CAUCHY’S RESIDUE THEOREM FOR A CLASS OF REAL VALUED FUNCTIONS

BRANKO SARIĆ

Abstract. Let \([a, b]\) be an interval in \(\mathbb{R}\) and let \(F\) be a real valued function defined at the endpoints of \([a, b]\) and with a certain number of discontinuities within \([a, b]\). Having assumed \(F\) to be differentiable on a set \([a, b] \setminus E\) to the derivative \(f\), where \(E\) is a subset of \([a, b]\) at whose points \(F\) can take values \(\pm \infty\) or not be defined at all, we adopt the convention that \(F\) and \(f\) are equal to 0 at all points of \(E\) and show that

\[
\mathcal{K}H - \text{vt } \int_a^b f = F(b) - F(a),
\]

where \(\mathcal{K}H - \text{vt}\) denotes the total value of the Kurzweil-Henstock integral. The paper ends with a few examples that illustrate the theory.

1. Introduction

Let \([a, b]\) be some compact interval in \(\mathbb{R}\). It is an old result that for an ACGδ function \(F : [a, b] \mapsto \mathbb{R}\) on \([a, b]\), which is differentiable almost everywhere on \([a, b]\), its derivative \(f\) is integrable (in the Kurzweil-Henstock sense) on \([a, b]\) and

\[
\mathcal{K}H - \text{vt } \int_a^b f = F(b) - F(a), \quad [3, \text{Theorem } 9.17].
\]

The aim of this note is to define a new definite integral named the total Kurzweil-Henstock integral that can be used to extend the above mentioned result to any real valued function \(F\) defined and differentiable on \([a, b] \setminus E\), where \(E\) is a certain subset of \([a, b]\) at whose points \(F\) can take values \(\pm \infty\) or not be defined at all. Unless otherwise stated in what follows, we assume that the endpoints of \([a, b]\) do not belong to \(E\). Now, define point functions \(F_{ex} : [a, b] \mapsto \mathbb{R}\) and \(D_{ex} F : [a, b] \mapsto \mathbb{R}\) by extending \(F\) and its derivative \(f\) from \([a, b] \setminus E\) to \(E\) by \(F_{ex}(x) = 0\) and \(D_{ex} F(x) = 0\) for \(x \in E\), so that

\[
F_{ex}(x) = \begin{cases}
F(x), & \text{if } x \in [a, b] \setminus E \\
0, & \text{if } x \in E
\end{cases}
\]

and

\[
D_{ex} F(x) = \begin{cases}
f(x), & \text{if } x \in [a, b] \setminus E \\
0, & \text{if } x \in E
\end{cases}.
\]

2. Preliminaries

A partition \(P[a, b]\) of \([a, b] \in \mathbb{R}\) is a finite set (collection) of interval-point pairs \(\{(a_i, b_i), x_i \mid i = 1, \ldots, \nu\}\), such that the subintervals \([a_i, b_i]\) are non-overlapping, \(\bigcup_{i \leq \nu} [a_i, b_i] = [a, b]\) and \(x_i \in [a_i, b_i]\). The points \(\{x_i\}_{i \leq \nu}\) are the tags of \(P[a, b]\), [2]. It is evident that a given partition of \([a, b]\) can be tagged in infinitely many ways by choosing different points as tags. If \(E\) is a subset of \([a, b]\), then the restriction of \(P[a, b]\) to \(E\) is a finite collection of \(\{(a_i, b_i), x_i \mid x_i \in P[a, b]\}\) such that each \(x_i \in E\).

Date: June 08, 2009.

1991 Mathematics Subject Classification. Primary 26A39; Secondary 26A24, 26A30.

Key words and phrases. The Kurzweil-Henstock integral, Cauchy’s residue theorem.

The author’s research is supported by the Ministry of Science, Technology and Development, Republic of Serbia (Project ON144002).
In symbols, \(P[a, b] |_E = \{(a_i, b_i), x_i \mid x_i \in E, i = 1, \ldots, \nu_E\} \). Let \(\mathcal{P}[a, b] \) be the family of all partitions \(P[a, b] \) of \([a, b]\). Given \(\delta : [a, b] \rightarrow \mathbb{R}_+ \), named a gauge, a partition \(P[a, b] \in \mathcal{P}[a, b] \) is called \(\delta \)-fine if \([a_i, b_i] \subseteq (x_i - \delta(x_i), x_i + \delta(x_i))\). By Cousin’s lemma the set of \(\delta \)-fine partitions of \([a, b]\) is nonempty. [3]

The collection \(\mathcal{I}([a, b]) \) is the family of compact subintervals \(I \) of \([a, b]\). The Lebesgue measure of the interval \(I \) is denoted by \(|I|\). Any real valued function defined on \(\mathcal{I}([a, b]) \) is an interval function. For a function \(f : [a, b] \rightarrow \mathbb{R} \), the associated interval function of \(f \) is an interval function \(F : \mathcal{I}([a, b]) \rightarrow \mathbb{R} \), again denoted by \(f \). [3] If \(f \equiv 0 \) on \([a, b]\) then its associated interval function is trivial.

A function \(f : [a, b] \rightarrow \mathbb{R} \) is said to be Kurzweil-Henstock integrable to a real number \(A \) on \([a, b]\) if for every \(\varepsilon > 0 \) there exists a gauge \(\delta_\varepsilon : [a, b] \rightarrow \mathbb{R}_+ \) such that \(\left| \sum_{i \leq \nu} |f(x_i)| |a_i, b_i| \right| - A < \varepsilon \), whenever \(P[a, b] \) is a \(\delta_\varepsilon \)-fine partition of \([a, b]\). In symbols, \(A = \mathcal{KH}\int_a^b f \).

3. Main Results

In what follows we will use the following notations.

\[
\Xi_f(P[a, b]) = \sum_{i \leq \nu}|f(x_i)| |a_i| \quad \text{and} \quad \Sigma_\Phi(P[a, b]) = \sum_{i \leq \nu}(\Phi(b_i) - \Phi(a_i)).
\]

Now, we are in a position to introduce the total Kurzweil-Henstock integral.

Definition 1. For any compact interval \([a, b]\) \(\in \mathbb{R} \) let \(E \) be a non-empty subset of \([a, b]\). A function \(f : [a, b] \rightarrow \mathbb{R} \) is said to be totally Kurzweil-Henstock integrable to a real number \(\mathcal{H} \) on \([a, b]\) if there exists a nontrivial interval function \(\Phi : \mathcal{I}([a, b]) \rightarrow \mathbb{R} \) with the following property: for every \(\varepsilon > 0 \) there exists a gauge \(\delta_{\varepsilon} \) on \([a, b]\) such that \(|\Xi_f(P[a, b]) - \Sigma_\Phi(P[a, b] |_{[a, b]\setminus E})| < \varepsilon \) and \(\Sigma_\Phi(P[a, b]) = \mathcal{H} \), whenever \(P[a, b] \in \mathcal{P}[a, b] \) is a \(\delta_{\varepsilon} \)-fine partition and \(P[a, b] |_{[a, b]\setminus E} \) is its restriction to \([a, b]\) \(\setminus E \). In symbols, \(\mathcal{KH}\int_a^b f = \mathcal{H} \).

Definition 2. Let \(E \) be a non-empty subset of \([a, b]\). Then, an interval function \(\Phi : \mathcal{I}([a, b]) \rightarrow \mathbb{R} \) is said to be basically summable (BSI\(\delta_{\varepsilon}\)) to the sum \(\mathcal{R} \) on \(E \) if there exists a real number \(\mathcal{R} \) with the following property: given \(\varepsilon > 0 \) there exists a gauge \(\delta_{\varepsilon} \) on \([a, b]\) such that \(|\Sigma_\Phi(P[a, b] |_E) - \mathcal{R}| < \varepsilon \), whenever \(P[a, b] \in \mathcal{P}[a, b] \) is a \(\delta_{\varepsilon} \)-fine partition and \(P[a, b] |_E \) is its restriction to \(E \). If \(E \) can be written as a countable union of sets on each of which the interval function \(\Phi \) is BSI\(\delta_{\varepsilon}\), then \(\Phi \) is said to be BSG\(\delta_{\varepsilon}\) on \(E \).

Our main result reads as follows.

Theorem 1. For any compact interval \([a, b]\) \(\in \mathbb{R} \) let \(E \) be a non-empty subset of \([a, b]\) at whose points a real valued function \(F \) can take values \(\pm \infty \) or not be defined at all. If \(F \) is defined and differentiable on the set \([a, b]\) \(\setminus E \), then \(D_{ex} F \) is totally Kurzweil-Henstock integrable on \([a, b]\) and

\[
\mathcal{KH}\int_a^b D_{ex} F = F(b) - F(a).
\]

If the associated interval function of \(F_{ex} \) defined by \((1.7) \) is in addition basically summable (BSI\(\delta_{\varepsilon}\)) to the sum \(\mathcal{R} \) on \(E \), then

\[
F(b) - F(a) = \mathcal{KH}\int_a^b D_{ex} F + \mathcal{R}.
\]
Lemma 1. Let E be a non-empty subset of $[a,b]$. If a function $f : [a,b] \to \mathbb{R}$ is totally Kurzweil-Henstock integrable on $[a,b]$ and Φ is basically summable (BS$_{a}$) to the sum \Re on E, then f is Kurzweil-Henstock integrable on $[a,b]$ and

$$
\mathcal{KH} - \nu \int_{a}^{b} f = \mathcal{KH} - \int_{a}^{b} f + \Re.
$$

Proof. Given $\varepsilon > 0$ we will construct a gauge for f as follows. Since f is totally Kurzweil-Henstock integrable on $[a,b]$ it follows from Definition 1 that there exist a real number \exists and an interval function Φ with the following property: for every $\varepsilon > 0$ there exists a gauge δ^*_ε on $[a,b]$ such that $|\Xi_f (P [a,b]) - \Sigma_f (P [a,b] \vert_{[a,b] \setminus E})| < \varepsilon$ and $\Sigma_f (P [a,b]) = \exists$, whenever $P [a,b] \in P [a,b]$ is a δ^*_ε-fine partition and $P [a,b] \vert_{[a,b] \setminus E}$ is its restriction to $[a,b] \setminus E$. Choose a gauge $\delta^*_\varepsilon (x)$ as required in Definition 2 above. The function $\delta_x = \min (\delta^*_\varepsilon, \delta^*_\varepsilon)$ is a gauge on $[a,b]$. We now let $P [a,b] = \{([a_i, b_i], x_i) \mid i = 1, \ldots, \nu\}$ be a δ_x-fine partition of $[a,b]$. It is readily seen that

$$
|\Xi_f (P [a,b]) - \exists + \Re| =
= |\Xi_f (P [a,b]) - \exists + \Sigma_f (P [a,b] \vert_{E}) - \Sigma_f (P [a,b] \vert_{[a,b] \setminus E}) - \Re| \leq
\leq |\Xi_f (P [a,b]) - \Sigma_f (P [a,b] \vert_{[a,b] \setminus E})| + |\Sigma_f (P [a,b] \vert_{E}) - \Re| < 2\varepsilon.
$$

Therefore, f is Kurzweil-Henstock integrable on $[a,b]$ and $\mathcal{KH} - \int_{a}^{b} f = \exists - \Re$, that is

$$
\mathcal{KH} - \nu \int_{a}^{b} f = \mathcal{KH} - \int_{a}^{b} f + \Re.
$$

We now turn to the proof of Theorem 1.

Proof. Given $\varepsilon > 0$. By definition of f at the point $x \in [a,b] \setminus E$, given $\varepsilon > 0$ there exists $\delta_x (x) > 0$ such that if $x \in [a, v] \subseteq [x - \delta_x (x), x + \delta_x (x)]$ and $x \in [a,b] \setminus E$, then

$$
|F (v) - F (u) - f (x) (v - u)| < \varepsilon (v - u).
$$

For F_{ex} defined by \Box let $F_{ex} : [a,b] \to \mathbb{R}$ be its associated interval function. We now let $P [a,b] = \{([a_i, b_i], x_i) \mid i = 1, \ldots, \nu\}$ be a δ_x-fine partition of $[a,b]$. Since $F (b) - F (a) = \sum_{i=1}^{\nu} [F_{ex} (b_i) - F_{ex} (a_i)]$ and (remember if $x \in E$, then $D_{ex} F = 0$)

$$
|\Xi_f (P [a,b]) - \Sigma_f (P [a,b] \vert_{[a,b] \setminus E})| =
= |\Xi_f (P [a,b] \vert_{[a,b] \setminus E}) - \Sigma_f (P [a,b] \vert_{[a,b] \setminus E})| < \varepsilon (b - a),
$$

it follows from Definition 1 that $D_{ex} F$ is totally Kurzweil-Henstock integrable on $[a,b]$ and

$$
\mathcal{KH} - \nu \int_{a}^{b} D_{ex} F = F (b) - F (a).
$$

Finally, based on the result of Lemma 1

$$
F (b) - F (a) = \mathcal{KH} - \int_{a}^{b} D_{ex} F + \Re.
$$

Finally, based on the result of Lemma 1

By Definition 2 one can easily see that if $\Re = 0$ then F has negligible variation on E, [11, Definition 5.11]. So, we now in position to define a residual function of F.

\[\Box \]
Definition 3. Let \(F : [a, b] \rightarrow \mathbb{R} \). A function \(R : [a, b] \rightarrow \mathbb{R} \) is said to be a residual function of \(F \) on \([a, b]\) if given \(\varepsilon > 0 \) there exists a gauge \(\delta_\varepsilon \) on \([a, b]\) such that \(|F(a) - F(a_i) - R(x_i)| < \varepsilon \), whenever \(P[a, b] \in \mathcal{P}[a, b] \) is a \(\delta_\varepsilon \)-fine partition.

Definition 4. Let \(E \) be a non-empty subset of \([a, b]\) and let \(F : [a, b] \rightarrow \mathbb{R} \) be a function whose associated interval function \(F : I([a, b]) \rightarrow \mathbb{R} \) is \(BS\delta_\varepsilon \) \((BSG_\delta) \) to the sum \(R \) on \(E \). Then, a residual function \(R : [a, b] \rightarrow \mathbb{R} \) of \(F \) is said to be also \(BS\delta_\varepsilon \) \((BSG_\delta) \) to the same sum \(R \) on \(E \). In symbols, \(\sum_{x \in E} R(x) = R \).

Clearly, Definition 4 establishes a causal connection between Definitions 2 and 3. If \(E \) is a countable set, the causality is so obvious. However, if \(E \) is an infinite set, then this connection is not necessarily a causal connection. Namely, if \(F : [a, b] \rightarrow \mathbb{R} \) has negligible variation on some subset \(E \) of \([a, b]\), which is a countably infinite set, then its residual function \(R \) vanishes identically on \(E \), so that the sum \(\sum_{x \in E} R(x) \) is reduced to the so-called indeterminate expression \(\infty \cdot 0 \) that have, in this case, the null value. On the contrary, if \(F \) has no negligible variation on \(E \), and its residual function \(R \) also vanishes identically on \(E \), as in the case of the Cantor function, then the sum \(\sum_{x \in E} R(x) \) is reduced to the indeterminate expression \(\infty \cdot 0 \) that actually have, in Cantor’s case, the numerical value of 1. By Definition 4, we may rewrite (3.3) as follows,

\[(3.5) \quad F(b) - F(a) = \mathcal{K}H - \int_a^b D_\varepsilon x F + \sum_{x \in E} R(x). \]

If \(f \) in addition vanishes identically on \([a, b] \setminus E\), then

\[(3.6) \quad F(b) - F(a) = \sum_{x \in E} R(x). \]

The previous result is an extension of Cauchy’s residue theorem result in \(\mathbb{R} \).

4. Examples

For an illustration of (3.5) and (3.6) we consider the Heaviside unit function defined by

\[(4.1) \quad F(x) = \begin{cases} 0, & \text{if } a \leq x \leq 0 \\ 1, & \text{if } 0 < x \leq b \end{cases}. \]

In this case, if \(a < 0 \), then \(\mathcal{K}H - vt \int_a^b D_\varepsilon x F = 1 \), in spite of the fact that \(D_\varepsilon x F \equiv 0 \) on \([a, b]\). Accordingly, it follows from (3.5) and (3.6) that \(R(0) = 1 \), since

\[(4.2) \quad f(x) = \begin{cases} +\infty, & \text{if } x = 0 \\ 0, & \text{otherwise} \end{cases}, \]

where \(f \) is the derivative of \(F \), and \(\mathcal{K}H - \int_a^b D_\varepsilon x F = 0 \).

Let \([a, b] \subset \mathbb{R}\) be an arbitrary compact interval within which is the point \(x = 0 \). For an illustration of the result (3.2) of Theorem 1 we consider the real valued function \(F(x) = 1/x \) that is differentiable to \(f(x) = -1/x^2 \) at all but the exceptional set \(\{0\} \) of \([a, b]\). In spite of the fact that \(f \) is not Kurzweil-Henstock integrable on \([a, b]\) it follows from (3.2) that \(\mathcal{K}H-vt \int_a^b D_\varepsilon x F = (a - b) / (ab) \). In this case, \(R(x) \) is not defined at the point \(x = 0 \), that is

\[(4.3) \quad R(x) = \begin{cases} +\infty, & \text{if } x = 0 \\ 0, & \text{otherwise} \end{cases}. \]
and $\mathcal{KH}-vt\int_a^b D_{ex}F$ is reduced to the so-called indeterminate expression $\infty - \infty$ (in the sense of the difference of limits) that actually have, in this situation, the real numerical value of $(a - b) / (ab)$.

References

[1] R. G. Bartle: A Modern Theory of Integration. Graduate Studies in Math., Vol. 32, AMS, Providence, 2001. Zbl 0968.26001

[2] I. J. L. Garces, P. Y. Lee: Convergence theorem for the H_1-integral. Taiw. J. Math. Vol. 4 No. 3 (2000), 439–445. Zbl 0973.26008

[3] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron and Henstock, Graduate Studies in Math., Vol. 4, AMS, Providence, 1994. Zbl 0807.26004

[4] A. Macdonald: Stokes’ theorem, Real Analysis Exchange 27 (2002), 739–747. Zbl 1059.26008

[5] V. Sinha, I. K. Rana: On the continuity of associated interval functions, Real Analysis Exchange 29(2) (2003/2004), 979–981. Zbl 1073.26005

Mathematical Institute, Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11001 Belgrade, Serbia; College of Technical Engineering Professional Studies, Svetog Save 65, 32 000 Čačak, Serbia

E-mail address: bsaric@ptt.rs