Asparagine, a critical limiting metabolite during glutamine starvation

Jie Jiang\(^a\), Natalya N Pavlova\(^b\), and Ji Zhang \(^a\)

\(^a\)Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; \(^b\)Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA

ABSTRACT
A challenge of targeting glutamine metabolism in cancer is that tumor cells develop various strategies to adapt to glutamine limitation. We found that asparagine plays a critical role in supporting protein synthesis during glutamine starvation, highlighting a possible approach to optimize the therapeutic efficacy of targeting glutamine metabolism in cancer.

Glutamine functions as a versatile donor of nitrogen and carbon atoms to support biosynthetic and bioenergetic reactions in proliferating cells.\(^1\) However, glutamine levels in tumor environment are frequently found to be depleted under physiological conditions.\(^2\) Thus, how tumor cells adapt to glutamine depletion becomes an important topic, particularly in term of developing novel therapeutic strategies that target glutamine uptake/metabolism. Along this line, we previously reported that exogenous supply of asparagine, a nonessential amino acid, is sufficient to rescue cell survival in tumor cells that undergo apoptosis during glutamine withdrawal.\(^3\) Furthermore, this effect of rescue does not require restoring the tricarboxylic acid (TCA) cycle anaplerosis or other nonessential amino acids, both of which are routinely maintained via glutamine catabolism.\(^3\) Since a chemical inhibitor of glutamine metabolism has entered clinical trials in cancer patients,\(^1\) understanding the mechanism by which asparagine mediates cellular adaptation to glutamine limitation will be crucial to interpret the therapeutic responses.

In our recent study, we reported that the effect of asparagine to rescue glutamine deficiency is a generalizable phenomenon across a broad panel of tumor cell lines. In some cell lines, asparagine can even rescue proliferation defect during glutamine depletion.\(^4\) Indeed, when exogenous glutamine is depleted, most mammalian cell lines are competent of synthesizing glutamine \textit{de novo} to support the biosynthesis of nucleotides and nonessential amino acids, with the exception of asparagine. As a result, the reason that asparagine rescues cell proliferation during glutamine starvation is only due to the ability of asparagine to support protein synthesis (Fig. 1).\(^4\)

Unlike unicellular organisms, all tested mammalian cell lines lack cytosolic asparaginase activity to catabolize asparagine to fuel biosynthetic pathways. Interestingly, restoration of asparaginase activity in mammalian cells by using yeast or zebrafish orthologues can fully restore the capacity of mammalian cells to use asparagine as a biosynthetic substrate to support the TCA cycle anaplerosis, nucleotide biosynthesis, and even the synthesis of glutamine itself. However, under physiological levels of environmental asparagine, usually below 0.1 mM as it has been shown in human plasma, expression of zebrafish asparaginase (\(z\)ASPG) suppresses cell growth and survival in glutamine-deficient medium \textit{in vitro} and compromises xenograft tumor growth \textit{in vivo}, which results from the depletion of intracellular asparagine. These results suggest that asparagine is a critical limiting metabolite during glutamine restriction, and lack of asparaginase activity may represent an evolutionary strategy that mammals use to adapt to pathophysiological variations of extracellular glutamine.

Glutamine metabolism has been extensively studied recently due to its versatile usage to support biosynthesis and bioenergetics beyond its role as an amino acid for protein synthesis.\(^2\) Pioneer works showed that glutamine catabolism to glutamate and consequently to \(\alpha\)-ketoglutarate is essential for glutamine-dependent cell growth and survival.\(^5,6\) This is because \(\alpha\)-ketoglutarate is a TCA cycle intermediate and glutamine-derived \(\alpha\)-ketoglutarate fuels the TCA cycle to replenish the precursors that are consumed during various biosynthesis. Our results challenge this traditional paradigm by showing that asparagine can rescue glutamine-depletion-induced cell death or growth arrest without restoring the TCA cycle anaplerosis. Indeed,
Figure 1. Key role for asparagine in protein synthesis during glutamine starvation. Most mammalian cells can maintain the TCA cycle anaplerosis and sustain glutamine biosynthesis de novo when environmental glutamine is restricted. However, asparagine biosynthesis is abolished under this condition, rendering cells to rely on exogenous supply of asparagine to support protein synthesis. Gln: glutamine; Asp: aspartate; Asn: asparagine; Glc: glucose; NEAA: nonessential amino acid; TCA: tricarboxylic acid.

Therapeutic Outlook

An inhibitor of glutaminase that converts glutamine to glutamate has entered clinical trials in cancer patients. Our results suggest that tumor cells’ response to glutaminase inhibitor may be dictated by environmental levels of asparagine. Along this line, bacteria-derived L-asparaginase has been used for decades to treat childhood lymphoblastic leukemia through depleting the circulating asparagine. Thus, combination of the glutaminase inhibitor with L-asparaginase treatment may be a potential strategy to maximize the therapeutic efficacy. Furthermore, glutamine biosynthesis should also be explored as a potential therapeutic target, as our results indicate its indispensable role for tumor cell growth when exogenous glutamine is limited.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

ORCID

Ji Zhang (http://orcid.org/0000-0002-9274-1767)

References

1. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16:619–34. doi:10.1038/nrc2016.71. PMID:27492215.
2. Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J. 2017;36:1302–15. doi:10.15252/embj.201696151. PMID:28420743.
3. Zhang J, Fan J, Venneti S, Cross JR, Takagi T, Bhinder B, Djaballah H, Kanai M, Cheng EH, Judkins AR, et al. Asparaginase plays a critical role in regulating cellular adaptation to glutamine depletion. Mol Cell. 2014;56:205–18. doi:10.1016/j.molcel.2014.08.018. PMID:25242145.
4. Pavlova NN, Hui S, Ghergurovich JM, Fan J, Intlekofer AM, White RM, Rabinowitz JD, Thompson CB, Zhang J. As Extracellular Glutamate Levels Decline, Asparagine Becomes an Essential Amino Acid. Cell Metab. 2018;27:428–38. doi:10.1016/j.cell.2017.12.006. PMID:29337136.
5. Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol. 2007;178:93–105. doi:10.1083/jcb.200703099. PMID:17606868.
6. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008;105:18782–7. doi:10.1073/pnas.0810199105. PMID:19033189.
7. Birsoy, K, Wang T, Chen WW, Freinkman E, Abu-Ramadja M, Sabatini DM. An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Asparagine Synthesis. Cell. 2015;162:540–51. doi:10.1016/j.cell.2015.07.016. PMID:26232224.
8. Sullivan LB, Gui D, Hosios AM, Bush LN, Freinkman E, Vander Heiden MG. Supporting Asparagine Biosynthesis Is an Essential Function of Respiration in Proliferating Cells. Cell. 2015;162:552–63. doi:10.1016/j.cell.2015.07.017. PMID:26232225.
9. Gross MI, Dem SD, Dennison JB, Chen L, Chernov-Rogan T, Goyal B, James JR, Laidig GJ, Lewis ER, Li J, et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther. 2014;13:890–901. doi:10.1158/1535-7163.MCT-13-0870. PMID:24523301.
10. Avramis VI. Asparaginases: biochemical pharmacology and modes of drug resistance. Anticancer Res. 2012;32:2423–37. PMID:22753699.