Sterol Regulatory Element Binding Protein-1 Expression Is Suppressed by Dietary Polyunsaturated Fatty Acids

A MECHANISM FOR THE COORDINATE SUPPRESSION OF LIPOGENIC GENES BY POLYUNSATURATED FATS

Jing Xu, Manabu T. Nakamura, Hyekyung P. Cho, and Steven D. Clarke‡

From the Division of Nutritional Sciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712

Polyunsaturated fatty acids (PUFA) coordinately suppress the transcription of a wide array of hepatic lipogenic genes including fatty acid synthase (FAS) and acetyl-CoA carboxylase. Interestingly, the over-expression of sterol regulatory element binding protein-1 (SREBP-1) induces the expression of all the enzymes suppressed by PUFA. This observation led us to hypothesize that PUFA coordinately inhibit lipogenic gene transcription by suppressing the expression of SREBP-1. Our initial studies revealed that the SREBP-1 and FAS mRNA contents of HepG2 cells were reduced by 20±4%(n=6) in a dose-dependent manner (i.e. EC50 ~ 10 μM), whereas 18:1(n-9) had no effect. Similarly, supplementing a fat-free, high glucose diet with oils rich in (n-6) or (n-3) PUFA reduced the hepatic content of precursor and nuclear SREBP-1 60 and 85%, respectively; however, PUFA had no effect on the nuclear content of upstream stimulatory factor (USF-1). The PUFA-dependent decrease in nuclear content of mature SREBP-1 was paralleled by a 70–90% suppression in FAS gene transcription. In contrast, dietary 18:1(n-9), i.e. triolein, had no inhibitory influence on the expression of SREBP-1 or FAS. The decrease in hepatic expression of SREBP-1 and FAS associated with PUFA ingestion was mimicked by supplementing the fat-free diet with the PPARα-activator, WY 14,643. Interestingly, nuclear run-on assays revealed that changes in SREBP-1 mRNA abundance were not accompanied by changes in SREBP-1 gene transcription. These results support the concept that PUFA coordinately inhibit lipogenic gene transcription by suppressing the expression of SREBP-1 and that the PUFA regulation of SREBP-1 appears to occur at the post-transcriptional level.

Dietary polyunsaturated fatty acids (PUFA)† are effective hypolipidemic agents (1), and they exert this effect by coordinately suppressing hepatic lipid synthesis and secretion while inducing hepatic and skeletal muscle fatty acid oxidation (2–10). Dietary PUFA coordinately decrease the transcription of hepatic genes encoding glycolytic and lipogenic enzymes (fatty acid synthase, acetyl-CoA carboxylase, stearoyl-CoA desaturase, malic enzyme, l-pyruvate kinase, and glucokinase) (3, 11–15), whereas they concomitantly increase the transcription of genes encoding enzymes involved in fatty acid oxidation (ceramine palmityltransferase (16) and acyl-CoA oxidase (9)). The outcome is a decrease in hepatic lipogenesis and an increase in hepatic fatty acid oxidation and ketogenesis. Genes encoding the oxidative enzymes appear to be regulated by a common transcription factor, peroxisomal proliferator-activated receptor (PPAR) (9, 16–21). Because PPARs are lipid-activated transcription factors, they have often been proposed as the “master switches” that regulate the expression of enzymes involved in lipid synthesis and degradation (19–21). However, several lines of evidence, including studies with PPARα knock-out mice, indicate that the PUFA suppression of lipogenic gene transcription does not directly involve PPARα (22, 23).

Despite several years of investigation, the molecular mechanisms responsible for the PUFA regulation of genes encoding enzymes of lipid synthesis remain poorly defined. Functional mapping studies have identified candidate response regions in the S14 (24), pyruvate kinase (14), and stearoyl-CoA desaturase genes (25), but the identity of the transcription factors affected by PUFA remain unclear. Recently, sterol regulatory element binding protein-1 (SREBP-1) was identified as a transcription factor that appears to play a pivotal role in the expression of lipogenic genes (26–30). SREBP’s are transcription factors that were first isolated as a result of their properties for binding to the sterol regulatory element and conferring sterol regulation to several genes involved with cholesterol synthesis (31). SREBPs are synthesized as 125-kDa precursor proteins that contain two transmembrane domains for insertion into the endoplasmic reticulum membrane (31). The N-terminal domain, which is a 68-kDa, helix-loop-helix leucine zipper transcription factor (i.e. mature SREBP), is released for nuclear translocation by a sterol-dependent proteolytic cascade (31). Over-expression of mature SREBP-1 in transgenic mice greatly increases the hepatic abundance for numerous lipogenic enzymes including fatty acid synthase and acetyl-CoA carboxylase (28, 30). Moreover, the nuclear abundance of SREBP-1 has been found to be reduced by fasting and greatly increased by carbohydrate refeeding (29). In addition, changes in the nuclear content of SREBP-1 resulting from starving-refeeding displayed a temporal pattern that was similar to the pattern of change observed for fatty acid synthase gene transcription (11, 29). Further support for the role of SREBP-1 in lipogenic gene

* This work was supported by National Institutes of Health Grants DK 52573 and DK 53672 (to S. D. C.) and DK 09723 (to M. T. N.) and by the sponsors of the M. M. Love Chair in Nutritional, Cellular and Molecular Sciences at the University of Texas at Austin (to S. D. C.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed: 115 Gearing, The University of Texas at Austin, Austin, Texas 78712. Tel.: 512-232-1537; Fax: 512-471-5630; E-mail: stevedclarke@mail.utexas.edu.

The abbreviations used are: PUFA, polyunsaturated fatty acids; FAS, fatty acid synthase; SREBP, sterol regulatory element binding protein; PPAR, peroxisomal proliferator activated receptor; Hepes, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; USF-1, upstream stimulatory factor-1.

‡ To whom correspondence should be addressed: 115 Gearing, The University of Texas at Austin, Austin, TX 78712. Tel.: 512-232-1537; Fax: 512-471-5630; E-mail: stevedclarke@mail.utexas.edu.

This paper is available on line at http://www.jbc.org
expression was demonstrated by the discovery that the region of -71 to -54 of the rat fatty acid synthase appears to contain SREBP-1 response sequences and that binding of SREBP-1 to this region enhances fatty acid synthase gene promoter activity (26). In light of these collective data, we hypothesized that PUFA coordinately suppress the transcription of hepatic lipogenic and glycolytic genes by suppressing the expression of SREBP-1. In this report, we demonstrate that PUFA reduced the hepatic concentration of precursor and mature SREBP-1 protein and concomitantly lowered the hepatic abundance of SREBP-1 mRNA. Moreover, the reduction in SREBP-1 protein was paralleled by a comparable decrease in the transcription of hepatic fatty acid synthase.

EXPERIMENTAL PROCEDURES

*In Vito and in Vivo Regulation of SREBP-1 and Fatty Acid Synthase Gene Expression by Fatty Acids—*The impact of fatty acids on the hepatic expression of SREBP-1 and fatty acid synthase was examined in HepG2 cells treated with varying concentrations of albumin-bound 18:1(n-9) or 20:4(n-6) and in rats fed a high carbohydrate diet containing triolein, safflower oil, or fish oil. HepG2 cells (ATCC no. HB-8065) were plated onto dried collagen-coated tissue culture plates and maintained in a humidified atmosphere of 5% CO2 in a 300-L incubator. Following an additional 5-day feeding period, rats were killed for the PCR assays (4 plates per treatment) provided for the enhanced chemiluminescence Western blotting detection system kit (Amersham Pharmacia Biotech). Immunoreactive USF-1 was identified using monoclonal anti-USF-1 (IgG-2A4) prepared from hybridoma cells (ATCC, CRL 2121), and immunoreactive USF-1 was identified by incubating with buffer containing 0.1 μg/ml anti-USF-1 (Santa Cruz Biotechnology). Bands were quantified for relative intensity using the Ambis imaging system.

RESULTS

SREBP-1 and Fatty Acid Synthase Expression in HepG2 Cells Are Suppressed by 20:4(n-6)—The possibility that PUFA may inhibit the expression of SREBP-1 was initially examined by treating HepG2 cells with varying concentrations of 20:4(n-6). The pattern for the dose-dependent reduction in SREBP-1 and fatty acid synthase mRNA abundance elicited by 20:4(n-6) was almost identical for both transcripts (Fig. 1). Maximum reduction in SREBP-1 and fatty acid synthase mRNA occurred at approximately 50 μM. The amount of 20:4(n-6) required to achieve a 50% reduction in both SREBP-1 and fatty acid synthase mRNA was approximately 10–15 μM (Fig. 1), which is within the physiological range for the plasma unesterified 20:4(n-6). The expression of SREBP-1 and fatty acid synthase in HepG2 cells was not inhibited by 18:1(n-9), which was consistent with numerous dietary studies showing that monounsaturated fatty acids do not suppress lipogenic gene transcription (2, 3, 5). The suppression of SREBP-1 and fatty acid synthase expression by 20:4(n-6) was paralleled by a marked decrease in fatty acid synthase promoter activity (data not shown).
the nuclear content of mature SREBP-1 (Fig. 2, B and C). On the other hand, supplementing the fat-free diet with triolein, which provided only 18:1(n-9), had no effect on the amount of either the precursor or the mature form of SREBP-1 (Fig. 2). In general, the nuclear content of SREBP-1 reflected the amount of precursor SREBP-1 (Fig. 2). However, the ingestion of cholesterol-free fish oil was associated with an 85% decrease in the nuclear content of mature SREBP-1, whereas the content of membrane-bound precursor SREBP-1 was reduced only 60% (Fig. 2). These data suggest that fish oils may impair the proteolytic release of mature SREBP-1. Neither triolein nor PUFA altered the nuclear content of USF-1 (Fig. 3).

The PUFA-dependent reduction in hepatic content of precursor and mature SREBP-1 was accompanied by a comparable decrease in the amount of hepatic SREBP-1 mRNA (Fig. 4). Moreover, the hepatic abundance of SREBP-1 mRNA was positively correlated with the hepatic abundance of fatty acid synthase mRNA (Fig. 4).

Is the Suppression of SREBP-1 Expression by PUFA Mediated by PPARα?—Although the PUFA suppression of lipogenic genes does not appear to directly involve a PPARα-mediated mechanism (22, 23), PUFA activation of hepatic PPARα could be responsible for the suppression of SREBP-1 expression. Such a mechanism would provide a unifying explanation for how PUFA induce genes of hepatic lipid oxidation and concomitantly suppress genes of lipogenesis. To examine this hypothesis, the expression of SREBP-1 was examined in rats fed the fat-free diet supplemented with WY 14,643, a potent activator of PPARα. As expected, the ingestion of WY 14,643 greatly increased the level of mRNA for the PPARα-regulated gene, peroxisomal acyl-CoA oxidase (Fig. 5B). Consistent with the possibility that PUFA suppressed SREBP-1 expression by functioning as ligand activators for PPARα, we found that the hepatic level of SREBP-1 was reduced 50% by the ingestion of the PPARα-specific activator WY 14,643 (Fig. 5A). Moreover, the decrease in hepatic abundance of SREBP-1 mRNA was paralleled by a significant reduction in the hepatic abundance of fatty acid synthase mRNA (Fig. 5).

Do Dietary PUFA and WY 14,643 Suppress SREBP-1 Gene Transcription?—Nuclear run-on assays were employed to determine whether the reduction in the hepatic abundance of fatty acid synthase and SREBP-1 was accompanied by a decrease in fatty acid synthase and SREBP-1 gene transcription (Table I and Fig. 6). Consistent with our earlier observations (11), hepatic fatty acid synthase gene transcription was markedly reduced by the ingestion of PUFA, whereas the con-
Suppression of SREBP-1 by Polyunsaturated Fats

Fig. 3. The hepatic abundance of nuclear USF-1 was unaffected by dietary (n-6) and (n-3) PUFA. The influence of dietary oils rich in (n-9), (n-6), and (n-3) fatty acids (i.e. Triolein, Safflower oil, and Fish oil, respectively) on the hepatic concentration of USF-1 was determined by Western analysis using the same nuclear protein extracts depicted in Fig. 2. A, a representative USF-1 Western (25 μg protein/lane). B, hepatic content of USF-1 relative to that observed in rats fed the fat-free diet. Data are means ± S.E.; n = 4 rats/treatment. Similar results were observed in two separate dietary studies.

Fig. 4. Dietary (n-6) and (n-3) PUFA suppress the hepatic abundance of SREBP-1 and fatty acid synthase mRNA. A, the hepatic abundance of mRNA for SREBP-1 (black bars) and fatty acid synthase (FAS) (white bars) in rats fed dietary oils rich in (n-9), (n-6), and (n-3) fatty acids (i.e. Triolein, Safflower oil, and Fish oil, respectively). Data are expressed relative to the values found in rats fed the fat-free diet, and are means ± S.E.; n = 4 rats/treatment. The hepatic content of precursor and mature SREBP-1 protein within these same animals is depicted in Fig. 2. B, a representative Northern blot (30 μg of RNA/lane) using equal amounts of RNA pooled from each of the 4 rats within a cited dietary group.

Fig. 5. Ingestion of the PPARα activator WY 14,643 reduced the hepatic abundance of SREBP-1 and fatty acid synthase mRNA. A, relative abundance of SREBP-1 and FAS mRNA in rats fed the fat-free diet (black bars) or the fat-free diet supplemented with 10% menhaden fish oil (white bars) or 0.1% WY 14,643 (gray bars). Data are expressed as means ± S.E.; n = 4 rats/treatment. B, a representative Northern blot (30 μg/lane). WY, WY 14,643.

DISCUSSION

Supplementing a high carbohydrate diet with oils rich in (n-6) and (n-3) PUFA results in an inhibition of hepatic gene transcription for a wide array of lipogenic enzymes including fatty acid synthase, acetyl-CoA carboxylase, citrate lyase, malic enzyme, and stearoyl-CoA desaturase (3, 11–15). Maximum inhibition of gene expression occurs when the diet contains approximately 20% of its calories as PUFA, but as little as 5% of the dietary energy as PUFA is sufficient to inhibit lipogenic gene expression 50% (39). The dose-response curve and the time course for the PUFA inhibition of gene expression indicate that PUFA coordinately regulate all lipogenic genes, which further suggests that these genes may share a common transcriptional control point (2, 3, 6, 39). In our search for a "master switch" mechanism to explain the PUFA regulation of lipogenic gene expression, we were intrigued by the reports that over-expression of the transcription factor SREBP-1 in transgenic mice was accompanied by a large increase in the expression of

Consumption of 18:1(n-9) had no effect (Table I and Fig. 6). Interestingly, WY 14,643 suppressed fatty acid synthase gene transcription approximately 70%, which was similar to the degree of suppression associated with the consumption of safflower oil (Table I and Fig. 6). On the other hand, WY 14,643 induced the transcription of acyl-CoA oxidase severalfold, which is consistent with prior findings that ligand activation of PPARα induces peroxisomal acyl-CoA oxidase promoter activity (18). Despite the fact that PUFA and WY 14,643 both significantly reduced the hepatic abundance of SREBP-1 mRNA, SREBP-1 gene transcription was not suppressed by either PUFA or WY 14,643 (Table I and Fig. 6). Similarly, SREBP-2 gene transcription was not inhibited by either PUFA or WY 14,643 (Table I and Fig. 6). These data suggest that PUFA and WY 14,643 may govern the level of SREBP-1 mRNA by regulating the stability of SREBP-1 and -2 transcripts.
several hepatic lipogenic enzymes including fatty acid synthase and acetyl-CoA carboxylase (28, 30). Moreover, the suppression and induction of hepatic lipogenic gene transcription observed with starving and starving-refeeding appeared to follow a temporal pattern that paralleled the decrease and increase in nuclear abundance of mature SREBP-1 (29). Both of these scenarios suggested that the nuclear content of mature SREBP-1 might be the key determinant that coordinates the up- and down-regulation of genes encoding a wide array of lipogenic enzymes, e.g. fatty acid synthase. Consistent with this idea we found that feeding a diet rich in (n-6) or (n-3) fatty acids reduced the hepatic nuclear content of SREBP-1 protein 50 and 85%, respectively. More importantly, the decrease in the nuclear content of mature SREBP-1 was paralleled by comparable decreases in fatty acid synthase gene transcription and mRNA abundance (Figs. 4 and 5). On the other hand, supplementing the fat-free diet with 18:1(n-9), i.e. triolein, did not decrease the nuclear content of mature SREBP-1 nor did it reduce the expression of fatty acid synthase, which was very consistent with numerous reports demonstrating that saturated and monounsaturated fatty acids do not possess the ability to suppress hepatic lipogenic gene transcription (2–6, 11–15).

The nuclear content of mature SREBP-1 is dependent upon the synthesis of SREBP-1 precursor and/or the proteolytic release of the mature SREBP-1 from its precursor (31). SREBP-1 is synthesized as a 125-kDa precursor that contains two transmembrane domains that allow the protein to be anchored in the membrane of the endoplasmic reticulum (31). The 480-amino acid N-terminal domain corresponds to the mature SREBP-1 transcription factor and is released from the endoplasmic reticulum membrane by a two-step proteolytic cascade (31). Recent reports indicate that fatty acids, including 18:1(n-9) and (n-6)/(n-3) PUFA, may possibly enhance the sterol suppression of the proteolytic cascade and/or directly inhibit the SREBP-1 proteolytic cascade (40, 41). The consequence of this fatty acid regulation was found to be a decrease in the nuclear content of mature SREBP-1 but no detectable change in membrane content of precursor SREBP-1 (40, 41). However, our results do not appear to fully support these conclusions. First, the decrease in the nuclear content of mature SREBP-1 associated with PUFA ingestion was paralleled by a comparable reduction in the membrane content of precursor SREBP-1 (Fig. 2). This finding indicates that PUFA primarily function as suppressors of SREBP-1 precursor synthesis rather than as regulators of the proteolytic release of mature SREBP-1. Consistent with this conclusion was our observation that the reduction in the amount of precursor SREBP-1 protein was nearly identical to the reduction in hepatic SREBP-1 mRNA abundance (Figs. 2–4). Second, unlike the observations of Worgall et al. (40), we found that treating HepG2 cells with 18:1(n-9) did not suppress the expression of either SREBP-1 or fatty acid synthase. These results were very consistent with our observations that 18:

Table I

Hepatic gene transcript	Transcription activity			
	Triolein	Safflower oil	Fish oil	WY 14,643
SREBP-1	125 ± 19	118 ± 36	104 ± 22	96 ± 14
SREBP-2	80 ± 20	165 ± 52	92 ± 15	84 ± 39
FAS	106 ± 16	34 ± 8	12 ± 2	33 ± 6
AOX	84 ± 14	135 ± 41	100 ± 21	1576 ± 223

Fig. 6. The reduction in hepatic abundance of SREBP-1 mRNA associated with the ingestion of PUFA and WY 14,643 is not accompanied by a decrease in SREBP-1 gene transcription. Nuclear run-on assays were conducted using nuclei isolated from rats fed a fat-free diet supplemented with oils rich in (n-9), (n-6), or (n-3) fatty acids (i.e. Triolein, Safflower oil, or Fish oil, respectively) or with WY 14,643 (WY). AOX, acyl-CoA oxidase. A summary of the nuclear run-on assays is presented in Table I.
1(n-9) did not reduce the hepatic content of mature SREBP-1a, nor did 18:1(n-9) suppress the hepatic expression of SREBP-1 and fatty acid synthase. Our results were consistent with the vast amount of in vivo and ex vivo data demonstrating that 18:1(n-9) has no effect on the expression of a wide array of glycolytic and lipogenic enzymes (3, 5, 13–15, 39). Differences in methodological approaches may explain the differences in outcomes between our studies and those of Worgall et al. (40).

First, our HepG2 cells were serum-starved for 48 h prior to transfection, and they were treated with both insulin and glucocorticoid. This may have enhanced triglyceride synthesis and secretion, which in turn may have decreased the inhibitory influence of 18:1(n-9). Second, our HepG2 cells were grown on collagen, which allows them to form monolayers. Finally, and most important, we did not transfect the cells until they had reached confluence, because we have found that if nonconfluent HepG2 cells are treated with albumin-bound free fatty acids a large release of intracellular lactate dehydrogenase occurs, and such cell damage occurs even though β-galactosidase expression remains unaffected (unpublished data).

PUFA are potent ligand activators of a family of nuclear transcription factors called PPARs (16–21). The dominant PPAR in the liver is PPARα, and fatty acid activation of PPARα appears to coordinate induce genes encoding enzymes involved in fatty acid oxidation and ketogenesis (8, 16–18). PUFA activation of PPARα has also been proposed to suppress the expression of lipogenic genes, but direct involvement of PPARs in the PUFA suppression of lipogenic gene expression has not been demonstrated (22, 23). However, it is possible that PUFA activation of PPARα could lead to the suppression of a pivotal transcription factor (e.g., SREBP-1) that is common to all lipogenic enzymes, and, in this way, indirectly lead to the inhibition of lipogenic gene expression. Consistent with this hypothesis, we found that feeding rats the potent PPARα-specific activator WY 14,643 reduced the hepatic abundance of hepatic SREBP-1 mRNA to a level comparable with that found in rats fed diets containing PUFA (Fig. 5). Moreover, the decrease in SREBP-1 mRNA associated with the ingestion of WY 14,643 was accompanied by a marked decrease in fatty acid synthase gene transcription (Fig. 5). These data suggest that ligand activation of PPARα may play a role in the suppression of lipogenic genes via PPARα regulation of SREBP-1 expression. Such a conclusion is not consistent with the observation that dietary fish oils continued to suppress hepatic lipogenic gene transcription in PPARα null mice (23). However, one must keep in mind that the liver contains other PPAR isoforms (19), e.g., PPARδ, and it is very possible that PUFA continue to regulate lipogenic genes by activating PPARs other than PPARα. In addition, it is very possible that C-20 and C-22(n-3) PUFA of fish oil suppresses the proteolytic release of mature SREBP-1. This conclusion is based on the observation that dietary fish oil decreased the level of precursor SREBP-1 65%, whereas the amount of mature, nuclear SREBP-1 was reduced nearly 90% (Fig. 2). If the release and/or nuclear translocation of mature SREBP-1 is in fact suppressed by the (n-3) PUFA of fish oil, then it would still be possible for dietary fish oil to inhibit lipogenic gene transcription even in PPARα null mice. However, it remains to be determined whether dietary fish oil will in fact lower the nuclear content of SREBP-1 in PPARα null mice.

Because PPARα is a well-characterized transcription factor that regulates the transcription of several genes encoding proteins involved in lipid metabolism (16–19), we anticipated that the decrease in hepatic abundance of SREBP-1 mRNA resulting from PUFA and WY 14,643 ingestion would be accompanied by a reduction in SREBP-1 gene transcription. However, to our surprise, nuclear run-on assays revealed that neither dietary PUFA nor WY 14,643 inhibited the transcription of SREBP-1 (Table I and Fig. 6). These results suggested that PUFA and WY 14,643 may have reduced the hepatic content of SREBP-1 mRNA possibly by accelerating the rate of mRNA degradation. Although this is a speculative conclusion, there is evidence that PUFA enhance the degradation rate of mRNA for stearoyl-CoA desaturase (42), acetyl-CoA carboxylase (12), and malic enzyme (15). How PUFA and WY 14,643 may alter the stability of the SREBP-1 transcript remains to be determined. However, it is interesting to note that significant quantities of PPARα are located in the cytosol of some cells (43, 44). Thus, it is tempting to speculate that PPARs may regulate gene expression by influencing both transcriptional and post-transcriptional events.

Finally, it appears that PUFA suppress the expression of both SREBP-1a and 1c. This conclusion is based on the knowledge that nearly 50–70% of the SREBP-1 found in HepG2 cells is of the SREBP-1a type (28, 30, 31, 45), whereas approximately 70–90% of the SREBP-1 found in rodent liver is SREBP-1c (45). Consequently, even though the monoclonal antibody and cDNA used to quantify changes in SREBP-1 protein and mRNA could not distinguish between SREBP-1a and 1c, PUFA was found to reduce the expression of SREBP-1 both in HepG2 cells (i.e., SREBP-1a) and in the intact liver (SREBP-1c).

In conclusion, we have presented evidence demonstrating that SREBP-1 plays a key role in the PUFA regulation of lipogenic gene transcription. Specifically, we report that PUFA reduce the hepatic abundance of SREBP-1 mRNA and the membrane (precursor) and nuclear (mature) content of SREBP-1 protein by 60–85% and that this inhibition of SREBP-1 expression is paralleled by a marked decrease in the transcription of hepatic fatty acid synthase. In light of these data, and in light of the reports indicating that over-expression of mature SREBP-1 induces the expression of all of the same lipogenic enzymes that are suppressed by PUFA (10–15, 28–30), we propose that SREBP-1 is the pivotal transcription factor responsible for coordinating the PUFA suppression of lipogenic gene transcription.

REFERENCES

1. Nestel, P. J. (1990) Annu. Rev. Nutr. 10, 149–167
2. Clarke, S. D., Armstrong, M. K., and Jump, D. B. (1990) J. Nutr. 120, 225–231
3. Jump, D. B., Clarke, S. D., Thelen, A., and Liimatta, M. (1994) Lipid Res. 35, 1076–1084
4. Geelen, M. J., Schouts, W. J., Bijleveld, C., and Beynen, A. C. (1995) J. Nutr. 125, 2449–2456
5. Clarke, S. D., and Jump, D. B. (1994) Annu. Rev. Nutr. 14, 83–98
6. Toussaint, M. J., Wilsen, M. D., and Clarke, S. D. (1981) J. Nutr. 111, 146–153
7. Clarke, S. D., Romos, R. D., and Levelle, G. A. (1977) J. Nutr. 107, 1170–1181
8. Power, G. W., and Newsholme, E. A. (1977) J. Nutr. 127, 2142–2150
9. Berthou, L., Saladin, R., Yaqoob, P., Brunelle, D., Calder, P., Frucht, J. C., Denelle, P., Auwerx, J., and Staels, B. (1995) Eur. J. Biochem. 232, 179–187
10. Clarke, S. D., Baillie, R., Jump, D. B., and Nakamura, M. T. (1997) Ann. N. Y. Acad. Sci. 845, 135–441
11. Nishimi, J. M. (1990) J. Biol. Chem. 265, 10925–10930
12. Liimatta, M., Towe, H. C., Clarke, S. D., and Jump, D. B. (1994) Mol. Endocrinol. 8, 1147–1153
13. Katsurada, A., Iritani, N., Fukuda, H., Matsuuma, Y., Nishimoto, N., Naguchi, T., and Tanaka, T. (1990) Eur. J. Biochem. 190, 435–441
14. Nishimi, J. M. (1990) J. Biol. Chem. 265, 10925–10930
15. Katsurada, A., Iritani, N., Fukuda, H., Noguchi, T., and Tanaka, T. (1987) Eur. J. Biochem. 168, 487–491
16. Brandt, J. M., Djouadi, F., and Kelly, D. P. (1998) J. Biol. Chem. 273, 23786–23792
17. Rodriguez, J. C., Gil-Gomez, H., Hegardt, F. G., and Haro, D. (1994) J. Biol. Chem. 269, 18767–18772
18. Latruffe, N., and Vamecq, J. (1997) Biochimie (Paris) 79, 81–94
19. Schoonjans, K., Staels, B., and Auwerx, J. (1996) J. Lipid Res. 37, 975–995
20. Yu, K., Bayona, W., Kalten, C. B., Harding, H. P., Ravera, C. P., McMahon, G., Brown, M., and Lazar, M. A. (1995) J. Biol. Chem. 270, 23975–23983
21. Kliever, S. A., Sundseth, S. S., Jones, S. A., Brown, P. J., Wisely, G. B., Kohle, C. S., Devchand, P., Wahli, W., Willson, T. M., Lenhard, J. M., and Lehmann, J. M. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 4318–4323
22. Clarke, S. D., and Jump, D. B. (1997) Prostaglandins Leukotrienes Essent. Fatty Acids 57, 65–69
23. Ren, B., Thelen, A. P., Peters, J. M., Gonzalez, F. J., and Jump D. B. (1997) *J. Biol. Chem.* 272, 26827–26832.
24. Jump, D. B., Clarke, S. D., MacDougald, O., and Thelen, A. (1993) *Proc. Natl. Acad. Sci. U. S. A.* 90, 8454–8458.
25. Waters, K. M., Miller, C. W., and Ntambi, J. M. (1997) *Biochim. Biophys. Acta* 1349, 33–42.
26. Magana, M. M., and Osborne, T. F. (1996) *J. Biol. Chem.* 271, 32689–32694.
27. Lopez, J. M., Bennett, M. K., Sanchez, H. B., Rosenfeld, J. M., and Osborne, T. F. (1996) *Proc. Natl. Acad. Sci. U. S. A.* 93, 1048–1053.
28. Shimano, H., Horton, J. D., Hammer, R. E., Shimomura, I., Brown, M. S., and Goldstein, J. L. (1996) *J. Clin. Invest.* 98, 1575–1584.
29. Horton, J. D., Bashmakov, Y., Shimomura, I., and Shimano, H. (1998) *Proc. Natl. Acad. Sci. U. S. A.* 95, 5897–5902.
30. Shimomura, I., Shimano, H., Korn, B. S., Bashmakov, Y., and Horton, J. D. (1998) *J. Biol. Chem.* 273, 35299–35306.
31. Brown, M. S., and Goldstein, J. L. (1997) *Cell* 89, 331–340.
32. Javitt, N. B. (1990) *FASEB J.* 4, 161–168.
33. Chomczynski, P., and Sacchi, N. (1987) *Anal. Biochem.* 162, 156–159.
34. Jump, D. B., Veit, A., Santiago, V., Lepar, G., and Herberholz, L. (1988) *J. Biol. Chem.* 263, 7254–7260.
35. Hewish, D. R., and Burgoine, L. A. (1973) *Biochem. Biophys. Res. Commun.* 52, 504–510.
36. Sheng, Z., Otani, H., Brown, M. S., and Goldstein, J. L. (1995) *Proc. Natl. Acad. Sci. U. S. A.* 92, 935–938.
37. Kim, J. B., Sarraf, P., Wright, M., Yao, K. M., Mueller, E., Solanes, G., Lowell, B. B., and Spiegelman, B. M. (1998) *J. Clin. Invest.* 101, 1–9.
38. Wang, D., and Sul, H. S. (1997) *J. Biol. Chem.* 272, 26367–26374.
39. Clarke, S. D., and Jump, D. (1992) *Nutrition and Gene Expression* (Berdanier, C. D., and Hargrove, J. L., eds), pp. 227–245, CRC Press, Boca Raton, FL.
40. Worgall, T. S., Sturley, S. L., Seo, T., Osborne, T. F., and Deckelbaum, R. J. (1998) *J. Biol. Chem.* 273, 25537–25540.
41. Thewke, D. P., Panini, S. R., and Sinensky, M. (1996) *J. Biol. Chem.* 271, 21402–21407.
42. Sessler, A. M., Kaur, N., Palta, J. P., and Ntambi, J. M. (1996) *J. Biol. Chem.* 271, 29854–29858.
43. Thuillier, P., Baillie, R., Sha, X., Clarke, S. D. (1998) *J. lipid Res.* 39, 2329–2338.
44. DuBois, R. N., Gupta, R., Brockman, J., Reddy, B. S., Krakow, S. L., and Lazar, M. A. (1998) *Carcinogenesis (Lond.*) 19, 49–53.
45. Shimomura, I., Shimano, H., Horton, J. D., Goldstein, J. L., and Brown, M. S. (1997) *J. Clin. Invest.* 99, 838–845.