Hypoglycemia associated with fluoxetine treatment in a patient with type 1 diabetes

Betina Biagetti, Rosa Corcoy

Betina Biagetti, Rosa Corcoy, Servei d’Endocrinologia i Nutrició, Hospital de la Santa Creu i Sant Pau, Avgda Sant Antoni M Claret 167, 08025 Barcelona, Spain

Rosa Corcoy, Department de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

Rosa Corcoy, CIBER Bioengineering, Biomaterials and Nanotechnology, Instituto de Salud Carlos III, 28029 Madrid, Spain

Author contributions: Biagetti B and Corcoy R were the attending physicians; Corcoy R designed the report; Biagetti B wrote the document.

Correspondence to: Rosa Corcoy, MD, PhD, Servei d’Endocrinologia i Nutrició, Hospital de la Santa Creu i Sant Pau, Avgda Sant Antoni M Claret 167, 08025 Barcelona, Spain. rcorcoy@santpau.ca

Telephone: +34-93-5565661 Fax: +34-93-5565602

Received: May 15, 2013 Revised: June 20, 2013

Accepted: July 4, 2013

Published online: August 16, 2013

Abstract

We report on a patient with type 1 diabetes mellitus who presented with recurrent episodes of hypoglycemia and a marked reduction in her daily insulin requirements after introduction of fluoxetine. This 25-year-old Caucasian woman had been followed up at the outpatient clinic for type 1 diabetes mellitus and pre-pregnancy care. She used a continuous subcutaneous insulin infusion with lispro and her daily insulin dose was 0.5 IU/kg per day. She had no chronic diabetic complications or hypoglycemia unawareness. Fluoxetine at a daily dose of 20 mg had been started because of depressive symptoms and within one week, she presented recurrent hypoglycemic episodes that prompted a progressive reduction in the insulin dose down to 0.3 IU/kg per day. The reduced insulin requirements continued during the period of fluoxetine treatment while glycated hemoglobin remained stable. She had no concurrent additional cause to explain the reduced insulin requirements. After fluoxetine was stopped, insulin requirements progressively increased and returned to the patient’s usual dose.

© 2013 Baishideng. All rights reserved.

Key words: Fluoxetine; Selective serotonin-reuptake inhibitor; Hypoglycemia; Diabetes mellitus

Core tip: A patient with type 1 diabetes mellitus presented with hypoglycemia and a marked reduction in insulin requirements associated with fluoxetine treatment. Hypoglycemia accompanying treatment with fluoxetine has been reported in patients with type 1 or type 2 diabetes mellitus. Healthcare professionals should be aware of this association for the sake of patient safety.

INTRODUCTION

Diabetic patients have an increased risk of developing depression (8.5% to 20.0% higher than the general population)\(^1\)-\(^3\). Reports on the impact of antidepressant drugs on glucose homeostasis are diverse: hypoglycemic, hyperglycemic and neutral effects have been described depending on the specific drug.\(^4\) As to mechanisms, insulin sensitivity seems to be the main effector, with some reports referring to an interaction with hypoglycemic agents.\(^5\)-\(^7\). Specifically, fluoxetine has been associated with hypoglycemia\(^7\)-\(^8\), hypoglycemia unawareness\(^9\) and increased insulin sensitivity.\(^10\). In addition, some case reports describe symptoms that suggest hypoglycemia although this was not confirmed on further analysis.\(^11\)-\(^13\).
In one experimental study, it was shown that the autonomic nervous system and metabolic counter regulatory responses to moderate hypoglycemia were amplified by fluoxetine[15-17], with symptoms mimicking hypoglycemia. A few studies have reported the influence of fluoxetine on glucose homeostasis to be neutral or hyperglycemic. Some studies, however, have reported that fluoxetine has no influence on glucose metabolism[15-17].

As severe hypoglycemia is associated with both morbidity and mortality, and non-severe episodes can be the harbinger of severe episodes. For the sake of patient safety, healthcare professionals need to be aware of potential drug interactions that could lead to hypoglycemia[5,6].

CASE REPORT

The patient was a 25-year-old Caucasian woman who was diagnosed with type 1 diabetes mellitus when she was 15. At 23 years, she had an infant with a severe cardiac anomaly and at age 24 an insulin pump using lispro insulin was initiated to improve glycemic control as part of pre-pregnancy care. She had no chronic diabetic complications. The patient was receiving a total daily dose of 0.5 IU/kg per day. Her mean self-monitored blood glucose level was stable at 100-130 mg/dL, and she had around two non-severe hypoglycemic episodes per month but no episodes of severe hypoglycemia. Her most recent glycated hemoglobin measurement was 6.8% and her body mass index was 24.0 kg/m². The only previous relevant event in her medical history was a minor depressive episode two years earlier, resolved without drug treatment.

Following a new depressive episode, the patient was started on fluoxetine, 20 mg p.o. a day. Approximately one week later, the frequency of hypoglycemic episodes increased to around 2 per week, prompting a decrease in her insulin requirements to 0.3 IU/kg per day. Over in this period, she reported no relevant modifications in her diet, exercise, and drug treatment or associated conditions. She did not have hypothyroidism or adrenal failure. Glycated hemoglobin decreased to 6.5% and 6.3% one and two months, respectively, after starting fluoxetine and stabilized again at 6.8% at 3 mo. Fluoxetine was stopped several months later and insulin requirements returned to previous values.

DISCUSSION

The mechanisms by which fluoxetine could induce hypoglycemia are listed in Table 1 and include pseudo-hypoglycemia[12-14], increased insulin sensitivity[9-11] and interference in the metabolism of sulphonylureas[5,6]. Some studies, however, have reported that fluoxetine has no influence on glucose metabolism[15-17]. Experimental studies have shown that fluoxetine improves insulin-mediated glucose disposal independently of weight loss[10,11]. Nevertheless, the mechanism(s) underlying the association between fluoxetine treatment and increased insulin levels require further investigation.

Table 1 Summary of studies addressing fluoxetine and glucose metabolism

Reference	Study design	Results
Deeg et al[15]	Case report, patient with type 2 DM	Repeated episodes of hypoglycemia in a patient treated with glyburide. Fasting hypoglycemia (with hyperinsulinemia) continued 2 wk after glyburide was suspended and while receiving fluoxetine
Khoza et al[16]	Case reports, review of published reports	17 patients with glucose dysregulation (9 hyperglycemia; 8 hypoglycemia, one of them with fluoxetine) after initiation of treatment with antidepressant agents. The authors concluded it was not clear whether changes in glucose regulation were due to antidepressants or to changes in mood and lifestyle
Sawka et al[17]	Case report, patient with type 1 DM	Reduced insulin requirements and hypoglycemia unawareness during treatment with fluoxetine
Maheux et al[18]	Experimental design, obese subjects with type 2 DM	Fluoxetine improved insulin sensitivity in a clamp study, independent of weight loss
Potter van Loon et al[19]	Experimental design, obese subjects with and without type 2 DM	Fluoxetine improved hepatic and peripheral insulin sensitivity in a clamp study
Lear et al[20]	Case report, patient with type 1 DM	Fluoxetine side effects mimicked hypoglycaemia
Fernández López et al[21]	Case report, non-diabetic woman	Clinical presentation with symptoms of hypoglycemia but without analytical confirmation
Briscoe et al[22]	Experimental design, patients with type 1 DM	6-wk administration of fluoxetine amplified autonomic nervous system and metabolic counter-regulatory mechanisms during moderate hypoglycemia.
Erenmemisoglu et al[23]	Experimental design, healthy and alloxan-induced diabetic mice	Fluoxetine and sertraline did not modify insulin concentrations but reduced plasma glucose
Gomez et al[24]	Experimental design, diabetic and non-diabetic rats	Sertraline prevented the increase in glycemia induced by an oral glucose load while fluoxetine had the opposite effect
Kesim et al[25]	Experimental design, healthy and diabetic mice	Paroxetine and fluoxetine had no significant or controversial effects on glycemia

DM: Diabetes mellitus.
sensitivity remain largely hypothetical. Some scientific evidence suggests that fluoxetine can act through a central mechanism, decreasing triglycerides and free fatty acids, or have an effect on glucose oxidation or on insulin binding to the insulin receptor. In the present case insulin requirements showed a substantial temporary modification, associated with fluoxetine treatment. This modification points to an effect of fluoxetine on insulin sensitivity, since an increase in insulin secretion would be highly unlikely in a patient with type 1 diabetes mellitus. The time interval did not allow the effect to be mediated through a decrease in body weight. A weakness of this report is that the drug was not reintroduced, and reintroduction is one of the criteria for establishing causality.

Antidepressant drugs can have a variety of effects on glucose homeostasis. Selective serotonin-reuptake inhibitors have been associated with hypoglycemic episodes, as outlined in the technical data sheet of fluoxetine. The present case expands on these data. For the sake of patient safety, treatment of depression in diabetic patients must take into account the influence of antidepressant agents on glucose homeostasis.

REFERENCES

1 Lustman PJ, Griffith LS, Gavard JA, Clouse RE. Depression in adults with diabetes. Diabetes Care 1992; 15: 1631-1639 [PMID: 1468296]

2 Rotella F, Mannucci E. Depression as a risk factor for diabetest: a meta-analysis of longitudinal studies. J Clin Psychiatry 2013; 74: 31-37 [PMID: 23419225 DOI: 10.4088/JCP.12r07922]

3 Ali S, Stone MA, Peters JL, Davies MJ, Khunti K. The prevalence of co-morbid depression in adults with Type 2 diabetes: a systematic review and meta-analysis. Diabet Med 2006; 23: 1165-1173 [PMID: 17054590]

4 McIntyre RS, Sozynska JK, Konarski JZ, Kennedy SH. The effect of antidepressants on glucose homeostasis and insulin sensitivity: synthesis and mechanisms. Expert Opin Drug Saf 2006; 5: 157-168 [PMID: 16570964]

5 Holstein A, Pласкhe A, Ptak M, Egberts EH, El-Din J, Brockmoller J, Kirchheiner J. Association between CYP2C9 slow metabolizer genotypes and severe hypoglycemia on medication with sulfonylurea hypoglycaemic agents. Br J Clin Pharmacol 2005; 60: 103-106 [PMID: 15963101]

6 Mandrioli R, Forti GC, Raggi MA. Fluoxetine metabolism and pharmacological interactions: the role of cytochrome p450. Curr Drug Metab 2006; 7: 127-133 [PMID: 16472103]

7 Deeg MA, Lipkin EW. Hypoglycemia associated with the use of fluoxetine. West J Med 1996; 164: 262-263 [PMID: 8775944]

8 Koza S, Barner JC. Glucose dysregulation associated with antidepressant agents: an analysis of 17 published case reports. Int J Clin Pharm 2011; 13: 484-492 [PMID: 21487738 DOI: 10.1007/s11196-011-9507-0]

9 Sawka AM, Burgart V, Zimmerman D. Loss of hypoglycemia awareness in an adolescent with type 1 diabetes mellitus during treatment with fluoxetine hydrochloride. J Pediatr 2000; 136: 394-396 [PMID: 10700699 DOI: 10.1067/ mpd.2000.103851]

10 Maheux P, Ducros F, Bourque J, Garon J, Chiasson JL. Fluoxetine induces insulin sensitivity in obese patients with non-insulin-dependent diabetes mellitus independently of weight loss. Int J Obes Relat Metab Disord 1997; 21: 97-102 [PMID: 9043962]

11 Potter van Loon BJ, Radder JK, Frollich M, Krans HM, Zwinderman AH, Meinders AE. Fluoxetine increases insulin action in obese type II (non-insulin-dependent) diabetic patients. Int J Obes Relat Metab Disord 1996; 20 Suppl 4: 555-561 [PMID: 1338387]

12 Lear J, Burden AC. Fluoxetine side-effects mimicking hypoglycaemia. Lancet 1992; 339: 1296 [PMID: 1349888]

13 Fernández López M1, Sánchez Esteban J, Jimenez Belló J, Meseguer Zaragoza A. [Suggestive episodes of hypoglycaemia related to fluoxetine]. Aten Primaria 1996; 18: 581 [PMID: 9072092]

14 Briscoe VJ, Ertl AC, Tate DB, Davis SN. Effects of the selective serotonin reuptake inhibitor fluoxetine on counterregulatory responses to hypoglycaemia in individuals with type 1 diabetes. Diabetes 2008; 57: 3315-3322 [PMID: 18835927]

15 Erenmemisoglu A, Ozdogan UK, Saraymen R, Tutus A. Effect of some antidepressants on glycaemia and insulin levels of normoglycaemic and alloxan-induced hyperglycaemic mice. J Pharm Pharmacol 1999; 51: 741-743 [PMID: 10454035]

16 Gomez R, Huber J, Tombini G, Barros HMT. Acute effect of different antidepressants on glycaemia in diabetic and non-diabetic rats. Braz J Med Biol Res 2001; 34: 57-64 [PMID: 11151029 DOI: 10.1590/S0100-879X2001000100007]

17 Kesim M, Duman EN, Kadioglu M, Uluk C, Muci E, Kalyoncu N, Yarıs E. Antinoceptive effects of fluoxetine and paroxetine with their related actions on glycaemia in mice. Neuro Endocrinol Lett 2006; 27: 281-287 [PMID: 16648811]

18 McCoy RG, Van Houten HK, Ziegenfuss JY, Shah ND, Wermers RA, Smith SA. Increased mortality of patients with diabetes reporting severe hypoglycaemia. Diabetes Care 2012; 35: 1897-1901 [PMID: 22699297]

19 Tornio A, Niemi M, Neuvonen PJ, Backman JT. Drug interactions with oral antidiabetic agents: pharmacokinetic mechanisms and clinical implications. Trends Pharmacol Sci 2012; 33: 312-322 [PMID: 22475684 DOI: 10.1016/j.tips.2012.03.001]

20 Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management. Lancet 2000; 356: 1255-1259 [PMID: 11072960]

Available from URL: http://www.accessdata.fda.gov/drugsatfda_docs/label/2006/018936s76,20101s35,20974s8,21235s-
7,21526s12,21475s11bl.pdf

P- Reviewer Xu W S- Editor Gou SX L- Editor Hughes D E- Editor Lu YJ
