Retrospective Study

Congenital coronary artery fistulas complicated with pulmonary hypertension: Analysis of 211 cases

Salah AM Said

Salah AM Said, Department of Cardiology, Hospital Group Twente, Almelo-Hengelo, 7555 DL Hengelo, The Netherlands

Author contributions: Said SAM has solely contributed to conception, design, drafting and final approval of the manuscript.

Institutional review board statement: The data of this manuscript are obtained from internet, so it should be excepted from approval of institutional review board.

Conflict-of-interest statement: Author has no conflict of interest in connection with the submitted article. No funding has been obtained.

Data sharing statement: Technical appendix, statistical code, and dataset available from the corresponding author at salah.said@gmail.com.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Correspondence to: Salah AM Said, MD, PhD, FESC, Department of Cardiology, Hospital Group Twente, Almelo-Hengelo, Geerdinksweg 141, 7555 DL Hengelo, The Netherlands. salah.said@gmail.com

Telephone: +31-88-7085286
Fax: +31-88-7085289

Received: February 12, 2016
Peer-review started: February 16, 2016
First decision: March 23, 2016
Revised: July 26, 2016
Accepted: August 6, 2016
Article in press: August 8, 2016
Published online: October 26, 2016

Abstract

AIM
To compare the behavior of pulmonary hypertension (PHT) associated with coronary artery fistulas (CAFs) between the Asian and Caucasian subjects.

METHODS
CAFs may be complicated with PHT secondary to left-to-right shunt. Literature review limited to the English language. A total of 211 reviewed patients were collected. Of those, 111 were of Asian and 100 were of Caucasian ethnic origin. The mean age of the Asian and the Caucasian groups of patients were 48.9 (range 19-83) and 49.9 years (range 16-85), respectively. In both groups, right heart catheterization was the most commonly (95%) used method for determining pulmonary artery pressure.

RESULTS
From all of the reviewed subjects, PHT was found in 49 patients (23%), of which 15 were Asian and 34 were Caucasian. In 75% of PHT subjects, mild to moderate PHT was reported and 76% of the fistulas had a vascular mode of termination. Treatment was surgical in 61%, followed by percutaneous therapeutic embolization (27%) and finally conservative medical management in 12% of PHT subjects. PHT was associated with a slight female gender predominance. The majority demonstrated mild to moderate PHT. PHT was reported more frequent in the Caucasian compared with the Asian ethnicity group. The majority of fistulas in patients with PHT had a vascular mode of termination. The results of this review are intended to be indicative and require cautious interpretation.

CONCLUSION
The likelihood for a CAF patient to develop PHT is presented when possessing the following features, with a Caucasian female having a fistula with a vascular mode of termination.
Key words: Congenital coronary artery fistulas; Congenital anomaly; Pulmonary hypertension; Asian population; Caucasian population

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Congenital coronary artery fistulas (CAFs) are infrequent but hemodynamically important anomalies which may evolve a myriad of complications, such as myocardial infarction, congestive heart failure, infective endocarditis, aneurysm, rupture, pericardial effusion, arrhythmias and sudden death. In addition, secondary pulmonary hypertension (PHT) may complicate the course of CAFs. Moreover, when monitoring CAF patients, the clinicians responsible for the management of patients with congenital CAFs should be aware of the development of PHT during the course of the disease.

INTRODUCTION

Congenital coronary artery fistulas (CAFs) are uncommon anomalies. Most CAFs are small and hemodynamically inconsequential with a negligible shunt. However, some can be sizeable and lead to shunting of blood from the coronary circulation to low-pressure pulmonary vascular bed, resulting in pulmonary hypertension (PHT)\(^1\). CAFs may be associated with normal\(^2-4\) pulmonary artery pressure (PAP) in unilateral\(^5-8\) or bilateral\(^9,10\) fistulas, or may sometimes be accompanied with elevated PAP\(^11-14\).

Rarely, in octogenarians with bilateral CAFs, PAP may remain normal\(^15\).

The hemodynamic consequences of CAFs varies, depending on their magnitude and the cardiac chamber or vascular site involved. Fistulas terminating into the right heart chambers may produce left-to-right shunt and volume overload of the pulmonary circulation, whereas fistulas to the left heart side cause left ventricular volume overload.

In a literature review, 211 subjects were included and a comparison was made between the Asian\((n = 111)\) and Caucasian\((n = 100)\) subjects regarding the behavior of PAP associated with CAFs.

RESULTS

Total group

A total of 211 (M: 87 = 41% and F: 124 = 59%) reviewed patients were collected from the world literature. The mean age was 49.4 years (range 16-85). The reported method of assessment of PAP was RHC\((n = 201, \text{Caucasian } n = 94 \text{ and Asian } n = 107)\) and Doppler echocardiography\((n = 10, \text{Caucasian } n = 6 \text{ and Asian } n = 4)\) in 95% and 5% of the subjects, respectively. The congenital CAFs were unilateral in 118 (56%), bilateral in 87 (41%) and multilateral in 6 (3%) of the subjects. The CAFs arose from the right\((133/268 = 49.6\%)\) and left\((135/268 = 50.4\%)\) coronary artery, respectively. The mode of termination was either vascular\((90/211 = 42.6\%)\) or vascular site involved. Fistulas terminating into the pulmonary or a cardiac disorder\(^16\).

Non-invasive method: In accordance with the European Society of Cardiology criteria for detecting the presence of PHT, based on the TR peak velocity and Doppler-calculated sPAP at rest (assuming a normal right atrial pressure of 5 mmHg), additional echocardiographic variables suggestive of PHT were used to determine the sPAP\(^16,18,20\). PHT was defined by an estimate of right ventricular systolic pressure of greater than 40 mmHg. sPAP is estimated using TR jet velocity based on the simplified Bernoulli’s equation\(4 \times (\text{TRV})^2 + \text{RA pressure})\(^19,21,22\) (TRV: TR velocity; RA: Right atrium). PHT was classified into three categories: Mild\((40-49 \text{ mmHg})\), moderate\((50-59 \text{ mmHg})\) and severe\((> 59 \text{ mmHg})\).

Statistical analysis

Values were expressed as means, averages, and percentages.
Said SAM. CAFs and PHT

Table 1 Reviewed Asian (n = 111) and Caucasian (n = 100) group of patients

Gender	Total reviewed subjects	Asian group	Caucasian group
n		111 (53%)	100 (47%)
F	124 (59%)	F 63 (57%)	F 61 (61%)
M	M 87 (41%)	M 48 (43%)	M 39 (39%)
Mean age (range), yr	49.4 (16-85)	M 48 (43%)	M 39 (39%)
Mean PAP	56.8 (16-80)	M 48 (43%)	M 39 (39%)

CAF characteristics
- Unilateral: 118 (56%)
- Bilateral: 47 (21%)
- Multilateral: 46 (21%)

Mode of termination
- CVFs: 90 (43%)
- CCFs: 121 (57%)
- RHC: 201 (95%)
- Average age: 35.6 ± 15.3 years
- Average PAP: 35.6 ± 15.3 mmHg

Management
- Surgical ligation: 124 (59%)
- Conservative medical management: 76 (76%)
- Percutaneous therapeutic embolization: 43 (57%)
- Right heart catheterization: 26 (25%)
- Watchful waiting: 2 (1%)

Table 2 Asian and Caucasian group of patients (n = 49) with pulmonary hypertension

Gender	Total group	Asian group	Caucasian group
n	49	15 (31%)	34 (69%)
Age1	56 (16-80)	54.4 (24-77)	56.8 (16-80)
Gender	F 34 (69%)	F 12 (80%)	F 22 (65%)
	M 15 (31%)	M 3 (20%)	M 12 (35%)
CAF			
Unilateral	37 (76%)	9 (60%)	28 (82%)
Bilateral	12 (24%)	6 (40%)	6 (18%)
PHT			
Mild	26 (53%)	8/15 (53%)	18/34 (33%)
Moderate	11 (22%)	2/15 (13%)	9/34 (26%)
Severe	12 (25%)	5/15 (33%)	7/34 (21%)
Mean PAP	35.6 (range 26-60)	36.9 (range 27-54)	34.3 (range 26-60)

Mode of termination
- Mean Qp/Qs: 1.9 (range 1.12-1.27)
- RH: 43 (88%)
- SL: 6 (12%)
- PTE: 6 (12%)

Origin
- R 8, L 10, bilateral: 11
- R 6, L 22, bilateral: 5

Termination
- RH side 45: 19
- Side 2: 9
- Side 13: 12

Associated disorders
- M: 87 (41%)
- F: 63 (57%)
- RH side: 6 (12%)
- L: 6 (12%)

Subjects from ref. [35] were not included in calculation of mean age. Mean age was calculated from 170 (70 Asian and 100 Caucasian) subjects. One PTE failed (from ref. [147]) followed by SL treatment and another treated with hybrid procedures (from ref. [133]). CAF: Coronary artery fistula; CCFs: Coronary-cameral fistulas; CVFs: Coronary-vascular fistulas; CMM: Conservative medical management; F: Female; M: Male; PTE: Percutaneous therapeutic embolization; RH: Right heart catheterization; SL: Surgical ligation; PAP: Pulmonary artery pressure. PHT: Pulmonary hypertension; PTE: Percutaneous therapeutic embolization; RHC: Right heart catheterization; SL: Surgical ligation; S/P: Systolic pulmonary artery pressure.

Table 3

Total reviewed subjects	Asian group	Caucasian group	
n	211	111 (53%)	100 (47%)
Gender	F 124 (59%)	F 63 (57%)	F 61 (61%)
	M 87 (41%)	M 48 (43%)	M 39 (39%)
Mean age (range), yr	49.4 (16-85)	48.9 (18-93)	49.6 (16-85)
Mean PAP	56.8 (16-80)	M 48 (43%)	M 39 (39%)

CAF characteristics
- Unilateral: 118 (56%)
- Bilateral: 47 (21%)
- Multilateral: 46 (21%)

Mode of termination
- CVFs: 90 (43%)
- CCFs: 121 (57%)
- RHC: 201 (95%)
- Average age: 35.6 ± 15.3 years
- Average PAP: 35.6 ± 15.3 mmHg

Management
- Surgical ligation: 124 (59%)
- Conservative medical management: 76 (76%)
- Percutaneous therapeutic embolization: 43 (57%)
- Right heart catheterization: 26 (25%)
- Watchful waiting: 2 (1%)

PHT was found in 15 Asian (14%) (M, n = 3; F, n = 12) subjects with a mean age 54.4 years (range 24-77). Among the 15 subjects, mild, moderate and severe PHT was detected in 8, 2 and 5, respectively.

Caucasian population: n = 100

The review of 170 subjects (111 Male n = 48 (43%) and Female n = 63 (57%)) had a mean age of 48.9 years (range 19-83).

Between 1986 and 2014, papers published describing Asian population with congenital CAFs and reported data on PAP were included: from 1986-1990, 1994-1999, 2001-2004, 2005-2007, and 2009-2014. PAP was measured by RHC in 107 and by Doppler echocardiography in 4.

Ninety-six subjects (86%) had normal PAP. Among the CAFs, 42 were unilateral (38%), 63 bilateral (57%) and 6 multilateral (5%). The treatment modalities were SL [82 (74%)], CMM [20 (18%)] and PTE [9 (8%)]. No watchful waiting strategy was conducted and death did not occur in any of the subjects.
reported. Sixty-six subjects (66%) had normal PAP.

Treatment modalities included SL (42), PTE (20), CMM (18), and watchful waiting (2), and were not mentioned in 16 cases. There were 2 mortalities (2). PHT was found in 34 subjects (34%) [M: n = 12 (35%) and F: n = 22 (65%)], with a mean age of 56.8 years (range 16-80).

PHT population: n = 49

PHT was found in 49 patients (49/211 = 23%), with a mean age of 56 years (range 16-80). There were 34 females (69%) and 15 males (31%), with 15 Asian (mean age 54.4, range 24-77 years) and 34 (mean age 56.8, range 16-80 years) of Caucasian patients. The fistulas were unilateral in 37 (76%) and bilateral in 12 (24%) of the subjects. Measurement of PAP was achieved by RHC in 43 subjects (13 Asian and 30 Caucasian) and by Doppler echocardiography in 6 (2 Asian and 4 Caucasian) subjects. Mild, moderate and severe PHT was reported in 26 (53%), 11 (23%) and 12 (24%) subjects, respectively (Table 2).

The percentage of unilateral and CVFs was higher in the Caucasian group (82% and 82%) compared to the Asian group (60% and 60%), respectively (Table 3).

DISCUSSION

CAFs may remain silent, co-existing with longevity for years and emerging as a coincidental finding during non-invasive or invasive investigation for the analysis of suspected cardiac disorder.

CAFs are an uncommon congenital anomaly which may be associated with several complications (Table 4). These complications may have coronary vascular, pericardial or myocardial origin, they may have a valvular source or may originate from an atrial or ventricular arrhythmia. Such complications may include myocardial infarction (MI) (4%)[136,137], congestive heart failure (20%)[136], infective endocarditis (reported in 4%-12% in different series)[31,136], atrial[138] and ventricular[139] arrhythmias, aneurysm (reported in 20% of cases)[30,140], rarely ruptured aneurysm with hemopericardium[141] and unruptured aneurysm[139,142], pericardial effusion[143], syncope[142,144] and sudden death[145]. It has been postulated that fistula-related complications increase with age[138]. Secondary PHT is an infrequent complication of congenital CAFs. As early as 1955, Davison reported PHT in patients with CAFs[70].

Most CAFs are small and hemodynamically inconsequential with a negligible left-to-right shunt. However, some can be sizeable and lead to shunting of blood from the coronary circulation to low-pressure pulmonary vascular bed, resulting in PHT[14].

In congenital CAFs, although PHT may occur when sizeable left-to-right shunt exists; in the current review, the mean Qp:Qs was modest, with moderate magnitude 1.9:1.0.

It has been stated that severe PHT is not frequently observed in isolated CAFs[147]. Mild to moderate PHT[145] has sporadically been reported in unilateral[39,45,107,124,146,147] and bilateral fistulas[42,103,112,118]. Indeed, in the current literature review, only 25% were found to have severe PHT, with the majority (75%) having mild or moderate PHT. No reports of multilateral CAFs associated with PHT were found. It is noteworthy that CAFs may be associated with longevity[96] and PHT has been reported in septuagenarians[11] and octogenarians[187].

Although PAP can be measured on Doppler echocardiography, the gold standard for diagnosis is RHC. In the current review, 95% were direct calculation of PAP using RHC and only 5% as an estimate of right ventricular systolic pressure by Doppler echocardiography using TR jet velocity based on the simplified Bernoulli’s equation (Figure 1). It is widely accepted that pulmonary artery systolic pressure (sPAP) can be considered normal until 40 mmHg in the elderly and obese subjects. Moreover, tricuspid regurgitant jet velocity is a parameter that has been widely applied to estimate sPAP[22].

In comparison with the Caucasian group of patients (65%) with PHT, female gender accounted for 80% in the Asian group and was almost equally associated (35% vs 33%) with concomitant congenital and acquired coronary and valvular heart defects.

In the total group of patients (n = 49) with PHT, female gender accounted for (69%), unilateral fistulas was present in (76%) and mild to moderate PHT (75%) was predominant. RHC was performed in 88% of patients and in 12% Doppler echocardiography was used for estimation of the sPAP. Coronary vascular fistulas as a mode of termination were found in the overwhelming majority (76%) of patients. SL was performed in 61% of
patients with PHT.

In the present review of all 49 subjects, possible common features of CAFs associated with PHT were unilateral fistula (37/49 = 76%) originating from the left coronary artery (30/49 = 61%) with a vascular termination (76%) into the right heart side (45/49 = 92%). These findings have to be investigated in a future international survey or prospective study.

A significant difference was noted in the percentages of coronary-cameral fistulas between Asian (40%) and Caucasian (18%) groups of patients with PHT. There was no difference in associated cardiac defects, congenital or acquired, in both the Asian and Caucasian groups (33% and 35%, respectively).

Limitations of the study

Among the Asian population reported by Cheung et al.\(^{[35]}\) in 2001, among the 41 subjects, there were children included in their study. The time span for data collection spread from 1955 to 2014 due to period collection bias.

Publication bias, only subjects with abnormal findings are accepted for publication. Although the data were of high quality and were collected from the world literature, the results of this review are intended to be indicative and require cautious interpretation.

It is clear that more research and studies are warranted for the identification and registration of congenital CAFs associated with PHT; the cause seems to be more multi-factorial (gender, fistula origin and outflow) and dependent on the fistula characteristics itself. We are encouraged to initiate an international survey on CAFs (Euro-CAF.care).

In conclusion, among the whole population, 23% were found to have elevated PAP. In the Asian group of patients 14% demonstrated PHT compared to 34% among the Caucasian group. Among the patients (n = 49) with PHT, 69% were female. The majority of fistulas (76%) in patients (n = 49) with PHT were of CVFs type in contrast to CCFs who accounted for 24% of subjects. The likelihood for a CAF patient to develop PHT is presented when possessing the following features, with a Caucasian female having a fistula with a vascular mode of termination. The findings of this review need to be confirmed in a larger multicenter international registry, preferably with a longer follow-up.

Table 3 Mode of termination coronary-vascular fistulas vs coronary-cameral fistulas in the pulmonary hypertension (n = 49) and all reviewed (n = 211) subjects

Mode of termination	CVFs	CCFs	Mean age and range (yr)
Total n = 211	90/211 (43%)	121/211 (57%)	38.3 (26-67)
Asian 15/111 (14%)	9/15 (60%)	6/15 (40%)	39.7 (27-67)
Caucasian 34/100 (34%)	28/34 (82%)	6/34 (18%)	36.8 (26-60)

CCFs: Coronary-cameral fistulas; CVFs: Coronary-vascular fistulas.

Table 4 Possible complications of coronary artery fistulas

Complication	Features
Cardiovascular	Myocardial infarction, stroke, aneurysm, rupture
Infectious	Bacterial endocarditis, septic pulmonary and septic renal embolism
Valvular	Incompetence, dysfunction, perforation
Pericardial	Hemopericardium, pericardial effusion, tamponade
Myocardial	Congestive heart failure
Arrhythmic	Supraventricular arrhythmias, ventricular arrhythmias and sudden death

ACKNOWLEDGMENTS

With gratitude the author wishes to thank the librarians of Hospital Group Twente, Mrs. A. Geerdink and Mrs. L. Gerritsen for their assistance during the preparation of the manuscript.

COMMENTS

Background

Congenital coronary artery fistulas (CAFs) are uncommon anomalies. Most CAFs are small and hemodynamically inconsequential with a negligible shunt. However, some can be sizeable and lead to shunting of blood from the coronary circulation to low-pressure pulmonary vascular bed, resulting in pulmonary hypertension (PHT).

Research frontiers

CAFs may be associated with normal pulmonary artery pressure (PAP) in unilateral or bilateral fistulas, or may sometimes be accompanied with elevated PAP. Rarely, in octogenarians with bilateral CAFs, PAP may remain normal.

Innovations and breakthroughs

The likelihood for a CAF patient to develop PHT is presented when possessing the following features, with a Caucasian female having a fistula with a vascular mode of termination.

Applications

The findings of this research need to be confirmed in a larger multicenter international registry, preferably with a longer follow-up.

Peer-review

This paper is interesting review concerning association PAH and CAF. Therefore, this article should be published.

REFERENCES

1. Sharma UM, Aslam AF, Tak T. Diagnosis of coronary artery fistulas: clinical aspects and brief review of the literature. *Int J Angiol* 2013; 22: 189-192 [PMID: 24436610 DOI: 10.1055/s-0033-1349166]
2. Bishop JO, Mathur VS, Guinn GA. Letter: Congenital coronary artery fistula with myocardial infarction. *Chest* 1974; 65: 233-234 [PMID: 4810692 DOI: 10.1378/chest.65.2.233]
3. Brack MJ, Hubner PJ, Firmin RK. Successful operation on a coronary arteriovenous fistula in a 74 year old woman. *Br Heart J* 1991; 65: 107-108 [PMID: 1867943 DOI: 10.1136/hrt.65.2.107]
4. Bitar SR, Aguirre FV, McBride L, Munroe C, Kern MJ. Characterization of intra-arterial flow velocity within left coronary to pulmonary artery fistula. *Cathet Cardiovasc Diagn* 1997; 41: 206-212 [PMID: 9184298 DOI: 10.1002/(SICI)1097-0304(199706)41]
5 Dedichen H, Skalleberg L, Cappelen C. Congenital coronary artery fistula. Thorax 1966; 21: 121-128 [PMID: 5935838 DOI: 10.1136/thc.21.2.121]

6 Dorey AJ, Sullivan KL, Levin DC. Successful percutaneous closure of a complex coronary-to-pulmonary artery fistula using a detachable balloon: benefits of intra-procedural physiologic and angiographic assessment. Cathet Cardiovasc Diagn 1991; 23: 23-27 [PMID: 1863956 DOI: 10.1002/cc.1810230107]

7 Behera SK, Danon S, Levi DS, Moore JW. Transcatheter closure of coronary artery fistulae using the Amplatzer Duct Occluder. Catheter Cardiovasc Interv 2006; 68: 242-248 [PMID: 16819766 DOI: 10.1002/ccd.20811]

8 Abusaid GH, Hughes K, Khalife WI, Parto G, Gilani SA, Fujise K. Congenital coronary artery fistula presenting later in life. JCs Cases 2011; 4: e34-e46 [DOI: 10.1161/jccase.2011.05.008]

9 Van Dam DW, Noeyez L, Skotnicki SH, Lacquet LK. Multiple fistulas between coronary and pulmonary arteries. Eur J Cardiothorac Surg 1995; 9: 707-708 [PMID: 8703493 DOI: 10.1016/S1010-7940(95)0130-7]

10 Strunk BL, Hoshima GB, Shafon EP. Treatment of congenital coronary arteriovenous malformations with micro-particle embo-lization. Catheter Cardiovasc Diagn 1991; 22: 133-136 [PMID: 2009563 DOI: 10.1002/ccd.1810220214]

11 Baim DS, Kline H, Silverman JF. Bilateral coronary artery–pulmonary artery fistulae. Report of five cases and review of the literature. Circulation 1982; 65: 810-815 DOI: 10.1161/01.CIR.65.5.810

12 Ahmed J, Edelstein Y, Rose M, Lichstein E, Connolly MW. Coronary arteriovenous fistula with papillary muscle rupture. South Med J 2000; 93: 627-628 [PMID: 10881787 DOI: 10.1097/00033197-200006000-00021]

13 Cijan A, Zorc-Pleskovic R, Zorc M, Klokocovnik T. Local pulmonary malformation caused by bilateral coronary artery and bronchial arterial fistula to the left pulmonary artery in a patient with coronary artery disease. Tex Heart Ins J 2000; 27: 390-394 [PMID: 11198313]

14 Brown MA, Balzer D, Lasala J. Multiple coronary artery fistulae treated with a single Amplatzer vascular plug: check the back door when the front is locked. Catheter Cardiovasc Interv 2009; 73: 390-394 [PMID: 19133675 DOI: 10.1002/ccd.21860]

15 Phillips MB, Oken K.R. Embryology in the elderly: Bilateral coronary artery fistulae. Southern Med J 2005; 98: S45 [DOI: 10.1097/00033197-200501000-00121]

16 Barst RJ, McGoon M, Torbicki A, Sibton O, Krowka MJ, Olschewski H, Gaine S. Diagnosis and differential assessment of pulmonary arterial hypertension. J Am Coll Cardiol 2004; 43: 405-475 [PMID: 15194177 DOI: 10.1016/j.jacc.2004.02.032]

17 Fisher MR, Forfia PR, Chamera E, Houston-Harris T, Champion HC, Gogis RE, Corretti MC, Hassoun PM. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med 2009; 179: 615-621 [PMID: 19164700 DOI: 10.1164/rccm.200811-1610OC]

18 Arcasoy SM, Christie JD, Ferrari VA, Sutton MS, Zisman DA, Blumenthal JP, Pochettino A, Kotloff RM. Echocardiographic assessment of pulmonary hypertension in patients with advanced lung disease. Am J Respir Crit Care Med 2003; 167: 735-740 [PMID: 12480614 DOI: 10.1164/rccm.200311-1130CC]

19 Galí N, Hoepfer MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, Gomez-Sanchez MA, Jordeau G, Klepetko W, Optiz C, Peacock A, Rubin L, Zellweger M, Simonneau G. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 2009; 30: 2493-2537 [PMID: 19713419 DOI: 10.1093/eurheartj/ehp297]

20 Gaine SP, Rublin LJ. Primary pulmonary hypertension. Lancet 1998; 352: 719-725 [PMID: 9729004 DOI: 10.1016/S0140-6736(98)02111-4]
from: URL: http://rcjci.com/?page=article&article_id=9744

Godn M, Arakawa K, Yano H, Himeno H, Yamazaki I, Suzuki S, Masuda M. Congenital aortopulmonary artery fistulas combined with bilateral coronary artery fistulas. Ann Thorac Surg 2011; 92: 1524-1526 [PMID: 21958813 DOI: 10.1016/j.athoracsur.2011.04.046]

Huang HC, Liu CY, Lu TM, Hsu CP. Applying preoperative multidetector computed tomography to bilateral coronary artery fistulas. J Chin Med Assoc 2010; 73: 431-434 [PMID: 20728855 DOI: 10.1016/S1726-4001(10)70092-7]

Izumi K, Hisata Y, Hazam S. Surgical repair for a coronary-pulmonary artery fistula with a sacular aneurysm of the coronary artery. Ann Thorac Cardiovasc Surg 2009; 15: 194-197 [PMID: 19597390]

Noda Y, Matsuteru R, Yasuoka Y, Abe H, Adachi H, Hattori S, Araki R, Imanaka T, Kosugi M, Sasaki T. Noninvasive demonstration of dual coronary artery fistulas to main pulmonary artery with 64-slice multidetector-computed tomography: a case report. Cardiol Res Pract 2010; pii: 861068 [DOI: 10.20721/2010.861068]

Osawa H, Sakurada T, Sasaki J, Araki E. Successful surgical repair of a bilateral coronary-to-pulmonary artery fistula. Ann Thorac Cardiovasc Surg 2009; 15: 50-52 [PMID: 19262451]

Tseng WC, Chen YS, Chiu SN. Coronary artery fistula as major source of right lung circulation in a patient with isolated right pulmonary artery agenesis. Eur Heart J 2010; 31: 891 [PMID: 20008337 DOI: 10.1093/eurheartj/ehp559]

Alipourparsa S, Khahehsi I, Eslami V, Bozorgmehran M, Haybar H. Accidental left circumflex artery to right lung fistula in a suspected case of pulmonary hypertension. Case Rep Cardiol 2014; 2014: 427045 [PMID: 25148336 DOI: 10.1155/2014/427045]

Almamoni M, Tamim M. Giant coronary artery fistula. Asian Cardiovasc Thorac Ann 2014; 22: 595-597 [PMID: 24867037 DOI: 10.1111/1726-4901.12781]

Jiang Z, Chen H, Wang J. Right coronary artery fistula to left ventricle treated by transcatheter coil embolization: a case report and literature review. Int Med 2012; 51: 1351-1353 [PMID: 22687840 DOI: 10.2169/internalmedicine.51.6787]

Komatsu T, Katada Y, Sakai Y. Transbrachial coil embolization of a giant coronary artery fistula. J Invasive Cardiol 2012; 24: E159-E160 [PMID: 22663515]

Sayin MR, Akpinar I, Cetiner MA, Buyukates M, Demirtas AO, Yavuz N. Coronary artery fistula coexistent with bicuspid aortic valve stenosis. Kardiyol Dern Arast 2013; 16: 237-239 [DOI: 10.5578/kd.4444]

Tachibana M, Mukohara N, Hiramai R, Fujio H, Yumoto A, Watanuki Y, Hayashi A, Suminoe I, Koudani H. Double congenital fistulae with aneurysm diagnosed by combining imaging modalities. Acta Med Okayama 2013; 67: 305-309 [PMID: 24145730]

Wang H, Luo X, Wang W, Wang X, Yang C, Zeng C. Successful transcatheter patent ductus arteriosus occluder embolization of a congenital left coronary artery aneurysm and fistulas draining into the right atrium. Ann Thorac Cardiovasc Surg 2012; 18: 540-543 [PMID: 22673605 DOI: 10.5761/atcs.cri.11.01786]

Alizadeh Ghavidel A, Kyavvar O, Ojaghi Z, Mirsefahd Y. Huge arteriovenous fistula between a giant aneurismal right coronary artery and coronary sinus. Arch Iran Med 2012; 15: 113-114 [PMID: 22292585]

Davison PH, Mcrckeen BH, Mcilveen DJ. Congenital coronary arteriovenous aneurysm. Br Heart J 1955; 17: 569-572 [PMID: 13269618 DOI: 10.1136/hrt.17.4.569]

Gusali BM, Arcilla RA, Feil EH, Lynfield J, Bicoff JP, Luan LL. Congenital coronary arteriovenous fistulae. Clinical, phonocardiographic, angiographiccardiographic and hemodynamic studies in five patients. Pediatrics 1960; 25: 531-560 [PMID: 13826815]

Mcintosh HD, Mccracken BH, Mcilveen DJ. Preoperative evaluation of a continuous murmur in the chest. Arch Surg 1961; 82: 74-87 [DOI: 10.1001/archsurg.1961.01300070078011]

Neil C, Mounsey P. Auscultation in patent ductus arteriosus; with a description of two fistulae simulating patent ductus. Br Heart J
regurgitation in an octogenarian. *Int J Cardiol* 1993; 38: 96-97 [PMID: 8444509 DOI: 10.1016/0167-5273(93)90210-8]

93 Lemke F., Urbany B., Wehr G., Hellberg K. Anomalous coronary artery fistula with simultaneous drainage to the left atrium and the coronary sinus. *Eur J Cardiothorac Surg* 1997; 17: 793-795 [PMID: 9151059 DOI: 10.1016/S1010-7940(96)01137-2]

94 Olsen LA., Folke K., Kjaergard HK. Surgery of complex coronary arteriovenous fistula. *Scand Cardiovasc J* 1997; 31: 169-171 [PMID: 9264167 DOI: 10.3109/14017439709058089]

95 Boccalandro F., Awadalla H., Smalling RW. Percutaneous transcatheter coil embolization of two coronary fistulas originating from the left main ostium and left anterior descending artery. *Catheter Cardiovasc Interv* 2002; 57: 221-222 [PMID: 12357552 DOI: 10.1002/ccd.10280]

96 Burns KE., Ferguson KA., Spouse A., Brown JE. Massive congenital coronary arteriovenous malformation presenting with exertional dyspnea and desaturation in an adult: a case report and review of the literature. *Can J Cardiol* 2001; 17: 85-89 [PMID: 11173319]

97 Umeda E., Massey CV., Painter JA. Myocardial ischemia secondary to a large coronary-fistula-case report. *Angiology* 2002; 53: 353-357 [PMID: 12025925 DOI: 10.1177/00033197025306315]

98 Yang Y., Bartel T., Caspari G., Eggebrecht H., Baumgart D., Erbel R. Echocardiographic detection of coronary artery fistula into the pulmonary artery. *Eur J Echocardiogr* 2001; 2: 292-294 [PMID: 11888824]

99 Tousoulis D., Brilli S., Aggelli K., Tentolouris C., Stefanidis C., Toutouzas K., Fougoudaki A., Toutouzas P. Left main coronary artery to left atrial fistula causing mild pulmonary hypertension. *Circulation* 2001; 103: 2028-2029 [PMID: 11306534 DOI: 10.1161/01.CIR.103.15.208]

100 Tomaszewski A., Brzozowski W. Right coronary artery-to-coronary sinus fistula diagnosed by echocardiography-A case report. *Kardiologia Polska* 2002; 56: 83-86

101 Ascoop AK., Buds W. Percutaneous closure of a congenital coronary artery fistula complicated by an acute myocardial infarction. *Acta Cardiol* 2004; 59: 67-69 [PMID: 15303137 DOI: 10.2143/AC.59.1.2005161]

102 Dahiya R., Copeland J., Butman SM. Myocardial ischemia and congestive heart failure from a left main to coronary sinus fistula. *Cardiol Rev* 2004; 12: 59-62 [PMID: 14667267 DOI: 10.1097/01.ccd.000090982.82247.a8]

103 Goldberg SL., Makkar R., Duckwiler G. New strategies in the percutaneous management of coronary artery fistulae: A case report. *Catheter Cardiovasc Interv* 2004; 61: 227-232 [PMID: 14755818 DOI: 10.1002/ccd.10758]

104 Makaryus AN., Orlando J., Katz S. Anomalous origin of the left coronary artery from the right coronary artery: a rare case of single coronary artery originating from the right sinus of Valsalva in a man with suspected coronary artery disease. *J Invasive Cardiol* 2005; 17: 56-58 [PMID: 15640543]

105 Malezska A., Kleikamp G., Minani K., Peterschroeder A., Körfer R. Giant coronary arteriovenous fistula. A case report and review of the literature. *Z Kardiol* 2005; 94: 38-43 [PMID: 15668829 DOI: 10.1007/s00392-005-0161-1]

106 Bonello L., Com O., Gaubert JY., Sbraggi P., Paganelli F. Covered stent for closure of symptomatic plexus-like coronary fistula. *Int J Cardiol* 2006; 109: 408-410 [PMID: 15982761 DOI: 10.1016/j.ijcard.2005.05.041]

107 Koda M., Hari T., Neda M., Kato S., Murawaki Y., Hori Y., Kawasaki H., Hirayama C., Taketa K. Lectin-reactive patterns of the coronary sinus. *Acta Cardiol* 1997; 52: 793-799 [PMID: 9151059 DOI: 10.1016/S1010-7940(96)01137-2]

108 Kalanagos A., Karaca S., Cikirikcioglu M., Vala D., Didier D. Anomalous circumflex coronary artery with fistulous connection to the coronary sinus. *J Thorac Cardiovasc Surg* 2005; 130: 580-581 [PMID: 16077439 DOI: 10.1016/j.jtcvs.2005.02.045]

109 Onorati F., Mastorroberto P., Bilotta M., Cristodoro L., Esposito A., Pezzo F., Renzulli A. Surgical treatment of coronary-to-pulmonary fistula: how and when? *Heart Vessels* 2006; 21: 321-324 [DOI: 10.1007/s00380-005-0161-1]
October 26, 2016 | Volume 8 | Issue 10

Patsouras D, Tsiakas P, Korantzopoulos P, Siogas K. Dual coronary artery fistula in a patient with aortic valve stenosis. Int J Cardiol 2006; 109: 397-399 [PMID: 16520126 DOI: 10.1016/j.ijcard.2005.03.022]

Portela A, Veiga BL, Bastos R, Sousa JP, Costa I, Paiva I. [Large coronary-pulmonary artery fistulae: percutaneous embolization with microcoils and disposable balloons]. Arq Bras Cardiol 2005; 84: 270-272 [PMID: 15868005 DOI: 10.1590/S0066-782X2005000300015]

Rangasety UC, Ahmad M. Giant coronary artery fistula with aneurysm and multiple openings: a two-dimensional echocardiographic evaluation. Ecocardiographia 2006; 23: 611-613 [PMID: 16911339 DOI: 10.1111/j.1540-8175.2006.00270.x]

Abdelmonem SS, Mookadam F, Moustafa SE, Holmes DR. Coronary artery fistula with anomalous coronary origin: a case report. J Am Soc Echocardiogr 2007; 20: 333.e1-333.e4 [PMID: 17336762 DOI: 10.1016/j.echo.2006.09.012]

Androulakis A, Chrysohou C, Barbetseas J, Brili S, Kakavas 2008, Chrysohoou C, Barbetseas J, Brili S, Kakavas 2008, Cebada FS, Ibañes EG, Sanz-Ruíz R, Elízaga-Providencio A, Koomen EM, Bos JS. Gender-related differences in coronary artery disease. Heart Dis 2015; 7: 99-101 [PMID: 26294314 DOI: 10.4236/3jchji.2015.94001]

Koomen EM, Bos JS. Gender-related differences in coronary artery disease. Heart Dis 2015; 7: 99-101 [PMID: 26294314 DOI: 10.4236/3jchji.2015.94001]

Raju MG, Goyal SK, Punnam SR, Shah DO, Smith GF, Abela GS. Coronary artery fistula: a series case with review of the literature. J Cardiol 2009; 53: 467-472 [PMID: 19477393 DOI: 10.1016/j.jcjo.2008.09.009]

Said SA, Schroeder-Tanka JM, Mulder BJ. Female gender and the risk of rupture of congenital aneurysmal fistula in adults. Congenit Heart Dis 2008; 3: 63-68 [PMID: 18373572 DOI: 10.1111/j.1474-8003.2007.00144.x]

Blaschke F, Baur A, Roser M, Attanasio P, Ocelicel C, Haverkamp W, Boldt LH. Absent proximal right coronary artery with a fistula to the coronary sinus. J Invasive Cardiol 2015; 27: 450-452 [PMID: 26268451 DOI: 10.2506/jic.2015.27.5.450]

Said SA, el Gamal MI. Congenital coronary arteriovenous fistula: spontaneous rupture and cardiac tamponade. Ann Thorac Surg 1996; 62: 1521-1523 [PMID: 8893601 DOI: 10.1016/0003-4975(96)00575-7]

Liu M, Hou Q, Guo X, Wang S, Ma Z. Dual-source CT coronary angiographic evaluation of coronary artery fistulas. Exp Ther Med 2014; 7: 1155-1159 [PMID: 24940403 DOI: 10.3892/etm.2014.1602]

Ozeki S, Utsunomiya T, Kishi T, Tokushima T, Tsuji S, Matsuo S, Natsuki M, Ito T, Yano K. Coronary arteriovenous fistula presenting as chronic pericardial effusion. Circ J 2002; 66: 779-782 [PMID: 12197607 DOI: 10.1253/circj.66.779]

Kiskó AS, Denarova L, Kneec J, Verhe M, Hudakova A, Jakubikova
M, Kishko N. An unusual presentation of coronary artery fistula in athlete-Case report. *Clinical Medicine and Diagnostics* 2012; 2: 33-36 [DOI: 10.5923.j.cmd.20120204.03]

145 **Lau G.** Sudden death arising from a congenital coronary artery fistula. *Forensic Sci Int* 1995; 73: 125-130 [PMID: 7797185 DOI: 10.1016/0379-0738(95)01721-T]

146 **McNamara JJ, Gross RE.** Congenital coronary artery fistula.

Said SAM. CAFs and PHT

147 **Makaryus AN, Kort S, Rosman D, Vatsia S, Mangion JR.** Successful surgical repair of a giant left main coronary artery aneurysm with arteriovenous fistula draining into a persistent left superior vena cava and coronary sinus: role of intraoperative transesophageal echocardiography. *J Am Soc Echocardiogr* 2003; 16: 1322-1325 [PMID: 14652614 DOI: 10.1067/j.echo.2003.08.007]

P- Reviewer: Cebi N, Kettering K, Peteiro J
S- Editor: Kong JX
L- Editor: W.
E- Editor: Wu HL
