The early/middle Eocene transition at the Ésera valley (South-Central Pyrenees): Implications in Shallow Benthic Zones (SBZ)

Adriana Rodríguez-Pintó¹ Josep Serra-Kiel²* GLEN Bernaola³ ANTONIO Barnolas⁴ EMILIO L. Pueyo⁵·⁶ JOSEP Tosquella⁷
Pau Arbués²·⁸ ROBERT Scholger⁹

¹Freelance Geologist consultant
E-mail: adrianaropi14@gmail.com

²Universitat de Barcelona, Facultat de Ciències de la Terra, Departament de Dinàmica de la Terra i de l’Oceà
Carrer de Martí Franquès s/n, 08028 Barcelona, Spain

³Department of Mining-Metallurgy Engineering and Material Science, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU)
Plaza Ingeniero Torres Quevedo 1, Bilbao, Spain. E-mail: gilen.bernaola@ehu.eus

⁴Instituto Geológico y Minero de España (CSIC)
Ríos Rosas 23, 28003-Madrid, Spain. E-Mail: toni.barnolas@gmail.com

⁵Instituto Geológico y Minero de España (CSIC)
Unidad de Zaragoza. C/M. Lasala 44, 9ºB, 50006, Zaragoza, Spain. E-mail: unaim@igme.es

⁶Unidad Asociada en Ciencias de la Tierra IGME(CSIC)/Universidad de Zaragoza

⁷Departamento de Ciencias de la Tierra, Facultad de Ciencias Experimentales, Universidad de Huelva
 Campus del Carmen, Avenida de las Fuerzas Armadas s/n, 21071 Huelva, Spain. E-mail: josep@uhu.es

⁸Geomodels Research Institute, University of Barcelona
Carrer de Martí Franquès s/n, 08028 Barcelona, Spain

⁹Chair of Applied Geophysics, University of Leoben
Franz Josef-Straße 18, 8700 Leoben, Austria

*Corresponding author
+ Deceased

© A. Rodríguez-Pintó, J. Serra-Kiel, G. Bernaola, A. Barnolas, E.L. Pueyo, J. Tosquella, P. Arbués, R. Scholger, 2022 CC BY-SA
ABSTRACT

An integrated study including magnetostratigraphy, larger benthic foraminifera and calcareous nanofossil biostratigraphy is presented herein. This work was performed in shallow marine siliciclastics rich in larger foraminifera, around the Ypresian/Lutetian boundary in the Ésera valley (South-Central Pyrenees). Although the calcareous nanofossil content in the studied interval is low, not allowing a precise Y/L boundary to be recognised, the taxa found are enough to support the chronostratigraphic attribution.

Data obtained in the Ésera valley section has improved the knowledge of larger benthic foraminifera (*Nummulites* and *Assilina*) distribution through chron C21. SBZ 11 to SBZ 12 transition took place at the lowermost C21r, as shown in previous works. SBZ 12 assemblages extend into C21n, where the SBZ 12 to SBZ 13 boundary occurs. These data, obtained in shallow marine siliciclastic facies, with *in situ* fauna, results in a shift of the SBZ 12/SBZ 13 boundary to the Lower Lutetian, younger than previously believed. Accordingly, the Ypresian/Lutetian boundary occurs in SBZ 12.

KEYWORDS Magnetostratigraphy, Larger benthic foraminifera, Calcareous nanofossils, Ypresian – Lutetian boundary, South-Central Pyrenean Basin.

INTRODUCTION

The Ypresian/Lutetian (early/middle Eocene) boundary is defined by the Global Stratotype Section and Point (GSSP) of the base of the Lutetian Stage in the Gorrondatxe section (Molina et al., 2011). This section is located in the Gorrondatxe Beach (Biscay synclinorium, Basque Country, Spain), within the Basque-Cantabrian Basin (Fig. 1) that has been generally referred to as the Western Pyrenees (see Barnolas and Pujalte, 2004). Previous works of the Ypresian/Lutetian Boundary Working Group (ICS) carried out on the Paleogene Pyrenean realm (South-Central Pyrenees and the Basque-Cantabrian Basin) preceded the selection of the Gorrondatxe section for its nomination (Bernaola et al., 2006; Orue-Etxebarria et al., 2006, 2009; Payros et al., 2006, 2007, 2009a, b, 2011). The Gorrondatxe section includes a deep marine sequence of marls and pelagic limestones alternating with thin-bedded siliciclastic and calciclastic turbidites (Molina et al., 2011; Payros et al., 2009a).

The GSSP for the base of the Lutetian Stage was defined in a dark marly level characterized by the First Occurrence (FO) of *Blackites inflatus* (CP12a/b boundary) in the

FIGURE 1. Simplified geological map of the Pyrenees including locations cited in text. 1) Besians and La Puebla de Fantova sections (this work); 2) San Pelegrín section (Rodríguez-Pintó et al., 2013); 3) Gorrondatxe section (Bernaola et al., 2006; Molina et al., 2011; Orue-Etxebarria et al., 2006, 2009; Payros et al., 2007, 2009a, b); 4) Otsakar section (Payros et al., 2011).
Gorrondatxe section, located in the middle of Chron 21r and represents a maximum flooding surface with a presumed global extent (Molina et al., 2011). However, *B. inflatus* shows up at the base of C21n and very close to *Nannotetra cristata* in some oceanic drills in the Pacific Ocean (Agnini et al., 2006; Backman, 1986; Norris et al., 2014).

In the Eocene shallow marine sequences, larger foraminifera are key forms for biostratigraphy. Their usage, since the pioneering studies in the 19th century, increased after the contributions made by Hottinger (1960) and Schaub (1981), and the definition of the Shallow Benthic Zones (SBZ) by Serra-Kiel et al. (1998). Nevertheless, most of the GSSPs for the Paleogene System have been defined after Serra-Kiel et al. (1998) work. That is the case of the Ypresian/Lutetian boundary that shifted from its previous position at the C22/C21 boundary (see Lutcherbacher et al., 2005) to its newly defined GSSP location within C21r (Molina et al., 2011). For this reason, it is necessary to review how the SBZs confront the new definition of Stage boundaries.

In the North Atlantic Ocean and western European successions, the Ypresian/Lutetian boundary is usually hampered by stratigraphic gaps (Aubry, 1995; Molina et al., 2011; Payros et al., 2009b). In the South Pyrenean realm, the occurrence of erosional gaps around the Y/L transition was described first by Payros et al. (2009b) and evidenced later in new sections (Payros et al., 2011; Rodríguez-Pintó et al., 2013, 2017). In the San Pelegrín section (Southern Pyrenees) (Fig. 1), which belongs to the foreland shallow carbonate platform, the Ypresian/Lutetian boundary is absent due to an erosional gap that includes at least all C21r (Rodríguez-Pintó et al., 2013).

In the Gorrondatxe section, larger foraminifera appear reworked and transported from shallow water zones, which makes it difficult to assign an accurate zone attribution using the SBZ scale. Around the Y/L boundary, larger foraminifera are scarce and undoubtedly SBZ 13 forms occur within C21n (Bernaola et al., 2006; Molina et al., 2011; Orue-Itxebarría et al., 2006), which also happens in the Otsakar section (Payros et al., 2011) located as well in the Western Pyrenees (see Fig. 1). In the last two decades, the SBZ 12/SBZ 13 transition has been used as the Ypresian/Lutetian boundary in shallow water facies with larger foraminifera and absence of pelagic markers (Serra-Kiel et al., 1998). In the Ésera valley in the South-Central Pyrenees, where the Cuisian (upper Ypresian) parastratotype was defined (Schaub, 1992), there is a continuous shallow-marine siliciclastic sequence rich in shallow benthic faunal assemblages of Cuisian and Lutterian age (Schaub, 1981; Tosquella, 1995; Tosquella and Serra-Kiel, 1998). This section appears as an alternative locality to study the Y/L transition in shallow marine settings with abundant larger foraminiferal faunas. The results of this study, including magnetostratigraphy, larger foraminifera and calcareous nanofossils, are presented in this work.

GEOLOGICAL SETTING

The studied area is located in the Ésera valley in the south-central Pyrenees (Fig. 1). The Eocene succession in the Ésera valley belongs to the Tremp – Graus Basin. At the studied time interval, the Tremp-Graus Basin was carried piggyback (Atkinson, 1986; Atkinson and Elliot, 1985) on the South-Central Pyrenean Unit (Muñoz et al., 2013; Séguret, 1972).

Shallow marine, transitional and terrestrial siliciclastic systems represent the main facies assemblages filling the Tremp-Graus Basin (Barnolas et al., 2004, 2019; Chanvry et al., 2018; van Eden, 1970; Nijman, 1998; Nijman and Nio, 1975, and references therein). Shallow marine carbonates are scarce in the piggyback sequence, reduced to some transgressive horizons in the Ypresian and early Lutetian successions out of the studied interval (Fig. 2).

The studied interval belongs to the Perarrúa Formation (Fm.) (Nijman and Nio, 1975), a shallow marine siliciclastic unit, rich in shallow benthic foraminifera, which includes the Ypresian-Lutetian transition (Schaub, 1981; Tosquella, 1995; Tosquella and Serra-Kiel, 1998). In the Ésera valley (Ésera road section, Fig. 3), Schaub (1992) defined the parastratotype of the Cuisian (upper Ypresian).

The Puebla de Fantova and Besians sections are located in the middle part of the Ésera valley (Eocene) succession (Fig. 3), which remained unsampled or poorly sampled for magnetostratigraphy, as exposed by Payros et al. (2009b) (Morillo de Liéven – Santa Liestra section). They are stratigraphically younger than the Navarri section (Benthem and Burbank, 1996) (BB-1 in Fig. 3), in the lowermost Eocene units outcropping in the upper Ésera valley, below the Campanú conglomerates. Compared to the Santa Liestra, Mesón de Pascual, and Grustán sections of Benthem and Burbank (1996) (BB-2, BB-3 and BB-4, respectively in Fig. 3), located in the lower Ésera valley, the Puebla de Fantova and Besians sections are stratigraphically older except for the Santa Liestra section that is equivalent to the uppermost part of the La Puebla de Fantova section and the lowermost part of the Besians sections.

Stratigraphy

The Perarrúa Fm. (Nijman and Nio, 1975) is a transitional and shallow marine siliciclastic unit bounded at its base and top by fluvial (red bed) units, the Castissent
and Capella formations, respectively (Fig. 2). To the north, the Perarrúa Fm. interfingers with the Campanúe and Santa Liestra conglomerates (fan-delta facies). To the southeast, the Perarrúa Fm. is lateral to a fluvial and deltaic system (Upper Montañana unit of van Eden, 1970; Nijman and Nio, 1975; Crumeyrolle and Mutti, 1986; Nijman and Nio, 1975) developed following the Tremp-Graus basin axis (de Boer et al., 1991; Crumeyrolle, 1987; Crumeyrolle and Mutti, 1986; Nijman and Nio, 1975; Nijman and Puigdefábregas, 1989) and prograding westwards. To the northwest and west, the Perarrúa Fm. evolves into a siliciclastic slope system (Mutti et al., 1985, 1988) that was growing (and collapsing) on the favour of the buried lateral ramp of the South-Central Pyrenean Unit (Barnolas et al., 1991; Muñoz et al., 2013; Mutti et al., 1988; Séguret, 1972), which delimits the Tremp-Graus (detached) to the Isábena (un-detached) basins (see Fig. 1).

As a result of the interaction of these different provenance-feeding systems, the Perarrúa Fm. shows a complex and poorly defined stratigraphy (e.g. Barnolas et al., 1991; de Boer et al., 1991; Crumeyrolle, 1987; Crumeyrolle and Mutti, 1986; Nijman and Nio, 1975). Recent geological maps (López-Olmedo and Ardèvol, 2016; Robador and Zamorano, 2013; Teixell et al., 2016) help to clarify its geometrical relationships, and consequently, its stratigraphic framework (Fig. 2; 3).

In the Ésera valley section, shallow marine marls with shallow benthic foraminifera and calcareous nannofossils of a middle Cuisian age (SBZ 11; NP13/14) (Kapellos and Schaub, 1973; Payros et al., 2009b) overlie the Castissent Fm. (Honegger et al., 2020; Mutti et al., 1988; Nijman and Nio, 1975). In this section, the Lower Campanúe conglomerate overlies these marls, which informally appears as Lower Perarrúa marls in this work (Fig. 2). The Lower Perarrúa marls die out eastwards and are absent in the Isábena valley, where the Lower Campanúe conglomerate rests unconformably (erosional unconformity) over the Castissent Fm. (Crumeyrolle, 1987; Garrido-Mejías, 1968; López-Olmedo and Ardèvol, 2016; Robador and Zamorano, 2013; Samsó, 1988). The Lower Perarrúa marls and the Lower Campanúe conglomerate belong to the Castissent-2 depositional sequence (Mutti et al., 1988; Poyatos-Moré, 2014).

To the south, between the Isábena and Ésera valleys, deltaic facies of the Perarrúa Fm., with dominant paleocurrents to the west and northwest, overlie the Lower Campanúe conglomerate (López-Olmedo and Ardèvol, 2016; Teixell et al., 2016). These deltaic facies laterally grade southwards to and are overlain by prodeltaic and open marine marls (Teixell et al., 2016). This deepening sequence, developed over the Lower Campanúe conglomerate, appears as Middle Perarrúa unit in this work (Fig. 2).

The faunal content in this sequence indicates a late Ypresian (late Cuisian) age (SBZ 12, NP14) (Kapellos and Schaub, 1973; Schaub, 1966, 1981). The marls of the Middle Perarrúa unit are overlain abruptly by coarse sequences of flat-based sandstones and conglomerates (Santa Liestra 1-2 of Crumeyrolle and Mutti, 1986) (Fig. 2). Over this wedge of coarse-grained sediments of north-
FIGURE 3. Geological map of the studied area (Ésera valley) showing the location of the 1) La Puebla de Fantova and 2) Besians sections, and the magnetostratigraphic sections studied previously by Bentham and Burbank (1996) and referred in text (BB1= Navarri section; BB2= Santa Liestra section; BB3= Mesón de Pascual section; BB4= Grustán section). Geological map modified from Teixell et al. (2016) and Robador and Zamorano (2013).
provenance, the sequence becomes progressively finer-grained and includes abundant neritic faunas, in a deepening upward (transgressive) trend (Crumeyrolle, 1987). This deepening upward sequence, referred to as Upper Perarrúa in this work, leads up to a slope truncation filled by deep-water mudstones, muddy slumps and turbidite sandstones (Besians gully) (Barnolas et al., 1991; Crumeyrolle, 1987; Crumeyrolle and Mutti, 1986; Rumpff and de Boer, 1985). According to Tosquella (1995), the age of the Upper Perarrúa unit is early Lutetian, including Nummulites gallensis, N. lehneri, N. aff. obesus, N. aff. vermeuli, N. praelorioli, N. laevigatus and N. aff. Messinae in its lower part and Nummulites aff. obesus, N. lehneri, N. aff. boussaci, N. laevigatus, N. messinae, N. britanicus, Assilina aff. maior, A. spira abrardi and A. aff. Exponens in their upper part of the N. laevigatus and A. spira abrardi biozones of Schaub (1981). The sedimentary filling of the Besians gully also hosts SBZ 13 (lower Lutetian) fauna (Tosquella, 1995; Tosquella, in Barnolas et al., 1991).

The upper boundary of the Perarrúa Fm. consists of an abrupt transition to the fluvial red bed facies of the Capella Fm. (Cuevas-Gozalo, 1989; Nijman and Nio, 1975) (Fig. 2). To the north (Ésera valley outcrops), this transition follows a sharp irruption of coarse alluvial fan conglomerates (upper prograding wedge of Santa Liestra-2 of Crumeyrolle, 1987) (Fig. 2), which results in a complex sequence of conglomerates, sand bars and bioclastic sediments that include coralgal limestones, interpreted as barrier-bar complexes (Nijman and Nio, 1975).

MATERIALS AND METHODS

The Puebla de Fantova and Besians sections were logged and sampled for this study. The Puebla de Fantova section is located along the local road to Centenera village (Fig. 3). The base of this section corresponds to the delta front facies of the Middle Perarrúa unit at the Casa del Molino bridge (cartographic unit 22 of Teixell et al., 2016; 12 in Fig. 3) and continues close to the road between the shallow marine marls and sandstones of this unit (cartographic unit 23 of Teixell et al., 2016; 13 in Fig. 3). The Puebla de Fantova section ends within the lowest sandstone levels of the Upper Perarrúa unit in the Ermita hill, close to La Puebla de Fantova village (base of cartographic unit 24 of Teixell et al., 2016; 14 in Fig. 3). The contact between the Middle and Upper Perarrúa units is sharp, marked by the base of a regional cartographic reference level (Teixell et al., 2016), which works as the correlation level between the Puebla de Fantova and Besians sections. This contact is interpreted as the result of an abrupt input of fan delta deposits. The base of the second section (Besians section), near the Besians village (Fig. 3), is located in the upper part of the Middle Perarrúa marls (cartographic unit 23 of Teixell et al., 2016; 13 in Fig. 3) and includes the lower part of the Upper Perarrúa unit (cartographic unit 24 of Teixell et al., 2016; 14 in Fig. 3) where several levels with lower Lutetian shallow benthic larger foraminifera where recognised (Tosquella, 1995). The lower part of the Besians section (first 75m) is made up of fan-delta sandstones and conglomerates of northern provenance (Santa Liestra-1-2 transition of Crumeyrolle and Mutti, 1986), which are interpreted as the product of reworking of northern derived coarse-grained sediment, resulting in a succession of barrier-bar complexes (Nijman and Nio, 1975). The upper part of this stratigraphic profile corresponds to more open marine facies, rich in larger foraminifera, including marls, siltstones and fine-grained sandstones. The upper boundary of this sequence is the Besians gully truncation, which marks also the top of the studied succession.

Biostratigraphy: Sampling and procedures

A total of sixteen samples were collected to study the larger foraminiferal assemblages (Nummulites, Assilina and Alveolina) in the studied stratigraphic interval, nine along the Puebla de Fantova section (Fig. 4) and seven along the Besians section (Fig. 5). In all the samples the specimens were isolated and prepared accordingly to study its surface features and equatorial and axial sections.

The samples were disaggregated in an oxygen peroxide and Na2CO3 solution, and the fine sediment removed using 1.0-, 0.5- and 0.2-mm mesh sieves. The larger foraminifera were picked from the washed residues, each specimen split by its equatorial section, and studied and measured under a light microscope at 40x magnification. The systematic approach in this work follows the taxonomic criteria used by Schaub (1951, 1966, 1981), Tosquella (1995), Tosquella and Serra-Kiel (1998) and Hottinger (1960, 1974). The studied material is housed at the Museu de Ciéncies Naturals de Barcelona with the following register number: F 1m= MGB 90339; F 2m= MGB 90340; F 3m= MGB 90341; F 4m= MGB 90342; F 5m= MGB 90343; F 6m= MGB 90344; F 7m= MGB 90345; F 8m= MGB 90346; Be 1= MGB 90347; Be 2= MGB 90348; Be 3= MGB 90349; Be 4= MGB 90350; Be 5= MGB 90351; Be 6= MGB 90352; Be 7= MGB 90353.

Calcareous nanofossil assemblages were analysed in 18 samples; thirteen were collected in the Puebla de Fantova section and five in the Besians section (Fig. 4; 5, for sample location). All the samples were prepared from unprocessed material as smear slide using standard procedure (Bown and Young, 1998). The nanofossil biostratigraphy presented here is based on the examination of the samples with a Zeiss Axioskop petrographic microscope at varying magnification (x 1000-x 1600), using plain and cross-polarized light. Due to the scarcity of
calcareous nannofossils in the studied samples, more than 5 traverses were analysed to detect rare species with key biostratigraphic value. The standard schemes of Martini (1971) and Okada and Bukry (1980) and the standard taxonomy for Cenozoic calcareous nannofossils (Agnini et al., 2014; Bown, 2005; Perch-Nielsen, 1985; Young and Bown, 1997) have been adopted for this study. Table 1 summarizes the obtained results.

Magnetostatigraphy: Sampling and procedures

A total of 99 paleomagnetic samples were drilled at the two sections: a standard core was taken at 4-6m stratigraphic intervals at Puebla de Fantova (50 cores along the 220m-thick stratigraphic section), and 2-3m atBesians (49 cores along 125m-thick stratigraphic section). For these tasks, a water-cooled gasoline-powered drilling machine was used to avoid disturbance on the paleomagnetic record. Cores were in-situ oriented using a clinometer attached to a magnetic compass.

Once in the laboratory, cores were cut in standard specimens of 10.4cm³ and relabelled for further analyses. Magnetic measurements were taken in the Laboratory of Paleomagnetism of the Montanuniversität Leoben (Austria). An SRM-755 cryogenic magnetometer (2G) and an MMTD60 (by Magnetic Measurements Ltd) thermal demagnetizer were used to carry out the stepwise thermal (TH) demagnetization of samples. A 2G Pulse magnetizer was used to impart the samples with an Isothermal Remanent Magnetization (3 axes-IRM). Finally, an MFK1 Multifunction Bridge (by AGICO) was used for bulk susceptibility monitoring during the thermal treatment.

The magnetic Local Polarity Sequence (LPS) in the studied profiles was built from more than 100 stepwise thermal demagnetizations. In every specimen, up to 11 steps were studied in the thermal demagnetization
Table 1

Upper part: Range chart of selected calcareous nannofossils identified in La Puebla de Fantova and Besians sections. Total abundance of calcareous nannofossils expressed in specimens per field of view. PP: very poor preservation, P: poor preservation, M: moderate preservation. In red calcareous nannofossil species recorded by Kapellos and Schaub (1973) in samples 24 and 102 in the Campo section. Lower part: Photographs of selected calcareous nannofossil taxa from La Puebla de Fantova section. The scale bar represents 5μm in photographs 1-5. 1) 5-rayed *Discoaster sublodoensis*, sample F 10n. 2) 6-rayed *Discoaster sublodoensis*, sample F 10n. 3) *Ericsonia formosa*, sample F 7n. 4) *Reticulofenestra dicyoda*, sample F 11n. 5) *Discoaster barbadensis*, sample F 1n. 6-7) General view of samples F 10n and F 7n showing the high abundance of reworked Cretaceous species.

Sample	PP	P	M	Calcareous nannofossil Zones																	
B49n	<1	PP	x	Only reworked Cretaceous species																	
B42n	<1	PP	x																		
B3n	<1	PP	x																		
B2n	<1	PP	x																		
K102	-	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
B1n	<1	PP	x																		

Figures

1. 5-rayed *Discoaster sublodoensis*, sample F 10n.
2. 6-rayed *Discoaster sublodoensis*, sample F 10n.
3. *Ericsonia formosa*, sample F 7n.
4. *Reticulofenestra dicyoda*, sample F 11n.
5. *Discoaster barbadensis*, sample F 1n.
6-7. General view of samples F 10n and F 7n showing the high abundance of reworked Cretaceous species.
Paleomagnetic directions were grouped into three different types according to their quality and reliability. Type 1 vectors display a good definition (usually estimation errors below 15°) and address undoubtedly to the origin. Type 2 vectors may be poorer (errors ≥15°), but display an unambiguous polarity. Type 3 vectors are weaker and/or noisier directions. The LPS profile was only characterized by type 1 and 2 samples to ensure the reliability of the magnetostratigraphic record. Profile directional means were calculated using Fisher’s (1953) and Bingham’s (1974) statistics under the software Stereonet version 9.9.1 (Allmendinger et al., 2013; Cardozo and Allmendinger, 2013).

Three axis-IRM acquisition and its TH demagnetization (Lowrie’s 1990 test) were applied for a set of samples aiming to obtain information about the coercivity of the magnetic minerals present in the rocks. For this, a peak field was applied in each of the three main axes. Applied fields were: Z: 2.0; Y: 0.4 and X: 0.012 Tesla, consecutively.

The observed specimens are usually broken and show traces of dissolution. In this interval, the reworked, dissolution resistant, Cretaceous calcareous foraminifera dominate the assemblages. The more prevalent autochthonous species are Coccolithus pelagicus and representatives of the genera Cyclicargolithus and Reticulofenestra including the species Reticulofenestra dictyoda. The calcareous nannofossil abundance and preservation improves up-section. Sample F 7n shows 21 spp./f.v. but almost all the identified specimens are reworked Cretaceous species (Table 1).

The studied samples were of poor quality for the calcareous nannofossil study due to the poor preservation and low abundance of the autochthonous specimens and the presence of abundant reworked Cretaceous specimens, which represent the 60-95% of the total assemblage in all the samples (Table 1). The lower samples of La Puebla de Fantova section (F 1n-F 6n) (Fig. 4) are almost barren of calcareous nannofossils. Only the sample F 1n shows more than 1 specimen per field of view (spp./f.v.). The observed specimens are usually broken and show traces of dissolution. In this interval, the reworked, dissolution resistant, Cretaceous species of the genera Eiffellithus, Watznaueria and Prediscosphaera dominate the assemblages. The more prevalent autochthonous species are Coccolithus pelagicus and representatives of the genera Cyclicargolithus and Reticulofenestra including the species Reticulofenestra dictyoda. The calcareous nannofossil abundance and preservation improves up-section. Sample F 7n shows 21 spp./f.v. but almost all the identified specimens are reworked Cretaceous species (Table 1). From sample F 8n up to the top of the section (sample F 13n), the calcareous nannofossil abundance ranges from 1 to 8 spp./f.v. In this samples the reworked Cretaceous specimens are more abundant than the autochthonous specimens and the preservation varies from moderate to poor. The autochthonous calcareous nannofossil assemblage is still dominated by Coccolithus pelagicus and species of Reticulofenestra and Cyclicargolithus. The presence of 5-rayed Discocysta sublodoensis in sample F 10n (Table 1) is noteworthy.

The five samples of the Besians section (Fig. 5) are very poor. In samples B 1n to B 3n only 1 spp./f.v. was recorded. Reworked Cretaceous specimens dominate the...
FIGURE 6. *Nummulites quasilaevigatus* PAVLOVEC, 1974: 1-2) B-forms, equatorial sections; 3-4) A-forms equatorial section and external view. Specimen 1 from sample F 1m; specimens 2-4 from sample F 4m. *Nummulites britannicus* HANTKEN, 1873 in Hottinger and Schaub, 1964: 5-6) B-forms, equatorial section and external view; 7-12) A-forms, equatorial sections and external views. Specimens from sample F 3m. *Nummulites manfredi* SCHAUß, 1966: 13-16) B-forms, equatorial sections and external views; 17-18) A-forms, equatorial section and external view. Specimens from F 5m.
FIGURE 7. *Nummulites campesinus* Schaub, 1966: 1-7) B-forms, equatorial sections and external views; 8-11) A-forms, equatorial sections and external views. Specimens 1-2, 4-5 from sample F 5m; specimens 3, 6-11 from sample F 7m. *Nummulites friulanus* Schaub, 1962: 12-15) B-forms, equatorial sections and external views; 16-19) A-forms, equatorial sections and external views. Specimens from sample F 6m. *Nummulites gallensis* Heim, 1906: 20-21) B-forms, equatorial section and external view; 22-23) A-forms, equatorial section and external view. Specimens from sample B 6. *Nummulites lehneri* Schaub, 1962: 24) B-form, equatorial section; 25-26) A-forms, equatorial section and external view. Specimens from sample B 7. *Alveolina violae* Checchia-Rispoli, 1905: 27-28) A-forms, axial sections. Specimens from sample F 9m. *Alveolina pinguis* Hottinger, 1960. 29-30) A-forms, axial sections. Specimens from sample F 9m. *Nummulites praediscorbinus* Schaub, 1981: 31-33) A-forms, equatorial sections and external view. Specimens from sample F 2m.
FIGURE 8. *Nummulites laevigatus* (BRUGUIÈRE, 1792): 1-3, 15-16) B-forms, equatorial sections and external view; 4-5) A-forms, equatorial section and external view. Specimens from sample B 7; specimens 4-5 from sample B 2. *Nummulites messinae* SCHAUB, 1981: 6-7) B-forms, equatorial section and external view; 8-9) A-forms, equatorial section and external view. Specimens from sample B 7. *Nummulites praelorioli* HERB AND SCHAUB, 1963: 10) B-form, equatorial section; 11-14) A-forms, equatorial sections and external views. Specimens 10-12 from sample B 7; specimens 13-14 from sample B 6.
FIGURE 9. Assilina maior de la Harpe, 1883: 1-2) B-forms, equatorial section and external view; 3-5) A-forms equatorial sections and external view. Specimens 1 and 2 from sample F 9m; specimens 3-5 from sample F 6m. Assilina spira abardi Schaub, 1981: 6) B-form, equatorial section, specimen from sample B 6, drawing on photography. Assilina tenuimarginata Heim, 1908: 7-10) A-forms, equatorial sections. Specimens from sample B 6.
assemblages and only a few representatives of the genera *Reticulofenestra*, *Coccolithus* and *Discocystis* (fragments) were found. Samples B 42n and B 49n were almost barren of calcareous nannofossils and the few specimens found were reworked Cretaceous specimens.

Paleomagnetic and rock magnetism data

Lowrie’s (1990) tests performed on several samples from both profiles (Fig. 10) reveal the presence of soft, medium and high coercivity range, although soft and medium coercivity curves dominate quantitatively at diagrams. The soft coercivity curves decay completely about 580°C clearly indicating the presence of magnetite as the main magnetic carrier. Medium coercivity curves often fall around 300-350°C and suggest the occurrence of undifferentiated sulphides (likely greigite). Moreover the BED2 sample shows a final decay at a higher temperature (about 675°C), showing a medium-hard coercivity mineral behaviour (likely hematite). Finally, the high coercivity curve, generally decays about 675°C, but also shows decay at very low temperatures in very few cases (decay before 200°C, in some cases, such as in FA22) due to the presence of some goethite. All these data together with demagnetization features, seems to indicate the presence of magnetite and undifferentiated sulphides as the main carriers, accompanied by the presence of hard coercivity minerals in some few cases. These results are in agreement with early diagenetic re-equilibrium of magnetite and greigite that may result, despite some noise, in reliable primary records of the magnetic field (Larrasoaña et al., 2003) as it has been demonstrated in many magnetostratigraphic studies of the South Pyrenean basin (Garcés et al., 2020 and references therein).

Stepwise thermal demagnetizations as displayed in Zijderveld’s (1967) diagrams (Fig. 10) allowed fitting reliable directions from 82 samples. Data from remaining samples were ruled out because of weak Natural Remanent Magnetization (NRM) intensity or erratic demagnetization (type 3). Characteristic Remanent Magnetization (ChRM) directions were fitted with 6-7 steps on average. Most of samples were fully demagnetized up to 500°C, and in some samples authigenic magnetic minerals (magnetite) grew up during their heating in the oven beyond 400°C, as revealed by significant increments of susceptibility (as in many similar Pyrenean rocks; Pueyo et al., 2002; Larrasoaña et al., 2003). Some samples showed very weak magnetizations, and higher demagnetization steps were not considered in further calculations.

As a general rule, Zijderveld diagrams (Fig. 10) show two magnetic components: a viscous low temperature component up to 180-240°C, in average, very similar to the present geomagnetic field (DEC: 358, INC: 53); and a high temperature component from ~200°C up to 420-570°C (when possible). This component displayed normal and reversed directions with linear trajectories very often decaying to the origin (type 1) and it has been considered the ChRM used to build the LPS’s.

The entire demagnetization dataset (Fig. 11) shows NRM ranging between 0.114 and 1.619mA/m (mean of 0.51mA/m and a standard deviation of 0.31mA/m). Besides, susceptibilities fell within the paramagnetic domain defined in Pyrenean rocks (Pocovi et al., 2014; Pueyo-Anchuela et al., 2013) and ranged from 2 to 94*10^{-6} S.I. (averaged out 37*10^{-6} S.I., and standard deviation of 18.96 *10^{-6} S.I.).

From a directional point of view (only type 1 and 2 samples), the ChRMs in the lower hemisphere and merging both profiles together, are well-grouped After Bedding Correction (ABC) and display a robust Fisher distribution and expected inclinations; Dec: 020, Inc: 61 (α95: 8°; k: 4.8 and R: 0.7945) in agreement to data of the South Pyrenean Central Unit (Beamud et al., 2004; Dinàres-Turell, 1992) and to the closer Ainsa oblique zone (Muñoz et al., 2013; Oliva-Urcia and Pueyo, 2019 and references therein).

Once the data are restored to the paleohorizontal, the normal polarity dominates the dataset. Mean Fisher statistics (Table 2) by polarity are Dec: 012, Inc: 64 (α95: 9.3°; k: 4.8) for the normal polarity directions (61 points) and 215, -52 (α95: 15.6° and k: 5.1) for the reverse ones (21 points). The fold and reversal tests yield non-significant results if our own dataset is used alone; partially (fold test) because of the lack of enough bedding dip differences and also (reversal test) because of the small number of reverse vectors. In any case, the pseudo-antiparallel character of both polarities (Fig. 11), together with several previous works with well-proven primary attributes in the southern Pyrenees (see recent overviews by Garcés et al., 2020; Oliva-Urcia and Pueyo, 2019), allow us to be confident about the primary character of the dataset.

Studied sections were based on a detailed stratigraphic study, measured sections with enough sampling density to characterize the LPS, complete TH demagnetization and ChRMs fitted with standard methods and fully published (dec, inc, Virtual Geomagnetic Poles (VGP) latitude) apart from the polarity log, rock magnetism analyses to determine the magnetic carriers, pseudo-antipodal means (after restoration) with expected inclinations and, despite the lack of our own fold test, plenty data in the region supporting the primary character of the magnetization. Therefore, and following the van der Voo (1990) and Opdyke and Channel (1996) criteria, the results obtained in La Puebla de Fantova and Besians are reliable to propose a chronostratigraphic age model together with the biostratigraphic data introduced in this paper.
FIGURE 10. Rock magnetism analyses of 3 axes-IRM of representative samples at the central column (Lowrie’s (1990) tests). Side columns are representative thermal demagnetization diagrams Before Any Correction (BAC, that is, geographic coordinate system). The stereographic projection and the intensity decay diagram are also included. Zijderveld’s (1967) diagrams.
INTERPRETATION AND DISCUSSION

Biostratigraphy

In the Puebla de Fantova section (Fig. 4), the foraminiferal assemblage composed of *N. quasilaevigatus*, *N. britannicus*, *N. praeliorioli*, *N. manfredi* and *Assilina major* indicates a late Ypresian (late Cuisian) age (Biozone Nummulites manfredi), equivalent to SBZ 12 of Serra-Kiel *et al.* (1998). The samples B 2-B 7 contain an assemblage of *N. praeliorioli*, *N. laevigatus*, *N. gallensis*, *N. lehneri*, *N. messinae*, *Assilina tenuimarginata* and *Assilina spira abrardi*, that indicate a Lutetian age according to Schaub (1981) (Biozone Nummulites laevigatus), equivalent to SBZ 13 of Serra-Kiel *et al.* (1998).

In the Besians section (Fig. 5), sample B 1 yielded an assemblage composed of *N. quasilaevigatus*, *N. manfredi* and *N. campesinus*, that according to Schaub (1981) indicates a late Ypresian (late Cuisian) age (Biozone Nummulites manfredi), equivalent to SBZ 12 of Serra-Kiel *et al.* (1998). The samples B 2-B 7 contain an assemblage of *N. praeliorioli*, *N. laevigatus*, *N. gallensis*, *N. lehneri*, *N. messinae*, *Assilina tenuimarginata* and *Assilina spira abrardi*, that indicate a Lutetian age according to Schaub (1981) (Biozone Nummulites laevigatus), equivalent to SBZ 13 of Serra-Kiel *et al.* (1998).

In the Besians section (Fig. 5), sample B 1 yielded an assemblage composed of *N. quasilaevigatus*, *N. manfredi* and *N. campesinus*, that according to Schaub (1981) indicates a late Ypresian (late Cuisian) age (Biozone Nummulites manfredi), equivalent to SBZ 12 of Serra-Kiel *et al.* (1998).
TABLE 2. Mean paleomagnetic data in the studied profiles; La Puebla de Fantova, Besians and all data merged together. DEC= declination and INC= inclination in-situ Before Any Correction (BAC) and restored After Bedding Correction (ABC) together with standard statistical parameters (N= number of data, α95= confidence angle, k= concentration parameter and R= unitary vector)

	In situ (BAC)	Restored (ABC)						
	N DEC INC α95 k R	N DEC INC α95 k R						
La Puebla de Fantova	R 19 256.1 -44.9 15.6 5.6 0.8313 48 018.8 63.0 12.3 3.4 0.7083	N 33 026.3 52.0 6.8 14.4 0.9329 34 020.7 59.3 7.5 11.7 0.9172						
	52 018.9 58.4 4.2 0.7649 0.7649 61 012.1 63.9 9.3 4.8 0.7970							
Besians	18 230.0 -47.3 4.0 0.7649 0.7649 21 215.3 -51.9 15.6 5.1 0.8138							
F 13n	20 230.0 -47.3 4.0 0.7649 0.7649 21 215.3 -51.9 15.6 5.1 0.8138							

De Fantova section pertain to zone NP13. Sample F 10n, located in the middle part of the section, registered the presence of *Discocyst subdodoensis*, the marker species of the base of zone NP14. This means that at least the upper 150m of the Puebla de Fantova section belongs to zone NP14 (CP12a). Sample F 13n, located in the uppermost part of the section, is stratigraphically equivalent to sample 24 of the Campo section (Santa Liestra tunnel) described by Kapellos and Schaub (1973). According to these authors, sample 24 belongs to zone NP14 (CP12a). However, we must highlight that all the attempts to reproduce the results reported by Kapellos and Schaub (1973) for samples 23-24 of the Campo section were unsuccessful. The samples collected near the Santa Liestra tunnel showed only reworked Cretaceous specimens or were barren.

The calcareous nannofossil assemblages recorded in the Besians section (Fig. 5; Table 1) are not good enough to assign them to a specific zone. Sample B 2n is stratigraphically equivalent to samples 102-105 of the Campo section (Perarrúa studied by Kapellos and Schaub (1973)). These authors pointed out that these samples contained, among other species, *Chiplagmalithus aff. quadratus*. But, the specimen depicted by these authors in their plate 7, fig. 15, is closer to *Nannotetina cristata*, which first occurrence is slightly preceded by the first occurrence of *Blackites inflatus*, the marker species of subzone CP12b (Agnini et al., 2014; Bernaola et al., 2006; Tori and Monechi, 2013; Westerhold et al., 2017). Therefore, the upper part of the Besians section could be assigned to subzone CP12b.

Magnetic local polarity sequence and correlation

We have calculated the VGP from the ChRM after bedding restoration along the studied profiles (only type 1 and 2 samples were used for such purpose). The VGP latitude log has allowed building the LPS for each profile: La Puebla de Fantova (Fig. 12) and Besians (Fig. 13). At La Puebla de Fantova section, from bottom to top, we can identify a reverse and a normal polarity magnetozone; R1 and N1. Magnetozones R1 and N1 are built with 8 and 18 sites respectively and expand along the section from the base to meter 58 (R1) and then up to meter 162 (N1). At Besians section (Fig. 13), all the samples display normal polarity, as it was identified in 47 different stratigraphic levels (90% of type 1-catalogued quality). This relatively simple pattern of magnetozones is robust and clear, even in magnetozone R1 (La Puebla de Fantova section) that is characterized by more than 20 consecutive levels where reverse polarity was identified.

The sampling was initially designed to avoid any possible stratigraphic gap between the two sampled sections and thus we used the sharp transition between the cartographic units 23 and 24 of Teixell et al. (2016) as the correlation level; the correlation follows the lowest first prominent coarse levels located at the top of La Puebla de Fantova section (about meter 220), to the equivalent levels at the Besians section (about meter 30 from the base) (Fig. 14) in the same stratigraphic unit. As a whole (Fig. 14), only two magnetozones are found. The lower part of the Puebla de Fantova section shows reverse polarity (R1 magnetozone) whereas the rest of the Puebla de Fantova and the Besians sections show a normal polarity signal (N1).

Data integration and interpretation

The correlation between the Puebla de Fantova and Besians sections (Fig. 14) allows clarifying the chronostratigraphy along the Ésera valley section, which includes the Y/L boundary. The Puebla de Fantova section (Figs. 3; 4; 12; 14) is above the lower Ésera section (Navarri section of Bentham and Burbank, 1996, or Morillo de Liena section of Payros et al., 2009b), with an interval unsampled for paleomagnetism in-between, which corresponds to the Lower Campaniè conglomerate (Santa Liestra-1; Fig. 2), as explained above. The lower Ésera section ends, in terms of paleomagnetic data (Bentham and Burbank, 1996), at the base of Lower Campaniè conglomerates (BB-1 in Fig. 3). The Lower Pararrúa
Early/middle Eocene, Ésera valley

According to Speijer et al. (2020), the NP13/NP14 boundary appears near the C22n/C21r transition, in the upper part of SBZ 11, in agreement with its occurrence in the Lower Perarrua unit (Payros et al., 2009b). The lower reverse magnetic polarity (R1), found in the Puebla de Fantova section (Fig. 14), which contains SBZ 12 larger foraminifera, is interpreted as belonging to C21r. The inverse/normal polarity boundary, which occurs in the lower part of this section, is interpreted as the C21r/C21n boundary. The rest of the Puebla de Fantova and the complete Besians sections (Figs. 3; 5; 13; 14), with a normal-polarity signal (N1), are interpreted as C21n. Above the correlation point, after a stretch without fossil data, it contains SBZ 12 larger foraminifera and CP12b calcareous nannofossil forms in the upper part of the Besians section (Figs. 3; 14).

Discussion

The scarcity and poor preservation of calcareous nannofossils precluded the possibility of fixing a precise location for the Ypresian/Lutetian boundary in the Ésera valley section. Nevertheless, the existing data (from samples in this study and previous works: Kapellos and Schaub, 1973; Payros et al., 2009b) is enough to confirm the robustness of the interpretation, despite the calcareous nannofossil zone markers appear in a younger stratigraphic position than expected.

In the Puebla de Fantova section, the FO of *D. sublodoensis*, the marker of the base of zone NP14 (CP12a), is registered in sample F 10n, with normal polarity (C21n) and SBZ12 larger foraminifera. One of the two *D. sublodoensis* specimens found in this sample was a 5-rayed *D. sublodoensis* (Table 1) that according to Agnini et al. (2014) its First Common Occurrence (FCO) is at the base of chon C21r, slightly after the FO of rare *D. sublodoensis* in chron C22n.

Thus, the finding of two specimens of *D. sublodoensis* in sample F 10n confirms the attribution to chon C21r of the normal polarity signal N1 and suggests that the absence of zone NP14 (P12a) marker species at the base of the Puebla de Fantova section is due to poor preservation of the calcareous nannofossil zone markers appear in a younger stratigraphic position than expected.

In the Puebla de Fantova section, the FO of *D. sublodoensis*, the marker of the base of zone NP14 (CP12a), is registered in sample F 10n, with normal polarity (C21n) and SBZ12 larger foraminifera. One of the two *D. sublodoensis* specimens found in this sample was a 5-rayed *D. sublodoensis* (Table 1) that according to Agnini et al. (2014) its First Common Occurrence (FCO) is at the base of chon C21r, slightly after the FO of rare *D. sublodoensis* in chron C22n.

Thus, the finding of two specimens of *D. sublodoensis* in sample F 10n confirms the attribution to chon C21r of the normal polarity signal N1 and suggests that the absence of zone NP14 (P12a) marker species at the base of the Puebla de Fantova section is due to poor preservation of the calcareous nannofossil zone markers appear in a younger stratigraphic position than expected.

The base of the Subzone CP12b is recorded by stratigraphic correlation in the lower third of the Besians section and is given by the FO of *N. cristata* in samples CK 102-105 in the Campo (Perarrúa) section (Kapellos and Schaub, 1973). In their work, these authors provide a list of species present for a given range of samples but

Figure 12. La Puebla de Fantova section magnetostratigraphic results. From left to right: Detailed stratigraphic column, Natural Remanent Magnetization (NRM) log (intensity in mA/m). Declination and inclination (DEC and INC) logs after bedding correction. Determined Virtual Geomagnetic Poles (VGP) paleolatitude log and the final Local Polarity Sequence (LPS). Stratigraphic key and paleomagnetic types in Figure 13.
do not detail the association of calcareous nannofossils for each of the studied samples. This prevents us from knowing if some of the studied samples had very poor preserved calcareous nannofossil assemblages or even if calcareous nannofossils were absent in some of the samples. Several attempts to reproduce the results obtained by Kapellos and Schaub (1973) in the samples CK 23-24 from the Campo section (equivalent to F13n) have shown that the calcareous nannofossil assemblages of these samples are exclusively composed of reworked Cretaceous species or even that in some of the samples calcareous nannofossils are absent.

The above observations suggest that the absence of subzone CP12b markers in CK19-25 samples at Campo section and in the upper half of the Puebla de Fantova section is due to the poor preservation of calcareous nannofossil assemblages.

The obtained larger foraminifera distribution is in agreement with published data (Payros et al., 2009b; Schaub, 1966, 1973, 1981, 1992; Tosquella, 1995; Tosquella and Serra-Kiel, 1998). However, when contrasted with the magnetic polarity zones, some degree of conflict with previously standardized chronostratigraphic charts for this stratigraphic interval (Luterbacher et al., 2005; Serra-Kiel et al., 1998; Speijer et al., 2020) appears (Fig. 15).

Recent works (Speijer et al., 2020), based on data correlation between larger foraminifera, with calcareous nannofossils and magnetostratigraphy from the South Pyrenean Basin (Costa et al., 2013; Molina et al., 2003; Payros et al., 2009b; Pujalte et al., 2009; Rodríguez-Pintó et al., 2012, 2013; Schneider and Speijer, 2009) slightly modified the boundaries between SBZs of previous authors (Luterbacher et al., 2005; Serra-Kiel et al., 1998). Boundaries between the SBZs always kept some degree of uncertainty because they were based on fossil associations (assemblage zones) of organisms closely linked to ecological parameters (stenobionts) thus making difficult their precise calibration (Hallock, 1985, 1999; Hohenegger et al., 1999; Langer and Hottinger, 2000; Oron et al., 2018; Renema and Troelstra, 2001). In particular, the SBZ 12 to SBZ 13 boundary was estimated tentatively around the Y/L boundary within C21r (Speijer et al., 2020). Data from western Pyrenees (Gorrondatxe and Otsakar sections) (Molina et al., 2011; Orue-Etxebarría et al., 2006; Payros et al., 2007, 2011), only provide shelf derived larger foraminifera in resedimented beds, with a significant lack of larger foraminiferal data toward the Y/L transition. In the shallow carbonate platform and slope transitions of the South Pyrenean foreland margin (San Pelégri and Ainsa Basin around the Boltaña anticline) (Mochales et al., 2012; Rodríguez-Pintó et al., 2013), as well as in the Gabardiella section to the West (Rodríguez-Pintó et al., 2017), the Y/L transition is hampered by stratigraphic gaps. Conversely, the Ésera valley section displays a thick shallow marine succession that includes the Ypresian/Lutetian transition, rich in larger foraminifera (Payros et al., 2009b; Schaub, 1966, 1973, 1981, 1992; Tosquella, 1995; Tosquella and Serra-Kiel, 1998).

Outside of the Pyrenees, the Agost section (Betic Chain, western Tethys) provides a chronostratigraphic dataset including calcareous nanofossils, larger foraminifera and magnetic polarity (Larrasoána et al., 2008). In the Agost section, larger foraminifera also appear as reworked components outside their original habitat, with apparent no mixture of different age specimens (Larrasoána et al., 2008). Larger foraminifera found around the CP12a/CP12b boundary (Y/L boundary), within C21r, still belong to the SBZ 11 (Larrasoána et al., 2008). The SBZ 12 and SBZ 13 forms are found in C21n. In the Agost section, larger foraminifera forms appear in a younger stratigraphic position than in the Ésera valley, which expects to reworked faunas.

With the obtained magnetic polarity dataset for the Y/L transition, data from the shallow marine Éséra valley sections (La Puebla de Fantova and Besians) results in a robust stratigraphic chart for the larger foraminifera distribution around the C21. These results allow shifting the SBZ 12-SBZ 13 boundary to the lower part of C21n.
CONCLUSIONS

The larger foraminiferal assemblages found in the Puebla de Fantova section and in the lowest sample (B1) of the Besians section belong to the Nummulites manfredi Biozone (Schaub, 1981) and the Alveolina violae Biozone (Hottinger, 1960, 1974; Hottinger and Drobne, 1988), which are equivalent to SBZ 12 of Serra-Kiel et al. (1998). The rest of samples from the Besians section yielded larger foraminiferal assemblages belonging to the Nummulites laevigatus Biozone (Schaub, 1981), equivalent to SBZ 13 of Serra-Kiel et al. (1998).

The calcareous nannofossil assemblages are very poorly preserved and showed low abundance of autochthonous specimens. According to these assemblages the lower half of La Puebla de Fantova section belongs to Zone NP13 (CP11), and the upper half of this section and the lower part of the Besians section belong to Zone NP14 (CP12a). The rest of the Besians section belongs to Zone NP14 (CP12b). However, due to the poor preservation of the assemblages, the zone markers are almost absent and thus their first occurrences in the studied sections occur in a younger position than expected.

A robust local polarity sequence was built and based on 87 reliable paleomagnetic determinations in the two studied sections (La Puebla de Fantova and Besians) with
an unambiguous stratigraphic correlation. Characteristic directions are pseudo-antiparallel and considered as a primary record of the magnetic field supported by several paleomagnetic studies in the region. Two local chron (R1, N1) together with the biostratigraphic information (larger foraminifera and calcareous nannofossils) allow us proposing a new age model for the Ésera valley section, the most complete section in the Southern Pyrenees across the Y/L transition. There, the SBZ 12 faunal assemblages, identified since now as late Cuisian (uppermost Ypresian) (Speijer et al., 2020 and references herein), extend across the Y/L boundary, ranging into the lower part of C21n.

ACKNOWLEDGMENTS

AB fieldwork has been supported by the project PGC2018-093903-C1, additional support came from the projects DR3AM (CGL2014-54118-C2-2-R) MAGIBER-II (CGL2017-90632-REDT) and UKRIA4D (PID2019-104693GB-I00/CTA) all of them from the Spanish Science National Plan. The study of calcareous nannofossils was supported by the Research Group of the Basque University System IT-1602-22. Pablo Calvín gave us a hand with the reversal test in Python. The accurate and constructive comments from Johannes Pigmati, Elisabet Beaudm, the Journal Manager Laura Rincón, and the editors Carles Martín Closas, Eulàlia Gili and Miguel Garcés helped to improve the original manuscript.

REFERENCES

Agnini, C., Muttoni, G., Kent, D.V., Rio, D., 2006. Eocene biostратigraphy and magnetic stratigraphy from Possagno, Italy: the calcareous nannofossil response to climatic variability. Earth and Planetary Science Letters, 241, 815-830.

Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J., Rio, D., 2014. Biozoning and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy, 47, 131-181. DOI: http://doi.org/10.1127/0078‐0421/2014/0042

Allmendinger, R.W., Cardozo, N.C., Fisher, D., 2013. Structural geology algorithms: Vectors & Tensors. Cambridge, Cambridge University Press, 289pp.

Atkinson, C.D., 1986. Tectonic control on alluvial sedimentation as revealed by an ancient catena in the Capella Formation (Eocene) of Northern Spain. In: Wright, VP (ed.). Palaeosols: their Recognition and Interpretation. Oxford, Blackwells, 139-179.

Atkinson, C.D., Elliott, K.T., 1985. Patterns of sedimentation in the South Pyrenean Basin: a tectono-sedimentary model for molasse accumulation in a thrust sheet top basin. In: Allen, PA.A., Homewood, P., Williams, G.D. (eds.). Abstracts of the International symposium on Foreland basins. Fribourg (Switzerland), International Association of Sedimentologists Thematic meeting, 32.

Aubry, M.P., 1995. From chronology to stratigraphy: interpreting the Lower and Middle Eocene stratigraphic record in the Atlantic Ocean. In: Berggren, WA., Kent, D.V., Aubry, M.P., Hardenbol, J. (eds.). Geochronology, Time Scales and Global Stratigraphic Correlation. Society for Sedimentary Geology (SEPM) Special Publication, 54, 213-274.

Backman, J., 1986. Late Paleocene to middle Eocene calcareous nannofossil biochronology from Shatsky Rise, Walvis Ridge and Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 57, 43-59.

Barnolas, A., Pujalte, V., 2004. La Cordillera Pirenaica. Definición, límites y división. In: Vera, J.A. (ed.). Geología de España. Instituto Geológico y Minero de España, Sociedad Geológica de España, 233-241.

Barnolas, A., Samsó, J.M., Teixell, A., Tosquella, J., Zamorano, M., 1991. Evolución sedimentaria entre la cuenca de Graus-Tremp y la cuenca de Jaca-Pamplona. In: Colombo, F. (ed.). Libro-Guía Excursión 1. I Congreso del Grupo Español del Terciario. Vic (Spain), EUUMO Gráfico, 123pp.

Barnolas, A., Payros, A., Samsó, J.M., 2004. La Cuenca surpírenaica desde el Ilerdiano medio al Priaboniano. In: Vera, J.A. (ed.). Geología de España. Instituto Geológico y Minero de España, Sociedad Geológica de España, 313-320.

Barnolas, A., Larrasoña, JC., Pujalte, V., Schmitz, B., Sierra, FJ., Mata, MP., van der Berg, BCJ., Pérez-Assenso, JN., Salazar, A., Salvaný, J.M., Ledesma, S., García-Castellanos, D., Civis, J., Cunha, P. 2019. Alpine Foreland Basins. In: Quesada, C., Oliveira, J.T. (eds.). The Geology of Iberia: A Geodynamic Approach. Springer Nature, 4, 7-59.

Beamud, E., García, M., Muñoz, J.A., Cabrera, Ll., Almar, Y., 2004. Distribución de las rotaciones paleomagnéticas en la cuenca de Graus-Tremp durante el Terciario. Geotemas, 6(4), 283-285.

Bentham, P., Burbank, D.W., 1996. Chronology of Eocene foreland basin evolution along the western oblique margin of the South-Central Pyrenees. In: Friend, PF., Dabrio, CJ. (eds.). Tertiary basins of Spain. Cambridge, Cambridge University Press, 144-152.

Bernaola, G., Orue-Etxebarria, X., Payros, A., Dinárès-Turell, J., Tosquella, J., Apellaniz, E., Caballero, E., 2006. Biomagnetostatigraphic analysis of the Gorron date section (Basque Country, Western Pyrenees): Its significance for the definition of the Ypresian/Lutetian boundary stratotype. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 241, 67-109.

Bingham, C., 1974. An antipodally symmetric distribution on the sphere. The Annals of Statistics, 2(6), 1201-1225.

de Boer, PL., Pragt, JSL, Oost, A.P., 1991. Vertically persistent sedimentary facies boundaries along growth anticlines and climate-controlled sedimentation in the thrust-sheet-top South Pyrenean Tremp-Graus Foreland Basin. Basin Research, 3(2), 63-78.
Bown, P.R., 2005. Paleogene calcareous nannofossils from the Kilwa and Lindi areas of coastal Tanzania: Tanzania Drilling Project Sites 1 to 10. Journal of Nannoplankton Research, 27, 21-95.

Bown, P.R., Young, J.R., 1998. Techniques. In: Bown, P.R. (ed.). Calcareous Nannofossil Biostratigraphy. British Micropaleontological Society Publications Series, London, Kluwer Academic Press, 16-28.

Cardozo, N., Allmendinger, R.W, 2013. Spherical projections with OSXStereonet. Computers & Geosciences, 51(0), 193-205.

Chanvry, E., Deschamps, R., Joseph, Ph., Puigdefabregas, C., Poyatos-Moré, M., Serra-Kiel, J., García, D., Teinturier, S., 2018. The influence of intrabasinal tectonics in the stratigraphic evolution of piggyback basin fills: Towards a model from the Temp-Graus-Ainsa Basin (South-Pyrenean Zone, Spain). Sedimentary Geology, 377, 34-62.

Costa, E., García, M., López-Blanco, M., Serra-Kiel, J., Bernaola, G., Cabrera, L., Beamud, E., 2013. The Bartonian–Priabonian marine record of the eastern South Pyrenean foreland basin (NE Spain): a new calibration of the larger foraminifers and calcareous nannofossil biozonation. Geologica Acta, 11(2), 177-193. DOI: http://dx.doi.org/10.1344/2005.000001779

Crumezrolle, Ph., 1987. Stratigraphie physique et sédimentation des systèmes de dépôt de la séquence de Santa Liestra (Eocène sud-pyrénéen, Pyrénées Aragonaises, Espagne). Thèse. Université de Bordeaux III, unpublished, 216pp.

Crumezrolle, P., Mutti, E., 1986. Stratigraphie and sedimentology of Santa Liestra shelf depositional systems; South-Pyrenean Eocene basin, Province of Huesca, Spain. Comptes Rendus de l’Academie des Sciences, Serie, 2(7), 581-584.

Cuevas-Gozalo, M.C., 1989. Sedimentary facies and sequential architecture of tide-influenced alluvial deposits. Geologica Ultraiectina, 61, 152pp.

Dinarès-Turell, J., 1992. Paleomagnetisme a les unitats sudpirinenques superiors. Implications estructurals. PhD Thesis. Barcelona (Spain), Universitat de Barcelona, unpublished, 462pp.

van Eden, JG, 1970. A reconnaissance of deltaic environment in the Middle Eocene of the South-Central Pyrenees, Spain. Geologie en Mijnbouw, 49(2), 145-157.

Fisher, R.A., 1953. Dispersion on a sphere. Proceedings of the Royal Society A, 217, 295-305.

Garcés, M., López-Blanco, M., Valero, L., Beamud, E., Muñoz, J.A., Oliva-Urcia, B., Vinyoles, A., Arbués, P., Cabello, P, Cabrera, Ll., 2020. Paleogeographic and sedimentary evolution of the South-Pyrenean foreland basin. Marine and Petroleum Geology, 113, 104105. DOI: https://doi.org/10.1016/j.marpetgeo.2019.104105

Garrido-Mejías, A., 1988. Sobre la estratigrafía de los conglomerados de Campanué (Santa Liestra) y formaciones superiores del Eocene (extremo occidental de la Cuenca Temp-Graus, Pirineo Central, provincia de Huesca. Acta Geologica Hispanica, 3(2), 39-43.

Hallock, P., 1985. Why are larger foraminifera large? Palaeobiology, 11, 195-208.

Hallock, P., 1999. Symbiont-bearing foraminifera. In: Gupta, B.K.S. (ed.). Modern Foraminifera. Amsterdam, Kluwer Academic, 123-139.

Hohenegger, J., Yordanova, E., Nakano, Y., Tätzreiter, E., 1999. Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan. Marine Micropaleontology, 36, 109-168.

Honegger, L., Adatte, T., Spanenberg, J.E., Rugenstein, J.K.C., Poyatos-Moré, M., Puigdefabregas, C., Chanvry, E., Clark, J., Fildani, A., Verrechia, E., Kouzmanov, K., Harlaux, M., Castelltort, S., 2020. Alluvial record of an early Eocene hyperthermal within the Castissent Formation, the Pyrenees, Spain. Climate of the Past, 16, 227-243.

Hottinger, L., 1960. Recherches sur les Alvéolines du Paléocène et de l’Eocène. Mémoires suisses de paléontologie, 75/76, 243pp.

Hottinger, L., 1974. Alveolinids. Cretaceous–Tertiary. Larger Foraminifera. Esso Production Research-European Laboratories, A. Schudel & Co AG. Riehen/Basle, 84pp, 106pp.

Hottinger, L., Drobné, K., 1988. Alveolines tertiaires: quelques problèmes liés à la conception de l’espèce. Revue de Paléobiologie, 2 (Volume Spéciale), 665-681.

Hottinger, L., Schaub, H., 1964. Le synchronisme des biozones basé sur les Nummulites, Assilines et Alveolines. Mémoires Bureau Recherche Géologique et Minière, 28, 625-629.

Kapello, Ch., Schaub, H., 1973. Zur Korrelation von Biozoniierung mit Grossforaminiferen und Nannoplakten im Palaögen der Pyrenäen. Eclogae geologicae Helvetiae, 66(3), 687-737.

Kirschvink, J.L., 1980. The least-squares line and plane and the analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society, 62, 699-718.

Langer, M.R., Hottinger, L.C., 2000. Biogeography of selected „larger“ foraminifera. Micropaleontology, 46, 105-127.

Larrasoña, J.C., Parés, J.C., Puyo, E.L., 2003. Stable Eocene magnetization carried by magnetite and magnetic iron sulphides in marine marls (Pamplona-Arguis Formation, southern Pyrenees, N Spain). Studia Geophysica Geodetica, 47, 237-254.

Larrasoña, J.C., Gonzalo, C, Molina, E., Monechi, S., Oriz, S., Tori, E., Tosquella, J., 2008. Integrated magnetobiochronology of the Early/Middle Eocene transition at Agost (Spain): Implications for defining the Ypresian/Lutetian boundary stratotype. Lethaia, 41, 395-415.

López-Olmedo, E., Arđevol, L., 2016. Hoja nº 251 (Aren) del Mapa geológico de España a escala 1:50.000. Madrid, Instituto Geológico y Minero de España (IGME).

Lowrie, W., 1990. Identification of ferromagnetic minerals in a rock by coercitivity and unblocking temperature properties. Geophysical Research Letters, 17(2), 159-162.

Luterbacher, H., Ali, J, Brinkhuis, H., Gradstein, J.K., Bown, P.R. (eds.). A Geologic Time Scale 2004. Cambridge (U.K.), Cambridge University Press, 384-408.
Early/Middle Eocene boundary and other related events: cyclostratigraphic refinements from the Pyrenean Otakar section and the Lutetian GSSP. Geologica Acta, 148, 442-460.

Perch-Nielsen, K., 1985. Cenozoic calcareous nanofossils. In: Bolli, H.M., Saunders, J.B., Perch-Nielsen, K. (eds.). plankton stratigraphy. Cambridge, Cambridge University Press, 427-554.

Pocovi, A., Pueyo anchuela, O., Pueyo, E.L., Casas-Sainz, A.M., Román berdiel, M.T., Gil Imaz, A., Ramajo Cordero, J., Mochales, T., García Lasanta, C., Izquierdo, E., Parés, J.M., Sánchez, E., Soto Marín, R., Oliván, C., Rodríguez Pintó, A., oliva-Urcia, B., Villalaín, J.J., 2014. Magnetic fabrics in the Central-Western Pyrenees: an overview. In: Almqvist, B., Henry B., Jackson, M., Werner, T., Lagroix, F. (eds.). ASM in deformed rocks a tribute to Graham J. Borradaile. Tectonophysics, 629, 303-318.

Poyatos-More, M., 2014. Physical Stratigraphy and Facies Analysis of the Casisset Section-Stratigraphic Unit (South-Central Pyrenees, Spain), Ph.D. Thesis. Cerdan yela del Vallés, Universitat Autónoma de Barcelona, 282pp.

Pueyo, E.L., Millán, H., Pocovi, A., 2002. Rotation velocity of a thrust: a paleomagnetic study in the External Sierras (Southern Pyrenees). Sedimentary Geology, 146(1-2), 191-208.

Pueyo-Anchuela, O., Casas-Sainz, A.M., Pueyo, E.L., Pocovi-Juan, A., Gil-Imaz, A., 2013. Analysis of the ferromagnetic contribution to the susceptibility by low field and high field methods in sedimentary rocks of the Southern Pyrenees and Northern Ebro foreland basin (Spain). Terra Nova, 25(4), 307-314.

Pujalte, V., Baceta, J.I., Schmitz, B., Orue-Etxebarria, X., Payros, A., Bermaola, G., Apellaniz, E., Caballero, F., Robador, A., Serra-Kiel, J., Tosquella, J., 2009. Redefinition of the Ilerdian Stage (Early Eocene). Geologica Acta, 7(1-2), 177-194.

Ramón, M.I., Pueyo, E.L., Oliva-Urcia, B., Larrasoana, J.C., 2017. Virtual directions in paleomagnetism: A global and rapid approach to evaluate the NRM components. Frontiers in Earth Science, 5, 8. DOI: 10.3389/feart.2017.00008

Renema, W., Troelstra, S.R., 2001. Larger foraminifera distribution on a mesotrophic carbonate shelf in SW Sulawesi (Indonesia). Palaeogeography, Palaeoclimatology, Palaeoecology, 175, 125-146.

Robador, A., Zamorano, M., 2013. Hoja nº 212 (Campo) del Mapa geológico de España a escala 1:50.000 (MAGNA). Madrid, Instituto Geológico y Minero de España (IGME).

Rodríguez-Pintó, A., Pueyo, E.L., Serra-Kiel, J., Samsó, J.M., Barnolas, A., Pocovi, A., 2012. Lutetian magnetostratigraphic calibration of larger foraminifera zonation (SBZ) in the Southern Pyrenees: The Isuela Section. Palaeogeography, Palaeoclimatology, Palaeoecology, 333-334, 107-120.

Rodríguez-Pintó, A., Pueyo, E.L., Serra-Kiel, J., Barnolas, A., Samsó, J.M., Pocovi, A., 2013. The Ypresian–Lutetian boundary in the Southwestern Pyrenean Basin; magnetostratigraphy from the San Pelegrín section. Palaeogeography, Palaeoclimatology, Palaeoecology, 370, 13-29.

Rodríguez-Pintó, A., Sanchez, E., Barnolas, A., Serra-Kiel, P., Samsó, J.M., Mochales, T., Pueyo, E.L., Schol&r, R., 2017. Magnetostratigraphic data from lower part of Gabardiella section: Early - Middle Eocene, Southern Pyrenees. MAGIBER (Comisión de Paleomagnetismo de la Sociedad Geológica de España), X Valle del Grio, Universidad de Zaragoza, 30-33. ISBN: 978-84-16723-40-9

Rumpf, D., de Boer, P.L., 1985. A canyon-like marl filled depression in the Eocene Perarría fan-delta complex, S. Pyrenees, Spain. 6th International Association of Sedimentologists, European Regional Meeting Abstracts, 661-663.

Samsó, J.M., 1988. Estudio sedimentológico e bioestratigráfico de la Formació St Esteve del Mall (Eocè, Conca de Tremp-Graus). Tesi de Llicenciatura. Barcelona, Universitat de Barcelona, Facultat de Geologia, unpublished, 540pp.

Schaub, H., 1951. Stratigraphie und Paläontologie des Schlierenlyssches. Abhandlungen der Schweizerischen Paläontologischen Gesellschaft, 68, 222pp.

Schaub, H., 1966. Ueber die Grossforaminiferen im Untereocen von Campo Ober-Aragonien. Eclogae Geologicae Helvetiae, 59, 355-377.

Schaub, H., 1973. La sección de Campo (Proc. de Huesca). XIII Colloquio Europeo de Micropaleontología, España, Comisión Nacional de Geología – Empresa Nacional Adaro de Investigaciones Mineras Sociedad Anónima, Madrid, Imprenta Pablo López, 151-170.

Schaub, H., 1981. Nummulites et Assilines de la Tethys Paléogène. Taxinomie, phylogénèse et biostratigraphie. Mémoires suisses de paléontologie, 104-105-106, 236pp, 97pl.

Schaub, H., 1992. The Campo section (NE Spain), a Tethyan parastatotype of the Cuisian. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 186, 63-70.

Schneider, C., Speijer, R.P., 2009. Recalibration of the Tethyan shallow-benthic zonation across the Paleocene-Eocene boundary: the Egyptian record. Geologica Acta, 7(1-2), 195-214.

Séguret, M., 1972. Étude tectonique des nappes et séries structurales, rôle de la compression et de décollées de la partie centrale du versant sud des Pyrénées - Caractère synsédimentaire, rôle de la compression et de la gravité. Montpellier, Publications de l’Université des Sciences et Techniques du Languedoc, Série géologie structurale, 2, 155pp.

Serra-Kiel, J., Hottinger, L., Caus, E., Ferrández, C., Jauhr, A.K., Less, G., Pavlove, R., Pignatti, J., Samsó, J.M., Schaub, H., Sirel, E., Stroguo, A., Tosquella, J., Zakrevskaya, E., 1998. Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Société géologique de France, 169(2), 281-299.

Speijer, R.P., Pälike, H., Hollis, C.J., Hooker, J.J., Ogg, J.G., 2020. The Paleogene Period (GTs 2020). In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (eds.). Geologic Time Scale 2020. Amsterdam, Elsevier, 2, 1087-1140. DOI: 10.1016/B978-0-12-824360-2.00028-0

Teixell, A., Zamorano, M., Ramírez, J.I., 2016. Hoja nº 250 (Graus) del Mapa geológico de España a escala 1:50.000 (MAGNA). Madrid, Instituto Geológico y Minero de España (IGME).
Tori, F., Monechi, S., 2013. Lutetian calcareous nannofossil events in the Agost section (Spain): Implications toward a revision of the middle Eocene biomagnetostratigraphy. Lethaia, 46, 293-307. DOI: https://doi.org/10.1111/let.12008

Tosquella, J., 1995. Els Nummulitinæ del Paleocè-Eocè Inferior de la Conca Sudpirinenca. PhD Thesis. Barcelona, Universitat de Barcelona, unpublished, 581pp.

Tosquella, J., Serra-Kiel, J., 1998. Los Nummulítidos (Nummulites y Assilina) del Paleoceno Superior-Eoceno Inferior de la Cuenca Pirenaica: Sistemática. Acta Geologica Hispanica, 31(1-3), 37-159.

van der Voo, R., 1990. The reliability of paleomagnetic data. Tectonophysics, 184(1), 1-9.

Westerhold, T., Röhl, U., Frederichs, T., Agnini, C., Raffi, I., Zachos, J.C., Wilkens, R.H., 2017. Astronomical calibration of the Ypresian time scale: Implications for seafloor spreading rates and the chaotic behavior of the solar system? Climate of the Past, 13, 1129-1152.

Young, J.R., Bown, P.R., 1997. Proposals for a revised classification system for calcareous nannoplankton. Journal of Nannoplankton Research, 19(1), 15-47.

Zijderveld, J.D.A., 1967. AC Demagnetization of Rocks: Analysis of Results. In: Runcorn, S.K., Creer, K.M., Collinson, D.W. (eds.). Methods in Palaeomagnetism. Amsterdam, Elsevier, 254-286.

Manuscript received October 2021; revision accepted May 2022; published Online July 2022.