We show that the endpoint set of a Suslinian chainable continuum must be zero-dimensional at some point. In particular, it cannot be homeomorphic to complete Erdős space. This answers a question of Jerzy Krzempek.

A continuum is a compact connected metric space. A continuum X is Suslinian if there is no uncountable collection of pairwise disjoint non-degenerate subcontinua of X. A continuum X is chainable if for every $\varepsilon > 0$ there are finitely many open sets U_1, \ldots, U_n covering X such that $\text{diam}(U_i) < \varepsilon$ and $U_i \cap U_j \neq \emptyset \iff |i - j| \leq 1$ for all $i, j \leq n$. A point x in a chainable continuum X is an endpoint of X if the ε-chains U_1, \ldots, U_n can always be chosen so that $x \in U_1$. For equivalent definitions of endpoints see [2, Theorem 13] or [1, p.609]. The set of all endpoints of X is denoted $E(X)$.

A topological space X is:

- **totally disconnected** if X does not have any connected subset with more than one point;
- **zero-dimensional at** $x \in X$ if every neighborhood of x contains a clopen neighborhood of x;
- **zero-dimensional** if X is zero-dimensional at each of its points (i.e. X has a basis of clopen sets).

Jerzy Krzempek has shown that for every zero-dimensional Polish space E there is a Suslinian chainable continuum X such that $E(X)$ is homeomorphic to E [8, Theorem 1]. So interestingly enough there is a Suslinian chainable continuum whose endpoint set is homeomorphic to the space of irrational numbers. Conversely, if X is Suslinian and chainable then $E(X)$ is totally disconnected [1, Theorem 11] and Polish [7, Theorem 4.2]. It is unknown whether $E(X)$ must be zero-dimensional [8, Problem 1]. Krzempek in particular asked whether $E(X)$ could be homeomorphic to complete Erdős space E_c, a famous example of a totally disconnected Polish space which is not zero-dimensional at any point [5, 6]. In this paper we provide a negative answer with the following.

Theorem 1. If X is a Suslinian chainable continuum, then every totally disconnected G_δ-subset of X is zero-dimensional at some point.

Corollary 2. If X is a Suslinian chainable continuum, then $E(X)$ is zero-dimensional at some point.

Corollary 3. Every chainable continuum that contains E_c is non-Suslinian. In particular, E_c is not homeomorphic to the endpoint set of a Suslinian chainable continuum.
Examples. The following examples show that Theorem 1 and Corollary 3 essentially cannot be improved upon.

(A) There is a Suslinian chainable continuum that contains a totally disconnected Polish space of positive dimension. This example was constructed by Howard Cook and Andrew Lelek [3, Example 4.2]. By [3, Theorem 3.2] it contains a totally disconnected set \(P \) with countable complement, and by the statement of [3, Example 4.2] the set \(P \) is not zero-dimensional.\(^1\)

(B) There is a hereditarily decomposable chainable continuum which homeomorphically contains \(\mathcal{E}_c \) (e.g. the Cantor organ [9, p. 191]).

(C) There is a Suslinian dendroid whose endpoint set is homeomorphic to \(\mathcal{E}_c \). This example can be obtained as a quotient of the Lelek fan and is due to Piotr Minc and Ed Tymchatyn (personal communication).

![Illustration of Example A](image)

Figure 1. Illustration of Example A. The set \(K_1 \) is constructed so that the points where two triangles intersect accumulate onto the middle third of the left-most segment \(S \). This principle is repeated in the smaller triangles to form \(K_2, K_3, \) etc. The set \(X = \bigcap_{n=0}^{\infty} K_n \) is a Suslinian chainable continuum. If \(Q \) is any countable set which intersects each arc of \(X \), then \(P = X \setminus Q \) is totally disconnected. But every clopen subset of \(P \) meeting \(S \) must contain all of \(P \cap S \) (proved by Cook and Lelek). Hence \(P \) is not zero-dimensional.

Proof of Theorem 1. Let \(X \) be a Suslinian chainable continuum. Let \(E \) be a totally disconnected \(G_\delta \)-subset of \(X \). We will produce a point \(e \) at which \(E \) is zero-dimensional. To that end, let \(\mathcal{K} \) be the set of all non-degenerate connected components of \(\overline{E} \). Note that \(\mathcal{K} \) is countable.

\(^1\)Note that in [3], the term *hereditarily disconnected* is used instead of totally disconnected, and *totally disconnected* is defined to be a stronger condition which is still satisfied by every zero-dimensional space.
by the Suslinian property. So by Baire’s theorem either $\bigcup K$ has empty interior in \overline{E}, or there exists $K \in \bigcup K$ which contains a non-empty open subset of \overline{E}.

Case 1: $\bigcup K$ has empty interior in \overline{E}.

Then $\overline{E} \setminus \bigcup K$ is a dense $G_δ$-set in \overline{E}. Since E is also dense and $G_δ$ in \overline{E}, there exists $e \in E \cap (\overline{E} \setminus \bigcup K)$. Then $\{e\}$ is a connected component of the compactum \overline{E}. So \overline{E} is zero-dimensional at e (cf. [4, Section 1.4]). Therefore E is zero-dimensional at e.

Case 2: There exists $K \in \bigcup K$ which contains a non-empty open subset of \overline{E}.

Let U be a non-empty relatively open subset of \overline{E} that is contained in K.

The continuum K is Suslinian and chainable, as these properties are inherited from X. Therefore K is hereditarily decomposable [10, Theorem 1.1] and irreducible [11, Theorem 12.5]. By Kuratowski’s theory of tranches (see [9, §48] or [12, p.15]), there is a mapping $\varphi : K \to [0, 1]$ such that $\varphi^{-1}\{t\}$ is a nowhere dense subcontinuum of K for every $t \in [0, 1]$. By the Suslinian property, the set

$$Q = \{ t \in [0, 1] : |\varphi^{-1}\{t\}| > 1 \}$$

is countable. Therefore $K \setminus \varphi^{-1}(Q)$ is dense $G_δ$ in K. So there exists $e \in E \cap U \setminus \varphi^{-1}(Q)$.

By compactness of K there exist $a, b \in [0, 1] \setminus Q$ such that

$$a < \varphi(e) < b$$

and $\varphi^{-1}[a, b] \subset U$.

We claim that there is a relatively clopen $C \subset E \cap \varphi^{-1}[a, \varphi(e)]$ which contains e and misses the point $\varphi^{-1}(a)$. To see this, note that $E \cap \varphi^{-1}[a, \varphi(e)]$ is non-degenerate because E is dense in $\varphi^{-1}(a, \varphi(e))$. Since E is totally disconnected, $E \cap \varphi^{-1}[a, \varphi(e)]$ is not connected. Let W be a proper clopen subset of the space $E \cap \varphi^{-1}[a, \varphi(e)]$ such that $e \in W$. Since $K \setminus \varphi^{-1}(Q)$ is dense in $\varphi^{-1}(a, \varphi(e))$, and W is a proper closed subset of $E \cap \varphi^{-1}[a, \varphi(e)]$, there exists $c \in [a, \varphi(e)) \setminus Q$ such that $\varphi^{-1}(c) \notin W$. Then $C = W \cap \varphi^{-1}[c, \varphi(e)]$ is as desired.

Likewise there is a relatively clopen $D \subset E \cap \varphi^{-1}[\varphi(e), b]$ which contains e and misses the point $\varphi^{-1}(b)$. Then $C \cup D$ is a clopen subset of E that contains e and lies inside of U. If U' is any smaller open subset of \overline{E} containing e, then the same argument will produce a clopen subset of E which contains e and lies inside of U'. Therefore E is zero-dimensional at e.

This concludes the proof of Theorem 1.

Remarks. Corollaries 2 and 3 follow from Theorem 1 because $E(X)$ and \mathcal{E}_c are totally disconnected Polish spaces, and \mathcal{E}_c is nowhere zero-dimensional.

By applying Theorem 1 locally, it can be seen that if E is any totally disconnected $G_δ$-subset of X (a Suslinian chainable continuum), then the set of points at which E is zero-dimensional is dense in E. The set of points at which a separable metrizable space is zero-dimensional is always $G_δ$, so we get the following strengthening of Corollary 2: *The set of points at which $E(X)$ is zero-dimensional is dense $G_δ$ in E. Thus $E(X)$ is zero-dimensional “almost everywhere”.*

References

1. R. Adikari and W. Lewis, Endpoints of nondegenerate hereditarily decomposable chainable continua, Houston J. Math. 45 (2) (2019) 609–624.
2. R. H. Bing, Snake-like continua. Duke Math. J. 18(3) (1951), 653–663.
3. H. Cook and A. Lelek, On the topology of curves IV. Fundamenta Mathematicae 76 (1972), 167–179.
4. R. Engelking, Dimension Theory, Volume 19 of Mathematical Studies, North-Holland Publishing Company, 1978.
5. P. Erdős, The dimension of the rational points in Hilbert space, Ann. of Math. (2) 41 (1940), 734–736.
[6] J. J. Dijkstra, and J. van Mill, Characterizing Complete Erdős Space. Canadian Journal of Mathematics, 61 (2009), 124–140.
[7] J. Doucet, Sets of endpoints of chainable continua, Topology Proc. 32 (2008), 31–35.
[8] J. Krzempek, Feeding and killing end points in chainable continua, Topology and its Applications, Volume 304 (2021).
[9] K. Kuratowski, Topology Vol. II, Academic Press, New York, 1968.
[10] A. Lelek, On the topology of curves II, Fundamenta Mathematicae 70 (1971), 131–138.
[11] S. B. Nadler Jr., Continuum Theory: An Introduction, Pure Appl. Math., vol. 158, Marcel Dekker, Inc., New York, 1992.
[12] E. S. Thomas Jr., Monotone Decompositions of Irreducible Continua, Dissertationes Math. (Rozprawy Mat.), 50 (1966), 1–74.

DEPARTMENT OF MATHEMATICS, AUBURN UNIVERSITY AT MONTGOMERY

Email address: ds10003@auburn.edu