Non-linear spin to charge conversion in mesoscopic structures

Peter Stano¹, Jaroslav Fabian² and Philippe Jacquod³,⁴,⁵

¹Institute of Physics, Slovak Academy of Sciences, 845 11 Bratislava, Slovakia
²Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
³Physics Department, University of Arizona, Tucson, AZ 85721, USA
⁴College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA
⁵Département de Physique Théorique, Université de Genève, CH-1205 Genève, Switzerland

Motivated by recent experiments [Vera-Marun et al., arXiv:1109.5069], we formulate a non-linear theory of spin transport in quantum coherent conductors. We show how a mesoscopic constriction with energy-dependent transmission can convert a spin current injected by a spin accumulation into an electric signal, relying neither on magnetic nor exchange fields. When the transmission through the constriction is spin-independent, the spin-charge coupling is non-linear, with an electric signal that is quadratic in the accumulation. We estimate that gated mesoscopic constrictions have a sensitivity that allows to detect accumulations much smaller than a percent of the Fermi energy.

PACS numbers: 72.25.Dc, 73.50.Fq, 75.76.+j, 73.23.-b

Introduction.—Spin current detection and measurement protocols are for the most part based on ferromagnetic contacts or Zeeman fields. While efficient and well controlled, these schemes are not optimized for miniaturization, because exchange and magnetic fields have low spatial resolution and because they cannot detect the weak spin accumulations achievable in two dimensional electron gases such as GaAs heterostructures, the platform of choice for sub-micron spintronics. To unleash the full potential of spintronics at the nanoscale, it is therefore imperative to find novel, all-electric protocols. In sub-micron structures, however, reciprocity and other symmetry relations constrain the detection of spin currents in the linear response regime. In the absence of time-reversal symmetry breaking field and focusing on two-terminal geometries, these constraining rules can only be waived by going beyond the linear response regime. At the nanoscale, this presents important theoretical challenges as local electric potentials must be determined self-consistently to ensure gauge invariance.

In this manuscript we construct a mean-field non-linear theory of spin transport through sub-micron scale structures. We use it to propose a protocol which converts the spin current injected by a spin accumulation into a charge signal via the energy-dependent transmission of a mesoscopic structure. While our scheme is general, we focus our discussion on quantum point contacts and Coulomb blockaded quantum dots, whose transmission is easily tunable by electric gate potentials. We show that the electric response is quadratic in the spin accumulation $\delta \mu$ when the transmission is energy-dependent. A linear response arises only if the transmission is spin-dependent, which usually requires an external magnetic field. We foresee that our scheme has sufficient sensitivity to detect weak spin accumulations such as those that can be generated magnetoelectrically in GaAs heterostructures, to which the magnetic spin detection...
scheme, converting the spin to charge in proportion to $\partial_E T(E)$. This quantity, and this is the crucial point, is fully tunable electrically and independently of the spin accumulation itself, providing our method with versatility necessary for practical spintronics.

Theory calculation.—We model the detection circuit in Fig. 1 as a quantum scatterer connected to two electron reservoirs, each with its own electrochemical potential and spin accumulation, via two leads. We start by writing the current in lead $i = 1, 2$ in the spin subband $\sigma = \uparrow, \downarrow$ (alternatively $\sigma = \pm 1$)

$$I_\sigma = \frac{e}{h} \int dE \sum_{j,i'} \left\{ N_i^{\sigma} \delta_{\sigma\sigma'} \delta_{ij} - T^{\sigma\sigma'}_{ij}(E,U(r)) \right\} f^{\sigma'}_{j'}(E).$$

The transmission $T^{\sigma\sigma'}_{ij}$ is the probability that a particle with spin σ' injected from reservoir j exits the system with spin σ into reservoir i. It depends on the particle energy E and the local electrostatic potential $U(r)$. We consider a spin conserving transmission $T^{\sigma\sigma'} \propto \delta_{\sigma\sigma'}$ with

$$T^{\sigma\sigma'}_{12}(E) = T(E) + \sigma \delta T(E).$$

For a spin insensitive structure, the transmission difference is zero, $\delta T = 0$, and $T = T^{\uparrow\uparrow} = T^{\downarrow\downarrow}$. Each lead is characterized by the number N_i^{σ} of transmission channels it carries (whose weak energy-dependence we neglect), and the particle distribution $f^{\sigma'}_{j'}(E) = f(E - \mu^{\sigma'}_{j'})$, at the corresponding terminal, with the Fermi function $f(x) = \{\exp[(x - \mu_F)/k_B T] + 1\}^{-1}$. The electrochemical potential of the spin subband σ, measured from the Fermi energy μ_F, is (e is the electron charge)

$$\mu^\sigma_i = eV_i + \sigma \delta \mu_i,$$

where V_i is the applied voltage.

Equation (1) is current conserving due to the unitarity condition $\sum_j T^{\sigma\sigma'}_{ji} = N_i^{\sigma'}$. To guarantee gauge invariance (i.e., that currents are invariant under an overall voltage shift) one has to take into account that $U(r)$ is a function of the applied voltages. Up to second order in μ_i's, the current is

$$I^{\sigma'}_i = \frac{e}{h} \int dE \left\{ -\partial_E f(E) \right\} \left\{ T^{\sigma\sigma'}_{12}(E)(\mu^{\sigma'}_1 - \mu^{\sigma'}_2) + (1/2) \partial^2_T T^{\sigma\sigma'}_{12}(E) \left[(\mu^{\sigma'}_1)^2 - (\mu^{\sigma'}_2)^2 \right] \right\} \delta U(r) + \int dE \left\{ \delta U(r) \right\}.$$

(4)

Though the first linear term is explicitly gauge invariant, self-consistent conditions have to be imposed on $U(r)$ in order to ensure that the non-linear terms also are gauge-invariant. The deviation $\delta U(r)$ of the electrostatic profile from its equilibrium value, $U(r) = U_{eq}(r) + \delta U(r)$, results from applied voltages and spin accumulations and the way they are injected into the scattering region. This deviation can be parametrized by characteristic potentials Γ^σ, which generally speaking are determined by self-consistent solutions to the Schrödinger and Poisson equations. To restrain from these (here unnecessary) complications we neglect the spatial dependence of the potential changes, $\delta U(r) = \delta U$, and calculate the functional derivative of $T^{\sigma\sigma'}_{12}$ using the identity

$$\int dE \left\{ \delta U(r) T^{\sigma\sigma'}_{12}(E) \right\} = -e \partial_E T^{\sigma\sigma'}_{12}(E).$$

(5)

To solve for δU, we assume a symmetric probe, with equal, spin-independent coupling to both leads

$$e \delta U = (\mu^\uparrow_1 + \mu^\downarrow_1 + \mu^\uparrow_2 + \mu^\downarrow_2)/4.$$

(6)

Using Eqs. (4) we get our main result, that the electrical current $I = I^\uparrow_1 + I^\downarrow_1$ is

$$I = G_1 e \delta V + G_2 (\delta \mu^\uparrow_1 - \delta \mu^\downarrow_2) + G_3 (\delta \mu^\uparrow_1 - \delta \mu^\downarrow_2) + G_4 (\delta \mu^\uparrow_1 + \delta \mu^\downarrow_2) e \delta V.$$

(7)

The formula is explicitly gauge invariant, as it depends only on $\delta V = V_1 - V_2$. The calculation is furthermore current conserving, with $I_2 = -I_1$ obtained by substituting $\delta \mu^\uparrow_1 \leftrightarrow \delta \mu^\downarrow_2$ and $\delta V \rightarrow -\delta V$. We see the emergence of a non-linear spin to charge coupling term $G_2 (\delta \mu^\uparrow_1 - \delta \mu^\downarrow_2)$, even in the absence of any rectification term $\propto \delta V^2$. That such a term is absent follows from our choice of a symmetric potential δU, in agreement with Ref. [13]. There are four contributions to the current, with conductances

$$G_1 = \frac{2e}{h} \int dE \left\{ -\partial_E f(E) T(E) \right\},$$

(8a)

$$G_2 = \frac{e}{h} \int dE \left\{ -\partial_E f(E) \right\} \partial_E T(E),$$

(8b)

$$G_3 = \frac{2e}{h} \int dE \left\{ -\partial_E f(E) \right\} \delta T(E),$$

(8c)

$$G_4 = \frac{e}{h} \int dE \left\{ -\partial_E f(E) \right\} \delta E T(E),$$

(8d)

which we discuss in detail below, first for a spin-insensitive, second for a spin-sensitive constriction.

Spin insensitive constriction.—We first consider $\delta T = 0$ in Eq. (2), in which case $G_3 = 0 = G_4$, and focus our discussion on a gate-defined QPC in a 2DEG GaAs heterostructure, with energy-dependent transmission [18]

$$T(E) = \{1 + \exp[-2\pi (E - e\alpha V_g)/\hbar \omega]\}^{-1}.$$

(9)

The transmission is easily tuned by an external gate voltage V_g, with a sensitivity set by the QPC characteristic energy scale $\hbar \omega$ and α the "lever arm" converting gate voltage into energy. We take typical values $\hbar \omega = 180 \mu eV$, corresponding to the Zeeman energy of 8 Tesla field at the g-factor $g = -0.39$, and $\alpha = 0.05$. We further fix $\mu_F = 8$ meV, $T = 0.1$ K, and spin accumulations $\delta \mu^\uparrow_2 = 0$, and $\delta \mu^\uparrow_1 \equiv \delta \mu^\downarrow = 0.1\% \mu_F$, which should be magnetoelectrically achievable [16].
conductance. Its magnitude is determined by the non-linear
tion generates a finite current, due to the second term in
temperature and d) QPC energy resolution in units of the
magnetic field.

We are now ready to investigate the electric response of
the circuit. First, we assume that both leads are held at
the same potential. Even in this case, the spin accumulation
is proportional to \(\frac{\partial}{\partial E} \) , and thus maximal when the
QPC is half open, \(T = 0.5 \). The current is then

\[
I = G_2 \delta \mu_2 \approx \frac{e}{h} \frac{\delta \mu_2}{\max(k_B T, \hbar \omega/2\pi)},
\]

and we plot it in Fig. 2b. For our choice of parameters, the current is of the order of tens of pA, which is well above the experimental detection limit. The dependence of the current signal on \(\max(k_B T, \hbar \omega/2\pi) \) is demonstrated in Fig. 2c and d. Decreasing \(k_B T \) at fixed \(\hbar \omega \) at fixed \(k_B T \), the signal first increases before it saturates when \(k_B T \approx \hbar \omega \).

Alternatively, terminal 2 can be operated as a floating
probe. In this case, a finite voltage drop develops, which we find by setting \(I_1 = 0 \). One obtains

\[
e \delta V = -G_2 \delta \mu_2^2 / G_1.
\]

We see that the current is converted into a voltage by the linear conductance \(G_1 \), given in Eq. (8a) and plotted in Fig. 3a. This agrees with the already mentioned absence of a rectification term in our symmetric QPC [15]. We plot the signal voltage in Fig. 3b. In the region where the QPC is closed (\(V_g \ll \hbar \omega \)), Eq. (11) gives an unphysical saturation of \(\delta V \) (dashed line). To remove this artifact, we add a small constant to \(G_1 \), which enforces that \(\delta \mu_1 \) does not influence \(V_2 \) if the QPC is closed. Then the
electric signals (current or voltage), in the two protocols
just discussed behave similarly, \(I, V \propto G_2 \delta \mu_2^2 \). For spin-
sensitive constrictions, we see that the electric response is quadratic in the spin accumulation.

This result is not specific to a QPC, which we next replace by a Coulomb-blockaded quantum dot. Neglecting inelastic processes and near resonance, its low-temperature transmission is given by

\[
T(E) = \Gamma_1 \Gamma_2^2 / [(E - E_0)^2 + \Gamma_2^2]^2,
\]

with the tunneling rates \(\Gamma_1 \) and \(\Gamma_2 \) of the resonant level to the left and right leads, \(\Gamma = \Gamma_1 + \Gamma_2 \) and the resonance peak position \(E_0 \). At \(E - E_0 = \pm \hbar \omega / 2\sqrt{3} \), \(\partial E T(E) \) takes its maximal value \(\pm 9 \Gamma_1 \Gamma_2 / \sqrt{3} \). Because \(T(E) \) differs from its
QPC expression, Eq. (9), in its energy-dependence, the shape of the quantities plotted in Fig. 2 will be different; most notably, the signal changes sign upon crossing the resonance. However, the maximal current magnitude is still given by Eq. (10) with \(\Gamma \) replacing \(\omega \).

Spin sensitive constriction. We next consider the case
when \(\delta T \neq 0 \) in Eq. (2). when the QPC is made spin sensitive, e.g. by an external Zeeman field. We assume that the field is parallel to the spin accumulation \(\delta \mu_1 \) and that it is sufficiently weak that the latter is not in-
fluenced. Equation (9) becomes

\[
T^{\sigma \sigma}(E) = \{ 1 + \exp[-2\pi (E - \sigma \mu B - e\alpha V_2)/\hbar \omega] \}^{-1},
\]

where the Zeeman energy \(\mu B \) is added/subtracted from the electron's energy depending on its spin. Here, \(B \) is the magnetic field, \(\mu = (g/2) \mu_B \) and \(\mu_B \) is the Bohr magneton. To linear order in \(B \), we then have \(\delta T =
\(-\mu B \partial_E T\). We see that a term linear in the spin accumulation has appeared, whose magnitude is given by the conductance \(G_3\), Eq. (8c). This is a linear response term, similar to the one reported in Ref. [11], giving an odd magnetoresponse of the electric current through a QPC in the presence of a spin current. This term allows to find the sign of the spin accumulation, which is impossible for a spin insensitive probe. This is demonstrated in Fig. 3c, where we plot the current as a function of the magnetic field. Applying the field antiparallel (for \(q < 0\) as in GaAs heterostructures) to the spin polarization direction, the Zeeman energy penalty compensates for larger transmission at higher energies. The compensation is exact (the current becomes zero), if

\[\delta \mu_s = g \mu_B B_c. \]

(13)

Remarkably, determining the compensation field \(B_c\) alone allows to measure both the magnitude and direction of the spin accumulation.

For spin-sensitive constrictions, the conductance \(G_4\) gives an interesting contribution to the current, which is coupled to the average spin accumulation \(\delta \mu_{s1} + \delta \mu_{s2}\) and the voltage bias \(\delta V\). We rewrite this contribution as

\[G_4(\delta \mu_2 + \delta \mu_1) e \delta V = G_4 \left(\frac{\mu_1^s + \mu_2^s}{2} - \frac{\mu_1^c + \mu_2^c}{2} \right) e \delta V, \]

(14)

which makes it clear that this term describes two different rectification currents in the two spin subbands which are uncompensated if (i) the transport in the subbands happens at different energies, (ii) there is a finite bias and (iii) the probe transmission is both spin and energy sensitive. Experimentally, this contribution can be identified from the current derivative with respect to both the applied bias and the external field, as in Ref. [20]. We plot this contribution in Fig. 3d where the antisymmetric shape of \(G_4 \propto \partial_E T\), strongly contrasts with the symmetric conductances \(G_2\) and \(G_3\).

Conclusions.–We have shown how spin accumulations can be converted into electric signals in mesoscopic systems with energy-dependent, but spin-conserving transmission. When transport is spin-independent and in the absence of voltage bias, the conversion occurs in the non-linear regime, and the electric signal is quadratic in the spin accumulation. In sub-micron structures, such non-linearities have to be treated self-consistently in local electrostatic potentials generated by the finite applied biases. We did that within a simplified mean-field approach, which resides in neglecting the spatial structure of the potential changes \(\delta U(\mathbf{r})\). It is reassuring that the non-linear signal arises within this approximation, which restrains from details of the constriction. Further, device specific, spin rectifying effects may arise from the spatial effects in \(\delta U(\mathbf{r})\), along the lines of Refs. [13] We also note that for no applied bias our approximation becomes exact since \(\delta U \to 0\).

In the case of transmission through a QPC, Eq. (10) suggests that it is its energy resolution, with \(h \omega \approx 2 - 3 \Gamma\) typically, rather than the temperature, which limits the signal magnitude and hence the sensitivity of our approach. Alternatively, a Coulomb-blockaded quantum dot can be used, where the resolution is given by the tunneling width which can easily reach \(h \Gamma \approx 0.1 \Gamma\) or less (see e.g. [21]). Close to resonance, we would expect such a quantum dot to enhance the signal by at least one order of magnitude compared to the results shown in Fig. 2d.

Acknowledgements.–This work was supported by the EU project Q-essence, meta-QUTE ITMS NFP 26240120022, and CE SAS QUTE, the NSF under grant DMR-0706319 and the Swiss Center of Excellence MANEP. J. F. acknowledges support from the DFG SFB 689 and SPP 1285.

[1] I. Žutić, J. Fabian, and S. Das Sarma Rev. Mod. Phys. 76, 323 (2004).
[2] J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Žutić, Acta Phys. Slov. 57, 565 (2007); arXiv:0711.1461.
[3] R. H. Silsbee, Bull. Magn. Reson. 2, 284 (1980); M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985).
[4] F. J. Jedema, A. T. Filip, and B. J. van Wees, Nature 410, 345 (2002).
[5] Saroj P. Dash, Sandeep Sharma, Ram S. Patel, Michel P. de Jong, and Ron Jansen, Nature 462, 491 (2009).
[6] M. Ciorga, A. Einwanger, U. Wurstbauer, D. Schuh, W. Wegscheider, and D. Weiss, Phys. Rev. B 79, 165321 (2009).
[7] X. Lou, et al., Nature Physics 3, 197 (2007).
[8] J. A. Folk, R. M. Potok, C. M. Marcus, and V. Umansky, Science 299, 679 (2003).
[9] S. M. Frolov, A. Venkatesan, W. Yu, J. A. Folk, and W. Wegscheider, Phys. Rev. Lett. 102, 116802 (2009).
[10] E. J. Koop, B. J. van Wees, D. Reuter, A. D. Wieck, and C. H. van der Wal, Phys. Rev. Lett. 101, 056602 (2008).
[11] P. Stano and Ph. Jacquod, Phys. Rev. Lett. 106, 206602 (2011).
[12] F. Zhai and H. Q. Xu, Phys. Rev. Lett. 94, 246601 (2005).
[13] A. A. Kiselev and K. W. Kim, Phys. Rev. B 71, 153315 (2005).
[14] I. Adagideli, G. E. W. Bauer, and B. I. Halperin, Phys. Rev. Lett. 97, 256601 (2006).
[15] T. Christen and M. Büttiker, Europhys. Lett. 35, 523 (1996); NATO ASI on 'Mesoscopic Electron Transport', L. Kouwenhoven, G. Schön and L. Sohn (Eds.), Kluwer Academic Publ., Dordrecht, (1996).
[16] V.M. Edelstein, Solid State Comm. 73, 233 (1990).
[17] I. J. Vera-Marun, V. Ranjan, and B. J. van Wees, arXiv:1109.5969, arXiv:1104.4743 (unpublished).
[18] M. Büttiker, Phys. Rev. B. 41, 7906 (1990).
[19] A.D. Stone and P.A. Lee, Phys. Rev. Lett. 54, 1196 (1985).
[20] D. M. Zumbühl, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett. 96, 206802 (2006).
[21] S. R. Patel, et al., Phys. Rev. Lett. 80, 4522 (1998).