Aflatoxin B₁ Exposure, Hepatitis B Virus Infection, and Hepatocellular Carcinoma in Taiwan

Hui-Chen Wu,1 Qiao Wang,1 Hwai-I Yang,4 Habibul Ahsan,2,6 Wei-Yann Tsai,3,5 Li-Yu Wang,1 Shu-Yuan Chen,1 Chien-Jen Chen,4 and Regina M. Santella1

 Departments of Environmental Health Sciences, Epidemiology, and Biostatistics, Mailman School of Public Health of Columbia University, New York, New York; 2Graduate Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan; 3Department of Statistics, National Cheng Kung University, Tainan, Taiwan; and 4Departments of Health Studies, Medicine, and Human Genetics and Cancer Research Center, The University of Chicago, Chicago, Illinois

Abstract

To evaluate the role of aflatoxin B₁ (AFB₁) exposure on risk of hepatocellular carcinoma (HCC), a case-control study nested within a community-based cohort was conducted. Baseline blood and urine samples were used to determine the level of AFB₁-albumin adducts and urinary AFB₁ metabolites. Conditional logistic regression analysis was used to calculate odds ratios (OR) and 95% confidence intervals (95% CI) to assess the effect of AFB₁ exposure on risk of HCC. The adjusted ORs (95% CIs) were 1.54 (1.01-2.36) and 1.76 (1.18-2.58), respectively, for those with AFB₁-albumin adducts and urinary AFB₁ metabolite levels above the mean compared with those with levels below the mean. When compared with subjects in the lowest quartile of urinary AFB₁ metabolites, there was an increase in risk of HCC, with adjusted ORs (95% CIs) of 0.57 (0.14-2.43), 1.43 (0.32-6.42), and 4.91 (1.18-20.48; P trend = 0.02), respectively, among noncarriers of hepatitis B virus (HBV) infection. The adjusted OR (95% CI) was 7.49 (5.13-10.93) for carriers of hepatitis B surface antigen compared with noncarriers, regardless of AFB₁ status. The ORs (95% CI) were 10.38 (5.73-18.82) and 15.13 (7.83-29.25) for carriers of hepatitis B surface antigens with levels of AFB₁-albumin adducts and urinary AFB₁ metabolites above the mean, respectively. The combined effect of aflatoxin exposure and HBV infection did not differ by duration of follow-up. Consistent with our previous study with fewer subjects, these data show that AFB₁ exposure is a risk factor for HCC risk. However, in this larger study, the effect of combined AFB₁ exposure and HBV infection is more consistent with an additive than a multiplicative model. (Cancer Epidemiol Biomarkers Prev 2009;18(3):846–53)

Introduction

In Taiwan, primary hepatocellular carcinoma (HCC) is the leading cause of cancer death for males and the second for females. Epidemiologic evidence suggests that dietary exposure to aflatoxin B₁ (AFB₁) and chronic infection with hepatitis B virus (HBV) are major risk factors for HCC (1-3). The biotransformation of AFB₁, primarily in the liver, is intimately linked with its toxic and carcinogenic effects (4). AFB₁ undergoes an initial two-electron oxidation, yielding an active intermediate, AFB₁-exo-8,9-epoxide, which is later detoxified through a variety of metabolic processes (5). Epoxidation of AFB₁ to the exo-8,9-epoxide is a critical step in the genotoxic pathway of this carcinogen. The exo-epoxide is highly unstable and binds to DNA to form the predominant trans-8,9-dihydro-8-(N²-guanyl)-9-hydroxy-AFB₁ (AFB₁-N²-Gua) adduct, a promutagenic DNA lesion (5, 6). In addition to formation of the 8,9-oxide, AFB₁ also undergoes metabolism to yield stable urinary metabolites, which are poorer substrates for epoxidation, such as AFM₁, AFO₂, and AF₁ (5). The reactive epoxides are detoxified by glutathione S-transferase–mediated conjugation (7).

Biomarkers of AFB₁ exposure include AFB₁-DNA, serum AFB₁-albumin and urinary AFB₁ metabolites such as AFM₁, and AFB₁-mercapturic acid (5). In general, AFB₁-albumin adducts have been recognized as long-term markers of AFB₁ exposure. Because albumin adducts are as long lived as albumin, which has a half-life of 21 days in humans, they provide information on accumulated exposure over a period of 2 to 3 months (8, 9). Measurement of the adduct levels in urine, however, provides a noninvasive means of estimating the levels of AFB₁ exposure.

We have developed antibody-based methods for measurement of AFB₁ exposure, including AFB₁-albumin and urinary AFB₁ metabolites, and we have shown that dietary exposure to AFB₁ increased HCC risk among the Taiwanese population using a case-control study nested within a community-based Cancer Screening Program cohort (10, 11). Our previous study with a total of 3 to 4 years of follow-up found that in HBV-infected males, there was an adjusted odds ratio (OR) of 2.8 [95% confidence intervals (95% CI), 0.9-9.0] for detectable compared with nondetectable AFB₁-albumin adducts.
aspartate transaminase, a for serologic markers, including alanine transaminase, for at least 6 mo. Habitual alcohol intake was defined as drinking alcohol-containing products more than 4 d a week for at least 6 mo.

Information about duration and intensity was also obtained. Habitual cigarette smoking was defined as having smoked more than 4 d a week for at least 6 mo. Habitual cigarette smoking was defined as having smoked more than 4 d a week for at least 6 mo. Habitual alcohol intake was defined as drinking alcohol-containing products more than 4 d a week for at least 6 mo.

At enrollment, blood samples were tested in Taiwan for serologic markers, including alanine transaminase, aspartate transaminase, α-fetoprotein (AFP), HBsAg, and antibody against hepatitis C virus (anti-HCV). HBsAg was tested by RIA (Abbott Laboratories). Anti-HCV and AFP were tested by enzyme immunoassay using commercial kits (Abbott Laboratories). Both alanine transaminase and aspartate transaminase levels were determined with a serum chemistry autoanalyzer (model 736; Hitachi Co.) using commercial reagents (Biomerieux). Anti-HCV and AFP were assayed in all males and females who resided in Hu-Hsi and Pai-Hsa on Penghu Islets. The other assays were carried out on samples from all participants. Any participant who had an elevated level of alanine transaminase (≥45 IU/mL), aspartate transaminase (≥40 IU/mL), or AFP (≥20 ng/mL), or had a family history of HCC or liver cirrhosis among first-degree relatives was referred for upper abdominal ultrasonography examination. Suspected HCC cases were referred to teaching medical centers for confirmatory diagnosis by computerized tomography, digital subtracted angiogram, aspiration cytology, and pathologic examination. The criteria for HCC diagnosis included a histopathologic examination and a positive lesion detected by at least two different imaging techniques (abdominal ultrasonography, angiogram, or computed tomography) or by one imaging technique and a serum AFP level of >400 ng/mL.

Intensive follow-up, including abdominal ultrasonographic screening and serum AFP level determination every 3 mo, was carried out on those with ultrasonographic images indicative of liver cirrhosis, whereas others were examined annually. Any suspected HCC cases identified during follow-up were referred for confirmatory diagnosis as described above. Ninety-seven cases were diagnosed by histopathologic examination, 146 cases by at least two different imaging techniques (abdominal ultrasonography, angiogram, computed tomography, or magnetic resonance imaging), and 74 cases by one imaging technique and an AFP level of >400 ng/mL.

Study Subjects. Between February 1991 and June 2004, a total of 241 cases were newly diagnosed with HCC. Cases were primarily identified through linkage to the National Cancer Registry and death certification systems. Of these, 11 cases were excluded because of nonavailability of stored blood. A total of 1,052 controls were randomly selected from cohort subjects who were not affected with HCC through the follow-up period by matching to each case by age (±5 y), gender, residential township, and date of recruitment (±3 mo). The number of matched controls per case varied depending on the number of eligible controls with available specimens and ranged from two to six. Data on AFB1 biomarkers were available from our prior study on 56 cases and 220 controls (11). None of these controls became a case during the additional follow-up. Baseline blood samples (174 cases and 832 controls) and urine samples (142 cases and 684 controls) from new subjects were available and shipped to Columbia University on dry ice for determination of AFB1-albumin adducts as well as urinary AFB1 metabolites.

AFB1-Albumin Adducts in Blood and AFB1 Metabolites in Urine. Additional samples were assayed for albumin adducts by ELISA as previously described (11). Briefly, 50 μL of albumin extracts, equivalent to 200 μg of albumin, were added to plates previously coated with 3 ng of AFB1 epoxide-modified human serum albumin. Polyclonal antiserum 7 was used at a 1:2 × 109 dilution and the secondary antiserum, goat anti-rabbit IgG-alkaline phosphatase conjugate, was used at a 1:750 dilution. Concentrations of AFB1-albumin adducts were determined using a standard curve of serially diluted AFB1 epoxide-modified human serum albumin that had been enzymatically digested. Samples with <20% inhibition were considered undetectable and assigned a value of 0.01 fmol/μg. Two control samples were analyzed with each batch of test samples: a pooled sample of plasma from nonsmoking subjects from the United States and a positive control of serum from a rat treated with...
1.5 mg AFB1. The coefficient of variation of the mean of two controls was 20% (n = 13).

Urine samples were assayed essentially as described previously (11). Sep-Pak urine extracts (50 μL) were added to plates previously coated with 3 ng of AFB1 epoxide-modified bovine serum albumin. AF8E11 was used at 1:1,500 dilution and the secondary antiserum, goat anti-mouse alkaline phosphatase, was used at 1:1,000 dilution. AF8E11 mainly reacts with AFB1, but there is significant cross-reactivity with several aflatoxin derivatives, including AFB2, AFM1, AFG1, and AFP1 (12). Concentrations of urinary metabolites were determined using a standard curve of serially diluted AFB1. Samples with <20% inhibition were considered undetectable and assigned a value of 1 fmol/mL. A pooled sample of urine from five controls was used as a quality control and analyzed with each batch of test samples. The coefficient of variation was 10% (n = 5).

Statistical Methods. The χ^2 test was used to examine differences in the distributions of variables between cases and controls. Levels of AFB1-albumin adducts and urinary AFB1 metabolites were natural log transformed to normalize the distribution. All statistical analyses used data after log transformation. The cutpoint values were based on the distribution of log-transformed data among controls; however, for ease of interpretation, we present the values as arithmetic data. The distributions of the two biomarkers are higher in the more recently assayed samples compared with prior data. Initially in the data analysis, we used different cutoff values for the two batches of aflatoxin biomarker assays. However, the results were not significantly different between these two rounds. In the final data analysis, we combined both batches and adjusted for the batch effect on the values of the biomarkers by creating a new variable indicating round 1 or 2. A Pearson partial correlation coefficient was used to determine the correlation between AFB1-albumin adducts and urinary AFB1 metabolites adjusted by age and gender. To examine the independent and combined effects of the levels of AFB1 exposure on HCC among subjects with and without chronic HBV infection, the levels of biomarkers were analyzed as a categorical variable rather than a continuous variable. Subjects were divided into different exposure groups: those with biomarker levels above the mean value (59.8 fmol/mg for AFB1-albumin adducts and 55.2 fmol/mL for urinary AFB1 metabolites) for all controls samples versus those below the mean. To evaluate the dose-response relationships between biomarkers and HCC risk, subjects were divided into quartiles based on control values (<26.9, ≥26.9 to <43.5, ≥43.5 to <71.35, and ≥71.35 fmol/mg for AFB1-albumin adducts; <25.7, ≥25.7 to <48.5, ≥48.5 to <77.35, and ≥77.35 fmol/mL for urinary AFB1 metabolites). HBsAg, anti-HCV, assay batch, smoking, alcohol consumption, and body mass index (BMI)–adjusted ORs and 95% CIs were derived from conditional logistic regression models stratified on the matching factors to estimate the association between levels of AFB1 exposure and HCC risk. The test for trend of adjusted ORs across strata was based on Wald’s test with consecutive scores of 1, 2, 3, and 4 assigned to the first, second, third, and fourth quartiles of the biomarker. All analyses were done with Statistical Analysis System software 9.0 (SAS Institute). All statistical tests were based on two-tailed probability.

Results

The sociodemographic characteristics of HCC cases and controls among all subjects and those with data on both biomarkers are given in Table 1. The distributions of characteristics were similar for both groups. There were no differences in mean ages and BMI between cases and controls. Significantly more controls (58%) were negative for both HBV and HCV biomarkers compared with cases (15.0%). The distributions of habitual smoking were similar for cases and controls (30.0% and 45.3%, respectively), but there was a significant difference in frequency of alcohol consumption (22.8% and 17.0%, respectively).

The mean levels of AFB1-albumin adducts were not statistically significantly different between cases and

Variable	Cases (n = 230) %	Controls (n = 1,052) %	P	Subjects with available data on both biomarkers	P	
Mean age (y)*	53.9 (7.8)	53.7 (7.6)	0.68	53.8 (7.5)	53.6 (7.4)	0.95
BMI (mean ± SD)*	24.4 (3.4)	24.5 (3.6)	0.77	24.3 (3.6)	24.3 (3.4)	0.33
Gender, n (%)						
Female	46 (20.0)	207 (19.7)	0.91	34 (17.2)	150 (16.6)	0.84
Male	184 (80.0)	845 (80.3)		164 (82.8)	754 (83.4)	
HBsAg/anti-HCV, n (%)						
–/–	34 (15.0)	676 (64.4)	<0.0001	25 (12.9)	581 (64.5)	<0.0001
+/-	143 (63.3)	271 (25.8)		131 (67.5)	241 (26.7)	
±/+	39 (17.3)	72 (6.9)		28 (14.4)	52 (5.8)	
Smoking, n (%)						
No	115 (50.0)	575 (54.7)	0.20	98 (49.5)	477 (52.8)	0.4
Yes	115 (50.0)	477 (45.3)		100 (50.5)	427 (47.2)	
Alcohol, n (%)						
No	176 (77.2)	872 (83.0)	0.04	151 (77.0)	741 (82.1)	0.01
Yes	52 (22.8)	179 (17.0)		45 (23.0)	162 (17.9)	

NOTE: Anti-HCV data missing for seven subjects. Alcohol data missing for three subjects.

*P value for t test for continuous variable; all other P values for the χ^2 test for categorical variables.
controls (56.5 ± 53.5 versus 59.8 ± 59.5 fmol/mg, respectively; \(P = 0.45 \); Table 2). The mean level of urinary AFB1 metabolites, however, was significantly higher in cases than in controls (71.3 ± 54.9 versus 55.2 ± 41.9 fmol/mL, respectively; \(P < 0.0001 \)). There was a weak linear correlation between levels of AFB1-albumin adducts and urinary AFB1 metabolites, with a partial Pearson correlation coefficient of 0.15 (Table 2). The association of AFB1 exposure with HCC risk is given in Table 2. AFB1-albumin adducts (fmol/mg) were detectable in >93% of subjects. After multivariable adjustment, the OR for those with AFB1-albumin adducts above the mean compared with those with levels below the mean was 1.54 (95% CI, 1.01-2.36). When AFB1-albumin adduct levels were divided into quartiles based on control values, there was a nonstatistically significant increased risk for those in the higher quartiles, with adjusted ORs (95% CI) of 1.11 (0.69-1.83), 0.18 (0.69-2.03), and 1.47 (0.83-2.58) for the second, third, and fourth quartiles relative to the lowest, respectively (\(P_{\text{trend}} = 0.19 \)).

The OR for those with urinary AFB1 metabolite levels above the mean compared with those with levels below the mean was 4.29 (95% CI, 1.43-12.85) among noncarriers. There was a statistically significant dose-response relationship between urinary AFB1 metabolites and HCC with ORs (95% CI) of 0.57 (0.14-2.43), 1.43 (0.32-6.42), and 4.91 (1.18-20.48; \(P_{\text{trend}} = 0.02 \), respectively, for adduct levels in the second, third, and fourth quartiles of adducts among noncarriers compared with those in the lowest quartile. There were no significant associations among carriers of HBsAg.

Similarly, among carriers of HBsAg, the ORs (95% CI) were 0.75 (0.38-1.46), 1.14 (0.53-2.46), and 1.46 (0.66-3.24), respectively, for adduct levels in the second, third, and fourth quartiles of adducts compared with those in the lowest quartile (\(P_{\text{trend}} = 0.33 \)). The corresponding ORs (95% CI) were 1.87 (0.67-5.21), 1.03 (0.32-3.31), and 1.70 (0.46-6.28; \(P_{\text{trend}} = 0.64 \)) among noncarriers.

The OR for those with urinary AFB1 metabolite levels above the mean compared with those with levels below the mean was 4.29 (95% CI, 1.43-12.85) among noncarriers. There was a statistically significant dose-response relationship between urinary AFB1 metabolites and HCC with ORs (95% CI) of 0.57 (0.14-2.43), 1.43 (0.32-6.42), and 4.91 (1.18-20.48; \(P_{\text{trend}} = 0.02 \)), respectively, for adduct levels in the second, third, and fourth quartiles of adducts among noncarriers compared with those in the lowest quartile.

Table 2. Biomarkers of AFB1 exposure and risk of HCC

AFB1 exposure	Cases, n (%)	Controls, n (%)	OR (95% CI)	OR (95% CI)*
AFB1-albumin adducts (fmol/mg)				
Mean (SD)	56.5 (53.5)	59.8 (59.5)	1.0	1.0
Nondetectable	15 (6.5)	57 (5.4)	1.0	1.0
Detectable	215 (93.5)	995 (94.6)	0.92 (0.49-1.74)	0.99 (0.48-2.02)
Below mean (<59.8)	155 (67.4)	708 (67.3)	1.0	1.0
Above mean (>59.8)	75 (32.6)	128 (32.7)	1.10 (0.76-1.60)	1.54 (1.01-2.36)
>=26.9	58 (25.2)	262 (24.9)	0.92 (0.61-1.41)	1.11 (0.69-1.83)
>=43.5 to <71.5	49 (22.3)	264 (25.1)	0.76 (0.48-1.21)	1.18 (0.69-2.03)
>=71.5	57 (24.8)	263 (25.0)	0.94 (0.58-1.51)	1.47 (0.83-2.58)
P\text{trend} = 0.38				
Urinary AFB1 metabolites (fmol/mL)				
Mean (SD)	71.3 (54.9)	55.2 (41.9)	1.0	1.0
Nondetectable	23 (11.6)	107 (11.9)	1.07 (0.59-1.94)	1.70 (0.89-3.25)
Detectable	175 (88.4)	797 (88.1)	1.0	1.0
Below mean (<55.2)	85 (42.9)	509 (56.3)	1.0	1.0
Above mean (>55.2)	113 (57.1)	398 (43.7)	1.27 (1.27-2.47)	1.76 (1.18-2.58)
<=25.7	45 (22.7)	225 (24.9)	1.0	1.0
>=25.7 to 48.5	31 (15.7)	223 (24.7)	0.76 (0.45-1.27)	0.98 (0.54-1.78)
>=48.5 to 77.35	45 (22.7)	230 (25.4)	1.15 (0.59-2.24)	0.95 (0.55-1.69)
>=77.35	37 (17.9)	226 (25.0)	1.91 (1.21-3.01)	1.99 (1.18-3.36)
P\text{trend} = 0.0009				

*Adjusted for batch of aflatoxin biomarker assay, HBsAg, anti-HCV status, habitual smoking, alcohol drinking, and BMI.

\(^{1}\) \(P < 0.01 \).
Urinary AFB1 metabolites (fmol/mL) developing HCC by 1.5-fold. Elevated risk of HCC with increasing levels of AFB1. Follow-up (11), we found a statistically significant association, and HCC. Consistent with our previous study that included 56 cases diagnosed with HCC within 4 years of diagnosis, and HCC. Long-term markers of AFB1 exposure. Because albumin adducts are as long lived as albumin, which has a half-life of 21 days in humans, they provide information on accumulated exposure over a period of 2 to 3 months. The long-term stability of human AFB1-albumin adducts accumulated exposure over a period of 2 to 3 months. The long-term stability of human AFB1-albumin adducts.

Table 3. Biomarkers of AFB1 exposure and risk of HCC by HBsAg status

HBsAg positive	No. HCC	No. controls	OR (95% CI)	P_trend = 0.33
AFB1-albumin adducts (fmol/mg) Nondetectable	10 15	1.0	0.58 (0.18-1.91)	
Detectable	145 286	1.0	1.43 (0.76-2.71)	
Below mean (<59.8)	111 219	1.0	0.75 (0.38-1.46)	
Above mean (≥59.8)	44 82	1.0	1.14 (0.53-2.46)	
<26.9	50 95	1.0	1.46 (0.66-3.24)	
≥26.9 to <43.5	35 79	1.0	0.75 (0.38-1.46)	
≥43.5 to <71.35	35 69	1.0	1.14 (0.53-2.46)	
≥71.35	35 58	1.0	1.46 (0.66-3.24)	
Urinary AFB1 metabolites (fmol/mL) Nondetectable	19 50	1.0	1.31 (0.64-2.67)	
Detectable	124 218	1.0	1.19 (0.72-1.98)	
Below mean (<55.2)	63 139	1.0	0.93 (0.41-2.16)	
Above mean (≥55.2)	80 129	1.0	0.65 (0.29-1.45)	
<25.7	33 69	1.0	1.23 (0.62-2.41)	
≥25.7 to 48.5	32 50	1.0	0.93 (0.41-2.16)	
≥48.5 to 77.35	36 71	1.0	0.93 (0.41-2.16)	
≥77.35	52 78	1.0	1.23 (0.62-2.41)	
No. HCC	5 4	1.0 1.0		
No. controls	42 57	1.0 1.0		
OR (95% CI)	0.7 0.7			
P_trend = 0.64	0.5 0.5			

Note: ORs were adjusted for batch of aflatoxin biomarker assay, anti-HCV status, habitual smoking, alcohol drinking, and BMI. *P < 0.01.

Discussion

In this study, with a longer follow-up period and more HCC cases than our prior study in this cohort, we applied two biological markers of AFB1 exposure, AFB1-albumin adducts and urinary AFB1 metabolites, to investigate the relationship between AFB1, HBV infection, and HCC. Consistent with our previous study that included 56 cases diagnosed with HCC within 4 years of follow-up (11), we found a statistically significant elevated risk of HCC with increasing levels of AFB1 exposure. This is also in agreement with another nested case-control study of 18,244 men in Shanghai, People’s Republic of China, among whom there were 22 incident cases of liver cancer. Analysis of urine samples banked 1 to 4 years before diagnosis gave a relative risk of 2.4 (95% CI, 1.0-5.9) for any of the AFB1 metabolites and 4.9 (95% CI, 1.5-16.3) for detectable AFB1-N7-Gua adducts (13). A subsequent follow-up study from this cohort showed that the presence of any urinary AFB1 biomarker significantly predicted liver cancer (relative risk, 5.0; 95% CI, 2.1-11.8), with a relative risk of 9.1 (95% CI, 2.9-29.2) for the presence of AFB1-N7-Gua adducts (3). Although Gan et al. (14) used a different assay for the measurement of AFB1-albumin adducts, we used their data correlating adducts to chronic intake of AFB1 to estimate median intake of AFB1 from median levels of albumin adducts among our controls. These estimations suggest that ~30 μg/d increases the risk of developing HCC by 1.5-fold.

Our previous report on this cohort, with urinary AFB1 metabolite data on 38 HCC cases and AFB1-albumin data on 52 cases, reported a 111-fold increased risk of HCC among HBsAg carriers with high urinary AFB1 metabolites and 70-fold for detectable AFB1-albumin adducts compared with those with low/nondetectable levels and those negative for HBsAg (11). A synergistic interaction between the presence of urinary AFB1 biomarkers and HBV seropositive status was also observed in the cohort study conducted in China with 50 HCC cases (relative risk, 59.4; 95% CI, 16.6-212.0; ref. 3). In the present study, with a much larger sample size (230 cases with AFB1-albumin adducts and 198 with AFB1 metabolite data), we did not observe a significant synergistic interaction between HBV infection and AFB1 exposure among cases diagnosed with HCC between 1 and 13 years after sample collection. Stratifying subjects by years between sample collection and diagnosis did not alter these results. This result is in contrast with our earlier study due to the larger number of cases (n = 83) diagnosed within 3 years as a result of the more complete case identification. Thus, the primary reason for these discrepant results may be the small sample sizes in prior studies. To date, there are no other data on the long-term combined effect of AFB1 with HBV on HCC.

It is difficult to accurately assess AFB1 exposure at the individual level either by questions about consumption of foods suspected to be major sources of exposure or by direct analysis of foods. Epidemiologic studies using urine and blood samples banked several years before diagnosis have shown that the presence of AFB1 metabolites in urine is associated with a significantly evaluated risk of HCC (11, 13, 14). In general, AFB1-albumin adducts have been recognized as a somewhat longer-term markers of AFB1 exposure. Because albumin adducts are as long lived as albumin, which has a half-life of 21 days in humans, they provide information on accumulated exposure over a period of 2 to 3 months.

Cancer Epidemiol Biomarkers Prev 2009;18(3). March 2009
Table 4. The combined effect of HBV infection and AFB1 exposure and risk of HCC

HBsAg	HCC/controls	OR (95% CI)	Diagnosis with HCC	HCC/controls	OR (95% CI)	More than 3 y	OR (95% CI)
			Within 3 y of follow-up		OR (95% CI)		
AFB1-albumin adducts							
Positive vs negative							
Negative Below mean (<59.8)	44/489	7.49 (5.13-10.93)*	12/174	1.0	32/315	1.0	
Negative Above mean (≥59.8)	31/262	1.64 (0.89-3.03)	7/67	2.58 (0.78-8.59)	24/195	1.42 (0.68-2.99)	
Positive Below mean (<59.8)	111/219	7.03 (4.45-11.09)*	46/119	4.32 (2.12-8.79)*	65/100	11.22 (6.05-20.82)*	
Positive Above mean (≥59.8)	44/82	10.38 (5.73-18.82)*	18/39	9.87 (3.70-26.39)*	26/43	10.71 (4.88-23.50)*	
P trend < 0.0001							
Urinary AFB1 metabolites							
Negative Below mean (<55.2)	22/370	1.0	7/150	1.0	15/220	1.0	
Negative Above mean (≥55.2)	33/266	2.84 (1.44-5.57)*	10/83	4.18 (1.24-14.15)*	23/183	2.34 (0.99-5.53)	
Positive Below mean (<55.2)	63/139	11.01 (5.79-20.92)*	27/85	7.09 (2.41-20.86)*	36/54	20.95 (8.52-51.55)*	
Positive Above mean (≥55.2)	80/129	15.13 (7.83-29.25)*	36/68	12.72 (4.29-37.75)*	44/61	19.80 (7.88-49.75)*	
P trend < 0.0001							
Negative Both below mean	15/240	1.0					
Negative Either one above mean	28/304	2.01 (0.92-4.39)					
Negative Both above mean	12/92	2.84 (1.06-7.62)					
Positive Both below mean	47/104	9.22 (4.30-19.34)					
Positive Either one above mean	73/126	12.87 (6.20-26.72)*					
Positive Both above mean	23/38	17.29 (6.98-42.82)*					

NOTE: ORs were adjusted for batch of aflatoxin biomarker assay, anti-HCV status, habitual smoking, alcohol drinking, and BMI.

*P < 0.0001.

† P < 0.05.
has been confirmed (15), as well as their significant correlation \((r = 0.69)\) with AFB1 intake (14). Studies in rats showed that AFB1-albumin adducts reflect the formation of DNA damage occurring in the liver (16). In humans, AFB1-albumin adducts are correlated with the prevalence of a specific codon 249 mutation in p53 in liver tumors (17). With the larger sample size in the present study, we are able to observe a statistically significant increased HCC risk with an OR of 1.54 (95% CI, 1.01-2.36) among subjects with AFB1-albumin adduct levels above the mean compared with those with AFB1-albumin adduct levels below the mean, although the test of a dose-response effect did not reach statistical significance.

Urinary AFB1 metabolites also provide a reliable assessment of dietary AFB1 intake (18, 19), with a correlation of 0.65 found between total dietary AFB1 intake and urinary AFM1 excretion (19). Both nested case-control studies of HCC, including ours (11) and the one in China (13, 14), suggest that measurement of urinary AFB1 metabolites is also a useful biomarker to evaluate HCC risk. Our present results suggest that both AFB1 biomarkers are valuable biomarkers for predicting HCC risk even in cases diagnosed more than 13 years after blood and urine collection.

In our study, levels of AFB1-albumin adducts and urinary AFB1 metabolites show only a weak although statistically significant linear correlation. This is not unexpected because there is a complex balance of oxidative DNA damage produced by exposure to AFB1, which results in various metabolites, including the reactive epoxide that is responsible for albumin adduct formation (20).

Although the formation of AFB1-guanine adducts through interaction between AFB1-8,9-epoxide and hepatic DNA is critical for the carcinogenesis induced by AFB1 (21), exposure to AFB1 can also induce oxidative DNA damage in liver tissue (22, 23). We previously observed positive correlations between urinary AFB1 metabolites and biomarkers of oxidative damage (8-oxodeoxyguanosine and 15-F2t-isoprostane) in urine (24, 25), suggesting that levels of urinary AFB1 metabolites might partly represent the amount of oxidative damage produced by exposure to AFB1. An elevated level of urinary 15-F2t-isoprostane was also associated with an increased risk of HCC (24).

Previously, the concept of a causative role for AFB1 in human liver was not universally accepted because of the presence of endemic HBV in high-risk populations (26). In the present study, we found urinary AFB1 metabolites independently and significantly associated with increased risk of HCC. In prior studies (3, 11, 13), the small number of cases without chronic HBV infection limited our ability to evaluate the effect of AFB1 exposure on HCC risk among this subgroup. In the larger present study, we observed a statistically significant individual effect of AFB1 exposure on HCC risk among noncarriers, with an OR of 4.29 for those with urinary AFB1 metabolites above versus below the mean. This provides evidence that not only HBV carriers but also noncarriers are vulnerable to the carcinogenic effect of AFB1. It is unclear why the effect of AFB1 on risk of HCC was somewhat weaker among carriers of HBV than in noncarriers. With respect to AFB1-albumin, in cases with serious liver disease, such as liver cirrhosis and hepatitis virus infection, the turnover of albumin might be much more variable, affecting adduct formation. In addition, HCV infection might also affect liver function and our data analysis may not fully adjust for this. Unfortunately, we do not have sufficient HCV-infected cases to stratify by HCV status.

A limitation of the study is that biomarker samples were assayed in two batches 12 years apart. The distributions of two biomarkers are higher in the more recently assayed samples compared with prior data. Due to sample availability, we could not reanalyze the prior samples. In the data analysis, we adjusted for the batch of aflatoxin biomarker assay effects on the biomarker values. Because samples were run in case-control sets and conditional logistic regression models were used to analyze data, cases and their controls are still comparable. Another limitation is the smaller number of subjects with urine compared with plasma. However, in their distributions by gender, age, BMI, hepatitis virus infection, smoking status, and alcohol consumption, subjects with available data on both biomarkers were similar to the total study population.

In summary, we found a significant positive association between AFB1 exposure, measured as AFB1-albumin adducts and urinary AFB1 metabolites, and risk of HCC. But we no longer observed a synergistic interaction between HBV infection and AFB1 exposure on HCC risk. The effect of combined AFB1 exposure and HBV infection is more consistent with an additive than a multiplicative model.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Appendix A.

Using the mean value of AFB1-albumin adducts among controls and Fig. 1 from Gan et al. (14), we converted adduct levels to dietary intake of AFB1, resulting in a value of ~30 µg/d. As shown in Table 2, this level of intake corresponds to an OR of 1.5. However, Gan et al. used a RIA with a different antibody than used in this article, which may lead to differences in quantitative values of adduct levels and, thus, errors in the estimation.

Acknowledgments

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

References

1. Chen CJ, Liang KY, Chang AS, et al. Effects of hepatitis B virus, alcohol drinking, cigarette smoking and familial tendency on hepatocellular carcinoma. Hepatology 1991;13:398–406.
2. Chen CJ, Wang LY, Lu SN, et al. Elevated aflatoxin exposure and increased risk of hepatocellular carcinoma. Hepatology 1996;24:38–42.
3. Qian GS, Ross RK, Yu MC, et al. A follow-up study of urinary markers of aflatoxin exposure and liver cancer risk in Shanghai.
People’s Republic of China. Cancer Epidemiol Biomarkers Prev 1994; 3:3 – 10.

4. Bailey EA, Iyer RS, Stone MP, Harris TM, Essigmann JM. Mutational properties of the primary aflatoxin B1-DNA adduct. Proc Natl Acad Sci U S A 1996;93:1535 – 8.

5. Wild CP, Turner PC. The toxicology of aflatoxins as a basis for public health decisions. Mutagenesis 2002;17:471 – 81.

6. Raney VM, Harris TM, Stone MP. DNA conformation mediates aflatoxin B1-DNA binding and the formation of guanine N7 adducts by aflatoxin B1 8,9-exo-epoxide. Chem Res Toxicol 1993;6:64 – 8.

7. Raney KD, Meyer DJ, Ketterer B, Harris TM, Guengerich FP. Glutathione conjugation of aflatoxin B1 exo- and endo-epoxides by rat and human glutathione S-transferases. Chem Res Toxicol 1992;5: 470 – 8.

8. Makarananda K, Pengpan U, Srisakulthong M, Yoovathaworn K, Sriratanakul K. Monitoring of aflatoxin exposure by biomarkers. J Toxicol Sci 1998;23 Suppl 2:155 – 9.

9. Sabbioni G, Skipper PL, Buchi G, Tannenbaum SR. Isolation and characterization of the major serum albumin adduct formed by aflatoxin B1 in vivo in rats. Carcinogenesis 1987;8:819 – 24.

10. Sun CA, Wang LY, Chen CJ, et al. Genetic polymorphisms of glutathione S-transferases M1 and T1 associated with susceptibility to aflatoxin-related hepatocarcinogenesis among chronic hepatitis B carriers: a nested case-control study in Taiwan. Carcinogenesis 2001; 22:1289 – 94.

11. Wang LY, Hatch M, Chen CJ, et al. Aflatoxin exposure and risk of hepatocellular carcinoma in Taiwan. Int J Cancer 1996;67:620 – 5.

12. Hatch MC, Chen C-J, Levin B, et al. Urinary aflatoxin levels, hepatitis-B virus infection and hepatocellular carcinoma in Taiwan. Int J Cancer 1993;54:931 – 4.

13. Ross RK, Yuan JM, Yu MC, et al. Urinary aflatoxin biomarkers and risk of hepatocellular carcinoma. Lancet 1992;339:943 – 6.

14. Gan LS, Skipper PL, Peng X, et al. Serum albumin adducts in the molecular epidemiology of aflatoxin carcinogenesis: correlation with aflatoxin B1 intake and urinary excretion of aflatoxin M1. Carcinogenesis 1988;9:1323 – 5.

15. Scholl PF, Groopman JD. Long-term stability of human aflatoxin B1 albumin adducts assessed by isotope dilution mass spectrometry and high-performance liquid chromatography-fluorescence. Cancer Epidemiol Biomarkers Prev 2008;17:1436 – 9.

16. Wild CP, Garner RC, Montesano R, Tursi F. Aflatoxin B1 binding to plasma albumin and liver DNA upon chronic administration to rats. Carcinogenesis 1986;7:853 – 8.

17. Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994;54:4855 – 78.

18. Bulatao-Jaym J, Almenro EM, Castro MC, Jardeleza MT, Salamat LA. A case-control dietary study of primary liver cancer risk from aflatoxin exposure. Int J Epidemiol 1982;11:112 – 9.

19. Zhu JQ, Zhang LS, Hu X, et al. Correlation of dietary aflatoxin B1 levels with excretion of aflatoxin M1 in human urine. Cancer Res 1987;47:1848 – 52.

20. Guengerich FP, Johnson WW, Ueng YF, Yamazaki H, Shimada T. Involvement of cytochrome P450, glutathione S-transferase, and epoxide hydrolase in the metabolism of aflatoxin B1 and relevance to risk of human liver cancer. Environ Health Perspect 1996;104: 557 – 62.

21. Kensler TW, Egner PA, Davidson NE, et al. Modulation of aflatoxin metabolism, aflatoxin-N7-guanine formation, and hepatic tumorigenesis in rats fed ethoxyquin: role of induction of glutathione S-transferases. Cancer Res 1986;46:3924 – 31.

22. Shen HM, Shi CY, Shen Y, Ong CN. Detection of elevated reactive oxygen species level in cultured rat hepatocytes treated with aflatoxin B1. Free Radic Biol Med 1996;21:139 – 46.

23. Shen HM, Ong CN, Lee BL, Shi CY. Aflatoxin B1-induced 8-hydroxydeoxyguanosine formation in rat hepatocellular carcinoma. Carcinogenesis 1995;16:419 – 22.

24. Wu HC, Wang Q, Yang HI, et al. Urinary 15-F2t-isoprostane, aflatoxin B1 exposure and hepatitis B virus infection and hepatocellular carcinoma in Taiwan. Carcinogenesis 2008;29:971 – 6.

25. Wu HC, Wang Q, Wang LW, et al. Urinary 8-oxodeoxyguanosine, aflatoxin B1 exposure and hepatitis B virus infection and hepatocellular carcinoma in Taiwan. Carcinogenesis 2007;28:995 – 9.

26. Stoloff L. Aflatoxin is not a probably human carcinogen: the published evidence is sufficient. Regul Toxicol Pharmacol 1989;10: 272 – 83.
Aflatoxin B₁ Exposure, Hepatitis B Virus Infection, and Hepatocellular Carcinoma in Taiwan

Hui-Chen Wu, Qiao Wang, Hwai-I Yang, et al.

Cancer Epidemiol Biomarkers Prev 2009;18:846-853.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/18/3/846

Cited articles
This article cites 26 articles, 6 of which you can access for free at:
http://cebp.aacrjournals.org/content/18/3/846.full#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/18/3/846.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cebp.aacrjournals.org/content/18/3/846.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.