The benefits of mountain woodland restoration

Sarah H. Watts1,2, Alistair S. Jump1

Mountain woodland ecotones require urgent action to reverse long-term habitat degradation and biodiversity loss. There is growing interest in restoring high-elevation woodland and scrub communities by harnessing planting and natural regeneration. Emissions offsetting has been a key driver, yet mountain systems offer slower mechanisms for biomass accumulation due to their typically smaller size, lower density, and slower growth than forests at lower elevations. We argue that the natural capital afforded by mountain woodland restoration is far more comprehensive than carbon sequestration alone and encompasses an important array of ecosystem services and biodiversity gains. Improved opportunities for wildlife and people include natural hazard protection, sheltering, structural variability, vegetation diversity, and recreation. Furthermore, mountain woodland restoration provides critically needed nature-based solutions for reducing threats from escalating climate change such as soil erosion, flooding, warming temperatures, and extreme weather. It is imperative that these benefits are embedded within conservation policy and environmental incentives.

Key words: biodiversity, climate change, conservation policy, ecosystem services, environmental management, montane scrub, natural capital, nature-based solutions

Conceptual Implications
- Mountain woodland restoration offers a broader suite of benefits to people and biodiversity than carbon sequestration potential alone.
- Concerted action for mountain woodland restoration will provide fundamental nature-based solutions which are urgently needed to alleviate the risks to infrastructure, rural livelihoods, food production, wildlife, and recreation during the escalating climate crisis.
- Mountain woodland restoration should be recognized as fundamentally important in conservation policy, economic incentives, and land management decisions for high-elevation regions across the globe.

Introduction

Mountain woodland ecotones across the globe have undergone significant anthropogenic degradation and contraction which has accelerated during the last few hundred years. Driving factors include overstocking and consequent overgrazing by large herbivores, agricultural expansion, burning, infrastructure development, and nutrient loading via atmospheric deposition (Scott 2000; Verheyen et al. 2009). Mountain forest and scrub communities are now highly fragmented and depleted in many areas, with negative implications for the ecosystem functions they once performed and thus the ecological and socioeconomic systems which depend on them. Governmental bodies, charities, land managers, and local communities are expressing growing interest in facilitating restoration of these habitats. Yet there can be a hesitancy to act without tangible rewards, given the high resource effort and time required to repair slow-growing upland vegetation in remote locations. Policymakers and conservation practitioners have therefore communicated the need for a clear evidence base outlining the suite of environmental and human benefits provided by mountain woodland restoration.

There is an increasing focus on tree planting and woodland regeneration for promoting carbon sequestration during the escalating climate change crisis (Bastin et al. 2019; Fletcher et al. 2021). However, sequestering carbon emissions using woody species is less definitive in high-latitude and high-altitude mountain ecosystems. Forest and treeline expansion in these regions can aid soil formation, but also alter soil mineralization, respiration, and decomposition rates; potentially counteracting any increased aboveground biomass storage which will nonetheless be slow (Hartley et al. 2012; Friggens et al. 2020).

Despite this uncertainty, we argue that mountain woodland restoration should be incorporated more widely into conservation policy because there is significant restoration value through

Author contributions: SHW conceived the idea; SHW, ASJ elaborated the concept; SHW wrote the first draft; SHW, ASJ revised subsequent drafts.

1Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, U.K.
2Address correspondence to S. H. Watts, email s.h.watts@stir.ac.uk

© 2022 The Authors. Restoration Ecology published by Wiley Periodicals LLC on behalf of Society for Ecological Restoration. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. doi: 10.1111/rec.13701
nature-based solutions, ecosystem service provision, and biodiversity gains. Here we outline the opportunities for natural hazard mitigation, soil stabilization, flood risk management, habitat sheltering, and associated flora and fauna. This evidence indicates that mountain woodland restoration offers enhanced natural capital within a diverse environment capable of supporting a variety of land uses.

In the context of our review, mountain woodland is broadly defined as communities of tree species in high-elevation and arctic-alpine regions. It includes the ecotone between the timberline (where trees have an upright form) and montane scrub (Fig. 1) at the uppermost altitudinal limit of tree growth (the treeline). Restoration of these habitats can be achieved through tree planting or management to facilitate natural regeneration, although the outputs will differ somewhat depending on the approach used. The narrative below has a wide biogeographical focus, but specific examples of mountain woodland restoration benefits from across the globe are given in Table 1.

Defense Against Soil Erosion and Flooding

Mountain forests protect built infrastructure, farmland, and environmental assets against a range of natural hazards including avalanches, landslides, and rockfalls (Bebi et al. 2001; Brang et al. 2001; Stoffel et al. 2006). The likelihood and severity of these destructive events is reduced by management to improve the structural complexity, condition, and regeneration of treeline habitats (Dorren et al. 2005; Wehrli et al. 2006). Such restoration actions are thus important nature-based solutions for alleviating the impacts of more extreme weather caused by global climate change.

For example, afforestation and scrub establishment in mountain regions moderates soil erosion risks. Colonization by trees and shrubs can create deeper, more organic and variable soils on areas previously covered by very thin, eroded soil and scree (Pawlik 2013; Valters et al. 2013). The presence of tree roots stabilizes steep slopes and ameliorates soil structure, filtration, and permeability (Podržáský et al. 2015; Scarciglia et al. 2020). These belowground modifications increase the water absorption rates of upland soils, while the tree canopy above intercepts rainfall and controls evapotranspiration (Dimböck & Grabherr 2000; He et al. 2012). Downslope hydrological functioning and river discharge is subsequently regulated by reduced surface runoff and streamflow (Wei et al. 2005; McVicar et al. 2007). The management benefits for alleviating downstream flooding are particularly noticeable when woodland is restored to over-compacted and degraded soils in upland river catchments (Murphy et al. 2021). Moreover, the improved water retention capacity of treeline communities compared to alpine grasslands can also act as moisture reservoir during periods of drought (Dimböck & Grabherr 2000).

Shelter and Vegetation Facilitation

As well as buffering the effects of precipitation variability, the presence of mountain woodland and scrub has an important sheltering influence against high wind speeds, intense sunlight, and extreme temperature fluctuations. This reduction in exposure can assist the survival and development of other flora in the otherwise harsh arctic-alpine environment, including dwarf shrubs and palatable eutrophic tall herbs (Jonasson 1992; Dona & Galen 2007). Clumps of montane trees and arctic-alpine shrubs accumulate snowdrifts on their leeward side, which offers further insulation against frost damage, abrasion, or winter desiccation (Hadley & Smith 1986; Holtmeier & Broll 2017).

Positive feedbacks, facilitation, and succession can result when these treeline sheltering effects create more favorable microclimatic conditions for forest recruitment via the establishment of new seedlings (Smith et al. 2003; Bekker 2005; Baumeister & Callaway 2006). Enhanced vegetation growth within the ecotone is also supported by leaf litter, root exudates, and diverse mycorrhizal associations with woody species which increase rates of mineralization, nitrogen availability, and soil organic matter accumulation (Jumpponen et al. 1998; Sjögersten & Wookey 2005; Mitchell et al. 2010; Friggens et al. 2020).

Animal Biodiversity

The structural variability of treeline habitats offers a range of ecological niches for numerous pollinators and generalist insects groups, including diptera, beetles, lepidoptera, and bumblebees (Scottish Montane Willow Research Group 2005). Populations of specialist phytophagous taxa and locally endemic invertebrates are also sustained, often through host-specific relationships with individual tree species, particularly montane willows (Pryke & Samways 2010; Liston et al. 2012). The high diversity of fungi, plants, and invertebrates in mountain woodland subsequently provides opportunities for mycophagous, herbivorous, and insectivorous small mammals, as well as predators higher up the food chain including raptors (Scott 2000;
Table 1. Selected examples of mountain woodland restoration benefits from a range of geographical locations.

Benefit	Examples	References
Protection from extreme events	• GIS-based analysis for a 300-year snow avalanche event in the Swiss Alps showed that deforestation significantly increased the collective risk to people and infrastructure	
• Rockfall experiments in the French Alps demonstrated that forested slopes provide protection against rockfall by decreasing velocity and rebound height		
• Upland broad-leaved woodland in the Lake District, England, increased topsoil permeability and reduced peak flood discharge and run-off by up to 60% in comparison to livestock pasture	Teich and Bebi (2009)	
Jiao et al. (2012) and Gu et al. (2019)		
Monger et al. (2022)		
Control of soil erosion	• Afforestation and replanted scrubland on the Loess Plateau, China, significantly enhanced soil anti-erosibility indexes compared to pre-planted sites	
• A comparison of paired watersheds at Coveetta, southeastern United States, found that reforestation at riverbasin headwaters significantly reduced peak stream flows and protected against flooding during spring snow melt		
• Rockfall experiments in the French Alps demonstrated that forested slopes provide protection against rockfall by decreasing velocity and rebound height	Kelly et al. (2016)	
Jiao et al. (2012) and Gu et al. (2019)		
Monger et al. (2022)		
Flood mitigation	• A comparison of paired watersheds at Coveetta, southeastern United States, found that reforestation at riverbasin headwaters significantly reduced peak stream flows and protected against flooding during spring snow melt	Kelly et al. (2016)
Monger et al. (2022)		
Sheltering and vegetation facilitation	• Arctic-alpine willow canopies in Finse, western Norway, promote aboveground mass of associated herbs such as Potentilla crantzii (Alpine cinquefoil), Ranunculus acris (Meadow buttercup), Bartsia alpina (Alpine bartsia), Geum rivale (Water avens), Geranium sylvaticum (Wood cranesbill), and Scorzoneroides autumnalis (Autumn hawkbit)	
• Management interventions to protect montane willow scrub in Scotland from large herbivores have also promoted restoration of the associated grazing-sensitive hydrophilous tall herb fringe community (Fig. 1)		
• Management interventions to protect montane willow scrub in Scotland from large herbivores have also promoted restoration of the associated grazingsensitive hydrophilous tall herb fringe community (Fig. 1)		
• Snow holding in the treeline ecotone facilitates greater conifer seedling survival rates of Picea engelmannii (Engelmann spruce) and Abies lasiocarpa (Subalpine fir) in the Rocky Mountains, and Pinus uncinata (Swiss mountain pine) in the Catalan Pyrenees		
• Snow holding in the treeline ecotone facilitates greater conifer seedling survival rates of Picea engelmannii (Engelmann spruce) and Abies lasiocarpa (Subalpine fir) in the Rocky Mountains, and Pinus uncinata (Swiss mountain pine) in the Catalan Pyrenees		
• Snow holding in the treeline ecotone facilitates greater conifer seedling survival rates of Picea engelmannii (Engelmann spruce) and Abies lasiocarpa (Subalpine fir) in the Rocky Mountains, and Pinus uncinata (Swiss mountain pine) in the Catalan Pyrenees		
• Snow holding in the treeline ecotone facilitates greater conifer seedling survival rates of Picea engelmannii (Engelmann spruce) and Abies lasiocarpa (Subalpine fir) in the Rocky Mountains, and Pinus uncinata (Swiss mountain pine) in the Catalan Pyrenees		
• Snow holding in the treeline ecotone facilitates greater conifer seedling survival rates of Picea engelmannii (Engelmann spruce) and Abies lasiocarpa (Subalpine fir) in the Rocky Mountains, and Pinus uncinata (Swiss mountain pine) in the Catalan Pyrenees	Hättenschwiler and Smith (1999) and Batllori et al. (2009)	
Watts et al. (2019)		
Bennell and Millar (1984), Smith et al. (2004), and Milne et al. (2012)		
Fungal diversity	• Analysis of root samples collected from montane woodland in Scotland discovered exceptionally high diversity of ectomycorrhizal fungi, including 34 species new to the country and 23 considered new to science	
• Analysis of root samples collected from montane woodland in Scotland discovered exceptionally high diversity of ectomycorrhizal fungi, including 34 species new to the country and 23 considered new to science		
• Analysis of root samples collected from montane woodland in Scotland discovered exceptionally high diversity of ectomycorrhizal fungi, including 34 species new to the country and 23 considered new to science		
• Analysis of root samples collected from montane woodland in Scotland discovered exceptionally high diversity of ectomycorrhizal fungi, including 34 species new to the country and 23 considered new to science		
• Analysis of root samples collected from montane woodland in Scotland discovered exceptionally high diversity of ectomycorrhizal fungi, including 34 species new to the country and 23 considered new to science	Hesling and Taylor (2015)	
Bennell and Millar (1984), Smith et al. (2004), and Milne et al. (2012)		
Invertebrate diversity	• Restored Salix lapponum-Luzula sylvatica scrub in the Scottish Highlands (Fig. 1) has high associated invertebrate diversity, attracting a wide range species including Bombus monticola (Blueberry bumblebee), Cerura vinula (Puss moth), Lasiocampa quercus callunae (Northern eggar), Orgyia antiqua (Vapourer moth), and Furcula furcula (Sallow kitten)	
• Montane willows support rare and endangered host specific willow-galling sawflies in the genera Pontana, Phyllocolpe, and Euara		
• Montane willows support rare and endangered host specific willow-galling sawflies in the genera Pontana, Phyllocolpe, and Euara		
• Montane willows support rare and endangered host specific willow-galling sawflies in the genera Pontana, Phyllocolpe, and Euara		
• Montane willows support rare and endangered host specific willow-galling sawflies in the genera Pontana, Phyllocolpe, and Euara	Mardon (2003)	
Bland et al. (1997) and Liston et al. (2012)		
Klaus et al. (2020)		
Bird diversity	• Restoration of montane longleaf pine forests in Georgia, United States, increased bird species richness and abundance, particularly for shrub and woodland dependants of high conservation value, including Melanerpes erythrocephalus (Red-headed Woodpecker), Setophaga discolor (Prairie Warbler), and Hylocichla mustelina (Wood Thrush)	
• Restoration of montane longleaf pine forests in Georgia, United States, increased bird species richness and abundance, particularly for shrub and woodland dependants of high conservation value, including Melanerpes erythrocephalus (Red-headed Woodpecker), Setophaga discolor (Prairie Warbler), and Hylocichla mustelina (Wood Thrush)
• Restoration of montane longleaf pine forests in Georgia, United States, increased bird species richness and abundance, particularly for shrub and woodland dependants of high conservation value, including Melanerpes erythrocephalus (Red-headed Woodpecker), Setophaga discolor (Prairie Warbler), and Hylocichla mustelina (Wood Thrush)
• Restoration of montane longleaf pine forests in Georgia, United States, increased bird species richness and abundance, particularly for shrub and woodland dependants of high conservation value, including Melanerpes erythrocephalus (Red-headed Woodpecker), Setophaga discolor (Prairie Warbler), and Hylocichla mustelina (Wood Thrush)
• Restoration of montane longleaf pine forests in Georgia, United States, increased bird species richness and abundance, particularly for shrub and woodland dependants of high conservation value, including Melanerpes erythrocephalus (Red-headed Woodpecker), Setophaga discolor (Prairie Warbler), and Hylocichla mustelina (Wood Thrush) | Halley (2011)
Bland et al. (1997) and Liston et al. (2012)
Klaus et al. (2020) |

Schickmann et al. (2012). Avian species richness and biomass are much greater in re-established upland forests in comparison to unforested areas (Barri et al. 2021; Warner et al. 2021), with the benefits of treeline creation extending to birds of woodland edge and open scrub (Klaus et al. 2020). Livestock, reindeer, deer, and other game animals such as grouse take advantage of the shelter and nutritious forage provided by the ecotone, especially alpine willow-dominated communities (García-González et al. 2016; Denryter et al. 2022). Riparian woodland restoration in upland catchments also mediates water temperature fluctuations through shading (Garner et al. 2015), thereby enriching habitat quality for freshwater invertebrates and fish such as...
salmonids and buffering them from harmful warming due to climate change.

Benefits to Human Woodland

Restoration of mountain woodland and treeline scrub removes abrupt forest edges at the timberline and allows for a visual and ecological gradation into montane grassland and heaths (Scott 2000). This mosaic structure offers aesthetic landscape improvements beyond uniform plantation boundaries and over-grazed vegetation on bare slopes. It also creates an environment with a variety of opportunities for a range of land users, including tourism, birdwatching, botanizing, an enhanced hunting experience, sport, and other recreational activities. With visitor numbers to many upland regions increasing (Tsiaras 2017), the noise attenuation effect provided by woodland could dampen unwanted anthropogenic sound and reduce acoustic disturbance for both wildlife and people (Attenborough & Taherzadeh 2016). Access to a holistic mountain adventure that involves healthy, biodiverse treeline habitats has a positive influence on physical and mental well-being (Bell & Thompson 2014). Mountain woodlands are also an intrinsic feature of indigenous culture and food production across the globe (Msuya et al. 2010; Svensson et al. 2020).

Conclusion

The ecosystem service and biodiversity benefits delivered by mountain woodland restoration are much greater than carbon sequestration alone. Moreover, the escalating climate crisis gives an increasingly urgent need to implement restoration programs now to protect the essential resources, rural livelihoods, and recreational value offered by high-elevation systems. Mountain woodland will be critical for reducing the impacts of more frequent storms and other natural hazards, creating shelter, and allowing temperature sensitive species to persist even as extreme weather becomes more common. We recommend that the natural capital and nature-based solutions afforded by mountain woodland restoration are integrated into conservation policy incentives and environmental management decision-making as key tools for combatting climate breakdown and averting biodiversity loss.

Acknowledgments

Inspiration and ideas for this paper were developed from discussions with D. Gilbert, M. Drury, D.K. Mardon, and the Mountain Woodland Action Group. S.H.W. acknowledges funding from Corrour Estate, Woodland Trust, Scottish Forestry Trust, Macaulay Development Trust, National Trust for Scotland, Forest Research and Future Woodlands Scotland. A.S.J. is supported by the Natural Environment Research Council (NERC) under grants NE/S010041/1 and NE/V00929X/1.

LITERATURE CITED

Attenborough K, Taherzadeh S (2016) Sound propagation through forests and tree belts. Proceedings of the Institute of Acoustics 38:114–125. http://oro.open.ac.uk/473141/BOA2016-Attenborough.pdf

Barrie F, Toledo M, Herzog P, Bellis L, Renison D (2021) Avifaunal responses after two decades of Polylepis forest restoration in Central Argentina. Neotropical Biodiversity 7:205–212. https://doi.org/10.1080/23766808.2021.1938885

Bastin J-F, Finegold Y, Garcia C, Mollicone D, Rezende M, Routh D, Zohner CM, Crowther TW (2019) The global tree restoration potential. Science 365:76–79. https://doi.org/10.1126/science.aax0848

Baltieri E, Camarero JJ, Niton JM, Gutiérrez E (2009) Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming. Global Ecology and Biogeography 18:460–472. https://doi.org/10.1111/j.1466-8238.2009.00464.x

Baumeister D, Callaway RM (2006) Facilitation by Pinus edulis on seedling survival of Calluna vulgaris and Ledum palustre in the Arizona montane spruce-fir forests. Conservation Biology 20:1435–1444. https://doi.org/10.1111/j.1523-1739.2006.00546.x

Bebi P, Kienast F, Schönberger W (2001) Assessing structures in mountain forests as a basis for investigating the forests’ dynamics and protective function. Forest Ecology and Management 145:3–14. https://doi.org/10.1016/S0378-1127(00)00570-3

Bekker MF (2005) Positive feedback between tree establishment and patterns of subalpine forest advancement, Glacier National Park, Montana, U.S.A. Arctic, Antarctic, and Alpine Research 37:97–107. https://doi.org/10.1657/1523-0430(2005)037[0097:PFBTEA]2.0.CO;2

Bell S, Thompsoon CW (2014) Human engagement with forest environments: implications for physical and mental health and wellbeing. Pages 71–92. In: Fenning T (ed) Challenges and opportunities for the World’s Forests in the 21st Century. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7076-8_5

Bennell AP, Millar CS (1984) Fungal pathogens of birch in Britain. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences 85:153–167. https://doi.org/10.1017/S0275722000003961

Bland KP, Entwistle PF, Horsfield D (1997) The invertebrate fauna of montane scrub. Pages 35–40. In: Gilbert D, Horsfield D, Thompson DBA (eds) The ecology and restoration of montane and subalpine habitats in Scotland. Highland Birchwoods, Munlochy

Brang P, Schönberger W, Ott E, Gardner B (2001) Forests as protection from natural hazards. The Forests Handbook 2:53–81. https://doi.org/10.1002/9780470757079.ch3

Dennytr J, Cook RC, Cook JG, Parker KL (2022) Animal-defined resources reveal nutritional inadequacies for woodland caribou during summer–autumn. The Journal of Wildlife Management 86:22161. https://doi.org/10.1002/jwmg.22161

Dinmböck T, Grubber G (2000) GIS assessment of vegetation and hydrological change in a high mountain catchment of the Northern Limestone Alps. Mountain Research and Development 20:172–179. https://doi.org/10.1659/0276-4741(2000)020[0172:AGAVHC]2.0.CO;2

Dona AJ, Galen C (2007) Nurse effects of alpine willows (Salix) enhance overwinter survival at the upper range limit of fireweed, Chamerion angustifolium. Arctic, Antarctic, and Alpine Research 39:57–64. https://doi.org/10.1657/1523-0430(2007)39[57:NEAOW2.0.CO;2

Dorren L, Berger F, Mermin E, Tardif P (2006) Results of real size rockfall experiments on forested and non-forested slopes. Pages 223–228. In: Disaster mitigation of debris flows, slope failures and landslides. Universal Academy Press, Inc., Tokyo, Japan

Dorren LK, Berger F, Le Hir C, Mermin E, Tardif P (2005) Mechanisms, effects and management implications of rockfall in forests. Forest Ecology and Management 215:183–195. https://doi.org/10.1016/j.foreco.2005.05.012

Fletcher TI, Scott CE, Hall J, Spracklen DV (2021) The carbon sequestration potential of Scottish native woodland. Environmental Research Communications 3:041003. https://doi.org/10.1088/2515-7620/abf467

In: Fenning T (ed) Challenges and opportunities for the World’s Forests in the 21st Century. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7076-8_5
Mardon D (2003) Conserving montane willow scrub on Ben Lawers NNR.

Liston AD, Knight G, Heibo E, Bland K, Barstad T-E, Blank SM, Boevé J-L, Jonasson S (1992) Plant responses to fertilization and species removal in tundra...

Jiao J, Zhang Z, Bai W, Jia Y, Wang N (2012) Assessing the ecological success of restoration on the Chinese Loess Plateau. Restoration Ecology 20:103–1045.

Mitchell RJ, Campbell CD, Chapman SJ, Cameron CM (2010) The ecological engineering impact of a single tree species on the soil microbial community. Journal of Ecology 98:50–61.

Monger F, Spracklen VD, Kirkby MJ, Schofield L (2012) The impact of semi-natural broadleaf woodland and pasture on soil properties and flood discharge. Hydrological Processes 36:e14453.

Muyea TS, Kideghesho JR, Mosha TC (2010) Availability, preference, and consumption of indigenous forest foods in the Eastern Arc Mountains, Tanzania. Ecology of Food and Nutrition 49:208–227.

Murphy TR, Hanley ME, Ellis JS, Lant PH (2021) Native woodland establishment improves soil hydrological functioning in UK upland pastoral catchments. Land Degradation & Development 32:1034–1045.

Pawlik L (2013) The role of trees in the geomorphic system of forested hillslopes - a review. Earth-Science Reviews 126:250–265.

Podrászky V, Holubík O, Vopravil J, Khel T, Moser W, Prknoá H (2015) Effects of afforestation on soil structure formation in two climatic regions of the Czech Republic. Journal of Forest Science 61:225–234.

Przyk J, Samways M (2010) Significant variables for the conservation of mountain invertebrates. Journal of Insect Conservation 14:247–256.

Scarciglia F, Nicolaci A, Del Bianco S, Pelle T, Soligo M, Tuccimei P, Marzaíoli F, Passariello I, Iovino F (2020) Reforestation and soil recovery in a Mediterranean mountain environment: insights into historical geomorphic and vegetation dynamics in the Sìla Massif, Calabria, southern Italy. Catena 194:104707.

Schickmann S, Urban A, Kraüler K, Nopp-Mayr U, Hackländer K (2012) The interrelationship of mycophagous small mammals and ectomycorrhizal fungi in primeval, disturbed and managed Central European mountainous forests. Oecologia 170:395–409.

Scott M (2000) Natural heritage management series: montane scrub. Scottish Natural Heritage, Battleby

Scottish Montane Willow Research Group. (2005) Biodiversity: taxonomy, genetics and ecology of sub-arctic willow scrub. Summary Booklet. Royal Botanic Garden Edinburgh, Edinburgh

Sjögren SV, Wijkander M, Kihl J, Byström M, Palmqvist M (2005) Willows in the Swedisch Archipelago. Acta Botanica Fennica 171:1–76.

Stoffel M, Wehrli A, Kühn R, Durand A, Bänninger C, Gilbert M, Giger U (2004) The impact of deforestation on the willow rust fungus, and willow health in the European Alps. Journal of Forest Pathology 34:97–111.
Svensson J, Bubnicki JW, Jonsson BG, Andersson J, Mikusiński G (2020) Conservation significance of intact forest landscapes in the Scandinavian Mountains Green Belt. Landscape Ecology 35:2113–2131. https://doi.org/10.1007/s10980-020-01088-4

Teich M, Bebi P (2009) Evaluating the benefit of avalanche protection forest with GIS-based risk analyses—a case study in Switzerland. Forest Ecology and Management 257:1910–1919. https://doi.org/10.1016/j.foreco.2009.01.046

Totland Ø, Esaete J (2002) Effects of willow canopies on plant species performance in a low-alpine community. Plant Ecology 161:157–166. https://doi.org/10.1023/A:1020345632498

Tsiaras S (2017) Exploring the impact of tourism to the sustainable development of mountain regions: implications of the climatic conditions. International Journal of Agricultural and Environmental Information Systems 8:14–28. https://doi.org/10.4018/IJAIEIS.2017010102

Valtera M, Šamonil P, Boublik K (2013) Soil variability in naturally disturbed Norway spruce forests in the Carpathians: bridging spatial scales. Forest Ecology and Management 310:134–146. https://doi.org/10.1016/j.foreco.2013.08.004

Verheyen K, Adriaenssens S, Gruwez R, Michalczyk IM, Ward LK, Rosseel Y, Van Den Broeck A, Garcia D (2009) Juniperus communis: victim of the combined action of climate warming and nitrogen deposition? Plant Biology 11:49–59. https://doi.org/10.1111/j.1438-8677.2009.00214.x

Warner E, Hector A, Brown N, Green R, Savory A, Gilbert D, Mcdonnell A, Lewis OT (2021) The response of plants, carabid beetles and birds to 30 years of native reforestation in the Scottish Highlands. Journal of Applied Ecology 58:2185–2194. https://doi.org/10.1111/1365-2664.13944

Watts SH, Griffith A, Mackinlay L (2019) Grazing exclusion and vegetation change in an upland grassland with patches of tall herbs. Applied Vegetation Science 22:383–393. https://doi.org/10.1111/avsc.12438

Wehrli A, Dorren LK, Berger F, Zingg A, Schönenberger W, Brang P (2006) Modelling long-term effects of forest dynamics on the protective effect against rockfall. Forest Snow and Landscape Research 80:57–76

Wei X, Liu S, Zhou G, Wang C (2005) Hydrological processes in major types of Chinese forest. Hydrological Processes: An International Journal 19: 63–67. https://doi.org/10.1002/hyp.3777

Coordinating Editor: Stephen Murphy

Received: 4 March, 2022; First decision: 5 April, 2022; Revised: 8 April, 2022; Accepted: 8 April, 2022