An Antedrug of the CXCL12 Neutraligand Blocks Experimental Allergic Asthma without Systemic Effect in Mice*

Received for publication, January 3, 2013, and in revised form, February 27, 2013. Published, JBC Papers in Press, February 28, 2013, DOI 10.1074/jbc.M112.449348

François Daubeuf1,2, Muriel Hachet-Haas1,2, Patrick Gizzì3,4, Vincent Gasparik1,5, Dominique Bonnet1,5, Valérie Utard4, Marcel Hibert5, Nelly Frossard15, and Jean-Luc Galzi1,5

From the 1Laboratoire d’Innovation Thérapeutique, UMR 7200 CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch, France, the 2Laboratoire de Biotechnologie et Signalisation Cellulaire, Ecole de Biotechnologie de Strasbourg, UMR 7242 CNRS/Université de Strasbourg, Ecole Supérieure de Biotechnologie, Bd. Sébastien Brant, 67412 Illkirch, France, and the 3Laboratory of Excellence MEDALIS, Université de Strasbourg, 67400 Illkirch, France

Background: The chemokine CXCL12 and its receptor CXCR4 are widely distributed and contribute to the physiopathology of inflammation.

Results: Recruitment of eosinophils in the inflamed airway is selectively attenuated by short lived antagonists that block CXCL12-mediated activation of CXCR4.

Conclusion: CXCL12/CXCR4 signaling regulates local leukocyte-mediated inflammation.

Significance: Antedrugs of neutraligands allow dissecting the physiological role of chemokines, especially when expression occurs in multiple tissues.

The chemokine receptor CXCR4 and its chemokine CXCL12 are involved in normal tissue patterning but also in tumor cell growth and survival as well as in the recruitment of immune and inflammatory cells, as successfully demonstrated using agents that block either CXCL12 or CXCR4. In order to achieve selectivity in drug action on the CXCR4/CXCL12 pair, in particular in the airways, drugs should be delivered as selectively as possible in the treated tissue and should not diffuse in the systemic circulation, where it may reach undesired organs. To this end, we used a previously unexploited Knoevenagel reaction to create a short lived drug, or soft drug, based on the CXCL12-neutralizing small molecule, chalcone 4, which blocks binding of CXCL12 to CXCR4. We show that the compound, carbonitrilechalcone 4, blocks the recruitment of eosinophils to the airways in ovalbumin-sensitized and challenged mice in vivo when administered directly to the airways by the intranasal route, but not when administered systemically by the intraperitoneal route. We show that the lack of effect at a distant site is due to the rapid degradation of the molecule to inactive fragments. This approach allows selective action of the CXCL12 neutraligands although the target protein is widely distributed in the organism.

Chemokines are small proteins that play critical roles in the development and function of various tissues in vertebrates. In the adult, they regulate the directional migration of leukocytes under normal and pathological conditions. As a rather general rule, chemokines and their G protein-coupled receptors display redundancy and binding promiscuity (i.e. several chemokines may bind to the same receptor set) (1), whereas a few chemokines play a pivotal and non-redundant homeostatic role. A singular case is that of the CXCL12/SDF1 chemokine and its receptor CXCR4, which are both conserved during evolution from jawless fish to humans and appear essential during normal embryogenesis and organogenesis (2–4). CXCL12 is constitutively expressed by stromal, epithelial, and endothelial cells in primary lymphoid organs (including bone marrow and thymus) and secondary lymphoid organs, such as spleen and ganglia (5). Disruption of either the CXCL12 (5) or the CXCR4 (4) gene is lethal during mouse embryogenesis, illustrating the prominent role of CXCL12 and CXCR4 in the patterning of embryonic tissue formation through progenitor cell migrations. Suppression of CXCL12/X4 interaction upon treatment with granulocyte-(-macrophage) colony-stimulating factor (GM-CSF or G-CSF) (6, 7) or with the selective CXCR4 antagonist AMD 3100 promotes neutrophilia (8). In the adult, CXCR4 and CXCL12 maintain stem cell niches in the bone marrow and contribute to the proliferation of hematopoietic progenitors (9, 10).

CXCL12 and CXCR4 are also important players in pathophysiological situations (11–14), including AIDS (15–17), the unusual form of neutropenia reported as WHIM syndrome (18–20), or carcinogenesis (11, 14, 21). In addition, CXCR4 and CXCL12 are also implicated in inflammation. They contribute to promoting transendothelial migration of lymphocytes (22) and invasion of inflamed tissues, as illustrated in the airways of animal models of asthma (23–27), in the pulmonary vasculature in pulmonary arterial hypertension (28), and in fibropro-
Antedrug of the CXCL12 Neutraligand and Asthma

CXCL12 and CXCR4 were long thought to be the exclusive interactors of each other until the recent discovery that the orphan G protein-coupled receptor, CXCR7, also binds CXCL12 as well as CXCL11 (30, 31). CXCR7 is expressed by endothelial cells and cardiomyocytes and is essential in heart development (32, 33). CXCR7 does not elicit clear responses to CXCL12 but clearly associates with the CXCR4 protein to modulate its sensitivity for CXCL12 (33, 34).

The physiological and pathophysiological importance of CXCL12, CXCR4, and CXCR7 has prompted the launching of drug discovery programs aiming at blocking HIV entry, inhibiting cancer cell proliferation, or reducing inflammatory responses. The most advanced compound is the CXCR4 antagonist AMD 3100, which has been approved for treatment of lymphoproliferative disorders (Plerixafor®). It displays efficacy in humans in mobilizing CXCR4 progenitor cells (10, 35–38). It displays efficacy in vivo and in vitro and shows that it is active when administered locally and inactive after systemic administration.

EXPERIMENTAL PROCEDURES

Chemistry—Reagents were obtained from commercial sources and used without any further purification. Thin-layer chromatography was performed on silica gel 60F254 plates. Flash chromatography was performed on silica gel (puriflash® 30 μm, Interchim) or CH2CN (puriflash® 30 μm, Interchim) pre-packed columns on a SpotII Ultima from Armen. NMR spectra were recorded on a Bruker AV400 spectrometer. Chemical shifts (δ) are reported in ppm, and coupling constants (J) are expressed in Hz. Analytical HPLC analyses were performed on an Eclipse XBD-C18 column (5 μm, 46 × 150 mm; Agilent) using the following conditions: flow rate, 1 ml/min; Solvent A, 0.1% aqueous TFA; Solvent B, 0.1% TFA in CH3CN; gradient, 5–100% B developed over 15 min; detection at 220/254/365 nm. Retention times (tR) from analytical reverse phase HPLC are reported in min. LC/MS spectra were obtained on an Agilent HPLC single quadrupole spectrometer (1200RRLC/1956b-SL) equipped with a THERMO Hypersyl column (1.9 μm, 1 × 30 mm) using an Agilent Multimode ion source. High resolution mass spectrometry spectra were obtained on an Accurate-Mass Q-ToF spectrometer from Agilent using electrospray ionization. For (E)-2-(4-chlorobenzoyl)-3-(4-hydroxy-3-methoxyphenyl)acrylonitrile (CN-chalcone 4)6, p-chloro-benzoyl-acetonitrile (1 g, 5.606 mmol) and 3-methoxy-4-(methoxymethoxy)benzaldehyde (1.1 g, 5.606 mmol) were dissolved in dry CH2Cl2 (15 ml). Dry NEt3 (78 μl, 0.56 mmol) and pulverized activated 4-Å molecular sieves (1 g) were added. The mixture was stirred at room temperature, monitoring the progress of the reaction by TLC. After 20 h, the molecular sieves were filtered off, and the organic layer was concentrated in vacuo to dryness. The residual crude orange solid was recrystallized from aqueous EtOH to afford (E)-2-(4-chlorobenzoyl)-3-(3-methoxy-4-(methoxymethoxy)phenyl)acrylonitrile (CN-chalcone 4)6 as an expected product. A second crop was obtained by filtration on a silica gel column and recrystallized from aqueous EtOH.

6 The abbreviations used are: CN-chalcone 4, carbonitrile-chalcone 4; BALF, bronchoalveolar lavage fluid; BRET, bioluminescence resonance energy transfer; HP-βCD, hydroxypropyl-β-cyclodextrin; OVA, ovalbumin; TR, Texas Red; pCBA, para-chlorobenzoyl-acetonitrile.
Antedrug of the CXCL12 Neutraligand and Asthma

JOURNAL OF BIOLOGICAL CHEMISTRY

April 26, 2013 • Volume 288 • Number 17

11867

J = 8.6 Hz, 1H), 7.43 (dd, J = 8.6, 2.1 Hz, 1H), 7.48 (d, J = 8.5 Hz, 2H), 7.83 (d, J = 8.5 Hz, 2H), 7.88 (d, J = 2.1 Hz, 1H), 8.00 (s, 1H); 13C NMR (CDCl3): δ 55.9, 56.3, 95.2, 106.5, 112.8, 116.2, 117.9, 125.7, 128.3, 129.1, 130.8, 134.8, 139.8, 150.3, 151.8, 156.1, 188.1.

(E)-2-(4-Chlorobenzoyl)-3-(3-methoxy-4-(methoxymethoxy)phenyl)acrylonitrile was dissolved in THF (10 ml) in the presence of a 1 N HCl aqueous solution (5 eq, 14 ml). The resulting mixture was stirred at room temperature, monitoring the progress of the conversion by HPLC. After 12 h, the solvent was removed under reduced pressure, and the residue was dissolved in CH2Cl2 and washed with water until neutralization. The solvent was removed, and deprotected CN-chalcone 4 was recovered as a yellow solid in quantitative yield (886 mg).

Chemical Stability—Stability of compounds was assessed in PBS, pH 7.4, with or without 10% HP-βCD at 20 °C up to 24 h. For each compound, the 10 mM DMSO stock solution was diluted to a final incubation concentration of 10 μM with 0.1% DMSO. 20 μl of sample were removed at t0, 1, 2, 4, 6, 8, 10, and 24 h and directly injected onto the HPLC. The percentage of remaining test compound relative to t0 was measured by monitoring the peak area on the chromatogram.

Stability in Mouse Serum—Stability of chalcones was determined in mouse serum with or without 10% HP-βCD at 37 °C up to 16 h. For each compound, the 10 mM DMSO stock solution was diluted in serum to a final concentration of 20 μM with 1% DMSO. For the measurements with HP-β-cyclodextrin, a solution of PBS (pH 7.4) containing 10% (v/v) HP-βCD was saturated with compound powder. The saturated solution was then diluted in murine serum to a final compound concentration of 20 μM. The mixture was divided into five aliquots. The incubation of each aliquot was stopped at t0 and 30 min, 1, 2, and 16 h for chalcone 4 and at t0 and 15, 30, 45, and 60 min for CN-chalcone 4 by adding one volume of ice cold acetonitrile. Samples were stirred for 3 min, sonicated for 3 min, and then centrifuged at 4 °C before HPLC injection. The percentage of remaining test compound relative to t0 was measured by monitoring the peak area on the chromatogram.

Stability in Lung Homogenate—Stability of chalcones was determined in mouse lung homogenate with or without HP-βCD 10% at 37 °C. Lung homogenate was prepared separately with a Fastprep® (Q-Biogene, Illkirch, France) in PBS (one lung homogenized in 1 ml of buffer). For each compound, the incubation solutions, the sampling, and the extraction conditions were prepared as described under "Stability in Mouse Serum."

Cell Culture—Human embryonic kidney cell 293 cells expressing the fusion receptor EGFP-hCXCR4 (stable cell lines (26)) were cultured to ~80% confluence in 75-cm² flasks in minimum Eagle’s medium with Earle’s salt supplemented with 10% fetal calf serum, 2 mM glutamine, and 1% antibiotics (penicillin/streptomycin) and replated twice a week. HepG2 cells were grown to ~80% confluence in 75-cm² flasks in MEM with Earle’s salt supplemented with 10% fetal calf serum, 2 mM glutamine, 1% antibiotics (penicillin/streptomycin), 1 mM sodium pyruvate (Invitrogen), 0.1 mM non-essential amino acids (Invitrogen) and replated twice a week.

Binding Experiments—Fluorescence binding experiments were carried out as described (26, 46). Human embryonic kidney cells expressing the fusion receptor EGFP-hCXCR4 were harvested in PBS (137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, and 1.4 M KH2PO4 supplemented with 10% hydroxypropyl-β-cyclodextrin (HP-βCD)). Samples were shaken for 24 h at 21 ± 1 °C. Saturations were confirmed by the presence of undissolved powder. After ultracentrifugation, the concentration in the supernatant was measured by an HPLC procedure using a calibration curve established for each compound by diluting a 10 mM DMSO stock solution to adapted concentrations. Due to rapid degradation of CN-chalcone 4, solubility was determined after 2 h of shaking. The indicated value given for CN-chalcone 4 is thus an estimate of the solubility.

Chemical Stability—Stability of compounds was assessed in PBS, pH 7.4, with or without 10% HP-βCD at 20 °C up to 24 h. For each compound, the 10 mM DMSO stock solution was diluted to a final incubation concentration of 10 μM with 0.1% DMSO. 20 μl of sample were removed at t0, 1, 2, 4, 6, 8, 10, and 24 h and directly injected onto the HPLC. The percentage of remaining test compound relative to t0 was measured by monitoring the peak area on the chromatogram.

Stability in Mouse Serum—Stability of chalcones was determined in mouse serum with or without 10% HP-βCD at 37 °C up to 16 h. For each compound, the 10 mM DMSO stock solution was diluted in serum to a final concentration of 20 μM with 1% DMSO. For the measurements with HP-β-cyclodextrin, a solution of PBS (pH 7.4) containing 10% (v/v) HP-βCD was saturated with compound powder. The saturated solution was then diluted in murine serum to a final compound concentration of 20 μM. The mixture was divided into five aliquots. The incubation of each aliquot was stopped at t0 and 30 min, 1, 2, and 16 h for chalcone 4 and at t0 and 15, 30, 45, and 60 min for CN-chalcone 4 by adding one volume of ice cold acetonitrile. Samples were stirred for 3 min, sonicated for 3 min, and then centrifuged at 4 °C before HPLC injection. The percentage of remaining test compound relative to t0 was measured by monitoring the peak area on the chromatogram.

Stability in Lung Homogenate—Stability of chalcones was determined in mouse lung homogenate with or without HP-βCD 10% at 37 °C. Lung homogenate was prepared separately with a Fastprep® (Q-Biogene, Illkirch, France) in PBS (one lung homogenized in 1 ml of buffer). For each compound, the incubation solutions, the sampling, and the extraction conditions were prepared as described under "Stability in Mouse Serum."

Cell Culture—Human embryonic kidney cell 293 cells expressing the fusion receptor EGFP-hCXCR4 (stable cell lines (26)) were cultured to ~80% confluence in 75-cm² flasks in minimum Eagle’s medium with Earle’s salt supplemented with 10% fetal calf serum, 2 mM glutamine, and 1% antibiotics (penicillin/streptomycin) and replated twice a week. HepG2 cells were grown to ~80% confluence in 75-cm² flasks in MEM with Earle’s salt supplemented with 10% fetal calf serum, 2 mM glutamine, 1% antibiotics (penicillin/streptomycin), 1 mM sodium pyruvate (Invitrogen), 0.1 mM non-essential amino acids (Invitrogen) and replated twice a week.

Binding Experiments—Fluorescence binding experiments were carried out as described (26, 46). Human embryonic kidney cells expressing the fusion receptor EGFP-hCXCR4 were harvested in PBS (137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, and 1.4 M KH2PO4 supplemented with 10% hydroxypropyl-β-cyclodextrin (HP-βCD)). Samples were shaken for 24 h at 21 ± 1 °C. Saturations were confirmed by the presence of undissolved powder. After ultracentrifugation, the concentration in the supernatant was measured by an HPLC procedure using a calibration curve established for each compound by diluting a 10 mM DMSO stock solution to adapted concentrations. Due to rapid degradation of CN-chalcone 4, solubility was determined after 2 h of shaking. The indicated value given for CN-chalcone 4 is thus an estimate of the solubility.
Antedrug of the CXCL12 Neutraligand and Asthma

nm CXCL12-TR (Texas Red-labeled CXCL12) to the 0.5-ml cell suspension. Fluorescence emitted at 510 nm (excitation at 470 nm) was recorded at 21 °C using a Fluorolog 2 spectrofluorimeter (SPEx) and sampled every 0.3 s. Binding of CXCL12-TR to EGFP-labeled CXCR4 was detected as a reversible decline of emission at 510 nm, due to energy transfer from excited EGFP to TR. For competition experiments, the fluorescent chomkine was preincubated for 1 h at room temperature with or without various concentrations of each chalcone. Then the premix was added, and fluorescence was recorded until equilibrium was reached (300 s). Data were analyzed using Kaleidograph 3.08 software (Synergy Software, Reading, PA).

cAMP Determination—CXCR4 receptor coupling to adenylyl cyclase was assessed by measuring the dose-dependent inhibitory effects of chemokine with or without chalcone on forskolin-stimulated cAMP accumulation. To facilitate studies in vivo, intraperitoneal or intranasal administrations of saline alone. Intranasal administrations were performed under anesthesia with 50 mg/kg ketamine and 3.33 mg/kg xylazine given intrapitoneally. Food and water were supplied ad libitum. Animal experimentation was conducted with the approval of the government body that regulates animal research in France. The chalcone compounds were administered either by the intraperitoneal or intranasal routes. In a first set of experiments, mice received either chalcone 4 or carbonitrile-chalcone 4 solubilized in PBS with 10% HP-βCD (C0926, Sigma) by intranasal injection 2 h before each nasal OVA or saline challenge. In a second set of experiments, mice received CN-chalcone 4, vanillin, or parachlorobenzoylacetaniline intranasally, in PBS with HP-βCD 10%, 2 h before each OVA or saline challenge. In the last set of experiments, mice received chalcone 4 or CN-chalcone 4 in suspension in carboxymethylcellulose 1% or solubilized in PBS with HP-βCD 10% and administered by intraperitoneal injection 2 h before each OVA or saline challenge. Collection of bronchoalveolar lavage fluid (BALF) was performed 24 h after the last OVA challenge. Mice were deeply anesthetized by intraperitoneal injection of 150 mg/kg ketamine and 10 mg/kg xylazine. A plastic canula was inserted into the trachea, and airways were lavaged by 10 instillations of 0.5 ml of ice-cold saline supplemented with 2.6 mM EDTA (saline-EDTA). Total and differential cell counts in the BALF were performed after centrifugation (300 × g for 5 min at 4 °C) to pellet cells. Erythrocytes were lysed by hypotonic shock by the addition of 1.5 ml of distilled H2O, followed by the addition of 0.5 ml of 0.6 M KCl. Cells were centrifuged and resuspended in 500 µl of ice-cold saline-EDTA, and total cell counts were determined using a hemocytometer (Neubauer’s chamber). Differential cell counts were assessed on cytologic preparation obtained by cytocentrifugation (Cytospin 3, Shandon Ltd.) of 200 µl of diluted BALF (250,000 cells/ml in ice-cold saline-EDTA). Slides were stained with Hemacolor (Merck), and counts were performed on at least 400 cells for each preparation. Differential counts were expressed as absolute numbers or as a percentage of the total number of cells.

Cytchrome c Oxidase Activity—Lung and heart were homogenized separately with an UltraTurrax® (I.M.LAB, Lille, France) in PBS, pH 7.4 (one organ in 1 ml of buffer). Lung homogenate was diluted at 1:2 and heart homogenate at 1:5 in PBS. 100 µl of each diluted homogenate were placed in a microplate, and 100 µl of assay reagent (10 mM tetramethyl-p-phenylenediamine, 2 mM sodium ascorbate, 20 mM KH2PO4) were added. The microplate was placed immediately in a microplate spectrophotometer reader, and optical density kinetic (λ = 610 nm) was measured every 20 s for 30 min. Results are expressed as Vmax/100 µg of protein (OD/min/100 µg of protein).

RESULTS

Carbonitrile-chalcone 4 Neutralizes CXCL12 in Vitro and in Vivo—CN-chalcone 4 was prepared by condensing para-chlorobenzoyl-acetonitrile (pCBA) with protected vanillin (VanP)
carbonitrile-chalcone reduces inflammation in a mouse model of allergic eosinophilic airway inflammation. A, in vitro inhibition of CXCL12 binding to CXCR4 receptor by chalcone 4 (Chalc 4) and CN-chalcone 4 (CN-Chalc 4). Inhibition of CXCL12 binding to CXCR4 as a function of increasing concentration of chalcone 4 (gray squares) and CN-chalcone 4 (black circles) is monitored using FRET intensity variation. The fluorescence of cells expressing concentration of chalcone 4 (26) (Fig. 1B) and CN-chalcone 4 (19, 21, 23, 26). CN-chalcone 4 prevents binding of Texas Red-labeled CXCL12 to EGFP-tagged CXCR4, which causes FRET. The ordinate axis reports the intensity of FRET as a percentage of the control value (100 nM CXCL12-TR alone). K_i values were derived from the IC_{50} values determined from competition curves using the Cheng and Prusoff relationship (65). K_i values are 53 ± 31 nM (chalcone 4) and 45 ± 57 nM (CN-chalcone 4). Each data point represents the mean ± S.D. (error bars) of three experiments. B, in vivo dose-response effect of a topical treatment with chalcone 4 and CN-chalcone 4 in an 8-day mouse model of hypersensitivity. BALB/c mice were sensitized and challenged with OVA or saline. Chalcone 4 (gray line) or CN-chalcone 4 (black line) solubilized in 10% HP-βCD were administered intranasally 2 h before each challenge. The percentage of inhibition of eosinophil is shown. Data points (squares) are means of n = 6 determinations. C and D, effect of topical (intranasal; i.n.) treatment with chalcone 4, CN-chalcone 4 (C), and chalcone 1 (Chalc 1) (D) in the 8-day mouse model of hyperesino-

philia. BALB/c mice were sensitized and challenged with OVA or saline. Drugs (300 nmol/kg) were administered intranasally 2 h before each challenge in HP-βCD 10% (vehicle). Absolute numbers of macrophages, eosinophils, neutrophils, and lymphocytes in BALF are shown. Bars represent means, and error bars show S.E. values (n = 6/group). * p < 0.05 in comparison with the saline-treated OVA group.

As described in Scheme 1, CN-chalcone 4 is the homolog of chalcone 4, formerly described as a ligand of CXCL12, that inhibits chemokine binding to both CXCR4 and CXCR7 receptors (21, 23, 26). CN-chalcone 4 prevents binding of Texas Red-labeled CXCL12 (CXCL12-TR, 100 nM) to EGFP-tagged CXCR4, determined by fluorescence resonance energy transfer (26) (Fig. 1A) with similar affinity as chalcone 4 (K_i = 45 ± 57 nM for chalcone 4 versus K_i = 53 ± 31 nM for CN-chalcone 4). This inhibition of CXCL12 binding to CXCR4 consequently blocks CXCL12-evoked CXCR4 cellular signaling (inhibition of cAMP production, shown in Fig. 4B) and trafficking (data not shown).

The in vivo activity of CN-chalcone 4 was assayed in a recently developed 8-day mouse model of airway hypersensitivity (24). In this model, mice are sensitized by intraperitoneal injection of OVA (50 μg) adsorbed on 2 mg of aluminum hydroxide in 0.1 ml of saline on days 0, 1, and 2. Mice are then challenged intranasally with 10 μg of OVA in 25 μl of saline (12.5 μl/nostril) on days 5, 6, and 7. Drugs to be tested can be administered either systemically by the intraperitoneal route or locally by the intranasal route. The intranasal route mimics the inhalation exposure used in humans, which is the preferred and well accepted administration for inflamed airway treatment, in particular asthma. Thus, unless otherwise stated, drugs were administered intranasally in this study. Due to limited solubility of chalcone 4 (9 ± 1 μM) and CN-chalcone 4 (16 ± 2 μM) in saline buffer, drugs were dissolved in physiological solutions complemented with HP-βCD (10%, w/w). Under such conditions, chalcone 4 and CN-chalcone 4 could be dissolved at maximal concentrations reaching 690 ± 44 and 493 ± 36 μM, respectively.

Administering these solutions at 25 μl/mouse intranasally allows a maximal dose approximating 300–500 nmol/kg. Eosinophil counts in BALF are dose-dependently inhibited by both chalcone 4 and CN-chalcone 4 up to 50% at doses of 300–500 nmol/kg, which can be reached as limits of drug solubility (Fig. 1B).
BALF infiltrate with macrophages, eosinophils, neutrophils, and lymphocytes was determined under treatment with intra-nasal chalcone 4 and CN-chalcone 4 at 300 nmol/kg. Fig. 1C shows that neither vehicle (10% HP-βCD) nor any of the chalcones by themselves elicit any cell recruitment in the airways. After ovalbumin challenge, a significant increase in the number of eosinophils and macrophages occurs (Fig. 1C, top). Polymorphonuclear neutrophils and lymphocytes were also significantly present in BALFs after OVA challenge, albeit at 10–20-fold lower levels than eosinophils (Fig. 1C, bottom). Significant reduction of eosinophil recruitment is noted with chalcone 4 administered intranasally (300 nmol/kg). In addition, we note that the new molecule CN-chalcone 4 is as potent as chalcone 4.

In order to further document the specificity of chalcone 4 and CN-chalcone 4 action, we tested the activity of the unsubstituted chalcone backbone (chalc 1 in Scheme 1) already reported as inactive upon CXCL12 binding to CXCR4 (26). Fig. 1D shows that chalcone 1 does not promote any inflammatory response per se; nor does it significantly attenuate eosinophil or any other inflammatory cell recruitment in the airways.

These results therefore indicate that the inactive chalcone chemotype can be substituted by functional groups to inhibit CXCL12 binding to CXCR4 to become active as an attenuator of allergen-induced inflammatory responses. CN-chalcone 4 is as active as chalcone 4 to neutralize CXCL12 in vitro and to inhibit eosinophilic airway inflammation in vivo. This shows that the introduction of the carbonitrile group in chalcone 4 does not affect the activity and potency of the compound.

CN-chalcone 4 Is Active Locally but Not Systemically—We then compared the in vivo activity of CN-chalcone 4 administered systemically by the intraperitoneal route with that of chalcone 4 (Fig. 2). Chalcone 4 and CN-chalcone 4 were solubilized in HP-βCD (10%), or in carboxymethylcellulose, allowing administrations either of 20 μmol/kg/day for 3 days in 10% HP-βCD (vehicle) (A) or 350 μmol/kg once a day for 3 days in 1% carboxymethylcellulose (CMC) as a vehicle (B) were administered intraperitoneally 2 h before each OVA challenge. Absolute numbers of macrophages, eosinophils (top), neutrophils, and lymphocytes (middle) in BALF are shown. Bars show means, and error bars show S.E. values (n = 6/group). * p ≤ 0.05 in comparison with the saline-treated OVA group. Dose intensity relationship of eosinophil recruitment in the intraperitoneal route is shown for chalcone 4 and CN-chalcone 4 up to the maximal dose (bottom).
effects on animals. Fig. 2 displays results of inflammatory cell recruitment in BALF of OVA-sensitized mice receiving the compounds or vehicles.

Fig. 2A shows the effect of twice daily treatment with 20 μmol/kg chalcone 4 or CN-chalcone 4 in 10% HP-βCD administered intraperitoneally. Neither HP-βCD alone nor any of the two drugs had any effect on inflammatory cell recruitment (macrophages, eosinophils, neutrophils, or lymphocytes) in the naive airways. When administered 1 h before the challenging doses of OVA, chalcone 4 shows anti-inflammatory properties by significantly reducing eosinophils, neutrophils, and T cell counts in BALF (Fig. 2A). By contrast, CN-chalcone 4 did not affect any inflammatory cell counts. Repeating the experiment with carboxymethylcellulose as the excipient allowed administration at doses as high as 350 μmol/kg (Fig. 2B). Again, only chalcone 4 exhibits dose-dependent anti-inflammatory activity in the airways with significant inhibition of macrophage recruitment in addition to inhibition of eosinophil, neutrophil, and lymphocyte influx. These experiments reveal that, in contrast to chalcone 4, CN-chalcone 4 is inactive at inhibiting airway inflammation in vivo when administered at a distance from the airways. Therefore, introducing a carbonitrile group in chalcone 4 affects its distribution or metabolism.

CN-chalcone 4 Is Rapidly Degraded in Biological Media—One major effect of the introduction of the carbonitrile group on chalcone 4 is detected on the stability of CN-chalcone 4 in biological media. Compound stability was assessed using HPLC detection (Fig. 3) after incubation in various media. In contrast to chalcone 4, which is stable for hours in buffer and tissue homogenates (Table 1), CN-chalcone 4 is rapidly degraded in phosphate-buffered saline (t_{1/2} = 6 h) and even more rapidly in murine serum (t_{1/2} = 20 min) or lung homogenate (t_{1/2} = 25 min). 10% HP-βCD not only solubilizes the molecule but also significantly improves its stability. CN-chalcone 4 half-life reaches 40 min in lung homogenate in the presence of HP-βCD. Whatever the experimental condition, the half-life of CN-chalcone 4 is significantly shorter than that of chalcone 4, possibly accounting for the lack of effect when using the intraperitoneal route rather than the intranasal administration.

Because the carbonitrile group is an electron-attracting group, its presence on CN-chalcone 4 facilitates nucleophilic attack by water molecules, a reaction that ultimately leads to the hydrolysis of the molecule and production of pCBA and vanillin (Van) as shown in Scheme 2. This is indeed observed on reverse-phase HPLC chromatograms (Fig. 3B), showing that hydrolysis of CN-chalcone 4 is accompanied by the concomitant appearance of its two constituents, which represent the major degradation products in biological media (Fig. 3C).

Because CN-chalcone 4 degradation occurs rapidly, we investigated the biological activity of its degradation products with regard to CXCL12 neutralization, cell signaling, and in vivo inhibition of eosinophil recruitment in the airways. Fig. 4A shows that CN-chalcone 4 dose-dependently prevents CXCL12 binding to CXCR4 with maximal inhibition beyond 1 μM. Neither vanillin nor pCBA exhibits any binding-neutralizing activity at concentrations up to 10 μM, indicating that binding inhibition is indeed due to CN-chalcone 4 itself.

Inhibition of CXCL12 effect on cAMP formation in transfected HEK293 cells overexpressing the human CXCR4 receptor has also been characterized. As shown in Fig. 4B, forskolin (1 μM) evokes an increase in intracellular cAMP that is potently blocked by CXCL12 (3 nm). This blocking effect of CXCL12 is dose-dependently counteracted by either chalcone 4 or CN-chalcone 4 (1–10 μM) but not by the CN-chalcone 4 degradation products vanillin (10 μM) and pCBA (10 μM). The derived IC_{50} values are equal to 4.1 ± 0.3 and 6.9 ± 0.4 μM for chalcone 4 and CN-chalcone 4, respectively.

In vivo effects of the degradation products have also been tested on OVA-sensitized -challenged mice. Intranasal administration of vanillin and pCBA at the same dose as CN-chalcone 4 in Fig. 1 (300 nmol/kg) has no effect on eosinophil...
recruitment in the airways (Fig. 4C), showing their lack of activity in vivo that matches their lack of in vitro activity on CXCL12.

Thus, CN-chalcone 4, which is as active as chalcone 4, is subject to spontaneous hydrolysis in buffered aqueous solutions and biological fluids. Its hydrolysis products, vanillin and pCBA, show no binding activity toward CXCL12 or CXCR4 and no biological activity either on cells or in the inflamed airways in our mouse model. All observed effects are therefore due to CN-chalcone 4 itself before degradation occurs. The short half-life of CN-chalcone 4 suggests that it may not diffuse over a long distance in vivo. This would result in the neutralization of CXCL12 only in tissues directly exposed to CN-chalcone 4, possibly those in the immediate vicinity of the administration site. This is the most plausible explanation of the in vivo activity observed after intranasal administration of CN-chalcone 4 and of the lack of activity of CN-chalcone 4 administered systemically by intraperitoneal injection.

Chalcone 4, CN-chalcone 4, and Its Hydrolysis Products Have Low Toxicity—We checked for cytotoxicity of chalcone 4, CN-chalcone 4, and its hydrolysis products vanillin and pCBA by measuring mitochondrial reduction of the Alamar Blue dye (Fig. 5A). HepG2 cells were incubated for 24 h with chalcone 4, CN-chalcone 4, vanillin, or pCBA at a 10 \(\mu M \) concentration.

TABLE 1

Stability of chalcone 4 versus CN-chalcone 4 in different media

Compound	Stability half-life (h)	PBS	PBS, 10% β-cyclodextrine	Murine serum	Murine serum, 10% β-cyclodextrine	Lung homogenate	Lung homogenate, 10% β-cyclodextrine
PBS	>10 (98% at 10 h) \(^a \)	6	6	0.3	0.4	0.6	0.4
PBS, 10% β-cyclodextrine	>10 (95% at 10 h) \(^a \)	16.3	16	1.3	0.4	0.6	0.4
Murine serum	>16 (96% at 16 h)	0.3		0.3			
Murine serum, 10% β-cyclodextrine	>16 (91% at 16 h)	1.3					
Lung homogenate	>6 (60%) \(^a \)	0.4		0.4			
Lung homogenate, 10% β-cyclodextrine	>16 (66% at 16 h)	0.6					

\(^a \) Data are taken from Ref. 24.
The positive cytotoxicity control molecule was simvastatin (100 μM) (48).

In order to increase the low chalcone 4 solubility (9 ± 1 μM in physiological medium), we also used HP-βCD in this study. Although HP-βCD displays some toxicity on its own at 10% in culture medium, as was described previously (66, 67), there was no further cytotoxicity of any of the compounds (Fig. 5B) as compared with cells treated with HP-βCD alone.

General toxicity was evaluated in vivo in mice that received CN-chalcone 4 intraperitoneally at a dose of 350 μmol/kg (100 mg/kg) per day during three consecutive days. As reported in Table 2, there was no body or spleen weight loss nor any modification of cytochrome c oxidase activity in lung and heart, indicating no toxicity of CN-chalcone 4 administered at the highest active dose.

DISCUSSION

Our results show the anti-inflammatory effect of a rapidly hydrolyzable CXCL12 neutraligand and Asthma.

Carbonitrile-chalcone 4 is an efficient blocker of CXCL12 binding to CXCR4 and of the associated inhibition of cAMP production. However, in biological fluids, CN-chalcone 4 is rapidly degraded into two inactive metabolites, vanillin and pCBA, the two compounds that served as synthetic building blocks for its production. When administered locally in the airways by the intranasal route, CN-chalcone 4 efficiently inhibits eosinophil, neutrophil, and T cell recruitment at a low dose. By contrast, it remains without any anti-inflammatory effect in the airways when administered systemically by the intraperitoneal route even at doses 100–1000-fold higher. This is opposed to the systemic effect of chalcone 4 and demonstrates that CN-chalcone 4 behaves as an antedrug or soft drug acting at the administration site that is degraded prior to wider distribution.

Three groups, including ours (24–27), described that when CXCR4 signaling is inhibited, either with antibodies (25), with CXCR4 antagonists (27), or with CXCL12-neutralizing small molecules (26), invasion of lungs by eosinophils is reduced by ~50%. This piece of evidence highlights a functional role of CXCR4 and of its ligand either in the allergic response onset or in its maintenance. The question as to whether airway inflammation stimulates CXCL12 production continues to be debated because immunohistochemical detection in lung tissue shows no change (25), whereas immunohistochemical determination in BALF (49) and gene expression in lung (50) indicate that CXCL12 is up-regulated. The expression of CXCR4, on the other hand, is higher in BAL CD4+ T cells of human asthmatics as compared with their peripheral blood CD4+ lymphocytes (51) and is up-regulated by the proinflammatory cytokine IL-4 in CD4+ T cells, including Th2 cells (25, 52–54). This renders significant response to CXCL12 likely to occur in the airway, whatever the regulation of CXCL12 expression. In addition, CXCR4 is also expressed in eosinophils (55, 56). Eosinophils have a migratory response to CXCL12 comparable with that evoked by eotaxin.

The mode of action of neutraligands opens the way to new therapeutic strategies especially for airway diseases, because (i) chalcone 4 and its analogs are active through the intranasal route even at doses 100–1000-fold higher. This is opposed to the systemic effect of chalcone 4 and demonstrates that CN-chalcone 4 behaves as an antedrug or soft drug acting at the administration site that is degraded prior to wider distribution.

Three groups, including ours (24–27), described that when CXCR4 signaling is inhibited, either with antibodies (25), with CXCR4 antagonists (27), or with CXCL12-neutralizing small molecules (26), invasion of lungs by eosinophils is reduced by ~50%. This piece of evidence highlights a functional role of CXCR4 and of its ligand either in the allergic response onset or in its maintenance. The question as to whether airway inflammation stimulates CXCL12 production continues to be debated because immunohistochemical detection in lung tissue shows no change (25), whereas immunohistochemical determination in BALF (49) and gene expression in lung (50) indicate that CXCL12 is up-regulated. The expression of CXCR4, on the other hand, is higher in BAL CD4+ T cells of human asthmatics as compared with their peripheral blood CD4+ lymphocytes (51) and is up-regulated by the proinflammatory cytokine IL-4 in CD4+ T cells, including Th2 cells (25, 52–54). This renders significant response to CXCL12 likely to occur in the airway, whatever the regulation of CXCL12 expression. In addition, CXCR4 is also expressed in eosinophils (55, 56). Eosinophils have a migratory response to CXCL12 comparable with that evoked by eotaxin.

The mode of action of neutraligands opens the way to new therapeutic strategies especially for airway diseases, because (i) chalcone 4 and its analogs are active through the intranasal route, and (ii) they act on a new target, namely CXCL12, the ligand of CXCR4 and CXCR7 chemokine receptors. Thus, the mode of action of chalcone 4 (26) and its analogs chalcone 4-phosphate (24) and CN-chalcone 4 (this work) appears as complementary to that of classical receptor antagonists because the blockade of the chemokine is without any effect on the receptor. In particular, it is neither a partial agonist of CXCR4 nor an activator of CXCR7 (42, 57, 58), as was described...
Antedrug of the CXCL12 Neutraligand and Asthma

for AMD 3100 and in other instances with RANTES (regulated on activation normal T cell expressed and secreted) analogs acting on the CCR5 receptor (59). Therefore, the mechanism of action of chalcone 4 and its analogs deserves to be exploited in drug development programs.

Another concern was raised regarding the large tissue distribution of CXCR4, which can be the cause of possible side effects of CXCR4-targeting drugs. The use of systemically administered AMD 3100 confirmed the risk of side effects resulting from general CXCR4 inhibition. This was illustrated on leukocyte maturation in the bone marrow (27) and on cardiac function (36, 37, 60). We therefore generated a short lived readily hydrolyzable analog of the initial compound, chalcone 4, and show here that CN-chalcone 4 is as active as chalcone 4 on airway inflammation when administered by the intranasal route, whereas it is inactive when delivered systemically using the intraperitoneal route. It therefore typically behaves as an antedrug or soft drug.

The general principles and reactions that are used for antedrug structures include various cleavable chemical functions, such as carboxylic esters and amides, oximes, thioester, spiropoenes, or lactones (45, 61). In designing carbonitrile-chalcone 4, we here make use of the Knoevenagel and retro-Knoevenagel reactions (62) yielding the desired compound due to a reversible aldolization reaction (63) that has never been exploited in the antedrug field before. The biologically active compound, carbonitrile-chalcone 4, is readily hydrolyzed in aqueous media with a half-life of a few tens of min and yields vanillin and pCBA, which both serve as synthetic building blocks for the preparation of carbonitrile-chalcone 4. The probable hydrolysis mechanism involves the addition of one water molecule according to a Michael addition on the α-β unsaturated conjugated system. Hydration of the double bond is presumably facilitated by the presence of the electron-attracting nitrile group. The resulting enolic structure then evolves toward production of the initial reactants vanillin and pCBA according to a retroaldolization reaction (64). We show here that neither the reactants nor carbonitrile-chalcone 4 display any toxic effect in vivo or in HepG2 cells in vitro.

In conclusion, our results show a strong activity of a chalcone 4 derivative, carbonitrile-chalcone 4, displaying only local and no systemic effect due to a short lifetime in biological fluids, therefore playing the role of an antedrug, which is particularly interesting when the airways are considered. The various chalcone 4 derivatives that we have generated in this and previous works will serve as tools to understand CXCR4, CCR7, and CXCL12 functions in the airway inflammation process. In particular, the sequence of events and their dependence on CXCL12 activity will be important elements in the characterization of CXCL12 as a drug target in airway inflammation. The mechanism of action of chalcone 4 and its analogs deserves to be exploited in drug development programs because blockade of the chemokine is without any effect on the receptor spontaneous activity as opposed to the most widely encountered pharmacological action of G protein-coupled receptor antagonists.

REFERENCES

1. Johnson, Z., Schwarz, M., Power, C. A., Wells, T. N., and Proudfoot, A. E. (2005) Multi-faceted strategies to combat disease by interference with the chemokine system. Trends Immunol. 26, 268–274
2. Damby-Chaudière, C., Cabebo, N., and Ghysen, A. (2007) Control of cell migration in the development of the posterior lateral line. Antagonistic interactions between the chemokine receptors CXCR4 and CCR7/ RDC1. BMC Dev. Biol. 7, 23
3. Takabatake, Y., Sugiyama, T., Kohara, H., Matsusaka, T., Kurihara, H., Konl, P. A., Nagasawa, Y., Hamano, T., Matsu, I., Kawada, N., Imai, E., Nagasawa, T., Rakugi, H., and Isaka, Y. (2009) The CXCL12 (SDF-1) CCR4 axis is essential for the development of renal vasculature. J. Am. Soc. Nephrol. 20, 1714–1723
4. Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I., and Littman, D. R. (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599
5. Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kita, murame, Y., Yoshida, N., Kikutani, H., and Kishimoto, T. (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638
6. Lévesque, J. P., Hendy, J., Takamatsu, Y., Simmons, P. J., and Bendall, L. J. (2003) Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J. Clin. Invest. 111, 187–196
7. Petit, I., Szyperskrätz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., Ponomaryov, T., Taichman, R. S., Arenzana-Seisdedos, F., Fuji, N., Sandbank, J., Zipori, D., and Ladotid, T. (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol. 3, 687–694
8. Liles, W. C., Broxmeyer, H. E., Rodger, E., Wood, B., Hübel, K., Cooper, S., Hangoc, G., Bridger, G. J., Henson, G. W., Calandra, G., and Dale, D. C. (2003) Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102, 2728–2730
9. Broxmeyer, H. E., Cooper, S., Kohli, L., Hangoc, G., Lee, Y., Mantel, C., Clapp, D. W., and Kim, C. H. (2003) Transgenic expression of stromal cell-derived factor-1/CXC chemokine ligand 12 enhances myeloid progenitor cell survival/antiapoptosis in vitro in response to growth factor withdrawal and enhances myelopoiesis in vivo. J. Immunol. 170, 421–429
10. Broxmeyer, H. E., Orschell, C. M., Clapp, D. W., Hangoc, G., Cooper, S., Pletet, P. A., Liles, W. C., Li, X., Graham-Evans, B., Campbell, T. B., Calandra, G., Bridger, G., Dale, D. C., and Sour, E. F. (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J. Exp. Med. 201, 1307–1318
11. Balkwill, F. (2004a) The significance of cancer cell expression of the chemokine receptor CXCR4. Semin. Cancer Biol. 14, 171–179
12. Balkwill, F. (2004b) Cancer and the chemokine network. Nat. Rev. Cancer 4, 540–550
13. Balkwill, F., and Mantovani, A. (2010) Cancer and inflammation. Implications for pharmacology and therapeutics. Clin. Pharmacol. Ther. 87, 401–406
14. Müller, A., Hone, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., McClanahan, T., Murphy, E., Yuan, W., Wagner, S. N., Barrera, J. L., Mohar, A., Verastegui, E., and Zlotnik, A. (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56
15. Bleul, C. C., Wu, L., Hoxie, J. A., Springer, T. A., and Mackay, C. R. (1997) The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 94, 1925–1930
16. Feng, Y., Broder, C. C., Kennedy, P. E., and Berger, E. A. (1996) HIV-1 entry cofactor. Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877
17. Oberlin, E., Amara, A., Bacherle, F., Bessia, C., Virelizier, J. L., Arenzana-Seisdedos, F., Schwartz, O., Heard, J. M., Clark-Lewis, I., Legler, D. F., Loetscher, M., Baggiolini, M., and Moser, B. (1996) The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382, 833–835
18. Bacherle, F. (2010) CXCL12/CXCR4-axis dysfunctions. Markers of the
rare immunodeficiency disorder WHIM syndrome. *Dis. Markers* **29**, 189–198

19. Balabanian, K., Lagane, B., Pablos, J. L., Laurent, L., Planchenault, T., Verola, O., Lebec, C., Kerob, D., Dupuy, A., Hermine, O., Nicolas, J. F., Latger-Cannard, V., Bensousan, D., Bordignon, P., Baleux, F., Le Deist, F., Virelizier, J. L., Arenazna-Seisdedos, F., and Bachelerie, F. (2000) WHIM syndrome with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXC12. *Blood* **105**, 2449–2457

20. Wetzler, M., Talpaz, M., Kleiman, E. S., King, A., Huh, Y. O., Gutterman, J. U., and Kurzrock, R. (1990) A new familial immunodeficiency disorder characterized by severe neutropenia, a defective marrow release mechanism, and hypogammaglobulinemia. *Am. J. Med.* **89**, 663–672

21. Chow, K. Y., Brotin, É., Ben Khalifa, Y., Carthagena, L., Teissier, S., Dancuart, A., Galzi, J. L., Arenazna-Seisdedos, F., Thierry, F., and Bachelerie, F. (2010) A pivotal role for CXCL12 signaling in HPV-mediated transformation of keratinocytes. Clues to understanding HPV-pathogenesis in WHIM syndrome. *Cell Host Microbe* **8**, 523–533

22. Cinamon, G., Shinder, V., and Alon, R. (2001) Shear forces promote lymphocyte migration across vascular endothelium bearing apical cationic chemokines. *Nat. Immunol.* **2**, 515–522

23. Galzi, J. L., Hachet-Haas, M., Bonnet, D., Daubeuf, F., Lecat, S., Hibert, M., Haiech, J., and Frossard, N. (2010) Neutralizing endogenous chemokines with small molecules. Principles and potential therapeutic applications. *Pharmacol. Ther.* **126**, 39–55

24. Gasparik, V., Daubeuf, F., Hachet-Haas, M., Rohmer, F., Gizi, P., Haiech, J., Galzi, J. L., Hibert, M., Bonnet, D., and Frossard, N. (2012) Prodrugs of a CXC chemokine-12 (CXC12) neutraligand prevent inflammatory actions in an asthma model in vivo. *ACS Med. Chem. Lett.* **3**, 10–14

25. Gonzalo, J. A., Lloyd, C. M., Peled, A., Delaney, T., Coyle, A. J., and Gutierrez-Ramos, J. C. (2000) Critical involvement of the chemotactic axis CXC4/CXCR4/stromal cell-derived factor-1 in the inflammatory component of allergic airway disease. *J. Immunol.* **165**, 499–508

26. Hachet-Haas, M., Balabanian, K., Rohmer, F., Pons, F., Franchet, C., Lecat, S., Choy, K. Y., Dagher, R., Gizi, P., Didier, B., Lagane, B., Kellengeber, E., Bonnet, D., Baleux, F., Haiech, J., Parmentier, M., Frossard, N., Arenazna-Seisdedos, F., Hibert, M., and Galzi, J. L. (2008) Small neutralizing molecules to inhibit actions of the chemokine CXCL12. *J. Biol. Chem.* **283**, 23189–23199

27. Lukacs, N. W., Berlin, A., Schols, D., Skerlj, R. T., and Bridger, G. I. (2002) AMD3100, a CXC4 antagonist, attenuates allergic lung inflammation and airway hyperreactivity. *Am. J. Pathol.* **160**, 1353–1360

28. Montani, D., Perros, G., Gambaryan, N., Pei, S., Jiang, Y., Donnelly, R., Price, T. H., and Dale, D. C. (2005) Augmented mobilization and collection of CD34+ hematopoietic cells from normal human volunteers stimulated with granulocyte-colony-stimulating factor by single-dose administration of AMD3100, a CXCR4 antagonist. *Transfusion* **45**, 295–300

29. McDermott, D. H., Lopez, J., Deng, F., Liu, Q., Ulrick, I., Kwatraena, N., Anaya-O’Brien, S., Penzak, S. R., Filho, J. O., Long Priel, D. A., Kelly, C., Garofalo, M., Littell, P., Marquesen, M. M., Hilligoss, D., Decastro, R., Fleisher, T. A., Kuhns, D. B., Malech, H. L., and Murphy, P. M. (2011) The CXCR4 antagonist plerixafor corrects panleukopenia in patients with WHIM syndrome. *Blood* **118**, 4957–4962

30. McDermott, D. H., Lopez, J., Deng, F., Liu, Q., Ojode, T., Chen, H., Ulrick, I., Kwatraena, N., Kelly, C., Anaya-O’Brien, S., Garofalo, M., Marquesen, M., Hilligoss, D., Decastro, R., Malech, H. L., and Murphy, P. M. (2011) AMD3100 is a potent antagonist at CXCR4(R334X), a hypermutant chemokine receptor and cause of WHIM syndrome. *J. Cell Mol. Med.* **15**, 2071–2081

31. Hendrix, C. W., Collier, A. C., Lederman, M. M., Schols, D., Pollard, R. B., Brown, S., Jackson, J. B., Cooms, R. W., Glesby, M. J., Flexner, C. W., Bridge, G. J., Badel, K., MacFarland, R. T., Henson, G. W., and Calandra, G. (2004) Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. *J. Acquir. Immun Defic. Syndr.* **37**, 1253–1262

32. Kalatskaya, I., Berchiche, Y. A., Gravel, S., Limberg, B. J., Rosenbaum, J. S., and Heveker, N. (2009) AMD3100 is a CXCR7 ligand with allosteric agonist properties. *Mol. Pharmacol.* **75**, 1240–1247

33. Balabanian, K., Brodin, E., Biajoux, V., Bouchet-Delbos, L., Lainey, E., Fenet, N., Bonnet, D., Fiette, L., Emilie, D., and Bachelerie, F. (2012) Proper desensitization of CXCR4 is required for lymphocyte development and peripheral compartmentalization in mice. *Blood* **119**, 5722–5730

34. Bouchery, T., Dénécé, G., Attout, T., Ehrhardt, K., Lermite-Vallarino, N., Hachet-Haas, M., Galzi, J. L., Brotin, E., Bachelerie, F., Gavotte, L., Mouila, C., Bain, O., and Martin, C. (2012) The chemokine CXCL12 is essential for the clearance of the filaria *Litomosoides sigmodontis* in resistant mice. *Plos One* **7**, e34971

35. Khan, M. O., Park, K. K., and Lee, H. J. (2005) Antedrug of the CXCL12 Neutraligand and Asthma. An approach to safer drugs. *Curr. Med. Chem.* **12**, 2227–2239

36. Maillet, E., L. Pellegrini, N., Valant, C., Bucher, B., Hibert, M., Bourguignon, J. J., and Galzi, J. L. (2007) A novel, conformation-specific allostERIC inhibitor of the tachykinin NK2 receptor (NK2R) with functionally selective properties. *FASEB J.* **21**, 2124–2134

37. Jiang, L., Collins, I., Davis, R., Lin, K. M., DeCamp, D., Roach, T., Hsueh, R., Rebres, R. A., Ross, E. M., Taussig, R., Fraser, I., and Sternweis, P. C. (2007) Use of a CAMP BRET sensor to characterize a novel regulation of cAMP by the sphininosine 1-phosphate/G13 pathway. *J. Biol. Chem.* **282**, 10576–10584

38. Waldhausler, K. M., Brecht, K., Hebeisen, S., Ha, H. R., Konrad, D., Bur, D., and Krähenbühl, S. (2008) Interaction with the hERG channel and cytotoxicity of amiodarone and amiodarone analogues. *Br. J. Pharmacol.* **155**, 585–595

39. Negrete-García, M. C., Velazquez, J. R., Popoca-Coyotl, A., Montes-Vi
Antedrug of the CXCL12 Neutraligand and Asthma

50. Fulkerson, P. C., Zimmermann, N., Hassman, L. M., Finkelman, F. D., and Rothenberg, M. E. (2004) Pulmonary chemokine expression is coordinately regulated by STAT1, STAT6, and IFN-γ. J. Immunol. 173, 7565–7574

51. Thomas, S. Y., Banerji, A., Medoff, B. D., Lilly, C. M., and Luster, A. D. (2007) Multiple chemokine receptors, including CCR6 and CXCR3, regulate antigen-induced T cell homing to the human asthmatic airway. J. Immunol. 179, 1901–1912

52. Eddleston, J., Christiansen, S. C., and Zuraw, B. L. (2002) Functional expression of the C-X-C chemokine receptor CXCR4 by human bronchial epithelial cells. Regulation by proinflammatory mediators. J. Immunol. 169, 6445–6451

53. Jourdan, P., Abbal, C., Noraz, N., Hori, T., Uchiyama, T., Vendrell, J. P., Bousquet, J., Taylor, N., Pène, J., and Yssel, H. (1998) IL-4 induces functional cell-surface expression of CXCR4 on human T cells. J. Immunol. 160, 4153–4157

54. Wang, J., Harada, A., Matsushita, S., Matsumi, S., Zhang, Y., Shiota, T., Nagai, Y., and Matsushima, K. (1998) IL-4 and a glucocorticoid up-regulate CXCR4 expression on human CD4+ T lymphocytes and enhance HIV-1 replication. J. Leukoc. Biol. 64, 642–649

55. Nagase, H., Miyamasu, M., Yamaguchi, M., Fujisawa, T., Ohra, K., Yamamoto, K., Morita, Y., and Hirai, K. (2000) Expression of CXCR4 in eosinophils. Functional analyses and cytokine-mediated regulation. J. Immunol. 164, 5935–5943

56. Nagase, H., Miyamasu, M., Yamaguchi, M., Kawasaki, H., Ohra, K., Yamamoto, K., Morita, Y., and Hirai, K. (2000) Glucocorticoids preferentially upregulate functional CXCR4 expression in eosinophils. J. Allergy Clin. Immunol. 106, 1132–1139

57. Kim, H. Y., Hwang, J. Y., Kim, S. W., Lee, H. J., Yun, H. J., Kim, S., and Jo, D. Y. (2010) The CXCR4 antagonist AMD3100 has dual effects on survival and proliferation of myeloma cells in vitro. Cancer Res. Treat. 42, 225–234

58. Trent, J. O., Wang, C. X., Murray, J. L., Shao, W., Tamamaka, H., Fujii, N., and Peiper, S. C. (2003) Lipid bilayer simulations of CXCR4 with inverse agonists and weak partial agonists. J. Biol. Chem. 278, 47136–47144

59. Wells, T. N., and Proudfoot, A. E. (1999) Chemokine receptors and their antagonists in allergic lung disease. Inflamm. Res. 48, 353–362
An Antedrug of the CXCL12 Neutraligand Blocks Experimental Allergic Asthma without Systemic Effect in Mice
François Daubeuf, Muriel Hachet-Haas, Patrick Gizzi, Vincent Gasparik, Dominique Bonnet, Valérie Utard, Marcel Hibert, Nelly Frossard and Jean-Luc Galzi

J. Biol. Chem. 2013, 288:11865-11876.
doi: 10.1074/jbc.M112.449348 originally published online February 28, 2013

Access the most updated version of this article at doi: 10.1074/jbc.M112.449348

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 67 references, 27 of which can be accessed free at
http://www.jbc.org/content/288/17/11865.full.html#ref-list-1