Erosion Hazard Classification Analysis in Kantung the Watershed, Bangka District

E S Hisyam and F Fahriani

Civil Engineering Department, Engineering Faculty, Bangka Belitung University, Kampus Terpadu UBB Balunijuk, Merawang, Bangka Regency, Bangka Belitung Province, 33172, Indonesia

E-mail: hisyam.endang@gmail.com

Abstract. Watersheds in the Bangka Belitung Islands Province are increasingly experiencing environmental damage from year to year. Location of the Kantung Watershed in Parit padang Sungailiat Bangka Village. The causes of damage to this watershed are mining activities, land use changes that were previously forested as residences and agricultural land that is not managed properly so that the impact is reduced forest as a natural protector, erodible soil or erosion. The method of analysis carried out in this study is the USLE (Universal Soil Loss Equation) approach. Based on the analysis that has been carried out by the USLE method, the total erosion size of the Kantung watershed is 521,684 tons / ha / year 3,140,190,871 tons / year / year with Class V (Very Heavy) erosion hazard classification. Based on the results of the erosion hazard classification obtained is class V (Very Heavy), with large erodibility, the slope of the dominant slope is very steep, changes in land cover especially for mining activities, residences and agricultural land without management, the recommendations for reducing erosion are mechanical and vegetative soil conservation methods

1. Introduction

Population growth, which requires a place to live, a place for activities and production so that residents use forest land to become residences for mining activities, agriculture without proper management and lack of public awareness on the preservation of watersheds. Watersheds in the Bangka Belitung Islands Province are increasingly experiencing environmental damage from year to year. [1].

Watersheds are classified into two, namely the restored watershed and maintained watershed. The watershed that is repatriated is a watershed whose land conditions, quality, quantity and continuity of water and use of regional space are not functioning properly. Whereas, the watershed that is maintained is a watershed with land conditions, quality, quantity and continuity of water as well as proper functioning of regional space, the Kantung watershed is a restored watershed, which means that the watershed is not functioning properly, so action is needed to achieve environmental carrying capacity. Watersheds with restored classifications need to be carried out to achieve compatibility of environmental carrying capacity [2].

The Kantung watershed has an area of 6019.332 hectares, located in Karya Makmur Sungailiat Bangka Village [1]. Based on the survey in the field and based on data from the relevant agencies [3], the activities that took place in the Kantung watershed included mining, agriculture. Mining activities carried
out along the river resulted in a pedestal on the riverbed. As a result, the capacity of the river will decrease so that the water does not flow properly. This watershed has undergone many land use changes, the dominant type of land cover is 3999.506 ha of dry land agriculture without management and residences 1165.528 Ha, very steep slope> 40% is 2864,643 Ha.

The event of moving or transporting land or parts of land from one place to another by natural media is called erosion [4]. Along with the increasing human activity towards land use which includes deforestation, construction / development activities, and mining, it will increase the amount of erosion that occurs [5]. Erosion that occurs in the sacred watershed is not normal erosion but is not normal because it is caused by human activities, especially mining activities.

Several studies related to erosion have been carried out by several previous researchers by obtaining the factors that cause erosion: mining activities [6], deforestation, land conversion into agricultural land and residences [7], economic use and environmental impacts [8], agricultural intensification, land degradation and other anthropogenic activities [9], agricultural sloping lands [10], land slope and length, crop management / land use, soil management and soil erodibility. [11], plant cover effects on interception and rainfall energy; rock fragment (stoniness) effects on infiltration, flow velocity and splash erosion [12], climate change due to precipitation [13], water and land slope and length [14], land use/land cover (LULC) [15], to reduce the amount of erosion there are several conservation methods that can be carried out namely by mechanical, vegetative and chemical conservation [16].

Based on the problems in the Kantung watershed, the researchers conducted a study to find out how much erosion occurred in the Kantung watershed and how the conservation method recommended in the Kantung watershed.

2. Result

The amount of erosion in the Kantung watershed can be calculated by multiplying erosion factors using the USLE (Universal Soil Loss Equation) method, namely Rain Erosion (R) factors, Soil Erodibility (K), Slope Length and Slope (LS) and crop management factors (C) and soil conservation measures (P) [16]. In the analysis of each land unit obtained by overlapping (overlaying) several maps of topographic differences, slope class maps, maps of land use types and soil types. This spatial data is processed using SAGA software.

Rain erosion is defined as the number of rain erosion index units in a year. The value of R is the power of rain damage [16]. Rainfall data used to calculate rain erosion factors is rainfall data with a span of 10 years, namely rainfall data from 2009 to 2018 [17]. Rain erosivity factors can be searched using monthly rainfall data (cm) and the formula proposed by Wischmeier, 1959 (in Renard, et.al, 1996) [16].

Erodibility of the soil, or sensitivity factor for soil erosion, is soil resistance both to release and transport, mainly depending on soil properties, such as texture, aggregate stability, shear strength, infiltration capacity, organic matter content and chemistry [16]. To find out the type of soil obtained from secondary data in the form of soil type distribution map along with soil erodibility value (K) [3]. The Kantung watershed has several types of soil, namely brown podsolic soil is the widest type of soil, then red-yellow podzolic, and alluvial.

The length and slope factors (LS) are determined by using the Sacred Watershed slope class distribution map [1]. The Sacred Watershed, it can be seen that the slope of the land varies from 0 -> 40%. Based on its topographical form, the Kantung watershed area is grouped into 3 slope classes (s), namely 0 - 8%, 8-15%, and> 40%.

Factor C is influenced by vegetation, soil surface conditions, and land management to the extent of erosion [16]. The value of crop management factor (C) is determined based on the type of land cover and land management in each unit of land in the KAS watershed.

The value of the human action factor in soil conservation (P) is the ratio between the amount of erosion of the land with a certain conservation action against the amount of erosion on the land without conservation action [16]. Based on direct observations in the field, it is known that land management in the Kantung watershed has no conservation actions taken by the government and the community. So that the value of land management (P) is categorized without conservation measures P = 1.00.
Table 1. The erosion class of the Kantung watershed land unit

No.	Land Code	R	K	LS	C	P	A (ton/ha/year)	Erosion Class
1	HLKS >40% PC	1986.711	0.16	9.5	0.03	1	905.940	III
2	HLKS 8-15% PM	1986.711	0.32	1.4	0.03	1	26.701	II
3	B >40% PC	1986.711	0.16	9.5	0.3	1	905.940	V
4	P 0-8% AV	1986.711	0.47	0.4	0.6	1	224.101	IV
5	P 0-8% PM	1986.711	0.32	0.4	0.6	1	152.579	III
6	P 8-15% PM	1986.711	0.32	1.4	0.6	1	534.028	V
7	P >40% PC	1986.711	0.16	9.5	0.6	1	1811.880	V
8	BA 0-8% AV	1986.711	0.47	0.4	0.05	1	18.675	II
9	BA 8-15% PM	1986.711	0.32	1.4	0.05	1	44.502	II
10	BA >40% PC	1986.711	0.16	9.5	0.05	1	150.990	III
11	PLK >40% PC	1986.711	0.16	9.5	0.1	1	301.980	IV
12	PLK 0-8% AV	1986.711	0.47	0.4	0.1	1	37.350	II
13	PLK 0-8% PM	1986.711	0.32	0.4	0.1	1	25.430	II
14	PLK 8-15% PM	1986.711	0.32	1.4	0.1	1	89.005	III
15	PLKC >40% PC	1986.711	0.16	9.5	0.1	1	301.980	IV
16	PLKC 0-8% AV	1986.711	0.47	0.4	0.1	1	37.350	II
17	PLKC >40% PM	1986.711	0.32	9.5	0.1	1	603.960	V
18	PLKC 8-15% PM	1986.711	0.32	1.4	0.1	1	89.005	III
19	PRT >40% PC	1986.711	0.16	9.5	1	1	3019.801	V
20	PRT >40% PM	1986.711	0.32	9.5	1	1	6039.601	V
21	PRT 8-15% PM	1986.711	0.32	1.4	1	1	890.047	V
22	PRT 0-8% AV	1986.711	0.47	0.4	1	1	373.502	IV

Information:

Type of land use: HLKS = Secondary Dryland Forest; SB = Shrubs; P = Residence; TT = Open Land; BA = Water Body; PLK = Dryland Agriculture; PLKBS = Agriculture of Mixed Bushes; PRT = Mining

Soil Type: PM = Red Yellow Podsolic; AV = Alluvial; P = Chocolate Podsolic

The amount of erosion obtained gives varied results for each type of land unit analyzed in the KAS watershed land unit. Based on the amount of erosion, erosion in the Kantung watershed unit is classified into four erosion classes from the light, medium, heavy and very heavy classes. This difference is because each land unit has slope slope, land management and conservation actions that are different.
Table 2. Results of calculation of the erosion of the Sacred Watershed

No	Land Code	Area (ha)	ton/ha/year	ton/year	Erosion average
1	HLKS >40% PC	7.268	90.594	658.439	0.109
2	HLKS 8-15% PM	31.288	26.701	835.434	0.139
3	B >40% PC	99.992	905.940	90586.434	15.049
4	P 0-8% AV	14.258	224.101	3195.236	0.531
5	P 0-8% PM	65.657	152.579	10017.976	1.664
6	P 8-15% PM	197.965	534.028	105718.684	17.563
7	P >40% PC	887.648	1811.880	1608311.512	267.191
8	BA 0-8% AV	2.259	18.675	42.182	0.007
9	BA 8-15% PM	5.654	44.502	251.618	0.042
10	BA >40% PC	19.757	150.990	2983.054	0.496
11	PLK >40% PC	1671.169	301.980	504659.813	83.840
12	PLK 0-8% AV	668.556	37.350	24970.667	4.148
13	PLK 0-8% PM	8.573	25.430	218.002	0.036
14	PLK 8-15% PM	1651.209	89.005	146965.242	24.416
15	PLKC >40% PC	19.846	301.980	5993.158	0.996
16	PLKC 0-8% AV	0.070	37.350	2.617	0.000435
17	PLKC >40% PM	51.114	603.960	30870.546	5.129
18	PLKC 8-15% PM	150.741	89.005	13416.635	2.229
19	PRT >40% PC	98.228	3019.801	296628.771	49.279
20	PRT >40% PM	9.623	6039.601	58116.511	9.655
21	PRT 8-15% PM	197.201	890.047	175517.856	29.159
22	PRT 0-8% AV	161.259	373.502	60230.484	10.006

Total Area 6019.332
Total Erosion Kantung Watershed (ton/ha/year) 521.684
Total Erosion Kantung Watershed (ton/year) 3,140,190.871

Erosion Hazard Classification Class V (Very Heavy)

The total erosion obtained was 521,684 tons / ha / year or 3,140,190,871 tons / year, so the classification of erosion hazard classes in the Kantung watershed had Class V (Very Heavy) erosion hazard classes. Factors that influence the magnitude of erosion that occur in the Kantung watershed, namely the dominant slope level factor is very steep, the slope the slope the greater the LS value and the greater the speed of surface flow, so that the soil is eroded and transported and erodibility is greater soil
erodibility index then the greater the soil grain transported due to falling rain, land cover also greatly affects the amount of erosion produced, such as mining and residence activities will increase the value of C, and without good management also increase the value of P.

Based on the results of the erosion hazard classification that is obtained is class V (Very Heavy), with large erodibility, the slope of the dominant slope is very steep, changes in land cover especially for mining, residence and agricultural land without management, the recommendations for reducing erosion are mechanical and vegetative soil conservation methods. On The agricultural land to reducing erosion was made terracing, to eks mining land reforestation was done.

3. Conclusion

Based on calculations using the USLE (Universal Soil Loss Equation) method, the amount of erosion in the Kantung Watershed is 521,684 tons / ha / year or 3,140,190,881 tons / year with Class V (Very Heavy) erosion hazard classification. The recommendations for reducing erosion are mechanical and vegetative soil conservation methods.

References

[1] BPDASHL 2019 Balai Pengelolaan Daerah Aliran Sungai dan Hutan Lindung Baturusa-Cerucuk
[2] Gubernur Kep. Bangka Belitung 2018 Peraturan Gubernur Kepulauan Bangka Belitung Nomor 1 Tentang Rencana Pengelolaan DAS Bangka Belitung
[3] BPKH Wilayah XIII Pangkalpinang 2019 Balai Pemantapan Kawasan Hutan Wilayah XIII Pangkalpinang
[4] Singh G and Panda R K 2017 Grid- Cell Based of Soil Erosion Potensial for Identification of Critical Erosion Prone Areas Using USLE, Gis and Remote Sensing: A case Study in Kapgari Watershed, India International Soil Water Conservation Research 5 pp 202-211
[5] Mango N, Makate C, Tamene L, Mponela P and Ndengu G 2017 Awareness and Adoption of Land, Soil and Water Conservation Practices in the Chinyanja Triangle, Southern Africa International Soil Water Conservation Research 5 pp 122-229
[6] Sabri F 2017 Kajian Erosi dan Sedimentasi Akibat Perubahan Tata guna Lahan Daerah Aliran Sungai (Studi Kasus DAS Betung Sub DAS Pebari-JelitikKabupaten Bangka), Prosiding Seminar Nasional Pengelolaan Daerah Aliran Sungai SecaraTerpadu, JurusanTeknikSipil, FakultasTeknik, Universita Bangka Belitung
[7] Hasibuan M N 2019 Analisis Erosi dan Sedimentasi dengan Menggunakan USLE dan MUSLE pada Kwasan Daerah Aliran Sungai Deli Jurnal Teknik Sipil USU 6 (2)
[8] Devatha C P, Deshpande V and Renukaprasad R S 2015 Estimation of Soil Loss Using USLE Model for Kulhan Watershed Cattisgarh- A Case Study Aquatic Procedia 4 pp 1429-1436
[9] Ganasri B P and Ramesh H 2016 Assessment of Soil Erosion by RUSLE Model Using Remote Sensing and GIS –A case Study of Nethravathi Basin Geoscience Frontiers 7 pp 953-961
[10] Zhu T X and Zhu A X 2014 Assessment of Soil Erosion and Conservation on Agricultural Sloping Lands Using Plot Data in the Semi-Arid Hilly Loiss Region of China Journal of Hydrology: Regional Studies 2 pp 69-83
[11] Satriuwon H, Harahap E M, Rahmawaty and Karim A 2015 Analysis of Soil Erosion in Agricultural Land Use in Krueng Siumpo Watershed Aceh Province Academic Research International 6(2)
[12] Morgan R C P, Quenton J N, Smith R E, Covers G, Poesen J W A, Auerswald K, Chisci G, Torri D and Styzen M E 1998 The European Soil Erosion Model (EUROZEM): A Dynamic Approach for Predicting Sediment Transport from Fields and Small Cathments Earth Surface Processes and Landforms 23 pp 527-544
[13] Pal S C and Cakraborty R 2019 Simulating the Impact off Climate Change on Soil Erosion in Sub-Tropical Monson Dominated Watershed Based on RUSLE, SCS Runoff and MIROC5 Climatic Model Advances and Space Research 64 pp 352-377
[14] Laflen J M and Flanagan D C 2013 The Development of U.S. Soil Erosion Prediction and Modeling. *International Soil and Water Conservation Research* 1 pp 1-11

[15] Choto A 2019 Impact of Land Use/Land Cover Change on Stream Flow and Sediment Yield of Gofjeb Watershed, Omo-Gibe Basin, Ethiopia. *Remote Sensing Applications: Society and Environment* 14 pp 84-99

[16] Asfaw D and Neka M 2017 Factors Affecting Adoption of Soil and Water Conservation Practices: the case of Wereillu Woreda (District), South Wollo Zone, Amhara Region, Ethiopia. *International Soil Water Conservation Research* 5 pp 273-279

[17] BMKG Kota Pangkalpinang 2018 Badan Meteorologi Klimatologi dan Geofisika Kota Pangkalpinang

Acknowledgment

We gratefully acknowledge the funding from USAID through the SHERA program – Centre for Development of Sustainable Region (CDSR). In year 2017-2021 CDSR is led by Centre for Energy Studies – UGM.