Reversible phosphorylation of the phospholipid phosphatidylinositol (PI) is a key event in the determination of organelle identity and an underlying regulatory feature in many biological processes. Here, we investigated the role of PI signaling in the regulation of the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in yeast. Lipid kinases that generate phosphatidylinositol 4-phosphate [PI(4)P] at the Golgi (Pik1p) or PI(4,5)P2 at the plasma membrane (PM) (Mss4p and Stt4p) were required for filamentous-growth MAPK pathway signaling. Introduction of a conditional allele of PIK1 (pik1-83) into the filamentous (S.1278b) background reduced MAPK activity and caused defects in invasive growth and biofilm/matt formation. MAPK regulatory proteins that function at the PM, including Msb2p, Sho1p, and Cdc42p, were mislocalized in the pik1-83 mutant, which may account for the signaling defects of the PI(4)P kinase mutants. Other PI kinases (Fab1p and Vps34p), and combinations of PIP (synaptojanin-type) phosphatases, also influenced the filamentous-growth MAPK pathway. Loss of these proteins caused defects in cell polarity, which may underlie the MAPK signaling defect seen in these mutants. In line with this possibility, disruption of the actin cytoskeleton by latrunculin A (LatA) dampened the filamentous-growth pathway. Various PIP signaling mutants were also defective for axial budding in haploid cells, cell wall construction, or proper regulation of the high-osmolarity glycerol response (HOG) pathway. Altogether, the study extends the roles of PI signaling to a differentiation MAPK pathway and other cellular processes.

MAPK (mitogen-activated protein kinase) pathways are evolutionarily conserved signal transduction modules (1, 2). MAPK cascades regulate the response to environmental challenges, such as changes in osmolarity, nutrient starvation, DNA damage, and damage to cell integrity. In the budding yeast Saccharomyces cerevisiae, MAPK pathways regulate cell wall integrity (3), pheromone response or mating (4), filamentous growth (5), and the response to high osmolarity (high-glycerol response [HOG] pathway [6]). Each MAPK pathway in yeast responds to a different stimulus. Under some circumstances, several MAPK pathways are required to mount an appropriate response (7–11).

The filamentous-growth MAPK pathway regulates differentiation to the filamentous cell type (12–14) and the development of biofilms or mats (15). During filamentous growth, the MAPK pathway, together with other pathways (16–18), induces a delay in the cell cycle (19), a reorganization of cell polarity, which leads to a distal-unipolar budding pattern (12, 13, 20, 21), and elevated expression of the cell adhesion molecule Flo11p (22). The developmental foraging responses that occur in S. cerevisiae are evolutionarily conserved across many fungal species. In pathogenic fungi, like Candida albicans, an orthologous differentiation MAPK pathway (called the Cek1p pathway) regulates filamentous/hyphal growth and biofilm formation (23–25). These behaviors are critical for virulence (24, 26–30). Studies of filamentous growth in a genetically tractable fungal system like S. cerevisiae provides information about the genetic basis of fungal behaviors that can be applied to other species, including pathogens.

In S. cerevisiae, the filamentous-growth MAPK pathway is regulated by Msb2p (31, 32), a member of the signaling mucin family of glycoprotein receptors (33). Msb2p, the tetraspan adaptor Sho1p (31, 34–36), and the cytosolic adaptor protein Bem4p (37) together regulate the Rho-type GTPase Cdc42p and effector p21-activated kinase Ste20p (38, 39) in the filamentous-growth MAPK pathway. Ste20p activates the MAPK cascade by phosphorylating the MAPKKK Ste11p. Ste11p phosphorylates the MAPKK Ste7p, which in turn phosphorylates the MAPK Kss1p (13, 40). Opj2p is another transmembrane protein that recruits Ste11p to the PM through the adaptor protein Ste50p (35, 36, 41–43). The culmination of these events is the activation of transcription factors, Ste12p and Tec1p, which regulate target genes that control differentiation to the filamentous cell type (14, 44–47).

Phosphorylation of the key lipid phosphatidylinositol (PI) is a critical modification of membrane phospholipids in eukaryotes that is important for normal cellular function (48–50). PIPs are utilized as a mark for organelle identity and impact diverse cellular processes, including the reorganization of the actin cytoskeleton, protein trafficking through the endomembrane system, and protein secretion (51–56). A family of lipid kinases phosphorylates the inositol ring at different positions to designate organelles with specific PIP combinations (54). Two kinases generate PI(4)P in yeast: Pik1p regulates the level of PI(4)P at the Golgi (57), and Stt4p regulates PI(4)P at the PM (58). Mss4p regulates the distribution of PI(4,5)P2 at the PM (59). In addition, Vps34p regulates the level of PI(3)P at the endosome (60–62), and Fab1p regulates PI(3,5)P2 at the vacuole/lysosome (63). PIPs are recognized by...
specific domains on effector proteins (64–67). PIP modification is reversible by the action of phosphatases that dephosphorylate PIPs (54). Synaptojanin-type proteins Sjl1p, Sjl2p, and Sjl3p are the major PIP phosphatases in yeast. These proteins exhibit a high degree of functional redundancy (68).

Lipid signaling has established connections to the regulation of morphogenetic pathways (69). For example, activation of the yeast mating pathway requires recruitment of the mating-pathway specific scaffold Ste5p to the PM by recognition of Pkl1p and Ste11p (71). The guanine nucleotide exchange factor for the cell wall integrity pathway, Rom2p, interacts with Pkl1p at the PM by its PH domain to regulate the PKC pathway activity (58). A clear link between PIP signaling and the regulation of the filamentous-growth MAPK pathway has yet to be defined. Intriguingly, in C. albicans, steep Pkl1p/P2 gradients occur at hyphal tips and promote filamentous growth and invasion (72–74).

Here, we examined the impact of Pkl signaling on the regulation of the filamentous-growth MAPK pathway in S. cerevisiae. We show that conditional PI kinase mutants exhibit defects in the filamentous-growth pathway. Membrane-associated regulators of the filamentous-growth MAPK pathway (including Msb2p, Sho1p, and Cdc42p) were mislocalized in Pkl4P kinase mutants, which may account for the reduction in MAPK activity in this context. Perhaps unexpectedly, other PI kinases, including Vps34p and to some degree Fab1p, were also involved. Polarity defects in these mutants might explain the MAPK signaling defects, as disruption of the actin cytoskeleton led to ablation of MAPK activity. Roles for PI kinases and PIP phosphatases in axial bud site selection in haploid cells, the maintenance of the yeast cell wall, and the HOG pathway were also uncovered. Therefore, Pkl signaling plays a critical role in the regulation of a differentiation MAPK pathway and other aspects of cellular biogenesis and decision-making.

MATERIALS AND METHODS
Strains, media, and growth conditions. Yeast strains are listed in Table 1.
Strains were grown under standard laboratory conditions (75). Strains were maintained at 30°C unless otherwise indicated. The medium used was YEPD (yeast extract-peptone-dextrose, 2% Glu) or YEP-Gal (2% Gal) for most experiments. For temperature shift experiments, cells were incubated at 37°C in prewarmed medium for 4 to 5 h. Plasmids were maintained on synthetic medium (generally on SD-Ura). Bacterial cultures of *Escherichia coli* were propagated in LB+Carb (carbenicillin) by standard methods (76).

Plasmid pAxl1p-HA was provided by the Boone lab (77). pMsb2p-HA (78), pMsb2p-GFP (78), pSho1p-GFP (79), pPIK1-83 (80), pGFP-Cdc42p (81), and Sec7p-DsRed (82) have been described previously.

Standard gene disruption techniques were used (83). Antibiotic resistance (84) and heterologous auxotrophic markers were used for gene disruption (85) and to create integrated fusion proteins (86). The *pik1-83* allele was introduced into the Δ1278b strain background by allele replacement. Wild-type Δ1278b cells (PC538) were transformed with a plasmid containing the *pik1-83* allele. The PIK1 gene was subsequently disrupted in cells harboring the *pik1-83* plasmid. Gene disruptions were confirmed by PCR analysis.

Biological assays for filamentous growth and biofilm/mat formation. The plate-washing assay was performed as described previously (13). Biofilm/mat assays were performed as described previously (15). Cells were spotted onto low-agar medium (0.3% YEPD) for 3 days and photographed. Calcofluor white (CFW) staining was performed as described in reference 87. Cells were grown to saturation in YEP medium at 30°C. Cells were fixed in 3.9% formaldehyde for 30 min at 30°C. Cells were harvested by centrifugation, washed with 1× PBS (phosphate-buffered saline, 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4 [pH 7.4]), and resuspended in 0.01% CFW for 5 min. Cells were washed 3 times in 1× PBS and observed by fluorescence microscopy using the DAPI (4',6-diamidino-2-phenylindole) channel (350 to 400 nm). Cells stained with CFW were also analyzed for budding pattern. Budding pattern determination was based on previous methods (88), except that cell position was also taken into consideration among adherent cells (20, 89).

Protein immunoblot analysis. Cells were harvested, and pellets were frozen at −80°C. Proteins were extracted from cell lysates using the trichloroacetic acid (TCA) precipitation method as described previously (90). Protein extracts were separated by 10% SDS-PAGE analysis and transferred onto nitrocellulose membrane. Phosphorylated Kss1p was detected using p42/p44 antibodies (1:4,000 dilution; no. 4370; Cell Signaling Technology). Antibodies to total Kss1p (1:5,000; no. sc6815; Santa Cruz), and Pgk1p (1:5,000 dilution to loading control where appropriate. To determine the change in phosphorylated proteins, total protein levels were normalized to the loading control (Pgk1p).
Microscopy and protein localization experiments. For protein localization experiments, cells were grown in SD-Ura for 16 h at 30°C, shifted to 37°C for 4 h, and examined at 37°C. Differential interference contrast (DIC) and fluorescence microscopy using fluorescein isothiocyanate (FITC) filter sets were performed using an Axiosplan 2 fluorescence microscope (Zeiss) with a Plan-Apochromat 100×/1.4 (oil) objective (numerical aperture [NA], 0.17). Digital images were obtained with the Axiocam MRm camera (Zeiss). Axiovision 4.4 software (Zeiss) was used for image acquisition and analysis. Cells were examined by oil immersion on glass slides (no. 2947-75; Corning, Inc., Corning, NY) with a glass coverslip (VWR 48366-227) using the 100× objective. Cells were photographed at 37°C using a slide warmer (no. 0115.000; PeCon GmbH, Germany).

RESULTS

PI(4)P kinases regulate the filamentous-growth MAPK pathway. The role of PI kinases in regulating the filamentous-growth pathway was examined. The filamentous-growth pathway was evaluated by measuring phosphorylation of the filamentous-growth MAPK Kss1p (91–93). Conditional (temperature-sensitive) alleles of PI kinases pik1-83, stt4-4, and mss4-102 were tested, which showed reduced phosphorylation of Kss1p at 37°C (Fig. 1A). Thus, the generation of PI(4)P is necessary for activation of the filamentous-growth MAPK pathway. The above-described test was performed in a laboratory strain (SEY6210 background [94]). Many lab strains have lost the ability to undergo filamentous growth (95). Indeed, growth in the nonpreferred carbon source galactose (Gal) induces the filamentous-growth MAPK pathway (36, 78, 96) but led to a decrease in levels of phosphorylated Kss1p (P~Kss1p) in the SEY6210 background (Fig. 1A, compare GLU lanes to GAL lanes). To better evaluate the role of PI(4)P signaling in regulating the filamentous-growth pathway, the pik1-83 allele was introduced into the filamentous (Sigma187b) background (12, 95). The pik1-83 strain behaved as expected, based on temperature sensitivity at 37°C (97), aberrant Golgi morphology (see Fig. S1 in the supplemental material) (57), and a defect in protein secretion (98).

The extracellular domain of Msb2p is highly glycosylated and migrates as a smear at ~250 kDa (78). The extracellular inhibitory domain is proteolytically processed by the aspartyl protease Yps1p and is shed from cells (78). Consistent with the secretion defect of the pik1-83 mutant, the large extracellular domain of HA-Msb2p was not shed (Fig. 1B, SUP) and accumulated in cell pellets (Fig. 1B, PELLET). The pik1-83 mutant is also partly compromised for function at semipermissive temperatures (30°C) (70). The pik1-83 mutant showed reduced levels of P~Kss1p at 30°C (Fig. 1C, 30°C) and complete loss of P~Kss1p at 37°C (Fig. 1D). At 37°C, P~Kss1p levels were equivalent in glucose and galactose in wild-type cells. These results establish a requirement for Pik1p and other PI(4)P kinases in regulating the filamentous-growth MAPK pathway.

Generation of PI(4)P is required for filamentous growth and biofilm/mat formation. The fact that Pik1p regulates the filamentous-growth MAPK pathway suggested a role for PI(4)P in the regulation of filamentous growth (12) and biofilm/mat formation (15). At 30°C, the pik1-83 mutant showed a defect in invasive growth by the plate-washing assay (Fig. 2A). The pik1-83 mutant was more defective for invasive growth than a mutant that completely lacks pathway activity (Fig. 2A, stt12Δ). This may indicate that Pik1p has roles in regulating filamentous growth that extend beyond the regulation of the MAPK pathway. Microscopic analysis of the pik1-83 mutant showed that cells were defective for cell elongation and filament formation compared to wild-type cells (Fig. 2B). These phenotypes are controlled by the filamentous-growth MAPK pathway (Fig. 2B, stt12Δ).

Like many microbial species, including fungal pathogens (99, 100), budding yeast forms biofilms or mats (15). On low-agar medium, the pik1-83 mutant was defective for biofilm/mat formation (Fig. 2C). Specifically, pik1-83 mats were small and smooth in appearance. In contrast, wild-type mats showed a wrinkled pattern, which was dependent on the filamentous-growth MAPK pathway (Fig. 2C, stt12Δ) and the cell adhesion molecule Flo1p (Fig. 2C, flo11Δ). Thus, generation of PI(4)P is required for filamentous growth and biofilm/mat formation in yeast.

PI(4)P is required for localization of membrane-associated regulators of the filamentous-growth MAPK pathway. PI kinases are critical regulators of membrane trafficking (51). Modification of PI(4)P at the Golgi (98, 101) and modification of...
The localization and relative levels of PM regulators of the filamentous-growth MAPK pathway evaluated in the \(pik1-83\) mutant. (A) Localization of Msb2p-GFP, Sho1p-GFP, and GFP-Cdc42p in wild-type cells and the \(pik1-83\) mutant. Cells were incubated to mid-log phase at 30°C and shifted to 37°C for 4 h. Bar, 5 \(\mu\)m. The localization patterns shown are representative of the patterns seen in most cells over multiple independent trials. More than 200 cells were examined. The panels on the right show higher magnifications of the areas marked by rectangles in the middle column. Arrows indicate differences between wild type and the \(pik1-83\) allele. (B) Relative levels of Msb2p-GFP in wild-type cells and the \(pik1-83\) mutant compared to a loading control, Pgk1p. Cells were grown in YEPD medium to mid-log phase at 30°C and shifted to 37°C for 4 h. (C and D) Relative levels of Sho1p-GFP (C) and GFP-Cdc42p (D). (E) Phosphorylation of Kss1p in wild-type cells and the indicated trafficking mutants at 37°C for 4 h.
PI(4,5)P2 at the PM (102, 103) are required for delivery of vesicles and cargoes to the PM. The signaling defect of the pik1-83 and other PI(4)P mutants might result from mislocalization of PM proteins that regulate the filamentous-growth MAPK pathway. A functional Msb2p-GFP fusion shows primarily vacuolar localization (78), which results from turnover of the protein from the PM (104). Msb2p-GFP failed to show precise vacuolar localization in the pik1-83 mutant, which indicates that the protein is mislocalized (Fig. 3A). Msb2p may fail to be delivered to the vacuole in the pik1-83 mutant because it does not reach the PM, although we cannot rule out the possibility that Msb2p is trafficked from the Golgi to the vacuole directly.

Sho1p is a transmembrane protein and adaptor for the filamentous-growth MAPK pathway (31, 32, 34) and the HOG MAPK pathway (105). Sho1p-GFP localizes to the PM and the mother-bud neck (Fig. 3A) (106–108). Sho1-GFP was specifically identified in internal sites in the pik1-83 mutant (Fig. 3A). Sho1-GFP was also mislocalized in the stt4-4 and mss4-102 mutants (see Fig. S2 in the supplemental material).

Cdc42p is a Rho-type GTPase that regulates (among other things) the filamentous-growth MAPK pathway (38, 39, 109). Cdc42p is localized to the PM membrane by a lipid modification, geranylgeranylation (110–114). GFP-Cdc42p was also mislocal-
ized in the pik1-83 mutant. Compared to wild-type cells, which show Cdc42p localization at the PM and vacuolar membrane (Fig. 3A), GFP-Cdc42p was seen primarily in internal sites in the pik1-83 mutant (Fig. 3A). GFP-Cdc42p was also mislocalized in the stt4-4 and mss4-102 mutants (see Fig. S3 in the supplemental material).

It was previously reported that Cdc42p levels are reduced in the mss4-102 mutant (103). The localization defects of Cdc42p and other filamentous-growth MAPK regulatory proteins might result from a decrease in protein stability. The processed form of Msb2p-GFP, Msb2p, migrates at 55 kDa, and a minor product migrates at 75 kDa (104). The level of Msb2p-GFP was not reduced in the pik1-83, stt4-4, or mss4-102 mutants (Fig. 3B). The higher levels of Msb2p seen in these mutants might result from a delay in turnover of the protein. The level of Sho1p-GFP was reduced in the pik1-83 mutant (Fig. 3C). The levels of GFP-Cdc42p were not reduced in the pik1-83 mutant (Fig. 3D). Thus, defects in trafficking of pathway components to the PM in a PI(4)P-dependent manner, not loss of protein abundance, may account for the defect in activation of the filamentous-growth MAPK pathway in PI kinase mutants.

To further test this possibility, protein trafficking mutants that trap PM cargoes in the secretory pathway were tested for filamentous-growth MAPK pathway activity. Specifically, the sec62-1, sec12-14, sec18-1, and sec7-1 mutants, which are defective for protein trafficking at various steps in the secretory pathway (115–120), were tested. Like PI kinase mutants, these mutants showed a decrease in MAPK activity (Fig. 3E) and mislocalization of PM regulators of the filamentation MAPK pathway (data not shown). These results are consistent with the idea that delivery of membrane-associated regulators of the filamentous-growth MAPK pathway to the PM is required for activation of the filamentous-growth MAPK pathway.

Other PI kinases regulate the filamentous-growth MAPK pathway. Other PI kinases may also regulate the filamentous-growth MAPK pathway. Vps34p regulates PI(3)P levels at the endosome/multivesicular body and is required for protein trafficking to the vacuole/lysosome (62, 121–123). The vps34Δ mutant showed reduced P~Kss1p levels (Fig. 4A). The levels of total Kss1p were also reduced, which may result from a positive-feedback loop, given that the KSS1 gene is a transcriptional target of the filamentous-growth pathway (124).

The vps34Δ mutant was also defective for biofilm/mat formation (Fig. 4B). The flo1Δ mutant was used as a control in evaluating biofilm/mat formation. The vps34Δ mutant also had a growth defect; however, vps34Δ mats were smaller than wild-type mats and smooth in appearance. The unstructured appearance of these mats suggests that Vps34p plays a role in their development. Vps34p was also required for invasive growth (Fig. 4C), although its growth defect on YEPD (Glu) medium may contribute to its invasive growth defect. The PI(3,5)P2 kinase Fab1p (63, 125) was also tested. The fab1Δ mutant showed a modest reduction in
P~Kss1p levels in high-glucose (basal) conditions (Fig. 4D) and exhibited a defect in invasive growth (Fig. 4C). Thus, Fab1p may play a minor role in regulating the filamentous-growth MAPK pathway and may have several roles in regulating filamentous growth.

Synaptotagmin-type PIP phosphatases regulate the filamentous-growth pathway. PIP phosphatase dephosphorylate PI(4,5)P2 at different cellular locations to maintain PIP balance and tumbling the balance of PIP signaling through perturbation of PI kinases or PIP phosphatases impacts the filamentous-growth MAPK pathway (data not shown). Thus, altering the balance of PIP signaling through perturbation of PI kinases or PIP phosphatases impacts the filamentous-growth MAPK pathway.

An intact actin cytoskeleton is required for filamentous-growth pathway activity. The trafficking defect of the PM regulators Msb2p, Sho1p, and Cdc42p in PI(4)P kinase mutants may explain the defect in filamentous-growth MAPK pathway activity. Other PI kinase mutants and PIP phosphatase mutants did not show dramatic localization defects of these proteins (data not shown). PI kinases and PIP phosphatases also regulate cell polarity and the actin cytoskeleton (58, 59, 68, 82, 127–129). Defects in the actin cytoskeleton may underlie the MAPK signaling defects of these mutants. To test this possibility, a pharmacological inhibitor of filamentous actin, latrunculin A (LatA) (130), was tested. Addition of a minimal concentration of LatA (10 µM) led to reduced P~Kss1p levels (Fig. 6A), despite the fact that total Kss1p levels are higher under this condition. Addition of higher concentration of LatA (30 µM) caused a more severe reduction in P~Kss1p levels (Fig. 6A). Thus, an intact cytoskeleton is required for filamentous-growth MAPK pathway signaling.

The actin cytoskeleton is required for many different cellular processes, such as delivery of vesicles and cargoes to the PM and turnover of proteins from the PM by endocytosis (131, 132). The individual contributions of Msb2p and Sho1p in regulating MAPK signaling were examined in response to treatment with LatA. Under nutrient-limiting conditions, Msb2p and Sho1p were partly redundant for activation of the filamentous-growth MAPK pathway (Fig. 6B), which is consistent with the invasive growth phenotypes of the msb2Δ and sho1Δ mutants (31). The msb2Δ mutant, which is somewhat defective for MAPK activity, showed a further reduction in P~Kss1p levels upon treatment with LatA (Fig. 6C). Thus, in the msb2Δ mutant, the Sho1p-dependent signal requires an intact actin cytoskeleton. The sho1Δ mutant showed a similar response (Fig. 6D), indicating that the Msb2p-dependent signal also requires an intact actin cytoskeleton. Therefore, the actin cytoskeleton is required to facilitate filamentous-growth MAPK pathway signaling by a mechanism that is dependent on Msb2p and Sho1p.

TABLE 2 Budding patterns of mutants defective for PI signaling and control strains in haploid yeast cells

Mutation(s)	None (wild type)	rsr1Δ	bud3Δ	fab1Δ	sac1Δ	sjl1Δ	sjl2Δ	sjl3Δ	sjl1Δ sjl2Δ	sjl1Δ sjl3Δ	sjl2Δ sjl3Δ
Cells%	8	10	36	20	19	11	7	6	21	18	30
Distal unipolar	32	1	1	<1	1	1	3	1	<1	1	6
Random	82	58	63	80	80	88	90	81	79	81	64
Axial	92	58	63	80	80	88	90	81	79	81	64

* Cells were grown to saturation in YEPD medium, fixed, and stained with CFW. More than 200 cells were counted for each mutant.

* The rsr1Δ mutant exhibits a random budding pattern (135) and was used as a control.

* The bud3Δ mutant exhibits a distal-pole budding pattern (135) and was used as a control.
Depending on cell type and growth condition, yeast cells bud at the proximal or distal poles (88, 135–138). Many genes regulate bud site selection in haploid and diploid cells (135, 139, 140). PI kinase mutants showed a bud site selection defect. Specifically, at 30°C, haploid *pik1-83* and *fab1Δ* mutants failed to bud axially and showed an increase in distal-unipolar budding (Fig. 7A shows data for *fab1Δ*; results for other mutants are shown in Fig. S4 in the supplemental material [arrows]). The increased distal-pole budding in the *pik1-83* mutant, which would be expected to promote filamentous growth, was not sufficient to restore agar invasion to that mutant (Fig. 2A). This phenotype was quantitated for the *fab1Δ* mutant (Table 2) but not for the essential kinase

Table 1: Regulation of Bud Site Selection

Gene	Wild Type	stt4-4	mss4-102
P-Hog1p	1	1	1
Hog1p	1	1	1
Pgk1p	1	1	1

Figure 8 Role of the PI kinase and PIP phosphatase mutants in regulating the HOG pathway.

(A) Hog1p phosphorylation in essential PI kinase mutants. Cells were grown for 37°C for 4 h. Cells were treated with 0.4 M KCl for the indicated times. (B) Hog1p phosphorylation in the indicated combinations of PIP phosphatase mutants. (C) CFW staining of control and PIP phosphatase mutants grown to saturation in YEPD medium at 30°C.
mutants, because at 37°C the mutants fail to produce buds due to their growth defect. Combinations of PIP phosphatase mutants also showed axial budding defects, including the sjl1Δ sjl2Δ, sjl2Δ sjl3Δ, and sjl1Δ sjl3Δ double mutants (Table 2; also, see Fig. S4 [arrows]). The Golgi PI(4)P phosphatase mutant sac1Δ also showed an axial budding defect (Table 2; also, see Fig. S4). Thus, PIP signaling contributes to axial budding in haploid yeast.

The defect in axial budding might be related to the levels of Axl1p, an axial-specific protein expressed in haploid cells (141). Axl1p is not produced in diploid cells (77, 141–143) or haploid cells grown under nutrient-limited conditions (20). One of the PI kinase mutants that showed an axial budding defect was tested for the levels of Axl1p. The fab1Δ mutant showed reduced Axl1p-HA levels by immunoblot analysis, as seen under glucose-rich and glucose-limited conditions (Fig. 7B). Therefore, changes in Axl1p levels may provide a connection between axial budding and PI signaling.

Role of PI signaling in regulating the HOG pathway and yeast cell wall. The filamentous-growth and HOG pathways share a subset of components (1, 144–147). PIP regulators may impact the activity of the HOG pathway, which is measured by phosphor-ylation of the MAPK Hog1p (148, 149). It was previously shown that Pik1p plays a positive role in regulating the HOG pathway (71). We found that the stt4Δ and mss4-102 mutants showed constitutive HOG pathway activity at the restrictive temperature (Fig. 8A), although not to the levels seen under activating conditions. Therefore, PI(4)P kinases that function at the PM play an inhibitory role in regulating the HOG pathway.

Several PI kinase and PIP phosphatase mutant combinations showed growth defects in high-osmolarity medium. The vps34Δ mutant had a growth defect on YEPD supplemented with 1 M KCl that was similar to the pbs2Δ mutant (data not shown). No significant reduction in P–Hog1p was observed in the vps34Δ mutant (data not shown). Some combinations of PIP phosphatase mutants also showed osmotic sensitivity, such as the sjl2Δ sjl3Δ mutant (128). The sjl2Δ sjl3Δ mutant showed normal HOG pathway activity compared to wild-type cells (Fig. 8B). This may indicate that PIP phosphatases play roles in regulating osmotic tolerance through a mechanism that is independent of the HOG pathway.

A connection between the cell wall integrity pathway and PIP signaling has been described (58). Calcofluor white (CFW), which stains chitin in the yeast cell wall (150, 151), showed an irregular pattern in the sjl1Δ sjl2Δ mutant (Fig. 8C). A triple PIP phosphatase mutant, the sjl1Δ sjl2Δ sjl3Δ mutant, also showed a defect in chitin deposition at 37°C (Fig. 8C). Single sjl mutants showed uniform distribution of CFW on the cell surface (see Fig. S4 in the supplemental material). Thus, combinations of Sjl-type phosphatases have a function in maintenance of the yeast cell wall.

DISCUSSION

PIP signaling is an essential cellular process that is critical for the regulation of protein secretion, actin cytoskeleton reorganization, and organelle identity, biogenesis, transport, and inheritance. Here, we describe a role for PIP signaling in the regulation of an ERK-type MAPK pathway that controls filamentous growth in yeast. We specifically show that generation of PI(4)P is required for filamentous-growth MAPK pathway signaling. This may result from mislocalization of PM regulators of the MAPK pathway in PI(4)P kinase mutants. Failure of PM regulators to reach the PM may be expected to result in MAPK signaling defects. Previous studies have implicated PI signaling in the regulation of filamentous growth, particularly in *C. albicans* (72–74). Here, we posit that this connection can be explained, at least in part, at the level of the MAPK pathway.

We also demonstrate that the filamentous-growth MAPK pathway requires other PI kinases that generate PI(3)P and PI(3,5)P2 and Sjl-type PIP phosphatases. PM MAPK regulatory proteins are not mislocalized in these mutants (data not shown); thus, how the MAPK is functionally connected to these PIP species is not clear. We show that perturbation of PIP signaling influences cell polarity. Thus, the MAPK signaling defect in these mutants may result from problems in cell polarity. In support of this possibility, pharmacological disruption of filamentous actin results in a defect in filamentous-growth MAPK pathway activity. Previous reports have suggested a link between actin cytoskeleton and filamentous growth (152). Thus, the observations reported here extend this connection by linking the actin cytoskeleton to the activity of the filamentous-growth MAPK pathway.

We also show that PIP signaling is required for a specific aspect of cell polarity regulation, that of axial bud site selection in haploid cells. This may result from a general defect in the actin cytoskeleton. However, the levels of the axial-specific factor Axl1p are reduced in at least one PI kinase mutant and may reflect a specific connection between the two pathways. PIP signaling in yeast is required for other cellular processes, including proper regulation of the cell wall (58), and we identify cell wall defects in some sjl mutant combinations. Intriguingly, different PIP combinations influence each of these processes, which indicates a high degree of functional specialization of PIP regulators.

Different PIP species differentially regulate the HOG pathway. A Golgi PI(4)P kinase, Pik1p, positively regulates the HOG pathway (71), whereas PM PI(4)P kinases negatively regulate the HOG pathway. The mechanistic basis for the antagonistic roles of these PI(4)P kinases is not clear and underscores the importance of future studies of PI(4)P in regulation of the p38 MAPK pathway. The filamentous-growth (ERK-type) and HOG (p38-type) MAPK pathways have opposing functions in the cell (7, 106, 153–155). The fact that PI(4)P has different effects on ERK and p38 MAPK pathways could, in principle, influence the specificity of MAPK outputs. Future studies on how PIP signaling differentially activates MAPK pathways will shed light on the overall regulation of signaling pathways in this system.

ACKNOWLEDGMENTS

We thank Scott Emr (Cornell University), Chris Stefan (University Medical College London), Alan Tartakoff (Case Western Reserve University), Doug Johnson (University of Vermont), and C. Boone (University of Toronto) for reagents. We thank Hay-Oak Park for discussions and assistance.

P.J.C. is supported by the U.S. Public Health Service (GM098629).

REFERENCES

1. Schwartz MA, Madhani HD. 2004. Principles of map kinase signaling specificity in Saccharomyces cerevisiae. Annu Rev Genet 38:725–748.
2. Widmann C, Gibson S, Jarpe MB, Johnson GL. 1999. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180.
3. Levin DE. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145–1175. http://dx.doi.org/10.1534/genetics.111.128264.
4. Dohlan HG, Thorne JW. 2001. Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev
Biochem 70:703–754. http://dx.doi.org/10.1146/annurev.biochem.70.1.
7.03.
5. Cullen PJ, Sprague GF, Jr. 2012. The regulation of filamentous growth in yeast. Genetics 190:23–49. http://dx.doi.org/10.1534/genetics.111.127456.
6. Saito H, Posas F. 2012. Response to hyperosmotic stress. Genetics 192: 293–318. http://dx.doi.org/10.1534/genetics.112.140863.
Adhikari H, Cullen PJ. 2014. Metabolic respiration induces AMPK- and Ire1p-dependent activation of the p38-type HOG MAPK pathway. PLoS Genet 10:e1004734. http://dx.doi.org/10.1371/journal.pgen.1004734.
8. Baltanas R, Bush A, Couto A, Durrieu I, Hohmann S, Colman-Lerner A. 2013. Phenome-induced morphogenesis improves osmoadaptation capacity by activating the HOG MAPK pathway. Sci Signal 6:ra26. http://dx.doi.org/10.1126/scisignal.2003132.
9. Zarzov P, Mazzoni C, Mann C. 1996. The SLT2(MPK1) MAP kinase is activated during periods of polarized cell growth in yeast. EMBO J 15: 83–91.
10. Buehrer BM, Errede B. 1997. Coordination of the mating and cell integrity mitogen-activated protein kinase pathways in Saccharomyces cerevisiae. Mol Cell Biol 17:6517–6525.
11. Errede B, Cade RM, Yashar BM, Kamada Y, Levin DE, Irie K, Matsumoto K. 1995. Dynamics and organization of MAP kinase signal pathways. Mol Reprod Dev 42:477–485. http://dx.doi.org/10.1002/mrd.108042016.
12. Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR. 1992. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090. http://dx.doi.org/10.1016/0092-8674(92)90578-6.
13. Roberts RL, Fink GR. 1994. Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8:2974–2985. http://dx.doi.org/10.1101/gad.8.24.2974.
14. Liu H, Styles CA, Fink GR. 1993. Elements of the yeast pheromone response pathway required for filamentous growth of diplotids. Science 262:1741–1744. http://dx.doi.org/10.1126/science.8259520.
15. Reynolds TB, Fink GR. 2001. Bakers' yeast, a model for fungal biofilm formation. Science 291:878–881. http://dx.doi.org/10.1126/science.291.5505.878.
16. Bharucha N, Ma J, Dobry CJ, Lawson SK, Yang Z, Kumar A. 2008. Analysis of the yeast kinesin reveals a network of regulated protein localization during filamentous growth. Mol Biol Cell 19:2708–2717. http://dx.doi.org/10.1091/mbc.E07-11-1199.
17. Rupp S, Summers E, Lo HJ, Madhani H, Fink G. 1999. MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18:1257–1269. http://dx.doi.org/10.1093/emboj/18.5.1257.
18. Ryan O, Shapiro BS, Kurat CF, Mayhew D, Baryshnikova A, Chin B, Li B, Wolfe KH, Cullen PJ. 2006. The RA domain of Cdc42p is required for delivery of Ste11 to the plasma membrane. EMBO J 15:1443–1457. http://dx.doi.org/10.1038/nrc1873.
19. Cote P, Sulea T, Dignard D, Wu C, Whiteway M. 1998. The Slt2p MAP kinase cascade regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785. http://dx.doi.org/10.1128/MMBR.64.4.746-785.
20. Ho LJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90: 939–949. http://dx.doi.org/10.1016/S0092-8674(97)80035-X.
21. Lorenz MC, Heitman J. 1998. Regulators of pseudo-hyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains. Genetics 150:1443–1457.
22. Cullen PJ, Sabbagh W, Jr, Graham E, Irick MM, van Olden EK, Neal C, Delrow J, Bardwell L, Sprague GF, Jr. 2004. A signaling module at the head of the Cdc42 and MAPK-dependent filamentous growth pathway in yeast. Genes Dev 18:1695–1708. http://dx.doi.org/10.1101/gad.1178604.
23. O'Rourke SM, Herskowitz I. 2002. A third osmosensing branch in Saccharomyces cerevisiae requires the Msb2 protein and functions in parallel with the Sho1 branch. Mol Cell Biol 22:4739–4749. http://dx.doi.org/10.1128/MCB.22.16.4739-4749.2002.
24. Kufe DW. 2009. Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer 9:874–885. http://dx.doi.org/10.1038/nrc2761.
25. O'Rourke SM, Herskowitz I. 1998. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genetics 122:2874–2886. http://dx.doi.org/10.1001/igad.12.2.2874.
26. Yamamoto K, Tatebayashi K, Tanaka K, Saito H. 2010. Dynamic control of yeast MAP kinase network by induced association and dissociation between the Ste50 scaffold and the Op2p membrane anchor. Mol Cell 40:87–98. http://dx.doi.org/10.1016/j.molcel.2010.09.011.
27. Karanuntith S, Cullen PJ. 2012. The filamentous growth MAPK pathway responds to glucose starvation through the Mig1/2 transcriptional repressors in Saccharomyces cerevisiae. Genetics 192:869–887. http://dx.doi.org/10.1038/nrc2761.
28. Pitaika A, Chavel CA, Chow J, Smith J, Camara D, Karanuntith S, Li B, Wolfe KH, Cullen PJ. 2015. Cdc42p-interacting protein bem4p regulates the filamentous-growth mitogen-activated protein kinase pathway. Mol Cell Biol 35:417–436. http://dx.doi.org/10.1128/MCB.00850-14.
29. Peter M, Neiman AM, Park HO, van Lohuizen M, Herskowitz I. 1996. Functional analysis of the interaction between the small GTP binding protein Cdc42p and the Ste20p protein kinase in yeast. EMBO J 15:7046–7059.
30. Leberer E, Wu C, Leeuw T, Fourest-Lieuvin A, Segall JE, Thomas DY. 1997. Functional characterization of the Cdc42p binding domain of yeast Ste20p protein kinase. EMBO J 16:83–97. http://dx.doi.org/10.1093/emboj/16.1.83.
31. Madhani HD, Styles CA, Fink GR. 1997. MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91:673–684. http://dx.doi.org/10.1016/S0092-8674(00)80454-7.
32. Truckes DM, Blommezakie JE, Thorner J. 2006. The RA domain of Ste50 adaptor protein is required for delivery of Ste11 to the plasma membrane in the filamentous growth signaling pathway of the yeast Saccharomyces cerevisiae. Mol Cell Biol 26:912–928. http://dx.doi.org/10.1128/MCB.26.3.912-928.2006.
33. Kwan JJ, Warner N, Maini J, Chan Tung WK, Zakaria H, Watson T, Donaldson LW. 2006. Saccharomyces cerevisiae Ste50 binds the MAPKKK Ste11 through a head-to-tail SAM domain interaction. J Mol Biol 356:142–154. http://dx.doi.org/10.1016/j.jmb.2005.11.012.

April 2015 Volume 14 Number 4 Eukaryotic Cell ec.asmm.org 437
43. Ramezani-Rad M. 2003. The role of adaptor protein Ste50-dependent regulation of the MAPKKK Ste11 in multiple signalling pathways of yeast.Curr Genet 43:161–170. http://dx.doi.org/10.1007/s00294-003-0383-6.

44. Madhani HD, Fink GR. 1997. Combinatorial control required for the specificity of yeast MAPK signaling. Science 275:1314–1317. http://dx.doi.org/10.1126/science.275.5304.1314.

45. Bardwell I, Cook JG, Voora D, Baggott DM, Martinez AR, Thorn J. 1998. Repression of yeast Ste12 transcription factor by direct binding of unphosphorylated Kss1 MAPK and its regulation by the Ste7 MEK. Genes Dev 12:2887–2898. http://dx.doi.org/10.1101/gad.12.18.2887.

46. Bardwell I, Cook JG, Zhu-Shimoni FX, Voora D, Thorn J. 1998. Differential regulation of transcription: repression by unactivated mitogen-activated protein kinase Kss1 requires the Dg1 and Dg2 proteins. Proc Natl Acad Sci U S A 95:15400–15405. http://dx.doi.org/10.1073/pnas.95.26.15400.

47. Cook JG, Bardwell I, Kron S, Thorn J. 1996. Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev 10:2831–2848. http://dx.doi.org/10.1101/gad.10.22.2831.

48. Majerus PW, York JD. 2009. Phosphoinositide phosphatases and disease. J Lipid Res 50(Suppl):S249–S254. http://dx.doi.org/10.1194/jlr.R800072-JL2R200.

49. Dillon RL, White DE, Muller WI. 2007. The phosphatidylinositol 4-kinase signaling network: implications for human cancer. Oncogene 26:1311–1317. http://dx.doi.org/10.1038/sj.onc.1210202.

50. Rollman I, Nelson WT. 2008. Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 9:833–845. http://dx.doi.org/10.1038/nrm2525.

51. Fruman DA, Meyers RE, Cantley LC. 1998. Phosphoinositide kinases. Annu Rev Biochem 67:481–507. http://dx.doi.org/10.1146/annurev.biochem.67.1.481.

52. Di Paolo G, De Camilli P. 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657. http://dx.doi.org/10.1038/nature05185.

53. Vicinanza M, D’Angelo G, Di Campli A, De Matteis MA. 2003. Phosphoinositide phosphatases and disphosphatases. Biochim Biophys Acta 1636:273–300. http://dx.doi.org/10.1016/S0006-8073(03)00073-X.

54. Audhya A, Foti M, Emr SD. 2002. SacI lipid phosphatase and Stt4 phosphoinositol 4-kinase regulate a pool of phosphatidylinositol 4,5-bisphosphate. Mol Biol Cell 13:542–557. http://dx.doi.org/10.1091/mbc.01-10-0476.

55. Singh A, Del Poeta M. 2011. Lipid signalling in pathogenic fungi. Cell Microbiol 13:177–185. http://dx.doi.org/10.1111/j.1462-5822.2010.01550.x.

56. Garrenton LS, Stefani CJ, McMurray MA, Emr SD, Thorn J. 2010. Pheromone-induced anisotropy in yeast plasma membrane phosphatidylinositol-4,5-bisphosphate distribution is required for MAPK signaling. Proc Natl Acad Sci U S A 107:11805–11810. http://dx.doi.org/10.1073/pnas.1005517107.

57. Hurley JH, Meyer T. 2001. Subcellular targeting by membrane lipids.Curr Opin Cell Biol 13:146–152. http://dx.doi.org/10.1074/jbc.M505500200.

58. Herman PK, Takenawa T. 2002. Phosphoinositide-binding domains: Functional units for temporal and spatial regulation of intracellular signalling. Cell Signal 14:733–743. http://dx.doi.org/10.1016/S0898-6568(02)00028-1.

59. Adhikari and Cullen...
Yakir-Tamang L, Gerst JE. 2009. A phosphatidylinositol-transfer protein and phosphatidylinositol-4-phosphate 5-kinase control Cdc42 to regulate the actin cytoskeleton and secretory pathway in yeast. Mol Biol Cell 20:3583–3597. http://dx.doi.org/10.1090/mcbo.080–10.1073.

Adhikari H, Vadaie N, Chow J, Caccamise LM, Chavel CA, Li B, Bowitch A, Stefan CJ, Cullen PJ. 9 February 2015. Role of the unfolded protein response in regulating the mucin-dependent filamentous growth MAPK pathway. Mol Cell Biol http://dx.doi.org/10.1128/MCB.01501–14.

Maseda T, Takekawa M, Saito H. 1995. Activation of yeast PBS2 MAPK by MAPKKK or by binding of an SH3-containing osmosensor. Science 269:554–558. http://dx.doi.org/10.1126/science.7624781.

Pitoniak A, Birkaya B, Dionne HM, Vadaie N, Cullen PJ. 2009. The signaling mucins Msb2 and Hkr1 differentially regulate the filamentation mitogen-activated protein kinase pathway and contribute to a multimodal response. Mol Cell Biol 20:3101–3114. http://dx.doi.org/10.1099/mcb.01501–14.

Raitt DC, Posas F, Saito H. 2000. Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway. EMBO J 19:4623–4631. http://dx.doi.org/10.1093/emboj/19.17.4623.

Reiser V, Salah SM, Ammerer G. 2000. Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42. Nat Cell Biol 2:620–627. http://dx.doi.org/10.1038/35023568.

Mosch HU, Roberts RL, Fink GR. 1996. Ras2 signals via the Cdc42/ Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:5352–5356. http://dx.doi.org/10.1073/pnas.93.11.5352.

Johnson JL, Erickson JW, Cerione RA. 2009. New insights into how the Rho guanine nucleotide dissociation inhibitor inhibitor regulates the interaction of Cdc42 with membrane proteins. J Biol Chem 284:23880–23873. http://dx.doi.org/10.1074/jbc.M900318200.

Ohya Y, Goebel M, Goodman LE, Petersen-Brown S, Friesen JD, Tamafo N, Anaraku Y. 1991. Yeast CCL1 is a structural and functional homologue to the DPR1 (RAM) gene involved in ras processing. J Cell Biol 115:172–187. http://dx.doi.org/10.1083/jcb.115.1.172.

Ohyama Y, Yoshida H, Akiyama T, Matsui T, Akiyama R, Kado M, Hasegawa M, Takahashi T, Komatsu K. 2002. Ras2 signals via the Cdc42/ Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99:11572–11577. http://dx.doi.org/10.1073/pnas.99.11.11572.

El Shamy S, Leblanc KA, Cerione RA. 2010. Identification of the Dar1 (RAM) gene involved in ras processing. J Cell Biol 188:491–500. http://dx.doi.org/10.1083/jcb.200908318.

Novick P, Field C, Schekman R. 1980. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–215. http://dx.doi.org/10.1016/0010-8405(82)90128-4.

Deshaies RJ, Schekman R. 1989. SEC62 encodes a putative membrane protein required for protein translocation into the yeast endoplasmic reticulum. J Cell Biol 109:2653–2664. http://dx.doi.org/10.1083/jcb.109.9.2653.

Kihara A, Noda T, Ishihara N, Ohsumi Y. 2001. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152:519–530. http://dx.doi.org/10.1083/jcb.152.5.519.

Burd A, Padilla SM, Sarkar S, Emergildo SD. 2002. Retromer function in endosome-to-GolgI retrograde transport is regulated by the yeast Vps34.
