Enzymatic synthesis of DNA strands containing α-L-LNA (α-L-configured locked nucleic acid) thymine nucleotides

Torben Højland, Rakesh N. Veedu, Birte Vester and Jesper Wengel

1Department of Physics, Chemistry and Pharmacy; Nucleic Acid Center; Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense, Denmark; 2School of Chemistry and Molecular Biosciences; The University of Queensland; Brisbane, Australia

Keywords: α-L-LNA, polymerase, enzymatic synthesis, modified nucleotide, triphosphate

Abbreviations: α-L-LNA, α-L-configured locked nucleic acid; HIV RT, human immunodeficiency virus reverse transcriptase; LNA, locked nucleic acid; PCR, polymerase chain reaction; DCM, dichloromethane; DEAE, diethylaminoethyl; HRMS, high resolution mass spectrometry; ESI, electrospray ionization; TBE, tris-borate-EDTA; EDTA, ethylenediaminetetraacetic acid; Dpo4, DNA polymerase IV; Tris, tris(hydroxymethyl)aminomethane

We describe the first enzymatic incorporation of an α-L-LNA nucleotide into an oligonucleotide. It was found that the 5′-triphosphate of α-L-LNA is a substrate for the DNA polymerases KOD, 9°Nm, Phusion and HIV RT. Three dispersed α-L-LNA thymine nucleotides can be incorporated into DNA strands by all four polymerases, but they were unable to perform consecutive incorporations of α-L-LNA nucleotides. In addition it was found that primer extension can be achieved using templates containing one α-L-LNA nucleotide.

Introduction

Locked nucleic acid (LNA) and its diastereomer α-L-LNA (α-L-configured locked nucleic acid) have found numerous applications within the field of nucleic acid chemical biology. Recently, enzymatic incorporation of LNA nucleotides has been realized. Consequently, no report on enzymatic incorporation of an α-L-LNA nucleotide, or any other LNA stereoisomeric nucleotide, has been published. In this paper we disclose the results of initial experiments on the compatibility of polymerases with α-L-LNA nucleotides.

As is the case with LNA, oligonucleotides containing α-L-LNA nucleotides show very efficient binding to complementary nucleic acids. In addition, α-L-LNA nucleotides provide protection from nucleases when incorporated into oligonucleotides. NMR studies concluded that DNA strands containing three α-L-LNA incorporations formed duplexes with DNA and RNA that were of the B-type and intermediate A/B-type, respectively. Thus, α-L-LNA can be considered a DNA mimic.

The interesting properties of α-L-LNA led us to investigate the compatibility of polymerases with α-L-LNA nucleotides. We were encouraged by the fact that LNA nucleotides can be incorporated by a variety of polymerases. In particular, KOD is very efficient at incorporating LNA nucleotides as well as reading LNA-containing templates. In general, KOD was found to be non-restrictive with respect to both furanose ring puckering and C2′-modification since ribonucleotides could also be incorporated by KOD.

The structures of LNA and α-L-LNA (Fig. 1) do not seem to be similar at first glance, but it has been shown that the positioning of atoms important for duplex formation (the O5′ and O3′ atoms of the sugar ring and the N1 atom of the nucleobase) overlay to a large extent in the two nucleotides. Given the success of enzymatic incorporation of LNA nucleotides, we therefore speculated that the unusual sugar moiety of α-L-LNA could as well be accepted by some polymerases. Many examples of incorporation of nucleotides with unnatural sugar moieties exist in literature, and a number of studies on stereoisomeric forms of 2′-deoxynucleotide triphosphates have shown that these in many cases act as chain terminators.

*Correspondence to: Jesper Wengel; Email: jwe@sdu.dk
Submitted: 11/21/11; Revised: 01/06/12; Accepted: 01/06/12
http://dx.doi.org/10.4161/adna.19272

Figure 1. Structures of LNA and α-L-LNA nucleotides
Results

Synthesis of α-L-LNA TTP. The 5'-triphosphate of the thymine α-L-LNA nucleoside (α-L-LNA TTP) was synthesized in two steps from the known nucleoside 1 (Scheme 1). Nucleoside 1 was detritylated and the resulting nucleoside 2 was converted to α-L-LNA TTP using the approach initially developed by Ludwig and subsequently used by Veedu et al. to synthesize LNA NTPs. This approach involves phosphorylation of the primary alcohol followed by reaction with pyrophosphate. α-L-LNA TTP was obtained in an overall yield of 4% after purification over an ion-exchange resin (see Materials and Methods for details).

Incorporation of α-L-LNA thymine nucleotides. Primer extension experiments were performed on three different primer-template complexes (Fig. 2) to test the limits of α-L-LNA-T nucleotide incorporation across 2'-deoxyadenosines in the template. Template T1 contained three 2'-deoxyadenosines, while template T2 contained eight consecutive 2'-deoxyadenosines. Template T3 contained only one 2'-deoxyadenosine for coding which was placed at the beginning. Thus, for T3 the polymerases needed to start by extending the primer with α-L-LNA-T as the first nucleotide. Positive and negative control reactions were performed in parallel with reactions with α-L-LNA TTP. The reaction mixture of the positive controls contained all four natural dNTPs and led to extension of the primer to full length. Negative control reaction mixtures contained only dATP, dGTP and dCTP and were expected to stop at the first 2'-deoxyadenosine of the template. α-L-LNA incorporation was tested using reaction mixtures containing dATP, dGTP, dCTP and α-L-LNA TTP. Radiolabeled P1 and T1 were used as 19mer and 43mer markers.

The following seven polymerases were initially explored for their ability to incorporate α-L-LNA nucleotides: the Klenow fragment of E. coli DNA polymerase I (A-family polymerase); KOD, 9Nm, and Phusion DNA polymerases (B-family polymerase); human polymerase β (X-family polymerase); S. solfataricus DNA polymerase IV (Dpo4, Y-family polymerase); and HIV RT (reverse transcriptase family polymerase). It was found that the four most efficient polymerases for α-L-LNA nucleotide incorporation were KOD, 9Nm, Phusion and HIV RT. Figure 3 shows the results of primer extension experiments on the T1 template for these four polymerases. The experiment demonstrated that KOD, 9Nm, and Phusion DNA polymerases can efficiently accept α-L-LNA TTP as a substrate and afford the full-length extension products (lane 2). In particular, KOD is very quick at extending the primer to full length, however accompanied by some product degradation. Although HIV RT could also produce the fully extended product in low yield, the reaction did not progress to completion in the time the other three polymerases required.

Next, consecutive incorporation of α-L-LNA-T nucleotides was investigated (Fig. 4). KOD, Phusion and HIV RT were unable to extend the primer beyond the first incorporation of α-L-LNA-T (lane 2). 9Nm DNA polymerase was able to incorporate consecutive α-L-LNA-T nucleotides, but full-length extension product was not observed. On comparison with a known DNA marker (not shown), we could conclude that a major product of the extension was 31 nucleotides long corresponding to consecutive incorporation of five α-L-LNA-T nucleotides, though some of the shorter products were also present in trace amounts.

Materials and Methods

Scheme 1. Chemical synthesis of α-L-LNA TTP. (i) O2(OH)2OD; Et3SH, O2(OH) (100%); (ii) (1) (MeO)3PO, proton sponge, POCl3, -10°C → -5°C; (2) tri-n-butylamine, tributylammonium pyrophosphate, dimethylformamide, -5°C; (3) triethylammonium bicarbonate (4%).

Figure 2. Primer-template complexes for primer extension experiments using α-L-LNA TTP. 2'-Deoxyadenosines encoding incorporation of α-L-LNA thymines are underlined.

www.landesbioscience.com Artificial DNA: PNA & XNA
We also investigated whether the polymerases needed a running start in order to incorporate α-L-LNA-T' nucleotides. We designed template T3 to direct the extension of the primer with α-L-LNA TTP as the first triphosphate to be used as substrate. The results in Figure 5 show that KOD, 9°N m and HIV RT were able to extend the primer to full length. In fact, KOD was so efficient with template T3 that misincorporation bands are seen in the positive and negative control reactions (Fig. 5, lanes 1 and 3). Phusion DNA polymerase proceeded with difficulty in extending the primer to afford only trace amounts of full-length product.

Primer extension using templates containing α-L-LNA nucleotides. Next, we investigated whether the four polymerases are able to use α-L-LNA TTP as substrate that can tolerate α-L-LNA nucleotides in the template. The commercially available T and 5-methyl-C α-L-LNA phosphoramidites were used to produce templates T4-T7 (Fig. 6). In templates T5 and T7, α-L-LNA nucleotides are placed one after another to produce a four...
incorporation of 2'-deoxynucleotides using templates containing α-L-LNA nucleotides was tested by positive control reactions in which the mixture contained all four natural dNTPs. Negative control reactions were run in parallel. Negative control mixtures contained only dGTP, dCTP and dTTP (for incorporation across α-L-LNA-T) or dATP, dCTP and dTTP (for incorporation across α-L-LNA-5-methyl-C).

KOD, 9°N m, Phusion and HIV RT which performed well at α-L-LNA-T incorporations were investigated for their ability to use templates containing α-L-LNA nucleotides. The results of primer extension experiments using templates T4-T7 are shown in Figure 7. All four polymerases demonstrated difficulties in extending the primer using templates T4-T7. However, template T6 which contained a single α-L-LNA-5-methyl-C nucleotide afforded the full-length extension product by all four polymerases (Fig. 7, lane 5) with KOD as the more efficient.

Discussion

Incorporation of α-L-LNA nucleotides. KOD, 9°N m and Phusion DNA polymerases were able to incorporate α-L-LNA-T nucleotides when template T1 was used (Fig. 3) whereas incorporation using template T2 proved to be much more difficult (Fig. 4). A NMR structure determination of an α-L-LNA/DNA-DNA duplex concluded that the DNA backbone must rearrange to accommodate the α-L-LNA nucleotides in order for optimal Watson-Crick base pairing to take place.15 This may explain the differences in primer extension between templates T1 and T2. In the case of T1, the growing primer strand did not contain consecutive α-L-LNA nucleotides, which means that the backbone could possibly rearrange to keep the 3'-oxygen in the right position in the polymerase active site for further extension.

Primer extension using templates containing α-L-LNA nucleotides. In general, primer extension was difficult when using α-L-LNA-containing templates. Only the T6 template, which contained a single α-L-LNA-5-methyl-C nucleotide, was capable of templating full-length primer extension (Fig. 7). It was not surprising that templates T5 and T7 could not be used for primer extension since the polymerases had great difficulty in incorporating several α-L-LNA nucleotides in a row (Fig. 4). On this note it was, however, surprising that full-length extension product was not observed for template T4 since α-L-LNA nucleotides were not positioned consecutively. Possibly, rearrangement of the backbone induced by the α-L-LNA nucleotides is unfavorable for template function in general, e.g., because of steric clashes between with the polymerase and the template.
modified template strand. In general, primer extension was not halted at the position of the α-L-LNA nucleotide but rather at the subsequent position. Perhaps the high stability of the α-L-LNA-DNA pairing and/or the unique structure of the α-L-LNA nucleotides prevent the flexibility needed to position the primer strand 3'-oxygen correctly in the active site of the polymerases for further extension.

Comparison with LNA nucleotide incorporation. Of the seven polymerases tested for their ability to incorporate α-L-LNA nucleotides, the three B-family polymerases (KOD, γ^N_m, and Phusion) proved to be by far the most efficient. This is not to say that other B-family polymerases will be efficient too as Deep Vent and Therminator proved to be poor at incorporating LNA nucleotides, contrary to KOD, γ^N_m, and Phusion DNA polymerases.¹⁸

Figure 7. Primer extension using templates T4-T7. Lanes 1, 3, 5 and 7: positive controls (dATP, dGTP, dCTP and TTP); lanes 2, 4, 6 and 8: negative controls (dGTP, dCTP and dTTP (for incorporation across α-L-LNA-T); or dATP, dCTP and dTTP (for incorporation across α-L-LNA-5-methyl-C)); lanes 1 and 2: template T4; lanes 3 and 4: template T5; lanes 5 and 6: template T6; lanes 7 and 8: template T7; lane 9: P1 and T1 (19mer and 43mer).
In general, incorporation of α-L-LNA nucleotides proved to be more difficult than incorporation of LNA nucleotides.15,21 Furthermore, templates containing LNA nucleotides are readily used by KOD and 9°N\textsubscript{m} for primer extension reactions.17,18 LNA nucleotides are RNA mimics and have been shown to conformationally steer the 3'-flanking sugar toward N-type sugar puckers.15 In this light, it can be surprising that DNA-mimicking α-L-LNA nucleotides, which do not conformationally steer flanking sugar nucleotides,22 are poorly accepted by polymerases when incorporated into template strands.

At present, KOD is the polymerase of choice for LNA nucleotide incorporation.17,18,21 KOD also performed well with respect to α-L-LNA nucleotide incorporation though. KOD could not incorporate consecutive α-L-LNA nucleotides. KOD can perform this task when using LNA triphosphates, and even extension of primers exclusively using LNA triphosphates has been achieved.17 KOD has been shown to be non-selective in regard to sugar puckering and modification at the 2' position.18

Accordingly, α-L-LNA TTP was accepted as a substrate by KOD. 9°N\textsubscript{m} likewise performed well with respect to α-L-LNA nucleotide incorporation. 9°N\textsubscript{m} was the only polymerase capable of incorporating consecutive α-L-LNA nucleotides. 9°N\textsubscript{m} has also been used for incorporation of LNA nucleotides, and PCR amplification has been achieved using LNA triphosphates and this polymerase.17

Phusion was able to incorporate α-L-LNA nucleotides, but the primer could not be extended to full length when several α-L-LNA nucleotides in a row had to be incorporated.17 This was also observed for LNA incorporations, in which case Phusion was able to incorporate up to three consecutive LNA-T nucleotides.17

HIV RT was unsuccessful when we tried to incorporate LNA nucleotides into oligonucleotides (R. N. Veedu and J. Wengel, unpublished data), however, α-L-LNA nucleotides could be incorporated under certain conditions. Some full-length product was observed using template T1 and HIV RT was efficient at incorporating up to three consecutive LNA-T nucleotides.16

HIV RT was unsuccessful when we tried to incorporate LNA nucleotides into oligonucleotides (R. N. Veedu and J. Wengel, unpublished data), however, α-L-LNA nucleotides could be incorporated under certain conditions. Some full-length product was observed using template T1 and HIV RT was efficient at incorporating up to three consecutive LNA-T nucleotides.16

Phusion was able to incorporate α-L-LNA nucleotides, but the primer could not be extended to full length when several α-L-LNA nucleotides in a row had to be incorporated.17 This was also observed for LNA incorporations, in which case Phusion was able to incorporate up to three consecutive LNA-T nucleotides.17

Conclusion

KOD, 9°N\textsubscript{m}, Phusion and HIV RT polymerases are able to accept α-L-LNA TTP as a substrate and to produce full-length primer extension reactions. However, primer extension involving consecutive incorporations of α-L-LNA nucleotides proved difficult. Templates containing more than one α-L-LNA nucleotide were not suitable for primer extension reaction when using these four polymerases. The fact that standard DNA polymerases are able to incorporate α-L-LNA nucleotides and to read α-L-LNA-containing templates is notable taking the highly unnatural conformational and configurational features of α-L-LNA nucleotides into consideration. Further advances are needed to obtain more efficient replication of α-L-LNA nucleotides, but the results presented herein represent the first step toward including α-L-LNA nucleotides in the context of biotechnology, e.g., aptamer evolution.

Materials and Methods

1.2O\textsubscript{4}A4O\textsubscript{2}C-methylene-\textit{\textalpha}-ribofuranosylthymine (2) Nucleoside 2 \((0.12 \text{ g}, 0.45 \text{ mmol})\) was dissolved in \(\text{MeO}_2\text{PO} (1.5 \text{ ml})\) and proton sponge \((110 \text{ mg}, 0.51 \text{ mmol})\) was added. The reaction mixture was cooled to \(-10^\circ\text{C}\) and freshly distilled \(\text{POCl}_3 (44 \text{ ml}, 0.48 \text{ mmol})\) was slowly added. The reaction was quenched after 1 h by using MeOH. The mixture was evaporated to dryness. The product was obtained as a white solid after column chromatographic purification (0–5% \(\text{MeOH/DCM, v/v}\)). Yield \(0.12 \text{ g} (100\%)\). \(\text{H} \text{NMR data were consistent with literature.}7 \) This known compound has been synthesized via a new route from the \(\text{O5'-protected precursor.}\)

The \(\text{O5'-triphosphate of 1-(2'\text{O4}4\text{O2}C-methylene-\textit{\textalpha}-ribofuranosylthymine (α-L-LNA TTP) Nucleoside 2 (0.12 g, 0.45 mmol) was dissolved in (MeO}_2\text{PO} (1.5 ml) and proton sponge (110 mg, 0.51 mmol) was added. The reaction mixture was cooled to \(-10^\circ\text{C}\) and freshly distilled POCl}_3 (44 ml, 0.48 mmol) was slowly added. The reaction was quenched after 1 h by using MeOH. The mixture was evaporated to dryness. The product was obtained as a white solid after column chromatographic purification (0–5% \(\text{MeOH/DCM, v/v}\)). Yield \(0.12 \text{ g} (100\%)\). \(\text{H} \text{NMR data were consistent with literature.}7 \) This known compound has been synthesized via a new route from the \(\text{O5'-protected precursor.}\)

General procedure for primer extension experiments. All water was distilled twice before use. Unmodified primers and templates were purchased from Sigma-Geneoys. Templates containing α-L-LNA nucleotides were produced in-house using commercially available phosphoramidites (Exiqon). Primers were \(5'-\text{P labeled by [γ-\text{P}32P]-ATP (-6000 Ci/mmol, GE Healthcare) using T4 polynucleotide kinase (NEB, supplied by Medinova, M02015) according to a procedure by the manufacturer. Primer and template were mixed in a 1:2 ratio. The mixture was heated to \(80^\circ\text{C}\) and subsequently slowly cooled to \(37^\circ\text{C}\). Primer extension reactions were initiated by adding polymerase to a mix of buffer, nucleoside triphosphates and primer/template complex. The final concentration of nucleoside triphosphates in the used mix was approximately 190 \(\mu\text{M}\). After a quick mixing, reaction tubes were incubated at the optimum temperature for the particular polymerase. Reaction volumes were 20.0 \(\mu\text{l}\) and a 5 \(\mu\text{l}\) aliquot was added to 2.25 \(\mu\text{l}\) loading buffer (95% formamide, 20 \(\mu\text{M}\) EDTA, bromophenol blue and xylene cyanol dye) to stop the reaction. Products were separated on 13% 7 M urea polyacrylamide gels using TBE buffer (100 \(\mu\text{M}\) Tris, 90 \(\mu\text{M}\) boric acid, 1 mM EDTA, pH 8.4) and visualized by phosphor imaging.
Competition of the primer extension reactions.

KOD (TOYOBO, supplied by Nanogen. 71085-3).
2.50 µl 10X KOD buffer 1
1.00 µl MgCl₂ (25 mM)
1.00 µl MnCl₂ (50 mM)
1.50 µl Klenow Fragment (2.50 µm each)
0.60 µl Primer-template complex (5.0-10.0 µM)
0.60 µl KOD polymerase (2.50 µ/l)
12.8 µl Twice distilled water
9°N m (NER, supplied by Medinova, M0260S).
2.00 µl 10Thermopol buffer
1.50 µl Triphosphate mixture (2.50 µm each)
0.60 µl Primer-template complex (5.0-10.0 µM)
0.60 µl 9°N m polymerase (2000 U/ml)
15.3 µl Twice distilled water
Phusion (Finnzymes, P-530S).
4.00 µlx5 Phusion HB buffer
1.50 µl Triphosphate mixture (2.50 µm each)
0.60 µl Primer-template complex (5.0-10.0 µM)
0.60 µl Phusion (2000 U/ml)
13.3 µl Twice distilled water
Human polymerase β (Trevigen, 4020-500-E).
2.00 µl 10X reaction buffer 8
1.50 µl Triphosphate mixture (2.50 µm each)
0.60 µl Primer-template complex (5.0-10.0 µM)
0.60 µl Human polymerase β (3.3 µM)
15.3 µl Twice distilled water

Klenow Fragment (Boehringer Mannheim, NEB, B7002).
5.00 µl 5X Phusion HB buffer
1.50 µl Triphosphate mixture (2.50 µm each)
0.60 µl Primer-template complex (5.0-10.0 µM)
0.60 µl Phusion (2000 U/ml)
14.3 µl Twice distilled water

References
1. Singh SK, Nisar P, Kalthas AL, Wengel J. LNA (locked nucleic acid): synthesis and high-affinity recognition towards DNA and RNA. Chem Commun (Cambridge, UK) 1998; 4:458-60.
3. Obika S, Nanbu D, Hari Y, Andoh J, Morio K, Doi T, Klenow Fragment (Boehringer Mannheim; NEB, B7002S).
4. Rajwanshi VK, Håkansson AE, Dahl BM, Wengel J. High-affinity nucleic acid recognition using LNA (locked nucleic acid): 3'-deoxy modified LNA (3'-d-LNA) vs 3'-thio-LNA (3'-s-LNA). Chem Commun (Cambridge) 1999; 17:159-60.
6. Rajwanshi VK, Håkansson AE, Sundén MD, Finn-S, Singh SK, Karet K, et al. The eight stereoisomers of xylo-LNA. J Org Chem 2000; 65:5161-6; PMID:10993341; http://dx.doi.org/10.1021/ja980666l.
8. Håkansson AE, Koshkin AA, Wengel J. The adenine derivatives of 3′-L-LNA (3′-o-configured locked nucleic acid): synthesis and high-affinity hybridization towards DNA, RNA, LNA and 3′-LNA complementary sequences. Bioorg Med Chem Lett 2001; 11:595-6. PMID:11299695.
10. Rajwanshi VK, Håkansson AE, Babu R, Wengel J. LNA (locked nucleic acid): a versatile tool for nucleic acid recognition. Angew Chem Int Ed 2003; 42:11878-97; PMID:14684614; 10.1002/anie.200303109.
12. Vester B, Wengel J. LNA (locked nucleic acid): synthesis and high-affinity hybridization towards DNA, RNA, LNA and 3′-LNA complementary sequences. Bioorg Med Chem Lett 2001; 11:595-6. PMID:11299695.
14. Kaur H, Babu BR, Maiti S. Perspectives on chemistry and therapeutic applications of Locked nucleic Acid (LNA). Chem Rev 2007; 107:4617-74; PMID:17949466.
16. Vester B, Wengel J. In vitro incorporation of LNA nucleotides into DNA strands. Trends Biotechnol 2003; 21:74-81; PMID:12573856; http://dx.doi.org/10.1016/S0167-7799(02)00453-0.
18. Vester B, Wengel J. Zeinzyme incorporation of LNA nucleotides into DNA strands. ChemBioChem 2007; 8:49-52. PMID:17315250.
20. Veedu RN, Wengel J. Locked nucleic acid nucleoside triphosphates. J Am Chem Soc 2002; 124:2164-76; PMID:12008661.
22. Veedu RN, Wengel J. Locked nucleic acid nucleoside triphosphates. J Am Chem Soc 2002; 124:2164-76; PMID:12008661.
24. Veedu RN, Wengel J. Efficient enzymatic synthesis of locked nucleic acid-DNA oligomers using oligo-DNA templates and Klenow fragment analogue(s). Nucleic Acids Res 2003; 31:9124-5; PMID:14055806.
26. Veedu RN, Wengel J. Efficient enzymatic synthesis of locked nucleic acid-DNA oligomers using oligo-DNA templates and Klenow fragment analogue(s). Nucleic Acids Res 2003; 31:9124-5; PMID:14055806.
28. Veedu RN, Wengel J. Efficient enzymatic synthesis of locked nucleic acid-DNA oligomers using oligo-DNA templates and Klenow fragment analogue(s). Nucleic Acids Res 2003; 31:9124-5; PMID:14055806.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
The authors wish to thank Lykke Haastrup Hansen. This research was made possible by funding for the Nuclear Acid Center by The Danish National Research Foundation.

Keywords: Biotechnology, Oligonucleotides, LNA, LNA nucleosides, LNA modified oligonucleotides, LNA/DNA hybridization, LNA/DNA aptamers.
21. Venda S, Verna B, Wong K. Polyamine directed incorporation studies of DNA-like molecules. Nucleic Acids Res 2010; 38:4779; http://dx.doi.org/10.1093/nar/gkq262c.

22. Frieden M, Hansen HF, Koch T. Nuclease stability of LNA oligonucleotides and DNA-DNA hybrids. Nucleosides Nucleotides Nucleic Acids 2008; 27: 3765-72. PMID:18775324; http://dx.doi.org/10.1080/15257770802094690.

23. Frieden M, Hansen HF, Koch T. Nuclease stability of LNA oligonucleotides and DNA-DNA hybrids. Nucleosides Nucleotides Nucleic Acids 2008; 27: 3765-72. PMID:18775324; http://dx.doi.org/10.1080/15257770802094690.

24. Nielsen KME, Petersen M, Håkansson AE, Szostak JW, et al. Kinetic analysis of an efficient DNA-dependent TNA polymerase. J Am Chem Soc 2005; 127:7427-34. PMID:15898792; http://dx.doi.org/10.1021/ja0492055.

25. Veedu RN, Vester B, Wengel J. Polymerase directed incorporation of glucose nucleotides. The intracellular phosphorylation of (-)-2′-deoxy-D-ribose and primer extension involving all four LNA-DNA chimeras. Biochim Biophys Acta 1995; 1250:19-24; PMID:1281153; http://dx.doi.org/10.1016/0006-2952(95)96620-A.

26. Nielsen KME, Petersen M, Håkansson AE, Szostak JW, et al. Kinetic analysis of an efficient DNA-dependent TNA polymerase. J Am Chem Soc 2005; 127:7427-34. PMID:15898792; http://dx.doi.org/10.1021/ja0492055.

27. Heuberger BD, Switzer C. A pre-RNA candidate 5′-monophosphate into DNA by HIV-1 reverse transcriptase and human DNA polymerase. J Biol Chem 1992; 267:25019-24; PMID:10679896; http://dx.doi.org/10.1016/0021-9975(92)92404-A.

28. Renders M, Abramov M, Froeyen M, Herdewijn P. Reverse transcriptase incorporation of 1,5-anhydrohexitol nucleotides. Nucleic Acids Res 1995; 23:2840-7; PMID:7544886; http://dx.doi.org/10.1093/nar/23.15.2840.

29. Gardner AF, Jack WE. Determination of nucleoside sugar recognition in an archaean DNA polymerase. Nucleic Acids Res 1999; 27:2925-33. PMID:10301014; http://dx.doi.org/10.1093/nar/27.12.2925.

30. Gardner AF, Jack WE. Absolutely and dioxane tolerance polymerase directs dioxane sugar recognition by archaean and Tag DNA polymerases. Nucleic Acids Res 2002; 30:4843-53. PMID:12067827; http://dx.doi.org/10.1093/nar/gkf485.

31. Chapter JC, Sondek PJ. TNA synthesis by DNA polymerases. J Am Chem Soc 2003; 125:5074-5. PMID:1288939; http://dx.doi.org/10.1021/ja305917a.

32. Horohota A, Zou K, Ichida JK, Yu R, McLachlan DW, Sondek PJ. Reversing transcription incorporation of 1,5-alkyloxyalkyl monomers. Nucleic Acids Res 2008; 36:15432-4. PMID:18938072; http://dx.doi.org/10.1093/nar/gkn835.

33. Vastmans K, Froeyen M, Kerremans L, Pochet S, Renders M. Reverse transcription incorporation of 1,5-alkyloxyalkyl monomers. Nucleic Acids Res 2008; 36:15432-4. PMID:18938072; http://dx.doi.org/10.1093/nar/gkn835.