Molecular characterization and three-dimensional structures of avian H8, H11, H14, H15 and swine H4 influenza virus hemagglutinins

Hua Yang, Paul J. Carney, Jessie C. Chang, James Stevens *

Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA

ARTICLE INFO

Keywords: Microbiology, Virology, Viral protein, Proteins, Biomolecules, Glycobiology, Hemagglutinin, Influenza virus, Avian, Swine, Receptor binding, A(H8N4), A(H11N9), A(H14N5), A(H15N9), A(H4N6)

ABSTRACT

Of the eighteen hemagglutinin (HA) subtypes (H1–H18) that have been identified in bats and aquatic birds, many HA subtypes have been structurally characterized. However, several subtypes (H8, H11 and H12) still require characterization. To better understand all of these HA subtypes at the molecular level, HA structures from an A(H4N6) (A/swine/Missouri/A01727926/2015), an A(H8N4) (A/turkey/Ontario/6118/1968), an A(H11N9) (A/duck/Memphis/546/1974), an A(H14N5) A/mallard/Gurjev/263/1982, and an A(H15N9) (A/wedge-tailed shearwater/Western Australia/2576/1979 were determined by X-ray crystallography at 2.2Å, 2.3Å, 2.8Å, 3.0Å and 2.5Å resolution, respectively. The interactions between these viruses and host receptors were studied utilizing glycan-binding analyses with their recombinant HA. The data show that all avian HAs retain their strict binding preference to avian receptors, whereas swine H4 has a weak human receptor binding. The molecular characterization and structural analyses of the HA from these zoonotic influenza viruses not only provide a deeper appreciation and understanding of the structure of all HA subtypes, but also re-iterate why continuous global surveillance is needed.

1. Introduction

Influenza is an acute respiratory illness, caused by influenza A, B, C and D viruses (Hause et al., 2014; Palese and Shaw, 2007). While all of these viruses contain segmented, linear, negative-sense, single-stranded RNA genomes (Fields et al., 2007), they differ in the number of RNA segments, with eight for influenza A and B and seven for influenza C and D. Influenza A viruses (IAVs) are the most prevalent pathogen for both humans and animals (Cox and Subbarao, 2000). Based on the influenza virus’ antigenic surface glycoproteins, sixteen hemagglutinin (HA) (H1–H16) and nine neuraminidase (NA) (N1–N9) circulate in aquatic birds (Palese and Shaw, 2007), and two subtypes, A(H17N10) and A(H18N11) have been identified from bats (Tong et al., 2012, 2013). In birds alone, there could be as many as 144 possible HA/NA combinations. However, many HA/NA combinations have yet to be detected (Wille et al., 2018). While H3, H4 and H6 avian influenza virus (AIV) subtypes are common, H8–H12, H14 and H15 are rarely detected in wild aquatic birds, while H13 and H16 viruses have been isolated mainly from gulls (Wille et al., 2011).

HA and NA both play an important role during the virus life cycle. Influenza virus infection is initiated by HA binding to sialic acid receptors and mediates virus entry and fusion (Skehel and Wiley, 2000), while NA cleaves sialic acid from the infected host cell, allowing release of progeny viruses. The HAs of human influenza viruses preferentially bind to glycan receptors with terminal α2-6 linked sialic acid, whereas the HAs of avian IAVs bind to receptors with α2-3 linked sialic acid (Matrosovich et al., 2000; Rogers et al., 1985). Although interspecies transmission of influenza viruses between avian and human hosts is rare, subtypes such as A(H5N1), A(H5N6), A(H6N1), A(H7N2), A(H7N3), A(H7N4), A(H7N7), A(H7N9), A(H9N2), A(H10N7), A(H10N8) have crossed the species barrier and caused sporadic human infections and death (Chen et al., 2014; Fouchier et al., 2004; Parry, 2013; Peiris et al., 1999; Shi et al., 2013; To et al., 2014; WHO, 2018; Wong and Yuen, 2006; Yuen et al., 1998).

* Corresponding author.
E-mail address: fwb4@cdc.gov (J. Stevens).

https://doi.org/10.1016/j.heliyon.2020.e04068
Received 19 February 2020; Received in revised form 25 March 2020; Accepted 21 May 2020
2405-8440/Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Previous studies identified a number of key receptor binding site (RBS) mutations of HA, responsible for switching avian/human receptor specificity in H1, H2 and H3 subtypes. In H1 subtypes, a Glu190Asp and Gly225Asp double mutation renders the HA capable of binding human α2-6 receptors (Stevens et al., 2006). For H2 and H3, two different mutations, Gln226Leu and Gly228Ser correlate with a shift to human receptor specificity (Connor et al., 1994; Rogers et al., 1983).

Phylogenetic analysis reveals that all HA subtypes can be separated into two groups, and each group further divided into subgroups (Figure 1) (Gamblin and Skehel, 2010).

Indeed, almost four decades have elapsed since the first crystal structure of influenza virus HA was determined and it facilitated an understanding of the structural identification of the major antigenic sites and the effects of natural variation (Wilson et al., 1981). Among all HA subtypes, H8, H11 and H12 HAs have yet to be structurally characterized. In this study, we focus on molecular characterization of HAs from an A(H8N4) (A/turkey/Ontario/6118/1968), an A(H11N9) (A/duck/Memphis/263/1982, an A(H15N9) (A/wedge-tailed shearwater/Western Australia/2576/1979, and an A(H4N6) A/swine/Missouri/A01727926/2015) (Table 1).

2. Results

2.1. Group-1 avH8 and avH11 AIV HAs

Many subtypes of HAs have been structurally determined previously, but H8 and H11 HAs are not represented in the Protein Data Bank (PDB). Both H8 and H11 are group-1 HAs (Figure 1), but they reside in different subgroups. H8 HA groups with H9 and H12 HAs, while H11 HA groups with H13 and H16 HAs. We chose to study two AIVs by: an A(H8N4) (A/turkey/Ontario/6118/1968), an A(H11N9) (A/duck/Memphis/546/1974), an A(H14N5) A/mallard/Gurjev/263/1982, an A(H15N9) (A/wedge-tailed shearwater/Western Australia/2576/1979, and an A(H4N6) A/swine/Missouri/A01727926/2015) (Table 1).

In this study, we focus on molecular characterization of HAs from an influenza virus HA phylogenetic tree. The HAs can be divided into five subgroups, H8, H11 and H12 HAs belong to group-1 and group-2, which can both be subdivided into subgroups. The discussed structures H8 and H11 in group 1 are highlighted in blue, while H4, H14 and H15 in group 2, are highlighted in green. H12 HA, which is colored in red, is the only HA not in the Protein Data Bank (PDB).

2.2. Group-2 avH14 and avH15 AIV HAs

For group-2 viruses, we chose an A(H14N5) A/mallard/Gurjev/263/1982 HA, and an A(H15N9) A/wedge-tailed shearwater/Western Australia/2576/1979 HA to assess their structural and binding properties. H14 and H15 are two AIV subtypes with only 45 and 22 sequences deposited in the GISAID database. Crystal structures of an H14N6 virus (PDB ID: 3EYJ) and H15N9 (PDB ID: 5TG8) HAs have been published before (Russell et al., 2008; Txarum et al., 2017). The avH14 HA structure reported here was determined by X-ray crystallography to 3.0Å (Table 2), and it shows high similarity with other HAs, especially to its group-2 subgroup H3 HA with RMSD of 0.68Å (Table 3). Among seven predicted glycosylation sites (Asn5, Asn22, Asn46, Asn166, Asn226, Asn298 and Asn485), only Asn166 and Asn298 on HA1, and Asn154 on HA2 have interpreted density for the glycan (Figure 2B).

Figure 1. Influenza A virus HA phylogenetic tree. The HAs can be divided into group-1 and group-2, which can both be subdivided into subgroups. The discussed structures H8 and H11 in group 1 are highlighted in blue, while H4, H14 and H15 in group 2, are highlighted in green. H12 HA, which is colored in red, is the only HA not in the Protein Data Bank (PDB).
260-loop (Figure 2D). In addition, the avH15 HA 260-loop results in a wider HA head creating a larger exposed surface that was proposed as contributing to increased antigenic variation in H15 HAs (Tzarum et al., 2017).

2.3. Receptor binding site analysis

Three HA receptor binding sites (RBS) are present in the HA trimer and are located at the top of each monomer. Including the 5 HAs discussed here, three major structural elements form the RBS binding pocket in all current HAs: a 190-helix (residues 188 to 194 based on H3 numbering), a 220-loop (residues 221 to 228), and a 130-loop (residues 134 to 138). In addition, highly conserved residues (Tyr98, Trp153, His183, and Tyr195) are also present in the base of the pocket of all 5 HAs and have been shown to affect receptor binding (Figure 4). When using 190-helix to align the RBS, the four avHAs and swHA show the same conformation of RBS with only slight variations in the 220-loop and 130-loop.

Table 1. Recombinant HA proteins used in this study.

Strain (Subtype)	Accession Number	Abbreviation	
A/swine/Missouri/01A727926/2015 (H4N6)	EPI_ISL_213836	AMK09582	swH4
A/turkey/Ontario/6118/1968 (H8N4)	EPI_ISL_70124	ABB4519	avH8
A/duck/Memphis/546/1974 (H11N9)	EPI_ISL_69885	ABB4556	avH11
A/mallard/Gurjev/263/1982 (H14N5)	EPI_ISL_14744	GQ47868	avH14
A/wedge-tailed shearwater/Western Australia/2576/1979 (H15N9)	EPI ISL_8917	ABB88138	avH15
A/Switzerland/9715293/2013	–	–	
A/Vietnam/1203/2004	EPI ISL_361524	AAW80717	AvH5

Table 2. Crystallization, data collection and refinement statistics for the HA crystal structures.

Strain (Subtype)	Experimental	Data collection	Refinement												
swH4	Protein Conc. (mg/ml)	Crystallization conditions	Cryoprotectant	Beamline collected	P2₁	Cell dimensions (Å)	Resolution (Å)	Total reflections	Unique reflections	Rsym	Rpim	I/σ2	Completeness (%)	Redundancy	CC1/2
	14	0.1M Tris-HCL, pH8.5, 30% (w/v) PEG 1000	PEG None	APS, 22-ID	68.97, 240.01, 68.95	50 – 2.20 (2.26 – 2.20)	98.0 (99.7)	3.3 (3.4)	0.99 (0.74)	1 (1)	1 (0.99)	1 (1)			
avH8	13	0.05M Magnesium Chloride, 0.1M HEPES/NaOH pH7.5, 30% (w/v) PEG 500 MME	20% glycerol	APS, 22-ID	170.05, 98.09, 132.74	50 – 2.25 (2.33 – 2.25)	98.2 (96.8)	3.8 (3.3)	0.058 (0.31)	0.609 (0.37)	0.044 (0.26)	0.104 (0.47)	21.8 (1.8)		
avH11	15	0.1M MOPS, pH7.0, 18% (w/v) PEG 4000	20% glycerol	APS, 22-ID	80.12, 121.15, 217.73	50 – 2.8 (2.90 – 2.80)	93.1 (100)	8.1 (5.8)	0.085 (0.77)	0.12 (0.55)	0.116 (0.56)	0.069 (0.61)			
avH14	17	0.2M Sodium cacodylate trihydrate pH5.5, 20% (w/v) PEG 4000	20% glycerol	APS, 22-ID	174.67, 100.97, 236.08	50 – 3.0 (3.11 – 3.0)	99.9 (99.8)	3.8 (3.5)	0.047 (0.20)	0.249 (0.24)	0.228 (0.22)	1 (1)			
avH15	14	0.1M Sodium acetate trihydrate, pH5.0, 20% (v/v) PEG 4000	None	APS, 22-ID	108.67, 101.38, 163.27	50 – 2.5 (2.59 – 2.5)	99.9 (99.8)	3.8 (3.5)	0.99 (0.74)	1 (1)	1 (0.99)	1 (1)			

Strain (Subtype)	Protein Conc. (mg/ml)	Crystallization conditions	Cryoprotectant	Beamline collected	P2₁	Cell dimensions (Å)	Resolution (Å)	Total reflections	Unique reflections	Rsym	Rpim	I/σ2	Completeness (%)	Redundancy	CC1/2
swH4	14	0.1M Tris-HCL, pH8.5, 30% (w/v) PEG 1000	PEG None	APS, 22-ID	68.97, 240.01, 68.95	50 – 2.20 (2.26 – 2.20)	98.0 (99.7)	3.3 (3.4)	0.99 (0.74)	1 (1)	1 (0.99)	1 (1)			
avH8	13	0.05M Magnesium Chloride, 0.1M HEPES/NaOH pH7.5, 30% (w/v) PEG 500 MME	20% glycerol	APS, 22-ID	170.05, 98.09, 132.74	50 – 2.25 (2.33 – 2.25)	98.2 (96.8)	3.8 (3.3)	0.058 (0.31)	0.609 (0.37)	0.044 (0.26)	0.104 (0.47)	21.8 (1.8)		
avH11	15	0.1M MOPS, pH7.0, 18% (w/v) PEG 4000	20% glycerol	APS, 22-ID	80.12, 121.15, 217.73	50 – 2.8 (2.90 – 2.80)	93.1 (100)	8.1 (5.8)	0.085 (0.77)	0.12 (0.55)	0.116 (0.56)	0.069 (0.61)			
avH14	17	0.2M Sodium cacodylate trihydrate pH5.5, 20% (w/v) PEG 4000	20% glycerol	APS, 22-ID	174.67, 100.97, 236.08	50 – 3.0 (3.11 – 3.0)	99.9 (99.8)	3.8 (3.5)	0.047 (0.20)	0.249 (0.24)	0.228 (0.22)	1 (1)			
avH15	14	0.1M Sodium acetate trihydrate, pH5.0, 20% (v/v) PEG 4000	None	APS, 22-ID	108.67, 101.38, 163.27	50 – 2.5 (2.59 – 2.5)	99.9 (99.8)	3.8 (3.5)	0.99 (0.74)	1 (1)	1 (0.99)	1 (1)			

- Numbers in parentheses refer to the highest resolution shell.
- CC₁/₂ Pearson correlation coefficient between two random half data sets.
- Reference (Davis et al., 2007).

The RBS binding pocket in all current HAs: a 190-helix (residues 188 to 194 based on H3 numbering), a 220-loop (residues 221 to 228), and a 130-loop (residues 134 to 138). In addition, highly conserved residues (Try98, Trp153, His183, and Try195) are also present in the base of the pocket of all 5 HAs and have been shown to affect receptor binding (Figure 4). When using 190-helix to align the RBS, the four avHAs and swHA show the same conformation of RBS with only slight variations in the 220-loop and 130-loop.
2.4. Glycan binding analyses of avHAs

To improve our understanding of the interactions between these avian viruses and host receptors, glycan-binding studies of avH8, avH11, avH14 and avH15 recHAs were carried out using version 1 glycan microarrays. Results revealed a strict α_2-3 linked sialic acid binding for all four avian subtype HAs (Figure 5A–D). Only avH11 recHA revealed limited binding to one α_2-6 glycan (#54; Neu5Acα_2-6GalNAcβ_1-4GlcNAcβ) (Figure 5B).

2.5. Molecular characterization of swine influenza virus H4 HA

More than 2200 H4 HA sequences are available in the GISAID database and these sequenced H4 viruses have been found associated with all 9 NAs. There is also one documented example of a highly pathogenic A(H4N2) virus isolated from a quail in the U.S. (A/quail/California/D113023808/2012) (Wong et al., 2014). While distinct lineages of avian H4 viruses have been circulating globally in bird populations, at least since 1956 (Donis et al., 1989), only five sequences have been documented for the isolation of H4 influenza viruses from naturally infected pigs (Hu et al., 2012; Karasin et al., 2000; Su et al., 2012). In December 2015, an A(H4N6), A/swine/Missouri/A01729726/2015 (swH4), virus was isolated from pigs exhibiting respiratory symptoms on a farm in Missouri (Abente et al., 2017). Phylogenetic analysis revealed all the genes segments to be of avian origin. Recently an older Canadian swine H4N6 virus (A/swine/Ontario/01911-1/1999) was structurally characterized (Song et al., 2017), and structural based sequence alignment of the Canadian swH4 virus with the Missouri swH4 HA revealed seven amino acids differences. However, none of the amino acid differences are located in or near the RBS.

In this report, the structure of swH4 HA has been determined at 2.2 Å (Table 2). There are five predicted N-glycosylation sites, Asn2, Asn18, Asn162, and Asn294 on the HA1 and Asn154 on the HA2. Only two of these sites have interpretable electron density. Asn162 has interpreted density to build in six glycans and Asn294 has only one N-acetylglucosamine (GlcNAc) attached. A larger glycan was interpretable at Asn162 because this glycan makes contact with the main chain nitrogen of an adjacent chain (Trp219) within the same trimer and residues Gln122 and Asn168 in different trimers within the crystal. The overall structure of swH4 HA resembles other available HA structures (Figure 6A). With α-atoms superimposed, the RMSDs are shown in Table 3. The RMSD of the closest related avian H4N6 (A/duck/Czechoslovakia/1956; PDB ID: 5XL1) and swine H4N6 (A/swine/Ontario/01911-1/99; PDB ID: 5XL2) are 0.36 Å and 1.03 Å, respectively.

![Figure 2. The overall structure of HA monomer. A. The overall structure of group-1 avH8 monomer, with occupied glycosylation sites shown as sticks. B. The overall structure of group-1 avH11 monomer with occupied glycosylation sites shown as sticks. C. The overall structure of avH14 monomer with occupied glycosylation sites shown as sticks. D. The overall structure of avH15 monomer with occupied glycosylation sites shown as sticks.](image)

Table 3. Comparison of RMSD (Å) for HA monomers.

	avH8	avH11	avH14	avH15	swH4
H1_1RD8	1.23	1.26	1.69	1.90	1.85
H1pdm_3M6S	1.22	1.18	1.63	1.75	1.69
H2_2WRC	1.29	1.23	1.56	1.95	1.53
H3_4WE4	1.73	1.77	0.68	1.50	0.70
H5_2FK0	1.47	1.24	1.40	1.33	1.39
H6_4WST	1.31	1.20	1.63	1.90	1.63
H7_6D7C	1.43	1.83	1.18	0.86	1.09
H9_1JSF	1.28	1.30	1.77	1.73	1.77
H10_WXS	1.79	1.79	1.25	0.93	1.30
H13_4PQ	1.34	1.44	1.55	1.76	1.50
H16_4P23	1.43	1.55	1.66	1.61	1.67
H17_4778	1.34	1.57	1.32	1.26	1.37
H18_4K3X	1.25	1.34	1.74	1.80	1.67
Glycan microarray analysis of swH4 with version 1 microarrays, revealed a restricted binding to α2-6 glycans, in particular the biantennary α2-6 di-LacNAc sialoside (#44; Neu5Acα2-6Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manβ1-6]Manβ1-4GlcNAcβ1-4GlcNAcβ1-6-LNLN) (Figure 6B). To further look into this strict receptor specificity, we also analyzed the H4 recHA binding to a different glycan array containing α2-3 and α2-6 linear and branched glycans of different lengths and imprinted at different concentrations (version 2 microarrays). Results once again highlighted a specific, but weaker binding preference for α2-6 glycans compared to the huH3 control recHA, with no binding to the α2-3 glycans (Figure 7). The swH4 also bound better to biantennary α2-6 sialosides than the linear glycans on the array. In addition, binding was mainly detected on spots loaded with 100μM of glycan, the highest glycan concentration on the array, highlighting the weaker binding of this recHA when compared to the huH3 and avH5 controls (Figure 7).

3. Discussion

Hemagglutinin is the most important surface glycoprotein of influenza that enables the virus to bind to host cell receptors and gain entry into the host cell. The first three-dimensional structure of HA was published in 1981 by Wilson, Wiley and Skehel (Wilson et al., 1981). Since then, many subtypes of HA structures have been determined with only H8, H11 and H12 not yet reported in the PDB. HA is a trimer of identical subunits, each monomer consists of a globular head containing the RBS,

Figure 3. Superimpositions of all available HAs. A. The rotation of head domain is represented by the 190-helix in the RBS of each HA subtype. The long α helix of the HA2 was used to perform superimposition of different subtype HAs. B. The overlap of interhelix. The PDBs used in the alignment are: H1_1RD8, H1pdm_3M65, H2_2WRC, H3_4WE4, H5_2FK0, H6_4WST, H7_6D7C, H9_1JSD, H10_4WSX, avH11, H13-4KPQ, avH14, avH15, H16_4F23, H17_4I78, H18_4K3X.

Table 4. The head rotation among different subtype HAs.

Group-1 (comparing to H1pdm)	Group-2 (comparing to H3) *
H1	9.54
H2	7.07
H5	4.54
H6	5.54
H8	11.11
H9	13.01
H11	8.64
H13	5.97
H16	13.19
H17	14.83
H18	7.82
H4	6.07
H7	3.10
H10	0.93
H14	3.49
H15	4.65

* H1pdm vs H3 is 27.67°.
and a stalk domain including the HA1/HA2 cleavage site. All HA RBS are composed of three structural elements (a 190-helix, a 220-loop, and a 130-loop) in addition to four highly conserved residues (Tyr98, Trp153, His183, and Tyr195) that contribute to the overall architecture of the RBS. There are some group-specific structural features of different sub-type HAs, such as the extended 150-loop of H7, H10 and H15; interhelix loop variation etc., but all HAs maintain their ability to effectively bind to sialic acid receptors and mediate virus entry and fusion.

In this study, we report the first avH8 and avH11 HAs to be structurally characterized. The overall structure of these two subtypes HAs show high similarity with all other available HAs, especially the group-1 HAs. Rotation of the head domain does not seem to relate to any of the HA functions, such as receptor binding, and analysis of these rotations

Figure 5. Glycan microarray analyses of avHAs. A. avH8. B. avH11. C. H14. D. avH15. Colored bars distinguish glycans that contain avian-type α2-3 sialic acid (blue) and human-type α2-6 sialic acid (red). Error bars are standard deviations from six independent replicates on the array. Each of the numbered glycans’ structures are listed in Table 6.

Figure 6. A. The overall structure of swH4 monomer, with occupied glycosylation sites shown as sticks. B. The glycan microarray analysis of swHA. Colored bars distinguish glycans that contain avian-type α2-3 SA (blue), and human-type α2-6 SA (red).
revealed no distinct subgroup clustering (Table 4). Similarly, the long alpha helices and the interhelix loop of the HA2 is involved in virus fusion as large conformational changes of the helices and interhelix loop occur during re-organization of the HA2 to its fusion form. The structures of different subtype HAs reveal subgroup-specific features in this region. Here, we also report avH14 and avH15 HA structures and both HAs also clustered with their subgroup partner HAs with respect to their interhelix loop alignment (Figure 3B). Further studies will be needed to assess whether these loop variations impact on the HA fusion process. An earlier study on the H7, H10 and H15 subgroup suggested these viruses shared common features that appear to increase their virulence in humans (Qi et al., 2014). Based on the structures, this group of HAs all have the two amino acid insertion at 150-loop to make an extended loop over the RBS. Furthermore, the extra H15 HA 260-loop may contribute to the antigenic variation of this subtype HA (Figure 2D).

Glycan microarray technology is a very useful tool to study HA binding specificities. The results of avian recHAs used in this study show that all avHAs have strict avian-like receptor binding preferences. Swine are suggested to be a genetic mixing vessel due to the frequent co-infection and recombination of influenza viruses from various sources and lineages (Ma et al., 2008). Influenza infection of pigs is an important turning point in the evolution and ecology of IAVs due to the dual susceptibility of pigs to human and avian influenza viruses (Ma et al., 2008). We performed molecular characterization of the HA from the swH4 virus isolated from Missouri in December 2015. The overall structure of swH4 HA is still similar to other subtype HAs. However, interestingly, the RBS of swH4 HA has Leu223 and Ser225 constellation (Leu226 and Ser228 in H3 numbering), which are recognized as the key residues responsible for AIVs adaption to human influenza virus for H2 and H3 subtypes (Connor et al., 1994; Rogers et al., 1985). Among 2228 H4 sequences in GISAID, only 3 sequences possess the Leu223/Ser225 constellation, while 3 have the Glu223Ser225 constellation (Table 5). Glycan binding results reported here are in line with what was observed previously with studies on an older swine H4 virus, A/swine/Ontario/01911/1999, with the same Leu223/Ser225 constellation, although the assays employed here were different (Song et al., 2017).

The requirements for virus host switching are complicated and changing receptor binding specificity is not the only major barrier for adaptation of avian influenza viruses to humans. With swine as a possible intermediate host, the swH4 virus HA has the Leu223 and Ser225 constellation and thus the H4 virus has the potential to adapt further or reassort with human viruses in pigs.
5. Materials and methods

5.1. Recombinant HA cloning
cDNAs encoding the mature ectodomains of each HA (listed in Table 1) were synthesized as codon optimized constructs (Genscript Inc.). Genes were subcloned into the pAcGP67-B baculovirus transfer vector, in frame with an N-terminal baculovirus GP67 signal peptide, a C-terminal thrombin cleavage site, a T4 fibrin trimerization tag for generating functional trimers, and a His-Tag for purification (Stevens et al., 2004). Transfection was carried out utilizing baculovirus vector DNA and transfection reagents from AB Vector (San Diego, CA) using their suggested transfection protocol. Virus amplification was performed in SF9 insect cells.

5.2. HA expression and purification
Large scale protein expression was performed in High Five™ insect cells. Secreted soluble trimeric RecHA protein was recovered from the cell culture supernatant by tangential filtration through a 30kDa molecular weight cut-off membrane, metal affinity chromatography and gel filtration chromatography. For structural studies, trimeric RecHA proteins were subjected to trypsin digestion (1:1000 w/w ratio of trypsin:protein). For crystallization trials, HAs were concentrated to 13-17 mg/mL during buffer exchanging into 10 mM Tris-HCl, 50 mM NaCl, pH 8.0.

5.3. HA crystallisation

Either a Topaz™ Free Interface Diffusion (FID) Crystallizer system (Fluidigm Corporation, San Francisco, CA) or a Formulatrix NT8 (Formulatrix, Inc., Bedford, MA) were used to set up the initial crystallization screens. Conditions in which crystals were observed were optimized using a modified method for microbatch under oil (Chayen, 2007) at 20 °C. Crystals were mounted onto pins, flash-cooled at 100 K, and datasets were collected at the Argonne National Laboratory Advanced Photon Source (APS) beamline 22-ID or 22-BM, and processed with the SACLEPACK suite (Otwinowski and Minor, 1997). Detailed information on the crystallization conditions for each HA is included in Table 2.

5.4. HA structure refinement

HA structures were solved by molecular replacement with Phaser (McCoy et al., 2007). Initial models were built with their correct sequences by Coot (Emsley et al., 2010), and refined with Phenix (Adams et al., 2010) and REFMAC using TLS refinement (Winn et al., 2001). The final models were assessed using MolProbity (Davis et al., 2007). Data processing and refinement statistics are shown in Table 2. Unless specified otherwise all residue numbering is based on the mature HA protein. For structural analyses, PDBs of other subtype HAs were chosen based on the latest deposition date, resolution of the structure, or if they are the only available example in PDB.

5.5. Glycan binding analyses
RecHA glycan microarray analyses have been described previously (Yang et al., 2013). Briefly, HA-antibody precomplexes were prepared in a molar ratio of 4:2:1 and mixtures were incubated on ice (60 min), followed by dilution with 500 μL phosphate-buffered saline (PBS) buffer containing 2% (wt/vol) bovine serum albumin and streptavidin-Alexa Fluor 488 (1:1,000 [vol/vol]; Life Technologies). Mixtures were applied to the microarray slides and incubated on ice for an additional 60 min. Slides were then sequentially washed in PBS with 0.05% Tween 20 and deionized water and then dried. Slides were scanned using an Innoscan 100 microarray scanner (Innopsys Inc.), and images were analyzed using Imagenine version 9 software (BioDiscovery Inc.). Table 6 lists the specific glycans on the large version 1 array.

A second array (version 2) containing only a limited set of glycans was also used for analyzing the H4 recHA. These glycans, a mix of linear and biantennary α2-3 and α2-6 linked sialosides of different lengths (from 1 to 4 LacNAc repeats), were imprinted on the array at different concentrations (100 μM, 20 μM, 4 μM, 0.8 μM and 0.16 μM) to assess both specificity and avidity. This alternate glycan array slide was processed using the same procedure as described above. Table 7 lists the glycans on the version 2 array.

5.6. PDB accession codes
All HA models with their atomic coordinates and structure factors are available from the RCSB PDB database (www.pdb.org) under the accession codes listed in Table 2.

Table 5. Numbers of virus isolates with different key residue combinations in the RBS of all H4 HA.

H4 Receptor binding site residues	222(225)	223(226)	225(228)	Number of virus isolates 2228 in total
E	S	Q	G	8
E	D	Q	G	1
E	E	Q	G	1
E	G	Q	G	2207 Consensus
E	G	L	S	3
E	G	Q	S	3
E	G	Q	A	5

¹ H3 numbering in parenthesis.
² EPI8131: A/Swine/Ontario/01911-1/99 EPI8127: A/Swine/Ontario/01911-2/99 EPI718518: A/swine/Missouri/A01727926/2015.
³ EPI1177844: A/duck/Shiga/37/2007 EPI69006: A/environment/Maryland/1101/2006 EPI453348: A/northern pintail/Interior Alaska/10BM07242R0/2010.
* H3 numbering in parenthesis.

4. Conclusions

In this study, we presented structural and glycan binding data of four avHAs and one swHA. While all the HAs have a similar overall structure, they also maintain group-specific structural features of different subtype HAs, such as an extended 150-loop for the H15 and similar interhelix loop variations. Although the avHAs revealed strict receptor binding preferences, the swine H4 however showed markedly reduced binding to avian-type receptors and weak binding to human receptors. While this virus may not yet be considered a virus with pandemic potential, the H4 subtype should be included in the list of viruses to continue watching. With the growing number of human and zoonotic infections by AIVs, it raises the public health concern that one or more of these viruses will eventually evolve into a variant capable of causing another global pandemic. Continued surveillance of domestic and wild bird populations as well as domestic animals is critical. Moreover, the transmission of AIVs to swine should be a warning sign, and these types of incidents should be monitored and investigated in detail.
Glycan No.	Glycan Structure
1	Neu5Acx
2	Neu5Acx
3	Neu5Acx
4	Neu5Acx2-3(6-O-So)Gal[1-4GlcNAc]
5	Neu5Acx2-3Gal[1-3(6-OSo)GlcNAc]
6	Neu5Acx2-3Gal[1-4(6-OSo)GlcNAc]
7	Neu5Acx2-3Gal[1-4(Fucor1-3)[6-OSo]GlcNAc]
8	Neu5Acx2-3Gal[1-3(6-OSo)GlcNAc]
9	Neu5Acx2-3Gal[1-3(6-OSo)GlcNAc][1-4GlcNAc][1-4GlcNAc]
10	Neu5Acx2-3Gal[1-3(6-OSo)GlcNAc][1-4GlcNAc][1-6]GalNAc
11	Neu5Acx2-3Gal[1-4GlcNAc][1-2Man[1-3(6-OSo)GlcNAc][1-4GlcNAc][1-2Man[1-6]Man[1-4GlcNAc][1-4GlcNAc]
12	Neu5Acx2-3Gal[1-4GlcNAc][1-3Gal[1-4GlcNAc][1-2Man[1-3(6-OSo)GlcNAc][1-4GlcNAc][1-4(GlcNAc)[1-6]Man[1-4GlcNAc][1-4GlcNAc]
13	Neu5Acx2-3Gal[1-4GlcNAc][1-3Gal[1-4GlcNAc]
14	Neu5Acx2-3Gal[1-4GlcNAc][1-3Gal[1-4GlcNAc]
15	Neu5Acx2-3Gal[1-4GlcNAc]
16	Neu5Acx2-3Gal[1-4GlcNAc]
17	Neu5Acx2-3Gal[1-4Glc]
18	Neu5Acx2-3Gal[1-4Glc]
19	Neu5Acx2-3Gal[1-4Glc]
20	Neu5Acx2-3Gal[1-4Glc]
21	Neu5Acx2-3GalNAc[1-4GlcNAc]
22	Neu5Acx2-3GalNAc[1-3Gal[1-4GlcNAc]
23	Neu5Acx2-3GalNAc[1-3Gal[1-4GlcNAc]
24	Neu5Acx2-3GalNAc[1-3Gal[1-4GlcNAc]
25	Neu5Acx2-3GalNAc[1-3Gal[1-4GlcNAc]
26	Neu5Acx2-3GalNAc[1-3Gal[1-4GlcNAc]
27	Neu5Acx2-3GalNAc[1-3Gal[1-4(Fucor1-3)GlcNAc][1-6]GalNAc
28	Neu5Acx2-3GalNAc[1-3(Fucor1-4)GlcNAc]
29	Neu5Acx2-3GalNAc[1-4(Fucor1-3)GlcNAc]
30	Neu5Acx2-3GalNAc[1-4(Fucor1-3)GlcNAc]
31	Neu5Acx2-3GalNAc[1-4(Fucor1-3)GlcNAc][1-3Gal]
32	Neu5Acx2-3GalNAc[1-3(Fucor1-4)GlcNAc][1-4(Fucor1-3)GlcNAc]
33	Neu5Acx2-3GalNAc[1-3(Fucor1-4)GlcNAc][1-3Gal[1-4(Fucor1-3)GlcNAc]
34	Neu5Acx2-3GalNAc[1-4(Gal[1-4GlcNAc]
35	Neu5Acx2-3GalNAc[1-4(Gal[1-4GlcNAc]
36	Neu5Acx2-3GalNAc[1-4(Gal[1-4GlcNAc]
37	Neu5Acx2-3GalNAc[1-4(Gal[1-4GlcNAc]
38	Neu5Acx2-3GalNAc[1-4(Gal[1-4GlcNAc]
39	Neu5Acx2-3GalNAc[1-4(Gal[1-4GlcNAc]
40	Neu5Acx2-3GalNAc[1-4(Gal[1-4GlcNAc]
41	Neu5Acx2-3GalNAc[1-4(6-OSo)GlcNAc]
42	Neu5Acx2-3GalNAc[1-2Man[1-3(6-OSo)GlcNAc][1-2Man[1-6]Man[1-4GlcNAc][1-4GlcNAc]
43	Neu5Acx2-3GalNAc[1-2Man[1-3(6-OSo)GlcNAc][1-2Man[1-6]Man[1-4GlcNAc][1-4GlcNAc]
44	Neu5Acx2-3GalNAc[1-2Man[1-3(6-OSo)GlcNAc][1-2Man[1-6]Man[1-4GlcNAc][1-4GlcNAc]
45	Neu5Acx2-3GalNAc[1-2Man[1-3(6-OSo)GlcNAc][1-2Man[1-6]Man[1-4GlcNAc][1-4GlcNAc]
46	Neu5Acx2-3GalNAc[1-2Man[1-3(6-OSo)GlcNAc][1-2Man[1-6]Man[1-4GlcNAc][1-4GlcNAc]
47	Neu5Acx2-3GalNAc[1-2Man[1-3(6-OSo)GlcNAc][1-2Man[1-6]Man[1-4GlcNAc][1-4GlcNAc]
48	Neu5Acx2-3GalNAc[1-2Man[1-3(6-OSo)GlcNAc][1-2Man[1-6]Man[1-4GlcNAc][1-4GlcNAc]
49	Neu5Acx2-3Gal[1-4Glc]
50	Neu5Acx2-3Gal[1-4Glc]
51	Neu5Acx2-3Gal[1-4Glc]
52	Neu5Acx2-3Gal[1-4Glc]
53	Neu5Acx2-3Gal[1-4Glc]
54	Neu5Acx2-3Gal[1-4Glc]
55	Neu5Acx2-3Gal[1-4Glc]
56	Neu5Acx2-3Gal[1-4Glc]

(continued on next page)
Table 6 (continued)

Glycan No.	Structure
57	Neu5Acx2-6Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3GalNAcΦ
58	Neu5Acx2-6Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3GalNAcΦ
59	Neu5Acx2-6Galβ1-4GlcNAcβ1-3Galβ1-(Fucα1-3)GlcNAcβ1-3Galβ1-(Fucα1-3)GlcNAcβ1
60	Galβ1-3(Neu5Acx2-6)GlcNAcβ1-4Galβ1-4Glcβ5p10
61	Neu5Acx2-6Galβ1-3GalNAcΦ
62	Neu5Acx2-6Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-6Galβ1-3GalNAcΦ
63	Neu5Acx2-6Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-6Galβ1-3GalNAcΦ

Table 7. Glycans present on version 2 microarrays.

Glycan No.	Structure
3'LN	Neu5Acx2-3Galβ1-4GlcNAcΦ
3'LNLLN	Neu5Acx2-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcΦ
Bi'3'LN	Neu5Acx2-3Galβ1-4GlcNAcβ1-2Manα1-3[Neu5Acx2-3Galβ1-4GlcNAcβ1-2Manα1-6]Manβ1-4GlcNAcβ1-4GlcNAcΦ
Bi'3'LNLLN	Neu5Acx2-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-3[Neu5Acx2-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-6]Manβ1-4GlcNAcβ1-4GlcNAcΦ
Bi'3'LNLLNLN	Neu5Acx2-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-3[Neu5Acx2-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-6]Manβ1-4GlcNAcβ1-4GlcNAcΦ
6'LN	Neu5Acx2-6Galβ1-4GlcNAcΦ
6'LNLLN	Neu5Acx2-6Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcΦ
Bi'6'LN	Neu5Acx2-6Galβ1-4GlcNAcβ1-2Manα1-3[Neu5Acx2-6Galβ1-4GlcNAcβ1-2Manα1-6]Manβ1-4GlcNAcβ1-4GlcNAcΦ
Bi'6'LNLLN	Neu5Acx2-6Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-3[Neu5Acx2-6Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-6]Manβ1-4GlcNAcβ1-4GlcNAcΦ
Bi'6'LNLLNLN	Neu5Acx2-6Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-3[Neu5Acx2-6Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-2Manα1-6]Manβ1-4GlcNAcβ1-4GlcNAcΦ

Declarations

Author contribution statement

Hua Yang, Paul J. Carney, Jessie C. Chang: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Wrote the paper.

James Stevens: Conceived and designed the experiments; Analyzed and interpreted the data; Wrote the paper.

Funding statement

This work was supported by the Centers for Disease Control and Prevention.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

We gratefully acknowledge the authors from originating and submitting laboratories of the sequences from GISAID’s EpiFlu™ Database. We would like to acknowledge the SER-CAT sector 22 staff at the Advanced Photon Source (APS) for their help in data collection. The U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No: DE-AC02-06CH11357, supports use of the Advanced Photon Source at Argonne National Laboratory. Professor Jim Paulson, at The Scripps Research Institute, La Jolla, CA produced the glycan microarrays under contract. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention or the Agency for Toxic Substances and Disease Registry.

References

Abente, E.J., Gauger, P.C., Walla, R.R., Rajao, D.S., Zhang, J., Harmon, K.M., Killian, M.L., Vincent, A.L., 2017. Detection and characterization of an H4N6 avian-lineage influenza A virus in pigs in the Midwestern United States. Virology 511, 56-65.

Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., McCoy, A.J., Moriarty, N.W., Oefner, R., Read, R.J., Richardson, D.C., Richardson, J.S., Terwilliger, T.C., Zwart, P.H., 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221.

Chayen, N.E., 2007. Optimization techniques for automation and high throughput. Methods Mol. Biol. 363, 175-190.

Chen, H., Yuan, H., Gao, R., Zhang, J., Yang, F., Yang, F., Li, X., Zhou, J., Zou, S., Yang, L., Chen, T., Deng, L., Bo, H., Zhao, X., Zhang, Y., Lan, Y., Bai, T., Dong, J., Li, Q., Wang, S., Zhang, Y., Li, H., Feng, Z., Gao, G.F., Wang, Y., Jin, Q., Liu, M., Shen, M., Shu, Y., 2014. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet 383, 714-721.

Connor, R.J., Kawaka, Y., Webster, R.G., Paulson, J.C., 1994. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205, 17-23.

Cox, N.J., Subbarao, K., 2000. Global epidemiology of influenza: past and present. Annu. Rev. Med. 51, 407-421.

Davis, I.W., Leaver-Fay, A., Chen, V.B., Block, J.N., Kapral, G.J., Wang, X., Murray, L.W., Arendall 3rd, W.B., Snoeyink, J., Richardson, J.S., Richardson, D.C., 2007. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375-383.
