The configuration space of almost regular polygons

Satoru Goto, Kazushi Komatsu and Jun Yagi
(Received July 5, 2018)
(Revised February 3, 2020)

Abstract. For a given angle θ, consider the configuration space C_n of equilateral n-gons in \mathbb{R}^3 whose bond angles are equal to θ except for two successive ones. We show that when $n \geq 8$ and θ is sufficiently close to the inner angle $\frac{n}{2}$ of the regular n-gon, C_n is homeomorphic to the $(n-4)$-dimensional sphere S^{n-4}.

1. Introduction

Configuration spaces of n-gons in the Euclidean space \mathbb{R}^d have been studied from a topological, an algorithmic or a kinematic viewpoint (see, for example, [3], [9], [11], [12], [13], [14], [15], [17], [19]). In this paper, we fix an integer $n \geq 5$ and an angle θ with $\frac{n-1}{n} \pi < \theta < \frac{n-2}{n} \pi$, which we call the fixed bond angle, and consider the configuration space $C_n = C_n(\theta)$ of equilateral n-gons in \mathbb{R}^3 whose bond angles are equal to θ except for two successive ones.

We give a precise definition of C_n. An n-gon is a graph embedded in \mathbb{R}^3 with vertices $v_0, v_1, \ldots, v_{n-1}$ and bonds $\beta_1, \beta_2, \ldots, \beta_{n-1}, \beta_0$, where β_i connects v_{i-1} and v_i ($i = 1, 2, \ldots, n-1$). (Indices are considered modulo n whenever we treat an n-gon.) We call the vector $\beta_i := v_i - v_{i-1}$ the i-th bond vector. An n-gon is said to be equilateral if all of its bonds have the same length, say 1. The bond angle of an n-gon at the vertex v_i is defined to be the angle between the vectors $-\beta_i$ and β_{i+1}. We assume that every such equilateral n-gon is normalized so that $v_0 = (0, 0, 0)$, $v_n = (-1, 0, 0)$ and $v_{n-2} = (\cos \theta - 1, \sin \theta, 0)$. Then the configuration space $C_n(\theta)$ is defined as follows.

Definition 1 ([6], [7], [8]). For $k = 1, \ldots, n-2$, let $f_k : (\mathbb{R}^3)^{n-3} \to \mathbb{R}$ be the function defined by

$$f_k(v_1, \ldots, v_{n-3}) = \frac{1}{2}(\|\beta_k\| - 1).$$

2010 Mathematics Subject Classification. Primary 52C99; Secondary 57M50, 58E05, 92E10.
Key words and phrases. Configuration space.
For $k = 1, \ldots, n - 3$, let $g_k : (\mathbb{R}^3)^{n-3} \to \mathbb{R}$ be the function defined by

\[
g_1(v_1, \ldots, v_{n-3}) = \langle \beta_0, \beta_1 \rangle - \cos \theta, \quad g_k(v_1, \ldots, v_{n-3}) = \langle \beta_{k+1}, \beta_{k+2} \rangle - \cos \theta \quad (k = 2, \ldots, n - 3).
\]

Here $\langle \cdot, \cdot \rangle$ denotes the standard inner product in \mathbb{R}^3 and $||x||$ the standard norm $\sqrt{\langle x, x \rangle}$. The configuration space $C_n = C_n(\theta)$ is defined by as follows:

\[
C_n = \{ p \in (\mathbb{R}^3)^{n-3} \mid f_1(p) = \cdots = f_{n-2}(p) = g_1(p) = \cdots = g_{n-3}(p) = 0 \}.
\]

The maps f_k, g_k are called rigidity maps, and they determine bond lengths and angles of the n-gon in C_n. The n-gons in C_n are equilateral n-gons in \mathbb{R}^3 with n vertices such that the bond angles are all equal to the given angle θ except for the two successive bond angles at the vertices v_1 and v_2.

We have been interested in a mathematical model of n-membered ringed hydrocarbon molecules, and obtained the following results in [7]. If $n = 5$ and $\theta = \frac{\pi}{3} \pi$, the average of bond angles of 5-membered ringed hydrocarbon molecules, then $C_5(\theta)$ is homeomorphic to S^{n-4}. If $n = 6, 7$ and the fixed bond angle is tetrahedral angle $\theta = \cos^{-1}\left(-\frac{1}{2}\right)$, the standard bond angle of the carbon atom, then $C_n(\theta)$ is homeomorphic to S^{n-4}. Moreover, these results were generalized in [6] as follows. If $n = 5, 6, 7$ and the bond angle θ satisfies $\frac{\pi}{n-2} \pi < \theta < \frac{n-3}{n} \pi$, then $C_n(\theta)$ is homeomorphic to S^{n-4}. If $n = 8$ and the bond angle θ satisfies $\frac{\pi}{4} \pi \leq \theta < \frac{3}{2} \pi$, then $C_n(\theta)$ is homeomorphic to S^{n-4}.

The purpose of this paper is to prove the following generalization of the results in [6] for all $n \geq 5$.

Theorem 1. For each integer $n \geq 5$, there exists θ_0 such that the configuration space $C_n(\theta)$ is homeomorphic to the $(n - 4)$-dimensional sphere S^{n-4} for every bond angle θ with $\theta_0 < \theta < (n - 2)\pi/n$.

Since the case where $5 \leq n \leq 8$ is already treated in the pervious papers, we assume $n > 8$ throughout the paper.

This paper is arranged as follows. Section 2 is devoted to preliminaries for the proof of Theorem 1. Section 3 is devoted to the proof of Theorem 1.

2. Preliminaries

Lemma 1. Let n be an integer greater than 8. Then there exists θ_1 such that any n-gon in $C_n = C_n(\theta)$ satisfies the following (a)–(d) for any bond angle θ with $\theta_1 < \theta < (n - 2)\pi/n$.

(a) Any n-gon in C_n does not contain the local configurations of three successive bonds β_2, β_3, and β_4 with the relation $\beta_3 + \beta_4 = \gamma \beta_2$, where $\gamma = \pm \sqrt{2 - 2 \cos \theta}$ as in Figs. 1 and 2.
Any n-gon in C_n does not contain the local configurations of three successive bonds b_2, b_3 and b_4 with the relation $b_3 \sim b_4 = \delta b_2$, where $\delta = \pm \sqrt{1 + 2 \lambda^2}$ as in Figs. 3 and 4.

Any n-gon in C_n does not contain the local configurations of three successive bonds b_k, b_{k+1}, b_{k+2} ($k \neq 0, 1, 2$) with the bond angles θ and with the relation $b_k = b_{k+2}$ as in Fig. 5, where indices are considered modulo n.

Any n-gon in C_n cannot be contained in a plane.

We call a local configuration described in (a), (b) or (c) in the above lemma a forbidden local configuration.

PROOF. We draw a regular n-sided polygon in the xy plane as in Figs. 6, 7, 9 and 10. Let P be the plane which intersects the xy plane vertically in the dotted line, and fix a unit normal vector ν to this plane as in Figs. 6, 7, 9 and 10.

When n is odd, we fix the bond $b_{(n+3)/2}$ as in Figs. 6 and 9 and consider all of the polygonal lines consisting of the bonds $b_{(n+3)/2}, \ldots, b_3$. When n is even, we fix the bond $b_{(n+4)/2}$ as in Figs. 7 and 10 and consider all of the polygonal lines consisting of the bonds $b_{(n+4)/2}, \ldots, b_3$. Let $\text{Arm}(\theta)$ denote such a non-closed polygonal line with the bond angle θ.

Let δ_k denote the dihedral angle between the planes defined by bond pairs \{\(b_{k-1}, b_k\)\} and \{\(b_k, b_{k+1}\)\} respectively for $k = 4, 5, \ldots, \left[\frac{n+2}{2}\right]$, where $\left[\frac{x}{y}\right]$ denotes the largest integer less than or equal to x. Let $\text{pArm}(\theta)$ denote the non-closed polygonal line with the bond angle θ where all dihedral angles δ_k are 0. Note that $\text{pArm}(\theta)$ is planar. Observe that, when the bond angle between the bonds
\[b_i + 1 \] is equal to \(y \), the vertex \(v_{i+1} \) is on the cone centered on \(b_i \) with the apex at \(v_i \) as in Fig. 8.

First, we consider the case where the bond angle \(y \) is \(\frac{n-2}{n} \pi \). Then the vertex \(v_2 \) is contained in the plane \(P \) only when the non-closed polygonal line is congruent to \(p \text{Arm} \left(\frac{n-2}{n} \pi \right) \) in Figs. 6 and 7. By applying the same argument to the “right” side to \(n \)-gons in \(C_n \left(\frac{n-2}{n} \pi \right) \), we see that any \(n \)-gon in \(C_n \left(\frac{n-2}{n} \pi \right) \) is congruent to the regular \(n \)-polygon in the plane.

Next, assume that \(y < \frac{n-2}{n} \pi \). Then \(\text{Arm}(\theta) \) can intersect the plane \(P \). We take a sufficiently small \(\varepsilon > 0 \) with \(1 - 2\varepsilon > 0 \). Then there exists \(\theta_{\varepsilon} \) with \(\theta_{\varepsilon} < \frac{n-2}{n} \pi \) such that the vertex \(v_2 \) is contained in the plane \(P + \varepsilon \cdot v = \{ p + \varepsilon \cdot v \mid p \in P \} \) only when \(\text{Arm}(\theta_{\varepsilon}) \) is congruent to \(p \text{Arm}(\theta_{\varepsilon}) \) as in Figs. 9 and 10.

In other words, the distance from \(v_2 \) to \(P + v \) is greater than or equal to \(1 - \varepsilon \), and equal to \(1 - \varepsilon \) only when \(\text{Arm}(\theta_{\varepsilon}) \) is congruent to \(p \text{Arm}(\theta_{\varepsilon}) \) as in Figs. 9 and 10. Hence, for any \(\text{Arm}(\theta) \), the distance from \(v_2 \) to \(P + v \) is greater than \(1 - \varepsilon \) when \(\theta_{\varepsilon} < \theta < \frac{n-2}{n} \pi \).
Now we consider the non-closed polygonal line with the bond angle \(\theta \) which consists of \(n - 1 \) number of the bonds \(\beta_3, \beta_4, \ldots, \beta_{n-1}, \beta_0, \beta_1 \). By using the above argument for the end point \(v_1 \), we see that, when the non-closed polygonal line with the bond angle \(\phi \) forms a part of the boundary of a convex polygon, the distance along \(\nu \) between \(v_1 \) and \(v_2 \) is greater than or equal to \(1 - 2\varepsilon \) (cf. [5, p. 147, Corollary 8.2.4]). Hence, for any non-closed polygonal line with the bond angle \(\theta \), the distance along \(\nu \) between \(v_1 \) and \(v_2 \) is greater than \(1 - 2\varepsilon \) when \(\phi < \theta < \frac{n-2}{n} \pi \).

(a) We now prove the assertion (a).

Case (a-1) \(\gamma > 0 \). We add the bond \(\beta_2 \) to \(\text{Arm}(\theta) \) at \(v_2 \) to form the local configuration in Fig. 1. We replace the two bonds \(\beta_2 \) and \(\beta_3 \) with a new bond which connects \(v_1 \) to \(v_3 \). Let \(\tilde{\beta}_{(2,3)} \) denote this new bond. As mentioned above, the distance from \(v_2 \) to \(P + \nu \) attains the minimum only when the resulting non-closed polygonal line with the bond \(\tilde{\beta}_{(2,3)} \) has a planar configuration where all dihedral angles are 0. Note that this planar configuration is obtained by adding \(\beta_2 \) to \(\text{pArm}(\theta) \) at \(v_2 \) as in Fig. 1.

When \(\theta = \frac{n-2}{n} \pi \), for \(\text{pArm}(\frac{n-2}{n} \pi) \) with the added bond \(\beta_2 \) as in Fig. 1, we have \(\langle \beta_2, \nu \rangle < 1 \) with some computations. Then the distance from \(v_1 \) to \(P + \nu \) is equal to \(1 - \langle \beta_2, \nu \rangle \) (\(> 0 \)). We put \(\varepsilon = \frac{1}{4}(1 - \langle \beta_2, \nu \rangle) \). We see that a bond angle \(\theta_{\alpha_{\varepsilon}} \) can be chosen so that, for any \(\text{pArm}(\theta) \) with the added bond \(\beta_2 \) as in Fig. 1, \(\langle \beta_2, \nu \rangle \) is less than \(1 - 3\varepsilon \) when \(\theta_{\alpha_{\varepsilon}} < \theta < \frac{n-2}{n} \pi \).

Now we consider the non-closed polygonal line which consists of bonds \(\beta_3, \beta_4, \ldots, \beta_{n-1}, \beta_0, \beta_1 \), and add the bond \(\beta_2 \) to the non-closed polygonal line at \(v_2 \) to form the local configuration in Fig. 1. We put \(\theta_{\alpha_{\varepsilon}} = \max\{\theta_{\alpha_{\varepsilon}}, \theta_{\varepsilon}\} \).
When $\theta_a < \theta < \frac{n-2}{n}\pi$, the distance from the vertex v_1 of β_2 to $P + (1 - \varepsilon) \cdot v$ is greater than ε (>0). Hence the polygonal line with the added bond β_2 as in Fig. 1 cannot form an n-gon when $\theta_a < \theta < \frac{n-2}{n}\pi$.

Case (a-2) $\gamma < 0$. We add the bond β_2 to $\text{Arm}(\theta)$ at v_2 to form the local configuration in Fig. 2. We replace the union of the two bonds β_2 and β_3 with a new bond which connects v_1 to v_3. Let $\tilde{\beta}_{(2,3)}$ denote this new bond. As mentioned above, the distance from v_2 to $P + v$ attains the minimum only when the resulting non-closed polygonal line with the bond $\tilde{\beta}_{(2,3)}$ has a planar configuration where all dihedral angles are 0. Note that this planar configuration is obtained by adding β_2 to $p\text{Arm}(\theta)$ at v_2 as in Fig. 2.

When $\theta = \frac{n-2}{n}\pi$, for $p\text{Arm}(\frac{n-2}{n}\pi)$ with the added bond β_2 as in Fig. 2, we have $\langle \beta_2, v \rangle < 0$ with some computations. Then the distance from v_1 to $P + v$ is greater than 1. We see that a bond angle, θ_a', can be chosen so that, for any $p\text{Arm}(\theta)$ with the added bond β_2 as in Fig. 2, $\langle \beta_2, v \rangle < 0$ when $\theta_a' < \theta < \frac{n-2}{n}\pi$.

Now we consider the non-closed polygonal line which consists of bonds $\beta_3, \beta_4, \ldots, \beta_{n-1}, \beta_0, \beta_1$, add the bond β_2 to the non-closed polygonal line at v_2 to form the local configuration in Fig. 2. We put $\varepsilon = \frac{1}{n}$ and $\theta_a' = \max\{\theta_a', \theta_2\}$. When $\theta_a < \theta < \frac{n-2}{n}\pi$, the distance from the vertex v_1 of β_2 to $P + (1 - \varepsilon) \cdot v$ is greater than ε (>0). Hence the polygonal line with the added bond β_2 as in Fig. 2 cannot form an n-gon when $\theta_a < \theta < \frac{n-2}{n}\pi$.

(b) We now prove the assertion (b).

Case (b-1) $\delta > 0$. We add the bond β_2 to $\text{Arm}(\theta)$ at v_2 to form the local configuration in Fig. 3.

When $\theta = \frac{n-2}{n}\pi$, for $p\text{Arm}(\frac{n-2}{n}\pi)$ with the added bond β_2 as in Fig. 3, we have $\langle \beta_2, v \rangle < 1$ with some computations. Then the distance from v_1 to $P + v$ is equal to $1 - \langle \beta_2, v \rangle$ (>0).

By an argument similar to the case $\gamma > 0$ of (a), we can take θ_{b_+} so that any n-gon in C_n does not have the local configuration as in Fig. 3 when $\theta_{b_+} < \theta < \frac{n-2}{n}\pi$.

Case (b-2) $\delta < 0$. We add the bond β_2 to $\text{Arm}(\theta)$ at v_2 to form the local configuration in Fig. 4.

When $\theta = \frac{n-2}{n}\pi$, for $p\text{Arm}(\frac{n-2}{n}\pi)$ with the added bond β_2 as in Fig. 4, we have $\langle \beta_2, v \rangle < 0$ with some computations. Then the distance from v_1 to $P + v$ is greater than 1.

By an argument similar to that in the case $\gamma < 0$ of (a), we can take θ_{b_-} so that any n-gon in C_n does not have the local configuration as in Fig. 4 when $\theta_{b_-} < \theta < \frac{n-2}{n}\pi$.
(c) We consider the non-closed polygonal line with the bond angle θ consisting of the bonds $\beta_3, \beta_4, \ldots, \beta_{n-1}, \beta_0, \beta_1$. Assume that the non-closed polygonal line has one or more planar local configurations as in Fig. 5. Now, we choose the three successive bonds β_k, β_{k+1} and β_{k+2} having a planar local configuration as in Fig. 5. We replace the union of the two bonds β_k and β_{k+1} with a new bond which connects v_{k-1} to v_{k+1} along the dotted line in Fig. 5 or 11. Let $\bar{\beta}_{(k,k+1)}$ denote this new bond. When the bond angle between β_{k+2} and $\bar{\beta}_{(k,k+1)}$ is equal to $\frac{\pi+\theta}{2}$, the non-closed polygonal line having the local configuration of Fig. 5 can be identified with the non-closed polygonal line of $n-2$ bonds obtained by replacing the union of the two bonds β_k and β_{k+1} with the bond $\bar{\beta}_{(k,k+1)}$. Note that the end points of the non-closed polygonal line are v_1 and v_2.

We consider the distance between the end points v_1 and v_2 of the non-closed polygonal line obtained by replacing the union of the two bonds β_k and β_{k+1} with the bond $\bar{\beta}_{(k,k+1)}$. As mentioned above, when the non-closed polygonal line obtained by replacing the union of β_k and β_{k+1} with the bond $\bar{\beta}_{(k,k+1)}$ forms a part of the boundary of the convex $(n-1)$-sided polygon, the distance between v_1 and v_2 attains the minimum.

On the other hand, the distance between v_1 and v_2 of the original non-closed polygonal line attains the minimum when the original non-closed polygonal line forms a part of the boundary of a convex n-sided polygon.

Then the three successive bonds β_k, β_{k+1} and β_{k+2} have a planar local configuration as in Fig. 11.

The non-closed polygonal line having the local configuration of Fig. 11 can be identified with the non-closed polygonal line of $n-2$ bonds obtained by replacing the union of the two bonds β_k and β_{k+1} with the bond $\bar{\beta}_{(k,k+1)}$ when the bond angle between β_{k+2} and $\bar{\beta}_{(k,k+1)}$ is equal to $\frac{\pi+3\theta}{2}$. Note that the resulting non-closed polygonal line forms a part of the boundary of a convex $(n-1)$-sided polygon when the bond angle between β_{k+2} and $\bar{\beta}_{(k,k+1)}$ is equal to $\frac{\pi+3\theta}{2}$ and the original non-closed polygonal line forms a part of the boundary of a convex n-sided polygon.

By applying Cauchy’s arm lemma ([4, p. 229]) to convex $(n-1)$-sided polygons with a bond $\bar{\beta}_{(k,k+1)}$, we see that the distance between v_1 and v_2 is a monotonically increasing function of the bond angle between β_{k+2} and $\bar{\beta}_{(k,k+1)}$.

![Fig. 11. A planar local configuration of the three successive bonds](image-url)
The distance between \(v_1\) and \(v_2\) is 1 when \(\theta = \frac{n-2}{n} \pi\) and the bond angle between \(\beta_{k+2}\) and \(\beta_{(k,k+1)}\) is equal to \(-\frac{\pi + 3\theta}{2}\). Then the distance between \(v_1\) and \(v_2\) is greater than 1 when \(\theta = \frac{n-2}{n} \pi\) and the bond angle between \(\beta_{k+2}\) and \(\beta_{(k,k+1)}\) is equal to \(\frac{\pi + \theta}{2}\).

We can take \(\theta(k)\) so that, for any angle \(\theta\) with \(\theta(k) < \theta < \frac{n-2}{n} \pi\), the distance between \(v_1\) and \(v_2\) is greater than 1 when the bond angle between \(\beta_{k+2}\) and \(\beta_{(k,k+1)}\) is equal to \(\frac{\pi + \theta}{2}\). By taking \(\theta_c = \max_k \{\theta(k)\}\), the proof of Lemma 1 (c) is completed.

(d) Let \(\theta_c\) be the angle in Lemma 1 (c) and consider \(n\)-gons in \(C_n(\theta)\) when \(\theta_c < \theta < \frac{n-2}{n} \pi\). We assume that there is an \(n\)-gon contained in a plane. By forgetting the bond \(\beta_3\) from the \(n\)-gon, we have a non-closed polygonal line with the end points \(v_1, v_2\). By Lemma 1 (c), the three successive bonds form a planar local configuration as in Fig. 11. If the bond angle \(\theta\) is not equal to \(\frac{n-2}{n} \pi\), the distance between \(v_1\) and \(v_2\) is not equal to 1. By contradiction, the proof of Lemma 1 (d) is completed.

By taking \(\theta_1 = \max \{\theta_{a_1}, \theta_{a_2}, \theta_{b_1}, \theta_{b_2}, \theta_c\}\), the proof of Lemma 1 is completed. \(\square\)

3. The proof of Theorem 1

By Lemma 1, we show the following Proposition 1:

Proposition 1. Let \(\theta_0\) be the maximum of the angle \(\theta_1\) in Lemma 1 and the solutions of the following equations:

\[
\frac{\sin(mx)}{\sin x} = 1 - 2 \cos x \quad (1 \leq m \leq n - 6, \pi/2 < x < (n - 2)\pi/n).
\]

Then the configuration space \(C_n\) is an orientable closed \((n-4)\)-dimensional submanifold of \(\mathbb{R}^{3n-9}\) if the bond angle \(\theta\) satisfies \(\theta_0 < \theta < (n-2)\pi/n\).

Proof. First, note that \(\theta_0\) can be determined from the Chebyshev polynomials of second kind \(\frac{\sin(mx)}{\sin x} = \sum_{j=0}^{[m/2]} (-1)^j mC_{2j+1}(\cos x)^{m-2j-1}(\cos^2 x - 1)^j\), where \([y]\) denotes the largest integer less than or equal to \(y\). We define \(F : (\mathbb{R}^3)^{n-3} \to \mathbb{R}^{2n-5}\) by \(F = (f_1, \ldots, f_{n-2}, g_1, \ldots, g_{n-3})\). Then \(C_n = F^{-1}(\{O\})\) for \(O = (0, \ldots, 0) \in \mathbb{R}^{2n-5}\).

We show that \(O \in \mathbb{R}^{2n-5}\) is a regular value of \(F\). It suffices to prove that gradient vectors \((\text{grad} f_1)_p, \ldots, (\text{grad} f_{n-2})_p, (\text{grad} g_1)_p, \ldots, (\text{grad} g_{n-3})_p\) are linearly independent for any \(p \in F^{-1}(\{O\}) = C_n\), where \((\text{grad} f)_p = \left(\frac{\partial f_j}{\partial x_j}(p)\right)\). It is convenient to decompose the gradient vectors of \(f_k\) and \(g_k\) into \(1 \times 3\) blocks as follows:
(\text{grad } f_1)_p = (\beta_1, 0, \ldots, 0),
\vdots
(\text{grad } f_k)_p = (0, \ldots, 0, -\beta_k, \beta_k, 0, \ldots, 0),
\vdots
(\text{grad } f_{n-2})_p = (0, \ldots, 0, -\beta_{n-2}),
(\text{grad } g_1)_p = (-\beta_0, 0, \ldots, 0),
\vdots
(\text{grad } g_k)_p = (0, \ldots, 0, \beta_{k+2}, \beta_{k+1} - \beta_{k+2}, -\beta_{k+1}, 0, \ldots, 0),
\vdots
(\text{grad } g_{n-4})_p = (0, \ldots, 0, \beta_{n-2}, \beta_{n-3} - \beta_{n-2}),
(\text{grad } g_{n-3})_p = (0, \ldots, 0, 0).

Here $0 = (0, 0, 0)$ and β_k ($k = 0, \ldots, n-1$) denote the bond vectors of the n-gon corresponding to $p \in C_n$.

Assume that the gradient vectors $(\text{grad } f_1)_p, \ldots, (\text{grad } f_{n-2})_p, (\text{grad } g_1)_p, \ldots, (\text{grad } g_{n-3})_p$ are linearly dependent. Then, for some $(c_1, \ldots, c_{2n-5}) \neq (0, \ldots, 0)$, we have a linear relation:

$$
\sum_{i=1}^{n-2} c_i (\text{grad } f_i)_p + \sum_{i=1}^{n-3} c_{i+n-2} (\text{grad } g_i)_p = (0, \ldots, 0).
$$

In what follows, we show, by using Lemma 1 (a), (b), (c), that, under this assumption, all vertices of the n-gon corresponding to p are contained in a single plane. Since two successive bond vectors not including β_2 are linearly independent, we get $c_2 \neq 0$. The first 1×3 block of the linear combination (*) implies that the bond vectors β_0, β_1 and β_2 are contained in a single plane. The second 1×3 block of the linear combination (*) implies that the bond vectors β_2, β_3 and β_4 are contained in a single plane.

We show by induction $c_k \neq 0$ ($n + 1 \leq k \leq 2n - 5$). First, we observe $c_{n+1} \neq 0$. In fact, the second and the third 1×3 blocks of the linear combination (*) imply $c_{n+1} \neq 0$ by Lemma 1 (a). Then the bond vectors β_3, β_4 and β_5 are contained in a single plane.

We study c_ℓ ($n + 1 \leq \ell \leq k$). Assume that $c_\ell \neq 0$ ($n + 1 \leq \ell \leq k - 1$). Then the bond vectors $\beta_0, \beta_1, \ldots, \beta_{k-n+3}$ are contained in a single plane. Observe, by using Lemma 1 (c), the relation $\beta_\ell + \lambda \beta_{\ell+1} + \beta_{\ell+2} = 0$ ($\lambda = 2 \cos \theta$)
when \(\beta_i, \beta_{i+1}, \beta_{i+2} \) are contained in a single plane for \(i \neq 0,1,2 \). The third \(1 \times 3 \) block of the linear combination (*) implies the equality \((c_3 + c_n)\beta_3 - (c_4 + c_n)\beta_4 + c_{n+1}\beta_5 = 0 \) with some computations.

Since \(\beta_3, \beta_4, \beta_5 \) are contained in a single plane, we have the following relations for the coefficients:

\[
c_{n+1} = c_3 + c_n, \quad (R_{n+1,1})
\]
\[
c_4 = -c_n - \lambda c_{n+1}. \quad (R_{n+1,2})
\]

With some computations, the \((j - n + 2) \)-th \(1 \times 3 \) block of the linear combination (*) implies the equality

\[
(-c_{j-2})\beta_{j-n+1} + (c_{j-n+2} + c_{j-1})\beta_{j-n+2} - (c_{j-n+3} + c_{j-1})\beta_{j-n+3} + c_j\beta_{j-n+4} = 0.
\]

We have the following relations \((R_{j,1}) \) and \((R_{j,2}) \) among the coefficients of \(\beta_{j-n+2} \) and \(\beta_{j-n+3} \), respectively:

\[
c_j = \lambda c_{j-2} + c_{j-1} + c_{j-n+2}, \quad (R_{j,1})
\]
\[
c_{j-n+3} = c_{j-2} - c_{j-1} - \lambda c_j. \quad (R_{j,2})
\]

We fix \(\ell \) with \(n + 2 \leq \ell \leq k \). By adding the equalities \((R_{j,1}) \) and \((R_{j,2}) \) for \(n + 1 \leq j \leq \ell \), we have \(c_\ell = -\lambda c_{\ell-1} - c_{\ell-2} + (1 + \lambda)c_n + c_3 \) \((n + 2 \leq \ell \leq k)\). Put \(d = (1 + \lambda)c_n + c_3 \). With some computations, we obtain the recurrence relations \((c_\ell - x_1 c_{\ell-1}) = x_2(c_{\ell-1} - x_1 c_{\ell-2}) + d\), where \(x_1 \) and \(x_2 \) denote the two solutions of \(x^2 + \lambda x + 1 = 0 \). Note that \(x_1 + x_2 = -\lambda \) and \(x_1 x_2 = 1 \). From these recurrence relations, we have the following two equalities:

\[
(c_k - x_1 c_{k-1}) = x_2^{k-1}(c_{n+1} - x_1 c_n) + d(x_2^{k-2} + x_2^{k-3} + \cdots + 1),
\]
\[
(c_k - x_2 c_{k-1}) = x_1^{k-1}(c_{n+1} - x_2 c_n) + d(x_1^{k-2} + x_1^{k-3} + \cdots + 1).
\]

We prove that \(c_k \neq 0 \). Now, we assume to the contrary that \(c_k = 0 \). We put \(m = k - n - 1 \) \((1 \leq m \leq n - 6)\). By using the above two equalities and \(c_{n+1} = c_n + c_3 \), we obtain \(Ac_2 + Bc_n = 0 \). Here, \(A = (x_2^{m+1} - x_1^{m+1}) + (x_2^m - x_1^m) + \cdots + (x_2 - x_1) \) and \(B = \{(x_2^{m+1} - x_1^{m+1}) + (x_2^{m-1} - x_1^{m-1}) + \cdots + (x_2 - x_1)\} + \lambda\{(x_2^{m} - x_1^{m}) + \cdots + (x_2 - x_1)\} \). It is easy to see that \(A = \lambda B \). If \(A \neq 0 \) and \(B \neq 0 \), then we have \(\lambda c_3 + c_n = 0 \). The second \(1 \times 3 \) block of the linear combination (*) implies the equality \(c_2\beta_2 - c_3\beta_3 + c_4\beta_4 = 0 \). Since \(\lambda c_3 + c_n = 0 \), we have \(c_2\beta_2 = c_3(\beta_3 - \lambda \beta_4) \). Hence we obtain \(A = 0 \) from Lemma 1 (b). Note that \((x_2^{m+1} - x_1^{m+1}) + (x_2^m - x_1^m) + \cdots + (x_2 - x_1) = \frac{1}{1 + \lambda}(x_2^{m+1} - x_1^{m+1}) + (x_2 - x_1) - (x_2^{m+2} - x_1^{m+2}) \). With some more computations, we have \(B = \frac{1}{1 + \lambda}\{-(x_2^m - x_1^m) + (1 + \lambda)(x_2 - x_1)\} \).

On the other hand, it is easy to check the following equality:
\[
\frac{x_2^m - x_1^m}{x_2 - x_1} = \frac{1}{2^{m-1}} \sum_{j=0}^{\lfloor (m-1)/2 \rfloor} mC_{2j+1}(-\lambda)^{m-2j-1}(\lambda^2 - 1)^j
\]

\[
= \sum_{j=0}^{\lfloor (m-1)/2 \rfloor} mC_{2j+1}(\cos \theta)^{m-2j-1}(\cos^2 \theta - 1)^j,
\]

where \(\lfloor y \rfloor \) denotes the largest integer less than or equal to \(y \). From the Chebyshev polynomials of second kind, we obtain \(\frac{x_2^m - x_1^m}{x_2 - x_1} = \frac{\sin(m\theta)}{\sin \theta} \). By the definition of \(\theta_0 \), we have \(\frac{\sin(m\theta)}{\sin \theta} \neq 1 - 2 \cos \theta \) \((\theta_0 < \theta) \). Thus we obtain \(B \neq 0 \), and \(c_k \neq 0 \) by contradiction. Therefore, all vertices of the \(n \)-gon corresponding to \(p \) are contained in a single plane. This contradicts Lemma 1 (d). As a result, the gradient vectors \(\text{grad } f_1 p, \ldots, \text{grad } f_{n-2} p, \text{grad } g_1 p, \ldots, \text{grad } g_{n-3} p \) are linearly independent for any \(p \in C_n \). The proof of Proposition 1 is completed.

Proof of Theorem 1. We first show that \(C_n \) is non-empty when \(n > 8 \). Consider the non-closed polygonal line with the bond angle \(\theta \) which consists of the bonds \(\beta_2, \beta_4, \ldots, \beta_{n-1}, \beta_0, \beta_1 \). For \(k = 4, 5, \ldots, n - 1, 0 \), let \(\delta_k \) denote the dihedral angle between the planes defined by the bond pairs \(\{ \beta_{k-1}, \beta_k \} \) and \(\{ \beta_k, \beta_{k+1} \} \) respectively, where all indices are considered modulo \(n \). The distance between \(v_1 \) and \(v_2 \) is a continuous function of the dihedral angles \(\delta_4, \delta_5, \ldots, \delta_{n-1}, \delta_0 \). If the non-closed polygonal line is contained in the boundary of a convex polygon, that is, all dihedral angles \(\delta_k \) are \(0 \), then the distance between \(v_1 \) and \(v_2 \) is less than 1 because \(\frac{n-3}{n-1} \pi < \theta < \frac{n-2}{n} \pi \). If the non-closed polygonal line has the maximum span as in [1], [2], that is, all dihedral angles \(\delta_k \) are \(\pi \), then the distance between \(v_1 \) and \(v_2 \) is greater than 1. Since the distance between \(v_1 \) and \(v_2 \) is a continuous function, the distance between \(v_1 \) and \(v_2 \) can be 1. Hence \(C_n \) is non-empty.

Let \(\theta_0 \) be the angle in Proposition 1 and consider the configuration space \(C_n \) of \(n \)-gons having the bond angle \(\theta \) with \(\theta_0 < \theta < \frac{n-2}{n} \pi \). We define \(h : \mathbb{R} \times (\mathbb{R} - \{ 0 \})^2 \times (\mathbb{R}^3)^{n-4} \to \mathbb{R} \) by \(h(v_1, \ldots, v_{n-3}) = \sqrt{x_1^2 + x_2^2} \), where \(v_1 = (x_1, x_2, x_3) \). Recall the extension of Reeb’s theorem that a smooth connected closed manifold \(M \) is homeomorphic to a sphere if \(M \) admits a smooth function \(f \) with only two critical points (see [16, p. 25, REMARK 1], [18, p. 380, Lemma 1]).

We show that \(h|_{C_n} \) is a differentiable function on \(C_n \) with only two critical points. Note that \(p \in C_n \) is a critical point of \(h|_{C_n} \) if and only if there exist \(a_i \in \mathbb{R} \) such that \((\text{grad } h)_p = \sum_{i=1}^{n-2} a_i (\text{grad } f_i)_p + \sum_{i=1}^{n-3} a_{i+n-2} (\text{grad } g_i)_p \) (cf. [10]). We can easily check that \((\text{grad } h)_p = \left(0, \frac{x_1^2}{\sin^2 \theta} - \frac{x_2 x_3}{\sin^3 \theta}, 0, \ldots, 0 \right) \). Note that the first \(1 \times 3 \) block \(\left(0, \frac{x_1^2}{\sin^2 \theta}, -\frac{x_2 x_3}{\sin^3 \theta} \right) \) is orthogonal to \(\beta_0 \) and \(\beta_1 \). So, we have
$a_2 \neq 0$ if $(\text{grad } h)_p = \sum_{i=1}^{n-2} a_i(\text{grad } f_i)_p + \sum_{i=1}^{n-3} a_{i+n-2}(\text{grad } g_i)_p$. By the argument in the proof of Proposition 1, there exists a bond angle, such that, for the configuration of the n-gon corresponding to a critical point $p \in C_n = C_n(\theta)$, the vertices v_i $(i = 1, \ldots, n-1)$ are contained in the plane $\text{Span} \langle \beta_2, \beta_3 \rangle = \text{Span} \langle \beta_2, \ldots, \beta_{n-1} \rangle$.

By forgetting the bond β_2 from the n-gon, we have a non-closed polygonal line with the end points v_1, v_2. Since the three successive bonds with the bond angle θ form a planar local configuration as in Fig. 11 by Lemma 1 (c), the vertices v_2, \ldots, v_{n-1} are uniquely determined. If three bonds β_{n-1}, β_0 and β_1 have a planar local configuration as in Fig. 11, the distance between v_1 and v_2 is less than 1. If three bonds β_{n-1}, β_0 and β_1 have a planar local configuration as in Fig. 5, the distance between v_1 and v_2 is greater than 1. We replace the union of the two bonds β_0 and β_1 with a new bond which connects v_{n-1} to v_1. Let $\beta(0,1)$ denote this new bond. We see that the resulting non-closed polygonal line forms a part of the boundary of a convex (n-1)-sided polygon. By applying Cauchy’s arm lemma, we obtain that the distance between v_1 and v_2 is a monotonically increasing continuous function of the bond angle between β_{n-1} and $\beta(0,1)$. When the distance between v_1 and v_2 is 1, the bond angle between β_{n-1} and $\beta(0,1)$ is uniquely determined. Thus the vertex v_1 is uniquely determined and we can see, by using the restriction of the bond angle and length, that there are precisely two possible positions for the vertex v_0. These two are mirror symmetric with respect to the plane $\text{Span} \langle \beta_2, \beta_3 \rangle$. As a result, we have just two configurations of n-gons corresponding to the critical points. The proof of Theorem 1 is completed.

Acknowledgement

The authors would like to express their sincere gratitude to the editor for a lot of valuable suggestions.

References

[1] Benbernou N., Fixed-angle polygonal chains: locked chains and the maximum span [Undergraduate thesis], Smith College, Northampton, Mass, USA, 2006.
[2] Benbernou N. and O’Rourke J., On the maximum span of fixed-angle chains, in Proceedings of the 18th Canadian Conference on Computational Geometry, Kingston, Canada, August (2006) 14–16.
[3] Crippen G. M. and Havel T. F., Distance Geometry and Molecular Conformation, Wiley, New York, 1988.
[4] Cromwell P. R., Polyhedra, Cambridge University Press, 1999.
[5] Demaine E. D. and O’Rourke J., Geometric Folding Algorithms: Linkages, Origami, Polyhedra, Cambridge University Press, 2007.
The configuration space of almost regular polygons

[6] Goto S., Hemmi Y., Komatsu K. and Yagi J., The closed chains with spherical configuration spaces, Hiroshima Math. J. 42 (2012), 253–266.
[7] Goto S. and Komatsu K., The configuration space of a model for ringed hydrocarbon molecules, Hiroshima Math. J. 42 (2012), 115–126.
[8] Goto S., Komatsu K. and Yagi J., A remark on the configuration space of a model for ringed hydrocarbon molecules, Kochi J. Math. 7 (2012), 89–96.
[9] Havel T. F., Some examples of the use of distances as coordinates for Euclidean geometry, J. Symbolic Computation 11 (1991), 579–593.
[10] Kamiya H., Weighted trace functions as examples of Morse functions, Jour. Fac. Sci. Shinshu Univ. 7 (1971), 85–96.
[11] Kamiyama Y., On the level set of a function with degenerate minimum point, International Journal of Mathematics and Mathematical Sciences, (2015), 6 pages.
[12] Kapovich M. and Millson J., On the moduli space of polygons in the Euclidean plane, J. Diff. Geom. 42 (1995), 430–464.
[13] Lenhart W. J. and Whitesides S. H., Reconfiguring closed polygonal chains in Euclidean d-space, Jour. Discrete Comput. Geom. 13 (1995), 123–140.
[14] Milgram R. J. and Trinkle J. C., Complete path planning for closed kinematic chains with spherical joints, Internat. J. Robotics Res. 21 (2002), 773–789.
[15] Milgram R. J. and Trinkle J. C., The geometry of configuration spaces for closed chains in two and three dimensions, Homology, Homot., Appl. 6 (2004), 237–267.
[16] Milnor J., Morse Theory, Princeton University Press, Princeton, 1969.
[17] O’Hara J., The configuration space of equilateral and equiangular hexagons, Osaka Journal of Mathematics 50 (2013), 477–489.
[18] Rosen R., A weak form of the star conjecture for manifolds, Abstract 570-28, Notices Amer. Math. Soc. 7 (1960), 380.
[19] Shimamoto D. and Vanderwaart C., Spaces of polygons in the plane and Morse theory, American Math. Month. 112 (2005), 289–310.

Satoru Goto
Faculty of Pharmaceutical Sciences
Tokyo University of Sciences
Chiba 278-8510 Japan
E-mail: s.510@rs.tus.ac.jp

Kazushi Komatsu
Department of Mathematics
Faculty of Science and Technology
Kochi University
Kochi 780-8520 Japan
E-mail: komatsu@kochi-u.ac.jp

Jun Yagi
Department of Social Design Engineering
National Institute of Technology, Kochi College
Kochi 783-8508 Japan
E-mail: yagi@gm.kochi-ct.jp