In vitro Antisalmonella and Antioxidant Activity of Hydroethanolic and Aqueous Extracts of Bauhinia rufescens Leaf and Stem Bark Extracts

J. Djenguemtar a,b, E. Yamako Konack a,c, J. B. Sokoudjou a,c, G. T. Kamsu a, H. B. L. Feudjio a, N. Kodjio a and D. Gatsing a

a Research Unit of Microbiology and Antimicrobial Substances, Faculty of Science, University of Dschang, P.O.Box 67, Dschang, Cameroon.
b Département des Sciences Biomédicales et Pharmaceutiques, Faculté de Sciences de la Santé, Université Adam Barka d’Abéché, BP : 1173, Chad.
c Département des Sciences Appliquées à la Santé, Institut Universitaire et Stratégique de l’Estuaire (IUES/INSAM), BP: 4100 Douala, Cameroon.

Authors’ contributions

This work was done in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/MRJI/2022/v32i130366

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/86294

Original Research Article

ABSTRACT

In Chad, enteric fever remains a major public health problem where it is still endemic due to the precariousness of life hygiene combined with the abusive and inappropriate use of antibiotics. **Objective:** The aim of this work was to evaluate the *in vitro* antisalmonella and antioxidant activity of extracts from the leaves and stem bark of *B. rufescens*. **Methods:** Phytochemical screening of these extracts was performed by standard methods to justify the observed activities. The antisalmonella activity was evaluated using the liquid microdilution method. Antioxidant activity of these extracts was determined by investigating their 1, 1-diphenyl-2 picrylhydrazyl (DPPH*) antiradical and iron reducing capacities. **Results:** The Minimum Inhibitory Concentrations (MICs) were varied from 256 to 1024 µg/ml. The 95% hydroethanolic extract of the leaves exhibited higher DPPH* antiradical activity than all extracts and IC50s ≤ 20 µg/ml for all extracts tested.

*Corresponding author: E-mail: gatsingd@yahoo.com;
Conclusion: These results showed that the 95% hydroethanolic extract of B. rufescens leaves possess in vitro antisalmonella and antioxidant activities and could be used for in vivo antisalmonella and antioxidant studies.

Keywords: Typhoid fevers; B. rufescens; phytochemical screening; antisalmonella; antioxidant.

1. INTRODUCTION

Typhoid and paratyphoid salmonelloses are usually found in areas with poor hygiene and are a serious public health problem worldwide [1]. They mainly affect Asia, Africa and Latin America. Estimates made by the World Health Organization in 2008 report 22 million cases and 600,000 deaths per year worldwide [2]. The high costs, as well as the toxicity of some of these antibiotics are commonly encountered, following the example of chloramphenicol whose use is limited due to its bone marrow toxicity [3]. All this confronts medicine with problems of anti-infective therapy. Furthermore, typhoid salmonellosis is often exacerbated by oxidative stress, which can be a consequence of microbial invasion or mitigate for its progression [4, 5]. These Salmonella infections produce superoxide ion and nitric oxide, which react together to form peroxynitrite, which is a potent biological oxidant [6]. It then becomes necessary to find a new, effective, low-cost therapy that in addition to anti-salmonella activity can reduce the level of free radicals produced during Salmonella infection. The traditional use of B. rufescens for the treatment of typhoid fever by the Chadian population and a retrospective study on this plant revealed that it is used in traditional medicine for the treatment of several pathologies such as diabetes, diarrhea, dysentery, fungus, fibrosis, jaundice and inflammations [7, 8]. Given its traditional use by the Chadian population in the treatment of typhoid fever and the results of numerous previous scientific researches on the plant species B. rufescens, its extracts could constitute a non-toxic alternative against typhoid fever. Hence the objective of this work which aims to provide concrete scientific evidence on the therapeutic efficacy of B. rufescens against typhoid fever through the in vitro antisalmonella and antioxidant study.

2. MATERIALS AND METHODS

2.1. Plant Material

The plant material used for this work consisted the leaves and stem bark of B. rufescens, collected in December 2017 in Abeche, eastern Chad (13° 49' 0" North, 20° 49' 0" East.), and identified at the Botanical Unit of the Livestock Research Institute for Development (UBired) in Ndjaména, Chad, under the reference IRED/LRVZ 1325.

2.2 Preparation of the Extracts

The leaves and stem bark of B. rufescens were harvested and dried at room temperature 30±2°C away from the sun and ground using a Moulinex brand Zaiba (Super Blender, China). The powder obtained was stored in a cardboard box at room temperature, in a dry place and protected from humidity and light until use. The obtained powders were used for the preparation of different aqueous (infusion, maceration and decoction) and hydroethanolic (95%, 75% and 50%) extracts following the methods

Fig. 1. B. rufescens in its natural environment
Fig. 2. General scheme

The leaves and stem bark of *B. rufescens*

Drying at room temperature 30±2°C, away from the sun, then grinding and obtaining the powder

Preparation of aqueous extracts (infusion, decoction and maceration)

Maceration in 95%, 75% and 50% ethanol for 48 hours, then filtration and evaporation under vacuum at 50°C

Aqueous extracts

Hydroethanolic extracts

Phytochemical screening and evaluation of *in vitro* antisolmonella, antioxidant activity

described by Kamsu et al. [9]. This protocol was scrupulously followed for the preparation of the extracts, using 250 g of powder previously obtained after desiccation of the plant material for 2500 ml of solvent at each time.

The extraction yield of the different extracts was calculated according to the following formula [10].

\[R = \frac{(m \times 100)}{m°} \]

R: yield of the crude extract in percentage (%), m: the mass of the crude extract obtained after extraction (g), m°: the mass of the dry plant material (g).

The different extracts obtained were stored at -20°C until their use.

2.3 Phytochemical Screening

The determination of the different classes of potential bioactive compounds present in the extracts of *B. rufescens* was carried out following the standard method of Harbone [11].

2.4 Microorganisms and Culture Media

The microorganisms used for the determination of the antibacterial activities of the extracts were Gram-negative bacteria: *Salmonella enterica* serovar Typhi (ST), *Salmonella enterica* serovar Paratyphi A (SPA), *Salmonella enterica* serovar Paratyphi B (SPB) and *Salmonella enterica* serovar Typhimurium (STM) obtained at the Centre Pasteur du Cameroun and a *Salmonella enterica* serovar Typhi ATCC6539 strain. Microorganisms were stored at -20°C on
Salmonella-Shigella agar (SSA) (Lioflichem, Italia) and subcultures were freshly prepared before use. Mueller Hinton broth (MHB) (Lioflichem, Italia) was used as a basic enrichment medium for aerobic culture at 37°C with agitation at 150 rpm in the different tests.

2.5 Reference antibiotic and bacterial growth indicator reagent

Ciprofloxacin was used as a positive control during the determination of MICs and BMCs. Its choice is justified by the fact that it is used as a first-line treatment for typhoid fevers (typhoid and paratyphoid fevers) in Central Africa [12]. Para-iodonitetrazoliumchloride (INT) was used as an indicator of bacterial growth.

2.6 Antisalmonella Activity of B. rufescens Extracts

The bacterial growth inhibitory potential of B. rufescens extracts was determined by the microdilution method as described by Mativandilea et al. [13]. In each well of a 96-well microplate, 100 µl of culture broth (MHB) was introduced. Then, 100 µl of each extract was introduced to obtain an initial concentration (4096 µg/ml) respectively in the first three wells of the first row; subsequently serial dilutions were performed to obtain final concentrations ranging from 2048 to 16 µg/ml. A volume of 100 µl of broth plus inoculums at the concentration of 1.5×10⁸ CFU/ml bacterial was introduced into each well. Plates were brought to incubation at 37°C for 18 h. Wells containing the inoculums as well as those containing only the culture media were made and constituted the negative controls and the positives control with the antibiotic. After this incubation time, 40 µl of a 0.2% aqueous para-iodonitrotetrazolium chloride solution was added to these wells and incubated at 37°C for 30 min. Thus, wells that turn pink after addition of INT indicate bacterial growth [13]. All concentrations that prevented the appearance of pink color were taken as the inhibitory concentrations and the smallest was scored as Minimal Inhibition Concentration (MIC). For each extract, three columns were made and the revelation was done on two columns.

The third column was used to determine the Minimum Bactericidal Concentrations (MBC). After reading the different MICs, 150 µl of newly prepared Mueller-Hinton Broth was introduced into the wells of the new plates, and then 50 µl of the contents of each well where there was inhibition of bacterial growth (absence of pink staining) was withdrawn with a micropipette and introduced into the corresponding wells of the new plate. These plates were again covered with a sterile lid. Negative control wells, containing only Mueller-Hinton broth and those containing the inoculums without extract or antibiotics were made. The new incubation was also done at 37°C, for 48 h. The revelation was done as for MIC determination (40 µl of an aqueous solution of INT was added to each well). All extract concentrations for which the absence of bacterial growth was noted (no appearance of pink coloration) were considered as bactericidal concentrations and the smallest was noted as MBC. This test was repeated independently three times.

2.7 Antioxidant Activity of B. rufescens Extracts

2.7.1 DPPH* radical assay

DPPH* radical scavenging by the DPPH* (1, 1-diphenyl-2-picrylhydrazyl) assay was used to investigate the radical scavenging activities of B. rufescens extracts according to the technique described by Mensor et al. [14]. The extract (2000 µg/ml) was serially diluted twice with methanol. 100 µl of diluted extract was mixed with 900 µl of 0.3 mM DPPH methanol solution, for a final extract concentration of 12.5 to 200 µg/ml (12.5, 25, 50, 100 and 200 µg/ml). The absorbance at 517 nm was measured using a spectrophotometer, after 30 min of incubation at room temperature in the dark. Ascorbic acid (vitamin C) was used as a control.

\[
\text{Radical reduction percentage} = \frac{\text{Absorbance of DPPH} - \text{Absorbance of sample}}{\text{Absorbance of DPPH}} \times 100
\]
The IC₅₀ (amount of sample required to inhibit 50% of the free radical DPPH) was determined by plotting the percentages of radical scavenging activity against the log values of the test sample concentration.

2.7.2 Ferric Reduction/Antioxidant Power assay (FRAP)

The iron (Fe³⁺) reducing power of the extracts was determined according to the method described by Padmaja et al. [15]. For this purpose, one milliliter of extract at different concentrations (200; 100; 50; 25 and 12.5 μg/ml) was mixed with 2.5 ml of 0.2 M phosphate buffer solution (pH 6.6) and 2.5 ml of 1% potassium ferricyanide K₃Fe (CN)₆ solution. The whole set was incubated in a water bath at 50°C for 20 min; then 2.5 ml of 10% trichloroacetic acid was added to stop the reaction and the tubes were centrifuged at 3000 rpm for 10 min. An aliquot (2.5 ml) of supernatant was combined with 2.5 ml of distilled water and 0.5 ml of a 0.1% FeCl₃ ethanol solution. The absorbance of the reaction medium was read at 700 nm against a similarly prepared blank, where the plant extract was replaced with distilled water.

The positive control was represented by a solution of a standard antioxidant (L-ascorbic acid or vitamin C) whose absorbance was measured under the same conditions as the samples. An increase in absorbance corresponds to an increase in the reducing power of the tested extracts [16].

2.7.3 Determination of total phenols

The content of total phenols was determined by the method described by Ramde-Tiendrebeogo et al. [17]. The reagent was a mixture of phosphotungstic acid (H₃PW₁₂O₄₀) and phosphomolybdic acid (H₃PMo₁₂O₄₀). It was reduced upon oxidation of the phenols to a mixture of blue oxides of tungsten and molybdenum. These blue pigments have a maximum absorption depending on the qualitative and or quantitative composition of phenolic mixtures in addition to the pH of the solutions, usually obtained by adding sodium carbonate [18]. The reaction mixture in this assay consisted of 20 μl of extract (2 mg/ml), 20 μl 2N of Folin-Ciocalteu reagent and 40 μl of a 20% sodium carbonate solution. The mixture was stirred and incubated in a water bath at 40°C for 20 min, and then the absorbance was measured at 760 nm. The extract was replaced with distilled water in the blank tubes. A calibration curve was plotted using gallic acid (0-2 mg/ml); results were expressed as milligrams of gallic acid equivalent per gram of extract (mgGAE/g).

2.7.4 Determination of flavonoid content

The flavonoid content of the extracts was determined using the aluminum trichloride colorimetric method of Padmaja et al. [15]. 100 μl of the extract was mixed with 1.49 ml of distilled water, and then 30 μl of a 5% sodium nitrite NaNO₂ solution was added. After 5 min, 30 μl of a 10% aluminum chloride solution AlCl₃ was added. The mixture was left to stand for 6 min, and then 200 μl of 1M NaOH solution and 240 μl of distilled water were added. The whole mixture was homogenized with a vortex and the absorbance was measured at 510 nm. The total flavonoid content was calculated using a calibration curve with catechin and the results were expressed as milligrams of catechin equivalent per gram of extract (mgCE/g).

2.8 Statistical Analysis

Statistical analyses were done using SPSS (22.0) for Windows software by ANOVA analysis of variance followed by Waller-Duncan test for comparison between the parameters of the control groups and those of the test groups. All results obtained were expressed as means ± standard deviation. Probability values P < 0.05 were considered significant.

3. RESULTS

3.1 The extraction Yield of the Different Extracts

Table 1 shows the extraction yield of hydroethanolic and aqueous extracts of B. rufescens leaves and stem bark. The extraction yield varies with the solvent used. The yields of hydroethanolic extracts were higher than those of aqueous extracts. Regardless of the plant part, the best extraction yield was obtained with the 95% hydroethanolic solvent system.

3.2 Phytochemical study of B. rufescens Extracts

The qualitative phytochemical screening of the extracts of the leaves and stem barks of B. rufescens revealed the presence of several classes of secondary metabolites (Table 2).
From this table, it appears that tannins, alkaloids, anthraquinones, phenols and flavonoids are present in all extracts tested. All the secondary metabolisms tested are present in the 50%, 75% hydroethanolic extracts and the decoction of the stem barks. The triterpenes and saponins are present in the 95% and 75% hydroethanolic extracts of the leaves; they are also present in the decoction, the infusion and the 50% and 75% hydroethanolic extracts of the stem barks.

3.3 In vitro Antisalmonella activity of B. rufescens Leaf and Stem Bark Extracts

The values of the Minimum Inhibitory Concentrations (MICs) and Minimum Bactericidal Concentrations (MBCs) obtained in the evaluation of the in vitro antisalmonella activity of the extracts of the leaves and stem barks of B. rufescens are represented in Table 3. From this Table, it appears that all the hydroethanolic extracts showed MICs between 256 and 1024 µg/ml. The macerated and decocted leaves showed no activity up to the threshold tested (1024 µg/ml). The 95% hydroethanolic extract of the leaves exhibited a MIC of 512 µg/ml on Salmonella Typhi (ST), Salmonella Typhi ATCC6539, Salmonella Typhimurium (STM) and Salmonella Paratyphi A (SPA). The hydroethanolic extracts (95%, 75% and 50%) and aqueous extracts (decocted, macerated and infused) of stem barks inhibited the growth of Salmonella Typhi, Salmonella Paratyphi B, and Salmonella Paratyphi A with concentrations ranging from 256 to 512 µg/ml. Regarding the hydroethanolic extracts of leaves and stem barks, MBCs/MICs ratios < 4 were observed on all extracts that presented MBC value.

3.4 Study of in vitro Antioxidant Activity of Extracts from leaves and Barks of B. rufescens

3.4.1 Effects of the extracts on the DPPH* radical

The free radical scavenging activity of the different extracts from the leaves of B. rufescens was determined after 30 minutes of reaction in the presence of DPPH* radical. The ability of the extracts of B. rufescens leaves and vitamin C (reference antioxidant) to inhibit the DPPH* radical is presented in Table 4. From this Table, it can be seen that all these extracts possess significant activity against the DPPH* radical. The most active extracts are the 95% hydroethanolic extract of leaves and the macerated stem bark, which inhibit more than 90% of the DPPH* radical at the concentration of 200 µg/ml. All extracts significantly (p<0.05) inhibited DPPH less than vitamin C at all concentrations tested.

3.4.2 IC50 of the extracts of the leaves and stem barks of B. rufescens

The IC50 of the different extracts of the tested leaves and barks of B. rufescens in relation to that of ascorbic acid are presented in Table 5. We find that all the extracts present IC50 values between 9.780 and 19.531 µg/ml. The lowest IC50 value of the extracts was obtained with the 95% hydroethanolic extract of the leaves (IC50 = 9.780±0.125). However, the 50% hydroethanolic extract of the leaves showed the highest IC50 (IC50 = 19.531±2.502). Vitamin C was the most active substance with an IC50 (8.570 mg/ml) significantly lower (p < 0.05) than that of all extracts (Table 5).

3.4.3 Iron reducing capacity (FRAP) of B. rufescens leaf and stem bark extracts

The results of iron reducing power of B. rufescens extracts are presented in Table 6. From this table, it can be seen that the 95% hydroethanolic extract of B. rufescens leaves and stem bark showed the highest reducing power (p<0.05) compared to all extracts followed by the 50% hydroethanolic extract of stem bark from the concentration 50 µg/ml. In general, the activity of L-ascorbic acid was significantly (p<0.05) higher than that of all extracts at all concentrations.

3.4.4 Total phenol and flavonoids content of B. rufescens

The analysis of total phenols and flavonoids content revealed that most of these types of metabolites are present in each extract of B. rufescens as presented in Table 7. From this table, it can be seen that the total phenol content of the 95% hydroethanolic extract of the leaves and stem barks were significantly (p<0.05) higher than that of all extracts. However, the flavonoid content of the 50% hydroethanolic extract of leaves and stem bark were significantly (p<0.05) higher than all extracts. The leaf infusions showed the lowest phenol and flavonoid contents.
Table 1. Extraction yield of leaves and stem bark of *B. rufescens*

Plant extracts	Sample mass in (g)	Mass of extracts (g)	Yields %			
	leaves	Barks	leaves	Barks	leaves	Barks
Hydro	95%	250	45.96	39.23	18.387	15.695
Ethanolic extracts	75%	43.83	35.49	17.544	14.196	
	50%	41.82	28.45	16.728	11.38	
Aqueous extracts	Infused	25.13	25.97	10.052	10.39	
	Decocoted	27.66	27.50	11.064	11.00	
	Macerated	26.25	23.75	10.50	9.50	

Table 2. Phytochemical composition of leaf and bark extracts of *B. rufescens*

Extracts	Chemical classes	Hydroethanolic extracts	Aqueous extracts				
		95%	75%	50%	Decoceted	Infused	Macerated
Leaves	Alkaloids	+	+	+	+	+	+
	Phenols	+	+	+	+	+	+
	Flavonoids	+	+	+	+	+	+
	Anthocyanins	-	-	-	-	-	-
	Anthraquinones	+	+	+	+	+	+
	Tannins	+	+	+	+	+	+
	Steroids	+	+	-	-	-	-
	Triterpenes	+	+	-	-	-	-
	Saponins	+	+	-	-	-	-
Stem barks	Alkaloids	+	+	+	+	+	+
	Phenols	+	+	+	+	+	+
	Flavonoids	+	+	+	+	+	+
	Anthocyanins	-	+	+	+	-	+
	Anthraquinones	+	+	+	+	+	+
	Tannins	+	+	+	+	+	+
	Steroids	-	+	+	+	-	-
	Triterpenes	-	+	+	+	-	-
	Saponins	-	+	-	+	-	-

*: Absence; +: presence.
Table 3. MICs values, MBCs and MBCs/MICs ratios of *B. rufescens* leaf and stem bark extracts on the four *Salmonella* isolates and *Salmonella Typhi* ATCC6539

Extracts	Concentrations in (µg/ml)	Leaves	Stem bark								
		STS	ST	STM	SPB	SPA	STS	ST	STM	SPB	SPA
95% Hydroethanolic	CMI	512	512	512	1024	512	512	512	512	512	512
	CMB	1024	1024	512	--	1024	1024	1024	512	1024	1024
	CMB/CMI	2	2	1	--	2	1	2	1	2	2
75% Hydroethanolic	CMI	1024	1024	--	1024	--	512	512	256	512	256
	CMB	--	1024	--	--	512	1024	1024	512	512	512
	CMB/CMI	--	1	--	--	1	2	2	1	2	2
50% Hydroethanolic	CMI	1024	1024	1024	1024	--	512	512	256	512	512
	CMB	1024	1024	--	--	--	--	--	--	--	512
	CMB/CMI	1	1	--	--	--	--	--	--	1	2
infused	CMI	1024	1024	1024	1024	--	1024	512	512	512	256
	CMB	--	1024	--	--	--	--	--	--	1024	--
	CMB/CMI	--	1	--	--	--	--	--	2	--	4
Decocted	CMI	--	--	--	--	--	1024	256	512	512	254
	CMB	--	--	--	--	--	--	--	--	512	512
	CMB/CMI	--	--	--	--	--	4	--	1	2	2
Macerated	CMI	--	--	--	--	--	--	--	--	--	512
	CMB	--	--	--	--	--	1024	512	512	254	
	CMB/CMI	--	--	--	--	--	--	--	2	2	2
Ciprofloxacine	CMI	0,5	0,5	1	0,25	2	0,5	0,5	1	0,25	2
	CMB	2	2	4	4	1	2	4	1	4	4
	CMB/CMI	4	4	4	4	4	4	4	4	4	2

STs: Salmonella Typhi ATCC6539, ST: Salmonella Typhi, STM: Salmonella Typhimurium, SPB: Salmonella Paratyphi B and SPA: Salmonella Paratyphi A). MIC= Minimum Inhibitory Concentration. MBC= Minimum Bactericidal Concentration, the line (−) = No concentration.
Table 4. Percentage of DPPH* free radical inhibition for hydroethanolic and aqueous extracts of B. rufescens leaves and stem bark

Extracts	Concentrations (µg/ml)	Percentage of inhibition ± Standard deviation						
	EtOH 95%	EtOH 75%	EtOH 50%	Decocted	Macerated	Infused	Vit C	
Leaves								
	12.5	82.007±3.8249ab	63.620±4.920a	39.425±11.792a	79.554±3.899a	82.788±11.063cd	71.084±12.698de	95.734±0.223a
	25	89.713±0.508ef	86.701±6.356de	37.551±5.121a	88.517±0.365bde	86.689±1.106de	82.271±4.846de	96.665±0.6544
	50	91.612±0.215et	87.639±1.706cde	85.940±2.811bde	84.358±6.080bcd	84.222±1.146bcd	82.386±3.963c	96.738±0.0621
	100	93.010±1.516tgh	91.505±1.777etgh	76.332±1.196a	90.099±1.473etgh	87.378±0.358de	86.058±0.172cd	96.845±0.1244
	200	94.516±0.284ca	95.957±0.878ca	88.810±1.330ab	84.534±6.696a	86.861±1.599a	94.664±1.204ca	97.276±0.328d
	12.5	82.776±3.801cd	39.127±7.831b	72.461±1.641bc	72.544±4.737d	78.888±7.862a	46.559±4.190a	95.734±0.223a
	25	86.291±1.522de	67.756±8.504c	79.403±7.612d	81.505±3.182de	86.881±0.654ad	56.236±0.558g	96.665±0.6544
	50	85.354±2.661bde	80.091±1.384ab	85.197±5.844d	89.569±0.107d	89.856±0.407d	75.304±1.894a	96.738±0.0621
Stem	100	90.158±2.324et	84.509±1.984bc	88.755±3.791de	92.222±0.345d	94.767±0.620a	81.254±2.740d	96.845±0.1244
bark	200	93.555±1.129cd	91.623±1.037bc	93.631±2.257cd	97.096±0.492d	96.523±0.124a	84.623±1.182a	97.276±0.328d

The numbers bearing the letters a, b, c,... are significantly different at the 5% level (p < 0.05). The underlying values are of the form of means ± Standard deviation.

Table 5. Antiradical activity of B. rufescens extracts expressed in term of IC$_{50}$

Extracts	IC$_{50}$ in µg/ml	
	Leaves	Stem bark
EtOH 95%	9.780±0.125ab	10.469±0.051a
EtOH 75%	10.754±0.331b	14.940±0.754c
EtOH 50%	19.531±2.502a	11.347±0.866b
Decocted	11.285±0.482a	10.414±0.049b
Macerated	11.255±0.383b	9.845±0.220ab
Infused	11.575±1.175b	17.701±0.798a
Vitamin C	8.570±0.016a	

The numbers bearing the letters a, b, c,... are significantly different at the 5% level (p < 0.05). The underlying values are of the form of means ± Standard deviation.
Table 6. Iron reducing power (FRAP) of hydroethanolic and aqueous extracts of leaves and stem bark of *B. rufescens*

Extracts	Concentration (µg/ml)	Optical density ± Standard deviation					
	EtOH 95%	EtOH 75%	EtOH 50%	Decoiced	Macerated	Infused	VitC
Leaves							
12.5			0.197±0.009 ab	0.178±0.020 ab	0.132±0.041 a	0.176±0.001 bc	0.204±0.006 de
25	0.467±0.050 a	0.226±0.002 a	0.228±0.013 a	0.229±0.008 b	0.240±0.021 a	0.452±0.025 de	
50	0.686±0.028 g	0.353±0.007 cd	0.299±0.013 g	0.379±0.033 a	0.315±0.018 abc	0.410±0.002 f	0.992±0.026 i
100	0.763±0.016 d	0.472±0.014 ab	0.745±0.000 d	0.424±0.019 ab	0.508±0.066 ab	0.444±0.004 ab	1.813±0.005 e
200	0.938±0.002 cc	0.810±0.025 b	0.857±0.025 cc	0.802±0.052 d	0.781±0.009 c	0.663±0.016 a	1.829±0.003 e
Stem bark							
12.5	0.230±0.007 c	0.271±0.014 cd	0.280±0.021 b	0.265±0.045 cd	0.224±0.016 d	0.193±0.008 c	0.204±0.006 de
25	0.286±0.003 ab	0.345±0.070 bc	0.453±0.016 ab	0.392±0.009 ca	0.371±0.022 c	0.221±0.029 a	0.452±0.025 dc
50	0.395±0.017 de	0.642±0.009 cd	0.784±0.014 b	0.446±0.003 fg	0.652±0.037 g	0.333±0.015 bc	0.992±0.026 i
100	0.855±0.072 c	0.762±0.126 c	0.920±0.057 d	0.859±0.043 cd	0.970±0.012 d	0.554±0.001 b	1.813±0.005 e
200	1.004±0.025 d	0.939±0.013 cd	0.967±0.017 d	0.926±0.092 d	0.965±0.026 d	0.804±0.067 bc	1.829±0.003 e

VitC = Vitamin C; The numbers bearing the letters a, b, c… are significantly different at the 5% level (p < 0.05). The underlying values are of the form of means ± Standard deviation

Table 7. Total phenol and flavonoid content of hydroethanolic and aqueous extracts of *B. rufescens* leaves and stem bark

Extracts	Concentration of total phenols (mgGAE/g) ± Standard deviation	Concentration of total flavonoids (mgCE/g) ± Standard deviation
Leaves		
EtOH 95%	2.895±0.081 ab	2.335±0.265 ab
EtOH 75%	2.152±0.098 a	2.505±0.605 ab
EtOH 50%	2.081±0.488 c	2.590±0.469 ab
Decoiced	1.203±0.168 a	2.717±0.447 ab
Macerated	1.377±0.005 ab	2.335±0.383 ab
Infused	0.994±0.145 a	1.337±0.220 a
Stem bark		
EtOH 95%	4.000±0.011 f	2.165±0.168 a
EtOH 75%	3.500±0.058 ab	2.462±0.715 ab
EtOH 50%	3.075±0.180 ab	4.225±0.574 ab
Decoiced	1.779±0.453 bc	1.231±0.447 a
Macerated	0.877±0.122 a	2.760±0.669 ab
Infused	1.232±0.533 a	2.144±0.715 a

The numbers bearing the letters a, b, c….. are significantly different at the 5% level (p < 0.05). The underlying values are of the form of means ± Standard deviation.
4. DISCUSSION

The hydroethanolic extracts (95%, 75% and 50%) showed the highest yields compared to the aqueous extracts. In addition, the addition of water to ethanol results in alcohol dilution and reduces the yield instead. These results are in agreement with those of Mohammendi and Atik [19] who revealed that mixed solvents are very efficient to extract. In addition, the yield of the decoction was higher than that of the other aqueous extracts. The superiority of this yield over the maceration and infusion suggests that temperature would play a positive effect, improving extraction [20]. The results of antimicrobial tests (MIC and MBC) on the leaves and stem barks of *B. rufescens* show that they contain substances with antosalmonella activity. Indeed, many plant extracts and isolated compounds from the Fabaceae family have been presented as possessing antibacterial activity [21]. Hydroethanolic and aqueous extracts of *B. rufescens* leaves and stem bark exhibited significant to low Minimum Inhibitory Concentrations (MICs) (256 to 1024 µg/ml).

According to Kuete [22], the antibacterial activity of plant extracts is considered significant when MIC < 100 µg/ml, moderate when 100 µg/ml ≤ MIC ≤ 625 µg/ml and low when MIC > 625 µg/ml. The 95% hydroethanolic extract of the leaves exhibited the moderate activity on three isolates and strain of *Salmonella* (Salmonella Typhi, Salmonella Paratyphi A, Salmonella Typhimurium and Salmonella Typhi ATCC6539 with concentrations of 512 µg/ml. The hydroethanolic extracts and the aqueous extract of the stem bark exhibited moderate activity on isolates (Salmonella Typhi, Salmonella Typhi B and Salmonella Paratyphi A) with concentrations ranging from 256 to 512 µg/ml. These results corroborate those of Muhammad and Sirat [21] who showed that the methanolic extract of this plant inhibited the growth of some pathogenic bacteria like *P. aeruginosa*. The differences in inhibitory activities observed with the same extract towards the different isolates and the *Salmonella* strain could be due to the difference in molecular structure between the tested pathogens [23, 5].

The null activity observed with the aqueous extracts (macerated and decocted) of the leaves could be related to the absence of anthocyanins and saponins in these extracts. The inhibition of *Salmonella* growth by the different extracts of *B. rufescens* may be due to the presence of phenolic compounds. This result corroborates the work of Sokoudjou et al. [24] who showed that phenolic compounds such as gallic acid and scopoletin were active (MIC ranging from 16 to 128 µg/ml) against ST, STM and S. Typhi 6539. Antibacterial substances can be classified as bactericidal, when the BMC/MIC ratio ≤ 4 or bacteriostatic, when the MBC/MIC ratio > 4 [25]. Based on these criteria, the majority of the hydroethanolic extracts were bactericidal. The solvent system and the extraction methods used influenced the different results obtained. Indeed, several works have already shown that the solvent system used for an extraction can strongly influence its secondary metabolites content [26] and that the method of extraction of plant extracts can influence their activities [27, 28].

The difference in the observed activity between the different extracts on the one hand and the isolates on the other hand may be due either to the constitutional or structural variability of the germs tested, or to the difference in solubility of the active substances present in each extract. It could also be due to the difference in the chemical composition of the genetic elements of transferable resistance between strains [25], or to the difference in the composition of secondary metabolites found in each extract.

It is likely that their antimicrobial activity is not attributable to a single mechanism, but their simultaneous action at different bacterial sites. This corroborates the work of Kobanski [29] who suggest that some bacteriostatic or bactericidal substances act by interfering with some essential structures of the bacteria such as the membrane wall, genome and proteins. The results of antimicrobial tests (MIC and MBC) of the leaves and stem bark of *B. rufescens* showed that this plant contains substances with antosalmonella activity that could be used in the treatment of typhoid and paratyphoid fevers.

Antioxidant compounds have diverse mechanisms of action and a single method would not be sufficient to assess the total capacity of an antioxidant [30, 5]. Therefore, it is best to use several methods for determining the antioxidant activity of a substance (in this case the DPPH and FRAP methods) for the same sample. The results of this study showed that the 95% hydroethanolic extract of leaves and the macerated stem bark exhibited higher antiradical activity than all extracts at the concentration of 100 µg/ml. The antioxidant activity of the extracts...
could be explained by their richness in polyphenolic substances, tannins and more particularly in total flavonoids. These results are in agreement with those of several authors, who reported a positive correlation between all phenolic content and antioxidant activity [31, 5]. Hydroethanolic and aqueous extracts of *B. rufescens* leaves and stem barks showed IC₅₀ values between 9.780 and 19.531 µg/ml. These results corroborate those of Promprom and Chatan [32] who showed that the ethanolic leaf extract of *Bauhinia nakhonphanomensis* presented an IC₅₀ value of 17.07 ± 0.24 µg/ml. According to Souri et al. [33] the antioxidant potential of a plant is divided into three groups: high when IC₅₀ 20 µg/ml, moderate when 20 µg/ml ≤ IC₅₀ ≤ 75 µg/ml and low when IC₅₀ > 75 µg/ml. The IC₅₀ values showed that the hydroethanolic and aqueous extracts of the leaves and stem barks of *B. rufescens* exhibited high antiradical activities because all these extracts have IC₅₀ < 20 µg/ml. The high antiradical activity of the different extracts of the leaves and stem barks of *B. rufescens* could be explained by the high presence of polyphenolic compounds (total phenols, anthraquinones, and flavonoids). The antioxidant activity of other secondary metabolites is directly related to their hydroxyl group.

The iron reduction test is one of the methods for assessing antioxidant activity. The 95% hydroethanolic extract of the leaves showed the highest reducing power (p<0.05) compared to all extracts followed by the 50% hydroethanolic extract of the stem bark from the concentration 50 µg/ml. The antioxidant potential of *B. rufescens* leaf and bark extracts could be related to the presence of total phenol and flavonoids which were detected during the quantitative assay. Indeed, total phenols and flavonoids are powerful antioxidants [32]. These results suggest the reducing power of *B. rufescens* is likely due to the presence of hydroxyl group in polyphenolic compounds that can serve as proton donors. Therefore, antioxidants are considered to be reductants and inactivators of oxidants [34].

Phenolic compounds are important plant constituents, as they act against lipid peroxidation and inactivate free radicals [17]. The concentration of phenolic compounds is very high in the 95% hydroethanolic extract of leaves and stem bark to compare other extracts. In addition, flavonoids are powerful antioxidants, which possess redox properties that allow them to eliminate the effects of reactive oxygen species [35] as well as to chelate various transition metals [17]. These results corroborate those of the iron reduction test, where the 95% hydroethanolic extract of leaves and stem barks exhibited the greatest antioxidant activity. There was a positive correlation between the antioxidant activity and the phenol content in the extracts. Many authors have also shown this correlation [36, 37, 38]. These results suggest that the extracts of *B. rufescens* have an antioxidant activity, due to the phenolic compounds present in these extracts.

5. CONCLUSION

The results showed that the 95% hydroethanolic extract of the leaves of *B. rufescens* exhibited both antimalarial and antioxidant activity *in vitro*, due to the presence of free radical scavenging phytochemicals that could have the ability to inhibit a free radical and therefore could reduce oxidative stress. Additional studies will be conducted to determine *in vivo* antimalarial and antioxidant activities, side effects and define the therapeutic dose that will allow safe use.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. WHO. Surveillance de la fièvre typhoïde et utilisation des vaccins contre cattomaladie, Régions de l’Asie du Sud-Est et du Pacifique occidental, 2009-2013. Relevé Epidémiologique Hebdomadaire. 2014;89: 429-440.
2. WHO. Fabrication de comprimés et de solutions orales à base de zinc Directives à l’intention des responsables de programmes et de l’industrie pharmaceutique. Organisation Mondiale de la Santé : Genève, Suisse. 2008; 30.
3. Shukla P, Bansode WF, Singh KR. Chloramphenicol toxicity: A Review. Journal of Medicine and Medical Sciences. 2011;2(13):1313-1316.
4. Murphy EA, Davis JM, Brown AS, Carmichael MD, Carson JA, Van Rooijen N, Ghaffar A, Mayer EP. Benefits of oat-glucan on respiratory infection following exercise stress: role of lung macrophages. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008;294:R1593–R1599.
5. Kodjio N, Atsaafack SS, Njateng SSG, Sokoudjou BJ, Kuiate RJ, Gating D. Antioxidant effect of aqueous extract of Curcuma longa Rhizomes (Zingiberaceae) in the typhoid fever induced in Wistar Rats Model. Journal of Advances in Medical and Pharmaceutical. 2016;7(3):1-13. DOI: 10.9734/JAMPS/2016/24949

6. Rastaldo R, Pagliaro P, Cappello S, Penna C, Mancardi D, Westerhof N, Losano G. Nitric oxide and cardiac function. Life Sciences. 2007;81:719-733. DOI: 10.1016/j.lfs.2007.07.019

7. Da silva KLD, Filho VC. Plants of the genus Bauhinia: chemical composition and pharmacological potential. Quimica Nova. 2002;25:449-454. DOI:10.1590/S0100-40422002000300018

8. Aubakar MS, Musa AM, Ahmed A, Hussain IM. The perception and practice of traditional medicine in the treatment of cancers and inflammations by the Hausa and fulani tribes of northern Nigeria. Journal Ethnopharmacol. 2007;111(3):625-629. DOI: 10.1016/j.jep.2007.01.011

9. Kamsu GT, Simo Tagné R, Fodouop SPC, Famen NLC, Kodjio N, Ekom ES, Gating D, "In vitro antialimental and antioxidant activities of leaves extracts of Tectona grandis L. F. (Verbenaceae)," European Journal of Medicinal Plants. 2019;29(4):1-13. DOI: 10.9734/ejmp/2019/v29i430164

10. Goly C, Soro Y, Kassi B, Dadié A, Soro S, Marcellin DJE. Antifungal activities of the essential oil extracted from the tea of savanna (Lippia multiflora) in Côte d'Ivoire. International Journal Biological and Chemical Science. 2015;9(1):24-34. DOI:10.4314/ijbcs.v9i1.3

11. Harbone JB. Phytochemical methods: a guide to modern techniques of plants analysis. Chapman and Hall Ltd: London. 1973:50-116.

12. Ngofo NF, Teke GN, Che A, Kamga FHL. In vitro efficacy of five commercially available herbal preparations used in the treatment of typhoid fever in Bamenda Municipality, Cameroon. Int. J. Biol. Chem. Sci. 2019;13(7):3193-3201. DOI: 10.4314/ijbcs.v13i7.18

13. Mativandela SPN, Lall N, Meyer JM. Antimicrobial, antifungal, antitubercular activity of Pelargonium reniforme (CURT) and Pelargonium sidoides (DC) (Geraniaceae) root extracts. South Africa Journal of Botanic. 2006;72:232-237. DOI:10.1016/j.sajb.2005.08.002

14. Mensor LL, Menezes FS, Leitao GG, Reis ASO. Dos Santos TC, Coube CS, Leitao SG. Screening of Brazilian plant extracts for antioxidant activity by the used DPPH free radical method. Phytotherapy Research. 2001;15:127-130. DOI: 10.1002/ptr.687

15. Padmaja M, Sravanthi M, Hemalatha KPJ. Evaluation of Antioxidant Activity of Two Indian Medicinal Plants. Journal of Phytoology. 2011;3(3):86-91.

16. Mohammed AI, Neil AK, Shahidul IM. In vitro anti-oxidative activities and gc-ms analysis of various solvent extracts of cassia singueana parts. Drug Research. 2013;70(4):709-719. PMID: 23923394

17. Ramde-Tiendrebeogo A, Tibiri A, Hilou A, Lompo M, Millogo-Kone H, Nacoulma OG, Guissou IP. Antioxidative and antibacterial activities of phenolic compounds from Ficus sue Forsk. International Journal of Biological and Chemical Sciences. 2012;6(1):328-336. DOI: 10.4314/ijbcs.v6i1.29

18. Luis A, Domingues F, Gil C, Duarte AP. Antioxidant activity of extracts of Portuguese shrubs: Pterospermatum tridentatum, Cystisus scoparius and Erica spp. Journal of Medicinal Plants Research. 2009;3(11):886-893.

19. Mohammadi Z, Atik F. Impact of solvent extraction type on total polyphenols content and biological activity from Tamari xaphylla (L.) karst. International Jounral Pharmacology Biology Science. 2011:2:609-615.

20. Bourgu S, Serairi BR, Medini F, Ksouri R. Effet du solvent et de la méthode d’extraction sur la teneur en composés phénoliques et les potentialités antioxydantes d’Euphorbia helioscopia. Journal of new sciences, Agriculture and Biotechnology. 2016;28(12):1649-1655.

21. Muhammad A, Sirat MH. Antimicrobial, antityrosinase and brine shrimp lethality test of Bauhinia rufescens (Fabaceae). Journal of Coastal Life Medicine. 2013;1(2):135-140. DOI:10.12980/JCLM.1.2013C924
22. Kuete V. Potential of Cameroonian plants and derived products against microbial infections. Planta Medica. 2010;76:1-13. DOI: 10.1055/s-0030-1250027

23. Tene M, Tane P, Tamkou JD, Kuiate JR, Connolly JD. Antimicrobial diterpenoids and triterpenoids from the stem bark of croton macrostachys. International Journal of Biological and Chemical Science. 2009;3(3):538-544. DOI: 10.4314/ijbcs.v3i3.45331

24. Sokoudjou JB, Atolnani O, Njateng GSS, Khan A, Tagoussop NC, Bitombo AN, Kodjio N, Gatsing D. Isolation, characterization and in vitro anti-salmonellal activity of compounds from stem bark extract of Canarium schwefurthii. MBC Complementary Medicine and Therapies. 2020;20(316):1-10. DOI: 10.1186/s12906-020-03100-5

25. Gatsing D, Adoga GI. Antisalmonellal activity and phytochemical screening of the various parts of Cassia petersiana Bolle (Caesalpiniae). Research Journal of Microbiology. 2007;2(11):876-880. DOI: 10.3923/jrm.2007.876.880

26. Dohou N, Yamni K, Badoc A, Douira A. Activité antifongique d’extraits de Thymelaechyroides sur trois champignons pathogènes du riz. Société de pharmacie de Bordeaux. 2004;143:31-38. DOI: 10.4314/jab.v8i11.i.2

27. Frederico SM, Leonardo LB, José RP, Edemilson CC. Impact of different extraction methods on the quality of Dipteryx alata extracts. Revista Brasileira de Farmacognosia Brazilian Journal of Pharmacognosy. 2013;23(3):521-526. DOI: 10.1590/S0102-695X2013005000033

28. Abdelfadel MM, Khalaf HH, Sharoba AM, Assous MTM. Effect of extraction methods on antioxidant and activities of some Spices and Herbs extracts. Journal of Food Technology and Nutritional Sciences. 2016;1(1):1-14.

29. Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: frontotargets to networks. Nature Reviews Microbiology. 2010;8:423-435. DOI: 10.1038/nrmicro2333

30. Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry. 2005;53(6):1841-1856. DOI: 10.1021/jf030723c

31. Noghogne RL, Gatsing D, Fotsod, Kodjio N, Sokoudjou, Kuiate, RJ. In vitro antisalmonellal and antioxidant properties of Mangifera indica L. Stem bark crude extracts and fractions. British Journal of Pharmaceutical Research. 2015;5(1):29-41.

32. Promprom W, Chatan W, GC-MS analysis and antioxidant activity of Bauhinia nakhopanomensis leaf Ethanolic extract. Pharmacognosie Journal. 2017;9(5):663-667. DOI: 10.5530/pj.2017.5.105

33. Souri E, Amin G, Farsam H, Barazandeh TM. Screening of antioxidant activity and phenolic content of 24 medicinal plants. Journal of Pharmaceutical Sciences. 2008;16(2):83-87. DOI: 10.1.1.611.404

34. Siddhuraju P, Becker K. The antioxidant and free radical scavenging activities of processed cowpea (Vigna unguiculata (L) Walp.) seed extracts. Food Chemistry. 2007;101(1):10-19. DOI: https://doi.org/10.1016/j.foodchem.2006.01.004

35. Ketsawatsakul U, Whiteman M, Halliwell B. A reevaluation of the peroxynitrite scavenging activity of some dietary phenolics. Biochemical and Biophysical Research Communications. 2000;279:692-699. DOI: https://doi.org/10.1006/bbrc.2000.4014

36. Tawaha K, Alali F, Gharaiibeh M, El-Elmat T. Antioxidant activity and total phenolic content of selected Jordanian species. Food Chemistry. 2007;104:1372-1378. DOI: https://doi.org/10.1016/j.foodchem.2007.01.064

37. Famen NL-C, Talom T B, Tagne RS, Kamsu TG, Kodjio N, Lacmata ST, Gatsing D. In vitro Antioxidant Activities and Effect of Hydroethanolic and Aqueous Extracts of Terminalia avicennioides (Combretaceae) on Salmonella. Microbiology Research Journal International. 2020;30(1):1-14. DOI: 10.9734/MRJI/2020/v30i130185

38. Yamako-Konack E, Kamsu TG, Djenguemtar J, Sokoudjou JB, Kodjio N, Feudjo HBL, Gatsing D. In vitro antioxidant and antisalmonellal activities of...
hydroethanolic and aqueous stem bark extracts of Khaya grandifoliola (meliaceae). World Journal Of Pharmacy and Pharmaceutical Sciences. 2020; 9(12):1564-1583. DOI: 10.20959/wjpps202012-17664

© 2022 Djenguemtar et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/86294