Quantum Relational Databases

Paul Cockshott

January 26, 2018

Following the early suggestion by Deutsch [6], there has been considerable discussion in the literature of the possibility of building quantum computing machines. This has moved from basic discussion about the concept of such machines through studies of the mathematical properties of logic gates that might be adequate to build them [1, 10, 8, 6], to discussions of practical algorithms that might be run on them [15]. Despite doubts that have been expressed about the physical practicability of quantum computers due to the problem of decoherence [14, 13], there seems good reason to hope that these are soluble [9] in light of the development of quantum error correcting codes [2, 1]. Increasing numbers of practical suggestions for the technological implementation of quantum computers have been advanced ranging from the use of cold trapped ions [3] to the use of NMR technology [12].

Although conventional computers using semi-conductors rely upon quantum effects in their underlying technology, their design principles are classical. They have a definite state vector and they evolve deterministically between states in this space. Thus the state of a classical computer with an \(n \) bit store is defined by a position in an \(n \) dimensional binary co-ordinate state space.

In contrast the state of a quantum computer with a store made up of \(n \) quantum two state observables, or qubits, is given by a point in \(2^n \) dimensional Hilbert space. Each dimension of this space corresponds to one of the \(2^n \) possible values that \(n \) classical bits can assume. These possible bit patterns constitute basis vectors for the Hilbert space, and, associated with each such basis vector there is a complex valued amplitude. At any instant the quantum computer is in a linear superposition of all of its possible bit patterns. It is this ability to exist in multiple states at once that is exploited by algorithms such as Shor’s method of prime factorisation [15].

If we abstract from the difficult technical problem of long term coherent storage of qubit vectors, this ability of the store to exist in multiple simultaneous states may be relevant to database compression.

In the well established relational model [4] data is stored in relations or tables. Given sets \(S_1, S_2, \ldots, S_n \), (not necessarily distinct), \(R \) is a relation on these \(n \) sets if it is a set of \(n \)-tuples each of which has its first element from \(S_1 \), its second element from \(S_2 \), etc. The set \(S_i \) is known as the \(i \)th domain of \(R \). Each
row in a database table represents a tuple of the relation. The tuples are conventionally represented as a vector of bits divided into fields $F_1, F_2, ..., F_n$ where F_i contains a symbol, drawn from some binary encoded alphabet, corresponding to an element of S_i. If a single row can be encoded in c bits and we have r rows, then the whole database occupies $c.r$ bits.

In a quantum system a row could, using the same encoding, be represented in c qubits. However, use of superposition of states would allow a single vector of c qubits to represent all r rows, each with an appropriate amplitude. It is evident that were we to make a classical measurement on such a superposed tuple, we would only be able to read out one of the r rows of the database. The measurement would cause the wave function of the database to collapse onto one of its tuples.

The restriction of only being able to read out one tuple from the database can be evaded by using controled not gates as a means of copying the database before measuring it. By sending the qubits of the tuple through the control input of a controled not gate, and qubits prepared in state $|0>$ through the other as shown in Fig. 1, one can create an ‘oracle’ that acts as a stochastic generator of tuples from the database. By tailoring the amplitudes of the different tuples in the database one could tune the probabilities with which they would be read.

Current uses of databases fall into two broad areas, transaction processing and management information. In the case of the former, the data are bearers of important social relations such as relative indebtedness, and, in consequence, it is of the utmost importance that the integrity and detail of the data be preserved. Were this not the case, there would be a danger that alterations of the data would result in changes in peoples’ social status.

In the latter case, the data are used by organisations to make decisions about their future courses of action. Here, the information presented relates not to individual people, or individual economic transactions, but to collections of people and events. One is concerned not with what an individual student gained in her A Levels, but with the mean results in English A levels by region of the country, or the average sales of dishwashers over the last year by month.
and by model. The ultimate source, however, for the summary information so presented, are the original transactional records demanded by the relations in question.

There is however, an inherent mismatch between the transactional sources and the summary uses of management information. The sources are voluminous and accurate, the uses compact and, although this is not always appreciated, inherently approximate. This approximation arises from two causes. Firstly, the results presented: totals and averages, are arrived at by means of summation, an inherently information destroying operation. Secondly once one abstracts from their individuality, individual commercial transactions can be seen as stochastic events. The ability to directly model this could be an attractive feature of quantum databases.

In order to prepare tuples in an appropriate superposition one needs a primitive operation that will combine the state of two qubits into one. An operator capable of doing this would be the MIX gate shown in Fig. 2. This takes two qubits and A, and B. Bit A passes out unaffected as A'. The second output is an equal mixture of the two input states $B' = \frac{1}{\sqrt{2}} |A > + \frac{1}{\sqrt{2}} |B >$. The MIX gate can be represented as the matrix:

$$MIX = \begin{pmatrix}
1 & 0 & 0 & 0 \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 0 \\
0 & 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
0 & 0 & 0 & 1
\end{pmatrix}$$

(1)

It is obviously possible to combine 2^N tuples into a superposition by a MIX network of depth N.

The basic operations permitted on a relation database are selection, projection and join. Selection forms a new relation B out of all tuples in relation A that meet some predicate. A particular case of selection uses equality against the primary key of the relation, where the primary key is a column which, on its own, uniquely
identifies a tuple. If primary key selection is performed as a classical operation after quantum measurement one would need to perform at least $\frac{N^2}{2}$ operations to have a 50% chance of encountering the tuple. If, instead of being performed after classical measurement, the operation is performed in the quantum domain, Grover [13] has shown that primary key selection can be performed in $O(\sqrt{N})$ steps. His technique involves repeatedly inverting the phase of the selected word (tuple) and then inverting the phases of all tuples about their average. The amplitude of the selected tuple then goes approximately through the sequence

$$\frac{1}{\sqrt{N}}, \frac{-1}{\sqrt{N}}, \frac{2}{\sqrt{N}}, \frac{-2}{\sqrt{N}}, \frac{3}{\sqrt{N}}, \ldots$$

converging to an amplitude of 1 after \sqrt{N} cycles.

For the more general case of a selection which yields a set rather than a singleton tuple, Grover’s algorithm will concentrate the amplitude in R_p, the subset of the relation R that meets predicate p in $O(\sqrt{f})$ steps, where f is the fraction of tuples meeting the selection criterion.

For primary key selection the quantum search procedure is inferior to the use of a classical relational database with an index on the primary key, an operation that costs $O(\log N)$. For generalised search operations that do not lend themselves to indexing, it is superior.

Relational database projection can be achieved trivially in the quantum database by simply discarding all qubits other than those coding for the domains onto which the relation is projected. Relational projection here translates directly into a projection onto the appropriate sub-manifold of Hilbert space.

Let r, s be sets. Let

$$p = r(\oplus \approx) s$$

where

$$p = r(\oplus \approx) s$$

(2)
\(\otimes\) is the join functional,

\(\oplus\) is some dyadic combining operator of type \((t_r \otimes t_s \rightarrow t_p)\), where \(t_r\) is the type of the tuples in relation \(r\) etc. In contemporary relational databases this usually involves some combination of permutation and projection on the domains of the two relations, but analytically the combining operator can be any function.

\(\approx\) is some similarity operator of type \((t_r \otimes t_s \rightarrow 0..1)\), two tuples \(v, u\) are said to be similar if \((v \approx u) > 0\). Contemporary relational database systems usually support \textit{equijoin} where the similarity operator tests fields in the first and second tuple for equality, but again, the analytical case is more general and any comparison operation is allowed. In conventional databases the result of comparison is boolean valued, but that is a special case arising from the fact that a given tuple either is or is not present in the relation. In a quantum relation the tuples are present with a complex amplitude, which, on measurement, determines the probability of finding the tuple. One can thus see two levels of generalisation of the similarity operation:

1. the result of the similarity operator is treated as a real valued classical operator such that its quantum realisation is an output in the superposed state \((\sqrt{i \approx j})|1\rangle + (\sqrt{1 - (i \approx j)})|0\rangle\);
2. as above but allowing the imaginary component of the amplitudes to vary.

then we can say that \(p\) contains an element corresponding to every pair of elements in \(x, y\) that are similar.

\[\forall i \in r, \forall j \in s |i \approx j, \exists k \in p\] \hspace{1cm} (3)

each such \(k = i \oplus j\) is the result of applying the combining operator to the pairs of similar elements.

Let us define the conditional similarity \(C_{ab}\) of two quantum relations \(a, b\) to be:

\[C_{ab} = \sum_{i \in a} \sum_{j \in b} (i \approx j) \times P_a(i) \times P_b(j)\] \hspace{1cm} (4)

Where \(P_x(y)\) is the probability of tuple \(y\) in relation \(x\). This will be a number in the range \(0..1\). We can use it to define the probabilities associated with elements of a joined set. Thus in (3) and (5) we have

\[P_p(k) = \frac{\sum_{i, j | k = (i \oplus j)} (i \approx j) \times P_a(i) \times P_b(j)}{C_{rs}}\] \hspace{1cm} (5)

Note that
• the probabilities of the elements sum to unity: $\sum_{a \in p} P_p(a) = 1$,
• equation (3) generalises equation (2).

The generalised join operation can be performed as shown in Fig. 3. Its complexity is dominated by the Grover’s Algorithm network used to boost the amplitude of the similar joined components, whose complexity will be $O(\frac{1}{\sqrt{C_{rs}}})$. This contrasts with the complexity of generalised join on a classical computer of $O(\#r \times \#s)$ where $\#s$ is the cardinality of relation s. If we consider the worst case where the joined relation contains a single tuple, and $C_{rs} = \frac{1}{\#r \times \#s}$, then the quantum computation takes the square root of the number of steps of the classical one. Where the conditional similarity is higher, the complexity advantage of the quantum computation is higher.

In the restricted case of equijoin using a primary key field of relation s, the classical complexity is $O(\#r \times \log \#s)$. Only when the relation s is much larger than the relation r and C_{rs} tends to zero, does this fall below the complexity of the quantum computation.

The approach given by Grover can be generalised to set an upper complexity limit to the basic operations of relational databases on a quantum computer. Except in special cases where indices can be used on a classical machine, the quantum upper complexity limit is lower than the classical one.

References

[1] Calderbank, A.R., Rains, E. M., Shor, P. W., Sloan, N. J. A., (1997) Quantum Error Correction and Orthogonal Geometry, Physical Review Letters, 78, 405.

[2] B. Cipra, (1996) Error-Correcting Code Keeps Quantum Computers on Track, Science, 272, 199.

[3] Cirac, J. I., & Zoller, P. (1995). Quantum computations with cold trapped ions. Physical Review Letters, 74, 4091-4094.

[4] Codd, E. F., A Relational Model of Data for Large Shared Data Banks, Communications of the ACM, Vol. 13, No. 6, June 1970, pp. 377-387.

[5] Chuang, I. L., R. Laflamme, P.W. Shor, W. H. Zurek, (1995) Quantum Computers, Factoring and Decoherence, Science, 270, 1633-1635.

[6] Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. London A, 400, 97-117.
[7] Deutsch, D. (1989). Quantum computational networks. *Proc. R. Soc. Lond.*, A425, 73-90.

[8] Barenco, A., Deutsch, D., & Ekert, A. (1995). Conditional quantum dynamics and logic gates. *Physical Review Letters*, 74, 4083-4086.

[9] DiVincenzo, D. P. (1995). Quantum computation. *Science*, 270, 255-261.

[10] Feynman, R. P. (1986). Quantum mechanical computers. *Foundations of Physics*, 16, 507-531.

[11] E. Fredkin and T. Toffoli,(1982) *Int. J. of Theor. Physics 21*, 219.

[12] Gershenfeld, N. A., Chuang, I. L., Bulk Spin-Resonance Quantum Computation, *Science*, 275, 350-355.

[13] Grover, L. K.,(1997) Quantum mechanics helps in searching for a needle in a haystack, *Phys. Rev. Letters*, 78, 325-328.

[14] Landauer, R. (1995). Is quantum mechanically coherent computation useful? In Feng, D. H., & Hu, B.-L. (Eds.), *Proc. of the Drexel-4 Symposium on Quantum Nonintegrability: Quantum Classical Correspondence*. (International Press, Boston, 1995).

[15] Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. In Goldwasser, S. (Ed.), *Proc. of the 35th Symposium on Foundations of Computer Science*, pp. 124-134. IEEE Press.

[16] Sleator, T., & Weinfurter, H. (1995). Realizable universal quantum logic gates. *Physical Review Letters*, 74, 4087-4090.