POSSIBLE SIGNATURES OF MAGNETOSPHERIC ACCRETION ONTO YOUNG GIANT PLANETS

1. INTRODUCTION

Magnetically controlled accretion (e.g., Ghosh & Lamb 1979) governs mass accretion onto objects ranging from white dwarfs and neutron stars (Warner 2004) to supermassive black holes (Koide et al. 1999). Magnetospheric accretion models (Königl 1991) explain many of the observational characteristics of young stars such as the presence and magnitude of UV excesses from accretion shocks (Calvet & Gullbring 1998; Herczeg & Hillenbrand 2008) and the kinematic structure and rotational modulation of spectral line profiles arising from accretion funnel flows (e.g., Bouvier et al. 2003; Kurosawa et al. 2006).

Hydrodynamical simulations of mass accretion onto young giant planets have been performed (e.g., Papaloizou & Nelson 2005; Hubickyj et al. 2005; Ayliffe & Bate 2009), but these analyses have not formally considered the influence of the planet’s magnetic field. Young gas giants likely possess strong dynamos driven by rapid rotation and significant convective motions in their interiors (Sánchez-Lavega 2004). The appreciable large-scale magnetic fields produced by these dynamos could channel subsequent accretion onto the giant planet, potentially producing observational signatures analogous to those observed in young stars.

Previously, Quillen & Trilling (1998) and Fendt (2003) discussed magnetocentrifugally driven outflows from the circumplanetary disks. Fendt considered planetary accretion rates \(\sim 10^{-9} \, M_\odot \, \text{yr}^{-1} \), while Quillen & Trilling considered \(\sim 10^{-7} \, M_\odot \, \text{yr}^{-1} \). Our analytic calculations, combined with recent estimates of protoplanetary radii, imply that the planet’s magnetic field is likely to be buried for such a high accretion rate. That is, the planet’s physical radius will be \(\sim 1.4 \, r_{\text{final}} \). Magnetospheric accretion is less likely to play a role in a young gas giant’s main accretion phase, when the planet’s envelope is predicted to be much larger than the planet’s Alfvén radius. For a fiducial 1 \(M \, J \) gas giant planet with a remnant isolation phase accretion rate of \(M_\odot = 10^{-10} \, M_\odot \, \text{yr}^{-1} = 10^{-7} \, M_J \, \text{yr}^{-1} \), the disk accretion will be truncated at \(\sim 2.7 \, r_J \) (with \(r_J \) is Jupiter’s radius) and drive the planet to rotate with a period of \(\sim 7 \, \text{hr} \). Thermal emission from planetary magnetospheric accretion will be difficult to observe; the most promising observational signatures may be non-thermal, such as gyrosynchrotron radiation that is clearly modulated at a period much shorter than the rotation period of the host star.

Key words: accretion, accretion disks – planets and satellites: general

Online-only material: color figure

2. MAGNETOSPHERIC ACCRETION TO GIANT PLANETS

We consider the early stage (\(\lesssim 10 \, \text{Myr} \)) of a giant planet of mass \(M_p \) (of the order of Jupiter’s mass) orbiting a young star surrounded by an accretion disk. Giant planets are thought to form at \(R_p \sim 10–25 \, \text{AU} \) from the star and then undergo Type II inward migration at roughly the viscous accretion speed of the disk (Papaloizou et al. 2007).
Critical parameters for magnetospheric accretion by a giant planet are the planet’s characteristic radius, where an accretion shock may form, and its accretion rate. These parameters are strongly time-dependent during the planet’s formation. Planets with high mass accretion rates (∼10⁻⁸ M⊙ yr⁻¹) are predicted to have radii much larger than Jupiter’s radius (denoted rJ; Hubickyj et al. 2005; Helld & Schubert 2008; Ayilife & Bate 2009). The planet quickly cools once the mass accretion slows significantly, however, with models predicting a rapid collapse to much smaller radii (∼rJ; Lissauer et al. 2009).

In the core accretion model, a gas giant grows as its rocky core accretes material within its Hill radius, r_H = R_p/[M_p/(3M_*)]¹/³, where M_0 is the star’s mass and M_p is the planet’s mass (e.g., Hubickyj et al. 2005). The planet’s Hill radius expands as its mass increases, enabling the planet to accrete mass from a larger portion of the circumstellar disk. The planet’s mass accretion rate thus increases until its Hill radius exceeds the scale height of the circumstellar disk. This isolates the planet within a gap in the circumstellar disk, where the kinetic energy density of the disk plasma (ρυ_K²/2, with υ_K = √GM_p/r_p, the disk’s Keplerian velocity) is equal to the energy density of the magnetic field (B²/8π; Davidson & Ostriker 1973; Elsner & Lamb 1977; Long et al. 2005). The Alfvén radius of an accreting, non-rotating planet (rA₀) can be expressed as

\[r_A \approx \frac{\mu_p^2}{M_p \sqrt{GM_p}} \frac{\eta_A}{r_J^3} \approx 10^{10} \left(\frac{\mu_p}{10^{20} \text{ g}} \right) \left(\frac{M_0}{M_p} \right)^{2/7} \left(\frac{M_J}{M_p} \right)^{1/7} \text{ cm}, \]

where \(\mu_p \) is the magnetic moment of Jupiter and \(\mu_p \) is the magnetic moment of the young gas giant.

A rotating giant planet’s effective Alfvén radius is actually somewhat larger than that implied by the first-order calculation in Equation (2). This effect can be understood by noting that the Alfvén radius is the distance where the kinetic energy of the disk plasma in the reference frame rotating with the planet is equal to the magnetic energy density. This implies that the effective Alfvén radius will be larger for rapidly rotating planets, as the planet’s rotation will reduce the velocity contrast between the planet’s magnetic field and the Keplerian motion in the circumplanetary disk. The effective Alfvén radius for a rotating planet can be calculated as \(r_A = r_A^0 [1 - \Omega_p r_A / \sqrt{r_J^3} \sqrt{GM_p / r_J}]^{-4/7} \) or \(\eta_A^{-7/2} = (1 - g \omega_p \eta_A^{3/2})^2, \) where \(\eta_A \equiv r_A / r_A^0, \omega_p \equiv \Omega_p / \Omega_{max} \) with \(0 \leq \omega_p \leq 1, \) and \(g \equiv \Omega_{max} (GM_p/r_A^3)^{-1/2}. \)

The relation between \(\eta_A \) and \(\omega_p \) can be rewritten as

\[\omega_p = \eta_A^{-3/2} \left(\eta_A^{13/4} \right) g^{-1}. \]

The solid lines in Figure 2 show the relationship between \(\omega_p \) and \(\eta_A \) for the reference values of Equation (2), which give \(g = 0.636. \) We do not consider tidal locking of the planet’s rotation, which is estimated to take longer than 10 Myr for \(R_p > 0.1 \text{ AU}. \)

While the planet’s rotation influences where the circumplanetary disk is truncated, transfer of angular momentum between the planet and circumplanetary disk via magnetic interactions...
also influences the planet’s rotation rate. This feedback mechanism drives toward an equilibrium state where there is no net angular momentum flow between the planet and the inner edge of the circumplanetary disk (Ghosh & Lamb 1979). Simulations of magnetospheric accretion have identified that stars in this “disk-locked” state rotate more slowly than breakup ($\Omega < \Omega_{\max}$), such that the Alfvén radius slightly exceeds the “co-rotation radius” (r_{co}), where the angular velocity of Keplerian rotation in the disk equals the star’s angular velocity (i.e., $r_{\text{co}} \equiv (GM_*/\mu_p^2)^{1/3} \approx 1.6 \times 10^{10}(M_*/M_J)^{1/3}(\Omega/\Omega_p)^{2/3}$ cm $\approx 1.3r_A$; Long et al. 2005). This is equivalent to the condition that $r_{\text{co}}(\omega_p)/(1.3r_A)$ (dotted curve) and $\eta_A(\omega_p)$ (solid curves from Equation (3)). Their intersection point (indicated by the circle) corresponds to disk locking. Along the vertical dashed line above the circle, where the line intersects at $\eta_A > r_{\text{co}}/(1.3r_A)$, the planet will spin down, whereas below the circle where the line intersects at $\eta_A < r_{\text{co}}/(1.3r_A)$, the planet will spin up (see Lovelace et al. 1999).

2.2. Magnetospheric Accretion from the Circumplanetary Disk

The matter inflow from the inner edge of the circumplanetary disk at r_A to the planet’s surface at r_p occurs in narrow “funnel streams” which follow the planet’s magnetic field as proposed by Ghosh & Lamb (1979) and observed and analyzed in three-dimensional magnetohydrodynamic (MHD) simulations by Romanova et al. (2002, 2004). If the planet’s magnetic dipole moment μ_p is not greatly misaligned with the planet’s rotation axis Ω_p (assumed perpendicular to the disk around the star), then the funnel streams will impact the planet’s surface close to the magnetic poles roughly perpendicular to the surface. The funnel streams are approximately stationary in a reference frame rotating with the planet (Romanova et al. 2004). Thus, the flow speed along the funnel stream $u_f(r_A)$ is obtained from Bernoulli’s law in a reference frame rotating with angular rate Ω_p. This gives

$$\frac{u_f^2}{2} + \Phi(r_p) = \frac{1}{2}[v_K(r_A) - \Omega_p r_A]^2 + \Phi(r_A),$$

where $v_K(r_A)$ is the azimuthal velocity of the disk matter at r_A and $\Phi(r) = -GM_p/r - \Omega_p^2 r^2/2$ is the effective potential.

The impact of a funnel stream on the planet’s surface will create a strong shock wave covering a small fraction of the planet’s surface—a “hot spot”—where the power in the stream is thermalized and radiated away. Just outside the shock wave we have $M_p = 2r_f^2 f_p \rho_f u_f$, where r_f is the radius of the funnel stream at the planet’s surface and ρ_f is the density before the shock. Translating into the planetary regime the results of the three MHD simulations of stellar mass accretion described above implies that $r_f = (0.1–0.2)r_p$ (Romanova et al. 2004). The power dissipated behind the shock is assumed to be radiated as blackbody radiation so that the effective temperature of the hot spot is simply

$$T_{\text{eff}} = \left(\frac{\rho_f u_f^2}{2\sigma}\right)^{1/4},$$

where $\sigma = 5.67 \times 10^{-5}$ cgs is the Stefan–Boltzmann constant.

Figure 3 shows an example of a funnel flow obtained from three-dimensional MHD simulations by Romanova et al. (2008).

2.3. Parameters of Accreting Magnetized Giant Planets

The previous subsections give a general description of accreting, rotating magnetized giant planets. The focus of the present work is on the conditions where the magnetic field of the rotating planet influences the planet’s accretion. Evidently, the planet’s magnetic field can have a significant influence on its accretion only under conditions where the planet’s Alfvén radius exceeds its physical radius. Otherwise, the magnetic field will be too weak to channel the accreting material into funnel streams. As is clear by inspection of Equation (2), the most time-variable parameter governing a planet’s Alfvén radius is its accretion rate, which is likely to change more rapidly than its mass or magnetic moment. To explore the area of parameter space in which magnetic effects will be important, we plot in Figure 4 the Alfvén radius and possible planet radii (discussed below) as a function of the planet’s accretion rate \dot{M}_p measured in units of $M_0 \equiv 10^{-10} M_\odot$ yr$^{-1}$. For this plot we assume $M_p = M_J$ and $\mu_p = 10 \mu_J$.

Theoretical models of gas giant protoplanets have been developed by Papaloizou & Nelson (2005). They consider two models, an early stage of planet formation—termed type A—where the planet is an extended structure going out to its Hill sphere, and a later stage—termed type B—where the protoplanet is much more compact with a free surface which accretes from a circumplanetary disk. Both models start from solid cores of 5 or 15 M_J. The type A models are found to have long mass accretion timescales for $M_p \lesssim 30 M_\oplus$ and they may undergo rapid type I inward migration unless this migration is suppressed (e.g., Rafikov 2002; Li et al. 2009). In the type B models, the planet’s radius approaches $\sim 2 \times 10^{10}$ cm and is relatively independent of the accretion rate \dot{M}_p which is determined by star’s accretion disk. The planet undergoes slower type II migration. In Figure 4, the horizontal dashed lines indicate the planet’s radii for type A and B models.

Numerical simulations of planet formation also give information on the physical radii of young gas giants as functions of mass and time. Hubickyj et al. (2005) and Ayliffe & Bate (2009) find that a young ($t < 2$ Myr) proto-Jupiter ($M_p = M_J$)
we find the accretion shock’s $T_{\text{eff}} \approx 2100$ K, whereas for $r_{fp} = 0.1r_p$, $T_{\text{eff}} = 3000$ K. This temperature is somewhat less than the temperature of a typical T Tauri star photosphere ($T_{\text{eff}} \sim 4000$ K; Johns-Krull & Gafford 2002), providing some leverage for decomposing these two components of a star’s spectral energy distribution.

The true challenge of detecting the thermal signature of a planetary accretion shock becomes apparent, however, when one considers the overall luminosity of the shock in contrast to that of the stellar photosphere. The power dissipated in one hemisphere’s accretion hot spot is $M_p^2v_{fp}^2/4$ which is about 0.063L_{p} for our fiducial model. As L_{p} is on the order of 10^{29} erg s$^{-1}$, this indicates an observable accretion luminosity of $\approx 10^{27} - 10^{28}$ erg s$^{-1}$. T Tauri stars, however, have typical photospheric luminosities of $L \approx 10^{33}$ erg s$^{-1}$, and young giant planets are thought to have luminosities of $10^{27} - 10^{30}$ erg s$^{-1}$ (Hubickyj et al. 2005; Marley et al. 2007). Detecting the thermal signature of a planetary accretion shock will therefore require disentangling three blackbody spectra to identify a component that contributes just one of every million photons detected from a given young stellar object.

The other thermal signature of planetary magnetospheric accretion will arise from the circumplanetary disk. The effective temperature of the disk, which we assume to be optically thick, is $T_{\text{eff}} = [3GM_pM_p/(16\pi r^4)]^{1/4} \approx 1200(r/r_p)^{-3/4}(M_p/M/J)^{1/4}(M_p/M_0)^{1/4} K$, where r is the distance from the planet’s center. If the circumplanetary disk is truncated at $r_a \sim 2r_{A0} \sim 2.7r_J$, the inner edge of the disk is predicted to have a temperature of ≈ 1200 K, much higher than the local temperature of the star’s disk for $r_p \gg 0.25$ AU. The ratio of the luminosity of the planet’s disk ($GM_pM_p/(2r_p^2)$) to the luminosity of the annular region of the star’s disk of width $2\rho_{in}$ (in the absence of the planet) is $(M_p/3M_0)(M_p/M_0)(r_p/r_p)(r_p/r_H)$. For a giant planet of Jupiter’s mass and semimajor radius and $M_0 = M_0$, this ratio is $\sim 50(M_p/M_0)$. While the circumplanetary disk may be more luminous than the surrounding material in the circumstellar disk, the emission from the circumplanetary disk may be difficult to disentangle from the young planet itself, which could well have a similar temperature and luminosity ($L \sim 10^{-6}$ to 10^{-3} L_\odot, $T_{\text{eff}} \sim 500–2000$ K; Marley et al. 2007). Spatially resolving a truncated circumplanetary disk would provide a clear observable signal, but resolving spatial scales of r_J in Taurus ($d \sim 140$ pc; Loinard et al. 2007) requires high-contrast observations on angular scales of $10^\circ – 6^\circ$, well beyond current observational capabilities.

The hot spots can give periodic variations in the observed radiation depending on the angle Θ between the planet’s magnetic moment μ and its rotation axis Ω_p, and the angle ι between the line of sight to the object and Ω_p, as analyzed by Romanova et al. (2004). This work assumes that the planet’s rotation axis is the same as the rotation axes of the disk and the star. Thus, we do not consider close-in giant planets where the planet’s orbital angular momentum is in some cases observed to be misaligned with the star’s angular momentum (e.g., Triaud et al. 2010). For $\Theta = 0$ the planet is axisymmetric and there are no variations in the luminosity for any value of ι. For $\Theta \neq 0$ and $\iota = 0$ the disk is face-on and there are no luminosity variations. For $\Theta \neq 0$ and ι larger than a critical value (possibly $\sim 45^\circ$) dependent on the geometry of the gap in the disk the radiation from the hot spot will be obscured by the disk. Note that the misalignment or tilt angle of Jupiter’s magnetic field is $\Theta \approx 10^\circ$.

To estimate of the magnitude of the fluctuations from a rotating giant planet we assume the host star to be a typical K7/M0
Classical T Tauri Star, and for specificity adopt the physical parameters measured for AA Tau: \(R_\star = 1.67 R_{\odot}, \) \(T_{\text{eff}} = 4000 \text{ K}, \) and \(P_{\text{rot}} = 8 \text{ days (Johns-Krull & Gafford 2002)}. \) Thus, the star’s photospheric luminosity is \(L_\star \approx 2.5 \times 10^{31} \text{ erg s}^{-1}. \) To get an upper limit on the detectability of accretion onto a giant planet, we first assume 100% rotational modulation of the emission from the planet’s “hot spot.” For one hemisphere of the planet this is \(L_{\text{obs}} \lesssim GM_{\star}M_p/(4r_p^3), \) where \(M_p, M_\star, \) and \(r_p \) are the planet’s mass, accretion rate, and radius, respectively. The rotation period of the planet (3–10 hr) is not affected by the tidal interactions in 10 Myr for major radii \(> 0.1 \text{ AU}. \) We neglect the radiation from the star’s accretion disk and accretion shock and the planet’s disk. The fractional variation in the flux due to the rotating planet is

\[
\frac{L_{\text{obs}}}{L_\star} \lesssim 10^{-5} \left(\frac{M_p}{M_J} \right) \left(\frac{M_p}{10^{-15} M_\odot \text{ yr}^{-1}} \right) \left(\frac{r_p}{r_p} \right),
\]

such that detecting this effect will require exquisitely precise, stable photometry.

Non-thermal signatures. For \(r_A > r_p, \) note that an accreting magnetized planet may produce oppositely directed conical winds and jets along its rotation axis \(\Omega_p. \) Analogous winds and jets are common features of young accreting magnetized stars (see review by Ray et al. 2007, and they have been studied in two-dimensional and three-dimensional MHD simulations (e.g., Romanova et al. 2009). In agreement with estimates by Quillen & Trilling (1998) and Fendt (2003), we expect the mass outflow rate to be about 0.1\(M_p \) and the outflow velocity to be \(\sim v_k(r_p) \) which is about 42 km s\(^{-1}\) for a Jupiter-mass planet and significantly larger than the escape speed from the star. It is also possible that the giant planet has magnetic reconnection flares analogous to those observed in young stars (e.g., Getman et al. 2008). However, the magnetic field strength of the planet is down by more than a factor of 10 from that of the star and the emission volume \((V_e \propto R_p^3) \) is down by a factor of 10\(^3\) so that the flare energy \((\propto B^2 V_e) \) is down by more than a factor of 10\(^3\) compared with that of the star. On the other hand, high energy electrons produced in a flare are expected to propagate both outward and downward along the planet’s field lines. The electrons reaching the planet’s magnetic poles can give rise to gyrosynchrotron radiation in the radio band \((∼\text{GHz}). \) This type of circularly polarized radiation has been observed from \(\tau \text{T Tau} \) by (Skinner & Brown 1994) and from embedded young class I objects (Feigelson et al. 1998; Choi et al. 2009). The radiation is thought to be analogous to that from RS CVn binary systems (e.g., Morris et al. 1990). Because this radiation (unlike the X-ray) comes from near the planet’s surface with the emission \(\propto B^2, \) it may be modulated by the planet’s rotation depending of course on \(\Theta \) and \(i. \)

4. CONCLUSIONS

In this paper, we provide a first extension of the formalism describing stellar magnetospheric accretion into the planetary regime. In doing so, we demonstrate that

1. Magnetospheric processes may govern accretion onto young gas giants in the isolation phase of their development. Magnetospheric accretion is less important for younger gas giants in their main accretion phase: thermal energy from accretion inflates their envelopes to sizes much larger than their magnetic Alfvén radius.

2. For a fiducial 1 \(M_J \) gas giant planet with a remnant isolation phase accretion rate of \(\dot{M}_p = 10^{-10} M_\odot \text{ yr}^{-1}, \) magnetospheric accretion will truncate the circumplanetary disk at \(\sim 2 \text{ Alfvén radii} \) (corresponding to \(~1.5 \text{ planetary radii} \) and \(~3 \text{ Jupiter radii} \)) and drive the planet to rotate with a period of \(~7 \text{ hr}. \)

3. Thermal emission from planetary magnetospheric accretion will be difficult to observe due to the stringent flux contrast and/or spatial resolution required for such measurements. The most promising observational signatures may be non-thermal, such as gyrosynchrotron radiation that is clearly modulated at a period much shorter than the rotation period of the host star.

We thank M. M. Romanova, P. D. Nicholson, Sally Dodson-Robinson, M. S. Tiscareno, M. M. Hedman, and E. D. Feigelson for valuable comments and discussions. R.V.E.L. was supported in part by NASA Grant NNX08AH25G and by NSF Grants AST-0607135 and AST-0807129. Support for this work was provided by NASA through Hubble Fellowship Grant HST-HF-51253.01-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555.

REFERENCES

Alexander, R. D., & Armitage, P. J. 2009, ApJ, 704, 989
Ayliffe, B. A., & Bate, M. R. 2009, MNRAS, 393, 49
Bisnovatyi-Kogan, G. S. 1993, A&A, 274, 796
Bouvier, J., et al. 2003, A&A, 409, 169
Calvet, N., & Gullbring, E. 1998, ApJ, 509, 802
Choi, M., Tatematsu, K., Hamaguchi, K., & Lee, J.-E. 2009, ApJ, 690, 1901
D’Angelo, G., Henning, T., & Kley, W. 2002, A&A, 385, 647
Davidson, K., & Ostriker, J. P. 1973, ApJ, 179, 585
Elsner, R. F., & Lamb, F. K. 1977, ApJ, 215, 897
Feigelson, E. D., Carkner, L., & Wilkking, B. A. 1998, ApJ, 494, L215
Fendt, C. 2003, A&A, 411, 623
Fortney, J. J., Baraffe, I., & Militzer, B. 2009, arXiv:0911.3154v1
Getman, K. V., Feigelson, E. D., Micela, G., Jardine, M. M., Gregory, S. G., & Garmire, G. P. 2008, ApJ, 688, 437
Ghosh, P., & Lamb, F. K. 1979, ApJ, 234, 296
Helled, R., & Schubert, G. 2008, Icarus, 198, 156
Herczeg, G. J., & Hillenbrand, L. A. 2008, ApJ, 681, 594
Hubickyj, O., Bodenheimer, P., & Lissauer, J. J. 2005, Icarus, 179, 415
Johns-Krull, C. M., & Gafford, A. D. 2002, ApJ, 573, 685
Koide, S., Shibata, K., & Kudoh, T. 1999, AJP, 522, 727
Königl, A. 1991, ApJ, 370, L39
Kurosawa, R., Harries, T. J., & Symington, N. H. 2006, MNRAS, 370, 580
Li, H., Lubow, S. H., Li, S., & Lin, D. N. C. 2009, ApJ, 690, L52
Lissauer, J. J., Hubickyj, O., D’Angelo, G., & Bodenheimer, P. 2009, Icarus, 199, 338
Loinard, L., Torres, R. M., Mioduszewski, A. J., Rodriguez, L. F., González-Lópezlira, R. A., Lachaume, R., Vázquez, V., & González, E. 2007, ApJ, 671, 546
Long, M., Romanova, M. M., & Lovelace, R. V. E. 2005, ApJ, 634, 1214
Lovelace, R. V. E., Romanova, M. M., & Bisnovatyi-Kogan, G. S. 1999, ApJ, 512, 368
Lubow, S. H., Seibert, M., & Artymowicz, P. 1999, ApJ, 526, 1001
Marley, M. S., Fortney, J. J., Hubickyj, O., Bodenheimer, P., & Lissauer, J. J. 2007, ApJ, 655, 541
Morales-Calderón, M., et al. 2009, ApJ, 702, 1507
Morris, D. H., Mulet, R. L., & Su, B. 1990, ApJ, 362, 299
Papaloizou, J. C. B., & Nelson, R. P. 2005, A&A, 433, 247
Papaloizou, J. C. B., Nelson, R. P., Kley, W., Masset, F. S., & Artymowicz, P. 2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil (Tucson, AZ: Univ. Arizona Press), 655
Quillen, A. C., & Trilling, D. E. 1998, ApJ, 508, 707
Rafikov, R. R. 2002, ApJ, 572, 566
Ray, T., Dougados, C., Bacciotti, F., Eisloffel, J., & Chrysostomou, A. 2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil (Tucson, AZ: Univ. Arizona Press), 231
Romanova, M. M., Kulkarni, A. K., & Lovelace, R. V. E. 2008, ApJ, 673, L171
Romanova, M. M., Ustyugova, G. V., Koldoba, A. V., & Lovelace, R. V. E. 2002, ApJ, 578, 420

Romanova, M. M., Ustyugova, G. V., Koldoba, A. V., & Lovelace, R. V. E. 2004, ApJ, 610, 920
Romanova, M. M., Ustyugova, G. V., Koldoba, A. V., & Lovelace, R. V. E. 2009, MNRAS, in press (arXiv:0907.3394)
Sánchez-Lavega, A. 2004, ApJ, 609, L87
Skinner, S. L., & Brown, A. 1994, AJ, 107, 1461
Triaud, A. H. M. J., et al. 2010, A&A, 524, A25
Warner, B. 2004, PASP, 116, 115