UBARv2: Towards Mitigating Exposure Bias in Task-Oriented Dialogs

Yunyi Yang, Hong Ding, Qingyi Liu, Xiaojun Quan*
Sun Yat-sen University
{yangyy37, dingh35, liuqy95}@mail2.sysu.edu.cn, quanxj3@mail.sysu.edu.cn

Abstract
This paper studies the exposure bias problem in task-oriented dialog systems, where the model’s generated content over multiple turns drives the dialog context away from the ground-truth distribution at training time, introducing error propagation and damaging the robustness of the TOD system. To bridge the gap between training and inference for multi-turn task-oriented dialogs, we propose session-level sampling which explicitly exposes the model to sampled generated content of dialog context during training. Additionally, we employ a dropout-based consistency regularization with the masking strategy R-Mask to further improve the robustness and performance of the model. The proposed UBARv2 achieves state-of-the-art performance on the standardized evaluation benchmark MultiWOZ and extensive experiments show the effectiveness of the proposed methods.

1 Introduction
Task-oriented dialog (TOD) systems assist users with various tasks via natural language conversations. The traditional task-oriented dialog systems follow a pipeline approach which consists of several consecutive modules. First, a dialog state tracker (DST) is to estimate the belief state from the user utterance. The belief state is then used to query a task-related database (DB) like the number of entities that match the user’s goal. Subsequently, a dialog policy learning module is applied to determine the next system act, followed by a natural language generation (NLG) module that converts the system action to a natural language response.

Recently, task-oriented dialog systems have achieved promising results by leveraging pre-trained language models (Radford et al., 2018) for end-to-end modeling in a unified way (Ham et al., 2020; Hosseini-Asl et al., 2020; Peng et al., 2020; Yang et al., 2021). These works cast task-oriented dialogs as a unified language generation task and fine-tune models with the language modeling objective. Particularly, UBAR (Yang et al., 2021) models task-oriented dialogs on a dialog session level, which is trained on the sequence of the entire dialog session composed of user utterance, belief state, database result, system act, and system response of every dialog turn. During inference, the dialog context uses the generated content rather than the ground-truth annotations. The successive works MTTOD (Lee, 2021), PPTOD (Su et al., 2021) and GALAXY (He et al., 2021) all follow such session-level modeling as the fundamental design when developing their methods. They achieve increasingly competitive performances via multi-task learning and large-scale in-domain pre-training.

Despite the effectiveness of session-level modeling, bringing in generated content at inference time inevitably introduces a gap between training and inference. Since the distribution of the ground-truth annotations at training time is different from the distribution of the model predictions at inference time. If a mistake has occurred in the dialog context, there can be error propagation which causes the model generation to continue to deviate from the optimal distribution. This problem is often referred to as exposure bias for auto-regressive models. In the case of TOD systems, the exposure bias problem can take place across multiple modules over multiple dialog turns. For example, a TOD system is asking about the food style of the requested restaurant, but the user replies with the price range. Though the model might be able to update the belief state correctly, it could be confused when generating the system action and response of the next turn, given that the training data is coherent and consistent while the model has not seen such off-the-mark answers during training. What’s more, being exposed to an unfamiliar situation where the dialog context contains low quality and erroneous generated content is detrimental to the model’s performance and robustness.
In an attempt to mitigate the exposure bias problem that exhibits in task-oriented dialog systems, we follow the session-level modeling of UBAR and propose a learning framework UBAr2 that explicitly exposes the model to heterogeneous data at training time. Specifically, we explore the sampling strategy for constructing the session-level training sequence and perform mixed training from both the distribution of the annotation and the distribution of the model prediction. In the initial stage of training, the ground truth sequence is learned to help the model converge quickly, and then the content generated by the model is sampled on turn level with a certain probability for mixed training. We further employ a dropout-based consistency regularization with a masking strategy named R-Mask, which carries out the forward pass twice for the parallel with a certain probability for mixed training. We describe the proposed session-level scheduled modeling as the building block of UBAr2 and UBArv2. Figure 1 is an overview of the sampling strategy and consistency regularization with a masking strategy named R-Mask, further employ a dropout-based consistency regularization with a masking strategy named R-Mask.

2 Methodology

In this section, we introduce the session-level modeling as the building block of UBArv2 and describe the proposed session-level scheduled sampling strategy and consistency regularization method R-Mask. Figure 1 is an overview of UBArv2.

2.1 Session-Level Modeling

Session-level modeling is first introduced by Yang et al. (2021) and adopted by numerous successive methods (Lee, 2021; Su et al., 2021; He et al., 2021). Two key factors of session-level modeling contribute to the effectiveness of a task-oriented dialog system: the incorporation of intermediate information such as belief state and system action into dialog context, and using all generated content in the dialog context.

As illustrated in Figure 1 (a), given a dialog session composed of multiple turns, the session-level modeling operates the process of a task-oriented dialog system as follows: In the first turn $\tau = 0$, the user puts in user utterance U_0, based on U_0, the model generates a belief state B_0. The belief state is applied to query a database to retrieve database search result D_0, which is the matched number of entities that satisfy the constraint inflicted by the belief state. Based on $\{U_0, B_0, D_0\}$, the model generates system action A_0 and system response R_0, accomplishing the interaction of the first turn. As the dialog proceeds to turn τ, the model generates B_τ, A_τ and R_τ, based on context of user utterances and all previous generated outputs $\{U_0, B_0, D_0, A_0, R_0, \ldots, U_{\tau-1}, B_{\tau-1}, D_{\tau-1}, A_{\tau-1}, R_{\tau-1}, U_\tau\}$, eventually concluding the entire dialog session.

The model can be trained with language modeling objective (Bengio et al., 2003) for GPT-2-based architecture. The idea of session-level modeling also applies for Seq2Seq architectures (Su et al., 2021; Lee, 2021) or unified language model (He et al., 2021).

2.2 Session-Level Sampling

To bridge the gap between training and inference, we can draw inspiration from the domain of neural machine translation, where scheduled sampling is employed such that the input to the decoder at time step t is chosen randomly between the ground-truth word and the model’s prediction (Bengio et al., 2015; Zhang et al., 2019).

Instead of simply considering the word-level exposure bias of autoregressive generation by sampling context words, this work focuses on addressing the discrepancy across multiple turns in a dialog session. Therefore, we propose to sample content in a turn-wise and modular-wise manner and construct session-level sequence mixed with ground-truth and generated modular
spans for training. Specifically, as shown in Figure 1 (b), in every turn we can decide with a certain probability whether to sample a generated modular span, such as belief state, database result, system action and system response. Take belief state for example, which is the determined sampling target of our method. As the dialog proceeds to turn τ, UBARv2 takes dialog context $\{U_0, B_0, D_0, A_0, R_0, ..., U_{\tau-1}, B_{\tau-1}, D_{\tau-1}, A_{\tau-1}, R_{\tau-1}, U_{\tau}\}$ and generates \hat{B}_τ. We choose with probability ϵ to sample the generated belief state span \hat{B}_τ and with probability $(1 - \epsilon)$ to sample the ground-truth span B_τ. Performing sampling with chance every turn results in a full dialog session-level training sequence of M turns: $\{U_0, \hat{B}_0, D_0, A_0, R_0, ..., U_M, \hat{B}_M, D_M, A_M, R_M\}$, where \hat{B}_τ is the generated content.

At the early stage (Stage 1) of learning, the model is trained with ground-truth sequences so that UBARv2 can effectively learn task-oriented dialogs. At the late stage (Stage 2), the model employs mixed training with sampling rate ϵ and exposes itself to the inference setting, learning to deal with inconsistent and incoherent dialogs. The objective is to minimize the negative log-likelihood of the session-level sampled sequence $\tilde{x} = \{\tilde{x}_0, \tilde{x}_1, ..., \tilde{x}_T\}$:

$$\mathcal{L}_N^{\text{NLL}} = - \sum_{t=1}^{T} \log P_{\theta}(\tilde{x}_i | \tilde{x}_{<t}) \quad (1)$$

It is important to note that the model is trained on the sampled sequence instead of always trained on the ground-truth tokens based on the last sampled word like previous methods (Bengio et al., 2015; Zhang et al., 2019). What’s more, We fix the sampling rate ϵ at Stage 2 instead of using scheduled rate or with decay for simplicity, while we focus more on the strategy such as which component of the dialog context to sample.

2.3 R-Mask

Inspired by R-Drop (Wu et al., 2021), which attempts to make models with dropout (Srivastava et al., 2014) be more consistent during training and inference, we explore dropout-based consistency training in helping mitigate the exposure bias problem in task-oriented dialogs. Other than explicitly making the model learn its sampled generated content, we hope such consistent regularization could expose the model to more non-ground-truth data, eventually reducing the gap.

There are two scenarios applying consistency regularization to the generation task of TOD systems: Stage 1 training and Stage 2 training. At the Stage 1, which is the early stage when training on the ground-truth sequences $X = \{x_0, x_1, ..., x_T\}$, the model goes through the forward pass twice and acquires two distinct distributions of the same sequence from the randomness in the model. The objective is to minimize the bidirectional KL diver-
gence between the two distributions:

\[
L_{KL} = \sum_{t=1}^{T} \frac{1}{2} [DKL(P_{\theta^1}(x_t | x_{<t}) || P_{\theta^2}(x_t | x_{<t})) + D_{KL}(P_{\theta^2}(x_t | x_{<t}) || P_{\theta^1}(x_t | x_{<t}))]
\]

(2)

In essence, by adding a KL divergence regularization term, R-Drop increases the robustness to dropout and forces the model output to be consistent under different dropouts.

Consistency training can introduce model-level regularization and data-level regularization which involves modification of the input data. Therefore, at Stage 2, the late stage training, we employ an addition masking strategy R-Mask to the sampled sequence to obtain different distributions. As shown in figure 1 (c), we randomly replace certain elements in the sampled sequence with the special token “[MASK]” and with more variants for the regularization term:

\[
L_{KL} = \sum_{t=1}^{T} \frac{1}{2} [DKL(P_{\theta^1} \hat{x}_t | \hat{x}_{<t}) || P_{\theta^2} \hat{x}_t | \hat{x}_{<t}) + D_{KL}(P_{\theta^2} \hat{x}_t | \hat{x}_{<t}) || P_{\theta^1} \hat{x}_t | \hat{x}_{<t})]
\]

(3)

It is important to maintain the KL divergence throughout training at both stages so that the model can be trained properly. If we apply this consistency training midway, the KL divergence loss would be too large and severely hinder the language modeling optimization. The training loss is a combination of language modeling loss and the KL divergence loss with hyper-parameter \(\alpha\) as regularization weight:

\[
L_{Stage1} = L_{NLL} + \alpha L_{KL}
\]

\[
L_{Stage2} = L_{NLL} + \alpha L_{KL}
\]

(4)

3 Experiments

3.1 Dataset and Evaluation Metrics

MultiWOZ (Budzianowski et al., 2018) is a human-human multi-turn task-oriented dialog dataset spanning multiple domains. The dataset is divided into a training set containing 8438 dialogs, a verification set and a test set, both of which contain 1000 dialogs. Multiple versions of MultiWOZ (Budzianowski et al., 2018; Eric et al., 2019; Zang et al., 2020) have been released as the benchmark developing. For a fair comparison, this work conducts experiments and reports results based on the standardized evaluation scripts of MultiWOZ Evaluation (Nekvinda and Dušek, 2021).

We follow the automatic evaluation metrics to evaluate task completion and response quality: **Inform** measures whether the system provides an appropriate entity, **Success** measures whether the system answers all the requested attributes, and BLEU (Papineni et al., 2002) is used to measure the fluency of the generated responses (Budzianowski et al., 2018). The BLEU score is calculated with references obtained from the MultiWOZ 2.2 span annotations (Nekvinda and Dušek, 2021). A combined score: (Inform + Success) \(\times 0.5 + \) BLEU is also reported as an overall quality measure suggested in Mehri et al. (2019).

3.2 Implementation Details

We initialize UBARv2 with DistilGPT2 (Sanh et al., 2019) and develop out method with HuggingFace’s Transformers (Wolf et al., 2019). Following Zhang et al. (2020), the dataset is preprocessed using domain-adaptive delexicalization. We reimplement UBAR (Yang et al., 2021) as UBArV1 and develop the two proposed method session-level sampling (SS) and R-Drop/R-Mask. Typically, UBArV1 and UBArV1+R-Drop and UBArV1+R-Mask are trained at Stage 1 for 60 to 75 epochs. UBArV1+SS is trained on top of UBArV1 at Stage 2 for 5 epochs. UBArV2, the final model is trained with R-Mask strategy at Stage 2 on top of UBArV1+R-Drop. UBArV2 uses the strategy of sampling the belief state every turn for session-level sampling and masking the ground-truth belief state for R-Mask. We select the model with the best performance on the validation set and evaluate it on the test set to get final results. The results in section 4 are mainly from the validation set. The batch size is 8, initial learning rate for AdamW is 1.5e-4, sampling rate \(\epsilon\) for SS is 0.01, regularization weight \(\alpha\) is 0.01 and the masking rate for R-Mask is 0.02. Code and models are included in the supplement and will be released.

3.3 Baselines

We compare UBArV2 with strong baselines on the benchmark as follows: DAMD (Zhang et al., 2020), MinTL (Lin et al., 2020), AuGPT (Kulhánek et al., 2021), SOLOIST (Peng et al., 2020), UBAR
Table 1: Main results on MultiWOZ Evaluation End-to-end modeling.

Model	Inform	Success	BLEU	Comb
DAMD (Zhang et al., 2020)	57.9	47.6	16.4	84.8
AuGPT (Kulhánek et al., 2021)	76.6	60.5	16.8	85.4
MinTL (Lin et al., 2020)	73.7	65.4	19.4	89.0
SOLOIST (Peng et al., 2020)	82.3	72.4	13.6	90.9
UBAR (Yang et al., 2021)	83.7	70.3	17.6	94.4
PPTOD (Su et al., 2021)	83.1	72.7	18.2	96.1
BORT (Sun et al., 2022)	85.5	77.4	17.9	99.4
MTTOD (Lee, 2021)	85.9	76.5	19.0	100.2
GALAXY (He et al., 2021)	85.4	75.7	19.6	100.2
UBARv1	82.1	69.7	17.9	93.8
UBARv1+SS	83.9	71.0	17.6	95.0
UBARv1+R-Drop	86.8	76.8	18.5	100.3
UBARv2	**87.5**	**77.6**	19.0	**101.6**

As shown in Table 1, the proposed UBARv2 achieves the state-of-art performance in terms of inform rate, success rate, and combined score, surpassing the previous models MTTOD and GALAXY, raising the combined score by 1.4 points, which indicates that attempting to mitigate exposure bias in task-oriented dialogs can effectively improve the task completion ability of TOD systems. Note that UBARv2 does not require pre-training on supplementary data like SOLOIST, PPTOD, and GALAXY. The results in the second group show the variations of UBARv2, which serves as an ablation study. For starters, UBARv1+SS scores higher inform rate and success rate and lifting the combined score by 1.2 over UBARv1, which demonstrates the effectiveness of session-level sampling. Introducing R-Drop to the training process can bring a significant performance boost, UBARv1+R-Drop jumps the combined score from 93.8 to 100.3, which shows the effectiveness of the dropout-based consistency regularization. Combining R-Mask and SS at Stage 2, UBARv2 shows that the two proposed methods are complementary to each other and can further push the state-of-the-art performance.

To examine the domain transfer ability of UBARv2 generalizing to unseen domains, we perform zero-shot and few-shot experiments in Appendix 7.2.

4 Analysis and Discussion

In this section, we provide a detailed discussion of the sampling strategy and the context used in constructing a mixed training sequence. We investigate how the Sampling rate ϵ and regularization weight α affect the model performance. We also discuss the R-Mask strategy and provide case study to show how can UBARv2 improve task completion and mitigate exposure bias.

4.1 Sampling Strategy

Sampling task-oriented dialogs and constructing mixed training sequences require a more fine-grained sampling strategy considering different TOD components such as belief state and system action with a dependent relationship. Additionally, we need to consider the attribute of the dialog context on which the sampling is conditioned. First, we list five sampling strategies based on which
components to sample in the current turn when constructing a sampled sequence:

- **Sampling only the belief state**: The annotated belief state will be replaced by the generated one in the corresponding position.

- **Sampling only the system action**: The annotated system action and response will be replaced.

- **Sampling at most one**: First determine whether to sample the belief state, and if so, use the annotated action. Otherwise, sample the action and response.

- **System action follows the belief state**: Sample the belief state, action and response.

- **Random Sampling**: The sampling of the action is independent of the one of the belief state.

Then, we divide the dialog context into the context of the previous turns and the context of the current turn, and consider whether they are (1) mixed, with some elements sampled, or (2) ground-truth, with all elements from the dataset.

As shown in Figure 2, the dashed baseline is the validation score of UBARv1 + R-Drop and the histogram shows the score of UBARv1 + R-Drop after 5 epochs of mixed training with session-level sampling. For the sampling strategy, it can be seen that “Sampling only the belief state” and “System action follows the belief state” are more effective than the others. The effect of “Sampling only the belief state” is generally better than the one of “Sampling only the system action”, which indicates that sampling the belief state is more meaningful than the action. For the context attributes, using the mixed context is always better than using the ground-truth one, generating content that is more fluent and more relevant to the previous context, which aligns with the intuition of session-level modeling. Note that when the sampling strategy is fixed as “Sampling only the belief state”, the score is same for “Mixed cur” and “GT cur”. This is because only the ground-truth user utterance is available when generating the belief state. Therefore, the sampling strategy for UBARv2 is “Sampling only the belief state” and “Mixed context”.

4.2 Sampling Rate

Figure 3 shows the effect of different sampling rate ϵ of mixed training. With UBARv1 + R-Drop as the baseline, we explore ϵ ranging from 0% to 5%. When the sampling rate $\epsilon = 1\%$, the combined score reaches the highest, exceeding the baseline. ϵ of 2.5% or 5% can also lead to improvements. The sampling rate can hurt the system’s performance if not appropriate, and whether too small or too large rate can lead to a decrease in the score compared to the baseline. Note that $\epsilon = 1\%$ may seem small, but we believe that exposing the model to a small amount of data can make a difference, helping to mitigate the exposure bias. We provide more detailed results regarding the sampling rate in Appendix 7.3.

4.3 Regularization Weight

We discuss the effect of the weight α in the KL-divergence regularization term of either R-Drop or R-Mask during the training of UBARv2. Here, we use UBARv1+SS as the baseline and add the KL-divergence regularization term to compare the
The strategies for R-Mask tie closely with the sampled generated belief state or the ground-truth strategies: (1) For the mask target, it can be either the sampled generated belief state or the ground-truth belief state at different positions for the two sequences at Stage 2, which offers more diversity to the two sequences and thus improves the model’s generalization ability. We provide results regarding the masking rate in Appendix 7.5.

Mask Target	Mask Position	Combined
-	-	100.3
Gen	Same	100.1
Gen	Diff	100.5
GT	Same	100.0
GT	Diff	**101.6**

Table 2: The combined scores with different R-Mask Strategies. Gen and GT denotes generated and ground-truth belief state respectively. Same means the masking the same positions for the two sequences and Diff means masking different positions.

4.4 R-Mask Strategy

The strategies for R-Mask tie closely with the strategies for session-level sampling as we have already identified belief state as the sampling target. R-Mask also requires a thorough discussion on how to construct the two sequences for the KL-divergence term. Specifically, based on UBARv1 + R-Drop, we add a regularization term with R-Mask to UBARv2 at Stage 2 of mixed training. We investigate the impact of different R-Mask strategies: (1) For the mask target, it can be either the sampled generated belief state or the ground-truth belief state. (2) For the mask position, there are two options: the two sequences for the regularization term are masked at the same positions or the two sequences are masked at different positions with the same mask rate. We search for suitable masking rates for different strategies. As shown in Table 2, the best strategy is to mask the ground-truth belief state at different positions for the two sequences at Stage 2, which offers more diversity to the two sequences and thus improves the model’s generalization ability. We provide more detailed results regarding the regularization weight in Appendix 7.4.

![Figure 3: The combined score of different Sampling Rate ϵ](image)

![Figure 4: Regularization Weight α from 0 to 0.05](image)

4.5 Case Study

In this section, we present further discussions and empirical analyses of the effectiveness of the proposed method for mitigating the exposure bias in dialogs through case study.

As UBARv2 achieves a decent improvement on the combined score over UBARv1, it understandably has more correct cases than UBARv1. By looking at the cases in which UBARv1 predicted incorrectly but UBARv2 predicted correctly, we find that, in the majority of cases, UBARv1 just incorrectly predicts information like the belief state, while UBARv2 can get it right in the first place. Therefore, we are more concerned about whether UBARv2 can make the dialog context stay more consistent and coherent, and whether it can really bridge the gap between distributions in training and inference.

As shown in Table 3, in the first turn, according to the ground truth, the user should be informed of the name and address of the hotel, but both models choose to ask for the hotel star rating to narrow down the choices. In the second turn, UBARv2 does a better job than UBARv1 at finding the missing hotel name in the context and providing it to
the user in time. This case shows that UBARv1 still suffers from not being able to supplement entity names. While UBARv2 can supplement entity name appropriately, which reflects the fact that UBARv2 also can adaptively supplement and make amends in response to the current user utterance in order to stay consistent and coherent throughout the entire session and do it better than UBARv1. However, it can be noted that the user also needs the address of the hotel, but UBARv2 does not supplement the address information. This indicates that UBARv2 can be further improved.

User	i would like a moderate -ly priced hotel in the south, with free wifi.
GT Resp.	[value_name] is your choice. its located in [value_address] can i give you the address
UBARv1	i have [value_choice] [value_type] that meet your criteria. do you have a star rating preference?
UBARv2	i have [value_choice] [value_type] that fit your criteria. do you have a preference for star rating?
User	you just gave me the address. does it have free parking?
GT Resp.	yes, both free internet and free parking. can i help you with anything else today?
UBARv1	yes, it does.
UBARv2	[value_name] has free parking.

Table 3: Case Study: codelexicalized responses generated by UBARv1 and UBARv2 of two consecutive dialog turns in dialog session PMUL0006 from MultiWOZ 2.0.

We also want to address that current automatic evaluation metrics and static human evaluation are not adequate to quantitatively measure whether the exposure bias problem has been mitigated or not. There is a call for a more sophisticated and less labor-extensive evaluation. We provide two more case study in Appendix 7.6.

5 Related Work

The architectures for end-to-end modeling of task-oriented systems can be coarsely divided into multi-decoder methods (Zhang et al., 2020; Zhang et al., 2020; Tseng et al., 2021; Wang et al., 2020; Jeon and Lee, 2022; Ramachandran et al., 2021) and pre-trained language models (Hosseini-Asl et al., 2020; Peng et al., 2020; Kulhánek et al., 2021; Lin et al., 2020; Yang et al., 2021; Su et al., 2021; Lee, 2021; Sun et al., 2022; He et al., 2021). In terms of how to model the dialog context, session-level modeling has become popular with recent works (Yang et al., 2021; Su et al., 2021; Lee, 2021; He et al., 2021). Pre-training on relevant dialog corpus and multi-task learning are also employed to improve task completion. SOLOIST (Peng et al., 2020) is further pre-trained on a large dialog corpus with a multi-task objective. GALAXY (He et al., 2021) is further pre-trained via semi-supervised learning which makes use of unlabeled dialog samples. PPTOD (Su et al., 2021) proposes a multi-task pre-training strategy for dialogs with prompts. MT-TOD (Lee, 2021) train a T5-based model with the auxiliary task.

The exposure bias problem is previously discussed and studied in the training process of neural machine translation (Bengio et al., 2015; Ranzato et al., 2015; Shen et al., 2015; Wiseman and Rush, 2016; Zhang et al., 2019). Contrastive learning is also used to reduce the exposure bias problem by learning in the representation space (Lee et al., 2020; Liu and Liu, 2021; Pan et al., 2021). Wu et al. (2018) and Wang and Sennrich (2020) shared some helpful insights on the relationship between exposure bias and error propagation. For TOD systems, exposure bias and error propagation exist in the multi-turn nature of dialogs. Some works have addressed the error propagation problem through data augmentation to increase the robustness of the systems (Zhang et al., 2020; Li et al., 2021; Sun et al., 2022). UBARv2 is the first work that designs methods for mitigating the exposure bias problem in task-oriented dialogs.

6 Conclusion

This work tries to mitigate the exposure bias problem in task-oriented dialog systems by proposing mixed training with session-level sampling and consistency regularization strategy R-Mask. UBARv2 achieves state-of-the-art performance on the end-to-end modeling task of MultiWOZ Evaluation, raising the combined score by over 1 point. By actively bridging the gap between training and inference, the model can stay more consistent and coherent with the generated context. We believe that the exposure bias problem exhibits in multi-turn dialogs is an interesting topic worth studying, and hope that UBARv2 can inspire future work to explore more methods to bridge the gap between training and inference for dialog systems.
References

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. 2015. Scheduled sampling for sequence prediction with recurrent neural networks. *Advances in neural information processing systems*, 28.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. A neural probabilistic language model. *Journal of Machine Learning Research*, 3(6):1137–1155.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Ihigo Casanueva, Stefan Ultes, Osman Ramadan, and Milica Gasic. 2018. Multiwoz - a large-scale multi-domain wizard-of-oz dataset for task-oriented dialogue modelling. In *EMNLP 2018: 2018 Conference on Empirical Methods in Natural Language Processing*, pages 5016–5026.

Wenhui Chen, Jianshu Chen, Pengda Qin, Xifeng Yan, and William Yang Wang. 2019. Semantically conditioned dialog response generation via hierarchical disentangled self-attention. In *ACL 2019: The 57th Annual Meeting of the Association for Computational Linguistics*, pages 3696–3709.

Mihail Eric, Rahul Goel, Shachi Paul, Adarsh Kumar, Abhishek Sethi, Peter Ku, Anuj Kumar Goyal, Sanchit Agarwal, Shuyang Gao, and Dilek Hakkani-Tur. 2019. Multiwoz 2.1: A consolidated multi-domain dialogue dataset with state corrections and state tracking baselines. In *LREC*, pages 422–428.

Donghoon Ham, Jeong-Gwan Lee, Youngsoo Jang, and Kee-Eung Kim. 2020. End-to-end neural pipeline for goal-oriented dialogue systems using gpt-2. In *ACL 2020: 58th annual meeting of the Association for Computational Linguistics*, pages 583–592.

Wanwei He, Yinpei Dai, Yinhe Zheng, Yuchuan Wu, Zheng Cao, Dermot Liu, Peng Jiang, Min Yang, Fei Huang, Luo Si, et al. 2021. Galaxy: A generative pre-trained model for task-oriented dialog with semi-supervised learning and explicit policy injection. *arXiv preprint arXiv:2111.14592*.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu, Semih Yavuz, and Richard Socher. 2020. A simple language model for task-oriented dialogue. *arXiv preprint arXiv:2005.00796*.

Hyunmin Jeon and Gary Geunbae Lee. 2022. Dora: Towards policy optimization for task-oriented dialogue system with efficient context. *Computer Speech & Language*, 72:101310.

Jonáš Kulhánek, Vojtěch Hudeček, Tomáš Nekvinda, and Ondřej Dušek. 2021. Augpt: Auxiliary tasks and data augmentation for end-to-end dialogue with pre-trained language models. *arXiv preprint arXiv:2102.05126*.

Hung Le, Doyen Sahoo, Chenghao Liu, Nancy Chen, and Steven CH Hoi. 2020. Uniconv: A unified conversational neural architecture for multi-domain task-oriented dialogues. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 1860–1877.

Seanie Lee, Dong Bok Lee, and Sung Ju Hwang. 2020. Contrastive learning with adversarial perturbations for conditional text generation. *arXiv preprint arXiv:2012.07280*.

Yohan Lee. 2021. Improving end-to-end task-oriented dialog system with a simple auxiliary task. In *Findings of the Association for Computational Linguistics: EMNLP 2021*, pages 1296–1303.

Yunhao Li, Yunyi Yang, Xiaojun Quan, and Jianxing Yu. 2021. Retrieve & memorize: Dialog policy learning with multi-action memory. *arXiv preprint arXiv:2106.02317*.

Zhaojiang Lin, Andrea Madotto, Genta Indra Winata, and Pascale Fung. 2020. Mintl: Minimalist transfer learning for task-oriented dialogue systems. *arXiv preprint arXiv:2009.12005*.

Yixin Liu and Pengfei Liu. 2021. Simcls: A simple framework for contrastive learning of abstractive summarization. *arXiv preprint arXiv:2106.01890*.

Nurul Lubis, Christian Geishauser, Michael Heck, Hsien-Chin Lin, Marco Morei, Carel van Niekerk, and Milica Gasic. 2020. Lava: Latent action spaces via variational auto-encoding for dialogue policy optimization. In *Proceedings of the 28th International Conference on Computational Linguistics*, pages 465–479.

Shikib Mehr, Tejas Srivivasan, and Maxine Eskenazi. 2019. Structured fusion networks for dialog. In *Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue*, pages 165–177.

Tomáš Nekvinda and Ondřej Dušek. 2021. Shades of bleu, flavours of success: The case of multiwoz. *arXiv preprint arXiv:2106.05355*.

Xiao Pan, Mingxuan Wang, Liwei Wu, and Lei Li. 2021. Contrastive learning for many-to-many multilingual neural machine translation. *arXiv preprint arXiv:2105.09501*.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic evaluation of machine translation. In *Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics*, pages 311–318.

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayandeh, Lars Liden, and Jianfeng Gao. 2020. Soloist: Few-shot task-oriented dialog with a single pre-trained auto-regressive model. *arXiv preprint arXiv:2005.05298*.
Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by generative pre-training.

Govardana Sachithananadam Ramachandran, Kazuma Hashimoto, and Caiming Xiong. 2021. Causal-aware safe policy improvement for task-oriented dialogue. arXiv preprint arXiv:2103.06370.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. 2015. Sequence level training with recurrent neural networks. arXiv preprint arXiv:1511.06732.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

Shi Qi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu. 2014. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929–1958.

Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai, and Yi Zhang. 2021. Multi-task pre-training for plug-and-play task-oriented dialogue system. arXiv preprint arXiv:2109.14739.

Haipeng Sun, Junwei Bao, Youzheng Wu, and Xiaodong He. 2022. Bort: Back and denoising reconstruction for end-to-end task-oriented dialog. arXiv preprint arXiv:2205.02471.

Bo-Hsiang Tseng, Yinpei Dai, Florian Kreyssig, and Bill Byrne. 2021. Transferable dialogue systems and user simulators. arXiv preprint arXiv:2107.11904.

Chaojun Wang and Rico Sennrich. 2020. On exposure bias, hallucination and domain shift in neural machine translation. arXiv preprint arXiv:2005.03642.

Jianhong Wang, Yuan Zhang, Tae-Kyun Kim, and Yunjie Gu. 2020. Modelling hierarchical structure between dialogue policy and natural language generator with option framework for task-oriented dialogue system. arXiv preprint arXiv:2006.06814.

Kai Wang, Junfeng Tian, Rui Wang, Xiaojun Quan, and Jianxing Yu. 2020. Multi-domain dialogue acts and response co-generation. In ACL 2020: 58th annual meeting of the Association for Computational Linguistics, pages 7125–7134.

Sam Wiseman and Alexander M. Rush. 2016. Sequence-to-sequence learning as beam-search optimization. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1296–1306. Austin, Texas. Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. 2019. Huggingface’s transformers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771.

Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei Chen, Min Zhang, Tie-Yan Liu, et al. 2021. R-drop: regularized dropout for neural networks. Advances in Neural Information Processing Systems, 34.

Lijun Wu, Xu Tan, Di He, Fei Tian, Tao Qin, Jianhuang Lai, and Tie-Yan Liu. 2018. Beyond error propagation in neural machine translation: Characteristics of language also matter. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3602–3611, Brussels, Belgium. Association for Computational Linguistics.

Yunyi Yang, Yunhao Li, and Xiaojun Quan. 2021. Ubar: Towards fully end-to-end task-oriented dialog system with gpt-2. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 14230–14238.

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara, Raghav Gupta, Jianguo Zhang, and Jindong Chen. 2020. Multiwoz 2.2: A dialogue dataset with additional annotation corrections and state tracking baselines. arXiv preprint arXiv:2007.12720.

Wen Zhang, Yang Feng, Fandong Meng, Di You, and Qin Liu. 2019. Bridging the gap between training and inference for neural machine translation. arXiv preprint arXiv:1906.02448.

Yichi Zhang, Zhijian Ou, Huixin Wang, and Junlan Feng. 2020. A probabilistic end-to-end task-oriented dialog model with latent belief states towards semi-supervised learning. arXiv preprint arXiv:2009.08115.

Yichi Zhang, Zhijian Ou, and Zhou Yu. 2020. Task-oriented dialog systems that consider multiple appropriate responses under the same context. AAAI 2020 : The Thirty-Fourth AAAI Conference on Artificial Intelligence, 34(5):9604–9611.

7 Appendix

7.1 Results on Policy Optimization

Table 4 shows the results of UBArv2 in the policy optimization setting. Notice that UBArv2 did not achieve much improvement over UBArv1. This is because session-level sampling and R-Mask all target belief state, using the ground-truth belief state may render their advantages obsolete.
Table 4: Policy Optimization results on MultiWOZ Evaluation using ground-truth dialog states to generate responses.

Model	Inform	Success	BLEU	Comb
UniConv (Le et al., 2020)	66.7	58.7	18.1	80.8
SFN (Mehri et al., 2019)	93.4	82.3	14.1	101.9
HDSA (Chen et al., 2019)	87.9	79.4	20.7	104.4
LAVA (Lubis et al., 2020)	95.9	93.5	10.8	105.5
HDNO (Wang et al., 2020)	93.3	83.4	17.8	106.1
MarCo (Wang et al., 2020)	94.5	87.2	17.3	108.1
GALAXY (He et al., 2021)	92.8	83.5	19.9	108.1
UBARV1	85.8	78.3	19.4	101.5
UBARv2	86.4	79.7	19.8	102.9

7.2 Domain Transfer

To examine the transfer ability of UBARv2 generalizing to unseen domains, we run zero-shot and few-shot experiments on the end-to-end modeling setting by excluding one domain out of the five domains that are available in validation and test set, and training UBARv2 on other four domains. Table 5 shows the results.

7.3 Sampling Rate

As shown in Figure 6, with UBARv1 + R-Drop as the baseline, the model completes the tasks better when the sampling rate is appropriate. When ϵ is 0.01, it can maintain the fluency of responses.

7.4 Effect on the Regularization weight

As shown in Figure 7, among the results of all evaluation metrics corresponding to different regularization weight ranging from 0 to 0.05, the model achieves highest score when $\alpha = 0.01$. In order to find a better weight, we further explore it in a fine-grained setting from 0.005 to 0.05 in Figure 8, which shows that 0.01 is appropriate.

7.5 Masking Rate

Masking rate for “Diff GT” and “Same GT” ranging from 0 to 0.08 is plotted in Figure 5.

7.6 More Case Study

As shown in Table 6, where the user requests a recommendation for a modern European restaurant in downtown. In the third turn, the user should be given an explicit restaurant entity name according to the ground truth while UBARV1 and UBARv2 both choose to ask for the price of the restaurant to narrow down the choices. However, UBARV1 does not notice the context misses the necessary entity name and only simply provides the user with information such as an address, phone number, and price range in the fourth turn; on the contrary, UBARv2 can find logical inconsistency in context and provides key entity name in the fourth turn. From this case, we can see that UBAR using generated content as context does not completely avoid the problem of the missing entity name, and UBARV1 still has the error of not being able to supplement entity names. Instead, UBARv2 can supplement entity name appropriately, which reflects the fact that UBARv2 also can adaptively supplement and make amends in response to the current user utterance in order to stay consistent and coherent throughout the entire session and do it better than UBARV1. It is worth mentioning that at first we believe that the success of UBARV1 using all generated content comes from inconsistency between training and testing, i.e., the context that the model sees is not the ground truth but generated by the model itself.
Table 5: Results of domain transfer. The first row is the base model of UBARv2 trained on the four domains and evaluated in-domain. The second row is the results of the base model fine-tuned with 100 new domain examples on the four domains. The last three rows are evaluations on the new domains with zero-shot or few-shot BM or UBARv2 trained on full data, respectively.

Evaluation on 4 Domains	Except Hotel	Except Train	Except Attraction	Except Restaurant	Except Taxi
Base Model trained in-domain	**100.79**	93.76	96.02	97.04	99.26
Few-shot BM on new domain	**89.15**	68.83	86.60	80.47	78.09
UBARv2 on all domains	**106.81**	99.38	100.08	100.58	101.75

Evaluation on New Domain	Hotel	Train	Attraction	Restaurant	Taxi
Zero-shot BM	25.64	54.07	27.10	20.60	**55.79**
Few-shot BM on new domain	59.74	84.13	87.39	77.71	**90.98**
UBARv2 on all domains	92.04	**102.27**	102.04	101.21	97.51

and are therefore concerned that removing exposure bias might cause UBARv2 to lose this helpful inconsistency, which means using mixed learning might cause the model to not learn to generate key entity words. Fortunately, this case eliminates our concerns and illustrates that the method used by UBARv2 to mitigate exposure bias in the dialog still retains and even improves the ability of the model to be consistent with the entire session.

It is difficult to determine whether the exposure bias is effectively mitigated and whether the difference between distributions in training and inference is bridged. Even work on machine translation and automatic summarization motivated by addressing exposure bias has also typically judged whether exposure bias is mitigated just based on the improvement in BLEU or ROUGE score. By this criterion, the improvement of UBARv2 is sufficient to prove that the motivation of the proposed method for mitigating the exposure bias in the dialog is reasonable, but we still want to find a case to show that UBARv2 can effectively mitigate exposure bias in the dialog.

As shown in Table 7, UBARv1 using the original context can generate the key entity name in the current turn, but it can not respond correctly with the generated context, which indicates that UBARv1 suffers from exposure bias in the dialog, i.e., UBARv1 has accumulated errors due to the generated context. However, again based on the generated context, UBARv2 still generates key entity names in the current turn, effectively mitigating the exposure bias.
Figure 6: Sampling Rate ϵ

Figure 7: Regularization Weight α ranging from 0 to 0.05
actually, I don’t need a reservation. I am looking for a modern European restaurant in... the address is [value_address]. the phone number is [value_phone]. the price range is in [value_price] price range.

User: no problem. the address is [value_address]. the phone number is [value_phone]. it there anything else i can help you with?

User: actually, I don’t need a reservation. I am looking for a modern European restaurant in the center of town, though.

GT Resp. the [value_name] is good and is located at the [value_address]. can I reserve a table for you?

UBARv1: I have [value_choice] options for you. do you have a price range in mind?

UBARv2: there are [value_choice] restaurant-s that meet your criteria. do you have a price range in mind?

User: can I get the address, phone number, and price range please?

GT Resp. no problem. the address is [value_address]. the phone number is [value_phone]. it is in [value_price] price range.

UBARv1: the address is [value_address]. the phone number is [value_phone]. the price range is [value_price].

UBARv2: [value_name] is [value_price] and located at [value_address]. their phone number is [value_phone].

Table 6: Case Study: delexicalized responses generated by UBARv1 and UBARv2 of three consecutive dialog turns in dialog session MUL1273 from MultiWOZ 2.0.
not right now. i am also looking for an entertainment attraction on the east side of town. i 'll need their phone number and postcode.

okay we have 2. [value_name].

[value_name] is located on postcode [value_postcode] and the phone number is [value_phone].

sure! their phone number is [value_phone] and their postcode is [value_postcode].

[value_name] is located at postcode [value_postcode]. their phone number is [value_phone].

User: can you send me the phone number and postcode for the funky fun house?

GT Resp.: the phone number is [value_phone] with post code [value_postcode]

[value_name] is located at postcode [value_postcode]. their phone number is [value_phone].

is there anything else i can help you with?

User	not right now. i am also looking for an entertainment attraction on the east side of town. i 'll need their phone number and postcode.
GT Resp.	okay we have 2. [value_name].
UBARv1 w/GT Context	[value_name] is located on postcode [value_postcode] and the phone number is [value_phone].
UBARv1	sure! their phone number is [value_phone] and their postcode is [value_postcode].
UBARv2	[value_name] is located at postcode [value_postcode]. their phone number is [value_phone].
User	can you send me the phone number and postcode for the funky fun house?
GT Resp.	the phone number is [value_phone] with post code [value_postcode]
UBARv1 w/GT Context	the phone number is [value_phone] and the postcode is [value_postcode].
UBARv1	sure! the phone number is [value_phone] and the postcode is [value_postcode]. is there anything else i can help you with?

Table 7: Case Study: delexicalized responses generated by UBARv1 and UBARv2 of two consecutive dialog turns in dialog session PMUL3834 from MultiWOZ 2.0. UBARv1 w/GT Context is the response using annotated intermediate information.