Some remarks on wheeled autonomous vehicles and the evolution of their control design
Brigitte d’Andréa-Novel, Lghani Menhour, Michel Fliess, Hugues Mounier

To cite this version:
Brigitte d’Andréa-Novel, Lghani Menhour, Michel Fliess, Hugues Mounier. Some remarks on wheeled autonomous vehicles and the evolution of their control design. 9th IFAC Symposium on Intelligent Autonomous Vehicles, Jun 2016, Leipzig, Germany. hal-01294825v2

HAL Id: hal-01294825
https://polytechnique.hal.science/hal-01294825v2
Submitted on 12 Aug 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Some remarks on wheeled autonomous vehicles and the evolution of their control design *

Brigitte d’ANDRÉA-NOVEL * Lghani MENHOUR **
Michel FLIESS *** † Hugues MOUNIER ****

* Centre de Robotique, MINES ParisTech & PSL Research University, 60 boulevard Saint-Michel, 75272 Paris cedex 06, France. (e-mail: brigitte.dandrea-novel@mines-paristech.fr)
** Université de Reims Champagne-Ardenne, IUT de Troyes, 9 rue du Québec, 10026 Troyes, France. (e-mail: lghani.menhour@univ-reims.fr)
*** LIX (CNRS, UMR 7161), École polytechnique, 91128 Palaiseau, France. (e-mail: Michel.Fliess@polytechnique.edu)
**** L2S (UMR 8506), CNRS – Supélec – Université Paris-Sud, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette, France. (e-mail: hugues.mounier@lss.supelec.fr)
† AL.I.E.N. (ALgèbre pour Identification et Estimation Numériques), 24-30 rue Lionnois, BP 60120, 54003 Nancy, France. (e-mail: michel.fliess@alien-sas.com)

Abstract: Recent investigations on the longitudinal and lateral control of wheeled autonomous vehicles are reported. Flatness-based techniques are first introduced via a simplified model. It depends on some physical parameters, like cornering stiffness coefficients of the tires, friction coefficient of the road, . . . , which are notoriously difficult to identify. Then a model-free control strategy, which exploits the flat outputs, is proposed. Those outputs also depend on physical parameters which are poorly known, i.e., the vehicle mass and inertia and the position of the center of gravity. A totally model-free control law is therefore adopted. It employs natural output variables, namely the longitudinal velocity and the lateral deviation of the vehicle. This last method, which is easily understandable and implementable, ensures a robust trajectory tracking problem in both longitudinal and lateral dynamics. Several convincing computer simulations are displayed.

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Autonomous vehicles, wheeled vehicles, longitudinal control, lateral control, flatness-based control, model-free control, intelligent controllers, algebraic estimation.

1. INTRODUCTION

The lateral and longitudinal control of wheeled autonomous vehicles is an important topic which has already attracted many promising studies (see, e.g. Ackermann et al. [1995], d’Andréa-Novel et al. [2001], Antonov et al. [2008], Attia et al. [2014], Choi et al. [2009], Cerone et al. [2009], Chou et al. [2005], Fuchshumer et al. [2005], Marino et al. [2005], Martinez et al. [2007], Menhour et al. [2011], Nouvelière [2002], Poussot-Vassal et al. [2011], Rajamani et al. [2000], Villagra et al. [2009, 2011, 2012], Zheng et al. [2006], . . .), where various advanced theoretical tools are utilized. This short communication does not permit unfortunately to summarize them. Let us nevertheless notice that most of them are model-based. The aim of this presentation is to explain and justify the evolution of our viewpoint which started with a flatness-based setting (Menhour et al. [2011]), i.e., a model-based approach. It is now adopting a fully model-free standpoint (see Menhour et al. [2013] and Menhour et al. [2015]). As a matter of fact severe difficulties are encountered to

- write a mathematical model which takes into account all the numerous complex phenomena,
- calibrate the existing model in various changing situations like cornering stiffness coefficients of the tires, and friction coefficient of the road.

Our paper is organized as follows. Section 2 presents a nonlinear longitudinal and lateral flatness-based control. In Section 3 the two different model-free control strategies are developed. Simulation results with noisy data and suitable reference trajectories acquired on a track race, are displayed in Section 4. Let us emphasize that the second model-free control is quite robust. Concluding remarks may be found in Section 5.
2. LONGITUDINAL AND LATERAL FLATNESS-BASED CONTROL

2.1 3DoF NonLinear Two Wheels Vehicle Model

The 3DoF-NLTWVM in Figure 1, which is used to design the combined control law, provides an interesting approximation of the longitudinal and lateral dynamics of the vehicle in normal driving situations. See Table 1 for the notations.

Table 1.

Symbol	Variable name
V_x	longitudinal speed [km.h]
V_y	lateral speed [km.h]
a_x	longitudinal acceleration [m/s²]
a_y	lateral acceleration [m/s²]
ψ	yaw rate [rad/s]
ψ	yaw angle [rad]
β	sideslip angle [rad]
α_f, r	front and rear tire slip angles [rad]
ω_1	wheel angular speed of the wheel i [rad/s]
T_ω	wheel torque [Nm]
δ	wheel steer angle [deg]
C_{f}, C_r	front and rear cornering stiffnesses [N.rad⁻¹]
F_{x1}, F_{x2}	longitudinal forces in vehicle coordinate [N]
F_{y1}, F_{y2}	lateral forces in vehicle coordinate [N]
F_{xf}, F_{yr}	front lateral forces in tire coordinate [N]
F_{xf}, F_{yr}	front lateral forces in tire coordinate [N]
R	tire radius [m]
g	acceleration due to gravity [m/s²]
L_f	distances from the CoG to the front axles [m]
L_r	distances from the CoG to the rear axles [m]
I_z	yaw moment of inertia [kgm²]
I_r	wheel moment of inertia [kgm²]
m	vehicle mass [kg]
M_x	yaw moment [Nm]

Fig. 1. Nonlinear two wheels vehicle model

The corresponding dynamical equations read:

\[
\begin{align*}
 m \ddot{x} &= m(\dot{V}_x + \psi \dot{V}_y) = (F_{x1} + F_{x2}) \\
 m \ddot{y} &= m(\dot{V}_y + \psi \dot{V}_x) = (F_{y1} + F_{y2}) \\
 I_z \ddot{\psi} &= I_{z1} \ddot{\psi} + I_{z2} \ddot{\psi} = (F_{y1} + F_{y2})
\end{align*}
\]

If a linear tire model with small slip angles is assumed (see Menhour et al. [2011] for more details), C_r (resp. C_f) denoting the cornering stiffness coefficient of the rear (resp. front) wheel, and ω_r (resp. ω_f) being the angular velocity of the rear (resp. front) wheel, the previous system can be rewritten:

\[
\dot{x} = f(x, t) + g(x, t)u
\]

with

\[
f(x, t) = \begin{bmatrix}
 -\psi V_x + \frac{1}{m} (C_f \frac{V_y}{V_x} - C_r \frac{V_y}{V_x} \\
 \frac{1}{I_z} (L_f C_f \frac{V_y}{V_x} + L_r C_r \frac{V_y}{V_x})
\end{bmatrix}
\]

\[
g(x, t) = \begin{bmatrix}
 1 \\
 0 \\
 0
\end{bmatrix}
\]

\[
x = \begin{bmatrix}
 V_x \\
 V_y \\
 \psi
\end{bmatrix}
\]

\[
u = [u_1 = T_\omega, u_2 = \delta]^T
\]

2.2 Flatness property

The system $\dot{x} = f(x, u)$, where $x = (x_1, \cdots, x_n) \in \mathbb{R}^n$ and $u = (u_1, \cdots, u_m) \in \mathbb{R}^m$, is said to be differentially flat (see Fliss et al. [1995, 1999], and Åström et al. [2008], Lévine [2009], Sira-Ramírez et al. [2004]) if, and only if,

- there exists a vector-valued function h such that
 \[
y = h(x, u, \bar{u}, \cdots, \bar{u}^{(r)})
 \]
 where $y = (y_1, \cdots, y_m) \in \mathbb{R}^m$, $r \in \mathbb{N}$;

- the components of $x = (x_1, \cdots, x_n)$ and $u = (u_1, \cdots, u_m)$ may be expressed as
 \[
x = A(y_1, \cdots, y_r, y^{(r)}, r_x) \\
u = B(y_1, \cdots, y_r, y^{(r)}, r_u)
 \]

Remember that y in Equation (2) is called a flat output.

2.3 Flatness-based longitudinal and lateral control

Problem 1. Introduce the outputs:

\[
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix} = \begin{bmatrix}
 V_x \\
 L_f m V_y - I_\psi
\end{bmatrix}
\]

We want to show that the longitudinal speed y_1 and the angular momentum y_2 of a point on the axis between the centers of the front and rear axles are flat outputs.

Proof 1. Some algebraic manipulations (see Menhour et al. [2011] for more details) yield:

\[
\begin{bmatrix}
y_2 \\
y_1
\end{bmatrix} = \begin{bmatrix}
 L_f m y_2 + C_r (L_f + L_r) y_2 \\
 L_f m_y y_2 + C_r (L_f + L_r) y_2
\end{bmatrix}
\]

\[
\begin{align*}
 y_1 &= A(y_1, y_2, y_2) \\
 y_2 &= B(y_1, y_2, y_2)
\end{align*}
\]

(6)

and

\[
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix} = \Delta(y_1, y_2, y_2) \begin{bmatrix}
 u_1 \\
 u_2
\end{bmatrix} + \Phi(y_1, y_2, y_2)
\]

(7)

The flatness property holds if the matrix $\Delta(y_1, y_2, y_2)$ is invertible:

\[
\det(\Delta(y_1, y_2, y_2)) = \Delta_{11} \Delta_{22} - \Delta_{12} \Delta_{21} \neq 0
\]

(8)

This determinant, which only depends on the longitudinal speed $y_1 = V_x$, is indeed nonzero:
• Acceleration of the wheel rotation is less than
 \(RC_f / I_\omega \approx 10^4 \). Thus
 \[
 I_\omega \dot{\omega}_f - C_f R \neq 0
 \]
• From \(I_z > L_fm \), we deduce that
 \[
 C_r (L_r + L_f) (I_z - L_fm) + L_f m^2 y_1^2 \neq 0
 \] (10)
Thus
 \[
 u = \left[\frac{T_\omega}{\delta} \right] = B(y_1, \dot{y}_1, y_2, \dot{y}_2) = \Delta^{-1}(y_1, y_2, \dot{y}_2) \left(\begin{array}{c} \dot{y}_1 \\ \dot{y}_2 \end{array} \right) - \Phi(y_1, y_2, \dot{y}_2)
 \] (11)
with \(r_x = 1 \) and \(r_u = 2 \).

A tracking feedback control In order to track the desired output trajectories \(y_1^{\text{ref}} \) and \(y_2^{\text{ref}} \), set
 \[
 \begin{bmatrix} \dot{y}_1 \\ \dot{y}_2 \end{bmatrix} = \begin{bmatrix} y_1^{\text{ref}} + K_1 e_{y_1} + K_2 \int e_{y_1} \, dt \\ y_2^{\text{ref}} + K_1 e_{y_2} + K_2 \int e_{y_2} \, dt \end{bmatrix}
 \] (12)
where, \(e_{y_1} = y_1^{\text{ref}} - y_1 = V_x^{\text{ref}} - V_x \) and \(e_{y_2} = y_2^{\text{ref}} - y_2 \). Choosing the gains \(K_1, K_2, K_1, K_2, K_2, K_2 \) is straightforward.

2.4 Algebraic nonlinear estimation

The control law contains derivatives of measured signals, which are of course noisy. This estimation is performed using the recent advances in Fliess et al. [2008], Mboup et al. [2005], Sira-Ramírez et al. [2014]. It yields the following formulae (García Collado et al. [2009]), and, therefore, simple linear digital filters:
 • Denoising:
 \[
 \dot{y}(t) = \frac{2!}{T^2} \int_{t-T}^{t} (3(t - \tau) - T) y(\tau) \, d\tau
 \] (13)
 • Numerical differentiation of a noisy signal:
 \[
 \dot{y}(t) = -\frac{3!}{T^3} \int_{t-T}^{t} (2T(t - \tau) - T) y(\tau) \, d\tau
 \] (14)
The sliding time window \([t - T, t]\) may be quite short.

3. MODEL-FREE DESIGN FOR VEHICLE CONTROL

3.1 Model-free design: motivation

Realistic vehicle models are usually unsuitable for an implementable control design. The above nonlinear flat controller provides good results with known nominal values of the cornering stiffnesses \(C_f \) and \(C_r \). Uncertainties on \(C_f \) and \(C_r \) yield unsatisfactory closed-loop performances; see Figure 2. It is well known that \(C_f \) and \(C_r \) are very sensitive to high dynamic loads. Figure 3 displays different dynamics of the front and rear cornering stiffness coefficients \(C_f \) and \(C_r \) during an experimental braking maneuver.

3.2 A short review on model-free control

Model-free control (Fliess et al. [2013]) was already successfully used in many concrete case-studies (see, e.g., Fliess et al. [2013], and Bara et al. [2016], Lafont et al. [2015]; the references therein provide numerous other examples). Let us insist here on the already existing applications to vehicles: Choi et al. [2009], Formentin et al. [2013], Menhour et al. [2015], Villagra et al. [2009, 2012].

The ultra-local model Replace the unknown SISO system by the ultra-local model:
 \[
 y^{(\nu)}(t) = F + \alpha u
 \] (15)
where
 • \(\nu \geq 1 \) is the derivation order,
 • \(\alpha \in \mathbb{R} \) is chosen such that \(\alpha u \) and \(y^{(\nu)} \) are of the same order of magnitude,
 • \(\nu \) and \(\alpha \) are chosen by the practitioner.

Remark 1. In all the existing concrete examples \(\nu = 1 \) or 2. Magnetic bearings (de Miras et al. [2013]) with their low friction provide the only instance where \(\nu = 2 \) (see Fliess et al. [2013] for an explanation).

Some comments on \(F \) are in order:
 1. See Fliess et al. [2013] for more details and further explanations. See Join et al. [2013] for a cheap hardware implementation. Both references show the online character of this setting, This fact has been confirmed by many concrete case-studies.
The corresponding intelligent controllers, i.e., intelligent Proportional-Integral-Derivative controller, reads

\[u = - \frac{(F - \dot{y}^d + K_P e + K_I \int \dot{e} dt + K_D \dot{e})}{\alpha} \]

where

- \(y^d \) is the reference trajectory,
- \(e = y - y^d \) is the tracking error and \(y^d \) is a desired signal,
- \(K_P, K_I, K_D \in \mathbb{R} \) are the usual gains.

Combining Equations (16) and (17) yields

\[\ddot{c} + K_P e + K_I \int \dot{e} dt + K_D \dot{e} = 0 \]

where \(F \) does not appear anymore. Gain tuning becomes therefore quite straightforward. This is a major benefit when compared to “classic” PIIs (see, e.g., Åström et al. [2006, 2008]). If \(K_I = 0 \) we obtain the intelligent Proportional-Derivative controller, or iP,

\[u = - \frac{(F - \dot{y}^d + K_P e)}{\alpha} \]

Set \(\nu = 1 \) in Equation (15):

\[\dot{y} = F + \alpha u \]

The corresponding intelligent Proportional-Integral controller, or iPI, reads:

\[u = - \frac{(F - \dot{y}^d + K_P e + K_I \int \dot{e} dt)}{\alpha} \]

If \(K_I = 0 \) in Equation (20), we obtain the intelligent proportional controller, or iP, which, until now, turns out to be the most useful intelligent controller:

\[u = - \frac{F - \dot{y}^d + K_P e}{\alpha} \]

Algebraic estimation of \(F \) in Equation (15) is assumed to be “well” approximated by a piecewise constant function \(F_{est} \). According to the algebraic parameter identification due to Fließ et al. [2003, 2008] (see also Sira-Ramírez et al. [2014]), rewrite, if \(\nu = 1 \), Equation (19) in the operational domain (see, e.g., Yosida [1984])

\[sY = \frac{\Phi}{s} + \alpha U + y(0) \]

where \(\Phi \) is a constant such that \(\frac{\Phi}{s} \) is the operational transform of \(F \) which is supposed to be constant on the sliding window. We get rid of the initial condition \(y(0) \) by multiplying both sides on the left by \(\frac{s}{\Phi} \):

\[Y + \frac{dY}{ds} = - \frac{\Phi}{s^2} + \alpha \frac{dU}{ds} \]

Noise attenuation is achieved by multiplying both sides on the left by \(s^{-2} \). It yields in the time domain the real time estimation

\[F_{est}(t) = - \frac{6}{\tau^3} \int_{t-\tau}^{t} [(\tau - 2\sigma)y(\sigma) + \alpha\sigma(\tau - \sigma)u(\sigma)] d\sigma \]

where \(\tau > 0 \) may be quite small. This integral may of course be replaced in practice by a classic digital filter:

\[F_{est}(t) = \begin{cases}
- \frac{60}{\tau^3} \int_{t-\tau}^{t} (\tau^2 + 6\sigma^2 - 6\sigma\tau)y_2(\sigma)d\sigma \\
- \frac{30\alpha}{\tau^3} \int_{t-\tau}^{t} (\tau - \sigma)^2 y_2(\sigma)d\sigma
\end{cases} \]

\[F_2(t) = \begin{cases}
- \frac{60}{\tau^3} \int_{t-\tau}^{t} (\tau^2 + 6\sigma^2 - 6\sigma\tau)y_2(\sigma)d\sigma \\
- \frac{30\alpha}{\tau^3} \int_{t-\tau}^{t} (\tau - \sigma)^2 y_2(\sigma)d\sigma
\end{cases} \]

3.3 Model-free vehicle control and flat outputs

The only parameters supposed to be known are those used to compute \(y_2 \) in Equation (5): the vehicle mass, the yaw moment of inertia and the position of the center of gravity. The control variables are:

- the braking and traction wheel torques to control longitudinal motion,
- the steering angle to control lateral and yaw motions.

The control variables \(u_1 = T_u \) and \(u_2 = \delta \) are respectively the braking and traction wheel torques, and the steering angle. From (11), the following two ultra-local models of longitudinal and lateral motions are derived:

longitudinal ultra-local model:

\[y_1 = y_1 + \alpha_1 u_1 \]

lateral ultra-local model:

\[y_2 = y_2 + \alpha_2 u_2 \]

where \(\alpha_1 \) and \(\alpha_2 \) represent respectively the wheel torque control of longitudinal motion \(y_1 \) and the steering angle control of lateral and yaw motions \(y_2 \). The tracking is achieved by two decoupled multivariable iPIs. Set, according to Equation (20), for the longitudinal iPI controller \(u_1 = \frac{1}{\alpha_1} (F_1 + \dot{y}_1^d - K_P^{y_1} e_{y_1} - K_I^{y_1} \int e_{y_1} dt) \), and for the lateral iPI controller \(u_2 = \frac{1}{\alpha_2} (F_2 + \dot{y}_2^d - K_P^{y_2} e_{y_2} - K_I^{y_2} \int e_{y_2} dt) \), where \(e_{y_1} = y_1^d - y_1 = V_x^d - V_x \) and \(e_{y_2} = y_2^d - y_2 \). The choice of the parameters \(\alpha_1, \alpha_2, K_P^{y_1}, K_I^{y_1}, K_P^{y_2} \) and \(K_I^{y_2} \) is straightforward. Equations (22) and (23) yield respectively the estimation of \(F_1 \) and \(F_2 \).

3.4 Model-free vehicle control and natural outputs

In order to be totally parameter-independent, consider the following natural outputs, which can be obtained through direct measurements:

\[\begin{cases}
\dot{y}_1 = \text{longitudinal speed} \\
\dot{y}_2 = \text{lateral deviation}
\end{cases} \]

The first output remains the measured (or well estimated) longitudinal velocity, and the second one is now given by the lateral deviation which is also supposed to be accessible from on line measurements. The two control variables are the same as in Section 3.3. Newton's second law then yields the two ultra-local models:

longitudinal motion:

\[\dot{y}_1 = F_1 + \alpha_1 u_1 \]

lateral motion:

\[\dot{y}_2 = F_2 + \alpha_2 u_2 \]

Note the following properties:

- Equations (24)-(25) are “decoupled,”
- Equation (25) is of order 2 with respect to the derivative of \(y_2 \). This is the second example of such a property (see Section 3.2.1).
4. SIMULATION RESULTS

The simulations are carried out under MATLAB using a nonlinear 10DoF model of an instrumented Peugeot 406 car as in Menhour et al. [2013]. The reference signals shown by grey curves in Figures 4, 5 and 6 are experimental recorded data. Figures 4, 5 and 6 demonstrate that our new model-free setting with natural outputs gives quite satisfactory results. They are much better than those resulting from model-free control associated to the flat outputs. It should be pointed out that the test track which has been considered implies strong lateral and longitudinal dynamical loads. This track involves different types of curvatures linked to straight parts, and all these configurations represent a large set of driving situations. Figure 4 shows that model-free control with natural outputs yields accurate enough behavior for autonomous driving applications. According to the results displayed on Figure 5, the lateral error is less than 2 cm. Concerning the yaw angle output, the resulting error is limited to 0.51 deg. Note that the lateral errors associated to the flatness-based control and the model-free control with the flat outputs are higher than 10 cm. The resulting yaw angle errors are higher than 10 deg for flatness-based control, and 1 deg for model-free control with flat outputs. Figure 6 shows that the control signals computed from the model-free control with natural outputs are closed to the actual ones provided by the driver along the track.

5. CONCLUSION

The path followed by the authors for the control of autonomous wheeled cars leads to a design which is both easy to implement and to grasp. The viewpoint, which we now advocate, has been successfully tested under “normal” driving conditions through an advanced simulation platform environment (see Menhour et al. [2015] for more details). However, in order to be fully convincing, other tests have to be handled on a real embedded vehicle under severe driving conditions. This will be reported in forthcoming publications.

REFERENCES

J. Ackermann, J. Guldner, W. Sienel, R. Steinhauser, V. I. Utkin, Linear and nonlinear controller design for robust automatic steering, *IEEE Trans. Contr. Syst. Techno.*, vol. 3, 1995, pp. 112-143.

B. d’Andréa-Novel, M. Ellouze, Tracking with stability for a vehicle braking in a corner, *40th IEEE Conf. Decision Contr.*, Orlando, 2001.

S. Antonov, A. Fehn, A. Kugi, A new flatness-based control of lateral vehicle dynamics, *Vehic. Syst. Dynam.*, vol. 46, 2008, pp. 789-801.

K.J. Åström, T. Hägglund, *Advanced PID Control*, Instrument Soc. Amer., 2006.

K.J. Åström, R.M. Murray, *Feedback Systems: An Introduction for Scientists and Engineers*. Princeton University Press, 2008.

R. Attia, R. Orjuela, M. Basset, Combined longitudinal and lateral control for automated vehicle guidance, *Vehic. Syst. Dynam.*, vol. 52, 2014, pp. 261-279.

O. Bara, M. Fliesz, C. Join, J. Day, S.M. Djouadi, Model-free immune therapy: A control approach to acute inflammation, *Europ. Contr. Conf.*, Aalborg, 2016. Preprint available at http://hal.archives-ouvertes.fr/
S. Choi, B. d’Andréa-Novel, M. Fliess, H. Mounier, J. Villagra, Model-free control of automotive engine and brake for Stop-and-Go scenarios, Europ. Contr. Conf., Budapest, 2009. Preprint available at http://hal.archives-ouvertes.fr/inria-00395393/en/

V. Cerone, M. Milanese, D. Regruto, Combined automatic lane-keeping and driver’s steering through a 2-DOF control strategy, IEEE Trans. Contr. Syst. Techno., vol. 17, 2009, pp. 135-142.

H. Chou, B. d’Andréa-Novel, Global vehicle control using differential braking torques and active suspension forces, Vehicle Syst. Dynam., vol. 43, 2005, pp. 261-284.

M. Fliess, C. Join, Model-free control, Int. J. Contr., vol. 86, 2013, pp. 2228-2252.

M. Fliess, C. Join, H. Sira-Ramírez Non-linear estimation is easy, Int. J. Model. Identif. Contr., vol. 4, 2008, pp. 12-27. Preprint available at http://hal.archives-ouvertes.fr/inria-00158855/en/

M. Fliess, J. Lévine, P. Martin, P. Rouchon, Flatness and defect of nonlinear systems: introductory theory and examples, Int. J. Contr., vol. 61, 1995, pp. 1327-1361.

M. Fliess, J. Lévine, P. Martin, P. Rouchon, A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems, IEEE Trans. Automat. Control, vol. 44, 1999, pp. 922-937.

M. Fliess, H. Sira-Ramírez An algebraic framework for linear identification, ESAIM Contr. Optimiz. Calc. Variat., vol. 9, 151-168, 2003.

M. Fliess, H. Sira-Ramírez, Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques, H. Garnier L. Wang (Eds): Identification of Continuous-time Models from Sampled Data, Springer, pp. 362-391, 2008. Preprint available at http://hal.archives-ouvertes.fr/inria-00114958/en/

S. Formentin, P. de Filippi, M. Corno, M. Tanelli, S.M. Savaresi, Data-driven design of braking control systems, IEEE Trans. Contr. Techno., vol. 21, 186-193, 2013.

S. Fuchshumer, K. Schlacher, T. Rittenschober, Nonlinear vehicle dynamics control - A flatness based approach, 41st IEEE Conf. Decision Contr. & Europ. Contr. Conf., Seville, 2005.

F.A. García Collado, B. d’Andréa-Novel, M. Fliess, H. Mounier, Analyse fréquentielle des dérivateurs algébriques, XXIF Coll. GRETSI, Dijon, 2009. Preprint available at http://hal.archives-ouvertes.fr/inria-00394972/en/

C. Join, F. Chazel, M. Fliess, “Intelligent” controllers on cheap and small programmable devices, 2nd Int. Conf. Control Fault-Tolerant Systems, Nice, 2013. Preprint available at http://hal.archives-ouvertes.fr/hal-00845796/en/

F. Lafont, J.-F. Balmat, N. Pessel, M. Fliess, A model-free control strategy for an experimental greenhouse with an application to fault accommodation, Comput. Electron. Agricult., vol. 110, 2015, 139-149.

J. Lévine, Analysis and Control of Nonlinear Systems – A Flatness-based Approach, Springer, 2009.

R. Marino, F. Cinili, Input-output decoupling control by measurement feedback in four wheel-steering-vehicles IEEE Trans. Control Syst. Techno., vol. 17, 2009, pp. 1163-1172.

J. Martinez, C. Canudas-de-Wit, A safe longitudinal control for adaptive cruise control and stop-and-go scenarios, IEEE Trans. Control Syst. Techno., vol. 15, 2007, pp. 246-258.

M. Mboup, C. Join, M. Fliess, Numerical differentiation with annihilators in noisy environment, Numer. Algor., vol. 50, 2009, pp. 439-467.

L. Menhour, B. d’Andréa-Novels, M. Fliess, H. Mounier, Multivariable decoupled longitudinal and lateral vehicle control: A model-free design, IEEE Conf. Decision Control, Florence, 2013. Preprint available at http://hal.archives-ouvertes.fr/hal-00859444/en/

L. Menhour, B. d’Andréa-Novels, M. Fliess, H. Mounier, Coupled nonlinear vehicle control: Flatness-based setting with algebraic estimation techniques, Control Enign. Pract., vol. 22, 2014, pp. 135-146.

L. Menhour, B. d’Andréa-Novels, M. Fliess, H. Mounier, D. Gruyer, A new model-free design for vehicle control and its validation through an advanced simulation platform, 14th Europ Control Conf., Linz, 2015. Preprint available at https://hal.archives-ouvertes.fr/hal-01134599/en/

J. de Miras, C. Join, M. Fliess, S. Riachy, S. Bonnet, Active magnetic bearing: A new step for model-free control, 52nd IEEE Conf. Decision Contr., Florence, 2013. Preprint available at http://hal.archives-ouvertes.fr/hal-00857649/en/

L. Nouvelière, Commandes robustes appliquées au contrôle assisté d’un véhicule à basse vitesse, Thèse, Université Versailles – Saint-Quentin, 2002.

H. B. Pacejkia, Tire and Vehicle Dynamics, Elsevier, 2005.

C. Poussot-Vassal, O. Sename, L. Dugard, P. Gaspar, Z. Szaboc, J. Bokor, Attitude and handling improvements through gain-scheduled suspensions and brakes control, Contr. Enign. Pract., vol. 19, 2011, pp. 252-263.

R. Rajamani, H.-S. Tan, B.-K. Law, W.-B. Zhang, Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons, IEEE Trans. Contr. Techno., vol. 8, 2000, pp. 695-708.

H. Sira-Ramírez, S. Agrawal, Differentially Flat Systems, Marcel Dekker, 2004.

H. Sira-Ramírez, C. García-Rodríguez, J. Cortés-Romero, A. Luvirono-Juárez, Algebraic Identification and Estimation Methods in Feedback Control Systems, Wiley, 2014.

J. Villagra, B. d’Andréa-Novel, S. Choi, M. Fliess, H. Mounier, Robust stop-and-go control strategy: an algebraic approach for non-linear estimation and control, Int. J. Vehicle Auton. Syst., vol. 7, 2009, pp.270-291. Preprint available at http://hal.archives-ouvertes.fr/inria-00419445/en/

J. Villagra, B. d’Andréa-Novel, M. Fliess, H. Mounier, A diagnosis-based approach for tire-road forces and maximum friction estimation, Control Enign. Practice, vol. 19, 2011, pp. 174-184.

J. Villagra, D. Herrero-Pérez, A comparison of control techniques for robust docking maneuvers for an AVG, IEEE Trans. Control Systems Techno., 20, 2012, 1116-1123.

K. Yosida, Operational Calculus (translated from the Japanese), Springer, 1984.

S. Zheng, Ho Tang, Z. Han, Y. Zhang, Controller design for vehicle stability enhancement, Control Enign. Practice, vol. 14, 2006, pp. 1413-1421.