Modular domain swapping among the bacterial cytotoxic necrotizing factor (CNF) family for efficient cargo delivery into mammalian cells

Elizabeth E. Haywood, Mengfei Ho, and Brenda A. Wilson*

From the Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Illinois 61801

Running title: CNF Modular Domain Swapping

*To whom correspondence should be addressed: Dr. Brenda A. Wilson, Department of Microbiology, University of Illinois Urbana-Champaign, 601 S. Goodwin Ave Urbana, IL 61801, telephone: (217) 244-9631; fax: (217) 244-6697; E-mail: bawilson@life.illinois.edu

Keywords: bacterial toxin, drug delivery system, fusion protein, protein chimera, protein engineering, molecular evolution, small GTPase, protein deamidation, structure-function, protein translocation

ABSTRACT

Modular AB-type bacterial protein toxins target mammalian host cells with high specificity and deliver their toxic cargo into the cytosol. Hence, these toxins are being explored as agents for targeted cytosolic delivery in biomedical and research applications. The cytotoxic necrotizing factor (CNF) family is unique among these toxins in that their homologous sequences are found in a wide array of bacteria, and their activity domains are packaged in various delivery systems. Here, to study how CNF cargo and delivery modules can be assembled for efficient cytosolic delivery, we generated chimeric toxins by swapping functional domains among CNF1, CNF2, CNF3 and CNFy. Chimeras with a CNFy delivery vehicle were more stably expressed, but were less efficient at cargo delivery into HEK293-T cells. We also found that CNFy cargo is the most universally compatible and that CNF3 delivery vehicle is the most flexible and efficient at delivering cargo. These findings suggest that domains within proteins can be swapped and accommodate each other for efficient function, and that an individual domain could be engineered for compatibility with multiple partner domains. We anticipate that our insights could help inform chemical biology approaches to develop toxin-based cargo-delivery platforms for cytosolic cargo delivery of therapeutics or molecular probes into mammalian cells.

INTRODUCTION

The modular nature of AB-type bacterial protein toxins that specifically target mammalian host cells and deliver their toxic cargo into the cytosol has enormous potential for therapeutic drug delivery applications. Indeed, because of their exquisite specificity in terms of cell targeting and molecular action, a number of toxin-based macromolecules have already been developed as biopharmaceuticals and many are on the market or have entered the pipeline for commercialization. For instance, botulinum neurotoxins are currently used in many biomedical applications for various cosmetic and neurological disorders (1,2). Immunotoxins use specific receptor ligands to target and deliver toxin-derived cell-killing cargos to desired cell types, such as cancer cells (3). Toxins have also been used to deliver heterologous cargo in vaccine development, such as epitopes fused to diphtheria toxin (4), Bordetella adenylate cyclase (5) or anthrax toxin (6-8). Similarly, the cell specificity of clostridial neurotoxins has potential for delivering therapeutic cargos to the thus far impenetrable neuronal system (9).
Many engineered nanoparticle-based carriers, drug-encased liposome formulations, and polymer-drug conjugates that encapsulate their protein or nucleic acid cargos are able to bind and enter target cells (10). However, their efficacy often suffers greatly from the cargo becoming entrapped within endosomes, where instead of escaping into the cytosol, the cargo is diverted toward nonproductive intracellular trafficking pathways, leading to dissociation, degradation, or recycling back to the surface (11-13). In contrast, bacterial toxins inherently possess the ability to efficiently translocate various cargos from endosomal compartments to the cytosol, and so they are particularly attractive as cytosolic cargo-delivery systems.

One of the greatest challenges to developing bacterial toxin-inspired drug-delivery (BTIDD) systems is the assembly of heterologous modules into a functional recombinant protein that is stably expressed and highly efficient in delivering its cargo. Delivery of heterologous cargo is often facilitated by piggybacking on a version of the full-length native toxin (9), which enables more stable expression of the fusion protein. For example, full-length botulinum neurotoxin serotype D (BoNT/D) has been fused with several heterologous cargos for delivery of enzymatically active cargo (14). In the case of a fusion of Pasteurella multocida toxin (PMT) with the catalytic activity domain of diphtheria toxin (DTa), including the native PMT cargo enhanced the cellular DTa-mediated activity of PMT-DTα 10-fold over PMTα-DTα without the PMT cargo (15). Identifying key molecular determinants of inter-domain compatibility will enable the design of stable toxin-based delivery platforms and will improve the efficacy of cytosolic cargo delivery.

Cytotoxic necrotizing factor 1 (CNF1) is a single-chain AB-type toxin with a C-terminal Gln-deamidase activity domain A. Homologs of CNF1 domain A are found in a wide array of protein toxins with diverse intracellular delivery machinery, including Type 3 and Type 6 secretion systems (16). How these toxins co-evolved their delivery and cargo domains for stable production and efficient cytosolic delivery of their cognate cargos could uncover key compatibility features regarding assembly of modular functional domains.

There are at least eight single-chain toxins highly homologous to CNF1 (Supplementary Figure S1A). The finite variability between these homologs provides the opportunity to examine the impact of the amino acid variation between homologous domains on cytosolic cargo delivery. This study utilizes the single-chain CNF1 toxin homologs: CNF1, CNF2, and CNF3 from pathogenic Escherichia coli, and CNFγ from Yersinia pseudotuberculosis. Functional domains among the four toxins were swapped to generate chimeric proteins that were tested for efficiency of reporter activation in cell-based SRE-luciferase assays (17,18). Results revealed that delivery vehicle of CNF3 and the cargo of CNFγ are more flexible than others when assembled into cytosolic delivery systems. While chimeras with the CNFγ delivery vehicle were more stably expressed, they were more restrictive in cargo compatibility. The delivery vehicle of CNF3, in particular, enhances the delivery efficiency of CNF2 and CNFγ cargo.

RESULTS

Construction of chimeric CNF toxins

The structural organization of the CNF proteins, as depicted in Figure 1A, consists of an N-terminal receptor-binding domain (B), a C-terminal activity domain (A), and an interregional translocation domain (T). For the purpose of this study, the combined domains B and T are referred to as the ‘delivery vehicle’ that enables uptake and transport to the cytosol, while the domain A is referred to as the ‘cargo’ that harbors the toxic catalytic activity.

An N-terminal region of CNF1 (amino acids 53-190) possesses the receptor-binding region that interacts with the laminin precursor receptor (LRP) and mature laminin receptor (LR) on human brain microvascular endothelial cells (19-22). CNF2 also binds to the LRP, albeit with a weaker interaction than CNF1 (22). Immediately downstream of this receptor-binding region is a stretch of amino acids (residues 219-225) that is identical in all four CNF1, CNF2, CNF3 and CNFγ proteins. Site 223 within this conserved region was used as the joining site for the receptor-binding domain B of CNF1 to the translocation domain of the other toxins (Supplemental Figure S2).
As shown in Figure 1B, CNF1 and CNF2 are more closely related to each other than to CNF3 or CNFy within domain B (amino acid residues 1-223), supporting their common LRP receptor-binding residues within domain B (22). CNFy is more closely related to CNF3 than to CNF1 or CNF2, which is consistent with the observation that CNF3 and CNFy share cell specificity with each other, but apparently use an as-yet-unidentified cellular receptor for entry that is different from that of CNF1 and CNF2 (23,24).

Previous studies on CNF1 have defined domain A to include amino acids 720-1014 (25), with the catalytic dyad histidine-881 and cysteine-866 essential for deamidase activity (26). As such, position 720 was one of the sites used to join the delivery vehicles with the cargo domains in our chimeric constructs. The sequences flanking residue 720 are not homologous among all the CNFs, but there is a stretch of 21 amino acid residues (674-694) upstream that is 100% conserved (Figure 1C). Hence, site 688 within this conserved region was also utilized as a joining site for the chimeras.

A secondary receptor-binding site (B2) has been proposed within the C-terminus of CNF1. While an earlier study suggested the region 683-730 as an additional binding site for LRP (22), a later study showed that the region 709-730 binds Lu/BCAM (27). The crystal structure of the C-terminal amino acid residues 720-1014 of CNF1 indicates that amino acid residues 720-735 comprise an alpha helix situated on the external surface of the domain away from the active site (28). The N-terminal domain structure of amino acid residues 1-719 have yet to be solved. Thus, by modeling amino acid residues 706-719 based on the CNF1 crystal structure, we were able to extend the helix to include amino acid residues 706-735, as depicted in Figure 1D. This analysis was only done based on the structure of CNF1, as currently there are no other crystal structures available for this toxin family. Together, these observations suggest that the catalytic domain A may be further refined to amino acids 735-1014. To address the possibility that the delivery vehicle domain extends into the previously defined catalytic domain, we also used amino acid 735 as a joining site in our chimeric constructs.

Based on the information above, we generated a series of chimeric toxin constructs and tested for their expression, solubility, and cellular activity using SRE-luciferase assays (Table 1). Only those protein constructs that were soluble were purified and utilized in our comparative analyses.

Time course and dose response of wildtype CNF toxins.

To measure the successful delivery of domain A into the cytosol, we took advantage of the fact that toxin-mediated activation of the small G-proteins RhoA, Rac, and Cdc42 results in downstream activation of SRE (29,30). We compared the cellular activities of the toxins in HEK293-T cells by using the previously reported dual SRE-luciferase assay (17,18,31).

Each wildtype CNF (CNF1, CNF2, CNF3 and CNFy) exhibited a distinct time and dose response profile (Figure 2). Similar to what was previously observed for CNF1 (18), the time course profiles were dependent on the toxin dose. Under our study conditions, we selected 0.85 nM as the toxin concentration for the time course, where CNF1 reached its maximum response in 6-8 hours. In contrast, CNFy reached its maximum response by 10-12 hours, while CNF3 reached maximum activation by 8-10 hours, and CNF2 sustained its peak response from 8-12 hours (Figure 2A).

Based on the time course results, six hours was chosen as the toxin treatment time for all dose response experiments to minimize the effect of differential downregulation of activated substrates. The dose-response curves for wildtype CNF1, CNF2, CNF3 and CNFy, shown in Figure 2B, were used to determine their respective EC50 values of 0.018 nM, 0.084 nM, 0.028 nM, and 0.25 nM. A dose-response for CNF1 was included in all subsequent experiments for normalization.

The differences observed among the toxin time course profiles and dose response curves reflect several factors, including receptor specificities, efficiency of receptor-mediated uptake and cargo delivery, and substrate specificities of each toxin. CNFy is known to have a strong preference for RhoA activation (32). CNF2 activates RhoA and Rac (33). CNF1 and CNF3 activate RhoA, Rac and Cdc42, but CNF3 has a 5-fold stronger activation of RhoA, compared to CNF1 (24). The response of CNF1 or CNF3 is partially downregulated by Cdc42-mediated degradation of RhoA (34), and the
response of CNF1 or CNF2 partially by ubiquitin-mediated degradation of Rac (35). This complex modulation of toxin responses through three possible substrates presumably contributes to the observed differences in the maximum dose responses among the toxins (Figure 2B).

The catalytic activity and substrate specificities of CNF1 and CNFy have been determined to reside within the C-terminal domain A (34). Considering the heterogeneity in toxin-mediated SRE-luciferase reporter activation due to their substrate specificities, comparisons among the toxins in terms of their cell-entry and cargo-delivery capabilities can be addressed through chimeras as long as the same catalytic cargo is used.

CNFy cargo is universally delivered by CNF1, CNF2 and CNF3 delivery domains.

CNFy is the most distinct among the wildtype toxins in terms of amino acid identity, while CNF1 and CNF2 are the most closely related (Figure 1B). To test if the delivery vehicles of CNF1, CNF2, and CNF3 could deliver CNFy cargo, we created chimeric toxins CNF1y, CNF2y and CNF3y with three C-terminal joining sites 688, 720 and 735 (Figure 3). The CNF1y construct joined at residue 688 was not soluble, and thus, could not be tested in our cellular assays. CNF3y joined at position 720 was not generated.

Under our study conditions, wildtype CNFy had an EC$_{50}$ of 0.25 nM. The chimeras CNF1y-720 and CNF1y-735 had EC$_{50}$ values of 4.5 nM and 0.28 nM, respectively (Figure 3A), while the chimeras CNF2y-688, CNF2y-720 and CNF2y-735 had EC$_{50}$ values of 2.5 nM, 2.4 nM and 0.99 nM, respectively (Figure 3B). Chimeras CNF3y-688 and CNF3y-735 had EC$_{50}$ values of 0.076 nM and 0.82 nM, respectively (Figure 3C). The chimeras joined at position 720 were less efficient at delivering CNFy cargo, which is consistent with the notion that joining at this site disrupts the putative secondary binding domain B$_2$. Chimeras joined at position 735, CNF1y-735, CNF2y-735, and CNF3y-735, delivered CNFy cargo at wildtype CNFy efficiency, indicating the delivery vehicles of CNF1, CNF2, and CNF3 are compatible with CNFy cargo. Chimera CNF3y-688 had the lowest EC$_{50}$ value, indicating the most efficient delivery of CNFy cargo.

Since CNFy cargo is universal, in that it is delivered as or more efficiently than wildtype CNFy regardless of delivery vehicle (Figure 3A-C), we predicted that CNF3 cargo would be similarly universal, as it is more closely related to CNF1 and CNF2 than CNFy (Figure 1B). Interestingly, chimeras CNF13-735, CNF23-735 and CNF3y-735 had EC$_{50}$ values of 1.2 nM, 0.67 nM, and 0.59 nM, respectively (Figure 3D). All of these EC$_{50}$ values are at least 10-fold higher than that of wildtype CNF3, which has an EC$_{50}$ value of 0.028 nM. The C-terminal joining site at amino acid 688 was also tested for each CNF3 cargo chimera and had similar or worse results (Supplementary Figure S5). CNF3 cargo is universally less efficient when delivered with CNF1, CNF2 and CNFy delivery vehicles.

CNFy delivery vehicle does not efficiently deliver heterologous cargos.

Next, we tested if the delivery vehicle of CNFy could deliver the cargo domains of CNF1, CNF2, or CNF3. Again, the resulting chimeras (CNFy1, CNFy2, and CNFy3) were joined at positions 688, 720 or 735, and their SRE-reporter activations were compared with wildtype toxin having the same cargo domain. Compared to wildtype CNF1 with an EC$_{50}$ value of 0.018 nM, chimeric toxins CNFy1-688, CNFy1-720, and CNFy1-735 had EC$_{50}$ values of 0.068 nM, 26 nM, and 6.7 nM, respectively (Figure 4A). As observed CNFy1, joining at position 735 resulted in a more efficient chimera than joining at position 720. Interestingly, CNFy1-688, which includes the putative CNF1 B$_2$ domain, was the most efficient chimera. Disruption (CNFy1-720) or exclusion (CNFy1-735) of domain B$_2$ from CNF1 resulted in an increased EC$_{50}$ value and an increase in maximum activation of the response.

Wildtype CNF2 had an EC$_{50}$ value of 0.084 nM, whereas chimeric toxins CNFy2-688, CNFy2-720, and CNFy2-735 had higher EC$_{50}$ values of 2.7 nM, 62 nM, and 2.8 nM, respectively (Figure 4B). The CNFy2 construct joined at position 720 was again the least efficient, but the dose response curves for CNFy2-688 and CNFy2-735 were comparable. The CNFy delivery vehicle delivered CNF2 cargo 30-fold less efficiently than wildtype CNF2, regardless of whether the putative B$_2$ domain was from CNF2 or CNFy.
CNF3 cargo was also delivered less efficiently by the CNFy delivery vehicle. CNFy3-688 and CNFy3-735 had EC\textsubscript{50} values of 8.2 nM and 0.59 nM, respectively, as shown in Figure 3D and Supplementary Figure S5B. The 735 joining site for CNFy3 chimeras had a lower EC\textsubscript{50} value, indicating the chimera was more efficient when it contained the putative B\textsubscript{2} domain from CNFy rather than that of CNF3.

CNF3 delivery vehicle enhances delivery efficiency of CNF2 and CNFy cargos.

Figure 3C showed that the CNF3 delivery vehicle was more efficient than wildtype CNFy at delivering CNFy cargo. To test if the delivery vehicle of CNF3 would also enhance the delivery of other homologous cargos, we generated chimeras CNF31 and CNF32 with joining site at 688 and 735.

CNF1 is the most efficient of the CNF toxins tested (EC\textsubscript{50} = 0.018 nM). Unsurprisingly, the delivery vehicle of CNF3 was not able to enhance the efficiency of delivery of CNF1 cargo, as CNF31-688 and CNF31-735 had EC\textsubscript{50} values of 0.031 nM and 0.071 nM, respectively (Figure 5A). Once again, the construct including the putative CNF1 B\textsubscript{2} domain (CNF31-688) was the most efficient chimera. CNF32-688 and CNF32-735 had EC\textsubscript{50} values of 0.19 nM and 0.029 nM, respectively (Figure 5B). CNF32-735 enhanced the delivery of CNF2 cargo beyond that of wildtype CNF2 delivery (EC\textsubscript{50} = 0.084 nM). Interestingly, the 735 joining site was more efficient than the 688 joining site in this instance. CNF3 delivery vehicle also enhanced the delivery of CNFy cargo, as seen above in Figure 3C, where chimeras CNF3y-688 and CNF3y-735 had EC\textsubscript{50} values of 0.076 nM and 0.82 nM, respectively.

DISCUSSION

The delivery vehicle domains of bacterial toxins, such as those found in the modular CNF family, are promising candidates for intracellular cargo delivery due to their targeted cell specificity and efficient translocation of cargo from the acidified endosome to the cytosol. The key to designing a universal cargo delivery platform will be successful fusion of the functional modules to construct a protein that is stably expressed and highly efficient in delivering its cargo. Here we utilize the CNF family to assess the feasibility of such a platform.

When recombining functional modules, we considered the contribution of possible folding changes in the protein induced through generation of impeding, or abolishing necessary, inter-domain interactions. While AB-type toxin domains have been shown to be modular in nature, meaning that each module retains its function when separated from the holotoxin, when recombining these functional domains, the inter-domain interactions may be altered between the modules. These factors can cause domain incompatibility by affecting the overall conformation of the protein and influencing the availability of receptor-binding domains, the response to pH that triggers and facilitates membrane translocation and the overall stability of the protein. We therefore chose to exchange domains of closely related CNF toxins to minimize the structural differences among the swapped modules to maintain overall structural integrity.

Within the joining site region (Figure 1C) there are multiple proline (Pro) residues. While most Pro residues are conserved among the CNF toxins in this region, there is some variation in the adjacent amino acid residues, such that the X-Pro imide bond might influence protein conformation. Likewise, the differences in side-chain charges of amino acids in this region could also result in unfavorable interactions between the domains for pairing. However, we found no clear correlation among the CNF toxins and their chimera pairings that would point to any specific contributing factor.

Constructs containing a CNFy domain T were most abundantly expressed (data not shown) and most readily purified (Supplemental Figure S8), indicative of a favorable and stable fold. However, the CNFy domain T does not appear to be flexible in accommodating concurrent changes in the flanking domains. For example, CNF1y1 was unable to deliver CNF1 cargo (Supplementary Figure S9A). Similarly, exchanging both domains B and B\textsubscript{2} of CNFy with that of CNF1 led to significantly decreased delivery efficiency of CNFy cargo, but individually exchanging domain B or domain B\textsubscript{2} had no effect on delivery efficiency (Supplementary Figure S2). This suggests that the receptor-binding domain(s) alone
does not alter the cargo delivery efficiency by the translocation domain of CNFy. However, simultaneously altering the flanking regions may disrupt interactions necessary for cargo delivery even though the protein is stably and abundantly expressed. Consequently, we restricted our further analyses to CNFy chimeras containing only a single joining site.

In designing chimeric constructs, we considered the options of including the domain B2 region as part of the delivery vehicle, the cargo domain, or shared between the functional domains by joining at the previously defined catalytic domain boundary at position 720. Our results indicate that joining at position 720, which resides within the modeled α-helix of domain B2 (Figure 1D), is not tolerated as well as joining at either end of domain B2 (position 735 or 688). This suggests that domain B2 must remain intact and that the delivery vehicle extends through the end of the α-helix at residue 735. Thus, well-defined domain boundaries within the toxin protein are important for identifying appropriate joining sites that allow the assembly of the different functional modules into stable and efficient cargo-delivery vehicles.

The domain B2 of CNF1 appears to be essential for efficient delivery of CNF1 cargo, as disrupting this region or swapping it with CNFy in CNFy1 decreased delivery efficiency of CNF1 cargo (Figure 4A). However, this requirement for domain B2 to couple with its cognate cargo appears to be unique to CNF1, as swapping with the domain B2 of CNF2 or CNFy did not alter the efficiency of CNF2 or CNFy cargo delivery, provided that the B2 region itself was not chimeric (Figures 4B and 3B). Interestingly, if the entire B2 region was not that of CNF1, then CNFy1 elicited higher maximum reporter activation (Figure 4A), suggesting differential stimulation of signaling pathways leading to reporter activity. Domain A defines the toxins’ substrate specificity that elicits a response (34). Since all of the CNFy1 constructs utilized CNF1 domain A, the observed change in maximum reporter activation was not due to substrate specificity, but rather to altered substrate accessibility. Presumably through interactions with the secondary Lu-BCAM receptor (36), CNF1 domain B2 alters the intracellular trafficking and delivery of cargo to the cytosol, such that domain A has differential access to its substrates.

More specifically, access to Cdc42 may be affected by CNF1 domain B2 receptor trafficking, as Cdc42 is not a substrate of CNF2 and delivery of CNF2 cargo is not affected by swapping the B2 region of CNF2 with CNFy (Figure 4B). These results highlight the importance of considering trafficking to different subcellular locations in the design of cargo-delivery vehicles, as it may alter access to substrates within the cytosol.

Substrate access is also dependent on timing of endosomal escape. CNF121 showed increased maximum reporter activation compared to CNF1 (Supplementary Figure S9B). The domain T of CNF2 has a higher pI (5.46) than that of CNF1 (4.89), and as such requires less acidification to neutralize acidic amino acid residues, which may enable membrane association, insertion and subsequent escape from the endosome at earlier points along the trafficking pathway. This in turn may lead domain A to have access to differential composition of substrates at these different points. For example, less stimulation of Cdc42, which normally downregulates RhoA (34), could lead to stronger responses through the RhoA and Rac pathways. In the case of CNF1, which activates multiple substrates, we observe a difference in maximum activation due to crosstalk among the reporter signaling pathways, but this difference in maximum activation would not be expected for cargos with single substrates, such as CNFy.

Our results found that CNFy requires a longer incubation time or higher dose than CNF1, CNF2 or CNF3 to reach its maximum reporter activation (Figure 2). CNFy has been shown to need more time or a lower acidic pulse than CNF1 to cross the biological membrane (23). Further, CNFy has been shown to be more sensitive to acidification inhibitors than CNF1 and CNF2 (18). Thus, CNFy may remain longer in the acidifying endosome before reaching an optimal pH for translocation, thereby leading to more degradation of the toxin by trafficking through the lysosomal pathway. In line with this, trafficking of CNFy delivery vehicle through nonproductive pathways would explain the higher EC50 values observed for CNFy1, CNFy2, and CNFy3 compared to the delivery vehicles of CNF1, CNF2, or CNF3, respectively.

The CNFy delivery vehicle appears better adapted to deliver the more closely related CNF3 cargo than CNF2 or CNF1 cargo, with increases in EC50 values of 21-, 33- and >372-fold, respectively (Table 1). In comparison, CNF1 and
CNF2 delivery vehicles deliver CNFy cargo, but not CNF3 cargo, as efficiently as their native delivery vehicles (Figure 6). This was unexpected, considering CNF3 is more closely related to CNF1 and CNF2 than CNFy is to CNF1 and CNF2 (Figure 1B). In fact, the CNF3 cargo appears uniquely adapted with its cognate delivery vehicle, as none of the vehicles tested could deliver CNF3 cargo as efficiently as their cognate cargos. Conversely, CNFy cargo appears universally deliverable, without deficit. CNFy cargo was delivered comparably by its cognate delivery vehicle and those of CNF1 and CNF2, and even better by the CNF3 delivery vehicle (Figure 6). Further comparative analysis of the universal CNFy cargo compared to the more restrictive cargos, such as CNF3, will be necessary to identify the features driving the compatibility of cargo and delivery vehicle.

Further, the flexibility of CNFy cargo suggests that it may be engineered with a delivery vehicle to specifically enter target cells. For example, CNFy reportedly causes apoptosis specifically in prostate cancer cell lines due to its activation of cellular Rho GTPases (37), and so CNFy cargo could be coupled with a prostate cancer cell-targeting vehicle for anti-cancer therapeutic application. CNF1 has also been explored for its therapeutic properties in treating neuronal disorders, such as Alzheimer’s disease and inflammatory pain (38). While CNF1 cargo is not readily interchangeable, including the B2 domain in the delivery vehicle may assist in its efficient delivery to target cells.

The CNF3 delivery vehicle enhanced the delivery efficiency of CNF2 and CNFy cargos over that of native CNF2 and CNFy, respectively (Figures 5B and 3C). CNF1 cargo delivery by the CNF3 delivery vehicle was not enhanced beyond that of native CNF1 (Figure 5A), but was comparable to that of CNF3 (EC₅₀ values of 0.031 nM for CNF31-688, 0.028 nM for CNF3, and 0.018 nM for CNF1), suggesting the delivery vehicle limits the delivery efficiency. In other words, because CNF3 is less efficient than CNF1 in delivering their native cargo, the delivery vehicle of CNF3 cannot deliver any cargo more efficiently than native CNF3. Although CNF1 is the most efficient native toxin, CNF1 delivery vehicle failed to enhance delivery of CNFy and was 43 times less efficient at delivering CNF3 cargo compared to their respective native vehicles. Although CNF3 was not more efficient than CNF1, it has the most flexible delivery vehicle, able to enhance delivery of those cargos whose vehicles are less efficient, such as CNF2 and CNFy. While CNF3 appears to be the most suitable as a universal cargo delivery vehicle among the CNF toxins, its application as such would require use of a different cell-specific receptor-binding domain since all of the native CNF B domains are relatively nonspecific. Nevertheless, detailed examination of how CNF3 enhances the delivery efficiency of non-native (CNF2 and CNFy) cargo could provide insights regarding the design of optimal cytosolic delivery systems.

CNF delivery vehicles appear to be differentially optimized for delivering their cognate cargo domains. Indeed, the toxin (CNFy) with the most universal cargo has the least flexible delivery vehicle, and conversely, the toxin (CNF3) with the most universal delivery vehicle has the least flexible cargo. We suspect that those domains that are less flexible co-evolved with their cognate partners to have compensatory mutations that optimized compatibility for cargo delivery. This suggests that there are as-yet-unidentified factors dictating compatibility among domains, and that contrary to the prevailing notion, arbitrary domain partnering can lead to detrimental outcomes, such as reduced expression, instability, and inefficient cargo-delivery function. Select members of the CNF family, namely the CNFy cargo and the CNF3 delivery vehicle, display universality in that they may be partnered with domains from homologous toxins without impacting efficiency.

Our results point to the practical feasibility of using chemical biology approaches to evolve flexible and tractable cargo-delivery platforms. Specifically, we envision our findings to be particularly beneficial for improving target-specific cytosolic cargo-delivery of therapeutics (BTIDD) or molecular probes in cell biology.

EXPERIMENTAL PROCEDURES

Construction and Purification of CNF Toxin Constructs. Plasmids encoding the genes for CNF1 (pQE-CNF1), CNF2 (pProEx-CNF2), and CNFy (pQE-CNFy) were obtained as previously described (18). The CNF3 gene was assembled
utilizing IDT gBlock DNA fragments designed based on GenBank #AM263062.1. The CNF genes were cloned into the pSuperG vector, a plasmid vector engineered in our laboratory to highly express recombinant His₆-tagged proteins in E. coli. To facilitate domain swapping to generate chimeric toxins, restriction enzyme sites were introduced into the CNF gene sequences corresponding to amino acid positions 223 and 688 in the CNF1 protein with conservative mutations. Joining at amino acid 720 was carried out by inserting a restriction site that resulted in the two amino acid insertion, E719-PG-S720. The 735 joining site chimeras were generated using overlapping PCR primers.

The His₆-tagged CNF proteins were expressed in Top10 E. coli cells, with select constructs expressed under IPTG induction. The cells were harvested by centrifugation at 4,300 g. The pellets were resuspended in lysis buffer (phosphate buffered saline [PBS], pH 7.4, containing 0.5% IPEGAL nonionic detergent, 0.3 mg/mL lysozyme, 2 mg/mL benzamidine, 0.3 mg/mL phenylmethylsulfonyl fluoride, 5 Kunitz U/mL DNase, 10 µg/mL RNase, and 1 µL/mL Sigma P8849 protease inhibitor cocktail), and lysed by sonication using a Braun-Sonic U ultrasonic cell disruptor on high setting, followed by centrifugation at 22,000 g and 4°C for 1.5 hours. The recombinant CNF proteins were purified by affinity chromatography using a Ni²⁺-NTA-agarose column (Qiagen, Valencia, CA, USA), followed by anion-exchange chromatography using a HiTrapQ column (Amersham-GE Healthcare Life Sciences, Pittsburgh, PA, USA). The resulting purified CNF proteins were desalted by gel filtration chromatography using a PD-10 column (Amersham-GE Healthcare Life Science), eluting with PBS containing 10% glycerol. All proteins were quantified by NIH Image J digital image analysis of Coomassie-stained SDSPAGE gels using BSA as the standard. Toxin samples were stored at -80°C until use.

Cell culture. HEK293-T cells (ATCC # CRL-11268) were cultured in Dulbecco's Modified Eagle Medium (DMEM, Gibco-Invitrogen, Grand Island, NY, USA), supplemented with 0.37% sodium bicarbonate, 100 U/mL penicillin-streptomycin (ThermoFisher Scientific) and 10% fetal bovine serum (FBS, Atlanta Biologicals, Lawrenceville, GA, USA). The cells are maintained in DMEM with 5% or 10% FBS and stepped down to 2% FBS at the time of transfection before experiments were performed.

SRE-Luciferase Assays. HEK293-T cells in 24-well plates at 80% confluency were transfected using the calcium phosphate method, as previously described (18). Briefly, culture medium was changed immediately prior to transfection. Cells were transfected with two plasmids, one containing a SRE promoter fused to a firefly luciferase reporter gene (pSRE-luc, Stratagene) and the other containing a HSV-TK promoter fused to the renilla luciferase gene, acting as a low-expression constitutive reporter control gene (pGL4.74 hRluc/TK, Promega Madison, WI, USA) at a final DNA concentration in each well of 1.6 µg/mL pSRE-luc and 0.3 µg/mL pGL4.74 hRluc/TK. While vortexing, a solution of the plasmids and 250 mM CaCl₂ was added dropwise to a solution of 2× HEPES-buffered saline, and the resulting solution was incubated at room temperature for 20 min and then added dropwise to each well. Cells were incubated for 7 hours, and then fresh DMEM containing toxin was added to the wells to give the indicated final concentration of toxin. After the cells were incubated for the indicated amount of time at 37°C, the medium was removed, and cells were lysed with 100 µL of Passive Lysis Buffer (Promega, Madison, WI, USA) per well. After 15 minutes incubation on a rocker, 10 µL of sample from the each well was transferred to a 96-well plate, and the lysates were analyzed for firefly luciferase reporter activity and the constitutive Renilla luciferase control activity using the Promega Dual-Luciferase® Reporter 1000 Assay System by addition of 25 µL of Luciferase Assay Reagent, followed by 25 µL of Stop and Glo Buffer per well, according to manufacturer's protocol. Luminescence was measured using a Synergy-HT multi-detection microplate reader (BioTek, Winooski, VT, USA), and results were generated using the Biotek microplate software Gen5 and reported as relative light units (RLUs), with settings: sensitivity = 108 and integration time = 1 s. Experiments were performed at least three independent times. For each experiment, all data points were performed in triplicate.
Data Analysis. SRE-luciferase activity was determined by dividing the firefly RLUs by the Renilla control RLUs. The fold activation was determined by dividing the SRE-luciferase activity for the toxin-treated samples by the mean SRE-luciferase activity for the untreated samples. To normalize between experiments, the fold activation was normalized to the maximum fold activation observed for CNF1. Data points shown are the means of all the wells treated for that specified time or dose, plus or minus the standard deviation (SD). To calculate the dose response curves, the normalized fold activation for each well was compiled and analyzed with the Solver function in Microsoft Excel to create a best fit, 4-parameter logistic (4PL) equation:

\[
y = F(x) = \frac{A - D}{1 + \left(\frac{x}{C}\right)^B} + D
\]

where A = minimum asymptote, B = slope, C = point of inflection or the EC\textsubscript{50} value, and D = maximum asymptote. The best-fit curve was optimized for the least sum of the squared difference between observed and expected 4PL values. The standard deviation for the EC\textsubscript{50} values was estimated from the y variance (\(\sigma^2\)) of the curve-fitting and \(\sigma(x) \approx \Delta x / 2\), where \(\Delta x\) is the difference in x for \(y = F(EC_{50}) \pm \sigma(y)\).

ACKNOWLEDGEMENTS

This work was funded in part by NIH/NIAID grant AI038395 (to B.A.W.), the Research Board of the University of Illinois at Urbana-Champaign (to B.A.W.), and a fellowship from NIH/NIAID Chemistry-Biology Interface training grant T32 GM070421 (to E.E.H).

CONFLICTS OF INTEREST

The authors declare no conflict of interest.
REFERENCES

1. Chen, S. (2012) Clinical uses of botulinum neurotoxins: current indications, limitations and future developments. *Toxins (Basel)* 4, 913-939

2. Masuyer, G., Chaddock, J. A., Foster, K. A., and Acharya, K. R. (2013) Engineered Botulinum Neurotoxins as New Therapeutics. *Annu Rev Pharmacol Toxicol*

3. Alewine, C., Hassan, R., and Pastan, I. (2015) Advances in anticancer immunotoxin therapy. *Oncologist* 20, 176-185

4. Shaw, C. A., and Starnbach, M. N. (2006) Stimulation of CD8+ T cells following diphtheria toxin-mediated antigen delivery into dendritic cells. *Infect Immun* 74, 1001-1008

5. Fayolle, C., Osickova, A., Osicka, R., Henry, T., Rojas, M. J., Saron, M. F., Sebo, P., and Leclerc, C. (2001) Delivery of multiple epitopes by recombinant detoxified adenylate cyclase of *Bordetella pertussis* induces protective antiviral immunity. *J Virol* 75, 7330-7338

6. Rabideau, A. E., and Pentelute, B. L. (2016) Delivery of non-native cargo into mammalian cells using anthrax lethal toxin. *ACS chemical biology* 11, 1490-1501

7. Shaw, C. A., and Starnbach, M. N. (2008) Both CD4+ and CD8+ T cells respond to antigens fused to anthrax lethal toxin. *Infect Immun* 76, 2603-2611

8. Shaw, C. A., and Starnbach, M. N. (2008) Antigen delivered by anthrax lethal toxin induces the development of memory CD8+ T cells that can be rapidly boosted and display effector functions. *Infect Immun* 76, 1214-1222

9. Wilson, B. A., and Ho, M. (2014) Cargo-delivery platforms for targeted delivery of inhibitor cargos against botulinum. *Curr Top Med Chem* 14, 2081-2093

10. Sercombe, L., Veerati, T., Moheimani, F., Wu, S. Y., Sood, A. K., and Hua, S. (2015) Advances and Challenges of Liposome Assisted Drug Delivery. *Front Pharmacol* 6, 286

11. Beilhartz, G. L., Sugiman-Marangos, S. N., and Melnyk, R. A. (2017) Repurposing bacterial toxins for intracellular delivery of therapeutic proteins. *Biochem Pharmacol* 142, 13-20

12. Munsell, E. V., Ross, N. L., and Sullivan, M. O. (2016) Journey to the Center of the Cell: Current Nanocarrier Design Strategies Targeting Biopharmaceuticals to the Cytoplasm and Nucleus. *Curr Pharm Des* 22, 1227-1244

13. Paillard, A., Hindre, F., Vignes-Colombeix, C., Benoit, J. P., and Garcia, E. (2010) The importance of endo-lysosomal escape with lipid capsules for drug subcellular bioavailability. *Biomaterials* 31, 7542-7554

14. Bade, S., Rummel, A., Reisinger, C., Karnath, T., Ahnert-Hilger, G., Bigalke, H., and Binz, T. (2004) Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates. *J Neurochem* 91, 1461-1472

15. Bergmann, S., Jehle, D., Schwan, C., Orth, J. H., and Aktories, K. (2013) *Pasteurella multocida* toxin as a transporter of non-cell-permeating proteins. *Infect Immun* 81, 2459-2467

16. Wilson, B. A., and Ho, M. (2015) Evolutionary aspects of toxin-producing bacteria. in The *Comprehensive Sourcebook of Bacterial Protein Toxins (Fourth Edition)*, 4th Ed., Academic Press, Waltham, MA, USA. pp 3-39

17. Repella, T. L., Ho, M., Chong, T. P., Bannai, Y., and Wilson, B. A. (2011) Arf6-dependent intracellular trafficking of *Pasteurella multocida* toxin and pH-dependent translocation from late endosomes. *Toxins* 3, 218-241

18. Repella, T. L., Ho, M., and Wilson, B. A. (2013) Determinants of pH-dependent modulation of translocation in dermonecrotic G-protein-deamidating toxins. *Toxins (Basel)* 5, 1167-1179

19. Chung, J. W., Hong, S. J., Kim, K. J., Goti, D., Stins, M. F., Shin, S., Dawson, V. L., Dawson, T. M., and Kim, K. S. (2003) 37-kDa laminin receptor precursor modulates cytotoxic necrotizing factor 1-mediated RhoA activation and bacterial uptake. *J Biol Chem* 278, 16857-16862

20. Fabbri, A., Gauthier, M., and Boquet, P. (1999) The 5’ region of cnf1 harbours a translational regulatory mechanism for CNF1 synthesis and encodes the cell-binding domain of the toxin. *Mol Microbiol* 33, 108-118
21. Kim, K. J., Chung, J. W., and Kim, K. S. (2005) 67-kDa laminin receptor promotes internalization of cytotoxic necrotizing factor 1-expressing Escherichia coli K1 into human brain microvascular endothelial cells. J Biol Chem 280, 1360-1368
22. McNichol, B. A., Rasmussen, S. B., Carvalho, H. M., Meysick, K. C., and O'Brien, A. D. (2007) Two domains of cytotoxic necrotizing factor type 1 bind the cellular receptor, laminin receptor precursor protein. Infect Immun 75, 5095-5104
23. Blumenthal, B., Hoffmann, C., Aktories, K., Backert, S., and Schmidt, G. (2007) The cytotoxic necrotizing factors from Yersinia pseudotuberculosis and from Escherichia coli bind to different cellular receptors but take the same route to the cytosol. Infect Immun 75, 3344-3353
24. Stoll, T., Markwirth, G., Reipschläger, S., and Schmidt, G. (2009) A new member of a growing toxin family--Escherichia coli cytotoxic necrotizing factor 3 (CNF3). Toxins (Basel) 2, 283-296
25. Lemichez, E., Flatau, G., Bruzzone, M., Boquet, P., and Gauthier, M. (1997) Molecular localization of the Escherichia coli cytotoxic necrotizing factor CNF1 cell-binding and catalytic domains. Mol Microbiol 24, 1061-1070
26. Schmidt, G., Selzer, J., Lerm, M., and Aktories, K. (1998) The Rho-deamidating cytotoxic necrotizing factor 1 from Escherichia coli possesses transglutaminase activity. Cysteine 866 and histidine 881 are essential for enzyme activity. J Biol Chem 273, 13669-13674
27. Piteau, M., Papatheodorou, P., Schwan, C., Schlosser, A., Aktories, K., and Schmidt, G. (2014) Lu/BCAM adhesion glycoprotein is a receptor for Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1). PLoS Pathog 10, e1003884
28. Buetow, L., Flatau, G., Chiu, K., Boquet, P., and Ghosh, P. (2001) Structure of the Rho-activating domain of Escherichia coli cytotoxic necrotizing factor 1. Nat Struct Biol 8, 584-588
29. Hill, C. S., Wynne, J., and Treisman, R. (1995) The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81, 1159-1170
30. Knust, Z., and Schmidt, G. (2010) Cytotoxic necrotizing factors (CNFs) – A growing toxin family. Toxins 2, 116-127
31. Aminova, L. R., Luo, S., Bannai, Y., Ho, M., and Wilson, B. A. (2008) The C3 domain of Pasteurella multocida toxin is the minimal domain responsible for activation of Gq-dependent calcium and mitogenic signaling. Protein Sci 17, 945-949
32. Hoffmann, C., Pop, M., Leemhuis, J., Schirmer, J., Aktories, K., and Schmidt, G. (2004) The Yersinia pseudotuberculosis cytotoxic necrotizing factor (CNFY) selectively activates RhoA. J Biol Chem 279, 16026-16032
33. Sugai, M., Hatazaki, K., Mogami, A., Ohta, H., Peres, S. Y., Herault, F., Horiguchi, Y., Masuda, M., Ueno, Y., Komatsuzawa, H., Sugina, H., and Oswald, E. (1999) Cytotoxic necrotizing factor type 2 produced by pathogenic Escherichia coli deamidates a gln residue in the conserved G-3 domain of the rho family and preferentially inhibits the GTPase activity of RhoA and rac1. Infect Immun 67, 6550-6557
34. Hoffmann, C., Aktories, K., and Schmidt, G. (2007) Change in substrate specificity of cytotoxic necrotizing factor unmaskes proteasome-independent down-regulation of constitutively active RhoA. J Biol Chem 282, 10826-10832
35. Doye, A., Mettouchi, A., Bossis, G., Clement, R., Buisson-Touati, C., Flatau, G., Gagnoux, L., Piechaczyk, M., Boquet, P., and Lemichez, E. (2002) CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 111, 553-564
36. Pei, S., Doye, A., and Boquet, P. (2001) Mutation of specific acidic residues of the CNF1 T domain into lysine alters cell membrane translocation of the toxin. Mol Microbiol 41, 1237-1247
37. Augspach, A., List, J. H., Wolf, P., Bielek, H., Schwan, C., Elsasser-Beile, U., Aktories, K., and Schmidt, G. (2013) Activation of RhoA,B,C by Yersinia cytotoxic necrotizing factor (CNFy) induces apoptosis in LNCaP prostate cancer cells. Toxins (Basel) 5, 2241-2257
38. Fabbri, A., Travaglione, S., and Fiorentini, C. (2010) Escherichia coli cytotoxic necrotizing factor 1 (CNF1): Toxin biology, in vivo applications and therapeutic potential. Toxins 2, 283-296
39. Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res* **32**, 1792-1797

40. Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., and Barton, G. J. (2009) Jalview Version 2--a multiple sequence alignment editor and analysis workbench. *Bioinformatics* **25**, 1189-1191

41. Webb, B., and Sali, A. (2016) Comparative protein structure modeling using MODELLER. *Curr Protoc Bioinformatics* **54**, 5 6 1-5 6 37

42. Jones, D. T., Taylor, W. R., and Thornton, J. M. (1992) The rapid generation of mutation data matrices from protein sequences. *Comput Appl Biosci* **8**, 275-282

43. Kumar, S., Stecher, G., and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. *Mol Biol Evol* **33**, 1870-1874
Table 1. Effective Concentrations of CNF Toxins

Toxin	EC_{50} (nM)	EC_{50} Ratio §
CNF1	0.018 ± 0.008	1
CNFy1-688	0.068 ± 0.023	3.8
CNFy1-720	>26 c	>1444 c
CNFy1-735	>6.7 c	>372 c
CNF31-688	0.031 ± 0.009	1.7
CNF31-735	0.071 ± 0.026	3.9
CNF121-688	0.088 ± 0.049	4.9
CNF121-720	0.079 ± 0.034	4.4
CNF1y1-688	ND a	ND a
CNF1y1-720	ND a	ND a
CNF3y1-720	ND b	ND b
CNF21-688	ND b	ND b
CNF21-720	ND b	ND b

Toxin	EC_{50} (nM)	EC_{50} Ratio §
CNF2	0.084 ± 0.031	1
CNFy2-688	2.7 ± 1.6	32
CNFy2-720	62 ± 28	738
CNFy2-735	2.8 ± 1.6	33
CNF32-688	0.19 ± 0.08	2.3
CNF32-735	0.029 ± 0.013	0.3
CNF12-688	ND b	ND b
CNF12-720	ND b	ND b

§ The EC_{50} Ratio was determined by dividing the EC_{50} of the chimera by that of the native CNF toxin with the same cargo domain A.

a Not determined- soluble protein was obtained, but maximum activation could not be determined.

b Not determined- protein was insoluble and could not be purified.

c The EC_{50} values are estimated, but the errors could not be determined.
FIGURES

Figure 1. Construction of CNF Chimeric Toxins. (A) Schematic of CNF Toxin joining sites: The domain organization of the CNF protein sequence is depicted from N to C terminus with amino acid position of the putative domain boundaries indicated at the top. B, putative binding domain; T, putative translocation domain; B2, putative secondary binding domain (for CNF1); A, catalytic activity domain. (B) Percent Identity Tree for each domain. The alignment of protein sequences of CNF1, CNF2, and CNF3 from Escherichia coli, and CNFy from Yersinia pseudotuberculosis was generated using Muscle (39) and the neighbor-joining tree based on percentage identity was calculated using Jalview (40). Each tree is labeled in the upper left corner with domain and amino acid residues utilized to generate the alignment. The branch lengths are indicated for each (changes per 100 residues). The amino acid alignment of CNF1, CNF2, CNF3 and CNFy is available in Supplementary Figure S1C. (C) Location of the C-terminal joining sites on Wildtype CNF toxins. The alignment of protein sequences of CNF1, CNF2, CNF3, and CNFy was generated using Muscle and visualized using Jalview. The shading is based on conservation of amino acid residues. C-terminal joining sites 688, 720, and 735 are denoted with arrows. The bar indicates the proposed secondary binding region modeled in Figure 1D, amino acid residues included within the crystal structure of CNF1 are highlighted in red and the modeled portion in yellow. (D) Structure of the C-terminus of CNF1. Homology modeling using Modeller (41), based on the crystal structure of CNF1 (PDB 1HQ0; amino acid residues 720-1014) to include the proposed secondary receptor-binding domain B2 (amino acid residues 706-735). Amino acid residues 720-735 (red) were defined in the crystal structure. The extended amino acid residues 706-719 (yellow) were rendered as part of an α-helix in the initial model and were refined after generating 3,000 models to find the lowest energy. The catalytic active site residues Cys-866 and His-881 are shown in orange. The location of amino acid residues 706, 720, and 735 are indicated by blue arrows.
Figure 2: Time course and dose response of wildtype CNF toxins. HEK293-T cells with reporter plasmids were treated with the indicated toxins and subjected to SRE-luciferase assay, as described in Experimental Procedures. Each experiment was performed in triplicate. Normalization of fold activation is to the maximum activation of CNF1 as determined by the 4-parameter logistic (4PL) equation for each experiment. Corresponding scatter plots of all data points used to derive the best-fit lines and mean values are shown in Supplementary Figure S3. (A) Time course of cells treated with 0.85 nM toxin (CNF1 green triangles, CNF2 blue circles, CNF3 purple diamonds, CNFγ red squares) for the indicated times before analysis by SRE-luciferase assay. Data shown are the mean ± stdev of all points from 4 independent experiments for CNF1, CNF2 and CNFγ, and from 2 independent experiments for CNF3. (B) Dose response curve for cells treated for 6 hours with the indicated toxins at the indicated doses before analysis by SRE-luciferase assay. Data shown are the mean ± stdev from 3 independent experiments.
Figure 3. CNFγ cargo is universally delivered by CNF1, CNF2, and CNF3 delivery domains. HEK293-T cells with reporter plasmids were treated with indicated toxin at the indicated doses and...
subjected to SRE-luciferase assay, as described in Experimental Procedures. Fold Activation values are in comparison to untreated cells. Normalization of fold activation is to the maximum activation of CNF1 as determined by the 4-parameter logistic equation for each experiment. Results shown are from 3 independent experiments where each data point was performed in triplicate. Composition of each chimeric toxin is shown above the corresponding plot. Corresponding scatter plots of all data points used to derive the best-fit lines and mean values are shown in Supplementary Figure S4. (A) Dose response curve comparing CNFy cargo delivered by CNF1 delivery vehicle (CNF1 green closed triangles, CNFy red closed squares, CNF1y-720 light green open triangles, CNF1y-735 dark green open triangles). (B) Dose response curve comparing CNFy cargo delivered by CNF2 delivery vehicle (CNF1 green closed triangles, CNFy red closed squares, CNF2y-688 yellow open circles, CNF2y-720 light blue open circles, CNF2y-735 dark blue open circles). (C) Dose response curve comparing CNFy cargo delivered by CNF3 delivery vehicle (CNF1 green closed triangles, CNFy red closed squares, CNF3y-688 purple open diamond, CNF3y-735 pink open diamonds). (D) CNF3 cargo is delivered less efficiently by CNF1, CNF2 and CNFy delivery vehicles. Experiments were performed similarly as in Figure 3A-C. Dose response curve comparing CNF3 cargo delivered by CNF1, CNF2 and CNFy delivery vehicles (CNF1 green closed triangles, CNF3 purple closed diamonds, CNF13735 green open triangles, CNF23-735 blue open circles, CNFy3-735 red open squares).
Figure 4. CNFy delivery vehicle does not efficiently deliver heterologous cargos. HEK293-T cells with reporter plasmids were treated with the indicated toxin at the indicated doses and subjected to SRE-luciferase assay to determine the normalized fold activation relative to CNF1 and untreated cells, as described in Figure 3. Corresponding scatter plots of all data points used to derive the best-fit lines and mean values are shown in Supplementary Figure S6. (A) Dose response curve comparing CNF1 cargo delivered by CNFy delivery vehicle (CNF1 green closed triangles, CNFy1-688 lime green open triangles, CNFy1-720 pale green open triangles, CNFy1-735 dark green open triangles). (B) Dose response curve comparing CNF2 cargo delivered by CNFy delivery vehicle (CNF1 green closed triangles, CNF2 blue closed circles, CNFy2-688 electric blue open circles, CNFy2-720 pale blue open circles, CNFy2-735 dark blue open circles).
Figure 5. CNF3 delivery vehicle enhances delivery efficiency of CNF2, but not CNF1 cargo. HEK293-T cells with reporter plasmids were treated with the indicated toxin at the indicated doses and subjected to SRE-luciferase assay to determine the normalized fold activation relative to CNF1 and untreated cells, as described in Figure 3. Corresponding scatter plots of all data points used to derive the best-fit lines and mean values are shown in Supplementary Figure S7. (A) Dose response curve comparing CNF1 cargo delivered by CNF3 delivery vehicle (CNF1 green closed triangles, CNF31-688 lime green open diamonds, CNF31-735 dark green open diamonds). (B) Dose response curve comparing CNF2 cargo delivered by CNF3 delivery vehicle (CNF1 green closed triangles, CNF2 blue closed circles, CNF32-688 electric blue open diamonds, CNF32-735 dark blue open diamonds). These experiments were performed simultaneously, so the CNF1 plots in both A and B are identical.
Figure 6. Table of CNF results. Black numbers indicate the amino acid joining site residues for the chimeras; the joining site that is most efficient for that chimera is bolded. The shade of the cell indicates how the ratio of EC$_{50}$ value of the best chimera of that type compares to the native CNF toxin with the same cargo, as shown in Table 1. Cutoffs: Less efficient > 4 > Comparable Efficiencies > 0.4 > More efficient.
Modular domain swapping among the bacterial cytotoxic necrotizing factor (CNF) family for efficient cargo delivery into mammalian cells
Elizabeth E. Haywood, Mengfei Ho and Brenda A. Wilson

J. Biol. Chem. published online January 25, 2018

Access the most updated version of this article at doi: 10.1074/jbc.RA117.001381

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts