcomes in a case series of COVID-19 patients in Spain: a retrospective cohort study. Microorganisms. 2020;8(8):1106.

65 Zarifian A, Zamiri Bidary M, Arekhi S, Rafiee M, Gholamalizadeh H, Amirian A, et al. Gastrointestinal and hepatic abnormalities in patients with confirmed COVID-19: a systematic review and meta-analysis. J Med Virol. 2020 Jul 18.

66 Huang J, Cheng A, Kumar R, Fang Y, Chen G, Zhu Y, et al. Hypoalbuminemia predicts the outcome of COVID-19 independent of age and co-morbidity. J Med Virol. 2020 Oct;92(10):2125–8.

67 Pormohammad A, Ghorbani S, Khatami A, Farzi R, Baradaran B, Turner DL, et al. Comparison of confirmed COVID-19 with SARS and MERS cases: clinical characteristics, laboratory findings, radiographic signs and outcomes: a systematic review and meta-analysis. Rev Med Virol. 2020;30(4):e2112.

68 Lu L, Zhong W, Bian Z, Li Z, Zhang K, Liang B, et al. A comparison of mortality-related risk factors of COVID-19, SARS, and MERS: a systematic review and meta-analysis. J Infect. 2020 Oct;81(4):e18–25.

69 Petrossi N, Vincenotte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect. 2020;26(6):729–34.