Quantum phase transition in a multi-component Bose-Einstein condensate in optical lattices

Guang-Hong Chen and Yong-Shi Wu

Department of Physics, University of Utah, Salt Lake City, Utah 84112

Abstract

We present the general lattice model for a multi-component atomic Bose-Einstein system in an optical lattice. Using the model, we analytically study the quantum phase transition between Mott insulator and superfluid. A mean-field theory is developed from the Mott insulator ground state. When the inter-species interactions are strong enough, the Mott insulator demonstrates the phase separation behavior. For weak inter-species interactions, the multi species system is miscible. Finally, the phase diagram is discussed with the emphasis on the role of inter-species interactions. The tips of the Mott insulator lobes do not depend on the inter-species interactions, but the latter indeed modify the range of lobes.
I. INTRODUCTION

The study of quantum phase transitions (QPT) has attracted much interest in recent years. The term “quantum” is used to emphasize that it is quantum fluctuations that play a vital role in driving the transition from one phase to another. In contrast, the usual thermodynamic phase transition at finite temperature is driven by thermal fluctuations which are experimentally controlled by tuning the temperature of the system. As temperature is lowered, the thermal fluctuations are suppressed and finally they are not strong enough to drive a finite temperature phase transition. However, this by no means implies that there would be no phase transition at very low temperature, since quantum fluctuations still exist and they may be sufficiently strong to drive a phase transition even at zero temperature. We call such a zero temperature phase transition a QPT, and it is experimentally accessible by tuning parameters of the system other than temperature.

Several prominent examples have been extensively studied to demonstrate QPT. One example is quantum Hall (QH) systems, where different QH phases can be achieved by tuning either the magnetic field or carrier concentration. The second example is a network of Josephson junctions. A Josephson junction is a tunnel junction connecting two superconducting metallic grains. A Cooper pair of electrons are able to tunnel back and forth between the grains. If the Cooper pairs can move freely from grain to grain in the network, the system is superconducting. However, since the grains are very small, it costs a charging energy to move a Cooper pair to neighboring grains. When the charging energy is big enough, the Cooper pairs fail to propagate among the grains and the network will be in an insulating phase.

A third system that exhibits QPT involves the superfluid $^4$He. When the superfluid $^4$He is absorbed in the porous media or on different substrates, the bosonic atoms in $^4$He experience external forces from the other medium. When the interactions between atoms are much weaker than above external forces, the system is expected to be a superfluid. In the opposite limit, the superfluid phase can not be maintained, and the system will exhibit
a Mott insulator behavior. Thus a superfluid-Mott-insulator phase transition is expected to happen, if one can tune the strength of atomic interactions. Detailed discussions can be found in Ref. 4 by Fisher et al. The starting point is the following boson Hubbard model:

\[ H = -J \sum_{\langle i,j \rangle} (a_i^\dagger a_j + H.c.) + \sum_i \varepsilon_i n_i + \frac{U}{2} \sum_i n_i(n_i - 1). \]  

(1)

Here \( a_i \) and \( a_i^\dagger \) correspond to the bosonic annihilation and creation operators on the \( i \)-th lattice site, \( n_i = a_i^\dagger a_i \) the atomic number operator on the \( i \)-th site, and \( \varepsilon_i \) the energy offset of the atom on the \( i \)-th site due to external harmonic confinement. The last term corresponds to the on-site repulsion between atoms, while the first term describes the tunneling of atoms between neighboring sites. At mean field level, starting with a strong coupling expansion, namely treating the hopping term as a perturbation, the system is found to have a QPT at the following critical value for the ratio \( U/J \):

\[ \frac{U}{J} = z n_0, \]  

(2)

where \( z = 2d \) for a \( d \) dimensional simple lattice and \( n_0 \) is the inverse fraction of condensed atoms in a canonical ensemble. For instance, \( n_0 \approx 5.83 \) for the three dimensional case.

Experimentally, such critical point of QPT is very hard to access. Temperature is an annoying factor for a convincing demonstration of the QPT: The intrusion of thermal fluctuations often washes out the effects of quantum fluctuations. This makes the temperature window to observe the QPT small. Moreover, to make the system go cross the quantum critical point, we need to tune the controlling parameter carefully. In most of the studied cases, this is hard to manipulate. Even one can tune the parameter, the range of tunability is normally very small. Until very recently, in most cases only the magnetic field is the tunable parameter. Finally, the presence of disorder makes the observation of QPT even more difficult.

Recently Ref. 9 reported the success in realizing a superfluid-Mott-insulator phase transition in a gas of ultra-cold atoms in an optical lattice. This is a revolutionary breakthrough for experimental observation of a controllable QPT. They cooled the atomic gas of \(^{87}\text{Rb}\)
down to 10 nK to realize the atomic Bose-Einstein condensation (BEC). Moreover, the BEC is loaded into a perfect, simple cubic, optical lattice formed by six criss-cross laser beams. By controlling the intensity of the laser beams, they can efficiently control the potential height of the above simple cubic lattice in a very large range. In addition, such a unique invention of the artificial lattice has the great advantage that the system is basically defect-free. By using this set-up, they successfully and repeatedly observed the QPT at the critical value given by Eq. (2). Thus an ideal playground for QPT has been created in the atomic BEC system, which provides us an opportunity to test many theoretical predictions.

A significant difference between the atomic BEC superfluid and the $^4$He superfluid is that the former allows atoms to condense with different internal states due to hyperfine splitting. This allows the order parameter of superfluid to possess a larger symmetry than the familiar $U(1)$. It is dubbed in the BEC community as spinor BEC. As pointed out by Ho and many others, the spinor BEC possesses a whole host of quantum phenomena that are absent in the scalar cases: For instance, vector and quadrupolar spin wave modes, Skymions and other quantum orders etc. Experimentally, one can condense different matter species into one single internal state and study the effects of cross-species interactions. Throughout this paper, we would like to call such systems as multi-component BEC systems.

In the Mott insulator to superfluid quantum phase transition, quantum fluctuations and atomic interactions play a vital role. Without interactions, one has only the so-called band insulator. In the atomic gas, due to laser cooling technology, BEC can be realized simultaneously in several internal hyperfine levels. This makes the experimental study of the multi-component BEC possible. Among all the interesting physics discovered in the multi-component BEC, the inter-species repulsive interactions play a very important role. Therefore, it would be very interesting to study how inter-species interactions affect the transition from the Mott insulator to superfluid.

Motivated both by experimental progress and by theoretical curiosity, we shall study in the present paper the superfluid-Mott-insulator transition in a multi-component BEC system in the presence of a periodic potential created by criss-cross laser beams. The layout
of the paper is the following: The boson-Hubbard model for the multi species is derived for the general case and some special cases as well in Section II. In the section III, we study the ground state and its stability in the strong coupling limit. The phase boundary between superfluid and Mott insulator is determined for the two-component case in Section IV. Finally, we summarize our results in the Section V.

II. THE MODEL

A. The general boson Hubbard model for a multi-component BEC

After including the optical lattice potential, the most general model Hamiltonian for a multi-component boson gas can be written, in the second-quantization notations, as

\[
H = \int d^3 \vec{x} \left[ \psi_i^\dagger(x) \left( -\frac{\hbar^2 \nabla^2}{2m_a} \delta_{ij} + U_{ij}(x) + V_i(x) \delta_{ij} \right) \psi_j(x) + \frac{g_{ij,kl}}{2} \psi_i^\dagger(x) \psi_j^\dagger(x) \psi_k(x) \psi_l(x) \right],
\]

where \( m_a \) is the mass of an individual atom, the indices \( i, j, k, l \) label the components of the atoms and the summation is assumed for repeated indices. Generically we allow the external potential \( U_{ij} \) to have a non-diagonal part in the hyperfine spin basis, in which it represents a Josephson-type coupling between spin components. \( V_i(x) \) denotes the optical lattice potential seen by atoms of species \( i \). For the experimental configuration in Ref. 9, this lattice is modeled by

\[
V(x, y, z) = V_0 (\sin^2 kx + \sin^2 ky + \sin^2 kz),
\]

with \( k \) the wave vector of the laser light and \( V_0 \) the depth of the potential well. In the multi-component case, the depth \( V_{0,i} \) may depend on the species index \( i \). The inter-atomic interactions in Eq. (3) have been approximated as a contact interaction in which the coefficients \( g_{ij,kl} \) describe the strength of various elastic and inelastic collisions.

For a single atom in the trap and the periodic potential, the energy eigenstates are Bloch states. In the tight-binding (TBA) limit, we can superpose the Bloch states to get a set of
Wannier functions, which are localized on individual lattice sites. Within the single band approximation, we can expand the field operators in the Wannier basis as

\[ \psi_i(x) = \sum_n b_{ni} w_i(x - x_n), \]  

(5)

where \( w_i(x - x_n) \) is the Wannier function around lattice site \( n \). Using Eq. (5), the general Hamiltonian (3) is reduced to a generalized boson Hubbard Hamiltonian for the multi-component BEC:

\[ H = -\sum_{<m,n>} J_{mn}^{ij} (b_m^\dagger b_n + H.c.) + \sum_m \varepsilon_{ni} b_m^\dagger b_{ni} + \frac{U_{ij,kl}}{2} \sum_m b_{mi}^\dagger b_{mj}^\dagger b_{mk} b_{ml}. \]  

(6)

Here \( J_{mn}^{ij} \) is the hopping matrix element between two adjacent lattice sites \( m \) and \( n \). It is defined by

\[ J_{mn}^{ij} = -\int d^3x w_i^*(x - x_m) \left[ -\frac{\hbar^2 \nabla^2}{2m} \delta_{ij} + V_i \delta_{ij} + U_{ij} - \frac{1}{2} (U_{ii} + U_{jj}) \right] w_j(x - x_n). \]  

(7)

Within the Hubbard approximation, the hopping integral is lattice site independent, i.e., \( J_{mn}^{ij} \approx J^{ij} \). \( \varepsilon_{ni} \) describes the energy offset on each site due to the trap confinement. It is defined as

\[ \varepsilon_{ni} = \int d^3x U_{ii}(x) |w_i(x - x_n)|^2. \]  

(8)

(Here we only consider the lowest band in the optical lattice, whose bottom is taken to be the zero point for energy.) Finally, to get the on-site interactions in Eq. (6), the Hubbard approximation has been used to approximate the multi-center integral as a single-center one; namely, we have

\[ U_{ij,kl} = g_{ij,kl} \int d^3x w_i^*(x - x_{n1}) w_j^*(x - x_{n2}) w_k(x - x_{n3}) w_l(x - x_{n4}) \]

\[ \approx g_{ij,kl} \int d^3x w_i^*(x) w_j^*(x) w_k(x) w_l(x). \]  

(9)

The general form of the boson Hubbard model (6) contains a large number of parameters. In the following, we would like to discuss several special cases which might be relevant to experiments. The first simple case is, of course, given by Eq. (1) for a single component BEC. It is first derived and studied in the context of atomic BEC in Ref. 16.
B. Two-component boson Hubbard model

The second example we will discuss is the two-component BEC. Experimentally, the simultaneous condensation of $^{87}\text{Rb}$ atoms in the two internal states ($F = 2, M = 2$) and ($F = 2, M = -1$) has been accomplished by Myatt et al\cite{17}. For this case, we discuss Bose condensed atoms with two internal hyperfine levels $|A>$ and $|B>$. The atoms interact only through the following three channels: AA, BB, and AB type elastic collisions. Then our Hamiltonian (6) is reduced to

$$H_2 = - \sum_{<m,n>} \left[ J^{A\dagger b_{mA} b_{nA}} + J^{B\dagger b_{mB} b_{nB}} + J^{AB\dagger b_{mA} b_{nB}} + H.c. \right] + \sum_m \left( \varepsilon_{mA} n_{mA} + \varepsilon_{mB} n_{mB} \right) + \frac{1}{2} \sum_m \left[ U_{mA} n_{mA} (n_{mA} - 1) + U_{mB} n_{mB} (n_{mB} - 1) + U_{AB} n_{mA} n_{mB} \right].$$

(10)

A similar energy-level and interaction pattern has been discussed by another group in a different context\cite{18}. To be concrete, we focus on the situation in which the trap potential is diagonal in internal space, namely, $U_{ij}$ only have diagonal components $U_{ii}$. In this case, it follows from Eq. (7) that

$$J^{AB}_{ij} = 0.$$  

(11)

To get more insight into the parameters in Eq. (10), we have to use the explicit form of the Wannier functions. To do so, we notice that the optical lattice potential is sinusoidal. The Wannier function could be constructed as the localized one determined by the following eigenvalue problem:

$$\left[ \frac{P^2}{2m_a} + V(x, y, z) \right] \phi(x, y, z) = E \phi(x, y, z).$$

(12)

The lattice sites are given by minima of the lattice potential $V(x, y, z)$; around them the potential $V$ is approximately quadratic:

$$V(x, y, z) \approx \frac{1}{2} m_a \omega (x^2 + y^2 + z^2),$$

(13)
where $\omega$ is given by

$$\omega = 2m_ah^2V_0. \quad (14)$$

(Here for simplicity, we assume that the depth of the optical potential is the same for different species; it is straightforward to generalize our results to the case with $V_0 \to V_{0i}$ dependent on the species index $i$.) Therefore, within the single band approximation, the Wannier function is approximately given by the ground state wavefunction of a three-dimensional harmonic oscillator. Namely

$$w_{A/B} = \left( \sqrt{\frac{\alpha}{\pi}} \right)^3 \exp\left[-\frac{1}{2} \alpha^2(x^2 + y^2 + z^2)\right], \quad (15)$$

where $\alpha = \sqrt{\frac{m_ah}{\hbar}}$. Noting that the Wannier functions are independent of species indices within our approximations. Thus we can take

$$J_A = J_B = J. \quad (16)$$

Finally, the on-site energy is the original inter-atomic interaction with an extra numerical factor $f[w(x, y, z)]^4$. Therefore, the Hamiltonian (17) can be cast into

$$H_2 = -J \sum_{<m,n>} \left( b_{mA}^\dagger b_{nA} + b_{mB}^\dagger b_{nB} + H.c. \right) + \sum_m \left( \varepsilon_{mA}n_{mA} + \varepsilon_{mB}n_{mB} \right) \quad (17)$$

$$+ \frac{1}{2} \sum_m \left[ U_{A\varepsilon_{mA}}(n_{mA} - 1) + U_{B\varepsilon_{mB}}(n_{mB} - 1) + U_{AB}n_{mA}n_{mB} \right].$$

Our Hamiltonian (17) is different from the two-species boson Hubbard model proposed in Ref. [16], where the authors assumed that two species A and B are placed in two different optical lattices with a relative half-period shift. Also a drive laser has been applied to induce the transition between species A and B. In this situation, $J^A$ and $J^B$ in (17) should be neglected since they represent the next nearest neighbor hopping. Moreover, the on-site mutual interactions between two species are of higher orders compared with the on-site interactions for the same species. In this way, we recover their Hamiltonian

$$\tilde{H}_2 = -J \sum_{<m,n>} \left( b_{mA}^\dagger b_{nB} + H.c. \right) + \sum_m \left( \varepsilon_{mA}n_{mA} + \varepsilon_{mB}n_{mB} \right) \quad (18)$$

$$+ \frac{1}{2} \sum_m \left[ U_{A\varepsilon_{mA}}(n_{mA} - 1) + U_{B\varepsilon_{mB}}(n_{mB} - 1) + U_{AB}n_{mA}n_{mB} \right].$$

8
C. Boson Hubbard model for spinor BEC

Another well studied example of the multi-component BEC is the so-called spinor BEC. For a system of spin $f = 1$ bosons, such as $^{23}\text{Na}$, $^{39}\text{K}$, and $^{87}\text{Rb}$ atoms, the form of the inter-atomic interactions is largely constrained by symmetries. In this case, the number of the interaction parameters are reduced to two. The interaction potential can be written as

$$V_{\text{int}}(x_1, x_2) = (g_0 + g_2 \vec{F}_1 \cdot \vec{F}_2)\delta(x_1 - x_2),$$

where the parameters $g_0$ and $g_2$ are defined by the scattering length $a_2$ and $a_0$ as

$$g_0 = \frac{4\pi\hbar^2 2a_2 + a_0}{m_a};$$
$$g_2 = \frac{4\pi\hbar^2 a_2 - a_0}{m_a}.$$  

To facilitate the discussion, we choose a basis to make the trapping potential $U_{ij}$ in Eq. (3) diagonal. Thus the hopping integral is non-vanishing only between the same species. In addition, the on-site interactions are reduced to the following eight terms:

$$H_{\text{int}} = \frac{1}{2} \sum_{mA} U_{A} n_{mA} (n_{mA} - 1) + \frac{1}{2} \sum_{m,A \neq B} U_{AB} n_{mA} n_{mB} + \frac{U_0}{2} \sum_{m} (b_{m0}^\dagger b_{m1} b_{m1} + H.c).$$

Here the species index $A = 1, 0, \bar{1}(= -1)$. $U_A$, $U_{AB}$, and $U_0$ are determined by the parameters $g_0$, $g_2$ and the Wannier functions. In particular, the parameter $U_0$ is proportional to $g_2$. Moreover, $g_2$ is determined by the difference between scattering lengths as shown in Eq. (21). For the sodium case, the difference between two scattering lengths is very small ($0.29\text{nm}$) compared with $2a_2 + a_0 = 7.96\text{nm}$. Therefore, $g_2 \ll g_0$ so that we can neglect the spin relaxation channel in the interaction terms. Namely, we set $U_0 = 0$ as the zeroth order approximation. Within this approximation, we get the following boson Hubbard model for a spin-1 spinor BEC, when it is loaded into the optical lattice potential:

$$H_3 = - \sum_{<m,n>_A} (J^A b_{mA}^\dagger b_{nA} + H.c.) + \sum_{mA} \varepsilon_{mA} n_{mA}$$

$$+ \frac{1}{2} \sum_{mA} U_{A} n_{mA} (n_{mA} - 1) + \frac{1}{2} \sum_{m,A \neq B} U_{AB} n_{mA} n_{mB}.$$
In the next section, we will discuss the possible mean field phase diagram for the superfluid-Mott insulator phase transition by starting with the two-component boson Hubbard Hamiltonian (10).

III. MOTT GROUND STATE AND ITS STABILITY

We are going to employ the strong coupling expansion to develop a mean field theory. In the strong coupling limit, the hopping term can be treated as a perturbation. In the zeroth order approximation, we ignore it for a while. The Hamiltonian is then decoupled for the site index. The ground state is given by the occupation number state $|n_A, n_B \rangle$, with the wavefunction

$$|Gnd >_{MF} \sim \prod_m (b^\dagger_{mA})^{n_A} (b^\dagger_{mB})^{n_B} |0\rangle.$$ (24)

To get the ground state energy, we need to minimize the energy at each site (for this purpose, we neglect the site index in the following discussions). Namely, we need to minimize the energy function $E(n_A, n_B)$ given by

$$E(n_A, n_B) = \varepsilon_A n_A + \varepsilon_B n_B + \frac{1}{2} [U_A n_A(n_A - 1) + U_B n_B(n_B - 1) + U_{AB} n_A n_B].$$ (25)

If we skip over the fact for the moment that the occupation number $n_A$ and $n_B$ are integers, then the condition to minimize the above energy function are given by

$$U_A n_A + U_{AB} n_B = \frac{U_A}{2} - \varepsilon_A,$$ (26)

$$U_{AB} n_A + U_B n_B = \frac{U_B}{2} - \varepsilon_B.$$ (27)

Solving the two coupled linear equations, we get

$$n_A = \frac{U_B(U_A - U_{AB}) + 2(\varepsilon_B U_{AB} - \varepsilon_A U_B)}{2(U_A U_B - U_{AB}^2)},$$ (28)

$$n_B = \frac{U_A(U_B - U_{AB}) + 2(\varepsilon_A U_{AB} - \varepsilon_B U_A)}{2(U_A U_B - U_{AB}^2)}.$$ (29)
Now we take care of the fact that the occupation numbers must be integer. So the actual numbers to minimize the energy are the two integers closest to the above $n_{A/B}$. To do so, we can write $n_{A/B}$ in terms of the closest integer numbers $n_{A/B}^0$ and the decimal parts, i.e.

$$n_A = n_A^0 + \alpha, \quad n_B = n_B^0 + \beta,$$

where the numbers $\alpha$ and $\beta$ satisfy

$$-\frac{1}{2} < \alpha = n_A - n_A^0 < \frac{1}{2},$$

$$-\frac{1}{2} < \beta = n_B - n_B^0 < \frac{1}{2}.$$  

Namely, when the parameters of the system satisfy the following conditions

$$n_A^0 - 1 < \frac{U_{AB}(U_{AB} - U_B + 2\varepsilon_B) - 2\varepsilon_A U_B}{2(U_A U_B - U_{AB}^2)} < n_A^0,$$

$$n_B^0 - 1 < \frac{U_{AB}(U_{AB} - U_A + 2\varepsilon_A) - 2\varepsilon_B U_A}{2(U_A U_B - U_{AB}^2)} < n_B^0,$$

the occupation numbers $(n_A^0, n_B^0)$ minimize the energy $E(n_A, n_B)$.

One loose end in above discussions is that we have assumed the minimal occupation numbers are non-zero. If one of the occupation numbers is zero, then it means that our ground state is not stable due to the mutual interactions between different species. To get the stability condition for the uniform ground state, we need to diagonalize the interaction terms, namely the following quadratic form:

$$U(n_A, n_B) = \frac{1}{2}(U_A n_A^2 + U_B n_B^2 + U_{AB} n_A n_B).$$

The eigenvalues of this quadratic form are

$$n_{\pm} = \frac{1}{4}[(U_A + U_B) \pm \sqrt{(U_A - U_B)^2 + U_{AB}^2}]

= \frac{1}{4}[(U_A + U_B) \pm \sqrt{(U_A + U_B)^2 + (U_{AB}^2 - 4U_A U_B)}].$$

Therefore, $n_-$ may become negative; if so, the interaction manifold is saddle-like and one cannot really minimize the ground state energy with two non-zero occupation numbers. Thus, in one spatial region, one of the species must have zero occupation. In other words,
the ground state of the system must be phase separated, when the following condition is satisfied:

\[ U_A U_B \geq \frac{1}{4} U_{AB}. \]  

This condition (37) for phase separation is analogous to that of an ordinary two-component BEC (without being loaded into an optical lattice). In the case when the Wannier functions are the same for both species, this condition is reduced precisely to the one in the absence of the optical lattice.

**IV. PHASE TRANSITION TO SUPERFLUID**

In this section, we are going to present a mean-field theory based on the ground state developed in the preceding section. The hopping processes correspond to moving bosons from one site to another. This process allows bosons at different sites communicate with each other and finally they conspire to establish macroscopic coherence under appropriate conditions. In this way the system can enter a superfluid state with indefinite filling of bosons at each site.

The consistent mean-field theory we shall use corresponds to the following decomposition of the hopping terms:

\[ b_m^\dagger b_n \approx < b_m^\dagger b_n > b_m^\dagger + b_n^\dagger < b_n > - < b_m^\dagger > < b_n >, \]

\[ = \phi (b_m^\dagger + b_n) - \phi^2, \]

where \( \phi = < b_m^\dagger > = < b_n > \) is the superfluid order parameter. In the case at hand, we have taken the order parameter to be real. In this decomposition, the higher order fluctuations \((b_m^\dagger - \phi)(b_n - \phi)\) have been neglected. It reflects the fact that in the ground state energy corrections we neglect the correlation energy. Generally speaking, this process will increase the energy of the system; however, when the system parameters satisfy certain conditions, this process will not cost any energy or even will lower the energy of the system. This signals
the occurrence of a phase transition. Therefore, the vanishing energy correction due to the hopping process should give us the phase boundary. In the following, we shall determine the phase boundary using second order perturbation theory.

The resulting mean-field version of the hopping Hamiltonian can be written as

$$ H_{\text{eff}} = \sum_{m} H_{m}^{\text{eff}} $$

$$ = -zJ \sum_{m} \left[ \phi_{A} (b_{m}^{\dagger} + b_{mA}) + \phi_{B} (b_{m}^{\dagger} + b_{mB}) - (\phi_{A}^{2} + \phi_{B}^{2}) \right]. $$

Here $z$ is the number of nearest-neighbor sites. Since it is a single sum over all lattice sites, we drop the site index from now on.

The first order correction to the energy vanishes, due to the fact that the ground state is a product of number eigenstates at each site, and thus the average of an annihilation or creation operator is just zero. The second order correction to the energy is given by the following well-known expression:

$$ E_{g}^{(2)} = \sum_{n \neq g} \frac{| \langle g | H_{m}^{\text{eff}} | n \rangle |^{2}}{E_{g}^{(0)} - E_{n}^{(0)}}, $$

where $|n\rangle = |n_{A}, n_{B}\rangle$ denotes the unperturbed state with $n_{A}$ and $n_{B}$ atoms for each species, respectively. Correspondingly, $|g\rangle = |n_{0}^{A}, n_{0}^{B}\rangle$ is the ground state and the occupation numbers are given by Eq. (33). A straightforward calculation gives the second order correction to the ground state energy as follows:

$$ E_{g}^{(2)} = J^{2}z^{2} \phi_{A}^{2} \left[ \frac{n_{A}^{0}}{\varepsilon_{A} + U_{A}(n_{A}^{0} - 1) + U_{AB}n_{B}^{0}/2} + \frac{n_{A}^{0} + 1}{-\varepsilon_{A} - U_{A}n_{A}^{0} - U_{AB}n_{B}^{0}/2} \right] $$

$$ + J^{2}z^{2} \phi_{B}^{2} \left[ \frac{n_{B}^{0}}{\varepsilon_{B} + U_{B}(n_{B}^{0} - 1) + U_{AB}n_{A}^{0}/2} + \frac{n_{B}^{0} + 1}{-\varepsilon_{B} - U_{B}n_{B}^{0} - U_{AB}n_{A}^{0}/2} \right] $$

$$ + Jz(\phi_{A}^{2} + \phi_{B}^{2}). $$

Therefore, the phase boundaries between the Mott insulator and the superfluid for species $A$ and $B$, respectively, are given by the following conditions:

$$ 1 + Jz \left[ \frac{n_{A}^{0}}{\varepsilon_{A} + U_{A}(n_{A}^{0} - 1) + U_{AB}n_{B}^{0}/2} + \frac{n_{A}^{0} + 1}{-\varepsilon_{A} - U_{A}n_{A}^{0} - U_{AB}n_{B}^{0}/2} \right] = 0, $$

$$ 1 + Jz \left[ \frac{n_{B}^{0}}{\varepsilon_{B} + U_{B}(n_{B}^{0} - 1) + U_{AB}n_{A}^{0}/2} + \frac{n_{B}^{0} + 1}{-\varepsilon_{B} - U_{B}n_{B}^{0} - U_{AB}n_{A}^{0}/2} \right] = 0. $$
Solving above equations yields

\[ \varepsilon_A^\pm = -\frac{1}{2} \left[ U_{AB} n_B^0 + U_A (2n_A^0 - 1) - Jz \pm \sqrt{U_A^2 - 2U_A Jz (2n_A^0 + 1) + (Jz)^2} \right], \quad (43) \]

\[ \varepsilon_B^\pm = -\frac{1}{2} \left[ U_{AB} n_A^0 + U_B (2n_B^0 - 1) - Jz \pm \sqrt{U_B^2 - 2U_B Jz (2n_B^0 + 1) + (Jz)^2} \right]. \]

When the chemical potential \( \varepsilon_A \) is in the following region

\[ \varepsilon_A^- < \varepsilon_A < \varepsilon_A^+, \quad (44) \]

the energy correction due to the tunneling events of species \( A \) is positive and thus the Mott-insulator is the stable ground state. A similar result is valid for species \( B \). When the inter-species interactions \( U_{AB} \) and the intra-species interactions \( U_{A/B} \) satisfy the condition (37), we see that the mutual interactions and non-zero occupation for the other species indeed modify the phase boundary for both species. When the mutual-species repulsion is strong enough to make the system phase separated, then the system can be viewed as two totally independent single species in the optical lattice. However, the most interesting observation from Eq. (43) should be that the tips of the lobes given by condition (14) is independent of the inter-species interaction \( U_{AB} \) and thus it is independent of the occupation number of the other species too! The tips of the lobes for species \( A \) and \( B \) are given by

\[ \left( \frac{U_{A/B}}{Jz} \right)_c = 2n_{A/B}^0 + 1 + \sqrt{(2n_{A/B}^0 + 1)^2 - 1}, \quad (45) \]

which is the same as for the single species boson Hubbard model. The tip of the first lobe is given by the critical value \( U_{A/B}/(Jz) = 5.83 \) for both species. It is worth noting that the above result is valid even if the hopping integrals are not equal: \( J_A \neq J_B \); the only thing we need to do is to scale \( U_{A/B} \) by the corresponding hopping parameter \( J_{A/B} \) respectively.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have analytically studied the quantum phase transition between superfluid and Mott insulator for a multi-component BEC system in an optical lattice. Theoretically, this is a generalization of the well-studied case of the boson Hubbard model in
the condensed matter literature. Experimentally, the first beautiful observation of such a quantum phase transition is accomplished by loading a one-component atomic Bose-Einstein condensate into an artificial optical lattice and thus it would be nice to study the role of the inter-species interactions in the QPT for the multi-component cases.

In the first part of the paper, we have generalized the single species boson Hubbard model to the multi-component case with most general interactions. To be concrete, we have reduced our general boson Hubbard model to the two- and three-component cases under appropriate conditions.

Starting with the two-component boson Hubbard model, we developed a mean-field theory to study the quantum phase transition. Depending on inter-species interactions, the system may be in different ground states. If the repulsion between two species is not very strong, the two species can co-exist; namely, the system is miscible. However, if the this repulsion is sufficiently strong, the two species may become immiscible, and the ground state will demonstrate the behavior of phase separation. Namely two species of Mott insulator will stay in separate spatial regions. After turning on the tunneling terms, the ground state energy will get corrections from tunneling. We calculated the energy corrections up to second order and determined the boundary between the gain and loss in energy. We found that the inter-species interactions indeed can change the range of the parameters for the Mott insulator. However, the inter-species interactions can not change the position of the tips for the Mott insulator lobes. The phase diagram of the two-component boson Hubbard model also demonstrates a richer structure. From our analytical treatment, we conclude that the following three different phases are possible: (1) Both species $A$ and $B$ are in the superfluid phases; (2) one of the spieces is still in the superfluid phase, while the other is in the Mott insulator phase; (3) both species are in the Mott insulator phase.

Finally, several further remarks are in order. (1) Above results for a two-component system can be directly generalized to the spinor BEC and other systems with more components. (2) One can check without difficulty that there is indeed an energy gap in the excitation spectrum of the Mott insulator. The gap at zero momentum is determined by
the on-site Coulomb energy $U_{A/B}$ and is independent of the inter-species interaction $U_{A/B}$. Right at the phase transition, due to the gain of tunneling, the energy gap closes. Therefore, the system becomes compressible (or gapless) and therefore in a superfluid phase. (3) In this paper, our studies of the phase diagram for the multi species boson-Hubbard model have been restricted in the case where the Josephson-type tunneling term can be neglected. Under certain experimental conditions, such terms would be dominant and the physics is significantly changed. The results for this case will be published somewhere else.

Acknowledgments

This research was supported in part by the US National Science Foundation under Grants No. PHY-9970701.
REFERENCES

1 S. L. Sondhi et al., Rev. Mod. Phys, 69, 315 (1997).

2 S. Sachdev, Quantum Phase Transitions, (Cambridge, New York, 1999).

3 M. Wallin et al., Phys. Rev. B, 49, 12115 (1994).

4 D. S. Fisher and M. P. A. Fisher, Phys. Rev. Lett., 61, 1847 (1988); M. P. A. Fisher et al., Phys. Rev. B, 40, 546 (1989).

5 K. Sheshadri et al., Europhys. Lett., 22, 257 (1993).

6 J. K. Freericks and H. Monien, Europhys. Lett., 26, 545 (1994).

7 D. van Oosten, P. van der Straten, and H. T. C. Stoof, Phys. Rev. A, 63, 053601-1 (2001).

8 S. A. Grigera et al., Science, 294, 329 (2001).

9 M. Greiner et al., Nature, 415, 39 (2002).

10 T. L. Ho and V. B. Shenoy, Phys. Rev. Lett., 77, 2595 (1996).

11 T. L. Ho, Phys. Rev. Lett., 81, 742 (1998).

12 H. T. C. Stoof, E. Vliegen, and U. Al Khawaja, Phys. Rev. Lett., 87, 120407-1; U. Al Khawaja and H. T. C. Stoof, Nature, 401, 918 (2001).

13 Fei Zhou, Quantum Spin Nematic States in Bose-Einstein Condensate ($Na^{23}$) under the Influence of Hidden Symmetries and Quantum Orders, arXive: cond-mat/0108437, (2001) and references therein.

14 for a review see special issue of Nature, 416, 206 (2002).

15 D. M. Stamper-Kurn and W. Ketterle, Spinor Condenstaes and Light Scattering from Bose-Einstein Condensates, arXive: cond-mat/0005001 (2000).

16 D. Jaksch et al., Phys. Rev. Lett., 81, 3108 (1998).
17 C. J. Myatt et al., Phys. Rev. Lett., 78, 586 (1997).

18 J. Cirac et al., Phys. Rev. A., 57, 1208 (1998).

19 J. P. Burke et al., Phys. Rev. A, 55, 2511 (1997).

20 H. M. J. M. Boesten et al., Phys. Rev. A, 55, 636 (1997).

21 P. Ao and S. T. Chui, Phys. Rev. A, 58, 4836 (1998).

22 Guang-Hong Chen and Yong-Shi Wu, to be submitted.
FIGURES

FIG. 1. The schematic phase diagram of the two-component boson-Hubbard model. The phase diagram is divided into three regions for fixed occupation numbers $n_{A/B}$. One region is superfluid phase for both components (S.F. phase); the second region is a mixture of superfluid phase for one component with Mott insulator phase for the other (S.M. phase); The third region is Mott insulator for both components (M.I. phase).
