The Influence of Operating Parameters on Membrane Performance in Used Lube Oil Processing

D Ariono¹, S Widodo¹,², K Khoiruddin¹, A K Wardani¹, I G Wenten¹, *
¹Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia.
²PPPTMGB LEMIGAS, Balitbang KESDM, Jl. Ciledug Raya, Kav. 109, Cipulir, Kebayoran Lama, Jakarta, 12230, Indonesia.

*Corresponding author: igw@che.itb.ac.id

Abstract. Membrane process is an attractive technology for used lube oil treatment due to the advantages, i.e. relatively low energy consumption, intensive process, higher separation efficiency, and the improvement of final product quality. The performances of membrane processes depend on several factors such as feed characteristic, membrane properties, and operating parameter. In this work, the influences of solute concentration and applied pressure on the performance of hollow fiber polypropylene membrane during used lube oil filtration are investigated. The osmotic pressure model is used to simulate the influence of operating parameter on membrane performances and it results in good agreement with experimental data. By using the osmotic pressure model, the intrinsic properties of the membrane, namely membrane resistance \(R_m\) and mass transfer coefficient \(k\) are 5x10⁶ atm.s/m and 5x10⁻⁹ m/s, respectively. Generally, the flux increases with applied pressure and decreases with solute concentration. However, when the osmotic pressure builds up, the flux decreases gradually reaching a limiting value. At this condition, increasing an applied pressure gives an insignificant effect and the flux is in the limiting flux region. When the permeate flux reaches a limiting flux, the flux will be 5% of or less than the pure solvent permeability.

1. Introduction
Membrane-based process is an attractive technology because of their features such as lower energy consumption, more intensive process, higher separation efficiency, and higher product quality [1-5]. With those advantages, membrane has been widely used in various applications. Membrane applications include food processing and biotechnology, chemical processing [6-10], energy conversion [11], gas separation [12, 13], water treatment [14-22], and wastewater treatment [23-26]. In addition, membrane can also be used to treat and recover valuable component such as base oils from used lube oils, which will result in a waste minimization and an environmental protection.

Generally, used lube oils contain sludge, soot, carbonaceous particles, unburned fuel, tar, polycyclic aromatic hydrocarbons (PAHs), chlorinated paraffin and poly-chlorinated biphenyls (PCBs), metal-additives and wear metal of engines parts [27-29]. Several membranes were used and studied for used oils processing, e.g. polyethersulphone (PES), polyvinylidenefluoride (PVDF), polyacrylonitrile (PAN) [27], polyimide [30], and ceramic membranes [31-34]. Results showed that the membrane exhibited a better removal of ash content (55–75%) than the conventional method [35].

The performances of membrane processes depend on various factors including the characteristic of feed, the properties of the membrane, and the operating parameters [36]. For example, in the used oil
filtration, the solute concentration significantly affect the performance of a membrane [37]. In this work, the influence of solute concentration and applied pressure on the performance of hollow fiber polypropylene membrane during used lube oil filtration is investigated. A simulation is conducted by the osmotic pressure model to observe the influence of those operating parameter on membrane performances. The model is evaluated by comparing with the experimental data.

2. Material and methods
Used lube oil was obtained from automotive crankcase engine in certain concentrations of impurities. The hollow-fibre polypropylene membrane module was supplied by GDP Filter, and the schematic and experimental set-up of membrane apparatus are shown in Figure 1. The samples of used oils with various concentrations of impurities were placed in a feed tank and was subjected to screen filter prior to the membrane module for minimizing module blocking from relatively bigger particles. The flux was calculated using equation 1.

\[J = \frac{Q}{A} \]

(1)

where, \(J \) is the flux of permeate (L.m\(^{-2}\).h\(^{-1}\)), \(Q \) is volumetric rate of permeate (L), and \(A \) is the membrane surface area (m\(^2\)).

The rejection of impurities was analyzed based on the concentration of the impurities in the feed and permeate, and was calculated using equation 2.

\[R_i = \frac{C_{if} - C_{ip}}{C_{if}} \times 100\% \]

(2)

where, \(R_i \) is the rejection of component \(i \) (%), \(C_{if} \) is concentration of component \(i \) in feed stream (wt%), and \(C_{ip} \) is the concentration of component \(i \) in permeate (%-wt.).

![Figure 1. Experimental set-up.](image)

3. Result and Discussion
3.1. The effect of operating parameter on membrane performance.

Generally, flux tends to increase with increasing applied pressure and decreases with increasing solute concentration. Figure 2 shows the flux and rejection as a function of applied pressure and feed concentration. The impurities concentration highly affects the viscosity of used lube oil as described in the viscosity of permeate which was lower after membrane separation due to the removal of sludge,
carbonaceous particles, etc. [27]. Lai and Smith [33] reported that the permeate flux increased with the decrease of asphaltene contents in heavy oil filtration. The dependences of flux on impurities contents were related to the changes of viscosity [38].

A higher concentration of impurities leads to a higher tendency of concentration polarization and fouling. The concentration polarization and gel formation on membrane surface result in the additional mass transfer resistance of membrane filtration leading to a lower flux. In addition, this deposition of impurities onto the membrane surfaces results in a higher osmotic pressure, gel layer formation, solute adsorption, and pore blocking [36, 39].

![Figure 2](image)

Figure 2. The Influence of applied pressure (a) and feed concentration (b) to membrane performance.

The flux increased with the applied pressure until reach the maximum value (limiting flux), where the increasing pressure will not effectively increase the flux [36]. The value of limiting flux highly depends on the solute concentration in the feed [40]. However, according to the experimental results, the fluxes are not significantly affected by concentration in the range of this study. This may be due to the narrow concentration range used.

3.2. Simulation of the membrane performance.

The in fluences of feed concentration and applied pressure were simulated using osmotic pressure model [40]. In the osmotic pressure model, concentration of impurities in membrane wall \(c_m \) is higher than the bulk \(c_b \), therefore the osmotic pressure of feed influences the flux of permeate, as described in equation 3.

\[
J = \frac{\Delta P - \Delta \pi}{R_m}
\]

where, \(\Delta P \) is hydraulic pressure difference, \(\Delta \pi \) is the osmotic pressure difference, and \(R_m \) is the membrane resistance. In a 100% rejection of solute, the concentration of solute on membrane surface \(c_m \) determines the difference of osmotic pressure. The difference of osmotic pressure shows non-linear correlation like pure solvent, as explained in equation 4.

\[
\Delta \pi = a \cdot c^n
\]

where \(a \) constant \(>1 \), \(n = 2 \) in dilute solution [41].

The flux of membrane as a function of Hydraulic pressure, osmotic pressure, feed concentration, and membrane resistance is expressed in equation 5.

\[
J = \frac{\Delta P - a \cdot c_b^n \cdot \exp\left(\frac{nL}{K}\right)}{R_m}
\]
Figure 3. The performance of filtration. (a) the correlation of flux \(J \) and applied pressure (TMP) at various feed concentration \(c_b \), 0.05 – 0.3, \(R_m \), 5x10^6 atm.s/m, \(n : 2 \), \(a \): 100 atm, and \(k : 5 \times 10^{-9} \) m/s; (b) the plot of experimental data with the model.

In this work, the characteristic of flux at various operating condition (concentration, applied pressure) was simulated. The intrinsic parameters, such as membrane resistance \((R_m) \), coefficient activity \((a) \), mass transfer coefficient \((k) \), and the exponent value \((n) \) were derived using experimental data. The membrane resistance was defined as the resistance value of membrane, which was derived from measurement of steady-state flux of pure solvents through the membrane at various values of trans-membrane pressure [42]. An activity coefficient \((a) \) is a factor used in thermodynamics to account for deviations from ideal behaviour in a mixture of chemical substances [43]. In engineering, the mass transfer coefficient is a diffusion rate constant that relates the mass transfer rate, mass transfer area, and concentration change as driving force [44]. The exponent value \((n) \) represents the dilution of macromolecule in solution, where in semi-dilute macromolecular solutions it will have a
value of about two [41], while in more concentrated solutions the exponent is even larger than two [45]. Simulation of membrane filtration was conducted using differentiation of equation 6.

\[
d\frac{J}{dP} = \left[R_m + a \frac{c_b}{k} \exp \left(\frac{nJ}{k} \right) \right]^{-1}
\] \hspace{1cm} (6)

The results show that the intrinsic properties of membrane filtration as stated in weight fraction value, \(c_b\), result in the parameter of membrane resistance, \(R_m = 5 \times 10^6\ \text{atm.s/m}\), the exponent value of solution, \(n = 2\); \(a = 100\ \text{atm}\); mass transfer coefficient, \(k = 5 \times 10^9\ \text{m/s}\). According to those values, the simulation of membrane process to investigate the effect of concentration and applied pressure was conducted.

Figure 3 shows the influence of concentration and applied pressure to the performance of membrane filtration. The increasing of feed concentration decreases the flux of permeate, while the flux increases with applied pressure (Figure 3.a). The limiting flux is obtained at the applied pressure higher than 2.5 atm and varies with the feed concentration. The osmotic pressure builds up gradually reaching a limiting flux. At this condition, the increase in applied pressure becomes less effective or insignificant and one can define more or less arbitrarily a “limiting flux region”. When the permeate flux reaches a limiting flux, the flux will be 5% of or less than the pure solvent permeability. The simulation shows a relatively good agreement with experimental data as illustrated in Figure 3.b in the range of applied pressure of 2.5 – 4.5 atm and concentration of 0.16 – 0.2 weight fraction.

4. Conclusion
In this work, the influences of solute concentration and applied pressure on the performance of hollow fiber polypropylene membrane during used lube oil filtration are investigated. Generally, the flux increases with applied pressure and decreases with concentration. By using the osmotic pressure model the intrinsic properties of the membrane, i.e. membrane resistance \((R_m)\) and mass transfer coefficient \((k)\) are \(5 \times 10^6\ \text{atm.s/m}\) and \(5 \times 10^9\ \text{m/s}\), respectively. The osmotic pressure model used to simulate the influence of operating parameter on membrane performances results in good agreement with experimental data.

5. References

[1] Purwasasmita M, Nabu E B P, Khoiruddin and Wenten I G 2015 Non dispersive chemical deacidification of crude palm oil in hollow fiber membrane contactor Journal of Engineering and Technological Sciences 47 426-46

[2] Purwasasmita M, Juwono P B, Karlina A M, Khoiruddin K and Wenten I G 2014 Non-dissolved solids removal during palm kernel oil ultrafiltration Reaktor 14 284-90

[3] Yang X, Wang R, Fane A G, Tang C Y and Wenten I G 2013 Membrane module design and dynamic shear-induced techniques to enhance liquid separation by hollow fiber modules: A review Desalination and Water Treatment 51 3604-27

[4] Mynin V, Smirnova E, Katsereva O, Komyagin E, Terpugov G and Smirnov V 2004 Treatment and regeneration of used lube oils with inorganic membranes Chemistry and technology of fuels and oils 40 345-50

[5] Gourgouillon D, Schrive L, Sarrade S and Rios G M 2000 An environmentally friendly process for the regeneration of used oils Environmental science & technology 34 3469-73

[6] Ariono D, Khoiruddin, Subagjo and Wenten I G 2017 Heterogeneous structure and its effect on properties and electrochemical behavior of ion-exchange membrane Materials Research Express 4 024006

[7] Khoiruddin and Wenten I G 2016 Investigation of electrochemical and morphological properties of mixed matrix polysulfone-silica anion exchange membrane Journal of Engineering and Technological Sciences 48 1-11

[8] Xie Z, Duong T, Hoang M, Nguyen C and Bolto B 2009 Ammonia removal by sweep gas membrane distillation Water research 43 1693-9
[9] Ding Z, Liu L, Li Z, Ma R and Yang Z 2006 Experimental study of ammonia removal from water by membrane distillation (MD): The comparison of three configurations J. Membr. Sci. 286 93-103
[10] Makertietharta I G B N, Dharmawijaya P T, Zunita M and Wenten I G 2017 Rare earth element enrichment using membrane based solvent extraction AIP Conference Proceedings 1805 070001
[11] Khoiruddin, Aryanti P T P, Hakim A N and Wenten I G 2017 The role of ion-exchange membrane in energy conversion AIP Conference Proceedings 1840 090006
[12] Himma N F and Wenten I G 2017 Surface engineering of polymer membrane for air separation AIP Conference Proceedings 1840 090005
[13] Yeon S-H, Lee K-S, Sea B, Park Y-I and Lee K-H 2005 Application of pilot-scale membrane contactor hybrid system for removal of carbon dioxide from flue gas J. Membr. Sci. 257 156-60
[14] Aryanti P, Joscarita S R, Wardani A K, Subagjo S, Ariono D and Wenten I G 2016 The influence of PEG400 and acetone on polysulfone membrane morphology and fouling behaviour J. Eng. Tech. Sci. 48 135-49
[15] Aryanti P T P, Yustiana R, Purnama R E D and Wenten I G 2015 Performance and characterization of PEG400 modified PVC ultrafiltration membrane Membrane Water Treatment 6 379-92
[16] Camacho L M, Dumée L, Zhang J, Li J-d, Duke M, Gomez J and Gray S 2013 Advances in membrane distillation for water desalination and purification applications Water 5 94-196
[17] Arar Ö, Yüksel Ü, Kabay N and Yüksel M 2013 Application of electrodeionization (EDI) for removal of boron and silica from reverse osmosis (RO) permeate of geothermal water Desalination 310 25-33
[18] Wood J, Gifford J, Arba J and Shaw M 2010 Production of ultrapure water by continuous electrodeionization Desalination 250 973-6
[19] Khoiruddin K, Ariono D, Subagjo and Wenten I G 2017 Surface modification of ion-exchange membranes: Methods, characteristics, and performance J. Appl. Polym. Sci. 134 45540
[20] Wenten I and Khoiruddin 2016 Recent developments in heterogeneous ion-exchange membrane: preparation, modification, characterization and performance evaluation J. Eng. Tech. Sci. 11 916-34
[21] Wardani A K, Hakim A N, Khoiruddin and Wenten I G 2017 Combined ultrafiltration-electrodeionization technique for production of high purity water Water Science and Technology 75 2891-9
[22] Aryanti P, Sianipar M, Zunita M and Wenten I 2017 Modified membrane with antibacterial properties Membrane Water Treatment 8 463-81
[23] Ariono D, Purwasasmita M and Wenten I G 2016 Brine effluents: Characteristics, environmental impacts, and their handling J. Eng. Tech. Sci. 48 367-87
[24] Adham S, Hussain A, Matar J M, Dores R and Janson A 2013 Application of membrane distillation for desalting brines from thermal desalination plants Desalination 314 101-8
[25] Wenten I G, Julian H and Panjaitan N T 2012 Ozonation through ceramic membrane contactor for iodide oxidation during iodine recovery from brine water Desalination 306 29-34
[26] Dermentzis K 2010 Removal of nickel from electroplating rinse waters using electrostatic shielding electrodeposition/ electrodeionization J. Hazardous Materials 173 647-52
[27] Cao Y, Yan F, Li J, Liang X and He B 2009 Used lubricating oil recycling using a membrane filtration: Analysis of efficiency, structural and composing Desalination and Water Treatment 11 73-80
[28] Merai Yash P 2015 Re-refining of used lubricating oil International Journal of Scientific & Engineering Research 6 329-32
[29] Srivastava S 2014 Rerefining and Recycling of Used Lubricating Oil - Developments in Lubricant Technology (John Wiley & Sons, Inc.) pp 299-307
[30] White L S and Nitsch A R 2000 Solvent recovery from lube oil filtrates with a polyimide membrane *Journal of Membrane Science* **179** 267-74

[31] Wenten J I G 2002 Recent development in membrane science and its industrial applications *J Sci Technol Membrane Sci Technol* **24** 1010-24

[32] Dahlan M H, Setiawan A and Rosyada A 2014 Pemisahan oli bekas dengan menggunakan kolom filtrasi dan membran keramik berbahan baku zeolit dan lempung *Jurnal Teknik Kimia* **20** 38-45

[33] Lai W-C and Smith K 2001 Heavy oil microfiltration using ceramic monolith membranes *Fuel* **80** 1121-30

[34] Psch C, Wendler B, Goers B, Wozny G and Ruschel B 2004 Waste oil conditioning via microfiltration with ceramic membranes in cross flow *Journal of membrane science* **245** 113-21

[35] Siswanti 2010 Pengaruh penambahan aditif proses daur ulang minyak pelumas bekas terhadap sifat-sifat fisik *Eksergi* **10** 27-31

[36] Baker R W 2012 *Membrane Technology and Applications* (John Wiley & Sons, Inc.)

[37] Mohammadi T and Safavi M A 2009 Application of Taguchi method in optimization of desalination by vacuum membrane distillation *Desalination* **249** 83-9

[38] Duong A, Chattopadhyaya G, Kwok W Y and Smith K J 1997 An experimental study of heavy oil ultrafiltration using ceramic membranes *Fuel* **76** 821-8

[39] Mulder J 2012 *Basic Principles of Membrane Technology* (Springer Science & Business Media)

[40] Wijmans J, Nakao S and Smolders C 1984 Flux limitation in ultrafiltration: osmotic pressure model and gel layer model *Journal of membrane science* **20** 115-24

[41] De Gennes P-G 1979 *Scaling Concepts in Polymer Physics* (Cornell university press)

[42] Chisti Y 2007 Principles of membrane separation processes *Bioseparation and bioprocessing: a handbook, 2nd ed.* (Wiley-VCH, New York)

[43] McNaught A D and McNaught A D 1997 *Compendium of Chemical Terminology* vol 1669 (Blackwell Science Oxford)

[44] Seader J D, Henley E J and Roper D K 1998 *Separation Process Principles* (John Wiley & Sons, Inc.)

[45] Flory P J 1953 *Principles of Polymer Chemistry, 2nd ed.* (Cornell University Press)