Epidemiology of hospitalizations due to pesticide intoxication-associated acute kidney injury in China

Min He1,2,3 · Yanhua Wu2,4 · Zhen Xie5 · Zhillian Li1,2 · Li Hao6 · Guohui Liu7 · Qiang He8 · Yuanjiang Liao9 · Rizwangul Ghappar10 · Hongwei Peng11 · Jinglie Xie12 · Xiaohong Wei13 · Yusheng Zhang14 · Qiongyi Huang1 · Yuanhan Chen1,2 · Xinling Liang1,2 © on behalf of China collaborative study on AKI (CCS-AKI)

Received: 18 December 2020 / Accepted: 8 May 2021 / Published online: 18 May 2021
© The Author(s) 2021

Abstract

Background There is a paucity of epidemiological data regarding pesticide intoxication-associated acute kidney injury (AKI). Therefore, the aim of this study was to identify the epidemiological features, risk factors, and adverse outcomes of AKI in this population.

Methods The data used in this multi-center, hospitalized population-based, retrospective study were retrieved from electronic medical records. AKI was defined as an acute increase in serum creatinine according to the criteria of Kidney Disease: Improving Global Outcomes. The Charlson Comorbidity Index was used to evaluate the burden of in-hospital mortality.

Results Of 3,371 adult patients in 11 hospitals, 398 (11.8%) were diagnosed with AKI (grade 1, 218 [6.5%]; grade 2, 89 [2.6%]; grade 3, 91 [2.7%]). Herbicide intoxication was associated with the highest incidence of AKI (53.5%) and higher grades of AKI. After multivariable adjustment, pesticide categories and moderate or severe renal disease were independently associated with AKI. As compared with the referred category, insecticide and herbicide intoxications were associated with a 1.3-fold (95% CI 1.688–3.245) and 3.8-fold (95% CI 3.537–6.586) greater risk of AKI. Regardless of the pesticide category, AKI was independently associated with in-hospital mortality, with odds ratios of 3.433 (95% CI 1.436–8.203) for insecticides, 2.153 (95% CI 1.377–3.367) for herbicides, and 4.524 (95% CI 1.230–16.632) for unclassified or other pesticides.

Conclusion AKI is common in pesticide intoxication and associated with an increased in-hospital mortality. Herbicides pose the greatest risks of AKI and death.

Keywords Acute kidney injury · Pesticide · Epidemiology · Risk factor · Adverse outcome

Introduction

As a global public health concern, acute kidney injury (AKI) is not only associated with in-hospital adverse outcomes, but also increased short- and long-term risks of cardiovascular disease, chronic kidney disease, and mortality [1]. The International Society of Nephrology proposed the 0by25 program that aims to prevent all avoidable deaths due to AKI by the year 2025 [2]. Although the worldwide incidence of AKI continues to increase, the epidemiology and treatment outcomes differ by regions and economic factors [3, 4]. The implementation of measures for the prevention of AKI is a major challenge in low-resource and low-income regions.

Pesticides, including herbicides, insecticides (which may include insect growth regulators, termiticides, etc.), nematocides, molluscsicides, piscicides, avicides, rodenticides, bactericides, insect repellents, animal repellents, antimicrobials, and fungicides, are chemical compounds that are meant to control pests. Pesticides are widely used to promote economic development of agriculture-dependent countries in the Asia–Pacific region. However, the application of pesticides also threatens human health. Pesticide exposure can cause injury to the skin, as well as the nervous, reproductive, gastrointestinal, and urinary systems. Epidemiological studies have reported that long-term pesticide exposure is associated with chronic renal injury [5, 6]. For example,
the Agricultural Health Study, a prospective study of cancer and other health outcomes, found that licensed pesticide applicators and their spouses are at higher risk of end-stage renal disease [7, 8]. Pesticide applicators in the Asia–Pacific region are also at greater risks of social problems, especially suicide [9–11]. A report by the World Health Organization estimated that pesticides were associated with 186,000 preventable suicides and 4.42 million disability-adjusted life years annually [12].

There is a paucity of epidemiological data of pesticide intoxication-associated AKI. According to a recent report based on the Taiwan Health Insurance Research Database, organophosphate intoxication was associated with a long-term higher risk of AKI [13]. Considering the acute nature of pesticide intoxication, the short-term effects on AKI also poses risk to human health. In addition, only organophosphate intoxication was investigated in the Taiwan study, thus the effects of different categories of pesticides should be further compared.

Therefore, the aim of the present multi-center retrospective study was to determine the epidemiological features, risk factors, and short-term adverse outcomes of adult patients with pesticide intoxication-associated AKI.

Methods

Study design and data sources

The China Collaborative Study on Acute Kidney Injury (CCS-AKI), sponsored by the Guangdong Provincial People’s Hospital (Guangzhou, Guangdong Province, China), was a multi-center, hospitalized population-based, retrospective study designed to identify the epidemiological features of AKI in various regions and clinical settings. Demographic characteristics, diagnoses, and AKI-related laboratory test results were derived from electronic medical records. Creatinine measurements were adjusted to account for intra-hospital differences. The CCS-AKI included 19 hospitals.

The CCS-AKI is registered with the clinicaltrials.gov website under registration number NCT03054142. The study protocol was approved by the Ethics Research Committee of Guangdong Provincial People’s Hospital (approval no. GDREC2016327H) and conducted in accordance with the ethical principles for medical research involving human subjects as stated in the Declaration of Helsinki.

Clinical definitions

AKI was defined as an increase in serum creatinine of 0.3 mg/dL within 48 h or a 50% increase from baseline within 7 days based on the criteria of Kidney Disease: Improving Global Outcomes [14]. The stage of AKI was determined using the peak creatinine level after AKI onset. Pesticides were classified into four categories: insecticides, herbicides, rodenticides, and unclassified or others.

The Charlson Comorbidity Index (CCI) was used to evaluate the burden of in-hospital mortality. Because the International Classification of Disease Code for CCS-AKI was not standardized among the participating hospitals, the CCI was calculated based on the diagnosis at discharge retrieved from electronic medical records [15]. According to the CCI definition, serum creatinine levels of > 3 mg/dL is regarded as a marker of moderate to severe renal disease [16].

Statistical analyses

Non-normally distributed continuous variables are presented as medians (25th and 75th percentiles). Count data are expressed as the number of cases (%), and the difference between groups was compared using the Chi-squared test or Fisher’s exact test, as appropriate. The Bonferroni test was used for multiple comparisons of pesticide categories and AKI grades. Conditional multivariable logistic regression models were used to identify independent associations among variables. The associated 95% confidence intervals (CIs) were estimated. An interaction term was applied to estimate the effect of the pesticide category on AKI-associated mortality. If there was an interactive effect between the pesticide category and mortality, subgroup analysis was performed. All statistical analyses were performed using IBM SPSS Statistics for Windows, version 24.0. (IBM Corporation, Armonk, NY, USA). A two-tailed probability (p) value of < 0.05 was considered statistically significant.

Results

Clinical characteristics

The medical records of 3839 patients in 11 hospitals were retrieved from the CCS-AKI database, which included 50 cases of pesticide intoxication. According to the Institute of Geographic Sciences and Natural Resource Research (Chinese Academy of Sciences, Beijing, China), these 11 hospitals cover five of nine agricultural regions in China [17], including Southern China, the Yunnan-Guizhou Plateau, Northern arid and semiarid region, Sichuan Basin and surrounding regions, and Middle-lower Yangtze Plain. After exclusion of patients aged < 18 years, 3371 adult patients (mean age 41 years; age range 28–54 years; 1470 [43.6%] males) were included in this study. Among them, 1214 (36.0%), 989 (29.3%), 512 (15.2%), and 598 (17.7%) were treated for intoxication with insecticides, herbicides, rodenticides, and unclassified or other pesticides, respectively, and 58 (1.7%) were treated for exposure to multiple pesticides.
AKI was detected in 398 (11.8%) patients (grade 1, 218 [6.5%]; grade 2, 89 [2.6%]; grade 3, 91 [2.7%]). Compared with those without AKI, patients with AKI had higher rates of peripheral vascular disease, cerebrovascular disease, moderate or severe renal disease, and liver disease, as well as higher CCI scores (Table 1).

**AKI in different pesticide categories**

Among the hospitalized patients, the highest incidence of AKI (53.5%) was associated with herbicide intoxication, following by insecticide intoxication (Table 1). The relationships among pesticide categories and AKI severity were further analyzed. Because of the limited number of cases, analysis was limited to the categories of insecticides, herbicides, and rodenticides. Besides the highest incidence, herbicide intoxication was associated with higher grades of AKI. For intoxication with herbicides, insecticides, and other pesticides, the rates of grade 2 AKI were 5.7%, 1.6% and 1.1%, and the rates of grade 3 were 7.4%, 1.1% and 0.4%, respectively (Fig. 1a). A total of 103 patients (3.1%) underwent renal replacement therapy (RRT). The rates of RRT were comparable among patients poisoned by insecticides, herbicides, and rodenticides (3.5%, 3.6%, and 2.1%, respectively, \( p = 0.078 \)) (Fig. 1b).

**Risk factors for AKI**

To assess the risk factors for AKI, baseline variables that were considered clinically relevant or with a univariate relationship with AKI were entered into a multivariable logistic regression model (in stepwise forward conditional mode).

| Table 1 Clinical characteristics by acute kidney injury |
|------------------------------------------------------|
| Gender, male                                         |
| Non-AKI 1292 (43.5%)                                 |
| AKI 177 (44.5%)                                      |
| \( \chi^2/U \)                                        |
| Non-AKI 41 (29, 54)                                  |
| AKI 40 (28, 55)                                      |
| \( p \) value                                        |
| Non-AKI 1087 (89.5%)                                 |
| AKI 127 (10.5%)                                      |
| Insecticides                                         |
| Hericides                                            |
| Rodenticides                                         |
| Other or unclassified                                |
| Multiple                                             |
| Comorbidities                                        |
| Myocardial infarction                                |
| Congestive heart failure                             |
| Peripheral vascular disease                          |
| Cerebrovascular disease                              |
| Dementia                                             |
| Chronic pulmonary disease                            |
| Connective tissue disease                            |
| Peptic ulcer disease                                 |
| Mild liver disease                                   |
| Diabetes without end-organ damage                    |
| Hemiplegia                                           |
| Moderate or severe renal disease                     |
| Diabetes with end-organ damage                       |
| Tumor without metastasis                             |
| Leukemia                                             |
| Lymphoma                                             |
| Moderate or severe liver disease                     |
| Metastatic solid tumor                               |
| AIDS                                                 |
| Any liver disease                                    |
| Any diabetes                                         |
| Any malignant disease                                |
| Score of Charlson Comorbidity Index                  |
| \*The significance was calculated by Fisher’s exact test
These variables were pesticide categories (non-insecticides and non-herbicides as reference), age, peripheral vascular disease, cerebrovascular disease, any liver disease, and moderate or severe renal disease. After adjustment for multiple variables, pesticide categories and moderate or severe renal disease were independently associated with AKI development (Table 2). As compared with the referred category, insecticide and herbicide intoxications were associated with a 1.3-fold (95% CI 1.688–3.245) and 3.8-fold (95% CI 3.537–6.586) greater risk of AKI, respectively.

### Association between AKI and in-hospital mortality

A total of 139 patients (4.1%) died during hospitalization. The raw in-hospital mortality rates for intoxications with herbicides, multiple pesticides, insecticides, unclassified or other pesticides, and rodenticides were 9.8%, 5.2%, 2.1%, 1.5%, and 0.8%, respectively (Fig. 2). After Bonferroni adjustment, the mortality rate associated with herbicides was higher than that of insecticides, unclassified or other pesticides, and rodenticides, and the mortality rate associated with multiple pesticides was higher than that of rodenticides. The mortality rates for non-AKI, and grades 1, 2, and 3 AKI were 3.1%, 10.6%, 11.2%, and 15.4%, respectively. By Bonferroni adjustment for multiple comparison, the mortality rate was higher for all AKI grades than non-AKI. Although the results were not significant among the various grades of AKI, this increasing tendency indicated that the risk of renal replacement therapy. The rates of renal replacement therapy were comparable among the three groups ($\chi^2$ 5.112, $p = 0.078$). AKI acute kidney injury, RRT renal replacement therapy

----

Table 2  Risk factors for AKI

| Pesticides category | Odds ratio | 95% confidence interval | $p$ values |
|---------------------|------------|-------------------------|------------|
| Insecticides        | 2.340      | 1.688–3.245             | < 0.001    |
| Herbicides          | 4.826      | 3.537–6.586             | < 0.001    |
| Moderate or severe  | 6.490      | 4.658–9.042             | < 0.001    |

The variables selected into multivariable logistic regression model for association analysis of AKI (in stepwise forward conditional mode) were pesticides category (non-insecticides and non-herbicides as reference), age, peripheral vascular disease, cerebrovascular disease, any liver disease and moderate or severe renal disease.

These variables were pesticide categories (non-insecticides and non-herbicides as reference), age, peripheral vascular disease, cerebrovascular disease, any liver disease, and moderate or severe renal disease. After adjustment for multiple variables, pesticide categories and moderate or severe renal disease were independently associated with AKI development (Table 2). As compared with the referred category, insecticide and herbicide intoxications were associated with a 1.3-fold (95% CI 1.688–3.245) and 3.8-fold (95% CI 3.537–6.586) greater risk of AKI, respectively.
mortality gradually increased with a higher grade of AKI (Fig. 2b).

Because of an interaction between AKI and the pesticide category related to mortality in the preliminary analysis, the independent association of AKI with mortality was further assessed by stratification of the pesticide categories. Regardless of the category of pesticides, AKI was independently associated with in-hospital mortality, with odds ratios of 3.433 (95% CI 1.436–8.203) for insecticides, 2.153 (95% CI 1.377–3.367) for herbicides, and 4.524 (95% CI 1.230–16.632) for unclassified or other pesticides (Table 3).

Discussion

The aim of this multi-center investigation was to identify the epidemiological features of pesticide intoxication-associated AKI. The results showed that the AKI was common in this population. Herbicides, the second most frequently applied pesticide, was associated with the highest risk and grade of AKI. After adjustment for multiple variables, herbicide intoxication was associated with a 3.8-fold greater risk of AKI. The in-hospital death rate was highest for herbicide intoxication. By stratification of pesticide categories, multivariable analysis identified an independent association of AKI with mortality.

Pesticide intoxication remains an important public health concern, especially in Asia. According to national data of South Korea, the age-standardized rate of pesticide intoxication was 15.37 per 100,000 persons between 2006 and 2010, of which 57.3% of cases required hospitalization [18]. To the best of our acknowledgement, this is the first study to evaluate the epidemiological features of AKI in this population.

Table 3 Association between AKI and in-hospital mortality

| Category              | Odds ratio | 95% CI       | p value |
|-----------------------|------------|--------------|---------|
| Insecticides          |            |              |         |
| CCI                   | 1.223      | 1.007–1.485  | 0.042   |
| University hospital   | 12.091     | 1.617–90.425 | 0.015   |
| AKI                   | 3.433      | 1.436–8.203  | 0.006   |
| Herbicides            |            |              |         |
| University hospital   | 6.247      | 1.948–20.033 | 0.002   |
| AKI                   | 2.153      | 1.377–3.367  | 0.001   |
| Other or unclassified |            |              |         |
| pesticides            | 1.458      | 1.167–1.822  | 0.001   |
| AKI                   | 4.524      | 1.230–16.632 | 0.023   |

Variables of CCI, age, university hospital and AKI were selected into the multivariable logistic regression model in a forward conditional mode.

AKI, acute kidney injury; 95% CI, 95% confidence interval; CCI, Charlson Comorbidity Index.
study, four of the 11 participating hospitals were province-
level central hospitals and university hospitals. However,
treatment in these hospitals was associated with a greater
risk of death as compared with non-university hospitals
(Table 3), suggesting that referral does not necessarily
improve survival. This result might be attributed to the
poorer condition of patients in central hospitals. While
unavoidable delays for referral should also be considered,
local availability of treatment is a reasonable strategy.
Thus, improvement in local medical facilities is urgently
needed.

Because of the retrospective study design, it was not
possible to differentiate the indication of RRT for severe
AKI, pesticide clearance, or multiple organ failure. Thus, a
comparable rate of RRT (Fig. 1b) does not imply a similar
rate of critical AKI among patients poisoned by different
pesticides. Based on the finding that herbicide poisoning
was associated with the highest rates of grade 2 and 3 AKI
(Fig. 1a), herbicides seem to be the most detrimental pes-
ticide with regard to AKI. Further, information regarding
the exposure pathway and dose, severity of intoxication,
and detoxification treatment was not available. In addition,
it was not possible to determine whether the intoxication
was self-induced, which is an important factor to improve
survival. Thus, future prospective studies are needed to
confirm these results.

In conclusion, AKI is a common complication of pesti-
cide intoxication and associated with increased in-hospital
mortality. Herbicides were associated with the highest risk
of AKI and death.

Author contributions Each of the authors have made contributions to
the current work. MH and YW devised the study plan and led the writ-
ing of the article. ZX, ZL, LH, GL, QH, YL, RG, HP, JX, XW, YZ, and
QH collected the data. YC conducted the data analysis. XL supervised
the entire process and gave constructive advice.

Funding This study was financially supported by the Medical Sci-
cientific Research Foundation of Guangdong Province (Grant No.
A2019038), the Guangdong Science and Technology Project (Grant No.
2017A070070008), and the Chinese National Natural Science
Foundation (Grant No. 81770667). Award for the Outstanding Young
Medical Talents in Guangdong Province.

Declarations

Conflict of interest The authors have no competing interests to declare.

Ethics approval and consent to participate The study protocol was
approved by the Ethics Management Committee of Guangdong Provin-
cial People’s Hospital (Approval No. GDREC.2016327H). This study
was registered at ClinicalTrials.gov (Registration No. NCT03054142).
Because of the retrospective nature of this study, the need to obtain
written informed consent was waived by the Ethics Management Com-
mittee of Guangdong Provincial People’s Hospital.

References

1. Chawla LS, Eggers PW, Star RA, Kimmel PL (2014) Acute
kidney injury and chronic kidney disease as interconnected syn-
dromes. N Engl J Med 371(1):58–66
2. Mehta RL, Cerdá J, Burdman EA et al (2015) International
Society of Nephrology’s oby25 initiative for acute kidney injury
(zero preventable deaths by 2025): a human rights case for
nephrology. Lancet 385(9987):2616–2643
3. Lameire NH, Bagga A, Cruz D et al (2013) Acute kidney injury:
an increasing global concern. Lancet 382(9887):170–179
4. Hoese E, Kellum JA, Selby NM et al (2018) Global epidemi-
ology and outcomes of acute kidney injury. Nat Rev Nephrol
14(10):607–625
5. Calvert GM (2016) Agricultural pesticide exposure and chronic
kidney disease: new findings and more questions. Occup Envi-
ron Med 73(1):1–2
6. Valcke M, Levasseur ME, da Silva AS, Wesseling C (2017)
Pesticide exposures and chronic kidney disease of unknown
etiology: an epidemiologic review. Environ Health 16(1):49
7. Lebov JF, Engel LS, Richardson D, Hogan SL, Sandler DP,
Hoppin JA (2015) Pesticide exposure and end-stage renal dis-
ease risk among wives of pesticide applicators in the Agricul-
tural Health Study. Environ Res 143(Pt A):198–210
8. Lebov JF, Engel LS, Richardson D, Hogan SL, Hoppin JA,
Sandler DP (2016) Pesticide use and risk of end-stage renal
disease among licensed pesticide applicators in the Agricul-
tural Health Study. Occup Environ Med 73(1):3–12
9. Page A, Liu S, Gunnell D et al (2017) Suicide by pesticide
poisoning remains a priority for suicide prevention in China:
analysis of national mortality trends 2006–2013. J Affect Disord
208:418–423
10. Bonvoisin T, Utyasheva L, Knipe D, Gunnell D, Eddleston M
(2020) Suicide by pesticide poisoning in India: a review of
pesticide regulations and their impact on suicide trends. BMC
Public Health 20(1):251
11. Konradsen F, Dawson AH, Eddleston M, Gunnell D (2007)
Pesticide self-poisoning: thinking outside the box. Lancet
369(9557):169–170
12. Guidelines for drinking-water quality, 4th edn. https://www.
who.int/water_sanitation_health/publications/dwq-guidelines-
4/en/.
13. Lee FY, Chen WK, Lin CL et al (2015) Organophosphate poison-
ing and subsequent acute kidney injury risk: a nationwide popu-
lation-based cohort study. Medicine (Baltimore) 94(47):e2107
14. Kidney Disease: Improving Global Outcomes (KDIGO) AKI
Work Group (2012) KDIGO clinical practice guideline for acute
kidney injury. Kidney Int Suppl. 4(1):1–138
15. Mo L, Xie Z, Liu G et al (2020) Feasibility of coding-based Charl-
son comorbidity index for hospitalized patients in China, a repre-
sentative developing country. BMC Health Serv Res 20(1):432
16. Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40(5):373–383
17. http://www.resdc.cn/data.aspx?DATAID=275
18. Cha ES, Khang YH, Lee WJ (2014) Mortality from and incidence of pesticide poisoning in South Korea: findings from National Death and Health Utilization Data between 2006 and 2010. PLoS ONE 9(4):e95299
19. Xu X, Nie S, Liu Z et al (2015) Epidemiology and clinical correlates of AKI in Chinese hospitalized adults. Clin J Am Soc Nephrol 10(9):1510–1518
20. Xu L, Wu Y, Chen Y et al (2021) Is acute kidney injury age-dependent in the older adults: an observational study in two centers from North China. BMC Geriatr 21(1):7
21. Larsen K, Najle R, Lifschitz A, Virkel G (2012) Effects of sublethal exposure of rats to the herbicide glyphosate in drinking water: glutathione transferase enzyme activities, levels of reduced glutathione and lipid peroxidation in liver, kidneys and small intestine. Environ Toxicol Pharmacol 34(3):811–818
22. Tomita M, Okuyama T, Katsuyama H, Ishikawa T (2006) Paraquat-induced gene expression in rat kidney. Arch Toxicol 80(10):687–693
23. Mølck AM, Friis C (1997) The cytotoxic effect of paraquat to isolated renal proximal tubular segments from rabbits. Toxicology 122(1–2):123–132
24. Wu Y, Chen Y, Chen S et al (2018) Attitudes and practices of Chinese physicians regarding chronic kidney disease and acute kidney injury management: a questionnaire-based cross-sectional survey in secondary and tertiary hospitals. Int Urol Nephrol 55(11):2037–2042

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Min He1,2,3 · Yanhua Wu2,4 · Zhen Xie5 · Zhilian Li1,2 · Li Hao6 · Guohui Liu7 · Qiang He8 · Yuanjiang Liao9 · Rizwangul Ghappar10 · Hongwei Peng11 · Jinglei Xie12 · Xiaohong Wei13 · Yusheng Zhang14 · Qiongyi Huang1 · Yuanhan Chen1,2 · Xinling Liang1,2 on behalf of China collaborative study on AKI (CCS-AKI)

1 The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
2 Division of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road 2, Guangzhou 510080, China
3 Division of Nephrology, Yue Bei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan 512026, China
4 Guangdong Provincial Geriatrics Institute, Guangzhou 510080, China
5 Department of Dermatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
6 Department of Nephrology, Second Hospital of Anhui Medical University, Hefei 230601, China
7 Department of Nephrology, Dongguan People’s Hospital, Dongguan 523018, China
8 Department of Nephrology, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, China
9 Department of Nephrology, Chongqing Ninth People’s Hospital, Chongqing 400700, China
10 Department of Nephrology, First People’s Hospital of Kashgar, Kashgar 844000, China
11 Department of Nephrology, People’s Hospital of Wanning, The First Affiliated Hospital of Chongqing Medical University, Wanning 571500, China
12 Department of Nephrology, Lufeng People’s Hospital, Shanwei 516500, China
13 Department of Nephrology, Chongzuo People’s Hospital, Chongzuo 844000, China
14 Second Division of Internal Medicine, Wuhua People’s Hospital, Meizhou 514400, China