Superconducting state in (Eu$_{1-x}$Ca$_x$)RbFe$_4$As$_4$ with 1144-type Structure

K. Kawashima1,2, S. Ishida2, K. Oka2, H. Kito2, N. Takeshita2, H. Fujihisa2, Y. Gotoh2, K. Kihou1, H. Eisaki2, Y. Yoshida2, and A. Iyo2

1IMRA Material R&D Co., Ltd., Kariya, Aichi 448-0032, Japan
2National Institute of Advanced Industrial Science and technology (AIST), Tsukukba, Ibaraki 305-8568, Japan
E-mail: kenji.kawashima@aisin.co.jp

Abstract. We report the Ca substitution effect of the Fe-based superconductor EuRbFe$_4$As$_4$ with 1144-type structure (crystal system: tetragonal, space group: P4/mmm (No. 123)), in order to elucidate the relationship between the superconductivity and the magnetic order. The lattice constant systematically changed with the Ca concentration x. By Ca-substitution, the magnetic order is suppressed, while T_c is almost unchanged. The results indicate that the superconductivity of EuRbFe$_4$As$_4$ is not sensitive to the magnetic order.

1. Introduction

Since the superconductivity in La(O,F)FeAs has discovered11, variety of Fe-based superconductors have been reported. Recently discovered $AeAFe_4As_4$ ($Ae = Ca, Sr, Ba, Eu, A = K, Rb, Cs$), which is so-called 1144-type compounds, is one of the Fe-based superconductors$^{2-5}$. $AeAFe_4As_4$ has a tetragonal structure (space group: P4/mmm (No. 123)) that consists of alternate stacking of two inequivalent ThCr$_2$Si$_2$ structures, namely, $AeFe_2As_2$ and AFe_2As_2 (inset of Fig. 1(a)) and shows the superconductivity with superconducting transition temperature: $T_c = 31 \sim 36$ K. The T_c values of 1144 compounds are closed to that of 122-type superconductors, Ae_1,AFe_2As_2 ($Ae = Ca, Sr, Ba, Eu, A = Na, K$)$^{7-9}$. However, the $Ae : A$ ratio in the 1144-type crystal structure is fixed to be 1 : 1, because the Ae and the A ions do not occupy crystallographically equivalent sites in the 1144-type crystal structure. In the case of $EuAFe_4As_4$ ($A = Rb, Cs$), besides the bulk superconductivity with $T_c = 36$ K, the magnetic transition takes place at $T_m = \sim 15$ K, indicating the coexistence of the superconductivity and the magnetic order. The magnetic order comes from the localized spin on Eu$^{2+}$ ions10. The magnetic transition was only confirmed in the magnetic susceptibility data. In the case of the related 122-type compound, $EuFe_2As_2$, it is known that the antiferromagnetic order plays an important role11.

In this paper, we investigate the physical properties of the Ca-substituted samples of (Eu$_{1-x}$Ca$_x$)RbFe$_4$As$_4$ to clarify the competition between the superconductivity and the magnetic order in the 1144 system.

Published under licence by IOP Publishing Ltd
2. Experimental details
Polycrystalline samples of Eu_{1-x}Ca_{x}RbFe_{2}As_{4} (x = 0.0, 0.25, 0.5, 0.75, 1.0) were synthesized by a conventional solid state reaction using the stainless steel (SUS) pipe and cap method as described in Ref. 7. Details of the synthesis condition are given in Ref. 2. A powder x-ray diffraction (PXRD) pattern was measured at room temperature using CuKα radiation to evaluate the composition dependence of the lattice parameters. Intensity data were collected over a 2θ range from 5 to 80° at 0.01° step width. Magnetic susceptibility measurements were performed under a magnetic field H of 10 Oe using a magnetic-property measurement system (MPMS) (Quantum Design, MPMS-XL7). Data were collected during warming after zero-field cooling (ZFC) and then during field cooling (FC).

3. Results and discussions
Figure 1(a) shows the PXRD pattern of the Eu_{0.5}Ca_{0.5}RbFe_{2}As_{4} sample. The main peaks can be indexed by employing a primitive tetragonal structure with space group P4/mmm (No. 123), indicating that Eu_{0.5}Ca_{0.5}RbFe_{2}As_{4} possesses the 1144-type crystal structure. There are extra reflections due to 122-type RbFe_{2}As_{4} and (Eu,Ca)Fe_{2}As_{4} impurity phases. Similar characteristic diffraction patterns were also observed for other synthesized samples, ensuring that the samples have the 1144-type crystal structure. The calculated lattice constants a and c are plotted in Fig. 1(b), which decrease linearly with increasing x, as expected from the Vegard’s law. No structural phase transition is recognized by substituting Ca for Eu.

![Figure 1(a): PXRD pattern of Eu_{0.5}Ca_{0.5}RbFe_{2}As_{4}](image)

Fig. 1 (a) Powder X-ray diffraction pattern of Eu_{0.5}Ca_{0.5}RbFe_{2}As_{4}. Open and filled triangles show the impurity phases of RbFe_{2}As_{4} and (Eu,Ca)Fe_{2}As_{4}, respectively. Inset shows the crystal structure of AcFe_{2}As_{4} (Program VESTA was used). (b) Ca concentration x dependence of the a- and c-axis lattice constants of Eu_{1-x}Ca_{x}RbFe_{2}As_{4}.

Figure 2(a) shows the temperature dependence of the magnetic susceptibility χ of Eu_{1-x}Ca_{x}RbFe_{2}As_{4}. The magnetic susceptibility data of all samples exhibits a large Meissner diamagnetic signal at approximately 36 K in both ZFC and ZC data, indicating the occurrence of bulk superconductivity. Because Tc of the RbFe_{2}As_{4} and (Eu,Ca)Fe_{2}As_{4} impurity phase is below 2.6 K under ambient pressure, these impurity phases do not contribute for Tc as high as 36 K. The kink behaviour in the magnetic susceptibility is observed below Tc at T = 15K for x = 0.0, T = 12K for x = 0.25, and T = 7K for x...
=0.5, respectively. These features are the signatures of the magnetic phase transition and the transition temperature, \(T_m \), decreases with increasing Ca concentration \(x \) (Fig. 2(b)). For the \(x = 0.25 \) sample, the magnetic susceptibility slightly increases near the lowest temperature. Observed \(T_m \) values of Eu\(_{1-x}\)Ca\(_x\)RbFe\(_4\)As\(_4\) are different from those of Eu\(_{1-x}\)Ca\(_x\)Fe\(_2\)As\(_2\) (\(x \leq 0.5 \))\(^{12,15} \), indicating that the behaviour is not due to the Eu\(_{1-x}\)Ca\(_x\)Fe\(_2\)As\(_2\) impurity phase.

Fig. 2 (a) Magnetic susceptibility \(\chi \) of Eu\(_{1-x}\)Ca\(_x\)RbFe\(_4\)As\(_4\) as a function of temperature \(T \). Enlarged view of the F.C. data and near \(T_c \) are shown in Fig. 2(b) and Fig. 2(c), respectively.

Fig. 3 \(T_c \) and \(T_m \) of Eu\(_{1-x}\)Ca\(_x\)RbFe\(_4\)As\(_4\) as a function of Ca concentration \(x \). \(T_c \) and \(T_m \) were defined from the \(\chi \)-\(T \) data of Fig. 2(a).

Figure 3 shows \(T_c \) and \(T_m \) as a function of \(x \). Although \(T_m \) monotonously decreases with increasing \(x \), \(T_c \) is almost unchanged. This behaviour is in contrast to the case of Eu\(_{1-x}\)Ca\(_x\)Fe\(_2\)As\(_2\), in which pressure-induced superconductivity shows up at lower pressures in the Ca-substituted samples. It is noted that the \(c \)-axis length of EuFe\(_2\)As\(_2\) sublattice in EuRbFe\(_4\)As\(_4\) is larger compared to EuFe\(_2\)As\(_2\)\(^{41} \). The longer distance between the Eu layer and the FeAs-layer in EuRbFe\(_4\)As\(_4\) would weaken the influence of the Eu\(^{2+} \) magnetic order to the superconductivity compared to EuFe\(_2\)As\(_2\).
4. Summary

We synthesized the polycrystalline sample of Eu$_{1-x}$Ca$_x$RbFe$_4$As$_4$ and characterized their properties. The lattice constants show the linear Ca concentration x dependence. Superconductivity was confirmed at around 36 K in all synthesized samples. The magnetic order shows up below 15 K for EuRbFe$_4$As$_4$, which decreases with increasing x. On the other hand, T_c does not change with x. These behaviors suggest that the magnetic order in the Eu-layer have little influence on the superconductivity in the 1144 system.

ACKNOWLEDGEMENT

This work was partially supported by JSPS KAKENHI Grant Number JP16H06439.

References

[1] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, “Iron-Based Layered Superconductor La[O$_{1-	ext{Fe}_x}$]$\text{Fe}_4\text{As}_4$ ($x = 0.05 - 0.12$) with $T_c = 26$ K,” J. Am. Chem. Soc. 130 3296 (2008).

[2] A. Iyo, K. Kawashima, T. Kinjo, T. Nishio, S. Ishida, H. Fujihisa, Y. Gotoh, K. Kihou, H. Eisaki, and Y. Yoshida, “New-Structure-Type Fe-Based Superconductors: CaFe$_2$As$_4$ (A = K, Rb, Cs) and SrFe$_2$As$_4$ (A = Rb, Cs),” J. Am. Chem. Soc. 138 3410 (2016).

[3] K. Kawashima, T. Kinjo, T. Nishio, S. Ishida, H. Fujihisa, Y. Gotoh, K. Kihou, H. Eisaki, Y. Yoshida, and A. Iyo, “Superconductivity in Fe-Based Compound EuFe$_2$As$_4$ (A = Rb and Cs)” J. Phys. Soc. Jpn. 85 064710 (2016).

[4] Y. Liu, Y.-B. Liu, Z.-T. Tang, H. Jiang, Z.-C. Wang, A. Ablimit, W.-H. Jiao, Q. Tao, C.-M. Feng, Z.-A. Xu, and G.-H. Cao, “Superconductivity and ferromagnetism in hole-doped RbEuFe$_4$As$_4$” Phys. Rev. B 93 214503 (2016).

[5] Y. Liu, Y.-B. Liu, Q. Chen, Z.-T. Tang, W.-H. Jiao, Q. Tao, Z.-A. Xu, G.-H. Cao, “A new ferromagnetic superconductor: CsEuFe$_4$As$_4$,” Sci. Bull. 61(15) 1213 (2016).

[6] K. Zhao, Q. Q. Liu, X. C. Wang, Z. Deng, Y. X. Lv, J. L. Zhu, F. Y. Li and C. Q. Jin, “Superconductivity above 33 K in (Ca$_{1-x}$Na$_x$)$_2$Fe$_2$As$_2$$\text{As}_2$$\text{As}_2$,” J. Phys.: Condens. Matter 22 222203 (2010).

[7] N. Shinohara, K. Tokiwa, H. Fujihisa, Y. Gotoh, S. Ishida, K. Kihou, C. H. Lee, H. Eisaki, Y. Yoshida, and A. Iyo, “Synthesis, structure, and phase diagram of (Sr$_{1-x}$Na$_x$)$_2$Fe$_2$As$_2$ superconductors,” Supercond. Sci. Technol. 28 062001 (2015).

[8] S. Avci, O. Chmaissem, D. Y. Chung, S. Rosenkranz, E. A. Goremychkin, J. P. Castellan, I. S. Todorov, J. A. Schlueter, H. Claus, A. Daoud-Adaline, D. D. Khalyavin, M. G. Kanatzidis, and R. Osborn, “Phase diagram of Ba$_{1-x}$K$_x$Fe$_2$As$_2$,” Phys. Rev. B 85 184507 (2012).

[9] Y. Qi, L. Wang, Z. Gao, X. Zhang, D. Cao, W. Cao, C. Wang, C. Wang, and Y. Ma, “Superconductivity and upper fields in Na-doped iron arsenides Eu$_{1+x}$Na$_{2-x}$Fe$_2$As$_2$,” New J. Phys. 14 033011 (2012).

[10] J. Herrero-Martin, V. Scagnoli, C. Mazzoli, Y. Su, R. Mittal, Y. Xiao, T. Brueckel, N. Kumar, S. K. Dhar, A. Thamizhavel, and L. Paolasini, “Magnetic structure of EuFe$_2$As$_2$ as determined by resonant x-ray scattering,” Phys. Rev. B 80 134411 (2009).

[11] T. Terashima, M. Kimata, H. Satsukawa, A. Harada, K. Hazama, S. UJI, H. S. Sszuki, T. Matsumoto, and K. Murata, “EuFe$_2$As$_2$ under High Pressure: An Antiferromagnetic Bulk Superconductor,” J. Phys. Soc. Jpn. 78(8) 083701 (2009).

[12] A. Mitsuda, T. Matoba, F. Ishikawa, Y. Yamada, and H. Wada, “Pressure-Induced Superconductivity in Eu$_{0.5}$Ca$_{0.45}$Fe$_2$As$_2$: Wide Zero-Resistivity Region Due to Suppression of Eu Magnetic Order and Chemical Pressure,” J. Phys. Soc. Jpn. 79(7) 073704 (2010).

[13] K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Cryst. 44 1272 (2011).
[14] Z. Bukowski, S. Weyeneth, R. Puzniak, J. Karpinski, and B. Batlogg, “Bulk superconductivity at 2.6 K in undoped RbFe$_2$As$_2$,” Physica C 470 S328 (2010).

[15] A. Mitsuda, S. Seike, T. Matoba, H. Wada, F. Ishikawa and Y. Yamada, “Competition between Fe-based superconductivity and antiferromagnetism of Eu$^{2+}$ in Eu$_{1-x}$Ca$_x$Fe$_2$As$_2$,” J. Phys.: Confer. Seri. 273 012100 (2011).