Complex I deficiency and Leigh syndrome through the eyes of a clinician

Karit Reinson1,2 & Katrin Õunap1,2,*

Mitochondrial complex I deficiency is associated with a wide range of clinical presentations, including Leigh syndrome. Its genetic causes are heterogeneous, with poor genotype–phenotype correlation. It is impossible to identify the genetic defect of complex I deficiency using clinical observation and metabolic/imaging studies alone. As a result, whole-exome sequencing (WES) is increasingly used in clinical work to identify an underlying genetic defect causing the disease. The article in this issue of EMBO Molecular Medicine by Alahmad et al (2020) is timely and valuable, as it expands on the genotype of mitochondrial complex I deficiency by identifying and characterising pathogenic variants of the NDUFC2 gene in children with Leigh syndrome.

EMBO Mol Med (2020) 12: e13187

See also: A Alahmad et al (November 2020)

Mitochondria are present in all nucleated cells and responsible for the generation of adenosine triphosphate (ATP) via oxidative phosphorylation (OXPHOS). Around 90% of the cell energy requirements are achieved through hydrolysis of ATP, making the mitochondrial ATP production a crucial energy source for the human body (Harris & Das, 1991). The OXPHOS system contains five multi-subunit complexes and two electron carriers. In mammals, mitochondrial complex I is composed of 45 subunits and is responsible for the most frequently observed single-enzyme deficiency causing OXPHOS disorders (Rodenburg, 2016). Clinical phenotypes associated with complex I deficiencies include Leigh syndrome, severe or fatal lactic acidosis, leukoencephalopathy, pure myopathy, hepatopathy with renal tubulopathy, neonatal cardiomyopathy, Leber’s hereditary optic neuropathy and mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (Fassone & Rahman, 2012). However, there is increasing evidence that the phenotype of complex I deficiency is even broader including, for example, isolated congenital sideroblastic anaemia (Lichtenstein et al, 2016). Early symptoms often present a non-specific clinical and biochemical picture, regardless of patient age, and phenotypes may vary widely among family members (Reinson et al, 2019).

Leigh syndrome, first described by Denis Leigh in 1951 as a subacute necrotising encephalomyelopathy, is a rare inherited progressive neurodegenerative disorder. It is characterised by focal, bilaterally symmetrical and subacute necrotic lesions in the thalamus, brainstem and posterior columns of the spinal cord. As there is no single clinical or laboratory criterion, diagnosis of Leigh syndrome is based on clinical observation, family history, laboratory evaluations, imaging, histochemical staining of muscle biopsies, mitochondrial respiratory chain enzyme activity analysis and identification of mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) pathogenic variant(s) (Baertling et al, 2014). The most frequently observed abnormality, which occurs in more than 30% of patients, is complex I deficiency (Fassone & Rahman, 2012). Disease onset is typically between 3 and 12 months with 50% of affected individuals dying at 3 years of age (Rahman et al, 1996). However, Leigh syndrome can also occur during adolescence or adulthood (Baertling et al, 2014), and with appropriate treatment, patients can survive for many years after diagnosis (Rahman et al, 1996).

Mitochondrial disorders are caused by pathogenic variant(s) in either nDNA or mtDNA. To date, there are 89 genes known to cause Leigh syndrome (Rahman et al, 2017) and at least 44 genes encode complex I subunits. Figure 1 shows the correlation between nuclear-encoded complex I subunit and assembly factor genes and the main clinical phenotype (neurological, metabolic, cardiac and exercise intolerance). Identification of novel homozygous NDUFC2 variants in 3 subjects with Leigh syndrome by Alahmad et al adds NDUFC2 to the list of genes causing complex I deficiency (Fig 1). Furthermore, Alahmad and colleagues revealed that the mutations in NDUFC2 gene cause a defect in the assembly of the complex I holoenzyme suggesting an important role for NDUFC2 in the assembly of the membrane arm of complex I (Alahmad et al, 2020).

From a clinician’s point of view, treatment especially of a multi-systemically affected child with mitochondrial disease is complex and must be rapid. It is important to highlight that the precise molecular diagnosis allows clinicians to counsel the patients and their families about the possibilities of treatment, recurrence risk, prenatal testing options and prognosis. The introduction of WES in clinical work has greatly improved the prospect of achieving a genetic diagnosis for patients with high...
clinical diagnostic scoring of mitochondrial disorders in up to 60% of cases (Puusepp et al., 2018). However, WES does not magi-
cally produce an effortless diagnosis in all cases. Data may not provide enough
information for a definitive diagnosis, and a
clinician may have few opportunities (and
little time) for fundamental and broad-based
functional research. In complicated and fast-
evolving cases, bedside decisions on patient
care still rely on the literature.

The value and importance of the article
by Alahmad et al lie in functional studies
with new pathogenic variants of the
NDUFC2
gene. From a physician’s point of view,
identification of these gene variants will
support prenatal diagnosis and allow a more
accurate prognosis that would offer appropri-
ate family counselling that is often the only
relief in a difficult time. In addition, Alahmad
et al also impart detailed information on
genome-encoded proteins, mutation-induced
dysfunctions and complex I assembly path-
ways, providing a basis for future research and
hopefully treatment options as well.

In conclusion, we still do not completely
understand the complexity of diseases and their
causes. Therefore, collaboration between
clinicians and scientists in the areas of geno-
mics, transcriptomics, proteomics and meta-
bolomics is essential for the continued
development of evidence-based diagnoses and
treatments.

Acknowledgements
Authors are supported by the Estonian Research
Council grant PRG471.

References
Alahmad A, Nasca A, Heidler J, Thompson K,
Oláhová M, Legati A, Lamantia E,
Meisterknecht J, He L et al (2020) Bi-allelic
pathogenic variants in NDUFC2
cause early-onset Leigh syndrome and stalled
biogenesis of complex I. EMBO Mol
Med 12: e12619
Baertling F, Rodenburg RJ, Schaper J,
Smetink A, Koopman WJ, Mayatepek E,
Morava E, Distelmaier F (2014) A guide to
diagnosis and treatment of Leigh
syndrome. J Neural Neurosurg Psychiatr
85: 257–265
Fassone E, Rahman S (2012) Complex I
deficiency: clinical features, biochemistry
and molecular genetics. J Med Genet 49:
578–590
Harris DA, Das AM (1991) Control of mitochondrial
ATP synthesis in the heart. Biochem J 280(Pt 3):
561–573
Lichtenstein DA, Crispin AW, Sendamarai AK,
Campagna DR, Schmitz-Abé K, Sousa CM,
Kafina MD, Schmidt PJ, Niemeyer CM,
Porter J et al (2016) A recurring mutation in
the respiratory complex 1 protein NDUFB11
is responsible for a novel form of X-linked
sideroblastic anemia. Blood 128:
1913–1917
Puusepp S, Reinson K, Pajusalo S, Murumets U,
Oiglane-Shlik E, Rein R, Talvik I, Rodenburg
Rj, Öunap K (2018) Effectiveness of whole
exome sequencing in unsolved patients with
a clinical suspicion of a mitochondrial
disorder in Estonia. Mol Genet Metab Rep 15:
80–89

In conclusion, we still do not completely
understand the complexity of diseases and
their causes. Therefore, collaboration between
clinicians and scientists in the areas of geno-
mics, transcriptomics, proteomics and meta-
bolomics is essential for the continued
development of evidence-based diagnoses and
treatments.

Acknowledgements
Authors are supported by the Estonian Research
Council grant PRG471.

References
Alahmad A, Nasca A, Heidler J, Thompson K,
Oláhová M, Legati A, Lamantia E,
Meisterknecht J, He L et al (2020) Bi-allelic
pathogenic variants in NDUFC2
cause early-onset Leigh syndrome and stalled
biogenesis of complex I. EMBO Mol
Med 12: e12619
Baertling F, Rodenburg RJ, Schaper J,
Smetink A, Koopman WJ, Mayatepek E,
Morava E, Distelmaier F (2014) A guide to
diagnosis and treatment of Leigh
syndrome. J Neural Neurosurg Psychiatr
85: 257–265
Fassone E, Rahman S (2012) Complex I
deficiency: clinical features, biochemistry
and molecular genetics. J Med Genet 49:
578–590
Harris DA, Das AM (1991) Control of mitochondrial
ATP synthesis in the heart. Biochem J 280(Pt 3):
561–573
Lichtenstein DA, Crispin AW, Sendamarai AK,
Campagna DR, Schmitz-Abé K, Sousa CM,
Kafina MD, Schmidt PJ, Niemeyer CM,
Porter J et al (2016) A recurring mutation in
the respiratory complex 1 protein NDUFB11
is responsible for a novel form of X-linked
sideroblastic anemia. Blood 128:
1913–1917
Puusepp S, Reinson K, Pajusalo S, Murumets U,
Oiglane-Shlik E, Rein R, Talvik I, Rodenburg
Rj, Öunap K (2018) Effectiveness of whole
exome sequencing in unsolved patients with
a clinical suspicion of a mitochondrial
disorder in Estonia. Mol Genet Metab Rep 15:
80–89
Rahman S, Blok RB, Dahl HH, Danks DM, Kirby DM, Chow CW, Christodoulou J, Thorburn DR (1996) Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol 39: 343 – 351
Rahman J, Noronha A, Thiele I, Rahman S (2017) Leigh map: a novel computational diagnostic resource for mitochondrial disease. Ann Neurol 81: 9 – 16
Reinson K, Kovacs-Nagy R, Oiglane-Shlik E, Pajusalu S, Noukas M, Wintjes LT, van den Brandt FCA, Brink M, Acker T, Ahting U et al (2019) Diverse phenotype in patients with complex I deficiency due to mutations in NDUFB11. Eur J Med Genet 62: 103572
Rodenburg RJ (2016) Mitochondrial complex I-linked disease. Biochim et Biophys Acta 1857: 938 – 945

License: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.