Background: Sustained neuronal activity during seizures causes cellular perturbations, alterations in cerebral physiology, and potentially neurological injury, a neurological emergency. With variable clinical manifestations of seizures, frequent failure of seizure recognition by providers in pediatric and developmentally challenged patients can increase seizure complications. Neuroresuscitation should include rapid cerebral physiology assessment for increased seizure recognition and optimal neurological outcomes. In neuroemergency, cerebral oximetry has demonstrated its utility in altered cerebral physiology and a standard combat neurological assessment tool. During adult seizures, cerebral oximetry (regional cerebral oxygen saturation \(r_{SO2}\)) has been used as a useful neurological assessment tool, but research is lacking in pediatric emergency department (PED) seizure patients.

Objective: The aim of this study was to identify trends in \(r_{SO2}\) readings for patients presenting to the PED with seizure activity and in the postseizure state in order to evaluate usefulness of \(r_{SO2}\) as a neurological assessment tool in pediatric seizure patients.

Methods: This was a PED observational case series comparing hemispheric \(r_{SO2}\) readings in first-time clinically evident generalized and focal seizure patients to first-time postseizure patients with no PED seizures.

Results: Generalized or focal seizure (\(n = 185\)) hemispheric \(r_{SO2}\) revealed significant differences compared with nonseizure and controls' \(r_{SO2}\) readings (\(n = 115\)) (\(P < 0.0001\)). Generalized and focal seizure \(r_{SO2}\)'s were either less than 60% or greater than 80% compared with nonseizure \(r_{SO2}\) (\(P < 0.0001\)). Ipsilateral focal seizure \(r_{SO2}\) correlated to seizure side (\(P = 0.0001\)) and was less than the contralateral \(r_{SO2}\) (\(P < 0.0001\)), with interhemispheric \(r_{SO2}\) discordance greater than 16 (\(P < 0.0001\)). Seizure to preseizure \(r_{SO2}\) discordance was as follows: generalized 15.2, focal: left 19.8, right 20.3 (\(P < 0.0001\)).

Conclusions: Hemispheric during-seizure \(r_{SO2}\) readings significantly correlated with generalized and focal seizures and reflected altered cerebral physiology. Ipsilateral focal seizure \(r_{SO2}\) readings correlated to the focal side with wide interhemispheric \(r_{SO2}\) discordance. All postseizure \(r_{SO2}\) readings returned to preseizure readings, showing altered cerebral physiology resolution. Overall, in generalized or focal seizure, \(r_{SO2}\) readings were less than 60% or greater than 80%, and in focal seizure, interhemispheric \(r_{SO2}\) discordance was greater than 10. During seizures, hemispheric \(r_{SO2}\) readings demonstrated its potential pediatric seizure utility. Utilizing \(r_{SO2}\) readings related to seizure activity could expedite pediatric and developmentally challenged patients' seizure recognition, cerebral assessment, and interventions especially in pharmacoresistant seizures.

Key Words: cerebral physiology, focal seizure, generalized seizure, hemispheric cerebral oximetry, \(r_{SO2}\) (regional cerebral oxygen saturation), neuroresuscitation, seizure, seizure activity

WHAT IS ALREADY KNOWN ON THIS SUBJECT

Pediatric seizure is common in the pediatric emergency department (PED) and clinically presents in multiple forms. Sustained neuronal activity causes cellular perturbations and alterations in cerebral physiology, potentially causing neurological injury. In limited adult and pediatric cerebral oximetry seizure studies, change in multichannel regional cerebral oxygen saturation (\(r_{SO2}\)) reading correlated with seizure activity in non-ED settings.

WHAT THIS STUDY ADDS

This study showed significantly decreased or increased hemispheric \(r_{SO2}\) readings compared with preseizure and postseizure events during generalized and focal seizure. During seizure activity, there was an alteration in cerebral hemispheric cerebral tissue oxygenation and physiology. Also in the postseizure period, these altered hemispheric during-seizure \(r_{SO2}\) readings return to preseizure readings. In focal seizure patients, the ipsilateral \(r_{SO2}\) readings correlated to the hemispheric focal seizure side and were significantly different from the contralateral \(r_{SO2}\) readings.

INTRODUCTION

Pediatric seizures presenting to the pediatric emergency department (PED) or emergency department (ED) can be generalized (which can be easily identifiable), focal, convulsive, or nonconvulsive, or status epilepticus. Subtle clinical or nonconvulsive seizure activity can be unrecognized by emergency medical services (EMS) and ED providers, given the lack of overt clinical signs and symptoms. Seizures can cause neuronal compromise and altered cerebral physiology, be pharmacoresistant, and cause

Hemispheric Cerebral Oximetry Monitoring During Pediatric Seizure Activity in a Pediatric Emergency Department

Thomas J. Abramo, MD, FAAP, FACEP,* Shane McKinney, MD,* James Moore, MD,‡ Richard Jacobs, MD,§ Gregory Albert, MD,¶/// Mark Meredith, MD,** Nicholas Hobart Porter, MD,* Elizabeth Storm, MD,* Errin Willis, MD,†/+++ Cruz Velasco Gonzalez, PhD,†+++ Hailey Hargrave, BS,* Brad Schneider, MD,* and Gregory Sharp, MD†+++
neurological complications, a neurological emergency.1–8 Seizure manifestations are variable, and failure to recognize and treat prolongs the seizure activity, thus increasing the neurological complications.1–8 These “hard to clinically recognize” seizures can be exacerbated in the neonate, nonverbal pediatric patients and especially nonverbal/developmentally challenged patients.

A false seizure assumption is that the brain’s physiology is not altered if there is global glucose and oxygen normalcy.6 Persistent cerebral physiology abnormalities can continue during the seizure and can be undetected by current ED monitoring systems.2–12 Neuroresuscitation should strive to quickly assess for altered cerebral physiology coupled with immediate therapeutic response assessment.2–12 These objectives are paramount to neuronal preservation and improved neurological outcomes.3–14

With a rapid objective cerebral physiology assessment tool’s correlation with the patient’s corresponding clinical neurological activity, this seizure misperception could be significantly decreased and augment the provider’s critical thinking and decision making, which ED or EMS monitoring systems currently lack.7–15

During seizures, especially those with underlying neuronal mitochondria dysfunction, an increase in neuronal metabolism occurs causing regional oxygen and glucose depletion, resulting in regional tissue hypoxia and altered cerebral physiology.2–9,16–22 Cerebral oximetry (rSO$_2$) detects and reflects regional dynamic cerebral physiologic changes (tissue perfusion, oxygenation metabolism, and oxygen extraction).12,15,23–26 Normal pediatric hemispheric (left and right) rSO$_2$ is 60% to 80%. A low rSO$_2$ reading less than 60% or a high rSO$_2$ reading greater than 80% or an interhemispheric discordance rSO$_2$ reading greater than 10 represents abnormal hemispheric cerebral physiology and pathology and an increased hypoxic brain injury risk.12,15,23–26

In pediatric and adult neurological emergencies, cerebral oximetry has been validated for identifying altered hemispheric cerebral physiology and changes, neurological insults, and cerebral pathology detection.12,15,23–26 Adult cerebral oximetry seizure studies suggest that cerebral rSO$_2$ differences exist between generalized seizure and nonseizure rSO$_2$ readings but have never been investigated in pediatric patients.15,23–29

TABLE 1A. Study and Control Patients’ Inclusion and Exclusion Criteria

Study subject inclusion criteria (stepwise selection process)	Control subject inclusion criteria
1. PED patients: First-time clinically evident generalized or focal seizure activity: upon presentation to PED, EMS seizure activity (seizure and postseizure) with subsequent clinically evident seizures in the PED	1. Lapse or lack of corresponding left and right rSO$_2$ every 5-s readings during patient’s PED stay
2. Postseizure patients: patients in a postseizure state presenting by EMS or triage or during PED stay and had another clinically evident seizure while in the PED	2. Positive history of neurological disorder (hydrocephalus, cerebrospinal fluid shunts, brain tumor newly diagnosis or resected, and central nervous system malformation, cerebral vascular abnormalities)
3. Must have continuous hemispheric (left and right) rSO$_2$ readings without lapsed data during their PED stay	3. Head computed tomography scan positive for cerebral pathology if done
4. Must have documented seizure activity times in patient’s PED EMR as recorded by PED bedside nursing staff during PED stay	4. Positive prior history of prematurity of less than 36 wk, neonatal intensive care unit stay, neonatal intubation, trauma especially head trauma, child abuse, concussion, traumatic brain injury, congenital heart disease, immunocompromised, chronic lung disease, acute or prior history of bacterial or aseptic meningitis, and abnormal genetic or inborn error of metabolism
5. No PED intubation (before cerebral oximetry monitoring or during monitoring)	5. History of ingestion induced seizure activity, hypoglycemia-induced seizure activity

Study subject exclusion criteria (in stepwise selection process)	Control subject exclusion criteria
1. Lapse or lack of corresponding left and right rSO$_2$ every 5-s readings during patient’s PED stay	1. Documented pre-PED seizure activity in EMS run sheet or by parents and no clinically evident seizure activity upon PED arrival or during the PED stay
2. Positive history of neurological disorder (hydrocephalus, cerebrospinal fluid shunts, brain tumor newly diagnosis or resected, and central nervous system malformation, cerebral vascular abnormalities)	2. Must have continuous hemispheric (left and right) rSO$_2$ readings without lapsed data during PED stay rSO$_2$
3. Head computed tomography scan positive for cerebral pathology if done	3. Must have had a normal computed tomography scan of the head if done
4. Positive prior history of prematurity of less than 36 wk, neonatal intensive care unit stay, neonatal intubation, trauma especially head trauma, child abuse, concussion, traumatic brain injury, congenital heart disease, immunocompromised, chronic lung disease, acute or prior history of bacterial or aseptic meningitis, and abnormal genetic or inborn error of metabolism	4. No PED intubation (before cerebral oximetry monitoring or during monitoring)

Control subject inclusion criteria

Positive history of

1. Lapse or lack of corresponding left and right rSO$_2$ every 5-s readings during patient’s PED stay

2. Documented PED seizure times in patient’s PED EMR as recorded by PED bedside nursing staff during PED stay

3. History of prior seizures, seizure disorder, febrile seizure, pseudoseizure, or viral meningitis/encephalitis

4. Cerebrovascular accident history, hydrocephalus or cerebrospinal fluid shunts, new brain tumors or previously diagnosed, cerebral vascular anomalies

5. Prematurity at <36 wk, neonatal intensive care unit stay, neonatal intubation, trauma especially head trauma, child abuse, concussion, traumatic brain injury, congenital heart disease, immunocompromised, chronic lung disease, acute or prior history of bacterial or aseptic meningitis, and genetic abnormalities or inborn error of metabolism

Study patients’ inclusion and exclusion criteria: PED, EMR, and PED Cerebral Oximetry REDCap (Research Electronic Capture Database).11
This preliminary hemispheric cerebral rSO2 study's primary aim was to investigate the relationship of hemispheric cerebral rSO2 readings to clinically evident generalized and/or focal seizure activity in PED seizure patients with no prior seizure history. These seizure rSO2 readings were also compared with readings of PED postseizure patients with clinically evident seizures prior to PED arrival and no seizures during their PED stay.1–12 The secondary aim was to investigate generalized and focal seizures' hemispheric rSO2 reading time pattern behavior. We hypothesized that there would be significantly different hemispheric rSO2 readings during these clinically evident seizure events compared with the nonseizure events. Analysis for cerebral oximetry age matching, sensitivity, specificity, and positive and negative predictive values for seizures was not the scope of this preliminary study.

METHODS

This is an observational retrospective case series from 2009 to 2016 in 2 academic PEDs (Arkansas Children's Hospital and Monroe Carrol Vanderbilt Children's Hospital) (annual census: 56,000 and 55,000 patient visits) examining hemispheric rSO2 readings in 2 PED clinically evident seizure groups: focal and generalized patients and nonseizure PED patients. The seizure groups were (1) PED patients presenting with seizure activity and (2) PED patients who developed clinically evident seizure activity during their PED stay with continuous hemispheric rSO2 readings. The control patients had clinically evident seizure activity prior to their PED arrival and no subsequent seizure activity during their PED stay and had continuous hemispheric rSO2 readings.13,14 To avoid potential underlying abnormal cerebral physiology causing underlying cerebral oximetry sampling bias, the seizure and control patients' inclusion and exclusion criteria were selected with the objective of underlying normalcy of the patients' nervous system (vascular and architecture) and cerebral physiology. More detailed study and control patient inclusion and exclusion criteria are presented in Table 1A.10 The study and control patients were selected by one of the primary investigators from the PED (Arkansas Children’s Hospital and Monroe Carrol Vanderbilt Children's Hospital) Cerebral Oximetry REDCap (Research Electronic Data Capture) database and screened with the inclusion and exclusion criteria of neurological normalcy, seizure activity, and continuous hemispheric rSO2 readings (Table 1A).10

TABLE 1B. Study and Control Patients' Clinical Evident Seizure Duration (in Minutes) and Comparison Between the Study and Control Groups (P) Duration of Seizure Prior to PED Arrival, by Age, Generalized Seizures, Focal Seizures, and Frequency of Seizure Events: Generalized, Left Focal, and Right Focal

Seizure Patients	n	Median, min	P
1. Patients arriving in active seizure (EMS or private care), their seizure duration prior to PED arrival (EMS or private care)	141	23 (15.5, 44.7)	
2. All PED generalized seizure events	267	15.3 (15.5, 44.7)	
3. All PED focal seizure events	123	13.2 (15.5, 44.7)	
Comparison: all PED generalized to focal seizure events			0.13
4. Control patients: seizure duration before PED arrival	n		
Seizure duration prior to PED arrival (EMS or private care)			
0–1 y	115	24 (17, 31)	
1–2 y	16	19.5 (16, 30.5)	
2–5 y	16	17.0 (13, 23)	
>5 y	24	20.5 (14.5, 29)	
All	115	24 (17, 31)	
5. Control patients: hemispheric rSO2 monitoring duration	n		
0–1 y	42	83.8 (73.8, 88)	
1–2 y	24	98.2 (62.8, 101)	
2–5 y	45	90.5 (75, 112)	
>5 y	74	80.3 (62.9, 141.4)	
All	115	87.6 (71, 105.3)	
6. Left focal seizure event	78	19.2 (16.3, 49.2)	
7. Right focal seizure event	45	16.7 (15.5, 44.7)	
Comparison left to right seizure event			0.23
8. For 1 seizure event: generalized seizure event	51	16.8 (15.5, 44.7)	
Focal seizure event	8	22.3 (15.5, 44.7)	
Comparison generalized to focal seizure events			0.7
9. For 2 seizure events: generalized seizure event	44	19.2 (15.5, 44.7)	
Focal	15	24.3 (15.5, 44.7)	
Comparison generalized to focal seizure event			0.42
10. 5 min before to seizure event: time (min) it took before the first 15% relative change in hemispheric rSO2 occurred before seizure			
Generalized seizures	267	1.33 (0.96, 1.83)	
Left focal seizure	45	1.75 (1.3, 2.4)	
Right focal seizure	78	1.98 (1.35, 2.92)	

The time (in minutes) it took for the first 15% change in the hemispheric rSO2 to occurred before the start of the seizure.
Patients meeting inclusion criteria had their PED electronic medical record (EMR) abstracted by one of the primary investigators for demographic data, EMS seizure activity, seizure activity upon PED presentation, generalized or focal seizure, seizure frequency, and various other seizure parameters. Patients' EMRs were reviewed for the neurologist's final diagnosis and final hospital or PED discharge diagnosis. The acknowledgement of patients' clinically evident seizure activity (whether tonic clonic or fine motor seizure activity) was by the PED attending physician or pediatric emergency medicine fellow and documented as seizure activity only in the patient's PED nursing EMR. The patient's clinically evident seizure recorded times from the PED arrival as less than 60%, between 60% and 80%, and greater than 80%, as adult cerebral oximetry seizure studies show an increase or decrease in regional cerebral blood flow (CBF) occurs just before and during a seizure.16-18,24-27 Patient rSO2 data were split in periods around clinically evident seizure events as (1) 10 to 5 minutes before seizure start, (2) 5 to 0 minutes before seizure start, (3) during seizure, (4) 0 to 5 minutes after seizure ends, and (5) 0 to 10 minutes after seizure end. For each patient, 5-second rSO2 reading data for periods defined were collapsed as median rSO2, yielding a single number per period per patient. Analyses of rSO2 behavior over periods defined around seizure events and corresponding comparisons of groups of interest (eg, control vs seizure, rSO2 levels upon arrival in PED <60%, 60%-80%, >80%) were carried out by a mixed model (nonparametric repeated measures) followed by Tukey procedure. P < 0.05 was considered statistically significant; corresponding confidence intervals are provided. Medians and first (Q1) and third (Q3) quartiles were obtained. Setup of analytical data sets and analyses were carried out in SAS 9.4 (SAS Institute Inc, Cary, NC).

Cerebral Oximetry Sampling
At both facilities, hemispheric cerebral oximetry monitoring was standard during pediatric neurological emergencies 24 hours, 7 days a week. Patients had left and right forehead cerebral oximetry probes (INVOS 5100C Medtronic, Minneapolis, MN) with simultaneous rSO2 recordings at 5-second intervals during their PED stay and did not delay patient's resuscitation endeavors.

The patient's seizure times were recorded in the cerebral oximetry device as event marks.

Statistical Analysis
Single patient data consist of hemispheric rSO2 readings at 5-second intervals over the patient's PED stay. Patient groups were formed according to the median rSO2 in the first 5 minutes after PED arrival as less than 60%, between 60% and 80%, and greater than 80%, as adult cerebral oximetry seizure studies show an increase or decrease in regional cerebral blood flow (CBF) occurs just before and during a seizure.16-18,24-27 Patient rSO2 data were split in periods around clinically evident seizure events as (1) 10 to 5 minutes before seizure start, (2) 5 to 0 minutes before seizure start, (3) during seizure, (4) 0 to 5 minutes after seizure ends, and (5) 0 to 10 minutes after seizure end. For each patient, 5-second rSO2 reading data for periods defined were collapsed as median rSO2, yielding a single number per period per patient. Analyses of rSO2 behavior over periods defined around seizure events and corresponding comparisons of groups of interest (eg, control vs seizure, rSO2 levels upon arrival in PED <60%, 60%-80%, >80%) were carried out by a mixed model (nonparametric repeated measures) followed by Tukey procedure. P < 0.05 was considered statistically significant; corresponding confidence intervals are provided. Medians and first (Q1) and third (Q3) quartiles were obtained. Setup of analytical data sets and analyses were carried out in SAS 9.4 (SAS Institute Inc, Cary, NC).

RESULTS
From 2012 to 2016, there were 185 PED patients (59.4% were male) with seizure activity (548 seizure events), simultaneous and continuous hemispheric rSO2 monitoring duration of 167.6 minutes (101.4, 210.3 minutes) (Table 1B). There were 115 control patients with 52.6% males, and their rSO2 monitoring duration was 87.6 minutes (71, 105.3 minutes). The seizure patients'...

TABLE 1C. Comparison Analysis of All Left and Right Seizure’s rSO2 Readings (as Independent Events) in All Generalized and Focal Seizure Patient Events

	10 to 0 min Before Start of Seizure Event	During Entire Seizure Event	0–10 min After Seizure Event Ends	P During, Before, and After Seizure Event	
	n	Median	n	Median	
Left rSO2	352	66.0 (59.0, 72.7)	548	48.8 (42.2, 70.5)	<0.0001
Right rSO2	352	62.3 (52.6, 71.4)	548	41.2 (35.8, 70.9)	<0.0001

In patients with multiple seizure, compared their first 10 minutes of their first seizure’s rSO2 readings with their first 10 minutes of their last seizure rSO2 readings.

TABLE 1D. Comparison of the Left and Right Seizure Event rSO2 Readings by Overall Age and by Age Grouping (<1, 1–2, 2–5, >5 Years)

Overall Ages: Left rSO2 (P = 0.36), Right rSO2 (P = 0.83)	Left rSO2	Right rSO2	P
<1 y (n = 53)	45.7 (45.1, 56.1)	43.4 (38.8, 52.6)	0.15
1–2 y (n = 37)	46 (43.8, 55.9)	43.2 (39.6, 52.0)	0.17
2–5 y (n = 63)	46.7 (40.1, 59.8)	43.3 (38.0, 55.2)	0.19
>5 y (n = 32)	44.3 (32.8, 55.1)	41.5 (37.9, 51.6)	0.37
median age was 2.13 years (0.84, 4.1 years), and the control subjects’ median age was 5.17 years (1.9, 9.4 years) ($P < 0.0001$). With no age-specific hemispheric rcSO2 readings, these statistical age differences did not affect the hemispheric seizure rcSO2 analysis. In the seizure group, 167 patients had 334 generalized seizure events, 106 patients had 214 focal seizure events (48 patients had

FIGURE 1. A–C. Left and right cerebral rcSO2 for generalized clinically evident seizure events versus control. Median (●) and interquartile range; 5-minute surrounding intervals are as follows: −10 (10 to 5 minutes prior to start of seizure event), −5 (5 to 0 minutes prior to start of seizure event), +5 (0–5 minutes after ending of seizure event), +10 (5–10 minutes after ending of seizure event). A–C, Left and right cerebral all rcSO2: A, clinically evident general seizure; B, clinically evident left focal seizure; C, clinically evident right focal seizure.
Seizure patients' PED EMR diagnoses were new-onset seizure activities, generalized seizure, left focal seizure, right focal seizure, complex febrile seizure, simple febrile seizure, partial complex seizure, and convulsive status epilepticus. No seizure or control patients had a diagnosis of stroke or cerebral pathology on head computed tomography or magnetic resonance imaging scan. The control patients' final diagnoses were seizure, new-onset seizure, and simple and complex febrile seizures. No patient had positive bacterial or viral meningitis. For study and control patients, the PED EMR recorded no hypoxemic periods, intubations, bradycardia events, abnormal electrolytes, hypoglycemia, or positive toxicology screen in either group.

The patients' seizure duration demonstrated no statistical significance between the groups (P = 0.13) (Table 1B). The relative left and right rSO2 first 15% relative changes (showing earliest significant rSO2 time change before the start of seizure) from 5 minutes before seizure to the seizure start for generalized, left focal and right focal, are shown in Table 1B. Comparing hemispheric rSO2 reading for all seizures (generalized and focal), a strong significance for lower hemispheric rSO2 readings during seizure events compared with the preseizure and postseizure readings was noted (P < 0.001) (Table 1C). For patients with multiple seizure events (generalized and focal), comparing their first to last seizure events' first 10-minute seizure rSO2 readings showed no statistical difference (left, P = 0.37; right, P = 0.18) (Table 1C). The various age parameters were not significant (Table 1D).

FIGURE 2. A, Fifteen-month and 17-month-old patients with clinically evident generalized seizures (seizure event) with left and right rSO2 graph with clinically evident seizure (events and nonseizure events time graph). B, Left, A 3-year-old with clinically evident left focal seizure with left and right rSO2 graph with clinically evident seizure events and nonseizure events time graph. B, Right, A 2.1-year-old patient with clinically evident right focal seizure with left and right rSO2 graph with clinically evident seizure events and nonseizure events time graph.
Patients with multiple seizures all had significant postictal times between repetitive seizure intervals, generalized, 20 minutes (11, 27 minutes); left focal seizures, 22 minutes (13, 28 minutes); and right focal seizure, 22 minutes (16, 25 minutes). These multiple seizure types were either repetitive focal seizures, generalized progressing to focal seizures, or repetitive generalized seizures. All multiple-seizures patients had appropriate PED seizure protocol adherence.

For the various seizure time parameter analysis in the generalized and focal seizures by initial hemispheric rcSO2 readings and initial abnormal rcSO2 readings (<60% and >80%), the preseizure, seizure, and postseizure rcSO2 readings for all the general and focal seizures showed that during seizure rcSO2 readings had a stronger significant difference compared with the preseizure and postseizure rcSO2 reading times (P < 0.0001) and not the preseizure to postseizure times (P = 0.99) (Tables 3A, 3B, and 3C).

Focal ipsilateral seizure rcSO2 readings compared with general ipsilateral rcSO2 readings showed no statistical difference (Table 4A). Simultaneously, the focal contralateral rcSO2 readings were statistically higher than the corresponding generalized seizure rcSO2 (P < 0.0001) (Table 4A). The focal ipsilateral rcSO2 readings had either a lower rcSO2 reading compared with the contralateral rcSO2 with a wide interhemispheric difference and were statistically significant (P < 0.0001) (Table 4B). For left to right focal seizure rcSO2 reading comparison, right focal seizure rcSO2 readings were significantly less than the left focal seizure rcSO2 readings (P < 0.0001) (Table 4A and 4B). With increasing focal seizure frequency, these focal seizure rcSO2 reading findings were consistent with persistent correlation to the focal seizure side (P < 0.0001) (Table 4B). The focal interhemispheric rcSO2 reading discordances, whether single or multiple seizures, were consistently wide (P < 0.0001) (Table 4B). Comparing the overall left focal contralateral (right) rcSO2 readings median rcSO2 64 (57.7, 77.7) to the corresponding control’s (right) rcSO2 readings 70 (64.0, 76.0) there was no median difference detected (P = 0.15). Whereas the right focal contralateral rcSO2 side (left) rcSO2 64 (56, 70) median compared to the control’s (left) rcSO2 70 (65, 75) had a significant difference (P < 0.001).

For all generalized seizure rcSO2 readings during seizure event times compared between non-seizure event times, a wide median with significant difference was noted (P < 0.0001) (Table 5A). Refining this comparison time by initial abnormal hemispheric rcSO2 readings (<60% or >80%) during seizure times to other times, a wide median with a significant difference occurred (P < 0.0001) (Table 5A). For generalized and focal seizures between preseizures and during seizures, their hemispheric delta rcSO2 reading change was for general seizures; left 10 and right 18.5, and left focal 19.8 and right focal 20.3, all demonstrating significant differences (P < 0.0001) (Table 5B). However, the preseizure to postseizure hemispheric delta rcSO2 change demonstrated no significance (P = 0.7) (Table 5B). The delta rcSO2 changes for generalized and focal seizures by initial hemispheric abnormal rcSO2 readings (<60% or >80) demonstrated a wider significant difference (P < 0.0001) (Table 5B). In multiple seizures, similar delta rcSO2 change parameter results demonstrated similar differences (P < 0.0001). (For readers interested in the generalized seizure rcSO2 frequency, analysis for the first, second, and third seizure events is presented in Supplementary Tables 5C, D, E [C, 1 seizure event; D, patient with 2 seizures: second seizure event; and E, patients with 3 seizures, third seizure event, and their statistical analysis], http://links.lww.com/PEC/A217).

DISCUSSION

This preliminary PED hemispheric cerebral oximetry study during clinically evident generalized and focal seizure activity demonstrates the following findings. Overall, hemispheric during-seizure rcSO2 readings significantly correlated with generalized and focal seizures. In generalized and focal seizure activity, during the seizure, hemispheric rcSO2 readings revealed significant cerebral tissue oxygenation alteration during the seizure (increase or decrease) compared with preseizure, and in the postseizure, it returned to baseline. These findings correlated with prior cerebral oximetry seizure studies.16-20,24-27 In the generalized and focal seizure patients, during the seizure phase, there were 2 trends noted during the seizure phase: rcSO2 readings of less than 60 or greater than 80%, and with seizures with greater than 80%
All Generalized Seizure	(1) Generalized Seizure: Left rSO₂	(2) Generalized Seizure: Right rSO₂
Seizure Period	Median (Q1, Q3) Differences	Median (Q1, Q3) Differences
n		
All	148	10 to 5 min before
	66 (60.0, 71.5)	During and 10 to 5 min before
	−22	<0.0001
	62 (58.0, 73.0)	During and 10 to 5 min before
	−20	<0.0001
5 to 0 min before	201	5 to 0 min before
	66 (58.5, 74.0)	During and 0–5 min before
	−22	<0.0001
	64 (61.0, 73.0)	During and 0–5 min before
	−27	<0.0001
During seizure	334	0–5 min after and during
	44 (36.5, 82.0)	0–5 min after and during
	22	<0.0001
	42.5 (62.0, 88.0)	0–5 After – During
	21.5	<0.0001
0–5 min after	306	5–10 min after and during
	66 (58.0, 72.0)	5–10 min after and during
	22	<0.0001
	64 (62.0, 71.5)	5–10 min after and during
	21.5	<0.0001
5–10 min after	261	0–5 min after and 0–5 min before
	66 (60.0, 74.0)	0–5 min after and 0–5 min before
	0	0.99
	64 (61.0, 71.0)	0–5 min after and 0–5 min before
	0	0.93
Both <60%	10 to 5 min before	
	87	5–10 min after and 0–5 min before
	63 (56.0, 69.5)	5–10 min after and 0–5 min before
	−20	<0.0001
	63 (53.0, 68.0)	During and 10 to 5 min before
	−27	<0.0001
5–0 min before	122	0–5 min after and during
	62 (55.85, 73.0)	0–5 min after and during
	−21	<0.0001
	60.5 (50.0, 71.0)	During and 0–5 min before
	−24.5	<0.0001
During seizure	205	0–5 min after and during
	43 (36.0, 44.5)	0–5 min after and during
	21.5	<0.0001
	36 (30.5, 40.0)	0–5 min after and during
	27	<0.0001
0–5 min after	187	5–10 min after and during
	64.5 (56.0, 72.5)	5–10 min after and during
	23	<0.0001
	63 (49.0, 71.0)	5–10 min after and during
	27	<0.0001
5–10 min after	155	0–5 min after and 0–5 min before
	66 (55.0, 74.0)	0–5 min after and 0–5 min before
	4	0.96
	65 (55.0, 72.0)	0–5 min after and 0–5 min before
	2.5	0.99
Both >80%	10 to 5 min before	
	34	5–10 min after and 0–5 min before
	67 (64.0, 72.0)	5–10 min after and 0–5 min before
	19	0.0002
	62 (58.0, 73.0)	During and 10 to 5 min before
	20.5	<0.0001
5 to 0 min before	43	0–5 min after and during
	68 (65.0, 75.0)	0–5 min after and during
	18	0.002
	64 (61.0, 73.0)	During and 0–5 min before
	18.5	0.0028
During seizure	88	0–5 min after and during
	86 (57.0, 90.0)	0–5 min after and during
	−19	<0.0001
	82.5 (62.0, 88.0)	0–5 min after and during
	−18.5	<0.0001
0–5 min after	81	5–10 min after and during
	67 (64.0, 72.0)	5–10 min after and during
	−20.7	<0.0001
	64 (62.0, 71.5)	5–10 min after and during
	−18.5	<0.0001
5–10 min after	74	0–5 min after and 0–5 min before
	65.3 (63.0, 74.0)	0–5 min after and 0–5 min before
	−1	0.93
	64 (61.0, 71.0)	0–5 min after and 0–5 min before
	0	0.98
	1.7	0.99

Time interval analysis parameters: (1) 10 to 5 minutes before start of the seizure event; (2) 5 to 0 minutes before the seizure event; (3) during the seizure event (total duration of the seizure event); (4) 0 to 5 minutes after the end of the seizure event; (5) 5 to 10 minutes after seizure event cessation. *0 = before the start of seizure event, †0 = before the start of seizure event.
All Left Focal Seizure	(1) Focal-Left Seizure: Left $rcSO_2$	(2) Focal-Left Seizure: Right $rcSO_2$
Seizure Period	Median (Q1, Q3) Differences P	Median (Q1, Q3) Differences P
All		
10–5 min before	62 (57.0, 67.0) During and 10 to 5 min before	62 (58.0, 74.0) During and 10 to 5 min before
5 to 0 min before	61.8 (56.0, 71.0) During and 0–5 min before	64 (56.5, 75.0) During and 0–5 min before
During seizure	44 (36.5, 55.5) 0–5 min after and during	65 (57.0, 74.5) 0–5 min after and during
0–5 min after	66 (60.0, 72.0) 5–10 min after and during	66.5 (62.0, 72.0) 5–10 min after and during
5–10 min after	67 (62.5, 72.0) 0–5 min after and 0–5 min before	66 (62.0, 72.0) 0–5 min after and 0–5 min before
Left $rcSO_2 <60^{11–15}$		
10 to 5 min before	59.5 (57.0, 63.0) During and 10 to 5 min before	64 (60.5, 76.5) During and 10 to 5 min before
5 to 0 min before	59.8 (55.5, 67.0) During and 0–5 min before	64.5 (58.0, 75.0) During and 0–5 min before
During seizure	40 (35.0, 45.5) 0–5 After – during	65 (57.0, 74.0) 0–5 After – during
0–5 min after	66 (58.8, 72.0) 5–10 min after and during	66.8 (62.0, 73.0) 5–10 min after and during
5–10 min after	66 (60.0, 72.0) 0–5 min after and 0–5 min before	66 (62.0, 75.0) 0–5 min after and 0–5 min before
Left $rcSO_2 >80^{11–15}$		
10 to 5 min before	62 (61.0, 67.0) During and 10 to 5 min before	62 (54.5, 63.0) During and 10 to 5 min before
5 to 0 min before	65 (56.0, 68.0) During and 0–5 min before	64 (56.5, 65.0) During and 0–5 min before
During seizure	87 (81.5, 89.0) 0–5 After – during	66.3 (61.0, 71.0) 0–5 min after and during
0–5 min after	70 (69.5, 77.3) 5–10 min after and during	67 (60.5, 70.5) 5–10 min after and during
5–10 min after	71 (69.0, 72.0) 0–5 min after and 0–5 min before	64.5 (62.0, 69.5) 0–5 min after and 0–5 min before

Time interval analysis parameters: (1) 10 to 5 minutes before start of the seizure event; (2) 5 to 0 minutes before the seizure event; (3) during the seizure event (total duration of the seizure event); (4) 0 to 5 minutes after the end of the seizure event; (5) 5 to 10 minutes after seizure event cessation; (6) (0 = before the start of seizure event), (7) (0 = before the start of seizure event).
Seizure Period	Median (Q1, Q3)	Differences	P	Median (Q1, Q3)	Differences	P
All						
10 to 5 min before	64 65	0 0.68		61.3 (62.0, 66.0)	~20.3 <0.0001	
5 to 0 min before	105 66	-1 0.54		57 (49.0, 64.0)	~16 <0.0001	
During seizure	146 65	2 0.04		41 (35.0, 56.0)	~20.5 <0.0001	
0–5 min after	133 67	-0.5 0.86		61.5 (54.0, 67.0)	22.5 <0.0001	
5–10 min after	96 64.5	1 0.81		63.5 (55.0, 69.5)	4.5 0.04	
Right rSO2 <60%						
10 to 5 min before	45 64	-2 0.13		57 (49.0, 64.0)	~19 <0.0001	
5 to 0 min before	81 66	-4 0.005		54 (48.5, 61.0)	~16 <0.0001	
During seizure	108 62	4 0.0002		38 (34.0, 42.0)	~20 <0.0001	
0–5 min after	97 66	1 0.08		58 (51.0, 63.5)	24 <0.0001	
5–10 min after	67 63	0 0.98		62 (55.0, 69.0)	4 0.002	
Right rSO2 >80%						
10 to 5 min before	15 70	-1 1		69 (60.0, 80.0)	5 0.04	
5 to 0 min before	18 65	7 0.69		66.5 (58.5, 82.0)	20 <0.0001	
During seizure	30 77	12 0.06		89 (88.0, 90.0)	22.5 <0.0001	
0–5 min after	28 67	-10 0.69		66.5 (65.8, 77.8)	~24 <0.0001	
5–10 min after	23 64	-13 0.05		65 (54.0, 79.0)	0 0.99	

Time interval analysis parameters: (1) 10 to 5 minutes before start of the seizure event; (2) 5 to 0 minutes before the seizure event; (3) during the seizure event (total duration of the seizure event); (4) 0 to 5 minutes after the end of the seizure event; (5) 5 to 10 minutes after seizure event cessation; (6) 0 – before the start of seizure event, (7) 0 – before the start of seizure event.
readings decreasing over time. In either left or right focal seizure, hemispheric \(r_{SO2} \) readings had a strong correlation to the seizure side with a wide interhemispheric discordance \(r_{SO2} \). As in similar cerebral oximetry studies, these focal and general seizures \(r_{SO2} \) reading changes demonstrate that nonfrontal hemorrhagic abnormal regional cerebral activity has a dynamic interplay with and can affect the frontal hemorrhagic cerebral physiology. In all, hemispheric seizure \(r_{SO2} \) readings highly correlated with physiological change occurrence before clinical evidence. Over-all, hemorrhagic seizure \(r_{SO2} \) readings highly correlated with clinically evident (generalized or focal) seizures and demonstrate hemorrhagic cerebral oxygenation and physiology alteration during seizures. Also, by utilizing left and right cerebral oximetry sensors, detection of these unilateral and bilateral hemorrhagic cerebral hemispheric cerebral physiological alterations was possible.

Seizure activity is related to neuronal mitochondrial dysfunction, producing abnormal neuronal cellular metabolism, further mitochondrial damage, tissue hypoxia, persistent neuronal dysfunction, and increased regional cerebral oxygen and glucose consumption all during the seizure event. A compensatory action is an increase in regional CBF and oxygenation. However, when this increased regional CBF becomes inadequate to meet the seizure’s metabolic demand, decreased regional tissue oxygenated hemoglobin occurs. This study’s generalized and focal seizure hemispheric \(r_{SO2} \) readings during single

TABLE 4A. Comparison Analysis of Hemispheric (Left and Right) Seizure \(r_{SO2} \) Readings Between Generalized Seizure Compared With Left Focal and Right Focal Seizure \(r_{SO2} \) Readings (\(n_1 = \) patients, \(I = \) Total Number of Seizure Events) by Their First, Second, Third, and All Seizure Events (as independent events) and the Difference Between General and Focal (left and right) Seizure \(r_{SO2} \) Readings

	Generalized Seizure	Focal Left Seizure	Difference Between Generalized and Focal Left Focal Seizure\(^*\)	Focal Right Seizure	Difference Between Generalized and Focal Right Focal Seizure\(^*\)
First seizure					
Left \(r_{SO2} \)	\(n_1 = 139 \)	\(n = 21 \)	\(P \) = 0.98	\(n_1 = 25 \)	\(P \) = 0.88
Right \(r_{SO2} \)	44 (37, 69)	47 (40, 79)		77 (70, 78)	<0.001
Second seizure					
Left \(r_{SO2} \)	\(n = 95 \)	\(n = 24 \)	\(P \) = 0.96	\(n_1 = 41 \)	\(P \) = 0.18
Right \(r_{SO2} \)	39 (33, 58)	44 (36, 52.5)		65 (51, 67)	<0.001
Third seizure					
Left \(r_{SO2} \)	\(n = 50 \)	\(n = 8 \)	\(P \) = 0.24	\(n_1 = 43 \)	1.1 (1.5, 2.37)
Right \(r_{SO2} \)	44.5 (36, 85)	42.5 (40, 58.5)		62 (53, 77)	0.14
All seizure					
Left \(r_{SO2} \)	\(n_1 = 334 \)	\(n = 68 \)	\(P \) = 1	\(n_1 = 146 \)	1 (4, 1)
Right \(r_{SO2} \)	44 (36.5, 82)	44 (36.5, 55.5)		65 (53, 77)	<0.001
*Hodge-Lehman estimate of location shift, 95% confidence interval.					
or multiple seizure events followed similar patterns. From this study, some seizure patients' hemispheric \(r_{CSO2} \) readings initially rose to greater than 80% and then declined during their seizure. These seizure \(r_{CSO2} \) readings pattern probably reflected that the increased CBF became inadequate for the seizure's metabolic demand, causing a tissue oxygenation deficit as indicated by the lower \(r_{CSO2} \) readings.

In left or right focal seizure, compared with generalized seizure events, there were no significant differences between the focal seizure \(r_{CSO2} \) readings and the generalized ipsilateral seizure \(r_{CSO2} \) readings. In either left or right focal seizure, there were significant interhemispheric \(r_{CSO2} \) discordance readings, which was consistent over multiple focal seizure events. This significant focal seizure interhemispheric discordance was significant and like other pediatric neurological cerebral oximetry findings in strokes, hydrocephalus, epidural, and subdurals.

The ED patient's documented seizure times compared with the \(r_{CSO2} \) readings did have a high correlation, which could be due to 77% of the patients having clinically evident seizures upon PED presentation. Knowledge of a patient's prior seizure could heighten the PED staff's seizure awareness, leading to quicker seizure interpretation, quicker subsequent seizures detection, and improved seizure documentation.

In summary, in the acute setting, once the seizure patient's airway, breathing, circulation, and glycemic state are stabilized, focus should shift to rapid seizure termination and restoring normal cerebral physiology to minimize the abnormal hemispheric cerebral physiology, energy depletion, and neurological injury.

TABLE 5A. Patients With Multiple Generalized Seizures: Comparative Time Analysis of Their Hemispheric (Left and Right) Seizure \(r_{CSO2} \) Readings by Time Intervals: All Their Seizure \(r_{CSO2} \) Readings (as Independent Events) and by Their Initial Hemispheric Seizure \(r_{CSO2} \) Readings of Less Than 60% and Greater Than 80% With Same Time Comparisons

Seizure Type	Subgroup: \(r_{CSO2} \) Differences	\(\Delta \) \(r_{CSO2} \)	\(P \)	\(\Delta \) \(r_{CSO2} \)	\(P \)
Generalized seizure	All \(r_{CSO2} \) during and before seizures	−12	0.0001	−18.5	0.002
	During and after seizures	−10	0.0001	11.2	<0.0001
	After and before seizures	−2.5	0.95	−1	0.7
	Both \(r_{CSO2} <60 \)	−21	<0.0001	−24.5	<0.0001
	Both \(r_{CSO2} >80 \)	18	<0.0002	18.5	0.003
Left focal seizure	All \(r_{CSO2} \) during and before seizure	−17.8	<0.0001	1	0.99
	During and after seizures	−19.8	<0.0001	1	0.99
	After and before seizures	−4.2	0.6	−2.5	0.99
	Left \(r_{SO2} <60 \)	−19.8	<0.0001	5	0.87
	Left \(r_{SO2} >80 \)	22	0.01	2.3	0.98
Right focal seizure	All \(r_{CSO2} \) during and before seizure	−1	0.54	−20.3	<0.0001
	During and after seizures	−2	0.04	−22.5	<0.0001
	After and before seizures	1	0.81	4.5	0.75
	Right \(r_{SO2} <60 \)	−4	0.98	−19	<0.0001
	Right \(r_{SO2} >80 \)	7	0.61	22.5	<0.0001

TABLE 5B. Comparative Time Analysis of Delta Difference of Seizure \(r_{CSO2} \) Readings in Generalized, Left and Right Focal Hemispheric and Abnormal Seizure (Both \(r_{CSO2} <60 \), \(r_{CSO2} >80 \) \(r_{CSO2} \) Readings (Differences Between Seizure Times) and by Their Initial Hemispheric Seizure \(r_{CSO2} \) Readings of Less Than 60% and Greater Than 80% With Same Time Comparisons. Overall: A positive value = increase, negative value = decrease. 1. Generalized seizure event had a \(r_{SO2} \) change of left −9.8, right −10.7 2. Left focal event had a left \(r_{SO2} \) change of −17.8. 3. Right focal event had a right \(r_{SO2} \) change of −20.3
In either generalized or focal seizure, rSO$_2$ readings correlated with seizure event and demonstrated a consistent decrease or increase, probably reflecting a decrease or increase in regional cerebral oxygen and physiology during the seizure compared with either their preseizure or postseizure time.16–20,24–27 Postseizure rSO$_2$ readings approximated their preseizure rSO$_2$ readings, demonstrating a resolution of the abnormal hemispheric cerebral oxygen and physiology. In the focal seizure events, ipsilateral rSO$_2$ strongly correlated with the focal seizure side and in the postseizure phase returned to the preseizure readings. This study demonstrates that there is a dynamic hemispheric cerebral physiology change occurring during clinically evident seizure events, and this change may indicate physical neuronal compromise and potential for neuronal injury. These hemispheric frontal lobe rSO$_2$ readings are dynamic, have an interplay with other cerebral regions, and can be affected by other abnormal regional cerebral activity as shown by focal and generalized seizure rSO$_2$ readings. From this vast pool of left and right cerebral oximetry readings in the generalized and focal seizures patients, if the hemispheric rSO$_2$ readings are less than 60% or greater than 80%, or the interhemispheric discordance rSO$_2$ readings are greater than 10 with no obvious signs of clinically evident seizure for the nonneurologist, further investigation for possible clinical and/or subclinical seizures is warranted. Because seizure recognition is greatly impared in neonates, pediatric patients, and nonverbal or developmentally challenged patients, cerebral oximetry has shown its potential as an objective neurological assessment tool and possibly decreases misperception of clinically evident seizure recognition. This study should not be interpreted as a replacement for the diagnostic electroencephalogram (EEG) system, but rather as an adjunct acute-setting neurological assessment tool for the health care provider. Cerebral oximetry has shown its potential utilization in neonate and pediatric seizure research as an adjunct assessment tool. Further research is needed to investigate the potential use of hemispheric and interhemispheric discordant rSO$_2$ readings as a predictive tool for anticonvulsants therapeutic effectiveness especially in pharmacoresistant seizures.

LIMITATIONS

Documentation and detection of pediatric seizures can have sampling error due to the PED staff's clinically evident seizure recognition experience. Current hemispheric cerebral oximetry probes physically prevent ambulatory EEG forehead probe placement; therefore, correlating clinical seizures to EEG seizures with simultaneous hemispheric rSO$_2$ readings cannot be accomplished.

CONCLUSIONS

This PED preliminary hemispheric cerebral oximetry seizure study during clinically evident general and focal seizures showed altered cerebral oximetry rSO$_2$ readings and significantly correlated with seizures and reflected abnormal seizure cerebral physiology. In generalized seizures, hemispheric rSO$_2$ readings were either significantly decreased (~60%) or increased (~80%) compared with their preseizure and postseizure readings and nonseizure patients. During focal seizures, ipsilateral rSO$_2$ readings correlated to the seizure side, and interhemispheric discordance rSO$_2$ readings differed significantly (>10). Postseizure rSO$_2$ readings returned to preseizure readings, showing altered cerebral physiology resolution. Overall, cerebral oximetry during generalized and focal seizure rSO$_2$ readings were less than 60% or greater than 80%, and in focal seizures their interhemispheric rSO$_2$ discordance was greater than 10, demonstrating its potential pediatric seizure utility. This PED seizure cerebral oximetry study substantiates further investigation in subclinical seizure detection and anticonvulsant therapeutic effectiveness especially in pharmacoresistant seizures. This study advances cerebral oximetry functionality as an adjunct neurological assessment tool in pediatric neuroresuscitation.

REFERENCES

1. Othal J, Folbergrov J, Kovačs R, et al. Epileptic focus and alteration of metabolism. Int Rev Neurobiol. 2014;114:209–243.
2. Zuurka G, Kunz WS. Mitochondrial dysfunction and seizures: the neuronal energy crisis. Lancet Neurol. 2015;14:956–966.
3. Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 2004;73:1–60.
4. Raspall-Chaure M, Chin RF, Neville BG, et al. Outcome of pediatric convulsive status epilepticus: a systematic review. Lancet Neurol. 2006;5:769–779.
5. Shorvon S, Tomson T. Sudden unexpected death in epilepsy. Lancet. 2011; 378:2028–2038.
6. Greiner HM, Holland K, Leach JL, et al. Nonconvulsive status epilepticus: the encephalopathic pediatric patient. Pediatrics. 2012;129:e748–e755.
7. Agarwal M, Fox SM. Pediatric seizures. Emerg Med Clin North Am. 2013; 31:733–754.
8. Chin RF, Verhulst L, Neville BG, et al. Inappropriate emergency management of status epilepticus in children contributes to need for intensive care. J Neurol Neurosurg Psychiatry. 2004;75:1584–1588.
9. Schneider B, Abramo TJ, Albert G. An update on cerebral oxygenation monitoring, an innovative application in cardiac arrest and neurological emergencies. Annu Update Intensive Care Emerg Med. 2015:273–288.
10. Robertson CS, Zager EL, Narayan RK, et al. Clinical evaluation of a portable near-infrared device for detection of traumatic intracranial hematomas. J Neurotrauma. 2010;27:1597–1604.
11. Harris PA, Taylor R, Thielke R, et al. Research Electronic Data Capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–381.
12. Peng K, Pouliot P, Lesage F, et al. Multichannel continuous electroencephalography-functional near-infrared spectroscopy recording of focal seizures and interseizure epileptiform discharges in human epilepsy: a review. Neurophotonics. 2016;3:031402.
13. Kane I, Abramo TJ, Meredith M, et al. Cerebral oxygen saturation monitoring in pediatric altered mental status patients. Am J Emerg Med. 2014;32:356–362.
14. Al-Rawi P, Kirkpatrick P. Tissue oxygen index: thresholds for cerebral ischemia using near-infrared spectroscopy. Stroke. 2006;37:2720–2725.
15. Abramo TJ, Harris ZL, Meredith M, et al. Cerebral oximetry with cerebral blood volume index in detecting pediatric stroke in a pediatric ED. Am J Emerg Med. 2015;33:1622–1629.
16. Moseley BD, Britton JW, Nelson C, et al. Periictal cerebral tissue hypoxia: a potential marker of SUDEP risk. Epilepsia. 2012;53:e208–e211.
17. Roche-Labarbe N, Zaaimi B, Berquin P, et al. NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in children. Epilepsia. 2008;49:1871–1880.
18. Schwartz TH, Hong SB, Bagshaw AP, et al. Preseizure changes in cerebral haemodynamics: review of findings and insights from intracerebral EEG. Epilepsie Res. 2011;97:252–266.
19. Khoa D, Nguyen Y, Tremblay J, et al. Noninvasive continuous functional near-infrared spectroscopy combined with electroencephalography recording of frontal lobe seizures. Epilepsia. 2013;54:331–340, 201.
20. Silas R, Sehgal A, Walker A, et al. Cerebral oxygenation during subclinical seizures in neonatal hypoxic-ischemic encephalopathy. *Eur J Paediatr Neurology*. 2012;16:304–307.

21. Slone E, Westwood E, Dhaliai H, et al. NIR shows pre-seizure haemodynamic changes in temporal lobe epilepsy. *Epileptic Disord*. 2012;371–378.

22. Brunner E, Domhof S, Langer F. *Nonparametric Analysis of Longitudinal Data in Factorial Experiments*. New York: Wiley Series in Probability and Statistics; 2002.

23. Malonek D, Grinvald A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. *Science*. 1996;272:551–554.

24. Zhao M, Suh M, Ma H, et al. Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy. *Epilepsia*. 2007;48:2059–2067.

25. Kreisman NR, Rosenthal M, LaManna JC, et al. Cerebral oxygenation during recurrent seizures. *Adv Neurol*. 1983;34:231–239.

26. Suh M, Bahar S, Mehta AD, et al. Temporal dependence in uncoupling of blood volume and oxygenation during interseizure epileptiform events in rat neocortex. *J Neuroscience*. 2005;25:68–77.

27. Adelson PD, Nemoto E, Schuer M, et al. Noninvasive continuous monitoring of cerebral oxygenation periictally using near-infrared spectroscopy: a preliminary report. *Epilepsia*. 1999;40:1484–1489.