A Membrane-proximal Basic Domain and Cysteine Cluster in the C-terminal Tail of CCR5 Constitute a Bipartite Motif Critical for Cell Surface Expression*

Sundararajan Venkatesan‡§, Ana Petrovic‡, Massimo Locati‡, Yong-Ou Kim‡, Drew Weissman§, and Philip M. Murphy¶

From the ‡Laboratory of Molecular Microbiology and §Laboratory of Host Defenses, NIAID, National Institutes of Health, Bethesda, Maryland 20892 and the ¶Division of Infectious Diseases, University of Pennsylvania, Philadelphia, Pennsylvania 19104

We examined the structural requirements for cell surface expression, signaling, and human immunodeficiency virus co-receptor activity for the chemokine receptor, CCR5. Serial C-terminal truncation of CCR5 resulted in progressive loss of cell surface expression; mutants truncated at the 317th position and shorter were not detected at the cell surface. Alanine substitution of basic residues in the membrane-proximal domain (residues 314–322) in the context of a full-length C-tail resulted in severe reduction in surface expression. C-terminal truncation that excised the three cysteines in this domain reduced surface expression, but further truncation of upstream basic residue(s) abolished surface expression. Substituting the carboxyl-terminal domain of CXCR4 for that of CCR5 failed to rectify the trafficking defect of the tailless CCR5. In contrast, tailless CXCR4 or a CXCR4 chimera that exchanged the native cytoplasmic domain for that of wild type CCR5 was expressed at the cell surface. Deletion mutants that expressed at the cell surface responded to chemokine stimulation and mediated human immunodeficiency virus entry. Substitution of all serine and threonine residues in the C-terminal tail of CCR5 abolished chemokine-mediated receptor phosphorylation but preserved downstream signaling (Ca²⁺ flux), while substitutions of tyrosine residues in the C-tail affected neither phenotype. CCR5 mutants that failed to traffic to the plasma membrane did not exhibit obvious changes in metabolic turnover and were retained in the Golgi or pre-Golgi compartments(s). Thus, the basic domain (-KHIAKRF-) and the cysteine cluster (-CKCC-) in the C-terminal tail of CCR5 function cooperatively for optimal surface expression.

CCR5 is a member of the chemokine receptor subclass of the G protein-coupled receptor (GPCR) superfamily (1). CCR5 regulates leukocyte chemotaxis in inflammation (2) and serves as a co-receptor for macrophage-tropic HIV entry (3–6). Expression of chemokine receptors is regulated at the transcriptional level in many cell types (1, 7–9). In addition, as members of GPCR family, they share a common three-dimensional architecture composed of seven transmembrane (TM) domains arranged in a counter-clockwise toroidal conformation, which defines multiple extracellular and intracellular loops (10–12). They possess extracellular N termini of variable length and a C-terminal cytoplasmic domain containing unique motifs critical for ligand-dependent receptor signaling, internalization, and desensitization (13, 14). These architectural requirements and the need to interact precisely with cellular components pertinent to receptor function may subject them to post-translational regulatory mechanisms. Specifically, intracellular trafficking of some GPCRs may reflect the need for specific cellular helper proteins to facilitate maturation and transport that may underlie their tissue-specific expression. Transport of some chemokine receptors such as CCR2A is restricted by cis-nega-

Received for publication, June 20, 2001, and in revised form, July 24, 2001
Published, JBC Papers in Press, August 20, 2001, DOI 10.1074/jbc.M105722200

THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 276, No. 43, Issue of October 26, pp. 40133–40145, 2001
Printed in U.S.A.
also been examined more directly. Truncation of the terminal carboxyl-tail to eight amino acids blocked chemokine-dependent activation of intracellular calcium flux and the cellular response of chemotaxis but not the ability to act as HIV-1 co-receptor (36, 37). Another report showed that a CCR5 mutant lacking the last 45 amino acids of the cytoplasmic C terminus (CCR5ΔN) was expressed on transfected cells and displayed normal chemokine binding affinities and HIV co-receptor activity. However, it was defective for ligand-induced signaling (38). In contrast, Shio da et al. (40) have shown that a natural variant of CCR5, CCR5–893(–), observed exclusively in Asians (39), lacked the C-tail and was impaired for surface expression, being retained in the ER.

In this report, we have examined the structural elements in the carboxy-terminal domain of CCR5 required for optimal surface expression. We have identified a membrane-proximal basic domain that is absolutely required for the transport of the receptor to the cell surface. This basic domain together with a neighboring cysteine cluster that has been recently identified to be palmitoylated (41) constitutes a bipartite motif required for the optimal transport and expression of CCR5.

MATERIALS AND METHODS

Expression Plasmids—Construction of the Rous sarcoma virus long terminal repeat- or cytomegalovirus immediate early promoter-driven expression plasmids for WT CCR2B, CCR3, CCR5, CXCRI, CXCRII, and CXCRII4 have been described (3, 38, 42–44). The various mutants described in this paper were constructed in vitro by the overlap PCR method (45) and cloned using a commercial vector, pCDNA3.1 directonal TOPO vector (Invitrogen Corp., Rockville, MD). Some of the mutants were also cloned into FLAG vector (Sigma) that appended a FLAG epitope at the N terminus of the indicated receptors.

DNA Transfection—Monolayers were transfected by the CaCl2 method (46) using the plasmids encoding HIV-1 pNL4-3 with and without reading frames lacking for 30 min at 4 °C with the respective pNL4-3 pseudotyped HIV stocks expressing firefly luciferase in place of Nef were prepared by transfacting 293-T cells (American Type Culture Collection) with SIV mac251 provirus, pNL4-3 Env–, vPr(–), luciferase(+), and plasmids encoding HIV-JRFL or avian myeloblastosis virus env (obtained through the National Institutes of Health (NIH) AIDS Research and Reference Reagent Program, Rockville, MD). Virus collected in the culture supernatants was quantified by reverse transcriptase assay and adjusted to constant reverse transcriptase units/ml.

293-T cells were transfected (by the CaCl2 method) with CD4 alone or with a mixture of CD4 and the indicated CCR5 plasmid and harvested 36 h later. After checking the transfection efficiency by FACScan analysis, CD4+ cells were purified by binding to and elution from CD4 antibody-coated magnetic beads using a commercial kit (Dynal Inc., Lake Success, NY) that resulted in recovery of >95% CD4+ cells. Eluted cells were seeded into 48-well plates (0.5–10 × 10^5 cells/well) and infected using Fugene (Roche Molecular Biochemicals). The JIKE line of Jurkat T cells (contributed by Dan Littman, Columbia University) in RPMI medium containing 10% FCS was transfected by use of a Bio-Rad electroporator (Bio-Rad) at a setting of 250 V and 960 microfarads.

HIV Infectivity Measurement—Pseudotyped HIV stocks expressing firefly luciferase in place of Nef were prepared by transfecting 293-T cells (American Type Culture Collection) with SIV mac251 provirus, pNL4-3 Env–, vPr(–), luciferase(+), and plasmids encoding HIV-JRFL or avian myeloblastosis virus env (obtained through the National Institutes of Health (NIH) AIDS Research and Reference Reagent Program, Rockville, MD). Virus collected in the culture supernatants was quantified by reverse transcriptase assay and adjusted to constant reverse transcriptase units/ml.

293-T cells were transfected (by the CaCl2 method) with CD4 alone or with a mixture of CD4 and the indicated CCR5 plasmid and harvested 36 h later. After checking the transfection efficiency by FACScan analysis, CD4+ cells were purified by binding to and elution from CD4 antibody-coated magnetic beads using a commercial kit (Dynal Inc., Lake Success, NY) that resulted in recovery of >95% CD4+ cells. Eluted cells were seeded into 48-well plates (0.5–10 × 10^5 cells/well) and infected using Fugene (Roche Molecular Biochemicals). The JIKE line of Jurkat T cells (contributed by Dan Littman, Columbia University) in RPMI medium containing 10% FCS was transfected by use of a Bio-Rad electroporator (Bio-Rad) at a setting of 250 V and 960 microfarads.

HIV Infectivity Measurement—Pseudotyped HIV stocks expressing firefly luciferase in place of Nef were prepared by transfecting 293-T cells (American Type Culture Collection) with SIV mac251 provirus, pNL4-3 Env–, vPr(–), luciferase(+), and plasmids encoding HIV-JRFL or avian myeloblastosis virus env (obtained through the National Institutes of Health (NIH) AIDS Research and Reference Reagent Program, Rockville, MD). Virus collected in the culture supernatants was quantified by reverse transcriptase assay and adjusted to constant reverse transcriptase units/ml.

293-T cells were transfected (by the CaCl2 method) with CD4 alone or with a mixture of CD4 and the indicated CCR5 plasmid and harvested 36 h later. After checking the transfection efficiency by FACScan analysis, CD4+ cells were purified by binding to and elution from CD4 antibody-coated magnetic beads using a commercial kit (Dynal Inc., Lake Success, NY) that resulted in recovery of >95% CD4+ cells. Eluted cells were seeded into 48-well plates (0.5–10 × 10^5 cells/well) and infected using Fugene (Roche Molecular Biochemicals). The JIKE line of Jurkat T cells (contributed by Dan Littman, Columbia University) in RPMI medium containing 10% FCS was transfected by use of a Bio-Rad electroporator (Bio-Rad) at a setting of 250 V and 960 microfarads.

HIV Infectivity Measurement—Pseudotyped HIV stocks expressing firefly luciferase in place of Nef were prepared by transfecting 293-T cells (American Type Culture Collection) with SIV mac251 provirus, pNL4-3 Env–, vPr(–), luciferase(+), and plasmids encoding HIV-JRFL or avian myeloblastosis virus env (obtained through the National Institutes of Health (NIH) AIDS Research and Reference Reagent Program, Rockville, MD). Virus collected in the culture supernatants was quantified by reverse transcriptase assay and adjusted to constant reverse transcriptase units/ml.

293-T cells were transfected (by the CaCl2 method) with CD4 alone or with a mixture of CD4 and the indicated CCR5 plasmid and harvested 36 h later. After checking the transfection efficiency by FACScan analysis, CD4+ cells were purified by binding to and elution from CD4 antibody-coated magnetic beads using a commercial kit (Dynal Inc., Lake Success, NY) that resulted in recovery of >95% CD4+ cells. Eluted cells were seeded into 48-well plates (0.5–10 × 10^5 cells/well) and infected using Fugene (Roche Molecular Biochemicals). The JIKE line of Jurkat T cells (contributed by Dan Littman, Columbia University) in RPMI medium containing 10% FCS was transfected by use of a Bio-Rad electroporator (Bio-Rad) at a setting of 250 V and 960 microfarads.

HIV Infectivity Measurement—Pseudotyped HIV stocks expressing firefly luciferase in place of Nef were prepared by transfecting 293-T cells (American Type Culture Collection) with SIV mac251 provirus, pNL4-3 Env–, vPr(–), luciferase(+), and plasmids encoding HIV-JRFL or avian myeloblastosis virus env (obtained through the National Institutes of Health (NIH) AIDS Research and Reference Reagent Program, Rockville, MD). Virus collected in the culture supernatants was quantified by reverse transcriptase assay and adjusted to constant reverse transcriptase units/ml.
PBS, the coverslips were mounted in Fluoromount-G (Southern Biotechnologies, Birmingham, AL). For detecting intracellular antigens, cells were fixed in 4% (v/v) paraformaldehyde for 15 min at 4 °C, rinsed five times with PBS, permeabilized by 15 min of treatment with 0.25% Triton X-100 (or Nonidet P-40) in PBS at 25 °C, and reacted as above with the respective antibody combinations.

The following organelle-specific antibodies were used to detect colocalization of the receptors with various subcellular compartments: 1) for ER, mAbs (Affinity Bioreagents, Golden, CO) or rabbit sera (Stressgen Biotechnologies Corp., Victoria, BC) against calnexin or calreticulin, anti-heme oxygenase mAb or rabbit anti-BiP (Stressgen Biotechnologies Corp., Victoria, Canada), or anti-protein-disulfide isomerase mAb (from Affinity Bioreagents); 2) rabbit anti-

**Fig. 1. Schematic illustration of CCR5 mutants.** A, C-terminal deletions of CCR5s are denoted by the shaded rectangles ending at the designated sites. The numbered sequence of WT CCR5 is given above. Δ1 through Δ4 deletion mutants were tagged with a FLAG epitope at the N termini, B, sequence of WT CCR5 and of mutants that exchanged all of the serine and threonine residues for alanine (S/T → A) or that replaced the lysines at 314, 318, and 322, arginine at 319, and histidine at 315 with alanine (+)→ A) in the cytoplasmic tail of CCR5. ΔDRY refers to deletion of the -DRY- motif in the second intracellular loop. Asterisks denote the three cysteines that may be palmitoylated (41).

Intracellular (Ca²⁺) Measurements—Cells (10⁶/ml) were incubated in Hanks' balanced saline solution and 2.5 μM Fura-2/AM (Molecular Probes) for 30–60 min at 37 °C in the dark. The cells were then washed with Hanks' balanced saline solution and suspended at 10⁶ cells/ml. 4 × 10⁶ cells were stimulated with the indicated chemokines (purchased from Peprotech Inc., Rocky Hill, NJ) or ATP in a total volume of 2 ml in a continuously stirred cuvette at 37 °C in a fluorimeter (Photon Technology Inc., South Brunswick, NJ). Data were recorded every 200 ms as the relative ratio of fluorescence emitted at 510 nm after sequential excitation at 340 and 380 nm.

**RESULTS**

**Delineation of Structural Determinants in the C-terminal Tail of CCR5 Required for Cell Surface Expression**—To identify the carboxyl-terminal domains of CCR5 required for cell surface expression, we first engineered a C-terminal set of deletion mutants shown schematically in Fig. 1A. Deletions labeled Δ1 through Δ4 were also tagged at the 5'-end with a FLAG epitope, and for comparison we used a WT CCR5 carrying an identical epitope.

Steady-state cell surface expression was examined following transfection of primate epithelial cell lines including 293-T, HeLa, and COS-1 cells and Jurkat T-lymphocytes. To normalize for transfection efficiencies, CD8 was co-transfected, and the distribution of CD8 and CCR5 was examined by two-color FACS using respective monoclonal antibodies directly conjugated with nonoverlapping chromophores (i.e. FITC and TC or PE and APC). Representative results using 293-T cells are illustrated in Fig. 2A. Cells transfected with CD8 or WT CCR5 alone set the distinct population boundaries for cells staining positively for CCR5 or CD8. A dot plot of cells transfected with WT CCR5 and CD8 showed a double positive diagonal population with almost equivalent staining for both receptors. C-terminal truncations resulted in a progressive decrease in the relative surface density of CCR5 in the transfected populations that had equivalent CD8 expression. Mean fluorescence values (MFVs) for CCR5 were computed for the transfected population (gated for CD8) and normalized to constant CD8 values. MFVs decreased from 452 for the FLAG-WT CCR5 to 140 (a 66% reduction) for a truncation to the 320th residue. The Δ4 mutant that lacked the entire C-tail from truncation at the 306th residue was essentially negative for surface expression in this assay. Truncation to the 320th residue lacking three cysteine residues that are targets of palmitoylation (KRFX) displayed a modest decrease when compared with the Δ3 (KCCX) mutant of 324 residues (MFV of 110 versus 161 for Δ3). Further truncation (HIAX mutant) that eliminated the upstream lysine and arginine at positions 318 and 319 was severely restricted for surface expression.

The significant drop (50–60%) from the WT expression levels for the KCCX mutant prompted us to inquire whether the serines and threonines in the C-tail, which may be targeted by GPCR kinase(s) or arrestin, are critical for surface expression. A mutant named S/T → A, which exchanged all of the serines
and threonines for alanines exhibited a WT phenotype. Mutating the tyrosines at 307 or 339 was also without effect as was excision of the -DRY- motif (ΔDRY) in the second ICL of CCR5, which is implicated in G-protein binding. A cluster of basic residues in the membrane proximal region (between residues 306 and 320) of the C-tail between the clearly negative Δ4 mutant of 306 residues and the modestly positive KCCX (Δ3) mutant of 324 residues were mutated next. (Δ3)A, which changed the three lysines at 314, 318, and 322, histidine at 315, and arginine at 319 to alanine(s), exhibited a significant reduction in surface expression.

Relative surface expression of all CCR5 mutants was examined in five independent experiments, and, as shown by the histogram in Fig. 2A, they did not vary by more than 10%.

Surface expression of CCR5 mutants was analyzed twice in HeLa and COS-1 cells with similar results (not shown). The expression phenotype of selected mutants was also examined in Jurkat lymphocytes. As with other cell types, truncation to the 324th residue resulted in significant decrease (~50%) in surface expression (Fig. 2B). Excision of the entire tail (Δ4) eliminated surface expression. While the (+) → ΔA mutant was expressed, the level was significantly reduced (20–25% of WT). MFV data from four experiments in Jurkat cells are summarized by the histogram in Fig. 2B. To exclude the possibility that nonreactivity with any one antibody may have been due to altered conformations of mutant CCR5, expression of every
derivative was checked twice with seven monoclonal antibodies (2D7, 3A9, 5C7, 180, 181, 182, and 183) and once with rabbit anti-serum against the N-terminal peptide of CCR5 in 293-T transfectants. Similar expression patterns for various CCR5 mutants were observed with different antibodies (not shown). Likewise, staining with 5C7 and 3A9 antibodies and rabbit anti-CCR5 antiserum corroborated results obtained with Jurkat cells (not shown). Mutants that were negative for surface expression in HeLa and COS-1 cells with 2D7 antibody displayed the same phenotype with six different monoclonal antibodies (not shown).

**Mutants Impaired for Surface Expression Were Retained inside the Cells**—HEK 293 cells stably expressing WT or tailless CCR5 were analyzed for CCR5 antibody reactivity. When living cells were incubated with six different monoclonal antibodies, only WT CCR5 cells reacted positively; cells expressing tailless CCR5 were negative for surface staining. When the cells were fixed and permeabilized prior to antibody staining, both cell types reacted positively to three different CCR5 antibodies (not shown).

Subcellular distribution of WT and mutant CCR5 was examined by confocal immunofluorescence microscopy of live or fixed and permeabilized HeLa cells transfected with individual plasmids. Three different conjugated CCR5 monoclonal antibodies (2D7, 3A9, and 182) were used alone or in combination (2D7 and 182), and 12 fields (6–10 cells per field) were collected for each staining from two separate experiments. As shown in Fig. 3, live WT CCR5-expressing cells exhibited punctate cell surface fluorescence. C-terminal truncations reduced the surface density of CCR5 in this assay, with the HIAX mutant (317th residue) showing barely detectable surface reactivity. Both the Δ4 (306th residue) and the (+)→A mutant displayed very little or no surface staining. CCR5 chimeras that exchanged the CCR5 tail for that of CXCR4 (Fig. 3, R5 Δ tail, i-X4 tail) or for CCR3 tail (not shown) were also poorly visualized at the cell surface. S/T→A mutant that exchanged all of the serines and threonines in the CCR5 tail for alanine and a mutant (R5 Δ125–141, i-X4 (133–154)) that exchanged a 16 residues in the second ICL of CCR5 containing the -DRY- motif for a corresponding region of CXCR4 displayed WT levels of expression. Δ DRY mutant had a somewhat reduced surface expression. There was no difference in the histological profile when transfectants were reacted with a mixture of three different unconjugated murine monoclonal antibodies or a rabbit anti-serum against CCR5 N-terminal peptide by staining with Alexa 488-conjugated second antibodies to maximize detection of poor surface expressers (not shown). When transfectants expressing the CCR5 mutants were fixed and permeabilized prior to antibody staining, all of the CCR5 derivatives displayed similar levels of intracellular antibody reactivity (Fig. 3).

**Intracellular Signaling and HIV Usage Were Impaired for CCR5 Mutants Defective for Surface Expression**—Ca²⁺ flux analysis was done with 293-T cells co-transfected with CD8 and selected CCR5 plasmids. 10⁶ cell aliquots of indicated transfectants were labeled with [³⁵S]methionine, and the cell extracts were immunoprecipitated with rabbit anti-CCR5 antiserum. Immunoprecipitates were resolved by SDS-PAGE and visualized by PhosphorImager scanning. The various CCR5 derivatives were expressed as well if not better than WT CCR5 (Fig. 4). Cells were analyzed for CD8 expression, and the individual transfectants were adjusted to constant CD8⁺ levels. Approximately 5×10⁶ cells were preloaded with Fura-2 and analyzed for intracellular Ca²⁺ flux following sequential additions of 100 nM RANTES and ATP. Appending FLAG or HA epitopes at the N or C terminus or His₆ tag at the C terminus of CCR5 did not impair the signaling potential of the resulting tagged CCR5s (not shown). Distal deletions up to the 324th residue were competent for signaling, while the tailless CCR5, Δ₄, was negative in this assay (Fig. 4). With cells expressing the (+)→A mutant, there was a barely detectable hump rather than a spike of Ca²⁺ flux, and the ΔDRY mutant that lacked the G-protein binding motif was silent as expected. Examining the ligand-dependent CCR5 phosphorylation validated these findings; mutants that were negative for surface FACS expression or Ca²⁺ flux displayed no phosphorylation.²

CCR5 expression levels influence the magnitude of HIV infection, and the tailless CCR5 has been shown to facilitate M-tropic HIV env-induced fusion in vitro (36–38). We exam-

² D. I. Van Ryk and S. Venkatesan, unpublished data.
ined M-tropic virus entry more directly using a luciferase-expressing virus pseudotyped with the M-tropic envelope, JRFL. 293T cells were transfected with CD4 or with equimolar mixtures of CD4 and WT or Δ4 CCR5. CD4+ cells were purified by magnetic bead technology and infected with luciferase-expressing NL-432 HIV pseudotyped with JRFL or amphotropic murine leukemia virus envelope protein and assayed for luciferase expression. Luciferase expression in each case was normalized to constant levels of CD4 expression as described under "Materials and Methods." In three independent experiments, HIV entry into the Δ4 cells was at least 7% as efficient as the WT cells (Table I). This was comparable with the nearly 95% reduction in the surface expression of CCR5 observed with the Δ4 CCR5 by FACS analysis. HIV usage of (+) A mutants was impaired by a similar magnitude (not shown).

CXCR4. The cytoplasmic tails of these receptors were truncated to different lengths as shown by the scheme in Fig. 6A. Cell surface expression of the respective WT and mutant receptors was evaluated by two-color FACS in 293-T transfectants. CD8+ cells were gated and evaluated for co-expression of X4-R5 chimera confirmed their unaltered surface expression potential (Fig. 10). When the CCR5 cytoplasmic domain in the X4-R5 chimera was from the (+) A CCR5 mutant that changed the three lysines at 314, 318, and 322, histidine at 315, and arginine at 319 to alanine(s), cell surface expression of the resulting chimera (X4 Δ tail (301–352)-i- R5[(+/A)] tail (296–352)) was somewhat reduced. Fig. 5B represents the maximal reduction in the cell surface expression of CXCR4 reactivity observed with this chimera.

Cell Surface Expression of Certain C-C and CXC Chemokine Receptors Also Required Variable Lengths of Cytoplasmic Tail—Next, we inquired whether other chemokine receptors require a complete cytoplasmic tail for cell surface expression. For this purpose, we chose CCR2B and CCR3, two C-C chemokine receptors closely related to CCR5, and two CXC chemokine receptors, CXCR1 and CXCR2, which are related to CXCR4. The cytoplasmic tails of these receptors were truncated to different lengths as shown by the scheme in Fig. 6A. Cell surface expression of the respective WT and mutant receptors was evaluated by two-color FACS in 293-T transfectants. CD8+ cells were gated and evaluated for co-expression of

| Expt. | NO | JRFL | AMLV |
|-------|----|------|------|
| CD4 only | 17 | 26  | 6750 |
| CD4 + WT CCR5 | 58 | 3900 | 8700 |
| CD4 + CCR5 Δ4 | 78 | 314 | 7200 |
| Expt. 2 | | | |
| CD4 only | 81 | 13  | 9700 |
| CD4 + WT CCR5 | 78 | 2800 | 8200 |
| CD4 + CCR5 Δ4 | 52 | 188 | 8900 |
| Expt. 3 | | | |
| CD4 only | 44 | 88  | 8100 |
| CD4 + WT CCR5 | 58 | 4100 | 7300 |
| CD4 + CCR5 Δ4 | 78 | 286 | 6800 |
the respective chemokine receptors. Substantial truncation of the CCR2B tail (Fig. 6B, Δ1, 325 aa) had very little effect on cell surface expression. Further trimming of the C terminus of CCR2B (Δ2, 312 aa) that removed a portion of the seventh TM domain did not entirely abrogate surface expression but reduced it by 5-fold. Excision of most of the C-terminal domain of CCR3 drastically reduced, if not abolished, the cell surface expression as shown by the FACS profile in Fig. 6B. In contrast, removal of the entire C-terminal tail of CXCR1 resulted only in a modest reduction in the surface expression of the
C-terminal truncations of CCR5 resulted in more significant reduction in trafficking to the cell surface than corresponding CXCR1 mutants (Fig. 6B). Although CXCR1 and CXCR2 mutants were expressed better at the cell surface than the CCR2B, CCR3, and CCR5 counterparts, although at reduced levels, surface expression of tailless CXCR4 was not affected. The above results were confirmed by transfections of HeLa and COS-1 cells (not shown).

The cell surface expression pattern obtained by FACS analysis was validated by immunofluorescence microscopy of living or fixed and permeabilized HeLa cells transfected with the respective receptor plasmids (Fig. 7). As expected, there was no difference in the magnitude of intracellular antibody reactivity of the various mutants. Surface fluorescence was undiminished for the CCR2B mutant truncated at the 325th amino acid but was markedly reduced for the mutant truncated at the 312th residue, much more than was anticipated by FACS data. The CCR3 mutant lacking the C-tail was poorly expressed on the living cells. Excision of CXCR1 C-tail did not curtail surface expression of tailless CXCR2 or untagged anti-CXCR2 antibody (anti-IL-8 Rb) followed by Alexa 488-conjugated anti-mouse IgG; and FITC-conjugated rat antibody (clone 48311) against CXCR1 or unconjugated anti-CXCR1 antibody (anti-

To test whether the mutants were retained in the vesicular
compartments of anterograde transport, the cells were co-
stained for CCR5 and β/H9252-COP (for transport vesicles between the ER and the Golgi), Golgi-resident proteins (Deng or man-
osidase), or TGN 46, respectively. WT CCR5 showed little if any co-localization with β/H9252-COP organelles or cis and medial Golgi vesicles. There was some co-staining with the TGN ves-
icles, probably representing sequestration in the recycling com-
artment. The KRFX mutant that had reduced surface expres-
sion exhibited comparatively more co-localization with the Golgi and the TGN compartments. The β/H9004 and (β/H11001)
3A mutant that was not transported to the cell surface displayed more pronounced localization in the proximal β-COP vesicles
and more distal Golgi compartments. HEK-293 cells stably
expressing the β/H9004 mutant also displayed localization of mutant CCR5 in the ER and the Golgi compartment (not shown). The
R5-X4 chimera that exchanged the CCR5 tail for that of CXCR4
and was negative for surface expression by FACS analysis (Fig.
5) was retained in the ER and Golgi compartments (not shown).

Tailless CXCR4 and a CXCR4 Chimera with the C-tail of WT
CCR5 Were Not Retained inside Cells—We examined the sub-
cellular distribution of CXCR4 and its derivatives in trans-
fected HeLa cells by co-staining for the receptor and cellular organelles (Fig. 5). Since CXCR4 is expressed in this and most other cell types, confocal images were collected at low laser power to minimize the contribution from the endogenous re-
ceptor. WT CXCR4 was identified predominantly at the plasma membrane and CCR5, a mixture of FITC-conjugated CD71 and APC-conjugated 2D7 was used. Golgi was stained with Deng antibody followed by TRITC-conju-
gated anti-mouse IgM and counterstained with a mixture of FITC-conjugated CCR5 antibodies 2D7 and 182. ER was stained with rabbit anti-calreticulin, β-COP was stained with rabbit anti-β-COP, and TGN was stained with sheep anti-TGN 46, fol-
lowed by second staining with Alexa 488-conjugated anti-rabbit or sheep IgGs. Samples were then counterstained for CCR5 with APC-conjugated 2D7. CCR5 is colored green, and the organelle is red.

Fig. 8. Kinetic analysis of metabolic turnover of CCR5 derivatives. 293-T cells (two six-well plates for each) were co-transfected with CD8 and the indi-
cated CCR5 plasmids. FACS was used to monitor transfectants for CD8 and CCR5 expression. Cells were labeled for 15 min
with [35S]methionine and chased with unlabeled amino acid mix for the indicated times. One-third aliquot from each time point was analyzed for CD8 labeling by SDS-PAGE and PhosphorImager scan-
ing. CD8 turned over with a t₁/₂ of 10–12 h. The remaining aliquots were adjusted to reflect constant CD8 levels for the respective time points, and CCR5 was im-
munoprecipitated and processed for SDS-
PAGE. Scanned images of SDS-PAGE are
shown. Chase times are shown above each gel. Lane M shows molecular mass mark-
ers with the respective masses in kDa on the left. An asterisk denotes the O-glyco-
sylated CCR5 band.

Fig. 9. Subcellular distributions of CCR5 derivatives. HeLa cells trans-
fected with the indicated CCR5 plasmids were treated with cycloheximide for 30 min prior to fixation and detergent treat-
ment. Antibody staining and confocal micro-
scopy are described under “Materials and Methods.” For co-staining plasma membrane and CCR5, a mixture of FITC-
conjugated CD71 and APC-conjugated 2D7 was used. Golgi was stained with Deng antibody followed by TRITC-conju-
gated anti-mouse IgM and counterstained with a mixture of FITC-conjugated CCR5 antibodies 2D7 and 182. ER was stained with rabbit anti-calreticulin, β-COP was stained with rabbit anti-β-COP, and TGN was stained with sheep anti-TGN 46, fol-
lowed by second staining with Alexa 488-conjugated anti-rabbit or sheep IgGs. Samples were then counterstained for CCR5 with APC-conjugated 2D7. CCR5 is colored green, and the organelle in red.

DISCUSSION
In this paper, we have defined the structural requirements in the C-tail for cell surface expression of CCR5. Optimal sur-
face expression of CCR5 is dependent on 1) the length of the
C-tail, 2) a membrane-proximal basic amino acid-rich domain, and 3) a cysteine cluster. These sequence features act cooperatively to facilitate plasma membrane insertion of CCR5. Sequential truncations of the cytoplasmic tail caused progressive decrease in the trafficking of the receptor to the cell surface, and complete removal of the tail (Δ4 mutant) almost totally abolished trafficking to the cell surface. The same phenotype was observed for WT and tailless CCR5 in both transfected cell lines and transiently transfected epithelial and Jurkat T cells. Although the Δ4 mutant was not detectable at the cell surface by FACS or by ligand-induced Ca\textsuperscript{2+} flux, it did support low levels of M-tropic HIV entry, indicating that there must have been some surface expression. A previous report showing that the Δ4 mutant could be expressed in NIH 3T3 cells and support M-tropic HIV infection probably reflected this residual surface expression amplified by the vaccinia vector system (38).

In the upstream seventh TM domain of CCR2B (mutant 312 aa), truncation to the 326th residue excised both the basic domain and the cysteine cluster in the CCR2B C-tail but did not affect surface expression or endocytosis. However, truncation to the 316th position excised the entire C-tail and a few residues in the cytoplasmic domain did not impair surface expression (16). Further, we have shown that excision of the entire C-tail and a few residues in the upstream seventh TM domain of CCR2B (mutant 312 aa) severely reduced, but did not abolish, surface expression. Likewise, excision of the CCR3 C-tail (mutant 308 aa) caused severe reduction in surface expression without abolishing it. In contrast, cell surface expression of CXC chemokine receptors showed much less reliance on the presence of a C-tail. CXCR4, whose expression was unaffected by excision of the C-tail, was notable in this regard, in agreement with earlier reports (20–23) of mutants truncated to the 316th position in the C-tail (equivalent to our ALTX mutant). Serial truncations of CXCR2 have been shown to result in a progressive loss of surface expression, and the cells expressing the tailless receptor failed to be chemottracted by IL-8 (17, 18). Similarly, we observed that C-tail truncations of CXCR2 led to progressive loss of surface expression. We have further extended this by showing that expression of CXCR1 was more resistant to C-tail truncation than CXCR2.

Several reports have shown that deletion or truncation of the C-terminal tail of CCR5 did not affect this parameter (38). It is highly unlikely that the other mutations considered in the present paper, all of which perturb CCR5 structure to a lesser degree, would affect ligand binding.

Many secretory and membrane-bound glycoproteins are scanned by the ER quality control system, and aberrantly folded proteins are targeted for degradation in the ER or the cytosol (47–49). Among GPCRs, inefficient processing of δ opioid receptor results in substantial ER retention of de novo synthesized receptor (50) that is translocated to the cytosol, deglycosylated, ubiquitinated, and degraded by the proteasome (51). In addition, β\textsubscript{2}-adrenergic receptor expression in HEK-293 cells is augmented by proteasome inhibition (52), and rhodopsin undergoes ubiquitination (53). In contrast to the above, CCR5 truncation mutants that were reduced or absent at the

![Subcellular distributions of CXCR4 derivatives](image)

FIG. 10. Subcellular distributions of CXCR4 derivatives. Experimental conditions are similar to those described for Fig. 9 except for the use of APC-conjugated anti-CXCR4 antibody 12G5 instead of CCR5 antibody. Panels labeled Live w/CD71 represent staining of living cells with a mixture of FITC-conjugated CD71 and APC-conjugated 12G5. CXCR4 is colored red, and the organelles are green.
cell surface did not exhibit significant differences in metabolic turnover compared with the WT receptor. Taken together, these observations suggest that defect(s) in anterograde transport may be the mechanism underlying impaired surface expression of CCR5 mutants.

We found that even the shortest deletions that were only slightly reduced on the cell surface had less $\text{O}^-\text{-glycosylation}$, unlike the WT receptor that was almost fully glycosylated within 1 h after labeling. The initial $\text{O}^-\text{-glycan}$ addition to proteins is presumed to occur in the Golgi, with terminal modification(s) occurring in the distal Golgi stacks and sialylation in the TGN (54–60). Reduced $\text{O}^-\text{-glycosylation}$ of mutants that were only slightly reduced at the cell surface may simply reflect their sluggish vesicular transport. Alternatively, the mutants may not have been fully glycosylated or sialylated. These findings were consistent with the co-localization patterns of various CCR5 mutants with subcellular organelles. Whereas WT CCR5 was predominantly distributed at the plasma membrane, the expression-defective mutants exhibited increasing stasis in the Golgi and the TGN compartments, and the tailless CCR5 displayed ER-like staining but co-localized with the Golgi and TGN markers.

Although the precise mechanisms underlying impaired transport and intracellular retention of CCR5 mutants are not known, they may be analogous to those that have been proposed for the retention of Golgi-resident proteins (61–64) and coronavirus glycoproteins (65–67). A “kin recognition” model (62) proposed that Golgi proteins form large oligomers mediated by their membrane-spanning domains precluding further transport. An alternative proposal suggested that cholesterol-enriched plasma membrane, being “thicker” than Golgi membranes, allowed Golgi retention of proteins with shorter and less hydrophobic TM domains that might be sorted away from the thicker plasma membranes (61, 68, 69). The defective phenotype of CCR5 mutants may reflect one or both of these scenarios. Trafficking problems resulting from C-terminal truncations were not confined to CCR5. Excision of the entire C-terminal domains of two other CC chemokine receptors, CCR2B and CCR3, also resulted in severe reduction of surface expression and increased retention in the ER/Golgi compartments (not shown). These observations imply that cytoplasmic retention of the various tailless receptors reflects intrinsic differences in the oligomerization potential of the respective TM domains that may trap them in the Golgi apparatus. Cytoplasmic domain(s) of CCR5, CCR3, and CCR2B may then be thought of as positive regulator(s) of anterograde transport that prevent retention by facilitating rapid transit through the Golgi by interacting with putative cellular escorts. Failure of the cytoplasmic domain of CXCR4 to rescue expression for tailless CCR5 implies that the potential interactions with cellular factors may be highly specific.

Naturally occurring mutants in certain GPCRs identified in specific inherited diseases such as rhodopsin mutants in retinitis pigmentosa (70), LH receptor mutants in male pseudohermaphroditism (71), and V2-vasopressin mutants associated with congenital diabetes insipidus (72) display poor surface expression and ER retention. Some of these mutants, like the rhodopsin Q344ter mutant (73) and vasopressin V2 receptor mutant in the -ELRSLLCC- domain (74), map to the C-tail of the respective receptors. This has led to a search to identify specific cellular chaperones that may be recruited to facilitate proper folding of GPCRs. Maturation of rhodopsin in the photoreceptor cells of Drosophila and of bovine rhodopsin is facilitated by a cyclophilin-like chaperone (75–78). Similar helper
systems have been proposed for the maturation of olfactory (79), adrenomedullin (80) receptors. In the case of γ-aminobutyric acid type B-1 receptors, heterodimerization with the γ-aminobutyric acid B-2 subunit facilitates functional surface expression (81). Some of these mechanisms may be relevant to chemokine receptors. The CCR2A isoform of CCR2, which has significant homology with CCR5, is a case in point. CCR2A, whose cytoplasmic domain is distinct from other chemokine receptors, is retained mainly in the cytosol, while CCR2B is transported efficiently to the cell surface (15). C-terminal deletions of CCR2A identified a putative retention signal in the C-tail, since the surface expression of C-terminally truncated CCR2A approached the levels of the CCR2B isoform (15). It is pertinent to note in this regard that two membrane-distal motifs, termed is1 and is2, have been identified in the C-tail of HIV-1 TM glycoprotein, gp41, that cause Golgi retention of gp41 and chimeric proteins carrying these motifs (82). CCR2A C-tail sequence displayed significant homology with the is2 element in the C-tail of gp41.

CCR5 has a cluster of three cysteines in the C-tail that are targets for palmitoylation and crucial for optimal surface expression (41). The cysteine cluster is immediately downstream of the basic residues mutated in the expression-negative (+) → A Mutant. Surface expression for the 320-residue KRF mutant that lacks palmitoylation was significantly lower than for the 324-residue A mutant (KCCX). The lack of this bipartite motif. According to this model, the C-tail of CCR5 forms a fourth ICL in a sequential manner with this, a previous report showed that a CCR5/CCR2B chimera, which exchanged the CCR5 tail for that of CCR2B, was competent for surface expression (86). Whether such a bipartite motif is a general requirement for normal trafficking of other GPCRs seems unlikely, since excision of this motif from CCR2B did not affect surface expression (Fig. 6). However, the specificity of this motif for CCR5 could provide a selective target for anti-retroviral drug development.

Acknowledgments—We thank Alicia Buckler-White of NIH (NIAID) and John Hanover of NIDDK (NIH) for technical advice on the use of the confocal microscope. We thank Eric Freed and Jonathan Silver of NIAID (NIH) and John Hanover of NIDDK (NIH) for discussion and comments. We are grateful to Nelson Cole of NHGRI (NIH) and Juan Bonifacino of CMBB, NICHD (NIH) for supplying Deng monoclonal antibody reactive with GPCR agonists and anti-mannosidase antibody, respectively. Finally, we acknowledge the contribution of several agents by the NIH AIDS Research and Reference Reagent Program.

REFERENCES

1. Boulay, F., Naik, N., Giannini, E., Tardif, M., and Brouchon, L. (1997) Ann. N.Y. Acad. Sci. 832, 69–84.
2. Combes, C., Ahuja, S. C., Tiffany, H. L., and Murphy, P. M. (1996) J. Leukocyte Biol. 60, 147–152.
3. Alkhatib, G., Combes, C., Broder, C. C., Feng, Y., Kennedy, P. E., Murphy, P. M., and Berger, E. A. (1996) Nature 381, 661–666.
4. Deng, H., Liu, R., Eillemann, W., Choe, S., Unutmaz, D., Burchard, M., Di Marzo, P., Marmon, S., Sutton, R. E., Hill, C. M., Davis, B. C., Peiper, S. C., Schall, T. J., Littman, D., and Schrader, J. (1996) Nature 381, 661–666.
5. Doranz, B. J., Rucker, J., Yi, Y., Smyth, R. J., Samson, M., Peiper, S. C., Parmentier, M., Collman, R. G., and Dombs, R. W. (1996) Cell 85, 1149–1158.
6. Dragic, T., Litvin, V., Allaway, G. P., Martin, S. R., Huang, Y., Nagashima, K. A., Cayanur, C., Mann, R., Koup, R. A., Moore, J. P., and Paxton, W. A. (1996) Nature 381, 667–673.
7. Murphy, P. M. (1994) Annu. Rev. Immunol. 12, 593–633.
8. Murphy, P. M. (1997) Semin. Immunol. 9, 311–318.
9. Sallusto, F., Mackay, C. R., and Lanzavecchia, A. (2000) Annu. Rev. Immunol. 18, 593–620.
10. Baldwin, J. M., Schertler, G. F., and Unger, V. M. (1997) J. Mol. Biol. 272, 164–166.
11. Ji, T. H., Grossmann, M., and Ji, I. (1998) J. Biol. Chem. 273, 17299–17302.
12. Wess, J. (1997) FASEB J. 11, 346–354.
13. Bersche, J., and Pin, J. P. (1998) J. Biol. Chem. 273, 17233–17239.
14. Mendlo, M., Rodriguez-Blas, M., Mane, S., and Martinez, A. C. (2001) Annu. Rev. Immunol. 19, 397–421.
15. Wong, L. M., Myers, S. J., Tsou, C. L., Gosling, J., Arai, H., and Char, I. F. (1997) J. Biol. Chem. 272, 10593–10605.
16. Arai, H., Montecalo, F. S., Tsou, C. L., Franel, C., and Char, I. F. (1997) J. Biol. Chem. 272, 25637–25642.
17. Ben-Bashar, A., Bengali, K. M., Baziyon, A., Johnston, J. J., Wang, J. M., Kim, J., Chaharapahah, A., Michiel, D. F., Oppenheim, J. J., and Kelvin, D. J. (1995) J. Biol. Chem. 270, 9121–9128.
18. Muller, S. G., White, J. R., Schulz, W. P., Lam, V., and Richlond, M. (1997) J. Biol. Chem. 272, 8207–8214.
19. Yang, W., Schrav, P. W., Muller, S. G., and Richlond (1997) Biochemistry 36, 12593–12599.
20. Cheng, C. J., Zhao, J., Sun, Y., Hu, W. W. Y., Cen, B. W., Wu, G. X., and Pei, G. (2000) J. Biol. Chem. 275, 2479–2485.
21. Doranz, B. J., Orsini, M. J., Turner, J. D., Hoffman, T. L., Berson, J. F., Hoxie, J. A., Peiper, S. C., Brass, L. F., and Doms, R. W. (1999) J. Virol. 73, 2752–2761.
22. Haribabu, B., Richman, R. M., Fisher, I., Sozzani, S., Peiper, S. C., Horuk, R., Ali, H., and Snyderman, R. (1997) J. Biol. Chem. 272, 26376–26371.
23. Ha, T. H., Shiota, T., Hor, T., Martin, L. A., and Hill, C. M. (1997) J. Exp. Med. 186, 1651–1654.
24. McDermott, D. H., Zimmerman, P. A., Guignard, F., Kleeberger, C. A., Lettb, K., Otake, K., Matushima, K., Uchiyama, T., and Nagai, Y. (1998) Arch. Biol. Chem. 143, 851–861.
25. Gonzalez, B., Bashford, M., Sato, N., Mukkum, S., Dhanja, R., Catano, G., Calvam, S., Mcbride, M. C., Cao, X. H., Mertell, G. O., Connell, P., Beeuw, D. W., Freedman, B. I., Anderson, S. A., Walter, E. A., Evans, J. S., Stephen, K. T., Clark, R. A., Tyagi, S., Ahuja, S. S., Dole, M. J., and Ahuja, S. K. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 12904–12909.
26. Martin, M. P., Dean, M., Smith, W. M., Winkler, C., Gerrard, B., Michael, N. L., Lee, B., Doms, R. W., Margolick, J., Buckbinder, S., Goedert, J. D., O’Brien, T. R., Gilharta, M. W., Vlahov, D., O’Brien, S. J., and Carrington, M. (1998) Science 282, 12009–12011.
27. McDermott, D. H., Zimmerman, P. A., Guignard, F., Kleeberger, C. A., Lettb, K., Otake, K., Matushima, K., Uchiyama, T., and Nagai, Y. (1998) Arch. Biol. Chem. 143, 851–861.
