Long-term clinical course in three patients with _MAMLD1_ mutations

Yasuko Fujisawa¹, Maki Fukami², Tomonobu Hasegawa³, Ayumi Uematsu⁴, Koji Muroya⁵ and Tsutomu Ogata¹

¹ Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
² Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8582, Japan
³ Department of Pediatrics, Keio University School of Medicine, Tokyo 160-8582, Japan
⁴ Department of Endocrinology and Metabolism Unit, Shizuoka Children’s Hospital, Shizuoka 420-8660, Japan
⁵ Department of Endocrinology and Metabolism, Kanagawa Children’s Medical Center, Yokohama 232-8555, Japan

Abstract. Although _MAMLD1_ on chromosome Xq28 is known as a causative gene for 46,XY disorders of sex development, clinical information is virtually limited in patients of infancy to early childhood. Here, we report long-term genital and hormonal findings in three previously described Japanese patients with _MAMLD1_ mutations, i.e., patients 1 and 2 with p.E197X and patient 3 with p.R726X. As previously reported, patients 1–3 exhibited penoscrotal hypospadias with chordee, microphallus, bifid/hypoplastic scrotum, and/or bilateral cryptorchidism/retractile testes, in the presence of sufficiently high serum basal or hCG-stimulated testosterone values in the mini-pubertal period to early childhood. Subsequently, patient 1 had low serum hCG-stimulated testosterone value (126 ng/dL) at 13 11/12 years of age, and manifested microphallus (4.5 cm), relatively small testes (left 8 mL and right 10 mL), Tanner stage 3 genitalia and pubic hair development at 18 3/12 years of age. Similarly, patients 2 and 3 showed mild hypergonadotropic hypogonadism at 7 0/12 and 9 9/12 years of age, respectively, with serum GnRH-stimulated LH values of 5.5 and 7.2 mIU/mL and FSH values of 10.3 and 19.8 mIU/mL and hCG-stimulated testosterone values of 70 and 80 ng/dL, respectively. Testis ultrasound studies delineated microlithiasis in patients 1 and 3. These results imply for the first time deterioration of testicular function with age in patients with pathologic _MAMLD1_ mutations.

Keywords: _MAMLD1_, 46,XY DSD, Clinical course, Testicular function, Deterioration

MAMLD1 (mastermind like domain containing 1) on chromosome Xq28 is a causative gene for 46,XY disorders of sex development (DSD) [1]. This is based on the identification of several non-functional hemizygous nonsense, frameshift, and splice site _MAMLD1_ mutations (e.g., p.S143X, p.E197X, p.L210X, p.Q270X, p.R726X, c.544delG, and g.IVS4–2A>G) in 46,XY DSD patients with relatively severe hypospadias as the salient feature [1–5]. Furthermore, although such patients with pathologic mutations reported to date invariably have apparently normal testosterone (T) and/or LH/FSH values in infancy to early childhood (< 3 years of age) [1–5], recent studies argue for _MAMLD1_/Mamld1 being involved in the molecular network for T production: (i) _MAMLD1_/Mamld1 expression is up-regulated by _NR5A1_ (alias, _SF-1_ and _AD4BP_) [6] that functions as the master regulator for multiple sex development and steroidogenic genes [7]; (ii) the wildtype mouse _Mamld1_ is clearly co-expressed with _Nr5a1_ in Leydig and Sertoli cells around the critical period for fetal sex development [1], and its intra-testicular expression level is gradually increased during the fetal life in parallel with the intra-testicular testosterone level [8]; (iii) transient _Mamld1_ knockdown using small interfering RNAs significantly reduces _Cyp17a1_ expression and T production in cultured mouse Leydig tumor cells [9]; and (iv) _Mamld1_ knockout male mice, though they are free from genital and reproductive abnormalities, show significantly lower expression levels of multiple fetal Leydig cell-specific genes includ-
ing Star, Cyp11a1, Cyp17a1, Hsd3b1, and Insl3 [8]. Thus, it has been inferred that \textit{MAMLD1} mutations result in 46,XY DSD probably because of transiently compromised T production around the critical period for fetal sex development [1].

To our knowledge, however, there is no report on clinical findings in patients with \textit{MAMLD1} mutations after early childhood. Here, we report long-term genital and hormonal findings in three patients with \textit{MAMLD1} mutations.

\section*{Case Reports}

We studied three previously reported Japanese patients with \textit{MAMLD1} mutations [1]. This study has been approved by the Institutional Review Board Committees of Hamamatsu University School of Medicine and National Center for Child Health and Development, and molecular studies were performed after obtaining written informed consent from the parents of the three patients. Patients 1 and 2 were maternally related half-brothers with a maternally inherited p.E197X (previously described as p.E124X), and patient 3 was a sporadic case with p.R726X (previously described as p.R653X) of maternal origin. Transactivation function for the \textit{Hes3}-promoter was abolished in the p.E197X protein but was normal in the p.R726X protein [6]. However, the p.R726X mutation was shown to undergo nonsense mediated mRNA decay, as was the p.E197X mutation [1, 6]. Thus, both mutations were assessed as amorphic mutations.

Genital findings in early infancy of patients 1–3, and endocrine findings up to 2 5/12 years in patients 1 and 2 and 6 3/12 years of age in patient 3, have been described previously [1]. In brief, patients 1–3 exhibited penoscrotal hypospadias with chordee, microphallus, and bifid scrotum, and patients 1 and 3 also had bilateral cryptorchidism and retractile testes, respectively. Thus, they received urethroplasty and/or orchiopexy. Basal and/or GnRH- or hCG-stimulated LH, FSH, T, and dihydrotestosterone values were apparently normal. In particular, hCG-stimulated serum T was 250 ng/dL in patient 1 at 2 6/12 years of age (normal range [NR] > 200 ng/dL) [10], and basal T was 260 ng/dL in patient 2 at one month of age (NR, 59 – 408 ng/dL) [11] and 270 ng/dL in patient 3 at three months of age (NR, 3 – 349 ng/dL) [11].

However, patients 1–3 manifested primary hypogonadism in later ages (Table 1). Patient 1 exhibited incomplete secondary sexual development with microphallus and relatively small testes in the pubertal period. Patients 2 and 3, though they were still in their prepubertal period, showed borderline to definite microphallus. The GnRH-stimulated LH and/or FSH values were mildly elevated in patients 2 and 3, and the hCG-stimulated T values were obviously low in patients 1–3. Furthermore, testis ultrasound studies delineated microlithiasis in patients 1 and 3, but not in patient 2 (Fig. 1).

\begin{table}[h]
\centering
\caption{Genital and endocrine findings in three male patients with \textit{MAMLD1} nonsense mutations}
\begin{tabular}{|c|c|c|}
\hline
\textbf{\textit{MAMLD1} mutation} & \textbf{Patient 1} & \textbf{Patient 2} & \textbf{Patient 3} \\
\hline
\textbf{<Genital findings>} & & & \\
\hline
\textbf{Age at exam. (y:m)} & 13:11 & 7:00 & 6:03 \\
\hline
\textbf{Tanner stage} & Genitalia 1, Pubic hair 1 & Genitalia 1, Pubic hair 1 & Genitalia 1, Pubic hair 1 \\
\hline
\textbf{Penile length (cm)} & Not examined & 3.5 (3.4 – 5.8) & 3.2 (3.4 – 5.7) \\
\hline
\textbf{Testis size (mL)} & 3 (bilateral) (8 – 20) & 2 (bilateral) (1 – 2) & 1.5 (bilateral) (1 – 2) \\
\hline
\textbf{Age at exam. (y:m)} & 18:03 & ... & 9:09 \\
\hline
\textbf{Tanner stage} & Genitalia 3, Pubic hair 3 & ... & Genitalia 1, Pubic hair 1 \\
\hline
\textbf{Penile length (cm)} & 4.5 (no reference data) & ... & 3.2 (3.4 – 5.8 at 7 yr) \\
\hline
\textbf{Testis size (mL)} & 8 (left), 10 (right) (13 – 20 at 16 yr) & ... & 1.5 (bilateral) (1 – 4.5) \\
\hline
\textbf{<Serum hormone values>}
\hline
\textbf{Age at exam. (y:m)} & 13:11 & 7:00 & 9:09 \\
\hline
\textbf{LH (mIU/mL)} & Not examined & 0.2 (0.2 – 1.9) → 5.5 (1.1 – 6.0) a & 0.5 (0.2 – 1.9) → 7.2 (1.1 – 6.0) a \\
\hline
\textbf{FSH (mIU/mL)} & Not examined & 1.3 (<0.3 – 2.4) → 10.3 (1.9 – 7.6) a & 5.0 (<0.3 – 2.4) → 19.8 (1.9 – 7.6) a \\
\hline
\textbf{T (ng/dL)} & 12 (10 – 96) → 126 (> 200) b & 12 (3 – 13) → 70 (> 200) b & 28 (3 – 13) → 80 (> 200) b \\
\hline
\end{tabular}

a Basal and peak values during a GnRH test (100 µg/m2 [max. 100 µg] bolus i.v.; blood sampling at 0, 30, 60, 90, and 120 min). b Basal and stimulated values in an hCG test (3,000 IU/m2/dose [max. 5,000 IU] i.m. for three consecutive days; blood sampling on days 1 and 4). The values in parentheses represent the age-matched normal range [10–13].
\end{table}
Discussion

This study showed for the first time deterioration of testicular function with age in patients with pathologic MAML1 mutations. Indeed, small testes during the pubertal period in patient 1 would imply spermatogenic impairment [14], and poor T responses to hCG stimulation and/or mild hypergonadotropism in patients 1–3 would argue for adult Leydig cell dysfunction [14, 15]. In addition, testicular microlithiasis in patients 1 and 3 may also imply the presence of non-specific testicular dysfunction, because it is often found in subjects with testicular tumors and spermatogenic failure as well as in patients with hypogonadism-associated disorders such as Down syndrome and Klinefelter syndrome [16–19]. Thus, the present data, in conjunction with the previous findings [1], suggest that MAML1 deficiency causes 46,XY DSD during the fetal life and, while it permits apparently normal T production in infancy to early childhood, results in deterioration of testicular function with compromised T production from mid-childhood.

Several findings are worth pointing out with respect to the biological function of MAML1/Mamld1. They include: (i) clear mouse Mamld1 expression in Sertoli and Leydig cells during the critical period for fetal sex development and weak Mamld1 expression in postnatal testes [1]; (ii) significantly reduced expression levels of Leydig cell-specific, but not Sertoli-cell specific, genes in the late fetal life of Mamld1 knockout mice [8]; (iii) compromised T production (~50%) by Mamld1 knockdown [9]; and (iv) positive human MAML1 expression in fetal and adult testes [2].

These findings would postulate several possibilities. First, MAML1 deficiency may compromise fetal Leydig cell function around the critical period for sex development, leading to 46,XY DSD with hypospadias because of reduced but not abolished T production, as has been proposed previously [1]. In this regard, recent mouse studies have indicated that prenatal T biosynthesis requires both fetal Leydig cells that produce Δ4-androstenedione and Sertoli cells that express Hsd17b3 for the conversion of Δ4-androstenedione into T [20], although such Sertoli cell-specific HSD17B3 expression has not been demonstrated in human fetuses. Thus, in contrast to Mamld1 knockout mice [8], if Sertoli cell function is also compromised in affected patients, this would also contribute to defective T production during fetal life of affected patients. Second, long-term MAML1 deficiency may gradually affect adult Leydig cell function, resulting in compromised T production with age. This notion
assumes that MAMLD1 plays a critical role in the functional maintenance rather than the development of adult Leydig cells [15], and would explain why T production can be preserved in the mini-pubertal period and in the early childhood. Spermatogenesis requires sufficient T production and normal Sertoli cell function [14]. If Sertoli cell function is also compromised with age in patients with MAMLD1 mutations, this factor, together with reduced T production, would contribute to defective spermatogenesis.

Two points should be made with regard to the present study. First, the apparently normal T values in infancy to early childhood (< 3 years of age) may not necessarily argue against the presence of hypogonadism. Indeed, there are no objective clinical indicators for hypogonadism in such a period, and serum T values may overlap between control boys and patients with incomplete/mild testicular dysfunction. In support of this notion, apparently normal serum T values in infancy to early childhood and declined serum T values in later ages have occasionally been reported in patients with incomplete/mild hypogonadism-associated disorders such as Prader-Willi syndrome, Down syndrome, and Klinefelter syndrome [21–23]. Second, while Mamld1 knockout male mice have been produced [8], they would not serve as good models to examine the age-dependent deterioration of testicular function. Although Mamld1 knockout male mice have reduced expression levels of Leydig cell-specific genes in the late fetal life, they have morphologically normal internal and external genitalia in the late fetal life, normal intra-testicular T values in the late fetal life and at 8 weeks of age, and normal reproductive capacity in adulthood [8 and our unpublished data]. Thus, further longitudinal clinical studies are required to determine whether the testicular function deteriorates with age in patients with MAMLD1 mutations.

Despite such caveats, the present study provides useful information for the testicular function in MAMLD1 mutation positive patients. Although the number of patients observed for a long time is quite limited, this study suggests age-dependent deterioration of testicular function in patients with MAMLD1 mutations.

Acknowledgments

This work was supported in part by Grant for Research on Intractable Diseases from the Ministry of Health, Labor and Welfare (H27-025), Grant from National Center for Child Health and Development (23A-1), and Grant from the Japan Agency for Medical Research and Development (16ek0109049h0003).

References

1. Fukami M, Wada Y, Miyabayashi K, Nishino I, Hasegawa T, et al. (2006) CXorf6 is a causative gene for hypospadias. Nat Genet 38: 1369-1371.
2. Camats N, Fernandez-Cancio M, Audi L, Mullis PE, Moreno F, et al. (2015) Human MAMLD1 Gene Variations Seem Not Sufficient to Explain a 46,XY DSD Phenotype. PLoS One 10: e0142831.
3. Igarashi M, Wada Y, Kojima Y, Miyado M, Nakamura M, et al. (2015) Novel Splice Site Mutation in MAMLD1 in a Patient with Hypospadias. Sex Dev 9: 130-135.
4. Kalfa N, Fukami M, Philibert P, Audran F, Pienkowski C, et al. (2012) Screening of MAMLD1 mutations in 70 children with 46,XY DSD: identification and functional analysis of two new mutations. PLoS One 7: e32505.
5. Kalfa N, Liu B, Klein O, Audran F, Wang MH, et al. (2008) Mutations of CXorf6 are associated with a range of severities of hypospadias. Eur J Endocrinol 159: 453-458.
6. Fukami M, Wada Y, Okada M, Kato F, Katsumata N, et al. (2008) Mastermind-like domain-containing 1 (MAMLD1 or CXorf6) transactivates the Hes3 pro-
moter, augments testosterone production, and contains the SF1 target sequence. J Biol Chem 283: 5525-5532.
7. Parker KL, Schimmer BP (1997) Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr Rev 18: 361-377.
8. Miyado M, Nakamura M, Miyado K, Morohashi K, Sano S, et al. (2012) Mamld1 deficiency significantly reduces mRNA expression levels of multiple genes expressed in mouse fetal Leydig cells but permits normal genital and reproductive development. Endocrinology 153: 6033-6040.
9. Nakamura M, Fukami M, Sugawa F, Miyado M, Nonomura K, et al. (2011) Mamld1 knockout reduces testosterone production and Cyp17a1 expression in mouse Leydig tumor cells. PLoS One 6: e19123.
10. Hasegawa Y (1999) Normal values in an hCG stimulation test. In: Hasegawa Y (ed) Let’s enjoy pediatric endocrinology (3rd). Shindan to Chiryou-sha, Tokyo: 260-262 (In Japanese).
11. Dean HJ (1989) Abnormalities of pubertal development. In: Collen R (ed) Pediatric Endocrinology (2nd).
MAML1 mutations

12. Ishii T, Matsuo N, Inokuchi M, Hasegawa T (2014) A cross-sectional growth reference and chart of stretched penile length for Japanese boys aged 0-7 years. Horm Res Paediatr 82: 388-393.
13. Matsuo N, Anzo M, Sato S, Ogata T, Kamimaki T (2000) Testicular volume in Japanese boys up to the age of 15 years. Eur J Pediatr 159: 843-845.
14. Matsumoto AM, Brenner WJ. Testicular disorders (2011) In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HN (eds) Williams Textbook of Endocrinology (13th). Elsevier, Philadelphia: 694-784.
15. Svechnikov K, Landreh L, Weiss J, Izzo G, Colon E, et al. (2010) Origin, development and regulation of human Leydig cells. Horm Res Paediatr 73: 93-101.
16. Tan MH, Eng C (2011) Testicular microlithiasis: recent advances in understanding and management. Nat Rev Urol 8: 153-163.
17. Aizenstein RI, DiDomenico D, Wilbur AC, O’Neil HK (1998) Testicular microlithiasis: association with male infertility. J Clin Ultrasound 26: 195-198.
18. Vachon L, Fareau GE, Wilson MG, Chan LS (2006) Testicular microlithiasis in patients with Down syndrome. J Pediatr 149: 233-236.
19. Aizenstein RI, Hibbeln JF, Sagireddy B, Wilbur AC, O’Neil HK (1997) Klinefelter’s syndrome associated with testicular microlithiasis and mediastinal germ-cell neoplasm. J Clin Ultrasound 25: 508-510.
20. Shima Y, Miyabayashi K, Haraguchi S, Arakawa T, Otake H, et al. (2013) Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes. Mol Endocrinol 27: 63-73.
21. Eiholzer U, l’Allemand D, Rousson V, Schlumpf M, Gasser T, et al. (2006) Hypothalamic and gonadal components of hypogonadism in boys with Prader-Labhart-Willi syndrome. J Clin Endocrinol Metab 91: 892-898.
22. Grinspon RP, Bedecarras P, Ballerini MG, Iniguez G, Rocha A, et al. (2011) Early onset of primary hypogonadism revealed by serum anti-Mullerian hormone determination during infancy and childhood in trisomy 21. Int J Androl 34: e487-498.
23. Aksglaede L, Petersen JH, Main KM, Skakkebaek NE, Juul A (2007) High normal testosterone levels in infants with non-mosaic Klinefelter’s syndrome. Eur J Endocrinol 157: 345-350.