Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Immunological predictors of disease severity in patients with COVID-19

Asma Al Balushi1,a, Jalila AlShekaili1, Mahmoud Al Kindi3, Zainab Ansari4, Murtadha Al-Khabori5, Faryal Khamis6, Zaiyana Ambusaidi1, Afra Al Balushi6, Aisha Al Huraiz6, Sumiya Al Sulaimi1, Fatma Al Fahdi1, Iman Al Balushi1, Nenad Pandak6, Tom Fletchera, Iman Nasr6,*
1Tropical and Infectious Diseases Unit, The Royal Liverpool University Hospital, Liverpool, UK
2Internal Medicine Department, Suhar Hospital, Suhar, Oman
3Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Seeb, Oman
4Internal Medicine Department, Royal Hospital, Muscat, Oman
5Clinical Haematology Department, Sultan Qaboos University, Muscat, Oman
6Sultan Qaboos University Hospital, Muscat, Oman

A R T I C L E I N F O
Article history:
Received 18 May 2021
Revised 23 June 2021
Accepted 24 June 2021

KEYWORDS:
COVID-19
Lymphocyte subsets
Inflammatory markers
Immunological predictors
Mortality predictors

A B S T R A C T

Background: Identifying the immune cells involved in coronavirus disease 2019 (COVID-19) disease progression and the predictors of poor outcomes is important to manage patients adequately.

Methods: This prospective observational cohort study enrolled 48 patients with COVID-19 hospitalized in a tertiary hospital in Oman and 53 non-hospitalized patients with confirmed mild COVID-19.

Results: Hospitalized patients were older (58 years vs 36 years, P < 0.001) and had more comorbid conditions such as diabetes (65% vs 21% P < 0.001). Hospitalized patients had significantly higher inflammatory markers (P < 0.001): C-reactive protein (114 vs 4 mg/l), interleukin 6 (IL-6) (33 vs 3.71 pg/ml), lactate dehydrogenase (417 vs 214 U/l), ferritin (760 vs 196 ng/ml), fibrinogen (6 vs 3 g/l), D-dimer (1.0 vs 0.3 μg/ml), disseminated intravascular coagulopathy score (2 vs 0), and neutrophil/lymphocyte ratio (4 vs 1.1) (P < 0.001). On multivariate regression analysis, statistically significant independent early predictors of intensive care unit admission or death were higher levels of IL-6 (odds ratio 1.03, P = 0.03), frequency of large inflammatory monocytes (CD14+CD16+) (odds ratio 1.17, P = 0.010), and frequency of circulating naïve CD4+ T cells (CD27+CD28+CD45RA+CCR7+) (odds ratio 0.476, P = 0.03).

Conclusion: IL-6, the frequency of large inflammatory monocytes, and the frequency of circulating naïve CD4 T cells can be used as independent immunological predictors of poor outcomes in COVID-19 patients to prioritize critical care and resources.

© 2021 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

A cluster of atypical viral pneumonia cases was identified in Wuhan, China, in December 2019. A novel coronavirus was identified as the cause, later named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Lai et al., 2020; Yu et al., 2020). The World Health Organization (WHO) declared it a pandemic on March 11, 2020, and by March 20, 2021, the total number of confirmed cases had exceeded 121 million worldwide, with over 2.6 million deaths (Shi et al., 2020). Some people infected with SARS-CoV-2 develop severe coronavirus disease 2019 (COVID-19) while others remain asymptomatic or have a milder illness course.
(Shi et al., 2020). Identifying predictors of poor outcomes is increasingly gaining importance to help to prioritize resources for high-risk patients and minimize death. Older age and certain comorbid conditions like chronic renal, lung, and heart diseases are established predictors of a worse prognosis in COVID-19 patients. In addition, hypoxemia, diarrhea, and high inflammatory markers like C-reactive protein (CRP) and interleukin 6 (IL-6) on admission are also predictors of a worse prognosis (Bhargava et al., 2020; Aziz et al., 2020; Shi et al., 2020; Prompetchara et al., 2020).

In these patients, immune cells, namely lymphocytes, have been heavily implicated in controlling disease progression and clinical outcomes. Some studies have demonstrated that higher leukocyte counts, specifically neutrophils (Shi et al., 2020; Chen et al., 2010; Prompetchara et al., 2020), and T cell lymphopenia (CD3+, CD8+ (Du et al., 2020; Urra et al., 2020), and CD4 (Song et al., 2020)) are associated with increased mortality in patients admitted with COVID-19 pneumonia. Moreover, it has been shown that older patients have lower counts and frequencies of naïve (CD45RA+CCR7+CD27+CD28+) CD4+ T cells contributing to the poor response of T cells (Koch et al., 2008).

These cells are required for the effective handling of new infections or vaccines (Pawelec 2018; Li et al., 2011). It has also been shown that hospitalized COVID-19 patients have reduced (CD45RA+CCR7+CD27+CD28+) CD4+ naïve subsets of T cells compared to healthy uninfected controls (De Biasi et al., 2020). Furthermore, hospitalized patients with severe manifestations have a lower frequency of exhausted non-cytotoxic T cells (PD-1+CD57–CD8+) (Kussnadi et al., 2021).

Monocytes are other immune cells that are also vital for a normal and dysregulated immune response. Monocytopenia was found to be a predictor of worse outcomes in patients with severe community infections and sepsis (Aslto et al., 2007). Moreover, there is a reduction in the classic monocytes (CD14+CD16–) in severe SARS-CoV-2 infection and an increase in the inflammatory subsets (CD14+CD16+) (Payen et al., 2020). Monocytes were also recently divided based on size into small and large subsets, coupled with a level of CD14 and CD16 expression into different subsets with different functional abilities (Merah-Mourah et al., 2020).

The aim of this study was to identify changes in immune variables, namely naïve CD4+, and CD8+ (CD45RA+CCR7+CD27+CD28+), exhausted CD8+ (PD-1+CD57–) T cells, large and small inflammatory (CD14+CD16+) monocytes, and IL-6 levels early in the course of COVID-19 infection as immunological predictors of poor outcomes, including intensive care unit (ICU) admission and death.

2. Methods

2.1. Study design and patients

This was a prospective observational cohort study conducted from July 20, 2020 to August 27, 2020. A total of 101 COVID-19 cases confirmed by SARS-CoV-2 real-time PCR (RT-PCR) from nasopharyngeal swabs were enrolled: 53 non-hospitalized cases and 48 hospitalized cases. Inclusion criteria were patient age ≥13 years, both sexes, confirmed mild SARS-CoV-2 infection in the non-hospitalized group, and confirmed moderate infection in patients hospitalized at the Royal Hospital. Hospitalized patients were recruited within 48 hours of admission. Patients admitted directly to the ICU at the time of enrolment were excluded from the study. Mild cases were those that did not require admission to the hospital due to COVID-19-related illness or oxygen therapy. In contrast, moderate cases were identified as patients with hypoxemia <94% requiring oxygen support or those with one or more COVID-19-related organ involvement.

A dedicated clinical team was assigned to collect data and blood samples from the inpatients. Outpatients were approached through a daily list of confirmed COVID-19 patients provided by the Center of Operation Management for COVID-19 at the Ministry of Health, Oman. Telephone calls were conducted to obtain patient consent to participate in the study after an explanation of the research idea. Patients in the community were visited by two designated researchers the next day. One nominated researcher maintained communication to ensure the adherence of participants. Patient demographics and clinical characteristics were obtained from non-hospitalized patients directly or for hospitalized patients through the electronic hospital records using a unified data collection form. Informed consent was obtained from all enrolled patients. The study was approved by the Central Research Committee at the Ministry of Health in Oman (MoH/CSR/20/23605).

2.2. Measurement of inflammatory markers and lymphocyte subsets

Blood was collected at a median 6 days (interquartile range (IQR) 2–8 days) from the onset of symptoms for the hospitalized patients and 7.5 days (IQR 6.75–8.25 days) for the non-hospitalized patients. Blood was sent for complete blood count, renal function tests, liver function tests, lactate dehydrogenase (LDH), ferritin, D-dimer, coagulation profile, IL-6, and lymphocyte subset analysis. The IL-6 concentration was measured on serum samples using the fully automated Elecsys IL-6 immunoassay (electrochemiluminescence immunoassay) on a Cobas e601 immunoassay analyzer (Roche Diagnostics, Switzerland) following the manufacturer’s protocol. The IL-6 cut-off used was 7.0 pg/ml.

The assessment of the different basic lymphocyte and detailed T cell subsets was performed using flow cytometry. The DURAClone IM T cell subsets tube (Beckman Coulter) that includes CD45RA (clone, 2H4), CD197 (CCR7) (clone, G043H7), CD28 (clone, CD28.2), CD279 (PD-1) (clone, PD-1.3.5), CD27 (clone, 1A4.CD27), CD4 (clone, 1B8.2), CD8 (clone, B9.11), CD3 (clone, UCHT-1), CD57 (clone, NC1), and CD45 (clone, J33) was used to assess the different T cell subsets. The DURAClone IM phenotyping basic tube (Beckman Coulter) that includes CD16 (3G8), CD56 (N901), CD19 (J3.119), CD14 (RM052), CD4 (13B8.2), CD8 (B9.11), CD3 (UCHT-1), and CD45 (J33) was used for basic lymphocyte staining. Gating strategy are presented in Figures 1 and 2. A total of 100 000 events were collected.

Briefly, 100 μl of blood was added to the tube containing the desired cocktail of antibodies and incubated for 20 min at room temperature. Next, 100 μl of lysing solution OptiLyse B or Versalyse was added according to the manufacturer’s recommendation. This was followed by a wash step. The acquisition of samples was done using Navios flow cytometry (Beckman Coulter) and the analysis was performed using Kaluza version 2.1 (Beckman Coulter).

2.3. Statistical analysis

Results were expressed as the median and interquartile range (IQR) and the frequency and percentage (%) for continuous and categorical variables, respectively. The assessment of differences between inpatients and outpatients was performed using the Chi-square test or Fisher’s exact test for categorical variables, and the Mann–Whitney U-test for continuous variables.

Selected variables from the demographic characteristics, clinical presentation, inflammatory markers, and all significant immune subsets were subjected to univariable logistic regression analysis with the composite outcome of ICU admission and mortality in the first 30 days. Variables significant in the univariable analysis (P <
Figure 1. Distribution of CD4 and CD8 T cell subsets in the blood. (A) Representative flow cytometry analysis of the gating strategy, leukocytes (CD45+), T cell (CD3+), and CD4 and CD8 T cells. (B) Based on CD45RA and CCR7 expression, CD4 and CD8 have four main subsets: naïve (CD45RA+CCR7+), central memory (TCM, CD45RA−CCR7+), effector memory (TEM, CD45RA−CCR7−), and revertant effector memory TEMRA (CD45RA+CCR7−); CD4+ subset in the upper panel and CD8+ subsets in the lower panel. (C) The four main subsets, naïve (dark blue), TCM (green), TEM (light blue), and TEMRA (orange), are further divided into a different subset based on surface expression of CD27 and CD28. (D) CD4 is separated into T follicular helper cells (PD-1+CD45RA−). CD4 and CD8 are divided into cytotoxic (PD-1+CD57+) and senescence cells (PD-1−CD57+); CD4+ subset in the left panel and CD8+ subsets in the right panel.
Figure 2. Distribution of lymphocytes and monocytes. (A) Representative flow cytometry analysis of the gating strategy, leukocytes (CD45+), T cell (CD3+), B cell (CD19), NK cell (CD56), and CD4 and CD8 T cells. (B) Gating on CD3− followed by gating on CD19− and then CD14+ (upper two rows). Based on the size of CD14+ monocytes (small (orange) and large (green)), followed by expression of CD14 and CD16 (lower row).

0.05) were assessed using multivariable logistic regression analysis to determine the independent predictors of the composite outcome.

An alpha threshold of 0.05 was used for statistical significance. The statistical analysis was performed using RStudio (RStudio Team (2016), RStudio (version 1.1.456): Integrated Development for R; RStudio, Inc., Boston, MA, USA).

3. Results

3.1. Demographic data, clinical characteristics, and main laboratory findings

During the period between July 2020 and August 2020, a total of 53 non-hospitalized patients with mild SARS-CoV-2 infection
and 48 hospitalized patients with moderate SARS-CoV-2 infection were recruited. Demographic and clinical characteristics, and laboratory investigations, including immunological and inflammatory biomarkers, were compared between the two groups.

Hospitalized patients were found to be older: 58 years vs 36 years (P < 0.001). However, there was no difference in sex distribution (male: 54% of hospitalized vs 43% of non-hospitalized, P = 0.32). Comorbid conditions were more frequent in the admitted group, such as diabetes (65% vs 21%, P < 0.001). While shortness of breath was more frequent in hospitalized patients (80% vs 17%, P < 0.001), fatigue (56.6% vs 20.83%, P < 0.001) and diarrhea (34.0% vs 14.58%, P = 0.037) were reported more in the non-hospitalized group (Table 1, Supplementary Material Appendix 1).

The hospitalized group had higher inflammatory markers: CRP (114 vs 4 mg/l, P < 0.001), LDH (417 vs 214 U/l, P < 0.001), ferritin (760 vs 196 mg/ml, P < 0.001), fibrinogen (6 vs 3 g/l, P < 0.001), D-dimer (1.0 vs 0.3 μg/ml, P < 0.001), disseminated intravascular coagulopathy (DIC) score (2.0 vs 0.0, P < 0.001), and higher neutrophil/lymphocyte ratio (4 vs 1.1, P < 0.001) (Table 2, Supplementary Material Appendix 1).

3.2. Immunological features

3.2.1. CD3 lymphopenia in the hospitalized group

Despite having higher total white blood cell and neutrophil counts (Table 2), hospitalized patients had a lower lymphocyte count and a lower percentage of the CD3+ T cell subset (P = 0.001). At the same time, the ratio of CD4+ T cells and CD8+ T cells was normal (Table 3), and there was no difference between the two groups when comparing the percentage of CD19+ B cells and CD16+56+ natural killer (NK) cells (P = 0.29 and P = 0.42, respectively) (Table 3, Supplementary Material Appendix 1).

3.2.2. Reduced naive and increased effector and increased cytotoxic and exhausted CD4+ T cells in the hospitalized group

The assessment of the CD4+ T cell maturation and differentiation stages revealed a significantly higher increase in the total naïve (CD45RA+CCR7+)+ CD4+ T cells in the non-hospitalized group, with a median of 32.75% (IQR 23.51–39.50%) compared to 5.40% (IQR 14.99–36.88%) in the hospitalized group (P = 0.034). This increase was mirrored by the increase in the naïve (CD27+CD28+CD45RA+CCR7+) CD4+ T cell subsets, with a median of 99.48% (IQR 98.90–99.71%) vs 99.00% (IQR 97.15–99.67%) in the non-hospitalized group and admitted group, respectively (P = 0.021) (Table 3). On the other hand, there was an expansion of effector CD4+ T cells in hospitalized patients compared to non-hospitalized patients. These patients had a higher frequency of exhausted (PD-1+CD57−) CD4+ T cells with a median of 17.59% (IQR 14.16–23.48%) compared to 13.63% (IQR 10.24–18.20%) (P = 0.001) and exhausted cytotoxic (PD-1+CD57+CD4+) CD4+ T cells with a median of 5.48% (IQR 1.66–12.89%) compared to 2.97% (IQR 1.56–5.98%) in the non-hospitalized patients (P = 0.039) (Table 3, Supplementary Material Appendix 1).

Table 1
Comorbid conditions and symptoms of hospitalized (n = 48) and non-hospitalized (n = 53) patients with COVID-19. All variables are reported as the number and percentage (%). The P-values were calculated using Fisher’s exact test, with 2 × 2 contingency tables.

Status	Hospitalized (%)	Non-hospitalized (%)	P-value
Comorbid conditions			
Pregnancy	0 (0)	2 (4)	0.3190
Obesity	6 (13)	14 (26)	0.0000
Cancer	0 (0)	1 (2)	1.0000
Diabetes	31 (65)	11 (21)	0.0000
HTN	32 (67)	4 (8)	0.0000
HIV/immune deficiency	2 (4)	0 (0)	0.2234
Heart disease	10 (21)	3 (6)	0.0353
Asthma	3 (6)	3 (6)	1.0000
Chronic lung disease	6 (13)	0 (0)	0.0097
Chronic liver disease	0 (0)	2 (4)	0.4962
Chronic hematological disease	3 (6)	1 (2)	0.3439
Chronic renal disease	25 (52)	1 (2)	0.0000
Chronic neurological disease	1 (2)	0 (0)	0.4752
Organ or bone marrow recipient	3 (6)	0 (0)	0.1038
On ACEI/ARB	2 (4)	2 (4)	0.6664
On oral hypoglycemic agents/ insulin	19 (40)	3 (6)	0.0001
On active chemotherapy	1 (2)	0 (0)	0.4752
On long-term steroids	4 (8)	1 (2)	0.1880
On biologics	1 (2)	0 (0)	0.4752
Symptoms			
Shortness of breath	38 (79)	9 (17)	0.0000
Fever	30 (62.5%)	41 (77.4%)	0.1286
Cough	26.00 (54.17)	27 (50.9)	0.8425
Fatigue	10.00 (20.83)	30 (56.6)	0.0003
Diarrhea	7.00 (14.58)	18 (34)	0.0358
Nausea/vomiting	6.00 (12.5)	16 (30.2)	0.0520
Loss of appetite	6.00 (12.5)	4 (7.5)	0.5117
Muscle/joint pain	5.00 (10.42)	14 (26.4)	0.0454
Headache	4.00 (8.33)	11 (20.8)	0.0977
Sore throat	3.00 (6.25)	26 (49.1)	0.0000
Chills	3.00 (6.25)	3 (5.7)	1.0000
Loss of smell	2.00 (4.17)	25 (47.2)	0.0000
Neurological deficits or seizure	2.00 (4.17)	0 (0)	0.2234
Runny nose	1.00 (2.08)	23 (43.4)	0.0000
Rash	0.00 (0)	0 (0)	NA
Epistaxis	0.00		NA

ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; HTN, hypertension; NA, not applicable.
3.2.3. Reduced naïve and increased cytotoxic effector and exhausted CD8+ T cells in the hospitalized group

Similar to total CD4+ T cells, there was no statistically significant difference in total CD8+ T cells (P = 0.317). However, there was an increase in the naïve CD8+ T cells seen in the non-hospitalized patients, with a median of 27.82% (IQR 14.84–37.89%) compared to 14.31% (IQR 4.485–36.24%) in the hospitalized group (P = 0.010). In addition, the non-hospitalized group had a higher frequency of cells with lower cytotoxic characteristics. Examples include effector memory (TEM) CD27+CD28+CD8+ T cells (43.95% (IQR 32.92–59.75%) vs 28.71% (IQR 21.38–45.66%), P = 0.01) and revertant effector memory (TEMRA) CD27+CD28–CD8+ T cells (21.07% (IQR 15.00–28.39%) vs 16.33% (IQR 10.29–27.73%), P = 0.029), in the non-hospitalized vs hospitalized group (Table 3, Supplementary Material Appendix 1).

In contrast, the hospitalized group had a high percentage of cytotoxic TEM CD27–CD28–CD8+ T cells, with a median 47.25% (IQR 24.14–57.68%) compared to 25.76% (IQR 15.45–40.84%) in the non-hospitalized group (P = 0.002). Moreover, the percentage of cytotoxic exhausted (CD57+PD-1+) CD8+ T cells was higher in the hospital group, with a median of 16.86% (IQR 11.35–27.96%) vs 11.98% (IQR 8.96–15.41%) (P = 0.008) (Table 3, Supplementary Material Appendix 1). The hospitalized group had a higher frequency of cells with cytotoxic characteristics.

3.2.4. Large inflammatory (CD14+CD16+) monocytes in the hospitalized group

Hospitalized patients exhibited a lower percentage of CD14+ monocytes than non-hospitalized patients, with a median of 3.91% (2.20–6.31%) vs 7.43% (IQR 6.09–10.10%), respectively (P < 0.001). As a majority of the monocytes were of small size, the hospitalized group had a lower median of 2.46% (IQR 1.21–4.10%) CD14+-small monocytes compared to the non-hospitalized group with a median of 4.58% (IQR 3.34–5.53%) (P < 0.001) (Table 3).

Although there was no difference in the total large CD14+ monocytes, large inflammatory (CD14+CD16+) monocytes were seen at a higher percentage in the hospitalized group, with a median of 27.3% (IQR 12.31–40.62%) compared to the non-hospitalized group with 15.29% (IQR 11.39–9.54%) (P < 0.001) (Table 3, Supplementary Material Appendix 1).

3.2.5. Higher IL-6 levels in the hospitalized group

In line with previous findings, IL-6 was higher in the hospitalized disease group, with a median of 33 pg/ml (IQR 8.36–86.28 pg/ml) compared to the non-hospitalized group with 3.71 pg/ml (IQR 1.58–12.58 pg/ml) (P < 0.001) (Table 3, Supplementary Material Appendix 1).

3.2.6. ICU admission and death

Ten of the 48 hospitalized patients (21%) required ICU admission. A total of seven patients died: five were among those who were moved to the ICU, one died while in the ward, and one of the non-hospitalized patients died before 30 days of illness. Therefore, the total composite endpoint was 12 events (2%).

3.2.7. Factors associated with ICU admission or death

Univariable regression analysis was used to examine potential parameters predictive of ICU admission or death within 30 days (Table 4, Supplementary Material Appendix 1). Significant univariable factors were then subjected to multivariable regression analysis. It was found that the increase in IL-6 level (pg/ml) increased the composite endpoint odds by 1.03 (P = 0.03). Similarly, an increase in the percentage of the large inflammatory monocytes (CD16+CD14+) subset was found to be associated with an increase in the composite endpoint odds by 1.117 (P = 0.01). On the other hand, an increase in the frequency of the naïve CD4+ (CD45RA+CCR7+CD27+CD28+) decreased the odds of the composite endpoint by 0.476 (P = 0.03) (Table 4, Supplementary Material Appendix 1).

4. Discussion

Earlier studies have shown that in hospitalized patients, inflammatory biomarkers such as CRP, ferritin, LDH, D-dimer, and
IL-6 can be used to predict clinical outcomes in COVID-19 patients (Bhangara et al., 2020; Aziz et al., 2020; Shi et al., 2020; Prompetchara et al., 2020). The immune system plays a significant role in the clinical manifestations and progression of the disease, including the inflammatory markers mentioned above. Therefore, the focus on immunological predictors that can be used early in the disease course to enable the relocation of resources towards those at risk of getting the severe disease should be prioritized. In this study, it was observed that, in addition to elevated levels of IL-6, the higher percentage of large inflammatory CD14+CD16− monocytes and lower percentage of naïve CD27+CD28+CD4+ T cells were independent early immunological
Table 4
Univariable and multivariable analysis of the selected parameters

Variable	Univariable analysis	Multivariable analysis	
	P-value	OR	P-value
Age	0.022	0.924	0.089
Sex (male)	0.471		
BMI	0.516		
Admission status	0.010	1.208	0.921
Diabetes	0.020	0.268	0.340
HTN	0.024		
HIV/immune deficiency	0.152		
Heart disease	0.621		
Asthma	0.711		
Chronic lung disease	0.711		
Chronic renal disease	0.524		
White blood cell count (× 10^9/l)	0.211		
Neutrophil count (× 10^9/l)	0.104		
Lymphocyte count (× 10^9/l)	0.053		
Neutrophil/Lymphocyte ratio	0.181		
CRP (mg/l)	0.044		
LDH (UI)	0.014		
Ferritin (ng/ml)	0.003		
Fibrinogen	0.914		
D-dimer	0.039		
IL-6	0.001	1.030	0.032
CD4+	0.143		
CD4+	0.303		
CD8+	0.556		
TEM CD4+	0.869		
TEM CD4+	0.281		
TEMRA CD4+	0.101		
CD27+CD8+Naïve CD4+	0.005	0.476	0.030
CD27+CD8+TCMD4+	0.460		
CD27+CD8+TEM CD4+	0.862		
CD27+CD8+TEM CD8+	0.334		
Naïve CD8+	0.593		
TCM CD8+	0.100		
TEM CD8+	0.377		
TEMRA CD8+	0.489		
CD27+CD8+Naïve CD8+	0.212		
CD27+CD8+TCMD8+	0.168		
CD27+CD8+TEM CD8+	0.913		
CD27+CD8+TEM CD8+	0.303		
CD27+CD8+TEM CD8+	0.133		
CD27+CD8+TEM CD8+	0.524		
CD27+CD8+TEMRA CD8+	0.328		
CD27+CD8+TEMRA CD8+	0.488		
CD27+CD8+TEMRA CD8+	0.476		
CD27+CD8+TEMRA CD8+	0.345		
PD-1+CD57+CD4+	0.368		
PD-1+CD57+CD4+	0.572		
CD54RA–PD-1+CD4+	0.035	1.139	0.055
PD-1+CD57+CD4+	0.332		
PD-1+CD57+CD4+	0.531		
PD-1+CD57+CD4+	0.076	0.893	0.110
CD14	0.022	0.862	0.437
Large CD14	0.614		
Large CD16+CD14p	0.000		
Large CD16+CD14p	0.000	1.117	0.010
Small CD14	0.021		
Small CD16+CD14p	0.521		
Small CD16+CD14p	0.631		

BMI, body mass index; CRP, C-reactive protein; HTN, hypertension; IL-6, interleukin 6; LDH, lactate dehydrogenase; OR, odds ratio.

prognostic predictors of worse outcomes in patients with COVID-19.

Similar to other existing data, admitted patients in the present study were found to be older and more frequently diabetic and hypertensive compared to those who did not require admission. Moreover, underlying chronic heart, lung, and kidney diseases were noted more often in admitted patients than non-admitted patients, which is in agreement with previous studies (Wang et al., 2020; Yang et al., 2020; Ruan et al., 2020; Wu and McGoogan, 2020). In addition, the current literature has ample information suggesting that high inflammatory markers can be used as a predictor of worse outcomes in admitted patients with SARS-CoV-2 infection. These include the white blood cell count, absolute lymphocyte count, LDH, CRP, procalcitonin, D-dimer, ferritin, and erythrocyte sedimentation rate (Barrett et al., 2020; Wang et al., 2020). This was also confirmed in the present study, in which admitted patients had higher inflammatory markers including CRP, LDH, ferritin, fibrinogen, D-dimer, DIC score, and higher neutrophil/lymphocyte ratio.

The immune CD4+ and CD8+ T cells can be divided into four main subsets based on the surface expression of CD45RA. They reflect different maturation and T cell differentiation stages that are functionally distinct. The subsets include naïve CD4+ T cell subsets (CCR7+CD45RA+), central memory (TCM) CD4+ T cells (CCRF7+CD45RA−), effector memory CD4+ T cells (TEM), and RA+ revertant effector memory cells (CCR−CD45RA+) (TEMRA) (Okada et al., 2008; Romero et al., 2007). The main four subsets of both CD4+ and CD8+ can be further divided into different functional subsets based on the expression of CD27 and CD28 with different cytokine expression (Aymes et al., 2005; Romero et al., 2007; Koch et al., 2008). TEM that are CD27−CD28− are mainly interferon-gamma (IFN-γ) producers (Th1), while CD27−CD28+ TEM are IL-2 (Th0), IFN-γ (Th1), and IL-4 (Th2) producers (Okada et al., 2008). TEM and TEMRA T cells are good cytokine producers, including IL-2, IFN-γ, and tumor necrosis factor alpha (TNF-α). Moreover, CD27−CD28− T cells have high effector capability similar to the terminal effector T cells TEMRA subset [Romero et al., 2007; Koch et al., 2008]. Similarly, the combination of PD-1 and CD57 can identify cells with exhausted and/or cytotoxic phenotype (Kraaijveld et al., 2018; Alshekaili et al., 2018).

On the other hand, the naïve T cell is mainly CD27+CD28+ and is a good producer of IL-2, which is required for activation and proliferation (Okada et al., 2008; Koch et al., 2008). CD27−CD28+ naïve T cells are crucial in response to a new virus or vaccine. Those with a reduced frequency of naïve T cells, such as the elderly, are at risk of getting a significant disease when compared to those with plenty of naïve T cells that can respond better to such new viruses (Cunha et al., 2020). This is one of the important explanations for the increased mortality in the elderly after infection with SARS-CoV-2. The present study findings are in line with this: those patients with a low percentage of naïve CD4+ T cells are at a higher risk of mortality.

De Biasi et al. compared the immune system in hospitalized patients with mild to moderate disease (n = 39) to that in a healthy uninfected group (n = 25). They showed a low count of total CD4+ and CD8+ T cells and their naïve and TCM subsets in the patient group. Moreover, these patients had a higher frequency of cells with the senescent/exhausted phenotype (CD57+PD-1+) (De Biasi et al., 2020). Similarly, we found a reduced percentage of naïve CD4+ and CD8+ T cells and increased exhausted CD4+ and CD8+ T cells in the hospitalized group early in the disease course. In addition, these cells were more cytotoxic compared to the mild non-hospitalized patients in agreement with findings of the other published data (Kusnadi et al., 2021).

Monocytes are the key immune cells and are good producers of inflammatory cytokines like IL-6 (Gavridis et al., 2018; Norelli et al., 2018). They acquire a larger size upon activation and in viral infections (Poliilli et al., 2020), including in patients with severe COVID-19 (Lippi and Plebani 2020). Moreover, monocytes can be divided according to the differentiation stage using a combination of CD markers, into immature (CD14+CD16−), differentiated and inflammatory type (CD14+CD16+), and non-classical (CD14−CD16+) (Sánchez-Cerrillo et al., 2020). Examining monocytes in this way has revealed a higher percentage of large inflam-
matory monocytes CD14+CD16+ in hospitalized patients, in line with previous suggestions that patients with severe manifestation have bigger sized monocytes (Khartabil et al., 2020; Lippi and Plebani 2020; Polilli et al., 2020).

In conclusion, the current study identified elevated levels of IL-6, a higher percentage of CD14+CD16+ inflammatory large monocytes, and a lower percentage of circulating naïve (CD27+CD28+CD45RA+CCR7+) CD4+ T cells early in the disease course as independent early predictors of ICU admission or death in patients with SARS-CoV-2 infection. Such predictors could be used for the early identification of patients who might deteriorate and thus need early aggressive interventions. Larger studies are required to validate the current findings, aiming towards better early clinical management.

Declaration of Competing Interest

The authors declare that they have no financial interests or personal relationships that might influence the work presented in this paper.

Author contributions

Asma Al Balushi: Conceptualized and designed the study, wrote the research proposal, data collection for inpatients and field visits, communicated with patients, drafted and reviewed the manuscript, and overall workflow and integrity supervision. Jalila AlShekaili: Reviewed the study design, wrote the research proposal, supervised receiving blood samples at the immunology laboratory, supervised the flow cytometry work and IL-6 assessment run and analysis, and interpreted the data, wrote up the first few drafts and approved the final draft of the manuscript. Mahmood Al Kindi: Reviewed the study design, reviewed the research proposal, supervised receiving blood samples at the immunology laboratory, supervised the flow cytometry work and IL-6 assessment run and analysis, analyzed the data, wrote up the first few drafts, and approved the final draft of the manuscript. Zainab Ansari: Field visits, data and sample collection from outpatients and inpatients, and data entry. Murtadha Al-Khabori: Data analysis, writing up results, and manuscript review. Faryal Khamis: Manuscript review and facilitating research work for inpatients. Zaiziana Ambusaidi: Data and sample collection from inpatients and data entry, Afra Al Balushi: Data and sample collection from inpatients and data entry, Aisha Al Huraiizi: Data and sample collection from inpatients and data entry, Sumaiya Al Sulaimi: Data and sample collection from inpatients and data entry, Fatma Al Fahdi: Data and sample collection from inpatients and data entry, Iman Al Balushi: Data collection and entry for outpatients and second review of all data, Nenad Pandak: Manuscript review and facilitating research work for inpatients, Tom Fletcher: Overall supervision of the study and manuscript review. Iman Nasr: Proposal review, registered the study, communication with laboratories and companies, manuscript review, and overall workflow and integrity supervision.

Acknowledgements

We thank the Ministry of Higher Education, Research and Innovation (MoHERI) for their great contribution in funding this research. We also thank the Tropical and Infectious Diseases Unit at the Royal Liverpool University Hospital for their support and help in facilitating this research and overall supervision of the primary author as part of a fellowship training program. We thank Dr Lamya Al Balushi from the Directorate General of Health Services, Ministry of Health, Oman for her help in facilitating the fieldwork.

Funding

The study was supported by the Ministry of Higher Education, Research and Innovation (MoHERI) in Oman (TRC/CRP/MOH/COVID-19/20/26).

Ethical approval

Ethical approval was obtained through the Central Research Committee at the Ministry of Health in Oman (MoH/CSR/20/23605).

Consent

Informed consent was obtained from all enrolled patients.

References

Aalto Hannele, Takala Annika, Kautiainen Hannu, Siitonen Sanna, Repo Heikki. Monocyte CD14 and soluble CD14 in predicting mortality of patients with severe community acquired infection’. Scandinavian Journal of Infectious Diseases 2007;39:596–603.

Alshekaili Jalila, Chand Rochna, Lee Cindy Eunhee, Corley Susan, Kwong Kristy, Papa Ilena, Fulcher David A, Randall Katrina L, Leiding Jennifer W, Ma Cindy S, Wilkins Marc R, Uzel Gulb, Goodnow Chris I, Vinuesa Carola G, Tangye Stuart G, Cook Matthew C. STATA regulates cytotoxicity of human CD57+ CD4+ T cells in blood and lymphoid follicles’, Scientific Reports 2018;8:3529.

Anjum F, McMichael AJ, Callanan MR, Hanania GD. CD8 T cells are predominantly distributed among six phenotypically and functionally distinct subsets’. J Immunol 2005;175:5765–73.

Aiziz M, Haggbin H, Lee-Smith W, Goyal H, Nawras A, Adler DG. Gastrintestinal predictors of severe COVID-19: systemic review and meta-analysis. Ann Gastroenterol 2020;33:615–30.

Barrett Brendan, Pamphile Stylee, Yang Fan, Naeem Farna, Kim Jinsung, Annam Jayabhargav, Boczuk Rachel, Yellin Shira, Bais Carly, Fowler Sabrina, Moseley Maykl, Mayer Jessica, Friedman Benjamin W. Infectammary markers are poorly predictive of clinical outcomes among hospitalized pa- tients with COVID-19. The American journal of emergency medicine 2020 2020;37:1062–7.

Bhargava A, Fukushima EA, Levine M, Zhao W, Danveer F, Szumer PA, Saravolatz L. Predictors for Severe COVID-19 Infection’, Clin Infect Dis 2020;71:1962–8.

Chen J, Lau YF, Lamindare EW, Paddock CD, Bartlett JH, Zaki SR, Subbarao K. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection’. J Virol 2010;84:1289–301.

Cunha Lucas Leite, Perazza Sandro Felix, Azzi Jamil, Cravedi Paolo, Riella Leonardo Vidal, Remodeling of the Immune Response With Aging: Immunosenescence and Its Potential Impact on COVID-19 Immune Response. Frontiers in Immunol- ogy 2020:11.

De Biasi Sara, Meschini Marianna, Gibernelli Lara, Bellinzani Caterina, Borella Rebe- becca, Fedana Lucia, Gozzi Lucia, Iannone Anna, Tartar Domenico Lo, Matti- oli Marco, Paolino Annamaria, Menozzii Mari, Mila Jovina, Franceschi Giaco- emo, Fantini Riccardo, Tonelli Roberto, Sita Marco, Sarti Mario, Trenti Tom- maso, Brugioni Lucio, Cicchetti Luca, Facchini Fabio, Pietrangelo Antonello, Clin Enrico, Girardis Massimo, Guzardl Giovanni, Mussini Cristina, Co- sarizza Andree. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nature Communications 2020;11:3434.

Du RH, Liang LR, Yang CQ, Wang W, Cao TZ, Li M, Guo GY, Du J, Zheng CL, Zhu Q, Hu M, Li XY, Peng P, Shi HZ. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J 2020;55.

Gavridis T, van der Stegen JGC, Eyqoum J, Hamieh M, Piersonig A, Sadelain M. CAR T cell-induced cytokine release syndrome is mediated by macrophages and ablated by IL-1 blockade. Nat Med 2018;24:731–6.

Khartabil TA, Russcher H, van der Ven A, de Bijke YB. A summary of the diagnostic and prognostic value of hemocytometry markers in COVID-19 patients. Crit Rev Clin Lab Sci 2020;57:415–31.

Koch Angela, Uli Briesemes, Dorothee Dikow. 2018;5:6.

Krajeveld R, de Graaf GN, Dieberich M, Lijtens NRH, Hesselein DA, Baan CC. Co-inhibitory profile and cytotoxicity of CD57(+) CD8(−) T cells in end-stage renal disease patients. Clin Exp Immunol 2018;191:363–72.

Kusnadi Anthony, Ramirez-Suastegui Ciro, Fajardo Vicente, Chee Serena J, Meck- iff Benjamin J, Simon Hayley, Pelosi Emanuela, Seumois Grégoire, Ay Ferhat, Vi- jayanand Pandurangan, Ottenmeier Christian H. Severely ill COVID-19 patients display impaired exhaustion features in SARS-CoV-2-reactive CD8+ T cells. Science Immunology 2021;6:eabe4782.

Lai Chih-Cheng, Liu Yen Hung, Wang Cheng-Yi, Wang Ya-Hui, Hsieh Shun-Chung, Yen Muh-Yen, Ko Wen-Chen, Hsieh Po-Ren. Asymptomatic carrier state, acute
respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): facts and myths. Journal of Microbiology, Immunology and Infection 2020;53:404–12.

Li H, Mansvari B, Leng SX. Frailty, inflammation, and immunity. Aging Dis 2011;2:466–73.

Lippi G, Plebani M. The critical role of laboratory medicine during coronavirus disease 2019 (COVID-19) and other viral outbreaks. Clin Chem Lab Med 2020;58:1063–9.

Merah-Mourah F, Cohen SO, Charon D, Mooney N, Haziet A. Identification of Novel Human Monocyte Subsets and Evidence for Phenotypic Groups Defined by Interindividual Variations of Expression of Adhesion Molecules. Scientific Reports 2020;10:4397.

Norelli M, Camisa B, Barbiera G, Falcone L, Purevdoj A, Genua M, Sanvito F, Ponzoni M, Doglioni C, Cristofori P, Traversari C, Bordignon C, Ciceri F, Ostuni R, Bonini C, Casucci M, Bondanza A. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 2018;24:739–48.

Okada R, Kondo T, Matsuji F, Takata H, Takiguchi M. Phenotypic classification of human CD4+ T cell subsets and their differentiation. Int Immunol 2008;20:3189–99.

Pawelec G. Age and immunity: What is “immunosenescence”? Exp Gerontol 2018;105:4–9.

Payen Didier, Cravat Maxime, Maadadi Hadil, Didelot Carole, Prois Lydia, Dupuis Claire, Loser Marie-Reine, Bittencourt Marcelo De Carvalho. A Longitudinal Study of Immune Cells in Severe COVID-19 Patients. Frontiers in Immunology 2020;11.

Pollini E, Sozio F, Frattari A, Persichiti L, Sensi M, Posata R, Di Gregorio M, Sciaccia A, Flacco ME, Manzoli I, Di Iorio G, Parruti G. Comparison of Monocyte Distribution Width (MDW) and Procalcitonin for early recognition of sepsis. PLoS One 2020;15.

Promptchairs A, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol 2020;38:1–9.

Romero Pedro, Zippelius Alfred, Kurth Isabel, Pittet Mikael J, Jouyve Cédric, Iancu Emanuela M, Corbeyre Patricia, Desvevre Estelle, Speiser Daniel E, Rufer Nathalie. Four Functionally Distinct Populations of Human Effector-Memory CD8+ T Lymphocytes. The Journal of Immunology 2007;178:4112–19.

Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. In-tensive Care Med 2020;46:846–8.

Sánchez-Cerrillo, Ildefonso, Pedro Landete, Beatriz Aldave, Santiago Sánchez-Alonso, Ana Sánchez Azofra, Ana Marcos-Jiménez, Elena Ávalos, Ana Alcaraz-Serna, Ignacio de los Santos, Tamara Mately-Albero, Laura Esparcia, Celia López-Sanz, Pedro Martínez-Fleta, Lígia Gabrie, Luciana del Campo Guerola, María José Calzada, Isidoro González-Álvaro, Arantza Alfranca, Francisco Sánchez-Madriz, Cecilia Muñoz-Calleja, Joan B Soriano, Julio Ancochea, and Enrique Martín-Gayo. 2020. ‘Differential Redistribution of Activated Monocyte and Dendritic Cell Subsets to the Lung Associates with Severity of COVID-19’, medRxiv: 2020.05.13.20100925.

Shi Yufang, Wang Ying, Shao Changshun, Huang Jianan, Gan Jianhe, Huang Xuping, Bucci Enrico, Pacentini Mauro, Ippolito Giuseppe, Melino Gerry. COVID-19 infection: the perspectives on immune responses. Cell Death & Differentiation 2020;27:1451–4.

Song Cong-Ying, Xu Jia, He Jian-Qin, Lu Yuan-Qiang. Immune dysfunction following COVID-19, especially in severe patients. Scientific Reports 2020;10:15838.

Urrea JM, Cabrera CM, Porras I, Ródenas I. Selective CD8 cell reduction by SARS-CoV-2 is associated with a worse prognosis and systemic inflammation in COVID-19 patients. Clin Immunol 2020;217.

Wang Y, Lu X, Li Y, Chen H, Chen T, Su N, Huang F, Zhou J, Zhang B, Yan F, Wang J. Clinical Course and Outcomes of 344 Intensive Care Patients with COVID-19. Am J Respir Crit Care Med 2020;201:1430–4.

Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. Jama 2020;323:1239–42.

Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, Ji R, Wang H, Wang Y, Zhou Y. Preva-lence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis 2020;94:91–5.

Yu F, Du L, Ojcius DM, Pan C, Jiang S. Measures for diagnosing and treating infec-tions by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes Infect 2020;22:74–9.