Regulation of sphingolipid synthesis through Orm1 and Orm2 in yeast

Ming Liu1, Chunjuan Huang2, Surendranath R. Polu3, Roger Schneiter3 and Amy Chang2,*

1Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
2Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109, USA
3Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland

*Author for correspondence (amychang@umich.edu)

Summary

Sphingolipids are crucial components of membranes, and sphingolipid metabolites serve as signaling molecules. Yeast Orm1 and Orm2 belong to a conserved family of ER membrane proteins that regulate serine palmitoyltransferase, which catalyzes the first and rate-limiting step in sphingolipid synthesis. We now show that sphingolipid synthesis through Orm1 is a target of TOR signaling, which regulates cell growth in response to nutritional signals. Orm1 phosphorylation is dependent on the Tap42 phosphatase complex, which acts downstream of TOR protein kinase complex 1. In temperature-sensitive tap42-11 cells, impaired Orm1 phosphorylation occurs concomitantly with reduced sphingolipid synthesis. A second mechanism for regulating sphingolipid synthesis is through control of Orm2 protein level. The Orm2 protein level responds to ER stress conditions, increasing when cells are treated with tunicamycin or DTT, agents that induce the unfolded protein response (UPR). The sphingolipid intermediates (long chain base and ceramide) are decreased when ORM2 is overexpressed, suggesting that sphingolipid synthesis is repressed under ER stress conditions. Finally, in the absence of the Orms, the UPR is constitutively activated. Lipid dysregulation in the absence of the Orms might signal to the ER from the plasma membrane because UPR activation is dependent on a cell surface sensor and the mitogen-activated protein kinase (MAPK) cell wall integrity pathway. Thus, sphingolipid synthesis and the UPR are coordinately regulated.

Key words: ER stress response, Endoplasmic reticulum, Protein phosphorylation, Sphingolipid synthesis

Introduction

Membrane biogenesis during cell growth and proliferation involves coordination of protein and lipid synthesis. In response to nutritional conditions, protein synthesis is modulated by multiple signaling pathways (Smets et al., 2010). One of these is target of rapamycin (TOR), a conserved protein kinase complex that regulates growth in response to nutrients and stresses. The unfolded protein response (UPR) pathway also plays a role in membrane biogenesis by adjusting the capacity of the endoplasmic reticulum (ER) to handle the load of newly synthesized proteins (Cox et al., 1997; Ron and Walter, 2007; Rutkowski and Hegde, 2010). The ER also serves as the initiation site for synthesis of the major lipid components of membranes. Transcriptional regulation serves as a major mechanism for controlling phospholipid and sterol synthesis (Nohturfft and Zhang, 2009). Insight into regulation of sphingolipid synthesis has come from recent discovery of the conserved ORMDL family of ER membrane proteins (Breslow et al., 2010; Han et al., 2010).

Sphingolipids are crucial structural components of membranes and contribute to key physical properties (Breslow and Weissman, 2010). Sphingolipid metabolites also have important signaling functions. The ORMDL proteins regulate sphingolipid synthesis by physically associating with serine palmitoyltransferase (SPT), which catalyzes the first and rate-limiting step of sphingolipid synthesis. SPT mediates production of long chain bases from the condensation of serine and palmitoyl CoA (Funato et al., 2002). Ceramide is then generated upon addition of a second long chain fatty acid to a long chain base. Mature sphingolipids are made in the Golgi upon transport of ceramide from the ER. The ORMDL proteins repress SPT activity; in the absence of ORMDL regulation, SPT activity becomes hyperactive and long chain base accumulates (Breslow et al., 2010; Han et al., 2010). In yeast, SPT activity is regulated by Orm1 and Orm2, and phosphorylation of the Orm proteins adjusts SPT activity to maintain sphingolipid homeostasis (Breslow et al., 2010). In cells depleted of Orm1 and Orm2 (orm1Δ orm2Δ cells), dysregulation of sphingolipid synthesis results in pleiotropic phenotypes, including impaired growth and constitutive activation of the UPR (Han et al., 2010).

As a first step to understanding how sphingolipid synthesis is regulated in response to growth conditions, we have identified the TOR signaling pathway as one regulatory component controlling sphingolipid synthesis through Orm1. In this study, we show that Orm1 phosphorylation and sphingolipid synthesis are dependent on the Sit4-Tap42 complex, a downstream target of the rapamycin-sensitive TOR protein kinase complex, TORC1. Another mechanism for regulating sphingolipid synthesis is by changing the amount of Orm2 protein. Orm2 protein level is increased by agents that cause ER stress, and sphingolipid synthesis is repressed upon ORM2 overexpression.

Results

Orm1 phosphorylation and sphingolipid synthesis respond to the TOR signaling pathway

In a recent large-scale proteomic study, Orm1 was identified as a possible target phosphorylated by the TOR signaling pathway (Huber et al., 2009). Phosphorylation of tandem affinity
purification (TAP)-tagged Orm1 was detected as electrophoretic mobility shifts (Fig. 1). Orm1 is constitutively phosphorylated on multiple residues (Breslow et al., 2010) (Fig. 3). Thus, under basal conditions, Orm1 phosphorylation appears heterogeneous and this is reflected by western blot as two or more bands (Fig. 1A, lane 1). When cells were treated with myriocin to inhibit SPT, phosphorylation of Orm1–TAP was increased and visualized as additional bands with decreased electrophoretic mobility (Fig. 1A, lane 2). To assess whether Orm1 is a possible target of the TOR pathway, Orm1–TAP was examined after treating cells with rapamycin to inhibit TORC1 activity. Western blot for Orm1–TAP revealed additional bands with decreased electrophoretic mobility after rapamycin treatment for 20 minutes (Fig. 1A, lane 3), confirming a dependence of Orm1 phosphorylation on TORC1. Rapamycin stimulates Orm1 phosphorylation, but was not observed to affect Orm2 phosphorylation (Fig. 1B).

The Tap42–Sit4–PP2A protein phosphatase complex acts downstream of TORC1 to regulate growth in response to cellular nutrient status (Smets et al., 2010). To test whether this branch of the TOR signaling pathway participates in Orm regulation, the electrophoretic mobility of Orm1–TAP and Orm2–TAP was assessed in sit4Δ cells. As shown in Fig. 1A, basal phosphorylation of Orm1 appeared decreased in sit4Δ cells, and response to myriocin and rapamycin was abrogated. By contrast, basal phosphorylation of Orm2 and response to myriocin were unaffected in sit4Δ cells.

In sit4Δ cells, decreased Orm1 phosphorylation correlated with decreased long chain base and ceramide levels, as measured by mass spectrometry (Fig. 1C). A decreased level of these sphingolipid intermediates is consistent with a model in which SPT activity is repressed by dephosphorylated Orm1.

Orm1 phosphorylation and sphingolipid synthesis in tap42-11 cells

Because numerous pleiotropic phenotypes are associated with sit4Δ cells, a temperature-sensitive tap42-11 mutant was used to inactivate TOR signaling. The tap42-11 allele confers rapamycin resistance at 25°C and lethality at 37°C (Cherkasova and Hinnebusch, 2003). TAP42+ and tap42-11 cells were grown at 30°C and shifted to 37°C in the presence or absence of myriocin for 1 hour. A comparison of Orm1–TAP electrophoretic mobility is shown in Fig. 2A. Stimulated phosphorylation in response to rapamycin was barely detectable in tap42-11 cells at 30°C and undetectable at 37°C.

To improve resolution of electrophoretic mobility shifts, Orm1 protein was tagged with a single hemagglutinin (HA) epitope (Fig. 2B). In wild-type cells, a sizeable electrophoretic mobility shift was observed upon increased phosphorylation of HA–Orm1 stimulated by myriocin and rapamycin (Fig. 2B). All bands reflect different degrees of phosphorylation as they collapse to a single band upon alkaline phosphatase treatment (Fig. 3). Phosphorylation of HA–Orm1 in TAP42+ and tap42-11 cells was quantified by scanning western blots and plotting maximally phosphorylated HA–Orm1 (top band) as a percentage of total HA–Orm1 (Fig. 2B, right). In comparison with wild-type cells, rapamycin-induced phosphorylation in tap42-11 cells was reduced at 30°C (Fig. 2B, lane 3). At 37°C, response to rapamycin in tap42-11 cells was undetectable (Fig. 2B, compare lanes 3 and 6). At 37°C, basal and myriocin-stimulated phosphorylation of Orm1 were significantly reduced in tap42-11 cells (Fig. 2B, lanes 4 and 5).

Ceramide levels were compared in wild-type and tap42-11 cells by mass spectrometry. Cells were grown at 24°C and then shifted to either 30°C or 37°C for 2 hours before lipid analysis. In tap42-11 cells, a shift to 37°C resulted in decreased ceramide levels (Fig. 2C). Upon Tap42 inactivation, the temporal correspondence between diminished levels of ceramide, and reduced Orm1 phosphorylation (Fig. 2A,B) suggests that inhibition of sphingolipid synthesis is a consequence of Orm1 dephosphorylation.

The Ser/Thr protein kinase Npr1 is controlled by TOR and Tap42, and responds to nutrient conditions (Schmidt et al., 1998). In npr1Δ cells, Orm1 phosphorylation was abrogated in response to rapamycin (Fig. 2D, compare lanes 3 and 6, arrow) and Orm1
Orm1 phosphorylation in response to myriocin-mediation inhibition of SPT occurs at multiple residues at its N-terminus (Breslow et al., 2010). Serines 32 and 34 of Orm1 were identified in a large scale assay as residues phosphorylated in response to rapamycin (Huber et al., 2009). Fig. 3C examines phosphorylation of an Orm1 mutant (SS-A Orm1) that has five serine-to-alanine changes (S29A, S32A, S34A, S35A, S36A). Constitutive phosphorylation of mutant Orm1 was reduced compared to that of wild-type Orm1 (Fig. 3C, lanes 5 and 8). Stimulated phosphorylation of Orm1 in response to rapamycin was abrogated (Fig. 3C, lane 11). Response to myriocin was impaired as mobility of mutant Orm1 shifted up slightly (compare lane 2 with lane 3) but the maximally phosphorylated band was not present (Fig. 3C, lane 1, arrow).

Co-immunoprecipitation of Orm1 and the ceramide synthase component, Lac1
In orml1 orml2A cells, ceramide levels are decreased even as SPT activity and long chain base levels are increased (Han et al., 2010). We tested the possibility that ceramide synthase activity is regulated by the Orm proteins independently of SPT. Ceramide synthase comprises three ER membrane proteins, Lac1, Lag1 and Lip1 (Vallée and Riezman, 2005). To detect physical association with Orm1–TAP, an HA-tagged Lac1 construct was used in pull-down experiments. Fig. 4A shows the presence of heterogeneously phosphorylated with lesser phosphorylated forms predominating (Fig. 3A, lane 7). In orml2A cells, HA–Orm1 was dephosphorylated with an electrophoretic mobility similar to that from ORM2+ cells treated with alkaline phosphatase (Fig. 3A, compare lanes 8 and 9). HA–Orm1 in orml2A cells appears fully dephosphorylated because no effect on its mobility was detected after treatment with alkaline phosphatase (Fig. 3A, compare lanes 11 and 12, arrow). However, in orml2A cells, HA–Orm1 phosphorylation was increased in response to myriocin addition (Fig. 3A, lane 3), suggesting that SPT activity is a major influence on Orm1 phosphorylation state. When Orm2 was overexpressed, HA–Orm1 phosphorylation was constitutively increased (Fig. 3A, lane 4, asterisk). Even so, in cells with high copy ORM2, growth on plates with low dose myriocin was compromised (Fig. 3A, bottom panels), consistent with increased repression of SPT activity upon Orm2 overexpression. Together, these results support a model in which Orm1 phosphorylation offsets fluctuations in Orm2 levels to maintain homeostatic control of SPT.

Sac1, a phosphoinositide phosphatase, is another component of the Orm protein complex named SPOTS (containing SPT, Orm1, Orm2, Tsc3 and Sac1) (Breslow et al., 2010). Fig. 3B, lane 3, shows that Orm1 phosphorylation was constitutively increased in sac1A cells. Because there is a chromosomal copy of ORM1 in sac1A cells in addition to HA–Orm1, two controls are shown. Basal phosphorylation of HA–Orm1 was increased in cells with chromosomal ORM1 (Fig. 3B, lane 2) in comparison with cells in which HA–Orm1 was the sole copy of ORM1 (Fig. 3B, lane 1). Phosphatidylinositol is a component of complex sphingolipids in yeast, and it has been reported that sphingolipid metabolism is modulated by phosphatidylinositol levels regulated by Sac1 (Brice et al., 2009). Similarly to the response to myriocin, increased phosphorylation of Orm1 in sac1A cells might reflect a compensatory response to inhibited flux through the sphingolipid synthesis pathway.

Orm1 phosphorylation in response to myriocin-mediated inhibition of SPT occurs at multiple residues at its N-terminus (Breslow et al., 2010). Serines 32 and 34 of Orm1 were identified in a large scale assay as residues phosphorylated in response to rapamycin (Huber et al., 2009). Fig. 3C examines phosphorylation of an Orm1 mutant (SS-A Orm1) that has five serine-to-alanine changes (S29A, S32A, S34A, S35A, S36A). Constitutive phosphorylation of mutant Orm1 was reduced compared to that of wild-type Orm1 (Fig. 3C, lanes 5 and 8). Stimulated phosphorylation of Orm1 in response to rapamycin was abrogated (Fig. 3C, lane 11). Response to myriocin was impaired as mobility of mutant Orm1 shifted up slightly (compare lane 2 with lane 3) but the maximally phosphorylated band was not present (Fig. 3C, lane 1, arrow).

Co-immunoprecipitation of Orm1 and the ceramide synthase component, Lac1
In orml1 orml2A cells, ceramide levels are decreased even as SPT activity and long chain base levels are increased (Han et al., 2010). We tested the possibility that ceramide synthase activity is regulated by the Orm proteins independently of SPT. Ceramide synthase comprises three ER membrane proteins, Lac1, Lag1 and Lip1 (Vallée and Riezman, 2005). To detect physical association with Orm1–TAP, an HA-tagged Lac1 construct was used in pull-down experiments. Fig. 4A shows the presence of

Fig. 2. Impaired Orm1 phosphorylation and concomitantly reduced ceramide in temperature-sensitive tap42-11 cells. (A, B) Phosphorylation of Orm1. Exponentially growing TAP42+ and tap42-11 cells were grown at 30°C in synthetic complete (SC) or SC-histidine medium. Cells were then kept at indicated temperatures for 2 hours prior to lipid extraction and measurement by mass spectrometry. Cells were grown at 24°C in SC medium and incubated at the indicated temperatures for 2 hours prior to lipid extraction and measurement of ceramide C (t18:0/C26:0). Measurements were made in duplicate on two independent colonies. (D) Western blot of HA–Orm1 (pSH14HA) in wild-type (HXX1-7C) and tap42-11 (CY1078). Right: Quantification of western blot. Maximally phosphorylated HA–Orm1 (top band, arrow) is expressed as a percentage of total HA–Orm1 signal. HA–Orm1 in tap42-11 cells (black bars), and TAP42 cells (grey bars). (C) Ceramide levels in TAP42 and tap42-11 cells were determined by mass spectrometry. Cells were grown at 24°C in SC medium and incubated at the indicated temperatures for 2 hours prior to lipid extraction and measurement of ceramide C (t18:0/C26:0). Measurements were made in duplicate on two independent colonies. (D) Western blot of HA–Orm1 (pSH14HA) in wild-type (HXX1-7C) and npr1Δ cells. Cells were incubated in SC-histidine medium in the presence and absence of myriocin (0.15 μg/ml) for 1 hour or rapamycin (200 nM) for 20 minutes at 30°C. Arrow shows impaired phosphorylation in response to rapamycin treatment.

Orm1 phosphorylation in response to myriocin was impaired (Fig. 2D, compare lanes 2 and 5).

Orm1 phosphorylation responds to Orm2 status
Cooperation between Orm1 and Orm2 has been suggested by genetic evidence showing that orml1 orml2A phenotypes are suppressed by either high copy ORM1 or high copy ORM2 (Han et al., 2010). Physical interaction between Orm1 and Orm2 further supports a cooperative relationship (Breslow et al., 2010; Han et al., 2010). Fig. 3A shows that Orm1 phosphorylation responds to Orm2 status. Under basal conditions in ORM2+ cells where HA–Orm1 is the sole copy of Orm1, HA–Orm1 was
HA-tagged Lac1 in an Orm1–TAP pull-down under non-denaturing conditions. HA–Lac1 was also associated with Orm2–TAP (Fig. 4B). Association of Orm1 with Lac1 was independent of Lag1 (Fig. 4A, right). Orm1 association with HA–Lac1 also appeared to be independent of Orm1 phosphorylation state because the association remained intact after addition of myriocin or upon ORM2 overexpression when Orm1 phosphorylation is increased. Orm1–TAP interaction with HA–Lac1 was unaffected in orm2Δ cells when Orm1 is dephosphorylated (Fig. 4A, left). Physical association with Lac1 suggests a more complex involvement of Orm1 in regulating the sphingolipid synthesis pathway.

Sphingolipid synthesis and ER stress

Because Orm2 protein level is increased by agents that increase ER stress (Han et al., 2010; Hjelmqvist et al., 2002), we examined whether changing the Orm2 protein level could be another mechanism for regulating sphingolipid synthesis. ORM2 was expressed from a high copy plasmid, and sphingolipid intermediates were measured by mass spectrometry. Fig. 5A shows that high copy Orm2 expression resulted in decreased levels of long chain base and ceramide; Orm1 overexpression also induced decreased ceramide levels. These findings predict that sphingolipid synthesis is decreased by Orm2 protein induced during the ER stress response.

To examine the response of Orm1 to ER stress, cells were treated with tunicamycin, an inhibitor of N-linked glycosylation, or with the reducing agent DTT. As shown in Fig. 5B, Orm1 phosphorylation was stimulated by tunicamycin and DTT treatments. Strikingly, in the absence of Orm2, Orm1 phosphorylation did not respond to tunicamycin or DTT (Fig. 5B, arrow). In the absence of Orm2, Orm1 phosphorylation still increased in response to myriocin addition (Fig. 5B). These results suggest that Orm1 phosphorylation is increased as a compensatory response to increased Orm2 levels during ER stress, similar to increased Orm1 phosphorylation upon ORM2 overexpression (Fig. 3A).

Constitutive UPR in orm1Δ orm2Δ cells is signaled via the plasma membrane

ER stress-inducing agents affect sphingolipid synthesis by increasing Orm2 protein levels (Han et al., 2010). Conversely, in the absence of Orm1 and Orm2, UPR is constitutively activated (Han et al., 2010). Recent reports have suggested that a mitogen-activated protein kinase (MAPK) signaling cascade is activated by disruption of sphingolipid homeostasis (Jesch et al., 2010). Cross-talk between MAPK signaling and UPR pathways has been suggested because activation of UPR can occur in response to perturbation at the plasma membrane (Krysan, 2009). To assay signaling of constitutive UPR in orm1Δ orm2Δ cells, we used a UPR-lacZ reporter. By definition, the ER sensor Ire1 mediates UPR induced by tunicamycin in both wild-type and orm1Δ orm2Δ cells, and constitutive UPR in orm1Δ orm2Δ cells was also dependent on Ire1 (Fig. 6). Remarkably, signaling of constitutive UPR in orm1Δ orm2Δ cells also required the MAPK Slt2/Mpk1 (Fig. 6). Activation of UPR in response to tunicamycin addition was not impaired in slt2Δ orm1Δ orm2Δ cells.
HA-LAC1 were incubated with or without myriocin (0.15 μg/ml) for 1 hour at 30°C in SC-histidine medium. Pull-down of HA–Lac1 by Orm1–TAP was also examined in cells (ACX191-2A) with high copy ORM2 (pSH17). Control cells were transformed with HA–LAC1 but without TAP-tagged ORM1 (HXX1-7C). Lysate was prepared by vortexing cells with glass beads in the presence of 1% NP40. Input (lysate) was 10% of protein content used for pull-downs. Pull-downs, by incubation of lysate overnight with IgG Sepharose, were analyzed by SDS-PAGE and western blot with anti-HA monoclonal antibody. Arrow indicates absence of ORM1 protein. Orm1–TAP pull-down was confirmed by reblotting with rabbit serum (bottom panel). (B) Pull-down using lysate from cells with ORM1- and ORM2-tagged chromosomal ORM2 (CHY 48) bearing a centromeric plasmid with HA–LAC1. Protocol was as described for A.

The MAPK signaling cascade plays a well-established role in maintaining cell wall integrity through plasma-membrane-localized sensors such as Mid2 (Levin, 2005). To test the possibility that UPR in the absence of Orm1 and Orm2 is signaled from the plasma membrane, UPRE-lacZ activity was assayed in mid2Δ orm1Δ orm2Δ cells. Fig. 6 shows that signaling of constitutive UPR in orm1Δ orm2Δ cells was prevented in mid2Δ cells. Dependence on Mid2 suggests that signaling occurs from the plasma membrane to initiate the UPR response at the ER. In contrast to loss of Mid2, constitutive UPR in orm1Δ orm2Δ cells appeared to be less or insignificantly affected by loss of the cell wall integrity sensors Wsc1 and Wsc2 (Fig. 6).

Discussion

A major finding of this study is identification of a signaling pathway that regulates sphingolipid synthesis through Orm1 protein. Orm1 phosphorylation is increased upon addition of rapamycin to growth medium to mimic nutrient starvation and inhibit the TOR signaling pathway. Orm1 phosphorylation is dependent on the Tap42–Sit4 protein phosphatase complex, which mediates TORC1 signaling to a subset of downstream effectors. The Tap42–Sit4 phosphatase complex controls downstream phosphorylation as well as dephosphorylation events (Huber et al., 2009). At the restrictive temperature in rapamycin-dependent phosphorylation of Orm1 is abrogated and myriocin-stimulated phosphorylation is decreased (Fig. 2A,B). In rapamycin-treated cells after shift to 37°C, a decrease in ceramide levels accompanies impaired Orm1 phosphorylation (Fig. 2C). These results show that sphingolipid synthesis is regulated through Orm1 phosphorylation by the TORC1 signaling pathway, which coordinates membrane biogenesis with cell growth in response to environmental conditions.

Orm1 phosphorylation responds to the TOR-regulated protein kinase Npr1 (Fig. 2D). Because stimulation of Orm1 phosphorylation by rapamycin is abolished in npr1Δ cells, it appears that TOR signaling is conveyed through Npr1. Orm1 residues targeted by the TOR signaling pathway include Ser29, Ser32 and Ser34–36 because the 5S-A Orm1 mutant fails to respond to rapamycin (Fig. 3C). Because Orm1 phosphorylation in response to myriocin is only reduced in npr1Δ cells, Orm1 is probably phosphorylated at additional residues by one or more signaling pathways that have not yet been identified. Previous work suggested that Orm1 residues Ser51–53 are phosphorylated in response to myriocin (Breslow et al., 2010). Similarly, the signaling pathways regulating Orm2 are not yet known, but appear to be independent of TORC1 because Orm2 phosphorylation is rapamycin-independent (Fig. 1B).

The Orm proteins respond to the status of the sphingolipid synthesis pathway: increased phosphorylation of both Orm

![Figure 4](image)

Fig. 4. Association of Orm1 and Orm2 with ceramide synthase. (A) ORM2+ (ACX191-2A), orm2Δ (225-1A) and lag1Δ (ACX217-1A) cells with TAP-tagged chromosomal ORM1 and a centromeric plasmid bearing HA–LAC1 were incubated with or without myriocin (0.15 μg/ml) for 1 hour at 30°C in SC-histidine medium. Pull-down of HA–Lac1 by Orm1–TAP was also examined in cells (ACX191-2A) with high copy ORM2 (pSH17). Control cells were transformed with HA–LAC1 but without TAP-tagged ORM1 (HXX1-7C). Lysate was prepared by vortexing cells with glass beads in the presence of 1% NP40. Input (lysate) was 10% of protein content used for pull-downs. Pull-downs, by incubation of lysate overnight with IgG Sepharose, were analyzed by SDS-PAGE and western blot with anti-HA monoclonal antibody. Arrow indicates absence of ORM1 protein. Orm1–TAP pull-down was confirmed by reblotting with rabbit serum (bottom panel). (B) Pull-down using lysate from cells with ORM1- and ORM2-tagged chromosomal ORM2 (CHY 48) bearing a centromeric plasmid with HA–LAC1. Protocol was as described for A.

![Figure 5](image)

Fig. 5. Sphingolipid synthesis and ER stress response. (A) Ceramide and long chain base levels are decreased upon ORM1 and ORM2 overexpression. Wild-type (HXX1-7C) cells bearing 2μ plasmids with ORM1 (pSH16) or ORM2 (pSH17) were grown in SC medium at 30°C prior to lipid extraction and measurement of ceramide C (t18:0/C26:0) and C’ (t18:0/C24:0), dihydro sphingosine (DHS) and phytosphingosine (PHS) by mass spectrometry. Measurements were made in duplicate on two independent colonies. (B) Orm1 phosphorylation is increased upon UPR induction. orm1Δ (HXX1-7B) or orm1Δ orm2Δ cells (HXX1-7D) bearing HA-tagged Orm1 (pSH14HA) were treated with or without myriocin (myr; 0.15 μg/ml), tunicamycin (tun; 1 μg/ml) or DTT (1 mM) for 1 hour. Cells were frozen in TCA before lysis by vortexing with glass beads. Lysates were normalized to protein content and analyzed by western blot with anti-HA antibody. Arrow indicates absence of phosphorylation in response to tunicamycin and DTT in orm2Δ cells.
Regulation of sphingolipid synthesis

The UPR plays a role in lipid homeostasis because it regulates expression of genes functioning in lipid metabolism, including fatty acid and sterol metabolism and phospholipid and sphingolipid synthesis (Travers et al., 2000). In response to ER stress conditions, Orm1 phosphorylation is increased, but the response requires Orm2 (Fig. 5B). Thus, it seems likely that increased Orm1 phosphorylation in response to tunicamycin and DTT serves as a compensatory response to an increase in Orm2 protein. ER stress promotes increased Orm2 protein levels (Han et al., 2010; Hjelmqvist et al., 2002). Because sphingolipid intermediates are decreased upon Orm2 overexpression (Fig. 5A), we suggest that increased Orm2 protein levels reflect the major factor by which sphingolipid synthesis is repressed by ER stress. It has been proposed that increased phospholipid...
synthesis and membrane expansion are responses that alleviate ER stress (Schuck et al., 2009). Accordingly, we suggest that during the ER stress response, repressed sphingolipid synthesis changes membrane composition and, perhaps, the fluidity of the membrane.

Our work has implications for understanding the connection between lipid toxicity and ER stress in human diseases such as obesity and diabetes. There is accruing evidence from mammalian cell culture and animal model studies that the ER stress response is triggered by lipid imbalance and that chronic ER stress plays a crucial detrimental role in lipotoxicity (Brookheart et al., 2009). The best evidence that sphingolipid dysregulation contributes to metabolic disease comes from studies showing that inhibition of sphingolipid synthesis ameliorates disease in animal models (Summers, 2010). In this regard, work in yeast should continue to provide insight into the molecular mechanisms regulating sphingolipid homeostasis and the response to lipid dysregulation.

Materials and Methods

Strains and plasmids

Standard yeast media and genetic manipulations were as described previously (Sherman et al., 1986). Yeast strains are isogenic with BY4741 (MATa his3A1 leu2a0 met15A0 ura3-30) and BY4742 (MATa his3A1 leu2a0 lys2a0 ura3-0). Strains from the deletion collection (Open Biosystems, Huntsville, AL) were confirmed by PCR. HXX1-7D is an orm1A::clonNAT orm2A::kan’ mutant (Han et al., 2010). SHY22 is BY4741 with TRP1 replaced with HIS3 by marker swap (Cross, 1997). SHY35 has chromosomal ORM1 tagged with TAP and marked with TRP1, generated by transformation of SHY22 with PCR products amplified using pSH14 as template (Puig et al., 2001). ACX107 is SHY53 with HIS3 replaced by URA3 by marker swap. ACX191-2A is MATa his3A1 ORM1::TAP::TRP1, generated by a cross between BY4742 and SHY53. ACX198-1C is sit4A::kan’ ORM1::TAP::TRP1, generated by a cross between sit4A and ACX191-2A. CV1077 and CV1078 are MATa leu2a0 lys2a0 ura3-0 tap2::KAN [TAP42 LEU2 CEN] and MATa leu2a0 met15A0 ura3-0 tap2::kanMX4 [TAP42-11 LEU2 CEN], respectively, from Alan Hinnebusch (NIH, Bethesda, MD) (Cherkasova and Hinnebusch, 2003). ACX216 is a cross between CV1078 and ACX107 to generate tap2::11 ORM1::TAP::TRP1 (ACX216-4A) and a congeneric tap2+ strain (ACX216-4B). ACX218 is a cross between ACX164-1C (MATa ormlA::clonNAT orm2A::HIS5) and mid2A::kan’: ACX218-1C is an ormlA orm2A mid2A triple mutant. ACX213 is a cross between ACX164-1C and sit4A strains; ACX213-SD is an ormlA orm2A sit4A triple mutant. PX2 and PX3 are crosses between ACX164-1C and wsc2A::kan’ and wsc1A::kan’ strains, respectively; PX2-2A and PX3-3B are ormlA orm2A wsc2A and ormlA orm2A wsc1A triple mutants, respectively. ACX184-2B is MATa ORM2::TAP::HIS3 from a cross between BY4742 and BY4741 ORM2::TAP::HIS3 (Open Biosystems). CH48 is ORM2::TAP::URA3 generated by transformation of BY4742 with PCR products amplified using pSH1539 as template (Puig et al., 2001). ACX225-1A is an ORM1::TAP::TRP1 orml2A strain generated by a cross between HXX1-7A and SHY53. pSH16 and pSH17 are LEU2-marked 2μ plasmid bearing ORM1 and ORM1, respectively (Han et al., 2010). pSH14 is a HIS3-marked centromeric plasmid bearing ORM1 as a 2 kb insert. pSH14HA has an HA epitope introduced after the initiator methionine of Orml1 by site-directed mutagenesis. pSH14HA-S5 has five serine-to-alanine changes (S29A, S32A, S34A, S35A, S36A). Primer sequences available upon request. pMK204-7-3HA is a HIS3-marked centromeric plasmid bearing HA-tagged LAC1, a gift from Scott Moye-Rowley, University of Iowa (Kolaczkowski et al., 2004). pUC104, a reporter for UPR, is a URA3-marked 2μ plasmid bearing UPRE-lacZ from the Peter Walter laboratory, University of California at San Francisco, CA (Cox and Walter, 1996).

Mobility shift gels, western blot, TAP pull-down and enzyme assay

To detect differences in phosphorylation of Orm proteins, cell aliquots (0.9–1.4 OD600) were resuspended in 180 μl buffer (1.4 M sorbitol, 25 mM Tris, pH 8) and 45 μl 85% trichloroacetic acid (TCA), and frozen in liquid nitrogen. Cell extracts were prepared by vortexing with glass beads four times for 1 minute. Extracts were collected after adding 5% TCA (250 μl), and an additional 300 μl of 5% TCA was added to wash the beads. After 20 minutes on ice, precipitated protein was collected by centrifugation for 10 minutes in a microfuge. Pellets were washed with acetone, centrifuged for 2 minutes and dried for 10 minutes. Pellets were resuspended in 2% SDS, 10 mM Tris, pH 6.7 followed by sonication in a water bath. Protein concentration was determined by BCA assay (Pierce). Changes in phosphorylation of TAP-tagged Orm1 were detected by mobility differences detected after extended electrophoresis on 12% SDS polyacrylamide gels and western blot with rabbit serum. HA-tagged Orm1 was analyzed on 10% SDS polyacrylamide gels without an extended run. Western blots were quantified using NIH Image software.

For treatment with alkaline phosphatase, TCA-precipitated lystate pellets were solubilized in 1% SDS, 50 mM Tris, pH 8. Samples were adjusted to 0.2% SDS, 0.2% m-mercaptoethanol, 50 mM Tris, pH 8. calf intestinal alkaline phosphatase (1.5 μl/100 μl protein) was added and samples incubated for 1 hour at 37°C. For pull-down assays, cells (10 OD600) were lysed by vortexing with glass beads in the presence of buffer (1% NP40, 150 mM NaCl, 10 mM Tris pH 7.4). Lysates were centrifuged at 400 g for 5 minutes to remove unbroken cells. TAP pull-down with IgG Sepharose (GE Healthcare) was normalized to protein content (300 μg). IgG Sepharose was preincubated for 2 hours with protein lystate without TAP protein (100 μg) to inhibit nonspecific binding. Pull-downs were normalized to lystate protein and analyzed by SDS-PAGE and western blot with anti-HA monoclonal antibody followed by reblot with rabbit serum.

For quantification of UPR, cells bearing UPRE-lacZ were lysed by vortexing with glass beads in breaking buffer (20% glycerol, 1 mM DTT, 100 mM Tris, pH 8) with a protease inhibitor cocktail and phenylmethylsulfonyl fluoride, as described previously (Chang and Slayman, 1991). β-galactosidase activity was measured as described previously (Rose et al., 1990), and activities were normalized to lystate protein as measured by the Bradford assay (Bradford, 1976).

Measurement of long chain base and ceramide

For mass spectrometry, lipids were extracted with CHCl3 and MeOH (17:1 by volume) from 10 OD of cells containing 125 pmol C17-dihydrophosphoinositol and 170 pmol of C18-ceramide as internal standards (Ejsing et al., 2009). Long chain bases were analyzed in the positive ion mode and ceramide in the negative ion mode on a Bruker Esquire HCT ion trap mass spectrometer (electrospray ionization) at a flow rate of 180 μl/hour and a capillary tension of 250 V. Ion fragmentation was induced by argon gas collision at a pressure of 8 mbar. [M+H]+ ions of sphingophosphoinositol and [M+H]+ ions of ceramide species were quantified relative to the internal standards.

Acknowledgements

We thank Peter Arvan for his support, Alan Hinnebusch for strains and Charulatha Gururaj for technical assistance.

Funding

This work was supported by an American Recovery & Reinvestment Act (ARRA) supplement to a National Institutes of Health grant [grant number GM58212], and funds from the University of Michigan Office of the Vice-President of Research and the Margaret and Herman Sokol Faculty Awards, and the Swiss National Science Foundation [grant numbers CRS133_125232 and 31003A_134742] to R.S. Deposited in PMC for release after 12 months.

Note added in proof

While the manuscript was in review, two papers reported that Orm protein phosphorylation is dependent on TORC2-dependent Ypk1 protein kinase (Roelants et al., 2011; Sun et al., 2012).

References

Babour, A., Bicknell, A. A., Tourtelotte, J. and Niwa, M., 2010. A surveillance pathway monitors the fitness of the endoplasmic reticulum to control its inheritance. Cell 142, 256-269.

Breslow, D. K. and Weissman, J. S., 2010. Membranes in balance: mechanisms of sphingolipid homeostasis. Mol. Cell 40, 267-279.

Breslow, D. K., Collins, S. R., Bodenmiller, B., Aebersold, R., Simons, K., Shevchenko, A., Ejsing, C. S. and Weissman, J. S., 2010. Orm family proteins mediate sphingolipid homeostasis. Nature 463, 1048-1051.

Briere, S. E., Alford, C. W. and Cowart, L. A., 2001. Modulation of sphingolipid metabolism by the phosphatidylinositol-4-phosphate phosphatase Sac1p through regulation of phosphatidylinositol in Saccharomyces cerevisiae. J. Biol. Chem. 284, 7588-7600.

Brookheart, R. T., Michel, C. I. and Schaffer, J. E., 2009. As a matter of fat. Cell Metab. 10, 9-12.

Chang, A. and Slayman, C. W. (1991). Maturation of the yeast plasma membrane [H+]ATPase involves phosphorylation during intracellular transport. J. Cell Biol. 115, 289-295.
Cherkasova, V. A. and Hinnenbusch, A. G. (2003). Translational control by TOR and TAP42 through dephosphorylation of elf2alpha kinase GCN2. Genes Dev. 17, 859-872.

Cox, J. S. and Walter, P. (1996). A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87, 391-404.

Cox, J. S., Chapman, R. E. and Walter, P. (1997). The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol. Biol. Cell 8, 1803-1814.

Cross, F. R. (1997). “Marker swap” plasmids: convenient tools for budding yeast molecular genetics. Yeast 13, 647-653.

Eising, C. S., Sampaio, J. L., Surendranath, V., Duchoslav, E., Ekroos, K., Klemm, R. W., Simons, K. and Shevchenko, A. (2009). Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc. Natl. Acad. Sci. USA 106, 2136-2141.

Erbay, E., Babaev, V. R., Mays, J. R., Makowski, L., Charles, K. N., Snitow, M. E., Fazio, S., Wiest, M. M., Watkins, S. M., Linton, M. F. et al. (2009). Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat. Med. 15, 1383-1391.

Funato, K., Vallée, B. and Riezman, H. (2002). Biosynthesis and trafficking of sphingolipids in the yeast Saccharomyces cerevisiae. Biochemistry 41, 15105-15114.

Han, S., Lou, M. A., Scheneter, R. and Chang, A. (2010). Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control. Proc. Natl. Acad. Sci. USA 107, 5851-5856.

Hjelmqvist, L., Tuson, M., Marfany, G., Herrero, E., Balcells, S. and Gonzalez-Duarte, R. (2002). ORMDL proteins are a conserved new family of endoplasmic reticulum membrane proteins. Genome Biol. 3, research0027.

Huber, A., Bodenmiller, B., Utita, A., Stahl, M., Wanka, S., Gerrits, B., Aebersold, R. and Loewith, K. (2009). Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev. 23, 1929-1943.

Jesch, S. A., Gaspar, M. L., Stefan, C. J., Arengullin, M. A. and Henry, S. A. (2010). Interruption of introstol sphingolipid synthesis triggers Stt4p-dependent protein kinase C signaling. J. Biol. Chem. 285, 41947-41960.

Kolaczkowski, M., Kolaczkowska, A., Gaigg, B., Scheneter, R. and Moyer-Rolley, W. S. (2004). Differential regulation of ceramide synthase components LAC1 and LAG1 in Saccharomyces cerevisiae. Eukaryot. Cell 3, 880-892.

Krysan, D. J. (2009). The cell wall and endoplasmic reticulum stress responses are coordinately regulated in Saccharomyces cerevisiae. Commun. Integr. Biol. 2, 233-235.

Levin, B. (2005). Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69, 262-291.

Noctor, G. and Zhang, S. C. (2009). Coordination of lipid metabolism in membrane biogenesis. Annu. Rev. Cell Dev. Biol. 25, 539-566.

Philip, B. and Levin, D. E. (2001). Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rhol. Mol. Cell Biol. 21, 271-280.

Pineau, I., Colas, J., Dupont, S., Beney, L., Fleurat-Lessard, P., Berjeaud, J.-M., Bergès, T. and Ferreira, T. (2009). Lipid-induced ER stress: synergistic effects of sterols and saturated fatty acids. Traffic 10, 673-680.

Puig, O., Caspary, F., Biggou, G., Rutx, B., Bouveret, E., Bragado-Nilsson, E., Wilm, M. and Séraphin, B. (2001). The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218-229.

Roselants, F. M., Breslow, D. K., Muir, A., Weissman, J. S. and Thorner, J. (2011). Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 108, 19222-19227.

Ron, D. and Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol. Cell Biol. 8, 519-529.

Rose, M. D., Winston, F. M. and Hieter, P. (1990). Methods In Yeast Genetics: A Laboratory Course Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Rothaus, D. T. and Hegde, R. S. (2010). Regulation of basal cellular physiology by the homeostatic unfolded protein response. J. Cell Biol. 189, 783-794.

Schmidt, A., Beck, T., Koller, A., Kunz, J. and Hall, M. N. (1998). The TOR nutrient signalling pathway phosphorylates NR1P and inhibits turnover of the tryptophan permease. EMBO J. 17, 6924-6931.

Schoring, S., Vallée, B., Barz, W. P., Riezman, H. and Oesterhelt, D. (2001). Lgclp and Lcclp are essential for the Acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisiae. Mol. Biol. Cell 12, 3417-3427.

Schuck, S., Prinz, W. A., Thorn, K. S., Voss, C. and Walter, P. (2009). Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J. Cell Biol. 187, 525-536.

Serafima, T., Didone, L., de Mey Bentley, K. L. and Krysan, D. J. (2009). The unfolded protein response is induced by the cell wall integrity mitogen-activated protein kinase signaling cascade and is required for cell wall integrity in Saccharomyces cerevisiae. Mol. Cell Biol. 20, 164-175.

Shechtman, C. F., Henneberry, A. L., Seimon, T. A., Tinkelenberg, A. H., Wilcox, I. L., Lee, E., Fazlollahi, M., Munkaci, A. B., Bussemaker, H. J., Tabas, I. et al. (2011). Loss of subcellular lipid transport due to ARV1 deficiency disrupts organellar homeostasis and activates the unfolded protein response. J. Biol. Chem. 286, 11951-11959.

Sherman, F., Fink, G. R. and Lawrence, C. W. (1986). Methods in yeast genetics: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Smet, B., Chillebert, R., De Snijder, P., Binda, M., Swinnen, E., De Virgilio, C. and Winderickx, J. (2010). Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr. Genet. 56, 1-32.

Stefan, C. J., Manford, A. G., Baird, D., Yamada-Hanff, J., Mao, Y. and Emr, S. D. (2011). Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites. Cell 144, 389-401.

Sun, Y., Miao, Y., Yamane, Y., Zhang, C., Shokat, K. M., Takematsu, H., Kosutsumi, Y. and Drubin, D. G. (2012). Orm protein phosphoregulation mediates transient sphingolipid biosynthesis response to heat stress via the Pkh-Ypk and Cdc55-PP2A pathways. Mol. Biol. Cell [Epub ahead of print] doi: 10.1091/mbc.E12-03-0209.

Summers, S. A. (2010). Sphingolipids and insulin resistance: the five Ws. Curr. Opin. Lipidol. 21, 128-135.

Travers, K. J., Patil, C. K., Wodicka, L., Lockhart, D. J., Weissman, J. S. and Walter, P. (2000). Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249-258.

Vallée, B. and Riezman, H. (2005). Lip1p: a novel subunit of acyl-CoA ceramide synthase. EMBO J. 24, 730-741.