Zirconia ceramics, their contrast ratio and grain size depending on sintering parameters

Bogna STAWARCZYK, Angela EMSLANDER, Malgorzata ROOS, Beatrice SENER, Falko NOACK and Christine KEUL

1 Department of Prosthodontics, Ludwig-Maximilian-University, Munich, Germany
2 Division of Biostatistics, Institute of Social and Preventive Medicine, University of Zurich, Switzerland
3 Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Switzerland
4 Amanergirbach, Koblach, Austria
Corresponding author, Bogna STAWARCZYK; E-mail: bogna.stawarczyk@med.uni-muenchen.de

This study investigated the contrast ratio and grain size depending on sintering parameters of twelve different zirconia materials and compared with glass-ceramic (N=156, n=12 per group). Contrast ratio of all ceramics was measured using a spectrophotometer according to ISO 2471: 2008. Grain sizes of zirconia were determined by SEM. Data was analyzed using one-way ANOVA followed by post-hoc Scheffe-test, Kruskal-Wallis-H-test and Spearman correlation (p<0.05). The area under the sintering curve up 25°C (AUC25) and 1200°C (AUC1200) of zirconia was calculated. Glass-ceramic showed significantly lowest contrast ratio compared to zirconia. Final sintering temperature and AUC1200 influenced contrast ratio. Grain size was affected by final sintering temperature, sintering duration and AUC. Contrast ratio and grain size showed an association.

Keywords: Zirconia, Ceramic, Contrast ratio, Grain size, Sintering parameters

INTRODUCTION

Zirconia displays among all other dental ceramics the highest mechanical properties, such as flexural strength and fracture toughness and can therefore be used for multi-unit or single tooth reconstructions even in the molar region. Clinical studies indicate that zirconia is a very suitable material for fixed dental prostheses (FDPs). A low number of fractures of zirconia frameworks have been observed while for veneered zirconia frequently chipping of the veneering ceramic occurs.

For the fabrication of zirconia in dentistry using CAD/CAM (computer aided design/computer aided manufacturing), currently two different milling procedures are available, the hard-milling of fully sintered dense blanks or the soft-milling of pre-sintered blanks, which achieve their sufficient strength by a post-machining sintering process. Milling of pre-sintered zirconia blanks is today an established process, which exhibit enough stability for milling with concurrent conservation of the milling cutters. To achieve the maximum density of the pre-sintered zirconia, the milled FDPs must additionally be sintered. Due to the material-dependent shrinkage during the sintering-procedure, the individual shrinking factor of each material-lot has to be known and considered before milling. Several studies show that despite the shrinking a very good fit of the restorations can be obtained after sintering.

Today it is possible to produce zirconia FDPs without veneering ceramic, so-called anatomic or monolithic zirconia. Translucency of such materials is essential for optimized esthetic results. Previous studies found that the translucency of zirconia can be influenced by the type and amount of additives, the sintering parameters, the heating method, and the atmospheric conditions while sintering. Particularly, the grain size, the density and the porosity of zirconia is determined by the heating method and the final sintering temperature. An increase in crystalline content in order to achieve frameworks of high strength would generally result in higher opacity. For all-ceramic reconstructions, the translucency is affected not only by the crystalline content but also by the thickness of the framework. A further study showed that the holding time during the sintering process causes grain growth in the material. The zirconia qualities of different manufacturers differ quite little in composition. Only the proportion of alumina varies according to manufacturer’s instructions in a very small range. However, there are major differences in terms of the sintering parameters such as final temperature, holding time and total sintering duration. Until now, only the influence of the single sintering parameters was examined for grain size and translucency. Hence, it is of great importance to investigate whether an interaction exists between all sintering parameters that influence the contrast ratio and grain size of zirconia ceramics.

Therefore, the aim of this study was to investigate the contrast ratio and grain size of twelve different non-colorized zirconia ceramics and to compare this with one glass-ceramic. For the evaluation of contrast ratio and grain size results, the sintering parameters are involved extensively. The tested hypotheses were that a) all tested zirconia show higher contrast ratio compared to the glass-ceramic, b) sintering parameters have an impact on contrast ratio and grain size values, and c) grain size of zirconia has an impact on contrast ratio values.
MATERIALS AND METHODS

In this study following ceramics were investigated: a) CZ: Ceramill Zi, b) VI: Vita In-Ceram YZ, c) CC: Cercon ZR, d) GC: GC ZR Disc CIP, e) PR: Prettau, f) IZ: ICE Zirkon, g) IC: InCoris ZI F0.5, h) LZ: LAVA Zirconia, i) ZE: ZENO Zr Bridge, j) CY: Copran YZ, k) DD: DD Bio Z Wiso, l) ELS: experimental laser-sintered zirconia and m) CG (glass-ceramic as control group): VITA Mark II A2. A description of all materials, manufacturers, lot numbers, and compositions can be found in Table 1.

The partially sintered zirconia and the glass-ceramic control group were cut using a low-speed diamond saw (Well 3241, Well Diamantdrahtsägen, Mannheim,

Test group	Abbreviation	Batch No.	Manufacturer	Composition
Ceramill Zi	CZ	0904638/2	Amann Girrbach, Koblach, Austria	ZrO₂+HfO₂+Y₂O₃ ≥99.0% Y₂O₃: 5–5.6% Al₂O₃ <0.5% other oxids <0.5%
Vita In-Ceram YZ	VI	26850	Vita Zahnfabrik, Bad Säckingen, Germany	ZrO₂, Y₂O₃: 5% HfO₂: <3% Al₂O₃+SiO₂ <1%
Cercon ZR	CC	20024985	DeguDent, Hanau, Germany	ZrO₂, Y₂O₃: 5% HfO₂: <2% Al₂O₃+SiO₂ <1%
GC ZR Disc CIP	GC	2025	GC Europe, Leuven, Belgium	ZrO₂, Y₂O₃: 4.95–5.35% Al₂O₃: 0.15–0.35% SiO₂ <0.02% Fe₂O₃ <0.01% Na₂O <0.04%
Prettau	PR	ZA90002T-1	Zirkonzahn, Pustertal, Italy	ZrO₂, Y₂O₃: 4–6% Al₂O₃ <1% SiO₂: max. 0.02%, Fe₂O₃: max. 0.01%, Na₂O: max. 0.04%
ICE Zirkon	IZ	ZA90002T-2	Zirkonzahn, Pustertal, Italy	ZrO₂, Y₂O₃: 4–6% Al₂O₃ <1% SiO₂: max. 0.02 %, Fe₂O₃: max. 0.01%, Na₂O: max. 0.04%
InCoris ZI F0.5	IC	1005300	Sirona, Bensheim, Germany	ZrO₂ + HfO₂ + Y₂O₃: 99% Al₂O₃ <0.5% SiO₂ <0.5%
LAVA Zirconia	LZ	308042	3M ESPE, Seefeld, Germany	Y₂O₃: 3% Al₂O₃ <0.25% ZrO₂: ~ 95% Y₂O₃: ~ 5% Al₂O₃ <1% other oxids <1%
ZENO Zr Bridge	ZE	0810-938	Wieland+Dental, Pforzheim, Germany	ZrO₂ + HfO₂: 94% Y₂O₃: 5% Al₂O₃ <0.4%
Copran YZ	CY	560018	White Peaks, Essen, Germany	ZrO₂ + HfO₂: 94% Y₂O₃: 5% Al₂O₃ <0.4%
DD Bio Z Wiso	DD	50389883	Dental Direkt, Spenge, Germany	ZrO₂+HfO₂+Y₂O₃ >99% Al₂O₃ <0.25% other oxids <0.25%
Experimental	ELS	ZR060209-2	Dentaurum, Ispringen, Germany	Not available
laser-sintered				SiO₂-based glass ceramic
zirconia				
VITA Mark II A2	CG	18090	Vita Zahnfabrik, bad Säckingen, Germany	

Table 1 The test groups, abbreviations, brands, batch numbers, manufacturers and composition of the tested materials.
Germany. Zirconia specimens were sintered (LHT 02/16, Nabertherm GmbH, Lilienthal/Bremen, Germany) according manufacturers’ instructions (Table 2). The experimental zirconia specimens were constructed and layer for layer lasersintered (Dentaurum). Then, all ceramic specimens were ground to the final dimensions with the thickness of 0.5±0.05 mm using SiC discs P220, P500, P1200, P2400 and P4000 (ScanDia, Hagen, Germany) in sequence. In summary, 156 specimens were fabricated. Each ceramic group included 12 specimens for contrast ratio measurements; for calculation of the correlation the same 12 specimens as for grain size analyses were used.

Contrast ratio measurements

The contrast ratio was measured using a spectrophotometer (CM-2600d, Konica Minolta, Hannover, Germany) according to ISO 2471: 2008 at daylight under the light source of CIE illuminant D65 brightness with color temperature of 6504 K. The measurement was made 3 times in flashing mode with an interval of 3 s, in steps of 0.1 s. Then, the software appending to the spectrometer calculated the mean values. Contrast ratios were measured from the luminous reflectance (Y) of the specimens with a black (Y_B) and a white backing (Y_W) to obtain Y_B/Y_W. In all calculations, the value “0” was considered as transparent and “1” as opaque.

Grain size analyses

The specimens were ultrasonically cleaned (Sonores RK102H, Bandelin electronic Berlin, Germany) for 5 min in 80% ethanol and then air-dried. Subsequently, each specimen was gold sputtered for 45 s (layer thickness: 6 nm) and surface topography was evaluated under a Scanning Electron Microscopy (SEM, Carl Zeiss Supra 50VP FESEM, Carl Zeiss, Oberkochen, Germany). SEM was operated at 5 kV and with a working distance of 5.5–7.5 mm.

Statistical analysis

Approximate normality of data distribution was tested using Komogorov-Smirnov and Shapiro-Wilk tests. The descriptive statistics were computed. The contrast ratio values were non-parametrically compared using Kruskal-Wallis-H test. One-way ANOVA was used for the analysis of grain size of different ceramic materials, followed by Scheffé post-hoc test. Additionally, the area under the curve (AUC) for sintering parameters was calculated. The calculation was performed for all zirconia ceramics from the room temperature (25°C/AUC25) and from the beginning of material sintering at 1200°C (AUC1200). AUC is a useful way of summarizing the information from all sintering parameters for each zirconia material separately. Straight lines to get a “curve” joined the information of heat rate, holding temperatures and times, final temperature, and cooling rate. The AUC was calculated by adding the areas under the curve between each pair of consecutive observations. Subsequently, non-parametrical correlation according Spearman was calculated between AUC25/AUC1200 and contrast ratio, AUC25/AUC1200 and grain size, sintering temperature and contrast ratio and sintering temperature and grain size of zirconia materials. P-values below 5% were considered to be statistically significant. The data were analyzed using a statistical software program (SPSS Version 21, SPSS INC, Chicago, IL, USA).

Groups	Heat rate (°C/min)	Holding temperature and time (°C, min)	Final temperature (°C)	Holding time (min)	Cooling rate up to 25°C (°C/min)	Total sintering duration up to 25°C (min)	AUC25 (area under the curve)	AUC1200 (area under the curve)	
CZ	8	—	1450	120	10	440.5	399 445.3	176.0	37000.0
VI	17	—	1530	120	10	359.1	360 469.7	172.5	48262.5
CC	12	—	1350	120	10	420.0	397 500.0	147.5	20062.5
GC	12	—	1550	120	12	494.2	352 020.8	238.0	73150.0
PR	8	—	1600	120	8	513.75	499 078.1	220.0	68000.0
IZ	8	—	1500	120	8	488.75	448 953.1	195.0	47250.0
IC	17	—	1530	120	10	359.1	360 469.7	172.5	48262.5
LZ	10	—	1500	120	10	415.0	394 562.5	180.0	45000.0
ZE	10	900, 30 further with 3°C/min	1450	120	10	561.5	546 298.7	228.3	43537.5
CY	6	—	1450	120	10	500.0	441 750.0	187.0	38375.0
DD	10	—	1500	120	10	415.0	394 562.5	180.0	45000.0
RESULTS

Contrast ratio
Kolmogorov-Smirnov and Shapiro-Wilk tests indicated that 2 of 13 groups were not normally distributed. Consequently, non-parametric statistical analyses were applied. The results of the descriptive statistics (mean, SD, 95% CI) for contrast ratio measurements for each group are presented in Table 3.

The control group CG showed significantly lowest contrast ratio values of all tested groups. Within zirconia groups, the lowest contrast ratio showed LZ, PR, GC, VI and IZ. The highest contrast ratio values were observed for group CC followed by the group ELS and IC. In summary, six different significant value ranges were observed: value range A: glass-ceramic/control group (0.58±0.01); value range B: PR (0.74±0.01), LZ (0.74±0.01), GC (0.75±0.01), VI (0.76±0.01), and IZ (0.76±0.03); value range C: GC (0.75±0.01), VI (0.76±0.01), IZ (0.76±0.03), CZ (0.77±0.01), and CY (0.78±0.01); value range D: VI (0.76±0.01), IZ (0.76±0.03), CZ (0.77±0.01), CY (0.78±0.01), DD (0.78±0.02), and LZ (0.78±0.01); value range E: IC (0.81±0.01) and ELS (0.82±0.01); and value range F: ELS (0.82±0.01) and CC (0.85±0.01). Figure 1A depicts a bar diagram for the contrast ratio values. The bars of different ceramics are ordered by the increasing of contrast ratio values. Thus, left-sided of the graph the higher translucent ceramics are positioned and right-sided the more opaque ceramics.

Zirconia grain size
Kolmogorov-Smirnov and Shapiro-Wilk tests confirmed the normal distribution for all zirconia groups. Therefore, the data were compared using one-way ANOVA. The smallest grain size was observed for CC (0.07±0.01 µm), ELS (0.09±0.01 µm) and ZE (0.11±0.01 µm), respectively. In contrast, the highest grain size showed PR (0.35±0.03 µm), followed of GC (0.30±0.05 µm) and VI (0.22±0.02 µm) (Table 3). Figure 1B depicts a bar diagram for the mean grain size values. The bars of different ceramics are ordered by the decrease of grain size values from left to right.

The SEM pictures in Fig. 2 presented the zirconia grain size for each in this study tested zirconia group.

Spearman correlations
Figure 3 indicates the significantly Spearman correlations between sintering parameters (duration of sintering, final sintering temperature, and the calculated AUC25/AUC1200) and the measured contrast ratio and grain size of all twelve zirconia ceramics. Significantly negative correlations were observed between final sintering temperature and contrast ratio \(r = -0.551 \) (\(p < 0.001 \)), between AUC25 and grain size \(r = -0.400 \) (\(p < 0.001 \)), between AUC1200 and contrast ratio \(r = -0.512 \) (\(p < 0.001 \)) and between duration of sintering and grain size \(r = -0.205 \) (\(p = 0.032 \)), and

Table 3 Mean, standard deviation (SD) values of contrast ratio and grain size with 95% confidence intervals (95% CI) of all tested groups

Ceramics	Contrast ratio	Mean±SD	95% CI	Mean grain size µm	Mean±SD	95% CI
CZ		0.77±0.01^{CD}	(0.75;0.78)	0.12±0.01^b	(0.10;0.13)	
VI		0.76±0.01^{BCD}	(0.73;0.77)	0.22±0.02^d	(0.20;0.24)	
CC		0.85±0.01[*]	(0.82;0.86)	0.07±0.01^a	(0.05;0.07)	
GC		0.75±0.01^{BC}	(0.73;0.76)	0.30±0.05^e	(0.25;0.34)	
PR		0.74±0.01^{IP}	(0.72;0.75)	0.35±0.03^f	(0.31;0.38)	
IZ		0.76±0.03^{BCD}	(0.73;0.78)	0.13±0.01^b	(0.12;0.13)	
IC		0.81±0.01^{IE}	(0.79;0.81)	0.21±0.02^d	(0.18;0.23)	
LZ		0.74±0.01^I	(0.72;0.75)	0.17±0.01^e	(0.15;0.18)	
ZE		0.78±0.02^{DO}	(0.75;0.8)	0.11±0.01^{ab}	(0.09;0.12)	
CY		0.78±0.01^{CD}	(0.75;0.79)	0.13±0.01^b	(0.12;1.14)	
DD		0.78±0.01^D	(0.76;0.79)	0.12±0.01^b	(0.10;0.13)	
ELS		0.82±0.01^E	(0.80;0.83)	0.09±0.01^{ab}	(0.08;0.1)	
GC		0.58±0.01^A	(0.55;0.59)	—	—	

^{* not normally distributed}

^{ABCDEF}Different superscripts represent a significant difference of contrast ratio values between all tested ceramics.

^{abcdef}Different superscripts represent a significant differences of grain size between zirconia ceramics.
between contrast ratio and grain size \(r = -0.669 \) (\(p < 0.001 \)) as well as positive correlation between final sintering temperature and grain size \(r = 0.907 \) (\(p < 0.001 \)) and between AUC1200 and grain size \(r = 0.862 \) (\(p < 0.001 \)). In contrast, between AUC25 and contrast ratio \(r = -0.006 \) (\(p = 0.946 \)) as well as between duration of sintering and contrast ratio \(r = -0.145 \) (\(p = 0.130 \)) no correlation occurred.

DISCUSSION

Results obtained in this study clearly show that glass-ceramic is superior in terms of aesthetic characteristics compared to zirconia ceramics. The contrast ratio of glass-ceramic is significantly lower compared to all tested zirconia ceramics. Therefore, the first tested hypothesis, that zirconia ceramics show higher contrast ratio compared to the glass-ceramic is accepted. In this study, the contrast ratio of all specimens regardless of ceramic type was measured and compared for the same substrate thickness of 0.5 mm. It must be stressed that for glass-ceramic restorations —according to the manufacturer— the minimum thickness of 1.5 mm may not be exceeded. However, zirconia can be clinically applied with a minimum thickness of about 0.4 mm. Previous studies stated about an exponential decrease of the translucency of ceramics with an increase in thickness\(^{20,21}\). Therefore, it can be assumed that for a clinical relevant thickness of glass-ceramic the contrast ratio would increase and could be comparable with the values of the more translucent zirconia ceramics. In general, the differences concerning the clinical thickness are related to the stability of the materials. Zirconia ceramics show with approx. 1200 MPa\(^{2}\) significantly
higher flexural strength than glass-ceramic with approx. 60–150 MPa\(^2\) and can be used for clinical service with lower minimum thickness. However, conforming to the present study prior investigations showed that a higher flexural strength of ceramic resulted in lower translucency\(^2\). Additionally, variation in irradiance may be attributed to differences in crystal volume (grain size) and the refractive index. Concerning the material classes investigated in the present study, prior investigations reported for glass-ceramics a lower refractive index with 1.5\(^2\), while for zirconia ceramics a refractive index of 2.2 was measured\(^2\). Albeit not only the refractive index of the whole composition, but also the differences of the refractive indices of the single material components affect the scattering of light and therefore the contrast ratio. Less crystalline content and a refractive index close to that of the matrix causes less scattering of light\(^6\).

A previous study tested the impact of final sintering temperature of zirconia on the contrast ratio and observed that enlarged sintering temperature resulted in higher contrast ratio\(^1\). The results of the present study confirm this observation. However, in this study no correlation between contrast ratio and duration of sintering as well as the summarized sintering parameters, described as AUC25 values, could be found. This can conclude that the sintering time and heating rates play a minor role for the translucency. More important is the final temperature, which is confirmed in the calculation of the AUC from 1200°C. It can therefore be assumed that a higher amount of energy due to the higher final sintering temperature of the material is stored as a result of the longer sintering time. This in turn leads to higher amount that a grain growth takes place and thus also increase the translucency of zirconia. In contrast, grain size showed a correlation to final sintering temperature, duration of sintering and AUC measured up to room temperature at the same time. Also a negative significant correlation between grain size and contrast ratio was found. Therefore, this study showed that the complete sintering parameters affected the grain growth. On the other hand the grain size has an impact on the contrast ratio and the aesthetic properties of zirconia restorations. Hence, the second hypothesis, that the sintering parameters have an impact on

Fig. 3 Scatter plots for correlation between the sintering parameters and contrast ratio or grain size.

A: between contrast ratio and final sintering temperature, B: between grain size and final sintering temperature, C: between duration of sintering and grain size, D: between AUC25 and grain size, E: between AUC1200 and contrast ratio, F: AUC1200 and grain size, and G: between contrast ratio and grain size.
contrast ratio and grain size, is accepted. In general, the trend goes towards translucent zirconia. Many zirconia manufacturers tend to increase the final sintering temperature with the expectation of decreased contrast ratio. According to a previous study, the fact has to be considered that the flexural strength and stability of zirconia decrease when it was sintered above the temperature of 1550°C\(^{10}\). In this study, PR showed the highest final sintering temperature of 1600°C and the highest grain size (0.35 µm) of all tested zirconia ceramics. However, the contrast ratio results were not statistically different from the zirconia ZE, which was sintered by 1500°C and showed lower grain size (0.17 µm). Therefore, it needs to be indicated that in the rough outline the statement about the influence of sintering parameters certainly is true, but in some exceptions also additional other parameters, such as the proportion and arrangement of alumina in the zirconia matrix, have an influence on the grain size and translucency of zirconia. Numerous studies have reported that reducing the average grain size in zirconia increased the stability of the tetragonal phase\(^{15,16}\). The specimens with final sintering temperature above 1600°C produce internal stress in the zirconia surface, particularly the grains expand until the immediate neighbouring grains, which were pressed out. Consequently, this results in holes within the zirconia microstructure with the increase in grain size. Also the internal tensile stresses in the zirconia have possibly increased\(^{31,15}\). Therefore, the final sintering temperature of zirconia should not be above 1550°C.

Overall, a significant correlation was observed between contrast ratio and grain size, therefore the third hypothesis is also accepted. This is in accordance with literature data\(^{31,50}\).

At the moment no standard method exists to examine the optical properties of dental materials. Consequently it is difficult to compare the results of the present study with results of prior studies, performed on basis of other measuring methods. A prior study investigated a possible correlation between different methods and reached the conclusion that a significant correlation between most of the commonly used methods lacks\(^{26}\). In this study, the contrast ratio was evaluated using flat specimens of a standardized thickness. Future investigation should be performed directly on an anatomical restoration for greater clinical relevance. The influence of the variables related to the fabrication process for a shaded zirconia restoration, such as milling, sintering, grading and finishing could be integrated in the measurements.

A limitation of this study was the variety of different zirconia qualities. A future study should be designed using a zirconia quality, sintered with several parameters to verify these statements.

CONCLUSIONS

Within the limitations of this *in-vitro* study it can be summarized that the sintering parameter influenced the contrast ratio and mean grain size of zirconia. Therefore, based on the findings in this study, it can be concluded that:

1. The contrast ratio of glass-ceramic is significantly lower compared to all tested zirconia ceramics.
2. Grain size showed a correlation to the final sintering temperature, duration of sintering and AUC25/AUC1200, whereas contrast ratio only showed a correlation to the final sintering temperature.
3. A significant correlation was observed between contrast ratio and grain size as well as between contrast ratio and AUC1200.

ACKNOWLEDGMENTS

The authors would like to thank 3M ESPE, AmannGirrbach, DeguDent, Dental Direkt, Dentaurum, GC Europe, Sirona, White Peaks, Wieland+Dental, VITA Zahnfabrik, and Zirkonzahn for providing the zirconia ceramics.

Conflict of interest

The authors report no conflict of interest. The authors alone are responsible for the content and writing of the manuscript.

REFERENCES

1) Hannink RHJ, Kelly PM, Muddle BC. Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 2000; 83: 461-487.
2) Fischer J, Stawarczyk B. Compatibility of machined Ce-TZP/Al2O3 nanocomposite and a veneering ceramic. Dent Mater 2007; 23: 1500-1505.
3) Aboushelib MB, Kleverlaan CJ, Feilzer AJ. Evaluation of a high fracture toughness composite ceramic for dental applications. J Prosthodont 2008; 17: 539-544.
4) Heinutze SD, Rousson V. Survival of zirconia- and metal-supported fixed dental prostheses: a systematic review. Int J Prosthodont 2010; 23: 493-502.
5) Torabi Ardekani K, Ahangari AH, Farahi L. Marginal and internal fit of CAD/CAM and slip-cast made zirconia copings. J Dent Res Dent Clin Dent Prospects 2012; 6: 42-48.
6) Reich S, Wichmann M, Nkenke E, Proeschel P. Clinical fit of all-ceramic three-unit fixed dentures, generated with three different CAD/CAM systems. Eur J Oral Sci 2005; 113: 174-179.
7) Beuer F, Neumeier P, Neumann M. Marginal fit of 14-unit zirconia fixed dental prosthesis retainers. J Oral Rehabil 2009; 36: 142-149.
8) Heffernan MJ, Aguilino SA, Diaz-Arnold AM, Haselton DR, Stanford CM, Vargas MA. Relative translucency of six all-ceramic systems. Part I: core materials. J Prosthet Dent 2002; 88: 4-9.
9) Kelly JR, Nishimura I, Campbell SD. Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent 1996; 75: 18-32.
10) Casolco SR, Xu J, Garay JE. Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors. Scr Mater 2008; 58: 516-519.
11) Jiang L, Liao Y, Wan Q, Li W. Effects of sintering temperature and particle size on the translucency of zirconium dioxide dental ceramic. J Mater Sci Mater Med 2011; 22: 2429-2435.
12) Yang D, Raj R, Conrad H. Enhanced sintering rate of zirconia.
(3Y-TZP) through the effect of a weak dc electric field on grain growth. J Am Ceram Soc, 2010; 93: 2935-2937.

13) Anselmi-Tamburini U, Woolman JN, Munir ZA. Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering. Adv Funct Mater, 2007; 17: 3267-3273.

14) Janney MA, Calhoun CL, Kimrey HD. Microwave sintering of solid oxide fuel cell materials: I, Zirconia -8 mol yttria. J Am Ceram Soc 1992; 75: 341-346.

15) Stawarczyk B, Oxcan M, Hallmann L, Ender A, Mehl A, Hämmerlet CH. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig 2013; 17: 269-274.

16) Tsukuma K, Kubota Y, Tsukidate T. Thermal and mechanical properties of Y2O3-stabilized tetragonal zirconia polycrystals. In: Clausen N, Ruehle M, Heuer AH, editors. Science and technology of zirconia II. Columbus, OH: The American Ceramic Society, 1984: p. 382-390.

17) Matsui K, Yoshiida H, Ikuhara Y. Isothermal sintering effect on phase separation and grain growth in yttria-stabilized tetragonal zirconia polycrystal. J Am Ceram Soc 2009; 92: 467-475.

18) ISO 2471: 2008 Paper and board — Determination of opacity (paper backing) — Diffuse reflectance method.

19) Altmann DG. Practical statistics for medical research. 5th edition. London: Chapman & Hall, 1991: p. 431-433.

20) Peixoto RT, Paulinelli VM, Sander HH, Lanza MD, Cury LA, Poletto LT. Light transmission through porcelain. Dent Mater 2007; 23: 1363-1368.

21) Wang F, Takahashi H, Iwasaki N. Translucency of dental ceramics with different thickness. J Prosthodont 2013; 110: 14-20.

22) Fischer J, Stawarczyk B, Hämmerle CH. Flexural strength of veneering ceramics for zirconia. J Dent 2008; 36: 316-321.

23) Baldissara P, Ljukanow A, Ciocca L, Valandro FL, Scotti R. Translucency of zirconia copings made with different CAD/CAM systems. J Prosthodont 2010; 104: 6-12.

24) Chen X, Chadwick TC, Wilson RM, Hill R, Cattell MJ. Crystallization and flexural strength optimization of fine-grained leucite glass-ceramics for dentistry. Dent Mater 2011; 27: 1153-1161.

25) Kingery WD, Bowen HK, Uhlmann DR. Introduction to ceramics. 2nd ed. New York: John Wiley and Sons, 1976: p. 646-689.

26) Nogueira AD, Della Bona A. Translucency of dental ceramics tested by different methods. Dent Mater 2001; 27(Supplement 1): e80-e81.