A role for an HTLV-1 vaccine?

Lee Ratner*

Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, United States

HTLV-1 is a global infection with 5-20 million infected individuals. Although only a minority of infected individuals develop myelopathy, lymphoproliferative malignancy, or inflammatory disorders, infection is associated with immunosuppression and shorter survival. Transmission of HTLV-1 is through contaminated blood or needles, mother-to-child exposure through breastfeeding, and sexual intercourse. HTLV-1 is a delta retrovirus that expresses immunogenic Gag, Envelope, TAX, and Hbz proteins. Neutralizing antibodies have been identified directed against the surface envelope protein, and cytotoxic T-cell epitopes within TAX have been characterized. Thus far, there have been few investigations of vaccines directed against each of these proteins, with limited responses, thus far. However, with new technologies developed in the last few years, a renewed investigation is warranted in search for a safe and effective HTLV-1 vaccine.

KEYWORDS
HTLV-1, TAX, envelope (E), glycoprotein (GP), vaccine, neutralizing abs, cytotoxic T cell

HTLV-1

HTLV-1 is prevalent in many parts of the world, including Central & South America, Caribbean Islands, Africa, northeast Iran, southern Japan, Melanesia, Australia, where endemic rates are 5-10%, but in some isolated communities endemic rates as high as 50% have been identified (1, 2). However, several large and highly populated regions in India and North and East Africa have not been screened. In the US, the prevalence of HTLV infection is 0.1-0.2% (3). HTLV-1 strains are highly conserved with <2% overall divergence for cosmopolitan strains (HTLV-1a) from most areas of the world, with up to 10% divergence with strains from Australia and Melanesia (HTLV-1c)(Figure 1) (4). Strains from central Africa (HTLV-1b, d-g) are somewhat more divergent than the HTLV-1a strains.

Diseases caused by HTLV-1 include an aggressive CD4+ lymphoproliferative malignancy, designated adult T-cell leukemia lymphoma (ATLL) and spastic paraparesis, known as HTLV-1 myelopathy (HAM) or tropical spastic paraparesis (TSP) (5). Although, only 5-10% of infected individuals develop these disorders, HTLV-1 is associated with many other clinical inflammatory disorders, immunosuppression, and shortened survival (6). Sequence differences in the virus do not correlate with disease development (7). HTLV-1 causes a lifelong persistent infection,
which is never truly silent (8). This led to an increased focus by the WHO on HTLV epidemiology and prevention strategies, which included a recommendation to develop a global strategy for the elimination of HTLV-1 (9).

Transmission of HTLV-1 is through contaminated blood or needles, sexual intercourse, and breast feeding (10). Rarely, HTLV is transmitted through ritual scarification practices (11). Zoonotic transmission through severe bites from simian T-cell leukemia virus type 1 infected non-human primates have also occurred among hunters in central Africa (12). Transmission of HTLV-1 from mother-to-child can be reduced by screening and education, which is a nationwide strategy in Japan (13). Horizontal transmission of HTLV-1, by sexual intercourse or blood transfusion is also preventable (14). An additional emerging concern is HTLV-1 infection upon organ transplantation (15). Attempts to facilitate screening remain to be developed.

After transmission, a balance between virus replication, expansion of infected cells, and immune response to the virus leads to the establishment of a proviral load “set point” after HTLV-1 acquisition. However, there have been few studies of acute HTLV-1 infection aimed at assessing the determinants and kinetics of the set point. In a study of three individuals who acquired HTLV-1 infection after organ transplantation, the proviral load set point was reached within 6 weeks (15). Thus, therapeutic approaches to infection prophylaxis have a limited time window in which to act. Nevertheless, it remains unclear whether transmission through other routes establishes the proviral set point with similar kinetics.

Cellular transfer of virus occurs more commonly via cell-to-cell contacts than via free virus particles (16). Two types of cell-cell contacts have been described to be critical for HTLV-1 transmission, tight junctions and cellular conduits (17). Non-exclusive mechanisms of virus transmission at cell-cell contacts include polarized budding into synaptic clefts and cell surface transfer of viral biofilms at virological synapses (18, 19). In contrast to CD4+ T-cells, dendritic cells can be infected with cell-free virus and, to a greater extent, via viral biofilms (20).

HTLV-1 is a member of the δ retrovirus family, which also includes HTLV-2 and bovine leukemia virus (BLV) (21). HTLV-2 is not clearly associated with disease, whereas BLV is a cause of B cell lymphoproliferative disorders in cattle. HTLV-1 encodes classical retrovirus structural proteins from group-specific antigen (gag) and envelope (env) genes, and enzymes from the protease (pr) and polymerase (pol) genes that encode the viral protease, reverse transcriptase (RT), and integrase (IN). Virus infection is mediated by a receptor complex on the cell surface and the virus particle is taken into cells by membrane fusion.
Virus uncoating activates RT to copy the two copies of the plus-strand viral RNA genome into a dsDNA copy that is integrated into cellular DNA by the viral IN. Transcription is mediated by cellular RNA polymerase II, and viral RNAs may be spliced or unspliced prior to export from the nucleus. Translation produces viral proteins, including the Gag, Gag-Pr, and Gag-Pr-Pol polyprotein precursors which are processed into individual components during virus budding. Envelope is synthesized and processed in the reticulonendothelial-Golgi system, transported to the plasma membrane, and incorporated into the budding virus. Regulatory proteins, are encoded from multiple spliced RNAs and include the transactivator protein, TAX, the regulator of splicing and nuclear export, REX, the helix zipper protein, HBZ, as well as proteins designated p12, p27, and p30 that are presumed to regulate virus replication and/or pathogenesis.

HTLV-1 encodes two oncoproteins, TAX and HBZ (22–24). TAX promotes cytoplasmic signaling through various receptors and causes abnormal cell cycle regulation, genetic instability, and inhibition of DNA repair and apoptosis (25). HBZ counteracts the functions of TAX promoting a persistent latent infection (26). HBZ regulates signaling pathways important for inflammation, transcription, apoptosis, autophagy, histone methylation, and T-cell differentiation (27).

HTLV-1 envelope glycoprotein

The HTLV-1 env gene encodes the gp62, 488 amino acid envelope precursor glycoprotein which is cleaved by furin-like enzymes into a 20 amino acid (AA) signal peptide, a 292 amino acid gp45 surface envelope protein (SU) and a 176 amino acid gp21 transmembrane envelope protein (TM). SU has four asparagine (N)-linked glycosylation sites (AA 140, 222, 244, and 272; Figure 2), and TM has a single N-linked glycosylation site (AA 404), a disulfide bond (AA 393-400), and a S-palmitylated cysteine residue (AA 462). TM includes the fusion peptide (AA 313-333), and two coiled coil, heptad repeat (HR) domains (AA 341-387 and 397-429).

SU mediates infection by binding to cellular entry factors heparin sulfate proteoglycans (HSPG), glucose transporter 1 (GLUT-1), and neuropilin-1 (NRP-1) (28). Subsequent conformational changes include isomerization of a SU-TM intersubunit disulfide result in fusion of the viral and cellular membranes (29). Although the crystal structure for SU has not yet been determined, it has been proposed to contain two separate folding domains separated by a proline-rich linker peptide (PRR; Figure 2) (30). The N-terminal region, designated the receptor-binding domain (RBD) is necessary and sufficient for binding to GLUT-1. The C-terminal domain includes the binding site for HSPG.

Retroviral envelope proteins, like those of coronaviruses, arenaviruses, filoviruses, pneumoviruses, and orthomyxoviruses are class I fusion proteins (31). They are all type I single-pass trans-membrane proteins that form non-covalently linked homotrimers in their pre- and post-fusion conformations. The structural hallmark of class I fusion proteins is the parallel trimeric α-helical coiled-coil in the post-fusion C-terminal subunit (TM in the case of retroviruses). This long α-helix of the coiled coil contains the HR with non-polar amino acids at positions 1 and 4 of the repeats. The C-terminal portion of the α-helix runs antiparallel to the N-terminal portion along the grooves of the coiled-coil to complete the post-fusion hairpin, thereby making a trimeric postfusion six-helix bundle. Detailed structures are available for many of these proteins in each conformation. A common feature of these proteins is their dynamic conformational changes, presenting open and closed forms in equilibrium (32). There is a large body of research indicating that it is the closed form that is recognized by the known broadly neutralizing antibodies, whereas the epitopes exposed in the open form which do not bind these antibodies

Neutralizing anti-HTLV-1 antibodies

Polyclonal and monoclonal antibodies to HTLV-1 envelope proteins, including SU, have been demonstrated to neutralize HTLV-1 infection (33–36). Neutralizing antibodies were observed in HTLV-1 infected individuals, which can prevent infection (37–40). These antibodies may interfere with receptor or coreceptor recruitment, or prevent receptor-induced changes in SU conformation that are required to activate the fusogenic properties of envelope (41). Major neutralizing domains of SU have been mapped to 4 domains (AA 53-75, 88-107, 175-215, and 287-311, Figure 2) (35, 36, 42). Efficacy of neutralizing antibodies was demonstrated by passive transfer of anti-envelope antibodies which block blood-borne or milk-borne HTLV-1 infection of rabbits (43–47).

HTLV-1-specific cellular immunity

HTLV-1 infection elicits a strong CTL response (48). The frequency of HTLV-1-specific CTLs may be very high with up to 10% of circulating CD8+ T cells recognizing a single immunodominant CTL antigen target, TAX (49). The frequency of HTLV-1-specific CTLs is correlated with the HTLV-1 proviral load (50). This raised the hypothesis that HTLV-1-specific CTLs may fail to eradicate the virus, and may contribute to the inflammatory tissue damage with disease. presentation However, there is also evidence that CTL responses to HTLV-1 may be protective. Higher expression of CTL effector proteins is correlated with lower proviral load (51). In addition, the immunodominant TAX protein is subject to positive selection in vivo (52). Envelope-specific CTLs have also been detected, but are present at low frequencies (53, 54). T-cell
epitopes within envelope in HLA-A2-positive individuals were mapped to residues 175-183, 182-190, 239-247, 395-403, and 442-450 (55, 56). The lytic efficiency of the CD8+ T cell response, as measured by the fraction of HTLV-1-expressing cells eliminated per CD8+ cell per day, was found to be inversely correlated with both the proviral load and the rate of spontaneous proviral expression (57). However, ATLL patients have weak CTL responses to HTLV-1 antigens (58).

Vaccination against HTLV-1

Preventative vaccines are highly effective against a wide range of viral diseases, including cancer viruses, hepatitis B virus and human papilloma virus (59). There has also been a resurgence in therapeutic cancer vaccines (60), including malignancies caused by viruses (61), as well as non-viral cancers associated with production of neoantigens (62). However, most efforts focused on a vaccines for retroviruses have been concerned with HIV, and with very limited success, thus far (63). Nevertheless, an inactivated viral vaccine for feline leukemia virus has been developed that provides protection against heterologous strain infection (64). The vaccine did not prevent infection, but it did induce an antibody response and results in proviral loads more than 100-fold lower than challenged but non-vaccinated cats, that were detectable for a shorter time interval. A recombinant feline leukemia virus vaccine (PureVAX) is also commercially available, which utilizes a canary pox vector to express a mutated envelope, gag, and a truncated polymerase protein, resulting in 93% efficacy (65).

Several studies have evaluated vaccines against BLV (66). Inactivated BLV, crude lysates from persistently infected cell lines, peptide antigens, poxvirus-expressed BLV antigens, or DNA vaccines led to partial protection, with declining neutralizing antibody titers and poor stimulation of CTL responses. An attenuated BLV vaccine was made with deletions in TAX and the antisense accessory (G4) genes, resulting in a virus capable of very low levels of infectivity and replication, which is commercially available (67). Kazanji et al. tested a chimeric peptide vaccine composed of B- and T-cell epitopes of HTLV-1 (68). They identified high titer antibodies and a high frequency of interferon-γ-expressing cells against the envelope and TAX immunogens, but not against individual TAX peptides. After challenge, partial protection was achieved as evidenced by lower proviral loads in immunized compared to control animals. Studies with peptide immunization had previously been performed in rabbits by Takehara et al. (43). In that case, rabbits were vaccinated with a peptide corresponding to Env amino acids 175-196. Although pre-challenge sera from these rabbits showed high titers of anti-HTLV-1 Env antibodies, after challenge, virus was recovered from all rabbits. A highly attenuated poxvirus expressing the entire HTLV-1 envelope protein was used to immunize New Zealand white (NZW) rabbits (69). The animals were protected from HTLV-1 infection, but not protected upon re-challenge 5 months later with 10- to 100-fold greater infectious virus load. It was unclear...
whether the lack of protection to re-challenge was a result of being overwhelmed with a large dose of virus, or due to the presence of a viral variant that evaded the immune response. Hokada et al. also inoculated rabbits with a recombinant vaccinia virus expressing the HTLV-1 envelope gene (70). This vaccine elicited anti-envelope and antibodies, but neutralizing antibodies were not detected. In addition, this vaccine did not prevent infection.

Nakamura et al. immunized 4 cynomolgus monkeys with 4-6 doses of E. coli-produced HTLV-1 envelope protein (71). These animals were protected against infection, when challenged with a live HTLV-1 producing cell line, MT2. However, 2 monkeys inoculated with fewer doses did not produce antibodies that block HTLV-1 induced syncytium formation and were not protected against challenge with MT2 cells.

Ibuki et al. inoculated 2 cynomolgus monkeys with a recombinant vaccinia virus expressing the HTLV-1 envelope, and elicited neutralizing antibodies, and these animals were protected against infection (72). Kazanjí et al. tested several HTLV-1 vaccines in squirrel monkeys (73). These included attenuated vaccinia virus-derived HTLV-1 env and/or gag expression vectors. However, after 3 inoculations, only one of three animals was protected against infection. Since naked DNA has also been used to induce neutralizing antibodies against HTLV-1 envelope glycoproteins in mice (74, 75), Kazanjí et al. also incorporated this reagent in their studies (73). Priming animals with an env DNA vaccine followed by the recombinant vaccinia virus expressing env and gag resulted in protection of all three inoculated animals.

Kabirit et al. synthesized a multi-epitope chimeric protein with TAX, Env, and Gag immunodominant epitopes encapsulated in biodegradation poly(D,L-lactide-co-glycolide) nanoparticles (76). This preparation elicited antibody and cytokine responses in mice, but efficacy against infection was not reported. Humoral and cell-mediated immune response against the HTLV-1 envelope were detected in the protected animals.

A recombinant HTLV-1 glycoprotein protein vaccine was made against the HTLV-1c glycoprotein (77). This subunit vaccine utilized a molecular trimerization domain clamp to stabilize the prefusion conformation of the glycoprotein (78). This approach was previously used to stabilize influenza A hemagglutinins, using HIV-1-derived heptad regions. For the HTLV-1c envelope vaccine, the clamp was modified to negate production of anti-HIV-1 envelope antibodies. Use of several different adjuvants resulted in strong antigen-specific responses in mice.

MHC-I-bound HTLV-1 peptides have been identified which give rise to HTLV-1-specific CTLs in vivo (79). A therapeutic vaccine to activate TAX-specific CTLs was developed using TAX peptide-pulsed dendritic cells, resulting in favorable clinical outcomes in three ATLL patients (80, 81). These investigators also demonstrated that dendritic cells from peripheral blood mononuclear cells of a chronic ATLL patient evoked TAX-specific CTL-responses (82). However, since half of all ATLL patients lose the ability to express TAX, this approach may have limited utility (83). MacNamara et al. quantified the contribution of all HLA class I alleles to host protection against infection with HTLV-1 (84). They concluded that CD8+ cell response to HBZ are most effective. HTLV-1 carriers who had MHC class 1 alleles which could preferentially bind and present epitopes from HBZ were more likely to have low proviral loads, and less likely to develop disease than carriers who had MHC alleles which weakly bound HBZ peptides. Vaccination with a recombinant vaccinia virus expressing HBZ resulted in CTLs with anti-lymphoma effects in HBZ transgenic mice (85). In addition, this vaccine produced HTLV-1-specific T cell responses in infected rhesus monkeys (85).

RNA vaccines

Messenger RNA (mRNA)-based vaccines hold the promise to revolutionize the infectious disease prevention field by addressing current manufacturing challenges and offering novel vaccine compositions (86). Critical quality attributes are high efficiency of expression with a 5’cap, 5’untranslated region of optimal length with key regulatory elements, codon optimization, 3’poly-A tail length appropriate for translation, and lack of impurities that induce inflammatory cytokines and reduce expression. The use of lipid nanoparticle (LNP) formulations stabilize the mRNA and facilitate cellular uptake. As of 2020, 12 clinical trials for mRNA-based infectious disease vaccines were completed for infectious agents including respiratory syncytia virus, rabies, chikungunya, zika, parainfluenza, influenza, and cytomegaloviruses. The recent success of coronavirus-19 mRNA vaccines has re-energized the field (87). These vaccines, based on a “universal” LNP delivery system, have proven tolerable and highly efficacious. Challenges remaining include thermal instability of the mRNA cargo, further optimization of the nanoscale delivery platform to produce target-specific immunoactivation and prolong the duration of the effect, achieving a "one-shot" approach, achieving low cost for low- to middle-income countries, lack of clarity about the longevity and type of immunoprotection offered, and hypersensitivity reactions. This approach is worthy of investigation for HTLV-1.

Clinical vaccine trials

A safe and effective vaccine preparation in animal studies will eventually be considered for clinical trials. This would include phase 1 safety and pharmacokinetics studies in volunteers. Phase 2 and 3 trials would then be targeted to a population at risk of acquisition of HTLV-1. The largest and most suitable population would likely be individuals at significant risk of sexual acquisition of HTLV-1 in an endemic region.
Conclusions

Previous studies in rabbits and monkeys suggest that inoculation with HTLV-1 gene products may provide protection against infection. The ideal vaccine candidate and method of inoculation remains to be deciphered. In addition, immune correlates of response remain to be determined. Although some studies suggest that neutralizing antibodies against the HTLV-1 envelope protein may provide protection against infection, the role of cytotoxic T lymphocyte responses against envelope and other viral proteins remains to be fully characterized. In addition, antibody-dependent cellular cytolysis, known to occur in primary infection (88–90), could also be important in vaccine protection.

The WHO issued a technical report in 2020 with a strong recommendation for global strategies to eliminate transmission of HTLV-1 (9). Thus, further studies of possible efficacy and safety of HTLV-1 vaccines is warranted. It will be interesting to determine why some people who are infected with HTLV-1, manage to maintain a very low proviral load set-point, and have a very low risk of disease. Analysis of such HTLV-1 “elite controllers” could provide important details to defining a protective response to the virus. If a safe and effective vaccine can be developed, it remains unclear which individuals might benefit from its use. Individuals at greatest risk of acquisition of HTLV-1, include people who are sexual partners of HTLV-1 infected subjects. In addition, a vaccine could have benefits in preventing maternal-to-child transfer. Although control of breast-feeding was effective in Japan in preventing vertical transmission, limiting breast-feeding in developing countries might cause malnutrition issues with newborns, so vaccination might have unique advantages in these settings. Thus, the highest prevalence of such individuals will be sexually active individuals in HTLV-1 endemic areas.

Author contributions

The author confirms being the sole contributor of this work and has approved it for publication.

Funding

This work was funded by PHS grants CA 252869, CA255095, CA100730, and AI156014 to LR.

Conflict of interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Gessain A, Casar O. Epidemiological aspects and world distribution of HTLV-1 infection. Front Microbiol (2012) 3:article 388. doi: 10.3389/fmicb.2012.00388
2. Einsiedel L, Pham H, Talukder MR, Taylor K, Wilson K, Kaldor J, et al. Very high prevalence of infection with the human T cell leukemia virus type 1c in remote Australian aboriginal communities: Results of a large cross-sectional community survey. PloS Negl Tropic Dis (2021) 15:e00099915. doi:10.1371/journal.pntd.0009915
3. Cook LBM, Taylor GP. HTLV-1 and HTLV-2 prevalence in the united states. I Infect Dis (2014) 209:486–7. doi: 10.1093/infdis/jit558
4. Afonin PV, Casar O, Gessain A. Molecular epidemiology, genetic variability and evolution of HTLV-1 with special emphasis on African genotypes. Retrovirology (2019) 16:39. doi:10.1186/s12977-019-0504-z
5. Proietti FA, Carneiro-Proietti ABF, Catalan-Soares BC, Murphy EL. Global epidemiology of HTLV-1 and associated diseases. Oncogene (2005) 24:6058–68. doi:10.1038/sj.onc.1208968
6. Einsiedel L, Pham H, Wilson K, Walley R, Turpin J, Bangham C, et al. Human T-lymphotropic virus type 1c subtype proviral loads, chronic lung disease and survival in a prospective cohort of indigenous australians. PloS Negl Tropic Dis (2018) 12:e0006281. doi:10.1371/journal.pntd.0006281
7. Pane E, Garcia J, Philpott TC, Shaw G, Ratner L. Limited sequence variation in human T-lymphotropic virus type 1 isolates from North American and African patients. Virology (1991) 182:111–23. doi:10.1016/0042-6822(91)90654-T
8. Hirons A, Khoury G, Purcell DPJ. Human T-cell lymphotrophic virus type 1-A lifelong, persistent infection, yet never truly silent. Lancet Infect Dis (2021) 21:e2–e10. doi:10.1016/S1473-3099(20)30328-5
9. Basu S, Bull R, Causer L, Kaldor J, Legrand N, Martinello M, et al. “Human T-lymphotropic virus type 1: Technical report. ISBN: 978-92-4-002022-1”. Geneva, Switzerland: World Health Organization (2020).
10. Goncalves DU, Proietti FA, Ribas JGR, Araujo MG, Pinheiro SR, Guedes AC, et al. Epidemiology, treatment, and prevention of human T-cell leukemia virus type 1-associated diseases. Clin Microbiol Rev (2010) 23:577–89. doi:10.1128/CMR.00065-09
11. Rosadas C, Meneses MLB, Galvao-Castro B, Assone T, Miranda AE, Aragon MG, et al. Blocking HTLV-1/2 silent transmission in Brazil: current public health policies and proposal for additional strategies. PloS Negl Tropic Dis (2021) 15:e0009717. doi:10.1371/journal.pntd.0009717
12. Halbrook M, Gadoth A, Shankar A, Zheng HQ, Campbell EM, Hoff NA, et al. Human T-cell lymphotrophic virus type 1 transmission dynamics in rural villages in the democratic republic of the Congo with high nonhuman primate exposure. PloS Negl Tropic Dis (2021) 15:e0008923. doi:10.1371/journal.pntd.0008923
13. Moruchi H, Masuzaki H, Doi H, Katamine S. Mother-to-child transmission of human T-cell lymphotrophic virus type 1. Pediatr Infect Dis (2013) 32:175–7. doi:10.1097/INF.0b013e31827fe3c9
Pathobin 1 bZIP factor induces T-cell lymphoma and systemic in
Thymus-derived leukemia-lymphoma in mice transgenic for the tax gene of human
pnas.92.4.1057
Development of leukemia in mice transgenic for the tax gene of human T-cell
Ratner 10.3389/
Frontiers inImmunology frontiersin.org07
free HTLV-1 infects dendritic cells leading to transmission and transformation of
Ratner 10.3389/Virology frontiersin.org24
Conformational dynamics of single HIV-1 envelope trimers on the surface of
Nat Med
science.1080115
envelope SU subdomains and critical d eterminants in receptor binding.
31. Rey FA, Lok S-M. Common features of enveloped viruses and implications
types 1 and 2: neutralization by patients' sera.
30. Kim FJ, Manel N, Garrido EN, Valle C, Sitbon M, Battini JL. HTLV-1 and -2
–
1991) 147:364
35. Tanaka Y, Tanaka R, Terada E, Koyanagi Y, Miyano-Kurosaki N, Yamamoto N, et al. Induction of antibody responses that neutralize human T-cell leukemia virus type 1 infection in vitro and in vivo by peptide immunization. J Immunol (1991) 147:364–0.
34. Clapham P, Nagy K, Weiss RA. Pseudotypes of human T-cell leukemia virus types 1 and 2: neutralization by patient’s sera. Int J Cancer (1983) 32:321–8. doi: 10.1002/ijc.2910302100
33. Baba E, Nakamura M, Tanaka Y, Kuroki M, Itoyama Y, Nakano S, et al. Multiple neutralizing b-cell epitopes of human T-cell leukemia virus type 1 (HTLV-1) identified by human monoclonal antibodies. A basis for the design of an HTLV-1 vaccine. J Immunol (1993) 151:1013–24. 1993
32. Takehara N, Iwahara Y, Uemura Y, Sawada T, Ohtsuki Y, Iwai H, et al. Effect of immunization on HTLV-I infection in rabbits. Int J Cancer (1989) 44:332–6. doi: 10.1002/ijc.2910440224
31. Katoaka R, Takehara N, Iwahara Y, Sawada T, Ohtsuki Y, Dawei Y, et al. Transmission of HTLV-I by blood transfusion and its prevention by passive immunization in rabbits. Blood (1990) 76:1657–61. doi: 10.1182/blood.V76.1657.1657
30. Sawada T, Iwahara Y, Ishii K, Taguchi H, Hoshino H, Miyoshi I. Immunoglobulin prophylaxis against milkborne transmission of human T-cell leukemia virus type 1 in rabbits. J Infect Dis (1991) 164:1193–6. 10.1128/jvi.71.8.5828-5840.1997
29. Ikeda Y, Takehara N, Iwahara Y, Kawahara Y, Katoaka R, Yang D, et al. Immunoglobulin prophylaxis against HTLV-I in a rabbit model. Leukemia 6 (Supplement 1992) 1:24–6.
28. Tanaka Y, Ishii K, Sawada T, Ohtsuki Y, Hoshino H, Yanagahara R, et al. Prophylaxis against a Melanesian variant of human T-lymphotropic virus type I (HTLV-I) in rabbits using HTLV-I immune globulin from asymptomatically infected Japanese carriers. Blood (1993) 82:3664–7. doi: 10.1182/blood.v82.12.3664.3664
27. Ma G, Yasunaga J, Matsuoka M. Multifaceted functions and roles of HBZ in HTLV-I infected Japanese carriers. J Infect Dis (2016) 214:659–70. doi: 10.1093/infdis/jiw078
26. Bangham CR, Osame M. Cellular immune response to HTLV-I. Oncogene (2005) 24:5976–85. doi: 10.1038/sj.onc.1208978
25. Grassmann RB, Aboud M, Jeang KT. Molecular mechanisms of cellular transformation by HTLV-I tax. Oncogene (2005) 24:5976–85. doi: 10.1038/sj.onc.1208978
24. Bangham C. Human T cell leukemia virus type 1: Persistence and pathogenesis. Annu Rev Immunol (2016) 36:43–71. doi: 10.1146/annurev-immunol-042616-053222
23. Ma G, Yasunaga J, Matsuoka M. Multifaceted functions and roles of HBZ in HTLV-I pathogenesis. Retrovirology (2010) 13:16. doi: 10.1186/1742-4690-7-16
22. Jones KS, Barnett S, Bouitteur M, Bent L, Ruscetti FW, Hermine O, et al. Molecular aspects of HTLV-I entry: functional domains of the HTLV-I surface subunit (SU) and their relationships to the entry receptors. Viruses (2011) 3:794–810. doi: 10.3390/v3060794
21. Ratner L. Molecular biology of T cell leukemia virus. Retrovirology (2004) 1:41. doi: 10.1186/1742-4690-1-41
20. Grossman RB, Aboud M, Jeang KT. Molecular mechanisms of cellular transformation by HTLV-I tax. Oncogene (2005) 24:5976–85. doi: 10.1038/sj.onc.1208978
19. Takehara N, Iwahara Y, Uemura Y, Sawada T, Ohtsuki Y, Iwai H, et al. Effect of immunization on HTLV-I infection in rabbits. Int J Cancer (1989) 44:332–6. doi: 10.1002/ijc.2910440224
18. Igakura T, Stionchcombe JC, Goon PK, Taylor GP, Procter J, et al. HTLV-I envelope SU subunits (SU) and their relationships to the entry receptors. J Virol (1994) 68:3761–7. doi: 10.1128/jvi.68.9.3761-3767.1994
17. Vanprooyen N, Gold H, Andresen V, Schwartz O, Jones K, Ruscetti F, et al. Human T-cell leukaemia virus type I infection in vitro and in vivo by peptide immunization. J Virol (1994) 68:3632–31. doi: 10.1128/jvi.68.9.3632-3631.1994
16. Gross C, Thoma-Kress AK. Molecular mechanisms of HTLV-I cell-to-cell transmission. Viruses (2016) 8:74. doi: 10.3390/v8050074
15. Cook LB, Melamed A, Demontis MA, Laydon DJ, Fox JM, Tosswell JH, et al. Rapid dissemination of human T-lymphotropic virus type 1 during primary infection in transplant recipients. Retrovirology (2016) 13:5. doi: 10.1186/s12977-015-0236-7
14. Tagaya Y, Matsuoka M, Gallo R. 40 years of the human T cell leukemia virus: past, present and future. F1000 Research (2019) 8:228. doi: 10.12688/ f1000research.17479.1
66. Kosako T, Akitomo M, Toji S, White Y, Suzuki S, Arima T, et al. Target epitopes of HTLV-1 recognized by class I MHC-restricted cytoxic T lymphocytes in patients with myelopathy and spastic paraparesis and infected patients with autoimmune disorders. J Med Virol (2011) 83:501–9. doi: 10.1002/jmv.21985

67. Kattan T, Macnamara A, Rowan AG, Hose H, Molesley AJ, Tanaka Y, et al. The avidity and lytic efficiency of the CTL response to HTLV-1 in a subgroup of individuals at asymptomatic and smoldering stages. Cancer Sci (2009) 100:481–9. doi:10.1111/j.1349-7006.2008.01054.x

68. Zhihui Y, Takamori A, Utomomia A, Kurimura M, Yamano Y, Hishizawa M, et al. Impaired tax-specific T-cell responses with sufficient control of HTLV-1 in a subgroup of patients with limp fulminant disease. J Virol Immunol (2009) 6:139–50. doi:10.4049/jimmunol.0900069

69. Mozena MO, Zha L, Cabral-Miranda G, Bachmann MF. Major findings and recent advances in viruses-like particle (VLP)-based vaccines. Semin Immunol (2017) 34:123–32. doi:10.1016/j.smimun.2017.08.014

70. Saxena M, Vanderburg SH, Melever CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer (2009) 9:1048–59. doi:10.1038/nrc2688

71. Kosińska AD, Bauer T, Protter U. Therapeutic vaccination for chronic hepatitis B. Curr Opin Virol (2017) 23:75–81. doi:10.1016/coviro.2017.03.011

72. Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol (2018) 15:218–25. doi:10.1038/s41571-018-00460-2

73. Gray GE, Bekker L-G, Laher F, Malahleha M, Allen M, Moodie Z, et al. Vaccination of rabbits with recombinant vaccinia virus carrying the envelope gene from feline leukemia virus type-I by immunization with viral env gene products producted in vivo. Int J Cancer (2006) 119:307–14. doi:10.1002/ijc.2910600423

74. Patel M, Carritt K, Lane J, Jayappa H, Stahl M, Bourgeois M. Comparative safety of feline leukemia virus (FeLV) inactivated whole-virus vaccine and naked DNA vaccine candidates. Vaccine (2021) 39:4167–75. doi:10.1016/j.vaccine.2021.03.011

75. Mcmillan CLD, Cheung STM, Modhran N, Barnes J, Amariya AL, Bielefeldt-Ohmann H, et al. Development of molecular clamp stabilized hemagglutinin vaccines for influenza a viruses. NPJ Vaccines (2021) 6:135. doi:10.1038/s41541-021-00395-4

76. Mulherkar R, Karabudak A, Gitwala R, Huang X, Rowan A, Philip R, et al. In vivo and in vitro immunogenicity of novel melanoma class I presented epitopes to confer protective immunity against chronic HTLV-1 infection. Vaccines (2019) 8:5046–57. doi:10.1016/j.vaccine.2018.07.002

77. Suyehiro R, Hasegawa A, Ito T, Sasaki A, Watanabe N, Matsuoka M, et al. Clinical outcomes of a novel therapeutic vaccine with tax peptide-pulsed dendritic cells for adult T-cell leukemia/lymphoma in a pilot study. Br J Haematol (2015) 169:356–7. doi:10.1111/bjh.13302

78. Kannagi M, Hasegawa A, Nagano Y, Ito T, Okamura J, Suyehiro Y. Maintenance of long remission in adult T-cell leukemia by tax-targeted vaccine: a hope for disease-preventive therapy. Cancer Sci (2019) 110:849–57. doi:10.1111/cas.13948

79. Ishizawa M, Ganbaatar U, Hasegawa A, Takakuta N, Kondo N, Yoneda T, et al. Short-term cultured autologous peripheral blood mononuclear cells as a potential immunogen to activate tax-specific CTL responses in T-cell leukemia patients. Cancer Sci (2011) 102:1161–72. doi:10.1111/j.1349-7006.2011.014800

80. Kuribara K, Harashima N, Hanabuchi S, Masuda M, Utsumoyna A, Tansoaki R, et al. Potential immunogenicity of adult T cell leukemia cells in vivo. Int J Cancer (2005) 114:257–67. doi:10.1002/ijc.20737

81. Macnamara A, Rowan A, Hilburn S, Kadosky U, Fujishara H, Suzuki M, et al. HLA class I binding of HBZ determines outcome in HTLV-1 infection. PLoS Pathog (2010) 6:e1000117. doi:10.1371/journal.ppat.1000117

82. Sugata K, Yasunaga K, Mitobe Y, Miura M, Miyazato P, Kohara M, et al. Protective effect of cytotoxic T lymphocytes targeting HTLV-1 bZIP factor. Blood (2015) 126:1095–103. doi:10.1182/blood-2015-04-641118

83. Jackson N, Kester KE, Castirino D, Gurunathan S, Derosis F. The promise of mRNA vaccines: a biotech and industrial perspective. Vaccines (2020) 5:11.

84. Kishiy T, Ylmazer A, Kostarelos K. Reasons for success and lessons learnt from nanoscale vaccines against COVID-19. Nat Nanotechnol (2021) 16:843–50. doi:10.1038/s41565-021-00946-9

85. Miyoshi K, Koida H, Aoki T. In vitro antibody-dependent cellular cytotoxicity against human T-cell leukemia/lymphoma virus (HTLV)-producing cells. Intenational J Cancer (1984) 33:287–91. doi:10.1002/ijc.2910330302

86. Sinclair AL, Habeshaw JA, Muir L, Chandler P, Forster S, Cruickshank K, et al. Antibody-dependent cell-mediated cytotoxicity: Comparison between HTLV-1 and HIV-1 assays. AIDS (1988) 2:465–72. doi:10.1097/00002030-198812000-00009

87. Zhang QY, Yang L, Ho DD, Kuritzkes DR, Chen IS, Ching WT, et al. Human T lymphotropic virus type I and -specific antibody-dependent cellular cytotoxicity: Strain specificity and epitope mapping. J Infect Dis (1992) 165:805–12. doi:10.1093/infdis/165.5.805