On the Total Perimeter of Homothetic Convex Bodies
in a Convex Container∗

Adrian Dumitrescu† Csaba D. Tóth‡

Tuesday 1st March, 2022

Abstract

For two planar convex bodies, C and D, consider a packing S of n positive homothets of C contained in D. We estimate the total perimeter of the bodies in S, denoted $\text{per}(S)$, in terms of $\text{per}(D)$ and n. When all homothets of C touch the boundary of the container D, we show that either $\text{per}(S) = O(\log n)$ or $\text{per}(S) = O(1)$, depending on how C and D “fit together,” and these bounds are the best possible apart from the constant factors. Specifically, we establish an optimal bound $\text{per}(S) = O(\log n)$ unless D is a convex polygon and every side of D is parallel to a corresponding segment on the boundary of C (for short, D is parallel to C). When D is parallel to C but the homothets of C may lie anywhere in D, we show that $\text{per}(S) = O((1 + \text{esc}(S)) \log n / \log \log n)$, where $\text{esc}(S)$ denotes the total distance of the bodies in S from the boundary of D. Apart from the constant factor, this bound is also the best possible.

Keywords: convex body, perimeter, maximum independent set, homothet, Ford disks, traveling salesman, approximation algorithm.

1 Introduction

A finite set $S = \{C_1, \ldots, C_n\}$ of convex bodies is a packing in a convex body (container) $D \subset \mathbb{R}^2$ if the bodies $C_1, \ldots, C_n \in S$ are contained in D and they have pairwise disjoint interiors. The term convex body above refers to a compact convex set with nonempty interior in \mathbb{R}^2. The perimeter of a convex body $C \subset \mathbb{R}^2$ is denoted $\text{per}(C)$, and the total perimeter of a packing S is denoted $\text{per}(S) = \sum_{i=1}^{n} \text{per}(C_i)$. Our interest is estimating $\text{per}(S)$ in terms of n. In this paper, we consider packings S that consist of positive homothets of a convex body C. We start with an easy general bound for this case.

Proposition 1. For every pair of convex bodies, C and D, and every packing S of n positive homothets of C in D, we have $\text{per}(S) \leq \rho(C, D) \sqrt{n}$, where $\rho(C, D)$ depends on C and D. Apart from this multiplicative constant, this bound is the best possible.

Our goal is to substantially improve the dependence of $\text{per}(S)$ on n in two different scenarios, motivated by applications to the traveling salesman problem with neighborhoods (TSPN). In

* A preliminary version of this paper appeared in Proceedings of the 17th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX 2013), Berkeley, CA, 2013, LNCS 8096, pp. 96–109.
† Department of Computer Science, University of Wisconsin–Milwaukee, WI, USA. Email: dumitres@uwm.edu. Supported in part by NSF grant DMS-1001667.
‡ Department of Mathematics, California State University, Northridge, Los Angeles, CA, USA; and Department of Computer Science, Tufts University, Medford, MA, USA. Email: cdtoth@acm.org.
Sections 3–4, we prove tight bounds on \(\text{per}(S) \) in terms of \(n \) when all homothets in \(S \) touch the boundary of the container \(D \) (see Fig. 1). In Section 5, we prove tight bounds on \(\text{per}(S) \) in terms of \(n \) and the total distance of the bodies in \(S \) from the boundary of \(D \). Specifically, for two convex bodies, \(C \subset D \subset \mathbb{R}^2 \), let the escape distance \(\text{esc}(C) \) be the distance between \(C \) and the boundary of \(D \) (Fig. 2, right); and for a packing \(S = \{C_1, \ldots, C_n\} \) in a container \(D \), let \(\text{esc}(S) = \sum_{i=1}^{n} \text{esc}(C_i) \).

Figure 1: Left: a packing of disks in a rectangle container, where all disks touch the boundary of the container. Right: a convex body \(C \) in the interior of a trapezoid \(D \) at distance \(\text{esc}(C) \) from the boundary of \(D \). The trapezoid \(D \) is parallel to \(C \): every side of \(D \) is parallel and “corresponds” to a side of \(C \).

Homothets touching the boundary of a convex container. We would like to bound \(\text{per}(S) \) in terms of \(\text{per}(D) \) and \(n \) when all homothets in \(S \) touch the boundary of \(D \) (see Fig. 1). Specifically, for a pair of convex bodies, \(C \) and \(D \), let \(f_{C,D}(n) \) denote the maximum perimeter \(\text{per}(S) \) of a packing of \(n \) positive homothet of \(C \) in the container \(D \), where each element of \(S \) touches the boundary of \(D \). We would like to estimate the growth rate of \(f_{C,D}(n) \) as \(n \) goes to infinity. We prove a logarithmic upper bound \(f_{C,D}(n) = O(\log n) \) for every pair of convex bodies, \(C \) and \(D \).

Proposition 2. For every pair of convex bodies, \(C \) and \(D \), and every packing \(S \) of \(n \) positive homothets of \(C \) in \(D \), where each element of \(S \) touches the boundary of \(D \), we have \(\text{per}(S) \leq \rho(C,D) \log n \), where \(\rho(C,D) \) depends on \(C \) and \(D \).

The upper bound \(f_{C,D}(n) = O(\log n) \) is asymptotically tight for some pairs \(C \) and \(D \), and not so tight for others. For example, it is not hard to attain an \(\Omega(\log n) \) lower bound when \(C \) is an axis-aligned square, and \(D \) is a triangle (Fig. 2, left). However, \(f_{C,D}(n) = \Theta(1) \) when both \(C \) and \(D \) are axis-aligned squares. We start by establishing a logarithmic lower bound in the simple setting where \(C \) is a circular disk and \(D \) is a unit square.

Theorem 1. The total perimeter of \(n \) pairwise disjoint disks lying in the unit square \(U = [0,1]^2 \) and touching the boundary of \(U \) is \(O(\log n) \). Apart from the constant factor, this bound is the best possible.

We determine \(f_{C,D}(n) \) up to constant factors for all pairs of convex bodies of bounded description complexity. We show that either \(f_{C,D} = \Theta(\log n) \) or \(f_{C,D}(n) = \Theta(1) \) depending on how \(C \) and \(D \) “fit together”. To distinguish these cases, we need the following definitions.

1. Throughout this paper, \(\log x \) denotes the logarithm of \(x \) to base 2.
2. A planar set has **bounded description complexity** if its boundary consists of a finite number of algebraic curves of bounded degrees.
Definition of “parallel” convex bodies. For a direction vector $d \in S$ and a convex body C, the supporting line $\ell_d(C)$ is a directed line of direction d such that $\ell_d(C)$ is tangent to C, and the closed halfplane on the left of $\ell_d(C)$ contains C. If $\ell_d(C) \cap C$ is a nondegenerate line segment, we refer to it as a side of C.

We say that a convex polygon (container) D is parallel to a convex body C when for every direction $d \in S$ if $\ell_d(D) \cap D$ is a side of D, then $\ell_d(C) \cap C$ is also a side of C. Figure 2 (right) depicts a square D parallel to a convex hexagon C. For example, every positive homothet of a convex polygon P is parallel to P; and all axis-aligned rectangles are parallel to each other.

Classification. We generalize the lower bound construction in Theorem 1 to arbitrary convex bodies, C and D, of bounded description complexity, where D is not parallel to C.

Theorem 2. Let C and D be two convex bodies of bounded description complexity. For every packing S of n positive homothets of C in D, where each element of S touches the boundary of D, we have $\text{per}(S) \leq \rho(C,D) \log n$, where $\rho(C,D)$ depends on C and D. Apart from the factor $\rho(C,D)$, this bound is the best possible unless D is a convex polygon parallel to C.

If D is a convex polygon parallel to C, and every homothet of C in a packing S of n homothets touches the boundary of D, then it is not difficult to see that $\text{per}(S)$ is bounded from above by an expression independent of n.

Proposition 3. Let C and D be convex bodies such that D is a convex polygon parallel to C. Then every packing S of n positive homothets of C in D, where each element of S touches the boundary of D, we have $\text{per}(S) \leq \rho(C,D)$, where $\rho(C,D)$ depends on C and D.

Total distance form the boundary of a convex container. In the general case, when the homothets of C can be in the interior of the container D, we improve the dependence on n of the general bound Proposition 1 by using the escape distance, namely the total distance of the homothets of C from the boundary of D. Combining the bound in Proposition 1 with inequality (2) yields the following bound.

Proposition 4. For every pair of convex bodies, C and D, and every packing S of n positive homothets of C in D, we have $\text{per}(S) \leq \rho(C,D)(\text{esc}(S) + \log n)$, where $\rho(C,D)$ depends on C and D.

By Theorem 2, the logarithmic upper bound in terms of n is the best possible when D is not parallel to C. When D is a convex polygon parallel to C, we derive the following upper bound for $\text{per}(S)$, which is also asymptotically tight in terms of n.
Theorem 3. Let C and D be two convex bodies such that D is a convex polygon parallel to C. For every packing S of n positive homothets of C in D, we have

$$\per(S) \leq \rho(C, D) (\per(D) + \esc(S)) \frac{\log n}{\log \log n},$$

where $\rho(C, D)$ depends on C and D. For every $n \geq 1$, there exists a packing S of n positive homothets of C in D such that $\per(S) \geq \sigma(C, D) (\per(D) + \esc(S)) \frac{\log n}{\log \log n}$, where $\sigma(C, D)$ depends on C and D.

Related Previous Work. We consider the total perimeter $\per(S)$ of a packing S of n homothets of a convex body C in a convex container D in Euclidean plane. Other variants have also been considered: (1) If S is a packing of n arbitrary convex bodies in D, then it is easy to subdivide D by $n - 1$ near diameter segments into n convex bodies of total perimeter close to $\per(D) + 2(n - 2)diam(D)$. Glazaryn and Morić [11] have recently proved that this lower bound is the best possible when D is a square or a triangle. For an arbitrary convex body D, they prove an upper bound of $\per(S) \leq 1.22 \per(D) + 2(n - 1)diam(D)$. (2) If all bodies in S are congruent to a convex body C, then $\per(S) = n \per(C)$, and bounding $\per(S)$ from above reduces to the classical problem of determining the maximum number of interior-disjoint congruent copies of C that fit in D [3, Section 1.6].

Considerations of the total surface area of a ball packing in \mathbb{R}^3 also play an important role in a strong version of the Kepler conjecture [3, 13].

Motivation. In the Euclidean Traveling Salesman Problem (ETSP), given a set S of n points in \mathbb{R}^d, one wants to find a closed polygonal chain (tour) of minimum Euclidean length whose vertex set is S. The Euclidean TSP is known to be NP-hard, but it admits a PTAS in \mathbb{R}^d, where $d \in \mathbb{N}$ is constant [2]. In the TSP with Neighborhoods (TSPN), given a set of n sets (neighborhoods) in \mathbb{R}^d, one wants to find a closed polygonal chain of minimum Euclidean length that has a vertex in each neighborhood. The neighborhoods are typically simple geometric objects (of bounded description complexity) such as disks, rectangles, line segments, or lines. TSPN is known to be NP-hard; and it admits a PTAS for certain types of neighborhoods [16], but is hard to approximate for others [6].

For n connected (possibly overlapping) neighborhoods in the plane, TSPN can be approximated with ratio $O(\log n)$ by an algorithm of Mata and Mitchell [15]. See also the survey by Bern and Eppstein [4] for a short outline of this algorithm. At its core, the $O(\log n)$-approximation relies on the following early result by Levcopoulos and Lingas [14]: every (simple) rectilinear polygon P with n vertices, r of which are reflex, can be partitioned into rectangles of total perimeter $O(\per(P) \log r)$ in $O(n \log n)$ time.

A natural approach for finding a solution to TSPN is the following [7, 9] (in particular, it achieves a constant-ratio approximation for unit disks): Given a set S of n neighborhoods, compute a maximal subset $I \subseteq S$ of pairwise disjoint neighborhoods (i.e., a packing), compute a good tour for I, and then augment it by traversing the boundary of each set in I. Since each neighborhood in $S \setminus I$ intersects some neighborhood in I, the augmented tour visits all members of S. This approach is particularly appealing since good approximation algorithms are often available for pairwise disjoint neighborhoods [16]. The bottleneck of this approach is the length increase incurred by extending a tour of I by the total perimeter of the neighborhoods in I. An upper bound $\per(I) = o(OPT(I) \log n)$ would immediately imply an improved $o(\log n)$-factor approximation ratio for TSPN.

Theorem 2 shows that this approach cannot beat the $O(\log n)$ approximation ratio for most types of neighborhoods (e.g., circular disks). In the current formulation, Proposition 2 yields
the upper bound $\text{per}(I) = O(\log n)$ assuming a convex container, so in order to use this bound, a tour of I needs to be augmented into a convex partition; this may increase the length by a $\Theta(\log n / \log \log n)$-factor in the worst case \[8, 13\]. For convex polygonal neighborhoods, the bound $\text{per}(I) = O(1)$ in Proposition \[3\] is applicable after a tour for I has been augmented into a convex partition with parallel edges (e.g., this is possible for axis-aligned rectangle neighborhoods, and an axis-aligned approximation of the optimal tour for I). The convex partition of a polygon with $O(1)$ distinct orientations, however, may increase the length by a $\Theta(\log n)$-factor in the worst case \[13\]. Overall our results show that we cannot beat the current $O(\log n)$ ratio for TSPN for any type of homothetic neighborhoods if we start with an arbitrary independent set I and an arbitrary near-optimal tour for I.

2 Preliminaries: A Few Easy Pieces

Proof of Proposition \[1\] Let $\mu_i > 0$ denote the homothety factor of C_i, i.e., $C_i = \mu_i C$, for $i = 1, \ldots, n$. Since S is a packing we have $\sum_{i=1}^n \mu_i^2 \cdot \text{area}(C) \leq \text{area}(D)$. By the Cauchy-Schwarz inequality we have $(\sum_{i=1}^n \mu_i)^2 \leq n \sum_{i=1}^n \mu_i^2$. It follows that

$$\text{per}(S) = \sum_{i=1}^n \text{per}(C_i) = \text{per}(C) \sum_{i=1}^n \mu_i \leq \text{per}(C) \sqrt{n} \left(\sum_{i=1}^n \mu_i^2 \right) \leq \text{per}(C) \sqrt{\frac{\text{area}(D)}{\text{area}(C)}} \sqrt{n}.$$

Set now $\rho(C, D) := \text{per}(C) \sqrt{\frac{\text{area}(D)}{\text{area}(C)}}$, and the proof of the upper bound is complete.

For the lower bound, consider two convex bodies, C and D. Let U be a maximal axis-aligned square inscribed in D, and let μC be the largest positive homothet of C that fits into U. Note that $\mu = \mu(C, D)$ is a constant that depends on C and D only. Subdivide U into $\lceil \sqrt{n} \rceil^2$ congruent copies of the square $\frac{1}{\lceil \sqrt{n} \rceil} C$. Let S be the packing of n copies of $\frac{1}{\lceil \sqrt{n} \rceil} C$ (i.e., n translates), with at most one in each square $\frac{1}{\lceil \sqrt{n} \rceil} U$. The total perimeter of the packing is $\text{per}(S) = n \mu \frac{1}{\lceil \sqrt{n} \rceil} \text{per}(C) = \Theta(\sqrt{n})$, as claimed. \[\square\]

Proof of Proposition \[2\] Let $S = \{C_1, \ldots, C_n\}$ be a packing of n homothets of C in D where each element of S touches the boundary of D. Observe that $\text{per}(C_i) \leq \text{per}(D)$ for all $i = 1, \ldots, n$. Partition the elements of S into subsets as follows. For $k = 1, \ldots, \lceil \log n \rceil$, let S_k denote the set of homothets C_i such that $\text{per}(D)/2^k < \text{per}(C_i) \leq \text{per}(D)/2^{k-1}$; and let S_0 be the set of homothets C_i of perimeter less than $\text{per}(D)/2^\lceil \log n \rceil$. Then the sum of perimeters of the elements in S_0 is $\text{per}(S_0) \leq n \text{per}(D)/2^{\lceil \log n \rceil} \leq \text{per}(D)$, since $S_0 \subseteq S$ contains at most n elements altogether.

For $k = 1, \ldots, \lceil \log n \rceil$, the diameter of each $C_i \in S_k$ is bounded above by

$$\text{diam}(C_i) < \text{per}(C_i)/2 \leq \text{per}(D)/2^k. \quad (1)$$

Consequently, every point of a body $C_i \in S_k$ lies at distance at most $\text{per}(D)/2^k$ from the boundary of D, denoted ∂D. Let R_k be the set of points in D at distance at most $\text{per}(D)/2^k$ from ∂D. Then

$$\text{area}(R_k) \leq \text{per}(D) \frac{\text{per}(D)}{2^k} = \frac{(\text{per}(D))^2}{2^k}. \quad (2)$$
Since S consists of homothets, the area of any element $C_i \in S_k$ is bounded from below by

$$\text{area}(C_i) = \text{area}(C) \left(\frac{\text{per}(C_i)}{\text{per}(C)} \right)^2 \geq \text{area}(C) \left(\frac{\text{per}(D)}{2^k \text{per}(C)} \right)^2.$$ (3)

By a volume argument, [2] and [3] yield

$$|S_k| \leq \frac{\text{area}(R_k)}{\min_{C_i \in S_k} \text{area}(C_i)} \leq \frac{(\text{per}(D))^2 / 2^k}{\text{area}(C)(\text{per}(D))^2 / (2^k \text{per}(C))^2} = \frac{(\text{per}(D))^2}{\text{area}(C)} \cdot 2^k.$$

Since for $C_i \in S_k$, $k = 1, \ldots, \lfloor \log n \rfloor$, we have $\text{per}(C_i) \leq \text{per}(D)/2^{k-1}$, it follows that

$$\text{per}(S_k) \leq |S_k| \cdot \frac{(\text{per}(D))^2}{2^{k-1}} \leq 2 \frac{(\text{per}(C))^2}{\text{area}(C)} \text{per}(D).$$

Hence the sum of perimeters of all elements in S is bounded by

$$\text{per}(S) = \sum_{k=0}^{\lfloor \log n \rfloor} \text{per}(S_k) \leq \left(1 + 2 \frac{(\text{per}(C))^2}{\text{area}(C)} \lfloor \log n \rfloor \right) \text{per}(D),$$

as required. \hfill \square

Proof of Proposition 3. Let $\rho'(C)$ denote the ratio between $\text{per}(C)$ and the length of a shortest side of C. Recall that each $C_i \in S$ touches the boundary of polygon D. Since D is parallel to C, the side of D that supports C_i must contain a side of C_i. Let a_i denote the length of this side.

$$\text{per}(S) = \sum_{i=1}^{n} \text{per}(C_i) = \sum_{i=1}^{n} a_i \frac{\text{per}(C_i)}{a_i} \leq \rho'(C) \sum_{i=1}^{n} a_i \leq \rho'(C) \text{per}(D).$$

Set now $\rho(C, D) := \rho'(C) \text{per}(D)$, and the proof is complete. \hfill \square

Proof of Proposition 4. The proof is similar to that of Proposition 2 with a few adjustments. Let $S = \{C_1, \ldots, C_n\}$ be a packing of n homothets of C in D. Note that $\text{per}(C_i) \leq \text{per}(D)$ for all $i = 1, \ldots, n$. Partition the elements of S into subsets as follows. Let

$$S^\text{in} = \{C_i \in S : \text{per}(C_i) \leq \text{esc}(C_i)\} \text{ and } S^\text{bd} = S \setminus S^\text{in}.$$

For $k = 1, \ldots, \lfloor \log n \rfloor$, let S_k denote the set of homothets $C_i \in S^\text{bd}$ such that $\text{per}(D)/2^k \leq \text{per}(C_i) \leq \text{per}(D)/2^{k-1}$; and let S_0 be the set of homothets $C_i \in S^\text{bd}$ of perimeter at most $\text{per}(D)/2^\lfloor \log n \rfloor$.

The sum of perimeters of the elements in S^in is $\text{per}(S^\text{in}) \leq \text{esc}(S^\text{in}) \leq \text{esc}(S)$. We next consider the elements in S^bd. The sum of perimeters of the elements in S_0 is $\text{per}(S_0) \leq n \text{per}(D)/2^\lfloor \log n \rfloor \leq \text{per}(D)$, since $S_0 \subseteq S$ contains at most n elements altogether.

For $k = 1, \ldots, \lfloor \log n \rfloor$, the diameter of each $C_i \in S_k$ is bounded above by $\text{diam}(C_i) < \text{per}(C_i)/2 \leq \text{per}(D)/2^k$. Observe that every point of a body $C_i \in S_k$ lies at distance at most $\text{esc}(C_i) + \text{diam}(C_i) \leq \text{per}(C_i) + \text{diam}(C_i) \leq 1.5 \text{per}(C_i) \leq 3 \text{per}(D)/2^k$ from ∂D. Let now R_k be the set of points in D at distance at most $3 \text{per}(D)/2^k$ from ∂D. Then

$$\text{area}(R_k) \leq \text{per}(D) \frac{3 \text{per}(D)}{2^k} = \frac{3 (\text{per}(D))^2}{2^k}.$$
Analogously to the proof of Proposition 2, a volume argument yields
\[|S_k| \leq 3 \frac{(\text{per}(C))^2}{\text{area}(C)} \cdot 2^k. \]

It follows that
\[\text{per}(S_k) \leq |S_k| \cdot \frac{\text{per}(D)}{2^k-1} \leq 6 \frac{(\text{per}(C))^2}{\text{area}(C)} \text{ per}(D). \]

Hence the sum of perimeters of all elements in \(S \) is bounded by
\[\text{per}(S) \leq \text{esc}(S) + \left(1 + 6 \frac{(\text{per}(C))^2}{\text{area}(C)} \left\lceil \log n \right\rceil \right) \text{ per}(D), \]
as required.

\[\square \]

3 Disks Touching the Boundary of a Square: Proof of Theorem 1

Let \(S \) be a set of \(n \) interior-disjoint disks in the unit square \(U = [0,1]^2 \) that touch the boundary of \(U \). From Proposition 2, we deduce the upper bound \(\text{per}(S) = O(\log n) \), as required. To prove the matching lower bound, it remains to construct a packing of \(O(n) \) disks in the unit square \(U \) such that every disk touches the \(x \)-axis, and the sum of their diameters is \(\Omega(\log n) \). We present two constructions attaining this bound: (i) an explicit construction in Subsection 3.1 which will be generalized in Section 4 and (ii) a greedy disk packing.

3.1 An Explicit Construction

For convenience, we use the unit square \([-\frac{1}{2}, \frac{1}{2}] \times [0,1]\) for our construction. To each disk we associate its vertical projection interval (on the \(x \)-axis). The algorithm greedily chooses disks of monotonically decreasing radii such that (1) every diameter is \(1/16^k \) for some \(k \in \mathbb{N} \); and (2) if the projection intervals of two disks overlap, then one interval contains the other.

For \(k = 0, 1, \ldots, \lfloor \log_{16} n \rfloor \), denote by \(S_k \) the set of disks of diameter \(1/16^k \), constructed by our algorithm. We recursively allocate a set of intervals \(X_k \subseteq [-\frac{1}{2}, \frac{1}{2}] \) to \(S_k \), and then choose disks in \(S_k \) such that their projection intervals lie in \(X_k \). Initially, \(X_0 = [-\frac{1}{2}, \frac{1}{2}] \), and \(S_0 \) contains the disk of diameter 1 inscribed in \([-\frac{1}{2}, \frac{1}{2}] \times [0,1] \). The length of each maximal interval \(I \subseteq X_k \) will be a multiple of \(1/16^k \), so \(I \) can be covered by projection intervals of interior-disjoint disks of diameter \(1/16^k \) touching the \(x \)-axis. Every interval \(I \subseteq X_k \) will have the property that any disk of diameter \(1/16^k \) whose projection interval is in \(I \) is disjoint from any (larger) disk in \(S_j \), \(j < k \).

Consider the disk \(Q \) of diameter 1, centered at \((0, \frac{1}{2})\), and tangent to the \(x \)-axis (see Fig. 3). It can be easily verified that:

(i) the locus of centers of disks tangent to both \(Q \) and the \(x \)-axis is the parabola \(y = \frac{1}{2}x^2 \); and
(ii) any disk of diameter \(1/16 \) and tangent to the \(x \)-axis whose projection interval is in \(I_1(Q) = [-\frac{1}{2}, -\frac{1}{4}] \cup [\frac{1}{4}, \frac{1}{2}] \) is disjoint from \(Q \).

Indeed, the center of any such disk is \((x_1, \frac{1}{10})\), for \(x_1 \leq -\frac{5}{16} \) or \(x_1 \geq \frac{5}{16} \), and hence lies below the parabola \(y = \frac{1}{2}x^2 \). Similarly, for all \(k \in \mathbb{N} \), any disk of diameter \(1/16^k \) and tangent to the \(x \)-axis whose projection interval is in \(I_k(Q) = [-\frac{1}{2^k}, -\frac{1}{2^{k+1}}] \cup [\frac{1}{2^{k+1}}, \frac{1}{2^k}] \) is disjoint from \(Q \). For an arbitrary disk \(D \) tangent to the \(x \)-axis, and an integer \(k \geq 1 \), denote by \(I_k(D) \subseteq [-\frac{1}{2}, \frac{1}{2}] \) the pair of intervals corresponding to \(I_k(Q) \); for \(k = 0 \), \(I_k(D) \) consists of only one interval.
projection intervals are contained in \(S_0 \) selected disks in the unit square \([0, 1] \times [0, 1]\). Assume that we have already defined the intervals in \(X_{k-1} \), and selected disks in \(S_{k-1} \). Let \(X_k \) be the union of the interval pairs \(I_{k-j}(D) \) for all \(D \in S_j \) and \(j = 0, 1, \ldots, k-1 \). Place the maximum number of disks of diameter \(1/16^k \) into \(S_k \) such that their projection intervals are contained in \(X_k \). For a disk \(D \in S_j \) \((j = 0, 1, \ldots, k-1) \) of diameter \(1/16^j \), the two intervals in \(X_{k-j} \) each have length \(\frac{1}{2} \cdot \frac{1}{16^j} = \frac{8^{k-j}}{2} \cdot \frac{1}{16^j} \), so they can each accommodate the projection intervals of \(\frac{8^{k-j}}{2} \) disks in \(S_k \).

We prove by induction on \(k \) that the length of \(X_k \) is \(\frac{1}{2} \), and so the sum of the diameters of the disks in \(S_k \) is \(\frac{1}{2} \), \(k = 1, 2, \ldots, \lceil \log_{16} n \rceil \). The interval \(X_0 = [-\frac{1}{2}, \frac{1}{2}] \) has length 1. The pair of intervals \(X_1 = [-\frac{1}{2}, -\frac{1}{4}] \cup [\frac{1}{4}, \frac{1}{2}] \) has length \(\frac{1}{2} \). For \(k = 2, \ldots, \lceil \log_{16} n \rceil \), the set \(X_k \) consists of two types of (disjoint) intervals: (a) The pair of intervals \(I_1(D) \) for every \(D \in S_{k-1} \) covers half of the projection interval of \(D \). Over all \(D \in S_{k-1} \), they jointly cover half the length of \(X_{k-1} \). (b) Each pair of intervals \(I_{k-j}(D) \) for \(D \in S_{k-j} \), \(j = 0, 1, \ldots, k-2 \), has half the length of \(I_{k-j-1}(D) \). So the sum of the lengths of these intervals is half the length of \(X_{k-1} \); although they are disjoint from \(X_{k-1} \). Altogether, the sum of lengths of all intervals in \(X_k \) is the same as the length of \(X_{k-1} \). By induction, the length of \(X_{k-1} \) is \(\frac{1}{2} \), hence the length of \(X_k \) is also \(\frac{1}{2} \), as claimed. This immediately implies that the sum of diameters of the disks in \(\bigcup_{j=0}^{\lceil \log_{16} n \rceil} S_k \) is \(1 + \frac{1}{2} \lceil \log_{16} n \rceil \). Finally, one can verify that the total number of disks used is \(O(n) \). Write \(K = \lceil \log_{16} n \rceil \). Indeed, \(|S_0| = 1 \), and \(|S_k| = |X_k|/16^{-k} = 16^k/2 \), for \(k = 1, \ldots, K \), where \(|X_k| \) denotes the total length of the intervals in \(X_k \). Consequently, \(|S_0| + \sum_{k=1}^{K} |S_k| = O(16^K) = O(n) \), as required.

3.2 A Greedy Disk Packing

The following simple greedy algorithm produces a packing \(S_n \) of \(n \) disks in the unit square \(U = [0, 1]^2 \) with all disks touching the boundary of \(U \) and whose total perimeter is \(\Omega(\log n) \). For \(i = 1 \) to \(n \), let \(C_i \) be a disk of maximum radius that lies in \(U \setminus \bigcup_{j<i} C_j \) and intersects \(\partial U \), and let \(S_n = \{ C_1, \ldots, C_n \} \); refer to Fig. 4 (left). The radius of \(C_1 \) is \(1/2 \), the radii of \(C_2, \ldots, C_5 \) are \(3-2\sqrt{2} \), etc. We use Apollonian circle packings \cite{12} to derive the lower bound \(\text{per}(S_n) = \Omega(\log n) \).

We now consider a greedy algorithm in a slightly different setting, applicable to Apollonian circles. For \(r_1, r_2 > 0 \), we construct a set \(F_n(r_1, r_2) \) of \(n \) disks by the following greedy algorithm. Let \(A_1 \) and \(A_2 \) be two tangent disks of radii \(r_1 \) and \(r_2 \) that are also tangent to the \(x \)-axis from
Recall that the first two disks in Proposition 5.

Figure 4: Left: A greedy packing of $n = 7$ disks in $[0, 1]^2$. Right: Ford disks visible in the window $[0, 1]^2$.

Proposition 5. $\text{per}(S_n) \geq \text{per}(F_n(1/2, 3 - 2\sqrt{2}))$.

Proof. Recall that the first two disks in S_n have radii $1/2$ and $3 - 2\sqrt{2}$. Let I be the line segment between the tangency points of A_1 and A_2 with the bottom side of $[0, 1]^2$. Because of the greedy strategy, all disks in S_n that intersect segment I are in $F_n(1/2, 3 - 2\sqrt{2})$. The radius of every disk in $S_n \setminus F_n(1/2, 3 - 2\sqrt{2})$ is at least as large as any disk in $F_n(1/2, 3 - 2\sqrt{2}) \setminus S_n$. Therefore, there is a one-to-one correspondence between S_n and $F_n(1/2, 3 - 2\sqrt{2})$ such that each disk in S_n corresponds to a disk of the same or smaller radius in $F_n(1/2, 3 - 2\sqrt{2})$.

Given two tangent disks of radii r_1 and r_2 that are also tangent to the x-axis, there is a unique disk tangent to both these disks and the x-axis, and its radius r_3 satisfies $r_3^{-1/2} = r_1^{-1/2} + r_2^{-1/2}$. Observe that $r_3 = r_3(r_1, r_2)$ is a continuous and monotonically increasing function of both variables, r_1 and r_2. Therefore, if $r_1 \leq r_1'$ and $r_2 \leq r_2'$, then

$$\text{per}(F_n(r_1, r_2)) \leq \text{per}(F_n(r_1', r_2')).$$ \hfill (4)

This observation allows us to bound $\text{per}(S_n)$ from below by the perimeter of a finite subfamily of Ford disks.

The Ford disks $\square_{p,q}$ are a packing of an infinite set of disks in the halfplane $\{(x, y) \in \mathbb{R}^2 : y \geq 0\}$, where each disk is tangent to the x-axis from above. Every pair $(p, q) \in \mathbb{N}^2$ of relative prime positive integers defines a Ford circle $C_{p,q}$ of radius $1/(2q^2)$ centered at $(p/q, 1/(2q^2))$; see Fig. 4 (right). The Ford disks $C_{p,1}$ have the largest radius $1/2$; all other Ford disks have smaller radii and each is tangent to two larger Ford disks. Hence, the set of the n largest Ford disks that touch the unit segment $[0, 1]$ is exactly $F_n(1/2, 1/2)$.

Proposition 6. $\text{per}(F_n(1/2, 1/2)) = \Omega(\log n)$.

Proof. For a positive integer Q, the number of Ford disks of radius at least $1/(2Q^2)$ touching the unit segment $[0, 1]$ is $1 + \sum_{q=1}^{Q} \varphi(q)$, where $\varphi(.)$ is Euler’s totient function, i.e., the number positive
integers less than or equal to \(q \) that are relatively prime to \(q \). It is known [1, Theorem 3.7, p. 62] that
\[
\sum_{q=1}^{Q} \varphi(q) = \frac{3}{\pi^2} Q^2 + O(Q \log Q).
\]
Hence, for a suitably large \(Q = \Theta(\sqrt{n}) \), there exists exactly \(n \) Ford disks of radius at least \(\frac{1}{2Q^2} \) that touch \([0,1]\). Let \(F_n(1/2, 1/2) \) be the subset of these \(n \) Ford disks. Then we have
\[
\text{per}(F_n) = \sum_{q=1}^{Q} \varphi(q) \cdot 2\pi \cdot \frac{1}{2q^2} = \pi \sum_{q=1}^{Q} \frac{\varphi(q)}{q^2}.
\]
It is also known [1, Exercise 6, p. 71] that
\[
\sum_{q=1}^{Q} \frac{\varphi(q)}{q^2} = \frac{6}{\pi^2} \ln Q + O\left(\frac{\log Q}{Q}\right).
\]
Using this estimate, we have
\[
\text{per}(F_n) = \pi \left(\sum_{q=1}^{Q} \frac{\varphi(q)}{q^2} \right) = \Omega(\log Q) = \Omega(\log \sqrt{n}) = \Omega(\log n),
\]
as claimed.

The bounds in Propositions [5,6] in conjunction with (4) yield
\[
\text{per}(S_n) \geq \text{per}(F_n(1/2, 3 - 2\sqrt{2})) \geq \text{per}(F_n(3 - 2\sqrt{2}, 3 - 2\sqrt{2}))
\]
\[
= \Omega(\text{per}(F_n(1/2, 1/2))) = \Omega(\log n).
\]

When \(C \) is a disk and the container \(D \) is any other convex body, the above argument goes through and shows that a greedy packing \(S_n \) has total perimeter \(\text{per}(S) = \Omega(\log n) \), where the constant of proportionality depends on \(D \). However, when \(C \) is not a circular disk, the theory of Apollonian circles does not apply.

4 Homothets Touching the Boundary: Proof of Theorem [2]

The upper bound \(\text{per}(S) = O(\log n) \) follows from Proposition [2]. It remains to construct a packing \(S \) of perimeter \(\text{per}(S) = \Omega(\log n) \) for given \(C \) and \(D \). Let \(C \) and \(D \) be two convex bodies with bounded description complexity. We wish to argue analogously to the case of disks in a square. Therefore, we choose an arc \(\gamma \subset \partial D \) that is smooth and sufficiently “flat,” but contains no side parallel to a corresponding side of \(C \). Then we build a hierarchy of homothets of \(C \) touching the arc \(\gamma \), so that the depth of the hierarchy is \(O(\log n) \), and the homothety factors decrease by a constant between two consecutive levels.

We choose an arc \(\gamma \subset \partial D \) as follows. If \(D \) has a side with some direction \(\mathbf{d} \in \mathbb{S} \) such that \(C \) has no parallel side of the same direction \(\mathbf{d} \), then let \(\gamma \) be this side of \(D \). Otherwise, \(\partial D \) contains an algebraic curve \(\gamma_1 \) of degree 2 or higher. Let \(q \in \gamma_1 \) be an interior point of this curve such that \(\gamma_1 \) is twice differentiable at \(q \). Assume, after a rigid transformation of \(D \) if necessary, that \(q = (0,0) \) is the origin and the supporting line of \(D \) at \(q \) is the \(x \)-axis. By the inverse function theorem, there is an arc \(\gamma_2 \subseteq \gamma_1 \), containing \(q \), such that \(\gamma_2 \) is the graph of a twice differentiable function of \(x \).
Then the tangent line of D no segments (sides).

Finally, let I be an interval in \mathbb{R}. Let Q and every homothety factor $\rho > 0$, such that for every point $p \in I$ and every homothety factor ρ, $0 < \rho < \rho_0$, the polynomials

$$\alpha_p(x) = A|x - x_p|^\kappa + s_p(x - x_p), \quad \text{and} \quad \beta_p(x) = B|x - x_p|^\kappa + s_p(x - x_p),$$

separate γ from the convex body $Q_p = (\rho C)_p$.

Similarly to the proof of Theorem 4, the construction is guided by nested projection intervals. Let $Q = (\rho C)_p$ be a homothet of C that lies in D and is tangent to γ at point $p \in \gamma$. Denote by $I(Q)$ the vertical projection of Q to the x-axis. For $k = 1, \ldots$, we recursively define disjoint intervals or interval pairs $I_k(Q) \subset I(Q)$ of length $|I_k(Q)| = |I(Q)|/2^k$. During the recursion, we maintain the invariant that the set $J_k(Q) = I(Q) \setminus \bigcup_{j<k} I_j(Q)$ is an interval of length $|I(Q)|/2^{k-1}$ that contains x_p. Assume that $I_1(Q), \ldots, I_{k-1}(Q)$ have been defined, and we need to choose $I_k(Q) \subset J_k(Q)$. If x_p lies in the central one quarter of $J_k(Q)$, then let $I_k(Q)$ be a pair of intervals that consists of the left and right quarters of $J_k(Q)$. If x_p lies to the left (right) of the central one quarter of $J_k(Q)$, then let $I_k(Q)$ be the right (left) half of $J_k(Q)$. It is now an easy matter to check (by induction on k) that $|x - x_p| \geq |I(Q)|/8^k$ for all $x \in I_k(Q)$. Consequently,

$$\beta_p(x) - \alpha_p(x) \geq (B - A) \cdot \left(\frac{|I(Q)|}{8^k}\right)^\kappa$$

for all $x \in I_k(Q)$. There is a constant $\mu > 0$ such that a homothet $\mu k Q$ with arbitrary projection interval in $I_k(Q)$ fits between the curves α_p and β_p. Refer to Fig. 5. Therefore we can populate the region between curves α_p and β_p and above $I_k(Q)$ with homothets ρQ, of homothety factors $\mu^k/2 < \rho \leq \mu^k$, such that their projection intervals are pairwise disjoint and cover $I_k(Q)$. By translating these homothets vertically until they touch γ, they remain disjoint from Q and preserve their projection intervals. We can now repeat the construction of the previous section and obtain $\lceil \log_{2/\mu^k} n \rceil$ layers of homothets touching γ, such that the total length of the projections of the homothets in each layer is $\Theta(1)$. Consequently, the total perimeter of the homothets in each layer is $\Theta(1)$, and the overall perimeter of the packing is $\Theta(\log n)$, as required. \qed
5 Bounds in Term of the Escape Distance: Proof of Theorem 3

Upper bound. Let $S = \{C_1, \ldots, C_n\}$ be a packing of n homothets of a convex body C in a container D such that D is a convex polygon parallel to C. For each element $C_i \in S$, $\text{esc}(C_i)$ is the distance between a side of D and a corresponding side of C_i. For each side a of D, let $S_a \subseteq S$ denote the set of $C_i \in S$ for which a is the closest side of D (ties are broken arbitrarily). Since D has finitely many sides, it is enough to show that for each side a of D, we have

$$\text{per}(S_a) \leq \rho_a(C, D) (\text{per}(D) + \text{esc}(S)) \frac{\log |S_a|}{\log \log |S_a|},$$

where $\rho_a(C, D)$ depends on a, C and D only.

Suppose that $S_a = \{C_1, \ldots, C_n\}$ is a packing of n homothets of C such that $\text{esc}(C_i)$ equals the distance between C_i and side a of D. Assume for convenience that a is horizontal. Let $c \subseteq \partial C$ be the side of C corresponding to the side a of D. Let $\rho_1 = \text{per}(C)/|c|$, and then we can write $\text{per}(C) = \rho_1|c|$. Refer to Fig. 6 (left).

Denote by $b \subset c$ the line segment of length $|b| = |c|/2$ with the same midpoint as c. Since C is a convex body, the two vertical lines though the two endpoints of b intersect C in two line segments denoted h_1 and h_2, respectively. Let $\rho_2 = \min(|h_1|, |h_2|)/|b|$, and then $\min(|h_1|, |h_2|) = \rho_2|b|$. By convexity, every vertical line that intersects segment b intersects C in a vertical segment of length at least $\rho_2|b|$. Note that ρ_1 and ρ_2 are constants depending on C and D. For each homothet $C_i \in S_a$, let $b_i \subset \partial C_i$ be the homothetic copy of segment $b \subset \partial C$.

![Diagram](image)

Figure 6: Left: A convex body C with a horizontal side c. The segment $b \subset c$ has length $|b| = |c|/2$, and the vertical segments h_1 and h_2 are incident to the endpoints of b. Right: Two homothets, C_i and C_j, in a convex container D. The vertical projections of b_i and b_j onto the horizontal side a are proj_i and proj_j.

Put $\lambda = 2[\log n/\log \log n]$. Partition S_a into two subsets $S_a = S_{\text{far}} \cup S_{\text{close}}$ as follows. For each $C_i \in S_a$, let $C_i \in S_{\text{close}}$ if $\text{esc}(C_i) < \rho_2|b_i|/\lambda$, and $C_i \in S_{\text{far}}$ otherwise. For each homothet $C_i \in S_{\text{close}}$, let $\text{proj}_i \subseteq a$ denote the vertical projection of segment b_i onto the horizontal side a (refer to Fig. 6 right). The perimeter of each $C_i \in S_a$ is $\text{per}(C_i) = \rho_1|c_i| = 2\rho_1|b_i| = 2\rho_1|\text{proj}_i|$. We have

$$\text{per}(S_{\text{far}}) = \sum_{C_i \in S_{\text{far}}} \text{per}(C_i) = \sum_{C_i \in S_{\text{far}}} 2\rho_1|b_i| \leq \sum_{C_i \in S_{\text{far}}} 2\rho_1 \frac{\text{esc}(C_i) \lambda}{\rho_2} \leq 2\rho_1 \frac{\text{esc}(S)}{\rho_2} \lambda. \quad (6)$$

It remains the estimate $\text{per}(S_{\text{close}})$ as an expression of λ.

$$\sum_{C_i \in S_{\text{close}}} \text{per}(C_i) = 2\rho_1 \sum_{C_i \in S_{\text{close}}} |\text{proj}_i|. \quad (7)$$

Define the depth function for every point of the horizontal side a by

$$d : a \to \mathbb{N}, \quad d(x) = |\{C_i \in S_{\text{close}} : x \in \text{proj}_i\}|.$$
That is, \(d(x) \) is the number of homothets such that the vertical projection of segment \(b_i \) contains point \(x \). For every positive integer \(k \in \mathbb{N} \), let
\[
I_k = \{ x \in a : d(x) \geq k \},
\]
that is, \(I_k \) is the set of points of depth at least \(k \). Since \(S_{\text{close}} \) is finite, the set \(I_k \subseteq a \) is measurable. Denote by \(|I_k| \) the measure (total length) of \(I_k \). By definition, we have \(|a| \geq |I_1| \geq |I_2| \geq \ldots \). A standard double counting for the integral \(\int_{x \in a} d(x) \, dx \) yields
\[
\sum_{C_i \in S_{\text{close}}} |\text{proj}_i| = \sum_{k=1}^{\infty} |I_k|. \quad (8)
\]

If \(d(x) = k \) for some point \(x \in a \), then \(k \) segments \(b_i \), lie above \(x \). Each \(C_i \in S_{\text{close}} \) is at distance \(\text{esc}(C_i) < \rho_2|b_i|/\lambda \) from \(a \). Suppose that \(\text{proj}_i \) and \(\text{proj}_j \) intersect for \(C_i, C_j \in S_{\text{close}} \) (Fig. 6, right). Then one of them has to be closer to \(a \) than the other: we may assume w.l.o.g. \(\text{esc}(C_j) < \text{esc}(C_i) \). Now a vertical segment between \(b_i \subset C_i \) and \(\text{proj}_i \subset a \) intersects \(b_j \). The length of this intersection segment satisfies \(\rho_2|b_j| \leq \text{esc}(C_i) < \rho_2|b_i|/\lambda \). Consequently, \(|b_j| < |b_i|/\lambda \) (or, equivalently, \(|\text{proj}_j| < |\text{proj}_i|/\lambda \)) holds for any consecutive homothets above point \(x \in a \). In particular, for the \(k \)-th smallest projection containing \(x \in a \), we have \(|\text{proj}_k| \leq |a|/\lambda^{k-1} = |a|\lambda^{-k} \).

We claim that
\[
|I_k| \leq |a|\lambda^{-k} \quad \text{for } k \geq \lambda + 1. \quad (9)
\]
Suppose, to the contrary, that \(|I_k| > |a|\lambda^{-k} \) for some \(k \geq \lambda + 1 \). Then there are homothets \(C_i \in S_{\text{close}} \) of side lengths at most \(|a|/\lambda^{k-1} \), that jointly project into \(I_k \). Assuming that \(|I_k| > |a|\lambda^{-k} \), it follows that the number of these homothets is at least
\[
\frac{|a|\lambda^{-k}}{|a|\lambda^{1-k}} = \lambda^{-1} = \left(2 \left\lceil \frac{\log n}{\log\log n} \right\rceil \right)^2 \left\lceil \frac{\log n}{\log\log n} \right\rceil^{-1} > n,
\]
contradicting the fact that \(S_{\text{close}} \subseteq S \) has at most \(n \) elements. Combining (7), (8), and (9), we conclude that
\[
\text{per}(S_{\text{close}}) = 2\rho_1 \sum_{k=1}^{\infty} |I_k| \leq 2\rho_1 \left(\lambda |I_1| + \sum_{k=\lambda+1}^{\infty} |I_k| \right) \leq 2\rho_1 \left(\lambda + \sum_{j=1}^{\infty} \frac{1}{\lambda^j} \right) |a|
\leq 2\rho_1 (\lambda + 1) \text{per}(D). \quad (10)
\]

Putting (6) and (10) together yields
\[
\text{per}(S_a) = \text{per}(S_{\text{close}}) + \text{per}(S_{\text{far}}) \leq 2\rho_1 \left((\lambda + 1) \text{per}(D) + \frac{\text{esc}(S)}{\rho_2} \lambda \right)
\leq \rho(C, D) (\text{per}(D) + \text{esc}(S)) \lambda = \rho(C, D) (\text{per}(D) + \text{esc}(S)) \frac{\log n}{\log\log n},
\]
for a suitable \(\rho(C, D) \) depending on \(C \) and \(D \), as required; here we set \(\rho(C, D) = 2\rho_1 \max(2, 1/\rho_2) \).

Lower bound for squares. We first confirm the given lower bound for squares, i.e., we construct a packing \(S \) of \(O(n) \) axis-aligned squares in the unit square \(U = [0,1]^2 \) with total perimeter \(\Omega((\text{per}(U) + \text{esc}(S)) \log n/\log\log n) \).
Let $n \geq 4$, and put $\lambda = \lfloor \log n / \log \log n \rfloor / 2$. We arrange each square $C_i \in S$ such that per(C_i) = $\lambda \text{esc}(C_i)$. We construct S as the union of λ subsets $S = \bigcup_{j=1}^{\lambda} S_j$, where S_j is a set of congruent squares, at the same distance from the bottom side of U.

Let S_1 be a singleton set consisting of one square of side length $1/4$ (and perimeter 1) at distance $1/\lambda$ from the bottom side of U. Let S_2 be a set of 2λ squares of side length $1/(4 \cdot 2\lambda)$ (and perimeter $1/(2\lambda)$), each at distance $1/(2\lambda^2)$ from the bottom side of U. Note that these squares lie strictly below the first square in S_1, since $1/(8\lambda) + 1/(2\lambda^2) < 1/\lambda$. The total length of the vertical projections of the squares in S_2 is $2\lambda \cdot 1/(8\lambda) = 1/4$.

Similarly, for $j = 3, \ldots, \lambda$, let S_j be a set of $(2\lambda)^{j-1}$ squares of side length $\frac{1}{4(2\lambda)^j}$ (and perimeter $1/(2\lambda)^j$), each at distance $1/(2^j\lambda^j)$ from the bottom side of U. These squares lie strictly below any square in S_{j-1}, and the total length of their vertical projections onto the x-axis is $(2\lambda)^{j-1} \cdot \frac{1}{4(2\lambda)^j} = 1/4$.

The number of squares in $S = \bigcup_{j=1}^{\lambda} S_j$ is

$$\sum_{j=1}^{\lambda} (2\lambda)^{j-1} = \Theta((2\lambda)^{\lambda}) = O(n).$$

The total distance from the squares to the boundary of U is

$$\text{esc}(S) = \sum_{j=1}^{\lambda} (2\lambda)^{j-1} \cdot \frac{1}{2^j\lambda^j} = \lambda \frac{1}{\lambda} = 1.$$

The total perimeter of all squares in S is

$$4 \cdot \sum_{j=1}^{\lambda} \frac{1}{4} = \lambda = \Omega\left(\frac{\log n}{\log \log n}\right) = \Omega\left((\text{per}(U) + \text{esc}(S)) \frac{\log n}{\log \log n}\right),$$

as required.

General lower bound. We now establish the lower bound in the general setting. Given a convex body C and a convex polygon D parallel to C, we construct a packing S of $O(n)$ positive homothets of C in D with total perimeter $\Omega((\text{per}(D) + \text{esc}(S)) \log n / \log \log n)$.

Let a be an arbitrary side of D. Assume w.l.o.g. that a is horizontal. Let U_C be the minimum axis-aligned square containing C. Clearly, we have $\frac{1}{2} \text{per}(U_C) \leq \text{per}(C) \leq \text{per}(U_C)$. We first construct a packing S_U of $O(n)$ axis-aligned squares in D such that for each square $U_i \in S_U$, esc(U_i) equals the distance from the horizontal side a. We then obtain the packing S by inscribing a homothet C_i of C in each square $U_i \in S_U$ such that C_i touches the bottom side of U_i. Consequently, we have $\text{per}(S) \geq \text{per}(S_U)/2$ and $\text{esc}(S) = \text{esc}(S_U)$, since esc($C_i$) = esc($U_i$) for each square $U_i \in S_U$.

It remains to construct the square packing S_U. Let $U(a)$ be a maximal axis-aligned square contained in D such that its bottom side is contained in a. S_U is a packing of squares in $U(a)$ that is homothetic with the packing of squares in the unit square U described previously. Put $\rho_1 = \text{per}(U(a))/\text{per}(U) = \text{per}(U(a))/4$. We have $\text{per}(S) \geq \frac{1}{4} \rho_1 \Omega\left((\text{per}(U) + \text{esc}(S)) \frac{\log n}{\log \log n}\right)$, or

$$\text{per}(S) \geq \rho(C, D) \left((\text{per}(D) + \text{esc}(S)) \frac{\log n}{\log \log n}\right),$$

where $\rho(C, D)$ is a factor depending on C and D, as required. \(\square\)
References

[1] T. M. Apostol, *Introduction to Analytic Number Theory*, Springer, New York, 1976.

[2] S. Arora, Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems, *J. ACM* 45(5) (1998), 753–782.

[3] K. Bezdek, On a strong version of the Kepler conjecture, *Mathematika* 59(1) (2013), 23–30.

[4] M. Bern and D. Eppstein, Approximation algorithms for geometric problems, in *Approximation Algorithms for NP-hard Problems*, (D. S. Hochbaum, ed.), PWS Publishing Company, Boston, MA, 1997, pp. 296–345.

[5] P. Brass, W. O. J. Moser, and J. Pach, *Research Problems in Discrete Geometry*, Springer, New York, 2005.

[6] M. de Berg, J. Gudmundsson, M. J. Katz, C. Levcopoulos, M. H. Overmars, and A. F. van der Stappen, TSP with neighborhoods of varying size, *J. Algorithms* 57(1) (2005), 22–36.

[7] A. Dumitrescu and J. S. B. Mitchell, Approximation algorithms for TSP with neighborhoods in the plane, *J. Algorithms* 48(1) (2003), 135–159.

[8] A. Dumitrescu and C. D. Tóth, Minimum weight convex Steiner partitions, *Algorithmica* 60(3) (2011), 627–652.

[9] A. Dumitrescu and C. D. Tóth, The traveling salesman problem for lines, balls and planes, in *Proc. 24th ACM-SIAM Symposium on Discrete Algorithms*, 2013, SIAM, pp. 828–843.

[10] K. R. Ford, Fractions, *The American Mathematical Monthly* 45(9) (1938), 586–601.

[11] A. Glazyrin and F. Morić, Upper bounds for the perimeter of plane convex bodies, *Acta Mathematica Hungarica* (2013), to appear.

[12] R. L. Graham, J. C. Lagarias, C. L. Mallows, A. R. Wilks, and C. H. Yan, Apollonian circle packings: geometry and group theory I: The Apollonian group, *Discrete Comput. Geom.* 34 (2005), 547–585.

[13] T. C. Hales, The strong dodecahedral conjecture and Fejes Tóth’s conjecture on sphere packings with kissing number twelve, in *Discrete Geometry and Optimization*, vol. 69 of Fields Communications, 2013, Springer, 2013, pp. 121–132.

[14] C. Levcopoulos and A. Lingas, Bounds on the length of convex partitions of polygons, in *Proc. 4th Annual Conference on Foundations of Software Technology and Theoretical Computer Science*, LNCS 181, 1984, Springer, pp. 279–295.

[15] C. Mata and J. S. B. Mitchell, Approximation algorithms for geometric tour and network design problems, in *Proc. 11th ACM Symposium on Computational Geometry*, 1995, ACM, pp. 360–369.

[16] J. S. B. Mitchell, A constant-factor approximation algorithm for TSP with pairwise-disjoint connected neighborhoods in the plane, in *Proc. 26th ACM Symposium on Computational Geometry*, 2010, ACM, pp. 183–191.