Moving Target Tracking Using TDOA and FDOA Measurements from Two UAVs with Varying Baseline

Yijun Li1,a, Caiyong Hao2,b, Mingbing Li3,c, Long He4,d, Pengjie Li4,e and Qun Wan1,f

1School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China, 611731
2Shenzhen Station of State Radio Monitoring Center, Yintan Road 30#, Dapeng District Shenzhen, China, 518120
3Southwest Institute of Electronic Technology
4No.208 Research Institute of China Ordnance Industries

Email: aliyijun17@std.uestc.edu.cn, bsrnchcy@hotmail.com, c12865579@qq.com, dhelong208@126.com, elpj208@163.com, fwanqun@uestc.edu.cn

Abstract. This paper considers the problem of tracking a moving target using the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements obtained at two unmanned aerial vehicles (UAVs) with varying baseline. Accumulation time is necessary because the emitter position cannot be estimated at each emission when there are only two UAVs as sensors. And the target position and velocity estimation accuracy often suffer from low convergence in conventional formation flight mode no matter what nonlinear filtering algorithm is used. Based on the analysis of the influence of different flight modes on the positioning performance, a moving target tracking system from two UAVs with varying baseline is proposed. The performance of unscented Kalman filter (UKF) under proposed system is analysed and compared with the Cramer-Rao lower bound (CRLB). Simulation results show that the proposed system can speed up the convergence.

1. Introduction

Moving target tracking using TDOA or FDOA measurements is a highly nonlinear problem [1]. When the number of sensors is sufficient for locating the emitter at a single emission [2]-[5], the emitter can be tracked using the position estimate calculated at each emission as measurements with smoothing techniques such as linear Kalman filter [6]. Another approach is using TDOA or FDOA measurements obtained at a single emission as input of nonlinear filter. Unlike techniques such as least squares [7], processing all measurements at once, which is not suitable when the emitter is mobile, Kalman filter is a kind of recursive estimation by combing the current time measurements with the estimated results at the previous moment without affecting performance. Many nonlinear filter algorithms have been studied using TDOA or FDOA measurements, but more than two sensors are needed [8]-[11].

When there are only two UAVs as sensors, however, the emitter position cannot be estimated at each emission and therefore sufficient measurements obtained over a period of time are necessary. The emitter position can be estimated using a sequence of TDOA measurements with two UAVs [12]-[13]. The combination of TDOA and FDOA measurements will cover a wider range of emitters that may be tracked [1] and performs better than using only one of them [4], thus causing much concern. Icki [1]
proposes a GMM-EKF algorithm, which achieves recursive tracking of one mobile emitter using a sequence of TDOA and FDOA measurement pairs obtained by one pair of sensors, but suffers from low convergence for the target 100km away. In fact, it is possible to accelerate the convergence rate only by changing the motion state of sensors when the target motion state and measurement accuracy are certain. How to design the motion state of sensors to achieve short-time moving target tracking in the case of only two UAVs is the problem to be discussed.

The paper is organised as follows. The problem is described in Section 2. Section 3 shows the evaluation of CRLB when the target moves in a constant speed. Section 4 shows performance results and application scene under proposed system. Section 5 concludes the paper.

2. Problem Description

Consider an emitter at position $\mathbf{p}(t) = (x(t), y(t), z(t))^T$ which emits signal with carrier frequency f_c, where t indicates time. There are M sensors receive the signal from the emitter, where sensor i is located at position $\mathbf{s}_i(t) = (x_i(t), y_i(t), z_i(t))^T$.

The distance vector between the emitter and sensor i at time t is $\mathbf{r}_i(t) = \mathbf{p}(t) - \mathbf{s}_i(t)$, and the time delay of signal received at sensor i is

$$\tau_i(t) = \frac{\|\mathbf{r}_i(t)\|}{c}$$

where c denotes the signal propagation speed.

Assuming the velocity of emitter is $\dot{\mathbf{p}}(t) = (\dot{x}(t), \dot{y}(t), \dot{z}(t))^T$ and of sensor i is $\dot{\mathbf{s}}_i(t) = (\dot{x}_i(t), \dot{y}_i(t), \dot{z}_i(t))^T$. The Doppler shift of the signal received by sensor i at time t is defined by

$$f_i(t) = \frac{f_c}{c} \left(\frac{\mathbf{p}(t) - \dot{\mathbf{s}}_i(t)}{\|\mathbf{r}_i(t)\|} \right) \frac{\mathbf{r}_i(t)}{\|\mathbf{r}_i(t)\|^2}$$

The TDOA and FDOA is given by

$$\tau_{ii}(t) = \tau_i(t) - \tau_i(t) + n_{i1}$$

$$f_{ii}(t) = f_i(t) - f_i(t) + \hat{n}_{i1}$$

with additive zero-mean white Gaussian noise n_{i1} with covariance σ_{i1}^2 and \hat{n}_{i1} with covariance σ_{i1}^2.

For a two dimensional position noise, at least three sensors are required to estimate target position at a single time. Now that the number of sensors is two, a sequence of TDOA and FDOA measurement pairs are necessary to estimate target state by solving an over-determined problem. To clarify the idea clearly, only the target of uniform motion is considered below.

3. CRLB

It is assumed that the target of current time should be located by using the measured data of the current time t_k and the preceding K moments. The initial time is t_0 and the k-th time is $t_k, 0 \leq k \leq K$.

Assuming the velocity of emitter is constant and written as $\dot{\mathbf{p}}(t_k) = (\dot{x}, \dot{y}, \dot{z})^T$, the position of emitter of current time is $\mathbf{p}(t_k) = (x, y, z)^T$, then the position of emitter at k-th time can be represented by the position of the current time and is given by

$$\mathbf{p}(t_k) = (x(t_k), y(t_k), z(t_k))^T$$

$$= (x - (K - k)x, y - (K - k)y, z - (K - k)z)^T$$

$$\mathbf{p}(t_k)$$
The TDOA and FDOA measurements vector of the current time t_k and the preceding K moments is defined by

$$ F = F' + n $$

$$ F = \begin{bmatrix} \tau_{21}(t_0) & \tau_{21}(t_1) & \cdots & \tau_{21}(t_k) \\ f_{21}(t_0) & f_{21}(t_1) & \cdots & f_{21}(t_k) \end{bmatrix}^{(M-1)(K+1)} $$

with $(\ast)'$ represents the true value without noise and n is measurements noise with covariance

$$ Q = \text{diag}\left[\sigma_i^2, \cdots, \sigma_i^2 \right]^{(M-1)(K+1)} $$

Let target state vector $x = [x, y, z, \dot{x}, \dot{y}, \dot{z}]^T$. Hence the conditional probability density function of F is

$$ p(F|x) = \frac{1}{(2\pi)^{(M-1)(K+1)/2}} |Q|^{1/2} \exp\left\{ -\frac{1}{2} (F-F')^T Q^{-1} (F-F') \right\} $$

And the CRLB of x at time t_k is given by

$$ \Phi = \left(A^T Q^{-1} A \right)^{-1} $$

where A is the derivative of F' with respect to x [14].

4. Simulation

By setting up multiple scenarios, this section analyses the factors affecting the positioning accuracy, and proposes a moving target tracking system from two UAVs with varying baseline. The performance of the UKF and application scene under proposed system are analysed by simulation.

4.1. Scenario

Set up three scenarios as shown in Table 1 to Table 3. In scenario 1, two planes move in a uniform straight line at a certain speed side by side. In scenario 2, two planes fly side by side, with one plane moving in a uniform straight line, and the other plane moving in a uniform acceleration straight line for 15 seconds before doing a uniform straight line motion. In scenario 3, two planes fly by column, with one plane doing a uniform linear motion, and the other doing a uniform acceleration linear motion for 15 seconds before doing a uniform linear motion.

Assuming an emitter is moving in a uniform straight line at a speed of 36m/s on the ground, note that only two-dimensional position is discussed here and three-dimensional positioning can be similarly extended. The distance between the target and the centre of the baseline is about 200 km at the initial time. The specific initial settings of emitter are shown in Table 4.

After 200 seconds of relative motion, the changes of TDOA and FDOA in different scenarios are shown in Figure 1. Figure 1(b) shows that the FDOA varies greatly in scenario 2 and scenario 3 when
the aircraft is uniformly accelerated, but the TDOA is almost unaffected by the flight trajectory of the UAVs.

Table 1. Initial state of UAV in scenario 1
x(km)

1
2

Table 2. Initial state of UAV in scenario 2.
X(km)

1
2

Table 3. Initial state of UAV in scenario 3.
X(km)

1
2

Table 4. Initial state of target.
x(km)

1

![Figure 1](image1.png)

Figure 1. (a) The change of TDOA; (b) The change of FDOA.

4.2. Result

Setting the initial estimate of target state and covariance of UKF as below.

\[\hat{x}_{10} = \begin{bmatrix} 100 \text{(km)} \\ 100 \text{(km)} \\ 10 \text{(m/s)} \\ 10 \text{(m/s)} \end{bmatrix} \]

\[P_{0} = \begin{bmatrix} 50 \text{(km)}^{2} & 0 \\ 0 & 20 \text{(m/s)}^{2} \\ 50 \text{(km)}^{2} & 20 \text{(m/s)}^{2} \\ 0 & 20 \text{(m/s)}^{2} \end{bmatrix} \]

(12)

(13)

The performance of UKF in in different scenarios are shown in Figure 2 and Figure 3. RMSE curve and CRLB keep the same downward trend and tend to be consistent when the accumulation time is long enough. There is an abnormal phenomenon that UKF has better tracking results than CRLB when the accumulation time is short, which results from the initial estimation of target state that utilizes some prior information. As can be seen from Figure 4, using only TDOA measurements can hardly
achieve moving target tracking because the target is far from the baseline centre, and the baseline length is much smaller than the distance from the target to the baseline so that the TDOA measurements changes very little. Thus we can learn that the uniformly accelerated linear motion of the UAVs in scenario 2 and 3 improves the change rate of FDOA and the FDOA measurements plays a major role in locating emitter 100km away, which explains why the convergence speed of RMSE in scenarios 2 and 3 are superior to scenario 1 in the same initial conditions.

In scenario 3, when target moving at a speed of (20, 30) m/s and the accumulated time is 30 s, GDOP with $\sigma_f = 60ns$ and $\sigma_f = 0.5Hz$ is presented in Figure 5. It can be seen from the graph that the targets within 250 km except for the blind area in the baseline direction, the corresponding position RMSE is no more than 5 Km under this flying mode.

Figure 2. The performance of UKF for target location estimation in different scenarios and compared with CRLB.

Figure 3. The performance of UKF for target velocity estimation in different scenarios and compared with CRLB.

Figure 4. Comparison of location CRLB in scenario 3 between using only TDOA/FDOA measurements and using both of them simultaneously.

Figure 5. GDOP in scenario 3 when accumulation time is 30s and target moves at a speed of (20, 30) m/s.

5. Conclusion
For slowly moving target 100 km away, the low-speed of the UAVs causes little variation in the TDOA measurements of the received signal at the different time, thence the higher the change rate of FDOA under the same accumulation time, the higher the positioning accuracy. Because the change of FDOA is mainly affected by the velocity change of UAVs when the moving state of the target is certain, which accounts for low convergence in conventional formation flight mode. Our proposed
system from two UAVs with varying baseline is easy to perform under engineering conditions and simulation results show that the accumulation time of target tracking can be shortened effectively.

Acknowledgments
This work was supported in part by the National Natural Science Foundation of China under Grant U1533125, and Grant 61771108, in part by the National Science and Technology Major Project under Grant 2016ZX03001022, in part by the Fundamental Research Funds for the Central Universities under Grant ZYGX2015Z011 and Sichuan science and technology planning project (key R & D project 18ZDYF0990).

Reference
[1] Icki D, Kaune R and Koch W 2010 Mobile emitter geolocation and tracking using TDOA and FDOA measurements IEEE Transactions on Signal Processing 58 1863-1874
[2] KC Ho, X Lu, L Kovavisaruch 2007 Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution IEEE Transactions on Signal Processing 55 684-696
[3] KC Ho and W Xu 2004 An accurate algebraic solution for moving source location using TDOA and FDOA measurements IEEE Transactions on Signal Processing 52 2453-2463
[4] Yanbin Zou, Huaping Liu and Qun Wan 2017 An iterative method for moving target localization using TDOA and FDOA measurements IEEE Access 2746-2754
[5] Yue Yang, Xunchao Cong, Keyu Long, Yongjie Luo, Wei Xie, Qun Wan 2018 MRF model-based joint interrupted SAR imaging and coherent change detection via variational Bayesian inference. Signal Processing 151 144-154
[6] Wann C and Chen Y 2002 Mobile location tracking with velocity estimation Proceedings of the IEEE 5th International Conference on Intelligent Transportation Systems 566–571
[7] Drake S and Dogancay K 2004 Geolocation by time difference of arrival using hyperbolic asymptotes IEEE International Conference on Acoustics 2 361–364
[8] B Deng, H Qin and Z Sun 2017 Linear-correction Extended Kalman Filter for Target Tracking Using TDOA and FDOA Measurements International Conference on Control
[9] Julier S J, Uhlmann J K 2004 Unscented Filtering and Nonlinear Estimation Proceedings of the IEEE 92 401-422
[10] JA Cho, H Na, S Kim and A Ahn 2012 Moving-target tracking based on particle filter with TDOA/FDOA measurements ETRI Journal 34 260-263
[11] Takabayashi Y, Matsuzaki T, Kameda H and Ito M 2008 Target tracking using TDOA/FDOA measurements in the distributed sensor network Sice Conference 91 3441-3446
[12] Fletcher F, Ristic B and Musicki D 2007 Recursive estimation of emitter location using TDOA measurements from two UAVs International Conference on Information Fusion 1-8
[13] Okello N and Musicki D 2007 Emitter geolocation with Two UAVs Proceedings of Information, Decision and Control Conference 254-259
[14] SM Kay 1993 Fundamentals of statistical signal processing: estimation theory PTR Prentice hall 37 465-466