Equi-prime intuitionistic fuzzy ideals of nearrings

P Murugadas1 and V Vetrivel2

1Department of Mathematics, Government Arts College (Autonomous), Karur-639005, India.
2Department of Mathematics, Mahendra Engineering College (Autonomous), Mallasamudram-637503, India.
E-mail: bodi muruga@yahoo.com and vetrivelmath@gmail.com

Abstract. The aim of this paper is to introduce the notions of equi-prime intuitionistic fuzzy ideal of a near-ring. We characterize these intuitionistic fuzzy ideals using level subsets and intuitionistic fuzzy points.

1. Introduction

Zadeh [18] in 1965 presented fuzzy sets after which a few specialists investigated on the generalization of the thought of fuzzy sets and its application to numerous scientific branches. Abou-Zaid [1], presented the thought of a fuzzy subnear-ring and contemplated fuzzy ideals (FI) of a near ring (\(\mathcal{R}_N\)). This idea is additionally talked about by numerous scientists, among them Biswas, Davvaz, [3, 8] have accomplished some intriguing work. The possibility of intuitionistic fuzzy (IF) sets was presented by Atanassov [2] as a generalization of the idea of fuzzy sets. In [3], Biswas applied the idea of IF sets to the theory of groups and examined IF subgroups of a groups. The idea of an IF R-subgroups of a \(\mathcal{R}_N\) is given by Jun, Yon and Cho in [6]. Zhan Jianming and Ma Xueling [19], examined the different properties of intuitionistic fuzzy ideals (IFIs) of \(\mathcal{R}_N\). Booth [5] demonstrated that each equiprime (EP) \(\mathcal{R}_N\) is zerosymmetric. That is, on the off chance that 0 is an EP ideal of \(\mathcal{R}_N\), at that point \(a0 = 0\) for each \(a \in \mathcal{R}_N\).

In that paper, they demonstrated that for a common (thresholds \(\zeta = 0\) and \(\eta = 1\)) EP-FI \(\mu\) of \(\mathcal{R}_N\), \(\mu(a0) = \mu(0)\) for each \(a \in \mathcal{R}_N\). Also it was indicated that this outcome need not hold for a generalized EP-IFI \(\mu\) of \(\mathcal{R}_N\). However the method of reasoning in refering to the above outcomes is to take note of that significantly after the procedure of fuzzy generalizatin, at whatever point required we can copy effectively the huge writing of crisp algebra by selecting suitable thresholds.

Davvaz [7] utilized this thought and further generalized the idea of \((\epsilon, \epsilon \lor q)\) FI to a FI with threshold \(\zeta\) and \(\eta\). When \(\zeta = 0\) and \(\eta = 1\) we get the ordinary FI given by Abou-Zaid [1] and when \(\zeta = 0\) and \(\eta = 0.5\) we get the \((\epsilon, \epsilon \lor q)\)-FI characterized by Davvaz [7], Bhakat and Das [4] for rings. Clearly, the essential advantage of the idea of threshold is the decision for threshold which offers ascend to the fuzzy character in the models. This inspires us to utilize the idea of threshold and study the ideas of EP-IFI of a \(\mathcal{R}_N\).
2. Preliminaries
For the definition and preliminaries of \mathcal{R}_N, fuzzy ideals and IFI of \mathcal{R}_N etc. in fuzzy case and IF case see [7,8,9,10,11,12,13,15,16].

3. Equiprime intuitionistic fuzzy ideals

3.1. Definition
An IFI $A = (\mu_A, \lambda_A)$ of \mathcal{R}_N is called EP-IFI if $\forall u, v, b \in \mathcal{R}_N$:
(i) $\zeta \lor \mu_A(b) \lor \mu_A(u - v) \geq \eta \lor \inf_{r \in N} \mu_A(bru - brv)$.
(ii) $(1 - \zeta) \land \lambda_A(b) \land \lambda_A(u - v) \leq (1 - \eta) \lor \sup_{r \in N} \lambda_A(bru - brv)$.

3.2. Example
Consider $Z_{12} = \{0, \bar{1}, \bar{2}, \ldots, \bar{12}\}$. Let $u, v \in (0.2, 0.8)$ with $u \neq v$. Define $\mu_A : Z_{12} \rightarrow [0, 1]$ and $\lambda_A : z_{12} \rightarrow [0, 1]$ by

$$
\mu_A(w) = \begin{cases}
0.9 & \text{if } w = \bar{5} \\
0.8 & \text{if } w = \bar{9} \\
u & \text{if } w \in \{3, \bar{3}\} \\
v & \text{if } w \in \{2, \bar{4}, 8, 10\} \\
0.2 & \text{elsewhere}
\end{cases}
$$

$$
\lambda_A(w) = \begin{cases}
0.2 & \text{if } w = \bar{5} \\
0.1 & \text{if } w = \{\bar{9}\} \\
1 - u & \text{if } w \in \{3, \bar{3}\} \\
1 - v & \text{if } w \in \{2, \bar{4}, 8, 10\} \\
0.7 & \text{if } w \in \{1, 5, 7, 11\}
\end{cases}
$$

Take entry $\zeta = u \lor v$ and $\eta = u \land v$. Then $A = \{\mu_A, \lambda_A\}$ is an EF-IFI Z_{12}. Note that $A_{(0.9,0.1)} = \{\bar{5}\}$ is not an ideal of Z_{12}.

3.3. Lemma
Let $A = (\mu_A, \lambda_A)$ be an EP-IFI \mathcal{R}_N.
(i) For $u, v, b \in \mathcal{R}_N$, if $\mu_A(bru - brv) \geq \eta \land \mu_A(bru) \geq \eta$ $\forall r \in \mathcal{R}_N$, \Rightarrow $\mu_A(b) \geq \eta$ or $\mu_A(u - v) \geq \eta$ (resp. $\mu_A(u) \geq \eta$).

(ii) Let $A = (\mu_A, \lambda_A)$ be an ordinary EP-IFI. For $u, v, b \in \mathcal{R}_N$, if $\mu_A(bru - brv) = \mu_A(0) \forall r \in \mathcal{R}_N$, \Rightarrow $\mu_A(b) = \mu_A(0)$ or $\mu_A(u) = \lambda_A(v)$.

(iii) For $u, v \in \mathcal{R}_N, \mu_A(u) \geq \eta$ and $\zeta \lor \mu_A(u - v0) \geq \mu_A(u) \lor \eta$. If A is an ordinary EP-IFI, then $\mu_A(u0) = \mu_A(0)$ and $\mu_A(u - v0) = \mu_A(u)$ and if $\lambda_A(u0) \leq (1 - \eta)$ and $(1 - \zeta) \land \lambda_A(u - v0) \leq \lambda_A(a) \lor (1 - \eta)$. If A is an ordinary EP-IFI, then $\lambda_A(u0) = \lambda_A(0)$ and $\lambda_A(u - v0) = \lambda_A(u)$.

(iv) If there have $u, v \in \mathcal{R}_N$ with $u \mathcal{R}_N = v$ then $\mu_A(v) \geq \eta$ and if $\lambda_A(v) \leq (1 - \eta)$.

Proof: We prove (iii) (as (i) and (ii) are evident), contemplate
\[\zeta \lor \mu_A(u0) \lor \mu_A(u0 - 0) \geq \eta \land \inf_{r \in \mathcal{R}} \mu_A ((u0) r (u0) - (u0) r0) = \eta \land \mu_A(0) = \eta.\]

\[
(1 - \zeta) \land \lambda_A(u0) \land \lambda_A(u0 - 0) \leq (1 - \eta) \land \sup_{r \in \mathcal{R}} \lambda_A ((u0) r (u0) - (u0) r0) = (1 - \eta) \land \lambda_A(0) = 1 - \eta.
\]

This gives \(\mu_A(u0) \geq \eta,\) and \(\lambda_A(u0) \leq (1 - \eta).\)

Now \(\zeta \lor \mu_A(u0 - 0) \lor \lambda_A(u0) = \eta \land \mu_A(u0) \lor \lambda_A(u0) = 0\) and \((1 - \zeta) \lor \lambda_A(a - b0) \leq (1 - \eta) \land \lambda_A(u) \lor \lambda_A(v0) = \mu_A(u) \lor (\eta \land \lambda_A(a) \lor \lambda_A(v)) = \lambda_A(u) \lor (1 - \eta).\)

This implies \(\zeta \lor \mu_A(u - v0) \geq \mu_A(u) \lor \eta,\) and \((1 - \zeta) \lor \lambda_A(u - v0) \leq \lambda_A(u) \lor (1 - \eta).\)

Now \(\zeta = 0\) and \(\eta = 1.\) In the other way we assume there has \(u \in \mathcal{R} \nsubseteq \mu_A(u0) \neq \mu_A(0).\) Note that \(\mu_A(0) = \mu_A((u0) r (u0) - (u0) r0), \forall r \in \mathcal{R}.\) Using (ii), we get \(\mu_A(u0) = \mu_A(0),\) a conflict. \(\mu_A(u - v0) = \mu_A(u)\) is clear. In the same manner \(\lambda_A(u0) = \lambda_A(u)\) and \(\lambda_A(u - v0) = \lambda_A(u).\)

For (iv), if there have \(u, \forall v \in \mathcal{R} \cup u \mathcal{R} = v.\) Now, (iii) provide \(\eta \leq \mu_A(u0) = \mu_A(v)\) and \((1 - \eta) \geq \lambda_A(u0) = \lambda_A(v).\) By an illustration we exhibit \(\mu_A(u0) = \mu_A(0)\) and \(\lambda_A(0)\) need not hold in general for an EP-IFI \(\mu_A.\)

3.4. Theorem
Let \(A = (\mu_A, \lambda_A)\) be an IF sets \(\mathcal{R}.\) Then we have two equivalent conditions:

(I) \(A = (\mu_A, \lambda_A)\) is an IFI \(\mathcal{R}.\)

(II) \(\forall a, b \in (0, 1),\) satisfying \(a + b \leq 1, U[A : (a, b)]_{\lor \eta} \) is an ideal of \(\mathcal{R}.\)

Proof: Let \(a, b \in (0, 1)\).

(i) Let \(u, v \in U[A : (a, b)]_{\lor \eta}.\) We profess \(u - v \in U[A : (a, b)]_{\lor \eta}.\)

We have \(\zeta \lor \mu_A(u) \geq a \lor (1 - \zeta) \lor \mu_A(u) + a > 2\eta\) and \(\zeta \lor \mu_A(v) \geq a \lor (1 - \zeta) \lor \mu_A(v) + a > 2\eta\) and \((1 - \zeta) \land \lambda_A(u) \leq b \lor (1 - \zeta) \land \lambda_A(u) + a > 2(1 - \eta)\) and \((1 - \eta) \land \lambda_A(v) \leq b \lor (1 - \zeta) \land \lambda_A(v) + b < 2(1 - \eta).\)

As \(A\) is an IFI of \(\mathcal{R}, \zeta \lor \mu_A(u - v) = \zeta \lor \mu_A(u - v)\)

\[
\geq \zeta \lor (\eta \land \mu_A(u) \lor \mu_A(v))
\]

\[
= (\zeta \lor \eta) \land (\zeta \lor \mu_A(u)) \lor (\zeta \lor \mu_A(v))
\]

\[
= \eta \land (\zeta \lor \mu_A(u)) \lor (\zeta \lor \mu_A(v)).
\]

and \((1 - \zeta) \land \lambda_A(u - v) = (1 - \zeta) \land (1 - \zeta) \land \lambda_A(u - v)\)

\[
\leq (1 - \zeta) \land ((1 - \eta) \land \lambda_A(u) \lor \lambda_A(v))
\]

\[
= (1 - \zeta) \land (1 - \eta) \lor (1 - \zeta) \land \lambda_A(u) \lor (1 - \zeta) \land \lambda_A(v)
\]

\[
= (1 - \eta) \lor ((1 - \zeta) \land \lambda_A(u)) \lor ((1 - \zeta) \land \lambda_A(v)).
\]

Case 1 (i): If \(\zeta \lor \mu_A(u) \geq a\) and \(\zeta \lor \mu_A(v) \geq a.\) Consequently \(\zeta \lor \mu_A(u - v) \geq \eta \land a = a \land a.\)\]

If \(\eta \land a = a\) so \(u - v \in U[A : (a, b)]_{\lor \eta}.\) This verification holds if \(a = \eta.\) Hence take for granted \(a \neq \eta.\)

If \(\eta \land a = a \Rightarrow \zeta \lor \mu_A(u - v) \geq a \land a > \eta + a = 2\eta.\)

Case 1 (ii): Suppose \((1 - \zeta) \land \lambda_A(u) \leq b\) and \((1 - \zeta) \land \lambda_A(v) \leq b.\) As a result \((1 - \zeta) \land \lambda_A(u - v) \leq (1 - \eta) \land \lambda_A(u - v) \leq b.\) If \(1 - \eta \land v \neq b\) then \(u - v \in U[A : (a, b)]_{\lor \eta}.\) This testament holds if \(b = (1 - \eta).\) Thus premise \(t \neq 1 - \eta.\) If \(1 - \eta \land v = 1 - \eta\) then \(1 - \zeta \land \lambda_A(u - v) \leq 1 - \eta\) and \(b < 1 - \eta.\) Then we obtain \(1 - \zeta \land \lambda_A(u - v) + b \leq (1 - \eta) + b < (1 - \eta) + (1 - \eta) = 2(1 - \eta).\)

Hence \(u - v \in U[A : (a, b)]_{\lor \eta}.\)

Case 2 (i): If \(\zeta \lor \mu_A(u) \geq b\) and \(\zeta \lor \mu_A(v) \geq b \geq 2\eta.\) \Rightarrow \(\zeta \lor \mu_A(u - v) \geq \eta \land a \land (2\eta - a).\)

If \(\eta \land a \land (2\eta - a) = a\) so \(u - v \in U[a, v].\) This declaration holds if \(a = \eta.\) Hence say \(a \neq \eta.\) If \(\eta \land a \land (2\eta - a) \neq \eta\) then \(\zeta \lor \mu_A(u - v) \geq \eta \land a \land (2\eta - a) \neq a \land a > \eta \land a \geq 2\eta.\)

Hence \(u - v \in U[A : (u, v)]_{\lor \eta}.\) If \(\eta \land a \land (2\eta - a) = (2\eta - a) \neq a \land (2\eta - a) \neq a \Rightarrow \zeta \lor \mu_A(u - v) \geq (2\eta - a).\) Now \(\zeta \lor \mu_A(u - v) + a > (2\eta - a) + a = 2\eta.\)
Case 2 (ii): Say \((1 - \zeta) \land \lambda_A(a) \leq b \) and \((1 - \zeta) \land \lambda_A(v) + b \leq 2(1 - \eta) \). So
\[
(1 - \zeta) \land \lambda_A(u - v) \leq 1 - \eta \lor b \lor (2(1 - \eta) - b) .
\]
If \((1 - \eta) \lor b \lor (2(1 - \eta) - b) = b \), then \(u - v \in U \). This declaration holds if \(b \neq 1 - \eta \). Hence hypothesize \(b = 1 - \eta \). If
\[
1 - \eta \lor b \lor (2(1 - \eta) - b) = 1 - \eta
\]
then \((1 - \zeta) \land \mu_A(u - v) \leq 1 - \eta \) and \(b < 1 - \eta \). Then we acquire \(1 - \zeta \land \mu_A(u - v) + b \leq 1 - \eta + b < 1 - \eta + 1 - \eta = 2(1 - \eta) \). Thereupon
\(u - v \in \mu_{b \lor q} \). If \(1 - \eta \lor b \lor (2(1 - \eta) - b) = (2(1 - \eta) - a) \) then \(b < (2(1 - \eta) - b) \) and \((1 - \zeta) \land \lambda_A(u - v) > (2(1 - \eta) - b) \). Now \((1 - \zeta) \land \lambda_A(u - v) + b < (2(1 - \eta) - b) + b = 2(1 - \eta) \). Accordingly \(u - v \in U[A : (a, b)]_{\lor q} \).

Case 3(i): If \(\zeta \lor \mu_A(u) + a > 2\eta \) and \(\zeta \lor \mu_A(v) \geq a \). We omit the testament as it is same to case 2.
Case 3 (ii): Take \((1 - \zeta) \land \lambda(v) + b < 2(1 - \eta) \) and \((1 - \zeta) \land \lambda_A(v) \leq b \). We omit the declaration as it is analogous to case 2.

Case 4 (i): If \(\zeta \lor \mu_A(u) + a > 2\eta \) and \(\zeta \lor \mu_A(v) + a > 2\eta \). Consequently \(\zeta \lor \mu_A(u - v) \geq \eta \lor (2\eta - a) \lor (2\eta - a) = \eta \lor (2\eta - a) \). If \(\eta \lor (2\eta - a) = \eta \Rightarrow \zeta \lor \mu_A(u - v) \geq \eta \lor (2\eta - a) \geq \eta \), i.e., \(\zeta \lor \mu_A(u - v) \geq \eta \) and \(b \geq a \). This gives \(\zeta \lor \mu_A(u - v) \geq \eta \). Hence \(u - v \in U[A : (a, b)]_{\lor q} \). This testament holds if \(a \neq \eta \). Hence presume \(a \neq \eta \). If \(\eta \lor (2\eta - a) = (2\eta - a) \) then \(\zeta \lor \mu_A(u - v) > (2\eta - a) \). Now \(\zeta \lor \mu_A(a - b) + a > (2\eta - a) + a = 2\eta \). The following case is analogous to this.

Case 4 (ii): Say \((1 - \zeta) \land \lambda_A(u) + a < 2(1 - \eta) \) and \((1 - \zeta) \land \lambda_A(v) + a < 2(1 - \eta) \). Then
\[
(1 - \zeta) \land \lambda_A(u - v) \leq (1 - \eta) \lor (2(1 - \eta) - a) \lor (2(1 - \eta) - a) = (1 - \eta) \lor (2(1 - \eta) - a).
\]
If \((1 - \eta) \lor (2(1 - \eta) - a) = (1 - \eta) \) so \((1 - \zeta) \land \lambda_A(u - v) \leq (1 - \eta) \) and \((2(1 - \eta) - a) \leq (1 - \eta) \).
\(i.e. \), \((1 - \zeta) \land \lambda_A(u - v) \leq (1 - \eta) \) and \((1 - \eta) \leq a \). This confer \((1 - \zeta) \land \lambda_A(u - v) \leq a \). Hence \(u - v \in \lambda_{a \lor q} \). Result holds if \(a = 1 - \eta \). Thereupon assume \(a < 1 - \eta \). If \(1 - \eta \lor (2(1 - \eta) - a) = (2(1 - \eta) - a) \) then \((1 - \zeta) \land \lambda_A(u - v) < (2(1 - \eta) - a) \).

Now \((1 - \zeta) \land \lambda_A(u - v) + a < (2(1 - \eta) - a) + a = 2(1 - \eta) \). Henceforth \(u - v \in U[A : (a, b)]_{\lor q} \). The following case is the carbon copy this.

(ii) If \(u \in \lambda_{a \lor q} \), \(v \in \mathcal{R} \Rightarrow v + u - v \in U[A : (a, b)]_{\lor q} \), and
if \(u \in \lambda_{a \lor q} \), \(v \in \mathcal{R} \Rightarrow v + u - v \in U[A : (a, b)]_{\lor q} \).
(iii) If \(u \in \lambda_{a \lor q} \), \(y \in \mathcal{R} \) so \(uv \in U[A : (a, b)]_{\lor q} \), and
if \(u \in \lambda_{a \lor q} \), \(v \in \mathcal{R} \Rightarrow uv \in U[A : (a, b)]_{\lor q} \).
(iv) If \(i \in \mu_{a \lor q} \), \(u, v \in \mathcal{R} \Rightarrow (u + v) - uv \in U[A : (a, b)]_{\lor q} \), and
if \(i \in \lambda_{a \lor q} \), \(u, v \in \mathcal{R} \Rightarrow (u + v) - uv \in U[A : (a, b)]_{\lor q} \).
Applying (i)-(iv), the level subset \(U[A : (a, b)]_{\lor q} \) is an ideal of \(\mathcal{R} \) and
(II) \(\Rightarrow(I) \): We will prove (i) \(\zeta \lor \mu_A(u - v) \geq \eta \land \mu_A(u) \land \mu_A(v) \) and \((1 - \zeta) \land \lambda_A(u - v) \leq (1 - \eta) \land \lambda_A(u) \lor \lambda_A(v) \lor u, v \in \mathcal{R} \).

If possible say that there has \(u, v \in \mathcal{R} \Rightarrow \zeta \lor \mu_A(u - v) < \eta \land \mu_A(u) \land \mu_A(v) \) and
\((1 - \zeta) \land \lambda_A(u - v) > (1 - \eta) \lor \lambda_A(u) \lor \lambda_A(v) \). Select \(a, b \in (\zeta, \eta) \Rightarrow \zeta \lor \mu_A(u - v) < a < \eta \land \mu_A(u) \land \mu_A(v) , \) and \((1 - \zeta) \land \lambda_A(u - v) > b > (1 - \eta) \lor \lambda_A(u) \lor \lambda_A(v) \).

Note that \(\zeta \lor \mu_A(u - v) < a \) and \(\zeta \lor \mu_A(u - v) + a < a + a < 2\eta \), and \((1 - \zeta) \land \lambda_A(u - v) > b \) and \((1 - \zeta) \land \lambda_A(u - v) + b > b + b > 2(1 - \eta) \). This provides \(u - v \notin U[A : (a, b)]_{\lor q} \). As
\(t < \eta \land \mu_A(u) \land \mu_A(v) \), we have \(\mu_A(u) > a \) and \(\mu_A(v) > a \), \(\Rightarrow \zeta \lor \mu_A(u) \lor \mu_A(v) > a \), and \(\zeta \lor \mu_A(u) \lor \mu_A(v) > a \), and
\(1 - \zeta \land \lambda_A(u) < b \), and \(1 - \zeta \land \lambda_A(v) < b \). Thus we acquire \(u, v \in U[A : (a, b)]_{\lor q} \) but \(u - v \notin U[A : (a, b)]_{\lor q} \), and \(U[A : (a, b)]_{\lor q} \). This is absurd to the fact that \(U[A : (a, b)]_{\lor q} \) is an ideal of \(\mathcal{R} \). Evenly for \(u, v, i \in \mathcal{R} \), we can demonstrate the following:

(ii) \(\zeta \lor \mu_A(v + u - v) \geq \eta \land \mu_A(u) \) and \(1 - \zeta \land \lambda_A(v + u - v) \leq 1 - \eta \lor \lambda_A(u) \)
(iii) $\zeta \vee \mu_A(uv) \geq \eta \land \mu_A(u)$, and $1 - \zeta \land \lambda_A(uv) \leq 1 - \eta \lor \lambda_A(u)$.
(iv) $\zeta \lor \mu_A(u) + v - uv \geq \eta \land \mu_A(i)$, and $1 - \zeta \land \lambda_A(u + v) - uv \leq 1 - \eta \lor \lambda_A(i)$.

Applying (i)-(iv), A is an IFI of S_N.

3.5. Theorem
Let $A = (\mu_A, \lambda_A)$ be an IFI of S_N. Then A is an EP-IFI of S_N if and only if $\forall a, b \in [\zeta, \eta]$, with $a + b \leq 1$, the level subset $U[A; (a, b)]$ is an EP ideal of S_N.

Proof: A is an IFI of S_N if and only if $\forall a, b \in [\zeta, \eta]$, the level subset $U[A; (a, b)]$ is an ideal of S_N. Let A be an EP-IFI of S_N. Consider $a, b \in [\zeta, \eta], u, v, n \in S_N, \exists nru - nrv \in U[A; (a, b)] \forall r \in S_N$. This means $\mu_A(nru - nrv) \geq a$ and $\lambda_A(nru - nrv) \leq b \forall r \in S_N$. Henceforth $\inf_{r \in S_N}(\mu_A(nru - nrv)) \geq a$, and $\sup_{r \in S_N}(\lambda_A(nru - nrv)) \leq b$.

As A is an EP-IFI of S_N, we acquire
\[
\zeta \lor \mu_A(n) \lor \mu_A(u - v) \geq \eta \land \inf_{r \in S_N}(\mu_A(nru - nrv)) \geq \eta \land a = a \land (1 - \zeta) \land \lambda_A(a) \land \lambda_A(u - v) \leq (1 - \eta) \lor \sup_{r \in S_N}(\lambda_A(nru - nrv)) \leq (1 - \eta) \lor b = b.
\]
Consequently $n \in U[A; (a, b)]$ or $u - v \in U[A; (a, b)]$ and $n \in U[A; (a, b)]$ or $u - v \in U[A; (a, b)]$.

Accordingly $U[A; (a, b)]$ is an EP-IFI of S_N.

Conversely, let there have $n, u, v \in S_N \ni \zeta \lor \mu_A(n) \lor \mu_A(u - v) < \eta \land \inf_{r \in S_N}(\mu_A(nru - nrv))$ and $(1 - \zeta) \land \lambda_A(n) \land \lambda_A(u - v) > (1 - \eta) \lor \sup_{r \in S_N}(\lambda_A(nru - nrv))$.

Select a and b;
\[
\zeta \lor \mu_A(n) \lor \mu_A(u - v) < a < \eta \land \inf_{r \in S_N}(\mu_A(nru - nrv)) \land (1 - \zeta) \land \lambda_A(n) \land \lambda_A(u - v) > (1 - \eta) \lor \sup_{r \in S_N}(\lambda_A(nru - nrv)).
\]
This shows $\mu_A(n) < a, \mu_A(u - v) < a$ and $\inf_{r \in S_N}(\mu_A(nru - nrv)) > a$.
\[
\lambda_A(n) > b, \lambda_A(u - v) > b \land \sup_{r \in S_N}(\lambda_A(nru - nrv)) < b.
\]
Again it gives $n \notin U[A; (a, b)], u - v \notin U[A; (a, b)]$ and $nru - nrv \in U[A; (a, b)] \forall r \in S_N$.
This is a mismatch to the supposition that $U[A; (a, b)]$ is an EP-IFI of $S_N \forall a, b \in [\zeta, \eta]$ with $a + b \leq 1$.

The other results are analogous to this.

3.6. Theorem
Let A be an IFS of S_N. Then the following are alike:

(I) $A = (\mu_A, \lambda_A)$ is an EP-IFI of S_N.
(II) $\forall a \in (0, 1], b \in (0, 1] U[A; (a, b)]_{\forall q}$ is an EP-IFI of S_N.

Proof: (I)$ \Rightarrow$ (II) Let $a \in (0, 1]$. By Theorem 3.5, $U[A; (a, b)]_{\forall q}$ is an ideal of S_N. Let $nru - nrv \in U[A; (a, b)]_{\forall q}$ for all $r \in S_N$. We assert $n \in U[A; (a, b)]_{\forall q}$ or $u - v \in U[A; (a, b)]_{\forall q}$.

As $A = (\mu_A, \lambda_A)$ is an EP-IFI of S_N, we have
\[
\zeta \lor \mu_A(n) \lor \mu_A(u - v) \geq \eta \land \inf_{r \in S_N}(\mu_A(nru - nrv)) \geq \eta \lor \sup_{r \in S_N}(\mu_A(nru - nrv)) \geq \eta \land a \land (2\eta - a).
\]
(1 − ζ) ∧ λ_A(n) ∧ λ_A(u − v) ≤ (1 − η) ∨ \sup_{r \in \mathcal{R}_N} \lambda_A(nr - nr)
\Rightarrow (1 − ζ) ∧ (1 − η) ∧ λ_A(n) ∧ λ_A(u − v) ≤ (1 − η) ∨ \left(1 − ζ) ∧ \sup_{r \in \mathcal{R}_N} \lambda_A(nr - nr)\right)
\Rightarrow (1 − ζ) ∧ λ_A(n) ∧ λ_A(u − v) ≤ (1 − η) ∨ (2(1 − η) − a).

Case 1 (i): If η ∧ a ∧ (2η − a) = a. Then ζ ∨ μ_A(n) ≥ a or ζ ∨ μ_A(u − v) ≥ a. Wherefore
n \in U[A : (a, b)]_{\eta} or u − v \in U[A : (a, b)]_{\eta}.
The proof exhibited in case 1 holds for a = η. Accordingly say a ≠ η in the forthcoming cases.

Case 1 (ii): If (1 − η) ∨ a ∨ (2(1 − η) − a) = a. So (1 − ζ) ∨ λ_A(n) ≤ a or (1 − ζ) ∨ λ_A(u − v) ≤ a.
therefore n \in U[A : (a, b)]_{\eta}, or u − v \in U[A : (a, b)]_{\eta}.
The proof offered in case 1 holds for a = (1 − η). Hence say a = (1 − η) in the forthcoming cases.

Case 2 (i): Imagine η ∧ a ∧ (2η − a) = η. So a > η and ζ ∨ μ_A(n) ∧ μ_A(u − v) ≥ η. ⇒
ζ ∨ μ_A(a) ≥ η or ζ ∨ μ_A(u − v) ≥ η. If ζ ∨ μ_A(n) ≥ η then ζ ∨ μ_A(n) + a ≥ η + a = η + η = 2η.
Consequently n \in U[A : (a, b)]_{\eta}, if ζ ∨ μ_A(u − v) ≥ η then ζ ∨ μ_A(u − v) + a ≥ η + a = η + η = 2η.
Hence u − v \in U[A : (a, b)]_{\eta}.

Case 2 (ii): Let us say (1 − η) ∨ a ∨ (2(1 − η) − a) = (1 − η). Then a < (1 − η) and
(1 − ζ) ∧ λ_A(n) ∧ λ_A(u − v) ≤ (1 − η). ⇒ (1 − ζ) ∧ λ_A(n) ≤ (1 − η) or (1 − ζ) ∧ λ_A(u − v) ≤ (1 − η).
If (1 − ζ) ∧ λ_A(n) ≤ (1 − η) then (1 − ζ) ∧ λ_A(n) + a ≤ (1 − η) + a < (1 − η) + (1 − η) = 2(1 − η).
Hence n \in U[A : (a, b)]_{\eta} if (1 − ζ) ∧ λ_A(u − v) ≤ (1 − η) then (1 − ζ) ∧ λ_A(u − v) + a ≤
(1 − η) + a < (1 − η) + (1 − η) = 2(1 − η). Hence u − v \in U[A : (a, b)]_{\eta}.

Case 3: If η ∧ a ∨ (2η − a) = (2η − a). Then (2η − a) < η and ζ ∨ μ_A(n) ∨ μ_A(u − v) ≥ (2η − a)
and
(1 − η) ∨ a ∨ [2(1 − η) − a] = 2[1 − η] − a]. Then
[2(1 − η) − a] > (1 − η) and (1 − ζ) ∧ μ_A(a) ∧ μ_A(u − v) ≤ [2(1 − η) − a].
As infimum and supremum are vital in the definition of an EP-IFI, consider the cases
ζ ∨ μ_A(n) ∨ μ_A(u − v) = (2η − a) and (1 − ζ) ∧ λ_A(n) ∧ λ_A(u − v) = [2(1 − η) − a]. The following subcases are must.

(i) Take ζ ∨ μ_A(n) ∨ μ_A(u − v) > 2η − a.
Then ζ ∨ μ_A > (2η − a) or ζ ∨ μ_A(u − v) > (2η − a).
⇒ ζ ∨ μ_A(n) + a > (2η − a) + a = 2η or ζ ∨ μ_A(u − v) + a > (2η − a) + a = 2η.
And consider (1 − ζ) ∧ λ_A(n) ∧ λ_A(u − v) < [2(1 − η) − a].
So (1 − ζ) ∧ λ_A < [2(1 − η) − a] or (1 − ζ) ∧ λ_A(u − v) < [2(1 − η) − a].
⇒ (1 − ζ) ∧ λ_A(n) + a < [2(1 − η) − a] + a = [2(1 − η)] or (1 − ζ) ∧ λ_A(u − v) + t < [2(1 − η) − a] + a =
[2(1 − η)].
As a consequence n \in U[A : a, b] or u − v \in U[A : a, b].

(ii) Now take ζ ∨ μ_A(n) ∨ μ_A(u − v) = (2η − a). ⇒ ζ ∨ μ_A(n) = (2η − a) or ζ ∨ μ_A(u − v) =
(2η − a). If η < a then our presumption η ∧ a ∧ (2η − a) = (2η − a) gives η ∧ (2η − a) = 2η − a.
⇒ η ≥ 2η − a. This provides the absurd result a ≥ η.
Hence η > a, and ζ ∨ μ_A(n) = (2η − a) > a or ζ ∨ μ_A(u − v) = (2η − a) > a.
And so (1 − ζ) ∧ λ_A(n) ∧ λ_A(u − v) = [2(1 − η) − a].
This means (1 − ζ) ∧ λ_A(n) = [2(1 − η) − a] or (1 − ζ) ∧ λ_A(u − v) = [2(1 − η) − a].
If 1 − η > a then our presumption
(1 − η) ∨ a ∨ [2(1 − η) − a] = [2(1 − η) − a].
gives (1 − η) ∨ [2(1 − η) − a] = [2(1 − η) − a]
Implying (1 − η) < [2(1 − η) − a].
Provides contradiction a ≤ 1 − η
Hence 1 − η < a. So we have
1 - \zeta \wedge \lambda_A(n) = [2(1 - \eta) - a] < a or (1 - \zeta) \wedge \lambda_A(u - v) = [2(1 - \eta) - a] < a

Henceforth \(n \in U[A : a, b] \) or \(u - v \in U[A : a, b] \).

Eventually \(U[A : a, b] \) is an EP ideal of \(\mathcal{R}_N \).

(II) \Rightarrow (I): \(A \) is an IFI of \(\mathcal{R}_N \). If possible say that there have \(n, u, v \in \mathcal{R}_N \) \(\zeta \vee \mu_A(n) \vee \mu_A(u - v) \leq \eta \wedge \inf_{r \in \mathcal{R}_N} \mu_A(nru - nrv) \) and

\[
(1 - \zeta) \wedge \lambda_A(n) \wedge \lambda_A(u - v) > (1 - \eta) \vee \sup_{r \in \mathcal{R}_N} \lambda_A(nru - nrv).
\]

Select \(a, b \in (\zeta, \eta) \)

\[
\Rightarrow \zeta \vee \mu_A(n) \wedge \mu_A(u - v) < a < \eta \wedge \inf_{r \in \mathcal{R}_N} \mu_A(nru - nrv).
\]

\[
\Rightarrow \zeta \vee \mu_A(n) < a, \zeta \wedge \mu_A(n) < a,
\]

\[
\zeta \vee \mu_A(n) + a < a + a = 2a < 2\eta \text{ and}
\]

\[
\zeta \vee \mu_A(u - v) + a < a + a = 2a < 2\eta.
\]

And , \((1 - \zeta) \wedge \lambda_A(n) \wedge \lambda_A(u - v) > b > (1 - \eta) \vee \sup_{r \in \mathcal{R}_N} \lambda_A(nru - nrv) \).

\[
\Rightarrow (1 - \zeta) \wedge \lambda_A(n) > b, (1 - \zeta) \wedge \lambda_A(u - v) > b,
\]

\[
(1 - \zeta) \wedge \lambda_A(n) + b > b + b = 2b > 2(1 - \eta) \text{ and}
\]

\[
(1 - \zeta) \wedge \lambda_A(u - v) + b > b + b = 2b > 2(1 - \eta).
\]

So we get \(n \notin U[A : (a, b)] , u - v \notin U[A : (a, b)] \).

Also, \(a < \eta \wedge \inf_{r \in \mathcal{R}_N} \mu_A(nru - nrv)\)

\[
\Rightarrow \mu_A(nru - nrv) > a \text{ for all } r \in \mathcal{R}_N
\]

\[
\Rightarrow \zeta \vee \mu_A(nru - nrv) > a \forall r \in \mathcal{R}_N
\]

\[
\text{and}, \ b > (1 - \eta) \vee \sup_{r \in \mathcal{R}_N} \lambda_A(nru - nrv)
\]

\[
\Rightarrow \lambda_A(nru - nrv) < b \forall r \in \mathcal{R}_N
\]

\[
\Rightarrow (1 - \zeta) \wedge \lambda_A(nru - nrv) < b \forall r \in \mathcal{R}_N
\]

\[
\Rightarrow nru - nrv \in U[A : (a, b)] \forall r \in \mathcal{R}_N.
\]

This is a violation to the supposition that \(U[A : (a, b)] \) is an EP-IFI of \(\mathcal{R}_N \) for every \(a, b \in (0, 1] \)

with \(a + b \leq 1 \). This accomplishes the proof.

4. Conclusion

In this article, EP-IFI of a nearring has been expounded.

5. References

[1] Abou-Zaid S On fuzzy subnear-rings and ideals. Fuzzy Sets System 44,(1991), 139146.
[2] Atanasov K T, Intuitionistic fuzzy sets, J. Fuzzy Math. 20 (1) (1986), 87-96.
[3] Biswas R, Intuitionistic fuzzy subgroups, Math. Forum 10 (1987), 37-46.
[4] Bhakat S K, Das P Fuzzy subrings and ideals redefined. Fuzzy Sets System, 81 (1996), 383393.
[5] Booth G L, Groeneewald N J, Veldsman S, A Kurosh-Amitsur Prime radical for near-rings. Commun Algebra, 18(9), (1990),3113122.
[6] Cho Y U and Jun Y B, On intuitionistic fuzzy R-subgroups of near-rings, J. Appl. Math. Comput. 18 (2005), 665-677.
[7] Davvaz B, (\(\eta, \epsilon \vee \eta \))-fuzzy subrings and ideals, Soft Computing, 10 (2006), 206-211.
[8] Davvaz B, Fuzzy R-subgroups with thresholds of near-rings and implication operators. Soft Comput. 12(9)(2008), 875879.
[9] Dutta T K, Biswas B K Fuzzy ideal of a near-ring. Bull Cal. Math. Soc. 89 (1997),447456.
[10] Vetrivel V and Murugadas P, Interval Valued Intuitionistic Fuzzy Bi-ideals in Gamma Near-rings,Intern. J. Fuzzy Mathematical Archive, 14 (2), 2017, 327-337.
[11] Vetrivel V and Murugadas P, Interval Valued Intuitionistic Q-Fuzzy ideals of Near-rings,International Journal of Mathematical Archive, 9(1), 2018, 6-14.
[12] Murugadas P and Vetrivel V, Intuitionistic Q-Fuzzy Strong Bi-ideals of Near-rings,International Journal for Research in Engineering Application and Management, 2018, ISSN : 2454-9150.
[13] Murugadas P, Malathi V and Vetrivel V, *Intuitionistic Fuzzy Bi-ideals in ternary semirings*, Journal of Emerging Technologies and Innovative Research, 6(3), 212-220.

[14] Murugadas P, Vetrivel V, Jeyapal A and Kalpana K, *On (T, S)-Intuitionistic Fuzzy Bi-ideals in Near-rings*, Journal of Emerging Technologies and Innovative Research, 6(3), 221-229.

[15] Murugadas P and Vetrivel V, *T, S)-Intuitionistic fuzzy ideals in near-rings*, Malaya Journal of Matematik, Vol. S, No. 1, 321-326, 2019.

[16] Murugadas P, Amala R and Vetrivel V, *\((\epsilon, \epsilon \vee q_e)\) intuitionistic fuzzy bi-ideals of semigroups*, Malaya Journal of Matematik, Vol. S, No. 1, 302-309, 2019.

[17] Veldsman S *On equiprime near-rings*, Commun Algebra, 20(9), (1992), 25692587.

[18] Zadeh L A, *Fuzzy sets*, Information and Control, 8 (1965), 338-353.

[19] Zhan Jianming, Ma Xueling, *Intuitionistic fuzzy ideals of near-rings*, Scientiae Math Japonicae, 61 (2), (2004), 219-223.