Phytotherapeutic Evidence Against Coronaviruses and Prospects for COVID-19

Abdullahi Temitope Jamiu2, Christiana Eleojo Aruwa1, Ismail Abiodun Abdulakeem3, Abdulwaleel Ayokun-nun Ajao4 and Saheed Sabiu1,*

ABSTRACT

The emergence of the novel β-coronavirus (SARS-CoV-2) and subsequent outbreak of COVID-19, is a global health challenge with no known treatment to date and has culminated in significant morbidity and mortality. This article highlights current understanding on SARS-CoV-2 based on the available scientific evidence on human coronavirus (HCoV) infections, which could offer novel insights and therapeutic targets for SARS-CoV-2, the causative agent of COVID-19. Specifically, the paper presents available phytotherapeutic evidence against pathogenic HCoVs with a view to identifying potent plant-derived antiviral agents that could be developed to aid the fight against coronaviruses and the current COVID-19. Evidently, elucidation of CoV integral proteins such as the spike protein, angiotensin-converting enzyme 2, 3C-like cysteine protease and papain-like protease, as good targets for drug developments has lent credence to the use of medicinal plants or their metabolites as prophylaxis or treatment interventions in CoV infections and holds promising ground for SARS-CoV-2. While some promising phytocompounds are currently under clinical trials for COVID-19, increased research into plants and in-depth characterization of their metabolites could reveal more interesting results that would benefit humanity in its fight against emerging and re-emerging viral infections including the current COVID-19. Overall, given the current body of evidence on the potential development of phytotherapeutics for COVID-19, fears need to be allayed while clinical trials continue. Conclusively, the lockdown and other preventive measures which have been implemented in most parts of the world should be humanely exercised and supported to ensure compliance and safety of lives.

Key words: Coronavirus; COVID-19; Antivirals; Drug target; Natural products; Plants; Plant metabolites; SARS-CoV-2.

INTRODUCTION

Globally, viruses are integral groups of etiological agents associated with significant morbidity and mortality.1, 2 Interventions such as the use of antiviral agents including drugs and vaccines are normally employed to reduce the rate and extent of comorbidities due to viral infections in animals and humans.3 Such interventions, however, remain under trial for use as palliatives to fight the current severe acute respiratory syndrome (SARS) infection called COVID-19. COVID-19 is caused by a novel coronavirus (CoV) named SARS-CoV-2.4 However, CoVs are not new in the emerging infections terrain and have been generally recognized as a large group of related viruses of medical and veterinary significance. The first Coronavirus-Infected Bronchitis Virus (IBV) - was isolated in 1931 by Schalk and Hawn, who thought it to be a respiratory disease of chicks.5 The studies that led to their characterization and acknowledgment as an agent of medical importance started in 1965, with the work of Tyrrell and Bynoe. Whilst working with IBV, mouse hepatitis virus and transmissible gastroenteritis virus of swine, the viruses were found to be morphologically similar under electron microscope. They were, thus, dubbed a new group of viruses in 1968, with the name "Coronaviruses". but only accepted as a new genus of viruses in 1975.6

While the initial classification of the genus was mainly based on microscopic examination,7 the advent of advanced molecular methods, such as nucleic acid amplification technologies, automated DNA sequencing and bioinformatics, have now elucidated CoVs as pleomorphic, enveloped viruses with a positive-sense single-stranded-RNA genome and a nucleocapsid of helical symmetry.8 Compared to other RNA Viruses, CoV has the largest viral genome of about 27 to 32 kb in length, with about 65-125 nm in diameter,9,10 and can diffuse among mammals and humans.11 This large genome confers them with high recombinant rates by constantly developing transcription error and RNA-Dependent-RNA-polymerase (RdRP) jumps.12 Structurally, CoVs are made up of nucleocapsid protein (N) which forms a complex with the RNA, the surface glycoprotein (S) which forms the petal-shaped surface projection (spike) that is responsible for virus entry into host cells, the membrane glycoprotein (M) which gives the virion its shape, and the envelop glycoprotein (E) that is involved in virion assembly13 (Figure 1). Just like the recent emergence of SARS-CoV-2 in December 2019 in Wuhan, a similar occurrence in the later part of the year 2002 also witnessed SARS infection that emerged in the Southern China
Coronaviridae, order Nidovirales and subfamily Orthocoronavirinae. Generally, CoVs constitute a genus within the family Coronaviridae, order Nidovirales and subfamily Orthocoronavirinae. To date, four CoV genera (alpha, beta, delta and gamma) have been elucidated, with human CoVs (HCoVs) identified in the alpha-CoV (HCoV-229E and HCoV-NL63) and beta-CoV (MERS-CoV, SARS-CoV, HCoV-OC43 and HCoV-HKU1) genera. The HCoV-229E, HCoVNL63, HCoV-OC43 and HCoV-HKU1 strains cause respiratory tract infections (RTIs) that are mostly non-virulent, mild and self-limiting like the common cold, while SARS-CoV or SARS-CoV-2 and MERS-CoV are associated with severe RTIs which may either cause significant morbidity or lead to death. The severe respiratory diseases caused by these viruses could also culminate into enteric infections or ‘cytokine storm’, an event which is indicative of an overreaction in immune responses.

For antiviral drug development, viral penetration and its subsequent replication are usually the targets and these processes have been well established on integral proteins of CoVs. The most studied of the CoV integral proteins which make good targets for drug developments are the spike (S) protein, 3C-like protease (3CLpro) and papain-like protease (PLpro). Notably, studies have shown the capability of natural compounds to inhibit these proteins associated with SARS or MERS CoV infections. Following the release of the SARS-CoV-2 gene sequence which showed high similarities with SARS or MERS proteins, it was theorized that existing effective anti-MERS or anti-SARS interventions could be invaluable in the race to find a drug that is anti-SARS-CoV-2 to fight the COVID-19 infection. SARS-CoV-2 and SARS-CoV also bind to the same host cell receptor, but SARS-CoV-2 binds more easily and tenaciously, and this could give an insight into why COVID-19 seems to be more effectively spread through human-to-human interaction. However, more research data is still required to support this insight.

Generally, although, CoV infections are controllable, there remains the possibility of sporadic new cases if humans continue to encounter their animal hosts. Therefore, to ensure some level of preparedness, active antiviral moieties which abound in medicinal plants could form a formidable force to fight such outbreaks, especially when control measures fail. Hence, science may have to resort to nature, plants, their metabolites and/or extracts for some level of succour. The online resources and database range for this article included PubMed, Google Scholar, MeSH, ScienceDirect, National Institute of Health (NIH) and Nation Centre for Biotechnology Information (NCBI) web resources. Word combinations and phrases pertinent to the subject under review were used. Some of these include coronaviruses, emerging topics on COVID-19, plant-based antivirals against coronaviruses, plant antiviral agents, plant metabolites for CoV prophylaxis, potent plant metabolites for CoV treatment, potential plants and their antiviral activity against CoVs, among others. Records and reports included relevant information from inception till May 2020 to help fine-tune results for thorough discussion on the appraised topic. Following the gathering of data, a mechanistic model (Figure 2) was generated to show inclusion and exclusion basis used for screening research records.

RESULTS AND DISCUSSION

Mode of transmission and life cycle of SARS-CoVs and MERS-CoV

Different strains of CoVs infect different hosts, and they normally deploy species-specific approaches for attachment and entry into the host cell. Studies have identified how CoVs enter the host cells and the definite manner through which each species of CoVs interact with the unique cellular receptors of the host. Such efforts have found that CoVs demonstrate a complex pattern for receptor recognition. Even when different species of CoVs infect similar hosts, they usually vary in the degree of diseases they cause, including acute, persistent, severe and highly lethal infections. While bats have been recognized as the reservoir for SARS-CoVs and MERS-CoV, their intermediate hosts differ considerably ranging from palm civets, dromedary camels to Malayan pangolin for SARS-CoV, MERS-CoV and SARS-CoV-2, respectively.

For CoVs, the S glycoprotein has two subunits (S1 and S2) and has been reported responsible for binding to host-receptor on the cell surface, and consequently entry into the cell. While the S1 subunit contains N- and C-terminal domains (S1-NTD and S1-CTD, respectively), the S2 subunit has the N- and C-terminal domains (S2-NTD and S2-CTD, respectively). The S2 subunit contains the receptor-binding domain (RBD), which binds to the host cell receptor.

The S glycoprotein of SARS-CoV-2 is the main target for the development of antiviral therapies. It is a class I transmembrane protein containing two functional domains, S1 and S2, which are responsible for attachment and penetration, respectively. The S1 domain, in turn, is further divided into two subdomains, S1-NTD and S1-CTD, which are responsible for receptor binding and conformational changes, respectively. The S2 domain is responsible for fusogenic activity and membrane fusion.

For antiviral drug development, viral penetration and its subsequent replication are usually the targets and these processes have been well established on integral proteins of CoVs. The most studied of the CoV integral proteins which make good targets for drug developments are the spike (S) protein, 3C-like protease (3CLpro) and papain-like protease (PLpro). Notably, studies have shown the capability of natural compounds to inhibit these proteins associated with SARS or MERS CoV infections. Following the release of the SARS-CoV-2 gene sequence which showed high similarities with SARS or MERS proteins, it was theorized that existing effective anti-MERS or anti-SARS interventions could be invaluable in the race to find a drug that is anti-SARS-CoV-2 to fight the COVID-19 infection. SARS-CoV-2 and SARS-CoV also bind to the same host cell receptor, but SARS-CoV-2 binds more easily and tenaciously, and this could give an insight into why COVID-19 seems to be more effectively spread through human-to-human interaction. However, more research data is still required to support this insight.

Generally, although, CoV infections are controllable, there remains the possibility of sporadic new cases if humans continue to encounter their animal hosts. Therefore, to ensure some level of preparedness, active antiviral moieties which abound in medicinal plants could form a formidable force to fight such outbreaks, especially when control measures fail. Hence, science may have to resort to nature, plants, their metabolites and/or extracts for some level of succour. The online resources and database range for this article included PubMed, Google Scholar, MeSH, ScienceDirect, National Institute of Health (NIH) and Nation Centre for Biotechnology Information (NCBI) web resources. Word combinations and phrases pertinent to the subject under review were used. Some of these include coronaviruses, emerging topics on COVID-19, plant-based antivirals against coronaviruses, plant antiviral agents, plant metabolites for CoV prophylaxis, potent plant metabolites for CoV treatment, potential plants and their antiviral activity against CoVs, among others. Records and reports included relevant information from inception till May 2020 to help fine-tune results for thorough discussion on the appraised topic. Following the gathering of data, a mechanistic model (Figure 2) was generated to show inclusion and exclusion basis used for screening research records.

RESULTS AND DISCUSSION

Mode of transmission and life cycle of SARS-CoVs and MERS-CoV

Different strains of CoVs infect different hosts, and they normally deploy species-specific approaches for attachment and entry into the host cell. Studies have identified how CoVs enter the host cells and the definite manner through which each species of CoVs interact with the unique cellular receptors of the host. Such efforts have found that CoVs demonstrate a complex pattern for receptor recognition. Even when different species of CoVs infect similar hosts, they usually vary in the degree of diseases they cause, including acute, persistent, severe and highly lethal infections. While bats have been recognized as the reservoir for SARS-CoVs and MERS-CoV, their intermediate hosts differ considerably ranging from palm civets, dromedary camels to Malayan pangolin for SARS-CoV, MERS-CoV and SARS-CoV-2, respectively.

For CoVs, the S glycoprotein has two subunits (S1 and S2) and has been reported responsible for binding to host-receptor on the cell surface, and consequently entry into the cell. While the S1 subunit contains N- and C-terminal domains (S1-NTD and S1-CTD, respectively), the S2 subunit has the N- and C-terminal domains (S2-NTD and S2-CTD, respectively). The S2 subunit contains the receptor-binding domain (RBD), which binds to the host cell receptor.
both of which are receptor-binding domains (RBD), the S2 subunit, an elongated structure which forms the stalk, is mainly involved in ensuring attachment of viral envelop to the target cell membrane. To facilitate entry, the S1-CTD of MERS-CoV and SARS-CoVs interact with dipeptidyl peptidase 4 (DPP4) and angiotensin-converting enzyme 2 (ACE2), respectively. The ACE2 is an ectoenzyme anchored to the plasma membrane of the cells of several tissues, especially the lower respiratory tract, heart, kidney and gastrointestinal tract. Following S1-CTD’s interaction with the receptor, the viral nucleocapsid gets deposited into the cytoplasm, where consecutive replication, assembly and release of a new viral particle occurs. RNA replication in MERS-CoV and SARS-CoVs takes advantage of their open reading frames (ORFs) with the involvement of replicase genes (rep1a and rep1ab), a slippery sequence (5′-UUUAAC-3′) and polyproteins (pp1a and pp1ab). The polyproteins encode important non-structural proteins (NSP1–11 and NSP1–16) of the beta-CoVs. Specifically, the RNA replication which occurs on double-membrane vesicles (DMVs), involves the positive stranded RNA genome as a template which facilitates the production of the negative strand RNA. Using the replicase gene encoded enzymes, the negative stranded RNA genome was used to produce overlapping mRNA molecules which, subsequently, gets translated into the four structural proteins (N, M, E and S). While the NSPs serve to assemble the RNA into a helical twisted structure, the membrane-bound structural proteins get packed into the endoplasmic reticulum (ER) before translocation into endoplasmic reticulum-Golgi intermediate compartment (ERGIC). The nucleocapsids formed from the encapsidation of progeny genomes by N protein are then merged with the membrane-bound components, forming virions by budding into the ERGIC. Subsequently, the new virions get exported by Golgi bodies and are exocytosed into the extracellular space of the host cell, that allows attack by virions and possible transmission to other individuals (Figure 3).

Person-to-person transmission of SARS-CoV is through respiratory droplets, close contact with infected persons, faecal-oral route and aerosols. MERS-CoV is transmitted through respiratory droplets, close contact with diseased patients/camels and ingestion of camel milk. For SARS-CoV-2, current data shows major transmission routes are droplets transmission, contact transmission, with possibility of faecal-oral and aerosol transmission. Table 1 presents an overview of the characteristic clinical features of MERS-CoV and SARS-CoVs.

Some potent drugs, metabolites and interventions against SARS-CoV-2

The recent outbreaks of viral diseases such as Ebola, Zika and SARS-CoV-2, among others called for the development of new host-targeted
therapeutics, as well as a revisit of the drug reprofiling/repositioning methodology (DRM). DRM implies producing an added value from pre-existing medications and is usually achieved by channelling known drugs to another disease/infection besides that for which it was originally targeted.39,40 The major advantages of DRM over new drug formulations are that the pre-existing drug production process is already established, safe, reliable, and there is also reduced cost and timeline to clinical availability, plus the significantly improved success rate to market profitability. In addition, early drug developmental phases and drug-interaction properties from animal models used in pre-clinical trials are readily available.51,62

As part of DRM, compounds which target viruses belonging to two or more viral families known as broad-spectrum antiviral agents (BSAAs) which are safe for use in humans have been proposed to provide herd protection against re-emerging and emerging viral infections while also broadening possible antiviral options.22 Some notable examples of BSAAs include etemine (an antiprotozoal capable of inhibiting HCoV-OC43, Zika and Ebola viruses and HIV-1 infections), enoxacin (anti-Zika and anti-HIV-1),43 amodiaquine (antimalarial and anti-Zika),44 and niclosamide (anthelmintic and anti-Zika).45-48 Several other BSAAs including chloroquine, azithromycin, cyclosporine, rapamycin, mycophenolic acid, etximtube and nitazoxanide are currently undergoing phase IV surveillance studies under this concept.49 A wide assortment of safe BSAAs which could be subjected to further studies as potential SARS-CoV-2 drug candidates are available from the database at https://drugvirus.info/. Study data must however be fused and harmonized for greater efficiency.19

Another therapeutic is the cyclooxygenase (COX) mediator/inhibitor, indomethacin. Indomethacin/indocin has been shown to be an effective inhibitor of SARS-CoV-2 \textit{in vitro}.49 It is a non-steroidal anti-inflammatory drug (NSAID) with good antiviral potential against canine CoV \textit{in vivo}.46 It also showed similar potential against human SARS-CoV-2.46 In a study involving canine models, the feacal shedding of the control dog group increased steadily and peaked on the seventh day post-infection, while the viral titre in the indomethacin-treated group reduced drastically after resumption of treatment post-infection. Viral shedding in the treated dog group reached minimal levels at day seven post-infection.16

Again, human monoclonal antibodies (MAb) targeting the viral spike protein may be useful prophylactically against SARS. Fusion inhibitors like enfuvirtide which is used in HIV may be redesigned for SARS-CoV. Nonpeptide inhibitors and peptide mimics which target viral 3C-like cysteine protease (3CPro) in CoVs with high selectivity index may show promise for SARS-CoV inhibition. Short interfering RNAs (ribavirin), α- interferon and β-interferon could also show promise for SARS control. Also, compounds with known \textit{in vitro} inhibition of SARS such as calpain inhibitors, valinomycin,50 glycopeptidase antibiotics, nelfinavir,51 plant lectins, aurantripyrroxylic acid and hesperetin52 could be subjected to further studies targeting SARS-CoV-2. Other identified anti-SARS-CoV agents include HIV protease inhibitors,53 anthraquinone-based compound,54 carbohydrate-binding agents,55 an antipsychotic54 and a nucleoside analogue.56 Hsieh et al.57 further expanded the list from their report on the successful test of a combination therapy that involved nelfinavir and agglutinin from \textit{Galanthus nivalis} which showed synergistic antiviral efficacy, although used in the treatment of feline SARS-CoV. Nelfinavir is a known safe anti-HIV-1 protease inhibitor with remarkable activity \textit{in vivo}57 and its efficacy in SARS-CoV-2 infection has been demonstrated since 2004.55

Agglutinin from \textit{G. nivalis} belongs to a class of antivirals called carbohydrate-binding agent and has the ability to bind to both the membrane and spike proteins of CoVs.58 As the foremost study that showed anti-HIV-1 protease inhibitors as effective blockers of feline CoV replication, it serves as a classical and successful example of DRM.54 A CoV-membrane active compound denoted as K22 was reported to actively interfere with the DMVs formation, a process which is integral to the establishment of CoV replication. This effect was followed by a significant inhibition of viral RNA synthesis in MERS and HCoV-229E. This research finding points further studies toward a new drug development target for the treatment of pathogenic HCoVs including SARS-CoVs.60

With clinical trials underway, a reprofiled Ebola medication, remdesivir, seems to show great promise for use in COVID-19 therapy compared to other SARS-CoV-2 test drugs. Remdesivir is a nucleotide analogue thought to act by halting the ability of the virus to replicate, thus reducing the infection of healthy body cells. Nonetheless, a study in China showed remdesivir as being more effective against SARS-CoV-2 when combined with chloroquine. Additional data on the drug efficacy and safety are however expected soonest.61,62 Another oral pill intervention being tested is favipiravir known as Avigan and is favoured over remdesivir which is intravenously injected.63 Other promising antiviral drugs undergoing test and clinical trials include SPL7013 from Starpharm, an antiviral dendrimer,64 Kaletra (a combination of lopinavir and ritonavir), EIDD-2801 (similar action as remdesivir and may be available as a pill), ivermectin, Actemra, Kevzara and Calquence. The use of stem cells, blood plasma from recovered COVID-19 patients and pluristems are also being investigated for potential use in COVID-19 prophylaxis or treatment.65

Antibody-based treatments capable of preventing viral entry and infection like SAB-301 have also shown great promise. Again, MAbs such as REGN3048 and REGN3051 were shown in initial trials to be well tolerated and are at advanced stages of clinical trial.66 With regards to vaccines for SARS-CoV-2, the National Institute of Allergy

| Table 1: Comparative representation of biological features of SARS-CoVs and MERS-CoV. |
|-----------------|------------------|------------------|
| Virus | SARS-CoV | MERS-CoV | SARS-CoV-2 |
| Disease caused | SARS | MERS | COVID-19 |
| Emergence | 2002 | 2012 | 2019 |
| Reservoir host | Bat | Bat | Bat |
| Intermediate host | Palm Crevet | Dromedary Camel | Malayan Pangolin? |
| Incubation period | 2-7 days | 5-6 days | 2-14 days |
| Host receptor | ACE2 | DDP4 | ACE2 |
| Case fatality rate | 9.50% | 34.40% | 7.10% |
| Symptoms | Fever, dry cough, headache, difficulty in breathing, muscle aches, loss of appetite, diarrhoea | Fever, chills, diarrhoea, nausea, vomiting, congestion, sneezing, sore throat | Fever, cough, shortness of breath, fatigue |
| Complications | Heart, liver and respiratory failure in adverse condition. | Acute pneumonia and kidney failure in adverse condition. | Acute pneumonia, septic shock and respiratory failure in adverse condition. |

Jamiu, et al.: Phytotherapeutic Evidence Against Coronaviruses and Prospects for COVID-19
Pharmacognosy Journal, Vol 12, Issue 6, Nov-Dec, 2020

1255
and Infectious Diseases (NIAID) in conjunction with other research institutes would be conducting clinical trials for a vaccine named mRNA-1273. The vaccine would however not be publicly available till 2021.67 Another vaccine in form of a microneedle patch called PittCoVacc, developed by the University of Pittsburgh School of Medicine has been shown to evoke the production of anti-SARS-CoV-2 antibodies within two weeks of the patch prick.68 Several other vaccines are also being designed with possible clinical trials underway.

Plants and plant secondary metabolites as antiviral agents and prospects for COVID-19

Antiviral agents and prospects for COVID-19

Natural products from plants including plant extracts and plant-derived compounds have wide applications as nutraceuticals and with potential use in the prevention and treatment of several communicable and non-communicable diseases.44 Unsurprisingly, synthesis of conventional drugs is greatly dependent on medicinal plants and a staggering one-quarter of the commonly used conventional drugs were originally synthesised from plant-derived compounds.70 A typical example is chloroquine phosphate, a structural analogue of quinine derived from the bark of the Cinchona tree. This drug is traditionally used for the treatment of malaria however, it has been reported to exert considerable antiviral and immunomodulating properties.97,98 Another antimalarial drug, artemisinin is obtained from Artemisia annua.71 Again, while emetine, an amoebicidal drug is obtained from Cephaelis ipecacuanha, others such as quinidine, topotecan, taxol, morphine, aspirin, digitalis Cinatl and co-workers 77 evaluated the antiviral potential of liquorice plant derived compounds such as apigenin, berbamine, lycorine and Lycoris radiata.72,73,74 Demand for novel, highly potent, less toxic and cost-effective antivirals especially amidst the current COVID-19 pandemic.77-80 Natural compounds may confer antiviral activity via the modulation of immune system against the virus or through direct inhibition or blockage of viral entry, replication, infection, reverse transcription, protein expression, assembly, release or host-specific interactions.3,78

Medicinal plants have rich bioactive components which could be explored for therapeutic leads. In fact, in recent times medicinal plants and their products have gained greater attention and a variety of herbs have been investigated for their antiviral potential. Extracts of plants such as Lycoris radiata, Artemisia annua, Pyrosis lingua, and plant derived compounds such as apigenin, berbamine, lycorine and glycyrrhizin are not only potent antiviral agents, but they also possess remarkable anti-human coronaviral (HCoV) properties. These make them excellent lead compounds for novel antiviral drug development, especially amidst the current COVID-19 pandemic.78,79 Natural compounds may confer antiviral activity via the modulation of immune system against the virus or through direct inhibition or blockage of viral entry, replication, infectivity, reverse transcription, protein expression, assembly, release or host-specific interactions.3,78

Interestingly, traditional or herbal medicine has been previously employed to treat HCoVs, and studies have confirmed its efficacy either as a holistic intervention or as combined therapy with conventional medicine.78,81,82 For instance, during the SARS-CoV outbreak in 2002, Cinatl and co-workers77 evaluated the antiviral potential of licorice roots-derived compounds such as ribavirin, 6-azauridine, pyrazofurin, and glycyrrhizin against two clinical isolates of SARS-CoV (FFM-1 and FFM-2) isolated from German patients in Vero cell cultures. Of the five compounds, glycyrrhizin had the most potent activity with 50% effective concentration (EC50) of 300 mg/L and selectivity index of 67. The mode of action of glycyrrhizin against SARS-CoV was obscure; however, it could be due to its induction of nitrous oxide synthase since nitrous oxide is a known inhibitor of replication in several viruses (e.g. Japanese encephalitis virus).83 The Camellia sinensis plant has been reported to contain theafalin,84 water soluble tannic acid and theaflavin-3-gallate85 which contribute to its antiviral function against rotavirus and SARS-CoV. Eleutherococcus senticosus containing theafalin and catechin has also been shown to be effective against rotavirus and HCoVs.86,87 Glycyrrhizin is also a good inhibitor of hepatitis B virus; it is capable of stimulating endogenous production of interferons and with remarkable antioxidant activity.88 Similarly, a further study by Hoever and co-workers89 reported the increased anti-SARS-CoV activity of chemically modified glycyrrhizin derivatives, however the modified derivatives had increased cytotoxicity and reduced selective index compared to the original compound.89 Ginsenoside-Rb1, a steroid from Panax Ginseng, a traditional Chinese medicine, shows considerable activity against SARS-CoV at a concentration of 100 µM. The same study also demonstrated the anti-SARS-CoV potential of acesic and reserpine, with EC50 values of 6.0 µM and 3.4 µM, respectively.90 Similarly, baicalin, a flavonoid from another traditional Chinese medicine, Scutellaria baicalensis has also been reported to possess anti-SARS-CoV activity.91 Furthermore, the anti-HCoV-229E activity of glucosidic compounds, saikosaponins (A, B, C and D) has been shown. The strongest potency was displayed by saikosaponin B and its mechanism of action was attributed to the interference of early stages of viral replication such as viral attachment, adsorption and penetration.92 In another study by Yi and co-workers93 that involved the screening of small molecules from 121 Chinese herbs extracts resulted in the identification of two molecules, tetra-O-gallloyl-β-d-glucose (TGG) and luteolin from Gallia chinensis and Rhodiola kirilowii, respectively with substantial effects on SARS-CoV.94 The proposed mechanism of action of these two compounds was via the blockage of viral entry. The high selective index (SI) value of TGG (SI: 240) compared to luteolin (SI: 24) might make it a better lead compound, since this means that it can be used at high concentration with no significant cytotoxic effects.95 A high throughput screening of 200 Chinese medicinal herb extracts has demonstrated the significant anti-SARS-CoV activity of Lycorisin radiata (ethanolic extract), Artemisia annua (ethanolic extract), Pyrosis lingua (chloroform extract), and Lindera aggregata (ethanolic extract) with EC50 ranging from 2.4 ± 0.2 to 88.2 ± 7.7 µg/ml (Table 2). Further fractionation and purification of the alkaloid components of the most potent extract, Lycoris radiata (EC50: 2.4 ± 0.2 µg/ml) resulted in the isolation of the active ingredient of the herb, lycorine with EC50 of 15.7 ± 1.2 mM. Its remarkable SI value greater than 900 also makes it a great lead compound for future drug design.96

With the use of a Vero E6 cell-based cytopathogenic effect (CPE) assay, the anti-SARS-CoV potential of 221 compounds was determined by Wen and co-workers.97 The study demonstrated that ten diterpenoids which include ferruginol, dehydroabieta-7-one, sugiol, crypotojaponol, 8β-hydroxyabieta-9(11),13-dien-12-one, 7β-hydroxydeoxycryptojaponol, 6,7-dehydroroyleanone, 3β-,12-dehydroabieta-7-one (SI: 89.8), betulonic acid (SI: 180), and savinin (SI: >667) were the leading candidates for novel antiviral drug development. The highest potency was displayed by the 13-one (SI: >510), 7β-hydroxydeoxycryptojaponol (SI: 111), 3β-,12-dehydroabieta-7-one (SI: 76.3), 8β-hydroxyabieta-9(11),13-dien-12-one diterpenoids which include ferruginol, dehydroabieta-7-one, 7β-hydroxydeoxycryptojaponol, 6,7-dehydroroyleanone, 3β-,12-dehydroabieta-7-one, diacetoxyabieta-6,8,11,13-tetraene, pinusolidic acid, forskolin; two sesquiterpenoids viz., cedrene-3β,12-diol, α-cadinol; two triterpenoids namely betulinic acid, betulonic acid; five lignoids hinokinin, savinin, 4β-O-benzoylisolariciresinol, honokiol, magnolol; and a phenolic compound, curcumin had remarkable anti-SARS-CoV activity at concentrations between 3.3 and 10 µM. All of these phytocompounds, except sugiol and 4β-O-benzoylisolariciresinol markedly inhibited SARS-CoV replication. Moreover, the SI values of ferruginol (SI: 58.3), 1256 Jamiu, et al.: Phytotherapeutic Evidence Against Coronaviruses and Prospects for COVID-19
Pharmacognosy Journal, Vol 12, Issue 6, Nov-Dec, 2020
Table 2: Medicinal plants with anti-coronaviral potential.

SN	Plant	Family	Plant part	Extract	Metabolite or extract (Dose)	EC₅₀	Proposed mechanism	HCoV	Reference
1	Artemisia annua	Asteraceae	Whole plant	Ethanol	Artemisinin (10⁻⁷ - 10⁻⁴ mg/ml)	34.5 ± 2.6 µg/ml	Unclear	SARS-CoV	78
2	Cassiae Semen extract (Cassia tora)	Fabaceae	Seed	n-hexane	Na (0 - 10 µg/ml)	8.43 µg/ml	Inhibition of SARS-CoV 3CL protease activity	SARS-CoV	96
3	Dioscoreae Rhizoma extract (Dioscorea batatas)	Dioscoreaceae	Tuber	Methanol	Na (0 - 10 µg/ml)	8.03 µg/ml	Inhibition of SARS-CoV 3CL protease activity	SARS-CoV	96
4	Gentianae Radix extract (Gentiana scabra)	Gentianaceae	Rhizome	n-hexane	Na (0 - 10 µg/ml)	8.70 µg/ml	Inhibition of viral replication	SARS-CoV	96
5	Lindera aggregata	Lauraceae	Root	Ethanol	Na (10⁻¹ - 10⁻⁴ mg/ml)	8.82 ± 7.7 µg/ml	Inhibition of viral replication	SARS-CoV	96
6	Loranthi Ramus extract (Taxillus chinensis)	Loranthaceae	Stem, leaf	n-hexane	Na (0 - 10 µg/ml)	5.39 µg/ml	Inhibition of viral replication	SARS-CoV	96
7	Lycoris radiata	Amaryllidaceae	Stem	Ethanol	Lycorine (10⁻ⁱ - 10⁻⁷ mg/ml)	2.4 ± 0.2 µg/ml	Unclear	HCoV-OC43, HCoV-NL63, MERS-CoV, MHV-A59	99
8	Pyrosia lingua	Polypodiaceae	Leaf	Chloroform	Na (10⁻¹ - 10⁻⁴ mg/ml)	43.2 ± 14.1 µg/ml	Unclear	SARS-CoV	78
9	Rhizoma Cibotii extracts (Cibotium barometz)	Cibotiaceae	Rhizome	Ethanol and methanol	Na (0 - 10 µg/ml)	8.42 and >10 µg/ml	Inhibition of SARS-CoV 3CL protease activity	SARS-CoV	92
10	Strobilanthes cusia	Acanthaceae	Leaf	Methanol	Na (0 - 10 µg/ml)	0.64 ± 0.43 µg/ml	Virucidal activity	HCoV-NL63	110
11	Glycyrrhiza glabra L., Glycyrrhiza uralensis	Fabaceae	Root	Na	Glycyrrhizin (300 mg/L)	Na	Virucidal activity	SARS-CoV	77, 101, 102
12	Houttuynia cordata Thunb.	Saururaceae	Whole plant	Aqueous	Na	Na	Increase the activity CD4+ and CD8+ of T cells; inhibition of protease (3CLpro); RNA dependent RNA polymerase (RdRp) activity.	SARS-CoV	103
13	Toona sinensis Roem	Meliaceae	Leaf	Aqueous	Quercetin (Na)	Na	Unclear	SARS-CoV	91, 95
14	Pelargonium sidoides DC.	Geraniaceae	Root	Aqueous	Catechin and gallocatechin (Na)	Na	Inhibit replication of H1N1, H3N2 virus strains, respiratory syncytial virus, and human coronavirus Inhibited the interaction of SARS-CoV-3 protein and ACE2	SARS-CoV	95, 104
15	Rheum officinale	Polygonaceae	Root tubers	Aqueous	Emodin (Na)	Na	Inhibited the interaction of SARS-CoV protein and ACE2	SARS-CoV	54
16	Polygonum multiflorum Thunb.	Polygonaceae	Root and vine	Aqueous	Emodin (Na)	200 µM	Inhibited the interaction of SARS-CoV protein and ACE2	SARS-CoV	54
17	Polygonum aviculare	Polygonaceae	Root tuber	Aqueous	Juglanin (10 - 40 µM)	2.3 µM	Inhibit the replication and expression of coronavirus and TRP gene	SARS-CoV	88
18	Anthemis hyaline DC.	Asteraceae	Flower and bud	Ethanol	Flavanoids. (Na)	Na	Inhibit the replication and expression of coronavirus and TRP gene	SARS-CoV	98, 106
19	Nigella sativa L.	Ranunculaceae	Seed	Ethanol	Thymoquinon, α- Hederin and Nigellidine (Na)	Na	Virucidal activity	SARS-CoV	77, 101, 102
inhibited SARS-CoV in vitro, though the elicited mechanism is yet to be elucidated, its activity was attributed to the presence of quercetin, a known plant flavonol with reported antiviral activity against HIV-luc/SARS.\(^{70,71}\) Furthermore, a species from the family Geraniaceae in southern Africa that has been formulated into an herbal drug for the treatment of respiratory infection, *Pelargonium sidoides* was also found to hinder the replication of H1N1, H3N2 virus strains, respiratory syncytial virus, and HCoVs.\(^{94,95}\) Another study that involves the antiviral activity of six extracts from *Cassia tora*, with 50\% effective concentration (EC\(_{50}\)) values ranging from 5 to 10 µg/ml. While all the extracts showed good inhibitory activity against Vero E6 cells, the methanolic extracts of *Dioscorea batatas* and *Cibotium barometz* against Vero E6 cells, the methanolic extracts of *Dioscorea batatas* and *Cibotium barometz* demonstrated the highest antiviral potential for the first time in *E. neriifolia*. Of the triterpenoids, 3β-Friedelanol\(^{91}\) and 3β-Friedelanol \(\text{E. neriifolia}\) flavonoid glycoside, and thirteen of these compounds were identified for the first time in *E. neriifolia*. The ethanolic leaf extract of *E. neriifolia* is a potential new source of antiviral agents, and suggested that further assays aimed at tackling SAR-CoV-2 and other related viruses could be done on thistle, barley, sundew, and *Ficus sp.*\(^{116}\) Another study involving the antiviral activity of a traditional Chinese medicine, *Scrophularia coccinea* (IC\(_{50}\) : 0.64 µg/ml) has been reported. Its derivatives such as tanshinone IIa, N-cis feruloyltyramine and betulinic acid.\(^{17}\) Recently, the broad-spectrum inhibitory effects of phytocompounds such as lycorine, emetine, monensin sodium, and mycophenolic acid against a panel of HCoVs (HCoV-OC43, HCoV-NL63, MERS-CoV, and MHH-A59) have also been demonstrated.\(^{110}\) Moreover, while emetine and lycorine are potent inhibitors of dengue virus replication, lycorine has also been reported as a good inhibitor of replication in several viruses such as polioviruses, herpes simplex virus 1, Bunyamwera virus, and West Nile virus.\(^{110-112}\) Very recently, the anti-HCoV-NL63 activity of a traditional Chinese medicine, *Strobilanthus cusia* (IC\(_{50}\), 0.64 µg/ml) has also been demonstrated. Its derivatives such as lycorine has also been reported as a good inhibitor of replication in several viruses such as polioviruses, herpes simplex virus 1, Bunyamwera virus, and West Nile virus.\(^{110-112}\) Very recently, the anti-HCoV-NL63 activity of a traditional Chinese medicine, *Strobilanthus cusia* (IC\(_{50}\), 0.64 µg/ml) has been reported. Its derivatives such as tanshinone IIa, N-cis feruloyltyramine and betulinic acid.\(^{17}\) Euphorbia neriifolia L. and *Nigella sativa* in the management of HCoV infection. The compounds were sugiol, kaempferol, cryptotanshinone, mocopinamide, coumaroyltyramine, quercetin, dihomo-γ-linolenic acid, dihydrotanshinone, desmethoxyreserpine, lignan, tanshinone IIa, N-cis feruloyltyramine and betulinic acid.\(^{17}\)

19.	*Citrus sinensis* (L.) Osbeck	Rutaceae	Peel	Ethanol	Carvacrol and α-pinene (Na)	Na	Inhibit the replication and expression of coronavirus and TRP gene	SARS-CoV 88
20.	*Torrey mexicana* (L.) Siebold & Zucc.	Taxaceae	Leaf	Ethanol	Luteolin, Quercetin and Apigenin (Na)	20.23.8 and 280.8 µM	Inhibition of 3CLpro	SARS-CoV 107
21.	*Euphorbia neriifolia* L.	Euphorbiaceae	Leaf	Ethanol	Triterpenoids (0 – 25 µM), flavonoid glycoside (Na). Hinokinin (0 – 10 µM)	Na	Virucidal activity	HCoV 97, 108
22.	*Isatidis indigotica*	Brassicaceae	Root	Aqueous	Snigirin, Indigo, β-sitosterol and Aloe-emodin (Na), Hesperetin (Na)	Na	anti-SARS-CoV 3CLpro	SARS-CoV 74, 79
23.	*Scrophularia scorodonia*	Scrophulariaceae	Na	Na	Saikosaponin A, B2, C and D (0 – 25 µM)	Na	Virucidal activity	HCoV 22E9 90
24.	*Panax Ginseng*	Araliaceae	Root	Na	Ginsenoside-Rh1. (Na), Aescin (0 – 20 µM), Ressonine (0 – 20 µM)	100 µM	Inhibition of viral replication	SARS-CoV 50
25.	*Cinnamomum sp.*	Lauraceae	Cortex	Na	Procyanidin B1 (0 – 500 µM)	41.3 ± 3.4 µM	Inhibition of pseudovirus infection	SARS-CoV 106
26.	*Curcuma longa* (Tumeric)	Zingiberaceae	Rhizome	Na	Curcumin (0 – 10 µM)	>10 µM	Viral replication inhibition	SARS-CoV 82

Na = Not available
Saposnikovia divaricata coumarins, phloroglucinols of Dryopteris crassirhizoma and oleane triterpenes derived from Camellia japonica flowers also demonstrated antiviral potential against porcine epidemic diarrhea virus (PEDV), a member of the Coronaviridae family.18,19 The replication pathway of PEDV is similar to human CoVs. In other words, vaccines for MERS and PEDV could be based on similar theory20, 121 such that the compounds reported in medicinal plant species studied by Yang et al.122 could become promising candidates for further research to better tackle fatal HCoVs. Also, anti-HCoV-229E potential of saikosaponin A, B2, C and D expressed from medicinal Scrophularia scrobana, Heteromorpha and Bupleurum species have been demonstrated to prevent viral attachment and penetration in vitro. These compounds could be repurposed for SARS-CoV-2.21 Other potential plants believed to fight viral respiratory infections include Peragonium soidoses (African geranium), Androgaphis paniculata (kalmegh) and fruit of Sambucus nigra (black elder).21 A list of prospective plants and their metabolites for COVID-19 are presented in Table 2.

Plants and their metabolites as specific inhibitors of HCoV target proteins

As earlier mentioned, the HCoVs encode proteins including the 3-chymotrypsin-like protease (3CLpro) – a cysteine protease, which is important for viral replication, transcription and subsequent maturation; papain-like protease (PLpro) – essential for translation and deubiquitination; and spike protein (S) – which is indispensable for host cell entry.122, 123 These proteins provide possible targets for drug development and screening of traditional medicines with anti-coronaviral potential. In fact, some structure-based analyses and high-throughput studies have highlighted plant metabolites as potent inhibitors of these proteins. Phytochemicals such as hesperetin, sinigrin, indigo, β-sitosterol, hirsutone, emodin, myricetin and tannic acid have been reported to exhibit anti-coronaviral properties through their modulatory effect on HCoV target proteins.91, 124

A study by Lin and co-workers125 reported the anti-SARS-CoV 3CLpro potential of aqueous extract of *Litchi indigotica*. The same study was further expanded to screen five major compounds of *L. indigotica* root extract (indigo, indirubin, indican, sinigrin, and β-sitosterol) and seven other plant-derived phenolic compounds including aloen-emodin, hesperetin, quercetin, naringenin, daidzein, emodin, and chrysophanol against the same protein. Although, hesperetin (a phenolic compound) was the most efficient in blocking the cleavage processing of the protein with 50% inhibitory concentration (IC\textsubscript{50}) of 8.3 µM, other compounds such as sinigrin, indigo, β-sitosterol, hirsutone, emodin, myricetin and chrysophanol (6) have been reported to exhibit anti-coronaviral properties through their modulatory effect on HCoV target proteins.91, 124

In another study, the anti-SARS-CoV 3CLpro activity of a phenolic compound, curcumin (IC\textsubscript{50} \(\approx 40\) µM); two triterpenoids, betulinic acid (IC\textsubscript{50} \(\approx 10\) µM), betulonic acid (IC\textsubscript{50} \(\approx 100\) µM); and two lignoids, hinokinin (IC\textsubscript{50} \(\approx 100\) µM), savinin (IC\textsubscript{50} \(\approx 25\) µM) has been demonstrated.92 Another phenolic compound, quercetin-3-β-galactoside and some of its derivatives have been identified as potent inhibitors of SARS-CoV 3CLpro through a series of molecular docking and enzyme inhibition assays. The findings further demonstrated that although residue Gln189 of SARS-CoV 3CLpro plays an indispensable role in its interaction with quercetin-3-β-galactoside, its mutation does not affect the enzymatic activity of the protease.127 Quercetin also possesses significant anti-murine coronaviral activity.93 Findings of Wen and co-workers94 have shown the anti-SARS-CoV 3CLpro activity of extracts of *Citrobium barometz* (Rhizoma Cibotii) and *Dioscorea batatas* (Dioscoreaceae Rhizoma) with IC\textsubscript{50} values of 39 µg/ml and 44 µg/ml respectively. The aqueous extract of *Houttuynia cordata* have also been reported to possess significant anti-SARS-CoV 3CLpro property as well as considerable immune-stimulatory effect via the increment of CD4+ and CD8+.128

Out of the 312 Chinese medicinal herbs screened by Ho and co-workers,34 only three herbs, *Rheum officinale* Baill. (root tuber), *Polygonum multiflorum* Thunb. (root tuber) and *P. multiflorum* Thunb. (vin) displayed considerable inhibition of SARS-CoV S protein and angiotensin converting enzyme type 2 (ACE2) interaction with IC\textsubscript{50} values ranging from 1 to 10 µg/ml. Furthermore, to confirm the phytochemical component responsible for the inhibitory effect, three previously characterised biomolecules of the plants were screened. Emodin, but not Rhein and chrysin significantly blocked SARS-CoV S-protein and ACE2 interaction in a dose-dependent fashion with IC\textsubscript{50} value of 200 µM. It is noteworthy that ACE2 is the entry receptor for SARS-CoV and blockage of its interaction with SARS-CoV S protein would prevent virus entry.34 The antiviral activity of emodin against enveloped viruses including influenza virus and varicella-zoster virus, via the disruption of lipid layer has been reported by an earlier study.129

The anti-SARS-CoV 3CLpro property of ethanol extract of *Torreya nucifera* leaves has been reported.95 A bioassay guided fractionation and purification led to the identification of eight diterpenoids (18-hydroxyferruginol (1), hinokiol (2), ferruginol (3), 18-oxoferruginol (4), O-acetyl-18-hydroxyferruginol (5), methyl dehydroabietate (6), isopimaric acid (7), and kaidyol (8)) and four biflavonoids (amentoflavone (9), bilobetin (10), ginkgetin (11), and sciadopitysin (12)) with anti-SARS-CoV 3CLpro activity from the plant’s n-hexane and ethyl acetate fractions, respectively. Although the bioflavonoids were the most potent inhibitors of the protease with IC\textsubscript{50} values ranging from 8.3 to 72.3 µM, the diterpenoids also exerted considerable inhibitory effects with IC\textsubscript{50} values ranging from 49.6 to 283.5 µM. Three other flavonoids viz., luteolin, quercetin and apigenin anti-SARS-CoV 3CLpro activity was also demonstrated with IC\textsubscript{50} values of 20.3 and 280.8 µM, respectively.130 In a similar study, four triterpenes from *Tripterygium regelii* namely celastrol, pristimerin, tingenone, and uigesterin inhibited 3CLpro activity with IC\textsubscript{50} values of 10.3, 5.5, 9.9, and 2.6 µM, respectively.131 Similarly, a study by Yu and co-workers132 has reported the antiviral activity (via the inhibition of SARS-CoV helicase protein) of two flavonoids, myricetin and scutellarein with IC\textsubscript{50} values of 2.71 ± 0.19 µM and 0.86 ± 0.48 µM, respectively.

A bioactivity guided fractionation and spectroscopic analysis of the ethanolic extract of *Alnus japonica* led to the isolation of nine small diarylethylene's molecules (polyphenols). Six out of the polyphenolic compounds namely hisutonone, hisutanonol, orogonin, rubron, rubronaside B and rubronaside A exerted significant dose-dependent inhibitory effect against SARS-CoV PLpro. It is worthwhile that the biological activity of these molecules was greatly impacted by their chemical structures with most remarkable effect (IC\textsubscript{50} \(\approx 4.1\) µM) exerted by hisutonone which contains an α, β-unsaturated carbonyl group with a catechol moiety.133 The remarkable interactions of natural myricetin and rubranoside B and rubranoside A with S-CoV S protein as well as considerable immune-stimulatory effect via the increment of CD4+ and CD8+.134

The replication pathway in PEDV are similar to human CoVs. In other words, vaccines for MERS and PEDV could be based on similar theory20, 121 such that the compounds reported in medicinal plant species studied by Yang et al.122 could become promising candidates for further research to better tackle fatal HCoVs. Also, anti-HCoV-229E potential of saikosaponin A, B2, C and D expressed from medicinal Scrophularia scrobana, Heteromorpha and Bupleurum species have been demonstrated to prevent viral attachment and penetration in vitro. These compounds could be repurposed for SARS-CoV-2.21 Other potential plants believed to fight viral respiratory infections include Peragonium soidoses (African geranium), Androgaphis paniculata (kalmegh) and fruit of Sambucus nigra (black elder).21 A list of prospective plants and their metabolites for COVID-19 are presented in Table 2.
host cells. It is worthwhile that the formula has also been reported to inhibit of viral replication and reduction of cytokines release from SARS-CoV-2 activity was through the deformation of viral morphology, and fruits such as kaempferol and daidzein, quercetin, puerarin, epigallocatechin, gallocatechin gallate, epigallocatechin gallate have shown anti-SARS-CoV 3CLpro activity. Phenolics in Isatis indigotica, and the aqueous extract of Houttuynia cordata also showed SARS-CoV 3CLpro inhibition. A recent study by Runfeng and coworkers noted the inhibitory activity of lianhuaqingwen, a traditional Chinese medicine formula composing of 13 herbs against the most recent SARS-CoV-2 with IC\textsubscript{50} value of 411.2 µg/ml. The exerted anti-SARS-CoV-2 activity was through the deformation of viral morphology, inhibition of viral replication and reduction of cytokines release from host cells. It is worthwhile that the formula has also been reported to exert broad-spectrum effects on influenza viruses via inhibition of viral propagation and immunomodulation.

Similarly, a study on medicinal plant metabolites such as diallyl disulfide from Allium sativum (garlic), capsaicin from Capsicum (pepper), limonene from Elettaria (cardamom), thymol from Mentha pulegium (pennyroyal), coumarin from liquorice, verbascoside from Stachys schischkelevi (hedge净tle), curcumin from Curcuma longa (tumeric) and glucuronic acid from Astraglus gossypinus (Tragacanth) was recently conducted to detect potential compounds with activity against SARS-CoV-2 using protease enzyme interaction. Of these compounds which showed good interaction, curcumin showed the highest protease inhibiting activity against SARS-CoV-2 and may be useful in antiprotease-based medication for treatment of COVID-19.

Worthy of mention is a CoV infection intervention (no. EP19990203128) put forward by Mas Pharmaceutical. The intervention includes the glucopyranoside analogues found in Ginseng Panax species, methylpanaxadiol and 1-protopanaxatriol, in combination with a protodioscin derivative associated with Dioscorea plant, dimethylprotopsiquamine. The latter is an anti-miticot agent and the former showed anti-mutagenic and pro-apoptotic activities. In combination, the intervention targets the total functional and structural destruction of the virus through their RNA-dependent RNA polymerase and DNA gyrase inhibitive characteristics. In another development with the recent advancement in bioinformatics, Salim and Noureddine studied the molecular docking of the metabolites isolated from Nigella sativa as a potential COVID-19 inhibitor. They found out that α-hederin and nигellidine, when compared with chloroquine, have better energy scores thus touting the metabolites as good candidates for the treatment of COVID-19. Table 3 presents some of the specific plant-derived inhibitors of HCoV target proteins.

Overall, an insight into recognition of the class of compounds studied so far against HCoVs revealed that, phenolics (31.78%) and terpenoids (28.04%) are the most investigated phytocompounds with flavonoids (13.08%) and alkaloids (12.15%) also finding some promising applications (Table 3, Figure 4). The seldom application of lignoids (6.54%), saponins (5.61%) and steroids (0.93%) (Table 3, Figure 4) and several other classes of phytoneutrants of therapeutic significance not even being studied against HCoVs is a further promising ground calling for in-depth research targeting the prime proteins of these viruses and especially the current SARS-CoV-2 posing significant global challenge.

Table 3: Plant-derived specific inhibitors of HCoVs.

SN	Compound	Type	IC\textsubscript{50} or EC\textsubscript{50}	Proposed mechanism of action	HCoV	Reference
1	Lycorine (Lycoris radiata)	Alkaloid	15.7 ± 1.2 nM	Unclear	SARS-CoV	78
2	Glycyrrhizin (Glycyrrhiza glabra) (licorice root)	Saponin	300 mg/L	May inhibit 3CL50	SARS-CoV	77
3	Reserpine (Aesculus hippocastanum)	Alkaloid	3.4 µM	May inhibit 3CL50	SARS-CoV	58
4	Aescin (Rauwolfia species)	Saponin	6.0 µM	May inhibit 3CL50	SARS-CoV	58
5	Lianhuaqingwen	Chinese medicine formula	411.2 µg/ml	May inhibit 3CL50	SARS-CoV-2	137
6	Tetra-O-galloyl-β-d-glucose (Galla chinensis)	Phenolic	4.5 µM	May inhibit S protein	SARS-CoV	91
7	Luteolin (Rhodiola kirilowii)	Flavonoid	10.6 µM	May inhibit S protein	SARS-CoV	91
8	Ferruginol (Chamaecyparis obtusa var. formosana)	Terpenoid	1.39 µM	May inhibit 3CL50	SARS-CoV	92
9	Dehydroabieta-7-one (Chamaecyparis obtusa var. formosana)	Terpenoid	4.00 µM	May inhibit 3CL50	SARS-CoV	92
10	Sugiol (Chamaecyparis obtusa var. formosana)	Terpenoid	-	-	SARS-CoV	92
11	Cryptotauponol (Cryptomeria japonica) 8β-hydroxyabieta-9(11),13-dien-12-one (Chamaecyparis obtusa var. formosana)	Terpenoid	>10 µM	May inhibit 3CL50	SARS-CoV	92
12	Cryptotauponol (Cryptomeria japonica) 8β-hydroxyabieta-9(11),13-dien-12-one (Chamaecyparis obtusa var. formosana)	Terpenoid	1.47 µM	May inhibit 3CL50	SARS-CoV	92
13	7β-hydroxydeoxyabieta-pseudojaponol (Cryptomeria japonica)	Terpenoid	1.15 µM	May inhibit 3CL50	SARS-CoV	92
14	6,7-dehydroxyabieta-pseudojaponol (Chamaecyparis obtusa var. formosana)	Terpenoid	5.55 µM	May inhibit 3CL50	SARS-CoV	92
15	3β-,12-diaceocioxyabieta-6,8,11,13-tetraene (Juniperus formosana)	Terpenoid	1.57 µM	May inhibit 3CL50	SARS-CoV	92
16	Pinusolidic acid (Chamaecyparis obtusa var. formosana)	Terpenoid	4.71 µM	May inhibit 3CL50	SARS-CoV	92
17	Forskolin (Coleus forskohlii)	Terpenoid	7.5 µM	May inhibit 3CL50	SARS-CoV	92
18	Cedrane-3β,12-diol (Juniperus formosana)	Terpenoid	>10 µM	May inhibit 3CL50	SARS-CoV	92
No.	Compound Description	Type	Concentration	Effect	Virus (Reference)	
-----	---------------------	------	---------------	--------	------------------	
19.	α-cadinol (Chamaecyparis obtusa var. formosana)	Terpenoid	4.44 µM	May inhibit 3CLpro	SARS-CoV	
20.	Betulinic acid (Betula pubescens)	Terpenoid	>10 µM	May inhibit 3CLpro and S protease	SARS-CoV	
21.	Betulonic acid (Juniperus formosana)	Terpenoid	0.63 µM	May inhibit 3CLpro	SARS-CoV	
22.	Hinokinin (Chamaecyparis obtusa var. formosana)	Lignoid	>10 µM	May inhibit 3CLpro	SARS-CoV	
23.	Savinin (Chamaecyparis obtusa var. formosana)	Lignoid	1.13 µM	May inhibit 3CLpro and S protease	SARS-CoV	
24.	4,4′-O-benzoylisolariciresinol (Synthetic lignan)	Lignoid	-	-	-	
25.	Honokiol (Magnolia spp.)	Lignoid	6.50 µM	May inhibit 3CLpro	SARS-CoV	
26.	Magnolol (Magnolia spp.)	Lignoid	3.80 µM	May inhibit 3CLpro	SARS-CoV	
27.	Curcumin (Curcuma longa)	Phenolic	>10 µM	May inhibit 3CLpro	SARS-CoV	
28.	Baicalin (Scutellaria baicalensis)	Flavonoid	12.5 to 25 µg/ml	May inhibit 3CLpro	SARS-CoV	
29.	Saikosaponin A (Bupleurum spp.)	Saponin	8.6 ± 0.3 µM	May inhibit 3CLpro	HCoV-229E	
30.	Saikosaponin B2 (Bupleurum spp.)	Saponin	1.7 ± 0.1 µM	May inhibit 3CLpro and S protease	HCoV-229E	
31.	Saikosaponin C (Bupleurum spp.)	Saponin	19.9 ± 0.1 µM	May inhibit 3CLpro	HCoV-229E	
32.	Saikosaponin D (Bupleurum spp.)	Saponin	13.2 ± 0.3 µM	May inhibit 3CLpro	HCoV-229E	
33.	Lycorine (Lycoris radiata)	Alkaloid	0.15 to 1.63 µM	-	-	
34.	Emetine (Cephaelis ipecacuanha)	Alkaloid	0.12 to 1.43 µM	-	-	
35.	Berbamine (Berberis spp.)	Alkaloid	1.48 to 13.14 µM	-	-	
36.	Tetrandrine (Stephania tetrandra)	Alkaloid	0.29 to 12.68 µM	-	-	
37.	Pristimerin (Tripterygium wilfordii)	Terpenoid	1.63 to 13.87 µM	-	-	
38.	Harmine (Peganum harmala)	Alkaloid	1.90 to 13.77 µM	-	-	
39.	Conessine (Holarrhena floribunda)	Alkaloid	2.34 to 11.46 µM	-	-	
40.	Tryptanthrin (Strobilanthes cusia)	Alkaloid	1.52 ± 0.13 µM	Alteration of spike proteins; Inhibition of RNA-dependent RNA polymerase; papain-like protease 2 inhibition; inhibition of viral replication	HCoV-NL63	
41.	Chrysin	Phenolic	200 µM	Inhibition of (S) protein and ACE2 interaction	SARS-CoV	
42.	Indigotin B (Strobilanthes cusia)	Alkaloid	2.60 ± 0.11 µM	May inhibit 3CLpro	HCoV-NL63	
43.	Tetrandrine (Stephania tetrandra)	Alkaloid	0.33 ± 0.03 µM	Inhibition of viral S and N protein	HCoV-OC43	
44.	Fangchinolone (Stephania tetrandra)	Alkaloid	1.01 ± 0.07 µM	Inhibition of viral S and N protein	HCoV-OC43	
45.	Cepharanthine (Stephania tetrandra)	Alkaloid	0.83 ± 0.07 µM	Suppression of viral replication; inhibition of viral S and N protein	HCoV-OC43	
46.	Procyanidin B1 (Cinnamomi Cortex)	Flavonoid	41.3 ± 3.4 µM	Inhibition of pseudovirus infection	SARS-CoV	
No.	Compound Description	Chemical Class	IC₅₀ Value	Assay Details	Virus Target	
-----	----------------------	----------------	------------	---------------	--------------	
47.	Procyanidin A2 (Cinnamomi Cortex) Flavonoid	Flavonoid	29.9 ± 3.3 μM	Inhibition of pseudovirus infection	SARS-CoV	
48.	Cinnamomattin B1 (Cinnamomum verum) Flavonoid	Flavonoid	32.9 ± 3.9 μM	Inhibition of pseudovirus infection	SARS-CoV	
49.	Silvestrol (Aglaia spp.) Phenolic	Phenolic	3 nM	Inhibition of caps-dependent viral mRNA translation	SARS-CoV	
50.	Juglanin (Polygonum aviculare) Phenolic	Phenolic	2.3 μM	Blockage of 3a channel	SARS-CoV	
51.	Silvestrol (Aglaia spp.) Phenolic	Phenolic	1.3 nM	Inhibition of caps-dependent viral mRNA translation	MERS-CoV	
52.	Sinigrin (Isatis indigotica) Glucoside	Glucoside	217 μM	SARS-CoV 3CLpro inhibition	SARS-CoV	
53.	Beta-sitosterol (Isatis indigotica) Steroid	Steroid	1210 μM	SARS-CoV 3CLpro inhibition	SARS-CoV	
54.	Indigo (Isatis indigotica) Phenolic	Phenolic	3 nM	Inhibition of cap-dependent viral mRNA translation	HCoV-229E	
55.	Aloe-emodin Phenolic	Phenolic	2.3 μM	Blockage of 3a channel	SARS-CoV	
56.	Hesperetin Phenolic	Phenolic	8.3 μM	SARS-CoV 3CLpro inhibition	SARS-CoV	
57.	Kazinol A Phenolic	Phenolic	66.2–88.5 μM	Inhibition of 3CLpro and PLpro	SARS-CoV and MERS-CoV	
58.	Emodin (Rheum and Polygonum genera) Phenolic	Phenolic	200 μM	Inhibition of SARS-CoV S protein and ACE2 interaction	SARS-CoV	
59.	Myricetin Flavonoid	Flavonoid	2.71 ± 0.19 μM	Inhibition of SARS-CoV helicase	SARS-CoV	
60.	Scultellarein Flavonoid	Flavonoid	0.86 ± 0.48 μM	Inhibition of SARS-CoV helicase	SARS-CoV	
61.	Hirsutoneone (Alnus japonica) Phenolic	Phenolic	4.1 ± 0.3 μM	Inhibition of SARS-CoV PLpro	SARS-CoV	
62.	Hirsutanonol (Alnus japonica) Phenolic	Phenolic	7.8 ± 1.7 μM	Inhibition of SARS-CoV PLpro	SARS-CoV	
63.	Oregonin (Alnus japonica) Phenolic	Phenolic	20.1 ± 2.2 μM	Inhibition of SARS-CoV PLpro	SARS-CoV	
64.	Rubralin (Alnus japonica) Phenolic	Phenolic	12.3 ± 0.9 μM	Inhibition of SARS-CoV PLpro	SARS-CoV	
65.	Rubranoside B (Alnus japonica) Phenolic	Phenolic	8.0 ± 0.2 μM	Inhibition of SARS-CoV PLpro	SARS-CoV	
66.	Rubranoside A (Alnus japonica) Phenolic	Phenolic	9.1 ± 1.0 μM	Inhibition of SARS-CoV PLpro	SARS-CoV	
67.	Quercetin-3-β-galactoside Flavonoid	Flavonoid	42.79 ± 4.97 μM	Competitive inhibition of SARS-CoV 3CLpro	SARS-CoV	
68.	Quercetin Flavonoid	Flavonoid	23.8 ± 1.9 μM	Inhibition of SARS-CoV 3CLpro	SARS-CoV	
69.	Betulinic acid Terpenoid	Terpenoid	10 μM	Competitive inhibition of SARS-CoV 3CLpro	SARS-CoV	
70.	Betulonic acid Terpenoid	Terpenoid	>100 μM	Inhibition of SARS-CoV 3CLpro	SARS-CoV	
71.	Hinokinin Lignoid	Lignoid	>100 μM	Inhibition of SARS-CoV 3CLpro	SARS-CoV	
72.	Savinin Lignoid	Lignoid	25 μM	Competitive inhibition of SARS-CoV 3CLpro	SARS-CoV	
73.	Curcumin Phenolic	Phenolic	40 μM	SARS-CoV 3CLpro inhibition	SARS-CoV	
74.	Broussochalcone B Phenolic	Phenolic	11.6–112.9 μM	Inhibition of 3CLpro and PLpro	SARS-CoV and MERS-CoV	
75.	Broussochalcone A Phenolic	Phenolic	9.2–88.1 μM	Inhibition of 3CLpro and PLpro	SARS-CoV and MERS-CoV	
76.	4-hydroxyisolonchocarpin Phenolic	Phenolic	35.4–202.7 μM	Inhibition of 3CLpro and PLpro	SARS-CoV and MERS-CoV	
77.	Papyriflavonol A Phenolic	Phenolic	3.7–112.5 μM	Inhibition of 3CLpro and PLpro	SARS-CoV and MERS-CoV	
78.	Tannic acid Phenolic	Phenolic	3 μM	SARS-CoV 3CLpro inhibition	SARS-CoV	
79.	3-isotheaflavin-3-gallate Phenolic	Phenolic	7 μM	SARS-CoV 3CLpro inhibition	SARS-CoV	
80.	Theaflavin-3,3'-digallate Phenolic	Phenolic	9.5 μM	SARS-CoV 3CLpro inhibition	SARS-CoV	
81.	Theaflavin Phenolic	Phenolic	56 μM	SARS-CoV 3CLpro inhibition	SARS-CoV	
82.	Theaflavin-3-gallate and Theaflavin-3'-gallate Phenolics	Phenolics	43 μM	SARS-CoV 3CLpro inhibition	SARS-CoV	
83.	Apigenin Phenolic	Phenolic	280.8 ± 21.4 μM	Inhibition of SARS-CoV 3CLpro	SARS-CoV	
84.	Kazinol J Phenolic	Phenolic	15.2–109.2 μM	Inhibition of 3CLpro and PLpro	SARS-CoV and MERS-CoV	
No.	Compound	Class	IC₅₀ (µM)	Activity		
-----	--------------------------------	---------	-----------	----------------------------------		
85	18-hydroxyferruginol	Terpenoid	220.8 ± 10.4	Inhibition of SARS-CoV 3CL¹⁰⁷		
86	Hinokiol	Terpenoid	233.4 ± 22.2	Inhibition of SARS-CoV 3CL¹⁰⁷		
87	Ferruginol	Terpenoid	49.6 ± 1.5	Inhibition of SARS-CoV 3CL¹⁰⁷		
88	18-oxoferruginol	Terpenoid	163.2 ± 13.8	Inhibition of SARS-CoV 3CL¹⁰⁷		
89	O-acetyl-18-hydroxyferruginol	Terpenoid	128.9 ± 25.2	Inhibition of SARS-CoV 3CL¹⁰⁷		
90	Methyl dehydroabietate	Terpenoid	207.0 ± 14.3	Inhibition of SARS-CoV 3CL¹⁰⁷		
91	Isopimaric acid	Terpenoid	283.5 ± 18.4	Inhibition of SARS-CoV 3CL¹⁰⁷		
92	Kayadiol	Terpenoid	137.7 ± 12.5	Inhibition of SARS-CoV 3CL¹⁰⁷		
93	Amentoflavone	Flavonoid	8.3 ± 1.2	Non-competitive inhibition of SARS-CoV 3CL¹⁰⁷		
94	Bilobetin	Flavonoid	72.3 ± 4.5	Non-competitive inhibition of SARS-CoV 3CL¹⁰⁷		
95	Ginkgetin	Flavonoid	32.0 ± 1.7	Non-competitive inhibition of SARS-CoV 3CL¹⁰⁷		
96	Sciadopitysin	Flavonoid	38.4 ± 0.2	Non-competitive inhibition of SARS-CoV 3CL¹⁰⁷		
97	Abietic acid	Terpenoid	189.1 ± 15.5	Inhibition of SARS-CoV 3CL¹⁰⁷		
98	Kazinol F	Phenolic	39.5–135.0 µM	Inhibition of 3CL¹⁰⁷ and PL¹⁴²		
99	Luteolin	Flavonoid	20.0 ± 2.2	Inhibition of SARS-CoV 3CL¹⁰⁷		
100	Kazinol B	Phenolic	31.4–233.3 µM	Inhibition of 3CL¹⁰⁷ and PL¹⁴²		
101	Broussosflavan A	Phenolic	49.1–125.7 µM	Inhibition of 3CL¹⁰⁷ and PL¹⁴²		
102	Celastrol	Terpenoid	10.3 ± 0.2	Competitive inhibition of SARS-CoV 3CL¹³⁰		
103	Pristimerin	Terpenoid	5.5 ± 0.7	Competitive inhibition of SARS-CoV 3CL¹³⁰		
104	Tingenone	Terpenoid	9.9 ± 0.1	Competitive inhibition of SARS-CoV 3CL¹³⁰		
105	Iguesterin	Terpenoid	2.6 ± 0.3	Competitive inhibition of SARS-CoV 3CL¹³⁰		
106	3’-(3-methylbut-2-enyl)-3’,4,7-	Phenolic	30.2–48.8 µM	Inhibition of 3CL¹⁴² and PL¹⁴²		
107	Corylifol	Phenolic	32.3 ± 3.2 µM	Inhibition of PL¹⁴³		

Figure 4: Class of phytocompounds studied against HCoVs.
CONCLUSION AND PERSPECTIVES

Quite an array of plants, either whole, extract or plant metabolites, have shown great potential as antiviral agents and moieties. Potent antiviral phytochemical groups identified include saponins, tannins, lignans, alkaloids, flavonoids, lectins, coumarins, terpenoids, peptides and proteins. It therefore seems reasonable to suggest that the world should look to plants for novel natural compounds and antivirals. In addition to the possibility of harnessing natural phytochemicals for new pharmaceuticals development, plant metabolites could also become more efficacious when utilized in form of combination therapies with existing drug interventions. Increased research into plants and in-depth characterization of their metabolites could uncover more interesting results that would benefit humanity in its fight against emerging and re-emerging viral coronavirus infections such as the current COVID-19. Even though some promising compounds remain under clinical trials, the use of medicinal plants as prophylaxis or treatment interventions in viral respiratory infections should not be undermined. Also, with the recent speculation that, some of the target proteins of SARS-CoV-2 bind to and displaces oxygen from β-chain of the hemoglobin which subsequently results in hemotoxicity and inflammation of the alveolar macrophages, it could be logically suggested that blood purifiers including those of plant origin may offer complementary benefits against COVID-19. This speculation could support the touted efficacy of chloroquine for COVID-19 as it could compete for binding on the porphyrin of the hemoglobin in a manner that may prevent SARS-CoV-2 protein from binding. While this calls for further submission to substantiate the claim, metabolites with the ability to purify the blood and inhibit inflammation and oxidative stress could also be possible interventions for the prevention of COVID-19. Of recent, Van Vuuren and Frank reported Southern African medicinal plants that can be used for blood purifications. Interestingly, some of the plants reported have also been validated for antiviral, inflammatory, and antioxidant activities which make them probable candidates for the management of COVID-19. Some of the plants are Bridelia micrantha, Bulbine latifolia var. latifolia, Burchella bubalina, Crinum moorei, Cymbopogon validus, Eleuca natalensis, Polygona virginia, Polygnum hystriculium, Salix mucronate, Scadoxus puniceus, Schotia brachypetala, Tropaeolum majus, Vitellarioopsis marginata, and Zanthoxylum capscums. Overall, given the current body of evidence on the potential development of phytodrugs or phytomedicines for COVID-19, fears need to be allayed while clinical trials continue. The lockdown and other preventive measures which have been implemented in most parts of the world should be humanely exercised and supported with palliatives to ensure effectiveness and compliance. Increased awareness and update on developments should also be engaged in through all possible and genuine media. However, after aligning with all possible measures, one can only hope for the best possible outcome in a not-so-distant future. But will the world ever remain the same again? Time will tell.

CONFLICTS OF INTEREST

No conflict of interest exists among authors.

REFERENCES

1. World Health Organization. WHO publishes list of top emerging diseases likely to cause major epidemics. 2015. Available at: http://www.who.int/medicines/ebola-treatment/WHO-list-of-top-emerging-diseases/en/
2. James SL, Abate D, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018; 392: 1789-1858.
3. De Clercq E, Li G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 2016; 29: 695-747.
4. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579: 270-273.
5. Schalk AS, Hawn MH. An apparently new respiratory disease of baby chicks. J Am Vet Med A. 1931; 78: 413-422.
6. Kahn JS, McIntosh K. History and recent advances in coronavirus discovery. Pediatr Infect Dis J. 2005; 24: 5223.
7. Weiner LP. Coronaviruses: a historical perspective. Coronaviruses. 1987: 1-5.
8. Tyrrell DAJ, Almeida JD, Cunningham CH, et al. Coronavirusid. Intervirology. 1975; 5: 76-82.
9. Wu PCY, Huang Y, Lau SKP, Yuen K-Y. Coronavirus genomics and bioinformatics analysis. Viruses. 2010; 2: 1804-1820.
10. Dijkmans R, van der Hoek L. Human coronaviruses 229E and NL63: Close yet still so far. J Formos Med Assoc. 2009; 108: 270-279.
11. Shrestha MA, Khan S, Kawasaki T, Bashir N, Siddiqui R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020; doi:10.1016/j.jare.2020.03.005.
12. Lai MMC, Holmes KV. Coronavirusid: the viruses and their replication. In: Knipe DM, Howley P, Eds. Field’s Virology. 4th ed. Philadelphia (USA): Williams & Wilkin; 2001; pp. 1163-1185.
13. Sahin AR. 2019 Novel coronavirus (COVID-19) outbreak: a review of the current literature. Eurasian J Med Investigation. 2020, doi:10.14744/eymo.2020.12220.
14. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016; 3: 237-61.
15. Drosten C, G讇nter S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003; 348: 1967-1976.
16. Amici C, Di Coro A, Ciucci A, et al. Indomethacin has a potent antiviral activity against SARS coronavirus. Antiviral Ther. 2006; 11: 1021.
17. Alamanou MT. Anti-coronavirus natural products and in silico screening. Medium. 2020 March 28; [cited 2020 March 30]; [about 14 screens]. Available from: https://towardsdatascience.com/anti-coronavirus-natural-products-and-in-silico-screening-5ad903b3f7a5.
18. Taxonomy. International Committee on Taxonomy of Viruses (ICTV) 2019. Available from: https://talk.icontaxonomy.org/taxonomy/.
19. Anderssen PI, Lanekvist A, Lysvand H, Vikatuvkisen A, Oksenvych V, Bj Granny, M, Telling K, Lutsar I, Damps U, Iren Tenson T. Discovery and development of safe-in-vivo broad-spectrum antiviral agents. Int J Infect Dis. 2020; 92: 269-276.
20. Channapannavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunomodulation. Semin Immunopathol. 2017; 39: 529-539.
21. Yamell E. Herbs for viral respiratory infections. Altern Comp Ther.. 2018; 24(1). doi:10.1089/act.2017.29150.eya
22. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM Structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367: 1260-1263.
23. Peiris JSM, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med. 2004; 10: 888-897.
24. Skowronski DM, Astell C, Brunham RC, et al. Severe acute respiratory syndrome (SARS): a year in review. Annu Rev Med. 2005; 56: 357-381.
25. Serkedjieva J. Influenza virus variants with reduced susceptibility to inhibition by a polyphenol extract from Geranium sanguineum L. Die Pharmazie. 2003; 58: 53-57.
26. Tomaz FM, Rukunga GM, Muli FW, et al. Anti-viral activity of the extracts of a Kenyan medicinal plant Carissa edulis against herpes simplex virus. J Ethnopharmacol. 2006; 104: 92-99.
27. Newman DJ, Cragg GM, Snader KM. The influence of natural product upon drug discovery. Nat Prod Rep. 2000; 17: 215-234.
28. De Clercq E. Antivirals and antiviral strategies. Nature. 2020; 579: 270-273.
29. Chattopadhyay D, Naik TN. Antivirals of ethnomedical origin: Structure-activity relationship and scope. Mini Rev Med Chem. 2007; 7: 275-301.
30. Naithani R, Huma LC, Holland LE, et al. Antiviral activity of phytochemicals: a comprehensive review. Mini Rev Med Chem. 2008; 8: 1106-1133.
31. Masters PS. The molecular biology of coronaviruses. Adv Virus Res. 2006; 68: 193-292.
32. Vellingiri B, Jayaramaya K, Iyer M, et al. COVID-19: A promising cure for the global panic. Sci Tot Environ. 2020; 725: 138277.
33. Chan JFW, Lau SKP To KK, Cheng VWC, Wu PCY, Yuen K-Y. Middle East Respiratory Syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev. 2015; 28: 465-522.
34. Tu YF, Chien C-S, Yarnishyn AA, et al. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci. 2020; 21: 2657.
35. de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus infection. Curr Top Microbiol Immunol. 2017; (pp. 1-42). Springer, Cham.
60. Lundin A, Dijkman R, Bergström T, van der Meer F J, de Haan CA, Schuurman NM,
59. Lewis 2nd JS, Terriff CM, Coulston DR, Garrison MW. Protease inhibitors:
58. Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus
50. Wu CY, Jan JT, Ma SH, Wang YM, Lu JW, Lin CC, Stachulski AV, Pidathala C, Row EC,
47. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and
46. Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS
45. Ianevski A, Andersen PI, Merits A, Bjoras M, Kainov D. Expanding the activity
44. a-good-bet-against-covid-19.
[about 7 screens]. Available from: https://www.biopharmadive.com/news/
43. RNA synthesis reveals potent inhibition of diverse coronaviruses including the
42. the coronavirus envelope glycoproteins. J Antimicrob Chemother. 2007; 60:
41. the outcome of severe acute respiratory syndrome: analysis of 108 cases in Beijing.
40. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-
39. Weathers PJ, Towler M, Hassanli A, Lutgen P, Geng CE. Dried-leaf Artemisia
38. Nik-Brebi Ni. Emerging and neglected infectious diseases: insights, advances, and
37. Inhibition of hepatitis C virus replication. J Med Chem. 2011; 54: 8670-8680.
36. Arbidol and other low-molecular-weight drugs that inhibit lassa and Ebola viruses. J Am Chem Soc. 2010; 132: 7976-7981.
35. Redeploying plant defences. Nature Plants Editorial. 2020; 6: 177-177. Available from: https://www.nature.com/natureplants.
34. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019; 18: 1178-1201.
33. Drug discovery: a practical malaria therapeutic for developing countries? World J Pharmacol. 2014; 3: 39-55.
32. Emodin revisited. Am J Med. 2009; 127: 226-236.
31. Identification of natural compounds with antiviral activity against Severe Acute Respiratory Syndrome (SARS) coronavirus. J Med Chem. 2003; 46: 4519-4526.
30. Synergistic antiviral effect of Galanthus nivalis agglutinin and nelfinavir against feline coronavirus. Antiviral Res. 2004; 62: 177-184.
29. Identification of broad spectrum molecular-weight drugs that inhibit lassa and Ebola viruses. J Mol Biol. 2010; 400: 1-12.
28. A randomized, double-blind, placebo-controlled trial of nitazoxanide against chikungunya virus entry and transmission. Antiviral Res. 2020; 172: 104837.
27. Wilson R, Chan A. Starpharma’s SPL7013 shows significant activity against SARS-CoV-2 coronavirus. Business Wire. 2020 April 16; [cited 2020 April 27]; [about 5 screens]. Available from: https://finance.yahoo.com/news/starpharma-
spl7013-shows-significant-activity-13100623.html.
26. Jeffay N. Israeli firm hopeful as it starts treating COVID-19 patients with placebo cells. The Times of Israel. 2020 April 16; [cited 2020 April 21]; [about 3 screens]. Available from: https://www.timesofisrael.com/israeli-company-hopes-to-treat-coronavirus-patients-with-placenta-cells/.
25. National Institute of Health: National Institute of Allergy and Infectious Diseases. Developing therapeutics and vaccines for coronaviruses. 2020a April 6; [cited 2020 April 25]; [about 1 screen]. Available from: https://www.niaid.nih.gov/diseases-conditions/coronaviruses-therapeutics-vaccines.
24. National Institute of Health: National Institute of Allergy and Infectious Diseases. Atlanta site added to NIH clinical trial of a vaccine for COVID-19. NIH-NIAID. 2020 March 27; [cited 2020 April 23]; [about 2 screens]. Available from: https://www.niaid.nih.gov/news-events/atlanta-site-added-nih-clinical-
23. Kim E, Erdos G, Huang S, et al. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine. 2020 Apr 2: 102743.
22. Gangnuk RK, Mudgal PP, Mainy H, et al. Herbal plants and plant preparations as remedial approach for viral diseases. Virusdisease. 2015; 26: 225-236.
21.Rates SM, Plants as source of drugs. Toxicol. 2001; 39: 603-613.
20. Redeploying plant defences. Nature Plants Editorial. 2020; 6: 177-177. Available from: http://www.nature.com/natureplants.
19. Wilson R, Chan A. Starpharma’s SPL7013 shows significant activity against SARS-CoV-2 coronavirus. Business Wire. 2020 April 16; [cited 2020 April 27]; [about 5 screens]. Available from: https://finance.yahoo.com/news/starpharma-
spl7013-shows-significant-activity-13100623.html.
18. Jamiu, et al.: Phytotherapeutic Evidence Against Coronaviruses and Prospects for COVID-19
17. In vitro replication of SARS-CoV-2 (coronavirus). Business Wire. 2020 April 16; [cited 2020 April 27]; [about 6 screens]. Available from: https://www.usnews.com/news/health-news/articles/2020-04-16/why-remdesivir-might-be-a-good-bet-against-covid-19.
16. Ghosh N, Ghosh R, Mandal V, Mandal SC. Recent advances in herbal medicine for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J. Am Med Assoc. 2010; 312: 7976-7981.
15. Lundin A, Dijkman R, Bergström T, van der Meer F J, de Haan CA, Schuurman NM, Lewis 2nd JS, Terriff CM, Coulston DR, Garrison MW. Protease inhibitors: a good bet against COVID-19. Health News-US News. 2020 April 16. [cited 2020 April 27]; [about 6 screens]. Available from: https://www.usnews.com/news/health-news/articles/2020-04-16/why-remdesivir-might-be-a-good-bet-against-covid-19.
14. Chen F, Chan K, Jiang Y, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol. 2004; 31: 69-75.
13. Ni-Trebi NI. Emerging and neglected infectious diseases: insights, advances, and challenges. BioMed Res Int. 2017: 1-15.
12. Cinat J, Morgenstern B, Gauer G, Chandra P Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003; 361(9374): 2045-6.
11. Li SY, Chen C, Zhang HQ, et al. Identification of natural compounds with antiviral activity against SARS−coronavirus. J Med Chem. 2005; 48: 1256-1259.
10. Yang F, Hanon S, Lamb P, Schweitzer P. Quinidine revisited. Am J Med. 2009; 127: 226-236.
9. Nakamura N, Kurihara M, Morimoto K, et al. Quercetin and other flavonoids inhibit SARS-CoV-2 replication in vitro and in vivo. Antivir. Res. 2020; 172: 104837.
8. Wu CY, Jan JT, Ma SH, et al. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc Natl Acad Sci USA. 2004; 6: 10012-10017.
7. Stachulski AV, Pidathala C, Row EC, Stachulski AV, Pidathala C, Row EC, Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS
6. Stachulski AV, Pidathala C, Row EC, Thiazolides as novel antiviral agents. J Virol. 2011; 85: 8670-8680.
5. Lewis 2nd JS, Terriff CM, Coulston DR, Garrison MW. Protease inhibitors: a therapeutic breakthrough for the treatment of patients with human lassa fever: a randomized, double-blind, placebo-controlled trial. Clin Ther. 1997; 19: 167-214.
4. van der Meer F J, de Haan CA, Schuurman NM, Lewis 2nd JS, Terriff CM, Coulston DR, Garrison MW. Protease inhibitors: a therapeutic breakthrough for the treatment of patients with human lassa fever: a randomized, double-blind, placebo-controlled trial. Clin Ther. 1997; 19: 167-214.
3. van der Meer F J, de Haan CA, Schuurman NM, Lewis 2nd JS, Terriff CM, Coulston DR, Garrison MW. Protease inhibitors: a therapeutic breakthrough for the treatment of patients with human lassa fever: a randomized, double-blind, placebo-controlled trial. Clin Ther. 1997; 19: 167-214.
2. Inhibition of hepatitis C virus replication. J Med Chem. 2011; 54: 8670-8680.
1. The carbohydrate-binding plant lectins and the non-peptic antibiotic prodiginin A target the glycans of the coronavirus envelope glycoproteins. J Antimicrob Chemother. 2007; 60: 781-789.
90. Cheng PW, Ng LT, Chiang LC, Lin CC. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol. 2006; 33: 619-621.
91. YL, Li Z, Yuan K, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol. 2004; 78: 11334-11339.
92. Wen CC, Kuo YH, Jan JT, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem. 2007; 50: 4087-4095.
93. Chen CJ, Michaelis M, Hsu HK, et al. Toona sinensis Roem tender leaf extract inhibits SARS coronavirus replication. J Ethnopharmacol. 2008; 120(1): 108-111.
94. Brendler T, van Wyk BE. A historical, scientific and commercial perspective on the medicinal use of Pelargonium sidoides (Geraniaceae). J Ethnopharmacol. 2008; 119: 420-433.
95. Michaels A, Doerr HW, Cinatl Jr J. Investigation of the influence of EPs® on the antiviral activity of Taxillus chinensis. Int J Mol Sci. 2011; 12: 3834-3838.
96. Chang FR, Yen CT, Ei-Shazly M, et al. Anti-human coronavirus (anti-HCoV) triterpenoids from the leaves of Euphorbia neriifolia. Nat Prod Commun. 2012; 7(11): 1934587X12007011103.
97. Ulasli M, Gurces SA, Bayraktar R, et al. Effect of the nigerins from Nigeriana sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Mol Biol Rep. 2014; 41(3): 1703-1711.
98. Shen JW, Ruan Y, Ren W, Ma BJ, Wang XL, Zheng CF. Lycorine: a potential broad-spectrum agent against crop pathogenic fungi. J Microbiol Biotechnol. 2008; 18(3): 354-358.
99. Tsi YC, Lee CL, Yen HR, et al. Antiviral action of trantystanol isolated from Strobilanthes cusia leaf against human coronavirus NL63. Biomolecules. 2020; 10(3): 366.
100. Lin CW, Tsai FJ, Tsai CH, et al. Identification of phenanthroindolizines and tripterineolides from the leaves of Gentiana scabra, Dioscorea batatas, Cassia tora, and faxillus chinensis inhibit SARS-CoV replication. J Trad Complement Med. 2011; 1(4): 146-150.
101. Wang L, Yang R, Yuan B, Liu Y, Liu C. The antiviral and antimicrobial activities of licorice, a widely used Chinese herb. Acta Pharm Sin B. 2015; 5(4): 310-315.
102. Mohamed N, Shaghaghi, N. Inhibitory effect of eight secondary metabolites from conventional medicinal plants on COVID-19 virus protein by molecular docking analysis. ChemRxiv. Preprint. doi: https://doi.org/10.26434/chemrxiv.11987475.2020; v1.
103. Lau KM, Lee KM, Koon CM, et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J Ethnopharmacol. 2008; 118: 79-85.
104. Kolodziej H, Schulz V. Eps 7803: From traditional application to modern medicine. Dtsch Arztl Apoth Ztg. 2003; 143: 65-66.
105. Schwarzs S, Sauter D, Wang K, et al. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med. 2014; 80: 36-42.
106. Salim B, Noureddine M. Specific plant terpenoids and lignoids displaying antiviral activities of SARS-CoV 3CL(pro) inhibition. Bioorg Med Chem. 2010a; 18: 7940-7947.
107. Utomo RY, Ikawati R, Meiyanto E. Revealing the potency of Alnus japonica extracts against the 3a channel protein of coronavirus. Planta Med. 2014; 80: 177-182.
108. Liu W, Moore MJ, Vasileva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426: 450-454.
109. Isaacson MK, Ploegh HL. Ubiquitination, ubiquitin-like modifiers, and deubiquitination in Viral Infection. Cell Host Microbe. 2009; 5: 139-148.
110. Rota PA, Oberste MS, Monroe SS, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003; 300: 1394-1398.
111. Chen L, Li J, Luo C, et al Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CLpro: structure-activity relationship studies reveal salient pharmacophore features. Bioorg Med Chem. 2006; 14: 8295-8306.
112. Chioh KW, Phoon MC, Putti T, et al. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercitrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac J Trop Med. 2016; 9: 1-7.
113. Sydiaski RJ, Owen DG, Lohr JL, Rosler KH, Blomster RN. Inactivation of enveloped viruses by antitrauviranes extracted from plants. Antimicrob Agents Chemother. 1991; 35: 2463-2466.
114. Ryu YB, Park S-J, Kim YM, et al. SARS-CoV 3CLpro inhibitory effects of quinone-methide terpenes from Tripterygium regelii. Bioorg Med Chem Lett. 2010b; 20: 1873-1876.
115. Yu MS, Lee J, Lee JM, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett. 2012; 22(12): 4049-4054.
116. Sawaokawa A. Meta-analysis of flavonoids with antiviral potential against coronavirus. Biometrical Lett. 2020 Mar 5; 1ahead-of-print.
117. Utomo FY, Ikawati R, Meiyanto E. Revealing the potency of Citrus sinensis and its synthetic derivatives with SARS-CoV-2 3CLpro: structure-activity relationship studies reveal salient pharmacophore features. Phytochemistry. 2020; 160: 108671.
118. Yang CL, Ha TK, Oh WK. Discovery of inhibitory materials against PDCO coronavirus from medicinal plants. Jpn J Vet Res. 2016; 64: 553-563.
119. Enjuanes L, DeDiego ML, Álvarez E, Deming D, Sheehan T, Baric R. Vaccines to prevent severe acute respiratory syndrome coronavirus induced disease. Virus Res. 2008; 133: 45-62.
120. Rota PA, Oberste MS, Monroe SS, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003; 300: 1394-1398.
121. Liu W, Moore MJ, Vasileva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426: 450-454.
122. Isaacson MK, Ploegh HL. Ubiquitination, ubiquitin-like modifiers, and deubiquitination in Viral Infection. Cell Host Microbe. 2009; 5: 139-148.
123. Rota PA, Oberste MS, Monroe SS, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003; 300: 1394-1398.
124. Liu W, Moore MJ, Vasileva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426: 450-454.
125. Isaacson MK, Ploegh HL. Ubiquitination, ubiquitin-like modifiers, and deubiquitination in Viral Infection. Cell Host Microbe. 2009; 5: 139-148.
126. Rota PA, Oberste MS, Monroe SS, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003; 300: 1394-1398.
127. Liu W, Moore MJ, Vasileva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426: 450-454.
128. Isaacson MK, Ploegh HL. Ubiquitination, ubiquitin-like modifiers, and deubiquitination in Viral Infection. Cell Host Microbe. 2009; 5: 139-148.
Kim DE, Min JS, Jang MS, et al. Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules. 2019; 9: 696.

Müller C, Schulte FW, Lange-Grünweller K, et al. Broad-spectrum antiviral activity of the elF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Res. 2018; 150: 123-129.

Park J-Y, Yuk HJ, Ryu HW, et al. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J Enzyme Inhib Med Chem. 2017; 32: 504-512.

Kim DW, Seo KH, Curtis-Long MJ, et al. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J Enzyme Inhib Med Chem. 2014; 29(1): 59-63.

Van Vuuren S, Frank L. Southern African medicinal plants used as blood purifiers. J Ethnopharmacol. 2020; 249: p.112434.

Nwaehujor CO, Udeh NE. Screening of ethyl acetate extract of Bridelia micrantha for hepatoprotective and anti-oxidant activities on Wistar rats. Asian Pac J Trop Med. 2020; 4(10): 796-798.

Jäger AK, Hutchings A, van Staden J. Screening of Zulu medicinal plants for prostaglandin-synthesis inhibitors. J Ethnopharmacol. 1996; 52(2): 95-100.

Amoo SO, Ndhlala AR, Finnie JF, van Staden J. Antibacterial, antifungal and anti-inflammatory properties of Burchellia bubalina. South Afr J Bot. 2009; 75(1): 60-63.

Rungqu, P., Oyedeji, O., Nkeh-Chungag, B., Songca, S., Oluwafemi, O., Oyedeji, A. Anti-inflammatory activity of the essential oils of Cymbopogon validus (Stapf) Stapf ex Burtt Davy from Eastern Cape, South Africa. Asian Pac J Trop Med. 2016; 9(5): 426-431.

Lall N, Meyer J, Taylor M, van Staden J. Ant-HSV-1 activity of Euclea natalensis. South Afr J Bot. 2005; 71: 444-446.

Beuscher N, Bodinet C, Neumann-Haefelin D, Marston A, Hostettmann K. Antiviral activity of African medicinal plants. J Ethnopharmacol. 1994; 42(2): 101-109.

Adeyem EA, Steenkamp V. In vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from southern Africa. Asian Pac J Trop Med. 2011; 4(10): 829-835.

Du K, Marston A, van Vuuren SF, van Zyl RL, van der Westhuizen JH. Flavonolacetyl glucosides from the aril of Schoeta brachypetala Sond. and their antioxidant, antibacterial and antimalarial activities. Phytochem Lett. 2014; doi: 10.1016/j.phytol.2014.

Bazylko A, Granica S, Filipek A, et al. Comparison of antioxidant, anti-inflammatory, antimicrobial activity and chemical composition of aqueous and hydroethanolic extracts of the herb of Tropaeolum majus L. Ind Crops Prod. 2013; 50: 88-94.

Ndhlala A, Finnie J, van Staden J. Plant composition, pharmacological properties and mutagenic evaluation of a commercial Zulu herbal mixture: Imbiza ephuzwato. J Ethnopharmacol. 2011; 133(2): 663-674.

Adebayo SA, Dzoyem JP, Shai LJ, Eloff JN. The anti-inflammatory and antioxidant activity of 25 plant species used traditionally to treat pain in southern African. BMC Complement Altern Med. 2015; 15(1): 159.

Eldeen I, Elgorashi E, van Staden J. Antibacterial, anti-inflammatory, anticholinesterase and mutagenic effects of extracts obtained from some trees used in South African traditional medicine. J Ethnopharmacol. 2008; 102(3): 457-464.

Cite this article: Jamiu AT, Aruwa CE, Abdulakeem IA, Ajao AA, Sabiu S. Phytotherapeutic Evidence Against Coronaviruses and Prospects for COVID-19. Pharmacogn J. 2020;12(6):1252-67.