edcSMOKE: A new combustion solver for stiff chemistry based on OpenFOAM®

Zhiyi Li, Mohammad Rafi Malik, Alberto Cuoci and Alessandro Parente

Symposium Multiscale-Multiphysics approaches for engineering applications
Contents

• Introduction
• EDC model and edcSMOKE
• Validation test cases
• Conclusions
• Prospects
Contents

• Introduction

• EDC model and edcSMOKE

• Validation test cases

• Conclusions

• Prospects
Combustion processes

• Laminar flame

• Turbulent flame

Most combustions in applications are turbulent combustions.

Source: www.guilford.eng.yale.edu

Source: crf.sandia.gov
Problems of combustion

• Pollution

Source: Everything You Need to Know about Nox, Charles Baukal et al., Tulsa, Okla

Source: combustion.mie.utoronto.ca/?page_id=402
Problems of combustion

• Dilemma

NO\textsubscript{x} formation trend with increased energy savings

Combustions modelling helps to find a solution to these issues with low cost.
Challenges of turbulent combustion modelling

Multi-scale (decades of scales) and **multi-physics** (fluid dynamics, chemical kinetics): detailed chemistry

Prohibitive number of tightly coupled equations for real fuels and systems ($5 + N_{sp}$) : high demand of computational resources

Adapted from R. Fox, Cambridge University Press (2002)
Turbulent combustion modelling approaches

Currently popular combustion models:

- Flamelet-like
 - SLFM, FPI/FGM
 - PDF presumed
- Eddy Dissipation Concept
 - Partially Stirred Reactor
- Transported PDF models
 - PDF computed

Accuracy, cost

Model selected: EDC

- Accuracy and cost are acceptable
- Detailed chemistry can be applied in EDC model
Turbulent combustion modelling approaches

Currently popular combustion models:

Flamelet-like
SLFM, FPI/FGM
PDF presumed

Eddy Dissipation Concept
Partially Stirred Reactor

Transported
PDF models
PDF computed

Accuracy, cost

Model selected: EDC

- Accuracy and cost are acceptable
- Detailed chemistry can be applied in EDC model
Contents

- Introduction
- EDC model and edcSMOKE
- Validation test cases
- Conclusions
- Prospects
Eddy Dissipation Concept can be coupled to finite rate chemistry

- Mean reaction rate

\[
\bar{\omega}_k = - \frac{\bar{\rho} \gamma_\lambda^2}{\tau^* (1 - \gamma_\lambda^3)} (\bar{y}_k - y_k^*)
\]

\[
\bar{y}_k = \gamma_\lambda^3 y_k^* + \left(1 - \gamma_\lambda^3\right) y_k^0
\]

(Magnussen, 1996)

- Model parameters come from an energy cascade model

- Model constants

\[
C_\gamma = 2.1377 \quad C_\tau = 0.4083
\]

(Magnussen, 1996)
EDC model formulations

Different versions of EDC model are proposed by Magnussen et al.

\[\bar{\omega}_k = -\frac{\bar{\rho} \gamma^3_\lambda}{\tau^* (1 - \gamma^3_\lambda)} (\tilde{y}_k - y_k^*) \]

\[\tilde{y}_k = \gamma^3_\lambda y_k^* + (1 - \gamma^3_\lambda) y_k^0 \]
('EDC1981')

\[\bar{\omega}_k = -\frac{\bar{\rho} \gamma^2_\lambda}{\tau^* (1 - \gamma^3_\lambda)} (\tilde{y}_k - y_k^*) \]

\[\tilde{y}_k = \gamma^3_\lambda y_k^* + (1 - \gamma^3_\lambda) y_k^0 \]
('EDC1996')

\[\bar{\omega}_k = -\frac{\bar{\rho} \gamma^2_\lambda}{\tau^* (1 - \gamma^2_\lambda)} (\tilde{y}_k - y_k^*) \]

\[\tilde{y}_k = \gamma^2_\lambda y_k^* + (1 - \gamma^2_\lambda) y_k^0 \]
('EDC2005')
Coupling of EDC model and OpenFOAM

OpenFOAM® Framework
- Complex 2D/3D geometries
 - structured and unstructured meshes
 - complex boundary conditions

edcSMOKE
- CFD code for turbulent reacting flows with detailed kinetic mechanisms – EDC model
 - edcSimpleSMOKE - steady
 - edcPimpleSMOKE - unsteady

Numerical Libraries
- Eigen
- RapidXML
- Boost C++
 - linear and nonlinear systems, ODE

OpenSMOKE Library
- Complex Gas-Phase Chemistry
 - homogeneous reactions
 - detailed transport properties
Contents

- Introduction
- EDC model and edcSMOKE
- Validation test cases
- Conclusions
- Prospects
Validation on flame combustion case:

Sandia flame D
Sandia flame D: experimental and numerical set-up

Flame details

Fuel: CH₄/Air (25%, 75% mass)

Pilot: mixture of C₂H₂/H₂/air/CO₂/N₂

Reynolds number: 22,400

Geometry

Fuel nozzle diameter: 7.2 mm

Coflow diameter: 18.2 mm

Computational details

Domain: 2D axisymmetric (150 x 650 mm)

Computational grid: ~4600 cells

Solver: steady edcSimpleSMOKE

Turbulent model: RANS k-epsilon

Kinetic schemes

GRI3.0: 53 species, 325 reactions

PolimiC1C3HTNOX: 114 species, 2,105 reactions

Source: Robert Barlow and Jonathan Frank, Sandia Laboratories
Sandia flame D: modelling results of mean temperature profiles

![Graphs showing temperature profiles at different x/d values.](image_url)
Validation on flame combustion case:

DLR flame A
DLR flame A: experimental and numerical set-up

Flame details
Fuel: CH$_4$/Air/N$_2$ (22.1%, 33.2%, 44.7% volume)

Co-flow: air and 0.8% mole fraction H$_2$O

Reynolds number: 15,200

Geometry
Fuel nozzle diameter: 8.0 mm
Coflow diameter: 140 mm

Computational details
Domain: 2D axisymmetric (190 x 1000 mm)

Computational grid: ~3500 cells
Solver: steady edcSimpleSMOKE
Turbulent model: RANS k-epsilon

Kinetic schemes
GRI3.0: 53 species, 325 reactions

Source: www.sandia.gov/TNF/DataArch/DLRflames.html
DLR flame A: modelling results of mean CO$_2$ mass fraction profiles
Validation on flameless (MILD) combustion case:

Adelaide Jet in Hot Co-flow (JHC) burner
MILD (flameless) combustion

The Moderate or Intense Low oxygen Dilution (MILD) combustion:

• Preheated oxidizer stream
• Distributed reaction zone
• No visible flame

Advantages:

• High efficiency
• Low NOx and CO emissions
Adelaide Jet in Hot Co-flow (JHC) burner
JHC burner: experimental and numerical set-up

Flame details
- **Fuel**: CH\textsubscript{4}/H\textsubscript{2} (50%, 50% volume)
- **Co-flow**: mixture of CH\textsubscript{4}/H\textsubscript{2} /air/CO\textsubscript{2}/H\textsubscript{2}O/CO/N\textsubscript{2}/O\textsubscript{2}
- **Co-flow Temperature**: 1300 K
- **Reynolds number**: 10,000

Geometry
- **Fuel nozzle diameter**: 4.25 mm
- **Coflow diameter**: 82.0 mm

Computational details
- **Domain**: 2D axisymmetric (254 x 1000 mm)
- **Computational grid**: ~30,000 cells
- **Solver**: unsteady edcPimpleSMOKE
- **Turbulent model**: RANS k-epsilon
- **Kinetic schemes (Nox free)**
 - **KEE**: 17 species, 58 reactions
 - **GRI3.0**: 36 species, 219 reactions
 - **SAN_DIEGO**: 50 species, 247 reactions
Modelling results: Comparison of mean Temperature profiles from different EDC model formulations

K-epsilon model constant $C_{1\epsilon} = 1.60$.
Modelling results: Comparison of mean Temperature profiles from different detailed chemistry mechanisms

Axial 30 mm

Axial 60 mm

Axial 120 mm

Centerline
Contents

• Introduction
• EDC model and edcSMOKE
• Validation test cases
• Conclusions
• Prospects
Conclusions

• Satisfactory prediction results can be obtained with the edcSMOKE solvers;

• Both the steady and unsteady solvers give relative good results in prediction;

• The EDC combustion model can be adopted in flame and flameless combustion;

• Large mechanisms can be used in combination with this solver.
Contents

• Introduction
• EDC model and edcSMOKE
• Validation test cases
• Conclusions
• Prospects
Prospects

• Chemistry reduction method is supposed to be implemented to save the computational time;

• Using Large Eddy Simulation to solve part of the turbulence;

• Compare the EDC model with Partially Stirred Reactor (PaSR) combustion model.
Acknowledgements

“This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 643134”.

And from the Fédération Wallonie-Bruxelles, via ‘Les Actions de Recherche Concertée (ARC)’ call for 2014 - 2019, to support fundamental research.
Thank you

Questions?

zhiyi.li@ulb.ac.be