Papillary necrosis with invasive fungal infections: a case series of 29 patients

Krishan L. Gupta1, Thangamani Muthukumar1, Kusum Joshi2, Arunaloke Chakrbarti3, Harbir S. Kohli1, Vivekanand Jha1 and Vinay Sakhuja1

1Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India, 2Department of Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India and 3Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India

Correspondence and offprint requests to: K.L. Gupta; E-mail: klgupta@hotmail.com

Abstract

Background. Renal papillary necrosis (RPN) is associated with a number of comorbid conditions. However, it has been rarely reported in patients with fungal infections of the kidney.

Methods. We analyzed medical records of our hospital for the last two decades and identified 29 patients with fungal infections and RPN.

Results. Among the 29 patients, there were 24 men and 5 women. The median (range) age at presentation was 31.2 years (2 days–73 years). Three patients (10%) were kidney transplant recipients. The remaining had varied co-existing medical conditions that included diabetes mellitus in 16 (55%) and septicemia in 4 (14%). Clinical features at presentation were fever and oliguric kidney failure in 17 patients and loin pain accompanied by passage of fleshy material per urethra in 11 (38%). Diagnosis was made ante-mortem in 17 (59%) patients. Twenty patients (69%) had infection limited to the kidneys, while in the rest, it was disseminated. Kidney involvement was bilateral in 17 patients (59%). Urinalysis showed pyuria in 23 (79%) and microhematuria in 8 (28%) patients. Fungal infections included candidiasis (69%), aspergillosis (21%) and zygomycosis (10%). Of the 17 patients in whom the diagnosis was made ante-mortem, 12 survived and 5 died. Overall mortality was observed in 48% of cases.

Conclusions. We herein report a series of patients with RPN associated with fungal infections of the kidney. Presentation varies from asymptomatic urinary tract infection to severe kidney failure with poor outcome. High index of suspicion is necessary to reduce the associated high mortality in these patients.

Keywords: candidiasis; diabetes mellitus; fungal infections; renal papillary necrosis

Introduction

Renal papillary necrosis (RPN) is an ischemic infarction of the inner zone of the medulla especially involving the papillae. Urinary tract infection, diabetes mellitus, urinary tract obstruction, analgesic abuse and sickle-cell disease are common conditions that predispose to RPN [1–3]. Isolated reports of association with vasculitides, alcohol abuse, liver disease and kidney transplantation have been described [4, 5]. In a study of 165 patients with RPN, urinary tract infection accounted for ~40% of the cases [5].

Invasive fungal infections of the genitourinary tract are being increasingly recognized due to the improved survival of patients who are immunosuppressed [6–8]. Renal mycosis may present with varied kidney manifestations from asymptomatic involvement to acute kidney injury [8, 9]. RPN associated with candidiasis [10, 11], aspergillosis [12], zygomycosis [6], cryptococcosis [13] and histoplasmosis [14] occurring either as an isolated condition or in association with other comorbid conditions has been described earlier as case reports. In the present study, our aim was to describe the clinico-pathological features of patients with RPN associated with invasive fungal infections of the urinary tract.

Materials and methods

We reviewed the medical records of all patients admitted to our center over the last two decades to identify documented cases of RPN associated with invasive fungal infections of the urinary tract. Pertinent information obtained from the medical records included clinical presentation, comorbid conditions, hematology, urinalysis, biochemical values and microbiological cultures, fungal serology, imaging and histopathological reports. Invasive fungal infections referred to deep-seated opportunistic
Renal papillary necrosis with fungal infections

fungal infections identified by the European Organization for Research and Treatment of Cancer/Mycoses Study Group (EORTC/MSG) criteria [15]. Histological diagnosis of RPN due to fungal invasion consisted of examining the kidney tissue obtained at biopsy or autopsy or the sloughed material passed per urethra. These tissue sections were stained by the hematoxylin and eosin as well as silver-methanamine (Grocott-Gomori) stains and the identification of the fungi was based on the typical morphological features of the molds and the filamentous fungi. Radiological suspicion of RPN was made in some patients on the basis of findings consistent with ‘definite RPN’ [16]. However, it was corroborated with histological evidence as well.

Results

Among the 29 patients with evidence of RPN, there were 24 males and 5 females with a median age of 31.2 years (range 2 days–73 years). Three patients (10%) were kidney transplant recipients. Among the other 26, diabetes mellitus was a co-existing condition in 16 patients (55%) including 13 patients with type-2 diabetes mellitus and 3 patients with type-1 diabetes mellitus (Table 1) and 4 patients (14%) had evidence of septicaemia. Two patients had no other significant disease (Cases 27 and 28). The remaining four patients had other comorbid conditions as mentioned in Table 1.

Presenting symptoms and signs included fever and oliguric kidney failure in 17 patients (59%), loin pain in 12 (41%), passage of fleshy material per urethra in 11 (38%), dysuria in 10 (35%) and gross hematuria in 4 patients (14%). Among 17 patients with oliguric kidney failure, the mean serum creatinine was 4.4 ± 3.2 mg/dl (391.9 ± 291.2 μmol/l). Elevated blood glucose was present in 13 patients (45%) with 4 patients (14%) having diabetic ketoacidosis.

Urinalysis revealed pyuria in 23 patients (79%), proteinuria in 15 (52%) macroscopic hematuria in 8 (28%) and ketonuria in 5 patients (17%). Thirteen patients had positive urine culture; bacteria in 10 patients (34%) and fungi in 3 (10%). Fungal infections included Candida tropicalis in two and Candida albicans in one. All three patients with positive urine fungal cultures also grew the same fungi in the blood.

Fungi were identified from the histopathological sections of the kidneys in 15 (52%) patients, 12 on autopsy (Figure 1) and 3 on biopsy (Figure 2), or from examination of the sloughed tissue passed in urine in 11 (38%) (Figure 3) and from the tissue removed during nephrostomy in 2 patients (7%). In the remaining one patient, fungi were identified in aspirated pus from renal abscess with computed tomography showing the classical ‘ring sign’. Twenty patients (69%) had fungal infection limited to the kidney, whereas it was disseminated in the remaining nine patients (31%). Kidney involvement was bilateral in 17 patients (59%), unilateral in 9 patients (31%) and there was involvement of the transplant kidney in the remaining 3 patients (10%).

Diagnosis of RPN was made ante-mortem in 17 (59%) patients. The ante-mortem diagnosis was based on the sloughed papillae in 13 patients (11 sloughed through the urethra, 2 sloughed through the percutaneous nephrostomy drain). Among the 17 patients in whom the diagnosis was made ante-mortem, RPN was suspected based on radiological evidence in 10 patients. However, a definitive diagnosis of RPN was possible in only two patients who had ‘ring shadow’ on nephrostogram with the demonstration of fungal profiles in aspirated pus from the renal abscess (Case 15), or renal biopsy (Case 29). However, of the 12 patients in whom confirmation of diagnosis of RPN was made at autopsy, ante-mortem suspicion was possible in only 2. Overall, 14 (48%) of the patients died.

Discussion

This study describes a group of patients with evidence of fungal infections of the kidney and papillary necrosis. To our knowledge, this series is the largest report describing the association between fungal infection and RPN. Friedrich [17], in 1877, described RPN for the first time in a patient with benign prostatic obstruction. Since then, RPN has been shown to be associated with multiple comorbid conditions. The role of urinary tract infection as a causative factor for RPN is important. In the study from the Mayo clinic [5], urinary tract infection was evident in 67 (41%) patients. The most common organisms cultured in this large series were Escherichia coli, Candida and Klebsiella. The role of urinary tract infection in RPN may vary from the primary initiating factor to an accompanying condition of little etiological importance. However, it is undoubtedly a frequent accompaniment [1, 6]. Diabetes mellitus is associated with RPN in 22–72% of cases [1, 5, 18]. In autopsies of patients with diabetes, RPN was found in 4.4% [19]. Several studies have however emphasized that multiple etiological factors contribute to RPN [1, 5]. In concordance with these studies, the majority of our patients also had multiple well-defined risk factors for papillary necrosis.

The association of RPN with various fungal infections has been documented earlier as isolated case reports [2, 10, 17]. Chiew [10] reported a case of RPN due to Candida in a woman with diabetes. Candida infections associated with RPN have also been reported in a patient with Hodgkin’s disease [20] and with fungal bezoar in a patient with AIDS [21]. In an autopsy series of 42 patients with visceral candidiasis, Tomasheski and Abramowsky [11] identified RPN in 21% of the patients. Accurate ante-mortem diagnosis could not be made in any of them. Unusual presentations of RPN associated with Candida includes mycetoma (fungal balls) [22], bilateral involvement with anuria [23] and emphysematous pyelonephritis [24]. Infection with Candida glabrata pyelonephritis has also been reported [25]. One of our patients with RPN had mucormycosis. An association of renal mucormycosis and RPN has been reported only once [6]. There have also been rare reports of RPN due to Candida infection in a transplant recipient [26]. This condition usually results from acute or chronic rejection of the allograft [27].

The gold standard for the diagnosis of RPN is the demonstration of necrosed papillae in the material passed per urethra. Imaging studies may also assist in the diagnosis. Plain radiograph may show a curvilinear or ring-like calcification up to 5–6 mm in diameter, indicating a calcified sloughed tissue. Antegrade pyelography performed after draining of the obstructed urinary tract or extraction of debris through the nephrostomy tube may also help in the diagnosis of RPN [28]. However, recently ultrasonography [29] or multiphasic helical CT have been utilized
Number	Age/gender	Presenting features	Underlying diseases	Culture, blood (B)/urine (U)	Serum creatinine mg/dL (μmol/L)	Kidney imaging	Kidney involvement	Diagnosis	Outcome
1	32 M	Diarrhea, fever, gastrointestinal bleed, DKA	Type-1 diabetes	Not available	1 (88.4)	Not available	Disseminated	Autopsy	Died
2	2/365 F	Jaundice, ARDS, gastrointestinal bleed	Prematurity	Not available	0.8 (70.7)	Not available	Disseminated	Autopsy	Died
3	19 M	Gastrointestinal bleed, liver failure	Hepatitis	Not available	4 (353.6)	Not available	Disseminated	Autopsy	Died
4	45 M	Acute renal failure, Increased blood glucose	Type-2 diabetes	Not available	10.7 (945.8)	Not available	Disseminated	Autopsy	Died
5	40 M	Septicemia	Type-2 diabetes	Type-1 diabetes, sepsis	7.6 (671.4)	Not available	Isolated	Autopsy	Died
6	45 M	Fever, flank pain, oliguria	Type-2 diabetes	Type-1 diabetes	9.3 (872.1)	Not available	Isolated	Autopsy	Died
7	20 M	Fever, flank pain, DKA, anuria, FMPU	Type-2 diabetes	E. coli (U)	7.8 (689.5)	PCS-dilated	Isolated	Sloughed papilla	Alive
8	36 F	Fever, flank pain, dysuria,	Type-2 diabetes	E. coli (U)	3.8 (335.9)	PCN-dilated	Isolated	Sloughed papilla (PCN)	Alive
9	38 M	Urine retention, acute renal failure	Type-2 diabetes	K. pneumonia (U)	7 (618.8)	PCS-dilated	Disseminated	Autopsy	Died
10	62 M	Oliguria, dysuria, FMPU	Type-2 diabetes, type-2 diabetes, alcoholism	Not available	5.5 (486.2)	Not available	Isolated	Sloughed papilla	Died
11	2/12 M	Fever, dysuria, flank pain	Immune deficiency	C. tropicalis (B) Enterococcus (B) Klebsiella (B)	1.6 (141.4)	PCS-dilated	Disseminated	Autopsy	Died
12	50 M	Fever, flank pain, anuria, FMPU	Type-2 diabetes, sepsis	C. tropicalis (PCN) E. coli (U) K. pneumoniae (B)	7.9 (698.3)	US- and CT-dilated PCS, Renal abscess	Not available	Sloughed papilla	Died
13	1/12 M	Diarrhea, acute renal failure	Hemolytic uremic syndrome Bell's palsy, steroid use	C. albicans (U)	2.5 (221)	Not available	Disseminated	Autopsy	Died
14	48 F	Dysuria, FMPU	Immune deficiency	C. tropicalis (B) Enterococcus (B) Klebsiella (B)	1.5 (132.6)	PCS-dilated	Isolated	Sloughed papilla	Alive
15	48 M	Flank pain, dysuria recurrent FMPU	Type-2 diabetes, sepsis	C. tropicalis (B) E. coli (U)	4.3 (380.1)	PCS-dilated	Isolated	Sloughed papilla	Alive
16	32 F	Fever, flank pain, oliguria, dysuria	Type-2 diabetes	E. coli (U)	2.4 (212.1)	US-pyonephrosis CT-abscess with ring sign	Isolated	Sloughed papilla	Died
17	52 M	Flank pain, dysuria, FMPU	Type-2 diabetes	E. coli (U)	1.5 (132.6)	PCS-dilated	Isolated	Sloughed papilla	Alive
18	40 F	Fever, dysuria, FMPU	Type-2 diabetes	Not available	1.2 (106.1)	Not available	Isolated	Sloughed papilla	Alive
19	49 M	Fever, dysuria, oral thrush	Kidney transplant, post-transplant diabetes mellitus	K. pneumoniae and E. coli (U)	3.5 (309.4)	No abnormality	Isolated	Sloughed papilla	Alive
20	73 M	Fever dysuria	Bilateral kidney stones	Enterococcus faecalis (U)	4.5 (397.8)	PCS-dilated	Isolated	Sloughed papilla (PCN)	Alive
21	56 M	FMPU	Type-2 diabetes	Not available	1.2 (106.1)	NA	Isolated	Sloughed papilla	Alive
22	18 M	Fever, flank pain	Septicemia	E. coli (U)	1.9 (167.9)	Kidney size increased NA	Disseminated	Autopsy	Died
23	1 M	Fever, diarrhea	Hemolytic uremic syndrome	Not available	3.5 (308)	Not available	Disseminated	Autopsy	Died
24	45 M	Fever, flank pain, FMPU	Type-2 diabetes	Not available	10.3 (910)	Bilateral kidney abscesses NA	Isolated	Sloughed papilla Biopsy	Alive
25	25 M	Fever, hematuria allograft dysfunction	Kidney transplant	Pseudomonas (U)	10 (884)	Bilateral kidney abscesses NA	Isolated	Sloughed papilla Biopsy	Alive
26	40 M	Flank pain, FMPU	Type-2 diabetes	Not available	1.5 (132.6)	NA	Isolated	Sloughed papilla	Alive
27	25 M	Fever, flank pain, anuria, hematuria	None	Not available	7 (618.8)	NA	Disseminated	Autopsy	Died
28	55 M	Fever, flank pain, FMPU	None	Not available	1.3 (114.9)	US-filling defect	Isolated	Sloughed papilla Biopsy	Alive
29	59 M	Fever, dysuria allograft dysfunction	Kidney transplant	Pseudomonas (U)	2.0 (176.8)	CT-transplant kidney abscesses	Isolated	Sloughed papilla Biopsy	Alive
more often for the diagnosis and management of RPN [30].

The treatment of RPN in renal mycosis includes the administration of antifungal medicines and management of associated complications. Drainage of blocked urinary system via percutaneous nephrostomy, ureteral stent placement or endoscopic retrieval of the obstructing sloughed papillae may be necessary in these patients [31]. Nephrectomy may be lifesaving if overwhelming infection is present. Besides antifungals, medical management consists of the administration of broad-spectrum antibiotics as fungal infections are often associated with bacterial infections as well. Specific antifungal therapy depends on the fungi identified in the necrotic papillae. For RPN associated with Candida infection, fluconazole has been found to be effective. For filamentous fungi such as Aspergil lus and Zygomycetes, amphotericin-B and its lipid formulations are the drugs of choice. In addition, itraconazole has been an adjunctive therapy for renal aspergillosis and posaconazole for zygomycosis [32].

In conclusion, we report the largest series to date of RPN associated with fungal infections. It is possible, however, that besides fungal infections, associated comorbid conditions might also have contributed to the development of this condition. RPN presents with varying clinical signs and symptoms and a high index of suspicion is necessary for the ante-mortem diagnosis and management.

Conflict of interest statement. None declared.

Supplementary data

Supplementary data are available online at http://ckj.oxfordjournals.org.

References

1. Eknoyan G, Quinibi W, Grissom RT et al. Renal papillary necrosis: An update. Medicine 1982; 62: 55-73
2. Gupta KL, Sakhuja V, Khandelwal N et al. Renal papillary necrosis in diabetes mellitus. J Assoc Physicians India 1990; 38: 908-911
3. Bach PH, Nguyen TK. Renal papillary necrosis—40 years on. Toxicol Pathol 1998; 26: 73-91
4. Groop L, Laasonen L, Edgren J. Renal papillary necrosis in patients with IDDM. Diabetes Care 1989; 3: 198-202
5. Griffin MD, Bergstralh EJ, Larson TS. Renal papillary necrosis: a sixteen-year clinical experience. J Am Soc Nephrol 1995; 6: 248-256
6. Raghavan R, Date A, Bhaktaviziam A. Fungal and nocardial infections of the kidney. Histopathology 1987; 11: 9-20
7. Gupta KL. Fungal infections and the kidney. Indian J Nephrol 2001; 11: 147-154
8. Wise GJ, Silver DA. Fungal infections of the genitourinary system. J Urol 1993; 149: 1377-1388
9. Gupta KL, Joshi K, Sud K et al. Renal zygomycosis: an under-diagnosed cause of acute renal failure. Nephrol Dial Transplant 1999; 14: 2720-2725
10. Chiew YF. Candidal renal papillary necrosis: Report of a case and review. Singapore Med J 1996; 37: 119-121
11. Tomashefski JF Jr, Abramowsky CR. Candida-associated renal papillary necrosis. Am J Clin Pathol 1981; 75: 190-194
12. Madge GE, Lombardias S. Chronic liver disease and renal papillary necrosis with Aspergil lus. South Med J 1973; 66: 486-488
13. Randall RE Jr, Stacy WK, Toone EC et al. Cryptococcal pyelonephritis. *N Engl J Med* 1968; 279: 60–65
14. Superdock KR, Dummer JS, Koch MO et al. Disseminated histoplasmosis presenting as urinary tract obstruction in a renal transplant recipient. *Am J Kidney Dis* 1994; 23: 600–604
15. De Pauw B, Walsh TJ, Donnelly JP et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. *Clin Infect Dis* 2008; 46: 1813–1821
16. Lang EK, Macchia RJ, Thomas R et al. Multiphasic helical CT diagnosis of early medullary and papillary necrosis. *J Endourol* 2004; 18: 49–56
17. Friedrich N. Uber Necrose der Nierenpapillen bei Hydronephrose. *Virchows Arch A Pathol Anat* 1877; 69: 308–312
18. Oshima Y, Tsogai S. Epidemiological studies on renal papillary necrosis with diabetes mellitus in Japan. *Tohoku J Exp Med* 1983; 141: 427–430
19. Mujais SK. Renal papillary necrosis in diabetes mellitus. *Semin Nephrol* 1984; 4: 40–47
20. Hawcock BW, Henry L. Renal papillary necrosis associated with renal candidiasis in a patient with Hodgkin’s disease. *Cancer* 1977; 40: 2309–2311
21. Lopez Aramburu MA, Arroyo Munoz JL, Espiga Santamaria J et al. Papillary necrosis and formation of fungal falls in a patient with AIDS: a clinical case and brief review. *Actas Urol Esp* 1990; 14: 371–373
22. Morris BS, Chudgar PD, Manejwala O. Primary renal candidiasis: fungal mycetomas in the kidney. *Australas Radiol* 2002; 46: 57–59
23. Thakur S, Kuruvilla S, Abraham G et al. Bilateral renal papillary necrosis due to *Candida* infection in a diabetic patient presenting as anuria. *J Assoc Physicians India* 2003; 51: 919–920
24. Wu VC, Fang CC, Li WY et al. *Candida tropicalis*-associated bilateral renal papillary necrosis and emphysematous pyelonephritis. *Clin Nephrol* 2004; 62: 473–475
25. Vordermark JS, Modarelli RO, Buck AS. Torulopsis pyelonephritis associated with papillary necrosis: a case report. *J Urol* 1980; 123: 96–97
26. Knepshield JH, Feller HA, Leb DE. Papillary necrosis due to *Candida albicans* in a renal allograft. *Arch Intern Med* 1968; 122: 441–444
27. Kaude JV, Stone M, Fuller TJ et al. Papillary necrosis in kidney transplant patients. *Radiology* 1976; 120: 69–74
28. Dembner AG, Pfister AC. Fungal infections of the urinary tract: demonstration by antegrade pyelography and drainage by percutaneous nephrostomy. *Am J Roentgenol* 1977; 129: 415–418
29. Vijayaraghavan SB, Kandasamy SV, Mylsamy A et al. Sonographic features of necrosed renal papillae causing hydronephrosis. *J Ultrasound Med* 2003; 22: 951–956
30. Jung DC, Kim SH, Jung SI et al. Renal papillary necrosis: review and comparison of findings at multi-detector row CT and intravenous urography. *Radiographics* 2006; 26: 1827–1836
31. Kamath S, Moody MP, Hammonds JC et al. Papillary necrosis causing hydronephrosis in renal allograft treated by percutaneous retrieval of sloughed papilla. *Br J Radiol* 2005; 78: 346–348
32. Lass-Flörl C. Triazole antifungal agents in invasive fungal infections: a comparative review. *Drugs* 2011; 7: 2405–2419

Received for publication: 20.2.12; Accepted in revised form: 12.7.12