Infection Prevalence in Adolescents and Adults With Acute Myeloid Leukemia Treated in an Indian Tertiary Care Center

Hasmukh Jain, MD, DM1; Karthik Rengaraj, MD2; Vibhor Sharma, DM1; Avinash Bonda, MD, DM1; Raajit Chanana, MD, DM1; Jayashree Thorat, MD1; Ashwini Ronghe, MD2; Sanjay Biswas, MD2; Lingaraj Nayak, MD, DM1; Prashant Tembhare, MD4; Papagudi Subramnian, MD1; Dhanalaxmi Shetty, PhD5; Nikhil Patkar, MD3; Bhausaheb Bagal, DM1; and Manju Sengar, DM, MD1

PURPOSE Infections remain a major challenge in the treatment of acute myeloid leukemia (AML). Induction-related mortality reported in the literature is approximately < 5% in clinical trials. However, the real-world scenario is different, especially in developing countries, given the high incidence of multidrug-resistant (MDR) organisms, high incidence of fungal pneumonia at baseline, and significant delay before initiation of chemotherapy. We aimed to look at contemporary infections and infection-related mortality and analyze the patterns of infections.

MATERIALS AND METHODS This retrospective study was conducted at a large tertiary care oncology center in India. Patients with newly diagnosed AML who were older than age 15 years, considered fit for intensive therapy, and treated in the general wards of the adult hematolymphoid unit from March 1, 2014, until December 31, 2015, were included.

RESULTS One hundred twenty-one patients were treated during the study period. The most common presenting complaint was fever (85%). The focus of infection at presentation was found in 63% of patients, with respiratory infection being the most common (47%). MDR organisms were isolated in 55% of patients during induction from various foci. *Klebsiella pneumoniae* was the most common blood culture isolate (42.9%). Fungal pneumonia was diagnosed in 55% of patients during induction despite antifungal prophylaxis. Treatment-related mortality was 10.7% in all phases, with an induction mortality rate of 7.4%. Complete remission was attained in 69% of patients. Of all patients who received induction chemotherapy, 74% completed all three consolidation cycles. The 121 patients were followed up for a median period of 53 months. Four-year event-free survival was 35.8%, and 4-year overall survival was 41.5%.

CONCLUSION Infections and infection-related mortality are major challenges during AML induction. Gram-negative MDR and fungal infections are particularly common in our region.

JCO Global Oncol 6:1684-1695. © 2020 by American Society of Clinical Oncology

INTRODUCTION The challenges in the management of acute myeloid leukemia (AML) are treatment-related mortality as a result of infections and bleeding and relapsed disease. Infections during therapy are associated with mortality, morbidity, and increased health care expenditure and can compromise the dose intensity of chemotherapy. The induction mortality reported in the literature is < 5% in clinical trials.1-3 However, induction-related mortality reported from tertiary care centers in India ranges from 4.4%-24.7%.4-8 The higher mortality rate is a result of factors such as presence of infections at presentation, multidrug-resistant (MDR) organisms infection during induction, invasive fungal infections at baseline,8 and significant delay before diagnosis and initiation of chemotherapy. A study from India reported infections in 46% of patients at baseline.6 Another retrospective study from southern India showed a 4-week gap from onset of symptoms to first presentation to hospital.4 To improve outcomes, it is important to understand the pattern of infections to devise an appropriate strategy. Herein, we present the pattern of infections and infection-related mortality in patients with AML from a high-volume tertiary care center in India.

MATERIALS AND METHODS Study Design This is a retrospective study of patients with newly diagnosed AML who were older than age 15 years, received intensive therapy, and were treated in the general wards from March 1, 2014, until December 31, 2015. This study was approved by the institutional review board vide letter IEC/0319/3209/001. Patients...
A clinically evident focus at presentation was found in 63% of patients, with a respiratory focus being most common. Multidrug-resistant organisms were isolated in 55% of patients during induction from various sources, with Klebsiella pneumoniae being the most common blood culture isolate. Treatment-related mortality was 10.7% and induction mortality was 7.4%, predominantly as a result of infections.

Relevance
Drug-resistant infections are a major challenge in the management of AML in our setting. They result in greater morbidity, higher antimicrobial usage, and slightly higher mortality compared with rates reported in the literature.
The interval from diagnosis to the initiation of induction chemotherapy and the type of chemotherapy administered during induction and consolidation were recorded. The type of infections, infection-related outcomes, need for ICU admission, ventilator support, and PICC line removal as a result of infection were recorded. The response to induction and subsequent postremission therapy was recorded. Minimal residual disease (MRD) was assessed using bone marrow aspirate multicolor flow cytometry with the residual blasts cutoff being < 0.1%. The disease status at last follow-up was noted.

Analysis

Descriptive statistics were used to summarize the data, including medians and standard deviations. Survival was presented using Kaplan-Meier analysis. Correlation between survival and factors such as MDR infections, fungal pneumonia, and time to initiation of therapy was estimated using multivariable analysis. SPSS v25 (SPSS, Chicago, IL) was used for statistical analysis.

RESULTS

One hundred twenty-one patients with AML were treated during the study period. The median time from registration to start of induction chemotherapy was 21 days (range, 1-75 days). The baseline characteristics are listed in Table 1. For this study, individuals between the age of 15 and 30 years were considered adolescents and young adults.

Seventy-seven patients had a focus of infection (63%), with respiratory infections being the most common site (47%). The 7+3 regimen was the most common induction strategy. Consolidation therapy consisted of high-dose cytarabine (HIDAC) as a 3-hour infusion every 12 hours on days 1, 3, and 5. The cause for attrition in each phase is given in Figure 1.

Infections During Induction

All patients developed infections at some point in their treatment course. Most of the infections (90%) were observed during the induction phase. Organisms were isolated from blood, stool, sputum, perianal swabs, wound swabs, and pus cultures, which were sent from clinical infectious foci (Table 2).

| TABLE 1. Demographic and Clinical Characteristics at Baseline |
|-------------|-----------------|
| **Characteristic** | **No. of Patients (%)** |
| Sex | |
| Males | 76 (63) |
| Females | 45 (37) |
| Age, years (median, 30 years) | |
| < 30 (AYA) | 59 (48) |
| 30-50 | 57 (47) |
| > 50 | 5 (4) |
| Comorbidities* | |
| None | 100 (83) |
| At least one | 18 (15) |
| Not known | 3 (2) |
| Presenting complaints | |
| Feverb | 103 (85) |
| Fatigue/weakness | 62 (51) |
| Bleeding manifestations | 22 (18) |
| Cervical lymphadenopathy | 2 (2) |
| Gum swelling | 2 (2) |
| Generalized lymphadenopathy | 1 (1) |
| Pancreatitis | 2 (2) |
| Duration of illness before presenting to hospital, months | |
| Range | 0.13-16 |
| Median | 1 |
| ECOG performance status at baseline | |
| 0-1 | 81 (67) |
| 2-4 | 40 (33) |
| Infectious focus at presentation | |
| None | 44 (37) |
| Respiratory | 57 (47) |
| Skin and soft tissue | 24 (20) |
| Genital | 4 (3) |
| Oral | 3 (2) |
| GI tract | 2 (2) |
| Multiple foci | 12 (10) |
| Cytogenetic risk at presentation | |
| Favorable risk | 59 (49) |
| Intermediate risk | 44 (36) |
| Poor risk | 15 (12) |
| Unknown | 3 (2) |
| Induction regimen | |
| 7+3 (cytarabine plus daunorubicin or idarubicin) | 104 (86) |
| Daunorubicin, cladribine, and cytarabine | 17 (14) |

NOTE. Data presented as No. (%) unless otherwise indicated. Abbreviations: AYA, adolescent and young adult; ECOG, Eastern Cooperative Oncology Group.

*Comorbidities defined as hypertension, diabetes, heart disease, or hypothyroidism, as per standard criteria.

Fever is defined as a single oral temperature measurement of ≥ 38.3°C (101°F) or a temperature of ≥ 38.0°C (100.4°F) sustained over a 1-hour period.

*One patient in the data set had a duration of illness of 12 months, and another had a duration of illness of 16 months. One patient presented with a history of swelling over the left shoulder and fever, and the other patient presented with generalized weakness, off and on fever, and pain in right hip (extramedullary presentation).**

...
patients required removal. Only seven PICCs that were removed grew a pathogen from tip culture. The median number of days for clearance of blood cultures was 5 days (range, 2-11 days).

Sixty-seven patients (55%) had MDR organisms in the isolates. Thirty-four patients (28%) had extended-spectrum β-lactamase (ESBL)–producing organisms, 14 patients (12%) had carbapenemase-producing organisms, four patients (3%) had methicillin-resistant Staphylococcus aureus, two patients (2%) had vancomycin-resistant Enterococcus, and one patient had colistin-resistant Klebsiella.

The MDR organisms were isolated from different foci of infection (Table 2), with Klebsiella pneumoniae being the most common among blood culture isolates (42.9%). E. coli was most common among stool culture isolates (47.1%), and Pseudomonas was the most common in the wound swabs (63.6%). The numbers of patients with MDR infections in different phases of therapy (after start of induction and during consolidation cycles) are listed in Table 3. Neutropenic patients with prolonged or breakthrough fever were suspected of having fungal pneumonia. Patients with fungal pneumonia were categorized as having proven, probable, or possible invasive fungal disease. In total, 67 patients (55%) were suspected of having fungal pneumonia during induction. Among these patients, seven patients (5%) had probable fungal pneumonia, and the rest had possible fungal infection.

During the course of induction, 19 patients received acyclovir for clinical suspicion of herpes infection. Six patients were tested for cytomegalovirus infection based on clinical suspicion; however, none were positive. One patient had scabies during induction.

Induction Complications

Five patients (4%) required intensive care unit (ICU) admission, with a median ICU stay of 3 days. Six patients required inotropic support during their course of induction. The induction mortality rate was 7.4%, with all patients dying from severe sepsis and three patients having a life-threatening infection prohibiting further therapy.

Infections During Consolidation

Patients developed infections in all phases of consolidation therapy, with predominantly GNBs, as illustrated in Figure 2. In total, 17 patients (14%) developed probable fungal pneumonia during the consolidation phase. In two patients, the third HIDAC course was omitted, and the patients proceeded directly to follow-up in view of their complicated course.

Only two patients could proceed to an allogeneic stem-cell transplantation (ASCT) as consolidation therapy. One patient subsequently developed corticosteroid-refractory graft-versus-host disease after transplantation and died, and the other patients experienced relapse and died.

Antimicrobial Use

As per departmental policy, cefoperazone-sulbactam and amikacin were used as the first-line antibiotics for febrile neutropenia. Most patients (104 of 121 patients) required stronger antibiotics (carbapenems, colistin, tigecycline, teicoplanin, or vancomycin) for control of infections, with most antibiotics requiring courses of > 10 days. Details of antimicrobial type and duration are listed in Table 4. The mean durations of antimicrobial use during induction are listed in Appendix Table A1.

Efficacy Outcomes

Complete remission was attained in 84 patients (69%). Of 66 patients in whom MRD was assessed, 30 patients (45%) attained MRD-negative status. The median follow-up time was 53 months. Of the 108 patients who achieved remission, 55 patients experienced relapse. The mean time to relapse was 10.7 months (standard deviation, 7.9 months). Thirty-three patients were lost to follow-up.

Of the 121 patients, 75 patients (62%) experienced an event (treatment failure, relapse, or death), leading to a 4-year EFS rate of 35.8% (95% CI, 28% to 46%) and median EFS time of 19 months. Nine patients did not survive
TABLE 2. Percentage of Cultures Isolating MDR Organisms During Induction

Culture During Induction	Total No. of Cultures (% N = 121)	Escherichia coli	Klebsiella pneumoniae	Pseudomonas	Enterococci/ VRE	Streptococci	Acinetobacter	Staphylococcus aureus	Multiple Organisms
PICC/blood*	120	4 (11.4)	15 (42.9)	8 (22.9)	8 (22.9)	1 (2.9)	6 (17.1)	5 (14.3)	6
Sputum	59	1 (7.1)	7 (50)	5 (35.7)	2 (14.3)	2 (14.3)	3 (21.4)	2 (14.3)	6
Stool	90	16 (47.1)	6 (17.6)	1 (2.9)	11 (32.4)	1 (2.9)	3 (8.8)	1 (2.9)	9
Wound swab	14	0 (0)	6 (54.5)	7 (63.6)	0 (0)	1 (9.1)	1 (9.1)	3 (27.3)	3
Perianal	4	0 (0)	2 (66.7)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1

Abbreviations: MDR, multidrug resistant; PICC, peripherally inserted central catheter; VRE, vancomycin-resistant Enterococcus.
*Includes both PICC line infection and blood-borne infection.
†Includes cellulitis, hidradenitis, furuncle, abscess, otitis externa, soft tissue infections, tonsillitis, and thrombophlebitis.

Multivariable Analysis

Patients with complete remission with MRD negativity had a better EFS. No statistically significant correlation could be made between disease risk status, time to induction, incidence of MDR infections, or incidence of fungal infections and EFS. Completion of treatment was found to have a statistically significant influence on EFS ($P < .001$), with a median EFS time of 30 months and 4-year EFS of 42.4% (95% CI, 33% to 54.4%; Appendix Fig A1) in patients who completed treatment. The analysis of EFS and OS is provided in Table 5.

DISCUSSION

The key findings from our study include a higher incidence of infections at baseline, a higher incidence of drug-resistant infections and fungal infections, and consequently a higher use of antimicrobials than reported in the literature. The study population is different from that reported in other studies but is reflective of patients with AML in our region in terms of the younger age, male predominance, and greater prevalence of patients with good-risk disease.

This study included patients age 15 to 57 years. The median age of our cohort was 30 years, with only 4% of patients older than 50 years. This reflects the younger age of our AML population. Collective data reported on 3,848 patients from a multicenter consortium in India showed a median age of 40 years, with only 14% of patients >60 years old. This could reflect the fact that our population comprises a younger population and a possible referral bias as a result of elderly patients not seeking medical care. Only one third of the patient were female, reflecting the overall sex disparity in seeking care in our region. Half of our cohort had good-risk disease, unlike other studies where <20% of patients have good-risk disease. This could be a result of the longer time to treatment initiation (Fig 4). Good-risk patients are more likely to survive the waiting period. This could also reflect the preferential support given to good-risk patients by the

FIG 2. Infections during consolidation. FN, febrile neutropenia; GN, gram-negative; GP, gram-positive; HIDAC, high-dose cytarabine.
nongovernmental funding agencies. This is a problem because there is no universal health care system or insurance in our region and patients rely on support from external agencies.

An important reason for the higher incidence of infections at baseline (63%) is the significant delay in presentation and treatment initiation. In the current study, patients received induction chemotherapy an average of 3 weeks after the registration date (Appendix Fig A1). This is similar to reports from other centers in India. The mean duration from onset of symptoms to initiation of treatment in a study by Philip et al was 4 weeks. Nair et al described a delay in initiation of 12 weeks in patients with infection compared with 6 weeks in those without infection. Kumar et al reported that 72% of patients had a focus of infection at presentation, and Nair et al reported that 46% of patients had baseline infections.

In the current study, blood cultures were positive in only 22% of patients. This is similar to the Polish Adult Leukemia Group (PALG) study, with 26% blood culture positivity, but low compared with the study by the Children’s Oncology Group, which showed 56% blood culture positivity in induction, and a study from the Indian subcontinent, which demonstrated 51% blood culture positivity. Gram-negative organisms were more frequent and distributed along the treatment phases similar to other studies in the country. Gram-positive organisms were seen in 25 patients during induction, but only in three patients in

TABLE 4. Antibiotic, Antifungal, and Antiviral Use in Different Phases of Therapy

Treatment	Induction	HIDAC Cycle 1	HIDAC Cycle 2	HIDAC Cycle 3
Total No. of patients who received treatment	121	104	100	93
Carbapenem	99	14	19	22
Colistin	41	0	4	2
Tigecycline	23	1	1	1
Linezolid	15	1	0	1
Teicoplanin	48	8	21	10
Vancomycin	3	1	0	0
Clindamycin	33	7	7	9
Amphotericin B	19	1	0	0
Caspofungin	68	3	3	3
Voriconazole	17	0	0	0
Acyclovir	19	1	0	0
Ganciclovir	6	0	0	0

Abbreviation: HIDAC, high-dose cytarabine.

FIG 3. Patient survival statistics and chronology of relapse. BMT, bone marrow transplantation; BSC, best supportive care; CR, complete remission; FU, follow-up; GVHD, graft-versus-host disease; PD, progressive disease.
TABLE 5. Analysis of EFS and OS

Survival	No. of Patients	Median (months)	95% CI (months)	4-Year Rate (%)	95% CI (%)
EFS	121	19	15 to 35	35.8	28 to 46
OS	121	25	16 to NR	41.5	33 to 52

Abbreviations: EFS, event-free survival; NR, not reached; OS, overall survival.

subsequent HIDAC cycles. This is different from the clinical trial data from the AML-BFM2004, PALG, and Children’s Oncology Group trials reported in the Western literature, which showed predominantly gram-positive infections.3,19,22 The probable explanation for this is a lack of fluoroquinolone prophylaxis and low threshold for escalation to broad-spectrum antibiotics in the current study. In addition, as reported by Murali et al,21 increased gut colonization with MDR GNB (as high as 50% in surveillance cultures) could possibly explain the increased number of patients with GNB sepsis after the gut barrier is compromised after anthracycline-based chemotherapy.

MDR organisms were found in the isolates of 55.3% of the patients. ESBL production was the most frequent resistance mechanism, with E coli being the most common organism overall (35.54% of isolates). The most common isolate in blood cultures was Klebsiella (42.9%). This was similar to the study by Gupta et al,6 which demonstrated 81% ESBL isolates, with Pseudomonas (37%) and Klebsiella (23%) being the most common organisms. With uniform antibiotic guidelines, all patients had microbiologic negativity by the end of treatment. Mean duration of antibiotic therapy was 16 days in the study by Nair et al. In the current study, all patients required antibiotics for a mean duration of 10 days during the course of treatment.

We report a high incidence of fungal infections possibly as a result of ongoing construction activity and the weather.23 In the current study, 67 patients (55%) developed fungal pneumonia during induction (seven patients had probable fungal pneumonia during induction). This is in contrast to the AML-BFM2004 trial by Bochennek et al,22 who reported a 3% incidence of fungal infections. In contrast, the PALG study by Lech-Maranda et al4 reported a 20% rate of proven fungal infections, and Sung et al20 reported a fungal pneumonia rate of 14% to 21% distributed over all phases of treatment. Because of the limited number of patients in this study, correlation could not be made between fungal infection and OS and response rate, but other larger studies have shown that fungal infections definitely affect survival.24

The complete remission rate of 69% in this study is comparable to that of similar studies at centers across India at other tertiary centers (65%-70%).7,17 Among the 121 patients who started induction therapy, 90 patients completed therapy (three cycles of consolidation), for a treatment completion rate of 74%. The advantages of a younger cohort and overrepresentation of good-risk disease were offset by the low transplantation rates, with just three patients undergoing ASCT. Hence, the EFS in our study must be interpreted in that context (Table 6 and Appendix Fig A2).

Thirteen patients (10.7%) experienced treatment-related mortality in all phases, with induction mortality experienced by nine patients (7.4%). This is in concordance with Western literature.2,3,22 Similar studies from the Indian subcontinent have reported relatively higher induction mortality rates, with Pandian et al42 reporting a rate of 15.6% (Malabar Cancer Center), Philip et al42 reporting a rate of 24.7% (Christian Medical College Vellore), Kumar et al42 reporting a rate of 15.6% (Women’s Indian Association Cancer Institute, Chennai), and Bahl et al47 reporting a rate of 17.1% (All India Institute of Medical Sciences Delhi). Collective data from 10 tertiary care cancer centers in India reported an induction mortality rate of 18%.16

The strengths of this study are that the patterns of infection and infection-related outcomes are from a homogenous cohort. These data will be useful for other centers in our region. Because of the decent follow-up period, we are able to understand the efficacy outcomes in a low-transplantation setting. It is reassuring that despite the higher rates of infection and antibiotic use, the mortality is low.

The limitation of this study is its retrospective design. The outcomes of patients who experienced deterioration while waiting for induction is not known.

The focus in our setting should be to shorten the time to treatment initiation and look at strategies such as outpatient therapy with a 7+3 regimen in selected patients or other agents while awaiting admission. The other area to be addressed is the optimal use of antimicrobial prophylaxis and antimicrobial stewardship. We need to look at non-transplantation strategies to improve outcomes.

In conclusion, AML treatment in our setting is complicated by drug-resistant gram-negative infections and fungal infections. This leads to increases in morbidity, antimicrobial use, and use of health care resources.
TABLE 6. Comparison of Outcomes of Similar Studies

Study	Patient Age (years)	No. of Patients	Risk Strata (%)	Treatment Arm	Comparator Arm	CR Rate (%)	Induction Mortality	Transplantation Rate (%)	Outcomes
PALG¹	16-60	309	Not done	DAC for 7 days	DA for 7 days	84	13% v 9%	—	—
ECOG¹	17-60	657		D₄₅ for 3 days + C₁₀₀ for 7 days	D₉₀ for 3 days + C₁₀₀ for 7 days	FR, 81.3	D₄₅: 4.5%	50.3	OS, 20.7 v 34.3 months
JALSG²⁶	< 65	1,064	D arm:	D₄₅ for 3 days + C₁₀₀ for 7 days	I₁₂ + C₁₀₀ for 7 days	D arm:	Early death < 60 days: 2.1% v 4.7%	12	5-year OS with D + HIDAC, 58%
Bahl et al²⁷	8-60	480	FR, 21.6	D₄₅ for 3 days + C₁₀₀ for 7 days	—	FR, 84.8	18.7%	14	5-year OS, 35.5%
Kumar et al²⁸	1-74	404	FR, 29.6	D₆₀ for 3 days + C₁₀₀ for 7 days	—	—	15.6%	—	—
Philip et al⁴	Any	109	FR, 11.8	D₆₀ for 3 days + C₂₀₀ for 7 days	—	—	24.7%	22	1-year OS: < 15 years, 70%
Pandian et al⁰	> 14	96	FR, 19	D₆₀ for 3 days + C₁₀₀ for 7 days	—	74	15.6%	—	3-year OS, 39%
Our study	> 15	121	FR, 49	D₆₀ for 3 days or I₁₂ for 3 days + C₁₀₀ for 7 days	—	FR, 79	7.4%	2	4-year OS, 48.2%

NOTE. Subscript dose in mg/m² is followed by number of days (eg. D₆₀ for 3 days).

Abbreviations: AR, adverse risk; C, cytarabine; D, daunomycin; DA, daunorubicin and Ara-C; DAC, daunorubicin, Ara-C, and cladribine; ECOG, Eastern Cooperative Oncology Group; EFS, event-free survival; FR, favorable risk; HIDAC, high-dose cytarabine; I, idarubicin; IR, intermediate risk; JALSG, Japan Adult Leukemia Study Group; OS, overall survival; PALG, Polish Adult Leukemia Group.
AFFILIATIONS
1Department of Medical Oncology, Tata Memorial Hospital, affiliated to Homi Bhabha National Institute, Mumbai, India
2Medical Resident, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY
3Department of Microbiology, Tata Memorial Hospital, Mumbai, India
4Department of Hematopathology, Tata Memorial Hospital, Mumbai, India
5Department of Cancer Cytogenetics, Tata Memorial Hospital, Mumbai, India

CORRESPONDING AUTHOR
Hasmukh Jain, Professor, DM, MD, Department of Medical Oncology, Tata Memorial Hospital, Mumbai Affiliated to Homi Bhabha National Institute B1, Ground floor, Main Building, Tata Memorial Hospital, E Borges Rd, Mumbai 400 0112 India; Twitter: @hkJain_kmc; e-mail: dr.hkjain@gmail.com.

AUTHOR CONTRIBUTIONS
Conception and design: Hasmukh Jain, Manju Sengar
Administrative support: Vibhor Sharma, Raajit Chanana, Kartik Rengaraj
Provision of study materials or patients: Hasmukh Jain, Manju Sengar
Collection and assembly of data: Hasmukh Jain, Manju Sengar, Vibhor Sharma, Raajit Chanana, Jayashree Thorat, Kartik Rengaraj, Nikhil Patkar, Papagudi Subramanian, Avinash Bonda, Lingaraj Nayak, Prashant Tembhare, Dhanalaxmi Shetty

REFERENCES
1. Fernandez HF, Sun Z, Yao X, et al: Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med 361:1249-1259, 2009
2. Gibson BE, Webb DK, Howman AJ, et al: Results of a randomized trial in children with acute myeloid leukaemia: Medical Research Council AML12 trial. Br J Haematol 155:366-376, 2011
3. Lech-Maranda E, Seweryn M, Giebel S, et al: Infectious complications in patients with acute myeloid leukemia treated according to the protocol with daunorubicin and cytarabine with or without addition of cladribine: A multicenter study by the Polish Adult Leukemia Group (PALG). Int J Infect Dis 14:e132-e140, 2010
4. Philip C, George B, Ganapule A, et al: Acute myeloid leukemia: Challenges and real world data from India. Br J Haematol 170:110-117, 2015
5. Kalayarasi JP, Ganesan P, Kannan K, et al: Outcomes of intensive treatment of adult acute myeloid leukemia patients: A retrospective study from a single centre. Indian J Hematol Blood Transfus 27:1037-1045, 2010
6. Gupta A, Singh M, Singh H, et al: Infections in acute myeloid leukemia: An analysis of 382 febrile episodes. Med Oncol 11:242-252, 2015
7. Bleyer A, O'Leary M, Barr R, et al: Cancer epidemiology in older adolescents and young adults 15 to 29 years of age, including SEER incidence and survival: 1975-2000 (NIH Pub. No. 06-5767).https://seer.cancer.gov/archive/publications/aya/
8. Donnelly JP, Chen SC, Kaufman CA, et al: Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis 71:1367-1376, 2020
9. Gupta A, Gang A, Sharma A, et al: Response to induction chemotherapy predicts survival in AML: A single centre experience from North India. Indian J Cancer Eduuc Res 6:125-134, 2018
10. Kumar H, Mehra N, Ganesan P, et al: Patterns of infection and mortality associated with intensive AML induction therapy: 10 year experience from a tertiary cancer centre in India. Blood 132:4008, 2018
11. Sengar MS, Bhausaheb Bagal, Sanjay Biswas

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to http://www.asco.org/rwc or ascopubs.org/go/site/misc/authors.html.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

No potential conflicts of interest were reported.
21. Murali NA, Ganesan P, Vijayakumar V, et al: Increasing incidence of multidrug-resistant gram-negative septicaemia during induction therapy of acute myeloid leukemia. J Hosp Infect 93:314-315, 2016
22. Bochennek K, Hassler A, Perner C, et al: Infectious complications in children with acute myeloid leukemia: Decreased mortality in multicenter trial AML-BFM 2004. Blood Cancer J 6:e382, 2016
23. Kobayashi R, Hori D, Sano H, et al: Risk factors for invasive fungal infection in children and adolescents with hematologic and malignant diseases: A 10-year analysis in a single institute in Japan. Pediatr Infect Dis J 37:1282-1285, 2018
24. Zengin E, Sarper N, Aylan Gelen S, et al: High infection-related mortality in pediatric acute myeloid leukemia without preventive antibiotics and antifungals: Retrospective cohort study of a single center from a middle-income country. Turk J Haematol 34:340-344, 2017
25. Ohtake S, Miyawaki S, Fujita H, et al: Randomized study of induction therapy comparing standard-dose idarubicin with high-dose daunorubicin in adult patients with previously untreated acute myeloid leukemia: The JALSG AML201 Study. Blood 117:2358-2365, 2011
APPENDIX

FIG A1. Event-free survival curve according to treatment completion.

![Event-free survival curve](image)

FIG A2. Event-free survival according to risk strata.

![Event-free survival graph](image)
Antibiotic	Mean Duration (days; SD)
Carbapenem	13 (5.9)
Colistin	9 (4.7)
Tigecycline	9 (5.3)
Linezolid	7 (3.5)
Teicoplanin	9 (4.3)
Vancomycin	10 (1.7)
Clindamycin	9 (5.3)
Amphotericin B	12 (4.9)
Caspofungin	12 (6.3)
Voriconazole	11 (7.5)

NOTE. All mean durations are provided as approximate. Abbreviation: SD, standard deviation.