REALITY AND TRANSVERSALITY FOR SCHUBERT CALCULUS IN $\text{OG}(n, 2n+1)$

KEVIN PURBHOO

Abstract. We prove an analogue of the Mukhin-Tarasov-Varchenko theorem (formerly the Shapiro-Shapiro conjecture) for the maximal type B_n orthogonal Grassmannian $\text{OG}(n, 2n+1)$.

1. The Mukhin-Tarasov-Varchenko Theorem

For any non-negative integer k, let $\mathbb{C}_k[z]$ denote the $(k+1)$-dimensional complex vector space of polynomials of degree at most k:

$$\mathbb{C}_k[z] := \{ f(z) \in \mathbb{F}[z] \mid \deg f(z) \leq k \}.$$

Fix integers $0 \leq d \leq m$, and consider the Grassmannian $X = \text{Gr}(d, \mathbb{C}_{m-1}[z])$, the variety of all d-dimensional linear subspaces of the m-dimensional vector space $\mathbb{C}_{m-1}[z]$. A point $x \in X$ is real if x is is spanned by polynomials in $\mathbb{R}_{m-1}[z]$; a subset of $S \subset X$ is real if every point in S is real.

The Mukhin-Tarasov-Varchenko theorem (formerly the Shapiro-Shapiro conjecture) asserts that any zero-dimensional intersection of Schubert varieties in X, relative a special family of flags in $\mathbb{C}_{m-1}[z]$, is transverse and real. This theorem is remarkable for two immediate reasons: first, it is a rare example of an algebraic geometry problem in which the solutions are always provably real; second, the usual arguments to prove transversality involve Kleiman’s transversality theorem [5], which requires that the Schubert varieties be defined relative to generic flags. We recall the most relevant statements here, and refer the reader to the survey article [14] for a discussion of the history, context, reformulations and applications of this theorem.

To begin, we define a full flag in $\mathbb{C}_{m-1}[z]$, for each $a \in \mathbb{C}^1$:

$$F \cdot (a) : \{ 0 \} \subset F_1(a) \subset \cdots \subset F_{m-1}(a) \subset \mathbb{C}_{m-1}[z].$$

If $a \in \mathbb{C}$,

$$F_i(a) := (z + a)^{m-i}\mathbb{C}[z] \cap \mathbb{C}_{m-1}[z]$$

is the set of polynomials in $\mathbb{C}_{m-1}[z]$ divisible by $(z + a)^{m-i}$. For $a = \infty$, we set $F_i(\infty) := \mathbb{C}_{i-1}[z] = \lim_{a \to \infty} F_i(a)$. The flag $F \cdot (a)$ is often described as the flag osculating the rational normal curve $\gamma : \mathbb{C}^1 \to \mathbb{P}(\mathbb{C}_{m-1}[z]), \gamma(t) = (z + t)^{m-1}$, which simply means that $F_i(a)$ is the span of $\{ \gamma(a), \gamma'(a), \ldots, \gamma^{(i-1)}(a) \}$.

Let $\Lambda = \Lambda_{d,m}$ be the set of all partitions $\lambda : (\lambda^1 \geq \cdots \geq \lambda^d)$, where $\lambda^1 \leq m-d$ and $\lambda^d \geq 0$. We say λ is a partition of k and write $\lambda \vdash k$ or $|\lambda| = k$ if $k = \lambda^1 + \cdots + \lambda^d$.

Received by the editors March 2, 2010.
Research partially supported by an NSERC discovery grant.
For every \(\lambda \in \Lambda \), the Schubert variety in \(X \) relative to the flag \(F_\bullet(a) \) is

\[
X_\lambda(a) := \{ x \in X \mid \dim (x \cap F_{n-d-\lambda_i+i}(a)) \geq i, \text{ for } i = 1, \ldots, d \}.
\]

The codimension of \(X_\lambda(a) \) in \(X \) is \(|\lambda| \).

Theorem 1 (Mukhin-Tarasov-Varchenko [6, 7]). If \(a_1, \ldots, a_s \in \mathbb{R}P^1 \) are distinct real points, and \(\lambda_1, \ldots, \lambda_s \in \Lambda \) are partitions with \(|\lambda_1| + \cdots + |\lambda_s| = \dim X \), then the intersection

\[
X_{\lambda_1}(a_1) \cap \cdots \cap X_{\lambda_s}(a_s)
\]

is finite, transverse, and real.

In [13], Sottile conjectured an analogue of Theorem 1 for \(\text{OG}(n, 2n+1) \), the maximal orthogonal Grassmannian in type \(B_n \). In Section 2 of this note, we give a proof of this conjecture (our Theorem 3). We discuss some of its consequences in Section 3; in particular, we note that Theorem 3 should yield a geometric proof of the Littlewood-Richardson rule for \(\text{OG}(n, 2n+1) \).

2. The theorem for \(\text{OG}(n, 2n+1) \)

Fix a positive integer \(n \), and consider the non-degenerate symmetric bilinear form \(\langle \cdot, \cdot \rangle \) on the \((2n+1) \)-dimensional vector space \(\mathbb{C}_{2n}[z] \) given by

\[
\left\langle \sum_{k=0}^{2n} a_k \frac{z^k}{k!}, \sum_{\ell=0}^{2n} b_\ell \frac{z^\ell}{\ell!} \right\rangle = \sum_{m=0}^{2n} (-1)^m a_m b_{2n-m}.
\]

Let \(Y = \text{OG}(n, \mathbb{C}_{2n}[z]) \) be the orthogonal Grassmannian in \(\mathbb{C}_{2n}[z] \), which is the variety of all \(n \)-dimensional isotropic subspaces of \(\mathbb{C}_{2n}[z] \). The dimension of \(Y \) is \(\frac{n(n+1)}{2} \).

The definition of a Schubert variety in \(Y \) requires our reference flags to be orthogonal flags. As explained in the next proposition, the bilinear form on \(\mathbb{C}_{2n}[z] \) has been chosen so that this is true for the flags \(F_\bullet(a) \).

Proposition 2. For \(a \in \mathbb{C}P^1 \), then the flag \(F_\bullet(a) \) is an orthogonal flag; that is, \(F_i(a) = F_{2n+1-i}(a) \), for \(i = 0, \ldots, 2n+1 \).

Proof. For \(a = 0, \infty \), this is straightforward to verify. We deduce the result for all other \(a \) by showing that \(\langle f(z), g(z) \rangle = \langle f(z+a), g(z+a) \rangle \).

To see this, note that \(\langle \frac{df}{dz}(\frac{z}{z+1}), \frac{df}{dz}(\frac{z}{z+1}) \rangle = -\langle \frac{df}{dz}(\frac{z}{z+1}), \frac{df}{dz}(\frac{z}{z+1}) \rangle \), so \(\frac{df}{dz} \) is a skew-symmetric operator on \(\mathbb{C}_{2n}[z] \). It follows that \(\exp(a \frac{df}{dz}) \) is an orthogonal operator on \(\mathbb{C}_{2n}[z] \) and so \(\langle f(z+a), g(z+a) \rangle = \langle \exp(a \frac{df}{dz})f(z), \exp(a \frac{df}{dz})g(z) \rangle = \langle f(z), g(z) \rangle \). \(\square \)

The Schubert varieties in \(Y \) are indexed by the set \(\Sigma \) of all strict partitions \(\sigma : \sigma_1 > \sigma_2 > \cdots > \sigma_k \), with \(\sigma_1 \leq n, \sigma_k > 0, k \leq n \). For convenience, we put \(\sigma^j = 0 \) for \(j > k \). We associate to \(\sigma \) a decreasing sequence of integers, \(\sigma_1 > \cdots > \sigma_n \), such that \(\sigma_i = \sigma^i \) if \(\sigma^i > 0 \), and \(\{ |\sigma_1|, \ldots, |\sigma| \} = \{ 1, \ldots, n \} \). It is not hard to see that \(\sigma_i \) is given explicitly by the formula

\[
\sigma_i = \sigma^i - i + \# \{ j \in \mathbb{N} \mid j \leq i < j + \sigma^j \}.
\]

For \(\sigma \in \Sigma \), the Schubert variety in \(Y \) relative to the flag \(F_\bullet(a) \) is defined to be

\[
Y_\sigma(a) := \{ y \in Y \mid \dim (y \cap F_{1+n-\sigma_i}(a)) \geq i, \text{ for } i = 1, \ldots, n \}.
\]
The codimension of $Y_\sigma(a)$ in Y is $|\sigma|$. We refer the reader to [2, 12] for further details.

Theorem 3. If $a_1, \ldots, a_s \in \mathbb{R}P^1$ are distinct real points, and $\sigma_1, \ldots, \sigma_s \in \Sigma$, with $|\sigma_1| + \cdots + |\sigma_s| = \dim Y$, then the intersection

$$\bigcap_{i=1}^{s} Y_{\sigma_i}(a_i)$$

is finite, transverse, and real.

Proof. Let $X = \text{Gr}(n, \mathbb{C}^{2n})$, and let $\Lambda = \Lambda_{n, 2n+1}$. We prove this result by viewing Y as a subvariety of X, and the Schubert varieties Y_σ as the intersections of Schubert varieties in X with Y. Note that $\dim X = 2 \dim Y = n(n+1)$.

For a strict partition $\sigma \in \Sigma$, let

$$\tilde{\sigma}^i := \sigma^i + i = \sigma^i + \# \{ j \in \mathbb{N} \mid j \leq i < j + \sigma^i \}.$$

Observe that $\tilde{\sigma}^i - \tilde{\sigma}^{i+1} = \tilde{\sigma}^i - \tilde{\sigma}^{i+1} - 1 \geq 0$, and $\tilde{\sigma}^1 \leq \sigma^1 + 1 \leq n + 1$; hence we see that

$$\tilde{\sigma} : (\tilde{\sigma}^1 \geq \tilde{\sigma}^2 \geq \cdots \geq \tilde{\sigma}^n)$$

is a partition in Λ.

It follows directly from the definitions of Schubert varieties in X and Y that

$$X_{\tilde{\sigma}}(a) \cap Y = Y_\sigma(a).$$

Moreover, we have,

$$|\tilde{\sigma}| = |\sigma| + \sum_{i \geq 1} \# \{ j \in \mathbb{N} \mid j \leq i < j + \sigma^i \}$$

$$= |\sigma| + \sum_{j \geq 1} \# \{ i \in \mathbb{N} \mid j \leq i < j + \sigma^j \}$$

$$= |\sigma| + \sum_{j \geq 1} \sigma^j = 2|\sigma|.$$

Thus, if $|\sigma_1| + \cdots + |\sigma_s| = \dim Y$, then $|\tilde{\sigma}_1| + \cdots + |\tilde{\sigma}_s| = 2 \dim Y = \dim X$, and so by Theorem 1 the intersection

$$X_{\tilde{\sigma}_1}(a_1) \cap \cdots \cap X_{\tilde{\sigma}_s}(a_s)$$

is finite, transverse, and real; in particular this intersection is a zero-dimensional reduced scheme. It follows immediately that

$$Y_{\sigma_1}(a_1) \cap \cdots \cap Y_{\sigma_s}(a_s) = Y \cap X_{\tilde{\sigma}_1}(a_1) \cap \cdots \cap X_{\tilde{\sigma}_s}(a_s)$$

is finite and real. To see that the intersection on the left hand side is also transverse, note that it is proper, so it suffices to show that it is scheme-theoretically reduced. But this is immediate from the fact that the right hand side is the intersection of Y with a zero-dimensional reduced scheme. \qed
3. Consequences

Let $0 \leq d \leq m$, $X = \text{Gr}(d, \mathbb{C}_{m-1}[z])$, be as in Section 1. We can consider the Wronskian of d polynomials $f_1(z), \ldots, f_d(z) \in \mathbb{C}_{m-1}[z]$:

$$W_{f_1, \ldots, f_d}(z) := \begin{vmatrix} f_1(z) & \cdots & f_d(z) \\ f_1'(z) & \cdots & f_d'(z) \\ \vdots & \cdots & \vdots \\ f_1^{(d-1)}(z) & \cdots & f_d^{(d-1)}(z) \end{vmatrix}.$$

This is a polynomial of degree at most $\dim X = d(n - d)$. If f_1, \ldots, f_d are linearly dependent, the Wronskian is zero; otherwise up to a constant multiple, $W_{f_1, \ldots, f_d}(z)$ depends only on the linear span of $f_1(z), \ldots, f_d(z)$ in $\mathbb{C}_{m-1}[z]$. Thus the Wronskian gives us a well defined morphism of schemes $W : X \rightarrow P(\mathbb{C}_{d(n-d)}[z])$, called the \textit{Wronski map}. This morphism is flat and finite [1]. For $x \in X$ we will write $W(x; z)$ for any representative of $W(x)$ in $\mathbb{C}_{d(n-d)}[z]$.

The Wronski map has a deep connection to the Schubert varieties on X relative to the flags $F_a(a), a \in \mathbb{C}P^1$. A proof of the following classical result may be found in [1, 9, 14].

\textbf{Theorem 4.} The Wronskian $W(x; z)$ is divisible by $(z+a)^k$ if and only if $x \in X_\lambda(a)$ for some partition $\lambda \vdash k$. Also, $x \in X_\mu(\infty)$ for some $\mu \vdash (\dim X - \deg W(x; z))$.

For $X = \text{Gr}(n, \mathbb{C}_{2n}[z])$, and $Y = \text{OG}(n, \mathbb{C}_{2n}[z])$ we deduce the following analogue:

\textbf{Theorem 5.} If $y \in Y$ then $W(y; z) = P(y; z)^2$ for some polynomial $P(y; z) \in \mathbb{C}_{2n+1}[z]$. $P(y; z)$ is divisible by $(z+a)^k$ if and only if $y \in Y_\sigma(a)$ for some strict partition $\sigma \vdash k$ in Σ. Also, $y \in Y_{\tau}(\infty)$ for some strict partition $\tau \vdash (\dim Y - \deg P(y; z))$.

\textit{Proof.} Let $y \in Y$, and let $(z+a)^\ell$ be the largest power $(z+a)$ that divides $W(x; z)$. By Theorem 4, there exists a partition $\lambda \vdash \ell$ such that $y \in X_\lambda(a)$. Since ℓ is maximal, y is in the Schubert cell

$$X_\lambda(a) := \{ x \in X \mid \dim (x \cap F_k(a)) \geq i, \, n+1-\lambda^i+i \leq k \leq n+1-\lambda^{i+1}+i, \, 0 \leq i \leq n \} = X_\lambda(a) \setminus \left(\bigcup_{|\mu|>|\lambda|} X_\mu(a) \right).$$

(Here, by convention, $\lambda^0 = n+1, \lambda^{n+1} = 0$.) The Schubert cells in Y are of the form

$$Y_\sigma(a) := \{ y \in Y \mid \dim (y \cap F_k(a)) \geq i, \, n+1-\sigma^i \leq k \leq n-\sigma^{i+1}, \, 0 \leq i \leq n \} = X_\sigma(a) \cap Y$$

(Here, by convention, $\sigma^0 = n+1, \sigma^{n+1} = -n-1$.) Now, the intersection $X_\lambda(a) \cap Y$ is nonempty, since it contains y, and is therefore a Schubert cell in Y. It follows that $\lambda = \kappa$ for some strict partition $\kappa \in \Sigma$. Thus $\ell = |\lambda| = 2|\kappa|$ is even, which proves that $W(y; z) = P(y; z)^2$ is a square.

We have shown that $(z+a)^{|\kappa|}$ is the largest power of $(z+a)$ that divides $P(y; z)$, and $y \in Y_\sigma(a)$. If $y \in Y_\sigma(a)$ then we must have $Y_\sigma(a) \supset Y_\kappa(a)$, which implies that $|\sigma| \leq |\kappa|$, and hence $(z+a)^k$ divides $P(y; z)$. Conversely, for any $k \leq |\kappa|$ there exists $\sigma \vdash k$ such that $Y_\sigma(a) \supset Y_\kappa(a)$, and so $y \in Y_\sigma(a)$. This proves the second
assertion. The third is proved by the same argument, taking \(\ell = \dim Y - \deg P(y; z) \) and \(a = \infty \). □

If we write \(P(y) \) for the class of \(P(y; z) \) in projective space \(\mathbb{P}(\mathbb{C}_{n(n+1)/2}[z]) \), then \(y \mapsto P(y) \) defines a morphism of schemes \(P : Y \to \mathbb{P}(\mathbb{C}_{n(n+1)/2}[z]) \).

Theorem 6. \(P \) is a flat, finite morphism.

Proof. Let \(h(z) = (z + a_1)^{k_1} \cdots (z + a_s)^{k_s} \in \mathbb{C}_{n(n+1)/2}[z] \). By Theorem 5,

\[
P^{-1}(h(z)) = \bigcap_{i=1}^{s} \left(\bigcup_{\sigma_i \vdash k_i} \sigma_i(a_i) \right),
\]

which, by Theorem 3, is a finite set. Since \(P \) is a projective morphism, this implies that that \(P \) is flat and finite [4, Ch. III, Exer. 9.3(a)]. □

In [9] we showed that the properties of the Wronski map and Theorem 1 can be used to give geometric interpretations and proofs of several combinatorial theorems in the jeu de taquin theory, including the Littlewood-Richardson rule for Grassmannians in type \(A_n \). The map \(P \) and Theorem 3 are the appropriate analogues for \(\text{OG}(n, 2n+1) \).

With a few modifications, it should be possible to use the arguments in [9] to give geometric proofs of the analogous results in the theory of shifted tableaux, as developed in [3, 8, 10, 11, 15], including the Littlewood-Richardson rule for \(\text{OG}(n, 2n+1) \). The main ingredients required to adapt these proofs are Theorems 3, 5 and 6, and the Gel’fand-Tsetlin toric degeneration of \(\text{OG}(n, 2n+1) \), which can be also be computed by considering \(Y \subset X \). The complete details should be straightforward but somewhat lengthy, and we will not include them here.

References

[1] D. Eisenbud and J. Harris, *Divisors on general curves and cuspidal rational curves*, Invent. Math., 74 (1983), 371–418.
[2] Wm. Fulton and P. Pragacz, *Schubert varieties and degeneracy loci*, Lecture Notes in Mathematics, vol. 1689, Springer-Verlag, Berlin, 1998.
[3] M. Haiman, *Dual equivalence with applications, including a conjecture of Proctor*, Discrete Math. 99 (1992), 79–113.
[4] R. Hartshorne, *Algebraic Geometry*, Graduate Texts in Math. 52, Springer-Verlag, 1977.
[5] S. L. Kleiman, *The transversality of a general translate*, Compositio Math. 28 (1974), 287–297.
[6] E. Mukhin, V. Tarasov and A. Varchenko, *The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe Ansatz*, Ann. Math. (2) 170 (2009), no. 2, 863–881.
[7] E. Mukhin, V. Tarasov and A. Varchenko, *Schubert calculus and representations of general linear group*, J. Amer. Math. Soc. 22 (2009), no. 4, 909–940.
[8] P. Pragacz, *Algebro-geometric applications of Schar S- and Q-polynomials*, in Topics in invariant theory, Seminaire d’Algebre Dubreil-Malliavin 1989–1990 (M.-P. Malliavin ed.), Springer Lecture Notes in Math. 1478, 130–191, Springer, 1991.
[9] K. Purbhoo, *Jeu de taquin and a monodromy problem for Wronskians of polynomials*, Adv. Math. 224 (2010) 827–862.
[10] B. E. Sagan, *Shifted tableau, Schur Q-functions, and a conjecture of Stanley*, J. Comb. Theory, ser. A 45 (1987), 62–93.
[11] J.R. Stembridge, *Shifted tableaux and the projective representations of the symmetric group*, Adv. Math. 74 (1989), 87–134.
[12] F. Sottile, *Pieri-type formulas for maximal isotropic Grassmannians via triple intersections*, Colloq. Math., 82 (1999), 49–63.
[13] F. Sottile, Some real and unreal enumerative geometry for flag manifolds, Mich. Math. J., 48 (2000), 573–592.
[14] F. Sottile, Frontiers of reality in Schubert calculus, Bull. Amer. Math. Soc. 47 (2010), no. 1, 31–71.
[15] D. Worley, A theory of shifted Young tableau, Ph. D. thesis, M.I.T., 1984, available at http://hdl.handle.net/1721.1/15599.

Department of Combinatorics & Optimization, University of Waterloo, Waterloo, ON, N2L 3G1, CANADA
E-mail address: kpurbhoo@math.uwaterloo.ca
URL: http://www.math.uwaterloo.ca/~kpurbhoo