Interplay of a secreted protein with type IVb pilus for efficient enterotoxigenic Escherichia coli colonization

Hiroya Oki1,2, Kazuki Kawahara1, Takahiro Maruno3, Tomoya Imai2, Yuki Muroga2, Shunsuke Fukakusa4, Takaki Iwashita5, Yuji Kobayashi5, Shigeki Matsuda5, Yoshiro Kodama3, Tetsuya Iida4, Takuya Yoshida5, Tadayasu Ohkubo1,2, and Shota Nakamura2

*Graduate School of Pharmaceutical Sciences, Osaka University, Suita, 565-0871 Osaka, Japan; 2Graduate School of Engineering, Osaka University, Suita, 565-0871 Osaka, Japan; 3Research Institute for Sustainable Humansphere, Kyoto University, Gokasho, Uji, 611-0011 Kyoto, Japan; and 4Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Osaka, Japan

Edited by Scott J. Hultgren, Washington University School of Medicine, St. Louis, MO, and approved June 4, 2018 (received for review April 5, 2018)

Initial attachment and subsequent colonization of the intestinal epithelium comprise critical events allowing enteric pathogens to survive and express their pathogenesis. In enterotoxigenic Escherichia coli (ETEC), these are mediated by a long proteinaceous fiber termed type IVb pilus (T4bP). We have reported that the colonization factor antigen/III (CFA/III), an operon-encoded T4bP of ETEC, possesses a minor pilin, CofB, that carries an H-type lectin domain at its tip. Although CofB is critical for pilus assembly by forming a trimeric initiator complex, its importance for bacterial attachment remains undefined. Here, we show that T4bP is not sufficient for bacterial attachment, which also requires a secreted protein CofJ, encoded within the same CFA/III operon. The crystal structure of CofB complexed with a peptide encompassing the binding region of CofJ showed that CofJ interacts with CofB by anchoring its flexible N-terminal extension to be embedded deeply into the expected carbohydrate recognition site of the CofB H-type lectin domain. By combining this structure and physicochemical data in solution, we built a plausible model of the CofJ-CFA/III pilus complex, which suggested that CofJ acts as a molecular bridge by binding both T4bP and the host cell membrane. The Fab fragments of a polyclonal antibody against CofJ significantly inhibited bacterial attachment by preventing the adherence of secreted CofJ proteins. These findings signify the interplay between T4bP and a secreted protein for attaching to and colonizing the host cell surface, potentially constituting a therapeutic target against ETEC infection.

ETEC | type IV pilus | minor pilin | pilus assembly | protein crystallography

To attach to and colonize the host cell surface, bacterial pathogens have evolved myriad surface organelles, the majority of which form filamentous protein polymers termed pili or fimbriae (1–3). Comprehensive understanding of their structures and adhesion mechanisms is crucial to develop novel vaccines and/or antiadhesive therapies, but is still lacking, especially for enterotoxigenic Escherichia coli (ETEC), a major cause of diarrhea in travelers and children in developing countries (4, 5). Although their complexity and repertoire are increasing (5–7), at least 22 types of pilus-related colonization factors (CFs) of ETEC have been identified and categorized as either CF antigens (CFAs) or coli surface antigens (CSs) (8, 9). Of these 22 CFs, 17 are assembled by the chaperone–usher (CU) pathway through polymerization of major and minor pilus subunits (termed pili) via the extensively studied “donor-strand exchange” mechanism (1, 2). Polymerization is initiated with a minor pilin that is located at the distal end, where it also functions as a tip adhesin (10). Most tip adhesins of ETEC CU pili fold into Ig-like domains with an N-terminal receptor-binding lectin domain that recognizes glycoconjugates or glycosphingolipids, indicating glycan-mediated host–pilus interaction as a common theme for ETEC infection (11–14).

ETEC also has two CFs, CS8 and CS21, alternatively known as CFA/III and Longus, respectively, that are processed by the type IV pilus (T4P) assembly pathway, which is substantially more complex than the CU pathway (1, 15–17). T4Ps, which are found in a wide variety of Gram-negative bacteria, are implicated in multiple biological functions, including surface motility, biofilm formation, cell adhesion, autoaggregation, host-cell invasion, and DNA uptake (16). Generally, they are further classified according to their type IV pilin signal sequence and molecular size as type IVa and IVb (18). Recently, an alternative classification method utilizing other T4P components (e.g., platform protein) has been proposed, which phylogenetically groups the tight adherence (Tad)-type pili as type IVc (19). Although the number of pili categorized as T4P is still limited and can be expected to increase upon future genomics studies of bacteria, current knowledge suggests that the type IVa pilus is a relatively homogeneous subclass and is distributed in many Gram-negative bacterial species, whereas type IVb pilus (T4bP), often encoded by an operon, is a more heterogeneous class that is found primarily in enteric bacteria (20). Notably, CFA/III and Longus are categorized as type IVb subclass and are structurally and functionally similar to other T4bPs from enteric pathogens, such as toxin-coregulated pili.
(TCP) of *Vibrio cholerae* and CF *Citrobacter of Citrobacter rodentium* (20, 21).

Although little is known regarding T4bP, we and other researchers recently proposed a filament model of CFA/III, in which each major pilin (CofA) globular head is arranged in a three-start left-handed helix (or, equivalently, a one-start right-handed helix with helically arranged N-terminal α-helices) (22, 23). We also revealed that minor pilin, CofB, has a three-domain architecture and is located at the pilus tip (24). The N-terminal domain of CofB adopts a typical type IVb pilin α/β-roll fold, whereas the C-terminal region is uniquely composed of two β-strand-rich domains that homotrimerize to form a pilus assembly initiator complex that efficiently promotes T4bP assembly (24). Trimeric initiator complex-mediated pilus assembly is likely conserved in a wide variety of pilus or pseudopilus systems, such as T4P assembly and its evolutionarily related type II secretion systems (18, 24), and may represent a bacterial tactic evolved to efficiently assemble stable filamentous appendages for enhancing pathogenesis. Moreover, at the distal pilus end, the CofB C-terminal domain adopts an H-type lectin fold that bears substantial similarity with the discoïd I trimeric structure (25). As H-type lectins typically bind N-acetylgalactosamine (GalNAc) molecules at the conserved binding pocket of their association interfaces, this suggested that CofB might function as a lectin targeting the small intestinal mucosal glycome.

Here, we examined the ability of CFA/III for bacterial attachment, and we unexpectedly found that it requires additional interaction with a secreted protein, CofJ, at the expected GalNAc-binding interfaces of the CofB trimer located at its tip, providing a clue for understanding the mechanism of ETEC infection.

Results

ETEC Adherence to Intestinal Epithelial Cells Requires CFA/III and Secreted Protein CofJ. Based on its structural similarity with H-type lectin family proteins (24), we initially considered CofB as a tip-localized adhesin recognizing carbohydrate molecules. However, we found no indication of binding between CofB and GalNAc molecules in isothermal titration calorimetry (ITC) experiments (SI Appendix, Fig. S1), which is in part consistent with the inability of CFA/III-expressing ETEC to hemagglutinate erythrocytes (26).

Although CFA/III is apparently required for bacterial attachment, it was also recently proposed to be involved in transporting CofJ (27), a secreted protein of unknown function encoded in the 14-gene CFA/III operon (cof operon) (Fig. L4) (28). To clarify the relationship between CofJ and CFA/III, we performed cell adherence assays with different *E. coli* strains, including the CFA/III-positive HB101 strain carrying the recombinant plasmid pTT240 that harbors all cof operon genes (cof+ strain) (28) and the HB101 derivatives, CofJ- or CofD-deficient strains (ΔcofJ and ΔcofD strains, respectively), using human colon adenocarcinoma-derived Caco-2 cells (Fig. 1 B and C). The cof+ recovery rate calculated by dividing the number of colony-forming units (cfus) by that of the inoculum was 5.1%, whereas recovery rates of ΔcofJ and ΔcofB strains were markedly decreased to 0.01% and 0.3%, respectively (Fig. 1B). Because transmission electron microscopy (TEM) observation showed that cof+ and ΔcofB strains expressed peritrichous CFA/III pilus having lengths and structures similar to those of the wild-type ETEC 260-1 and 31-10 strains (Fig. 1D) (26, 27), these results suggested that ETEC adherence to intestinal cells requires not only the formation of CFA/III, but also the secretion of CofJ.

Remarkably, no pili were observed for the ΔcofB strain by TEM, consistent with the previously proposed role of CofB in pilus assembly initiation (Fig. 1D) (23, 24), and Western blotting analysis clearly demonstrated equivalent amounts of CofJ were expressed by cof+ and ΔcofB strains in whole cell culture (Fig. 1E). However, CofJ secretion into the culture supernatant was substantially reduced in the ΔcofB strain (Fig. 1E). A similar, but even more significant reduction in CofJ secretion was confirmed in culture supernatants of ΔcofA- or ΔcofD-deficient strains (ΔacoA and ΔacoD strains, respectively), in which the gene encoding major pilin or outer membrane secretin, respectively,
was disrupted (SI Appendix, Fig. S2). While CofJ secretion by the ETEC 31-10P-prof strain that lacks all of the cof operon genes but harbors a cof gene-harboring plasmid reportedly was negligible (27), we detected residual amounts of secreted CofJ in the culture supernatants of the ΔcofA and ΔcofD strains, which we ascribed to cell fragility or protein leakage in these heterologous expression systems as suggested previously (27). Nevertheless, the observed marked reduction in CofJ secretion from these deficient strains strikingly supports the previously proposed function of CFA/III in CofJ secretion, although the mechanism has not yet been studied.

CofJ Binds to the Minor Pilin CofB. We hypothesized that the interaction between CofJ and CFA/III is a key step in establishing CofJ secretion and adhesion of ETEC to the extracellular mucus. To examine the interaction between CofJ and CFA/III and determine which of the two CFA/III subunits (CoA or CoB) interacts with CofJ, we performed pull-down assays using each pilin fused with a thioredoxin-His tag (Fig. 2). Because of the insolubility attributed to the pilin N-terminal characteristic hydrophobic segment (15), throughout the experiments, we used truncated CoA and CoB constructs for recombinantly expressed proteins, in which the N-terminal 28 residues are removed. Our experimental results showed that CofJ was detected only in the CoB-coeluted fraction, indicating that CoJ specifically bound with the minor pilin CofB (Fig. 2). During the purification process, we also noted that a certain part (~2 kDa) of CoJ was susceptible to degradation over time as demonstrated by the close doublet bands on SDS-PAGE; notably, these degraded CoJ proteins did not bind with CoB (SI Appendix, Fig. S3). We then solved the crystal structure of CoJ with extreme care to avoid protease digestion. The CoJ crystal structure solved by Dy derivative was determined at a resolution of 1.76 Å, with the crystal belonging to the space group of P212121 and a total of eight molecules in an asymmetric unit (SI Appendix, Fig. S4A). Comparison of these eight structures showed substantial structural similarity, with a root mean square deviation (rmsd) value of <0.237 Å (SI Appendix, Fig. S4B and C). Owing to the intrinsic flexibility, however, the N-terminal 22 residues (2,214.3 Da) of all eight CoJ molecules were not included in the final models. The N terminus would be solvent exposed and hence susceptible to protease cleavage. Therefore, we suspected that the N-terminal region corresponds to the degraded 2-kDa fragment of CoJ.

To confirm this hypothesis, we prepared a N-terminal 24 residue-truncated mutant, ΔN24-CoJ, with the Arg24 C terminus being a possible CoJ digestion site. Strikingly, pull-down assay of ΔN24-CoJ showed that it did not bind to CoB (SI Appendix, Fig. S3). A subsequent ITC experiment to measure the interaction between a synthesized peptide consisting of CoJ residues 1–24 and CoJ (1–24) peptide and CoB revealed that the peptide bound to CoB with an affinity of $K_d = 8.8 \pm 1.6 \mu M$, whereas the intact CoJ molecule bound to CoB with higher affinity of $K_d = 0.14 \pm 0.01 \mu M$, and ΔN24-CoJ showed no binding (SI Appendix, Fig. S5). These results clearly indicated that the CofJ N-terminal region mediates the binding with CoB.

Crystal Structure of CofJ (1–24)–CoB. Although we were unable to obtain the crystal of CoB in complex with CoJ, the crystal of the CoJ (1–24)–CoB complex was successfully obtained. The crystal structure of the complex was de novo determined by molecular-replacement using the homotrimeric structure of CoB (24) as a search model that produced interpretable electron-density maps including well-defined densities responsible for three CoJ (1–24) peptides in the trimeric interfaces between each of two CoB molecule pairs (Fig. 3 A and B). The bulky Phe10 electron density of the CoJ (1–24) peptide was observed in each trimeric interface. The three CoJ (1–24) peptides were modeled using this Phe10 residue as a starting point. In contrast to the well-defined electron density observed for the central 5–15 residues of CoJ (1–24) peptide (Fig. 3B), the electron density map indicated that no structural model could be built for residues 1–4 and 16–24 owing to the scarce electron densities. After refinement, we determined the crystal structure of a CoJ (1–24)–CoB heterohexamer complex, including three CoB molecules and three CoJ (1–24) peptides, at 3.52-Å resolution (Fig. 3A).

In each trimeric interface, the CoJ (1–24) peptide fragment from Ser3 to Pro15 was bound to the hydrophobic groove sandwiched by two CoB C-terminal H-type lectin domains (domain 3s) (Fig. 3B and SI Appendix, Fig. S6). The structures of the three CoJ (1–24) peptides were essentially the same and well superimposed on each other, with rmsd values from 0.169 to 0.401 Å (SI Appendix, Fig. S7). Superposition of the complexed crystal structure with the homologous complexed structure of CoB alone showed that domains 2 and 3 of CoB do not undergo structural changes at the backbone level upon peptide binding, except the peptide-binding site regions and the arrangement of CoB molecule domain 3s in the CoJ (1–24)–CoB complex (SI Appendix, Figs. S8 and S9). CoB domain 3, which is composed of nine β-strands from β13 to β21 and one helix of α4, exhibits structural similarity with H-type lectins that form homotrimers recognizing GalNAc molecules (24, 25), but shows some structural differences with others. For example, the loop between CoB β17 and β18 is much longer than that of discoidin I (β11 and β12) and covers nearly the entire conserved sugar recognition site (Fig. 3C). Notably, by utilizing the long p17β18 loop of one monomer and the α4/β16 loop of another, CoB recognizes the CoJ (1–24) peptide with slight local conformational changes in these loops (SI Appendix, Fig. S9). These unexpected features of CoB reasonably explain the fact that it precludes GalNAc binding in both the presence and absence of CoJ (SI Appendix, Fig. S1), suggesting functional “repurposing” of its H-type lectin domain.

In particular, the CoB trimer specifically recognizes only a limited part (Ser5–Pro15) of the CoJ (1–24) peptide by hydrophobic and hydrogen-bonding interactions, indicating that this region is a core fragment for CoB binding and that the central aromatic amino acid, Phe10, is critical for the interaction. Indeed, a synthetic 13-residue peptide comprising CoJ residues 4–16 (CoJ (4–16) peptide) that encompassed the above-mentioned recognizing sequence bound CoB trimer with an affinity ($K_d = 4.8 \pm 0.9 \mu M$) similar to that of CoJ (1–24) peptide, and the substitution of Phe10 to Ala of CoJ (4–16) peptide completely abolished its binding ability (SI Appendix, Fig. S10). Sequence alignment showed that the corresponding aromatic residue is also found in operon-encoded secreted proteins of other T4bP assembly systems, along with meaningful N-terminal region sequence similarity (SI Appendix, Fig. S11) (21, 29–31). This highly conserved aromatic residue is thus likely key to binding with
Based on these findings and the CFA/III pilus model reported above (Fig. 4B), Adherence assays of the ΔcofJ strain to Caco-2 cells with addition of intact CofJ or ΔN24-CofJ yielded recovery rates of 2.9%
and 0.1%, respectively, again confirming the importance of interaction between CofJ and CFA/III (Fig. 4C). In addition, adherence inhibition assays using Fab fragments of an anti-Coj IgG antibody demonstrated that the Fab fragments could prevent the attachment of cof+ strain to Caco-2 cells (Fig. 4D). These results further supported the hypothesis that Coj serves in an anchor role, bridging both the host-cell surface and the CofB trimer at the tip of CFA/III in the process of ETEC adherence.

Discussion

To attach to the host intestinal epithelium at a safe distance from the mucosal barrier, ETEC express long polymeric fibers termed “type IVb pilus.” The most distal end of the pilus is likely involved in the initial contact with the epithelium, and we have shown that the minor pilin with an H-type lectin domain is located at that position (Fig. 4). However, although a CFA/III-positive *E. coli* strain lacking the cofJ gene that encodes the secreted protein successfully produced T4bP, it exhibited negligible adherence to Caco-2 cells. These results show the importance of the interplay of T4bP with a secreted protein for bacterial attachment during ETEC infection. Subsequent ITC experiments clearly demonstrated that Coj interacts with the CoFB trimer with sub-micromolar affinity. Clues regarding interaction details were provided by the serendipitous observation that lack of the 24-residue N-terminal flexible region completely diminished Coj binding activity. The crystal structure of CoJ in complex with a CoJ N-terminal 24-residue synthetic peptide revealed an unprecedented binding mode, by which the peptide is deeply embedded into the expected GalNAc-binding pocket typically conserved at the trimeric interface of the H-type lectin family (25). This finding provides a conceptual advance in T4P biology, wherein T4bP anchors the secreted protein at the pilus tip for pathogenesis, as well as a plausible answer for the currently debated association state—either monomeric or trimeric—of the type IVb minor pilin in action (24, 32–34), based on the evidence that association of CoFB is prerequisite for its stable interaction with CoJ (32–35).

Together with their gene synteny (10), the sequence similarities among minor pilins and among secreted-protein N-terminal regions suggest that this interplay is likely conserved in T4bP-expressing enteropathogens, including at least LETEC, *V. cholerae*, and *C. rodentium* (SI Appendix, Figs. S11 and S14). A database search using the CoFB H-type lectin domain suggested that a wide variety of other enterobacteria potentially utilize similar T4bP assembly systems for attaching to and colonizing host intestinal epithelium, possibly through interaction with its cognate secreted protein (SI Appendix, Fig. S14 and Table S1).

Although the requirement of Coj in ETEC adhesion is proposed here, the mechanistic details remain obscure. The crystal structure of CoJ, determined here and reported previously (27), demonstrates that Coj shows marked structural homology with pore-forming toxins (PFTs), such as α-hemolysin from *Staphylococcus aureus* (36). Spatial and directional location of the Coj N-terminal region is moreover also similar to that of the characteristic “amino-latch” N-terminal segment of α-hemolysin (SI Appendix, Fig. S15). In prepore-to-pore transition on the target-cell surface, the amino latch (typically 15–20 amino acids in length), initially flexible and highly exposed, plays an important role in stabilizing oligomeric association by anchoring neighboring subunits of PFTs (37, 38), whereas its truncation severely affects the ability to form functional pores (38). Notably, the CoFB trimer specifically interacts with the N-terminal Coj extension, which potentially hampers pore formation by this secreted protein. Although no experimental evidence indicating pore formation of Coj is currently available, the architectural plan encompassing the prepore state of PFTs may serve as a molecular bridge that binds to both the cell surface and other molecules (Fig. 5). In this context, the cluster of tyrosine residues forming an aromatic patch at the side opposite to the Coj N-terminal interaction site is particularly interesting (Fig. 4A and B). The presence of an aromatic patch is commonly observed in PFTs and might act as a multivalent lipid-binding site that recognizes lipid head groups of the cell membrane (39-41), and Coj reportedly can bind lipid vesicles as well as epithelial cells, such as HeLa and Caco-2 (34). The lipid-binding nature of Coj provides advantages for the bacteria by preserving the preferential adhesion spot for initial and/or future attachment to the epithelium as well as in competing with other bacterial species, including commensal species, for subsequent microcolony formation (Fig. 5).

To date, no broadly applicable vaccine for ETEC has been developed (42). This is partly explained by the high complexity of virulence factors, including more than at least 25 types of CFs, as well as several other secreted non-CF proteins, each of which functions at different stages of infection (43). Before intimate association with the target-cell surface, possibly via CFs of relatively short (1–5 μm) CU pili (44, 45), another specific mechanism is apparently required for initial attachment while avoiding the mucosal barrier consisting of an inner layer of ~15–30 μm (46). One such mechanism was recently proposed for the non-CF ETEC virulence factor EtpA, which is secreted and interacts as a molecular bridge with target cells and the tip of flagellum, a common bacterial appendage with typical length of 10–15 μm (47, 48). Notably, the wild-type CFA/III strain is nonflagellated and nonmotile, and some ETEC strains that possess Longus, one of the most prevalent CFs among ETEC clinical isolates that has substantial structural homology with CFA/III, are also nonflagellated (49, 50). Our functional model of Coj indicated it acts as a molecular bridge, in striking resemblance with EtpA; therefore, it is tempting to speculate that the interplay between the secreted protein and relatively long (5–15 μm or more) proteineaceous fibers, such as flagellum and T4bP (48), is a common strategy for initial attachment of ETEC, avoiding the mucosal barrier. Recent reports demonstrate that EtpA-targeted vaccination is effective (51), and our results showed that Fab fragments of an antibody against Coj significantly inhibited adhesion of a CFA/III-expressing *E. coli* strain (Figs. 4D and 5). Given that the initial attachment of bacteria is a critical step common to all enteropathogens, the interplay between the secreted protein and T4bP shown here may constitute an attractive therapeutic target for vaccination and/or antiadhesive treatment against ETEC infection.

Materials and Methods

Details of experimental procedures are available in SI Appendix, SI Materials and Methods. The *E. coli* K12 derivative carrying recombinant plasmid harboring the
entire cof gene cluster (cof-3 strain) and its gene-deficient mutants (Δcofa, Δcofb, Δcofc, and Δcofj) were used for CFA/I functional analyses. Recombinant CoFA and CoFB proteins were overexpressed and purified according to previously reported methods (22, 24). For recombinant CofJ and ΔcofJ proteins, the E. coli expression strain Shuff T7 Express LySy (New England Biolabs) was used for overexpression. Purification was carried out using standard techniques with affinity, ion-exchange, and size-exclusion chromatography. The Fab fragment of the anti-CofJ IgG antibody purified from rabbit serum and digested by papain was used for adherence inhibition assay. For evaluating the recovery rate, bacterial adherence assays were performed using Caco-2 cells with E. coli strains cof−, Δcofa, Δcofb, and Δcofj grown on CFA agar (28) for efficient CFA/I expression. For each strain, CFA/I formation was checked by TEM. Western blot analyses were conducted using the strains cof−, Δcofa, Δcofb, Δcofc, and Δcofj. Cof in the culture supernatant was detected by using anti-CofJ IgG. Pulldown assay and ITC experiments were conducted using recombinant proteins, synthetic peptides, and GalNAc to analyze their potential interactions. CofJ was crystallized by the hanging-drop vapor diffusion method and the structure was determined by the SAD technique using the dysprosium heavy atom derivative. CofB in complex with CofJ vapor diffusion host protein crystals. PLoS Negl Trop Dis 11:e005586. 6. Del Canto F, et al. (2017) Chaperone-Usher pilus loci of colonization factor-negative human enterotoxigenic Escherichia coli: Front Cell Infect Microbiol 6:280. 7. Gaaster W, Svennerholm AM (1996) Colonization factors of human enterotoxigenic Escherichia coli (ETEC). Trends Microbiol 4:444–452. 8. Qadri F, Svennerholm AM, Faruque AS, Sack RB (2005) Enterotoxigenic Escherichia coli in developing countries: Epidemiology, microbiology, clinical features, treatment, and prevention. Clin Microbiol Rev 18:465–483. 9. Madhavan TP, Sakellari H (2015) Colonization factors of enterotoxigenic Escherichia coli. Trans membrane channel. Science 345:134–137. 10. Wennerás C, Holmgren J, Svennerholm AM (1990) The binding of colonization factor antigen CS6 from human enterotoxigenic Escherichia coli to intestinal cell membrane proteins. FEMS Microbiol Lett 54:107–112. 11. De Greve H, Wyns JD, Bouckaert J (2007) Combining sites of bacterial fimbriae. Curr Opin Struct Biol 17:506–512. 12. Jansson L, et al. (2009) Sulfatide recognition by colonization factor antigen CS6 from human enterotoxigenic Escherichia coli. J Biol Chem 284:2725–2729. 13. Kawahara K, et al. (2016) Homo-trimeric structure of the type IVb minor pilin CofB from human enterotoxigenic Escherichia coli. J Bacteriol 198:2818–2828. 14. Song L, et al. (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 271:1859–1866. 15. Dai Peraro M, van der Goot FG (2016) Pore-forming toxins: Ancient, but never really out of fashion. Nat Rev Microbiol 14:77–92. 16. Jayasinghe L, Miles G, Bayley H (2006) Role of the amino latch of staphylococcal alpha-hemolysin in pore formation: A co-operative interaction between the N terminal and position 217. J Biol Chem 281:2195–2204. 17. Tanaka K, Caveiro JMM, Morante K, González-Marías JM, Tuomot K (2015) Structural basis for self-assembly of a cytolytic pore lined by protein and lipid. Nat Commun 6:6337. 18. Huett J, et al. (2013) Structural insights into Clotrinium phaffii delta toxin pore formation. PLoS One 8:e66673. 19. Olson R, Nariya H, Yokota K, Kamiyo Y, Gouaux E (1999) Crystal structure of staphylococcal LukFp delineates conformational changes accompanying formation of a transmembrane channel. Structure 7:513–524. 20. Zhang S, Sack DA (2015) Current progress in developing subunit vaccines against enterotoxigenic Escherichia coli-associated diarrhea. Clin Vaccine Immunol 22:983–991. 21. Fleckenstein JM, et al. (2010) Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes Infect 12:89–98. 22. Evans DG, Silver RP, Evans DJ, Jr, Chase DG, Gorbach SL (1975) Plasmid-controlled colonization factor associated with virulence in Escherichia coli enterotoxigenic for humans. Infect Immun 12:656–667. 23. Girón JA, Gómez-Duarte OG, Jarvis KG, Kaper JB (1997) Longus pilus of enterotoxigenic Escherichia coli and its relatedness to other type-4 pili–A minireview. Gene 192:39–43. 24. McGuckin MA, Lindén SK, Sutton P, Florin TH (2011) Muinac dinamins and enterotoxigenic Escherichia coli. PLoS Microbiol 7:393–398. 25. Roy K, et al. (2009) Enterotoxigenic Escherichia coli EtpA mediates adhesion between flagella and host cells. Nature 457:594–598. 26. Kumari P, et al. (2016) Dynamic interactions of a conserved enterotoxigenic Escherichia coli adhesin with intestinal mucins govern epithelial engagement and toxin delivery. Infect Immun 84:3608–3617. 27. Girón JA, et al. (2015) Evolution of ETPA and the role of ETPA in enterotoxigenic Escherichia coli pathogenesis. New Biotechnol 32:225–278. 28. Taniguchi T, et al. (2001) Gene cluster for assembly of pilus colonization factor antigen III of enterotoxigenic Escherichia coli. Infect Immun 69:5864–5873. 29. Gómez-Duarte OG, et al. (2007) Genetic diversity of the gene cluster encoding longus, a type IV pilus of enterotoxigenic Escherichia coli. J Bacteriol 189:9145–9149. 30. Kim TJ, Bae, N, Taylor RK (2003) Secretion of a soluble colonization factor by the TCP type IV pilus of Vibrio cholerae. Mol Microbiol 49:81–92. 31. Megli CI, Taylor RK (2013) Secretion of TcpP by the Vibrio cholerae toxin-coregulated pilus biogenesis apparatus requires an N-terminal determinant. J Bacteriol 195:1027–1027. 32. Kolappan S, Ng D, Yang G, Harn T, Craig L (2015) Crystal structure of the minor pilin of CofB, the initiator of CFA/I pilus assembly in enterotoxigenic Escherichia coli. J Biol Chem 290:20585–20588. 33. Ng D, et al. (2016) The Vibrio cholerae minor pilin TcpP initiates assembly and re- traction of the toxin-coregulated pilus. Proc Natl Acad Sci USA 113:10061. 34. Saldaña-Ahuactzi Z, et al. (2016) Effects of lng mutations on LngA expression, processing, and C31 assembly in enterotoxigenic Escherichia coli E3934A. Front Microbiol 7:1201, and erroratum (2017) 8:26. 35. Gao Y, Hauke CA, Marles JM, Taylor RK (2016) Effects of tcpP mutations on biogenesis and function of the toxin-coregulated pilus, the type IVp pilus of Vibrio cholerae. J Bacteriol 198:2818–2828. 36. Song L, et al. (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 271:1859–1866.