AdS Vacua, Attractor Mechanism and Generalized Geometries

based on arXiv:0810.0937 [hep-th]

Tetsuji KIMURA
Yukawa Institute for Theoretical Physics, Kyoto University
Introduction
We are looking for the origin of 4D physics

Physical information

- Particle contents and spectra
- (Broken) symmetries
- Potential, vacuum and cosmological constant
What kind of 4D models come from String Theories?

↓

What kind of Compactifications?

\[4 = 10 - 6 = 11 - 7 \]
B. de Wit and J. Louis, in the Proceedings “NATO Advanced Study Institute on Strings, Branes and Dualities (1997)” hep-th/9801132
Many **Abelian** Supergravities (SUGRA) in lower dimensions

Compactifications on Tori, Calabi-Yaus, etc.

Minkowski ground state, massless fields

Global E_7 symmetry ($4D \mathcal{N} = 8$ case)

Many **Gauged** SUGRA in lower dimensions

Compactifications on group manifolds, torsionful manifolds, etc.

Scalar potential generating masses [Moduli Stabilization]

Non-trivial cosmological constant
There are various Gauged SUGRA
which cannot be derived from String Theories
compactified on conventional geometric backgrounds
There are various Gauged SUGRA which cannot be derived from String Theories compactified on conventional geometric backgrounds.

We want to derive all Gauged SUGRA from String Theories.
There are various Gauged SUGRA
which cannot be derived from String Theories
compactified on conventional geometric backgrounds

We want to derive all Gauged SUGRA from String Theories
Compactify String Theories on non-conventional geometries:
There are various Gauged SUGRA which cannot be derived from String Theories compactified on conventional geometric backgrounds.

We want to derive all Gauged SUGRA from String Theories Compactify String Theories on non-conventional geometries:

Nongeometric String Backgrounds
What is a Nongeometric String Background?

Structure group = Diffeo. $(GL(d, \mathbb{R})) + \text{Duality transf. groups}$

coming from String dualities

$GL(d, \mathbb{R}) + \text{duality transf.}$

d-dim. internal space $\mathcal{M}_d \simeq \text{monodrofold}$
SUGRA on Nongeometric String Backgrounds

ex.) Lower-dim. Gauged SUGRA compactified by Scherk-Schwarz mechanism

\[[Z_a, Z_b] = f_{ab}^c Z_c + H_{abc} X^c \]

“Kaloper-Myers” algebra:
\[[X^a, X^b] = Q_{ab}^c X^c + R_{abc} Z_c \]
\[[X^a, Z_b] = f_{abc} X^c - Q_{ac}^b Z_c \]

Various “fluxes” are involved

N. Kaloper, R.C. Myers hep-th/9901045
J. Shelton, W. Taylor, B. Wecht hep-th/0508133, A. Dabholkar, C.M. Hull hep-th/0512005
M. Graña, R. Minasian, M. Petrini, D. Waldram arXiv:0807.4527
String Theories compactified on Nongeometric Backgrounds

↓

All(?) Gauged SUGRA

Hitchin’s Generalized Geometries to study vacua

Hull’s Doubled Formalism to find gauge symmetries

IPMU Workshop “Supersymmetry in Complex Geometry” (January 2009)
4D $\mathcal{N} = 1$ supergravity action:

$$S = \int \left(\frac{1}{2} R \ast 1 - \frac{1}{2} F^a \wedge \ast F^a - K_{\mathcal{M}\mathcal{N}} \nabla \phi^\mathcal{M} \wedge \ast \nabla \phi^{\mathcal{N}} - V \ast 1 \right)$$

$$V = e^K \left(K^{\mathcal{M}\mathcal{N}} D_{\mathcal{M}} \mathcal{W} \overline{D_{\mathcal{N}} \mathcal{W}} - 3|\mathcal{W}|^2 \right) + \frac{1}{2} |D^a|^2$$

K: Kähler potential

\mathcal{W}: superpotential

D^a: D-term

10D string theory provides K, \mathcal{W}, D^a via compactifications: $10 = 4 + 6$
Search 4D SUSY vacua in type IIA theory compactified on generalized geometries

Moduli stabilization
We find SUSY AdS (or Minkowski) vacua

Mathematical feature
We obtain a powerful rule to evaluate vacua:
- **Discriminants** of superpotentials governing the cosmological constant

Stringy effects
We see \(\alpha'\) corrections in certain configurations
Contents

- Introduction
- Killing Spinors and Fluxes
- Generalized (Complex) Geometries
- Exterior Derivatives and Flux Charges
- Setup in $\mathcal{N} = 1$ Theory
- My Work: Search of SUSY AdS Vacua
- Summary and Discussions
Contents

- Introduction
- Killing Spinors and Fluxes
- Generalized (Complex) Geometries
- Exterior Derivatives and Flux Charges
- Setup in $\mathcal{N} = 1$ Theory
- My Work: Search of SUSY AdS Vacua
- Summary and Discussions
Decompose 10D type IIA SUSY parameters:

\[\epsilon^1 = \epsilon_1 \otimes (\bar{a} \eta^1_{-}) + \epsilon_1^c \otimes (a \eta^1_{+}), \quad \epsilon^2 = \epsilon_2 \otimes (b \eta^2_{+}) + \epsilon_2^c \otimes (\bar{b} \eta^2_{-}) \]
Decompose 10D type IIA SUSY parameters:

\[\epsilon^1 = \varepsilon_1 \otimes (\bar{a} \eta^1_\perp) + \varepsilon_1^c \otimes (a \eta^1_\perp), \quad \epsilon^2 = \varepsilon_2 \otimes (b \eta^2_\perp) + \varepsilon_2^c \otimes (\bar{b} \eta^2_\perp) \]

\(\delta(\text{fermions}) = 0 \) provide *Killing spinor equations* on the 6D internal space \(\mathcal{M} \):

\[
\delta \psi^A_m = \left(\partial_m + \frac{1}{4} \omega_{mab} \gamma^{ab} \right) \eta^A + (3\text{-form fluxes} \cdot \eta)^A + (\text{other fluxes} \cdot \eta)^A = 0
\]

with a pair of \(SU(3) \) invariant Weyl spinors \(\eta^1_\perp, \eta^2_\perp \):

\[
\eta^2_\perp = c_{||}(y) \eta^1_\perp + c_{\perp}(y)(v + iv')^m \gamma_m \eta^1_\perp, \quad (v - iv')^m \equiv \eta^1_\perp \gamma^m \eta^2_\perp
\]
Decompose 10D type IIA SUSY parameters:

\[
\begin{aligned}
\epsilon^1 &= \epsilon_1 \otimes (\overline{a} \eta^1_-) + \epsilon^c_1 \otimes (a \eta^1_+), \\
\epsilon^2 &= \epsilon_2 \otimes (b \eta^2_+) + \epsilon^c_2 \otimes (\overline{b} \eta^2_-)
\end{aligned}
\]

\(\delta(\text{fermions}) = 0\) provide \textit{Killing spinor equations} on the 6D internal space \(\mathcal{M}\):

\[
\delta \psi^A_m = \left(\partial_m + \frac{1}{4} \omega_{mab} \gamma^{ab} \right) \eta^A + (3\text{-form fluxes} \cdot \eta)^A + (\text{other fluxes} \cdot \eta)^A = 0
\]

with a pair of \(SU(3)\) invariant Weyl spinors \(\eta^1_+, \eta^2_+\):

\[
\eta^2_+ = c_\parallel(y) \eta^1_+ + c_\perp(y)(v + iv')^m \gamma_m \eta_1^- , \quad (v - iv')^m \equiv \eta^{1\dagger}_+ \gamma^m \eta^2_-
\]

Information of

6D \(SU(3)\) Killing spinors \(\eta^1_+, \eta^2_+\):

\[
\text{Calabi-Yau three-fold} \downarrow \quad \text{\(SU(3)\)-structure manifold with torsion} \downarrow \quad \text{Generalized Geometry}
\]
Calabi-Yau three-folds \rightarrow Fluxes are highly restricted

\[
\begin{align*}
type \text{IIA} : & \quad \text{No fluxes} \\
type \text{IIB} : & \quad F_3 - \tau H \quad (\text{warped Calabi-Yau}) \\
heterotic : & \quad \text{No fluxes}
\end{align*}
\]

$SU(3)$-structure manifolds \rightarrow Some components of fluxes can be interpreted as torsion

Piljin Yi, TK “Comments on heterotic flux compactifications” JHEP 0607 (2006) 030, hep-th/0605247

TK “Index theorems on torsional geometries” JHEP 0708 (2007) 048, arXiv:0704.2111

Generalized geometries \rightarrow All (non)geometric fluxes can be introduced

“Complete” classification of $\mathcal{N} = 1$ SUSY solutions
10D = 4D \((\Lambda_{\text{cosmo.}} = -|\mu|^2) \) + 6D: \[ds^2_{10} = e^{2A(y)} g_{\mu\nu} \, dx^\mu \, dx^\nu + ds^2_6 \]

Consider polyforms \(\Phi^0_{\pm} \) on the internal space \(\mathcal{M} \) which satisfy

\[
\begin{align*}
e^{-2A+\phi}(d - H \wedge)(e^{2A-\phi}\Phi^0_+) &= -2\mu \text{Re}\Phi^-_+ \\
e^{-2A+\phi}(d - H \wedge)(e^{2A-\phi}\Phi^0_-) &= -3i \text{Im}(\mu\Phi^0_+) + dA \wedge \overline{\Phi^-_+} \\
&+ \frac{1}{16} e^\phi \left[(|a|^2 - |b|^2)F + i(|a|^2 + |b|^2) \ast \lambda(F') \right]
\end{align*}
\]

M. Graña, R. Minasian, M. Petrini, A. Tomasiello hep-th/0505212
10D = 4D ($\Lambda_{\text{cosmo.}} = -|\mu|^2$) + 6D: $\text{d}s_{10}^2 = e^{2A(y)} g_{\mu\nu} \text{d}x^\mu \text{d}x^\nu + \text{d}s_6^2$

Consider polyforms Φ_0^\pm on the internal space \mathcal{M} which satisfy

\begin{align*}
e^{-2A+\phi}(d - H \wedge)(e^{2A-\phi} \Phi_0^+) &= -2\mu \text{Re}\Phi_0^- \\
e^{-2A+\phi}(d - H \wedge)(e^{2A-\phi} \Phi_0^-) &= -3i \text{Im}(\mu \Phi_0^+) + \text{d}A \wedge \Phi_0^- \\
 & \quad + \frac{1}{16}e^\phi \left[(|a|^2 - |b|^2)F + i(|a|^2 + |b|^2) \ast \lambda(F') \right]
\end{align*}

M. Graña, R. Minasian, M. Petrini, A. Tomasiello hep-th/0505212

- On Calabi-Yau ($d\Phi_0^\pm = 0$) or $SU(3)$-structure manifolds ($d\Phi_0^\pm \neq 0$) ($\eta_+^1 = \eta_+^2$):

\begin{align*}
\Phi_0^+ &= e^{-iJ}, \quad \Phi_0^- = -\Omega \\
J_{mn} &= -2i \eta_+^\dagger \gamma_{mn} \eta_+, \quad \Omega_{mnp} = -2i \eta_-^\dagger \gamma_{mnp} \eta_+
\end{align*}
Compactifications in 10D type IIA

\[10D = 4D \left(\Lambda_{\text{cosmo.}} = -|\mu|^2 \right) + 6D: \quad ds_{10}^2 = e^{2A(y)} g_{\mu\nu} \, dx^\mu \, dx^\nu + ds_{6}^2\]

Consider polyforms Φ^0_{\pm} on the internal space \mathcal{M} which satisfy

\[
\begin{align*}
e^{-2A+\phi}(d - H \wedge)(e^{2A-\phi}\Phi^0_+) &= -2\mu \Re\Phi^-_+ \\
e^{-2A+\phi}(d - H \wedge)(e^{2A-\phi}\Phi^0_-) &= -3i \Im(\mu\Phi^0_+) + dA \wedge \Phi^-_+ + \frac{1}{16} e^\phi \left[(|a|^2 - |b|^2)F + i(|a|^2 + |b|^2) \ast \lambda(F')\right]
\end{align*}
\]

M. Graña, R. Minasian, M. Petrini, A. Tomasiello hep-th/0505212

- **On Calabi-Yau** ($d\Phi^0_{\pm} = 0$) or **$SU(3)$-structure manifolds** ($d\Phi^0_{\pm} \neq 0$) ($\eta^1_+ = \eta^2_+$):

\[
\begin{align*}
\Phi^0_+ &= e^{-iJ} \\
\Phi^-_+ &= -\Omega \\
J_{mn} &= -2i \eta^+_\dagger \gamma_{mn} \eta_+ \\
\Omega_{mn} &= -2i \eta^-_\dagger \gamma_{mnp} \eta_+
\end{align*}
\]

- **On $SU(3) \times SU(3)$ generalized geometries** ($\eta^1_+ \neq \eta^2_+$ at some points y):

\[
\begin{align*}
\Phi^0_+ &= (\overline{c}_\parallel e^{-ij} - i\overline{c}_\perp w) \wedge e^{-iv \wedge v'} \\
\Phi^-_+ &= (c_\parallel e^{-ij} + ic_\perp w) \wedge (v + iv') \\
J^A &= j \pm v \wedge v' \\
\Omega^A &= w \wedge (v \pm iv')
\end{align*}
\]
Introduce a generalized almost complex structure \(\mathcal{J} \) on \(F \oplus F^* \) s.t.

\[
\mathcal{J} : F \oplus F^* \rightarrow F \oplus F^* \\
\mathcal{J}^2 = -\mathbf{1}_{2d}
\]

\(\exists \) \(O(d,d) \) invariant metric \(L \), s.t. \(\mathcal{J}^T L \mathcal{J} = L \)

Structure group on \(F \oplus F^* \)
\(\exists L \)
\(GL(2d) \)
\(O(d,d) \)
\(U(d/2, d/2) \times U(d/2) \)
\(SU(d/2) \times SU(d/2) \)
Integrability is discussed by “(0, 1)” part of the complexified $F \oplus F^*$:

$$
\Pi \equiv \frac{1}{2}(1_{2d} - i\mathcal{J})
$$

$$
\Pi A = A \quad \text{where } A = v + \zeta \text{ is a section of } F \oplus F^*
$$

We call this A \textit{i-eigenbundle} $L_{\mathcal{J}}$ whose dimension is $\dim L_{\mathcal{J}} = d$.
Integrability is discussed by "(0, 1)" part of the complexified $F \oplus F^*$:

$$
\Pi \equiv \frac{1}{2}(1_{2d} - iJ)
$$

$$
\Pi A = A \quad \text{where } A = v + \zeta \text{ is a section of } F \oplus F^*
$$

We call this A i-eigenbundle L_J whose dimension is $\dim L_J = d$.

Integrability condition of J is

$$
\overline{\Pi}[\Pi(v + \zeta), \Pi(w + \eta)]_{\text{Courant}} = 0; \quad v, w \in \text{section of } F; \quad \zeta, \eta \in \text{section of } F^*
$$

$$
[v + \zeta, w + \eta]_{\text{Courant}} = [v, w]_{\text{Lie}} + \mathcal{L}_v\eta - \mathcal{L}_w\zeta - \frac{1}{2}d(\iota_v\eta - \iota_w\zeta) \quad \text{Courant bracket}
$$
Two examples of generalized almost complex structures:

\[\mathcal{J}_- = \begin{pmatrix} I & 0 \\ 0 & -I^T \end{pmatrix} \quad \text{w/ } I^2 = -1_d: \text{ almost complex structure} \]

\[\mathcal{J}_+ = \begin{pmatrix} 0 & -J^{-1} \\ J & 0 \end{pmatrix} \quad \text{w/ } J: \text{ almost symplectic form} \]

integrable \(\mathcal{J}_- \) ↔ integrable \(I \)

integrable \(\mathcal{J}_+ \) ↔ integrable \(J \)

On a usual geometry, \(J_{mn} = g_{mp} I^p_n \) is given by an \(SU(3) \) invariant (pure) spinor \(\eta_+ \) as

\[J_{mn} = -2i \eta_+^\dagger \gamma_{mn} \eta_+ \quad \gamma^i \eta_+ = 0 \quad \gamma^\dagger \eta_+ \neq 0 \]

In a similar analogy, we want to find pure spinor(s) \(\Phi \) on generalized geometry.
On $F \oplus F^*$, we can define $\text{Cliff}(6, 6)$ algebra and $\text{Spin}(6, 6)$ spinor Φ:

\[
\{\Gamma^m, \Gamma^n\} = 0 \quad \{\Gamma^m, \tilde{\Gamma}_n\} = \delta^n_m \quad \{\tilde{\Gamma}_m, \tilde{\Gamma}_n\} = 0
\]

Irreducible repr. of $\text{Spin}(6, 6)$ spinor is a Majorana-Weyl

\rightarrow a generic $\text{Spin}(6, 6)$ spinor bundle S splits to S^\pm (Weyl)
On $F \oplus F^*$, we can define Cliff$(6, 6)$ algebra and $Spin(6, 6)$ spinor Φ:

\[
\{\Gamma^m, \Gamma^n\} = 0 \quad \{\Gamma^m, \tilde{\Gamma}_n\} = \delta^m_n \quad \{\tilde{\Gamma}_m, \tilde{\Gamma}_n\} = 0
\]

Irreducible repr. of $Spin(6, 6)$ spinor is a Majorana-Weyl

\rightarrow a generic $Spin(6, 6)$ spinor bundle S splits to S^\pm (Weyl)

Weyl spinor bundles S^\pm are isomorphic to bundles of forms F^*:

$\Phi_+ \in S^+ \sim$ section of $\wedge^{\text{even}} F^*$

$\Phi_- \in S^- \sim$ section of $\wedge^{\text{odd}} F^*$

A form-valued representation of the algebra

\[
\Gamma^m = dx^m \wedge, \quad \tilde{\Gamma}_n = \nu \partial_n
\]
On $F \oplus F^*$, we can define Cliff$(6, 6)$ algebra and Spin$(6, 6)$ spinor Φ:

$$\{\Gamma^m, \Gamma^n\} = 0 \quad \{\Gamma^m, \widetilde{\Gamma}_n\} = \delta^m_n \quad \{\widetilde{\Gamma}_m, \widetilde{\Gamma}_n\} = 0$$

Irreducible repr. of Spin$(6, 6)$ spinor is a Majorana-Weyl

→ a generic Spin$(6, 6)$ spinor bundle S splits to S^\pm (Weyl)

Weyl spinor bundles S^\pm are isomorphic to bundles of forms F^*:

$$\Phi_+ \in S^+ \sim \text{section of } \bigwedge^{\text{even}} F^*$$

$$\Phi_- \in S^- \sim \text{section of } \bigwedge^{\text{odd}} F^*$$

A form-valued representation of the algebra

$$\Gamma^m = dx^m \wedge, \quad \widetilde{\Gamma}_n = \nu \partial_n$$

IF Φ is annihilated by half numbers of the Cliff$(6, 6)$ generators:

→ Φ is called a pure spinor

cf.) $SU(3)$ invariant spinor η_+ is a pure spinor: $\gamma^i \eta_+ = 0$
Correspondence between generalized almost complex structures and pure spinors:

\[\mathcal{J} \leftrightarrow \Phi \]
Correspondence between generalized almost complex structures and pure spinors:

\[J \leftrightarrow \Phi \]

Then, we can rewrite the generalized almost complex structure as

\[J_{\pm \Sigma} = \langle \text{Re}\Phi_\pm, \Gamma_{\Sigma} \text{Re}\Phi_\pm \rangle \]

w/ Mukai pairing:

- even forms: \(\langle \Psi_+, \Phi_+ \rangle = \Psi_6 \wedge \Phi_0 - \Psi_4 \wedge \Phi_2 + \Psi_2 \wedge \Phi_4 - \Psi_0 \wedge \Phi_6 \)
- odd forms: \(\langle \Psi_-, \Phi_- \rangle = \Psi_5 \wedge \Phi_1 - \Psi_3 \wedge \Phi_3 + \Psi_1 \wedge \Phi_5 \)
Correspondence between generalized almost complex structures and pure spinors:

\[J \leftrightarrow \Phi \]

Then, we can rewrite the generalized almost complex structure as

\[J_{\pm \Pi \Sigma} = \langle \text{Re} \Phi_{\pm}, \Gamma_{\Pi \Sigma} \text{Re} \Phi_{\pm} \rangle \]

w/ Mukai pairing:

- even forms: \[\langle \Psi_+, \Phi_+ \rangle = \Psi_6 \wedge \Phi_0 - \Psi_4 \wedge \Phi_2 + \Psi_2 \wedge \Phi_4 - \Psi_0 \wedge \Phi_6 \]
- odd forms: \[\langle \Psi_-, \Phi_- \rangle = \Psi_5 \wedge \Phi_1 - \Psi_3 \wedge \Phi_3 + \Psi_1 \wedge \Phi_5 \]

\[J \] is integrable \[\iff \] \exists vector \(v \) and one-form \(\zeta \) s.t. \(d \Phi = (v \wedge + \zeta \wedge) \Phi \)

generalized CY \[\iff \] \exists \Phi \text{ is pure s.t. } d \Phi = 0

“twisted” GCY \[\iff \] \exists \Phi \text{ is pure, and } H \text{ is closed s.t. } (d - H \wedge) \Phi = 0

TETSUJI KIMURA: ADS VACUA, ATTRACTOR MECHANISM AND GENERALIZED GEOMETRIES
A spinor Φ can also be mapped to a bispinor by using

$$C \equiv \sum_k \frac{1}{k!} C^{(k)}_{m_1 \cdots m_k} \, dx^{m_1} \wedge \cdots \wedge dx^{m_k} \quad \longleftrightarrow \quad \mathcal{C} \equiv \sum_k \frac{1}{k!} C^{(k)}_{m_1 \cdots m_k} \gamma^{m_1 \cdots m_k}_{\alpha\beta}$$
A spinor Φ can also be mapped to a bispinor by using

$$C \equiv \sum_k \frac{1}{k!} C^{(k)}_{m_1 \cdots m_k} dx^{m_1} \wedge \cdots \wedge dx^{m_k} \quad \longleftrightarrow \quad \mathcal{C} \equiv \sum_k \frac{1}{k!} C^{(k)}_{m_1 \cdots m_k} \gamma^{m_1 \cdots m_k}$$

On a geometry of a single $SU(3)$-structure, the following two $SU(3,3)$ spinors:

$$\Phi_{0+} = \eta_+ \otimes \eta_+^\dagger = \frac{1}{4} \sum_{k=0}^6 \frac{1}{k!} \eta_+^\dagger \gamma^{m_1 \cdots m_k} \eta_+ \gamma^{m_1 \cdots m_k} = \frac{1}{8} e^{-iJ}$$

$$\Phi_{0-} = \eta_+ \otimes \eta_-^\dagger = \frac{1}{4} \sum_{k=0}^6 \frac{1}{k!} \eta_-^\dagger \gamma^{m_1 \cdots m_k} \eta_+ \gamma^{m_1 \cdots m_k} = -\frac{i}{8} \Omega$$

Check purity: $(\delta + iJ)_m^n \gamma_n \eta_+ \otimes \eta_-^\dagger = 0 = \eta_+ \otimes \eta_-^\dagger \gamma_n (\delta \mp iJ)_n^m$

One-to-one correspondence: $\Phi_{0-} \leftrightarrow \mathcal{J}_1, \quad \Phi_{0+} \leftrightarrow \mathcal{J}_2$
A spinor Φ can also be mapped to a bispinor by using

$$C \equiv \sum_k \frac{1}{k!} C^{(k)}_{m_1 \cdots m_k} \, dx^{m_1} \wedge \cdots \wedge dx^{m_k} \quad \leftrightarrow \quad \mathcal{C} \equiv \sum_k \frac{1}{k!} C^{(k)}_{m_1 \cdots m_k} \gamma^{m_1 \cdots m_k}_{\alpha \beta}$$

On a geometry of a single $SU(3)$-structure, the following two $SU(3,3)$ spinors:

$$\Phi_{0+} = \eta_+ \otimes \eta^\dagger_+ = \frac{1}{4} \sum_{k=0}^6 \frac{1}{k!} \eta^\dagger_+ \gamma_{m_1 \cdots m_k} \eta_+ \gamma_{m_1 \cdots m_k} = \frac{1}{8} e^{-iJ}$$

$$\Phi_{0-} = \eta_+ \otimes \eta^\dagger_- = \frac{1}{4} \sum_{k=0}^6 \frac{1}{k!} \eta^\dagger_- \gamma_{m_1 \cdots m_k} \eta_+ \gamma_{m_1 \cdots m_k} = -\frac{i}{8} \Omega$$

Check purity: $(\delta + iJ)^n_{m} \gamma_n \eta_+ \otimes \eta^\dagger_\pm = 0 = \eta_+ \otimes \eta^\dagger_\pm \gamma_n (\delta \mp iJ)^n_{m}$

One-to-one correspondence: $\Phi_{0-} \leftrightarrow \mathcal{J}_1$, $\Phi_{0+} \leftrightarrow \mathcal{J}_2$

On a generic geometry of a pair of $SU(3)$-structures defined by (η^1_+, η^2_+)

$$\Phi_{0+} = \eta^1_+ \otimes \eta^2_+ = \frac{1}{8} (\tilde{c}_|| e^{-ij} - i\tilde{c}_\perp w) \wedge e^{-iv \wedge v'}$$

$$|c_||^2 + |c_\perp|^2 = 1$$

$$\Phi_{0-} = \eta^1_+ \otimes \eta^2_+ = -\frac{1}{8} (c_\perp e^{-ij} + ic_|| w) \wedge (v + iv')$$
Spaces of Φ_\pm are special Kähler geometries of local type

Moduli space of \mathcal{M} has Kähler potentials, prepotentials, projective coordinates

$$K_+ = -\log i \int_\mathcal{M} \langle \Phi_+, \Phi_+ \rangle = -\log i (X^A \mathcal{F}_A - X^A \overline{\mathcal{F}}_A)$$

$$K_- = -\log i \int_\mathcal{M} \langle \Phi_-, \Phi_- \rangle = -\log i (Z^I \mathcal{G}_I - Z^I \overline{\mathcal{G}}_I)$$

Expand the even/odd-forms Φ_\pm by the basis forms:

$$\Phi_+ = X^A \omega_A - \mathcal{F}_A \tilde{\omega}^A, \quad \omega_A = (1, \omega_a), \quad \tilde{\omega}^A = (\tilde{\omega}^a, \text{vol}(\mathcal{M})) : 0, 2, 4, 6\text{-forms}$$

$$\Phi_- = Z^I \alpha_I - \mathcal{G}_I \beta^I, \quad \alpha_I = (\alpha_0, \alpha_i), \quad \beta^I = (\beta^i, \beta^0) : 1, 3, 5\text{-forms}$$

$$\int_\mathcal{M} \langle \omega_A, \omega_B \rangle = 0, \quad \int_\mathcal{M} \langle \omega_A, \tilde{\omega}^B \rangle = \delta_A^B, \quad \int_\mathcal{M} \langle \alpha_I, \alpha_J \rangle = 0, \quad \int_\mathcal{M} \langle \alpha_I, \beta^J \rangle = \delta_I^J$$
Contents
Introduction
Killing Spinors and Fluxes
Generalized (Complex) Geometries
Exterior Derivatives and Flux Charges
Setup in $\mathcal{N} = 1$ Theory
My Work: Search of SUSY AdS Vacua
Summary and Discussions
On generalized geometries with a single $SU(3)$-structure ($\eta_+^1 = \eta_+^2$):

\[
\begin{align*}
\text{d}_H \omega_A &= m_A^I \alpha_I - e_{IA} \beta^I \\
\text{d}_H \alpha_I &= e_{IA} \tilde{\omega}^A \\
\text{d}_H \tilde{\omega}^A &= 0 \\
\text{d}_H \beta^I &= m_A^I \tilde{\omega}^A
\end{align*}
\]

where NS three-form H deforms the differential operator:

\[
\begin{align*}
\text{d}H &= 0, \\
H &= H^{fl} + \text{d}B, \\
H^{fl} &= m_0^I \alpha_I - e_{I0} \beta^I \\
\text{d}_H &\equiv \text{d} - H^{fl} \wedge
\end{align*}
\]

background	charges
NS three-form flux	e_{I0}
torsion	m_0^I
	e_{Ia}
	m_a^I
On generalized geometries with $SU(3) \times SU(3)$ structures ($\eta_+^1 \neq \eta_+^2$ at some points):

Extend to the generalized differential operator \mathcal{D}:

\[
\mathcal{D} \omega_A \sim m_A^I \alpha_I - e_{IA} \beta^I \\
\mathcal{D} \alpha_I \sim p_I^A \omega_A + e_{IA} \tilde{\omega}^A
\]

\[
\mathcal{D} \tilde{\omega}^A \sim -q^{IA} \alpha_I + p_I^A \beta^I \\
\mathcal{D} \beta^I \sim q^{IA} \omega_A + m_A^I \tilde{\omega}^A
\]
On generalized geometries with $SU(3) \times SU(3)$ structures ($\eta_1^1 \neq \eta_2^2$ at some points):

Extend to the generalized differential operator D:

$$d_H = d - H^\text{fl} \wedge \rightarrow D \equiv d - H^\text{fl} \wedge - f \cdot Q \cdot -R$$

$$D\omega_A \sim m_A I \alpha_I - e_{IA} \beta_I$$

$$D\tilde{\omega}^A \sim -q^I A \alpha_I + p^I A \beta_I$$

$$D\alpha_I \sim p^I A \omega_A + e_{IA} \tilde{\omega}^A$$

$$D\beta^I \sim q^I A \omega_A + m_A I \tilde{\omega}^A$$

The internal space becomes nongeometric:

$$(f \cdot C)_{m_1 \ldots m_{k+1}} \equiv f^a \, [m_1 m_2 C]_{a \, | \, m_3 \ldots m_{k+1}}$$

(part of) structure const. in Gauged SUGRA

$$(Q \cdot C)_{m_1 \ldots m_{k-1}} \equiv Q^{ab} \, [m_1 C]_{ab \, | \, m_2 \ldots m_{k-1}}$$

T-fold

$$(R \cdot C)_{m_1 \ldots m_{k-3}} \equiv R^{abc} C_{abc m_1 \ldots m_{k-3}}$$

locally nongeometric background

Structure group = Diffeo. + duality trsf. \rightarrow Hull’s Doubled formalism to study gauge symmetries
RR-fluxes on $SU(3) \times SU(3)$ generalized geometries:

$$ \begin{align*}
 G &= G^\text{fl} + DA, \quad D G = 0 \\
 G^\text{fl} &= m^A_{\text{RR}} \omega_A - e_{\text{RR}A} \tilde{\omega}^A, \quad A = \xi^I \alpha_I - \tilde{\xi}^I \beta^I \\
 \end{align*} $$

$$\downarrow$$

$$\begin{align*}
 G &\sim G^A \omega_A - \tilde{G}_A \tilde{\omega}^A \\
 G^A &\sim m^A_{\text{RR}} + \xi^I p^A_I - \tilde{\xi}^I q^A_I, \quad \tilde{G}_A \sim e_{\text{RR}A} - \xi^I e^A_I + \tilde{\xi}^I m^A_I
\end{align*}$$
Flux charges on generalized geometry: summary

Fluxes	Charges
NS three-form H	e_I^0
Torsion	m_0^I
Nongeometric fluxes	e_I^a
RR-fluxes	m_a^I
p_{IA}	q^{IA}
e_{RRA}	m_{RR}^A

Backgrounds

Backgrounds	Flux Charges
Calabi-Yau	—
Calabi-Yau with H	e_I^0
$SU(3)$ geometry	m_0^I
$SU(3) \times SU(3)$ geometry	e_{IA}
	m_A^I
	p_{IA}
	q^{IA}

Note: $SU(3)$ generalized geometry without RR-fluxes $\sim SU(3)$-structure manifold
All the information of the internal space is translated into the (non)geometric flux charges and the RR-flux charges.

NEXT STEP

Introduce the flux charges into 4D $\mathcal{N} = 1$ physics via various functionals: K, \mathcal{W}, D^a

$$V = e^K \left(K^{\mathcal{M}\mathcal{N}} D_\mathcal{M} \mathcal{W} \bar{D}_\mathcal{N} \bar{\mathcal{W}} - 3|\mathcal{W}|^2 \right) + \frac{1}{2} |D^a|^2$$
Contents

Introduction

Killing Spinors and Fluxes

Generalized (Complex) Geometries

Exterior Derivatives and Flux Charges

Setup in $\mathcal{N} = 1$ Theory

My Work: Search of SUSY AdS Vacua

Summary and Discussions
\[N = 1 \text{ Kähler potential} \]

Functionals are given by two Kähler potentials on two Hodge-Kähler geometries of \(\Phi_\pm \):

\[
K = K_+ + 4\varphi \\
K_+ = -\log i \int_{\mathcal{M}} \langle \Phi_+, \overline{\Phi}_+ \rangle = -\log i (\overline{X^A F}_A - X^A \overline{F}_A) \\
K_- = -\log i \int_{\mathcal{M}} \langle \Phi_-, \overline{\Phi}_- \rangle = -\log i (\overline{Z^I G}_I - Z^I \overline{G}_I) \\
\int_{\mathcal{M}} \text{vol}_6 = \frac{1}{8} e^{-K_\pm} = e^{-2\varphi + 2\phi^{(10)}}
\]

Introduce \(\mathcal{C} = \sqrt{2}ab e^{-\phi^{(10)}} = 4ab e^{\frac{K_-}{2} - \varphi} \)

\[
\therefore e^{-2\varphi} = \frac{|\mathcal{C}|^2}{16 |a|^2 |b|^2} e^{-K_-} \\
= \frac{1}{8 |a|^2 |b|^2} \left[\text{Im}(\mathcal{C} Z^I) \text{Re}(\mathcal{C} G_I) - \text{Re}(\mathcal{C} Z^I) \text{Im}(\mathcal{C} G_I) \right]
\]
4D SUSY variations yield the superpotential and the D-term:

\[
\delta \psi_\mu = \nabla_\mu \epsilon - e^{\frac{K}{2}} \mathcal{W} \gamma_\mu \epsilon^c
\]

\[
\delta \chi^A = \text{Im} F^{A}_{\mu \nu} \gamma^{\mu \nu} \epsilon + i D^A \epsilon
\]

Information of \(\mathcal{W}\) and \(D^A\) comes from 10D SUSY variations

\[\uparrow\]

Spinors \(\Phi_{\pm}\) on 6D internal geometry
\[\mathcal{W} = \frac{i}{4ab} \left[4i e^{\frac{K}{2} - \varphi} \int_{\mathcal{M}} \langle \Phi_+, D\text{Im}(ab\Phi_-) \rangle + \frac{1}{\sqrt{2}} \int_{\mathcal{M}} \langle \Phi_+, G \rangle \right] \]

\[\equiv \mathcal{W}^{\text{RR}} + U^I \mathcal{W}^Q_I + \tilde{U}_I \tilde{\mathcal{W}}^I_Q \]

\[\mathcal{W}^{\text{RR}} = -\frac{i}{4ab} \left[X^A e_{\text{RR}A} - \mathcal{F}_A m_{\text{RR}A} \right] \]

\[\mathcal{W}^Q_I = \frac{i}{4ab} \left[X^A e_{IA} + \mathcal{F}_A p^A \right], \quad \tilde{\mathcal{W}}^I_Q = -\frac{i}{4ab} \left[X^A m_{A}^I + \mathcal{F}_A q^{IA} \right] \]

\[U^I = \xi^I + i \text{Im}(\mathcal{C}Z^I), \quad \tilde{U}_I = \tilde{\xi}_I + i \text{Im}(\mathcal{C}\mathcal{G}_I) \]

\[D^A = 2 e^{K_+}(K_+)^{cd} D_c X^A D_d X^B \left[\tilde{n}^c(\sigma_x)_c^B n_B \right] \left(\mathcal{P}_B^x - \mathcal{N}_{BC} \tilde{\mathcal{P}}^{xC} \right) \]
Field contents in $\mathcal{N} = 1$ theory

$\mathcal{N} = 2$ multiplets:

- **Gravity multiplet:** $g_{\mu\nu}, A^0_\mu$
- **Vector multiplets:** $A_\mu^a, t^a = b^a + iv^a$ \quad $a = 1, \ldots, b^+$
- **Hypermultiplets:** $z^i, \xi^i, \tilde{\xi}_i$ \quad $i = 1, \ldots, b^-$
- **Tensor multiplet:** $B_{\mu\nu}, \varphi, \xi^0, \tilde{\xi}_0$

$\mathcal{N} = 1$ multiplets:

- **Gravity multiplet:** $g_{\mu\nu}$
- **Vector multiplets:** $A_\mu^\hat{a}$ \quad $\hat{a} = 1, \ldots, \hat{n}_v = b^+ - n_{ch}$
- **Chiral multiplets:** $t^\hat{a} = b^\hat{a} + iv^{\hat{a}}$ \quad $\hat{a} = 1, \ldots, n_{ch}$
- **Chiral/linear multiplets:**
 - $U^I = \xi^I + i\text{Im}(CZ^I)$
 - $\tilde{U}_\hat{I} = \tilde{\xi}_{\hat{I}} + i\text{Im}(CG_{\hat{I}})$
 - $I = (\hat{I}, \hat{\hat{I}}) = 0, 1, \ldots, b^-$

(projected out) $B_{\mu\nu}, A^0_\mu, A_\mu^\hat{a}, t^\hat{a}, U^I, \tilde{U}_\hat{I}$

Parameters are restricted as $a = \overline{b}e^{i\theta}$ and $|a|^2 = |b|^2 = \frac{1}{2}$

O6 orientifold projection: $\mathcal{O} \equiv \Omega_{WS}(-1)^{F_L}\sigma$

T.W. Grimm hep-th/0507153
We are ready to search SUSY vacua in 4D $\mathcal{N} = 1$ theory given by K, W, D^a

NEXT: Consider two situations

- Generalized geometry with RR-flux charges:

 \[e_{IA}, m_A^I, p_I^A, q^{IA}, e_{RR}, m_{RR} \]

- $SU(3)$-structure manifold:

 \[e_{IA}, m_A^I \]
Contents

- Introduction
- Killing Spinors and Fluxes
- Generalized (Complex) Geometries
- Exterior Derivatives and Flux Charges
- Setup in $\mathcal{N} = 1$ Theory
- My Work: Search of SUSY AdS Vacua
- Summary and Discussions
\[V = e^K \left(K^{M\bar{N}} D_M \mathcal{W} \overline{D_{\bar{N}}} \mathcal{W} - 3|\mathcal{W}|^2 \right) + \frac{1}{2} |D^a|^2 \]

\[\equiv V_\mathcal{W} + V_D \]

Search of vacua \(\partial_p V|_* = 0 \)

- \(V_* > 0 \): de Sitter space (non-SUSY)
- \(V_* = 0 \): Minkowski space
- \(V_* < 0 \): Anti-de Sitter space
\[V = e^K \left(K^{MN} D_M W D_N W - 3 |W|^2 \right) + \frac{1}{2} |D^a|^2 \]

\[\equiv V_W + V_D \]

Search of vacua \(\partial_P V \big|_* = 0 \)

\[V_* > 0 : \quad \text{de Sitter space (non-SUSY)} \]

\[V_* = 0 : \quad \text{Minkowski space} \]

\[V_* < 0 : \quad \text{Anti-de Sitter space} \]

\[0 = \partial_P V_W = e^K \left\{ K^{MN} D_P D_M W D_N W + \partial_P K^{MN} D_M W D_N W - 2 W D_P W \right\} \]

\[0 = \partial_P V_D \quad \rightarrow \quad D^a = 0 \]

Consider the SUSY condition \(D_P W \equiv (\partial_P + \partial_P K) W = 0 \) in various cases.
1. *Set a simple prepotential:* \(F = D_{abc} \frac{X^a X^b X^c}{X^0} \)

2. *Consider the simplest model:* single modulus \(t \) of \(\Phi_+ \) (and \(U \) of \(\Phi_- \))
Example 1: $SU(3) \times SU(3)$ generalized geometry with RR-flux charges

1. Set a simple prepotential: $\mathcal{F} = D_{abc} \frac{X^a X^b X^c}{X^0}$

2. Consider the simplest model: single modulus t of Φ_+ (and U of Φ_-)

The superpotential is reduced to

$$\mathcal{W} = \mathcal{W}^{RR} + U \mathcal{W}^Q$$

$$\mathcal{W}^{RR} = m_0^{RR} t^3 - 3 m_{RR} t^2 + e_{RR} t + e_{RR0}$$

$$\mathcal{W}^Q = p_0^{0} t^3 - 3 p_0 t^2 - e_0 t - e_{00}$$

Consider the SUSY condition:

$$D_t \mathcal{W} = 0 \quad \Rightarrow \quad 0 = D_t \mathcal{W}^{RR} + U D_t \mathcal{W}^Q$$

$$D_U \mathcal{W} = 0 \quad \Rightarrow \quad 0 = \frac{i}{\text{Im}U} \left(\mathcal{W}^{RR} + \text{Re}U \mathcal{W}^Q \right)$$

The discriminant of the superpotential \mathcal{W}^{RR} (and \mathcal{W}^Q) governs the SUSY solutions.
Discriminant of cubic equation

Consider a cubic function and its derivative:

\[
\begin{align*}
\mathcal{W}(t) &= a t^3 + b t^2 + c t + d \\
\partial_t \mathcal{W}(t) &= 3a t^2 + 2b t + c
\end{align*}
\]

Discriminants \(\Delta(\mathcal{W}) \) and \(\Delta(\partial_t \mathcal{W}) \) are

\[
\Delta(\mathcal{W}) \equiv \Delta = -4b^3 d + b^2 c^2 - 4ac^3 + 18abcd - 27a^2 d^2
\]

\[
\Delta(\partial_t \mathcal{W}) \equiv \lambda = 4(b^2 - 3ac)
\]
$\Delta^{RR} > 0$ case: always $\lambda^{RR} > 0$, and exists a zero point: $D_t W^{RR} = 0$

\[
D_t W^{RR} |_{\ast} = 0 \\
t^{RR}_{\ast} = \frac{6 (3 m^0_{RR} e_{RR0} + m_{RR} e_{RR})}{\lambda^{RR}} - 2i \frac{\sqrt{3 \Delta^{RR}}}{\lambda^{RR}} \\
W^{RR}_{\ast} = -\frac{24 \Delta^{RR}}{\lambda^{RR}^3} \left(36 (m_{RR})^3 + 36 (m^0_{RR})^2 e_{RR0} - 3 m_{RR} \lambda^{RR} - 4i m^0_{RR} \sqrt{3 \Delta^{RR}} \right)
\]
\(\Delta^{RR} > 0 \) case: always \(\lambda^{RR} > 0 \), and exists a zero point: \(D_t \mathcal{W}^{RR} = 0 \)

\[
D_t \mathcal{W}^{RR}|_* = 0
\]

\[
t^{RR}_* = \frac{6 (3 m_0^{RR} e_{RR0} + m_{RR} e_{RR})}{\lambda^{RR}} - 2i \frac{\sqrt{3 \Delta^{RR}}}{\lambda^{RR}}
\]

\[
\mathcal{W}^{RR}_* = -\frac{24 \Delta^{RR}}{(\lambda^{RR})^3} \left(36 (m_{RR})^3 + 36 (m_0^{RR})^2 e_{RR0} - 3 m_{RR} \lambda^{RR} - 4i m_0^{RR} \sqrt{3 \Delta^{RR}} \right)
\]

\(\Delta^{RR} < 0 \) case: only \(\lambda^{RR} < 0 \) is physically allowed, and exists a zero point: \(\mathcal{W}^{RR} = 0 \)

\[
\mathcal{W}^{RR}_* = m_0^{RR} (t_* - e)(t_* - \alpha)(t_* - \bar{\alpha}) = 0, \quad t_* = \alpha^{RR} = \alpha_1 + i \alpha_2
\]

\[
\alpha_1 = \frac{\lambda^{RR} + F^{2/3} + 12 m_{RR} F^{1/3}}{12 m_0^{RR} F^{1/3}}
\]

\[
(\alpha_2)^2 = \frac{1}{m_0^{RR}} \left(e_{RR} - 6 m_{RR} \alpha_1 + 3 m_0^{RR} (\alpha_1)^2 \right)
\]

\[
e = -\frac{1}{m_0^{RR}} \left(-3 m_{RR} + 2 m_0^{RR} \alpha_1 \right)
\]

\[
F = 108 (m_0^{RR})^2 e_{RR0} + 12 m_0^{RR} \sqrt{-3 \Delta^{RR}} + 108 (m_{RR})^3 - 9 m_{RR} \lambda^{RR}
\]

\[
D_t \mathcal{W}^{RR}|_* = 2i m_0^{RR} (e - \alpha^{RR}) \alpha_2
\]

... Analysis of \(\mathcal{W}^Q \) is also discussed.
Three types of solutions to satisfy $0 = D_t \mathcal{W}^{\text{RR}} + U D_t \mathcal{W}^{\text{Q}}$ and $0 = \mathcal{W}^{\text{RR}} + \text{Re} U \mathcal{W}^{\text{Q}}$:
Three types of solutions to satisfy \(0 = D_t \mathcal{W}^{RR} + UD_t \mathcal{W}^Q \) and \(0 = \mathcal{W}^{RR} + \text{Re}U \mathcal{W}^Q \):

SUSY AdS vacuum: moduli are (almost) stabilized

\[
\Delta^{RR} > 0, \quad \Delta^Q > 0; \quad D_t \mathcal{W}^{RR}|_* = 0 = D_t \mathcal{W}^Q|_*
\]

\[
t^{RR}_* = t^Q_*, \quad \text{Re}U_* = -\frac{\mathcal{W}^{RR}_*}{\mathcal{W}^Q_*}
\]

\[
V_* = -3 e^K |\mathcal{W}_*|^2 = -\frac{4}{[\text{Re}(\mathcal{C}G_0)]^2} \sqrt{\frac{\Delta^Q}{3}} \ll \mathcal{O}(1)
\]
Three types of solutions to satisfy $0 = D_t \mathcal{W}^{RR} + U D_t \mathcal{W}^{Q}$ and $0 = \mathcal{W}^{RR} + \text{Re} U \mathcal{W}^{Q}$:

SUSY AdS vacuum: moduli are (almost) stabilized

$\Delta^{RR} > 0, \quad \Delta^Q > 0; \quad D_t \mathcal{W}^{RR}|_* = 0 = D_t \mathcal{W}^{Q}|_*$

$t_*^{RR} = t_*^Q, \quad \text{Re} U_* = -\frac{\mathcal{W}^{RR}_*}{\mathcal{W}^{Q}_*}$

$V_* = -3 e^K |\mathcal{W}_*|^2 = \frac{4}{[\text{Re}(C G_0)]^2} \sqrt{\frac{\Delta^Q}{3}} \ll \mathcal{O}(1)$

SUSY Minkowski vacuum: moduli are stabilized

$\Delta^{RR} < 0, \quad \Delta^Q < 0; \quad \mathcal{W}^{RR}_* = 0 = \mathcal{W}^{Q}_*$

$\alpha^{RR} = \alpha^Q, \quad U_* = -\frac{D_t \mathcal{W}^{RR}|_*}{D_t \mathcal{W}^{Q}|_*} \neq 0$

$V_* = 0$
Three types of solutions to satisfy $0 = D_t \mathcal{W}^{RR} + U D_t \mathcal{W}^{Q}$ and $0 = \mathcal{W}^{RR} + \text{Re} U \mathcal{W}^{Q}$:

SUSY AdS vacuum: moduli are (almost) stabilized

$$
\begin{align*}
\Delta^{RR} &> 0, \quad \Delta^{Q} > 0; \quad D_t \mathcal{W}^{RR}|_* = 0 = D_t \mathcal{W}^{Q}|_* \\
\alpha^{RR} &= \alpha^{Q}, \quad \text{Re} U_* = -\frac{\mathcal{W}^{RR}_*}{\mathcal{W}^{Q}_*} \\
V_* &= -3 e^K |\mathcal{W}_*|^2 = -\frac{4}{[\text{Re}(CG_0)]^2} \sqrt{\frac{\Delta^Q}{3}} \ll \mathcal{O}(1)
\end{align*}
$$

SUSY Minkowski vacuum: moduli are stabilized

$$
\begin{align*}
\Delta^{RR} &< 0, \quad \Delta^{Q} < 0; \quad \mathcal{W}^{RR}_* = 0 = \mathcal{W}^{Q}_* \\
\alpha^{RR} &= \alpha^{Q}, \quad U_* = -\frac{D_t \mathcal{W}^{RR}_*}{D_t \mathcal{W}^{Q}_*} \neq 0 \\
V_* &= 0
\end{align*}
$$

SUSY AdS vacua, but moduli t and U are not fixed: non-stabilized point

$$
U = -\frac{D_t \mathcal{W}^{RR}(t)}{D_t \mathcal{W}^{Q}(t)}, \quad \text{Re} U = -\frac{\mathcal{W}^{RR}(t)}{\mathcal{W}^{Q}(t)}
$$
Example 2: $SU(3)$-structure manifold

1. Set $e_{RR} = 0 = m_{RR}^{A}$, $p_{I}^{A} = 0 = q^{IA}$, and single modulus t of Φ_{+} (and U of Φ_{-}).

2. Set a deformed prepotential: $\mathcal{F} = \frac{(X^{t})^{3}}{X^{0}}$
1. Set \(e_{RRA} = 0 = m_{RR}^A \), \(p_I^A = 0 = q^{IA} \), and single modulus \(t \) of \(\Phi_+ \) (and \(U \) of \(\Phi_- \)).

2. Set a deformed prepotential:
\[
F = \frac{(X^t)^3}{X^0} + \sum_n N_n \frac{(X^t)^{n+3}}{(X^0)^{n+1}}
\]
Example 2: $SU(3)$-structure manifold

1. Set $e_{RRA} = 0 = m_{RR}^A$, $p_I^A = 0 = q^{IA}$, and single modulus t of Φ_+ (and U of Φ_-)

2. Set a deformed prepotential: $\mathcal{F} = \frac{(X^t)^3}{X^0} + \sum_n N_n \frac{(X^t)^{n+3}}{(X^0)^{n+1}}$

Superpotential $\mathcal{W} = U \mathcal{W}^Q$ with a simple setting $N_1 \neq 0$, $N_n = 0$:

$$D_t \mathcal{W}^Q = -e_{00} + \frac{3(t - \bar{t})^2 - \partial_t P}{(t - \bar{t})^3 - P} \left(e_{00} + e_0 t \right)$$

$$P \equiv -2\left(N_1 t^4 - \bar{N}_1 \bar{t}^4 - 2N_1 t^3 \bar{t} + 2\bar{N}_1 \bar{t}^3 \right)$$

SUSY condition

$$D_t \mathcal{W} = D_U \mathcal{W} = 0$$

has a solution

$$t^Q_* = -\frac{2e_{00}}{e_0}, \quad \text{Re} U_* = 0$$

$$\mathcal{W}^Q_* = e_{00}, \quad \text{Im} N_1 < 0$$

$$V_* = -3e^K |\mathcal{W}_*|^2 = \frac{1}{[\text{Re}(CG_0)]^2} \frac{3(e_0)^4}{16(e_{00})^2 \text{Im} N_1}$$

Also heterotic string on $SU(3)$-structure manifolds with torsion which carries α' corrections
Summary

- Studied generalized geometries and their applications to string compactifications
- Obtained a powerful rule to discuss SUSY vacua: Discriminants
- Exhibited that α' corrections are included in certain configurations

Discussions

- More generic configurations
- Gauge symmetries
- Understanding the physical interpretation of nongeometric fluxes
de Sitter vacua?

In order to build (stable) de Sitter vacua perturbatively in type IIA, in addition to the usual R-R and NS-NS fluxes and O6/D6 sources, one must minimally have geometric fluxes and non-zero Romans’ mass parameter.

S.S. Haque, G. Shiu, B. Underwood, T. Van Riet arXiv:0810.5328

Romans’ mass parameter \(\sim G_0 \)

Search (meta)stable de Sitter vacua in this formulation
Thank You
Contents

- Differential Forms: Geometric Objects
- Hitchin Functional
- Killing Prepotentials
Decomposition of vector bundle on 10D spacetime:

\[T\mathcal{M}_{9,1} = T_{3,1} \oplus F \]

\[
\begin{align*}
T_{3,1} &: \text{ a real } SO(3, 1) \text{ vector bundle} \\
F &: \text{ an } SO(6) \text{ vector bundle which admits a pair of } SU(3) \text{ structures}
\end{align*}
\]
Decompositions of spinors in 10D type IIA string

Decomposition of vector bundle on 10D spacetime:

\[TM_{9,1} = T_{3,1} \oplus F \]

\[\begin{align*}
T_{3,1} : & \quad \text{a real } SO(3, 1) \text{ vector bundle} \\
F : & \quad \text{an } SO(6) \text{ vector bundle which admits a pair of } SU(3) \text{ structures}
\end{align*} \]

Decomposition of Lorentz symmetry:

\[Spin(9, 1) \to Spin(3, 1) \times Spin(6) = SL(2, \mathbb{C}) \times SU(4) \]

\[16 = (2, 4) \oplus (\bar{2}, \bar{4}) \quad 16 = (2, \bar{4}) \oplus (\bar{2}, 4) \]

Decomposition of supersymmetry parameters (with \(a, b \in \mathbb{C} \)):

\[\begin{align*}
\epsilon^1_{\text{IIA}} &= \epsilon_1 \otimes (\bar{a} \eta^-_1) + \epsilon_1^c \otimes (a \eta^+_1), \\
\epsilon^2_{\text{IIA}} &= \epsilon_2 \otimes (b \eta^+_2) + \epsilon_2^c \otimes (\bar{b} \eta^-_2)
\end{align*} \]
Decompositions of spinors in 10D type IIA string

Decomposition of vector bundle on 10D spacetime:

\[T\mathcal{M}_{9,1} = T_{3,1} \oplus F \]

\[\begin{align*}
T_{3,1} & : \text{a real } SO(3, 1) \text{ vector bundle} \\
F & : \text{an } SO(6) \text{ vector bundle which admits a pair of } SU(3) \text{ structures}
\end{align*} \]

Decomposition of Lorentz symmetry:

\[Spin(9, 1) \rightarrow Spin(3, 1) \times Spin(6) = SL(2, \mathbb{C}) \times SU(4) \]

\[16 = (2, 4) \oplus (\bar{2}, \bar{4}) \quad 16 = (2, \bar{4}) \oplus (\bar{2}, 4) \]

Decomposition of supersymmetry parameters (with \(a, b \in \mathbb{C}\)):

\[\begin{align*}
\epsilon_{\text{IIA}}^1 &= \varepsilon_1 \otimes (\bar{a} \eta_-^1) + \varepsilon_1^c \otimes (a \eta_+^1) , \\
\epsilon_{\text{IIA}}^2 &= \varepsilon_2 \otimes (b \eta_+^2) + \varepsilon_2^c \otimes (\bar{b} \eta_-^2)
\end{align*} \]

Set \(SU(3) \) invariant spinor \(\eta_+^A \) s.t. \(\nabla^{(T)} \eta_+^A = 0 \) \((A = 1, 2)\)

a pair of \(SU(3) \) on \(F \ (\eta_+^1, \eta_+^2) \) \(\iff \) a single \(SU(3) \) on \(F \ (\eta_+ = \eta_+^1 = \eta_+^2 = \eta_+) \)
Requirement that we have a pair of $SU(3)$ structures means there is a sub-supermanifold

$$\mathcal{N}^{9,1|4+4} \subset \mathcal{M}^{9,1|16+16}$$

\[
\begin{pmatrix}
(9,1): \text{ bosonic degrees} \\
4+4: \text{ eight Grassmann variables as spinors of } Spin(3,1) \text{ and singlet of } SU(3)\text{s}
\end{pmatrix}
\]

Equivalence such as

- eight SUSY theory reformulation of type II strings
- a pair of $SU(3)$ structures on vector bundle F
- $SU(3) \times SU(3)$ structures on extended $F \oplus F^*$
Geometric objects

- with a single SU(3):
 - a real two-form: $J_{mn} = \mp 2i \eta_\pm^\dagger \gamma_{mn} \eta_\pm$
 - a complex three-form: $\Omega_{mnp} = -2i \eta_-^\dagger \gamma_{mnp} \eta_+$
with a single $SU(3)$:

Geometric object	Equation
a real two-form	$J_{mn} = \mp 2i \eta_\pm^\dagger \gamma_{mn} \eta_\pm$
a complex three-form	$\Omega_{mnp} = -2i \eta_\mp^\dagger \gamma_{mnp} \eta_+$

with a pair of $SU(3)$:

Geometric object	Equation
two real vectors	$(v - iv')^m = \eta_+^{1\dagger} \gamma^m \eta_-^2$
(J^A, Ω^A)	$J^1 = j + v \wedge v', \quad \Omega^1 = w \wedge (v + iv')$
	$J^2 = j - v \wedge v', \quad \Omega^2 = w \wedge (v - iv')$
	(j, w): locally $SU(2)$-invariant two-forms
with a single $SU(3)$:

Geometric objects
a real two-form
$J_{mn} = \mp 2i \eta^\dagger_\pm \gamma_{mn} \eta_\pm$
a complex three-form
$\Omega_{mnp} = -2i \eta^\dagger_- \gamma_{mnp} \eta_+$

with a pair of $SU(3)$:

Geometric objects
two real vectors
$(v - i v')^m = \eta^1_+ \gamma^m \eta_2^-$
(J^A, Ω^A)
$J^1 = j + v \wedge v'$, $\Omega^1 = w \wedge (v + i v')$
$J^2 = j - v \wedge v'$, $\Omega^2 = w \wedge (v - i v')$

(j, w): locally $SU(2)$-invariant two-forms

\[
\eta^2_+ = c_\parallel \eta^1_+ + c_\perp (v + i v')^m \gamma^m \eta^1_-,
\quad |c_\parallel|^2 + |c_\perp|^2 = 1
\]

If $\eta^1_+ \neq \eta^2_+$ globally: a single $SU(2)$ w/ (j, w, v, v')
If $\eta^1_+ = \eta^2_+$ globally: a single $SU(3)$ w/ (J, Ω)

a pair of $SU(3)$ on $F \sim SU(3) \times SU(3)$ on $F \oplus F^*$
Information from Killing spinor eqs. with torsion $\nabla^{(T)} \eta_{\pm} = 0$ (3complex Weyl η_{\pm})

- Invariant p-forms on $SU(3)$-structure manifold:

 A real two-form
 \[J_{mn} = \mp 2i \eta_{\pm}^\dagger \gamma_{mn} \eta_{\pm} \]

 A holomorphic three-form
 \[\Omega_{mnp} = -2i \eta_{\mp}^\dagger \gamma_{mnp} \eta_{+} \]

 \[
d J = \frac{3}{2} \text{Im}(\overline{W}_1 \Omega) + W_4 \wedge J + W_3 \]

 \[
d \Omega = W_1 J \wedge J + W_2 \wedge J + \overline{W}_5 \wedge \Omega \]

- Five classes of (intrinsic) torsion are given as

components	interpretations	$SU(3)$-representations
W_1	$J \wedge d\Omega$ or $\Omega \wedge dJ$	$1 \oplus 1$
W_2	$(d\Omega)^{2,2}_0$	$8 \oplus 8$
W_3	$(dJ)^{2,1}_0 + (dJ)^{1,2}_0$	$6 \oplus 6$
W_4	$J \wedge dJ$	$3 \oplus \overline{3}$
W_5	$(d\Omega)^{3,1}$	$3 \oplus \overline{3}$
Classification of $SU(3)$-structure manifolds:

Complex	Hermitian	$\mathcal{W}_1 = \mathcal{W}_2 = 0$
Balanced	$\mathcal{W}_1 = \mathcal{W}_2 = \mathcal{W}_4 = 0$	
Special Hermitian	$\mathcal{W}_1 = \mathcal{W}_2 = \mathcal{W}_4 = \mathcal{W}_5 = 0$	
Kähler	$\mathcal{W}_1 = \mathcal{W}_2 = \mathcal{W}_3 = \mathcal{W}_4 = 0$	
Calabi-Yau	$\mathcal{W}_1 = \mathcal{W}_2 = \mathcal{W}_3 = \mathcal{W}_4 = \mathcal{W}_5 = 0$	
Conformally Calabi-Yau	$\mathcal{W}_1 = \mathcal{W}_2 = \mathcal{W}_3 = 3\mathcal{W}_4 + 2\mathcal{W}_5 = 0$	
Almost Complex	Symplectic	$\mathcal{W}_1 = \mathcal{W}_3 = \mathcal{W}_4 = 0$
Nearly Kähler	$\mathcal{W}_2 = \mathcal{W}_3 = \mathcal{W}_4 = \mathcal{W}_5 = 0$	
Almost Kähler	$\mathcal{W}_1 = \mathcal{W}_3 = \mathcal{W}_4 = \mathcal{W}_5 = 0$	
Quasi Kähler	$\mathcal{W}_3 = \mathcal{W}_4 = \mathcal{W}_5 = 0$	
Semi Kähler	$\mathcal{W}_4 = \mathcal{W}_5 = 0$	
Half-flat	Im$\mathcal{W}_1 =$ Im$\mathcal{W}_2 = \mathcal{W}_4 = \mathcal{W}_5 = 0$	
Contents

- Differential Forms: Geometric Objects
- Hitchin Functional
- Killing Prepotentials
Start with a real form \(\chi_f \in \wedge^{\text{even/odd}} F^* \) (associated with a real \(Spin(6, 6) \) spinor \(\chi_s \))

Regard \(\chi_f \) as a stable form satisfying

\[
q(\chi_f) = -\frac{1}{4} \langle \chi_f, \Gamma_{\Pi\Sigma} \chi_f \rangle \langle \chi_f, \Gamma_{\Pi\Sigma} \chi_f \rangle \in \wedge^6 F^* \otimes \wedge^6 F^*
\]

\[
U = \{ \chi_f \in \wedge^{\text{even/odd}} F^* \mid q(\chi_f) < 0 \}\]
Start with a real form $\chi_f \in \wedge^{\text{even/odd}} F^*$ (associated with a real $Spin(6,6)$ spinor χ_s)

Regard χ_f as a stable form satisfying

$$ q(\chi_f) = -\frac{1}{4} \langle \chi_f, \Gamma \Pi \Sigma \chi_f \rangle \langle \chi_f, \Gamma \Pi \Sigma \chi_f \rangle \in \wedge^6 F^* \otimes \wedge^6 F^* $$

$$ U = \{ \chi_f \in \wedge^{\text{even/odd}} F^* \mid q(\chi_f) < 0 \} $$

Define a Hitchin function

$$ H(\chi_f) \equiv \sqrt{-\frac{1}{3} q(\chi_f)} \in \wedge^6 F^* $$

which gives an integrable complex structure on U
Start with a real form $\chi_f \in \wedge^{\text{even/odd}} F^*$ (associated with a real $Spin(6,6)$ spinor χ_s)

Regard χ_f as a stable form satisfying

$$q(\chi_f) = -\frac{1}{4} \langle \chi_f, \Gamma \Pi \Sigma \chi_f \rangle \langle \chi_f, \Gamma \Pi \Sigma \chi_f \rangle \in \wedge^6 F^* \otimes \wedge^6 F^*$$

$$U = \{ \chi_f \in \wedge^{\text{even/odd}} F^* \mid q(\chi_f) < 0 \}$$

Define a Hitchin function

$$H(\chi_f) \equiv \sqrt{-\frac{1}{3} q(\chi_f)} \in \wedge^6 F^*$$

which gives an integrable complex structure on U

Then we can get another real form $\hat{\chi}_f$ and a complex form Φ_f by Mukai pairing

$$\langle \hat{\chi}_f, \chi_f \rangle = -dH(\chi_f) \quad \text{i.e.,} \quad \hat{\chi}_f = -\frac{\partial H(\chi_f)}{\partial \chi_f}$$

$$\rightarrow \quad \Phi_f \equiv \frac{1}{2} (\chi_f + i \hat{\chi}_f) \quad H(\Phi_f) = i \langle \Phi_f, \overline{\Phi}_f \rangle$$

Hitchin showed: Φ_f is a (form corresponding to) pure spinor!

N.J. Hitchin math/0010054, math/0107101, math/0209099
Consider the space of pure spinors Φ ...

\[
\begin{array}{ccc}
\text{Mukai pairing } \langle *, * \rangle & \longrightarrow & \text{symplectic structure} \\
\text{Hitchin function } H(*) & \longrightarrow & \text{complex structure}
\end{array}
\]

The space of pure spinor is Kähler
Consider the space of pure spinors Φ ...

| Mukai pairing $\langle *, * \rangle$ | \longrightarrow symplectic structure |
| Hitchin function $H(\ast)$ | \longrightarrow complex structure |

The space of pure spinor is Kähler

Compatible with $\Phi \rightarrow \lambda \Phi$ w/ $\lambda \in \mathbb{C}^*$

\rightarrow The space becomes a local special Kähler geometry with Kähler potential K:

$$\exp(-K) = H(\Phi) = i\langle \Phi, \Phi \rangle = i(X^A \mathcal{F}_A - X^A \overline{\mathcal{F}}_A) \in \wedge^6 F^*$$

X^A: holomorphic projective coordinates

\mathcal{F}_A: derivative of prepotential \mathcal{F} ($\mathcal{F}_A = \partial \mathcal{F} / \partial X^A$)
Contents

- Differential Forms: Geometric Objects
- Hitchin Functional
- Killing Prepotentials
10D spinors in type IIA in Einstein frame

\[
\delta \Psi^A_M = \nabla_M \epsilon^A - \frac{1}{96} e^{-\phi} \left(\Gamma^{PQR}_M H_{PQR} - 9 \Gamma^{PQ} H_{MPQ} \right) \Gamma_{(11)} \epsilon^A \\
- \sum_{n=0,2,4,6,8} \frac{1}{64n!} e^{\frac{5-n}{4} \phi} \left[(n - 1) \Gamma^N_{M1} \cdots N_n - n(9 - n) \delta^N_{M1} \Gamma^{N2\cdots N_n} \right] F_{N1\cdots N_n} (\Gamma_{(11)})^{n/2} (\sigma^1 \epsilon)^A
\]

\[
\delta \Psi^A_M = 0 \quad \text{with} \quad \begin{cases}
\delta \psi_{A\mu} = 0 & \rightarrow \text{superpotential } \mathcal{W} \\
\delta \psi^A_m = 0 & \rightarrow \text{Kähler potential } K
\end{cases}
\]
Killing prepotential

See the SUSY variation of 4D $\mathcal{N} = 2$ gravitinos:

$$
\delta \psi_{A\mu} = \nabla_{\mu} \varepsilon_{A} - S_{AB} \gamma_{\mu} \varepsilon^{B} + \ldots
$$

$$
S_{AB} = \frac{i}{2} e^{\frac{K_{\pm}}{2}} \left(\begin{array}{cc}
\mathcal{P}^1 - i\mathcal{P}^2 & -\mathcal{P}^3 \\
-\mathcal{P}^3 & -\mathcal{P}^1 - i\mathcal{P}^2
\end{array} \right)_{AB}
$$

The components are also written by Φ_{\pm}:

$$
\mathcal{P}^1 - i\mathcal{P}^2 = 2 e^{\frac{K_{-}}{2} + \varphi} \int_{\mathcal{M}} \langle \Phi_{+}, D\Phi_{-} \rangle, \quad \mathcal{P}^1 + i\mathcal{P}^2 = 2 e^{\frac{K_{-}}{2} + \varphi} \int_{\mathcal{M}} \langle \Phi_{+}, D\Phi_{-} \rangle
$$

$$
\mathcal{P}^3 = -\frac{1}{\sqrt{2}} e^{2\varphi} \int_{\mathcal{M}} \langle \Phi_{+}, G \rangle
$$

Note: $\hat{\Psi}_{A\mu} = \Psi_{A\mu} + \frac{1}{2} \Gamma_{\mu}^{m} \Psi_{m}^{A} = \psi_{A\mu\pm} \otimes \eta_{+} + \psi_{A\mu\mp} \otimes \eta_{-} + \ldots$
4D $\mathcal{N} = 1$ fermions given by the SUSY truncation from 4D $\mathcal{N} = 2$ system:

SUSY parameter:

$$\varepsilon \equiv \bar{n}^A \varepsilon_A = a \varepsilon_1 + b \varepsilon_2$$

gravitino:

$$\psi_{\mu} \equiv \bar{n}^A \psi_{A\mu} = a \psi_{1\mu} + b \psi_{2\mu}, \quad \bar{\psi}_{\mu} \equiv (b \psi_{1\mu} - \bar{a} \psi_{2\mu})$$

gauginos:

$$\chi^A \equiv -2 e^{\frac{K_+}{2}} D_b X^A (\bar{n}^C \varepsilon_C \varepsilon^b)$$

where

$$\bar{n}^A = (a, b), \quad \varepsilon_{AB} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
SUSY variations yield the superpotential and the D-term:

\[\delta \psi_\mu = \nabla_\mu \varepsilon - \bar{n}^A S_{AB} \gamma_\mu \varepsilon^c \equiv \nabla_\mu \varepsilon - e^{K_2} \mathcal{W} \gamma_\mu \varepsilon^c \]

\[\delta \tilde{\psi}_\mu = 0 \]

\[\delta \chi^A = \text{Im} F_{\mu \nu}^A \gamma^{\mu \nu} \varepsilon + i D^A \varepsilon \]

\[\mathcal{W} = \frac{i}{4\bar{a}b} \left[4i e^{K_2 - \Phi} \int_{\mathcal{M}} \langle \Phi_+, \mathcal{D} \text{Im}(ab\Phi_-) \rangle + \frac{1}{\sqrt{2}} \int_{\mathcal{M}} \langle \Phi_+, G \rangle \right] \]

\[\equiv \mathcal{W}^{RR} + U^I \mathcal{W}_I^Q + \tilde{U}_I \tilde{W}_I^Q \]

\[\mathcal{W}^{RR} = -\frac{i}{4\bar{a}b} \left[X^A e_{RRA} - \mathcal{F}_A m_{RR}^A \right] \]

\[\mathcal{W}_I^Q = \frac{i}{4\bar{a}b} \left[X^A e_{IA} + \mathcal{F}_A p^A \right], \quad \tilde{W}_Q^I = -\frac{i}{4\bar{a}b} \left[X^A m_A^I + \mathcal{F}_A q^I \right] \]

\[D^A = 2e^{K_+} (K_+)^{cd} D_c X^A \overline{D_d X^B} \left[\bar{n}^C (\sigma_x) c^B n_B \right] \left(P_{BC}^{xc} - N_{BC} \tilde{P}^{xc} \right) \]
(Lower dimensional) supergravity related to this topic

J. Maharana, J.H. Schwarz hep-th/9207016
L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fré, T. Magri hep-th/9605032 P. Fré hep-th/9512043
N. Kaloper, R.C. Myers hep-th/9901045
E. Bergshoeff, R. Kallosh, T. Ortin, D. Roest, A. Van Proeyen hep-th/0103233
M.B. Schulz hep-th/0406001 S. Gurrieri hep-th/0408044 T.W. Grimm hep-th/0507153
B. de Wit, H. Samtleben, M. Trigiante hep-th/0507289

EOM, SUSY, and Bianchi identities on generalized geometry

M. Graña, R. Minasian, M. Petrini, A. Tomasiello hep-th/0407249 hep-th/0505212
M. Graña, J. Louis, D. Waldram hep-th/0505264 hep-th/0612237
D. Cassani, A. Bilal arXiv:0707.3125 D. Cassani arXiv:0804.0595
P. Koerber, D. Tsimpis arXiv:0706.1244
A.K. Kashani-Poor, R. Minasian hep-th/0611106 A. Tomasiello arXiv:0704.2613 B.y. Hou, S. Hu, Y.h. Yang arXiv:0806.3393
M. Graña, R. Minasian, M. Petrini, D. Waldram arXiv:0807.4527

SUSY AdS$_4$ vacua

D. Lüst, D. Tsimpis hep-th/0412250
C. Kounnas, D. Lüst, P.M. Petropoulos, D. Tsimpis arXiv:0707.4270 P. Koerber, D. Lüst, D. Tsimpis arXiv:0804.0614
C. Caviezel, P. Koerber, S. Kors, D. Lüst, D. Tsimpis, M. Zagermann arXiv:0806.3458
D-branes, orientifold projection, calibration, and smeared sources

B.S. Acharya, F. Benini, R. Valandro hep-th/0607223
M. Graña, R. Minasian, M. Petrini, A. Tomasiello hep-th/0609124
L. Martucci, P. Smyth hep-th/0507099 P. Koerber, D. Tsimpis arXiv:0706.1244 P. Koerber, L. Martucci arXiv:0707.1038
M. Cederwall, A. von Gussich, B.E.W. Nilsson, P. Sundell, A. Westerberg hep-th/9611159
E. Bergshoef, P.K. Townsend hep-th/9611173

Mathematics

N.J. Hitchin math/0209099
M. Gualtieri math/0401221

Doubled formalism

E. Cremmer, B. Julia, H. Lü, C.N. Pope hep-th/9710119 hep-th/9806106
C.M. Hull hep-th/0406102 hep-th/0605149 hep-th/0701203 C.M. Hull, R.A. Reid-Edwards hep-th/0503114 arXiv:0711.4818
J. Shelton, W. Taylor, B. Wecht hep-th/0508133 A. Dabholkar, C.M. Hull hep-th/0512005
A. Lawrence, M.B. Schulz, B. Wecht hep-th/0602025
G. Dall’Agata, S. Ferrara hep-th/0502066
G. Dall’Agata, M. Prezas, H. Samtleben, M. Trigiante arXiv:0712.1026 G. Dall’Agata, N. Prezas arXiv:0806.2003
C.M. Hull, R.A. Reid-Edwards arXiv:0902.4032
C. Albertsson, R.A. Reid-Edwards, TK arXiv:0806.1783

and more...