The Fermi blazars divide

G. Ghisellini1*, L. Maraschi2, F. Tavecchio1
1INAF – Osservatorio Astronomico di Brera, via E. Bianchi 46, I–23807 Merate, Italy
2INAF – Osservatorio Astronomico di Brera, Via Brera, 28, Milano I–20121

ABSTRACT
Flat Spectrum Radio Quasars (FSRQs) and BL Lac objects detected in the first three months of the Fermi survey neatly separate in the γ–ray spectral index vs γ–ray luminosity plane. BL Lac objects are less luminous and have harder spectra than broad line blazars. We suggest that this division has its origin in the different accretion regimes of the two classes of objects. Using the γ–ray luminosity as a proxy for the observed bolometric one we show that the boundary between the two subclasses of blazars can be associated with the threshold between the regimes of optically thick accretion disks and of radiatively inefficient accretion flows, which lies at an accretion rate of the order of 10^{-2} the Eddington rate. The spectral separation in hard (BL Lacs) and soft (FSRQs) objects can then result from the different radiative cooling suffered by the relativistic electrons in jets propagating in different ambients. We argue that the bulk of the most luminous blazars already detected by Fermi should be characterised by large black hole masses, around 10^9 solar masses, and predict that lowering the γ–ray flux threshold the region of the $\alpha_{\gamma}, L_{\gamma}$ plane corresponding to steep spectral indices and lower luminosities will be progressively populated by FSRQs with lower mass black holes, while the region of hard spectra and large luminosities will remain forbidden.

Key words: BL Lacertae objects: general — quasars: general — radiation mechanisms: non-thermal — γ–rays: theory

1 INTRODUCTION
The Large Area Telescope (LAT) on board the Fermi Gamma Ray Space Telescope (Fermi) revealed more than one hundred blazars with a significance larger than 10σ in the first three months of operation (Abdo et al. 2009a, hereafter A09). Of these, 57 are classified as flat spectrum radio quasars (FSRQs), 42 as BL Lac objects, while for 5 sources the classification is uncertain. Including 2 radio–galaxies the total number of extragalactic sources amounts to 106. Redshifts are known for all FSRQs, for 30 BL Lacs, for 1 source of uncertain classification and for the two radio–galaxies, for a total of 90 objects. Particularly significant is the large number of BL Lac objects present in the Fermi sample, which allows for the first time an objective comparison of their γ–ray properties (spectral shape and luminosity) with those of FSRQs.

A direct result of the first Fermi blazar sample, discussed by A09, is the finding of correlations between their γ–ray and radio fluxes/luminosities and between the photon spectral index Γ_{γ} in the Fermi energy band and their radio luminosity. In the latter plane, as noted by A09, blazars seem to define a trend of increasing Γ_{γ} (softness) for increasing radio luminosity, with BL Lac objects falling at the lower end of this trend. However within each of the two separate populations these correlations are not highly significant.

In this letter we consider BL Lacs and FSRQs as part of a unified blazar population, at variance with the approach of A09. Using the γ–ray rather than the radio luminosity (the former being more indicative of the bolometric power), we discuss the spectral index/γ–ray luminosity plane where BL Lacs and FSRQs occupy different regions. We then propose a simple scenario to explain why there is a rather well defined boundary between BL Lacs and FSRQs. In our scheme all blazars are essentially similar and their different observed properties result from the different accretion rates feeding their central engines. We show that the observed γ–ray spectral index dependence on γ–ray (as well as radio) luminosity can be naturally explained in the above context. Finally we discuss some implications and predictions of the proposed scenario.

We adopt a cosmology with $h = \Omega_{\Lambda} = 0.7$ and $\Omega_M = 0.3$.

2 THE GAMMA–RAY SLOPE VS LUMINOSITY PLANE

We derived the γ–ray luminosities for all the blazars with known redshift detected by Fermi in the three months survey (excluding radio galaxies) using the fluxes named F_{100} in Table 3 of A09, characterising their “average” observed flux (between August 4 and October 30 2008). The luminosities were computed according to:

$$L_{\gamma} = 4\pi d_L^2 \frac{S_{\nu}(\nu_1, \nu_2)}{(1+z)^{1-\alpha_{\gamma}}}$$

(1)
Fig. 1. Energy spectral index vs γ-ray luminosity for all blazars in the list of Abdo et al. (2009a). Blue and red points are BL Lacs and FSRQs, respectively. Black symbols correspond to sources already detected in the TeV band (they are all BL Lacs but 3C 279). Labels identify all BL Lac objects, 3C 279 and other 2 FSRQs. For several BL Lac objects and for the 3 labelled FSRQs we show the observed range of γ-ray luminosity and spectral index, using past EGRET or AGILE observations. This is indicated by a solid line segment (dashed when the spectral index is unknown, and we chose the same index as observed by Fermi). For 0716+714, the high luminosity point corresponds to AGILE observations (Chen et al. 2008) with a large error on the spectral index (shown by the large error bar). The grey stripes at about $L_\gamma = 10^{47}$ erg s$^{-1}$ mark the divide between BL Lac objects and FSRQs.

where d_L is the luminosity distance, $\alpha_\gamma = \Gamma_\gamma - 1$, $S(\nu_1, \nu_2)$ is the γ-ray energy flux between the frequencies ν_1 and ν_2, calculated from the photon flux $F_\gamma (E > 100$ MeV) [ph cm$^{-2}$ s$^{-1}$] as:

$$S_\gamma(\nu_1, \nu_2) = \frac{\alpha_\gamma h \nu_1 F_\gamma}{1 - \alpha_\gamma} \left[\left(\frac{\nu_2}{\nu_1} \right)^{1-\alpha_\gamma} - 1 \right] \quad \alpha_\gamma \neq 1$$

$$S_\gamma(\nu_1, \nu_2) = h \nu_1 F_\gamma \ln(\nu_2/\nu_1) \quad \alpha_\gamma = 1$$

Setting $\nu_1 = 2.42 \times 10^{22}$ Hz (0.1 GeV) and $\nu_2 = 2.42 \times 10^{24}$ Hz (10 GeV), and $F_\gamma = 10^{-8} F_{\gamma, -8}$ ph cm$^{-2}$ s$^{-1}$, we have (in units of erg cm$^{-2}$ s$^{-1}$):

$$S_\gamma(0.1, 10) = 7.38 \times 10^{-12} F_{\gamma, -8} \quad \alpha_\gamma = 1$$

Fig. 1 shows the energy spectral index α_γ given by A09 as a function of L_γ between 0.1 and 10 GeV calculated according to Eqs. 1–3. Blue and red symbols correspond to BL Lac objects and FSRQs, respectively, while black symbols indicate sources also detected in the TeV band. The latter are all BL Lac objects except for 3C 279, which is an intermediate object with Lyα emerging in low states (Koratkar, Pian & Urry 1998; Pian et al. 1999).
Blazars are highly variable sources, especially at high energies. To illustrate the possible range of variability, for a few sources we connect with a line segment the spectral index and γ–ray luminosity observed by Fermi to the values observed in the past by the EGRET instrument onboard the Compton Gamma Ray Observatory satellite (Nandikotkur et al. 2007), or observed by the AGILE satellite. Note that variable sources often “move” orthogonally to the correlation defined by the ensemble of sources, i.e. they become harder when brighter (with the exception of 3C 454.3).

Moreover, for some of the sources detected in the TeV range, we can infer the level of γ–ray activity during high states of TeV emission (assuming that the flux in the Fermi band would have been about the same as the TeV flux). For these sources we indicate the range of luminosity variability by dotted line segments, maintaining the spectral index measured by Fermi for both states.

As can be seen, the high and the low γ–ray states of single sources can be dramatically different. This implies that the distribution in luminosity within each blazar class is largely affected by the variability of the sources.

The αγ–Lγ plane (Fig. 1) strongly suggests a separation of the two groups in regions defined by αγ > 1.2, Lγ > 10^{47} erg s^{-1} for FSRQs and αγ < 1.2, Lγ < 10^{47} erg s^{-1} for BL Lacs. At the same time there is continuity between the two blazar subclasses in that their properties overlap at intermediate values of both spectral index and γ–ray luminosity.

The separation in spectral indices, already evident in Fig. 9 of A09, occurs at αγ ~ 1.2. Only 5 FSRQs have spectra flatter than 1.2, and only 5 BL Lacs have spectra steeper than 1.2. The LAT γ–ray data have been systematically analysed by A09 fitting a single power law model to the spectral data of each source. In many cases the intrinsic spectral shape could be more complex (i.e. a curved spectrum). Fig. 10 of A09 shows as illustrative examples the γ–ray SEDs of 3C 454.3 (energy index αγ = 1.41 ± 0.02), AO 0235+164 (αγ = 1.05 ± 0.02) and Mkn 501 (αγ = 0.70 ± 0.09). In the first two cases the data are not well represented by the single power law model, showing significant curvature and indicating SED peaks below 100 MeV for 3C 454.3 and between 1 and 10 GeV for AO 0235+164, while Mkn 501 shows a very hard γ–ray SED implying that the SED peak should be above 100 GeV. It is therefore reasonable to assume that the spectral index measured by Fermi is a proxy for the peak energy of the γ–ray SED, at least in a statistical sense. Thus the γ–ray SEDs of most FSRQs, with αγ > 1.2, should peak at or below the low energy range of the Fermi energy window, at lower peak energies than those characterising most of BL Lacs objects. As expected, BL Lacs detected in the TeV band tend to be harder than other BL Lacs (with the exception of BL Lac itself), indicating a high peak energy, in turn necessary to detect them in the TeV band.

The separation in γ–ray luminosity between BL Lacs and FSRQs is also striking. There are only 3 BL Lac objects (PKS 0537–441 with z = 0.892, AO 0235+164 with z = 0.94 and PKS 0426–380 with z = 1.12) with Lγ > 10^{47} erg s^{-1}. The redshifts of these 3 sources are among the highest of the BL Lac sub–sample (see Fig. 16 of A09). Moreover, all three sources do have broad lines, visible in their low emission states (see Shmarufatti et al. 2005 for PKS 0426–380; Pian et al. 2002 for PKS 0537–441; Raiteri et al. 2007 for AO 0235+164).

In principle, the two blazar classes could be separated because of a different average Doppler boosting, but all indications so far for the γ–ray emitting BL Lacs and FSRQs suggest instead similar values of the Doppler boosting, with the exception of TeV emitting BL Lacs, requiring a stronger boost (and thus a smaller viewing angle). These inferences come from superluminal motion (Jorstad et al. 2001; Kellerman et al. 2004), direct modelling of their SED (e.g. Konopelko et al. 2003; Finke, Dermer & Böttcher 2008) and very rapid TeV variability (e.g. Begelman, Fabian & Rees 2008; Ghisellini & Tavecchio 2008b). Thus the idea that the luminosity sequence of BL Lacs and FSRQs is due to larger viewing angles for BL Lacs is disfavoured.

2.1 The blazar sequence in γ–rays

The SEDs of blazars show two main components: the first one, peaking between the far infrared and the X–ray band, is unanimously attributed to synchrotron emission; the second, peaking between 10 MeV–100 GeV, is widely attributed to the Inverse Compton process involving the same electrons producing the synchrotron component (e.g. Maraschi et al. 1992; Bloom & Marscher et al. 1996; Sikora et al. 1994; Dermer & Schlickeiser 1993).

Fossati et al. (1998) and Ghisellini et al. (1998) proposed that the SEDs of blazars form a “spectral sequence” whereby the peaks of the two components are governed by luminosity, and are at higher energies for lower luminosities. This was interpreted in terms of a stronger radiative cooling for more powerful sources, resulting in smaller energies of the electrons emitting at the peaks. As discussed above, a high energy peak above ~10 GeV corresponds to a hard spectrum in the Fermi range (rising, in νFν, while a peak frequency below ~1 GeV corresponds to a soft spectrum in the Fermi range. Therefore the trend apparent in the αγ–Lγ plane strongly supports the “sequence” concept, which was proposed on the basis of radio and X–ray selected samples, where only a fraction of objects had γ–ray data. Fig. 11 represents the γ–ray selected version of the blazar sequence.

Single objects, instead, often behave in the opposite way (i.e. harder when brighter). This can be explained, if, in single objects, an unchanged cooling facing a fast increasing heating (i.e. injection of more energetic electrons), shifting the typical electron energies to larger values. In the next section we present a possible interpretation of the separation of FSRQs and BL Lacs in the αγ–Lγ plane.

3 INTERPRETATION OF THE BL LAC – FSRQ DIVIDE

The neat separation between BL Lacs and FSRQs in the αγ–Lγ plane together with their close contiguity are really remarkable. A possible interpretation could simply be to assume two independent populations with different physical conditions as to the origin, propagation and radiative properties of their jets. This however would not account for the contiguity which should be coincidental. Figs. 11 and 17 of A09 (αγ vs z and Lγ vs z) indicate that the separation and the contiguity behaviour of the two blazar sub–classes exist also in these planes.

Building on previous work on the systematic properties of blazars we suggest that this division has a physical origin, related to the different mass accretion rates onto the central engine. We first summarise some preliminary steps as follows:

1. Radiative models allow to estimate the total jet power PL carried in the form of bulk and internal energy of protons, electrons and magnetic field. For powerful FSRQs a fraction e ~ 0.1 of PL is

2. The original idea considered the luminosity as the main parameter governing the blazar sequence, while the refined version (Ghisellini & Tavecchio 2008a) considers the luminosity in Eddington units.
is radiated at short distances (i.e. hundreds of Schwarzschild radii) from the central black hole. This fraction can be larger for BL Lacs (Celotti & Ghisellini 2008).

(ii) In powerful FSRQs, P_j is about one order of magnitude larger than the observed accretion disk luminosity L_d (Maraschi 2001; Maraschi & Tavecchio 2003; Celotti & Ghisellini 2008; Ghisellini & Tavecchio 2008a; see also the earlier results of Rawlings & Saunders 1991). For a “standard” Shakura & Sunyaev (1973) accretion disk, $L_\text{d} = \eta M c^2$, where M is the accretion rate, with $\eta \approx 0.1$. It follows that the jet power P_j is of the same order as the accretion power $M c^2$. This is also supported theoretically (at least at the “dimensional level”) since, even if the black hole rotation played an essential role as in the Blandford & Znajek (1977) model, accretion would still be needed to provide the magnetic field necessary to extract the rotational energy. We then assume that the (order of magnitude) equality $P_j \approx M c^2$ has general validity for strong jets, being aware of the significant uncertainties associated with it.

(iii) Finally, the γ-ray luminosity dominates the electromagnetic output of powerful FSRQs and is at least a sizeable fraction of it in less powerful BL Lacs. The observed $L_\gamma \approx \Gamma^2 c P_j$ (the factor Γ^2 accounts for light aberration).

Adopting the relations above, it then follows that the maximum observed L_γ should correspond to the largest black hole masses accreting at the maximum, Eddington, rate

$$ L_{\gamma,\text{max}} \propto \Gamma^2 \dot{M}_{\text{Edd}} c^2 \sim 1.5 \times 10^{47} \Gamma^2 M_9 \text{ erg s}^{-1} \quad (4) $$

where M_9 is the mass of the black hole in units of 10^9 solar masses. The γ-ray luminosity of the most luminous FSRQs (Fig. 1) is of the order of several $\times 10^{48}$ erg s$^{-1}$, corresponding to $\Gamma^2 M_9 \sim 30$.

Fig. 1 shows a divide at a γ-ray luminosity roughly a factor 100 below the maximum (grey stripes). Maintaining the same value of $\Gamma^2 M_9 \sim 30$, we conclude that the jet power, hence the accretion rate, is a factor ~ 100 below the maximum. Therefore, at the dividing luminosity, the accretion rate is of order:

$$ M_{\text{div}} \approx 10^{-2} \dot{M}_{\text{Edd}} \quad (5) $$

Crucial, in this simple derivation, is the assumption that the most luminous FSRQs and the most luminous BL Lacs (excluding the three “outliers” mentioned above) have the same factor $\Gamma^2 M$, and in particular the same black hole mass M. This is likely, since we are dealing with the most luminous objects of the two classes (this also applies to the original blazar sequence). Indeed, for TeV BL Lacs, which span the entire region of BL Lacs, the available estimates indicate high black hole masses (e.g. Wagner 2008, Ghisellini & Tavecchio 2008a), in some cases exceeding $10^{9} M_\odot$. In the case of FSRQs (more luminous than BL Lacs) Fermi could have already started to explore smaller black hole masses. In fact, the object PMN 0948+0022 ($\alpha_\text{ Galactic} = 1.6 \pm 0.14$ and $L_\gamma \sim 10^{47}$ erg s$^{-1}$) is a NLSy1, with a black hole mass around $10^8 M_\odot$ (see Abdo et al. 2009b and Zhou et al. 2006). This easily accounts for the few FSRQs with $L_\gamma < 10^{47}$ erg s$^{-1}$ (i.e. they should have black hole masses smaller than the rest of FSRQs).

The derived value of M_{div} is naturally interpreted as due to the transition between different accretion regimes: for high accretion rates, in Eddington units, a standard optically thick geometrically thin, radiatively efficient Shakura–Sunyaev (1973) disk is formed producing a luminous Broad Line Region through which the jet must propagate suffering strong radiative losses. For $M \sim M_{\text{Edd}}$ some of the disk luminosity could be advected into the black hole, resulting in $\eta < 0.1$, but this would not affect the presence of the BLR, nor the power of the jet.

When $\dot{M} \ll \dot{M}_{\text{Edd}}$ the accretion flow becomes optically thin and radiatively inefficient and could be described as an ion supported torus (Rees et al. 1982) or an advection dominated accretion flow (ADAF, see e.g. Narayan, Garcia & McClintock 1997), an adiabatic inflow–outflow (ADIOS, Blandford & Begelman 1999) or a convection dominated flow (CDAF, Narayan, Igumenshchev & Abramowicz 2000). In the latter case despite the uncertainties in the dynamics of the flow the surrounding region will certainly be deprived of photons with respect to the high accretion rate regime, thus justifying the absence of broad emission lines and the reduced radiative losses for the propagating jet.

Since FSRQs are associated with radio sources with FR II morphology while BL Lac objects are usually found in FR Is, the same critical rate should separate the two parent populations. And indeed the finding by Ledlow & Owen (1996) that the radio luminosity threshold between the two classes depends on the optical magnitude of the bulge of the host galaxy (i.e. on the mass of the central black hole), was interpreted by Ghisellini & Celotti (2001) in terms of a critical accretion rate, coincident in value with what found here (see also more recent work by Xu, Cao & Wu 2009).

4 DISCUSSION AND CONCLUSIONS

The spectral shape/\gamma–ray luminosity plane revealed a clear separation between FSRQs and BL Lac objects. Moreover, there is a well defined trend, with BL Lac objects being harder and less luminous than FSRQs. At the first order, this strongly confirms the idea that blazars obey a spectral sequence, controlled by the bolometric luminosity, of which the \gamma–ray one is good proxy.

The other striking feature is the little overlap, in \gamma–ray luminosity, of the two classes of blazars. We suggest that this has a physical origin, and have interpreted it in terms of a critical accretion rate M_{div}. Below M_{div}, accretion becomes radiatively inefficient, the corresponding ionising flux becomes weaker, making weaker (or absent) broad emission lines. These are BL Lac objects. Their jets thus propagate in a medium starved of external radiation (weak disk, weak lines), and this makes the emitting electrons accelerated in the jet to cool less, and to reach very high energies. Their emitted high energy spectrum, produced mainly by the synchrotron self–Compton mechanism, is less luminous and harder than in FSRQs. The latter sources in fact have a radiatively efficient accretion disk and a corresponding “standard” broad line region. If the jet dissipates most of its power within the broad line region, then the emitting electrons will efficiently cool (mostly by external Compton), will reach only moderate energies, and will produce a high energy peak below 100 MeV. This scenario is in perfect agreement with the analogous division proposed for radio–galaxies, that in turn are thought to be the progenitors of BL Lacs (FR I) and FSRQs (FR II).

According to this idea the power of the jets in all blazars is proportional to the accretion rate, that can change in a continuous way from one objects to the other (and even in single objects). The observed discontinuity between BL Lacs and FSRQs is the result of a discontinuity in the accretion regime occurring within a rather narrow range of M (from standard to radiatively inefficient). Thus, despite the different “look” of FSRQs and BL Lacs, they all belong to a sequence of jet powers. From this point of view, it is therefore reasonable to treat them as a single class.

Evidences that P_j is of the same order of $\dot{M} c^2$ can be traced back to Rawlings & Saunders (1991), and since then confirmed by
The Fermi blazars divide

ACKNOWLEDGMENTS

This work was partly financially supported by a 2007 COFIN–MIUR grant. We thank the referee for useful comments.

REFERENCES

Abdo A.A., Ackermann M., Ajello M., et al., 2009a, subm to ApJ (astro–ph/0902.1559) (A09)
Abdo A.A., Ackermann M., Ajello M., et al., 2009b, subm to ApJ
Aharonian F., Akhperjanian A.G., Razer–Bachi A.R. et al., 2007, ApJ, 664, L71
Allen S.W., Dunn R.J.H., Fabian A.C., Taylor G.B. & Reynolds C.S., 2006, MNRAS, 372, 21
Begelman M.C., Fabian A.C. & Rees M.J., 2008, MNRAS, 384, L19
Blandford R.D. & Begelman M.C., 1999, MNRAS, 303, L1
Blandford R.D. & Znajek R.L., 1977, MNRAS, 179, 433
Bloom S.D. & Marscher A.P., 1996, ApJ, 461, 657
Böttcher M. & Dermer C.D., 2002, ApJ, 564, 86
Cavaliere A. & D’Elia V., 2002, ApJ, 571, 226
Celotti A. & Ghisellini G., 2008, MNRAS, 385, 283
Celotti A., Padovani P. & Ghisellini G., 1997, MNRAS, 286, 415
Chen A.W., D’Ammando F., Villata M., et al., 2008, A&A, 489, 137
Cheung C.C., Stawarz Ł. & Siemiginowska A., 2006, ApJ, 650, 679
D’Elia V., Padovani P., Landt H., 2003, MNRAS, 339, 1081
Dermer C.D. & Schlickeiser R., 1993, ApJ, 416, 458
Finke J.D. Dermer C.D. & Böttcher M., 2008, ApJ, 686, 181
Fossati G., Maraschi L., Celotti A., Comastri A. & Ghisellini G., 1998, MNRAS, 299, 433
Ghisellini G. & Celotti A., 2001, A&A, 371, L1
Ghisellini G., Celotti A., Fossati G., Maraschi L. & Comastri A., 1998, MNRAS, 301, 451
Ghisellini G. & Tavecchio F., 2008a, MNRAS, 387, 1669
Ghisellini G. & Tavecchio F., 2008b, MNRAS, 386, L28
Ho L., 2008, ARA&A, 46, 475
Jester S., 2005, ApJ, 625, 667
Jorstad S.G., Marscher A.P., Mattson J.R., Wehrle A.E., Bloom S.D., Yurchenko A.V. 2001, ApJ, 556, 738
Kataoka J., Madejski G., Sikora M., et al., 2008, ApJ, 672, 787
Kellermann K.I., Lister M.L., Homan D.C. et al., 2004, ApJ, 609, 539
Konopelko A., Mastichiadis A., Kirk J., de Jager O.C., Stecker F.W., 2003, ApJ, 597, 851
Koratkar A., Pian E. & Urry C.M., 1998, ApJ, 492, 173
Ledlow M.J. & Owen F.N., 1996, AJ, 112, 9
Maraschi L., Ghisellini G. & Celotti A., 1992, ApJ, 397, L5
Marlar L., 2001, AIP conf. proc., 586, 409 (astro–ph/0107565)
Maraschi L. & Tavecchio F., 2003, ApJ, 593, 667
Nandikotkur G., Jahoda K.M., Hartman R.C., Mukherjee R., Sreekumar P., Böttcher M., Sambruna, R.M.; Swank J.H., 2007, ApJ, 675, 706
Narayan R., Garcia M.R. & McClintock J.E., 1997, ApJ, 478, L79
Narayan R. & Igumenshchev I.V., Abramowicz M.A., 2000, ApJ, 539, 798
Narayan R. & Igumenshchev I.V., Abramowicz M.A., 2000, ApJ, 539, 798
Pian E., Falomo R., Hartman R.C., et al., 2002, A&A, 392, 407
Pian E., Urry C.M., Maraschi L., et al., 1999, ApJ, 521, 112
Raiteri C.M., Villata M., Capetti A., Heidt J., Arnaboldi M. & Magazzù A., 2007, A&A, 464, 871
Rawlings S. & Saunders R., 1991, Nature, 349, 138
Rees M.J., Begelman M.C., Blandford R.D. & Phinney E.S., 1982, Nature, 295, 17
Sambruna R.M., Gliozzi M., Tavecchio F. et al., 2006, ApJ, 652, 146
Sbarufatti B., Treves A., Falomo R., Heidt J., Kotilainen J. & Scarpa R., 2005, ApJ, 129, 559
Shakura N.I. & Sunyaev R.A., 1973 A&A, 24, 337
Sikora M., Begelman M.C. & Rees M.J., 1994, ApJ, 421, 153
Tavecchio F., Maraschi L., Sambruna R.M., Urry C.M.; Cheung C.C., Gambill J.K. & Scarpa R., 2004, ApJ, 614, 64
Teshima M., 2008, Atel 1500
Wagner R. M., 2008, MNRAS, 385, 119
Xu Y.-D., Cao X. & Wu Q., 2009, ApJ, 694, L107
Zhou H.-Y., Wang T.-G., Yuan W.-M., et al., 2006, ApJS, 166, 128