Graphs with Non-unique Decomposition and Their Associated Surfaces

Weiwen Gu

Abstract

The ideal (tagged resp.) triangulation of bounded surface with marked points are associated with skew-symmetric (skew-symmetrizable) exchange matrices. An algorithm is established to decompose the graph associated to such matrix. There are finite many graph with non-unique decomposition. We find all such graphs and their decompositions. In addition, we also find the associated ideal (tagged) triangulations to different decompositions.

1 Introduction

Triangulation is a useful tool to study the topology of surfaces. Ideal triangulation of bordered surfaces with marked points is of particular interests in cluster algebra. For example, in [?], the authors construct cluster algebra associated to an ideal triangulation.

Definition 1. We associate to each ideal triangulation T the (generalized) signed adjacency matrix $B = B(T)$ that reflects the combinatorics of T. The rows and columns of $B(T)$ are naturally labeled by the arcs in T. For notational convenience, we arbitrarily label these arcs by the numbers $1, \ldots, n$, so that the rows and columns of $B(T)$ are numbered from 1 to n as customary, with the understanding that this numbering of rows and columns is temporary rather than intrinsic. For an arc (labeled) i, let $\pi_T(i)$ denote (the label of) the arc defined as follows: if there is a self-folded ideal triangle in T folded along i, then $\pi_T(i)$ is its remaining side (the enclosing loop); if there is no such triangle, set $\pi_T(i) = i$. For each ideal triangle \triangle in T which is not self-folded, define the $n \times n$ integer matrix $B_\triangle = (b_{ij}^\triangle)$ by settings:

$$b_{ij}^\triangle = \begin{cases} 1 & \text{if } \triangle \text{ has sides labeled } \pi_T(i) \text{ and } \pi_T(j) \\
 & \text{with } \pi_T(j) \text{ following } \pi_T(i) \text{ in the clockwise order;} \\
-1 & \text{if the same holds, with the counter-clockwise order;} \\
0 & \text{otherwise.}
\end{cases}$$

The matrix $B = B(T) = (b_{ij})$ is then defined by

$$B = \sum_\triangle B_\triangle$$
The sum is taken over all ideal triangles \triangle in T which are not self-folded. The $n \times n$ matrix B is skew-symmetric, and all its entries b_{ij} are equal to 0, 1, $-1, 2,$ or -2.

A quiver is defined as a finite oriented multi-graph without loops and 2-cycles.

Definition 2. Let G be a quiver, $B(G) = (b_{ij})$ is the skew-symmetric matrix whose rows and columns are labeled by the vertices of G, and whose entry b_{ij} is equal to the number of edges going from i to j minus the number of edges going from j to i.

Definition 3. Suppose B is a signed adjacency matrix associated to an ideal triangulation of a bordered surface with marked points (S, M), and G is a quiver. If $B(G) = B$, we say G is the oriented adjacency graph associated to (S, M).

The notion of *Block decomposition* plays an important role in determining the mutation class of a quiver. It is proved in [?] that a quiver is block-decomposable if and only if it is the associated adjacency graph of an ideal triangulations of a bordered surface with marked points. A quiver is a finite oriented multi-graph without loops and 2-cycles. In [?], we provide an algorithm that determines if a given quiver is block decomposable. In addition, we find all connected decomposable graphs with non-unique block-decomposition.

In [?], the authors generalize the property to the graph associated to ideal (tagged) triangulation of bordered surfaces with marked points. A new decomposability called *s-decomposable* is studied. It is proved in the same article that there is a one-to-one correspondence between s-decomposable skew-symmetrizable graphs with fixed block decomposition and ideal tagged triangulations of marked bordered surfaces with fixed tuple of conjugate pairs of edges. In [?], we provide a generalized algorithm that determines if a given graph is s-decomposable. In addition, we find that only two connected s-decomposable graphs that are not block-decomposable have non-unique decomposition.

2 Decomposition Rules and Blocks

For convenience, we denote an edge that connects nodes x, y by \overrightarrow{xy} if the orientation of this edge is unknown or irrelevant, \overleftarrow{xy} if the edge is directed from x to y, and \overleftrightarrow{xy} otherwise.

Definition 4. We recall that a diagram (or graph) is block-decomposable (or decomposable) if it is obtained by gluing elementary blocks of Table[I]b by the following gluing rules:

1. Two white nodes of two different blocks can be identified. As a result, the graph becomes a union of two parts; the common node is colored black. A white node can neither be identified to itself nor with another node of the same block.

2. A black node can not be identified with any other node.

3. If two white nodes x, y of one block (endpoints of edge \overleftrightarrow{xy}) are identified with two white nodes p, q of another block (endpoints of edge \overleftrightarrow{pq}), x with p, y with q correspondingly, then a multi-edge of weight 2 is formed, and nodes $x = p, y = q$ are black.
4. If two white nodes x, y of one block (endpoints of edge \hat{xy}) are identified with two white nodes p, q of another block (endpoints of edge \hat{pq}), x with q, y with p correspondingly, then both edges are removed after gluing, and nodes $x = q$, $y = p$ are black.

Definition 5. If a graph G can be obtained by gluing both elementary blocks and new blocks in Table 2 by the gluing rules in Definition 4 and the following new rules, we say the graph is s-decomposable:

1. If the graph has multiple edges containing n parallel edges, replace the multiple edge by an edge of weight $2n$. For example, if we glue two parallel spikes of the same direction, we get an edge of weight 4 (see Figure 1).

 ![Figure 1: Edge of Weight 4](image1)

2. All single edges have weight 1.

 Gluing two blocks corresponding to gluing two pieces of triangulations of surfaces: gluing two white nodes means gluing the corresponding sides of the triangulations, (see Figure 2).

 ![Figure 2: Triangulation Gluing](image2)

 If a decomposable graph has a white node, we will glue a particular piece surface to that node in the corresponding triangulation to form the boundary, see Figure 3.

 ![Figure 3: Boundary Gluing](image3)
It is shown in [?] that there is a one-to-one correspondence between a decomposition of a graph and an ideal triangulation of a bordered surfaces with marked points. We show in next section that most graphs with non-unique decomposition correspond to unique bordered surfaces.

3 Results

All graphs with non-unique decompositions (s-decompositions) are given in Figure. 78 in [?] and Figure. 4 in [?]. We list all their block decomposition (s-decomposition) and corresponding ideal (tagged) triangulation of surfaces.

Theorem 1. If \(G \) is a decomposable or s-decomposable graph, \(G \) is associated to a unique bordered surface unless \(G \) is graph 5.
Table 1: Elementary Blocks
New Blocks	Unfolding	Triangulation
Ia:	![Diagram](image1)	![Diagram](image2)
Ib:	![Diagram](image3)	![Diagram](image4)
II:	![Diagram](image5)	![Diagram](image6)
IIIa:	![Diagram](image7)	![Diagram](image8)
IIIb:	![Diagram](image9)	![Diagram](image10)
IV:	![Diagram](image11)	![Diagram](image12)
V:	![Diagram](image13)	![Diagram](image14)
Graph 1

Decomposition

Surfaces
Graph 2
Decomposition
Surfaces

1	1	2	2
3	4	3	4

p	p	p	p

p	p	p	p

1	2	2	1
4	3	4	3

1	2	3	4
3	4	3	4

p	p	p	p

p	p	p	p

1	2	3	4
3	4	3	4

p	p	p	p

p	p	p	p

1	2	3	4
3	4	3	4
Surface	Graph 3		
---------	---------		
Decomposition	![Decomposition Diagram](image)	![Decomposition Diagram](image)	
Surfaces	![Surfaces Diagram](image)	![Surfaces Diagram](image)	
Graph 4	Decomposition	Surfaces	
--------	----------------	----------	
![Graph 4](image1.png)	![Decomposition](image2.png)	![Surfaces](image3.png)	
Graph 5	Decomposition	Surfaces	
-----------------	---------------	-----------	
![Graph 5](image)	![Decomposition](image)	![Surfaces](image)	
Graph 6	Decomposition	Surfaces	
---------	---------------	------------	
![Graph 6](image1.png)	![Decomposition](image2.png)	![Surfaces](image3.png)	
Graph 7	Decomposition	Surfaces	
--------------	---------------	--------------	
![Graph](attachment:image.png)	![Decomposition](attachment:image.png)	![Surfaces](attachment:image.png)	
Decomposition	Surfaces		
---------------	---------		
![Decomposition Diagram](graph1.png)	![Surfaces Diagram](graph2.png)		

Graph 7

Decomposition	Surfaces
![Decomposition Diagram](graph3.png)	![Surfaces Diagram](graph4.png)
Graph 8	

![Graph 8 Diagram]	

Decomposition
![Decomposition Diagram]

Surfaces
![Surfaces Diagram]

Decomposition
Surfaces
Graph 10

![Graph 10](image1.png)
Graph 11

Decomposition
Surfaces

	1	2	3
1	2		
3			
1			

	1	2
2	3	
1		

	1	2	3
1	2		
3			

	1	2
2	3	
1		
Graph 12	Decomposition	Surfaces
-----------	---------------	--------------
![Graph](#)	![Decomposition](#)	![Surfaces](#)
Graph 13	Decomposition	Surfaces
---------	---------------	----------
![Graph 13 Diagram](image1.png)	![Decomposition Diagram](image2.png)	![Surfaces Diagram](image3.png)
Graph 14		

![Graph 14](image1.png)		

Decomposition
![Decomposition](image2.png)

Surfaces
![Surfaces](image3.png)
Graph 15

![Graph 15](image1.png)
Graph 16

Decomposition
Surfaces
Graph 17
Decomposition
Surfaces

23