An ethnopharmacological review of *Hyptis suaveolens* (L.) Poit

Rong Li, Gengqiu Tang, Xile Liu, Junni Li, Dong Wang, Shengguo Ji*
School of Chinese Traditional Medicine, Guangdong Pharmaceutical University, Guangdong 510006, PR China

*For correspondence: Email: shengguo_ji@163.com; Tel: +86-18027342788

Sent for review: 11 November 2019
Revised accepted: 22 June 2020

Abstract

This review aimed to provide a comprehensive overview of ethnobotanical uses, chemical constituents, posology, and toxicology of *Hyptis suaveolens*, and to address the significant medicinal benefits in order to promote its application. An extensive and systematic review of the literature was undertaken and all relevant abstracts and full-text articles analyzed and included in the review. A wide range of traditional uses are cited in the literature, ranging from uses for malaria, constipation, stomach problems, renal inflammation to external uses in repelling insects and treating injuries such as lacerations and burn-related damage to skin and tissues. To date, pharmacological studies have demonstrated the significant activities of this plant that support uses such as antimicrobial, antidiabetic, antiulcer, and anti-inflammatory. Numerous important phytochemicals, including 6 triterpenes, 8 diterpenes and 1 flavonoid have been isolated, identified and reported. The extracts and phytochemicals isolated from the plants show considerable potential for medicinal exploitation and utilization, including antimitotic, antiproliferative, cytotoxic, antioxidant, anti-inflammatory, antibacterial, antifungal, antiviral, anti-secretory, hepatoprotective, insecticidal, and acaricidal activities. As a medicinal plant, *H. suaveolens* is endowed with immense exploitation and utilization value and is widely used worldwide Therefore, further studies to fully elucidate its medicinal potential are warranted.

Keywords: *Hyptis suaveolens* (L.) Poit, Ulcer Antimicrobial Inflammation, Diterpenes, Traditional medicine, Ethnopharmacology, Lamiaceae

INTRODUCTION

Species of the family Lamiaceae, which are largely herbaceous and of economic importance, are found mostly in tropical, subtropical, and temperate parts of the world. *Hyptis suaveolens* (L.) Poit is belonging to the genus *Hyptis* and family Lamiaceae that includes 775 species worldwide, which are primarily found in South America. Plants of the *Hyptis* genus have been highlighted for numerous medicinal properties such as tumorigenic, antifertility, antimicrobial, mycotoxic, and phytotoxic activities [1]. Among these plants, *Hyptis suaveolens* (L.) Poit is an important traditional medicinal plant that was originally native to tropical America and is currently considered as a weed worldwide.

H. suaveolens (Fig. 1) is a fast-growing perennial and aromatic herb that is 0.4–2 m high with a
quadrate stem that bears hair. The leaves are either ovate or obovate, generally measuring 3–5 cm long and 2–4 cm wide with serrulate margins and a long stalk while its petioles are up to 3 cm long. The plant starts flowering early at an age of 2–3 months and produces copious blue flowers in small cymes along branches that end with reduced leaves. The flowers are pollinated by numerous pollinators leading to enormous seed production [2-3].

H. suaveolens is commonly distributed in dense clumps along roadsides, in over-grazed pastures, and around stockyards throughout the tropics and subtropics, but is normally restricted to places where the soils have been profoundly disturbed. The plant is characterized by a strong minty smell when crushed. Most parts of this plant are used in medicine formulations for treating numerous ailments such as respiratory and gastrointestinal infections, indigestion, colic, stomachache, colds, fever, burns, wounds, cramps and various skin complaints and it is used as an anti-rheumatic and antisuporific bath [4-6].

The plant has different names in various countries (Table 1, Table 2, and Table 3). For example, it is locally known as _Bushmint, alfazema-brava, bamburreal, or tapeira velha_ in Brazil [7]; _chinginguaste_ in El Salvador [8]; Chanor Picnut in Nicaragua [9]; _Chia_ or _Chan_ in Mexico [10]; _Shan Xiang_ or _maolaohu_ in China; _gros, baumes, or hiptis à odeur_ in French; _Indischer, Andorn, Wohlruechender Andorn, or Buschminze_ in German; _bilati tulsi_ or _ganga tulsi_ in Hindi; _lampesan, jukut bau, or mangkamang_ in Indonesian; _nioi-niga-kusa_ in Japanese; _malabar, hutan, or pokok kemangi_ in Malaysian; _chio gorda_ or _chia grande_ in Mexico; _amotan, suob-kabayo, or loko-loko_ in Filipino; _bamburreal or mentrasto-grande_ in Portuguese; _isserp_ in Russian; _oregano, or cimarron_ in Spanish; and _kara or maeng lak kha_ in Thai [11].

H. suaveolens also has numerous synonyms, such as _Gnoteris cordata_ Raf., _Hyptis congesta_ Leonard., _Hyptis graveolens_ Schrank, _Marrubium indicum_ Blanco, _Schaueria graveolens_ (Blume) Hassk. Or _Schaueria suaveolens_ (L.) Hassk [12]. Over the past years, few studies have focused on reviewing _H. suaveolens_ in the literature and we did not find any comprehensive reviews of _H. suaveolens_, although its growing regions, phytochemistry, toxicity, and food and medicinal uses have been summarized to a certain extent [2,3,10,12]. To acquire provide additional knowledge on the considerable applicability and usefulness of this plant, here, we present a review of _H. suaveolens_ that include its characteristics, uses, chemical constituents, posology, phytochemistry and toxicology to facilitate the development and utilization of _H. suaveolens_.

METHODS

This review involved literature search on _H. suaveolens_ (L.) Poit (Lamiaceae) using databases such as PubMed (http://www.ncbi.nlm.nih.gov/pubmed), ScienceDirect (https://www.sciencedirect.com), and Web of Science (http://apps.webofknowledge.com) as well as search engines such as Baidu Scholar (http://xueshu.baidu.com) and Google Scholar (http://scholar.google.com). In confirming relevant entries, we considered publications up to the end of March 2020. Searches undertaken were found to be written in English, Portuguese, or Chinese.

FINDINGS

Weed characteristics

H. suaveolens, considered to be a weed worldwide, is currently ranked according to the importance of its use in different areas (Table 4). For instance, it is considered a serious weed in Brazil, a principal weed in Peru and Tanzania, but is a common weed in Australia, India, Micronesia, Philippines, Taiwan, and Thailand. This species is found in Cambodia, Ceylon (Sri Lanka), Congo-Kinshasa, Colombia, Costa Rica, Benin, Fiji, Ghana, Indonesia, Jamaica, Lebanon, Malaysia, Mauritius, Melanesia, Mexico, Netherlands, New guinea, Nicaragua, Panama, South Africa, Senegal, the US, Venezuela, and Vietnam, where it is also considered a weed, but of unknown ranked status. In China, the species is known to exist among the flora of the country,
but confirmatory evidence of its weed status is needed [13].

Distribution

H. suaveolens is found across more than 50 countries in over the seven continents (Figure 2), including South American areas such as Brazil, Polynesi, Ecuador, French Guiana, Peru, Colombia, and Venezuela; Central American regions such as Belize, El Salvador, the Caribbean, Guatemala, Costa Rica, and Nicaragua; Latin American countries such as Honduras; North American areas such as Puerto Rico, Jamaica, Mexico, Panama, Trinidad and Tobago, Curacao, and the US; African countries such as Tanzania, Congo, Benin, Ghana, South Africa, Mauritius, Senegal, Nigeria, Burkina Faso, Guinea-Bissau, and Kenya.

In addition, it is also found in Oceanian countries such as Australia and New Guinea; Asian countries such as India, Bangladesh, Cambodia, Thailand, Indonesia, Lebanon, Malaysia, Vietnam, and China; Western Pacific countries including Micronesia and the Philippines; areas around the Indian Ocean such as Ceylon; Pacific regions such as Melanesia and Fiji; and European areas including the Netherlands. The literature survey revealed that only 22 developing countries among those listed here recorded the medicinal uses of this plant. *H. suaveolens* is more commonly used as a folkloric herbal medicine in developing countries [2].

Traditional medicinal uses

The different traditional medicinal uses of various parts of *H. suaveolens* in over 23 countries are summarized in Table 1, Table 2 and Table 3, where they are arranged by frequency of the same use in different countries. Five of these countries are located in Central America, four in Asia (Bangladesh, China, India, and Thailand), four in Africa (Tanzania, Nigeria, Burkina Faso, and Kenya) two in the Caribbean (Jamaica and Curaçao), and one in South America (Brazil). A wide range of traditional medicinal uses of this plant are reported in the literature. These applications range from *in vivo* use for conditions affecting the respiratory system, gastrointestinal tract, and gynecological system to *in vitro* conditions affecting the skin [53]. This plant appears to be most commonly reported to be used in the treatment of fever and headache (reported in fourteen countries), as an insect repellent, for stomach disorders, skin conditions, injuries (five countries each), weakness (two countries), abnormal leucorrhrea, renal disorders, dysentery, and malaria (three countries each). In addition, the plant is also less frequently reported to be used for male disorders and menorrhagia (two countries each).

Posology

For headaches and colds, a decoction is prepared from 6–12 g of *H. suaveolens* for oral administration with a decoction of the fresh plant used to wash the body. In Bangladesh, 2 g of the seeds of *H. suaveolens* are soaked in water with mishri (crystalline sugar) for a whole day and then consumed for treating underweight [26]. In Bidar District of Karnataka in India, a spoonful (10 g) of the seed extract is administered orally once a day for 3 days as a remedy for leucorrhoea and temporary male infertility. Documentation of traditional knowledge of medicinal plants used in Bidar District and Karnataka reports that in Seshachalam Biosphere Reserve Forest of Chittoor District and Andhra Pradesh India, 4–7 g of the leaf powder is rolled in beedi leaves, which is then smoked to relieve colds and nasal congestion [36]. With an iron-deficient diet and high incidences of blood-sucking helminths, people in Bastimentos and Panama struggle with iron deficiency anemia. Consequently, a black drink prepared from *H. suaveolens* is the ethnopharmacological treatment for these pathologies, including iron deficiency anemia that is widely used in Bastimentos and unique to this community [54].

Phytochemistry

Research on the phytochemistry of *H. suaveolens* are has revealed that extracts of its different plant contain alkaloids, flavonoids, terpenoids, and tannins [55,56]. The saponin content of the leaves and stems is 6.10% ± 0.074% and 10.50% ± 0.79 %, respectively, while saponins have not been found in the roots. The contents of alkaloids, flavonoids, and tannins in the leaves are 2.80 ± 0.28, 1.90 ± 0.14, and 5.50 ± 0.074 %, respectively. Compared to the stem, the contents of alkaloids, flavonoids, and tannins are 1.60 ± 0.00, 0.30 ± 0.14, and 0.23 ± 0.07 %.

Chemical constituents

Over the past years, the chemical constituents of *H. suaveolens* have been investigated widely in different the countries, and numerous new compounds have been isolated from this plant and their structures identified. In this paper, the dominant compounds isolated from different parts of *H. suaveolens* collected from various regions are summarized in Table 5 and Table 6. The structures of these compounds are mostly terpenoids including sesquiterpenes, diterpenes, and...
triterpenes, and β-sitosterol. Most studies of the chemical constituents reported that they were mainly accumulated in the essential oil of the plant, but little attention has been focused on other extracts of *H. suaveolens*.

Toxicity

Extracts of *H. suaveolens* have shown effective insecticidal activity because of their toxicity to plant pests. The explanation for this biomechanism may be that the volatile oil of the extracts, which are characterized by a strong odor, can reduce the appetite of insects for the plants. The toxic effects of *H. suaveolens* are summarized in Table 7.

Table 1: Ethnomedicinal uses of *Hyptis suaveolens* (L.) Poit (contd.)

Country	Ethnomedical use	Plant part(s)	Preparation	Reference
Bangladesh	Acidity, flatulence, gastric troubles	Seed	Sherbet® (int⁴)	14
	Boils	Seed	Maceration (applied around 15 boils)	
	Boils	Root	Paste (ext³)	16
	Cancer, constipation, liver diseases	Seed, leaf	Not stated	17
	Constipation	Leaf, bark	Not stated	18
	Cooling agent, kidney disease, urinary tract	Seed	Sherbet® (int⁴)	19
	dysuria, infections, laxative.			
	Gonorrhea	Seed	Along with other herbs	20
	Headache	Whole plant	Crush (applied topically to forehead)	21
	Insect repellent	Whole plant	Dried and powdered whole plant	21
	Itching	Root	Extract	16
	Leucorrhea in women, low sperm density in men.	Root	Sherbet® (int⁶)	22
	Loss of libido, to keep body cool	Seed	Sherbet® (int⁶)	15
	Malaria	Whole plant	Crush (int⁶)	21
	Physical weakness, sense of hotness in head	Seed	Powdered seeds are mixed with sugar	23
	Stomach ache in children	Stem	Juice obtained from crushed stems is mixed with sugar	24
	Stomach problems	Seed	Raw (int⁶)	25
	To clear objects from eyes	Seed	Application of fruit to eyes	25
	Underweight	Seed	Sherbet® (int⁶)	26
Brazil	Diarrhea, digestive system, headache	Whole plant	Tea, syrup and infusion	27
	Inflammation of the uterus and ovaries	Bark	Tea	28
	Inflammatory, ulcer	Whole plant	Tea, bath	29
Burkina Faso	Cold, cough	Leaf	Not stated	30
	Insect repellent, itchy skin	Leaf, stem	Not stated	31
China	Athlete's foot	Leaf	Pound (ext³)	32
	Cold	Whole plant	Decoction (int⁶)	33
	Diabetes, diarrhoea	Seed	Boiled (int⁶)	32
	Eczema, dermatitis	Whole plant	Decoction (wash affected area)	32
	Eliminate toxin in the body	Leaf (fresh)	Stew or Decoction	33
	wholeplant			
	Infertility	Root	Stew with chicken (int⁶)	33
	Lobar seepor, pleurisy	Whole plant	Stew with pig lung or lean (int⁶)	33
	Lymphoma	Root (fresh)	Stew with green-shell duck (int⁶)	32
	Snakebite	Leaf (fresh)	Pound (ext³)	32, 33

Figure 2: The distribution of *Hyptis suaveolens* in the world
Table 2: Ethnomedical uses of *Hyptis suaveolens* (L.) Poit. (contd.)

Country	Ethnomedical use	Plant part(s)	Preparation	Reference
India	Blood purifier	Root	Not stated	34
	Boil, cuts, wounds	Leaf	Not stated	34
	Chest pains, cough, wound healing	Whole plant	Not stated	35
	Cold, fever and nasal congestion	Leaf	Beedi (inhalation)	36
	Cough	Leaf	Eaten raw	37
	Menorrhagia, leucorrhoea, temporary male sterility	Seed	Extract (intb)	38
	Skin disease	Leaf	Not stated	35
	Smoothing agent	Seed	Sherbet⁴	39
	Wounds	Leaf	Juice (extc)	40
Nigeria	Boils	Leaf	Juice (extc)	41
	Control the vector, mosquito	Whole plant	Smoke (smoking)	42
	Facilitate, childbirth, repel malaria-causing insects	Leaf (fresh)	Extract (intb)	43
	Headache	Whole plant	Tied around the head until the ache stops	42
	Headache, mosquito repellant	Leaf (fresh)	Juice	44
	Malaria	Leaf	Not stated	45
Philippines	Mosquito repellent	Whole plant (fresh)	Raw	42
	A stimulant if employed in rheumatism	Root	Decoction	46
	Antirheumatic and antisuporific	Leaf and top	Baths	47
	Antispasmodic	Leaf and top	Not stated (intb)	47
	Appetizer	Root	Decoction	46
Senegal	Expectorant	Stem with flower and seed	Infusion (intb)	48
	Headache and cold	Flower	Introduced into the nostrils	48
	Migraine	Powdered plant part	Not stated	48
	Tonic	Stem with flower and seed	Decoction (intb)	48
Tanzania	Abdominal pains and general body weakness	Leaf, stem	Vapours from boiling leave (inhalation)	49
	Epileptic cases, psychosomatic	Leaf	Ashes (the leaves stems are burned and ashes applied over scarifications on the body)	49
	Leukorrhoea	Root	Decoction (intb)	49
Thailand	Anti diarrhoeal	Seed	Not stated	50
	Constipation	Seed	Dessert (intb)	50
	Fever, fatigue	Whole plant	Decoction	50
Trinidad	Colds, constipation, fever, flu, malaria, fever,	Leaf	Tea	51
	menorrhagia, yellow fever			
	Common cold & cough	Leaf	Infusion or crush and inhaled	52

a sherbet = Seeds are soaked in water in which mishri (crystalline sugar) has been dissolved and taken as a drink; bint = internal use; ext = external use

Table 3: Ethnomedical uses of *Hyptis suaveolens* (L.) Poit. (contd.)

Country	Ethnomedical use	Plant part(s)	Preparation	Reference
Trinidad	Fever	Leaf	Infusion or crush and inhaled	52
	Flu	Leaf	Bath	51
	Cooling/cleanser	Leaf	Infusion or crush and inhaled	52

Table 4: Posology of *Hyptis suaveolens* (L.) Poit.

Ailment	Preparation and usage	Dosage	Region
Headaches and cold	Decoction is drunk with decoction of fresh plant washing body	6 - 12g	Bangladesh
Underweight	Seeds are soaked in water with mishri (crystalline sugar) for awhile day and then taken	2 g	Bangladesh
Leucorrhoea and temporary male sterility	Seeds extract is taken internally once a day for 3 days	10 g	Karnataka of India
Cold and nasal congestion	Leaf powder is kept in beedi leaves and being smoked	4-7 g	Chittoor District and Andhra Pradesh India Bastimentos and Panama
Iron deficiency anemia	Black Drink	Not stated	
Table 5: Chemical constituents isolated from *Hyptis suaveolens* (L.) Poit (contd.)

Dominant compounds	Isolated part	Plant source	Reference
L-Fuco-4-O-methyl-D-glucurono-D-xylan	Seed-coat mucilage	Not stated	57
1, 8-Cineole, -caryophyllene, -Copaene, -Phellandrene, -elemene, eugenol	Essential oil	Darwin, Australia	58
sabinene, trans-a-bergamotene, β-caryophyllene, terpinen-4-ol, β-pinene	Essential oil	Nigeria	59
sabinene, β-caryophyllene, trans-alpha-bergamotene	Essential oil	Mali	60
Sabinene, limonene, bicyclogermacrene, β-phellandrene, 1,8-cineole	Essential oil	Brazilian Cerrado	61
Spathulenol, 1,8-cineole, (E)-caryophyllene	Essential oil	Brazilian Cerrado	62
β-caryophyllene, β-elemene, trans-α-bergamotene, spathulenol, bicyclogermacrene	Essential oil	Tanzania	63
α-pinene, sabinene, p-cymene, terpinen-4-ol, terpinolene, 1,8-cineole, β-pinene,	Essential oil	Nigeria	64
Fenchone-fenchol-chemotype, 1,8-cineole, α-pinene, β-terpinene, β-caryophyllene,	Essential oil	El Salvador	65
abietane-type diterpenoid endoperoxide, 13α-epi-dioxiaib-8(14)-en-18-ol terpenes	Leaves	southeastern Nigeria	67
Sabinene, β-caryophyllene	Essential oil	Brazil	68
5-caranal, α-humulene, allo-aromadendrene, Ermeophilene, cis-sabinol, camphor	Essential oil	Togo	69
sabinene, 1,8-cineole, γ-terpinene, fenchone, fenchol, the sesquiterpene β-caryophyllene	Essential oil	South India	70
β-caryophyllene, α-phellandrene, caryophyllene oxide	Essential oil	El Salvador	71
β-caryophyllene, trans-α-bergamotene, caryophyllene oxide, 6-hydroxy carvotanacetone, bicyclogermacrene	Essential oil	Nigeria	72
Essential oil	Essential oil	Benin	73
Essential oil	Essential oil	Brazil	74

Table 6: Chemical constituents isolated from *Hyptis suaveolens* (L.) Poit (contd.)

Dominant compounds	Isolated part	Plant source	Reference
Monoterpene hydrocarbons, sesquiterpene hydrocarbons, oxygenated monoterpenes, oxygenated sesquiterpenes	Essential oil	Pisa, Italy	75
Sabinene, β-caryophyllene, terpinolene, β-pinene, limonene, 4-terpinol	Essential oil	Pisa, Italy	76
Isouaveolic acid, 8,9-epoxy suaveolic acid, 14-O-methyl suaveolic acid	Whole plant	Nakhon Ratchasima, Thailand	77
A-phellandrene, limonene, 1,8-cineole, fenchone, E-caryophyllene, germacrene D	Leaves and flowers	Arauca, Colombia	78
Suaveolic acid	Whole plant	Bangladesh	79
11S globulin (Hs11S)	Seed	Colima City, Mexico	80
1,8-cineole, E-caryophyllene, sabinene, terpinolene, bicyclogermacrene	Essential oil	Uttarakhand, India	81
Galactoglucon, galactoglucomannan	Seed mucilage	North of Thailand	82
Caffeic acid, rutin, quercetin	Aqueous extract	Ghana	83
Citric acid, ferulic acid, gluconic acid 3-O-beta-D-glucopyranoside, apigenin, sorbilfolin, quercetin, kaempferol, genkwanin, rosmannic acid, methyl rosmarinate, podophyllotoxin, picrododophyllotoxin	Whole plant	China	84
Table 7: Toxic effect of *Hyptis suaveolens* (L.) Poit.

Toxic part	Toxicity	Value	Application	References
Aqueous leaf extract	Inhibit root growth of *Allium cepa*	EC_{50} value of 1.92%	As herbal insecticides/pesticides	85
Ethanolic extract	Toxic effect on larvae of *Aedes aegypti*	LD_{10} value of 0.01 ppm, LD_{50} value of 0.60ppm, LD_{90} value of 1.45ppm		86
Essential oil	Toxic and repellent activity against *Sitophilus granarius* (L.)	At the lowest dose (2×10^{-4} µL oil per cm²)		75
Essential oil	Toxic effects on *Drosophila melanogaster* and *Artemisia salina*	LC_{50} value of 15.5 and 49.72 µg/mL, respectively		87

CONCLUDING REMARKS

H. suaveolens is an important medicinal plant used in various indigenous herbal medicines for treating numerous diseases, as is clearly shown in the above-mentioned summary of its ethnobotanical, chemical, posology, and toxicological properties. Although there are numerous reports on the chemical composition and pharmacological properties of *H. suaveolens*, most studies were conducted on its essential oils. Therefore, more new compounds from other parts of this plant still need to be isolated and identified because the specific constituents mediating the pharmacological activities have not been identified. Safety assessments of *H. suaveolens* suggest that it has acute or chronic toxicity against grain pests, which suggests that it could be used as a herbal insecticide or pesticide. In addition, to further explore and exploit the therapeutic potential of *H. suaveolens*, quality control protocols are urgently needed to standardize this plant.

REFERENCES

1. Mcneil M, Facey P, Porter R. Essential oils from the *Hyptis* genus—a review (1909–2009). Nat Prod Commun 2011; 6: 1775-1796.
2. Sharma PP, Roy RK, Anurag, Dinesh G, Sharma VK. *Hyptis suaveolens* (L.) poit: A phyto-pharmacological review. Int J Chem Pharm Sci 2013; 4: 1-11.
3. Priya MD. A review on the pharmacology and phytochemistry of folklore medicinal plant *Hyptis suaveolens* (L.) Poit. Int. J. Basic, Appl. Innovative Res 2015; 4: 108 - 117.
4. Mahesh S, Chatterjee A, Pakrashi SC. The Treatise on Indian Medicinal Plants, Vol 5, (PID, New Delhi), 2001, 1.
5. Asekun OT, Ekundayo O, Adeniyi BA, Antimicrobial activity of the essential oil of *Hyptis suaveolens* leaves. Fitoterapia 1999; 70: 440-442.
6. Oliveira MJ, Campos IFP, Oliveira CBA, Santos MR, Souza PS, Santos SC, Seraphin JC, Ferri PH. Influence of growth phase on the essential oil composition of *Hyptis suaveolens*. Biochem System Ecol 2005; 33: 275-285.
7. Jesus N, Falcão H, Lima G, Caldas Filho M, Sales I, Gomes IF, Santos SG, Tavares JF, Barbosa-Filho JM, Batista LM. *Hyptis suaveolens* (L.) Poit (Lamiaceae), a medicinal plant protects the stomach against several gastric ulcer models. J Ethnopharmacol 2013; 150: 982-988.
8. Grassi P, Reyes TSU, Sosa S, Tubaro A, Hofer O, Zitter-Eglisee K. Anti-inflammatory activity of two diterpenes of...
Hyptis suaveolens from El Salvador. Z Naturforsch C 2006; 61: 165-170.

9. Barrett B, Kiefer D. Ethnomedical, biological and clinical support for medicinal plant use on Nicaragua's Atlantic coast, J Herbs Spices Med Plants 1997; 4: 77-108.

10. Solomon RA, Vergara SI. Hystis suaveolensis-Aprized weed. J. Nat. Con 1997; 9: 123-127.

11. Seidemann J. World spice plants, (Springer), 2005.

12. Ngozi LU, Ugochukwu N, Ifeoma PU, Charity EA, Seidemann J. World spice plants, (Springer), 2005.

13. Holm L, Pancho JV, Herberger JP, Plucknett DL. A geographical atlas of world weeds. Brittonia 1980; 32: 127-127.

14. Khan MA, Hasan MN, Jahan N, Das PR, Islam MT. Ethnomedicinal wisdom and famine food plants of the Hajong community of Baromari village in Netrakona district of Bangladesh. Am Eur J Sustain Agric 2012; 387-398.

15. ahmatullah M, Hasan ME, Islam MA, Islam MT, Jahan FI, Seraj S, Chowdhury AR, Jamal R, Islam MS, Miajea ZEU. A survey on medicinal plants used by the folk medicinal practitioners in three villages of Panchagarh and Thakurgaon district, Bangladesh. Am Eur J Sustain Agric 2010; 4: 291-301.

16. Rahman MA. Indigenous knowledge of herbal medicines in Bangladesh. 3. Treatment of skin diseases by tribal communities of the hill tracts districts. Bangladesh J Botany 2010; 39: 169-177.

17. Rahmatullah M, Mollik MAH, Khatun MA, Jahan R, Chowdhury AR. A survey on the use of medicinal plants by folk medicinal practitioners in five villages of Boalia sub-district, Rajshahi district, Bangladesh. Adv Nat Appl Sci 2010; 4: 39-44.

18. Rahmatullah M, Mollik AH, Paul AK, Jahan R, Khatun A, Seraj S, Chowdhury AR, Bashar A, Wahab R, Rahman T. A comparative analysis of medicinal plants used to treat gastrointestinal disorders in two sub-districts of Greater Khulna Division, Bangladesh Adv Nat Appl Sci 2010; 4: 22-29.

19. Hossan MS, Roy P, Seraj S, Mou SM, Monalisa MN, Jahan S, Khan S, Swama A, Jahan R, Rahmatullah M. Ethnomedicinal knowledge among the Tongchongya tribal community of Roangchaari Upazila of Bandarban district, Bangladesh. Am Eur J Sustain Agric 2012; 6: 349-359.

20. Mia MM, Kadir MF, Hossan MS, Rahmatullah M. Medicinal plants of the Garo tribe inhabiting the Madhupur forest region of Bangladesh. Am Eur J Sustain Agric 2009; 3: 165-171.

21. Rahmatullah M, Mollik AH, Rahman S, Hasan N, Agarwala B, Jahan R. A medicinal plant study of the Santal tribe in Rangpur district, Bangladesh. J Altern Compl Med 2010; 16: 419-425.

22. Rahmatullah M, Das PR, Islam T, Ripa RJ, Hasan E. Medicinal plants and formulations of the Bongshi tribe of Bangladesh, Am Eur J Sustain Agric 2012; 6: 181-187.
52. Clement Y, Baksh-Comeau Y, Seaforth C. An ethnobotanical survey of medicinal plants in Trinidad. J Ethnobiol Ethnomed 2015; 11: 1.
53. Picking D, Delgoda R, Boulogne I, Mitchell S. Hyptis verticillata Jacq: a review of its traditional uses, phytochemistry, pharmacology and toxicology. J Ethnopharmacol 2013; 147(1): 16-41.
54. Nelson-Dooley B. The ethnomedical use of black drink to treat iron deficiency anemia in bastimentos, Panama. Dooley 2004.
55. Prasanna S, Koppula S. Antimicrobial and preliminary phytochemical analysis of solvent extracts of Hyptis suaveolens from banks of River Krishna. Int. J. BioPharmacol. Res. 2012; 1: 11-15.
56. Ijeh I, Edoega H, Jimoh M, Ejike C. Preliminary phytochemical, nutritional and toxicological studies of leaves and stems of Hyptis suaveolens. Res J Pharmocol 2007; 1: 34-36.
57. Aspinall GO, Capek P, Carpenter RC, Gowda DC, Szafranek J. A novel l-fuco-4-o-methyl-d-glucurono-d-xylan from Hyptis suaveolens. Carbohydr Res 1991; 214: 107-113.
58. Peierzada. Chemical composition of the essential oil of Hyptis suaveolens. Molecules 1997; 2: 165-168.
59. Asekun O, Olusegun Ekundayo. Essential oil constituents of Hyptis suaveolens (L.) poit. (bush tea) leaves from nigerian. J Essent Oil Res 2000; 12: 227-230.
60. Lassine Sidib â€” Jean-Claude Chaichat, Raymond-Philippe Garry, Moussa Harama. Aromatic plants of mali (iii): chemical composition of essential oils of two Hyptis species: h. suaveolens (L.) poit. and h. spicigera lam. J Essent Oil Res 2001; 13: 55-57.
61. Azevedo NR, Campos IF, Ferreira HD, Portes TA, Santos SC, Seraphin JC, Paula JR, Ferri PH. Chemical variability in the essential oil of hyptis suaveolens. Phytochemistry 2001; 57: 733-776.
62. Azevedo NR, Campos IFP, Ferreira HD, Portes TA, Seraphin JC, Paula JRD, Santos SC, Ferri PH. Essential oil chemotypes in hyptis suaveolens, from brazilian cerrado. Biochem Syst Ecol 2002; 30: 205-216.
63. Malele RS, Mutayabarwa CK, Mwangi JW, Thoithi GN, Lopez AG. Essential oil of hyptis suaveolens (L.) poit. from Tanzania: composition and antifungal activity. J Essent Oil Res 2003; 15: 438-440.
64. Eshikokun AO, Kasali AA, Gwa-Ajeniya AO. Chemical composition of essential oils of two hyptis suaveolens, (L.) poit leaves from Nigeria. Flavour Fragr J 2005; 20: 528–530.
65. Grassi P, Núñez MJ, Varmuzo K, Franz C. Chemical polymorphism of essential oils of hyptis suaveolens from el salvador. Flavour Fragr J 2005; 20: 131-135.
66. Tchoumougounag F, Zollo PHA, Boyom FM, Nyegue MA, Bessière JM, Menut C. Aromatic plants of tropical central africa. xlviii. comparative study of the essential oils of four hyptis species from cameroon: h. lanceolata poit. h. pectinata (l.) poit. h. spicigera lam. and h. suaveolens poit. Flavour Fragr J 2005; 20: 340-343.
67. Chukwujekwu JC, Smith P, Coombes PH, Mulholland DA, Van SJ. Antiplasmodial diterpenoid from the leaves of Hyptis suaveolens. J Ethnopharmacol 2005; 102: 295-297.
68. Martins FT, Santos MHD, Polo M, Barbosa LCDA. Chemical variation in the essential oil of Hyptis suaveolens (L.) Poit. under cultivation condition. Quim Nova 2006; 29: 1203-1209.

69. Koba K, Raynaud C, Millet J, Sanda JPCK. Chemical composition of Hyptis pectinata L. h. lanceolata poit, h. suaveolens (L) poit and h. spicigera lam. essential oils from togo. J Essent Oil Bear Pl 2007; 10: 357-364.

70. BeenaJoy, Omanakutty M, Mathew M. Antibacterial Effects and Chemical Composition of the Essential Oil of Hyptis suaveolens Poit Leaves. J Essent Oil Bear Pl 2008; 11: 384-390.

71. Grassi P, Núñez MJ, Reyes TSU, Franz C. Chemical variation in the essential oil composition of Hyptis suaveolens (L.) Poit. (Lamiaceae), Nat Prod Commun 2008; 3: 1137-1140.

72. Akinolao O, Sundayo O, Guido F, Pierl C, Isiakaa O, Olayinky ET. Essential oil-bearing plants from Nigeria: studies on Vernonia perrottetii (leaf and stem bark), young leaves from Eucalyptus decaisneana and immature leaves of Hyptis suaveolens. J Essent Oil Res 2009; 21: 154-158.

73. Kossouoh C, Moudachirou M, Adjakidje V, Chalchat JC, Figuèrédo G. A comparative study of the chemical composition of the leaves and fruits deriving the essential oil of Hyptis suaveolens (L.) Poit. from Benin. J Essent Oil Res 2009; 22: 507-509.

74. Moreira ACP, Lima EDO, Wanderley PA, Carmol ES, Souza ELD. Chemical composition and antifungal activity of Hyptis Suaveolens (L.) Poit leaves essential oil against Aspergillus species. Braz J Microbiol 2010; 41: 28.

75. Conti B, Canale A, Cioni PL, Flamini G, Rifici A. Hyptis suaveolens, and Hyptis spicigera, (Lamiaceae) essential oils: qualitative analysis, contact toxicity and repellent activity against Sitophilus granarius, (L) (Coleoptera: dryophthoridae). J Pest Sci 2011; 84: 219-228.

76. Benelli G, Flamini G, Canale A, Molfetta I, Cioni PL, Conti B. Repellence of Hyptis suaveolens L. (Lamiaceae) whole essential oil and major constituents against adults of the granary weevil Sitophilus granarius (L) (Coleoptera: dryophthoridae). B Insectol 1967; 31: 177-183.

77. Prawatsri S, Sukasamram A, Chindaduang A, Rukchaisirikul T. Abietane diterpenes from Hyptis suaveolens. Chem Biodivers 2013; 10: 1494-1500.

78. Geovanna TG, Amner MA, Ana MC, Luísa FJ, Wilman AD. Componentes voláteis de Eriope cressipes, Hyptis conferta, H. dilatata, H. brachiata, H. suaveolens y H. mutabilis (Lamiaceae). Le problème de l'être chez Aristotle: Presses. Universitaires de France 2014; 13: 727-730.

79. Islam AKMM, Ohno O, Suenaga K, Kato-Noguchi H. Suaveolic Acid: A Potent Phytotoxic Substance of Hyptis suaveolens. The Scientific World J 2014; 6.

80. Bojórquez-Velázquez E, Lino-López GJ, Huerta-Ocampo JA, Barrera-Pachecoc A, Barba de la Rosa AP, Moreno A, Mancilla-Margalli NA, Osuna-Castro JA. Purification and biochemical characterization of 11S globulin from Chan (Hyptis suaveolens L. Poit) seeds. Food Chem 2016; 192: 203-211.

81. Kandpal V, Joshi PK, Joshi N. Chemical composition of leaf essential oil of Hyptis suaveolens (L.) Poit JICS 2017; 94: 201-203.

82. Praznik W, Čavarkapa A, Unger FM, Loeppert R, Holzer W, Viernstein H, Mueller M. Molecular dimensions and structural features of neutral polysaccharides from the seed mucilage of Hyptis suaveolens L. Food Chem 2017; 221: 1997-2004.

83. Ekow TN, Dzobo K, Adu F, Chinkure S, Wonkam A, Dandara C. Bush mint (Hyptis suaveolens) and spreading hogweed (Boerhavia diffusa) medicinal plant extracts differentially affect activities of CYP1A2, CYP2D6 and CYP3A4 enzymes. J Ethnopharmacol 2018; 211: 58.

84. Tang GQ, Liu XL, Gong X, Lin XJ, Lai XD, Wang D, Ji SG. Studies on the chemical compositions of Hyptis suaveolens (L.) Poit. J SERB CHEM SOC 2019; 84:245-252.

85. Sumitha KV, Thoppil JE. Genotoxicity assessment of two common curing weeds: Hyptis suaveolens, (L.) Poir. and Leucas indica, (L.) R. Br. Cytotechnology 2016; 68: 1-15.

86. Amusan AA, Idowu AB, Arowolo FS. Comparative toxicity effect of bush tea leaves (Hyptis suaveolens) and orange peel (Citrus sinensis) oil extract on larvae of the yellow fever mosquito Aedes aegypti. Tanzan Health Res Bull 2005; 7: 174-178.

87. Bezerra JWA, Costa AR, Silva MAPD, Rocha MI, Boligon AA. Chemical composition and toxicological evaluation of Hyptis suaveolens (L.) Poitoe (Lamiaceae) in drosophila melanogaster and Artemia salina. S Afr J Bot 2017; 113: 437-442.