Incidence Bounds on Edge Partitions of K_n

Andean E. Medjedovic

Abstract

We solve a problem conjectured by Cheriyan, giving sharp bounds for incidence of certain edge partitions of the connected graph on n-vertices. We briefly discuss the history of the problem and relation to node connectivity of strongly regular graphs. We show that the bound cannot be made sharper.

1 Introduction

Several characterizations of edge-connectivity are known within the literature. See, for instance, [5], [3], or [6]. In recent years there has been a push to understand an analogous notion of connectivity for nodes [2]. One earlier result within this area is found in [4].

Theorem 1.

In an effort to extend this to a larger family of strongly regular graphs the Johnson $J(n, 2)$ (the line graph of K_n) was considered. It was remarked that this problem is equivalent to proving the main theorem within this work. Since then, the analogue for $J(n, 2)$ on $J(n, 2)$ was proven in [1] but the incidence bound remained an open question.

The author would like to thank Joseph Cheriyan for his comments and encouragements. Without him this paper would not have been possible.

2 The main result

Let K_n be the connected graph on n vertices. Partition the edges of K_n into 3 sets $S,T,$ and Z with $|Z| = n - 3$. We prove that the incidence of S and T is at least the minimum of the incidence of either Z and T or Z and S.
Label the vertices \(v_1, \ldots, v_n \) and let the degree in \(S, T, Z \) of \(v_i \) be \(s_i, t_i, z_i \), respectively. We prove

Theorem 2.

\[
\sum_{i=1}^{n} s_i t_i \geq \min\{\sum_{i=1}^{n} z_i t_i, \sum_{i=1}^{n} z_i s_i\}.
\]

We begin with an elementary observation, since the degree of each node is \(n - 1 \), it follows that \(s_i + t_i + z_i = n - 1 \). Suppose \(s_1, \ldots, s_p \) are the nodes with degree in \(S \) equal to 0, let \(t_{p+1}, \ldots, t_{p+q} \) be the nodes with degree in \(T \) being 0. We let \(P = \{v_1, \ldots, v_p\}, Q = \{v_{p+1}, \ldots, v_{p+q}\}, R = V \setminus (P \cup Q) \).

Assume for contradiction that \(\sum_{i=1}^{n} s_i t_i < \sum_{i=1}^{n} z_i t_i \) and \(\sum_{i=1}^{n} s_i t_i < \sum_{i=1}^{n} z_i s_i \). We first prove a few quick lemmas:

Lemma 1. We have:

\[
2(n-1)(n-3) - \sum_{i=1}^{n} z_i^2 = (n-1) \sum_{i=1}^{n} z_i - \sum_{i=1}^{n} z_i^2 > \sum_{i=1}^{n} (n-1)t_i - \sum_{i=1}^{n} t_i^2,
\]

\[
2(n-1)(n-3) - \sum_{i=1}^{n} z_i^2 = (n-1) \sum_{i=1}^{n} z_i - \sum_{i=1}^{n} z_i^2 > \sum_{i=1}^{n} (n-1)s_i - \sum_{i=1}^{n} s_i^2.
\]

And:

\[
\frac{\sum_{i=1}^{n} z_i^2}{2} + \sum_{i=1}^{n} s_i t_i < (n-1)(n-3) \tag{1}
\]

Proof. From

\[
\sum_{i=1}^{n} s_i t_i < \sum_{i=1}^{n} z_i t_i
\]

Write \(t_i = n - 1 - s_i - z_i \) to get

\[
(n-1) \sum_{i=1}^{n} z_i - \sum_{i=1}^{n} z_i^2 > \sum_{i=1}^{n} (n-1)s_i - \sum_{i=1}^{n} s_i^2.
\]

And by symmetry we have the other inequality. For the last inequality simply sum the 2 incidence inequalities (note that \(\sum z_i = 2(n-3) \):
\[
2 \sum_{i=1}^{n} s_i t_i < \sum_{i=1}^{n} z_i(t_i + s_i)
\]
\[
2 \sum_{i=1}^{n} s_i t_i - \sum_{i=1}^{n} z_i^2 < \sum_{i=1}^{n} z_i(n - 1) = 2(n - 1)(n - 3)
\]
And divide through by 2. \hfill \Box

Lemma 2.

\[p + q \leq 2\sqrt{n - 3}.\]

Proof. We have exactly \(n - q\) non-zero degree in \(S\) vertices so for each \(s_i\) we have \(s_i \leq n - 1 - q\) and similarly \(t_i \leq n - 1 - p\). Then for \(v_i \in P, Q\) we must have \(z_i \geq p, q\). Using this we bound the sum \(p + q\), since \(p^2 + q^2 \leq \sum_{P} z_i + \sum_{Q} z_i \leq \sum_{i=1}^{n} z_i = 2(n - 3)\). The maximum over \(p\) and \(q\) is achieved when 1 term dominates, so \(p + q\) is at most \(2\sqrt{n - 3}\). \hfill \Box

Lemma 3.

\[\sum_{i=1}^{n} \frac{z_i^2}{2} + 3 \geq \sum_{R} z_i\]

Proof. The sum of squares is smallest when they are evenly distributed, in this case this is achieved when \(z_i = 2\) for \(n - 6\) of the vertices and 1 for the remaining 6. We also know \(\sum_{R} z_i \leq \sum_{i=1}^{n} z_i = 2(n - 3)\):

\[\sum_{i=1}^{n} \frac{z_i^2}{2} \geq \frac{2^2}{2}(n - 6) + \frac{6}{2} + 3 = 2(n - 3) \geq \sum_{R} z_i\]

\hfill \Box

Now for \(p + q \leq 2\), using \(2\) and \(3\)

\[
\sum_{i=1}^{n} s_i t_i + \sum_{i=1}^{n} \frac{z_i^2}{2} = \sum_{R} s_i t_i + \sum_{i=1}^{n} \frac{z_i^2}{2}
\]
\[
\geq \sum_{R} (n - 2 - z_i) + \sum_{i=1}^{n} \frac{z_i^2}{2}
\]
\[
= (n - p - q)(n - 2) - \sum_{R} z_i + \sum_{i=1}^{n} \frac{z_i^2}{2}
\]
\[
\geq (n - p - q)(n - 2) - 3 \geq (n - 2)(n - 2) \geq (n - 1)(n - 3)
\]

\[(2)\]
We can WLOG assume $p \geq q$. Assume $p \geq 4$. Then by summing the first two lines of (1)

$$4(n - 1)(n - 3) - 2 \sum_{i=1}^n z_i^2 > (n - 1) \sum_{i=1}^n (n - 1 - z_i) - \sum_{i=1}^n (t_i^2 + s_i^2)$$

$$= n(n - 1)^2 - 2(n - 1)(n - 3) - \sum_{P,Q} (t_i^2 + s_i^2) - \sum_R (t_i^2 + s_i^2)$$

$$> n(n - 1)^2 - 2(n - 1)(n - 3) - \sum_{P,Q} (n - 1 - z_i)^2$$

$$- (n - p - q)((n - 1 - p)^2 + p^2)$$

$$= n(n - 1)^2 - 2(n - 1)(n - 3) - \sum_{P,Q} z_i^2 + 2(n - 1)\left(\sum_{P,Q} z_i\right)$$

$$- (p + q)(n - 1)^2 - (n - p - q)((n - 1 - p)^2 + p^2)$$

(3)

Rearranging and simplifying terms now gives us:

$$6(n - 1)(n - 3) > 2 \sum_{i=1}^n z_i^2 + 2(n - 1)\left(\sum_{P,Q} z_i\right) - \sum_{P,Q} z_i^2 + 2pn^2 + 2p(-1-2p-q)n + 2p(p^2+q+pq)$$

The goal is to prove the RHS is larger than the LHS for contradiction. Notice:

$$2 \sum_{i=1}^n z_i^2 + 2(n - 1)\left(\sum_{P,Q} z_i\right) - \sum_{P,Q} z_i^2 \geq 2 \sum_{i=1}^n z_i + \sum_{P,Q} (2(n - 1) - z_i) z_i \geq 4(n - 3) + (n + 1)q.$$

The last $(n + 1)q$ is from at least $z_i = 1$ for all $i \in Q$, otherwise $z_i = 0$ implies there is some vertex with all edges in S meaning $p = 0$. And bounding $2(n - 1) - z_i \geq n + 1$.

Substituting the above in and collecting n yields

$$0 > n^2(2p - 6) + n(2p(2p - q - 1) + q + 28) + 2p(p^2 + pq + q) + q - 30.$$

We assumed that p is at least 4. The worst case for the above is when
\[q = p \] with the largest zero of the RHS occurring at
\[n = \frac{1}{4(p-3)} \left(\sqrt[]{-32p^3(p-1) + 4p^2(p^2 + 12p + 57) - 4p(p^2 + 19p - 32) + p^2 + 80p + 64} \\
- 4p^2 + 2p(p + 1) - p - 28 \right) \quad (4) \]

Recall the bound \(p + q < 2\sqrt{n - 3} \). This gives \((\frac{n}{2})^2 + 3 < n \). Substitute this for \(n \) in the above. What one obtains is a polynomial that is positive for all \(p \geq 4 \). Our contradictive assumption was that this expression is negative, contradiction.

We have only a few cases left to consider: \((p, q) \in \{(2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (3, 3)\} \). One can verify by computer that the conjecture is true for \(n \leq 15 \) for the given \((p, q) \). For larger \(n \) we use the following technique.

By symmetry we can assume that \(p \geq q \) and that \(p \) is at least 2. Consider the 2 vertices, \(v_1, v_2 \) in \(P \). Let \(P_2 \) be the subset of vertices in \(R \) connected to both \(v_1 \) and \(v_2 \) via an edge in \(T \). Use \(\sigma \) to denote \(|P_2| \). We must then have \(z_1 + z_2 = 2(n - 1) - t_1 - t_2 \) by degree considerations on \(P \). Also, \(\sigma \geq t_1 + t_2 - 2p + 3 - (n - q - p - 2) = t_1 + t_2 - p + q - n + 5 \) by pigeonhole principle. This comes from the realization that in the worst case we have \(t_1 + t_2 - 2p + 3 \) \((−2p+3 \text{ comes from edges contained in } P)\) for the case where edges going to the \(n - p - q - 2 \) vertices in \(R \). A double count occurs at least \(t_1 + t_2 - 2p + 3 - (n - q - p - 2) \) many times.

We intend to show
\[\frac{1}{2} \sum_{i=1}^{n} z_i^2 + \sum_{i} s_i t_i \geq (n - 1)(n - 3). \]

Indeed
\[\frac{1}{2} \sum_{i} z_i^2 + \sum_{i} s_i t_i = \frac{1}{2} \sum_{i} z_i^2 + \sum_{P_2} s_i t_i + \sum_{R \setminus P_2} s_i t_i \]
\[= \frac{1}{2} \sum_{i=1}^{n} z_i^2 + \sum_{P_2} 2(n - 3 - z_i) + \sum_{R \setminus P_2} (n - 2 - z_i) \]
\[\geq \frac{1}{2} \sum_{i=1}^{n} z_i^2 - \sum_{R} z_i - \sum_{P_2} z_i + 2(n - 3)\sigma + (n - p - q - \sigma)(n - 2) \]
\[= C_z + n^2 + n(\sigma - p - q - 2) - 4\sigma + 2(p + q). \]

(5)
Where \(C_z := \frac{1}{2} \sum_{i=1}^{n} z_i^2 - \sum_{R} z_i - \sum_{P_2} z_i \). Comparing the above to \((n-1)(n-3)\) gives a difference of
\[
\frac{n(\sigma - p - q + 2) + C_z + 2(p + q) - 3 - 4\sigma}{\sigma - p - q + 2}
\]
That is, we wish to show
\[
n > \frac{(4\sigma + 3 - 2(p + q) - C_z)}{\sigma - p - q + 2}
\]
for a contradiction.

Lemma 4.
\[
\sigma - p - q + 2 \geq 1
\]
Proof. From the above we have \(\sigma \geq t_1 + t_2 - p + q - n + 5 \) or
\[
\sigma + z_1 + z_2 \geq n + 3 - p + q.
\]
And since \(z_1 + z_2 \) is at most \(n - 2 \) (we can have 1 adjacent edge among the \(n - 3 \) in \(Z \))
\[
\sigma - p - q + 2 \geq n + 3 - 2p + 2 - z_1 - z_2 \geq 7 - 2p \geq 1.
\]

Lemma 5. The penultimate step is using this bound on \(C_z \)
\[
-C_z = \sum_{P_2} 2z_i - \frac{1}{2} z_i^2 + \sum_{R \setminus P_2} z_i - \frac{1}{2} z_i^2 \leq 2\sigma + \frac{1}{2}(n - p - q - \sigma).
\]
Proof. We can finally simplify the fraction above \([6]\) to
\[
\frac{4\sigma + 3 - 2(p + q) - C_z}{\sigma - p - q + 2} \leq \frac{1}{2} n + \frac{15}{2}
\]
by finding common denominators and reducing.

So we are left with \(n > \frac{1}{2} n + \frac{15}{2} \), the theorem is true for \(n > 15 \), as required.

To summarize, we are left with

Theorem 3. Suppose \(S, T, Z \) is an edge partition of \(K_n \) with \(|Z| = n - 3 \). Then
\[
\sum_{i=1}^{n} s_i t_i \geq \min\{ \sum_{i=1}^{n} z_i t_i, \sum_{i=1}^{n} z_i s_i \}
\]
Where \(s_i, t_i, z_i \) are the respective degrees of vertex \(v_i \) in \(S, T, Z \).
3 Sharp Bounds

We now demonstrate that the bound obtained on the incidence is in some sense the best possible. Suppose we strengthened the condition on the size of Z to be $n - 2$ instead of $n - 3$. In this case we can construct a family of counterexamples.

Let $n > 5$ and consider the edge partition

\[S = \{v_1, v_2\}, \{v_2, v_3\} \]
\[Z = \{v_1, v_3\}, \{v_2, v_i\} \quad \forall i \in \{4, \ldots, n\} \]
\[T = \text{the remaining nodes.} \]

The incidence of S and T is then $2(n - 3)$ while the incidence of S and Z is $2(n - 3) + 2$. The incidence between T and Z is at least $(n - 3)(n - 1)$. Therefore, the bound from 3 fails.

We've added an illustration of the case $n = 5$ below.

The blue edges are in S, the black, T, and red, Z.

![Diagram of the case n = 5](image.png)
References

[1] Florian Hoersch and Z. Szigeti. “Eulerian orientations and vertex-connectivity”. In: 2019.

[2] Tamás Király and Lap Chi Lau. “Approximate minâĂŞmax theorems for Steiner rooted-orientations of graphs and hypergraphs”. In: Journal of Combinatorial Theory, Series B 98.6 (2008), 1233âĂŞ1252. issn: 0095-8956. doi: 10.1016/j.jctb.2008.01.006. url: http://dx.doi.org/10.1016/j.jctb.2008.01.006.

[3] Zoltán Király and Zoltán Szigeti. “Simultaneous well-balanced orientations of graphs”. In: Journal of Combinatorial Theory, Series B 96.5 (2006), 684âĂŞ692. issn: 0095-8956. doi: 10.1016/j.jctb.2006.01.002. url: http://dx.doi.org/10.1016/j.jctb.2006.01.002.

[4] Maxwell Levit, L. Sunil Chandran, and Joseph Cheriyan. “On Eulerian orientations of even-degree hypercubes”. In: Operations Research Letters 46.5 (2018), 553âĂŞ556. issn: 0167-6377. doi: 10.1016/j.orl.2018.09.002. url: http://dx.doi.org/10.1016/j.orl.2018.09.002.

[5] C. ST. J. A. Nash-Williams. “On Orientations, Connectivity and Odd-Vertex-Pairings in Finite Graphs”. In: Canadian Journal of Mathematics 12 (1960), 555âĂŞ567. issn: 1496-4279. doi: 10.4153/cjm-1960-049-6. url: http://dx.doi.org/10.4153/cjm-1960-049-6.

[6] Carsten Thomassen. “Strongly 2-connected orientations of graphs”. In: Journal of Combinatorial Theory, Series B 110 (2015), 67âĂŞ78. issn: 0095-8956. doi: 10.1016/j.jctb.2014.07.004. url: http://dx.doi.org/10.1016/j.jctb.2014.07.004.