Supplementary Material and Methods Section

Table S1. Forward primers to produce the sgRNA in vitro transcription template. Each primer contains the T7 promoter sequence, the spacer sequence (different for each sgRNA) and the scaffold template-annealing sequence.

sgRNA name	T7 promoter sequence	Spacer sequence	Guide-it Scaffold Template-annealing sequence
G3	GCGGCCTCTAATACGACTCAGCACTATAGGG	AGTGCATGGGCGCTGGGCGG	GTTTTAGATGAGCTGAAATAGCA
G4	GCGGCCTCTAATACGACTCAGCACACACAGG	GGCCAGTCTGAGCCAGACGCGC	GTTTTAGATGAGCTGAAATAGCA
G5	GCGGCCTCTAATACGACTCAGCACTATAGGG	GTCATGCAATACGCGACCTC	GTTTTAGAGCTGAAATAGCA
G6	GCGGCCTCTAATACGACTCAGCACTATAGGG	GCCGGTGTTCGAGCGGAAC	GTTTTAGAGCTGAAATAGCA
G7	GCGGCCTCTAATACGACTCAGCACTATAGGG	TGGGAAGAGGCGCGCGGTC	GTTTTAGAGCTGAAATAGCA
G8	GCGGCCTCTAATACGACTCAGCACTATAGGG	CGCGCTATTGCTGATGAGAC	GTTTTAGAGCTGAAATAGCA
G9	GCGGCCTCTAATACGACTCAGCACTATAGGG	AGGCACGCCGCCCCTACCGGC	GTTTTAGAGCTGAAATAGCA
G10	GCGGCCTCTAATACGACTCAGCACTATAGGG	GCCGGTGTACGAGCGGTCGCT	GTTTTAGAGCTGAAATAGCA
G11	GCGGCCTCTAATACGACTCAGCACTATAGGG	CACGCTTGTGTCCCGCGTC	GTTTTAGAGCTGAAATAGCA
G12	GCGGCCTCTAATACGACTCAGCACTATAGGG	TGATGACGGGTTGGCGGTTT	GTTTTAGAGCTGAAATAGCA

Table S2. Primers for PCR reactions. For each primer are reported the nucleotide sequence, the Melting temperature and what reaction it was used for.

Name	Sequence	Tm	Use
TempForward	GAATGCCTGCTTCCCAAGAA	57,8	Cutting template production
TempReverse	AGTTTGGAAACGGCAATCA	55,5	
BCOR-NGS-Forw	GGAGGACTGGAACCCCT	55	Amplicon NGS off-target
BCOR-NGS-Rev	TTCGCGGAAACTACCTACAC	57	
INNP5A-NGS-Forw	TATGAAGGACTGCAAGGC	54	
INNP5A-NGS-Rev	CGCTTGTTGAGGAGGCTGTCTTA	57	
ZNRF1-NGS-Forw	CCTGCAGGAATGTGAAATGG	58	
ZNRF1-NGS-Rev	CACTGCTACTAAGAGGTGA	58	
G8_COL3A1-Forw	TTGTAGGGTAAACCAGGACC	56,1	
G8_COL3A1-Rev	CCTTGCTATTTACTCCTGAGCAC	55,2	
KCNQ1-NGS-Forw	TTGTGTGGAGGGCTGTAGAG	56	
KCNQ1-NGS-Rev	GGACCGGCTTCTCCTCA	55	
MEIS1-NGS-Forw	GAAGGACCCAGCTGTAGAG	57	
MEIS1-NGS-Rev	CACATGGCGTTGTTAGAG	56	
Table S3. Primers for first step PCR reactions for libraries production. For each primer are reported the adaptor, spacer and locus sequences.

Name	Adaptor	Spacer	Locus
G3Nv2_1F	GTCTCGGTGGGTCTCGGAGATGTGTATAAGAGACAG		TGCCACAGGGCTGGACTACT
G3Nv2_2F	GTCTCGGTGGGTCTCGGAGATGTGTATAAGAGACAG		TGCCACAGGGCTGGACTACT
G3Nv2_3F	GTCTCGGTGGGTCTCGGAGATGTGTATAAGAGACAG		TGCCACAGGGCTGGACTACT
G8_1R	TCCTCGGGAGGCTCAATGTGATAAGAGACAG	GCT	GCTCCAGCTTCTGTGGT
G8_2R	TCCTCGGGAGGCTCAATGTGATAAGAGACAG	TGCT	GCTCCAGCTTCTGTGGT
G8_3R	TCCTCGGGAGGCTCAATGTGATAAGAGACAG	CAGTACTG	GCTCCAGCTTCTGTGGT
G3_1F	GTCTCGGTGGGTCTCGGAGATGTGTATAAGAGACAG		AATACAGTGGAACCTATGGCCACG
G3_2F	GTCTCGGTGGGTCTCGGAGATGTGTATAAGAGACAG		AATACAGTGGAACCTATGGCCACG
G3_3F	GTCTCGGTGGGTCTCGGAGATGTGTATAAGAGACAG		AATACAGTGGAACCTATGGCCACG
G8B_1R	TCCTCGGGAGGCTCAATGTGATAAGAGACAG	TCGTGA	TCTCTCCATCTACGGTCCA
G8B_2R	TCCTCGGGAGGCTCAATGTGATAAGAGACAG	CTA	TCTCTCCATCTACGGTCCA
G8B_3R	TCCTCGGGAGGCTCAATGTGATAAGAGACAG	AGCGAGTAC	CTCTCCATCTACGGTCCA
G8N_1F	TCCTCGGGAGGCTCAATGTGATAAGAGACAG	ATCTCGGTCATCTACGGTCCA	
G8N_2F	TCCTCGGGAGGCTCAATGTGATAAGAGACAG	GCTC	ATCTCGGTCATCTACGGTCCA
G8N_3F	TCCTCGGGAGGCTCAATGTGATAAGAGACAG	TGGACT	ATCTCGGTCATCTACGGTCCA
G8N_1R	TCCTCGGGAGGCTCAATGTGATAAGAGACAG	G	CTGGTGATTCCGGTTTCTCG
G8N_2R	TCCTCGGGAGGCTCAATGTGATAAGAGACAG	AAC	CTGGTGATTCCGGTTTCTCG
G8N_3R	TCCTCGGGAGGCTCAATGTGATAAGAGACAG	TGGACAAAG	CTGGTGATTCCGGTTTCTCG

Lipofection

The day before the lipofection, 5x10^5 cells were plated in 60 mm-diameter plates, in the specific medium for fibroblasts. The cells were then incubated at 37°C to reach a confluence of 70-80%. The next day two test tubes were prepared for each sample to be transfected. In the first tube the plasmid vector pcDNA3 or pcDNA3-EGFP was diluted in 250 µL of Opti-MEM medium and mixed gently; in the second one each selected transfection agent was added to 250 µL of Opti-MEM medium depending on volumes reported in table S4. This last step was carried out using polystyrene tubes, a material capable of preventing the adhesion of the transfecting agent to the surface of the tube itself, to facilitate its dilution with the medium and, subsequently, the formation of complexes with DNA. Subsequently the two solutions were combined and mixed and then incubated at room temperature from 15 to 30 minutes depending on the transfecting agent used, to promote the formation of complexes between cationic lipids and DNA. After removing the spent medium from the cells and replacing it with fresh serum-free medium, it was possible to add the cationic lipid-DNA complexes previously prepared to each well, favouring their mixing through circular and cross movements. In the wells corresponding to the negative controls only the medium and the liposomal agents were added, without the plasmid DNA. Finally, the plates were incubated at 37°C and, after 4 hours, the medium was replaced with complete medium, to limit toxic effects due to the permanence of the transfecting agents in culture. Transfected cells were incubated at 37°C in an 80% humidified atmosphere, containing 5% CO₂.
Table S4. Transfection agents used for lipofection tests.
The table summarizes the various transfecting agents used in the fibroblast lipofection tests, their volumes, the amount of DNA used and the relationship between DNA and transfecting agent.

Abbreviation	Transfection agent	Amount of DNA (µg)	Volume of the transfection agent (µL)	Ratio DNA:transfection agent	Note
L-NT	Lipofectamine 2000	-	20 µL	-	
L1	Lipofectamine 2000	3 µg	20 µL	-	
L2	Lipofectamine 2000 + Plus Reagent	3 µg	20 µL	-	Addition of Plus Reagent (60 µL)
T-NT	TransIT-X2	-	7,5 µL	-	
T1	TransIT-X2	2,5 µg	7,5 µL	1:3	
T2	TransIT-X2	2,5 µg	10 µL	1:4	
E-NT	Effectene	-	10 µL	-	
E1	Effectene	0,4 µg	10 µL	1:25	
E2	Effectene	0,4 µg	20 µL	1:50	
J-NT	JetPRIME	-	4 µL	-	
J1	JetPRIME	2 µg	4 µL	1:2	
J2	JetPRIME	2 µg	8 µL	1:4	
X-NT	X-TremeGENE	-	3 µL	-	
X1	X-TremeGENE	1,00 µg	3 µL	1:3	
X2	X-TremeGENE	1,00 µg	6 µL	1:6	
N-NT	Nano-Juice	-	1,25 µL	-	
N1	Nano-Juice	1,25 µg	1,25 µL	1:1	Addition of Transfection Booster (1,25 µL)
N2	Nano-Juice	1,25 µg	2,5 µL	1:2	Addition of Transfection Booster (1,25 µL)
N3	Nano-Juice	1,25 µg	1,25 µL	1:1	Addition of Transfection Booster (2,5 µL)
N4	Nano-Juice	1,25 µg	2,5 µL	1:2	Addition of Transfection Booster (2,5 µL)
F-NT	Fail-Safe	-	8 µL	-	
F1	Fail-Safe	2 µg	8 µL	1:4	
F2	Fail-Safe	4 µg	16 µL	1:4	
Table S5. Barcodes for NGS libraries. For each barcode are reported the nucleotide sequence and orientation.

Name	Sequence	Orientation
N701	CAAGCAGAAAGCACGGGATACCGACTTCGCTTGCGGCTCGG	Forward
N702	CAAGCAGAAGACGGGATACCTAGACCGGTCCTTGCGGCTCGG	
N703	CAAGCAGAAAGACGGGATTTTCTGCTGCTGCTGCTCAGGCTCGG	
N704	CAAGCAGAAAGACGGGATACAGTGCAGGATCTGCTGCTGCTGCTGCTGCTGCTCGG	
N705	CAAGCAGAAAGACGGGATATGCCTATGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	
N706	CAAGCAGAAAGACGGGATAGCTAGGAGGATCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	
N707	CAAGCAGAAAGACGGGATAGCTAGGAGGATCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	
N708	CAAGCAGAAAGACGGGATAGCTAGGAGGATCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	
N709	CAAGCAGAAAGACGGGATAGCTAGGAGGATCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	
N710	CAAGCAGAAAGACGGGATACCGACTTCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	
S501	AATGATAGCGGGAGACACAGGTACCTACGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	Reverse
S503	AATGATACGCGGAGACACAGGTACCTACGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	
S505	AATGATACGCGGAGACACAGGTACCTACGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	
S506	AATGATACGCGGAGACACAGGTACCTACGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	
S507	AATGATACGCGGAGACACAGGTACCTACGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	
S508	AATGATACGCGGAGACACAGGTACCTACGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	
S5010	AATGATACGCGGAGACACAGGTACCTACGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	
S5011	AATGATACGCGGAGACACAGGTACCTACGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	
S5013	AATGATACGCGGAGACACAGGTACCTACGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	