The relation of thermal fluctuation and information-entropy of One-dimensional Rindler Oscillator

Dan Yu, Yuan-Xing Gui ¹ and Xin Ye

Department of Physics, Dalian University of Technology
Dalian, Liaoning 116024, P.R. China

Within the framework of thermo-field-dynamics(TFD), the information-entropies associated with the measurements of position and momentum for one-dimensional Rindler oscillator are derived, and the connection between its information-entropy and thermal fluctuation is obtained. A conclusion is drawn that the thermal fluctuation leads to the loss of information.

Key Words: Rindler space-time, information-entropy, generalized uncertainty relation

PACS number(s): 04.90.+e, 05.40+j, 03.65.-w

¹Corresponding author. E-mail: guiyx@dlut.edu.cn
I. INTRODUCTION

As a joint-realm of information theory and statistical physics, information-entropy has received a great deal of investigations1−3. Generally, for a thermal state, the thermal fluctuation results in losses of information and increases of the uncertainty and information-entropy. Therefore our interest here concerns what is the connection between the thermal fluctuation and information-entropies.

The generalized uncertainty relation4−8 is widely discussed. But in these papers the “generalized uncertainty relations” have different meanings. In our previous paper4, the generalized uncertainty relation of one-dimensional Rindler oscillator, which is related to the thermal nature of the quantum state, was derived. In fact, we presented a thermal modification to the uncertainty principle, it is the acceleration that induces the thermal effect (Unruh effect). As is well know, a Minkowski vacuum is equivalent to a thermal bath9,10 for a Rindler observer. For a Rindler uniformly accelerated observer, there are not only general quantum fluctuations but also thermal fluctuations related to his acceleration. On the other hand, the authors6,7 presented a gravitationally-induced modification to the momentum and position uncertainty relation which comes from a definition of momentum and position operators that incorporates certain dynamics relevant at high energies and differs from the usual definition.

In this paper, we present the information-entropies associated with the
measurements of position and momentum for one-dimensional Rindler oscillator in the coordinate representation, and derive a relation between information-entropies and fluctuations. Compared with other methods such as Wigner function method11,12, our method introduced in this paper is different from others. Our strategy is as follows. First we calculate the information-entropies in the coordinate representation. Comparing the result with the generalized uncertainty relation, we derive the relation of the thermal fluctuation and the information-entropies. From the results of this paper, we find that the thermal fluctuation and quantum fluctuation are separated.

II. RINDLER AND MINKOWSKI SPACE-TIME

The coordinates in Rindler space-time can be obtained from the Minkowski coordinates T, X under the transformations

\begin{align*}
T &= g^{-1} e^{g \xi} \sinh g \eta \\
X &= g^{-1} e^{g \xi} \cosh g \eta & \text{for region R} (1)
\end{align*}

and

\begin{align*}
T &= -g^{-1} e^\tilde{g} \xi \sinh g \tilde{\eta} \\
X &= -g^{-1} e^\tilde{g} \xi \cosh g \tilde{\eta} & \text{for region L} (2)
\end{align*}
where \(g = \text{constant} > 0 \), the Rindler coordinates \((\eta, \xi)\) and \((\tilde{\eta}, \tilde{\xi})\) cover the space-time regions \(R \) and \(L \) respectively. Both regions \(R \) and \(L \) are quadrants of Minkowski space-time as shown in Fig. 1. The region \(L \) is called the mirror space-time region of \(R \). With the method of standard Rindler quantization\(^{13}\), we can obtain two groups of annihilation and creation operators \((b, b^\dagger)\) and \((\tilde{b}, \tilde{b}^\dagger)\) corresponding to the Rindler modes in the regions \(R \) and \(L \), respectively, and the vacuum state defined by these two groups of annihilation and creation operators is \(|0\rangle^R\) in region \(R \) and \(|\tilde{0}\rangle^R\) in region \(L \), respectively. The modes that are corresponding to these two groups of annihilation and creation operators are complete in the region \(R \) and \(L \) respectively, but they are not complete in the whole Minkowski space-time region. Here the position is denoted by \(\xi \) in region \(R \), and by \(\tilde{\xi} \) in region \(L \), while the momentum is denoted by \(p_R \) in region \(R \), and by \(\tilde{p}_R \) in region \(L \).

The Minkowski vacuum is defined by general annihilation and creation operators \((a, a^\dagger)\), \(a |0\rangle^M = 0 \). Because of the different selecting of modes, we have another group of Minkowski annihilation and creation operators \((d, d^\dagger)\) and \((\tilde{d}, \tilde{d}^\dagger)\). The relations between them and the Rindler annihilation operators satisfy the Bogoliubov transformations

\[
\begin{align*}
 d &\equiv R(\theta) b R^\dagger(\theta) \\
 \tilde{d} &\equiv R(\theta) \tilde{b} R^\dagger(\theta)
\end{align*}
\]

where \([d, d^\dagger] = [\tilde{d}, \tilde{d}^\dagger] = 1\). The unitary transformation (called thermal
transformation) is

\[R(\theta) = \exp \left\{ -\theta (\beta) \left(\hat{b}\hat{b}^\dagger - \hat{b}^\dagger\hat{b} \right) \right\} \] \hspace{1cm} (4)

where

\[\tanh [\theta (\beta)] = \exp \left(-\frac{\beta\hbar\omega}{2} \right) \] \hspace{1cm} (5)

\[\beta = \frac{1}{K_B T} , \quad K_B \text{ is the Boltzmann constant and } T \text{ is temperature here.} \]

The vacuum state defined by \((d, d^\dagger)\) and \((\tilde{d}, \tilde{d}^\dagger)\) is equivalent to the Minkowski vacuum state \(|0\rangle_M\)

\[d |0\rangle_M = \tilde{d} |0\rangle_M = 0 \] \hspace{1cm} (6)

For one-dimensional Rindler oscillator, we construct position and momentum \((x, p)\) from \((d, d^\dagger)\) and their tilde conjugate quantities \((\tilde{x}, \tilde{p})\) from \((\tilde{d}, \tilde{d}^\dagger)\) as follows:

\[x = \sqrt{\frac{\hbar}{2m\omega}} (d + d^\dagger) \]

\[p = -i\sqrt{\frac{m\omega\hbar}{2}} (d - d^\dagger) \] \hspace{1cm} (7)

and

\[\tilde{x} = \sqrt{\frac{\hbar}{2m\omega}} (\tilde{d} + \tilde{d}^\dagger) \]
\[
\hat{p} = -i \sqrt{\frac{m \omega \hbar}{2}} (\hat{d} - \hat{d}^\dagger)
\]

(8)

The relation between Rindler vacuum and Minkowski vacuum is

\[
|0\rangle_M = R(\theta) |0, \bar{0}\rangle_R,
\]

(9)

Where \(|0, \bar{0}\rangle_R\) is a direct product of the Rindler vacuum state in region R and L, and \(R(\theta)\) describes the effect of a thermal bath in which a quantum harmonic oscillator immerses. From Eq.(9), we can say loosely that a thermalizing operator \(R(\theta)\) heats the ground state of a zero-temperature harmonic oscillator (Rindler vacuum) into a thermal state with a finite temperature for a Rindler uniformly accelerating observer. Note that any operator in region L commutes with any tilde operator in region R for bosons in this paper. Consequently any Minkowski vacuum expectation for the Rindler observer coincides with its canonical ensemble average in statistical mechanics.

III. INFORMATION-ENTROPY OF ONE-DIMENSIONAL RINDLER OSCILLATOR

In this section, we will derive the reduced probability densities, and discuss the information-entropies associated with the measurements of position and momentum for one-dimensional Rindler oscillator. Comparing the generalized uncertainty relation of one-dimensional Rindler oscillator, we present the relation of information-entropies with quantum and thermal fluctuations. In this paper, we use the information-entropy given by Shannon.14
\[S_A[\Psi] = - \sum_\alpha \langle \alpha | \Psi \rangle^2 \ln \langle \alpha | \Psi \rangle^2 \quad (10) \]

where \(\{ |\alpha\rangle \} \) is the set of eigenstates of \(A \).

For the one-dimensional oscillator in Rindler space-time region \(R \), its Hamiltonian is

\[H = \frac{1}{2m} p_R^2 + \frac{1}{2} m \omega^2 \xi^2 = \left(b^\dagger b + \frac{1}{2} \right) \hbar \omega \quad (11) \]

The wave function of ground state in the coordinate representation is

\[\langle \xi | 0 \rangle_R = \left(\frac{m \omega}{\pi \hbar} \right)^{\frac{1}{4}} \exp \left\{ - \frac{m \omega}{2 \hbar} \xi^2 \right\} \quad (12) \]

where, \(p_R = -i \hbar \frac{d}{d\xi} \equiv -i \hbar \partial_\xi \), \(m \) is the mass, \(\omega \) is the angular frequency, and

\[b = \frac{1}{\sqrt{2m\hbar w}} (ip_R + m\omega \xi) \]
\[b^\dagger = \frac{1}{\sqrt{2m\hbar w}} (-ip_R + m\omega \xi) \quad (13) \]

are the corresponding annihilation and creation operators in the Rindler region \(R \), respectively. Using the tilde rules in Thermal field dynamics, we introduce

\[\tilde{H} = \frac{1}{2m} \tilde{p}_R^2 + \frac{1}{2} m \omega^2 \tilde{\xi}^2 = \left(\tilde{b}^\dagger \tilde{b} + \frac{1}{2} \right) \hbar \omega \quad (14) \]

in Rindler region \(L \). Substituting Eq.(13) into Eq.(4), one has
\[R(\theta) = \exp \left\{ \frac{i}{\hbar} \left(\xi \tilde{p}_R - \tilde{\xi} p_R \right) \right\} \] \hspace{1cm} (15)

with \(\theta \equiv \theta (\beta) \). From Appendix B.4 in Ref.15, the last formula can be written as

\[R(\theta) = \exp \left\{ -\tanh (\theta) \tilde{\xi} \partial_{\tilde{\xi}} \right\} \exp \left\{ \ln \cosh (\theta) \right\} \left(\xi \partial_{\xi} - \tilde{\xi} \partial_{\tilde{\xi}} \right) \exp \left\{ -\tanh (\theta) \xi \partial_{\tilde{\xi}} \right\} . \] \hspace{1cm} (16)

Using the following operator properties

\[e^{C\partial_y} f (y) = f (y + C) \] \hspace{1cm} (17)

and

\[e^{C_y \partial_y} f (y) = f (ye^C) , \] \hspace{1cm} (18)

one can gave the wave function of Minkowski vacuum in Rindler coordinate representation

\[
\begin{align*}
\langle \tilde{\xi}, \xi | 0 \rangle_M &= R(\theta) \left(\frac{m\omega}{\pi \hbar} \right)^{\frac{1}{2}} \exp \left\{ -\frac{m\omega}{2\hbar} \left(\xi^2 + \tilde{\xi}^2 \right) \right\} \\
&= \left(\frac{m\omega}{\pi \hbar} \right)^{\frac{1}{2}} \exp \left\{ -\frac{m\omega}{2\hbar} \left(\xi \cosh (\theta) - \tilde{\xi} \sinh (\theta) \right)^2 \right. \\
& \quad \left. + \left(\xi \cosh (\theta) - \tilde{\xi} \sinh (\theta) \right)^2 \right\}. \hspace{1cm} (19)
\end{align*}
\]
We can see that when $\beta \to \infty$, from Eq.(4) and Eq.(5) we have $\theta (\beta) \to 0$, $R(\theta) \to 1$, so $\langle \bar{\xi}, \xi \mid 0 \rangle_M$ is reduced to $\langle \bar{\xi}, \xi \mid 0, \bar{0} \rangle_R$.

The matrix element of density operator in position presentation for one-dimensional Rindler oscillator is

$$
\rho_{\xi',\xi} = \int_{-\infty}^{+\infty} \langle \xi', \bar{\xi} \mid 0 (\beta) \rangle \langle 0 (\beta) \mid \bar{\xi}, \xi \rangle \, d\bar{\xi}
$$

$$
= \frac{m\omega}{\pi\hbar} \int_{-\infty}^{+\infty} \exp \left\{ -\frac{m\omega}{2\hbar} \left[\left(\xi' \cosh (\theta) - \bar{\xi} \sinh (\theta) \right)^2 + \left(\xi \cosh (\theta) - \bar{\xi}' \sinh (\theta) \right)^2 \right] \right\}
$$

$$
\cdot \exp \left\{ -\frac{m\omega}{2\hbar} \left[\left(\xi \cosh (\theta) - \bar{\xi} \sinh (\theta) \right)^2 + \left(\bar{\xi} \cosh (\theta) - \xi \sinh (\theta) \right)^2 \right] \right\} \, d\bar{\xi}
$$

$$
= \left[\frac{m\omega}{\pi\hbar \left(\cosh^2 (\theta) + \sinh^2 (\theta) \right)} \right] \exp \left\{ -\frac{m\omega}{2\hbar} \left(\cosh^2 (\theta) + \sinh^2 (\theta) \right) \left(\xi'^2 + \xi^2 \right) \right\}
$$

$$
\cdot \exp \left\{ -\frac{m\omega}{2\hbar} \left[\cosh^2 (\theta) + \sinh^2 (\theta) \right] \right\}
$$

$$
= \frac{m\omega}{\pi\hbar \left(\cosh^2 (\theta) + \sinh^2 (\theta) \right)} \exp \left\{ -\frac{m\omega}{\hbar} \cdot \frac{1}{\cosh^2 (\theta)} \xi^2 \right\}
$$

$$
= \frac{m\omega}{\pi\hbar \cosh (2\theta)} \exp \left\{ -\frac{m\omega}{\hbar} \cdot \frac{1}{\cosh (2\theta)} \xi^2 \right\}
$$

Taking $\xi = \xi'$ in Eq.(20), one has the probability density of position

$$
\rho_{\xi,\xi} = \frac{m\omega}{\pi\hbar \left(\cosh^2 (\theta) + \sinh^2 (\theta) \right)} \exp \left\{ -\frac{m\omega}{\hbar} \cdot \frac{1}{\cosh^2 (\theta)} \xi^2 \right\}
$$

$$
\cdot \exp \left\{ -\frac{m\omega}{2\hbar} \left(\cosh^2 (\theta) + \sinh^2 (\theta) \right) \left(\xi'^2 + \xi^2 \right) \right\}
$$

$$
= \frac{m\omega}{\pi\hbar \cosh (2\theta)} \exp \left\{ -\frac{m\omega}{\hbar} \cdot \frac{1}{\cosh (2\theta)} \xi^2 \right\}
$$

(21)

Similarly, we have the reduced probability density of momentum for one-dimensional Rindler oscillator

$$
\rho_{p_R,p_R} = \int_{-\infty}^{+\infty} \frac{1}{2\pi\hbar} \exp \left\{ -\frac{m\omega}{\hbar} \cdot \frac{1}{\cosh (2\theta)} \xi^2 \right\} \rho_{\xi',\xi} \, d\xi \, d\xi'
$$

8
\[
\sqrt{\frac{1}{m\omega\pi\hbar \cosh (2\theta)}} \exp \left\{ -\frac{1}{m\omega\hbar} \cdot \frac{1}{\cosh (2\theta)} p_R^2 \right\} \tag{22}
\]

So, we can calculate the information-entropy with the measurements of position and momentum, respectively

\[
s_\xi = -\int_{-\infty}^{+\infty} \rho_\xi \ln (\rho_\xi) \, d\xi
= -\int_{-\infty}^{+\infty} \sqrt{\frac{m\omega}{\pi\hbar \cosh (2\theta)}} \exp \left\{ -\frac{m\omega}{\hbar} \cdot \frac{1}{\cosh (2\theta)} \xi^2 \right\}
\left[\left(-\frac{m\omega}{\hbar} \cdot \frac{1}{\cosh (2\theta)} \xi^2 \right) + \ln \left(\sqrt{\frac{m\omega}{\pi\hbar \cosh (2\theta)}} \right) \right] \, d\xi
= \frac{1}{2} \left[1 + \ln \pi + \ln (\cosh (2\theta)) + \ln \left(\frac{\hbar}{m\omega} \right) \right] \tag{23}
\]

and

\[
s_{pR} = -\int_{-\infty}^{+\infty} \rho_{pR,pR} \ln (\rho_{pR,pR}) \, dp_R
= -\int_{-\infty}^{+\infty} \sqrt{\frac{1}{m\omega\pi\hbar \cosh (2\theta)}} \exp \left\{ -\frac{1}{m\omega\hbar} \cdot \frac{1}{\cosh (2\theta)} p_R^2 \right\}
\left[\left(-\frac{1}{m\omega\hbar} \cdot \frac{1}{\cosh (2\theta)} p_R^2 \right) + \ln \left(\sqrt{\frac{1}{m\omega\pi\hbar \cosh (2\theta)}} \right) \right] \, dp_R
= \frac{1}{2} \left[1 + \ln \pi + \ln (\cosh (2\theta)) + \ln (m\omega\hbar) \right] \tag{24}
\]

Deutsch and Partovi1,2 discussed the sum of entropies associated with the measurements of a generic non-commutative pair of observable (A,B) in a normalized state |\Psi\rangle

\[
U [A, B : \psi] = S_A [\psi] + S_B [\psi] \tag{25}
\]
which cannot be made arbitrarily small but has an irreducible lower bound
independent of the choice of $|\Psi\rangle$.

Thus, we get the sum of information-entropies associated with the measure-
ments of position and momentum of one-dimensional Rindler oscillator.

$$U = s_\xi + s_{p_R} = 1 + \ln \pi + \ln (\cosh (2\theta)) + \ln \hbar$$ \hspace{1cm} (26)

where U denotes the uncertainty measurement of one-dimensional Rindler
oscillator.

Now we wish to find the relation of information-entropy and fluctuation.
In our previous paper4, according to the invariance of Bogoliubov transfor-
mation in the Thermal Field Theory, we derived the generalized uncertainty
relation of one-dimensional Rindler oscillator in Minkowski vacuum in the
coordinates representation, that is

$$\langle (\Delta p_R)^2 \rangle \langle (\Delta \xi)^2 \rangle \geq \frac{\hbar^2}{4} + \frac{\hbar^2}{4 \sinh^2 \left(\frac{\omega \hbar}{2}\right)}.$$ \hspace{1cm} (27)

For a Rindler uniformly accelerated observer, the term on the LHS(the left
hand side)of Eq.(27) describes the total fluctuations of one-dimensional
Rindler oscillator. The first term on the RHS of Eq.(27) $\langle (\Delta p)^2 \rangle \langle (\Delta x)^2 \rangle$
describes the zero-temperature fluctuation, which is a purely quantum fluc-
tuation and satisfies the general uncertainty relation. The second term on
the RHS of Eq.(27) describes a purely thermal fluctuation of one-dimensional
Rindler oscillator, which is determined by cross terms of the tilde and non-
tilde operators.

The thermal fluctuation can be written as

\[
\frac{\hbar^2}{4 \sinh^2 \left(\frac{2\omega \hbar}{2} \right)} = \frac{\hbar^2}{4} \left(\cosh^2 (2\theta) - 1 \right)
\]

(28)

Where \(\theta \) defined by Eq.(5). Comparing Eq.(26) with Eq.(28), one has

\[
\frac{\hbar^2}{4 \sinh^2 \left(\frac{2\omega \hbar}{2} \right)} = \frac{1}{4} \hbar^2 \left(\frac{e^{2(s_\xi + s_{PR})} - 1}{e^{2\pi^2 \hbar^2} - 1} \right)
\]

(29)

Hence, we derive the relation of information-entropy, quantum fluctuation and thermal fluctuation

\[
\frac{e^{2(s_\xi + s_{PR})}}{4e^{2\pi^2}} = \frac{e^{2U}}{4e^{2\pi^2}} = \frac{1}{4} \hbar^2 + \frac{\hbar^2}{4 \sinh^2 \left(\frac{2\omega \hbar}{2} \right)}
\]

(30)

IV. SUMMARY AND DISCUSSION

In Eq.(26) with \(\hbar = 1 \), when temperature \(T \to 0 \), we get

\[
S_\xi + S_{PR} = 1 + \ln \pi
\]

(31)

This result coincides with the results obtained by other methods16.

The Eq.(30) is the key result of this paper. The term on the LHS of the Eq.(30) includes the sum of information-entropies associated with the measurements of position and momentum of one-dimensional Rindler oscillator.
The first term on the RHS of Eq.(30) $\frac{1}{4}\hbar^2$ describes zero-temperature fluctuation, which is the purely quantum fluctuation. The second term on the RHS of Eq.(30) describes the purely thermal fluctuation of one-dimensional Rindler oscillator. Thus we can make the thermal fluctuation and quantum fluctuation separated naturally. When temperature increases, $S_\xi + S_{PR}$ also increases monotonously. This result shows that the thermal fluctuation causes the loss of information.

According to Eq.(27) and (30), one have

$$\langle (\Delta p_R)^2 \rangle \langle (\Delta \xi)^2 \rangle \geq \frac{e^{2(s_\xi + s_{PR})}}{4e^2\pi^2}$$

This is the relation between the uncertainty and the information-entropy. When temperature $T \to 0$, the quantum uncertainty relation will be restored.
References

1 D. Deutsch, *Phys. Rev. Lett.* **50**, 631 (1983).

2 M. H. Patrovi, *Phys. Rev. Lett.* **50**, 1883 (1983).

3 C. E. Shannon and W. W. Weaver, *Mathematical Theory of Communication* (University Illinois Press, 1949).

4 X. Ye and Y. X. Gui, *Int. J. Theo. Phys.*, **40**, 1341 (2001)

5 A. Kempf, G. Mangano, R. B. Mann *Phys. Rev.*, D **52**, 1108 (1995)

6 D. V. Ahluwalia, *Phys. Lett. A* **275** 31 (2000)

7 S. de Haro, *Class. Quantum. Grav.* **15** 519 (1998)

8 A. Mann, M. Revzen, H. Umezawa and Yamanaka, *Phys. Lett. A* **140** 475 (1989)

9 W. G. Unruh, *Phys. Rev. D*, **14**, 870 (1976).

10 J. Hughes Richard, *Ann. Phys.*, **162**, 1 (1985)

11 C. Anstropoulos and J. J. Halliwell, *gr-qc*/9407039

12 A. Anderson and J. J. Halliwell, *Phys. Rev.*, **D** **48**, 2753 (1993)

13 N. D. Birrell, and P. C. W. Davies, *Quantum Fields in Curved Space* (Cambridge University Press, 1982).
14S. Abe and N. Suzuki, *Phys. Rev.* A **41**, 4608 (1990)

15D. A. Kirzhnits, *Filed Theoretical Methods in Many-body Systems* (Pergamon Press, 1967)

16H. Everett III, *The many-worlds interpretation of quantum Mechanics* (Princeton University Press, 1973).
