Draft Genome Sequence of *Pseudomonas aeruginosa* ATCC 9027, Originally Isolated from an Outer Ear Infection

Ambikesh Jayal, a Benjamin E. Johns, b Kevin J. Purdy, c Sarah E. Maddocks b

Department of Computing and Information Systems, School of Management, Cardiff Metropolitan University, Cardiff, United Kingdom a; Department of Biomedical Sciences, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom b; School of Life Sciences, University of Warwick, Coventry, United Kingdom c

**ABSTRACT** *Pseudomonas aeruginosa* ATCC 9027 was isolated in 1943 from a case of otitis externa and is commonly employed as a quality control strain for sterility, assessment of antibiofilm agents, and *in vitro* study of wound infection. Here, we present the 6.34-Mb draft genome sequence and highlight some pertinent genes that are associated with virulence.

*Pseudomonas aeruginosa* ATCC 9027 was originally isolated from a case of otitis externa and is used as a quality control organism (https://www.lgcstandards-atcc.org/Products/Cells_and_Microorganisms/Bacteria.aspx). Despite its origin as a skin pathogen, this strain has been regarded as avirulent and has been utilized to produce rhamnolipid surfactants (1, 2). Nonetheless, *P. aeruginosa* ATCC 9027 has been used extensively to study wound infection *in vitro*, because it is an excellent biofilm former (3). *P. aeruginosa* ATCC 9027 is closely related to PA7, a taxonomic outlier which exhibits numerous multidrug resistance mechanisms (4). PA7 lacks several factors associated with virulence, including a 36-gene cluster encoding the type III secretory system (5).

Genomic DNA derived from a biofilm of *P. aeruginosa* ATCC 9027 was purified using the GenElute bacterial genomic DNA extraction kit (Sigma-Aldrich). The sample library was prepared using an Illumina Nextera XT before DNA sequencing using an Illumina MiSeq system. The genomic data were transferred to and stored in Illumina BaseSpace. The raw reads were processed for quality using Trimmomatic version 0.36 (6) and quality reports generated using FastQC (7). A 6,340,907-bp assembly with 126-fold coverage was constructed using SPAdes version 3.8 (8) and run remotely using Cloud Infrastructure for Microbial Bioinformatics (CLIMB) (9, 10). Quality assessment of assembly was done using QUAST (11). The assembly consists of 53 contigs (500 bp or more) with a mean G+C content of 66.65%. The N50 and N75 values of the assembly were 290,774 bp and 197,962 bp, respectively. The L50 and L75 values of the assembly were 8 and 15, respectively. The annotation was performed with the NCBI Prokaryotic Genome Annotation Pipeline (http://www.ncbi.nlm.nih.gov/genome/annotation_prok), which predicted a total of 5,841 protein-coding genes and 58 tRNAs.

The draft genome contained several virulence-associated genes, including *flg*, *pil*, and *gld* (flagellar and fimbrial biosynthesis and motility [12, 13]), *mviM* (putative virulence factor [http://www.uniprot.org/uniprot/Q1RD89]), *hudR* (virulence-associated transcriptional regulator [14]), the *pvd* operon (pyoverdin synthesis [15]), *bvgS* (virulence sensor protein [16]), *mvfR-pqsR* (multiple virulence factor regulator [17]), *vreR* (sigma factor regulator associated with virulence [18]), and *hemO* (heme oxygenase [19]), to name a few. The presence of these genes demonstrates that *P. aeruginosa* ATCC 9027 should be classified as pathogenic, rather than avirulent, and could have implications for its use as a workhorse to produce surfactants.

Received 6 November 2017 Accepted 6 November 2017 Published 30 November 2017 Citation Jayal A, Johns BE, Purdy KJ, Maddocks SE. 2017. Draft genome sequence of *Pseudomonas aeruginosa* ATCC 9027, originally isolated from an outer ear infection. Genome Announc 5:e01397-17. https://doi.org/10.1128/genomeA.01397-17.

Copyright © 2017 Jayal et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Ambikesh Jayal, ajayal@cardiffmet.ac.uk, or Sarah E. Maddocks, smaddocks@cardiffmet.ac.uk.
References

1. Setoodeh P, Jahaniiri A, Eslamloueyan R, Niazi A, Ayatollahi SS, Aram F, Mahnoodi M, Hortamani A. 2014. Statistical medium generation for the production of Pseudomonas aeruginosa strains. Mol Biotechnol 56:175-191. https://doi.org/10.1007/s12033-013-9693-9.

2. Grosso-Becerra MV, González-Valdez A, Granados-Martínez MJ, Morales E, Serrín-González L, Méndez JL, Delgado G, Morales-Espinoza R, Ponce-Soto GY, Cocotl-Yañez M, Soberón-Chávez G. 2016. Pseudomonas aeruginosa ATCC 9027 in a non-virulent strain suitable for mono-rhamnolipid production. Appl Microbiol Biotechnol 100:9995-10004. https://doi.org/10.1007/s00253-016-7789-9.

3. Camplin AL, Maddocks SE. 2014. Manuka honey treatment of biofilms of Pseudomonas aeruginosa. FEMS Immunol Med Microbiol 73:236-241. doi.org/10.1111/1574-695X.12259.

4. Gervais M, Ouellette M, Desjardins D. 2015. The use of rhamnolipids as iron sources by pathogenic neisseriae requires the product of the stc gene. J Bacteriol 187:6250-6258. doi.org/10.1128/JB.03822-15.

5. Roy PH, Tetu SG, Larouche A, Elbourne L, Tremblay S, Ren Q, Dodson R, Harkins D, Shay R, Watkins K, Mahamoud Y, Paulsen IT. 2010. Complete genome sequence of the genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa ATCC 9027. J Bacteriol 192(24):6624-6630. doi.org/10.1128/JB.01259-15.

6. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120. https://doi.org/10.1093/bioinformatics/btu170.

7. Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

8. Norkus S, Bankiewich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, Pihkelbsky A, Pyshtkin A, Sirotkin A, Sirotkin Y, Stepanauskas R, Mclean J, Lasken R, Clingenpeel SR, Woyke T, Tesler G, Alekseyev MA, Pevzner PA. 2013. Assembling genomes and mini-metagenomes from highly chimeric reads. In Deng M, Jiang R, Sun F, Zhang X (ed), Research in Computational Molecular Biology (RECOMB) 2013. Lecture notes in computer science, vol 7821. Springer, Berlin, Germany.

9. Afgan E, Stoggett C, Nasr, K, Makiya H, Benson D, Crowther C, Gladman S, Kowarsk Y, Pheasant M, Horst R, Lonie A, Genomics Virtual Laboratory. 2015. A practical bioinformatics workbench for the cloud. PLoS One 10:e0140829. https://doi.org/10.1371/journal.pone.0140829.

10. Connor TR, Loman NJ, Thompson S, Smith A, Southgate J, Popolawski R, Bull MJ, Richardson E, Ismail M, Thompson SE, Kitchen C, Guest M, Bakke M, Sheppard SK, Pallen MJ. 2016. CLIMB (the Cloud Infrastructure for Microbial Bioinformatics): an online resource for the medical microbiology community. Microb Genom 2:e000086. https://doi.org/10.1099/mgen.0.000086.

11. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072-1075. https://doi.org/10.1093/bioinformatics/btt086.

12. Drake D, Montie TC. 1988. Flagella, motility and invasive virulence of Pseudomonas aeruginosa. J Gen Microbiol 134:43-52. https://doi.org/10.1099/00221287-134-1-43.

13. Persat A, Inclan YF, Engel JN, Stone HA, Gitai Z. 2015. Type IV pilus mecanochemically regulate virulence factors in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 112:5763-5768. https://doi.org/10.1073/pnas.1502025112.

14. Kim SH, Park SY, Heo YJ, Cho YH. 2008. Drosophila melanogaster-based screening for multihost virulence factors of Pseudomonas aeruginosa PA14 and identification of a virulence attenuating factor, HudA. Infect Immun 76:4152-4162. https://doi.org/10.1128/IAI.01637-07.

15. Meyer JM, Neely A, Stintzi A, Georges C, Holder IA. 1996. Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect Immun 64:518-523.

16. Linz B, Ivanov YV, Preston A, Brinkac L, Parkhill J, Kim M, Harris SR, Goodfield LL, Fry NK, Gorringe AR, Nicholson TL, Register KB, Losada L, Harvill ET. 2016. Acquisition and loss of virulence-associated factors during genome evolution and speciation in three clades of Bordetella species. BMC Genomics 17:767. https://doi.org/10.1186/s12864-016-3112-5.

17. Deziel E, Gopalas R, Tampakakis A, Pépin F, Padfield KE, Saucier M, Xiao G, Rahme LG. 2005. The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-homoserine-lactones. Mol Microbiol 55:998-1014. https://doi.org/10.1111/j.1365-2958.2004.04448.x.

18. Quesada JM, Otero-Asman JR, Bastiaansen CK, Civantos C, Llamas MA. 2016. The activity of the Pseudomonas aeruginosa virulence regulator vvhR is modulated by the anti-vir factor VirJ and the transcription factor PhoB. Front Microbiol 7:1159. https://doi.org/10.3389/fmicb.2016.01159.

19. Zhu W, Hunt DJ, Richardson AR, Stojilkovic I. 2000. Use of heme compounds as iron sources by pathogenic neisseriae requires the product of the hemo gene. J Bacteriol 182:439-447. https://doi.org/10.1128/JB.182.2.439-447.2000.