Kalaj, David

Gaussian curvature of minimal graphs in $M \times \mathbb{R}$. (English) [Zbl 07739945]

J. Math. Anal. Appl. 529, No. 1, Article ID 127589, 22 p. (2024)

Summary: In this paper, we consider minimal graphs in the three-dimensional Riemannian manifold $M \times \mathbb{R}$. We mainly estimate the Gaussian curvature of such surfaces. We consider the minimal disks and minimal graphs bounded by two Jordan curves in parallel planes. The key to the proofs is the Weierstrass representation of those surfaces via \mathcal{P}-harmonic mappings. We also prove some Schwarz lemma type results and some Heinz type results for harmonic mappings between geodesic disks in Riemannian surfaces.

MSC:

31C05 Harmonic, subharmonic, superharmonic functions on other spaces
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature

Keywords:

harmonic mappings; minimal surfaces

Full Text: DOI arXiv

References:

[1] Alarcon, A.; Forstneric, F.; Lopez, F. J., Minimal Surfaces from a Complex Analytic Viewpoint, Springer Monogr. Math. (2021), Springer: Springer Cham · Zbl 1520.53001
[2] Beardon, A. F.; Minda, D., The hyperbolic metric and geometric function theory, (Proceedings of the International Workshop on Quasiconformal Mappings and Their Applications. Proceedings of the International Workshop on Quasiconformal Mappings and Their Applications, December 27, 2005-January 1, 2006 (2007), Narosa Publishing House: Narosa Publishing House New Delhi), 9-56 · Zbl 1153.53041
[3] Duren, P., Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, vol. 156 (2004), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1055.31001
[4] Finn, R.; Osserman, R., On the Gauss curvature of non-parametric minimal surfaces, J. Anal. Math., 12, 351-364 (1964) · Zbl 0122.16404
[5] Hauswirth, L.; Earp, R. S.; Toubiana, E., Associate and conjugate minimal immersions in $(M \times \mathbb{R})$, Tohoku Math. J. (2), 60, 2, 267-286 (2008) · Zbl 1153.53041
[6] Hayman, W. K.; Kennedy, P. B., Subharmonic Functions, vol. I (1976), Academic Press: Academic Press London, vol. 9 · Zbl 0419.31001
[7] Heinz, E., On one-to-one harmonic mappings, Pac. J. Math., 9, 101-105 (1959) · Zbl 0086.28204
[8] Hildebrandt, S.; Jost, J.; Widman, K.-O., Harmonic mappings and minimal submanifolds, Invent. Math., 62, 269-298 (1980) · Zbl 0446.31001
[9] Jost, J., Harmonic Maps Between Surfaces (with a Special Chapter on Conformal Mappings), vol. 1062 (1984), Springer: Springer Cham
[10] Jost, J., Riemannian Geometry and Geometric Analysis (2017), Springer: Springer Cham · Zbl 1380.53001
[11] Kalaj, D., Energy-minimal diffeomorphisms between doubly connected Riemann surfaces, Calc. Var. Partial Differ. Equ., 51, 1-2, 465-494 (2014) · Zbl 1296.30052
[12] Kalaj, D., Deformations of annuli on Riemann surfaces and the generalization of Nitsche conjecture, J. Lond. Math. Soc., II. Ser., 93, 3, 683-702 (2016) · Zbl 1345.31019
[13] Kalaj, D.; Lamel, B., Minimisers and Kellogg’s theorem, Math. Ann., 377, 3-4, 1643-1672 (2020) · Zbl 1452.31003
[14] Kalaj, D.; Zhu, J.-F., Schwarz pick type inequalities for harmonic maps between Riemann surfaces, Complex Var. Elliptic Equ., 64, 8, 1364-1375 (2019) · Zbl 1426.31002
[15] Koh, N.-T., Hereditary convexity for harmonic homeomorphisms, Indiana Univ. Math. J., 64, 1, 231-243 (2015) · Zbl 1318.31005
[16] Kokubu, M., Weierstrass representation for minimal surfaces in hyperbolic space, Tohoku Math. J. (2), 49, 3, 367-377 (1997) · Zbl 0912.53041
[17] Kovalev, L. V.; Li, L., On the existence of harmonic mappings between doubly connected domains, Proc. R. Soc. Edinb., Sect. A, Math., 148, 3, 619-628 (2018) · Zbl 1411.31002
[18] Meeks, W. H.; White, B., Minimal surfaces bounded by convex curves in parallel planes, Comment. Math. Helv., 66, 2, 263-278 (1991) · Zbl 0731.53004

[19] Nelli, B.; Rosenberg, H., Minimal surfaces in $\mathbb{H}^2 \times \mathbb{R}$, Bull. Braz. Math. Soc. (N. S.), 33, 2, 263-292 (2002) · Zbl 1038.53011

[20] Sa Earp, R.; Toubiana, E., Screw motion surfaces in $\mathbb{H}^2 \times \mathbb{R}$ and $\mathbb{S}^2 \times \mathbb{R}$, Ill. J. Math., 49, 4, 1323-1362 (2005) · Zbl 1093.53068

[21] Schoen, R.; Yau, S. T., Lectures on harmonic maps, (Conference Proceedings and Lecture Notes in Geometry and Topology, II (1997), International Press: International Press Cambridge, MA) · Zbl 0886.53004

[22] Shiffman, M., On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes, Ann. Math. (2), 63, 77-90 (1956) · Zbl 0070.16803

[23] Wan, T. Y.H., Constant mean curvature surface, harmonic maps, and universal Teichmüller space, J. Differ. Geom., 35, 3, 643-657 (1992) · Zbl 0808.53056

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.