News & Views

A new approach to modeling the fade-out threshold of coronavirus disease

Tianxiang Yue a,b,c,d,*, Zemeng Fan a,b,d,*, Bin Fan a,b, Zhengping Du a,b, John P. Wilson a,b,e, Xiaozhe Yin f, Na Zhao a,b,d, Ying'an Wang g, Chenghu Zhou a,b

a State Key Laboratory of Resources and Environment Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100010, China
b College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
c College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
d Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
e Spatial Sciences Institute, University of Southern California, Los Angeles, CA 90089-0374, USA
f Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
g Department for Population Data, China Population and Development Research Center, Beijing 100081, China

On 21 December of 2019, four lower respiratory tract samples were collected from patients with pneumonia of unknown cause in Wuhan, China [1]. This disease was later diagnosed as a coronavirus disease. The World Health Organization (WHO) named the coronavirus disease as COVID-19 on 11 February and declared a pandemic on 11 March 2020. The COVID-19 is a previously unknown disease with no tools available for pharmaceutical management at the early stage of its outbreak. On 23 January 2020, Wuhan was locked down and all provinces and regions across China imposed antiviral prophylaxis, quarantines, school closures, travel restrictions, and social distancing by implementing the “first-level response to major public health emergencies” during the period 23–25 January 2020. The case confirmation speed during this period improved due to development of new coronavirus nucleic acid-based detection technologies [2].

The goal of modeling the fade-out threshold is to gain insight into how to calculate the mean die-out time of the epidemic, which improves our understanding of the dynamics of the spread of the epidemic. When the infectious disease spreads in a population, a model may help to provide real-time forecasting [3,4]. Epidemic modeling is one of the essential tools for both developing strategies in preparation for the outbreak and evaluating the effectiveness of control policies during the outbreak. Furthermore, the model can also assist in decision-making by making projections regarding intervention-induced changes in the spread of disease.

Regarding the infectious disease dynamics, the basic reproduction number R_0 is a critical indicator. Ross [5] first proposed the concept of R_0 and defined it as the average number of new infections caused by a single infected individual when introduced into a wholly susceptible population over the duration of the infection of this individual. This concept has been widely used and improved since then. The R_0 provides an indication of whether the introduction of the disease will result in a localized burnout or signal the beginning of an epidemic that could move through all geographic scales [6]. A timely estimation on R_0 of the COVID-19 epidemic may prove beneficial in understanding how to control the worldwide spread of the epidemic [7].

The formula of R_0, the transmission rate β is not directly observable and can be difficult to measure due to its dependence on the probability of transmission between individuals and social contact rates [8]. The transmission rate of an infectious disease is defined as the per capita rate of infection given contact, which can be expressed as the product of the number of daily contacts that a susceptible individual has with other individuals and the probability of transmission during each contact [9]. In other words, a more highly infectious disease has a higher transmission rate. However, we need to know the transmission rate if we want to predict the changes of an epidemic disease. Determining the time-dependent transmission function that exactly reproduces disease incidence data can yield useful information about disease outbreaks, including a range of potential values for the recovery rate of the disease. If the time-dependent transmission function is constructed, information regarding intervention and stopping the outbreak can be obtained.

The time-dependent transmission rate (TDTR) is used to account for intervention effects, such as raising awareness in the population about the current severity of the epidemic, implementing measures of quarantine and isolation of patients, and providing access to effective and affordable medicines. We constructed an algorithm to compute the TDTR from the well-known Susceptible-Infected-Recovered (SIR) model based on the reported data. The SIR model was first proposed in 1927 [10] in order to incorporate the possibility of switching transmission rates when the prevention strategy was changed and has been widely modified and applied since 1927 (e.g., [9,11]).

Based on the improved SIR model [9], we developed a new TDTR as follows:

* Correspondence authors.
E-mail addresses: yue@lreis.ac.cn (T. Yue), fanzm@lreis.ac.cn (Z. Fan).
The basic reproduction number \([R_0]\) can be formulated as

\[
R_0(t) = \frac{\beta(t)}{\gamma(t) + \mu(t)}.
\]

Where \(S(t)\) represents susceptible fractions of the population at time \(t\); \(I(t)\) represents the infected fractions of the population; \(\beta(t)\) denotes the TDTR; \(\gamma(t)\) is the recovery rate; and \(\mu(t)\) refers to the fatality rate.

The authors declare that they have no conflict of interest.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41930647, 41421001, 41590844), the Strategic Priority Research Program (A) of Chinese Academy of Sciences (XDA20030203), the Innovation Project of State Key Laboratory of Resources and Environment Information System (O88RA600YA) and the Biodiversity Investigation, Observation and Assessment Program (2019-2023) of the Ministry of Ecology and Environment of China.

Appendix A. Supplementary materials

Supplementary materials to this article can be found online at https://doi.org/10.1016/j.scib.2020.04.016.

References

[1] Zhu N, Zhang DY, Wang WL, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727–37.
[2] Tang B, Bragazzi NL, Li Q. An updated estimation of the risk of transmission of the novel coronavirus (2019-nCoV). Infect Dis Model 2020;5:248–55.
[3] Gu C, Zhu J, Sun Y, et al. The inflection point about COVID-19 may have passed. Sci Bull 2020;65:865–7.
[4] Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020. https://www.nejm.org/doi/10.1056/NEJMoa2002032.
[5] Ross RA. The prevention of malaria. London: John Murray; 1911.
[6] Curtis A, Mills JW, Blackburn JR. A spatial variant of the basic reproduction number for the New Orleans yellow fever epidemic of 1878. Prof Geogr 2007;59:492–511.
[7] Huang NE, Qiao FL. A data driven time-dependent transmission rate for tracking an epidemic: a case study of 2019-nCoV. Sci Bull 2020;65:425–7.
[8] Munnert A. Studying the recovery procedure for the time-dependent transmission rate(s) in epidemic models. J Math Biol 2013;67:483–515.
[9] Chladná Z, Koplóvá J, Rachinskii D, et al. Global dynamics of SIR model with switched transmission rate. J Math Biol 2020;80:1209–25.

Conflict of interest

The authors declare that they have no conflict of interest.
[10] Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proc R Soc Lond 1927;115:700–21.

[11] Ehrhardt M, Gasper J, Kilianova S. SIR-based mathematical modeling of infectious diseases with vaccination and waning immunity. J Comput Sci 2019;37: UNSP:101027.

[12] Arino J, Bauch C, Brauer F, et al. Pandemic influenza: modeling and public health perspectives. Math Biosci Eng 2011;8:1–20.

[13] Ballard PG, Bean NG, Ross JV. The probability of epidemic fade-out is non-monotonic in transmission rate for the Markovian SIR model with demography. J Theor Biol 2016;393:170–8.

[14] Huppert A, Katriel G. Mathematical modelling and prediction in infectious disease epidemiology. Clin Microbiol Infect 2013;19:999–1007.

Tianxiang Yue is the head of Department for Environmental Informatics, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences. He received Ph.D. degree in system ecology from Chinese Academy of Sciences in 1992. He has been a professor of State Key Laboratory of Resources and Environment Information System since 2000. He is a pioneering expert in the method for high accuracy surface modelling and the fundamental theorem for eco-environmental surface modelling.

Zemeng Fan is an associate professor of State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Science and Natural Resources Research, Chinese Academy of Sciences. He received his Ph.D. degree in Cartography and Geographical Information System. His research activities mainly focus on eco-environmental surface modelling.