The influence of the limit stress value on the sublimation rate during the dry ice densification process

J Górecki, A Fierek, K Talaśka and K Wałęsa

Poznan University of Technology, Chair of Basic Machine Design, Piotrowo 3, 61-138 Poznan, Poland

E-mail: jan.gorecki@put.poznan.pl

Abstract. The article presents the results of research on the influence of limit stress of the densification process on sublimation of dry ice during the forming process in piston technology. The research concerns the process of agglomeration of waste material in fragmented form, obtained as a result of the crystallization process of liquid carbon dioxide. The material is characterized by low temperature and sublimation under ambient conditions. During the research, the focus was on determining the influence of the limit value of densification stress on the value of the material efficiency factor of the process. In previous studies, it was observed that the weight of the product in the form of pellets is significantly smaller than the fragmented dry ice dispensed to the densification chamber. In order to improve the efficiency of the process, tests were carried out to determine the characteristics describing its change in function of the limit value of the densification stress.

1. Introduction

Today’s economy puts more emphasis on the management of waste material from manufacturing processes. One of such materials is carbon dioxide, which is generated in large amounts during the manufacturing of ammonia [1, 2]. However, due to the amount of recovered material, manufacturing plants cannot utilize it entirely. Therefore, it is compressed and liquefied to facilitate storage and transportation. The material is delivered to interested recipients in this form [3, 4].

Due to adiabatic transformation, the liquid material turns to solid. In this form, carbon dioxide is characterized by own temperature of -78.5 °C and sublimates under atmospheric conditions [5–9]. Due to such peculiar characteristics, the material received the common name of dry ice. It is widely employed in abrasive surface cleaning processes [10–14] and in transportation of materials in low temperatures [15, 16].

As a result of crystallization, a fragmented material undergoing intensive sublimation is obtained. In many circumstances, this prevents effective utilization. In order to slow down the sublimation process, the material is agglomerated to reduce the surface of the phase transition. It is possible by utilizing specialized machinery adapted to this task [5, 11].

Dry ice compaction is usually carried out using piston-based technique and single and multi-channel dies. An example working system of the compaction machine is illustrated in figure 1.
The working system comprises of the working chamber (1) inside which the moving compacting piston is placed (2). As a result of motion of the compacting piston at section length L the space taken up by compacted dry ice is reduced. Due to resistance to the forced movement related to the converging shape of the die (3) the material is compressed. The density of deposited material increases until it balances against the force applied to the piston \(F_T \) and resistance force \(F_{OP} \) resulting from forcing the material through the die channels. The limit density value of agglomerated dry ice should be equal to \(1.6 \text{ g cm}^{-3} \), which is achieved at compaction stress of at least 14 MPa [11]. Higher compaction stress limit value does not affect the density value, therefore subject literature indicates that this is the effective limit value. The process, when implemented under industrial conditions, is characterized by material usage coefficient of approx. 0.5. It is interpreted as the product of weight of the final product and the raw material used in the manufacturing. This parameter value has a material influence on the cost-efficiency of the dry ice pellet manufacturing process, therefore there are devices available on the market used to increase it via repeated compression of CO\(_2\) in gaseous form. The final value of the effectiveness coefficient is influenced, among others, by the parameters of 2 processes performed in the machine, e.g. crystallization of dry ice and its densification.

Based on own studies, it was observed that machines employed in the described process often use dies and technological parameters which significantly exceed the effective limit value of yield stress. No information was found in subject literature regarding the influence of the limit value of densification stress on the efficiency parameter of the dry ice agglomeration process. The results of such studies can be employed for works related to the optimization of the process as well as the geometrical parameters of multi-channel dies.

Available subject literature demonstrates a high degree of interest in works aiming to study and develop knowledge about process parameters which are focused on the application of nonclassical materials and physical parameters of these materials [17–30].

2. The study methodology

Studies on the influence of limit value of densification stress were performed in accordance with the methodology designed in literature [11, 31]. To this end, a special testing station was employed as illustrated in figure 2.

The main goal of the examination was to determine the characteristic of the value change of the process material efficiency indicator \(\delta_m \) as a limit function of densification stress value \(\sigma_z \). To this end, the indicated methodology was supplemented to include dry ice weight measurement before \(m_0 \) and after \(m_1 \) the compaction process, which allows to determine the value of \(\delta_m \) using the formula:

\[
\delta_m = \frac{m_1}{m_0}
\] (1)

At the beginning of each test, a measured amount of fragmented dry ice \(m_0 \) was placed in the densification chamber of testing station 1. Next, the testing head with compression piston 3 was placed
between the grips 7 of the MTS Insight 50 kN durometer. After taring the durometer, the compacting piston 3 was moved at constant speed \(5 \text{ mm s}^{-1}\), and as a result the material was compressed until the value of force applied to the compacting piston \(F_T\) was balanced against the resistance force \(F_{OP}\) resulting from the geometrical parameters of the die and weight of the material \(m_0\) placed in the densification chamber 1. After the force values were balanced, the material was forced through the die channel 4. During compaction of the material, signals from force and displacement sensors were recorded at 100 Hz sampling frequency.

![Figure 2](image)

Figure 2. Measuring assembly: a) grips of durometer including the testing head and right angle jig, b) testing head cross-section; 1 – densification chamber, 2 – base, 3 – piston, 4 – multi-channel die, 5 – spacer ring, 6 – right angle jig, 7 – grips [3].

After compacting the material, measurement was taken for the compacted carbon dioxide in the chamber of the head base 2, the value was equal to the material weight after the compaction process \(m_f\).

The examination was performed for 3 multi-channel dies with different parameters, as provided in table 1 with key provided at figure 3.

	\(d\) (mm)	\(a\) (mm)	\(b\) (mm)	\(\alpha\) (°)	\(n\)
MCD1	3	3	15	10	61
MCD2	3	6	12	10	37
MCD3	4.5	3	15	10	37
Figure 3. Geometrical parameters of the multi-channel die: a) front view of forming die layout, b) forming channel; 1 – conical section of the forming die, 2 – cylindrical section of the forming die, α – angle of convergence of the conical section, l_1 – length of the conical section, d – diameter of the cylindrical section, l_2 – length of the cylindrical section [3].

In order to alter the value of densification stress σ_z during individual examinations the weight of fragmented dry ice introduced into the densification chamber before compression m_0 was changed. Study results available in literature provide the dependence between the stress value and the volume of compacted dry ice in the densification chamber [32]. Based on the above, the described examination was carried out for 4 values of m_0, presented in table 2.

The examination was carried out in 3 repetitions of the same measuring parameters of each die.

Table 2. m_0 values during examination.

No.	1	2	3	4
m_0 (g)	30	20	15	10

3. Research results

Based on measured results, the parameter δ_m value change was determined for different values of σ_z. Because of the fact that standard deviation value for the parameter δ_m did not exceed the value 0.038, it was assumed that the correct result estimator is the average value. For the purpose of approximation of the function describing the graph line of the studied characteristics, a linear function was used as the correlation coefficient value was not lower than 0.9, in every analyzed case.

The characteristics presented in figure 4 show the change in value δ_m^{AVR} as a function of limit value of densification stress σ_z^{AVR}, for 3 multi-channel dies used in the examination, where during the measurement of limit densification stress the initial weight of dry ice m_0 was changed.
The illustrated characteristics demonstrate that the average value of the δ_m^{AVR} coefficient increases linearly together with the increase in the value of limit densification stress as a result of the change in the dosed material in the densification chamber, regardless of the die type used in the examination.

Based on the data registered during the examination, the parameter to describe the variance in δ_m^{AVR} was established as a function of the value of limit densification stress (figure 5), which varied as a result of use of multi-channel dies with different geometrical properties.

The graph line of the examined characteristics indicates that the average value of the δ_m coefficient changes linearly together with the increase of the limit value of densification stress. This is caused by the use of dies with different value of resistance force F_{OP}, with the same dosed weight of material into the densification chamber of the testing station.

4. Conclusions
The results of the study provided above allow to formulate the following conclusions:

- the decrease in m_0 value causes a decrease in the value of δ_m coefficient, which is disadvantageous from the standpoint of efficiency of utilization of liquid CO$_2$;
- the decrease in limit densification stress σ_z, as a result of utilizing a die with suitable geometrical parameters causes an increase in the value of the δ_m coefficient, which is beneficial for the efficiency of utilization of liquid CO$_2$.
The analysis of the formulated conclusions indicates that the value of \(\delta_m \) coefficient can be increased as it is advantageous from the standpoint of efficient utilization of liquid \(\text{CO}_2 \) in the pellet manufacturing process. This requires designing multi-channel dies with geometrical parameters adapted to the parameters of the utilized dry ice agglomeration process. Furthermore, the conclusions indicate that it is not possible to propose a universal design of the multi-channel die which would be adapted to different geometrical parameters of the working systems and initial weight \(m_0 \) of the agglomerated dry ice.

5. References

[1] Górecki J, Malujda I, Talaśka K, Wilczyński D and Wojtkowiak D 2018 Influence of geometrical parameters of convergent sleeve on the value of limit stress MATEC Web of Conferences 157 05006

[2] Spur G, Uhlmann E and Elbing F 1999 Deburring with \(\text{CO}_2 \) Snow Blasting (Analysis, Control and Removal) ed J Aurich and D Dornfelds (Berlin Heidelberg: Springer)

[3] Górecki J, Malujda I, and Wilczyński D 2019 The influence of geometrical parameters of the forming channel on the boundary value of the axial force in the agglomeration process of dry ice MATEC Web of Conferences 254 05001

[4] Mazzoldi A, Hill T and Colls J 2008 \(\text{CO}_2 \) transportation for carbon capture and storage: Sublimation of carbon dioxide from a dry ice bank International Journal of Greenhouse Gas Control 2 210–2018

[5] Liu Y, Maruyama H and Matusaka S 2010 Agglomeration process of dry ice particles produced by expanding liquid carbon dioxide Advanced Powder Technology 21 652–657

[6] Górecki J, Malujda I, Talaśka K, Kukla M and Tarkowski P 2015 Static compression tests of concentrated crystallized carbon dioxide Applied Mechanics and Mechatronics 816 490–495

[7] Chen L and Zhang X 2014 A review study of solid-gas sublimation flow refrigeration: Form basic mechanism to applications International Journal of Refrigeration 40 61–83

[8] Liu Y, Calvert G, Hare C, Ghadiri M and Matusaka S 2012 Size measurement of dry ice particles produced form liquid carbon dioxide Journal of Aerosol Science 48 1–9

[9] Talaśka K 2018 Study of Research and Modelling of Compaction Processes of Powder and Shredded Materials (Poznan: Poznan University of Technology)

[10] Dong S, Song B, Hansz B, Liao H L and Coddet C 2012 Modelling of dry ice blasting and its application in thermal spray Material Research Innovations 16 61–66

[11] Górecki J, Malujda I, Talaśka K, Kukla M and Tarkowski P 2016 Influence of the value of limit densification stress on the quality of pellets during the agglomeration process of \(\text{CO}_2 \) Procedia Engineering 136 269–274

[12] Li M, Liu W, Qing X, Yu Y, Liu L, Tang Z, Wang H, Dong Y and Zhang H 2016 Feasibility study of a new approach to removal of paint coatings in remanufacturing Journal of Materials Processing Technology 234 102–112

[13] Mikolajczak A, Krawczyk P, Stępień M and Badya K 2018 Preliminary specification of the dry ice blasting converging-divergent nozzle parameters basing on the standard (analytical) methods Rynek Energii 4 91–96

[14] Witte A, Bobal M, David R, Blattler B, Schoder D and Rossmanith P 2017 Investigation of the potential of dry ice blasting for cleaning and disinfection in the food production environment LWT - Food Science and Technology 75 735–741

[15] Górecki J, Malujda I, Wilczyński D and Wojtkiak D 2019 Influence of the face surface shape of the piston on the limit value of compaction stress in the process of dry ice agglomeration MATEC Web of Conferences 254 06001

[16] Yamaguchi H, Niu X, Sekimoto K and Neksa P 2011 Investigation of dry ice blockage in an ultra-low temperature cascade refrigeration system using \(\text{CO}_2 \) as a working fluid International Journal of Refrigeration 34 466–475
[17] Dudziak M, Kołodziej A, Domek G and Talaśka K 2017 Multi-angularity – identification of parameters and compatibility conditions of the axisymmetric connection with form deviations *Procedia Engineering* **177** 431–438

[18] Kukla M, Wieczorek B, Warguła Ł and Berdychowski M 2019 An analytical model of the demand for propulsion torque during manual wheelchair propelling *Disabil Rehab Assist Technol.* doi: 10.1080/17483107.2019.1629109

[19] Kukla M, Górecki J, Malujda I, Talaśka K and Tarkowski P 2017 The determination of mechanical properties of magnetorheological elastomers (MREs) *Procedia Engineering* **177** 324–330

[20] Talaśka K 2017 Analysis of the energy efficiency of the shredded wood material densification process *Procedia Engineering* **177** 352–357

[21] Wałęsa K, Malujda I and Talaśka K 2018 Butt welding of round drive belts *Acta Mechanica et Automatica* **12** 115–126

[22] Wałęsa K, Malujda I, Górecki J and Wilczyński D 2019 The temperature distribution during heating in hot plate welding process *MATEC Web of Conferences* **254** 02033

[23] Wałęsa K, Mysiukiewicz O, Pietrzak M, Górecki J and Wilczyński D 2019 Preliminary research of the thermomechanical properties of the round drive belts *MATEC Web of Conferences* **254** 06007

[24] Wilczyński D, Malujda I, Talaśka K and Długi R 2017 The study of mechanical properties of natural polymers in the compacting process *Procedia Engineering* **177** 411–418

[25] Wilczyński D, Berdychowski M, Wojtkowiak D, Górecki J and Wałęsa K 2019 Experimental and numerical tests of the compaction process of loose material in the form of sawdust *MATEC Web of Conferences* **254** 02042

[26] Wilczyński D, Malujda I, Górecki J, and Domek G 2019 Experimental research on the process of cutting transport belts *MATEC Web of Conferences* **254** 05014

[27] Wilczyński D, Malujda I, Górecki J and Jankowiak P 2019 Research on the process of biomass compaction in the form of straw *MATEC Web of Conferences* **254** 05015

[28] Wojtkowiak D and Talaśka K 2019 Determination of the effective geometrical features of the piercing punch for polymer composite belts *The International Journal of Advanced Manufacturing Technology* **104** 315–332

[29] Wojtkowiak D, Talaśka K, Malujda I and Domek G 2018 Estimation of the perforation force for polymer composite conveyor belts taking into consideration the shape of the piercing punch *The International Journal of Advanced Manufacturing Technology* **98** 2539–2561

[30] Wojtkowiak D and Talaśka K 2019 The influence of the piercing punch profile on the stress distribution on its cutting edge *MATEC Web of Conferences* **254** 02001

[31] Górecki J, Malujda I and Talaśka K 2013 Research of densification solidified carbon dioxide *Journal of Mechanical and Transportation Engineering* **4** 5

[32] Górecki J, Malujda I, Talaśka K, Kukla M and Tarkowski P 2017 Influence of the compression length on the ultimate stress in the process of mechanical agglomeration of dry ice *Procedia Engineering* **177** 363–368