PPAR Gamma at the Crossroads of Health and Disease: A Masterchef in Metabolic Homeostasis

Souhad El Akoum 1,2*

1 CHUM Research Center, 900 rue St-Denis, Montréal (QC) H2X 0A9, Canada
2 Département d’Immunologie et de Microbiologie, Faculté de Médecine, Université de Montréal, Canada

Abstract

The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor involved conferring the role of an active gland to the adipose tissue. This nuclear receptor is actively involved, mainly through its regulation to the physiology and the endocrine activity of the adipose tissue, in the regulation of a variety of processes governing the metabolic homeostasis. PPARγ, activated by a wide variety of fatty acids molecule or their metabolite, governs metabolic processes implicated in glucose and lipid metabolism and adipose mass control by modulating the expression of a large number of target genes. Furthermore, PPARγ is a molecular target for antidiabetic thiazolidinedione molecules that selectively bind this nuclear receptor to improve systemic insulin sensitivity and glucose tolerance. Accordingly, the specific position of PPARγ in systemic metabolic control is resumed in its pivotal role in the regulation of glucose and lipid homeostasis, lipid storage and adipogenesis. Here, we present an overview of the involvement of PPARγ in metabolic control leading to health improvement.

The emphasis is on adipose tissue mass regulation by PPARγ and its implication in glucose homeostasis and cardiovascular modulation.

Keywords: Metabolic homeostasis; Adipogenesis; Cardiovascular modulation

Review

Since their identification in 1990s [1], the peroxisome proliferator-activated receptors (PPARs) are soliciting considerable interest and our knowledge about their physiological roles is evolving. Involved in the regulation of the metabolism of lipids and lipoproteins, glucose homeostasis, cell proliferation and cell differentiation, PPARs are a pharmacological target for the treatment of metabolic disorders such as diabetes or dyslipidemia.

The discovery of PPARs started when our view towards adipose tissue changed [2]; long believed to be a simple energy storage tissue, adipose tissue is nowadays considered an endocrine gland itself. The development of fibrate family to treat hyperlipidemia in 1962 [3,4] led to the discovery in the 1990s of the first PPARs member the PPARα [5]. This finding thus stimulated worldwide research to elucidate PPARs family’s role in the systemic metabolism control [6].

Peroxisome Proliferation Response Elements (PPRE) were then described in the promoter of microsomal and peroxisomal genes known to be upregulated during proliferation of peroxisome as CYP4A1, CYP4A6 and acyl CoA oxidase [7-9]. International interest in the study of PPARs took on even greater significance after the identification and cloning of three subtypes of PPAR [10,11], named α, β/δ and γ, each being encoded by a specific gene to play key roles in metabolic homeostasis [12-15].

PPARγ a ligand-activated nuclear receptor

PPARγ was first identified as a mediator of the activity of the oral antidiabetic thiazolidinedione (TZD) family and recognized as a major regulator of glucose homeostasis and adipogenesis [16,17]. PPARγ belongs to the nuclear receptors superfamily of ligand-inducible transcription factors [13,18]. Often of lipid nature, ligands activate PPARγ forcing it to bind to PPRE of the promoter region of specific target genes involved in adipogenesis, lipid metabolism, inflammation and metabolic homeostasis. Similarly to typical nuclear receptors domain structure, PPARγ primary structure is composed of approximately 500 amino acids, and their structure is represented by a sequence of six areas (Figure 1). The N-terminal domain (A/B domain) is of length and primary structure variable from one receptor to another. It contains the ligand-independent transactivation segment (AF-1, Activation Function-1) that binds co-activators.

The C domain contains the DNA Binding Domain (DBD) characterized by a double folding of the protein chain held by two zinc atoms interacting with four cysitn residues. The DNA binding occurs on consensus sequences called hormone response element located before the target gene near the promoter. This domain is highly conserved among nuclear receptors sequences allowing the three members of PPARs family to bind to the same PPRE DNA sequence. The D domain is a hinge region involved in binding of the chaperone protein to the receptor and in the DNA binding. The E domain liaises mediators on the C-terminal portion of the receptor. This Ligand-Binding Domain (LBD) also provides receptor dimerization and comprises a second pattern of AF-2 transactivation. This later protein sequences differences between the three subtypes of PPARs members leading to three pharmacologically distinct forms of nuclear receptors.
appointed α, β/δ and γ. The F domain, meanwhile, is a variable sequence that constitutes the C-terminal portion of the protein sequence of each receptor.

![Figure 1: PPARγ domain structure.](image)

Although these domains are all potential targets mediating its signaling cascade, PPARγ transcriptional activity is initiated by endogenous and exogenous ligands. These later induce chaperone proteins dissociation from the nuclear receptor that represses its activity and conformational changes allowing PPARγ heterodimerisation with the retinoid X receptors (RXR) [5] (Figure 1). The complex, thus enabled, will bind to the typical PPRE sequences located in the promoter regions of many genes involved in adipogenesis, adipokines secretion and glucose and lipid homeostasis (Table 1) whose expression is thus stimulated [19].

Adipogenesis	Lipid homeostasis
FABP4	Lpl
Pref-1	Gyk
UCP1	ACS
PLIN1/2/4	ACACA
C/EBPα	ELOVL4
STAT1	LXRA
STAT5A/B	ME1
	SCD1
	APOA2
	APOE
	CD36

Adipokine secretion	Adipokine secretion
CDKN1A	Cyclin-Dependent Kinase inhibitor 1A
Cidec	Cell death-inducing DFFA-like effector c
Nr1d1	Nuclear receptor subfamily 1, group D, member 1
Adipokine secretion	Cell death-inducing DFFA-like effector c
ADPN	Adiponectin, also known as adipQ
FGF1/21	Fibroblast Growth Factor 1 & 21
Ob (Lep)	Leptin
RETN	Resistin also known as adipose tissue-specific secretory factor (ADSF)
APLN	Apelin
ACS	Acylation Stimulating Protein
FIAF	Fasting Induced Adipose Factor
OMN	Omentin
Rbp-4	Retinol Binding Protein-4
Serpina12	Vaspin
PBEF1	Vifatin also called pre-B cell enhancing factor (PBEF) or nicotinamide phosphoribosyltransferase (Nampt)
RARRES2	Chemerin, also known as retinoic acid receptor responser protein 2 (RARRES2)
SERPINE1	Plasminogen activator inhibitor-1 (PAI-1)
ANGPTL2	Angiopoietin-like Protein 2
	Lipoprotein lipase
	Glycerol kinase, key player of glycolysis/glycogenesis process
	Acetyl-CoA synthetase
	Pnpla2
	Diazepam binding inhibitor, involved in lipid metabolism and dislocation of β-carbolines and benzodiazepines
	Acetyl-CoA carboxylase-α
	ELOVL4
	Liver X receptor α
	Malic enzyme 1; involved in acetyl-CoA is transport
	Stearoyl-CoA desaturase 1, (delta) Δ9-desaturase
	Apolipoprotein A-II
	Apolipoprotein E
	Leukocyte differentiation antigen 36, also known as fatty acid translocase,
A wide range of compounds could be identified as PPARγ ligands [20]. Several studies have focused their research on the elucidation of the link between the lipid nature and their capacity to activate PPARγ [20,21]. Dietary fats and oils are major source of PPARγ activators especially polyunsaturated fatty acids (PUFA) that activate it in micromolar concentration [3,22]. Other natural ligands derived from arachidonic degradation such as 15-deoxy-Δ12,14-prostaglandin J2 acid show high affinity to PPARγ [23]. Finally, the FFA oxidized phospholipids derived from oxidized LDL (9- and 13-HODE) can also activate PPARγ. Depending on its ligand nature, PPARγ activation can be differently modulated [24-30]. All these potential natural ligands are summarized in the Table 2.

Table 1: PPARγ target genes

Genes	Function
FAT	LDL receptor
LDLR	LDL receptor
LIPC	Hepatic triglyceride lipase (HTGL)
LRP1	LDL receptor-related protein 1
LPL	Lipoprotein lipase
OLR1	Oxidized LDL (oxLDL) receptor, also known as the endothelial oxLDL receptor: LOX-1
FATP1/2	Fatty acid transport protein 1 & 2
Glut-4	Glucose transporter type 4
PI3K	Phosphatidylinositol-4,5-bisphosphate 3-kinase
CAP	Catabolite Activator Protein
IRS-1/2	Insulin receptor substrate 1 & 2
Sorbs1	Sorbin and SH3 domain containing 1
Aqp7	Aquaporin 7
G6PC	Glucose-6-phosphatase
GPD1	Glycerol-3-phosphate dehydrogenase 1
GCK	Glucokinase
PEPCK	Phosphoenolpyruvate carboxykinase 1
PDK4	Pyruvate dehydrogenase kinase 4
ACAT1	Acetyl-CoA acetyltransferase
Other factor type	
EBF1	Early B cell factor 1, Transcription factor essential for the maintenance of B cell identity
GSTA2	Glutathione S-transferase alpha 2
BR1	Bradykin receptor type1
NFxb	Nuclear factor-kappa B

Table 2: PPARγ natural ligands

Type of Fatty Acid	Example
ω3-PUFA	α-Linolenic acid [175]
Lipid metabolites	γ-Linolenic acid [176]
	Eicosapentaenoic acid (EPA) [177]
	Docosahexaenoic acid (DHA) [178]
	4-Hydroxy docosahexaenoic acid (4-HDHA) [178]
	4-Oxodocosahexaenoic acid (4-oxo-DHA) [178]
ω6-PUFA	Linoleic acid [179]
	Nitrolinoleic acid [179]
	Conjugated linoleic acid isomers (CLA) [180]
	9/10-NO2-linoleic acid [181]
	12-NO2-linoleic acid [181]
	13-NO2-linoleic acid [181]
	Arachidonic acid [182]
ω9-MUFA	Palmitoleic acid [183]
	Oleic acid [184]
	Eicosanoids [185]
	9-Hydroxyoctadecadienoic acid (9-HODE) [179]
	13-Hydroxyoctadecadienoic acid (13-HODE) [179]
	15-Deoxy-Δ12, 14-PGJ2 [185]
Other	Azelaoyl phosphatidylcholine (component of the lipid pool within oxLDL) [186]
	Isoflavones:
	Genistein [187]
	Daidzein [188,189]
	Equol [188,189]
	Biochalin A [189]
Flavonoids:	
	Psoraligenin [190]
	Hesperidin [190]
	Quercetin (from dill, bay leaves, and oregano) [191]
	2′-Hydroxy chalcone (cinnamon in polymeric form) [191]
	Rosmarinic acid (marjoram) [191]
There is also well-known synthetic ligand of PPARγ thiazolidinedione family (TZD) for treatment of type 2 diabetes and insulin resistance [16,17,31]. Other active ingredients such as non-steroidal anti-inflammatory drugs may also be PPAR agonists.

Tissue distribution of PPARγ

The tissue distribution and the expression level of PPARs differ for each isoform [32,33]. PPARγ is mainly found in adipose tissue and the gastrointestinal tract. The PPARγ gene encodes two protein sub-types, γ1 and γ2, arising from differential splicing of exon B [34-36]. PPARγ2 possesses 28 amino acids more than its counterpart γ1 at its N-terminus protein sequence in mice and 30 in humans. This additional peptide sequence confers transcriptional activity 10 times higher for PPARγ2 compared to PPARγ1 subtype [34]. Whereas PPARγ1 is expressed in muscle cells, hepatocytes, monocytes, and others, PPARγ2 is, for its part, the specific form of PPARγ in the adipose tissue [37,38].

Recently, two new subtypes of PPARγ were identified in human: PPARγ3 and PPARγ4 from two different promoters. PPARγ4 expression seems to be restricted to adipose tissue [39] while mRNA PPARγ3 was detected in white adipose tissue, large intestine and macrophages [37,40].

PPARγ is also expressed in cells of the vascular wall, monocytes and macrophages [38,41-43]. Further, PPARγ is present in the atherosclerotic plaque at the sub-endothelial area in the lipid core and of atherosclerotic lesions where they co-localize with specific markers of macrophages, smooth muscle cells and foam cells [44-46].

Adipose tissue and PPARγ

PPARα and PPARδ/β appear to have limited adipogenic effect on the adipose tissue. The PPARα is mainly expressed in the brown adipose tissue controlling β-oxidation for heat production [47-50], while the PPARδ/β is found in preadipocytes controlling the expression of genes involved in their proliferation but seems to be slightly implicated in the adipogenesis process [51].

In adipose tissue, the predominant PPAR isoform controlling its differentiation is PPARγ particularly PPARγ2 subtype [35,52-54] (Figure 1). PPARγ is involved in both processes of adipogenesis, lipid metabolism and the secretion of several hormones called adipokine in adipose tissue. Thus, PPARγ confers the endocrine functions of the mature adipocyte.

PPARα and adipose mass control

PPARα is the main nuclear receptor implicated in the adipose mass control triggering the recruitment of new preadipocytes and steer their differentiation into mature adipocytes controlling thus the adipose tissue homeostasis [17,55]. The expression of this nuclear receptor is highly important for the embryogenic development and a decrease in its activity lead to a lipodystrophy in human [39,56-59].

Adipogenesis refers to the process of differentiation of progenitor cells, called preadipocytes, into mature adipocytes in which the gene expression, the cell morphology and the sensitivity to exogenous hormones and factors change. During differentiation, the expression of various genes encoding proteins involved in lipid uptake and metabolism, such as aP2, Pref-1, phosphoenolpyruvate carboxykinase (PEPCK) and lipoprotein lipase (LPL) (Table 1), are induced through the activation of PPARγ [54,60,61]. PPARγ is the most important factor implicated in the formation of mature adipocytes and its overexpression in non-adipocytes cells is sufficient to induce their transformation to adipocytes [52,53]. Furthermore, an increased level of circulating fatty acids in the body is believed to raise PPARγ activity that will lead to increased adipose tissue mass and obesity development. If so, it explains the fact that TZD treatment, through its activation of PPARγ, increase body weight gain. However, it has been shown that selective activation of PPARγ in the adipose tissue is sufficient to prevent diabetes in HFD-fed mice without any change in their body mass [62]. These data demonstrate that PPARγ adipose tissue activation is essential to improve insulin sensitization but not responsible of the nuclear receptor activation side effect such as weight gain. Moreover, recent studies showed that PPARγ activation in the brain, rather than in the adipose tissue, is directly linked to weight gain [63,64]. Thus, the development of a treatment that could selectively activate adipose tissue PPARγ seems to be a highly interesting alternative of a TZD treatment.

In parallel with its adipogenic activity, PPARγ seems to induce apoptosis in adipocytes in a process of regeneration and cells turnover of the adipose tissue [55,65]. Thus, PPARγ regulates the adipose mass by enabling and recruiting new adipocytes more sensitive to insulin and lipid storage and disabling and clearing mature adipocytes with saturated lipid vacuoles and less sensitive to insulin.

PPARγ and endocrine function of the adipose tissue

PPARγ is not only a key factor controlling adipogenesis and adipose tissue mass control but also serves as the master regulator of metabolic genes in this tissue (Figure 2). This activity conferred the definition of an active endocrine gland to the adipose tissue allowing it to secrete a wide range of bioactive substances called adipokines [2,66,67] actively implicated in the regulation of glucose and lipid homeostasis [17,31,53]. By governing adipokines production through ligand systemic availability in the body (natural ligand, TZD, etc.), PPARγ improves insulin sensitivity both at adipocyte, muscular and hepatic levels by stimulation of adipogenesis, increasing muscle glucose and FFA consumption, inhibiting the hepatic glycolysis and decreasing the release of FFA in the blood [31,68,69]. The most important determinant of amount and nature of adipokine secreted by the adipose tissue is the nature of the ligand that stimulates PPARγ activity, the number of adipocytes contained in the adipose tissue and their size [24,70,71].

The first hormone to be identified as adipokine was leptin discovered in 1994 [10]. Leptin is an adipokine secreted exclusively by mature adipocytes and its plasma level is positively correlated with body fat mass [70,72]. During a meal, increased systemic FFA level are positively correlated with PPARγ activity that leads to increased leptin secretion [73]. Leptin seems to be secreted by mature adipocytes as a negative retrocontrol on PPARγ activity that leads to increased leptin secretion [74-76] to limit the adipose tissue over-expansion. However, this adipokine has a central role in glucose homeostasis acting on several organs. Leptin act on the sympathetic nervous system to regulate satiety [77,78], inhibit insulin secretion from pancreatic β-cells [79,80] and decrease insulin receptor sensitivity in the peripheral cells to limit glucose uptake and lipid overload [81,82]. Leptin limits also adipose tissue expansion by increasing TNFα production [83], also known to decrease insulin systemic sensitivity [84-86], to inhibit adipogenesis and to decrease the fat storage [86-89]. On the other hand, leptin activates the 5'-AMP-activated protein kinase (AMPK) in target tissues [90,91]. This kinase stimulates the oxidation of FFA by inhibiting the activity of acetylcoenzyme A carboxylase governing the production of the...
enzyme malonyl-CoA responsible for lipogenesis [92]. As a result, leptin prevents fat accumulation in peripheral tissues and prevent lipotoxicity. Thus, increased caloric intake will cause PPARγ activity to be higher and leptin secretion to elevate, leading to a leptin systemic resistance [93,94] that will be developed into systemic insulin resistance and diabetes.

The list of the PPARγ regulated adipokine is expanding day after day and regrouping more family subtype [71]. Among them the exclusive adipose tissue adipokine vaspin [115,116], the insulin-like adipokine visfatin [117,118] and the insulin and TNFa-stimulated adipokine apelin [119,120] are recent adipokine secreted during PPARγ activation. These adipokines, like adiponectin, are increased in weight gain to counteract the development of insulin resistance and improve glucose intolerance, but decreases with the progression of diabetes and obesity. Further, the lipogenic adipokine ASP (Acylation Stimulating Protein) [121], the Fasting Induced Adipose Factor (FIAF) [122] are all adipokines that their genes contain a PPRE sequence and their expression is therefore controlled by PPARγ activity. These adipokines play key role in glucose homeostasis by improving systemic insulin sensitivity and lipid metabolism by stimulating hepatic FFA uptake and inhibiting LPL.

PPARγ-mediated adipokine secretion activity depends on different factors including ligand nature, adipocyte status and systemic metabolic changes. The whole system is settled to control metabolic homeostasis by stimulation of insulin sensitizer adipokines secretion and suppression of other diabetogenic factors. However, the maintaining of harmful exogenous factors supply will unbalance the system towards a decrease of PPARγ activity that becomes dangerous for systemic homeostasis, to limit unlimited adipose tissue expansion and glucose storage; all together will lead to metabolic disease development.

PPARγ and cardiovascular alterations

Besides regulating numerous metabolic pathways, PPARγ also governs cardiovascular processes linked to their homeostasis (Figures 2 and 3). The expression of PPARγ has been shown in many cardiovascular cell types including monocytes and macrophages [38], smooth muscle cells [123] and endothelial cells [124]. The first clue towards cardio-protective effects of PPARγ came from observation of the cardiomyocyte-specific PPARγ knock out mice that exhibit a cardiac hypertrophy [125]. The cardioprotective effects of PPARγ in these mice are likely explained by the decrease of the glucose tolerance in the cardiomyocyte leading them to consume FFA as a source of energy but more susceptible to induce ROS secretion. These later are known to affect endothelial function and increase cardiac inflammation [126,127]. Various evidences have shown that PPARγ exerts an inhibitory effect on NF-κB [128,129], a nuclear factor involved in the transcription of many genes encoding inflammatory proteins. As a result, NF-κB is retained in a nonactive form leading to suppression of its transcriptional activity for inflammatory factors such as type 1 receptor of bradykinin [130] whose expression is increased in inflammation and in diabetes. The anti-inflammatory effects of PPARγ could also be explained by the inhibitory effect of this nuclear receptor on signal transducer and activator of transcription (Stat) and Activator protein-1 (AP-1) [129,131]. Here also, PPARγ act to inhibit the transcriptional activity of these inflammatory factors leading to a decreased impact of these molecules on systemic hypertension induction [129]. Furthermore, PPARγ action on...
proliferation potential of vascular smooth muscle cells prevents hypertension events through adipokine secretions [24,123,132,133].

Figure 3: In obesity-linked type 2 diabetes, characterized by increased lipids and glucose circulating levels in the body, adipose tissue secrections profile actively contribute to the development of diabetic cardiomyopathy. In addition to the negative influence of glucose and lipid disturbed homeostasis on cardiac function, modulation of the adipose tissue activity, illustrated by an increase PPARγ activity, by the hyperlipidemia and hyperglycemia directly influence the cardiac physiology through its adipokine secretion profile modulation.

It has been well established that TZD-PPARγ activation decreases the production of cytokines (TNFα, IL-1, IL-6, IL-18, CRP, etc.) by the macrophages [134], a potential anti-inflammatory effect. The glitzones could induce the transformation of macrophages into foam cells in the atherosclerotic lesions, but the results are somewhat contradictory depending on the chosen experimental system [135,136]. They inhibit the proliferation and migration of vascular smooth cells [123,137]. Finally, in endothelial cells in culture, TZD induce the expression of Plasminogen Activator Inhibitor -1 (PAI-1, an inhibitor of fibrinolysis) [138], whereas in diabetic patients treated with troglitazone reduces the concentration of PAI-1 circulating [139]. Such contradictory experimental observations led to several questions to determine if glitazones treatment is benefic or not for cardiovascular system.

Even if it has shown overt improvement in fasting glucose and insulin sensitivity, TZD treatment has worsened cardiac parameters in the normal, diabetic and transgenic rodent models [125,127,140,141]. PPARγ pharmacological activation also increased incidence of congestive heart failure and induce fluid retention as reported in the RECORD European clinical trial [142,143]. These data led to the withdrawal from the US and European markets of Rosiglitazone in 2010 and to the emission of black box warning on the other member of the TZD family.

Known as an agonist of PPARγ, TZD could induce FFA scavenger receptors expression in vascular cells wall leading to the development of foam cells and trigger thus atherosclerotic formation [24,135]. PPARγ activation also increases TNFα secretion that plays an autocrine role on the adipose tissue to inhibit adipogenesis and decrease fat storage [65]. However, TNFα exert its effects on other organs like heart and vascular cells leading to insulin resistance [144], which also leads to an increased oxidative stress and cell dysfunctions. Furthermore, TNFα down regulates the PPARα activity in cardiomyocytes [145] leading to a worsen status for these cells.

TNFα upregulate apelin expression levels [119], an adipokine known for its cardiotonic effects [146] that could lead to a heart failure. The apelin also controls blood pressure and heart activity due to its direct action on the cardiovascular system and its action on the autonomic nervous system [147-149] and an overexpression of this hormone could lead to several heart complications.

Other adipokines catalyze the effect of PPARγ activity on the cardiovascular system. Among them leptin and adiponectin are the most studied adipokines for this issue. Leptin is known to regulate the hypothalamic-pituitary-adrenal axis responsible for blood pressure regulation [77]. In subjects suffering of metabolic diseases this control is disturbed if not missing. Thus, high leptin concentration leads to diastolic dysfunction associated with higher cardiac sympathetic nervous system activity and increased left ventricle mass [150]. This dysfunction with a reduction in cardiac compliance is thus associated with left ventricle dilatation and an increased left ventricle mass in obesity-linked diabetic mice [70,151]. The leptin receptor Ob-R belongs to the cytokine receptor family class I [152,153] that include interleukins and growth hormone receptors. This suggests other possible biological effects of leptin such as inflammation associated with its related cytokine nature [154-156]. In addition, leptin stimulates the synthesis of ET-1 [157,158], NOS [159], ROS production [158] and expression of MCP-1 [160] that have a direct impact on the increasing of the oxidative stress in endothelial cells. All these factors could lead to the atherogenesis process.

Further, leptin has angiogenic activity and promotes migration and proliferation of vascular smooth muscle cells [24,161]. This effect is important in the physiological process of the expansion of adipose tissue that requires a good blood and oxygen supply. Leptin also promotes FFA oxidation, glucose uptake, platelet aggregation and accumulation of cholesterol in macrophages involved in atherogenesis effect [90,156,162,163].

In parallel, decreased level of adiponetin in obesity and diabetes is correlated with hypertension, presence of coronary heart disease and diabetic cardiomyopathy [70,151,164,165]. Its protective properties against atherosclerosis pass through its inhibitory effects on the expression of adhesion molecules on endothelial cells limiting the recruitment of monocytes to the vascular wall, and by its anti-inflammatory properties which inhibit the production of TNFα and macropathies activity [102,166-169]. This adipokine also inhibits smooth muscle cells proliferation by inhibiting the proliferative effects of PDGF [24,132].

Finally, cathepsins are adipokines with protease activity of the papain family actively involved in protein metabolism [170-173]. This family includes several members, including cathepsins S, K and L. They are secreted by adipose tissue in parallel with food intake and leptin secretion. They directly affect adipocyte differentiation and remodeling of the endothelial cells. This action of matrix remodeling (Degradation of collagen, elastin, fibronectin, etc.) is essential for adipogenesis and adipose tissue expansion; their secretion are thus increased in obese person and possibly implicated in several cardiovascular alterations [174].

All together, these data suggest that the modulation of the expression of PPARγ receptors in the diabetic or TZD treated mice might be a pharmacological model of two situations: a permanent blocking of these receptors as a response of the organism for obesity to...
prevent diabetes or desensitization of this nuclear receptor due to continuous stimulation with its ligand during treatment.

Conclusion

This year, we are celebrating the 20th anniversary of the discovery of the first adipokine that gave us a novel definition for adipose tissue: leptin. Since then it has become clear that adipose tissue is a source of a wide range of bioactive molecules called adipokine leading the regulation of systemic metabolism. The secretion of these hormones is henceforth controlled by what we can call nowadays the masterchef of metabolic homeostasis: PPARy.

Being modulated by a considerable variety of endogenous and synthetic ligand, PPARy is at the present time considered as a crucial metabolic sensor modulating numerous gene expression implicated in body homeostasis. Although PPARy has mostly been connected with glycemic modulation, it is now evident that its effects are much more extensive and cover adipogenesis, cardiometabolic control and lipid catabolism. One of the major challenges lying ahead remains to better understand the molecular mechanism underlying its modulated activity related to the ligand nature, to improve our knowledge of its specificity to the chosen ligand in each therapeutic treatment.

References

1. Issmann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347: 645-650.
2. Siiteri PK (1987) Adipose tissue as a source of hormones. Am J Clin Nutr 45: 277-282.
3. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, et al. (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A 94: 4318-4323.
4. Frick MH, Eio O, Haapa K, Heinonen OP, Heinsalmi P, et al. (1987) Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 317: 1237-1245.
5. Issmann I, Prince RA, Tugwood JD, Green S (1993) The peroxisome proliferator-activated receptor-retinoid X receptor heterodimer is activated by fatty acids and fibrate hypolipidaemic drugs. J Mol Endocrinol 11: 37-47.
6. Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S (2011) The peroxisome proliferatorK activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2: 236-240.
7. Aldridge TC, Tugwood JD, Green S (1995) Identification and characterization of DNA elements implicated in the regulation of CYP4A1 transcription. Biochem J 306: 473-479.
8. Muehroff AS, Griffin KL, Johnson EF (1992) The peroxisome proliferator-activated receptor mediates the induction of CYP4A6, a cytochrome P450 fatty acid omega-hydroxylase, by fibrinoidic acid. J Biol Chem 267: 19051-19053.
9. Tugwood JD, Issmann I, Anderson RG, Bundell KR, McPheat WL, et al. (1992) The mouse peroxisome proliferator activated receptor recognizes a response element in the 5' flanking sequence of the rat acyl CoA oxidase gene. EMBO J 11: 433-439.
10. Zhang Y, Proenza R, Maffei M, Barone M, Leopold L, et al. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372: 435-432.
11. Zhu Y, Alvares K, Huang Q, Rao MS, Reddy JK (1993) Cloning of a new member of the peroxisome proliferator-activated receptor gene family from mouse liver. J Biol Chem 268: 26817-26820.
12. Aranda A, Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81: 1269-1304.
13. Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20: 649-688.
14. Ferré P (2004) The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes 53 Suppl 1: S43-S50.
15. Laudet V (1997) Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J Mol Endocrinol 19: 207-226.
16. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, et al. (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 270: 12953-12956.
17. Spiegelman BM (1998) PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47: 507-514.
18. Sundvold H, Lien S (2001) Identification of a novel peroxisome proliferator-activated receptor (PPAR) promoter in man and transactivation by the nuclear receptor RORalph1. Biochem Biophys Res Commun 287: 383-390.
19. Dreyer C, Keller H, Mahfoudi A, Laudet V, Krey G, et al. (1993) Positive regulation of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR). Biol Cell 77: 67-76.
20. Housekecht KL, Cole BM, Steele PJ (2002) Peroxoxisome proliferator-activated receptor gamma (PPARgamma) and its ligands: a review. Domest Anim Endocrinol 22: 1-23.
21. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, et al. (1996) PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 15: 5336-5348.
22. Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, et al. (1999) Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell 3: 397-403.
23. Willermain F, Dalku S, Gonzalez NS, Blero D, Driessen G, et al. (2006) 15KDeoxyX12,14Prostaglandin J2 inhibits interferon gamma induced MHC class II but not class I expression on ARPE cells through a PPAR gamma independent mechanism. Prostaglandins Other Lipid Mediat 80: 136-143.
24. El Akoum S, Cloutier I, Tanguay JF (2012) Vascular smooth muscle cell alterations triggered by mice adipocites: role of high-fat diet. J Atheroscler Thromb 19: 1128-1141.
25. Fan YY, Ramos KS, Chapkin RS (2001) Dietary gamma-linolenic acid suppresses aortic smooth muscle cell proliferation and modifies atherosclerotic lesions in apolipoprotein E knockout mice. J Nutr 131: 1675-1681.
26. Harding AH, Day NE, Khaw KT, Bingham S, Luben R, et al. (2004) Dietary fat and the risk of clinical type 2 diabetes: the European prospective investigation of Cancer-Norfolk study. Am J Epidemiol 159: 73-82.
27. Herber L, Döppen W, Major E, Gries FA (1974) Dietary-induced hypertrophic--hyperplastic obesity in mice. J Biol Chem 249: 73-82.
28. Kubota N, Terauchi Y, Miki H, Tatemoto H, Yamauchi T, et al. (1999) PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 4: 597-609.
29. Lee YI, Wang MY, Kakuta T, Wang ZW, Babcock E, et al. (2001) Liporegulation in diet-induced obesity. The antisteatotic role of hyperleptinemia. J Biol Chem 276: 5629-5635.
30. Manco M, Calvani M, Mingrone G (2004) Effects of dietary fatty acids on insulin sensitivity and secretion. Diabetes Obes Metab 6: 402-413.
31. Wilmsen HM, Giaraldi TP, Carter L, Reehman N, Madalal SR, et al. (2003) Thiazolidinediones upregulate impaired fatty acid uptake in skeletal muscle of type 2 diabetic subjects. Am J Physiol Endocrinol Metab 285: E354-362.
32. Braissant O, Foufelle F, Scotto C, Daoucha M, Wahl W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137: 354-366.

33. Mukherjee R, Jow L, Noonan D, McDonnell DP (1994) Human and rat peroxisome proliferator activated receptors (PPARs) demonstrate similar tissue distribution but different responsiveness to PPAR activators. J Steroid Biochem Mol Biol 51: 157-166.

34. Werman A, Hollenberg A, Solanes G, Bjorbaek C, Vidal-Puig AJ, et al. (1997) Ligand-independent activation domain in the N terminus of peroxisome proliferator-activated receptor gamma (PPARgamma). Differential activity of PPARgamma1 and -2 isoforms and influence of insulin. J Biol Chem 272: 20230-20235.

35. Medina-Gomez G, Gray SL, Yetukuri L, Shimomura K, Virtue S, et al. (2007) PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet 3: e64.

36. Zhu Y, Qi C, Korenberg JR, Chen XN, Noya D, et al. (1995) Structural

37. Marx N, Sukhova GK, Collins T, Libby P, Plutzky J (1999) PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 99: 3125-3131.

38. Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) PPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8: 1224-1234.

39. Bortolotto JW, Margis R, Ferreira AC, Padoin AV, Mottin CC, et al. (2004) A single-nucleotide polymorphism in the peroxisome proliferator-activated receptor gamma 2 promoter associated with altered in vitro expression and partial lipodystrophy. J Clin Endocrinol Metab 89: 5655-5660.

40. Medina-Gomez G, Gray SL, Yetukuri L, Shimomura K, Virtue S, et al. (2007) Adipose tissue distribution and quantification of PPARbeta/delta mRNAs: discordant gene expression in subcutaneous, retroperitoneal and visceral adipose tissue of morbidly obese patients. Obes Surg 17: 934-940.

41. Feng C, Zhang C, Cherkovsky D, Bawhan A, Neufeld EJ, et al. (2002) Peroxisome proliferator-activated receptor gamma in lymphocytes from non-obese, diabetic, and diabetic mice. J Biol Chem 277: 1341-1344.

42. Fajas L, Frucht JC, Auwerx J (1998) PPARgamma mRNA: a distinct PPARgamma mRNA subtype transcribed from an independent promoter. FEBs Lett 438: 55-60.

43. Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391: 82-86.

44. Mars N, Sukhova GK, Collins T, Libby P, Plutzky J (1999) PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 99: 3125-3131.

45. Sugii S, Olson P, Soto-San Martin J, Lusis AJ, Cariñanos J, et al. (2003) Peroxisome proliferator-activated receptor gamma 2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol 15: 351-357.

46. Lee JY, Hashizaki H, Goto T, Sakamoto T, Takahashi N, et al. (2011) Activation of peroxisome proliferator-activated receptor alpha stimulates both adipocyte metabolism by caspase-mediated cleavage of PPARgamma. Proc Natl Acad Sci U S A 106: 22504-22509.

47. Ryan KK, Li B, Grayson BE, Matter EK, Woods SC, et al. (2011) A role for central nervous system PPAR-γ in the regulation of energy balance. Nat Med 17: 618-622.

48. Baicu C, Miller AE, Naples M, Baker C, Kohen R, et al. (2009) TRAIL (TNF-related apoptosis-inducing ligand) regulates adipocyte metabolism by caspase-mediated cleavage of PPARgamma. Cell Death Dis 4: e474.

49. Trayhurn P, Bingle C, Wood IS (2006) Adipose tissue and adipokines--energy regulation from the human perspective. J Nutr 136: 1935S-1939S.

50. Rabe K, Lehrke M, Parhofer KG, Broedl UC (2008) Adipokines and insulin resistance. Mol Med 14: 741-751.

51. Basciano H, Miller AE, Naples M, Baker C, Kohen R, et al. (2009) Metabolic effects of dietary cholesterol in an animal model of insulin resistance and hepatic steatosis. Am J Physiol Endocrinol Metab 297: E462-473.
Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, et al. (2013) PPARα catalytic signaling and metabolism: the good, the bad and the future. Nat Med 19: 557-566.

El Akoum S, Lamontagne V, Cloutier I, Tanguay JF (2011) Nature of fatty acids in high fat diets differentially delineates obesity-linked metabolic syndrome components in male and female C57BL/6j mice. Diabetol Metab Syndr 3: 34.

Mirzaei K, Hossein-Nezhad A, Keshavarz SA, Kohdani F, SahworkYaraghi AA, et al. (2013) Crosstalk between circulating peroxisome proliferator-activated receptor gamma, adipokines and metabolic syndrome in obese subjects. Diabetology & metabolic syndrome 5: 79.

Frederich RC, Hamann A, Anderson S, Lollmann B, Lowell BB, et al. (1995) Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med 1: 1311-1314.

Hollenberg AN, Susulic VS, Madura JP, Zhang B, Moller DE, et al. (1997) Functional antagonism between CCAAT/Enhancer binding protein-alpha and peroxisome proliferator-activated receptor-gamma on the leptin promoter. J Biol Chem 272: 5283-5290.

Cabero A, Cubero M, Llaverias G, Algetre M, Sánchez R, et al. (2005) Leptin down-regulates peroxisome proliferator-activated receptor gamma (PPAR-gamma) mRNA levels in primary human monocyte-derived macrophages. Mol Cell Biochem 275: 173-179.

Wang L, Shao YY, Ballock RT (2012) Leptin Antagonizes Peroxisome Proliferator-ACTivated Receptor-γ Signaling in Growth Plate Chondrocytes. PPAR Res 2012: 756198.

Zhou Y, Jia X, Qin J, Lu C, Zhu H, et al. (2010) Leptin inhibits PPARgamma gene expression in hepatic stellate cells in the mouse model of liver damage. Mol Cell Endocrinol 323: 193-200.

Correia ML, Morgan DA, Sivitz WI, Mark AL, Haynes WG (2001) Leptin stimulates fatty acid oxidation by activating AMP-activated protein kinase. Nature 415: 339-343.

Suzuki A, Omoto S, Lee S, Saito K, Shiuchi T, et al. (2004) Leptin regulates fatty acid metabolism and AMPK activity in mouse subcutaneous adipose tissue. Diabetes 53: 1253-1260.

Seufert J, Kieffer TJ, Leech CA, Holz GG, Moritz W, et al. (1999) Leptin inhibits the peroxisome proliferator-activated receptor-alpha acutely inhibits insulin signaling in human adipocytes: evidence of peripheral leptin resistance. Am J Physiol 278: E187-192.

Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, et al. (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8: 1288-1295.

Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, et al. (1995) cDNA cloning and expression of a novel adipose specific collagenKl8r factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun 221: 286-289.

Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, et al. (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257: 79-83.

Yamada A, Nakamura Y, Shida S, Takahashi S, Uchida M, et al. (2013) Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res 46: 1369-1379.

Ceddia RB, Parolin ML, Heigenhauser GJ, Dyck DJ (2002) Leptin increases FA oxidation in lean but not obese human skeletal muscle: evidence of peripheral leptin resistance. Am J Physiol Endocrinol Metab 283: E187-192.

Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, et al. (2004) Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes 53: 1253-1260.

Zhao T, Hou M, Xia M, Wang Q, Zhu H, et al. (2005) Adiponectin increases plasma adiponectin levels in type 2 diabetic patients with proteinuria. Endocrinology 155: 395-403.

Warne JP (2003) Tumour necrosis factor alpha: a key regulator of adipose tissue mass. J Endocrinol 177: 351-355.

El Akoum S, Kim YB, Peroni OD, Fryer LG, Müller C, et al. (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415: 339-343.

Zhou L, Yu X, Meng Q, Li H, Niu C, et al. (2013) Resistin reduces fatty acid oxidation in liver and hypothalamus. Mol Cell Endocrinol 324: 59-66.

El Akoum S, Lamontagne V, Cloutier I, Tanguay JF (2011) Nature of fatty acids in high fat diets differentially delineates obesity-linked metabolic syndrome components in male and female C57BL/6j mice. Diabetol Metab Syndr 3: 34.

Mirzaei K, Hossein-Nezhad A, Keshavarz SA, Kohdani F, SahworkYaraghi AA, et al. (2013) Crosstalk between circulating peroxisome proliferator-activated receptor gamma, adipokines and metabolic syndrome in obese subjects. Diabetology & metabolic syndrome 5: 79.

Frederich RC, Hamann A, Anderson S, Lollmann B, Lowell BB, et al. (1995) Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med 1: 1311-1314.

Hollenberg AN, Susulic VS, Madura JP, Zhang B, Moller DE, et al. (1997) Functional antagonism between CCAAT/Enhancer binding protein-alpha and peroxisome proliferator-activated receptor-gamma on the leptin promoter. J Biol Chem 272: 5283-5290.

Cabero A, Cubero M, Llaverias G, Algetre M, Sánchez R, et al. (2005) Leptin down-regulates peroxisome proliferator-activated receptor gamma (PPAR-gamma) mRNA levels in primary human monocyte-derived macrophages. Mol Cell Biochem 275: 173-179.

Wang L, Shao YY, Ballock RT (2012) Leptin Antagonizes Peroxisome Proliferator-ACTivated Receptor-γ Signaling in Growth Plate Chondrocytes. PPAR Res 2012: 756198.

Zhou Y, Jia X, Qin J, Lu C, Zhu H, et al. (2010) Leptin inhibits PPARGamma gene expression in hepatic stellate cells in the mouse model of liver damage. Mol Cell Endocrinol 323: 193-200.

Correia ML, Morgan DA, Sivitz WI, Mark AL, Haynes WG (2001) Leptin acts in the central nervous system to produce dose-dependent changes in arterial pressure. Hypertension 37: 936-942.

McGarry JD (1995) Appetite control: Does leptin lighten the problem of obesity? Curr Biol 5: 1342-1344.

Seufert J (2004) Leptin effects on pancreatic beta-cell gene expression and function. Diabetes 53 Suppl 1: S152-158.

Seufert J, Kieffer TJ, Leech CA, Holz GG, Moritz W, et al. (1999) Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. J Clin Endocrinol Metab 84: 670-676.

Benomar Y, Wetzler S, Larue-Auchagiotis C, Djiane J, Tomé D, et al. (2005) In vivo leptin infusion impairs insulin and leptin signalling in liver and hypothalamus. Mol Cell Endocrinol 242: 59-66.

Unger RH (2005) Hyperleptinemia: protecting the heart from lipid overload. Hypertension 45: 1031-1034.

Shen J, Sakaida I, Uchida K, Terai S, Okita K (2005) Leptin enhances TNF-alpha production via p38 and JNK MAPK in LPS-stimulated Kupffer cells. Life Sci 77: 1502-1515.

Nieto-Vazquez I, Fernandez-Veleido S, Krämer DK, Vila-Bedmar R, Garcia-Guerra L, et al. (2008) Insulin resistance associated to obesity: the link TNF-alpha. Arch Physiol Biochem 114: 183-194.

Liu LS, Spelleken K, Rohrig K, Hauner H, Eckel J (1998) Tumor necrosis factor-alpha acutely inhibits insulin signaling in human adipocytes: implication of the p80 tumor necrosis factor receptor. Diabetes 47: 515-522.

Qi C, Pekala PH (2000) Tumor necrosis factor-alpha-induced insulin resistance in adipocytes. Proc Soc Exp Biol Med 223: 128-135.

Cawthorn WP, Heyd F, Hegyi K, Sethi JK (2007) Tumour necrosis factor-alpha inhibits adipogenesis via a beta-catenin/TCP45(TCP7L2)-dependent pathway. Cell Death Differ 14: 1361-1373.

Cawood TJ, Moriarty P, O’Farrelly C, O’Shea D (2006) The effects of tumour necrosis factor-alpha and interleukin1 on an in vitro model of thyroid-associated ophthalmopathy; contrasting effects on adipogenesis. Eur J Endocrinol 155: 395-403.
108. Adegbate E (2004) An update on the biology and physiology of resistin. Cell Mol Life Sci 61: 2485-2496.

109. Junkin KA, Dyck DJ, Mullen KL, Chabowski A, Thrush AB (2009) Resistin acutely impairs insulin-stimulated glucose transport in rodent muscle in the presence, but not absence, of palmitate. Am J Physiol Regul Integr Comp Physiol 296: R944-951.

110. McTernan PG, Fisher FM, Valsamakis G, Chetty R, Harte A, et al. (2003) Resistin and type 2 diabetes: regulation of resistin expression by insulin and rosiglitazone and the effects of recombinant resistin on lipid and glucose metabolism in human differentiated adipocytes. J Clin Endocrinol Metab 88: 6098-6106.

111. Nagaev I, Smith U (2001) Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle. Biochem Biophys Res Commun 283: 561-564.

112. Utzschneider KM, Carr DB, Tong J, Wallace TM, Hull RL, et al. (2005) Resistin is not associated with insulin sensitivity or the metabolic syndrome in humans. Diabetologia 48: 2330-2333.

113. Youn BS, Klöting N, Kratzsch J, Lee N, Park JW, et al. (2008) Serum Cytokinin secreted by visceral fat that mimics the effects of insulin. Science 307: 426-430.

114. Yue P, Jin H, Aillaud M, Deng AC, Azuma J, et al. (2010) Apelin is associated with resistin expression in human fat cells or skeletal muscle. Biochem Biophys Res Commun 390: 439-444.

115. Li Q, Chen R, Moriya J, Yamakawa J, Sumino H, et al. (2008) A novel adipocytokine, visceral adipose tissue-derived serum protease inhibitor (vaspin), and obesity. J Int Med Res 36: 625-629.

116. Youn BS, Klöting N, Kratzsch J, Lee N, Park JW, et al. (2008) Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes 57: 372-377.

117. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, et al. (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307: 426-430.

118. Klöting N, Klöting I (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307: 426-430.

119. Utzschneider KM, Carr DB, Tong J, Wallace TM, Hull RL, et al. (2005) Resistin is not associated with insulin sensitivity or the metabolic syndrome in humans. Diabetologia 48: 2330-2333.

120. Frantz S, Hu K, Widder J, Bayer B, Witzel CC, et al. (2004) Peroxisome proliferator-activated receptor-gamma agonism and left ventricular remodeling in mice with asthma. Zhongguo Dang Dai Er Ke Za Zhi 15: 583-587.

121. Marx N, Bourcier T, Sukhova GK, Libby P, Plutzky J (1999) Peroxisome proliferator-activated receptor-gamma on proliferation of airway smooth muscle cells. Cell Mol Life Sci 61: 2485-2496.

122. Cheng L, Yuan Y, Wang Y, Li J, Li J, et al. (2005) Peroxisome proliferator-activated receptor-gamma on proliferation of airway smooth muscle cells. Cell Mol Life Sci 61: 2485-2496.

123. Law RE, Meehan WP, Xi XP, Graf K, Wuthrich DA, et al. (1996) Troglozilbin inhibits vascular smooth muscle cell growth and intimal hyperplasia. J Clin Invest 98: 1907-1915.

124. Delerive P, Martin-Nizard F, Chinneti G, Trottein F, Fruchart JC, et al. (1999) Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ Res 85: 394-402.

125. Duan SZ, Ivashchenko CY, Russell MW, Milstone DS, Mortensen RM (2005) Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-gamma both induce cardiac hypertrophy in mice. Circ Res 97: 372-379.

126. Zhang L, Zalewski A, Liu Y, Mazurek T, Cowan S, et al. (2003) Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries. Circulation 108: 472-478.

127. Son NH, Park TS, Yamashita H, Yokoyama M, Huggins LA, et al. (2007) Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J Clin Invest 117: 2791-2801.

128. Desreumaux P, Philippe D (2003) [Dual function of NF-kappa B system during inflammation]. Gastroenterol Clin Biol 27: 1052-1053.

129. Green DE, Sutliff RL, Hart CM (2011) Is peroxisome proliferator-activated receptor gamma (PPARγ) a therapeutic target for the treatment of pulmonary hypertension? Pulm Circ 1: 33-47.

130. Maurer M, Rader M, Bas M, Bossi F, Cicardi M, et al. (2011) New topics in bradykinin research. Allergy 66: 1397-1406.

131. Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, et al. (2005) A SUMOlayment-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437: 759-763.

132. Fuerst M, Taylor CG, Wright B, Twerkow L, Zahradka P (2012) Inhibition of smooth muscle cell proliferation by adiponectin requires proteolytic conversion to its globular form. J Endocrinol 215: 107-117.

133. Meredith D, Panchatcharam M, Miriyala S, Tsai YS, Morris AJ, et al. (2009) Dominant-negative loss of PPARgamma function enhances smooth muscle cell proliferation, migration, and vascular remodeling. Arterioscler Thromb Vasc Biol 29: 465-471.

134. Kim HJ, Kang ES, Kim DJ, Kim SH, Ahn CW, et al. (2007) Effects of rosiglitazone and metformin on inflammatory markers and adipokines: decrease in interleukin-18 is an independent factor for the improvement of homeostasis model assessment-beta in type 2 diabetes mellitus. Clin Endocrinol (Oxf) 66: 282-289.

135. Lim HJ, Lee S, Lee KS, Park JH, Jang Y, et al. (2006) PPARgamma activation induces CD36 expression and stimulates foam cell like changes in rVSMCs. Prostaglandins Other Lipid Mediat 80: 165-174.

136. Little PJ, Osman N, de Dios ST, Cemerlang N, Ballinger M, et al. (2007) Anti-proliferative activity of oral anti-hyperglycemic agents on human vascular smooth muscle cells: thiazolidinediones (glitazones) have enhanced activity under high glucose conditions. Cardiovasc Diabetol 6: 33.

137. Gu MX, Liu XC, Jiang L (2013) [Effect of peroxisome proliferator-activated receptor-gamma on proliferation of airway smooth muscle cells in mice with asthma]. Zhongguo Dang Dai Er Ke Za Zhi 15: 583-587.

138. Marx N, Bourcier T, Sukhova GK, Libby P, Plutzky J (1999) PPARgamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPARgamma as a potential mediator in vascular disease. Arterioscler Thromb Vasc Biol 19: 546-551.

139. Koh H, Akiyama Y, Yui K (2006) Effect of troglitazone on serum gamma-glutamyltransferase activity and plasma t-PA/PAI-1 complex in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 26: 681-684.

140. Frantz S, Hu K, Widder J, Bayer B, Witzel CC, et al. (2004) Peroxisome proliferator-activated receptor agonism and left ventricular remodeling in mice with chronic myocardial infarction. Br J Pharmacol 141: 9-14.

141. Geng DF, Wu W, Jin DM, Wang JF, Wu YM (2006) Effect of peroxisome proliferator-activated receptor gamma ligand. Rosiglitazone on left ventricular remodeling in rats with myocardial infarction. Int J Cardiol 113: 86-91.

142. Ehrenstein V, Hernandez RK, Ulrichsen SP, Rungby J, Lash TL, et al. (2013) Rosiglitazone use and post-discontinuation glycaemic control in two European countries, 2000-2010. BMJ Open 3: e003424.

143. Komajda M, McMurray JJ, Beck-Nielsen H, Gomis R, Hanefeld M, et al. (2010) Heart failure events with rosiglitazone in type 2 diabetes: data from the RECORD clinical trial. Eur Heart J 31: 824-831.

144. Peraldi P, Hotamisligil GS, Buurman WA, White MF, Spiegelman BM (1996) Tumor necrosis factor (TNF)-alpha inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinas. J Biol Chem 271: 13018-13022.

145. Beier K, Völkl A, Fahimi HD (1997) TNF-alpha regulates expression of TNF receptor-1 and the mRNAs encoding peroxisomal proteins in rat liver. FEBS Lett 412: 385-387.
184. Rabkin SW, Lodhia P (2009) Stearic acid-induced cardiac lipotoxicity is independent of cellular lipid and is mitigated by the fatty acids oleic and capric acid but not by the PPAR agonist troglitazone. Exp Physiol 94: 877-887.

185. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, et al. (1995) 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83: 803-812.

186. Davies SS, Pontsler AV, Marathe GK, Harrison KA, Murphy RC, et al. (2001) Oxidized alkyl phospholipids are specific, high affinity peroxisome proliferator-activated receptor gamma ligands and agonists. J Biol Chem 276: 16015-16023.

187. Dang ZC, Audinot V, Papapoulos SE, Boutin JA, Löwik CW (2003) Peroxisome proliferator-activated receptor gamma (PPARgamma) as a molecular target for the soy phytoestrogen genistein. J Biol Chem 278: 962-967.

188. Cho KW, Lee OH, Banz WJ, Moustaid-Moussa N, Shay NF, et al. (2010) Daidzein and the daidzein metabolite, equol, enhance adipocyte differentiation and PPARgamma transcriptional activity. J Nutr Biochem 21: 841-847.

189. Shen P, Liu MH, Ng TY, Chan YH, Yong EL (2006) Differential effects of isoflavones, from Astragalus membranaceus and Pueraria thomsonii, on the activation of PPARalpha, PPARgamma, and adipocyte differentiation in vitro. J Nutr 136: 899-905.

190. Salam NK, Huang TH, Kota BP, Kim MS, Li Y, et al. (2008) Novel PPAR-gamma agonists identified from a natural product library: a virtual screening, induced-fit docking and biological assay study. Chem Biol Drug Des 71: 57-70.

191. Jungbauer A, Medjakovic S (2012) Anti-inflammatory properties of culinary herbs and spices that ameliorate the effects of metabolic syndrome. Maturitas 71: 227-239.