Palaeoflora of Kamenica (Pranjani Basin, western Serbia)

ZORICA LAZAREVIĆ1, LJUBICA MILOVANOVIĆ, JELENA MILIVOJEVIĆ1 & IVANA VASILJEVIĆ2

Abstract. Palaeofloras of the Paleogene in Serbia are relatively rare, especially in comparison with floras from Neogene sediments. Most Paleogene phytosociations from the territory of Serbia existed in a dry and warm climate. The youngest Paleogene phytosociation originates from the Pranjani Basin (Western Serbia), locality Kamenica. The age of this palaeoflora is determined as Late Oligocene. This fossil plant assemblage is different from other Paleogene phytosociations. The palaeoflora from Kamenica is characterized with leaf imprints larger than in other Paleogene fossil floras. Furthermore, it differs in taxonomical composition. The prevailing forms are conifers and representatives of broad-leaved evergreen forests. In other Paleogene phytosociations, elements of broad-leaved evergreen forests are extremely rare. The dominating elements in the palaeoflora of Kamenica are the conifers, especially Glyptostrobus, Pinus, Sequoia and Tetraclinis. The representatives of the broad-leaved evergreen forests are Laurus, Magnolia, "Quercus", etc.

Key words: Macroflora, Late Oligocene, Pranjani Basin, Kamenica

Апстракт. Палеогене флоре у Србији су релативно ретке, посебно у поређењу са неогенским флорама. Већина палеогенских фитоасоцијаја са територије Србије је егзистовала у сувим и топлим климатима. Најмлађа палеогенска фитоасоцијација је флора Каменице (Пранжански басен, западна Србија). Старост палеофлоре Каменице је одређена као млађе олигоценска. Састав ове фосилне флоре се разликује од осталих палеогенских фитоасоцијација. Палеофлору Каменице карактеришу лисни отисци већих димензија него у другим флорама палеогена. Такође, флора Каменице се разликује и по таксономском саставу. У овој палеофитоасоцијацији преовлађују четинари и елементи широколисне вечнозелене вегетације. У другим палеогенским флорама елементи широколисно-вечнозелене вегетације су изузетно ретки.

У палеофитоасоцијацији Пранжанског басена доминирају конифери, посебно Glyptostrobus, Pinus, Sequoia и Tetraclinis. Представници широколисне вечнозелене вегетације су заступљени родовима Laurus, Magnolia, "Quercus" и др.

Кључне речи: макрофлора, млађи олигоцен, Пранжански басен, Каменица

1 University of Belgrade – Faculty of Mining and Geology, Department of Paleontology, Kamenička 6, 11000 Belgrade, Serbia. E-mails: zorica.lazarevic@rgf.bg.ac.rs; jelena.milivojevic@rgf.bg.ac.rs
2 University of Belgrade – Faculty of Mining and Geology, Department of Geophysics, Đušina 7, 11000 Belgrade, Serbia. E-mail: ivana.vasiljevic@rgf.bg.ac.rs
Introduction – geological setting

The Pranjani Basin is part of the West Morava Graben (also known as the Čačak-Kraljevo Basin).

Located on the northwestern border of the Čačak-Kraljevo Basin, the Pranjani Basin covers an area of 45 km² and is elongated in an east-west direction (Fig. 1). On the southeast it is limited by the slopes of Maljen and Suvobor, while the north side is framed by peridotit-serpentine massif. (EREJIA et al., 1977).

According to the changes of lithological composition it is possible to divide the Pranjani Basin into three horizons:

The oldest horizon is located in the western part of the basin (the village of Kamenica) and it consists of well cemented conglomerates and breccias lying directly over the peridotite-serpentine rock. Above them is a sequence of alternating sandstones, conglomerates and marlstones. Well preserved remains of fossil plants and fish have been found in these sediments. The second horizon is a “multicoloured series”, of a depth of about 100 m. There is no observed direct contact with the layers of the older horizon. This horizon is composed of sandstones and sands with thin layers of conglomerates, dolomitic limestones and shales as well as one intercalation of tuffits. The third horizon consists of marls and shales (EREJIA et al., 1977).

The fossil fish *Smerdis minutus* (BLAINVILLE) (ANDELKOVIĆ, 1989) was found in the first horizon’s marls. This finding confirms the Oligocene age of the sediments. The remains of the fossil plants, which are the subject of this paper, originate from the same sediments.

Based on fossil fish finding and comparison with other similar Early Miocene floras, the deposits of the first horizon probably correspond to the upper parts of the Late Oligocene-Early Miocene.

The Zapadna Morava Graben, also known as the Čačak-Kraljevo Basin, is the largest Intrarinaric depression which extends NW–SE. Block downthrows along NW–SE faults and later ruptures of E-W and some of NE–SW trends, controlled the formation of the Graben and its geometry. A characteristic of the Zapadna Morava Graben is the large subsidence of the Ottnangian-Karpatian, probably superposed upon similar movements of the Oligocene-Miocene. The central Graben sank the most, over a relatively wide area. (MAROVIĆ et al., 2007).

A gravity anomaly map (Fig. 2) was compiled in order to check the correlation between the position of Neogene basins and the distribution of gravity anomalies. Neogene basins are filled with sediments of low density, in comparison to the density values of the basement and surrounding rocks. In the presented study area (Fig. 2), the position of Neogene basins mostly coincides with low gravity values, but it is not a general case. Gravity anomalies are strongly influenced by the complex configuration of the basin foundations and surrounding geology, implying a relatively shallow basin depth. The location of the Kamenica paleontological site is in a zone of abrupt changes of gravity anomaly values, probably
in the vicinity of a steep (gravitational or reverse) fault of SE–NW direction.

The Paleogene and Neogene deposits in last few years were investigated from different aspects (e.g. Đorđević-Milutinović, 2018; Radović, 2018; Jovanović et al., 2019a, b) and this paper is one more contribution to knowledge of these deposits.

Palaeofloristic composition:

The leaf imprints, presently being studied, originate from dark-gray, very compact marls which lie across the serpentine. These sediments are characterized with considerable depth.

Palaeoecology and palaeoclimatology

About one hundred leaf imprints have been collected at the Kamenica locality. Considering the relatively small number of specimens, there is a rich taxonomical diversity (Table 1).

Analyzing the character of the leaf imprints morphology it can be observed that leaves with entire margin and brochidodromous or eucamptodromous venation, which correspond to subtropical dendroflora, prevail (categorization Wolfe, 1971). Most plant taxa have brochidodromous or eucamptodromous venation. Most abundant are microphyllous leaves, while the presence of notophyllous leaves is rare.

Taxon	No specimen
Pinus palaeontaphylla Tanai & Onoe	7
Pinus heptos (Unger) Heer	5
Pinus sp. – cone	1
Pinus sp. – seed	1
Sequoia abietina (Brongniart) Knobloch	6
Taxodium dubium (Sternberg) Heer	4
Glyptostrobus europaeus (Brongniart) Unger	12
Glyptostrobus sp. – seed	3
Tetraclinis salicornioides (Unger) Kvaček	6
Magnolia mirabilis Kolarovskiy	1
“Laurus” princeps Heer	5
Daphnogene polymorpha (Al. Braun) Ettingshausen forma bilinica* (Unger) Sitar & Kvaček	2
“Quercus” cruciata Al. Braun	2
Myrica lignitum (Unger) Al. Braun	2
Juglans acuminata Al. Braun ex Unger	1
Acer sp. (Fructus)	1
Acer sp.	1
Rhodomyrtophyllum reticulatum (Rozsmassler) Knobloch & Kvaček	3
Mahonia bilinica (Unger) Kvaček & Bužek	4
Ziziphus ziziphoidea (Unger) Weyland	5
Ziziphus sf. *Tiliaefolius* Ettingshausen	3
Platanus neptuni (Ettingshausen) Bužek, Holy & Kvaček	2
Ulmus pyramidalis Goeppert	1
Betulaceae gen. et sp. indet.	1
“Bumelia” minor (Unger) Unger	1
Nyssa sp. – seed	1
Leguminosae sp.	1
Dicotylyphyllum sp.	1
leaves are rare. Representatives of humid subtropical forest dominated in paleophytocenosis of Kamenica: *Glyptostrobus* (Plate 1, Figs. 10, 14, 15, 17), *Sequoia* (Plate 1, Figs. 2, 8, 12; Plate 2, Fig. 2), *Taxodium* (Plate 1, Figs. 9, 11, 16; Plate 2, Figs. 10, 14), *Laurus* (Plate 3, Figs. 1–6, 8). These taxons prevail in Kamenica palaeoflora. The other representative of the humid subtropical forest is represented by the *Myrica* (Plate 5, Figs. 1, 5) and *Platanus neptuni* (Plate 4, Fig. 10). These plant forms inhabited the banks of the river and the margins of the lake basin.

A significant number of samples in this locality belongs to pines: *Pinus hepios* (Plate 1 Fig. 5), *Pinus palaeopentaphylla* (Plate 1, Figs. 1, 3, 4, 7).

Vegetation elements of temperate climate are very rare, and represented only by a few imprints of Betulaceae and Ulmaceae.

Based on the taxonomical composition of palaeophytoassociation and leaf morphology, it has been inferred that the climate was subtropical and humid during the existence of this plant association (Wolfe, 1971; Wilf, 1997; Traiser et al., 2005).

Comparisons between the flora of Kamenica and other Oligocene and Early Miocene floras in Serbia

The palaeoflora of Kamenica has been compared to the Oligocene and Lower Miocene floras from the territory of Serbia. Palaeovegetation from Kamenica differs from other Oligocene floras due to the existence in a wetter climate. The climatic conditions in the period when the Kamenica palaeophytoassociation existed were much more similar to those of the Early Miocene. The taxonomic composition of the palaeoflora of Kamenica is a mix of Late Oligocene and Early Miocene floras from Serbia.

The Late Oligocene flora of Bogovina (Pantić & Pavlović, 1977) from eastern Serbia is a palaeophytocoenosis of subtropical-tropical climate. In this palaeoflora conifers prevails, especially *Sequoia* but broad-leaved elements are rare. In this palaeophytoassociation dominate xeromorphic leaves from angiosperms.

In the Oligocene flora of Divljana (Koritnica Basin - Southeastern Serbia) (Mihailović, 1985) xerophytes *Ziziphus ziziphoides* (Unger) Weyland predominate. Contrary to the flora of Kamenica, there are also, rare humid forms and numerous xeromorphic elements of vegetation in the palaeovegetation of Divljana.

In the palaeoflora of Kosanička Rača (Central Serbia), (Mihailović, 1985) Oligocene age, xeromorphic plant forms predominate. The climate during the existence of palaeovegetation was arid, subtropical-tropical.

Arid plant associations dominated by *Ziziphus ziziphoides* originate from Metohija Late Oligocene sediments (the Strezovac Basin, Southern Serbia) (Mihailović, 1969). In this palaeoflora xerophylos and subxerophylos plant forms predominate.

The palaeoflora of Kamenica is not as arid as most of Oligocene floras in Serbia. In most of Oligocene floras of Serbia, the dominant element is xerophytic *Ziziphus ziziphoides*, of which there are only two specimens in the Kamenica palaeoflora.

Lower Miocene floras of Serbia, such as the flora from the Valjevo-Mionica basin (Western Serbia) (Pantić, 1956; Lazarević et al., 2013), Žagubica basin (eastern Serbia) (Mihailović & Mihailović, 1984; Lazarević & Mihovević, 2010) and Popovac (Central Serbia) (Pantić, 1956; Lazarević, 2008) are typically broad-leaved evergreen vegetation. In these palaeofloras Lauraceae, especially *Daphnogene* predominate. Conifers are more abundant in the Kamenica palaeoflora than in most of the Early Miocene floras of Serbia. During the Early Miocene paleoclimatic conditions in Serbia were warm and humid as can be inferred from the vegetation of that time. The flora of Kamenica also indicates the subtropical-tropical, humid character of the climate. Palaeovegetation of Kamenica is distinguished from the Early Miocene floras by a rare representation of *Daphnogene* and lower proportion of elements of evergreen broad-leaved vegetation.

Conclusions

Palaeofloras of the Paleogene in Serbia are relatively rare, especially in comparison with floras from Neogene sediments. Most Paleogene phytoassociations from the territory of Serbia existed in dry and warm climate. The youngest Paleogene phy-
to association originates from the "Pranjani Basin" (Western Serbia), locality Kamenica. The age of this palaeoflora is determined as the Late Oligocene based on fish fossil and comparison with other similar floras of Oligocene and Early Miocene in Serbia. This fossil plant assemblage is different from other phytosociations of Paleogene and Early Miocene. The climatic conditions in the period when the Kamenica palaeophytosociation existed were much more similar to those of the Early Miocene. The taxonomic composition of the palaeoflora of Kamenica is a mix of Late Oligocene and Early Miocene floras from Serbia.

Paleoclimate estimates derived from the woody dicotyledonous angiosperm from the Kamenica locality indicate the climate was warm and humid, subtropical-tropical.

Such favorable environmental and climatic conditions were reflected in the vigour of vegetation in the Late Oligocene.

Acknowledgments

We thank reviewers, for their suggestions and comments on our manuscript: Desa Đorđević-Milutinović (Natural History Museum of Belgrade) and other anonymous reviewer. We also would like to thank Lidija Bero for review English text. This work was supported by grants from the Ministry of Education, Science and Technological Development of the Republic of Serbia, Projects No. 176015, No. 33003 and No. 176016.

References

ANDJELKOVIC, J. 1989. Smerdis minutus (Blanville) from the Oligocene of Pranjani basin, western Serbia. Geološki anali Balkankog poluostrova, 53: 301–304.

ĐORĐEVIC-MILUTINOVIC, D., STEVANOVIC B. & ĆILAFIĆ, G. 2018. Nelumboprotospeciosa Saporta 1891 from the Berane Basin (Lower Miocene). Geološki anali Balkankog poluostrova, 79 (2): 41–55.

EREMIA, M., PAVLOVIĆ, M.B. & STEVANOVIC, P. 1977. Pranjanski basen. In: STEVANOVIC, P. (Ed.). Geologija Srbije. Kenozoik II-3. Institut za regionalnu geologiju i paleontologiju, Rudarsko-geološki fakultet, Beograd, 265–266.

JOVANOVIC, G., TRIF, N., CODREA, V. & ĐURIĆ, D. 2019a. Middle Miocene sharkteeth from the southern margin of the Pannonian Basin System (Serbia, Central Paratethys). Geološki anali Balkankog poluostrova, 80:29–43.

JOVANOVIC, G., ĆORIĆ, S. & VRABAC, S. 2019b. The First evidence of marine Badenian transgression near Koceljeva (Central Paratethys, western Serbia). Geološki anali Balkankog poluostrova, 80: 1–15.

LAZAREVIĆ, Z. 2008. Neogene flore Srbije [Neogene Floras of Serbia – in Serbian, with an English Abstract]. Unpubl PhD Thesis, Faculty of Mining and Geology, University of Belgrade, 147pp.

LAZAREVIĆ, Z. & MILIVOJEVIĆ, J. 2010. Early Miocene flora of the intramontane Žagubica Basin (Serbian Carpatho-Balkanides). Neues Jhrhrbuch für Geologie und Paläontologie, Abhandlungen, 256: 141–150.

LAZAREVIĆ, Z., MILIVOJEVIĆ, J., BOGICEVIC, K. & NENADIC, D. 2013. Early Miocene flora from the Valjevo-Mionica Basin (Western Serbia). Neues Jhrhrbuch für Geologie und Paläontologie, Abhandlungen, 267: 297–307.

MAROVIĆ, M., TOLJIĆ, M., RUNDIĆ, Lj. & MILIVOJEVIĆ, J. 2007. Neoalpine Tectonics of Serbia. Serbian Geological Society, 87pp.

MIHALJINOVIC, B. 1985. Palaeogene fossil flora of Serbia. Geološki anali Balkankog poluostrova, 49: 299–434.

MILOVANOVIC, Lj. 1969. Nouvelle conception, base sur la Palaeoflore, de l’age des sediments Tertiaires du Bassin de Strezovci. Institut de Recherches Geologiques et Geophysiques, Serie A, 27: 159–176.

MILOVANOVIC, Lj. & MIHALJINOVIC, D. 1984. Miocene flora from Žagubica basin, eastern Serbia. Geološki anali Balkankog poluostrova, 48:201–213.

PANTIĆ, N. 1956. Biostratigraphie des flores Tertiaires de Serbie. Geološki anali Balkankog poluostrova, 24: 199–321.

PANTIĆ, M. & PAVLOVIĆ, M.B. 1977. Bogovinski basen. In: STEVANOVIC, P. (Ed.). Geologija Srbije. Kenozoik II-3. Institut za regionalnu geologiju i paleontologiju, Rudarsko-geološki fakultet, Beograd, 93–96.

RADOVIC, P. & BRADIC-MILOJINOVIC, K. 2018. A new elephantoid dental specimen from the Miocene of Kruševac Basin in Central Serbia. Geološki anali Balkankog poluostrova, 79 (2):1–10.

TRAISER, C., KLOTZ, S., UHL, D. & MOSBRUGGER, V. 2005. Environmental signals from leaves – a physiognomic analysis of European vegetation. New Phytologist, 166: 465–484.

Geol. an. Balk. poluos., 2019, 80 (2), 53-63
Манускрипт пријемљен октобра 14, 2019
Ревизиони манускрипт уlastic на спуштен је септембра 09, 2019
Plate 1. Figs. 1, 3, 4, 7. *Pinus palaeopentaphylla* TANAI & ONOE; Figs. 2, 8, 10, 12. *Sequoia abietina* (BRONGNIART) KNOBLOCH; Fig. 5. *Pinus hepios* (UNGER) HEER; Fig. 6. *Pinus* sp. - cone; Figs. 9, 11, 16. *Taxodium dubium* (STERNBERG) HEER; Figs. 15, 17. *Glyptostrobus europaeus* (BRONGNIART) UNGER; Fig. 13. *Pinus* sp. - seed (×2); Fig. 14. *Glyptostrobus* sp. - seed (×2).
Plate 2. Figs. 1, 12. *Glyptostrobus europaeus* (Brongniart) Unger; Fig. 2. *Sequoia abietina* (Brongniart) Knobloch; Figs. 3, 5, 6, 9, 11, 12, 13. *Tetraclinis salicornioides* (Unger) Kvaček; Figs. 10, 14. *Taxodium dubium* (Sternberg) Heer; Figs. 4, 7. *Tetraclinis salicornioides* (Unger) Kvaček (×2); Fig. 8. *Tetraclinis salicornioides* (Unger) Kvaček - cone (×2); Fig. 15. *Tetraclinis salicornioides* (Unger) Kvaček.
Plate 3. Figs. 1–6. “Laurus” princeps Heer; Fig. 7. Nyssa sp. – seed (×4); Figs. 8. Rhodomyrthophyllum reticulosum (Rorse-Määssler) Knobloch & Kvaček; Fig. 9. Mahonia bilinica (Unger) Kvaček & Bužek; Fig. 10. Acer sp. (seed); Fig. 11. Juglans acuminata Al. Braun ex Unger; Fig. 12. Acer sp.; Fig. 13. Dicotylophyllum sp.; Fig. 14. Ziziphus cf. tiliaefolius Ettingshausen.
Plate 4. Figs. 1, 7, 9, 12, 16. “Laurus” primigenia Unger sensu Weyland; Figs. 2, 3. Ziziphus zizyphoides (Unger) Weyland; Figs. 4–6. Daphnogene polymorpha (Al. Braun) Ettingshausen forma bilinica (Unger) Sitár & Kuček; Figs. 11, 15. “Bumelia” minor (Unger) Unger; Fig. 10. Platanus neptuni (Ettingshausen) Bužek, Hoír & Kuček; Fig. 14. Ulmus pyramidalis Goepfert
Plate 5. Figs. 1, 5. *Myrica lignitum* (Unger) Saporta; Fig. 2. *Laurus* princeps Heer; Figs. 3, 4. *Platanus neptuni* (Ettingshausen) Bužek, Holy & Kvaček; Fig. 6. *Magnolia mirabilis* Kolakovský; Fig. 7. *Quercus* cruciata Al. Braun; Fig. 8. Betulaceae gen. et sp. indet.; Figs. 9, 10. *Leguminosites* sp.; Fig. 11. *Dicotylophyllum* sp.