18F-FDG and 18F-NaF PET/CT demonstrate coupling of inflammation and accelerated bone turnover in rheumatoid arthritis

Toshiyuki Watanabe1, Kaoru Takase-Minegishi2, Atsushi Ihata3, Yosuke Kunishita2, Daiga Kishimoto2, Reikou Kamiyama4, Maasa Hama2, Ryusuke Yoshimi3, Yohei Kiriño5, Yukiko Asami2, Akiko Suda1, Shigeru Ohno1, Ukihide Tateishi4, Atsuhisa Ueda2, Mitsuhiro Takeno6, and Yoshiaki Ishigatsubo2

1Center for Rheumatic disease, Yokohama City University Medical Center, Yokohama, Japan; 2Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan; 3Department of Rheumatology and Infectious disease, Yokohama Minami Kyosai Hospital, Yokohama, Japan; 4Department of Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan

Abstract

Objective. To compare the findings in rheumatoid arthritis (RA)-affected joints between 18F-fluorodeoxyglucose (FDG) and 18F-fluoride (NaF) positron emission tomography (PET)/computed tomography (CT).

Methods. We enrolled twelve RA patients who started a new biologic agent (naïve 9 and switch 3). At entry, both hands were examined by 18F-FDG PET/CT, 18F-NaF PET/CT, and X-ray. Intensity of PET signals was determined by standardized uptake value max (SUVmax) in metacarpophalangeal (MCP), proximal interphalangeal (PIP), and ulnar, medial, and radial regions of the wrists. Hand X-rays were evaluated according to the Genant-modified Sharp score at baseline and 6 months.

Results. Both 18F-FDG and 18F-NaF accumulated in RA-affected joints. The SUVmax of 18F-FDG correlated with that of 18F-NaF in individual joints (r = 0.65), though detail distribution was different between two tracers. 18F-NaF and 18F-FDG signals were mainly located in the bone and the surrounding soft tissues, respectively. The sum of SUVmax of 18F-NaF correlated with disease activity score in 28 joint (DAS28), modified health assessment questionnaire (MHAQ), and radiographic progression. 18F-FDG and 18F-NaF signals were associated with the presence of erosions, particularly progressive ones.

Conclusion. Our data show that both 18F-FDG and 18F-NaF PET signals were associated with RA-affected joints, especially those with ongoing erosive changes.

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by autoimmunity and polyarticular synovial inflammation; subsequently, there is destruction of cartilage and bone. The earliest bone change detected by X-ray is erosion, which is associated with progressive joint destruction in the late phase of RA, especially in patients not receiving appropriate therapy [1]. Positive autoantibodies such as anti-cyclic citrullinated peptide antibody (ACPA), rheumatoid factor (RF), and high disease activity are additional predisposing factors for joint destruction, indicating that autoimmune-mediated inflammation is implicated in joint damage in both cartilage and bone [2–5]. Specifically, in the “treat-to-target” concept, management of RA primarily aims to induce early clinical remission and, subsequently, maintain responses that are mainly focused on suppressing inflammation [6]. Prompt treatment reduces inflammation, resulting in limited structural change and better long-term radiologic outcomes [7]. However, according to subjective symptoms, objective signs, and laboratory data, joint lesions can progress latently even in clinical remission. As supportive imaging techniques, magnetic resonance imaging (MRI) and ultrasonography (US) are recommended to be applied for making the diagnosis, monitoring the disease activity, and detecting subclinical inflammation even in patients in clinical remission [8]. For example, we and other groups have reported US-detected synovitis with power Doppler (PD) signal associated with joint destruction, even in RA patients with clinical remission [9].

Recently, advances in the field of osteoimmunology have resulted from investigating RA and analyzing cellular and molecular interactions between the immune system and bone tissue [10,11]. Longitudinal observations of the clinical course of RA patients have indirectly implicated the inflammatory process in bone destruction [7]. However, few studies have simultaneously evaluated joint inflammation and bone metabolism in patients with RA.

Positron emission tomography/computed tomography (PET/CT) has established the anatomicomolecular imaging modality combined functional and structural evaluation. In this study, we used two tracers: 18F-fluorodeoxyglucose (FDG) and 18F-fluoride (NaF). 18F-FDG, a glucose analog, is the most common tracer; it is taken in by metabolically active cells, such as neoplastic cells.
According to recent studies, 18F-FDG PET sensitively detects active inflammation in rheumatic diseases, including synovitis in RA [12–18]. In contrast, 18F-NaF PET is an increasingly used molecular imaging modality in human skeletal disorders [19–23]. 18F-NaF incorporates into the bone at the site of bone formation or remodeling; there, osteoblasts and osteoclasts are activated, and 18F ions exchange the hydroxyl ions in bone crystal to form fluorapatite. In addition to bone metabolism, the rate-limiting step of 18F-NaF bone uptake is blood flow [24]. 18F-NaF PET is useful for monitoring pathologic changes in the bones of experimental arthritis [25] and illustrating osteoplastic lesions in human joint diseases, such as osteoarthritis (OA) [21] and psoriatic arthritis [22].

Here, we compared 18F-FDG and 18F-NaF PET/CT analyses of the hands with other imaging modalities and clinical assessment in RA patients requiring biologic disease-modifying antirheumatic drugs (bDMARDs) for active disease. Moreover, we investigated the relationship of these PET findings with radiologic progression of the joint lesions.

Patients and methods

Patients

We enrolled 12 patients (10 female, 2 male; average age, 60.0 ± 15.9 years) at Yokohama City University Hospital who fulfilled the American College of Rheumatology 1987 classification criteria for RA [26]. Nine patients started the first bDMARD (etanercept 4, infliximab 2, golimumab 1, and tocilizumab 2), whereas 3 patients switched from infliximab to golimumab, tocilizumab, or abatacept. The study was approved by the ethics committee of our institute, and all patients gave their written informed consent. Multimodality imaging assessments, including X-ray, 18F-FDG and 18F-NaF PET/CT, of bilateral hands and wrists were completed within 4 days prior to starting or switching bDMARDs. In addition, MRI was performed in all patients except one, who had a permanent pacemaker. For 6 months after the first imaging assessment, we monitored swollen joint counts, tender joint counts, patient’s and physician’s global assessments, patient’s pain assessments, and modified health assessment questionnaires (MHAQs) [27]. Using the erythrocyte sedimentation rate (ESR), we calculated the disease activity score in 28 joints (DAS28) according to the established formula [28]. To assess bone turnover, we measured serum osteocalcin, serum bone alkaline phosphatase, and total urinary deoxypyridinoline levels at baseline.

Hand X-ray

Radiographs of joints in the hands and wrists were assessed at baseline and 6 months according to the Genant-modified Sharp scoring system [29] by three independent readers blinded to the treatment assignment, clinical findings, and chronologic order of radiographs. The inter-reader agreement was acceptable (κ = 0.78). Total radiographic score was composed of erosion score plus joint space narrowing (JSN) score. Each site was evaluated in 0.5-unit increments. Erosion scores of 0–3.5 are assigned to 14 sites in each hand and wrist. JSN scores of 0–4 are assigned to 13 sites in each hand.

PET scanning

18F-FDG and 18F-NaF PET/CT scans were performed using a SET 2400 W (Shimadzu, Kyoto, Japan). Blood glucose levels were lower than 150 mg/dL after fasting more than 6 h when 2.5 MBq/kg of 18F-FDG was injected into the patients. After 60 min of an uptake phase, data of PET in the bilateral hands were acquired for 2 min in prone with arm up position. More than 24 h later 18F-NaF PET scan was conducted for 2 min scanning of the hands after injection with 185 MBq of the tracer followed by 40 min of uptake. A multislice helical non-contrast CT scan was obtained prior to each PET scanning and used for attenuation correction and anatomic information of the PET images. The spatial resolution of the PET was 2.5 mm pixel size in this study. Experienced radiologists determined hypermetabolic areas in bilateral metacarpophalangeal (MCP), proximal interphalangeal (PIP), and wrist (radiocarpal, ulnocarpal, and intercarpal) joints. The maximum standardized uptake value (SUVmax) in individual joints was determined according to the following equation:

\[\text{SUVmax} = \text{maximal count} \times \text{calibration factor (kBq/mL)/ injected activity (MBq/body weight (kg))}. \]

The SUVmax in the wrist joint was determined by the highest SUVmax among those of the radiocarpal, ulnocarpal, and intercarpal joint regions. The sum of the SUVmax for all 26 joint regions was calculated.

MRI

As an option, we performed MRI mainly as a reference to other imaging modalities. Plain MRIs of the wrist and fingers were acquired using a 1.5-Tesla scanner (Gyrosan Intera Master, Philips Medical Systems, Eindhoven, Netherlands), according to the institute’s routine procedure at study of the entry. The imaging protocol comprised a coronal short T1 inversion recovery sequence (repetition time, 4,000–4,200 ms; echo time, 80 ms), followed by coronal and axial T1-weighted spin echo images (repetition time, 500–600 ms; echo time, 11 ms). The slice thickness was 3 mm.

Statistical analysis

Correlations were investigated using Spearman’s rank correlation. Chi-square and unpaired t-tests were used to compare radiopharmaceutical uptake in the joints with and without progressive erosions. P values less than 0.05 were considered statistically significant. A stepwise multivariate regression analysis was conducted to test the independent determinants of the estimated yearly radiographic progression. The independent variables included tender joint count, swollen joint count, patient’s global assessment, physician’s global assessment, DAS28-ESR, MHAQ, C-reactive protein (CRP), ESR, matrix metalloproteinase-3 (MMP-3), osteocalcin, bone alkaline phosphatase, urinary deoxypyridinoline, sum of the SUVmax of 18F-FDG, and sum of the SUVmax of 18F-NaF. All statistical analyses were performed in SPSS version 11.0 (IBM Japan, Tokyo, Japan).

Results

Demographics and baseline characteristics

Table 1 summarizes the baseline clinical profiles of the patients in this study. All patients were positive for ACPA. The disease duration was from 3 months to 22 years. No patients had achieved clinical remission (based on DAS28) at entry, despite previous treatment with low-dose prednisolone (4–15 mg/day) in 6 patients, methotrexate (6–16 mg/week) in 9 patients, and infliximab in 3 patients. Radiologic bone erosions in any joint were found in 10 of 12 patients (83.3%). After the first set of multimodality imaging analyses, 9 patients began receiving bDMARDs and 3 patients were switched from infliximab to other bDMARDs. Of them, the standard therapeutic protocols of individual biologic agents were completed in 6 of 12 patients. Otherwise, the biologic agents were discontinued within 6 months of observation period in 4 patients including 3 due to complicated infection and one due to surgical operation. The dose of tocilizumab was modified in a patient, whereas lupus-like manifestations developed in a patient receiving infliximab at 6 months.
First, we analyzed the 18F-NaF and 18F-FDG PET/CT images at entry. In a 74-year-old male with a 13-year history of RA (Figure 1A), both tracers accumulated in the 2nd MCP joint, which had swelling and tenderness and bone erosion in the metacarpal bone head on the plain radiograph. 18F-NaF signals were located on the bone cortex, whereas 18F-FDG signals were mainly in the joint space adjacent to the bone. Thus, upregulated bone turnover is likely associated with active inflammation. In contrast, 18F-NaF accumulated not only in joints with erosion but also in the 3rd distal interphalangeal (DIP) joint. According to radiography, osteophyte as well as JSN and subchondral sclerosis was observed in this joint, which was considered to be an OA change (Figure 1B).

We compared the uptake of both tracers in 26 joint regions, including all PIP and MCP joints and radial, medial, and ulnar regions of the wrists. 18F-FDG and 18F-NaF accumulated in 73% of joint regions.

Table 1. Baseline characteristics of patients.

Variables	Total (n = 12)
Gender Female (%)	10 (83.3%)
Age (Years (mean ± SD))	60.0 ± 15.9
Disease duration (Years (mean ± SD))	6.8 ± 7.3
BMI (kg/m² (mean ± SD))	21.2 ± 3.5
Experience of smoking n (%)	4 (33.3%)
Swollen joint count, (28 joints) n (mean ± SD)	6.4 ± 5.5
Tender joint count, (28 joints) n (mean ± SD)	6.2 ± 5.6
DAS28-ESR (mean ± SD)	4.8 ± 1.4
MHAQ (mean ± SD)	0.7 ± 0.5
CRP (mg/dl (mean ± SD))	2.0 ± 2.6
ESR (mm/hr (mean ± SD))	33.8 ± 21.4
MMP-3 (ng/ml (mean ± SD))	158.9 ± 108.4
ACPA positive n (%)	12 (100%)
RF-IgM positive n (%)	9 (75.0%)
Concomitant medications Corticosteroid n (%)	6 (50.0%)
Methotrexate n (%)	9 (75.0%)
Radiographic scores Total radiographic score (mean ± SD)	17.1 ± 19.0
Bone erosion score (mean ± SD)	5.0 ± 7.9
Joint space narrowing score (mean ± SD)	12.1 ± 11.5
PET Sum of the SUVmax of 18F-FDG (mean ± SD)	20.3 ± 15.4
Sum of the SUVmax of 18F-NaF (mean ± SD)	62.1 ± 35.3

18F-FDG and 18F-NaF uptake in individual joints

We compared the uptake of both tracers in 26 joint regions, including all PIP and MCP joints and radial, medial, and ulnar regions of the wrists. 18F-FDG and 18F-NaF accumulated in 73% of joint regions.

Figure 1. Anatomical localization of 18F-FDG and 18F-NaF PET signals.

(A) A 74-year-old male with a 13-year history of RA. Bone erosion was found in the 2nd metacarpal bone head in plain X-ray. 18F-NaF signals were located on the bone cortex, while 18F-FDG signals were observed in the joint space. (B) A 68-year-old female with a 3-month history of RA. 18F-NaF accumulated not only in joints with erosion but also in the 3rd DIP joint. According to radiography, osteophyte as well as JSN and subchondral sclerosis was observed in this joint, which was considered to be an OA change.
and 82% of swollen joints and 16% and 30% of non-swollen joints, respectively. The SUVmax values of 18F-FDG and 18F-NaF were significantly correlated in individual joints (Figure 2A); however, there was a discrepancy in accumulation in some joints.

We separately analyzed radiographic OA change-positive ($n = 47$) and -negative ($n = 265$) joints in RA-prevalent joint regions (Figure 2B). There was a significant correlation between the SUVmax of the two tracers, irrespective of the presence or absence of OA change.

18F-FDG and 18F-NaF PET uptake and clinical assessments at baseline

18F-FDG and 18F-NaF peak uptake parameters, which were calculated by summation of the SUVmax in 26 joint regions, were 20.3 ± 15.4 and 62.1 ± 35.3, respectively. The sum of the SUVmax of 18F-NaF; but not 18F-FDG, correlated with clinical disease activity, according to DAS28 and physical function assessed by MHAQ at baseline (Supplementary Table 1 to be found online at http://informahealthcare.com/doi/abs/10.3109/14397595.2015.1069458). In addition, the sum of the SUVmax of 18F-NaF correlated with MMP-3, but neither score correlated with other laboratory parameters.

18F-FDG and 18F-NaF PET/CT and bone erosion in X-rays

Baseline X-rays revealed erosive lesions in 44 of 312 joints in the 12 RA patients. SUVmax of 18F-NaF and 18F-FDG were significantly higher in erosive joints than non-erosive joints (18F-NaF erosive 7.32 ± 6.89 vs. non-erosive 1.58 ± 2.48, $p < 0.001$; 18F-FDG erosive 1.55 ± 1.65 vs. non-erosive 0.65 ± 1.12, $p < 0.001$).

All patients underwent the follow-up X-ray imaging of the hands at 6 months. The estimated yearly progression of total radiographic scores significantly correlated with the sum of the SUVmax of 18F-NaF ($r = 0.69, p = 0.014$) but not 18F-FDG ($r = 0.05, p = 0.879$) (Supplementary Table 2 to be found online at http://informahealthcare.com/doi/abs/10.3109/14397595.2015.1069458), and was elevated by more than 0.5 points in 10 patients, unchanged in another, and reduced in one. Sum of the SUVmax of 18F-NaF was significantly correlated with the progression of bone erosion ($r = 0.58, p = 0.045$) but not with JSN ($r = 0.47, p = 0.12$) in two components of the total radiographic score.

A stepwise multivariate regression analysis was carried out to test the independent determinants of radiographic progression. We found that the SUVmax of 18F-NaF ($\beta = 0.66, p = 0.028$) were the only variables independently associated with radiographic progression among clinical backgrounds, physical findings, disease activity, laboratory data including bone metabolism markers, and PET findings (Table 2).

We then analyzed 18F-NaF and 18F-FDG PET in individual joints, which were divided into subgroups according to interval change for the 6-month observation. Erosive joints ($n = 44$) at the baseline were divided into persistent ($n = 12$), progressive ($n = 22$), and repaired ($n = 10$) groups; other groups were non-erosive joints ($n = 268$) including unchanged joints ($n = 246$), and newly developed erosion ($n = 22$) (Figure 3A). SUVmax for 18F-NaF was the highest in the progressive erosion group, followed by the persistent erosion group; SUVmax for 18F-FDG was also significantly higher in the progressive erosion group than in the other groups except the repaired group (Figure 3B). Accumulation of both tracers in a particular joint was divided into 4 patterns: 18F-NaF+/18F-FDG+, 18F-NaF+/18F-FDG-, 18F-NaF-/ 18F-FDG+, and 18F-NaF-/ 18F-FDG-. The 18F-NaF+/ 18F-FDG+ pattern was significantly more frequent in the progressive erosion joints than in any other subgroup; however, 18F-NaF-/ 18F-FDG- was the most dominant pattern in the non-erosive joints (Figure 3A). Therefore, bone lesion progression was likely associated with the uptake of both tracers in the joints.

Comparison with interval changes of MRI

We conducted follow-up 18F-FDG and 18F-NaF PET/CT and MRI at 6 or 12 months in 2 patients (Figure 4). In Case 3 (Figure 4A), golimumab was initiated at study entry because of high disease activity (DAS28 5.69) had been persistent. The patient showed a moderate response to golimumab (DAS28 4.72), but clinical efficacy was not apparent in the left wrist, in which tenderness and swelling remained at 6 months. The baseline 18F-FDG accumulated mainly in the ulnocapitate and radioscaphoid joint spaces; however, diffuse 18F-NaF uptake was found in the carpal bones but not the radius or ulna. These signals remained in the follow-up PET examinations at 6 months, and the MRI detected a newly developed erosion in the lunate bone.

In contrast, Case 4 (Figure 4B) achieved clinical remission (DAS28 2.91 at baseline to 1.42 at 6 months) with etanercept and maintained remission at 12 months. The right wrist joints also showed clinical improvement. 18F-NaF uptake was diffuse throughout the carpal bones of the left wrist joint, whereas weak 18F-FDG accumulation was present in the joint spaces at baseline. At the 12-month follow-up examination, 18F-FDG signals were almost undetectable; however, significant 18F-NaF signals remained in two regions: the carpal articular surface of the radius and the joint surface of the capitae. In accordance with the remaining 18F-NaF signals, erosions were repaired. Therefore, 18F-NaF accumulation without 18F-FDG signals can be detected in bone undergoing repair.

Discussion

In the present study, 18F-FDG and 18F-NaF PET/CT illustrated the affected joints of RA patients; overall accumulation of 18F-NaF correlated with clinical assessment and physical disability. According to comparative analysis with radiographic images,
18F-NaF accumulation was associated with the presence of erosive lesions and ongoing bone damage; 18F-FDG uptake also reflected this damage. In contrast, 18F-NaF and 18F-FDG signals were not detected in most of the intact joints. The concordant distribution of both tracers in the same joints suggests coupling of inflammation with upregulated bone turnover in RA-affected joint lesions. Although the patterns of 18F-NaF and 18F-FDG accumulation did not exactly overlap, the inflammation and bone turnover reveal both lead to bone destruction.

A number of 18F-FDG PET studies have shown that 18F-FDG is incorporated into the inflammatory cells of soft tissues, including macrophages, capillaries, and fibroblasts; osteoclasts also take up the tracer in bone [30], and that the accumulation in RA-affected joint lesions correlates with disease activity [14–18]. 18F-NaF is directly incorporated into the areas of bone with upregulated turnover; however, blood flow is a rate-limiting step of the tracer’s uptake [24], indicating that this imaging technique has potential to reflect two main pathologic components: hypervascularity and bone destruction in RA. Furthermore, in experimental animal arthritis, 18F-NaF PET shows a correlation between the tracer accumulation and progression of bone destruction [25]. Irmler IM et al. reported the relationship of 18F-FDG and 18F-NaF uptakes and joint destruction [25,31]. 18F-FDG uptakes, which correlated with arthritis score, start to increase at Day 9 and reach the peak at Day 11 followed by decline. On the other hand, 18F-NaF signals, which correlated with bone destruction, were elevated and sustained after Day 11. The maximum incorporation was noted from Day18 to 25, when arthritis has already subsided. Thus, the data suggest that inflammation is followed by bone destruction.

Table 2. Stepwise multiple linear regression analysis for the effect of independent variable on radiographic progression.

Variable	β-coefficient	95% CI	p value
Sum of the SUVmax of 18F-NaF	0.66	0.02–0.31	0.028

R-square = 0.43.

18F-NaF PET/CT findings and radiological changes of bone lesions. 18F-FDG and 18F-NaF PET/CT findings were compared among 5 groups, which were divided according to radiological findings at the baseline and interval changes for 6 months. (A) Signal intensities of 18F-FDG and 18F-NaF were significantly higher in erosive joints than non-erosive ones, and were the highest in joints having erosion with further progression. (B) In analysis of accumulation patterns of 18F-FDG and 18F-NaF, simultaneous accumulation of the both tracers was significantly more frequent in joints having erosion with further progression than any other groups.

Figure 3. 18F-FDG and 18F-NaF PET/CT findings and radiological changes of bone lesions. 18F-FDG and 18F-NaF PET/CT findings were compared among 5 groups, which were divided according to radiological findings at the baseline and interval changes for 6 months. (A) Signal intensities of 18F-FDG and 18F-NaF were significantly higher in erosive joints than non-erosive ones, and were the highest in joints having erosion with further progression. (B) In analysis of accumulation patterns of 18F-FDG and 18F-NaF, simultaneous accumulation of the both tracers was significantly more frequent in joints having erosion with further progression than any other groups.
Figure 4. Interval changes in 18F-FDG and 18F-NaF PET and MRI findings of the wrist: representative cases.

(A) A 71-year-old female with a 6-year history of RA. The baseline examinations showed accumulation of 18F-FDG in ulnocapitate and radioscaphoid joint spaces and that of 18F-NaF diffusely. These signals remained in the follow-up PET examinations at 6 months, whereas MRI detected newly developed erosion in the lunate bone.

(B) A 68-year-old female with a 6-month history of RA. The baseline examinations showed diffuse uptake of 18F-NaF and weak accumulation of 18F-FDG in the joint spaces in the left wrist joint. The signals disappeared except two 18F-NaF incorporated regions with repairing erosion shown by MRI.

No 18F-NaF signal was detected until clinical findings of the joint lesions appeared; therefore, autoimmune inflammation is followed by bone lesions [25].

Bone scintigraphy using 99mTc-labeled bisphosphonate has been used as a nuclear imaging technique to detect joint inflammation in RA until 18F-NaF PET is available [32]. Accumulation of 99mTc bisphosphonate, which is found in periarticular bone lesions with osteolytic lesion and hypervascularity, predicts later erosion [33]. Specificity to detect bone lesions is greatly improved by introduction of SPECT/CT, but further significantly improved with use of 18F-NaF PET/CT [23,34].

In concordance with previous reports, 18F-NaF was preferentially incorporated into erosive lesions in our study; the highest signals were associated with progressive erosion [24]. Furthermore, the overall accumulation correlated with progression of erosion (Supplementary Figure 1 to be found online at http://informahealthcare.com/doi/abs/10.3109/14397595.2015.1069458. Numerous studies show that total US-PD signals are associated with bone destruction, especially in cases of longer lasting, more active inflammation [35–37]. However, 18F-NaF PET more directly detects ongoing bone destruction in RA-affected joints compared with other imaging modalities.

We compared findings in individual joints of hands between 18F-NaF and 18F-FDG PET/CT scans. There is a close correlation between 18F-FDG and 18F-NaF accumulations in the joints of RA patients irrespective of OA changes. However, typical OA lesions (Figure 1B, in DIP joints) incorporated 18F-NaF but not 18F-FDG, though DIP joints were not systematically assessed in this study. Moreover, according to previous reports, some OA lesions take up 18F-FDG [34,38]; therefore, secondary synovitis is likely accompanied by OA. Alternatively, RA synovitis may be complicated osteoplastic changes in our patients, because the observation was restricted to RA-prevalent joints.

Combining PET with CT scanning is helpful for identifying anatomical localization of PET signals. The anatomic distributions of the markers in some joints differed between 18F-NaF and 18F-FDG (Figure 1A). Specifically, 18F-NaF accumulated in erosive lesions of the bone cortex; 18F-FDG signal was located in the surrounding
soft tissues. These differential distributions are reasonable considering the pharmacologic features of the tracers. However, the spatial resolution of PET/CT was insufficient to identify detailed localization in many cases, especially when the signals are too intense [39]. The issue is one of the major limitations of PET/CT in small joint analysis. Recent pilot studies have shown that spatial resolution of PET image in hand small joints is improved by use of dedicated PET imaging devices [34], or high-resolution PET with MRI scanner [40].

The present study has several limitations due to the study design and nature of 18F-NaF as a tracer. We enrolled RA patients that required the first or second bDMARD with a wide range of disease duration; however, the sample size was too small to discuss the effects of various background factors (such as disease stage and therapies) on findings of PET findings.

18F-NaF is incorporated into not only RA-associated bone destructive lesions but also osteopoetic lesions caused by other disorders, such as OA. Moreover, strong 18F-NaF signals were found in areas of bone erosion repair in a patient with a favorable clinical response to etanercept (Figure 4B, Case 4). Case 4 showed that remaining 18F-NaF signals reflected undergoing repair. This is compatible with the finding that 18F-NaF signals last longer than the 18F-FDG signals after subsiding arthritis in experimental animal models. Erosive progression occurred simultaneously with repair in other joints in the same patients, as we previously reported [41]. Therefore, it is difficult to determine the pathology on the basis of the finding of 18F-NaF PET alone. Rather, comprehensive assessment together with other modalities is essential to characterize the pathology of 18F-NaF-positive sites. Another concern is radiation exposure in clinical application; repeated examinations are not recommended because computed tomography dose index volume is estimated as 9.9 mGy per test. The radiation dose for a whole-body study is 25 mGy.

In summary, co-existing PET signals of 18F-NaF and 18F-FDG in the affected joints suggest that inflammation is coupled with upregulated bone turnover, leading to joint destruction. In particular, joints with strong signals of both tracers are likely to have progressive bone destruction in the near future.

Acknowledgements

This work was supported in part by grants from 2013 grant of Yokohama Foundation for Advancement of Medical Science (to Takase-Minegishi). We thank all the colleagues in our laboratories for their kind cooperation in this project. We also thank Mr. Tom Kiper for his review of the manuscript.

Conflict of interest

None.

References

1. Smolen JS, Landewé R, Breedveld FC, Dougados M, Emery P, Gaujoux-Viala C, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann Rheum Dis. 2010;69(6):646–75.

2. van der Heide A, Remme CA, Hofman DM, Jacobs JW, Bijlsma JW. Prediction of progression of radiographic damage in newly diagnosed rheumatoid arthritis. Arthritis Rheum. 1995;38(10):1466–74.

3. Vittecoq O, Pouplin S, Krzanowski K, Jouen-Beades F, Menard JF, Gayet A, et al. Rheumatoid factor is the strongest predictor of radiological progression of rheumatoid arthritis in a three-year prospective study in community-recruited patients. Rheumatology. 2003;42(8):939–46.

4. Meyer O, Nicaise-Roland P, Santos MD, Labarre C, Dougados M, Goupille P, et al. Serial determination of cyclic citrullinated peptide autoantibodies predicted five-year radiological outcomes in a prospective cohort of patients with early rheumatoid arthritis. Arthritis Res Ther. 2006;8(2):R40.

5. Korb-Pap A, Stratis A, Mühlenberg K, Niederreiter B, Hayer S, Echtermeyer F, et al. Early structural changes in cartilage and bone are required for the attachment and invasion of inflamed synovial tissue during destructive inflammatory arthritis. Ann Rheum Dis. 2012;71(6):1004–11.

6. Smolen JS, Landewé R, Breedveld FC, Buch M, Burmester G, Dougados M, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann Rheum Dis. 2014;73(3):492–509.

7. Finckh A, Liang MH, van Herckenrode CM, de Pablo P. Long-term impact of early treatment on radiographic progression in rheumatoid arthritis: A meta-analysis. Arthritis Rheum. 2006;55(6):864–72.

8. Colebatch AN, Edwards CIJ, Östergaard M, van der Heijde D, Balint PV, D’Agostino MA, et al. EULAR recommendations for the use of imaging of the joints in the clinical management of rheumatoid arthritis. Ann Rheum Dis. 2013;72(6):804–14.

9. Yoshimi R, Hama M, Takase K, Ihata A, Kishimoto D, Terauchi K, et al. Ultrasoundography is a potent tool for the prediction of progressive joint destruction during clinical remission of rheumatoid arthritis. Mod Rheumatol. 2013;23(3):456–65.

10. Danks L, Takayanagi H. Immunology and bone. J Biochem. 2013;154(1):29–39.

11. Walsh NC, Crotti TN, Goldring SR, Gravellese EM. Rheumatic diseases: the effects of inflammation on bone. Immunol Rev. 2005;208:228–51.

12. Wunder A, Straub RH, Gay S, Funk J, Müller-Ladner U. Molecular imaging: novel tools in visualizing rheumatoid arthritis. Rheumatology. 2005;44(11):1341–9.

13. McQueen FM, Östergaard M. Established rheumatoid arthritis—new imaging modalities. Best Pract Res Clin Rheumatol. 2007;21(5):841–59.

14. Beckers C, Jeukens X, Ribbens C, André B, Marcelis S, Leclercq P, et al. (18)F-FDG PET imaging of rheumatoid knee synovitis correlates with dynamic magnetic resonance and sonographic assessments as well as with the serum level of metalloproteinase-3. Eur J Nucl Med Mol Imaging. 2006;33(3):275–80.

15. Vijayant V, Sarma M, Aurangabadkar H, Bichile L, Basu S. Potential of (18)F-FDG-PET as a valuable adjunct to clinical and response assessment in rheumatoid arthritis and seronegative spondyloarthropathies. World J Radiol. 2012;4(12):462–8.

16. Okamura K, Yonemoto Y, Arisaka Y, Takeuchi K, Kobayashi T, Oriuchi N, et al. The assessment of biologic treatment in patients with rheumatoid arthritis using FDG-PET/CT. Rheumatology. 2012;51(8):1484–91.

17. Roivainen A, Hautaniemi S, Möttönen T, Nuutila P, Oikonen V, Parkkola K, et al. Correlation of 18F-FDG PET/CT assessments with disease activity and markers of inflammation in patients with early rheumatoid arthritis following the initiation of combination therapy with triple oral antirheumatic drugs. Eur J Nucl Med Mol Imaging. 2013;40(3):303–10.

18. Karapolat I, Sertpoyraz F, Oncel G, Kobak S, Yalcin M, Kumanlioglu K. Demonstrating disease activity in patients with rheumatoid arthritis. Is 18F FDG PET a sensitive method? Nuklearmedizin. 2013;52(6):244–9.

19. Draper CE, Quon A, Fredericson M, Besier TF, Delp SL, Beaupre GS, et al. Comparison of MRI and ¹¹ F-NaF PET/CT in patients with patellofemoral pain. J Magn Reson Imaging. 2012;36(4):928–32.

20. Quon A, Dodd R, Iagaru a, de Abreu MR, Hennemann S, Alves Neto JM, et al. Initial investigation of ¹¹ F-NaF PET/CT for identification of vertebral sites amenable to surgical revision after spinal fusion surgery. Eur J Nucl Med Mol Imaging. 2012;39(11):1737–44.

21. Kobayashi N, Inaba Y, Tateishi U, Yukizawa Y, Ike H, Inoue T, et al. Potential of (18)F-FDG PET imaging of bone 18F-NaF deposition. J Nucl Med. 2010;51(12):1826–9.

22. Irmler I, Gebhardt P, Hoffmann S, Deimling M, Münch C, Müller-Röber B, et al. (18)F-NaF PET imaging of the joints in rheumatoid arthritis: A clinical evaluation. Mod Rheumatol. 2016;26(2):180–187.
26. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31(3):315–24.

27. Wolfe F, Michaud K, Pincus T. Development and validation of the health assessment questionnaire II: a revised version of the health assessment questionnaire. Arthritis and rheumatism. 2004;50(10):3296–305.

28. Prevoo ML, van ’t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995;38(1):44–8.

29. Genant HK, Jiang Y, Peterfy C, Lu Y, Redeij J, Countryman PJ. Assessment of rheumatoid arthritis using a modified scoring method on digitized and original radiographs. Arthritis Rheum. 1998;41(9):1583–90.

30. Matsui T, Nakata N, Nagai S, Nakatani A, Takahashi M, Momose T, et al. Inflammatory cytokines and hypoxia contribute to 18F-FDG uptake by cells involved in pannus formation in rheumatoid arthritis. J Nucl Med. 2009;50:920–6.

31. Irmler IM, Opfermann T, Gebhardt P, Gajda M, Bräuer R, Saluz HP, et al. In vivo molecular imaging of experimental joint inflammation by combined (18)F-FDG positron emission tomography and computed tomography. Arthritis Res Ther. 2010;12(6):R203.

32. de Bois MH, Tak PP, Arndt JW, Kluin PM, Pauwels EK, Breedveld FC. Joint scintigraphy for quantification of synovitis with 99mTc-labelled human immunoglobulin G compared to histological examination. Clin Exp Rheumatol. 1995;13(2):155–9.

33. Möttönen TT. Prediction of erosiveness and rate of development of new erosions in early rheumatoid arthritis. Ann Rheum Dis. 1988;47(8):648–53.

34. Mhlanga JC, Carrino JA, Lodge M, Wang H, Wahl RL. 18F-FDG PET of the hands with a dedicated high-resolution PEM system (arthro-PET): correlation with PET/CT, radiography and clinical parameters. Eur J Nucl Med Mol Imaging. 2014;41(12):2337–45.

35. Naredo E, Collado P, Cruz A, Palomo MJ, Cabero F, Richi P, et al. Longitudinal power Doppler ultrasonographic assessment of joint inflammatory activity in early rheumatoid arthritis: predictive value in disease activity and radiologic progression. Arthritis Rheum. 2007;57(1):116–24.

36. Brown AK, Conaghan PG, Karim Z, Quinn MA, Ikeda K, Peterfy CG, et al. An explanation for the apparent dissociation between clinical remission and continued structural deterioration in rheumatoid arthritis. Arthritis Rheum. 2008;58(10):2958–67.

37. Foltz V, Gandjbakhch F, Etchepare F, Rosenberg C, Tanguy ML, Rozenberg S, et al. Power doppler but not low-field MRI predict relapse and radiographic disease progression in rheumatoid arthritis patients with low disease activity. Arthritis Rheum. 2012;64(1):67–76.

38. Elzinga EH, van der Laken CJ, Comans EF, Lammertsma AA, Dijkmans BA, Voskuyl AE. 2-Deoxy-2-[F-18]fluoro-D-glucose joint uptake on positron emission tomography images: rheumatoid arthritis versus osteoarthritis. Mol Imaging Biol. 2007;9(6):357–60.

39. Gu JT, Nguyen L, Chaudhari AJ, MacKenzie JD. Molecular characterization of rheumatoid arthritis with magnetic resonance imaging. Top Magn Reson Imaging. 2011;22(2):61–9.

40. Chaudhari AJ, Bowen SL, Burkett GW, Packard NJ, Godinez F, Yoshi AA, et al. High-resolution (18)F-FDG PET with MRI for monitoring response to treatment in rheumatoid arthritis. Eur J Nucl Med Mol Imaging. 2010;37(5):1047.

41. Ideguchi H, Ohno S, Hattori H, Senuma A, Ishigatsubo Y. Bone erosions in rheumatoid arthritis can be repaired through reduction in disease activity with conventional disease-modifying antirheumatic drugs. Arthritis Res Ther. 2006;8(3):R76.

Supplementary material available online
Supplementary Tables 1, 2 and Figure 1 to be found online at http://informahealthcare.com/doi/abs/10.3109/14397595.2015.1069458