Body Mass Index in Master Athletes: Review of the Literature

Joe Walsh1,*, Ian Timothy Heazlewood1, Mike Climstein2,3,4
1School of Environmental and Life Sciences, Charles Darwin University, Darwin, 2School of Health and Human Sciences, Southern Cross University, Gold Coast, 3Exercise, Health and Performance Faculty Research Group, The University of Sydney, Sydney, 4Water Based Research Unit, Bond University, Robina, Australia

Background: Masters athletes (MAs) have led a physically active lifestyle for an extended period of time or initiated exercise/sport in later life. Given the benefits of physical activity and exercise we investigated if body mass index (BMI), an indirect health indicator of obesity, was clinically superior in MAs as compared to controls or the general population.

Methods: Seven databases (Medline, PubMed, Scopus, Web of Science, CINAHL, PsycINFO, Cochrane) were electronically searched for studies on BMI (kg/m²) or as a percentage of BMI categories (underweight, normal, overweight, obesity) in MAs.

Results: Of the initial yield of 7,431 papers, 60 studies met our inclusion criteria and were used in this literature review. Studies identified were classified as: endurance sports (n = 14), runners (n = 14), mixed sports (n = 8), cyclists (n = 4), soccer (n = 4) swimmers (n = 3), non-specific (n = 3), orienteering (n = 2), World Masters Games (n = 2) and individual sports (n = 5). Where BMI was presented for the group of MAs the mean was 23.8 kg/m² (± 1.1) with a range from 20.8 kg/m² (endurance runners) to 27.3 kg/m² (soccer players), this was significantly lower (p < 0.001) than controls (26.13 ± 1.7 kg/m²). Where gender specific BMI was reported the mean for male MAs was 23.6 kg/m² (± 1.5) (range 22.4 kg/m² endurance to 26.4 kg/m² swimmers) and 22.4 kg/m² (± 1.2) for female MAs (range 20.8 kg/m² mixed to 24.7 kg/m² WMG).

Conclusion: In most, but not all studies the BMI of MAs was significantly lower than controls. A clinically superior BMI affords MAs reduced risk with regard to a number of cardiometabolic diseases, osteoarthritis and certain types of cancers.

Key Words: BMI, Veteran athlete, World masters games, Physical activity, Obesity

INTRODUCTION

Globally, the prevalence of overweight and obesity has increased at an alarming rate throughout the world. In Australia, the percentage of adults classified as obese has increased two fold in the past two decades with approximately 11.2 million adults classified as overweight or obese, 42 percent of which are males and 29 percent females [1]. Extensive literature illustrates that there is an elevated risk of developing a number of chronic diseases and disorders with being overweight and obese and these include, dyslipi-
One common clinical measure of overweight and obesity easily attained with no specialized equipment is body mass index (BMI), this mathematical calculation only requires a participant’s mass and height (BMI (kg/m²) = mass (kg)/height squared (m²)). The World Health Organization developed an international classification for BMI and includes normal (18.5 ≤ BMI < 25 kg/m²), overweight (25 ≤ BMI < 30 kg/m²) and obese (BMI ≥ 30 kg/m²). This measure is commonly used in medical and sports medicine research [3].

Master athlete (MA) is a term applied to individuals, typically over the age of 35 who train (exercise) on a regular basis to compete in organized competitive sport. There is no definitive age for master athletes as different sporting organizations define MA at differing ages. For example, swimming MAs start at 25 years (although this in turn can vary between events), however USA Track and Field defines the age for MA as 30 years old yet long-distance runners must be at least 40 years old. There is considerable growth in the number of MAs [4], for example greater than 50% of the male finishers and 40% of female finishers of the New York marathon were MAs [4] and the recent World Master Games (WMG), held quadrennially, attracted 28,676 MAs from 95 countries who competed in 28 different sports [5].

Master athletes have been proposed as a model for successful aging [6]. The benefits of long-term participation in exercise training, whether life-long or adopted in later life, are associated with a number of health benefits which includes decreased health risks associated with various chronic diseases and a reduction of premature death. In our study of WMG MAs [7,8] we have shown a lower BMI as compared to the US and Australian general populations, we believe these findings warranted investigation of BMI in MAs in general. The purpose of this paper was therefore to review the existing published studies on MAs that included BMI as either a primary, secondary or incidental outcome measure. We hypothesized that MAs would have clinically better (i.e. lower) BMIs as compared to a sedentary population or the general population.

MATERIALS AND METHODS

All studies considered for this review were required to have Institutional Review approval for the use of human subjects as per the Declaration of Helsinki [9].

1. **Eligibility criteria**

For studies to be included in this review, they were required to be full-length research articles, published in scientific journals (e-publication ahead of print, in hard copy print or online), in English with no limit set on the date of publication. Theses (masters or doctoral) were also considered if the degree had been awarded (conferred) to the higher degree candidate who completed the research. Studies included male and/or female participants so long as the participants were described as master athletes, veteran athletes, World Master Games athletes, Pan Pacific Masters Games athletes, or similar. Each of the studies must have included BMI (kg/m²), gender specific BMI (kg/m²) or a percentage of World Health Organization BMI categories (underweight, normal, overweight, obese) as an outcome variable. Body mass index was not required to be the primary outcome for consideration. Studies were included despite no comparison group or statistical analyses between groups. Studies were also included if the participants were free from disease or had documented disease (i.e., acute myocardial infarction, atrial fibrillation, HTN).

The following exclusion criteria were applied during study selection: abstracts, case studies, conference presentations, conference posters, letters to the editor, book chapters, unpublished papers or papers not in English. Publications that did not evaluate human subjects or have BMI as an outcome variable were excluded from this review.

2. **Search methods**

To identify all relevant published studies, a multistep literature search was conducted from December 2017 to March 2018 without any limits on the date of publication in the following electronic databases: CINAHL (via EBSCO,
Joe Walsh, et al : Body Mass Index in Master Athletes

1982-present), Medline (via OvidSP, 1946-present), PsycINFO (via OvidSP, 1806-present), PubMed (1809-present), Scopus, SPORTDiscus and Web of Science all of which were available from our institutions. Additionally, manual searches of the reference lists of each publication were completed to identify additional studies which possibly met our inclusion criteria. Search terms included the following: BMI, master athlete, older athlete, veteran athlete, World Masters Game(s), Pan Pacific Masters Game(s) and were tailored to the distinctions of the specific database.

3. Data collection and analysis

All search results were exported directly (or manually) into the EndNote (version X8.2) commercially available bibliographic management software program, duplicate records were then removed. Initially, the titles and abstracts were reviewed for possible inclusion or exclusion. Those studies with titles or abstracts warranting review, were subsequently downloaded as full manuscripts to determine if it met the inclusion criteria. The full-text manuscript was then attached to its EndNote citation if it met the inclusion criteria.

The electronic databases search initially retrieved 7,431 records, with four additional records identified through the manual search of reference lists. With duplicates removed a total of 2,824 records were screened for possible inclusion in the literature review. A total of 60 studies met the eligibility criteria and were used in the literature review (Fig. 1).

4. Study characteristics

The 60 studies included in the review were broken down into individual sports (i.e., runners, cycling, orienteering, soccer, x-country skiing, swimming), mixed/non-specified (where participants were from more than one sport or the sport is not specified), endurance (non-specific) and World Masters Games. The total number of master’s athletes included in the 60 studies was 13,095. Study size of master athlete participants ranged from 5 to 1,435 (excluding control or comparison groups). Not all studies provided statistical analysis between groups for BMI, where no analysis was available, we have reported the difference between groups as a percentage (%). Additionally, where there was a non-significant difference between the control group (when sedentary), we have reported the difference as a percentage (%).

RESULTS

The study characteristics of the 60 individual studies are summarized in Table 1 below. Table 1 includes a summary of the manuscript authors, participant characteristics (sports played and participant ages), pertinent study findings and other relevant information of note.

Of the 60 MA studies identified, runners (n = 14) [10-23] and endurance (n = 14) [24-37] categories had the highest number of investigations. This was following by the mixed category with eight studies and cyclists and soccer each with four studies. Swimming and the non-specified category each had three studies and the World Masters Games and orienteering comprised two studies. The remaining MA singular studies included basketball, ice skating, rowing, rugby (union) and cross-country skiing.

We identified a single study [38] that evaluated the BMI in master basketball athletes from the WMG. This was a large cohort study with over 400 participants, the authors compared the MAs BMI according to the World Health Organization [39] classification of obesity (BMI ≥ 30 kg/m²) to the Australian general population (age and gender...
Table 1. Study characteristics

Study	Activities	Individual Sports		
Walsh et al. [38] (2011)	World Masters Games	Athletes 52.2 (8.0) p < 0.01 WMG basketball players Controls from Australian general population who participated in the 2007-2008 national health survey		
BASKETBALL	basketball players	• 228 males • 180 females 12,366 controls		
		Athletes 52.2 (8.0) p < 0.01 WMG basketball players Controls from Australian general population who participated in the 2007-2008 national health survey		
Bando et al. [47] (2015)	Master ice skaters	76 male athletes 54.2 (9.5) 23.4 (2.1) NA no control or comparison group WMG basketball players controls from Australian general population who participated in the 2007-2008 national health survey		
ICE SKATERS		Master ice skaters 76 male athletes 54.2 (9.5) 23.4 (2.1) NA no control or comparison group		
Sliwicka et al. (2015)	Master rowers	15 male rowers 23.4 (2.1) Controls 24.8 (2.7) NS, p = 0.482 (+2.3%) WMG basketball players controls from Australian general population who participated in the 2007-2008 national health survey		
ROWERS		Master rowers 15 male rowers 23.4 (2.1) Controls 24.8 (2.7) NS, p = 0.482 (+2.3%) WMG basketball players controls from Australian general population who participated in the 2007-2008 national health survey		
Climstein et al. (GORG 2011)	Golden Oldies World Rugby	Athletes > 50 yrs p < 0.05 on incidence of obesity between age groups WMG basketball players controls from Australian general population who participated in the 2007-2008 national health survey		
RUGBY	participants	Athletes > 50 yrs p < 0.05 on incidence of obesity between age groups WMG basketball players controls from Australian general population who participated in the 2007-2008 national health survey		
Myrstad (2014)	Master cross-country ski	Athletes 23.6 (2.1) Controls 27.0 p < 0.001 WMG basketball players controls from Australian general population who participated in the 2007-2008 national health survey		
X-COUNTRY SKING	racers	Master cross-country ski racers 509 male athletes 68.9 (65-90) 23.6 (2.1) Controls 27.0 p < 0.001 WMG basketball players controls from Australian general population who participated in the 2007-2008 national health survey		
		Athletes 68.9 (65-90) 23.6 (2.1) Controls 27.0 p < 0.001 WMG basketball players controls from Australian general population who participated in the 2007-2008 national health survey		
Table 1. Continued	Individual Sports			
--------------------	--------------------			
Nicholas and Raugh [46] (2011) CYCLISTS	Master cyclists 19 male athletes 18 male controls	Athletes 50.7 (4.0) Controls 57.4 (4.2)	Athletes 22.3 (1.5) Controls 23.8 (2.2)	p = 0.74 (-6.7%)
• Competitive cyclists in US Cycling Federation races > 10 yrs				
• 4.7 (0.7) d/wk				
• 178.3 (59.3) miles/wk				
• Control group was active males (non-athletes)				
• 9100 (700) km/yr				
• Control group was untrained older adults				
Deruelle et al. [43] (2005) CYCLISTS	Master cyclists athletes 19 male athletes 8 male controls	Athletes 63.1 (3.2) Controls 65.5 (2.3)	Athletes 24.8 (2.5) Controls 26.1 (3.3)	p < 0.01
• VO2max 59.1 (+5.2)				
• Trained > 5 hrs/wk				
• > 8 yrs competitive racing experience				
• Control group was minimally active (0.5-3.0 hrs/wk) matched for age, height, mass, BMI and waist circumference				
Mukherjee et al. [44] (2014) CYCLISTS	Competitive Masters cyclists 9 male athletes 8 male controls	Athletes 53.4 (3.2) Controls 54.3 (5.0)	Athletes 24.1 (2.5) Controls 25.4 (3.2)	NS (p = 0.36) (-5.4%)
• Top-ranked Finnish orienteering runners				
• 77.6 MET h/wk				
• Sedentary males free from disease				
Chilelli et al. [45] (2016) CYCLISTS	Master cyclists 47 male athletes	Athletes 46.0 (8.0)	Athletes 23.7 (2.4)	NA
• No comparison group				
Kujala et al. [48] (1999) ORIENTEERING	Master orienteering runners 269 male athletes 188 controls	• Athletes 58.5 Controls 60.3	Athletes 23.2 Controls 25.5	p = 0.0008
• Top-ranked Finnish orienteering runners				
• 77.6 MET h/wk				
Hemelahlit et al. [49] (1998) ORIENTEERING	Master orienteering runners 264 male athletes 388 male controls	• Athletes 58.5 (7.0) Controls 60.6 (5.3)	Athletes 23.2 Controls 26.8	p < 0.001
• Top-ranked Finnish orienteering runners				
• Sedentary males free from disease				
Runners				
Hood and Northcote [10] (1999) RUNNERS	Veteran endurance runners 19 male athletes	Athletes 56.83	Athletes 20.8	NA
• Exclusively runners				
• BMI ranged from 17.8-23.5 kg/m²				
• No comparison group				
• Avg 36.2 km/wk				
• Includes record breakers and national champions in their age group				
• 50% had arrhythmia (ventricular couplets)				
• 47.3% hypertensive				
• 64.8% bradycardia				
Table 1. Continued

Study	Type of Runners	Participants	Gender	Age (Mean ± SD)	Age Range	Gender	BMI (Mean ± SD)	Training (Mean ± SD)	Notes
Wiswell et al. [11] (2001)	Master athletes (runners)	228 athletes	• 146 males	53.8 (9.9)	39-87	Males	23.4 (2.3)	NS	National and international runners
			• 82 females			Females	22.31 (1.8)		Non-significant between groups and not related to age
Buyukyazi [12] (2005)	Master athlete athletes	12 male athletes	50.4 (4.2)	26.4 (1.8)	NS	Athletes	24.6 (1.8)	p < 0.020	3,000-10,000m runners)
		12 male controls	49.0 (4.3)	28.0 (4.4)		Controls	24.7 (2.2)		8.4 (1.6) hrs/wk
Northcote et al. [13] (1989)	Veteran endurance runners	20 male athletes	56 (7)	22.4 (0.1)	p < 0.01	Athletes	25.3 (3.3)	NS (-10.5%)	47 miles/wk training
		20 male controls	56 (7)	24.5 (2.5)		Controls	25.3 (3.3)		No SD for BMI
Piaeci et al. [14] (2016)	Master runners	13 male athletes	69 (3)	22.9 (2.9)	NS	Athletes	23.4 (3.5)	NA	Controls were age-matched males who were sedentary
		14 male controls	71 (4)	25.3 (3.9)		Controls	25.3 (3.9)		National Masters Athletics competitors who achieved the merit standards of the British Masters Athletics Federation
Alfini et al. [15] (2016)	Master endurance athletes	12 athletes	• 7 males	61.0 (7.8)	NS	Athletes	23.4 (3.5)	NA	Trained > 6 hrs/wk
		• 5 females							Running club athletes who competed in regional and national endurance competitions
Couppe et al. [16] (2014)	Master endurance runners	15 males		64.0 (4.0)	NS (-8.7%)	Athletes	23.0 (2.0)	NA	>15 yrs running
		12 controls		66.0 (4.0)		Controls	25.0 (2.0)		No gender specific BMI data
Mikkelsen et al. [17] (2014)	Master endurance runners	15 male athletes	64 (4)	23 (2)	p < 0.05	Athletes	23 (2)	NA	Life-long endurance runners
		12 male controls	66 (4)	25 (2)		Controls	25 (2)		Running 49 (+3) km/wk over past 28 (+2) yrs
Knechtle et al. [18] (2012)	Master half marathoners, master marathoners and master ultra-marathoners	349 male athletes	• 103 half-marathoners	53.4 (2.7)	23.8 (2.2)	Athletes	23.5 (2.3)	NA	Marathoners 45.3 (22.7) km/wk
		• 91 marathoners	45.2 (7.6)	23.5 (2.3)		Half-marathoners	23.5 (2.1)		Ultra-marathoners 71.3 (6.5) km/wk
		• 155 ultra-marathoners	47.8 (7.9)	23.5 (2.3)		Marathoners	23.5 (2.1)		No statistical analyses between groups for BMI
Study Authors	Group	Gender	Age (Mean ± SD)	Runners					
-----------------------	------------------------------	--------	----------------	---					
Knobloch et al. [19]	Elite masters runners	291	Male 23.2 (2.2)	Athletes 42 (9)					
			Female 21.3 (2)	Athletes 56 (13)					
				Female short-distance 55 (13)					
				Male middle-distance 59 (13)					
				Female middle-distance 59 (11)					
				Male long-distance 60 (12)					
				Female long-distance 55 (10)					
Michaelis et al. [20]	Master runners	495	Male 24.7 (2)	Athletes 23.2 (2)					
			Female 21.3 (2)	Athletes 24.7 (2)					
				Female short-distance 22 (2)					
				Male middle-distance 23 (3)					
				Female middle-distance 21 (2)					
				Male long-distance 21 (2)					
Galetta et al. [21]	Master long-distance runners	20	Male 24.6 (1.8)	Athletes 50.4 (4.2)					
			Female 24.6 (1.8)	Controls 49.0 (4.3)					
Ulman et al. [22]	Master runners	12	Male 24.6 (1.8)	Athletes 24.6 (1.8)					
			Female 24.6 (1.8)	Controls 28.0 (4.3)					
Marcell et al. [23]	Master runners	74	Male 40s' 23.2	Athletes 40' 44.9 (0.7)					
			Female 50s' 23.3	50's 54.2 (0.8)					
				60's 61.1 (0.3)					
			Female 40s' 45.1	Females 40' 45.1 (0.6)					
				50's 54.0 (1.6)					
				60's 66.5 (1.9)					
			Female 40s' 22.4	Male 40s' 22.4 (0.4)					
				50's 22.4 (0.5)					
				60's 22.0 (1.0)					

Table 1. Continued

- 291 male athletes
- 250 males
- 41 females
- 126 male short-distance
- 98 female short-distance
- 53 male middle-distance
- 26 female middle-distance
- 116 male long-distance
- 76 female long-distance
- 250 males
- 41 females
- 42 (9) Athletes
- Training 47.5 (4.9) wks/yr
- No statistical analyses between genders for BMI
- European Veteran Championships and World Master Athletic Championships
- No statistical analyses between groups for BMI
- Short < 400 m
- Middle 800-1500 m
- Long > 1500 m
- No statistical analyses between genders for BMI
- 65.2 (28.3) km/d
- 5-10 hrs/wk
- 3000-10,000 m runners who trained regularly for past > 10 yrs
- Training for 27 (10.4) yrs
- 8.4 (1.6) hrs/wk
- Control group was recreational athletes who were in an aerobic training program > 10 yrs
- 29.9-40.3 miles/wk
- No control group
- No statistical analyses between genders for BMI
Table 1. Continued

Soccer	Master soccer players	Athletes 48.9 (5.8)	Controls 46.1 (3.8)	Athletes 27.3 (2.8)	Controls 28.2 (4.7)	NA (-3.3%)	No statistics completed between groups
Sotiriou et al. [50] (2013)	14 soccer players	16 controls	14 soccer players	16 controls	16 controls	NA (-3.3%)	No statistics completed between groups
Paxinos et al. [51] (2016)	100 soccer players	100 controls	100 soccer players	100 controls	100 controls	NA (-3.3%)	No statistics completed between groups
Schmidt et al. [52] (2015)	17 athletes	26 controls	17 athletes	26 controls	17 athletes	26 controls	p = 0.016
Walsh et al. [53] (2012)	592 athletes	262 males	592 athletes	262 males	592 athletes	262 males	p < 0.05
Mrakic-Sposta et al. [54] (2015)	16 males	16 males	16 males	16 males	16 males	16 males	No comparison group
Walsh et al. [55] (2013)	527 athletes	29 to 77 (mean 52.2, SD ± 8.0)	25.3 (SD ± 4.0)	p < 0.001 (male vs female)	p < 0.01 (Australian general population)	No comparison group	

Swimming

| World Masters Games swimmers | 527 athletes | 29 to 77 (mean 52.2, SD ± 8.0) | 25.3 (SD ± 4.0) | p < 0.001 (male vs female) | p < 0.01 (Australian general population) | No comparison group |

Swimming

| World Masters Games swimmers | 527 athletes | 29 to 77 (mean 52.2, SD ± 8.0) | 25.3 (SD ± 4.0) | p < 0.001 (male vs female) | p < 0.01 (Australian general population) | No comparison group |

Swimming

| World Masters Games swimmers | 527 athletes | 29 to 77 (mean 52.2, SD ± 8.0) | 25.3 (SD ± 4.0) | p < 0.001 (male vs female) | p < 0.01 (Australian general population) | No comparison group |

Swimming

| World Masters Games swimmers | 527 athletes | 29 to 77 (mean 52.2, SD ± 8.0) | 25.3 (SD ± 4.0) | p < 0.001 (male vs female) | p < 0.01 (Australian general population) | No comparison group |
Study	Type	Category	Gender	Controls	Athletes	p	Comments
Crow et al. [56] (2017)	Master pool swimmers	Swimming	Males: 76	Females: 27	49,935	0.003	No age data provided for each gender
Endurance athletes with atrial fibrillation							No SD provided for California state general population
Hubert et al. [24] (2017)	Master cyclists	Endurance	Cyclists: 12	Runners: 9			No age data provided for each gender
Beshgetoor et al. [25] (2000)	Master cyclists	Endurance	Females: 9				No age data provided for each gender
Shapero et al. [26] (2016)	Master athletes, mixed	Endurance	Males: 390	Females: 201			No age data provided for each gender
Cataldo et al. [37] (2018)	Endurance Master athletes	Endurance	Males: 43	Females: 43			No age data provided for each gender
Velez et al. [28] (2008)	Endurance Master athletes	Endurance	Males: 43	Females: 43			No age data provided for each gender
San Francisco Dolphin club cold-water swimmers							No age data provided for each gender

Table 1. Continued

Swimming

Study	Type	Category	Gender	Controls	Athletes	p	Comments
Crow et al.	Master pool swimmers	Swimming	Males: 76	Females: 27	49,935	0.003	No age data provided for each gender
Endurance athletes with atrial fibrillation							No SD provided for California state general population
Hubert et al.	Master cyclists	Endurance	Cyclists: 12	Runners: 9			No age data provided for each gender
Beshgetoor et al.	Master cyclists	Endurance	Females: 9				No age data provided for each gender
Shapero et al.	Master athletes, mixed	Endurance	Males: 390	Females: 201			No age data provided for each gender
Cataldo et al.	Endurance Master athletes	Endurance	Males: 43	Females: 43			No age data provided for each gender
Velez et al.	Endurance Master athletes	Endurance	Males: 43	Females: 43			No age data provided for each gender
San Francisco Dolphin club cold-water swimmers							No age data provided for each gender

Endurance sports

Study	Type	Category	Gender	Controls	Athletes	p	Comments
Hubert et al.	Master cyclists	Endurance	Cyclists: 12	Runners: 9			No age data provided for each gender
Beshgetoor et al.	Master cyclists	Endurance	Females: 9				No age data provided for each gender
Shapero et al.	Master athletes, mixed	Endurance	Males: 390	Females: 201			No age data provided for each gender
Cataldo et al.	Endurance Master athletes	Endurance	Males: 43	Females: 43			No age data provided for each gender
Velez et al.	Endurance Master athletes	Endurance	Males: 43	Females: 43			No age data provided for each gender
San Francisco Dolphin club cold-water swimmers							No age data provided for each gender

Table 1. Continued
Table 1. Continued

Study	Group Type	No. of Participants	Description	Endurance Sports	Notes
Eijvogels et al. [29] (2017)	Veteran endurance athletes	5 without fibrosis 4 with fibrosis	Fibrosis 59 (2) No fibrosis 57 (8)		
			No fibrosis 24.6 (3.1) fibrosis 23.5 (1.7)	NA (4.6%)	• Without fibrosis 44 years training
					• With fibrosis 42 years training
Kujala et al. [30] (1996)	Veteran endurance athletes	15 male athletes 2 runners 4 cycling 4 triathlon 2	Athletes 49.3 42-56 Controls 47.0 42 to 54	Athletes 22.8 Controls 25.1	p < 0.010
		16 controls			• 95.9 MET hr/wk
					• No SD for age of BMI
Bourvier et al. [31] (2001)	Veteran endurance athletes	10 males 8 orienteers 2 runners 12 controls	Athletes 72.8 (2.9) Controls 74.9 (+2.4)	Athletes 22.6 (2.1) Controls 25.8 (3.5)	p < 0.02
					• 3-7hrs strenuous exercise per week
					• Lifelong regular/intense endurance exercise training
Drey et al. [32] (2016)	Master endurance athletes	23 athletes 10 males 13 females 149 controls	Athletes 58 (1.2) Controls 77 (6.0)	Athletes 22.0 (2.2) Controls 26 (4.2)	NA (-18.2%)
		12 controls			• European Veteran Athletics Championships
					• Trained 7.2 hr/wk
					• No statistics for BMI between groups
Matelot et al. [33] (2016)	Endurance Master athletes	13 male athletes 4 runners 7 cyclists 2 running + cycling 10 controls	Athletes 62.3 (3.0) Controls 59.3 (3.0)	Athletes 24.1 (1.9) Controls 26.1 (3.2)	NS (-8.3%)
					• Trained 7.3 hr/w
					• Endurance training for 39 (4) yrs
Shapero et al. [26] (2016)	Master athletes	591 athletes 246 cycling 147 running 72 swimmers 54 Triathlon 56 rowers 11 other 391 males 200 females	Group 50 (9) Males 51.0 (9.0) Females 48.0 (9.0)	Group 23.4 (3.6) Males 22.4 (2.8) Females 24.0 (3.8)	p < 0.001
		10 controls			• 21.3 (5.5) yrs competitive endurance sport exposure
					• 10.3 (5.5) hrs/wk
Kwon et al. [34] (2016)	Master endurance athletes, unspecified	50 male athletes 34 marathon runners 7 cyclists 9 triathletes 50 male controls	Athletes 48.3 (5.9) Controls 49.1 (5.6)	Athletes 23.3 (1.9) Controls 23.9 (2.0)	NS (p = 0.17)
					• Athletes trained 6.6 (3.4) hrs/wk

Study	Group Type	No. of Participants	Description	Endurance Sports	Notes
Eijvogels et al. [29] (2017)	Veteran endurance athletes	5 without fibrosis 4 with fibrosis	Fibrosis 59 (2) No fibrosis 57 (8)		
			No fibrosis 24.6 (3.1) fibrosis 23.5 (1.7)	NA (4.6%)	• Without fibrosis 44 years training
					• With fibrosis 42 years training
Kujala et al. [30] (1996)	Veteran endurance athletes	15 male athletes 2 runners 4 cycling 4 triathlon 2	Athletes 49.3 42-56 Controls 47.0 42 to 54	Athletes 22.8 Controls 25.1	p < 0.010
		16 controls			• 95.9 MET hr/wk
					• No SD for age of BMI
Bourvier et al. [31] (2001)	Veteran endurance athletes	10 males 8 orienteers 2 runners 12 controls	Athletes 72.8 (2.9) Controls 74.9 (+2.4)	Athletes 22.6 (2.1) Controls 25.8 (3.5)	p < 0.02
					• 3-7hrs strenuous exercise per week
					• Lifelong regular/intense endurance exercise training
Drey et al. [32] (2016)	Master endurance athletes	23 athletes 10 males 13 females 149 controls	Athletes 58 (1.2) Controls 77 (6.0)	Athletes 22.0 (2.2) Controls 26 (4.2)	NA (-18.2%)
		12 controls			• European Veteran Athletics Championships
					• Trained 7.2 hr/wk
					• No statistics for BMI between groups
Matelot et al. [33] (2016)	Endurance Master athletes	13 male athletes 4 runners 7 cyclists 2 running + cycling 10 controls	Athletes 62.3 (3.0) Controls 59.3 (3.0)	Athletes 24.1 (1.9) Controls 26.1 (3.2)	NS (-8.3%)
					• Trained 7.3 hr/w
					• Endurance training for 39 (4) yrs
Shapero et al. [26] (2016)	Master athletes	591 athletes 246 cycling 147 running 72 swimmers 54 Triathlon 56 rowers 11 other 391 males 200 females	Group 50 (9) Males 51.0 (9.0) Females 48.0 (9.0)	Group 23.4 (3.6) Males 22.4 (2.8) Females 24.0 (3.8)	p < 0.001
		10 controls			• 21.3 (5.5) yrs competitive endurance sport exposure
					• 10.3 (5.5) hrs/wk
Kwon et al. [34] (2016)	Master endurance athletes, unspecified	50 male athletes 34 marathon runners 7 cyclists 9 triathletes 50 male controls	Athletes 48.3 (5.9) Controls 49.1 (5.6)	Athletes 23.3 (1.9) Controls 23.9 (2.0)	NS (p = 0.17)
					• Athletes trained 6.6 (3.4) hrs/wk

• Without fibrosis 44 years training
• With fibrosis 42 years training
• 95.9 MET hr/wk
• No SD for age of BMI
• 3-7hrs strenuous exercise per week
• Lifelong regular/intense endurance exercise training
• European Veteran Athletics Championships
• Trained 7.2 hr/wk
• No statistics for BMI between groups
• Trained 7.3 hr/w
• Endurance training for 39 (4) yrs
• 21.3 (5.5) yrs competitive endurance sport exposure
• 10.3 (5.5) hrs/wk
Study	Type	Endurance Sports	Mixed Sports/Athletes				
Degens et al. [35] (2013)	ENDURANCE	Master endurance athletes	16 male athletes • 1500 m + runners Controls 71 (4) Athletes 73 (5) Controls 27.3 (3.2) NS (+17.2%) • World Masters Athletics Indoor championships Training 7.3 (3.4) hrs/wk				
Pratley et al. [36] (1995)	ENDURANCE	Master athletes	11 athletes • 9 runners • 2 triathletes Controls 17 Athletes 63.5 (1.9) Controls 62.4 (1.8) NS (-5.5%) • Competed at local and state levels 52 (5) km/wk Trained 6 (1) d/wk				
Fien et al. [66] (2017)	MIXED	Pan Pacific Masters Games, mixed sports	156 • 78 males • 78 females Athletes • Males 40-86 • Female 40-77 Controls • Males 35.3 (2.7) • Female 34.5 (2.8) p < 0.001 • Comparison group is the Australian general population				
Sallinen et al. [60] (2008)	MIXED	Finnish Master athletes	17 Athletes • Middle-aged athlete 9 • Older master 8 Controls • Middle aged control 11 • Older control 10 Athletes • Middle-aged 19 (2.6) • Older master athlete 28.4 (4.3) Controls • Middle aged control 22.7 (1.7) • Older control 24.7 (1) p < 0.001 (middle age athlete vs middle-aged control) Old aged athlete vs old-aged controls p < 0.001				
Kettunen et al. [67] (2006)	MIXED	Finnish Master track and field athletes	102 male athletes 777 controls Athletes 58.3 (10.3) Controls 55.0 (10.3) Athletes 24.1 (3.4) Controls 26.4 (3.6) p < 0.001 • Participated in the World Veterans Games Athletes MET dose 82.7 MET-hr/wk Controls healthy males • Participants at the European Master Games aged 65-80 yo No SD for age or BMI No comparison group • Participants from the European Master Athletics Indoor Championships No comparison group				
Di Girolamo et al. [68] (2017)	MIXED	Elite senior athletes, mixed sports	50 athletes • 38 males • 12 females Athletes 71.5 Controls 70.6 (3.3) p < 0.001 • National level in shot put, discus or hammer throw Strength/power training for 22.8 (14.9) yrs Training 2.1d/wk Middle aged athlete vs middle-aged controls p < 0.001 Old aged athlete vs old-aged controls p < 0.001				
Gervasi et al. [61] (2017)	MIXED	European Master Indoor Championships athletes	390 athletes • male 243 • female 147 Male 53.5 (13.1) Female 51.0 (11.6) Males 23.3 (2.5) Females 20.8 (2.2) NA (+12.0%) • Participated in the World Veterans Games Athletes MET dose 82.7 MET-hr/wk Controls healthy males • Participants at the European Master Games aged 65-80 yo No SD for age or BMI No comparison group • Participants from the European Master Athletics Indoor Championships No comparison group				
Study	Type	Description	Mixed sports/athletes	Controls/athletes	Controls	p Value	Notes
------------------	---------------------	--	-----------------------	-------------------	----------	---------	--
Gori et al. [69]	Master athletes	Age matched sedentary controls	Athletes 50.0 (6.7)	Controls 51.1 (5.7)	27 males	NS (+0.8\%)	• 7.0 (2.6) hrs sports activity/wk
	MIXED	82 males	Athletes 23.8 (2.5)	Controls 24.0 (2.8)			
		18 females					
		27 controls					
		27 males					
		24 females					
Yataco et al. [70]	Master athletes	Age matched sedentary controls	Athletes 63.3 (6.1)	Controls lean 60.6 (5.6)	39 controls lean	p < 0.05	• Maryland Senior Olympics
	MIXED	61 athletes	Athletes 22.9 (1.9)	Controls lean 25.6 (2.1)	51 controls obese		• Vigorous exercise > 4 d/wk
		50 runners					
		2 cyclists					
		9 cross-trained					
		39 controls lean					
		51 controls obese					
Walsh et al. [71]	World Masters	Age matched sedentary controls	Athletes 47.4 (7.1)	Controls aged 59.9 (6.9)		p < 0.001	• Athletes from rugby union, soccer, touch football
	athletes MIXED	535 athletes	Athletes (male) 14.5% BMI > 30 kg/m²	Controls (female) 7.3% BMI > 30 kg/m²	20,800 controls		• Controls from Australian general population who participated in the 2007-2008 national health survey
		344 males					
		191 females					
		362 soccer					
		61 rugby union					
		114 touch football					
		20,800 controls					
DeBeliso et al. [72]	World Masters	North American athletes (mixed) participating in World Masters Games	Athletes 52.6 (9.8)			p < 0.05	• Canadian obesity prevalence 25.6%
	Games athletes from N American, mixed sports WMG		Males 50.2 (9.7)				• USA obesity prevalence 33%
		Females 52.6 (9.1)					
			1.7% underweight				• No SD available for control group
			50.3% normal				• Control group data attained Australian general population who participated in the 20011-2012 National Health Survey
			34.1% overweight				
			13.9% obese				
Climstein et al. [7]	World Masters		Athletes 54.9 (9.4)			p < 0.05	• No SD available for control group
	Games, mixed WMG		Males 56.7 (9.5)				• Control group data attained Australian general population who participated in the 20011-2012 National Health Survey
		Females 52.2 (8.8)					
		Athletes 25.5 (4.0)					
		Males 26.1 (3.6)					
		Females 24.7 (4.3)					
		Controls 27.5					
Table 1. Continued

Study	Group Description	Sample Size	Non-specified sports/athletes	p-value	
Maessen et al. [63] (2017)	Master athletes	18 male athletes 13 male controls	Athletes 61 (7) Controls 58 (7)	Athletes 23.3 Controls 26.9	p < 0.01
Condello et al. [64] (2016)	Senior athletes	61 athletes aged 65-74 37 males 24 females 51 athletes aged 75-84 30 males 21 females	NA	Athletes 65-74 Male 20.4 (0.4) Female 26.5 (2.0) Athletes 75-84 Male 23.3 (2.9) Female 24.4 (1.4) Controls 65-74 Male 29.8 (2.7) Female 27.9 (3.6) Controls 75-84 Male 26.8 (2.1) Female 25.3 (3.2)	NA
D’Elia et al. [65] (2017)	Master athletes	753 males	Athletes 53 (10)	Athletes 26 (3) Athletes w-HTN 27 (1.5)	NS (p = 0.6)

- Athletes trained 7.1 hrs/wk
- Athletes MET dose 60 MET-hr/wk
- No SD for BMI
- Senior athletes
- No statistics for BMI between groups
matched) given the majority of participants from that WMG were from the host country Australia. Walsh et al. reported the MA basketball players had a significantly (p < 0.01) lower percentage of obesity (based upon BMI) across all age groups (30-40 yrs, 40-50 yrs, 50-60 yrs and 60-70 yrs) as compared to the Australian general population. The difference between groups in percentage obesity ranged from 11.7-14.1% for the MA basketball players and 20.4%-26.9% in the Australian general population. Given the BMI findings in the Walsh et al. study was according to WHO classifications of BMI via additional WHO cut-off points it was difficult to compare to other studies. However a recent study by Gryko et al. [40] reported the BMI of professional adult male basketball players, where mean BMI was in the overweight classification (24.0 kg/m² ± 1.81). The Gryko et al. finding is similar to the average BMI reported for 2016 US male basketball players (24.7 kg/m²) [41] and national basketball league players (1953-2009) (24.08 kg/m²) [42].

There were three papers [43-45] which investigated MA cyclists (n = 75 athletes). The mean BMI for the cyclists (across all three studies) was 23.7 kg/m² (± 1.1) (range 22.3-24.8 kg/m²) compared to 25.1 kg/m² (± 1.0) for controls. In the two studies which utilized a control group, only one study [43] reported a significant (p < 0.01) difference between groups, however the other study by Nicholas and Raugh [46] reported no difference (p = 0.74). The Nicholas and Raugh [46] study did however incorporate active males as controls. The third study by Chilelli and colleagues [45] had no comparison group.

A single [47] study of MA ice skaters (n = 76 athletes) was identified, their mean BMI was categorized as normal at 23.7 kg/m² (± 2.4), unfortunately there was no comparison group. There were two studies [48,49] which investigated master orienteering athletes. Both studies incorporated top-ranked Finnish MA orienteering runners (n = 533) and both studies reported a significantly (p = 0.0008 and p < 0.001) lower BMI in the MAs as compared to controls. The mean BMI classification for the both studies was normal (23.2 and 23.2 kg/m²) while the control groups were classified as overweight (25.5 and 26.8 kg/m²).

There were 14 studies which investigated MA runners [10-23], ranging from 12 to 495 participants, there were a total of 1,575 MAs with a group mean BMI ranging from 20.8 to 24.6 kg/m², all MA runners group means were classified as normal for BMI. Comparatively, the mean controls BMI was 25.7 kg/m² (± 1.5) which is classified as overweight. Only four studies reported BMI specified by gender, males had a mean of 23.1 kg/m² (± 0.5) with females having a significantly lower (p < 0.001) mean of 21.8 kg/m² (± 0.6). Only three of the studies reported significant differences between groups, the studies reporting non-significant differences had the runners mean BMI 3.0 to 10.5% lower than controls.

We identified four studies [50-53] which reported BMI in MA soccer players, only 2 of the studies found a significant difference between groups (MA vs controls), Schmidt et al. [52] utilized healthy, age-matched controls (p = 0.016) while Walsh et al. [53] found a significant (p < 0.05) difference between MA soccer players and the Australian general population. The BMI for MA soccer players ranged from a group mean of 24.6 (normal) to 27.3 kg/m² (overweight).

Despite the popularity of masters swimming, we only identified three studies [54-56] which included MA swimmers. The mean BMI across all three studies for the MA swimmers was 25.0 kg/m² (overweight), range 23.7 kg/m²-25.9 kg/m². Crow et al. [56] compared master pool swimmers to the state of California (USA) general population and found a significant difference between MA swimmer genders (p = 0.024) and between genders in the prevalence of obesity between groups (p < 0.001, MAs vs general population) and between genders and the general population (males p < 0.003; females p < 0.01). Walsh et al. [55] compared MAs competing at the World Masters Games to the Australian general population. A significant difference between MA swimmers genders (p < 0.001) and the Australian general population (p < 0.01) was demonstrated (55).

A single study was identified for each of BMI in MA rowers [57], MA rugby union [58] and MA x-country skiers [59]. Sliwicka and colleagues [57] found a non-significant (p = 0.482) difference between master rowers and active-professional controls; the rowers had a +2.3% higher mean BMI as compared to the control group (25.4 vs 24.8 kg/m³). Climstein and colleagues [58] investigated master
rugby union athletes who participated in the International Golden Oldies World Rugby festival. There was a total of 120 MA rugby players, and they found a significant difference (p < 0.05) in the percentage of obese in the older (≥ 50 yrs) versus younger (< 50 yrs) rugby MAs (37.2 vs 43.0%). There was also a single investigation of male MA x-country skiers. Myrstad et al. [59] found a significant difference (p < 0.001) between MA skiers and aged-matched controls from the general population of Norway (23.6 vs 27.0 kg/m²).

Fourteen studies were identified, which were classified as investigating endurance MAs ranging from 10 to 591 endurance participants. These studies had a cumulative total of 907 endurance MAs with a group mean BMI of 23.6 kg/m² (range 20.4-27.2 kg/m²) whereas controls had a significantly lower (p < 0.001) group mean of 25.6 kg/m² (± 2.1). Only two studies [26,27] reported BMI by gender, where males had a mean BMI of 22.4 kg/m² and females higher (+18.8%) at 26.6 kg/m². Of all MA endurance studies, only five (35.7%) found a significant difference between groups (athletes vs controls), where there was no statistical difference the endurance runners’ BMI was 0.4% to 18.2% lower than controls.

There were eight studies we classified as mixed, these studies included 1,318 MA athletes from mixed sports, study size ranged from 17 to 535. Five of the eight studies resulted in a significant difference between groups however in a study by Sallinen et al. [60], the MAs actually had a significantly higher (p < 0.001) BMI as compared to the controls (middle-aged athletes 29.0 vs 22.7 kg/m² and older athletes 28.4 vs 24.7 kg/m²). Of all MA endurance studies, only five (35.7%) found a significant difference between groups (athletes vs controls), where there was no statistical difference the endurance runners’ BMI was 0.4% to 18.2% lower than controls.

There were eight studies we classified as mixed, these studies included 1,318 MA athletes from mixed sports, study size ranged from 17 to 535. Five of the eight studies resulted in a significant difference between groups however in a study by Sallinen et al. [60], the MAs actually had a significantly higher (p < 0.001) BMI as compared to the controls (middle-aged athletes 29.0 vs 22.7 kg/m² and older athletes 28.4 vs 24.7 kg/m²). Of all MA endurance studies, only five (35.7%) found a significant difference between groups (athletes vs controls), where there was no statistical difference the endurance runners’ BMI was 0.4% to 18.2% lower than controls.

DISCUSSION

The purpose of this review was to examine the BMI in MAs and determine if there was a reduced risk identified in MAs as compared to controls or the general population. It was hypothesized that differences in BMI would exist when MAs were compared to sedentary controls and when compared to the general population. To the authors’ knowledge, this is the first study to thoroughly review BMI in MAs.

Our review identified 60 studies which met our inclusion criteria, this involved a total of 10,061 MAs (73.8% male) and 70,353 controls. The mean BMI of all MA was found to be significantly (p < 0.001) lower than controls (−9.5%, 23.78±1.4 vs 26.13±1.7 kg/m²). Where gender specific MAs BMI was available, females tended (p = 0.126) to have a lower (−4.7%, 22.62±1.2 kg/m²) BMI as compared to males (23.68±1.5 kg/m²).

According to the US National Health and Nutrition survey (N = 17,375) [73] findings, our MAs as a group was lower (−11.4%) than that of the average US adult (23.78...
vs 26.5 kg/m²). This finding is similar to that found when comparing MAs BMI to that of the Australian general population. As a group, MAs were found to have a lower (−17.3%) BMI as compared to the Australian general population (23.78 vs 27.9 kg/m²). This finding was similar with regard to gender specific BMI with male (−23.9%) and female (−22.0%) MAs were lower than the general population.

Seidell and Halberstadt [74] had investigated if a high BMI was actually associated with a lower risk of mortality and increased life expectancy, they found that the relative mortality risk was increased with a BMI of 25 kg/m² however higher BMI was associated with a reduced risk. They further explained that their observation was explained by methodological bias.

Dr Afzal [75] and his colleagues investigated BMI with regard to mortality, they identified the lowest all-cause mortality was associated with a BMI of 26.4 kg/m² (2003-2013, 95% CI, 23.4-24.3 kg/m²) this value is higher than the mean BMI found in our review of MAs. This value was shown to increase by 3.3 kg/m² from 1976 to 2013. Wang and colleagues [76] also investigated BMI with regard to mortality and reported a higher BMI (28.6 kg/m²).

There is substantial literature indicating that a high BMI (overweight and obese) is associated with an increased risk of developing a number of chronic diseases and conditions. Kearns et al. [77] evaluated the risk and determined that the highest risk (risk ratio (RR) in parentheses) was associated with HTN (RR 2.1) followed by osteoarthritis (RR 2.0), T2dm (RR 1.6), hypercholesterolemia (RR 1.3) and low back pain (RR 1.2). With regard to gender specific risk, HTN and osteoarthritis was the highest risk in overweight and obese males while T2dm and HTN were the highest risk in overweight and obese females.

In Australia, the highest burden associated with overweight and obesity was all linked cardiovascular diseases (37.9%) followed by cancers (19.3%), T2dm (17.2%) and musculoskeletal conditions (16.7%) [78]. Despite the lowered risk, clinicians continue to consider ageing athletes at risk for a cardiac event and musculoskeletal injury [79]. Walsh and colleagues have however, shown a significantly less incidence of injury in MAs than other sporting cohorts [80].

The health benefit seen in MAs is illustrated by the work of Climstein and colleagues [81] who compared the incidence of chronic diseases and conditions in MAs to the Australian general population and reported a significantly lower incidence of anxiety (p < 0.01), depression (p < 0.01) and a trend of a lower incidence of arthritis (−30.4%, p = 0.06). DeBeliso et al. [8] investigated the incidence of chronic diseases and disorders of north American WMG MAs, they found a significantly lower (p < 0.01) incidence of arthritis (rheumatoid and osteoarthritis), HTN, hyperlipidemia, asthma and depression as compared to the US general population.

Body mass index, although widely used and a simple risk factor to attain however, it is not withstanding its limitations which are well recognized [82-84]. Principally, the equation does not take the various tissues (i.e., lean mass, fat mass, bone) into account and this subsequently results in an overestimation and underestimation of BMI. It has been proposed that the standard BMI equation exaggerates thinness in short individuals and fatness in tall and muscular individuals, the latter being athletes. The higher muscle (i.e., lean mass) content in athletes skews BMI as lean mass is approximately 22% denser than fat tissue. Alternative equations for BMI have been proposed, for example Nuttall [85] recommended that the trunk should be considered as a three-dimensional volume and proposed an alternative equation, namely weight/height1.06.

In summary, this review of BMI in MAs provides an initial insight into one indirect multifaceted health benefit seen in MAs (namely lower BMI). Further research is warranted into the health benefits associated with MAs.

REFERENCES

1. Australian Institute of Health and Welfare: An interactive insight into overweight and obesity in Australia [Internet]. c2017. Available from: https://www.aihw.gov.au/reports/overweight-obesity/interactive-insight-into-overweight-and-obesity/contents/how-many-people-are-overweight-or-obese.
2. Pi-Sunyer X. The medical risks of obesity. Postgrad Med 2009;121:21-33.
3. World Health Organization: Global database of body mass index: BMI classification [Internet]. c2018. Available from: http://apps.who.int/bmi/index.jsp?introPage=intro_3.html.
4. Lepers R, Stapley PJ. Master athletes are extending the limits of human endurance. *Front Physiol* 2016;7:613.

5. Sydney World Masters Games Committee: Sydney 2009 World Masters Games Final Report [Internet]. c2009. Available from: https://www.clearinghousesforsport.gov.au/__data/assets/pdf_file/0020/439031/Sydney_World_Masters_Games_final_report.pdf.

6. Hawkins SA, Wiswell RA, Marcell TJ. Exercise and the master athlete—a model of successful aging? *J Gerontol A Biol Sci Med Sci* 2003;58:1009-11.

7. Climstein M, Walsh J, Debelsio M, Heazlewood T, Sevence T, Adams K. Cardiovascular risk profiles of world masters games participants. *J Sports Med Phys Fitness* 2018;58:489-96.

8. Debelsio M, Sevence T, Walsh J, Adams K, Kettunen J, Heazlewood I, Mike C. Body Mass Index of North American Participants at the World Masters Games. *J Sports Sci* 2014;2:189-94.

9. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. *JAMA* 2013;310:2191-4.

10. Hood S, Northcote RJ. Cardiac assessment of veteran endurance athletes: a 12 year follow up study. *Br J Sports Med* 1999;33:239-43.

11. Wiswell R, Hawkins S, Jaque V, Hyslop D, Constantino N, Tarpenning K, Marcel T, Schroeder ET. Relationship between physiological loss, performance decrement, and age in master athletes. *J Gerontol A Biol Sci Med Sci* 2001;56:M618-M26.

12. Buyukyazi G. Differences in blood lipids and apolipoproteins between master athletes, recreational athletes and sedentary men. *J Sports Med Phys Fitness* 2005;45:112-20.

13. Northcote RJ, Canning GP, Ballantyne D. Electrocardiographic findings in male veteran endurance athletes. *Br Heart J* 1989;61:155-60.

14. Piascik M, Ireland A, Coulson J, Stashuk DW, Hamilton-Wright A, Swiecicka A, Rutter MK, McPhee JS, Jones DA. Motor unit number estimates and neuromuscular transmission in the tibialis anterior of master athletes: evidence that athletic older people are not spared from age-related motor unit remodeling. *Physiol Rep* 2016;12987.

15. Alfini AJ, Weiss LR, Leitner BP, Smith TJ, Hagberg JM, Smith JC. Hippocampal and cerebral blood flow after exercise cessation in master athletes. *Front Aging Neurosci* 2016;8:184.

16. Coupe C, Svensson RB, Grosset JF, Kovanen V, Nielsen RH, Olsen MR, Larsen JO, Praet SF, Skovgaard D, Hansen M, Aagaard P, Kjaer M, Magnusson SP. Life-long endurance running is associated with reduced glycation and mechanical stress in connective tissue. *Age (Dordr)* 2014;36:9665.

17. Mikkelsen UR, Coupe C, Karlsen A, Grosset JF, Schjerling P, Mackey AL, Klausen HH, Magnusson SP, Kjaer M. Life-long endurance exercise in humans: circulating levels of inflammatory markers and leg muscle size. *Mech Ageing Dev* 2014;134:531-40.

18. Knechtle B, Rust C, Knechtle P, Rosemann T. Does muscle mass affect running times in male long-distance master runners? *Asian J Sports Med* 2012;3:247-56.

19. Knobloch K, Yoon U, Vogt PM. Acute and overuse injuries correlated to hours of training in master running athletes. *Foot Ankle Int* 2008;29:671-6.

20. Michaelis I, Kwiet A, Gast U, Boshof A, Antvorskov T, Jung T, Rittweger J, Felsenberg D. Decline of specific peak jumping power with age in master runners. *J Musculoskelet Neuronal Interact* 2008;8:64-70.

21. Galetta F, Franzoni F, Femia FR, Roccella N, Pentimone F, Santoro G. Lifelong physical training prevents the age-related impairment of heart rate variability and exercise capacity in elderly people. *J Sports Med Phys Fitness* 2005;45:217-21.

22. Ulman C, Buyukyazi G, Taneli F, Uyanik BS. Recreational and master athletic activity does not affect free and total prostate-specific antigen levels but lowers the free-to-total prostate-specific antigen ratio. *J Int Med Res* 2004;32:583-9.

23. Marcell TJ, Hawkins SA, Tarpenning KM, Hyslop DM, Wiswell RA. Longitudinal analysis of lactate threshold in male and female master athletes. *Med Sci Sports Exerc* 2003;35:810-7.

24. Hubert A, Galand V, Donal E, Pavín D, Galli E, Martins RP, Leclercq C, Carre F, Schnell F. Atrial function is altered in lone paroxysmal atrial fibrillation in male endurance veteran athletes. *Eur Heart J Cardiovasc Imaging* 2017.

25. Beshgetoo D, Nichols JF, Rego I. Effect of training mode and calcium intake on bone mineral density in female master cyclist, runners, and non-athletes. *Int J Sport Nutr Exerc Metab* 2000;10:290-301.

26. Shapiro K, Deluca J, Contursi M, Wasyf M, Weiner RB, Lewis GD, Hutter A, Baggish AL. Cardiovascular risk and disease among masters endurance athletes: Insights from the Boston MASTER (Masters Athletes Survey To Evaluate Risk) Initiative. *Sports Med Open* 2016;2:29.

27. Fitzpatrick M. The relationship between body mass index and percent body fat in masters level competitive athletes [Master's thesis]. Ithaca, NY: Ithaca College; 2014.

28. Velez NF, Zhang A, Stone B, Perera S, Miller M, Greenspan SL. The effect of moderate impact exercise on skeletal integrity in master athletes. *Osteoporos Int* 2008;19:1457-64.
Oxid Med Cell Longev 2015;2015:804794.

55. Walsh J, Climstein M, Heazlewood IT, Kettunen J, Burke S, Debelsio M, Adams KJ. Body mass index for athletes participating in swimming at the World Masters Games. J Sports Med Phys Fitness 2013;53:162-8.

56. Crow BT, Matthay EC, Schatz SP, Debelsio MD, Nuckton TJ. The Body Mass Index of San Francisco Cold-water Swimmers: Comparisons to U.S. National and Local Populations, and Pool Swimmers. Int J Exerc Sci 2017;10:1250-62.

57. Sliwicka E, Nowak A, Zep W, Leszczynski P, Pilaczynska-Szczesniak L. Bone mass and bone metabolic indices in male master rowers. J Bone Miner Metab 2015;33:540-6.

58. Climstein M, Walsh J, Best J, Heazlewood IT, Burke S, Kettunen J, Adams K, Debelsio M. Physiological and pathology demographics of veteran rugby athletes: Golden Oldies Rugby Festival. World Acad Sci Eng Technol. 2011:1123-8.

59. Myrstad M, Lachen ML, Graff-Iversen S, Gulsvik AK, Thelle DS, Stigum H, Renhoff AH. Increased risk of atrial fibrillation among elderly Norwegian men with a history of long-term endurance sport practice. Scand J Med Sci Sports 2014;24:e238-44.

60. Sallinen J, Ojalan T, Karavirta L, Ahtiainen JP, Hakkinen K. Muscle mass and strength, body composition and dietary intake in master strength athletes vs untrained men of different ages. J Sports Med Phys Fitness 2008;48:190-6.

61. Gervasi M, Sisti D, Amatori S, Andreazza M, Benelli P, Sestili P, Rocchi MBL, Calavalle AR. Muscular viscoelastic characteristics of athletes participating in the European Master Indoor Athletics Championship. Eur J Appl Physiol 2017;117:1739-46.

62. Climstein M, Walsh J, Debelsio M, Heazlewood T, Sevene T, Adams K. Cardiovascular risk profiles of world masters games participants. J Sports Med Phys Fitness 2018;58(4):489-96.

63. Maessen MF, Eijsvogels TM, Stevens G, van Dijk AP, Hopman MT. Benefits of lifelong exercise training on left ventricular function after myocardial infarction. Eur J Prev Cardiol 2017;24:1856-66.

64. Condello G, Capranica L, Stager J, Forte R, Falbo S, Di Baldassarre A, Segura-Garcia C, Pesce C. Physical activity and health perception in aging: Do body mass and satisfaction matter? A three-path mediated link. PLoS One 2016;11:e0160805.

65. D’Elia E, Ferrero P, Vittori C, Calabrese A, Duino V, Perlini S, Senni M. Global longitudinal strain in master athletes and in hypertensive patients with the same degree of septal thickness. Scand J Med Sci Sports 2017;27:1411-6.

66. Fien S, Climstein M, Quilter C, Buckley G, Henwood T, Grigg J, Keogh JW. Anthropometric, physical function and general health markers of Masters athletes: a cross-sectional study. PeerJ 2017;5:e3768.

67. Kettunen JA, Kujala UM, Kaprio J, Sarna S. Health of master track and field athletes: a 16-year follow-up study. Clin J Sport Med 2006;16:142-8.

68. Di Girolamo FG, Situlin R, Fiotti N, Tenore M, De Colle P, Mearelli F, Minetto MA, Ghigo E, Pagani M, Lucini D, Pigozzi F, Portincasa P, Toigo G, Biolo G. Higher protein intake is associated with improved muscle strength in elite senior athletes. Nutrition 2017;42:82-6.

69. Gori N, Anania G, Stefani L, Boddi M, Galanti G. Carotid intima-media thickness in master athletes. Asian J Sports Med 2015;6:e22587.

70. Yataco AR, Busby-Whitehead J, Drinkwater DT, Katzef LJ. Relationship of body composition and cardiovascular fitness to lipoprotein lipid profiles in master athletes and sedentary men. Aging (Milano) 1997;9:88-94.

71. Walsh J, Climstein M, Heazlewood IT, Burke S, Kettunen J, Adams KJ, Debelsio M. Improved body mass index classification for football code masters athletes, a comparison to the Australian national population. Int J Biol Med Sci 2011;1:37-40.

72. Debelsio M, Sevene T, Walsh J, KJ A, Heazlewood T, M. C. Body Mass Index of North American Participants at the World Masters Games. J Sports Sci 2014;2:189-94.

73. Centers for Disease Control and Prevention: National Health and Nutrition Examination Survey [Internet]. c2018. Available from: https://www.cdc.gov/nchs/nhanes/index.htm.

74. Seidell JC, Halberstadt J. Overweight, obesity and life expectancy: do people with a high BMI live longer? Ned Tijdschr Geneeskd 2016;160:D859.

75. Afzal S, Tybjaerg-Hansen A, Jensen GB, Nordestgaard BI. Change in body mass index associated with lowest mortality in Denmark, 1976-2013. JAMA 2016;315:1989-96.

76. Wang Z, Peng Y, Dong B. Is body mass index associated with lowest mortality increasing over time? Int J Obes (Lond) 2017;41:1171-5.

77. Kearns K, Dee A, Fitzgapper AP, Doherty E, Perry JJ. Chronic disease burden associated with overweight and obesity in Ireland: the effects of a small BMI reduction at population level. BMC Public Health 2014;14:143.

78. Australian Institute of Health and Welfare: Impact of overweight and obesity as a risk factor for chronic conditions [Internet]. c2017. Available from: https://www.aihw.gov.au/getmedia/f861e51c14-4dfb-85e0-54e19500c91/20700.pdf.aspx?inline=true.

79. Brun SP. Clinical considerations for the ageing athlete.
80. Walsh J, Climstein M, Heazlewood IT, DeBeliso M, Kettunen J, Sevne TG, Adams KJ. Masters athletes: No evidence of increased incidence of injury in football code athletes. *Adv Physic Edu* 2013;3:36-42.

81. Climstein M, Walsh J, Best J, Heazlewood IT, Burke S, Kettunen J, Adams K, DeBeliso M. Incidence of chronic disease and lipid profile in veteran rugby athletes. *Int J Biol Med Sci* 2011;1:41-5.

82. Bagust A, Walley T. An alternative to body mass index for standardizing body weight for stature. *QJM* 2000; 93:589-96.

83. Welborn TA, Knuiman MW, Vu HT. Body mass index and alternative indices of obesity in relation to height, triceps skinfold and subsequent mortality: the Busselton health study. *Int J Obes Relat Metab Disord* 2000;24: 108-15.

84. Ahima RS, Lazar MA. Physiology. The health risk of obesity—better metrics imperative. *Science* 2013;341: 856-8.

85. Nuttall FQ. Body mass index: Obesity, BMI, and health: A critical review. *Nutr Today* 2015;50:117-28.