RNA-seq identified a super-long intergenic transcript functioning in adipogenesis

Fan Yi,† Feng Yang,† Xiaoqiao Liu,† Hongbo Chen,† Ting Ji,‡ Lixiang Jiang,§ Xiaoxia Wang,† Zhangping Yang,† Li-He Zhang,† Xianfeng Ding,,* Zicai Liang,* and Quan Du,*

1Laboratory of Nucleic Acid Technology and Laboratory of State Key Laboratory of Natural and Biomimetic Drugs; Institute of Molecular Medicine; School of Pharmaceutical Sciences; Peking University; Beijing, P.R. China; 2School of Life Science; Zhejiang Sci-Tech University; Hangzhou, P.R. China; 3Hangzhou Center for Disease Control and Prevention; Hangzhou, P.R. China

†Joint first authors.

Keywords: large intergenic non-coding RNA, polyA-minus RNA, adipogenesis, obesity, high-throughput sequencing

Abbreviations: IncRNA, long non-coding RNA; lincRNA, long intergenic non-coding RNA; RPKM, reads per kilo bases per million reads; PPARγ, peroxisome proliferators activated receptor gamma; C/EBPα, CCAAT/enhancer-binding protein alpha; TAR, transcriptionally active region

Introduction

Obesity, the excess accumulation of adipose tissue in the body, is a major public health problem in developed and developing countries.1,4 To confront this challenge, a thorough understanding of the differentiation process as well as the regulation mechanisms is of critical importance.5-8 To characterize the essential factors in this process, extensive investigations have been performed in the past decades, using various in vitro and in vivo model systems. Among these, the mouse pre-adipocyte 3T3-L1 cell line, which was established in 1974, is the best characterized and most useful in vitro model.9 Using a standard hormone cocktail, this cell line is readily induced into adipogenesis and finally differentiates into mature adipocytes during a course of ~21 d. With the help of this and other model systems, a number of regulatory factors have been characterized in adipogenesis, such as peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα).5-8,10,11 This list is however far from complete because only limited numbers of downstream genes have been characterized as being regulated by these two so-called master regulators in adipogenesis.

Owing to the recent progress in nucleic acid-based high-throughput technology, this situation has been changing. In a number of genome-wide profiles of PPARγ binding sites and chromatin states in adipogenesis, tens of thousands of potential transcription sites have been identified.12-15 Further ChIP-seq studies indicated that over 70% of them are located in intronic as well as intergenic regions, strongly suggesting that these non-coding RNAs are integrated in the regulation pathway PPARγ.12,15

To further characterize the essential factors, in particular the large intergenic transcripts in adipogenesis, we performed a large-scale investigation of polyA-minus transcripts during the induced differentiation of 3T3-L1 cells, a well-established in vitro model system for adipogenesis, and the most characterized model system is the induced differentiation of pre-adipocyte 3T3-L1 cells. Upon defined hormonal induction, the cells are induced into adipogenesis and progress to a terminal stage where most cells are filled with lipid droplets and respond to physiological signals.
Results

Induced adipogenesis model system. To this end, MDI-induced differentiation of 3T3-L1 cells was performed and the expression of polyA-minus RNAs was profiled at three critical time points during the process, so as to reveal its dynamic properties. The first RNA sample was taken one day before the induction and the other two samples were subsequently taken at day 14 and day 21 after the treatment, representing pre-adipocytes, differentiating adipocytes and mature adipocytes respectively.

To monitor the progress of differentiation, the production and accumulation of lipid were examined by Oil Red O staining (Fig. 1A), and the expressional levels of PPARγ and CEBPα were measured by quantitative RT-PCR (Fig. 1B). At day 21, more than 54% of cells were found with lipid accumulation (Fig. 1A; Fig. S1D), and led to elevated expression of PPARγ and CEBPα. Consistent with previous reports,16-20 a synchronous differentiation process was demonstrated in the study, showing that the model system fulfills the functional criteria of adipocyte differentiation.

Enrichment of polyA-minus transcripts and RNA-seq. To systematically discover essential polyA-minus RNAs in 3T3-L1 differentiation, a negative selection protocol was used to first isolate them from total RNA samples (Fig. S1A).21 With this, the abundant 18s and 28s rRNAs were depleted by sequence-specific and biotinylated DNA oligonucleotides, followed by removal of polyA-plus as well as small RNA transcripts using oligo(dT) probe and size fractionation. For proof of the depletion, the remaining amounts of rRNAs and mRNAs were visually checked (Fig. S1B) and then quantified by RT-qPCR (Fig. S1C). While no discernible rRNA bands were seen in the gels, quantitative measurements indicated that less than 2%, 7% and 13% of the original β-actin, 18s and 28s rRNA, respectively, remained in the processed samples, demonstrating efficient RNA depletion (Fig. S1).

Using this approach, polyA-minus RNA fractions were isolated from total RNA samples obtained from 3T3-L1 cells at three differentiation stages (days 0, 14 and 21 after induction). From those, RNA-seq libraries were generated by RNA fragmentation, random hexamer-primed cDNA synthesis, linker ligation and PCR amplification. Using an Illumina genome analyzer platform, each library was sequenced in an independent lane.

Reads mapping and bioinformatics analyses. In total, 36.8 million reads of 40 nt were obtained, comprising 14.7 million from pre-adipocytes, 13.9 million from differentiated adipocytes and 8.2 million from mature adipocytes (Fig. 1D). Seventy-six percent of the reads (28 million) were mapped to the reference mouse genome (NCBI37/mm9), using TopHat.11 These reads were then filtered against rRNAs and other repeated sequences, and finally resulted in a high-confidence set comprising 5.02 million uniquely mapped reads. Seven percent of the high-confidence reads was mapped to the exons of Refseq genes, while the others mapped to non-coding genome regions. Reads mapped to the non-coding regions were further classified into subgroups located in the introns of Refseq genes (36%), known non-coding genes (4%) and intergenic regions (53%) (Fig. 1C).

To further evaluate the experiment procedure and the data analysis, reads-mapping to several known polyA-minus transcripts were examined. Hist2b4 encodes a 348-bp histone transcript lacking a polyA tail, while MALAT-1 encodes a tumor-associated long intergenic non-coding RNA of 6.9 kb. Reads-mapping revealed a concentrated distribution on these two transcription regions, but not on the flanking areas (Fig. S2). These results therefore confirmed the enrichment process on the one hand, and on the other hand, indicated that the reads originated from authentic RNA transcripts. Distinct from the regulated nature of many polyA-minus transcripts, relatively consistent expresional levels were found for histone transcripts across the course of differentiation, reflecting their essential roles in the cells.

The reads mapped to intergenic regions were of particular interest, because they might represent novel transcription regions in adipogenesis. As the first step to characterize these regions, their evolutionary conservation and coding potential were analyzed. Similar to the previously identified large intergenic non-coding RNAs,25,26 intermediate conservation levels and low coding potential relative to the other transcript categories were found for these regions (Fig. 1E and F).25-31

Regulated expression profiles. To accurately define the boundaries of these intergenic transcription regions, reads-assembly was performed using two parameters: the maximum spacing between two neighboring reads, and the minimum number of mapped reads within a genomic region. Taking the stringent criteria of maximum spacing of 150 nucleotides and 10 mapped reads, a set of 1,406 independent transcriptionally active regions (TARs) was confidently identified (Table S1).

A remarkable property of RNA-seq is that it allows for precise quantification of transcriptional activity on a genome-wide scale. To this end, the expresional levels of the TARs were calculated in terms of RPKM (reads per kilobase of transcript per million mapped reads). When the expression levels were profiled relative to the differentiation stages, a dynamic pattern was revealed. Compared with their levels in pre-adipocytes, 179 TARs were upregulated and 61 were downregulated in differentiating adipocytes. After the cells progressed further to mature adipocytes, 698 TARs were upregulated and 106 were downregulated relative to their expression levels in differentiating adipocytes. The distinct expression patterns categorized these TARs into several subgroups, suggesting their diverse functions in adipogenesis (Fig. S3). Considering their induction property during the process, the upregulated subgroup was selected to be further studied (Fig. 2A). The relevance of a number of randomly selected TARs to adipogenesis was further demonstrated by the consistent expression profiles resulting from RT-qPCR (Fig. 2B).

Fat tissue-specifically intergenic transcription regions in mature adipocytes. Further investigation was then focused on the previously uncharacterized TARs. Chromosome-wide distribution showed that in mature adipocytes, 10% of the TARs (146 TARs) were mapped to chromosome 10. And to our surprise, 94% of them clustered in three large intergenic transcription loci, spanning a genomic region of 10.3 Mb in total (Figs. 2C and 3B; Figs. S6 and S7). The first locus spans a genomic region of 33 kb...
The expression levels of a few selected TARs were measured in diverse mouse tissues (chr10:106655739-106688478) and is composed of 11 TARs; the second locus spans a region of 91.2 kb (chr10:116823862-116915327) and is composed of 42 TARs; and the third locus spans a region of 13.6 kb (chr10:117026,569-117038309) and is composed of three TARs. During the course of differentiation, the expression levels of these loci were upregulated more than 19-fold in terms of RPKM, suggesting critical roles in adipogenesis as well as in mature adipocytes.

Upregulation of the TARs in adipogenesis in vitro led us to speculate that they might also be implicated in the development of fat tissue in vivo. Therefore, the expression levels of a few selected TARs were measured in diverse mouse tissues...
Figure 2. Regulated expression of TARs. (A) Expression profiles of a subgroup of TARs. X axis, the three time points of RNA-seq samples; Y axis, the RPKM value of the TARs. In this subgroup, 36 TARs are continuously upregulated from day 0 to day 14, and to day 21. UU indicates the expression level of the TARs is upregulated from one time point to the next. (B) Expression levels measured by qRT-PCR. The expression levels of several TARs ranging from 500–1,200 bp are quantified at days 0 and 21. Open bars, expression levels on day 0; filled bars, expression levels on day 21. For each TAR, the data are first normalized to an internal control, and then to its respective level on day 0. The expression level of PPARγ is included as a differentiation control, and another annotated non-coding RNA, GASS, is included as a processing control. (C) Distribution of RNA-seq reads. The sites for PPARγ binding and Pol II occupancy in an identified large intergenic transcription region are presented. RNA-seq data and reference data are viewed in UCSC genome browser for the RNA-seq reads locus on day 0 (red peak) and day 21 (blue peak) locus on PolII tracks (black band) and PPARγ tracks (dark blue peak). (D) Tissue-specific expression profile. Expression levels of a few TARs are determined by RT-PCR in mouse heart, liver, lung, kidney, brain, fat, skeletal muscle and intestine. slincRAD-A is represented by TAR-slincRAD-A (TAR-61) and TAR-slincRAD-A9 (TAR-67), slincRAD-B is represented by TAR-slincRAD-B25 (TAR-104) and TAR-slincRAD-B38 (TAR-116) and slincRAD-C is represented by TAR-slincRAD-C1 (TAR-157). β-actin and PPARγ are included as RNA quality and differentiation controls.
(Fig. 2D; Fig. S4), using RT-qPCR. Three male BALB/c mice of eight to 10 wk and weighed 18–22 g at the time of the study were used. RNA samples were extracted from the pooled tissues obtained from the mice and used in the assay. As expected, a fat tissue-specific expression profile was shown for the tested TARs (Fig. 2D). Interestingly, this unique pattern was also shared by PPARγ, which leads further support to their roles in fat tissue development.

To closely monitor the expression regulation of these regions during early differentiation, a few representative TARs were selected and their expression levels were measured at eight time points, starting from day 0. Using quantitative RT-PCR, their expression levels were measured in both MDI-treated and -untreated cells, and the changes in expression were calculated relative to day 0 (Fig. 3A). Consistent with our and others’ studies, the levels of PPARγ increased steadily at the initiation stage and displayed a dynamic regulation. As expected, this regulation profile was shared by the tested TARs. This confirmed our earlier observations and further suggested a co-regulation of these transcripts.

Co-regulation of these transcripts as well as their genomic proximity led us to speculate that they may derive from a single transcript. To test this hypothesis, a number of siRNAs were designed to target different TARs of the three large intergenic transcription loci. When a siRNA targeting a specific TAR within a transcription locus was used, expression levels of TARs in the other transcription loci were also examined, together with the desired target. Interestingly, parallel repression of all three transcription loci were observed for 11 active siRNAs, indicating that these TARs are derived from a single super-long intergenic RNA transcript with a calculated size of 136 kb, which plays a critical role in adipogenesis (Fig. 3B; Fig. S5). This gene was therefore named “slincRAD” to indicate that it is a super-long intergenic non-coding RNA functioning in adipocyte differentiation.

To further verify that slincRAD transcripts are indeed non-polyadenylated, oligo-dT pull-down assays were performed to separate the polyadenylated and non-polyadenylated RNA fractions from 3T3-L1 total RNA. The presence of slincRAD in these two fractions was examined using RT-PCR, showing that slincRAD transcripts are distributed mostly in the non-polyadenylated RNA fraction (Fig. 3C).

Transcription orientation and subcellular localization of slincRAD. To determine the transcription orientation of slincRAD, a number of PCR primer sets were designed across the whole length of the transcript. Transcription from the genome plus-strand was detected by reverse transcription using downstream primer, followed by PCR amplification using both upstream and downstream primers. In the same way, transcription from the genome minus-strand was detected by reverse transcription using upstream primer. As shown in Figure 3D, transcription from the plus-strand was detected by all the PCR sets, while only one assay detected a weak transcription from the minus-strand. In addition to the strand-specific RT-PCR assays, strand-specific siRNAs were also designed to target the plus- or the minus-strand. Cell assays showed that siRNAs targeting the plus-strand transcription, but not the minus-strand transcription effectively repressed the expression of slincRAD (Fig. 3F). These data therefore led to the conclusion that slincRAD RNA is transcribed from the plus strand of chromosome 10 in mouse.

In contrast to mRNAs and small non-coding RNAs that function mainly in the cytoplasm, super-long RNAs such as Air or Xist function mainly within the nucleus, exerting their physiological activities by chromatin modification and transcriptional regulation. To characterize the cellular distribution of slincRAD RNA, the nuclear and cytoplasmic RNA fractions were individually isolated, using an RNA purification kit from Ambion. By means of previously established RT-PCR assays, the abundance of slincRAD was measured in RNA samples from nucleus and cytoplasm, showing that slincRAD RNAs are distributed mainly in the nucleus (Fig. 3E).

Functions of slincRAD in adipogenesis and potential roles in human pathogenesis. To address whether PPARγ also functions to regulate the expression of slincRAD, the genomic locations of PPARγ-binding sites were extracted from public data sets2-15 and mapped relative to slincRAD. The results showed that ~20% of the TARs lay in close proximity to the binding sites of PPARγ within a flanking range of 5 kb (Fig. 2C; Figs. S6 and S7). Furthermore, a total of 7,218 PPARγ binding sites were captured on day 6 after MDI treatment in one of the study, which translates into an average of 0.027 binding sites per 10 kb genome sequence. However, more than 40 PPAR binding sites are found to locate in slincRAD transcript region of 138 kb, on average 2.89 binding sites per 10 kb sequence. These data together suggest that the expression of slincRAD is likely under the regulation of PPARγ, the master regulator of adipogenesis.

These lines of evidence led to a speculation that slincRAD might be involved in the induced differentiation of 3T3-L1 cells. To this end, its influence on adipogenesis was evaluated by gene-silencing assay, using slincRAD-specific siRNAs. Six effective siRNAs were used to silence slincRAD expression in cultured 3T3-L1 cells, and their effects on lipid accumulation were visualized by Oil Red O staining. In brief, 3T3-L1 cells were grown in DMEM culture medium and subjected to twice siRNA transfection, before and after MDI treatment. Nine days later, the cells were harvested and subjected to Oil Red O staining to visualize cellular accumulation of lipid (Fig. 4A), a well-documented adipogenesis index. Quantitative analysis indicated that in comparison to the untreated control and scramble siRNA-treated cells, some siRNAs potently decreased the amount of lipid accumulation in differentiated adipocytes (Fig. 4B), while the proliferation of the cells was not affected (Fig. 4C). In particular, siRNA-17 treatment caused a 70% reduction in lipid accumulation.

In addition to lipid accumulation, the differentiation process was further confirmed by the changes of a master adipogenesis marker, PPARγ. In which, a randomly picked siRNA targeting slincRAD, as well as a scramble siRNA, were transfection into cultured cells and their effects on PPARγ levels during the differentiation were examined by RT-qPCR (Fig. 5A). The results showed that, in addition to delay the differentiation progress as indicated by lipid accumulation (Fig. 4A and B), siRNA-14 treatment led to reduced levels for both PPARγ and slincRAD, in comparison to the scramble siRNA treatment. Taken together,
Figure 3. For figure legend, see page 996.
these results demonstrate that slincRAD is a contributing factor in adipogenesis.

To further pursue its implications in human pathogenesis, a comparative genomics approach was used. Even though lncRNA genes evolve fast in sequence level, their genomic loci are mostly conserved. Therefore, the homologous human genomic region of mouse slincRAD was determined, and its potential involvement in human pathogenesis was characterized by literature search. To do this, we first identified the flanking protein-coding genes of slincRAD in mouse genome: the upstream protein-coding gene is Cpsf6 and the downstream gene is Cpm. Then, their homologous human counterparts were determined to be located at q15 in chromosome 12 of human genome. Using these flanking genes as landmarks, homologous genomic region of slincRAD was identified in human (Fig. S10). To further characterize potential involvement of the human homologous region in pathogenesis, a literature search was performed in NCBI database. In total, 81 publications investigating this region were retrieved. As shown in Figure 4C, the identified human homologous region is extensively implicated in human pathogenesis and associated with the development or malfunction of fat tissue, such as lipomatous tumor, uterine leiomyo-osteosarcoma and type II diabetes (Fig. 4C), therefore disclosing a relationship between slincRAD and human pathogenesis.

Discussion

The genome is expressed through transcription, generating different classes of RNA species. A major goal of transcriptome studies is to identify all the transcripts at the sequence level and characterize their physiological and pathological activities; this has been very successful for the polyA-plus fraction due to the presence of 3’ polyA tails. However, only limited knowledge has been accumulated for the polyA-minus RNA fraction, even though their prevalence in eukaryotic cells has been demonstrated by increasing evidence. This situation is largely attributed to the technical difficulty involved in the isolation and characterization of polyA-minus transcripts. Unlike polyA-plus RNAs, there is no known consensus sequence or common structure for polyA-minus RNAs. To overcome this obstacle, a negative selection strategy was recently developed to enrich polyA-minus transcripts by systematically depleting the abundant rRNAs and mRNAs. Taking advantage of this method, the expression and regulation of polyA-minus transcripts in adipocyte differentiation were systematically investigated in the present study, using a RNA-seq platform. By coupling the ribo-depletion procedure with massive-scale RNA sequencing technology, our approach offers the possibility of detecting previously uncharacterized actively transcribed genomic regions.

Focusing on the polyA-minus transcriptome in adipogenesis, we generated RNA-seq libraries from cultured 3T3-L1 cells at different stages of differentiation, namely pre-adipocytes, differentiated adipocytes and mature adipocytes. Sequencing these libraries using an Illumina genome analyzer platform led to the identification of 11.03 million uniquely mapped reads in total, enabling us to systematically identify and characterize polyA-minus transcripts during the process. These reads were then mapped to the mouse genome and filtered against rRNAs and other repeated sequences, finally resulting in a high-confidence data set comprising 5.02 million uniquely mapped reads. As expected, ~93% of the reads were mapped to non-coding genome regions, such as the introns of Refseq genes, known non-coding genes and intergenic regions. Reads mapped to the intergenic regions were of particular interest to us, because they might represent novel transcription positions in adipogenesis. Using a stringent criterion for independent transcriptional regions, a set of 1,406 novel intergenic transcriptionally active regions were identified. In mature adipocytes, 10% of the TARs were unexpectedly mapped to chromosome 10. And more surprisingly, 94% of these reads clustered in three large intergenic transcription regions, covering a genomic span of 10.3 Mb.

In addition to identifying thousands of intergenic transcription regions, this comprehensive data enabled us to further capture the dynamic changes of polyA-minus transcripts as development proceeded. This property might also apply to other differentiation and developmental processes. This is an intriguing finding in light of the fact that numerous IncRNAs have been shown to interact with repressive chromatin-modifying complexes. The polyA-minus RNAs expressed at the early stage of differentiation might also have important roles in cell fate decisions, differentiation and organogenesis.
In summary, we generated RNA-seq libraries from cultured 3T3-L1 cells at different differentiation stages, focusing on the polyA-minus RNAs. By using an Illumina genome analyzer platform, sequencing these libraries identified a set of 1,406 novel intergenic TARs. In mature adipocytes, 10% of the TARs were surprisingly mapped to chromosome 10 in the mouse genome.
And more interestingly, 90% of the TARs that mapped to chromosome 10 clustered in three large intergenic transcription loci, spanning 10.3 Mb. Further studies of these TARs led to the identification of a super-long intergenic transcript named slincRAD, which was shown to be involved in adipogenesis and fat tissue-related pathogenesis. In addition, our study provided a comprehensive annotation of polyA-minus RNA transcripts during adipogenesis. Their dynamic changes suggest that they are implicated in either the differentiation regulation or functionality of fat tissue, revealing novel insights into the mechanisms of in vitro and in vivo adipogenesis. Furthermore, our study provides a generally applicable strategy to characterize novel noncoding RNAs in various biological processes.

Materials and Methods

Ethics statement. Animals were maintained in the Center for Experimental Animals (an AAALAC accredited experimental animal facility) at Peking University. All procedures involving animals were performed in accordance with protocols approved by the Committee for Animal Research of Peking University, and conformed to the Guide for the Care and Use of Laboratory Animals (NIH publication No. 86-23, revised 1985).

Oligonucleotides. DNA oligonucleotides were from Invitrogen, RNA oligonucleotides were from RiboBio.

Cell culture and MDI treatment. 3T3-L1 pre-adipocytes were grown in DMEM supplemented with 10% bovine serum. Adipogenesis was induced as previously described. In brief, 2 d after the cells reached confluence (day 1), they were induced to differentiate by changing the culture medium to DMEM supplemented with 0.5 mM 3-isobutyl-1-methyxanthine (Sigma), 1 μM dexamethasone (Sigma) and 167 nM insulin (Sigma). At the end of day 2, culture medium was replaced with DMEM supplemented only with 167 nM insulin; at the end of day 4, insulin was withdrawn and the cells were allowed to grow in DMEM supplemented with 0.5 mM 3-isobutyl-1-methyxanthine and 167 nM insulin (Sigma). The intensities of siRNA-treated cells are then normalized to the intensities of the mock treatment, and further normalized to the number of the cells to show the effect of siRNA treatment on cell differentiation. The statistics are calculated with t-tests (*, p < 0.05 relative to NC-siRNA control). (C) A literature search on the homologous human genomic region of slincRAD is performed and results in 81 hit publications. These publications are presented in term of the underlying human disorders. X axis, human disorders; Y axis, the number of the publications.

PolyA-minus RNA preparation and RNA sequencing. Total RNAs were isolated from cultured cells using an RNPure™ kit (Biomed). Eight micrograms of purified RNAs was subjected to sequential depletion of rRNA, mRNA and short RNA species with an RNA depletion kit (Jianchengda Inc.), resulting in a pool of polyA-minus RNAs. The cDNA libraries were prepared starting from 2 μg of polyA-minus RNAs using random hexamer priming (Invitrogen). It must be noted that the reverse-transcribed double-stranded cDNA fragments do not preserve information about the strand specificity of the original transcript. The Illumina sequencing libraries were prepared according to the single-end sample preparation protocol. The libraries were sequenced using the 1G Illumina genome analyzer.

Bioinformatics analysis. The obtained reads were first mapped on the mouse reference genome (mm9) using the TopHat program (v1.2.0). Reads mapped to house-keeping genes were then filtered against the RepeatMask and Ensembl gene sets, which resulted in the identification of novel intergenic transcription regions. For each transcription region, an RPKM value was calculated to quantify its expressional abundance and variations, using cufflinks v1.0.3.

To evaluate the evolutionary conservation of TARs, the phastcons scoring method developed by UCSC was used. Phastcons is based on the whole genome alignment of 30 vertebrates and gives every nucleotide a score to reflect its probability of belonging to a conserved element. To evaluate the coding potential of each transcription region, a CPC (coding potential calculator) assay was performed.

qRT-PCR assay. cDNA was synthesized with SuperScript II (Invitrogen) and qPCR was performed using SYBR Green PCR mix. Relative expression values were calculated (ΔΔCT method) using GAPDH or β-actin as an internal control.

RNAi assay. To knockdown slincRAD, siRNAs were individually transfected in the following steps: Cells were seeded
at a density of 10,000 cells/well in 1 ml of growth medium one day before transfection. Individual siRNA targeting sln-cRAD or scrambled control siRNA was transfected, using lipofectamine2000 (Invitrogen). Lipofectamine/siRNA complexes were formed in 0.2 ml of serum-free Opti-MEM reduced serum medium (GIBCO) for 10 min at room temperature and then added to each well. Cells were cultured for two more days until they reached confluence and subjected to MDI treatment (day 1). At the same day, a second transfection was performed.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
This work was supported by National Basic Research Program of China (2011CBA01102), Beijing Natural Science Foundation (5132015), National High-tech R&D Program of China (2012AA022501), Zhejiang Provincial Natural Science Foundation of China (Y2100681), Guangdong Science and Technology Department (2011B090400478) and Hangzhou Science and Technology Bureau (20110733Q21).

Supplemental Material
Supplemental material may be found here: http://www.landesbioscience.com/journals/rnabiology/article/24644/

Primer Set	Forward Primer	Reverse Primer
β-actin	5'-GAAGAGCCTAT GAGCTGCTG A	5'-CTCATGCAT TCCGTCTGC T
PPARγ	5'-AAAGCCTGAC CCAATTGGTG	5'-ACCCCTGCA ATCTCACAAG
CEBPα	5'-GGTCCGAC TACATCCCTCA	5'-CGGCTACCAC ATCCAAAGA
18s rRNA	5'-TCATGAC AAGTTCAGAAGG	5'-GATCCGGCAG GTGATGTTT
28s rRNA	5'-TCATGAC AAGTTCAGAAGG	5'-GATCCGGCAG GTGATGTTT
MALAT-1	5'-TCATGAC AAGTTCAGAAGG	5'-GATCCGGCAG GTGATGTTT
GASS	5'-TCTCAGACTTC CCACCCACCT	5'-GATCCGGCAG GTGATGTTT
TAR-61	5'-TCTCAGACTTC CCACCCACCT	5'-GATCCGGCAG GTGATGTTT
TAR-67	5'-TCTCAGACTTC CCACCCACCT	5'-GATCCGGCAG GTGATGTTT
TAR-79	5'-TGAATATGAG CTCGCTGAAA	5'-GATCCGGCAG GTGATGTTT
TAR-92a	5'-CATGCGCTTG ACAGATGGTTA	5'-GATCCGGCAG GTGATGTTT
TAR-92b	5'-CATGCGCTTG ACAGATGGTTA	5'-GATCCGGCAG GTGATGTTT
TAR-104	5'-ACAAGAAGAA GAGGCGGCTA	5'-GATCCGGCAG GTGATGTTT
TAR-105	5'-CTCAATAAT GCAGTCAGTTT	5'-GATCCGGCAG GTGATGTTT
TAR-115	5'-GCTCTCTGGGA GAATACAAAT	5'-GATCCGGCAG GTGATGTTT
TAR-116	5'-GCCACACGAC TAGGGGAAGAC	5'-GATCCGGCAG GTGATGTTT
TAR-157	5'-TACCATGTAC GTCGCAATTT	5'-GATCCGGCAG GTGATGTTT
TAR-184	5'-TGAGTTCCCA AAAGGACAGG	5'-GATCCGGCAG GTGATGTTT
mdm2:	5'-GTCCTTGGAT GTATTTGAG TGA	5'-GATCCGGCAG GTGATGTTT
TAR-190	5'-CTGCGCTTTC ACAGAGAAAA	5'-GATCCGGCAG GTGATGTTT
TAR-340	5'-AACTGATTG ATCCCAGCAA	5'-GATCCGGCAG GTGATGTTT
TAR-399	5'-GATGAGAATA GATCCGCTCA	5'-GATCCGGCAG GTGATGTTT
Table 2. siRNA sets

Orientation named	Full-length named	Sequence
siRNA-01	slincRAD-B1-siRNA	sense strand: 5' - CAACUAAGGCU UCACAAUAAt t-3'
		antisense strand: 5' - UCACAAUAAt CAGGAAGAAt t-3'
siRNA-02	slincRAD-B2-siRNA	sense strand: 5' - AAUAUGACCCU GUAAUCCCGt t-3'
		antisense strand: 5' - GUAAUCCCGA UCAACAAACt t-3'
siRNA-03	slincRAD-B3-siRNA	sense strand: 5' - AGUAUCCCGG AAAUUCCCGt t-3'
		antisense strand: 5' - AAGAAGUGAU GCCGGUAGGt t-3'
siRNA-04	slincRAD-B4-siRNA	sense strand: 5' - AACCCGAGGC AAAUUCCCGt t-3'
		antisense strand: 5' - GGAAAGACCG GCCGGUAGGt t-3'
siRNA-05	slincRAD-B5-siRNA	sense strand: 5' - AAGAAGUGAU GCCGGUAGGt t-3'
		antisense strand: 5' - AAUAUCUCAU CACUACCAGCt t-3'
siRNA-06	slincRAD-B6-siRNA	sense strand: 5' - GCCGGUAGG GAACAGAAGAt t-3'
		antisense strand: 5' - CCACCGGGAA UCACAAUAAt t-3'
siRNA-07	slincRAD-B7-siRNA	sense strand: 5' - UGUACGAGCA GGCAUUGGt t-3'
		antisense strand: 5' - CACGAGGAT ACCCGGAGGt t-3'
siRNA-08	slincRAD-B8-siRNA	sense strand: 5' - AAGAAGUGAU GCCGGUAGGt t-3'
		antisense strand: 5' - AAUAUCUCAU CACUACCAGCt t-3'
siRNA-09	slincRAD-B9-siRNA	sense strand: 5' - GCCGGUAGG GAACAGAAGAt t-3'
		antisense strand: 5' - CCACCGGGAA UCACAAUAAt t-3'
siRNA-10	slincRAD-B10-siRNA	sense strand: 5' - UGUACGAGCA GGCAUUGGt t-3'
		antisense strand: 5' - CACGAGGAT ACCCGGAGGt t-3'
siRNA-11	slincRAD-B11-siRNA	sense strand: 5' - AAGAAGUGAU GCCGGUAGGt t-3'
		antisense strand: 5' - AAUAUCUCAU CACUACCAGCt t-3'
siRNA-12	slincRAD-C12-siRNA	sense strand: 5' - GCCGGUAGG GAACAGAAGAt t-3'
		antisense strand: 5' - CCACCGGGAA UCACAAUAAt t-3'
siRNA-13	slincRAD-C1-siRNA	sense strand: 5' - GCCGGUAGG GAACAGAAGAt t-3'
		antisense strand: 5' - CCACCGGGAA UCACAAUAAt t-3'
siRNA-14	slincRAD-C2-siRNA	sense strand: 5' - GCCGGUAGG GAACAGAAGAt t-3'
		antisense strand: 5' - CCACCGGGAA UCACAAUAAt t-3'
siRNA-15	slincRAD-C3-siRNA	sense strand: 5' - GCCGGUAGG GAACAGAAGAt t-3'
		antisense strand: 5' - CCACCGGGAA UCACAAUAAt t-3'
siRNA-16	slincRAD-C4-siRNA	sense strand: 5' - GCCGGUAGG GAACAGAAGAt t-3'
		antisense strand: 5' - CCACCGGGAA UCACAAUAAt t-3'
siRNA-17	slincRAD-C5-siRNA	sense strand: 5' - GCCGGUAGG GAACAGAAGAt t-3'
		antisense strand: 5' - CCACCGGGAA UCACAAUAAt t-3'

References

1. Buckle P, Buckle J. Obesity, ergonomics and public health. Perspect Public Health 2011; 131:170-6; PMID:21888119; http://dx.doi.org/10.1177/1757913911407291.
2. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9:567-77; PMID:18401346; http://dx.doi.org/10.1038/nrm2391.
3. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006; 444:840-6; PMID:17167471; http://dx.doi.org/10.1038/nature05482.
4. Haemer M, Claessens E, Hasinsk SG, Liu L, Mangarelli C, Peterson T, et al. Building capacity for childhood obesity prevention and treatment in the medical community: call to action. Pediatrics 2011; 128(Suppl 2):S71-7; PMID:21885648; http://dx.doi.org/10.1542/peds.2011-0480G.
5. Chawla A, Lazar MA. Peroxisome proliferator and retinoid signaling pathways co-regulate preadipocyte phenotype and survival. Proc Natl Acad Sci USA 1994; 91:1786-90; PMID:8127882; http://dx.doi.org/10.1073/pnas.91.5.1786.
6. Tononoz P, Hways, R, Graves RA, Budavari AI, Spiegelman BM. mPPAR gamma: a tissue-specific regulator of an adipocyte enhancer. Genes Dev 1994; 8:1224-34; PMID:7926726; http://dx.doi.org/10.1101/gad.8.10.1224.
7. Elbebrity A, Chen Y, Collman GA, Hayes N, Leibowitz MD, Moller DE, et al. Molecular cloning, expression and characterization of human peroxisome proliferator-activated receptors gamma 1 and gamma 2. Biochem Biophys Res Commun 1996; 224:431-7; PMID:8702406; http://dx.doi.org/10.1006/bbrc.1996.1044.
8. Chawla A, Lazar MA. Peroxisome proliferator and retinoid signaling pathways co-regulate preadipocyte phenotype and survival. Proc Natl Acad Sci USA 1994; 91:1786-90; PMID:8127882; http://dx.doi.org/10.1073/pnas.91.5.1786.
10. Ibarrola N, Raghothama C, Pandey A. Proteomic analysis of the adipocyte secretome. In: Berdanier, CD and Mousaia-Moussa, N, eds. Genomics and Proteomics in Nutrition. New York: Marcel Dekker, Inc, 2004: 393-409.

11. Lee HK, Lee BH, Park SA, Kim CW. The proteomic analysis of an adipocyte differentiated from human mesenchymal stem cells using two-dimensional gel electrophoresis. Proteomics 2006; 6:1223-9; PMID:16421933; http://dx.doi.org/10.1002/ pmic.200500385.

12. Lefterova MI, Zhang Y, Steger DJ, Schupp M, Schug GJ, Georgelas A, et al. Transcriptional analysis of the adipocyte secretome. In: Berdanier, CD and Mousaia-Moussa, N, eds. Genomics and Proteomics in Nutrition. New York: Marcel Dekker, Inc, 2004: 393-409.

13. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet 2009; 10:153-9; PMID:19188922; http://dx.doi.org/10.1038/nrg2521.

14. McKenna JS, Xu Z, Zhang X, Wang L, Gimble JM, Landers ES, et al. Comparative epigenomic analysis of murine and human adipogenesis. Cell 2010; 143:156-7; PMID:20887899; http://dx.doi.org/10.1016/j.cell.2010.09.006.

15. Nielsen R, Pedersen TA, Hagenbeck D, Moulos P, Siersbaek R, Megens E, et al. Genome-wide profiling of PPARgamma/RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in XRNR dimer composition during adipogenesis. Genes Dev 2008; 22:2935-67; PMID:18981474; http://dx.doi.org/10.1101/gad.501108.

16. Payne VA, Au WS, Gray SL, Nora ED, Rahman SM, Schneider PM, et al. Comparative epigenomic analysis of murine and human adipogenesis. J Biol Chem 2007; 282:21005-14; PMID:17502476; http://dx.doi.org/10.1074/jbc.M702871200.

17. Quo L, Zhou C, Shao P, Schuack J, Johnson PF, Shao J. Transcriptional regulation of fatty acid translocase/CD36 expression by CCAAT/enhancer-binding protein alpha. J Biol Chem 2008; 283:8788-95; PMID:18263877; http://dx.doi.org/10.1074/jbc.M800532000.

18. Rahman A, Kumar SG, Kim SW, Hwang HJ, Baek YM, Lee SH, et al. Proteomic analysis for inhibitory effect of chitosan oligosaccharides on 3T3-L1 adipocyte differentiation. Proteomics 2008; 8:5609-81; PMID:18175573; http://dx.doi.org/10.1002/ pmic.200700888.