Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile

Alejandro Jara, Ph.D., Eduardo A. Undurraga, Ph.D., Cecilia González, M.D., Fabio Paredes, M.Sc., Tomás Fontecilla, M.Sc., Gonzalo Jara, B.S.E., Alejandra Pizarro, M.D., Johanna Acevedo, M.S., Katherinne Leo, B.S.E., Francisco Leon, M.B.A., Carlos Sans, B.S.E., Paulina Leighton, B.S.E., Pamela Suárez, B.S.E., Heriberto García-Escorza, M.S., and Rafael Araos, M.D.

BACKGROUND
Mass vaccination campaigns to prevent coronavirus disease 2019 (Covid-19) are occurring in many countries; estimates of vaccine effectiveness are urgently needed to support decision making. A countrywide mass vaccination campaign with the use of an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (CoronaVac) was conducted in Chile starting on February 2, 2021.

METHODS
We used a prospective national cohort, including participants 16 years of age or older who were affiliated with the public national health care system, to assess the effectiveness of the inactivated SARS-CoV-2 vaccine with regard to preventing Covid-19 and related hospitalization, admission to the intensive care unit (ICU), and death. We estimated hazard ratios using the extension of the Cox proportional-hazards model, accounting for time-varying vaccination status. We estimated the change in the hazard ratio associated with partial immunization (≥14 days after receipt of the first dose and before receipt of the second dose) and full immunization (≥14 days after receipt of the second dose). Vaccine effectiveness was estimated with adjustment for individual demographic and clinical characteristics.

RESULTS
The study was conducted from February 2 through May 1, 2021, and the cohort included approximately 10.2 million persons. Among persons who were fully immunized, the adjusted vaccine effectiveness was 65.9% (95% confidence interval [CI], 65.2 to 66.6) for the prevention of Covid-19 and 87.5% (95% CI, 86.7 to 88.2) for the prevention of hospitalization, 90.3% (95% CI, 89.1 to 91.4) for the prevention of ICU admission, and 86.3% (95% CI, 84.5 to 87.9) for the prevention of Covid-19–related death.

CONCLUSIONS
Our results suggest that the inactivated SARS-CoV-2 vaccine effectively prevented Covid-19, including severe disease and death, a finding that is consistent with results of phase 2 trials of the vaccine. (Funded by Agencia Nacional de Investigación y Desarrollo and others.)
The coronavirus disease 2019 (Covid-19) pandemic has imposed an enormous disease burden worldwide, with more than 159 million cases and approximately 3.3 million deaths reported as of May 10, 2021. Covid-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the severity ranges from mild symptoms to life-threatening disease. Older age and underlying conditions substantially increase the case fatality rate. Nonpharmaceutical interventions, such as social distancing, face masks, and contact tracing, have so far been the mainstay of health policy strategies to reduce viral spread and limit demands on health care. New Covid-19 vaccines are beginning to change this situation. On December 2, 2020, the first vaccine tested in a large, randomized clinical trial was approved in the United Kingdom, although some countries began vaccinations before clinical results were available. Several effective vaccines against Covid-19 have been developed and approved in record time, and numerous new vaccines are in the final stages of clinical trials.

Mass vaccination campaigns to prevent Covid-19 are now occurring in many countries. Preliminary results of the effectiveness of other Covid-19 vaccines across different populations have been published, including studies at the national level in Israel and Scotland and studies involving essential frontline workers at specific locations in the United States. Estimates of vaccine effectiveness in the prevention of Covid-19 are essential because they reflect real-world challenges, such as logistics, cold chains, vaccination schedules, and follow-up, and also involve more diverse populations than those selected in randomized clinical trials, such as older or immunocompromised persons or those with coexisting conditions. Despite being the standard for assessing vaccine efficacy, phase 3 clinical trials have some limitations, such as restrictive inclusion criteria and implementation under strict experimental conditions that may not resemble a mass vaccination rollout. Thus, large observational studies to estimate the effectiveness of new vaccines in real-world settings are an essential complement to randomized, controlled trials.

Existing vaccine-effectiveness estimates have focused on the BNT162b2 messenger RNA (mRNA) vaccine (Pfizer–BioNTech), the ChAdOx1 nCoV-19 vaccine (Oxford–AstraZeneca), and the mRNA-1273 vaccine (Moderna). Several countries are conducting vaccination campaigns with the use of an inactivated SARS-CoV-2 vaccine (CoronaVac) amid a record surge of Covid-19 cases worldwide. A total of 22 primarily low- and middle-income countries have approved the CoronaVac vaccine for emergency use. Despite its global importance, limited evidence is available on the efficacy or effectiveness of this vaccine.

Phase 1–2 trials of the CoronaVac vaccine were carried out in China among participants 18 to 59 years of age and in participants 60 years of age or older. The findings suggested that the vaccine was safe and immunogenic in most patients 14 days after receipt of the second dose. Phase 3 clinical trials are taking place in Brazil, Chile, Indonesia, and Turkey. Efficacy results from these trials have not yet been published, but reported efficacy estimates from the manufacturers with regard to mild Covid-19 have varied substantially among the sites: 50.7% (95% confidence interval [CI], 35.6 to 62.2) in Brazil, 65.3% in Indonesia, and 83.5% (95% CI, 65.4 to 92.1) in Turkey. In addition, preliminary estimates from an observational study involving vaccinated health care workers (from a preprint server) suggested that at least one dose of the CoronaVac vaccine was 49.6% (95% CI, 11.3 to 71.4) effective against Covid-19 in Manaus, Brazil, a location where the P.1 (or gamma) variant, which is considered to be a variant of concern by the Centers for Disease Control and Prevention, is predominant. No estimates of the effectiveness of the CoronaVac vaccine with regard to preventing Covid-19 in the general population or in persons who have received full vaccination are publicly available.

On February 2, 2021, Chile began a mass vaccination campaign with the CoronaVac vaccine (Section S1 in the Supplementary Appendix, available with the full text of this article at NEJM.org). The Public Health Institute of Chile approved the CoronaVac vaccine for emergency use on January 20, 2021; the vaccine is to be administered in a two-dose schedule, with doses separated by 28 days. The vaccination campaign prioritized older adults, beginning at 90 years of age or older; frontline health care workers; and...
persons with underlying conditions. The government relied on the existing health care infrastructure to roll out the vaccines to the eligible population where they lived. Vaccination rollout was organized by means of a publicly available national schedule that assigned specific dates to eligible groups. Eligible persons needed to show up at the nearest vaccination site with their identification; they did not need to make an appointment (Figs. S3 and S4). A national immunization registry keeps track of the vaccination schedules. As of May 10, 2021, the Ministry of Health has administered 13.98 million doses of the CoronaVac vaccine (7.62 million first doses and 6.36 million second doses). Vaccine introduction and scale-up of the campaign occurred during a period with the highest incidence rates of Covid-19 since the beginning of the pandemic in Chile.

We used a rich administrative observational data set to provide estimates of the effectiveness of the CoronaVac vaccine in preventing Covid-19 and related hospitalization, admission to the intensive care unit (ICU), and death in the Chilean population. We estimated the effectiveness of the administration of one vaccine dose and of two doses (the complete schedule), with adjustment for relevant demographic and clinical confounders of the association between vaccination and Covid-19 outcomes. We conducted robustness checks to test whether vaccine effectiveness would be affected by differences in health care access between the vaccinated and unvaccinated groups, and we provide vaccine-effectiveness estimates among persons 16 to 59 years of age and among those 60 years of age or older.

METHODS

STUDY POPULATION AND DESIGN
We used a prospective observational cohort at the national level. The study cohort included participants 16 years of age or older who were affiliated with Fondo Nacional de Salud (FONASA), the national public health insurance program, which includes approximately 80% of the Chilean population. A detailed description of the vaccination campaign is provided in the Supplementary Appendix. Eligibility criteria included an age of 16 years or more, affiliation with FONASA, and receipt of at least one dose of the CoronaVac vaccine between February 2 and May 1, 2021, or no receipt of any Covid-19 vaccination. We excluded participants with a probable or confirmed SARS-CoV-2 infection, as assessed by reverse-transcriptase–polymerase-chain-reaction (RT-PCR) assay or antigen testing, on or before February 2, 2021, and persons who had received at least one dose of the BNT162b2 vaccine. We did not focus on the effectiveness of the BNT162b2 vaccine because these estimates have been provided elsewhere. We focused on the results regarding the CoronaVac vaccine because they are the mainstay of the vaccination strategy in Chile. However, we provide estimates of the effectiveness of the BNT162b2 vaccine in the Supplementary Appendix as a validation of the procedures used here.

All persons 16 years of age or older are eligible to receive the vaccine, according to the national vaccination schedule. We classified participants into three groups: those who were not vaccinated, those who were partially immunized (≥14 days after receipt of the first vaccine dose and before receipt of the second dose), and those who were fully immunized (≥14 days after receipt of the second dose).

The study team was entirely responsible for the design of the study and for the collection and analysis of the data. The authors vouch for the accuracy and completeness of the data. The first, second, and last authors wrote the first draft of the manuscript.

OUTCOMES AND COVARIATES
We estimated vaccine effectiveness using four primary outcomes: laboratory-confirmed Covid-19, hospitalization for Covid-19, admission to the ICU for Covid-19, and Covid-19–related death. For all the outcomes, we considered the time from the beginning of follow-up (February 2, 2021) to the onset of symptoms as the end point. Vaccine-effectiveness estimates regarding Covid-19 cases included the more severe outcomes. All suspected cases of Covid-19 in Chile are notified to health authorities by means of an online platform and are confirmed by laboratory testing. In our study, cases of Covid-19 and related deaths were those in persons with laboratory-confirmed infection, which corresponds to code U07.1 in the International Classification of Diseases, 10th Revision.

We controlled for several patient characteristics that could confound the association between vaccination and outcomes, including age, sex, region of residence, income, nationality, and
whether the patient had underlying conditions that have been associated with severe Covid-19. These conditions included chronic kidney disease, diabetes, cardiovascular disease, stroke, chronic obstructive pulmonary disease, hematologic disease, autoimmune disease, human immunodeficiency virus infection, and Alzheimer’s disease and other dementias.4,33-35

STATISTICAL ANALYSIS

Our analysis was broadly based on the analytic methods of Thompson et al.17 for estimating vaccine effectiveness in the United States. We determined vaccine effectiveness by estimating the hazard ratio between the vaccinated and unvaccinated groups. On the basis of the observed information regarding the time to symptom onset from February 2, 2021, we estimated hazard ratios using the extension of the Cox proportional-hazards model, which allowed us to account for a time-varying vaccination status of the persons in the study. We evaluated the robustness of the model assumptions by fitting a stratified version of the extended Cox proportional-hazards model using the available predictors. Inference was based on a partial likelihood approach (Section S2).17 We estimated the change in the hazard associated with partial immunization and full immunization, and both time-to-event analyses were performed separately. Because the immunity status induced by the CoronaVac vaccine is unknown during the 13 days between vaccine administration and partial or full immunization, those periods were excluded from the at-risk person-time in our analyses.17

We estimated the vaccine effectiveness as 1 minus the corresponding hazard ratio, obtained from a model including the previously described covariates, which was expressed as a percentage. We also provide the results with adjustment for the effect of sex and age only. To evaluate whether our effectiveness results were affected by potentially different access to health care between vaccinated persons and unvaccinated persons and according to the age distribution, we performed subgroup analyses involving the subgroup of persons with access to RT-PCR or antigen testing for SARS-CoV-2 and subgroups of persons 60 years of age or older and persons 16 to 59 years of age. Statistical analyses were conducted with the use of the survival package of R software, version 4.0.5.36,37

RESULTS

STUDY POPULATION AND VACCINATION ROLLOUT

Figure 1 shows the flow diagram of the study cohort. Of the 11,820,292 persons 16 years of age or older who were affiliated with FONASA, 10,187,720 were eligible for inclusion in the study. Table 1 shows the descriptive statistics for the approximately 10.2 million participants included in the study cohort. There were significant differences according to geographic region, sex, age, income group, nationality, and presence of underlying medical conditions, both in the incidence of Covid-19 and according to vaccination status (unvaccinated, vaccinated with only one dose, or vaccinated with two doses). Laboratory confirmation of infection was by RT-PCR assay in 98.1% of the cases and by antigen testing in 1.9%. Figure 2A shows the rapid rollout of the vaccination campaign, which started on February 2, 2021. Details of the vaccination campaign are provided in Section S1 and Figures S5 through S8. Figure 2B shows the crude cumulative incidence of Covid-19 during the study period among persons who had
Table 1. Characteristics of the Study Cohort, Overall and Those with Laboratory-Confirmed Covid-19, According to Vaccination Status.*

Characteristic	Cohort Participants	Persons with Covid-19	P Value	Unvaccinated Persons	Persons Vaccinated with One Dose	Persons Vaccinated with Two Doses	P Value
	no. %	no. %		no. %	no. %	no. %	
Total	10,187,720 100%	248,645 2.4%	—	5,471,728 53.7%	542,418 5.3%	4,173,574 41.0%	—
Sex			<0.001				
Female	5,469,202 54.0%	135,311 2.5%	<0.001	2,775,436 50.8%	272,044 5.0%	2,421,722 44.3%	
Male	4,718,518 46.0%	113,334 2.4%	2,696,292 57.1%	270,374 5.7%	1,751,852 37.1%		
Age group			<0.001				
16–19 yr	708,676 7.0%	14,871 2.1%	<0.001	670,451 94.6%	8,192 1.2%	30,033 4.2%	
20–29 yr	2,017,676 20.0%	59,645 3.0%	1,655,595 82.1%	55,854 2.8%	306,227 15.2%		
30–39 yr	1,867,491 18.0%	54,480 2.9%	1,446,544 77.5%	59,166 3.1%	361,781 19.4%		
40–49 yr	1,423,770 14.0%	39,993 2.8%	851,622 59.8%	165,487 11.6%	406,661 28.6%		
50–59 yr	1,457,564 14.0%	37,539 2.6%	434,694 29.8%	184,268 12.6%	838,602 57.5%		
60–69 yr	1,365,940 13.0%	23,669 1.7%	221,738 16.2%	41,693 3.1%	1,102,509 80.7%		
70–79 yr	870,082 8.5%	11,778 1.4%	111,592 12.8%	16,412 1.9%	742,078 85.3%		
≥80 yr	476,521 4.7%	6,670 1.4%	79,492 16.7%	11,346 2.4%	385,683 80.9%		
No. of coexisting conditions†			<0.001				
0	6,880,426 68.0%	168,401 2.4%	4,447,684 64.6%	394,030 5.7%	2,038,712 29.6%		
≥1	3,307,294 32.0%	80,244 2.4%	1,024,044 31.0%	148,388 4.5%	2,134,862 64.6%		<0.001
Nationality							
Chilean	9,497,058 93.2%	233,572 2.5%	4,913,208 51.7%	513,604 5.4%	4,070,246 42.9%		
Non-Chilean	690,662 6.8%	15,073 2.2%	552,502 80.9%	28,814 4.2%	103,328 13.9%		

* The study cohort included eligible persons who were affiliated with Fondo Nacional de Salud, the national public health insurance program, which collects, manages, and distributes funds for the public health care system in Chile. The model also included individual-level income and location (16 regions). Additional details are provided in Table S1. Covid-19 denotes coronavirus disease 2019.

† Coexisting conditions included chronic kidney disease, diabetes, cardiovascular disease (hypertension or myocardial infarction), stroke, chronic obstructive pulmonary disease, hematologic disease (lymphoma, leukemia, or myeloma), autoimmune disease (rheumatoid arthritis, juvenile idiopathic arthritis, or systemic lupus erythematosus), human immunodeficiency virus infection, and Alzheimer’s disease and other dementias.
received one or two doses of vaccine or were unvaccinated.

Vaccine Effectiveness

There were approximately 615 million person-days in the unvaccinated group, 70 million person-days in the partially immunized group, and 92 million person-days in the fully immunized group during the study period (Table 2). We documented 218,784 cases of Covid-19, as well as 22,866 hospitalizations, 7873 ICU admissions, and 4042 deaths.

We estimated that the vaccine effectiveness among partially immunized persons (14 to 28 days after receipt of the first dose) was 15.5% (95% CI, 14.2 to 16.8) for the prevention of Covid-19 and 37.4% (95% CI, 34.9 to 39.9) for the prevention of hospitalization, 44.7% (95% CI, 40.8 to 48.3) for the prevention of admission to the ICU, and 45.7% (95% CI, 40.9 to 50.2) for the prevention of Covid-19–related death. In the fully immunized group, the estimated adjusted vaccine effectiveness was 65.9% (95% CI, 65.2 to 66.6) for the prevention of Covid-19 and 87.5% (95% CI, 86.7 to 88.2) for the prevention of hospitalization, 90.3% (95% CI, 89.1 to 91.4) for the prevention of ICU admission, and 86.3% (95% CI, 84.5 to 88.1) for the prevention of Covid-19–related death (Table 2). The vaccine-effectiveness estimates in the stratified model were consistent with these results.

We estimated that the adjusted vaccine effectiveness in the subgroup of fully immunized persons 60 years of age or older was 65.9% (95% CI, 65.2 to 66.6) for the prevention of Covid-19 and 87.5% (95% CI, 86.7 to 88.2) for the prevention of hospitalization, 90.3% (95% CI, 89.1 to 91.4) for the prevention of ICU admission, and 86.3% (95% CI, 84.5 to 88.1) for the prevention of Covid-19–related death (Table 3). Vaccine-effectiveness estimates among persons 16 to 59 years of age are provided in Table S3.

To address a potential concern that the observed vaccine effectiveness may have been driven by health care access, we conducted an analysis in the subgroup of persons who had undergone testing with an RT-PCR assay (98.1%) or antigen test (1.9%) during the analysis period. The results, conditional on whether testing was performed, showed larger effects for vaccination than when we included the complete cohort. Among fully
Inactivated SARS-CoV-2 Vaccine in Chile

immunized persons in this subgroup, the adjusted vaccine effectiveness was 72.9% (95% CI, 72.3 to 73.4) for the prevention of Covid-19 and 89.2% (95% CI, 88.5 to 89.8) for the prevention of hospitalization, 91.6% (95% CI, 90.5 to 92.5) for the prevention of ICU admission, and 87.8% (95% CI, 86.2 to 89.2) for the prevention of Covid-19–related death (Table S4).

Discussion

We provide estimates of the effectiveness of administration of the CoronaVac vaccine in a countrywide mass vaccination campaign for the prevention of laboratory-confirmed Covid-19 and related hospitalization, admission to the ICU, and death. Among fully immunized persons, the ad-

Table 2. Effectiveness of CoronaVac Vaccine in Preventing Covid-19 Outcomes in Overall Study Cohort, According to Immunization Status.*

Outcome and Immunization Status	Study Cohort	Persons with Covid-19	Vaccine Effectiveness (95% CI)				
		No. of Person-Days	No. of Persons	Incidence Rate	Analysis Adjusted for Sex and Age	Analysis Adjusted for All Covariates†	Stratified Analysis‡
Covid-19					no. of events/1000 person-days	percent	
Unvaccinated	614,868,240	185,633	0.3019	—	—	—	—
Partially immunized	69,788,352	20,865	0.2990	8.0	(6.5–9.4)	15.5	17.2
Fully immunized	91,671,797	12,286	0.1340	61.2	(60.3–62.0)	65.9	63.7
Hospitalization					(65.2–66.6)	(62.8–64.6)	
Unvaccinated	620,894,706	18,034	0.0290	—	—	—	—
Partially immunized	70,690,796	3,370	0.0477	31.4	(28.6–34.0)	37.4	40.3
Fully immunized	92,445,333	1,462	0.0158	86.0	(85.1–86.8)	87.5	86.5
Admission to ICU					(86.7–88.2)	(85.6–87.4)	
Unvaccinated	621,226,431	6,359	0.0102	—	—	—	—
Partially immunized	70,836,597	1,154	0.0163	37.5	(33.1–41.5)	44.7	45.3
Fully immunized	92,622,083	360	0.0039	88.8	(87.4–90.0)	90.3	90.2
Confirmed death					(89.1–91.4)	(88.9–91.4)	
Unvaccinated	621,426,477	2,786	0.0045	—	—	—	—
Partially immunized	70,854,187	847	0.0120	39.8	(34.4–44.7)	45.7	46.0
Fully immunized	92,514,261	409	0.0044	84.4	(82.4–86.2)	86.3	86.7
Confirmed death					(84.5–87.8)	(84.9–88.3)	

* Participants were classified into three groups: those who were unvaccinated, those who were partially immunized (≥14 days after receipt of the first vaccine dose and before receipt of the second dose), and those who were fully immunized (≥14 days after receipt of the second dose). The 13 days between vaccine administration and partial or full immunization were excluded from the at-risk person-time. ICU denotes intensive care unit.

† The analysis was adjusted for age, sex, region of residence, income, nationality, and whether the patient had underlying conditions that have been associated with severe Covid-19.

‡ A stratified version of the extended Cox proportional-hazards model was fit to test the robustness of the estimates to model assumptions, with stratification according to age, sex, region of residence, income, nationality, and whether the patient had underlying conditions that have been associated with severe Covid-19.
Adjusted vaccine effectiveness was 65.9% for Covid-19 and 87.5% for hospitalization, 90.3% for ICU admission, and 86.3% for death. The vaccine-effectiveness results were maintained in both age-subgroup analyses, notably among persons 60 years of age or older, independent of variation in testing and independent of various factors regarding vaccine introduction in Chile.

The vaccine-effectiveness results in our study are similar to estimates that have been reported in Brazil for the prevention of Covid-19 (50.7% [95% CI, 35.0 to 62.2]), including estimates of cases that resulted in medical treatment (83.7% [95% CI, 58.0 to 93.7]) and estimates of a composite endpoint of hospitalized, severe, or fatal cases (100% [95% CI, 56.4 to 100]).27 The large confidence intervals for the trial in Brazil reflect the relatively small sample (9823 participants) and the few cases detected (35 cases that led to medical treatment and 10 that were severe). However, our estimates are lower than the vaccine effectiveness recently reported in Turkey (83.5% [95% CI, 65.4 to 92.1]),27 possibly owing to the small sample in that phase 3 clinical trial (10,029 partici-

Table 3. Effectiveness of CoronaVac Vaccine in Preventing Covid-19 Outcomes among Cohort Participants 60 Years of Age or Older, According to Immunization Status.

Outcome and Immunization Status	Subgroup Cohort	Persons with Covid-19	Vaccine Effectiveness (95% CI)				
	No. of Person-Days	No. of Persons	Incidence Rate	No. of events/1000 person-days	Analysis Adjusted for Sex and Age	Analysis Adjusted for All Covariates*	Stratified Analysis†
Covid-19							
Unvaccinated	75,707,905	15,597	0.2060	—	—	—	—
Partially immunized	35,675,604	8,333	0.2336	3.9 (0.9–6.8)	9.7 (6.9–12.4)	12.7 (9.8–15.5)	—
Fully immunized	66,563,272	7,510	0.1128	63.4 (62.0–64.6)	66.6 (65.4–67.8)	67.2 (66.0–68.4)	—
Hospitalization							
Unvaccinated	76,047,640	5,304	0.0697	—	—	—	—
Partially immunized	35,961,593	2,168	0.0603	29.2 (25.1–33.1)	35.0 (31.3–38.6)	38.6 (34.8–42.2)	—
Fully immunized	66,986,859	1,344	0.0201	83.4 (82.2–84.5)	85.3 (84.3–86.3)	85.4 (84.3–86.4)	—
Admission to ICU							
Unvaccinated	76,194,648	1,811	0.0238	—	—	—	—
Partially immunized	36,062,081	672	0.0186	38.2 (31.9–44.0)	44.5 (38.7–49.7)	47.0 (41.2–52.2)	—
Fully immunized	67,051,769	331	0.0049	87.5 (85.7–89.0)	89.2 (87.6–90.6)	89.3 (87.8–90.7)	—
Confirmed death							
Unvaccinated	76,169,386	1,999	0.0262	—	—	—	—
Partially immunized	36,053,806	768	0.0213	39.7 (33.8–45.1)	45.8 (40.4–50.7)	46.1 (40.5–51.2)	—
Fully immunized	67,045,620	402	0.0060	84.4 (82.3–86.2)	86.5 (84.6–88.1)	86.8 (85.0–88.4)	—

* The analysis was adjusted for age, sex, region of residence, income, nationality, and whether the patient had underlying conditions that have been associated with severe Covid-19.
† A stratified version of the extended Cox proportional-hazards model was fit to test the robustness of the estimates to model assumptions, with stratification according to sex, age, coexisting conditions, nationality, and income.
pents in the per-protocol analysis), differences in local transmission dynamics, and the predominance of older adults among the fully or partially immunized participants in our study. Overall, our results suggest that the CoraVac vaccine had high effectiveness against severe disease, hospitalizations, and death, findings that underscore the potential of this vaccine to save lives and substantially reduce demands on the health care system.

Our study has at least three main strengths. First, we used a rich administrative health care data set, combining data from an integrated vaccination system for the total population and from the Ministry of Health FONASA, which covers approximately 80% of the Chilean population. These data include information on laboratory tests, hospitalization, mortality, onset of symptoms, and clinical history in order to identify risk factors for severe disease. Information on region of residence also allowed us to control for differences in incidence across the country. We adjusted for income and nationality, which correlate with socioeconomic status in Chile and are thus considered to be social determinants of health. The large population sample allowed us to estimate vaccine effectiveness both for one dose and for the complete two-dose vaccination schedule. It also allowed for a subgroup analysis involving adults 60 years of age or older, a subgroup that is at higher risk for severe disease and that is underrepresented in clinical trials. Second, data were collected during a rapid vaccination campaign with high uptake and during a period with one of the highest community transmission rates of the pandemic, which allowed for a relatively short follow-up period and for estimation of the prevention of at least four essential outcomes: Covid-19 cases and related hospitalization, ICU admission, and death. Finally, Chile has the highest testing rates for Covid-19 in Latin America, universal health care access, and a standardized, public reporting system for vital statistics, which limited the number of undetected or unascertained cases and deaths.

Our study has several limitations. First, as an observational study, it is subject to confounding. To account for known confounders, we adjusted the analyses for relevant variables that could affect vaccine effectiveness, such as age, sex, underlying medical conditions, region of residence, and nationality. The risk of misclassification bias that would be due to the time-dependent performance of the SARS-CoV-2 RT-PCR assay is relatively low, because the median time from symptom onset to testing in Chile is approximately 4 days (98.1% of the tests were RT-PCR assays). In this 4-day period, the sensitivity and specificity of the molecular diagnosis of Covid-19 are high. However, there may be a risk of selection bias. Systematic differences between the vaccinated and unvaccinated groups, such as health-seeking behavior or risk aversion, may affect the probability of exposure to the vaccine and the risk of Covid-19 and related outcomes. However, we cannot be sure about the direction of the effect. Persons may be hesitant to get the vaccine for various reasons, including fear of side effects, lack of trust in the government or pharmaceutical companies, or an opinion that they do not need it, and they may be more or less risk-averse. Vaccinated persons may compensate by increasing their risky behavior (Peltzman effect). We addressed potential differences in health care access by restricting the analysis to persons who had undergone diagnostic testing, and we found results that were consistent with those of our main analysis.

Second, owing to the relatively short follow-up in this study, late outcomes may not have yet developed in persons who were infected near the end of the study, because the time from symptom onset to hospitalization or death can vary substantially. Therefore, effectiveness estimates regarding severe disease and death, in particular, should be interpreted with caution. Third, during the study period, ICUs in Chile were operating at 93.5% of their capacity on average (65.7% of the patients had Covid-19). If fewer persons were hospitalized than would be under regular ICU operation, our effectiveness estimates for protection against ICU admission might be biased downward, and our effectiveness estimates for protection against death might be biased upward (e.g., if patients received care at a level lower than would usually be received during regular health system operation).

Fourth, although the national genomic surveillance for SARS-CoV-2 in Chile has reported the circulation of at least two viral lineages considered to be variants of concern, P.1 and B.1.1.7 (or the gamma and alpha variants, respectively), we lack representative data to estimate their effect on vaccine effectiveness (Table S2). Results from a test-negative design study of the effectiveness of the CoronaVac vaccine in health care work-
ers in Manaus, Brazil, where the gamma variant is now predominant, showed that the efficacy of at least one dose of the vaccine against Covid-19 was 49.6% (95% CI, 11.3 to 71.4). Although the vaccine-effectiveness estimates in Brazil are not directly comparable with our estimates owing to differences in the target population, the vaccination schedule (a window of 14 to 28 days between doses is recommended in Brazil\(^1\)), and immunization status, they highlight the importance of continued vaccine-effectiveness monitoring.

Overall, our study results suggest that the CoronaVac vaccine was highly effective in protecting against severe disease and death, findings that are consistent with the results of phase 2 trials\(^2,24\) and with preliminary efficacy data.\(^27,28\)

The research protocol was approved by the Comité Ético Clínico Científico Clínica Alemana Universidad del Desarrollo. The study was considered exempt from informed consent; no human health risks were identified. Research analysts are employees of the Chilean Ministry of Health; our use of data follows Chilean law 19.628 on private data protection.

Presented in part at the World Health Organization (WHO) Strategic Advisory Group of Experts on Immunization (SAGE) meeting on coronavirus disease 2019 (Covid-19) vaccines, April 29, 2021, and the WHO Vaccines Prioritization Working Group, April 21, 2021.

Supported by grants from the Agencia Nacional de Investigación y Desarrollo (ANID) Millennium Science Initiative Program, Millennium Nucleus Center for the Discovery of Structures in Complex Data (NIDAS) (NCN17_059, to Dr. Jara), and Millennium Initiative for Collaborative Research in Bacterial Resistance (MICROB-R) (NCN17_081, to Drs. Undurraga and Araos); the Advanced Center for Chronic Diseases, ANID Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias (FONDAP) (15130011, to Dr. Araos); and the Research Center for Integrated Disaster Risk Management ANID FONDAP (15110017, to Dr. Undurraga).

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

Owing to data privacy regulations, the individual-level data in this study cannot be shared (Law N19,628). Aggregate data on vaccination and incidence are publicly available at https://github.com/MinCiencia/Datos-COVID19/

We thank the attendees of the WHO meeting and working group for suggestions and comments; Drs. Ira Longini (University of Florida), Daniel Cohen (Tel Aviv University), Richard Peto (University of Oxford), Elizabeth Miller (Public Health England), and Myron M. Levine (University of Maryland); Drs. Catterina Ferreccio (Pontificia Universidad Católica de Chile), Ximena Aguillera (Universidad del Desarrollo), Gonzalo Valdivia (Pontificia Universidad Católica de Chile), Fernando Otaiza (Ministerio de Salud), and Álvaro Erazo (Pontificia Universidad Católica de Chile), from the Chilean Covid-19 Advisory Group, for advice on the study design and interpretation of results; and Drs. José R. Zubizarreta (Harvard University) and Erika M.C. D'Agata (Brown University) for thoughtful suggestions.

REFERENCES
1. Dong E, Du H, Gardner L. An interactive Web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020;20:533-4.
2. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 2020;324:782-93.
3. Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease 2019 (COVID-19) a model-based analysis. Lancet Infect Dis 2020;20:669-77.
4. Guan W-J, Ni Z-Y, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708-20.
5. Li Y, Campbell H, Kulkarni D, et al. The temporal association of introducing and lifting non-pharmaceutical interventions with the time-varying reproduction number (R) of SARS-CoV-2: a modelling study across 131 countries. Lancet Infect Dis 2021;21:193-202.
6. Walker PG, Whittaker C, Watson OJ, et al. The impact of COVID-19 and strategies for mitigation and suppression in low- and middle-income countries. Science 2020;369:413-22.
7. Ledford H, Cyranoski D, Van Noorden R. The UK has approved a COVID vaccine — here’s what scientists now want to know. Nature 2020;588:205-6.
8. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 2020;383:2603-15.
9. Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021;397:99-111.
10. Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021;384:403-16.
11. Logunov DY, Dolzhikova IV, Scherbakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021;397:671-81.
12. Tanne JH. Covid-19: FDA panel votes to approve Pfizer BioNTech vaccine. BMJ 2020;371:m4799.
13. Zimmer C, Corum J, Wee S-L. Coronavirus vaccine tracker. New York Times, June 10, 2021 (https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html).
14. Our World in Data. Coronavirus pandemic (COVID-19), 2021 (https://ourworldindata.org/coronavirus).
15. Dagan N, Barda N, Kepten E, et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med 2021;384:3412-23.
16. Vasileiou E, Simpson CR, Robertson C, et al. Effectiveness of first dose of COVID-19 vaccines against hospital admissions in Scotland: national prospective cohort study of 5.4 million people. February 19, 2021 (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3790264).
17. Thompson MG, Burgess JL, Nalley PW, et al. Interim estimates of vaccine effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines in preventing SARS-CoV-2 infection among health care personnel, first responders, and other essential and frontline workers — eight U.S. locations, December 2020—March 2021. MMWR Morb Mortal Wkly Rep 2021;70:495-500.
18. Daniel W, Nivet M, Warner J, Podolsky DK. Early evidence of the effect of SARS-CoV-2 vaccine at one medical center. N Engl J Med 2021;384:1962-3.
19. Britton A, Jacobs Stifka KM, Edens C, et al. Effectiveness of the Pfizer-BioNTech COVID-19 vaccine among residents of two skilled nursing facilities experiencing COVID-19 outbreaks — Connecticut, December 2020—February 2021. MMWR Morb Mortal Wkly Rep 2021;70:396-401.
20. Doshi P. Will covid-19 vaccines save lives? Current trials aren't designed to tell us. BMJ 2020;371:1541-8.
21. Lopalco PL, DeStefano F. The complementary roles of phase 3 trials and post-licensure surveillance in the evaluation of new vaccines. Vaccine 2015;33:1541-8.
22. Gao Q, Bao L, Mao H, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine candidate for SARS-CoV-2. Science 2020;369:77-81.
23. Zhang Y, Zeng G, Pan H, et al. Safety, efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 2021 July 8 (Epub ahead of print).
24. Centers for Disease Control and Prevention. SARS-CoV-2 variant classifications and definitions. 2021 (https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Fcases-updates%2Fvariant-surveillance%2Fvariant-info.html).
25. Cohen J, Moutinho S. Third time’s the charm? Brazil scales back efficacy claims for COVID-19 vaccine from China. Science. January 12, 2021 (https://www.sciencemag.org/news/2021/01/third-time-s-charm-brazil-scales-back-efficacy-claims-covid-19-vaccine-china).
26. Baraniuk C. What do we know about China’s covid-19 vaccines? BMJ 2021;373:n912.
27. Sinovac. Summary of clinical trial data of Sinovac’s COVID-19 vaccine (CoronaVac). 2021. (In Chinese) (http://www.sinovaccbio.com/?optionid=754&auto_id=927).
28. Tantrivedi MD, Doğanay HL, Akova M, et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 2021 July 8 (Epub ahead of print).
29. Hitchings MDT, Ranzani OT, Scarumuzzini Torres MS, et al. Effectiveness of CoronaVac in the setting of high SARS-CoV-2 P.1 variant transmission in Brazil: a test-negative case-control study. May 1, 2021 (https://www.medrxiv.org/content/10.1101/2021.04.07.2125508tv2), preprint.
30. Shepherd A. Covid-19: Chile joins top five countries in world vaccination league. BMJ 2021;372:803-12.
31. Bhatia A, Undurraga EA, Araos R. Tool for estimating the probability of having COVID-19 with one or more negative RT-PCR results. January 24, 2021 (https://www.medrxiv.org/content/10.1101/2021.01.16.21249939v1), preprint.
32. Lipsitch M, Jha A, Simonsen L. Observational studies and the difficult quest for causality: lessons from vaccine effectiveness and impact studies. Int J Epidemiol 2016;45:2060-74.
33. Trogen B, Caplan A. Risk compensation and COVID-19 vaccines. Ann Intern Med 2021;174:858-9.
34. Ministério da Saúde. Informe técnico: campanha nacional de vacinação contra a Covid-19. January 19, 2021 (https://www.conasems.org.br/wp-content/uploads/2021/01/1611078163793_Informe_Tecnico_da_Campanha_Nacional_de_Vacinacao_contra_a_Covid-19-1.pdf).