ABSTRACT

Medicago archiducis-nicolai Sirj. is a well-known high-quality forage as its good palatability and strong tolerance to drought, cold and saline-alkali stress. Here, the complete chloroplast genome sequence of M. archiducis-nicolai was reported. The size of the complete chloroplast genome is 127,072 bp in length. The chloroplast genome has no inverted repeat (IR) regions, which is very common in the family Fabaceae. The M. archiducis-nicolai chloroplast genome encodes 106 genes: 72 protein-coding genes, 30 tRNAs, and 4 rRNAs. The phylogenetic analysis result strongly suggested that M. archiducis-nicolai is a distinct lineage in Medicago, being sister to highly supported clade composed of three species (M. hybrida, M. papillosa and M. sativa).

KEYWORDS
Medicago archiducis-nicolai; chloroplast genome; Fabaceae; phylogenetic analysis

CONTACT
Zhiqiang Hou (476807641@qq.com) State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China; Kauhuocairang (411271941@qq.com) Grassland comprehensive professional team of Henan Mongolian Autonomous County, Youganning, China.

ARTICLE HISTORY
Received 6 September 2020
Accepted 11 November 2020

2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
is 34.23%. A total of 106 functional genes were annotated, including 72 protein-coding genes (PCGs), 30 tRNA genes and 4 rRNA genes. 14 of them contain 1 intron and 1 of them contains 2 introns.

Eight complete chloroplast genomes of Fabaceae (the number from Medicago and Pisum are 7 and 1, respectively) and two outgroups (two species from Crassulaceae Phedimus) were used for constructing maximum likelihood with 1000 bootstrap repeats (model: K3Pu + F) by W-IQ-TREE (Trifinopoulos et al. 2016) after aligned by MAFFT 7 (Katoh and Standley 2013) (Figure 1). The phylogenetic tree showed that M. archiducis-nicola was sister to the clade composed of three species (M. hybrida, M. papillosa and M. sativa).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This research was supported by the Natural Science Foundation of Qinghai Province [2017-ZJ-706], National Natural Science Foundation of China [31760622]. National international science and technology cooperation special project [2015DFG31870].

Data availability statement

The data that support the findings of this study are openly available in GenBank of National Center for Biotechnology Information at https://www.ncbi.nlm.nih.gov (Reference number: MN901634) and Sequence Read Archive at https://www.ncbi.nlm.nih.gov/search/all/?term=SRR12951164 (Number: SRR12951164).

References

Balabaev GA. 1934. Yellow lucernes of Siberia, *Medicago ruthenica* (L.) Lebd. and *M. platycarpos* (L.) Lebd. Bull App Bot Genet Plant Breed Serv. 7:13–123.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VN, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455–477.

De KJ, Xu CT. 2009. Introduction and domestication of Medicago archiducis-nicolai, a natural legume forage in alpine region. Seeds. 28(7):73–75.

Jin D, Ma J, Ma W, Liang C, Shi Y, He JS. 2013. Legumes in Chinese natural grasslands: species, biomass, and distribution. Rangeland Ecol Manage. 66(6):648–656.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Li J, Zhang QB, Yang G. 1997. Medicago in China and the resource superiority in Xinjiang. Acta Agrestia Sinica. 5(4):286–291.

Li YL. 2007a. Effect of rhizobium inoculation on Medicago archiducis-nicolai Sirj. Chin Qinghai J Vet Sciences. 37(4):5–6.

Li YL. 2007b. Observation and study of aboveground biomass of Medicago archiducis-nicolai Sirj in Xining Area. Prataculture Anim Husbandry. 142:16–17.

Liu YT. 1987. A fine wild legume grass in Qinghai and Tibet, Medicago archiducis-nicolai. Chin J Grassland. 03:71–73.

Small E, Marcel J. 1989. A synopsis of the genus Medicago (Leguminosae). Can J Bot. 67(11):3260–3294.

Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44(W1):W232–235.

Wang YF, Zhang YM, Liu DM, Shen YF, Wang HQ. 2020. Development and verification of EST-SSR markers in Medicago archiducis-nicolai by transcriptome sequencing. Pratacult Sci. 37(4):718–727.