SYMPLECTOMORPHISMS OF SURFACES PRESERVING A SMOOTH FUNCTION, I

SERGIY MAKSYMENKO

Abstract. Let M be a compact orientable surface equipped with a volume form ω, P be either \mathbb{R} or S^1, $f : M \to P$ be a C^∞ Morse map, and H be the Hamiltonian vector field of f with respect to ω. Let also $Z_\omega(f) \subset C^\infty(M, \mathbb{R})$ be set of all functions taking constant values along orbits of H, and $S_{id}(f, \omega)$ be the identity path component of the group of diffeomorphisms of M mutually preserving ω and f.

We construct a canonical map $\varphi : Z_\omega(f) \to S_{id}(f, \omega)$ being a homeomorphism whenever f has at least one saddle point, and an infinite cyclic covering otherwise. In particular, we obtain that $S_{id}(f, \omega)$ is either contractible or homotopy equivalent to the circle.

Similar results hold in fact for a larger class of maps $M \to P$ whose singularities are equivalent to homogeneous polynomials without multiple factors.

1. Introduction

Let M be a closed oriented surface, $\text{Diff}(M)$ be the group of all C^∞ diffeomorphisms of M, and $\text{Diff}_0(M)$ be the identity path component of $\text{Diff}(M)$ consisting of all diffeomorphisms isotopic to the identity.

Let also $\text{Vol}(M, 1)$ be the space of all volume forms on M having volume 1 and $\omega \in \text{Vol}(M, 1)$. Since $\dim M = 2$, ω is a closed non-degenerate 2-form and so it defines a symplectic structure on M. Denote by $\text{Symp}(M, \omega)$ the group of all ω-preserving C^∞ diffeomorphisms, and let $\text{Symp}_0(M, \omega)$ be its identity path component.

Then Moser’s stability theorem [20] implies that for any C^∞ family

$$\{\omega_t\}_{t \in D^n} \subset \text{Vol}(M, 1)$$

of volume forms parameterized by points of a closed n-dimensional disk D^n, there exists a C^∞ family of diffeomorphisms

$$\{h_t\}_{t \in D^n} \subset \text{Diff}_0(M)$$

such that $\omega_t = h_t^*\omega$ for all $t \in D^n$. In particular, this implies that the map

$$p : \text{Diff}_0(M) \to \text{Vol}(M, 1), \quad p(h) = h^*\omega$$

is a Serre fibration with fiber $\text{Symp}_0(M, \omega)$, see e.g. [19, §3.2], [2], or [21, §7.2].

Since $\text{Vol}(M, 1)$ is convex and therefore contractible, it follows from exact sequence of homotopy groups of the Serre fibration p that p yields isomorphisms of the corresponding homotopy groups $\pi_k\text{Symp}_0(M, \omega) \cong \pi_k\text{Diff}_0(M)$, $k \geq 0$. Hence the inclusion

$$\text{Symp}_0(M, \omega) \subset \text{Diff}_0(M)$$

turns out to be a weak homotopy equivalence. See also [18] for discussions of the inclusion (1.1) for non-compact manifolds.

2000 Mathematics Subject Classification. 37J05, 57S05, 58B05,
Key words and phrases. Morse function, symplectomorphism, surface.

The author is indebted to Bogdan Feshchenko for useful discussions.
Moreover, let $\text{Diff}^+(M)$ be the group of orientation preserving diffeomorphisms. Then we have an inclusion $i : \text{Symp}(M, \omega) \subset \text{Diff}^+(M)$. Indeed, if h preserves ω, then it fixes the corresponding cohomology class $[\omega] \in H^2(M, \mathbb{R}) \cong \mathbb{R}$, and so yields the identity on $H^2(M, \mathbb{R})$. In particular, h preserves orientation of M. Hence (1.1) also implies that i yields a monomorphism $i_0 : \pi_0 \text{Symp}(M, \omega) \to \pi_0 \text{Diff}^+(M)$ on the set of isotopy classes.

It is well known that $\pi_0 \text{Diff}^+(M)$ is generated by isotopy classes of Dehn twists, [4], [9], and one easily shows that each Dehn twist can be realized by ω-preserving diffeomorphism. This implies that i_0 is also surjective, and so i is a weak homotopy equivalence as well.

On the other hand, let $f : M \to \mathbb{R}$ be a Morse function,

$$\text{Stab}(f) = \{h \in \text{Diff}(M) \mid f \circ h = f\}$$

be the group of f-preserving diffeomorphisms, i.e. the stabilizer of f with respect to the right action of $\text{Diff}(M)$ on $C^\infty(M, \mathbb{R})$, and $\text{Stab}_0(f)$ be its identity path component. Let also

$$\mathcal{O}(f) = \{f \circ h \mid h \in \text{Diff}(M)\}$$

be the corresponding orbit of f,

$$\text{Stab}(f, \omega) = \text{Stab}(f) \cap \text{Symp}(M, \omega)$$

be the group of diffeomorphisms mutually preserving f and ω, and $\text{Stab}_0(f, \omega)$ be its identity path component.

In a series of papers the author proved that $\text{Stab}_0(f)$ is either contractible or homotopy equivalent to the circle and computed the higher homotopy groups of $\mathcal{O}(f)$, [11], [15]; showed that $\mathcal{O}(f)$ is homotopy equivalent to a finite-dimensional CW-complex, [12]; and recently described precise algebraic structure of the fundamental group $\pi_1 \mathcal{O}(f)$, [17]. E. Kudryavtseva, [7], [8], studied the homotopy type of the space of Morse maps on compact surfaces and using similar ideas as in [11], [15] proved that $\mathcal{O}(f)$ has the homotopy type of a quotient of a torus by a free action of a certain finite group.

The present paper is former in a series subsequent ones devoted to extension of the above results to the case of ω-preserving diffeomorphisms. We will describe here the homotopy type of $\text{Stab}_0(f, \omega)$. In next papers will study the homotopy type of the subgroup of $\text{Stab}(f, \omega)$ trivially acting on the Kronrod-Reeb graph of f, see §3.2, and describe the precise algebraic structure of $\pi_0 \text{Stab}(f, \omega)$.

Notice that if H is the Hamiltonian vector field of f and $H : M \times \mathbb{R} \to M$ is the corresponding Hamiltonian flow, then $H_t \in \text{Stab}(f, \omega)$ for all $t \in \mathbb{R}$.

More generally, given a C^∞ function $\alpha : M \to \mathbb{R}$, one can define the map

$$H_\alpha : M \to M,$$,

being in general just a C^∞ map leaving invariant each orbit of H, and so preserving f. However, H_α is not necessarily a diffeomorphism.

Let $Z(f) = \{\alpha \in C^\infty(M, \mathbb{R}) \mid H(\alpha) = 0\}$ be the algebra of all smooth functions taking constant values along orbits of H. Equivalently, $Z(f)$ is the centralizer of f with respect to the Poisson bracket induced by ω, see §2.3. In Lemma 3.2.1 we also identify $Z(f)$ with a certain subset of continuous functions on the Kronrod-Reeb graph of f. In particular, $Z(f)$ contains all constant functions.

We will prove in Theorem [3.0.3] that $H_\alpha \in \text{Stab}_0(f, \omega)$ if and only if $\alpha \in Z(f)$. Moreover if f has at least one saddle critical point, then the correspondence $\alpha \mapsto H_\alpha$ is a homeomorphism.
\[Z(f) \cong \text{Stab}_0(f, \omega) \] with respect to \(C^\infty \) topologies, and so \(\text{Stab}_0(f, \omega) \) is contractible. Otherwise, that correspondence is an infinite cyclic covering map and \(\text{Stab}_0(f, \omega) \) is homotopy equivalent to the circle. It will also follow that the inclusion
\[
\text{Stab}_0(f, \omega) \subset \text{Stab}(f)
\]
is a homotopy equivalence. This statement can be regarded as an analogue of (1.1) for \(f \)-preserving diffeomorphisms.

Again it implies that the inclusion
\[
j : \text{Stab}(f, \omega) \subset \text{Stab}^+(f) \equiv \text{Stab}(f) \cap \text{Diff}^+(M)
\]
yields an injection \(j_0 : \pi_0 \text{Stab}(f, \omega) \to \pi_0 \text{Stab}^+(f) \) on the sets of isotopy classes. However, now \(j_0 \) is not necessarily surjective, see §3.3. The reason is that \(\text{Stab}^+(f) \) has many invariant subsets, e.g. the sets of the form \(M_a = f^{-1}(-\infty, a], a \in \mathbb{R}, \) and so if \(h \in \text{Stab}(f, \omega) \) interchanges connected components of \(M_a, \) then they must have the same \(\omega \)-volume.

In fact, our results hold for a larger class of smooth maps \(f \) from \(M \) into \(\mathbb{R} \) and \(S^1, \) see §2.4. On the other hand, we also provide in §3.1 an example of a function with isolated critical points for which the above correspondence \(\alpha \mapsto H_\alpha \) is not surjective.

The author is indebted to Bogdan Feshchenko for useful discussions.

2. Preliminaries

2.1. Shift map. Let \(M \) be a connected \(n \)-dimensional \(C^\infty \) manifold, \(H \) be a \(C^\infty \) vector field tangent to \(\partial M \) and generating a flow \(H : M \times \mathbb{R} \to M. \) For each \(\alpha \in C^\infty(M, \mathbb{R}) \) define the following \(C^\infty \) map \(H_\alpha : M \to M \) by
\[
H_\alpha(x) = H(x, \alpha(x)),
\]
for \(x \in M. \) Evidently, \(H_\alpha \) leaves invariant each orbit of \(H \) and is homotopic to id_\(M \) by the homotopy \(\{H_{t\alpha}\}_{t \in [0, 1]} \). Also notice that if \(\alpha \equiv t \) is a constant function, then \(H_\alpha = H_t \) is a diffeomorphism belonging to the flow \(H \).

For \(\alpha \in C^\infty(M, \mathbb{R}) \) we will denote by \(H(\alpha) \) the Lie derivative of \(\alpha \) along \(H \).

2.1.1. Lemma. [10, Theorem 19] Let \(\alpha \in C^\infty(M, \mathbb{R}), \ y \in M, \) and \(z = H_\alpha(y). \) Then the tangent map \(T_y H_\alpha : T_y M \to T_z M \) is an isomorphism if and only if \(1 + H(\alpha)(y) \neq 0. \)

2.1.2. Remark. In fact, [10, Lemma 20], if \(\alpha(y) = 0, \) so \(z = H_\alpha(y) = H(y, 0) = y \) is a fixed point of \(H_\alpha, \) then the determinant of \(T_y H_\alpha : T_y M \to T_y M \) does not depend on a particular choice of local coordinates at \(z \) and equals \(1 + H(\alpha)(y). \) The general case \(\alpha(y) = a \neq 0 \) reduces to \(a = 0 \) by observation that \(H_\alpha = H_{\alpha-a} \circ H_a. \)

To get a global variant of Lemma 2.1.1 notice that the correspondence \(\alpha \mapsto H_\alpha \) can also be regarded as the following mapping
\[
\varphi_H : C^\infty(M, \mathbb{R}) \to C^\infty(M, M), \qquad \varphi_H(\alpha) = H_\alpha.
\]
It will be called the shift map along orbits of \(H, [10], [16]. \) Consider the following subset of \(C^\infty(M, \mathbb{R}) : \)
\[
\Gamma_H = \{ \alpha \in C^\infty(M, \mathbb{R}) \mid 1 + H(\alpha) > 0 \},
\]
and let \(\text{Diff}_0(H) \) be the group of all diffeomorphisms of \(M \) which leave invariant each orbit of \(H \) and isotopic to the identity via an orbit preserving isotopy.
2.1.3. Lemma. [10] Theorem 19] If M is compact, then
\begin{equation}
\varphi(\Gamma_H) \subset \text{Diff}_0(H),
\end{equation}
\begin{equation}
\Gamma_H = \varphi^{-1}(\text{Diff}_0(H)).
\end{equation}
In other words, suppose $\alpha \in C^\infty(M, \mathbb{R})$. Then $\alpha \in \Gamma$ if and only if $H_\alpha \in \text{Diff}_0(H)$.

2.2. Hamiltonian vector field. Let M be a compact orientable surface equipped with a volume form ω and P be either \mathbb{R} or S^1. Since $\dim M = 2$, ω is a closed 2-form, and therefore it defines a symplectic structure on M. Then for each C^1 map $f : M \to P$ there exists a unique vector field H on M satisfying
\begin{equation}
df(z)(u) = \omega(u, H(z)),
\end{equation}
for each point $z \in M$ and a tangent vector $u \in T_zM$. This vector field is called the Hamiltonian vector field of f with respect to ω. For the convenience of the reader we recall its construction as it is usually defined for functions $f : M \to \mathbb{R}$ only.

Let $z \in M$. Fix local charts $h : U \to M$ and $q : J \to P$ at z and $f(z)$ respectively, where U is an open subset of the upper half-plane $\mathbb{R}^2_+ = \{(x, y) \mid y \geq 0\}$ and J is an open interval in \mathbb{R}. Decreasing U one can assume that $f(h(U)) \subset q(J)$. Then the map $\hat{f} = q^{-1} \circ f \circ h : U \to J$ is called a local representation of f at z.

Now if in coordinates (x, y) on U we have that $\omega(x, y) = \gamma(x, y)dx \wedge dy$ for some non-zero C^∞ function $\gamma : U \to \mathbb{R} \setminus \{0\}$, then
\begin{equation}
H(x, y) = \frac{1}{\gamma(x, y)}(-\hat{f}'y \frac{\partial}{\partial x} + \hat{f}'x \frac{\partial}{\partial y}).
\end{equation}

A definition of H that does not use local coordinates can be given as follows. Since the restriction of ω to each tangent space T_zM is a non-degenerate skew-symmetric form, it follows that ω yields a bundle isomorphism
\[\begin{array}{ccc}
TM & \xrightarrow{\psi} & T^*M \\
\downarrow & & \downarrow \\
M & & \\
\end{array}\]
defined by the formula $\psi(u)(v) = \omega(u, v)$ for all $u, v \in T_zM$ and $x \in M$.

Further notice, that the tangent bundle of P is trivial, so we have the unit section
\[s : P \to TP \equiv P \times \mathbb{R}, \quad s(q) = (q, 1)\].

Now for a C^1 map $f : M \to P$ its differential $df : M \to T^*M$ and the Hamiltonian vector field $H : M \to TM$ are unique maps for which the following diagram is commutative:
\[\begin{array}{ccc}
TM & \xrightarrow{\psi} & T^*M \\
& \subset & \downarrow T^*f \\
& & T^*P \equiv P \times \mathbb{R} \\
\downarrow df & & \uparrow s \\
M & \xrightarrow{f} & P \\
& \subset & \\
\end{array}\]
Thus $df = T^*f \circ s \circ f$, and $H = \psi^{-1} \circ df$. It follows that
\begin{equation}
H(z)(f) = \omega(H(z), H(z)) = 0,
\end{equation}
as ω is skew-symmetric, and so H is tangent to level curves of f.

Suppose, in addition, that f takes constant values at boundary components of M. Then, due to (2.5), H is tangent to ∂M, and therefore it yields a flow $H : M \times \mathbb{R} \to M$. It also
follows from (2.5) that each diffeomorphism $H_t: M \to M$ preserves f, in the sense that $f \circ H_t = f$. Moreover, the well known Liouville’s theorem claims that each diffeomorphism H_t also preserves ω. In fact, that theorem is a simple consequence of Cartan’s identity:

\begin{equation}
\mathcal{L}_{H} \omega = d(\iota_{H} \omega) + \iota_{H} d\omega = d(df) + \iota_{H} 0 = 0,
\end{equation}

since $\iota_{H} \omega = \omega(H, \cdot) = df$ by (2.3), and $d\omega = 0$ as dim $\omega = $ dim M.

2.3. Poisson multiplication. Let Q be another one-dimensional manifold without boundary, so Q is either \mathbb{R} or S^1 as well as P. Then ω yields a Poisson multiplication

\begin{equation}
\{ \cdot, \cdot \}: C^\infty(M,P) \times C^\infty(M,Q) \to C^\infty(M,\mathbb{R})
\end{equation}

defined by one of the following equivalent formulas:

\begin{equation}
\{ f, g \} := \omega(H_f, H_g) = \psi(H_f)(H_g) = H_f(g) = -H_g(f),
\end{equation}

where H_f and H_g are Hamiltonian vector fields of $f \in C^\infty(M,P)$ and $g \in C^\infty(M,Q)$ respectively.

In particular, for each $f \in C^\infty(M,P)$ one can define its annulator with respect to (2.8) by

\begin{equation}
\mathcal{Z}^Q(f) = \{ g \in C^\infty(M,Q) \mid H_f(g) = \{ f, g \} = 0 \}.
\end{equation}

Thus $\mathcal{Z}^Q(f)$ consists of all maps $g \in C^\infty(M,Q)$ taking constant values along orbits of the Hamiltonian vector field H_f. It follows from (2.8) that $g \in \mathcal{Z}^Q(f)$ iff $f \in \mathcal{Z}^P(g)$.

When $P = Q = \mathbb{R}$, this multiplication is the usual Poisson bracket, and $\mathcal{Z}^\mathbb{R}(f)$ is the centralizer of f, see [19, §3].

2.4. Class $\mathcal{F}(M,P)$. Let $\mathcal{F}(M,P)$ be the subspace of $C^\infty(M,P)$ consisting of maps f satisfying the following two axioms:

Axiom (B) The map f takes a constant value at each connected component of ∂M and has no critical points on ∂M.

Axiom (L) For every critical point z of f there is a local presentation $\hat{f}: \mathbb{R}^2 \to \mathbb{R}$ of f near z in which \hat{f} is a homogeneous polynomial $\mathbb{R}^2 \to \mathbb{R}$ without multiple factors.

In particular, since the polynomial $\pm x^2 \pm y^2$ (a non-degenerate singularity) is homogeneous and has no multiple factors, we see that $\mathcal{F}(M,P)$ contains an open and everywhere dense subset $\operatorname{Morse}(M,P)$ consisting of maps satisfying Axiom (B) and having non-degenerate critical points only.

Figure 2.1 describes possible singularities satisfying Axiom (L).

2.4.1. Definition. We will say that a vector field F on M is Hamiltonian like for $f \in \mathcal{F}(M,P)$ if

(a) $F(f) = 0$, and, in particular, F is tangent to ∂M and generates a flow on M;
(b) $F(z) = 0$ if and only if z is a critical point of f;
(c) for each z critical point of f there exists a local representation $\hat{f} : \mathbb{R}^2 \to \mathbb{R}$ of f as a homogeneous polynomial without multiple factors such that in these coordinates $F(x, y) = -\hat{f}y \frac{\partial}{\partial x} + \hat{f}x \frac{\partial}{\partial y}$.

One can easily prove that for each $f \in \mathcal{F}(M, P)$ there exists a Hamiltonian like vector field, $\mathbb{[11]} \text{Lemma 5.1].}$

Notice also that every Hamiltonian vector field H of f has properties $[a]$ and $[b]$ of Definition 2.4.1. Moreover, if H is also a Hamiltonian like, then due to (2.4) in the corresponding coordinates satisfying property $[c]$ of Definition 2.4.1 we have that $\omega = dx \wedge dy$.

2.4.2. Lemma. Let F be any Hamiltonian like vector field for $f \in \mathcal{F}(M, P)$, and H be the Hamiltonian vector field for f with respect to ω. Then there exists an everywhere non-zero C^∞ function $\lambda : M \to \mathbb{R} \setminus \{0\}$ such that $H = \lambda F$.

Proof. Denote by Σ_f the set of critical point of f, being also the set of zeros of H as well as of F. Since F and H are parallel and non-zero on $M \setminus \Sigma_f$, it follows that there exists a C^∞ non-zero function $\lambda : M \setminus \Sigma_f \to \mathbb{R}$ such that $H = \lambda F$. It remains to show that λ can be defined by non-zero values on Σ_f to give a C^∞ function on all of M.

Let z be a critical point of f. Then by definition of Hamiltonian like vector field there exists a local representation $\hat{f} : \mathbb{R}^2 \to \mathbb{R}$ of f such that $z = (0, 0) \in \mathbb{R}^2$, \hat{f} is a homogeneous polynomial without multiple factors, and $F = -\hat{f}y \frac{\partial}{\partial x} + \hat{f}x \frac{\partial}{\partial y}$.

Then $\omega(x, y) = \gamma(x, y)dx \wedge dy$ for some non-zero C^∞ function γ, and by formula (2.4), we have $H = \frac{1}{\gamma}F$ on $U \setminus z$. Hence $\lambda = 1/\gamma$, and so λ smoothly extends to all of U by $\lambda(z) = 1/\gamma(z)$.

The following statement is a particular case of results of $\mathbb{[13]}$ on parameter rigidity.

2.4.3. Corollary. c.f. $\mathbb{[13]} \text{§4 & Theorem 11.1}]$ For any two Hamiltonian like vector fields F_1 and F_2 there exists an everywhere non-zero C^∞ function $\mu : M \to \mathbb{R} \setminus \{0\}$ such that $F_1 = \mu F_2$.

Proof. It follows from Lemma 2.4.2 that $H = \lambda_1 F_1 = \lambda_2 F_2$ for some everywhere non-zero C^∞ functions $\lambda_1, \lambda_2 : M \to \mathbb{R} \setminus \{0\}$. Hence $\mu = \lambda_2/\lambda_1$.

2.5. Topological type of $\text{Stab}_0(f)$. Let $f \in \mathcal{F}(M, P)$, H be a Hamiltonian like vector field for f, and $H : M \times \mathbb{R} \to M$ be the corresponding Hamiltonian flow.

2.5.1. Theorem. $\mathbb{[14, 15, 16]}$. Let $\varphi : C^\infty(M, \mathbb{R}) \to C^\infty(M, M)$ be the shift map along orbits of H and

$\Gamma = \{\alpha \in C^\infty(M, \mathbb{R}) \mid 1 + H(\alpha) > 0\}$,

see $\mathbb{[2.1]}$.

1. $\varphi(\Gamma) = \text{Stab}_0(f)$ and $\Gamma = \varphi^{-1}(\text{Stab}_0(f))$.

2. Suppose all critical points of f are non-degenerate local extremes, so, in particular, $f \in \text{Morse}(M, P)$. Then the restriction map $\varphi|_\Gamma : \Gamma \to \text{Stab}_0(f)$ is an infinite cyclic covering, and so $\text{Stab}_0(f)$ is homotopy equivalent to the circle. More precisely, in this case there exists $\theta \in \Gamma$ such that

(i) $\theta > 0$ on all of M;

(ii) each non-constant orbit γ of F is periodic, and θ takes a constant value on γ being an positive integral multiple of the period $\text{Per}(\gamma)$ of γ.
(iii) there exists a free action of \mathbb{Z} on Γ defined by $n \ast \alpha = \alpha + n\theta$, for $n \in \mathbb{Z}$ and $\alpha \in \Gamma$, such that the map φ is a composite

$$\varphi : \Gamma \overset{p}{\longrightarrow} \Gamma/\mathbb{Z} \overset{r}{\cong} \text{Stab}_0(f),$$

where p is a projection onto the factor space Γ/\mathbb{Z} endowed with the corresponding final topology, and r is a homeomorphism.

(3) Suppose f has a critical point being not a non-degenerate local extreme. Then $\varphi |_\Gamma : \Gamma \to \text{Stab}_0(f)$ is a homeomorphism, and so $\text{Stab}_0(f)$ is contractible.

Proof. In fact, Theorem 2.5.1 is stated and proved in [15] for any Hamiltonian like vector field F of f. The advantage of using Hamiltonian like vector fields is that we have precise formulas for F near critical points of f.

Let $\lambda : M \to \mathbb{R}$ be everywhere non-zero C^∞ function and $H = \lambda F$. We will deduce from results of [14] that Theorem 2.5.1 also holds for H. Due to Lemma 2.4.2 this includes the case when H is Hamiltonian.

Let $F, H : M \times \mathbb{R} \to M$ be the flows of F and $H = \lambda F$ respectively,

$$\varphi_F, \varphi_H : C^\infty(M, \mathbb{R}) \to C^\infty(M, M)$$

be the corresponding shift maps, $\text{image}(\varphi_H), \text{image}(\varphi_F)$ be their images in $C^\infty(M, M)$, and Γ_F, Γ_H be corresponding the subsets of $C^\infty(M, \mathbb{R})$ defined by (2.1). Define the following C^∞ function

$$\sigma : M \times \mathbb{R} \to \mathbb{R}, \quad \sigma(x, s) = \int_0^s \lambda(H(x, t)) dt.$$

Then it is well known and easy to see, e.g. [14], that for each $\alpha \in C^\infty(M, \mathbb{R})$ we have that

$$H(x, \alpha(x)) = F(x, \sigma(x, \alpha(x))).$$

(2.11)

Consider the map

$$\gamma : C^\infty(M, \mathbb{R}) \to C^\infty(M, \mathbb{R}), \quad \gamma(\alpha)(x) = \sigma(x, \alpha(x)).$$

Evidently, γ is continuous with respect to C^∞ topologies. Moreover, (2.11) means that

$$H_\alpha = F_\gamma(\alpha)$$

for all $\alpha \in C^\infty(M, \mathbb{R})$. Hence $\varphi_H = \varphi_F \circ \gamma$, image$(\varphi_H) \subset \text{image}(\varphi_F)$, and we get the following commutative diagram:

$$\begin{array}{ccc}
\Gamma_H & \overset{\varphi_H}{\longrightarrow} & \text{image}(\varphi_H) \\
\gamma \downarrow & & \downarrow \\
\Gamma_F & \overset{\varphi_F}{\longrightarrow} & \text{image}(\varphi_F)
\end{array} \overset{\sim}{\longrightarrow} \begin{array}{ccc}
\Gamma_H & \overset{\varphi_H}{\longrightarrow} & \text{image}(\varphi_H) \\
\gamma \downarrow & & \downarrow \\
\Gamma_F & \overset{\varphi_F}{\longrightarrow} & \text{image}(\varphi_F)
\end{array} \overset{\sim}{\longrightarrow} C^\infty(M, M)
$$

Since $\lambda \neq 0$ everywhere, one can interchange $F = \frac{1}{\lambda} H$ and H. Hence by the same arguments as above we get that $\text{image}(\varphi_H) = \text{image}(\varphi_F)$ and γ is a homeomorphism. Also notice that the orbit structures of F and H coincide. Hence $\text{Diff}_0(F) = \text{Diff}_0(H)$, and so

$$\begin{align*}
\Gamma_H & \overset{(2.2)}{\longrightarrow} \varphi_H^{-1}(\text{image}(\varphi_H) \cap \text{Diff}_0(H)) = \varphi_H^{-1}(\text{image}(\varphi_F) \cap \text{Diff}_0(F)) \\
& = \gamma^{-1} \circ \varphi_F^{-1}(\text{image}(\varphi_F) \cap \text{Diff}_0(F)) \overset{(2.2)}{\longrightarrow} \gamma^{-1}(\Gamma_F).
\end{align*}$$
Thus γ yields a homeomorphism of Γ_H onto Γ_F. Since Theorem 2.5.1 holds for F, we get the following commutative diagram

$$
\begin{array}{ccc}
\Gamma_H & \xrightarrow{\gamma} & \Gamma_F \\
\downarrow{\varphi_H} & & \downarrow{\varphi_F} \\
\text{Stab}_0(f) & & \text{Stab}_0(f)
\end{array}
$$

implying that $\varphi_H|_{\Gamma_H}$ has the same topological properties as $\varphi_F|_{\Gamma_F}$, and so Theorem 2.5.1 holds for H as well. □

2.5.2. Remark. Let us discuss the case (2) of Theorem 2.5.1 which is realized precisely for the following four types of Morse maps, see [11, Theorem 1.9]:

(A) $M = S^2$ is a 2-sphere and $f : S^2 \to P$ has exactly two critical points: non-degenerate local minimum and maximum;

(B) $M = D^2$ is a 2-disk and $f : D^2 \to P$ has exactly one critical point being a non-degenerate local extreme;

(C) $M = S^1 \times [0, 1]$ is a cylinder and $f : S^1 \times [0, 1] \to P$ has no critical points;

(D) $M = T^2$ is a 2-torus, $P = S^1$ is a circle, and $f : T^2 \to P$ has no critical points.

Due to (i) and (ii) each regular point $x \in M$ of f is periodic of some period $\text{Per}(x)$, and there exists $k_x \in \mathbb{N}$ depending on x such that $\theta(x) = k_x \text{Per}(x)$. Hence

$$
H_{\theta}(x) = H(x, \theta(x)) = H(x, k_x \text{Per}(\gamma)) = x,
$$

and so $H_{\theta} = \text{id}_M$. Moreover, if $\alpha \in \Gamma$, then

$$
H_{\alpha+n\theta}(x) = H(x, \alpha(x) + n\theta(x)) = H(H(x, n\theta(x)), \alpha(x)) = H(x, \alpha(x)) = H_{\alpha}(x).
$$

This implies correctness of the \mathbb{Z}-action from (iii) of Theorem 2.5.1 and existence of decomposition (2.10) with continuous p and r. The principal difficulty was to prove that r is a homeomorphism.

The aim of the present paper is to deduce from Theorem 2.5.1 a description of the homotopy type of $\text{Stab}_0(f, \omega)$, see Theorem 3.0.3 below.

3. Main result

Let M be a compact orientable surface equipped with a volume form ω, $f \in \mathcal{F}(M, P)$, H be the Hamiltonian vector field of f with respect to ω, $H : M \times \mathbb{R} \to M$ be the corresponding Hamiltonian flow, and

$$
\varphi : C^\infty(M, \mathbb{R}) \to C^\infty(M, M), \quad \varphi(\alpha)(x) = H(x, \alpha(x))
$$

be the shift map along orbits of H. Let also

$$
\mathcal{Z} = \mathcal{Z}_\omega^H(f) = \{\alpha \in C^\infty(M, \mathbb{R}) \mid H(\alpha) = 0\}
$$

be the space of functions taking constant values along orbits of H, see (2.9). Then \mathcal{Z} is a linear subspace of $C^\infty(M, \mathbb{R})$ and is contained in Γ, see (2.1). In particular, \mathcal{Z} is contractible as well as Γ.

3.0.3. Theorem. The following statements hold true.

(1) $\varphi(\mathcal{Z}) = \text{Stab}_0(f, \omega) = \text{Stab}_0(f) \cap \text{Stab}(f, \omega)$ and $\mathcal{Z} = \varphi^{-1}(\text{Stab}_0(f, \omega))$.
(2) If all critical points of \(f \) are non-degenerate local extremes, then the restriction \(\varphi|_Z : Z \to \text{Stab}_0(f, \omega) \) is an infinite cyclic covering, and \(\text{Stab}_0(f, \omega) \) is homotopy equivalent to the circle.

(3) Otherwise, \(\varphi|_Z : Z \to \text{Stab}_0(f, \omega) \) is a homeomorphism, and so \(\text{Stab}_0(f, \omega) \) is contractible.

(4) The inclusion \(\text{Stab}_0(f, \omega) \subset \text{Stab}(f) \) is a homotopy equivalence.

(5) The inclusion map \(j : \text{Stab}(f, \omega) \subset \text{Stab}(f) \) induces an injection \(j_0 : \pi_0\text{Stab}(f, \omega) \to \pi_0\text{Stab}(f) \).

Proof. First we need the following lemma.

3.0.4. Lemma. Let \(\alpha \in C^\infty(M, \mathbb{R}) \). Then the action of \(H_\alpha \) on \(\omega \) is given by

\[
H_\alpha^*\omega = (1 + H(\alpha)) \cdot \omega.
\]

(3.1) Proof. Since the set of critical points is finite and so nowhere dense, it suffices to check this relation at regular points of \(f \) only.

So let \(p \) be a regular point of \(f \). Then \(H(p) \neq 0 \), whence there are local coordinates \((x, y) \) at \(p \) in which \(p = (0, 0) \), \(H(x, y) = \frac{\partial}{\partial x} \), and \(H(x, y, t) = (x + t, y) \) for sufficiently small \(x, y, t \).

In particular, \(H(\alpha) = \frac{\partial \alpha}{\partial x} \). We also have that \(\omega(x, y) = \gamma(x, y) dx \wedge dy \) for some \(C^\infty \) function \(\gamma \).

Notice that one may also assume that \(\alpha(p) = 0 \). Indeed, let \(b = \alpha(p) \). Then \(H_\alpha = H_{\alpha-b} \circ H_b \).

Since \(H_b \) preserves \(\omega \), see (2.6), it follows that

\[
H_\alpha^*\omega = H_{\alpha-b}^* \circ H_b^* \omega = H_{\alpha-b}^*\omega.
\]

Thus suppose \(\alpha(p) = 0 \), whence \(H_\alpha(p) = p \). Then

\[
H_\alpha^*\omega(x, y) = \gamma \circ H_\alpha(x, y) d(x + \alpha) \wedge dy = \gamma(x + \alpha, y) (1 + \alpha') dx \wedge dy = \gamma(x + \alpha, y) (1 + H(\alpha)) dx \wedge dy.
\]

In particular, at \(p \) we have that

\[
H_\alpha^*\omega(p) = (1 + H(\alpha(p))) \cdot \omega(p),
\]

which proves (3.1). \(\square \)

Now we can complete Theorem 3.0.3.

Let us check that

(3.2) \(\varphi(Z) \subset \text{Stab}_0(f, \omega) \).

Let \(\alpha \in Z \). As \(H_\alpha \) leaves invariant each orbit of \(H \), and therefore it preserves \(f \), we have that \(H_\alpha \in \text{Stab}(f) \).

Moreover, by formula (3.1), \(H_\alpha^*\omega = \omega \), so \(H_\alpha \in \text{Stab}(f, \omega) \).

Now notice that \(t\alpha \in Z \) for all \(t \in \mathbb{R} \), and so \(H_{t\alpha} \in \text{Stab}(f, \omega) \) as well. Thus the homotopy \(H_{t\alpha} : M \to M, t \in [0, 1], \) is in fact an isotopy in \(\text{Stab}(f, \omega) \) between \(\text{id}_M = H_0 \) and \(H_\alpha \).

Hence \(H_\alpha \in \text{Stab}_0(f, \omega) \).

Further we claim that

(3.3) \(Z \supset \varphi^{-1}(\text{Stab}_0(f) \cap \text{Stab}(f, \omega)) \).
Indeed, let $h \in \text{Stab}_0(f) \cap \text{Stab}(f, \omega)$. Then by (1) of Theorem 2.5.1 $h = H_\alpha$ for some $\alpha \in \Gamma$. As ω is everywhere non-zero on M, it follows from formula (3.1) that $H(\alpha) = 0$ on all of M, that is $\alpha \in \mathcal{Z}$.

Hence

$$\varphi(\mathcal{Z}) \subset \text{Stab}_0(f, \omega) \subset \text{Stab}_0(f) \cap \text{Stab}(f, \omega) \subset \varphi(\mathcal{Z}),$$

$$\mathcal{Z} \subset \varphi^{-1}(\text{Stab}_0(f, \omega)) \subset \varphi^{-1}(\text{Stab}_0(f) \cap \text{Stab}(f, \omega)) \subset \mathcal{Z}.$$

This proves (1).

(2) Suppose $\varphi : \Gamma \to \text{Stab}_0(f)$ is an infinite cyclic covering map, and let $\theta \in \Gamma$ be the function from (2) of Theorem 2.5.1.

Then due to property (iii) in Theorem 2.5.1, θ takes constant values along orbits of H, and therefore $\theta \in \mathcal{Z}$. Since, in addition, \mathcal{Z} is a group, it follows that \mathcal{Z} is invariant with respect to the \mathcal{Z}-action on Γ, i.e. $\alpha + n\theta \in \mathcal{Z}$ for all $\alpha \in \mathcal{Z}$. Therefore $\mathcal{Z} = \varphi^{-1}(\text{Stab}_0(f, \omega))$. Hence $\varphi|_\mathcal{Z} : \mathcal{Z} \to \text{Stab}_0(f, \omega)$ is a \mathcal{Z}-covering as well as $\varphi|_\Gamma$. As \mathcal{Z} is contractible, we obtain that the quotient $\text{Stab}_0(f, \omega)$ is homotopy equivalent to the circle.

Consider the following path $\tau : [0, 1] \to \mathcal{Z} \subset \Gamma$, $\tau(t) = t\theta$. Then $\varphi \circ \tau$ is a loop in $\text{Stab}_0(f, \omega) \subset \text{Stab}_0(f)$, since

$$\varphi \circ \tau(1)(x) = F(x, \theta(x)) = x = F(x, 0) = \varphi \circ \tau(0)(x).$$

This loop is a generator of $\pi_1\text{Stab}_0(f, \omega) \cong \mathcal{Z}$ as well as a generator of $\pi_1\text{Stab}_0(f) \cong \mathcal{Z}$. Hence the inclusion $j : \text{Stab}_0(f, \omega) \subset \text{Stab}_0(f)$ yields an isomorphism of fundamental groups. Since these spaces homotopy equivalent to the circle, we obtain that j is a homotopy equivalence.

(3) If $\varphi : \Gamma \to \text{Stab}_0(f)$ is a homeomorphism, then due to (1) it yields a homeomorphism of \mathcal{Z} onto $\text{Stab}_0(f, \omega)$. In particular, both $\text{Stab}_0(f, \omega)$ and $\text{Stab}_0(f)$ are contractible, and so the inclusion $\text{Stab}_0(f, \omega) \subset \text{Stab}_0(f)$ is a homotopy equivalence.

(5) Injectivity of j_0 follows from the relation $\text{Stab}_0(f, \omega) = \text{Stab}_0(f) \cap \text{Stab}(f, \omega)$. Theorem 3.0.3 is completed.

3.0.5. Remark. Though the inclusion $\text{Stab}_0(f, \omega) \subset \text{Stab}_0(f)$ is a homotopy equivalence, it seems to be a highly non-trivial task to find precise formulas for a strong deformation retraction of $\text{Stab}_0(f, \omega)$ onto $\text{Stab}_0(f)$. For the case (3) of Theorem 3.0.3 this is equivalent to a construction of a strong deformation retraction of Γ onto \mathcal{Z}. In fact, it suffices to find a retraction $r : \Gamma \to \mathcal{Z}$, so to associate to each $\alpha \in \Gamma$ a function $r(\alpha)$ taking constant values along orbits of H so that each $\beta \in \mathcal{Z}$ remains unchanged. Then a strong deformation $r_t : \Gamma \to \mathcal{Z}$, $t \in [0, 1]$, of Γ onto \mathcal{Z} can be given by $r_t(\alpha) = (1 - t)\alpha + tr(\alpha)$.

3.1. Counterexample for maps $g \not\in \mathcal{F}(M, P)$. Let $D^2 = \{|z| \leq 1\}$ be the unit disk in the complex plane \mathbb{C} and $\omega = dx \wedge dy$ be the standard symplectic form. Consider the following two functions $f, g : D^2 \to [0, 1]$ defined by

$$f(x, y) = x^2 + y^2 = |z|^2, \quad g(x, y) = (x^2 + y^2)^2 = |z|^4.$$

Then the foliations by level sets of f and g coincide, whence

$$\mathcal{Z}_\omega^R(f) = \mathcal{Z}_\omega^R(g), \quad \text{Stab}_0(f, \omega) = \text{Stab}_0(g, \omega), \quad \text{Stab}_0(f) = \text{Stab}_0(g).$$

However, $f \in \mathcal{F}(D^2, \mathbb{R})$, while g does not belong to $\mathcal{F}(D^2, \mathbb{R})$ since it is a polynomial with multiple factors.
Notice that the Hamiltonian vector fields F and G of f and g are given by

$$F(x, y) = -2y \frac{∂}{∂x} + 2x \frac{∂}{∂y}, \quad G(x, y) = 2(x^2 + y^2)F(x, y).$$

In particular, the Hamiltonian flow $F : D^2 \times \mathbb{R} \to D^2$ of f is given by $F(z, t) = e^{2it}z$, and so the tangent map $T_0F : T_0D^2 \to T_0D^2$ is not the identity for $t \neq \pi n, n \in \mathbb{Z}$.

On the other hand, the linear part of G at 0 vanishes, whence for the Hamiltonian flow $G : D^2 \times \mathbb{R} \to D^2$ of g the corresponding tangent map $T_0G : T_0D^2 \to T_0D^2$ is always the identity. Hence for any C^∞ function α the tangent map at 0 of G_α is the identity as well. Therefore for $t \neq \pi n, n \in \mathbb{Z}$, then $F_t \neq G_\alpha$ for any $\alpha \in C^\infty(M, \mathbb{R})$.

By Theorem 3.0.3 the shift map $\varphi_\gamma : \mathcal{Z}_\omega^R(f) \to \text{Stab}_0(f, \omega)$ of F is an infinite cyclic covering, while the shift map

$$\varphi_\gamma : \mathcal{Z}_\omega^R(g) \equiv \mathcal{Z}_\omega^R(f) \longrightarrow \text{Stab}_0(f, \omega) \equiv \text{Stab}_0(g, \omega)$$

of G turns out to be not surjective, since its image does not contain F_t for $t \neq \pi n, n \in \mathbb{Z}$.

Thus we see that the centralizer of g does not “detect” all the diffeomorphisms from $\text{Stab}_0(g)$, while the centralizer of f does so. This shows that the assumption $f \in \mathcal{F}(M, P)$ in Theorem 3.0.3 is essential.

3.2. Kronrod-Reeb graph of f. Now we will give an interpretation of \mathcal{Z} in terms of functions on the Kronrod-Reeb graph of f.

Let $f \in \mathcal{F}(M, P)$. Consider the partition Δ of M into connected components of level-sets of f. Let $K := M/\Delta$ be the corresponding quotient space and $p : M \to K$ be the factor map. Then we have a natural decomposition

$$f = \hat{f} \circ p : M \overset{p}{\longrightarrow} K \overset{\hat{f}}{\longrightarrow} P.$$

Endow K with the final topology, so a subset $U \subset K$ is open if and only if $p^{-1}(U)$ is open in M. Then it is well known that K has a natural structure of a one-dimensional CW-complex. It is called a Lyapunov or Kronrod-Reeb graph of f, [1], [22], [6], [5], [3].

We will briefly recall the correspondence between elements of Δ (i.e. points of K) and orbits of H. Let $\gamma \in \Delta$. If γ contains at least one critical point of f, then it follows from Axiom (L) that γ is a connected 1-dimensional CW-complex such that each of its vertices has even (possibly zero) degree, and $p(\gamma)$ is a vertex of K. In this case the vertices of γ are critical points of f being also zeros of H, while edges of γ are non-closed orbits of H.

If γ has no critical point of f, then γ is a closed orbit of H.

3.2.1. Lemma. Each $\alpha \in \mathcal{Z}_\omega^Q(f)$ yields a unique continuous function $\hat{\alpha} : K \to Q$ such that $\alpha = \hat{\alpha} \circ p$. Moreover, the correspondence $\alpha \mapsto \hat{\alpha}$ is a continuous injective map $\eta : \mathcal{Z}_\omega^Q(f) \to C(K, Q)$ with respect to C^0 topology on $C(K, Q)$.

Proof. Let $\alpha \in \mathcal{Z}_\omega^Q(f)$, so α takes constant values along orbits of H. First we should show that α takes constant value at each element of Δ.

Consider any element $\gamma \in \Delta$. If γ contains no critical point of f, then γ is a closed orbit of H, and so α takes a constant value at γ, see Figure 3.1.

Otherwise, γ is a connected 1-dimensional CW-complex whose vertices and edges are orbits of H. Then α takes constant values along edges of γ, and it follows from continuity of α and connectedness of γ that α is constant on all of γ.

Thus α yields a unique function $\hat{\alpha} : K \to Q$ such that $\alpha = \hat{\alpha} \circ p$.
Since K has final topology with respect to p and α is continuous, it easily follows and is well known that $\hat{\alpha}$ is continuous. Continuity of the correspondence $\alpha \mapsto \hat{\alpha}$ is left for the reader. \hfill \square

Lemma 3.2.1 together with Theorem 3.0.3 implies that for $f \in \mathcal{F}(M, P)$ the elements of $\text{Stab}_0(f, \omega)$ are parametrized by continuous functions on the Kronrod-Reeb graph K of f, see Figure 3.1.

More precisely, due to Theorem 3.0.3 for each $h \in \text{Stab}_0(f, \omega)$ there exists $\alpha \in \mathcal{Z}_Q(f, \omega)$ such that $h = H_{\alpha}$. This function takes constant values on connected components of level-sets of f, and therefore induces a continuous function $\hat{\alpha} : K \to \mathbb{R}$. Then the value of $\hat{\alpha}$ at some point $v \in K$ equals to the common time shift induced by h on all the orbits of H constituting $p^{-1}(v)$.

3.3. **Non-surjectivity of the map** $j_0 : \pi_0 \text{Stab}(f, \omega) \to \pi_0 \text{Stab}^+(f)$. Let $g : \mathbb{R}^2 \to \mathbb{R}$ be the function defined by $g(x, y) = ((x + 1)^2 + y^2)((x - 1)^2 + y^2)$. It has three critical points: one saddle $p_0 = (0, 0)$ and two local minimums $p_1 = (-1, 0)$ and $p_2 = (1, 0)$. Let $D = g^{-1}[0, 2]$, and $f = g|_D : D \to \mathbb{R}$ be the restriction of g to D. Then D is a 2-disk and f belongs to the class $\mathcal{F}(D, \mathbb{R})$.

Consider the following subset $A = f^{-1}[0, 0.5] \subset D$, see Figure 3.2. It consists of two connected components A_1 and A_2 containing the points p_1 and p_2 respectively. Notice that $h(A) = A$ for each $h \in \text{Stab}(f)$, whence h either preserves both A_1 and A_2 or interchanges them. Also notice that if $h, k \in \text{Stab}(f)$ and $h(A_1) = A_2$, while $k(A_1) = A_1$, then h and k belong to distinct path components of $\text{Stab}(f)$.

Let $h : D \to D$ be a diffeomorphism defined by $D(x, y) = (-x, -y)$. Evidently, h belongs to $\text{Stab}^+(f)$ and interchanges A_1 and A_2.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure3.1.png}
\caption{Figure 3.1.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure3.2.png}
\caption{Figure 3.2.}
\end{figure}
3.3.1. **Lemma.** Let ω be any volume form on D such that $\text{Vol}_\omega(A_1) \neq \text{Vol}_\omega(A_2)$. Then the isotopy class $[h] \in \pi_0\text{Stab}^+(f)$ of h does not contain any $k \in \text{Stab}(f, \omega)$. Hence for such an ω the map $j_0 : \pi_0\text{Stab}(f, \omega) \to \pi_0\text{Stab}^+(f)$ is not surjective.

Proof. Each $k \in \text{Stab}(f, \omega)$ preserves ω-volume. Since $\text{Vol}_\omega(A_1) \neq \text{Vol}_\omega(A_2)$, it follows that $k(A_i) = A_i$ for $i = 1, 2$. But $h(A_1) = A_2$, whence h and k are not isotopic in $\text{Stab}(f)$. □

References

[1] G. M. Adelson-Welsky and A. S. Kronrode. Sur les lignes de niveau des fonctions continues possédant des dérivées partielles. *C. R. (Doklady) Acad. Sci. URSS (N.S.),* 49:235–237, 1945.

[2] Augustin Banyaga. Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique. *Comment. Math. Helv.,* 53(2):174–227, 1978.

[3] A. V. Bolsinov and A. T. Fomenko. *Vvedenie v topologiyu integraliruyemykh gamiltonovykh sistem (Introduction to the topology of integrable Hamiltonian systems).* “Nauka”, Moscow, 1997.

[4] M. Dehn. Die Gruppe der Abbildungsklassen. *Acta Mathematica,* 69:135–206, 1938.

[5] John Franks. Nonsingular Smale flows on S^3. *Topology,* 24(3):265–282, 1985.

[6] A. S. Kronrod. On functions of two variables. *Uspehi Matem. Nauk (N.S.)*, 5(1(35)):24–134, 1950.

[7] E. A. Kudryavtseva. The topology of spaces of Morse functions on surfaces. *Math. Notes,* 92(1-2):219–236, 2012. Translation of Mat. Zametki 92 (2012), no. 2, 241–261.

[8] E. A. Kudryavtseva. On the homotopy type of spaces of Morse functions on surfaces. *Mat. Sb.,* 204(1):79–118, 2013.

[9] W. B. R. Lickorish. A finite set of generators for the homeotopy group of a 2-manifold. *Proc. Cambridge Philos. Soc.,* 60:769–778, 1964.

[10] Sergiy Maksymenko. Smooth shifts along trajectories of flows. *Topology Appl.,* 130(2):183–204, 2003.

[11] Sergiy Maksymenko. Homotopy types of stabilizers and orbits of Morse functions on surfaces. *Ann. Global Anal. Geom.,* 29(3):214–285, 2006.

[12] Sergiy Maksymenko. Homotopy dimension of orbits of Morse functions on surfaces. *Travaux Mathématiques,* 18:39–44, 2008.

[13] Sergiy Maksymenko. ∞-jets of diffeomorphisms preserving orbits of vector fields. *Cent. Eur. J. Math.,* 7(2):272–298, 2009.

[14] Sergiy Maksymenko. Reparametrization of vector fields and their shift maps. *Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos.,* 6(2):489–498, arXiv:math/0907.0354, 2009.

[15] Sergiy Maksymenko. Functions with isolated singularities on surfaces. *Geometry and topology of functions on manifolds. Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos.,* 7(4):7–66, 2010.

[16] Sergiy Maksymenko. Local inverses of shift maps along orbits of flows. *Osaka Journal of Mathematics,* 48(2):415–455, 2011.

[17] Sergiy Maksymenko. Deformations of functions on surfaces by isotopic to the identity diffeomorphisms. page arXiv:math/1311.3347v3, 2016.

[18] Dusa McDuff. Remarks on the homotopy type of groups of symplectic diffeomorphisms. *Proc. Amer. Math. Soc.,* 94(2):348–352, 1985.

[19] Dusa McDuff and Dietmar Salamon. *Introduction to symplectic topology.* Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1995. Oxford Science Publications.

[20] Jürgen Moser. On the volume elements on a manifold. *Trans. Amer. Math. Soc.,* 120:286–294, 1965.

[21] Leonid Polterovich. *The geometry of the group of symplectic diffeomorphisms.* Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2001.

[22] Georges Reeb. *Sur certaines propriétés topologiques des variétés feuilletées.* Actualités Sci. Ind., no. 1183. Hermann & Cie., Paris, 1952. Publ. Inst. Math. Univ. Strasbourg 11, pp. 5–89, 155–156.