Review
New targets for therapy in breast cancer
Farnesyltransferase inhibitors
Julia Head and Stephen RD Johnston

Department of Medicine, Royal Marsden Hospital, London, UK

Corresponding author: Stephen Johnston, stephen.johnston@rmh.nthames.nhs.uk

Published: 6 October 2004

Breast Cancer Res 2004, 6:262-268 (DOI 10.1186/bcr947)
© 2004 BioMed Central Ltd

Abstract
Current systemic therapies for breast cancer are often limited by their nonspecific mechanism of action, unwanted toxicities on normal tissues, and short-term efficacy due to the emergence of drug resistance. However, identification of the molecular abnormalities in cancer, in particular the key proteins involved in abnormal cell growth, has resulted in development of various signal transduction inhibitor drugs as new treatment strategies against the disease. Protein farnesyltransferase inhibitors (FTIs) were originally designed to target the Ras signal transduction pathway, although it is now clear that several other intracellular proteins are dependent on post-translational farnesylation for their function. Preclinical data revealed that although FTIs inhibit the growth of ras-transformed cells, they are also potent inhibitors of a wide range of cancer cell lines that contain wild-type ras, including breast cancer cells. Additive or synergistic effects were observed when FTIs were combined with cytotoxic agents (in particular the taxanes) or endocrine therapies (tamoxifen). Phase I trials with FTIs have explored different schedules for prolonged administration, and dose-limiting toxicities included myelosuppression, gastrointestinal toxicity and neuropathy. Clinical efficacy against breast cancer was seen for the FTI tipifarnib in a phase II study. Based on promising preclinical data that suggest synergy with taxanes or endocrine therapy, combination clinical studies are now in progress to determine whether FTIs can add further to the efficacy of conventional breast cancer therapies.

Keywords: breast cancer, farnesyltransferase inhibitors

Introduction
Farnesyltransferase inhibitors (FTIs), initially developed to target cancers in which the ras proto-oncogene was mutated and overactive, represent a novel form of anticancer therapy. However, in many tumours that lack ras mutations, activation of Ras protein may still occur because of permanent upstream growth factor activity. Breast carcinomas are known to have a very low (<2%) incidence of ras mutations, and yet aberrant function of the Ras pathway is thought to be common [1]. In transgenic mouse mammary tumours, receptor tyrosine kinase pathways result in activated Ras protein signalling [2], whereas hormone-sensitive MCF-7 breast cancer cells have been shown to express high levels of Ras-related proteins [3]. Thus, a strategy of targeting Ras protein function in cancer need not limit itself to tumours with proven oncogenic ras mutations.

Farnesylation as a novel target
For the Ras protein to become activated it must first associate with the cell membrane, a process that is dependent on prenylation (Fig. 1). Prenylation is the addition of either a farnesyl group or a geranylgeranyl group to a conserved carboxyl-terminal cysteine residue on the Ras protein, a step that can be catalyzed by two different enzymes. Protein farnesyltransferase enables the transfer of a farnesyl group from farnesyl pyrophosphate to the cysteine residue, and it recognizes a specific
sequence of amino acids, the CAAX motif (where C = cysteine, A = aliphatic amino acid, and X = residues such as methionine, serine, leucine, alanine and glutamine). Protein geranylgeranyl transferase (GGPT) type 1 also acts at the CAAX motif, and it is the X residue that determines which enzyme becomes activated [4]. After prenylation the CAAX proteins undergo further processing, the result of which is an increase in the hydrophobic properties of Ras such that it can readily associate with the lipid bilayer of the cell membrane. This enables it to cycle from its inactive GDP-bound state to the active GTP-bound state in response to upstream tyrosine kinase signalling.

One key event resulting from Ras activation is the recruitment of Raf-1 to the cell membrane. Activated Raf-1 then phosphorylates the protein kinases MEK1 and MEK2, which in turn activate mitogen-activated protein kinase/extracellular signal-related kinase (MAPK/ERK), a sequence of events that results in the transcription of target genes that are involved in cell proliferation [5]. In addition, Ras can activate other cellular effectors independent of Raf-1, such as phosphatidylinositol 3-kinase (PI3-K), which signals via an alternative pathway to influence the suppression of apoptosis [6]; the protein kinase MEK kinase, which activates the c-jun transcription factor [7]; and the G proteins Rac and Rho, which are involved in regulation of the cytoskeleton. Despite the fact that there are alternative ways in which prenylation of Ras takes place, farnesylation has attracted most attention because it is critical for oncogenic Ras signalling [8], and FTIs have been developed as a novel drug therapy to target aberrant Ras function in cancer.

Development of farnesyltransferase inhibitors

One approach to development of FTIs was the rational design of several peptidomimetic compounds based on the CAAX sequence of Ras. Ester prodrugs such as L-744,832 were found to inhibit the growth of more than 70% of tumour cell lines [9] and significantly inhibited the growth of spontaneous mammary tumours in H-ras transgenic mice without systemic toxicity [10]. Alternative prodrugs such as FTI-277 were synthesized in which the central portion of the CAAX mimetic was replaced by a rigid spacer group [11]. Others combined the properties of a farnesyl disphosphate analogue with those of a peptidomimetic, such as the bisubstrate inhibitor BMS-186511.

An alternative approach was high throughput screening of natural products or compound libraries, which led to the discovery of the two unrelated compounds SCH 66336 and R115777, both of which are orally active and in the clinical arena. SCH 66336 (ionafarnib; Sarasar™) is a selective, tricyclic piperidinyl piperidine carboxamide developed by Schering Plough Research, and R115777 (tipifarnib; Zarnestra™) is a methyl quinolone developed by Janssen Research Foundation (now part of Johnson and Johnson Pharmaceutical Research and Development). They are both potent inhibitors of farnesyl transferase at nanomolar concentrations and have shown activity in a variety of human tumour lines and animal models [12,13]. There are two other compounds of note: BMS-214,662, a selective imidazole-containing tetrahydrobenzodiazepine that came from a series of nonthiol, tetrapeptide Ras FTIs developed by Bristol Myers Squibb [14]; and L-778,123, a peptidomimetic from Merck & Co Incorporated [15].

Preclinical data with farnesyltransferase inhibitors

Experiments characterizing the sensitivity of various human tumour cell lines to FTIs were pivotal because they showed that the sensitivity did not correlate with the presence of oncogenic ras mutations [13]. Indeed, breast cancer cells that lacked ras mutations but had active protein kinases, in which the transformed phenotype may depend on upstream activation of Ras protein, were especially sensitive to the drugs. Another important initial observation was that many of the cellular effects of FTIs appeared to be cytostatic rather than cytotoxic and that, after removal of FTI from the culture medium, cells reverted to their transformed phenotype [16]. Several lines of in vitro and xenograft data supported the cytostatic effect by showing that FTIs induced either a G1 or G2/M cell cycle arrest [17,18]. In hormone-sensitive, oestrogen receptor (ER)-positive MCF-7 breast cancer xenografts, the FTI R115777 appeared cytostatic on tumour growth in vivo (Fig. 2), but analysis of FTI-treated xenografts revealed a significant fall in cell proliferation index (Ki-67).
and induction of the cdk inhibitor p21cip1/waf1, together with a twofold rise in apoptotic scores [19].

Various conditions in which other cell survival pathways are modulated may determine whether FTIs have a cytotoxic or proapoptotic effect. For example, activation of the PI3-K/Akt pathway (which can be Ras-independent) prevented the FTI L-744,832 from inducing apoptosis in ras-transformed fibroblasts [20]. However, inhibiting this pathway with the PI3-K inhibitor LY-294002 or depriving the cells of serum (which normally promotes cell survival through cytokine/insulin mediated activation of Akt) allowed L-744,832 to induce significant apoptosis in these cells. Thus, FTIs may appear cytostatic in some systems because of activation or over-expression of alternative cell survival pathways, some of which may be independent of Ras. As such, combinations of an FTI with other pathway inhibitors might be a rational approach to maximizing the effect of these compounds. As discussed below, this concept was developed in breast cancer by combining FTIs with tamoxifen, an endocrine agent that is well known to modulate cell survival in ER-positive breast cancer cells.

As FTIs have been developed, controversy has continued to surround exactly which farnesylated proteins are the key targets for the anticancer effect of these agents. Although FTIs clearly inhibit Ras farnesylation, it is unclear whether their antiproliferative effects result exclusively from their inhibition of Ras functioning [21]. For example, it has been shown that centromere binding protein (CENP)-E and CENP-F, which are preferentially expressed in mitotic cells, are direct substrates for FTIs, and that their prenylation can be inhibited by the FTI SCH 66336 [22]. Other intracellular targets for FTIs include peroxosomal membrane [23] and nuclear membrane (lamin A and B) associated proteins [24], or an effect on the PI3-K/Akt cell survival pathway [25]. FTIs also inhibit soft agar growth of several breast cancer cell lines independent of their mutant Ras status [9], probably through an alternative target such as the 21 kDa protein RhoB, which regulates receptor trafficking and cell adhesion/motility [26]. In total, more than 100 polypeptides possess a CAAX sequence that potentially can be farnesylated, and as such FTIs may have multiple targets that may be inhibited to produce a net anticancer effect [27].

Potential for farnesyltransferase inhibitors to enhance efficacy of current breast cancer therapies

In addition to in vitro and in vivo preclinical evidence that breast cancer cells may be growth inhibited by FTIs, emerging data suggest that FTIs could enhance the efficacy of several conventional therapies for breast cancer. A series of combination experiments were performed with ras wild-type breast cancer cells, examining the effects of the FTI L-744,832 in combination with various cytotoxic drugs, including doxorubicin, cisplatin, vinblastine, 5-fluorouracil and paclitaxel. Although the effects on growth inhibition for FTI plus most of these agents were merely additive, the combination of L-744,832 with paclitaxel was clearly synergistic [28]. These findings have been supported by preclinical studies with both tipifarnib and lonafarnib in combination with paclitaxel [29,30]. Indeed, in wap-ras transgenic mice, which develop spontaneous mammary tumours that are resistant to paclitaxel, lonafarnib was able to overcome resistance [29]. The finding that lonafarnib prevents farnesylation of CENP-E and CENP-F raises the possibility that FTIs may inhibit microtubule formation, resulting in cells accumulating in the G2/M phase of the cell cycle, which in turn may lead to enhanced sensitivity to the microtubule stabilizing action of the taxanes. Several clinical trials have been initiated to explore the combination of FTIs with taxane-based chemotherapy (see below).

Perhaps greater interest has surrounded the potential of combinations of FTIs with endocrine agents, in particular whether they can overcome or prevent the endocrine resistance that can develop during prolonged therapy with either tamoxifen or aromatase inhibitors. It has become clear that ER signalling and growth factor pathways crosstalk to modulate endocrine response in breast cancer cells during prolonged therapy [31]. This crosstalk can occur at a number of levels, including the type-1 tyrosine kinase growth factor family (epidermal growth factor receptor and HER2) [32] and the PI3K/Akt pathway [33] interacting directly to activate ER signalling, with evidence that these pathways become upregulated or activated during the development of endocrine resistance [34]. At least four independent groups, using both in vitro
FTI-277, when combined with tamoxifen, maintained ERK1/2 MAPK and Akt [37]. This resulted in greater apoptotic effects and near complete inhibition of phosphorylation of the endocrine agent tamoxifen was more effective than treatment with the tyrosine kinase inhibitor gefitinib and hormone-sensitive MCF-7 breast cancer cells, combined with inhibitors and MEK inhibitors) can treat or even prevent endocrine-resistant growth [35–38]. For example, in hormone-sensitive MCF-7 breast cancer cells, combined treatment with the tyrosine kinase inhibitor gefitinib and the endocrine agent tamoxifen was more effective than either treatment alone, with greater antiproliferative/pro-apoptotic effects and near complete inhibition of phosphorylated ERK1/2 MAPK and Akt [37]. This resulted in greater G0/G1 arrest and suppression of the cell survival protein bcl-2 than are observed with just tamoxifen, promoting the novel concept in breast cancer that combined signal transduction inhibitor/endocrine therapy may be considerably more effective that endocrine therapy alone [39].

Similar data have now emerged that support the combination of FTIs with endocrine therapy in breast cancer. In vivo, tipifarnib produced a modest cytostatic effect on MCF-7 xenograft growth, with evidence of induction of apoptosis and enhanced expression of the cell-cycle inhibitory protein p21 [19]. In contrast, when tipifarnib was combined with tamoxifen or aromatase deprivation therapy, combined treatment induced significantly greater tumour regression as compared with either therapy alone [40]. The mechanism underlying any interaction of FTIs with endocrine therapy remains unclear. Analysis of the excised xenografts revealed significantly lower cell proliferation (Ki-67 scores), without any enhanced apoptosis. Three other groups also reported a similar interaction for FTIs with tamoxifen or aromatase inhibitors, and suggested either a synergistic [41] or an additive antitumour effect [42]. One recent study implied an additive effect on G0/G1 cell cycle arrest, and that FTI-277, when combined with tamoxifen, maintained higher levels of the Cdk inhibitor p21waal/cip1, resulting in an additive effect on inactivation of cyclin E/Cdk2 complexes and decreased phosphorylation of pRb [43]. Whether the effect seen in these studies represents true synergy is sometimes unclear because formal mathematical methods of analysis have not always been employed. However, these emerging data have led to the initiation of several clinical trials in breast cancer to investigate the combination of an FTI with endocrine therapy (see below).

Clinical trials of farnesyltransferase inhibitors in breast cancer

Phase I/II monotherapy studies

A number of phase I studies have been published over the past 3 years in a variety of solid tumours. Initial studies targeted solid tumours with Ras mutations (e.g. colorectal and pancreatic carcinomas [44,45]). Unfortunately, these studies failed to show evidence of efficacy, which might be explained in part by mutations in the K-Ras protein, which can be alternatively prenylated by GGPT-1 and therefore be resistant to FTIs. L-788,123 has recently been shown to inhibit both protein farnesyltransferase and GGPT-1 in a phase I trial [46], and dual inhibitors of this kind may ultimately prove to be more efficacious in K-Ras mutated tumours.

In phase I studies, dose-limiting toxicities included myelosuppression, gastrointestinal toxicity, peripheral neuropathy and fatigue. However, it became clear that the dosing schedule was as important for toxicity as dose. For example, twice daily SCH66336 300–400 mg, given intermittently, was well tolerated [47], but severe toxicity emerged when the same dose was given in a continuous regimen [48]. Similar results were found when using R115777; an intermittent schedule at doses of 300 mg or less twice daily produced infrequent toxicity as compared with continuous dosing, and could be administered for more than 6 months using a 21/28 day schedule, provided the twice daily dose did not exceed 240 mg/m² [49].

To date, only one phase II trial has been reported in patients with breast cancer [50]. Seventy-six patients with advanced breast cancer were treated with tipifarnib using either a continuous dose of 300 or 400 mg twice daily (n = 41) or an intermittent dose of 300 mg twice daily for 21 days followed by 7 days of rest (n = 35). In the continuous dose treatment arm there were four partial responses (10%) lasting between 4 and 12 months and six patients with stable disease (15%) for at least 6 months. In the intermittent dose treatment arm there were five partial responses (14%) and three patients with stable disease (9%). All primary tumours were assessed for ras mutations but only one tumour was found to have such a mutation, which is consistent with previously published data indicating that breast carcinomas contain a low frequency of ras mutations [3]. Clinical efficacy was also independent of ER/progesterone receptor status, but six out of nine patients who responded to R115777 had tumours that were HER2/neu positive. The main toxicities were neutropenia, thrombocytopenia, neurotoxicity and fatigue. The incidence of grade 3 toxicity or greater was significantly less with the intermittent dosing schedule (continuous dose versus intermittent dose): neutropenia 43% versus 14%, thrombocytopenia 9% versus 3%, and neuropathy 12% versus 0%. Thus, although clinical efficacy was similar between patients treated intermittently and those receiving continuous dosing, the side effect profile was significantly improved by using an intermittent schedule. The conclusions of the phase II study were that in breast cancer in which wild-type ras may be driven by upstream growth factor over-expression, FTIs exhibited activity and were well tolerated.

Phase I and II combination studies

Based on encouraging preclinical data outlined above suggesting synergy, there have been a number of published phase I studies of FTIs in combination with
chemotherapy agents used in breast cancer (for review [51]). Lonafarnib, tipifarnib and BMS-214,662 have all been combined with taxanes, whereas lonafarnib and tipifarnib have also been combined with cisplatin or carboplatin, with myelosuppression and gastrointestinal effects being dose-limiting toxicities. In patients with taxane-resistant non-small-cell lung cancer, partial responses were seen when paclitaxel was combined with the FTI lonafarnib [52]. In addition, tipifarnib has been studied in combination with capecitabine, 5-fluorouracil and herceptin, which are all established treatments for metastatic breast cancer. Toxicities were predictable and manageable, with no pharmacokinetic interactions between the drugs and evidence of clinical activity that was considered encouraging. In a study examining the combination of tipifarnib with docetaxel, one complete response, seven partial responses and six patients with stable disease were recorded [53]. In the combination study looking at capecitabine [54], eight patients had stable disease after four courses of treatment, and one patient with melanoma had stable disease after 12 courses. Partial responses were seen in other solid tumours, including breast cancer. To date there are no published phase II combination studies using FTIs and cytotoxics in breast cancer, although studies in combination with taxanes are in progress.

A number of small phase I/II trials have been initiated with FTIs in combination with endocrine therapies, including tamoxifen, fulvestrant, or an aromatase inhibitor (Table 1). Some of these trials are in the post-tamoxifen setting, with at least one trial enrolling patients whose tumor is progressing on tamoxifen, and then adding the FTI tipifarnib to determine whether clinical responses can be observed and resistance reversed. It is unlikely that any overlapping toxicities will be seen for combinations of FTIs with endocrine therapy, although it is important to ensure that no pharmacokinetic interactions exist whereby tamoxifen or aromatase inhibitor induced hepatic enzymes could enhance clearance of FTIs and lower serum concentrations. Recently, pharmacokinetic and pharmacodynamic end-points were assessed using a sequential design in 11 patients [55]; they were treated initially with the FTI tipifarnib (either 200 mg twice daily or 300 mg twice daily for 21/28 days), and after 1 week tamoxifen was added. There was no significant change in the pharmacokinetic profile for tipifarnib. Moreover, the pharmacodynamic end-point (inhibition of farnesyltransferase in peripheral blood mononuclear cells) was enhanced from 30% enzyme suppression to 41% by the combination. In addition, such trials may help to determine the optimal schedule for the combination.

The ultimate clinical test for the hypothesis that FTIs enhance the efficacy of endocrine therapy is the randomized controlled clinical trial. The primary end-point for these trials is to investigate whether time to disease progression can be significantly prolonged by the addition of an FTI to endocrine therapy, thus delaying the emergence of resistance, as demonstrated in various preclinical models described above. Table 2 lists the current randomized, controlled clinical trials of endocrine therapy with or without FTIs in advanced breast cancer. The majority are placebo-controlled, double-blind, randomized phase II studies including only 100–200 patients, and in several studies the primary efficacy end-
This is an article in the third in a review series on New targets for therapy in breast cancer, edited by Stephen RD Johnston.

Other articles in the series can be found at http://breast-cancer-research.com/articles/review-series.asp?series=bcr_NewTargets

point is objective response rate rather than time to disease progression. In the first-line ER-positive setting, such studies are examining whether the combination can provide greater initial antitumour activity than endocrine therapy alone, thereby enhancing the response in tumours with de novo endocrine resistance. Given the mechanism of action of these drugs in combination (i.e. enhanced G1/G2 arrest without enhanced apoptosis), an enhanced clinical benefit rate that includes an assessment of stable disease may be a better end-point for such randomized phase II trials, especially if FTIs ultimately contribute to prolonged control of the disease.

Conclusion

FTIs have shown promise in early preclinical and clinical studies as a novel anticancer agent for breast cancer. Although their true mechanism of action remains unclear, ongoing clinical trials are assessing their potential to enhance the efficacy of current endocrine and cytotoxic therapies in breast cancer. Combinations with other signal transduction inhibitors may be an additional strategy that merits further research.

Competing interests

JH and SRDJ have received research support from Johnson & Johnson Pharmaceutical Research and Development. SRDJ has been on the speaker bureau for Johnson & Johnson Pharmaceutical Research and Development and Schering Plough.

References

1. Clark GJ, Der CJ: Aberrant function of the Ras signal transduction pathway in human breast cancer. Breast Cancer Res Treat 1995, 35:133-144.
2. Norgaard P, Law B, Joseph H, Page DL, Shyr Y, Mays D, Pietenpol JA, Kohl NE, Oliff A, Coffey R, et al.: Treatment with farnesyl-protein transferase inhibitor induces regression of mammary tumors in transforming growth factor (TGF) alpha and TGF alpha/neu transgenic mice by inhibition of mitogenic activity and induction of apoptosis. Clin Cancer Res 1999, 5: 35-42.
3. Clark GJ, Kinch MS, Gilmer TM, Burridge K, Der CJ: Overexpression of the Ras-related TC21/R-Ras2 protein may contribute to the development of human breast cancers. Oncogene 1996, 12:169-176.
4. Casey PJ, Seabra MC: Protein prenyltransferases. J Biol Chem 1996, 271:5289-5292.
5. Marshall CJ: Cell signalling; Raf gets it together. Nature 1996, 383:127-128.
6. Kennedy SG, Wagner AJ, Conzen SD, Jordan J, Bellacosa A, Tsichlis PN, Hay N: The P13-kinase/Ark signaling pathway delivers an anti-apoptotic signal. Genes Dev 1997, 11:701-713.
7. Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson GL: A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 1993, 260:315-319.
8. Kato K, Cox AD, Hisaka MM, Graham SM, Buss JE, Der CJ: Iso- prenylid addition to ras protein is the critical modification for its membrane association and transforming activity. Proc Natl Acad Sci USA 1992, 89:6403-6407.
9. Sepp-Lorenzino L, Ma Z, Rands E, Khol NE, Gibbs JB, Rosen NA: A peptidomimetic inhibitor of farnesyl protein transferase blocks the anchorage-dependent and -independent growth of human tumor cell lines. Cancer Res 1995, 55:5302-5309.
10. Khol NE, Omer CA, Conner MW, Anthony NJ, Davide JP, Desolms SJ, Giuliani E, Gomez RP, Graham SL, Hamilton K, et al.: Inhibition of farnesyl transferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat Med 1995, 1:792-797.
11. Qian Y, Blakovich MA, Saleem M, Seong CM, Wathen SP, Hamilton AD, Sebti SM: Design and structural requirements of potent peptidomimetic inhibitors of farnesylprotein transferase. J Biol Chem 1995, 270:30811-30818.
12. Bishop WR, Bond R, Petrin J, Wang L, Patton R, Doll R, Njoroge G, Catino J, Schwartz J, Windsor W, et al.: Novel tricyclic inhibitors of farnesyl protein transferase. J Biol Chem 1995, 270:30811-30818.
13. End DW, Smets G, Todd AV, Applegate TL, Fuery CJ, Angibaud P, Venet M, Sanz G, Poignet H, Krzakat S, et al.: Characterisation of the antitumor effects of the selective farnesyl protein trans- ferase inhibitor R115777 in vivo and in vitro. Cancer Res 2001, 61:133-137.
14. Johnston SRD: BMS-214662: a novel farnesyl transferase inhibitor. Curr Opin Invest Drugs 2003, 6:72-78.
15. Britten CD, Rownesky E, Yao S-L, Soignet S, Rosen N, Eckhardt SG, Drenghler R, Hammond L, Sui LL, Smith L, et al.: The farnesyl protein transferase (FTPase) inhibitor L-788,123 in patients with solid cancers [abstract]. Proc Am Soc Clin Oncol 1999, 18:A597.
16. Prendergast GC, Davide JP, Desolms SJ, Giuliani E, Graham SL, Gibbs JB, Oliff A, Khol NE: Farnesyltransferase inhibition causes morphological reversion of ras-transformed cells by a complex mechanism that involves regulation of actin cytoskeleton. Mol Cell Biol 1994, 14:4193-4202.
17. Miquel K, Pradines A, Sun J, Qian Y, Hamilton AD, Sebti SM, Favre G: GGTI-298 induces G0/G1 block and apoptosis whereas FTI-277 causes G2-M enrichment in A549 cells. Cancer Res 1997, 57:1846-1850.
18. Sepp-Lorenzino L, Rosen N: A farnesyl-protein transferase inhibitor induces p21 expression and G1 block in p53 wild-type tumor cells. J Biol Chem 1998, 273:20242-20251.
19. Kelland LR, Smith V, Valenti M, Patterson L, Clarke PA, Detre S, End DW, Howes AJ, Dowsett M, Workman P, et al.: Preclinical antitumor activity and pharmacodynamic studies with the farnesyl protein transferase inhibitor R115777 in human breast cancer. Clin Cancer Res 2001, 7:3544-3550.
20. Du W, Liu A, Prendergast GC: Activation of the P13K-AKT pathway masks the pro-apoptotic effects of farnesyltransferase inhibitors. Cancer Res 1999, 59:4208-4212.
21. Cox AD, Der CJ: Farnesyltransferase inhibitors and cancer treatment: tagging simply ras? Biochem Biophys Acta 1997, 1333:F51-F71.
22. Asah HR, James L, Gray K, Carr D, Black S, Armstrong L, Bishop WR, Kirschmeier P: Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENF-F and alter the association of CENP-E with the microtubules. J Biol Chem 2000, 39:30451-30457.
23. James GL, Goldstein JL, Pathak RK, Anderson RG, Brown MS: PxF, a prenylated protein of peroxisomes. J Biol Chem 1994, 269:141-14190.
24. Farnsworth CC, Wolda SL, Gelb MH, Glomset JA: Human lamin B contains a farnesylated cysteine residue. J Biol Chem 1989, 264:20422-20429.
25. Jiang K, Coppola D, Crespo NC: The phosphoinositide 3-OH kinase/AKT2 pathway as a critical target for farnesyltransferase inhibitor-induced apoptosis. Mol Cell Bio 2000, 20:139-148.
26. Liu A, Du W, Liu JP, Jessel TM, Prendergast GC: RhoB alteration is necessary for apoptotic and antineoplastic response to farnesyltransferase inhibitors. Mol Cell Bio 2000, 20:8105-8113.
27. Adjei AA: Protein farnesyl transferase as a target for the development of anticancer agents. Drugs Future 2000, 25: 1069-1078.

28. Maccasini MM, Sepp-Lorenzino L, Kohl NE, Oliff A, Bolog A, Su DS, Danishefsky SJ, Rosen NA: Farnesyl transferase inhibitors cause enhanced mitotic sensitivity to taxol and epothilones. Proc Natl Acad Sci USA 1998, 95:1369-1374.

29. Shi B, Yaremko B, Hafian G, Terracina G, Bishop WR, Liu M, Zhao L, Li: In vitro activity of the farnesyl transferase inhibitor SCH66336 against human breast cancer cells. Cancer Chemother Pharmacol 2000, 46:387-393.

30. Skrzat SG, Bowen CR, End DW: Interaction of the farnesyl protein transferase inhibitor R115777 with cytotoxic combinatorial strategies and clinical agents [abstract]. Proc Am Assoc Cancer Res 1999, 40:523 (A3447).

31. Nicholson RI, McClelland RA, Robertson JRF, Gee JMW: Involvement of steroid hormone and growth factor cross-talk in endocrine response in breast cancer. Endocr Relat Cancer 2000, 7:349-358.

32. Bunone G, Briand P, Miksicek R, Picard D: Phase III Trial of gefitinib, a farnesyltransferase inhibitor, and tamoxifen in hormone receptor positive metastatic breast cancer [abstract]. Proc Am Soc Clin Oncol 2004, 23:A601.

33. Jordan N, Hiscox SE, Barrow D, Gee JMW: Mechanisms of tamoxifen resistance: increased estrogen receptor alpha, ERBB2, and MAPK pathway and direct phosphorylation. J Biol Chem 1999, 274:18777-18788.

34. Khuri F, Glisson BS, Kim ES, Meyers ML, Herbset RS, Munden RF, Tendler C, Zhu Y, et al.: Phase I clinical and pharmacokinetic trial of the farnesyl transferase inhibitor SCH66336 given twice daily in patients with advanced solid tumors. J Clin Oncol 2001, 19:1167-1175.

35. Holden SN, Eckhardt S, Fisher S, Persky M, Mikule C, O'Bryant B, Heffelfinger T, Heffelfinger J, Kim ES, et al.: A phase I clinical and pharmacokinetic trial of the farnesyltransferase inhibitor lonafarnib in patients with advanced solid tumors. Clin Cancer Res 2004, 10:2968-2976; evidence for biological and clinical activity. Cancer Res 2000, 60:1871-1877.

36. Skrzat SG, Bowen CR, End DW: Interaction of the farnesyl protein transferase inhibitor R115777 with cytotoxic combinatorial strategies and clinical agents [abstract]. Proc Am Assoc Cancer Res 1999, 40:523 (A3447).

37. Liao JK: Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 1996, 15:2174-2183.

38. Simonsini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK: Interaction of estrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 2000, 407:539-541.

39. Gey JM, Robertson JFR, Ellis IO, Nicholson RI: Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 1996, 15:2174-2183.

40.霓村 一, 福井一, 松崎 重, 金川 昭, Tumor growth inhibition of hormone-dependent human breast cancer xenografts treated with the farnesyltransferase inhibitor R115777 on a 21-day dosing schedule [abstract]. Proc Am Soc Clin Oncol 1999, 18:A601.

41. Phillips DJ, Liu M, Liao JK: Signal transduction pathways operate during the adaptation of MCF-7 cells to long-term estrogen deprivation. J Biol Chem 2003, 278:30458-30468.

42. Martin LA, Farmer I, Johnston SRD, Ali S, Marshall C, Dowsett M: Enhanced estrogen receptor (ER) alpha, ERBB2, and MAPK signal transduction pathways operate during the adaptation of MCF-7 cells to long-term estrogen deprivation. J Biol Chem 2003, 278:30458-30468.

43. Qi L, Gey JM, Schell LI, Jackman RA, Fatin W, Shih P, Sartor O, Zijlstra J, Clark GJ: Phase I clinical and pharmacokinetic trial of the farnesyl transferase inhibitor lonafarnib; evidence of clinical activity. Cancer Res 2000, 60:1871-1877.

44. Cunningham D, de Gramont A, Scheithauer W, Smakal M, Humblet Y, Karube A, van de Velde H, Karasek P, Oettle H, Verveenne W, Schlantsch A, Schotski F, Post S, Verslype C, Neumann H, Dranow E, van de Velde H, Karasek P, Oettle H, Verveenne W, Schlantsch A, Schotski F, Post S, Verslype C, Neumann H, Dranow E: Phase III Trial of gefitinib, a farnesyl plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer (PC). J Clin Oncol 2004, 22:1430-1438.

45. Loblaw RB, Liu M, Buser CA, Davide JP, Depuy E, Hamilton K, Koblan KS, Lee Y, Mosser S, Motzel SL, et al.: Preclinical and clinical trial of the farnesyl transferase inhibitor R115777 and capcitabine in patients with advanced solid malignancies [abstract]. Proc Am Soc Clin Oncol 2004, 23:A601.

46. Doisneau-Sixou SF, Celestac P, Faye J-C, Favre G, Sutherland RL: Additive effects of tamoxifen and the farnesyl transferase inhibitor FTI-277 on inhibition of MCF-7 breast cancer cell cycle progression. Int J Cancer 2003, 108:789-798.