ARTICLE
Molecular Diagnostics

Claudin-18 expression in oesophagogastric adenocarcinomas: a tissue microarray study of 523 molecularly profiled cases

Irene Coati1, Gábor Lotz2, Giuseppe Nicolò Fanelli1, Stefano Brignola1, Cristiano Lanza1, Rocco Cappelletto1, Antonio Pellino3, Salvatore Pucciarelli4, Gaya Spolverato4, Vincenza Guzzardo1, Giada Munari1,3, Giovanni Zaninotto5, Marco Scarpa4, Luca Mastracci6, and Matteo Fassan1

BACKGROUND: Claudin-18 (CLDN18) is a highly specific tight junction protein of the gastric mucosa. An isoform of CLDN18, the Claudin 18.2, has recently emerged as an innovative drug target for metastatic gastric cancer.

METHODS: We investigated the immunohistochemical profile of CLDN18, p53, p16, E-cadherin, MSH2, MSH6, MLH1, PSM2, HER2, and PDL-1 in a large series of 523 primary gastric carcinomas (GCs; n = 408) and gastro-oesophageal carcinomas (GECs; n = 115) and 135 matched and synchronous nodal metastases. The status of HER2 and EBER by means of chromogenic in situ hybridisation (CISH) was also evaluated.

RESULTS: High membranous CLDN18 expression was present in 150/510 (29.4%) primary cases and in 45/132 (34.1%) metastases. An abnormal expression (i.e. nuclear and/or cytoplasmic) was observed in 115 (22.5%) primary cases and in 33 (25.0%) metastases. A 38.8% of the cases showed significant CLDN18 intratumoural variability among the different tissue microarray cores obtained from the same tumour. Positive membrane CLDN18 expression was statistically associated with non-antral GCs (p = 0.016), Lauren diffuse type (p = 0.009), and with EBV-associated cancers (p < 0.001).

CONCLUSIONS: CLDN18 is frequently expressed in gastric and gastro-oesophageal cancers; further studies should investigate the prognostic significance of CLDN18 heterogeneity in order to implement its test into clinical practice.

British Journal of Cancer (2019) 121:257–263; https://doi.org/10.1038/s41416-019-0508-4

BACKGROUND
Gastric (GCs) and gastro-oesophageal (GECs) carcinomas are the third leading cause of cancer-related death world-wide with a combined incidence of 1.4 million cases annually.1

In 2014, The Cancer Genome Atlas (TCGA) project proposed a molecular classification of gastric cancer, dividing it into four subtypes: Epstein–Barr virus (EBV)-associated cancers, microsatellite instable (MSI) tumours, genomically stable (GS) tumours, and tumours with chromosomal instability (CIN).2 The worldwide prevalence of EBV-associated GC is about 5–25%.3 The clinicopathological features of EBV-associated GCs include a male predominance, a typical proximal (non-antral) localisation, a moderate-to-poor differentiation and a lymphocytic infiltration.4

The clinicopathological characteristics of MSI GCs include older age, lower frequency of nodal involvement, better prognosis, high cellular pleomorphism and higher prevalence of tumour-associated inflammatory infiltration.5 Genomically stable (GS) GCs and tumours with CIN have no specific clinicopathological features, even if the first mostly shows a diffuse pattern and the second is often located at the gastro-oesophageal junction.

Each subtype shows a peculiar molecular background.2 EBV-associated neoplasms usually have the cyclin-dependent kinase inhibitor 2A gene (CDKN2A) silencing, the programmed death-ligand 1 (PD-L1) overexpression and mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA). MSI tumours are characterised by MutL homologue 1 (MLH1) silencing and a high mutation burden in genes as PIK3CA and receptor tyrosine kinase protein kinase (ERBB3/HER3). GS tumours show RAS homologue gene family, member A (RHOA) and E-cadherin (CDH1) gene mutations and the Claudin-18 (CLDN18)-Rho GTPase activating protein 6/26 (ARHGAP6/26) translocation. Finally, CIN can have TP53 mutations and human epidermal growth factor receptor-2 (HER2) amplification in almost 25% of cases.

1Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy; 22nd Department of Pathology, Semmelweis University, Budapest, Hungary; 3Unit of Oncology 1, Department of Oncology, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy; 4Department of Surgical Oncology and Gastroenterology Sciences (DISCOG), Surgery Unit, University of Padua, Padua, Italy; 5Department of Surgery, Imperial College, London, UK; 6Department of Surgical Oncology and Gastroenterology Sciences (DISCOG), Gastroenterology Unit, University of Padua, Padua, Italy; 7Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy; 8Unit of Oncology 1, Department of Oncology, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy; 9Unit of Gastroenterology, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy; 10Division of Molecular Pathology, Institute of Cancer Research, London, UK; 11Department of Medicine, Royal Marsden Hospital, London, UK and 12Veneto Cancer Registry, Padua, Italy

Correspondence: Matteo Fassan (matteo.fassan@unipd.it)

These authors contributed equally: Irene Coati, and Gábor Lotz as co-first authors, Andras Kiss, Fotios Loupakis, and Matteo Fassan as co-last authors.

Received: 2 May 2019 Revised: 3 June 2019 Accepted: 5 June 2019
Published online: 25 June 2019

© The Author(s), under exclusive licence to Cancer Research UK 2019
Claudins (CDLNs) are a family of at least 27 transmembrane proteins, first described by Tsukita et al. They are the major component of the tight junctions (TJ).8,9 TJ are the main cell–cell contacts among epithelium and endothelium. Particularly, CDLNs (including the C-terminus).8 The C-terminal domain exhibits binding domains for a complex of proteins such as the scaffolding zonaula occludens proteins (ZO) ZO-1, ZO-2, ZO-3 and multi-PDZ domain protein 1 (MUPPI), which are involved in signalling pathways.10 CDLNs are mainly localised in the apical regions of the cellular membrane and play a critical role in cell–cell adhesion, maintenance of cell polarity and in selective paracellular permeability.7–9

Different CDLNs are expressed in various tissues7 and can be altered during carcinogenesis.11 For example, Claudin-6 is involved in breast cancer and in cervical cancer development.12–14 Claudin-11 in cutaneous melanoma.15 Claudin-1, -4, -7 in colorectal cancer16 and Claudin-8 in prostate cancer.17,18

Claudin-18 (CLDN18) is a highly specific TJ component of the stomach. It is expressed in foetal and in adult normal gastric mucosa.11,19 CLDN18 has two isoforms: Claudin-18.1 and Claudin-18.2, specific for pulmonary and gastric tissue, respectively. GCs and their metastases can retain the expression of this TJ protein.6

Targeted treatment of GC is in continuous evolution.20–22 Claudin-18 (CDLN18.2) represents an ideal therapeutic target due to its trans-membranous localisation. Claudixinab (IMAB362) is a monoclonal recombinant chimeric antibody (lgG1) specific for the CLDN18.2.21 The antibody can bind CLDN18.2 on the cellular surface and the binding induces the activation of antibody and complement-dependent cytotoxicity. IMAB362 is currently tested in several clinical trials for treatment of advanced gastric carcinomas alone or in combination with standard chemotherapy, showing a favourable safety profile and promising preliminary results in terms of clinical efficacy.8,20

With the present study, we investigated CLDN18 expression in 523 GCs and GEcs, focusing on its association with the clinicopathological and molecular parameters.

MATERIALS AND METHODS

Case selection

A total of 523 archival cases of surgically treated GCs (n = 408) and GEcs (n = 115) were retrieved from the archives of the Surgical Pathology Unit (Padua University). GCs were defined according to the American Joint Committee on Cancer (AJCC) TNM Classification Eighth edition, which define GEcs as cancers with epicentre distant no more than 2 cm from the gastric carica.24

All tissue samples were processed according to standard protocols, with formalin fixation time <48h. All cases were jointly reassessed by 3 pathologists (R.C., I.C. and M.F.), and representative, non-necrotic cancer specimens were selected for tissue microarray (TMA) construction. When available (n = 135), metastatic nodes were also included in the analysis. For metastatic samples, only metastatic foci >2.5mm with >40% neoplastic component were selected for TMA preparation.

Only material that was not required for diagnosis was used and all patients signed an informed consent approved by the University Hospital of Padua Review Board, which allows researchers to use excess material for research purposes. The study was approved by the local Ethic Committee.

TMA construction

Two neoplastic areas from two separate formalin-fixed, paraffin-embedded (FFPE) blocks were selected and tissue cores (1 mm diameter) were punched out of these areas using the Tissue ArrayerMincore 3 (Alphelys, Plaisir, France), as previously described.21

In 520 of the 523 primary GCs/GEcs, 2 tissue cores were obtained from each selected area (i.e., 4 samples per tumour); in 3 of the 523 cases, only 1 cancer tissue core was available from each neoplastic area (i.e., 2 samples per tumour). From the 135 synchronous nodal metastases, 2 tissue cores were obtained in 115 cases, whereas a single tissue core was obtained from 20 metastatic nodes.

As a result, a total of 2086 tissue cores of primary GC/GEcs and 250 tissue cores of metastatic nodes were collected in 34 TMA blocks (average number of cores 68.7 per block; range 40–128).

Immunohistochemistry (IHC)

IHC stains were performed using the Bond Polymer Refine Detection Kit (Leica Biosystems, Newcastle upon Tyne, UK) on BOND-MAX automated IHC stainer (Leica Biosystems) and the UltraView DAB Detection Kit on Ventana Benchmark Ultra automated IHC staining system (Roche Diagnostics, Basel, Switzerland). Four-µm-thick FFPE sections were incubated with the primary antibodies for Claudin-18 (clone 34H14L15; Invitrogen, Carlsbad, CA; dilution 1:200), MSH6 (clone EP49; Agilent, Santa Clara, CA; dilution 1:25), MPM2 (EP51; Agilent; dilution 1:20), MLH1 (clone ES05; Agilent; dilution 1:25), MSH2 (FE11; Agilent; dilution 1:25), p53 (clone DO-7; Agilent; prediluted), p16INK4A (clone JCH8; Santa Cruz Biotechnology, Dallas, TX; prediluted), PATHWAY HER2/new (485) (Ventana Medical Systems, Roche Diagnostics) E-cadherin (clone NCH-38; Agilent; dilution 1:200), and PDL-1 (clone AP3171 A1; Biocare, Parcheco, CA; prediluted).

For the evaluation of CLDN18, the membrane immunoreaction was assessed using a semi-quantitative pathology H-score, defined as the aggregate of total percentage of tumour cells expressing CLDN18 at each particular intensity level from 0, +1 (weak intensity), +2 (moderate intensity) or +3 (strong intensity). In brief, the H-score was defined as: (Percentage of CLDN18 +1 tumour cells multiplied by intensity of 1) + (Percentage of CLDN18 +2 tumour cells multiplied by intensity of 2) + (Percentage of CLDN18 +3 tumour cells multiplied by intensity of 3). Thus this composite score can range from 0 (a tumour which is completely negative) to a maximum of 300 (a tumour in which all the cells feature a +3 staining). Scores were categorised in negative/low (0 = 0–50) and positive/high (1 = 51–300). Where present, nuclear and/or cytoplasmic CLDN18 expression was noted but not retained for scoring.

Deficient mismatch repair (MMRd) status was assessed by testing MSH2, MSH6, MLH1 and PMS2, and samples were defined as MMRd when one or both proteins resulted negative.25 p53 was considered as aberrant in the presence of complete loss or diffuse and strong nuclear immunostaining in neoplastic cells.26

For the evaluation of p16, immunoreaction was assessed using a four-tier classification: 0, complete absence of p16 staining in all neoplastic cells; 1, staining only in isolated and dispersed neoplastic cells; 2, staining in patchy and scattered clusters of neoplastic cells; and 3, dense and continuous cytoplasmic/nuclear staining in all neoplastic cells (1). The resulting values were combined in 2-point total scale, characterised by negative/low (0 and 1) and positive/high (2 and 3) expression.

For the evaluation of HER2, the four-tier modified Herceptest score for biopsies was used. Score 0/1+ (no membranous immunostaining in any neoplastic cells/presence of tumour cell cluster with barely perceptible membranous reactivity irrespective of percentage of tumour cells stained) as negative; 2+ (presence of tumour cell cluster with weak or moderate basolateral–lateral membranous reactivity irrespective of the percentage of tumour cells stained) as equivocal; and 3+ (presence of tumour cell cluster with strong complete, basolateral or lateral membranous reactivity irrespective of the percentage of tumour cells stained) as positive.21
E-cadherin expression was considered altered in the presence of complete loss or markedly reduced membranous staining (>30%), regardless of nuclear/cytoplasmic staining.

Only tumour PD-L1 expression was retained for scoring, and a 1% cut-off was used in the analysis.

HER2 chromogenic in situ hybridisation (CISH) was performed according to the manufacturer’s protocol (Dako Her2 CISH pharmDx Kit; Dako, Glostrup, Denmark). Areas with the highest HER2 counts with non-overlapping nuclei were analysed by counting HER2 and centromeric probe 17 (CEP17) signals in at least 40 nuclei. The ratio HER2/CEP17 was calculated. A case was considered HER2 amplified when the signal ratio was ≥2.0 or when HER2 signal cluster was observed.

EBER in situ hybridisation (ISH) was performed according to the manufacturer’s protocol (Leica Bond-EBER in situ hybridisation (ISH)) with the Bond ready-to-use ISH EBER Probe was used in a Leica Bond-Max automation system according to the manufacturer’s instructions (Leica Biosystems) to detect EBV infection.

Statistical analysis

Differences and associations between CLDN18 and clinicopathological variables or other IHC markers were tested by applying the χ^2 test and Fisher Exact test. A p value <0.05 was considered significant.

RESULTS

Clinicopathological findings

Overall, the mean age of the patients was 69.3 ± 12.4 years (median 60; range 25–95). The male-to-female ratio was 1.98 (Table 1). All patients were Caucasian.

Among GCs, 198 (48.5%) were localised in the antrum, 191 (46.8%) in the corpus, 10 (2.5%) cases were categorised as linitis plastica and 9 cases (1.6%) were recurrent disease at the gastroduodenal/jejunal anastomosis. The GECs were 115. The metastatic samples were 135, 112 (82.9%) from gastric and 23 (17.1%) from gastro-oesophageal tumours.

According to the 2010 World Health Organisation criteria, 328 (80.3%) and 112 (97.3%) cases were NOS (not otherwise specified) adenocarcinomas, of the stomach and of the gastro-oesophageal junction, respectively. Among the gastric adenocarcinomas, 1 (0.2%) was hepatoid, 14 (3.4%) were mucinous, 2 (0.5%) were papillary, 27 (6.6%) were tubular, 2 (0.5%) had papillary and tubular features and 34 (8.5%) were poorly cohesive carcinomas (including signet-ring type). Among the GECs, 1 (1%) was an adenosquamous carcinoma and 2 (1.7%) were poorly cohesive carcinomas, signet-ring type.

When evaluating the grade of differentiation, 71 cases (13.5%) were G1, 204 cases (39%) were G2 and 248 cases (47.5%) were G3. According to tumour staging, 150 cases (28.7%) had stage I (IA, 63; IB, 87, respectively); 189 cases (36.1%) had II stage (IIA, 106; IIB, 83, respectively); 139 cases (26.6%) had III stage (IIIA, 72; IIIB, 25; IIIC, 43, respectively); 45 cases (8.6%) had IV stage.

In GCs, 117 cases (28.6%) were of Lauren diffuse type, and 291 cases (71.4%) were of intestinal type. According to Ming Classification, 69 cases (16.9%) were expanding, and 339 cases (83.1%) infiltrative.

CLDN18 expression: prevalence and clinicopathological associations

CLDN18 moderate-to-strong membranous expression was always observed in non-neoplastic gastric mucosa (Fig. 1). In cancer cells, CLDN18 was considered as positive only if membranous staining was present. Overall, any CLDN18 expression was present in the 61.6% (327/510) of primary cases and in 55.3% (73/132) of nodal metastases. High CLDN18 expression (i.e. H-score >51) was present in the 29.3% (150/510) of primary cases and in 34.1% (45/132) of nodal metastases (Fig. 1). In 108/510 (21.2%) primary tumours, only a weak (i.e. 1+) CLDN18 expression was observed, and only 26 (5.1%) of these cases were classified as high CLDN18 tumours. Moderate (i.e. 2+) membranous staining was observed in 101/510 (19.8%), whereas strong CLDN18 expression (i.e. 3+) was observed in 38/510 (7.5%). Among metastatic samples, 15/132 (11.4%) showed only a weak CLDN18 membranous expression, 32/132 (24.2%) were characterised by a moderate expression, whereas 11/132 (8.3%) showed a strong membranous expression.

High CLDN18 was associated with tumour site (antrum vs corpus), with a higher prevalence of positive cases among proximal (i.e. corpus) GCs ($p = 0.016$), whereas the distribution between GCs and GECs showed no statistically significance (29.7 vs 28.3%). High CLDN18 expression was also associated with the Lauren Classification, with higher prevalence of positive cases in the diffuse pattern ($p = 0.019$) (Fig. 2a–d). No association emerged between CLDN18 and age/sex, grading, staging and Ming Classification. We tested the prognostic impact of CLDN18 on the series of 45 stage IV cases, in which 10 (22.2%) tumours showed high CLDN18 expression, but the association between CLDN18 status and patients’ prognosis was not significant in this small series of advanced cancers.

Of note, a strong nuclear and/or cytoplasmic positivity was observed in 115 primary cases (22.5%); 95 with a nuclear positivity,

Variables	n (na)	CLDN18 negative (%)	CLDN18 positive (%)	p
Age (years), mean ± SD				
Male	348 (7)	237 (69.5)	104 (30.5)	NS
Female	175 (6)	123 (72.8)	46 (27.2)	
Localisation				
Stomach	408 (11)	279 (70.3)	118 (29.7)	
GEC	115 (2)	81 (71.7)	32 (28.3%)	
Gastric localisation				
Antrum	198 (4)	145 (74.7)	49 (25.3)	
Corpus	191 (3)	119 (63.3)	69 (36.7)	
Tumour grading				
I	150 (4)	115 (78.8)	31 (21.2)	
II	189 (4)	125 (67.6)	60 (32.4)	
III	139 (3)	92 (67.6)	44 (32.4)	
IV	45 (2)	29 (67.4)	14 (32.6)	
Lauren histotype				
Intestinal	291 (7)	202 (71.1)	82 (28.9)	
Diffuse	117 (4)	65 (57.5)	48 (42.5)	
Ming histotype				
Infiltrative	339 (9)	217 (65.8)	113 (34.2)	
Expanding	69 (2)	50 (74.6)	17 (25.4)	

p number of cases, na data not available for CLDN18 expression, GEC gastro-oesophageal carcinoma, NS not significant, CLDN18 Claudin-18, TNM tumour, node, metastasis
positivity. (Original magnification ×20; scale bar 100 µm)

13 with a cytoplasmic positivity and 7 with a mixed nuclear/cytoplasmic positivity. In 47/95 (49.5%) cases with nuclear staining, a concurrent membranous positivity was observed and only 10 of them were categorised as high CLDN18 tumours. Similarly, among metastatic samples, 27 (20.5%) had a nuclear positivity, 6 (4.5%) a cytoplasmic positivity and 5 (3.8%) a mixed positivity. The nuclear and/or cytoplasmic positivity showed no statistically significant associations with tumour location. Furthermore, no significant associations emerged comparing nuclear/cytoplasmic with membranous CLDN18 expression and with pathological staging.

Intratumoural variability of membranous CLDN18 expression was investigated, considering CLDN18 expression among the multiple TMA cores collected from different areas of the same tumour. A tumour was considered as CLDN18 heterogeneous in case of concomitant presence of high-CLDN18 and low-CLDN18 TMA cores. Among primary tumours, 160 GCs (40.3%) and 38 GECs (33.6%) showed intratumoural variability within the analysed cores. Similar results were observed for metastatic samples, with a total of 38 cases (28.8%) with heterogeneous CLDN18 status. Focussing on CLDN18 expression, as assessed in matched primary and metastatic samples, this analysis was possible for 128 couples. CLDN18 status was consistent between the two matched samples in 111 cases (86.7%); 83 negative and 28 positive cases, with only 17 cases showing CLDN18 discordant status (Fig. 2e).

CLDN18 expression according to the IHC profiling of the tumours Among primary tumours, 318/507 cases (62.7%) showed a normal p53 immunoreactivity, and 239/503 (47.5%) were p16 negative. Similar results were observed for metastatic lesions, with 79/119 cases (66.4%) characterised by the absence of p53 alterations and 62/119 cases (52.1%) resulting as p16 negative. Only 51/511 (10.0%) primary neoplasms showed completely loss of E-cadherin membranous expression and similar results were obtained in nodal metastasis, in which 17/125 cases (13.6%) were characterised by E-cadherin loss. A total of 63/515 (12.2%) primary adenocarcinomas showed a HER2 overexpression or HER2 gene amplification. In detail, 43 were gastric tumours (10.6% of HER2 alterations), and 20 were gastro-oesophageal tumours (18.2% of HER2 alterations). MMRd was observed in 113/511 cases (22.1%) of primaries and 19/119 (16.0%) of nodal metastases. No associations emerged between CLDN18 expression and p53, p16, E-cadherin, HER2 or MMRd in both primary tumours and in metastatic nodes (Tables 2 and 3 and Fig. 2).

A total of 20/523 (3.8%) tumours were positive for EBER ISH. Of this group, 15 were GCs and 5 GECs. A significant association was observed between EBER status and CLDN18 expression (p < 0.001). In fact, 14/20 (70%) of EBER-positive tumours showed high expression of CLDN18. Moreover, 4 further EBER-positive cases showed low (i.e. >1 and <51) CLDN18 expression. Only two EBER-positive cases did not show any CLDN18 expression. The mean age of EBER positive tumours was 64.6 years, and the male-to-female ratio was 3:1. Among the 15 EBV-associated GCs, 12 were located in the gastric corpus, 2 in the antrum, and 1 in an oesophago-jejunal anastomosis.

Owing to material exhaustion, only 210 cases were tested for PD-L1 expression, of which 79 with nodal metastases. Considering the neoplastic PD-L1 expression, 18/184 GC cases (9.8%) were positive, whereas only 1/26 (3.8%) GEC showed at least 1% positivity prevalence within cancer cells. On the other hand, considering positive a case with a Combined Positive Score (CPS) of ≥1%, 41/184 (22.3%) GC and 4/26 (15.4%) GEC resulted PD-L1 positive. PD-L1-positive cases showed a trend towards a higher prevalence of EBER positivity (6.7% vs 3.0%), MMRd tumours (31.1% vs 22.4%) and CLDN18 high expression (38.8% vs 29.7%). Similar results were observed in the metastatic samples. The trend was more pronounced for the GC group, in which PD-L1-positive cases showed a higher prevalence of EBER-positive cases (7.3%), MMRd tumours (34.1%) and CLDN18 high expression (41.5%).

Immunohistochemical profiling has recently emerged as a suitable alternative for molecular classification of GC. We focussed on the work of Ahn and collaborators to IHC categorise our series according to TCGA and the Asian Cancer Research Group (ACRG) molecular classifications of GC. According to TCGA molecular subtypes, 20 cases were EBV related (14 CLDN18 high; 70.0%), 77 cases were MSI (23 CLDN18 high; 29.9%), 36 cases were GS (5 CLDN18 high; 13.9%) and 366 cases were of the CIN subtype (107 CLDN18 high; 29.2%). According to ACRG molecular subtypes, 77 cases were MSI (23 CLDN18 high; 29.9%), 38 cases were MSS/EMT (7 CLDN18 high; 18.4%), 224 cases were MSS/p53+...
Fig. 2 Distribution of CLDN18-positive primary cases: among gastro-oesophageal (GEC) and gastric (GC) carcinomas (a), according to location within the gastric mucosa (b), according to tumour histotypes (c) and according to tumour grading (d). e CLDN18 status assessed in matched primary and metastatic tumours (n = 128). f Graphic summary of clinicopathological and immunohistochemical/in situ hybridisation results observed in the present study. Cases are disposed in columns, clinicopathological and molecular features in rows; missing data are in black, positive data are in red (i.e. high-CLDN18 expression; HER2 overexpression or amplification; presence of alterations in the proteins of the DNA mismatch repair; EBER-positive staining; p53 aberrant cases; E-cadherin-negative cases; p16-negative cases). Lauren lighter lines: diffuse-type carcinomas; Ming lighter lines are cases with expansive growth pattern; tumour staging from yellow (stage I) to dark red (stage IV); tumour grading from light blue (grade 1) to dark blue (grade 3).

Biomarker	CLDN18 negative (%)	CLDN18 positive (%)	p
EBER			p < 0.001
Positive	6 (30.0)	14 (70.0)	
Negative	348 (71.0)	142 (29.0)	
p53			NS
Aberrant	130 (68.8)	59 (31.2)	
Normal	220 (69.2)	98 (30.8)	
p16			NS
Positive	177 (74.1)	87 (25.9)	
Negative	172 (65.2)	68 (34.8)	
MMR			NS
Deficient	75 (66.4)	38 (33.6)	
Proficient	273 (68.8)	124 (31.2)	
E-cadherin			NS
Positive	323 (70.4)	136 (29.6)	
Negative	41 (80.4)	10 (19.6)	
HER2			NS
Amplified	48 (76.2)	15 (23.8)	
Not amplified	321 (71.8)	126 (28.2)	

Table 2. Association between CLDN18 status and the other biomarkers in primary tumours (NS = not significant)

Table 3. Association between CLDN18 status and the other biomarkers in metastatic tumours (NS = not significant)

Biomarker	CLDN18 negative (%)	CLDN18 positive (%)	p
EBER			NE
Positive	0 (0.0)	0 (0.0)	
Negative	92 (69.7)	40 (30.3)	
p53			NS
Aberrant	30 (75.0)	10 (25.0)	
Normal	56 (70.9)	23 (29.1)	
p16			NS
Positive	41 (71.9)	26 (28.1)	
Negative	42 (67.7)	19 (32.3)	
MMR			NS
Deficient	13 (68.4)	6 (31.6)	
Proficient	75 (75.0)	25 (25.0)	
E-cadherin			NS
Positive	75 (69.4)	33 (30.6)	
Negative	12 (70.6)	5 (29.4)	
HER2			NE
Amplified	0 (0.0)	0 (0.0)	
Not amplified	90 (71.4)	36 (28.6)	

CLDN18 Claudin-18; NE not evaluable
The association between CLDN18 expression and p53, p16, E-cadherin, PD-L1 and HER2 was investigated. The only significant association emerged between CLDN18 and E-cadherin. Higher prevalence of positive E-cadherin was found among positive CLDN18 tumours. This association was independent of the Lauren Classification.

We found a significant association between CLDN18 and EBV-positive status. Shinozaki et al. previously investigated the Claudins’ expression in EBV-GCs compared to EBV-negative GCs and their results indicated a CLDN18-positive predominance in EBV-associated GCs. Since preserved expression of CLDN18 was described not only in mature but also in immature gastric epithelium, our data could support the hypothesis that EBV-associated GCs could arise directly from immature proliferating cells. There were no significant differences between prevalence of EBV-associated GCs and EBV-positive GCs. Jovov et al. demonstrated an almost absolute predominance of CLDN18 expression in Barrett’s oesophagus compared to other Claudins. Shinozaki’s study underlined the lack of CLDN18 in intestinal metaplasia in the stomach. These previous results support the hypothesis that CLDN18 expression is mainly dependent on the molecular profile of immature tissue-specific cells regardless of the presence or not of an intestinal phenotype. Anyway, this point remains unclear and would require further investigation.

The prevalence of CLDN18-positive cases is relatively lower in our study in comparison to the recent published clinical trial or a previous paper by Matsusaka and colleagues; however, our series considered only a 8.6% of stage IV tumours and this can significantly affect the prevalence of CLDN18-positive cases. Moreover, different antibodies are available, and they are characterised by different sensitivities/specificities to CLDN18. In particular, by checking the Human Protein Atlas database (www.proteinatlas.org; 21 January 2018) three different antibodies are on the market and detect, on the same series of GC specimens, CLDN18 high expression in 36.4 to 70.0% of the cases, further supporting the need for a standardisation of testing.

In summary, this is the largest study investigating CLDN18 expression among GECs. One third of the cases retained CLDN18 expression and this was significantly associated with gastric corpus location, diffuse-type GC and with the presence of EBV infection. Our group has recently started a new prospectively conceived translational study on a selected series of stage IV GC, focusing on CLDN18.2 isoform and its prognostic role and predictive significance to current standard treatments.
Claudin-18 expression in oesophago-gastric adenocarcinomas: a tissue... I Coati et al.

21. Cappelletto, R., Fassan, M., Hansperger, E., Bornschein, J., D’Amore, E. S., Cuvo, L. V. et al. HER2 status in gastrointestinal cancer: a tissue microarray study of 1040 cases. *Hum. Pathol.* 46, 665–672 (2015).

22. Kim, S. T., Cristescu, R., Bass, A. J., Kim, K. M., Odegaard, J. I., Kim, K. et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. *Nat. Med.* 24, 1449–1458 (2018).

23. Sahin, U., Schuler, M., Richly, H., Bauer, S., Krilova, A., Dechow, T. et al. A phase I dose-escalation study of IMAB362 (Zolbetuximab) in patients with advanced gastric and gastro-oesophageal junction cancer. *Eur. J. Cancer* 100, 17–26 (2018).

24. Rice, T. W., Gress, D. M., Patil, D. T., Hofstetter, W. L., Kelsen, D. P. & Blackstone, E. H. Cancer of the esophagus and esophagogastric junction: major changes in the American Joint Committee on Cancer Eighth Edition Cancer Staging Manual. *CA Cancer J. Clin.* 67, 304–317 (2017).

25. Remo, A., Fassan, M. & Lanza, G. Immunohistochemical evaluation of mismatch repair proteins in colorectal carcinoma: the AIPEG/GIAPP proposal. *Pathologica* 108, 104–109 (2016).

26. Ahn, S., Lee, S. J., Kim, Y., Kim, A., Shin, N., Choi, K. U. et al. High-throughput protein and mRNA expression-based classification of gastric cancers can identify clinically distinct subtypes, concordant with recent molecular classifications. *Am. J. Surg. Pathol.* 41, 106–115 (2017).

27. Birnkam, E. M., Mansuri, N., Kurki, S., Algars, A., Lintunen, M., Ristamaki, R. et al. Gastric cancer: immunohistochemical classification of molecular subtypes and their association with clinicopathological characteristics. *Virchows Arch.* 472, 369–382 (2018).

28. Matsuikawa, K., Ushiku, T., Urabe, M., Fukuyo, M., Abe, H., Ishikawa, S. et al. Coupling CDH17 and CLDN18 markers for comprehensive membrane-targeted detection of human gastric cancer. *Onkotarget* 7, 64168–64181 (2016).

29. Hayashi, D., Tamura, A., Tanaka, H., Yamazaki, Y., Watanebe, S., Suzuki, K. et al. Deficiency of claudin-18 causes paracellular H+−leakage, up-regulation of inter- leukin-1beta, and atrophic gastritis in mice. *Gastroenterology* 142, 292–304 (2012).

30. Yao, F., Kausalya, J. P., Sir, Y. A., Teo, A. S., Lee, W. H., Ong, A. G. et al. Recurrent fusion genes in gastric cancer: CLDN18-ARHGAP26 induces loss of epithelial integrity. *Cell Rep.* 12, 272–285 (2015).

31. Shu, Y., Zhang, W., Hou, Q., Zhao, L., Zhang, S., Zhou, J. et al. Prognostic significance of frequent CLDN18-ARHGAP26/6 fusion in gastric signet-ring cell cancer. *Nat. Commun.* 9, 2447 (2018).

32. Tanaka, A., Ishikawa, S., Ushiku, T., Yamazawa, S., Kato, H., Hayashi, A. et al. Frequent CLDN18-ARHGAP fusion in highly metastatic diffuse-type gastric cancer with relatively early onset. *Onkotarget* 9, 29336–29350 (2018).

33. Yang, H., Hong, D., Cho, S. Y., Park, Y. S., Ko, W. R., Kim, J. H. et al. RhOGAP domain-containing fusions and PPAPDC1A fusions are recurrent and prognostic in diffuse gastric cancer. *Nat. Commun.* 9, 4439 (2018).

34. Somoracz, A., Koropayt, A., Torzok, P., Patonai, A., Eredeli-Belly, B., Lotz, G. et al. Tricellulin expression and its prognostic significance in primary liver carcinomas. *Pathol. Oncol. Res.* 20, 755–764 (2014).

35. French, A. D., Fiori, L. J., Camilli, T. C., Leotlela, P. D., O’Malley, M. C., Fine, N. A. et al. Reduced expression of claudin-18 in primary liver carcinomas. *Hepatol. Oncol.* 9, 65–74 (2013).

36. Sahin, U., Tureci, O., Manikhas, G. M., Lordick, F., Rusyn, A., Vynnychenko, I. et al. Zolbetuximab combined with EOX as first-line therapy in advanced CLDN18+ gastric (G) and gastroesophageal junction (GEJ) adenocarcinoma: updated results from the FAST trial. *J. Clin. Oncol.* 37(no. 4_suppl), 16–16 (2017).