The near-infrared spectral energy distribution of β Pictoris b

M. Bonnefoy¹, A. Boccaletti², A.-M. Lagrange³, F. Allard⁴, C. Mordasini¹, H. Beust³, G. Chauvin³, J. H. V. Girard⁵, D. Homeier³, D. Apai⁶,⁷, S. Lacour², and D. Rouan²

¹ Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany
e-mail: bonnefoy@mpia-hd.mpg.de
² LESIA, Observatoire de Paris, CNRS, University Pierre et Marie Curie Paris 6 and University Denis Diderot Paris 7, 5 place Jules Janssen, 92195 Meudon, France
³ UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041, France
⁴ CRAL, UMR 5574, CNRS, Université de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07, France
⁵ European Southern Observatory, Casilla 19001, Santiago 19, Chile
⁶ Department of Planetary Sciences, The University of Arizona, 1929 E. University Blvd., Tucson, AZ 85721, USA
⁷ Department of Astronomy, 933 N. Cherry Avenue, Tucson, AZ 85721, USA

Received December 3rd, 2012; accepted February 5th, 2013

ABSTRACT

Context. A gas giant planet has previously been directly seen orbiting at 8-10 AU within the debris disk of the ~12 Myr old star β Pictoris. The β Pictoris system offers the rare opportunity to study the physical and atmospheric properties of an exoplanet placed on a wide orbit and to establish its formation scenario.

Aims. We aim to build for the first time the 1-5 µm spectral energy distribution (SED) of the planet. Our goal is to provide secure and accurate constraints on its physical and chemical properties.

Methods. We obtained J (1.265 µm), H (1.66 µm), and M' (4.78 µm) band angular differential imaging of the system between 2011 and 2012. We use Markov-Chain Monte-Carlo simulations on the astrometric data to revise constraints on the orbital parameters of the planet. Photometric measurements are compared to those of ultra-cool dwarfs and young companions. They are combined with existing photometry (2.18, 3.80, and 4.08 µm) and compared to predictions from 7 PHOENIX-based atmospheric models in order to derive the atmospheric parameters (T_eff, log g) of β Pictoris b. Predicted properties from “cold-start”, “cold-start” and “warm start” evolutionary models are compared to independent constraints on the mass of β Pictoris b. We use planet population synthesis models following the co-accretion paradigm to discuss the planet possible origin.

Results. We detect the planetary companion in our four-epoch observations. We estimate J = 14.0 ± 0.3, H = 13.5 ± 0.2, and M' = 11.0 ± 0.3 mag. Our new astrometry consolidates previous semi-major axis (8-10 AU) and eccentricity (e ≤ 0.15) estimates of the planet. The location of β Pictoris b in color-magnitude diagrams suggests it has spectroscopic properties similar to L0-L4 dwarfs. This enables to derive Log(L/L_⊙) = -3.87 ± 0.08 for the companion. The analysis with atmospheric models reveals the planet has a dusty atmosphere with T_g = 1700 ± 100 K and log g = 4.0 ± 0.5. “Hot-start” evolutionary models give a new mass of 10^3 M_Jup from T_eff and 10^7 M_Jup from luminosity. Predictions of “cold-start” models are still inconsistent with independent constraints on the planet mass. “Warm-start” models constrain the mass to M ≥ 6M_Jup and the initial entropies to values (SINIT ≥ 9.3K_baryon) intermediate between those considered for cold/hot-start models, but likely closer to those of hot-start models.

Key words. Instrumentation: adaptive optics – Techniques: photometric stars: planetary systems – stars: individual (β Pictoris)

1. Introduction

Understanding planetary systems formation and evolution has become one of the outstanding topics in astronomy, since the imaging of a debris disk around the young (≈ 12 Myr) and massive star (M = 1.75M_⊙) β Pictoris, in the 80’s (Smith & Terrile 1984) and the discovery of the first exoplanet around a solar-type star in the 90’s (Mayor & Queloz 1995). The few dozen of wide-orbit (> 5AU) planetary mass companions directly imaged around young and nearby stars suggest that alternative formation mechanisms to the core-accretion scheme preferred for closer-in exoplanets should be considered. In particular, the four giants planets discovered at projected separations of 15-68 AU around the young and massive star HR8799 (Marois et al. 2008, 2010b) can not be all explained by in-situ formation by core-accretion. Instead, disk instability have been proposed to account for the observed properties of these objects (Dodson-Robinson et al. 2009, 2011).

The atmospheric properties of wide-orbit (non-irradiated) and young (≤ 150 Myr old) “exoplanets” discovered by direct imaging can be studied based on multiple-band photometry (Chauvin et al. 2004b) and even low-resolution spectra (Vigan et al. 2008) in the near-infrared (1-5 µm). Barman et al. (2011) and Skemer et al. (2011) have used atmospheric models to conclude that non-equilibrium chemistry of CO/CH₄ and/or thick clouds of refractory elements could account for the photometric and spectroscopic properties of the planetary mass compan-
ion 2M1207b. Bonnefoy et al. (2010) and Faherty et al. (2013) also recently showed that the near-infrared (1.1 – 1.4 µm and 1.5 – 2.5 µm) spectra of young planetary mass companions AB Pic b and 2M1207 b match those of young and isolated brown dwarfs (Kirkpatrick et al. 2006, Cruz et al. 2009). This also provided the empirical evidence that some of the peculiar photometric/spectroscopic features of these companions can be interpreted as a consequence of their lower surface gravity (compared to field L-T dwarfs). The description of the photometric and spectroscopic properties of the cooler planets found around HR8799 require a more complex picture possibly involving thick clouds (Madhusudhan et al. 2011), Currie et al. (2011a), non-equilibrium chemistry (Janson et al. 2011), Barman et al. (2011a) or even multiple cloud layers (Skermer et al. 2012). It is still unclear whether these properties account for the young age - and reduced surface gravity - of the objects (Marley et al. 2012) or could be related to the peculiar nature of this system.

β Pictoris is one of the best laboratories for the study of early phases of planetary systems formation and evolution. It has been the subject of hundreds of observations over a broad spectral range. With NaCo at VLT, we detected a giant planet orbiting the star (Lagrange et al. 2009, 2010), roughly along the dust disk position angle (PA), with a semi-major axis a between 8 and 14 AU. Its observed L’ luminosity (3.8 µm) indicated it has T_eff ≃ 1700K and a mass of 7-11 M_Jup. Follow-up observations at 4.05 µm (NB-4.05 filter; Quanz et al. 2010a) and at 2.18 µm (K_s band) (Bonnetoy et al. 2011) confirmed these values. Additional astrometric data obtained from October 2010 to March 2011 showed that the semi-major axis is in the range 8-10 AU, and the eccentricity is less than 0.2 (Fig. 1 of Chauvin et al. 2012). β Pictoris b is so far the closest planet ever imaged around a star.

These predictions of β Pictoris b properties (T_eff, mass), like those of imaged planets or companions rely however on models that are currently debated: either the so-called “hot-start” models which assume a spherical collapse from an arbitrary large initial radius (Chabrier et al. 2000, Baraffe et al. 2003), or “cold-start” models (Marley et al. 2007, Spiegel & Burrows 2012, Mordasini et al. 2012) which are supposed to predict the properties of planets produced by accretion of gas through a super-critical accretion shock onto the planet embryo. “Cold-start” models of Marley et al. (2007) and Spiegel & Burrows (2012) predict giant planets more than 100 times fainter at 10 Myr than the “hot start” model. The main difference is due to the gas initial properties (temperature, entropy), which depends on the fate of the energy released during the gas accretion and shock process.

Based on current models predictions (Kennedy & Kenyon 2008), and given its separation, β Pictoris b could have formed via core accretion (Lagrange et al. 2010). Using limits coming from radial velocities measurements (Lagrange et al. 2012a), we could constrain its dynamical mass to be ≤ 15.5 M_Jup and ≤ 12 M_Jup if the semi-major axis is shorter than 10 and 9 AU respectively. Current “cold-start” models fail to predict masses from the available photometry that respect these dynamical mass constraints.

We present new data obtained at J (1.265 µm), H (1.66 µm), and M′ (4.78 µm) bands that we combine to previously published data at 2.18, 3.8, and 4.05 µm to build the near-infrared (1–5 µm) spectral energy distribution (SED) of the planet. The goal of the study is to achieve a better characterization of the atmospheric (T_eff, log g, composition) and physical (radii, mass) properties of the companion needed to understand its formation process and evolution. The paper is organized as follows: Sections 2 and 3 respectively describe the data and their processing. Our core results are presented in Section 4, divided in four main sub-sections. In Sub-section 4.1 we compare the resulting colors to those of reference young and old objects, found isolated or as companions to star/brown-dwarfs. We analyse in Sub-section 4.2 the SED of the planet with atmospheric models. We present new orbital derived from new astrometry of the planet in Sub-section 4.3. We derive new model-dependent mass estimates of the companion in Sub-section 4.4. The results and their implication on the formation history of the planet are discussed in Section 5.

2. Observations

We used the Nasmyth Adaptive Optics System (NAOS) coupled to the Near-Infrared Imager and Spectrograph (CONICA) at VLT/UT4 (NACO, Lenzien et al. 2003, Rouset et al. 2003) to obtain four new high-contrast observations of β Pictoris (see Table 1) between fall-2011 and 2012. The star was first observed on December 16, 2011 in the J band (λ_s = 1.265 µm; width = 0.25 µm) with the S13 camera. We recorded consecutively 4800×0.5s exposures stored in 48 datacubes (100 frames each) in pupil stabilized mode. The field orientation changed by 22.8° during this sequence. The data in-

Date	Band	Density filter	Camera	DIT (s)	N_exp	θ_min (")	θ_max (")	EC mean (" (ms)	
16/12/2011 J	ND_short	S13	0.500	100	8	-34.110	-30.882	60.95	3.26
16/12/2011 J	ND_short	S13	0.500	100	48	-25.394	-2.596	61.11	3.87
16/12/2011 J	ND_short	S13	0.500	100	8	-2.309	1.514	59.60	3.73
18/12/2011 H	ND_short	S13	0.500	100	8	-28.267	-24.834	56.86	2.79
18/12/2011 H	ND_short	S13	0.500	100	48	-24.859	-1.654	54.17	2.52
11/01/2012 H	ND_short	S13	0.200	150	8	-26.530	-24.305	56.60	3.42
11/01/2012 H	ND_short	S13	0.400	150	8	22.563	1.628	61.00	3.18
11/01/2012 H	ND_short	S13	0.200	150	8	14.879	17.268	71.55	2.18
26/11/2012 M'	ND_long	L27	0.100	250	8	-28.362	-26.063	27.93	1.27
26/11/2012 M'	ND_long	L27	0.065	300	184	-19.482	32.322	19.72	1.10
26/11/2012 M'	ND_long	L27	0.130	150	8	32.721	34.411	13.25	0.96

Notes. (a) Parallactic angles (θ) at the beginning of the observations. (b) Parallactic angles (θ) at the end of the observations. (c) Average coherent energy during the observations. (d) Average coherence time during the observations.

Table 1. Log for the new J, H, and M′-band observations.
integration time was chosen to saturate the core of the flux distribution of β Pictoris over a radius of ~150 mas. This and the choice of the appropriate reading mode (double,rd, rstd) ensured we had the necessary detector dynamics to detect the companion. The star was dithered (±3'' amplitude) through the instrument field-of-view every 200 exposures (1 second) during the observations to perform a first order subtraction of bad pixels, detector bias, and background. We took 8 additional 100×0.5s unsaturated exposures of the star with a neutral density (ND_short) before and after the sequence of saturated images. These data were later used for the calibration of the flux and position of β Pictoris b.

We repeated this sequence with the H band filter (∆λ = 1.66 µm; width = 0.33 µm) on December 18, 2011. The parallactic angle variation is close to the one of the J band sequence (22.9'' variation of field orientation).

We obtained second epoch observations of β Pictoris in the H band on January 11, 2012. These observations benefited from excellent atmospheric conditions and increased field rotation (34.6°). We lowered the exposure time to 0.4s to maintain the saturated area to separations shorter than 70 mas. The star was kept at a fixed position in the instrument field of view (no dithering). We recorded a series of sky frames at the end of the sequence to subtract the bias and remove hot pixels. The suppression of telescope offsets and point-spread function (PSF) drifts previously observed when tracking the pupil through meridian (see the NaCo user manual version 91.0) improve the stability of the PSF and simplify the registration of individual frames (see Section 3). Two sequences of 8×150×0.2s unsaturated exposures of the star were taken at the beginning/end of the sequence for the estimation of the photometry and the astrometry.

We finally collected a sequence of M' band (∆λ = 4.78 µm; width = 0.59 µm) saturated exposures (184 datacubes with 300 frames each and 0.065s individual integration times) of the star on November 26, 2012 in pupil-stabilized mode. The L27 camera (~27.12 mas/pixel) was used for these observations. We recorded 8 non-saturated exposures with a neutral density (ND_long) before/after the sequence with a higher integration time (0.1 and 0.13s respectively) for the same purpose as above. The median observing conditions were degraded compared to the J and H band observations. Nevertheless, the observations benefited from the improved Strehl ratio and point-spread function stability at these wavelengths.

3. Data processing

3.1. Initial steps

Each dataset is composed of a sequence of raw datacubes containing 100 to 300 frames each (see Table [1]). We reduced the data using two independent pipelines (Lagrange et al. 2010, Bonnefoy et al. 2011, Boccaletti et al. 2012). Chauvin et al. (2012), Lagrange et al. 2012a, Milli et al. 2012). Pipelines first apply basic cosmetic steps to all frames (sky subtraction, flat fielding, bad pixel interpolation) contained in each raw cubes. They use weighted bi-dimensional Moffat fitting to find the position of the saturated star for each exposures and center it in the field of view. The parallactic and hour angles associated to each frame is computed using the Universal Time corresponding to the first and last exposures contained in each raw cube respectively. Frames with low encircled energy and small saturated area are flagged and re-

1 We retrieve the sidereal time at Paranal (LST) from the Universal Time. The LST and target coordinate is used to derive the hour angle. The hour angle is then converted to parallactic angle.

Fig. 1. Re-detection of β Pictoris b in the J (upper-left panel) band, in the first epoch (upper-right panel) and second epoch (lower-left panel) H band observations, and in the M' band (lower-right panel). Arrows indicate the planet position.

3.2. Photometry and astrometry

β Pictoris b is detected in the J band with the RADI, LOCI, and KLIP algorithms (see Figure [1]). We also retrieved the planet in our two epochs H band data and single epoch M' band data. We find nominal SNR of 8, 17, 23, and 11 with LOCI on the three set of data (for separation criteria of 1.00, 1.00, 0.75, and 0.5 ×FWHM respectively). To compute these SNR, we measured the signal in a circular aperture (3-pixels in radius) centered on the planet. The noise per pixel was estimated on a ring at the same radius (but excluding the planet) and translated to the same surface as the circular aperture (quadratically).

The position and flux of the planet is affected by the inevitable partial point source self-subtraction occurring in ADI (Lafrenière et al. 2007, Marois et al. 2010a, Bonnefoy et al. 2011). We estimated the level of self-subtraction injecting artificial planets in the raw frames built from renormalized unsaturated exposures of the star taken before and after the sequence of saturated exposures. We first injected artificial planets at seven different position angles (256, 304, 346, 31, 76, 121, and 166°) and different positive fluxes (flux ratio from 1×10−2 to 1×10−4 for the J band, and 5×10−5 to 1.5×10−4 for the H band) at the guessed planet separation in the raw J and H band data and ap-
plied the ADI algorithms. We repeated this procedure in the M’ band but considered only three position angles (32°, 122°, 302°) to avoid a cross-contamination of the angular-differential imaging pattern induced by the artificial planets. We then compared the flux of β Pictoris b integrated over a circular aperture (radius of 3 pixels) to those of artificial planets in order to calibrate the self-subtraction (hereafter FPPOS). We also followed an alternative approach injecting artificial planets one by one with the injection flux and could biased the contrast derived with LOCI. Nevertheless, the level of sub-traction with LOCI is not expected to vary linearly with the injection flux and could biased the contrast derived with FPNEG. We then chose to conserve the contrast values derived from FPPOS with LOCI only.

The mean contrast values for each ADI algorithm are reported in Table 2. The error is dominated by the variation of the contrast values derived from observations of the Θ Ori C astrometric field (McCaughean & Stauffer 1994). The uncertainty on the star center dominates the final error budget. We analyze this new astrometry and its implication on the orbit parameters of β Pictoris b in Section 4.3.

Table 2. Photometric measurements of β Pictoris b.

Obs. Date	Filter	Methods	Contrast (mag)
16/12/2011	J	RADI	10.4 ± 0.5
16/12/2011	J	LOCI	10.5 ± 0.3
16/12/2011	J	KLIP	10.8 ± 0.3
18/12/2011	H	CADi	9.9 ± 0.3
18/12/2011	H	RADI	10.2 ± 0.4
18/12/2011	H	LOCI	9.9 ± 0.3
11/01/2012	H	CADi	10.1 ± 0.3
11/01/2012	H	RADI	10.0 ± 0.2
11/01/2012	H	LOCI	9.9 ± 0.2
11/01/2012	H	KLIP	10.0 ± 0.3
26/11/2012	M	CADi	7.5 ± 0.3
26/11/2012	M’	RADI	7.5 ± 0.3
26/11/2012	M’	LOCI	7.6 ± 0.3
26/11/2012	M’	KLIP	7.8 ± 0.3

Fig. 2. Location of β Pictoris b (yellow square) in a J-H versus H-Ks color-color diagrams.

Table 3. Astrometry of β Pictoris b for the H-band data obtained on January 11, 2012.

UT Date	RA”	DEC”	Offset”	H RA”	H DEC”
11/01/2012	−0.53	±0.03	53	−214	13
	13.22	±0.02			

Notes. (a) Derived from observations of the Theta Ori C astrometric field (ESO Large Program 184-C-0567) taken in the H band with the S13 camera on January 2, 2012.

4. Results

We derive contrasts of ΔH = 10.0 ± 0.2 mag and ΔM’ = 7.5 ± 0.2 mag for β Pictoris b (see Table 2). The planet is detected at a lower SNR in the J band when using RADI (SNR ≤ 6). For this reason, we decided to retain the photometric measurement obtained with LOCI only in this band for the following analysis (ΔJ = 10.5 ± 0.3 mag).

We convert the ESO J and H-band photometry of β Pictoris (van der Bliek et al. 1996a) to the 2MASS photometric system (J=3.524 ± 0.013 mag, H=3.491 ± 0.009 mag) using the color transformations of Carpenter (2001). We estimate that the magnitude difference between 2MASS and NaCo systems for a A6 star is less than 0.002 mag using the mean spectrum of A5V and A7V stars of the Pickles (1998) library, a
flux-calibrated spectrum of Vega (Bohlin 2007), and the corresponding filter passbands. We then measure $J = 14.0 \pm 0.3$ and $H = 13.5 \pm 0.2$ for β Pictoris b. This corresponds to absolute magnitudes $M_J = 12.6 \pm 0.3$ mag and $M_H = 12.0 \pm 0.2$ mag at 19.44 ± 0.05 pc (van Leeuwen 2007). We combined the M' band contrast of β Pictoris b we obtained to the star magnitude (M=3.458 ± 0.009; Bouchez et al. 1991) and derived $M' = 11.0 \pm 0.2$ mag and $M_M' = 9.5 \pm 0.3$ mag. Currie et al. (2011b) previously derived a photometry of the planet at M' band (4.98 μm) from ADI observations. We did not use this photometric data point as comparison since the dataset was missing unsaturated exposures. Without this calibration, it is not possible to estimate properly the level of self-subtraction associated to the data reduction method.

We use this new photometry and the one reported in Quanz et al. (2010b) and Bonnefoy et al. (2011) for the K_s (2.18 μm), L' (3.8 μm), and NB4.05 (4.05 μm) filters for the following analysis. It is summarized in Table 7.

4.1. Empirical comparison

4.1.1. Color-color diagrams

We overlaid β Pictoris b colors in $J - H$ vs $H - K_s$ diagrams in Figure 2 along with additional field dwarfs objects (Burgasser et al. 2006; Reid et al. 2008; Dupuy & Liu 2012) and low mass companions (see Table B.1 for a description of the objects). We also overlaid the colors of M8.5-L5 dwarfs having spectral features indicative of reduced surface gravity and likely or confirmed members of young nearby associations (Looper et al. 2007; Rice et al. 2010; Faherty et al. 2013) and ref. therein). β Pictoris b has colors compatible with field L dwarfs and redder than T dwarfs. The comparison also reveals that the L5, and most of the L4, dwarfs are redder than the planet. β Pictoris b colors are close to those of late-M/early-L companions TWA 5B, USCO CTIO 108B, GSC 06214-00210 b, 1RXS J160929.1-210524 b, and CD-35 2722B in addition to κ And b in the diagram.

We reach different conclusions comparing the L' and M' band based colors of β Pictoris b to those of mature M, L, T field dwarfs (Golimowski et al. 2004), and young companions or binaries in Figure 3. β Pictoris b colors are compatible with those of mid-L to T field dwarfs in the three diagrams. The companion $K_s - L'$ color is ~1 magnitude redder than those of late-M field dwarfs. The planet has J-H and J-K_s colors bluer than most of the young companions with the exception of κ Andromedae, 1RXS J160929.1-210524 b, and HR8799c. The origin of this apparent inconsistency is discussed in section 5.1.

4.1.2. Color-magnitude diagrams

The planet is more easily distinguished from comparison objects (mature/young field dwarfs and young companions) in color-magnitude diagrams (Figures 4 and 5). It lies in the middle of the sequence of field L-dwarfs in the diagrams.

The two other late-M (M5-M9) brown dwarf companions orbiting stars of the β Pictoris moving group, PZ Tel b (Biller et al. 2010) and HR7329 B (Lowrance et al. 2000), are more luminous and bluer than the planet. This is consistent with β Pictoris b being less massive and cooler than these objects. We report in the diagrams the photometry of other planet/brown-dwarf companions to massive-stars. The planet/brown-dwarf companion recently imaged around the ~30 Myr old star κ And b (Carson et al. 2012) falls at close positions in color-magnitude diagrams (HKL') as β Pictoris b. The good match in colors is consistent with “hot-start” evolutionary models predictions which give close T_{eff} (~1700 K) for the (close) observed luminosity of these companions. Conversely, the late-L/early-T exoplanets HR8799 bcd (Marois et al. 2008; 2010b) are all at distinct positions than β Pictoris in these diagrams. This agrees with...
the HR8799 system (30 Myr, Columba association, Zuckerman et al. 2011) being older and the planets cooler than \(\beta\) Pictoris b.

We also show in these Figures the photometry of the young \(M_\gamma\) and \(L_\gamma\) dwarfs with measured parallaxes (Faherty et al. 2012, 2013). \(\beta\) Pictoris is fainter than \(M_{8.5}\gamma - M_{9}\gamma\) dwarfs, and among them 2MASS J0608528323753583, the currently lowest-mass isolated member of the \(\beta\) Pictoris moving group (Rice et al. 2010). The planet is more luminous than the \(L_4\gamma\) (2MASSJ05012406-0010452) and \(L_5\gamma\) (2MASSJ035523.1+113337.4) dwarfs. Interestingly, \(\beta\) Pictoris b and \(\kappa\) And b are at close locations to the \(L_0\gamma\) dwarf 2MASSJ00325584-4405058 in these diagrams. We recently confirm the optical classification (Cruz et al. 2009) and the presence of peculiar spectral features in the near-infrared spectrum of this object. 2MASSJ00325584-4405058 might then be a valuable proxy of the spectroscopic properties of \(\beta\) Pictoris b and \(\kappa\) And b. We can then conclude from this empirical analysis that most of \(\beta\) Pictoris b photometric properties are similar to those of early-L (L0-L4) dwarfs.

We used this crude constraint on the spectral type of the planet to derive a luminosity estimate. Faherty et al. (2013) shown that the SED of young L-type dwarfs can deviate significantly from those of mature field dwarfs with similar spectral types. We rather estimated a \(BC_{K} = 3.22 \pm 0.16\) mag for \(\beta\) Pictoris b taking the mean of the bolometric corrections measured for the young \(L_0\) dwarf 2MASS J01415823-4633574 and \(L_5\) dwarf 2MASS J035523.37+113343.7 (3.39 and 3.06 respectively; Todorov et al. 2010; Faherty et al. 2013). We used this correction to derive a luminosity \(\log_{10}(L/L_\odot) = -3.87 \pm 0.08\) mag for \(\beta\) Pictoris b.

4.2. Spectral synthesis

We compared \(\beta\) Pictoris b fluxes to synthetic photometry generated from 7 atmospheric models. All models make use of the multipurpose radiative-transfer code PHOENIX (Hauschildt & Baron 1999; Hauschildt 1999) assuming 1D radiative transfer, hydrostatic equilibrium, convection based on the mixing length theory, chemical equilibrium, and an opacity sampling treatment of the opacities. PHOENIX computes the emerging flux at top of the photospheric layers at given wavelengths for a grid of effective temperatures \(T_{\text{eff}}\), surface-gravities \(\log g\) and metallicities \([M/H]\). Integrated surface fluxes and magnitudes were derived for each combination of atmospheric parameter \(T_{\text{eff}}, \log g, [M/H]\) using the corresponding model spectra, the NaCo filter passbands, and a flux-calibrated model spectrum of Vega (Bohlin 2007). Model fluxes were multiplied by the dilution factor \(R^2/d^2\) (with \(R\) and \(d\) the radius and distance of the object respectively) to match the apparent fluxes of \(\beta\) Pictoris b. Our spectral synthesis tool then retrieved simultaneously \(T_{\text{eff}}, \log g, R\) minimising the \(\chi^2\) with the planet flux. The analysis was conducted with solar-metallicity models. We also explored the effects of the metallicity on the determination of \(T_{\text{eff}}\) and \(\log g\) with the DRIFT-PHENIX and BT-Settl 2012 models.

The empirical study presented in Section 4.1 and previous temperature estimates (Bonnefoy et al. 2011; Currie et al. 2011b) suggests that clouds of silicate dust are present in the atmosphere of the planet. The PHOENIX models used in the following sections explore different cloud formation conditions.
Table 4. Best fitted atmospheric parameters for β Pictoris b

Atmospheric model	T_{eff} (K)	log g	Radius (R_{Jup})	χ^2
AMES-Dusty	1700	3.5	1.22	4.96
AMES-Cond	1400	3.5	1.89	8.04
BT-Settl 2010	1600	3.5	1.61	2.99
BT-Cond 2012	1800	4.0	1.16	17.80
BT-Dusty 2012	1700	4.5	1.76	3.08
BT-Settl 2012 [M/H]=0.0	1700	3.5	1.29	4.27
BT-Settl 2012 [M/H]=+0.5	1600	4.5	1.43	5.45
DRIFT-P [M/H]=0.0	1700	4.0	1.38	2.02
DRIFT-P [M/H]=+0.5	1700	4.0	1.38	3.06
DRIFT-P [M/H]=−0.5	1700	4.0	1.38	2.14

Notes. (a) Analysis limited to log $g \geq 4.5$.

minimum dust formation where the sedimentation (or gravitate setting) is neglected. The AMES-Cond models consider the opposite case where dust forms and is immediately rained-out from the photosphere, producing the depletion of the elements. The grain opacities are obtained by solving the Mie equation for spherical grains assuming the interstellar grain size distribution using complex refraction index of materials as a function of wavelength compiled by the Astrophysikalisches Institut und Universit"ats-Sternwarte in Jena.

We showed in Bonnefoy et al. (2010) that AMES-Dusty models do not reproduce simultaneously the pseudo-continuum and the water-band absorptions of the near-infrared (1.1-2.5 μm) spectrum of the L-type planet/brown-dwarf companion AB Pic b. β Pictoris b is expected to lie in the same temperature range (Bonnefoy et al. 2010). Our analysis could then be similarly affected by this bias. Nevertheless, AMES-Dusty and AMES-Cond models are used as boundary conditions of the evolutionary models of Chabrier et al. (2000) and Baraffe et al. (2003). We therefore used them to determine T_{eff}, log g, and radius estimates in order to preserve the self-consistency in Section 4.4.1.

We selected a sub-grid of synthetic spectra with $1000 \text{ K} \leq T_{\text{eff}} \leq 3000 \text{ K}$, $3.5 \leq \log g \leq 6.0$. Best fitted atmospheric parameters and radii are reported in Table 4. We show in Figure 6 the best fitted fluxes and the corresponding synthetic spectra. Models reproduce β Pictoris b photometry for close T_{eff} (see Table 4). However, the quality of the fit as expressed by low χ^2 values is significantly better using the AMES-Dusty models. Visually (Figure 6), the J-band flux of β Pictoris b is intermediate between those of best-fit AMES-Cond and AMES-Dusty models. The remaining photometric points of the planet are better reproduced by the AMES-Dusty models with the exception of the L’ band (discussed in Section 5.1). In general, AMES-Cond models produce a SED slope too blue compared to the planet. Both best-fit AMES-Dusty/Cond spectra fall at the edge of the range of surface gravities covered by the grids of models. The χ^2 map of the AMES-Cond models suggest that the fit could still be improved for lower surface gravities for the same temperature. The corresponding map for AMES-Dusty models shows the fit is mostly sensitive to the effective temperature (Figure 7).

4.2.2. BT-Settl, BT-Cond, and BT-Dusty models

Contrary to AMES-Dusty/Cond atmospheric models, BT-Settl models (Allard et al. 2003) use a cloud model to predict the number density and size distribution of dust grains across the 1D atmospheric model T_{eff} log g $\log (\text{cm.s}^{-2})$ R_{Jup} χ^2

AMES-Dusty 1700 3.5 1.22 4.96
AMES-Cond 1400 3.5 1.89 8.04
BT-Settl 2010 1600 3.5 1.61 2.99
BT-Cond 2012 1800 4.0 1.16 17.80
BT-Dusty 2012 1700 4.5 1.76 3.08
BT-Settl 2012 [M/H]=0.0 1700 3.5 1.29 4.27
BT-Settl 2012 [M/H]=+0.5 1600 4.5 1.43 5.45
DRIFT-P [M/H]=0.0 1700 4.0 1.38 2.02
DRIFT-P [M/H]=+0.5 1700 4.0 1.38 3.06
DRIFT-P [M/H]=−0.5 1700 4.0 1.38 2.14

Fig. 6. Comparison of the apparent fluxes of β Pictoris b (yellow squares) to best fitted fluxes (horizontal barres) generated from synthetic spectra. Bottom: comparison to AMES-Cond (green; $T_{\text{eff}}=1400 \text{K}$, log $g=3.5$, and $R=1.89 \text{ R}_{\text{Jup}}$), AMES-Dusty (pink; $T_{\text{eff}}=1700 \text{K}$, log $g=3.5$, and $R=1.22 \text{ R}_{\text{Jup}}$), and BT-Cond2012 (blue; $T_{\text{eff}}=1800 \text{K}$, log $g=4.0$, and $R=1.16 \text{ R}_{\text{Jup}}$) synthetic fluxes/spectra. Middle: comparison to BT-Settl 2012 models at solar metallicity (gold; $T_{\text{eff}}=1700 \text{K}$, log $g=3.5$, and $R=1.29 \text{ R}_{\text{Jup}}$), to BT-Settl 2012 models with [M/H]=+0.5 dex (blue; $T_{\text{eff}}=1600 \text{K}$, log $g=4.5$, and $R=1.43 \text{ R}_{\text{Jup}}$), and to BT-Settl 2010 (red; $T_{\text{eff}}=1600 \text{K}$, log $g=3.5$, and $R=1.61 \text{ R}_{\text{Jup}}$) synthetic fluxes at solar metallicity. The corresponding model spectra smoothed at the resolution of the NB,4.05 filter are also shown. Top: comparison to DRIFT-PHOENIX spectra ($T_{\text{eff}}=1700 \text{K}$, log $g=4.0$, and $R=1.38 \text{ R}_{\text{Jup}}$) with solar metallicity (M/H=0.0, orange), metal-enriched (M/H=+0.5, dark red), and metal-depleted (M/H=−0.5, brown) atmospheres.
atmosphere. These models use the Rossw [1978] cloud model which compares layer-by-layer the timescales of the main processes (mixing, sedimentation, condensation, coalescence and coagulation). The mixing timescales are derived from Radiation HydroDynamic (RHD) simulations (Freytag et al. 2010). For the 2010 pre-release of the BT-Settl models (Allard et al. 2011) (hereafter BT-Settl 2010) the cloud model was improved by a dynamical determination of the supersaturation — the ratio of the saturation vapor pressure to the local gas pressure \(P_{vap}/P(t) \). In the 2012 pre-release of the BT-Settl models (Allard et al. 2012) [Allard & Homeier 2012] hereafter BT-Settl 2012 the cloud model was further improved by the implementation of a grain size-dependant forward scattering, and by accounting for nucleation based on cosmic rays studies (Tanaka 2005). This latter change allowed the cloud model to limit its refractory element depletion and form relatively more dust grains in higher atmospheric layers.

The cloud model is solved from the innermost to the outermost atmospheric layer, depleting the gas composition due to sedimentation gradually from the bottom to the top of the atmosphere. This model obtains both the density distribution of grains and the grain average size per layer, and includes 55 types of grains (including metal, ceramic, salt, and ice crystals). The BT-Settl models do not assume a seed composition since the cloud model modifies the equilibrium chemistry iteratively at each atmospheric layer. The resulting number density of dust grains are not in phase equilibrium, even if the equilibrium chemistry is used to adjust layer-by-layer the gas phase abundances.

The BT-Settl models are computed with the PHOENIX stellar atmosphere code using the spherical radiate transfer. The code use up-to-date molecular line list of the water-vapor (BT2, Barber et al. 2006), CH\(_4\) (Homeier 2005), CIA of H\(_2\) (Borysow 2002), TiO, VO, MgH, CrH, FeH, and CaH (Plez & Pley 1998; Weck et al. 2003; Dulick et al. 2003), and new alkali-line profiles (Allard et al. 2007). Non-equilibrium chemistry for CO, CH\(_4\), CO\(_2\), N\(_2\) and NH\(_3\) is also included based on the RHD simulation results (Freytag et al. 2010). Finally, the models relies on the revised solar- abundances (Grevesse 2009) for the BT-Settl 2010 models and Caffau et al. (2011) for the BT-Settl 2012 models) which translates to less pronounced water-band absorptions and redder colors in the near-infrared than previous version of the models (e.g. those used in Allard et al. 2007; Bonnefoy et al. 2010).

We demonstrate in Bonnefoy et al. (2012 submitted) that the BT-Settl 2010 models represents self-consistently the optical and near-infrared spectra together with the Spitzer photometry (3.6–8 \(\mu \)m) of the young (1–3 Myr) M9.5 dwarf KPNO-Tau-\(4\) (Briceno et al. 2002). They should then be appropriate for \(\beta \) Pictoris b given the spectral type and age range of the planet. We compared \(\beta \) Pictoris b photometry with the models for 1000K \(\leq T_{\text{eff}} \leq 3000\)K an 3.5 \(\leq \log g \leq 5.5 \). We plot the best-fit model fluxes and corresponding synthetic spectra in Figure 6. Our fitting procedure gives a close (\(\chi^2 \)) effective temperature than the AMES-Dusty models. The \(\chi^2 \) is reduced compared to previous models, given the better agreement of the predicted J band flux with the one of the planet (Figure 7 and 6).

BT-Settl 2012 models at solar metallicity ([M/H]=0) with 1000K \(\leq T_{\text{eff}} \leq 3000 \)K and 3.5 \(\leq \log g \leq 5.5 \) were first considered here. We also used a sub-grid of metal-enriched models ([M/H]=+0.5) for 1200 K \(\leq T_{\text{eff}} \leq 2000 \)K and 3.5 \(\leq \log g \leq 5.0 \). Revised versions of the Cond and Dusty models (hereafter BT-Cond/Dusty 2012) have been calculated using the same opacities and solar abundances as for the BT-Settl 2012 models for comparison. BT-Cond 2012 and BT-Dusty 2012 models were only computed on restraints grid of parameters at the time of the analysis. Consequently, the analysis with the BT-Cond 2012 models was limited to 1000 K \(\leq T_{\text{eff}} \leq 2500\)K, 4.0 \(\leq \log g \leq 5.5 \), and [M/H]=0. The BT-Dusty 2012 model grid was also restrained to the same temperature range, [M/H]=0, and log g \(\geq 4.5 \) dex. Log g = 4.5 falls above the surface gravity expected for \(\beta \) Pictoris b (see Section 4.4.1) and found using BT-Settl 2010 and AMES models. We then only used BT-Dusty 2012 models to provide an additional check of the atmospheric parameters found using other models.

Parameters of best fitted 2012 models are reported in Table 4. We also overlaid on Figure 6 the synthetic spectra and fluxes of the BT-Cond 2012 and BT-Settl 2012 models. The analysis confirm trends seen with the other models. \(\chi^2 \) maps all show a clear minimum for \(T_{\text{eff}}=1600-1800\) K (Figure 7). Best fits are found for reduced surface gravities compared to those determined for mature field dwarfs (4.5 \(\leq \log g \leq 6.0 \), see Testi 2009). We note however that the \(\chi^2 \) map corresponding to the BT-Settl 2012 models still shows a weaker contraint on \(\log g \) than on \(T_{\text{eff}} \). BT-Settl 2012 models reproduces the planet photometry better. Metallicity changes \(T_{\text{eff}} \) estimate by only 100 K. The BT-Cond 2012 model predict bluer colors than the planet. BT-Dusty 2012 models give the lowest \(\chi^2 \) despite the limited interval of \(\log g \) of the model. The fit with BT-Settl 2012 models have a higher \(\chi^2 \) than obtained from the BT-Settl 2010 models. We discovered at visual inspection that the fit is indeed degraded in the J band.

4.2.3. DRIFT-PHOENIX models

The DRIFT-PHOENIX models couple the PHOENIX code to a non-equilibrium cloud model DRIFT (Woitke & Helling 2003; 2004; Helling & Woitke 2006; Helling et al. 2008b) which account for the nucleation, seed formation, growth, evaporation, gravitational settling, and advection of a set of grains. The general differences between these models and the 2008 version of the BT-Settl models are given in Helling et al. 2008a. We note that the models use older reference solar abundances (Grevesse et al. maint1993 ; also used in AMES-Dusty/Cond models) than those of the 2010-2012 releases of the BT-Settl models.

The grid of synthetic spectra extends from 1500 to 3000 K with 3.0 \(\leq \log g \leq 6.0 \). The grid was computed for three different metallicities ([M/H]=–0.5, 0, and +0.5 dex). We showed in Bonnefoy et al. 2013 (submitted) that these models give a correct representation of the near-infrared spectra and SED of young M and early-L dwarfs.

Results of the fit are also reported in Table 4 and shown in Figure 6. The fit confirms the effective temperature and low surface gravity estimates derived with the other models. \(\chi^2 \) maps indicate that fits are sensitive to the effective temperature and do not able to get an accurate constraint on the surface gravity. The metallicity do not bias the determination of the effective temperature. Models with solar abundances still best match the planet photometry.

We conclude that the PHOENIX-based models used above predict \(T_{\text{eff}}=1700 \pm 100\) K for \(\beta \) Pictoris b. The SED seem to be systematically best reproduced by the models with \(\log g=4.0 \pm 0.5 \) dex. We note however that this parameter is less constrained than the effective temperature. The analysis also demonstrate that once dust is present in the cloud models, our fit provides close effective temperature and surface gravity estimates despite the different underlying physics used in the models. We adopt a radius of \(R=1.4 \pm 0.2\ R_{\text{up}} \) for
the planet based on the scaling factors between the DRIFT-PHOENIX, BT-Settl, and BT-COND models and the observations. These temperature and radius correspond to a luminosity $\log L/L_\odot = -3.83 \pm 0.24$ dex (Stephan-Boltzmann law). This value is consistent with the empirical luminosity derived in Section 4.1.2. We use the later for the following analysis.

4.3. Orbital parameters

We combined our new astrometric data point to those reported in Chauvin et al. (2012) and fit orbits using Levenberg-Marquardt algorithm (LSLM) and Markov-Chain Monte-Carlo (MCMC) simulations as described in the aforementioned study, but yet with an improved algorithm. The results of MCMC simulations are reported in Figure 8, superimposed with new simulations performed with the same data set without the new January 2012 astrometric point. The improvement of the probability curves with respect to Chauvin et al. (2012) is noticeable, even in the simulations using the old data set. This is due to the improvement of the MCMC sampling algorithm. This way we can clearly see what the new point bears.

The main result from Chauvin et al. (2012) are nevertheless confirmed. We confirm that the semi-major axis falls in the 8–10 AU range with a probability higher than 80%. Subsequently the orbital period ranges between 17 and 25 years with the same probability. Meanwhile, the planet eccentricity is ≤ 0.15 with similar probability. Apart from the 2003 point, our astrometric points are all located on one side of the star, and span over a rather limited amount of time. Therefore, eccentric orbits with large periods and currently passing at periastron can not be excluded. Simultaneously, it is not yet possible to state whether the eccentricity is zero or not. Consequently, the argument of periastron is badly constrained, apart from a peak appearing around $\omega = 0$.

Conversely, the orbital inclination and the longitude of ascending node Ω are well constrained parameters, even if the addition of the 2012 point causes a small shift in the MCMC distributions. We confirm the edge-on orientation of the orbit within $\leq 4^\circ$ with a probability higher than 90%. We also confirm that the orbit is more probably slightly viewed as prograde ($i < 90^\circ$) than retrograde. The longitude of ascending node is confined to the range $145 - 150^\circ$ with similar probability. Due to the edge-on orientation of the disk, this parameter is closely related to the PA of the disk. We confirm here the analysis of Lagrange et al. (2012a) who demonstrate that the orbital plan of β Pictoris b was located in the midplane of the inner disk rather than in that of the main disk. This supports the model of Mouillet et al. (1997) and Augereau et al. (2001) who attributed the disk warp to the perturbing action of an inner giant planet, which thus could well correspond to β Pictoris b.

Similarly, we computed the MCMC distribution of the possible transit passages of the planet (Figure 9). We also confirm that the putative transit date of Nov. 1981 claimed by Lecavelier Des Etangs & Vidal-Madjar (2009) could still be due to β Pictoris b, as the quoted date still falls in a peak of the distribution. Meanwhile, our analysis predicts a possible next transit in 2018, which will deserve to be tentatively observed.

The falling evaporating bodies (FEBs) scenario (Beust & Morbidelli 1996, 2000, Beust et al. 2001) also predicts the presence of a Jovian-sized planet at ~ 10 AU as responsible for the infall of numerous star-grazing planetesimals (FEBs) via its inner mean-motion resonances. Obviously, β Pictoris b could correspond to this planet. However, a major requirement of the FEBs model is that the suspected planet is slightly eccentric ($e \sim 0.05$) with a convenient orientation of its periastron with respect to the line of sight. Due to the paucity of our data, it is still not possible to state whether β Pictoris b fulfills this condition. This motivates us to pursue the monitoring of the orbit. The peak that appears at $\omega = 0^\circ$, and that corresponds to orbits with some eccentricity, is nevertheless interesting. As noted in Chauvin et al. (2012), the orientation of the planet periastron required by the FEB scenario translates into $0^\circ \leq \omega \leq 20^\circ$. The presence of the peak close to this range in the ω distribution is encouraging.

These up-to-date constraints on the orbital parameters of β Pictoris b combined to present constraints coming from radial velocity measurements (Lagrange et al. 2012b) confirm the upper limits of 12 and 15.5 M_{Jup} on the planet mass for semi-major axis of 9 and 10 AU respectively. We compare these dynamical constraints to evolutionary models-dependant masses in the following section.

4.4. New mass estimates

We used evolutionary models that couple non-grey radiative-convective atmosphere models to thermal evolution models based on different initial conditions to estimate new physical parameters (mass, T_{eff}, log g, radius) for the planet.
4.4.1. Hot-start and cold-start evolutionary tracks

We first considered the DUSTY and COND evolutionary tracks of [Chabrier et al. 2000] and Baraffe et al. (2003) to derive the mass, \(T_{\text{eff}} \), log g, and radius of the planet (Table 5) using the photometry in each bands, the luminosity, or the temperature determined in Sections 4.1.2 and 4.2. Masses derived from J, H, and \(\beta \) band photometry agree with those found in previous studies [Lagrange et al. 2010; Bonnefoy et al. 2010; Quanz et al. 2010b] with the expection of COND evolutionary models predictions for the M' band. All predicted surface gravities and radii but the one derived from the COND evolutionary models in the M' band are also consistent with those found from the SED fit (see Section 4.2). The problem in the M' band could arise from an incorrect representation of the emergent fluxes of \(\beta \) Pictoris b toward 4.0 \(\mu \)m by the associated AMES-COND atmospheric models. Predictions based on the measured temperature and luminosity should be less affected by this problem. We find masses of 10.1\(^{+2.6}_{-1.0} \) M\(\odot \) and 9.0\(^{+1.3}_{-0.7} \) M\(\odot \) for these two input parameters respectively. We plot the position of \(\beta \) Pictoris along with those of other young companions in a diagram showing the evolution of the luminosity of objects with planetary, sub-stellar, and stellar masses (Figure 6). The planet sits above 2M1207b and clearly below the two brown dwarf companions discovered around stars members of the \(\beta \) Pictoris moving group.

Other “hot-start” models have been proposed by [Marley et al. 2007] for 1-10 M\(\odot \) planets. Fortney et al. (2008) couple an upgraded version of these models to cloudy atmospheric models with 1 and 5 times solar abundances. Models with enriched atmospheres were created to account for the possible enhancement of metal content of exoplanets formed in disks, like Jupiter and Saturn (see [Fortney et al. 2008] and ref. therein). We report evolutionary models predictions (generated for the NaCo passbands) for these two choices of boundary conditions in Table 5 and show the location of \(\beta \) Pictoris b luminosity and \(T_{\text{eff}} \) with respect to tracks in Figure 10. Predictions for the highest magnitude values fall above the mass range covered by the model (predictions up to 0.8 mag fainter in the \(\beta \) band at solar metallicity, and up to 1 mag fainter in the M' band at 5 times solar metallicity). For this reason, we are only able to give lower limits on the mass and effective temperature and can not give secure lower limits for radii and surface gravities. Nevertheless, the lower limits on masses and \(T_{\text{eff}} \) agree with those derived from DUSTY/COND evolutionary models.

We also use “hot-start” evolutionary models of [Spiegel & Burrows 2012] (hereafter SB12) and report predictions in Table 5 for the J, H, and \(\beta \) band filters. SB12 models consider four atmospheric models (Burrows et al. 2011) as boundary conditions of their interior models: cloud-free models at solar-metallicity (hereafter cfs1), three time solar-metallicity (cfs3), models with hydrid dust clouds at solar metallicity (hy1s) and models with hydrid clouds with three time solar metallicity (hy3s). We retrieve predictions in agreement with estimates from the two other hot-start models. We also derived temperature and/or mass predictions from the effective temperature and the luminosity of the planet for the hy1s model.\footnote{We also compared predictions of the so-called “cold-start” models proposed by [Marley et al. 2007] and SB12 to the new \(\beta \) Pictoris b photometry, temperature and luminosity (see Figure 10). We confirm that only masses (and lower limits) derived from “hot-start” models agree with the independent upper limit of 15.5 M\(\odot \) of the mass of \(\beta \) Pictoris b given the mass range covered by the models.}

4.4.2. “Warm-start” models

Spiegel & Burrows [2012] also propose to explore intermediate cases between cold-start and hot-start models where only a fraction of the gravitational potential energy liberated at the

Model	Input	Mass (M\(\odot \))	\(T_{\text{eff}} \) (K)	log g (cm/s\(^2\))	Radius (R\(\odot \))
DUSTY M\(\odot \)	\(10.4 \)	\(1720 \)	\(4.06 \)	\(0.07 \)	\(1.53 \)
DUSTY M\(\odot \)	\(9.2 \)	\(1615 \)	\(4.00 \)	\(0.01 \)	\(1.50 \)
DUSTY M\(\odot \)	\(8.4 \)	\(1537 \)	\(3.98 \)	\(0.01 \)	\(1.48 \)
DUSTY M\(\odot \)	\(9.8 \)	\(1674 \)	\(4.02 \)	\(0.14 \)	\(1.52 \)
DUSTY M\(\odot \)	\(7.4 \)	\(1434 \)	\(3.94 \)	\(0.21 \)	\(1.45 \)
DUSTY M\(\odot \)	\(9.0 \)	\(1653 \)	\(4.01 \)	\(0.17 \)	\(1.51 \)
DUSTY T\(\text{eff} \)	\(10.1 \)	\(4.03 \)	\(0.13 \)	\(1.53 \)	
DUSTY L/H	\(9.0 \)	\(1594 \)	\(4.00 \)	\(0.19 \)	\(1.50 \)
COND M\(\odot \)	\(7.9 \)	\(1490 \)	\(3.96 \)	\(0.20 \)	\(1.47 \)
COND M\(\odot \)	\(8.5 \)	\(1544 \)	\(3.98 \)	\(0.20 \)	\(1.48 \)
COND M\(\odot \)	\(9.7 \)	\(1663 \)	\(4.03 \)	\(0.20 \)	\(1.52 \)
COND M\(\odot \)	\(11.7 \)	\(1838 \)	\(4.01 \)	\(0.31 \)	\(1.58 \)
COND M\(\odot \)	\(11.4 \)	\(1636 \)	\(4.01 \)	\(0.11 \)	\(1.51 \)
COND M\(\odot \)	\(13.2 \)	\(2017 \)	\(4.01 \)	\(0.08 \)	\(1.70 \)
COND T\(\text{eff} \)	\(10.1 \)	\(4.03 \)	\(0.13 \)	\(1.53 \)	
COND L/H	\(9.0 \)	\(1594 \)	\(4.00 \)	\(0.19 \)	\(1.50 \)
accretion shock do not enter the initial energy budget of the planet. These “warm-start” models do not aim at modeling self-consistently the formation history but rather propose a continuum of evolutionary tracks corresponding to a range of initial entropies (S_{ini}; from 8 Boltzmann constants per baryon – k_B/baryon – and up to 13 k_B/baryon increments).

We computed the predicted absolute NaCo magnitudes of 1–15 M_{Jup} planets using the predicted “warm-start” low-resolution ($R \sim 200$) spectra of planets placed at 10 pc, the instrument passbands, and the same flux-calibrated spectrum of Vega (Bohlin 2007) used to generate NaCo magnitudes of the LONY tracks. As expected, predicted absolute magnitudes increase with the object mass and S_{ini}. We report in Figure 11 the initial entropies and masses for which β Pictoris photometry matches the prediction of hy3s models for an age of 12 Myr (solid lines), and using the extreme values of our photometry for ages of 8 and 20 Myr (dashed lines). For each considered filter, the allowed range of S_{ini} and mass of the planet is contained between the dotted and dashed lines. This range can be compared on the figure to the interval of masses excluded from independent constraints on the mass of the planet and shaded on the figure. We overlay S_{ini} considered for the hot-start (yellow/orange symbols) and cold-start (blue/violet symbols) models of Marley et al. (2007) and Fortney et al. (2008) (rectangles; entropy at 1 Myr) and SB12 (big dots).

We also compare our combined set of photometric points to model predictions using a χ^2 minimization (which do not require adjusting a dilution factor). Results of the minimization are reported for 8 Myr, 12 Myr, and 20 Myr predictions and for the four boundary conditions in Table 6. We report in Figure 11 the corresponding entropies and masses.

We reach the following conclusions:

- Single band photometry constrains the planet mass to $\geq 6 M_{\text{Jup}}$. The H-band, L’-band, and M’-band magnitudes of β
Pictoris (which tend to be less dependant of the choice of the atmospheric model according to Figure 8 of SB12), give the same constraints on the initial entropies (S_{init} \geq 9.3, 9.6, and 9.7 kg/baryon respectively) for the four boundary conditions. The constraints rise to S_{init} \geq 10.0 kg/baryon considering all the bands, the independent mass constraints, and an age of 12 M_{Jup}.

- Cloud-free models fail to give coherent predicted masses and initial entropies for the different photometric bands. Cloudy models hy1s and hy3s reduce the dispersion. They predict masses greater than 8 M_{Jup} for the planet and indicate S_{init} \geq 9.3 kg/baryon. Comparatively, cf1s and cf3s models restrain the possible range of initial entropies to \geq 9.1 kg/baryon. If we consider the independent limit of 12 M_{Jup} on the mass of the planet, S_{init} needs to be larger than 9.2 and 9.3 kg/baryon for the cf1s and cf3s boundary conditions. The constraint rises to S_{init} \geq 9.6 kg/baryon for hy1s and hy3s atmospheres. These initial entropies all appear larger than those considered for the cold-start models of FM08 and SB12 but lower than those used for the hot-start models. Masses predicted for the lowest magnitude values of the planet at an age of 20 Myr fall in the range proscribed by radial velocity measurements if the planet semi-major axis is 9 AU.

- Results from the combined fit of our photometry confirm the latter conclusions. They predict masses between 9 and 13 M_{Jup} and initial entropies (\geq 11 kg/baryon) that better correspond to those of hot-start evolutionary tracks. Masses predicted for a 20 Myr old system fall in the range of masses excluded by dynamical constraints if \beta Pictoris b semi-major axis is \leq 9 AU. The \chi^2 of the fit is reduced for cloudy atmospheres with solar abundances. This is in agreement with conclusions derived from atmospheric models fits in Section 4.2.

The present analysis suggests that initial conditions are intermediate between those adopted for cold-start and hot-start models of SB12 and FM08, and more likely lies closer to those adopted for hot-start models. We discuss the implications of these conclusions in the Section 5.3.

5. Discussion

5.1. Comparison of the empirical and model-dependent analysis

Comparison of \beta Pictoris b photometry to empirical objects and atmospheric/evolutionary models converge toward the picture of an exoplanet with a cloudy atmosphere. The effective temperature derived in Section 4.2 is compatible with those derived for other young L-type companions such as AB Pic b (T_{eff} = 1700 \pm 100 K, Bonnefoy et al. 2013, submitted), CD-35 2722 B (T_{eff} = 1700 – 1900K, Wahhaj et al. 2011), or 1RXS J1609-2105B (T_{eff} = 1800+200/-100 K, Lafrenière et al. 2008) using similar PHOENIX-based atmospheric models. We also recently derived T_{eff} = 1700 – 1900K for a sample of young M9.5-L0 dwarfs comparing their near-infrared spectra to BT-SETTL2010 models (Bonnefoy et al 2013, submitted). We note however some expections like the young L0 companion GSC 0621400210 b (Bowler et al. 2011) that has a significant higher estimated temperature (T_{eff} = 2700 \pm 200K). Nevertheless, we believe that this expection most certainly arises from the non-

homogeneous classification of these companions and that the present comparison rather validate the self-consistency of the analysis of \beta Pictoris b near-infrared SED. We also note that the spectroscopic T_{eff} of the planet corresponds to a spectral type in the range L3-L4.5 using the conversion scale of Stephens et al. (2009) valid for field dwarfs. Despite the scale was generated using another family of atmospheric models (e.g. Saumon & Marley 2008), this spectral type range is consistent with that inferred from the location of \beta Pictoris with respect to field dwarfs in J-H vs H – K_s and color-magnitudes diagrams.

If we choose to adopt a spectral type L2 or \pm 2 for \beta Pictoris b, the planet appears to have redder K_s – L' colors with respect to early-L field dwarfs in Figure 3. SB12 evolutionary models and all but the DRIFT-PHOENIX models (Figure 5) suggest the planet could be overluminous in the L' band. Non-equilibrium chemistry CO \approx CH_4 induced by the reduced surface gravity of the object could be invoked (Barmann et al. 2011b). But we would expect the planet to have bluer L’-M’ colors than those of mature dwarfs (by decreasing the strength of the CH_4 shortward 4 \mu m and increasing of the CO one longward 4 \mu m). BT-Settl (which account for non-equilibrium chemistry) and DRIFT-PHOENIX models predict that the K_s – L’ color is mostly independent of the surface gravity of the object. DRIFT-PHOENIX also suggest that metallicity is not able to explain the planet color. The same is true for the other colors represented in Figure 3. To conclude, one would expect to find a similar location for \beta Pictoris b and the other young L-type companions in the diagrams. The problem could more simply arise from an error in the neutral density factor estimates. Adopting the default value from the NaCo User Manual (~1.8%; and used for all the studies of \beta Pictoris b so far) would bring back \beta Pictoris b colors in better agreement with those of L dwarfs and young companions. But we note that our transmission value relies on three different measurements and are not affected by any residual flux level from background subtraction. The choice of the neutral density transmission do not bias our best fitted effective temperatures.

5.2. \beta Pictoris b abundances

Gray et al. (2006) and Saffe et al. (2008) estimate solar metallicity (M/H=+0.05 and +0.11 respectively) for \beta Pictoris A comparing the optical spectra of the star to atmospheric models. The abundances of \beta Pictoris A are consistent with measurements found for other young nearby associations members (Viana Almeida et al. 2009, Biazzo et al. 2012, BT-Settl 2012, DRIFT-PHOENIX, and SB12 models at solar metallicity best match the SED of \beta Pictoris b. A careful visual check of the fits reveals that differences in magnitudes between the best fitting SB12 models (and associated \chi^2 values) with 1x and 3x solar metallicities (or M/H=0 and +0.5 dex respectely) are negligible. The planet would need to be fainter of 0.45 magnitude in the J band and brighter than 0.25 magnitudes in the K_s to be best fitted by the 3x solar-metallicity DRIFT-PHOENIX models. The J-band of best fitted metal-enriched BT-Settl2012 models is 1 magnitude fainter than that of \beta Pictoris b. The higher departure of BT-Settl2012 models flux in the J band at [M/H]=+0.5 compared to the DRIFT-PHOENIX might come from the use of

4 Some of the companions have been classified based on the comparison to mature field dwarfs spectra in the near-infrared. A classification scheme which account for the different ages of the objects (Kirkpatrick 2005, Cruz et al. 2009) might be more appropriate.
Table 7. Properties of the β Pictoris system

Parameter	β Pictoris A	β Pictoris b	References
d (pc)	19.44 ± 0.05	–	2
Age (Myr)	12 ± 8	3	
J (mag)	3.524 ± 0.013	14.0 ± 0.3	1, 4
H (mag)	3.491 ± 0.009	13.5 ± 0.2	1, 4
K_s (mag)	3.451 ± 0.009	12.6 ± 0.1	4, 5
L (mag)	1.454 ± 0.003	11.0 ± 0.2	3, 5, 6
NB_4.05 (mag)	–	11.20 ± 0.23	7
M (mag)	3.458 ± 0.009	11.0 ± 0.3	1, 6
M_f (mag)	2.081 ± 0.014	12.6 ± 0.3	1
M_H (mag)	2.048 ± 0.011	12.0 ± 0.2	1
M_K (mag)	2.007 ± 0.011	11.2 ± 0.1	5
M_L (mag)	2.011 ± 0.006	9.5 ± 0.2	1, 5
M_B, <0.05 (mag)	–	9.76 ± 0.24	7
M_B, (mag)	2.014 ± 0.011	9.5 ± 0.3	3
Spectral type	A6V	L2, ± 2	1, 8
T eff (K)	8052, 8036	1700 ± 100	1, 8, 9
log g (dex)	4.15, 4.21	4.0 ± 0.5	1, 8, 9
M/H (dex)	+0.05, +0.11	0.0	1, 8, 9
log_{10}(L/L_☉)	0.91 ± 0.01	−3.87 ± 0.08	1
Mass (M_☉)	1.70 ± 0.05(b)	0.011 ± 0.003	1

Notes. [1] - this work, [2] - van Leeuwen (2007), [3] - Zucker et al. (2001), [4] - van der Bie (1996b), [5] - Bonnefoy et al. (2011), [6] - Bouchet et al. (1999), [7] - Quanz et al. (2010a), [8] - Gray et al. (2006), [9] - Safie et al. (2008).

(i) Using the evolutionary tracks of Ekström et al. (2012) with and without rotation.

(ii) Using COND and DUSTY “hot-start” evolutionary models.

5.3. The formation of β Pictoris b

It is thought that disk instability leads gas to retain much more of its initial entropy than core-accretion, leading to a planet with “hot-start” conditions. New 3D simulations of the collapse of disk clumps confirm this fact (Galvagni et al. 2012). Constraints on the initial entropies of β Pictoris b would then suggest a formation by disk-instability. Janson et al. (2011) have shown that disk-instability is not the dominant formation scenario of wide-orbit companions around stars more massive than β Pictoris (and then more favorable to disk-instability) using models which can predict within which boundaries in mass/semaimajor axis space gaps can form from disk instabilities (see Janson et al. 2011 and Mordasini et al. 2010 for a description of the models). Rameau et al. 2013 (submitted) shows that the same models applied to the case of β Pictoris b can only form self-gravitating clumps with masses ≥ 3M_Jup at distances greater than ~45 AU from the star. Additional dynamical process such as tidal interaction with the disk (Baruteau et al. 2011, Michael et al. 2011, Zhu et al. 2012) and/or planet-planet interactions (Boley et al. 2012) would then be needed to explain the present location of the planet.

Nevertheless, Mordasini et al. (2012) argue that the link between cold/hot start evolutionary models, and more generally the link between initial entropy and the formation scenario (e.g. core-accretion vs disk instability) can not presently be established given our limited knowledge of the way the material is accreted, and in particular at the accretion shock (Marley et al. 2007, Commerçon et al. 2011). For example, core-accretion with a subcritical shock (no radiative losses) also leads to a “hot start”. Constraints on the initial entropy could nevertheless be compared to those of planets similar to β Pictoris b (discovered in disks, with dynamical constraints) that will be unearthed by the planet imagers (LBTI/LMIRCam, Subaru/SCExAO, VLT/SPHERE, Gemini/GPI) in the coming years.

Could β Pictoris b be formed by core-accretion then? Kennedy & Kenyon (2008) suggest that cores can form at 8-10 AU around a star as massive as β Pictoris. We used here the framework of Mordasini et al. (2012) for planet population synthesis to deepen this hint. It handles the formation of single planets in disks around solar-mass stars and account for disk evolution and migration processes (type I, type II). It can be used to generate population of planets with individual properties that can be compared to the observations. We modified the code in order to simulate the formation of planets around a 1.7 M_☉ star at solar-metallicity. The disk mass distribution was shifted by a factor M_d^2/M_☉ with respect to the Mordasini et al. (2012) models in order to get an accretion rate on the star which varies approximatively as M_d^0.5 (with M_d the stellar mass; see Alibert et al. 2011). We show in Figure 12 the resulting populations of 50 000 planets. Synthetic planets as massive as β Pictoris b (considering masses from the hot-start models or dynamical constraints on the mass) can be found at 12 Myr around such a massive star up to ~14 AU. Generally, this population synthesis shows that massive planets such as β Pictoris b represent the boundary of the population of planets for the considered semi-major axis. However, we want to stress that these simulations are defined here for a given set of model parameters and that several assumptions are made. An important assumptions in this context is that the gas accretion rate is not reduced due to gap formation (Lubow et al. 1999) because of the eccentric instability (Kley & Dirksen 2006). We did not included in these simulations disk heating by the irradiation of the host star (viscous heating only). Next, one planet embryo is
jected per disk. This situation might not be realistic for β Pictoris given observational clues for additional – but lower mass – planets in the system (e.g. Okamoto et al. 2004). We also took here a core-accretion rate of Pollack et al. (1996) that might be too much optimistic (Fortier et al. 2013), meaning that we assume that massive cores form relatively quickly. We also assume that massive cores can be formed. In the range of semi-major axis of β Pictoris b (8-10 AU), massive planets (> 9 M_{Jup}) have predicted core masses of 160 to 230 M_{\odot}. Nevertheless, recent detections of dense transiting companions suggest that this hypothesis is relevant (Deleuil et al. 2008, 2012). Simulating the impact on the choice of free parameters (and hypothesis made in the models) and accounting for multiple planets formation per disk would now be needed to better understand the formation of the planet. A forthcoming study (Mollière, in preparation) coupling the formation and evolution (luminosity, T_{eff}) of synthetic planets will also enable to better understand if core-accretion can form high entropy objects at the planet separation.

6. Conclusions

We present the first resolved J, H, and M' band images of the exoplanet β Pictoris b. We extract fluxes of the planet at these wavelengths and combined them to published observations at 2.18, 3.8, and 4.05 μm in order to build the spectral energy distribution of the planet from 1 to 5 μm.

We find that the planet has similar colors and flux to young and old field L0-L4 dwarfs, and in particular to the ~30 Myr old planet/brown-dwarf companion recently discovered around the massive star κ Andromedae. We use these broad spectral type estimates and bolometric corrections defined for young objects to derive $\log(G_{\text{bol}}/(L/L_{\odot}) = -3.87 \pm 0.08$ for the planet. Comparison of the planet SED to atmosphere models shows that the atmosphere contains dust and gives a more robust estimate of its effective temperature ($T_{\text{eff}} = 1700 \pm 100$K). Models also suggest that the planet has a reduced surface gravity ($\log g = 4.0 \pm 0.5$) characteristic of young objects.

We measure the position of the planet in our new data and combine it with existing astrometry to refine the distribution of orbital parameters. We confirm that the semi-major axis lies in the 8-10 AU range and the extinctivity is lower or equal to 0.15 (80% probability). This validates the independent upper limit on the mass of the companion of 12 (for an orbit at 9 AU) and 15.5 M_{Jup} (10 AU) derived from radial velocity.

We compare this independent mass determination to predictions of three classes of evolutionary tracks based on different initial conditions. We confirm that masses predicted by Marley et al. (2007) and Spiegel & Burrows (2012) “cold-start” evolutionary models for the estimated T_{eff} and photometry of β Pictoris b do not comply with dynamical constraints. Instead, we find that classical “hot-start” models successfully predict the temperature and luminosity of the object for masses of $10^{-2} M_{\text{Jup}}$ and $9.7^{+2}_{-1} M_{\text{Jup}}$ respectively. “Warm-start” models, which deal with the intermediate cases between “cold” and “hot-starts” predict masses $\geq 6 M_{\text{Jup}}$. These models also constrain the initial entropy of the planet to $S_{\text{ini}} \geq 9.3k_{\text{B}}$/baryon. Initial entropy values are then at least intermediate between those considered for hot-start and cold-start models, and most likely closer to those of hot-start models. We argue that these values can not presently be used to identify the formation scenario of the planet. We generate a population of planets formed by core-accretion around a star as massive as β Pictoris. Some planets of the population have masses and semi-major axis which agrees with current estimates for β Pictoris b. We show in addition that synthetic analogs to β Pictoris b are at the edge of the core-accretion capabilities. A more complete version of these models better adapted to the specificities of the β Pictoris system and which explores several free parameters set in the models would now be needed to better understand the formation of the system.

β Pictoris b will likely be used as a reference target for the science verification of the planet imagers SPHERE and GPI next year. These two facilities should pursue the monitoring of the planet orbital motion, at a time when it should be close to periastron. The intruments should also easily provide the first low-resolution ($R \leq 400$) near-infrared (1-2.5 μm) spectrum of the planet. Spectral features, such as the pseudo-continuum shape from 1.5 to 1.8 μm, will enable to firmly confirm the intermediate surface gravity of the companion. We could also expect to estimate the metallicity (possibly from the shape of the K-band pseudo-continuum) of the planet.

Appendix A: Transmission of neutral density filters

We measured the transmission of the two neutral densities (ND_short, ND_long) installed in NaCo for the J, H, Ks, L', and M' filters using datasets gathered from the ESO archives where bright targets were observed consecutively with and without a neutral density (see Table A.1). Each dataset was reduced with the ESO Eclipse package (Devillard 1997). Eclipse carried out sky and/or dark subtraction, the division by the flat field, bad pixel flagging and interpolation. The scripts finally shifted and added dithered images to produce a post-cosmetic frame of the sources. We performed aperture photometry on the sources for each setup and compared them to retrieve the transmission factor (different integration radii were considered depending on the dataset). We repeated the procedure for different targets for a given filters in order to estimate an error on the transmission factor. Values are reported in Table A.2. We considered in addition the transmission factor reported in (Boccaletti et al. 2008) for the ND_short neutral density for the computation of the error in the K_s band. To conclude, we only got a single measurement of the ND_long neutral density transmission in the M' band. We considered a higher error for this transmission based on the impact of the level of fluctuations of the background around the target.

Appendix B: Details on comparison objects

We report in Table B.1 the properties of the young companions and binaries used as comparison objects in Figures 4 to 6.

Acknowledgements. We would like to first thank our anonymous referee for improving greatly the quality of the manuscript. We also thank the ESO Paranal staff members for conducting these service mode observations and members involved in the preparation and data analysis of the ESO large program 184.C-0567 for providing the calibration of the true north and instrument platescale corresponding to our January data. We are grateful to Christiane Heiling, Soeren Witte, and Peter Hauchsdlt for developing and providing the DRIFT-PHOENIX models. We thank Hubert Klahr, Adam Burrows, and Joshua Schlieder for fruitful discussions about planet formation/evolutionary models and the identification of young nearby L dwarfs. We also thank Kelly Cruz and Mark Marley for discussions about the classification scheme of young L dwarfs. The research leading to these results has received funding from the French “Agence Nationale de la Recherche” through project grant ANR10-BLANC0504-01, the “Programme National de Physique Stellaire” (PNPS) of CNRS (INSU), and the European Research Council under the
Table A.1. Observations log for the calibration of the neutral density transmission.

Date	Target	Camera	Filter	Neutral density	DIT	NDIT	Nexp	EC Mean	τ_0 Mean
07/04/2004	HIP59502	S13	J	ND_short	1.500	25	6	30.8	6.3
07/04/2004	HIP59502	S13	J	...	0.350	35	6	18.9	3.6
07/04/2004	HIP61265	S13	J	ND_short	2.500	15	6	39.0	7.0
07/04/2004	HIP61265	S13	J	...	0.350	35	6	14.9	2.6
09/06/2004	HIP81949	S13	J	ND_short	2.200	20	6	33.6	4.0
09/06/2004	HIP81949	S13	J	...	0.350	35	6	29.2	2.7
26/06/2004	HIP81949	S13	J	ND_short	2.200	20	6	38.7	2.1
26/06/2004	HIP81949	S13	J	...	0.350	35	6	17.6	1.2
28/11/2005	AB Dor B	S13	J	ND_short	10.000	3	6	35.9	5.3
28/11/2005	AB Dor B	S13	J	...	0.347	100	6	41.1	5.7
09/06/2004	HIP81949	S13	H	ND_short	2.200	20	6	32.0	3.0
09/06/2004	HIP81949	S13	H	...	0.350	35	6	28.3	2.5
25/12/2009	GSC 08056-00482 L27	L'	ND_long	0.200	100	5	22.2	2.4	
25/12/2009	GSC 08056-00482 L27	L'	ND_long	0.200	150	14	13.0	1.5	
27/12/2009	WW PsA	L27	L'	ND_long	0.200	100	5	23.8	1.9
27/12/2009	WW PsA	L27	L'	...	0.200	150	15	30.2	12.9
28/12/2009	TX PsA	L27	L'	ND_long	0.200	100	4	36.4	5.7
28/12/2009	TX PsA	L27	L'	...	0.200	150	4	41.8	5.7
03/03/2007	HD158882	L27	M	ND_long	0.056	70	4	n.a.	n.a.
03/03/2007	HD158882	L27	M'	...	0.056	70	4	n.a.	n.a.

Table A.2. Transmission of the neutral density filters

Neutral density	Filter	Transmission (%)
ND_short	J	1.42 ± 0.04
ND_short	H	1.23 ± 0.05
ND_short	K	1.13 ± 0.04
ND_long	L'	2.21 ± 0.07
ND_long	M'	2.33 ± 0.10

References

Albert, Y., Mordasini, C., & Benz, W. 2011, A&A , 526, A63
Allard, F., Allard, N. F., Homeier, D., et al. 2007, A&A , 474, L21
Allard, F., Guellot, T., Ludwig, H.-G., et al. 2003, in IAU Symposium, Vol. 211, Brown Dwarfs, ed. E. Martin, 325
Allard, F., Hauschildt, P. H., Alexander, D. R., Tamanai, A., & Schweitzer, A. 2001, ApJ , 556, 357
Allard, F., Hauschildt, P. H., & Schwenke, D. 2000, ApJ , 540, 1005
Allard, F. & Homeier, D. 2012, ArXiv e-prints
Allard, F., Hauschildt, P. H., & Freytag, B. 2011, in Astronomical Society of the Pacific Conference Series, Vol. 448, 16th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, ed. C. Johns-Krull, M. K. Browning, & A. A. West, 91
Allard, F., Homeier, D., & Freytag, B. 2012, Royal Society of London Philosophical Transactions A Series, Vol. 370, 2765
Allers, K. N., Liu, M. C., Dupuy, T. J., & Cushing, M. C. 2010, ApJ , 715, 561
Augereau, J. C., Nelson, R. P., Lagrange, A. M., Papaloizou, J. C. B., & Moullet, D. 2001, A&A , 370, 447
Baraffe, I., Chabrier, G., Barman, T. S., Allard, F., & Hauschildt, P. H. 2003, A&A , 402, 701
Barban, T. S., Macintosh, B., Konopacky, Q. M., & Marois, C. 2011a, ApJL , 735, L39
Baruteau, C., Meru, F., & Paardekooper, S.-J. 2011, MNRAS , 416, 1971
Bejar, V. J. S., Zapatero Osorio, M. R., Perez-Garrido, A., et al. 2008, ApJ , 673, L185
Beust, H., Karmann, C., & Lagrange, A.-M. 2001, A&A , 366, 945
Beust, H. & Morbidelli, A. 1996, Icarus, 120, 358
Beust, H. & Morbidelli, A. 2000, Icarus, 143, 170
Biaszzo, K., D’Orazio, V., Desidera, S., et al. 2012, ArXiv e-prints
Billot, B. A., Liu, M. C., Wahhaj, Z., et al. 2010, ApJL , 720, L82
Boeckele, A., Augereau, J.-C., Lagrange, A.-M., et al. 2012, A&A , 544, A85
Boeckele, A., Chauvin, G., Baudouin, P., & Beuzit, J. 2008, A&A , 482, 939
Bolin, R. C. 2007, in Astronomical Society of the Pacific Conference Series, Vol. 364, The Future of Photometric, Spectrophotometric and Polarimetric Standardization, ed. C. Sterken, 315
Boley, A. C., Payne, M. J., & Ford, E. B. 2012, ApJ , 754, 57
Bonfleury, M., Chauvin, G., Rojo, P., et al. 2010, A&A , 512, A52
Bonfleury, M., Lagrange, A.-M., Boeckele, A., et al. 2011, A&A , 528, L15
Bovary, A. 2002, A&A , 390, 779
Boissier, A. 2011, ApJ , 731, 74
Bouchet, P., Schneider, F. X., & Manfroid, J. 1991, AAPs , 91, 409
Bowler, B. P., Liu, M. C., Kraus, A. L., Mann, A. W., & Ireland, M. J. 2011, ApJ
Table B.1. Properties of young companions and binaries used as comparison objects.

Name	Distance (pc)	Association	Age (Myr)	Spectral type A	Spectral type b	Separation (AU)	Mass (M_Jup)	References
HIP 78350B	156.7 ± 13.0	Up, Sco.	5	B9V	M8 ± 1	710 ± 60	22 ± 4	1
GSC 06214-00210b	145 ± 14	Up, Sco.	5	K7	L0 ± 1	320 ± 30	14 ± 2	2, 3
USCO CTIO 108B	145 ± 14	Up, Sco.	5	M7	M9 ± 5	670 ± 64	14 ± 2	4
USCO CTIO 108A	145 ± 14	Up, Sco.	5	M7	M9.5	670 ± 64	60 ± 20	4
HR8799b	39.4 ± 1.0	Columbia	30	A5V	L-T	67.5 ± 70.8	< 7	5, 6, 7, 8
HR8799c	39.4 ± 1.0	Columbia	30	A5V	L-T	42.1 ± 44.4	< 10	5, 6, 7, 8
HR8799d	39.4 ± 1.0	Columbia	30	A5V	L-T	26.4 ± 28.1	< 10	5, 6, 7, 8
HR8799e	39.4 ± 1.0	Columbia	30	A5V	L-T	14.5 ± 0.5	< 10	6, 7, 9
2M1207A	52.4 ± 1.1	TW Hydrae	8	M8 pec	≥ L5,6	40.8 ± 0.9	24 ± 6	10, 11, 12, 13
2M1207b	52.4 ± 1.1	TW Hydrae	8	M8 pec	≥ L5,6	40.8 ± 0.9	8 ± 2	10, 11, 12, 13
SDSS J2249+0044A	54 ± 16	Unknown ~100	L3 ± 0.5	L5 ± 1	17 ± 5	29 ± 6	14	
SDSS J2249+0044B	54 ± 16	Unknown ~100	L3 ± 0.5	L5 ± 1	17 ± 5	22 ± 6	14	
AB Pic b	45.5^1±1.7	Carina	30	K1Ve	L0 ± 1	248 ± 10	13 ± 15	16, 17
RXJ15609-2105b	145 ± 20	Up, Sco.	5	K7V	L4^1±1	~330	8^1±6	18, 19
CD-35 2722 B	21.3 ± 1.4	AB Dor ~100	M1Ve	L4 ± 1	67 ± 4	31 ± 8	20	
PZ Tel B	51.5 ± 2.6	β Pic	12	K0	M7 ± 2	17.9 ± 0.9	36 ± 6	21, 22
HR7329 B	47.7 ± 1.5	β Pic	12	A0	M7.5	200 ± 7	26 ± 4	23, 24
TW A5B	44 ± 4	TW Hydrae	8	M2Ve	M8-M8.5	~98	~20	25
κ Andromeda b	51.6 ± 0.5	Columbia	30	B9IV	L2-L8	55 ± 2	12.8±1	26

Notes: [1] - Lafrenière et al. (2011), [2] - Ireland et al. (2011), [3] - Bowler et al. (2011), [4] - Bejar et al. (2008), [5] - Marois et al. (2008), [6] - Zacharias et al. (2007), [7] - Sudol & Haghighipour (2012), [8] - Currie et al. (2012), [9] - Marois et al. (2010), [10] - Ducourant et al. (2008), [11] - Gizis et al. (2002), [12] - Chauvin et al. (2004a), [13] - Faherty et al. (2013), [14] - Allers et al. (2010), [15] - Chauvin et al. (2005), [16] - Bonnefoy et al. (2010, 2011) - Bonnefoy et al. 2013, submitted, [18] - Lafrenière et al. (2008), [19] - Lafrenière et al. (2010, 2011) - Wahhaj et al. (2011), [20] - Miller et al. (2012), [21] - Miller et al. (2012), [22] - Mugrauer et al. (2010), [23] - Lowrance et al. (2009), [24] - Neuhäuser et al. (2011), [25] - Lowrance et al. (2014), [26] - Carson et al. (2012).
Fig. 7. \(\chi^2 \) maps obtained when comparing the spectral energy distribution of the planet to synthetic fluxes derived from atmospheric models for given log g and \(T_{\text{eff}} \). Minima are indicated by yellow squares.
Fig. 8. Distribution of orbital parameters from Markov-Chain Monte-Carlo fit of the set of astrometric data from Chauvin et al. (2012) (black) and adding the new astrometric data point gathered from the new H-band data (red; see Section 3.2). Top row: semi-major axis a (left) and e (right). Third row bottom: period P (left) and inclinaison i (right). Second row from bottom: argument of periastrom ω (left), and longitude of ascending node Ω (right). Bottom row: transit date (left) and distribution of χ^2. Red bars correspond to parameters found from the best LSLM χ^2 model. Green bars correspond to highly probable orbital parameters derived from the MCMC approach. The 1981 photometric events is reported as a thick black bar on the bottom-left diagram.