Native forests but not agroforestry systems preserve arbuscular mycorrhizal fungal species richness in southern Ethiopia

Zerihun Belay 1 · Mesele Negash 2 · Janne Kaseva 3 · Mauritz Vestberg 3 · Helena Kahiluoto 4

Received: 25 April 2020 / Accepted: 15 August 2020 / Published online: 9 September 2020 © The Author(s) 2020

Abstract

The rapid conversion of native forests to farmland in Ethiopia, the cradle of biodiversity, threatens the diversity of the arbuscular mycorrhizal fungi (AMF) pivotal to plant nutrition and carbon sequestration. This study aimed to investigate the impact of this land-use change on the AMF species composition and diversity in southern Ethiopia. Soil samples were collected from nine plots in each of three land-use types: native forest, agroforestry, and khat monocropping. The plots of the three land-use types were located adjacent to each other for each of the nine replicates. Three 10 × 10 m subplots per plot were sampled. AMF spores were extracted from the soil samples, spore densities were determined, and species composition and diversity were evaluated through morphological analysis. Both spore density and species richness were statistically significantly higher in the native forest than in the agroforestry plots with no clear difference to khat, whereas the true diversity (exponential of Shannon–Wiener diversity index) did not differ among the three land-use types due to high evenness among the species in agroforestry. In total, 37 AMF morphotypes belonging to 12 genera in Glomeromycota were found, dominated by members of the genera Acaulospora and Glomus. The highest isolation frequency index (78%) was recorded for Acaulospora koskei from native forest. Consequently, the agroforestry system did not appear to aid in preserving the AMF species richness of native forests relative to perennial monocropping, such as khat cultivation. In contrast, the native forest areas can serve as in situ genetic reserves of mycorrhizal symbionts adapted to the local vegetative, edaphic, and microbial conditions.

Keywords Agroforestry · Cordia africana · Khat · Land-use type · Native forest · Species diversity

Introduction

For several decades in Ethiopia, once the biodiversity cradle of the planet, natural forests have been rapidly converted into farmland. In southern Ethiopia, forests have been converted mainly into agroforestry systems and further into agricultural systems of monocropped perennials such as coffee, pineapple, and eucalyptus, and increasingly to khat (Catha edulis), which is used and exported as a stimulant (Abebe 2005; Abebe et al. 2010). This land-use change has resulted in soil degradation, with a decline in soil organic matter (SOM) and nitrogen (Lemenih et al. 2005; Girmay et al. 2008), as well as in changes in other soil physical and chemical properties (Getachew et al. 2012). The devastation to plant diversity in agricultural landscapes is presumed to also affect microbial ecology, especially that of obligatory symbiotic arbuscular mycorrhizal fungi (AMF) (Xiang et al. 2014), which are critical to plant nutrition and soil quality.

AMF are plant-symbiotic soil fungi in the phylum Glomeromycota that are associated with more than 80% of terrestrial plants. The total number of described AMF species was 318 in early October 2019 (www.amf-phylogeny.com). These species belong to 34 genera and 12 families. They play a key role in natural and agricultural ecosystems due to their capacity to form multifunctional arbuscular mycorrhizae (AM), which are considered to be the oldest, most widely distributed, and most important symbiotic associations in nature (Smith and Read 2008). AM increase the soil volume exploited by the host plant, which leads to enhanced plant
AMF diversity and abundance in soil are influenced by vegetation cover (Burrows and Pfleger 2002; Vandenkornhuysse et al. 2002; Scheublin et al. 2004), soil pH (Alguacil et al. 2016), and soil fertility, particularly phosphorus availability (Kahiluoto et al. 2000; Liu et al. 2016), which is also a determinant of symbiotic AM effectiveness in terms of plant nutrition (Kahiluoto et al. 2001). Tree-based multilayer intercropping (agroforestry) systems are sometimes shown to support a more abundant and diverse AMF community than conventionally managed systems (Chifflot et al. 2009; Lacombe et al. 2009; Bainard et al. 2012; Belay et al. 2015), whereas other studies (e.g., Jefwa et al. 2006) report a lower AMF species diversity in agroforestry systems containing Sesbania macrantha and Sesbania sesban than in maize monocropping systems. The higher species diversity in the maize fields was suggested to be due to the short maize cropping season, inducing more rapid root dynamics and turnover than in the much longer growth cycles in the agroforestry plots. A higher abundance of AMF spores in agroforestry systems (especially with legume trees) than in monocultures was found in southwestern Ethiopia (Muleta et al. 2008) and in Brazil (Cardoso et al. 2003). The differences in AMF observed in these studies may be a function of the cultivation techniques, climatic variation, or tree–crop combinations used. Evidence from ITS rDNA sequence metadata by Yang et al. (2012) indicated that the distribution of AMF showed high endemism at large scales. This suggests high specificity of AMF for host at different scales (plant taxonomic order and functional group) and high selectivity by host plants for AMF. They suggested that the effects of ecosystemic, biogeochemical, continental, and climatic factors on AMF distribution might be mediated by host plants.

We hypothesized that the AMF species diversity and spore density in protected sacred native forests and multilayer agroforestry systems differ from those in monocultured khat farms as a result of the difference in plant diversity, host plants, and soil management. Our specific hypotheses were as follows:

a The land-use type influences the AMF species diversity and richness in accordance with the gradient of the plant diversity and soil management intensity; and
b The impact on the AMF species composition and spore density does not depend on the plant diversity but on the plant species composition.

Material and methods

Study sites

The study sites were located in the districts of Wonsho and Shebedino in the Sidama zone, southern Ethiopia, because the three land-use types that represent the typical land-use change continuum in southern Ethiopia are located next to one another in these areas. This enabled the sampling of adjacent fields with similar original site characteristics with known differences in the land-use history as the focus of the study. The study area was located between 7° 00′–7° 06′ northern latitude and 38° 34′–38° 37′ eastern longitude (Asfaw 2003). The agroecology of the study area is characterized by a moist to sub-humid warm subtropical climate with altitudes ranging between 2000 and 2150 m a.s.l. The area has an average annual rainfall of 1200–1500 mm, and the mean monthly temperature is 18–25 °C (Abebe 2013).

This study was undertaken in three land-use types that represent the succession of historical land-use change that has accelerated in recent decades due to population growth and market globalization. The three land-use types, i.e., sacred native forest, agroforestry system, and monocultured perennial khat, have hypothetically distinctive capacities to preserve AMF species diversity and spore density. The native forest patches in agricultural landscapes are remnants of the earlier, more continuous forests that once dominated the area. Later, the forest areas were converted into agricultural land on a large scale in southern Ethiopia, predominantly to multistrata agroforestry systems and recently increasingly to cash monocropping systems such as khat farms. The patches of forest are considered sacred and protected for spiritual reasons, and hence, use of the forests is forbidden and entry to the forest is restricted. Traditional multistrata (i.e., multilayer) agroforestry systems represent the managed ecosystem type providing food security for the local population. Cash crops such as coffee, and later khat, were introduced to the agroforestry systems. The third land-use type considered, khat monocropping, represents the monocropping of perennial cash crops, which has vastly expanded over the past decade. Khat is a cash crop, the production of which has recently rapidly increased due to high-value export demand. Khat monocropping is expected to further expand in East Africa, replacing coffee cultivation, as coffee is more sensitive to climate change.

The native forest is dominated by plant species such as Cordia africana Lam, Afrocarpus falcatus (Podocarpus falcatus) (Thunb.) R. Br. ex Mirb, Millettia ferruginea (Hochst.) Baker, Ficus spp., Syzygium guineense (Willd.) DC., Aningeria adolfi-friederici, and Erythrina brucii Schweinf. The native dry Afrotumante forest converted to multistrata agroforestry and khat farming through gradual harvest of trees selectively and intensification of the land use.
decades ago. The multistrata agroforestry system included
trees, shrubs, and crops grown as integrated layers in the same
area. One to three tree species per subplot (subplot refers to a 1
m × 1 m where inventory and soil sampling were conducted)
appeared, dominated by *C. africana* and *M. ferruginea*, of the
other species, 4% were legumes; the other plants included
perennial species such as the food crop enset (*Ensete
ventricosum*), the cash crop coffee (*Coffea arabica* L.), and
annual food crops such as maize (*Zea mays* L.), yam
(* Dioscorea rotundata* L.), taro (*Colocasia esculenta* L.),
kale (*Brassica oleracea* L.), and pepper (*Capsicum* spp.).
Additionally, khat (*Catha edulis* Forsk.) is often included in
the agroforestry systems. The native forest patches called
Arosa (2.1 ha) and Abo (32.5 ha) were purposely selected as
study sites based on the occurrence of adjacent khat and
agroforestry plots. The age of agroforestry management
of the sampled agroforestry plots varied from 32 to 54 years,
and the khat cultivation history on the khat plots from 15 to
27 years. The khat plant planted, weeded, pruned, and reached
to maturity for foliage biomass harvest at the age of 3 years
old. Farmers used pesticides for khat plants. The distance
between the forest plots and the adjacent agroforestry and
khat plots with similar topography ranged from 10 to 100 m.

**Sampling design and soil collection**

The soil samples were collected in May–June 2015 using
the stratified random sampling method. The basis of
stratification was the land-use type. In total, 27 plots
(nine for each land-use type) sized 10 m × 10 m and
three subplots sized 1 m × 1 m per plot, randomly placed
at the corners and center of each plot, were sampled. The
samples were collected from 0- to 40-cm depth of soil in
triplicate (measurements 1, 2, and 3) in alcohol-sterilized
samples were collected from 0- to 40-cm depth of soil in
at the corners and center of each plot, were sampled. The
three subplots sized 1 m × 1 m per plot, randomly placed
(sized 10 m × 10 m and
stratification was the land-use type. In total, 27 plots
(nine for each land-use type) sized 10 m × 10 m and
three subplots sized 1 m × 1 m per plot, randomly placed
at the corners and center of each plot, were sampled. The
samples were collected from 0- to 40-cm depth of soil in
triplicate (measurements 1, 2, and 3) in alcohol-sterilized
samples were collected from 0- to 40-cm depth of soil in
at the corners and center of each plot, were sampled. The
three subplots sized 1 m × 1 m per plot, randomly placed

**Soil physicochemical characteristics**

The soil types of the study sites are mainly classified as
Nitisols based on FAO (1988), representing inherently fertile
tropical soils with a relatively high nutrient and clay content
and deep, permeable structure, often strongly influenced by
biological activity. The physicochemical properties of the
soil samples are given in Table 1. Soil pH was measured in
dionized water (1:2.5 soil:water) (ES ISO 10390), and soil texture
was measured with the Bouyoucos hydrometer method
(Bouyoucos 1962). Soil plant-available phosphorus was de-
termined by extraction with 0.5 M NaHCO₃ and measured
using Mo-Sb spectrophotometry (Olsen et al. 1954). Total N
was determined according to the Kjeldahl method (Bremner
and Mulvaney 1982), and total organic carbon was deter-
mined by using the method of Walkley and Black (1934).

**AMF spore analyses**

AMF spores were extracted from the soil by wet sieving and
decanting (Gerdemann and Nicolson 1963) followed by cen-
trifugation in water and in a 50% sucrose solution (Walker
et al. 1982). A 500-μm and a 50-μm sieve were used for
wet sieving. After centrifugation, the spores were transferred
to a dish of water for examination under a dissection micro-
scope at magnifications of up to 50 times. Spores were char-
acterized into morphotypes and, whenever possible, identified
to species using a high-power microscope. Permanent slides
were made using a polyvinyl alcohol-lactoglycerol (PVLG)
mountant alone (Omar et al. 1979) or together with Melzer’s
reagent (1:1) (Walker et al. 1993).

The Shannon–Wiener index (Krebs 1985) was calcu-
lated as a measure of AMF spore diversity (Table 3). The isolation frequency (IF) was calculated as the num-
ber of samples in which a given species was isolated as
the percentage of the total number of samples. The rela-
tive abundance (RA) of spores was calculated as the
number of spores of a given AMF species as a percent-
age of the total number of spores. A sporocarp of the
genera *Funneliformis* and *Sclerocystis* was recorded as
one spore. The importance value (IV) of an AMF
morphotype was used to evaluate the dominance of
AMF species based on the IF and RA and was calculated
as IV = (IF + RA)/2. IV ≥ 50% indicates that a genus or
species is dominant, 10% < IV < 50% applies to com-
mon genera or species, and IV ≤ 10% indicates that a
genus or species is rare (Chen et al. 2012).

**Statistical analyses**

Generalized linear models (GLMs) were used for soil chemi-
cal properties, and linear mixed models (LMMs) were used
for AMF variables. The soil chemical properties analyzed
were normally distributed, except PNaHCO₃, which was heavi-
ly skewed. Thus, the gamma distribution (with a log link) was
used for PNaHCO₃, and estimates were back-transformed to the
original scale. The assumption of homogeneous variances was
tested with a likelihood ratio test and rejected in all cases
except for silt. An information criterion (AICc) was used to-
gether with a likelihood ratio test for decision-making. A ran-
domized complete block design (RCBD) was used for the
AMF variables and the soil chemical properties of OC and
total N, where the nearest three land-use types formed a block.
Land use was denoted as a fixed effect, and block was considered a random effect. The mean of three parallel subsamples was calculated to avoid pseudoreplication. All of these variables were analyzed considering a normal distribution, although spore density was log-transformed prior to analysis because of its skewed distribution. The Shannon–Wiener ($H$) is expressed on a logarithmic scale, and to describe the true diversity as the effective number of morphotypes, it needs to be converted to the original scale using Hill number $q=1$, which is the exponential of $H$ (Chao et al. 2014). The model was fitted using the residual maximum likelihood (REML) or residual pseudolikelihood estimation method (RSPL), and the degrees of freedom were calculated using the Kenward–Roger method. The method of Westfall (1997) was used for pairwise comparisons of means, with a significance level of $\alpha = 0.05$ followed by the method of Westfall.

The results represent the means and standard errors of composite samples from nine plots and three subplots for each land-use type ($N = 27$).

Total $N$ total nitrogen, OC organic carbon, $P_{NaHCO3}$ NaHCO3-extractable phosphorus

The latter was analyzed considering a gamma distribution, and a 95% confidence interval is thus reported. Means followed by the same letter do not differ statistically significantly from each other ($\alpha = 0.05$ followed by the method of Westfall).

**Results**

**Soil physicochemical parameters**

The soil in the study area was slightly acidic to neutral, with mean pH values of 6.1 in native forest, 6.4 in the agroforestry plots, and 6.0 under khat monocropping (Table 1). The soil organic carbon concentration varied between 3.25 and 4.98%, and the soil total nitrogen concentration varied between 0.22 and 0.43%. Statistically significant differences among the three land-use types were found for both carbon and nitrogen concentrations ($p < 0.05$) (Table 1). The $P_{NaHCO3}$ content was significantly higher in the agroforestry plots (56.4 ppm) than in native forest (22.1 ppm) and under khat farming (23.4 ppm) ($p < 0.05$) (Table 1). The native forest plots were more dominated by the clay fraction, while the agroforestry and khat monocrop plots showed a dominant sand fraction.

**AMF spore density**

Total spore abundance varied among the three land-use types. The total spore abundance was higher in the native forest (28.9 spores 100-g$^{-1}$ soil) than in the agroforestry plots (10.2 spores 100-g$^{-1}$ soil) ($p < 0.05$) (Fig. 1). The median spore density found under khat monocropping (17.8 spores 100 g$^{-1}$ soil) did not significantly differ from that in the two other soil types ($\alpha = 0.05$).

**AMF composition**

Altogether, 37 morphotypes belonging to 12 genera of Glomeromycota were characterized (Table 2). Twelve (32.4%) and twenty-five (67.6%) morphotypes were identified at the genus and species levels, respectively. Thirteen putative species were members of *Acaulospora*, eight were members of *Glomus*, three each were members of *Claroideoglomus* and *Scutellospora*, and two each were members of *Gigaspora* and *Rhizophagus*. The genera *Cetraspora*, *Diversispora*, *Funneliformis*, *Pacispora*, *Racocetra*, and *Sclerocystis* were each represented by one species. The most frequently found genus was *Acaulospora*, followed by *Glomus*, comprising 36.5% and 21.0% of all species found, respectively (Table 3). Some of the identified species and morphotypes are illustrated in Fig. 2.

**Isolation frequency, relative abundance, and dominant AMF species**

The genus *Acaulospora* occurred most frequently on average, followed by *Pacispora*, *Diversispora*, and *Claroideoglomus*. 

---

### Table 1 Soil physicochemical characteristics of the three land-use types in the Sidama zone, southern Ethiopia

| Soil variable | Unit       | Native forest | Agroforestry system | Khat monoculture |
|---------------|------------|---------------|---------------------|------------------|
| $P_{NaHCO3}$  | ppm        | 22.1$^b$ (14.2, 34.5) | 56.4$^a$ (36.1, 88.0) | 23.4$^a$ (15.0, 36.5) |
| pH            | 1:2 H$_2$O | 6.14 ± 0.124  | 6.43 ± 0.119        | 6.03 ± 0.210     |
| Total N       | %          | 0.43$^a$ ± 0.025 | 0.29$^b$ ± 0.007    | 0.22$^c$ ± 0.017 |
| OC            | %          | 4.98$^a$ ± 0.347 | 3.25$^b$ ± 0.048    | 2.66$^c$ ± 0.163 |
| Sand          | %          | 12.0$^a$ ± 0.58 | 26.5$^b$ ± 0.50     | 23.0$^c$ ± 2.00  |
| Silt          | %          | 29.5 ± 1.77    | 24.5 ± 1.77         | 29.5 ± 1.77      |
| Clay          | %          | 58.5$^a$ ± 1.26 | 49.0$^b$ ± 2.38     | 47.5$^c$ ± 0.50  |

The results represent the means and standard errors of composite samples from nine plots and three subplots for each land-use type ($N = 27$).
The highest IF (77.8%) was recorded for Acaulospora koskei in native forest, followed by Pacispora sp. (67%) and Glomus sp. 2 (55.6%) under khat monocropping. The RA of AMF spores was the highest for Pacispora sp. (12.8%) under khat monocropping, followed by Acaulospora sp. 1 and Sclerocystis sp. (12% each) under agroforestry. Pacispora sp. was more frequently and abundantly extracted under khat monocropping than under the other land-use types.

According to the IV, no AMF species were dominant in any of the three land-use types (Table 3). However, 18 AMF species (66.6% of the identified species) were regarded as common species in the native forest. Similarly, 6 AMF species (31.6%) under agroforestry and 12 AMF species (54.5%) under khat monocropping were also categorized as common AMF species. In general, compared with that of the other AMF species, the abundance of Acaulospora koskei was recorded as high in native forests in terms of the IF, RA, and IV.

Species richness was the highest in the native forest (27 species) and the lowest under agroforestry (19 species) (Table 3). The true diversity (calculated as the exponential of the Shannon–Wiener index) and evenness showed no statistically significant differences among the three land-use types ($p = 0.070$ and $p = 0.916$, respectively). Agroforestry had the lowest index value (3.79), while native forest had the highest index value (5.68). However, agroforestry scored the highest in evenness among the three land-use types (Fig. 1).

**AMF species richness and diversity**

**Discussion**

The AMF spore densities in native forests were higher than those under agroforestry, whereas the spore densities in khat monocropping systems did not statistically significantly differ.
from those in the two other land-use types. The relative differences in species richness were similar but smaller, whereas no clear difference in species diversity among the three land-use types could be discerned. Consequently, the hypothesis that land-use type influences the AMF species diversity and richness in accordance with the gradient of the plant diversity and soil management intensity (a) was not fully supported by our data; instead, plant species composition appeared to be as important as plant diversity. Instead, the hypothesis that the impact on the AMF species composition and spore density does not depend on the plant diversity but on the plant species composition (b) was supported by the findings.

Validity and generalizability

Newly formed spores were lacking in most samples, indicating that the timing of soil collection did not coincide with AMF sporulation. Spores were often damaged or partly decomposed, partly because of the sampling occurring after a relatively moist period. The AMF spore densities in our study varied between 0.12 and 0.35 g⁻¹ of soil. These results were somewhat lower than those found by Muleta et al. (2007, 2008) in agroforestry and monocultured coffee systems in southwestern Ethiopia (0.04–1.2 g⁻¹ soil) and by Stürmer and Siqueira (2011) in distinct land-use systems in the western Brazilian Amazon (0.51–2.3 g⁻¹ soil). However, very high spore densities were reported by Birhane et al. (2018) in dry Afromontane forest in northern Ethiopia (4.5 spores g⁻¹ soil) and by Dobo et al. (2016a) in a similar study area and in similar land-use types as in the current study (4.3 to 7.5 g⁻¹ of soil). Consequently, the spore densities found here obviously represent those beyond the sporulation period, and the differences among the land-use types reflect relative rather than absolute differences.

The finding of 37 AMF species (morphotypes) belonging to 12 genera of Glomeromycota identified in this study was in the range of previous studies conducted in similar land-use systems in the region. For example, 29 AMF species were identified in Sidama, southern Ethiopia, by Dobo et al. (2016a), and Belay et al. (2013, 2015) found 42 species associated with different land-use types in Ethiopia. However, somewhat lower numbers of AMF species, 12 to 17, were identified by Jefwa et al. (2009, 2012) in soils from indigenous forests to croplands in southern Kenya. Uhmann et al. (2004) found 44 species in semiarid grasslands in Namibia. Very high numbers of AMF species (60) were detected by Tchabi et al. (2008) in savanna soils from Benin, West Africa, and 61 AMF species were reported by Stürmer and Siqueira (2011) in the Brazilian Amazon. Many morphotypes of the most frequent genera, Acaulospora and Glomus, could not be identified to the species level, likely because (1) the identification was performed with only field spores, whereas spores of better quality require trap cultures; (2) the samples were collected only during one rainy season (May–June), which induces spore germination and suppresses sporulation, which was perhaps less optimal for obtaining newly formed spores than other seasons (Cuenca and Lovera 2010); and (3) some of the morphotypes might represent new, not yet classified AMF taxa (Oehl et al. 2017).

The lack of clear differences between khat monocropping and the two other land uses should be considered with caution; the growth rhythm and obviously strong influence of khat cultivation on the timing of AMF sporulation reduce the comparability with the other two land uses with many shared plant species. Regarding the clear differences between the native forest and agroforestry plots, the plant species composition and management of the latter are decisive. This draws attention to the importance of the development of agroforestry management to better maintain ecosystem services and soil quality.

Table 2 Number of morphotypes per genus characterized in soil sampled from the Sidama zone, southern Ethiopia

| Genus             | Number of morphotypes characterized |
|-------------------|-------------------------------------|
| Acaulospora       | 13                                  |
| Cetraspora        | 1                                   |
| Clarodeoglomus    | 3                                   |
| Diversispora      | 1                                   |
| Funneliformis     | 1                                   |
| Gigaspora         | 2                                   |
| Glomus            | 8                                   |
| Pacispora         | 1                                   |
| Racocetra         | 1                                   |
| Rhizophagus       | 2                                   |
| Scutellospora     | 3                                   |
| Sclerocystis      | 1                                   |
| Sum of morphotypes| 37                                  |

The number of morphotypes characterized in each genus is shown in the table.
The differences in AMF species richness are generally determined by plant diversity, density (Burrows and Pfleger 2002; Scheublin et al. 2004; Chifflet et al. 2009) and productivity, land-use intensity (Verbruggen et al. 2010), and soil physicochemical characteristics, including decomposition conditions such as soil moisture and texture. Agroforestry systems are hypothesized to harbor a relatively high AMF species richness and abundance due to the

Table 3  Distribution of AMF species among land-use types. The AMF species were extracted from the soil of native forest (NF), agroforestry plots (AF), and khat monocropping plots (Kh) in the Sidama zone, southern Ethiopia. Isolation frequency (IF) was calculated as the number of samples in which the given species was isolated as the percentage of the total number of samples. Relative abundance (RA) was calculated as the number of spores of a given AMF species as a percentage of the total number of spores. Importance value (IV) was calculated as $IV = (IF + RA)/2$

| AMF species and morphotypes | IF (%) | RA (%) | IV (%) |
|----------------------------|--------|--------|--------|
|                            | NF     | AF     | Kh     | NF     | AF     | Kh     | NF     | AF     | Kh     |
| Acaulospora dilatata J.B. Morton (1986) | 33.3 | 0 | 4.9 | 0 | 0 | 19.1 | 0 | 0 |
| Ac. koskei Blasz. (1955) | 77.8 | 33.3 | 11.4 | 6.4 | 6.6 | 44.6 | 0 | 19.9 |
| Ac. spinosa C. Walker & Trappe (1981) | 22.2 | 0 | 11.1 | 3.3 | 0 | 12.8 | 6.4 | 0 | 6.6 |
| Acaulospora sp. 1. Big spores (+ 200 μm), light yellow, depressions at surface | 33.3 | 44.4 | 33.3 | 4.9 | 12 | 6.4 | 19.1 | 28.3 | 19.9 |
| Ac. sp. 2. Big spores (150-200 μm), ash gray, globose, smooth | 11.1 | 0 | 0 | 1.6 | 0 | 0 | 6.4 | 0 | 0 |
| Ac. sp. 3. Big spores, grayish dark brown, smooth | 11.1 | 0 | 0 | 1.6 | 0 | 0 | 6.4 | 0 | 0 |
| Ac. sp. 4. Small spores, light brown, smooth | 22.2 | 0 | 0 | 3.3 | 0 | 0 | 12.8 | 0 | 0 |
| Ac. sp. 5. Yellowish, elongated | 11.1 | 0 | 0 | 1.6 | 0 | 0 | 6.4 | 0 | 0 |
| Ac. sp. 6. Dark brown, hyphae at surface, thick wall | 22.2 | 0 | 0 | 3.3 | 0 | 0 | 12.8 | 0 | 0 |
| Ac. sp. 7. Rather big spores, hyaline to white, smooth | 22.2 | 11.1 | 11.1 | 3.3 | 3 | 2.12 | 12.8 | 6.4 | 6.6 |
| Ac. sp. 8. Big spores (200–220 μm), globose, yellow, smooth | 11.1 | 11.1 | 11.1 | 1.6 | 3 | 2.12 | 6.4 | 6.4 | 6.6 |
| Ac. sp. 9. Small–to middle-size spores, yellow, depressions | 0 | 11.1 | 11.1 | 0 | 3 | 2.12 | 6.4 | 6.4 | 6.6 |
| Cetraspora pellucida Oehl, F.A. & Sieverd. (2009) | 11.1 | 0 | 11.1 | 1.6 | 0 | 2.12 | 6.4 | 0 | 6.6 |
| Claroideoglomus claroideum (N.C. Schenck & G.S. Sm.) C. Walker & A. C (2010) | 0 | 0 | 11.1 | 0 | 0 | 2.12 | 0 | 0 | 6.6 |
| C. etunicatum (W.N. Becker & Gerd.) C. Walker & A. Schüßler (2010) | 0 | 33.3 | 11.1 | 0 | 9 | 3 | 21.2 | 6.4 | 6.6 |
| C. luteum (L.J. Kenn., J.C. Stutz, & J.B. Morton) C. Walker & A. Schüßler (2010) | 44.4 | 33.3 | 0 | 6.5 | 9 | 0 | 25.5 | 21.2 | 0 |
| Dentiscutata savannicola (R.A. Herrera & Ferrer) C. Walker & A. Schüßler (2014) | 33.3 | 33.3 | 22.2 | 4.9 | 9 | 4.3 | 19.1 | 21.2 | 13.3 |
| Diversispora sp. C. Walker & A. Schüßler (2010) | 33.3 | 33.3 | 22.2 | 4.9 | 9 | 4.3 | 19.1 | 21.2 | 13.3 |
| Funneliformis mosseae (T.H. Nicolson & Gerd.) C. Walker & A. Schüßler (2010) | 0 | 11.1 | 44.4 | 0 | 3 | 8.5 | 0 | 6.4 | 26.5 |
| Gigaspora sp. 1. Yellowish spores | 11.1 | 0 | 22.2 | 1.6 | 0 | 4.3 | 6.4 | 0 | 13.3 |
| Gi. sp. 2. Spores with a greenish tint | 0 | 11.1 | 33.3 | 0 | 3 | 6.4 | 0 | 6.4 | 19.9 |
| Glomus sp. 1. Brown spores, elongated | 22.2 | 0 | 0 | 3.3 | 0 | 0 | 12.8 | 0 | 0 |
| Gl. sp. 2. Brown spores, globose | 33.3 | 11.1 | 55.6 | 4.9 | 3 | 10.6 | 19.1 | 6.4 | 33 |
| Gl. sp. 3. Big spores, darkly pigmented, irregular | 33.3 | 11.1 | 0 | 4.9 | 3 | 0 | 19.1 | 6.4 | 0 |
| Gl. sp. 4. Small brown spores, dense clusters | 22.2 | 0 | 0 | 3.3 | 0 | 0 | 12.8 | 0 | 0 |
| Gl. sp. 5. Big reddish-brown spores (+ 190 μm) with thick wall | 22.2 | 11.1 | 22.2 | 3.3 | 3 | 4.3 | 12.8 | 6.4 | 13.3 |
| Gl. sp. 6. Small ash-gray spores | 0 | 0 | 11.1 | 0 | 0 | 2.12 | 0 | 0 | 6.6 |
| Gl. sp. 7. Small yellowish spores | 0 | 11.1 | 33.3 | 0 | 3 | 6.4 | 0 | 6.4 | 19.9 |
| Gl. sp. 8. Big yellowish spores | 0 | 0 | 11.1 | 0 | 0 | 2.12 | 0 | 0 | 6.6 |
| Pacispora sp. Sieverd. & Oehl (2004) | 11.1 | 11.1 | 66.7 | 1.6 | 3 | 12.8 | 6.4 | 36.5 |
| Racocetra gregaria (N.C. Schenck & T.H. Nicolson) Oehl, F.A., Souza & Sieverd. (2008) | 22.2 | 11.1 | 0 | 3.3 | 0 | 0 | 12.8 | 6.4 | 0 |
| Rhizophagus fasciculatus (Thaxt.) C. Walker & A. Schüßler (2010) | 0 | 11.1 | 0 | 0 | 3 | 0 | 0 | 6.4 | 0 |
| R. irregularis (Blasz., Wubet, Renker, & Buscot) C. Walker & A. Schüßler (2010) | 22.2 | 33.3 | 22.2 | 3.3 | 9 | 4.3 | 12.8 | 21.2 | 13.3 |
| Scutellospora calospora (T.H. Nicolson & Gerd) C. Walker & F.E. Sanders (1986) | 44.4 | 11.1 | 11.1 | 6.5 | 3 | 2.12 | 25.5 | 6.4 | 6.6 |
| Scutellospora sp. C. Walker & F.E. Sanders (1986) | 44.4 | 0 | 0 | 6.5 | 0 | 0 | 25.5 | 0 | 0 |
| Sclerocystis sp. Berk. & Broome (1873) | 0 | 44.4 | 22.2 | 0 | 12 | 4.3 | 0 | 28.3 | 13.3 |

AMF species richness

The differences in AMF species richness are generally determined by plant diversity, density (Burrows and Pfleger 2002; Scheublin et al. 2004; Chifflet et al. 2009) and productivity, land-use intensity (Verbruggen et al. 2010), and soil physicochemical characteristics, including decomposition conditions such as soil moisture and texture. Agroforestry systems are hypothesized to harbor a relatively high AMF species richness and abundance due to the
increased species richness and productivity of host plants relative to monocultures (e.g., de Carvalho et al. 2010). However, in the current study, rather lower AMF species richness and spore density were recorded under agroforestry relative to khat monoculture. In addition to the possible confounding differences in the growth rhythm between the agroforestry and khat monoculture systems, a higher plant-available phosphorus supply under agroforestry than in the other land-use types likely decreased the AMF species richness (Xiang et al. 2014) and spore density (Kahiluoto et al. 2001). In contrast to our study, however, Dobo et al. (2016a) reported both increasing spore density and AMF species diversity with an increase in plant-available soil phosphorus in the Sidama zone; a negative influence of very low phosphorus availability (18.4 ppm by Dobo et al. vs. 56.4 ppm NaHCO₃-extractable phosphorus here) on AM formation and effectiveness has also been previously shown (e.g., Kahiluoto et al. 2000). Rather than by differences in soil properties, the minor or lack of differences between khat monocropping and agroforestry despite the greater plant diversity (Burrows and Pfleger 2002) in agroforestry and higher land-use intensity (Oehl et al. 2010) under khat monocropping may be explained by the difference in host plant species identity (Mathimaran et al. 2007). The maximum (41.71%) mycorrhizal dependency (MD) value was recorded in khat plants when the total MD of crops and agroforestry tree species was evaluated in a greenhouse experiment by Dobo et al. (2016b).
AMF species composition

One of the causes underlying the dominance of the two genera Acaulospora (35.5% of identified species) and Glomus (21% of identified species) as also found in other studies in similar agroecosystems (Belay et al. 2013, 2014, 2015; Doboe et al. 2016a), other tropical systems (Stürmer and Siqueira 2011), and Chinese forests (Zhao et al. 2001) as well as in temperate regions (Oehl et al. 2017) is that these genera are the most speciose AMF genera. To date, 50 species have been described from each of these genera in tropical forests (Marinho et al. 2018). The commonness of these genera may also be due to their ability to adapt to different environments, e.g., to tolerate a wide pH range (Marinho et al. 2018) and to produce numerous, often small-diameter spores (Dandan and Zhiwei 2007).

More than 70% of the AMF species identified in this study were specific to one or two of the land-use types. Furthermore, none of the species was dominant based on the IV, even though approximately 29% of the species were common. Only a few species from Scutellospora, Rhizophagus, Racocetra, Diversispora, and Funneliformis were identified, although these genera are known for their relatively large numbers of species in tropical forests (Marinho et al. 2018). Consistent with this observation, previous studies from Ethiopia and tropical ecosystems have shown that these genera are restricted in their distributions (Stürmer and Siqueira 2011; Belay et al. 2014, 2015).

AMF spore density

The observation of higher spore densities in natural forest than in agricultural land or monoculture in the current study has also been found in previous studies (Sharmah and Jha 2014). The intensity of land uses such as tillage; mineral fertilization, particularly that related to plant-available phosphorus; and pesticides influences spore abundance (Sharmah and Jha 2014; Doboe et al. 2016b; Stürmer and Siqueira 2011). In contrast to our study, however, Cardoso et al. (2003) and Muleta et al. (2007, 2008) reported higher numbers of spores from agroforestry systems than from monocultured coffee cultivation. This difference in results is obviously due to the difference in the host characteristics and cultivation techniques between coffee and khat (Bainard et al. 2011) and the temporal variation in the number of AMF spores in coffee plantations due to disparity in the phenological stages of the plants (Guadarrama and Alvaerez-Sanchez 1999; Zangaro et al. 2013; Prates Júnior et al. 2019).

In situ preservation of indigenous AMF

Regarding indigenous vs. introduced AMF (Middleton et al. 2015; Koziol et al. 2018), the most effective species are usually the indigenous AMF adapted to the local plant–soil conditions (Johnson et al. 2010). It has also been shown that management affects ecotype characteristics (Kahlüoto et al. 2000; Oehl et al. 2003). Therefore, in situ preservation of indigenous ecotypes that are adapted to local conditions is very important. Since higher AMF spore density and species richness occurred in native forest, whereas in agroforestry systems they were the lowest (Fig. 1), the native forest patches appear to be invaluable to be protected as reservoirs of the richness of locally adapted, effective AMF species and ecotypes.

Conclusions

The high density and richness of AMF observed in the protected sacred forest dominated by native plant species highlight the importance of in situ genetic reservoirs of mycorrhizal symbionts in their natural habitats. Such reservoirs might facilitate the introduction of effective and efficient symbionts to agroforestry and agricultural systems restored following mismanagement or being newly managed under sustainable practices where AM have an essential role. Since AMF indigenous to the prevalent soil–plant systems may perform best, with their edaphic origin being especially important (Johnson et al. 2010), such in situ reservoirs are invaluable for soil carbon sequestration, ecosystem restoration, and food security in Ethiopia and, more generally, in East Africa.

Acknowledgments Special thanks are extended to the farmers of Arosa and Abo and to Zebene Asfaw, Woyinshet Afework, and natural resource experts working in the agricultural offices of the studied districts for their help with the collection of soil samples under demanding conditions.

Funding information This study was supported by the Academy of Finland (SOILMAN project, Decision No. 270106/294135).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit note to the material. If material is not included in the article’s Creative Commons licence, and you did not obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abebe T (2005) Diversity in homegarden agroforestry systems of southern Ethiopia. PhD Dissertation, Wageningen University and Research Center, Department of Environmental Sciences
fungal communities in Kenyan ferralsols. Agr Ecosyst Environ 119:22–32
Middleton EL, Richardson S, Koziol L, Palmer CE, Yermakov Z, Henning JA, Schultz PA, Bever JD (2015) Locally adapted arbuscular mycorrhizal fungi improve vigor and resistance to herbivory of native prairie plant species. Ecosphere 6:276. https://doi.org/10.1890/ES15-00152.1
Muleta D, Asseta F, Nemomissa S, Granhall U (2007) Composition of coffee shade tree species and density of indigenous arbuscular mycorrhizal fungi (AMF) spores in Bonga natural coffee forest, southwestern Ethiopia. For Ecol Manag 241:145–154
Muleta D, Asseta F, Nemomissa S, Granhall U (2008) Distribution of arbuscular mycorrhizal fungi spores in soil of southwest Ethiopian. Biol Fertil Soils 44:653–659
Oehl F, Sieverding E, Laczko E, Oberholzer H, Jansa J, Egli S (2017) Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. New Phytol 204:968–979
Walker C, Mize CW, McNabb HS (1982) Populations of endogonaceous fungi at two locations in Iowa. Can J Bot 60:2518–2529
Walker C, Gianinazzi-Pearson V, Marion-Espinasse H (1993) Scutellospora castanea, a newly described arbuscular mycorrhizal species. Cryptog Mycol 14:279–286
Walkley A, Black I (1934) An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63:251–263
Wang ZG, Bi YL, Jiang B, Zhakyypek Y, Peng SP, Liu WW, Liu H (2016) Arbuscular mycorrhizal fungi enhance soil carbon sequestration in the coalfields, northwest China. Sci Rep 6:34336. https://doi.org/10.1038/srep34336
Westfall PH (1997) Multiple testing of general contrasts using logical constraints and correlations. J A Stat Assoc 92:299–306. https://doi.org/10.1080/01621459.1997.10473627
Xiang D, Verbruggen D, Hu Y, Veresoglou SD, Rillig MC, Zhou W, Xu T, Li H, Hao Z, Chen Y, Chen B (2014) Land use influences arbuscular mycorrhizal fungal communities in the farming–pastoral ecotone of northern China. New Phytol 204:968–978
Yang H, Zang Y, Yuan Y, Tang J, Chen X (2012) Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata. BMC Evol Biol 12:50
Zangaro W, Rostirola LV, de Souza PB, de Almeida AR, Lescano LEAM, Rondonia ABL, NagueinaMA CR (2013) Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil. Mycorrhiza 23:221–233
Zhao ZW, Xia YM, Qin XZ, Li XW, Cheng LZ, Sha T, Wang GH (2001) Arbuscular mycorrhizal status of plants and the spore density of arbuscular mycorrhizal fungi in the tropical rain forest of Xishuangbanna, southwest China. Mycorrhiza 11:159–162
Zhu YG, Miller RM (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends Plant Sci 8:407–409
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.