Muscleblind acts as a modifier of FUS toxicity by modulating stress granule dynamics and SMN localization

Ian Casci1,2,10, Karthik Krishnamurthy3,10, Sukhleen Kour2,10, Vadreenath Tripathy4, Nandini Ramesh1,2, Eric N. Anderson2, Lara Marrone4, Rogan A. Grant1,2, Stacie Oliver2, Lauren Gochenaur6,2, Krishani Patel2, Jared Sterneckert4, Amanda M. Gleixner5,6, Christopher J. Donnelly5,6, Marc-David Ruepp7, Antonella M. Sini8, Emanuela Zuccaro8,9, Maria Pennuto8,9, Piera Pasinelli3 & Udai Bhan Pandey1,2*

Mutations in fused in sarcoma (FUS) lead to amyotrophic lateral sclerosis (ALS) with varying ages of onset, progression and severity. This suggests that unknown genetic factors contribute to disease pathogenesis. Here we show the identification of muscleblind as a novel modifier of FUS-mediated neurodegeneration in vivo. Muscleblind regulates cytoplasmic mislocalization of mutant FUS and subsequent accumulation in stress granules, dendritic morphology and toxicity in mammalian neuronal and human iPSC-derived neurons. Interestingly, genetic modulation of endogenous muscleblind was sufficient to restore survival motor neuron (SMN) protein localization in neurons expressing pathogenic mutations in FUS, suggesting a potential mode of suppression of FUS toxicity. Upregulation of SMN suppressed FUS toxicity in Drosophila and primary cortical neurons, indicating a link between FUS and SMN. Our data provide in vivo evidence that muscleblind is a dominant modifier of FUS-mediated neurodegeneration by regulating FUS-mediated ALS pathogenesis.
myotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is a devastating, neurodegenerative disorder that causes selective loss of upper and lower motor neurons, which eventually results in progressive paralysis and death owing to respiratory failure. The average age of onset is between 50 and 80 years, and the disease is usually fatal within 2–5 years following diagnosis. Approximately 5–10% of ALS occurrences are inherited, most often in an autosomal dominant manner and are termed familial ALS (fALS), whereas the other 90–95% of cases are sporadic (sALS). However, the clinical and pathological symptoms of fALS and sALS patients are indistinguishable. Mutations in the gene FUS (fused in sarcoma) account for ~4% of fALS and 1% of sALS cases. FUS is a nuclear, DNA/RNA-binding protein that functions in several stages of RNA processing, including gene transcription, alternative splicing, and RNA trafficking. Pathogenic mutations of FUS were first identified in ALS patients in 2009 and were found to cause mislocalization of the disease protein from the nucleus to the cytoplasm and accumulation into cytoplasmic aggregates, now commonly regarded to as stress granules (SGs). These changes mimicked those previously observed in ALS patients with mutations in another RNA-binding protein, TDP-43, and provide further insight into the mechanisms behind FUS toxicity and identified muscleblind as a novel modifier of FUS-ALS that may be useful in identifying potential therapeutic targets for ALS.

Results

An unbiased genome-wide screen identifies muscleblind (Mbl) as a novel modifier of FUS toxicity in vivo. We performed an unbiased genome-wide screen to identify novel modifiers (enhancers and suppressors) of FUS toxicity in Drosophila eyes (Supplementary Fig. 1a, Supplementary Table 1–3). We used FUS R521H transgenic fly line that shows moderate external eye degenerative phenotype for doing our genetic screen. As the Drosophila genome has been fully sequenced, the modifying deficiency lines provided a set of candidate genes within the deleted regions potentially responsible for modifying mutant FUS toxicity. We identified two overlapping deficiency lines that strongly suppressed FUS-mediated degeneration, Df(2 R) Exel6066 and Df(2 R) BSC154 (Fig. 1a). To validate these findings, we crossed both deficiency lines with Drosophila lines expressing either wild-type FUS or two additional disease-causing mutations FUS-R518K and FUS-R521C (Fig. 1b, c). Both deficiency lines significantly suppressed wild-type and mutant FUS-induced degeneration of Drosophila eyes. The deleted region of the Df(2 R) Exel6066 deficiency line contains 44 known and predicted genes (Supplementary Table 3). To identify the gene(s) within this region responsible for modifying FUS toxicity in vivo, we obtained all the available RNAi lines targeting genes mapping within this region. Using two independent RNAi lines, we found that knockdown of Drosophila muscleblind (mbl), which overlaps both Df(2 R) Exel6066 and Df(2 R) BSC154 deficiency regions, was sufficient to suppress wild-type and FUS-R521H toxicity (Supplementary Fig. 1b and Supplementary Fig. 2a, b). However, knockdown of other genes within the Df(2 R) Exel6066 and CG12699 deficiency regions did not suppress FUS toxicity (Supplementary Fig. 3). To further validate whether Mbl is a novel modifier of FUS-induced toxicity in vivo, in addition to the loss of function approach, we also undertook a gain of function approach by generating flies that overexpress fly Mbl that showed an enhancement in the FUS toxicity.

The human muscleblind-like (MBNL) protein has been previously linked to myotonic dystrophy, fragile X syndrome, spinocerebellar ataxia, and Huntington’s disease. In addition, mbI RNA contains long intronic regions. As FUS preferentially binds to long intronic regions and has been shown to bind RNA from human orthologs of mbl (MBNL1, MBNL2, and MBNL3), mbl was further analyzed as a potential
modifier of FUS-associated ALS. FUS lines with known site-specific integration (SSI) of the transgenes were used to further validate whether reducing mbl RNA levels would suppress FUS toxicity. Wild-type FUS and the two ALS-linked mutant FUS-R518K and FUS-R521C lines with known SSI of the transgenes were crossed with mbl RNAi lines, which were also generated using site-specific integration methods. RNAi-mediated knockdown decreased mbl RNA by ~49% and significantly suppressed external eye degeneration in all FUS-expressing Drosophila (Fig. 1c–f). Knockdown of endogenous Mbl did not reduce FUS protein levels in the Drosophila, indicating that this effect was not due to a loss of toxic protein (Fig. 1h, i). Knocking down endogenous Mbl alone in these flies was well-tolerated, as it did not cause any obvious external eye degeneration itself (Fig. 1d). Importantly, ectopic expression of fly Mbl in these FUS lines significantly enhanced external eye degeneration, further supporting the idea that Mbl is a modifier of FUS toxicity (Fig. 1d, e). Cross-sectional imaging of the eyes revealed that FUS-mediated loss of tissues beneath the surface were rescued by knocking down Mbl (Supplementary Fig. 2c). Wild-type and mutant FUS expression caused retinal degradation, length reduction, and separation from the lamina at the basal membrane. Knockdown of Mbl in these flies attenuated these defects, whereas Mbl overexpression had the opposite effect, suggesting Mbl specifically regulates FUS toxicity in vivo. As degenerative effects associated with FUS toxicity in Drosophila are known to increase in an age-
dependent manner, we tested whether knockdown of Mbl suppresses FUS-induced eye degeneration over time. We observed that Mbl knockdown suppressed FUS-mediated degeneration in aged animals as well (Supplementary Fig. 4).

Based on these results, we sought to further validate the link between FUS and Mbl. To test whether endogenous human FUS and MBNL1 physically interact, we performed co-immunoprecipitation (IP) using human embryonic kidney cells (HEK293T) and found that endogenous FUS and MBNL1 physically interact in these cells (Fig. 1g). We asked if FUS and MBNL1 interaction is RNA-dependent in mammalian cells. We transfected HEK293T cells with HA-tagged FUS (WT and mutant), treated cells with RNase and performed immunostaining of cells with anti-HA and anti-MBNL1 antibodies. We did not see any difference in co-localization pattern of FUS and MBNL1, suggesting that their interaction is not RNA-dependent (Supplementary Fig. 5a). In parallel, we performed IP with anti-HA followed by RNase digestion and western blot (WB) with anti-MBNL1. We found that FUS and MBNL1 interaction is not dependent on RNA (Supplementary figure 5b). FUS localization and aggregation is dependent on its association with transportin 1, phase separation, and posttranslational arginine methylation of FUS. We have previously shown that genetic modulation of arginine methyltransferases is sufficient to modify FUS toxicity in vivo. To examine if MBNL1 affects the posttranslational modification (arginine methylation) of FUS, we decided to express FUS (WT and mutant) with green fluorescent protein (GFP)-MBNL1 in HEK293T cells and treated the cells with AdOx (a pan-inhibitor of protein arginine methyltransferase). We performed WB to examine if FUS (lower band) is modulated through arginine modification. We found that neither lower nor upper band intensities are changed with or without MBNL1 RNAi KD in the presence or absence of AdOx, suggesting that MBNL1-mediated suppression of FUS toxicity is likely to be independent of arginine methylation (Supplementary Fig. 5c). Next, we examined the nuclear and cytoplasmic distribution of FUS in response to AdOx treatment, but we did not observe any difference in the FUS distribution with and without AdOx treatment in any groups (Supplementary fig. 5d). These observations suggest that MBNL1-mediated suppression of FUS toxicity does not appear to be dependent of arginine methylation modification.

We next sought to determine whether pathogenic mutations of FUS influence endogenous Mbl expression in Drosophila and ALS patient cells. Only Drosophila expressing mutant FUS-R518K exhibited a mild increase in mbl RNA compared with the controls. However, this increase was not observed in Drosophila expressing wild-type FUS or FUS R521C (Supplementary Fig. 6a).

Furthermore, no differences in endogenous MBNL1 RNA expression were observed between ALS patient lymphoblastoid cells expressing ALS-causing FUS mutants compared to cells from controls (Supplementary Fig. 6b). In addition, knockdown of Mbl has no effect on FUS levels (NS = not significant, P = 0.3578). Statistical significances in c and e were determined using two-tailed t tests for each FUS pair (Mann–Whitney test). One-tailed t test was used in f. One-way ANOVA with Tukey’s multiple comparisons test was used for h. All quantifications are represented as the mean ± SD.
larvae. To determine the physiological significance of these morphological defects, we decided to measure the motor function of FUS-expressing animals by measuring their climbing ability. Expression of either wild-type or mutant FUS significantly increased the percentage of climbing flies compared with control flies (Fig. 2e). We found that knockdown of endogenous Mbl significantly increased the percentage of climbing flies, thereby rescuing motor dysfunction. Collectively, these results indicate that depletion of endogenous Mbl rescues morphological defects at NMJs as well as motor dysfunction. Based on these findings, we propose Mbl as a novel modifier of ALS-associated FUS toxicity in neurons.

Knocking down endogenous MBNL1 reduces mutant FUS incorporation into SGs. Cytoplasmic mislocalization of mutant FUS and its subsequent accumulation into cytoplasmic SGs are a pathological hallmark of ALS. These events have been linked with mutant FUS protein toxicity and motor neuron death. Therefore, we hypothesized that decreasing muscleblind protein levels in mammalian cells would reduce FUS incorporation into SGs, thereby suppressing toxicity and cell death. To test this, we used HEK293T cells for investigating changes in FUS distribution following knockdown (KD) of endogenous muscleblind proteins. Although only one mbl gene exists in Drosophila, humans and rats express three muscleblind paralogues, called muscleblind-like 1, 2, and 3 (MBNL1, MBNL2, and MBNL3). In addition, expression of the three paralogues is variable in human tissues. MBNL1 and MBNL2 are the most ubiquitously expressed, including fetal and adult brain, heart, kidney, liver, lung, and skeletal muscle. MBNL3 is not as widely expressed and is found primarily in the heart, liver, pancreas, and placenta. As MBNL1 is the paralogue most frequently linked to other diseases, including neurodegenerative diseases, and is well conserved with Drosophila mbl, we chose to focus on human MBNL1 for our studies in mammalian systems.

To evaluate the effect of knocking down MBNL1 on wild-type and mutant FUS localization and SG development in mammalian cells, we measured the effect of FUS expression on the subcellular distributions of wild-type FUS, as well as mutant FUS localization and SG development in mammalian cells, we measured the effect of FUS expression on the subcellular distributions of wild-type FUS, as well as mutant FUS localization and SG development. We found that knockdown of MBNL1 rescued the aberrant increase in satellite bouton numbers, which is significantly lower in mutant FUS-expressing animals by measuring their climbing ability. Expression of either wild-type or mutant FUS significantly increased the percentage of climbing flies compared with control flies (Fig. 2e). We found that knockdown of endogenous Mbl significantly increased the percentage of climbing flies, thereby rescuing motor dysfunction. Collectively, these results indicate that depletion of endogenous Mbl rescues morphological defects at NMJs as well as motor dysfunction. Based on these findings, we propose Mbl as a novel modifier of ALS-associated FUS toxicity in neurons.

Knocking down endogenous MBNL1 reduces mutant FUS incorporation into SGs. Cytoplasmic mislocalization of mutant FUS and its subsequent accumulation into cytoplasmic SGs are a pathological hallmark of ALS. These events have been linked with mutant FUS protein toxicity and motor neuron death. Therefore, we hypothesized that decreasing muscleblind protein levels in mammalian cells would reduce FUS incorporation into SGs, thereby suppressing toxicity and cell death. To test this, we used HEK293T cells for investigating changes in FUS distribution following knockdown (KD) of endogenous muscleblind proteins. Although only one mbl gene exists in Drosophila, humans and rats express three muscleblind paralogues, called muscleblind-like 1, 2, and 3 (MBNL1, MBNL2, and MBNL3). In addition, expression of the three paralogues is variable in human tissues. MBNL1 and MBNL2 are the most ubiquitously expressed, including fetal and adult brain, heart, kidney, liver, lung, and skeletal muscle. MBNL3 is not as widely expressed and is found primarily in the heart, liver, pancreas, and placenta. As MBNL1 is the paralogue most frequently linked to other diseases, including neurodegenerative diseases, and is well conserved with Drosophila mbl, we chose to focus on human MBNL1 for our studies in mammalian systems.

To evaluate the effect of knocking down MBNL1 on wild-type and mutant FUS localization and SG development in mammalian cells, we measured the effect of FUS expression on the subcellular distributions of wild-type FUS, as well as mutant FUS localization and SG development. We found that knockdown of MBNL1 rescued the aberrant increase in satellite bouton numbers, which is significantly lower in mutant FUS-expressing animals by measuring their climbing ability. Expression of either wild-type or mutant FUS significantly increased the percentage of climbing flies compared with control flies (Fig. 2e). We found that knockdown of endogenous Mbl significantly increased the percentage of climbing flies, thereby rescuing motor dysfunction. Collectively, these results indicate that depletion of endogenous Mbl rescues morphological defects at NMJs as well as motor dysfunction. Based on these findings, we propose Mbl as a novel modifier of ALS-associated FUS toxicity in neurons.
untreated cells suggests that ALS-associated mutations of FUS are sufficient for SG formation, even in the absence of additional cellular stress, as we have previously observed (Scaramuzzano et al., 2013 Plos ONE).

We next determined the effect of MBNL1 knockdown in HEK293T cells by transiently transfecting short-hairpin RNAs (shRNA) that specifically targeted all isoforms of MBNL1. After validating successful knockdown of endogenous MBNL1 (Supplementary Fig. 11a–d), cells were co-transfected with either wild-type or mutant FUS-R518K and FUS-R521C (Fig. 3 and Supplementary Fig. 12). Treatment with either MBNL1 shRNA or scramble shRNA did not affect the nuclear localization of WT FUS (Supplementary Fig. 12a). Upon treatment with sodium arsenite, the cells formed MBNL1-positive SGs that did not contain wild-type FUS (Fig. 3a, d). In both FUS R518K and FUS R521C-expressing cells, mutant FUS expression was sufficient to induce SG formation (Supplementary Fig. 12b, c). When we depleted endogenous MBNL1, the percentage of cells with FUS-positive SGs was significantly reduced (Supplementary Fig. 12d–11), and this effect became more obvious upon sodium arsenite treatment (Fig. 3b, c, e, f). Though sodium arsenite induced SG formation in all three groups, the predominantly nuclear localization of wild-type FUS prevented its incorporation into cytoplasmic SGs. These observations support our hypothesis that MBNL1 depletion specifically reduces mutant FUS-positive SGs in the cytoplasm. The reduction of cytoplasmic mislocalization of FUS further supports our hypothesis that MBNL1 as a modifier of mutant FUS toxicity.

To assess whether these SG changes are owing to altered nuclear and cytoplasmic localization of FUS, we measured FUS levels in cellular fractions of untransfected HEK293T cells, with and without MBNL1 knockdown. When normalized to wild-type FUS levels, which exhibited a predominant nuclear localization pattern, the nuclear/cytoplasmic ratio (N/C ratio) of FUS-R518K was significantly increased upon MBNL1 knockdown (Fig. 3g, h). Thus, depletion of endogenous MBNL1 partially restored the nuclear fraction of FUS compared with cells expressing FUS alone or co-expressing scramble shRNA. A significant change was observed in the N/C ratio of MBNL1 in FUS-R518K expressing cells compared with controls (Fig. 3i), which is consistent with our data in FUS-R518K flies showing a slight elevation in the FUS RNA levels (Supplementary Fig. 6a). These data suggest that the reduction of FUS-positive SGs in the cytoplasm following knockdown of endogenous MBNL1 is due to reduced incorporation of mutant FUS into the SGs.

MBNL1 KD prevents mutant FUS mislocalization and incorporation into SGs. To test whether muscleblind modifies FUS toxicity in mammalian neurons, we used rat primary cortical neurons as a model for FUS-associated toxicity.30,73–77 As with humans, rats have three paralogues of muscleblind, muscleblind-like 1, 2, and 3 (Mbnl1, Mbnl2, and Mbnl3)71. We used rat PC12 and mouse neuro2a (N2A) cells to identify and validate an Mbnl1-specific shRNA that significantly deplete endogenous MBNL1 levels (Fig. 4a–c, Supplementary Fig. 11c, d). Furthermore, successful knockdown of endogenous Mbnl1 in rat primary cortical neurons was validated by fluorescence microscopy (Supplementary Fig. 13a, b). Similar to endogenous MBNL1 in HEK293T cells, MBNL1 localized to G3BP stress granule assembly factor 1 (G3BP1)-positive SGs in primary cortical neurons when stressed (Supplementary Fig. 9c).

Using this cortical neuron model, we tested whether depleting endogenous MBNL1 would reduce cytoplasmic mislocalization of mutant FUS and its subsequent incorporation into SGs. Cortical neurons were co-transfected with either wild-type or the ALS-linked FUS-R521C mutant and MBNL1-specific shRNA or scrambled shRNA. FUS distribution was visualized by fluorescence microscopy with and without knockdown of endogenous mbnl1 (Fig. 4). In cells transfected with FUS alone, wild-type FUS primarily localized to the nucleus, whereas FUS-R521C mislocalized to the cytoplasm (Supplementary Fig. 13c). These localization patterns also occurred in cells co-transfected with scrambled shRNA, indicating no significant change in the percentage of neurons with mislocalized FUS (Fig. 4d, e). However, shRNA-mediated knockdown of endogenous MBNL1 significantly reduced mutant FUS mislocalization, with no effect on wild-type FUS distribution (Fig. 4d, e). An antibody specific for G3BP1 was used to analyze SG formation in cells expressing FUS-R521C treated with sodium arsenite (Fig. 4f). The average number of G3BP1-positive SGs per neuron was significantly reduced in Mbnl1 shRNA-expressing cells compared with scramble controls (Fig. 4g). However, no significant changes were observed in the average size of FUS-positive SGs across all neurons compared with scramble controls (Fig. 4h, i). This rescue appears to be specific for mutant FUS, as no changes in number or size of SGs in Mbnl1 shRNA-expressing neurons were observed in the absence of exogenous FUS compared with scramble controls (Supplementary Fig. 14). Reduction of endogenous MBNL1 appeared to specifically affect the number, but not the size, of FUS R521C-positive SGs. The decrease in cytoplasmic mislocalization of FUS in cortical neurons expressing mbnl1 shRNA further supports this hypothesis (Fig. 4e). These results provide evidence that MBNL1 modifies FUS toxicity by altering its cellular distribution and interaction with SGs in the cytoplasm.

MBNL1 KD suppresses FUS-induced toxicity and morphological defects. To directly test whether knockdown of MBNL1 affects FUS toxicity in primary cortical neurons, we looked for survival and cellular morphology in cortical neurons expressing FUS-R521C in the presence or absence of endogenous MBNL1 (Fig. 5). First, we validated if MBNL1 shRNA and scramble could be visualized by fluorescence live imaging microscopy without being toxic to cells (Supplementary Fig. 15a). Using DRAQ7® as a marker of cell death, we measured toxicity on neurons co-transfected with either wild-type or FUS R521C together with MBNL1 shRNA or scramble (Fig. 5a–c).78 Neither expression of wild-type FUS nor knockdown of MBNL1 caused toxicity in primary neurons (Fig. 5a, b). On the other hand, neurons expressing FUS-R521C exhibited signs of cell death as early as 48 h post transfection, and depletion of endogenous Mbnl1 mitigated mutant FUS-induced neuronal toxicity. By Kaplan–Meier analysis of survival and associated cumulative risk of death, knockdown of endogenous Mbnl1 in FUS R521C-expressing neurons significantly increased survival while reducing their cumulative risk of death (Fig. 5b, c). Consistent with our findings in flies, depletion of endogenous MBNL1 did not suppress cell death in neurons expressing TDP-43 or ALS-associated dipeptide repeat proteins (DPRs) compared with controls (Supplementary Fig. 15b). By Sholl analysis cells expressing FUS R521C showed a clear reduction in dendritic branching and elongation compared with cells expressing wild-type FUS, and these defects were partially rescued by Mbnl1 shRNA (Fig. 5d, e).79 These results suggest that MBNL1 protects against FUS-associated neuronal toxicity and morphological defects.

Our experiments in Drosophila suggested that depletion of endogenous Mbl suppressed the toxicity associated with FUS mutants, but not other ALS-causing genes (Supplementary Fig. 8). To translate these findings in our mammalian cortical neuronal
Fig. 3 MBNL1 KD reduces mutant FUS mislocalization and incorporation into SGs. HEK293T cells were co-transfected with the indicated FUS constructs (wild-type, R518K, or R521C) and either MBNL1 or scrambled shRNA and treated with sodium arsenite. Cellular distributions of FUS, MBNL1, and the presence of SGs were assessed by confocal microscopy. **a–c** Representative confocal images showing FUS and MBNL1 distributions in HEK293T cells. White outlines in the MBNL1 column indicate representative MBNL1 shRNA-transfected cells with reduced MBNL1 signal. White boxes indicate the areas shown in the last column. White arrows indicate representative stress granules. Scale bars = 10 \(\mu \)m in columns 1–5; scale bars = 5 \(\mu \)m in the last column. **d–f** Quantification of the percentage of cells with FUS-positive SGs confirms that depletion of endogenous MBNL1 significantly reduces mutant FUS integration into SGs (one graph per FUS group; \(N \geq 20 \) cells). Statistical analyses were determined using two-tailed t tests (**P = 0.0006, **P = 0.0014, NS = not significant). **g** Representative WB probed for FUS, MBNL1, Lamin B, and tubulin proteins. Unstressed HEK293T cells were transfected with FUS alone (either wild-type or mutant). Cytoplasmic and nuclear fractions of transfected cells were isolated, and levels of the indicated proteins were assessed. Lamin B and tubulin were used as loading controls for the nuclear and cytoplasmic fractions, respectively. (Tot. Lys. = Total Lysates, Nuc. = Nuclear Lysates, Cyto. = Cytoplasmic Lysates). **h** Nuclear/cytoplasmic ratios (N/C ratios) of FUS constructs. N/C ratios for FUS mutants were normalized to the ratios for wild-type FUS to compare between WBs. FUS protein levels for each fraction were normalized to lamin B for the nuclear fractions and tubulin for the cytoplasmic fractions. Nuclear values were divided by cytoplasmic values to obtain the N/C ratios. No statistically significant differences were observed between cells expressing mutant FUS alone and cells co-transfected with scrambled shRNA. **i** N/C ratios of MBNL1 in HEK293T cells expressing FUS. One-way ANOVA was performed to determine statistical significance in **h** using Tukey’s multiple comparisons test and in **i** using Dunnett’s multiple comparisons test (**P = 0.0015, NS = not significant).
Fig. 4 Mbnl1 KD rescues mutant FUS mislocalization in primary cortical neurons. Rat primary cortical neurons (PC12 cells) were co-transfected with FUS (either wild-type or R521C) and either Mbnl1-specific or scrambled shRNA. FUS-positive cells were analyzed for cellular distribution of exogenous FUS and SG formation. **a-c** Validation of mbnl1 knockdown in PC12 cells. **a** Representative WB of PC12 cells transiently transfected with either scramble or mbnl1-specific shRNA. **b** Quantification of mbnl1 knockdown in PC12 cells (N = 3). **c** mbnl1 immunofluorescence (red) in scrambled and mbnl1 shRNA-transfected PC12 cells (green). **d** Representative confocal images showing differences in wild-type and mutant FUS distributions in cortical neurons. Similar to cells transfected with FUS alone (Supplementary Fig. 13c), cells expressing scrambled shRNA showed wild-type and ALS-linked mutant FUS distributed in the nucleus and cytoplasm, respectively. However, in cells expressing mbnl1-specific shRNA, mutant FUS localizes primarily in the nucleus. White boxes indicate the magnified areas shown in the final column that highlight mislocalization of mutant FUS in scrambled shRNA-treated cells. **e** Quantification of the percentage of neurons with FUS mislocalization in each group, including the controls shown in Supplementary Fig. 13c. The results indicate significant rescue of mutant FUS-R521C mislocalization in cells co-transfected with mbnl1 shRNA compared with the scramble shRNA control group (N > 30 cells/group). **f** Representative fluorescent images of sodium arsenite induced SGs in cortical neurons expressing mutant FUS and either mbnl1 or scrambled shRNA. MAP2 and G3BP1 are markers of neurons and SGs, respectively. Cells expressing mbnl1 shRNA show fewer cytoplasmic SGs compared with the scrambled shRNA group. **g–i** Quantification of the number and size of SGs in each group. Only SGs ≥ 1 μm² were used. N > 15 cells/group. **g** The average number of G3BP1-positive SGs/neuron is significantly lower in mbnl1 shRNA-expressing cells than in scrambled shRNA control cells. No differences in the average size of FUS-positive SGs occur between shRNA groups **h** across all transfected neurons or **i** averaged per neuron. One-way ANOVA with Tukey's multiple comparisons test was used in **e** (*P = 0.008, NS = not significant). Two-tailed t tests were used for comparisons in **g–i** (*P = 0.0028, NS).
model, we used DRAQ7 staining to measure whether reduction of endogenous mbnl1 would suppress the toxicity caused by TDP-43 or DPRs that have previously been linked to ALS, specifically PA, GR and PR. We found that depletion of endogenous mbnl1 does not suppress cell death in neurons expressing TDP-43 or ALS-associated DPRs, compared with controls (Supplementary Fig. 15b, c).

Next, we performed a Sholl analysis to determine morphological changes of neurons transfected with wild-type and mutant FUS in the presence and absence of endogenous MBNL1 (Fig. 5d, e). No significant differences in dendrite morphology were observed between cortical neurons expressing wild-type FUS alone or in combination with Mbnl1 shRNA. However, neurons expressing FUS R521C showed a significant reduction in dendritic branching and elongation compared with cells expressing wild-type FUS, suggesting restoration of neuron morphology by Mbnl1 shRNA (Fig. 5d). These results were confirmed by quantification of the morphological characteristics, which indicated that cells expressing FUS R521C had a statistically significant reduction in the number of intersections at increasing radii from the cell body compared with cells expressing wild-type FUS (Fig. 5e). The effect on the number of intersections was dampened by co-transfecting the neurons with Mbnl1 shRNA. These results suggest that MBNL1 regulates the pathological and morphological defects associated with FUS expression in mammalian models by controlling FUS distribution and interaction with stress granules.

SMN protein trapped in neuronal cytoplasm by mutant FUS is rescued by MBNL1 KD. SMN protein, a known interactor of FUS, has been linked to spinal muscular atrophy (SMA)
pathogenesis, and loss of SMN protein leads to RNA splicing defects as well as axonal and synaptic defects in cellular and animal models. Human genetic studies supported by experimental models suggest the involvement of SMN in ALS pathogenesis. Interestingly, disease-causing mutations in FUS have been shown to sequester SMN protein in the cytoplasmic puncta of mutant FUS-expressing neurons, thereby reducing SMN levels and mimicking a potential loss of axonal SMN in mammalian primary neurons. In addition, ectopic expression of SMN can suppress mutant FUS-associated axonal defects in primary neurons, suggesting that restoration of SMN is sufficient to reverse the deleterious effects of pathogenic mutations in FUS. We speculated that MBNL1-mediated suppression of FUS to reverse the deleterious effects of pathogenic mutations in FUS (Fig. 6d, Supplementary Fig. 17c). These changes are rescued when endogenous MBNL1 is knocked down. Dendrite tracings to highlight changes in branching or elongation. Neurons expressing FUS-R521C show reduced branching and elongation of dendrites compared with cells expressing wild-type FUS. These changes are rescued when endogenous MBNL1 is knocked down.

To translate our findings in human motor neurons expressing the disease-causing mutation P525L, we differentiated our iPSCs into neurons containing ~50% of HB9 + motor neurons (Supplementary Fig. 19a). To evaluate the impact of MBNL1 on the pathological hallmarks of mutant FUS-expressing neurons, we knocked down endogenous MBNL1 in two independent FUS P525L lines (two SL and one LL clone) and an isogenic control line using scrambled or MBNL1 lentiviral shRNA (Fig. 7, Supplementary Fig. 18). We determined the knockdown efficiency of MBNL1 shRNA constructs and found that two of the tested shRNA vectors allowed ~60% knockdown (Fig. 7c, d). We found that FUS P525L mislocalizes in the cytoplasm and incorporates into the SGs as evident from anti-G3BP1 and TIAR staining (Supplementary Fig. 19b). Knocking down endogenous MBNL1 reduced the FUS-positive granules by ~50% in iPSC-derived neurons expressing mutant FUS (Fig. 7a, b and Supplementary Fig. 18), further supporting our findings in mammalian primary neurons.

SMN is a genetic modifier of FUS toxicity. To examine functional link between FUS and SMN, we asked whether modulation of endogenous SMN modifies FUS toxicity in primary cortical neurons and Drosophila. We transfected primary cortical neurons with FUS-R521C and FUS-R518K with and without SMN (Fig. 8a, b). As expected, we observed that expression of mutant FUS leads to neurite growth defects with reduced dendritic branching as well as elongation. We found that ectopic expression of SMN significantly reduced the toxicity associated with mutant FUS expression as evident from restoration in dendritic branching and elongation (Fig. 8a, b). Importantly, ectopic expression of SMN significantly reduced incorporation of mutant FUS into G3BP1-positive SGs in primary cortical neurons (Supplementary Fig. 17d, e). We also observed that ectopic expression of Smn suppressed the external eye degenerative phenotype associated with FUS expression (Fig. 8c, d). Importantly, knocking down endogenous Smn in flies by RNAi strongly enhanced FUS toxicity, suggesting that SMN is an
important determinant of FUS pathology. To examine if mutant FUS overexpression causes axon outgrowth defects as compared with controls, we co-transfected primary motor neurons with GFP, GFP-SMN, and mCherry tagged FUS-WT or R521C or R518K. We found that ectopic expression of FUS R521C and R518K reduced axonal length as evident from anti-tau staining, which is rescued by co-expression of SMN protein (Fig. 8e, f), suggesting that upregulation of SMN is sufficient to protect against mutant FUS-mediated defects. These observations corroborate with our findings showing that MBNL1 KD rescued mutant FUS-mediated dendritic branching defects and neuronal death in primary cortical neurons (Fig. 5).

Fig. 6 MBNL1 KD prevents mislocalization of axonal SMN protein. Cortical neurons were co-transfected with mCherry tagged mutant FUS constructs (FUS-R518K or FUS-R521C) and either GFP tagged MBNL1 shRNA or scramble shRNA and stained with anti-SMN and anti-NEFL-M. Effect of MBNL1 knockdown on SMN RNA levels was determined by qPCR analysis of NSC-34 cells expressing mutant FUS. a Representative confocal images showing SMN and FUS distribution in neuronal cells. NEFL staining was used to trace axons. Labels on the left side of the panel detail which groups were transfected with MBNL1 shRNA or scramble shRNA. White arrows indicate co-localization of mutant FUS and SMN puncta. Scale bars = 5 µm. b Quantification of fluorescence intensity of SMN staining along NEFL positive axons confirms that depleting endogenous MBNL1 significantly rescues loss of SMN in mutant FUS neurons. Each graph corresponds to the representative panel above a. A minimum of 6–9 neurons were analyzed in biological triplicates for each measurement. Values presented in each graph are means ± SE. Statistical analyses were performed on GraphPad Prism 6 software using two-tailed t tests (**P = 0.0014, *P = 0.0331). c Quantification of percentage of neurons with cytoplasmic foci containing both FUS and SMN. A minimum of 5–10 cells were analyzed from each group from three independent experiments. Percentage of neurons with FUS and SMN-positive cytoplasmic foci is significantly reduced in mutant FUS neurons (R521C and R518K) co-expressing MBNL1 shRNA compared with cells expressing scramble shRNA two-tailed t tests were used for the comparisons in d (**P = 0.0072, *P = 0.0352). d qPCR analysis from 3–4 biological replicates of NSC-34 cells shows knockdown of mouse endogenous MBNL upregulates SMN RNA in FUS-R518K or FUS-R521C-expressing cells. Statistical analyses were performed on GraphPad Prism 6 software using one-way ANOVA and TUKEY for multiple comparisons (**P = 0.0114, *P = 0.0435).
Discussion

The heterogeneous clinical and pathological nature of ALS complicates our understanding of its pathogenesis\(^{94–97}\). We hypothesized that this variability may be owing to the contribution of genetic modifiers in regulating the toxicity of known ALS-causing genes. Furthermore, differential regulation of these genes may explain differences in the clinical outcomes between patients.

To discover novel modifiers of FUS toxicity, we performed an unbiased genetic screen using a Drosophila model that revealed a set of candidate genomic regions that either enhanced or suppressed toxicity caused by mutations in FUS when a part of the genomic region was deleted. The mbl gene was identified within one of the deficiency regions that suppressed degeneration and was pursued further as a possible modifier of FUS toxicity. Similar to FUS, MBNL1 is involved in RNA processing, including alternative splicing\(^{98}\), mRNA stability\(^{99}\), and RNA trafficking\(^{100}\). MBNL1 has previously been linked to several neurological diseases, including myotonic dystrophy\(^{58}\), spinocerebellar ataxia\(^{58,101}\), fragile X syndrome\(^{57}\), and Huntington’s disease\(^{59,60}\).

However, it has never been directly linked to ALS pathogenesis. Therefore, we performed an array of assays in Drosophila to validate whether targeted depletion of Mbl would be sufficient to suppress FUS-associated neurodegeneration. We found that knockdown of endogenous Mbl in Drosophila reduced external eye degeneration caused by wild-type and mutant FUS overexpression. Previously, studies have shown increased satellite bouton size and synaptic dysfunctions in fly models of TDP-43\(^{102}\). Knocking down endogenous mbl suppressed larval NMJ morphological defects as well as motor impairments, further supporting our finding that muscleblind is a suppressor of FUS toxicity. Using a rat primary cortical neuron model of FUS, we found that shRNA-mediated knockdown of endogenous MBNL1 suppressed cell toxicity and restored dendritic branching. Our in vivo and rat cortical neuronal data suggest that muscleblind is a modifier of FUS toxicity.

There are three MBNL (MBNL1, MBNL2, and MBNL3) paralogs in humans\(^{103–105}\), all of which code for DNA/RNA-binding proteins involved in RNA trafficking, stability, and alternative

Fig. 7 MBNL1 downregulation attenuates FUS-positive SGs in iPSC-derived neurons. We used three different isogenic clones of FUS P525L iPSC line and these isogenic clones are labeled as 2, 16, and 17 as described previously\(^{92}\) and were able to generate mixed cultures containing ~50% motor neurons (Hb9+ cells). a Representative confocal image showing FUS-positive stress granules in control and FUS P525L iPSC-derived neurons. b Quantification of the percentage of iPSC-derived neurons showing FUS-positive stress granules following lentiviral delivery of two different MBNL1 shRNAs and scramble control (n = 50–60 neurons/line). c Protein capillary electrophoresis showing the efficacy of MBNL1 knockdown by three independent MBNL1 shRNAs. d Quantification of protein capillary electrophoresis. Statistically significant differences were determined by two-tail, unpaired t test in B and two-way ANOVA followed by a Tukey post hoc analysis in C. **(p ≤ 0.01) are indicated.
Fig. 8 SMN rescues morphological defects and degenerative phenotype in vivo. Cortical neurons were either transfected with FUS-R521C or FUS-R518K alone or co-transfected with SMN and assessed for morphological changes. a Representative panel of cortical neurons visualized by confocal microscopy for MAP2 (blue), GFP tagged SMN (green), and mCherry tagged FUS-R521C or FUS-R518K (red). Neurons expressing FUS-R521C and FUS-R518K show reduced branching and elongation of neurites. These changes are rescued when SMN is overexpressed. Scale bars = 5 μm. b Quantification of the number of intersections at increasing radii from the neuron cell body. Consistent with the qualitative changes shown in a, neurons co-expressing FUS-R521C or FUS-R518K with SMN have a significant increase in the number of intersections compared with mutant FUS neurons (n = 10). Two-way ANOVA with Bonferroni’s, Tukey’s and Sideak’s multiple comparisons tests were performed on all groups at each radius measured. Asterisks shown come from the radii measurements with the highest significant difference between the groups being compared and were consistent with all three multiple comparisons tests performed (**P < 0.01 and ****P < 0.0001). c Knockdown of endogenous Smn strongly enhanced the FUS toxicity in flies. d Quantification of external eye degenerative phenotype shows that Smn is a strong genetic modifier of FUS toxicity in flies. e Motor neurons transfected with GFP, GFP-SMN, mCherry tagged FUS-WT, FUS-R521C or FUS-R518K were assessed for axonal growth defects. Representative panel of motor neurons visualized by confocal microscopy for Tau (blue), GFP tagged SMN (green), and mCherry tagged FUS-WT, FUS-R521C or FUS-R518K (red). Neurons expressing FUS-R521C and FUS-R518K show reduced axonal length as shown by Tau immunostaining. SMN overexpression in mutant FUS motor neurons rescues defects in axon growth. Scale bars = 10 μm. f Quantification of the axonal length. Consistent with the qualitative changes shown in e, motor neurons co-expressing FUS-R521C or FUS-R518K with SMN have a significant rescue in axon length compared with mutant FUS neurons. Student’s t test was used to measure statistical significance between FUS neurons co-expressing either GFP or SMN-GFP.
splicing98–100. In humans and \textit{Drosophila}, muscleblind is essential for proper development and terminal differentiation of neurons96–100, skeletal muscle104,105, and photoreceptors100. MBNL1 has been linked to numerous neurodegenerative diseases and is best known for its involvement in myotonic dystrophy106–60,101,110. In myotonic dystrophy, MBNL1 is sequestered into nuclear inclusions owing to uncontrolled binding to abnormal CUG repeat expansions in the 3′-untranslated region of dystrophia myotonia protein kinase mRNA. Reduced availability of functional MBNL1 in the nuclei of muscle cells prevents appropriate splicing of target RNAs, which is thought to be the cause of subsequent muscle-wasting in patients with the disease104,110,111. Consistent with the idea that sequestration into nuclear inclusions leads to loss of MBNL function, upregulation of MBNL1 suppressed the effects of the CUG repeat expansion in myotonic dystrophy112. On the other hand, our findings support a toxic gain of function model of MBNL1 in FUS-linked ALS, with knockdown of mbl-suppressing toxicity and upregulation of expression having the opposite effect in vivo. Notably, the effect of MBNL1 in ALS was specific for FUS, as muscleblind did not modify the phenotypes of fly and IPSC models of TDP-43-, VCP-, and C9orf72 peptide-linked ALS. Rather, our findings in FUS-linked ALS are consistent with previous work performed in a \textit{Drosophila} model for spinocerebellar ataxia type 3, in which overexpression of MBNL1-enhanced ataxin-3 induced neurodegeneration101. It has been previously proposed that MBNL1 interacts differently with the CAG repeat expansions of SCA3 than it does with the CUG repeat expansions associated with other diseases. MBNL1 is capable of binding to both CAG and CUG repeats, though changes in alternative splicing are only observed when MBNL1 is bound to CUG expansions113,114. Thus, sequestration of MBNL1 alone is not sufficient for causing aberrant changes in splicing patterns. The modification of FUS toxicity observed in our models following modulation of endogenous muscleblind levels likely occurs through a different mechanism than that of CUG repeat expansion diseases. This may explain why MBNL1 involvement in various disease pathogenesis is tissue-specific.

The deficiency lines used in our initial screen are heterozygous for a number of genes, each of which could be responsible for modifying FUS toxicity. In this study, we focused on muscleblind owing to its association with other human neuronal diseases. Furthermore, RNAi-mediated depletion of other individual genes within the deficiency region did not yield the same suppression of FUS toxicity that was caused by specific knockdown of Mbl (Supplementary Fig. 4). However, suppression of FUS toxicity in the Df(2 R)Exel6066 deficiency line may have been owing to the combined loss of one or more genes in addition to \textit{mbl}. This could be an important future study for identifying additional pathways involved in modifying FUS toxicity in ALS.

Uncontrolled accumulation of mutant FUS into cytoplasmic inclusions is a well-established pathological hallmark of ALS. The inclusions are hypothesized to originate from stress granules that fail to disassemble and most intriguingly, only mutant and not wild-type FUS assembles into SGs upon stress115–117. We therefore hypothesized that depletion of muscleblind suppresses FUS toxicity by interacting with SGs. We found that knockdown of endogenous MBNL1 in both human and rat cell culture models reduced FUS-positive cytoplasmic SG formation following exposure to chemical stress. Importantly, we were able to translate our findings from HEK293T and primary cortical neuronal overexpression models to iPSC neurons expressing FUS P525L mutation under native promoter. We observed that knocking down endogenous MBNL1 strongly reduced cytoplasmic FUS-positive puncta. These results support our hypothesis that MBNL1 regulates critical processes required for FUS toxicity in neurons.

Interestingly, depletion of endogenous Mbl in both \textit{Drosophila} and rat primary cortical neurons only affected FUS-associated ALS, and it did not suppress the toxicity caused by other ALS-linked proteins. This observation suggests that the pathway linking muscleblind to FUS is not shared by other ALS-causing proteins. All three members of the FET family of proteins (FUS, EWSRI, and TAF15) specifically bind to RNA from all three human muscle-blind-like paralogs in human cells51. FUS itself preferentially binds to RNA transcripts with long intronic regions, a characteristic observed for \textit{Drosophila mbl} that is immediately apparent from its size61. It is likely that the direct interaction between FUS and \textit{mbl} RNA is the event modulating FUS toxicity, and that depletion of \textit{mbl} RNA affects this interaction to suppress cell death. Intriguingly, we found that endogenous FUS also interacts with MBNL1, suggesting a direct effect of MBNL1 on FUS normal function in a physiological context and toxic gain of function in ALS. Further investigations on how MBNL1 modifies FUS toxicity will improve our understanding of molecular mechanisms driving FUS-ALS pathogenesis.

Reduced levels of SMN protein have been linked with SMA, which, like ALS, is a devastating motor neuron disease100,101. There are several reports, suggesting overlapping mechanisms involving defective RNA metabolism in motor neuron diseases, such as ALS and SMA80–83,118. However, there are few reports challenging this notion about SMN1 and SMN2 copy number variations in ALS pathogenesis119,120. Although FUS is a predominantly nuclear protein that shuttles between the nucleus and cytoplasm, SMN localizes to nuclear Gem bodies and to the cytoplasm where it functions in snRNP biogenesis and RNA splicing121–125. Similarly, FUS has been shown to be involved in regulating different aspects of RNA metabolism, including RNA splicing and processing76,126,127. Furthermore, SMN localizes to axons where it regulates axonal mRNA transport and local translation80,128–132. SMN has been shown to physically interact with FUS WT, and pathogenic mutations in FUS enhance their interaction80. Interestingly, pathogenic mutations in FUS have been shown to sequester SMN in the cytoplasmic aggregates of mutant FUS-expressing neurons mimicking a potential mislocalization of SMN. Ectopic expression of SMN was sufficient to suppress mutant FUS toxicity in primary neurons80. However, the in vivo relevance of these observations was not known. Our data suggest that reducing the levels of endogenous muscleblind released SMN trapped in mutant FUS-positive cytoplasmic puncta, and upregulation of SMN was sufficient to suppress FUS toxicity in vivo. A recent report found that overexpression of SMN does not modify FUS toxicity in flies and mice82. There are few fundamental differences between the two studies. First, they used a fly model that contains four dominant and fully penetrant FUS mutations (R521G, R522G, R524S, and P525L) and each single-point mutation is reported to cause pathogenesis associated with ALS, whereas we used a single ALS-causing mutation in our fly model similar to human patients. There are no reports of presence of all four mutations or any of their combinations in ALS patients, suggesting that compound mutant fly model’s pathophysiological conditions may not be compared with our fly models. Because of this fundamental difference, we believe that a direct comparison between our and the Mirra’s data may not be possible. Notably, we have examined the effect of overexpression of SMN in additional to genetic knockdown of \textit{Smn} in vivo. Our in vivo data show that SMN overexpression suppresses FUS pathogenicity in our fly model of ALS as well as cultured primary neurons. Furthermore, our data demonstrate that muscleblind may be a key player in modulating pathways involved in FUS-SMN.
With this work, we showed a mechanistic link between muscleblind activity and FUS toxicity in both mammalian cellular primary neuronal (cortical and motor neurons) and iPSC models of ALS. Our results are the first to demonstrate that MBNL1 modifies FUS-mediated phenotypes in vivo. Furthermore, these results highlight the role of MBNL1 as a common mediator of neurodegeneration and add ALS to the growing list of diseases. Therefore, this study has a strong impact on understanding the pathogenetic mechanisms underlying ALS as well as other human age-related neurodegenerative diseases.

Methods

Drosophila lines. The FUS-WT, FUS-R521H, and FUS-R521H, and FUS-P525L lines were generated by site-specific insertion of the transgene (sterile-insertion lines) at BestGene Inc. using the (attP2) insertion vector. UAS-FUS–using a previously published scoring system135. Statistical analyses were performed indicated for ageing experiments) using a Leica M205C dissection microscope expressing wild-type and mutant, exogenous, human FUS at 25°C. Images of the NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13383-z | www.nature.com/naturecommunications

Arginine methylation assay. Human embryonic kidney 293 T (HEK293T) cells were cultured as previously described and transfected using polyethyleneimine. For western blotting analysis, cells were washed with ice-cold PBS and scraped in 100 ml lysis buffer (150 mM NaCl, 2% sodium dodecyl sulfate, 10 mM Hepes pH 7.4, 2 mM EDTA) plus protease inhibitor cocktail (Roche Diagnostics). Total lysates were sonicated and centrifuged at 13,000 rpm for 10 min at 4°C. Cells lysates were denatured at 95 °C in sample buffer and processed for 4-12% sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), and electro-transferred onto nitrocellulose membranes (Millipore). Immunoblotting was done in 5% non-fat dry milk dissolved in Tris-buffered saline using the following antibodies: anti-FI (Bio-Rad); anti-Tubulin (1:10000, Sigma); anti-Calnexin (1:5000, Enzo); and anti-Lamin B1 (1:1000, Abcam). Immunoreactivity was detected using IRDye-conjugated Goat Anti-Rabbit or Anti-Mouse IgG (Li-Cor), and visualized using Odyssey Imaging System (Li-cor). Experiments were run in triplicate using three independent lysate preparations from cultured cells.

Nuclear/cyttoplasm fractionation. For cytosol/nuclear fractionation, cells were washed with ice-cold PBS and collected in 1 ml. Upon centrifugation, the pellet was resuspended in solb (20 mM Tris-HCl pH 8.0, 50 mM NaCl, 1% NP40, 1 mM DTT with protease inhibitors), incubated on ice for 10 min, and centrifuged at 4000 rpm for 5 min. The cytosolic fraction was collected (supernatant), whereas pellet was resuspended in solb (20 mM Tris-HCl pH 8.0, 0.4 mM NaCl, 1% NP40, 1 mM DTT and protease inhibitor) and incubated on ice for 10 min. Supernatant was collected upon centrifugation at 12,000 rpm for 10 min (nuclear extract).

Quantitative reverse-transcriptase polymerase chain reaction. *Drosophila* tissues or cultured cells were lysed using TRIzol (Ambion; 15590626), and RNA was isolated using a phenol–chloroform extraction method. Following lysis, chloroform was added, and the samples were centrifuged. The upper, aqueous layer was isolated, treated with isopropanol, and centrifuged. The resulting RNA pellets were washed with 75% ethanol, centrifuged, and dried by ambient air. RNA was suspended in RNase-free water. Quantity and purity (260/280 and 260/230 ratios) were determined using a NanoDrop ND-1000 spectrophotometer. RNA quality was assessed by 1% agarose gel electrophoresis using ethidium bromide. The iScript Select cDNA Synthesis Kit (Bio-Rad; 2680–8977) was then used to produce cDNA. cDNA samples in 6 × JAC PCR machine (Thermo Hybaid). Three RNA extractions were performed from each experimental group to produce cDNA; a sample lacking reverse-transcriptase was used as a control to confirm the absence of genomic DNA. All cDNA samples were ran on 96-well plates (Applied Bio- systems; 4306737) on a 7300 Real-Time PCR System (Applied Biosystems). Using the Bio-Rad IQ Supermix (170–8862), a tubulin and GAPDH were used as *Drosophila* and human housekeeping genes, respectively. SMN levels in NC-34 cells were assessed with a commercially available FAM-MGB TaqMan assay (Thermo Fisher Scientific, Cat#Mm00488315_m1). A VIC-MGB TaqMan probe for actin beta served as normalizer (Thermo Scientific, Mm2619580_g1). Cycle threshold (CT) values were recorded and analyzed following the comparative (CT) method as previously described136 using Prism 6 (GraphPad Software) for statistical analyses.

All primers for qPCR were designed PrimerQuest primer design tool (Integrated DNA Technologies). The Primers were designed with the primer/probe solutions. The primers and probes used for qPCR assays were used as the primer/probe solutions. The primers and probes used for qPCR assays are listed in Supplementary Table 4.

NMJ analyses and immunofluorescence of *Drosophila*. Wandering 3rd instar, larvae from the FI generation were raised in ice-cold phosphate-buffered saline (Lonza; 17-512 F) and dissected along the dorsal midline. Muscles and NMJs were examined by either alone or combined with 750 ng of cherry tagged FUS. Forty-eight hours post transfection, cell lysates were prepared using RIPA extraction and lysis buffer (thermo Fisher #89900). Cell lysates were sonicated at 4 °C and denatured at 95 °C in sample buffer (Bio-Rad). Proteins were resolved using 4–20% gels (Bio-Rad, Mini-PROTEAN TGX Precast Protein Gels) and transferred onto nitrocellulose membrane (Bio-Rad) using turbo transfer (Bio-Rad) according to manufacturer instructions. The membrane was then blocked for an hour in 5% non-fat dry milk solution followed by incubation with mouse anti-SMN primary antibody (BD Biosciences #610664) at 1:2000 dilution overnight at 4 °C. Following 3 × washes with TBS-tween, membranes were incubated washed with PBS in 1% normal goat serum (NGS) (Abcam; AB7681) in 0.1% PBST (0.1% Triton X-100 in PBS). Larval pellets were then probed with primary antibodies overnight at 4 °C, washed several times with 0.1% PBST containing secondary antibodies for 2 h at room temperature, and then washed with 0.1% PBST. Both primary and secondary antibody solutions were prepared in 5% NGS in 0.1% PBST. Samples were mounted onto slides using

NATURE COMMUNICATIONS | (2019) 10:5583 | https://doi.org/10.1038/s41467-019-13383-z | www.nature.com/naturecommunications
Immunocytochemistry and confocal microscopy. Organized by genotype, vial number, and video number. The recovery time from the anesthetization was 1 h prior to the beginning of the experiment. Neurons were transfected on DIV 7 with 1 μg of DNA using FUGENE HD (Promega). Cells were washed, incubated with primary antibodies and incubated in secondary antibody as previously described [2]. DAPI was used to measure neuronal survival as previously described [1]. Immunofluorescence images were used to evaluate nuclear morphology. Neurons were labeled with primary antibodies and incubated in secondary antibody as previously described [2]. DAPI was used to measure neuronal survival as previously described [1]. Immunofluorescence images were used to evaluate nuclear morphology.

Characterization of neuronal morphology using Sholl analysis. To analyze dendrite morphology, neurons were stained for the dendritic protein, MAP2. Fluorescence images were acquired, and neurites were traced using the Simple Neurite Tracer plugin (ImageJ). Dendritic arborization was determined by counting the number of dendritic intersections with concentric circles centered on the soma whose radii were increased by 10 μm. **Stress granule induction and analysis.** Stress granule was induced by treating neurons with 5 μM of the chemotherapeutic drug (Doxorubicin) for 24 h. For stress granule analysis, cells were treated with 5 μM of the chemotherapeutic drug (Doxorubicin) for 24 h. Stress granules were visualized using confocal microscopy and quantified using ImageJ as previously described [3].

Analysis of neuronal toxicity. Time-lapse live-cell fluorescence microscopy was used to measure neuronal survival as previously described [4]. In brief, neurons were transfected on DIV 12 with 750 ng of mCherry tagged FUS, mCherry tagged TDP-43, FLAG tagged Dipetide repeats (P35, G35, P35) and 250 ng of GFP tagged mmb1 or scramble shRNA constructs (Origene; TL50765). For SMN overexpression, cells were treated with 500 ng of SMN plasmid (Addgene) using lipofectamine (Invitro). For SMN knockdown, cells were transfected on DIV 7 with 1 μg of total DNA/coverslip using Lipofectamine 2000 (Invitro) at a ratio of 1:2.

SMN immunostaining and quantification in neurons. Cultured rat cortical neurons were transfected on DIV10 with appropriate plasmid constructs (mCherry tagged FUS-WT, FUS-R212C, FUS-R518K and GFP tagged scramble shRNA or MBNL1 shRNA). After 48 h of transfection, cells were processed for immunocytochemistry to probe for SMN using mouse anti-SMN (BD Biosciences, Cat# 610647) at 1:150 dilution. Axons were labeled using chicken anti-Neurofilament-M (Novus Biologicals, Cat#NB300-222) at 1:300 dilution. Primary antibodies were incubated at 4 °C overnight, and the secondary antibodies were conjugated to Alexa Fluor 488 or Alexa Fluor 594. Confocal images were acquired using a × 60 oil immersion objective of a confocal microscope (Olympus). Laser and detector settings were kept constant for all conditions. Maximum intensity projected images were constructed using FIJI. Regions of interest were marked using fluoroprobe positive images. Data were analyzed from three independent experiments and 6–9 neurons were analyzed per condition. SMN immunofluorescence was measured on a scale of 0–4096 pixels.
Axonal growth analysis. Motor neuron cultures were co-transfected on DIV 7 with mcherry tagged FUS and either GFP or SMN-GFP using lipofectamine 2000. After 48h, cells were fixed and immunostained with a mouse monoclonal anti-tau antibody (Sigma # T9450) at a dilution of 1:500 incubated overnight at 4°C to specifically identify the axon. After 3 x PBS washes, cells were labeled with Alexa fluor 405 tagged Goat anti-mouse igg (1:500, Invitrogen # A-31553) for 1 h at room temperature washed 3 x with PBS and mounted with mounting media (Aqua- mount, Lerner Laboratories). Fluorescent Images were captured using a x 20 objective (NA 0.75) of a confocal microscope (Nikon A1R) at a resolution of 2048 x 2048 pixels and imported into Fiji (version 1.52) software. The axonal projection from the cell soma was then measured from the center of the soma using the Simple Neurite Tracing plugin (Langoir et al., 2013). A minimum of 10 transfected neurons were analyzed per condition from three independent experiments. Data were analyzed using Graph Pad Prism and Student’s t test was used to measure statistical significance between FUS neurons co-expressing either GFP or SMN-GFP.

Cell Lines. HEK293T (#CRL-3216), Neuro2A (N2A, #CCL-131), PC-12 (# CRL-1721) cell lines were freshly obtained from the ATCC for this study; NSC-34 cell line was provided by Dr Neil Cashman, University of Toronto, Toronto, ON, Canada. All cell lines were maintained and utilized at passages 2–5.

Antibodies (Drosophila, primary neuronal cells, HEK293T, and N2A cell lines). For doing western blots in Drosophila, the following primary antibodies were used: anti-FUS (Bethyl Laboratories; A300-302A, 1:2000), anti-MBNL1 (Millipore; 67B12, 1:1000), and anti-mlh1 (Invitrogen; MA1-19697, 1:1000). In Drosophila, the following primary antibodies were used: Alexa Fluor 488-conjugated anti-HPR (Jackson Immuno Research; 123-545-021, 1:200) and mouse anti-DLG 4F3 (DSHB, 1:100). The following secondary antibodies were used: Alexa Fluor 487-conjugated anti-Phallloidin (Invitrogen; A22287, 1:250) and goat anti-mouse Alexa Fluor 546 (Invitrogen, A11030, 1:500).

The following primary antibodies were used: anti-G3BP1 (Protein Tech; 13057-2-AP, 1:2000) and anti-H4AT (Sigma, H5665, 1:500). Alexa Fluor fluorescent secondary antibodies (Invitrogen) were used at a concentration of 1:1,000 for doing Western blots in HEK293 and N2a cell lines.

The following primary antibodies were used for doing immunoblotting in primary neuronal cells: anti-MAP2 (EMD Millipore; AB5622, 1:500), anti-FUS (Proteintech; 11570-1-AP, 1:2000) and anti-TIA1 (Santa Cruz; SC-7151, 1:250), anti-G3BP1 (ProteinTech; DS444, 1:100), anti-MBNL1 (Millipore; MABE70, 1:100), and anti-NEFL (Novus Biologicals; NB300-222, 1:300).

Lentiviral production. Three lentiviral shRNAs targeting MBNL1 and one scramble shRNA vectors were purchased from Dharmacon, GE healthcare (Cat: V5SH11240) as E. coli glycerol stocks. Following amplification and plasmid isolation, packaging of the vector was carried out in 293 T cells using a lentiviral packaging system (transfer vector: pCD/NL-BH: pczVSV-G ratio of 4:2:1) and tetracyclin inducible and plasmid isolation. Three lentiviral shRNAs targeting MBNL1 and one scramble shRNA vectors were purchased from Dharmacon, GE healthcare (Cat: V5SH11240) as E. coli glycerol stocks. Following amplification and plasmid isolation, packaging of the vector was carried out in 293 T cells using a lentiviral packaging system (transfer vector: pCD/NL-BH: pczVSV-G ratio of 4:2:1) and tetracyclin inducible and plasmid isolation. 3. Logroscino, G. et al. Incidence of amyotrophic lateral sclerosis in Ireland between 1995 and 2004. J. Neurol. Neurosurg. Psychiatry 79, 30–32 (2008).

4. Alonso, A., Logroscino, G., Jick, S. S. & Hernandez, M. A. Incidence and lifetime risk of motor neuron disease in the United Kingdom: a population-based study. Eur. J. Neurol. 16, 745–751 (2009).

5. Fang, F. et al. Amyotrophic lateral sclerosis in Sweden, 1991-2005. Arch. Neurol. 66, 515–519 (2009).

6. Byrne, S. et al. Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based study of 1149 cases in Taiwan. J. Epidemiol. 23, 35–40 (2013).

7. Pugliatti, M. et al. Amyotrophic lateral sclerosis in Sardinia, insular Italy, 1995-2009. J. Neurol. 260, 572–579 (2013).

8. Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 339, 1668-1672 (2012).

9. Byrne, S. et al. Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 82, 623–627 (2011).

10. Talbot K., Ansonge O. Recent advances in the genetics of amyotrophic lateral sclerosis and frontotemporal dementia: common pathways in neurodegenerative disease. Hum. Mol. Genet. 15, R182-R187 (2006).

11. Renton, A. E., Chio, A. & Traynor, B. J. State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 17, 17–23 (2014).

12. Tan, A. Y. & Manley, J. L. TLS inhibits RNA polymerase III transcription. Mol. Cell Biol. 30, 186–196 (2010).

13. Yang, L., Embree, L. J., Tsai, S. & Hickestein, D. D. Oncoprotein TLS interacts with setine-arginine proteins involved in RNA splicing. J. Biol. Chem. 273, 27561–27564 (1998).

14. Fraik, M. et al. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 interact in processing long pre-mRNAs. Nat. Neurosci. 15, 1488–1497 (2012).

15. Zinsner, H. et al. Aigner R. Recent advances in the genetics of amyotrophic lateral sclerosis and frontotemporal dementia: common pathways in neurodegenerative disease. Hum. Mol. Genet. 15, R182-R187 (2006).

16. Renton, A. E., Chio, A. & Traynor, B. J. State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 17, 17–23 (2014).

17. Tan, A. Y. & Manley, J. L. TLS inhibits RNA polymerase III transcription. Mol. Cell Biol. 30, 186–196 (2010).

18. Yang, L., Embree, L. J., Tsai, S. & Hickestein, D. D. Oncoprotein TLS interacts with setine-arginine proteins involved in RNA splicing. J. Biol. Chem. 273, 27561–27564 (1998).

19. Lagier-Tourenne, C. et al. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 interact in processing long pre-mRNAs. Nat. Neurosci. 15, 1488–1497 (2012).

20. Zinsner, H. et al. Aigner R. Recent advances in the genetics of amyotrophic lateral sclerosis and frontotemporal dementia: common pathways in neurodegenerative disease. Hum. Mol. Genet. 15, R182-R187 (2006).

21. Couthous, J. et al. Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum. Mol. Genet 21, 2899–2911 (2012).

22. Couthous, J. et al. A yeast functional screen predicts new candidate ALS disease genes. Proc. Natl Acad. Sci. USA 108, 20881–20890 (2011).

23. Salton, M. et al. Matri3 3 binds and stabilizes mRNAS. PLoS ONE 6, e23882 (2011).

24. Daigle, J. G. et al. RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Hum. Mol. Genet 22, 1193–1205 (2013).

25. Vance, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211 (2009).

26. Kwiatkowski, T. J., Jr. et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208 (2009).

27. Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).

28. Mitchell, J. C. et al. Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion. Acta Neuropathol. 125, 273–288 (2013).
29. Xia, R. et al. Motor neuron apoptosis and neuromuscular junction perturbation are prominent features in a Drosophila model of FUS-mediated ALS. Mol. Neurobiol. 70, 427–440 (2017).
30. Huang, C. et al. FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. PLoS Genet. 7, e1002011 (2011).
31. Xu, Y. F. et al. Wild-type human TDP-43 expression causes TDP-43 phosphorylation and cytoplasmic aggregation, motor deficits, and early mortality in transgenic mice. J. Neurosci. 30, 10851–10859 (2010).
32. Chung, C. Y. et al. Identification and rescue of alpha-synuclein toxicity in Parkinson patient-derived neurons. Science 342, 983–987 (2013).
33. Corti, O., Lesage, S. & Brice, A. What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol. Rev. 91, 1161–1218 (2011).
34. Lee, V. M. & Trojanowski, J. Q. Mechanisms of Parkinson disease linked to pathological alpha-synuclein: new targets for drug discovery. Neurotox. 52, 33–38 (2006).
35. Springer, W. & Kahle, P. J. Mechanisms and models of alpha-synuclein-related neurodegeneration. Curr. Neurol. Neurosci. Rep. 6, 432–436 (2006).
36. Singleton, A. B. et al. alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302, 841 (2003).
37. Sabatelli, M. et al. Mutations in the 3′ untranslated region of FUS causing FUS overexpression are associated with amyotrophic lateral sclerosis. Hum. Mol. Genet. 22, 4748–4755 (2013).
38. Feng, M. S., TroostMaki, I. Q., & Lee, V. M. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat. Med. 10, 1055–1063 (2004).
39. Bosco, D. A. et al. Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum. Mol. Genet. 19, 4160–4175 (2010).
40. Gal, J. et al. Nuclear localization sequence of FUS and induction of stress granules by ALS mutants. Neurobiol. Aging 32, 2323 e2327–2323 e2340 (2011).
41. Dornmann, D. et al. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. Embo. J. 29, 2841–2857 (2010).
42. Daigo, J. G. et al. Pur-alpha regulates cytoplasmic stress granule dynamics and ameliorates FUS toxicity. Acta Neuropathol. 131, 605–620 (2016).
43. Buchan, J. R., Kolatits, R. M., Taylor, J. P. & Parker, R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153, 1461–1474 (2013).
44. Dewey, C. M. et al. TDP-43 aggregation in neurodegeneration: are stress granules the key? Brain Res. 1462, 16–25 (2012).
45. Ramaswami, M., Taylor, J. P. & Parker, R. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154, 727–736 (2013).
46. Freibaum, B. D., Chitta, R. K., High, A. A. & Taylor, J. P. Global analysis of FUS-mediated Neur. 70, 427–440 (2012).
47. Hoell, J. I. et al. RNA targets of wild-type and mutant FET family proteins. Nat. Struct. Mol. Biol. 18, 1428–1431 (2011).
48. Lanson, N. A. Jr. et al. A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. Hum. Mol. Genet. 20, 1333–1342 (2011).
49. Hofweber, M. et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173, 706–719 e713 (2018).
50. Yoshizawa, T. et al. Nuclear import inhibitor promotes phase separation of FUS through binding to multiple sites. Cell 173, 695–705 e622 (2018).
51. Kumar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation–pi interactions. Cell 173, 720–734 e715 (2018).
52. Murakami, T. et al. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88, 678–690 (2015).
53. Guo, L. et al. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. Cell 173, 677–692 e620 (2018).
54. Scaramuzzino, C. et al. Protein arginine methyltransferase 1 and 8 interact with FUS to modify its sub-cellular distribution and toxicity in vitro and in vivo. Cell Rep. 26, 1005 e1012 (2018).
55. Li, Y. R., King, O. D., Shorter, J. & Gillet, A. D. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 201, 361–372 (2013).
56. Tradewell, M. L. et al. Arginine methylation by PRMT1 regulates nuclear-cytoplasmic localization and toxicity of FUS/TLS harbouring ALS-linked mutations. Hum. Mol. Genet. 21, 136–149 (2012).
57. Konieczny, P., Stepniewski, K., & Sobczak, K. MBN1 proteins and their target RNAs, interaction and splicing regulation. Nucleic Acids Res. 42, 10873–10887 (2014).
58. Pascual, M., Vicente, M., Monferrer, I. & Artero, R. The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing. Differentiation 74, 65–80 (2006).
59. Wang, W. Y. et al. Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nat. Neurosci. 16, 1383–1391 (2013).
60. Barnarda, S. J. et al. Amelioration of toxicity in neuronal models of amyotrophic lateral sclerosis by hUPF1. Proc. Natl. Acad. Sci. USA 112, 7821–7826 (2015).
61. Huang, C. et al. Entorhinal cortical neurons are the primary targets of FUS mislocalization and ubiquitin aggregation in FUS transgenic rats. Hum. Mol. Genet. 21, 4602–4614 (2012).
62. Qiu, H. et al. ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects. J. Clin. Invest. 124, 981–999 (2014).
63. Ryu, H. H. et al. Autophagy regulates amyotrophic lateral sclerosis-linked fusion in sarcoma-positive stress granules in neurons. Neurobiol. Aging 35, 2822–2831 (2014).
64. Wen, X. et al. Antisense proline-arginine RAN dipeptide linked to C9ORF72-ALS/FTD forms toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuro. 84, 1213–1225 (2014).
65. Sholl, D. A. Dendritic organization in the neurons of the visual and motor cortices of the cat. J. Anat. 87, 387–406 (1953).
66. Groen, E. J. et al. ALS-associated mutations in FUS disrupt the axonal distribution and function of SMN. Hum. Mol. Genet. 22, 3690–3704 (2013).
67. Sun, S. et al. ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat. Commun. 6, 6171 (2015).
68. Mirra, A. et al. Functional interaction between FUS and SMN underlies SMA-like splicing changes in wild-type hFUS mice. Sci. Rep. 7, 2033 (2017).
69. Gama-Carvalho, M. et al. Linking amyotrophic lateral sclerosis and spinal muscular atrophy through RNA-transcriptome homeostasis: a genomics perspective. J. Neurochem. 141, 12–30 (2017).
70. Yin, S. et al. Evidence that C9ORF72 dipeptide repeat proteins associate with U2 snRNP to cause Mis-splicing in ALS/FTD patients. Cell Rep. 19, 2244–2256 (2017).
71. Silva, M. C. et al. Human iPS-derived neuronal model of TAU-A152T frontotemporal dementia reveals Tau-mediated mechanisms of neuronal vulnerability. Stem Cell Rep. 7, 325–340 (2016).
72. Kramer, N. J. et al. Sp4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts. Science 353, 708–712 (2016).
73. Schweizer Burguea, A., et al. GGGGCC microsatellite RNA is neurally localized, induces branching defects, and perturbs transport granule function. PloS Genet. 4, e1000600 (2008).
74. Freibaum, B. D. et al. GGGGCC repeat expansion in C9ORF72 compromises nucleocytoplasmic transport. Nature 525, 129–133 (2015).
102. Estes, P. S. et al. Wild-type and A315T mutant TDP-43 exert differential

103. Miller, J. W. et al. Recruitment of human muscleblind proteins to (CUG)(n)

104. Tripathi, V. B. & Al-Chalabi, A. Molecular insights and therapeutic targets in

105. Prokopenko, S. N., He, Y., Lu, Y. & Bellen, H. J. Mutations affecting the

106. Matus, S., Bosco, D. A. & Hetz, C. Autophagy meets fused in sarcoma-positive

107. Ho, T. H. et al. Colocalization of muscleblind with RNA foci is separable from

108. Artero, R. et al. The muscleblind gene participates in the organization of Z-

109. Begemann, G. et al. muscleblind, a gene required for photoreceptor

110. Beghi, E. et al. The heterogeneity of amyotrophic lateral sclerosis: a

111. Kanadia, R. N. et al. Reversal of RNA missplicing and myotonia after

112. Kanadia, R. N. et al. Reversal of RNA missplicing and myotonia after

113. Ho, T. H. et al. Colocalization of muscleblind with RNA foci is separable from

114. Lee, J. E. & Cooper, T. A. Pathogenic mechanisms of myotonic dystrophy.

115. Matus, S., Bosco, D. A. & Hetz, C. Autophagy meets fused in sarcoma-positive

116. Sama, R. R. et al. FUS/TLS assembles into stress granules and is a prosurvival

117. Lerou J.-P. et al. Mutant FUS proteins are recruited into stress granules in

118. Chi, B. et al. The neurodegenerative diseases ALS and SMA are linked at the

119. Crawford, T. O. & Skalsky, R. L. Jr. The relationship of SMN to amyotrophic

120. Gamez, J. et al. Survival and respiratory decline are not related to homozygous

121. Pellizzoni, L., Charroux, B. & Dreyfuss, G. Major function between the survival motor

122. Pellizzoni, L., Baccon, J., Charroux, B. & Dreyfuss, G. A functional interaction between the survival motor neuron complex and RNA polymerase II. J. Cell Biol. 152, 75–85 (2001).

123. Pellizzoni, L., Charroux, B. & Dreyfuss, G. SNM mutants of spinal muscular atrophy patients are defective in binding to snRNPs proteins. Proc. Natl Acad. Sci. USA 96, 11167–11172 (1999).

124. Pellizzoni, L., Kataoka, N., Charroux, B. & Dreyfuss, G. A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95, 615–624 (1998).

125. Reber, S. et al. Minor intron splicing is regulated by FUS and affected by ALS-

126. Rogelj, B. et al. Widespread binding of FUS along nascent RNA regulates alternative splicing in the 3‘UTR. Nat. Cell. Biol. 2, 603 (2012).

127. Jablonka, S. & Sendtner, M. Developmental regulation of SMN expression: pathophysiological implications and perspectives for therapy development in spinal muscular atrophy. Gene Ther. 24, 506–513 (2017).

128. Sanchez, G. et al. A novel function for the survival motor neuron protein as a translational regulator. Hum. Mol. Genet. 22, 668–684 (2013).

129. Fablonka, S. & Sendtner, M. Developmental regulation of SMN expression: pathophysiological implications and perspectives for therapy development in spinal muscular atrophy. J. Neuro. 247, 137–142 (2000).

130. Fallini, C. et al. The survival of motor neuron (SMN) protein interacts with the miRNA-binding protein HuD and regulates localization of poly(A) mRNA in primary motor neuron axons. J. Neurosci. 31, 3914–3925 (2011).

131. Ryder, E. et al. The Drosophel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics 167, 797–813 (2004).

132. Ryder, E. et al. The Drosophel deletion collection: a Drosophila genomewide chromosomal deficiency resource. Genetics 177, 615–629 (2007).

133. Pandey, U. B. et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859–863 (2007).

134. Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108 (2008).

135. Kayser, M. S., McClelland, A. C., Hughes, E. G. & Dalva, M. B. Intracellular pH and trans-synaptic regulation of glutamatergic synaptogenesis by EphB receptors. J. Neurosci. 26, 12152–12164 (2006).

136. Kia, A., McAvoy, K., Krishnamurthy, K., Trotti, D. & Pasinelli, P. Astrocytes expressing ALS-linked mutant TDP-43 exert motor neuron death through release of tumor necrosis factor-alpha. Gliu 66, 1016–1033 (2018).

137. Edward, R. Red/far-red fluorescence DNA-specific antiarthquinoins for nuc- clyosome segmentation and viability reporting in cell-based assays. Methods Enzymol. 505, 23–45 (2012).

Acknowledgements

We thank Dr. John Monaghan and Dr. Gavin Daigle for helpful discussion and technical help. This work was supported by the National Institutes of Health R01 (NS081303), R21 (NS094921, NS101661, NS111768, AG0649490, and NS100855), Muscular Dystrophy Association, the ALS Association, and the Robert Packard Center for ALS at Johns Hopkins to UBP. The research of M.D.R. was made possible by the support of the Nomis Foundation and the UK Dementia Research Institute. J.S. gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG) and the CRIT/TUD. J.S. work was financed by DFG Research Center (DFG FZT 111) and Cluster of Excellence (DFG EXC 168), including a seed grant. L.M. was sponsored by the Hans and Ilse Breuer Stiftung. In addition, J.S. and V.T. are supported by the European Union’s Horizon 2020 research and innovation program (643471) and the Bundesmi- nisterium für Bildung und Forschung (01ED1601B). This is an EU Joint Programme–Neurodegenerative Disease Research (IPND) project supported by the following funding organizations under the aegis of IPND — www.ipnd.eu; Germany, Bundesministerium für Bildung und Forschung; Israel, Ministry of Health; Italy, Ministero dell’Istruzione del- ’Univeristà e della Ricerca; Sweden, Swedish Research Council; and Switzerland, Swiss National Science Foundation. The research of P.P. and K.K. was supported by the National Institutes of Health, NINDS R01 (NS010456– to P.P.); Farber Family Foun- dation and Family Strong for ALS.
Author contributions
I.C., K.K., S.K., P.P., and U.B.P. conceived the project and designed experiments. I.C. performed the genetic screen, quantification of eye data, W.B.s and qPCR. S.K., N.R. and R.A.G. performed the transfection, IF, and qPCR assays in HEK293T cells. E.N.A. did the NMJ analysis and quantification. S.O. performed the nucleocytoplasmic fractionation and IPs in HEK293T cells. K.P. and L.M.G. performed the climbing assay and quantification in a blinded manner. K.K. performed the experiments in primary cortical neurons, primary motor neurons, and PC12 cells with the help of P.P. V.T., L.M., and J.S. performed the assays in iPSC-derived motor neurons. C.J.D., A.G., M.D.R. provided technical assistance with iPSC work. A.M.S. and E.Z. performed the arginine methylation assays and WB with the help of M.P., I.C., K.K., and S.K. generated figures, helped in interpreting the data. I.C., K.K., U.B.P. wrote first draft the manuscript, and P.S., S.K., N.R., and E.N.A. revised and edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-019-13383-z.

Correspondence and requests for materials should be addressed to U.B.P.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019