Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease

F.J. Ryan1,2,12, A.M. Ahern1,2,12, R.S. Fitzgerald1,2,12, E.J. Laserna-Mendieta1,2, E.M. Power1,2, A.G. Clooney1,2,3, K.W. O’Donoghue1,2, P.J. McMurdie4, S. Iwai4, A. Crits-Christoph4, D. Sheehan2,5, C. Moran2,5, B. Flemer1,2, A.L. Zomer6, A. Fanning2, J. O’Callaghan1, J. Walton7, A. Temko8, W. Stack9, L. Jackson9, S.A. Joyce10,2, S. Melgar2, T.Z. DeSantis4, J.T. Bell11, F. Shanahan2,5 & M.J. Claesson1,2

Studies of inflammatory bowel disease (IBD) have been inconclusive in relating microbiota with distribution of inflammation. We report microbiota, host transcriptomics, epigenomics and genetics from matched inflamed and non-inflamed colonic mucosa [50 Crohn’s disease (CD); 80 ulcerative colitis (UC); 31 controls]. Changes in community-wide and within-patient microbiota are linked with inflammation, but we find no evidence for a distinct microbial diagnostic signature, probably due to heterogeneous host-microbe interactions, and show only marginal microbiota associations with habitual diet. Epithelial DNA methylation improves disease classification and is associated with both inflammation and microbiota composition. Microbiota sub-groups are driven by dominant Enterbacteriaceae and Bacteroides species, representative strains of which are pro-inflammatory in vitro, are also associated with immune-related epigenetic markers. In conclusion, inflamed and non-inflamed colonic segments in both CD and UC differ in microbiota composition and epigenetic profiles.
The chronic inflammatory bowel diseases (IBD), Crohn’s disease (CD), and ulcerative colitis (UC), are heterogeneous disorders with distinct and overlapping features that represent the outcome of abnormal host-microbe interactions, in genetically susceptible individuals. While the pathogenesis of IBD in experimental models highlight the role of host-microbe interactions, human studies are less clear and inconsistent, without a definitive cause-effect relationship. Small study populations and protocol variations have confounded interpretation and comparative analyses of human studies. Studies of the mucosa-associated microbiota are likely to be more informative than those of fecal microbiota in relation to host-microbe interactions. Moreover, although habitual diet is known to be an important determinant of the composition and metabolic activity of the gut microbiota, dietary analysis has been lacking from several studies of the microbiota in IBD. Furthermore, the relationship between mucosal inflammation, the microbiota and the epigenome has received little attention. For these reasons, we here investigated mucosa-associated microbiota using endoscopically-targeted biopsies from paired inflamed and non-inflamed segments of the colon in patients with Crohn’s disease and ulcerative colitis. The results show that the microbiota in both forms of IBD exhibit reduced diversity and increased variability compared with the microbiota of controls, and host fewer bacteria from Clostridium cluster XIVa, Anaerostipes hadrus and an unclassified species of the Lachnospiraceae family. While there is substantial overlap in these features for CD and UC microbiota, they are most evident in CD. We observe community-wide and within-patient changes in microbiota composition between inflamed and non-inflamed colonic mucosa, but these are not attributed to specific taxa. As expected, host mucosal gene expression is most discriminatory of inflammation, but is followed by host DNA methylation and microbiota composition. While microbiota composition alone cannot robustly classify disease, it stratifies the subjects into sub-groups with different epigenetic profiles.

Results

Microbiota is associated with disease and inflammation. We studied paired biopsies from inflamed and non-inflamed mucosa of 80 adult patients with ulcerative colitis and 50 with Crohn’s disease, along with paired biopsies of 31 non-IBD (here: healthy) controls (Table 1; Supplementary Table 1), all recruited in Ireland. Microbiota composition of 346 colonic biopsies were analyzed from a total of 8,443,723 quality-filtered Illumina MiSeq reads of the amplified 16S rRNA V3-V4 gene region, with a mean of 24,466 ± 1272 (95% CI) reads per biopsy. From these ampli- cons, 3222 unique, error-corrected and chimera-free ribosomal sequence variants (RSVs) were generated. We carried out an unsupervised principal coordinate analysis (PCoA) of Bray-Curtis distances from the 257 RSVs that were present in ≥5% of the samples (Fig. 1a). The PCoA showed greater variation (spread) for CD compared with UC, which in turn had higher variation than healthy microbiota. While 50% of the CD and UC samples were found within the 80% confidence region of the healthy cohort, the remaining IBD samples displayed a shift away from the healthy microbiota as demonstrated by significantly lower PC1 values (p-value ≤0.05). An observable and significant gradient of increasing diversity in the direction of healthy samples was nearly parallel with the PC1 axis (Fig. 1a). Abundances of a number of specific bacterial taxa also correlated with the principal coordinates (Fig. 1a; Supplementary Table 2). An Escherichia/Shigella/Klebsiella RSV was decreasing in abundance with PC1, whereas Faecalibacterium prausnitzii, on the other hand, had seven RSV that were increasing along this axis, supporting previously reported lower diversity of such sub-species in IB mucosa. Bacteroides dorei were more common for samples with higher PC2 values, while B. vulgatus abundances were higher for samples with lower PC2 values. These anti-correlated within-genera differences emphasize the importance of species-level classification of 16S rRNA gene sequences. A small number of these RSVs were also found to have significantly different abundances between disease statuses. Neither disease duration, age nor gender were correlated with these PCs. Overall, we found only two RSVs that were differentially abundant with false discovery rates (FDR) lower than 5% (Fig. 2; Supplementary Table 3). An RSV from the Lachnospiraceae family [labeled 1 in Fig. 2] was less abundant in UC or CD mucosa than in healthy controls. Another RSV belonging to the Lachnospiraceae family, butyrate-producing Anaerostipes hadrus [labeled 2] was also less abundant in UC or CD mucosa than in healthy controls. These observations were more evident in CD than in UC, and in inflamed mucosa compared with non-inflamed. A B. fragilis RSV [labeled 3] was more abundant in inflamed CD mucosa than in healthy mucosa (FDR = 0.137), while Gemmiger formicilis [labeled 4] was less abundant in inflamed UC compared with controls (FDR = 0.101).

Even though patients with CD and UC had lower microbiota diversities than healthy individuals, inflammatory status per se did not appear to affect diversity levels (Fig. 1b). For most patients, biopsies from the same colon had similar microbiota composition regardless of inflammatory status, as illustrated by

Table 1 Subject characteristics across the three cohorts.

Number of biopsy pairs
Total number of biopsies
Mean age (range)
Gender (M/F)
Mean time since diagnosis (range)
% relapsing patients within 24 months of biopsy
% smokers (ex-smokers)
No. of patients on medication
S-aminosalicylic acid
Corticosteroids
Anti-TNF
Mercaptotepurine
Antibioticsb

*aIncludes additional unpaired biopsies where matching biopsies had been excluded for technical reasons.

*bAntibiotics taken at the time of sampling.
Fig. 1 Overall microbiota composition and diversity of inflamed and non-inflamed colonic mucosa from 161 subjects (CD—blue, UC—yellow, and healthy controls—red), based on 257 RSVs that were present in ≥5% of the samples. a PCoA of Bray-Curtis distances with paired biopsies from each subject connected by vectors. Ellipses indicate 80% confidence regions with solid and dashed lines for non-inflamed and inflamed mucosa, respectively. The top arrows represent gradients of Shannon diversity (green) and abundances of a selection of bacterial taxa most correlated with the first two principal coordinates (Supplementary Table 2). b Differences in Shannon diversity were significantly lower in IBD compared with healthy mucosa (unpaired biopsies included), but not between diseases or for different inflammation status (Mann–Whitney test, two-sided; P-values: CDi vs H: 0.006; CDni vs H: 0.008; UCi vs H: 0.0102; UCni vs H: 0.050). c For each pair of biopsies, values from the inflamed sample were subtracted from the non-inflamed sample for each of the three conditions (reference samples randomly selected for healthy controls). Medians significantly higher than zero indicate within-patient gradient of inflammation away from non-inflamed/healthy microbiota (one-sample Wilcoxon, two-sided; P-values: CD: 0.08; UC: 0.009; box plot lower and upper sides show 25th and 75th percentiles, respectively. The whiskers are 1.5 of the interquartile range. P-values: *<0.1; **<0.05; ***<0.01). d Representative photographs of colons from CD, UC, and control subjects. Source: ref. 86.

Microbiota clusters are driven by dominant species. Hierarchical clustering and dynamic tree cutting of microbiota compositions based on 257 RSVs resulted in 10 sub-clusters that by visual inspection also corresponded well to relative family abundances (Fig. 3). Each of these clusters had different proportions of subject cohorts, and for the majority (≥95%) of the paired samples, were directly adjacent and within the same cluster. No cluster consisted entirely of one subject cohort, with healthy individuals present in all, as expected from the dispersed and heterogeneous cohort distribution in Fig. 1a. Adjacent clusters 9 and 10 had disproportionally more healthy subjects than other clusters, whereas clusters 1, 2, and 5–7 had disproportionally more subjects with CD or UC. Notwithstanding the significant inter-individual variability of family abundances, there was an overall increase in Firmicutes:Bacteroidetes ratio in the direction of cluster 1–10, which correlated with both Shannon diversity ($R^2 = 0.37$; p-value $= 3.2e−12$) and increasing PC 1 values ($R^2 = 0.44$; p-value $= 2.2e−16$) with the exception of clusters 6 and 9. Particular taxonomic families dominated a number of outlier samples, some of which associated to treatment. The two patients with CD who were on antibiotics (Augmentin/Metronidazole and Azithromycin) at the time of sampling belonged to cluster 2 (left and middle), with unusually high levels of Enterobacteriaceae (89.8% and 32.1%, respectively). Of the 15 patients on biologics (anti-TNFs: Adalimumab and Infliximab), one CD and one UC patient in clusters 3 and 6 had very low-Firmicutes abundance, 7.1% and 2.5%, respectively. The low-Firmicutes (11.6%) UC patient in cluster 2 was on corticosteroids and diarrhea medication. No other subjects on similar medications showed outlier behavior in terms of relative taxa abundance.

Strikingly, seven RSVs were consistently high abundances in five clusters (Fig. 3 and Supplementary Fig. 1): B. fragilis was paired samples being only a short distance away (Fig. 1a). However, the overall compositional profiles for inflamed biopsies were directed away from their non-inflamed counterparts, along a gradient that deviated from healthy microbiota. To examine whether these overall shifts were also present within subjects, we subtracted non-inflamed from inflamed PCI values for each subject, as the observed inflammation gradient was present for both CD and UC samples along this principal coordinate. Figure 1c shows these subtractive values being significantly higher than zero for both IBD cohorts, while not for the healthy cohort. No such change was observed for the subsequent 20 principle coordinates. In spite of these community-wide and subject-specific compositional differences, no individual taxa were found to be significantly abundant in inflamed relative to non-inflamed mucosa in either disease (Fig. 2). Similarly to taxonomic composition, we did not find any differences in terms of inferred encoded function3 between inflamed and non-inflamed microbiota. We did, however, find 28 and 30 differentially abundant KEGG Orthologs for CD and UC, respectively, compared with controls (Supplementary Table 4). Among these, NADH dehydrogenase genes (oxidative phosphorylation pathway) are more common in UC and CD, as inflamed environments produce endogenous molecules, including oxygen, to be used as terminal electron acceptors by facultative or obligate aerobic bacteria like Enterobacteriaceae4,5.
enriched in cluster 1, *B. vulgatus* in cluster 3 and *B. dorei* in cluster 4. Their correlations with PC1 and PC2 (Fig. 1a) also explain their cluster separation. Similarly, taxa known to be associated with IBD, *Escherichia/Shigella/Klebsiella* and *Ruminococcus gnavus*, were highly abundant in all cluster 2 and 9 samples, respectively, which all had relatively low PC1 values. Statistical testing indicated that no experimental batch effects were causative of these taxa enrichments (Supplementary Table 14). To investigate the effect of these cluster-dominant species on the overall microbiota composition we re-drew the PCoAs in Figs. 1 and 3 after the seven RSVs were removed one-by-one (Supplementary Fig. 2). We only observed notable effect canceled out the inflammation-associated gradient for UC. The effect of the sequential removal of these RSVs was, however, larger for some of the 10 clusters mapped on the PCoA, clearly emphasizing how single RSVs can drive microbiota-based subject stratification. Here, removing *B. fragilis* (enriched in cluster 1) caused a bigger overlap with clusters 1 and 2. Removal of the *Escherichia/Shigella/Klebsiella* RSV (cluster 2) significantly reduced the separation of that cluster with most other clusters. *Bacteroides* RSVs *B. vulgatus* (cluster 3) and *B. dorei* (cluster 4) were already anti-correlated with the PC2 axis (Fig. 1a), and their subsequent removal either reversed, or drastically changed, the clusters’ positions along that axis. We further investigated whether the four more pronounced clusters 1–4 were supported by host-related molecular data.

Microbiota is associated with host epigenome. To explore underlying host-microbe interactions, we assessed host epigenomics (genome-wide DNA methylation) analysis on a subset of 100 biopsies from controls (23 unpaired samples) and patients with CD (77 samples, whereof 72 paired) with matching microbiota and host epigenome. Of these, we also had matching host transcriptome data from 71 samples. Overall, the inflammation-associated epigenomes had lower PC1 values compared with both the non-inflamed and control samples (ANOVA *p*-value < 3.27e−04; Supplementary Fig. 4), indicating a stronger inflammation-related gradient compared with the microbiota (Fig. 1a). There was also a strong correlation (*R*² = 0.87; ANOVA *p*-value < 4.4e−16; Supplementary Fig. 4) between the transcriptome and epigenome PC1 values for the same samples. This observation was supported by 221 genes differentially expressed between inflamed and non-inflamed tissue and associated with hyper/hypo-methylated CpG sites within or immediately adjacent to the gene (*p*-values < 0.05 in both datasets; Supplementary Table 5). Of these, the endothelial leukocyte adhesion gene Selectin E, was overexpressed and exhibited promoter hypo-methylation specifically in inflamed tissue, and has previously been implicated in inflammatory responses (Fig. 4a). While the first epigenomic principal component captured inflammation well (18.4% of total variation), the 6th epigenomics principal component (3.7% of total variation) showed significant overall methylation differences between CD (irrespective of inflammation) and healthy controls (p-value < 2.7e−08; Fig. 4c). There were, however, no significantly methylated sites corresponding to this observation after adjustment for multiple testing.

Fig. 2 Volcano plots showing differential abundance of RSVs between sample groups. Both inflamed vs. non-inflamed tests were based on paired biopsies only. y-axis show adjusted *P* value (false discovery rate) and x-axis shows log2 fold change. Horizontal lines reflect 0.05 FDR. Points are colored by family level classification based by Mothur against the RDP database v11.4. Circle sizes are assigned based on the mean cumulative-sum scaling (CSS) and divided into quartiles with the larger circles corresponding to higher abundances. Species discussed in the text are explicitly listed; see Supplementary Table 3 for a complete list.
The biopsies were randomly selected prior to microbiota clustering (Fig. 3), and since approximately half of them were from microbiota clusters 1–4, methylation in these samples were sequentially compared with all the other clusters combined, due to fewer samples with methylation and gene expression data in clusters 5–10. To reduce the effect of different cell type compositions associated with inflamed tissue, we analyzed each set of significant epigenetic signals reported for the clusters, incorporating the first 10 PCs as covariates in the linear model which together explain 52% of methylation capturing a large extent of cell heterogeneity (see Methods). Of the 734 sites (523 of which were associated with annotated (498 unique) genes, whereof the top 12 in Supplementary Fig. 5) that were significant after PC correction (p-value < 0.05; Supplementary Table 6), we
Fig. 3 Sample clustering, diversity and relative abundance of mucosal microbiota from 346 biopsies (CD, UC and healthy), based on 257 ribosomal sequence variants (RSVs) that were present in ≥5% of the samples. From the top: pie charts with total numbers and proportions of the three subject cohorts for each cluster; hierarchical Ward linkage clustering based on Bray–Curtis distances; cohort belongingness. Ten individually colored clusters obtained through the DynamicTreeCut algorithm; heatmap with RSV abundance values to the right of vertical clustering of RSVs using Ward linkage based on Spearman correlation coefficients (heatmap shows z-scores, i.e., number of standard deviations from the mean value of each row); Shannon diversity for each sample; and bar plot of relative abundances at taxonomic family levels with red families belonging to the Firmicutes phylum, blue Bacteroidetes, green Proteobacteria, and yellow Actinobacteria; age and gender for each sample, major food categories, hospital, medication, and biopsy location; clusters mapped back onto the Bray-Curtis PCoA from Fig. 1a. The right-most margin shows species classifications for RSVs consistently abundant for certain clusters.

Fig. 4 Differences in host DNA methylation and gene expression across subject groups with regards to inflammation and microbiota clustering. Significant differential host DNA methylation [beta values; significance determined using mixed linear models from lme4 library, adjusted with FDR] with corresponding gene expression [log2(fragments per kilobase of transcript per million mapped reads)] of examples of immune-related genes in a inflamed/non-inflamed CD tissue, b microbiota clusters 1–3 (expression, using stattest from the ballgown library, was significant before adjustment for multiple testing with FDR, and for a subset of 71 matching samples; extreme outliers removed to improve clarity; gene body methylation in NOTCH4, DRAM1, and TRIM27 (b), promoter methylation in SELE (a) and CCDC88B (b)) (box plot lower and upper sides show 25th and 75th percentiles, respectively. The whiskers are 1.5 of the interquartile range). c Epigenome principal component analysis outlining the inflammation- (PC1) and disease- (PC6) associated epigenetic trends.

Inflammation-related host expression and in vitro validation. We further analyzed the host mucosal transcriptome using a polyadenylated capture and RNA-Seq approach resulting in 13,237,135 ± 1,578,996 (95% CI) mRNA reads per biopsy. Like the epigenome, the transcriptome displayed clearly noticeable differences between inflamed and non-inflamed mucosa for both diseases, with a shift away from healthy transcriptomes along PC1 (Supplementary Fig. 4). These overall differences were translated to 2171 (out of 17,461 in total) transcripts with significantly different expression levels between inflammation statuses for the CD patients (Supplementary Table 7) and 4154 for the UC patients (Supplementary Table 8), with an overlap of 1146 transcripts. An enrichment analysis of Gene Ontology biological processes showed that genes overexpressed in inflamed UC and CD relative to non-inflamed mucosa were consistent with positive regulation of a general innate and adaptive immune response toward microbes, mediated by increased cytokine production and a corresponding inflammatory response. (Supplementary Tables 9–10). In particular, 136 (UC) and 246 (CD) transcripts known to be involved in positive regulation of cytokine production were overexpressed in inflamed mucosa, including pathways for the production of IL-1, IL-2, IL-4, IL-6, IL-8/CXCL8, IL-10, IFNγ, and TNF, which were also upregulated in other IBD studies. Furthermore, 118 (UC) and 118 (CD) transcripts were enriched for the defense response to other organisms, 51 (UC) and 108 (CD) transcripts were involved in the response to lipopolysaccharide, and 113 (UC) and 46 (CD) transcripts for the response to molecules of bacterial origin, all indicating a pathogenesis.
consistent with excessive anti-microbial immunological activity. Several pathways indicating an active immune response, including positive regulation of neutrophil migration, positive regulation of leukocyte migration, and T cell migration, were also upregulated in UC and CD inflamed mucosa. Over 90% of the GO biological processes enriched in inflamed CD mucosa were also enriched in inflamed UC mucosa. Biological processes found enriched exclusively in inflamed CD transcripts were mostly involved in positive regulation of blood circulation and the vascular system (Supplementary Tables 11). The 53 gene transcripts significantly underexpressed in inflamed compared with non-inflamed UC mucosa were primarily involved with cellular respiration, mitochondrial electron transport chain activity, and ATP synthesis (Supplementary Tables 12). A recent study also indicated suppressed mitochondrial gene expressions in active UC in a pediatric cohort. Of the 28 underexpressed transcripts involved in ATP synthesis coupled electron transport are genes encoding subunits of Cytochrome c oxidase, which suggests a role for mitochondrial dysfunction in the pathogenesis of active UC inflammation (Supplementary Tables 12). Thus, epithelial cells that have comparably high mitochondrial content may significantly contribute to transcriptomic fold-changes in non-inflamed material, consistent with their relative dilution by other cells and/or loss in IBD-related inflammation. No evidence for mitochondrial dysfunction was found in the CD differential gene set.

To corroborate epigenome-host-microbiota findings, intestinal epithelial cells (IECs) were co-cultured with type strains representing dominant bacteria species from the identified microbiota clusters with differential epigenome profiles (cluster 1: B. fragilis ATCC25285; cluster 2: E. coli ATCC-15698; cluster 3: B. vulgatus ATCC8482). The well-known gastrointestinal pathogen S. typhimurium (ATCC) and the non-inflammatory Lactobacillus rhamnosus (LGG) was included as positive and negative controls, respectively. We observed a significantly higher secretion of IL-8/CXCL8 (Supplementary Fig. 6), a neutrophil chemokine commonly correlated with active disease in IB32 and higher CCL20/MIP3A (Supplementary Fig 6), a chemokine strongly chemotactic for lymphocytes and enhanced in active IBD, for B. vulgatus, ATCC-15698 and S. typhimurium when compared with untreated and LGG-treated cells.

Multi-omics integration and classification. The impact of diet on the microbiota composition was assessed using a semi-quantitative food frequency questionnaire. No major correlations were noted, as shown in the Supplementary Data. Similarly, we found no medication to be significantly more common across any of the 10 microbiota clusters (Supplementary Fig. 3).

We finally tested whether various data type combinations could improve classification of disease and inflammation status, using the Machine Learning technique Extreme Gradient Boosting. Microbiota combined with diet and host genotype were better at classifying between CD, UC, and healthy status (AUC = 0.75; p-value ≤ 0.001) than any other combination of these data types (Supplementary Fig. 8 and Supplementary Table 13). Interestingly, adding epigenomes improved AUCs even further, up to 0.87 (p-value ≤ 0.001) together with microbiota only. The highest classification weight is carried by CpG sites of the PTPRO/TRIM31 genes and A. hadrus as indicated above. Similarly, epigenome data adds classification power to distinguishing CD inflamed from non-inflamed tissue (AUC range: 0.72–0.86), and more so than transcriptome data (AUC range: 0.63–0.75). In terms of classifying inflammation in UC, adding host transcriptome data for only 12 UC samples allows for a markedly increased AUC to 0.83 (p-value ≤ 0.01) over “microbiota + genotype + diet”.

Discussion

The results confirm changes in the microbiota of patients with IBD in terms of reduced diversity and increased variability of colonic microbiota, particularly in Crohn’s disease and to a lesser degree in ulcerative colitis. However, differences between these two forms of IBD and between inflamed and non-inflamed segments of the colon were not attributable to specific taxa. We also observed significant disease-associated reductions of A. hadrus and an unclassified species of the Lachnospiraceae family.

The study extends the observations of earlier reports not only in the relatively large number of paired (inflamed vs non-inflamed) biopsies, but because of its inclusion of a wider array of molecular data including microbiota, host transcriptome, epigenome and genotype. It also provides enhanced molecular resolution with bacterial species classification and the usage of error-corrected reads, as opposed to representative sequences of operational taxonomic units. Furthermore, to address the confounding effects of lifestyle variations, we recorded the potential impact of habitual diet and other potential modifiers. Curiously, habitual diet appeared to have minimal relationship with observed differences in microbiota composition across the study groups, possibly due to its lesser effect on mucosa-adherent bacteria compared with fecal microbiota. We acknowledge that our results apply to only colonic microbiota and cannot be extrapolated to the small bowel; UC is a disorder confined to the colon, and in the case of CD, all of the patients had clinically-predominant colonic involvement. The contention that microbiota disturbances are greater in ileal rather than colonic CD was not tested in the present study.

The colonic microbiota of patients with IBD exhibited extensive heterogeneity and overlap with that of normal subjects, making it unlikely that specific compositional patterns or signatures alone would have diagnostic fidelity. It should be noted that studies outlining the most pronounced microbiota differences between CD and controls have been sampled either directly from the inflamed ileum, which harbors a different ecosystem, or, to an even higher degree, from stool of patients with inflamed ileum. There remains, of course, the potential to establish microbiota patterns that identify disease subsets of clinical relevance. Heterogeneity of microbial composition in IBD may arise, in part, because of heterogeneity of host genotype and of the microbiota prior to disease onset. Sub-groups of mixed combinations of CD, UC, and controls have previously been reported. However, the dominance of particular dominant species in some of the microbiota sub-groups is further testimony to disease heterogeneity, and illustrates the potential impact that single species can have on the community-wide microbiota. Host DNA methylation and gene expression both displayed more pronounced gradients of inflammation than what was observed with the microbiota, suggesting that epigenetic factors mediate interactions between colonic microbiota and host gene expression. Microbiota-sensitive epigenetic signatures were recently observed for histone methylation in CD. While the largest difference in methylation patterns was attributed to inflammation, as expected due to disproportionate composition of inflammatory cells, we did observe significant epigenome-wide differences between CD and control groups (visualized by principal component 6 in Fig. 4). Moreover, a large number of immune-related methylation changes were unevenly distributed across four microbiota clusters, again, potentially affecting microbiota disease heterogeneity. Sub-types of IBD have recently been characterized based on host methylation and expression, but this study also links microbiota-derived sub-groups of IBD with host DNA methylation and transcription.

Our combinatory machine-learning analysis also indicated that microbiota composition together with diet and genotype (even if
too few samples for GWAS) were better at classifying disease sub-types than microbiota alone, and that combining microbiota with epigenome data boosts the power even further. While our study is based on a single time-point, longitudinal collections of biopsy samples would likely improve the classification power and also allow for predictive modeling.

Our species-level resolution allowed detection of anti-correlated B. dorei and B. vulgatus (Fig. 1a), which are indicative of species-specific niche colonization of colonic crypts and

The only classifiable species significantly less common in both forms of IBD was A. hadrus, whose butyrate-producing capabilities may be protective of colonic inflammation. Ruminococcus bromii and Eubacterium rectale stimulate the growth of A. hadrus through cross-feeding from resistant starch breakdown products. Interestingly, we observed the same trend with these symbiotic species whose abundance decreased along total colonic inflammation. This would result in a binary task (active inflammation vs. non-active areas) and no attempt was made to assess the degree of inflammation. For those with CD, colonic biopsies were taken from areas of macroscopically active inflammation (lesional) and from non-inflamed areas (non-lesional) (n = 50 biopsy pairs). In the case of patients with sub-total ulcerative colitis (UC, procto-sigmoiditis or left-sided colitis) paired biopsies were taken from the distal inflamed and proximal non-inflamed segment (n = 80 biopsy pairs). In all cases, the endoscopic macroscopic interpretation of lesional active inflammation was correlated with histology and in the case of Crohn’s disease, colonic involvement was likewise confirmed coloscopically, and associated small bowel involvement, where relevant, had been confirmed by computed tomography (CT) and/or magnetic resonance imaging (MRI). Only one individual refused to participate in the study.

The 32 healthy controls consisted primarily of subjects undergoing colonoscopy for screening or in whom no significant colonic or gastrointestinal disorder was found. In particular, conditions such as irritable bowel syndrome were excluded because of reports of association with abnormalities of the gut microbiota. As with the patients with CD and UC, paired biopsies from different colonic segments were taken from all but one of the controls. Long-term dietary habits were captured using food frequency questionnaire based upon the SLAN study. The 147 food items were grouped into ordinal data (number of times consumed per day) from 28 larger food categories. The clinical demographic data on the study subjects is shown in Table 1. The study was approved by the Cork hospital ethics committee and written informed consent was provided by all patients.

Sample processing, sequencing, array, and in vitro experiments. Immediately after obtainment, biopsies were introduced in 5 mL polypropylene tubes (Sarstedt, Numbrecht, Germany) that were previously filled with 3 mL of RNA-later (Qiagen, Hilden, Germany). Separate disposable forceps were used in all cases. Samples were stored at −80 °C until nucleic acid extraction. Biopsies in RNA-later were completely defrosted before performing DNA/RNA purification using the AllPrep DNA/RNA Mini kit (Qiagen). Briefly, biopsies were extracted from the RNA-later and transferred into a tube with 350 µL of RLT buffer containing 5-mercaptoethanol (Sigma-Aldrich, St Louis, MO, USA), three 3.5 mm glass beads (0.5 mm diameter), and 1% protease K (Roche, Penzberg, Germany) twice for 15 s at 6500 rpm followed by DNA/RNA purification according to the kit manufacturer’s instructions. Purified genomic DNA was finally eluted in 100 µL of EB buffer, while RNA was eluted in 60 µL of RNase-free water. DNA and RNA concentrations were measured using a Nano-Drop 2000 Spec-trophotometer (Thermo Scientific, Waltham, MA, USA) and subsequently samples stored at −80 °C.

Human intestinal epithelial cells CaCo2Bee1 were grown in high-glucose Dulbecco’s modified Eagle’s medium (DMEM; Sigma) supplemented with 10% heat-inactivated fetal bovine serum (FBS; Sigma), 1% penicillin/streptomycin (Pen/ Strep; Sigma), and 0.01% transferrin (Sigma). After trypsination, cells were seeded into 24-well plates and incubated until ~90% confluent followed by a overnight in serum free medium. Cells were then infected with B. vulgatus ATCC8482, B. fragilis ATCC25285, E. coli HM605-AIEC strain, S. typhimurium (bacteria positive control, and a non-inflamatory bacteria strain Lactobacillus rhamnosus strain LGG; APC Culture Collection) at 1:10 multiplicity of infection (MOI) and cultured for 3 h, followed by three times washing with Pen/Strep solution followed by a further 13-h culture in DMEM supplemented with 10% FBS and 1% Pen/Strep. After incubation, supernatants were collected and levels of IL-8/CXCL8 and CCL20/MIP3 alpha ELISA Duo-Set and CCL20/MIP3 alpha ELISA Duo-Set from R&D Systems as per manufacturer’s instructions.
Library preparation for 16S rRNA gene amplicon sequencing was performed following the Illumina (San Diego, CA, USA) recommendations with some modifications. Briefly, 200 ng of DNA was used for PCR amplification of the V3-V4 hypervariable region of the 16S rRNA gene in a total volume of 30 µL. The primers (forward TCTTGACGACTACHGGCTCAG and reverse GTCTACACTTGGGAGGCAGC) were used at a concentration of 0.2 µM. PCR amplification with the Phusion High-Fidelity DNA polymerase (Thermo Scientific) was performed on a 2720 Thermal Cycler (Applied Biosystems, Foster City, CA, USA) under the following conditions: 98 °C for 30 s, followed by 30 cycles of 98 °C for 10 s, 55 °C for 15 s, 72 °C for 20 s and a final cycle of 72 °C for 5 min. The presence of the amplified 16S rRNA gene band was verified in agarose gels. Post-PCR products were purified using Agencourt AMPure XP magnetic beads (Beckman-Coulter, Brea, CA, USA) and eluted in 50 µL of EB Buffer (Qiagen). After purification, 5 µL of DNA was amplified in a second PCR using Nextera XT Index primer (Illumina). This PCR was run at 98 °C for 30 s, followed by 8 cycles of 98 °C for 10 s, 55 °C for 15 s, 72 °C for 20 s and a final cycle of 72 °C for 5 min. A second purification step with Agencourt AMPure XP magnetic beads was carried out after the Nextera PCR. The 16S V3-V4 rRNA gene amplicons containing the Nextera indexes were finally eluted in 25 µL of EB Buffer, and DNA concentrations were measured using Quant-it Picogreen dsDNA assay kit (Thermo Scientific). Total amplicon yields ranged from 50 ng to 1 µg or ~100 billion to ~2 trillion molecules (400 bp at 660 g/mole/µL). Pooled libraries were created by adding 50 ng of each sample. Finally, diluted (30 nM) samples of the libraries were sent for sequencing at Eurofins Genomics on an Illumina MiSeq for 2 x 300 bp reads. Primer sets designed to target the hypervariable region of BUILD 11 of the Human Microbiome Project diversity database. Each sample was sequenced to at least 200,000 16S rRNA gene sequences per sample with the largest number of reads was selected. For statistical testing of the complete cohort, one sample from each IBD patient was chosen at random, while healthy samples were treated as above. Differences between factors and clusters were examined using a Fishers test for binary/normal data (metadata) and using a Dunn test for continuous data (dietary information). Spearman correlations between the PC axes with the metadata were also carried out with p.adjust function in R, where p-values were adjusted for multiple testing using false discovery rate (FDR)—specifically the Benjamini–Hochberg correction for multiple testing. The Poly-A captured RNA-Seq reads were aligned to the human genome (GCA_000002095.1) using Hisat v2.2.1. Mapped reads were counted using featureCounts v1.5.0. Transcript counts were tested for differential expression using the R package DESeq2 v1.10.1; using a paired-sample model for patient replicates. Reported p-values throughout were subjected to Benjamini–Hochberg correction for multiple testing. The PCA was created from transformed counts using DESeq2’s ‘regularized log’ transformation. Principle Component Analysis was done with the pcomp function on variance stabilized transformed counts as produced by DESeq2 v1.12.4 and visualized using ggplot 2.2.1.

Genotypes were available for 139,193 SNPs (142,662 before QC) on all individuals for use in a host genome association analyses; all individuals had a genotype call rate of >95%. SNPs that deviated from Hardy-Weinberg equilibrium (HWE; p < 10−5) or with a minor allele frequency (MAF) < 5% were not considered further. Following quality control checks, genotypes on 139,193 SNPs remained. Principal Component Analyses of all SNP genotypes revealed no obvious population stratification when age and gender were accounted for (Supplementary Fig. 6). For each SNP, the most likely haplotype (most frequent allele(s) of the given SNP) was defined as the regular consumption of cigarettes, cigar or pipe of any frequency was considered to be active smoking. Total abstinence was required to qualify as a non-smoker. There were only 6 ex-smokers defined as total abstinence for up to 1 year. Reported p-values had been corrected for multiple testing using false discovery rate (FDR)—specifically the Benjamini–Hochberg procedure, adjusting for tests on all sites available, for inflamed/non-inflamed and for each cluster (clusters 1–4) individually. The epigenetic association analysis was repeated at each set of significant epigenetic signals reported for microbiome clusters 1, 2, 3, and 4, incorporating the first 10 PCs as covariates in a linear model of epigenetic

Bioinformatic and statistical analysis. For all sequence analysis, the data of the raw reads was visualized with FastQC v0.11.3 followed by read trimming and filtering with Trimmomatic v3.38 to ensure an average quality score with a minimum length of 50 bases after adapter removal, with the reads for 16S RNA being further filtered following merging of forward and reverse reads. The reads were then imported into R v3.3.0 for analysis with the DADA2 package (v1.0.3)68. Quality filtering and trimming was performed on both forward and reverse reads to remove low-quality reads. Clustering of sequences sufficient for correction was carried out on each forward and reverse reads separately and subsequently merged, before bimeras were removed from the retained high quality merged reads of at least 340 nucleotides. The resulting unique (as opposed to reads clustered into operational taxonomic units) and error-corrected ribosomal DNA amplicons were merged and further filtered using a reference based chimera filtering implemented in USEARCH v8.1.1867 with the Chimera-Slayer gold database v2011051971. The non-chimeric amplicons were subsequently classified with the RDP-Classifier20 in mothur v1.34.221 against v11.4.1 of the RDP database to species level and further possible contaminating reads with a domain classification of Bacteria or Archaea were kept for further analysis. All statistical analysis was carried out in R v3.3.0. Alpha diversity and Bray–Curtis distances were generated using PhyloSeq v1.16.276, where principle coordinates analysis was generated using the R package Ade4 v3.5. Differential taxonomic abundance analysis was conducted using metagenomeSeq v1.14.2 with a zero inflated log-normal mixture model. Inferred functional capacity was carried out using Pipemine23 Hierarchical clustering was performed on the Bray–Curtis distances using the maked package v1.467.041 and the number of clusters was decide using the ‘cuttreeHybrid’ function in dynamicTreeCut v1.68. This method was developed to both perform static height cut-offs for hierarchical clustering, and k-means methods such as Partitioning Around Medoids (PAM) which can favor assigning memberships to large clusters over smaller. Co-variation between ordinal dietary data and RSV abundance profiles was assessed by Procrustes analysis as implemented in Vegan v2.3, and Healthy Food Diversity27 was compared with alpha diversity using Spearman correlation. Spearman correlations were used to construct a similarity matrix on which a heat map was generated. Beta diversity was assessed using a hierarchical clustering and principal coordinates analysis (PCoA) on Bray-Curtis distances”. The first 10 PCs as covariates in a linear model of epigenetic
association, to account for cell heterogeneity. CpG methylation positions were annotated using the Infinium HumanMethylation450 BeadChip Manifest file. For the Machine Learning approach, XGBoost\(^{84}\) was used to build, tune and validate classification models for all possible combinations of microbiota (3222 features), host transcriptome (60,675 transcripts), genotype (264 published IBD loci), and diet data (28 food categories), resulting in 64,189 attributes when all were combined. Leave-one-subject-out cross-validation performance assessment was used wherein samples from all subject, but one, were used for training, whereas the samples of the remaining subject were used for testing. At no point was a model used to classify a sample, where another sample from the same subject has been used to build the model. To eliminate within-subject bias (from the paired nature of samples) in every leave-one-subject-out iteration, each sample from the tested subject was separately used. Only one sample per subject was randomly chosen to represent the training data, while ensuring even representation of inflammation status. The main Xgboost parameters tuned for each model were the percentage of attributes taken for growing each tree, the percentage of data taken for growing each tree, the maximum depth of each tree, the learning rate and the number of trees. Receiver operating characteristic (ROC) curves was assessed against null using roc.test from the PROC package\(^{84}\).

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

Sequence and array data are available at NCBI BioProject PRJNA398187 and NCBI GEO GSE100207 and GSE105120. The corresponding metadata is available in Supplementary Table 1, including Montreal classification\(^{85}\). More detailed descriptive histology will be available upon request in accordance with ethical guidelines.

Code availability

The syntax used to carry out the analysis is available at https://github.com/ClaessonLab/UCC-Colonic-microbiota-is-associated-with-inflammation-and-host-epigenomic-alterations-in-ibd.

Received: 15 May 2019; Accepted: 27 February 2020; Published online: 23 March 2020

References

1. Harris, R. A. et al. Colonic mucosal epigenome and microbiome development in children and adolescents. *J. Immunol. Res.* 2016, 9170162 (2016).
2. Lovell, M. et al. Mucosa-associated *Faecalibacterium prausnitzii* phylotype richness is reduced in patients with inflammatory bowel disease. *Appl. Environ. Microbiol.* 81, 7582–7592 (2015).
3. Iwai, S. et al. Piphillin: improved prediction of metagenomic content by direct annotation using the INO pipeline. *Nat. Genet.* 47, 999–1003 (2015).
4. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. *Nature* 491, 119–124 (2012).
5. Klis, M., et al. Molecular reclassification of Crohn’s disease: a cautionary note on population stratification. *PLoS One* 8, e77720 (2013).
6. Franz, A. et al. A novel approach to detect cumulative genetic effects and genetic interactions in Crohn’s disease. *Inflamm. Bowel Dis.* 19, 1799–1808 (2013).
7. Connelly, T. M. et al. Ulcerative colitis neoplasia is not associated with common inflammatory bowel disease single nucleotide polymorphisms. *Surgery* 156, 253–262 (2014).
8. Zhang, J. et al. Associations between STAT3 rs744166 polymorphisms and susceptibility to ulcerative colitis and Crohn’s disease: a meta-analysis. *PLoS One* 9, e105925 (2014).
9. Petersen, R. S. et al. Whole genome and exome sequencing of monozygotic twins discordant for Crohn’s disease. *BMC Genomics* 15, 564 (2014).
10. Dong, S. N. et al. Deep resequencing of 131 Crohn’s disease-associated genes in pooled DNA confirmed three reported variants and identified eight novel variants. *Nat. Genet.* 45, 978–979 (2016).
11. Hulcr, J. et al. Enrichment of inflammatory bowel disease and colorectal cancer risk variants in colon expression quantitative trait loci. *BMC Genomics* 16, 138 (2015).
12. Khalili, H. et al. Identification of a common variant with potential pleiotropic effect on risk of inflammatory bowel disease and colorectal cancer. *Carcinogenesis* 36, 997–1007 (2015).
13. Ngoh, E. N. et al. The Crohn’s disease-associated polymorphism in ATG16L1 rs2241880 reduces SHP gene expression and activity in human subjects. *Genes Immun.* 16, 452–461 (2015).
14. Refsum, S. et al. Autophagy and inflammatory bowel disease: association between variants of the autophagy-related IRGM gene and susceptibility to Crohn’s disease. *Dig. Liver Dis.* 47, 744–750 (2015).
15. Planell, N. et al. Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations. *Nat. Genet.* 46, 967–976 (2013).
16. Montero-Meléndez, T., Llor, X., Garcia-Planella, E., Perretti, M. & Suarez, A. Identification of novel predictor classifiers for inflammatory bowel disease gene expression profiling. *PLoS One* 8, e76239 (2013).
17. Habermann, Y. et al. Ulcerative colitis mucosal transcriptomes reveal mtDNA dysregulation and mitochondrialopathies under ongoing disease activity and treatment response. *Nat. Commun.* 10, 38 (2019).
18. Mazzochelli, L. et al. Expression of interleukin-8 gene in inflammatory bowel disease is related to the histological grade of active inflammation. *Am. J. Pathol.* 144, 997–1007 (1994).
19. Skovdahl, H. K. et al. Expression of CCL20 and its corresponding receptor CCR6 is enhanced in active inflammatory bowel disease, and TL1R3 mediates CCL20 expression in colonic epithelial cells. *PLoS One* 10, e0147110 (2015).
20. Claesson, M. et al. Gut microbiota composition correlates with diet and health in the elderly. *Nature* 488, 178–184 (2012).
21. Harrington, J. et al. Sociodemographic, health and lifestyle predictors of poor diets. *Public Health Nutr.* 14, 2166–2175 (2011).
22. Chen, T. & Guerin, C. XGBoost: a scalable tree boosting system. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, 785–794 (Association for Computing Machinery, New York, 2016).
23. Willberg, D. et al. A pyrosequencing study in twins shows that GI microbial profiles vary with inflammatory bowel disease phenotypes. *Gastroenterology*, https://doi.org/10.1053/j.gastro.2010.08.049 (2010).
24. Govers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. *Cell Host Microbe* 15, 382–392 (2014).
25. Hallalvarson, J. et al. Dynamics of the human gut microbiome in inflammatory bowel disease. *Nat. Microbiol.* 2, 17004 (2017).
26. Dey, N., Soergel, D. A., Repo, S. & Brenner, S. E. Association of gut microbiota cancer risk variants in colon expression quantitative trait loci. *BMC Genomics* 16, 138 (2015).
27. Zhang, J. et al. TRIM27 mediates STAT3 activation at retromer-positive structures to promote colitis and colitis-associated carcinogenesis. *Nat. Commun.* 9, 3441 (2018).
28. Liu, J. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. *Nat. Genet.* 47, 979–996 (2015).
29. Forster, J., et al. Cytokine levels in patients with inflammatory bowel disease. *BMC Gastroenterol.* 13, 131 (2013).
30. Forbes, J. D., Van Domselaar, G. & Bernstein, C. N. Microbiome survey of the inflammatory and noninflamed gut at different compartments within the gastrointestinal tract of inflammatory bowel disease patients. *Inflamm. Bowel Dis.* 22, 817–825 (2016).
67. Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. *Nucleic Acids Res.* 41, e1 (2013).

68. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* 30, 2114–2120 (2014).

69. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. *Nat. Methods* 13, 581–583 (2016).

70. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics* 26, 2460–2461 (2010).

71. Haas, B. J. et al. Chimeric 16S RNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. *Genome Res.* 21, 494–504 (2011).

72. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of RNA sequences into the new bacterial taxonomy. *Appl. Environ. Microbiol.* 73, 5261–5267 (2007).

73. Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. *Appl. Environ. Microbiol.* 75, 7537–7541 (2009).

74. Cole, J. R. et al. Ribosomal Database Project: data and tools for high-throughput DNA ribosomal RNA analysis. *Nucleic Acids Res.* 42, D633–D642 (2014).

75. Allard, G., Ryan, F. J., Jeffery, I. R. & Claesson, M. J. SPINGO: a rapid species classifier for microbial amplicon sequences. *BMCMicrobiol.* 16, 324 (2015).

76. McMurdie, P. J. & Holmes, S. Phylseq: a bioconductor package for handling and analysis of high-throughput phylogenetic sequence data. *Pac. Symp. Biocomput.* 235–246 https://www.worldscientific.com/worldscibooks/10.1142/8254 (2012).

77. Culhane, A. C., Thioulouse, J., Perriere, G. & Higgins, D. G. MADE4: an R package for multivariate analysis of gene expression data. *Bioinformatics* 21, 2789–2790 (2005).

78. Langfelder, P., Zhang, B. & Horvath, S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. *Bioinformatics* 24, 719–720 (2008).

79. Drescher, L. S., Thiele, S. & Mensink, G. B. A new index to measure healthy food diversity better reflects a healthy diet than traditional measures. *J. Nutr.* 137, 647–651 (2007).

80. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. *Nat. Methods* 12, 357–360 (2015).

81. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics* 30, 923–930 (2014).

82. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol.* 15, 530 (2014).

83. Mehandru, A. et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. *Bioinformatics* 29, 189–196 (2013).

84. Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. *Bioinformatics* 12, 77 (2011).

85. Satsangi, J., Silverberg, M. S., Vermeire, S. & Colombel, J. F. The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. *Gut* 55, 749–753 (2006).

86. David S. Rampton and Fergus Shanahan, Fast Facts: Inflammatory Bowel Disease 5th edn. © 2016, Health Press Limited.
