Primary Central Nervous System Lymphoma: Molecular Pathogenesis and Advances in Treatment

Qingqing Cai*, 2, Yu Fang*, 2 and Ken H. Young†, 2

*Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R China; †Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Abstract
Primary central nervous system lymphoma (PCNSL) is a group of extranodal non-Hodgkin lymphoma that exhibits specific biological characteristics and clinical behavior, with an aggressive disease course and unsatisfactory patient outcomes. It is of great importance to identify aberrant genetic loci and important molecular pathways that might suggest potential targets for new therapeutics and provide prognostic information. In this review, we listed various genetic and epigenetic alterations that are involved in PCNSL pathogenesis. In the aspect of treatment, we summarized the related literatures and evaluated the efficacy of surgery, induction chemotherapy, radiotherapy, intrathecal chemotherapy, and autologous stem cell transplantation in PCNSL. We also proposed the possible new agents for recurrent and relapse PCNSL based on the result of recent clinical researches.

Translational Oncology (2019)12, 523–538

Introduction
Primary central nervous system lymphoma (PCNSL) represents a rare form of extranodal, malignant non-Hodgkin lymphoma. It is an aggressive type of cancer confined to the craniospinal axis without evidence of systemic involvement (brain>eyes>leptomeninges>spinal cord), with more than 90% of cases histologically classified as diffuse large B-cell lymphoma (DLBCL) [1].

While, clearly, high-dose methotrexate (HD-MTX) alone with additional agents is the mainstay of first-line therapy, it is often inadequate to achieve a complete response and requires treatment consolidation. The most challenging conundrum is which consolidation therapy has the optimal therapeutic index for balancing lasting cure with minimal early mortality and long-term neurotoxicity risk. The typical options for consolidation seem to be dose-reduced whole-brain radiotherapy (dr-WBRT) and high-dose chemotherapy with autologous stem cell transplantation (HDC-ASCT). Consolidation with dr-WBRT is simple to deliver and now has an adequate long-term record of efficacy and safety. The latter may be suitable for younger patients with adequate performance status. However, treatment outcomes are still unsatisfactory for patients with relapsed/refractory PCNSL, and further clinical trial data are needed to guide the therapeutic management for this group of patients.

Epidemiology
PCNSL accounts for 4%-6% of all extranodal lymphomas, up to 1% of all lymphomas, and about 2% of all central nervous system tumors [2]. Although the incidence of PCNSL increased by three-fold from 1973 to 1984, recent data from the Surveillance, Epidemiology, and End Results (SEER) database demonstrates that an incidence plateau has been reached [3]. The median age at diagnosis is 65 years old. PCNSL has been observed to occur with increased frequencies in individuals with acquired immunodeficiencies [acquired immune deficiency syndrome (AIDS) or posttransplant conditions] and/or congenital immunodeficiencies (X-linked lymphoproliferative syndrome, Wiskott-Aldrich syndrome, or ataxia telangiectasia) [4]. PCNSL is one of the most common AIDS-related malignancies in individuals with low CD4 cell counts (<50 cells/mL) and Epstein-Barr virus (EBV) infection [5,6]. However, since the discovery and...
implementation of combined antiretroviral therapy (the highly active antiretroviral therapy, HAART), a decreasing incidence of PCNSL has been reported among AIDS patients [7]. By contrast, epidemiological data have shown a progressively increasing PCNSL incidence among elderly individuals [8].

Molecular Pathogenesis

Pathology and Histogenetic Origin

PCNSL represents a histologically and immunohistochemically homogeneous type of lymphoma. Typical histological features include a vasocentric growth pattern and high lymphocyte proliferation, explaining its diffuse infiltration in the central nervous system (CNS). DLBCLs account for most PCNSLs (>90%), and the remainder comprise of Burkitt’s lymphomas, low-grade lymphomas, or T-cell lymphomas (peripheral T-cell lymphomas and anaplastic large T-cell lymphomas) [1,5]. EBV early RNA transcripts are often detectable by *in situ* hybridization in immunocompromised patients.

The B cell differentiation process may provide clues to the understanding of the histogenetic origins of PCNSL. The first step is the assembly of the V, D, and J gene segments of the heavy and light chains of immunoglobulin (Ig) genes in the bone marrow [9,10]. Upon successful gene segment assembly, naïve B cells leave the bone marrow and start their next maturation step, where they encounter antigens in the germinal centers (GCs) of secondary lymphoid organs, such as the spleen and lymph nodes, to improve the binding affinity of their B cell receptors (BCRs). The process of somatic hypermutation (SHM) in the first 1.5-2.0 kb of the V region genes of BCR heavy and light chains is activated in the GCs [11]. The processes of SHM and affinity maturation require the presence of the specific antigens, antigen-presenting cells and T cells, and BCL6 [12]. The SHM process may either increase or decrease the affinity of BCR and results in the selection of B cell clones for further rounds of SHM and, finally, to either go through apoptosis or exit the GCs [13]. After SHM, B cells can undergo Ig class switch recombination, which replaces the μ constant region of the BCR with other constant regions located downstream to generate diverse antibodies. Differentiation into memory or plasma cells completes B cell’s differentiation [14] (Figure 1).

PCNSL cells morphologically resemble centroblasts, and the introduction of SHMs into rearranged Ig segments proves that they have participated in a GC reaction [15]. Expression of B cell markers, including CD19, CD20, and CD79a, is detectable in almost all PCNSLs. CD10 is present in 10%-20% of PCNSLs, and plasma cell markers (CD38, CD138) are generally absent. BCL6 and BCL2 are expressed in 60%-80% and 56%-93% of PCNSLs, respectively [16]. BCL6 is the main regulator of the GC reaction and represses the exit of B cells from GCs [17,18]. The strong IRF4/MUM1 expression is observed in about 90% of PCNSLs, which indicates that the tumor cells are transitioning to leave the GC. The IRF4/MUM1 expression is usually associated with memory B cells rather than GC-B cells. This CD10⁻BCL6⁺IRF4/MUM1⁺ phenotype indicates that further B cell maturation is impaired, which corresponds to the late germinal center B cell phenotype [6] and correlates with a poor prognosis [14] (Figure 1).

It is still unclear whether PCNSL truly originates within the CNS or whether it is part of a systemic lymphoma that escapes from the
immune system and grows in the “sanctuary” of the CNS. B cells recruited to the brain in the case of an immune reaction may stay for extended periods and eventually transform while residing inside the CNS. On the other hand, B cells might also have transformed to a malignant state outside the CNS, i.e., during a GC reaction in a secondary lymphoid organ. It is assumed that each of these two mechanisms is probable. However, homing of a malignant B cell exclusively to the brain is hard to explain and difficult to confirm experimentally. To date, no cell adhesion molecule or a chemokine predicting B cell homing selectively to the brain has been identified in the development of PCNSL [14].

Genomic alterations

As all steps of B cell differentiation, especially SHM, require DNA double-strand breaks, the failure of DNA double-strand breaks may lead to the formation of malignant cells. PCNSL cells often carry translocations affecting Ig and Ig-related genes, especially Bcl6 [18]. A substitution in the promoter of the Bcl6 gene results in constitutive BCL6 activity, which can have tumorigenic effects. The Cancer and Leukemia Group B (CALGB) 50202 trial demonstrated that BCL6 overexpression is associated with poorer survival and refractory PCNSL condition [19]. While some other studies have confirmed this finding [20,21], several small retrospective analyses have provided conflicting results [22–24]. Variation in treatment regimens, sample sizes, and analytical procedures may explain this discrepancy. Aberrant SHM (aSHM) can target proto-oncogenes including Myc, Pim1, Pax5, and Rhoh/Tff; these genes are often involved in the modulation of B cell activity, proliferation, and apoptosis (Figure 1). Other recurrent targets of aSHM include genes coding for TBL1XR1, TRDM1, BTG2, and PRDM1 [25,26].

Next-generation sequencing (NGS) analyses have shown that over 80% of nonconservative mutations are introduced at loci encoding eight proteins (ATM, TP53, PTEN, PIK3CA, JAK3, CTNNB1, PTPN11, and KRAS) [27]. Mutations in genes encoding PTEN and SMO may correlate with poorer survival and earlier relapse, and mutations in genes encoding TP53 and ATM could be involved in the molecular pathophysiology of PCNSL. Nonsynonymous somatic mutations in im1, Btg2, and MYD88 have also been detected at high frequency by whole-exome sequencing in PCNSL samples, which are in agreement with previous studies [28] (Figure 2).

Insertions and deletions of genetic material are also very common in PCNSL. The most frequent genomic alteration in PCNSL involves the deletion of a region of chromosome 6p21 harboring the HLA locus [29]; this lesion occurs in immune-privileged sites and potentially represents a DLBCL immune escape mechanism. Chromosome 6q deletions occur frequently in PCNSL, in particular, deletions at the 6q21-23 region [30] containing: i) PTPRK, a protein tyrosine phosphatase involving in cell adhesion signaling; ii) PRDM1, a suppressor of tumor activity and regulator of B cell differentiation; and iii) A20 (TNFAIP3), which downregulates nuclear factor-kB (NF-kB) signaling. Recurrent chromosomal losses have also been detected at the 9p21 region [30], which encodes loci involved in cell cycle regulation including CDKN2A. Chromosome 12 insertions are very common, especially in the 12q region harboring genes encoding STAT6, MDM2, CD4, and GLI1.
Recurrent insertions also occur on the long arms of chromosomes 1, 7, and 18 [31] (Figure 2). Copy number alterations and translocations at chromosome 9p24, involving the genes coding for programmed death-ligand1 (PD-L1) and programmed death-ligand2 (PD-L2), appear to be frequent in PCNSL. This finding suggests that immune escape may be important in the PCNSL pathophysiology [32] (Figure 3).

Molecular investigations have uncovered evidence suggesting that the Janus kinase (JAK)/STAT signaling pathway mediates the PCNSL biology. Transcript and protein levels of interleukin (IL)-4 and IL-10, which are mediators of the JAK/STAT intracellular signaling pathway and B cell proliferation, are upregulated in the microenvironment of tumor vessels, which are correlated with tumor response and progression [33–35] (Figure 3). Importantly, the upregulation of IL-4 and IL-10 and downstream JAK/STAT signaling correlate with aberrant activation of MYD88, which is involved in the Toll-like receptor (TLR) signaling pathway [36]. Elevated concentrations of intratumoral JAK1 transcripts have also been identified in PCNSL [23,33,37] (Figure 4). The BCR and TLR signaling pathways, along with their target NF-κB, are influenced by common mutations introduced by aSHM, especially in genes encoding MYD88 and CD79B. NF-κB signaling may be the core pathway involved in the regulation of PCNSL [25,32,38–40]. An L265P substitution in MYD88 occurs in 38%-50% of PCNSL patients, and CD79B is mutated in approximately 20% of patients [23,29,41]. MYD88 encodes a signaling adaptor protein that induces activation of NF-κB and the JAK/STAT3 pathway after stimulation of Toll-like receptors, interferon-β production, and IL-1/IL-18 receptors. The CD79B gene encodes a BCR subunit that is essential for BCR signaling, resulting in NF-κB activation. The BCR pathway transmits its signals to the CBM signalosome complex composed of BCL10, CARD11, and MALT1. Less frequent mutations and overexpression of MALT1 [42] and CARD11 [43] have also been demonstrated in PCNSL (Figure 4).

Epigenetic Alterations in PCNSL

Epigenetic silencing by DNA methylation also contributes to PCNSL pathogenesis. DNA hypermethylation was observed in several loci including CDKN2A, DAPK, p14ARF, p16INK4a, RFC, and MGMT [44,45]. Using array-based DNA methylation profiling, 194 differentially methylated genes have been identified comparing PCNSL to control patients; a significantly enriched CpG content was detected in these differentially methylated genes. However, no differences between the methylation patterns of PCNSL and systemic DLBCL patients was identified [46]. The presence of methylated MGMT promoter sequences was demonstrated to correlate with a better overall survival (OS) among patients who received high-dose
chemotherapy. Also, elderly PCNSL and patients with recurrent PCNSL bearing a methylated MGMT promoter have been shown to have a superior response to temozolomide [47–49] (Figure 2).

As in other malignancies, microRNA may also play an important role in the PCNSL pathogenesis. MiR-17-5p, which targets the proapoptotic gene E2F1, was shown to be significantly upregulated in nine PCNSL patients as compared to nodal DLBCL patients [50]. Upregulation of miRNAs associated with overexpression by inflammatory cytokines (miR-155), inhibition of terminal B cell differentiation (miR-30b/c, miR-9), or the MYC pathway (miR-92, miR-17-5p, miR-20a) has also been demonstrated [51]. Notably, the results by Robertus et al. were contradictory, in which they reported that miR-155 showed the lowest expression level compared with other miRNAs involved in PCNSL [50]. Analysis of cerebrospinal fluid (CSF) from PCNSL patients showed that miR-19, miR-21, and miR-92 were expressed at significantly higher levels compared to controls with inflammatory CNS disorders, suggesting the usefulness of these miRNAs as clinical biomarkers [52]. In a study of PCNSL miRNA associated with short- and long-term survival, 12 annotated miRNAs were detected to be significantly dysregulated between the short- and long-term survival groups. Among these miRNAs, miR-151a-5p and miR-151b showed the most significant differences in expression [53] (Figure 5).

Tumor microenvironment

The mechanisms of intracerebral tropism and dissemination of lymphoma cells are important in PCNSL pathogenesis. These mechanisms might be related to the expression of chemokines CXCL12 (SDF-1) and CXCL-13 (Figure 3). The impact of IL-10 and CXCL-13 concentration in the diagnosis of CNS lymphoma has been demonstrated [35,54]. High CXCL-13 and IL-10 levels in CSF also correlate with adverse prognosis in PCNSL patients [55,56].

Under normal physiological conditions, the brain is immunologically quiescent, while some PCNSL specimens show evidence of inflammatory responses, with activated macrophage and reactive T cell infiltration (Figure 3). In the perivascular space of CNS, T cells residing in the perivascular space may interact with perivascular antigen-presenting macrophages. The subsequent invasion of the CNS parenchyma requires the stimulation of antigen. If the antigen is absent, T cells may remain confined to the perivascular space [57]. Activated perivascular CD8 T cell infiltration may correlate with favorable outcomes, suggesting the potential efficacy of immunotherapy in enhancing T cell-mediated immunosurveillance [58]. Inflammatory activation may precede or accompany PCNSL. These “sentinel” inflammatory lesions may represent the first immune responses generated against PCNSL. Therefore, demyelination or neuroinflammation should be considered as radiographic features for some PCNSL cases [59].

Clinical Features

Patients of PCNSL develop neurologic symptoms over weeks including focal neurologic deficits (70%), neuropsychiatric symptoms (43%), symptoms of increased intracranial pressure (33%), and seizures (14%). Clinical presentation is determined by the
neuroanatomical location of the lymphoma [60]. Leptomeningeal involvement occurs in 11%-20% of PCNSL cases, usually without any clinical manifestations. Intraocular involvement occurs in 15%-25% of PCNSL patients, often with insidious onset and delayed diagnosis. Ocular symptoms are represented by floaters, blurred vision, eye pain, and photophobia due to the involvement of the retina and/or vitreous [61]. Systemic B symptoms are uncommon in PCNSL.

Diagnostic Procedure and Prognostic Factors

Imaging

Radiologic evaluation is crucial to define the location and extension of the disease. Cranial magnetic resonance imaging (MRI) using fluid-attenuated inversion recovery (FLAIR) and T1-weighted sequences before and after contrast injection are the preferred methods [62]. Advanced imaging techniques, including diffusion-weighted imaging (DWI), perfusion and permeability imaging, magnetic resonance spectroscopy (MRS), susceptibility-weighted imaging (SWI), are helpful for differential diagnosis and to increase the diagnostic accuracy [63]. Positron emission tomography–computed tomography (PET/CT) is also a useful tool but in the assessment of accompanying systemic disease [64].

Histopathology

The gold standard diagnosis is stereotactic brain biopsy or a subtotal resection if deemed to be safe. Steroid pretreatment should be avoided before biopsy [62] since it may alter the sensitivity of histopathological diagnosis. For patients with corticosteroids pretreatment, in case of inconclusive biopsy or disease remission, a second biopsy is recommended when serial MRIs indicate evident tumor progression. Flow cytologic analysis of CSF lymphoma cells in patients with leptomeningeal involvement and vitrectomy in patients with intraocular involvement might be helpful to establish the diagnosis. Bivariate elevated CXCL13 plus IL-10 is demonstrated to be highly specific for the diagnosis of CNS lymphoma [35].

Extent-of-Disease Evaluation

Staging evaluation aims to rule out systemic lymphoma and eye involvement. A comprehensive physical, neurological, and cognitive evaluation should be conducted in all newly diagnosed PCNSL patients. Laboratory evaluation includes renal and hepatic function in patients who will receive HD-MTX, HIV, hepatitis B and C, and lactate dehydrogenase (LDH) testing. Computed tomography (CT) scan of the chest, abdomen, and pelvis, as well as testicular ultrasound in elderly males, is also essential. Whole-body fluoroexoxyglucose PET may be an optimal choice. Lumbar puncture for CSF cytology and bone marrow biopsy should be performed for systemic staging. Ophthalmologic evaluation with a fundoscopy and a slit lamp examination in all patients (even without ocular symptoms) is also recommended [62,65].

Prognostic Factors

Several clinical factors may influence the survival of PCNSL patients. Age and performance status have been consistently acknowledged as the baseline prognostic variables [66]. Two scoring systems have been established to stratify PCNSL patients into several risk groups to predict prognosis [67,68] (Table 1.). A complete response on neuroimaging after two courses of chemotherapy has also been found to be predictive for improved OS and progression-free survival (PFS) [69].
Treatment Advances

Surgery

Surgery is considered to have no role in PCNSL treatment, and its use is limited to stereotactic biopsy for histopathologic diagnosis. PCNSL has a multifocal and infiltrating nature and tends to extend beyond visible margins, contributing to the poor efficacy of surgical interventions [70]. The high radiosensitivity and chemosensitivity of PCNSL, as well as the high risk of surgical complications in PCNSL patients, have resulted in the limited application of surgical resection. However, this clinical consensus is based on small retrospective analyses, which have shown that surgical treatment alone has no survival advantage compared with supportive care [71] and postoperative radiotherapy or chemotherapy [72,73]. The phase 3 trial of the German Primary CNS lymphoma study group-1 (G-PCNSL-SG-1) [74] which enrolled a high proportion of postoperative PCNSL patients has demonstrated that the OS and PFS were significantly improved in patients with subtotal or gross total resection compared with patients who received biopsies, which were independent of performance status and age. Since patients who had a biopsy more often had multiple deeply seated CNS lesions than resected patients, this difference may contribute to the unfavorable outcome in biopsied patients. When adjusted based on the number of lesions (site of the lesions was not analyzed in the study), the survival benefit remained significant for PFS but not for OS. Anyway, surgical resection may be crucial in patients suffering from large occupying lesions and symptoms of brain herniation [75]. In conclusion, there is insufficient clinical evidence to advise surgical resection in PCNSL patients.

Systemic Chemotherapy

High-dose methotrexate–based regimen is the first-line induction therapy for newly diagnosed PCNSL. The most effective dose of HD-MTX has not been established. A dose range of 1-8 g/m² is sufficient
to cross the blood-brain barrier (BBB), and evidence of a dose-response association is unclear [76,77]. Doses of HD-MTX ≥ 3.5 g/m² administered by rapid intravenous infusion (within 2-3 hours) are thought to have cytotoxic levels in the CSF [78]. A minimum of four to six injections at an interval of 14-21 days is delivered in most induction protocols, especially in the absence of subsequent consolidation treatment. Patients achieving only partial response (PR) after four or five courses of HD-MTX are recommended to receive additional courses of chemotherapy [79]. Infusion of HD-MTX requires pretreatment and posttreatment hyperhydration, urine alkalinization, leucovorin rescue, and serum methotrexate level monitoring. Significant variations in MTX metabolism exist among PCNSL patients. However, the individualized dosing schedule for HD-MTX based on pharmacokinetic analysis instead of body surface area is not well established in the current clinical practice, only in a few clinical trials [80].

Rituximab has been shown to effectively improve clinical outcomes in systemic lymphoma, which is suggestive of its potential efficacy in PCNSL (Figure 6). Single-arm trials have reported encouraging survival outcomes achieved with rituximab at doses of 375-500 mg/m² as induction or salvage chemotherapy [79,81–87]. Results from the recent International Extranodal Lymphoma Study Group (IELSG) 32 trial [88] have shown that patients treated with HD-MTX in combination with cytarabine and rituximab had a complete remission (CR) rate of 30% compared with 23% for those not receiving rituximab. The efficacy of single-agent rituximab has also been reported in refractory and relapsed PCNSL patients [89]. However, encouraging outcomes were not observed in a recent randomized phase III trial (HOVON 105 PCNSL/ALLG NHL24 trial) [90], and despite such, the routine use of rituximab has been incorporated in initial treatment regimens for PCNSL in most centers. Several ongoing clinical trials are evaluating the effectiveness of other CD20 antibodies such as obinutuzumab in PCNSL (NCT02498951) (Table 5).

Currently, the combination of HD-MTX with other chemotherapeutic agents has been shown to improve therapeutic responses as compared to the use of HD-MTX alone (Table 2). Chemotherapeutic agents used in combination with HD-MTX should be active drugs known to cross the blood-brain barrier, such as high-dose cytarabine, ifosfamide, vincristine, procarbazine, temozolomide, and thiopeta. Combination regimens currently used are R-MT, R-MPV, and MATRix.

The IELSG20 trial evaluated the role of HD-MTX combined with cytarabine [91]. This study demonstrated a better CR rate and improvements in PFS but not OS in PCNSL patients receiving combination chemotherapy. Although the study consisted of a relatively small population (79 patients in two groups), it was the first randomized trial of combination chemotherapy in PCNSL. The IELSG32 trial [88] recruited a larger control group (75 patients) who received the HD-MTX and cytarabine combination regimen. However, this control group showed lower response rates than patients in the IELSG20 trial. This finding may be related to the differences in patient populations. In fact, unfavorable prognostic features were more common among patients enrolled in the IELSG32 trial. The addition of ifosfamide to HD-MTX was evaluated in the G-PCNSL-SG-1 phase 3 trial, which demonstrated an improvement of response rate, but not PFS and OS [92].

The CALGB 50202 multicenter study used induction therapy with rituximab, HD-MTX, and temozolomide (R-MT) followed by high-dose consolidation with etoposide plus cytarabine (EA) without WBRT. A CR to R-MT of 66% and PFS at 2 years of 57% were observed [93]. Similarly, the Radiation Therapy Oncology Group (RTOG) 0227 trial employed the R-MT regimen followed by WBRT consolidation. Only 66% of patients were assessable for radiographic response. The CR rate was 51% and PR rate was 34%, with a median PFS of 90 months [93].

Several single-arm phase 2 trials have evaluated the combination of methotrexate, alkylating agents, and rituximab [79,94]. The efficacy of rituximab, methotrexate, procarbazine, and vincristine (R-MPV) followed by dose-reduced WBRT was investigated in 52 newly diagnosed PCNSL patients, for which a CR rate of 47% and a PR rate of 49% were observed [79]. The R-MPV regimen followed by consolidative ASCT was assessed in 33 patients in another phase 2 trial, in which 42% of the patients achieved CR and 48% achieved PR after the R-MPV induction chemotherapy [94]. The efficacy of MT and MPV combination was compared in an elderly population in a multicenter phase 2 trial, and the result favored the MVP regimen [95]. Future randomized trials are expected to evaluate the therapeutic difference between R-MT and R-MPV regimens.

The IELSG32 phase 2 trial assessed the combination of methotrexate, cytarabine, thiopeta, and rituximab (MATRix) in 78 PCNSL patients. At a median follow-up of 30 months, patients treated with the MATRix regimen had significantly higher CR rate (49%) as compared to a CR of 23% and 30% in those treated with
methotrexate-cytarabine alone and methotrexate-cytarabine plus rituximab, respectively. This new combination has also shown significant improvement in the PFS and OS of these patients. This MATRix regimen proved to be a new standard chemoimmuno-therapy for patients aged up to 70 years with newly diagnosed PCNSL [88].

The BBB disruption by intra-arterial infusion of hypertonic mannitol followed by intra-arterial methotrexate has been identified to increase the drug concentrations in the CNS [96–98]. This procedure demonstrated a good safety profile and neurocognitive tolerance in newly diagnosed PCNSL. Active drugs for lymphoma with a poor BBB infiltration should be evaluated with this procedure in PCNSL. Notably, patients should be carefully selected for this approach since safety depends on the extent of intracranial mass effect and contraindications, to general anesthesia should be ruled out. We suggest that only teams highly trained in BBB disruption could provide this procedure as it requires cannulation of the intracranial vessels.

Intrathecal Chemotherapy

The clinical role of intrathecal chemotherapy in PCNSL is still under debate. Several single-arm studies using identical HD-MTX in combination with cytarabine regimens have reported an additional benefit of intrathecal therapy (1-year PFS of 40% and median OS of 14.3 months) and a higher risk of early relapse without intrathecal therapy [99,100]. The addition of rituximab to HD-MTX regimens with intraventricular administration also showed encouraging treatment efficacy [82]. However, encouraging outcomes have not been replicated in other studies [101,102]. The efficacy and neurotoxicity of such treatments remain unclear. In conclusion, there is a lack of strong evidence supporting the routine use of intrathecal chemotherapy in PCNSL.

Radiotherapy

Radiotherapy alone as a first-line treatment for PCNSL was investigated in a phase 2 trial by the RTOG 8315 [103]; it was found that patients receiving radiotherapy had a poor survival and tumor relapse occurred in areas receiving the highest doses of radiation.

The G-PCNSL-SG-1 phase 3 trial [92] further assessed the role of radiotherapy combined with chemotherapy. In this trial, 318 patients were randomly allocated to receive HD-MTX–based chemotherapy with or without WBRT. No significant benefit in median OS or PFS was observed in patients receiving WBRT. Moreover, neuropsychological evaluation showed inferior cognitive function and quality of life after combination therapy [104]. Therefore, it may be supposed that WBRT has no role in patients achieving CR after induction chemotherapy. However, contradictory results were demonstrated in other studies [105,106]. Retrospective analyses [105] have shown improved PFS but no OS benefit in patients receiving WBRT in addition to chemotherapy. A systematic review [106] has also suggested that consolidation WBRT confers significantly prolonged survival in younger patient (<60 years).

Given the neurotoxicity of WBRT, dr-WBRT combined with immune chemotherapy has been taken under consideration. Morris et al. reported encouraging disease control in 31 patients given dr-WBRT (23.4 Gy) as consolidation therapy following a regimen of R-MPV (rituximab, methotrexate, procarbazine, and vincristine); these patients achieved CRs, with a 2-year PFS rate of 77%, a 3-year OS of 87%, and PFS of 7.7 years [79]. Comprehensive neuropsychiatric tests have also demonstrated improvement in verbal memory and baseline executive function with no evidence of a significant cognitive decline in 12 patients. However, this promising result represents a small and single-institution experience, and PCNSL relapse and late neurotoxicity effects can occur many years after treatment. Thus, longer follow-up is necessary to clarify long-term oncologic outcomes.

The significance of consolidation therapy in patients who achieved CR with HD-MTX–based induction chemotherapy is currently controversial in PCNSL. Generally, nearly half of these patients will relapse [113], and from this perspective, subsequent consolidation is
crucial. However, there are neither conclusive data showing whether there is an overall benefit from additional consolidation nor clear data demonstrating how much additional therapy is needed for those patients who already achieved CR. Thus, in clinical practice, the benefit and risk of each of the consolidation regimens (conventional chemotherapy, radiotherapy, HDC-ASCT, or their combinations) should be balanced as per individual cases. Prognostic models should be developed through multicenter collaborations and help in deciding the optimal therapeutic schedule.

The significantly high 5-year OS reported with the HDC-ASCT consolidation suggests that PCNSL patients could potentially be cured. However, these data were obtained from either clinical trials comprising of small cohort of patients or retrospective studies. Moreover, the improvement of survival depends on both the optimal induction and consolidation treatment. The combination of the new standard induction regimen (MATRix) with consolidation HDC-ASCT has not been investigated. In an ongoing randomized phase 3 trial conducted by the IELSG group (NCT02531841) (Table 5), newly diagnosed PCNSL patients are prescribed the MATRix regimen for induction, and those achieving partial or complete response are randomly assigned to receive high-dose chemotherapy with BCNU (or busulfan) and thiotepa followed by autologous stem cell transplantation (HDC-ASCT), or conventional chemotherapy for consolidation. These combination approaches could be promising and may improve the long-term survival of PCNSL patients.

Salvage Treatment

Although the response rates to multimodality treatments are high, nearly half of the responders will relapse, and about one-third of the patients with PCNSL are primary refractory [62,114]. The median time to relapse is 10-18 months, and relapse occurs within 2 years after initial diagnosis in most CR patients [114]. Moreover, relapse may also be observed in some patients even after more than 5 years following treatment [115,116]. The prognosis of primary refractory or relapsed PCNSL remains poor, with a median survival of 2 months without additional treatment [117].

Salvage treatment is dependent on age, performance status, site of relapse within the CNS, previous treatments, and duration of response (Table 4). Currently, no consensus on treatment for relapsed and refractory PCNSL has been established. Retreatment with HD-MTX–
Single-agent pemetrexed has also shown therapeutic activity in recurrent and relapsed PCNSL, with an OR rate of 55.0%-71.4% and median PFS of 5.8 months observed in prospective and retrospective studies [127–129]. In a retrospective study assessing the effects of a combination regimen of procarbazine, vincristine, and CCNU (lomustine), an OR rate of 86% was reported [130]. The utility of single-agent temsirolimus as salvage treatment has been reported in a recent phase 2 study (NCT00942747), with an OR rate of 54% and median PFS of 2.1 months in 37 patients. However, responses were usually short-lived [131]. The role of an ifosfamide-etoposide combination as a second-line salvage treatment has also been studied, together with rituximab (R-IE) or cytarabine (VIA). In patients receiving the R-IE regimen, an OR rate of 41% was reported, and 8 of 22 patients did not experience relapse during the median 24-month follow-up [132]. In patients receiving the VIA regimen, a CR rate of 37% and a 12-month OS of 41% were observed [133].

The Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib has shown efficacy in PCNSL with mutations altering the BCR subunit CD79B and MYD88. In one trial, 86% of patients achieved CR with dose-adjusted activity in recurrent and relapsed PCNSL, with an OR rate of 55.0%-71.4% and median PFS of 5.8 months observed in prospective and retrospective studies [127–129]. In a retrospective study assessing the effects of a combination regimen of procarbazine, vincristine, and CCNU (lomustine), an OR rate of 86% was reported [130]. The utility of single-agent temsirolimus as salvage treatment has been reported in a recent phase 2 study (NCT00942747), with an OR rate of 54% and median PFS of 2.1 months in 37 patients. However, responses were usually short-lived [131]. The role of an ifosfamide-etoposide combination as a second-line salvage treatment has also been studied, together with rituximab (R-IE) or cytarabine (VIA). In patients receiving the R-IE regimen, an OR rate of 41% was reported, and 8 of 22 patients did not experience relapse during the median 24-month follow-up [132]. In patients receiving the VIA regimen, a CR rate of 37% and a 12-month OS of 41% were observed [133].
temozolomide, etoposide, doxil, dexamethasone, ibritinib, and rituximab (DA-TEDDi-R) [134]. The efficacy of single-agent ibritinib in refractory and recurrent PCNSL is also being studied. Recent results from a trial investigating single-agent ibritinib showed an OR rate of 68% and median PFS of 4.6 months in 25 patients [135] (Figure 6).

The efficacy of immunotherapy for salvage therapy of PCNSL is also being considered. Pomalidomide has shown some therapeutic activity with an OR rate of 43% in 21 patients. Several ongoing clinical trials are evaluating the effectiveness of lenalidomide as salvage treatment (NCT01956695 and NCT01542918). The result from one of these trials (NCT01542918) has demonstrated that lenalidomide is effective in relapsed CNS DLBCL and that maintenance lenalidomide significantly prolongs time to progression after salvage therapy and delays WBRT (Figure 6). The activity of PD-1 blockade has been demonstrated in other lymphomas with 9p24.1 alteration. Nayak et al. recently reported a retrospective study of salvage therapy with nivolumab. Clinical and radiographic responses to PD-1 blockade were observed in all five patients studied, and three patients remained progression-free after >13-17 months [136] (Figure 7). Several ongoing clinical trials are evaluating the efficacy of other PD-1 antibodies such as pembrolizumab (NCT02498951 and NCT02779101).

Histone deacetylase inhibitors (HDAC inhibitors) have recently been investigated as possible cancer therapies and have shown promising outcomes in several types of tumors. Durable clinical remission using romidepsin has been achieved in a refractory peripheral T-cell lymphoma case with CNS involvement [137]. Patients with cerebral metastasis of non-small-cell lung cancer were given chidamide combined with paclitaxel and carboplatin, and complete disappearance of the metastatic tumor after chemotherapy was observed [138]. This evidence suggests the potential efficacy of HDAC inhibitors in CNS tumors.

As there are still a few remaining long-term survivors and the toxicity of multiple courses of systemic therapy and WBRT is high, there is still ample interest in evaluating the efficacy of other agents targeting the various molecules involved in PCNSL pathogenesis.

Conclusion

Improvements in our understanding of PCNSL genomics, optimal drug dosing, sequence and timing of therapies, and patient care strategies over recent years will continue to influence the management of PCNSL. Biological studies will refine our knowledge of PCNSL pathogenesis and provide potential biomarkers for diagnosis, prognosis, or treatment with novel agents. Prospective randomized clinical trials will offer further evidence for clinicians to establish optimal doses or combinations of induction chemotherapy and consolidation strategies. Results of ongoing and future trials incorporating immunological agents currently under investigation in systemic lymphomas will continue to change the disease landscape and treatment options for patients with PCNSL.

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81672686), Natural Science Foundation of Guangdong Province, China (2015A030313020), and Sister Institution Network Fund of the MD Anderson Cancer Center. We thank Liwen Bianji, Edanz Editing China, for editing the English text of a draft of this manuscript.

References

[1] Gronnes C and DeAngelis LM (2017). Primary CNS Lymphoma. J Clin Oncol 35, 2410–2418.
[2] D.M. Kluin PM and Ferry JA (2008). Primary diffuse large B-cell lymphoma of the CNS. In: Swerdlow SH, Campo E, Harris NL, editors. World Health Organization classification of tumours pathology and genetics of tumours of the haematopoietic and lymphoid tissues. Lyon: IARC Press; 2008. p. 240–241.
[3] O’Neill BP, Decker PA, Tieu C, and Cerhan JR (2013). The changing incidence of primary central nervous system lymphoma is driven primarily by the changing incidence in young and middle-aged men and differs from trends in systemic diffuse large B-cell non-Hodgkin’s lymphoma. Am J Hematol 88, 997–1000.
[4] Eredag N, Bhorade RM, Alberico RA, Yousuf N, and Patel MR (2001). Primary lymphoma of the central nervous system: typical and atypical CT and MR imaging appearances. AJR Am J Roentgenol 176, 1319–1326.
[5] Camilleri-Broet S, Martin A, Moreau A, Angorin R, Henin D, Ontier MF, Rousses MC, Caudet-Maugendre S, Cuilliere P, and Lefrançq T, et al. (1998). Primary central nervous system lymphomas in 72 immunocompetent patients: pathologic findings and clinical correlations. Groupe Ouest Est d’étude des Leucenies et Autres Maladies du Sang (GOELAMS). Am J Clin Pathol 110, 607–612.
[6] Camilleri-Broet S, Criniere E, Broet P, Delvail V, Mohktari K, Moreau A, Kujas M, Raphael M, Irapa W, and Sautes-Fridman C, et al. (2006). A uniform activated B-cell-like immunophenotype might explain the poor prognosis of primary central nervous system lymphoma: analysis of 83 cases. Blood 107, 190–196.
[7] Haldorsen IS, Espeland A, and Larsson EM (2011). Central nervous system lymphoma: characteristic findings on traditional and advanced imaging. AJNR Am J Neuroradiol 32, 984–992.
[8] Villano JL, Koshiy M, Shakh H, Doleck TA, and McCarthy BJ (2011). Age, gender, and racial differences in incidence and survival in primary CNS lymphoma. Br J Cancer 105, 1414–1418.
[9] Schiølss MS (2003). Regulating antigen-receptor gene assembly. Nat Rev Immunol 3, 890–899.
[10] Jung D, Giallourakis C, Mostoslavsky R, and Alt FW (2006). Mechanism and function of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol 24, 541–570.
[11] Odendag VH and Schatz DG (2006). Targeting of somatic hypermutation. Nat Rev Immunol 6, 573–583.
[12] Kurosaki T, Shinohara H, and Baba Y (2010). B cell signaling and fate decision. Annu Rev Immunol 28, 21–55.
[13] McHeyzer-Williams MG, McLean MJ, Nossal GJ, and Lalor PA (1992). The dynamics of T cell–dependent B cell responses in vivo. Immuno Cell Biol 20(7 Pt 2), 119–127.
[14] Deckert M, Montesinos-Rongen M, Brunn A, and Siebert R (2014). Systems biology of primary CNS lymphoma: from genetic aberrations to modeling in mice. Acta Neuropathol 127, 175–188.
[15] Montesinos-Rongen M, Van Roost D, Schaller C, Wiestler OD, and Deckert M (2008). Primary diffuse large B-cell lymphomas of the central nervous system are targeted by aberrant somatic hypermutation. Blood 103, 1869–1875.
[16] Montesinos-Rongen M, Brunn A, Bentink S, Basso K, Lim WK, Klapper W, Schaller C, Reifenberger G, Rubenstein J, and Wiestler OD, et al. (2008). Gene expression profiling suggests primary central nervous system lymphomas to be derived from a late germinal center B cell. Leukemia 22, 400–405.
[17] Basso K and Dalla-Favera R (2010). BCL6: master regulator of the germinal center reaction and key oncogene in B cell lymphomagenesis. Adv Immunol 105, 193–210.
[18] Basso K and Dalla-Favera R (2012). Roles of BCL6 in normal and transformed B cells. Immun Rev 247, 172–183.
[19] Rubenstein JL, Hsu ED, Johnson JL, Jung SH, Nakashima MO, Grant B, Cheson BD, and Kaplan LD (2013). Intensive chemotherapy and immunotherapy in patients with newly diagnosed primary CNS lymphoma: CALGB 50202 (Alliance 50202). J Clin Oncol 31, 3061–3068.
[20] Levy O, DeAngelis LM, Filipova DA, Panagka KS, and Abrey LE (2008). Bcl-6 predicts improved prognosis in primary central nervous system lymphoma. Cancer 112, 151–156.
[21] Braaten KM, Betensky RA, de Leval L, Okada Y, Hochberg FH, Louis DN, Harris NL, and Batchelor TT (2003). BCL-6 expression predicts improved survival in patients with primary central nervous system lymphoma. Clin Cancer Res 9, 1063–1069.
[22] Cady FM, O’Neill BP, Law ME, Decker PA, Kurtz DM, Giannini C, Porter AB, Kurtin PJ, Johnston PB, and Dogan A, et al (2008). Del(6)(q22) and BCL6 rearrangements in primary CNS lymphoma are indicators of an aggressive clinical course. J Clin Oncol 26, 4814–4819.
Montesinos-Rongen M, Godlewksa E, Brunn A, Wiestler OD, Siebert R, and Deckert M (2011). Activating L265P mutations of the MYD88 gene are common in primary central nervous system lymphoma. *Acta Neuropathol* **122**, 791–792.

Kreher S, Johrens K, Streichow F, Martus P, Borowick K, Radke J, Hepchner F, Roth P, Thiel E, and Pietsch T, et al (2015). Prognostic impact of B-cell lymphoma 6 in primary CNS lymphoma. *Neuro Oncol* **17**, 1016–1021.

Braggio E, Van Wier S, Ojha J, McPhail E, Aomsa YW, Egan J, da Silva JA, Schiff D, Lopes MB, and Deckert PA, et al (2015). Genome-wide analysis uncovers novel recurrent alterations in primary central nervous system lymphomas. *Clin Cancer Res* **21**, 3986–3994.

Hattori K, Sakata-Yanagimoto M, Okoshi Y, Goshima Y, Yanagimoto S, Nakamoto-Matsubara R, Sato T, Noguchi M, Takanou S, and Ishikawa E, et al (2017). MYD88 (L265P) mutation is associated with an unfavourable outcome of primary central nervous system lymphoma. *Br J Haematol* **177**, 492–494.

Todorovic Balint M, Jelicic J, Mihaljevic B, Kostic J, Stanic B, Balint B, Chapuy B, Roemer MG, Stewart C, Tan Y, Abo RP, Zhang L, Dunford AJ, Rubenstein JL, Fridlyand J, Shen A, Aldape K, Ginzinger D, Batchelor T, Sung CO, Kim SC, Karnan S, Karube K, Shin HJ, Nam DH, Suh YL, Kim SH, Bruno A, Boisselier B, Labreche K, Marie Y, Polivka M, Jouvet A, Adam C, Vater I, Montesinos-Rongen M, Schafer E, Siebert R, and Deckert M (2012). Genes regulating the B cell receptor pathway are recurrently mutated in primary central nervous system lymphoma. *Acta Neuropathol* **124**, 905–906.

Schwindt H, Vater I, Kreuz M, Montesinos-Rongen M, Brunn A, Richter J, Gesk S, Ammerpohl O, Wiestler OD, and Hasenclever D, et al (2009). Chromosomal imbalances and partial uniparental disomy in primary central nervous system lymphoma. *Leukemia* **23**, 1875–1884.

Montesinos-Rongen M, Schmitz R, Brunn A, Gesk S, Richter J, Hong K, Wiestler OD, Siebert R, Kuppers R, and Deckert M (2010). Mutations of CARD11 but not TNFAIP3 may activate the NF-kappaB pathway in primary CNS lymphoma. *Acta Neuropathol* **120**, 529–535.

Chu LC, Eberhart CG, Grossman SA, and Herman JG (2006). Epigenetic silencing of multiple genes in primary CNS lymphoma. *J Clin Oncol* **19**, 2487–2491.

Murga LA, Rubenstein JL, Ponzoni M, and Batchelor TT (2009). Insights into the biology of primary central nervous system lymphoma. *Canc Res Rep* **11**, 73–80.

Richter J, Ammerpohl O, Martin-Subero JL, Montesinos-Rongen M, Bibikova M, Wickham-Garcia E, Wiestler OD, Deckert M, and Siebert R (2009). Array-based DNA methylation profiling of primary lymphomas of the central nervous system. *BMC Cancer* **9**, 455.

Toffolatti L, Siquizzato E, Cavallin S, Cana F, Scarpa M, Stefani PM, Ghezzinoni F, and Dei Tos AP (2014). MGMT promoter methylation and correlation with protein expression in primary central nervous system lymphoma. *Virchows Arch* **465**, 474–481.

Kurzweilly D, Glas M, Roth P, Weimann E, Lohner H, Waha A, Schabet M, Reifenberger G, Weller M, and Herrlinger U (2010). Primary CNS lymphoma in the elderly: temozolomide therapy and MGMT status. *J Neurooncol* **97**, 389–392.

Adachi J, Mishima K, Wakiya K, Suzuki T, Fukuoka K, Yanagisawa T, Matsutani M, Sasaki A, and Nishikawa R (2012). O6-methylguanine-DNA methyltransferase promoter methylation in 45 primary central nervous system lymphomas: quantitative assessment of methylation and response to temozolomide treatment. *J Neurooncol* **107**, 147–153.

Robertus JL, Harms G, Blokzijl T, Booman D, van Imhoff G, Rossi S, Schuurig E, Klun P, and van den Berg A (2009). Specific expression of miR-17-5p and miR-127 in testicular and central nervous system diffuse large B-cell lymphoma. *Mod Pathol* **22**, 547–555.

Fischer L, Hummel M, Korfil A, Lenze D, Joehrens K, and Thiel E (2011). Differential micro-RNA expression in primary CNS and nodal diffuse large B-cell lymphomas. *Neuro Oncol* **13**, 1090–1098.

Baraniskin A, Kuhnhenn J, Schlegel U, Chan A, Deckert M, Gold R, Maghnouj A, Zollner H, Reinacher-Schick A, and Schmiegel W, et al (2011). Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. *Blood* **117**, 3140–3146.

Roth P, Keller A, Hoheisel JD, Codo P, Bauers A, Backes C, Leidinger P, Meese E, Thiel E, and Korfil A, et al (2011). Expression of B-cell-attracting chemokine 1 (CXCL13) by malignant lymphocytes as prognostic biomarkers in the blood of primary CNS lymphoma patients. *Eur J Cancer* **45**, 832–839.

Sassayama T, Nakamizo S, Nishihara M, Kawamura A, Tanaka H, Mizukawa K, Miyai S, Taniguchi M, Hosoda K, and Kohmura E (2012). Cerebrospinal fluid interleukin-10 is a potentially useful biomarker in immunocompetent primary central nervous system lymphoma (PCNSL). *Neuro Oncol* **14**, 368–380.

Fischer L, Korfil A, Pfeiffer S, Kiewe P, Volk KD, Cakiroglu H, Widmann T, and Thiel E (2009). CXCL13 plus interleukin 10 is highly specific for the diagnosis of CNS lymphoma. *Blood* **121**, 4740–4748.

Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH, Kohlhammer H, Xu W, Yang Y, and Zhao H, et al (2011). Oncogenically active MYD88 mutations in human lymphomas. *Nature* **470**, 115–119.

Sung CO, Kim SC, Kamal S, Karube K, Shin HJ, Nam DH, Suh YL, Kim SH, Kim JY, and Kim SJ, et al (2011). Genomic profiling combined with gene expression profiling in primary central nervous system lymphoma. *Blood* **117**, 1291–1300.

Bruno A, Boisselier B, Labrecque K, Marie Y, Polivka M, Jouveit A, Adam C, Figarella-Branger D, Miquel C, and Eimer S, et al (2014). Mutational analysis of primary central nervous system lymphoma. *Oncotarget* **5**, 5065–5075.

Nakamura T, Tateishi K, Niwa T, Matsuishi Y, Tamura K, Kinoshita M, Tanaka K, Fukushima S, Takami H, and Arita H, et al (2016). Recurrent mutations of CD79B and MYD88 are the hallmark of primary central nervous system lymphomas. *Neuropathol Appl Neurobiol* **42**, 270–290.

Vater I, Montesinos-Rongen M, Schlesner M, Haake A, Purschke F, Sprute R, Mettenmeyer N, Nazal I, Nagel I, and Gutwein J, et al (2015). The mutual pattern of primary lymphoma of the central nervous system determined by whole-exome sequencing. *Leukemia* **29**, 677–685.

Montesinos-Rongen M, Schafer E, Siebert R, and Deckert M (2012). Genes regulating the B cell receptor pathway are recurrently mutated in primary central nervous system lymphoma. *Acta Neuropathol* **124**, 905–906.
Josephson SA, Papanastassiou AM, Berger MS, Barbaro NM, McDermott MW, Hilton JF, Miller BL, and Geschwind MD (2007). The diagnostic utility of brain biopsy procedures in patients with rapidly deteriorating neurological conditions or dementia. *J Neurolog* 160, 72–75.

Chan CC, Rubenstein JL, Coupland SE, Davis JL, Harbour JW, Johnston PB, Cassoux N, Touitou V, Smith JR, and Batchelor TT, et al. (2011). Primary vitreoretinal lymphoma: a report from an International Primary Central Nervous System Lymphoma Collaborative Group symposium. *Oncologist* 16, 1589–1599.

Hoang-Xuan K, Bennell E, Bromberg J, Hottinger AF, Preusser M, Raad R, Schlegel U, Segal T, Soussain C, and Abacioglu U, et al. (2015). Diagnosis and treatment of primary CNS lymphoma in immunocompetent patients: guidelines from the European Association for Neuro-Oncology. *Lancet Oncol* 16, e322–e332.

Nabazivzechad SA, Vossough A, Hajmomenian A, Assadianbadi R, and Mohan S (2016). Neuroimaging in central nervous system lymphoma. *Hematol Oncol Clin North Am* 30, 799–821.

Zou Y, Tong J, Leng H, Jiang J, Pan M, and Chen Z (2017). Diagnostic value of using 18F-FDG PET and PET/CT in immunocompetent patients with primary central nervous system lymphoma: a systematic review and meta-analysis. *Oncotarget* 8, 41518–41528.

Abrey LE, Batchelor TT, Ferriera AJ, Gospodarowicz M, Pulczynski EJ, Zucca E, Smith JR, Korfel A, Korshin A, and DeAngelis LM, et al. (2005). Report of an international workshop to standardize baseline evaluation and response criteria for primary CNS lymphomas. *J Clin Oncol* 23, 5034–5043.

Korfel A and Schlegel U (2013). Diagnosis and treatment of primary CNS lymphoma. *Nat Rev Neurol* 9, 317–327.

Ferriera AJ, Blay JY, Reni M, Pasini F, Spina M, Ambrosietti A, Calderoni A, Rossi A, Vavassori V, and Conconi A, et al. (2003). Prognostic scoring system for primary CNS lymphomas: the International Extranodal Lymphoma Study Group Experience. *J Clin Oncol* 21, 266–272.

Abrey LE, Ben-Porat L, Panagka KS, Yahalom J, Berkey B, Curran W, Schultz MW, Hilton JF, Miller BL, and Geschwind MD (2007). The diagnostic utility of methotrexate, procarbazine, and lomustine for primary CNS lymphoma (PCNSL) in the elderly. *Ann Oncol* 22, 2080–2085.

Gregory G, Arumugawaray N, Leung T, Chan KL, Abidhair M, Tam C, Bajal A, Cher L, Gregar A, and Richie D, et al. (2013). Rituximab is associated with improved survival outcomes in elderly patients with aggressive B cell CNS lymphoma. *Neuro Oncol* 15, 1068–1073.

Heldhoff M, Ambady P, Abdelaziz A, Sarai G, Bonekamp D, Blakeley J, Grossman SA, and Ye X (2014). High-dose methotrexate with or without rituximab in newly diagnosed primary CNS lymphoma. *Neurology* 83, 235–239.

Chamberlain MC and Johnston SK (2010). High-dose methotrexate and rituximab with deferred radiotherapy for newly diagnosed primary B-cell CNS lymphoma. *Neuro Oncol* 12, 736–744.

Wieduwilt MJ, Valles F, Issa S, Behler CM, Hwang J, McDermott M, Treseler P, O’Brien J, Shuman MA, and Cha S, et al. (2012). Immunchemotherapy with intensive consolidation for primary CNS lymphoma: a pilot study and prognostic assessment by density-weighted MRI. *Clin Cancer Res* 18, 1146–1155.

Ferriera AJ, Cwynarski K, Pulczynski E, Ponsoni M, Deckert M, Politi LS, Torri V, Fox CP, Rosée PL, and Schoeb E, et al. (2016). Chemioimmunotherapy with methotrexate, cytarabine, thiopeta, and rituximab (MATRix regimen) in patients with primary CNS lymphoma: results of the first randomisation of the International Extranodal Lymphoma Study Group-32 (IELSG32) phase 2 trial. *Lancet Haematol* 3, e217–e227.

Batchelor TT, Grossman SA, Mikkelken T, Ye X, Desideri S, and Lesser GJ (2011). Rituximab monotherapy for patients with recurrent primary CNS lymphoma. *Neurology* 76, 929–930.

Doorduijn JK (2018). https://ep70.eventpilot.us/web/page.php?page=Inthtml&project=ASH17&id=103102P; 2018.

Ferriera AJ, Reni M, Foppoli M, Martelli M, Pangalis GA, Freczatto M, Cabras MG, Fabbri A, Corazzelli G, and Ilariucci F, et al. (2009). High-dose cytarabine plus high-dose methotrexate versus high-dose methotrexate alone in patients with primary CNS lymphoma: a randomised phase 2 trial. *Lancet* 374, 1512–1520.

Thiel E, Korfel A, Martus P, Kanz L, Griesinger F, Rauch M, Roth A, Hertenstein B, von Toll T, and Hundergongs T, et al. (2010). High-dose methotrexate with or without whole brain radiotherapy for primary CNS lymphoma (G-PCNSL-SG-1): a phase 3, randomised, non-inferiority trial. *Lancet Oncol* 11, 1036–1047.

Glass J, Won M, Schulz CJ, Brat D, Bartlett NL, Suh JH, Werner-Weiskopf M, Fischer BJ, Liepman MK, and Augsburger M, et al. (2016). Phase I and II study of induction chemotherapy with methotrexate, rituximab, and temozolomide, followed by whole-brain radiotherapy and postirradiation temozolomide for primary CNS lymphoma: NRG Oncology RTOG 0227. *J Clin Oncol* 34, 1620–1625.

Osumo A, Correa DD, DeAngelis LM, Moskowitz CH, Matsaraj MK, Kaley TJ, Gavrilovic IT, Nolan C, Pennesa E, and Grommes CC, et al. (2015). R-MPV followed by high-dose chemotherapy with TBC and autologous stem-cell transplantation for newly diagnosed primary CNS lymphoma. *Blood* 125, 1403–1410.

Osumo A, Chiotis I, Taillandier L, Ghesquieres H, Soussain C, Delwail V, Lamy T, Gressin R, Choquet S, and Soubeiran P, et al. (2015). Methotrexate and temozolomide versus methotrexate, procarbazine, vincristine, and cytarabine for primary CNS lymphoma in an elderly population: an intergroup ANOCEF-GOELAMS randomised phase 2 trial. *Lancet Haematol* 2, e251–e259.
Translational Oncology Vol. 12, No. 3, 2019

Primary Central Nervous System Lymphoma Cai et al. 537

chemotherapy followed by hematopoietic stem-cell rescue for refractory and recurrent primary CNS and intraocular lymphoma: Societe Francaise de Greffe de Moelle Osseuse-Therapie Cellulaire. J Clin Oncol 26, 2512–2518.

Paydas S (2017). Primary central nervous system lymphoma: essential points in diagnosis and management. Med Oncol 34, 61.

Jahnke K, Thiel E, Martus P, Herlinger U, Weller M, Fischer L, and Korfeld A (2006). Relapse of primary central nervous system lymphoma: clinical features, outcome and prognostic factors. J Neurooncol 80, 159–165.

Nayak L, Helvat C, Rosenblum MK, Abrey LE, and DeAngelis LM (2011). Late relapse in primary central nervous system lymphoma: clonal persistence. Neuro Oncol 13, 525–529.

Ambady P, Holdhoff M, Bonekamp D, Wong F, and Grossman SA (2015). Late relapses in primary CNS lymphoma after complete remissions with high-dose methotrexate monotherapy. CNS Oncol 4, 393–398.

Reni M, Ferreri AJ, and Villa E (1999). Second-line treatment for primary central nervous system lymphoma. Br J Cancer 79, 530–534.

Pentsova E, DeAngelis LM, and Oมroo A (2014). Methotrexate re-challenge for recurrent primary central nervous system lymphoma. J Neurooncol 117, 161–165.

Plokin SR, Betensky RA, Hochberg FH, Grossman SA, Lesser GJ, Nabov LB, Chon B, and Batcher TT (2004). Treatment of relapsed central nervous system lymphoma with high-dose methotrexate. Clin Cancer Res 10, 5643–5646.

Souto P, Cavalcanti J, Chequer S, Freire C, Al-Ali HK, Ghesquieres H, Damaj G, Dupriez B, Vargafij G, and Gonzalez A, et al (2012). Intensive chemotherapy with tiotubosan and cyclophosphamide and hematopoietic stem cell rescue in relapsed or refractory primary central nervous system lymphoma and intracranial lymphoma: a retrospective study of 79 cases. Haematologica 97, 1751–1756.

Nayak L, Pentsova E, and Batchelor TT (2015). Primary CNS lymphoma and neurologic complications of hematologic malignancies. Continuum (Minneap) 21, 355–372.

Enting RH, Demopoulos A, DeAngelis LM, and Abrey LE (2004). Salvage therapy for primary CNS lymphoma with a combination of rituximab and temozolomide. Neurology 63, 901–903.

Reni M, Zaia F, Mason W, Perry J, Mazza E, Spina M, Bordarono R, Ilariucci F, Faedi M, and Corazzelli G, et al (2007). Temozolomide as salvage treatment in primary central nervous system lymphoma. J Neuro Oncol 81, 9–17.

Correa DD, Shi W, Abrey LE, Deangelis LM, Oмroo AM, Deutsch MB, and Thaler HT (2012). Cognitive functions in primary CNS lymphoma after single or combined modality regimens. Neuro Oncol 14, 101–108.

Oмroo A, Taillandier L, Chinot O, Sierra Del Rio M, Carnin C, Barrie M, Soussain C, Tanguy ML, Choquet S, and Leblond V, et al (2011). Primary CNS lymphoma in patients younger than 60: can whole-brain radiotherapy be deferred? J Neurooncol 104, 323–330.

Prica A, Chan K, and Cheung MC (2012). Combined modality therapy versus chemotherapy alone as an induction regimen for primary central nervous system lymphoma: a decision analysis. Br J Haematol 158, 600–607.

Illehaus G, Marks R, Iboest G, Gunterberger R, Osterag C, Derigo G, Frichofen N, Feurthake F, Volk B, and Finke J (2006). High-dose chemotherapy with autologous stem-cell transplantation and hyperfractionated radiotherapy as first-line treatment of primary CNS lymphoma. J Clin Oncol 24, 3865–3870.

Illehaus G, Muller F, Feurthake F, Schafer AO, Osterag C, and Finke J (2008). High-dose chemotherapy and autologous stem-cell transplantation without consolidating radiotherapy as first-line treatment for primary lymphoma of the central nervous system. Haematologica 93, 147–148.

Kasenda B, Schorb E, Fritsch K, Finke J, and Illehaus G (2012). Prognosis after high-dose chemotherapy followed by autologous stem-cell transplantation as first-line treatment in primary CNS lymphoma—a long-term follow-up study. Ann Oncol 23, 2670–2679.

Kiefer T, Hirt C, Spath C, Schuler F, Ali-HK, Wolf HH, Herbst R, Maschmeyer G, Helke K, and Kessler C, et al (2011). Long-term follow-up of high-dose chemotherapy with autologous stem-cell transplantation and response-adapted whole-brain radiotherapy for newly diagnosed primary CNS lymphoma: results of the multicenter Ostdeutsche Studiengruppe Hamatologie und Onkologie OSHO-53 phase II study. Ann Oncol 23, 1809–1812.

Sobocki E, Kasenda B, Atta J, Kaun S, Morgner A, Hess G, Elter T, von Bubnoff N, Dreyling M, and Ringhoff M, et al (2013). Prognosis of patients with primary central nervous system lymphoma after high-dose chemotherapy followed by autologous stem cell transplantation. Haematologica 98, 765–770.

Sousa C, Hoang-Xuan K, Taillandier L, Fourme E, Choquet S, Wittz F, Casanovas O, Dupriez B, Souleau B, and Taksin AL, et al (2008). Intensive
Inhibition of B cell receptor signaling by ibrutinib in primary CNS lymphoma. *Cancer Cell* **31** (833–843.e835).

Ibrutinib unmasks critical role of Bruton tyrosine kinase in primary CNS lymphoma. *Cancer Discov* **7** (9), 1018–1029.

PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. *Blood* **129** (23), 3071–3073.

Durable clinical remission induced by romidepsin for chemotherapy-refractory peripheral T-cell lymphoma with central nervous system involvement. *Leuk Lymphoma* **58**, 996–998.

A phase I trial of an oral subtype-selective histone deacetylase inhibitor, chidamide, in combination with paclitaxel and carboplatin in patients with advanced non-small cell lung cancer. *Chin J Cancer Res* **28**, 444–451.

Intensive methotrexate and cytarabine followed by high-dose chemotherapy with autologous stem-cell rescue in patients with newly diagnosed primary CNS lymphoma: an intent-to-treat analysis. *J Clin Oncol* **21**, 4151–4156.