Integrative tumour mutation burden with CD39 and PD-L1 for the prediction of response to PD-L1 blockade and adjuvant chemotherapy in muscle-invasive bladder cancer patients

Chunnan Liu1,8, Zhaopei Liu1,8, Kaifeng Jin2,8, Han Zeng3,8, Fei Shao4, Yuan Chang1, Yiwei Wang5, Le Xu6, Zewei Wang3,8, Yu Zhu1,8 and Weijuan Zhang7,8

© The Author(s) 2022

BACKGROUND: CD39, a rate-limiting enzyme to convert extracellular ATP (eATP) to adenosine, has been reported to be a key modulator of immune response, but its correlation with therapeutic sensitivity remains obscure. We conducted this study to determine whether the integration of CD39 and traditional biomarkers could improve the prediction of responsiveness to PD-L1 blockade and platinum-based chemotherapy.

METHODS: We retrospectively enrolled a total of 760 patients from IMvigor210 trial, TCGA database and Zhongshan Hospital in this study. We constructed the CPT scoring system based on CD39, PD-L1 and tumour mutation burden (TMB) and validated its efficacy in predicting therapeutic responsiveness in MIBC patients. Kaplan–Meier survival and Cox regression analyses were applied to assess clinical outcomes of patients.

RESULTS: The CPT scoring system could predict the response to PD-L1 blockade and platinum-based chemotherapy. The CPT score was positively correlated with APOBEC mutational signature and SNV neoantigens enrichment, antigen presentation, and TCR signalling. High CPT score also indicated the inflamed immune phenotype and basal/squamous molecular subtype.

CONCLUSIONS: CD39 expression is closely correlated with the immunogenic contexture of MIBC. Integrating CD39 with PD-L1 and TMB could stratify the sensitivity of patients with MIBC to PD-L1 blockade and platinum-based chemotherapy.

INTRODUCTION

Muscle-invasive bladder cancer (MIBC) is one of the most lethal urinal malignancies, with a 5-year survival rate of <15% in patients who do not receive treatment [1]. Cisplatin-based adjuvant chemotherapy (ACT) has been the main strategy of systematic management of MIBC over the past decades [2]. Immune checkpoint inhibitors (ICIs) have revolutionised the therapeutic landscape with advanced development [3]. However, only a minority of patients could benefit from these treatments [4]. Thus, there is an urgent need to identify patients who will present a satisfying therapeutic response and to further achieve better clinical outcomes.

PD-L1 has been demonstrated to be an important biomarker for patient selection for ICIs, of which modest sensitivity is attracting increasing attention [5]. In addition, tumour mutation burden (TMB) has also been reported to be a useful biomarker for ICIs across cancer types such as melanoma and non-small cell lung cancer since it was observed that somatic mutations were key drivers in the generation of tumour-specific neoantigens [6]. However, clinical trials such as IMvigor210 and JAVELIN Bladder 100 trials indicated that single PD-L1 or single TMB could not ideally predict the responsiveness and they still missed large subgroups of patients who could potentially benefit from the therapy [7, 8]. Additionally, there has been a paucity of research regarding the combination of both biomarkers.

CD39, also called ectonucleoside triphosphate diphosphohydrolase 1, is one of the rate-limiting enzymes to convert extracellular ATP (eATP) to adenosine [9]. Within the tumour microenvironment (TME), the enrichment of eATP released from stressed or dying tumour cells could stimulate cell inflammation activity, including NLRP3 inflammasome activation, thus triggering the activation of T cells [10]. With a negative feedback mechanism, CD39 was upregulated under the stimulation of T cell receptor (TCR) to suppress activated immune response [11]. Thus, CD39 is a
biomarker of tumour-reactive T cells and a potential indicator for an inflamed TME, which makes it a possible therapeutic biomarker in MIBC [12, 13]. Extensive research has shown that biomarkers characterising an inflamed TME could function as complementary predictors of therapeutic response independent of PD-L1 and TMB [14, 15]. Therefore, we cautiously hypothesised that the responsiveness of the systemic treatment in MIBC patients could be better predicted with the combination of CD39, PD-L1 and TMB. In the current study, we proposed a “CPT score”, which was derived by incorporating CD39 expression, PD-L1 expression and TMB level to evaluate the responsiveness of MIBC patients. It is hoped that our results could provide new insights into the field of immunotherapy and references for clinicians to make patient-tailored treatment decisions.

MATERIALS AND METHODS

Study population

This study included three independent cohorts. The first cohort enrolled 348 patients from the IMvigor210 trial, a large single-arm phase II study investigating atezolizumab in metastatic urothelial carcinoma (mUC) [7]. All data from the IMvigor210 trial was downloaded from http://research-pub.gene.com/IMvigor210CoreBiologies through the R package IMvigor210CoreBiologies. A total of 114 patients were excluded: 50 patients without overall response data and 64 patients without evaluation of TMB level. These patients all had histologically or cytologically documented locally advanced or metastatic urothelial carcinoma (including metastasis from renal pelvis, ureter, urinary bladder, or urethra).

The second cohort contained 412 patients from the Cancer Genome Atlas (TCGA) database. Characteristics of the patients and mRNA sequencing data were downloaded from http://www.cbioportal.org/ in July 2021. Twenty-one patients were excluded: 4 patients with non-muscle invasive bladder cancer (NMIBC), 7 patients without survival or sequencing data and 10 patients receiving neoadjuvant chemotherapy. Finally, 391 eligible patients were included for further survival and bioinformatics analysis. Among them, 335 patients were classified as pure urothelial histology. Fifty-one patients had urothelial carcinoma with variant histology, including 41 squamous, 4 small cell/neuroendocrine, 2 micro-papillary, and 4 plasmacytoid. 5 additional tumours were included: 3 pure squamous cell bladder carcinomas, 1 squamous cell carcinoma of non-bladder origin, and 1 bladder adenocarcinoma.

The Zhongshan Hospital (ZSHS) cohort of Fudan University recruited 215 bladder cancer patients treated with radical cystectomy (RC) from 2002 to 2014. Patients with neoadjuvant chemotherapy history were excluded from this cohort. A total of 80 patients were eliminated according to the following exclusion criteria: 60 patients with NMIBC, 13 patients with nonurothelial carcinoma and 7 patients whose specimens detached from the tissue microarray during the process of immunohistochemistry staining. Eventually, the ZSHS cohort was comprised of 135 MIBC patients for further analysis. The pathological type of all these patients was pure urothelial carcinoma. Among them, 65 patients received adjuvant cisplatin-based chemotherapy for at least one therapeutic cycle. The follow-up protocol was instructed by EAU guidelines for MIBC. Overall survival (OS) was calculated as the time from the date of RC to the date of death from all causes, or to the last follow-up. This study was approved by the Clinical Research Ethics Committee of Zhongshan Hospital.

The flow chart of IMvigor210, TCGA and ZSHS cohorts was presented in Supplementary Fig. 1. Baseline characteristics of the three cohorts were summarised respectively in Supplementary Tables 1–3.

Genomic analysis and variant assessment

TMB was identified as the number of exonic, nonsynonymous single-nucleotide variants (SNV), and indel mutations per megabase of genome examined (mut/Mb) in IMvigor210 and TCGA cohorts. TMB in the TCGA cohort was calculated using results from whole-exome sequencing (WES), which was performed on the Illumina HiSeq platform. TMB in the IMvigor210 trial was obtained by targeted large-panel sequencing named FoundationOne® panel (FMOne). In this study, TMB ≥10 mut/Mb was defined as high TMB [6]. We estimated the contributions of mutational signatures (COSMIC v2; https://cancer.sanger.ac.uk/cosmic/signatures_v2) for each sample in TCGA cohort via “whichSignatures” function of R package deconstructSigns (https://bioconductor.org/packages/musictak/). The data of SNV neoantigens and Indel neoantigens of TCGA cohort was downloaded from previous studies [16].

RNA-seq data and processing

The RNA-seq data of IMvigor210 and TCGA cohorts were obtained as Fragments Per Kilobase of transcript per Million mapped reads (FPKM) and normalised through the formula log2(FPKM + 1) before analyses. The R package BLCAsubtyping (https://github.com/cit-bioinfo/BLCAsubtyping) was used to derive the molecular subtype information of each patient. The gene sets of antigen processing and presentation and T cell receptor signalling pathway were derived from KEGG database (https://www.kegg.jp/). Gene members of IFNα response, IFNγ response and TGFβ signalling pathway were derived from Molecular Signatures Database (MSigDB, http://www.gsea-msigdb.org/). The single sample gene set enrichment analysis (ssGSEA) algorithms were employed to quantify the gene sets involved [17]. The signatures presented in our study (cytotoxic lymphocytes signature, TLS signature, terminally exhausted signature, progenitor exhausted signature, T cell-inflamed GEP) were defined from previous studies and scored as the average expression of related genes [18–21]. The TCR and BCR diversity scores (Shannon Entropy and Richness) of TCGA cohort were downloaded from previous studies [16].

Immunohistochemistry

Immunohistochemistry (IHC) staining was performed on formalin-fixed, paraffin-embedded tissue microarray (TMA) of ZSHS cohort as described previously [22]. In summary, four groups of double staining were performed: CD68 and HLA-DR to detect M1 macrophages, CD11c and HLA-DR to detect DCs, CD4 and T-bet to detect Th1 cells, CD4 and GATA3 to detect TH2 cells. For the rest of immune cells and immune markers including CD3, CD8+ T cells (CD3, CD8+ T cells (CD8)), macrophages (CD68), M2 macrophages (M1C1, Tregs (FOXP3)), B cells (CD19), NK cells (CD56), mast cells (mast cell tryptase), neutrophils (CD66b) Th17 cells (IL17A) and PD-L1, we performed single IHC staining. This information was included in Supplementary Table 4. Tissue microarray analyses (TMAs) are from the ZSHS cohort. The existence of intratumoural tertiary lymphoid structures (TLSs) was assessed via both H&E and CD3/CD20 double staining using a previously published scale [23]. Tumours with at least 1 intratumoural TLS were defined as TLS positive (TLS+).

In our study, two pathologists (Dr. Lingli Chen and Dr. Yunyi Kong) from different medical institutes who were blinded to the clinicopathological data scored all samples separately. The mean count of their evaluation was adopted. Variations in the enumeration, exceeding 0.15 IHC score or 5 cells, were re-evaluated separately by both pathologists to reach a consensus.

Construction of the CPT score

In IMvigor210 Trial, PD-L1 expression on tumour-infiltrating immune cells (IC) is a proven biomarker of immunotherapy sensitivity. PD-L1 IC was evaluated by PD-L1 antibody SP142 using the VENTANA platform. Scoring criteria designated tumours as IC0, IC1, or IC2/3 (PD-L1 expression on <1%; ≥1% and <5%; ≥5% of IC, respectively). Since the data of PD-L1 expression on tumour-infiltrating immune cells (IC) was not available in TCGA database, we defined the top 40% as high PD-L1 mRNA expression with reference to IMvigor210 cohort (IC2/+ accounts for 38.5%) [7]. The cut-off point of PD-L1 in TCGA cohort was 0.7605 FPKM. Consistently, the top 40% was defined as high CD39 expression in the three cohorts involved. The cut-off points of CD39 in IMvigor210 and TCGA cohorts were 7.077 and 3.010 (FPKM), and the cut-off point of CD39+ cells in ZSHS cohort was 16 cells/HPF. The CPT score was calculated by integrating three factors (CD39 expression, PD-L1 expression and TMB), stratified patients into four groups. Score one point for each criterion, including high CD39 expression, PD-L1 expression on ≥5% of tumour-infiltrating immune cells (IC2+) or high PD-L1 expression and TMB ≥10 mut/Mb.

Statistical analyses

The overall survival (OS) was determined by Kaplan–Meier method, which was evaluated by log-rank tests. Univariate and Multivariate Cox regression models were applied to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Patients’ baseline characteristics and disease factors were presented as descriptive statistics. Results were shown as median and interquartile range (IQR). Mann–Whitney U-test, Kruskal–Wallis test, Chi-square test, Fisher’s exact test and Spearman correlation analysis were used in this study. The statistical analyses were performed via IBM SPSS.
Statistics 25.0 and R4.0.0. Two-sided $P < 0.05$ was regarded as statistically significant.

RESULTS
The CPT score identifies patients responsive to PD-L1 blockade in MIBC
In the phase II IMvigor210 trial, atezolizumab showed clinical benefit in mUC patients with high PD-L1 expression ($\geq5\%$, IC2+) and high TMB [7]. However, 65.5% of IC2+ patients and 58.7% of patients with high TMB could not benefit from atezolizumab (Supplementary Fig. 2A, B). Among the key molecules of the ATP-adenosine pathway, we found that only CD39 expression was significantly correlated with the OS of patients treated with atezolizumab, evaluated with the univariate and multivariate Cox models (Supplementary Fig. 2C). Compared with CD39low subgroup, CD39high subgroup was linked to an inferior OS in IMvigor210 cohort (Fig. 1a, $P = 0.033$). Besides, CD39 expression, PD-L1 expression and TMB all served as independent factors after adjustment of gender, tobacco use history, metastatic site and ECOG PS score, to predict OS of patients from IMvigor210 cohort observed with the multivariate analysis (Fig. 1b and Supplementary Table 5). We further assessed whether CD39 synergising with PD-L1 or TMB could predict response to atezolizumab. Pairwise combination of CD39, PD-L1 and TMB showed improved but unsatisfactory performance in stratification of patients (Supplementary Fig. 2D–F). We then stratified patients into 4 groups based on a “CPT score”, which was constructed by incorporating CD39, PD-L1 and TMB (CPT score = 0, 1, 2, and 3). Remarkably, patients with higher CPT scores showed superior OS after treatment with atezolizumab (Fig. 1c, $P < 0.001$). The AUCs of CPT score for 12-month and 24-month OS were 0.649 and 0.674 respectively, which showed superiority over CD39, PD-L1 or TMB alone (Supplementary Fig. 3). The fractions of patients who achieved complete response (CR) or partial response (PR) were 62.5%, 33.8%, 21.3%, and 14.0% in CPT score = 3, 2, 1, and 0 subgroups, respectively (Fig. 1d, $P < 0.001$).
The CPT score predicts chemotherapeutic response in MIBC

Cisplatin-based chemotherapy remains the standard systemic treatment for MIBC patients [4]. To explore whether the CPT score was associated with responsiveness to platinum-based chemotherapy, we compared the prognosis of patients stratified by CD39 expression, PD-L1 expression and TMB separately or in combination. Representative images of tumours with low or high CD39 expression, PD-L1 expression and TMB separately or in combination are shown in Supplementary Fig. 4A. CD39high subgroup had significantly inferior OS in ZSHS cohort (Supplementary Fig. 4B, P = 0.007). However, the OS of this subgroup could be improved after treatment with adjuvant chemotherapy (ACT) (Fig. 2a). The same result was found in TCGA cohort (Supplementary Fig. 5A). Intriguingly, we also observed that platinum-based chemotherapy could significantly improve the OS of patients with high PD-L1 expression or high TMB in TCGA cohort (Supplementary Fig. 5B, C and Fig. 2b). We also applied “CPT score” in TCGA cohort and found that, notably, patients with the highest CPT score showed the best OS after treatment with platinum-based chemotherapy. While in the group of patients who did not receive platinum-based chemotherapy, there was no statistically significant difference in OS among subgroups with different CPT scores (Fig. 2c). Consistently, patients with a CPT score of 3 manifested the highest response rate (83.3%) to platinum-based chemotherapy (Fig. 2d, P < 0.01).

The CPT score correlates with increased neoantigen burden in MIBC

Patients with high CPT scores were characterised by dominant APOBEC mutational signatures in TCGA cohort (Fig. 3a). A recent study argued that APOBEC3B-mediated mutations resulted in more neoepitopes in tumour cell vaccines [24]. Consistently, we observed that SVV neoantigens were significantly enriched in patients with higher CPT scores (Fig. 3a). Increased number of copy number segments was observed in patients with the highest CPT score (CPT score = 3) (Supplementary Fig. 6). Furthermore, single-sample gene set enrichment analysis (ssGSEA) revealed that patients with higher CPT scores were characterised by higher level of antigen processing and presentation signature (Fig. 3b, P < 0.001). The effective activation of anti-tumour response also relied on the recognition of neoantigens by TCR and BCR repertoires [16]. Compared with patients with low CPT scores, patients with high CPT scores demonstrated a significant increase in TCR and BCR diversity, and downstream T cell receptor signalling pathway (Supplementary Fig. 7A, B and Fig. 3c, d).

The CPT score represents immunogenic microenvironment in MIBC

Previous studies have reported that CD39 was a marker for exhausted T cells, but CD39+ T cells displayed effector functions with a great quantity of activation genes expression [12, 25]. We observed that CD39 expression was positively associated with the infiltration of CD8+ T cells (Supplementary Fig. 8A and Fig. 4a). Intriguingly, the correlation between CD39 expression and progenitor-depleted T cells signature is stronger than that between terminally depleted T cells signature (Supplementary Fig. 8B, C). Moreover, CD39 expression was significantly linked with inflamed immune contexture (Fig. 4b). TLS+ patients were characterised with higher CD39+ cells infiltration (Fig. 4c).
Together these results suggest that CD39high subgroup exhibited inflamed TME with functional CD8+ T cell infiltration. MIBC patients with high CPT score mainly demonstrated luminal-infiltrated and basal/squamous molecular subtype in IMvigor210 cohort, which were sensitive to immunotherapy [26]. By integrating CPT score and TCGA subtype, we identified better immunotherapeutic efficacy only in patient with luminal-infiltrated and basal/squamous subtypes (Supplementary Fig. 9). High CPT score also indicated the inflamed phenotype, displaying enriched cytotoxic lymphocytes signature and TLS signature (Fig. 4d). We also found that high CPT score indicated an immune-enriched tumour microenvironment in both IMvigor210 and TCGA cohorts (Supplementary Fig. 10). Consistently, patients with high CPT score had a more favourable anti-tumour response with elevated IFNα and IFNγ response (Fig. 4d). Similar results were verified in TCGA cohort (Supplementary Fig. 11).

DISCUSSION

To optimise patient stratification and therapeutic strategies, multiple biomarkers have been identified to predict immunotherapeutic response, including markers indicative of immune infiltration such as T cell-infused gene-expression profile (GEP), and those related to tumour-specific neoantigens such as TMB [8, 21, 27]. In the phase Ib KEYNOTE-028 trial, each of T cell-infused GEP, PD-L1 and TMB could moderate response to pembrolizumab individually with only moderate correlation between them [15]. As a key modulator of immune response, the role of CD39 in shaping TME and patient response to systemic therapies has not been fully understood in MIBC so far. In line with previous study, we reported CD39 as an indicator for inflammation, MMR mismatch repair, SNV single-nucleotide variant, TCR T cell antigen receptor.
on neoantigen-specific. We established that the success of cancer immunotherapies depends on the existence of tumour-reactive T cells [12]. The correlation between therapeutic benefit and neoantigen-specific T cell reactivity [36]. We observed higher response rates and longer OS in patients with high level of CD39, which is a marker of tumour-reactive T cells [12]. The correlation between therapeutic benefit and CD39 was also reported in hepatocellular carcinoma and non-small cell lung cancer [37, 38]. Furthermore, considering CD39 expression might represent the existence of tumour-reactive T cells, which was the premise of reactivation, a combination of CD39, PD-L1 and TMB could better stratify patients who received ICI s and ACT. Consistent with the above results, we observed that higher CPT scores were correlated with enriched APOBEC mutational signatures and neoantigens, enhanced antigen presentation and inflamed TME, which have been reported to be indicative of improved immunotherapeutic efficacy [15, 39, 40].

Recently, three antibodies targeting CD39 have entered clinical trials (NCT03884556, NCT04261075, NCT04336098) based on the fundamental insights of downstream immunosuppressive adenosine [41]. Blocking the activity of CD39 can be a promising immunotherapeutic strategy by reducing the synthesis of adenosine and decreasing the fast hydrolysis of pro-inflammatory ATP. In addition, the combination of platinum-based chemotherapy and anti-PD-1/PD-L1 agents has become a therapeutic strategy in the future.

There were several limitations in the present study. Our study was retrospective and further confirmation of our findings within the framework of larger and multi-centred clinical trials was required. The thresholds for patient grouping were not bioanalytically validated, which might impact the reproducibility and required further identification of the thresholds. In ZSHS cohort, we did not perform genome sequencing for each patient after surgery since the excessive storage time of the tissue restrict us from further assessing TMB level in these patients at present. The assessment methods of PD-L1 expression and TMB in IMvigor210 and TCGA cohorts were not consistent, which asked for further verification of their correlation.

Fig. 4 The CPT score represents immunogenic microenvironment in MIBC. a Non-parametric two-sided Spearman correlation analysis was performed to figure out the correlations between CD39+ cells infiltration and CD8+ cells infiltration in ZSHS cohort. b Association between CD39+ cells infiltration and immune phenotypes in ZSHS cohort. Kruskal–Wallis test was performed (**P < 0.05). c Association between CD39+ cells infiltration and tertiary lymphoid structures in ZSHS cohort. Mann–Whitney U-test was performed. d Heatmap depicting the correlation of CPT score with immune indicators in IMvigor210 cohort. Chi-square test was performed for TCGA subtype and immune phenotype (**P < 0.01; ***P < 0.001). Kruskal–Wallis test was performed for signatures and pathway scores (**P < 0.01). TLS tertiary lymphoid structure.
In summary, the present study demonstrated that CD39 predicted clinical efficacy of PD-L1 blockade or cisplatin-based adjuvant chemotherapy independently in MIBC. A composite of CD39, PD-L1 and TMB showed improved performance in predicting response and could serve as a candidate predictive biomarker for patient-tailored treatment decisions.

DATA AVAILABILITY
All data generated that are relevant to the results presented here are included in this article. Other data that were not relevant for the results are available from the corresponding author WZ upon reasonable request.

REFERENCES
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.
2. Alfred Witjes J, Lebret T, Compérat EM, Cowan NC, De Santis M, Bruins HM, et al. Updated 2016 EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur Urol. 2017;71:462–75.
3. Lenis AT, Lec PM, Chamie K, Mshis MD. Bladder cancer: a review. JAMA. 2020;324:1980–91.
4. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA expression profiling of cisplatin treatment in bladder cancer identifies the CD4(+) tumor-specific T-cell population in human cancer. Cancer Immunol Res. 2015;3:537–46.
5. Schoenfeld AJ, Rizvi H, Bandlamudi C, Sauter JL, Travis WD, Rekhtman N, et al. Clinical and molecular correlates of PD-L1 expression in patients with lung adenocarcinomas. Ann Oncol. 2020;31:599–608.
6. Sha D, Jin Z, Boudjeddi J, Kluck K, Stenzinger A, Sinicrope FA. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 2020;10:1808–25.
7. Mariah Hassan S, Tutley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544–8.
8. Powles T, Sridhar SS, Sridhar SS, Bellmunt J, Mu XJS, Ching KA, et al. Avelumab maintenance in advanced urothelial carcinoma: results of the phase 3 JAVELIN Bladder 101 trial. Nat Med. 2021;27:2200–11.
9. Chiarella AM, Ryu YK, Manji GA, Rastogi AK. Extracellular ATP and adenosine in cancer pathogenesis and treatment. Trends Cancer. 2021;7:731–50.
10. Di Vingilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E. Extracellular ATP and P2X purinergic signalling in the tumour microenvironment. Nat Rev Cancer. 2018;18:601–18.
11. Boison D, Yegutkin GG. Adenosine metabolism: emerging concepts for cancer therapy. Cancer Cell. 2019;36:582–96.
12. Kortekaas KE, Santegts SJ, Sturm G, Esham I, van Egmond SM, Finetello F, et al. CD39 identifies the CD4(+) tumor-specific T-cell population in human cancer. Cancer Immunol Res. 2020;8:1311–21.
13. Wang JB, Li P, Liu X, Zheng QL, Ma YB, Zhao YJ, et al. An immune checkpoint score system for prognostic evaluation and adjuvant chemotherapy selection in gastric cancer. Nat Commun. 2020;11:6352.
14. McGrail DJ, Pileg PG, Rashid NU, Voorwerk L, Slagter M, Kok M, et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol. 2021;32:661–72.
15. Ott PA, Bang Y-J, Pittau-Saul PA, Razak ARA, Bennouna J, Soria JC, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab 220 cancers: KEYNOTE-028. J Clin Oncol. 2018;37:318–27.
16. Thorsson V, Gibbs RL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The immune landscape of cancer. Immunity. 2018;48:812.e14–30.e14.
17. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TKB1. Nature. 2009;462:108–12.
18. Bagav A, Kotlov N, Nomie K, Svekolkin V, Gafurov A, Isseva O, et al. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell. 2021;39:845.e7–65.e7.
19. Calderaro J, Petitprez F, Becht E, Laurent A, Hirsch TZ, Rousseau B, et al. Tumor-tumoral lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma. J Hepatol. 2019;70:58–65.
20. Bi K, He MX, Bakouzy K, Kanodia A, Napolitano S, Wu J, et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell. 2021;39:649.e5–61.e5.
21. Ayers M, Luncoford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127:2930–40.
FUNDING
This study was funded by grants from National Natural Science Foundation of China (81871306, 81872082, 82002670, 82103408), Shanghai Municipal Natural Science Foundation (19ZR1431800, 22ZR1413400), Shanghai Sailing Program (21YF1407000) and Fudan University Shanghai Cancer Center for Outstanding Youth Scholars Foundation (YJYQ201802). All these study sponsors have no roles in the study design, in the collection, analysis and interpretation of data.

COMPETING INTERESTS
The authors declare no competing interests.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE
This study was approved by the Clinical Research Ethics Committee of Zhongshan Hospital and Fudan University (No. B2015-030). Written informed consent was obtained from each patient.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41416-022-01943-y.

Correspondence and requests for materials should be addressed to Zewei Wang, Yu Zhu or Weijuan Zhang.