Alternative feed ingredients in the finisher diets for sustainable broiler production

Ahmed A. El‑Deek1, Ahmed A. A. Abdel‑Wareth2, Mona Osman1, Mohammed El‑Shafey3, Ayman M. Khalifah4, Alaa E. Elkomy4,5 & Jayant Lohakare6

The main objective of this study was to evaluate the utilization of alternative protein feed ingredients including sunflower meal (SFM), corn gluten meal (CGM), and dried distillers' grains with solubles (DDGS) as a mixture in a partial replacement of soybean meal (SBM) in broiler finisher diets with different protein levels and also to evaluate their effect on birds' performance, environmental aspects of litter, cecal microbes, and economic prospects. A total of 576 (19 days old) Cobb 500 broiler chicks were fed eight finisher diets consisting of 4 control (CTL) diets based on SBM with different crude protein (CP) levels (CTL21, CTL20, CTL19, and CTL18, containing 21%, 20%, 19%, and 18% CP, respectively) and 4 test diets with alternative protein sources (APS21, APS20, APS19, and APS18, containing 21%, 20%, 19%, and 18% CP, respectively) using a 15% combination of alternative protein sources (2.5% CGM, 5% SFM, and 7.5% DDGS) until 35 days of age. The results indicated that birds fed test diets APS21 and APS20 recorded the highest \(P < 0.05 \) body weight compared to other treatments, but it was not different than the CTL diets fed at these CP levels. The birds fed CTL18 or APS18 recorded the worst feed conversion ratio (FCR) compared to other treatments. Moreover, birds fed test diet containing APS21 recorded better \(P < 0.05 \) European performance efficiency factor and better economic efficiency when compared to other treatments, but it was not different than CTL21. In addition, birds fed diets APS21 and CTL19 showed significantly increased litter \textit{Lactobacillus} spp. \((P < 0.05)\) compared to other treatments. Cecal \textit{Lactobacillus} spp. and \textit{Escherichia coli} \((E.\ coli)\) were not affected by CTL or APS diets. The counts of cecal \textit{Salmonella} spp. increased in the CTL21 group compared to other groups. In conclusion, alternative feed ingredients (protein sources) in broiler finisher diets have positive effects in a sustainable way on the productive performance, litter and cecal microbial counts, and improved economic efficiency when compared to CTL diets.

The globalization of the food value chain is increasing rapidly, and it is necessary to address the challenges associated with it in a sustainable way. To overcome the challenges, the poultry sector will have to focus more on the sustainability of production and cheap protein sources. The animal production efficiency could be improved by reducing the output of nutrients as waste to the environment. The production of broiler chickens must achieve the objective of sustainability, as climate change concerns have major effects on its future growth performance. Feed cost represents approximately 65–75% and is considered the major cost of poultry production. Many attempts have been made to decrease the cost of feeding to the minimum levels. These attempts include replacing the expensive feedstuffs by cheaper and more abundant by-products to support the sustainability of poultry production. Soybean meal (SBM) is often the major dietary plant protein source in broiler diets, and other protein sources other than SBM are used occasionally at competitive prices. However, there is a range of possible alternative feed ingredients that can partially or fully replace SBM in poultry diets.

From a nutritional point of view, the current nutritional strategy is to meet the nutrient requirements of broiler chickens and to improve the feed efficiency, which may decrease the nutrient excreted in manure. Poultry farmers are typically reducing the protein and increasing the energy contents throughout the finisher period of...
broiler chickens. The cost of feed generally declines as the protein content is reduced, and the optimum time for changing diet densities is of economic importance. Due to feeding and genetic improvements, the time required to reach market weights has been reduced, leading to shorter durations of feeding various diets.

The plant-based protein sources used for broilers in the poultry industry, especially SBM, had a shortage since 2005, so other protein sources are expected to be included at high inclusion levels for optimum production. Several studies have been conducted using different plant protein sources to replace the SBM in animal feed such as canola meal (CNM), sunflower meal (SFM), rapeseed meal (RSM), cottonseed meal (CSM), corn gluten meal (CGM), and dried distillers' grains with solubles (DDGS). DDGS and SFM are new feed ingredients and may be used as an alternative source of protein in animal and poultry diets. Thus, coming up with alternative protein sources such as DDGS, CGM, and SFM that are cheap and locally available could improve broiler production and at the same time improve the economic status of the poultry industry. Therefore, the aim of this study was to formulate sustainable finisher diets containing a mixture of DDGS, CGM, and SFM as a partial alternative protein source (APS) for SBM at different crude protein (CP) levels (21%, 20%, 19%, and 18% CP, respectively) and to study their effect on the growth performance, litter content, and economic efficiency of Cobb 500 broiler chicks. We tested these CP levels in the finisher diets of broilers because the finisher diets in commercial broiler formulations worldwide use these CP levels in the diet.

Materials and methods

The experiment was conducted at Ismailia/Misr Company for poultry production, Sarapium district, Ismailia, Egypt. The laboratory analyses of this study were done at the Poultry Research Center, Faculty of Agriculture, Alexandria University, and the laboratory of Livestock Research Department, Arid Land Cultivating Research Institute, City of Scientific Research and Technology Applications, New Borg El Arab, Egypt.

Experimental design and diets. A total of 576 unsexed 1-day-old Cobb 500 chicks were procured from a commercial hatchery of Ismailia/Misr Company. All chicks were fed a starter diet with 23% crude protein (CP) from 1 to 18 days of age. From the 19th day, birds were fed finisher diets until 35 days of age. Broiler chicks were distributed into 24 floor pens (8 treatments × 3 pens per treatment × 24 chicks per pen). The eight treatments consist of 4 control (CTL) diets (CTL21, CTL20, CTL19, and CTL18, containing 21%, 20%, 19%, and 18% CP, respectively) and 4 test diets with alternative protein sources (APS21, APS20, APS19, and APS18, containing 21%, 20%, 19%, and 18% CP, respectively).

The test diets of the finisher phase were based on a combination of APS (2.5% corn gluten meal, 5% sunflower meal, and 7.5% dried distillers' grains with solubles (DDGS)) as a fixed entity (15%) for all levels of protein studied. The percentage of inclusion of alternative ingredients to replace SBM was selected to formulate diets to keep the replacement level of APS constant across diets of different CP levels. Experimental diets were formulated to contain 3100 kcal of ME/kg for starter and finisher diets in either CTL or APS test groups. All diets contained additives such as phytase, coccidiostats, and multienzymes. The multienzyme called COMBO Enzyme Blend consists of the following: cellulase, 75,000 CU units/kg; fungal amylase, 30,000 SKB units/kg; fungal protease, 1,000,000 HUT units/kg; neutral protease, 100,000 PC units/kg; alkaline protease, 1.2 Anson units/kg; xylanase, 20,000 × U units/kg; beta-glucanase, 20,000 BG units/kg; hemicellulase, 20,000 HCU units/kg; and lipase, 75,000 FIP units/kg. Ingredients and calculated analysis of broiler diets used in the experiment are shown in Table 1.

The chemical analysis of SBM and APS including CGM, SFM, and DDGS is presented in Table 2.

Birds, housing, and management. The Institutional Animal Ethics Committee of Alexandria University approved the field experiment, and all the methods were performed in accordance with the guidelines of the Egyptian Research Ethics Committee and the guidelines contained in the Guide for the Care and Use of Laboratory Animals. Broiler chicks were kept on clean and fumigated floor pens in a controlled environmental room under similar management conditions. The pen size was 200 cm × 150 cm × 100 cm (L × B × H), and the wood shaving was used as a litter material. Chicks were provided with 24-h artificial lighting daily during the whole experimental period. The gas heater was used to provide the chicks with the heat needed for brooding. Finisher diets were provided in the form of pellets of 3 mm. An ambient temperature program was maintained at 33 °C from placement until 4 days of age, 32 °C from 5 to 9 days of age, 29 °C from 10 to 14 days of age, 27 °C from 15 to 23 days of age, 25 °C from 24 to 28 days of age, and 23 °C from 28 to 35 days of age. Experimental diets and water were offered for ad libitum consumption throughout the experimental phases. The assembly of each pen included a bell drinker and a tube feeder.

Determination of productive performances. Data on body weight (BW) and feed intake (FI) were determined at the initial and end of each phase. From these data, body weight gain (BWG) and feed conversion ratio (FCR) were computed. The FCR was determined as the ratio between total FI and the total BWG per bird per replicate. Livability was monitored daily by recording and collecting the number of broilers that died, which were then taken for postmortem examination. Livability percentage was then calculated by using the formula ((total number of live birds after the experiment/Initial total number of birds) × 100). The economic efficiency of the dietary inclusion of alternative protein sources was calculated as the total costs needed to obtain one-kilogram BWG according to Kalia et al. The European performance efficiency factor (EPEF) was calculated at the end of the experimental period. The following equation was applied to obtain the EPEF:

\[
EPEF = \frac{\text{Final BW, kg} \times \text{Livability}\%}{\text{Age, days} \times \text{FCR}} \times 100.
\]
Table 1.

Ingredients and calculated analysis of finisher diets. CTL soybean meal only, APS alternative protein sources containing soybean meal, DDGS sunflower meal, and corn gluten meal. 1Vitamin premix provides per kg diet Vit. A, 12,000 IU; Vit. E, 400 mg; Vit. Bl, 2 mg; Vit. B2, 160 mg; Vit. B6, 5 mg; Vit. B12, 0.012 mg; niacin, 45 mg; pantothenic acid, 12 mg; Vit. K, 3 mg; Vit. D3, 3000 IU; biotin, 0.070 mg; and folic acid, 2 mg. 2Trace mineral premix provides per kg diet choline, 3600 mg; copper, 10 mg; iodine, 1 mg; iron, 30 mg; manganese, 100 mg; zinc, 600 mg; selenium, 0.4 mg; and cobalt, 0.100 mg. 3COMBO Enzyme Blend consists of the following: cellulase, 75,000 CU units/kg; fungal amylase 30,000, SKB units/kg; fungal protease, 1,000,000 HUT units/kg; neutral protease, 100,000 PC units/kg; alkaline protease, 1,2 Anson units/kg; xylanase, 20,000 × U units/kg; beta-glucanase, 20,000 BG units/kg; hemicellulase, 20,000 HCU units/kg; and lipase, 75,000 FIP units/kg. 4AXTRA PHY 10,000 TPT, 6-phytase 10,000 FTU/g. 5Diclazuril 500 mg, ATOZURIL (ATco pharma). 6MYCOFIX Select 3, feed additives that protect broiler health by deactivation of mycotoxins. 7ENVIVA Pro 202 GT, Bacillus subtilis 2.5E CFU/gm.

Ingredients (%)	Finisher diets							
	CTL 21% CP	APS 21% CP	CTL 20% CP	APS 20% CP	CTL 19% CP	APS 19% CP	CTL 18% CP	APS 18% CP
Yellow corn	60.88	55.879	63.88	58.73	67.18	61.58	70.17	64.18
SBM (48% CP)	33.30	22.60	30.80	20.00	28.00	17.35	25.46	15.00
Gluten meal (62% CP)	–	2.50	–	2.50	–	2.50	–	2.50
DDGS (31% CP)	–	7.50	–	7.50	–	7.50	–	7.50
DDGS (28% CP)	–	5.00	–	5.00	–	5.00	–	5.00
Soy oil	2.90	3.60	2.40	3.25	1.90	2.90	1.50	2.50
Limestone	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.85
Dicalcium phosphate	0.20	0.200	0.20	0.20	0.15	0.20	0.20	0.20
Common salt	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Vitamin premix	0.0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Mineral premix	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
DL-methionine (98%)	0.0.15	0.10	0.15	0.10	0.10	0.15	0.10	0.15
Mixed enzymes	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Phytase	0.0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Coccidostat	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Antimycotoxin	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Probiotic	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
Total	100	100	100	100	100	100	100	100

Calculated analysis

	ME (kcal/kg)	Crude protein (%)	Fat (%)	Fiber (%)	Calcium (%)	Phosphorus (%)	Total lysine (%)	Methionine (%)	Meti + cyst (%)	Arginine (%)
CTL 21% CP	3100	21	2.75	2.45	0.77	0.38	1.05	0.45	0.73	1.07
APS 21% CP	3100	20	2.85	2.44	0.77	0.40	1.05	0.51	0.83	1.00
CTL 20% CP	3100	20	3.4	3.95	0.76	0.40	1.13	0.48	0.76	1.06
APS 20% CP	3100	20	3.48	2.43	0.76	0.39	1.20	0.48	0.79	1.02
CTL 19% CP	3100	19	2.94	3.94	0.75	0.39	1.01	0.50	0.81	1.03
APS 19% CP	3100	18	3.57	2.41	0.75	0.42	1.04	0.47	0.75	1.04
CTL 18% CP	3100	18	3.02	3.92	0.75	0.43	1.08	0.48	0.78	1.00
APS 18% CP	3100	18	3.65	3.92	0.75	0.44	1.05	0.48	0.78	1.01
Determination of Lactobacillus, E. coli, and Salmonella/Shigella. At the end of the experiment, 15 birds from each group (5 birds/pen) were selected representing the pen and were decapitated by cervical dislocation, and exsanguination by severing the jugular vein. The carcasses were subsequently opened, and the entire gut tract was removed aseptically. The gut tract was then divided into sections that were ligated with light twine before being separated. The ceca were collected and sealed in sterile bags filled with 50 mL of ice-cold cryoprotective broth (i.e., pre-reduced sterile brain heart infusion broth containing 20% vol/vol glycerol) suitable to maintain the viability of intestinal bacteria and were immediately stored at −80 °C for subsequent analyses. For all analytical procedures, deep-frozen ceca per bird were thawed for 20 min and removed from storage bags. Cecal digesta contents were then aseptically emptied in a new sterile bag and were immediately diluted tenfold (i.e., 10% wt/vol) with sterile ice-cold anoxic PBS (0.1 M, pH 7.0) and subsequently homogenized for 3 min. Digesta slurries were then processed as follows. Each cecal digesta homogenate in PBS (1 mL) was serially diluted from 10⁻¹ to 10⁻⁷. Dilutions were subsequently plated on duplicate selective agar media for the enumeration of target bacterial groups. In particular, Lactobacillus spp., E. coli, and Salmonella spp. were enumerated using MRS agar, MacConkey agar, and Salmonella agar, respectively. Plates were then incubated at 39 °C for 24–72 h, and colonies were counted. Results were expressed as base-10 logarithm colony forming units (Table 3). On the other hand, groups fed CTL21 and CTL20 diets had a higher (P < 0.01) BW compared with birds in groups APS21, APS20, APS19, CTL19, APS18, and CTL18 as they recorded 1142 g, 1038 g, 1023 g, and 1002 g, respectively. However, the group supplied with test diet APS19 was statistically equal to the group fed test diet APS20. Likewise, the results showed that birds fed CTL21 and CTL20 diets recorded the significant highest BWG (1260 g and 1237 g, respectively) during the finisher phase (19–35 days), and these values did not differ from the values of the birds fed test diets APS21 and APS20, since they recorded 1261 g and 1220 g, respectively. On the other hand, groups fed CTL19, APS19, CTL18, and APS18 since they recorded 1568.47 g, 1678.25 g, 1520.78 g, and 1544.84 g BW, respectively, but the group supplied with test diet APS19 was statistically equal to the group fed test diet APS20. Likewise, the results showed that birds fed CTL21 and CTL20 diets recorded the biggest BWG (1260 g and 1237 g, respectively) during the finisher phase (19–35 days), and these values did not differ from the values of the birds fed test diets APS21 and APS20, since they recorded 1216 g and 1220 g, respectively. On the other hand, groups fed CTL19, APS19, CTL18, and APS18 as they recorded 1142 g, 1038 g, 1023 g, and 1002 g, respectively. However, the group supplied with test diet APS19 showed significantly higher BW, BWG, and FI than the CTL19 group. Concerning FI, the results showed that birds in groups APS20, CTL20, APS21, and APS18 recorded the highest (P < 0.05) FI (2117 g, 2098 g, 2097 g, and 2093 g, respectively) during the finisher phase. Birds in groups CTL18 and APS18 showed the worst FCR as they recorded 2.05 and 2.04 kg feed consumption/kg gain compared

Feedstuffs	CP (%)	ME (Kcal/kg)	Fat (%)	Fiber (%)	Calcium (%)	Total phosphorus (%)
Corn	8.2	3370	3.9	2.3	0.02	0.26
Soybean meal	44	2240	0.9	6	0.32	0.65
Corn gluten meal	62	3700	2.2	2	0.07	0.48
DDGS	31	2766	11	9	0.07	0.7
Sunflower meal	28	1400	2	25	0.34	1

Table 2. Chemical compositions of alternative feed sources.
to other groups. However, the opposite was true for birds in groups CTL21, APS21, CTL20, APS20, CTL19, and APS18 as no differences were detected in the FCR (Table 3). Results showed that incorporating 15% combination of SFM, CGM, and DDGS in the diets during finisher phase in APS21 group required less SBM supplementation and could be used for sustainable broiler production.

Livability, economic efficiency, and European performance efficiency factor. Results of livability were not significantly affected by finisher diets or dietary treatments (Table 4). A highly significant difference ($P < 0.01$) was observed in the EPEF among different groups; birds fed finisher diets CTL21 recorded the highest EPEF (329.87%) which was statistically equal to birds fed test diet APS21 and CTL20 diet (305.86% and 303.48%, respectively) but was different from birds fed APS20, APS19, CTL19, CTL18, and APS18 with EPEF values as 296.04%, 288.50%, 266.91%, 231.62%, and 230.14%, respectively.

Birds fed test diets with APS and CTL diets at 21, 20, and 19% CP levels showed better economic efficiency than the diets at 18% CP level (Table 5). Birds fed test diet APS21 showed the best economic efficiency compared to other groups.

Environment aspects and litter composition. Mean values of litter content including moisture, pH, total nitrogen, and ash percentage were statistically similar as they were not affected by CTL or APS finisher diets at different protein levels (Table 5). The overall mean of moisture was 27.28%, pH was 7.01, total N was 3.46%, and ash was 12.31%. The count of litter Lactobacillus spp. was significantly ($P < 0.01$) influenced by CTL or APS finisher diets (Table 6); results showed that birds fed CTL19 diet recorded the highest value of litter Lactobacilli count with a value of 6.24 log CFU/g compared with other groups.

Table 3.

Treatments	BW (g) 19 d	BW (g) 35 d	BWG (g) 19–35 d	Feed intake (g) 19–35 d	FCR 19–35 d
CTL21%	549	1809	1260	2019	1.61
APS21%	547	1763	1216	2097	1.73
CTL20%	528	1765	1237	2098	1.70
APS20%	528	1748	1220	2117	1.75
CTL19%	529	1568	1038	1798	1.76
APS19%	535	1678	1142	1965	1.73
CTL18%	521	1520	1002	2039	2.04
APS18%	517	1544	1023	2093	2.05
SEM	3.255	9.125	25.750	23.615	0.054

Table 4.

Livability, economic efficiency, and European performance efficiency factor of Cobb broilers fed starter diets and finisher diets containing alternative protein sources at the levels of 21%, 20%, 19%, and 18% of CP. CTL soybean meal only, APS alternative protein sources containing soybean meal, DDGS sunflower meal, and corn gluten meal, SEM standard error of means, NS not significant. $^*P < 0.05$; $^{**}P < 0.01$. a–c Means within columns with no common superscripts are significantly different for each analysis.

Treatments	Livability (%)	Economic efficiency	European performance efficiency factor (%)
Protein level during finisher diets			
CTL21%	95.89	99.38	329.87
APS21%	96.17	100.00	305.86
CTL20%	95.58	97.17	303.48
APS20%	95.40	98.77	296.04
CTL19%	94.92	98.56	286.91
APS19%	95.85	98.97	288.50
CTL18%	96.13	87.11	231.62
APS18%	94.49	82.62	230.14
SEM	1.13	4.64	10.5
Significance test	NS	**	**

Table 5.

Body weight (BW) and body weight gain (BWG) of Cobb broilers fed starter diets for 19 days of age and finisher diets containing alternative protein sources at the levels of 21%, 20%, 19%, and 18% CP for 35 days. **Means within columns with no common superscripts are significantly different. CTL soybean meal only, APS alternative protein sources containing soybean meal, DDGS sunflower meal, and corn gluten meal, SEM standard error of means, NS not significant. $^*P < 0.05$; $^{**}P < 0.01$.
The results of the litter *E. coli* count were not influenced by CTL or APS diets. The overall mean of litter *E. coli* count was 1.68 log CFU/g (Table 6). The counts of litter *Salmonella* spp. were significantly ($P < 0.01$) affected by CTL and APS diets, and this showed that litter *Salmonella* spp. counts increased with APS diets compared to CTL diets at 21%, 20%, and 19% CP levels but it was absent in CTL18 and APS18 groups (Table 6).

Caecum bacteria count.

Cecal *Lactobacillus* spp. and *E. coli* counts were not influenced by CTL and the APS dietary treatments as the overall mean of the cecal *Lactobacillus* spp. count was 5.85 log CFU/mL and the overall mean of the cecal *E. coli* count was 5.85 log CFU/mL (Table 6). The cecal *Salmonella* spp. count increased with CTL diet at the level of 21% CP compared to other groups with the absence of cecal *Salmonella* spp. at the level of 18% CP in CTL or APS diet.

Discussion

The growth performance data including BW, BWG, FI, and FCR revealed that incorporation of SFM, CGM, and DDGS at 15% level by replacing SBM in the diets containing 21% and 20% CP showed no negative effects on performance and could be used for sustainable broiler production during the finisher period (19–35 days of age). The growth performance was higher in the APS19 group than the CTR19 showing positive effects of APS supplementation. It is apparent from the growth performance data in the current study that sufficient CP was present to support adequate levels of indispensable amino acid synthesis, even in birds fed protein levels at 19% and 18% in the CTR and APS diets. These results agree with Gajana et al. 19, which showed that birds fed finisher diets at 16 to 35 days resulted in improved body weight of broiler chickens. The growth performance of broilers is significantly increased with decreased levels of crude protein in the finisher period.20 However, in the current study, the higher level of protein (21% and 20% CP) performed better than the lower levels of protein (19% and 18%) in both control and APS diets. The current study shows that plant protein levels in finisher diets.
Salmonella the cecal
33. Śliżewska et al. 34 reported that when carcasses originate from farms with low detectable levels of
Salmonella the reasons remained obscure. The risk of contamination on processed broiler carcasses is reduced
Salmonella monella 25,26. The factor which is important to reduce nitrogen losses from manure is to decrease the amount
of CP in the diet.

When formulating finisher diets for broilers, the mixing efficiency of feed ingredients must be taken into
considerations to optimize the protein levels and excretion of nitrogen and thereby increase the productive
performance of chickens. Since the cost of feed represents more than 75% of poultry production27, our study focused
more on the production efficiency during the finisher dietary phase by changing feed composition. Birds fed test
diet with alternative protein sources showed better economic efficiency and EPEF in the APS21 group compared to
other APS groups, and in CTL21 group than other CTL groups. The success in the poultry industry depends
on the ability of producers to control broiler feed costs. The results of the current experiment agreed with other
studies19,27,28. It is a great financial advantage to the poultry producer to cut and replace the starter period with
the finisher period6. Optimizing protein levels during the finisher feeding phase of broilers improves production
performances29. However, Tavernari et al.30 showed that feeding broiler chickens SBM resulted in the highest
economic efficiency compared to the broilers receiving diets containing sunflower meal. It could be concluded
that changing the dietary starter phase with sustained finisher diets containing APS at different protein levels
during 19–35 days of age improved economic return and EPEF.

DDGS supplementation up to 20%31 and SFM supplementation up to 14%32 can be used in broiler diets
without adverse effects on the performance and economic efficiency. Kim et al.31 reported that the availability
of DDGS as bioprocessed products, combined with their low cost, has made their application as feed sources
for broiler chickens more economical. Feeding broilers combination of SFM, CGM, and DDGS in finisher
diets or SBM diets did not alter cecal Lactobacillus spp., and E. coli, and litter E. coli counts. On the other hand,
the cecal Salmonella spp. count increased with CTL diet at the level of 21% CP compared to other groups. The
Salmonella spp. were not detected in CTR18 and APS18 groups either in litter or cecal contents. High litter Sal-
monella counts were observed in the APS groups than their respective counterparts in the CTL at 21–19% CP
levels. Similarly, cecal Salmonella load was higher in all finisher dietary CP groups except at 18% CP level and
the reasons remained obscure. The risk of Salmonella contamination on processed broiler carcasses is reduced
when carcasses originate from farms with low detectable levels of Salmonella33. Śliżewska et al.34 reported that
the quantitative and qualitative composition of microbiota in the broiler gut tract may change due to the effect
of feed composition. However, it remains poorly understood how feed compositions affects development and
composition of chicken gut microbiota31,33. There are different effects of CTL and APS diet compositions on
Lactobacillus spp., E. coli, and Salmonella spp. in litter and ceca of broilers, but the values are within the normal
bacteriological range33–38. Feeding broilers, a combination of SFM, CGM, and DDGS as APS in finisher diets or
SBM in CTL diets improved gut microbiota. The balance of the gut microbiota is an important factor improving
digestion, healthy gut, and, therefore, optimum performances.

Conclusion
Based on the results, the inclusion of the combination of SFM, CGM, and DDGS at 15% in finisher diets of
broilers with 21% and 20% CP levels is desirable for Cobb 500 strain from the growth performance aspects.
Interestingly, incorporating a combination of SFM, CGM, and DDGS as APS into diets required less SBM supple-
mentation and could be used for sustainable broiler production; moreover, it improves the economics of broiler
production. However, further studies with different protein sources and higher levels of inclusion are needed to
promote the use of the mixture of APS including CGM, SFM, and DDGS in broiler diets.

Received: 6 May 2020; Accepted: 7 October 2020
Published online: 20 October 2020

References
1. FAO. Feed resources information system, Animal Health and Production Division. https://www.fao.org/ag/aga/agap/frg/frgis/
default.htm (2011).
2. Rodić, V., Perić, L., Đukić-Stojičić, M. & Vukselić, N. The environmental impact of poultry production. Biotechnol. Anim. Haz. 27(4), 1673–1679 (2011).

3. Fasuyi, A. O. Nutritional evaluation of cassava (Manihot esculenta, Crantz) leaf protein concentrates (CLPC) as alternative protein sources in rat assay. Pak. J. Nutr. 4, 50–56 (2005).

4. Aftab, U. Utilization of alternative protein meals with or without multiple-enzyme supplementation in broilers fed low-energy diets. J. Appl. Poult. Res. 18, 292–296 (2009).

5. Rama, S. R. V., Raju, M. V. L. N., Panda, A. K. & Reddy, M. R. Sunflower seed meal as a substitute for soybean meal in commercial broiler chicken diets. Br. Poult. Sci. 47, 592–598 (2006).

6. Lessen, S. Future considerations in poultry nutrition. Poult. Sci. 91, 1281–1285 (2012).

7. Saleh, E. A., Watkins, S. E. & Waldroup, P. W. Changing time of feeding starter, grower, and finisher diets for broilers. 1. Birds grown to 1 kg. J. Appl. Poult. Res. 5, 269–275 (1996).

8. Watkins, S. E., Waldroup, K. L. & Waldroup, P. W. Effect of dietary amino acid level on time of change from starter to grower diets for broiler chickens. J. Appl. Poult. Res. 2, 117–122 (1993).

9. Hwangbo, J. et al. Utilization of house fly-maggots, a feed supplement for the production of broiler chickens. J. Environ. Biol. 30, 609–614 (2009).

10. Damron, B. L., Amato, S. V. & Benoff, F. H. Marigold extracts and maize gluten meal as broiler pigment sources in maize and wheat-based diets. Anim. Feed Sci. Technol. 31, 79–89 (1990).

11. Min, Y. N. et al. Use of combinations of canola meal and distillers dried grains with solubles in broiler starter diets. J. Appl. Poult. Res. 18, 25–73 (2009).

12. Kalia, S. Supported in part by USDA National Institute of Food and Agriculture Project No. 2019-69012-29905 (to Jayant Lohakare).

13. Lemme, A., Frackenpohl, U., Petri, A. & Meyert, H. Response of male BUT big 6 turkeys to varying amino acid feeding programs. Anim. Feed Sci. Technol. 14, 165–173 (2002).

14. Ballongue, J., Schumann, C. & Quignon, P. Effects of lactulose and lactitol on colonic microflora and enzymatic activity. Scand. J. Gastroenterol. 32(41), 44 (1997).

15. Tuohy, K. M. et al. A human volunteer study to determine the prebiotic effects of lactulose powder on human colonic bacteria. Microbiol. Ecol. Health Dis. 14, 165–173 (2002).

16. AOAC. Official methods of analysis of the Association of Official Analytical Chemists 18th edn. (Association of Official Analytical Chemists, Washington, DC, 2000).

17. SPSS. Statistical package for Social Sciences, version 17, SPSS Inc, USA (2008).

18. Duncan, D. B. Multiple range and multiple F test. Biometrics 11, 1–42 (1955).

19. Gajana, C. S., Nukwana, T. T., Chimonyo, M. & Muchenje, V. Effect of altering the starter and finisher dietary phases on growth performance of broilers. Afr. J. Biotechnol. 10, 14203–14208 (2011).

20. Kamran, Z. et al. Effect of low-protein diets having constant energy-to-protein ratio on performance and carcass characteristics of broiler chickens from one to thirty-five days of age. Poult. Sci. 87, 468–474 (2008).

21. Nawaz, H., Mushtaq, T. & Yaqoob, M. Effect of varying levels of energy and protein on live performance and carcass characteristics of broiler chicks. J. Poult. Sci. 43, 388–393 (2006).

22. Lessen, S., Caston, L. & Summers, J. D. Broiler response to energy or energy and protein dilution in the finisher diet. Poult. Sci. 75, 522–528 (1996).

23. Wang, Z., Cerrate, S., Coto, C., Yan, F. & Waldroup, P. W. Use of constant or increasing levels of distillers dried grains with solubles (DDGS) in broiler diets 1. Int. J. Poult. Sci. 6, 501–507 (2007).

24. Ibrahim, M. I. Y., Claudia, W., Angela, S., Frank, L. & Josef, K. Evaluation of dried distillers' grains with solubles (DDGS) as a protein source for broilers. Arch. Anim. Nutr. 62, 404–414 (2008).

25. Portejoie, S., Dourmad, J. Y., Martinez, J. & Lebreton, Y. Effect of lowering dietary crude protein on nitrogen excretion, manure composition and ammonia emission from fattening pigs. Livest. Prod. Sci. 91, 45–55 (2004).

26. Agah, M. J. & Norollahi, H. Evaluation of the nutritional value of sunflower meal and its effect on performance, pellet quality, ileal amino acids digestibility, and intestinal microbiota. Poult. Sci. 97, 2411–2418 (2018).

27. Waller, A. Economic approach to broiler production. Ross Tech Notes, Sept. www.aviagen.com (2007).

28. Cevger, Y. & Yalin, C. A quantitative model to determine factors affecting profits of broiler enterprises. Turk. J. Vet. Anim. Sci. 27, 1201–1205 (2003).

29. Eits, R. M., Kwakkel, R. P., Verstegen, M. W. & Emmans, G. C. Responses of broiler chickens to dietary protein: effects of early life protein nutrition on later responses. Br. Poult. Sci. 44, 398–409 (2003).

30. Tavernari, F. C., Albino, L. F. & Morata, R. L. Inclusion of sunflower meal, with or without enzyme supplementation in broiler diets. Rev. bras. de Ciênc. Azoela. 10, 233–238 (2008).

31. Kim, S. et al. Processing diets containing corn distillers' dried grains with solubles in growing broiler chickens: effects on performance, pellet quality, ileal amino acids digestibility, and intestinal microbiota. Poult. Sci. 97, 2411–2418 (2018).

32. Mallinson, E. T. et al. Lower water activity in broiler litter and the reduction of Salmonella on farms and processed carcasses. Bulletin 348, 1–12 (1993).

33. Moghaddam, H. N., Salari, S. J., Golian, A. & Maleki, M. Evaluation of the nutritional value of sunflower meal and its effect on performance, digestive enzyme activity, organ weight, and histological alterations of the intestinal villi of broiler chickens. J. Appl. Poult. Res. 21, 293–304 (2012).

34. Słuzewska, K., Markowiak-Kopeć, P., Zbikowski, A. & Śleszczuk, P. The effect of symbiotic preparations on the intestinal microbiota and her metabolism in broiler chickens. Sci. Rep. 10, 4281. https://doi.org/10.1038/s41598-020-61256-z (2020).

35. Wang, Y. et al. Effect of probiotics on the meat flavor and gut microbiota of chicken. Sci. Rep. 7, 6400 (2017).

36. Baurhoo, B., Fercket, P. R. & Zhao, X. Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development,ecal and litter microbial populations, and carcass parameters of broilers. Poult. Sci. 88(11), 2262–2272 (2009).

37. Duqueónoy, A. et al. Cecal microbiota compositions from 7-day-old chicks reared in high-performance and low-performance industrial farms and systematic culture omics to select strains with anti-Campylobacter activity. PLoS ONE 15(8), e0237541 (2020).

38. Lucke, A., Böhm, J., Zebeli, Q. & Metzler-Zebeli, B. U. Dietary deoxyxynovalenol contamination and oral lipopolysaccharide challenge alters the cecal microbiota of broiler chickens. Front. Microbiol. 9, 804 (2018).

Acknowledgements
Supported in part by USDA National Institute of Food and Agriculture Project No. 2019-69012-29905 (to Jayant Lohakare).
Author contributions
Conceptualization, A.E.E. and A.A.A.A.-W.; methodology, M.O., M.E.-S., A.M.K.; formal analysis, A.M.K. and A.E.E.; writing—original draft preparation, A.E.E., A.A.A.A.-W. and J.L. All authors have read and agreed to the published version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.A.A.A.-W. or J.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020