Expression of ST13 in colorectal cancer and adjacent normal tissues

Lin-Bo Wang, Shu Zheng, Su-Zhan Zhang, Jia-Ping Peng, Feng Ye, Shi-Chang Fang, Jin-Min Wu

AIM: To investigate the in situ expression of suppression of tumorigenecity 13 (ST13) mRNA in both colorectal cancer and adjacent normal tissues.

METHODS: Colorectal cancer cell lines SW1116, SW620 and CoLo205 were enrolled to confirm the feasibility of the in situ hybridization procedure. Seven colorectal cancer and adjacent normal tissues were included for RNA-RNA in situ hybridization.

RESULTS: The expression of ST13 in the seven normal colon tissues was positive and the positive signals appeared in mucosal cells. Only three of the seven colorectal cancer tissues had positive hybridization signals that appeared in adenocarcinoma cells.

CONCLUSION: The expression of ST13 decreases in colorectal cancer tissue compared with that in adjacent normal tissue. ST13 is mostly expressed in colorectal epithelia and adenocarcinoma cells.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: Colorectal Cancer; Tumorigenecity 13; Gene expression; In situ Hybridizations

Wang LB, Zheng S, Zhang SZ, Peng JP, Ye F, Fang SC, Wu JM. Expression of ST13 in colorectal cancer and adjacent normal tissues. World J Gastroenterol 2005; 11(3): 336-339
http://www.wjgnet.com/1007-9327/11/336.asp

INTRODUCTION

Colorectal cancer is a common cancer in China and one of the most rapidly increasing cancers in costal areas of eastern China[8-12]. To investigate the factors that are related to colorectal carcinogenesis at the molecular level[13-15], subtractive hybridization between cDNA of normal mucosal tissues and mRNA of colorectal carcinoma tissues was performed[15-17]. Subsequent searching of normal mucoa cDNA libraries and sequence homology analysis with the GenBank database generated one cDNA clone that represented novel genes whose expression was down-regulated in human colorectal carcinoma. One of them is called suppression tumorigenecity 13 (ST13, also called SNC6, HUS17714[16,17]). Its cDNA is 3 121 bp and the gene is located on human chromosome 22 as identified by fluorescence in situ hybridization combined with fluorescence R-banding technique[18]. Its protein consists of 271 amino acids[16,17]. Some studies demonstrated that ST13 expression was significantly lower in colorectal cancer than in adjacent normal colon mucosa[18-21]. However, to the author’s knowledge, which kinds of tissues and cells would mostly express ST13 has not been known. To answer this question, we investigated the expression pattern of ST13 in colorectal cancer and adjacent normal tissue by in situ hybridization.

MATERIALS AND METHODS

Cell lines and tissue specimens

Human colorectal carcinoma cell lines SW1116, SW620, and CoLo205 were bestowed from Cancer Institute, Zhejiang University. All cell lines were confirmed expressing ST13 by Northern blot. Approximately, 5×10^6 cell suspension was washed with 0.01 mol/L PBS, and smeared by cytospin-2, the smears were fixed with 4% formaldehyde for 10 min. Seven colorectal cancer and adjacent normal tissue specimens were collected after radical excision in Department of Surgical Oncology, No.2 Hospital, Medical College, Zhejiang University. All patients between 33 and 74 years old had been diagnosed pathologically. Among them, four cases were males. The specimens were minced into 0.5 cm×0.5 cm in size and fixed with 4% formaldehyde immediately after resection, then embedded in paraffin, cut into 6 μm thick sections. And baked at 25 °C overnight, deparaffinized twice with xylene for 30 min, and soaked in 100%, 95%, and 75% alcohol for 5 min respectively, finally washed 3 times with 0.01 mol/L PBS (pH 7.5, DEPC water).

Preparation of primers and probes[22]

The sequences of ST13 primers were 5′-ACT GCA TTT GAG CTT GTG TG-3′ (antisense strand) and 5′-AGA GGA ATT TTA CTTTCA CCC ACT-3′ (sense strand), and the final amplification product was 182 bp. The sequences of β-actin were 5′-TGG ACA ACG GCT CCG GCA-3′ (API) and 5′-CGT ACAT CGT GGG TG-5′ (AP2), and the final amplification product was 370 bp. PCR amplifications of ST13 and β-actin cDNA were performed using above primers (PE GeneAmp PCR System 9 600, perkin elmer). Then the PCR products were cloned to pGEM-Teasy vector (Promega Co, with SP6/T7 promoter). Sequencing analysis showed Sp6 promoter drove transcription of antisense cRNA of ST13 (positive probe) and T7 promoter drove transcription of sense cRNA of ST13 (negative probe) (DNA Sequence Analysis, perkin elmer). Then labeling probes were prepared using the plasmids amplified according to manufacturer’s instructions of RNA probe marker kit (Promega Co).
Detection of expression of ST13 in colorectal carcinoma cell lines

CoLo205, SW1116 and SW620 cell smears prepared as described above were fixed with 4% formaldehyde respectively and washed twice with 0.01 mol/L PBS (pH 7.5) for 5 min and 0.2 mol/L HCl for 15 min, respectively. Then the smears were digested with 40 µL 25 g/mL protease K (without DNase and RNase A, Shanghai Biochemical Technology Company) at 37 °C for 15 min and washed with 0.01 mol/L PBS (pH 7.5) each for 5 min. Before hybridization, the smears were prehybridized at 40 °C for 90 min in 60 µL prehybridization solution (200 µL of 20× SSC, 500 µL of 100% formamide, 20 µL of 50× Denhardt, 50 µL 100 mg/mL ssDNA, and 230 µL ddH2O). The hybridization solution consisted of 200 µL of 20× SSC, 100% deionized formamide, 100 µL of 50× dextran sulfate and 130 µL ddH2O. A total amount of 150 µL hybridization solution mixed with 3 µL probes was denatured at 68 °C for 10 min and laid on ice immediately. Then 50 µL hybridization solution was added to each smear at 42 °C overnight. After hybridization each smear was washed successively twice with 20× SSC for 10 min, 10× SSC for 15 min at 37 °C, 10× SSC for 10 min and buffer I (1 mol/L Tris-HCl 50 mL+5 mol/L NaCl 15 mL+ddH2O 435 mL, pH7.5) for 5 min. Then 40-50 µL of block solution (buffer II 500 µL+Triton x-100 2.5 µL+NSS 5 µL+Dig-Ab 1 µL) was added on each smear for 30 min. After blocked, each smear was incubated with 40-50 µL of digoxin antibody alkaline phosphatase complex (buffer II 500 µL+Triton x-100 2.5 µL+NSS 5 µL+Dig-Ab 1 µL) for 2 h at room temperature was rinsed twice with buffer I each for 5 min and buffer III (1 mol/L Tris-HCl 25 mL+5 mol/L NaCl 5 mL+1 mol/L MgCl2 12.5 mL+ddH2O 260 mL, pH9.5) twice for 5 min, then 40-50 µL of color developing agent (buffer III 1000 µL+NBT 4.5 µL+BCIP 3.5 µL+levamisole 0.24 mg or buffer III 500 µL+NBT and BCIP mixture 10 µL) was added and incubated in a dark room for 72 h. Finally dehydration, clearance and mounting were performed. Northern blot was used to detect expression of ST13 mRNA in above cell lines as positive control. Sense probe and omitted probe were used as negative control.

RESULTS

The Expression of ST13 in colorectal cancer cell lines

Hybridization signals were seen in all cell line smears, but not in the negative control groups (Table 1).

Table 1 In situ expression of ST13 in colon cancer cell lines

Cell lines	Sample number	Antisense probe	Control group	Sense probe
SW1116	6	6	6	6
SW620	3	3	3	3
Colo205	2	2	2	2

1Positive hybridization signal; 2Negative hybridization signal.

Expression of ST13 in colorectal cancer and adjacent normal tissue sections

Hybridization signals were seen in all specimens of colorectal cancer and normal tissues by using β-actin probe (Table 2), demonstrating that the RNA was well protected in specimens. Hybridization signals could be found in all 7 normal tissues, but only in 3 of 7 colorectal cancer tissues by using ST13 probe (Table 2). These signals appeared mostly in epithelial cells in normal tissues and adenocarcinoma cells in colorectal cancer tissue (Figures 1B, C, 2A, B), but not in negative control groups (Table 2, Figures 1D and 2D), indicating that the results were reliable.

Figure 1 Expression of ST13 in normal mucosa. A: hybridization signal appeared as deep-blue granules in epithelial cells using β-actin probe as positive control; B and C: hybridization signals were seen in normal tissues using ST13 antisense probe, they were located in epithelial cells; and D: hybridization signal was not seen in negative control.
Table 2 In situ expression of ST13 in both colon cancer tissue and adjacent normal tissue

Specimens	Sample number	β-actin probe	Antisense probe	Control group	Sense probe
Normal tissue	7	7	7	7	7
Cancer tissue	7	7	3/4	7	7

1Positive hybridization signal; 2Negative hybridization signal.

DISCUSSION

ST13 is a novel gene related to colorectal carcinogenesis. Recent studies have demonstrated that ST13 is located one 22q13 with a length of 3121 bp by cDNA sequencing and 271 amino acids in protein coding area[13-16]. Several studies have indicated that expression of ST13 mRNA is lower in colorectal cancer tissue than in adjacent normal colorectal tissue[18-21]. However, the precise expression pattern of ST13 in tissues and cells is unclear.

In situ hybridization developed in late 1960, has been confirmed as a stable and reliable technique for novel gene expression research[23-30]. In this study, the sense and antisense RNA probes of ST13 were designed with 182 bp in length, which was reasonable for RNA-RNA hybridization. In order to develop a stable and effective in situ hybridization technique to avoid false positive and false negative results, we designed omitted probe and sense probe for negative controls. Since the negative results could be caused by the low expression of ST13 or by the destruction of RNA in the process of preparation for paraffin sections, we used β-actin RNA probe for positive controls. We applied in situ hybridization technique in human colorectal cancer cell lines SW1116, SW620 and COLO205 known to express ST13. Our study revealed that the hybridization signals could be seen in positive controls but not in negative controls (Table 1) demonstrating that in situ hybridization technique in our study was creditable.

Our study showed that all specimens of normal tissue had strong hybridization signals in mucosal epithelia, while only three of seven colorectal cancer specimens had hybridization signals in adenocarcinoma cells (Table 2) suggesting the low expression of ST13 in colorectal carcinoma cells. This is in agreement with the previous studies in which the expression of ST13 was detected in colorectal cancer and adjacent normal tissue by Northern blot[18-20]. Our study demonstrated that ST13 was expressed mainly in normal colon epithelia and in colorectal adenocarcinoma cells, indicating the different locations of the ST13 expression in different tissues. However, further studies are needed to explore the different intensities of ST13 expression in these different tissues.

REFERENCES

1. Li L, Lu F, Zhang S. Analyses of variation trend and short-term detection of Chinese malignant tumor mortality during twenty years. Zhonghua Zhongliu Zazhi 1997; 19: 3-9
2. Mo SJ. The epidemiology and general investigations of colon cancer. Shiyong Zhongliu Zazhi 1993; 8: 181-183
3. Zheng S. Recent study on the colorectal cancer in China. Shiyong Zhongliu Zazhi 1996; 11: 97-99
4. Zheng S. Recent study on the colorectal cancer in the world. Puwai Linchuang 1996; 11: 1-5
5. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL. Genetic alterations during colorectal-tumor development. N Engl J Med 1988; 319: 525-532
6. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759-767
7. Hamilton SR. Molecular genetics of colorectal carcinoma. Cancer 1992; 70: 1216-1221
8. Zheng S, Cai X, Cao J, Zheng L, Geng L, Zhang Y, Gu J, Shi Z. Screening and identification of down-regulated genes in colorectal carcinoma by subtractive hybridization: a method to identify putative tumor suppressor genes. Chin Med J (Engl) 1997; 110: 543-547
9 Cao J, Cai X, Zheng L, Geng L, Shi Z, Pao CC, Zheng S. Characterization of colorectal-cancer-related cDNA clones obtained by subtractive hybridization screening. J Cancer Res Clin Oncol 1997; 123: 447-451
10 Benton WD, Davis RW. Screening lambda gt recombinant clones by hybridization to single plaques in situ. Science 1977; 196: 180-182
11 Zhang YM. A new method for gene mapping by simultaneous in situ hybridization and chromosome banding. Zhejiang Yike Daxue Xuebao 1995; 24: 89-91
12 Zhang Y, Weber-Matthiesen K, Siebert R, Matthiesen P, Schlegelberger B. Frequent deletions of 6q23-24 in B-cell non-Hodgkin’s lymphomas detected by fluorescence in situ hybridization. Genes Chromosomes Cancer 1997; 18: 310-313
13 Zheng S, Cai J, Zhang SZ, Cai XH, Geng LY, Fang YM, Peng JP. Study of two colorectal cancer negatively related genes. Zhongguo Zhongliu 2001; 10: 136-138
14 Zheng S, Cai XH, Cao J, Zheng L, Mo YQ, Zhang YM, Geng LY, Shi ZZ, Gu JR. Application of subtractive hybridization in screening for colorectal cancer negatively related genes. Zhongguo Ziran Yixue Zazhi 1997; 77: 256-259
15 Cai X, Zhang Y, Geng L. Assignment of a novel colorectal cancer-associated gene HSU17714 gene to human chromosome band 22q13 by in situ hybridization. Zhonghua Zhongliu Zazhi 1997; 19: 177-179
16 Zheng S, Cao J, Zhuang XH, Geng LY, Wang LB. A study of the mutation and down regulation of the novel gene SNC6 that related to colon cancer. Keji Kuaibao 2001; 7: 532-534
17 Ye F, Zheng S, Fang SC, Peng JP, Cao J, Geng LY, Dong Q. The significance of the expression of ST13 novel gene in colon cancer by in situ hybridization. Shiyong Zhongliu Zazhi 2001; 16: 318-321
18 Mo Y, Zheng S, Shen D. Differential expression of HSU17714 gene in colorectal cancer and normal colonic mucosa. Zhonghua Zhongliu Zazhi 1996; 18: 241-243
19 Mo YQ, Zheng S, Shen DJ, Cai XH, Cao J, Zhu LJ. The expression of p53 and HSU17714 mRNA in colon cancer and normal tissue. Aizheng 1997; 16: 12-15
20 Mo YQ, Zheng L, Cai XH. Expression of HSU17714 gene in colorectal cancer and other tumors. Zhongguo Zhongliu Linchuang 1997; 24: 504-508
21 Li G, Zhang SZ. The different expression of the tumor suppressor gene ST13 in colon cancer and adjacent tumor tissue. Shiyou Zhongliu Zazhi 2000; 15: 262-263
22 Shao JM, Zheng S, Geng LY. Expression and identification of colorectal-cancer-related gene ST13 in E.coli. Zhejiang Daxue Xuebao 2001; 30: 252-255
23 Mo YQ, Zheng S. The application of in situ hybridization in cancer biology. Shiyou Zhongliu Zazhi 1996; 11: 142-143
24 Zhang YM. The application of fluorescence in situ hybridization in tumor genetics research. Zhejiang Medical University 1995; 24: 232-235
25 Su HC. In situ hybridization. 1st version. Shanghai Zhongguo Kexue Jishu Pub 1994: 5-30
26 Haase AT, Retzel EF, Staskus KA. Amplification and detection of lentiviral DNA inside cells. Proc Natl Acad Sci USA 1990; 87: 4971-4975
27 Nuovo GJ, MacConnell P, Forde A, Delvenne P. Detection of human papillomavirus DNA in formalin-fixed tissues by in situ hybridization after amplification by polymerase chain reaction. Am J Pathol 1991; 139: 847-854
28 Nuovo GJ, Gallery F, MacConnell P, Becker J, Bloch W. An improved technique for the in situ detection of DNA after polymerase chain reaction amplification. Am J Pathol 1991; 139: 1239-1244
29 Troyer DL, Xie H, Hu J. Direct in situ single-copy (DISC)-PCR. Methods Mol Biol 1997; 71: 71-76
30 Thaker V. In situ RT-PCR and hybridization techniques. Methods Mol Biol 1999; 115: 379-402

Edited by Kumar M and Zhu LH Proofread by Chen WW