Performance of time-domain and spectral-domain Optical Coherence Tomography for glaucoma screening

Boel Bengtsson, Sabina Andersson and Anders Heijl

Department of Clinical Sciences, Ophthalmology in Malmö, Skånes University Hospital, Malmö, Sweden

ABSTRACT.

Purpose: To investigate the measures of validity for selective or population screening of the time-domain Stratus and the spectral-domain Cirrus Optical Coherence Tomography (OCT) imaging techniques in a population-based sample and in clinical glaucoma patients at different stages of glaucoma.

Patients and methods: A random sample of 307 subjects living in two rural areas in southern Sweden, and a random sample of 394 clinical glaucoma patients were selected. A large battery of examinations, including Stratus and Cirrus OCT was performed. OCT retinal nerve fibre layer (RNFL) thickness analyses for average thickness, quadrant and clock-hour sectors were compared with normative significance limits available in the instruments.

Results: The population-based sample included 129 healthy and nine glaucoma subjects, and the sample of clinical glaucoma patients included 138 patients. Specificity and positive predictive values were generally better with Stratus than for Cirrus, and sensitivity was generally better with Cirrus. With the average RNFL thickness parameter, Stratus reached 100% specificity and a positive predictive value of 100% and 68% sensitivity in the whole group of the clinical glaucoma patients, but sensitivity was only 28% among the earliest stage glaucoma patients. Sensitivity increased considerably when relying on the quadrant sector parameter, while specificity decreased only marginally.

Conclusion: Stratus, with high specificity and positive predictive values, seemed to be best of choice for screening purposes, while Cirrus, with high sensitivity, was the better choice for early detection.

Key words: diagnosis – glaucoma – optical coherence tomography – retinal nerve fibre layer thickness – screening

Introduction

In the western world, approximately 50% of all glaucoma patients are undetected (Bengtsson 1981; Sommer et al. 1991; Dielemans et al. 1994; Leske et al. 2001). We have taken interest in investigating validity of retinal nerve fibre layer (RNFL) measurements by Optical Coherence Tomography (OCT) imaging techniques for screening of glaucoma. The use of RNFL measurements for the diagnosis of glaucoma has increased considerably since the development of OCT imaging techniques (Huang et al. 1991; Schuman et al. 1995). Time-domain OCT is a two-dimensional imaging method based on low-coherence interferometry that noninvasively produces cross-sectional retinal images. This technique makes it possible to quantify the thickness of the retina and its different layers. The first generation of time-domain OCT instruments became available in the 1990s, and in the intervening years OCT has evolved towards higher spatial resolution and faster scan speeds. For detection of glaucoma, circular scans around the optic nerve head provide RNFL thickness measurements of the peripapillary area.

Recently, new OCT instruments using spectral-domain technology have been developed. Compared to time-domain, spectral-domain OCT provides improved axial resolution, and
increases in scanning speed of more than a factor of 50. For glaucoma diagnosis, the spectral-domain Cirrus OCT (Carl Zeiss Meditec, Dublin, CA, USA) extracts peripapillary scans from a high-resolution three-dimensional scan cube covering a $6 \times 6 \times 2 \text{ mm}$ volume centred on the optic disc to form a scan ring comparable to that produced by the Stratus OCT. Analysis tools referring to normative significance limits for RNFL thickness are available both for Stratus and for Cirrus.

A number of studies reporting the diagnostic accuracy of Stratus have been published (Chen & Huang 2005; Jeoung et al. 2005; Budenz et al. 2005; Deléón-Ortega et al. 2006; Manassakorn et al. 2006; Sihota et al. 2006; Hougard et al. 2007; Lu et al. 2008; Yoo & Park 2009 e-pub, Sehi et al. 2009; Vessani et al. 2009), generally with higher specificities, often round 90%, than sensitivities, typically ranging from 70% to 80%. A few more recent studies comparing Stratus and Cirrus reported similar or slightly better diagnostic accuracy with Cirrus than with Stratus (Leung et al. 2009; Sung et al. 2009; Park et al. 2009; Chang et al. 2009; Knight et al. 2009; Vizzieri et al. 2009; Jeoung & Park 2010; Moreno-Montañes et al. 2010). These studies included glaucoma patients under clinical care. The normal subjects were often recruited among patients with apparently healthy eyes, relatives to patients and hospital staff.

While specificity and sensitivity values depend upon the normal and diseased populations being evaluated, they may be regarded within those limitations as stable properties of a diagnostic test. Predictive values are additionally affected by sample disease prevalence. When considering a method's suitability for population screening, or perhaps for selective screening, any evaluation should be performed in a population similar to the target group. Many diagnostic modalities have been validated in groups that have disease prevalences that are not at all representative of the general population e.g. in clinical glaucoma patients. Predictive values calculated on the basis of such samples would then be artificially high compared to what might be found in population studies.

It is important for a screening method not to miss subjects with advanced disease. A method failing to identify subjects at advanced stages probably should not be used, at least not for population screening. Detection of advanced disease is usually easy with 100% sensitivity for most diagnostic methods, also crude ones, but it does not seem to be true for all techniques (Nguyen et al. 2002; Reus & Lemij 2004). Presuming that most subjects identified in a population-based sample have early disease makes it necessary to evaluate sensitivity in clinical glaucoma patients at different stages of glaucomatous disease.

The aim of our study was to investigate the diagnostic performance in terms of sensitivity, specificity and predictive values of time-domain Stratus and spectral-domain Cirrus OCT for use in population or selective glaucoma screening.

Methods

Subjects – recruitment

Population-based sample

Out of 4718 subjects over 50 years of age living in two primary medical care districts in southern Sweden, a random sample of 307 individuals was selected and invited by mail to come to their primary care centre for a comprehensive ophthalmic examination carried out for scientific purposes. All invited subjects received a phone call explaining the purpose of the study. Reasons for not wanting or being able to participate were registered.

Clinical glaucoma patients

A random sample of 394 patients having diagnoses of either primary open angle glaucoma or pseudo-exfoliation glaucoma was selected from the clinical directory of visits for the previous twelve months at the department of Ophthalmology, Malmö University Hospital, Sweden. Records were missing for 24 of the selected patients. All other records were prescreened to assure that those invited were free of co-morbidities that were likely to confound our analysis or were deceased. Five had moved out of the region, and 29 had secondary or angle closure or suspect glaucoma. Eighty patients declined to come, and two did not show up to the scheduled visits. A total of 164 patients participated. Nineteen patients, who were examined during the first days of the data collection, were excluded from the study because the early Cirrus OCT software did not include the peripapillary scan protocol. Another six patients were excluded, of whom three were not able to complete the examinations, and another three because of software problem with Cirrus.

For eligibility, the optic disc had to show glaucomatous changes assessed from a conventional photograph and/or described in the patient record. To be included in the analysis, glaucomatous disc finding had to be confirmed at the study visit. Other diagnostic findings such as visual field status, intraocular pressure or results from imaging devices were not considered before inclusion.

All population and clinical participants were informed about the purpose of the examination, and all included gave informed consent. The tenets of the Declaration of Helsinki were followed, and the Regional Ethical Review Board in Lund, Sweden approved the study.

Examinations

All subjects and patients were asked about their medical history and medications and underwent the following examinations of both eyes:

1. Autorefraction and determination of visual acuity. Manual refraction and test of visual acuity was performed only when autorefractor-based visual acuity was < 0.8.

2. Measurement of intraocular pressure using a Goldmann applanation tonometer.

3. Fundus examination by biomicroscopy through a dilated pupil.

Among subjects in the population-based sample, one eye was randomly selected for further diagnostic evaluation. Subjects found to have nonglaucomatous disease known to affect the optic disc, the RNFL or the visual field were excluded from the analysis. In clinical patients having bilateral glaucoma, the eye with the better perimetric mean deviation (MD) value was selected. Selected eyes were further examined with the following:

1. Scanning Laser Polarimetry using the GDx VCC instrument with Revision
Results

Population-based subjects

One hundred and seventy subjects, 55%, of all invited in the population-based random sample responded to the invitation and received the comprehensive ophthalmic examination. Five of the six had glaucomatous findings that were consistent with the visual field test results. Further, two subjects had suspect glaucoma and, in the absence of a clear-cut findings/classification, were not included in the analysis. Seven of the five were considered normal and included in the analysis as healthy subjects, resulting in a total of 129 healthy subjects.

Among the population subjects examined, six were excluded from the analysis; three had visual field defects consistent with neurological disease, two had age-related macular disease, and one had optic disc drusen.

Thus, in the analysis of the population-based sample, we identified nine subjects with glaucoma, three previously diagnosed and six newly detected giving a glaucoma prevalence of 6.5%. In the nine subjects with glaucoma, the perimetric mean deviation values (MD) ranged from −15.87 to +0.07 dB (median −4.58 dB), Fig. 1.

The mean age of the nine glaucoma subjects was 72 years, ranging from 61 to 83, while the mean age of the 129 healthy subjects was 64 years, ranging from 48 to 81. Three of the nine glaucoma subjects (33%) and 55% of the healthy subjects were women.

OCT scans were generally of high quality; all but one had signal strength above the minimum level recommended by the manufacturer, i.e. ≥5 for Cirrus in version 3.0 and ≥7 for Stratus in version 4.0.4. Average RNFL was generally thicker with Cirrus than with Stratus, 101 and 88 μm, respectively, in the healthy subjects.

Clinical glaucoma patients

Findings from one eye from each of 138 glaucoma patients, 59% women, with a mean age of 71 years, were included in the random sample of clinical patients. Perimetric MD values ranged from −31.54 to +0.28 dB, with a median of −11.08 dB, Fig. 1.

Also in the clinical glaucoma patients, OCT scans were generally of high quality, 93% had a signal strength ≥5 with Cirrus and 93% ≥7 with Stratus. Average RNFL thickness was 61 μm with Cirrus and 63 μm with Stratus, a smaller difference than that obtained in the healthy subjects.
Sensitivity, specificity and predictive values

In the sample of clinical glaucoma patients, sensitivity was better for Cirrus than for Stratus, particularly at early stages of glaucoma, Table 1. The difference between Cirrus and Stratus decreased with increasing severity of disease and was similar or identical at severe and advanced stages where both instruments had 100% sensitivity with all quadrant and clock-hour sector analyses. The difference in sensitivity between Cirrus and Stratus was larger with the p < 5% as cut-off than when using p < 1%.

The best AROC, 0.99, was obtained with Cirrus quadrant sector parameter with a cut-off level for pathology at p < 1%. This parameter yielded a specificity of 96%, positive predictive value of 64% and sensitivity of 100% in the population sample (Table 2). The sensitivity was 91% in the whole group of the clinical glaucoma patients and of 78% in those 40 clinical glaucoma patients with early glaucoma (Table 1).

Specificity and positive predictive values were good with Cirrus, and often excellent with Stratus, Table 2. The average thickness parameter, using p < 1% as the cut-off level for pathology, yielded specificity and positive predicted value of 100% (Table 2). The sensitivity for this parameter was 67% based on the nine glaucoma subjects in the population sample and 68% among the 138 clinical glaucoma patients, but only 28% in those 40 clinical patients having early glaucoma (Table 1). When defining pathology as requiring at least one

Table 1. Diagnostic sensitivity of Optical Coherence Tomography Retinal Nerve Fibre Layer thickness (RNFLT) analyses in a random sample of clinical glaucoma patients.

	Sensitivity for average RNFLT	Sensitivity for quadrant sector RNFLT	Sensitivity for clock-hour sector RNFLT	
	Cirrus	Stratus	Cirrus 1 quadrant	Cirrus 21 clock hour
Overall	Cut-off p < 5%	0.90 (0.83–0.94)	0.78 (0.70–0.85)	0.96 (0.90–0.98)
	Cut-off p < 1%	0.73 (0.65–0.80)	0.68 (0.60–0.76)	0.91 (0.85–0.95)
MD > –6 dB	Cut-off p < 5%	0.78 (0.61–0.89)	0.45 (0.30–0.61)	0.90 (0.75–0.97)
	Cut-off p < 1%	0.38 (0.23–0.54)	0.28 (0.15–0.44)	0.78 (0.61–0.89)
(n = 40)	Cut-off p < 5%	0.88 (0.72–0.96)	0.82 (0.65–0.89)	0.94 (0.79–0.99)
–6 dB ≥ MD > –12 dB	Cut-off p < 1%	0.76 (0.58–0.89)	0.74 (0.55–0.86)	0.91 (0.75–0.98)
(n = 34)	Cut-off p < 5%	0.97 (0.81–1.00)	0.97 (0.81–1.00)	1.00 (0.86–1.00)
–12 dB ≥ MD > –18 dB	Cut-off p < 1%	0.93 (0.76–0.99)	0.90 (0.72–0.97)	1.00 (0.86–1.00)
(n = 30)	Cut-off p < 5%	1.00 (0.87–1.00)	1.00 (0.87–1.00)	1.00 (0.87–1.00)
MD ≤ –18 dB	Cut-off p < 5%	1.00 (0.87–1.00)	1.00 (0.87–1.00)	1.00 (0.87–1.00)
(n = 34)				

Fig. 1. Mean Deviation (MD) values of visual fields assessed in clinical glaucoma patients (dark bars) and in the nine subjects in the population-based sample who were found to be glaucomatous (white bars). Seven of the latter nine patients had mild visual field defects with MD values better than –6 dB, and two subjects, both previously diagnosed, had MD values of approximately –15 dB.
Acta Ophthalmologica 2012

Stratus ‘average thickness parameter’ sensitivity was higher for Cirrus, which than for Cirrus. Correspondingly, sensitivity values were better for Stratus at 95% and 99% confidence intervals in parenthesis. * AROCs for all quadrant sectors. † AROCs for all clock-hour sectors.

Table 2. Diagnostic performance of Optical Coherence Tomography Retinal Nerve Fibre Layer thickness (RNFLT) analyses in a population-based random sample.

	Average RNFLT	Quadrant sector RNFLT	Clock hour sector RNFLT				
	Cirrus	Stratus	Cirrus	Stratus			
AROC	Cut-off p < 5%	0.96* (0.93–1.00)	0.93* (0.80–1.00)	0.94* (0.88–1.00)	0.97* (0.93–1.00)		
(95% CI)	Cut-off p < 1%	0.99* (0.97–1.00)	0.81* (0.60–1.00)	0.971 (0.94–1.00)	0.821 (0.63–1.00)		
Sensitivity	Cut-off p < 5%	0.89 (0.68–1.00)	0.78 (0.51–1.00)	1.00 (1.00–1.00)	0.89 (0.68–1.00)	1.00 (1.00–1.00)	1.00 (1.00–1.00)
(95% CI)	Cut-off p < 1%	0.67 (0.36–0.98)	0.67 (0.36–0.98)	1.00 (1.00–1.00)	0.67 (0.36–0.98)	1.00 (1.00–1.00)	0.67 (0.36–0.98)
Specificity	Cut-off p < 5%	0.95 (0.92–0.99)	0.99 (0.98–1.00)	0.81 (0.74–0.88)	0.93 (0.89–0.97)	0.65 (0.57–0.73)	0.81 (0.74–0.87)
(95% CI)	Cut-off p < 1%	0.98 (0.95–1.00)	1.00 (1.00–1.00)	0.96 (0.93–1.00)	0.98 (0.95–1.00)	0.91 (0.86–0.96)	0.97 (0.94–1.00)
Positive	Cut-off p < 5%	0.57 (0.31–0.83)	0.88 (0.65–1.00)	0.27 (0.12–0.41)	0.47 (0.23–0.71)	0.17 (0.07–0.27)	0.27 (0.12–0.41)
value (95% CI)	Cut-off p < 1%	0.67 (0.36–0.98)	1.00 (1.00–1.00)	0.64 (0.39–0.89)	0.67 (0.36–0.98)	0.43 (0.22–0.64)	0.60 (0.30–0.90)
Negative	Cut-off p < 5%	0.99 (0.98–1.00)	0.99 (0.96–1.00)	1.00 (1.00–1.00)	0.99 (0.98–1.00)	1.00 (1.00–1.00)	0.98 (0.95–1.00)
predictive	Cut-off p < 1%	0.98 (0.95–1.00)	0.98 (0.95–1.00)	1.00 (1.00–1.00)	0.98 (0.95–1.00)	1.00 (1.00–1.00)	0.98 (0.95–1.00)
value (95% CI)							

AROC: area under the receiver operating characteristic curve. 95% CI, confidence intervals at the 95% significance level in parenthesis. * AROCs for all quadrant sectors. † AROCs for all clock-hour sectors.

Discussion

The performances of both instruments were high in our population-based sample, often with AROCs well above 0.90 (Table 2). We chose to investigate the diagnostic performance of RNFL thickness measurements assessed by the circular scan around the optic nerve head because both time-domain Stratus and the spectral-domain Cirrus OCT provide analysis tools in the form of normative limits for that type of scan. Cirrus also provides an en face view of RNFL thickness and deviations from normal using the cube of OCT data, but we did not include this feature in our analyses.

Generally, specificity was higher for Stratus than for Cirrus. For all parameters and both cut-off levels, p < 5% and p < 1%, positive predictive values were better for Stratus than for Cirrus. Correspondingly, sensitivity was higher for Cirrus, which also had the best AROC of 0.99.

In the population-based sample, the Stratus ‘average thickness parameter’ using p < 1% as cut-off resulted in specificity and positive predictive value of 100% each and 67% sensitivity. The positive predictive value is remarkably good considering its strong correlation to the prevalence of the disease. At 6.5%, the prevalence of glaucoma found in our study was similar to the 6% value reported in meta-analysis by Rudnicka et al. (2006) in a white population older than 70 years. Thus, despite our relatively small population sample size the prevalence seems representative for a white population.

Specificity was often better than expected considering that we used the manufacturer’s normative limits at the p < 5% and p < 1% levels as cut-off for positive findings. This might be explained by the demographics of our population-based sample including only subjects from a suburban area in southern Sweden with an almost 100% white population, and thereby avoiding possible variability in RNFL thickness induced by subjects of different ethnicities. Another possible explanation is that the same photographer, very experienced in acquisition of OCT data, performed all examinations.

The important measures for a screening test, specificity and positive predictive value were estimated among the 129 healthy and nine glaucoma subjects identified in the population sample. Of course, it would have been desirable to find more glaucoma patients in our population survey, but with a response rate of 55%, and a glaucoma prevalence of 6.5%, as in our study, we would have had to invite 2800 subjects, and to examine more than 1500 to find 100 glaucoma patients. Therefore, we included clinical glaucoma patients to assess sensitivity.

The high specificity and positive predictive values suggest that the Stratus average RNFL thickness parameter, with a cut-off at the p < 1% level, could be the best choice for population screening purposes if we accept not being able to detect many of the earliest cases. In a previous study Hougaa et al. (2008) reported that very localized RNFL defects that were visible in images may be missed by the Stratus analysis package (Carl Zeiss Meditec, Dublin, CA, USA). Sensitivity increased considerably when using the quadrant and the clock-hour sector analyses of RNFL thickness. The sector analyses yielded 100% sensitivity with both Cirrus and Stratus in patients with severe and advanced glaucomatous visual field loss, i.e. MD worse than −12 dB (Table 1). The quadrant sector analysis using Stratus with a cut-off at p < 1% yielded high specificity (98%) and positive predictive value (75%) (Table 2), and the sensitivity increased from 28% to 60% in the group of clinical patients with earliest glaucoma (Table 2). Thus, it seems as OCT Stratus sector analysis with a cut-off at p < 1% could serve well as screening instrument.
Tests used in population screenings should be simple, rapid, inexpensive and safe. OCT examinations are rapid, about 5 min with Stratus and 3-4 min with Cirrus. OCT examinations are also safe. The technologies are not simple enough for untrained technicians to carry out the examinations, and the instruments are not inexpensive. Nevertheless, OCT seems to have a potential as a screening tool for glaucoma in an affluent society, but it would be desirable to have our results confirmed in other population-based studies before starting large-scale population screening.

Some of the differences between the results obtained with the two instruments might be because of differences between the two normative databases used to generate normal limits. Thus, the Cirrus database includes a much higher percentage of patients of Asian ethnicity (Cirrus 4.9 User Manual; Carl Zeiss Meditec). Because average RNFL thickness is probably thicker in Asians, one would expect that this has resulted in somewhat higher RNFL values than if the database included only small number of Asian subjects like for Stratus (Budenz et al. 2007).

With most OCT parameters, Stratus yielded better specificity and positive predictive values, both important properties of a screening test, than Cirrus. However, in settings giving priority to early detection and high sensitivity, e.g. in clinical settings, Cirrus is the better choice because sensitivity with Cirrus generally was higher than for Stratus.

Acknowledgement

This study was supported by the Swedish Research Council grant K2005-74X-10426-13A, The Herman Swedish Research Council grant K2005-74X-10426-13A, The Margareta Foundation for Visually Impaired and Crown Princess Margareta’s Foundation for Visually Impaired.

References

Bengtsson B (1981): The prevalence of glaucoma. Br J Ophthalmol 65: 46-49.
Budenz DL, Michael A, Chang RT, McSoley J & Katz J (2005): Sensitivity and specificity of the Stratus OCT for perimetric glaucoma. Ophthalmology 112: 3-9.
Budenz DL, Anderson DR, Varma R et al. (2007): Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT. Ophthalmology 114: 1046-1052.
Chang RT, Knight OJ, Feuer WJ & Budenz DL (2009): Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. Ophthalmology 116: 2294-2299.
Chen H-Y & Huang M-L (2005): Discrimination between normal and glaucomatous eyes using Stratus optical coherence tomography in Taiwan Chinese subjects. Graefes Arch Clin Exp Ophthalmol 243: 894-902.
DeLeón-Ortega JE, Arthur SN, McGwin G Jr, Xie A, Monheit BE & Girkin CA (2006): Discrimination between Glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. Invest Ophthalmol Vis Sci 47: 3374-3380.
Dielemans I, Vingerling Jr, Wolfs RCW, Hofman A, Grobbée DE & de Jong P (1994): The prevalence of primary open-angle glaucoma in a population-based study in the Netherlands. Ophthalmology 101: 1851-1855.
Hougaard JL, Heijl A & Bengtsson B (2002): Glaucoma detection by Stratus OCT. J Glaucoma 11: 302-306.
Hougaard JL, Heijl A & Bengtsson B (2007): Glaucomatous retinal nerve fiber layer defects may be identified in Stratus OCT images classified as normal. Acta Ophthalmol. 86: 569-575.
Huang D, Swanson EA, Lin CP et al. (1991): Optical Coherence Tomography. Science 254: 1178-1181.
Jeoung JW & Park KH (2010): Comparison of Cirrus OCT and Stratus OCT on the ability to detect localized retinal nerve fiber layer defects in preperimetric glaucoma. Invest Ophthalmol Vis Sci 51: 938-945.
Jeoung JW, Park KH, Kim TW, Khuwarg SI & Kim DM (2005): Diagnostic ability of optical coherence tomography with a normative database to detect localized retinal nerve fiber layer defects. Ophthalmology 112: 2157-2163.
Knight OJ, Chang RT, Feuer WJ & Budenz DL (2009): Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography. Ophthalmol 116: 1271-1277.
Leske MC, Counts MJ, Wu S, Nemesure B, Li X, Schachat A & Hennis A (2001): Incidence of open-angle glaucoma. Arch Ophthalmol 119: 89-95.
Leung CK-S, Cheung CY-L, Weinreb RN et al. (2009): Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology 116: 1257-1263.
Lu AT, Wang M, Vaema R, Schuman JS, Greenfield DS, Smith SD & Huang D (2008): Combining nerve fiber layer parameters to optimize glaucoma diagnosis with optical coherence tomography. Ophthalmology 115: 1352-1357.
Matassakorn A, Nouri-Mahdavi K & Caprioli R (2006): Comparison of retinal nerve fiber layer thickness and optic disc algorithms with optical coherence tomography to detect glaucoma. Am J Ophthalmol 141: 105-115.
Moreno-Montaño J, Olmo N, Alvarez A, Garcia N & Zarranz-Ventura J (2010): Cirrus high-definition optical coherence tomography compared with stratus optical coherence tomography in glaucoma diagnosis. Invest Ophthalmol Vis Sci 51: 335-343.
Nguyen NX, Horn FK, Haylor J, Wakiil N, Jüne- mann A & Mardin CY (2002): Retinal nerve fiber layer measurement using laser scanning polarimetry in different stages of glaucomatous optic nerve damage. Graefes Arch Clin Exp Ophthalmol 240: 608-614.
Park SB, Sung KR, Lee KY, Kim KR & Koek MS (2009): Comparison of glaucoma diagnostic capabilities of cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol 127: 1609-1609.
Renn NJ & Lemij HG (2004): Diagnostic accuracy of the GDx VCC for glaucoma. Ophthalmology 111: 1860-1865.
Rudnicka AR, Mi-Sa S, Owen CG, Cook DG & Ashby D (2006): Variations in primary open-angle glaucoma prevalence by age, gender, and race: a Bayesian meta-analysis. Invest Ophthalmol Vis Sci 47: 4254-4261.
Schuman JS, Hsu MR, Arva AV, Pedut-Kloizman T, Piliafitto CA, Fujimoto JO & Swanson EA (1995): Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol 6: 89-95.
Sehi M, Grewal DS, Sheets CW & Greenfield DS (2009): Diagnostic ability of Fourier-domain vs time-domain optical coherence tomography for glaucoma detection. Am J Ophthalmol 148: 597-605.
Sihota R, Sony P, Gupta V, Dada T & Singh R (2006): Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Invest Opthalmol Vis Sci 47: 2006-2010.
Sommer A, Tilles JM, Katz J, Quigley HA, Gottdesch TD, Javitt J & Singh K (1991): Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. Arch Ophthalmol 109: 1090-1095.
Sung KR, Kim DY, Park SB & Kook MS (2009): Comparison of retinal nerve fiber layer thickness measured by cirrus HD and Stratus optical coherence tomography. Ophthalmology 116: 1264-1270.
Vessani RM, Moritz R, Batis L, Zaguí RB, Bernar- doni S & Susanna R (2009): Comparison of quantitative imaging devices and subjective optic nerve head assessment by general ophthalmologi- stists to differentiate normal from glaucomatous eyes. J Glaucoma 18: 253-261.
Vizzeri G, Weinreb RN, Gonzalez-Garcia AO, Bowd C, Medeiros FA, Sample PA & Zangwill LM (2009): Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness. Br J Ophthalmol 93: 775-781.
Yoo YC & Park KH (2009): Comparison of optical coherence tomography and scanning laser polarimetry for detection of localized retinal nerve fiber layer defects. J Glaucoma. E-pub ahead of print.

Received on March 9th, 2010. Accepted on June 15th, 2010.

Correspondence: Boel Bengtsson
Department of Clinical Sciences
Ophthalmology in Malmö
Skånes University Hospital
SE-205 02 Malmö
Sweden
Tel: +46 40 333 230
Fax: +46 40 336 212
Email: boel.bengtsson@med.lu.se