Partition Functions and Casimir Energies in Higher Spin AdS$_{d+1}$/CFT$_d$

Simone Giombi, I. R. Klebanov1,2 and Arkady A. Tseytlin3*

1Department of Physics, Princeton University, Princeton, NJ 08544

2Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544

3Blackett Laboratory, Imperial College, London SW7 2AZ, U.K.

Abstract

Recently, the one-loop free energy of higher spin (HS) theories in Euclidean AdS$_{d+1}$ was calculated and matched with the order N^0 term in the free energy of the large N “vectorial” scalar CFT on the S^d boundary. Here we extend this matching to the boundary theory defined on $S^1 \times S^{d-1}$, where the length of S^1 may be interpreted as the inverse temperature. It has been shown that the large N limit of the partition function on $S^1 \times S^2$ in the $U(N)$ singlet sector of the CFT of N free complex scalars matches the one-loop thermal partition function of the Vasiliev theory in AdS$_4$, while in the $O(N)$ singlet sector of the CFT of N real scalars it matches the minimal theory containing even spins only. We extend this matching to all dimensions d. We also calculate partition functions for the singlet sectors of free fermion CFT’s in various dimensions and match them with appropriately defined higher spin theories, which for $d > 3$ contain massless gauge fields with mixed symmetry. In the zero-temperature case $R \times S^{d-1}$ we calculate the Casimir energy in the scalar or fermionic CFT and match it with the one-loop correction in the global AdS$_{d+1}$. For any odd-dimensional CFT the Casimir energy must vanish on general grounds, and we show that the HS duals obey this. In the $U(N)$ symmetric case, we exhibit the vanishing of the regularized 1-loop Casimir energy of the dual HS theory in AdS$_{d+1}$. In the minimal HS theory the vacuum energy vanishes for odd d while for even d it is equal to the Casimir energy of a single conformal scalar in $R \times S^{d-1}$ which is again consistent with AdS/CFT, provided the minimal HS coupling constant is $\sim 1/(N-1)$. We demonstrate analogous results for singlet sectors of theories of N Dirac or Majorana fermions. We also discuss extensions to CFT’s containing N_f flavors in the fundamental representation of $U(N)$ or $O(N)$.

February 24, 2014

*Also at Lebedev Institute, Moscow.
Contents

1 Introduction and summary 1

2 General background 5

3 Partition functions for free CFT’s on $S^1 \times S^{d-1}$ 6

4 Free CFT partition functions on $S^1 \times S^{d-1}$ with singlet constraints 11
 4.1 Complex scalar case 12
 4.2 Real scalar case 14
 4.3 Fermionic theories 16

5 Higher spin partition function in AdS$_{d+1}$ with $S^1 \times S^{d-1}$ boundary 17
 5.1 Temperature-dependent part of the free energy 19
 5.2 Casimir part of the free energy 22
 5.3 Casimir energies of individual higher spin fields in AdS$_{d+1}$ 25

6 Matching fermionic CFT’s with higher spin theories 29
 6.1 $d = 2$... 29
 6.2 $d = 3$... 31
 6.3 $d = 4$... 32

7 Higher spin duals of theories with N_f flavors 36

1 Introduction and summary

The original AdS/CFT conjectures were made for conformal field theories of $N \times N$ matrices with extended supersymmetry [1–3]. A few years later, a suggestion was made to study AdS/CFT correspondence for simpler field theories where dynamical fields are in the fundamental representation of the $U(N)$ or $O(N)$ symmetry group [4]; for this reason, these theories are often called “vectorial.” In these cases, the supersymmetry is not necessary, but it is important that there is an infinite tower of conserved or nearly-conserved higher spin currents that are $U(N)$ or $O(N)$ singlets. Therefore, the dual theories in AdS must contain the corresponding tower of massless higher-spin gauge fields [5]. Theories of this kind have been extensively explored by Vasiliev and
The first explicit vectorial AdS/CFT conjectures were made for the higher spin theories in AdS$_4$. For the minimal type A theory with even spins only, the conjectured duals were the free or critical $O(N)$ models, with N real scalar fields in the fundamental representation. For the non-minimal type A theory, where all integer spins are present, one instead needs to consider free or critical theories of N complex scalar fields, restricted to the $U(N)$ singlet sector [4]. There also exist type B Vasiliev theories in AdS$_4$ where the bulk spin zero field is a pseudoscalar, rather than a scalar. Such theories have been conjectured to be dual to the $U(N)$ or $O(N)$ singlet sector of the theory of N Dirac or Majorana fermions [14,15].

The basic evidence for the initial conjectures involved the matching of the spectra of currents and higher-spin gauge fields [1,14,15]. A nice way of summarizing this agreement is to match the CFT partition function on $S^1 \times S^2$ with the corresponding calculation in AdS$_4$. This was carried out in [16], and a simple explicit formula for the partition function of the $U(N)$ singlet scalar theory was obtained. A crucial ingredient in these calculations is the imposition of the singlet constraint in the CFT of free scalar fields; this was accomplished by integrating over the holonomy of the $U(N)$ gauge field around S^1 [17–19]. The resulting $U(N)$ singlet partition function then becomes the square of the character of the “singleton” representation of $SO(3,2)$, corresponding to the free conformal scalar in $d = 3$. The CFT partition function may then be expanded in characters of the primary fields of spin s and dimension $s + 1$, which correspond to partition functions of gauge fields in AdS$_4$. Besides providing a nice test of the vectorial AdS$_4$/CFT$_3$ duality [4], this may be viewed as a modern incarnation of much older ideas [20] (see also [21–27]). The $d = 3$ result of [16] was recently reproduced and also extended to the $O(N)$ singlet sector of N real scalars [28] using the collective field approach [29]. We will further extend these results in several ways, thus obtaining new tests of the higher spin AdS/CFT dualities.

Additional evidence for the vectorial AdS$_{d+1}$/CFT$_d$ duality for $d = 3$ has been found in [30–39]. Furthermore, evidence has begun accumulating that it is valid for all d [40,41]. On the CFT side, we may consider N complex or real scalar fields in d dimensions and impose the $U(N)$ or $O(N)$ singlet constraint. The corresponding theories in AdS$_{d+1}$, which involve the tower of totally symmetric tensor spin s gauge fields were formulated in [12]. For arbitrary d, we will study the partition function of such a theory in “thermal” AdS space, which is asymptotic to $S^1 \times S^{d-1}$ and match it with the singlet partition function of the free scalar theory on $S^1 \times S^{d-1}$. This result

\footnote{Perhaps the constraint can implemented by coupling the free N-vector theory to an appropriate topological gauge theory, generalizing the idea of coupling to Chern-Simons theory in $d = 3$ [42,43]. For the purposes of this paper, the details of how the singlet constraint is imposed do not seem to matter.}
provides an elegant way of encoding the AdS/CFT matching of the spectra. The thermal free energy on $S^1 \times S^{d-1}$ includes a term linear in the inverse temperature which dominates in the zero temperature limit. This is related to the Casimir energy of the CFT on $R \times S^{d-1}$, and may be computed by an appropriately regularized sum over the energy spectrum. We will compare this Casimir energy term on the two sides of the duality. In this case, the higher spin theory is defined in the global AdS$_{d+1}$, which is asymptotic to $R \times S^{d-1}$. For all odd d the Casimir energy must vanish; this is a completely general fact about odd-dimensional CFT related to the absence of anomalies (the theory on $R \times S^{d-1}$ may be obtained from that on R^d via a Weyl transformation). We check this vanishing on the higher spin side by using an appropriate zeta-function regularization of the sum over spins in global AdS$_{d+1}$. The vanishing of Casimir energy in $d = 3$ was perhaps the reason why it was not emphasized in [16]. However, the vanishing in odd d is not trivial from the AdS point of view because it involves summing over the entire tower of spins. Truncation of the spectrum in AdS$_4$ to a few low spins, which is commonly performed in “bottom-up” modeling, would generally spoil the cancelation of the Casimir energy. This would violate a possible exact duality to a CFT$_3$, unless there is another reason for the bulk cancelation, such as supersymmetry (as in [44–46]).

The comparison of the Casimir energies becomes even more interesting for even d, where they are not required to vanish. For the $\mathcal{N} = 4$ $SU(N)$ gauge theory in $d = 4$, the $\mathcal{O}(N^2)$ term in the Casimir energy was reproduced early on using the stress-energy tensor calculation in AdS$_5 \times S^5$ [47]. Due to the maximal supersymmetry of this theory, its Casimir energy is proportional to its a-anomaly coefficient [48, 49]. Therefore, the exact AdS/CFT matching of Casimir energy in that case is guaranteed by the a-anomaly matching [50]. In the field theory, the exact result is $a = N^2 - 1$, and the $\mathcal{O}(N^0)$ correction (i.e. the -1 shift) has been studied using the one-loop correction in the type IIB supergravity on the AdS$_5 \times S^5$ background [51]. More recently, additional progress has been made in calculating the $\mathcal{O}(N^0)$ correction to $a - c$ in various $d = 4$ theories, where only contributions of short supermultiplets in AdS$_5$ need to be included [52,53].

In non-supersymmetric theories, the Casimir energy is not simply proportional to a due to the presence of total derivative (“D-anomaly”) terms in the full expression for the trace anomaly [48,49]. This makes the comparison of Casimir energies a new check of the vectorial AdS/CFT conjectures, which is independent of the comparison of a-anomalies carried out in [39,41]. Unfortunately, due to the lack of information about the form of the classical action, in the higher-spin theories there is no known way to calculate the leading, $\mathcal{O}(N)$, terms in the sphere free energies or Casimir energies. So, as in [39,41], we will only compare the terms of order N^0. In the non-minimal Vasiliev theory including all integer spins, we find that the regularized sum in AdS$_{d+1}$
vanishes, in line with the expectation that there is no $\mathcal{O}(N^0)$ correction in the free complex scalar theory on $R \times S^{d-1}$. However, in the minimal theory, which includes even spins only, the regularized sum equals the Casimir energy of a real scalar field. These results are analogous to the recent findings in Euclidean AdS$_{d+1}$, where the one-loop correction for the minimal theory in AdS$_{d+1}$ was found to be equal to the free energy of a single real scalar on S^d \cite{39,41}. The proposed interpretation of this result is that the bulk coupling constant in the minimal higher spin theory is $G_N \sim 1/(N - 1)$, so that the tree level and one-loop terms can add to give the answer which is N times the contribution of a free scalar field. Our new results for Casimir energies in all d provide additional support for this interpretation.

In this paper we also study the vectorial fermionic models on $S^1 \times S^{d-1}$ and match their partition functions and Casimir energies with the corresponding quantities in AdS$_{d+1}$. Such calculations are quite useful: for $d > 3$ the dual higher spin theory in AdS$_{d+1}$ includes massless gauge fields in mixed symmetry representations \cite{25,27}, in addition to the totally symmetric higher spin fields found in the Vasiliev theories dual to the scalar field theories \cite{12}. The AdS spectrum dual to a fermionic model depends sensitively both on the dimension d and on what type of fermions we consider: Dirac, Majorana or Weyl. These results suggest the existence of a variety of consistent interacting higher spin theories that are dual to fermionic CFT’s restricted to singlet sectors.

We start in Section 2 with a brief summary of some standard relations between Casimir energies and partition functions, and then in Section 3 review the expression for the free energy of free conformal fields in $S^1 \times S^{d-1}$. In Section 4 we compute this free energy for a large number N of complex or real scalar or fermion fields in the presence of a singlet constraint. The latter translates into an extra gaussian averaging over the density of $U(N)$ or $O(N)$ holonomy eigenvalues that leads to a modification of the effective one-particle partition function. The resulting free energy contains an order N Casimir energy term as well as an order N^0 term with non-trivial β-dependence. The scalar free energies are matched onto the corresponding expressions in the dual HS theories in AdS$_{d+1}$ in Sections 5. Section 6 contains a similar analysis of the vectorial fermionic CFT’s in $d = 2, 3, 4$ and of their higher spin duals. For each admissible type of fermion, we study the quantum numbers of the currents and corresponding gauge fields, and demonstrate the AdS/CFT matching of the Casimir energies and partition functions. In Section 7 we briefly discuss the HS duals of the CFT’s containing N_f fundamental flavors of $U(N)$ or $O(N)$. In the large N limit where N_f is held fixed, we demonstrate the matching of partition functions and Casimir energies with the field theory results.
2 General background

Given a CFT in d dimensions, in the standard radial quantization picture its states may be described as eigenstates of the Hamiltonian on $\mathbb{R} \times S^{d-1}$. Given a set of states and ignoring interactions one may then consider, e.g., the corresponding Casimir energy and construct the finite temperature partition function. The same quantities may be computed also on the dual AdS$_{d+1}$ side as the vacuum energy in the global AdS or as the 1-loop partition function on a thermal quotient of AdS, i.e. on Euclidean AdS with boundary $S^1_\beta \times S^{d-1}$.

Let us summarize some standard relations (see, e.g., [54]). Given the spectrum of a Hamiltonian H (with eigenvalues ω_n and degeneracies d_n where n is a multi-index) one may consider the “energy” zeta-function

$$\zeta_E(z) = \text{tr} H^{-z} = \sum_n d_n \omega_n^{-z},$$

so that the Casimir or vacuum energy is given by (for fermions one needs to add a minus sign)

$$E_c = \frac{1}{2} \sum_n d_n \omega_n = \frac{1}{2} \zeta_E(-1).$$

One may also define the one-particle or canonical partition function2

$$Z(\beta) = \text{tr} e^{-\beta H} = \sum_n d_n e^{-\beta \omega_n}.$$

It is related to $\zeta_E(z)$ by the Mellin transform

$$\zeta_E(z) = \frac{1}{\Gamma(z)} \int_0^\infty d\beta \beta^{z-1} Z(\beta),$$

i.e. the two functions contain an equivalent amount of information about the spectrum. This is the same as the usual relation between a spectral zeta function for an operator Δ (here $\Delta = H$) and its heat kernel (here $Z(\beta) = K(\tau) = \text{tr} e^{-\tau \Delta}$ with β playing role of τ). Note also that a special case of (2.4) is the integral representation for the standard Hurwitz zeta function

$$\zeta(z, a) = \sum_{k=0}^{\infty} (k + a)^{-z} = \frac{1}{\Gamma(z)} \int_0^\infty d\beta \beta^{z-1} \frac{e^{-a\beta}}{1 - e^{-\beta}}.$$

2For simplicity we shall ignore possible chemical potentials.
The multi-particle or grand canonical partition function which for bosons is

\[\ln Z(\beta) = \text{tr} \ln (1 - e^{-\beta H})^{-1} = - \sum_n d_n \ln (1 - e^{-\beta \omega_n}) \), \tag{2.6} \]

is then directly related to the one-particle one \([2.3]\), with the free energy given by

\[F_\beta = - \ln Z(\beta) = - \sum_{m=1}^{\infty} \frac{1}{m} Z(m \beta) \). \tag{2.7} \]

For fermions

\[\ln Z(\beta) = \text{tr} \ln (1 + e^{-\beta H}) = \sum_n d_n \ln (1 + e^{-\beta \omega_n}) \), \tag{2.8} \]

is then directly related to the one-particle one \([2.3]\), with the free energy given by

\[F_\beta = - \ln Z(\beta) = \sum_{m=1}^{\infty} \frac{(-1)^m}{m} Z(m \beta) \). \tag{2.9} \]

Thus the knowledge of the one-particle partition function \(Z(\beta) \) determines the thermodynamic partition function \([2.7]\) as well as the Casimir energy (see \([2.2], [2.4]\)).

3 Partition functions for free CFT’s on \(S^1 \times S^{d-1} \)

Let us first consider the partition function of a free conformally coupled scalar

\[F = - \ln Z = \frac{1}{2} \ln \det \Delta_0 \), \quad \Delta_0 = - \nabla^2 + \frac{d-2}{4(d-1)} R \), \tag{3.1} \]

in (Euclidean) \(M^d = R \times S^{d-1} \) and \(M^d_\beta = S^1 \times S^{d-1} \) where \(\beta \) is the length of \(S^1 \).\(^3\) We shall assume the length of time direction in \(R \times S^{d-1} \) to be regularized as \(\int dt = \beta \to \infty \), so that the first case may be viewed as the “zero-temperature” \((\beta^{-1} \to 0)\) limit of the second. In general, in \(R \times S^{d-1} \) one finds (see, e.g., \([55–58]\))

\[F = F_\infty + F_c \), \quad F_\infty = a_d \ln \Lambda \), \quad F_c = \beta E_c \), \tag{3.2} \]

\(^3\)We shall often set the radius \(\ell \) of \(S^{d-1} \) to 1; dependence on it can be restored by rescaling \(\beta \to \frac{\beta}{\ell} \), etc.
where we separated an a priori possible logarithmically divergent term from the vacuum (Casimir) energy E_c of a conformal scalar in the static Einstein universe $R \times S^{d-1}$. The logarithmically divergent part (with Λ standing for the product of a UV cutoff with the scale ℓ) is proportional to the conformal anomaly coefficient a_d which vanishes for odd d\(^4\). In the present case it vanishes also for even d as for a conformally-coupled scalar in a conformally-flat space it is proportional to the Euler number density but the latter vanishes for both $R \times S^{d-1}$ and $S^1 \times S^{d-1}$, i.e.

$$a_d = 0 .$$

(3.3)

The scalar curvature of S^{d-1} is $R = (d-1)(d-2)$ so that the operator in (3.1) is $\Delta_0 = -\partial_t^2 - \nabla^2_{S^{d-1}} + \frac{1}{4}(d-2)^2$. Since the eigenvalues and their degeneracies for a Laplacian $-\nabla^2$ on a sphere of dimension $d-1$ are

$$\lambda_n(S^{d-1}) = n(n + d - 2) , \quad d_n(S^{d-1}) = \binom{n+d-1}{d-1} - \binom{n+d-3}{d-1} = (2n + d - 2) \frac{(n+d-3)!}{(d-2)! n!} ,$$

(3.4)

the eigenvalues of Δ_0 on $R \times S^{d-1}$ are $\lambda_{w,n} = w^2 + \omega_n^2$, where $\omega_n = n + \frac{1}{2}(d-2), n = 0, 1, 2, \ldots$ and $w \in (-\infty, \infty)$. There is no zero mode for $d > 2$. Integrating $\int_{-\infty}^{\infty} \frac{dw}{2\pi} \ln(w^2 + \omega_n^2)$ over w leads as usual to $F_c = \beta E_c$ with

$$E_c = \frac{1}{2} \sum_{n=0}^{\infty} d_n \omega_n = \sum_{n=0}^{\infty} \binom{n+d-3}{d-2} [n + \frac{1}{2}(d-2)]^2 .$$

(3.5)

This is finite if defined using the zeta-function regularization (see, e.g., [58–61]), i.e. by starting as in (2.1), (2.2) with ω_n as energy eigenvalues, one first computes $\zeta_E(z) \equiv \sum_{n=0}^{\infty} d_n \omega_n^{-z}$, and then analytically continues to $z = -1$, $E_c = \frac{1}{2} \zeta_E(-1)$.\(^5\)

In the case of $M^{d}_\beta = S^1 \times S^{d-1}$ the eigenvalues of Δ_0 are

$$\lambda_{k,n} = \left(\frac{2\pi k}{\beta}\right)^2 + \omega_n^2 , \quad \omega_n = n + \frac{1}{2}(d-2) , \quad k = 0, \pm 1, \pm 2, \ldots , \quad n = 1, 2, \ldots$$

(3.6)

\(^4\)In (3.2) we include the volume factor $\sim \beta$ into a_d.

\(^5\)Note that if we consider the conformal scalar operator on S^{d-1}, i.e. $\Delta_0(S^{d-1}) = -\partial_t^2 - \nabla^2_{S^{d-1}} + \frac{1}{4}(d-2)^2$ then its eigenvalues are $\lambda_n = \omega_n^2$ with $\omega_n = n + \frac{1}{2}(d-2)$ and the corresponding spectral zeta function is $\zeta_{\Delta_0(S^{d-1})}(z) = \sum_{n=0}^{\infty} d_n \lambda_n^{-z} = \zeta_E(2z)$. In particular, $E_c = \frac{1}{2} \zeta_E(-1) = \frac{1}{2} \zeta_{\Delta_0(S^{d-1})}(-\frac{1}{2})$ [58]. Since the natural spectral parameter is $n + \frac{1}{2}(d-2)$ the vacuum energy E_c can be expressed in terms of the corresponding Hurwitz zeta functions. It can be also computed using an exponential regularization $e^{-\epsilon[n+\frac{1}{2}(d-2)]}$ (dropping all singular terms).
One may define the spectral zeta function

$$\zeta_{\Delta_0}(z) = \sum_{k=-\infty}^{\infty} \sum_{n=0}^{\infty} d_n \lambda_{k,n}^{-z} \quad (3.7)$$

in terms of which we have for F in (3.1) (see, e.g., [62, 63])

$$F = -\zeta_{\Delta_0}(0) \ln \Lambda - \frac{1}{2} \zeta'_{\Delta_0}(0) = F_\infty + F_c + F_\beta \quad , \quad (3.8)$$

$$F_\infty = a_d \ln \Lambda \quad , \quad F_c = \beta E_c = \frac{1}{2} \beta \sum_{n=0}^{\infty} d_n \omega_n \quad , \quad (3.9)$$

$$F_\beta = \sum_{n=0}^{\infty} d_n \ln(1 - e^{-\beta \omega_n}) \quad . \quad (3.10)$$

Here again $a_d = 0$ for a conformally-coupled scalar on $S_\beta^1 \times S^{d-1}$ in any d and F_c is the same Casimir energy part with E_c given by (3.5). The non-trivial part of the free energy F_β vanishes in the limit $\beta \to \infty$ when (3.8) reduces to (3.2).

Using the standard Riemann ζ-function regularization (with $\zeta(-2k) = 0$, $\zeta(-2k-1) \neq 0$) one finds for the Casimir energy for $d > 2$ (see, e.g., [58–60])

$$E_c = \sum_{q=0}^{\left\lfloor \frac{d-2}{2} \right\rfloor} c_q \zeta(2q + 1 - d) \quad , \quad (3.11)$$

$$d = \text{odd} \geq 3 : \quad E_c = 0 \quad ; \quad d = \text{even} \geq 4 : \quad E_c = \sum_{q=0}^{\frac{d-2}{2}} c_q \zeta(2q + 1 - d) \quad , \quad (3.12)$$

where c_q are rational coefficients. Thus E_c is non-vanishing in even d and can be expressed in terms of the Bernoulli numbers (see also below).

We conclude that

$$d = \text{odd} \geq 3 : \quad F = F_\beta \quad ; \quad d = \text{even} \geq 4 : \quad F = \beta E_c + F_\beta \quad , \quad (3.13)$$
where F_β in (\ref{3.10}) has the following explicit form (cf. (2.3), (2.7))

$$F_\beta = - \sum_{m=1}^{\infty} \frac{1}{m} Z_0(m\beta) ,$$

(3.14)

$$Z_0(\beta) = \sum_{n=0}^{\infty} d_n e^{-\beta [n + \frac{1}{2} (d-2)]} = \frac{q^{\frac{d-2}{2}} (1 + q)}{(1 - q)^{d-1}} = \frac{q^{\frac{d-2}{2}} (1 - q^2)}{(1 - q)^d} , \quad q \equiv e^{-\beta} .$$

(3.15)

The one-particle partition function $Z_0(\beta)$ corresponds to the character of the free scalar (Dirac singleton) representation of the conformal group $SO(d,2)$, see for instance \cite{27}.

Let us add a few details about the explicit values of the Casimir energy (3.5),(3.12). For odd $d = 2k + 1$ one can rewrite (3.5) as $E_c^{(2k+1)} = \sum_{n=0}^{\infty} \sum_{m=1}^{k} c_m (n + \frac{1}{2})^{2m}$. For example, $E_c^{(3)} = \sum_{n=0}^{\infty} (n + \frac{1}{2})^{2m} = \zeta(-2m, \frac{1}{2}) = 0$ one concludes that the Casimir energy vanishes for all odd $d = 2k + 1$. For even $d = 2k$ one finds

$$E_c^{(2k)} = \sum_{n=1}^{\infty} \sum_{m=1}^{k-1} \tilde{c}_m n^{2m+1} ,$$

(3.16)

which is equivalent to the expression in (3.12) ($\tilde{c}_m = c_{-m+1+k}$). For example,

$$E_c^{(2)} = \sum_{n=1}^{\infty} n = \zeta(-1) = -\frac{1}{12} ,$$

(3.17)

$$E_c^{(4)} = \frac{1}{2} \sum_{n=1}^{\infty} n^3 = \frac{1}{2} \zeta(-3) = \frac{1}{250} ,$$

$$E_c^{(10)} = \frac{1}{40320} \left[\zeta(-9) - 14\zeta(-7) + 49\zeta(-5) - 36\zeta(-3) \right] = -\frac{317}{22800000} .$$

The same results can be reproduced by introducing a cutoff ($\epsilon \to 0$) with the spectral parameter in the exponent $e^{-\epsilon [n + \frac{1}{2} (d-2)]}$ in the sum in (3.5) and dropping all singular terms in the resulting expression

$$E_c(\epsilon) = \frac{1}{2} \frac{e^{-\frac{1}{2} \epsilon d}}{(1 - e^{-\epsilon})^d} \left[d + (d - 2) \cosh \epsilon \right] .$$

(3.18)

Let us also note that an equivalent expression for the Casimir energy (3.5) may be also obtained

\footnote{This vanishing matches also the vanishing of conformal anomaly in odd dimensional space as there is a relation between (a combination of Euler density and total derivative) conformal anomaly coefficients and Casimir energy of a conformal scalar (or more general CFT) as discussed in \cite{48, 58} and refs. there.}
by a Mellin transform of the one-particle partition function (3.15), see eqs. (2.2), (2.4). This gives

\[E_c = \frac{1}{2} \zeta_E(-1), \quad \zeta_E(z) = \sum_{n=0}^{\infty} (n + \frac{d}{2} - 2)^{-z} \left(n + \frac{d}{2} - 1 \right)^{-z} + (n + \frac{d}{2})^{-z}. \]

(3.19)

In this expression, the parameter \(z \) provides a natural analytic regulator, as one can perform the sum in terms of the Hurwitz zeta function and then analytically continue to \(z = -1 \). One may verify that this expression for \(E_c \) gives the same values quoted above. In particular, one can see directly the relation to (3.5) by rearranging the expression for \(\zeta_E(z) \) as follows (cf. (3.4))\(^7\)

\[\zeta_E(z) = \sum_{n=0}^{\infty} d_n \left[n + \frac{1}{2}(d - 2) \right]^{-z}, \quad d_n = \left(\frac{n + d - 2}{d - 2} \right) + \left(\frac{n + d - 3}{d - 2} \right) = 2\left[n + \frac{1}{2}(d - 2) - \frac{(n + d - 3)!}{(d - 2)!n!} \right] \]

(3.20)

It is straightforward to generalize the above analysis to the case of free complex or real fermion theories. First, for a single massless Dirac fermion in \(S^1 \times S^{d-1} \) the free energy (2.9) is given by the following analog of the free conformal scalar expressions in (3.14), (3.15):

\[F_\beta = \sum_{m=1}^{\infty} \frac{(-1)^m}{m} Z_\nu(m\beta), \quad Z_\nu = 2^{\frac{d}{2}} q^\frac{d-1}{2} \frac{1}{(1-q)^{d-1}}, \quad q = e^{-\beta}. \]

(3.21)

The result for a real (Majorana) fermion or Weyl fermion is half of that,

\[Z^{\frac{1}{2}}_\nu(\beta) = 2^{\frac{d}{2}} q^\frac{d-1}{2} \frac{1}{(1-q)^{d-1}}. \]

(3.22)

The expression for \(Z_\nu(\beta) \) was given in (18) (taking the \(q \to 1 \) limit and comparing to the real scalar counterpart in (3.15) one checks that it describes the right number of degrees of freedom). \(Z^{\frac{1}{2}}_\nu(\beta) \) in (3.22) has also the interpretation of the conformal group character for a complex fermion representation \(\Gamma \).

The corresponding Casimir energy in the Majorana or Weyl case is (cf. (2.4), (3.5), (3.19))\(^8\)

\[E_c = -\frac{1}{2} \sum_n d_n \omega_n = -\frac{1}{2} \zeta_E(-1), \quad \zeta_E(z) = \sum_{n=0}^{\infty} 2^{\frac{d}{2}} \frac{(n + d - 2)!}{(d - 2)!n!} \left[n + \frac{1}{2}(d - 1) \right]^{-z}. \]

(3.23)

\(^7\)One is to change the summation variable in the second term \(n \to n' - 1 \) with \(n' \) running now from 1, and then observe that the \(n' = 0 \) term in the sum can be added without altering the result.

\(^8\)The expression (3.23) agrees, of course, with the spectrum of the Dirac operator \(-\nabla^2 + \frac{1}{2} R\) on \(S^{d-1}\): the eigenvalues are \(\lambda_n = [n + \frac{1}{2}(d - 1)]^2 = \omega_n^2 \) (\(n = 0, 1, 2, \ldots \)) and their degeneracy is twice \(d_n = 2^{\frac{d}{2}} \frac{(n + d - 2)!}{(d - 2)!} \) (there are two \((n \pm \frac{1}{2}, \frac{1}{2}, 0, \ldots) \) representations). For Majorana fermions these are to be counted with normalization \(\frac{1}{2} \) relative to a real scalar contribution, leading to \(E_c = -\frac{1}{2} \sum_{n=0}^{\infty} d_n \omega_n \) equivalent to (3.23).
As in the scalar case (3.12), this is zero for odd \(d \) and non-zero for even \(d \); one finds, for instance,
\[
E_c = -\frac{1}{24}, \quad -\frac{17}{960}, \quad -\frac{367}{48384}
\] in \(d = 2, 4, 6 \) respectively.\(^9\)

4 Free CFT partition functions on \(S^1 \times S^{d-1} \) with singlet constraints

In the context of AdS/CFT duality \(^4\) we are interested in conformal scalar partition function with an extra singlet constraint. As found in \(^{16,28}\), in the case of \(N \) complex scalars transforming in the fundamental representation of \(U(N) \), taking large \(N \) limit and imposing the singlet constraint one effectively gets instead of (3.15) the square of the one-particle partition function

\[
Z_{U(N)}(\beta) = [Z_0(\beta)]^2 = \frac{q^{d-2}(1 + q)^2}{(1 - q)^{2(d-1)}}. \quad (4.1)
\]

Below we shall first review the derivation of this result in \(^{16}\) (which was based on \(^{17,19}\)) streamlining the argument and extending it to any dimension \(d \geq 3 \). We shall then generalize it to the real scalar \(O(N) \) case as this will allow us to compare to the minimal HS theory free energy in thermal AdS\(_{d+1}\). In the real case we shall find that\(^{10}\)

\[
Z_{O(N)}(\beta) = \frac{1}{2} [Z_0(\beta)]^2 + \frac{1}{2} Z_0(2\beta) = \frac{1}{2} \frac{q^{d-2}(1 + q)^2}{(1 - q)^{2d-2}} + \frac{1}{2} \frac{q^{d-2}(1 + q^2)}{(1 - q^2)^{d-1}}. \quad (4.2)
\]

Similarly, in the complex and real fermion cases we shall find

\[
Z_{U(N)}^{\text{form}}(\beta) = [Z_2(\beta)]^2, \quad Z_{O(N)}^{\text{form}}(\beta) = \frac{1}{2} [Z_2(\beta)]^2 - \frac{1}{2} Z_2(2\beta), \quad (4.3)
\]

where \(Z_2(\beta) \) is given in (3.22).

One may also consider free theories with several fundamental flavors. For instance, we can start with \(NN_f \) free complex scalars \(\phi^a, \ i = 1, \ldots, N, \ a = 1, \ldots, N_f \), and impose the \(U(N) \) singlet constraint, and similarly for fermionic theories. Of course, one can also consider \(NN_f \) real fields with the \(O(N) \) singlet constraint. For such theories, the Casimir term is simply \(F_c = NN_f \beta E_c \), where \(E_c \) is the Casimir energy of a single scalar or fermion. On the other hand, the one particle partition functions that contribute to the non-trivial part of the free energy now take the form

\(^9\)This agrees, e.g., with the standard values of the Majorana fermion Casimir energy in \(d = 2 \) (i.e. \(-\frac{1}{12}, \ c = \frac{1}{2} \)) and also with the value of the Dirac fermion Casimir energy in \(d = 4 \): \(2 \times \frac{17}{960} \).\(^{58}\)

\(^{10}\)The \(d = 3 \) case of this expression was found in \(^{28}\) using a collective field theory approach to vectorial duality.
(assuming N_f is fixed in the large N limit)

\[Z_{U(N)}^{N_f}(\beta) = N_f^2 [Z_0(\beta)]^2, \quad Z_{O(N)}^{N_f}(\beta) = \frac{N_f^2}{2} [Z_0(\beta)]^2 + \frac{N_f}{2} Z_0(2\beta) \]

(4.4)

for the scalar theories, and

\[Z_{U(N)}^{N_f-\text{ferm}}(\beta) = N_f^2 [Z_{1/2}(\beta)]^2, \quad Z_{O(N)}^{N_f-\text{ferm}}(\beta) = \frac{N_f^2}{2} [Z_{1/2}(\beta)]^2 - \frac{N_f}{2} Z_{1/2}(2\beta), \]

(4.5)

for the fermion ones. These theories are dual to versions of Vasiliev higher spin theory with $U(N_f)$ or $O(N_f)$ bulk gauge symmetry \[11,64\]. In Section 7 we will show how the above thermal partition functions, as well as the Casimir energies, are reproduced by the sums over higher spin fields in AdS$_{d+1}$.

4.1 Complex scalar case

Starting with N complex scalars of fundamental representation of $U(N)$, to ensure the singlet condition one may couple them to a constant flat connection $A_0 = U^{-1} \partial_0 U$ with $U \in U(N)$ and integrate over U. The resulting scalar operator will have eigenvalues as in (3.6) but with k shifted by phases α_i of the eigenvalues $e^{i\alpha_i}$ ($i = 1, \ldots, N$) of the holonomy matrix, i.e. $\lambda_{k,n} = (\frac{2\pi k + \alpha_1}{\beta})^2 + \omega_n^2$. The resulting scalar determinant is then to be integrated over α_i with the standard $U(N)$ invariant measure given by the Van der Monde determinant, $[dU] = \prod_{k=1}^N d\alpha_k \prod_{i \neq j=1}^N |e^{i\alpha_i} - e^{i\alpha_j}|$ (see, e.g., \[65\]). As a result, the singlet partition function \hat{Z} is the following modification of Z in (3.1), (3.8) (for $2N$ real scalars) \[16,19\]

\[\hat{Z} = e^{-\hat{F}}, \quad \hat{F} = \hat{F}_c + \hat{F}_\beta, \quad e^{-\hat{F}_\beta} = \int \prod_{k=1}^N d\alpha_k \ e^{-\tilde{F}_\beta(\alpha_1, \ldots, \alpha_N)}, \]

(4.6)

\[\tilde{F}_\beta = -\frac{1}{2} \sum_{i \neq j=1}^N \ln \sin^2 \frac{\alpha_i - \alpha_j}{2} + 2 \sum_{i=1}^N f_\beta(\alpha_i), \]

(4.7)

\[f_\beta(\alpha) = \sum_{m=1}^\infty c_m(\beta) \cos(m\alpha), \quad c_m(\beta) = -\frac{1}{m} Z_0(m\beta). \]

(4.8)

Here $Z_0(\beta)$ is the same one-particle partition function as in (3.15) (“one-letter” partition function of \[18\]) so that in the formal limit of $\alpha_i \to 0$ we get \tilde{F}_β reducing to $2N$ times free energy of a real scalar F_β in (3.14). The “trivial” (not sensitive to α_i averaging) Casimir part \hat{F}_c is the same as
In (3.5), (3.9) up to the $2N$ factor

$$\hat{F}_c = 2N\beta E_c .$$ \hspace{1cm} (4.9)

In the large N limit \hat{F}_c scaling as N should match the contribution of the classical higher spin action in the AdS$_{d+1}$ bulk. At the same time, the nontrivial part of \hat{F}_β which will happen to scale as N^0 due to extra averaging over α_k \cite{16} should thus be matched with the 1-loop partition function of HS theory in thermal AdS$_{d+1}$.

Considering the large N limit one introduces as usual the eigenvalue density $\rho(\alpha), \alpha \in (-\pi, \pi)$ and replaces the integral over α_i by the path integral over the periodic field $\rho(\alpha)$ defined on a unit circle with the action

$$\hat{F}_\beta(\rho) = N^2 \int d\alpha d\alpha' \ K(\alpha - \alpha')\rho(\alpha)\rho(\alpha') + 2N \int d\alpha \rho(\alpha)f_\beta(\alpha) , \hspace{1cm} (4.10)$$

$$K(\alpha) = -\frac{1}{2} \ln(2 - 2\cos \alpha) , \hspace{1cm} f_\beta(\alpha) = \sum_{m=1}^{\infty} c_m(\beta)\cos(m\alpha) . \hspace{1cm} (4.11)$$

Note that the fact the second term in (4.11) scales as N is because the matter is in the fundamental representation. Then, in the large N limit and as long as the temperature is parametrically smaller than a power of N \cite{16}, the saddle point solution for the eigenvalue density takes the form $\rho(\alpha) = \frac{1}{2\pi} + \frac{1}{K}\tilde{\rho}(\alpha)$, where $\tilde{\rho}(\alpha)$ does not contain a constant part\footnote{The constant mode of ρ ensures that it satisfies the normalization condition $\int_{-\pi}^{\pi} d\alpha \rho(\alpha) = 1.$}. An important point is that the constant part of $\rho(\alpha)$ does not couple to the source f_β (which does not contain a zero mode term) so that it can be effectively projected out without changing the non-trivial β-dependent part of the result. This allows, in particular, to ignore the constant part of K\footnote{Note that up to the factor of $\frac{1}{\pi}$ the kernel K is the same as the restriction of the Neumann function on a unit disc to its boundary.} Then, doing the formal gaussian path integral over periodic non-constant $\rho(\alpha)$ gives an N-independent result for \hat{F}_β in (4.6)

$$\hat{F}_\beta = -\int d\alpha d\alpha' \ K^{-1}(\alpha - \alpha')f_\beta(\alpha)f_\beta(\alpha') . \hspace{1cm} (4.12)$$
The kernel K and its inverse K^{-1} have simple Fourier expansions\footnote{We used the identity $\ln(1 + b^2 - 2b\cos \alpha) = -2 \sum_{m=1}^{\infty} \frac{b^m}{m} \cos(m\alpha)$. Note also that the delta-function on non-constant functions on a circle is $\delta(\alpha) = \frac{1}{\pi} \sum_{m=1}^{\infty} \cos(m\alpha)$ with $\int d\alpha \cos(m\alpha) \cos(n\alpha) = \pi \delta_{mn}$.}

\begin{equation}
K(\alpha) = \sum_{m=1}^{\infty} \frac{1}{m} \cos(m\alpha) , \quad K^{-1}(\alpha) = \frac{1}{\pi^2} \sum_{m=1}^{\infty} m \cos(m\alpha) .
\end{equation}

We conclude that (4.12) is given by

\[\hat{F}_\beta = -\sum_{m=1}^{\infty} m [c_m(\beta)]^2 , \]

where $c_m(\beta)$ was defined in (4.8), or explicitly\footnote{Note also that the delta-function on non-constant functions on a circle is $\delta(\alpha) = \frac{1}{\pi} \sum_{m=1}^{\infty} \cos(m\alpha)$ with $\int d\alpha \cos(m\alpha) \cos(n\alpha) = \pi \delta_{mn}$.}

\begin{equation}
\hat{F}_\beta = -\sum_{m=1}^{\infty} \frac{1}{m} Z_{U(N)}(m\beta) , \quad Z_{U(N)}(\beta) = [Z_0(\beta)]^2 .
\end{equation}

Compared to the “unprojected” free energy of a single real scalar in (3.14) here one gets the second power of the one-particle partition function Z_0 factor in (3.15), (4.1). As we have seen above, this squaring of Z_0 has its origin in the gaussian averaging over the density of the large N distribution of the eigenvalues of the holonomy matrix. In Section 5, we will see that this result precisely matches the one-loop partition function of the higher spin theory in thermal AdS. Note that an important difference compared to the Yang-Mills case\footnote{Note also that the delta-function on non-constant functions on a circle is $\delta(\alpha) = \frac{1}{\pi} \sum_{m=1}^{\infty} \cos(m\alpha)$ with $\int d\alpha \cos(m\alpha) \cos(n\alpha) = \pi \delta_{mn}$.} is that in these vectorial models there is no phase transition at temperatures $T \sim 1$ (i.e. temperatures of order of the AdS scale). A phase transition only occurs at much higher (Planck scale) temperatures $T \sim N^{\frac{1}{d-1}}$\footnote{Note also that the delta-function on non-constant functions on a circle is $\delta(\alpha) = \frac{1}{\pi} \sum_{m=1}^{\infty} \cos(m\alpha)$ with $\int d\alpha \cos(m\alpha) \cos(n\alpha) = \pi \delta_{mn}$.}, where the calculation above breaks down (see the discussion below eq. (4.11)).

4.2 Real scalar case

Let us now repeat the above discussion in the case of N real scalars transforming as a fundamental representation of $O(N)$. Since we are interested only in the large N limit we may choose N to be even, $N = 2N$. An orthogonal $N \times N$ matrix can be put into a canonical form with N diagonal 2×2 blocks $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ which can be further diagonalized to $\begin{pmatrix} e^{i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}$. This may be formally viewed as a special $U(N)$ case where N eigenvalues α_i are chosen as $(\alpha_1, -\alpha_1, \alpha_2, -\alpha_2, \ldots, \alpha_N, -\alpha_N)$. Then
the analog of \tilde{F}_β in (4.7) becomes (here we use $r, s = 1, 2, \ldots, N$ to label α_i from different 2-planes)

$$
\tilde{F}_\beta = -\frac{1}{2} \sum_{r \neq s = 1}^{N} \ln \sin^2 \frac{\alpha_r - \alpha_s}{2} - \frac{1}{2} \sum_{r, s = 1}^{N} \sin^2 \frac{\alpha_r + \alpha_s}{2} + \frac{1}{2} \sum_{r = 1}^{N} \ln \sin^2 \alpha_r + 2 \sum_{r = 1}^{N} f_\beta(\alpha_r) \ , \quad (4.16)
$$

where $f_\beta(\alpha_r)$ is given by the same expression as in (4.8) (that for $\alpha_r = 0$ the last term becomes $N f_\beta(0)$ or N times F_β in (3.14) as it should be for N real scalars). The Casimir energy term is the same as in (4.9) with $N \to N$. In the large N limit (4.16) is then replaced by

$$
\tilde{F}_\beta(\rho) = N^2 \int d\alpha d\alpha' K(\alpha, \alpha') \rho(\alpha) \rho(\alpha') + 2N \int d\alpha \rho(\alpha) k(\alpha) + 2N \int d\alpha \rho(\alpha) f_\beta(\alpha) \ , \quad (4.17)
$$

$$
K(\alpha, \alpha') = -\frac{1}{2} \ln \left(\left[2 - 2 \cos(\alpha - \alpha') \right] \left[2 - 2 \cos(\alpha + \alpha') \right] \right) = 2 \sum_{m=1}^{\infty} \frac{1}{m} \cos(m\alpha) \cos(m\alpha') \ ,
$$

$$
k(\alpha) = \frac{1}{4} \ln(2 - 2 \cos 2\alpha) = -\sum_{m=1}^{\infty} \frac{1}{2m} \cos(2m\alpha) \ . \quad (4.18)
$$

Since $f_\beta(\alpha)$ in (4.8) contains only $\cos m\alpha$ modes in its expansion, the constant and $\sin m\alpha$ modes of a generic periodic function $\rho(\alpha) = a_0 + \sum_{m=1}^{\infty} (a_m \cos m\alpha + b_m \sin m\alpha)$ do not couple to the β-dependent source, i.e. we may restrict the integration to even non-constant functions $\rho(\alpha) = \sum_{m=1}^{\infty} a_m \cos m\alpha$ (this allows, in particular, to ignore constant terms in K and K). Then the gaussian integration gives again an order N^0 term (cf. (4.12))

$$
\hat{F}_\beta = - \int d\alpha d\alpha' K^{-1}(\alpha, \alpha') j(\alpha) j(\alpha') \ , \quad (4.19)
$$

$$
K^{-1}(\alpha, \alpha') = \frac{1}{2\pi^2} \sum_{m=1}^{\infty} m \cos(m\alpha) \cos(m\alpha') \ , \quad (4.20)
$$

$$
j = f_\beta(\alpha) + k(\alpha) = \sum_{m=1,3,5,\ldots}^{\infty} c_m \cos(m\alpha) + \sum_{m=2,4,6,\ldots}^{\infty} c'_m \cos(m\alpha) \ , \quad (4.21)
$$

$$
c_m = -\frac{1}{m} Z_0(m\beta) \ , \quad c'_m = c_m - \frac{1}{m} = -\frac{1}{m} [Z_0(m\beta) + 1] \ , \quad (4.22)
$$

where we used (4.8). As a result, we find in the real scalar case (omitting β-independent constant)

$$
\hat{F}_\beta = -\sum_{m=1}^{\infty} \frac{1}{m} Z_{O(N)}(m\beta) \ , \quad Z_{O(N)}(\beta) = \frac{1}{2} \left[Z_0(\beta) \right]^2 + \frac{1}{2} Z_0(2\beta) \ . \quad (4.23)
$$

The second term in $Z_{O(N)}(\beta)$ originates from the cross-term between the source $k(\alpha)$ coming from the measure and the β-dependent source $f_\beta(\alpha)$. The explicit form $Z_{O(N)}(\beta)$ was already given in
If the case of N_f free complex or real scalar flavors in the fundamental of $U(N)/O(N)$, with N_f fixed in the large N limit, the only modification is that the last term in (4.10) and (4.17) acquires an extra factor of N_f. Then, the same calculation as described above readily leads to the results in (4.4) for complex or real scalars.

4.3 Fermionic theories

In the $U(N)$ invariant case of N Dirac fermions the singlet constraint is again implemented by averaging the Dirac operator determinant over the $U(N)$ holonomy eigenvalues [16, 19]. One difference compared to the scalar case in (4.6) is that now we will have the Casimir part of free energy (4.9) replaced by its fermion analog; also, the non-trivial β-dependent term f_β in (4.8) will be replaced by

$$f_\beta(\alpha) = \sum_{m=1}^{\infty} c_m(\beta) \cos(m\alpha) , \quad c_m(\beta) = -\frac{(-1)^{m+1}}{m} Z_\frac{1}{2}(m\beta) , \quad (4.24)$$

where $Z_\frac{1}{2}$ was defined in (3.22), i.e. one is to replace the real scalar one-particle partition function Z_0 in (4.8) by real or Weyl fermion partition function $Z_\frac{1}{2}$ (and add an extra $(-1)^{m+1}$ factor).\footnote{The normalization can be checked by considering the $U(1)$ case when the free energy of a single complex scalar or $F_\beta = -2 \sum_{m=0}^{\infty} \frac{1}{m} Z_0(m\beta)$ (cf. (3.14)) should be replaced by free energy of a single Dirac fermion, or $F_\beta = -2 \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m} Z_\frac{1}{2}(m\beta)$ (cf. (3.21),(3.22)). An extra factor of 2 in eq. 24 of [16] appears to be a misprint.}

The rest of the argument is unchanged, so we again end up with (4.14), now with c_m given in (4.24), i.e.

$$\hat{F}_\beta = -\sum_{m=1}^{\infty} \frac{1}{m} Z_{U(N)}^{\text{form}}(m\beta) , \quad Z_{U(N)}^{\text{form}}(\beta) = \left[Z_\frac{1}{2}(\beta)\right]^2 . \quad (4.25)$$

In the $O(N)$ singlet sector of N Majorana fermions, the starting point is (4.16) with the same function f_β as in (4.24). Doing the obvious replacement in (4.22), i.e. $c_m = \frac{(-1)^m}{m} Z_\frac{1}{2}(m\beta)$, $c'_m = c_m - \frac{1}{m}$ (so that $c_{2m} = \frac{1}{2m}[Z_\frac{1}{2}(2m\beta) - 1]$) we finish with the following analog of (4.23)

$$\hat{F}_\beta = -\sum_{m=1}^{\infty} \frac{1}{m} Z_{O(N)}^{\text{form}}(m\beta) , \quad Z_{O(N)}^{\text{form}}(\beta) = \frac{1}{2} \left[Z_\frac{1}{2}(\beta)\right]^2 - \frac{1}{2} Z_\frac{1}{2}(2\beta) . \quad (4.26)$$

We shall see in Section 6 how the partition functions in (4.25) and (4.26) are reproduced on the dual AdS higher spin theory side.
While the above calculation was presented in the case of a single fundamental fermion, it is straightforward to generalize it to the case of \(N_f\) flavors \((N_f \ll N)\). One simply includes an extra factor of \(N_f\) in the free fermion one-particle partition function (4.24), and performing the Gaussian integral over the eigenvalue density immediately leads to the results quoted in (4.5).

5 Higher spin partition function in AdS\(_{d+1}\) with \(S^1 \times S^{d-1}\) boundary

Our aim in this section will be to compare the singlet sector scalar CFT free energies, calculated above, with their counterparts for higher spin theories in thermal AdS\(_{d+1}\). The HS free energy can be found by summing the individual massless spin \(s\) contributions:

\[
F = \sum_s F^{(s)}, \quad F^{(s)} = -\ln Z_s, \quad Z_s = \left(\frac{\det \left[-\nabla^2 + (s - 1)(s + d - 2) \right]_{s-1\perp}}{\det \left[-\nabla^2 - s + (s - 2)(s + d - 2) \right]_{s\perp}}\right)^{1/2}, \quad (5.1)
\]

where the operators are defined on symmetric traceless transverse tensors \[^{66,67}\]^{15}.

On general grounds, for a quantum field in AdS\(_{d+1}\) with boundary \(S^1_\beta \times S^{d-1}\) one expects the 1-loop free energy to have the following structure (cf. (3.8))

\[
F = F_0 + F_\beta, \quad F_0 = \beta \bar{F}_0 = F_\infty + F_c, \quad F_\infty = a_{d+1} \ln \Lambda, \quad (5.2)
\]

where \(F_0\) is linear in \(\beta\) (i.e. proportional to the volume) while the part \(F_\beta\) with non-trivial \(\beta\) dependence is finite and vanishes in the zero-temperature limit \(\beta \to \infty\). We have split \(F_0\) into a possible UV logarithmically divergent part, and a finite part \(F_c\) (power divergences are assumed to be regularized away).

The coefficient \(a_{d+1}\) of the UV divergent term vanishes automatically if \(d + 1\) is odd. For even \(d + 1\) it is given by an integral of the corresponding local Seeley coefficient, which, in the case of AdS\(_{d+1}\), is proportional to the product of the volume factor and \(\frac{1}{2}(d + 1)\) power of the constant curvature. Since this curvature factor is the same for any \(\beta\) or regardless of the topology of the boundary, the dependence of \(a_{d+1}^{(s)}\) on the spin \(s\) should be the same as that found in \[^{39,41}\] for the case of Euclidean AdS\(_{d+1}\), i.e. the hyperboloid \(H^{d+1}\), whose boundary is \(S^d\). In particular, it was shown in \[^{39,41}\] (for various particular values of \(d\)) that the total anomaly coefficient \(\sum_s a_{d+1}^{(s)}\) \textit{vanishes after summing over spins} (assuming the zeta-function regularization of the sum), so that there are no logarithmic UV divergences in the standard or minimal HS theory. Thus in what

\[^{15}\]We set the AdS scale to 1. The energies (or scaling dimensions) of the corresponding representations are \(\Delta = e_0 = s + d - 2\) for the physical field and \(\Delta = e_0 = s + d - 1\) for the ghost one.
follows we shall set $F_{\infty} = 0$.

The problem of computing the β-dependent part F_β of the one-loop free energy in thermal AdS$_{d+1}$ can be approached from the Hamiltonian point of view [54, 68], using group-theoretic considerations to determine the energy spectrum [44] of a spin s field in global AdS$_{d+1}$ with reflective boundary conditions [69, 70]. An equivalent result for F_β is found in the path integral approach by starting with the heat kernel for the hyperboloid H^{d+1} [71, 73] and using the method of images to find its counterpart for thermal AdS$_{d+1}$ viewed as a quotient H^{d+1}/Z (see [74, 75] for the AdS$_3$ case and [66, 76] for the general case). In this heat kernel approach F_0 in (5.2) is the “zero-mode” part of the sum over the images, and it is thus natural to identify it with

\[\hat{F}_0 = \frac{\text{Vol}(H^{d+1}/Z)}{\text{Vol}(H^{d+1})} F(H^{d+1}) , \]

where $F(H^{d+1})$ is the free energy on H^{d+1}. This \hat{F}_0 requires a proper definition or regularization (cf. [74]) and was not studied in [76].

At the same time, the expected correspondence with the free energy (3.8) of the boundary CFT in $S^1 \times S^{d-1}$ suggests that the finite part of F_0 should be closely related to the vacuum or Casimir energy of the corresponding fields in AdS$_{d+1}$. As this relation appears to be obscure in the H^{d+1}/Z construction let us discuss an alternative approach to justify it.

Let us recall that starting with the Euclidean AdS$_{d+1}$, realized as a hyperboloid $x^2_{d+1} - x_0^2 - x_i x_i = 1$ in $R^{1,d+1}$, one may choose different sets of coordinates (see, e.g., [78]). For example, one may set $x_{d+1} = \cosh \xi$, $x_m = (x_0, x_i) = \sinh \xi n_m$ where $n_m n_m = 1$ getting the H^{d+1} metric $ds^2_\xi = d\xi^2 + \sinh^2 \xi \, d\Omega_d$ with S^d as its boundary. One may also choose the coordinates as $x_{d+1} = \cosh \rho \cosh t$, $x_0 = \cosh \rho \sinh t$, $x_i = \sinh \rho \, n_i$, $n_i n_i = 1$ obtaining the Euclidean continuation of the global AdS$_{d+1}$ metric, i.e. $ds^2_t = \cosh^2 \rho \, dt^2 + d\rho^2 + \sinh^2 \rho \, d\Omega_{d-1}$. Compactifying t on a circle of length β gives thermal AdS$_{d+1}$ metric ds^2_t, β with $S^1_\beta \times S^{d-1}$ as the boundary. A direct computation of the full expression for the determinant of a scalar Laplacian in the case of AdS$_{d+1}$ with ds^2_t or $ds^2_{t,\beta}$ metric did not seem to appear in the literature. In particular, it is not obvious how a finite part F_c of the $\beta \to \infty$ limit of F computed for $ds^2_{t,\beta}$ will match the expression found in [71, 73] in the case of the hyperboloid ds^2_ξ.

The AdS$_{d+1}$ metric ds^2_t may be written also as $ds^2_t = \frac{1}{\cos^2 \theta} (dt^2 + d\theta^2 + \sin^2 \theta \, d\Omega_{d-1})$, where $\theta \in [0, \frac{\pi}{2}]$ with the boundary $R \times S^{d-1}$ at $\theta = \frac{\pi}{2}$. Thus, it is conformal to a half of the Einstein universe $R \times S^d$. Indeed, there is a close correspondence [76] between the spectrum of the energy operator in AdS$_{d+1}$ and the spectrum of the Laplacian in the half of the Einstein universe with reflective boundary conditions (Dirichlet or Neumann) at the equator of S^d [69, 70]. In particular, the Casimir energies in AdS$_4$ [44] and in $R \times S^3$ are the same up to a factor [79]. This implies

Ref. [76] used, in fact, an analytic continuation of a heat kernel of a quotient of a sphere S^{d+1}.

For a related recent discussion of \hat{F}_0 in the case of a massive scalar in AdS$_2$ and AdS$_4$ see [77].
also that this energy spectrum determines the non-trivial part F_β of the free energy, in agreement with its alternative derivations in [68] (from direct evaluation of the scalar stress tensor in AdS) and in [67,74,76] (from the H^{d+1}/Z construction of the heat kernel).

It remains then to understand the relation between the F_0 part of free energy in AdS$_{d+1}$ and in the conformally-related Einstein universe. Given an ultrastatic space-time $R \times M^d$ with a Euclidean metric $ds^2 = dt^2 + \tilde{g}_{ij}(x)dx^i dx^j$, one can readily show that, up to a standard logarithmically divergent term proportional to $\zeta(0)$ [62, 80], the corresponding free energy or $-\ln Z$ is given by the Casimir energy term $F_c = \beta E_c$. Here $\beta \to \infty$ is the length of the time interval and $E_c = \frac{1}{2} \sum_n d_n \omega_n$, with ω_n^2 being the eigenvalues of the Laplacian restricted to M^d (cf. Section 2). For a conformally-related static space-time $ds^2 = g_{00}(x) dt^2 + g_{ij}(x) dx^i dx^j$ the full expression for the free energy will contain, in addition to F_c, extra g_{00}-dependent local terms reflecting the required conformal rescaling by $g_{00}(x)$ [55,81] (see also, e.g., [72,82]).

These extra terms are linear in β, i.e. not changing the F_β part in the finite temperature case. These terms are similar [83] to the “integrated conformal anomaly” terms found for conformally invariant matter fields. They should be closely related to the $\zeta(0)$-type terms that contribute to F_∞ part of F in (5.2) and should thus vanish like $\sum_s a_{d+1}^{(s)}$ after one sums over the spins. For that reason in what follows we shall assume that the $\beta \to \infty$ limit of the UV finite part of the free energy (5.2) in thermal AdS$_{d+1}$ has indeed the interpretation of the Casimir energy term, i.e. $F_c = \beta E_c$. As we shall see below, this is fully consistent with the AdS/CFT correspondence.

5.1 Temperature-dependent part of the free energy

Let us first discuss the temperature dependent part, F_β, of the free energy of higher spin theories and then turn to the Casimir part in the next subsection.

The expression for F_β of totally symmetric massless spin s field is [66,76]

$$F_\beta^{(s)} = -\sum_{m=1}^{\infty} \frac{1}{m} Z_s(m,\beta) ,$$
(5.3)

$$Z_s(\beta) = \frac{q^{s+d-2}}{(1-q)^d} (d_s - d_{s-1}q) , \quad q \equiv e^{-\beta}$$
(5.4)

$$d_s = (2s + d - 2) \frac{(s + d - 3)!}{(d - 2)! s!} .$$
(5.5)

Here d_s is the number of symmetric traceless rank s tensors in d dimensions or dimension of $(s,0,0,...)$ representation of the “little” group $SO(d)$ (i.e. $d_s|_{d=3} = 2s + 1$, $d_s|_{d=4} = (s + 1)^2$,
etc.). Note that d_s is exactly the same as the degeneracy of eigenvalues of the scalar Laplacian on S^{d-1} if we replace the angular momentum quantum number n in d_n in (3.4) by the spin s.

$Z_s(\beta)$ in (5.4) thus has an interpretation of the corresponding one-particle partition function (cf. (2.3),(2.7)). From the point of view of d-dimensional CFT, Z_s is the character of the representation of $SO(d,2)$ containing the spin-s primary field of dimension $\Delta = s + d - 2$ and its descendants [27,54]. The explicit results for $d = 2, 3, 4$ are

\begin{align*}
 &d = 2 :
 Z_{s>1}(\beta) = \frac{2q^s - 2q^{s+1}}{(1-q)^2} = \frac{2q^s}{1-q}, \\
 &d = 3 :
 Z_{s>0}(\beta) = \frac{q^{s+1}}{(1-q)^3} \left[2s + 1 - (2s - 1)q \right], \\
 &d = 4 :
 Z_s(\beta) = \frac{q^{s+2}}{(1-q)^4} \left[(s+1)^2 - s^2q \right].
\end{align*}

The low spin cases in $d = 2, 3$ are special. For the spin 0 primary field of general dimension Δ,

\begin{equation}
 Z_0^{(\Delta)} = \frac{q^\Delta}{(1-q)^d},
\end{equation}

since no ghosts need to be subtracted (this ghost term vanishes automatically for $s = 0$ for all $d > 3$). In AdS$_3$ there are two possibilities for $s = 1$. For the Maxwell action, which was conjectured to be relevant to the $d = 2$ scalar theory [41], $Z_1^{\text{Maxwell}} = \frac{2q-q^2}{(1-q)^2}$; for the Chern-Simons action, which is relevant to the $d = 2$ fermionic theory, $Z_1^{\text{CS}} = \frac{2q-2q^2}{(1-q)^2}$.

Putting these elements together, we find the total free energy of the standard Vasiliev theory in AdS$_{d+1}$ where each integer spin is counted once [12]. Including the $s = 0$ contribution with $\Delta = d - 2$, and $s = 1$ Maxwell theory for $d = 2$, we find that that in all dimensions $d \geq 2$

\begin{align*}
 F_{\beta} &= \sum_{s=0}^{\infty} F_{\beta}^{(s)} = - \sum_{m=1}^{\infty} \frac{1}{m} Z(m\beta), \\
 Z(\beta) &= Z_0^{(d-2)} + \sum_{s=1}^{\infty} Z_s(\beta) = \frac{q^{d-2}(1+q)^2}{(1-q)^{2d-2}}.
\end{align*}

Comparing to (4.15),(4.1),(3.15) we conclude that this is exactly the same as the order N^0 term in the large N limit of the free energy of a complex $U(N)$ scalar in $S^1 \times S^{d-1}$ with the singlet condition imposed. This is thus a generalization to all dimensions $d \geq 2$ of the matching found in [16] (and also, in the collective field theory approach, in [28]) in the $d = 3$ case. This matching is a consistency check that the boundary and the bulk theories have the same spectrum of states:
indeed, the free spectra determine both the one-loop term in the β-dependent bulk theory free energy and also the leading order N^0 term in the boundary theory free energy.

The identity \[5.11\] also has an interpretation as expansion of the CFT partition function in terms of characters Z_a of the conformal group. This expansion is completely determined by the spectrum of primary fields and by the conformal symmetry. For example, if we consider the large N limit of the $d = 3$ critical $U(N)$ model, then the dimension of the singlet scalar primary operator $\bar{\phi}_i \phi^i$ changes from 1 to 2, while the dimensions of singlet higher spin primaries remain the same as in the free theory.\(^{18}\) Therefore, the partition function of such a large N CFT must have the form\(^{19}\)

$$Z_{\text{crit}}(\beta) = \frac{q^2}{(1-q)^3} + \sum_{s=1}^{\infty} \frac{q^{s+1}}{(1-q)^3} \left[2s + 1 - (2s-1)q \right].$$ \hspace{1cm} (5.12)

This is equal to the one-particle partition function of the Vasiliev theory in AdS$_3$ with the $\Delta = 2$ boundary condition for the bulk scalar. Therefore, once again, the AdS/CFT agreement of the partition functions follows from the conformal symmetry and the agreement of the spectra.

Let us note that the HS partition function corresponding to \[5.10\],\[5.11\] may be rewritten as\(^{20}\)

$$F_\beta = - \ln Z_\beta = \sum_{n=1}^{\infty} (\frac{n+2d-4}{2d-3}) \ln \left[(1-q^{n+d-3})(1-q^{n+d-2})^2(1-q^{n+d-1}) \right]$$

$$= \ln \left[(1-q^{d-2})(1-q^{d-1})^{2d} \right] + \sum_{n=1}^{\infty} C_n \ln(1-q^{n+d-1}),$$ \hspace{1cm} (5.13)

$$C_n = (\frac{n+2d-4}{2d-3}) + 2(\frac{n+2d-3}{2d-3}) + (\frac{n+2d-2}{2d-3}) = \frac{(n+2d-2)!}{(2d-3)!(n+1)!} \left[4n(n+2d-2) + 2d(2d-3) \right].$$

This generalizes to any d the expressions given for $d = 3, 4, 6$ in \[66\].

In the minimal Vasiliev theory in AdS$_{d+1}$, which should be dual to the $O(N)$ singlet sector of the d-dimensional real scalar theory, one is to sum over all even spins only. Then instead of \[5.10\],\[5.11\] one finds from \[5.4\],\[5.5\]

$$F_{\beta_{\text{min}}} = \sum_{s=0,2,4\ldots}^{\infty} F_{\beta}^{(s)} = - \sum_{m=1}^{\infty} \frac{1}{m} Z_{\text{min}}(m\beta),$$ \hspace{1cm} (5.14)

$$Z_{\text{min}}(\beta) = Z_0^{d-2} + \sum_{s=2,4\ldots}^{\infty} Z_s(\beta) = \frac{1}{2} \frac{q^{d-2}(1+q)^2}{(1-q)^{2d-2}} + \frac{1}{2} \frac{q^{d-2}(1+q^2)}{(1-q^2)^{d-1}}.$$ \hspace{1cm} (5.15)

\(^{18}\)In the critical vector model, the anomalous dimension of the spin s currents is of order $1/N$.

\(^{19}\)While this is guaranteed on general grounds, it would be nice to give a direct path integral derivation.

\(^{20}\)One is to use that $\sum_{n=1}^{\infty} \frac{1}{m} (\frac{n+b-2}{n+a-1}) \ln(1-q^{n+b-1}) (1-x)^{-b} = \sum_{n=1}^{\infty} (\frac{n+b-2}{n+a-1}) x^{n-1}$.\(\)
This nicely matches the order N^0 term in the free energy of the $O(N)$ singlet CFT.

5.2 Casimir part of the free energy

Since we have already matched the N^0 part of dual scalar free energy, the Casimir energy part of the HS free energy in (4.6) should vanish after the summation over spins. The Casimir part of the scalar free energy (4.9) scales as N and thus should be compared to the classical order N part of the HS free energy.

More precisely, the above should apply to the standard HS theory dual to $U(N)$ complex scalar theory. In the $O(N)$ real scalar theory there is a subtlety noticed in [39]: the matching should work provided the classical HS coupling constant is not N but $N - 1$ (cf. also [28]). In this case the Casimir energy of the minimal HS theory should not vanish but should match the Casimir energy of a single real conformal scalar in $R \times S^{d-1}$, i.e. (3.5). In other words, we should have the $N\beta E_c$ term in the free energy of the boundary theory matching the sum of the classical $(N - 1)\beta E_c$ term plus the one-loop βE_c term in the minimal HS theory. We shall indeed confirm this below.

The Casimir part $F_c = \beta E_c$ is the same as in the case of the global AdS$_{d+1}$ with boundary $R \times S^{d-1}$ (with time interval regularized by $\beta \rightarrow \infty$). It is defined by the spectrum of the Hamiltonian associated to the global AdS time. Equivalently, it can be also determined (e.g., via (2.2), (2.4)) from the one-particle HS partition functions (5.11) and (5.15) found above. Explicitly, in the standard HS theory we should get

$$E_c = \frac{1}{2} \zeta_E(-1), \quad \zeta_E(z) = \frac{1}{\Gamma(z)} \int_0^\infty d\beta \beta^{z-1} \mathcal{Z}(\beta), \quad (5.16)$$

$$\mathcal{Z}(\beta) = \frac{e^{-(d-2)\beta} (1 + e^{-\beta})^2}{(1 - e^{-\beta})^{2d-2}} = \frac{\cosh^2 \frac{\beta}{2}}{4^{d-2} (\sinh^2 \frac{\beta}{2})^{d-1}}. \quad (5.17)$$

Using that

$$(1 - q)^{-b} = \sum_{n=1}^\infty \binom{n+b-2}{b-1} q^{n-1}, \quad \frac{1}{\Gamma(z)} \int_0^\infty d\beta \beta^{z-1} e^{-a\beta} = a^{-z}, \quad (5.18)$$

Ref. [28] also checked this matching in the $d = 3$ case using the collective field formalism.
this gives for a general \(d \): \(^{22}\)

\[
\zeta_E(z) = \sum_{n=1}^{\infty} \left(\frac{n^{+2d-4}}{2d-3} \right) \left[\frac{1}{(n + d - 3)^z} + \frac{2}{(n + d - 2)^z} + \frac{1}{(n + d - 1)^z} \right]
= \sum_{n=1}^{\infty} \frac{b_n(d)}{(n + d - 3)^z},
\]

\[
b_n(d) = \left(\frac{n^{+2d-4}}{2d-3} \right) + 2 \left(\frac{n^{+2d-5}}{2d-3} \right) + \left(\frac{n^{+2d-6}}{2d-3} \right)
= \frac{(n+2d-6)!}{(n-1)!(2d-3)!} \left[4n^2 + 8(d - 3)n + 4d^2 - 22d + 32 \right].
\]

One can then compute \(E_c \) in in (5.16), i.e.

\[
E_c = \frac{1}{2} \sum_{n=1}^{\infty} b_n(d) (n + d - 3),
\]

using the standard Riemann \(\zeta \)-function regularization, finding that the standard HS theory vacuum energy in AdS\(_{d+1}\) vanishes for any \(d \),

\[
E_c = \frac{1}{2} \zeta_E(-1) = \sum_{s=0}^{\infty} E_{c,s} = 0.
\]

For example, for the HS theory in AdS\(_4\), AdS\(_5\) and AdS\(_7\) we get

\[
d = 3: \quad \zeta_E(z) = \sum_{n=1}^{\infty} \frac{1}{6} n(n+1)(n+2) \left[n^{-z} + 2(n+1)^{-z} + (n+2)^{-z} \right]
= \sum_{n=1}^{\infty} \frac{1}{3} (2n^2 + 1)n^{-z} = \frac{1}{3} \left[2\zeta(z-3) + \zeta(z-1) \right],
\]

\[
d = 4: \quad \zeta_E(z) = \sum_{n=1}^{\infty} \frac{1}{6} n(n+1)(n+2)(n^2 + 2n + 2)(n+1)^{-z} = \frac{1}{30} \left[\zeta(z-5) - \zeta(z-1) \right],
\]

\[
d = 6: \quad \zeta_E(z) = \sum_{n=1}^{\infty} \frac{1}{6} n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n^2 + 6n + 11)(n+3)^{-z}
= \frac{1}{90} \left[\zeta(z-9) - 12\zeta(z-7) + 21\zeta(z-5) + 62\zeta(z-3) - 72\zeta(z-1) \right].
\]

These expressions vanish at \(z = -1 \) due to \(\zeta(-2n) = 0 \). Equivalently, one may use an exponential cutoff \(e^{-\epsilon(n+d-3)} \) with the “spectral” parameter \((n + d - 3) \) appearing in (5.19). Then the sum in (5.19) can be done exactly at \(z = -1 \), giving for the regularized vacuum energy (2.2) (cf. (3.18))

\[
E_c(\epsilon) = \frac{1}{2} \zeta_E(-1; \epsilon) = \frac{4e^{-\epsilon d}}{(1 - e^{-\epsilon})^{2d}} \left[d + (d - 2) \cosh \epsilon \right] \sinh \epsilon.
\]

\(^{22}\)Here (as also earlier in (3.20)) we have shifted the summation variable and noted that one can restore the lower value of the summation interval due to vanishing of the coefficients of the second and third terms at \(n = 1, 2 \).
Expanding in $\epsilon \to 0$ and subtracting the singular $\frac{1}{\epsilon^x}$ terms one finds that the finite part in (5.23) is always zero.

One can see the reason for this vanishing of the Casimir energy directly from (5.16). Since $\Gamma(-1) = \infty$, the result for E_c can be non-zero only if the remaining integral over β has a pole at $z = -1$. The pole can not appear since the partion function $Z(\beta)$ appearing in the integrand of (5.16) is even in β, i.e. contains only even powers of β in its small β expansion: $Z(\beta) = 4\beta^{-2(d-1)}[1 + \frac{1}{12}(d-4)\beta^2 + ...]$

Let us now repeat the above analysis in the case of the minimal HS theory with the one-particle partition function in (5.15). Here we get the following analog of (5.16)

\[
E^\text{min}_c = \frac{1}{2} \zeta^\text{min}_E(-1), \quad \zeta^\text{min}_E(z) = \frac{1}{2} \zeta_E(z) + \delta\zeta(z),
\]

where $\zeta_E(z)$ in (5.24) is the standard HS function given by (5.16), (5.19) which vanishes at $z = -1$ (5.21) as discussed above. Using (5.18) we find (cf. (5.19))

\[
\delta\zeta(z) = \frac{1}{2} \sum_{n=1}^{\infty} \left[(n+d-4)^{-z} + (2n+d-2)^{-z} \right] = \frac{1}{2} \sum_{n=1}^{\infty} \frac{(n+d-4)!}{(d-2)!(n-1)!} (2n+d-4)^{1-z}.
\]

Thus we get

\[
E^\text{min}_c = \frac{1}{2} \delta\zeta(-1) = \frac{1}{4} \sum_{n=1}^{\infty} \frac{(n+d-4)!}{(d-2)!(n-1)!} (2n+d-4)^2 = \sum_{n=0}^{\infty} \frac{(n+d-3)!}{(d-2)!n!} \left[n + \frac{1}{2} (d-2) \right]^2.
\]

Comparing this expression to (3.5) we observe that it is exactly the same as the Casimir energy E_c of a single real conformal scalar in $R \times S^{d-1}$ given in (3.12). We conclude that, as already mentioned above, this is consistent with the $N \to N - 1$ shift in identification of the coupling constant in the minimal HS theory – $O(N)$ real scalar duality [39,41].

The equivalence between the scalar Casimir energy in $R \times S^{d-1}$ (3.5) and the minimal HS theory Casimir energy in AdS_{d+1} (5.27) is seen at the level of formal series so the equality of the resulting finite expressions requires the use of the same (zeta-function) regularization on both sides of the duality.

While the Casimir energy (5.16) of the standard HS theory vanishes in AdS_{d+1} for any value of d, the Casimir energy of the minimal HS theory vanishes only for odd d, i.e. in AdS_4, AdS_6, etc. It is non-vanishing for even d, i.e. in AdS_5, AdS_7, etc. (see (3.12)). This is to be compared
with the well-known vanishing of vacuum energies of \(\mathcal{N} > 4 \) extended gauged supergravities in \(\text{AdS}_4 \) \(^{44}\) and of each Kaluza-Klein level of the massive spectrum of 11-dimensional supergravity compactified on \(S^7 \) \(^{45,46}\).

The expressions for the HS theory vacuum energies in (5.21) and (5.27) were found above by first doing the formally convergent sum over spins \(s \) for fixed \(\beta \) under the integral in (5.16) and then regularizing the sum over \(n \). If instead we first found the standard (zeta-function regularized) expressions for the Casimir energies of each spin \(s \) field and then summed over spin we would get a divergent series that would require a zeta-function regularization, now of the sum over \(s \). While the cancellation of vacuum energy in supergravities happened due to large amount of supersymmetry, in the HS theory it may be viewed as being due to a special (zeta function) definition of the formally divergent sum over spins – a definition that should be consistent with the underlying symmetries of HS theory.

To further illustrate the role of the regularization of the sum over spins (already emphasized earlier in the case of the partition function in the Euclidean \(\text{AdS}_{d+1} \) with \(S^d \) boundary in \(^{39,41,84}\)) below we shall consider explicitly the individual spin \(s \) contributions to the Casimir energy for some particular values of dimension \(d \).

5.3 Casimir energies of individual higher spin fields in \(\text{AdS}_{d+1} \)

The vacuum energy for a given massless spin \(s \) field in \(\text{AdS}_{d+1} \) can be found for a general \(d \) by using the expression for \(\mathcal{Z}_s(\beta) \) from (5.4) in the representation (2.4) for the corresponding energy zeta function

\[
\zeta_{E,s}(z) = \frac{1}{\Gamma(z)} \int_0^\infty d\beta \beta^{z-1} e^{-(s+d-2)\beta} \frac{1}{(1-e^{-\beta})^d} \left(d_s - d_{s-1} e^{-\beta} \right)
\]

\[
= \sum_{n=1}^{\infty} \binom{n+d-2}{d-1} \left[d_s(n + s + d - 3)^{-z} - d_{s-1}(n + s + d - 2)^{-z} \right] , \tag{5.28}
\]

\[
E_{c,s} = \frac{1}{2} \zeta_{E,s}(-1) = \frac{1}{2} \sum_{n=1}^{\infty} \binom{n+d-2}{d-1} \left[d_s(n + s + d - 3) - d_{s-1}(n + s + d - 2) \right] . \tag{5.29}
\]

The expression for \(d_s \) was given in (5.5) and we used again the relations in (5.18).

For example, for a scalar \(s = 0 \) in (5.1) (with the operator \(-\nabla^2 - 2d + 4\)) we have \(d_0 = 1 \) and

\(^{23}\)The computation of the vacuum energy of individual fields in \(^{44}\) still required, of course, the use of the standard zeta-function regularization of the sum over radial quantum number \(n \) (as, e.g., in the scalar case on the sphere in (3.11)).
thus, \(^{24}\)
\[
E_{c,s=0} = \frac{1}{2} \zeta_{E,s=0}(-1) = \frac{1}{2} \sum_{n=0}^{\infty} \frac{(n+d-1)!}{(d-1)!n!} (n + d - 2),
\]
(5.30)

This expression for the vacuum energy of a scalar (with dimension \(\Delta = e_0 = d - 2\)) in AdS\(_{d+1}\) is similar but different from the one (3.5) for the vacuum energy of a conformal scalar in \(R \times S^d\) or in \(R \times S^{d-1}\).\(^{25}\)

Let us consider cases of few low values of the boundary dimension \(d\). Let us start with \(d = 2\) or AdS\(_3\) case (\(d_s = 2, s > 1\))

\[
d = 2 : \quad \zeta_{E,s>1}(z) = 2\zeta(z,s), \quad E_{c,s>1} = \zeta(-1,s) = -\frac{1}{12} \left[1 + 6s(s-1) \right],
\]
(5.31)

where \(\zeta(z,a) = \sum_{r=0}^{\infty} \frac{1}{(r+a)^z}\) is the standard Hurwitz zeta function. The above formula is applicable for \(s \geq 2\) while \(s = 0, 1\) are special cases that need to be discussed separately.\(^{41}\) Note that in \(d = 2\) case the Casimir energy coefficient is directly related to the conformal anomaly.\(^{58}\) but this will not be true in general.

For \(d = 3\) or AdS\(_4\) one finds

\[
d = 3 : \quad \zeta_{E,s}(z) = \sum_{n=1}^{\infty} \frac{1}{2} n(n+1) \left[(2s+1)(n+s)^{-z} - (2s-1)(n+s+1)^{-z} \right]
\]
\[
= \sum_{n=1}^{\infty} n(n+2s)(n+s)^{-z} = \zeta(z-2,s+1) - s^2 \zeta(z,s+1),
\]
(5.32)

\[
E_{c,s>0} = \frac{1}{2} \zeta_{E,s>0}(-1) = \frac{1}{8} s^4 - \frac{1}{12} s^2 + \frac{1}{240}, \quad E_{c,0} = \frac{1}{480}.
\]
(5.33)

For completeness, let us recall that the computation of the vacuum energies for massless higher spin fields in AdS\(_4\) was originally discussed in the context of extended gauged supergravities\(^{44}\), starting directly from the energy spectrum \(E_n = \omega_n\) for massless spin \(s = 0, \frac{1}{2}, ..., 2\) fields (assuming reflective boundary conditions at infinity giving discrete energy spectrum\(^{69,70}\)). Explicitly, for a massless spin \(s > 0\) field corresponding to \(SO(2,d) = SO(2,3)\) representation \((e_0, s) = (s+1, s)\) with lowest energy or dimension \(\Delta = e_0 = s+1\) one has\(^{26}\)

\[
\omega_{k,j} = k + j + 1, \quad d_{k,j} = \frac{(2s+d-4)(s+d-4)!}{(d-2)(s-1)!} \text{ for massless spin fields.}
\]

\(^{24}\)In the scalar case one should drop the second ghost term in the bracket in (5.28) but the general expression applies also for \(s = 0\) case as \(d_{s-1} = \frac{(2s+d-4)(s+d-4)!}{(d-2)(s-1)!}\) vanishes automatically for \(s = 0\) if \(d > 3\).

\(^{25}\)For example, for \(d = 3\) eq. (5.30) gives \(E_{c,s=0} = \frac{1}{3} \sum_{n=1}^{\infty} (n+1)n^2 = \frac{1}{12} \zeta(-3) = \frac{1}{240}\) while for a conformal scalar in \(R \times S^3\) one finds from (4.5) that \(E_{c} = \frac{1}{3} \zeta(-3) = \frac{1}{240}\) and for \(R \times S^2\) one has \(E_{c} = 0\).

\(^{26}\)For spin 0 case \(\omega_{k,j} = k + j + e_0, \quad d_{k,j} = 2j + 1\) where \(k = 0, 2, 4, ...; \quad j = 0, 1, 2, ... \) and \(e_0 = 1\) (in conformal coupling case) or \(e_0 = 2\) (in standard massless case).

26
2j + 1 where \(k = 0, 1, 2, \ldots \) and \(j = s, s + 1, s + 2, \ldots \). This leads to the following expression for the corresponding energy zeta function \[44\]

\[
d = 3: \quad \zeta_{E,s}(z) = \sum_{k=0}^{\infty} \sum_{j=s}^{\infty} (2j + 1)(k + j + 1)^{-z} = \sum_{r=0}^{\infty} (r + 1)(r + 2s + 1)(r + s + 1)^{-z} . \tag{5.34}
\]

This is equivalent to (5.32) and thus gives the same expression for the vacuum energy as in (5.33).

Note that \(E_{c,s>0} \) in (5.33) formally applies also for \(s = 0 \) if the scalar is assumed to be complex, i.e. carries the same number (two) of degrees of freedom as all other massless spin \(s \) fields in \(d+1 = 4 \). The expression in (5.33) is true also for half-integer spins and thus one can directly apply (5.33) to compute the vacuum energies of extended 4-dimensional supergravity theories using the supermultiplet sum rules \[85\] \[
\sum_{s} (-1)^{2s} d(s) s^{p} = 0, \quad p < N = 1, \ldots, 8 \text{ where } s = 0, 1, 3/2, 2 \text{ and } d(s) \text{ are multiplicities of the spin } s \text{ fields. One then finds that the vacuum energy vanishes in } N > 4 \text{ extended gauged supergravities } \[44\]. The vanishing of vacuum energy was found also at each level of the massive KK spectrum of 11-dimensional supergravity compactified on \(S^7 \) \[45,46\].

We can now see directly that similar cancellation of vacuum energy happens also in the purely bosonic HS theory assuming the sum over all spins is zeta-function regularized (as suggested in \[39,41,84\]):

\[
d = 3: \quad (E_c)_{\text{HS}} = E_{c,0} + \sum_{s=1}^{\infty} E_{c,s} = \frac{1}{480} + \sum_{s=1}^{\infty} \left(\frac{1}{8} s^4 - \frac{1}{12} s^2 + \frac{1}{240} \right) = 0 , \tag{5.35}
\]

where we used that \(\zeta(0) = -\frac{1}{2} \), \(\zeta(-2) = \zeta(-4) = 0 \). Such cancellation happens also in the minimal HS theory in AdS\(_4\) where one sums over even spins only. As discussed above, this is consistent (in agreement with AdS/CFT) with the vanishing \[3.12\] of the Casimir energy of a conformal scalar in \(d = 3 \), i.e. in \(R \times S^2 \).

Let us note that the expression appearing in the vanishing of vacuum energy in (5.35) is similar but not identical to the one found for the vanishing coefficient of the UV logarithmically divergent part \((\ln Z_{\text{HS}})_{\infty} = -a_{\text{HS}} \ln \Lambda \) of the partition function of HS theory in the euclidean AdS\(_4\) with \(S^3 \).

\footnote{One can check directly that the vacuum energy corresponding to a real scalar in either \((1,0)\) or \((2,0)\) representations is \[45,41\] \(E_{c,s=0} = \frac{1}{480} \). In general, for a real scalar field in representation \((c_0,0)\) one has \[45\] \[
\zeta_{E,s=0}(z;c_0) = \sum_{k,j=0}^{\infty} (2j + 1)(c_0 + 2k + j + 1)^{-z} = \frac{1}{2} \left[\zeta(z - 2,c_0) + (3 - 2c_0)\zeta(z - 1,c_0) + (c_0 - 2)(c_0 - 1)\zeta(z,c_0) \right]
\]

so that \(\zeta_{E,s=0}(-1;c_0) = -\frac{1}{24} c_0^4 + \frac{1}{4} c_0^3 - \frac{1}{2} c_0^2 + \frac{3}{8} c_0 - \frac{19}{240} \), giving \(\frac{1}{2} \zeta_{E,0}(-1;2) = \frac{1}{2} \zeta_{E,0}(-1;1) = \frac{1}{480} \).}
as the boundary \[39\]

\[a_{\text{HS}} = \frac{1}{360} + \sum_{s=1}^{\infty} \left(\frac{5}{24} s^4 - \frac{1}{24} s^2 + \frac{1}{180} \right) = 0 . \]

(5.36)

In general, for \(d \geq 3 \) the spin-dependent coefficients in the Casimir energy and in the coefficient of the UV divergence in \(\text{AdS}_{d+1} \) appear to be different.

Finally, let us consider the \(\text{AdS}_5 \) or \(d = 4 \) case of (5.28), (5.29)

\[d = 4 : \quad \zeta_{E,s}(z) = \sum_{n=1}^{\infty} \frac{1}{6} n(n+1)(n+2) \left[(s+1)^2(n+s+1)^{-z} - s^2(n+s+2)^{-z} \right] \]

\[= \sum_{n=1}^{\infty} \frac{1}{6} n(n+1) \left[(2s+1)n + 3s^2 + 4s + 2 \right] (n+s+1)^{-z} \]

\[= \frac{1}{6} \left[(2s+1)\zeta(z-3, s+2) - 3s(s+1)\zeta(z-2, s+2) \right. \]

\[\left. - (2s+1)\zeta(z-1, s+2) + s(s^3 + 2s^2 + 2s + 1)\zeta(z, s+2) \right] , \]

(5.37)

\[E_{c,s} = \frac{1}{2} \zeta_{E,s}(-1) = -\frac{1}{1440} s(s+1) \left[18s^2(s+1)^2 - 14s(s+1) - 11 \right] . \]

(5.38)

For example, for low spin \(s = 0, 1, 2 \) fields (with \(e_0 = s + 2 \)) this expression reproduces the values of the Casimir energies \(\left(0, -\frac{11}{240}, -\frac{553}{240} \right) \) found in [54]. Summing \(E_{c,s} \) over \(s = 0, 1, 2, ... \) should be done again using an appropriate spectral zeta function regularization as in [41], or, equivalently, introducing a cutoff function \(e^{-\epsilon(s+\frac{1}{2}(d-3))} = e^{-\epsilon(s+\frac{1}{2})} \) and dropping all singular terms in the limit \(\epsilon \to 0 \). As one readily checks, this gives

\[\sum_{s=1}^{\infty} E_{c,s} e^{-\epsilon(s+\frac{1}{2})} \bigg|_{\epsilon \to 0, \text{fin}} = 0 . \]

(5.39)

This is in agreement with our earlier general result (5.21) obtained directly from the total (summed over spin) partition function (5.17) and using the standard zeta function regularization of the sum over \(n \) in (5.19), (5.21)\(^{28}\). Similarly, one can sum up the individual Casimir energies \(E_{c,s} \) over even spins only, corresponding to the minimal HS theories in \(\text{AdS}_{d+1} \), and in all \(d \) the result is equal to the Casimir energy of a real conformal scalar on \(R \times S^{d-1} \), in agreement with the computation of Section 5.2.

\(^{28}\)Note again that the 6-th order polynomial in \(s \) in (5.38) is similar but not equivalent to the coefficient of the logarithmic IR divergence in massless higher spin partition function in \(\text{AdS}_5 \) [84] that also vanishes when summed over spins with a zeta function regularization [41].
6 Matching fermionic CFT’s with higher spin theories

Having checked the higher spin AdS/CFT correspondence for singlet sectors of free scalar field theories on $S^1 \times S^{d-1}$, we proceed to analogous checks for similar fermionic theories. More precisely, we will consider the $U(N)$ singlet sector of the theory of N free Dirac fermions or the $O(N)$ singlet sector of the theory of N free Majorana fermions on $S^1 \times S^{d-1}$ and compare them with appropriately defined higher spin theories in AdS_{d+1}. We will explicitly discuss $d = 2, 3, 4$, but extensions to higher d should not be difficult. These checks are interesting because the spectra of higher spin currents in such fermionic theories are more complicated than in the scalar theories. Correspondingly, the dual higher spin description of the fermionic theories generally involves massless gauge fields in more general representations than the fully symmetric ones [25][27].

6.1 $d = 2$

Let us first discuss $d = 2$ fermionic CFT’s. We may start with N massless free Dirac fermions and impose the $SU(N)$ singlet condition. This may be accomplished by gauging the $SU(N)$ symmetry and then adding the WZW term for the $SU(N)$ gauge field $A_\mu = ig\partial_\mu g^{-1}$ with a coefficient k. In the limit $k \to \infty$ we expect to find the free fermion theory restricted to the $SU(N)$ singlet sector \(^29\). Alternatively, we may start with N massless free Majorana fermions and impose the $O(N)$ singlet constraint by similarly gauging the $O(N)$ symmetry.

In $d = 2$ CFT’s, the Casimir energy on $R \times S^1$ is completely determined by the central charge: $E = -\frac{1}{12}c$. Therefore, the AdS$_3$/CFT$_2$ matching of Casimir energies is equivalent to matching of the central charge c. For $U(N)$ and $O(N)$ singlet scalar theories, the central charge matching was carried out in [11]. It was found that the sum of higher spin one-loop contributions vanishes in the theory of all integer spins, while in the theory of even spins it equals 1, which is the central charge of a real scalar field.

Just as in the scalar cases, we find that the $d = 2$ $U(N)$ and $O(N)$ singlet fermionic theories contain conserved currents of spin $s > 1$, and the dual theories in AdS$_3$ contain corresponding massless gauge fields. The contribution of such fields to the one-loop central charge is as in \(^5\)[31] [41]

\[c_s^{(1)} = 1 + 6s(s - 1), \quad s \geq 2. \]

\(^29\) Such a construction is similar to the Gaberdiel-Gopakumar conjectures [86][88] which involve coset CFT’s in $d = 2$. The $\lambda \to 0$ limit of the coset CFT used in [86][88] is simply the singlet sector of the CFT of N free Dirac fermions, but with the $U(1)$ current $\bar{\psi}\gamma^\mu \psi$ removed [87][89].
In carrying out the matching for the fermionic theories, we find subtle but important differences from the scalar case, that affect the fields of spin 1 and 0. For the theory of \(N \) Dirac fermions, the spin-1 current is \(\bar{\psi}_i \gamma^\mu \psi^i \), and it generates the standard Kac-Moody algebra. Correspondingly, the dual vector field in AdS\(_3\) has the Chern-Simons action \([90]\). The contribution of the Chern-Simons field is \(c^{(1)}_{\text{CS}} = 1 \); this can be deduced from the central charge of the current algebra in the dual theory or can be found from a direct calculation in AdS\(_3\). In contrast, in the \(d = 2 \) scalar CFT the vector current does not satisfy the standard Kac-Moody algebra. It is plausible to conjecture that in this case the \(s = 1 \) gauge field in AdS\(_3\) has the Maxwell action \([41]\), and its contribution to the central charge is \(c^{(1)}_{\text{Maxwell}} = \frac{1}{2} \). There are two spin-zero operators of dimension \(\Delta = 1 \) in the fermionic theory: a scalar, \(\bar{\psi}_i \psi^i \) and a pseudoscalar, \(\bar{\psi}_i \gamma_3 \psi^i \). Therefore, the dual theory in AdS\(_3\) must contain a complex scalar field with \(m^2 = -1 \) which is right at the BF bound. In general, the contribution of a real scalar field to one-loop central charge is \(c^{(1)}_0 = -\frac{1}{2} (\Delta - 1)^3 \). Therefore, the complex scalar field makes no contribution to the central charge, while the Chern-Simons vector does, and their total contribution is 1.

Let us compare this with the AdS\(_3\) theory dual to the \(U(N) \) symmetric scalar model. Such a theory contains one \(m = 0 \) scalar, which is dual to the \(\Delta = 0 \) operator \(\bar{\phi}_i \phi^i \); it contributes \(c^{(1)}_0 = \frac{1}{2} \). As suggested in \([41]\), it also contains a Maxwell field. Thus, the \(s = 0, 1 \) fields in the \(U(N) \) singlet fermionic model make the same combined contribution to the central charge as in the scalar model. The \(s > 1 \) fields work in the same way in the fermionic and scalar models; therefore, the cancelation occurs in both models.

Indeed, in the \(U(N) \) invariant fermionic theory, the total one-loop correction to central charge is \(c^{(1)}_{\text{CS}} + \sum_{s=2}^{\infty} c^{(1)}_s \). Using the zeta-function regularization for the sum, we see that this vanishes. In the \(O(N) \) invariant fermionic theory, the total contribution is the regularized sum of \(c^{(1)}_s \) over positive even spins. This equals \(\frac{1}{2} \), in agreement with the central charge of a single Majorana fermion. This is consistent with the proposed identification of the coupling constant, \(G_N \sim \frac{1}{(N - 1)} \), in the bulk dual of \(O(N) \) singlet models.

As a further test of the spectra of the AdS\(_3\) theories dual to the \(d = 2 \) fermionic CFT’s, we consider the calculation of the thermal free energy. According to (3.22), in \(d = 2 \) one half of the
The free Dirac fermion one-particle free energy is\(^{30}\)

\[
Z_{1/2}(\beta) = \frac{2q^{1/2}}{1 - q}.
\]

(6.2)

According to (4.25), matching of the thermal free energies requires that the square of this partition function equals the sum of the one-particle partition functions in AdS\(_3\). Indeed, for the theory dual to the \(U(N)\) singlet sector of \(N\) free Dirac fermions, we find

\[
\frac{2q}{(1 - q)^2} + \sum_{s=1}^{\infty} \frac{2q^s}{(1 - q)^2} - \frac{2q^{s+1}}{(1 - q)^2} = \frac{4q}{(1 - q)^2} = [Z_{1/2}(\beta)]^2.
\]

(6.3)

The first term here is the contribution of the two \(\Delta = 1\) scalars in AdS\(_3\), and the sum corresponds to the contribution of all gauge fields with \(s \geq 1\) \(^{90}\), including the Chern-Simons gauge field dual to the spin 1 current \(\bar{\psi}_i \gamma \mu \psi^i\). This matching is essentially a special case of certain identities for product of characters of the conformal group \(^{27}\).\(^{\text{footnote}}\)

Now let us consider the minimal higher spin theory in AdS\(_3\), which is dual to the \(O(N)\) singlet sector of \(N\) free Majorana fermions. Since for Majorana fermions \(\bar{\psi}_i \gamma_3 \psi^i\) vanishes, this theory has only one real bulk scalar dual to the \(\Delta = 1\) operator \(\bar{\psi}_i \psi^i\). It also contains massless gauge fields of positive even spins. Therefore, the sum over one-particle partition functions in AdS\(_3\) is

\[
\frac{q}{(1 - q)^2} + 2 \sum_{s=2,4,\ldots}^{\infty} \frac{q^s}{1 - q} = \frac{q + 3q^2}{(1 - q)^2(1 + q)} = \frac{1}{2} [Z_{1/2}(\beta)]^2 - \frac{1}{2} Z_{1/2}(2\beta),
\]

(6.4)

and we find agreement with the field theory result (4.26).

6.2 \(d = 3\)

Next, let us consider the \(d = 3\) fermionic duality conjectures of \(^{14, 15}\). In the case of \(N\) free Dirac fermions restricted to the \(U(N)\) singlet sector, the “single trace” spectrum includes a unique pseudoscalar operator \(\bar{\psi}_i \psi^i\) which has dimension 2, and a set of totally symmetric higher spin currents, one for each integer spin. The matching of the thermal partition function on \(S^1 \times S^2\)

\(^{30}\)To recall, in general dimensions, the character of the free fermion representation of the conformal group is given by \(^{18, 27}\)

\[
Z_{1/2}(\beta) = \frac{1}{2} Z_F(\beta) = n_F \frac{2^{d+1}}{(1 - q)^d},
\]

where \(n_F = 2^{d-1}\) for a Weyl fermion in even dimensions, and \(n_F = 2^{d-2}\) for a Dirac fermion in odd dimensions. A Dirac fermion in even dimensions can be decomposed as the sum of left and right Weyl spinors.
follows from the identity \[q^2 (1 - q)^3 + \sum_{s=1}^{\infty} \left[(2s + 1) \frac{q^{s+1}}{(1 - q)^3} - (2s - 1) \frac{q^{s+2}}{(1 - q)^3} \right] = \frac{4q^2}{(1 - q)^4} = \left[Z_{\frac{1}{2}} (\beta) \right]^2, \] (6.5)

where \(Z_{\frac{1}{2}} (\beta) = \frac{2q}{(1 - q)^2} \) is half of the free Dirac fermion one-particle partition function in \(d = 3 \) (see (3.21),(3.22)). Analogously, in the minimal theory with even spins only, one has

\[
\frac{q^2}{(1 - q)^3} + \sum_{s=2,4,...}^{\infty} \left[(2s + 1) \frac{q^{s+1}}{(1 - q)^3} - (2s - 1) \frac{q^{s+2}}{(1 - q)^3} \right] = \frac{1}{2} \left[Z_{\frac{1}{2}} (\beta) \right]^2 - \frac{1}{2} Z_{\frac{1}{2}} (2\beta),
\] (6.6)

in agreement with (4.26).

One may also consider the large \(N \) interacting Gross-Neveu model, where the scalar operator has dimension 1 instead of 2. The same \(s = 0 \) operator dimensions appear in the Wilson-Fisher and free scalar models and correspond to the two different boundary conditions for the \(m^2 = -2 \) scalar in AdS\(_4\). As noted in Section 5.3, for either choice of scalar operator dimension, \(E_{c,0} = \frac{1}{480} \). The spectrum of the \(s > 0 \) currents in the \(U(N) \) fermionic models (dual to type B Vasiliev theory) is the same as in the \(U(N) \) scalar models (dual to type A Vasiliev theory), and their zeta-function regularized contribution to Casimir energy is \(-\frac{1}{480} \), properly canceling the \(s = 0 \) contribution. Similarly, the cancelation of the Casimir energy in the \(O(N) \) fermionic models (dual to minimal type B theory) is exactly the same as in the \(O(N) \) scalar models (dual to minimal type A theory).

6.3 \(d = 4 \)

It is interesting to look at the higher dimensional free fermion theories, as in this case the dual higher spin theory contains new higher spin representations besides the totally symmetric ones \[25,27\]. As an explicit example, let us consider the \(d = 4 \) theory of \(N \) free Dirac fermions restricted to the \(U(N) \) singlet sector. The “single trace” primary operators in this theory consist of two \(\Delta = 3 \) scalar operators

\[\mathcal{O} = \bar{\psi}_i \psi^i, \quad \bar{\mathcal{O}} = \bar{\psi}_i \gamma_5 \psi^i, \] (6.7)

two sets of totally symmetric higher spin currents, schematically

\[J_{\mu_1,...,\mu_s} = \bar{\psi}_i \gamma(\mu_1) \partial_{\mu_2} \cdots \partial_{\mu_s} \psi^i, \quad \bar{J}_{\mu_1,...,\mu_s} = \bar{\psi}_i \gamma_5 \gamma(\mu_1) \partial_{\mu_2} \cdots \partial_{\mu_s} \psi^i, \quad s \geq 1, \] (6.8)
and a tower of mixed symmetry higher spin operators of the form

\[B_{\mu_1 \cdots \mu_s, \nu} = \bar{\psi} \gamma_\nu (\mu_1 \partial_{\mu_2} \cdots \partial_{\mu_s}) \psi^i, \quad s \geq 1. \]

(6.9)

The latter operators have the symmetries of the Young tableaux with \(s \) boxes in the first row and one box in the second row. This set of primary operators is dual to two AdS_5 scalar fields with \(m^2 = -3 \), two towers of totally symmetric higher spin gauge fields, and a tower of mixed symmetry fields corresponding to (6.9). In particular, at \(s = 1 \) we have a massive antisymmetric tensor field dual to the operator \(\bar{\psi} \gamma_{\mu \nu} \psi^i \). The agreement between “single trace” primaries and single particle states in AdS_5 can again be seen by computing the thermal partition function on \(S^1 \times S^3 \). Representations of the \(d = 4 \) conformal group can be labelled by \((\Delta; j_1, j_2)\), where \(\Delta \) is the conformal dimension and \(j_1, j_2 \) the \(SU(2) \times SU(2) \) spins. In this notation, the mixed symmetry operators (6.9) for a given \(s \) correspond to the sum of representations

\[\left(s + 2; \frac{s+1}{2}, \frac{s-1}{2} \right) \oplus \left(s + 2; \frac{s-1}{2}, \frac{s+1}{2} \right), \]

(6.10)

and the corresponding character, or one-particle partition function, is

\[Z^\text{mixed}_s(\beta) = 2 q^{s+2} \left[(s+1)^2 - q s^2 \right] + 2 q^{s+2} \left[s(s+2) - q(s^2 - 1) \right]. \]

(6.11)

It would be interesting to derive this directly in AdS by computing the heat kernel and one-loop determinant for the mixed symmetry fields in the bulk. Putting this together with the scalar and totally symmetric higher spin contributions and summing over spins one gets

\[\frac{2q^3}{(1-q)^4} + 2 \sum_{s=1}^\infty \frac{q^{s+2}}{(1-q)^4} \left[(s+1)^2 - q s^2 \right] + 2 \sum_{s=1}^\infty \frac{q^{s+2}}{(1-q)^4} \left[s(s+2) - q(s^2 - 1) \right] \]

\[= \frac{16q^3}{(1-q)^6} = \left[Z^{1/2}_1(\beta) \right]^2, \]

(6.12)

which indeed agrees with (4.25) and the form of the free fermion character (3.21) in \(d = 4 \). This is another example of an identity between a product of characters of two singleton representations of the conformal group, and the character of the corresponding direct sum of higher spin representations, generalizing the Flato-Fronsdal relation discovered in \(d = 3 \) \[20\] \[31\].

\[31\] In \(d = 4 \) one may consider not only the \(j = 0 \) and \(j = \frac{1}{2} \) singletons \([25, 91, 92]\) (i.e. free massless scalar and spinor fields of boundary CFT), but also \(j = 1 \) and higher spin ones \([93]\). In such cases, one finds similar relations between characters \([27]\). The \(d = 4 \) CFT corresponding to the \(j = 1 \) singleton has \(N \) free Maxwell fields restricted to the \(O(N) \) singlet sector \([94]\). Similar theories may be considered in higher dimensions. For example, in \(d = 6 \),
By using (2.2), (2.4), the knowledge of \(Z(\beta) \) for each representation is enough to determine the corresponding Casimir energies of the AdS\(_5\) fields. For the \(\Delta = 3 \) scalar field, we get

\[
\zeta_{E,0}^{\Delta=3}(z) = \sum_{n=1}^{\infty} \frac{1}{6} n(n+1)(n+2)(n+2)^{-z},
\]

which yields

\[
E_{c,0}^{\Delta=3} = \frac{1}{2} \zeta_{E,0}^{\Delta=3}(-1) = -\frac{1}{480}.
\]

The Casimir energy for the totally symmetric higher spins in AdS\(_5\) was already computed in (5.37), (5.38). Its regularized sum over all integer spins vanishes (5.39). For the mixed symmetry fields, from (6.11) we get (using the same regularization of the sum over spins as in (5.39))

\[
\zeta_{E,s}^{\text{mixed}}(z) = \sum_{n=1}^{\infty} \frac{1}{6} n(n+1)(n+2) \left[s(s+2)(n+s+1)^{-z} - (s^2 - 1)(n+s+2)^{-z} \right],
\]

\[
E_{c,s}^{\text{mixed}} = \frac{1}{2} \zeta_{E,s}^{\text{mixed}}(-1) = \frac{1}{720} \left[-3 - 19s(s+1) + 44s^2(s+1)^2 - 18s^3(s+1)^3 \right],
\]

\[
E_{c}^{\text{mixed}} = \sum_{s=1}^{\infty} \frac{1}{720} \left[-3 - 19s(s+1) + 44s^2(s+1)^2 - 18s^3(s+1)^3 \right] e^{-\epsilon(s+\frac{1}{2})} \bigg|_{\epsilon \to 0, \ \text{fin}} = \frac{1}{240}.
\]

Thus the total one-loop bulk Casimir energy is

\[
E_c = 2 \times \left(-\frac{1}{480} \right) + 2 \times 0 + \frac{1}{240} = 0.
\]

This is in agreement with the expected vanishing of order \(N^0 \) correction to the Casimir energy of \(N \) free Dirac fermions. Note that in this section we have chosen to compute the total Casimir energy by summing up the individual Casimir energies of each bulk field with a suitable regulator [41]. Equivalently, one can obtain the same result by first summing over spins the one-particle partition functions, and then performing the Mellin transform (2.4), as described in Section 5.2 for the scalar theories.

Analogously, we can consider the theory of \(N \) Majorana fermions, restricted to the \(O(N) \) singlet sector as discussed in Section 4.3. The spectrum of operators is a projection of the one described one may study the \(O(N) \) singlet sector of \(N \) free anti-symmetric tensor fields; this theory has a higher spin AdS\(_7\) dual.
above for the Dirac case. Given any two Majorana fermions χ_1, χ_2, one has the identities

\begin{align}
\bar{\chi}_1 \chi_2 &= \bar{\chi}_2 \chi_1, \\
\bar{\chi}_1 \gamma_5 \chi_2 &= \bar{\chi}_2 \gamma_5 \chi_1, \\
\bar{\chi}_1 \gamma_\mu \chi_2 &= -\bar{\chi}_2 \gamma_\mu \chi_1, \\
\bar{\chi}_1 \gamma_\mu \gamma_5 \chi_2 &= \bar{\chi}_2 \gamma_\mu \gamma_5 \chi_1.
\end{align}

The identities in the first line imply that both $\Delta = 3$ scalar operators are present in the Majorana theory. On the other hand, using the identities in the second line and integration by parts, one can see that the totally symmetric operators $J_{\mu_1 \cdots \mu_s}$ with odd spins and the “axial” $\tilde{J}_{\mu_1 \cdots \mu_s}$ with even spins are projected out (they are total derivatives). This leaves effectively a single tower of totally symmetric higher spins of all integer s. Finally, the identity in the last line implies that the mixed symmetry operators $B_{\mu_1 \cdots \mu_s, \nu}$ with odd spin are projected out. Then, the total one-loop bulk Casimir energy is

\begin{equation}
E_{c_{\text{min}}} = 2 \times \left(-\frac{1}{480} \right) + 0 + \sum_{s=2,4,\ldots}^{\infty} E_{c,s}^{\text{mixed}} \left. e^{-\epsilon(s+\frac{1}{2})} \right|_{\epsilon \to 0, \text{fin}} = \frac{17}{960}.
\end{equation}

This is precisely equal to the Casimir energy of a single Majorana fermion in $d = 4$, in agreement with the shift $N \to N - 1$ in the HS coupling which we observe in the real theories in all dimensions.

We can also consider the thermal partition function of this free real fermion theory. The sum over one-particle partition functions of the bulk AdS$_5$ fields yields

\begin{equation}
\frac{2q^3}{(1-q)^4} + \sum_{s=1}^{\infty} \frac{q^{s+2}}{(1-q)^4} \left[(s+1)^2 - qs^2 \right] + 2 \sum_{s=2,4,\ldots}^{\infty} \frac{q^{s+2}}{(1-q)^4} \left[s(s+2) - q(s^2 - 1) \right]
= \frac{8q^3}{(1-q)^6} - \frac{2q^3}{(1-q^2)^3} = \frac{1}{2} \left[Z_1^4(\beta) \right]^2 - \frac{1}{2} Z_2^4(2\beta).
\end{equation}

This is indeed in perfect agreement with the expression for the corresponding real free fermion partition function on $S^1 \times S^3$ with the $O(N)$ singlet constraint found in Section 4.2 (4.26).

Finally, let us note that in $d = 4$ we could also consider the free theory of N complex Weyl fermions in the $U(N)$ singlet sector. In this theory, the $U(N)$ invariant operators form a single tower of totally symmetric currents with all integer spins $s \geq 1$. In particular, there is no scalar operator and no mixed symmetry operators.\footnote{For a Weyl spinor ψ^i_α, one can construct a Lorentz scalar by contracting the $SU(2)$ index with $\psi^{\alpha,i}$. However, the corresponding object is not $U(N)$ invariant because ψ^i_α and $\psi^{\alpha,i}$ are both in the fundamental of $U(N)$.} The one-loop Casimir energy in the bulk then
vanishes due to (5.39).

7 Higher spin duals of theories with \(N_f \) flavors

It is straightforward to generalize the above calculations to the case of free theories with \(N_f \) scalars or fermions in the fundamental representation of \(U(N) \) or \(O(N) \). To be concrete, let us consider \(N N_f \) free complex scalars in the \(U(N) \) singlet sector. The spectrum of single trace primaries is then given by

\[
O^a_b = \bar{\phi}_{ib}\phi^{ia}, \quad (J_{(s)})^a_b \sim \bar{\phi}_{ib}\partial_s\phi^{ia}, \quad a, b = 1, \ldots, N_f. \tag{6.22}
\]

The dual HS theory should then be a version of Vasiliev theory where all fields are promoted to matrices carrying the \(U(N_f) \) indices \([11]\). As usual, the global \(U(N_f) \) symmetry of the CFT becomes a \(U(N_f) \) gauge symmetry in the bulk. At the free level we simply have \(N_f^2 \) copies of each field, and the calculations described in Section [5.1] readily lead to the result quoted in (4.4) for the \(U(N) \) case.

The situation is slightly more interesting in the \(O(N) \) case. For \(N_f = 1 \), recall that all odd spin currents are projected out in this case because the scalar field is real. However, for general \(N_f \) it is not difficult to see that there are \(N_f(N_f+1)/2 \) even spin operators and \(N_f(N_f-1)/2 \) odd spin ones, corresponding to symmetric or antisymmetric combinations of the flavor indices. Then the sum over the HS one-particle partition functions (5.4) gives

\[
\sum_{s=0,2,4,\ldots} \frac{N_f(N_f+1)}{2} Z_s(\beta) + \sum_{s=1,3,5,\ldots} \frac{N_f(N_f-1)}{2} Z_s(\beta) = \frac{N_f^2}{2} \left[Z_0(\beta)^2\right] + \frac{N_f}{2} Z_0(2\beta), \tag{6.23}
\]

in agreement with (4.4). Similarly, one can analyze the dual of the fermionic theories with \(N_f \) complex or real flavors, and the result for the corresponding higher spin sums is readily seen to agree with (4.5).

Let us also briefly comment on the matching of the Casimir energy. In this case, the CFT predicts that the Casimir term in the thermal free energy should simply be \(F_c = N N_f \beta E_c \), with \(E_c \) the Casimir energy of a single free field. In the HS dual of the \(U(N) \) theories, the results for \(N_f = 1 \) immediately imply that the sum of one-loop Casimir energies vanish. So, assuming that \(F_c \) is entirely reproduced by the classical bulk calculation (which we do not address here), we would get a result consistent with the duality. For the \(O(N) \) theories, on the other hand, one finds a non-vanishing one-loop Casimir energy. For instance, in the HS dual of the free scalar
theories, the sum over one-loop bulk Casimir energies gives, in any dimension

\[\frac{N_f(N_f + 1)}{2} \sum_{s=0,2,...} E_{c,s} + \frac{N_f(N_f - 1)}{2} \sum_{s=1,3,...} E_{c,s} = N_f E_{c}^{\text{scalar}}, \tag{6.24} \]

where \(E_{c}^{\text{scalar}} \) is the Casimir energy of a single conformal scalar. Then, agreement with the duality again requires the same shift \(N \rightarrow N - 1 \) in the map between \(N \) and the bulk coupling constant that we observed in the case \(N_f = 1 \), i.e. \(G_{\text{bulk}}^{-1} \sim N - 1 \). The same result can be seen to apply to the \(O(N) \) singlet sectors of real fermionic theories for general \(N_f \).

\section*{Acknowledgments}

We are grateful to B. Safdi, H. Schnitzer and E. Skvortsov for useful comments. The work of SG is supported in part by the US NSF under Grant No. PHY-1318681. The work of IRK is supported in part by the US NSF under Grant No. PHY-1314198. The work of AAT is supported by the ERC Advanced grant No.290456 “Gauge theory – string theory duality” and also by the STFC grant ST/J000353/1.

\section*{References}

[1] J. M. Maldacena, “The Large \(N \) Limit of Superconformal Field Theories and Supergravity,” \textit{Adv. Theor. Math. Phys.} \textbf{2} (1998) 231–252, \texttt{hep-th/9711200}.

[2] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge Theory Correlators from Non-Critical String Theory,” \textit{Phys. Lett.} \textbf{B428} (1998) 105–114, \texttt{hep-th/9802109}.

[3] E. Witten, “Anti-de Sitter Space and Holography,” \textit{Adv. Theor. Math. Phys.} \textbf{2} (1998) 253–291, \texttt{hep-th/9802150}.

[4] I. R. Klebanov and A. M. Polyakov, “AdS dual of the critical \(O(N) \) vector model,” \textit{Phys. Lett.} \textbf{B550} (2002) 213–219, \texttt{hep-th/0210114}.

[5] B. Sundborg, “Stringy gravity, interacting tensionless strings and massless higher spins,” \textit{Nucl.Phys.Proc.Suppl.} \textbf{102} (2001) 113–119, \texttt{hep-th/0103247}.

[6] E. Fradkin and M. A. Vasiliev, “On the Gravitational Interaction of Massless Higher Spin Fields,” \textit{Phys.Lett.} \textbf{B189} (1987) 89–95.

[7] M. A. Vasiliev, “Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions,” \textit{Phys.Lett.} \textbf{B243} (1990) 378–382.

33This result follows from the fact that for \(N_f = 1 \) the sum over all spins vanishes, and the sum over even spins gives the Casimir energy of a single conformal scalar.
[8] M. A. Vasiliev, “More on equations of motion for interacting massless fields of all spins in (3+1)-dimensions,” *Phys. Lett.* **B285** (1992) 225–234.

[9] M. A. Vasiliev, “Higher-spin gauge theories in four, three and two dimensions,” *Int. J. Mod. Phys.* **D5** (1996) 763–797, hep-th/9611024.

[10] S. Prokushkin and M. A. Vasiliev, “Higher spin gauge interactions for massive matter fields in 3-D AdS space-time,” *Nucl.Phys.* **B545** (1999) 385, hep-th/9806236.

[11] M. A. Vasiliev, “Higher spin gauge theories: Star-product and AdS space. In: Shifman, M.A. (ed.): The many faces of the superworld, 533-610 ,” hep-th/9910096.

[12] M. Vasiliev, “Nonlinear equations for symmetric massless higher spin fields in (A)dS(d),” *Phys.Lett.* **B567** (2003) 139–151, hep-th/0304049.

[13] X. Bekaert, S. Cnockaert, C. Iazeolla, and M. Vasiliev, “Nonlinear higher spin theories in various dimensions,” hep-th/0503128.

[14] E. Sezgin and P. Sundell, “Holography in 4D (super) higher spin theories and a test via cubic scalar couplings,” *JHEP* **07** (2005) 044, hep-th/0305040.

[15] R. G. Leigh and A. C. Petkou, “Holography of the N = 1 higher-spin theory on AdS(4),” *JHEP* **06** (2003) 011, hep-th/0304217.

[16] S. H. Shenker and X. Yin, “Vector Models in the Singlet Sector at Finite Temperature,” 1109.3519.

[17] B. Sundborg, “The Hagedorn transition, deconfinement and N=4 SYM theory,” *Nucl.Phys.* **B573** (2000) 349–363, hep-th/9908001.

[18] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, and M. Van Raamsdonk, “The Hagedorn - deconfinement phase transition in weakly coupled large N gauge theories,” *Adv.Theor.Math.Phys.* **8** (2004) 603–696, hep-th/0310285.

[19] H. J. Schnitzer, “Confined/deconfinement transition of large N gauge theories with N(f) fundamentals: N(f)/N finite,” *Nucl.Phys.* **B695** (2004) 267–282, hep-th/0402219.

[20] M. Flato and C. Fronsdal, “One Massless Particle Equals Two Dirac Singletons: Elementary Particles in a Curved Space. 6.,” *Lett.Math.Phys.* **2** (1978) 421–426.

[21] D. Kutasov and F. Larsen, “Partition sums and entropy bounds in weakly coupled CFT,” *JHEP* **0101** (2001) 001, hep-th/0009244.

[22] A. M. Polyakov, “Gauge fields and space-time,” *Int.J.Mod.Phys.* **A17S1** (2002) 119–136, hep-th/0110196.

[23] M. Bianchi, J. F. Morales, and H. Samtleben, “On stringy AdS(5) x S5 and higher spin holography,” *JHEP* **0307** (2003) 062, hep-th/0305052.

[24] N. Beisert, M. Bianchi, J. Morales, and H. Samtleben, “On the spectrum of AdS / CFT beyond supergravity,” *JHEP* **0402** (2004) 001, hep-th/0310292.

[25] M. Vasiliev, “Higher spin superalgebras in any dimension and their representations,” *JHEP* **0412** (2004) 046, hep-th/0404124.
[26] A. Barabanschikov, L. Grant, L. L. Huang, and S. Raju, “The Spectrum of Yang Mills on a sphere,” JHEP 0601 (2006) 160, hep-th/0501063.[27] F. Dolan, “Character formulae and partition functions in higher dimensional conformal field theory,” J.Math.Phys. 47 (2006) 062303, hep-th/0508031.

[28] A. Jevicki, K. Jin, and J. Yoon, “1/N and Loop Corrections in Higher Spin AdS$_4$/CFT$_3$ Duality,” 1401.3318.

[29] S. R. Das and A. Jevicki, “Large N collective fields and holography,” Phys.Rev. D68 (2003) 044011, hep-th/0304093.

[30] S. Giombi and X. Yin, “Higher Spin Gauge Theory and Holography: The Three-Point Functions,” JHEP 1009 (2010) 115, 0912.3462.

[31] S. Giombi and X. Yin, “Higher Spins in AdS and Twistorial Holography,” JHEP 1104 (2011) 086, 1004.3736.

[32] S. Giombi and X. Yin, “On Higher Spin Gauge Theory and the Critical O(N) Model,” Phys.Rev. D85 (2012) 086005, 1105.4011.

[33] J. Maldacena and A. Zhiboedov, “Constraining Conformal Field Theories with A Higher Spin Symmetry,” J.Phys. A46 (2013) 214011, 1112.1016.

[34] J. Maldacena and A. Zhiboedov, “Constraining conformal field theories with a slightly broken higher spin symmetry,” Class.Quant.Grav. 30 (2013) 104003, 1204.3882.

[35] N. Colombo and P. Sundell, “Higher Spin Gravity Amplitudes From Zero-form Charges,” 1208.3880.

[36] V. Didenko and E. Skvortsov, “Exact higher-spin symmetry in CFT: all correlators in unbroken Vasiliev theory,” JHEP 1304 (2013) 158, 1210.7963.

[37] O. Gelfond and M. Vasiliev, “Operator algebra of free conformal currents via twistors,” Nucl.Phys. B876 (2013) 871–917, 1301.3123.

[38] V. Didenko, J. Mei, and E. Skvortsov, “Exact higher-spin symmetry in CFT: free fermion correlators from Vasiliev Theory,” Phys.Rev. D88 (2013) 046011, 1301.4166.

[39] S. Giombi and I. R. Klebanov, “One Loop Tests of Higher Spin AdS/CFT,” JHEP 1312 (2013) 068, 1308.2337.

[40] V. Didenko and E. Skvortsov, “Towards higher-spin holography in ambient space of any dimension,” J.Phys. A46 (2013) 214010, 1207.6786.

[41] S. Giombi, I. R. Klebanov, and B. R. Safdi, “Higher Spin AdS$_{d+1}$/CFT$_d$ at One Loop,” 1401.0825.

[42] S. Giombi, S. Minwalla, S. Prakash, S. P. Trivedi, S. R. Wadia, et. al., “Chern-Simons Theory with Vector Fermion Matter,” Eur.Phys.J. C72 (2012) 2112, 1110.4386.

[43] O. Aharony, G. Gur-Ari, and R. Yacoby, “d=3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories,” JHEP 1203 (2012) 037, 1110.4382.
[44] B. Allen and S. Davis, “Vacuum Energy in Gauged Extended Supergravity,” *Phys.Lett.* **B124** (1983) 353.

[45] G. Gibbons and H. Nicolai, “One Loop Effects on the Round Seven Sphere,” *Phys.Lett.* **B143** (1984) 108–114.

[46] T. Inami and K. Yamagishi, “Vanishing Quantum Vacuum Energy in Eleven-dimensional Supergravity on the Round Seven Sphere,” *Phys.Lett.* **B143** (1984) 115–120.

[47] V. Balasubramanian and P. Kraus, “A Stress tensor for Anti-de Sitter gravity,” *Commun.Math.Phys.* **208** (1999) 413–428, [hep-th/9902121](https://arxiv.org/abs/hep-th/9902121).

[48] C. P. Herzog and K.-W. Huang, “Stress Tensors from Trace Anomalies in Conformal Field Theories,” *Phys.Rev.* **D87** (2013) 081901, [1301.5002](https://arxiv.org/abs/1301.5002).

[49] K.-W. Huang, “Weyl Anomaly Induced Stress Tensors in General Manifolds,” *Nucl.Phys.* **B879** (2014) 370–381, [1308.2355](https://arxiv.org/abs/1308.2355).

[50] M. Henningson and K. Skenderis, “The Holographic Weyl anomaly,” *JHEP* **9807** (1998) 023, [hep-th/9806087](https://arxiv.org/abs/hep-th/9806087).

[51] P. Mansfield, D. Nolland, and T. Ueno, “Order $1/N^2$ test of the Maldacena conjecture. 2. The Full bulk one loop contribution to the boundary Weyl anomaly,” *Phys.Lett.* **B565** (2003) 207–210, [hep-th/0208135](https://arxiv.org/abs/hep-th/0208135).

[52] A. Arabi Ardehali, J. T. Liu, and P. Szepietowski, “The spectrum of IIB supergravity on $AdS_5 \times S^5/Z_3$ and a $1/N^2$ test of AdS/CFT,” *JHEP* **1306** (2013) 024, [1304.1540](https://arxiv.org/abs/1304.1540).

[53] A. A. Ardehali, J. T. Liu, and P. Szepietowski, “$1/N^2$ corrections to the holographic Weyl anomaly,” *JHEP* **1401** (2014) 002, [1310.2611](https://arxiv.org/abs/1310.2611).

[54] G. Gibbons, M. Perry, and C. Pope, “Partition functions, the Bekenstein bound and temperature inversion in anti-de Sitter space and its conformal boundary,” *Phys.Rev.* **D74** (2006) 084009, [hep-th/0606186](https://arxiv.org/abs/hep-th/0606186).

[55] J. Dowker and G. Kennedy, “Finite Temperature and Boundary Effects in Static Space-Times,” *J.Phys.* **A11** (1978) 895.

[56] J. Dowker, “Finite Temperature and Vacuum Effects in Higher Dimensions,” *Class.Quant.Grav.* **1** (1984) 359.

[57] S. Blau, M. Visser, and A. Wipf, “Zeta Functions and the Casimir Energy,” *Nucl.Phys.* **B310** (1988) 163, [0906.2817](https://arxiv.org/abs/0906.2817).

[58] A. Cappelli and A. Coste, “On the Stress Tensor of Conformal Field Theories in Higher Dimensions,” *Nucl.Phys.* **B314** (1989) 707.

[59] M. Ozcan, “Casimir energy density for spherical universes in n-dimensional spacetime,” *Class.Quant.Grav.* **23** (2006) 5531–5546.

[60] M. Ozcan, “Green’s function for a n-dimensional closed, static universe and with a spherical boundary,” [gr-qc/0106082](https://arxiv.org/abs/gr-qc/0106082).
[61] A. A. Bytsenko, G. Cognola, L. Vanzo, and S. Zerbini, “Quantum fields and extended objects in space-times with constant curvature spatial section,” *Phys.Rept.* **266** (1996) 1–126, [hep-th/9505061](https://arxiv.org/abs/hep-th/9505061).

[62] B. Allen, “Does statistical mechanics equal one loop quantum field theory?,” *Phys.Rev.* **D33** (1986) 3640.

[63] D. V. Fursaev, “Statistical mechanics, gravity, and Euclidean theory,” *Nucl.Phys.Proc.Suppl.* **104** (2002) 33–62, [hep-th/0107089](https://arxiv.org/abs/hep-th/0107089).

[64] C.-M. Chang, S. Minwalla, T. Sharma, and X. Yin, “ABJ Triality: from Higher Spin Fields to Strings,” *J.Phys.* **A46** (2013) 214009, [1207.4485](https://arxiv.org/abs/1207.4485).

[65] M. Mehta, “Random Matrices,” *Academic Press, N.Y.* (1967).

[66] R. K. Gupta and S. Lal, “Partition Functions for Higher-Spin theories in AdS,” *JHEP* **1207** (2012) 071, [1205.1130](https://arxiv.org/abs/1205.1130).

[67] M. R. Gaberdiel, R. Gopakumar, and A. Saha, “Quantum W-symmetry in AdS3,” *JHEP* **1102** (2011) 004, [1009.6087](https://arxiv.org/abs/1009.6087).

[68] B. Allen, A. Folacci, and G. Gibbons, “Anti-DeSitter space at finite temperature,” *Phys.Lett.* **B189** (1987) 304.

[69] S. Avis, C. Isham, and D. Storey, “Quantum Field Theory in anti-De Sitter Space-Time,” *Phys.Rev.* **D18** (1978) 3565.

[70] P. Breitenlohner and D. Z. Freedman, “Stability in Gauged Extended Supergravity,” *Annals Phys.* **144** (1982) 249.

[71] R. Camporesi, “zeta function regularization of one loop effective potentials in anti-de Sitter space-time,” *Phys.Rev.* **D43** (1991) 3958–3965.

[72] R. Camporesi and A. Higuchi, “Stress energy tensors in anti-de Sitter space-time,” *Phys.Rev.* **D45** (1992) 3591–3603.

[73] R. Camporesi and A. Higuchi, “Arbitrary spin effective potentials in anti-de Sitter space-time,” *Phys.Rev.* **D47** (1993) 3339–3344.

[74] S. Giombi, A. Maloney, and X. Yin, “One-loop Partition Functions of 3D Gravity,” *JHEP* **0808** (2008) 007, [0804.1773](https://arxiv.org/abs/0804.1773).

[75] J. David, M. R. Gaberdiel, and R. Gopakumar, “The Heat Kernel on AdS(3) and its Applications,” *JHEP* **1004** (2010) 125, [0911.5085](https://arxiv.org/abs/0911.5085).

[76] R. Gopakumar, R. K. Gupta, and S. Lal, “The Heat Kernel on AdS,” *JHEP* **1111** (2011) 010, [1103.3627](https://arxiv.org/abs/1103.3627).

[77] C. Keeler and G. S. Ng, “Partition Functions in Even Dimensional AdS via Quasinormal Mode Methods,” [1401.7016](https://arxiv.org/abs/1401.7016).

[78] G. Gibbons, “Anti-de-Sitter spacetime and its uses,” [1110.1206](https://arxiv.org/abs/1110.1206).

[79] J. Dowker, “Arbitrary Spin Theory in the Einstein Universe,” *Phys.Rev.* **D28** (1983) 3013.
[80] E. Myers, “On the Interpretation of the Energy of the Vacuum as the Sum Over Zero Point Energies,” Phys.Rev.Lett. 59 (1987) 165.

[81] J. Dowker and J. P. Schofield, “Chemical Potentials in Curved Space,” Nucl.Phys. B327 (1989) 267.

[82] K. Kirsten, “Grand thermodynamic potential in a static space-time with boundary,” Class.Quant.Grav. 8 (1991) 2239–2255.

[83] J. Dowker, “Conformal Properties of the Heat-kernel Expansion: Application to the Effective Lagrangian,” Phys.Rev. D39 (1989) 1235–1238.

[84] S. Giombi, I. R. Klebanov, S. S. Pufu, B. R. Safdi, and G. Tarnopolsky, “AdS Description of Induced Higher-Spin Gauge Theory,” JHEP 1310 (2013) 016, 1306.5242.

[85] T. L. Curtright, “Charge Renormalization and High Spin Fields,” Phys.Lett. B102 (1981) 17.

[86] M. R. Gaberdiel and R. Gopakumar, “An AdS3 Dual for Minimal Model CFTs,” Phys.Rev. D83 (2011) 066007, 1011.2986.

[87] M. R. Gaberdiel and R. Gopakumar, “Minimal Model Holography,” J.Phys. A46 (2013) 214002, 1207.6697.

[88] C.-M. Chang and X. Yin, “Higher Spin Gravity with Matter in AdS3 and Its CFT Dual,” JHEP 1210 (2012) 024, 1106.2580.

[89] S. Datta, J. R. David, M. Ferlaino, and S. P. Kumar, “Higher spin entanglement entropy from CFT,” 1402.0007.

[90] T. Creutzig, Y. Hikida, and P. B. Ronne, “Higher spin AdS3 supergravity and its dual CFT,” JHEP 1202 (2012) 109, 1111.2139.

[91] M. Gunaydin and D. Minic, “Singletons, doubletons and M theory,” Nucl.Phys. B523 (1998) 145–157, hep-th/9802047.

[92] E. Sezgin and P. Sundell, “Doubletons and 5-D higher spin gauge theory,” JHEP 0109 (2001) 036, hep-th/0105001.

[93] N. Boulanger and E. Skvortsov, “Higher-spin algebras and cubic interactions for simple mixed-symmetry fields in AdS spacetime,” JHEP 1109 (2011) 063, 1107.5028.

[94] V. Alba and K. Diab, “Constraining conformal field theories with a higher spin symmetry in d=4,” 1307.8092.