Iron treatment of restless legs syndrome

Yun Ho Choi, In-Uk Song

Department of Neurology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea

Restless legs syndrome (RLS) has a high prevalence in the elderly, which significantly impacts sleep, quality of life, and increases the risk of falls while walking at night. There is sufficient research to support the concept of altered brain iron homeostasis in RLS as part of the underlying pathology of RLS. A Task Force was established by the International Restless Legs Syndrome Study Group to develop evidence-based and consensus guidelines for the iron treatment of RLS in adults. Consensus recommendations based on clinical practice are presented, including when to use oral iron or intravenous iron, and recommendations on repeated iron treatments. New iron treatment algorithms, based on evidence and consensus opinion have been developed. Iron therapy is of great importance in various structures, including improvement of the pathophysiology and clinical symptoms of RLS. It is necessary to develop treatment methods such as more active brain delivery and accurate monitoring, and additional long-term clinical guidelines are expected through various studies.

Keywords: Restless legs syndrome; Iron; Guideline
RLS의 진단 및 평가

1. RLS의 증상 및 진단
RLS는 자질을 움직이려는 강한, 거의 저항할 수 없는 충동을 특징으로 하는 감각증후군이다. 이러한 움직임의 충동은 자질 안쪽으로 느껴지는 다른 불편한 감각이 항상 동반되는 것은 아니고 종종 간단히 설명하기 어려울 뿐만 아니라 불가능한 느낌이 동반되기도 한다. 비록 다리가 가장 두드러지게 영향을 받지만 RLS 환자의 21-57%가 팔의 감각을 표현한다는 점에서 하지불안은 부적절한 명칭이다. RLS를 경험하는 성인들의 대부분은 영어로 이와 같이 표현한다. Restless (가만히 있지 못하는), uncomfortable (불편한), twitchy (움찔거림), need to stretch (스트레칭 필요), urge to move (움직이고 싶은 충동) 및 legs want to move on their own (다리가 저절로 움직일 것 같은)이 연속적으로 수면을 설명하는 매우 드문 표현이다. 최근 발표된 International Restless Legs Syndrome Study Group (IRLSSG)의 진단기준은 Table 1과 같으며 [15], 미국수면의학회(American Academy of Sleep Medicine)에서 발행한 제3판 국제수면장애분류(International Classification of Sleep Disorders-3rd edition, ICSD-3)을 최근 대한수면연구학회에서 번역하였다(Appendix 1) [16].

2. RLS의 평가
수면다원검사는 RLS의 평가에 일반적으로 포함되지는 않지만 수면다원검사 연구는 RLS에서 객관적 수면 이상을 보인다. 수면구조에서 지속적인 수면으로 수면잠복기가 증가하며 각성지수도 decrease 되는 환자의 70-80%에서 사지 안쪽의 움직임이 지속되며, 이는 잠에 편안하게 깨어있는 상태로 바닥에 앉아 다리를 뻗은 상태에서 시행한다. RLS 진단은 각성주기사지운동이 시간당 40 이상의 결과를 통해 뒷받침된다[17,19].

저자들은 RLS 환자의 평가를 위해서는 한국판 국제하지불안척도(Korean Version Of The International Restless Legs Scale)와 RLS 삶의 질 설문지(Restless Legs Syndrome Quality of Life Questionnaire)가 신뢰도 및 타당도 연구를 마치고 사용 중이다 [20,21].

Table 1 International Restless Legs Syndrome Study Group (IRLSSG) consensus diagnostic criteria of restless legs syndrome (RLS)

Essential diagnostic criteria (all must be met)
1. An urge to move the legs usually but not always accompanied by, or felt to be caused by, uncomfortable and unpleasant sensations in the legs.
2. The urge to move the legs and any accompanying unpleasant sensations begin or worsen during periods of rest or inactivity such as lying down or sitting.
3. The urge to move the legs and any accompanying unpleasant sensations are partially or totally relieved by movement, such as walking or stretching, at least as long as the activity continues.
4. The urge to move the legs and any accompanying unpleasant sensations during rest or inactivity only occur or are worse in the evening or night than during the day.
5. The occurrence of the above features is not solely accounted for as symptoms primary to another medical or a behavioral condition (e.g. myalgia, venous stasis, leg edema, arthritis, leg cramps, positional discomfort, habitual foot tapping).

Adapted from Allen RP, et al. Sleep Med 2014;15:860-873, according to the Creative Commons license [15].

RLS의 약물 치료

증상 완화를 위한 대중적 치료로, 항경련제(anticonvulsants, alpha-2-delta [δ2] ligands), 도파민작용제(dopamine agonists), 레보도파(levodopa), 벤조디아제핀계(benzodiazepine), 철 화합물(iron), 아편알카로이드(opioid) 등이 사용된다. 도파민 약물은 치료 시작시 반응이 좋으나 증가현상의 부작용을 점차 증가하며 장기적인 약물 치료에 이르러움이 발생하고 있다. 이로써 최근에는 δ2 ligands가 1차 약제로 추천되고 있는 추세이며, 이를 고려한 치료가 발표되었다 [12]. 1차 약제를 선택할 때 고려해야 할 사항은 Table 2와 같다 [12].

RLS의 철분 치료

1. 이론적 근거
여러 연구에 따르면 ferritin이 낮아지면 RLS 중증도가 증가하는 것으로 나타났다 [22,23]. 변형에서 심한 철분 결핍은 RLS 유병률을 6배 증가시켰다 [24]. 변형이 없고 매프 철분 저장이 정상인 RLS 환자도 정상 대조군에 비해 철분 결핍은 감소하는 것으로 밝혀졌다 [25-27]. 이러한 철 함량성이 높아지는 변형은 RLS에서 볼 수 있는 도파민 이상이 주로 원인으로 간주된다. 따라서 증상반 치료하는 현재 미국식품의약국(Food and Drug Administration, FDA) 승인된 RLS 약물과 달리 철 요법은 근본적인 상당히 더 철분 결핍을 교정하여 RLS의 주요 원인을 교정한다 [28].

https://doi.org/10.53991/jgn.2022.00038
2. 경주 철분제
경주 철분제는 종종 위장장애 및 특정 조건에서 흡수 재현이 있어 스펙토도가 높아질 수 있다. 철분 흡수는 적혈구생성(erythropoiesis)과 높은 산란관계가 있기 때문에[29]. 철분 생산을 위한 충분한 철 저장량이 있는 한 철 흡수에 대한 헥시디(hepcidin) 의존적 해
연이 있을 것이다[30]. 철분 흡수는 혈청 ferritin에 따라 결정되는
철 저항에 영향을 받는데, ferritin이 약 10 μg/L일 때 경구 비행
(non-heme iron)의 약 20%가 흡수되지만, 50~75 μg/L의 경우
에는 1~2% 정도 흡수된다[31]. 따라서 혈청 ferritin이 75~100
μg/L보다 클 때에 경주 철분을 투여하면 이득이 제한될 수 있다.

3. 정맥주사 철분제
정맥주사(intravenous, IV) 철분제는 위장에 의한 조절을 피해 정
맥으로 급박으로 투여되어 주로 적혈구제일, 간 및 대식세포에 의해
흡수된다[32]. 대식세포의 뇌를 포함한 다른 기관에 철분을 재분
배하는 주요 원천이기 때문에[33]. 초기 철분 부하기간 동안 대식
세포가 흡수하는 철의 양은 철분이 뇌에 역제, 얼마나 도달하는지
를 결정하는 데 관심이 있을 수 있다. 대식세포에 의해 IV 계형에
따라 흡수의 차이뿐 아니라, 운반체 탄수화물(carrier carbohy-
drate)에서 혈액으로 발산되는 속도의 차이가 있다. 때론 배출 계
제(iron sucrose 및 iron gluconate)는 사용 가능한 transferrin이
양도되어 과도하고 독성이 있는 유리 또는 불안정한 철(free or la-
bile iron)을 생성하는 것을 방지하기 위해 더 낮은 용량으로 투여
해야 하며, 원하는 용량을 얻기 위해서는 더 낮은 용량을 먹이
에 접히 바뀔 필요가 있다. 반대로, 느린 배출 계제(low molecular
weight iron dextran, ferric carboxymaltose, ferumoxytol, and
iron isomaltoside)는 transferrin에 의해 흡수될 수 있는 철분이
더 많이 허락되고 불안정한 철이 될 발생한다. 느린 배출 계제는
또한 느린 배출 계제에 비해 대식세포 철 농도의 더 큰 증가를 보여
준다[34]. 느린 배출 계제는 1회 또는 2회 반복 투여로 제공될 수
있다. 현재 사용 가능한 IV 철분제 및 기본 특성 목록은 Table 3과
같다[14].

최근 철수액 ferritin 연구는 RLS의 IV 철분 치료에 대한 관
심을 되살리는 과학적 근거를 제공했다[25, 26]. 철수액 ferritin
은 대조군보다 RLS에서 더 높으며 혈청 ferritin과도 양의 상관관
계가 있는 것으로 나타났다[26]. RLS에서 혈청 철수액 ferritin
상관관계는 아래쪽으로 이동하고 약간 낮은 기울기를 갖는 것으
로 나타났다(Figure 1) [14]. 이 상관관계는 RLS 환자에서 혈청
ferritin이 200 μg/L 이상으로 증가할 수 있다면 뇌의 철 농도가
정상 대조군에서 볼 수 있는 수준에 도달할 수 있음을 시사한다
(Figure 1) [14]. 그러나 이러한 데이터는 개별 변이가 있는 단면
연구이고 철수액 ferritin은 국소 뇌 철분과 제한적인 관계를 가
Table 2 Factors that affect selection of an agent for initial treatment in patients with RLS

Factor that impacts the choice of agent	Treatment choice
Time of day (daytime symptoms)	Preferably a long-acting agent
Sleep disturbance disproportionate to other symptoms of RLS, e.g., severe insomnia	α2δ ligand
Comorbid insomnia	α2δ ligand
Pregnancy risk	Avoid both DAs and α2δ ligands
Impaired renal function	Consider the use of iron
Increased risk of falls	Select a drug that is not renally excreted or reduce dose of renally excreted drugs
Painful restless legs	Dopamine-receptor agonist
Comorbid pain syndrome	α2δ ligand
History of impulse control disorder	α2δ ligand
History of alcohol or substance abuse	Dopamine-receptor agonist or α2δ ligand
Very severe symptoms of RLS	Dopamine-receptor agonist
Excess weight, metabolic syndrome	Dopamine-receptor agonist
Availability or cost of drug	Dopamine-receptor agonist or α2δ ligand
Comorbid depression	Dopamine-receptor agonist
Comorbid generalized anxiety disorder	Dopamine-receptor agonist
Higher potential for drug interactions	Select drug that is not hepatically metabolized
Symptomatic PLMS	Dopamine-receptor agonist

Adapted from Garcia-Borreguero D, et al. Sleep Med 2016;21:1-11, according to the Creative Commons license [12].

RLS, restless legs syndrome; DAs, dopamine-receptor agonists; α2δ, alpha-2-delta; PLMS, periodic limb movements in sleep.
질 가능성이 있다. 그럼에도 불구하고 말초 철분 저장량이 증가하면 잠재적으로 뇌 철분이 증가하고 이후 증상이 감소할 수 있다는 개념을 뒷받침한다. 필요한 것으로 보이는 이러한 더 높은 수준의 말초 철분은 IV 철분으로 달성할 수 있지만 위장관에서 조절되는 흡수를 고려할 때 경구 철분으로는 달성할 수 없다. 이로 인해 RLS에 대한 IV 철분 치료 연구들이 이루어졌으며, 최근 국내에서도 철분정맥투여의 효용성에 대한 연구들이 보고되었다[35–38].

증거 기반 및 합의지침: 성인

1. 경구 철분 치료에 대한 전문가 합의 임상 권장 사항

혈청 ferritin이 75 μg/L 이하인 RLS 환자의 경우, 황산철(II) (ferrous sulfate) 325 mg에 해당하는 경구 철분을 고려해야 한다. 효능이 입증된 연구의 투여 요법은 100 mg 비타민 C (ascorbic acid)를 함께 하루에 두 번 투여했다. Ascorbic acid는 세포 내 환원 메커니즘에 의해 철 흡수를 향상 시키며 철-반응요소결합단백질 (iron-responsive element-binding proteins) 및 저산소유도인 자 (hypoxia inducible factor) 시스템을 조절할 수 있다. 이러한 기전은 전신 및 세포 철 항만성에 중요하다[39]. 새로운 연구는 또한 하루에 한 번 경구 철분을 투여하는 것이 더 빈번한 투여로 더 많은 혈산 유도로 인해 하루에 두 번 투여하는 것과 거의 동일한 효과적이라는 것을 나타낸다[40]. 따라서 임상적 합의에 따라 하루에 1번 또는 2번 투여할 것을 권장한다. 약물은 잘 견디지 못하면 음식과 함께 복용 할 수 있지만 흡수가 감소할 가능성이 있다. 1일 1회 투여는 말초 철분 상태를 증가시키는 이점을 거의 상실하지 않고 부작용을 감소시키기 때문에 1일 2회 투여보다 다소 선호될 수 있다. 격일로 한 번 복용하는 것이 고려될 수 있지만 순응도를 감소시키는 것으로 보인다.

2. IV 철분 치료에 대한 전문가 합의 임상 권장 사항

IV 체계의 투여에 대한 FDA 승인지침을 따라야 한다. Class I 연구에서 IV ferric carboxymaltose 및 유사한 제형이 상당한 증상 개선을 제공하고, RLS에 대한 일차 치료로 사용될 수 있음을 나타낸[36,41,42]. 그러나 위약 효과를 넘어서는 RLS 증상의 개선은 치료 후 4-6주까지 발생하지 않을 수 있다. 환자 관리는 치료에 대한 이러한 지연된 반응을 계획해야 한다. 이 접근법을 사용한 치료에 대한 적합성을 평가하기 위해 치료 전에 초기 아침 공복 혈액에서 전체 철분 패널을 확보해야 한다. IV 철분 치료 8주 후 아침 공복 혈액에서 반복 철분 패널을 채취하고 8주 후 반복하는 것이 좋다. 권장되는 8주 지연은 IV 철분 치료 후 혈청 ferritin 수치를 상승시키는 급성기 반응 때문이다.

RLS 치료를 위해 경구 및 IV 철분제 사용 시기에 대한 임상적 합의

1. 아래 a와 b가 모두 적용될 때 경구 철분을 사용(치료 알고리즘: Figure 2, 3 [14]).

a. 혈청 ferritin은 성인의 경우 ≤ 75 μg/L, 그리고 b. 다음의 조건은 없음: (1) 경구 철분제에 의해 악화되는 경우(예: 염증성장질환 [inflammatory bowel disease]), (2) 경구 철분제가 흡수될 수 없.

Trade name (s)	INFeD	Ferrlecit	Venofer	Feraheme (ferumoxytol)	Monofer	Injectafer, Ferinject*
Generic name	LMW dextran	Iron gluconate	Iron sucrose	Iron isomaltoside 1000	Ferric carboxymaltose	
Molecular weight (Da)	165000	289,000-444,000	34,000-60,000	750000	150000	150000
Labeled dosage (mg)	100	125	A, 200; PED, 100	510	20 mg/kg	USA, 750; Europe, 1000
Doses for RLS	1,000 mg, single dose	100 mg, 8 doses	1,000 mg, 5 doses	1,000 mg, single dose	USA, 1,500 mg (if BW > 50 kg), 2 doses	5-7 days apart; Europe, 1,000 mg, single dose
Dose administration	IV infusion	Slow IV 10 m	Slow IV 2-5 m	Slow IV 1-2 m	Slow IV 15 m	Slow IV 7.5 m
Test dose required	Yes	No	No	No	No	No
Iron concentration (mg/ml)	50	12.5	20	30	100	50
Vial volume (ml)	2	5	5	17	5 & 10 in Europe	2 and 10 in Europe, 15 USA
Black box warning	Yes	No	No	Yes	N/A	No
Preservative	None	Benzyl alcohol	None	None	None	None

Allen RP, et al. Sleep Med 2018;41:27-44, according to the Creative Commons license [14].
A, adult; PED, pediatric; RLS, restless legs syndrome; BW, body weight; IV, intravenous; NS, normal saline; N/A, not available.
*Injectafer is marketed outside the US under the brand name Ferinject.
는 경우(예: 비만 수술), (3) 경구 철분제가 빠른 철분 소실을 감당할 수 없는 경우(예: 심한 자궁 출혈, 유전성혈모세혈관확장증 또는 기타 후천혈관형성이상(acquired angiodysplasia))

2. 경구에서 IV 철분제로 전환
a. 경구 철분제 사용이 어려운 경우, 또는
b. 경구 철분제 사용 12주 후에도 RLS 증상이 임상적으로 의미 있고 혈청 ferritin 또는 기타 철분 측정값이 RLS에 대해 IV 철분제를 제공하는 데 허용되는 값 내에 있는 경우

3. 경구 철분제가 아닌 IV로 시작
a. 중등도에서 중증(moderate to severe) RLS가 있는 성인: 경구 사용에 의학적 금기 사항이 있지만 IV 철분은 사용하지 않는 경우 b. 다음 중 하나가 있는 경우에만 성인(18세 이상): (1) 혈청 ferritin 75~100 μg/L (또는, 영문으로 혈청 ferritin이 상승하는 경우는 transferrin 포화도가 <20%인 경우에만 IV 철분 치료를 고려), (2) 경구 철분 흡수를 방해할 수 있는 상당한 전신 동반질병이 있는 경우(예: 암 중상, 류마티스관절염), (3) 과거 경구 철분 치료에 실패한 적이 있는 경우, (4) 경구 철분제로 인을 수 있는 것보다 더 빠른 증상 완화가 필요한 임상적 상황

1. 말초 철분 상태 검사
혈청 철분의 붕괴한 일주기 변화(아침에 가장 높고 저녁에 가장 낮음). 음식 섭취 직후 혈청 철의 증가. 철분 상태의 독립적 결정요인으로써 혈청 철분의 중요성 등의 이유로, 혈청의 혈청검사는 야간 금식 후 아침에 얻어야 한다. 가능하다면 금식기간 이전의 마지막 식사에는 고기, 특히 붉은 고기의 양이 적어야 하며. 전체 철분 패널에는 혈청 ferritin, transferrin 포화도, 철 및 총철결합능이 포함되어야 한다. Soluble transferrin receptor는 매우 비싸고 비밀이 없는 사람에서는 제한적 가치를 가지고 있기 때문에 일반적인 철분 패널에 포함되어서는 안된다[43]. 실험실 철분검사는 질병 또는 기타 의학적 상태가 있는 환자 집단이 배제되지 않아 철분 지수에 대한 정상 범위에는 변형 및 철결핍이 있는 집단이 포함된다. 예를 들어, 혈청 ferritin 15 μg/L는 해당 실험실 결과에서 정상 범위로 나타나더라도 철결핍을 매우 잘 나타낸다[43].

RLS 환자의 초기 평가와 RLS 증상이 이유 없이 악화될 때마
다 전체 철분 패널이 권장된다. 반복 철분 패널은 경구 철분 섭취를 시작한 약 3개월 후와 3~6개월마다 변화율을 기준으로 권장된다. 환자는 경구 철분을 사용하는 동안 정기적으로 철분 지수를 확인해야 한다. 환자는 반복 철분 패널을 시행하기 2일 전에 경구 철분을 복용해서는 안된다. IV 철분 주입 8주 후, 이후 8주 후에 다시 철분 상태를 확인해야 한다. 첫 8주 후 철분 평가는 주입으로 얻은 철분 저장 수준을 확인하는 것이다. 두 번째 주입 후 평가는 수준이 얼마나 안정적인지 확인하는 것이다. Transferrin 포화도 > 45%이거나 혈청 ferritin > 300 μg/L일 때 치료를 중단해야 한다. 철분 다취의 위험을 최소화할 수 있다. 혈청 철분 농도는 철분포화도를 계산하는 데 사용되는 두 가지 값 중 하나이며 이 차적으로 철분 값이 상승하면(철제 약물, 금식 실패, 전날 밤 고기 를 많이 먹은 경우) 실제 철분포화도를 잘못 추정할 수 있다. IV 철분 치료 후 처음 6주 이내의 혈청 ferritin은 가까운 수준을 보이는 경향이 있으므로 초기 주입 후 8주를 기다리는 것이 좋다. 혈청 ferritin 수치는 염증 과정에 의해서도 상승하기 때문에, 너무 높은 값이라면 다른 철분 측정값과 관련하여 평가해야 한다. 결과에 영향을 미치는 염증이 염려되면 나중에 철분 패널을 반복해야 한다.

2. IV 철분 치료 반응 시간
IV 철분제를 사용한 임상 연구는 전반적인 임상 반응이 지연될 수 있거나 적어도 치료로 얻을 수 있는 최대 효과가 최소 4~6주 지연될 수 있음을 보여주었다. 그러나 일부 환자는 즉각적인 반응을 보고할 수 있다. IV 철분 치료를 시작할 때 환자에게 IV 철분 주입 후 4~6주까지 증상이 호전되지 않을 수 있음을 알리는 것이 중요하다. 추가 치료로 IV 철분제를 사용할 때, 약물 용량을 줄거나 다른 변경은 증상을 악화시킬 수 있어 IV 철 치료 후 처음 4~6주 동안은 신중히 하거나 하지 말아야 한다.

3. 반복적 철분 치료
IV 철분 치료는 말초 철분 저장을 확실히 증가시킬 것이다. 철분 치료가 철분 상태와 RLS 증상을 개선시킨다면, 결핍의 근본 원인 이 제거될 수 있다. 반복적 철분 치료를 결정하는 데 도움이 될 수 있는 임상적 요인은 다음과 같다. (1) 초기 치료에 명백한 증상 이 점이 있었는가? (2) 초기 치료에서 혈청 ferritin이 높은 정상 범위로 상승했었는가? 아니면 혈청 ferritin이 여전히 정상 범위 중 낮은 수준에서 증가 수준인가? (3) 말초 철분 저장량이 감소하여 증상이 악화되고 있는가? (4) 반복 치료와 관련된 안전성 문제가 있는가?

Figure 2. Algorithm for oral iron treatment of adult restless legs syndrome (RLS). Allen RP, et al. Sleep Med 2018;41:27-44, according to the Creative Commons license [14]. TSAT%, percentage transferrin saturation.
성공적인 경구 철분 치료를 반복하기 위한 결정은 혈청 ferritin 수치가 75~100 μg/L 미만으로 떨어짐에 따라 결정될 수 있으며, 이는 RLS 증상을 줄이기 위해 경구 철분을 다시 시작하는 것이 가능한 이점이 있다. 발표된 Class IV 연구가 하나뿐이고 임상 경험이 매우 제한되어 있기 때문에 IV 철분 치료를 반복할지 여부를 결정하는 것은 더 복잡하기 때문에, 현재로서는 임상 지침을 제공할 수 없다. 그러나 위원회의 합의는 이전 초기 IV 철분 치료 연구에서 사용된 ferritin (≥ 300 μg/L) 및 철분포화도 (> 45%)에 대한 치료를 제외하는 한계치가 있기 때문에, 반복적 IV 철분 치료를 고려할 때 이를 초과해서는 안된다 [36, 42].

4. 낮은 말초 철분의 원인 평가
혈액 손실은 철분 상태에서 낮은 철분 측정치의 가장 가능성 있는 원인이다. 혈청 철분 측정치가 비정상적으로 낮거나 급격히 감소하는 경우에는 혈액 손실의 가능성을 고려할 수 있다. 발생된 Class IV 연구가 하나뿐이고 임상 경험을 확인하기 위해 IV 철분 치료를 반복할지 여부를 결정하는 것은 더 복잡하기 때문에, 현재로서는 임상 지침을 제공할 수 없다. 그러나 위원회의 합의는 이전 초기 IV 철분 치료 연구에서 사용된 ferritin (≥ 300 μg/L) 및 철분포화도 (> 45%)에 대한 치료를 제외하는 한계치가 있기 때문에, 반복적 IV 철분 치료를 고려할 때 이를 초과해서는 안된다 [36, 42].

결론
RLS는 노인에게 특히 혼란된 만성적인 신경계 질환으로, 수면 및 삶의 질에 큰 영향을 미친다. 우리 주변에서 비교적 흔하게 볼 수 있으며, 아직 다른 증상들과 혼동되어 정확한 진단과 치료지침이 부족한 상황이다. 앞으로 동의한 이론적 증거 및 임상적 합의를 통해 철분이 RLS에 대한 1차 치료 옵션 중 하나가 될 수 있는지 연구가 필요하다. 그러나 경구 철분 흡수를 위한 혈청 ferritin 수치가 너무 높거나, 경구 철분 복용이 어려운 다양한 경우, 구강 철분에 대한 혈청 철분 수치의 반응이 부족한 경우 등에서 IV 철분 투여를 고려해야 한다. 아직 RLS에서 철분 치료의 장기적 이점이나 안전성에 대한 연구는 없기 때문에, 철분으로 치료받은 환자, 특히 IV 철분을 투여 받은 환자는 장기적인 안

Intravenous iron for RLS if:
Moderate to severe RLS, serum ferritin is ≤ 100 μg/L with TSAT% < 45, and any of the following are present:
- Oral iron treatment failure: intolerance or lack of efficacy.
- A condition that blocks oral iron absorption or makes response unlikely.
- Oral but not IV iron contraindication.
- Clinical need for a more rapid response than with oral iron.

IV iron treatment
Recommended (evidence-based from RCTs):
FCM 1,000 mg over 15 minutes or 500 mg over 7.5 min x2, 5–7 days apart.
Optional (based on expert clinical consensus but lacking adequate RCTs):
LMW ID 975 mg over 1–4 hours after 25 mg test dose.
Repeat iron panel at 8 and 16 weeks after infusion.

Evaluate clinically 6–12 weeks after IV iron and adjust any other RLS treatment as indicated.

Consider repeat IV iron if:
There was a clinically significant response to the initial iron infusion, RLS symptoms return or significantly worsen ≥ 12 weeks after IV iron, peripheral iron status has clearly decreased post infusion, and serum ferritin is < 300 μg/L with TSAT% < 45.

 serpentem medicatioe noctum leporinus

성공적인 경구 철분 치료를 반복하기 위한 결정은 혈청 ferritin 수치가 75~100 μg/L 미만으로 떨어짐에 따라 결정될 수 있으며, 이는 RLS 증상을 줄이기 위해 경구 철분을 다시 시작하는 것이 가능한 이점이 있다. 발표된 Class IV 연구가 하나뿐이 고 임상 경험이 매우 제한되어 있기 때문에 IV 철분 치료를 반복할지 여부를 결정하는 것은 더 복잡하기 때문에, 현재로서는 임상 지침을 제공할 수 없다. 그러나 위원회의 합의는 이전 초기 IV 철분 치료 연구에서 사용된 ferritin (≥ 300 μg/L) 및 철분포화도 (> 45%)에 대한 치료를 제외하는 한계치가 있기 때문에, 반복적 IV 철분 치료를 고려할 때 이를 초과해서는 안된다 [36, 42].

결론
RLS는 노인에게 특히 혼란된 만성적인 신경계 질환으로, 수면 및 삶의 질에 큰 영향을 미친다. 우리 주변에서 비교적 흔하게 볼 수 있으며, 아직 다른 증상들과 혼동되어 정확한 진단과 치료지침이 부족한 상황이다. 앞으로 성공적인 경구 철분 치료를 반복하기 위한 결정은 혈청 ferritin 수치가 75~100 μg/L 미만으로 떨어짐에 따라 결정될 수 있으며, 이는 RLS 증상을 줄이기 위해 경구 철분을 다시 시작하는 것이 가능한 이점이 있다. 발표된 Class IV 연구가 하나뿐이 고 임상 경험이 매우 제한되어 있기 때문에 IV 철분 치료를 반복할지 여부를 결정하는 것은 더 복잡하기 때문에, 현재로서는 임상 지침을 제공할 수 없다. 그러나 위원회의 합의는 이전 초기 IV 철분 치료 연구에서 사용된 ferritin (≥ 300 μg/L) 및 철분포화도 (> 45%)에 대한 치료를 제외하는 한계치가 있기 때문에, 반복적 IV 철분 치료를 고려할 때 이를 초과해서는 안된다 [36, 42].
전을 보장하기 위해 정기적인 추적이 필요하다.
철분 치료는 RLS의 병태생리 및 임상적 증상 개선 등 다양한 측면에서 중요성을 가지고 있다. 향후 보다 적극적인 뇌로의 전달 및 정확한 모니터링 등 치료 방법의 개발이 필요하였으며, 다양한 임상 연구로 추가적인 장기적 임상지침이 나올 것으로 기대한다.

Notes

Conflicts of Interest
The authors have no potential conflicts of interest to disclose.

Funding
None.

ORCID
Yun Ho Choi, https://orcid.org/0000-0001-6463-2857
In-Uk Song, https://orcid.org/0000-0002-0181-0844

References

1. Allen RP, Walters AS, Montplaisir J, Hening W, Myers A, Bell TJ, et al. Restless legs syndrome prevalence and impact: REST general population study. Arch Intern Med 2005;165:1286–1292.
2. Winkelman JW, Redline S, Baldwin CM, Resnick HE, Newman AB, Gottlieb DJ. Polysomnographic and health-related quality of life correlates of restless legs syndrome in the Sleep Heart Health Study. Sleep 2009;32:772–778.
3. Earley CJ, Silber MH. Restless legs syndrome: understanding its consequences and the need for better treatment. Sleep Med 2010;11:807–815.
4. National Heart, Lung, and Blood Institute Working Group on Restless Legs Syndrome. Restless legs syndrome: detection and management in primary care. Am Fam Physician 2000;62:108–114.
5. Cho YW, Shin WC, Yun CH, Hong SB, Kim JH, Allen RP, et al. Epidemiology of restless legs syndrome in Korean adults. Sleep 2008;31:219–223.
6. Garcia-Borreguero D, Egatz R, Winkelmann J, Berger K. Epidemiology of restless legs syndrome: the current status. Sleep Med Rev 2006;10:153–167.
7. Ohyon MM, O’Hara R, Vitiello MV. Epidemiology of restless legs syndrome: a synthesis of the literature. Sleep Med Rev 2012;16:283–295.
8. Kuzniar TJ, Silber MH. Multiple skeletal injuries resulting from uncontrolled restless legs syndrome. J Clin Sleep Med 2007;3:60–61.
9. Allen RP, Earley CJ. The role of iron in restless legs syndrome. Mov Disord 2007;22 Suppl 18:S440–S448.
10. Connor JR, Ponnuru P, Wang XS, Patton SM, Allen RP, Earley C. Profile of altered brain iron acquisition in restless legs syndrome. Brain 2011;134(Pt 4):959–968.
11. Garcia-Borreguero D, Kohnen R, Silber MH, Winkelman JW, Earley CJ, Hogl B, et al. The long-term treatment of restless legs syndrome/Willis-Ekbom disease: evidence-based guidelines and clinical consensus best practice guidance: a report from the International Restless Legs Syndrome Study Group. Sleep Med 2013;14:675–684.
12. Garcia-Borreguero D, Silber MH, Winkelman JW, Hogl B, Bainbridge J, Buchfuhrer M, et al. Guidelines for the first-line treatment of restless legs syndrome/Willis-Ekbom disease, prevention and treatment of dopaminergic augmentation: a combined task force of the IRLSSG, EURLSSG, and the RLS-foundation. Sleep Med 2016;21:1–11.
13. Aurora RN, Kristo DA, Bista SR, Rowley JA, Zak RS, Casey KR, et al. Update to the AASM Clinical Practice Guideline: “the treatment of restless legs syndrome and periodic limb movement disorder in adults: an update for 2012: practice parameters with an evidence-based systematic review and meta-analyses”. Sleep 2012;35:1037.
14. Allen RP, Picchietti DL, Auerbach M, Cho YW, Connor JR, Earley CJ, et al. Evidence-based and consensus clinical practice guidelines for the iron treatment of restless legs syndrome/Willis-Ekbom disease in adults and children: an IRLSSG task force report. Sleep Med 2018;41:27–44.
15. Allen RP, Picchietti DL, Garcia-Borreguero D, Ondo WG, Walters AS, Winkelman JW, et al. Restless legs syndrome/Willis-Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria: history, rationale, description, and significance. Sleep Med 2014;15:860–873.
16. American Academy of Sleep Medicine. International Classification of Sleep Disorders. 3rd ed. Darien, IL: American Academy of Sleep Medicine; 2014.
17. Allen RP, Picchietti D, Hening WA, Trenkwalder C, Walters AS, Montplaisi J, et al. Restless legs syndrome: diagnostic criteria, special considerations, and epidemiology: a report from the restless legs syndrome diagnosis and epidemiology work-
shop at the National Institutes of Health. Sleep Med 2003;4:101–119.

18. Hornyak M, Feige B, Voderholzer U, Philipsen A, Riemann D. Polysomnography findings in patients with restless legs syndrome and in healthy controls: a comparative observational study. Sleep 2007;30:861–865.

19. Michaud M, Poirier G, Lavigne G, Montplaisir J. Restless Legs Syndrome: scoring criteria for leg movements recorded during the suggested immobilization test. Sleep Med 2001;2:317–321.

20. Yang JG, Kim DH, Lee JH, Park KH, Jung KY, Shin WC, et al. The reliability and validity of the Korean versions of the International Restless Legs Scale and the Restless Legs Syndrome Quality of Life Questionnaire. J Korean Neurol Assoc 2010;28:263–269.

21. Cho YW, Kim DH, Allen RP, Earley CJ. Assessing health-related quality of life in patients with restless legs syndrome in Korea: comparison with other chronic medical diseases. Sleep Med 2012;13:1158–1163.

22. O’Keeffe ST, Gavin K, Lavan JN. Iron status and restless legs syndrome in the elderly. Age Ageing 1994;23:200–203.

23. Sun ER, Chen CA, Ho G, Earley CJ, Allen RP. Iron and the restless legs syndrome. Sleep 1998;21:381–387.

24. Allen RP, Auerbach S, Bahrain H, Auerbach M, Earley CJ. The prevalence and impact of restless legs syndrome on patients with iron deficiency anemia. Am J Hematol 2013;88:261–264.

25. Earley CJ, B Barker P, Horska A, Allen RP. MRI-determined regional brain iron concentrations in early- and late-onset restless legs syndrome. Sleep Med 2006;7:458–461.

26. Earley CJ, Connor JR, Beard JL, Malecki EA, Epstein DK, Allen RP. Abnormalities in CSF concentrations of ferritin and transferrin in restless legs syndrome. Neurology 2000;54:1698–1700.

27. Godau J, Schweitzer KJ, Liepelt I, Gerloff C, Berg D. Substantia nigra hypoehocogenicity: definition and findings in restless legs syndrome. Mov Disord 2007;22:187–192.

28. Earley CJ, Connor J, Garcia-Borreguero D, Jenner P, Winkelmann J, Zee PC, et al. Altered brain iron homeostasis and dopaminergic function in Restless Legs Syndrome (Willis-Ekbom Disease). Sleep Med 2014;15:1288–1301.

29. Larsen L, Milman N. Normal iron absorption determined by means of whole body counting and red cell incorporation of 59Fe. Acta Med Scand 1975;198:271–274.

30. Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta 2012;1823:1434–1443.

31. Cook JD, Lipschitz DA, Skikne BS. Absorption of controlled-release iron. Clin Pharmacol Ther 1982;32:531–539.

32. Beshara S, Lundqvist H, Sundin J, Lubberink M, Tolmachev V, Valind S, et al. Pharmacokinetics and red cell utilization of iron(III) hydroxide-sucrose complex in anaemic patients: a study using positron emission tomography. Br J Haematol 1999;104:296–302.

33. Finch CA, Huebers H. Perspectives in iron metabolism. N Engl J Med 1982;306:1520–1528.

34. Connor JR, Zhang X, Nixon AM, Webb B, Perno JR. Comparative evaluation of nephrotoxicity and management by macrophages of intravenous pharmaceutical iron formulations. PLoS One 2015;10:e0125272.

35. Cho YW, Allen RP, Earley CJ. Lower molecular weight intravenous iron dextran for restless legs syndrome. Sleep Med 2013;14:274–277.

36. Cho YW, Allen RP, Earley CJ. Clinical efficacy of ferric carboxymaltose treatment in patients with restless legs syndrome. Sleep Med 2016;25:16–23.

37. Cho YW, Allen RP, Earley CJ. Efficacy of ferric carboxymaltose (FCM) 500 mg dose for the treatment of Restless Legs Syndrome. Sleep Med 2018;42:7–12.

38. Lee CS, Lee SD, Kang SH, Park HY, Yoon IY. Comparison of the efficacies of oral iron and pramipexole for the treatment of restless legs syndrome patients with low serum ferritin. Eur J Neurol 2014;21:260–266.

39. Lane DJ, Richardson DR. The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption! Free Radic Biol Med 2014;75:69–83.

40. Moretti D, Goede JS, Zeder C, Jiskra M, Chatzinakou V, Tjalsma H, et al. Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood 2015;126:1981–1989.

41. Trenkwalder C, Winkelmann J, Oertel W, Virgin G, Roubert B, Mezzacasa A, et al. Ferric carboxymaltose in patients with restless legs syndrome and nonanaemic iron deficiency: a randomized trial. Mov Disord 2017;32:1478–1482.

42. Allen RP, Adler CH, Du W, Butcher A, Bregman DB, Earley CJ. Clinical efficacy and safety of IV ferric carboxymaltose (FCM) treatment of RLS: a multi-centred, placebo-controlled preliminary clinical trial. Sleep Med 2011;12:906–913.

43. Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L. Iron deficiency anaemia. Lancet 2016;387:907–916.
Appendix 1 Diagnostic criteria of restless legs syndrome

기준 A-C가 모두 충족되어야 함

A. 다리를 움직이려고 하는 충동, 대개 다리의 불편함과 불쾌한 감각이 동반되거나 혹은 이로 인해 발생되었다고 생각됨.

1. 놀거나 앉는 것과 같이 쉬거나 비활동적인 시간 동안 시작되거나 약화됨.
2. 걷기 또는 스트레칭과 같은 움직임에 의해, 적어도 움직임이 지속되는 동안은, 부분적으로 또는 완전히 호전됨.
3. 낮보다는 저녁이나 밤에나 나타나거나 주로 발생함.

B. 위의 특징은 다른 의학적 혹은 행동적 상태(예: 다리근육경련, 위치불편, 근육통, 정맥정체, 다리부종, 관절염, 습관성 발두드림)로 설명되지 않음.

C. 하지불안증후군의 증상은 정신, 신체, 사회, 직업, 교육, 행동 또는 기타 중요한 기능 영역의 손실 혹은 걱정, 고통, 수면장애를 유발함.

Reproduced from International Classification of Sleep Disorders. 3rd ed. Darien, IL: American Academy of Sleep Medicine, 2014 [16]. ICSD-3, International Classification of Sleep Disorders-3rd edition.

*때로 다리를 움직이려는 충동은 불편한 감각 없이 나타나기도 하고 다리 외에도 팔이나 몸의 다른 부분에서 나타나기도 한다.
†아린이의 경우, 이러한 증상의 설명은 소아의 자신의 언어로 표현해야 한다.
‡증상이 매우 심할 경우, 움직임에 의한 증상 완화가 확실하지 않을 수 있지만, 이전에는 호전되었던 적이 있어야 한다.
§증상도, 치료 개입 또는 치료로 인한 증상 악화의 결과로 인하여, 저녁이나 밤에 증상이 심해지는 것이 무엇하직할 수 있지만 이전에는 틀림없이 있어야 한다.
∥유전학 또는 역학 연구와 같은 특정 연구적용의 경우 기준 C를 생략하는 것이 적절할 수 있다. 그렇다면, 이것은 연구 보고서에 명확하게 명시되어야 한다.