Fabrication of (Ba,Na)Fe$_2$As$_2$ round wires and tapes using HIP process

D Miyawaki1, S Pyon1, S Awaji2, H Kajitani3, N Koizumi3, H Kito4, S Ishida4, Y Yoshida4 and T Tamegai1

1Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

2High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

3Naka Fusion Institute, National Institutes for Quantum and Radiological Science and Technology (QST), Naka, Ibaraki 311-0193, Japan

4National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan

Email:miyadai883@gmail.com

Abstract. We fabricated round wires and tapes of (Ba,Na)Fe$_2$As$_2$ using hot isostatic press (HIP) process, and evaluated their critical current density (J_c). Polycrystalline powders were synthesized by two methods by mixing raw materials in a planetary ball mill or by using pre-synthesized precursors (BaAs, NaAs, Fe$_2$As). Transport J_c of best wire reached 95 kA/cm2 under self-field and 40 kA/cm2 at 100 kOe. We also fabricated HIP tapes using the same powder and discuss their detailed characterizations. In particular, X-ray diffraction is extensively applied to the evaluation of the degree of texturing of the tape, and discuss its relationship with J_c.

1. Introduction

The discovery of iron-based superconductors (IBSs) in 2008 has prompted a great interest in their application potentiality [1]. Soon after the discovery, several types of high temperature superconductors in IBSs were discovered. IBSs are superconductors with high critical temperature T_c, high critical magnetic field H_{c2}, small anisotropy γ, and large critical current density J_c under high magnetic fields. Among them, superconducting wires and tapes have been fabricated mainly by using (AE,K)Fe$_2$As$_2$ materials (AE = Ba or Sr), so called ‘122-type’ [2-8], because of their high H_{c2} [9, 10] and low γ(-2) [10, 11], as well as their high T_c (~36-38 K) [12, 13]. They are expected to be put into practical applications such as wires for high-field magnets. In particular, superconducting tapes and wires using K-doped 122-types ((Ba,K)Fe$_2$As$_2$ and (Sr,K)Fe$_2$As$_2$) have been extensively studied. Recently, we have reported fabrication and characterizations of (Sr,Na)Fe$_2$As$_2$ tapes, and demonstrated that J_c in this system is 47 kA/cm2 even at 100 kOe at 4.2 K [14]. Very recently, J_c in (Ba,Na)Fe$_2$As$_2$ HIP round wire processed using hot isostatic press (HIP) process reaches 150 and 20 kA/cm2 at self-
field and 100 kOe, respectively [15-17]. These values are more than fifty percent of the largest J_c in (Ba,K)Fe$_2$As$_2$ round wires, demonstrating the excellent performance of (Ba,Na)Fe$_2$As$_2$ wires.

In this study, we prepared high-quality polycrystalline powders of Ba$_{0.6}$Na$_{0.4}$Fe$_2$As$_2$ by two methods, and fabricated HIP round wires and tapes. The maximum transport J_c at 4.2 K and 100 kOe of (Ba,Na)Fe$_2$As$_2$ wire reached 40 kA/cm2, which is the largest among all IBS round wires. The maximum magnetic J_c at 4.2 K and 40 kOe of (Ba,Na)Fe$_2$As$_2$ tape reached 66 kA/cm2.

2. Experiments
Superconducting wires of (Ba,Na)Fe$_2$As$_2$ were fabricated by the ex situ powder-in-tube (PIT) method. In the present study, polycrystalline powders of (Ba,Na)Fe$_2$As$_2$ were prepared by two ways of solid-state reaction. In the first process, Ba pieces, Na ingots, Fe powder, and As pieces were used as starting materials. In order to compensate the loss of elements, the starting mixture contained 15% excess Na and 5% excess As. After filing Ba pieces and crushing As pieces, starting materials were mixed in an argon atmosphere more than 10 h using a ball-milling machine and densely packed into a niobium tube. The niobium tube was then put into a stainless steel tube and sealed in argon-filled glove box for heat treatment at 800, 850, and 900 °C for 30 h. It was then ground into powder using an agate mortar in argon-filled glove box. We define the powder, which was heated at 850 °C, as the #1 powder. In the second process, starting materials (BaAs, NaAs, Fe$_2$As) synthesized by a method reported in our work [17] were ground into powder with an agate mortar and pestle. The prepared precursors were weighed to a composition of Ba$_3$As : Na$_3$As : Fe$_2$As = 0.6 : (0.4 + α) : 1, and thoroughly mixed. Here, α (= 0.1) is additional NaAs content to compensate the loss of Na and As during the synthesis. Polycrystalline samples were synthesized at 820 °C for 24 h in an argon-filled stainless steel tube. The obtained powder is designated as the #2 powder.

The obtained two kinds powders were ground and filled into silver tubes (o.d.: 4.5 mm, i.d.: 3 mm). Ag tubes filled with #1 or #2 powders were cold drawn using dies with circular holes, or swaged using a rotary swaging machine, respectively. Both wires were formed into a round shape with a diameter of ~1.2 mm. After cutting them into short pieces, one of the pieces was put into 1/8 inch copper tube and redrawn into a square shape with a groove roller down to a diagonal dimension of 1.2 mm. Furthermore, a part of the wire was deformed into a tape form with 0.3 - 0.5 mm thickness. After the drawing process, both ends of the wire or tape were sealed using an arc welder. The sealed wires and tapes were sintered using the HIP technique. Some wires were heated for 0.5 h at 650-740 °C in an argon atmosphere under the pressures of 9 MPa. Other wires and tapes were heated for 4 h at 700 °C in an argon atmosphere under pressures of 175 MPa for wires and 200 MPa for tapes.

Magnetic measurements were conducted using a commercial SQUID magnetometer (MPMS-XL5, Quantum Design). Transport J_c was measured at 4.2 K by the standard four-probe method in magnetic fields up to 140 kOe. Powder X-ray diffraction (XRD) measurements were conducted using Cu-Kα radiation (Smartlab, Rigaku).

3. Results and discussion

3.1 Polycrystalline powders synthesized by two methods
Figure 1(a) shows M-T measurements of both #1 and #2 Ba$_{0.6}$Na$_{0.4}$Fe$_2$As$_2$ polycrystalline powders. Although the drop of the magnetization of the #1 powder is slightly sharper than that of the #2 powder, reasonably sharp transitions indicate that the qualities of both powders are higher than that of previous study [15-17]. Figure 1(b) shows XRD patterns of #1 and #2 powders. Peaks of (Ba,Na)Fe$_2$As$_2$ phase are strong and there are no peaks of impurities such as FeAs or Fe$_2$As.
polycrystalline powders #1 and #2. (b) X-ray diffraction patterns of Ba$_{0.6}$Na$_{0.4}$Fe$_2$As$_2$ polycrystalline powders #1 and #2.

3.2 HIP round wires
We fabricated HIP round wires using the #2 powder at 9 MPa for 0.5 h at differing temperatures (600 ~ 740 °C) to optimize the heating temperature during the HIP process. Magnetic J_c as a function of magnetic field for wires sintered at different temperatures is shown in Fig. 2(a). Figure 2 (b) shows magnetic J_c under self-field and at 40 kOe of HIP wires as functions of the sintering temperature. Although J_c becomes higher as heating temperature becomes high up to 700 °C, it declines above 700 °C. So, we can conclude that the optimal sintering temperature during the HIP process for Ba$_{0.6}$Na$_{0.4}$Fe$_2$As$_2$ Ag/Cu double sheath wire is 700 °C.

Figure 2. (a) Magnetic field dependence of magnetic J_c at 4.2 K of HIP round wires sintered at 9 MPa for 0.5 h between 600 °C and 740 °C. (b) Magnetic J_c under self-field and at 40 kOe as functions of sintering temperature during the HIP process.

Figure 3 shows the transport J_c at 4.2 K of two Ba$_{0.6}$Na$_{0.4}$Fe$_2$As$_2$ round wires with Ag/Cu double sheath processed at 700 °C for 4 h at 175 MPa. The transport J_c of the wire #1 is 95 kA/cm2 and 40 kA/cm2 under self-field and at 100 kOe, respectively. It is noteworthy that the value of J_c at 100 kOe of 40 kA/cm2 is larger than that of the best (Ba,K)Fe$_2$As$_2$ HIP round wire [18]. On the other hand, J_c at
100 kOe of the wire #2 is lower than that of #1, while J_c under self-field is slightly larger. More detailed characterizations of these wires will be reported in a separate publication [19].

![Graph](image1)

Figure 3. Magnetic field dependence of transport J_c at 4.2 K for the Ba$_{0.6}$Na$_{0.4}$Fe$_2$As$_2$ HIP wires #1 and #2.

3.3 HIP tapes

Figure 4 shows the magnetic field dependence of magnetic J_c of #1 and #2 HIP tapes with different thicknesses. The magnetic J_c of both #1 and #2 tapes becomes large when the thickness of the tape becomes thinner. Among five kinds of tapes, the magnetic J_c of the #1 tape with 0.3 mm thickness is the largest (510 kA/cm2) under self-field, while J_c of the #2 tape of 0.3 mm thickness is the largest (66 kA/cm2) at 40 kOe. It should be noted that the magnetic J_c under self-field of our HIP tapes is much larger than that of cold pressed (Ba,Na)Fe$_2$As$_2$ tape (50 kA/cm2 under self-field) [20]. Even at a field of 40 kOe, the magnetic J_c of our HIP tape is larger than the cold pressed tape (43 kA/cm2).

![Graph](image2)

Figure 4. Magnetic field dependence of the magnetic J_c of #1 and #2 HIP tapes with different thicknesses.
Figure 5 (a) and (b) show X-ray diffraction patterns of #1 and #2 tapes, respectively, with different thicknesses. It is obvious that all the tapes contain very few impurities. As a measure of texturing of the tape, we define r as the ratio of the intensity of (103) and (002) peaks, $r = I_{(002)}/I_{(103)}$. r is 0.27 and 0.34 for the #1 tape with thicknesses of 0.3 mm and 0.4 mm, respectively. For the #2 tape, r is 0.68, 0.56, and 0.44 with the thicknesses of 0.3, 0.4, and 0.5 mm, respectively.

Figure 5. X-ray diffraction patterns of (a) #1 and (b) #2 HIP tapes with different thicknesses.

For the #1 tape, however, the relation between r and J_c is not consistent and r is smaller than that of the #2 tape. In spite of better performance of the #1 HIP wire, the #1 tape may have some problems which is not seen in the #2 tape. For the #2 tape, J_c becomes systematically larger as r becomes larger. On the other hand, for the #1 tape, r is smaller than that for the #2 tape with the same thickness. In addition, r becomes smaller in the thinner tape with larger magnetic J_c in the #1 tapes. It clearly indicates that there is another factor governing the value of J_c in the tape. Further studies are necessary including the shape and orientation of the core in the tape, which is known to be nonideal.

4. Summary
We fabricated round wires and tapes of Ba$_{0.6}$Na$_{0.4}$Fe$_2$As$_2$ using powder-in-tube technique and HIP treatment. We succeeded in preparing high-quality polycrystalline powders of Ba$_{0.6}$Na$_{0.4}$Fe$_2$As$_2$ by two methods. We optimized sintering temperature during the HIP process of the wire. The maximum transport J_c at 4.2 K and 100 kOe of (Ba,Na)Fe$_2$As$_2$ wire reached 40 kA/cm2, which is the largest
among all IBS round wires. The maximum magnetic J_c at 4.2 K and 40 kOe of (Ba,Na)Fe$_2$As$_2$ tape reached 66 kA/cm2.

References
[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2] Ma Y W, Gao Z S, Qi Y P, Zhang X P, Wang L, Zhang Z Y and Wang D L 2009 Physica C 469 651
[3] Togano K, Matsumoto A and Kumakura H 2011 Appl. Phys. Express 4 043101
[4] Pyon S, Tsuchiya Y, Inoue H, Kajitani H, Koizumi N, Awaji S, Watanabe K and Tamegai T 2014 Supercond. Sci. Technol. 27 095002
[5] Pyon S, Yamasaki Y, Kajitani H, Koizumi N, Tsuchiya Y, Awaji S, Watanabe K and Tamegai T 2015 Supercond. Sci. Technol. 28 125014
[6] Weiss J D, Tarantini C, Jiang J, Kametani F, Polyanskii A A, Larbalestier D C and Hellstrom E 2012 Nat. Mater. 11 682
[7] Pyon S, Suwa T, Park A, Kajitani H, Koizumi N, Tsuchiya Y, Awaji S, Watanabe K and Tamegai T 2016 Supercond. Sci. Technol. 29 115002
[8] Tamegai T, Suwa T, Pyon S, Kajitani H, Takano K, Koizumi N, Awaji S and Watanabe K 2017 IOP Conf. Ser. Mater. Sci. Eng. 279 012028
[9] Putti M et al. 2010 Supercond. Sci. Technol. 23 034003
[10] Wang Z S, Luo H Q, Ren C and Wen H H 2008 Phys. Rev. B 78 140501R
[11] Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L and Wang N L 2009 Nature 457 565
[12] Rotter M M, Tegel M, Johrendt D, Schellenberg I, Hermes W and Pöttgen R 2008 Phys. Rev. B 78 020503
[13] Sasmal K, Lv B, Lorenz B, Guloy A M, Chen F, Xue Y Y and Chu C W 2008 Phys. Rev. Lett. 101 107007
[14] Suwa T, Pyon S, Tamegai T, and Awaji S 2018 Appl. Phys. Express 11 063101
[15] Tamegai T, Suwa T, Miyawaki D, Pyon S, Takano K, Kajitani H, Koizumi N, and Awaji S 2019 IEEE Trans. Appl. Supercond. 29 7300605
[16] Miyawaki D, Pyon S, Tamegai T, Awaji T, Takano K, Kajitani H, and Koizumi N 2019 J. Phys.: Conf. Ser. 1293 012043.
[17] Miyawaki D, Pyon S, Suwa T, Takano K, Kajitani H, Koizumi N, Awaji S and Tamegai T to be published in Physica C
[18] Pyon S, Suwa T, Tamegai T, Takano K, Kajitani H, Koizumi N, Awaji S, Zhou N, and Shi Z X 2018 Supercond. Sci. Technol. 31 055016.
[19] Pyon S, Miyawaki D, Tamegai T, Awaji S, Kito H, Ishida S, Yoshida Y submitted to Supercond. Sci. Technol.
[20] Imai S, Itou S, Ishida S, Tsuchiya T, Iyo A, Eisaki H, Matsuzaki K, Nishio T, and Yoshida Y 2019 Sci. Rep. 9 13064.