Assessment of the surface roughness and susceptibility to corrosive processes of titanium-niobium and titanium-molybdenum archwires in laboratory tests

Wojciech Boryczko¹ A B D E F (ORCID ID: 0000-0002-6218-4920)
Janusz Kamiński² A B D F (ORCID ID: 0000-0002-4706-9238)
Michał Czopowicz³ C F (ORCID ID: 0000-0002-4238-8360)
Konrad Małkiewicz⁴ A B D E F (ORCID ID: 0000-0002-1831-0491)

Wkład autorów: A Plan badań B Zbieranie danych C Analiza statystyczna D Interpretacja danych E Redagowanie pracy F Wyszukiwanie piśmiennictwa

Authors’ Contribution: A Study design B Data Collection C Statistical Analysis D Data Interpretation E Manuscript Preparation F Literature Search

1 Praktyka prywatna
Private practice

2 Wydział Inżynierii Materiałowej, Politechnika Warszawska
Faculty of Materials Science, Warsaw University of Technology

3 Samodzielny Zakład Epidemiologii i Ekonomiki Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego (SGGW) w Warszawie
Division of Veterinary Epidemiology and Economics Warsaw University of Life Sciences-SGGW

4 Zakład Ortodoncji, Uniwersytet Medyczny w Łodzi
Medical University of Lodz, Department of Orthodontics

Adres do korespondencji/Correspondence address:
Konrad Małkiewicz
Zakład Ortodoncji Uniwersytetu Medycznego w Łodzi
ul. Pomorska 251
90-001 Łódź
e-mail: konrad.malkiewicz@interia.pl

Copyright: © 2005 Polish Orthodontic Society. This is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Abstract

The development of production technology and the willingness to create medical materials with the most beneficial clinical properties result in new generations of products being introduced to the market or those already in use being modified. Laboratory tests can help determine the properties of materials suitable for use under clinical conditions and help when deciding on the optimal treatment for a given approach. **Aim.** The aim of the study was to assess the susceptibility to corrosion and surface roughness of two types of orthodontic archwires made of titanium alloys. **Material and methods.** The study evaluated orthodontic archwires with the cross-section of 0.017 by 0.025 inch (0.04 by 0.06 cm) from RMO (USA) and Morita (Japan), made of titanium-niobium and titanium-molybdenum alloys, respectively. **Surface topography of tested specimens was evaluated using the scanning microscope, whereas corrosion resistance was assessed by a potentiodynamic technique. The roughness of materials was also evaluated using an optical profilometer. The obtained results were subject to statistical analysis at the significance level of p = 0.05. **Results.** The analysis of numerical data obtained from potentiodynamic studies shows that the average corrosion current intensity (Icor) was higher for RMO materials, compared to Morita materials, namely 0.0033 μA/cm² and 0.0029 μA/cm², respectively. The values described were not statistically significantly different (p = 0.036). **Conclusions.** 1) Orthodontic archwires evaluated in the study were subject to corrosion, regardless of the material manufacturer and elemental composition. 2) Significant differences observed in the surface roughness of both orthodontic archwires evaluated in the study may indirectly indicate their different potentials to generate frictional forces under clinical conditions. **(Boryczko W, Kamiński J, Czopowicz M, Małkiewicz K. Assessment of the surface roughness and susceptibility to corrosive processes of titanium-niobium and titanium-molybdenum archwires in laboratory tests. Orthod Forum 2020; 16 (4): 290-9).**

Received: 23.08.2020
Accepted: 23.09.2020
https://doi.org/10.5114/for.2020.102226

Key words: orthodontic archwires, corrosion, profilometry
Cel

Celem pracy były ocena podatności na korozję oraz chropowatości powierzchni dwóch rodzajów łuków ortodontycznych wykonanych ze stopów tytanu.
Material i metody

W badaniu oceniano łuki ortodontyczne o przekroju 0,017 x 0,025 cala (0.04 x 0.06 cm) firmy RMO (USA) oraz Morita (Japonia). Według informacji podanych przez amerykańskiego producenta dostarczany przez niego grunt został wykonany ze stopu zawierającego tytan, cyrkon, cynę i molibben. Japoński produkt, którego skład został opracowany w Toyota Central Lab (Japonia), według deklaracji firmy Morita jest stopem tytanu, niobu, tantalu i cyrkonu.

Z tych drutów ortodontycznych przygotowano próbkę o długości 2 cm, które wykorzystano w badaniach korozjnych (po 5 próbek dla każdego rodzaju łuku) i profilometrycznych (po 8 próbek dla każdego rodzaju łuku).

Mikrostrukturę powierzchni badanych próbek oceniano za pomocą mikroskopu skaningowego SEM Hitachi SU 90 (Hitachi, Japonia). Skany wykonywano zarówno przed, jak i po przeprowadzeniu badań korozjnych.

Odporność korozjną oceniano metodą potencjodynamiczną, wykorzystując potencjostat Autolab PGSTAT100 z modułem FRA2 (Eco Chemie B.V., Holandia). Oceniane próbki umieszczano w roztworze sztucznjej siny w temperaturze 37°C przygotowanej zgodnie ze standardem, który przedstawili Kocijan i wsp. Indukowano w nim procesy korozjne, wykorzystując układ trzech elektrody (9).

Ocenę chropowatości powierzchni wykonano przy użyciu profilometru optycznego Wyko NT 9300 firmy Bruker (USA) w celu uzyskania informacji na temat:

- R_a – średnie arytmetyczne odchylenie profilu chropowatości;
- R_q – średnie kwadratowe odchylenie chropowatości powierzchni;
- R_z – odległość od najwyższego punktu profilu chropowatości do jego najniższego punktu, mierzona wzdłuż odcinka elementarnego;
- R_t – odległość od najwyższego do najniższego punktu profilu chropowatości powierzchni.

Zmienne ilościowe przedstawiono jako średnią, plus minus, odchylenie standardowe oraz zakres wartości. Porównania między materiałami wykonano testem t-Studenta dla prób niezależnych, po uprzedniej weryfikacji jednorodności wariancji testem Brown-Forsythe’a. Przyjęto poziom istotności (α) równy 0,05. Analizę wykonano w programie Statistica 13.3.0 (TIBCO Software Inc., Palo Alto, CA, USA).

Wyniki

Powierzchnie próbek obserwowane przed badaniami korozjnymi i bezpośrednio po ich przeprowadzeniu przedstawiono na rycinach 1–4. Analiza danych liczbowych uzyskanych w wyniku badań potencjodynamicznych wykazała, że średnie natężenie prądu korozjnego (I_{cor}) było wyższe w przypadku materiałów firmy RMO i wynosiło średnio 0,0033 μA/cm2, w porównaniu ze średnią wartością oznaczoną dla materiałów firmy Morita, wynoszącą 0,0029 μA/cm2, w porównaniu zMaterials and methods

The study evaluated orthodontic archwires with the cross-section of 0.017 by 0.025 inch (0.04 by 0.06 cm) by RMO (USA) and Morita (Japan). According to the information provided by the American manufacturer, the archwire supplied was made of an alloy containing titanium, zirconium, tin and molybdenum. The Japanese product, whose composition was developed at Toyota Central Lab (Japan), according to the Morita declaration is an alloy of titanium, niobium, tantalum and zirconium.

These orthodontic archwires were used to prepare 2-cm long samples which were used in corrosion testing (5 samples for each type of an archwire) and profilometric tests (8 samples for each type of an archwire).

Surface microstructure of tested specimens was evaluated using the scanning microscope, SEM Hitachi SU 90 (Hitachi, Japan). Scans were acquired both before and after corrosion testing.

Corrosion resistance was assessed by a potentiodynamic technique, using the potentiostat Autolab PGSTAT100 with the FRA2 module (Eco Chemie B.V., Holland). Studied specimens were placed in a solution of artificial saliva at 37°C, prepared in accordance with the standard presented by Kocijan et al. There, corrosion processes were induced using a system of three electrodes (9).

The surface roughness was assessed using an optical profilometre, Wyko NT 9300 by Bruker (USA) to obtain the following information:

- R_a – arithmetic means of the deviation of the roughness profile;
- R_q – mean square deviation of surface roughness;
- R_z – distance from the highest point of the roughness profile to its lowest point measured along the elementary segment;
- R_t – distance from the highest to the lowest point of the surface roughness profile.

Quantitative variables are presented as the mean plus-minus standard deviation and a range of values. Comparisons between materials were made with the t-Student test for independent samples, after previous verification of the uniformity of variance with the Brown-Forsythe test. The significance level (α) was 0.05. The analysis was performed in Statistica 13 software (TIBCO Software Inc., Palo Alto, CA, USA).

Results

Specimen surfaces observed before and immediately after corrosion testing are shown in Figures 1–4.

The analysis of numerical data obtained from potentiodynamic studies shows that the average corrosion current intensity (I_{cor}) was higher for RMO materials, compared to Morita materials, namely 0.0033 μA/cm2 and 0.0029 μA/cm2, respectively. The values described were not statistically significantly different ($p = 0.036$).
Morita i wynoszącą odpowiednio 0,0029 µA/cm². Opisane wartości nie różniły się w sposób istotny od siebie (p = 0,036).
Opisane dane przedstawiono w tabeli 1.
Na rycinie 5. przedstawiono krzywe natężenia prądu korozjnego uzyskane w badaniach potencjodynamicznych.
W tabeli 2. przedstawiono średnie wartości parametrów oznaczonych w badaniach profilometrycznych. Analiza statystyczna wykazała, że oceniane w badaniu próbki łuków tytanowo-molibdenowych firmy Morita cechowały się istotnie większą chropowatością powierzchni, w porównaniu z prób- kami łuków tytanowo-molibdenowych firmy RMO w zakre- sie parametrów Ra, Rq oraz Rt.
Jednocześnie nie stwierdzono występowania korelacji pomiędzy stopniem chropowatości próbek ocenianych ma- teriałów a ich potencjalną podatnością na korozję (Tab. 2.).
Na rycinie 6. przedstawiono skan profilometryczny powierzchni łuku ortodontycznego wykonanego ze stopu Ti-Nb Gummetal firmy Morita, natomiast na rycinie 7. – powierzchni łuku wykonanego ze stopu Ti-Mo firmy RMO.

Tabela 1. Wartości natężenia prądu korozjnego oznaczone w badaniach potencjodynamicznych

Grupa	Firma	Material	Ilość próbek	I_{cor} µA/cm²	E_{cor} mV
1	RMO	Ti - Mo	5	0,0033	0,0029
2	Morita	Ti - Nb	5	0,0029	0,0022

Tabela 2. Średnie wartości parametrów oznaczonych w badaniach profilometrycznych

Parameter	Ra	Rq	Rz	Rt
RMO Ti-Mo	0,2928	0,4415	7,3063	8,6625
	(0,270 – 0,338)	(0,386 – 0,514)	(6,330 – 0,700)	(7,650 – 9,790)
Morita Ti-Nb	0,0229	0,0515	1,0133	0,9198
	(0,5801)	(0,7299)	(7,8025)	(12,0175)
	(0,514 – 0,648)	(0,648 – 0,813)	(7,210 – 9,130)	(8,650 – 17,210)

Tabela 1 presents these results.
Figure 5 shows corrosive current intensity curves obtained in potentiodynamic studies.
Table 2 shows the mean values of parameters determined in profilometric tests. The statistical analysis showed that titanium-molybdenum archwire samples by Morita were characterised by significantly higher surface roughness compared to titanium-molybdenum archwire samples by RMO in relation to Ra, Rq and Rt parameters.
At the same time, no correlation was found between the degree of roughness of samples of evaluated materials and their potential susceptibility to corrosion (Tab. 2.).
Figure 6 shows a profilometric scan of the surface of an orthodontic archwire made of Ti-Nb Gummetal by Morita, while Figure 7 shows the surface of an archwire made of Ti-Mo alloy by RMO.

Ra – średni arytmetyczne odchylenie profilu chropowatości
Rq – średni kwadratowe odchylenie chropowatości powierzchni
Rz – odległość od najwyższego do najniższego punktu profilu chropowatości powierzchni
Rt – odległość od najniższego do najwyższego punktu profilu chropowatości do jego najniższego punktu mierzone wzdłuż odcinka elementarnego
E_{cor} – odległość od najwyższego do najniższego punktu profilu chropowatości do najniższego punktu mierzone wzdłuż odcinka elementarnego
Assessment of the surface roughness and susceptibility to corrosive processes of titanium-niobium...

Rycina 1. Łuk tytanowo – molibdenowy firmy RMO przed badaniami korozjnymi.
Figure 1. Titanium-molybdenum archwire by RMO, before corrosion testing.

Rycina 2. Łuk tytanowo – molibdenowy firmy RMO po indukcji zjawiska korozji.
Figure 2. Titanium-molybdenum archwire by RMO, after corrosion induction.

Rycina 3. Łuk tytanowo – niobowy firmy Morita przed badaniami korozjnymi.
Figure 3. Titanium-molybdenum archwire by Morita, before corrosion testing.

Rycina 4. Łuk tytanowo – niobowy firmy Morita po indukcji zjawiska korozji.
Figure 4. Titanium-molybdenum archwire by Morita, after corrosion induction.

Rycina 5. Wykres natężenia prądów korozjnych uzyskany podczas badań potencjodynamicznych.
Figure 5. Chart showing corrosive current intensity obtained in potentiodynamic studies.
Dyskusja
Materiały medyczne stosowane w leczeniu stomatologicznym powinny cechować się dobrymi właściwościami mechanicznymi, odpornością na warunki panujące w jamie ustnej, a ponadto zapewniać wysoką estetykę odbudowy twardych tkanek zębów oraz gwarantować wysoką poziom bezpieczeństwa leczenia.

Podczas terapii ortodontycznej aparatami stałymi podstawowymi elementami generującymi siły, których działanie warunkuje przemieszczenia zębów, pozostają łuki ortodontyczne. Stopy metali, z których są wykonane, cechują się zarówno odmiennym składem pierwiastkowym, jak i właściwościami fizycznymi warunkującymi ich wykorzystanie w poszczególnych etapach leczenia wad zgryzu. Współcześnie stosowane druty ortodontyczne można podzielić na następujące grupy:

- łuki wykonane z austenicznej stali stopowej
- łuki ze stali chromowo-kobaltowej
- nitinole i ich modyfikacje
- łuki wykonane ze stopów tytanu i molibdenu (10).

Od kilku lat na rynku obecny jest także drut o nazwie Gummetal wykonany ze stopu tytanu i niobu opracowanego przez firmę Toyota (Japonia) i zaimplementowany do wykorzystania w ortodoncji przez firmę Morita (Japonia). Gummetal cechuje się dużą elastycznością i plastycznością oraz wysoką odpornością na uszkodzenia (11).

W przypadku rozpatrywania bezpieczeństwa biologicznego materiału stosowanego w środowisku jamy ustnej niezwykle istotna jest jego stabilność chemiczna, szczególnie w odniesieniu do warstwy powierzchniowej pozostającej w bezpośrednim kontakcie ze środowiskiem zewnętrznym.

Discussion
Medical materials used in dental treatment should have good mechanical properties, resistance to the conditions in the oral cavity, as well as provide high aesthetics of restoration of hard dental tissues and guarantee a high level of treatment safety.

During orthodontic therapy with fixed appliances, orthodontic archwires are basic force-generating elements, and their actions determine the movement of teeth. The metal alloys they are made of are characterised by both different elemental composition and physical properties conditioning their use during various stages of treatment of malocclusions. The orthodontic archwires used today can be divided into the following groups:

- archwires made of austenitic alloy steel
- chromium-cobalt steel archwires
- nitinols and their modifications
- archwires made of titanium and molybdenum alloys (10).

For several years now, an archwire called Gummetal has been available on the market, and it is made from an alloy of titanium and niobium developed by Toyota (Japan) and implemented for use in orthodontics by Morita (Japan). Gummetal is characterised by high elasticity and plasticity as well as high resistance to damage (11).

When considering the biosafety of a material used in the oral cavity environment, its chemical stability is crucial, especially in relation to the surface layer that is in direct contact with the external environment.

Unfortunately, despite the presence of passivation layers formed naturally or applied by manufacturers of materials, the surface of orthodontic archwires is susceptible to both

Rycina 6. Powierzchnia łuku Ti – Nb w badaniu profilometrycznym.
Figure 6. Ti-Nb archwire surface in profilometric testing.

Rycina 7. Powierzchnia łuku Ti – Mo w badaniu profilometrycznym.
Figure 7. Ti-Mo archwire surface in profilometric testing.
Niestety, mimo obecności warstw pasywacyjnych tzw. "naturalnie lub nanoszonych przez producenów materiałów, powierzchnia drutów ortodontycznych podatna jest zarówno na uszkodzenia mechaniczne powstające podczas manipulowania narzędziami, odkształcania drutu czy też kontaktu z zamiakiem, jak i na oddziaływanie elektrolitów jamy ustnej oraz produktów płytki bakteryjnej (12, 13).

Czynniki te indukują oraz nasilają procesy korozjne powodujące uwalnianie do środowiska jamy ustnej jonów metali o potencjalnie niekorzystnym działaniu biologicznym.

Tytan i cyrkon, obecne w stopach stosowanych do produkcji drutów ocenianych w tym badaniu, w przeciwieństwie do niku czy chromu, uznawane są za biologicznie bezpieczne.

Molibden, będący składnikiem drutów amerykańskiego producenta, jest niezbędny do prawidłowego działania co najmniej czterech enzymów występujących w ludzkim organizmie, w tym osyduxy siarczynowej biorącej udział w mitochondrialnej syntezie ATP. Choć zatwierdzone toksyczne działanie wspomnianego pierwiastka na niektóre gatunki zwierząt, nie wydaje się on wykazywać niekorzystnego działania na organizm ludzki w przypadku podażyny nieprzekraczającej dopuszczalnych norm (14).

Dostępnej literaturze opisano przypadki zwiększonej ekspozycji na mołibden występujących u pracowników przemysłu metalurgicznego. Autorzy publikacji sugerowali istnienie dodatniej korelacji pomiędzy wysokim stężeniem pierwiastka we wdychanym powietrzu a zwiększonym stężeniem kwasu moczowego we krwi, bółami głowy oraz objawami zapalenia stawów (15).

Niob, wchodzący w skład stopu drutów dostarczanych przez firmę Morita, jest szeroko stosowany w przemyśle metalurgicznym. Wykorzystuje się go również w procesach produkcyjnych endoprotez stawów czy implantów proteotypowych z uzupełniających braków w użytowaniu. Jak dotąd nie określono jego biologicznej roli w ludzkim organizmie, chociaż może mieć związany z występowaniem miejscowych odczynów zapalnych w obrębie skóry i spojówk oka (16).

Zwiększa ekspozycja na niob z uwagi na jego rzadkość we wsiączym powietrzu a zwiększoną wizualizacją kwasu moczowego we krwi, bółami głowy oraz objawami zapalenia stawów (15).

Zjawisko korozji drutów ortodontycznych, indukowane i ilościowo oceniane w obecnym badaniu, zostało poparte obserwacjami i innymi autorów (17, 18, 19, 20). Potwierdzono w nich nie tylko różnicę podatności na korozję poszczególnych stopów metali, ale zaobserwowano także istotne różnice w obrębie tych samych grup produktów wyodrębnionych na podstawie ich składu chemicznego (17, 20). To spowoduje wskazuje na znaczący wpływ obrobki mechanicznej i termicznej na ostateczne właściwości drutu ortodontycznego wprowadzonego do sprzedaży.

Ze względu na odmienną metodykę stosowanych przez autorów wspomnianych badań, nie jest możliwe bezpośrednie porównanie opisanych przez nich pomiarów z wartościami liczbowymi odnotowanymi dla produktów firm RMO.

Molibden, który jest składnikem łuków amerykańskiego producenta, jest niezbędny do prawidłowego działania co najmniej czterech enzymów występujących w ludzkim organizmie. W literaturze opisano przypadki zwiększonej ekspozycji na mołibden występujących u pracowników przemysłu metalurgicznego. Autorzy publikacji sugerowali istnienie dodatniej korelacji pomiędzy wysokim stężeniem pierwiastka we wdychanym powietrzu a zwiększonym stężeniem kwasu moczowego we krwi, bółami głowy oraz objawami zapalenia stawów (15).

Molibden, który jest składnikem drutów dostarczanych przez firmę Morita, jest szeroko stosowany w przemyśle metalurgicznym. Wykorzystuje się go również w procesach produkcyjnych endoprotez stawów czy implantów proteotypowych z uzupełniających braków w użytowaniu. Jak dotąd nie określono jego biologicznej roli w ludzkim organizmie, chociaż może mieć związany z występowaniem miejscowych odczynów zapalnych w obrębie skóry i spojówk oka (16).

Ze względu na odmienną metodykę stosowanych przez autorów wspomnianych badań, nie jest możliwe bezpośrednie porównanie opisanych przez nich pomiarów z wartościami liczbowymi odnotowanymi dla produktów firm RMO.

Assessment of the surface roughness and susceptibility to corrosive processes of titanium-niobium...
i Morita. Należy jednak przyjąć, że w ramach oceny przeprowadzonej według takich samych kryteriów możliwe jest bezpośrednie porównanie poszczególnych materiałów. W przeprowadzonym badaniu nie odnotowano istotnych różnic w podatności na procesy korozjne pomiędzy ocenianymi łukami, co świadczy o ich zbliżonym potencjale do uwalniania jonów metali do organizmu. Oznacza to podobną biozgodność, na którą jednak może wpływ odmienny skład pierwiastkowy ocenianych produktów.

Obserwowane w obecnym badaniu istotne różnice w chropowatości powierzchni obu łuków mogą w sposób pośredni świadczyć o tym, że produkt firmy Morita w warunkach klinicznych może wyzwalać większą siłę tarcia pomiędzy nim a powierzchnią zamka.

Występowanie dodatniej korelacji pomiędzy rozwinięciem powierzchni łuków i zamków ortodontycznych a wzrostem siły tarcia zostało potwierdzone m.in. w badaniach Choi i wsp. (4) oraz Carrion-Vilches i wsp. (21).

Te obserwacje mogą w sposób pośredni wskazywać na fakt, że zastosowanie Gummetalu nie będzie, mimo jego dobrych właściwości mechanicznych, pozytywnie wpływać na szybkość leczenia ortodontycznego, zwłaszcza w przypadku stosowania mechaniki ślizgowej. Oczywiście chropowatość powierzchni stykających się materiałów nie jest jedynym elementem wpływającym na opór powstający podczas ich przemieszczania się względem siebie. Analizując zjawisko tarcia, nie tylko w odniesieniu do leczenia ortodontycznego, musimy brać pod uwagę również twardość kontaktujących ze sobą materiałów oraz ich wzajemną reaktywność chemiczną.

Badania prowadzone w warunkach laboratoryjnych pozwalają w sposób standaryzowany określić właściwości materiałów medycznych. Informacje udostępniane przez producentów powinny być weryfikowane pod kątem właściwości użytkowych oraz profilu bezpieczeństwa produktów dostępnych na rynku.

Conclusions

1. Orthodontic archwires evaluated in the study were subject to corrosion, regardless of the material manufacturer and elemental composition.
2. Significant differences observed in the surface roughness of both orthodontic archwires evaluated in the study may indirectly indicate their different potentials to generate frictional forces under clinical conditions.
Assessment of the surface roughness and susceptibility to corrosive processes of titanium-niobium...