ON CORE AND BAR-CORE PARTITIONS

JEAN-BAPTISTE GRAMAIN AND RISHI NATH

Abstract. If s and t are relatively prime J. Olsson proved in [7] that the s-core of a t-core partition is again a t-core partition, and that the s-bar-core of a t-bar-core partition is again a t-bar-core partition. Here generalized results are proved for partitions and bar-partitions when the restriction that s and t be relatively prime is removed.

1. Introduction

The basic facts about partitions, hooks and blocks can be found in [3, Chapter 2] or [6, Chapter 1]. We recall a few key definitions here. A partition λ of n is defined as a non-increasing sequence of nonnegative integers \((\lambda_1, \lambda_2, \cdots)\) that sum to n. A partition is represented graphically by its Young diagram \([\lambda]\), which consists of the set of nodes \(\{(i, j) \mid (i, j) \in \mathbb{N}^2, j \leq \lambda_i\}\). The node \((i, j)\) is in the \(i\)th row and \(j\)th column of \([\lambda]\). The rows of \([\lambda]\) are labelled from top to bottom, while its columns are labelled from left to right.

To each node \((i, j)\) in \([\lambda]\) we associate the hook \(h_{ij}\) of \(\lambda\), which consists of the node \((i, j)\) itself, together with all the nodes \(\{(i, k) \mid j < k\}\) in \([\lambda]\) (i.e. in the same row as and to the right of \((i, j)\)) and all the nodes \(\{(\ell, j) \mid i < \ell\}\) (i.e. in the same column as and below \((i, j)\)). The length of \(h_{ij}\) is the total number of nodes contained in the hook. For any integer \(\ell \geq 1\), we call \(\ell\)-hook a hook of length \(\ell\), and \((\ell)\)-hook a hook of length divisible by \(\ell\). The information about the \((\ell)\)-hooks in \(\lambda\) is encoded in the \(\ell\)-quotient \(q_\ell(\lambda) = (\lambda_0, \ldots, \lambda_{\ell-1})\) of \(\lambda\). The \(\lambda_i\)'s are partitions whose sizes sum to the number \(w\) of \((\ell)\)-hooks in \(\lambda\) (called the \(\ell\)-weight of \(\lambda\)).

The removal of an \(\ell\)-hook \(h\) in \(\lambda\) is obtained by removing the \(\ell\) nodes of \([\lambda]\) in \(h\), and migrating the disconnected nodes in \([\lambda]\) up and to the left. The result is a partition of \(n - \ell\) denoted by \(\lambda \setminus h\). By removing all the \((\ell)\)-hooks in \(\lambda\), one obtains the \(\ell\)-core \(\gamma_\ell(\lambda)\) of \(\lambda\). The partition \(\gamma_\ell(\lambda)\) contains no \((\ell)\)-hooks, and is uniquely determined by \(\ell\) (i.e. doesn’t depend on the order in which we remove the \(\ell\)-hooks in \(\lambda\)). The partition \(\lambda\) is entirely determined by its \(\ell\)-core and \(\ell\)-quotient.

It is well-known that the irreducible complex characters of the symmetric group \(\mathfrak{S}_n\) are labelled by the partitions of \(n\). If \(p\) is a prime, then the distribution of irreducible characters of \(\mathfrak{S}_n\) into \(p\)-blocks has a combinatorial description known as the Nakayama Conjecture: two characters \(\chi_\lambda, \chi_\mu \in \text{Irr}(\mathfrak{S}_n)\) belong to the same \(p\)-block if and only if \(\lambda\) and \(\mu\) have the same \(p\)-core (see [3, Theorem 6.1.21]). Hence we define, for each integer \(\ell \geq 1\), an \(\ell\)-block of partitions of \(n\) to be the set of all partitions of \(n\) having a common \(\ell\)-core.

2000 Mathematics Subject Classification 20C30 (primary), 20C15, 20C20 (secondary)
We now recall the analogous notions and results for bar-partitions, which can be found in [5, Chapter 1]. A bar-partition is a partition \(\lambda \) comprised of distinct parts. To each bar-partition we associate a shifted Young diagram \(S(\lambda) \) obtained by shifting the \(i \)th row of the usual Young diagram \((i-1) \) positions to the right. The \(j \)-th node in the \(i \)-th row will be called the \((i,j)\)-node. To each node \((i,j)\) in \(S(\lambda) \), one can associate a bar and bar-length. For any odd integer \(\ell \), a bar-partition \(\lambda \) is entirely determined by its \(\ell \)-core \(\gamma_{\ell}(\lambda) \) and its \(\ell \)-quotient \(\bar{\gamma}_{\ell}(\lambda) \). The bar-core \(\gamma_{\ell}(\lambda) \) is obtained by removing from \(\lambda \) all the bars of length divisible by \(\ell \) (called \((\ell)\)-bars). The bar-quotient of \(\lambda \) is of the form \(\bar{\gamma}_{\ell}(\lambda) = (\lambda_0, \lambda_1, \ldots, \lambda_{(\ell-1)/2}) \), where \(\lambda_0 \) is a bar-partition, \(\lambda_1, \ldots, \lambda_{(\ell-1)/2} \) are partitions, and the sizes of the \(\lambda_i \)'s sum to the number of \((\ell)\)-bars in \(\lambda \) (called \(\ell \)-weight of \(\lambda \)).

It is well-known that the bar-partitions of \(n \) label the faithful irreducible complex characters of the 2-fold covering group \(\bar{S}_n \) of \(S_n \). These correspond to irreducible projective representations of \(\bar{S}_n \), and are known as spin-characters. If \(p \) is an odd prime, then the distribution of spin-characters of \(\bar{S}_n \) of positive defect into \(p \)-blocks has a combinatorial description known as the Morris Conjecture: two \(\bar{s} \)-bar-partitions of \(n \) correspond to irreducible \(S_n \)-modules if and only if the bar-partitions labelling them have the same \(\bar{p} \)-core (see [6, Theorem 13.1]).

In analogy with this, we define, for each odd integer \(\ell \geq 1 \), an \(\ell \)-block of partitions of \(n \) to be the set of all bar-partitions of \(n \) having a common given \(\ell \)-core.

2. Some new results on cores and bar-cores

In this section, we generalize to arbitrary integers \(s \) and \(t \) the results on cores and bar-cores proved by J. B. Olsson in [7] when \(s \) and \(t \) are coprime. Note that Olsson’s result ([7, Theorem 1]) was interpreted by M. Fayers through alcove geometry and actions of the affine symmetric group (see [2]). It was also used by F. Garvan and A. Berkovich to bound the number of distinct values their partition statistic (the GBG-rank) can take on a \(\ell \)-core (mod \(s \)) (see [1, Theorem 1.2]).

We keep the notation as in Section [1].

Theorem 2.1. For any two positive integers \(s \) and \(t \), the \(s \)-core of a \(t \)-core partition is again a \(t \)-core partition.

Remark 2.2. This result was proved by J. B. Olsson in [7], under the extra hypothesis that \(s \) and \(t \) are relatively prime. R. Nath then gave in [5] a proof of the result in general. We give here another proof which, unlike the one given by Nath, uses Olsson’s result, and provides the framework for the proof for bar-partitions.

Proof. Consider a \(t \)-core partition \(\lambda \). Let \(g = \gcd(s,t) \), and write \(s_0 = s/g \) and \(t_0 = t/g \). It’s a well-known fact (see e.g. [6, Theorem 3.3]) that there is a canonical bijection \(\varphi \) between the set of hooks of length divisible by \(g \) in \(\lambda \) and the set of hooks in \(q_g(\lambda) = (\lambda_0, \ldots, \lambda_{g-1}) \) (i.e. hooks in each of the \(\lambda_i \)'s). For each positive integer \(k \) and hook \(h \) of length \(kg \) in \(\lambda \), the hook \(\varphi(h) \) has length \(k \). Furthermore, we have \(q_g(\lambda \setminus h) = q_g(\lambda) \setminus \varphi(h) \).

In particular, since \(\lambda \) is an \(t \)-core, and since \(t = t_0g \), we see that \(q_g(\lambda) \) contains no \(t_0 \)-hook, so that each \(\lambda_i \) is an \(t_0 \)-core.

Now, the \(s \)-hooks in \(\lambda \) are in bijection with the \(s_0 \)-hooks in \(q_g(\lambda) \). When we remove them all, we obtain that the \(s \)-core \(\gamma_s(\lambda) \) has \(g \)-core \(\gamma_g(\gamma_s(\lambda)) = \gamma_g(\lambda) \) and \(g \)-quotient \(q_g(\gamma_s(\lambda)) = (\gamma_{s_0}(\lambda_0), \ldots, \gamma_{s_0}(\lambda_{g-1})) \). But, since \(s_0 \) and \(t_0 \) are coprime, the \(s_0 \)-core of each \(t_0 \)-core \(\lambda_i \) is again a \(t_0 \)-core ([7, Theorem 1]). This shows that
$q_g(\gamma_s(\lambda))$ has no t_0-hook, which in turn implies that $\gamma_s(\lambda)$ contains no t-hook, whence is an t-core.

As we mentioned in Section 1 when p is a prime, the study of p-cores is linked to that of the p-modular representation theory of the symmetric group \mathfrak{S}_n (as they label the p-blocks of irreducible characters). When $\ell \geq 2$ is an arbitrary integer, it turns out that it is still possible to describe an ℓ-modular representation theory of \mathfrak{S}_n (see [3]). The theory of ℓ-blocks obtained in this way is in fact related to the ordinary representation theory of an Iwahori-Hecke algebra of type \mathfrak{S}_n, when specialized at an ℓ-root of unity. Külshammer, Olsson and Robinson proved in [3] the following analogue of the Nakayama Conjecture: two characters $\chi_\lambda, \chi_\mu \in \text{Irr}(\mathfrak{S}_n)$ belong to the same ℓ-block if and only if λ and μ have the same ℓ-core.

It is therefore legitimate to study ℓ-cores and ℓ-blocks of partitions. In particular, we obtain from Theorem 2.1 a generalization of [7] Corollary 3]. We call principal ℓ-block of n the ℓ-block of partitions of n which contains the partition (n) (i.e. the set of partitions labelling the characters of the principal ℓ-block of \mathfrak{S}_n).

Corollary 2.3. Let r, s and t be any positive integers such that $s > r > t$, and let $n = as + r$ for some $a \in \mathbb{Z}_{\geq 0}$. Then the principal s-block of n contains no t-core.

Proof. Suppose the partition λ of n is a t-core. The s-core γ of λ, which is obtained by removing s-hooks, must therefore be a partition of some m which differs from n by a multiple of s, i.e. $m = bs + r$ for some b such that $a > b \geq 0$. By Theorem 2.1, γ is also a t-core. Now, if λ was in the principal s-block of n, then its s-core would be the same as that of the cycle (n), hence also a cycle. We would thus have $\gamma = (m)$. But since $m \geq r \geq t$, the cycle (m) contains a t-hook, hence cannot be a t-core.\[\square\]

In terms of blocks of characters, this means that, if s, t and n are as above, then there is no trivial block inclusion of a t-block in the principal s-block of \mathfrak{S}_n (see [8]).

We now prove the analogue results for bar-cores, which was proved by Olsson when s and t are odd and coprime ([7] Theorem 4]).

Theorem 2.4. For any two odd positive integers s and t, the s-core of an \bar{t}-core partition is again a \bar{t}-core partition.

Proof. Take any \bar{t}-core λ. Let $g = \text{gcd}(s, t)$, and write $s_0 = s/g$ and $t_0 = t/g$. There is a canonical bijection φ between the set of bars of length divisible by g in λ and the set of bars in its \bar{g}-quotient $\bar{q}_g(\lambda) = (\lambda_0, \lambda_1, \ldots, \lambda_{(g-1)/2})$, where a bar in $\bar{q}_g(\lambda)$ is either a bar in the bar-partition λ_0 or a hook in one of the partitions $\lambda_1, \ldots, \lambda_{(g-1)/2}$ (see [3] Theorem 4.3]). For each positive integer k and bar b of length kb in λ, the bar $\varphi(b)$ has length k. Furthermore, we have $\bar{q}_g(\lambda \setminus b) = \bar{q}_g(\lambda) \setminus \varphi(b)$.

The same argument as in the proof of Theorem 2.1 thus proves that λ_0 is an \bar{t}_0-core, that each λ_i $(1 \leq i \leq (g-1)/2)$ is an t_0-core, and that the s-core $\bar{\gamma}_s(\lambda)$ of λ has \bar{g}-quotient $\bar{q}_g(\bar{\gamma}_s(\lambda)) = (\bar{\gamma}_{s_0}(\lambda_0), \bar{\gamma}_{s_0}(\lambda_1), \ldots, \bar{\gamma}_{s_0}(\lambda_{(g-1)/2}))$. And, since s_0 and t_0 are coprime, the s_0-core of each t_0-core λ_i $(1 \leq i \leq (g-1)/2)$ is again a t_0-core ([7] Theorem 1]), and the s_0-core of the t_0-core λ_0 is again a t_0-core ([7] Theorem 2.2]).
Theorem 4]). This shows that the \(\bar{g} \)-quotient of \(\bar{\gamma}_s(\lambda) \) contains no \(t_0 \)-bar, which finally implies that \(\bar{\gamma}_s(\lambda) \) contains no \(t \)-bar, whence is an \(\bar{t} \)-core.

\[\square \]

In analogy with the partition case, we call principal \(\bar{\ell} \)-block of bar-partitions of \(n \) (for \(\ell \) odd) the \(\bar{\ell} \)-block containing the bar-partition \((n) \). Then the same argument as for the proof of Corollary 2.3 yields

Corollary 2.5. Let \(r, s \) and \(t \) be any positive integers such that \(s \) and \(t \) are odd and \(s > r \geq t \), and let \(n = as + r \) for some \(a \in \mathbb{Z}_{\geq 0} \). Then the principal \(\bar{s} \)-block of \(n \) contains no \(\bar{t} \)-core.

References

[1] A. Berkovich and F. Garvan. The GBG-rank and \(t \)-cores I. Counting and 4-cores. *J. Comb. Number Theory*, 1(3):237–252, 2009.

[2] M. Fayers. The \(t \)-core of an \(s \)-core. *Preprint*.

[3] G. James and A. Kerber. *The representation theory of the symmetric group*, volume 16 of *Encyclopedia of Mathematics and its Applications*. Addison-Wesley Publishing Co., Reading, Mass., 1981.

[4] B. Külshammer, J. Olsson, and G.R. Robinson. Generalized blocks for symmetric groups. *Invent. Math.*, 151(3):513–552, 2003.

[5] R. Nath. On the \(t \)-core of an \(s \)-core partition. *Integers*, 8:A28, 2008.

[6] J. B. Olsson. Combinatorics and representations of finite groups. *Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen*, Heft 20, 1993.

[7] J. B. Olsson. A theorem on the cores of partitions. *J. Combinatorial Theory A*, 116:733–740, 2009.

[8] J. B. Olsson and D. Stanton. Block inclusions and cores of partitions. *Aequationes Math.*, 74:90–110, 2007.